Otázka č. 4

Optická přenosová média používaná v LAN, optická vlákna a kabely, zdroje a detektory pro optická vlákna, princip přenosu signálu médiem, numerická apertura, typy útlumu na optickém kabelu

Obsah

1		Optio	cká přenosová média	2
	1.	1	Jádro	2
	1.	2	Plášť	2
2		Optio	cká vlákna a kabely	2
	2.	1	Jednovidová	2
	2.	2	Vícevidová	2
3		Zdroj	e a detektory pro optická vlákna	2
4		Princ	ip přesunu signálu médiem	3
5 Numerická apertura			erická apertura	3
6		Туру	útlumu na optickém kabelu	3
	6.	1	Vnitřní	3
		6.1.1	Rozptyl	3
		6.1.2	Absorpce	3
	6.	2	Vnější	4
		6.2.1	Macrobending	4
		6.2.2	Microbending	4
7		Fotog	galerie	4
8		Zdroj	e	4

1 Optická přenosová média¹

Optické kabely se skládají z jádra a obalu. Data se přenáší pomocí paprsků díky úplnému odrazu, mezi dvěma různými optickými prostředími. Přenášená data nejsou ovlivňována tolik, jako u měděných kabelů, např. kvůli elektromagnetickému rušení. Dále jsou mnohem rychlejší,

spolehlivější a s méně ztrát přenosů. V optickém kabelu jsou vlákna většinou v párech – po jednom pro každý směr.

1.1 Jádro

Skládá se z jednoho a více skleněných, popř. plastových vláken (jsou levnější, ale ne na dlouhé vzdálenosti), které slouží pro přenos. Průměr jádra se liší podle typu kabelu.

Outer Jacket Strength Member Coating Core

1.2 Plášť

Slouží k ochraně, ale hlavně pro odraz světelných paprsků. Má nižší index lomu světla, což způsobuje onen odraz světla. Dále se dají rozdělit na s pevným uchycením jádra a s volným vláknem – lepší pro oddělení tlaku, napětí, předcházení promáčknutí, ...

2 Optická vlákna a kabely²

Optické kabely lze rozdělit na jednovidová a vícevidová. Ve vícevidových probíhá několik přenosů zároveň, takže se zvládne přenést více dat za stejný čas.

2.1 Jednovidová

Jednovidová optická vlákna dokážou přenášet data pouze jednou cestou, což zvyšuje šanci na přenesení dat, jelikož nehrozí kolize několika paprsků. Jádra, kterými se data šíří má průměr 8-9 mikrometrů. Jako světelný zdroj se užívá laser, na rozdíl od vícevidových. Je obtížnější na instalaci, jelikož vyžaduje vysokou přesnost napojování vláken a konektorů. Používá se konektor Straight Tip.

2.2 Vícevidová

Vícevidová (multi-mode) optická vlákna mají oproti jednovidových širší průměr, cca 50-100 mikrometrů. Světlo se může šířit více cestami, kolika záleží na typu kabelu. Více světelných průběhů v přenosu může vést k rušení signálu na straně přijímače. Světelné paprsky se vysílají pomocí LED. Konektory se zde používají Subsriber Connector.

3 Zdroje a detektory pro optická vlákna

Jako zdroj se používá LED (pro vícevidová vlákna) a laser. Světelný paprsek se zpracovává pomocí fotodekodéru, který funguje opačně, než zdroje – převádí světelný paprsek na elektrické impulsy. Pro delší přenosy jsou potřeba repeatery, které obnoví signál, aby paprsky úplně nezanikly.

¹ https://cdn.shopify.com/s/files/1/0106/6339/5391/files/1024x576-1_90f02095-4fe5-4b0f-aa19-dfc97100cb0b_1024x1024.jpg?v=1666835253

https://cptechmall.com/public/uploads/all/wuQh7QQDu6jDRuMzgboCoQmOtgdE27r3P02gnOYP.png

4 Princip přesunu signálu médiem

Optický kabel se skládá z jádra (místo, kde se přenáší data) a obalu. K přesunu signálu dochází díky rozdílným optickým prostředím jádra a obalu. Laser, nebo LED vysílají světelné paprsky pod určitým úhlem podle numerické apertury, které se při dopadu na hranu mezi jádrem a obalem odrazí zpět do jádra.

5 Numerická apertura³

Jedná se o maximální úhel, pod kterým se budou data přenášet v pořádku. Při jejím překročení hrozí, že světelný paprsek se vyzáří pod úhlem, kdy se neodrazí a prosvítí se do obalu vlákna. Čím je apertura užší, tím je lepší přenos dat na delší vzdálenost, širší apertury jsou lepší pro přenos na kratší vzdálenosti

6 Typy útlumu na optickém kabelu

6.1 Vnitřní

Jsou způsobený nečistotou, nebo špatnou výrobou, nikoli instalací. Může se jednat například o malé smítka bordelu v optickém vláknu.

6.1.1 Rozptyl

Pokud se v optickém vláknu vyskytuje nějaká nečistota, hrozí, že do ní narazí světelný paprsek a rozptýlí se na několik další paprsků, které mohou způsobit například kolizi další paprsků, nebo nenastane tzv. úplný odraz a paprsek opustí jádro. Jedná se o naprostou většinu důvodů vnitřního útlumu.

6.1.2 Absorpce

Další možnost, jak může skončit náraz světelného paprsku do nečistoty je jeho pohlcení. Paprsek narazí do nečistoty přímo, takže se neodrazí ani nerozptýlí.

³ https://questtel.com/img-qt/articles/aperture.jpg

6.2 Vnější

6.2.1 Macrobending

Jedná se o nadměrný ohyb kabelu, čímž dojde k porušení k maximální numerické apertuře – paprsek se v ohybu odrazí pod špatným úhlem a může projít skrz vnější, odrazové pásmo, takže nedojde k přenosu dat

6.2.2 Microbending

Jedná se o poničení optického kabelu vznikem prohlubně, například jeho promáčknutí při zatížení v domácnosti nábytkem, ostrým předmětem, ... v real světě může jít o promáčknutí například kamenem – dá se tomu předcházet vedením kabelů pískem, husím krkem, ... Může dojít k přerušení optického vlákna, k jeho nalomení, ...

7 Fotogalerie⁴⁵

8 Zdroje

Sešit

N:\DokumentyUčitelé\Peckova\6_prenosova_media_opticka.ppt ChatGPT

⁴ https://image.alza.cz/products/UGREb1/UGREb1.jpg?width=500&height=500

⁵ https://cdn2.webdamdb.com/1280_YwRxbNEtRHv25IXv.jpg?1629318408

⁶ https://thumbs.static-thomann.de/thumb//orig/pics/prod/494761.webp