Tiesinės transformacijos vaizdas ir branduolys Atvirkštinė transformacija

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2013 m. rugsėjo 27 d.

Turinys

Tiesinės transformacijos vaizdas ir branduolys Atvirkštinė transformacija

Tiesinės transformacijos vaizdas

Apibrėžimas 1

Tegul V – tiesinė erdvė virš kūno $k, f: V \to V$ – tiesinė transformacija. Aibė

$$\operatorname{Im} f := \{ f(v) : v \in V \}$$

vadinama transformacijos f vaizdu.

Teiginys 2

Tarkime, kad V – baigtinės dimensijos tiesinė erdvė virš kūno k. Tiesinės transformacijos $f:V\to V$ vaizdas $Im\ f$ yra erdvės V tiesinis poerdvis, o šio poerdvio dimensija lygi transformacijos f rangui, t. y. $dim_k\ Im\ f=r(f)$.

Įrodymas.

Tegul $v_1,v_2\in {\rm Im}\, f,\ \alpha_1,\alpha_2\in k.$ Tada egzistuoja tokie vektoriai $u_1,u_2\in V,$ kad

$$v_1 = f(u_1), \quad v_2 = f(u_2).$$

Taigi

$$\alpha_1 v_1 + \alpha_2 v_2 = \alpha_1 f(u_1) + \alpha_2 f(u_2) =$$

= $f(\alpha_1 u_1 + \alpha_2 u_2) \in \text{Im } f$,

todėl Im f – erdvės V tiesinis poerdvis.

Tegul v_1, \ldots, v_n – erdvės V bazė, o A – transformacijos f matrica šioje bazėje. Tada

$$\operatorname{Im} f = L(f(v_1), \dots, f(v_n)) \Rightarrow$$

$$\Rightarrow \dim \operatorname{Im} f = \dim L(f(v_1), \dots, f(v_n)) =$$

$$= r(f(v_1), \dots, f(v_n)) = r(A) = r(f).$$

Apibrėžimas 3

Tegul V – tiesinė erdvė virš kūno $k, f: V \to V$ – tiesinė transformacija. Aibė

$$\ker f := \{ v \in V : f(v) = \mathcal{O} \}$$

vadinama transformacijos f branduoliu.

Teiginys 4

Tiesinės transformacijos $f:V\to V$ branduolys ker f yra erdvės V tiesinis poerdvis.

Irodymas.

Tegul $v_1, v_2 \in \ker f$, $\alpha_1, \alpha_2 \in k$. Tada

$$f(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 f(\mathbf{v}_1) + \alpha_2 f(\mathbf{v}_2) = \mathcal{O},$$

todėl $\alpha_1 v_1 + \alpha_2 v_2 \in \ker f$. Vadinasi, $\ker f$ – erdvės V tiesinis poerdvis.

Teorema 5

Tarkim, $f:V \rightarrow V$ – tiesinė transformacija. Tada

$$\dim_k \ker f + \dim_k \operatorname{Im} f = \dim_k V. \tag{1}$$

Įrodymas

Pažymėkime $r:=\dim_k \ker f$, $n:=\dim_k V$. Nagrinėkime tris atvejus: 1) r=0; 2) r=n ir 3) $1\leqslant r< n$. 1) r=0. Tada $\ker f=\{\mathcal{O}\}$. Tegul v_1,\ldots,v_n – erdvės V bazė. Tvirtiname, kad poerdvio Im f vektorių šeima $f(v_1),\ldots,f(v_n)$ yra tiesiškai nepriklausoma. Iš tikrųjų,

$$\alpha_{1}f(v_{1}) + \dots + \alpha_{n}f(v_{n}) = \mathcal{O} \Rightarrow$$

$$f(\alpha_{1}v_{1} + \dots + \alpha_{n}v_{n}) = \mathcal{O} \Rightarrow$$

$$\alpha_{1}v_{1} + \dots + \alpha_{n}v_{n} \in \ker f \Rightarrow$$

$$\alpha_{1}v_{1} + \dots + \alpha_{n}v_{n} = \mathcal{O} \Rightarrow \alpha_{1} = \dots = \alpha_{n} = 0.$$

Vadinasi, $\dim_k \operatorname{Im} f = n$, t. y. (1) lygybė teisinga.

