Quiz 1. Thursday. in class Ch. 1. Ch. 3.

Describing Relationships Among Variables

(Ch. 4)

(Ch. 4)

Yifan Zhu

Iowa State University

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Outline

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

> Multiple Regression

Polynomial Regression

$$y_i \approx b_0 + b_1 x_i$$

pl predictors

▶ Polynomial regression: fit a polynomial:

$$y_i \approx b_0 + b_1 x_i + b_2 x_i^2 + b_3 x_i^3 + \dots + b_{p-1} x_i^{p-1}$$

The p coefficients $b_0, b_1, \ldots, b_{p-1}$ are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0,\ldots,b_{p-1})=\sum_{i=1}^n(y_i-(b_0+b_1x_i+\cdots+b_{p-1}x_i^{p-1}))^2$$

In practice, we make a computer find the coefficients for us. This class uses JMP. See https://www.stat. iastate.edu/statistical-software-jmp for JMP installation and JMP Help and Resource. Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \chi = \begin{bmatrix} 1 & \chi_1 & \chi_1^2 & \cdots & \chi_1^{p-1} \\ 1 & \chi_2 & \chi_2^2 & \cdots & \chi_2^{p-1} \\ \vdots & \vdots & \vdots & \ddots \\ 1 & \chi_n & \chi_n^2 & \cdots & \chi_n^{p-1} \end{bmatrix}$$

$$b = (\chi^T \chi)^{-1} \chi^T y = \begin{bmatrix} b_0 \\ \vdots \\ b_{p-1} \end{bmatrix}.$$

- ▶ A researcher studied the compressive strength of concrete-like fly ash cylinders. The cylinders were made with varying amounts of ammonium phosphate as an additive.
- We want to investigate the relationship between the amount ammonium phosphate added and compressive strength.

Additive Concentrations	and Comp	ressive Stren	aths for F	v Ash C	vlinders

x, Ammonium Phosphate (%)	y, Compressive Strength (psi)	x, Ammonium Phosphate (%)	y, Compressive Strength (psi)
(l)	1221	3	1609
0	1207	3	1627
0/	1187	3	1642
$\underbrace{}_{1}$	1555	4	1451
1	1562	4	1472
1	1575	4	1465
2	1827	5	1321
2	1839	5	1289
2	1802	5	1292

Simple linear regression fit: $\hat{y}_i = 1498.4 - .6381x_i$

х	у	(ŷ)	$e = y - \hat{y}$	х	у	ŷ	$e = y - \hat{y}$
0	1221	1498.4	-277.4	3	1609	1496.5	112.5
0	1207	1498.4	-291.4	3	1627	1496.5	130.5
0	1187	1498.4	-311.4	3	1642	1496.5	145.5
1	1555	1497.8	57.2	4	1451	1495.8	-44.8
1	1562	1497.8	64.2	4	1472	1495.8	-23.8
1	1575	1497.8	77.2	4	1465	1495.8	-30.8
2	1827	1497.2	329.8	5	1321	1495.2	-174.2
2	1839	1497.2	341.8	5	1289	1495.2	-206.2
2	1802	1497.2	304.8	5	1292	1495.2	-203.2

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Quadratic fit: $\hat{y}_i = 1242.9 + 382.7x - 76.7(x_i^2)$

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Multiple Regression

```
Regression Analysis
```

The regression equation is
$$y = 1243 + 383 \times -76.7 \times \times \times 2$$

Predictor Constant 1242.89 42.98 28.92 0.000 42.98 28.92 0

Analysis of Variance

Source Regression Residual E Total		DF 2 15 17	SS 658230 101206 759437	MS 329115 6747	F 48.78	P 0.000
Source	DF	Se	q SS 21			
X x**2	1	65	8209			

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

- ▶ The parabolic fit explained 86.7% of the variation in compressive strength.
- ▶ Note: for polynomial regression (and later, multiple regression) R^2 does not equal the squared correlation r_{xy}^2 between x and y. (ast time; linear regression Insteads $R^2 = r_{y\bar{y}}^2$:\ $r_{xy} = r_{y\bar{y}}^2$

Instead $R^2 = r_{v\hat{v}}^2$:

$$r_{y\hat{y}} = \frac{\sum (y_i - \overline{y})(\hat{y}_i - \overline{\hat{y}}_i)}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (\hat{y}_i - \overline{\hat{y}}_i)^2}}$$

$$\geq (y_i - \overline{y})^2 - \geq (y_i - \widehat{y}_i)^2$$

$$\geq (y_i - \overline{y})^2 - \leq (y_i - \widehat{y}_i)^2$$

Residuals for the quadratic fit have less of a pattern than those of the linear fit.

