Chapter IV – Angle Modulation

ENEL 471 – Introduction to Communications Systems and Networks

Chapter Objectives

- At the end of this chapter, you will be able to:
 - Define angle modulation and distinguish between phase modulation and frequency modulation
 - Analyze the time domain and frequency domain representations of frequency modulated signals
 - Perform and analyze the frequency demodulation of signals in the absence of noise
 - Perform and analyze the frequency demodulation of signals in the presence of channel noise

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Definition of Angle Modulation

- For Angle modulation :
 - The angle of the carrier is the characteristic of the carrier that is varied in accordance with the modulating wave (signal)

$$s(t) = A_c \cdot \cos(\theta_i(t))$$

→ The information in the input signal is encoded in the angle of the carrier signal, that is: $\theta_i(t) = f(m(t))$

Instantaneous Frequency

The angle modulation signal is given by:

$$s(t) = A_c \cdot \cos(\theta_i(t))$$

In general, the angle can have the form:

$$\theta_{i}(t) = 2\pi f_{i}(t)t + \phi_{i}(t)$$

- The message can be encoded either in the phase (phase modulation constant frequency) or frequency (frequency modulation constant phase).
- If the message is encoded in the frequency, the angle is given by:

$$\theta_{i}(t) = 2\pi f_{i}(t)t + \phi_{o}$$

<u>The instantaneous frequency</u> of the modulated signal is then given by:

$$f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Phase Modulation (PM)

In the case of phase modulation, the information is encoded in the phase.
 The frequency is constant. The angle is then given by:

$$\theta_i(t) = 2\pi f_c t + k_p m(t)$$

• The phase modulated signal is then given by:

$$s(t) = A_c \cos(2\pi f_c t + k_p m(t))$$

- k_p is a constant called <u>phase sensitivity</u> used to scale the message signal.
- The instantaneous frequency of the phase modulated signal is:

$$f_i(t) = f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$$

it varies as a function of the derivative of the message signal

Frequency Modulation (FM)

 In the case of frequency modulation, the information is encoded in the frequency. The phase is zero. The instantaneous frequency is then given by:

 $f_i(t) = f_c + k_f m(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$

it varies as a function of the message signal

The angle of the frequency modulated signal is then:

$$\theta_i(t) = 2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau$$

The phase modulated signal is then given by:

$$s(t) = A_c \cos \left(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau \right)$$

• k_f is a constant called <u>frequency sensitivity</u> used to scale the message signal.

Time Domain Analysis of FM and PM

Message signal m(t)

PM signal the instantaneous frequency is a linear function of the derivative of m(t)

FM signal the instantaneous frequency is a linear function of m(t)

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Transmitted Power in Angle Modulations

- For both, phase and frequency modulation, the amplitude of the modulated signal is a constant values equal to the amplitude of the carrier signal, A_c
- The amplitude is independent from the phase and frequency sensitivities
- → The average transmitted power in angle modulation signals is constant and is given by:

$$P_{av}(t) = \frac{A_c^2}{2}$$

Nonlinearity of the Modulation Process

- Contrary to amplitude modulation, angle modulation (phase of frequency) is a nonlinear operation
- If a message signal is composed by the summation of two message signals:

$$m(t) = m_1(t) + m_2(t)$$

the modulated signal (for example for phase modulation)

$$s(t) = A_c \cos(2\pi f_c t + k_p m(t))$$

is different from the summation of the modulated signals of m_1 and m_2

If
$$s_1(t) = A_c \cos\left(2\pi f_c t + k_p m_1(t)\right)$$

and $s_2(t) = A_c \cos\left(2\pi f_c t + k_p m_2(t)\right)$
we have $s(t) \neq s_1(t) + s_2(t)$

Irregularity of Zero-Crossing

- Zero-crossings: are defined as the instants of time at which a waveform changes the signal of its amplitude
- The angle modulation makes the carrier instantaneous frequency changes as a function of the message signal (linear function of the message for frequency modulation, and linear function of the derivative of the message for phase modulation)
- → The zero crossings in angle modulation are irregular and they include the information of the message signal.

