CSSE2010/CSSE7201 Lecture 4

Combinational Logic -gates

- ADD

School of Information Technology and Electrical Engineering The University of Queensland

Today...

- Admin
- Binary Subtractors
- More Combinational Logic Circuits
 - Multiplexers
 - Decoders
 - Timing diagram representations

Admin

- Quiz 1 due on Friday 4pm no extensions for quizzes
- Lab 4 preparation task next week (week 3)
 - Will be Available on Blackboard: Learning Resources
 - Draw some circuit schematic diagrams _
 - Bring to Lab 4 (Mon-Tue next week)
 - IN students use Logic ICs on breadboards or Logisim
 - EX students use Logisim software to simulate
- Supporting material for labs are now on Blackboard

Recall – Binary Adder

- Can cascade full adders to make binary adder Example: for 4 bits... For addition B_3 A_3 A_2 B_1 A_1 B_0 initial carry-in will be 0 C_3 C_2 C_1 FA FA FA FAHA Full-adders
 - This is a ripple-carry adder //

Binary subtraction

- usually implemented as A+(-B) A and B are multi-bit quantities
 - "+" in this case means addition (not OR)
 - -B means negative B the two's complement of B
- Two's complement of B can be calculated by flipping bits and adding 1

$$\frac{5-3}{5-3} = 2 \quad 2^{3} \text{ som} \quad \frac{5-3}{5+(-3)}$$

$$\frac{100}{5+3} = 2 \quad 2^{3} \text{ som} \quad \frac{5-3}{5+(-3)}$$

$$\frac{100}{5+3} = 2 \quad 2^{3} \text{ som} \quad \frac{1}{100}$$

1101

Binary subtraction (cont.)

- How we can use a gate to flip a bit but only sometimes? i.e.
 - Z=not(B)Z=B

when M is 1 when M is 0

Adder-subtractor

Combinational Circuits

Generally,

- Each output can be expressed as function of n input variables
- Output depends on current inputs only
- Can write truth table also:
 - ninput columns
 - m output columns
 - ¹

 ²ⁿ rows (i.e. possible input combinations)

 ¹

 ²ⁿ

 ²ⁿ

Multiplexer (or Mux)

- 2ⁿ data inputs
- 1 output

• n control (or **select**) inputs – that **select** one of the inputs to be "sent" or "steered" to the output

4-to-1 Multiplexer Logic Circuit Implementation

Clicker Question: 2-to-1 Multiplexer

- Consider a 2-to-1 multiplexer
 - Data Inputs: D₀ and D₁
 - Control Input: S₀
 - Output: F
- What is the truth table that goes with this circuit

1.	S ₀	D_0	D_1	F	
	0	0	0	0	
	0	0	1	1	
	0	1	0	0	
	0	1	1	1	
	1	0	0	0	
	1	0	1	0	
	1	1	0	1	
	1	1	1	1	

2.	S ₀	D_0	F					
/	0	0	0	0				
	0	0	1	⁹ 0				
1	0	1	0	1				
L	0	1	1	1				
5	1)0	0	0				
4	1	0	1	1				
	1	1	0	0				
Ĺ	1	1	J	1				

this circuit?						
3.	S ₀	D_0	D_1	F		
	0	0	0	0		
	0	0	1	0		
	0	1	0	0		
	0	1	1	0		
	1	0	0	1		
	1	0	1	1		
	1	1	0	1		
	1	1	1	1		

Function Table

Clicker Question (2)

Consider the multiplexer shown. What must the inputs A,B,C,D be so that the multiplexer output is

$$X = \overline{S_0} + S_1$$

$$10\%$$
 $A=0$, $B=1$, $C=0$, $D=0$

$$\sqrt{55\%3}$$
. A=1, B=0, C=1, D=1 $\sqrt{}$

Short Break

Stand up and stretch

Decoder

OLP

- Converts n-bit input to a logic-1 on exactly one of 2ⁿ outputs
- Example:

MACD

ALO

3-to-8 decoder

INIC	V \	✓	LSB								
	Α	В	С	D_0	D_1	D ₂	D_3	D ₄	D ₅	D_6	D ₇
	0	0	0	1	0	0	0	0	0	0	0
V	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
	0	1	1	0	0	0	1	0	0	0	0

address

3-to-8 Decoder Logic Circuit Implementation

Another Logic Representation: Timing Diagram

- Like a truth table, but graphical format
 - Input waveforms show all possible combinations

Consider a 2-input gate

Possible inputs

All combinations of inputs are covered

Which of the following is a timing diagram representation for an XOR gate?

Gates Aren't Perfect ... The Reality of Timing

- Propagation delay time for change in input to affect output
- Fall time time taken for output to fall from 1 to 0
- Rise time time for output to rise from 0 to 1

Things To Do

- ✓ Complete quiz 1 by Friday 4pm this week
- Homework Lab 4 preparation
 - By Lab 4 sessions on week 3
- Attempt the posted exercises and selfcheck questions
- Any doubts, use course consultation (need to book a time) or ask after the lecture.