Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos Testes de Ajustamento Testes à igualdade de duas ou mais distribuições Testes de Indepêndencia

Ensaios de Hipóteses Não Paramétricos Estatística II - 2024/2025 ISCTE-IUL

Afonso Moniz Moreira¹²

¹ISCTE-IUL, Departamento de Métodos Quantitativos para a Economia e Gestão ²CMVM - Comissão do Mercado de Valores Mobiliários, Departamento de Supervisão de Mercados

Aviso/Disclaimer

- Este conjunto de slides não são, nem pretendem ser uma substituição à bibliografia principal da cadeira de Estatística II.
- Este conjunto de slides não são, nem pretendem ser uma fonte rigorosa de estudo dos tópicos da cadeira.
- O único propósito destes slides é ajudar o autor a guiar as aulas da forma mais coloquial possível sem ter de carregar formalismos desnecessários.
- Assim sendo, o formalismo estatístico é eliminado sempre que possível para agilizar uma primeira aprendizagem por parte dos estudantes.

Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos Testes de Ajustamento Testes à igualdade de duas ou mais distribuições Testes de Indepêndencia

Teoria dos Ensaios de Hipóteses Não Paramétricos I Definição

• Então qual é exatamente a diferença entre um teste de hipótese paramétrico e um teste não paramétrico ?

- Então qual é exatamente a diferença entre um teste de hipótese paramétrico e um teste não paramétrico ?
- Os testes paramétricos permitem fazer inferência sobre um ou mais parâmetros que caracterizam uma ou várias populações.

- Então qual é exatamente a diferença entre um teste de hipótese paramétrico e um teste não paramétrico ?
- Os testes paramétricos permitem fazer inferência sobre um ou mais parâmetros que caracterizam uma ou várias populações.
- Contrariamente ao conceito de teste anterior, a definição de teste não paramétrico é um assunto que ainda gera discussão e discordância académica...

- Então qual é exatamente a diferença entre um teste de hipótese paramétrico e um teste não paramétrico ?
- Os testes paramétricos permitem fazer inferência sobre um ou mais parâmetros que caracterizam uma ou várias populações.
- Contrariamente ao conceito de teste anterior, a definição de teste não paramétrico é um assunto que ainda gera discussão e discordância académica...
- Tendo em consideração que a definição de teste não paramétrico é um conceito muito lato, seria mais fácil defini-lo como qualquer teste cujos objectos em análise não são parâmetros de uma população.

Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos Testes de Ajustamento Testes à igualdade de duas ou mais distribuições Testes de Indepêndencia

Teoria dos Ensaios de Hipóteses Não Paramétricos II Definição

 No entanto, na bibliografia principal da cadeira, é apresentada a definição de Conover (1980):

- No entanto, na bibliografia principal da cadeira, é apresentada a definição de Conover (1980):
- Um método estatístico diz-se não-paramétrico se satisfaz pelo menos uma das seguintes condições:

- No entanto, na bibliografia principal da cadeira, é apresentada a definição de Conover (1980):
- Um método estatístico diz-se não-paramétrico se satisfaz pelo menos uma das seguintes condições:
 - 1 Pode ser utilizado com dados na escala **nominal**.

- No entanto, na bibliografia principal da cadeira, é apresentada a definição de Conover (1980):
- Um método estatístico diz-se não-paramétrico se satisfaz pelo menos uma das seguintes condições:
 - Pode ser utilizado com dados na escala nominal.
 - 2 Pode ser utilizado com dados na escala ordinal.

- No entanto, na bibliografia principal da cadeira, é apresentada a definição de Conover (1980):
- Um método estatístico diz-se não-paramétrico se satisfaz pelo menos uma das seguintes condições:
 - Pode ser utilizado com dados na escala nominal.
 - 2 Pode ser utilizado com dados na escala ordinal.
 - Ode ser utilizado com dados na escala de intervalos ou rácios, desde que:

- No entanto, na bibliografia principal da cadeira, é apresentada a definição de Conover (1980):
- Um método estatístico diz-se não-paramétrico se satisfaz pelo menos uma das seguintes condições:
 - Pode ser utilizado com dados na escala nominal.
 - 2 Pode ser utilizado com dados na escala ordinal.
 - Pode ser utilizado com dados na escala de intervalos ou rácios, desde que:
 - a) A função de distribuição da variável aleatória que gera os dados não está especificada, ou

- No entanto, na bibliografia principal da cadeira, é apresentada a definição de Conover (1980):
- Um método estatístico diz-se não-paramétrico se satisfaz pelo menos uma das seguintes condições:
 - Pode ser utilizado com dados na escala nominal.
 - 2 Pode ser utilizado com dados na escala ordinal.
 - Pode ser utilizado com dados na escala de intervalos ou rácios, desde que:
 - a) A função de distribuição da variável aleatória que gera os dados não está especificada, ou
 - Está especificada a menos de um número infinito de parâmetros desconhecidos.

Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos Testes de Ajustamento Testes à igualdade de duas ou mais distribuições Testes de Indepêndencia

Teoria dos Ensaios de Hipóteses Não Paramétricos III Definição

Por que razão um teste paramétrico não se enquadra nesta definição?
 Porque os testes paramétricos...

- Por que razão um teste paramétrico não se enquadra nesta definição?
 Porque os testes paramétricos...
- Não são aplicáveis a escalas nominais (Azul, Verde, Vermelho) nem ordinais (Bom, Mau, Excelente)

- Por que razão um teste paramétrico não se enquadra nesta definição?
 Porque os testes paramétricos...
- Não são aplicáveis a escalas nominais (Azul, Verde, Vermelho) nem ordinais (Bom, Mau, Excelente)
- Assumem que os dados seguem uma distribuição específica (por exemplo, normal).

- Por que razão um teste paramétrico não se enquadra nesta definição?
 Porque os testes paramétricos...
- Não são aplicáveis a escalas nominais (Azul, Verde, Vermelho) nem ordinais (Bom, Mau, Excelente)
- Assumem que os dados seguem uma distribuição específica (por exemplo, normal).
- Dependem de um número **finito de parâmetros** (por exemplo, média μ e variância σ^2).

- Por que razão um teste paramétrico não se enquadra nesta definição?
 Porque os testes paramétricos...
- Não são aplicáveis a escalas nominais (Azul, Verde, Vermelho) nem ordinais (Bom, Mau, Excelente)
- Assumem que os dados seguem uma distribuição específica (por exemplo, normal).
- Dependem de um número **finito de parâmetros** (por exemplo, média μ e variância σ^2).
- Testes paramétricos exigem que os dados sejam numéricos e tenham propriedades que permitam operações aritméticas.

- Por que razão um teste paramétrico não se enquadra nesta definição?
 Porque os testes paramétricos...
- Não são aplicáveis a escalas nominais (Azul, Verde, Vermelho) nem ordinais (Bom, Mau, Excelente)
- Assumem que os dados seguem uma distribuição específica (por exemplo, normal).
- Dependem de um número **finito de parâmetros** (por exemplo, média μ e variância σ^2).
- Testes paramétricos exigem que os dados sejam numéricos e tenham propriedades que permitam operações aritméticas.
- Pressupõe uma distribuição conhecida.

- Por que razão um teste paramétrico não se enquadra nesta definição?
 Porque os testes paramétricos...
- Não são aplicáveis a escalas nominais (Azul, Verde, Vermelho) nem ordinais (Bom, Mau, Excelente)
- Assumem que os dados seguem uma distribuição específica (por exemplo, normal).
- Dependem de um número finito de parâmetros (por exemplo, média μ e variância σ^2).
- Testes paramétricos exigem que os dados sejam numéricos e tenham propriedades que permitam operações aritméticas.
- Pressupõe uma distribuição conhecida.
- Trabalham com poucos parâmetros.

Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos **Testes de Ajustamento** Testes à igualdade de duas ou mais distribuições Testes de Indepêndencia

Testes de Ajustamento O que são ?

• Este tipo de testes também são denominados por testes de bondade de ajustamento, porquê ?

- Este tipo de testes também são denominados por testes de bondade de ajustamento, porquê ?
- Porque queremos perceber se uma determinada amostra aleatória, $(X_1, ..., X_n)$, pode ser considerada como proveniente de uma população com uma certa função densidade de probabilidade teórica $f_0(x)$.

- Este tipo de testes também são denominados por testes de bondade de ajustamento, porquê ?
- Porque queremos perceber se uma determinada amostra aleatória, $(X_1, ..., X_n)$, pode ser considerada como proveniente de uma população com uma certa função densidade de probabilidade teórica $f_0(x)$.
- Ou seja, estão a responder à seguinte pergunta:

- Este tipo de testes também são denominados por testes de bondade de ajustamento, porquê ?
- Porque queremos perceber se uma determinada amostra aleatória, $(X_1, ..., X_n)$, pode ser considerada como proveniente de uma população com uma certa função densidade de probabilidade teórica $f_0(x)$.
- Ou seja, estão a responder à seguinte pergunta:
- Os dados da amostra aletória podem ser bem ajustados, têm fit, à densidade que eu estou a estudar?

