2006 JRAHS Extension 2 Term 2 Assessment / LK

Solutions to Questions	Marking Scheme	Comments
Question 1		
(a) xy = 4 6 7 7 8 1	 Foci (± 4, ± 4) → 1 mk Vertices (± 2√2,±2√2) → 1 mk Eqn. of directrices x+y=±4 → 1mk Shape of graph → 1mk 	Students must clearly show the coordinates of the foci and vertices & eqn. of directrices to obtain full marks. 1/2 mark off is scale is wrong/ no scale given.
(b) (i) $\frac{dv}{dt} = \frac{1}{3}(3g - 2v)$ $\therefore \int_{0}^{\infty} \frac{dv}{3g - 2v} = \frac{1}{3} \int_{0}^{t} dt$	Correct integral → 1 mk	Variation to integral can be: $t = \int \frac{3dv}{3g - 2v}$
$\therefore -\frac{1}{2} \ln 3g - 2v _0^v = \frac{1}{3} [t]_0^t$ $\therefore -\frac{1}{2} \ln \left \frac{3g - 2v}{3g} \right = \frac{1}{3} t \text{or} \frac{1}{2} \ln \left \frac{2v - 3g}{3g} \right = \frac{1}{3} t$ $\therefore \ln \left \frac{3g - 2v}{3g} \right = -\frac{2}{3} t$	Correct integration → ½ mk Substitution & simplify → ½ mk	When $t = 0$, $v = 0$ $\Rightarrow c = -\frac{3}{2}\ln(3g)$
$\therefore \frac{3g - 2v}{3g} = e^{-\frac{2t}{3}}$ $\therefore v = \frac{3g}{2} \left(1 - e^{-\frac{2t}{3}} \right)$	Taking e to both sides → 1 mk	

2006 JRAHS E2 T2 Assessment solutions/LK

Page 1

EXT 2 TERM 2 2006

1 (b) (ii) as $t \to \infty$ $v \to \frac{3g}{2}$	Correct answer → 1 mk
1 (b) (iii) when $v = \frac{g}{2}$	
$\therefore \frac{1}{3} = 1 - e^{\frac{2t}{3}}$	Correct substitution & simplification → 1 mk
$\therefore -\frac{2}{3}t = \ln\left(\frac{2}{3}\right)$	Taking logs of both sides & simplification → 1 mk
$\therefore t = -\frac{3}{2} \ln \left(\frac{2}{3} \right) \text{ or } t = \frac{3(\ln 3 - \ln 2)}{2}$	
1 (c) (i) $P = \frac{QC}{C + e^{-kQt}}$	
$\therefore \frac{dP(t)}{dt} = \frac{Q^2 C k e^{-kQt}}{\left(C + e^{-kQt}\right)^2}$	Correct differential → 1 mk
$= \frac{kQC}{C + e^{-kQt}} \times \frac{Qe^{-kQt}}{C + e^{-kQt}}$ $= kP(Q - P)$	Simplification → 1 mk
As $(Q - P) = Q - \frac{QC}{C + e^{-kQt}}$	
$= \frac{QC + Qe^{-kQt} - QC}{C + e^{-kQt}}$	
$=\frac{Qe^{-kQt}}{C+e^{-kQt}}$	Showing $(Q - P) = \frac{Qe^{-kQt}}{C + e^{-kQt}} \rightarrow 1 \text{ mk}$
1 (c) (ii) as $t \to \infty$, $P \to Q$ as $e^{-kQt} \to 0$	Correct answer with some explaination → 1 mk
1 (c) (iii) as $t \to \infty$, $\frac{dP(t)}{dt} \to 0$ as $P \to Q$	Correct answer with some explaination → 1 mk

Question 2		
(a) (i) $m\ddot{x} = m(-g) - mkv$ (upwards)	Correct equation → 1 mk	
$\therefore \ddot{x} = -g - kv \text{ i.e. } \frac{dv}{dt} = -g - kv$		
$\therefore \frac{1}{k} \int_{u}^{0} \frac{k dv}{-(g+kv)} = \int_{0}^{T} dt$	Correct integral → 1 mk	
$\therefore -\frac{1}{k} \left[\ln g + kv \right]_u^0 = T$	Correct integration → 1 mk	
$\therefore -\ln \left \frac{g}{g + ku} \right = kT$		
$\therefore \ln \left \frac{g + ku}{g} \right = kT \implies kT = \ln \left 1 + \frac{ku}{g} \right $	Correct simplification → 1 mk	
2 (a) (ii) Highest point reached is when $v = 0$		
	$v\frac{dv}{dh} = -g - kv \implies 1 \text{ mk}$	
$\therefore -\int_{u}^{0} \frac{v dv}{g + kv} = \int_{0}^{k} dx$	Correct integral → 1 mk	
$\therefore -\int_{u}^{\circ} \frac{1}{k} - \frac{g \ dv}{k(g+kv)} = \int_{0}^{h} dx$	$\frac{vdv}{g+kv} = \frac{1}{k} - \frac{gdv}{k(g+kv)} \implies 1 \text{ mk}$	
$\therefore -\int_{u}^{0} 1 - \frac{g dv}{(g+kv)} = kh$		
$\therefore -\left[v - \frac{g}{k}\ln(g + kv)\right]_u^0 = kh$	Correct integration → 1 mk	
$\therefore -\left[-u + \frac{g}{k}\ln\left(\frac{g + ku}{g}\right)\right] = hk$	Correct simplification & connecting engage	
$\therefore hk = u - gT \text{ as } kT = \ln \left 1 + \frac{ku}{n} \right \text{ from part(i)}$	Correct simplification & connecting answer from (i)	
$\therefore hk = u - gI \text{ as } kI = \ln I + \frac{1}{g} \text{ from part(i)}$	→ 1 mk	