2)
$$r=n$$
. Akivaizdu, kad (1) lygybė teisinga, nes
$$\dim_k \ker f = \dim_k V \Rightarrow \operatorname{Im} f = \{\mathcal{O}\} \Rightarrow \dim_k \operatorname{Im} f = 0.$$

3)
$$1 \leqslant r < n$$
. Tegul

$$v_1, \ldots, v_r$$
 – ker f bazė $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ – V bazė

Pažymėkime

$$w_{r+1} := f(v_{r+1})$$

$$\dots$$

$$w_n = f(v_n)$$

Tada w_{r+1}, \ldots, w_n – tiesiškai nepriklausoma vektorių šeima.

Iš tikrųjų,

$$\alpha_{r+1}w_{r+1} + \cdots + \alpha_nw_n = \mathcal{O} \Rightarrow$$

$$\alpha_{r+1}f(v_{r+1}) + \cdots + \alpha_nf(v_n) = \mathcal{O} \Rightarrow$$

$$f(\alpha_{r+1}v_{r+1} + \cdots + \alpha_nv_n) = \mathcal{O} \Rightarrow$$

$$\alpha_{r+1}v_{r+1} + \cdots + \alpha_nv_n \in \ker f \Rightarrow$$

$$\exists \alpha_1, \dots, \alpha_r : \alpha_{r+1}v_{r+1} + \cdots + \alpha_nv_n = \alpha_1v_1 + \cdots + \alpha_rv_r \Rightarrow$$

$$\alpha_1 = \cdots = \alpha_n = 0, \text{ nes } v_1, \dots, v_n - \text{erdvės } V \text{ bazė}.$$

Taigi w_{r+1}, \ldots, w_n – tiesiškai nepriklausoma vektorių šeima. Kadangi

$$\operatorname{Im} f = L(f(v_1), \dots, f(v_n)) = L(f(v_{r+1}), \dots, f(v_n)) = L(w_{r+1}, \dots, w_n),$$

tai

$$\dim_k \operatorname{Im} f = \dim_k L(w_{r+1}, \dots, w_n) = n - r.$$

Vadinasi,

$$\dim_k \operatorname{Im} f = \dim_k V - \dim_k \ker f,$$

t. y. $\dim_k \ker f + \dim_k \operatorname{Im} f = \dim_k V$.

Apibrėžimas 6

Tegul $A \in M_n(k)$. Aibė

$$\ker A := \{(x_1, \dots, x_n) \in k^n : (x_1, \dots, x_n)A = (0, \dots, 0)\}$$

vadinama matricos branduoliu.

Išvada 7

Tegul
$$A \in M_n(k)$$
. Tada $\dim_k \ker A + r(A) = n$.

Įrodymas išplaukia iš paskutinio teiginio. Įsitikinti paliekame skaitytojui.

Nesunku įsitikinti, kad matricos

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 2 & 1 & 4 \\ -2 & 1 & 0 \end{pmatrix}$$

rangas r(A) = 2. Todėl, remiantis paskutine išvada, jos branduolio dimensija

$$\dim \ker A = 3 - r(A) = 1.$$

Kitame pavyzdyje pamatysime, kad paties branduolio ker A radimas reikalauja daugiau darbo.

Pavyzdys 8

Rasime matricos

$$A = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 0 & 1 & 3 & 1 \\ 1 & 4 & 8 & 7 \\ -1 & -1 & 1 & -4 \end{pmatrix}$$

branduolį ir suskaičiuosime jo dimensiją.

