Programação Estruturada

Linguagem CFunções Matemáticas

Prof. Luis Nícolas de Amorim Trigo nicolas.trigo@ifsertao-pe.edu.br

Sumário

- Introdução
- Funções de Potência
- Funções de Arredondamento
- Funções Trigonométricas
- Funções Logarítmicas
- Descobrindo o Código ASCII
- Exercícios

Introdução

- C dispõe de algumas funções especiais para operações matemática.
- Para trabalhar com estas funções, deve-se usar em cada algoritmo a biblioteca math.h.

#include <math.h>

 Existem diversas funções disponíveis como de potência, de arredondamento e outras, além da tabela de código ASCII.

3

Funções de Potência

Função pow()

- Retorna o valor da base elevada ao expoente, ou seja, calcula a exponenciação de um número. Recebe dois argumentos do tipo float, sendo respectivamente, base e expo
- ente.
- Sintaxe:

```
pow(base, expoente) → base expoente
```

Exemplo:


```
3^2 \rightarrow pow(3,2) \rightarrow 9

2^{10} \rightarrow pow(2,10) \rightarrow 1024
```

Funções de Potência

Função sqrt()

- Retorna o valor da raiz quadrada de um número, recebendo como argumento um float.
- Sintaxe:

```
sqrt(num) → √num
```

• Exemplo:

```
\sqrt{144} \Rightarrow \text{sqrt}(144) \Rightarrow 12 (12 * 12 = 144)
```


-

Funções de Arredondamento

Função floor()

- Retorna o primeiro valor float, sem casas decimais, inferior ao número informado. Recebe um float como argumento.
- Sintaxe:

• Exemplo:

$$3.2 \rightarrow floor(3.2) \rightarrow 3$$

Funções de Arredondamento

Função ceil()

- Retorna o primeiro valor float, sem casas decimais, superior ao número informado. Recebe um float como argumento.
- Sintaxe:

```
ceil(num) → num.casas + 1
```

• Exemplo:

```
3.2 \rightarrow \text{ceil}(3.2) \rightarrow 3 + 1 \rightarrow 4
```


-

Funções Trigonométricas

Função sin()

- Retorna o valor do seno. Recebe como argumento o valor do tipo float em radianos.
- Obs.: = 1 grau = 0,017453 radianos
- Sintaxe:

sin(num)

• Exemplo:

 $\sin(1000) \rightarrow 0.826880$

R

Funções Trigonométricas

Função cos()

- Retorna o valor do cosseno. Recebe como argumento o valor do tipo float em radianos.
- Obs.: = 1 grau = 0,017453 radianos
- Sintaxe:

cos(num)

• Exemplo:

 $cos(1000) \rightarrow 0.532679$

C

9

Funções Trigonométricas

Função tan()

- Retorna o valor da tangente. Recebe como argumento o valor do tipo float em radianos.
- Obs.: = 1 grau = 0,017453 radianos
- Sintaxe:

tan(num)

• Exemplo:

 $tan(1000) \rightarrow 1.470324$

Funções Trigonométricas

$$seno = \frac{cateto\ oposto}{hipotenusa}$$

$$sen\beta = \frac{c}{a} \qquad sen\alpha = \frac{b}{a}$$

$$cos\ seno = \frac{cateto\ adjacente}{hipotenusa} \qquad cos\ \beta = \frac{b}{a} \qquad cos\ \alpha = \frac{c}{a}$$

$$tan\ gente = \frac{cateto\ oposto}{cateto\ adjacente} \qquad tg\beta = \frac{c}{b} \qquad tg\alpha = \frac{b}{c}$$

11

Funções Logarítmicas

Função log()

- Retorna o valor do logaritmo na base 2. Utiliza um argumento do tipo float.
- Sintaxe:

log(num)

• Exemplo:

 $log(10) \rightarrow 1.000000$

Funções Logarítmicas

Função log10()

- Retorna o valor do logaritmo na base 10. Utiliza um argumento do tipo float.
- Sintaxe:

log10(num)

• Exemplo:

