Simulation Study for Timing Model

James Watson 07/05/2019

Global options for stan model runs

```
Chains = 4

options(mc.cores = Chains)

IT = 10^4

WarmUp = .5*IT

thin = 40

Sim_Iterations = 50
```

Global simulation sample sizes and follow-up time

```
N_PMQ = 800
N_AS = 200
N_CQ = 200
FUP_time = 300
```

Data simulation functions

We explore a few scenarios of increasing complexity to check:

- The model can recover correct parameters when the data generating process is correctly specified (sanity check)
- The effect of a mis-specified data generating process. For this we look at the impact of seasonality

Data simulation for model 1

This simulates data under the assumptions of Model 1.

We set the simulation parameters:

Generate data with these parameters:

Run Stan Model 1 on simulated data generated from Model 1

Load or compile the stan model 1

```
if(RECOMPILE_MODELS) {
   writeLines('Compiling model 1....')
   source('../Timing_Model/StanModel1.R')
   save(Timing_Model1, file = '../RData/TimingModel/Timing_Model1.RData')
} else {
   load('../RData/TimingModel/Timing_Model1.RData')
}
```

Prior specification

```
# The hierachical parameters defining the prior distributions for model 1
Prior params M1 = list(Hyper lambda shape = 100,
                       Hyper_lambda_rate = 100*(1/params_M1$lambda),
                       Hyper_gamma_shape = 100,
                       Hyper_gamma_rate = 100*(1/params_M1$gamma),
                       Hyper_lambda_recrud_shape = 100,
                       Hyper_lambda_recrud_rate = 100*(1/params_M1$lambda_recrud),
                       Hyper_AS_shape_mean = params_M1$AS_shape,
                       Hyper_AS_shape_sd = 1,
                       Hyper_AS_scale_mean = params_M1$AS_scale,
                       Hyper_AS_scale_sd = 1,
                       Hyper_CQ_shape_mean = params_M1$CQ_shape,
                       Hyper CQ shape sd = 1,
                       Hyper_CQ_scale_mean = params_M1$CQ_scale,
                       Hyper_CQ_scale_sd = 2,
                       Hyper_logit_mean_p_mean = params_M1$logit_mean_p,
                       Hyper_logit_mean_p_sd = 1,
                       Hyper_logit_sd_p_lambda = 1,
                       Hyper logit c1 mean = params M1$logit c1 AS,
                       Hyper_logit_c1_sd = .25,
                       Early_L_logit_mean = params_M1$logit_EarlyL,
                       Early_L_logit_sd = .5,
                       Hyper_mean_rate_decrease = params_M1$rate_decrease,
                       Hyper_sd_rate_decrease = 0.25)
```

Fit stan model to simulated data

Plot output, comparing prior, ground truth and model estimate. This gives a qualitative assessement but for a single simulation run.

Reinfection rate (Period 1)

8000 6000 2000 0.00055 0.00065 0.00075 0.00085 lambda

Decrease in reinfection rate (Period 2)

Mean time to late reLapse

Logit early relapse

Recrudescence rate

Logit sd p

Estimate of logit p (individual)

Estimate of logit p (individual)

Multiple random simulations to assess systematic bias

lambda

comparison_matrix[, which(p == params_interest), 1]

logit_mean_p

comparison_matrix[, which(p == params_interest), 1]

rate_decrease

comparison_matrix[, which(p == params_interest), 1]

Data simulation for model 2

Model 2 does not assume 100% efficacy of primaquine.

Ground truth model parameters for simulated data:

Generate simulated data under the assumptions of model 2 $\,$

```
set.seed(7656728)
out2 = simulate_dataset(N_PMQ = N_PMQ,
```

```
N_CQ = N_CQ
                        N_AS = N_AS,
                        FUP time = FUP time,
                        Study_Period = c(rep(1, N_PMQ/2), rep(2, N_PMQ/2 + N_AS + N_CQ)),
                        data_generation_function = generate_patient_data_Model2,
                        params = params_M2)
Simdata_Model2 = out2$Simdata
Simulation_truth2 = out2$Simulation_truth
table(Simulation_truth2$True_state, Simulation_truth2$Drug)
##
##
                    AS CHQ CHQ/PMQ
##
     EarlyRelapse 286 284
##
     LateRelapse
                   173 145
                                 25
##
     Recrudescence 401 407
                                80
     Reinfection
                   167 168
##
                                946
Prior specification for stan fit:
Prior_params_M2 = c(Prior_params_M1,
                    Hyper_logit_mean_pPMQ_mean = logit(0.95),
                    Hyper_logit_mean_pPMQ_sd = (logit(0.95)-logit(0.7))/1.96,
                    Hyper_logit_sd_pPMQ_lambda = 1)
Load or compile the stan model 2
if(RECOMPILE_MODELS){
  writeLines('Compiling model 2....')
  source('../Timing Model/StanModel2.R')
  save(Timing_Model2, file = '../RData/TimingModel/Timing_Model2.RData')
  load('../RData/TimingModel/Timing_Model2.RData')
```

