Innehållsförteckning

1 Sammanfattning	1
2 Tidsanalys	
2.1 Cykler 1-14	1
2. 2 Cykler 15-19	
2.3 Cykler 20 – 24	
2.4 Cykler 25-29	
2.5 Cykler 30 – 34	
2.6 Cykler 35-39	
2.7 Cykler 40 – 44	
2.8 Cykler 45-49	

1 Sammanfattning

Verifiering med Modelsim har gjorts av enkel CPU. 50 instruktionscykel har stegats igenom, och värdet i CPU:ns register, adress och data bussar, samt lysdioderna status har analyserats.

2 Tidsanalys

2.1 Cykler 1-14

Figur 1 Cykler 1-14, simulering Modelsim

CLK_PERIOD	1 to 10	11	12	13	14
SW	0	1	1	1	1
reset_n	0	1	1	1	1
PC	0b0000000	0b00000000	0b0000000	0b00000000	0b0000001
Addr_bus	0b0000000	0b00000000	0b0000000	0b00000000	0b00000000
bus_en_n	1	0	0	1	1
RD_n	1	0	0	1	1
data_bus_in	0xUUUU	0x0000	0x0000	0x0000	0x0000
IR	0x0000	0x0000	0x0000	0x0000	0x0000
REG_0	0x0000	0x0000	0x0000	0x0000	0x0000
next_state	Fetch_1_state	Fetch_2_state	Fetch_3_state	Decode	Execute_NOP
WE_n	1	1	1	1	1
data_bus_out	0x0000	0x0000	0x0000	0x0000	0x0000
LEDR	0b1111	0b01111	0b1111	0b1111	0b1111

Tabell 1 Signaler och registervärden cykler 1-14

Fetch_1_state ligger som next_state fram till att reset_n går går hög, samtliga register är nollställda under reset-fasen, vi har nämligen kod (klistrar in en del av den)

```
process(reset n, clk 50)
begin
if reset n = '0' then
 PC reg <= X"00"; -- after reset, PC is zero (i.e address 0)
       IR \le X"0000"; -- NOP, no operation
       Addr bus <= X"00"; -- initialize registers
       CPU REG 0 \le \text{(others => '0')}; -- initialize registers
       next state <= Fetch 1 state;</pre>
       bus en n \le 1';
       data bus out <= "000000000000000"; -- initialize registers
  WE n \le '1';
  RD n \le '1';
       CPU state <= "00":
elsif(rising edge(clk 50)) then
Lysdioderna lyser p.g.a. koden i OUT LED
process(reset n, clk 50)
              begin
              if reset n = 0 then
                      LEDG <= "1111"; -- LED-signals go high during reset
              elsif(rising edge(clk 50)) then
```

Instruktionsläsningen kräver 2 cykler, där IR har laddats med instruktionskoden för NOP 0x0000 och är giltlig under cykel 14.

2. 2 Cykler 15-19

◆ CLK	1										
→ SW	1	1									
	1										
← PC	0000	0000000	1							0000001	.0
-4 Addr_bus	0000	0000000	D	0000000)1						
💠 bus_en_n	1										
♣ RD_n	1										
🛶 data_bus_in	0000	0000				100A					
;⊢ ⇔ IR	0000	0000						100A			
;	0000	0000									
next_state	Fetc	Fetch	1 state	Fetch 2	state	Fetch 3	state	Decode	state	Execute	LOA
♦ WE_n	1										
	0000	0000									
├- ∲ LEDR	1111	1111									

Figur 2 Cykler 15-19 simulering Modelsim

CLK_PERIOD	15	16	17	18	19
SW	1	1	1	1	1
reset_n	1	1	1	1	1
PC	0b00000001	0b00000001	0b0000001	0b00000001	0b00000010
Addr_bus	0b00000000	0b00000001	0b0000001	0b00000001	0b00000001
bus_en_n	1	0	0	1	1
RD_n	1	0	0	1	1
data_bus_in	0x0000	0x0000	0x100A	0x100A	0x100A
IR	0x0000	0x0000	0x0000	0x100A	0x100A
REG_0	0x0000	0x0000	0x0000	0x0000	0x0000
next_state	Fetch_1	Fetch_2	Fetch_3	Decode l	Execute_LOAD
WE_n	1	1	1	1	1
data_bus_out	0x0000	0x0000	0x0000	0x0000	0x0000
LEDR	0b1111	0b1111	0b1111	0b1111	0b1111

