

Fig. 14

GAATTGGCACCGAGGGATCTGGATGGCATCTACTTGTATGACTATTGGAGACTATTGGAGGTCCCACATCTTCCTGCTGGGGATAAGGCTTCTGCTGGGATAGGAATTCTGGTGTCTGCAT 60
 GGAAGACGGGATAAGGGCTGTAAGGCTTCTGCTGGGATAGGAATTCTGGTGTCTGCAT 130
 E D G D K R C K L L G I G I E V L L I 33
 CATCGTGTATTCTGGGGCTTGATTATCTTCAACCATCAAGGCCAACAGGGAGGGCTG 180
 T V I L G V P L I F T I K A N S E A C 53
 CCGGACGGCCATTGGGGCAGTGTGATGGAGTGTGCCAATGTCACTCCATCTGGCAACAAAGA 240
 R D G L R A V M E C R N V T H L L Q Q E 73
 GCTGACCGAGGCCAGAAGGGCCATTTCAGGATGGAGTGTGGAGGGCCAGGGACAAAGAAAGT 300
 L T E A Q K G F Q D V E A Q A A T C N H 93
 CACTGTGATGGCCCTAATGGCTTCCCTGGATGCAAGAGAAGGCCAAGGACAAGAAAGAAGT 360
 T V M A L M A S L D A E K A Q G Q K V 113
 GGAGGAGCTGAGGGAGAGATCACTACATTAACCATAAGCTTCAGGACGGCTCTGGAGA 420
 E E L E G E I T T L N H K L Q D A S A E 133
 GGTGGAGCGACTGAGAAGAGAAAACAGGTCTTAAGGGTGAAGATTCGGGACAAGAAGTA 480
 V E R L R E N Q V L S V R I A D K K Y 153
 CTACCCCAAGCTCCAGGACTCCAGCTCCGGCTCGGGCAGCTGGCTGATTTGTGCTGCT 540
 Y P S S Q D S S A A P Q L L I V L L 173
 GGGCCTCAGGGCTCTGCTGGCAGTGAAGATCCAGGAAGCTGGCACATCTGGAAAGGTCCGT 600
 G L S A L L Q * (SEQ ID NO:26) 180
 CCTGGCTGGCTTTTCGCTTGAACATTCCTTGATCTCATCTAGTTCTGAGGGGTCTGG 660
 GCAACACGGTTAGGGGGAGGACACGGGTAGCCGGAGAAAGGCCCTCTGGAGGGCTG 720
 GAGGGGCCATGGGCAGTCCCTGGGACACAGTGGGTGGGGTGGCTGAGCTGGCTGTC 780
 CCTCGAGAGCCCTCCGGACAATGAGTCCCCCTCTGTCTCCACCTGAGATTGGG 840
 CATGGGGTGGCTGGTGGGGCATGTGCTGGCTGCTGGTTATGGGTTTTGGGGGG 900
 GGTTGCTTTTCTGGGTCTTGAAGCTCCAAAATAAACACTTCCTTGGGGAGAG 960
 CACACCTTAAAAAAAGAAAAAAATTGGGGGGCCCA 1014
 (SEQ ID NO:16)

Fig. 15

Fig.16

Fig.17

LANE 1: KPMM2 (EQUIVALENT TO 5×10^5 CELLS)
 LANE 2: RPMI8226 (25×10^5 CELLS)
 LANE 3: U266 (25×10^5 CELLS)
 LANE 4: CHO/HM (5×10^5 CELLS)
 LANE 5: CHO/NEO (5×10^5 CELLS)
 LANE 6: NONE
 LANE 7: KPMM2 (5×10^5 CELLS)

Fig.18

