Aufgabe 1 Geben Sie jeweils für die Zuordnungsvorschrift $x \mapsto f(x)$ die größtmögliche Definitionsmenge $D_f \subset \mathbf{R}$ an. Bestimmen Sie die Wertemenge W_f der Funktion $f:D_f \to \mathbf{R}$. Untersuchen Sie f auf Surjektivität und Injektivität. Wie lautet, falls f bijektiv ist, die Umkehrfunktion f^{-1} ? Kann, falls fnicht bijektiv ist, durch die Wahl einer anderen Zielmenge $N \neq \mathbf{R}$ erreicht werden, dass $f: D_f \to N$ doch bijektiv ist, und wie lautet dann die Umkehrfunktion f^{-1} ?

a)
$$x \mapsto f(x) = 3x + 5$$

b)
$$x \mapsto f(x) = x^{2n}, n \in \mathbb{N} \cup \{0$$

a)
$$x \mapsto f(x) = 3x + 5$$
 b) $x \mapsto f(x) = x^{2n}, \ n \in \mathbb{N} \cup \{0\}$ c) $x \mapsto f(x) = x^{2n+1}, \ n \in \mathbb{N} \cup \{0\}$

d)
$$x \mapsto f(x) = \sqrt{3x}$$

e)
$$x \mapsto f(x) = \frac{1}{1 + x^2}$$

f)
$$x \mapsto f(x) = \sqrt{x^2 + 5x + 6, 25}$$

g)
$$x \mapsto f(x) = \frac{2-x}{3+x}$$

d)
$$x \mapsto f(x) = \sqrt{3x}$$
 e) $x \mapsto f(x) = \frac{1}{1+x^2}$ f) $x \mapsto f(x) = \sqrt{x^2 + 5x + 6, 25}$ g) $x \mapsto f(x) = \frac{2-x}{3+x}$ h) $x \mapsto f(x) = \frac{x}{\sqrt{1+x^2}}$ i) $x \mapsto f(x) = \sqrt{x^2 - 6x + 8}$

i)
$$x \mapsto f(x) = \sqrt{x^2 - 6x + 8}$$

Aufgabe 2 Untersuchen Sie jeweils f auf Surjektivität und Injektivität.

a)
$$f: \mathbf{R}^3 \to \mathbf{R}^2$$

$$(x, y, z) \mapsto (x + y, y + z)$$

a)
$$f: \mathbf{R}^3 \to \mathbf{R}^2$$
, $(x, y, z) \mapsto (x + y, y + z)$ b) $f: \mathbf{R}^2 \to \mathbf{R}^3$, $(x, y) \mapsto (x, x + y, y)$

Aufgabe 3 Zeigen Sie, dass für zwei Abbildungen $f: M \to N$ und $g: N \to O$ gilt:

a)
$$f, g$$
 injektiv $\Rightarrow g \circ f$ injektiv

b)
$$f, g$$
 surjektiv $\Rightarrow g \circ f$ surjektiv

c)
$$g \circ f$$
 injektiv $\Rightarrow f$ injektiv

d)
$$g \circ f$$
 surjektiv $\Rightarrow g$ surjektiv

e)
$$g \circ f$$
 injektiv, f surjektiv $\Rightarrow g$ injektiv

e)
$$g \circ f$$
 injektiv, f surjektiv $\Rightarrow g$ injektiv f) $g \circ f$ surjektiv, g injektiv $\Rightarrow f$ surjektiv

g)
$$f, g$$
 bijektiv $\Rightarrow g \circ f$ bijektiv und $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Aufgabe 4 Geben Sie jeweils die Hintereinanderausführungen $q \circ f$ und $f \circ q$ an, falls diese existieren.

a)
$$f:[0,1] \to [-1,4], f(x) = 5x -$$

a)
$$f:[0,1] \to [-1,4], \ f(x) = 5x-1$$
 $g:[-1,1] \to [0,1], \ g(x) = \sqrt{1-x^2}$

b)
$$f: \mathbf{R} \setminus \{3\} \to \mathbf{R} \setminus \{0\}, \ f(x) = \frac{2}{x-3}$$
 $g: \mathbf{R} \setminus \{0\} \to \mathbf{R} \setminus \{-1\}, \ g(x) = \frac{7-x}{x}$

$$g: \mathbf{R} \setminus \{0\} \to \mathbf{R} \setminus \{-1\}, \ g(x) = \frac{7-x}{x}$$

c)
$$f: \mathbf{R} \to \mathbf{R}, x \mapsto x^3$$

$$a: \mathbf{R} \to \mathbf{R}^{\geq 0}, \ x \mapsto |x|$$

Aufgabe 5 Zeigen Sie, dass das neutrale Element der Addition in R durch die Axiome (A2) und (A4) eindeutig bestimmt ist. Nehmen Sie hierzu an, es gäbe neben der Null 0 eine weitere Null 0' mit $0' \neq 0$, und führen Sie diese Annahme zu einem Widerspruch.

