Example 87: As shown in Figure 3, \triangle in ABC, O is the circumcenter, AP is the height, $PM \perp AB$ intersects AB at M, $PN \perp AC$ intersects AC at N, to prove: $AO \perp MN$.

Proof:
$$\frac{M-N}{A-O} = \frac{\frac{A-C}{A-P}}{\frac{A-O}{A-M}} \frac{\frac{C-B}{C-A}}{\frac{M-A}{M-N}} \frac{P-A}{B-C}.$$

Explanation: According to $AN \cdot AC = AP^2 = AM \cdot AB$ the four points M, B, C and N are in a circle, $\angle BCA = \angle AMN$. Or $\angle BCA = \angle NPA = \angle AMN$.