a. (2 marks) Use your Project 1 as an example to explain that Exploratory Data Analysis is an iterative process.

code using the ggplot2 library to illustrate your answers for the two types of plots in Part b above.

- b. (2 marks) Give two types of plots that are suitable for illustrating the covariation between a continuous variable and a categorical variable. Explain your answers.
- c. (2 marks) Assuming that you have a data frame df which has a continuous variable var1 and a categorical variable var2, write R
- d. (2 marks) Briefly explain one similarity and one difference between geom_hex and a geom_point from the ggplot2 library.
- e. (2 marks) Explain when it would be suitable to use geom_boxplot for a variable var of a data frame. Briefly describe what the outputs are from boxplot.stats(var)\$stats.

a. (4 marks) Given below is a data frame df showing the measurements of temperature (in degree C), wind speed (in km/h), and wind direction of various locations in the Perth area on a specific day.

Location	Temperature	Wind.Speed	Wind.Dir
Bickley	19.1	19	SW
Garden Island	18.8	41	SSW
Mandurah	19.7	22	SW
Perth	19.8	19	SSW
Perth Airport	21.1	35	SSW
Rottnest Island	18.3	43	SSW
Swan Valley	21.2	19	SSW
Swanbourne	18.7	26	SSW

- i. (2 marks) Briefly explain a plot that is suitable for visualising variable Temperature versus variable Wind. Speed. Write R code using the ggplot2 library to illustrate your answer.
- ii. (2 marks) Briefly explain a plot that is suitable for visualising variable Temperature versus variable Wind.Dir. Write R code using the ggplot2 library to illustrate your answer.
- b. (3 marks) Referring to the data frame df in part a, suppose that we want to convert the Wind. Speed column to the following levels to form a new categorical column called Wind:
 - Gentle if the wind speed is less than 20 km/h;
 - Medium if the wind speed is between 20 km/h (inclusive) and 40 km/h (non-inclusive);
 - Strong if the wind speed is at least 40 km/h.

Write R code to add this Wind column to the data frame.

c. (3 marks) Explain what z-normalisation is. Is it suitable for detecting outliers? Explain your answer.

Given below are the first few rows of two data frames, ins.df and person.df:

ins.df

Name	Type	Premium	Discount
AAA Ins	contents	700	5
AAA Ins	building	1200	2
Epic Insurance	vehicle	500	3
Epic Insurance	building	2000	3
Epic Insurance	contents	1100	3
QBA	vehicle	450	2
RAB Ins	contents	680	1
RAB Ins	building	1150	2

person.df

Person	Ins.name	Type	Years
Jack	QBA	vehicle	5
Jack	AAA Ins	contents	10
Jill	RAB Ins	contents	2
Jill	RAB Ins	building	6

The data frame ins.df contains the following columns: Name, which stores the names of various insurance companies; Type, which stores the types of insurance covered by the insurance companies; Premium, which stores the annual premiums (in dollars) that they charge; and Discount, which stores the discount percentage on the premiums if their customers have been insured with them for more than 5 years. For example, if a customer has been insured with AAA Ins for her/his household contents for 6 years, then s/he only needs to pay 95% × 700 = 665 dollars.

The data frame person.df has the following columns: Person, which contains the names of various persons; Ins.name and Type contain the insurance company and type of insurance for each person; and Years stores the number of years the person has been with the insurance company.

- a. (3 marks) Write R code to get the total number of insurance companies that offer insurance on both building and contents.
- b. (2 marks) Write R code for the *left join* and *semi join* operations on ins.df and person.df using
 i. the Type columns from the two data frames;
 - ii. Name and Ins. name as the two matching columns from the two data frames.
- c. (5 marks) Write R code to appropriately combine the two data frames to output the total annual insurance premium that Jack has to pay. Note: Your code must include the use of the pipe operator.