2006 JRAHS E2 T2 Assessment solutions/LK

Page 3

2 (b)	xy = 4		
	Eqn. of normal is $y = p^2x - 2p^3 + \frac{2}{p}$		
(i)	\therefore coordinates of Q are $\left(2p-\frac{2}{p^3},0\right)$	Correct coordinates → 1 mk	
(ii)	$M = \left[\left(\frac{2p + 2p - \frac{2}{p^3}}{2} \right), \left(\frac{\frac{2}{p}}{2} \right) \right]$	Correct midpoint formula → 1 mk	Alternatively can award 1 mk each for x and y coordinate of midpoint.
	$M = \left[\left(2p - \frac{1}{p^3} \right), \frac{1}{p} \right]; p \neq 0$	Correct simplification & restriction for p → 1 mk	
(iii)	$x = 2p - \frac{1}{p^3}; y = \frac{1}{p}$	→ 1 mk	
	$\therefore p = \frac{1}{y} \ ; y \neq 0$		
	$\therefore x = \frac{2}{y} - y^3 \text{ is the locus of } M; y \neq 0$	→ 1 mk equation → 1 mk restriction $y \neq 0$	
Quest	The state of the s		
(a) (i)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \implies y = \frac{b}{a} \sqrt{a^2 - x^2}$		
	$\therefore \text{ Area} = \frac{4b}{a} \int_{0}^{a} \sqrt{a^2 - x^2} dx$	→ 1 mk	
	$= \frac{4b}{a} \times \frac{1}{4}\pi a^2 \text{since } \int_0^a \sqrt{a^2 - x^2} dx \text{ is a}$	For $\frac{1}{4}\pi a^2 \rightarrow 1$ mk	
	quadrant of a circle, centre O radius a units. \therefore Area = πab sq. units.	⇒ 1 mk explanation of using $\frac{1}{4}\pi a^2$	

3 (a) (ii)

A slice taken through the ellipse perpendicular to the x – axis is the annulus with inner radius (b-y) and outer radius (b+y).

- \therefore Volume of slice $\Delta V = 4\pi by \Delta x$
- :. Volume of solid

$$V = 4\pi b \int_{-a}^{a} y dx$$

$$= 8\pi b \int_{0}^{a} \frac{b}{a} \sqrt{a^{2} - x^{2}} dx$$

$$= \frac{8\pi b^{2}}{a} \times \frac{1}{4} \pi a^{2} \text{ from part (i)}$$

$$= 2\pi^{2} a b^{2} \text{ cubic units.}$$

Showing area of cross section is $4\pi ay \rightarrow 1$ mk

Correct integral → 1 mk

Correct Answer → 1 mk

2006 JRAHS E2 T2 Assessment solutions/LK

Page 5

Area of rectangular slice; $A(x) = 2\pi x(e^2 - e^{2x})$

$$\therefore \Delta V = 2\pi x (e^2 - e^{2x}) \Delta x$$

$$\therefore \text{ Vol} = \lim_{\Delta x \to 0} \sum_{0}^{1} 2\pi x (e^{2} - e^{2x}) \Delta x$$

3 (b) (ii) :. Vol = $\int_{0}^{1} 2\pi x (e^{2} - e^{2x}) dx$ = $\left[2\pi e^{2} \cdot \frac{1}{2} x^{2} \right]_{0}^{1} - \pi \int_{0}^{1} 2x e^{2x} dx$ = $\pi e^{2} - \pi \left[x e^{2x} \right]_{0}^{1} + \pi \int_{0}^{1} e^{2x} dx$ = $\pi e^{2} - \pi e^{2} + \frac{1}{2} \pi \left[e^{2x} \right]_{0}^{1} = \frac{1}{2} \pi (e^{2} - 1)$ → 1 mk

