Transductores

Clase 12

IIC 2223

Prof. Cristian Riveros

¿cuánto se parece un autómata a un algoritmo?

¿cuáles son las diferencias?

Memoria.
 "Movimiento" de la máquina.

3. Output.

En esta clase, veremos como extender autómatas con 3.

Transductores

Definición de transductor

Definición

Un transductor (en inglés, transducer) es una tupla:

$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- \blacksquare Ω es el alfabeto de output.
- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q$ es la relación de transición.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- F ⊆ Q es el conjunto de estados finales.

Definición de transductor

Configuración de un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor.

Definiciones

- Un par $(q, u, v) \in Q \times \Sigma^* \times \Omega^*$ es una configuración de \mathcal{T} .
- Una configuración (q, u, ϵ) es inicial si $q \in I$.
- Una configuración (q, ϵ, v) es **final** si $q \in F$.

"Intuitivamente, una configuración (q, au, vb) representa que $\mathcal T$ se encuentra en el estado q procesando la palabra au y leyendo a, y hasta ahora grabó la palabra vb y el último símbolo impreso es b."

Ejecución de un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor.

Definición

Se define la relación $\vdash_{\mathcal{T}}$ de siguiente-paso entre configuraciones de \mathcal{T} :

$$(p, u_1, v_1) \vdash_{\mathcal{T}} (q, u_2, v_2)$$

si, y solo si, existe $(p, a, b, q) \in \Delta$ tal que $u_1 = a \cdot u_2$ y $v_2 = v_1 \cdot b$.

Ejecución de un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor.

Definición

Se define la relación $\vdash_{\mathcal{T}}$ de siguiente-paso entre configuraciones de \mathcal{T} :

$$(p, u_1, v_1) \vdash_{\mathcal{T}} (q, u_2, v_2)$$

si, y solo si, existe $(p, a, b, q) \in \Delta$ tal que $u_1 = a \cdot u_2$ y $v_2 = v_1 \cdot b$.

$$\vdash_{\mathcal{T}} \subseteq (Q \times \Sigma^* \times \Omega^*) \times (Q \times \Sigma^* \times \Omega^*).$$

Se define $\vdash_{\mathcal{T}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{T}}$:

para toda configuración
$$(q,u,v)$$
: $(q,u,v) \vdash_{\mathcal{T}}^* (q,u,v)$

si
$$(q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_2, u_2, v_2)$$
 y
 $(q_2, u_2, v_2) \vdash_{\mathcal{T}} (q_3, u_3, v_3) : (q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_3, u_3, v_3)$

Ejecución de un transductor

Se define $\vdash_{\mathcal{T}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{T}}$:

para toda configuración
$$(q,u,v)$$
: $(q,u,v) \vdash_{\mathcal{T}}^* (q,u,v)$

si
$$(q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_2, u_2, v_2)$$
 y
 $(q_2, u_2, v_2) \vdash_{\mathcal{T}} (q_3, u_3, v_3) : (q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_3, u_3, v_3)$

Función definida por un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor y $u, v \in \Sigma^*$.

Definiciones

■ \mathcal{T} entrega v con input u si existe una configuración inicial (q_0, u, ϵ) y una configuración final (q_f, ϵ, v) tal que:

$$(q_0, u, \epsilon) \vdash_{\mathcal{T}}^* (q_f, \epsilon, v)$$

■ Se define la función $[\![\mathcal{T}]\!]: \Sigma^* \to 2^{\Omega^*}$:

$$\llbracket \mathcal{T} \rrbracket (u) = \{ v \in \Omega^* \mid \mathcal{T} \text{ entrega } v \text{ con input } u \}$$

■ Se dice que $f: \Sigma^* \to 2^{\Omega^*}$ es una función racional si existe un transductor \mathcal{T} tal que $f = [\![\mathcal{T}]\!]$.

Un transductor define una función de palabras a conjunto de palabras.

Función definida por un transductor

Funciones versus relaciones

Dos interpretaciones para un transductor

 $1. \ \mathcal{T} \ \text{define la función} \ [\![\mathcal{T}]\!] : \Sigma^* \to 2^{\Omega^*} :$

$$\llbracket \mathcal{T} \rrbracket (u) = \{ v \in \Omega^* \mid \mathcal{T} \text{ entrega } v \text{ con input } u \}$$

2. \mathcal{T} define la relación $[\mathcal{T}] \subseteq \Sigma^* \times \Omega^*$:

$$(u,v) \in \llbracket \mathcal{T}
rbracket$$
 si, y solo si, \mathcal{T} entrega v con input u

Desde ahora, hablaremos de función o relación **indistintamente** y hablaremos de las **relaciones racionales** (definidas por un transductor).