Given below is a small data frame car.df recording 10 observations. Each observation contains the Colour ("red" or "yellow"), Origin ("domestic" or "imported"), Price (in 10³ dollars), and Type ("sedan" or "SUV") of a vehicle.

```
library(tibble)
car.df <- tribble(</pre>
    ~Colour, ~Origin, ~Price, ~Type,
    "red", "domestic", 38, "sedan",
    "red", "domestic", 40, "sedan",
    "red", "domestic", 48, "SUV",
    "red", "domestic", 45, "sedan",
    "red", "imported", 78, "SUV",
    "red", "imported", 52, "sedan",
    "yellow", "domestic", 50, "SUV",
    "yellow", "domestic", 51, "SUV",
    "yellow", "imported", 53, "sedan",
    "yellow", "imported", 75, "SUV"
```

- a. (1 mark) Briefly define what a typical Null model would be for this data frame, where the response variable that we want to predict is the Type column. Write R code to output the predicted probability from your Null model.
- b. (5 marks) Using only the Colour and Origin columns as the input feature variables and the Type column as the output response variable:
 - i. (3 marks) Briefly describe how the *Naïve Bayes* algorithm predicts the Type variable using these two input feature variables. Write R code (including the library/libraries) to show how you would train this *Naïve Bayes* classifier.
 - ii. (2 marks) Construct a small test set testdf containing the following two instances:
 - the first test instance has Colour being "red" and Origin being "imported"
 - the second test instance has Colour being "yellow" but Origin is unknown.

Write R code to show how you would use your trained *Naïve Bayes* classifier from Part *i* above to predict the types of vehicle for the two instances in testdf.

- c. (4 marks) Using only the Origin and Price columns as the input variables together with the Type column as the output response variable:
 - i. (2 marks) Write R code (including the needed library/libraries) to show how to train a *Decision Tree* classifier and how to display the binary tree. (No need to include the diagram)
 - ii. (2 marks) Based on the output binary tree from your code, briefly explain how the *Decision Tree* algorithm works and how it would predict the Type of a domestic vehicle that costs \$55,000.

- a. (4 marks) Explain how the k-Nearest Neighbours classification algorithm works for the car.df data frame shown in the Question 4. For each of the two input variables Colour and Price, what will be a suitable distance function? Explain your answers.
- b. (2 marks) Briefly explain two differences between the the *k-Nearest Neighbours* algorithm and the *Decision Tree* algorithm for classification problems.

 DT need training but knn dont need it. DT is making judgement based on data features but KNN is making judgement based on close data points
- c. (2 marks) Briefly explain how you would use the Receiver Operating Characteristic (ROC) curves to compare the performance of two binary classifiers.
- d. (2 marks) Briefly explain how the hierarchical clustering algorithm works.

Given below are the first 8 observations of a fictitious data frame df which has 3 input variables X, Y, and Z and an output variable Class. The Class column is a categorical variable having 4 levels: apple, mandarin, orange, and pear.

Class	Z	Y	X
apple	-2.5022	-0.0303	-0.6210
mandarin	-4.9666	0.3315	0.0396
mandarin	-2.2986	2.8361	3.6174
orange	-3.4728	1.5397	0.6410
apple	-4.0678	1.6012	0.7586
pear	-3.2180	1.1660	3.9301
apple	-4.0260	0.1662	1.4218
apple	-3.7289	3.6804	-2.0301

- a. (1 mark) Write R code to replace the Class column to an integer column as follows:
 - group apple and pear into one level and give them the value 1
 - group mandarin and orange into another level of value 0
- b. (4 marks) Write an R function to perform z-normalisation on the input variables.
 - i. (3 marks) Your function should be named normalise and it should take in two arguments: a data frame and an integer, which denotes the column index of the data frame where the normalisation will be applied.
 - ii. (1 mark) Call your normalise function three times using a for loop to normalise the X, Y, and Z columns of df. The normalised columns should be saved back to the data frame.
 - c. (5 marks) Write R code to do the following:
 - i. (1 mark) Split df into a training set and a test set using the 90/10 split ratio.
 - ii. (1 mark) Train a Logistic Regression classifier on the data frame df using all the three input variables to predict the Class variable.
 - iii. (2 marks) Perform predictions on the training set and the test set using the trained model from Part ii above.
 - iv. (1 mark) Compute the accuracies of the predictions of the model on the training set and the test set.