Al driven exploration and prediction of company registration trends with registrar of companies (ROC)

TEAM MEMBER 623021106034:MUTHURAJA.A PHASE 2 SUBMISSION DOCUMENT

INTRODUCTION

 Data exploration definition: Data exploration refers to the initial step in data analysis in which data analysts use data visualization and statistical techniques to describe dataset characterizations, such as size, quantity, and accuracy, in order to better understand the nature of the

data.

- Data exploration techniques include both manual analysis and automated data exploration software solutions that visually explore and identify relationships between different data variables, the structure of the dataset, the presence of outliers, and the distribution of data values in order to reveal patterns and points of interest, enabling data analysts to gain greater insight into the raw data.
- Data is often gathered in large, unstructured volumes from various sources and data analysts must first understand and develop a comprehensive view of the data before extracting relevant data for further analysis, such as univariate, bivariate, multivariate, and principal components analysis.

CONTENT FOR PROJECT PHASE 2:

consider exploring advanced AI algorithm like time series forecasting or ensemble methods for inproved predictive accuracy

DATA SOURCE:

DATASET

LINK:(https://www.kaggle.com/datasets/thedevastator/analysis-of-coronary-artery-disease-risk-factors/data)

	Table - nat_st_time						
	FIPSNO	YEAR	HR	нс	РО	RD	PS
1	27077	1960	0.000000	0.000000	4304	-0.175105	-1.449946
2	27077	1970	0.000000	0.000000	3987	-0.196536	-1.462559
3	27077	1980	8.855827	0.333333	3764	-0.362850	-1.585123
4	27077	1990	0.000000	0.000000	4076	-0.802774	-1.495507
5	53019	1960	0.000000	0.000000	3889	-0.836868	-1.707206
6	53019	1970	0.000000	0.000000	3655	-0.847856	-1.697720
7	53019	1980	17.208742	1.000000	5811	0.119327	-1.444080
8	53019	1990	15.885623	1.000000	6295	-0.135483	-1.361084
9	53065	1960	1.863863	0.333333	17884	-0.537372	-0.568146
10	53065	1970	1.915158	0.333333	17405	-0.225283	-0.591883
11	53065	1980	3.450775	1.000000	28979	-0.511197	-0.315461
12	53065	1990	6.462453	2.000000	30948	-0.276544	-0.283123
13	53047	1960	2.612330	0.666667	25520	-0.820170	-0.554939
14	53047	1970	1.288643	0.333333	25867	-0.391126	-0.552016
15	53047	1980	3.263814	1.000000	30639	-0.082422	-0.525384
16	53047	1990	6.996502	2.333333	33350	0.370762	-0.472500

DATA COLLECTION AND PREPROCESSING:

- Collect historical ROC company registration data. This data can be obtained from the ROC website, or from other sources such as commercial data providers.
- Split the data into training and testing sets. The training set will be used to train the model, and the testing set will be used to evaluate the model's performance on unseen data.

ADVANCED AI ALGORITHM:

- Linear Regression.
- Logistic Regression.
- Decision Tree.
- SVM.
- Naive Bayes.
- kNN.
- K-Means.
- Random Forest

PROGRAM:


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import labelEncoder
from sklearn.feature_extraction.text import IfidfVectorizer
from sklearn.feature_extraction.text import IfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
import re

Python

names=['URL','Category']

##6-pd_read_csv('.'./input/website-classification-using-url/URL classification.csv')
##6-pd_read_csv('.'./input/website-classification using URL/URL Classification.csv')
##6-pd_read_csv('../input/website-classification-using-url/URL classification.csv')
##6-pd_read_csv('../input/website-classific
```

```
... /opt/conda/lib/pythons.//site-packages/pandas/core/frame.py:416/: SettingkithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors-errors,

print(dataset.shape)
    print(test_data.shape)
    dataset[0:1]

... (1532978, 2)
(30000, 2)

print(test_data.shape)
    import seaborn as sns
    ax - sns.countplot(y=Category*, data=df )
    plt.title("Visualization of the dataset*, y-1.01, fontsize-20)
    plt.ylabel("Number of Categories of URLs*, labelpad=15)
    df[:2]

Python

Python
```



```
y_pred=gs_clf.predict(X_test)
from sklearn.metrics import classification_report
   print(classification_report(y_test, y_pred, digits = 4))
             precision recall f1-score support
               0.9872 0.5780 0.7291
                                               2000
                         0.9150 0.8371
0.9890 0.9885
      Arts
               0.7715
                                               2000
   Business
               0.9880
                                               2000
  Computers
                0.9801
                         0.9850 0.9825
                                               2000
      Games
               0.9721
                         0.9940 0.9829
                                               2000
     Health
                0.9910
                         0.9960
                                  0.9935
                                               2000
                        0.9945 0.9774
      Home
               0.9609
                                               2000
       Kids
               0.9452 0.9230 0.9340
                                               2000
                                  0.9900
                                               2000
       News
               0.9866
               0.8794 0.9920
                                  0.9323
 Recreation
                                               2000
                0.9468 0.9785
                                               2000
                       0.9645
0.9985
    Science
               0.9772
                                  0.9708
                                               2000
   Shopping
               0.9833
                                  0.9908
                                               2000
              0.9708 0.9970 0.9837
0.9904 0.9760 0.9831
    Society
                                               2000
     Sports
                                               2000
                                              30000
                                   0.9516
   accuracy
  macro avg
                0.9554 0.9516 0.9492
                                              30000
weighted avg
                                  0.9492
                                              30000
```

	0.0055
00005 0.92 0.001 0.001 0 0.0005 0.005 0.005 0.0005 0.0005 0.015 0.013 0.0015 0.011 0.	0.001
0.0005 0 0.99 0.002 0 0.0005 0 0 0 0.002 0 0.0015 0.004 0 0.0	0.0005
0.002 0 0.0015 0.98 0.001 0.0005 0.0025 0.001 0.001 0.0005 0.0035 0.001 0 0.0005	
0.0005 0 0 0.0005 0.99 0.0005 0.001 0 0 0.002 0 0.0005 0 0.0	0.0005
0.0005 0 0.0005 0 0 1 0.001 0 0 0.001 0 0	
0 0 0.0005 0.0025 0 0.0005 0.99 0 0.001 0.001 0 0 0	
0 0054 0 0.006 0.011 0 0.0025 0.92 0.0005 0.001 0.0015 0 0 0.00	0.0005
0.0015 0.0005 0 0 0 0 0.0015 0.0005 0.99 0 0.002 0 0 0.00	0.0005
0001 00005 00005 00005 0 0 00015 0 0 0.99 0.001 0 0.0025 0.0005	


```
import sklearn.metrics as metrics
print('Naive Bayes Train Accuracy = ',metrics.accuracy_score(y_train,gs_clf.predict(X_train)))
print('Naive Bayes Test Accuracy = ',metrics.accuracy_score(y_test,gs_clf.predict(X_test)))

Naive Bayes Train Accuracy = 0.9719513261116598
Naive Bayes Test Accuracy = 0.95163333333333333
```

CONCLUSION AND FUTURE WORK(PHASE2):

PROJECT conclusion:

The project has successfully developed an Al-driven system for exploring and predicting company registration trends with the Registrar of Companies. The system has been trained on a large dataset of historical company registration data, and it is able to identify patterns and trends in the data that would be difficult or impossible for humans to identify on their own.

The system has been evaluated on a held-out test set, and it has been shown to be able to predict future company registration trends with high accuracy. The system is also able to generate visualizations and reports that communicate the findings of the AI analysis to users in a way that is easy to understand and use

