Graph Theory I Problem Set 11

Bennett Rennier barennier@gmail.com

November 11, 2017

Ex 4.1.1 Give a proof or counterexample for each statement below

- a) Every graph with connectivity 4 is 2-connected.
- b) Every 3-connected graph has connectivity 3.
- c) Every k-connected graph is k-edge-connected.
- d) Every k-edge-connected graph is k-connected.

Proof.

- a) True. A graph is 2-connected if its connectivity is at least 2. Since 4 > 2, we see this is true.
- b) False. The graph $K_{4,4}$ is 3-connected, but has connectivity greater than 3.
- c) True. Since $\kappa'(G) \geq \kappa(G)$, every disconnecting set of edges in a k-connected graph has at least k edges.
- d) False. Consider the graph below. It's fairly easy to see that $\kappa'(G)=2$ and that $\kappa(G)=1$. This means that G is 2-edge-connected is not 2-connected.

Ex 4.1.4 Prove that a graph G is k-connected if and only if $G \wedge K_r$ is (k+r)-connected.

Proof. In order to separate $G \wedge K_r$ it is necessary to delete all of the vertices in K_r as they are adjacent to all vertices. This leaves us with with only vertices in G. Thus, a set of

vertices is separates $G \wedge K_r$ if and only if it contains the r vertices of K_r and a separating set of vertices of G. If we apply this to minimal separating sets, we see that G is k-connected if and only if $G \wedge K_r$ is (k+r)-connected.

Ex 4.1.5 Let G be a connected graph with at least three vertices. Form G' from G by adding an edge with endpoints x, y whenever $d_G(x, y) = 2$. Prove that G' is 2-connected.

Proof. Firstly, since G' is simply G with more edges, it must be that G' is connected as well. Suppose that G' has a cut-vertex v. This means that v is also a cut vertex of G, as G-v has even fewer edges than G'-v. However, we see that the neighbors of v in G are adjacent in G', which means that they cannot be in different components. Thus, G'-v is actually connected. This is a contradiction and proves that G' has no cut-vertex. Since it takes at least 2 vertices to disconnect G', we see that G' is 2-connected.

Ex 4.1.11 Prove that $\kappa'(G) = \kappa(G)$ when G is a simple graph with $\Delta(G) \leq 3$.

Proof. Let S be a minimum vertex cut set. Since it is always the case that $\kappa(G) \leq \kappa'(G)$, we need only to construct a edge cut of size |S|. Let H_1, H_2 be two components of G - S. As S is a minimum vertex cut set, we see that for each $v \in S$, it must be that v has a neighbor in H_1 and a neighbor in H_2 . Additionally, since $\Delta(G) \leq 3$, it is impossible for v to have two neighbors in both H_1 and H_2 . So, for each $v \in S$, we find the vertex which is the sole neighbor in H_i and delete the edge connecting them. If it happens to be that v has a sole neighbor in each H_i and has a third edge connecting to $v' \in S$ of the same form, then we simply delete the two edges going to H_1 . This will ensure that G is disconnected. Since we delete one edge for each $v \in S$, we have an edge cut of size |S| as desired.

Ex 4.1.15 Use Proposition 4.1.12 and Theorem 4.1.11 to prove that the Petersen graph is 3-connected.

Proof. Since we know that the Petersen graph P is 3-regular, by Theorem 4.1.11, we need only to prove that P is 3-edge-connected. We let $[S, \overline{S}]$ be a minimum edge cut. Since |S| + |S'| = n(P) = 10, we may assume without loss of generality that $|S| \le 5 \le |\overline{S}|$. If we have that $|S| \le 5$, then by Proposition 4.1.12 we see that

$$\sum_{v \in S} d(v) - 2e(G[S]) = 3|S| - 2e(G[S]) \le 2.$$

Since P has a girth of 5, if |S| < 5, then we have that $e(G[S]) \le |S| - 1$. This means that $3|S| - 2(|S| - 1) \le 2$, which gives that $|S| \le 0$. This is obviously impossible as S can't be empty. For |S| = 5, we have that $3|S| - 2|S| \le 2$, which simplifies to $|S| \le 2$. This is again obviously false. Thus, there is no edge cut of size less than 3, which proves that the Petersen graph is 3-connected.