Tabell 2 Signaler och registervärden cykler 15-19

Här hämtas och exekveras intruktionen LOAD_R0 #A med op-kod 0x100A på adressposition 1 i kod-minnet. PC inkrementerades redan under exekveringsfasen av NOP, under cykel 14. Addr_bus kan inte adressera kod-minnet under decode-fasen av NOP, eftersom samma adressbuss används för både kod och data.

En hel cykel används (16) till att låta RD_n och bus_en_n bli stabil, och koppla PC till adressbussen.

Nästa cykel (17) liger kod-data på kod-bussen, för att läsas in till IR cykeln därpå. Man borde kunna slå ihop cykel 16 och 17, dvs. att RD_n och bus_en_n bara får vara låga under en cykel och IR läses samtidigt som kod ligger stabil på kodbussen utan något mellansteg.

2.3 Cykler 20 - 24

◆ CLK	1										
⊢ ♦ SW	1	1									
reset_n	1										
⊢ ∕ PC	0000	00000	0010							0000001	1
⊢Addr_bus	0000	00000	0001	000000	10						
💠 bus_en_n	1										
♣ RD_n	1										
🛶 data_bus_in	0000	100A				2010					
⊢ ⇔ IR	0000	100A						2010			
⊢-♦ REG_0	0000	000A									
next_state	Fetc	Fetch	1 s	Fetch 2	state	Fetch 3	state	Decode	state	Execute	STO
♦ WE_n	1										
⊢ ⇔ data_bus_out	0000	0000									
LEDR	1111	1111									

Figur 3 Cykler 20-24 simulering Modelsim

CLK_PERIOD	20	21	22	23	24
SW	1	1	1	1	1
reset_n	1	1	1	1	1
PC	0b00000010	0b00000010	0b0000010	0b00000010	0b00000011
Addr_bus	0b00000001	0b00000010	0b0000010	0b00000010	0b00000010
bus_en_n	1	0	0	1	1
RD_n	1	0	0	1	1
data_bus_in	0x100A	0x100A	0x2010	0x2010	0x2010
IR	0x100A	0x100A	0x100A	0x2010	0x2010
REG_0	0x000A	0x000A	0x000A	0x000A	0x000A
next_state	Fetch_1	Fetch_2	Fetch_3	Decode:>	cecute_STORE
WE_n	1	1	1	1	1
data_bus_out	0x0000	0x0000	0x0000	0x0000	0x0000
LEDR	0b1111	0b1111	0b1111	0b1111	0b1111

Tabell 3 Signaler och registervärden cykler 20-24

Under cykel 20 sker exekvering av LOAD instruktionen där R0 laddas med argumentet 0xA. PC inkrementerades under decode-fasen av LOAD_R0 #A. Nästa cykel (21) är Fetch_1, och då är PC kopplad till adressbusesen, och då bus_en_n och RD_n går från låg till hög laddas IR med op-koden 0x2010, vars mnemonic är STORE_R0 #10. Under decode (cykel 24) inkrementeras PC återigen.

2.4 Cykler 25-29

Figur 4 Cykler 25-29 simulering Modelsim

CLK_PERIOD	25	26	27	28	29
SW	1	1	1	1	1
reset_n	1	1	1	1	1
PC	0b00000011	0b00000011	0b00000011	0b00000011	0b00000011
Addr_bus	0b00010000	0b00010000	0b00010000	0b00000011	0b00000011
bus_en_n	1	0	1	0	0
RD_n	1	1	1	0	0
data_bus_in	0x2010	0x0000	0x0000	0x0000	0x1001
IR	0x2010	0x2010	0x2010	0x2010	0x2010
REG_0	0x000A	0x000A	0x000A	0x000A	0x000A
next_state	STORE_1	STORE_2	Fetch_1	Fetch_2	Fetch_3
WE_n	1	0	1	1	1
data_bus_out	0x000A	0x000A	0x000A	0x000A	0x000A
LEDR	0b1111	0b1111	0b1010	0b1010	0b1010

Tabell 4 Signaler och registervärden cykler 25-29

Under Execute_STORE (cykel 25) kopplas IR:s argument 0x10 till Adressbussen och Reg_0 läggs ut på data_bussen. Under cykel 26 görs data giltlig genom att WE_n går låg. Senast cykel 27 lyser dioderna enligt bitmönstret 0b1010 (0xA).