Example – PM and FM for a Ramp Message

Consider a message signal defined by:

$$m(t) = \begin{cases} t & \text{; } t > 0 \\ 0 & \text{; } t < 0 \end{cases}$$

- This message signal is modulated with angle modulation using a carrier of amplitude 1 and frequency of ¼ Hz.
- Analyze, in time-domain, the phase modulated signal with sensitivity pi/2
- Analyze, in time-domain, the frequency modulated signal with sensitivity 1
- What can you conclude about the zero crossings?

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Frequency Modulation

Frequency modulation time-domain expression

$$s(t) = A_c \cos \left(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau \right)$$

Instantaneous frequency is given by:

$$f_i(t) = f_c + k_f m(t)$$

- The instantaneous frequency is varying as a function of the amplitude of the signal m(t).
- The bandwidth of the FM signal may be different from the bandwidth of m(t)
- The spectrum is not simply the spectrum of m(t) translated in frequency. It is more difficult to analyze.
- To simplify the analysis, we start with the simplest case: m(t) is a cosine wave.

Frequency Modulation for a Cosine-wave

The message is a cosine wave:

$$m(t) = A_m \cos(2\pi f_m t)$$

Instantaneous frequency is given by:

$$f_{i}(t) = f_{c} + k_{f} \Delta_{m} \cos(2\pi f_{m}t) = f_{c} + \Delta f \cdot \cos(2\pi f_{m}t)$$

- $f_{i}\left(t\right) = f_{c} + k_{f} A_{m} \cos\left(2\pi f_{m}t\right) = f_{c} + \Delta f \cdot \cos\left(2\pi f_{m}t\right)$ The instantaneous frequency will vary between $f_{c} \Delta f$ and $f_{c} + \Delta f$
- Δf is called the **frequency deviation**
- The instantaneous phase is given by:

$$\theta_{i}(t) = 2\pi \int_{0}^{t} f_{i}(\tau) d\tau = 2\pi f_{c}t + \frac{\Delta f}{f_{c}} \sin(2\pi f_{m}t)$$

- is called the modulation index or phase deviation
- It is the ratio between the maximum frequency deviation of the FM signal and the bandwidth of the message signal

Types of Frequency Modulation

 The frequency modulation can be categorized as a function of the value of the modulation index in two different categories:

$$\beta$$
 < 1

- Narrowband frequency modulation: β < 1 the frequency deviation is smaller than the bandwidth of the message signal
- Wideband frequency modulation: $\beta > 1$ The frequency deviation is greater than the bandwidth of the message signal

Narrow-Band Frequency Modulation

In general, for a cosinusoidal message signal

$$m(t) = A_m \cos(2\pi f_m t)$$

the modulated signal is given by:

$$s(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$$

Using trigonometric identities, the modulated signal can be written as:

$$s(t) = A_c \cos(2\pi f_c t) \cos(\beta \sin(2\pi f_m t)) - A_c \sin(2\pi f_c t) \sin(\beta \sin(2\pi f_m t))$$

• For narrowband frequency modulation (β < 1), we can make these approximations:

$$\cos(\beta \sin(2\pi f_m t)) \approx 1$$
 and $\sin(\beta \sin(2\pi f_m t)) \approx \beta \sin(2\pi f_m t)$

Then the modulated signal can be expressed as:

$$s(t) \approx A_c \cos(2\pi f_c t) - A_c \beta \sin(2\pi f_c t) \sin(2\pi f_m t)$$

or
$$s(t) \approx A_c \cos(2\pi f_c t) + \frac{A_c \beta}{2} \left[\cos(2\pi (f_c + f_m)t) - \cos(2\pi (f_c - f_m)t) \right]$$

ENEL 471 – Introduction to Communications Systems and Networks

Narrow-Band Frequency Modulation

$$s(t) \approx A_c \cos(2\pi f_c t) + \frac{A_c \beta}{2} \left[\cos(2\pi (f_c + f_m)t) - \cos(2\pi (f_c - f_m)t) \right]$$

