Feature Selection

2022-04-01

```
# Load Libraries
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages -----
                                   ----- tidyverse 1.3.1 --
                   v purrr 0.3.4
## v ggplot2 3.3.5
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2
                    v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
library(moments)
library(heatmaply)
## Warning: package 'heatmaply' was built under R version 4.1.3
## Loading required package: plotly
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
      last_plot
## The following object is masked from 'package:stats':
##
##
      filter
## The following object is masked from 'package:graphics':
##
##
      layout
```

```
## Loading required package: viridis
## Warning: package 'viridis' was built under R version 4.1.3
## Loading required package: viridisLite
##
## =========
## Welcome to heatmaply version 1.3.0
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
##
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talgalili/heatmaply/issues
## You may ask questions at stackoverflow, use the r and heatmaply tags:
    https://stackoverflow.com/questions/tagged/heatmaply
## =========
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
# Import the dataset
smarket <- read.csv("http://bit.ly/CarreFourDataset")</pre>
# Preview the first few rows
head(smarket)
      Invoice.ID Branch Customer.type Gender
##
                                                       Product.line Unit.price
## 1 750-67-8428
                              Member Female
                                                 Health and beauty
                                                                        74.69
                     Α
## 2 226-31-3081
                     С
                              Normal Female Electronic accessories
                                                                        15.28
## 3 631-41-3108
                     Α
                              Normal
                                       Male
                                                Home and lifestyle
                                                                        46.33
## 4 123-19-1176
                     Α
                              Member
                                       Male
                                                 Health and beauty
                                                                        58.22
## 5 373-73-7910
                                                                        86.31
                     Α
                              Normal
                                       Male
                                                 Sports and travel
## 6 699-14-3026
                              Normal
                                       Male Electronic accessories
                                                                        85.39
                     С
##
                                                   cogs gross.margin.percentage
     Quantity
                 Tax
                          Date Time
                                       Payment
## 1
           7 26.1415 1/5/2019 13:08
                                         Ewallet 522.83
                                                                       4.761905
## 2
           5 3.8200 3/8/2019 10:29
                                            Cash 76.40
                                                                       4.761905
           7 16.2155 3/3/2019 13:23 Credit card 324.31
## 3
                                                                       4.761905
## 4
           8 23.2880 1/27/2019 20:33
                                         Ewallet 465.76
                                                                       4.761905
## 5
           7 30.2085 2/8/2019 10:37
                                         Ewallet 604.17
                                                                       4.761905
## 6
           7 29.8865 3/25/2019 18:30
                                         Ewallet 597.73
                                                                       4.761905
##
    gross.income Rating
                           Total
## 1
         26.1415
                    9.1 548.9715
## 2
          3.8200
                    9.6 80.2200
                    7.4 340.5255
## 3
         16.2155
## 4
         23.2880
                    8.4 489.0480
## 5
         30.2085
                    5.3 634.3785
## 6
         29.8865
                    4.1 627.6165
```

Preview the last few rows tail(smarket)

```
##
         Invoice.ID Branch Customer.type Gender
                                                          Product.line Unit.price
## 995
       652-49-6720
                         С
                                  Member Female Electronic accessories
## 996
       233-67-5758
                         С
                                  Normal
                                           Male
                                                     Health and beauty
                                                                             40.35
## 997
        303-96-2227
                         В
                                                    Home and lifestyle
                                  Normal Female
                                                                             97.38
## 998
       727-02-1313
                         Α
                                                    Food and beverages
                                  Member
                                           Male
                                                                             31.84
## 999
       347-56-2442
                         Α
                                  Normal
                                           Male
                                                   Home and lifestyle
                                                                             65.82
## 1000 849-09-3807
                                  Member Female
                         Α
                                                   Fashion accessories
                                                                             88.34
        Quantity
##
                              Date Time Payment
                                                   cogs gross.margin.percentage
                     Tax
## 995
              1 3.0475 2/18/2019 11:40 Ewallet 60.95
                                                                        4.761905
## 996
               1 2.0175 1/29/2019 13:46 Ewallet 40.35
                                                                        4.761905
              10 48.6900 3/2/2019 17:16 Ewallet 973.80
## 997
                                                                        4.761905
## 998
               1 1.5920 2/9/2019 13:22
                                            Cash 31.84
                                                                        4.761905
## 999
               1 3.2910 2/22/2019 15:33
                                            Cash 65.82
                                                                        4.761905
               7 30.9190 2/18/2019 13:28
                                            Cash 618.38
                                                                        4.761905
## 1000
        gross.income Rating
##
                                Total
## 995
              3.0475
                        5.9
                              63.9975
## 996
              2.0175
                        6.2
                              42.3675
## 997
             48.6900
                        4.4 1022.4900
## 998
              1.5920
                        7.7
                              33.4320
## 999
              3.2910
                        4.1
                              69.1110
## 1000
                        6.6 649.2990
             30.9190
```

Check number of records and variables dim(smarket)