2

Percent Ammonium Phosphate

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Multiple Regression

0

-100

0

3

0

Cubic fit:
$$\hat{y}_i = 1188 + 633x - 214x^2 + 18.3x^3$$

Regression Analysis

The regression equation is
$$y = 1188 + 633 x - 214 x**2 + 18.3 x**3$$

Predictor	Coef	StDev	Т	Р
Constant	1188.05	28.79	41.27	0.000
X	633.11	55.91	11.32	0.000
x**2	-213.77	27.79	-7.69	0.000
x**3	18.281	3.649	5.01	0.000

$$S = 50.88$$
 $R-Sq = 95.2\%$ $R-Sq(adj) = 94.2\%$

Analysis of Variance

Source	DF	SS	MS	F	Р
Regression	3	723197	241066	93.13	0.000
Residual Error	14	36240	2589		
Total	17	759437			

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Yifan Zhu

Polynomial Regression

R^2 rose to 95.2%, and the residual plot improved.

Residual Plot for Cubic Fit: Residuals vs. Percent Ammonium Phosphate

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Outline

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomia Regression

Multiple Regression

Polynomial Regression

▶ Multiple Regression: regression on multiple variables:

$$y_i \approx b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + \dots + b_{p-1} x_{i,p-1}$$

▶ The p coefficients $b_0, b_1, \ldots, b_{p-1}$ are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0,\ldots,b_p)=\sum_{i=1}^n(y_i-(b_0+b_1x_{i,1}+\cdots+b_{p-1}x_{i,p-1}))^2$$

In practice, we make a computer find the coefficients for us. This class uses JMP. ▶ Nitrogen content is a measure of river pollution.

Variable	Definition
Y	Mean nitrogen concentration (mg/liter) based on samples taken at regular intervals during the spring, summer, and fall months
$\frac{X_1}{X_2}$ $\frac{X_3}{X_4}$	Agriculture: percentage of land area currently in agricultural use Forest: percentage of forest land Residential: percentage of land area in residential use Commercial/Industrial: percentage of land area in either commercial or industrial use

► I will fit each of:

$$\hat{y}_i = b_0 + b_1 x_{i,1}$$

$$\hat{y}_i = b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + b_4 x_{i,4}$$

and evaluate fit quality.

Example: New York rivers data

Row	River	Y	X_1	X_2	X_3	X_4
1	Olean	1.10	26	63	1.2	0.29
2	Cassadaga	1.01	29	57	0.7	0.09
3	Oatka	1.90	54	26	1.8	0.58
4	Neversink	1.00	2	84	1.9	1.98
5	Hackensack	1.99	3	27	29.4	3.11
6	Wappinger	1.42	19	61	3.4	0.56
7	Fishkill	2.04	16	60	5.6	1.11
8	Honeoye	1.65	40	43	1.3	0.24
9	Susquehanna	1.01	28	62	1.1	0.15
10	Chenango	1.21	26	60	0.9	0.23
11	Tioughnioga	1.33	26	53	0.9	0.18
12	West Canada	0.75	15	75	0.7	0.16
13	East Canada	0.73	6	84	0.5	0.12
14	Saranac	0.80	3	81	0.8	0.35
15	Ausable	0.76	2	89	0.7	0.3
16	Black	0.87	6	82	0.5	0.13
17	Schoharie	0.80	22	70	0.9	0.22
18	Raquette	0.87	4	75	0.4	0.18
19	Oswegatchie	0.66	21	56	0.5	0.13
20	Cohocton	1.25	40	49	1.1	0.13

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Multiple Regression

▶ It looks like the data could be roughly linear, although there are too few points to be sure.

