

Union and Intersection Types for Secure Protocol Implementations

Cătălin Hriţcu

Saarland University, Saarbrücken

Joint work with: Michael Backes and Matteo Maffei

A little bit of background

Analyzing protocol implementations

- Recently several approaches proposed
 - static analysis:
 CSur [Goubault-Larrecq and Parrennes, VMCAI'05]
 - software model checking:
 ASPIER [Chaki & Datta, CSF '09]
 - extracting ProVerif models: fs2pv [Bhargavan, Fournet, Gordon & Tse, CSF '06]
 - for TLS [Bhargavan, Corin, Fournet & Zalinescu CCS '08]
 - typing: F7
 [Bengtson, Bhargavan, Fournet, Gordon & Maffeis, CSF '08]
 - advantages: modularity, scalability, infinite # of sessions,
 predictable termination behavior, early feedback

F7v1 type-checker

[Bengtson, Bhargavan, Fournet, Gordon & Maffeis CSF '08]

- Security type-checker for (fragment of) F# (ML)
- Checks compliance with authorization policy
 - FOL used as authorization logic
 - proof obligations discharged using SMT solver (Z3)
- Dual implementation of cryptographic library
 - symbolic (DY model): used for security verification, debugging
 - concrete (real crypto): used in actual deployment
- F# fragment encoded into expressive core calculus (RCF)

RCF (Refined Concurrent PCF)

- λ-calculus + concurrency & channel communication in the style of asynchronous π-calculus (new c) c!m | c? → (new c) m
- Minimal core calculus
 - as few primitives as possible, everything else encoded e.g. ML references encoded using channels
- Expressive type system
 - refinement types

$$Pos = \{x : Nat \mid x \neq 0\}$$

dependent pair and function types (pre&post-conditions)

```
\lambda x.x : (y:Nat \rightarrow \{z:Nat \mid z = y\})
pred : x:Pos \rightarrow \{y:Nat \mid x = fold (inl y)\}
```

• iso-recursive and disjoint union types Nat = $\mu\alpha.\alpha$ +unit

Security properties (informal)

- Safety: in <u>all</u> executions all asserts succeed
 (i.e. asserts are logically entailed by the active assumes)
- Robust safety:
 safety in the presence of <u>arbitrary DY attacker</u>
 - attacker is a closed assert-free RCF expression
 - attacker is Un-typed
 - type T is public if T <: Un
 - type T is tainted if Un <: T
- Type system ensures that well-typed programs are robustly safe

Why wasn't this enough?

n: Private

public key
pk_B: PK<Private>

enc<Private> pk_B n

public key

pk_B: PK<Private>

k_B: DK<Private>

enc<Private> pk_B n

let $x_n = dec < Private > k_B net? in$

n: Private

public key
pk_B: PK<Private>

k_B

k_B: DK<Private>

enc<Private> pk_B n

let $x_n = dec < Private > k_B net? in$

enc<Un> pk_B junk

junk : Un

public key

pk_B: PK<Private>

k_B: DK<Private>

enc<Private> pk_B n

let $x_n = dec < Private > k_B net? in$

 x_n : Private \vee Un

enc<Un> pk_B junk

junk : Un

public key

pk_B: PK<Private>

k_B: DK<Private>

enc<Private> pk_B n

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

x_n: Private v Un

enc<Un> pk_B junk

junk : Un

 $pk_A : PK < T_A >$

public key
pk_B: PK<Private>

k_B: DK<Private>

n : Private

enc<Private> pk_B n

let x_n = dec<Private> k_B net? in
assume Auth(m,B,A)

enc $<T_A>$ pk_A (x_n,m) $x_n:$ Private \lor Un

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>$ pk_A (x_n,m) x_n : Private \lor Un

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>$ pk_A (x_n,m) x_n : Private \lor Un

let $y_n y_m = dec < T_A > k_A net? in$

let $(y_n, y_m) = y_n y_m$ in if $y_n = n$ then assert Auth (y_m, B, A)

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>$ pk_A (x_n,m) x_n : Private \lor Un

let $y_n y_m = dec < T_A > k_A net? in$

 $y_n y_m : T_A \vee Un$

let $(y_n, y_m) = y_n y_m$ in

if $y_n = n$ then assert Auth(y_m , B, A)

enc<Un> pk_A junk

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

 $enc<T_A>pk_A(x_n,m)$

 x_n : Private \vee Un

let $y_n y_m = dec < T_A > k_A net? in$

case $y_n y_m' = y_n y_m : T_A \vee Un$ of

let $(y_n, y_m) = y_n y_m'$ in

if $y_n = n$ then assert Auth(y_m , B, A)

enc<Un> pk_A junk

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>$ pk_A (x_n,m)

x_n: Private v Un

let $y_n y_m = dec < T_A > k_A net? in$

case $y_n y_m' = y_n y_m : T_A \vee Un$ of

let $(y_n, y_m) = y_n y_m'$ in

if $y_n = n$ then assert Auth(y_m , B, A)

Honest sender case: y_m : {y_m:Un | Auth(y_m,B,A)}

assert succeeds

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>$ pk_A (x_n,m)

 x_n : Private \vee Un

let $y_n y_m = dec < T_A > k_A net? in$

case $y_n y_m' = y_n y_m : T_A \vee Un$ of

let $(y_n, y_m) = y_n y_m'$ in

if $y_n = n$ then assert $Auth(y_m, B, A)$

Dishonest sender case: y_n: Un, n: Private

Un \cap Private = \emptyset so assert won't be executed

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>pk_A(x_n,m)$

 x_n : Private \vee Un

let $y_n y_m = dec < T_A > k_A net? in$

case $y_n y_m' = y_n y_m : T_A \vee Un$ of

let $(y_n, y_m) = y_n y_m'$ in

if $y_n = n$ then assert Auth(y_m , B, A)

Dishonest sender case: y_n: Un, n: Private

Un \cap Private = \emptyset so assert won't be executed

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n: Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>$ pk_A (x_n,m)

 x_n : Private \vee Un

let $y_n y_m = dec < T_A > k_A net? in$

case $y_n y_m' = y_n y_m : T_A \vee Un$ of

let $(y_n, y_m) = y_n y_m'$ in

if $y_n = n$ then assert Auth(y_m , B, A)

Dishonest sender case: y_n: Un, n: Private

Un \cap Private = \emptyset so assert won't be executed

enc<Un> pkA junk

F7vI can't handle this

simplified variant of Needham-Schroeder-Lowe

 $pk_A : PK < T_A >$

public key

pk_B: PK<Private>

k_B: DK<Private>

n : Private

enc<Private> pk_B n

 T_A =Private \vee Un * {y_m:Un | Auth(y_m,B,A)}

let $x_n = dec < Private > k_B net? in$

assume Auth(m,B,A)

enc $<T_A>pk_A(x_n,m)$

 x_n : Private \vee Un

let $y_n y_m = dec < T_A > k_A net? in$

case $y_n y_m' = y_n y_m : T_A \vee Un$ of

let $(y_n, y_m) = y_n y_m'$ in

if $y_n = n$ then assert Auth(y_m , B, A)

Dishonest sender case: y_n: Un, n: Private

Un \cap Private = \emptyset so assert won't be executed

We propose ...