[1] 1000 16

We have 1,000 records and 16 variables

Check the datatypes of our dataset glimpse(smarket)

```
## Rows: 1,000
## Columns: 16
                                                                                 <chr> "750-67-8428", "226-31-3081", "631-41-3108", "~
## $ Invoice.ID
                                                                                 <chr> "A", "C", "A", "A", "A", "C", "A", "C", "A", "~
## $ Branch
                                                                                 <chr> "Member", "Normal", "Normal", "Member", "Norma~
## $ Customer.type
## $ Gender
                                                                                 <chr> "Female", "Female", "Male", "Mal
                                                                                 <chr> "Health and beauty", "Electronic accessories",~
## $ Product.line
                                                                                 <dbl> 74.69, 15.28, 46.33, 58.22, 86.31, 85.39, 68.8~
## $ Unit.price
## $ Quantity
                                                                                 <int> 7, 5, 7, 8, 7, 7, 6, 10, 2, 3, 4, 4, 5, 10, 10~
## $ Tax
                                                                                 <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ Date
                                                                                  <chr> "1/5/2019", "3/8/2019", "3/3/2019", "1/27/2019~
## $ Time
                                                                                 <chr> "13:08", "10:29", "13:23", "20:33", "10:37", "~
## $ Payment
                                                                                  <chr> "Ewallet", "Cash", "Credit card", "Ewallet", "~
                                                                                  <dbl> 522.83, 76.40, 324.31, 465.76, 604.17, 597.73,~
## $ cogs
## $ gross.margin.percentage <dbl> 4.761905, 4.761905, 4.761905, 4.761905, 4.761905
                                                                                 <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ gross.income
## $ Rating
                                                                                 <dbl> 9.1, 9.6, 7.4, 8.4, 5.3, 4.1, 5.8, 8.0, 7.2, 5~
                                                                                  <dbl> 548.9715, 80.2200, 340.5255, 489.0480, 634.378~
## $ Total
```

Check the summary of our dataset summary(smarket)

```
Customer.type
##
     Invoice.ID
                          Branch
                                                                Gender
   Length: 1000
                                          Length:1000
##
                       Length: 1000
                                                             Length: 1000
##
   Class : character
                       Class : character
                                          Class : character
                                                             Class : character
   Mode :character
                       Mode :character
                                          Mode :character
                                                             Mode :character
##
##
##
##
   Product.line
                        Unit.price
                                          Quantity
                                                            Tax
                       Min. :10.08
                                       Min. : 1.00
                                                              : 0.5085
##
   Length: 1000
                                                       Min.
                                       1st Qu.: 3.00
##
   Class : character
                       1st Qu.:32.88
                                                       1st Qu.: 5.9249
                      Median :55.23
                                       Median: 5.00
   Mode :character
                                                       Median :12.0880
                                                             :15.3794
##
                       Mean :55.67
                                       Mean : 5.51
                                                       Mean
##
                       3rd Qu.:77.94
                                       3rd Qu.: 8.00
                                                       3rd Qu.:22.4453
##
                       Max. :99.96
                                       Max. :10.00
                                                       Max.
                                                              :49.6500
##
        Date
                          Time
                                           Payment
                                                                  cogs
##
   Length: 1000
                       Length: 1000
                                          Length: 1000
                                                             Min. : 10.17
   Class :character
                       Class :character
                                          Class :character
                                                             1st Qu.:118.50
   Mode :character
##
                       Mode :character
                                          Mode :character
                                                             Median :241.76
##
                                                             Mean
                                                                    :307.59
                                                             3rd Qu.:448.90
##
##
                                                             Max.
                                                                   :993.00
   gross.margin.percentage gross.income
                                                                   Total
##
                                                  Rating
  Min.
          :4.762
                           Min. : 0.5085
                                              Min.
                                                    : 4.000
                                                               Min.
                                                                     : 10.68
##
   1st Qu.:4.762
                            1st Qu.: 5.9249
                                              1st Qu.: 5.500
                                                              1st Qu.: 124.42
## Median :4.762
                           Median :12.0880
                                              Median : 7.000
                                                              Median: 253.85
         :4.762
## Mean
                           Mean :15.3794
                                              Mean : 6.973
                                                               Mean : 322.97
##
   3rd Qu.:4.762
                            3rd Qu.:22.4453
                                              3rd Qu.: 8.500
                                                               3rd Qu.: 471.35
## Max.
          :4.762
                           Max. :49.6500
                                              Max. :10.000
                                                               Max.
                                                                      :1042.65
# Check the column names
names(smarket)
```

```
## [1] "Invoice.ID" "Bra
```

```
## [1] "Invoice.ID" "Branch"

## [3] "Customer.type" "Gender"

## [5] "Product.line" "Unit.price"

## [7] "Quantity" "Tax"

## [9] "Date" "Time"

## [11] "Payment" "cogs"

## [13] "gross.margin.percentage" "gross.income"

## [15] "Rating" "Total"
```

Data Cleaning

```
# Let's check for missing values
colSums(is.na(smarket))
```

Invoice.ID Branch Customer.type

##	0	0	0
##	Gender	Product.line	Unit.price
##	0	0	0
##	Quantity	Tax	Date
##	0	0	0
##	Time	Payment	cogs
##	0	0	0
##	<pre>gross.margin.percentage</pre>	gross.income	Rating
##	0	0	0
##	Total		
##	0		

We have no missing values.

```
# Check for duplicate values
sum(duplicated(smarket))
```

[1] 0

We have no duplicate values

```
# Checking for outliers in our numerical variables
boxplot(smarket[, c(6,7)])
```


Checking for outliers in our numerical variables
boxplot(smarket[, c(8,12)])

