Lecture 5 Heterogeneous Effects

Instrumental Variables

Causal Inference Using Graphs August 13, 2019

Goals and Objectives

Review of Constant

Effects

Heterogeneous Effects

Adam Glynn
Department of Political Science and QTM
Emory University

Acknowledgements

Goals and Objectives
Review of Constant
Effects

Heterogeneous Effects

Daniel Arnon contributed to many of the slides from lecture 5 today.

Goals and Objectives for This Morning:

Goals and Objectives

Review of Constant Effects

- Review IV with constant effects
- Introduce IV with heterogeneous effects
- Learning about compliers

Overview

Goals and Objectives

Review of Constant Effects

Heterogeneous Effects

1 Review of Constant Effects

leview of Constant

Heterogeneous Effects

1 Review of Constant Effects

Review of Constant Effects

Heterogeneous Effects

Consider the following path model:

Figure: Confounding on D and Y

Discuss the Wald estimator and why it works.

Lets consider a few more path models:

Figure: Confounding on Z, D, Y

Can we still calculate the effect of $D \rightarrow Y$?

Goals and Objectives

fects

Lets consider a few more path models:

Figure: Confounding on Z, D, Y

Can we still calculate the effect of
$$D \rightarrow Y$$
?
$$\frac{Y \sim Z}{D \sim Z} \xrightarrow{p} \frac{\alpha_1 \beta_1 + \gamma_1 \delta_1 \beta_1}{\alpha_1 + \gamma_1 \delta_1} = \frac{\beta_1 (\gamma_1 + \delta_1)}{\gamma_1 + \delta_1} = \beta_1$$

Goals and Objectives

Review of Constant Effects

Let's consider one more DAG:

Figure: Direct Effect of Z on Y

Goals and Objectives

Review of Const Effects

Let's consider one more DAG:

Figure: Direct Effect of Z on Y

$$\frac{Y \sim Z}{D \sim Z} \xrightarrow{\rho} \frac{\alpha_1 \beta_1 + \gamma_1}{\alpha_1} = \beta_1 + \frac{\gamma_1}{\alpha_1}$$

Goals and Objectives

Review of Cons Effects

Multiple Instruments

Consider the following DAG, with multiple instruments:

Figure: Multiple Instruments, No Exclusion Restriction Violation

Goals and Objectives

Review of Con Effects

Estimating with Wald: The other option is to use a Wald Estimator for each instrument, and to weight them by the strength of the instrument. Formally:

$$\begin{aligned} & \text{Wald1: } \frac{\mathbf{Y} \sim \mathbf{Z_1}}{\mathbf{D} \sim \mathbf{Z_1}} = \frac{\alpha_1 \beta_1}{\alpha_1} \\ & \text{Wald2: } \frac{\mathbf{Y} \sim \mathbf{Z_2}}{\mathbf{D} \sim \mathbf{Z_2}} = \frac{\alpha_2 \beta_1}{\alpha_2} \end{aligned}$$

2 Estimating with 2SLS: ψ Wald1 + $(1 - \psi)$ Wald2. Where $\psi = \frac{\alpha_1 \text{Cov}(D, Z_1)}{\alpha_1 \text{Cov}(D, Z_1) + \alpha_2 \text{Cov}(D, Z_2)}$

Goals and Objectives
Review of Constant
Effects

Heterogeneous Effects

1 Review of Constant Effects

Goals and Objectives
Review of Constant

Effects

Heterogeneous Effects

		$d_i(0)$		
		0	1	
$d_i(1)$	0	Never	Defier	
	1	Complier	Always	

Table: Principal strata for compliance behavior

Figure: Heterogenous Effects with Confounding on D and Y

Goals and Objectives Review of Constant Effects

Heterogeneous Effects

			$d_i(0)$	
			0	1
- C	$J_i(1)$	0	Never	Defier
			$\alpha_{1i} = 0$	$\alpha_{1i} = -1$
		1	Complier	Always
			$\alpha_{1i} = 1$	$\alpha_{1i} = 0$