Lenguaje de input y lenguaje de output

Definiciones

Para una relación $R \subseteq \Sigma^* \times \Omega^*$ se define:

- $\blacksquare \pi_1(R) = \{ u \in \Sigma^* \mid \exists v \in \Omega^*. (u, v) \in R \}.$
- $\blacksquare \ \pi_2(R) \ = \ \big\{ \ v \in \Omega^* \ \big| \ \exists u \in \Sigma^*. \ (u,v) \in R \ \big\}.$

¿cuál es el lenguaje definido por $\pi_1(\llbracket \mathcal{T} \rrbracket)$ y $\pi_2(\llbracket \mathcal{T} \rrbracket)$?

Lenguaje de input y lenguaje de output

Definiciones

Para una relación $R \subseteq \Sigma^* \times \Omega^*$ se define:

- $\blacksquare \pi_1(R) = \{ u \in \Sigma^* \mid \exists v \in \Omega^*. (u, v) \in R \}.$

Teorema

Si $\mathcal T$ es un transductor, entonces $\pi_1(\llbracket \mathcal T \rrbracket)$ y $\pi_2(\llbracket \mathcal T \rrbracket)$ son lenguajes regulares sobre Σ y Ω , resp.

Demostración:
$$\pi_1(\llbracket \mathcal{T} \rrbracket)$$

Para $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$, defina $\mathcal{A}_1 = (Q, \Sigma, \Delta_1, I, F)$ tal que: $(p, a, q) \in \Delta_1$ si, y solo si, $\exists b \in \Omega \cup \{\epsilon\}$. $(p, a, b, q) \in \Delta$
y demuestre que $\mathcal{L}(\mathcal{A}_1) = \pi_1(\llbracket \mathcal{T} \rrbracket)$.

Operaciones de relaciones

Teorema

Sea \mathcal{T}_1 y \mathcal{T}_2 dos transductores con Σ y Ω alfabetos de input y output.

Las siguientes son relaciones racionales.

- $1. \quad \llbracket \mathcal{T}_1 \rrbracket \cup \llbracket \mathcal{T}_2 \rrbracket = \{(u,v) \in \Sigma^* \times \Omega^* \mid (u,v) \in \llbracket \mathcal{T}_1 \rrbracket \vee (u,v) \in \llbracket \mathcal{T}_2 \rrbracket \}.$
- $2. \ \ \llbracket \mathcal{T}_1 \rrbracket \cdot \llbracket \mathcal{T}_2 \rrbracket = \{ \left(u_1 u_2, v_1 v_2 \right) \in \Sigma^* \times \Omega^* \mid \left(u_1, v_1 \right) \in \llbracket \mathcal{T}_1 \rrbracket \wedge \left(u_2, v_2 \right) \in \llbracket \mathcal{T}_2 \rrbracket \}.$
- 3. $[\mathcal{T}_1]^* = \bigcup_{k=0}^{\infty} [\mathcal{T}_1]^k$.

Demostración.

Operaciones de relaciones

Teorema

Existen transductores \mathcal{T}_1 y \mathcal{T}_2 con Σ y Ω alfabetos de input y output, tq:

$$\llbracket \mathcal{T}_1 \rrbracket \cap \llbracket \mathcal{T}_2 \rrbracket \ = \ \{(u,v) \in \Sigma^* \times \Omega^* \mid (u,v) \in \llbracket \mathcal{T}_1 \rrbracket \wedge (u,v) \in \llbracket \mathcal{T}_2 \rrbracket \}$$

NO es una relación racional.

Demostración

Considere los siguientes transductores:

Definición

Decimos que un transductor ${\mathcal T}$ define una función (parcial) si:

para todo $u \in \Sigma^*$ se tiene que $|[T](u)| \le 1$.

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- 1. \mathcal{T} define una función $[\mathcal{T}]: \Sigma^* \to \Omega^*$.
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$,
- si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces $\Delta \cap (\{p\} \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q) = \{(p, \epsilon, b, q)\}.$

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- 1. \mathcal{T} define una función $[\mathcal{T}]: \Sigma^* \to \Omega^*$.
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$, si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces $\Delta \cap (\{p\} \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q) = \{(p, \epsilon, b, q)\}.$

¿son todas las funciones definidas por transductores deterministas?

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- 1. \mathcal{T} define una función $[\mathcal{T}]: \Sigma^* \to \Omega^*$.
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$, si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces $\Delta \cap (\{p\} \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q) = \{(p, \epsilon, b, q)\}.$

Contraejemplo

¿cuál es la ventaja de los transductores deterministas?