Calcul Intégral II

STEP, MINES ParisTech

2 septembre 2020 (#59917b0)

Question 1 (réponse multiple) Si les ensembles $A_k \subset \mathbb{R}$, $k \in \mathbb{N}$, sont tous mesurables, déterminer quels ensembles dans la liste ci-dessous sont nécessairement mesurables.
□ A: l'ensemble des $x \in \mathbb{R}$ appartenant (au moins) à l'un des A_k , □ B: l'ensemble des $x \in \mathbb{R}$ n'appartenant à aucun A_k , □ C: l'ensemble des $x \in \mathbb{R}$ appartenant exactement à l'un des A_k .
Question 2 (réponse multiple) Une fonction $f: \mathbb{R} \to \mathbb{R}$ est nécessairement intégrable si
 □ A: elle est mesurable, □ B: elle est limite de fonctions mesurables, □ C: elle est mesurable et bornée.
Question 3 (réponse multiple) Si la fonction $f : \mathbb{R} \to \mathbb{R}$ est intégrable, alors l'ensemble $\{x \in \mathbb{R} \mid f(x) \geq 1\}$ est nécessairement :
 □ A: mesurable, □ B: de longueur finie, □ C: de longueur nulle, □ D: négligeable.
Question 4 (réponses multiple) Si $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ sont des fonctions mesurables, lister quelles fonctions dans la liste ci-dessous sont nécessairement mesurables.
$\Box A: f + g,$ $\Box B: f \times g,$ $\Box C: \max(f, g),$ $\Box D: g \circ f.$

Question 5 (réponse multiple) Si $f: \mathbb{R} \to \mathbb{R}$ est intégrable sur tout intervalle [-r,r] avec $r \geq 0$ et que

$$\int_{-r}^{r} f(t) dt \to A \in \mathbb{R} \text{ quand } r \to +\infty,$$

alors on peut conclure que f est intégrable sur $\mathbb R$ et d'intégrale A

- $\hfill\Box$ A: sans hypothèse supplémentaire,
- \square B: si $|f| \leq g$ où $g: \mathbb{R} \to [0, +\infty[$ est intégrable,
- □ C: si

$$\sup_{r\geq 0} \int_{-r}^{r} |f(t)| \, dt < +\infty.$$