Statistical Learning Theory - Regression -

Hisashi Kashima

DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY

Linear Regression

Regression:

Supervised learning for predicting a real valued variable

- Regression learning is one of supervised learning problem settings with a wide range of applications
- Goal: Obtain a function $f: \mathcal{X} \to \Re$ (\Re : real value)
 - —Usually, input domain \mathcal{X} is a D-dimensional vector space
 - E.g. $x \in \mathcal{X}$ is a house \bigoplus and $y \in \Re$ is its price \bigotimes (housing dataset in UCI Machine Learning Repository)
- Training dataset: N pairs of an input and an output $\{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$
 - —We use the training dataset to estimate f

Some applications of regression:

From marketing prediction to chemo-informatics

- Some applications:
 - -Price prediction: Predict the price y of a product x
 - -Demand prediction: Predict the demanded amount y of a product x
 - -Sales prediction: Predict the sales amount y of a product x
 - —Chemical activity: Predict the activity level y of a compound x
- Other applications:
 - -Time series prediction: Predict the value y at the next time step given the past measurements x
 - -Classification (has a discrete output domain)

Model:

Linear regression model

- Model: How does output y depend on input x?
- We consider the simplest choice: Liner regression model $y = \mathbf{w}^{\mathsf{T}} \mathbf{x} = w_1 x_1 + w_2 x_2 + \dots + w_D x_D$
 - -Example: Prediction model of the price of a house:

Handling discrete features: Dummy variables

- We assume input x is a real vector
 - —In the house price prediction example, features can be age, walk time to the nearest station, crime rate in the area, ...
 - They are considered as real values
- How do we handle discrete features as real values?
 - -Binary features: $\{Right, Left\}$ are encoded as $\{0,1\}$
 - Called dummy variables
 - -One-hot encoding: {Kyoto, Osaka, Tokyo} are encoded with (1,0,0), (0,1,0), and (0,0,1)

Objective function of training: Squared loss

- Objective function (to minimize):
 Disagreement measure of the model to the training dataset
 - -Loss function: $\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})$ for the *i*-th instance
 - -Objective function: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})$
- Squared loss function:

$$\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = (y^{(i)} - \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})^2$$

- -Absolute loss, Huber loss: more robust choices
- Optimal parameter \mathbf{w}^* is the one that minimizes $L(\mathbf{w})$:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w})$$

Solution of linear regression problem: One dimensional case

- Let us start with a case where inputs and outputs are both one-dimensional: y = wx
- Objective function to minimize:

$$L(w) = \sum_{i=1}^{N} (y^{(i)} - wx^{(i)})^{2}$$

• Solution: $w^* = \frac{\sum_{i=1}^{N} y^{(i)} x^{(i)}}{\sum_{i=1}^{N} x^{(i)}^2} = \frac{\text{Cov}(x,y)}{\text{Var}(x)}$

-By solving
$$\frac{\partial L(w)}{\partial w} = 0$$

Solution of linear regression problem: General multi-dimensional input case

Matrix and vector notations:

-Design matrix
$$\boldsymbol{X} = \left[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\right]^{\mathsf{T}}$$

-Target vector
$$\mathbf{y} = (y^{(1)}, y^{(2)}, ..., y^{(N)})^{\top}$$

The Matrix Cookbook

[http://matrixcookbook.com]

Kaare Brandt Petersen Michael Syskind Pedersen

Version: November 15, 2012

Objective function:

$$L(\mathbf{w}) = \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^{2} = ||\mathbf{y} - \mathbf{X} \mathbf{w}||_{2}^{2}$$

$$= (\mathbf{y} - \mathbf{X} \mathbf{w})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \mathbf{w})$$
We assume the inverse exists

• Solution: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

Example:

House price prediction

Design matrix: Training data with 4 houses

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \begin{pmatrix} 15 \\ 10 \\ 1.0 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0.1 \end{pmatrix}, \begin{pmatrix} 35 \\ 5 \\ 7.0 \end{pmatrix}, \begin{pmatrix} 40 \\ 70 \\ 1.0 \end{pmatrix} \end{bmatrix}^{\mathsf{T}}$$

Target vector:

$$\mathbf{y} = (y^{(1)}, y^{(2)}, y^{(3)}, y^{(4)})^{\mathsf{T}} = (140, 85, 220, 115)^{\mathsf{T}}$$