Aufgabe 6 Beschreiben Sie die folgenen Mengen jeweils in möglichst einfacher Form.

a)
$$\{x \in \mathbf{R} \mid |x-1| = |x-3| \}$$

b)
$$\{x \in \mathbf{R} \mid \frac{|x-1|}{|x+1|} = 2\}$$

a)
$$\{x \in \mathbf{R} \mid |x-1| = |x-3|\}$$
 b) $\{x \in \mathbf{R} \mid \frac{|x-1|}{|x+1|} = 2\}$ c) $\{x \in \mathbf{R} \mid x^2 - x + 10 > 16\}$

d)
$$\bigcup_{n \in \mathbb{N}} \left[1 + \frac{1}{n}, 3 - \frac{1}{n} \right]$$
 e) $\bigcap_{i \in \mathbb{N}} \left[1 - \frac{1}{i}, 3 + \frac{1}{i} \right[$ f) $\bigcup_{k \in \mathbb{N}} U_{1 - \frac{1}{k}}(2)$

e)
$$\bigcap_{i \in \mathbb{N}}]1 - \frac{1}{i}, 3 + \frac{1}{i}[$$

f)
$$\bigcup_{k \in \mathbf{N}} U_{1-\frac{1}{k}}(2)$$

g)
$$\{x \in \mathbf{R} \mid |3 - 2x| < 5\}$$

$$\text{g) } \left\{ x \in \mathbf{R} \ \middle| \ |3-2x| < 5 \right\} \\ \text{h) } \left\{ x \in \mathbf{R} \ \middle| \ x(2-x) > 1 + |x| \right\} \\ \text{i) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| |x| - |-5| \middle| |x| - |-5| \middle| |x| - |-5| \middle| < 1 \right\} \\ \text{g) } \left\{ x \in \mathbf{R} \ \middle| \ \middle| \ \middle| |x| - |-5| \middle| |x| - |-$$

i)
$$\{x \in \mathbf{R} \mid ||x| - |-5|| < 1\}$$

Aufgabe 7 Geben Sie jeweils sup A, max A, inf A und min A an, falls diese existieren.

a)
$$A = \{ y \in \mathbf{R} \mid y = \frac{|x|}{1 + |x|}, \ x \in \mathbf{R} \}$$
 b) $A = \{ x \in \mathbf{R} \mid x = \frac{n+1}{n}, \ n \in \mathbf{N} \}$

b)
$$A = \{ x \in \mathbf{R} \mid x = \frac{n+1}{n}, \ n \in \mathbf{N} \}$$

c)
$$A = \{x \in \mathbf{R} \mid x = (-1)^{n+1} \frac{n+1}{n}, n \in \mathbf{N}\}$$
 d) $A = \{x \in \mathbf{R} \mid x^2 < 1\}$

d)
$$A = \{x \in \mathbf{R} \mid x^2 < 1\}$$

e)
$$A = \left\{ y \in \mathbf{R} \ \middle| \ y = -\frac{x}{1+x}, \ x > -1 \right\}$$
 f) $A = \left\{ y \in \mathbf{R} \ \middle| \ y = x + \frac{1}{x}, \ \frac{1}{2} \le x \le 2 \right\}$

f)
$$A = \{ y \in \mathbf{R} \mid y = x + \frac{1}{x}, \ \frac{1}{2} \le x \le 2 \}$$

g)
$$A = \{x \in \mathbf{R} \mid (x-1)(x-2)(x-3) < 0\}$$

g)
$$A = \left\{ x \in \mathbf{R} \mid (x-1)(x-2)(x-3) < 0 \right\}$$
 h) $A = \left\{ x \in \mathbf{R} \mid x = \left(-\frac{1}{2} \right)^m - \frac{3}{n}, \ m, n \in \mathbf{N} \right\}$

