Fundamentos Lógicos de la Programación

Examen Final (03 - 07 - 2008)

Alumno:	D.N.I.:
Alumino.	D.11.1

RESPUESTAS A LAS PREGUNTAS TEST

	a)	b)	c)	d)
Pregunta 1				
Pregunta 2				
Pregunta 3				
Pregunta 4				
Pregunta 5				
Pregunta 6				
Pregunta 7				
Pregunta 8				
Pregunta 9				
Pregunta 10				

Preguntas tipo test

- 1. ¿Cuál o cuáles de las siguientes fórmulas tiene como interpretación I(a) + I(b)I(c)?
 - a) $(a \leftrightarrow b) \leftrightarrow (b \land c)$
 - b) $a \rightarrow (b \leftrightarrow c)$
 - c) $a \leftrightarrow (b \rightarrow c)$
 - c) $(b \rightarrow c) \rightarrow \neg a$
- 2. Señala las consecuencias lógicas que sean ciertas:
 - a) $\{c \to d, a \lor b, \neg(\neg a \to d)\} \models (\neg a \to b) \to (b \land \neg c)$
 - b) $\{\neg b \land \neg d \rightarrow \neg a, \neg a \land b \rightarrow d, e \rightarrow a \land \neg d\} \models (a \rightarrow \neg b) \rightarrow \neg e$
 - c) $\{a \land b \rightarrow c, c \rightarrow a \lor d\} \models b \rightarrow (\neg a \rightarrow c)$
 - d) $\{a \rightarrow b \lor c, d \lor \neg c\} \models (\neg b \rightarrow d) \rightarrow (a \rightarrow d)$
- 3. Sean α , β , γ fórmulas bien formadas para las cuales se conoce que es cierta la consecuencia lógica:

$$\{\alpha \to \beta \land \gamma, \neg \beta, \alpha \lor \gamma\} \models \neg \beta \land \gamma$$

¿Cuál o cuáles es de las siguientes situaciones para una interpretación no puede ocurrir?

- a) $I(\alpha) = 0, I(\beta) = 1, I(\gamma) = 1$
- b) $I(\alpha) = 1, I(\beta) = 1, I(\gamma) = 0$
- c) $I(\alpha) = 1, I(\beta) = 1, I(\gamma) = 1$
- c) $I(\alpha) = 1, I(\beta) = 0, I(\gamma) = 1$
- 4. De entre los siguientes problemas de consecuencia lógica, elige los que sean equivalentes a

$$\Gamma \models (\alpha \rightarrow \neg \beta) \rightarrow \neg (\beta \rightarrow \neg \alpha)$$

- *a*) $\Gamma \cup \{\alpha \rightarrow \neg \beta, \beta\} \models \alpha$
- *b*) $\Gamma \cup \{\alpha \rightarrow \neg \beta\} \models \neg(\beta \rightarrow \neg \alpha)$
- c) $\Gamma \cup \{\alpha, \beta\} \models \neg(\beta \rightarrow \neg\alpha)$
- *d*) $\Gamma \cup \{\beta \rightarrow \neg \alpha\} \models \neg(\alpha \rightarrow \neg \beta)$
- 5. Para el conjunto de cláusulas

$$\Gamma = \{P(x) \lor \neg Q(y, f(b); P(q(x, f(y))); \neg P(q(x, b)) \lor Q(f(a), q(x, b))\}$$

decide qué afirmaciones son ciertas:

- a) g(f(a), f(b)) es un elemento del universo de Herbrand.
- b) $P(b) \vee \neg Q(a, f(b))$ es un elemento del sistema de Herbrand.
- c) P(g(a, f(b))) es un elemento de la base de Herbrand que también pertenece al Sistema de Herbrand.
- d) $P(a) \vee \neg Q(a, f(a))$ es un elemento del sistema de Herbrand.
- 6. ¿Cuáles de las siguientes son formas clausulares de la fórmula $\neg \exists x P(x, a) \lor \forall x P(x, f(x))$?
 - a) $\forall x (\neg P(x, a) \lor P(x, f(x)))$
 - b) $\forall x \forall y (\neg P(x, a) \lor P(y, f(y)))$