Checking for outliers in our numerical variables
boxplot(smarket[, c(13,14)])

Checking for outliers in our numerical variables
boxplot(smarket[, c(15,16)])

There is presence of outliers in Tax, Cogs, Gross income and Total Variables

```
# Convert the date column from character datatype to date datatype
smarket$Date <- as.Date(smarket$Date, "%m/%d/%Y")
# Confirm changes made
glimpse(smarket)</pre>
```

```
## Rows: 1,000
## Columns: 16
## $ Invoice.ID
                             <chr> "750-67-8428", "226-31-3081", "631-41-3108", "~
                             <chr> "A", "C", "A", "A", "A", "C", "A", "C", "A", "~
## $ Branch
## $ Customer.type
                             <chr> "Member", "Normal", "Normal", "Member", "Norma~
                             <chr> "Female", "Female", "Male", "Male", "Male", "M~
## $ Gender
                             <chr> "Health and beauty", "Electronic accessories",~
## $ Product.line
## $ Unit.price
                             <dbl> 74.69, 15.28, 46.33, 58.22, 86.31, 85.39, 68.8~
## $ Quantity
                             <int> 7, 5, 7, 8, 7, 7, 6, 10, 2, 3, 4, 4, 5, 10, 10~
## $ Tax
                             <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ Date
                             <date> 2019-01-05, 2019-03-08, 2019-03-03, 2019-01-2~
                             <chr> "13:08", "10:29", "13:23", "20:33", "10:37", "~
## $ Time
                             <chr> "Ewallet", "Cash", "Credit card", "Ewallet", "~
## $ Payment
                             <dbl> 522.83, 76.40, 324.31, 465.76, 604.17, 597.73,~
## $ gross.margin.percentage <dbl> 4.761905, 4.761905, 4.761905, 4.761905, 4.761905
## $ gross.income
                             <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ Rating
                             <dbl> 9.1, 9.6, 7.4, 8.4, 5.3, 4.1, 5.8, 8.0, 7.2, 5~
## $ Total
                             <dbl> 548.9715, 80.2200, 340.5255, 489.0480, 634.378~
```

```
# We will extract month from the date column
smarket$Month<- format(smarket$Date, "%m")
head(smarket)</pre>
```

Normal Female Electronic accessories

Member Female

Product.line Unit.price

Health and beauty

74.69

15.28

Invoice.ID Branch Customer.type Gender

Α

smarket\$Month[smarket\$Month == "03"] <- "March"</pre>

1 750-67-8428

2 226-31-3081

```
Α
## 3 631-41-3108
                              Normal
                                       Male
                                                Home and lifestyle
                                                                         46.33
## 4 123-19-1176
                    Α
                              Member
                                       Male
                                                 Health and beauty
                                                                         58.22
## 5 373-73-7910
                     Α
                              Normal
                                       Male
                                                 Sports and travel
                                                                         86.31
## 6 699-14-3026
                     С
                              Normal Male Electronic accessories
                                                                        85.39
    Quantity
                 Tax
                           Date Time
                                          Payment cogs gross.margin.percentage
## 1
           7 26.1415 2019-01-05 13:08
                                          Ewallet 522.83
                                                                        4.761905
## 2
           5 3.8200 2019-03-08 10:29
                                             Cash 76.40
                                                                        4.761905
## 3
          7 16.2155 2019-03-03 13:23 Credit card 324.31
                                                                        4.761905
## 4
           8 23.2880 2019-01-27 20:33
                                          Ewallet 465.76
                                                                        4.761905
## 5
           7 30.2085 2019-02-08 10:37
                                          Ewallet 604.17
                                                                        4.761905
## 6
           7 29.8865 2019-03-25 18:30
                                          Ewallet 597.73
                                                                        4.761905
   gross.income Rating
                           Total Month
## 1
        26.1415
                    9.1 548.9715
## 2
          3.8200
                    9.6 80.2200
                                     03
## 3
         16.2155
                  7.4 340.5255
## 4
         23.2880
                    8.4 489.0480
                                     01
## 5
         30.2085
                    5.3 634.3785
                                     02
## 6
         29.8865
                    4.1 627.6165
# Replace the numbers in months with the name of the month
smarket$Month[smarket$Month == "01"] <- "January"</pre>
smarket$Month[smarket$Month == "02"] <- "February"</pre>
```

Univariate Analysis

```
# Bar chart on revenue
gg.1 <- ggplot (data = smarket, aes(x= Branch)) +
  geom_bar(fill = "cornflowerblue")
gg.1 + ggtitle("Bar chart on Branch")</pre>
```

Bar chart on Branch

The number of branches in our data are not too different from each other

```
# Bar Chart on Customer Type
gg.2 <- ggplot (data = smarket, aes(x= Customer.type)) +
  geom_bar(fill = "cornflowerblue")
gg.2 + ggtitle("Bar chart on Customer Type")</pre>
```


There isn't a big difference in the number of member and normal customers

```
# Bar Chart on Gender
gg.3 <- ggplot (data = smarket, aes(x= Gender)) +
  geom_bar(fill = "cornflowerblue")
gg.3 + ggtitle("Bar chart on Gender")</pre>
```

