Summary Results

48 different veterinary doctors were each provided with a questionnaire to investigate the knowledge, attitudes, and practices on the use of Extra-corporeal shockwave therapy (ESWT).

Demographics

Variable	Levels	Frequency n (%)
Institution of qualification	In South Africa	39 (81.25)
	Outside South Africa	9 (18.75)
Age group	18 – 25	0
	26 – 35	12 (25.00)
	36 – 50	23 (47.92)
	>50	13 (27.08)
How many years in	<1 year	0
practice	2 – 5 years	6 (12.50)
	6 – 10 years	7 (14.58)
	>11 years	35 (72.92)
What type of practice	Mixed practice	15 (31.25)
-	Equine only	33 (68.75)
What is your sex	Male	21 (43.75)
	Female	27 (56.25)

Knowledge descriptive statistics

Six veterinary doctors felt that they lacked adequate knowledge on the topic to continue with the questionnaire, therefore, did not answer the following questions. These are dropped from data for the further analysis.

Question	Answer options	Frequency n (%)
Original use of ESWT was	Strongly agree	19 (45.24)
used in human medicine	Agree	19 (45.24)
	I do not know	0
	Disagree	1 (2.38)
	Strongly disagree	0
	N/A	3 (7.14)
The current use of ESWT is	Strongly agree	5 (11.90)
based on understanding that	Agree	29 (69.05)
it has regenerative effect	I do not know	5 (11.90)
	Disagree	1 (2.38)
	Strongly disagree	0
	N/A	2 (4.76)
The standard protocol for	Strongly agree	3 (7.14)
ESWT on tendon and	Agree	29 (69.05)
ligaments is 3 sessions, 2	I do not know	5 (11.90)
weeks apart	Disagree	0
	Strongly disagree	0
	N/A	5 (11.90)
The current protocol used	Strongly agree	2 (4.76)
for treatment of tendons and	Agree	15 (35.71)
	I do not know	10 (23.81)

ligaments is based on	Disagree	3 (7.14)
extensive scientific research	Strongly disagree	0
CATCHSIVE SCICITING TESCATOR	N/A	12 (28.57)
The principle physiological	Strongly agree	2 (4.76)
effect of ESWT is a	Agree	20 (47.62)
mechanical force resulting in	I do not know	· · · · ·
tissue cavitation		7 (16.67)
lissue cavitation	Disagree	5 (11.90)
	Strongly disagree	0
FOME I	N/A	8 (19.05)
ESWT has the most usage	Strongly agree	2 (4.76)
with treating	Agree	22 (52.38)
tendons/ligaments	I do not know	13 (30.95)
	Disagree	3 (3.14)
	Strongly disagree	0
	N/A	2 (4.76)
ESWT induces a strong	Strongly agree	4 (9.52)
analgesic effect in injured	Agree	21 (50)
tendons	I do not know	12 (28.57)
	Disagree	1 (2.38)
	Strongly disagree	0
	N/A	4 (9.52)
ESWT increases	Strongly agree	5 (11.90)
vascularization in damaged	Agree	33 (78.57)
tissue on which it is applied	I do not know	0
	Disagree	0
	Strongly disagree	0
	N/A	4 (9.52)
There is meaningful	Strongly agree	1 (2.38)
angiogenesis in	Agree	28 (66.67)
tendons/ligaments of	I do not know	2 (4.76)
equines treated with ESWT.	Disagree	0
	Strongly disagree	0
	N/A	11 (26.19)
The radial ESWT	Strongly agree	0
soundwave is more powerful		
than the focused ESWT	Agree I do not know	4 (9.52)
soundwave		22 (52.38)
Soundwave	Disagree	6 (14.29)
	Strongly disagree	0
D 1: 1	N/A	10 (23.81)
Radial waves are generated	Strongly agree	5 (11.90)
by a pneumatic force	Agree	25 (59.52)
	I do not know	1 (2.38)
	Disagree	0
	Strongly disagree	0
	N/A	11 (26.19)
Focused waves are	Strongly agree	5 (11.90)
generated by an electric	Agree	20 (47.62)
	I do not know	2 (4.76)
	Disagree	0
	Strongly disagree	0
	N/A	15 (35.71)
Radial ESWT, when	Strongly agree	6 (14.29)
compared to Focused	Agree	22 (52.38)
	1 - 9	\ \