- Este tipo de testes também são denominados por testes de bondade de ajustamento, porquê ?
- Porque queremos perceber se uma determinada amostra aleatória, $(X_1, ..., X_n)$, pode ser considerada como proveniente de uma população com uma certa função densidade de probabilidade teórica $f_0(x)$.
- Ou seja, estão a responder à seguinte pergunta:
- Os dados da amostra aletória podem ser bem ajustados, têm fit, à densidade que eu estou a estudar?
- As hipóteses do teste são formalizadas da seguinte maneira:

- Este tipo de testes também são denominados por testes de bondade de ajustamento, porquê ?
- Porque queremos perceber se uma determinada amostra aleatória, $(X_1, ..., X_n)$, pode ser considerada como proveniente de uma população com uma certa função densidade de probabilidade teórica $f_0(x)$.
- Ou seja, estão a responder à seguinte pergunta:
- Os dados da amostra aletória podem ser bem ajustados, têm fit, à densidade que eu estou a estudar?
- As hipóteses do teste são formalizadas da seguinte maneira:
- $H_0: f(x) = f_0(x) \text{ VS } H_0: f(x) \neq f_0(x), \text{ ou seja:}$

- Este tipo de testes também são denominados por testes de bondade de ajustamento, porquê ?
- Porque queremos perceber se uma determinada amostra aleatória, $(X_1, ..., X_n)$, pode ser considerada como proveniente de uma população com uma certa função densidade de probabilidade teórica $f_0(x)$.
- Ou seja, estão a responder à seguinte pergunta:
- Os dados da amostra aletória podem ser bem ajustados, têm fit, à densidade que eu estou a estudar?
- As hipóteses do teste são formalizadas da seguinte maneira:
- $H_0: f(x) = f_0(x) \text{ VS } H_0: f(x) \neq f_0(x)$, ou seja:
- A densidade da poplação X, f(x), é $f_0(x)$ VS não é $f_0(x)$.

• Neste teste vamos considerar uma amostra aleatória $(X_1, ..., X_n)$ que foi retirada de uma população X cuja densidade f(x) é desconhecida.

- Neste teste vamos considerar uma amostra aleatória $(X_1, ..., X_n)$ que foi retirada de uma população X cuja densidade f(x) é desconhecida.
- Considerem também que temos uma densidade, $f_0(x)$, que é conhecida e que está totalmente especificada.

- Neste teste vamos considerar uma amostra aleatória $(X_1, ..., X_n)$ que foi retirada de uma população X cuja densidade f(x) é desconhecida.
- Considerem também que temos uma densidade, $f_0(x)$, que é conhecida e que está totalmente especificada.
- Então o teste de ajustamento, tal como anteriormente mencionado, é dado por:

- Neste teste vamos considerar uma amostra aleatória $(X_1, ..., X_n)$ que foi retirada de uma população X cuja densidade f(x) é desconhecida.
- Considerem também que temos uma densidade, $f_0(x)$, que é conhecida e que está totalmente especificada.
- Então o teste de ajustamento, tal como anteriormente mencionado, é dado por:
- $H_0: f(x) = f_0(x) \text{ VS } H_0: f(x) \neq f_0(x)$

- Neste teste vamos considerar uma amostra aleatória $(X_1, ..., X_n)$ que foi retirada de uma população X cuja densidade f(x) é desconhecida.
- Considerem também que temos uma densidade, $f_0(x)$, que é conhecida e que está totalmente especificada.
- Então o teste de ajustamento, tal como anteriormente mencionado, é dado por:
- $H_0: f(x) = f_0(x) \text{ VS } H_0: f(x) \neq f_0(x)$
- Como vai funcionar o teste do Qui-Quadrado?

- Neste teste vamos considerar uma amostra aleatória $(X_1, ..., X_n)$ que foi retirada de uma população X cuja densidade f(x) é desconhecida.
- Considerem também que temos uma densidade, $f_0(x)$, que é conhecida e que está totalmente especificada.
- Então o teste de ajustamento, tal como anteriormente mencionado, é dado por:
- $H_0: f(x) = f_0(x) \text{ VS } H_0: f(x) \neq f_0(x)$
- Como vai funcionar o teste do Qui-Quadrado?
- Vou construir C classes de valores assumidos pela variável X, $A_1, A_2, ..., A_C$, de forma a que tenhamos uma partição.

- Neste teste vamos considerar uma amostra aleatória $(X_1, ..., X_n)$ que foi retirada de uma população X cuja densidade f(x) é desconhecida.
- Considerem também que temos uma densidade, $f_0(x)$, que é conhecida e que está totalmente especificada.
- Então o teste de ajustamento, tal como anteriormente mencionado, é dado por:
- $H_0: f(x) = f_0(x) \text{ VS } H_0: f(x) \neq f_0(x)$
- Como vai funcionar o teste do Qui-Quadrado?
- Vou construir C classes de valores assumidos pela variável X, $A_1, A_2, ..., A_C$, de forma a que tenhamos uma partição.
- Agora que temos as classes vou puder proceder ao cálculo de dois objectos.

• Usando a amostra aleatória $(X_1,...,X_n)$ podemos calcular as frequência absolutas observadas, O_i de cada classe A_i , ou seja

- Usando a amostra aleatória $(X_1, ..., X_n)$ podemos calcular as frequência absolutas observadas, O_i de cada classe A_i , ou seja
- O_i é o número de elementos da amostra que pertencem a A_i (frequências observadas).

- Usando a amostra aleatória $(X_1, ..., X_n)$ podemos calcular as frequência absolutas observadas, O_i de cada classe A_i , ou seja
- O_i é o número de elementos da amostra que pertencem a A_i (frequências observadas).
- Mas também temos a densidade $f_0(x)$ de H_0 , que é conhecida e que está totalmente especificada, logo posso calcular:

- Usando a amostra aleatória $(X_1, ..., X_n)$ podemos calcular as frequência absolutas observadas, O_i de cada classe A_i , ou seja
- O_i é o número de elementos da amostra que pertencem a A_i (frequências observadas).
- Mas também temos a densidade $f_0(x)$ de H_0 , que é conhecida e que está totalmente especificada, logo posso calcular:
- A probabilidade associada a cada classe se a verdadeira distribuição for $f_0(x)$:

$$P_i^* = \mathbb{P}[A_i|H_0 \text{ \'e verdadeira }]$$

- Usando a amostra aleatória $(X_1, ..., X_n)$ podemos calcular as frequência absolutas observadas, O_i de cada classe A_i , ou seja
- O_i é o número de elementos da amostra que pertencem a A_i (frequências observadas).
- Mas também temos a densidade $f_0(x)$ de H_0 , que é conhecida e que está totalmente especificada, logo posso calcular:
- A probabilidade associada a cada classe se a verdadeira distribuição for $f_0(x)$:

$$P_i^* = \mathbb{P}[A_i|H_0 \text{ \'e verdadeira }]$$

• Então a frequência absoluta de individuos, que deveria estar na classe A_i , sobe H_0 , é:

- Usando a amostra aleatória $(X_1, ..., X_n)$ podemos calcular as frequência absolutas observadas, O_i de cada classe A_i , ou seja
- O_i é o número de elementos da amostra que pertencem a A_i (frequências observadas).
- Mas também temos a densidade $f_0(x)$ de H_0 , que é conhecida e que está totalmente especificada, logo posso calcular:
- A probabilidade associada a cada classe se a verdadeira distribuição for $f_0(x)$:

$$P_i^* = \mathbb{P}[A_i|H_0 \text{ \'e verdadeira }]$$

• Então a frequência absoluta de individuos, que deveria estar na classe A_i , sobe H_0 , é:

$$E_i = n \times P_i^*$$

• Se H₀ for verdadeira, então a diferença entre O_i e E_i ∀i não pode ser muito grande... No entanto, tal como outros testes, o que é uma diferença grande ?

- Se H₀ for verdadeira, então a diferença entre O_i e E_i ∀i não pode ser muito grande... No entanto, tal como outros testes, o que é uma diferença grande ?
- A estatística de teste que vai avaliar esta diferença será:

- Se H₀ for verdadeira, então a diferença entre O_i e E_i ∀i não pode ser muito grande... No entanto, tal como outros testes, o que é uma diferença grande ?
- A estatística de teste que vai avaliar esta diferença será:

$$T = \sum_{i=1}^{C} \frac{(O_i - E_i)^2}{E_i} \xrightarrow{d} \chi^2_{(C-1)}$$
 (1)

- Se H₀ for verdadeira, então a diferença entre O_i e E_i ∀i não pode ser muito grande... No entanto, tal como outros testes, o que é uma diferença grande ?
- A estatística de teste que vai avaliar esta diferença será:

$$T = \sum_{i=1}^{C} \frac{(O_i - E_i)^2}{E_i} \xrightarrow{d} \chi^2_{(C-1)}$$
 (1)

• Ou seja, para todas C classes, vamos avaliar a diferença entre C_i e o E_i , tomamos o quadrado porque o sinal de diferença não interessa, verificamos o peso desta diferença quadrada em E_i , e no final agrego tudo num único número.

• Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.

- Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.
- Para grandes diferenças T > 1 para diferenças menores T < 1.

- Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.
- Para grandes diferenças T > 1 para diferenças menores T < 1.
- Trata-se de um teste que é sempre unilateral direito e portanto:

- Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.
- Para grandes diferenças T > 1 para diferenças menores T < 1.
- Trata-se de um teste que é sempre unilateral direito e portanto:
- Rejeita-se H_0 a um nível α , caso o valor de T supere $\chi^2_{(C-1);\alpha}$, portanto caso $T \geq \chi^2_{(C-1);\alpha}$.

- Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.
- Para grandes diferenças T > 1 para diferenças menores T < 1.
- Trata-se de um teste que é sempre unilateral direito e portanto:
- Rejeita-se H_0 a um nível α , caso o valor de T supere $\chi^2_{(C-1);\alpha}$, portanto caso $T \geq \chi^2_{(C-1);\alpha}$.
- Este teste necessita de alguns pressupostos verificados sob pena da aproximação à chi-quadrado não ser eficaz:

- Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.
- Para grandes diferenças T > 1 para diferenças menores T < 1.
- Trata-se de um teste que é sempre unilateral direito e portanto:
- Rejeita-se H_0 a um nível α , caso o valor de T supere $\chi^2_{(C-1);\alpha}$, portanto caso $T \geq \chi^2_{(C-1);\alpha}$.
- Este teste necessita de alguns pressupostos verificados sob pena da aproximação à chi-quadrado não ser eficaz:
 - a) Não mais de 20% das classes com E_i inferior a 5.

- Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.
- ullet Para grandes diferenças T>1 para diferenças menores T<1.
- Trata-se de um teste que é sempre unilateral direito e portanto:
- Rejeita-se H_0 a um nível α , caso o valor de T supere $\chi^2_{(C-1);\alpha}$, portanto caso $T \geq \chi^2_{(C-1);\alpha}$.
- Este teste necessita de alguns pressupostos verificados sob pena da aproximação à chi-quadrado não ser eficaz:
 - a) Não mais de 20% das classes com E_i inferior a 5.
 - b) Todas as classes com E_i superior ou igual a 1.

- Este número é comparado com o valor critico da qui-quadrado determinado pelo nível significância (α) que se pretende.
- ullet Para grandes diferenças T>1 para diferenças menores T<1.
- Trata-se de um teste que é sempre unilateral direito e portanto:
- Rejeita-se H_0 a um nível α , caso o valor de T supere $\chi^2_{(C-1);\alpha}$, portanto caso $T \ge \chi^2_{(C-1);\alpha}$.
- Este teste necessita de alguns pressupostos verificados sob pena da aproximação à chi-quadrado não ser eficaz:
 - a) Não mais de 20% das classes com E_i inferior a 5.
 - b) Todas as classes com E_i superior ou igual a 1.
- Se estas regras não se verificarem então agregam-se as classes contíguas até se verificar a regra.

Exercício Nº1

O Recenseamento de 320 famílias com 5 filhos conduziu aos seguintes resultados:

Rapazes	5	4	3	2	1	0
Famílias	18	56	110	88	40	8

Verifique se estes resutlados são compatíveis com a hipótese do número de rapazes numa família de 5 filhos ser uma variável aleatória com distribuição binomial, admitindo a equiprobabilidade dos sexos, ao nível de significância de 0,01.

• Portanto temos um teste de ajustamento do qui-quadrado, onde verificamos se os dados da amostra aleatória concretizada têm um bom ajustamento (i.e., têm fit) com uma distribuição Binomial com 5 tentativas e uma probabilidade de 50%, portanto $\mathcal{B}(5, \frac{1}{2})$.

- Portanto temos um teste de ajustamento do qui-quadrado, onde verificamos se os dados da amostra aleatória concretizada têm um bom ajustamento (i.e., têm fit) com uma distribuição Binomial com 5 tentativas e uma probabilidade de 50%, portanto $\mathcal{B}(5, \frac{1}{2})$.
- A variável para a qual estamos a realizar o ensaio é dada por:

- Portanto temos um teste de ajustamento do qui-quadrado, onde verificamos se os dados da amostra aleatória concretizada têm um bom ajustamento (i.e., têm fit) com uma distribuição Binomial com 5 tentativas e uma probabilidade de 50%, portanto $\mathcal{B}(5,\frac{1}{2})$.
- A variável para a qual estamos a realizar o ensaio é dada por:
- X Número de rapazes, numa família de 5 filhos. Onde $X \in \{0, 1, 2, 3, 4, 5\}$

- Portanto temos um teste de ajustamento do qui-quadrado, onde verificamos se os dados da amostra aleatória concretizada têm um bom ajustamento (i.e., têm fit) com uma distribuição Binomial com 5 tentativas e uma probabilidade de 50%, portanto $\mathcal{B}(5,\frac{1}{2})$.
- A variável para a qual estamos a realizar o ensaio é dada por:
- X- Número de rapazes, numa família de 5 filhos. Onde $X \in \{0,1,2,3,4,5\}$
- Portanto as hipóteses em confronto são:

- Portanto temos um teste de ajustamento do qui-quadrado, onde verificamos se os dados da amostra aleatória concretizada têm um bom ajustamento (i.e., têm fit) com uma distribuição Binomial com 5 tentativas e uma probabilidade de 50%, portanto $\mathcal{B}(5,\frac{1}{2})$.
- A variável para a qual estamos a realizar o ensaio é dada por:
- X- Número de rapazes, numa família de 5 filhos. Onde $X \in \{0,1,2,3,4,5\}$
- Portanto as hipóteses em confronto são:

•
$$H_0: X \sim \mathcal{B}(n=5, p=\frac{1}{2}) \text{ VS } H_0: X \nsim \mathcal{B}(n=5, p=\frac{1}{2})$$

- Portanto temos um teste de ajustamento do qui-quadrado, onde verificamos se os dados da amostra aleatória concretizada têm um bom ajustamento (i.e., têm fit) com uma distribuição Binomial com 5 tentativas e uma probabilidade de 50%, portanto $\mathcal{B}(5,\frac{1}{2})$.
- A variável para a qual estamos a realizar o ensaio é dada por:
- X- Número de rapazes, numa família de 5 filhos. Onde $X \in \{0,1,2,3,4,5\}$
- Portanto as hipóteses em confronto são:
- $H_0: X \sim \mathcal{B}(n=5, p=\frac{1}{2}) \text{ VS } H_0: X \nsim \mathcal{B}(n=5, p=\frac{1}{2})$
- Admite-se a equiprobabilidade dos sexos, logo $p = \frac{1}{2}$.

- Portanto temos um teste de ajustamento do qui-quadrado, onde verificamos se os dados da amostra aleatória concretizada têm um bom ajustamento (i.e., têm fit) com uma distribuição Binomial com 5 tentativas e uma probabilidade de 50%, portanto $\mathcal{B}(5,\frac{1}{2})$.
- A variável para a qual estamos a realizar o ensaio é dada por:
- X- Número de rapazes, numa família de 5 filhos. Onde $X \in \{0,1,2,3,4,5\}$
- Portanto as hipóteses em confronto são:
- $H_0: X \sim \mathcal{B}(n=5, p=\frac{1}{2}) \text{ VS } H_0: X \nsim \mathcal{B}(n=5, p=\frac{1}{2})$
- Admite-se a equiprobabilidade dos sexos, logo $p = \frac{1}{2}$.
- Vamos usar a amostra para obter uma estimativa da estatística de teste.

A estatística de teste é dada por:

$$T = \sum_{i=1}^{C} \frac{(O_i - E_i)^2}{E_i} \xrightarrow{d} \chi^2_{(C-1)}$$

- Calculam-se os valores da massa de probabilidade da binomial para valor de X:
- Sabemos que $P_i = \binom{5}{i} \cdot (0.5)^i \cdot (0.5)^{5-i} = \binom{5}{i} \cdot (0.5)^5 = \frac{\binom{5}{3}}{32}$
- $P_0 = {5 \choose 0} \cdot \frac{1}{32} = 1 \cdot \frac{1}{32} = \frac{1}{32} = 0.03125$
- $P_1 = {5 \choose 1} \cdot \frac{1}{32} = 5 \cdot \frac{1}{32} = \frac{5}{32} = 0.15625$
- $P_2 = {5 \choose 2} \cdot \frac{1}{32} = 10 \cdot \frac{1}{32} = \frac{10}{32} = 0.3125$
- $P_3 = {5 \choose 3} \cdot \frac{1}{32} = 10 \cdot \frac{1}{32} = \frac{10}{32} = 0.3125$
- $P_4 = {5 \choose 4} \cdot \frac{1}{32} = 5 \cdot \frac{1}{32} = \frac{5}{32} = 0,15625$
- $P_5 = {5 \choose 5} \cdot \frac{1}{32} = 1 \cdot \frac{1}{32} = \frac{1}{32} = 0.03125$

• A tabela que resume todos os cálculos encontra-se de seguida:

X_i	Oi	P_i	$E_i = nP_i$	$\frac{(O_i - E_i)^2}{E_i}$
0	8	0,0312	9,984	0,39426
1	40	0,1563	50,016	2,00576
2	88	0,3125	100,000	1,44
3	110	0,3125	100,000	1,44
4	56	0,1563	50,016	0,71594
5	18	0,0312	9,984	6,43592
Total	320	1,0000	320	11,99188

A tabela que resume todos os cálculos encontra-se de seguida:

X _i	Oi	Pi	$E_i = nP_i$	$\frac{(O_i - E_i)^2}{E_i}$
0	8	0,0312	9,984	0,39426
1	40	0,1563	50,016	2,00576
2	88	0,3125	100,000	1,44
3	110	0,3125	100,000	1,44
4	56	0,1563	50,016	0,71594
5	18	0,0312	9,984	6,43592
Total	320	1,0000	320	11,99188

ullet A estatística de teste/obsevada/realizada é dada por: $T^*=11,99$.