Lösungen zu Aufgabe 1

a)
$$D_f = \mathbf{R}, W_f = \mathbf{R}$$
, bijektiv, $f^{-1}(y) = \frac{1}{3}y - \frac{5}{3}$

b)
$$D_f = \mathbf{R}, W_f = \left\{ \begin{array}{ll} \{1\} & \text{für} & n = 0 \\ \mathbf{R}^{\geq 0} & \text{für} & n > 0 \end{array} \right\}$$
, nicht injektiv, nicht surjektiv

c)
$$D_f = \mathbf{R}, W_f = \mathbf{R}$$
, bijektiv, $f^{-1}(y) = \begin{cases} 2n+\sqrt{y} & \text{für } y \ge 0 \\ -2n+\sqrt{-y} & \text{für } y < 0 \end{cases}$

d)
$$D_f=\mathbf{R}^{\geq 0},\,W_f=\mathbf{R}^{\geq 0},$$
 injektiv, nicht surjektiv, mit der Zielmenge $N=W_f$ bijektiv, dann $f^{-1}(y)=\frac{1}{3}y^2$

e)
$$D_f = \mathbf{R}, W_f =]0, 1]$$
, nicht injektiv, nicht surjektiv

f)
$$D_f = \mathbf{R}, W_f = \mathbf{R}^{\geq 0}$$
, nicht injektiv, nicht surjektiv

g)
$$D_f = \mathbf{R} \setminus \{-3\}, W_f = \mathbf{R} \setminus \{-1\}, \text{ bijektiv}, f^{-1}(y) = \frac{2-3y}{1+y}$$

h)
$$D_f = \mathbf{R}, W_f =]-1, 1[$$
, injektiv, nicht surjektiv, mit der Zielmenge $N = W_f$ bijektiv, dann $f^{-1}(y) = \frac{y}{\sqrt{1-y^2}}$

i)
$$D_f = \mathbf{R} \setminus [2, 4], W_f = \mathbf{R}^{\geq 0}$$
, nicht injektiv, nicht surjektiv

Lösungen zu Aufgabe 2

a) surjektiv, nicht injektiv

b) injektiv, nicht surjektiv

Lösungen zu Aufgabe 4

a)
$$g \circ f$$
 existiert nicht; $f \circ g : [-1,1] \to [-1,4], \ x \mapsto 5\sqrt{1-x^2}-1$

b)
$$g \circ f : \mathbf{R} \setminus \{3\} \to \mathbf{R} \setminus \{-1\}, \ x \mapsto \frac{7x - 23}{2}; \ f \circ g$$
 existiert nicht

c)
$$g \circ f : \mathbf{R} \to \mathbf{R}^{\geq 0}, \ x \mapsto |x^3|; \ f \circ g : \mathbf{R} \to \mathbf{R}, \ x \mapsto |x|^3$$

Lösungen zu Aufgabe 6

b)
$$\{-3, -\frac{1}{3}\}$$

c)
$$\mathbf{R} \setminus [-2, 3]$$

b)
$$\{-3, -\frac{1}{3}\}$$
 c) $\mathbf{R} \setminus [-2, 3]$ d) $]1, 3[= U_1(2)$ e) $[1, 3]$

f)]1,3[=
$$U_1(2)$$
 g)]-1,4[h) **R** i)]-6,-4[\cup]4,6[

$$[-1, 4[$$

i)
$$]-6, -4[\cup]4, 6$$

Lösungen zu Aufgabe 7

a)
$$\sup A = 1$$
, kein Maximum, $\inf A = \min A = 0$

b)
$$\sup A = \max A = 2$$
, $\inf A = 1$, kein Minimum

c)
$$\sup A = \max A = 2$$
, $\inf A = \min A = -\frac{3}{2}$

d)
$$\sup A = 1$$
, kein Maximum, inf $A = -1$, kein Minimum

e) kein Supremum, inf
$$A = -1$$
, kein Minimum

f)
$$\sup A = \max A = \frac{5}{2}$$
, $\inf A = \min A = 2$

g)
$$\sup A = 3$$
, kein Maximum, kein Infimum

h)
$$\sup A = \max A = \frac{3}{2}$$
, $\inf A = \min A = -\frac{7}{2}$