Computabilità e Algoritmi (Computabilità) 18 Settembre 2012

Esercizio 1

Definire l'operazione di minimalizzazione illimitata e dimostrare che l'insieme delle funzioni calcolabili è chiuso rispetto a tale operazione.

Esercizio 2

Può esistere un funzione $f: \mathbb{N} \to \mathbb{N}$ con codominio finito, crescente (ovvero $f(x) \leq f(y)$ per $x \leq y$) e non calcolabile? Motivare la risposta con un esempio o con una dimostrazione di non esistenza.

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \varphi_x(y) = y \text{ per infiniti } y\}$, ovvero dire se $A \in \overline{A}$ sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione totale calcolabile fissata. Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : f(x) \in E_x\}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Sia $\pi: \mathbb{N}^2 \to \mathbb{N}$ la codifica delle coppie nei naturali. Si dimostri che una funzione $f: \mathbb{N} \to \mathbb{N}$ è calcolabile se e solo se l'insieme $A_f = \{\pi(x, f(x)) : x \in \mathbb{N}\}$ è ricorsivamente enumerabile.