Wenying Deng, Jeremiah Zhe Liu

Department of Biostatistics Harvard University

> Biostat Seminar July 23, 2018

Contents

- 1 Problem Setup
- Cross-Validated Ensemble of Kernels
- 3 Hypothesis Test
- 4 Simulation Study
- 5 Appendix

Background

Problem Setup

•0000000

Consider a nutrition-environment interaction study for continuous infant health outcome y_i . For observation i, we have:

- 1 μ : the fixed effect of background covariates, assuming the same across all observations.
- **2** $\mathbf{x}_{1,i}$: 2 ~ 10 nutrients variables (e.g. Vitamin, Folate, etc)
- **3** $\mathbf{x}_{2,i}$: 2 ~ 10 environmental exposure (e.g. $PM_{2.5}$, pesticides, etc) Effect of $\mathbf{x}_{1,i}$ and $\mathbf{x}_{2,i}$ on y_i is nonlinear.

We observe $n \approx 100$ such records, and want to investigate whether mother's nutrients intake during pregnancy \mathbf{x}_1 modifies the effects of prenatal exposures to \mathbf{x}_2 , i.e. nonlinear interaction between \mathbf{x}_1 and \mathbf{x}_2 .

0000000

■ True Model

$$y_i = \mu + h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

$$h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) = [h_1(\mathbf{x}_{1i}) + h_2(\mathbf{x}_{2i})] + h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i})$$

True Model

$$y_i = \mu + h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

where

$$h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) = [h_1(\mathbf{x}_{1i}) + h_2(\mathbf{x}_{2i})] + h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i})$$

■ $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$ are the main effect functions

0000000

True Model

$$y_i = \mu + h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

$$h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) = \left[h_1(\mathbf{x}_{1i}) + h_2(\mathbf{x}_{2i})\right] + h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i})$$

- $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$ are the main effect functions
- $h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i}) \in \mathcal{H}_{12}$ is the pure interaction function

00000000

True Model

$$y_i = \mu + h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

$$h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) = [h_1(\mathbf{x}_{1i}) + h_2(\mathbf{x}_{2i})] + h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i})$$

- $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$ are the main effect functions
- $h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i}) \in \mathcal{H}_{12}$ is the pure interaction function
 - \blacksquare $h_{12} \perp h_1$ and $h_{12} \perp h_2$.

Problem Setup

00000000

True Model

$$y_i = \mu + h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

$$h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) = [h_1(\mathbf{x}_{1i}) + h_2(\mathbf{x}_{2i})] + h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i})$$

- $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$ are the main effect functions
- $h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i}) \in \mathcal{H}_{12}$ is the pure interaction function
 - \blacksquare $h_{12} \perp h_1$ and $h_{12} \perp h_2$.
- \blacksquare \mathcal{H}_1 , \mathcal{H}_2 and \mathcal{H}_{12} are **UNKNOWN**.

Hypothesis

Problem Setup

00000000

Model

$$y_i = \mu + h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) + \epsilon_i$$

where

$$h(\mathbf{x}_{1i}, \mathbf{x}_{2i}) = [h_1(\mathbf{x}_{1i}) + h_2(\mathbf{x}_{2i})] + h_{12}(\mathbf{x}_{1i}, \mathbf{x}_{2i})$$

Hypothesis

$$H_0: h \in \mathcal{H}_0 = \mathcal{H}_1 \oplus \mathcal{H}_2$$

$$\mathcal{H}_a$$
: $h \in \mathcal{H}_a = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_{12}$

00000000

Assumption: Given a library of kernels $\{k_d(\mathbf{x}, \mathbf{x}')\}_{d=1}^D$, assume

$$h_0(\mathbf{x}) = \sum_{d=1}^{D} u_d h_d(\mathbf{x}), \qquad \sum_{d=1}^{D} u_d = 1, u_d > 0$$

where $h_d \in \mathcal{H}_d$, the function space corresponds to $k_d(\mathbf{x}, \mathbf{x}')$.

