

Modul 3: Bayes Decision Theory

01 Bayes Decision Rule

Masayu Leylia Khodra (masayu@informatika.org)

KK IF – Teknik Informatika – STEI ITB

Pengenalan Pola (*Pattern Recognition*)

Bayes Decision Theory: What

Bayes decision theory is based on quantifying tradeoffs between various classification decision using probability and the cost that accompany such decision.

Assumption: decision problem posed in probabilistic terms and relevant probability values are known

Design classifiers to recommend decisions that minimize some total expected "risk".

feature value x

Bayes Decision Rule using Conditional Probability

One-dimensional feature x and binary class ω :

Decide ω_1 if $P(\omega_1|x) > P(\omega_2|x)$; otherwise decide ω_2

$$P(\omega_{i}|x) = \frac{P(x|\omega_{i}).P(\omega_{i})}{P(x)} = \frac{likelihood * prior}{evidence}$$
Where $P(x) = \sum_{i=1}^{2} P(x|\omega_{i}).P(\omega_{i})$

Decide ω_1 if $P(x|\omega_1).P(\omega_1) > P(x|\omega_2).P(\omega_2)$; otherwise decide ω_2

Fish Classification

Image Dataset

Image	Label
	Seabass
	Seabass
	salmon

Random variable ω

$$\omega_1$$
 = sea bass (total= N_1)

$$\omega_2$$
 = salmon (total= N_2)

Prior probability: is the probability next fish observed is ω_{i}

$$P(\omega_1) = N_1 / (N_1 + N_2)$$

 $P(\omega_2) = N_2 / (N_1 + N_2)$

Fish Classification: Feature Lightness

Conditional probability density $P(x|\omega_i)=P(x,\omega_i)/P(\omega_i)$ $=count(x,\omega_i)/N_i$

New input x:

Decide ω_1 if $P(x|\omega_1).P(\omega_1) > P(x|\omega_2).P(\omega_2)$; otherwise decide ω_2

Fish Classification: Example

P(ω=salmon)=74/131=0.565 P(ω=sea bass)=57/131=0.435 P(x=5.0-5.5|ω=salmon)=4/74=0.054 P(x=5.0-5.5|ω=seabass)=3/57=0.053

- Input x = 5.0-5.5
- Posterior conditional probability: $P(\omega_i|x) \rightarrow P(x|\omega_i).P(\omega_i)$:

$$P(\omega=salmon|x = 5.0-5.5)$$

=0.054*0.565=0.0305

$$P(\omega = \text{sea bass} | x = 5.0-5.5)$$

=0.053*0.435=0.0230

• Decision: ω=salmon

Summary

Bayes Decision Theory Bayes Decision
Rule using
Conditional
Probability

Fish Classification

Minimum Risk Bayes Decision Rule

Modul 3: Bayes Decision Theory

02 Minimum Risk Bayes Decision Rule

Masayu Leylia Khodra (masayu@informatika.org)

KK IF – Teknik Informatika – STEI ITB

Pengenalan Pola (*Pattern Recognition*)

Action & Loss

- Allowing actions other than classification primarily allows the possibility of "rejection".
- Example: a student wants to decide whether to take a course or not based on classification of the course.
 - ω ={good, fair, bad}
 - Action={take, not_take}
- The loss function $\lambda(\alpha_i | \omega_j)$ specifies the cost of taking action α_i when correct classification category is ω_i .

Conditional Risk (or Expected Loss)

• Example "student \vec{x} take the course?":

	good	fair	bad
$P(\omega \vec{x})$	0.3	0.3	0.4

Loss	good	fair	bad
Take	0	5	30
Not_take	20	5	0

• Conditional risk or expected loss with taking action α_i is:

$$R(\alpha_i|\vec{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\vec{x})$$

- $R(\alpha = take | \vec{x}) = 0*0.3 + 5*0.3 + 30*0.4 = 13.5$
- R(α =not_take $|\vec{x}\rangle$ =20*0.3+5*0.3+0*0.4=7.5 \rightarrow select not_take

Minimum Risk Bayes Decision Rule

Allowing actions other than classification primarily allows the possibility of "rejection". General case with risks.

Computing expected loss $R(\alpha_i|\vec{x})$ for every action α_i

Choosing action α_i with minimum $R(\alpha_i | \vec{x})$

Two-category Classification

- $\omega = \{\omega_1, \omega_2\}$
- α ={decide ω_1 , decide ω_2 }
- $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$

$$R(\alpha_i|\vec{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\vec{x})$$

$$R(\alpha_1|\vec{x}) = \sum_{j=1}^{2} \lambda(\alpha_1|\omega_j) P(\omega_j|\vec{x})$$
$$= \lambda_{11} P(\omega_1|\vec{x}) + \lambda_{12} P(\omega_2|\vec{x})$$

$$R(\alpha_2|\vec{x}) = \sum_{j=1}^{2} \lambda(\alpha_2|\omega_j) P(\omega_j|\vec{x})$$
$$= \lambda_{21} P(\omega_1|\vec{x}) + \lambda_{22} P(\omega_2|\vec{x})$$

