ZAD. 1.

Let $g \in G$ be of order n. Show that for each $m \in \mathbb{Z}$ we have:

$$q^m = e \iff n|m$$
.

__

We know that there exists $k \in \mathbb{Z}$ such that m = nk. That means

$$q^{m} = q^{nk} = (q^{n})^{k} = e^{k} = e$$

=⇒

Proof by contraposition. Let us assume that $n \nmid m$. So m = nk + r. Then $r \in \{1, ..., n - 1\}$. So we have

$$q^m = q^{nk+r} = q^{nk}q^r = eq^r \neq e$$

ZAD. 2.

Let $N \leq G$. Show that the following conditions are equivalent.

(a) N ⊲ G

$$N \triangleleft G \implies (\forall q \in G) qNq^{-1} = N$$

Take any $g \in G$. Take any $x \in gNg^{-1}$. Then $x = gng^{-1}$ for some $n \in N$. We have

$$x = gng^{-1} = (gn)g^{-1} = (n'g)g^{-1} = n' \in N$$

because $gn \in gN = Ng$ so we took n' such that gn = n'g.

Take any $n \in N$. Then

$$n = ngg^{-1} = (ng)g^{-1} = (gn')g^{-1} = gn'g^{-1} \in gNg^{-1}$$
.

(b) =⇒ (c)

Take any $g \in G$ and any $n \in N$. We want to show that then $gng^{-1} \in N$.

$$gng^{-1} \in gNg^{-1} = N.$$

 $(c) \Rightarrow (a)$

Take any $g \in G$. We want to show that gN = Ng. Take any $x \in gN$. It means, that for some $n \in N$ we have

$$x = gn$$

which we can multiply on both sides by g^{-1} from right and get

$$xq^{-1} = qnq^{-1} \in N$$
.

So if we multiply it from right by g we would get

$$xq^{-1}q = x \in Nq$$
.

The other inclusion is analogous.

Or, if we want to be more fancy, we could write:

$$gN \subseteq Ng$$

for any q, so in particular for q^{-1}

$$g^{-1}N \subseteq Ng^{-1}$$
 $gg^{-1}Ng \subseteq gNg^{-1}g$
 $Ng \subseteq gN$

and the end! Only one inclusion written meticulously.

ZAD. 3.

Let $g \in G$ be of order 2. Show that

$$g \in Z(G) \iff \{e, g\} \triangleleft G$$

(we should also prove that {e, g} is a subgroup but whooo caaareees)

==

Here we just want to prove that $kgk^{-1} \in \{e, g\}$ for every k. Since g is commutative, we have

$$(kq)k^{-1} = qkk^{-1} = q \in \{e, q\}$$

=

We know that $kgk^{-1} \in \{e, g\}$ for every k. We want to show that g is in Z(G). We have two possibilities:

$$kgk^{-1} = g \implies kg = gk$$

and this is what we wanted.

$$kqk^{-1} = e \implies kq = k \implies q = e$$

which cannot be because g is of order 2 and e is of order 1.

ZAD. 4.

Let $g \in G$ be a unique element of order 2 in G. Show that $g \in Z(G)$.

 $g \in G$ such that ord(g) = 2 only for g. Let us take any other $h \in G$. We should observe that $hgh^{-1}hgh^{-1} = hggh^{-1} = hg(hg^{-1})^{-1} = (hg)(hg)^{-1} = e$. So it is either that ghg^{-1} is of order 1 or order 2.

If it is of order 1, then

$$e = hgh^{-1} \implies h = hg \implies 2 = g$$

and this cannot be!

If it is of order 2, then we have

$$hgh^{-1} = g \implies hg = gh$$

and so $q \in Z(G)$.

What if g is a unique element of order k? (show that then $g \in Z(G)$)

ZAD. 5.

Using the fundamental theorem on group homomorphism, show the following

$$(\mathbb{R}^*,\cdot)/\{1,-1\}\simeq (\mathbb{R}_{>0},\cdot)$$

 $f: L \to R$ such that $f(x) = x^2$. We will prove that this is indeed a homomorphism.

$$f(xy) = (xy)^2 = xyxy = x^2y^2 = f(x)f(y)$$
.

$$(\mathbb{C},+)/\mathbb{Z}\simeq (\mathbb{C}*,\cdot)$$

 $f: L \rightarrow R$ such that $f(z) = e^{2\pi i z}$ jeees

$$f(x + y) = e^{2\pi i(x+y)} = e^{\pi i x} e^{\pi i y} = f(x)f(y)$$
.

Shit I have no clue what is happening now. "We got the pie!!!!"

$$(\mathbb{C}*,\cdot)/\langle e^{2\pi i \frac{1}{n}} \rangle \simeq (\mathbb{C}*,\cdot)$$

$$f(z) = z^n$$

ZAD. 6.

Let p be a prime number and assume that $|G| = p^2$. Show that:

$$G\simeq \mathbb{Z}_{p^2}$$
 or $G\simeq \mathbb{Z}_p \times \mathbb{Z}_p$.

By Lagrange theorem we know, that for any $g \in G$ ord(g) = p or ord $(g) = p^2$ (because each such element generates a cyclic subgroup of G). So we have two possibilities:

- 1. There exists an element g that has order p^2 . So $G = \langle g \rangle$ and it is obvious that such a group is isomorphic with \mathbb{Z}_{p^2} .
- 2. There are no elements of order p^2 , then all its elements have order p. So we have g, h \in G such that $g \neq h$ such that $\langle g \rangle \cap \langle h \rangle = \{e\}$ and so they add up to the whole G. Ok so now let us consider a group

$$H = \langle g \rangle \times \langle h \rangle$$

It has order p^2 . Because $\langle g \rangle \simeq \mathbb{Z}_p$ and the same goes for $\langle h \rangle$, let ϕ_g, ϕ_h be those two isomorphisms. We want to show that

$$f(x, y) = (\phi_q(x), \phi_h(y))$$

is a homomorphism $H\simeq \mathbb{Z}_p\times \mathbb{Z}_p$. It is quite simple. Now to show that actually $G\simeq H$. Which would be

$$f(x) = \begin{cases} (x, e) \ x \in \langle g \rangle \\ (e, x) \ x \in \langle h \rangle \\ (q, p) \ if x = qp, q \in \langle g \rangle, p \in \langle h \rangle \end{cases}$$

Ok, but what if i take f(gh)?

ZAD. 7.

Let $\phi: \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z}_n)$ be the group action from Problem 2 of List 5. Show that

$$D_n \simeq \mathbb{Z}_n \rtimes_{\phi} \mathbb{Z}_2$$

Ok, I really have to learn what on earth does semidirect product mean. Let

$$N = \{R \in D_n : R - rotation\}$$

and

$$H = \{id, S\}.$$