Overview

Problem Setup 00000000

Model:

$$\mathbf{y} = \mu + h_0(\mathbf{x})$$

$$= \mu + \sum_{d=1}^{D} u_d h_d(\mathbf{x})$$

$$= \mu + \sum_{d=1}^{D} u_d \mathbf{K}_d \alpha_d$$

- 2 Cross-Validated Ensemble of Kernels
 - Tuning Parameter Selection
 - Ensemble Strategy
 - Kernel Choice
- - Asymptotic Test
 - Bootstrap Test
- - Data-generation Mechanism
 - Model Strategy
 - Result

•00

Denote

$$\mathbf{A}_{\lambda} = \mathbf{K}(\mathbf{X}, \mathbf{X})[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \lambda \mathbf{I}]^{-1}$$

and

$$\mathbf{y}^* = \mathbf{y} - \hat{\boldsymbol{\mu}}, \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^n y_i$$

- $tr(\mathbf{A}_{\lambda})$ is the effective number of model parameters
- ▼ v is centered

000

LooCV: leave-one-out Cross Validation

Cross-Validated Ensemble of Kernels

$$\underset{\lambda \in \Lambda}{\operatorname{argmin}} \left\{ \log \ \mathbf{y}^{\star T} [\mathbf{I} - \operatorname{diag}(\mathbf{A}_{\lambda}) - \frac{1}{n} \mathbf{I}]^{-1} (\mathbf{I} - \mathbf{A}_{\lambda})^2 [\mathbf{I} - \operatorname{diag}(\mathbf{A}_{\lambda}) - \frac{1}{n} \mathbf{I}]^{-1} \mathbf{y}^{\star} \right\}$$

AICc: small sample size version of AIC

$$\underset{\lambda \in \Lambda}{\operatorname{argmin}} \Big\{ \log \mathbf{y}^{\star T} (\mathbf{I} - \mathbf{A}_{\lambda})^2 \mathbf{y}^{\star} + \frac{2[\operatorname{tr}(\mathbf{A}_{\lambda}) + 2]}{n - \operatorname{tr}(\mathbf{A}_{\lambda}) - 3} \Big\}$$

GCVc: small sample size version of GCV

$$\underset{\lambda \in \Lambda}{\operatorname{argmin}} \Big\{ \log \mathbf{y}^{\star T} (\mathbf{I} - \mathbf{A}_{\lambda})^2 \mathbf{y}^{\star} - 2 \log [1 - \frac{\operatorname{tr}(\mathbf{A}_{\lambda})}{n} - \frac{2}{n}]_+ \Big\}$$

GMPML: Generalized Maximum Profile Marginal Likelihood

$$\underset{\lambda \in \Lambda}{\operatorname{argmin}} \Big\{ \log \, \mathbf{y}^{\star \, \mathsf{T}} (\mathbf{I} - \mathbf{A}_{\lambda}) \mathbf{y}^{\star} - \frac{1}{n-1} \log \mid \mathbf{I} - \mathbf{A}_{\lambda} \mid \Big\}$$

Tuning Parameter Selection

000

Note: λ_{AIC} is always smaller than λ_{GCV} . Derive

ERM: Empirical Risk Minimization

$$\hat{\mathbf{u}} = \underset{\mathbf{u} \in \Delta}{\operatorname{argmin}} \parallel \sum_{d=1}^{D} u_d \hat{\boldsymbol{\epsilon}}_d \parallel^2 \quad \text{where } \Delta = \{ \mathbf{u} \mid \mathbf{u} \geq 0, \parallel \mathbf{u} \parallel_1 = 1 \}$$

AVE: Simple Averaging

$$u_d = 1/D$$
 for $d = 1, 2, ...D$

EXP: Exponential Weighting

$$u_d(\beta) = \frac{\exp(-\parallel \hat{\epsilon}_d \parallel_2^2 / \beta)}{\sum_{d=1}^{D} \exp(-\parallel \hat{\epsilon}_d \parallel_2^2 / \beta)}$$
 for $d = 1, 2, ...D$

Then produce the final ensemble prediction:

$$\hat{\mathbf{h}}_0 = \sum_{d=1}^D \hat{u}_d \mathbf{h}_d = \sum_{d=1}^D \hat{u}_d \mathbf{A}_{d, \hat{\lambda}_d} \mathbf{y}^* = \hat{\mathbf{A}} \mathbf{y}^*$$

where $\hat{\mathbf{A}} = \sum_{d=1}^{D} \hat{u}_d \mathbf{A}_{d \hat{\lambda}_d}$ is the ensemble matrix.

