Práctica 1: Distribución Binomial con un Dado

Objetivos

- 1. Medir la distribución del número de éxitos en bloques de *n* lanzamientos.
- 2. Calcular media y varianza y comparar con los valores teóricos.
- 3. Verificar el ajuste con una prueba de Chi-cuadrado de bondad de ajuste.

Definición del Experimento

Se analiza el número de veces que se obtiene un "6" (éxito) al lanzar un dado 20 veces. Este es un experimento que sigue una distribución binomial.

```
X \sim \text{Bin}(n, p)
```

Donde:

- n=20 (número de lanzamientos en cada experimento)
- p=1/6 (probabilidad de obtener un 6 en un solo lanzamiento)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import binom, chi2
# Cargar los datos
df = pd.read csv('datos practical.csv')
# Renombrar columnas para facilitar el acceso
df.columns = ['experimento', 'lanzamientos', 'exitos']
# Mostrar los primeros 5 experimentos
df
                  lanzamientos
    experimento
                                 exitos
                                       3
0
                             20
               1
1
               2
                             20
                                       4
2
                                       2
               3
                             20
3
                                       5
               4
                             20
4
               5
                                       3
                             20
5
                                       1
               6
                             20
6
               7
                             20
                                       6
7
               8
                             20
                                       4
                                       3
8
               9
                             20
                                       2
9
              10
                             20
                                       3
10
              11
                             20
                                       4
11
              12
                             20
```

12	13	20	5
13	14	20	1
14	15	20	3
15	16	20	2
16	17	20	4
17	18	20	3
18	19	20	5
19	20	20	2
20	21	20	3
21	22	20	4
22	23	20	6
23	24	20	3
24	25	20	2

Media y Varianza Teórica

La media (o valor esperado) y la varianza de una distribución binomial se calculan con las siguientes fórmulas:

Media teórica: $\mu = n p$

Varianza teórica: $\sigma^2 = n p (1 - p)$

```
# Parámetros de la distribución
n = 20
p = 1/6

# Cálculos teóricos
media_teorica = n * p
varianza_teorica = n * p * (1 - p)

print(f"Media teórica (μ): {media_teorica:.4f}")
print(f"Varianza teórica (σ²): {varianza_teorica:.4f}")

Media teórica (μ): 3.3333
Varianza teórica (σ²): 2.7778
```

Estadísticos Muestrales

A partir de los datos recolectados, podemos calcular los estimadores de la media y la varianza.

Media muestral:
$$\dot{k} = \frac{1}{N} \sum_{i=1}^{N} k_i$$

Varianza muestral (insesgada): $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (k_i - k)^2$

Donde:

- N es el número total de experimentos.
- k_i es el número de éxitos en el experimento i.

```
# Extraer la columna de 'exitos'
k_values = df['exitos']

# Calcular estadísticos muestrales
media_muestral = np.mean(k_values)
varianza_muestral = np.var(k_values, ddof=1) # ddof=1 para varianza
insesgada

print(f"Media muestral (k̄): {media_muestral:.4f}")
print(f"Varianza muestral (s²): {varianza_muestral:.4f}")

Media muestral (k̄): 3.3200
Varianza muestral (s²): 1.8933
```

Comparación de Frecuencias Observadas y Esperadas

Para evaluar visualmente qué tan bien se ajustan nuestros datos a una distribución binomial, podemos graficar la frecuencia observada de cada número de éxitos y compararla con la distribución de probabilidad teórica.

La probabilidad de obtener exactamente k éxitos en n lanzamientos está dada por la **función de** masa de probabilidad (PMF) de la distribución binomial:

$$P(X=k) = {n \choose k} p^k (1-p)^{n-k}$$

```
# Frecuencias observadas
frecuencias observadas = k values.value counts().sort index()
# Rango de posibles éxitos
k range = np.arange(0, n + 1)
# Probabilidades teóricas
probabilidades teoricas = binom.pmf(k range, n, p)
# Gráfico de la distribución de frecuencias observadas
plt.figure(figsize=(12, 6))
sns.histplot(k_values, bins=np.arange(k values.min(), k values.max() +
2) - 0.5, stat='density', discrete=True, label='Frecuencia Observada
(Normalizada)', color='skyblue')
# Gráfico de la distribución de probabilidad teórica
plt.plot(k_range, probabilidades_teoricas, 'ro-', label='Probabilidad
Teórica Binomial')
plt.title('Distribución de Éxitos: Observada vs. Teórica')
plt.xlabel('Número de Éxitos (k)')
```