Bar chart on Gender

There isn't a big difference in the number of male and female customers

```
# Bar Chart on Product Line
gg.4 <- ggplot (data = smarket, aes(x= Product.line)) +
  geom_bar(fill = "cornflowerblue") + theme(axis.text.x = element_text(
        angle = 90, vjust = .5, hjust = 1
    ))
gg.4 + ggtitle("Bar chart on Product Line")</pre>
```

Bar chart on Product Line

Fashion accessories is the most popular product followed closely by food and beverages

```
# Bar Chart on Payment
gg.5 <- ggplot (data = smarket, aes(x= Payment)) +
geom_bar(fill = "cornflowerblue")
gg.5 + ggtitle("Bar chart on Payment")</pre>
```

Bar chart on Payment

There is no big difference in the number of customers who paid via Ewallet and cash

```
# Bar Chart on Month
gg.6<- ggplot (data = smarket, aes(x= Month)) +
  geom_bar(fill = "cornflowerblue")
gg.6 + ggtitle("Bar chart on Month")</pre>
```

Bar chart on Month

January had the most transactions followed closely by March

```
# Frequency chart on Unit price
freq.1 <- table(smarket$Unit.price)</pre>
head(sort(freq.1, decreasing = T))
##
## 83.77
         15.5 15.8 18.08 19.15 20.01
                   2
                          2
       3
             2
# Frequency chart on Quantity
freq.2 <- table(smarket$Quantity)</pre>
head(sort(freq.2, decreasing = T))
##
##
             4 5 7
                          6
  10
         1
## 119 112 109 102 102 98
# Frequency chart on Tax
freq.3 <- table(smarket$Tax)</pre>
head(sort(freq.3, decreasing = T),n=15)
##
##
     4.154
             4.464
                     8.377
                            9.0045
                                    10.326 10.3635
                                                       12.57
                                                              13.188
                                                                                39.48
##
         2
                          2
                                  2
                                          2
                                                   2
```

```
0.5085 0.6045
                     0.627
                              0.639
                                      0.699
##
         1
                 1
                          1
# Frequency chart on cogs
freq.4 <- table(smarket$cogs)</pre>
head(sort(freq.4, decreasing = T), n=15)
##
##
    83.08 89.28 167.54 180.09 206.52 207.27 251.4 263.76 448.56 789.6 10.17
##
               2
                      2
                              2
                                     2
                                            2
                                                    2
                                                           2
                                                                   2
        2
                                                                          2
          12.54 12.78 13.98
    12.09
##
        1
               1
                      1
# Frequency chart on gross margin percentage
freq.5 <- table(smarket$gross.margin.percentage)</pre>
head(sort(freq.5, decreasing = T))
## 4.761904762
          1000
# Frequency chart on Rating
freq.5 <- table(smarket$Rating)</pre>
head(sort(freq.5, decreasing = T))
##
##
     6 6.6 4.2 9.5
                     5 5.1
    26 24 22 22 21 21
# Frequency chart on Gross Income
freq.5 <- table(smarket$gross.income)</pre>
head(sort(freq.5, decreasing = T), n=10)
##
     4.154
             4.464
                     8.377 9.0045 10.326 10.3635
                                                       12.57 13.188
                                                                       22.428
                                                                                39.48
##
##
         2
                 2
                          2
                                  2
                                          2
                                                   2
                                                           2
                                                                    2
                                                                            2
                                                                                    2
# Frequency chart on Total
freq.5 <- table(smarket$Total)</pre>
head(sort(freq.5, decreasing = T), n=15)
##
##
     87.234
              93.744 175.917 189.0945 216.846 217.6335
                                                             263.97
                                                                     276.948
##
                             2
                                                2
                                                                   2
                                                                            2
          2
                   2
                                      2
                                                         2
##
    470.988
              829.08
                      10.6785
                               12.6945
                                          13.167
                                                    13.419
                                                             14.679
##
          2
                   2
                             1
                                      1
                                                1
                                                         1
                                                                  1
# Identify the mean, median, min, max and quantile of our numerical variables
summary(smarket[,c(6:8,12:16)])
```

```
Quantity
##
     Unit.price
                                     Tax
                                                      cogs
         :10.08 Min. : 1.00 Min. : 0.5085 Min. : 10.17
## Min.
  1st Qu.:32.88 1st Qu.: 3.00
                                 1st Qu.: 5.9249 1st Qu.:118.50
## Median: 55.23 Median: 5.00 Median: 12.0880 Median: 241.76
                                                        :307.59
## Mean :55.67
                  Mean : 5.51 Mean : 15.3794 Mean
## 3rd Qu.:77.94
                  3rd Qu.: 8.00
                                 3rd Qu.:22.4453
                                                  3rd Qu.:448.90
        :99.96
                  Max. :10.00 Max. :49.6500 Max. :993.00
##
   gross.margin.percentage gross.income
                                              Rating
                                                              Total
## Min.
         :4.762
                         Min.
                                : 0.5085 Min. : 4.000 Min. : 10.68
## 1st Qu.:4.762
                         1st Qu.: 5.9249
                                          1st Qu.: 5.500 1st Qu.: 124.42
## Median :4.762
                         Median: 12.0880 Median: 7.000 Median: 253.85
                         Mean :15.3794
## Mean :4.762
                                          Mean : 6.973 Mean : 322.97
                                          3rd Qu.: 8.500 3rd Qu.: 471.35
## 3rd Qu.:4.762
                          3rd Qu.:22.4453
## Max. :4.762
                         Max. :49.6500 Max. :10.000 Max. :1042.65
# We'll also check the mode of our numerical variables
mode <- function(x) {</pre>
 u <- unique(x)
 tab <- tabulate(match(x, u))</pre>
 u[tab == max(tab)]
}
print("Mode of unit price is:")
## [1] "Mode of unit price is:"
mode(smarket$Unit.price)
## [1] 83.77
print("Mode of tax is:")
## [1] "Mode of tax is:"
mode(smarket$Tax)
## [1] 39.4800 9.0045 10.3260 12.5700 10.3635 13.1880 4.1540 8.3770 22.4280
## [10] 4.4640
print("Mode of COGS is:")
## [1] "Mode of COGS is:"
mode(smarket$cogs)
```

