

COHEN CHAP 3. CENTER & SPREAD

For EDUC/PSY 6600

WHAT DO WE MEAN BY **DISTRIBUTION**?

For a Continuous variable

- ➤ General shape
- Exceptions (outliers)
- ➤ Modes (peaks)
- Center & spread (chap 3)
- > Histogram
- > Cumulative polygon or ogive

For a Categorical variable

- Counts = raw number of ____
 Percent or Rate adjusts for an 'out of' to compare
- ➤ Bar chart: should have space between bars, order?
- ➤ Pie chart avoid!

DISTRIBUTION — EXAMPLES

THREE MEASURES OF CENTER

Mode

- "Most" common value, largest frequency, highest peak
- Non-uniqueness can have more than one mode
- Doesn't always represent the 'center'
- Do NOT usually use, other than descriptively

Mean

- "Aritmetic Average" = add them all up & divide by the count
- Simple to calculate
- Not resistant: easily influenced by extreme values or outliers
- Can do a "trimmed" mean (leave off the most extreme values, like 1% or 5%)
- In a **<u>POPULATION</u>**: "Mυ" (μ)
- In a **SAMPLE**: "X-bar" (\overline{X}) but APA uses "M" for abbreviation

Median

- 50th percentile, APA: "Mdn"
- "Middle" value, when ordered/ranked in increasing order
- ODD #: middle value
- EVEN #: avg of 2 middle
- Half the values are above, and half below
- Easy for a computer to do
- RESISTANT: NOT influenced by a few extreme values or outliers

MEAN VS MEDIAN, WITH PICUTRES

Mean = average, not typical
BUT...X is 'pulled' towards extremes
Visually it is the balance point

DISPLAYING DISTRIBUTIONS WITH NUMBERS

Median = middle value It's the midpoint If the histogram was chocolate, where would you cut it to share?

<u>Mean</u> = average, not typical BUT...X is 'pulled' towards extremes Visually it is the balance point.

DESCRIBING DISTRIBUTIONS WITH NUMBERS

Median: $3.55 \rightarrow 3.50$

Mean: $3.68 \rightarrow 3.57$

The **Median** is "**resistant**" & doesn't change much The **Mean** is "**influenced**" & changes more!

Average does NOT mean typical

DOG EXAMPLE

Spread : measured by Variance and Standard deviation

http://www.mathsisfun.com/data/standard-deviation.html

You and your friends have just measured the heights of your dogs

The heights (at the shoulders) are:

600mm, 470mm, 170mm, 430mm and 300mm.

Find out the **Mean**, the **Variance**, and the **Standard Deviation**.

DOG EXAMPLE: MEAN

Mean =

DOG EXAMPLE: VARIANCE

Variance:

Now, we calculate each dogs difference from the Mean:

To calculate the Variance, take each difference, square it, and then average the result:

If we didn't square the deviations, the total would always be zero!

So, the Variance is

We divide by n-1 because: since we know the deviations all sum up to zero, if we know all but the last one, we can subtract to find it

DOG EXAMPLE: STANDARD DEVIATION

And the Standard Deviation is just the square root of Variance, so:

$$s =$$

And the good thing about the Standard Deviation is that it is useful. Now we can show which heights are within one Standard Deviation (147mm) of the Mean:

So, using the Standard Deviation we have a "standard" way of knowing what is normal, and what is extra large or extra small.

Rottweilers are tall dogs. And Dachshunds are a bit short ... but don't tell them!

THREE MEASURES OF SPREAD

Range, IQR, & SIR

- Range = Max Min
- Interquartile Range
 IQR =
- Semi-Interquartile Range

SIR =

- Range is super dependent on extreme values or outliers
- IRG & SIR more resistant

Variance

- DEVIANT: how far from the center (mean)
- SQUARE: so + & don't cancel out to 0

(units are also squared)

- AVERAGE: summarize with a single value
- In a POPULATION: called "sigma-squared"

In a SAMPLE: called "s-squared"

Degrees of Freedom:

Standard Deviation

- SQUARE-ROOT VARIANCE to get back to the original units
- In a POPULATION: called "sigma"

In a SAMPLE: called "s"

BEST SUMMARIES?