	inner Eit				
	inear Fit				
▼ Line	ar Fit				
Nitroge	n = 0.926928	35 + 0.01	118851*A	gr	
▼ Su	mmary o	f Fit			
RSqu	uare		0.1	60762	
	iare Adj	_		14137	
	Mean Squar			10975	
	of Respons			.1575	
Obse	ervations (or	Sum Wg	its)	20	
▶ Lac	k Of Fit				
▼ An	alysis of	Varia	nce		
		s	um of		
Soul	ce DF	Sq	uares I	Mean Squa	re F Ratio
Mode			23712	0.5823	
Error			02038	0.1689	00 Prob > F
C. To	otal 19	3.62	25750		0.0798
▼ Pai	rameter l	Estima	ates		
Term	n Est	mate	Std Erro	r t Ratio	Prob>ltl
Inter			0.154478		<.0001*
Agr	0.01	18851	0.006401	1.86	0.0798

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

- A low R² means the model isn't very useful for predicting the pollution of other New York rivers outside our dataset.
- ► However, the lack of a pattern in the residual plot shows that the model is valid.
- The residuals depart from a bell shape slightly, but not enough to interfere with statistical inference.

1	₩ [Respor	ise Ni	itro	gen				
	*	Summa	ry of I	Fit			L		
	-[RSquare				709398	_		
	Ī	RSquare Ad Root Mean S Mean of Res	Square I	Error	0.2	631904 264919 1.1575	,		
		Observation		m W	gts)	20)		
	▼ Analysis of Variance								
		_			Sum of		_		
		Source Model	DF 4	2.56	98462	-	.6424	62	9.1542
		Error C. Total	15 19		527288 225750	0	.0701		ob > F
	V	Parame	ter Es	tim	ates				
bo	L	Term	Estim	ate	Std Erro	or t F	tatio	Prob	>iti
6,	П	Intercept	1.72221		1.23408	32	1.40	0.18	32
62	П	Agr	0.00580	091	0.01503	34	0.39	0.70	46
63	П	Forest	-0.0129	968	0.01393	31 -	0.93	0.36	67
		Rsdntial	-0.0072		0.0338	-	0.21	0.83	
64	·L	ComIndl	0.30502	278	0.16381	7	1.86	0.08	23

Yifan Zhu

Polynomial Regression

Yifan Zhu

Polynomial Regression

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

- A higher R^2 indicates that the full model is more useful for predicting river pollution than the agriculture-only model.
- ▶ The residual plots show that the full model is valid too.

Describing Relationships *Among* Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

Multiple Regression

From the scatterplot of y on x_4 , it looks like x_4 needs at least a quadratic term.

I can fit the model:

Fit the model:
$$(a_1 \times a_2 + b_3 \times a_4 + b_4 \times a_{i,1} + b_2 \times a_{i,2} + b_3 \times a_{i,3} + b_4 \times a_{i,4} + \underbrace{b_2 \cdot a_{i,4}^2}_{i,4}$$

which is a combination of polynomial regression and multiple regression.

by $+ b_1 \times_{i_1} + b_2 \times_{i_2} + b_3 \times_{i_5} + b_4 \times_{i_4} + C + (X_{i_1} \times_{i_2}, X_{i_5}, X_{i_4})$

91 =

The JMP Spreadsheet

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

▼ Summary of Fit

 RSquare
 0.897008

 RSquare Adj
 0.860226

 Root Mean Square Error
 0.163247

 Mean of Response
 1.1575

 Observations (or Sum Wgts)
 20

Analysis of Variance

DE	Sauaros	Moon Square	F Ratio
DF	Squares	Mean Square	r nauo
5	3.2494798	0.649896	24.3867
14	0.3730952	0.026650	Prob > F
19	3.6225750		<.0001*
	14	DF Squares 5 3.2494798 14 0.3730952	DF Squares Mean Square 5 3.2494798 0.649896 14 0.3730952 0.026650

▼ Parameter Estimates

	Term	
0	Intercept	1
;	X1	I
	X2	l
54	X3	l
74	X4	
C	X4^2	

Estimate Std Error t Ratio Prob>ltl 1.2942455 0.765169 0.1129 1.69 0.0049001 0.009266 0.53 0.6052 -0.010462 0.008599 -1.22 0.2438 0.0737788 0.026304 2.80 0.0140* 1.2715886 0.216387 5.88 <.0001* -0.532452 0.105436 -5.050.0002*

The model looks valid: no pattern in the residuals

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression

The model can be used for statistical inference: the residuals look normally distributed.

Describing Relationships Among Variables (Ch. 4)

Yifan Zhu

Polynomial Regression