

MSML610: Advanced Machine Learning

Bayesian Statistics

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References:

- AIMA (Artificial Intelligence: a Modern Approach)
 - Chap 12, Quantifying uncertainty
 - Chap 13: Probabilistic reasoning
 - Chap 14: Probabilistic reasoning over time

Quantifying uncertainty

- Quantifying uncertainty
- Probabilistic reasoning

Logic-based AI Acting Under Uncertainty

- Real-world agents face uncertainty from:
 - Partial observability (agent can't see the full state)
 - Non-determinism (actions don't always have predictable outcomes)
 - Adversarial conditions (other agents may interfere)
- In logic-based AI systems:
 - Actions are represented using rules like:
 - "If preconditions P hold, then action A causes effect E"
 - Example:
 - "If I turn the car key, the engine starts"
 - But: the battery might be dead, there's no fuel, the starter is broken, etc.
- Logical agents approach
 - Use a **belief state**: set of all possible current world states
 - Construct contingent plans that handle every possible sensor report
 - Must consider all possible explanations, even unlikely ones
 - Plans become large and complex
 - No guaranteed plan may exist, yet action is required

Causal and exhaustive augmentation

- To use propositional logic, augment the left-side of $X \implies Y$ to make it:
 - 1. Causal: identify true causal-effect relationships
 - 2. Exhaustive: identify all possible conditions leading to the outcome
- Logical qualification problem: trying to enumerate all the preconditions necessary for an action to succeed

Problems

- 1. Laziness: too much work to create all possible rules
- 2. Theoretical ignorance: lack of understanding
 - Science doesn't always have a complete theory of the domain
 - E.g., medical science doesn't know all the rules
- 3. Practical ignorance: lack of facts
 - Even if we knew all the rules, we might not have all the information needed
 - E.g., not all necessary tests can be run for a particular patient
- This led to expert systems failure and Al winter (mid 1980s, 1990s)
 - The real world is complex and open-ended
 - Logical rules can't capture all necessary and sufficient conditions

Failure of logic-based AI: wet grass example

- Consider the propositions:
 - Rain = "it rains"
 - WetGrass = "the grass is wet"
 - Cover = "there is a protective cover over the grass"
 - Evaporate = "the water evaporates quickly"
 - Sprinkler = "the sprinkler system is on"
 - Dew = "there is morning dew"
- Rain ⇒ WetGrass is not true in general
 - If it rains but there is a cover over the grass, the grass will not be wet
 - If it rains but there is high temperature, the wet grass might dry quickly
- WetGrass ⇒ Rain is not true in general
 - The grass could be wet because of a sprinkler system
 - The grass could be wet because of morning dew
- Identify all exceptions, alternative explanations, and dependencies
 - 1. Causal
 - Rain ⇒ (WetGrass ∨ (Cover ∨ Evaporate...): "if it rains and there is no other source of water, the grass will be wet"
 - 2. Exhaustive
 - WetGrass
 ⇔ (Rain ∨ (Sprinkler ∨ Dew . . .): "if it rains and there is no protective cover, the grass will be wet"

Acting Under Uncertainty: solution

- We can't use propositional logic under uncertainty
 - Need approaches (like probabilistic reasoning) that handle uncertainty and partial knowledge
- Acting under uncertainty requires combining:
 - Probabilities: for possible outcomes
 - Utilities: for evaluating desirability of each outcome
- Key idea:
 - Rational choice = plan that maximizes expected utility
 - Evaluate plans based on performance on average, given known information
 - Even if success is not guaranteed
- Rational decision depends on:
 - Performance measure: combines goals like punctuality, comfort, legal compliance
 - Belief: agent's internal estimate of outcome likelihoods

Probability and knowledge

- The confusing part is that there no uncertainty in the actual world
 - E.g., the grass is wet, but either it has rained or not
- Probabilities relate to a knowledge state, not the real world
 - Updating knowledge can change probability statements
- E.g., updating belief about wet grass and rain:
 - Initially, we observe wet grass, and from past data we know that:
 - Pr(Rain|WetGrass) = 0.8: 80% chance it rained if grass is wet
 - Learn new information:
 - Sprinkler was on
 - Wet grass could be due to the sprinkler, not rain
 - Belief changes: Pr(Rain|WetGrass) = 0.4
 - Further observe:
 - · Weather report says there was no rain
 - · Certain it did not rain, despite wet grass
 - Overrides prior evidence: Pr(Rain|WetGrass) = 0