- a new type-system for verifying protocol implementations
 - combines the refinement types from F7v1/RCF [BBFGM '08] with union, intersection, and polymorphic types (RCF[∀]_{∧∨})
 - novel ability: statically reasoning about disjointness of types

We propose ...

- a new type-system for verifying protocol implementations
 - combines the refinement types from F7v1/RCF [BBFGM '08] with union, intersection, and polymorphic types (RCF[∀]_{∧∨})
 - novel ability: statically reasoning about disjointness of types
- What does this buy us?
 - successfully type-checking larger class of protocols
 e.g. authenticity achieved by showing knowledge of secret data (NSL, ZK sign)
 - 2. a proper sealing-based encoding of asymmetric cryptography
 - 3. type-checking applications based on NI-ZK (DAA, Civitas, etc.)

We propose ...

- a new type-system for verifying protocol implementations
 - combines the refinement types from F7v1/RCF [BBFGM '08] with union, intersection, and polymorphic types (RCF[∀]_{∧∨})
 - novel ability: statically reasoning about disjointness of types
- What does this buy us?
 - successfully type-checking larger class of protocols
 e.g. authenticity achieved by showing knowledge of secret data (NSL, ZK sign)
 - 2. a proper sealing-based encoding of asymmetric cryptography
 - 3. type-checking applications based on NI-ZK (DAA, Civitas, etc.)
- + Machine-checked soundness proof + cool implementation

Encoding symbolic cryptography using dynamic seals

Symbolic cryptography

- RCF doesn't have any primitive for cryptography
- Instead, crypto primitives can be encoded using dynamic sealing [Morris, CACM '73]
- Advantage: adding new crypto primitives doesn't change RCF calculus, or type system, or any proof
- Nice idea that (to a certain extent) works for: symmetric and PK encryption, signatures, hashes, MACs
- Dynamic sealing not primitive either
 - encoded using references, lists, pairs and functions

```
Seal<\alpha> = (\alpha \rightarrow Un) * (Un \rightarrow \alpha)
mkSeal : \forall \alpha. unit \rightarrow Seal<\alpha>
```


Symmetric encryption

```
\label{eq:key} \begin{split} \text{Key} &<\alpha>= \text{Seal} <\alpha>= (\alpha \rightarrow \text{Un}) * (\text{Un} \rightarrow \alpha) \\ \text{mkKey} &= \Lambda \alpha. \text{mkSeal} <\alpha> \\ \text{senc} &= \Lambda \alpha. \lambda k: \text{Key} <\alpha>. \lambda m: \alpha. \text{ (fst k) m} : \forall \alpha. \text{Key} <\alpha> \rightarrow \alpha \rightarrow \text{Un} \\ \text{sdec} &= \Lambda \alpha. \lambda k: \text{Key} <\alpha>. \lambda n: \text{Un. (snd k) n} : \forall \alpha. \text{Key} <\alpha> \rightarrow \text{Un} \rightarrow \alpha \end{split}
```

- Dynamic sealing directly corresponds to sym. encryption
 - First observed by [Sumii & Pierce, '03 & '07]


```
DK < \alpha > = Seal < \alpha > = (\alpha \rightarrow Un) * (Un \rightarrow \alpha)
```

 $PK < \alpha > = \alpha \rightarrow Un$

 $mkDK = \Lambda \alpha.mkSeal < \alpha >$: $\forall \alpha.unit \rightarrow DK < \alpha >$

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = $\Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m$: $\forall \alpha.PK < \alpha > \to \alpha \to Un$

dec = Λα.λdk:DK<α>.λn:Un. (snd k) n : ∀α.DK<α>→Un→α


```
DK < \alpha > = Seal < \alpha > = (\alpha \rightarrow Un) * (Un \rightarrow \alpha)
PK < \alpha > = \alpha \rightarrow Un
mkDK = \Lambda \alpha.mkSeal < \alpha > : \forall \alpha.unit \rightarrow DK < \alpha >
mkPK = \Lambda \alpha.\lambda dk:DK < \alpha > . fst dk : \forall \alpha.DK < \alpha > \rightarrow PK < \alpha >
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m : \forall \alpha.PK < \alpha > \rightarrow Un
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda n:Un. (snd k) n : \forall \alpha.DK < \alpha > \rightarrow Un \rightarrow \alpha
```

• A "public" key pk: $PK < \alpha >$ is only public when α is tainted!


```
DK < \alpha > = Seal < \alpha > = (\alpha \rightarrow Un) * (Un \rightarrow \alpha)
PK < \alpha > = \alpha \rightarrow Un
mkDK = \Lambda \alpha.mkSeal < \alpha > : \forall \alpha.unit \rightarrow DK < \alpha >
mkPK = \Lambda \alpha.\lambda dk:DK < \alpha > . fst dk : \forall \alpha.DK < \alpha > \rightarrow PK < \alpha >
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m : \forall \alpha.PK < \alpha > \rightarrow Un
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda n:Un. (snd k) n : \forall \alpha.DK < \alpha > \rightarrow Un \rightarrow \alpha
```

- A "public" key pk: $PK < \alpha >$ is only public when α is tainted!
- A function type T→U is public only when
 - return type U is public
 (otherwise λ_:unit.m_{secret} would be public)
 - argument type T is tainted
 (otherwise λk:Key<Private>.c_{pub}!(senc k m_{secret}) is public)


```
DK < \alpha > = Seal < \alpha > = (\alpha \rightarrow Un) * (Un \rightarrow \alpha)
PK < \alpha > = \alpha \rightarrow Un
mkDK = \Lambda \alpha.mkSeal < \alpha > : \forall \alpha.unit \rightarrow DK < \alpha >
mkPK = \Lambda \alpha.\lambda dk:DK < \alpha > . fst dk : \forall \alpha.DK < \alpha > \rightarrow PK < \alpha >
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m : \forall \alpha.PK < \alpha > \rightarrow Un
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda n:Un. (snd k) n : \forall \alpha.DK < \alpha > \rightarrow Un \rightarrow \alpha
```

- A "public" key pk: $PK < \alpha >$ is only public when α is tainted!
- A function
 in NSL α is Private

 return (not public and not tainted)
 (otherwise) ⇒ strange attacker model
 - argument type T is tainted (otherwise λk:Key<Private>.c_{pub}!(senc k m_{secret}) is public)

Public-key encryption - FIXED

```
DK < \alpha > = Seal < \alpha \lor Un) \rightarrow Un) * ((\alpha \lor Un) \rightarrow \alpha)
PK < \alpha > = (\alpha \lor Un) \rightarrow Un
mkDK = \Lambda \alpha.mkSeal < \alpha > : \forall \alpha.unit \rightarrow DK < \alpha >
mkPK = \Lambda \alpha.\lambda dk:DK < \alpha > . fst dk : \forall \alpha.DK < \alpha > \rightarrow PK < \alpha >
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m : \forall \alpha.PK < \alpha > \rightarrow Un
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda n:Un. (snd k) n : \forall \alpha.DK < \alpha > \rightarrow Un \rightarrow (\alpha \lor Un)
```

