Теоретические модели вычислений ДЗ №2

А-13а-19 Сабитов Алексей

5 мая 2022 г.

1 Для следующих языков постройте КС-грамматику

1.1 $L = \{\omega \in \Sigma * | \mathbf{w} \text{ содержит подстроку } aa \}$

$$S \Rightarrow aS \mid bS \mid cS \mid aaT$$
$$T \Rightarrow aT \mid bT \mid cT \mid \lambda$$

1.2 $l = \{\omega \in \Sigma * | \mathbf{w} \text{ не палиндром}\}$

$$S \Rightarrow aS(a|b|c) \mid bS(a|b|c) \mid cS(a|b|c) \mid aTb \mid aTc \mid bTa \mid bTc \mid cTa \mid cTb$$
$$T \Rightarrow a \mid b \mid c \mid aT \mid bT \mid cT \mid \lambda$$

1.3 Алфавит: $\sum \{\emptyset, N, `\{`, `\}`, \cup\}$

Постройте грамматику для языка $L = \{\omega \in \sum^* | \omega$ - синтактически корректная строка, обозначающая множество $\}$

Грамматика:

$$S \Rightarrow A \mid A u S \mid \{A u S\}$$

$$A \Rightarrow B \mid \{\} \mid \{A\} \mid \{A, A\}$$

$$B \Rightarrow C, B \mid C$$

$$C \Rightarrow N, O \mid O, N \mid N \mid O$$

2 упражнение

В алфавите $\Omega=\{1,+,=\}$ мы можем записать выражения для суммы чисел x+y=z. Рассмотрим язык $A=\{1^m+1^n=1^{m+n}:\ |:\ m,n\in N\}$

2.1 Докажите, что язык A регулярный (построением) или нерегулярный (через лемму о накачке)

Будем доказывать, что язык нерегулярный:

- Фиксируем n' = m + n + 2
- Возьмем $w = 1^m + 1^{m+1} = 1^{m+n+1}$
- $|w| = 2(m+n) + 2 \ge n$
- Рассмотрим разбиение:

$$\begin{split} x &= \{1^m + \}; \ y = \{1^{n+1}\} \\ |xy| &= m+n+1 \le n'; \ |y| = n+1 \ge 1 \\ z &= \{=1^{m+n+1}\} \end{split}$$

• $\forall k \geq 0: xy^kz \in L$ - не выполняется, так как при k=0 or $k \geq 2 \Rightarrow 1^m+1^{k(n+1)}=1^{m+n+1} \Rightarrow m+kn+k \neq m+n+1$. Следовательно, язык нерегулярный.

2.2 Постройте КС-грамматику для языка A, показывающую, что A - контекстно-свободный

- $S \Rightarrow + = | +1 = 1 | 1+ = 1 | 1+1T11 | 1S1$
- $T \Rightarrow = |1T1|$

3 упражнение

3.1 С поводком

Пусть $D_1 = \{ \omega \in \Omega^* \mid \omega \text{ описывает последовательность ваших шагов и шагов вашей собаки на прогулке с поводком <math>\}$.

1. Докажите, что язык D_1 регулярный (построением) или нерегулярный (через лемму о накачке)

Построим ДКА, тем самым, покажем, что язык регулярный:

- 2. Постройте КС-грамматику для языка D_1 , показывающую, что D_1 контекстно-свободный
 - $S \rightarrow hT \mid dR \mid \lambda$
 - $T \rightarrow hdT \mid dS$
 - $R \rightarrow dhR \mid hS$

3.2 Без поводка

Пусть $D_2 = \{ \omega \in \Omega^* \mid \omega$ описывает последовательность ваших шагов и шагов вашей собаки на прогулке без поводка $\}$.

1. Докажите, что язык D_2 регулярный (построением) или нерегулярный (через лемму о накачке)

С помощью леммы о накачке покажем, что язык нерегулярный:

• Фиксируем n'

- Берем $w = h^n d^n$
- $|w| = 2n \ge n$
- Рассмотрим разбиение:

$$\begin{split} x &= h^i \\ y &= h^j \\ |xy| &= i+j=n; \ j>0 \\ z &= h^{n-i-j}d^n \end{split}$$

• $\forall k \geq 0: xy^kz \in L$ - не выполняется, так как при $k \geq 2 \Rightarrow h^{i+kj+n-i-j}d^n \Rightarrow h^{n+j(k-1)}d^n$

Это значит, что человек и собака не будут в одной точке.

Делаем вывод, что язык нерегулярный.

- 2. Постройте КС-грамматику для языка D_2 , показывающую, что D_2 контекстно-свободный
 - $S \rightarrow hSdS \mid dShS \mid \lambda$

4 упражнение

5 упражнение

5.1 Привести алгоритм построения НКА по праволинейной грамматике. Доказать, что с помощью алгоритма мы можем получить только слова из языка грамматики. Проиллюстрировать алгоритм на грамматике:

$$A \Rightarrow aB \mid bC$$

$$B \Rightarrow aB \mid \lambda$$

$$C \Rightarrow A \mid aD \mid bC$$

$$D \Rightarrow aD \mid bD \mid \lambda$$

Алгоритм:

- Множество вершин НКА состоит из нетерминалов грамматики и, возможно, еще одной новой вершины F, которая объявляется заключительной.
- Каждому правилу вида А⇒аВ в автомате соответствует дуга из вершины А в вершину В, помеченная символом а. Каждому правилу вида А⇒а соответствует дуга из вершины А в вершину F, помеченная символом а. Других дуг нет.
- Начальной вершиной автомата является вершина, соответствующая начальному символу грамматики. Заключительными являются новая вершина F, если она использовалась на шаге 2, и каждая вершина A, такая что для нетерминала A в грамматике есть правило $A \Rightarrow \lambda$

Допустим, что наш алгоритм строит автомат, который допускает слова, которых нет в языке. Тогда существует переход от одной нетерминальной вершины к другой, который не допускает язык.

Следовательно, есть переход переход от одной нетерминальной вершины к другой, который не допускает язык \Rightarrow должно было быть соответствующее правило, но его нет.

Делаем вывод, что алгоритм допускает только слова из языка

5.2 Привести алгоритм построения КС грамматики по НКА. Доказать, что с помощью алгоритма мы можем получить только слова из языка НКА. Проиллюстрировать алгоритм на грамматике:

Алгоритм:

- Нетерминалами грамматики будут вершины автомата, терминалами пометки дуг
- Для каждой дуги из вершины A в вершину B, помеченная символом а в грамматику добавляется правило ARightarrowaB. Для каждой заключительной вершины B в грамматику добавляется правило $B\Rightarrow \lambda$
- Начальным символом будет нетерминал, соответствующий начальной вершине.

Доказательство аналогично

$$Q_0 \Rightarrow aQ_0|aQ_1|Q_3$$

$$Q_1 \Rightarrow aQ_1|aQ_2|Q_2|bQ_4$$

$$Q_2 \Rightarrow aQ_2|bQ_2|aQ_5|\lambda$$

$$Q_3 \Rightarrow bQ_0|\lambda$$

$$Q_4 \Rightarrow Q_5|\lambda$$

$$Q_5 \Rightarrow aQ_5|bQ_2$$