A tabela que resume todos os cálculos encontra-se de seguida:

Xi	Oi	P_i	$E_i = nP_i$	$\frac{(O_i - E_i)^2}{E_i}$
0	8	0,0312	9,984	0,39426
1	40	0,1563	50,016	2,00576
2	88	0,3125	100,000	1,44
3	110	0,3125	100,000	1,44
4	56	0,1563	50,016	0,71594
5	18	0,0312	9,984	6,43592
Total	320	1,0000	320	11,99188

- A estatística de teste/obsevada/realizada é dada por: $T^* = 11,99$.
- R.C. = $[15,1,+\infty[$ e R.A. = [0,15,1[para $\alpha=0.01.$

A tabela que resume todos os cálculos encontra-se de seguida:

Xi	Oi	Pi	$E_i = nP_i$	$\frac{(O_i - E_i)^2}{E_i}$
0	8	0,0312	9,984	0,39426
1	40	0,1563	50,016	2,00576
2	88	0,3125	100,000	1,44
3	110	0,3125	100,000	1,44
4	56	0,1563	50,016	0,71594
5	18	0,0312	9,984	6,43592
Total	320	1,0000	320	11,99188

- A estatística de teste/obsevada/realizada é dada por: $T^* = 11,99$.
- R.C. = $[15,1,+\infty[$ e R.A. = [0,15,1[para $\alpha=0.01.$
- Como $T^* = 11,99 < 15,1$, não rejeitamos H_0 . Os dados da amostra são compatíveis, ou têm um bom ajustamento, com uma binomial com n = 5 e p = 0,5.

Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos **Testes de Ajustamento** Testes à igualdade de duas ou mais distribuições Testes de Indepêndencia

Exercícios de Output

• Exercício Nº13 - Exercícios de Ouputs - Parte B

• Neste teste pretende-se verificar se a distribuição empírica dos dados F(x) pode ser ajustada a uma determinada distribuição $F_0(x)$.

- Neste teste pretende-se verificar se a distribuição empírica dos dados F(x) pode ser ajustada a uma determinada distribuição $F_0(x)$.
- Está especialmente arquitectado para dados contínuos não agrupados.

- Neste teste pretende-se verificar se a distribuição empírica dos dados F(x) pode ser ajustada a uma determinada distribuição $F_0(x)$.
- Está especialmente arquitectado para dados contínuos não agrupados.
- Por esta razão usa-se na verificação do ajustamento a uma distribuição normal.

- Neste teste pretende-se verificar se a distribuição empírica dos dados F(x) pode ser ajustada a uma determinada distribuição $F_0(x)$.
- Está especialmente arquitectado para dados contínuos não agrupados.
- Por esta razão usa-se na verificação do ajustamento a uma distribuição normal.
- O teste de Kolmogorov-Smirnov, tal como o teste da Qui-Quadrado, implica que a distribuição sob teste, $F_0(x)$, esteja totalmente especificada...

- Neste teste pretende-se verificar se a distribuição empírica dos dados F(x) pode ser ajustada a uma determinada distribuição $F_0(x)$.
- Está especialmente arquitectado para dados contínuos não agrupados.
- Por esta razão usa-se na verificação do ajustamento a uma distribuição normal.
- O teste de Kolmogorov-Smirnov, tal como o teste da Qui-Quadrado, implica que a distribuição sob teste, $F_0(x)$, esteja totalmente especificada...
- Nos outputs apresentados este teste cálcula os parâmetros à custa da amostra. É por isto que é aplicada a correção de Lilliefors ao nível de significância. Aparece nas notas de rodapé dos outputs do SPSS.

 Portanto quando a distribuição não está bem parameterizada e é necessário usar a amostra para estimar os parâmetros, caso mais comum, o teste em causa é dado por:

- Portanto quando a distribuição não está bem parameterizada e é necessário usar a amostra para estimar os parâmetros, caso mais comum, o teste em causa é dado por:
- $H_0: F(x) = F_0(x)$ VS $H_1: F(x) \neq F_0(x)$, em que $F_0(x) = \mathcal{N}(\bar{X}, S^2)$, \bar{X} e S^2 correspondem à distribuição normal em teste, à média e variância amostrais, respectivamente.

- Portanto quando a distribuição não está bem parameterizada e é necessário usar a amostra para estimar os parâmetros, caso mais comum, o teste em causa é dado por:
- $H_0: F(x) = F_0(x)$ VS $H_1: F(x) \neq F_0(x)$, em que $F_0(x) = \mathcal{N}(\bar{X}, S^2)$, \bar{X} e S^2 correspondem à distribuição normal em teste, à média e variância amostrais, respectivamente.
- Decisão do teste vai ser feita com base nos outputs.

- Portanto quando a distribuição não está bem parameterizada e é necessário usar a amostra para estimar os parâmetros, caso mais comum, o teste em causa é dado por:
- $H_0: F(x) = F_0(x)$ VS $H_1: F(x) \neq F_0(x)$, em que $F_0(x) = \mathcal{N}(\bar{X}, S^2)$, \bar{X} e S^2 correspondem à distribuição normal em teste, à média e variância amostrais, respectivamente.
- Decisão do teste vai ser feita com base nos outputs.
- Deve ser usado para amostras grandes, no nosso caso, a regra prática é $N \ge 50$.

- Portanto quando a distribuição não está bem parameterizada e é necessário usar a amostra para estimar os parâmetros, caso mais comum, o teste em causa é dado por:
- $H_0: F(x) = F_0(x)$ VS $H_1: F(x) \neq F_0(x)$, em que $F_0(x) = \mathcal{N}(\bar{X}, S^2)$, \bar{X} e S^2 correspondem à distribuição normal em teste, à média e variância amostrais, respectivamente.
- Decisão do teste vai ser feita com base nos outputs.
- Deve ser usado para amostras grandes, no nosso caso, a regra prática é $N \ge 50$.
- Também é comum aparecerem os quantile-quantile (Q-Q) plots no teste de Kolmogorov-Smirnov. Este gráficos permitem avaliar os quantis observados contra os quantis esperados dados pela distribuição que estamos a ajustar.

• Ao contrário do teste Kolmogorov-Smirnov, o teste de Shapiro-Wilk só permite verificar a bondade de ajustamento à distribuição normal e não a qualquer distribuição $F_0(x)$.

- Ao contrário do teste Kolmogorov-Smirnov, o teste de Shapiro-Wilk só permite verificar a bondade de ajustamento à distribuição normal e não a qualquer distribuição $F_0(x)$.
- Este teste faz uso dos quantis ao invés de usar a distribuição ou respectiva densidade como os anteriores.

- Ao contrário do teste Kolmogorov-Smirnov, o teste de Shapiro-Wilk só permite verificar a bondade de ajustamento à distribuição normal e não a qualquer distribuição $F_0(x)$.
- Este teste faz uso dos quantis ao invés de usar a distribuição ou respectiva densidade como os anteriores.
- Portanto este teste é formalizado como o teste de ajustamento do qui-quadrado mas só permite avaliar para uma distribuição normal ao invés de qualquer distribução:

- Ao contrário do teste Kolmogorov-Smirnov, o teste de Shapiro-Wilk só permite verificar a bondade de ajustamento à distribuição normal e não a qualquer distribuição $F_0(x)$.
- Este teste faz uso dos quantis ao invés de usar a distribuição ou respectiva densidade como os anteriores.
- Portanto este teste é formalizado como o teste de ajustamento do qui-quadrado mas só permite avaliar para uma distribuição normal ao invés de qualquer distribução:
- $H_0: X \sim \mathcal{N}(\bar{X}, S^2)$ VS $H_1: X \not\sim \mathcal{N}(\bar{X}, S^2)$, em que \bar{X} e S^2 correspondem à média e variância amostrais, respectivamente.

- Ao contrário do teste Kolmogorov-Smirnov, o teste de Shapiro-Wilk só permite verificar a bondade de ajustamento à distribuição normal e não a qualquer distribuição $F_0(x)$.
- Este teste faz uso dos quantis ao invés de usar a distribuição ou respectiva densidade como os anteriores.
- Portanto este teste é formalizado como o teste de ajustamento do qui-quadrado mas só permite avaliar para uma distribuição normal ao invés de qualquer distribução:
- $H_0: X \sim \mathcal{N}(\bar{X}, S^2)$ VS $H_1: X \not\sim \mathcal{N}(\bar{X}, S^2)$, em que \bar{X} e S^2 correspondem à média e variância amostrais, respectivamente.
- Decisão do teste vai ser feita com base nos outputs.

- Ao contrário do teste Kolmogorov-Smirnov, o teste de Shapiro-Wilk só permite verificar a bondade de ajustamento à distribuição normal e não a qualquer distribuição $F_0(x)$.
- Este teste faz uso dos quantis ao invés de usar a distribuição ou respectiva densidade como os anteriores.
- Portanto este teste é formalizado como o teste de ajustamento do qui-quadrado mas só permite avaliar para uma distribuição normal ao invés de qualquer distribução:
- $H_0: X \sim \mathcal{N}(\bar{X}, S^2)$ VS $H_1: X \not\sim \mathcal{N}(\bar{X}, S^2)$, em que \bar{X} e S^2 correspondem à média e variância amostrais, respectivamente.
- Decisão do teste vai ser feita com base nos outputs.
- Deve ser usado para amostras pequenas, no nosso caso, a regra prática é N < 50.

 Os testes que vamos falar de seguida, de um modo geral, têm o objectivo de testar:

- Os testes que vamos falar de seguida, de um modo geral, têm o objectivo de testar:
- H₀: As diferentes amostras são provenientes de populações com a mesma distribuição. VS H₁: Pelo menos uma das amostras é proveniente de uma população com distribuição diferente das restantes.

