Analysis in einer Variable für das Lehramt

Sommersemester 2024, 3. Termin, 18.12.2022, Roland Steinbauer Prüfungsausarbeitung

Teil 1: Multiple Choice Aufgaben

1 Zentrale Begriffe und fundamentale Ideen

- 1. (Zur Grenzwertdefinition.) Für eine relle Folge $(a_n)_n$ und ein $a \in \mathbb{R}$ gelte $\lim_{n \to \infty} a_n = a$. Welche Aussagen sind dazu äquivalent?
 - (a) [false] In jeder ε -Umgebung von a liegen unendlich viele Folgenglieder a_n .
 - (b) [false] $\exists \varepsilon > 0 \quad \exists N \in \mathbb{N} : |a_n a| < \varepsilon \quad \forall n \geq N.$
 - (c) [true] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} : \quad |a_n a| \leq \varepsilon \quad \forall n \geq N$.
 - (d) [false] Es gibt eine ε -Umgebung von a in der fast alle Folgenglieder a_n liegen.
- 2. (Beschränkte Folgen.) Welche Aussagen sind korrekt?

Eine reelle Folge (a_n) ist beschränkt, falls

- (a) [false] $\exists C > 0 \quad \exists N \in \mathbb{N}: \quad a_n \leq C \quad \forall n \geq N.$
- (b) [false] $\forall n \in \mathbb{N} \quad \exists C > 0 : \quad |a_n| \leq C$.
- (c) [true] $\exists C > 0 : |a_n| \leq C \quad \forall n \in \mathbb{N}.$
- (d) [true] $\exists C > 0 : a_n \leq C \text{ und } a_n > -C \quad \forall n \in \mathbb{N}.$
- 3. (Grenzwert vs. Häufungswerts.) Welche Aussagen sind für reelle Folgen $(a_n)_n$ und $a \in \mathbb{R}$ korrekt?
 - (a) [true] Falls außerhalb jeder ε -Umgebung von a nur endlich viele a_n liegen, dann ist a Häufungswert von (a_n) .
 - (b) [true] Falls außerhalb jeder ε -Umgebung von a nur endlich viele a_n liegen, dann ist a Grenzwert von (a_n) .
 - (c) [false] Falls a der einzige Häufungswert von (a_n) ist, dann ist a auch schon Grenzwert von (a_n) .
 - (d) [false] Ist a Grenzwert von (a_n) , dann ist a auch ein Häufungswert von (a_n) aber es kann noch weitere Häufungswerte geben.
- 4. (Zum Begriff der Reihe.) Welche Aussagen sind korrekt? Sei $(a_n)_n$ eine reelle Folge und $s_k = \sum_{n=0}^k a_n$.

Mit dem Ausdruck $\sum_{n=0}^{\infty} a_n$ bezeichnet man

- (a) [true] die Reihe selbst, also die Folge $(s_k)_k$.
- lich ist
- (b) [true] den Reihenwert $\lim_{k \to \infty} s_k$, falls er endlich ist.
- (d) [false] den Reihenwert $\lim_{n \to \infty} \sum_{k=0}^n s_k$, falls er
- (c) [false] den Reihenwert $\lim_{n o \infty} a_n$, falls er end-
- 5. (Stetigkeit.) Welche Aussagen sind korrekt?

Eine Funktion $f: \mathbb{R} \supseteq D \to \mathbb{R}$ ist stetig in $a \in D$, falls

- (a) [false] $\forall \varepsilon > 0 \quad \exists \delta > 0$ sodass für alle x mit $|x a| < \delta$ schon $|f(x) f(a)| < \varepsilon$ gilt.
- (b) [true] für jede reelle Folge (x_n) in D mit $x_n \to a$ auch $f(x_n) \to f(a)$ gilt.
- (c) [true] $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \text{ mit } |x a| < \delta \quad \Rightarrow |f(x) f(a)| < \varepsilon$.
- (d) [true] es zu jedem (noch so kleinen) ε ein $U_{\delta}(a) \subseteq D$ gibt, sodass alle $x \in U_{\delta}(a)$ nach $U_{\varepsilon}(f(a))$ abgebildet werden (d.h. f(x) in $U_{\varepsilon}(f(a))$ liegt).