PC har varit inkrementerad sedan flera klockcykler tidigare. Under Fetch_1 (cykel 28) koppas PC ut till Adressbssen och bus_en_n och RD_n går då återigen samtidigt låga. IR kommer laddas under Fetch_3 (cykel 30, se nästa avsnitt).

2.5 Cykler 30 - 34

Figur 5 Cykler 30-34 simulering Modelsim

CLK_PERIOD	30	31	32	33	34
SW	1	1	1	1	1
reset_n	1	1	1	1	1
PC	0b00000011	0b0000100	0b00000100	0b00000100	0b000001000
Addr_bus	0b00000011	0b00000011	0b00000011	0b00000100	0b000001000
bus_en_n	1	1	1	0	0
RD_n	1	1	1	0	0
data_bus_in	0x1001	0x1001	0x1001	0x1001	0x2010
IR	0x1001	0x1001	0x1001	0x1001	0x1001
REG_0	0x000A	0x000A	0x0001	0x0001	0x0001
next_state	Decode	Execute_LOAD	Fetch_1	Fetch_2	Fetch_3
WE_n	1	1	1	1	1
data_bus_out	0x000A	0x000A	0x000A	0x000A	0x000A
LEDR	0b1010	0b1010	0b1010	0b1010	0b1010

Tabell 5 Signaler och registervärden cykler 30-34

Op-koden som IR håller är 0x1001 vars mnemonic är LOAD_R0 #1. Under decode (cykel 31) inkrementeras PC. Under Execute_LOAD (cykel 32) laddas Reg_0 med OP-kodens argument. Under Fetch_1 (cykel 33) kopplas PC till adressbussen bus_en_n och RD_n går då låga. Nästa instruktion som är resultatet av adresseringen av kod-minnet läggs ut på kod-bussen under cykel 34, och läses in till IR under cykel 36.

2.6 Cykler 35-39

◆ CLK	1										
- ♦ SW	1	1									
reset_n	1										
-🔷 PC	0000	0000	0100	0000010)1						
-🔷 Addr_bus	0000	0000	0100			0001000	0				
💠 bus_en_n	1										
💠 RD_n	1										
→ data_bus_in	0000	2010						0000			
- ♦ IR	0000	2010									
	0000	0001									
next_state	Fetc	Deco	de s	Execute	ST	STORE	1 state	STORE	2 state	Fetch 1	state
♦ WE_n	1										
-🔷 data_bus_out	0000	000	\			0001					
> LEDR	1111	1010								0001	

Figur 6 Cykler 35-39 simulering Modelsim

CLK_PERIOD	35	36	37	38	39
SW	1	1	1	1	1
reset_n	1	1	1	1	1
PC	0b00000100	0b00000101	0b00000101	0b00000101	0b00000101
Addr_bus	0b00000100	0b00000100	0b00010000	0b00010000	0b00010000
bus_en_n	1	1	1	0	1
RD_n	1	1	1	1	1
data_bus_in	0x2010	0x2010	0x2010	0x0000	0x0000
IR	0x2010	0x2010	0x2010	0x2010	0x2010
REG_0	0x0001	0x0001	0x0001	0x0001	0x0001
next_state	Decode	Execute_STORE	STORE_1	STORE_2	Fetch_1
WE_n	1	1	1	0	1
data_bus_out	0x000A	0x000A	0x0001	0x0001	0x0001
LEDR	0b1010	0b1010	0b1010	0b1010	0b0001

Tabell 6 Signaler och registervärden cykler 35-39

Inläsningen till IR innebär att op-koden 0x2010, vilket är menomic för STORE_R0 #10. Under deode inkrementeras PC (cykel 36), och Execute_STORE görs under cykel 37. Då kopplas IR:s argument till adressbussen och REG_0 läggs ut på databussen. WE_n går låg under följande cykel (38) och senast cykel 39 lyser lysdioderna i enlighet med vad som lades ut på databussen dvs. 0b0001.

