Examples for 01/27/2022

Example 1: Consider p and q such that p > 0, q > 0, p + q < 1.

Consider a Markov Chain with the states being all integer numbers (i.e., ..., -2, -1, 0, 1, 2, ...), having transition function P(k, k+1) = p > 0, P(k, 0) = q > 0, and P(k, k) = 1 - p - q > 0. For each state, determine whether it is recurrent or transient.

Let C be an irreducible closed set of recurrent states.

$$\rho_{\rm C}(x) = P_{\rm x}(T_{\rm C} < \infty), \qquad x \in S.$$

(probability that the Markov chain that starts in x would be absorbed into C)

$$\rho_{\rm C}(x) = 1, \qquad x \in {\rm C}.$$

$$\rho_{\rm C}(x) = 0,$$
 $x \text{ is recurrent},$ $x \notin {\rm C},$

$$\rho_{C}(x) = \sum_{y \in C} P(x,y) + \sum_{y \in S_{T}} P(x,y) \cdot \rho_{C}(y), \qquad x \in S_{T}.$$

Example 2: Consider a Markov chain with the following transition probability matrix:

	0	1	2	3
0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
1	$\frac{1}{4}$	$\frac{3}{4}$	0	0
2	0	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{2}{5}$
3	0	0	0	1

- a) Determine which states are recurrent and which are transient. Identify all irreducible closed sets of recurrent states.
- b) Find ρ_{xy} , x = 0, 1, 2, 3,y = 0, 1, 2, 3.

Example 3: Consider a Markov chain with the following transition probability matrix:

	0	1	2	3	4	5	6	_
0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0	0	
1	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	0	0	0	
2	$\frac{1}{4}$	0	$\frac{3}{4}$	0	0	0	0	
3	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	0	$\frac{1}{5}$	
4	0	0	0	0	$\frac{2}{3}$	$\frac{1}{3}$	0	
5	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	
6	0	0	0	0	0	0	1	

a) Determine which states are recurrent and which are transient. Identify all irreducible closed sets of recurrent states.

b) Find $\rho_{C}(x)$ for each transient state x and each irreducible closed set C of recurrent states.

$$\rho_{\mathrm{C}}(x) = \sum_{y \in \mathrm{C}} P(x,y) + \sum_{y \in S_{\mathrm{T}}} P(x,y) \cdot \rho_{\mathrm{C}}(y), \qquad x \in S_{\mathrm{T}}.$$

c) Find ρ_{xy} for each transient state x and y = 0, 1, 2, 3, 4, 5, 6.

$$\rho_{xy} = P(x,y) + \sum_{\substack{z \in S_T \\ z \neq y}} P(x,z) \cdot \rho_{zy}, \qquad x,y \in S_T.$$