1

- 6. (Elementar transzendente Funktionen.) Welche Aussagen sind korrekt?
 - (a) [false] Für die Exponentialfunktion gilt $\exp(x) = \sum_{k=1}^{\infty} \frac{x^k}{k!}$ $(x \in \mathbb{R}).$

- (b) [true] Die allgemeine Potenzfunktion ist definiert als $x^{\alpha} = \exp(\alpha \log(x))$ ($x > 0, \alpha \in \mathbb{R}$).
- (c) [true] Die Logarithmusfunktion ist (auf ihrem gesamten Definitionsbereich $(0,\infty)$) differenzierbar.
- (d) [true] Die Sinusfunktion ist (auf ihrem gesamten Definitionsbereich $\mathbb R$) beschränkt.
- 7. (Stetigkeit und Differenzierbarkeit.) Welche Aussagen sind für eine Funktion $f:I\to\mathbb{R}$ (I ein Intervall) korrekt?
 - (a) [false] Hat (der Graph von) f einen Knick, so ist f nicht stetig.
 - (b) [true] Hat (der Graph von) f einen Sprung, so ist f nicht differenzierbar.
 - (c) [false] Wenn f stetig ist, so hat (der Graph von) f keinen Knick.
 - (d) [true] Hat (der Graph von) f einen Knick, so ist f nicht differenzierbar.
- 8. (Differenzierbarkeit.) Welche Aussagen sind korrekt? Eine Funktion $f:I\to\mathbb{R}$ ist im Punkt ξ im Intervall I differenzierbar, falls
 - (a) [false] die beiden Grenzwerte $\lim_{x\searrow \xi} \frac{f(x)-f(\xi)}{x-\xi}$ und $\lim_{x\nearrow \xi} \frac{f(x)-f(\xi)}{x-\xi}$ existieren.
 - (b) [true] $\lim_{0 \neq h \to 0} \frac{f(\xi + h) f(\xi)}{h}$ existiert und endlich ist.
 - (c) [false] f auf $I \setminus \{\xi\}$ differenzierbar ist und $\lim_{x \searrow \xi} f'(x) = \lim_{x \nearrow \xi} f'(x)$ gilt.
 - (d) [true] der Differenzenquotient von f bei ξ einen endlichen Limes für $x \to \xi$ besitzt.