Regularization

Ridge regression: Include penalty on the norm of \mathbf{w} to avoid instability

- Existence of the solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \mathbf{y}$ requires that $\mathbf{X}^T \mathbf{X}$ is non-singular or regular, i.e. full-rank
 - This is often secured when the number of data instances N is much larger than the number of dimensions D ($N \gg D$)
- Regularization: Adding some constant $\lambda > 0$ to the diagonals of X^TX to make it regular (and also for numerical stability)
 - -Modified solution: $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$
- Back to its objective function, the new solution corresponds to $L(\mathbf{w}) = \|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$
 - $-\lambda \|\mathbf{w}\|_2^2$ is called a (L2-)regularization term

(L2-)regularization term

Overfitting:

Degradation of predictive performance for future data

- Previously, we introduced the regularization term in the context of avoiding numerical stability
- When the number of data instances N is less than the number of dimensions D, the solution is not unique
 - Infinite number of solutions exist
- Another interpretation: To avoid overfitting to the training data
 - Generalization: our goal is to make correct predictions for future data, not for the training data
 - Overfitting: Too much adaptation to the training data degrades predictive performance on future data

Occam's razor:

Adopt the simplest model

- We have infinite number of models that equally fit to the training data (=minimize the loss function)
 - -Some perform well, some perform badly
- Which is the "best" model among them?
- Occam's razor principle: "Take the simplest model"
 - -We will discuss why the simple model is good later in the "statistical learning theory"
- What is the measure of simplicity?
 For example, number of features = the number of non-zero elements in w

Occam's razor:

Prefers models with smaller number of variables

Occam's razor principle prefers

0-norm regularization: Reduces the number of non-zero elements in \mathbf{w}

- Number of non-zero elements in $\mathbf{w} = \mathbf{0}$ -norm of \mathbf{w}''
- Use 0-norm constraint:

minimize_w
$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$
 s. t. $\|\mathbf{w}\|_0 \le \eta^2$

or equivalently, 0-norm penalty:

minimize_w
$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{0}$$

- —There is some one-to-one correspondence between η and λ
- However, they are non-convex optimization problems ...
 - -0-norm is a *non-convex* function
 - Hard to find the optimal solution

Number of

the model

 $\lambda > 0$: Regularization

constant

Ridge regression:

2-norm regularization as a convex surrogate for 0-norm

■ Instead of the zero-norm $\|\mathbf{w}\|_0$, we use 2-norm $\|\mathbf{w}\|_2^2$

Convex 🙂

- Ridge regression: $L(\mathbf{w}) = \|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$
 - -Can be seen as a relaxed(?) version of $L(\mathbf{w}) = \|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_0$
 - -The closed form solution: $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

Lasso:

1-norm regularization further induces sparsity

■ Instead, we can use 1-norm $\|\mathbf{w}\|_1 = |w_1| + |w_2| + \cdots + |w_D|$

- Lasso: $L(\mathbf{w}) = \|\mathbf{y} X\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{1}$
 - Convex optimization, but no closed form solution
- Sparsity inducing norm: 1-norm induces sparse w*

Statistical Interpretation

Interpretation as statistical inference:

Regression as maximum likelihood estimation

- So far we have formulated the regression problem in loss minimization framework
 - -Function (prediction model) $f: \mathcal{X} \to \mathfrak{R}$ is deterministic
 - -Least squares: Minimization of the sum of squared losses
- We have not considered any statistical inference
- Actually, we can interpret the previous formulation in a statistical inference framework, namely, maximum likelihood estimation

Maximum likelihood estimation (MLE): Find the parameter that best reproduces training data

- We consider f as a conditional distribution $f_{\mathbf{w}}(y|\mathbf{x})$
- Maximum likelihood estimation (MLE):

Conditional probability

-Find w that maximizes the likelihood function:

$$L(\mathbf{w}) = \prod_{i=1}^{N} f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})$$

- Likelihood function: Probability that the training data is reproduced by the model
- We assume i.i.d. (which will be explained next)
- —It is often convenient to use *log* likelihood instead:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})$$

Important assumption on data: Identically and independently distributed

- We assume data are identically and independently distributed:
 - Data instances are generated from the same data generation mechanism (i.e. probability distribution)
 - Furthermore, past data (training data) and future data (test data) have the same property
 - -Data instances are independent of each other