```
plt.ylabel('Densidad de Probabilidad')
plt.xticks(k_range)
plt.legend()
plt.grid(True)
plt.show()
```


Prueba de Bondad de Ajuste Chi-cuadrado (χ^2)

Para verificar formalmente si los datos observados se ajustan a la distribución binomial, utilizamos la prueba de Chi-cuadrado.

El estadístico de prueba se calcula como: $\chi^2 = \sum_{i=1}^{m} \frac{\left(O_i - E_i\right)^2}{E_i}$

Donde:

- O_i es la frecuencia observada para la categoría i.
- E_i es la frecuencia esperada para la categoría i, calculada como $N \times P(X = k_i)$.
- *m* es el número de categorías.

Hipótesis:

- H_0 : Los datos siguen una distribución binomial con n=20 y p=1/6.
- H_1 : Los datos no siguen dicha distribución.

Se comparará el valor de χ^2 calculado con un valor crítico de la distribución Chi-cuadrado con m-1 grados de libertad y un nivel de significancia α (comúnmente 0.05). Si $\chi^2_{calculado} > \chi^2_{critico}$ se rechaza H_0 .

```
# Número total de experimentos
N = len(df)
# Crear tabla de frecuencias
frec observada = k values.value counts().sort index()
df frec = pd.DataFrame({'observada': frec observada})
# Calcular frecuencias esperadas
df frec['prob teorica'] = binom.pmf(df frec.index, n, p)
df_frec['esperada'] = df_frec['prob_teorica'] * N
# Agrupar categorías con frecuencia esperada < 5
# Esta es una práctica común para la prueba de Chi-cuadrado
umbral = 5
if (df frec['esperada'] < umbral).any():</pre>
    # Agrupar las categorías de cola
    cola = df_frec[df_frec['esperada'] < umbral]</pre>
    if not cola.empty:
        cola observada = cola['observada'].sum()
        cola esperada = cola['esperada'].sum()
        # Eliminar filas de la cola
        df frec = df frec[df frec['esperada'] >= umbral]
        # Añadir la categoría agrupada
        df_frec.loc['>= ' + str(cola.index.min())] = [cola observada,
np.nan, cola esperada]
# Extraer frecuencias finales para la prueba
0 = df_frec['observada'].values
E = df frec['esperada'].values
# Calcular el estadístico Chi-cuadrado
chi2 calculado = np.sum((0 - E)**2 / E)
# Grados de libertad
# m (número de categorías) - 1
grados libertad = len(0) - 1
# Nivel de significancia
alpha = 0.05
# Valor crítico de Chi-cuadrado
chi2_critico = chi2.ppf(1 - alpha, grados_libertad)
# p-valor
```

```
p_valor = 1 - chi2.cdf(chi2 calculado, grados libertad)
print("Tabla de Frecuencias para Prueba Chi-cuadrado:")
print(df frec)
print("\n--- Resultados de la Prueba Chi-cuadrado ---")
print(f"Estadístico Chi-cuadrado calculado (\chi^2):
{chi2 calculado:.4f}")
print(f"Grados de libertad: {grados libertad}")
print(f"Valor crítico de Chi-cuadrado (\alpha=0.05): {chi2 critico:.4f}")
print(f"p-valor: {p valor:.4f}")
# Conclusión
if chi2 calculado > chi2 critico:
    print("\nConclusión: Se rechaza la hipótesis nula (H<sub>0</sub>).")
    print("Los datos no parecen seguir una distribución binomial con
n=20 \text{ y } p=1/6."
else:
    print("\nConclusión: No se puede rechazar la hipótesis nula
(H<sub>☉</sub>).")
    print("Los datos son consistentes con una distribución binomial
con n=20 y p=1/6.")
Tabla de Frecuencias para Prueba Chi-cuadrado:
        observada prob teorica esperada
exitos
3
              8.0
                        0.237887
                                   5.947164
4
              5.0
                        0.202204
                                   5.055090
>= 1
             12.0
                             NaN 12.417261
--- Resultados de la Prueba Chi-cuadrado ---
Estadístico Chi-cuadrado calculado (χ²): 0.7232
Grados de libertad: 2
Valor crítico de Chi-cuadrado (\alpha=0.05): 5.9915
p-valor: 0.6966
Conclusión: No se puede rechazar la hipótesis nula (H<sub>0</sub>).
Los datos son consistentes con una distribución binomial con n=20 y
p=1/6.
```