Notions de programmation

I3 - Chapitre 1

I. Critères de qualité d'un bon programme

1. lisible

5. portable

2. fiable

- 6. correct
- 3. maintenable
- 7. efficace (complexité)
- 4. réutilisable 8. faire face à des contraintes économiques

II. Méthodologie et cycle en V

- **Spécification**: Analyse descendante: abstraire, décomposer, combiner.
- Conception préliminaire : Choix d'un paradigme, traduction des fonctions.
- Conception détaillée : Détail des fonctions en pseudo-code.

III. Complexité

1. Notations

Taille du problème : n Nombre d'opérations : T(n) Taille mémoire : M(n)

O(f(n)) : au pire $\Omega(f(n))$: au mieux $\theta(f(n))$: en moyenne

2. Calcul

Schéma A	$O(A^0)$	$\Omega(A^\Omega)$
Instruction de base	0(1)	Ω(1)
Séquence A_1, A_2, \dots, A_n	$O\left(max\left(A_1^O,A_2^O,\ldots,A_n^O\right)\right)$	$\Omega\left(max\left(A_1^{\Omega},A_2^{\Omega},\ldots,A_n^{\Omega}\right)\right)$
A_1 ou A_2	$O\left(max\left(A_{1}^{O},A_{2}^{O} ight) ight)$	$\Omega \Big(minig(A_1^\Omega,A_2^\Omegaig) \Big)$
pour avec n itérations		$\Omega(n \times A^{\Omega})$
tant que n itérations max.	$O(n \times A^0)$	Ω(1)
répéter n itérations max.		$\Omega(A^\Omega)$

v1