[1] 789.60 180.09 206.52 251.40 207.27 263.76 83.08 167.54 448.56 89.28

```
print("Mode of gross margin percentage is:")
## [1] "Mode of gross margin percentage is:"
mode(smarket$gross.margin.percentage)
## [1] 4.761905
print("Mode of Gross income:")
## [1] "Mode of Gross income:"
mode(smarket$gross.income)
## [1] 39.4800 9.0045 10.3260 12.5700 10.3635 13.1880 4.1540 8.3770 22.4280
## [10] 4.4640
print("Mode of Rating is:")
## [1] "Mode of Rating is:"
mode(smarket$Rating)
## [1] 6
print("Mode of Total is:")
## [1] "Mode of Total is:"
mode(smarket$Total)
## [1] 829.0800 189.0945 216.8460 263.9700 217.6335 276.9480 87.2340 175.9170
## [9] 470.9880 93.7440
# Check the variance of our numerical variables
print("Variance of unit price is:")
## [1] "Variance of unit price is:"
var(smarket$Unit.price)
## [1] 701.9653
```

```
print("Variance of tax is:")
## [1] "Variance of tax is:"
var(smarket$Tax)
## [1] 137.0966
print("Variance of COGS is:")
## [1] "Variance of COGS is:"
var(smarket$cogs)
## [1] 54838.64
print("Variance of gross margin percentage is:")
## [1] "Variance of gross margin percentage is:"
var(smarket$gross.margin.percentage)
## [1] 0
print("Variance of Gross income:")
## [1] "Variance of Gross income:"
var(smarket$gross.income)
## [1] 137.0966
print("Variance of Rating is:")
## [1] "Variance of Rating is:"
var(smarket$Rating)
## [1] 2.953518
print("Variance of Total is:")
## [1] "Variance of Total is:"
```

```
var(smarket$Total)
## [1] 60459.6
# Check the skewness of our variables
print("The skewness of our variables:")
## [1] "The skewness of our variables:"
sapply(smarket[,c(6:8,12:16)],skewness)
##
                Unit.price
                                           Quantity
                                                                         Tax
               0.007066827
                                                                 0.891230392
##
                                        0.012921628
##
                      cogs gross.margin.percentage
                                                                gross.income
               0.891230392
                                                                 0.891230392
##
##
                                              Total
                    Rating
##
               0.008996129
                                        0.891230392
# Check the kurtosis of our variables
print("The kurtosis of our variables:")
## [1] "The kurtosis of our variables:"
sapply(smarket[,c(6:8,12:16)],kurtosis)
                Unit.price
##
                                           Quantity
                                                                         Tax
##
                  1.781499
                                           1.784528
                                                                    2.912530
##
                                                                gross.income
                      cogs gross.margin.percentage
                                                                    2.912530
##
                  2.912530
                                                NaN
##
                    Rating
                                              Total
                                           2.912530
##
                  1.848169
Our numerical variables do not have heavy tails
# Plot histograms of our numeric variables
par(mfcol=c(2,2))
hist(smarket$Unit.price, col = "cornflowerblue", main = "Unit Price")
hist(smarket$Quantity, col = "cornflowerblue",
     main = "Quantity")
hist(smarket$Tax, col = "cornflowerblue", main="Tax")
hist(smarket$cogs, col = "cornflowerblue",
```

main ="COGS")

Unit price quantity and Rating are symmetrical and the rest are moderately skewed.

Bivariate Analysis

gross.margin.percentage

```
# Assess the correlation of our numerical variables
cor(smarket[,c(6:8,12:16)])
## Warning in cor(smarket[, c(6:8, 12:16)]): the standard deviation is zero
##
                             Unit.price
                                            Quantity
                                                             Tax
                                                                       cogs
                                          0.01077756
## Unit.price
                             1.00000000
                                                      0.6339621
                                                                  0.6339621
## Quantity
                             0.010777564
                                          1.00000000
                                                      0.7055102
                                                                  0.7055102
## Tax
                             0.633962089
                                          0.70551019
                                                      1.0000000
                                                                  1.0000000
                                                      1.0000000
## cogs
                             0.633962089
                                          0.70551019
                                                                  1.0000000
## gross.margin.percentage
                                      NA
                                                  NA
                                                              NA
## gross.income
                             0.633962089
                                          0.70551019
                                                      1.0000000
                                                                  1.0000000
## Rating
                            -0.008777507 -0.01581490 -0.0364417 -0.0364417
## Total
                                         0.70551019
                                                                  1.0000000
                            0.633962089
                                                      1.0000000
##
                           gross.margin.percentage gross.income
                                                                        Rating
## Unit.price
                                                 NA
                                                        0.6339621 -0.008777507
## Quantity
                                                 NA
                                                        0.7055102 -0.015814905
## Tax
                                                 NA
                                                        1.0000000 -0.036441705
## cogs
                                                 NA
                                                        1.0000000 -0.036441705
```

