

UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę
		dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY

DATA: 2 czerwca 2015 r. GODZINA ROZPOCZĘCIA: 14:00 CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–16). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–5) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem © i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (7–16) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-R1 **1**P-153

Więcej arkuszy znajdziesz na stronie: arkusze.pl

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Ciąg (a_n) jest określony wzorem $a_{n+1}=a_n+n-6$ dla każdej liczby naturalnej $n \ge 1$. Trzeci wyraz tego ciągu jest równy $a_3=-1$. Wyraz a_2 jest równy

- $\mathbf{A.} -3$
- $\mathbf{B.} -2$
- **C.** 2
- **D.** 3

Zadanie 2. (0-1)

Liczba punktów wspólnych wykresów funkcji y = -x + 1 i $y = \log_2 x$ jest równa

A. 0

- **B.** 1
- **C.** 2
- **D.** 3

Zadanie 3. (0-1)

Która z poniższych funkcji, określonych w zbiorze liczb rzeczywistych, nie ma minimum lokalnego ani maksimum lokalnego?

A.
$$f(x) = 4x^2 + 5x$$

B.
$$f(x) = 3x^3 + 2x^2$$

C.
$$f(x) = \frac{1}{3}x^3 + 2x$$

D.
$$f(x) = (4x+1)^2$$

Zadanie 4. (0-1)

Dla dowolnego kąta α wartość wyrażenia $\sin\alpha + \sin(180^\circ - \alpha)$ jest równa wartości wyrażenia

A.
$$\sin 2\alpha$$

B.
$$-\sin \alpha$$

C.
$$2\sin\alpha$$

Zadanie 5. (0-1)

Zbiór K – to zbiór wszystkich liczb rzeczywistych x, dla których wartość liczbowa wyrażenia $\sqrt{x(x^2-9)}$ jest liczbą rzeczywistą. Zatem

A.
$$K = \langle -3, 0 \rangle \cup \langle 3, +\infty \rangle$$

B.
$$K = (-\infty, -3) \cup (0, 3)$$

$$C. K = (-3, 0) \cup (3, +\infty)$$

D.
$$K = (-\infty, -3) \cup (0, 3)$$

BRUDNOPIS (nie podlega ocenie)

Zadanie 7. (0-2)

Prosta o równaniu $y = \frac{3}{4}x - \frac{61}{14}$ jest styczna od okręgu o środku S = (1,-4). Wyznacz promień tego okręgu.

Zadanie 8. (0-3)

Niech $a = \log_{12} 2$. Wykaż, że $\log_6 64 = \frac{6a}{1-a}$.

MMA_1R Strona 7 z 22

Zadanie 9. (0-3)

W trójkącie ABC kąt wewnętrzny przy wierzchołku A ma miarę 50° , a kąt wewnętrzny przy wierzchołku C ma miarę 60° . Okrąg o_1 przechodzi przez punkt A i przecina boki AB i AC trójkąta odpowiednio w punktach D i E. Okrąg o_2 przechodzi przez punkt B, przecina okrąg o_1 w punkcie D oraz w punkcie E leżącym wewnątrz trójkąta E0. Ponadto okrąg E0 przecina bok E1 trójkąta w punkcie E3.

Udowodnij, że na czworokącie CEFG można opisać okrąg.

Strona 8 z 22 MMA_1R

MMA_1R Strona 9 z 22

Zadanie 10. (0-4)

Rozwiąż równanie $(4\sin^2 x - 1) \cdot \sin x = \cos^2 x - 3\sin^2 x$, dla $x \in (-\pi, 0)$.

Zadanie 11. (0-4)

W trójkąt prostokątny o przyprostokątnych długości 15 i 20 wpisano okrąg. Oblicz długość odcinka łączącego wierzchołek kąta prostego tego trójkąta z punktem wspólnym okręgu i przeciwprostokątnej.

Odpowiedź:

Zadanie 12. (0-4)

Dany jest trójkąt ABC, w którym |BC|=a. Z wierzchołka B poprowadzono środkową BD do boku AC. Punkt S jest środkiem odcinka BD. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie P. Wykaż, że długość odcinka CP jest równa $\frac{2}{3}a$.

Zadanie 13. (0-5)

Oblicz, ile jest wszystkich liczb naturalnych pięciocyfrowych parzystych, w których zapisie występują co najwyżej dwie dwójki.

Zadanie 14. (0-5)

Podstawą ostrosłupa ABCDS jest trapez ABCD. Przekątna AC tego trapezu ma długość $8\sqrt{3}$, jest prostopadła do ramienia BC i tworzy z dłuższą podstawą AB tego trapezu kąt o mierze 30° . Każda krawędź boczna tego ostrosłupa ma tę samą długość $4\sqrt{5}$. Oblicz odległość spodka wysokości tego ostrosłupa od jego krawędzi bocznej SD.

Strona 16 z 22

MMA_1R

Zadanie 15. (0-6)

Funkcja f jest określona wzorem $f(x) = \frac{m^2 + m - 6}{m - 5}x^2 - (m - 2)x + m - 5$ dla każdej liczby rzeczywistej x. Wyznacz całkowite wartości parametru m, dla których funkcja f przyjmuje wartość największą i ma dwa różne miejsca zerowe o jednakowych znakach.

Zadanie 16. (0-7)

Rozpatrujemy wszystkie stożki, w których suma długości tworzącej i promienia podstawy jest równa 2. Wyznacz wysokość tego spośród rozpatrywanych stożków, którego objętość jest największa. Oblicz tę objętość.

BRUDNOPIS (nie podlega ocenie)

Strona 22 z 22 MMA_1R