Sprendimas

Vektoriaus $v \in \ker A$ koordinates pažymėkime $v = (\beta_1, \beta_2, \beta_3, \beta_4)$. Kadangi $vA = \mathcal{O}$, gauname lygtį

$$v = (\beta_1, \beta_2, \beta_3, \beta_4) \cdot \begin{pmatrix} 1 & 2 & 2 & 5 \\ 0 & 1 & 3 & 1 \\ 1 & 4 & 8 & 7 \\ -1 & -1 & 1 & -4 \end{pmatrix} = (0, 0, 0, 0).$$

Ši lygtis ekvivalenti sistemai

$$\begin{cases} \beta_1 & + \beta_3 - \beta_4 = 0 \\ 2\beta_1 + \beta_2 + 4\beta_3 - \beta_4 = 0 \\ 2\beta_1 + 3\beta_2 + 8\beta_3 + \beta_4 = 0 \\ 5\beta_1 + \beta_2 + 7\beta_3 - 4\beta_4 = 0 \end{cases}.$$

Gauso būdu sistemą pertvarkome į trapecinį pavidalą:

$$\begin{cases} \beta_1 & + \beta_3 - \beta_4 = 0 \\ 2\beta_1 + \beta_2 + 4\beta_3 - \beta_4 = 0 \\ 2\beta_1 + 3\beta_2 + 8\beta_3 + \beta_4 = 0 \\ 5\beta_1 + \beta_2 + 7\beta_3 - 4\beta_4 = 0 \end{cases}.$$

Trečioji ir ketvirtoji lygtys išsiprastina. Gauname

$$\begin{cases} \beta_1 & + \beta_3 - \beta_4 = 0 \\ \beta_2 + 2\beta_3 + \beta_4 = 0 \end{cases}.$$

Vadinasi, pagrindiniai kintamieji yra β_1 , β_2 , o β_3 ir β_4 – parametrai. Pažymėkime $\beta_3=t$, $\beta_4=s$, čia $t,s\in\mathbb{R}$. Išsprendę pagrindinius kintamuosius, gauname

$$\begin{cases} \beta_1 & = - t + s \\ \beta_2 = - 2t - s \end{cases}.$$

Taigi

$$v = (\beta_1, \beta_2, \beta_3, \beta_4) = (-t+s, -2t-s, t, s), \qquad t, s \in \mathbb{R}.$$

Išskleidę pagal parametrus, gauname:

$$v = t(-1, -2, 1, 0) + s(1, -1, 0, 1),$$
 $t, s \in \mathbb{R}.$

Taigi branduolys ker A yra dviejų tiesiškai nepriklausomų vektorių tiesinis apvalkalas, t. y.

$$\ker A = L((-1, -2, 1, 0), (1, -1, 0, 1)), \quad \dim_{\mathbb{R}} \ker A = 2.$$

Atvirkštinė transformacija

Teiginys 9

Tegul $f:V\to V$ – tiesinės erdvės V tiesinė transformacija, kuri yra bijekcija. Tada atvirkštinis atvaizdis $f^{-1}:V\to V$ taip pat yra erdvės V tiesinė transformacija.

Įrodymas paliekamas skaitytojui.

Apibrėžimas 10

Jei tiesinė transformacija $f:V\to V$ yra bijekcija, tai atvirkštinis atvaizdis $f^{-1}:V\to V$ vadinamas **atvirkštine tiesine** transformacija.

Teiginys 11

Tiesinės erdvės V tiesinė transformacija $f:V\to V$ turi atvirkštinę tada ir tik tada, kai bent vienoje erdvės V bazėje transformacijos f matrica yra neišsigimusi.

Jrodymas paliekamas skaitytojui.

Teiginys 12

Tarkime, kad $f: V \to V$ – tiesinės erdvės V tiesinė transformacija, kuri turi atvirkštinę transformaciją $f^{-1}: V \to V$. Tegul A – transformacijos f matrica erdvės V bazėje v_1, \ldots, v_n . Tada A^{-1} bus transformacijos f^{-1} matrica toje pačioje bazėje.

Įrodymas paliekamas skaitytojui.

Teiginys 13

Tiesinės erdvės V tiesinė transformacija $f:V\to V$ turi atvirkštinę tada ir tik tada, kai jos branduolys trivialus, t. y., kai

$$ker f = \{\mathcal{O}\}.$$

Jrodymas paliekamas skaitytojui.