ESWT is a less	I do not know	2 (4.76)
specific/accurate targeted	Disagree	0
wave.	Strongly disagree	0
	N/A	12 (28.57)
Use of the focussed ESWT	Strongly agree	12 (28.57)
machine on	Agree	21 (50)
tendons/ligaments must be	I do not know	5 (11.90)
be done in conjunction with	Disagree	0
ultrasound analysis.	Strongly disagree	0
	N/A	4 (9.52)
Overuse of waves from the	Strongly agree	1 (2.38)
Focussed ESWT cannot	Agree	7 (16.67)
cause injury to healthy	I do not know	19 (45.24)
tissue	Disagree	6 (14.29)
	Strongly disagree	0
	N/A	9 (21.43)
Through overuse, waves	Strongly agree	5 (11.90)
from the Radial ESWT can	Agree	15 (35.71)
cause injury to healthy	I do not know	7 (16.67)
tissue	Disagree	1 (2.38)
	Strongly disagree	0
	N/A	14 (33.33)
The bar pressure for the	Strongly agree	2 (4.76)
focussed ESWT waves are	Agree	15 (35.71)
10-100 times greater than	I do not know	2 (4.76)
radial waves	Disagree	0
	Strongly disagree	0
	N/A	23 (54.76)
The Fédération Éxquestre	Strongly agree	4 (9.52)
Internationale (FEI) and the	Agree	20 (47.62)
Jockey Club's ruling of	I do not know	8 (19.05)
banning ESWT prior to	Disagree	1 (2.38)
sporting events is based on	Strongly disagree	0
specific scientific research.	N/A	9 (21.43)

Attitude descriptive statistics

Questions	Answer Options	Frequency n (%)
I have no problem	Strongly agree	17 (40.48)
recommending ESWT is for	Agree	19 (45.24)
the treatment of equine	I do not know	2 (4.76)
tendons/ligaments.	Disagree	2 (4.76)
	Strongly disagree	0
	N/A	2 (4.76)
ESWT is effective in treating	Strongly agree	9 (21.43)
equine Kissing spine	Agree	22 (52.38)
	I do not know	7 (16.67)
	Disagree	2 (4.76)
	Strongly disagree	1 (2.38)
	N/A	1 (2.38)
ESWT is effective in treating	Strongly agree	1 (2.38)
equine navicular disease	Agree	11 (26.19)

	I do not know	16 (38.10)
	Disagree	11 (26.19)
	Strongly disagree	1 (2.38)
	N/A	2 (4.76)
ESWT can be used as an	Strongly agree	2 (4.76)
adjunct in the treatment	Agree	24 (57.14)
protocol of degenerative	I do not know	10 (23.81)
joint disease.	Disagree	4 (9.52)
	Strongly disagree	2 (4.76)
	N/A	0
Between the Radial ESWT	Strongly agree	2 (4.76)
and the Focussed ESWT,	Agree	8 (19.05)
the Radial ESWT is the	I do not know	10 (23.81)
preferred of the two.	Disagree	14 (33.33)
	Strongly disagree	4 (9.52)
	N/A	4 (9.52)
It is important to keep up to	Strongly agree	16 (38.10)
date with the current	Agree	23 (54.76)
scientific research on equine	I do not know	1 (2.38)
ESWT.	Disagree	0
	Strongly disagree	0
	N/A	2 (4.76)
There is no difference	Strongly agree	0
between the Radial and	Agree	2 (4.76)
focused ESWT treatments	I do not know	5 (11.90)
and as a result, they can be	Disagree	22 (52.38)
used on the same types of	Strongly disagree	13 (30.95)
injuries.	N/A	0
Most equine practises	Strongly agree	9 (21.43)
should have access to	Agree	23 (54.76)
ESWT as part of the	I do not know	5 (11.90)
treatment protocol for	Disagree	3 (7.14)
treating injured horses.	Strongly disagree	0
	N/A	2 (4.76)
The ESWT machine can be	Strongly agree	6 (14.29)
used to treat chronic tendon	Agree	29 (69.05)
and ligament injuries	I do not know	6 (14.29)
	Disagree	1 (2.38)
	Strongly disagree	0
	N/A	0

Practices descriptive statistics

Questions	Answer Options	Frequency n (%)
Our practice owns a	Strongly agree	10 (23.81)
shockwave machine	Agree	31 (73.81)
	I do not know	0
	Disagree	0
	Strongly disagree	0
	N/A	1 (2.38)
I prefer referring cases that	Strongly agree	11 (26.19)
require treatment with	Agree	20 (47.62)