- Public keys are now always public
 - A type TvUn is always tainted since Un <: TvUn for all T

Public-key encryption - FIXED

```
DK < \alpha > = Seal < \alpha \lor Un) \rightarrow Un) * ((\alpha \lor Un) \rightarrow \alpha)
PK < \alpha > = (\alpha \lor Un) \rightarrow Un
mkDK = \Lambda \alpha.mkSeal
mkDK = \Lambda \alpha.mkSeal
mkPK = \Lambda \alpha.\lambda dk:DK < \alpha > ...
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m: \alpha. pk m
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda m: \alpha. pk m
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda n:Un. (snd k) n : \forall \alpha.DK < \alpha > \rightarrow Un \rightarrow (\alpha \lor Un)
```

- Public keys are now always public
 - A type TvUn is always tainted since Un <: TvUn for all T

Public-key encryption - FIXED

```
DK < \alpha > = Seal < \alpha \lor Un) \rightarrow Un) * ((\alpha \lor Un) \rightarrow \alpha)
PK < \alpha > = (\alpha \lor Un) \rightarrow Un
mkDK = \Lambda \alpha.mkSeal < \alpha > : \forall \alpha.unit \rightarrow DK < \alpha >
mkPK = \Lambda \alpha.\lambda dk:DK < \alpha > . fst dk : \forall \alpha.DK < \alpha > \rightarrow PK < \alpha >
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m : \forall \alpha.PK < \alpha > \rightarrow Un
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda n:Un. (snd k) n : \forall \alpha.DK < \alpha > \rightarrow Un \rightarrow (\alpha \lor Un)
```

- Public keys are now always public
 - A type TvUn is always tainted since Un <: TvUn for all T

Public-key encryption - FIXED

```
DK < \alpha > = Seal < \alpha \lor Un > = ((\alpha \lor Un) \to Un) * ((\alpha \lor Un) \to \alpha)
PK < \alpha > = (\alpha \lor Un) \to Un
mkDK = \Lambda \alpha.mkSeal < \alpha >
mkPK = \Lambda \alpha.\lambda dk:DK < \alpha > . fst dk
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m
Union types introduced by subtyping m:\alpha and \alpha <: \alpha \lor Un
enc = \Lambda \alpha.\lambda pk:PK < \alpha > .\lambda m:\alpha. pk m
: \forall \alpha.PK < \alpha > \to Un \to (\alpha \lor Un)
dec = \Lambda \alpha.\lambda dk:DK < \alpha > .\lambda n:Un. (snd k) n : \forall \alpha.DK < \alpha > \to Un \to (\alpha \lor Un)
```

- Public keys are now always public
 - A type TvUn is always tainted since Un <: TvUn for all T

Digital signatures

```
SK<\alpha> = Seal<\alpha> = (\alpha \rightarrow Un) * (Un \rightarrow \alpha)
VK < \alpha > = Un \rightarrow \alpha
mkSK = \Lambda \alpha.mkSeal<\alpha>
mkVK = \Lambda \alpha . \lambda sk:SK < \alpha > . snd sk
                                                                              : \forall \alpha.SK < \alpha > \rightarrow VK < \alpha >
sign = \Lambda \alpha.\lambda sk:SK < \alpha > .\lambda m:\alpha. (fst sk) m : \forall \alpha.SK < \alpha > \to \alpha \to Un
verify = \Lambda \alpha . \lambda vk: VK < \alpha > . \lambda m: Un. \lambda s: Any.
                    let m'=vk s in
                   if m'=m then m'
                    else failwith "bad signature"
            : \forall \alpha.VK < \alpha > \rightarrow Un \rightarrow Any \rightarrow \alpha
```


Digital signatures

```
SK<\alpha> = Seal<\alpha> = (\alpha \rightarrow Un) * (Un \rightarrow \alpha)
VK < \alpha > = Un \rightarrow \alpha
mkSK = \Lambda \alpha.mkSeal<\alpha>
mkVK = \Lambda \alpha . \lambda sk:SK < \alpha > . snd sk
                                                                              : \forall \alpha.SK < \alpha > \rightarrow VK < \alpha >
sign = \Lambda \alpha.\lambda sk:SK < \alpha > .\lambda m:\alpha. (fst sk) m : \forall \alpha.SK < \alpha > \to \alpha \to Un
verify = \Lambda \alpha . \lambda vk: VK < \alpha > . \lambda m: Un. \lambda s: Any.
                    let m'=vk s in
                   if m'=m then m'
                    else failwith "bad signature"
            : \forall \alpha.VK < \alpha > \rightarrow Un \rightarrow Any \rightarrow \alpha
```

- Verification key vk: $VK < \alpha >$ is public only when α is public!
 - Strange, since verify leaks only one additional bit about m
 (i.e. is m a proper signature of n or not)

$$SK < \alpha > = (\alpha \rightarrow Un) * VK < \alpha >$$
 $VK < \alpha > = Un \rightarrow (Any \rightarrow \alpha) \land (Un \rightarrow Un)$
 $mkSK = ...$

: $\forall \alpha.unit \rightarrow SK < \alpha >$

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = $\Lambda \alpha . \lambda sk: SK < \alpha > . \lambda m: \alpha$. (fst sk) m : $\forall \alpha . SK < \alpha > \rightarrow \alpha \rightarrow Un$

verify = $\Lambda \alpha . \lambda vk: VK < \alpha > . \lambda n: Un. \lambda m: Any. vk n m$

$$SK<\alpha> = (\alpha \rightarrow Un) * VK<\alpha>$$

$$VK < \alpha > = Un \rightarrow (Any \rightarrow \alpha) \land (Un \rightarrow Un)$$

mkSK = ...

Verification keys are always public T∧Un is always public since T∧Un <: Un

: $\forall \alpha.unit \rightarrow SK < \alpha >$

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = $\Lambda \alpha.\lambda sk:SK < \alpha > .\lambda m:\alpha$. (fst sk) m : $\forall \alpha.SK < \alpha > \to \alpha \to Un$

verify = $\Lambda \alpha . \lambda vk: VK < \alpha > . \lambda n: Un. \lambda m: Any. vk n m$


```
SK < \alpha > = (\alpha \rightarrow Un) * VK < \alpha >
VK < \alpha > = Un \rightarrow (Any \rightarrow \alpha) \land (Un \rightarrow Un)
mkSK = \Lambda \alpha . \lambda:unit. let (s,u) = mkSeal () in
                                       let v = \lambda n:Un. \lambda m:Any ; Un.
                                           if m = u n as z then z
                                           else failwith "bad signature"
                                       in (s, v)
                                                                                  : \forall \alpha.unit\rightarrow SK < \alpha >
mkVK = \Lambda \alpha . \lambda sk:SK < \alpha > . snd sk
                                                                                  : \forall \alpha.SK< \alpha > \rightarrow VK < \alpha >
sign = \Lambda \alpha.\lambda sk:SK < \alpha > .\lambda m:\alpha. (fst sk) m : \forall \alpha.SK < \alpha > \rightarrow \alpha \rightarrow Un
verify = \Lambda \alpha . \lambda vk: VK < \alpha > . \lambda n: Un. \lambda m: Any. vk n m
                                                                       : \forall \alpha.VK < \alpha > \rightarrow Un \rightarrow Any \rightarrow \alpha
```



```
SK<\alpha> = (\alpha \rightarrow Un) * VK<\alpha>
```

