基于¹⁹⁷Au中子俘获实验开展的对Back-n装置的 能量分辨率函数的研究

报告人:杨高乐1,2

导师: 蒋 伟2

1. 中山大学物理与天文学院

2. 散裂中子源科学中心 2024.11.16

研究背景

- ▶ 基于中国散裂中子源搭建的反角白光源(Back-n)是我国的首台高性能白光中子源,具有中子能量范围宽、通量高、能量分辨好等特点,主要开展中子核数据精确测量、核物理及核天体物理等领域的研究。
- ➤ 每个中子产生装置都具有两个比较重要的两个内禀性质: 中子注量率和中子能量分辨率函数(ERF), 研究清楚这两个量是利用该装置开展实验研究的前提和基础;

中子能量分辨率函数(ERF)

- ➤ 我们利用中子束线测量得到的 实验数据通常是真实物理值与 中子能量分辨率函数(ERF)耦合 后的结果。
- ➤ ERF是R-matrix分析的重要输入

$$E_{\rm n} = \frac{1}{2} m_{\rm n} V^2 = \frac{(72.2977 \times L)^2}{t^2}$$

$$E' = \frac{[(72.2977 \times (L + \Delta L))]^2}{t^2}$$

$$\sigma_{\exp}(E_n) = \int R(E_n, E') \sigma_{\text{true}}(E') dE'$$

Back-n的中子能量分辨率函数(ERF)

- ▶ 一般来说ERF难以通过实验直接测量得到,需要通过Monte Carlo方法对中子产生装置进行模拟获得;
- ➤ CSNS的大部分束线主要需求热中子及以下能区的中子,需要大量中子慢化体和反射层,所以CSNS相对 其他中子源的散列靶结构复杂,精确建模模拟的难度较大;

B., Jiang 利用 Geant4 模拟CSNS TMR

的模型示意图

CSNS TMR结构图

n_tof 散裂靶的Geant4 模拟 模型示意图

[1]. B., Jiang et al. NIMA, 1013,165677 (2021).

Back-n的中子能量分辨率函数(ERF)

▶ B., Jiang et al.(2021)和唐生达开展的利用Geant4对CSNS散裂靶模拟结果提取RPI形式的ERF,但与实验结

果对比存在差异;

慢化长度随中子能量变化(74 m处筛选)

➤ 在对¹⁹⁷Au实验数据分析时,偶然发现在R-matrix拟合时,采用Gauss+ Exponential形式的ERF可以获得很好的拟合结果;

➤ Gauss+ Exponential 形式的ERF,是D. C. Larson *et al.*(1984) 提出用于描述ORELA装置的ERF,仅3个自由参数,但不同能区需要不同的参数。

$$f_{GE}(E) = \frac{1}{2\Delta_E} \exp\left\{\frac{\Delta_G^2}{4\Delta_E^2}\right\} \int_{-\infty}^{+\infty} dE' f(E') \exp\left\{-\frac{\left(E' - E + \Delta E_S\right)}{\Delta_E}\right\} \times \operatorname{erfc}\left(\frac{\Delta_G}{2\Delta_E} - \frac{\left(E' - E + \Delta E_S\right)}{\Delta_G}\right).$$

$$\sigma_{\exp}(E_{\rm n}) = \int R(E_{\rm n}, E') \sigma_{\rm true}(E') dE'$$

Energy range(eV)	$\Delta_{ m L}$	$\Delta_{\mathbf{G}}$	$\Delta_{\mathbf{E}}$		
1-20	0.060 ± 0.012	0.812 ± 0.162	1.65 ± 0.328		
20-100	0.084 ± 0.008	0.401 ± 0.04	1.59 ± 0.03		
100-310	0.126 ± 0.007	0.206 ± 0.021	0.926 ± 0.008		
310-520	0.056 ± 0.005	0.112 ± 0.010	0.616 ± 0.005		
520-850	0.075 ± 0.004	0.034 ± 0.003	0.502 ± 0.004		
850-1160	0.045 ± 0.004	0.059 ± 0.006	0.395 ± 0.004		
1160-1400	0.051 ± 0.005	0.078 ± 0.007	0.331 ± 0.004		
1400-1670	0.049 ± 0.004	0.068 ± 0.006	0.34 ± 0.007		
1670-1970	0.046 ± 0.008	0.066 ± 0.009	0.336 ± 0.007		

a_{11}	-425.767	a ₃₁	0.000668	a ₅₁	0.000585	Λ_0	1220.738	$ au_1$	305687.1
<i>a</i> ₁₂	2.03E-06	a ₃₂	7.57E-06	a ₅₂	1.77E-09	Λ_1	-291.666	$ au_2$	-6.60E-06
<i>a</i> ₁₃	153.5103	a ₃₃	0.000671	a_{53}	0.003654	Λ_2	17.76457	$ au_3$	-57888.5
<i>a</i> ₁₄	5.54E-06	a ₃₄	7.69E-06	a_{54}	-1.46E-06	Λ_3	1659.614	$ au_4$	-3.38E-05
<i>a</i> ₁₅	271.8245	a ₃₅	-0.00125	a_{55}	-0.00231	Λ_4	-1.88755	$ au_5$	-247817
<i>a</i> ₁₆	0.432395	a ₃₆	3.76E-05	a ₅₆	-0.00195	(C)		$ au_6$	-2119.82
<i>a</i> ₁₇	0.002668	a ₃₇	-1.1094	a ₅₇	-0.02199			$ au_7$	-0.53059

$$A_2 = 1$$

$$A_2 = 1$$
$$A_4 = -1$$

$$t_0 = 0$$

▶ ¹⁹⁷Au经过我们提取的RPI函数的展宽后的理论值与我们在Back-n装置测量得到的实验值符合很好

12

总结

- ▶ 我们提出了一种新的方法,从标准靶¹⁹⁷Au的中子俘获实验数据出发,间接从实验数据获得了Back-n装置的ERF;
- ▶ 通过与¹⁹⁷Au标准靶实验数据的对比,验证了我们获得的RPI形式的ERF的准确性;
- ▶ 同时通过这个对比,也证明了我们基于Back-n开展中子核数据测量的可靠性;
- ➤ 在ERF提取过程中的误差传递还有待进一步考虑和完善;