Комбинаторные тождества

- (a) Докажите правило Паскаля: $C_{n+1}^{k+1} = C_n^{k+1} + C_n^k$, если $0 \leqslant k \leqslant n-1$.
 - (b) Найдите сумму $C_n^0 + \ldots + C_n^n$.
 - (с) Докажите рекуррентное соотношение для чисел Стирлинга второго рода:

$$S(n+1, k+1) = (k+1) \cdot S(n, k+1) + S(n, k).$$

S(n,k) — это количество разбиений n-элементного множества на kнепустых подмножеств.

- (a) В скольких подмножествах множества $\{1, 2, ..., 11\}$ не найдётся двух 2. подряд идущих чисел?
 - (b) В скольких подмножествах множества $\{1, 2, \dots, 11\}$ не найдётся трёх подряд идущих чисел?
- **3.** Найдите суммы:

 - (a) $C_n^0 C_n^1 + \ldots + (-1)^n C_n^n;$ (b) $C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \ldots + \frac{1}{n+1}C_n^n;$
 - (c) $C_n^k + C_{n+1}^{k+1} + \ldots + C_{n+m}^{k+m};$ (d) $(C_n^0)^2 + \ldots + (C_n^n)^2;$

 - (e) $C_{2n}^n + 2C_{2n-1}^n + 4C_{2n-2}^n + \ldots + 2^nC_n^n$.
- 4. Найдите «явные» формулы для сумм. В ответе используйте только конечную комбинацию (без многоточий) целочисленных функций целочисленного аргумента.

 - (a) $\sum_{k\geqslant 0} C_n^{2k}$; (b) $\sum_{k>0} C_n^{4k}$.

Домашнее задание

- **5.** Найдите «явную» формулу для суммы $\sum_{k>0} C_n^{3k}$.
- **6.** В ряд стоят числа 1, 2, ..., n. Найдите количество способов выбрать k из них так, чтобы никакие два выбранных не стояли рядом. (Формально найдите количество k-элементных подмножеств в $\{1, 2, \dots, n\}$, в которых никакие два элемента не соседние.)