- Os testes que vamos falar de seguida, de um modo geral, têm o objectivo de testar:
- H₀: As diferentes amostras são provenientes de populações com a mesma distribuição. VS H₁: Pelo menos uma das amostras é proveniente de uma população com distribuição diferente das restantes.
- Atenção! As amostras são provenientes de uma população com uma determinada distribuição, não a distribuição da própria amostra!!

- Os testes que vamos falar de seguida, de um modo geral, têm o objectivo de testar:
- H₀: As diferentes amostras são provenientes de populações com a mesma distribuição. VS H₁: Pelo menos uma das amostras é proveniente de uma população com distribuição diferente das restantes.
- Atenção! As amostras são **provenientes de** uma população com uma determinada distribuição, não a distribuição da própria amostra!!
- Em geral, não interessa saber qual é a distribuição subjacente a cada população, apenas testar se é mesma para todas as amostras.

- Os testes que vamos falar de seguida, de um modo geral, têm o objectivo de testar:
- H₀: As diferentes amostras são provenientes de populações com a mesma distribuição. VS H₁: Pelo menos uma das amostras é proveniente de uma população com distribuição diferente das restantes.
- Atenção! As amostras são provenientes de uma população com uma determinada distribuição, não a distribuição da própria amostra!!
- Em geral, não interessa saber qual é a distribuição subjacente a cada população, apenas testar se é mesma para todas as amostras.
- Estes testes permitem relaxar as hipóteses subjacentes aos respectivos congéneres paramétricos.

- Os testes que vamos falar de seguida, de um modo geral, têm o objectivo de testar:
- H₀: As diferentes amostras são provenientes de populações com a mesma distribuição. VS H₁: Pelo menos uma das amostras é proveniente de uma população com distribuição diferente das restantes.
- Atenção! As amostras são **provenientes de** uma população com uma determinada distribuição, não a distribuição da própria amostra!!
- Em geral, não interessa saber qual é a distribuição subjacente a cada população, apenas testar se é mesma para todas as amostras.
- Estes testes permitem relaxar as hipóteses subjacentes aos respectivos congéneres paramétricos.
- Continuidade das variáveis, ainda que este pressuposto seja ignorado, e o conhecimento da distribuição da população.

 O teste de Mann-Whitey é uma das alternativas não paramétricas ao teste da diferença de duas médias:

- O teste de Mann-Whitey é uma das alternativas não paramétricas ao teste da diferença de duas médias:
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:

- O teste de Mann-Whitey é uma das alternativas não paramétricas ao teste da diferença de duas médias:
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)

- O teste de Mann-Whitey é uma das alternativas não paramétricas ao teste da diferença de duas médias:
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- $Y_1, Y_2, \ldots, Y_{n_2}$ da população Y e com distribuição G(x)

- O teste de Mann-Whitey é uma das alternativas não paramétricas ao teste da diferença de duas médias:
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- $Y_1, Y_2, \ldots, Y_{n_2}$ da população Y e com distribuição G(x)
- Sem qualquer perda de generalidade, assuma-se também que $n_1 < n_2$.

- O teste de Mann-Whitey é uma das alternativas não paramétricas ao teste da diferença de duas médias:
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- $Y_1, Y_2, \ldots, Y_{n_2}$ da população Y e com distribuição G(x)
- Sem qualquer perda de generalidade, assuma-se também que $n_1 < n_2$.
- Tal como mencionado anteriormente as hipóteses são dadas por:

- O teste de Mann-Whitey é uma das alternativas não paramétricas ao teste da diferença de duas médias:
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- $Y_1, Y_2, \ldots, Y_{n_2}$ da população Y e com distribuição G(x)
- Sem qualquer perda de generalidade, assuma-se também que $n_1 < n_2$.
- Tal como mencionado anteriormente as hipóteses são dadas por:
- H_0 : As duas amostras são provenientes de populações com a mesma distribuição: $F(x) = G(x), \forall x$
- H_1 : As duas amostras são provenientes de populações com distribuições distintas: $\exists x : F(x) \neq G(x)$

 O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.

- O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:

- O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)

- O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- Y_1, Y_2, \dots, Y_{n_2} da população Y e com distribuição G(x)

- O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- $Y_1, Y_2, \ldots, Y_{n_2}$ da população Y e com distribuição G(x)
- Sem qualquer perda de generalidade, assuma-se também que $n_1 < n_2$.

- O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- Y_1, Y_2, \dots, Y_{n_2} da população Y e com distribuição G(x)
- Sem qualquer perda de generalidade, assuma-se também que $n_1 < n_2$.
- Tal como mencionado anteriormente as hipóteses são dadas por:

- O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- Y_1, Y_2, \dots, Y_{n_2} da população Y e com distribuição G(x)
- Sem qualquer perda de generalidade, assuma-se também que $n_1 < n_2$.
- Tal como mencionado anteriormente as hipóteses são dadas por:
- H_0 : As duas amostras são provenientes de populações com a mesma distribuição: $F(x) = G(x), \forall x$
- H₁: As duas amostras são provenientes de populações com distribuições distintas: ∃x : F(x) ≠ G(x)

- O modo como o teste está arquitectado, torna-o especialmente sensível às diferenças nas medianas das distribuições.
- Temos assim duas amostras aleatórias provenientes de duas populações diferentes:
- X_1, X_2, \dots, X_{n_1} da população X e com distribuição F(x)
- $Y_1, Y_2, \ldots, Y_{n_2}$ da população Y e com distribuição G(x)
- Sem qualquer perda de generalidade, assuma-se também que $n_1 < n_2$.
- Tal como mencionado anteriormente as hipóteses são dadas por:
- H₀: As duas amostras são provenientes de populações com a mesma distribuição: F(x) = G(x), ∀x
- H₁: As duas amostras são provenientes de populações com distribuições distintas: ∃x : F(x) ≠ G(x)
- O teste de Mann-Whitney é especialmente sensível às diferenças de medianas entre as duas distribuições.

• Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:

- Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:
- $H_0: \theta_1 = \theta_2 \ \mathsf{VS} \ H_1: \theta_1 \neq \theta_2$ Bilateral

- Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:
- $H_0: \theta_1 = \theta_2 \text{ VS } H_1: \theta_1 \neq \theta_2$ Bilateral
- Neste caso, estamos a avaliar se a mediana da distribuição 1 é igual à mediana da distribuição 2.

- Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:
- $H_0: \theta_1 = \theta_2 \text{ VS } H_1: \theta_1 \neq \theta_2$ Bilateral
- Neste caso, estamos a avaliar se a mediana da distribuição 1 é igual à mediana da distribuição 2.
- $H_0: \theta_1 \geq \theta_2 \text{ VS } H_1: \theta_1 < \theta_2$ Unilateral Esquerdo

- Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:
- $H_0: \theta_1 = \theta_2 \text{ VS } H_1: \theta_1 \neq \theta_2$ Bilateral
- Neste caso, estamos a avaliar se a mediana da distribuição 1 é igual à mediana da distribuição 2.
- $H_0: \theta_1 \geq \theta_2 \text{ VS } H_1: \theta_1 < \theta_2$ Unilateral Esquerdo
- Neste caso, estamos a avaliar, sobe a H_1 , se a mediana da distribuição 1 é menor que a mediana da distribuição 2.

- Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:
- $H_0: \theta_1 = \theta_2 \text{ VS } H_1: \theta_1 \neq \theta_2$ Bilateral
- Neste caso, estamos a avaliar se a mediana da distribuição 1 é igual à mediana da distribuição 2.
- $H_0: \theta_1 \geq \theta_2 \text{ VS } H_1: \theta_1 < \theta_2$ Unilateral Esquerdo
- Neste caso, estamos a avaliar, sobe a H_1 , se a mediana da distribuição 1 é menor que a mediana da distribuição 2.
- Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente inferiores aos da população 2.

- Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:
- $H_0: \theta_1 = \theta_2 \text{ VS } H_1: \theta_1 \neq \theta_2$ Bilateral
- Neste caso, estamos a avaliar se a mediana da distribuição 1 é igual à mediana da distribuição 2.
- $H_0: \theta_1 \geq \theta_2 \text{ VS } H_1: \theta_1 < \theta_2$ Unilateral Esquerdo
- Neste caso, estamos a avaliar, sobe a H_1 , se a mediana da distribuição 1 é menor que a mediana da distribuição 2.
- Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente inferiores aos da população 2.
- $H_0: \theta_1 \leq \theta_2 \text{ VS } H_1: \theta_1 > \theta_2$ Unilateral Direito

- Assim sendo, designando θ_1 e θ_2 por a mediana da população 1 e da população 2, respectivamente, o teste pode ser formalizado por:
- $H_0: \theta_1 = \theta_2 \ \mathsf{VS} \ H_1: \theta_1 \neq \theta_2$ Bilateral
- Neste caso, estamos a avaliar se a mediana da distribuição 1 é igual à mediana da distribuição 2.
- $H_0: \theta_1 \geq \theta_2 \ \mathsf{VS} \ H_1: \theta_1 < \theta_2$ Unilateral Esquerdo
- Neste caso, estamos a avaliar, sobe a H₁, se a mediana da distribuição 1 é menor que a mediana da distribuição 2.
- Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente inferiores aos da população 2.
- $H_0: \theta_1 \leq \theta_2 \ \mathsf{VS} \ H_1: \theta_1 > \theta_2$ Unilateral Direito
- Neste caso, estamos a avaliar, sobe a H₁, se a mediana da distribuição 1 é maior que a mediana da distribuição 2.

• Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente maiores aos da população 2.

- Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente maiores aos da população 2.
- Portanto a específicação correta para este teste pode ser qualquer uma das anteriores e vai depdender do problema concreto que estamos a enfretar.

- Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente maiores aos da população 2.
- Portanto a específicação correta para este teste pode ser qualquer uma das anteriores e vai depdender do problema concreto que estamos a enfretar.
- Decisão do teste vai ser feita com base em outputs.

- Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente maiores aos da população 2.
- Portanto a específicação correta para este teste pode ser qualquer uma das anteriores e vai depdender do problema concreto que estamos a enfretar.
- Decisão do teste vai ser feita com base em outputs.
- O teste tem uma estatística para amostras finitas, a estatística de Mann-Whitney U, e uma estatística assimptótica, a distribuição Normal. Cada uma com o respectivo p-value.

- Ou seja, sobe a H_1 , os valores da população 1 são tendencialmente maiores aos da população 2.
- Portanto a específicação correta para este teste pode ser qualquer uma das anteriores e vai depdender do problema concreto que estamos a enfretar.
- Decisão do teste vai ser feita com base em outputs.
- O teste tem uma estatística para amostras finitas, a estatística de Mann-Whitney U, e uma estatística assimptótica, a distribuição Normal. Cada uma com o respectivo p-value.
- Neste teste uma amostra pequena é quando os dois grupos têm menos de 20 observações ou quando um dos grupos tem menos de 5 observações.

Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos Testes de Ajustamento **Testes à igualdade de duas ou mais distribuições** Testes de Indepêndencia

Teste de Mann-Whitney V

• Exercício Nº9 - Exercícios de Outputs SPSS - Parte B

 Este teste pode ser visto como uma alternativa n\u00e30-param\u00e9trica \u00e0 ANOVA.

ANOVA.

Corresponde a uma generalização do teste de Mann-Whitney para k > 1

• Este teste pode ser visto como uma alternativa não-paramétrica à

• Corresponde a uma generalização do teste de Mann-Whitney para k>2 populações, portanto:

- ANOVA.

 Corresponde a uma generalização do teste de Mann-Whitney para k > 1
- Corresponde a uma generalização do teste de Mann-Whitney para k>2 populações, portanto:
- Temos assim k amostras aleatórias provenientes de k populações diferentes:

- ANOVA.

 Corresponde a uma generalização do testo de Mann Whitney para k > 0
- Corresponde a uma generalização do teste de Mann-Whitney para k>2 populações, portanto:
- Temos assim k amostras aleatórias provenientes de k populações diferentes:

• Este teste pode ser visto como uma alternativa não-paramétrica à

• $X_{11}, X_{12}, \dots, X_{1n_1}$ da população X e com distribuição $F_1(x)$

- ANOVA.

 Corresponde a uma generalização do testo de Mann Whitney para k > 1
- Corresponde a uma generalização do teste de Mann-Whitney para k>2 populações, portanto:
- Temos assim k amostras aleatórias provenientes de k populações diferentes:

- $X_{11}, X_{12}, \dots, X_{1n_1}$ da população X e com distribuição $F_1(x)$
- $X_{21}, X_{22}, \dots, X_{2n_2}$ da população Y e com distribuição $F_2(x)$

- ANOVA.
- Corresponde a uma generalização do teste de Mann-Whitney para k>2 populações, portanto:
- Temos assim k amostras aleatórias provenientes de k populações diferentes:

- $X_{11}, X_{12}, \dots, X_{1n_1}$ da população X e com distribuição $F_1(x)$
- $X_{21}, X_{22}, \dots, X_{2n_2}$ da população Y e com distribuição $F_2(x)$
- ...

- ANOVA.
- Corresponde a uma generalização do teste de Mann-Whitney para k>2 populações, portanto:
- Temos assim k amostras aleatórias provenientes de k populações diferentes:

- $X_{11}, X_{12}, \dots, X_{1n_1}$ da população X e com distribuição $F_1(x)$
- $X_{21}, X_{22}, \dots, X_{2n_2}$ da população Y e com distribuição $F_2(x)$
- ...
- $X_{k1}, X_{k2}, \dots, X_{kn_k}$ da população Y e com distribuição $F_k(x)$

• Este teste tem a mesma sensibilidade face à posição dos dados que o teste de Mann-Whitney, pelo que têm a mesma sensibilidade à mediana. Logo a formalização do teste é:

- Este teste tem a mesma sensibilidade face à posição dos dados que o teste de Mann-Whitney, pelo que têm a mesma sensibilidade à mediana. Logo a formalização do teste é:
- $H_0: \theta_1 = \theta_2 = ... = \theta_k \text{ VS } H_1: \exists_{i,j}: \theta_i = \theta_j$, em que θ_j é a mediana da distribuição j-ésima população.

- Este teste tem a mesma sensibilidade face à posição dos dados que o teste de Mann-Whitney, pelo que têm a mesma sensibilidade à mediana.
 Logo a formalização do teste é:
- $H_0: \theta_1 = \theta_2 = ... = \theta_k \text{ VS } H_1: \exists_{i,j}: \theta_i = \theta_j$, em que θ_j é a mediana da distribuição j-ésima população.
- Como se pode verificar pela especificação, este teste tem semelhanças com o teste ANOVA.

- Este teste tem a mesma sensibilidade face à posição dos dados que o teste de Mann-Whitney, pelo que têm a mesma sensibilidade à mediana. Logo a formalização do teste é:
- $H_0: \theta_1 = \theta_2 = ... = \theta_k \text{ VS } H_1: \exists_{i,j}: \theta_i = \theta_j$, em que θ_j é a mediana da distribuição j-ésima população.
- Como se pode verificar pela especificação, este teste tem semelhanças com o teste ANOVA.
- Decisão do teste vai ser feita com base em outputs.

Introdução e Aviso Teoria dos Ensaios de Hipóteses Não Paramétricos Testes de Ajustamento **Testes à igualdade de duas ou mais distribuições** Testes de Indepêndencia

Teste de Kruskall-Wallis III

• Exercício Nº10 - Exercícios de Outputs SPSS - Parte B

 Serve para avaliar a dependência entre duas variáveis categóricas/qualitativas... Ou seja duas variáveis que podem ter várias categorias.

- Serve para avaliar a dependência entre duas variáveis categóricas/qualitativas... Ou seja duas variáveis que podem ter várias categorias.
- Podem ser usados com quaisquer tipos de dados, desde que possam ser transformados em categorias, como é o caso dos dados quantitativos discretos e contínuos.

- Serve para avaliar a dependência entre duas variáveis categóricas/qualitativas... Ou seja duas variáveis que podem ter várias categorias.
- Podem ser usados com quaisquer tipos de dados, desde que possam ser transformados em categorias, como é o caso dos dados quantitativos discretos e contínuos.
- Vamos então considerar uma amostra aleatória de dimensão n classificada segundo duas variáveis qualitativas/categóricas, a primeira com r categorias e segundo com c categorias:

- Serve para avaliar a dependência entre duas variáveis categóricas/qualitativas... Ou seja duas variáveis que podem ter várias categorias.
- Podem ser usados com quaisquer tipos de dados, desde que possam ser transformados em categorias, como é o caso dos dados quantitativos discretos e contínuos.
- Vamos então considerar uma amostra aleatória de dimensão n classificada segundo duas variáveis qualitativas/categóricas, a primeira com r categorias e segundo com c categorias:
- A_i , i = 1, ..., r é uma categoria da primeira variável.

- Serve para avaliar a dependência entre duas variáveis categóricas/qualitativas... Ou seja duas variáveis que podem ter várias categorias.
- Podem ser usados com quaisquer tipos de dados, desde que possam ser transformados em categorias, como é o caso dos dados quantitativos discretos e contínuos.
- Vamos então considerar uma amostra aleatória de dimensão n classificada segundo duas variáveis qualitativas/categóricas, a primeira com r categorias e segundo com c categorias:
- A_i , i = 1, ..., r é uma categoria da primeira variável.
- B_j , j = 1, ..., c é uma categoria da segunda variável.

- Serve para avaliar a dependência entre duas variáveis categóricas/qualitativas... Ou seja duas variáveis que podem ter várias categorias.
- Podem ser usados com quaisquer tipos de dados, desde que possam ser transformados em categorias, como é o caso dos dados quantitativos discretos e contínuos.
- Vamos então considerar uma amostra aleatória de dimensão n classificada segundo duas variáveis qualitativas/categóricas, a primeira com r categorias e segundo com c categorias:
- A_i , i = 1, ..., r é uma categoria da primeira variável.
- $B_j, j = 1, ..., c$ é uma categoria da segunda variável.
- $O_{i,j}$ é a frequência absoluta de casos, na amostra, para os quais se observou A_i na 1a variável e B_i na 2a variável.

Variável 1 \downarrow \setminus Variável 2 \rightarrow	B ₁	B ₂		B_c	Total (linha)
A_1	$O_{1,1}$	$O_{1,2}$		$O_{1,c}$	$\sum_{j=1}^{c} O_{1,j}$
A_2	O _{2,1}	O _{2,2}		$O_{2,c}$	$\sum_{j=1}^{c} O_{2,j}$
i i	:	:	٠.,	:	:
A_r	$O_{r,1}$	$O_{r,2}$		$O_{r,c}$	$\sum_{j=1}^{c} O_{r,j}$
Total (coluna)	$\sum_{i=1}^r O_{i,1}$	$\sum_{i=1}^r O_{i,2}$		$\sum_{i=1}^{r} O_{i,c}$	$\sum_{i=1}^r \sum_{j=1}^c O_{i,j} = n$

Tabela: Tabela de Contigência para a Variável 1 e 2

• Vamos supor que a probabilidade de um elemento da amostra pertencer a A_i e B_j simultaneamente é p_{ij} .