2 Sätze & Resultate

- 1. (Beschränktheit & Konvergenz von Folgen). Welche Aussagen über reelle Folgen sind korrekt?
 - (a) [false] Es gibt konvergente Folgen die unbeschränkt sind.
 - (b) [false] Jede beschränkte Folge konvergiert.
 - (c) [true] Jede beschränkte Folge hat einen Häufungswert.
 - (d) [false] Es gibt monotone und beschränkte Folgen, die nicht konvergieren.
- 2. (Folgen & Konvergenz.) Welche Aussagen über reelle Folgen sind korrekt?
 - (a) [true] Jede konvergente Folge ist auch eine Cauchy-Folge.
 - (b) [true] Jede streng monoton wachsende und nach oben beschränkte Folge ist auch beschränkt.
 - (c) [true] Es gibt monotone Folgen, die nicht konvergieren.
 - (d) [false] Es gibt unbeschränkte, monotone Folgen, die konvergieren.
- 3. (Zur Reihenkonvergenz.) Welche der folgenden Aussagen über reelle Reihen $\sum_{n=0}^{\infty} a_n$ sind korrekt?
 - (a) [false] $\sum_{n=0}^{\infty} a_n$ konvergiert absolut, falls $|a_n| \leq \frac{1}{n}$ gilt.
 - (b) [false] $\sum_{n=0}^{\infty} a_n$ konvergiert absolut, falls $\frac{a_{n+1}}{a_n} < 1$ gilt.
 - (c) [true] $\sum_{n=0}^{\infty} a_n$ konvergiert, falls alle $a_n \geq 0$ sind und die Folge der Partialsummen $s_m = \sum_{n=0}^m a_n$ beschränkt ist.
 - (d) [true] $\sum_{n=0}^{\infty} a_n$ konvergiert absolut, falls es ein C < 1 gibt und $\frac{a_{n+1}}{a_n} \le C$ gilt.
- 4. (Eigenschaften stetiger Funktionen.) Welche Aussagen sind korrekt?
 - (a) [false] Jede stetige Funktionen auf (0,1) ist beschränkt.
 - (b) [false] Jede stetige Funktion $f:[a,b]\to\mathbb{R}$ hat einen Fixpunkt.
 - (c) [true] Ist f stetig auf (a,b) und gilt $f(x_0) > 0$ für ein $x_0 \in (a,b)$, dann gibt es eine Umgebung $U_{\varepsilon}(x_0)$ von x_0 auf der f(x) > 0 gilt.
 - (d) [true] Stetige Funktionen auf [a, b] sind beschränkt.
- 5. (*Mittelwertsatz.*) Sei $f:[a,b]\to\mathbb{R}$ stetig und differenzierbar auf (a,b). Welche der folgenden Aussagen sind korrekt?

- (a) [true] Es gibt eine Stelle $\xi \in (a,b)$ in der die Tangente parallel zur Sekante durch (a,f(a)) und (b,f(b)) ist.
- (b) [false] Dann ist f auch auf [a,b] differenzierbar, wobei in a und b nur die einseitigen Ableitungen existieren.
- (c) [true] Gilt zusätzlich f(a) = f(b), so gibt es einen Punkt in (a,b) mit waagrechter Tangente.
- (d) [true] Es gibt ein $\xi \in (a,b)$ mit $f(b) f(a) = f'(\xi)(b-a)$.
- 6. (Kurvendiskussion.) Sei $f:(a,b)\to\mathbb{R}$ beliebig oft stetig differenzierbar. Welche der folgenden Aussagen ist korrekt?
 - (a) [true] Falls f in ξ ein lokales Maximum hat, so gilt $f'(\xi) = 0$.
 - (b) [true] Falls für ein $\xi \in (a,b)$ gilt, dass $f'(\xi) = 0$ und $f''(\xi) > 0$, dann hat f in ξ ein Minimum.
 - (c) [false] f kann in ξ ein globales Extremum haben, obwohl $f'(\xi) \neq 0$ gilt.
 - (d) [false] Hat f ein lokales Minimum in ξ , dann ist f knapp links von ξ monoton steigend und knapp rechts von ξ monoton fallend.
- 7. (Zur Integralrechnung.) Welche der folgenden Aussagen sind korrekt? (Mit integrierbar ist immer Riemannintegrierbar gemeint.)
 - (a) [true] Ist $f:[a,b]\to\mathbb{R}$ stetig, dann ist f auch integrierbar auf [a,b].
 - (b) [false] Ist $f:(a,b)\to\mathbb{R}$ stetig, dann ist f auch integrierbar auf [a,b].
 - (c) [true] Für stetige $f:[a,b]\to\mathbb{R}$ gilt

$$\left| \int_a^b f(t)dt \right| \leq \int_a^b |f(t)| dt$$

(d) [true] Für jedes stetige $f:[a,b] \to \mathbb{R}$ gibt es ein $\xi \in [a,b]$ mit

$$\int_{a}^{b} f(t)dt = f(\xi)(b-a).$$

- 8. (Hauptsatz der Differential- und Integralrechnung.) Welche Aussagen sind für eine auf einem Intervall I definierte stetige Funktion $f:I\to\mathbb{R}$ und ein beliebiges $a\in I$ korrekt?
 - (a) [true] f hat eine Stammfunktion.
 - (b) [false] $\frac{d}{dt} \int_{a}^{x} f(t)dt = f(x)$.
 - (c) [true] $F(x) = \int_a^x f(t)dt$ ist eine Stammfunktion von f und F ist stetig differenzierbar.
 - (d) [false] $\frac{d}{dx} \int_{a}^{x} f(x)dx = f(x)$.

