ECON0064 MSc Econometrics

Part 8, Two Stage Least Squares (2SLS)

UCL

Autumn 2024

Notation

[Reference for IV and 2SLS: Wooldridge: Ch.5]

- Model: $y_i = x_i\beta + u_i$, (this is the structural equation) where $x_i = (x_{i1}, \dots, x_{iK})$ is vector of K regressors
- We observe instruments a vector of L instruments $z_i = (z_{i1}, \ldots, z_{iL})$. All exogenous regr. x_i are included in z_i .
- ▶ To define the 2SLS estimator we have to assume $L \ge K$.
- ▶ Vector-matrix notation: $y = X\beta + u$, where y and u are $n \times 1$ vectors, X is $n \times K$ matrix (as before), and we also define the $n \times L$ matrix

$$Z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} z_{11} & \cdots & z_{1L} \\ \vdots & & \vdots \\ z_{n1} & \cdots & z_{nL} \end{pmatrix}$$

$$L_{NK}$$

$$D = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_{n1} \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right] = \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z_n \end{array} \right]$$

$$E \times e + \left[\begin{array}{c} Z_1 \\ \vdots \\ Z$$

Two Stage Least Squares Estimator (2SLS)

First Stage:

► For each regressors apply OLS to estimate

$$x_{ik} = z_i \Gamma_k + \varepsilon_{ik}$$

We obtain $\hat{\Gamma}_k = (Z'Z)^{-1}Z'x_k$, $k = 1, \dots, K$.

For the $L \times K$ matrix $\hat{\Gamma} = (\hat{\Gamma}_1, \dots, \hat{\Gamma}_K)$ we have

$$\hat{\Gamma} = (Z'Z)^{-1}Z'X = (Z'Z)^{-1}Z'X = X$$

Calculate the predicted values of this regression:

[x. ... x.]

$$\hat{X}_{A} = \hat{X} = Z\hat{\Gamma} = Z(Z'Z)^{-1}Z'X = P_{2}X$$

$$\hat{Z}_{A} = \hat{Z}_{A} = P_{2}X$$

We discussed the orthogonal projector M_Z which when applied to a n-vectors gives the part of that vector that is not explained by Z. Conversely, the projector $P_Z = Z(Z'Z)^{-1}Z'$ gives the part \hat{X} of X that is explained by Z.

3/28

Two Stage Least Squares Estimator (2SLS) (cont.)

Second Stage:

- We got $\hat{X} = Z\hat{\Gamma} = P_Z X$ from the first stage. Let $\hat{x}_i = z_i \hat{\Gamma}$ be the rows of \hat{X} .
- ~ Xi = Zi√ \triangleright z_i and thus $z_i\Gamma$ are exogenous X: = 2: [-] 2: [(wrt to both u_i and $\varepsilon_i = (\varepsilon_{i1}, \dots, \varepsilon_{1K})$). $\hat{x}_i = z_i \hat{\Gamma}$ is not exogenous at finite sample (because endogenous x_i enters into $\hat{\Gamma}$), but as $n \to \infty$ we have $\hat{\Gamma} \to_p \Gamma$ and thus $\hat{x}_i \to_p z_i \Gamma$, i.e. \hat{x}_i is "asymptotically exogenous".
- \blacktriangleright This suggest that we can obtain a consistent estimator for β by applying OLS to the equation

$$y_i = \hat{x}_i \beta + v_i$$

where $\mathbf{v}_i = \mathbf{u}_i + (\mathbf{x}_i - \hat{\mathbf{x}}_i)\beta \rightarrow_{\mathbf{p}} \mathbf{u}_i + (\mathbf{x}_i - \mathbf{z}_i\Gamma)\beta = \mathbf{u}_i + \varepsilon_i\beta$. MODEL: Y:=X:BAM; Z: I E. Projection Zi 1 mi Emsenditz Z: 1 V: = E:B+M; y:= X: 13 + V;

Two Stage Least Squares Estimator (2SLS) (cont.)