ESWT than handle them	I do not know	0
myself.	Disagree	4 (9.52)
	Strongly disagree	3 (7.14)
	N/A	4 (9.52)
Cases presented with	Strongly agree	5 (11.90)
tendon injuries to our	Agree	20 (47.62)
practices are always/often	I do not know	2 (4.76)
treated using ESWT.	Disagree	9 (21.43)
	Strongly disagree	3 (7.14)
	N/A	3 (7.14)
Cases presented to our	Strongly agree	5 (11.90)
practice with Kissing Spine	Agree	14 (33.33)
injuries are usually treated	I do not know	4 (9.52)
with ESWT	Disagree	14 (33.33)
	Strongly disagree	2 (4.76)
	N/A	3 (7.14)
I take advantage of	Strongly agree	1 (2.38)
analgesic effects of ESWT	Agree	23 (54.76)
when treating relevant	I do not know	3 (7.14)
injuries	Disagree	7 (16.67)
	Strongly disagree	2 (4.76)
	N/A	6 (14.29)
There is a standard protocol	Strongly agree	2 (4.76)
for treatment of all	Agree	16 (38.10)
tendon/ligament injuries	I do not know	8 (19.05)
using the ESWT.	Disagree	11 (26.19)
	Strongly disagree	3 (7.14)
	N/A	2 (4.76)
My recommendation for	Strongly agree	6 (14.29)
treatment of equine injuries	Agree	27 (64.29)
using radial and focused	I do not know	2 (4.76)
ESWT varies depending on	Disagree	2 (4.76)
the injury and/or issue	Strongly disagree	0
	N/A	5 (11.90)
In our practice we generally	Strongly agree	7 (16.67)
follow the recommended	Agree	19 (45.24)
protocol of 3 sessions 2	I do not know	3 (7.14)
weeks apart.	Disagree	6 (14.29)
	Strongly disagree	1 (2.38)
	N/A	6 (14.29)

Knowledge Cronbach alpha coefficient

We used a Cronbach alpha coefficient to assess the reliability of each section of questions in the questionnaire. Cronbach's alpha evaluates whether the questions within a test are consistent in measuring the same thing, i.e., knowledge and attitude. It ranges from 0 to 1, with higher values indicating greater internal consistency. Alpha coefficient 0.6 and greater indicated that generally, all items in the section assess the same construct.

The scoring for each question is given by,

Levels	Scale measurement
Strongly disagree	0
Disagree	1
Agree	2
Strongly agree	3
Don't know / Not applicable	-

As observed in the tabulated screenshot below, the following 12 questions out of 18 from Section B are consistent (alpha = 0.6012) in measuring knowledge among the veterinary doctors. These 12 questions are used to calculate the mean knowledge score for everyone.

Item	0bs	Sign	Item-test correlation	Item-rest correlation	Average interitem covariance	alpha
T CEIII	005	31gii	COLLETACION	COLLETACION	COVAL TALLCE	aipiia
SB7	39		0.6105	0.4707	.0310665	0.4989
SB8	40		0.4164	0.2238	.036632	0.5395
SB9	37		0.3184	0.2097	.0448706	0.5850
SB11	34		0.1892	-0.0315	.0448542	0.6188
SB16	32	+	0.2405	0.0927	.0498577	0.6218
SB17	31		0.4244	0.3145	.043692	0.5776
SB18	27		0.5454	0.4230	.0385234	0.5486
SB19	30		0.4298	0.2988	.0402342	0.5598
SB21	33	+	0.4478	0.2141	.0411575	0.5835
SB22	28	+	0.4929	0.2739	.0456531	0.6129
SB23	19		0.3593	0.2282	.0438561	0.5849
SB24	33	+	0.3478	0.0625	.045374	0.6061
Test scale					.0421834	0.6012

The average knowledge score among the respondents is calculated using the questions above is 1.8832, which is approximately 62.77% (1.8832 / 3)

Attitude Cronbach alpha coefficient

As observed in the table below, the following 8 questions out of 9 from Section C are consistent (alpha = 0.6117) in measuring attitudes of veterinary doctors towards EWST. These 8 questions are used to calculate the average attitude scores.