Fit stan model 2 to simulated data from model 2

Plot output, comparing prior, ground truth and model estimate:

plot output model2(thetas mod2, Simulation truth2, Simdata Model2, Prior params M2)

Reinfection rate

6000 5000 2000 1000 6e-04 7e-04 8e-04 9e-04 lambda

Mean time to late reLapse

Logit early relapse

Recrudescence rate

Compare summary statistics from simulated data and estimated:

```
# the true failure rate in the primaquine arm
sum(Simulation_truth2$True_state[Simulation_truth2$Drug=="CHQ/PMQ"] != 'Reinfection')/sum(Simulation_tr
## [1] 0.1431159
classification_mod2 = apply(thetas_mod2$prob_labels,c(2,3),quantile, probs=0.975)
1-sum(classification_mod2[Simdata_Model2$Drug==2,1])/sum(Simdata_Model2$Drug==2)

## [1] 0.07240821
classification_mod2 = apply(thetas_mod2$prob_labels,c(2,3),median)
1-sum(classification_mod2[Simdata_Model2$Drug==2,1])/sum(Simdata_Model2$Drug==2)

## [1] 0.1491698
classification_mod2 = apply(thetas_mod2$prob_labels,c(2,3),quantile, probs=0.025)
1-sum(classification_mod2[Simdata_Model2$Drug==2,1])/sum(Simdata_Model2$Drug==2)

## [1] 0.2166946
```

Multiple random simulations to assess systematic bias

```
for(p in params_interest){
  hist(simulation_full_results_mod2$comparison_matrix[,which(p==params_interest),1], main=p)
  abline(v=unique(simulation_full_results_mod2$comparison_matrix[,which(p==params_interest),2]),col='re'
}
```

lambda

simulation_full_results_mod2\$comparison_matrix[, which(p == params_interest), 1]

simulation_full_results_mod2\$comparison_matrix[, which(p == params_interest), 1]

simulation_full_results_mod2\$comparison_matrix[, which(p == params_interest), 1]

simulation_full_results_mod2\$comparison_matrix[, which(p == params_interest), 1]

simulation_full_results_mod2\$comparison_matrix[, which(p == params_interest), 1]

Simulating seasonal variation

Estimate the empirical seasonal reinfecton distribution from enrollment episodes. This assumes that the majority of enrollment episodes are reinfections which should be approximately true.

Week of enrollment


```
# the vector we can use for empirical distribution sampling
seasonal_sampling_vector = Combined_Time_Data$WeekTime
```

Generate patient data under the assumptions of model 1 with the additional assumption of seasonality for reinfection.

```
main='Reinfection times',
xlab='days from 1st January')
```

Reinfection times

Generate data with these parameters:

0.872 sec elapsed

```
Simdata_Model_Seasonal = out3$Simdata
Simulation_truth_Seasonal = out3$Simulation_truth
```

Fit stan model to simulated data where assumption of constant reinfection rate is wrong

Plot output, comparing prior, ground truth and model estimate:

Reinfection rate (Period 1)

Decrease in reinfection rate (Period 2)

Mean time to late reLapse

Logit early relapse

Recrudescence rate

Run multiple random iterations to assess model fit and bias

For parameter lambda, 84% are below the true parameter

lambda

res\$comparison_matrix[, which(p == params_interest), 1]

For parameter gamma, 100% are below the true parameter

For parameter logit_mean_p, 40% are below the true parameter

res\$comparison_matrix[, which(p == params_interest), 1]

For parameter rate_decrease, 26% are below the true parameter

For parameter logit_sd_p, 62% are below the true parameter

res\$comparison_matrix[, which(p == params_interest), 1]

For parameter logit_EarlyL, 0% are below the true parameter

logit_EarlyL

res\$comparison_matrix[, which(p == params_interest), 1]

