

Hemos visto que las galaxias pueden ser clasificadas en "espirales", "elípticas", "irregulares", "lenticulares", "peculiares", "enanas", etc..

Estas son clasificaciones que se basan en forma u morfología de las galaxias.

Las galaxias también se pueden clasificar por su comportamiento!

Seyfert galaxies?

Seyfert galaxies?

AGNs - The unified model

Seyfert galaxies?

AGNs - The unified model

Radio galaxies (FR classification)

Blazars

Milky Way Galaxy

Andromeda Galaxy (M31)

2.339 billion years

https://iopscience.iop.org/journal/2041-8205/page/ Focus_on_First_Sgr_A_Results

THE ASTROPHYSICAL JOURNAL LETTERS

Focus on First Sgr A* Results from the Event Horizon Telescope

Geoffrey C. Bower (Project Scientist) for the Event Horizon Telescope Collaboration

May 2022

We present the first image of the Galactic Center black hole, Sagittarius A*. Identified nearly 50 years ago as the nearest supermassive black hole candidate and among the most studied astrophysical objects, Sgr A* is the ultimate laboratory for black hole astrophysics. In six papers, the Event Horizon Telescope Collaboration presents observations, images, and analysis that spark new insights into accretion, outflow, and gravitational physics on scales not accessible through any other observation. These results are the culmination of a multi-year effort by the EHTC and a decades-long journey by the astronomy community to approach the event horizon through high-resolution imaging.

The Sgr A* image (Figure 1) reveals the same ring-like structure and shadow seen in the M87* black hole. The observed ring is the result of lensed emission with a diameter precisely predicted by general relativity using only the mass and distance of the black hole. By a cosmic coincidence, the observed Sgr A* angular diameter differs only slightly from that of M87*, which is 1500 times more massive and 2000 times more distant. Together, the

Calculemos la masa del agujero negro!