- The time-domain representation above of the FM modulated signal in the case of narrow-band frequency modulation shows that:
 - The FM signal expression is similar to the conventional AM expression
 - The only difference is that the sign of the upper sideband and lower sideband are opposite in the case of narrow-band FM modulation
 - The bandwidth of the modulated narrow-band FM signal is equal to the message signal bandwidth and is independent from the frequency deviation

Example - Narrow-Band Frequency Modulation

A sinusoidal modulating wave

$$m(t) = 2\cos(2000\pi t)$$

Is applied to a frequency modulator with frequency sensitivity k_f and. The modulating carrier wav has a frequency fc = 100 kHz and amplitude Ac = 1.

- (a) Determine the spectrum of the resulting frequency-modulated signal, assuming that the maximum phase deviation is 0.1 radians
- (b) Construct a phasor diagram for this modulated signal

Narrow-Band Frequency Modulation

Phasor Representation of a narrow-band FM signal

Phasor representation of a conventional AM signal

ENEL 47

Wide-Band Frequency Modulation

In general, for a cosinusoidal message signal

$$m(t) = A_m \cos(2\pi f_m t)$$

the modulated signal is given by:

$$s(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t)) = \text{Re}\left[A_c e^{j(2\pi f_c t + \beta \sin(2\pi f_m t))}\right]$$

or:

$$s(t) = \text{Re}\left[e^{j2\pi f_c t} A_c e^{j\beta \sin(2\pi f_m t)}\right]$$
carrier complex envelope, $\$(t)$

- $\$(t) = A_c e^{j\beta \sin(2\pi f_m t)}$ is periodic with period $1/f_m$
- Using the Fourier Series representation, we can write:

$$\mathscr{S}(t) = \sum_{n=-\infty}^{\infty} C_n e^{j2\pi n f_m t}$$

$$\mathscr{S}(t) = \sum_{n=-\infty}^{\infty} C_n e^{j2\pi n f_m t}$$
 where: $C_n = f_m \int_{-1}^{\frac{1}{2f_m}} \mathscr{S}(t) e^{-j2\pi n f_m t} dt$

Wide-Band Frequency Modulation

The Fourier series coefficients are given by:

$$C_{n} = f_{m} \int_{\frac{-1}{2f_{m}}}^{\frac{1}{2f_{m}}} \mathcal{S}(t) e^{-j2\pi n f_{m}t} dt = f_{m} \int_{\frac{-1}{2f_{m}}}^{\frac{1}{2f_{m}}} A_{c} e^{j\beta \sin(2\pi f_{m}t)} e^{-j2\pi n f_{m}t} dt$$

• Let $x = 2\pi f_m t$, the Fourier series coefficients can then be written as:

$$C_n = \frac{A_c}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin(x) - nx)} dx = A_c \cdot J_n(\beta)$$

where:

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin(x) - nx)} dx$$

is called the nth order Bessel function of the first kind, which can be proven to have real values.

Bessel Functions of the First Kind

Wide-Band Frequency Modulation

The complex envelope can then be expressed as:

$$\mathscr{S}(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta) e^{j2\pi n f_m t}$$

Finally, one can write the FM modulated signal as:

$$s(t) = \text{Re}\left[e^{j2\pi f_c t} \sum_{n=-\infty}^{\infty} A_c J_n(\beta) e^{j2\pi n f_m t}\right] = \text{Re}\left[\sum_{n=-\infty}^{\infty} A_c J_n(\beta) e^{j2\pi (f_c + n f_m) t}\right]$$

or simply:

$$s(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta) \cos(2\pi (f_c + nf_m)t)$$

- The spectrum of the wideband FM signal :
 - Has infinite bandwidth
 - Has impulse functions at $\pm (f_c + nf_m)$ with varying amplitudes

$$S(f) = \sum_{n=-\infty}^{\infty} \frac{A_c}{2} J_n(\beta) \left[\delta(f + (f_c + nf_m)) + \delta(f - (f_c + nf_m)) \right]$$