Posterior predictive p-values

In this section we simulate data from the posterior predictive for Model 2. We then apply a qualitative model check by comparing summary statistics from the posterior predictive with the true data summary statistics.

```
!duplicated(Combined_Time_Data$patientid))
N_CQ = sum(Combined_Time_Data$arm_num=='CHQ'&
             !duplicated(Combined_Time_Data$patientid))
N_AS = sum(Combined_Time_Data$arm_num=='AS'&
             !duplicated(Combined_Time_Data$patientid))
N_PMQ_BPD = sum(Combined_Time_Data$arm_num=='CHQ/PMQ'&
                  Combined_Time_Data$Study_Period==2 &
                  !duplicated(Combined Time Data$patientid))
set.seed(4543758)
params_M2_posterior = list()
i = sample(1:nrow(thetas2_matrix),1)
for(p in names(params_M2)){
  params_M2_posterior[[p]] = thetas2_matrix[i,p]
dat_posterior =
  simulate_dataset(N_PMQ = N_PMQ, N_CQ = N_CQ, N_AS = N_AS,
                   FUP_time = c(sample(x = PMQ_FUP, size = length(PMQ_FUP), replace = T),
                                sample(x = CQ_FUP, size = length(CQ_FUP), replace = T),
                                sample(x = AS_FUP, size = length(AS_FUP), replace = T)),
                   Study_Period = c(rep(2,N_PMQ_BPD),rep(2,N_PMQ_N_PMQ_BPD),rep(1,N_CQ+N_AS)),
                   data_generation_function = generate_patient_data_Model2,
                   params = params_M2_posterior)
AS_ind = dat_posterior$Simdata$Drug==0 &
  dat posterior$Simdata$Censored==0
AS_ind_true = Combined_Time_Data$arm_num=='AS'&
  Combined_Time_Data$Censored==0
CQ_ind = dat_posterior$Simdata$Drug==1 &
  dat_posterior$Simdata$Censored==0
CQ_ind_true = Combined_Time_Data$arm_num=='CHQ'&
 Combined_Time_Data$Censored==0
PMQ_ind = dat_posterior$Simdata$Drug==2 & dat_posterior$Simdata$Censored==0
PMQ_ind_true = Combined_Time_Data$arm_num=='CHQ/PMQ'&
  Combined_Time_Data$Censored==0
par(las=1, mfrow=c(1,3))
#** Artesunate monotherapy: posterior predictive versus true data **
hist(Combined_Time_Data$Time_to_event[AS_ind_true],
     main = 'AS monotherapy',
     xlab='Days from last episode', col=alpha('blue',alpha = .4),
     breaks = seq(0,700,by=7), xlim = c(0,300))
hist(dat posterior$Simdata$Durations[AS ind],
     add=T, breaks = seq(0,700,by=7), col=alpha('red',alpha = .4))
#** Chloroquine monotherapy: posterior predictive versus true data **
hist(Combined_Time_Data$Time_to_event[CQ_ind_true], main = 'CQ monotherapy',
     xlab='days from last episode', col=alpha('blue',alpha = .4),
     breaks = seq(0,700,by=7), xlim = c(0,300))
hist(dat_posterior$Simdata$Durations[CQ_ind],
     add=T, breaks = seq(0,700,by=7), col=alpha('red',alpha = .4))
```



```
sample(x = AS_FUP, size = length(AS_FUP), replace = T)),
                     Study_Period = c(rep(2,N_PMQ_BPD),rep(2,N_PMQ-N_PMQ_BPD),rep(1,N_CQ+N_AS)),
                     data_generation_function = generate_patient_data_Model2,
                     params = params_M2_posterior)
  AS_ind = dat_posterior$Simdata$Drug==0 &
   dat_posterior$Simdata$Censored==0
  CQ_ind = dat_posterior$Simdata$Drug==1 &
   dat_posterior$Simdata$Censored==0
  PMQ_ind = dat_posterior$Simdata$Drug==2 & dat_posterior$Simdata$Censored==0
  # compute recurrences per follow-up year
  res[Sim,1] = length(dat_posterior$Simdata$Durations[AS_ind])/
    (sum(dat_posterior$Simdata$Durations[dat_posterior$Simdata$Drug==0])/360)
  res[Sim,2] = length(dat_posterior$Simdata$Durations[CQ_ind])/
    (sum(dat_posterior\Simdata\Durations[dat_posterior\Simdata\Drug==1])/360)
  res[Sim,3] = length(dat_posterior$Simdata$Durations[PMQ_ind])/
    (sum(dat_posterior$Simdata$Durations[dat_posterior$Simdata$Drug==2])/360)
  setTxtProgressBar(pb, value = Sim)
}
##
                                                                     1
                                                                         0%
                                                                         1%
                                                                     1%
                                                                     1
                                                                         2%
                                                                     3%
  |==
                                                                         4%
  |===
                                                                         4%
                                                                         5%
                                                                     1
                                                                         6%
                                                                         7%
                                                                         7%
                                                                     |=====
                                                                     8%
  |=====
                                                                     1
                                                                         9%
  l =====
                                                                        10%
                                                                        10%
                                                                     | 11%
  |======
```