Bayes Decision Rule

n-dimensional feature \vec{x} and binary class ω :

if $R(\alpha_1|\vec{x}) < R(\alpha_2|\vec{x})$: take action α_1 "decide ω_1 "; otherwise take action α_2 "decide ω_2 "

$$R(\alpha_{1}|\vec{x}) = \lambda_{11}P(\omega_{1}|\vec{x}) + \lambda_{12}P(\omega_{2}|\vec{x})$$

$$R(\alpha_{2}|\vec{x}) = \lambda_{21}P(\omega_{1}|\vec{x}) + \lambda_{22}P(\omega_{2}|\vec{x})$$

$$R(\alpha_{1}|\vec{x}) < R(\alpha_{2}|\vec{x})$$

$$\lambda_{11}P(\omega_{1}|\vec{x}) + \lambda_{12}P(\omega_{2}|\vec{x}) < \lambda_{21}P(\omega_{1}|\vec{x}) + \lambda_{22}P(\omega_{2}|\vec{x})$$

$$\lambda_{11}P(\omega_{1}|\vec{x}) - \lambda_{21}P(\omega_{1}|\vec{x}) < \lambda_{22}P(\omega_{2}|\vec{x}) - \lambda_{12}P(\omega_{2}|\vec{x})$$

$$(\lambda_{21} - \lambda_{11})P(\omega_{1}|\vec{x}) > (\lambda_{12} - \lambda_{22})P(\omega_{2}|\vec{x})$$

```
if \{(\lambda_{21}-\lambda_{11})P(\overrightarrow{x}|\omega_1)P(\omega_1)\} > \{(\lambda_{12}-\lambda_{22})P(\overrightarrow{x}|\omega_2)P(\omega_2)\}:
take action \alpha_1 "decide \omega_1";
otherwise take action \alpha_2 decide \omega_2
```


Bayes Decision Rule (2)

n-dimensional feature \vec{x} and binary class ω :

```
if \{(\lambda_{21}-\lambda_{11})P(\overrightarrow{x}|\omega_1)P(\omega_1)\} > \{(\lambda_{12}-\lambda_{22})P(\overrightarrow{x}|\omega_2)P(\omega_2)\}:
take action \alpha_1 "decide \omega_1";
otherwise take action \alpha_2 decide \omega_2
```


Bayes Decision Rule: Interpretation

If
$$\frac{P(\overrightarrow{\boldsymbol{x}}|\omega_1)}{P(\overrightarrow{\boldsymbol{x}}|\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)}$$
: take action α_1 "decide ω_1 "; otherwise decide ω_2

If the likelihood ratio of class ω_1 and ω_2 exceeds a threshold value (independent of the input \vec{x}), the optimal action is decide ω_1 .

Example: Fish Classification

P(ω=salmon)=74/131=0.565 P(ω=sea bass)=57/131=0.435 P(x=5.0-5.5|ω=salmon)=4/74=0.054 P(x=5.0-5.5|ω=seabass)=3/57=0.053

Loss	Salmon	Sea bass
Salmon	λ ₁₁ =0	λ ₁₂ =1
Sea bass	λ ₂₁ =1	λ ₂₂ =0

- Likelihood ratio: LR= $\frac{P(\vec{x}|\omega_1)}{P(\vec{x}|\omega_2)} = \frac{0.054}{0.053} = 1.02$
- Threshold value: $\frac{(\lambda_{12} \lambda_{22})}{(\lambda_{21} \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)} = \frac{(1-0)}{(1-0)} \frac{0.435}{0.565} = 0.77$
- LR > threshold → decide salmon

Maximum Likelihood Decision Rule: Special Case

0-1 loss function Equal class prior probability

> Maximum Likelihood **Decision** Rule

Threshold value=1

If
$$\frac{P(\overrightarrow{\boldsymbol{x}}|\omega_1)}{P(\overrightarrow{\boldsymbol{x}}|\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)}$$
:

take action α_1 "decide ω_1 "; otherwise decide ω_2

Summary

Minimum risk bayes decision rule

Maximum likelihood decision rule

Classifier and Discriminant Function

Modul 3: Bayes Decision Theory

03 Classifier & Discriminant Function

Masayu Leylia Khodra (masayu@informatika.org)

KK IF – Teknik Informatika – STEI ITB

Pengenalan Pola (*Pattern Recognition*)

Classifier for Multicategory Case

Many different ways to represent classifiers or decision rules. One of the most useful is in terms of "discriminant functions"

Classifier as Largest Discriminant

Discriminant functions $g_i(x)$, i=1...c

Dec. rule: Class ω_i if $g_i(x)>g_j(x)$ for all $j\neq i$

Maximum Discriminant Functions g_i(x)

 $g_i(x) = -R(\alpha_i | \vec{x})$ for general case with risks

 $g_i(x) = P(\omega_i | x)$: maximum posterior probability

 $g_i(x) = \ln P(\vec{x}|\omega_i) + \ln P(\omega_i)$: simpler

Discriminant Functions for 2-Category

Assign
$$\omega_1$$
 if $g(x) = g_1(x) - g_2(x) > 0$

$$g(x) = P(\omega_1|x)-P(\omega_2|x)$$

$$g(x) = \ln \frac{P(\vec{x}|\omega_1)}{P(\vec{x}|\omega_2)} + \ln \frac{P(\omega_2)}{P(\omega_1)}$$

Summary

Classifier:
Maximum
Discriminant
Function

Discriminant Function for 2 Category