From this we obtain the 2SLS estimator:

$$\hat{\beta}_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$$

$$= (X'P_ZX)^{-1}X'P_Zy$$

$$= [X'Z(Z'Z)^{-1}Z'X]^{-1}X'Z(Z'Z)^{-1}Z'y.$$

Here we used that $P_ZP_Z = P_Z$ (idempotent) and that $P'_Z = P_Z$ (symmetric).

► Thus, we can define $\hat{\beta}_{2SLS}$ equivalently as $(\hat{X}'\hat{X})^{-1}\hat{X}'y$, i.e. using the two-stage procedure, or as $(X'P_ZX)^{-1}X'P_Zy$.

Two Stage Least Squares Estimator (2SLS) (cont.)

- Side comment: the structure of the 2SLS estimator is very similar to the structure of the GLS estimator, with Ω^{-1} replaced by P_Z . However, both the math and the interpretation is different here. In particular, $\operatorname{rank}(\Omega) = n$ and $\operatorname{rank}(P_Z) = L \ll n$.
- Remember: All exogenous regressors are also included in z_i . For those regressors we have $\hat{x}_{ik} = x_{ik}$, because they are perfectly predicted by themselves. For example if there is no endogenous regressors and no additional instrument, then Z = X and therefore

$$\hat{X} = P_Z X = P_X X = X(X'X)^{-1} X'X = X.$$

In that case we have $\hat{\beta}_{2SLS} = \hat{\beta}_{OLS}$. (ABC) -(

Another, somewhat more general, special case is L = K (exactly identified case). We then obtain the following simplification: $\hat{\beta}_{2SLS} = \hat{\beta}_{IV} = (Z'X)^{-1} Z'y$.

2SLS for only one endogenous regressor

- Consider the special case where only one regressors is endogenous, say the K'th regressor x_{iK} .
- ▶ Then we have $z_i = (x_{i1}, \dots, x_{i,K-1}, w_i)$, where w_i is a vector of additional instruments (at least one).
- We then also have $\hat{x}_{ik} = x_{ik}$ for k = 1, ..., K 1, i.e. we only need to run the first stage regression for x_{iK} .
- ► In that case:
 - First stage: Estimate $x_{iK} = z_i \gamma + \varepsilon_i$ by OLS, calculate $\hat{x}_{iK} = z_i \hat{\gamma}$.
 - Second stage: x_i x_i x_i x_i Estimate $y_i = x_{i1}\beta_1 + \dots + x_{i,K-1}\beta_{K-1} + \hat{x}_{i,K}\beta_K + v_i$ by OLS. The resulting estimator is $\hat{\beta}_{2SLS}$.
- ▶ Thus, in that case calculating $\hat{\beta}_{2SLS}$ requires running two OLS regressions.
- ▶ But in the following we continue to discuss the general case.

Large Sample Properties of 2SLS

- ▶ Analogous to the OLS estimator we now analyze the asymptotic properties of the 2SLS estimator as $n \to \infty$.
- ▶ We mostly follow the presentation in [Wooldridge, Ch.5.2]
- ▶ The most convenient form to write the 2SLS estimator is

$$\hat{\beta}_{2SLS} = (X'P_ZX)^{-1}X'P_Zy$$

where $P_Z = Z(Z'Z)^{-1}Z'$.

Analogous to the OLS case we can use the model $Y = X\beta + u$ to obtain

$$\hat{\beta}_{2SLS} = \beta + (X'P_ZX)^{-1}X'P_Zu$$

▶ If $x_i = z_i$, then we have $\hat{\beta}_{2SLS} = \hat{\beta}_{OLS}$, and all of the following assumptions and results become the same as for OLS.

Assumptions:

- E(5; (2: -x: B)) = 0
- (A1) Exogeneity of Instruments: $\mathbb{E}(z_i'u_i) = 0$ for $\mathbb{E}(z_i'u_i) = 0$
- (A2) Non-Collinearity of Instruments: $\mathbb{E}(z_i'z_i)$ exists, and $\operatorname{rank} \mathbb{E}(z_i'z_i) = L$, i.e. $\mathbb{E}(z_i'z_i)$ is invertible
- (A3) Relevance of Instruments: $\mathbb{E}(z_i'x_i)$ exists, and $\mathrm{rank}\,\mathbb{E}(z_i'x_i)=K$