- c) $\forall x \forall y (\neg P(y, a) \lor P(x, f(x)))$
- d) $\forall x (\neg P(b, a) \lor P(x, f(x)))$
- 7. ¿En qué casos la tercera fórmula no es una resolvente de las dos cláusulas anteriores?
 - a) $P(x) \lor Q(x,y), \neg Q(b,a), P(b)$
 - b) $P(a) \vee Q(x,y), \neg Q(b,a), P(a)$
 - c) $Q(x, f(x)), \neg Q(z, a), \square$
 - d) $Q(x, f(x)) \vee Q(x, y), \neg Q(a, z), \square$
- 8. Señala las afirmaciones que sean ciertas para la fórmula

$$\neg P(x) \to \forall x P(x)$$

- a) Es contradicción.
- b) No es satisfacible en la estructura $D = \mathbb{Z}_3$ $P = \{0, 2\}$
- c) Es satisfacible y refutable en la estructura $\begin{array}{c} D=\mathbb{Z}_3\\ P=\{0,1\} \end{array}$
- d) Es válida en la estructura $D = \mathbb{Z}_3$ $P = \{0, 2\}$
- 9. Señala cuál o cuáles de los siguientes grupos de literales son unificables:
 - a) $\{Q(x, f(y)); Q(f(x), f(a))\}$
 - b) $\{P(x, g(x, a), f(y)); P(x, g(b, f(y)), f(a))\}$
 - c) $\{Q(x, g(x, y), z); Q(z, g(x, a), f(y))\}$
 - c) $\{S(y, g(f(a), f(f(b))), g(z, f(y))), S(f(x), g(f(z), y), g(a, f(f(f(b)))))\}$
- 10. Elige las afirmaciones que sean verdaderas:
 - a) El conjunto $\{P(x) \lor S(f(y)), R(x,y) \lor S(x), \neg R(x,y) \lor \neg P(x), P(x) \lor \neg S(y)\}$ no es un conjunto de Horn pero puede transformarse en uno de Horn.
 - b) El conjunto $\{\neg P(x), \neg R(x,y) \lor S(x), \neg R(x,y) \lor \neg P(x), P(x) \lor \neg S(y)\}$ es de Horn y por tanto insatisfacible.
 - c) El conjunto $\{P(x) \lor \neg S(f(y)), R(x,y) \lor S(x), \neg R(x,y) \lor \neg P(x), \neg P(x) \lor \neg S(y)\}$ no es de Horn ni puede transformarse en Horn.
 - d) El conjunto $\{P(x) \lor \neg S(f(y)), \neg R(x,y) \lor S(x), \neg R(x,y) \lor \neg P(x), \neg P(x) \lor \neg S(y)\}$ es de Horn y es satisfacible.

Problemas

1. Dada la fórmula

$$\alpha = \forall x (P(x, y) \rightarrow \forall y \exists x P(x, y))$$

- a) Prueba que es satisfacible y refutable.
- b) Da, si es posible, una estructura donde sea válida.
- c) ¿Es satisfacible en cualquier estructura?. Razona la respuesta.

2. Para la fórmula:

$$\forall x \exists y (R(x) \lor P(x,y)) \rightarrow \exists y \forall x (R(x) \lor P(x,y))$$

- a) Calcula una forma prenexa, una forma de Skolem y una fórmula normal clausular.
- b) Determina su carácter, es decir, si es universalmente válida, satisfacible y refutable, o contradicción.
- c) Calcula 5 elementos del universo de Herbrand, 3 de la base de Herbrand y 5 del sistema de Herbrand.
- 3. Encuentra una deducción lineal de la cláusula vacía a partir del conjunto de cláusulas:
 - 1. R(y, f(h(b)))
 - 2. $S(x, f(y)) \vee \neg Q(b, z)$
 - 3. $Q(x,y) \vee \neg R(b,y)$
 - 4. $\neg Q(b,x) \lor \neg T(h(z),b)$
 - 5. $Q(x,z) \vee \neg T(h(b),y)$
 - **6.** $T(y, b) \vee \neg S(h(y), f(y))$