Item	Obs	Sign	Item-test correlation	Item-rest correlation	Average interitem covariance	alpha
SC25	38		0.5614	0.3153	.0516442	0.5660
SC26	34		0.7218	0.5286	.0398263	0.5004
SC27	24		0.5880	0.3423	.046096	0.5386
SC28	32		0.3288	0.0237	.0604076	0.6184
SC30	39		0.4143	0.1276	.0604673	0.5970
SC31	37	+	0.5695	0.3590	.0546856	0.5788
SC32	35		0.6293	0.4070	.0508655	0.5573
SC33	36		0.1474	-0.0289	.0742505	0.6491
Test scale					. 0546699	0.6117

The mean attitude score among the respondents is calculated using the questions above is 2.1476. Therefore, the average attitude score is approximately 71.59% (2.1476 / 3).

Practices Cronbach alpha coefficient

As observed in the table below, the following 4 questions out of 8 from Section D are consistent (alpha = 0.6002) in measuring practices of veterinary doctors towards EWST. These 4 questions are used to calculate the average practice scores.

Item	Obs	Sign	Item-test correlation	Item-rest correlation	Average interitem covariance	alpha
SD36	37		0.8213	0.6017	.0726321	0.3560
SD37	35		0.8048	0.5450	.1020819	0.4552
SD40	35		0.6024	0.3768	.1738031	0.5433
SD41	33		0.5746	0.1570	. 2098944	0.6775
Test scale					.1404245	0.6002

The mean practice score among the respondents is calculated using the questions above is 1.8435. Therefore, the average practice score is approximately 61.45% (1.8435 / 3).

Association analysis

Two sample T-test and ANOVA tests are used to test for the difference in mean scores (knowledge, attitude, and practices) between different demographic groups.

Knowledge scores t-test

Ho: There is no difference in the means of the two groups. $(\mu_A = \mu_B)$

Ha: The means of the two groups differ. $(\mu_A \neq \mu_B)$

Variable		Knowledge mean scores	P-value
Institution	Inside South Africa	1.8976	0.5120
	Outside South Africa	1.8110	
Practice Type	Mixed practice	1.9590	0.3569

	Equine only practice	1.8562	
Sex	Male	1.8420	0.4903
	Female	1.9111	

Veterinary doctors who studied inside South Africa on average are more knowledgeable in ESWT than those who studied outside South Africa. Doctors with mixed practices on average are more knowledgeable than doctors with equine only practices. Furthermore, female doctors on average are more knowledgeable than male doctors.

All p-values > 0.05. There is insufficient statistical evidence to reject the null hypothesis. Therefore, the mean knowledge scores differences are not statistically significant between groups.

Knowledge scores ANOVA

Ho: There are no differences in the means of the groups. In other words, all the groups have the same population mean.

Ha: At least one of the groups means differs significantly from the others.

Variable		Knowledge mean scores	P-value	
Age	26 – 35	1.8437	0.5661	
	36 – 50	1.8631		
	>50	1.9826		
Practice	2-5 years	1.7586	0.5877	
years	6-10 years	1.9035		
	>11 years	1.9040		

Older veterinary doctors on average are more knowledgeable on ESWT compared to younger doctors. Doctors with more years of experience on average are also more knowledgeable compared to doctors with fewer years of experience.

P-values >0.05. There is insufficient statistical evidence to reject the null hypothesis. Therefore, these observed differences in knowledge are not statistically significant.

Note: Considering a multiple linear regression model, none of the demographic variables are significant in the model and therefore not reported.

Attitude score t-test

Variable		Attitude mean scores	P-value
Institution	Inside South Africa	2.1398	0.1621
	Outside South Africa	2.3206	
Practice Type	Mixed practice	2.2464	0.3802
	Equine only practice	2.1462	
Sex Male		2.0412	0.0222
	Female	2.2624	

Veterinary doctors who studied outside South Africa on average have a better attitude towards ESWT than those who studied inside South Africa. Doctors with mixed practices on average have a better attitude towards ESWT than doctors with equine only practices. Furthermore, female doctors on average have a better attitude than male doctors.

P-value from the sex t-test < 0.05. There is sufficient evidence to reject the null hypothesis. Therefore, the attitude mean scores statistically differs between male (2.0412) and females (2.2624).

Attitude score ANOVA.

Variable		Attitude mean scores	P-value
Age	26 – 35	2.2798	0.3287
	36 – 50	2.1414	
	>50	2.0903	
Practice	2-5 years	2.0179	0.4299
years	6-10 years	2.2153	
	>11 years	2.1931	

Younger veterinary doctors on average have a better attitude towards ESWT compared to older doctors. Doctors with 6-10 years of experience on average have a better attitude towards ESWT as compared to doctors with 2-5 and >11 years of experience.