Theorem (Consistency of 2SLS)

Assume data are iid draws, that the linear model $y_i = x_i \beta + u_i$ holds, and that assumptions A1, A2 and A3 are satisfied. Then $\hat{\beta}_{\text{act},\alpha} \rightarrow \beta$ as $n \rightarrow \infty$

holds, and that assumptions A1, A2 and A3 are satisfied. Then
$$\hat{\beta}_{2SLS} \rightarrow_{p} \beta \text{ as } n \rightarrow \infty.$$
proof!

$$\sum_{x=2}^{n} \sum_{z=2}^{n} \sum_{z=$$

$$\sum_{x_2=1}^{n} \sum_{x_1 \in \mathbb{Z}_1} \sum_{x_2 \in \mathbb{Z}_2} \sum_{x_3 \in \mathbb{Z}_2} \sum_{x_4 \in \mathbb{Z}_2} \sum_{x_4$$

Comments on relevance assumption (A3):

- ▶ Remember reduced form equation: $x_i = z_i\Gamma + \varepsilon_i$, with $\mathbb{E}(\varepsilon_i'z_i) = 0$.
- From our OLS analysis we know that the this reduced form parameter Γ satsfies $\Gamma = \mathbb{E}(z_i'z_i)^{-1}\mathbb{E}(z_i'x_i)$, i.e. under (A2) we have $\operatorname{rank}(\Gamma) = \operatorname{rank}\mathbb{E}(z_i'x_i)$.
- Thus, the relevance condition (A3) can equivalently we written as rank(Γ) = K.
- ► (A3) implies that $L \ge K$.

One Additional assumption:

(A4) $\mathbb{E}(u_i^2 z_i' z_i)$ exists.

Theorem (Asymptotic Normality of 2SLS)

Assume data are iid draws, that the linear model $y_i = x_i \beta + u_i$ holds, and that assumptions A1, A2, A3 and A4 are satisfied.

Then as $n \to \infty$

$$\sqrt{n}\left(\hat{\beta}_{2\mathrm{SLS}}-\beta\right)\Rightarrow\mathcal{N}\left(0,\ W^{-1}\ V\ W^{-1}\right),$$

where

$$W = \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}, \quad V = \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{u^2zz} \Sigma_{zz}^{-1} \Sigma_{zx},$$

$$\Sigma_{xz} = \Sigma'_{zx} = \mathbb{E}(x'_i z_i), \quad \Sigma_{zz} = \mathbb{E}(z'_i z_i), \quad \Sigma_{u^2zz} = \mathbb{E}(u_i^2 z'_i z_i)$$

$$\sqrt{n}\left(\hat{eta}_{\mathrm{2SLS}} - eta
ight) \Rightarrow \mathcal{N}\left(0, \Sigma_{eta_{\mathrm{2SLS}}}
ight), \quad \Sigma_{eta_{\mathrm{2SLS}}} = \mathit{W}^{-1} \,\,\mathit{V}\,\mathit{W}^{-1}$$

 \blacktriangleright Need to estimate W and V. Consistent estimators are

$$\hat{W} = \hat{\Sigma}_{xz} \hat{\Sigma}_{zz}^{-1} \hat{\Sigma}_{zx}, \quad \hat{V} = \hat{\Sigma}_{xz} \hat{\Sigma}_{zz}^{-1} \hat{\Sigma}_{u^2zz} \hat{\Sigma}_{zz}^{-1} \hat{\Sigma}_{zx},$$

where

$$\hat{\Sigma}_{xz} = \hat{\Sigma}'_{zx} = \frac{1}{n} \sum_{i=1}^{n} x'_{i} z_{i}, \quad \hat{\Sigma}_{zz} = \frac{1}{n} \sum_{i=1}^{n} z'_{i} z_{i}, \quad \hat{\Sigma}_{u^{2}zz} = \frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} z'_{i} z_{i},$$

where
$$\hat{u}_i = y_i - x_i \hat{\beta}_{2SLS}$$

▶ Inference is based on the following approximation:

$$\hat{eta}_{\mathrm{2SLS}} \stackrel{\mathsf{a}}{\sim} \mathcal{N}\left(eta, \frac{1}{n}\hat{\Sigma}_{eta_{\mathrm{2SLS}}}
ight) \hat{\Sigma}_{eta_{\mathrm{2SLS}}} = \hat{W}^{-1} \hat{V} \hat{W}^{-1}$$