 $VK < \alpha > = Un \rightarrow (Any \rightarrow \alpha) \land (Un \rightarrow Un)$

mkSK = $\Lambda \alpha . \lambda$:unit. **let** (s,u) = mkSeal () in

Introduces intersection of 2 function types

let $v = \lambda n$:Un. λm :Any ; Un.

if m = u n as z then z

else failwith "bad signature"

in (s, v)

: $\forall \alpha$.unit→SK< α >

mkVK = $\Lambda \alpha . \lambda sk:SK < \alpha > . snd sk$

: $\forall \alpha.SK < \alpha > \rightarrow VK < \alpha >$

sign = $\Lambda \alpha . \lambda sk: SK < \alpha > . \lambda m: \alpha$. (fst sk) m

: $\forall \alpha.SK < \alpha > \rightarrow \alpha \rightarrow Un$

verify = $\Lambda \alpha . \lambda vk: VK < \alpha > . \lambda n: Un. \lambda m: Any. vk n m$


```
SK < \alpha > = (\alpha \rightarrow Un) * VK < \alpha >
VK < \alpha > = Un \rightarrow (Any \rightarrow \alpha) \land (Un \rightarrow Un)
```

mkSK = $\Lambda \alpha . \lambda$:unit. **let** (s,u) = mkSeal () in

Introduces intersection of 2 function types

let $v = \lambda n$:Un. λm :Any ; Un.

if m = u n as z then z

If m : Any, u n : α then z : Any $\wedge \alpha <: \alpha$ mkVK =

ัส "bad signature"

: $\forall \alpha.unit \rightarrow SK < \alpha >$

: $\forall \alpha.SK < \alpha > \rightarrow VK < \alpha >$

sign = $\Lambda \alpha.\lambda sk:SK < \alpha > .\lambda m:\alpha$. (fst sk) m : $\forall \alpha.SK < \alpha > \to \alpha \to Un$

verify = $\Lambda \alpha . \lambda vk: VK < \alpha > . \lambda n: Un. \lambda m: Any. vk n m$


```
SK < \alpha > = (\alpha \rightarrow Un) * VK < \alpha >
VK < \alpha > = Un \rightarrow (Any \rightarrow \alpha) \land (Un \rightarrow Un)
mkSK = \Lambda \alpha. \lambda \text{:unit. let } (s,u) = mkSeal () \text{ in}
let \ v = \lambda n: Un. \ \lambda m: Any ; Un.
if \ m = u \ n \ as \ z \ then \ z
```

If m : Any, u n : α then z : Any \wedge α <: α then z : Un \wedge α <: Un

sign = $\Lambda \alpha . \lambda sk: SK < \alpha > . \lambda m: \alpha$. (fst sk) m : $\forall \alpha . SK < \alpha > \rightarrow \alpha \rightarrow Un$

verify = $\Lambda \alpha . \lambda vk: VK < \alpha > . \lambda n: Un. \lambda m: Any. vk n m$


```
SK<\alpha> = (\alpha \rightarrow Un) * VK<\alpha>
VK < \alpha > = Un \rightarrow (Any \rightarrow \alpha) \land (Un \rightarrow Un)
mkSK = \Lambda \alpha . \lambda:unit. let (s,u) = mkSeal () in
                                       let v = \lambda n:Un. \lambda m:Any ; Un.
                                           if m = u n as z then z
                                           else failwith "bad signature"
                                       in (s, v)
                                                                                  : \forall \alpha.unit\rightarrow SK < \alpha >
mkVK = \Lambda \alpha . \lambda sk:SK < \alpha > . snd sk
                                                                                  : \forall \alpha.SK < \alpha > \rightarrow VK < \alpha >
sign = \Lambda \alpha.\lambda sk:SK < \alpha > .\lambda m:\alpha. (fst sk) m : \forall \alpha.SK < \alpha > \rightarrow \alpha \rightarrow Un
verify = \Lambda \alpha . \lambda vk: VK < \alpha > . \lambda n: Un. \lambda m: Any. vk n m
                                                                       : \forall \alpha.VK < \alpha > \rightarrow Un \rightarrow Any \rightarrow \alpha
```

Union and intersection types allow us to give a more faithful seal-based encoding of asymmetric crypto

Encoding zero-knowledge proofs


```
assume \forallm. (\existsf. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
```

```
T_i = \{x_f : Private \mid OkTPM(x_f)\} vki : VK<T_i>
```

TPM/User

 $f : T_i$ $cert = sign < T_i > ski f$

m: Un

assume Send(f, m)

Verifier


```
assume \forallm. (\existsf. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
```

```
T_i = \{x_f : Private \mid OkTPM(x_f)\} vki : VK<T_i>
```

TPM/User

Verifier

 $f : T_i$ $cert = sign < T_i > ski f$

m: Un

assume Send(f, m)

zk-create_{daa} (vki, m, f, cert)


```
assume \forallm. (\existsf. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
```

```
T_i = \{x_f : Private \mid OkTPM(x_f)\} vki : VK<T_i>
```

TPM/User

Verifier

 $f : T_i$ $cert = sign < T_i > ski f$

m: Un

assume Send(f, m)

zk-create_{daa} (vki, m, f, cert)

ZK proof shows that "verify<T_i> vki cert f" succeeds


```
assume \forallm. (\existsf. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
```

 $T_i = \{x_f : Private \mid OkTPM(x_f)\}$ vki : VK< T_i >

TPM/User

f:T_i

 $cert = sign < T_i > ski f$

m: Un

assume Send(f, m)

Verifier

Without revealing f or cert (secret witnesses)

zk-create_{daa} (vki, m, f, cert)

ZK proof shows that "verify<T_i> vki cert f" succeeds


```
assume \forallm. (\existsf. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
```

```
T_i = \{x_f : Private \mid OkTPM(x_f)\} vki : VK<T_i>
```

TPM/User

 $f:T_i$

 $cert = sign < T_i > ski f$

m: Un

assume Send(f, m)

Verifier

Without revealing f or cert (secret witnesses)

zk-create_{daa} (vki, m, f, cert)

ZK proof shows that "verify<T_i> vki cert f" succeeds

Proof non-malleable,
authenticity of m proved by showing
knowledge of secret f

assume \forall m. (\exists f. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));

 $T_i = \{x_f : Private \mid OkTPM(x_f)\}$ vki : VK< T_i >

TPM/User

f:Ti

 $cert = sign < T_i > ski f$

m: Un

assume Send(f, m)

Verifier

Without revealing f or cert (secret witnesses)

zk-create_{daa} (vki, m, f, cert)

ZK proof shows that "verify<T_i> vki cert f" succeeds **let** $(y_2,y_3) = zk$ -verify_{daa} c? vki **in assert** Authenticate (y_2)