Probabilistic reasoning

- Quantifying uncertainty
- Probabilistic reasoning

Full joint probability distribution

- Consider a set of random variables X_1, X_2, \ldots, X_n
- The full joint probability distribution assigns a probability to every possible world:

$$\Pr(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

- A possible world = a particular assignment of values to all variables
- Can answer any probabilistic query about the domain

Cons

- Size grows exponentially k^n with the number of variables n and size k
- Impractical for real-world problems with many variables
- Manually specifying each entry is tedious
- Independence and conditional independence simplify modeling
 - In the real world, many variables are not fully dependent on all others
 - Reduces the number of parameters needed
 - Makes compact and structured representations possible
 - E.g., factorized probabilistic models, Bayesian networks

Independence of Random Variables: Definition

Two random variables X and Y are independent iff:

$$Pr(X, Y) = Pr(X) \cdot Pr(Y)$$

- Equivalently, knowing Y tells us nothing about X, Pr(X|Y) = Pr(X)
- E.g.,
 - The events "coin flip result" and "weather" are independent
 - Pr(Coin=Heads|Weather=Rainy) = Pr(Coin=Heads)
- Independence reduces the number of parameters needed to model a system
 - Allows factorization of joint distribution, if all variables are mutually independent, e.g.,

$$\Pr(X_1, X_2, X_3) = \Pr(X_1) \cdot \Pr(X_2) \cdot \Pr(X_3)$$

Conditional Independence: Definition

 Two random variables X and Y are conditionally independent given a random variable Z iff knowing Z makes X and Y independent:

$$Pr(X, Y|Z) = Pr(X|Z) Pr(Y|Z)$$

- E.g.,
 - X = "it is raining today"
 - Y = "if a person is carrying an umbrella"
 - Z = "the weather forecast"
 - Without Z, there is a relationship between X and Y (X and Y are not independent)
 - Given Z, rain X may not directly influence whether a person carries an umbrella Y
 - Thus, X and Y can be conditionally independent given Z
- True independence is rare; conditional independence is more common and useful
- Conditional independence simplifies probabilistic models
 - It reduces the joint conditional distribution to the product of individual conditional distributions

Conditional Independence: Example

 Two events can become independent once we know a third event

Example:

- Fire: "there is a fire"
- Toast: "someone burned toast"
- Alarm: "the alarm rings"
- Call: "a friend calls to check on you"

Dependencies:

- Alarm depends on Fire or Toast
- Call depends on whether Alarm rings

Conditional independence:

- Pr(Call | Alarm, Fire) = Pr(Call | Alarm)
- Once we know the alarm rang, the specific cause doesn't affect whether the friend calls

• Interpretation:

- Call is conditionally independent of Fire given Alarm
- Knowing the alarm rang "blocks" the path of influence from Fire to Call

Conditional Independence: Garden Example

- Garden world with Rain, Sprinkler, and WetGrass
- Is Pr(Rain|Sprinkler) = Pr(Rain)?
 - ullet No: if the sprinkler is on, it's less likely it rained
 - Rain and Sprinkler are not independent
- Is Pr(Rain|Sprinkler, WetGrass) =

Pr(Rain|WetGrass)?

- Yes: knowing the grass is wet, whether the sprinkler was on tells us nothing more about the rain
- Rain and Sprinkler are conditionally independent given WetGrass

• Interpretation:

- Without WetGrass: Rain and Sprinkler affect each other because they both explain WetGrass
- With WetGrass: once WetGrass is observed, the "explaining away" effect occurs

· "Explaining away" occurs when

- Two variables (causes) independently influence a third variable (effect)
- Observing the effect creates a dependence between the causes

Bayesian Networks: Definition

- Aka:
 - "Bayes net"
 - "Belief networks"
 - "Probabilistic networks"
 - "Graphical models" (somehow a broader class of statistical models)
 - "Causal networks" (arrows have constraints that have special meaning)

Formal definition (syntax)

- A Bayesian network is a Directed Acyclic Graph (DAG)
- 1. **Nodes** X_i correspond to random variables (discrete or continuous)
- 2. **Edges** connect nodes $X \to Y$ representing direct dependencies among variables
 - We say that X = Parent(Y)
 - The edges form a direct acyclic graph (DAG)
- 3. Each node X_i is associated with a **conditional probability**:

$$Pr(X_i|Parents(X_i))$$

quantifying the effect of the parents on the node

- CPD specifies the probability of the node given its parents
- If a node has no parents, it has a prior probability