Polynomial Kernel: polynomial functions

$$k(\mathbf{x}, \mathbf{x}') = (b + \mathbf{x}^T \mathbf{x}')^p$$

Gaussian Kernel: infinitely differentiable functions

$$k(\mathbf{x}, \mathbf{x}') = exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|^2}{2l^2}\right)$$

Matérn 1/2 Kernel: continuous, non-differentiable functions

$$k(\mathbf{x}, \mathbf{x}') = exp(-\frac{|\mathbf{x} - \mathbf{x}'|}{I})$$

Matérn 5/2 Kernel: twice-differentiable functions

$$k(\mathbf{x}, \mathbf{x}') = (1 + \frac{\sqrt{5} |\mathbf{x} - \mathbf{x}'|}{I} + \frac{5 |\mathbf{x} - \mathbf{x}'|^2}{3I^2}) exp(-\frac{\sqrt{5} |\mathbf{x} - \mathbf{x}'|}{I})$$

- 2 Cross-Validated Ensemble of Kernels
 - Tuning Parameter Selection
 - Ensemble Strategy
 - Kernel Choice
- 3 Hypothesis Test
 - Asymptotic Test
 - Bootstrap Test
- - Data-generation Mechanism
 - Model Strategy
 - Result

Variance Component Test for Interaction

Translate Hypothesis: Under LMM representation:

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{h} + \boldsymbol{\epsilon}$$
 where $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \tau \mathbf{K})$ $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

■ Under H_0 : $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, same as $k = k_1 + k_2 \quad (\Rightarrow) \quad \mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2$

Variance Component Test for Interaction

Translate Hypothesis: Under LMM representation:

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{h} + \boldsymbol{\epsilon}$$
 where $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, au\mathbf{K})$ $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2\mathbf{I})$

- Under H_0 : $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, same as $k = k_1 + k_2 \quad (\Rightarrow) \quad \mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2$
- Under H_a : $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_{12}$, same as $k = k_1 + k_2 + k_{12}$ (\Rightarrow) $K = K_1 + K_2 + K_{12}$

Variance Component Test for Interaction

Translate Hypothesis: Under LMM representation:

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{h} + \boldsymbol{\epsilon}$$
 where $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \tau \mathbf{K})$ $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

- Under H_0 : $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, same as $k = k_1 + k_2 \quad (\Rightarrow) \quad \mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2$
- Under \mathcal{H}_2 : $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_{12}$, same as $k = k_1 + k_2 + k_{12}$ (\Rightarrow) $K = K_1 + K_2 + K_{12}$
- So write $\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2 + \delta * \mathbf{K}_{12}$

Variance Component Test for Interaction

Translate Hypothesis: Under LMM representation:

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{h} + \boldsymbol{\epsilon}$$
 where $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \tau \mathbf{K})$ $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

- Under H_0 : $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, same as $k = k_1 + k_2 \quad (\Rightarrow) \quad \mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2$
- Under H_a : $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_{12}$, same as $k = k_1 + k_2 + k_{12}$ (\Rightarrow) $K = K_1 + K_2 + K_{12}$
- So write $\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2 + \delta * \mathbf{K}_{12}$
- Test for $H_0: \delta = 0$ using VCT Detail

•000

Bootstrap Test

What if our sample size is pretty small?

How to make full use of our limited sample?

What if our sample size is pretty small?

Bootstrap!

What if our sample size is pretty small?

A good approximation to the distribution of the test statistic under sampling from the true null-hypothesis model is the distribution of the test statistic under sampling from the fitted null-hypothesis model.

$$E(\mathbf{y}^{\star}) = \mathbf{K}_0(\mathbf{K}_0 + \lambda \mathbf{I})^{-1}\mathbf{y} = \mathbf{A}_0\mathbf{y}$$

Obtain parameter estimates from the original data by fitting a null-hypothesis model

$$E(\mathbf{y}^{\star}) = \mathbf{K}_0 (\mathbf{K}_0 + \lambda \mathbf{I})^{-1} \mathbf{y} = \mathbf{A}_0 \mathbf{y}$$

2 Sample \mathbf{Y}^* for each individuals with a random noise, whose variance is also estimated.

$$E(\mathbf{y}^{\star}) = \mathbf{K}_0 (\mathbf{K}_0 + \lambda \mathbf{I})^{-1} \mathbf{y} = \mathbf{A}_0 \mathbf{y}$$

- 2 Sample \mathbf{Y}^* for each individuals with a random noise, whose variance is also estimated.
- 3 Compute the test statistic, based on fitting the alternative-hypothesis model to the samples obtained in Step 2.

$$E(\mathbf{y}^{\star}) = \mathbf{K}_0(\mathbf{K}_0 + \lambda \mathbf{I})^{-1}\mathbf{y} = \mathbf{A}_0\mathbf{y}$$