Proof non-malleable,
authenticity of m proved by showing
knowledge of secret f


```
assume \forall m. (\exists f. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
 T_i = \{x_f : Private \mid OkTPM(x_f)\}  vki : VK < T_i >
```

```
zkdef daa =

matched = [y<sub>vki</sub> : VK<T<sub>i</sub>>]

returned = [y<sub>m</sub> : Un]

secret = [x<sub>f</sub> : T<sub>i</sub>, x<sub>cert</sub> : Un]

statement = [x<sub>f</sub> = verify<T<sub>i</sub>> y<sub>vki</sub> x<sub>cert</sub> x<sub>f</sub>]

promise = [Send(x<sub>f</sub>,y<sub>m</sub>)].
```



```
assume \forall m. (\exists f. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
 T_i = \{x_f : Private \mid OkTPM(x_f)\}  vki : VK < T_i >
```

```
Public value known to the verifier
zkdef daa =
    matched = [y_{vki} : VK < T_i >]
    returned = [y_m : Un]
    secret = [x_f : T_i, x_{cert} : U_n]
    statement = [x_f = verify < T_i > y_{vki} x_{cert} x_f]
    promise = [Send(x_f, y_m)].
```



```
assume \forall m. (\exists f. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
 T_i = \{x_f : Private \mid OkTPM(x_f)\}  vki : VK < T_i >
```



```
assume \forall m. (\exists f. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
 T_i = \{x_f : Private \mid OkTPM(x_f)\}  vki : VK < T_i >
```



```
assume \forall m. (\exists f. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
 T_i = \{x_f : Private \mid OkTPM(x_f)\}  vki : VK < T_i >
```



```
assume \forall m. (\exists f. Send(f,m) \land OkTPM(f)) \Rightarrow Authenticate(m));
 T_i = \{x_f : Private \mid OkTPM(x_f)\}  \forall vki : VK < T_i > 0
```

Logical formula that is conveyed by the proof if prover is honest


```
T_i = \{x_f : Private \mid OkTPM(x_f)\}
T_{daa} = y_{vki} : VK < T_i > * y_m : Un * x_f : T_i * x_{cert} : \{x : Un \mid Send(x_f, y_m)\}
```



```
\begin{split} T_i &= \{x_f \colon Private \mid OkTPM(x_f)\} \\ T_{daa} &= y_{vki} \colon VK {<} T_i {>} * y_m \colon Un * x_f \colon T_i * x_{cert} \colon \{x {:} Un \mid Send(x_f, y_m)\} \\ k_{daa} &\colon Seal {<} T_{daa} {\lor} Un {>} \end{split}
```



```
\begin{split} T_i &= \{x_f : \text{Private} \mid \text{OkTPM}(x_f)\} \\ T_{daa} &= y_{vki} : \text{VK} < T_i > * y_m : \text{Un} * x_f : T_i * x_{cert} : \{x : \text{Un} \mid \text{Send}(x_f, y_m)\} \\ k_{daa} : \text{Seal} < T_{daa} \lor \text{Un} > \\ zk\text{-create}_{daa} &= \lambda w : T_{daa} \lor \text{Un}. \text{ (fst } k_{daa}) \text{ v} \\ &: T_{daa} \lor \text{Un} \rightarrow \text{Un} \end{split}
```



```
\begin{split} T_i &= \{x_f \colon \mathsf{Private} \mid \mathsf{OkTPM}(x_f)\} \\ T_{daa} &= \mathsf{y}_{\mathsf{vki}} \colon \mathsf{VK} {<} T_i {>} * \mathsf{y}_{\mathsf{m}} \colon \mathsf{Un} * \mathsf{x}_f \colon \mathsf{T}_i * \mathsf{x}_{\mathsf{cert}} \colon \{x : \mathsf{Un} \mid \mathsf{Send}(x_f, \mathsf{y}_{\mathsf{m}})\} \\ k_{daa} &: \mathsf{Seal} {<} T_{daa} {\lor} \mathsf{Un} {>} \\ zk\text{-create}_{daa} &= \lambda w : T_{daa} {\lor} \mathsf{Un}. \text{ (fst } k_{daa}) \ v \\ zk\text{-public}_{daa} &= \lambda z : \mathsf{Un}. \text{ case } w' = (\mathsf{snd} \ k_{daa}) \ z \colon T_{daa} {\lor} \mathsf{Un} \text{ of } \\ &\text{let } (\mathsf{y}_{\mathsf{vki}}, \ \mathsf{y}_{\mathsf{m}}, \ \mathsf{s}) = w' \text{ in } (\mathsf{y}_{\mathsf{vki}}, \ \mathsf{y}_{\mathsf{m}}) \end{split}
```



```
T_i = \{x_f : Private \mid OkTPM(x_f)\}
T_{daa} = y_{vki} : VK < T_i > * y_m : Un * x_f : T_i * x_{cert} : \{x:Un \mid Send(x_f, y_m)\}
k<sub>daa</sub>: Seal<T<sub>daa</sub>∨Un>
zk-create<sub>daa</sub> = \lambda w:T_{daa} \vee Un. (fst k_{daa}) v
                                                                                              : T<sub>daa</sub>∨Un→Un
zk-public<sub>daa</sub> = \lambda z:Un. case w' = (snd k<sub>daa</sub>) z : T<sub>daa</sub>\veeUn of
                                                                                               : Un→Un
                     let (y_{vki}, y_m, s) = w' in (y_{vki}, y_m)
zk-verify<sub>daa</sub> = \lambda z:Un. \lambda y_{vki}': VK<T<sub>i</sub>>; Un.
                    case w = (snd k_{daa}) z : T_{daa} \lor Un of
                    let (y_{vki}, y_m, x_f, x_{cert}) = w in
                    if y_{vki} = y_{vki}' as y_{vki}'' then
                       if x_f = \text{verify} < T_i > y_{vki}'' x_{cert} x_f  then (y_m)
                       else failwith "statement not valid"
                    else failwith "yvki does not match"
```

```
T_i = \{x_f : Private \mid OkTPM(x_f)\}
T_{daa} = y_{vki} : VK < T_i > * y_m : Un * x_f : T_i * x_{cert} : \{x:Un \mid Send(x_f, y_m)\}
k<sub>daa</sub>: Seal<T<sub>daa</sub>∨Un>
zk-create<sub>daa</sub> = \lambda w:T_{daa} \vee Un. (fst k_{daa}) v
                                                                                                : T<sub>daa</sub>∨Un→Un
zk-public<sub>daa</sub> = \lambda z:Un. case w' = (snd k<sub>daa</sub>) z : T<sub>daa</sub>\veeUn of
                                                                                                : Un→Un
                     let (y_{vki}, y_m, s) = w' in (y_{vki}, y_m)
zk-verify<sub>daa</sub> = \lambda z:Un. \lambda y_{vki}': VK<T<sub>i</sub>>; Un.
                    case w = (snd k_{daa}) z : T_{daa} \vee Un of
                    let (y_{vki}, y_m, x_f, x_{cert}) = w in
                    if y_{vki} = y_{vki}' as y_{vki}'' then
                        if x_f = \text{verify} < T_i > y_{vki}'' x_{cert} x_f  then (y_m)
                        else failwith "statement not valid"
                    else failwith "y<sub>vki</sub> does not match"
```