 $log10(10) \rightarrow 2.302585$

13

Exemplo de código-fonte

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(){
    float num;
    printf("Digite um número float: ");
    scanf("%f",&num);
    printf("Seno de %f eh %f\n",num,sin(num));
    printf("Cosseno de %f eh %f\n",num,cos(num));
    printf("Tangente de %f eh %f\n",num,tan(num));
    printf("Log na base 2 de %f eh %f\n",num,log(num));
    printf("Log na base 10 de %f eh %f\n",num,log10(num));
    system("pause");
}
```


■ C\User\Nicolas\# IF Sertão-PE #\2012\Programaçã.

Digite un numero float: 9.55
0 seno de 9.588888 et 9.57425
0 seno de 9.588888 et 9.77258
0 tangente de 8.588888 et 9.77258
0 tangente de 8.588888 et 9.687347
0 log na bace 2 de 9.588888 et 9.693147
0 log na bace 18 de 6.588888 et -0.893149
Pressione qualquer tecla para continuar. . .

Descobrindo o código ASCII

- Sabe aquela mensagem de texto que falta a acentuação? Pois é com o código ASCII (American Standard Code for Information Interchange) que podemos acentuar!
- Cada caractere possui um código equivalente na tabela ASCII e por esse motivo podemos usar esses códigos para melhorar a saída para os usuários.
- Para inserir um caractere deste no texto, devemos colocar o operador de conversão %c e depois das aspas e vírgula, colocados o número referente ao caractere, ou converta o valor numérico decimal em hexadecimal e insira após "\x" dentro das aspas.
- A tabela ASCII é uma representação numérica de um caractere que pode ser números, letras ou símbolos.

15

Código ASCII — Tabela de Controle de Caracteres

DEC	ASCII
0	Null - NUL
1	Start of Heading - SOH
2	Start of Text - STX
3	End of Text - ETX
4	End of Transmission - EOT
5	Enquiry - ENQ
6	Acknowledge - ACK
7	Bell, rings terminal bell - BEL
8	BackSpace - BS
9	Horizontal Tab - HT
10	Line Feed - LF
11	Vertical Tab - VT
12	Form Feed - FF
13	Enter - CR
14	Shift-Out - SO
15	Shift-In - SI

DEC	ASCII
16	Data Link Escape - DLE
17	Device Control 1 - D1
18	Device Control 2 - D2
19	Device Control 3 - D3
20	Device Control 4 - D4
21	Negative Acknowledge - NAK
22	Synchronous idle - SYN
23	End Transmission Block - ETB
24	Cancel line - CAN
25	End of Medium - EM
26	Substitute - SUB
27	Escape - ESC
28	File Separator - FS
29	Group Separator - GS
30	Record Separator - RS
31	Unit Separator - US

Exemplo código ASCII em código-fonte


```
#include <stdio.h>
#include <stdlib.h>
int main(){

    // Código ASCII em decimal
    printf("%c%c%c\n",201,205,187);
    printf("%c%c%c\n",186,32,186);
    printf("%c%c%c\n",200,205,188);

    // Código ASCII em hexadecimal
    printf("\xC9\xCD\xBB\n");
    printf("\xC8\xCD\xBC\n");
    printf("\xC8\xCD\xBC\n");
    system("pause");
}
```


19

Exercício 1 de 3

- Elaborar um algoritmo que solicite ao usuário um número e o expoente deste e apresente o resultado da exponenciação. Usar a tabela ASCII para melhorar a apresentação das mensagens para o usuário.
- Elaborar um algoritmo que calcule a raiz quadrada de um número fornecido pelo usuário. Usar a tabela ASCII para melhorar a apresentação das mensagens para o usuário.
- 3. Elaborar um algoritmo que receba 12 salários mensais, faça o somatório dos mesmos e apresente o total de salários recebidos no ano, o maior salário e o menor salário. Utilizar o código ASCII para uma melhor presentação da mensagem para o usuário.

Exercício 2 de 3

- Receber dois números inteiros e mostrar os seguintes resultados: quociente e resto. Usar a tabela ASCII para melhorar a apresentação das mensagens para o usuário.
- 5. Elaborar um algoritmo que solicite ao usuário 10 números inteiros e, ao final, informe a quantidade de números ímpares e pares lidos. Calcular e mostrar também a soma dos números pares e a média dos números ímpares. Usar a tabela ASCII para melhorar a apresentação das mensagens para o usuário.
- 6. Elaborar um algoritmo que apresente o cubo (número elevado a 3) de qualquer número informado pelo usuário. Usar a tabela ASCII para melhorar a apresentação das mensagens para o usuário.

21

Exercício 3 de 3

- 7. Um alpinista deseja escalar uma encosta, do tipo "paredão". Elabore um algoritmo que o alpinista forneça a distância (em metros) do pé da encosta até um ponto X e o ângulo de inclinação para visualizar o topo da encosta. Calcule e mostre:
 - O tamanho (em metros) da corda que irá do topo da encosta até o ponto X.
 - Altura da encosta.

