Reguläre Sprachen

Minimale DFAs und der Satz von Myhill-Nerode

Minimale DFAs und der Satz von Myhill-Nerode

Eindeutigkeit des minimalen DFA

- Jede Äquivalenzklasse von \equiv_L ist Vereinigung von Äquivalenzklassen von \sim .
- \bullet Jede Äquivalenzklasse von \sim ist eindeutig einem Zustand zugeordnet.
- Haben \sim und \equiv_L den gleichen Index, dann sind sie gleich.

Definition

Es seien DFAs gegeben:

- $M = (Q, \Sigma, \delta, q_0, F)$
- $M' = (Q', \Sigma, \delta', q'_0, F')$

Eine Abbildung $h: Q \rightarrow Q'$ mit

- $h(q_0) = q'_0$

heißt Homomorphismus von M nach M'.

Ist h bijektiv, dann ist es ein Isomorphismus.

Minimale DFAs und der Satz von Myhill–Nerode

Es $M = (Q, \Sigma, \delta, q_0, F)$ ein DFA.

$$\sim$$
 definiert vermöge $u \sim v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.

Sei $M' = (Q', \Sigma, \delta', [\epsilon]_{\sim}, F')$ mit

- $Q' = \Sigma^*/\sim$ (Äquivalenzklassen von \sim)
- δ' : $([w]_{\sim}, a) \mapsto [wa]_{\sim}$
- $F' = \{ [w]_{\sim} \mid w \in L(M) \}$

M und M' sind isomorph.

$$h \colon q \mapsto \{ \ w \in \Sigma^* \mid \hat{\delta}(q_0, w) = q \} \text{ ist ein Isomorphismus.}$$

Folgerung: Alle minimalen Automaten sind isomorph:

- M' hängt nur von L und \sim ab.
- $\sim = \equiv_I$, falls M minimal.
- Also hängt M' nur von L ab (der Myhill–Nerode– $\mathbb{D}[A]$)

Minimale DFAs und der Satz von Myhill-Nerode

Frage:

Sind auch kleinste NFAs isomorph?

Gegenbeispiel! Beide akzeptieren $(0+1)^*0(0+1)^*$.

Die Eindeutigkeit des minimalen DFAs ist etwas besonderes!

Andere Konsequenz des Satzes von Myhill-Nerode:

Die Anzahl der Zustände des minimalen Automaten für L ist der Index von \equiv_L .

Zwei wichtige Anwendungen:

- Untere Schranken für die Anzahl der Zustände.
- 2 Beweis, daß eine Sprache nicht regulär ist.

Es sei $L = (a+b)^* a(a+b)^n$ mit $n \in \mathbb{N}$.

NFA für L:

Es sind n + 2 Zustände.

Wähle $N = (a + b)^n$.

Behauptung: Falls $u, v \in N$ mit $u \neq v$, dann $u \not\equiv_L v$.

Beweis:

o.B.d.A.
$$u = wau'$$
, $v = wbv'$. Dann $ua^{n-|u'|} \in L$, $va^{n-|u'|} \notin L$.

Also hat \equiv_L mindestens $|N| = 2^n$ viele Äquivalenzklassen. Jeder DFA der L akzeptiert, hat mindestens 2^n Zustände.

Es sei
$$L = \{ a^n b^n \mid n \ge 0 \}.$$

Wähle $N = a^*$.

Wieder gilt:

$$u, v \in N$$
, $u \neq v$, dann $u \not\equiv_L v$.

Denn: $a^i b^i \in L$, $a^j b^i \notin L$, falls $a^i \neq a^j$.

Index von \equiv_L ist mindestens $|N| = \infty$.

Wäre L regulär, dann hätte der minimale DFA mindestens |N| Zustände.

Das beweist, daß L nicht regulär ist.

Minimale DFAs und der Satz von Myhill-Nerode

Es sei $L = \{ a^p \mid p \text{ ist Primzahl } \}.$

Vorüberlegung:

Es seien $p_1 < p_2$ zwei Primzahlen und $d = p_2 - p_1$.

Betrachte $p_1 + nd$ mit $1 \le n \le p_1$.

Behauptung:

Es gibt ein *n* mit

- $1 \le n \le p_1$
- $p_1 + nd$ ist prim
- $p_1 + (n+1)d = p_2 + nd$ ist nicht prim

Wähle N = L.

Es seien $a^{p_1}, a^{p_2} \in N$ mit $p_1 < p_2$.

Dann ist $a^{p_1}a^{nd} \in L$ und $a^{p_2}a^{nd} \notin L$.

Also hat \equiv_I unendlichen Index.