Case #1: honest verifier, honest prover

```
T_i = \{x_f : Private \mid OkTPM(x_f)\}
```

else failwith "yvki does not match"

$$T_{daa} = y_{vki} : VK < T_i > * y_m : Un * x_f : T_i * x_{cert} : \{x:Un \mid Send(x_f, y_m)\}$$

k_{daa}: Seal<T_{daa}∨Un>

zk-create_{daa} (vki, m, f, cert)


```
zk-verify<sub>daa</sub> =
```

```
\lambda z: Un. \ \lambda y_{vki}': VK < T_i > ; Un.

case \ w = (snd \ k_{daa}) \ z: T_{daa} \lor Un \ of

let \ (y_{vki}, \ y_m, \ x_f, \ x_{cert}) = w \ in

if \ y_{vki} = y_{vki}' \ as \ y_{vki}'' \ then

if \ x_f = verify < T_i > y_{vki}'' \ x_{cert} \ x_f \ then \ (y_m)

else \ failwith \ "statement \ not \ valid"

y_{vki}': VK < T_{vki} > y_{vki}'': VK < T_{vki} > y_{vki}'':
```


 $y_{vki}': VK < T_{vki} >$

 y_{vki}'' : Un \wedge VK<T $_{vki}>$

w: Un

Case #2: honest verifier, dishonest prover

```
T_i = \{x_f : Private \mid OkTPM(x_f)\}
```

$$T_{daa} = y_{vki} : VK < T_i > * y_m : Un * x_f : T_i * x_{cert} : \{x:Un \mid Send(x_f, y_m)\}$$

k_{daa}: Seal<T_{daa}∨Un>

zk-create_{daa} junk

 $\frac{\text{Send}(x_f,y_m)}{\text{Send}(x_f,y_m)}$ x_f: Un

zk-verify_{daa} =

```
\lambda z:Un. \lambda y_{vki}': VK < T_i > ; Un.
```

case
$$w = (snd k_{daa}) z : T_{daa} \vee Un of$$

let
$$(y_{vki}, y_m, x_f, x_{cert}) = w$$
 in

if
$$y_{vki} = y_{vki}'$$
 as y_{vki}'' then

if $x_f = \text{verify} < T_i > y_{vki}'' x_{cert} x_f$ then (y_m) "Un \cap Private $= \emptyset''$; (y_m) dead code

else failwith "statement not valid"

else failwith "y_{vki} does not match"

Cases #3 & #4: dishonest verifier

```
\begin{split} T_i &= \{x_f \colon Private \mid OkTPM(x_f)\} \\ T_{daa} &= y_{vki} \colon VK {<} T_i {>} * y_m \colon Un * x_f \colon T_i * x_{cert} \colon \{x {:} Un \mid Send(x_f, y_m)\} \\ k_{daa} &\colon Seal {<} T_{daa} {\lor} Un {>} \end{split}
```



```
zk-verify<sub>daa</sub> =
```

```
 \lambda z: Un. \ \lambda y_{vki}': VK < T_i > ; \ Un.   case \ w = (snd \ k_{daa}) \ z: T_{daa} \lor Un \ of   w: Un \ (\#3) \quad w: T_{daa} \ (\#4)   \text{let } (y_{vki}, y_m, x_f, x_{cert}) = w \ \textbf{in}   x_f: Un \ (\#3) \quad x_f: T_i \ (\#4)   y_{vki}'': Un \land ...   \text{if } x_f = verify < T_i > y_{vki}'' \ x_{cert} \ x_f \ \textbf{then} \ (y_m)   else \ failwith \ "statement \ not \ valid"   else \ failwith \ "y_{vki} \ does \ not \ match"
```


Cases #3 & #4: dishonest verifier

```
\begin{split} T_i &= \{x_f \colon Private \mid OkTPM(x_f)\} \\ T_{daa} &= y_{vki} \colon VK {<} T_i {>} * y_m \colon Un * x_f \colon T_i * x_{cert} \colon \{x \colon Un \mid Send(x_f, y_m)\} \end{split}
```

k_{daa}: Seal<T_{daa}∨Un>

else failwith "y_{vki} does not match"

not sufficient that verify $< \alpha > : VK < \alpha > \rightarrow ...$

in our library we actually have that verify $\langle \alpha \rangle$: $(VK < \alpha > \rightarrow ...) \land Un \rightarrow Un \rightarrow ... \rightarrow Un$

zk-verify_{daa}

```
 \lambda z: Un. \ \lambda y_{vki}': VK < T_i > ; Un. \\  \textbf{case} \ w = (snd \ k_{daa}) \ z: T_{daa} \lor Un \ \textbf{of} \\ \textbf{let} \ (y_{vki}, \ y_m, \ x_f, \ x_{cert}) = w \ \textbf{in} \\ \textbf{if} \ y_{vki} = y_{vki}' \ \textbf{as} \ y_{vki}'' \ \textbf{then} \\ \textbf{if} \ x_f = verify < T_i > y_{vki}'' \ x_{cert} \ x_f \ \textbf{then} \ (y_m) \\ \textbf{else} \ failwith \ "statement not valid"
```


Disjointness of types

Disjointness of types

• Definition: T_1 and T_2 are disjoint if $E \vdash M : T_1$ and $E \vdash M : T_2$ implies $E \vdash$ false

Disjointness of types

- Definition: T_1 and T_2 are disjoint if $E \vdash M : T_1$ and $E \vdash M : T_2$ implies $E \vdash$ false
- How to encode a type disjoint from Un? (hard since Un <:> Un→Un <:> Un*Un <:> ...)

Disjointness of types

- Definition: T_1 and T_2 are disjoint if $E \vdash M : T_1$ and $E \vdash M : T_2$ implies $E \vdash false$
- How to encode a type disjoint from Un? (hard since Un <:> Un→Un <:> Un*Un <:> ...)
 - Private = $\{f : \{false\} \rightarrow Un \mid \exists x. f = \lambda y. assert false; x\}$

Disjointness of types

- Definition: T_1 and T_2 are disjoint if $E \vdash M : T_1$ and $E \vdash M : T_2$ implies $E \vdash false$
- How to encode a type disjoint from Un? (hard since Un <:> Un→Un <:> Un*Un <:> ...)
 - Private = $\{f : \{false\} \rightarrow Un \mid \exists x. f = \lambda y. assert false; x\}$
- We lift this to more complex types tree $<\alpha>=\mu\beta$. $\alpha+(\alpha*\beta*\beta)$ tree < Private > disjoint from tree < Un >

Private disjoint Un

```
Private disjoint Un (Private * tree<Private> * tree<Private>) disjoint (Un * tree<Un> * tree<Un>) Private + (Private * tree<Private> * tree<Private>) disjoint Un + (Un * tree<Un> * tree<Un>) \mu\beta. Private + (Private * \beta * \beta) disjoint \mu\beta. Un + (Un * \beta * \beta)
```


