Übungsblatt 9

Ali Bektas 588063 — Julian Kremer 562717 Ruben Dorfner 550204

15. Januar 2020

Aufgabe 42

a)

Sei $A \in \oplus C$ mittels einem Polynom p
 und einer p-balancierten Sprache $B \in C$. Weiter gelte $A' \leq_m^{log} A$ mittels einer FL-Fkt. f. Nach Lemma 86 existieren Polynom q
 und q-balancierte Sprache $B' \in C$ mit:

$$#B'(x)/2^{q(|x|)} = #B(f(x))/2^{p(|f(x)|)}$$

Nun folgt:

$$x \in A' \iff f(x) \in A \iff \#B(f(x)) \equiv_2 1 \iff \#B'(x) \equiv_2 1$$

Woraus folgt $A' = \oplus B'$.

b)

 \subset

Seien p
 und q Polynome , $A \in \oplus \oplus C$, $A' \in \oplus C$ p-balancierte und $A'' \in \oplus \oplus C$ q-balancierte Sprachen mit $A = \oplus A'$, $A' = \oplus A''$.
Wir wollen zeigen : $A \in \oplus C$.
Dazu betrachte die Sprache

$$B = \{x \# yz | x \# y \# z \in A'', y \in \{0,1\}^{p(|x|)}, z \in \{0,1\}^{q \cdot (p+1)(|x|) + q(1)}\}$$

und die Funktion f , die an der p(|x|)+1-ten Stelle ein # schreibt. Da Zählen der p(|x|)+1-ten Stelle in FL (wie von Unar zu Binär) ist gilt , dass $f\in FL$. Somit gilt wegen der Abgeschlossenheit von C unter \leq_m^{log} und $A''\in C: B\in C$. Da B aus den Wörtern besteht , die die Konkatinierung von y und z (wie oben definiert) als Zeuge haben , gibt es für jedes Wort $x\in A$ #A'(x)*A''(x#y) viele , also ungerade viele , paarweise verschiedene Zeugen (weil $x\in A\to \#A'(x)=1$ und $x\#y\in A'\to \#A''(x\#y)\equiv_2 1$). A enthält also genau die Elemente , für die es gilt : $x\in A\to \#A'(x)\equiv_2 1$ und $x\#y\in A'\to \#A''(x\#y)\equiv_2 1$).

Jetzt argumentieren wir , warum $\oplus B$ genau die Elemente enthält die in A sind, indem wir zeigen dass die restlichen Fälle zu einem Widerspruch führen : Angenommen gäbe es für eine Präfix $x \in A$ gerade viele Zeugen z $(x\#y\#z \in A'')$. Es gilt:

$$x \in A \to \#A'(x) \equiv_2 1$$
 und $x \# y \in A' \to \#A''(x \# y) \equiv_2 1$
 $\#B(x) \equiv_2 0 \to x \notin A_{\sharp}$

 \supset

Seien p
 Polynom , $A\in\oplus C'$ eine Sprache und $A'\in C$ eine p-balancierte Sprache mit $A=\oplus A'.$ Wir wollen zeigen : $A\in\oplus\oplus C.$ Dazu betrachte die Sprache

$$B = \{x\#y\#i|x\#y \in A'i \in \{1\}^{r(|x\#y|)}\}$$

wobei i ein beliebiges Polynom ist. Es ist leicht zu sehen dass $A'=\oplus B$ ist. Sei f diesmal eine Funktion die alle Einsen nach dem letzten #-Zeichen der Eingabe x entfernt. Dadurch gilt $B \leq A$. Aus diesen Tatsachen folgt $A = \oplus A' = \oplus \oplus B$

c)

Dieser Teil ist vollkommen analog zu b, weshalb wir darauf verzichten , denselben Beweis zu führen.

d)

_

Der Beweis dieses Teils ist auch analog zu b

 \supset

In diesem Teil ist die konsturierte Sprache anders zu definieren. Betrachte für diesen Fall die Sprache

$$B = \{x \# y \# i | x \# y \in A'i \in \{1, \underbrace{0}_{\text{der Unterschied}}\}^{r(|x \# y|)}\}$$

Der Rest des Beweises erfolgt wiederum analog.