1

NA

NA

```
## gross.income
                                                 NA
                                                        1.0000000 -0.036441705
## Rating
                                                       -0.0364417 1.000000000
                                                 NA
## Total
                                                 NA
                                                        1.0000000 -0.036441705
##
                                 Total
## Unit.price
                             0.6339621
## Quantity
                             0.7055102
## Tax
                             1.0000000
                             1.0000000
## cogs
## gross.margin.percentage
                                    NA
## gross.income
                             1.000000
## Rating
                            -0.0364417
## Total
                             1.000000
```

Check for correlation without the gross.margin.percentage cor(smarket[,c(6:8,12,14,15,16)])

```
##
                  Unit.price
                                Quantity
                                                 Tax
                                                           cogs gross.income
## Unit.price
                 1.000000000
                              0.01077756 0.6339621 0.6339621
                                                                   0.6339621
## Quantity
                 0.010777564
                              1.00000000
                                          0.7055102 0.7055102
                                                                   0.7055102
## Tax
                 0.633962089
                              0.70551019
                                          1.0000000 1.0000000
                                                                   1.0000000
## cogs
                 0.633962089
                              0.70551019
                                          1.0000000 1.0000000
                                                                   1.0000000
## gross.income 0.633962089 0.70551019 1.0000000 1.0000000
                                                                   1.0000000
## Rating
                -0.008777507 -0.01581490 -0.0364417 -0.0364417
                                                                  -0.0364417
## Total
                 0.633962089 \quad 0.70551019 \quad 1.0000000 \quad 1.0000000
                                                                   1.0000000
##
                      Rating
                                  Total
                -0.008777507
                              0.6339621
## Unit.price
## Quantity
                -0.015814905
                              0.7055102
## Tax
                -0.036441705
                              1.0000000
## cogs
                -0.036441705 1.0000000
## gross.income -0.036441705 1.0000000
## Rating
                 1.000000000 -0.0364417
## Total
                -0.036441705 1.0000000
```

There is a strong positive correlation between quantity and Tax ,cog, Gross income and total Which makes sense because Quantity is used in the calculation of these variables

There's a weak negative correlation between Rating and Tax ,cog, Gross income and total


```
# Plot a pairplot
pairs(smarket[,c(6:8,12,14:16)])
```


Bar Chart of Branch vs Total

The branch with the highest number of sales is ${\bf c}$

Bar chart of Payment vs Total

The Payment method with the highest number of sales is cash

Member customer type have the highest number of sales

Bar chart of Gender vs Total

Female customers have highest number of sales

```
# Bar chart of Product line vs Total
agg_5 <- aggregate(smarket$Total,list(smarket$Product.line),sum)</pre>
agg_5
##
                    Group.1
                                   х
## 1 Electronic accessories 54337.53
        Fashion accessories 54305.89
## 3
         Food and beverages 56144.84
## 4
          Health and beauty 49193.74
## 5
         Home and lifestyle 53861.91
          Sports and travel 55122.83
gg.agg <- ggplot (data = agg_5, aes(x=Group.1, y=x)) +
  geom_col(fill = "cornflowerblue") + theme(axis.text.x = element_text(
   angle = 90, vjust = .5, hjust = 1
  )) + labs(y="Total", x="Product line")+ggtitle("Bar chart of Product line vs Total")
gg.agg + ggtitle("Bar chart on Product Line")
```

Bar chart on Product Line

Food and beverages have the highest number of sales

Bar chart of Month vs Total

January is the month with the highest number of sales

Data Preprocessing

```
# We will start with converting our categorical data to numerical data type
# Convert our variables to factor datatype
final.market <- smarket
final.market$Branch<- as.factor(final.market$Branch)
final.market$Product.line <- as.factor(final.market$Product.line)
final.market$Month <- as.factor(final.market$Month)
final.market$Customer.type <- as.factor(final.market$Customer.type)
final.market$Gender <- as.factor(final.market$Gender)
final.market$Payment<- as.factor(final.market$Payment)</pre>
```

```
# Convert our variables from factor to numeric datatype
final.market$Branch<- as.numeric(final.market$Branch)
final.market$Product.line <- as.numeric(final.market$Product.line)
final.market$Month <- as.numeric(final.market$Month)
final.market$Customer.type <- as.numeric(final.market$Customer.type)
final.market$Gender <- as.numeric(final.market$Gender)
final.market$Payment<- as.numeric(final.market$Payment)</pre>
```