Soundness

Calculus

- Surface calculus (RCF[∀]^∨)
 - Church-style (intrinsically typed)
 - informal (alpha-renaming convention)
 - named → human-readable
 - used by our type-checker, in the paper, on slides, etc.
 - operational semantics only by erasure into Formal-RCF[∀]∧∨

Calculus x 2

- Surface calculus (RCF[∀]^∨)
 - Church-style (intrinsically typed)
 - informal (alpha-renaming convention)
 - named → human-readable
 - used by our type-checker, in the paper, on slides, etc.
 - operational semantics only by erasure into Formal-RCF[∀]∧∨
- Formal calculus (Formal-RCF[∀]_{∧∨})
 - Curry-style (extrinsically typed like original RCF, very similar semantics)
 - formalized using Coq proof assistant
 - locally nameless representation (de Bruijn for bound variables)
 - machine-checked soundness proof (well-typed programs are robustly safe)

Calculus x 2

- Surface calculus (RCF[∀]^∨)
 - Church-style (intrinsically typed)
 - informal (alpha-renaming convention)
 - named → human-readable
 - used by our type-checker, in the paper, on slides, etc.
 - operational semantics only by erasure into Formal-RCF[∀]∧∨
- Formal calculus (Formal-RCF[∀]_{∧∨})
 - Curry-style (extrinsically typed like original RCF, very similar semantics)
 - formalized using Coq proof assistant
 - locally nameless representation (de Bruijn for bound variables)
 - machine-checked soundness proof (well-typed programs are robustly safe)
- + Adequacy: well-typed in RCF $_{\wedge\vee}$ = erasure well-typed in Formal-RCF $_{\wedge\vee}$

RCF[∀]_{∧∨}: intersection introduction

Because of type annotations following rule not enough

$$\frac{E \vdash M : T_1 \quad E \vdash M : T_2}{E \vdash M : T_1 \land T_2} \quad \text{e.g (Private} \rightarrow \text{Private}) \land (Un \rightarrow Un)$$

RCF[∀]_{∧∨}: intersection introduction

Because of type annotations following rule not enough

$$\frac{E \vdash M : T_1 \quad E \vdash M : T_2}{E \vdash M : T_1 \land T_2} \quad \text{e.g (Private} \rightarrow \text{Private}) \land (Un \rightarrow Un)$$

- λx:T₁; T₂. M [Reynolds '86, '96]
 - $(\lambda x: Private; Un. x) : (Private \rightarrow Private) \land (Un \rightarrow Un)$
 - can't write terms of type $(T_1 \rightarrow T_1 \rightarrow U_1) \land (T_2 \rightarrow T_2 \rightarrow U_2)$
 - you can use uncurried version $(T_1 \times T_1 \rightarrow U_1) \wedge (T_2 \times T_2 \rightarrow U_2)$ but then no partial application

RCF[∀]_{∧∨}: intersection introduction

Because of type annotations following rule not enough

$$\frac{E \vdash M : T_1 \quad E \vdash M : T_2}{E \vdash M : T_1 \land T_2} \quad \text{e.g (Private} \rightarrow \text{Private}) \land (Un \rightarrow Un)$$

- λx:T₁; T₂. M [Reynolds '86, '96]
 - $(\lambda x: Private; Un. x) : (Private \rightarrow Private) \land (Un \rightarrow Un)$
 - can't write terms of type $(T_1 \rightarrow T_1 \rightarrow U_1) \land (T_2 \rightarrow T_2 \rightarrow U_2)$
 - you can use uncurried version $(T_1 \times T_1 \rightarrow U_1) \wedge (T_2 \times T_2 \rightarrow U_2)$ but then no partial application
- Type alternation: for α in T; U do M [Pierce, MSCS '97]
 - More general ($\lambda x:T_1$; T_2 . $M = \text{for } \alpha \text{ in } T_1$; $T_2 \text{ do } \lambda x:\alpha$. M)
 - for α in T_1 ; T_2 do λx : $\alpha . \lambda x$: $\alpha . M$: $(T_1 \rightarrow T_1 \rightarrow U_1) \land (T_2 \rightarrow T_2 \rightarrow U_2)$

• polymorphism, intersections, unions vs. side-effects (known)

- polymorphism, intersections, unions vs. side-effects (known)
- Type refinements

$$\frac{\mathsf{E} \vdash \mathsf{M} : \mathsf{T} \quad \mathsf{E} \vdash \mathsf{C}\{\mathsf{M}/\mathsf{x}\}}{\mathsf{E} \vdash \mathsf{M} : \{\mathsf{x} : \mathsf{T} \mid \mathsf{C}\}}$$

Type alternation

$$\frac{E \vdash M : T \quad E \vdash C\{M/x\}}{E \vdash M : \{x : T \mid C\}} \quad \frac{E \vdash M\{T_i/\alpha\} : T \quad i \in I, 2}{E \vdash \text{ for } \alpha \text{ in } T_1; T_2 \text{ do } M : T}$$

- polymorphism, intersections, unions vs. side-effects (known)
- Type refinements vs. type alternation

```
\begin{array}{c} \vdash M\{T_1/\alpha\}: T \vdash M\{T_1/\alpha\} = M\{T_1/\alpha\} \\ \vdash M\{T_1/\alpha\}: \{x:T \mid x=M\{T_1/\alpha\}\} \\ \vdash \text{ for } \alpha \text{ in } T_1; T_2 \text{ do } M: \{x:T \mid x=M\{T_1/\alpha\}\} \end{array}
```


- polymorphism, intersections, unions vs. side-effects (known)
- Type refinements vs. type alternation

```
\begin{array}{c} \vdash M\{T_1/\alpha\}: T \vdash M\{T_1/\alpha\} = M\{T_1/\alpha\} \\ \vdash M\{T_1/\alpha\}: \{x:T \mid x=M\{T_1/\alpha\}\} \\ \vdash \text{ for } \alpha \text{ in } T_1; T_2 \text{ do } M: \{x:T \mid x=M\{T_1/\alpha\}\} \end{array}
```

• This can only possibly work if (for α in T_1 ; T_2 do M) = $M\{T_1/\alpha\}$ (both operationally and in the authorization logic)

- polymorphism, intersections, unions vs. side-effects (known)
- Type refinements vs. type alternation

```
\begin{array}{c} \vdash M\{T_1/\alpha\}: T \vdash M\{T_1/\alpha\} = M\{T_1/\alpha\} \\ \vdash M\{T_1/\alpha\}: \{x:T \mid x=M\{T_1/\alpha\}\} \\ \vdash \text{ for } \alpha \text{ in } T_1; T_2 \text{ do } M: \{x:T \mid x=M\{T_1/\alpha\}\} \end{array}
```

- This can only possibly work if (for α in T_1 ; T_2 do M) = $M\{T_1/\alpha\}$ (both operationally and in the authorization logic)
- Fors and type annotations **need** to be erased away $\lfloor \text{for } \alpha \text{ in } T_1; T_2 \text{ do } M \rfloor = \lfloor M \rfloor$