3 Beispiele, Gegenbeispiele, Rechenaufgaben

- 1. (Konvergenz von Folgen.) Welche der folgenden Aussagen über Folgen sind korrekt?
 - (a) [false] $\frac{n^2}{7n} \to \frac{1}{7} \ (n \to \infty)$.
 - (b) [true] $\frac{2n^3+4n}{3+n+3n^3} \ \rightarrow \frac{2}{3} \ (n \rightarrow \infty).$
 - (c) [true] $\frac{(-1)^n \, n}{n}$ hat zwei verschiedene Häufungswerte.
 - (d) [true] Falls für eine reelle Folge $(a_n)_n$ für alle n gilt, dass $0 \le a_n \le 1/n$, dann ist (a_n) eine Nullfolge.
- 2. (Konvergenz von Reihen.) Welche der folgenden Aussagen sind korrekt?
 - (a) [true] $\sum_{n=1}^{\infty} \frac{1}{n^n}$ konvergiert nach dem Wurzeltest.

- (b) [true] $\sum_{n=1}^{\infty} (-1)^n \, \frac{1}{n} < \infty$ konvergiert nach dem Leibnitz-Kriterium.
- (c) [false] $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert, weil $\left(\frac{1}{n}\right)_{n\geq 1}$ eine Nullfolge ist.
- (d) [true] $\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n = \frac{3}{2}$.
- 3. (Winkelfunktionen). Welche der folgenden Aussagen sind korrekt?
 - (a) [true] arctan ist beschränkt.
- (c) [true] $\arcsin(0) = 0$.

(b) [false] tan ist beschränkt.

- (d) [true] arccos ist beschränkt.
- 4. (Funktionsgrenzwerte 1) Welche der folgenden Aussagen sind korrekt?
 - (a) [false] $\lim_{x\to\infty} \frac{e^x}{x^3} = 0$.

(c) [true] $\lim_{x \to 0} x \sin(1/x) = 0$.

