Hochschule München Fachbereich 07 Prof. Hörwick

Prüfung in Differentialrechnung im Rⁿ und Differentialgleichungen

Arbeitszeit:

90 Minuten

Hilfsmittel:

Alle eigenen

9

1.) Man leite partiell nach x, y, z ab:

$$f(x, y, z) = x \cdot \sin(2y \cdot e^{xz})$$

(3) + (3) + (3)

2.) Man berechne die Ableitungsmatrix von $g \circ f$ mit Hilfe der <u>Kettenregel</u>.

 $f: R^2 \rightarrow R^2$

 $g: R^2 \rightarrow R^3$

 $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 2xy \\ y^2 \end{pmatrix}$

 $R^{2} \rightarrow R^{3}$ $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x+y \\ x\cdot y \\ x\cdot x \end{pmatrix}$ $R^{2} \rightarrow R^{3}$ $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x+y \\ x\cdot y \\ x\cdot x \end{pmatrix}$ $R^{2} \rightarrow R^{3}$ $R^{3} \rightarrow R^{3}$ R^{3

9

3.) Gegeben sind die Funktionen

 $g(x) = -\frac{1}{2}x^2 + 2$, $f(x, y) = x \cdot y + 1$ und der Bereich B (siehe Skizze).

Man berechne $\int_{B} f(x, y)$

14

4.) Gegeben ist die DGL $y' = e^{\frac{y}{x}} + \frac{y}{x}$ Man berechne die Lösung $\varphi(x)$ mit $\varphi(1) = -1$. Welchen Definitionsbereich hat φ ?

<u>Hinweis:</u> $P_2(h) = \varphi(0) + \varphi'(0) \cdot h + \frac{\varphi''(0)}{2!} \cdot h^2$

netherich (2)

9

5.) Gegeben ist die DGL $y' = 2x \cdot (y+1)^2$ mit der Anfangsbedingung $\varphi(0) = 1$ Man berechne einen Näherungswert von $\varphi(0.1)$ mit Hilfe des Taylorpolynoms vom Grad 2 von φ .

ufg, 1 2 3 4 5 6 2

6.) Gegeben ist ein fester Kreis mit M = Koordinatenursprung und R = 1. Ein zweiter Kreis mit R = 1 und Kreispunkt P (linkes Bild) rollt auf dem festen Kreis ab (rechtes Bild). Man gebe eine Parameterdarstellung der Bahn von P an. Als Parameter verwende man den Winkel φ. Zur Berechnung verwende man das Hilfskoordinatensystem u, v.

Hinweis: Eine Drehung um den Winkel φ wird durch die Drehmatrix $\begin{pmatrix} \cos \varphi & , & -\sin \varphi \\ \sin \varphi & , & \cos \varphi \end{pmatrix}$

beschrieben (φ im Gegenuhrzeigersinn).