Formalization

- I4k+LOC of Coq, 6+ months of work (Coq beginner)
 - I.5+kLOC of definitions, most generated from Ott spec + quite big patch
 [Sewell, Nardelli, Owens, Peskine, Ridge, Sarkar & Strnisa, JFP '10]
 - I2+kLOC Software-Foundations-style proofs with very little automation
 - + 25kLOC of "infrastructure" lemmas generated by wonderful **LNgen** tool [Aydemir & Weirich, Draft '10]
- Reasonably complete
 - One notable exception: transitivity of subtyping paper proof goes by induction on the size of derivations, very informal
- Found+fixed 3 relatively small bugs in previous proofs
 - Public Down / Tainted Up, Robust Safety, Strengthening (claim weakened)
- Will be open sourced, once polished

- Intuitively, types are sets of values
 - {x:T | C} intuitively contains the values of T that satisfy C
 - $T_1 \wedge T_2$ intuitively contains the values that are in T_1 and in T_2
 - intuitively subtyping is (somehow related with) set inclusion
 - but with syntactic subtyping this intuition is dead wrong(!)

- Intuitively, types are sets of values
 - {x : T | C} intuitively contains the values of T that satisfy C
 - $T_1 \wedge T_2$ intuitively contains the values that are in T_1 and in T_2
 - intuitively subtyping is (somehow related with) set inclusion
 - but with syntactic subtyping this intuition is dead wrong(!)
- Lemma: If $E \vdash \{x : T \mid C\} <: U_1 \rightarrow U_2 \text{ then } E \vdash T <: U_1 \rightarrow U_2$

- Intuitively, types are sets of values
 - {x :T | C} intuitively contains the values of T that satisfy C
 - $T_1 \wedge T_2$ intuitively contains the values that are in T_1 and in T_2
 - intuitively subtyping is (somehow related with) set inclusion
 - but with syntactic subtyping this intuition is dead wrong(!)
- Lemma: If $E \vdash \{x : T \mid C\} <: U_1 \rightarrow U_2 \text{ then } E \vdash T <: U_1 \rightarrow U_2$

- Intuitively, types are sets of values
 - {x :T | C} intuitively contains the values of T that satisfy C
 - $T_1 \wedge T_2$ intuitively contains the values that are in T_1 and in T_2
 - intuitively subtyping is (somehow related with) set inclusion
 - but with syntactic subtyping this intuition is dead wrong(!)
- Lemma: If $E \vdash \{x : T \mid C\} <: U_1 \rightarrow U_2 \text{ then } E \vdash T <: U_1 \rightarrow U_2$
- Lemma: If $E \vdash T_1 \land T_2 <: U_1 \rightarrow U_2$ then $E \vdash T_1 <: U_1 \rightarrow U_2$ or $E \vdash T_2 <: U_1 \rightarrow U_2$

- Intuitively, types are sets of values
 - {x :T | C} intuitively contains the values of T that satisfy C
 - $T_1 \wedge T_2$ intuitively contains the values that are in T_1 and in T_2
 - intuitively subtyping jo

set inclusion

but with syntactic

Calling them intersection types is just deceiving!

wrong(!)

• Lemma: If $E \vdash \{x : T\}$

 $\vdash \{x : T\}$ How about GLB types?

 $<: U_1 \rightarrow U_2$

• Lemma: If $E \vdash T_1 \land T_2 <: U_1 \rightarrow U_2$ then $E \vdash T_1 <: U_1 \rightarrow U_2$ or $E \vdash T_2 <: U_1 \rightarrow U_2$

- Intuitively, types are sets of values
 - {x : T | C} intuitively contains the values of T that satisfy C
 - $T_1 \wedge T_2$ intuitively contains the values that are in T_1 and in T_2
 - intuitively subtyping is (somehow related with) set inclusion
 - but with syntactic subtyping this intuition is dead wrong(!)
- Lemma: If $E \vdash \{x : T \mid C\} <: U_1 \rightarrow U_2 \text{ then } E \vdash T <: U_1 \rightarrow U_2$
- Lemma: If $E \vdash T_1 \land T_2 <: U_1 \rightarrow U_2$ then $E \vdash T_1 <: U_1 \rightarrow U_2$ or $E \vdash T_2 <: U_1 \rightarrow U_2$
- Still, such inversion lemmas are **crucial** to our proofs

Implementation (Kudos to Thorsten Tarrach)

F5: tool-chain for RCF[∀]^∨

- Type-checker for RCF[∀]^∨
 - Extended syntax: simple modules, ADTs, recursive functions, typedefs, mutable references (all encoded into RCF[∀]_{∧∨})
 - Very limited type inference: some polymorphic instantiations
 - (Partial) type derivation can be inspected in visualizer
 - Can use SMT solvers (Z3) or FOL provers (eprover)
 - Efficient (especially with Z3)
 type-checks I500+LOC in ~I2 seconds on normal laptop
- Automatic code generator for zero-knowledge
- Interpreter + visual debugger
- ~5000LOC, first release coming soon (open source)

Screenshots

Screenshots

Screenshots

Random thoughts for the future

- Bigger case studies (already started with Civitas)
- Study type inference, maybe in restricted setting
 - Our type-checker is efficient for a good reason
- Study relation to F7v2
- Semantic subtyping for RCF ... is it possible? $\lambda + \{x:T|C\}$
- Develop semantic model for RCF / RCF[∀]^∨
- Study methods for establishing observational equivalence in RCF / RCF $_{\wedge\vee}$ (logical relations, bisimulations, etc.)
- Automatically generate zero-knowledge proof system corresponding to abstract statement specification (concrete crypto -- efficiency big challenge)

Thank you!

Analyzing protocols

- Analyzing protocol models: successful research field
 - modelling languages: strand spaces, CSP, spi calculus, applied-π, PCL, etc.
 - security properties:
 from secrecy & authenticity all the way to coercion-resistance
 - automated analysis tools:
 Casper, AVISPA, ProVerif, Cryptyc & other type-checkers, etc.
 - found bugs in deployed protocols
 SSL, PKCS, Microsoft Passport, Kerberos, Plutus, etc.
 - proved industrial protocols secure EKE, JFK, TLS, DAA, etc.

Abstract models vs. actual code

- Still, only limited impact in practice!
- Researchers prove properties of abstract models
- Developers write and execute actual code
- Usually no relation between the two
 - Even if correspondence was proved, model and code will drift apart as the code evolves
- Most often the only "model" is the code itself
 - The good news: when given a proper semantics the security of code can be analyzed as well

F7 (& fs2pv) tool-chain

Case studies (work in progress)

- I. A new implementation of the complete DAA protocol
- 2. Automatically generated implementations of automatically strengthened protocols
 - "Achieving security despite compromise using zero-knowledge"
 [Backes, Grochulla, Hritcu & Maffei, CSF '09]
- 3. Civitas electronic voting system [Clarkson, Chong & Myers, SSP '08]
 - Work in progress (Matteo Maffei & Fabienne Eigner)
 - Other complex primitives: distributed encryption with reencryption and plaintext equivalence testing (PET)