Examples of Spectra of FM Signals

- $m(t) = A_m \cos(2\pi f_m t)$, therefore: $\beta = \frac{k_f A_m}{f_m}$
- Case 1: β is varied by changing A_m and keeping f_m constant

Examples of Spectra of FM Signals

- $m(t) = A_m \cos(2\pi f_m t)$, therefore: $\beta = \frac{k_f A_m}{f_m}$
- Case 2: β is varied by changing f_m and keeping A_m constant

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Carson's Rule

• If β is small, then the transmission bandwidth is:

$$B_T = 2f_m$$

• If β is large, then the transmission bandwidth can be approximated by:

$$B_T \approx 2f_m + 2\Delta f = 2\Delta f \left(1 + \frac{1}{\beta}\right)$$

Carson's rule

It is also valid for small values of β

Carson's Rule - Example

 An FM signal is generated using a sinewave modulated signal given by:

$$m(t) = 2\cos(2\pi f_m t)$$

where $f_m = 10$ kHz and the frequency sensitivity $k_f = 10000$

- a- Calculate the maximum frequency deviation of the FM signal.
- b- Calculate the modulation index
- c- Use Carson's rule to estimate the transmission bandwidth of the FM signal.
- d- Determine the amplitude spectrum of the modulated signal

1 Percent Bandwidth

- Carson's rule provide an approximation of the bandwidth without précising any condition on how to calculate it.
- One can define the transmission bandwidth of an FM wave as:
 The separation between the two frequencies beyond which none of the side frequencies is greater than 1 percent of the carrier amplitude obtained when the modulation is removed.
- When there is no modulation ($\beta = 0$), the amplitude of the carrier is provided by:

$$A_c \cdot J_0(0) = A_c \cdot 1 = A_c$$

If we define :

$$n_{\max} = \max_{|J_n(\beta)| > 0.01} \{n\}$$

then the transmission bandwidth is given by:

$$B_T = 2n_{\max}f_m$$

Examples of 1 Percent Bandwidth versus β

Modulation index β	Number of significant side frequencies 2 n_{max}
0.1	2
0.3	4
0.5	4
1	6
2	8
5	16
10	28
20	50
30	70

Universal Curve for evaluating the 1 Percent Bandwidth

1 Percent Bandwidth – Example

In the previous example:

An FM signal is generated using a sinewave modulated signal given by:

$$m(t) = 2\cos(2\pi f_m t)$$

where f_m = 10 kHz and the frequency sensitivity k_f = 10000

- e- Use the 1 percent bandwidth to estimate the transmission bandwidth of the FM signal.
- f- Compare this result to the result obtained with Carson's rule.

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Voltage Controlled Oscillator (VCO)

 The voltage controlled oscillator is a system, where the output has a frequency that is a function of the applied voltage at the input

• If the input voltage is the message signal m(t), then the output signal has an instantaneous frequency given by:

$$f_i(t) = f_o + \Delta f \cdot m(t)$$

Voltage Controlled Oscillator (VCO)

Example of VCOs:

the Hartley Oscillator →

 Using a varactor or varicap diode (varying capacitor as a function of the applied voltage to its electrodes)

If the varying capacitor has the form:

$$C(t) = C_0 + \Delta C \cdot \cos(2\pi f_m t)$$

It can be shown that the instantaneous frequency will have the form:

$$f_i(t) \approx f_0 + \Delta f \cdot \cos(2\pi f_m t)$$

if:
$$\frac{\Delta f}{f_0} = -\frac{\Delta C}{2C_0} << 1 \Rightarrow \text{approximation valid for narrowband signals}$$

Wideband Frequency Modulation

- Higher modulation index can be achieved with the frequency multipliers
- Any carrier frequency can be obtained with the frequency multipliers and the mixer
- → Wideband modulation and high frequency carrier are possible

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Demodulation of FM Signals

- The frequency discriminator transforms the FM signal to an AM signal whose amplitude is proportional to the instantaneous frequency of the FM signal
- What type of transfer function a frequency discriminator should have?
- How can this system be implemented?