Variável 1 \downarrow \ Variável 2 \rightarrow	B ₁	B ₂		B_c	Total (linha)
A_1	$O_{1,1}$	O _{1,2}		$O_{1,c}$	$\sum_{j=1}^{c} O_{1,j}$
A_2	O _{2,1}	O _{2,2}		$O_{2,c}$	$\sum_{j=1}^{c} O_{2,j}$
:	:	:	٠.,	:	:
A_r	$O_{r,1}$	$O_{r,2}$		$O_{r,c}$	$\sum_{j=1}^{c} O_{r,j}$
Total (coluna)	$\sum_{i=1}^r O_{i,1}$	$\sum_{i=1}^r O_{i,2}$		$\sum_{i=1}^{r} O_{i,c}$	$\sum_{i=1}^r \sum_{j=1}^c O_{i,j} = n$

Tabela: Tabela de Contigência para a Variável 1 e 2

- Vamos supor que a probabilidade de um elemento da amostra pertencer a A_i e B_j simultaneamente é p_{ij} .
- Então, o número de individuos da amostra que se espera observar no par (A_i, B_i) é: $E_{ij} = n \times p_{ij}$.

Variável 1 \downarrow \ Variável 2 \rightarrow	B ₁	B ₂		B_c	Total (linha)
A_1	$O_{1,1}$	O _{1,2}		$O_{1,c}$	$\sum_{j=1}^{c} O_{1,j}$
A_2	O _{2,1}	O _{2,2}		$O_{2,c}$	$\sum_{j=1}^{c} O_{2,j}$
:	:	:	٠	:	:
A_r	$O_{r,1}$	$O_{r,2}$		$O_{r,c}$	$\sum_{j=1}^{c} O_{r,j}$
Total (coluna)	$\sum_{i=1}^r O_{i,1}$	$\sum_{i=1}^{r} O_{i,2}$		$\sum_{i=1}^{r} O_{i,c}$	$\sum_{i=1}^r \sum_{j=1}^c O_{i,j} = n$

Tabela: Tabela de Contigência para a Variável 1 e 2

- Vamos supor que a probabilidade de um elemento da amostra pertencer a A_i e B_i simultaneamente é p_{ij} .
- Então, o número de individuos da amostra que se espera observar no par (A_i, B_j) é: $E_{ij} = n \times p_{ij}$.
- Usando as distribuições marginais também posso obter as frequências absolutas esperadas em cada classe: $E_i = n \times p_i$ e $E_i = n \times p_i$.

Se existir indepêndencia entre as duas variáveis então:

- Se existir indepêndencia entre as duas variáveis então:
- $\bullet \ P_{ij} = p_i \times p_j$

- Se existir indepêndencia entre as duas variáveis então:
- $P_{ij} = p_i \times p_j$
- Então podemos usar o O_{ii} e o E_{ii} para avaliar a Indepêndencia:

- Se existir indepêndencia entre as duas variáveis então:
- $P_{ij} = p_i \times p_i$
- Então podemos usar o O_{ij} e o E_{ij} para avaliar a Indepêndencia:
- $H_0: P_{ij} = p_i \times p_j, \forall i = 1, ..., r; j = 1, ..., c$

- Se existir indepêndencia entre as duas variáveis então:
- $P_{ij} = p_i \times p_j$
- Então podemos usar o O_{ij} e o E_{ij} para avaliar a Indepêndencia:
- $H_0: P_{ij} = p_i \times p_j, \forall i = 1, ..., r; j = 1, ..., c$
- VS
- $H_1: \exists_{i,j}: P_{ij} \neq p_i \times p_j, i \neq j, i = 1, ..., r; j = 1, ..., c$

- Se existir indepêndencia entre as duas variáveis então:
- $P_{ij} = p_i \times p_j$
- Então podemos usar o O_{ij} e o E_{ij} para avaliar a Indepêndencia:
- $H_0: P_{ij} = p_i \times p_j, \forall i = 1, ..., r; j = 1, ..., c$
- VS
- $H_1: \exists_{i,j}: P_{ij} \neq p_i \times p_j, i \neq j, i = 1, ..., r; j = 1, ..., c$
- Ou por outro lado, o que estamos a avaliar é:

- Se existir indepêndencia entre as duas variáveis então:
- $P_{ij} = p_i \times p_j$
- Então podemos usar o O_{ij} e o E_{ij} para avaliar a Indepêndencia:
- $H_0: P_{ij} = p_i \times p_j, \forall i = 1, ..., r; \quad j = 1, ..., c$
- VS
- $H_1: \exists_{i,j}: P_{ij} \neq p_i \times p_j, i \neq j, i = 1, ..., r; j = 1, ..., c$
- Ou por outro lado, o que estamos a avaliar é:
- H_0 : A variável 1 e a variável 2, **são** independentes.

- Se existir indepêndencia entre as duas variáveis então:
- $P_{ij} = p_i \times p_j$
- Então podemos usar o O_{ij} e o E_{ij} para avaliar a Indepêndencia:
- $H_0: P_{ij} = p_i \times p_j, \forall i = 1, ..., r; \quad j = 1, ..., c$
- VS
- $H_1: \exists_{i,j}: P_{ij} \neq p_i \times p_j, i \neq j, i = 1, ..., r; j = 1, ..., c$
- Ou por outro lado, o que estamos a avaliar é:
- H_0 : A variável 1 e a variável 2, **são** independentes.
- VS

- Se existir indepêndencia entre as duas variáveis então:
- $P_{ij} = p_i \times p_j$
- Então podemos usar o O_{ij} e o E_{ij} para avaliar a Indepêndencia:
- $H_0: P_{ij} = p_i \times p_j, \forall i = 1, ..., r; j = 1, ..., c$
- VS
- $H_1: \exists_{i,j}: P_{ij} \neq p_i \times p_j, i \neq j, i = 1, ..., r; j = 1, ..., c$
- Ou por outro lado, o que estamos a avaliar é:
- H_0 : A variável 1 e a variável 2, **são** independentes.
- VS
- H_1 : A variável 1 e a variável 2, **não são** independentes.

• A estatística de teste é dada por:

A estatística de teste é dada por:

$$X^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
 (2)

• A estatística de teste é dada por:

$$X^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
 (2)

 Na verdade, n\u00e3o se conhecem as verdadeiras probabilidades marginais envolvidas, ent\u00e3o temos de as estimar:

A estatística de teste é dada por:

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
 (2)

 Na verdade, n\u00e3o se conhecem as verdadeiras probabilidades marginais envolvidas, ent\u00e3o temos de as estimar:

$$\hat{p}_i = \frac{o_i}{n} \quad e \quad \hat{p}_j = \frac{o_j}{n} \tag{3}$$

• A estatística de teste é dada por:

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
 (2)

 Na verdade, n\u00e3o se conhecem as verdadeiras probabilidades marginais envolvidas, ent\u00e3o temos de as estimar:

$$\hat{p}_i = \frac{o_i}{n} \quad e \quad \hat{p}_j = \frac{o_j}{n} \tag{3}$$

• Sob H_0 , $E_{ij} = n \times p_i \times p_j$, é estimado por:

A estatística de teste é dada por:

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
 (2)

 Na verdade, n\u00e3o se conhecem as verdadeiras probabilidades marginais envolvidas, ent\u00e3o temos de as estimar:

$$\hat{p}_i = \frac{o_i}{n} \quad e \quad \hat{p}_j = \frac{o_j}{n} \tag{3}$$

• Sob H_0 , $E_{ij} = n \times p_i \times p_j$, é estimado por:

$$e_{ij} = \hat{E}_{ij} = n \times \hat{p}_i \times \hat{p}_j = n \times \frac{o_i}{n} \times \frac{o_j}{n} \iff e_{ij} = \frac{o_i \times o_j}{n}$$
 (4)

$$X^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \stackrel{approx}{\sim} \chi^{2}_{(r-1)\times(c-1)}$$
 (5)

Então a estatística de teste vai ser dada por:

$$X^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \stackrel{approx}{\sim} \chi^{2}_{(r-1)\times(c-1)}$$
 (5)

• Este teste é sempre unilateral direito.

$$X^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \stackrel{approx}{\sim} \chi^{2}_{(r-1)\times(c-1)}$$
 (5)

- Este teste é sempre unilateral direito.
- Devo rejeitar H_0 quando as diferenças quadradas entre o observado e o esperado atingirem um peso demasiado elevado.

$$X^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \stackrel{approx}{\sim} \chi^{2}_{(r-1)\times(c-1)}$$
 (5)

- Este teste é sempre unilateral direito.
- Devo rejeitar H_0 quando as diferenças quadradas entre o observado e o esperado atingirem um peso demasiado elevado.
- Tal como noutros testes, o que é muito ou pouco é balizado pelo nível de significância que por sua vez estabelece o nível crítico.

$$X^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \stackrel{approx}{\sim} \chi^{2}_{(r-1)\times(c-1)}$$
 (5)

- Este teste é sempre unilateral direito.
- Devo rejeitar H_0 quando as diferenças quadradas entre o observado e o esperado atingirem um peso demasiado elevado.
- Tal como noutros testes, o que é muito ou pouco é balizado pelo nível de significância que por sua vez estabelece o nível crítico.
- Portanto, rejeito H_0 quando $X^2 > \chi_{(r-1)(c-1);\alpha}$, onde α é o nível de significância.

