INTEGRAL

Diferensiyel Kavramı

 $f: A \rightarrow R$ fortusinjonu $x \in A$ icin trinevlerebilir ise $\frac{df(x)}{dx} = f'(x)$ dir. df(x) = f'(x)dx if a desine f fortusinjonum $x \in A$ notitation data in determination defermination f(x) = f'(x) dx dir. f(x) = f(x) dx

 $\frac{d}{drnek}$ $y = x^3 + 2x + 5 \Rightarrow dy = (x^3 + 2x + 5) dx$ $\Rightarrow dy = (3x^2 + 2) dx$

I-BELIRSIZ INTEGRAL

Tanim $f: [a,b] \rightarrow \mathbb{R}$ ve: $F: [a/b] \rightarrow \mathbb{R}$ threwlenebilin this forms that $f: [a,b] \rightarrow \mathbb{R}$ ve: $f: [a/b] \rightarrow \mathbb{R}$ threwlenebilin this formula of $f: [a,b] \rightarrow \mathbb{R}$ threwlenebilin this formula of $f: [a/b] \rightarrow \mathbb{R}$ threwlenebilin th

 $F'(x) = f(x) \Leftrightarrow \int f(x)dx = F(x) + C$ seklinde gösterilir Burada f(x) fonlusyonuna integrand, c sayısına integrasyon sabiti ve dx'e integrasyon degişkeni denir.

Sfexide integralisi heraplamak donek türevi fon

[örnek] $\int 2 \times dx = ?$ Gözem: x^2 forlesignunun tirevi $2 \times o$ edugunden $\int 2 \times dx = x^2 + C$ Brnek Scosxdx =?

dir:

Simuli belirsiz integrallere ait bazı özellikleri inceleyelim:

Özellik 1 Her a Elk sayısı için

 $\int a. f(x) dx = a \int f(x) dx$

dir Jani integral içindeki sabit çarpan integralin dıçına alınabilin

Özellik 2 Sonlu sayıda terimlerin toplamından oluşan bir ifadenin integrali, bu terimlerin ayrı ayrı integrallerinin toplamına eşittir. Yani

 $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

dir. Ötellik I ve 2 göz önline alınırsa

[a.fix)+b.gix)]dx = affix)dx+bfgix)dx olur.

Pernel Integral Formülleri

- 1) $\int a dx = \alpha x + c$
- 2) $\int x^n dx = \frac{x^{n+1}}{n+1} + c, (n \neq -1)$
- 3) $\int \frac{dx}{x} = \ln|x| + C$
- 4) $\int a^{x}dx = \frac{a^{x}+c}{4na}$
- 5) $\int e^{x} dx = e^{x} + c$
- 6) J cosxdx = zinx+c
- 7) $\int \sin x \, dx = -\cos x + c$
- 8) $\int \frac{dx}{\cos^2 x} = \tan x + C$
- 9) $\int \frac{dx}{\sin^2 x} = -\cot x + c$

- 10) $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c = -\arcsin x + c$
- il) $\int \frac{dx}{1+x^2} = \arctan x + c = -\arctan x + c$
- 12) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(x + \sqrt{x^2 + a^2} \right) + c$
- 13) Sunhxda = coshx +c
- 14) Soshxdx = sinhx+c
- $\int \frac{dx}{\cosh^2 x} = \tanh x + c$
- 16) $\int \frac{dx}{\sinh^2 x} = -\coth x + c$
- 17) Jax = arcsinhx +c Slat
- 15) $\int \frac{dx}{\sqrt{x^2-1}} = \operatorname{arccosh} x + C \quad \widehat{\mathfrak{D}}$

103)

ornek
$$\int (9x^2 + 4x - 3) dx = ?$$

$$9 \times 3 + 4 \times 2 - 3 \times 4 \times - 3 \times$$

$$\frac{462ii}{5}$$
: $\frac{3}{3}\sin x + 5\sqrt{x^3} + \frac{2}{x}dx + \frac{2}{5}\frac{4}{x}dx +$

$$\begin{array}{ll}
\boxed{\text{Orrol.}} & \int \left(\frac{1}{\sqrt{x}} + \frac{1}{x^2}\right) dx = ? \\
\boxed{\text{Gozin.}} & \int \left(\frac{1}{\sqrt{x}} + \frac{1}{x^2}\right) dx = \int \left(x^{-\frac{1}{2}} + x^{-2}\right) dx \\
= \frac{-\frac{1}{2}+1}{-\frac{1}{2}+1} + \frac{-2+1}{-2+1} + c = 2\sqrt{x} - \frac{1}{x} + c
\end{array}$$

