Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt
Luminositeten øker med en faktor 1.00e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) massen til stjerna er 0.2 solmasser og den fusjonerer hydrogen i kjernen

STJERNE B) det finnes noe jern i kjernen

STJERNE C) Stjerna har en overflatetemperatur på 10000K. Luminositeten er betydelig mindre enn solas luminositet.

STJERNE D) det finnes hovedsaklig helium men også noe karbon i stjernas kjerne

STJERNE E) stjerna består hovedsakelig av karbon og oksygen og få andre grunnstoffer

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 2.989e+06 kg/m3̂ og temperatur 24 millioner K.

Kjernen i stjerne B har massetet
thet 9.630e+06 kg/m3 og temperatur 18 millioner K.

Kjernen i stjerne C har massetet
thet 2.715e+06 kg/m3̂ og temperatur 16 millioner K.

Kjernen i stjerne D har massetet
thet 6.841e+06 kg/m3 og temperatur 29 millioner K.

Kjernen i stjerne E har massetet
thet 5.648e+06 kg/m3 og temperatur 31 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: denne stjerna er nærmest oss

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig mindre enn den tilsynelatende størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen~1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 15.82

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L_Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.160e+05 kg/m3̂ og temperatur 25.60 millioner K.

Kjernen i stjerne B har massetet
thet 2.410e+05 kg/m3̂ og temperatur 33.86 millioner K.

Kjernen i stjerne C har massetet
thet $3.380\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 29.86

millioner K.

Kjernen i stjerne D har massetet
thet 1.932e+05 kg/m3̂ og temperatur 31.47 millioner K.

Kjernen i stjerne E har massetet
thet 2.020e+05 kg/m3̂ og temperatur 19.39 millioner K.

Filen~1O/1O.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Observasjon er gjort 101.71 dager etter første observasjon.

0.93

0.88

0.83

0.73

0.68

0.2613

0.2623

0.2633

0.2643

0.2653

0.2663

0.2663

0.2673

0.2683

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_4_.png$

0.2637

0.2647

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 135.61 dager etter første observasjon. 0.93 0.88 Normalisert fluks 0.83 0.78 0.73 0.68 | | | 0.2627

0.2687

0.2697

0.2657

0.2667

Bølgelengde (nm) minus 656nm

0.2677

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.78 buesekunder i løpet av et millisekund. 55.35 49.20 y-posisjon (10⁻⁶ buesekunder) 43.05 36.90 30.75 24.60 18.45 12.30 6.15 0.00 12.30 18.45 24.60 30.75 36.90 43.05 49.20 55.35 6.15 x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.82770 km/t.

Filen 3E.txt

Tog1 veier 30400.00000 kg og tog2 veier 98800.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 511 km/s.

Filen 4E.txt

Massen til gassklumpene er 7300000.00 kg.

Hastigheten til G1 i x-retning er 60600.00 km/s.

Hastigheten til G2 i x-retning er 68340.00 km/s.

Filen 4G.txt

Massen til stjerna er 21.30 solmasser og radien er 4.73 solradier.