Probabilistic version of the linear regression model: Gaussian linear model

- Probabilistic version of the linear regression model $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$
- $y \sim \mathcal{N}(\mathbf{w}^{\mathsf{T}}\mathbf{x}, \sigma^2)$: Gaussian distribution with mean $\mathbf{w}^{\mathsf{T}}\mathbf{x}$ and variance σ^2

$$f_{\mathbf{w}}(y|\mathbf{x}) = \mathcal{N}(\mathbf{w}^{\mathsf{T}}\mathbf{x}, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - \mathbf{w}^{\mathsf{T}}\mathbf{x})^2}{2\sigma^2}\right)$$

—In other words, $y = \mathbf{w}^\mathsf{T} \mathbf{x} + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ Linear regression model

Relation between least squares and MLE: Maximum likelihood is equivalent to least squares

Log-likelihood function:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})$$

$$= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= -\frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})^{2} + \text{const.}$$

■ Maximization of $L(\mathbf{w})$ is equivalent to minimization of the squared loss $\sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^2$

Some More Applications

Time series prediction: Auto regressive (AR) model

- Time series data: A sequence of real valued data $x_1, x_2, ..., x_t, ... \in \Re$ associated with time stamps t = 1, 2, ...
- Time series prediction: Given $x_1, x_2, ..., x_{t-1}$, predict x_t
- Auto regressive (AR) model:

$$x_t = w_1 x_{t-1} + w_2 x_{t-2} + \dots + w_D x_{t-D}$$

- $-x_t$ is determined by the recent length-D history
- AR model as a linear regression model $y = \mathbf{w}^{\mathsf{T}}\mathbf{x}$:

$$-\mathbf{w} = (w_1, w_2, ..., w_D)^{\mathsf{T}}$$
$$-\mathbf{x} = (x_{t-1}, x_{t-2}, ..., x_{t-D})^{\mathsf{T}}$$

Classification as regression: Regression is also applicable to classification

- Binary classification: $y \in \{+1, -1\}$
- Apply regression to predict $y \in \{+1, -1\}$
- Rigorously, such application is not valid
 - Since an output is either +1 or -1,
 the Gaussian noise assumption does not hold
 - However, since solution of regression is often easier than that of classification, this application can be compromise
- Fisher discriminant: Instead of $\{+1, -1\}$, use $\{+\frac{1}{N^+}, -\frac{1}{N^-}\}$
 - $-N^+(N^-)$ is the number of positive (negative) data

Nonlinear Regression

Nonlinear regression: Introducing nonlinearity in linear models

- So far we have considered only linear models
- How to introduce non-linearity in the models?
 - 1. Introduce nonlinear basis functions:
 - Transformed features: e.g. $x \rightarrow \log x$
 - Cross terms: e.g. $x_1, x_2 \rightarrow x_1 x_2$
 - Kernels: $\mathbf{x} \to \boldsymbol{\phi}(\mathbf{x})$ (some nonlinear mapping to a high-dimensional space)
 - 2. Intrinsically nonlinear models:
 - Regression tree / random forest
 - Neural network

Nonlinear transformation of features: Simplest way to introduce nonlinearity in linear models

- Nonlinear basis function: $x \to \log x$, e^x , x^2 , $\frac{1}{x}$, ...
 - Sometimes used for converting the range
 - E.g. $\log: \Re^+ \to \Re$, $\exp: \Re \to \Re^+$
- Interpretations of log transformation:

	у	$\log y$
	$y = \beta x + \alpha$	$\log y = \beta x + \alpha$
X	Increase of x by 1 will increase y by $oldsymbol{eta}$	Increase of x by 1 will multiply y by $1+eta$
	$y = \beta \log x + \alpha$	$\log y = \beta \log x + \alpha$
$\log x$	Doubling x will increase y by β	Doubling x will multiply y by $1+\beta$

Cross terms:

Can include synergetic effects among different features

- Not only the original features $x_1, x_2, ..., x_D$, use their cross terms products $\{x_dx_{d'}\}_{d.d'}$
- Model has a matrix parameter W:

$$y = \operatorname{Trace} \left(\begin{bmatrix} w_{1,1} & \cdots & w_{1,D} \\ \vdots & \ddots & \vdots \\ w_{D,1} & \cdots & w_{D,D} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_1^2 & x_1 x_2 & \cdots & x_1 x_D \\ x_2 x_1 & x_2^2 & \cdots & x_2 x_D \\ \vdots & \vdots & \ddots & \vdots \\ x_D x_1 & x_D x_2 & \cdots & x_D^2 \end{bmatrix} \right)$$
$$= \mathbf{x}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \mathbf{x}$$

$$L(\mathbf{W}) = \sum_{i=1}^{N} (y^{(i)} - \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{W}^{\mathsf{T}} \mathbf{x}^{(i)})^{2} + \lambda \|\mathbf{W}\|_{\mathrm{F}}^{2}$$