Minimierung von DFAs

Definition

Es sei $M = (Q, \Sigma, \delta, q_0, F)$ ein DFA. $q_1, q_2 \in Q$ sind *unterscheidbar*, falls

- $q_1 \in F, q_2 \notin F \text{ oder}$
- **3** $\delta(q_1, a)$ und $\delta(q_2, a)$ sind unterscheidbar für ein $a \in \Sigma$.

Lemma

Es sei $M = (Q, \Sigma, \delta, q_0, F)$ ein DFA.

 $q_1, q_2 \in Q$ unterscheidbar genau dann wenn:

Es gibt $w \in \Sigma^*$ mit

- $\hat{\delta}(q_1, w) \in F$, $\hat{\delta}(q_2, w) \notin F$ oder
- $\hat{\delta}(q_2, w) \in F$, $\hat{\delta}(q_1, w) \notin F$.

Beweis.

 $, \Leftarrow$ "Induktion über |w|:

|w|=0: Dann $\hat{\delta}(q_i,w)=q_i$ und damit $q_1\in F$ und $q_2\notin F$ oder umgekehrt.

|w| > 0: Es sei w = au mit $u \in \Sigma^*$ und $a \in \Sigma$.

 $q_1'=\delta(q_1,a)$ und $q_2'=\delta(q_2,a)$ unterscheidbar nach I.V.: $\hat{\delta}(q_1',u)\in F$, $\hat{\delta}(q_2',u)\notin F$ oder umgekehrt.

"⇒" Übungsaufgabe!

Markierungsalgorithmus

```
M := \emptyset:
for((q, p) in Q \times Q)  {
  if (p \in F \land q \notin F) M := M \cup \{(q, p)\};
  if (p \notin F \land q \in F) M := M \cup \{(q, p)\};
do {
  M_{-}old := M:
  for((q, p) \in Q \times Q)
    for (a \in \Sigma)
      if ((\delta(q, a), \delta(p, a)) \in M) M := M \cup \{(q, p)\};
} while(M_old \neq M);
```

Laufzeit: Sehr grobe Abschätzung $O(|Q|^4)$

- Maximal $|Q|^2$ Wiederholungen (jedesmal ein Paar markiert)
- Jede Wiederholung in $O(|Q|^2)$ Schritten

Reguläre Sprachen

Berechnung des minimalen DFA

Beispiel 1

М	Α	В	С	D
Α		×	×	×
В	×			×
С	×			×
D	×	×	×	

Beispiel 2

Schnellerer Markierungsalgorithmus

```
M := \emptyset:
for((q, p) \in Q \times Q)  {
  if (p \in F \land q \notin F) M := M \cup \{(q, p)\};
  if (p \notin F \land q \in F) M := M \cup \{(q, p)\};
for((q, p) \in Q \times Q)
  for (a \in \Sigma) {
    q' := \delta(q, a); p' := \delta(p, a);
    if ((q', p') \in M) {
      M := M \cup \{(q, p)\};
      Füge rekursiv L(q, p) in M ein
    else L(q', p') := L(q', p') \cup \{(q, p)\};
```

Laufzeit: Mit amortisierter Analyse $O(|Q|^2)$

Konstruktion des minimalen DFA

Lemma

Es sei $M = (Q, \Sigma, \delta, q_0, F)$ ein DFA und $p, q \in Q$.

Weiter sei $p = \hat{\delta}(q_0, u)$ und $q = \hat{\delta}(q_0, v)$.

Falls $u \equiv_{L(M)} v$, dann sind u und v nicht unterscheidbar.

Beweis.

Andernfalls gabe es w mit $\hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \notin F$.

Dann gilt auch $\hat{\delta}(q_0, uw) \in F \Leftrightarrow \hat{\delta}(q_0, vw) \notin F$.

Damit ist $uw \in L(M) \Leftrightarrow vw \notin L(M)$.

Das ist ein Widerspruch zu $u \equiv_{L(M)} v$.

Konstruktion des minimalen DFA

Theorem

Verschmelzen wir die nicht unterscheidbaren Zustände eines DFA, erhalten wir den zugehörigen minimalen DFA.

Beweis.

Letztes Lemma:

Falls keine unterscheidbaren Zustände, dann $\sim = \equiv_{L(M)}$.

Satz von Myhill-Nerode: Der Automat ist minimal.

Umwandlung eines Automaten in einen regulären Ausdruck II

Eliminierung von Zuständen

Statt Symbolen: Reguläre Ausdrücke auf Übergängen!

Umwandlung eines Automaten in einen regulären Ausdruck II

Regulärer Ausdruck:

$$(11+00)^*(10+01)(00+11+(01+10)(11+00)^*(10+01))^*$$

Sehr kurz!

