Learning Objectives:

- 1. Understand the intuitive definition of the limit of a function at a given point.
- 2. The left hand and right hand limits of a function at a given point.
- 3. Intuitive definition of an infinite limit.
- 4. What are vertical asymptotes to the graph of a function?

Consider the expression

$$\lim_{x\to 4}\frac{x^2}{x+4} \ .$$

x:	4.1	4.01	4.001	4.0001	3.9	3.99	3.999	3.9999
$\frac{x^2}{x+4}$:	2.1	2.01	2.001	2.0001	1.9	1.99	1.999	1.9999

We see that the values of $f(x) = \frac{x^2}{x+4}$ are getting closer and closer to 2 as x approaches 4. We write this as

$$\lim_{x \to 4} \frac{x^2}{x + 4} = 2 \; .$$

Notice that f(4) = 2.

Intuitive definition of a limit

Let f be a function defined on both sides of a except possibly at a itself. Suppose that f(x) becomes arbitrarily close to the number L (written as $f(x) \to L$) as x approaches a ($x \to a$). Then we say that the limit of f(x) as x approaches a is L and we write

$$\lim_{x \to a} f(x) = L .$$

Note that in general:

- 1. The number a may or may not be in the domain of the function f.
- 2. We may not always have $\lim_{x\to a} f(x) = f(a)$.

Example 1.

Guess the value of $\lim_{x \to 1} \frac{x-1}{x^2-1}$.

x < 1	f(x)
0.5	0.666667
0.9	0.526316
0.99	0.502513
0.999	0.500250
0.9999	0.500025

x > 1	f(x)
1.5	0.400000
1.1	0.476190
1.01	0.497512
1.001	0.499750
1.0001	0.499975

Example 2 Estimate the value of $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t}$.

.

t	$\frac{\sqrt{t^2+9}-3}{t^2}$		
±1.0	0.162277		
±0.5	0.165525		
±0.1	0.166620		
±0.05	0.166655		
±0.01	0.166666		

t	$\frac{\sqrt{t^2+9}-3}{t^2}$		
±0.001	0.166667		
±0.0001	0.166670		
±0.00001	0.167000		
±0.000001	0.000000		

One-sided limits

Right hand limit: When x approaches a from the right, that is, through values larger than a, the limit obtained is called right-hand limit and is written as

$$\lim_{x \to a^+} f(x) = L .$$

Left hand limit: When x approaches a from the left, that is, through values smaller than a, the limit obtained is called left-hand limit and is written as

$$\lim_{x \to a^{-}} f(x) = L .$$

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = L \text{ and } \lim_{x \to a^{+}} f(x) = L.$$

Example 3.

The Heaviside function H is defined by

$$H(t) = \begin{cases} 0 & \text{if } t < 0, \\ 1 & \text{if } t > 0. \end{cases}$$

Guess the value of $\lim_{t\to 0} H(t)$.

Example 4.

The graph of a function g is shown below.

Use it to state the values:

- 1. $\lim_{x \to 2^{-}} g(x)$.
- 2. $\lim_{x \to 2^+} g(x)$.
- $3. \lim_{x\to 2} g(x) .$
- 4. $\lim_{x \to 5^{-}} g(x)$.
- 5. $\lim_{x \to 5^+} g(x)$.
- 6. $\lim_{x\to 5} g(x) .$

Intuitive Definition of Infinite Limits Let f be a function defined on both sides of a except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a,

and

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a,

Example 5.

Find
$$\lim_{x\to 0} \frac{1}{x^2}$$
 if it exists.

Vertical Asymptote

The vertical line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$1. \lim_{x \to a} f(x) = \infty$$

$$2. \lim_{x \to a^{-}} f(x) = \infty$$

$$3. \lim_{x \to a^+} f(x) = \infty$$

$$4. \lim_{x \to a} f(x) = -\infty$$

$$5. \lim_{x \to a^{-}} f(x) = -\infty$$

$$6. \lim_{x \to a^+} f(x) = -\infty$$

Example 6.

Find
$$\lim_{x \to 3^{-}} \frac{2x}{x-3}$$
, $\lim_{x \to 3^{+}} \frac{2x}{x-3}$ and $\lim_{x \to 3} \frac{2x}{x-3}$.

Is
$$x = 3$$
 a vertical asymptote of $f(x) = \frac{2x}{x - 3}$?