Confirm changes made head(final.market) Invoice.ID Branch Customer.type Gender Product.line Unit.price Quantity ## 1 750-67-8428 1 74.69 1 1 2 ## 2 226-31-3081 3 1 1 15.28 5 ## 3 631-41-3108 5 46.33 7 1 2 2 ## 4 123-19-1176 2 4 58.22 8 1 1 ## 5 373-73-7910 2 86.31 7 1 ## 6 699-14-3026 3 2 2 85.39 7 1 Tax Date Time Payment cogs gross.margin.percentage gross.income ## 1 26.1415 2019-01-05 13:08 3 522.83 4.761905 26.1415 ## 2 3.8200 2019-03-08 10:29 1 76.40 4.761905 3.8200 ## 3 16.2155 2019-03-03 13:23 2 324.31 4.761905 16.2155 ## 4 23.2880 2019-01-27 20:33 3 465.76 4.761905 23.2880 ## 5 30.2085 2019-02-08 10:37 3 604.17 4.761905 30.2085 ## 6 29.8865 2019-03-25 18:30 3 597.73 4.761905 29.8865 Rating Total Month 9.1 548.9715 ## 1 ## 2 9.6 80.2200 ## 3 7.4 340.5255 3 ## 4 8.4 489.0480 ## 5 5.3 634.3785 1 ## 6 4.1 627.6165 # We will carry out our analysis without invoice variable because it's a # unique variables, gross.margin.percentage variable only has one value hence # O variance, instead of using the date and time variable we will use month final \leftarrow final.market[,c(-1,-9,-10,-13)] # View the new dataset head(final) Branch Customer.type Gender Product.line Unit.price Quantity ## Tax Payment ## 1 1 4 74.69 7 26.1415 ## 2 3 2 1 15.28 5 3.8200 1 1 2 ## 3 2 5 46.33 7 16.2155 2 ## 4 2 4 58.22 8 23.2880 3 1 1

```
2
## 5
                        2
                                                    86.31
                                                                 7 30.2085
                        2
                               2
                                                    85.39
                                                                 7 29.8865
## 6
          3
                                                                                  3
                                             1
       cogs gross.income Rating
                                   Total Month
## 1 522.83
                 26.1415
                            9.1 548.9715
## 2 76.40
                  3.8200
                            9.6 80.2200
## 3 324.31
                            7.4 340.5255
                 16.2155
                                              3
## 4 465.76
                 23.2880
                            8.4 489.0480
                                              2
## 5 604.17
                 30.2085
                            5.3 634.3785
                                              1
## 6 597.73
                 29.8865
                            4.1 627.6165
```

Feature Selection

```
# Loading the relevant packages
library(caret)

## Warning: package 'caret' was built under R version 4.1.3

## Loading required package: lattice

## Attaching package: 'caret'

## The following object is masked from 'package:purrr':

## lift

library(corrplot)

## Warning: package 'corrplot' was built under R version 4.1.3

## corrplot 0.92 loaded
```

Filter Method

```
# Calculating the correlation matrix
corr_final <- cor(final[,-12])
corr_final</pre>
```

```
##
                    Branch Customer.type
                                             Gender Product.line
                                                                 Unit.price
## Branch
                           -0.01960787 -0.056317558 -0.053937557 0.028202440
                1.00000000
## Customer.type -0.01960787
                             1.00000000 0.039996160 -0.036800311 -0.020237875
## Gender
               -0.05631756
                             0.03999616 1.000000000 0.005193197
                                                                0.015444630
## Product.line -0.05393756 -0.03680031 0.005193197 1.000000000 0.019321028
## Unit.price
                0.02820244
                            -0.02023787 0.015444630 0.019321028 1.000000000
                            ## Quantity
                0.01596379
## Tax
                0.04104666
                           -0.01967028 -0.049450989 0.031620725 0.633962089
## Payment
               -0.05010429
                           0.01807344 0.044577609 0.029896383 -0.015941048
## cogs
                0.04104666
                           -0.01967028 -0.049450989 0.031620725 0.633962089
                            -0.01967028 -0.049450989
## gross.income
                0.04104666
                                                    0.031620725 0.633962089
                             ## Rating
                0.01023848
## Month
               -0.04033140
                             0.04488694 0.059814418 0.044994245 -0.034715674
##
                   Quantity
                                   Tax
                                            Payment
                                                           cogs gross.income
## Branch
                0.015963788 0.041046665 -0.050104288 0.041046665 0.041046665
## Customer.type -0.016762706 -0.019670283 0.018073436 -0.019670283 -0.019670283
               -0.074258307 -0.049450989 0.044577609 -0.049450989 -0.049450989
## Gender
                0.020256001 \quad 0.031620725 \quad 0.029896383 \quad 0.031620725 \quad 0.031620725
## Product.line
## Unit.price
                0.010777564 0.633962089 -0.015941048 0.633962089 0.633962089
## Quantity
                1.000000000 0.705510186 -0.003920990 0.705510186 0.705510186
## Tax
                0.705510186 1.000000000 -0.012433637 1.000000000 1.000000000
               -0.003920990 -0.012433637 1.000000000 -0.012433637 -0.012433637
## Payment
```

```
0.705510186 \quad 1.000000000 \quad -0.012433637 \quad 1.000000000 \quad 1.000000000
## cogs
## gross.income 0.705510186 1.000000000 -0.012433637 1.000000000 1.000000000
## Rating -0.015814905 -0.036441705 -0.005381289 -0.036441705 -0.036441705
## Month
               Rating
                                   Month
## Branch 0.010238476 -0.040331403
## Customer.type 0.018888672 0.044886937
                 0.004800208 0.059814418
## Gender
## Product.line -0.020528973 0.044994245
## Unit.price -0.008777507 -0.034715674
## Quantity -0.015814905 0.002375544
## Tax -0.036441705 -0.006724205
## Tax
               -0.036441705 -0.006724205
## Payment
               -0.005381289 0.041898766
## cogs -0.036441705 -0.006724205
## gross.income -0.036441705 -0.006724205
## Rating 1.00000000 -0.054714932
## Month
                -0.054714932 1.000000000
# Find attributes that are highly correlated
# Cut off value of 0.70
high.corr <- findCorrelation(corr_final, cutoff=0.70)
high.corr
## [1] 7 9 10
# Highly correlated attributes
names(final[,high.corr])
## [1] "Tax"
                     "cogs"
                                    "gross.income"
Variables with higher correlation are Tax , Cogs and gross income
# We will remove the variables with a higher correlation
# and compare the results graphically
# Removing Highly correlated attributes Features
final_1 <- final[-high.corr]</pre>
# Performing our graphical comparison
par(mfrow = c(1, 2))
corrplot(corr final, order = "hclust")
corrplot(cor(final_1), order = "hclust")
```


