

National Taiwan University

Chemical Engineering Master Thesis Review: 以紫外光交聯之複合式生物墨水包覆人類脂肪幹細胞於生醫 組織工程的應用

Computational Mechanics and Intelligence Lab

Sept, 21, 2022

Reporter: Yu-Cheng Lai, Advisor: Chia-Ching Chou

Institute of Applied Mechanics, National Taiwan University

Stevenlai1998@gmail.com/ccchou@iam.ntu.edu.tw

大綱

- 最後要做到的結果:github.com/nivation/KEMA-GCMA-hydrogel
- 論文簡介(20 min)
- 論文與模擬的關係(20 min)
- •回答問題(20 min)

Introduction (P1-P19)

- Tissue engineering-material to architecture
- 3D bioprinting and biolink
- Mechanical properties

Materials and Methods (P29-31)

- 4 Materials for bio-ink
 - Glycol Chitosan > Methacrylated Glycol Chitosan (GCMA): Hard and strong
 - Keratin >斷雙硫鍵> Methacrylated keratin (KEMA): Soft and yummy
 - PBS solution: Prevent variation in PH value
 - photoinitiator: Enable polymerization

Keratin >斷雙硫鍵> Methacrylated keratin (KEMA)

Glycol Chitosan > Methacrylated Glycol Chitosan (GCMA)

Glycol Chitosan Methacrylate (GCMA)

PBS Buffer Solution: Phosphate Buffered Saline

- 磷酸鹽緩衝生理鹽水
- Concentration of 1L PBS solution (PH=7.4)

Salt	Effect	Gram (g)	
NaCl	模擬人體	8	
Na2HPO4	Buffer with HPO4	1.44	
KCl	模擬人體	0.2	
KH2PO4	Buffer with H2PO4	0.24	

Materials and Methods

- Methods
 - UV-crosslinking: MA之間聚合

Methacrylated and its polymerization (聚合反應)

- 1. 聚合以後,有沒有任何原子被丢掉了?
- 2. 聚合時,有沒有少任何原子?
- 3. 模擬上:少了甚麼關鍵的條件?

Experiment Design (P32.33) and Result (P43)

Model	water(g or ml)	KEMA(g)	GCMA(g)	NaCl(g)	Result
4% KEMA	100	4	0	0.8	最軟
4% GCMA	100	0	4	0.8	最硬
1%KEMA 3%GCMA	100	1	3	0.8	中

為甚麼要模擬&模擬如何和實驗溝通

- 為甚麼會變軟?角蛋白具體上怎麼影響了這個材料?
- 角蛋白很大,是每個部份的角蛋白都一樣重要嗎?還是只需要部份就可以了?
- 聚合是誰和誰聚合了?聚合的機率高嗎?聚合完對結構發生甚麼影響了?
- 未來,我們要如何建議實驗方調整他們的配比呢?最省錢?最硬?延展性最好?
- 實驗方憑甚麼相信我們?

Setup and Simulation

• MD setup:

• CPU: 160

• Atom num: 326588

• Pair Style: lj/charmmfsw/coul/long

• Cmap: yes

• Ensemble: NPT temp 300 iso 1

• Timestep: 1 fs

• Cost time: **0.1** ns / **3hr**

Simulation

- Polymerization percentage= $\frac{Polymerized\ Pair}{Modified\ MA\ number \div 2} = 62\%$
- Major contribution of polymerization happens in intra-GCMA

loop	Self KEMA	KEMA-KEMA	Self GCMA	GCMA-GCMA	KEMA-GCMA	Total
1	0	0	0	0	0	0
2	8	2	45	5	2	62
3	9	2	57	6	4	78
4	9	2	61	6	6	84
5	10	2	63	7	6	88
6	11	2	67	7	6	93
7	12	2	71	8	6	99
8	12	2	76	10	6	106
9	14	2	77	10	6	109
10	14	2	79	11	6	112
11	14	2	79	11	8	114
12	14	2	80	12	8	116
13	14	2	80	12	8	116 (62%)
						1.2

Answering following questions

- (1)他們想幹嘛?
- (2)以前都用甚麼材料?這個材料有甚麼特性
- (3)為甚麼要新用蛋白質材料?這個材料有甚麼特性
- (4)為甚麼要用角蛋白?
- (5)根據不同的配比,我們應該預期什麼樣的結果?
- (6)根據不同的角蛋白,我們應該預期什麼樣的結果?
- (7)模擬跟實驗要怎麼連接?