Formale Grundlagen der Informatik I 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach Alexander Kreuzer

SS 2012

Gruppenübung

Pavol Safarik

Aufgabe G1 (Relationen)

Wir stellen einen gerichteten Graphen als ein Tupel (V, E) dar, wobei V die Knotenmenge und $E \subseteq V \times V$ die Kantenrelation ist. $(x, y) \in E$ soll genau dann zutreffen, wenn es eine Kante von x nach y gibt; wir schreiben auch $x \longrightarrow y$ um diesen Sachverhalt auszudrücken.

- (a) Sei $R_0 \subseteq V \times V$ die Menge aller Paare (p,q), so dass es eine Folge von Kanten $p \longrightarrow \ldots \longrightarrow q$ von p nach q gibt (die Folge kann die Länge 0 haben; insbesondere erlauben wir p=q). Und sei $S_0 := \{(p,q) : (p,q) \in R_0 \text{ und } (q,p) \in R_0\}.$
 - Beweisen Sie, dass R_0 transitiv und S_0 eine Äquivalenzrelation ist.
- (b) Sei $R_1 := \{(p,q) : (p,q) \in E \text{ oder } (q,p) \in E\}$ und S_1 die Menge aller Paare (p,q), so dass es eine Folge $\langle p_0, \ldots, p_n \rangle$ gibt, mit $p = p_0, q = p_n$ und $(p_i, p_{i+1}) \in R_1$ für alle i < n. Zeigen Sie, dass R_1 symmetrisch und S_1 eine Äquivalenzrelation ist.
- (c) Sei jetzt $R_2 := \{(p,q): (p,q) \in E \text{ und } (q,p) \in E\}$ und S_2 definiert wie S_1 in (b), wobei nun für alle i < n gelten soll, dass $(p_i, p_{i+1}) \in R_2$.
 - Zeigen Sie, dass R_2 symmetrisch und S_2 eine Äquivalenzrelation ist.
- (d) Welche Beziehungen gibt es zwischen S_0 , S_1 und S_2 ? (Machen Sie sich dazu klar, was die intuitive Bedeutung dieser Relationen ist.) Finden Sie auch einen Graphen in dem alle drei Relationen unterschiedlichen Bedeutungen haben.

Aufgabe G2 ([Boolesche Algebren])

Sei $(B,0,1,+,\cdot,')$ eine Boolesche Algebra. Zeigen Sie die folgende Regeln, wobei Sie nur die folgende Axiome verwenden:

BA1: + und \cdot sind assoziativ und kommutativ, d.h. für alle $x, y, z \in B$:

$$(x+y)+z=x+(y+z), \quad x+y=y+x,$$

 $(x\cdot y)\cdot z=x\cdot (y\cdot z), \quad x\cdot y=y\cdot x.$

BA2: + und · sind distributiv, d.h. für alle $x, y, z \in B$:

$$x \cdot (y+z) = x \cdot y + x \cdot z, \quad x + (y \cdot z) = (x+y) \cdot (x+z).$$

BA3: 0 und 1 sind neutrale Elemente bzgl. + und ·:

$$x + 0 = x$$
, $x \cdot 1 = x$ für alle $x \in B$.

BA4: Komplement: $0 \neq 1$ und $x \cdot x' = 0$ und x + x' = 1 für alle $x \in B$.

- (i) $0 \cdot 0 = 0$,
- (ii) 1+1=1,
- (iii) x + x = x,
- (iv) $x \cdot x = x$,
- (v) $x \cdot 0 = 0$,
- (vi) x + 1 = 1,
- (vii) $x + (x \cdot y) = x$,
- (viii) $x \cdot (x + y) = x$.

Aufgabe G3 (Induktion)

Sei $z = \sum_{i=0}^k z_i 10^i$ mit $z_i \in \{0, 1, ..., 9\}$ (d.h. $z_k z_{k-1} ... z_0$ ist die Dezimaldarstellung von z). Die *Quersumme* von z ist die Zahl

$$q(z) = \sum_{i=0}^{k} z_i.$$

(a) Beweisen Sie, dass $z \equiv_9 q(z)$ und dass deshalb die Zahl z genau dann durch 9 teilbar ist, wenn ihre Quersumme dies ist.

Hinweis. Zeigen Sie mit Induktion, dass $10^n - 1$ für jedes $n \in \mathbb{N}$ durch 9 teilbar ist.

(b) Zeigen Sie, dass die Zahl z genau dann durch 11 teilbar ist, wenn ihre alternierende Quersumme

$$\sum_{i=0}^{k} (-1)^{i} z_{i} = z_{0} - z_{1} + z_{2} - \dots + (-1)^{k} z_{k}$$

dies ist.

Aufgabe G4

Seien $f,g:\mathbb{N}\to\mathbb{N}$ Funktionen. Wir sagen "f ist in $\mathcal{O}(g)$ " (kurz " $f\in\mathcal{O}(g)$ "), falls es Konstanten K,n_0 gibt, so dass

$$f(n) \le K \cdot g(n)$$
 für alle $n \ge n_0$.

Wir schreiben $f \sim g$, falls $f \in \mathcal{O}(g)$ und $g \in \mathcal{O}(f)$. $f \sim g$ besagt, dass f und g dieselbe Wachstumsrate haben.

Zeigen Sie, dass $f \sim g$ eine Äquivalenzrelation auf der Menge aller Funktionen $\mathbb{N} \to \mathbb{N}$ ist.

Hausübung

Aufgabe H1 ([Relationen])

(i) Welche der Eigenschaften "Reflexivität", "Symmetrie" und "Transitivität" haben die folgenden binären Relationen

$$R_1 = \{(1,2), (5,6), (2,3), (1,3), (4,4)\} \text{ auf } A_1 = \{1,2,3,4,5,6\},$$

 $R_2 = \{(1,1), (2,2), (3,3)\} \text{ auf } A_2 = \{1,2,3\},$
 $R_3 = \{(1,2), (2,1), (1,1), (2,2)\} \text{ auf } A_2 = \{1,2\}?$

(ii) Sei $p: Y \to X$ eine Surjektion. Zeigen Sie, dass durch

$$y_0 \sim y_1 : \Leftrightarrow p(y_0) = p(y_1)$$

eine Äquivalenzrelation auf Y definiert wird. Zeigen Sie auch, dass es eine Bijektion zwischen Y/\sim und X gibt.

Aufgabe H2 ([Boolesche Algebren])

(6 Punkte)

Sei $(B, 0, 1, +, \cdot, ')$ eine Boolesche Algebra.

(i) Seien $x, y \in B$ so, dass

$$x \cdot y = 0$$
 und $x + y = 1$.

Zeigen Sie, dass y = x'. (Verwenden Sie hier und in (ii) nur die Axiome und Regeln die Sie in Aufgabe (G3) abgeleitet haben.)

Hinweis: beweisen Sie y = x'y und x' = x'y.

(ii) Zeigen Sie die De Morgan Regeln:

$$0' = 1,
1' = 0,
(x+y)' = x' \cdot y',
(x \cdot y)' = x' + y',
x'' = x.$$

(iii) Zeigen Sie, dass durch $\phi(b) = b'$ ein Isomorphismus von Booleschen Algebren

$$(B,0,1,+,\cdot,') \xrightarrow{\phi} (B,1,0,\cdot,+,')$$

definiert wird.