(b) [true] $\lim_{x \to \infty} \frac{\log(x)}{x^3} = 0.$

- (d) [false] $\lim_{x\to 0} \frac{1}{x} = \infty$.
- 5. (Stetigkeit & Differenzierbarkeit). Welche der folgenden Aussagen sind korrekt?
 - (a) [false] Die Funktion $f:\mathbb{R}\to\mathbb{R}$ mit f(x)=0 ($x\leq 0$) und $f(x)=x^3$ (x>0) ist in $\xi=0$ differenzierbar.
 - (b) [true] f(x)=|x| ($x\in\mathbb{R}$) ist überall stetig und auf $\mathbb{R}\setminus\{0\}$ differenzierbar.
 - (c) [false] $f(x) = \sqrt{x}$ ($x \in [0, \infty)$) ist überall stetig und differenzierbar.
 - (d) [true] Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = 0 ($x \le 0$) und f(x) = x (x > 0) ist in $\xi = 0$ stetig aber nicht differenzierbar.
- 6. (Monotonie.) Wir betrachten die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = 3x^3.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [true] f ist auf ganz \mathbb{R} monoton steigend.
- (b) [true] f ist auf ganz \mathbb{R} monoton steigend.
- (c) [false] f ist auf $(-\infty,0)$ und auf $(0,\infty)$ streng monoton steigend, nicht aber auf ganz \mathbb{R} .
- (d) [false] f'(x) ist überall positiv.
- 7. (Funktionen, vermischtes.) Welche der folgenden Aussagen sind korrekt?
 - (a) [true] $f: \mathbb{R} \to \mathbb{R}, f(x) = x^4$ hat in $\xi = 0$ ein Minumum obwohl f''(0) = 0
 - (b) [true] $f:[0,1]\to\mathbb{R}, f(x)=\sqrt{x}$ hat in x=1 ein (lokales und globales) Maximum, obwohl die Funktion dort nicht f'(1)=0 erfüllt.
 - (c) [false] $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4$ hat in x = 0 ein Minimum, weil f'(0) = 0 gilt.
 - (d) [true] $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4$ hat in x = 0 ein Minimum und daher gilt f'(0) = 0.
- 8. (Integrierbare Funktionen und Integral.) Welche der folgenden Aussagen sind korrekt?
 - (a) [false] $f(x) = \cos(x)$ ist auf $[-\pi, 0]$ streng monoton fallend, und daher dort auch Riemann integrierbar.
 - (b) [true] f(x) = |x| ist stetig und daher auf [-1, 1] auch Riemann integrierbar.
 - (c) [false] Sei f die charakteristische Funktion von $[\frac{1}{4},\frac{3}{4}]$ (d.h. f(x)=1 für $\frac{1}{4} \leq x \leq \frac{3}{4}$ und f(x)=0 sonst), dann ist f Riemann integrierbar auf [0,1] und es gilt $\int_{-1}^{1} f(x) \ dx = 1$.
 - (d) [true] $\int_{0}^{2\pi} \sqrt{1-\sin^2(x)} \ dx = \int_{0}^{2\pi} \cos(x) \ dx = 0.$

Offer Autpober:
Donn pill, lolls beide Folger koncepiven, closs D
Donn pill, folls beide Folpen koncepiven, class
CIM ON E CIM DE.
(b) Toliono. Waishor. Jede beschionle veelle Folge hot einen Hõufungspht (ode õpuirdent ahe kom. 12/6/2
Houfungsphl /ode ophirdent
Bevassahith: (1) Ausdu (OV) viril ein Kondielet für de- Hu peronne:
Crenow used (OV) out clic The A= 1xch 10, >x fin hichstens and to the
Onjevo-11. (rechts von A-Plen liepen hichieus eml. Ville 16.)
Do (on) bushould ist => A + Q and n. u.b. (OV) 7 in/A =: a Notu.A
(2) o ist bisochild thu; do o int A => 0+\xi mill (0.5 => -] x\xi A: x < 0+\xi => lost ollo on < x < 0+\xi => 0 v.S. => 0-\xi d A => 0n > 0-\xi liv undbRvich a
) => 0+8 mai 0.3 =>] XEA: X 2078 => 10,000 02 2 2 1
2 Es sint unelle luicle on in (0-8, 0+8) => A HP.
(C) (On), heill CF, folls YESO TNEN & n,m2N: 104-0m1 CE
Alle konungenter veeller Folge sind CF, do hu D.B On= = 15/ CF
[2] (0) Robionole Flit sind ahvall sleby nod clem, Sochos basystem". Sie beslehe nombis own slebje Booskehen (Samme v. Polent flit mil seelle Koe Hitienten in Joble & Nounce) und che Stebisticil respelliet die Vertniphen +
Sie beslehe nombil our slehje Booskenen (Samme v. Polent flit mil recle
Loc Histories in Joble & Nounce) und che Shisteil respellet et
Vernipfy +, ., :
(b) f(x)= x ist in \{=0 mill obiffhor, clean do Differe probat hole leiner; genous
leien Unes; genour
$\frac{4(0+h)-f(0)}{h} = \frac{ h }{h} \text{and} \lim_{h \to 0} \frac{ h }{h} = -1 \text{ohe lim} \frac{ h }{h} = 1.$