[örnek]
$$\int x(x-1)^2 dx = ?$$

Goziii: $\int x(x-1)^2 dx = \int x(x^2-2x+1) dx$
 $= \int (x^3-2x^2+x) dx = \frac{x^4}{4} - \frac{2x^3}{3} + \frac{x^2}{2} + c$

$$\boxed{\text{ornel}} \quad I = \int \left(\frac{3}{\cos^2 x} - 2e^x + \frac{4}{1+x^2} \right) dx = ?$$

Gözün:
$$I = 3 \int \frac{dx}{\cos^2 x} - 2 \int e^x dx + 4 \int \frac{dx}{1+x^2}$$

$$\int (5 + 3 \sin x + \frac{2}{\sin^2 x} - \frac{3}{\sqrt{1-x^2}}) dx = ?$$

Georgia:
$$\int 5dx + 3\int \sin x dx + 2\int \frac{dx}{\sin^2 x} - 3\int \frac{dx}{\sqrt{1-x^2}}$$

$$= 5x - 3\cos x + 2\cot x - 3\arcsin x + c$$

$$["o"rnek"]$$
 $(x^3 + 3^x) dx = ?$

$$452im$$
: $\int x^3 dx + \int 3^{x} dx = \frac{x^4}{4} + \frac{3^{x}}{4 \cdot 3} + C$

$$\frac{x^{3}}{\sqrt{x}} dx + \int \frac{2}{\sqrt{x}} dx = \int x^{5/2} dx + 2 \int x^{-1/2} dx$$

$$= \frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1} + 2 \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c = \frac{2}{7} \times \frac{x^{-\frac{1}{2}+1}}{+4\sqrt{x}} + c$$

[ornel]
$$\int tan^2 x dx = ?$$

Gozium:
$$\int \tan^2 x \, dx = \int \left[\tan^2 x + t\right] - 1 \int dx$$

$$= \int \left(\tan^2 x + 1\right) dx - 1 \int dx = \tan x - x + c$$

INTEGRAL ALMA METOTLARI

1) DEGISKEN DEGISTIRME METODU

If $(g(x)) \cdot g'(x) dx$ biginndeki integralleri hesaplamak için u = g(x) dönüşünü yapılır ve her ilui tarafın diferensiyeli alınırsa du = g'(x) dx elde edilir. Böylece $\int f(g(x)) \cdot g'(x) dx = \int f(u) du$

bigimine d'énissir. If (u) du integrali hesaplandeltan sonra u yerine g(x) yazılır.

[ornel]
$$\int (x^2 + 1)^3 \cdot 2x \, dx = ?$$

Gozin: $u = x^2 + 1 \Rightarrow du = 2x dx$

$$\int (x^2 + 1)^3 \cdot 2x \, dx = \int u^3 du = \frac{u^4 + c}{4} = \frac{(x^2 + 1)^4}{4} + c$$

Formel
$$\int \sqrt[5]{x^3 - x + 2} \cdot (3x^2 - 1) dx = 7$$
.

Görüm: $x^3 - x + 2 = u \Rightarrow (3x^2 - 1) dx = du$

$$\int \sqrt[5]{x^3 - x + 2} \cdot (3x^2 - 1) dx = \int \sqrt[5]{u} \cdot du$$

$$= \int u \frac{1}{5} du = \frac{u}{5} + c$$

$$= \frac{5}{6} (x^3 - x + 2) + c$$

[ornel] $\int \cos(x^3 - x) \cdot (3x^2 - 1) dx = ?$ Gozinia: $x^3 - x = u \implies (3x^2 - 1) dx = du$ $\int \cos(x^3 - x) \cdot (3x^2 - 1) dx = \int \cos u du = \sin u + c = \sin(x^3 - x) + c$

Finale
$$\int \sin^3 x \cdot \cos x dx = ?$$

Gözim: $\sin x \cdot \cos x dx = u \Rightarrow \cos x dx = du$

$$\int \sin^3 x \cdot \cos x dx = \int u^3 du = \frac{u^4}{4} + c = \frac{\sin x}{4} + c$$

$$f.yol: cosx = u \Rightarrow -sinxdx = du$$

$$\int sin^3 x cosxdx = \int sin^2 x . cosx sinxdx$$

$$= -\int (1 - cos^2 x) . cosx sinxdx$$

$$= +\int (1 - u^2) - u . du = \int (u - u^3) du = \frac{u^2 - u^4 + c}{u^4 + c}$$

$$= \frac{cos^2 x}{2} - \frac{cos^4 x}{4} + c$$