Reducing Age Bias in Machine Learning: An Algorithmic Approach

Adriana Solange Garcia de Alford, Steven Hayden, and Nicole Wittlin Amy Atwood, Ph.D, Senior Data Scientist – T-Mobile, Capstone adviser

1

Bias in Machine Learning

Taken from Moritz Hardt <u>lecture notes.</u>

Is it BIASED because it is UNFAIR? Is it FAIR because it is UNBIASED?

DataScience@SMU

Experiment

- Overview Experiment
 - Age(Z) is protected
 - Age(Z) Correlated with explanatory (X) of predictor model
- Goals
 - Good Accuracy
 - · Demographic Parity
 - Both protected and unprotected classes receive a positive outcome at equal rates.
 - Demographic Parity = True Positives + False Positives

DataScience@SMU

7

Experiment

- Baseline
 - Logistic model
 - $\hat{y}_{Attrition} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$

Adversarial Architecture

- $\hat{y}_{Attrition} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$
- $\hat{A}_{Age} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$
- Loss = $-\alpha \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$

DataScience@SMU

Experiment Results: Fairness

Goal: Improve group fairness based on demographic parity

- Evaluated differences in accuracy and demographic parity between the baseline model and a GAN model
- · Calculated standard metrics to evaluate performance
- · Calculated several other metrics to evaluate group fairness
- Metrics were calculated for 7 age groups in 5-years increments

DataScience@SMU

9

Experiment Results: Accuracy

- Initial step to evaluate **Accuracy** of both models when predicting Attrition
- · Accuracy from GAN model was compared to accuracy baseline model

ACCURACY	<= 25	(25, 30]	(30, 35]	(35, 40]	(40, 45]	(45, 50]	> 50	OVERALL
Baseline/Pre-Gan	0.7576	0.8400	0.8315	0.9138	0.9464	0.8696	0.7941	0.8587
Post-Gan	0.6970	0.800	0.8314	0.8966	0.8929	0.9130	0.7941	0.8315

- · Accuracy in both models was expected to be similar
- · Accuracy from GAN was lower across all groups
- Groups less than 35 and older population over 50, resulted in a lower accuracy on Attrition
- Attributed this to larger number of observations in the middle age groups

DataScience@SMU

Experiment Results: Demographic Parity

- · Demographic Parity (DP) is achieved when:
 - Each group has equal likelihood to be assigned a positive outcome
 - · Proportion of positive predictions in the subgroups is close to each other

DEMOGRAPHIC PARITY	<= 25	(25, 30]	(30, 35]	[(35, 40]]	(40, 45]	(45, 50]	>50	OVERALL	
Baseline/Pre-Gan	0.9394	0.9600	0.9438	0.9655	0.9464	0.9565	1.000	0.9375	
Post-Gan	1.000	1.000	0.9888	0.9828	1.0000	1.000	1.000	0.9973	
Table 2: Demographic Parity Comparison of Baseline and Adversarial Models									
by Age Group									

• Improved <u>DP</u> range across all groups:

Baseline between 94-100%; GAN range 98-100%

· Small trade-off between Accuracy and Fairness GAN:

Accuracy decreased 2% but DP increased 6%.

DataScience@SMU

11

Conclusions

- Most adversarial debiasing work focused on protected groups such as race, sex and gender bias; we considered binned data
- Achieved Demographic Parity based on results from a comparative analysis between the baseline model and the GAN model
- Our focus was on <u>Age debiasing</u>, and how age bias can be prevented in deep learning models

DataScience@SMU

Conclusions

- Bias must be addressed in advance and throughout the ML lifecycle

 NOT as an afterthought
- Mitigating bias using adversarial network architecture shows promise, yet we cannot be confident that systems are unbiased and fair

We <u>cannot</u> and <u>must not</u> replace the inquisitiveness, skepticism, moral imagination, compassion, and the sensitivity to foresee consequences that <u>humans</u> bring to bear on machine learning.

DataScience@SMU