- 2 Sample \mathbf{Y}^{\star} for each individuals with a random noise, whose variance is also estimated.
- 3 Compute the test statistic, based on fitting the alternative-hypothesis model to the samples obtained in Step 2.
- 4 Repeat Steps 2 and 3 for B times, to obtain an approximate distribution of the test statistic.

$$E(\mathbf{y}^{\star}) = \mathbf{K}_0 (\mathbf{K}_0 + \lambda \mathbf{I})^{-1} \mathbf{y} = \mathbf{A}_0 \mathbf{y}$$

- 2 Sample \mathbf{Y}^{\star} for each individuals with a random noise, whose variance is also estimated.
- 3 Compute the test statistic, based on fitting the alternative-hypothesis model to the samples obtained in Step 2.
- 4 Repeat Steps 2 and 3 for B times, to obtain an approximate distribution of the test statistic.
- 5 Compute the test statistic for the original data, based on fitting the alternative- hypothesis model.

$$E(\mathbf{y}^{\star}) = \mathbf{K}_0 (\mathbf{K}_0 + \lambda \mathbf{I})^{-1} \mathbf{y} = \mathbf{A}_0 \mathbf{y}$$

- 2 Sample \mathbf{Y}^{\star} for each individuals with a random noise, whose variance is also estimated.
- 3 Compute the test statistic, based on fitting the alternative-hypothesis model to the samples obtained in Step 2.
- 4 Repeat Steps 2 and 3 for B times, to obtain an approximate distribution of the test statistic.
- 5 Compute the test statistic for the original data, based on fitting the alternative- hypothesis model.
- 6 Compute the p-value, by comparing the test statistic in Step 5 to the distribution in Step 4.

- 2 Cross-Validated Ensemble of Kernels
 - Tuning Parameter Selection
 - Ensemble Strategy
 - Kernel Choice
- - Asymptotic Test
 - Bootstrap Test
- 4 Simulation Study
 - Data-generation Mechanism
 - Model Strategy
 - Result

Generate data under

$$y = \mu + h_1(\mathbf{x}_1) + h_2(\mathbf{x}_2) + \delta * h_1(\mathbf{x}_1) * h_2(\mathbf{x}_2) + \epsilon$$

- Vary $\delta \in \{0, 0.1, 0.2, 0.3\}$:
- \blacksquare 3 polynomial kernels (p = 1, 2, 3) representing finite-dimensional, parametric functions of different degree of nonlinearity;
- 3 Gaussian RBF kernels (I = 0.5, 1, 1.5) representing smooth functions of different frequency:
- 6 Matern kernels, with $I \in \{0.5, 1, 1.5\}$ and $\nu \in \{\frac{3}{2}, \frac{5}{2}\}$, representing functions with different frequency and differentiability.

Fit null model:

$$y = \mu + h_1(\mathbf{x}_1) + h_2(\mathbf{x}_2)$$

using below kernels:

- **1** 3 polynomial kernels with degree (p = 1, 2, 3); **Fig.**
- 2 3 RBF kernels with wavelength (I = 0.6, 1, 2); Fig.
- 3 3 polynomial kernels (p = 1, 2, 3) and 3 RBF kernels (l = 0.6, 1, 2); Fig3
- 4 3 I=1 Matern kernels ($\nu=1/2,3/2,5/2$) and 3 RBF kernels (I=0.6,1,2). Fig4

0000000

Main Message: Tuning Parameter Selection

In general,

- AICc, powerful if base kernels are as or more complex than the true one; Fig4
- GMPML, powerful if base kernels are smoother than the true one.
 ▶ Fig1

0000000

Main Message: Ensemble Strategy

- AVE is better if base kernels are simple and finite-dimensional;
- ERM is better if base kernels are flexible and infinite-dimensional;
- EXP, fairly greater power except when the true kernel is strictly simpler than base kernels. Pig2

Questions?

Simulation Study

000000

KMR as a Linear Mixed Model

KMR Estimates:

$$\begin{split} \hat{\mu} &= (\mathbf{1}^{\mathsf{T}} (\mathsf{K}_0 + \lambda * \mathbf{I})^{-1} \mathbf{1})^{-1} \mathbf{1}^{\mathsf{T}} (\mathsf{K}_0 + \lambda * \mathbf{I})^{-1} \\ \hat{\alpha} &= (\mathsf{K}_0 + \lambda * \mathbf{I})^{-1} (\mathbf{y} - \mathbf{1} * \hat{\mu}) \\ \hat{\mathbf{h}}_0 &= \mathsf{K}_0 \hat{\alpha} = \mathsf{K}_0 (\mathsf{K}_0 + \lambda * \mathbf{I})^{-1} (\mathbf{y} - \mathbf{1} * \hat{\mu}) \end{split}$$