→ 1 mk

→ 1 mk

→ 1 ml

→ 1 mk

3 (c)	Substituting $y^2 = 4ax$ into $xy = c^2$ we get $y^3 = 4ac^2 = 2a^3$ as $2c^2 = a^2$.		
	Let <i>P</i> be the point of intersection where $\therefore y = a\sqrt[3]{2} \text{ and } x = \frac{a(\sqrt[3]{4})}{4}$	→ 1mk	
	By differentiating $xy = c^2$ we get $\frac{dy}{dx} = -\frac{y}{x}$	→ ½ mk	
	∴ the gradient of the hyperbola $xy = c^2$ at P is $m = \frac{-a(\sqrt[3]{2})}{\left(\frac{a}{4}\right)(\sqrt[3]{4})} = \frac{-4}{\sqrt[3]{2}} \rightarrow \boxed{A}$	→ 1 mk	
	By differentiating $y^2 = 4ax$ we get $\frac{dy}{dx} = \frac{2a}{y}$	→ ½ mk	
	∴ gradient of $y^2 = 4ax$ is given by $M = \frac{2a}{a(\sqrt[3]{2})} = \frac{2}{\sqrt[3]{2}} \implies \boxed{B}$	→ 1 mk	
	$\therefore A \div B \implies m = -2M \qquad \text{as required.}$		
1		1	1

2006 JRAHS E2 T2 Assessment solutions/LK

Page 7

4(a) (i) $\ddot{x} = -\frac{k}{x^2}$		
$\therefore \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -\frac{k}{x^2}$ $\therefore \frac{1}{2} v^2 = -\int \frac{k}{x^2} dx = \frac{k}{x} + c$ Now $v = 0$ when $x = a$ $\therefore c = -\frac{k}{x}$	→ ½ mk	
$\therefore v^2 = 2k\left(\frac{1}{x} - \frac{1}{a}\right)$	→ ½ mk	
Now $0 < x < a$ but motion is moving towards the origin for $t > 0$.		
$\therefore v = -\sqrt{2k\left(\frac{1}{x} - \frac{1}{a}\right)}$	→ 1 mk	
For $x = \frac{1}{2}a$, $v = -\sqrt{\frac{2k}{a}}$	Correct answer→ 1 mk	
4 (a) (ii) $ \frac{1}{v} = \frac{dt}{dx} = -\frac{1}{\sqrt{2k\left(\frac{a-x}{ax}\right)}} = -\frac{1}{\sqrt{\frac{2k}{a}\left(\frac{a-x}{x}\right)}} $	Correct $\frac{1}{v}$ equation \rightarrow 1 mk	
$= -\sqrt{\frac{a}{2k}} \cdot \sqrt{\frac{x}{a-x}} \qquad = \sqrt{\frac{a}{2k}} \cdot \int_{\frac{a}{2}}^{a} \sqrt{\frac{x}{a-x}}$	$\sqrt{\frac{a}{2k}} \cdot \int_{\frac{a}{2}}^{a} \sqrt{\frac{x}{a-x}} \rightarrow 1 \text{ mk}$	
$= -\sqrt{\frac{a}{2k}} \left[\sqrt{x(a-x)} + \frac{1}{2} a \sin^{-1} \left(\frac{a-2x}{a} \right) \right]_{\frac{a}{2}}^{a}$	Correct substitution → 1mk	
$= -\sqrt{\frac{a}{2k}} \left[\frac{1}{2} a \sin^{-1}(-1) - \frac{a}{2} - \frac{1}{2} a \sin(0) \right]$		
$\therefore t = \frac{\left(\pi + 2\right)a^{\frac{3}{2}}}{4\sqrt{2k}}$		

2006 JRAHS E2 T2 Assessment solutions/LK

Page 9

Note $L = 2a = 2x$ so $a = x$.		
$\therefore \text{ Area} = A = xb \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$		
But $x = \frac{a}{b} \sqrt{b^2 - y^2}$ and let $K = \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$		
$\therefore A(y) = \frac{LK}{2} \sqrt{b^2 - y^2}$	$A(y) \rightarrow 1 \text{ mk}$	
Now volume of slice, $\Delta V = A(y) \Delta y$		
$\therefore \Delta V = \frac{LK}{2} \sqrt{b^2 - y^2} \Delta y$		
∴ volume of sum of slices,		
$V = \frac{LK}{2} \lim_{\Delta y \to 0} \sum_{-b}^{b} \sqrt{b^2 - y^2} \Delta y$	→ 1 mk	
$=\frac{LK}{2}\int_{-b}^{b}\sqrt{b^2-y^2}dy$		
$=\frac{LK}{2}\cdot\frac{1}{2}\pi b^2$	→ 1 mk	
(Note: this integral gives area of semi circle radius b)		
$\therefore \text{ Volume of } S = \frac{\pi L b^2}{4} \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right] \text{ in terms of } L \text{ and } b$	→ 1mk	
or $=\frac{\pi ab^2}{2}\left[\sqrt{2}+\ln(1+\sqrt{2})\right]$ in terms of a and b.		

~ End of Test ~