振宗老師:

各位同學在這陣子透過重點整理,歷屆試題分析考前猜題及模擬考的準備,對於如何面對考試應該已經胸有成竹了。老師要提醒各位同學越接近考試衝刺時間越要放鬆,把最好的實力發揮出來,再複習一次老師上課強調的重點整理,一定要運用時間練習考古題,最後再調整應考的生理時鐘,千萬不要輕易放棄,才能獲得好成績,各位同學只有堅持到最後成功必屬於你!

高中數學公式總整理

1.雙重根號化簡: $a \ge b \ge 0$ $\sqrt{a+b\pm 2\sqrt{ab}} = \sqrt{a}\pm \sqrt{b}$

2.絕對值的性質: $a \cdot b \in \mathbb{R}$ 滿足 $\left| a + b \right| \le \left| a \right| + \left| b \right|$ (三角不等式,等號成立時 ab > 0)

3.頂點公式:二次函數
$$f(x) = ax^2 + bx + c \ (a \neq 0)$$
 ,頂點在 $\left(\frac{-b}{2a}, \frac{4ac - b^2}{4a}\right)$,若 $a > 0$ 則開口向上有最小值反之

有最大值,若a>0且判別式 $D=b^2-4ac<0$ 則有f(x)恆正或若a<0且判別式D<0則有f(x)恆負

4.餘式定理:多項式 f(x) 被一次式 ax + b 所除的餘式為 $f\left(-\frac{b}{a}\right)$

5.對數公式:① $\log_a r + \log_a s = \log_a rs$,② $\log_a r - \log_a s = \log_a \frac{r}{s}$

③
$$\log_{a^m} b^n = \frac{n}{m} \log_a b$$
 ④ $\log_a b = \frac{\log_c b}{\log_c a}$,其中 $c > 0$, $c \neq 1$ (換底公式)

- 6.首數與尾數:① $\log x = \log(a \cdot 10^n) = n + \log a$, n 為整數 , $0 \le \log a < 1$, n 稱為首數 , $\log a$ 稱為尾數
 - ②當首數=n > 0時,則k = n且x的整數位為(n+1)位
 - ③當首數-n < 0時,則k = -n且x的小數部分自小數點後第n位開始不為0
- 7.等差數列: ①後項—前項=定值(公差d)第n項 $a_n = a_1 + (n-1)d$

②首
$$n$$
 項和 $S_n = \frac{n(a_1 + a_2)}{2} = \frac{n[2a_1 + (n-1)d]}{2}$ = 等差中項× n

③若三數 $a \cdot b \cdot c$ 成等差,則a + c = 2b,稱b 為等差中項

8.等比數列:①後項÷前項=定值(公差r)第n項 $a_n = a_1 \times r^{n-1}$

②首
$$n$$
 項和 $S_n = \begin{cases} na & , r = 1 \\ \frac{a_1(r^n - 1)}{r - 1} & , r \neq 1 \end{cases}$

③若三數 $a \cdot b \cdot c$ 成等比,則 $ac = b^2$,稱b 為等比中項

9.
$$\Sigma$$
 公式: ① $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ ② $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ ③ $\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2$

10.重複組合:由n 類不同物品中拿出m個,其方法數為: $\mathbf{H}_{\scriptscriptstyle m}^{\scriptscriptstyle n}=C_{\scriptscriptstyle m}^{\scriptscriptstyle n+m-1}$

11.二項式定理:①設
$$x, y \in R$$
且 $n \in N$,則 $(x + y)^n = C_0^n x^n + C_1^n x^{n-1} y + ... + C_k^n x^{n-k} y^k + \cdots + C_{n-1}^n x y^{n-1} + C_n^n y^n$

$$(2) C_0^n + C_1^n + C_2^n + \cdots + C_n^n = 2^n + C_0^n - C_1^n + C_2^n - \cdots + (-1)^n C_n^n = 0$$