12 / 28

Homoscedasticity:

M-1/ M-, = 65 M-1

If we also assume homoscedasticity, i.e. $\mathbb{E}(u_i^2|z_i) = \sigma^2$, then

$$V = \sum_{x \neq z} \sum_{z \neq z} |E(z; u; y)| = \sigma^2 W$$
In this case we find
$$= \sigma^2 W$$

$$= \sigma^2 V$$

$$\Sigma_{eta_{2{
m SLS}}} = W^{-1} \ V \ W^{-1} = \sigma^2 W^{-1}$$

lacksquare Can (but never should in practice) estimate $\Sigma_{eta_{\mathrm{2SLS}}}$ by

$$\hat{\Sigma}_{eta_{\mathrm{2SLS}}} = \hat{\sigma}^2 \hat{W}^{-1}, \quad \hat{\sigma}^2 = \frac{1}{n-K} \sum_{i=1}^n \hat{u}_i^2$$

Only valid under homoscedasticity!

In either way,

$$\hat{eta}_{\mathrm{2SLS}} \stackrel{\mathtt{a}}{\sim} \mathcal{N}\left(eta, \frac{1}{n} \hat{\Sigma}_{eta_{\mathrm{2SLS}}}\right)$$

Testing restrictions on β :

- ► All our large sample testing results for the t-test and Wald test remain unchanged.
- When we discussed large sample testing we only assumed that we have an estimator for β , which is now the 2SLS estimator, which is asymptotically normal and unbiased, and that we have a consistent estimator for the variance matrix of this estimator.

Finite Sample Theory for 2SLS?

- ▶ For the OLS estimator we discussed the finite sample properties and showed that under appropriate conditions the estimator is unbiased and normally distributed at finte *n*, and we also justified our variance estimator at finite sample.
- It is not possible to give such a nice finite sample justification for the 2SLS estimator. In fact, for K=L and under standard distributional assumptions, the expected value of $\hat{\beta}_{2SLS}$ does not even exist.

FECIPS 25LS 1] = 20
L-K rereats endst 15/2

- ▶ We say that instruments are relevant if $\operatorname{rank}\mathbb{E}(z_i'x_i) = K$, or equivalently if $\operatorname{rank}(\Gamma) = K$. These conditions imply that the instruments z_i have explanatory power for all the regressors x_i .
- As $n \to \infty$ this is the "whole story", i.e. instruments are either relevant or not. However, at finite sample things are more complicated.
- We say that instruments are weak if they have little explanatory power for the endogenous regressors, e.g. for K = L = 1 the instrument is weak if Γ in $x_i = z_i \Gamma + \varepsilon_i$ is close to zero.
- ▶ If instruments are weak then the asymptotic theory above might give a bad approximation of the finite sample distribution.
- ► It is therefore important to <u>test</u> that instruments are sufficiently relevant.

- ▶ It is standard practice to report the F-test (or t-test if only one excluded instruments) for testing significance of the excluded instruments in the first stage regression. This is a measure of the strength of the instruments.
- Example (as before): only endogenous regressors is x_{iK} , and one excluded instrument w_i , i.e. $z_i = (x_{i1}, \dots, x_{i,K-1}, w_i)$. Then, first stage regression reads

$$x_{iK} = x_{i1}\gamma_1 + \ldots + x_{i,K-1}\gamma_{K-1} + w_i\gamma_K + \varepsilon_i.$$

Null hypothesis of irrelevant instrument reads $H_0: \gamma_K = 0$. Corresponding t-test statistics reads $t = \hat{\gamma}_K / \hat{\text{se}}(\hat{\gamma}_K)$.