Bayesian network: intuition

- Bayesian networks can represent:
 - Any full joint distribution
 - Often very concisely, representing dependencies among variables
- The topology of the network (nodes and edges) specifies conditional independence relationships
 - E.g., X → Y means "X has a direct influence on Y", i.e., "X relates to Y" (not necessarily "causes")
 - Domain experts can decide what relationships exist among domain variables, determining the topology
- In the Bayesian network graph:
 - Nodes are directly influenced by their parents
 - Nodes are indirectly influenced by all their ancestors
- Conditional probabilities can be specified/estimated

Bayesian Networks: Wet Grass Example

- Consider a world with 5 variables
 - Rain, Sprinkler, WetGrass, StockMarketUp, Weather
 - Weather affects both Rain and Sprinkler
 - WetGrass is affected by both Rain and Sprinkler
 - StockMarketUp is independent of all the other variables
- Independence assumptions:
 - Rain and Sprinkler are conditionally dependent given Weather
 - Rain and Sprinkler are conditionally independent given WetGrass, but only if Weather is not observed
 - StockMarketUp is completely independent of all other variables

Bayesian Networks: Burglar Example

- (Famous example from Judea Pearl)
- There is an Alarm system installed at a home in LA
 - Fairly reliable at detecting Burglary
 - Also responds to minor Earthquakes (false positive)
- You have two neighbors, John and Mary, who will Call you when they hear the Alarm
 - John:
 - Almost always Calls when he hears the alarm
 - Sometimes confuses telephone ringing with the Alarm and Calls (false positive)
 - Mary:
 - Misses the alarm 30% of the cases (false negative)

Bayesian networks: burglar example (2/3)

- The structure of the graph shows that:
 - Burglary and Earthquake affects the event Alarm
 - JohnCalls and MaryCalls depend only on the Alarm, and not on Burglary and Earthquake

Bayesian networks: burglar example (3/3)

- The probability of Burglary is 0.001
- The probability of Earthquake is 0.002
- Compute Pr(Alarm) = f(Burglary, Earthquake) since events are independent

Burglary	Earthquake	P(Alarm B,E)
True	True	0.70
True	False	0.01
False	True	0.70
False	False	0.01

• JohnCalls and MaryCalls are represented by:

Alarm (A)	P(JohnCalls .)
True	0.90
False	0.05

Alarm (A)	P(MaryCalls .)
True	0.70
False	0.01

Conditional Probability Table

- Aka CPT
- Each row contains the conditional probability of the node under a conditioning case (i.e., a possible combination of the values for the parent nodes)
 - Natural for discrete variables, but extendable to continuous variables
- Note: a conditional probability table summarizes an infinite set of circumstances in the table
 - E.g., MaryCalls could depend on her being at work, asleep, passing of a helicopter, . . .

Conditional probability table: examples

Alarm (A)	P(JohnCalls .)	P(-JohnCalls .)
True	0.90	0.10
False	0.05	0.95

Alarm (A)	P(JohnCalls .)
True	0.90
False	0.05

Ī	P(Burglary)
	001

Burglary	Earthquake	P(Alarm .)
Т	Т	.95
T	F	.94

- The sum of probabilities of the actions must be 1
- Removing the redundancy
- A node without parents has an unconditional probability
- A node with k parents has 2^k possible rows in the table

Bayesian Networks: Semantics

There are two equivalent semantic interpretations:

1. Joint Distribution View

- The network encodes the joint probability distribution over all variables
- Computed as the product of local conditional probabilities:

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i\mid \mathsf{Parents}(X_i))$$

· Helps in constructing models and understanding overall behavior

2. Conditional Independence View

- The structure encodes conditional independency between variables
- A variable is conditionally independent of its non-descendants given its parents
- Useful for efficient inference and reasoning

Chain rule for a joint distribution

- A joint distribution can always be expressed using the chain rule for any:
 - Set of RVs
 - Ordering of the RVs
- We express one variable conditionally to the remaining ones

$$Pr(x_1,...,x_{n-1},x_n) = Pr(x_n|x_{n-1},...,x_1) Pr(x_{n-1},...,x_1)$$

 Then we apply the same formula recursively, until we get an unconditional probability

$$Pr(x_{1},...,x_{n})$$

$$= Pr(x_{n}|x_{n-1},...,x_{1}) Pr(x_{n-1},...,x_{1})$$

$$= Pr(x_{n}|x_{n-1},...,x_{1}) Pr(x_{n-1}|x_{n-2},...,x_{1}) Pr(x_{n-2},...,x_{1})$$
...
$$= Pr(x_{n}|x_{n-1},...,x_{1}) Pr(x_{n-1}|x_{n-2},...,x_{1}) Pr(x_{n-2}|x_{n-3},...,x_{1})... Pr(x_{2}|x_{1}) Pr(x_{1})$$