2.7 Cykler 40 - 44

◆ CLK	1										
⊢ ♦ SW	1	1									
♠ reset_n	1										
⊢ ∢ PC	0000	00000	101					0000011	.0	0000000)1
⊢Addr_bus	0000	00000	101								
💠 bus_en_n	1										
♠ RD_n	1										
🛶 data_bus_in	0000	0000		3001							
⊢ ♦ IR	0000	2010				3001					
⊢ 〈→ REG_0	0000	0001									
next_state	Fetc	Fetch	2 st	Fetch 3	state	Decode	state	Execute	JMP	Fetch 1	state
♦ WE_n	1										
⊢ ← data_bus_out	0000	0001									
⊢ ♦ LEDR	1111	0001									

Figur 7 Cykler 40-44 simulering Modelsim

CLK_PERIOD	40	41	42	43	44	
SW	1	1	1	1	1	
reset_n	1	1	1	1	1	
PC	0b00000101	0b0000101	0b00000101	0b00000110	0b0000001	
Addr_bus	0b00000101	0b0000101	0b00000101	0b00000101	0b00000101	
bus_en_n	0	0	1	1	1	
RD_n	0	0	1	1	1	
data_bus_in	0x0000	0x3001	0x3001	0x3001	0x3001	
IR	0x2010	0x2010	0x3001	0x3001	0x3001	
REG_0	0x0001	0x0001	0x0001	0x0001	0x0001	
next_state	Fetch_2	Fetch_3	Decode	Execute_JMP	Fetch_1	
WE_n	1	1	1	1	1	
data_bus_out	0x0001	0x0001	0x0001	0x0001	0x0001	
LEDR	0b0001	0b0001	0b0001 (0b0001 0b0001		

Tabell 7 Signaler och registervärden cykler 40-44

Under Fetch_1 (cykel 40) kopplas PC till adressbussen och bus_en_n och RD_n går båda låga. Nästa instruktion, dvs. den på adress adresserad av PC finns på kodbussen under cykel 41, och inläsning till IR sker under nästa cykel (42). Op koden är 0x3001 vars mnemonic är JMP #1. Under decode inkrementeras PC (cykel 43), men under Execute_JMP (cykel 44) laddas PC med instruktionens argument dvs. IR:s argument-del kopplas till PC.

2.8 Cykler 45-49

Figur 8 Cykler 45-49 simulering Modelsim

CLK_PERIOD	45	46	47	48	49
SW	1	1	1	1	1
reset_n	1	1	1	1	1
PC _	0b00000001	0b00000001	0b00000001	0b00000010	0b00000010
Addr_bus	0b00000001	0b00000001	0b00000001	0b00000001	0b00000001
bus_en_n	0	0	1	1	1
RD_n	0	0	1	1	1
data_bus_in	0x3001	0x100A	0x100A	0x100A	0x100A
IR	0x3001	0x3001	0x100A	0x100A	0x0000
REG_0	0x0001	0x0001	0x0001	0x0001	0x000A
next_state	Fetch_2	Fetch_3	Decode E	execute_LOAD	Fetch_1
WE_n	1	1	1	1	1
data_bus_out	0x0001	0x0001	0x0001	0x0001	0x0001
LEDR	0b0001	0b0001	0b0001	0b0001	0b0001

Tabell 8 Signaler och registervärden cykler 45-49

Under Fetch_1 (cykel 45) kopplas PC till Adressbussen och bus_en_n och RD_n går båda låga samtidigt. Instrutkionen som läses in till IR (cykel 47) är från adress 1 i kodminnet LOAD_R0 #A med OP-kod 0x100A, som exekverats förut.

Under decode (cykel 48) inkrementeras PC, och under Execute_LOAD (cykel 49) har Reg_0 laddats med argument delen av IR.