 Tal como no teste de aderência do Qui-Quadrado, é necessário que se verifiquem certas condições, de forma a que os resultados obtidos sejam fidedignos...

- Tal como no teste de aderência do Qui-Quadrado, é necessário que se verifiquem certas condições, de forma a que os resultados obtidos sejam fidedignos...
- Para que o teste do Qui-Quadrado de Indepêndencia seja aplicável é necessário:

- Tal como no teste de aderência do Qui-Quadrado, é necessário que se verifiquem certas condições, de forma a que os resultados obtidos sejam fidedignos...
- Para que o teste do Qui-Quadrado de Indepêndencia seja aplicável é necessário:
 - Não mais de 20% das células tenham frequência absoluta esperada estimada inferior a 5.

- Tal como no teste de aderência do Qui-Quadrado, é necessário que se verifiquem certas condições, de forma a que os resultados obtidos sejam fidedignos...
- Para que o teste do Qui-Quadrado de Indepêndencia seja aplicável é necessário:
 - Não mais de 20% das células tenham frequência absoluta esperada estimada inferior a 5.
 - Não exista qualquer célula com valor esperado inferior a 1, ou seja, $e_{ij} \geq 1, \forall i, j$

(a)

 Temos duas variáveis categóricas que são os tipos de dados que o teste de independência do qui-quadrado utiliza.

(a)

- Temos duas variáveis categóricas que são os tipos de dados que o teste de independência do qui-quadrado utiliza.
- Todas as células têm uma frequência absoluta esperada estimada superior a 5 e logo também não existe nenhuma célula com uma frequência absoluta estimada esperada inferior a 1.

(b)

 H₀: As variáveis em análise são independentes, isto é, não há uma relação entre sexo e preferência de semanário.

(a)

- Temos duas variáveis categóricas que são os tipos de dados que o teste de independência do qui-quadrado utiliza.
- Todas as células têm uma frequência absoluta esperada estimada superior a 5 e logo também não existe nenhuma célula com uma frequência absoluta estimada esperada inferior a 1.

(b)

- H₀: As variáveis em análise são independentes, isto é, não há uma relação entre sexo e preferência de semanário.
- *H*₁ : As variáveis em análise são dependentes, isto é, há uma relação entre sexo e preferência de semanário.

(a)

- Temos duas variáveis categóricas que são os tipos de dados que o teste de independência do qui-quadrado utiliza.
- Todas as células têm uma frequência absoluta esperada estimada superior a 5 e logo também não existe nenhuma célula com uma frequência absoluta estimada esperada inferior a 1.

(b)

- H₀: As variáveis em análise são independentes, isto é, não há uma relação entre sexo e preferência de semanário.
- *H*₁ : As variáveis em análise são dependentes, isto é, há uma relação entre sexo e preferência de semanário.
- O P-value tem de ser observado para a linha **Pearson Chi-Square**.

(a)

- Temos duas variáveis categóricas que são os tipos de dados que o teste de independência do qui-quadrado utiliza.
- Todas as células têm uma frequência absoluta esperada estimada superior a 5 e logo também não existe nenhuma célula com uma frequência absoluta estimada esperada inferior a 1.

(b)

- H₀: As variáveis em análise são independentes, isto é, não há uma relação entre sexo e preferência de semanário.
- *H*₁ : As variáveis em análise são dependentes, isto é, há uma relação entre sexo e preferência de semanário.
- O P-value tem de ser observado para a linha **Pearson Chi-Square**.

• O valor crítico para o teste em causa seria de $\chi^2_{(3-1)\times(2-1);0.05}=5.99.$

- O valor crítico para o teste em causa seria de $\chi^2_{(3-1)\times(2-1);0.05}=5.99$.
- A estatística de teste observada/realizada passa largamente o valor crítico orinando um p-value (0.004) consideravelmente baixo.

- O valor crítico para o teste em causa seria de $\chi^2_{(3-1)\times(2-1);0.05}=5.99.$
- A estatística de teste observada/realizada passa largamente o valor crítico orinando um p-value (0.004) consideravelmente baixo.

(c)

 Este teste tem sempre uma região crítica unilateral direita. Pretende-se verificar quando existem discrepâncias entre valores observados e o esperados. O sinal dessa discrepância não interessa.

- O valor crítico para o teste em causa seria de $\chi^2_{(3-1)\times(2-1);0.05}=5.99.$
- A estatística de teste observada/realizada passa largamente o valor crítico orinando um p-value (0.004) consideravelmente baixo.

(c)

- Este teste tem sempre uma região crítica unilateral direita. Pretende-se verificar quando existem discrepâncias entre valores observados e o esperados. O sinal dessa discrepância não interessa.
- Vamos proceder ao cálculo da principal componente: As estatísticas esperadas:

- O valor crítico para o teste em causa seria de $\chi^2_{(3-1)\times(2-1);0.05}=5.99.$
- A estatística de teste observada/realizada passa largamente o valor crítico orinando um p-value (0.004) consideravelmente baixo.

(c)

- Este teste tem sempre uma região crítica unilateral direita. Pretende-se verificar quando existem discrepâncias entre valores observados e o esperados. O sinal dessa discrepância não interessa.
- Vamos proceder ao cálculo da principal componente: As estatísticas esperadas:

$$e_{ij} = rac{\left(\mathsf{Total} \; \mathsf{da} \; \mathsf{linha}_i
ight) imes \left(\mathsf{Total} \; \mathsf{da} \; \mathsf{coluna}_j
ight)}{\mathsf{Total} \; \mathsf{geral}}$$

- *i* = linha (semanário)
- j = coluna (sexo)
- Total geral = 99

- *i* = linha (semanário)
- j = coluna (sexo)
- Total geral = 99

(Expresso, Feminino) :
$$e_{11} = \frac{49 \times 33}{99} = \frac{1617}{99} \approx 16{,}33$$

- *i* = linha (semanário)
- j = coluna (sexo)
- Total geral = 99

(Expresso, Feminino):
$$e_{11} = \frac{49 \times 33}{99} = \frac{1617}{99} \approx 16{,}33$$

(Expresso, Masculino) :
$$e_{12} = \frac{49 \times 66}{99} = \frac{3234}{99} \approx 32,67$$

- *i* = linha (semanário)
- j = coluna (sexo)
- Total geral = 99

(Expresso, Feminino) :
$$e_{11} = \frac{49 \times 33}{99} = \frac{1617}{99} \approx 16{,}33$$

(Expresso, Masculino) :
$$e_{12} = \frac{49 \times 66}{99} = \frac{3234}{99} \approx 32,67$$

(Semanário, Feminino) :
$$e_{21}=\frac{25\times33}{99}=\frac{825}{99}\approx8,33$$

- i = linha (semanário)
- j = coluna (sexo)
- Total geral = 99

(Expresso, Feminino) :
$$e_{11} = \frac{49 \times 33}{99} = \frac{1617}{99} \approx 16{,}33$$

(Expresso, Masculino) :
$$e_{12} = \frac{49 \times 66}{99} = \frac{3234}{99} \approx 32,67$$

(Semanário, Feminino) :
$$e_{21} = \frac{25 \times 33}{99} = \frac{825}{99} \approx 8,33$$

(Semanário, Masculino) :
$$e_{22} = \frac{25 \times 66}{99} = \frac{1650}{99} \approx 16,67$$

- i = linha (semanário)
- j = coluna (sexo)
- Total geral = 99

(Expresso, Feminino) :
$$e_{11} = \frac{49 \times 33}{99} = \frac{1617}{99} \approx 16{,}33$$

(Expresso, Masculino) :
$$e_{12} = \frac{49 \times 66}{99} = \frac{3234}{99} \approx 32,67$$

(Semanário, Feminino) :
$$e_{21} = \frac{25 \times 33}{99} = \frac{825}{99} \approx 8,33$$

(Semanário, Masculino) :
$$e_{22} = \frac{25 \times 66}{99} = \frac{1650}{99} \approx 16,67$$

(Sol, Feminino):
$$e_{31} = \frac{25 \times 33}{99} = \frac{825}{99} \approx 8,33$$

(Sol, Feminino) :
$$e_{31} = \frac{25 \times 33}{99} = \frac{825}{99} \approx 8,33$$

(Sol, Masculino) :
$$e_{32} = \frac{25 \times 66}{99} = \frac{1650}{99} \approx 16,67$$

(Sol, Feminino):
$$e_{31} = \frac{25 \times 33}{99} = \frac{825}{99} \approx 8,33$$

(Sol, Masculino) :
$$e_{32} = \frac{25 \times 66}{99} = \frac{1650}{99} \approx 16,67$$

Então a estatística de teste observada/realizada é dada por:

$$\chi^{2} = \frac{(13 - 16,33)^{2}}{16,33} + \frac{(36 - 32,67)^{2}}{32,67} + \frac{(5 - 8,33)^{2}}{8,33} + \frac{(20 - 16,67)^{2}}{16,67} + \frac{(15 - 8,33)^{2}}{8,33} + \frac{(10 - 16,67)^{2}}{16,67} = \boxed{\approx 11,02}$$