$$= \prod_{i=1}^{n} Pr(x_{i}|x_{i-1},...,x_{1})$$

Probability of a statement from a Bayesian network

- The full joint distribution represents the probability of an assignment to each variable $X_i = x_i$: $\Pr(x_1, ..., x_n) = \Pr(X_1 = x_1 \land ... \land X_n = x_n)$
- To evaluate a Bayesian network
 - Sort the nodes in topological order (there are several orderings consistent with the directed graph structure)
 - Use the chain rule with the topological ordering:

$$Pr(x_1,...,x_n) = \prod_{i=1}^n Pr(x_i|x_{i-1},...,x_1)$$

 Since the probability of each node is conditionally independent of its predecessors (all nodes) given its parents

$$Pr(X_i|X_{i-1},...,X_1) = Pr(X_i|Parents(X_i))$$

Express the joint probability in terms of the CPTs:

$$\Pr(X_1,...,X_n) = \prod_{i=1}^n \Pr(X_i|Parents(X_i))$$

Probability of a statement from a Bayesian network: example

- Given Pearl LA example, we want to compute the probability that:
 - The alarm has sounded: Alarm
 - Neither a burglary nor an earthquake has occurred: ¬Burglary ∧ ¬Earthquake
 - Both John and Mary call: JohnCalls, MaryCalls
- The solution is to compute:

```
Pr(JohnCalls, MaryCalls, Alarm, \neg Burglary, \neg Earthquake)
```

 $= \Pr(JohnCalls|Alarm) \Pr(MaryCalls|Alarm) \Pr(Alarm|\neg Burglary \land \neg Earthquake)$

Constructing a Bayesian network

- Gather domain knowledge
 - Identify key variables and their potential interactions
 - Understand the problem context and objectives
- Determine the random variables required to model the problem X_i
 - List all relevant random variables necessary to describe the system
- Order the nodes according to the dependencies implied by cause-effects
 - Determine causal relationships between variables
 - The Bayesian network is minimal when nodes are ordered by cause-effect
- For each node, pick the minimum set of parents $Parents(X_i)$
 - Select parents that directly influence the node X_i
 - · Avoid redundant connections, ensuring the network remains minimal
 - Add edges to represent the dependencies
- Estimate the conditional probability CPTs $Pr(X_i|Parents(X_i))$ for each node
 - Gather data or expert opinion to estimate probabilities
 - Use statistical techniques for parameter estimation if necessary
- Validate the network structure with domain experts
 - Ensure that the network is a Directed Acyclic Graph (DAG)
 - E.g., test the network by predicting known outcomes and comparing with actual data

Bayesian networks

- Bayesian networks are a representation with several interesting properties
 - Complete
 - Encode all information in a joint probability
 - Consistent (non-redundant)
 - In a Bayesian network, there are no redundant probability values
 - One (e.g., a domain expert) can't create a Bayesian network violating probability axioms
 - Compact (locally structured, sparse)
 - Each subcomponent interacts directly with a limited number of other components
 - Typically yields linear (not exponential) growth in complexity
 - Sometimes we ignore real-world dependency to keep the graph simple

Fully connected systems

- Domains where each variable is influenced by all others
- The Bayesian network is fully connected, with complexity like the joint probability

Ordering of nodes

 The complexity of the Bayesian network depends on the choice in ordering the nodes

Causal vs diagnostic models

- A causal model goes from causes to symptoms
 - Often simpler (i.e., fewer dependencies) and "easier" to estimate
- A diagnostic model goes from symptoms to causes
 - $\bullet \; \; \mathsf{E.g.}, \; \textit{MaryCalls} \rightarrow \textit{Alarm}, \; \mathsf{or} \; \textit{Alarm} \rightarrow \textit{Burglary}$
 - These relationship are:
 - Tenuous
 - Difficult to estimate (or unnatural)

Markov blanket of a node

- The Markov blanket of a node X_i consists of:
 - The parents of X_i (red nodes), i.e., the nodes that influence X_i
 - The children of X_i (green nodes), i.e., the nodes that are directly influenced by X_i
 - The spouses of X_i (blue nodes), i.e., the nodes that are parents of the children nodes, i.e., that share a child with the node in question

Conditional independence on the Markov blanket

- By construction, each variable is conditionally independent of its predecessors, given its parents
- In a Bayesian network, a variable is conditionally independent of all other nodes in the network given its Markov blanket (its parents, its children, and its spouses)
- The Markov blanket of a node X_i contains all the nodes necessary to predict the state of the node X_i, making the network irrelevant
 - This enables efficient and localized inference