Wrapper Method

```
# Loading packages
library(clustvarsel)

## Warning: package 'clustvarsel' was built under R version 4.1.3

## Loading required package: mclust

## Warning: package 'mclust' was built under R version 4.1.3

## Package 'mclust' version 5.4.9

## Type 'citation("mclust")' for citing this R package in publications.

##

## Attaching package: 'mclust'

## The following object is masked from 'package:purrr':

##

## map

## Package 'clustvarsel' version 2.3.4
```

Type 'citation("clustvarsel")' for citing this R package in publications.

```
library(mclust)
# Sequential forward greedy search (default)
frwrd = clustvarsel(final[,-12], G = 1:5)
frwrd
## Variable selection for Gaussian model-based clustering
## Stepwise (forward/backward) greedy search
##
##
      Variable proposed Type of step BICclust Model G BICdiff Decision

        Product.line
        Add -3521.631
        E 5 408.36743
        Accepted

        Branch
        Add -5233.923
        VEV 5 735.71798
        Accepted

        Customer.type
        Add -6722.774
        VEV 4 -23.45627
        Rejected

        Branch
        Remove -3498.098
        E 5 712.18492
        Rejected

##
##
##
             Customer.type
##
##
## Selected subset: Product.line, Branch
```

The selection algorithm indicates that the subset we use for the clustering model is composed of variables product line and Branch

```
# Let's build clustering model:
Subset = final[,-12][,frwrd$subset]
mod = Mclust(Subset, G = 1:5)
summary(mod)
## -----
## Gaussian finite mixture model fitted by EM algorithm
## -----
##
## Mclust VEI (diagonal, equal shape) model with 3 components:
##
##
  log-likelihood
                 n df
                          BIC
       -2723.585 1000 12 -5530.063 -5531.496
##
##
## Clustering table:
## 1 2 3
## 216 660 124
# Plot the clustering model
plot(mod,c("classification"))
```


Feature Ranking

Gender

Product.line

gross.income

Unit.price

Quantity

Payment

Tax

cogs

0.049450989

0.031620725

0.633962089

0.705510186

1.000000000

0.012433637

1.000000000

1.00000000

```
## Rating
                      0.036441705
## Month
                      0.006724205
# Top five representative variables
var <- cutoff.k(fr, 5)</pre>
as.data.frame(var)
##
              var
## 1
              Tax
## 2
             cogs
## 3 gross.income
## 4
         Quantity
## 5
       Unit.price
# Instead of using the scores for the correlation coefficient,
# we can use information gain
fr.1 <- information.gain(Total~., final)</pre>
# Top five representative variables
var.1 <- cutoff.k(fr.1, 5)</pre>
as.data.frame(var.1)
##
            var.1
## 1
              Tax
## 2
             cogs
## 3 gross.income
## 4
         Quantity
## 5
       Unit.price
```

The top 5 representative variables are the same for both correlation coefficient and information gain scores. They are Tax,cogs,gross.income,quantity and unit.price.

Embedded Methods

```
# load the wskm package
library(wskm)

## Warning: package 'wskm' was built under R version 4.1.3

## Loading required package: latticeExtra

## Warning: package 'latticeExtra' was built under R version 4.1.3

## ## Attaching package: 'latticeExtra'

## The following object is masked from 'package:ggplot2':

## ## layer
```

Cluster Analysis

These two components explain 42.69 % of the point variability.

```
# Weights are calculated for each variable and cluster.
# They are a measure of the relative importance of each variable
# with regards to the membership of the observations to that cluster.
# The weights are incorporated into the distance function,
# typically reducing the distance for more important variables.
# Weights remain stored in the model and we can check them as follows:
round(model$weights*100,2)
```

Branch Customer.type Gender Product.line Unit.price Quantity Tax Payment

##	1		0 0	.13 (.14	(0	0	0 4	19.86	0
##	2		0 48	.12 51	.87	(0	0	0	0.00	0
##	3		0 50	.00 50	.00	(0	0	0	0.00	0
##		cogs	<pre>gross.income</pre>	Rating	Mont	h					
##	1	0	49.86	C)	0					
##	2	0	0.00	C)	0					
##	3	0	0.00	C)	0					

Customer type and gender hold weight across the 3 clusters.