1		
 ======= 	I	12%
 ======= 	I	13%
 ======= 	1	14%
 ======== 	1	15%
 ======== 	1	15%
 ======== 	I	16%
 ===================================	I	17%
 ===================================	I	18%
 ===================================	I	18%
 ===================================	I	19%
 ===================================	I	20%
 ===================================	I	21%
 ===================================	I	21%
 ===================================	I	22%
 ===================================	I	23%
 ===================================	I	24%
 ===================================	I	24%
 ===================================	I	25%
 ===================================	I	26%
 ===================================	I	27%
 ===================================	I	27%
 ===================================	1	28%
 ===================================	I	29%
 ===================================	I	30%
 ===================================	I	30%
 ===================================	I	31%
 ===================================	I	32%

1		
 ===================================	1	33%
 ===================================	1	33%
 ===================================	l	34%
! ====================================	1	35%
! ====================================	1	36%
! ====================================	I	36%
! ====================================	I	37%
 ===================================	1	38%
 ===================================	I	38%
! ====================================	I	39%
! ====================================	1	40%
 ===================================	I	41%
 ===================================	1	41%
! ====================================	I	42%
! ====================================	I	43%
! ====================================	I	44%
! ====================================	I	44%
 ===================================	1	45%
! ======= !	I	46%
! ======= !	I	47%
! ======= !	I	47%
 ===================================	1	48%
! ======= !	1	49%
 ======= 	I	50%
 ======= 	I	50%
 ======= 	I	51%
 =======	l	52%

 ===================================	I	53%
 ===================================	I	53%
 ===================================	I	54%
 ===================================	1	55%
 ===================================	I	56%
 ===================================	I	56%
 ===================================	I	57%
 ======= 	1	58%
 ======= 	1	59%
 ===================================	1	59%
 ===================================	1	60%
 ======== 	1	61%
 ======== 	1	62%
 ===================================	I	62%
 ===================================	I	63%
 ===================================	I	64%
====================================	1	64%
' ====================================	1	65%
====================================	1	66%
====================================	1	67%
, ====================================	1	67%
====================================	I	68%
====================================	1	69%
' ====================================	1	70%
' ====================================	I	70%
' ====================================	1	71%
	I	72%

 ===================================	I	73%
 ===================================	I	73%
 ===================================	I	74%
 ===================================	1	75%
 ===================================	1	76%
 ===================================	1	76%
 ===================================	l	77%
 ===================================	I	78%
 ===================================	I	79%
 ===================================	I	79%
 ===================================	I	80%
 ===================================	I	81%
 ===================================	I	82%
 ===================================	I	82%
 ===================================	I	83%
 ===================================	I	84%
 ===================================	I	85%
 ===================================	I	85%
 ===================================	I	86%
 ===================================	l	87%
 ===================================	l	88%
 ===================================	I	89%
 ===================================	l	90%
 ===================================	l	90%
 ===================================	1	91%
 ===================================	l	92%
l 	ı	93%

```
1 93%
 |-----
                                                  94%
  ______
                                                  95%
 |-----
  ______
                                                  96%
    ______
                                                  96%
                                                  97%
  ______ |
 |-----| 100%
par(mfrow=c(1,3))
hist(res[,1], xlab = 'Recurrences per person (%)', main = 'Artesunate monotherapy')
true_stat_AS = length(Combined_Time_Data$Time_to_event[AS_ind_true])/
 (sum(Combined_Time_Data$Time_to_event[Combined_Time_Data$arm_num=='AS'])/360)
abline(v = true_stat_AS, col='blue',lwd=3)
hist(res[,2], xlab = 'Recurrences per person (%)', main = 'Chloroquine monotherapy')
true_stat_CQ = length(Combined_Time_Data$Time_to_event[CQ_ind_true])/
 (sum(Combined_Time_Data$Time_to_event[Combined_Time_Data$arm_num=='CHQ'])/360)
abline(v = true_stat_CQ, col='blue',lwd=3)
hist(res[,3], xlab = 'Recurrences per person (%)', main = 'Primaquine+')
true_stat_PMQ = length(Combined_Time_Data$Time_to_event[PMQ_ind_true])/
 (sum(Combined_Time_Data$Time_to_event[Combined_Time_Data$arm_num=='CHQ/PMQ'])/360)
abline(v = true_stat_PMQ,col='blue',lwd=3)
```


PP_pval_AS = 1-sum(res[,1]>true_stat_AS)/Sim_Iterations
writeLines(sprintf('The posterior predictive p value for the number of recurrences per person in the AS

The posterior predictive p value for the number of recurrences per person in the AS arm is 0.845
PP_pval_CQ = 1-sum(res[,2]>true_stat_CQ)/Sim_Iterations
writeLines(sprintf('The posterior predictive p value for the number of recurrences per person in the CQ

The posterior predictive p value for the number of recurrences per person in the CQ arm is 0.525
PP_pval_PMQ = 1-sum(res[,3]>true_stat_PMQ)/Sim_Iterations
writeLines(sprintf('The posterior predictive p value for the number of recurrences per person in the PM

The posterior predictive p value for the number of recurrences per person in the PMQ+ arm is 0.535