Markov blanket: medical example

- Consider risk factors and outcomes for heart disease
- Target node
 - H: Heart disease
- Parent nodes (direct influence of H, risk factors)
 - *A*: Age
 - G: Genetic predisposition
 - D: Diet
 - E: Exercise level
- Child (direct influenced by H, outcomes)
 - BP: Blood pressure
 - C: Cholesterol level
- Note that A, G, D, E also influence BP and C so they are spouse nodes of H
- Knowing the state of A, G, D, E, BP allows to compute H, without any other information

Markov blanket: economic example

- Consider factors affecting house prices in a particular region
- Target node
 - HP: House prices
- Parent
 - E: Economic growth
 - IR: Interest rate
 - UE: Unemployment rate
- Child
 - DI: Disposable income
 - The house price affects how much money people have left after housing costs
 - D: Demand for houses
 - Higher prices can reduce demand

Markov blanket: finance example

- Consider factors affecting an individual company's stock price
- Target node
 - SP: Stock Price
- Parent
 - EPS: Earnings per share
 - *IE*: Industry performance
 - MS: Market sentiment
- Child
 - TV: Trading volume
 - Changes in stock price influence how much stock is being traded
- Spouse
 - RC: Regulatory changes in the technology sector
 - Influences IE and EPS, but not directly TV
 - GE: Global economic conditions
 - Influences MS and EPS, but not directly TV

Specifying a Conditional Probability Table

- Even with a small number of parents k, the Conditional Probability Table (CPT) for a node requires $O(2^k)$ values in the worst case
- Often, the relationship is not completely arbitrary
- Deterministic nodes have values specified by their parents, without uncertainty, e.g.,
 - A logical relationship:
 - IsNorthAmerican = IsCanadian ∨ IsUS ∨ IsMexican
 - A numerical relationship:
 - BestPrice = min(Price_i)

Noisy logical relationships

- Noisy logical relationships are a probabilistic version of a logical relationship
 - E.g., noisy-OR, noisy-MAX distribution
 - Noisy nodes can be simpler to describe given the k parents

Example

- A "noisy-OR" is a probabilistic version of a logical ∨
 - E.g., in propositional logic Fever ← Cold ∨ Flu ∨ Malaria
- The assumptions are:
 - All the possible causes are listed (one can use a leak node for "misc causes")
 - 2. There is uncertainty about the ability of the parents to be the cause of the child node, i.e., a probability that a cause is inhibited
 - 3. The probabilities of inhibition are independent
- Under these assumptions:

```
Pr(fever|parents(Fever))
1cm = 1 - Pr(\neg fever|cold, \neg flu, \neg malaria)
1cm Pr(\neg fever|\neg cold, flu, \neg malaria)
1cm Pr(\neg fever|\neg cold, \neg flu, malaria)
```

Context-specific independence

- A variable exhibits **context-specific independence** if it is conditionally independent of its parents given certain values of others, e.g.,
- Damage occurs during a period of time depending on the Ruggedness of your car and whether an Accident occurred in that period:

Pr(Damage|Ruggedness, Accident) = d1 else d2(Ruggedness) if Accident where d1 and d2 are distributions

Bayesian networks with continuous variables

- Many real world problems involve continuous quantities
 - E.g., height, mass, temperature, money
- We can't specify the Conditional Probability Table (CPT) for continuous RVs, but we can use:
 - 1. Discretization (i.e., use intervals)
 - Cons: loss of accuracy and large CPTs
 - 2. Continuous variables
 - Families of probability density functions (e.g., Gaussian distribution)
 - Non-parametric PDFs
- Hybrid Bayesian networks mix discrete and continuous variables in a Bayesian network
 - E.g., a customer buys some fruit depending on its cost

Bayesian network: car insurance company (1/2)

- A car insurance company:
 - Receives an application from an individual to insure a specific vehicle
 - Decides on appropriate annual premium to charge (based on the claims and pay out)
- Build a Bayes network that captures the causal structure of the domain
- There are 3 kind of claims
 - MedicalCost: injuries sustained by the applicant
 - LiabilityCost: lawsuits filed by other parties against applicant
 - PropertyCost: vehicle damage to either party and theft of the vehicle
- Input information
 - About the applicant: Age, YearsWithLicense, DrivingRecord, GoodStudent
 - About the vehicle: MakeModel, VehicleYear, Airbag, SafetyFeatures
 - About the driving situation: Mileage, HasGarage

Bayesian network: car insurance company (2/2)

- Blue nodes: information provided by the applicants
- Brown nodes: hidden variables (i.e., not input nor output)
- Lavender nodes: target variables