Package 'BigKnn'

March 14, 2023

17141011 11, 2023	
Type Package	
Title Large Scale K-Nearest Neighbor Classifier using the Lucene Search Engine	
Version 1.0.2	
Date 2023-03-14	
Maintainer Martijn Schuemie <schuemie@ohdsi.org></schuemie@ohdsi.org>	
Description A large scale k-nearest neighbor classifier using the Lucene search engine.	
SystemRequirements Java version 8 or higher (https://www.java.com/)	
Imports rJava, Andromeda (>= 0.3.0), dplyr, rlang	
Suggests testthat	
License Apache License	
RoxygenNote 7.2.3	
<pre>URL https://ohdsi.github.io/BigKnn, https://github.com/OHDSI/BigKnn</pre>	
BugReports https://github.com/OHDSI/BigKnn/issues	
Encoding UTF-8	
R topics documented:	
buildKnn buildKnnFromPlpData predictKnn predictKnnUsingPlpData	
Index	(

2 buildKnn

buildKnn Build a K-nearest neighbor (KNN) classifier
--

Description

buildKnn loads data from two Andromeda tables, and inserts them into a KNN classifier.

Usage

```
buildKnn(outcomes, covariates, indexFolder, overwrite = TRUE)
```

Arguments

outcomes	An Andromeda table containing the outcomes with predefined columns (see below).
covariates	An Andromeda table containing the covariates with predefined columns (see below).
indexFolder	Path to a local folder where the KNN classifier index can be stored.
overwrite	Automatically overwrite if an index already exists?

Details

These columns are expected in the outcome object:

```
rowId (integer) Row ID is used to link multiple covariates (x) to a single outcome (y) y (real) The outcome variable
```

These columns are expected in the covariates object:

rowId	(integer)	Row ID is used to link multiple covariates (x) to a single outcome (y)
covariateId	(integer)	A numeric identifier of a covariate
covariateValue	(real)	The value of the specified covariate

Value

Nothing

buildKnnFromPlpData

buildKnnFromPlpData

Build a K-nearest neighbor (KNN) classifier from a plpData object

Description

Build a K-nearest neighbor (KNN) classifier from a plpData object

Usage

```
buildKnnFromPlpData(
  plpData,
  population,
  indexFolder,
  overwrite = TRUE,
  cohortId = NULL,
  outcomeId = NULL)
```

Arguments

plpData An object of type plpData.

population The population.

indexFolder Path to a local folder where the KNN classifier index can be stored.

overwrite Automatically overwrite if an index already exists?

cohortId The ID of the specific cohort for which to fit a model.

outcomeId The ID of the specific outcome for which to fit a model.

predictKnn

Predict using a K-nearest neighbor (KNN) classifier

Description

predictKnn uses a KNN classifier to generate predictions.

Usage

```
predictKnn(
  cohorts,
  covariates,
  indexFolder,
  k = 1000,
  weighted = TRUE,
  threads = 1
)
```

Arguments

cohorts An Andromeda table containing the cohorts with predefined columns (see be-

low).

covariates An Andromeda table containing the covariates with predefined columns (see

below).

indexFolder Path to a local folder where the KNN classifier index can be stored.

k The number of nearest neighbors to use to predict the outcome.

weighted Should the prediction be weighted by the (inverse of the) distance metric?

threads Number of parallel threads to used for the computation.

Details

These columns are expected in the covariates object:

```
rowId (integer) Row ID is used to link multiple covariates (x) to a single outcome (y) covariateId (integer) A numeric identifier of a covariate covariateValue (real) The value of the specified covariate
```

This column is expected in the covariates object:

```
rowId (integer) Row ID is used to link multiple covariates (x) to a single outcome (y)
```

Value

A data.frame with two columns:

```
rowId (integer) Row ID is used to link multiple covariates (x) to a single outcome (y) prediction (real) A number between 0 and 1 representing the probability of the outcome
```

```
predictKnnUsingPlpData
```

Create predictive probabilities using KNN.

Description

Create predictive probabilities using KNN.

Usage

```
predictKnnUsingPlpData(
  plpData,
  population,
  indexFolder,
  k = 1000,
  weighted = TRUE,
  threads = 10
)
```

Arguments

plpData An object of type plpData as generated using getDbPlpData.

population The population to predict for.

indexFolder Path to a local folder where the KNN classifier index is be stored.

k The number of nearest neighbors to use to predict the outcome.

weighted Should the prediction be weighted by the (inverse of the) distance metric?

threads Number of parallel threads to used for the computation.

Details

Generates predictions for the population specified in plpData.

Value

The value column in the result data.frame is: logistic: probabilities of the outcome, poisson: Poisson rate (per day) of the outcome, survival: hazard rate (per day) of the outcome.

Index

```
buildKnn, 2
buildKnnFromPlpData, 3
predictKnn, 3
predictKnnUsingPlpData, 4
```