

REGENERATION®

TEAM 6

FINAL PROJECT

CONTENT

01

DATA CLEANING

02

MAIN STATISTICAL CHARACTERISTICS

03

DELAY ANALYSIS

04

CORELATIONS

05

ML MODEL

06

FINAL THOUGHTS

PREPROCESSING

FIX DATES

ERROR VALUES FLOAT

NAN VALUES

OUTLIERS

CONCAT FILES

Different date formats

Transformed dates Dropped duplicates We found 9528 ERROR values in the first rows of May.csv

We took action to drop them

We dropped rows that had more than 25% missing values

We took action to drop them

Handled using IQR method

Search and rename columns with typos

Merge files on common columns

Search and rename columns with typos

COMPARING CLEAN DATA

INITIAL DATA CLEAN DATA

441605

May	66711	57017
June	77149	76312
July	73170	61224
August	85904	85700
September	77959	77948
October	83405	83404

464277

Total Rows

MAIN STATISTICAL CHARACTERISTICS

The resulting plot shows the distribution of the data, with the histogram providing a visual representation of the frequency of values in different bins, and the KDE plot providing an estimate of the data's underlying probability density function

Output

What conclusions can we draw?

	separator_pwr_kw_pv
count	302433.000000
mean	55.873773
std	9.273690
min	0.000000
25%	55.950000
50%	57.150000
75%	58.240000
max	162.000000

The separator power values within the range of 0 to 162, with a mean value of 55.87

1st Conclusion

The highest peaks in the density within the specific range of 50 to 60 may indicate a normal operation of the mill

2nd Conclusion

After defining normal operation we still have zero values

We applied a **limit** to filter output values that are close to zero (no operation of the seperator)

We implemented a new function that returns if a time period is continuous or not

DELAY ANALYSIS

Separator Speed delay analysis with Separator Speed and Mill DP

DELAY ANALYSIS

We created a function with two inputs and a max delay parameter. Returns the correlations for each

INPUTS	Delay
mill_dp_mbar_pv	4.5m
separator_speed_rpm_pv	2m

BLOCK 1

We used shifted each input up in the DataFrame to prepare the data for the model.

We ignored Om delays, due to time restriction

NEXT STEPS

BLOCK 2

CORRELATION

- Based on the normal operation of the mill
- The corresponding delay has been applied to each input variable
- The correlation of the separator pwr with the shifted separator speed is 0.38
- The correlation of the separator pwr with the shifted mill is 0.36

CORRELATION

- Based on the normal operation of the mill
- The corresponding delay has been applied to each input variable
- The main fan speed and the grinding pressure have the biggest correlation with the output
- The fly ash 1 and the fly ash 2 have the weakest correlation with the output

TWO TYPES OF CEMENT

BLOCK-1

CPII		
	MSE	MAPE
BayesianRidge	4.664	0.0187
XGBRegressor	4.655	0.0178

CPIV		
	MSE	MAPE
BayesianRidge	3.8	0.014
KNeighborsRe gressor	4.52	0.015

BLOCK-2

CPII		
	MSE	MAPE
Random Forest	13.003	0.0105
XGBRegressor	18.979	0.0118

CPIV		
	MSE	MAPE
KNeigbors Regressor	8.293	0.014
XGBRegre ssor	6.497	0.01

REGRESSORS

We used 9 regression algorithms

Two of them stood out for both problems

We performed hyperparameters analysis and tested different values for parameters like n_estimators, learning_rate (XGB), min_samples_split, min_samples_leaf (Random Forest)

BLOCK 1

01 RANDOM FOREST

02 XGB

BLOCK 2

01 RANDOM FOREST

02 XGB

ML MODELS

BLOCK 1

XGBRegressor

BayesianRidge

For Block 1 our models were insufficient

ML MODELS

BLOCK 2

Random Forest

XGBRegressor

After running hyperparameters for both algorithms we concluded that our model using **XGB** is sufficiently **accurate**

FINAL THOUGHTS

This is the end... we still don't know how to code... but at least we met each other and had fun