P-values >0.05. There is insufficient statistical evidence to reject the null hypothesis. Therefore, these observed differences in attitude are not statistically significant.

Practice score t-test (Or Mann Whitney test)

Variable		Attitude mean scores	P-value	
Institution	Inside South Africa	1.8429	0.9861	
	Outside South Africa	1.8472		
Practice Type Mixed practice		1.875 (Median score)	0.9386 (Mann	
	Equine only practice	1.75 (Median score)	Whitney test)	
Sex	Male	1.7206	0.2393	
	Female	1.9305		

Veterinary doctors who studied outside South Africa on average have the same ESWT practice score compared to those who studied inside South Africa. Female doctors on average have a higher practice score than male doctors.

The t-test assumption i.e., equal variances between the two groups, is not met for the comparison between veterinary doctors with a mixed practice and those with equine only practice. Therefore, we use a non-parametric, Mann Whiteny test. Doctors with mixed practices have a higher ESWT median practice score compared to doctors with equine only practices.

P-values >0.05. There is insufficient statistical evidence to reject the null hypothesis. Therefore, these observed differences in practice are not statistically significant.

Practice score ANOVA.

Variable		Attitude mean scores	P-value
Age	26 – 35	2	0.4551
	36 – 50	1.7421	
	>50	1.8889	
Practice	2-5 years	1.875	0.6215
years	6-10 years	2.0417	
 	>11 years	1.7960	

Younger veterinary doctors on average have a better ESWT practices compared to older doctors. Doctors with 6-10 years of experience on average have a better ESWT practices as compared to doctors with 2-5 and >11 years of experience.

P-values >0.05. There is insufficient statistical evidence to reject the null hypothesis. Therefore, these observed differences in attitude are not statistically significant.

Regression Analysis

Multiple Linear regression for attitude scores.

Variable	Categories	Coefficient	P-value	95% Conf Int
Institution	In SA	Ref		
	Outside SA	0.2435	0.029	0.0265 0.4605
Age	26 – 35	Ref		
	36 – 50	-0.5607	0.000	-0.8229 -0.2985
	>50	-0.5586	0.001	-0.8693 -0.2479
Practice	2-5 years	Ref		
years	6-10 years	0.4686	0.003	0.1749 0.7622
	>11 years	0.7653	0.000	0.4477 1.0829
Sex	Male	Ref		
	Female	0.2249	0.004	0.0749 0.3748

Interpretation

- Veterinary doctors who studied outside South Africa on average have higher attitude scores by 0.243 units compared to veterinary doctors who studied inside South Africa adjusting for age, practice years and sex. The p-value < 0.05 therefore, institution is significant in the model.
- Older veterinary doctors (36-50 & >50) on average have lower attitude scores (by 0.5607 and 0.5586 respectively) compared to younger doctors (26-35 years) adjusting for institution, practice years and sex. From a Wald test for significance, p-value = 0.0005 and therefore age is significant in the model.
- An increase in practice years corresponds to an increase in average attitude scores towards ESWT. Veterinary doctors who have practiced for 6-10 years and >11 years have higher average attitude scores by 0.4686 and 0.7653 units respectively compared to doctors with 2-5 practice years, adjusting for institution, age, and sex. From a Wald test for significance, p-value = 0.0001 and therefore practice years is significant in the model.
- Female veterinary doctors on average have higher attitude scores by 0.2249 units compares to male veterinary doctors adjusting for institution, age, and practice years. P-value < 0.05 therefore, sex is significant in the model.

Post estimation tests.

The linear regression model assumes:

- Constant variance of residuals
- Normality of residuals

Test for constant variance assumption.

From the scatter plot above, the points are randomly scattered without a sort of pattern and therefore we can conclude heteroskedasticity of residuals (constant variance).

Cook-Weisberg test.

Also, using a Cook-Weisberg test for heteroskedasticity, **p-value = 0.6571**. There is insufficient evidence to reject the null hypothesis of constant variance. Therefore, from the scatter plot and the Cook-Weisberg test we can conclude that the residuals constant variance assumption is met.

Test for normality of residuals.

From the Q-Q plot for residual normally distributed.	s above, we car	assume that the r	residuals are ap	proximately