Complexity of Linear Operators

Vladimir V. Podolskii¹

joint work with Alexander Kulikov, Ivan Mikhailin, Andrey Mokhov

Steklov Mathematical Institute, Moscow Higher School of Economics, Moscow

ISAAC 2019

Setting

Consider a Boolean matrix $A \in \{0,1\}^{n \times n}$ Consider variables $x = (x_1, \dots, x_n)$ over $\{0,1\}$

We want to compute a Boolean linear operator Ax

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad Ax = \begin{pmatrix} x_1 \lor x_3 \\ x_1 \lor x_2 \\ x_2 \lor x_3 \lor x_4 \\ x_1 \lor x_2 \lor x_3 \lor x_4 \end{pmatrix}$$

The Model

- ▶ The computation is a Boolean circuit consisting of OR gates
- ▶ We start with variables x_1, \ldots, x_n
- ► In one step we can compute OR of two previously computed expressions
- Want to compute all the outputs and minimize the number of steps

Example

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$x_1 \lor x_3$$

$$x_1 \lor x_2$$

$$x_2 \lor x_3 \lor x_4$$

$$x_1 \lor x_2 \lor x_3 \lor x_4$$

Computation:

$$x_1 \lor x_3$$
 — output
 $x_1 \lor x_2$ — output
 $x_3 \lor x_4$
 $x_2 \lor (x_3 \lor x_4)$ — output
 $x_1 \lor (x_2 \lor x_3 \lor x_4)$ — output

Basic facts

- One of the simplest Boolean circuit complexity models, studied since 50's
- ▶ Trivial upper bound: $O(n^2)$
- ► Counting lower bound: $\Omega(n^2/\log n)$
- Non-trivial upper bound: $O(n^2/\log n)$ (Lupanov '56)
- ► The best explicit lower bound: $\Omega(n^{2-o(1)})$ (Nechiporuk '70)

General setting

Consider a Boolean matrix $A \in \{0,1\}^{n \times n}$ Consider variables $x = (x_1, \dots, x_n)$ over some semigroup (S, \circ) .

We want to compute a linear operator Ax.

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad Ax = \begin{pmatrix} x_1 \circ x_3 \\ x_1 \circ x_2 \\ x_2 \circ x_3 \circ x_4 \\ x_1 \circ x_2 \circ x_3 \circ x_4 \end{pmatrix}$$

Some semigroups

- ▶ Boolean semigroup: $(\{0,1\}, \lor)$
- ▶ Integers with addition: $(\mathbb{Z}, +)$
- ▶ $\{0,1\}$ with addition: $(\{0,1\},\oplus)$
- ▶ Tropical semigroup: (\mathbb{Z}, min)

Simplified Problem: Suppose $A \in \{0,1\}^{n \times n}$ is very dense, that is A has O(n) zeros. How hard is it to compute Ax?

Simplified Problem: Suppose $A \in \{0,1\}^{n \times n}$ is very dense, that is A has O(n) zeros. How hard is it to compute Ax?

Simple observations:

▶ If instead we consider A containing O(n) ones, the complexity is trivially O(n)

Simplified Problem: Suppose $A \in \{0,1\}^{n \times n}$ is very dense, that is A has O(n) zeros. How hard is it to compute Ax?

Simple observations:

- If instead we consider A containing O(n) ones, the complexity is trivially O(n)
- ▶ If (S, \circ) has an inverse operation (is a group), the complexity is trivially O(n)

Simplified Problem: Suppose $A \in \{0,1\}^{n \times n}$ is very dense, that is A has O(n) zeros. How hard is it to compute Ax?

Simple observations:

- If instead we consider A containing O(n) ones, the complexity is trivially O(n)
- ▶ If (S, \circ) has an inverse operation (is a group), the complexity is trivially O(n)

Problem: Suppose $A \in \{0,1\}^{n \times n}$ has z zeros. How many operations do we need to compute Ax as a function of z?

► Want to understand the structure of semigroups that are not groups

- ► Want to understand the structure of semigroups that are not groups
- ► Important examples: Boolean semigroup and tropical semigroup

- ► Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?

- Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?
- Non-trivial upper bound over integers: $O(n^{2.373})$ (V. Williams '12)

- Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?
- Non-trivial upper bound over integers: $O(n^{2.373})$ (V. Williams '12)
- ► Known lower bound over tropical semiring: $\Omega(n^3)$ (Kerr '70)

- Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?
- Non-trivial upper bound over integers: $O(n^{2.373})$ (V. Williams '12)
- ▶ Known lower bound over tropical semiring: $\Omega(n^3)$ (Kerr '70)
- Other motivation: connection to range minimum query problem (will see later)

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

More generally,

Theorem

If (S, \circ) is a commutative semigroup, and A has z zeros, then Ax can be computed in O(z) operations

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

More generally,

Theorem

If (S, \circ) is a commutative semigroup, and A has z zeros, then Ax can be computed in O(z) operations

Theorem

If (S, \circ) is strongly non-commutative semigroup, then the maximal complexity of Ax is $\Theta(n\alpha(n))$ operations for dense A

Here $\alpha(n)$ is the inverse Ackermann function

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

More generally,

Theorem

If (S, \circ) is a commutative semigroup, and A has z zeros, then Ax can be computed in O(z) operations

Theorem

If (S, \circ) is strongly non-commutative semigroup, then the maximal complexity of Ax is $\Theta(n\alpha(n))$ operations for dense A

Here $\alpha(n)$ is the inverse Ackermann function

 $\alpha(n)$ growth is extremely slow

For all practical needs we can assume $\alpha(n) \leq 4$

Connection to RMQ

Theorem (simplified upper bound)

For dense A the operator Ax over $(\{0,1\}, \vee)$ can be computed is O(n) operations

First idea: Connection to Range Minimum Query problem (RMQ)

This is a standard setting in theory of algorithms

We are given an array of numbers x_1, \ldots, x_n . We want a data structure to answer queries of the form

$$\min\{x_i \mid I \leqslant i \leqslant r\} = ?$$

for integer I and r.

Reduction to RMQ

Consider

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Split each row into intervals

$$x_1$$
 $x_3 \lor x_4$ x_6
 $x_1 \lor x_2$ $x_4 \lor x_5 \lor x_6$
 x_1 $x_3 \lor x_4 \lor x_5$
 $x_1 \lor x_2 \lor x_3$ $x_5 \lor x_6$
 $x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6$
 x_1 $x_4 \lor x_5 \lor x_6$

There are O(n) intervals in total, so we reduced our problem to the offline version of RMQ (intervals are given in advance)

Complexity of RMQ

Unfortunately, best constructions for RMQ give only $O(n\alpha(n))$ complexity in our model, where $\alpha(n)$ is an inverse Ackermann function

Complexity of RMQ

Unfortunately, best constructions for RMQ give only $O(n\alpha(n))$ complexity in our model, where $\alpha(n)$ is an inverse Ackermann function

Moreover, the following is true

Theorem (Chazelle, Rozenberg '91)

There are range matrices $A \in \{0,1\}^{n \times n}$ with the complexity $\Omega(n\alpha(n))$

So, the reduction to RMQ is not enough for the upper bound

Suppose we have A with O(n) zeros

► Split rows in two parts: with more than log *n* zeros and with at most log *n* zeros

- ➤ Split rows in two parts: with more than log *n* zeros and with at most log *n* zeros
- Computing the second part: intervals are long on average

- ➤ Split rows in two parts: with more than log *n* zeros and with at most log *n* zeros
- Computing the second part: intervals are long on average
- ▶ The first part has at most $n/\log n$ rows

- ➤ Split rows in two parts: with more than log *n* zeros and with at most log *n* zeros
- Computing the second part: intervals are long on average
- ▶ The first part has at most $n/\log n$ rows
- ► Computing the first part: switch to the transposed matrix

Lower Bound, Proof Scheme

We prove the following problem equivalences

Open problem

be over $(\mathbb{N}, +)$ semiring?

Open problem

Problem (Jukna '19)

Consider $A \in \{0,1\}^{n \times n}$, denote by \overline{A} the bit-wise negation of A. How large can

$$\frac{Complexity(\overline{A}x)}{Complexity(Ax)}$$

be over $(\mathbb{N},+)$ semiring?

Our result rules out the possibility to achieve large gap with a sparse matrix

Open problem

Problem (Jukna '19)

Consider $A \in \{0,1\}^{n \times n}$, denote by \overline{A} the bit-wise negation of A. How large can

$$\frac{Complexity(\overline{A}x)}{Complexity(Ax)}$$

be over $(\mathbb{N},+)$ semiring?

Our result rules out the possibility to achieve large gap with a sparse matrix

Thank you for attention!