(e.g. factorization machines)

Kernels:

Linear model in a high-dimensional feature space

- High dimensional non-linear mapping: $\mathbf{x} \to \boldsymbol{\phi}(\mathbf{x})$
 - $-\phi: \Re^D \to \Re^{\overline{D}}$ is some nonlinear mapping from D-dimensional space to a \overline{D} -dimensional space ($D \ll \overline{D}$)
- Linear model $y = \overline{\mathbf{w}}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x})$
- Kernel regression model: $y = \sum_{i=1}^{N} \alpha^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x})$
 - -Kernel function $k(\mathbf{x}^{(i)}, \mathbf{x}) = \langle \boldsymbol{\phi}(\mathbf{x}^{(i)}), \boldsymbol{\phi}(\mathbf{x}) \rangle$: inner product
 - –Kernel trick: Instead of working in the \overline{D} -dimensional space, we use an equivalent form in an N -dimensional space
 - Foundation of kernel machines, e.g. SVM, Gaussian process, ...

Bayesian Statistical Interpretation

Bayesian interpretation of regression: Ridge regression as MAP estimation

- We consider another statistical interpretation of linear regression in terms of Bayesian statistics
 - Which justifies ridge regression
- Ridge regression as MAP estimation
 - Posterior distribution of parameters
 - -Maximum A Posteriori (MAP) estimation

Least square regression (Maximum likelihood estimation Ridge regression (MAP estimation

Bayesian modeling: Posterior distribution instead of likelihood

In maximum likelihood estimation (MLE), we obtain w that maximizes data likelihood:

$$P(\mathbf{y} \mid X, \mathbf{w}) = \prod_{i=1}^{N} f_{\mathbf{w}}(y^{(i)} | \mathbf{x}^{(i)})$$

or $\log P(\mathbf{y} \mid X, \mathbf{w}) = \sum_{i=1}^{N} \log f_{\mathbf{w}}(y^{(i)} | \mathbf{x}^{(i)})$

- The probability of the data reproduced with the parameter: $P(\text{Data} \mid \text{Parameters})$
- In Bayesian modeling, we consider the *posterior distribution* $P(\text{Parameters} \mid \text{Data})$
 - Posterior distribution is the distribution over model parameters given data

Posterior distribution: Log posterior = log likelihood + log prior

Posterior distribution:

$$P(\text{Parameters} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Parameters})P(\text{Parameters})}{P(\text{Data})}$$
(Bayes' formula)

Log posterior:

 $\log P(\text{Parameters} \mid \text{Data})$ $= \log P(\text{Data} \mid \text{Parameters}) + \log P(\text{Parameters})$ Likelihood $-\log P(\text{Data})$

 P(Data) is a constant term and often neglected because it does not depend on the parameters

Maximum a posteriori (MAP) estimation: Find parameter that maximizes the posterior

- Maximum a posteriori (MAP) estimation finds the parameter that maximizes the (log) posterior:
 Parameters* = argmax_{Parameters} log P(Parameters | Data)
- Maximization of the log posterior:
 log P(Parameters | Data)
 = log P(Data | Parameters) + log P(Parameters) + const.
 - MLE considers only log P(Data | Parameters)
 - MAP has an additional term (log prior) : log P(Parameters)

Ridge regression as MAP estimation: MAP with Gaussian linear model + Gaussian prior

• Log posterior: log P(Parameters | Data) = log P(Data | Parameters) + log P(Parameters) + const.

Log likelihood Log prior

• Log-likelihood:
$$\sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma'} \exp \left(-\frac{\left(y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}\right)^{2}}{2{\sigma'}^{2}}\right)$$

• Prior
$$P(\mathbf{w}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}}{2\sigma^2}\right)$$
 (Gaussian prior)

Ridge regression is equivalent to MAP estimation:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2\sigma'^2} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^2 + \frac{1}{2\sigma^2} ||\mathbf{w}||_2^2$$

Regression:

Supervised learning for predicting a real valued variable

- A supervised learning problem to make real-valued predictions
- Regression problem is often formulated as a least-square minimization problem
 - -Closed form solution is given
- Regularization framework to avoid overfitting
 - Reduce the number of features: 0-norm, 2-norm (ridge regression), 1-norm (lasso)
- Nonlinear regression
- Statistical interpretations: maximum likelihood estimation, maximum a posteriori (MAP) estimation