Frequency Discriminator

 If an LTI system has a frequency response, whose amplitude is a linear function of frequency in the FM band:

$$H_1(f) = j2\pi a \left(f - f_c + \frac{B_T}{2}\right)$$
 for $|f - f_c| < \frac{B_T}{2}$

then if the input is an FM signal: $s(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau)$

the output signal of this system is given by:

$$y_1(t) = A_c a \pi B_T \left(1 + \frac{2k_f}{B_T} \cdot m(t) \right) \cdot \cos \left(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau + \frac{\pi}{2} \right)$$

• If we have $\left| \frac{2k_f}{B_T} m(t) \right| < 1$ for all t, then we can use an envelope detector to detect the envelope. The output is then:

$$s_1(t) = A_c a \pi B_T \left(1 + \frac{2k_f}{B_T} \cdot m(t) \right)$$

Frequency Discriminator

 Similarly, if an LTI system has a frequency response, whose amplitude is a linear function of frequency with negative slope in the FM band:

$$H_2(f) = -j2\pi a \left(f + f_c - \frac{B_T}{2}\right)$$
 for $|f - f_c| < \frac{B_T}{2}$

then we can write: $H_2(f) = H_1(-f)$ for $|f - f_c| < \frac{B_T}{2}$

• If we have $\left| \frac{2k_f}{B_T} m(t) \right| < 1$ for all t, then we can use an envelope detector to detect the envelope. The output is then:

$$s_2(t) = A_c a \pi B_T \left(1 - \frac{2k_f}{B_T} \cdot m(t) \right)$$

Frequency Discriminator

If we substruct the two signals we obtain

$$s_{out}(t) = s_1(t) - s_2(t) = 4\pi A_c a k_f m(t)$$

Frequency Discriminator – Practical implementation

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Phase locked loop
 - Demodulation of FM signals in the presence of noise

Phase Locked Loop (PLL)

- The PLL is a negative feedback system composed of three elements
 - VCO: generates a sinusoidal signal with frequency determined by its input voltage
 - Mixer (or multiplier), which multiplies the FM signal with the output of the VCO
 - A loop filter, which consists of a low-pass filter that removes the high frequency components of the mixer.

Phase Locked Loop (PLL)

- We assume that:
 - 1. The frequency of the VCO is precisely set at the unmodulated carrier frequency when the control voltage is set to zero
 - 2. The VCO output has a 90-degree phase-shift with respect to the unmodulated carrier frequency
- Objective: Calculate the output of the PLL
- The input signal is :

$$s(t) = A_c \sin(2\pi f_c t + \phi_1(t))$$

where
$$\phi_1(t) = 2\pi k_f \int_0^t m(\tau) d\tau$$

Let the output of the VCO be:

$$r(t) = A_{v} \cos(2\pi f_{c} t + \phi_{2}(t))$$

where
$$\phi_2(t) = 2\pi k_v \int_0^t v(\tau) d\tau$$

Nonlinear Model of the Phase Locked Loop

- At the output of the multiplier, the signal is composed of two components:
 - A high frequency component, represented by the sum-frequency term

$$0.5A_cA_v\sin(4\pi f_ct+\phi_1(t)+\phi_2(t))$$

A low frequency component, represented by the differentfrequency term

$$0.5A_cA_v\sin(\phi_1(t)-\phi_2(t))$$

 The loop filter is a low pass filter that removes the high frequency component. Only the low frequency component is maintained at the input of the loop filter, which is given by:

$$0.5A_cA_v\sin(\phi_e(t))$$

where:
$$\phi_{e}(t) = \phi_{1}(t) - \phi_{2}(t) = \phi_{1}(t) - 2\pi k_{v} \int_{0}^{t} v(\tau) d\tau$$

