TD: Manipulation des Collections en Java

Objectifs:

- Comprendre les différentes collections (List, Set, Queue, Map, Deque) et les appliquer en Java.
- Développer des solutions adaptées à chaque type de collection en fonction des besoins spécifiques.

Exercice 1 : Utilisation de List pour Analyser des Données Météo

Objectif: Utiliser une List pour traiter des séquences de données et déterminer la plus longue occurrence consécutive d'un même type.

1. Création de la Classe WeatherOccurrence

- Créez une classe WeatherOccurrence avec les attributs :
 - String weather: type de météo (pluie, soleil, etc.)
 - int occurrences : nombre de fois où ce type de météo apparaît consécutivement
 - int startIndex : indice de départ de cette séquence.

2. Implémentation de la Méthode de Recherche

- Implémentez une méthode WeatherOccurrence longestSequenceOfSameWeather(List<String> weather) qui prend une liste de types de météo en paramètre et identifie la séquence la plus longue de jours consécutifs avec le même type de météo.
- La méthode doit retourner un objet WeatherOccurrence représentant la météo, le nombre d'occurrences et l'indice de début.

3. Exemple de Test

- Utilisez la liste suivante pour tester votre méthode : ["Rain", "Sun", "Rain", "Rain", "Hail", "Snow", "Storm"].
- Affichez le type de météo, le nombre de jours consécutifs, et l'indice de départ de la séquence la plus longue.

Exercice 2 : Comparaison de Loisirs avec un Set

Objectif: Utiliser un Set pour identifier les éléments communs et calculer un pourcentage de similitude.

1. Création des Ensembles de Loisirs

o Déclarez deux Set<String> pour représenter les loisirs de deux personnes.

 Ajoutez quelques loisirs (ex. "Camping", "Pêche", "Lecture") dans chaque ensemble, en incluant certains loisirs communs.

2. Calcul de la Similitude

- Écrivez une méthode qui prend deux ensembles de loisirs en paramètres et :
 - Affiche les intérêts communs.
 - Calcule et affiche le pourcentage de similarité en divisant le nombre d'intérêts communs par le nombre total d'intérêts uniques.

3. Exemple de Test

 Testez votre méthode avec différents ensembles de loisirs et affichez le pourcentage de compatibilité.

Exercice 3: Simulation d'un Calculateur RPN avec une Queue

Objectif: Utiliser une Queue pour évaluer une expression en notation polonaise inverse (RPN).

1. Introduction à la Notation Polonaise Inverse (RPN)

En RPN, les opérateurs suivent leurs opérandes. Par exemple, 3 4 + signifie 3 + 4, et 3 4 + 5 * signifie (3 + 4) * 5.

2. Implémentation de la Méthode

- Créez une méthode evaluateRPN(String expression) qui prend une chaîne RPN en paramètre, la décompose en tokens et utilise une pile (ou Queue) pour évaluer l'expression.
- Pour chaque nombre, ajoutez-le dans la pile. Pour chaque opérateur, retirez les deux derniers éléments de la pile, appliquez l'opération, et replacez le résultat dans la pile.

3. Exemple de Test

 Utilisez l'expression "12 34 23 + *" pour tester votre méthode, et vérifiez que le résultat est correct.

Exercice 4 : Conversion de Tableaux 2D en Map

Objectif: Convertir un tableau en Map pour gérer des paires clé-valeur uniques.

1. Création de la Méthode de Conversion

- Créez une méthode Map<String, String>
 convertToMap(String[][] array) qui prend un tableau bidimensionnel
 et le convertit en Map.
- Dans le tableau, la première colonne représente la clé et la seconde colonne représente la valeur.

2. Gestion des Duplication

 Si une clé apparaît plusieurs fois dans le tableau, la dernière occurrence doit écraser les valeurs précédentes.

3. Exemple de Test

Utilisez un tableau tel que {{"Rouge", "#FF0000"}, {"Vert", "#00FF00"}, {"Rouge", "#FF1111"}} et vérifiez que le résultat final dans la Map est {Rouge=#FF1111, Vert=#00FF00}.

Exercice 5 : Gestion d'une Rampe de Chargement avec un Deque

Objectif: Utiliser une Deque pour simuler une file d'attente de chargement.

1. Mise en Place de la Structure de Données

 Utilisez une ArrayBlockingQueue<String> de capacité 5 pour représenter une rampe de chargement.

2. Création des Tâches de Chargement et de Déchargement

- Implémentez deux classes Loader et Unloader qui ajoutent et retirent des éléments de la rampe respectivement.
- Le Loader doit ajouter des articles de manière aléatoire dans la Deque avec un délai entre 1 et 2 secondes.
- o Le Unloader retire les articles de la rampe avec le même délai.

3. Exécution des Tâches

 Créez cinq threads Unloader et dix threads Loader pour tester le système de chargement et de déchargement simultané.