- ▶ If the excluded instruments are not sufficiently significant in the first stage regression (i.e. if |t| or F are not large enough), then one cannot expect the 2SLS estimator to have good properties.
- Rule of thumb: need $F \ge 10$ or $|t| \ge 3.2$ (p-value ≤ 0.0016)

21 / 28

- ▶ While the rule $F \ge 10$ is widely used in practice, it is well known that such a pretest results in invalid inference
- ▶ A recent study suggests using conservative $F \ge 104$ instead
- ► In fact, one should use identification robust inference instead, which is valid regardless whether your IVs are weak or not
- ▶ One example of a valid test is the Anderson-Rubin (AR) test

AR test

- ▶ We want to test $H_0: \beta = \beta_0$ vs. $H_a: \beta \neq \beta_0$
- Under the null, we can correctly compute the errors $u_i = y_i x_i \beta = y_i x_i \beta_0$
- ▶ Hence, under the null $\mathbb{E}(z_i'u_i) = \mathbb{E}(z_i'(y_i x_i\beta_0)) = 0$
- ▶ Effectively, we test whether a $L \times 1$ vector $v_i = z_i'(y_i x_i\beta_0)$ has zero mean, i.e. we test $H_0 : \mathbb{E}v_i = 0$ vs. $H_a : \mathbb{E}v_i \neq 0$

AR test (cont.)

▶ Under the null, $\mathbb{E}(v_i) = 0$ and we have

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}v_{i}\Rightarrow\mathcal{N}\left(0,\Sigma_{v}\right),\quad\Sigma_{v}=\mathbb{E}(v_{i}v_{i}^{\prime}),$$

which implies

$$n\overline{v}'\Sigma_{v}^{-1}\overline{v} \Rightarrow \chi_{L}^{2}, \quad \overline{v} = \frac{1}{n}\sum_{i=1}^{n}v_{i}$$

▶ Under the null, can consistently estimate Σ_{ν} by

$$\hat{\Sigma}_{v} = \frac{1}{n} \sum_{i=1}^{n} v_{i} v_{i}',$$

SO

$$n\overline{v}'\hat{\Sigma}_{v}^{-1}\overline{v} \Rightarrow \chi_{L}^{2}$$

24 / 28

AR test (cont.)

lacktriangle The Anderson-Rubin statistic for testing $H_0:eta=eta_0$ is

$$AR(\beta_0) = n\overline{v}(\beta_0)'\hat{\Sigma}_{v}(\beta_0)^{-1}\overline{v}(\beta_0) \stackrel{H_0}{\Rightarrow} \chi_L^2,$$

where

$$\bar{v}(\beta_0) = \frac{1}{n} \sum_{i=1}^n z_i'(y_i - x_i\beta_0), \quad \hat{\Sigma}_v(\beta_0) = \frac{1}{n} \sum_{i=1}^n (y_i - x_i\beta_0)^2 z_i' z_i$$

- ▶ Reject $H_0: \beta = \beta_0$ at significance level α if $AR(\beta_0) \ge \chi^2_{L,1-\alpha}$
- ▶ Also can construct 1α confidence sets for β as

$$CS_{1-\alpha} = \{\beta_0 : AR(\beta_0) \leqslant \chi^2_{1,1-\alpha}\}$$

Testing Overidentifying Restrictions

Testing Overidentifying Restrictions

- ▶ If L > K we say that we are overidentified, because we have more exclusion restrictions than are needed to estimate β .
- In the overidentified case we can test if the exclusion restrictions $\mathbb{E}(z_i'u_i) = 0$ are valid.
- ► See [Wooldridge, Ch.6.3.2]

Testing Overidentifying Restrictions (cont.)

- ▶ If IVs are exogenous (and the model is correctly specified) then $\mathbb{E}(z_i'(y-x\beta_0))=0$ for some β_0
- ▶ This can be tested using *J*-statistic

$$J = \min_{\beta_0 \in \mathbb{R}^k} AR(\beta_0)$$

▶ If the instruments are strong, then, under H_0 ,

$$J \stackrel{H_0}{\Rightarrow} \chi^2_{L-K}$$

- The null hypothesis H_0 says that all instruments are exogenous. We reject this hypothesis at 5% significance level if J is larger than the 95% quantile of χ^2_{L-K} . If this is the case then this is a strong indication that at least some of the instruments are not exogenous.
- ▶ We will come back to that in the context of GMM framework

28 / 28