Table: Principal strata and monotonicity

 $\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]}$

Goals and Objectives

Review of Constant Effects

Review of Constant Effects

$$\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]}$$

$$=\frac{E[\beta_{1i}|\alpha_{1i}=1]Pr(\alpha_{1i}=1)-E[\beta_{1i}|\alpha_{1i}=-1]Pr(\alpha_{1i}=-1)}{Pr(\alpha_{1i}=1)-Pr(\alpha_{1i}=-1)}$$

Effects

$$E[\alpha_{1i}\beta_{1i}]$$

$$=\frac{E[\beta_{1i}|\alpha_{1i}=1]Pr(\alpha_{1i}=1)-E[\beta_{1i}|\alpha_{1i}=-1]Pr(\alpha_{1i}=-1)}{Pr(\alpha_{1i}=1)-Pr(\alpha_{1i}=-1)}$$

 $E[\alpha_{1i}]$

$$= E[\beta_{1i}|\alpha_{1i} = 1] \left(\frac{Pr(\alpha_{1i} = 1) - \frac{E[\beta_{1i}|\alpha_{1i} = -1]}{E[\beta_{1i}|\alpha_{1i} = 1]} Pr(\alpha_{1i} = -1)}{Pr(\alpha_{1i} = 1) - Pr(\alpha_{1i} = -1)} \right)$$

Figure: Heterogenous Effects with Confounding on *D* and *Y*, Continuous Treatment

$$D_i = \alpha_0 + \alpha_{1i}Z_i + \epsilon_i$$

$$Y_i = \gamma_0 + \beta_{1i} D_i + \nu_i$$

What are compliers now?

Goals and Objectives
Review of Constant
Effects

Review of Constant Effects

$$\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]} = E[\frac{\alpha_{1i}}{E[\alpha_{1i}]}\beta_{1i}]$$
$$\frac{\frac{1}{n}\sum \alpha_{1i}\beta_{i}}{\frac{1}{n}\sum \alpha_{1i}} = \frac{1}{n}\sum \frac{\alpha_{1i}\beta_{i}}{\bar{\alpha}_{1}}$$

Learning about compliers for one-sided noncompliance (binary treatment)

Goals and Objectives
Review of Constant
Effects

One sided non-compliance refers to a case a patient cannot get a drug without being assigned to treatment, i.e. there are no always-takers. There are only compliers and never-takers.

$$\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]} = \frac{Pr(\alpha_{1i} = 1)E[\beta_i]|\alpha_{1i} = 1}{Pr(\alpha_{1i} = 1)} = E[\beta_i|\alpha_{1i} = 1]$$

Because under one-sided non-compliance, we know for every treated individual whether they are compliers or never takers.

Goals and Objectives
Review of Constant
Effects

$$E[g(x_i)|\alpha_{1i} = 1, D_{1i} > D_{0i}] = \frac{E[\kappa_i g(x_i)]}{E[\kappa_i]}$$

Where:

$$\kappa_i = 1 - \underbrace{\frac{D_i(1 - Z_i)}{1 - Pr(Z_i = 1|X_i)}}_{\text{D=1, Z=0} \rightarrow \text{always-taker}} - \underbrace{\frac{(1 - D_i)Z_i}{Pr(Z_i = 1|X_i)}}_{\text{Z=1, D=0} \rightarrow \text{never-taker}}$$

In this equation, $\kappa_i=1$ for compliers. For identifiable always-takers and never-takers, the κ equation gives negative values. The equation identifies who looks like they would have been always-takers and never takers based on their covariate characteristics. $E[\alpha_i]=E[\kappa_i]=$ proportion of compliers $(Pr(D_1>D_0).$

Learning about weights with continuous treatment

Goals and Objectives

Review of Constant Effects

Heterogeneous Effects

Ideas?

Goals and Objectives for This Morning:

Goals and Objectives
Review of Constant
Effects

- Review IV with constant effects
- Introduce IV with heterogeneous effects
- Learning about compliers

Review of Constant Effects

Heterogeneous Effects

This afternoon, mediation analysis and more with heterogeneous effects.