

OPTIMAL DESIGN

TRAINING LAB. 4

MULTI-OBJECTIVE OPTIMISATION: ACTIVE SUSPENSION

Let us consider the quarter car vehicle model with an active suspension.

Figure 1 Quarter car vehicle model with active suspension.

The force exerted by the actuator is a function of the relative displacement between wheel and cabin and the absolute velocity of the vehicle body (sky-hook configuration):

$$F_{actuator} = g_1(x_2 - x_1) + g_2 \dot{x}_2$$

 g_1 expresses an additional stiffness, while g_2 is the damping factor which is the "active" part of the suspension.

For the sake of simplicity we assume $k_2 = r_2 = 0$.

The parameters of the model are:

- m_1 : unsprung mass

- m_2 : sprung mass

- k_1 : tyre radial stiffness

- k_2 : suspension equivalent stiffness (supposed linear)

- r_2 : suspension equivalent damping (supposed linear)

g₁: actuator gain (stiffness)

- g₂: actuator gain (sky-hook damping)

- ξ_1 : road irregularity

Determine the values of the actuator gains (g_1, g_2) in order to minimize *discomfort* and *road holding* at the same time.

The expressions of the objective functions (with also the Working space) are:

$$\sigma_{\ddot{x}_{2}} = A \cdot \sqrt{\frac{k_{1}g_{1}}{m_{2}g_{2}}}$$

$$\sigma_{F_{z}} = A \cdot \sqrt{\frac{g_{1}k_{1}(m_{1} + m_{2})^{2}}{g_{2}m_{2}} - \frac{k_{1}^{2}(2m_{1} + m_{2})}{g_{2}} + \frac{k_{1}^{3}m_{2}}{g_{1}g_{2}} + \frac{g_{2}k_{1}^{2}m_{1}}{g_{1}m_{2}}}$$

$$\sigma_{x_{2}-x_{1}} = A \cdot \sqrt{\frac{k_{1}m_{2}}{g_{1}g_{2}} + \frac{g_{2}(m_{1} + m_{2})}{g_{1}m_{2}}}$$

with

$$A = \sqrt{\frac{A_b v}{2}}$$

Reference values for the parameters are reported in Tab. 1.

Tab. 1 parameters of the problem

Parameters	Value
A _b [m]	1.4e-5
v [m/s]	30
m_2 [kg]	230 (adapt to the chosen vehicle)
m_1 [kg]	30 (adapt to the chosen vehicle)
k ₁ [N/m]	120000 (adapt to the chosen vehicle)

The field of variation of the design variables are reported in Tab.2

Tab. 2 field of variation of the design variables

Design variable	Field of variation
g ₁	0 ÷ 400000
g ₂	0 ÷ 100000

Requests:

- Determine the Pareto-optimal set in the design variables and objective functions domain. Choose one of the methods applied in Lab. 2 and 3.
- Compare the obtained Pareto-optimal set with the one of the passive suspension in the objective functions domain.