Nonlinear Model of the Phase Locked Loop

 The output of the loop filter is the convolution integral of the input and the filter impulse response. It is given by:

$$v(t) = \int_{-\infty}^{\infty} e(\tau)h(t-\tau)d\tau$$

 Finally, the dynamic behaviour of the PLL can be described by this integro-differential equation:

$$\frac{d\phi_{e}(t)}{dt} = \frac{d\phi_{1}(t)}{dt} - 2\pi K_{0} \int_{-\infty}^{\infty} \sin[\phi_{e}(\tau)]h(t-\tau)d\tau$$

where
$$K_0 = 0.5 k_v A_c A_v$$

Nonlinear Model of the Phase Locked Loop

Linear Model of the Phase Locked Loop

- ullet When the phase error $\phi_e\left(t
 ight)$ is zero, the loop is in phase lock
- When the phase error $\phi_e(t)$ is small, the loop is near phase lock. In this case, the following approximation holds

$$\sin(\phi_e(t)) \approx \phi_e(t)$$

The PLL can then be described by this linear model:

Linear Model of the Phase Locked Loop

The integro-differential equation become:

$$\frac{d\phi_{e}(t)}{dt} + 2\pi K_{0} \int_{-\infty}^{\infty} \phi_{e}(\tau) h(t-\tau) d\tau = \frac{d\phi_{1}(t)}{dt}$$

This equation can be represented in frequency domain as:

$$j2\pi f \cdot \Phi_{e}(f) + 2\pi K_{0} \cdot H(f) \cdot \Phi_{e}(f) = j2\pi f \cdot \Phi_{1}(f)$$

which we can write as:

$$\Phi_{e}(f) = \frac{1}{1 + L(f)} \cdot \Phi_{1}(f)$$

$$H(f)$$

where $L(f) = \frac{K_0}{jf} \cdot H(f)$ • Since $v(t) = \frac{K_0}{k_v} \int_{-\infty}^{\infty} \phi_e(\tau) h(t-\tau) d\tau$, in frequency domain this becomes:

$$V(f) = H(f) \frac{K_0}{k_v} \Phi_e(f) = \frac{jf \cdot L(f)}{k_v} \Phi_e(f)$$

Simplified Linear Model of the PLL

 The output voltage can then be expressed as a function of the input phase as:

$$V(f) = \frac{jf}{k_v} \frac{L(f)}{1 + L(f)} \Phi_1(f)$$

• If the PLL is implemented so that the loop gain L(f) is very large: |L(f)| >> 1 then the relationship between input and output become:

$$V(f) \approx \frac{jf}{k_v} \Phi_1(f)$$

Going back to time domain this relationship is:

$$v(t) \approx \frac{1}{2\pi k_{v}} \frac{d\varphi_{1}(t)}{dt} = \frac{k_{f}}{k_{v}} m(t)$$

Outline

- Angle Modulation
 - Definition of angle modulation
 - Phase modulation and frequency modulation
 - Properties of angle modulation
- Frequency Modulation (FM)
 - Narrowband and wideband frequency modulation
 - Transmission bandwidth of FM signals
 - Generation of FM signals
- Frequency Demodulation
 - Demodulation of FM signals in the absence of noise
 - Demodulation of FM signals in the presence of noise

Demodulation of FM Signals in the Presence of Noise

It can be shown that the signal-to-noise ratio at the input of an FM receiver is:

$$SNR_{in} = CNR = \frac{A_c^2}{2WN_0}$$

The signal-to-noise ratio at the output of an FM receiver is:

$$SNR_{out} = \frac{3A_c^2 k_f^2 P}{2N_0 W^3}$$

Therefore, the figure of merit for FM modulation is:

$$FOM_{FM} = \frac{SNR_{out}}{SNR_{in}} = \frac{3k_f^2P}{W^2}$$

If the message is sinusoidal, then the figure of merit becomes:

$$FOM_{FM} = \frac{SNR_{out}}{SNR_{in}} = \frac{3}{2}\beta^{2}$$