CS310 : Automata Theory 2019 IITB, India Tutorial sheet 6 PDA=CFG, DPDA, and CNF

Ashutosh Gupta and S. Akshay

Compile date: 2019-02-21

- 1. Give a PDA to accept the following languages if possible
 - (a) $\{a^i b^j c^k | i = j \text{ or } j = k\}$
 - (b) $\{a^ib^jc^k|i\neq j \text{ or } j\neq k\}$
 - (c) The set of all strings with twice as many 0's as 1's.
 - (d) $\{0,1\}^* \{ww|w \in \{0,1\}^*\}$
- **2.** Give a construction that converts a PDA P to another PDA P' such that P' has a single state and $L^{\epsilon}(P) = L^{\epsilon}(P')$? Compare the sizes of P and P'.
- 3. Consider the construction from the lecture 17 to obtain an equivalent PDA A from a grammar G. Prove or disprove: if G be an unambiguous grammar, A is a DPDA.
- 4. Consider the following grammar
 - (a) $P \rightarrow 0P0$
 - (b) $P \rightarrow 1P1$
 - (c) $P \to \epsilon$
 - (d) $P \rightarrow 1$

The following equivalent PDA recognizes the same language by empty stack.

$$A = (\{q\}, \{0, 1\}, \{0, 1, P\}, \delta, q, P, \{\})$$

Consider word w = 1001001. Give a leftmost derivation for w from G and an accepting run of A. For each step of the derivation, give the segment of the run that simulates the step.

- 5. Prove or disprove: for any DPDA A, there is a DPDA A' such that L(A) = L(A') and any ϵ -transition in A' is decreasing (i.e. $\delta(q, \epsilon, Z) = \{(q', \epsilon)\}$).
- 6. Convert the following grammars into Chomsky normal form(CNF)

(a)

$$S \rightarrow ASB \mid \epsilon$$

$$A \rightarrow aAS \mid a$$

$$B \rightarrow SbS \mid A \mid bb$$

(b)

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

$$A \rightarrow C$$

$$B \rightarrow S \mid A$$

$$C \rightarrow S \mid \epsilon$$