12.條件機率:樣本空間
$$S$$
 中,若事件 B 發生之下,事件 A 發生之條件機率,即 $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{n(A \cap B)}{n(B)}$

13.獨立與事件: A 與 B 為獨立事件 $\Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$

,若A與B為互斥事件
$$\Leftrightarrow n(A \cap B) = 0 \Leftrightarrow P(A \cap B) = 0$$

14.標準差:
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \mu^2}$$

15.相關係數:
$$r = \frac{\sum_{i=1}^{n} x'y'}{n} = \frac{\sum_{i=1}^{n} (\frac{x_i - \mu_x}{\sigma_x})(\frac{y_i - \mu_y}{\sigma_y})}{n} = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum_{i=1}^{n} (x_i - \mu_x)^2} \sqrt{\sum_{i=1}^{n} (y_i - \mu_y)^2}} = \frac{\sum_{i=1}^{n} x_i y_i - n\mu_x \mu_y}{\sqrt{\sum_{i=1}^{n} (x_i - \mu_x)^2} \sqrt{\sum_{i=1}^{n} (y_i - \mu_y)^2}}$$

16.迴歸直線方程式:
$$y$$
 對 x 的最適直線為 $y - \mu_y = m(x - \mu_x)$, 其中 $m = r \cdot \frac{\sigma_y}{\sigma_x} = \frac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{\sum_{i=1}^n (x_i - \mu_x)^2}$

17.銳角三角函數:
$$\sin\theta = \frac{\underline{y}}{4}\cos\theta = \frac{\underline{x}}{4}\tan\theta = \frac{\underline{y}}{4}$$
,廣義角三角函數: $\sin\theta = \frac{\underline{y}}{r}$, $\cos\theta = \frac{\underline{x}}{r}$, $\tan\theta = \frac{\underline{y}}{x}$ ($x \neq 0$)

18.正弦定理:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R (R$$
 為三角形外接圓半徑)

19.餘弦定理:
$$\triangle ABC$$
 中, $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

20.和角公式:① $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ ② $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

$$(3) \tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$$

21.斜率:①兩點式設
$$P_1(x_1,y_1)$$
 、 $P_2(x_2,y_2)$ 若 $x_1 \neq x_2$,則直線方程式為 $\frac{y_2-y_1}{x_2-x_1} = \frac{y-y_1}{x-x_1}$

②截距式:若
$$x$$
截距為 a , y 截距為 b ,則直線方程式為 $\frac{x}{a} + \frac{y}{b} = 1$

③若 L_1 與 L_2 之斜率分別為 m_1 及 m_2 ,則(1) L_1 // L_2 \Leftrightarrow $m_1 = m_2$ (2) $L_1 \perp L_2$ \Leftrightarrow $m_1 \cdot m_2 = -1$

22.圓方程式:①標準式:已知圓心
$$(h,k)$$
,半徑為 r 的圓方程式為 $(x-h)^2+(y-k)^2=r^2$

②一般式:
$$x^2 + y^2 + dx + ey + f = 0$$
 (由標準式展開) 圓心 $\left(-\frac{d}{2}, -\frac{e}{2}\right)$, $r = \frac{1}{2}\sqrt{d^2 + e^2 - 4f}$

23.平面向量内積:設
$$\bar{a}=(a_1,a_2)$$
 , $\bar{b}=(b_1,b_2)$ \bar{a} . $\bar{b}=\left|\vec{a}\right|\left|\vec{b}\right|\cos\theta=a_1b_1+a_2b_2$ 長度化内積: $|\vec{a}|^2=\vec{a}\cdot\vec{a}$ \vec{a} 與 \vec{b} 垂直的充要條件 $\Leftrightarrow \vec{a}\cdot\vec{b}=0$

24.柯西不等式:
$$(a_1^2 + a_2^2)(b_1^2 + b_2^2) \ge (a_1b_1 + a_2b_2)^2$$
,等號成立 $\Leftrightarrow (a_1, a_2) = t(b_1, b_2)$