# Gépi tanulás

Pohl Gábor

pohl@itk.ppke.hu

2007. április 11.

### **Tartalom**

- Gépi tanulás
  - mi? miért?
- Módszerek osztályozása
  - lényegi különbségek
- Fontos fogalmak
  - mit tanuljunk, hogyan tanuljunk és mennyire jó az eredmény témakörökben
- Hogyan használjuk a gépi tanulómódszereket?
- Néhány módszer

### Távolról indulva: tanulás

- tanulás
  - ismeret, készség, tudás elsajátítása

### Gépi tanulás

- túl általánosan:
  - a gép korábbi tapasztalataiból szerez/épít tudást
- mi a gépi tanulás? (mérnöki szempontból)
  - direkt algoritmus helyett a feladat megoldását gépi algoritmusokra bízzuk

### Gépi tanulás rendszerszemlélettel

rendszer



- f() nem specifikált
- gépi módszerekkel határozzuk meg

### Miért?

- nem ismerünk direkt módszert
- az ismert direkt módszerek túl költségesek, olcsóbb közelítés kell

# Alapvető feladattípusok

- függvényapproximáció
  - az értékkészlet általában folytonos
  - az értékek között rendezési reláció (<)
- (minta) osztályozás
  - az értékkészlet diszkrét (osztályok)
  - az egyes osztályok között általában nincs rendezési reláció
    - pl. főnév, melléknév, ige, ...

# A módszerek osztályozása a tanítás módja szerint

- induktív tanulás minták alapján
  - felügyelt (supervised) tanulás
    - bemenet-kimenet párok a tanítóminták
  - nemfelügyelt (unsupervised) tanulás
    - csak bemeneti minták
    - hasznossági függvény
- deduktív tanulás
  - tudásbázisban lévő logikai állításokból újakat vezet le, majd ezek helyességét ellenőrzi
- megerősítéses tanulás

• ...



### A módszerek osztályozása a rendszer belső modellje alapján

- Sztochasztikus
  - a kimenetet valószínűségi eloszlások határozzák meg
- Szimbolikus / logikai modell
  - szimbólumokat és kapcsolataikat leíró, logikai értelmezésre alkalmas szabályokat tartalmazó modell
- Szubszimbolikus modell
  - a rendszer nem a szakterület szemantikájának megfeleltethető szimbólumokat "manipulálja"
  - a reprezentáció a szimbólumoknál alacsonyabb szintű.
    - pl. neurális hálók

# Fontos fogalmak

### tulajdonság / jegy / mező (feature / attribute / field)

- a tanítómintából kinyert, a modell bemenetét képező értékek:
  - nominális
    - "galamb", "sas", "keselyű"
  - lineáris
    - sorba rendezhető diszkrét/folytonos értékek, pl. egész számok vagy a [0-1] intervallum értékei),
  - fa struktúrába rendezhető
    - pl. gerinces/emlős/...

# Elfőfeldolgozás

- a tanítómintákat a tanulóalgoritmus számára megfelelő formára kell hozni
- kérdés, hogy milyen jegyeket (*feature*) válasszunk az algoritmus bemenetéül?
  - a jegyek függetlenek?
- hogyan normalizáljuk az értékeket?

### **Tanulás**

- taníthalmaz = {tanítópontok}
- bootstrapping
  - a tanítóminták kis részével tanítunk többször egymás után, a kapott modellek összehasonlíthatók, interpolálhatók
- held-out data
  - a tanítóminták egy kis részét félretesszük a modell optimalizálására
- túltanulás (overlearning / overtaraining / overfitting)
  - A rendszer a minták speciális tulajdonságait tanulja meg
- learning bias

# Kiértékelés (1)

- külön kiértékelőhalmaz (testing set)
- keresztkiértékelés (cross-validation)
  - a minták halmazát előre meghatározott arányban többször véletlenszerűen tanító és kiértékelő halmazokra bontjuk
  - az egyes esetekben külön elvégezzük a tanítást és a kiértékelést, az eredményeket átlagoljuk
  - a megfelelő tanulómódszer kiválasztására

### Kiértékelés (2)

- pontosság (precision)
- fedés (recall)
- F-mérték (F-measure)

$$F = 2PR/(P+R)$$

• tévesztési mátrix (confusion matrix)

|                |            | az osztályozó szerint |            |          |
|----------------|------------|-----------------------|------------|----------|
|                |            | kutya (5)             | macska (8) | egér (8) |
| valójá-<br>ban | kutya (6)  | 5                     | 1          | 0        |
|                | macska (5) | 0                     | 5          | 0        |
|                | egér (10)  | 0                     | 2          | 8        |

# Néhány módszer(család)

### Döntési fák

- a tanulás eredménye egy fa
  - csomópontokban döntéseknek megfelelő ágak
  - barkohba játékhoz hasonlóan
- szimbolikus modell
- bináris osztályozó

### Neuron/nemlineáris hálók

- szubszimbolikus módszerek
- elemi neuronok + súlyozott élek → hálózat
- minimum két réteg
- többféle hálótípus és tanítási módszer:
  - MLP, RBF, CMAC
  - backprop, LMS, ...)
- lehetnek visszacsatolt és visszacsatolás nélküli rétegek

### Bayes hálók (1)

- · valószínűségi háló
  - az adatokról alkotott hipotézisek között valószínűségi összefüggéseket határoz meg a modell
- SPAM szűrés, MS Windows nyomtató hibakeresés, orvosi diagnosztika, ...

$$\Pr(X_1,\ldots,X_N) = \prod_{i=1}^N \Pr(X_i \mid \text{parents}(X_i)).$$

RAIN

0.2

F

0.6

| i    | SPRINKLER |      |  |  |
|------|-----------|------|--|--|
| RAIN | Т         | F    |  |  |
| F    | 0.4       | 0.6  |  |  |
| Т    | 0.01      | 0.99 |  |  |
|      |           |      |  |  |



|           |      | GRASS WET |      |
|-----------|------|-----------|------|
| SPRINKLER | RAIN | Т         | F    |
| F         | F    | 0.0       | 1.0  |
| F         | Т    | 0.6       | 0.2  |
| Т         | F    | 0.9       | 0.1  |
| Т         | Т    | 0.99      | 0.01 |
|           |      |           |      |

# Rejtett Markov-modell (1)

- A modellezett rendszert Markovfolyamatnak tekintjük
  - egy olyan sorozatot modellezünk, ahol a jövő csak a jelenen keresztül függ a múlttól
  - a folyamatot állapotátmenetek sorának tekintjük, az egyes lehetséges átmenetekhez valószínűségeket rendelünk.
- Rejtett Markov-modellben az állapotokat közvetlenül nem lehet megfigyelni, viszont megfigyelhetők az állapottól függő változók (valószínűségi összefüggés).



$$X = x(0), x(1), ..., x(L-1)$$
, rejtett állapotok  $Y = y(0), y(1), ..., y(L-1)$ , megfigyelhető kimenetek

$$P(Y) = \sum_X P(Y \mid X) P(X)$$



# Gépi tanulás alkalmazása

- tanító/kiértékelőminták készítése
  - tulajdonságok (feature) kiválasztása, a automatikus kinyerésükre program készítése
- tanulóalgoritmusok kiválasztása
- kísérletek a különböző algoritmusokkal
  - keresztkiértékelés
- a legjobb modell alkalmazása
- kísérletező GUI-val rendelkező tanulórendszerek
  - WEKA, YALE