Same solution as a LMM with random intercept h:

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{h} + \boldsymbol{\epsilon}$$
 where $\mathbf{h} \sim \mathit{N}(\mathbf{0}, \tau \mathbf{K})$ $\boldsymbol{\epsilon} \sim \mathit{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ where $\sigma^2/\tau = \lambda$

Estimate variance component parameters (τ, σ^2) using REML

If we denote \mathbf{U}_K and $\{\eta_{K,j}\}_{j=1}^n$ as the eigenvector and eigenvalues of \mathbf{K} , then \mathbf{A}_{λ} adopts the form:

$$\mathbf{A}_{\lambda} = \mathbf{U}_{K} diag(\frac{\eta_{K,j}}{\eta_{K,j} + \lambda}) \mathbf{U}_{K}^{T} = \mathbf{U}_{K} \mathbf{D}_{K,\lambda} \mathbf{U}_{K}^{T}$$

Calculate the derivatives of the objective functions with respect to λ respectively,

$$\frac{\partial f_{AIC}}{\partial \lambda} = \frac{2tr \left[\mathbf{U}_{K}^{T} \mathbf{y}^{*} \mathbf{y}^{*T} \mathbf{U}_{K} (\mathbf{D}_{K,\lambda} - 1) \frac{\partial \mathbf{D}_{K,\lambda}}{\partial \lambda} \right]}{tr \left[\mathbf{U}_{K}^{T} \mathbf{y}^{*} \mathbf{y}^{*T} \mathbf{U}_{K} (\mathbf{I} - \mathbf{D}_{K,\lambda})^{2} \right]} + \frac{2tr \left(\frac{\partial \mathbf{D}_{K,\lambda}}{\partial \lambda} \right)}{n} \quad (1)$$

$$\frac{\partial f_{GCV}}{\partial \lambda} = \frac{2tr \left[\mathbf{U}_{K}^{T} \mathbf{y}^{*} \mathbf{y}^{*T} \mathbf{U}_{K} (\mathbf{D}_{K,\lambda} - 1) \frac{\partial \mathbf{D}_{K,\lambda}}{\partial \lambda} \right]}{tr \left[\mathbf{U}_{K}^{T} \mathbf{y}^{*} \mathbf{y}^{*T} \mathbf{U}_{K} (\mathbf{I} - \mathbf{D}_{K,\lambda})^{2} \right]} + \frac{2tr \left(\frac{\partial \mathbf{D}_{K,\lambda}}{\partial \lambda} \right)}{n - tr(\mathbf{A}_{\lambda}) - 1} \quad (2)$$

$$\frac{\partial}{\partial \lambda} \left[\frac{\eta_{K,j}}{\eta_{K,j} + \lambda} \right] = -\frac{\eta_{K,j}}{(\eta_{K,j} + \lambda)^2} < 0, \quad \text{for } j = 1, \ 2, ..., \ n$$

Further notice that the difference between (1) and (2) focuses on the second terms, both of which are increasing function of λ .

$$\frac{2tr\left(\frac{\partial \mathbf{D}_{K,\lambda}}{\partial \lambda}\right)}{n-tr(\mathbf{A}_{\lambda})-1} < \frac{2tr\left(\frac{\partial \mathbf{D}_{K,\lambda}}{\partial \lambda}\right)}{n}$$

Therefore, when $\frac{\partial f_{AIC}}{\partial \lambda} = 0$, $\frac{\partial f_{GCV}}{\partial \lambda} < 0$, which means $\lambda_{AIC} < \lambda_{GCV}$.

To perform Variance Component (Score) Test for $H_0: \delta = 0$:

- **11** Obtain test statistic \hat{T}_0 :
 - 1 by taking REML derivative with respect to δ
 - 2 Final Expression of the test statistic:

$$\hat{\mathcal{T}}_0 = \hat{ au} * (\mathbf{y} - \hat{\boldsymbol{\mu}})^T \mathbf{V}_0^{-1} \; \mathbf{K}_{12} \; \mathbf{V}_0^{-1} (\mathbf{y} - \hat{\boldsymbol{\mu}})$$

- Obtain null distribution:
 - Since \hat{T}_0 is of quadratic form, null distribution is a mixture of χ_1^2
 - Approximate null distribution F_0 using Satterthwaite
- **3** Calculate p value: $P = 1 F_0(\hat{T}_0)$