"...the perfect estimator does not exist."
Rand Wilcox, 2001

- Which is better to convey a distribution with numbers?
 - Median & SIR
 - Mean & standard deviation

• !!! A graph gives the best overall picture of a distribution. Number of center/spread convey only some information...

... ALWAYS PLOT YOUR DATA!!!

ADD A CONSTANT AMOUNT TO EVERYONE

Give everyone a \$1000 bonus (add the same amount)

MULTIPLY ALL BY THE SAME CONSTANT

Give everyone a 10% bonus (multiply by same amount)

PROPERTIES OF THE MEAN & STANDARD DEVIATION

If you the same CONSTANT number Onto every score	MEAN	STANDARD DEVIATION
ADD (or subtract)		
MULTIPLY (or divide)		

Skewness =
$$\frac{N}{N-2} * \frac{\sum_{i=1}^{n} (X_i - \bar{X})^3}{(N-1)s^3}$$

SKEWNESS

Degree of **symmetry** in distribution

Can detect **visually** (histogram or boxplot)

Skewness statistic

Based on cubed deviations from M (returns statistic to original units) Divided by SE of skewness > ± 2 indicates likely problem with skewness

Interpreting skewness statistic

Positive value = Positive (right) skew Negative value = Negative (left) skew Zero value = No skew

Kurtosis =
$$\frac{N(N+1)}{(N-2)(N-3)} * \frac{\sum_{i=1}^{n} (X_i - \overline{X})^4}{(N-1)s^4} - 3 \frac{(N-1)(N-1)}{(N-2)(N-3)}$$

KURTOSIS

Degree of **flatness** in distribution

Harder to detect visually

Kurtosis statistic

- Based on deviations
 from M raised to 4th power (returns statistic to original units)
- Divided by SE of kurtosis
 - $^{-}$ > \pm 2 indicates likely problem with kurtosis

Interpretation of kurtosis statistic

- Positive kurtosis = leptokurtic (peaked)
- Negative kurtosis = platykurtic (flat)
- Zero value = mesokurtic (normal)

Distribution H (Mesokurtic distribution)

Distribution I (Leptokurtic distribution)

Distribution J
(Platykurtic distribution)

Example of VERY small amount of data (usually lots more)

77, 79, 80, 86, 87, 87, 94, 99

Five-number summary =

IQR =

SQR =

MODIFIED BOX PLOT

only let the 'whiskers' extend out to $1.5 \times IQR$ and any points beyond that are represented with dots...these are suspected outliers to be investigated

BOXPLOT VS. HISTOGRAM

BOX PLOTS: COMPARING GROUPS EXAMPLES

Figure 6. Boxplots of energy expenditure during 20 minutes of physical activity in lean (n = 11) and obese (n = 11) males.

(KERNEL) DENSITY PLOTS

- Smoothed histogram
- Non-parametric plotting technique that estimates a variable's probability distribution
- Specify...
- Smoothing window: Symmetric range of values about each value
- \bullet Bandwidth (bw) distance: Distance from edge of window to center (2d = smoothing window width)
- Adjacent values within window of frequency distribution are averaged, resulting in a smoothed plot

(KERNEL) DENSITY PLOTS - EXAMPLE

Color Measurements on Consensual Sample by Race/Ethnicity (N = 120)

QUANTILE-QUANTILE (Q-Q) COMPARISON PLOT

- Scatterplot: Observed vs. theoretical distribution
- Theoretical can be any type: Normal, Poisson, etc.
- If observed variable follows chosen distribution, coordinate points will fall along 45° line w/in 95% confidence envelope
- Best method for evaluating normality; other methods better for evaluating symmetry and outliers

EXAMPLE: CANCER DATASET

GET FILE: 'C:\Users\A00315273\Box Sync\Teaching\Educ6600\Dataset (Cancer.sav'.DATASET NAME DataSet1 WINDOW=FRONT.

VARIABLE LABELS
ID "Patient identification number"
TRT "Treatment Group"
AGE "Patient's Incoming Age"
WEIGHIN "Patient's Incoming Weight in pounds"
STAGE "Patient's Stage of Cancer".

VALUE LABELS TRT 0 "control" 1 "aleo treatment".

RECODE

TRT AGE WEIGHIN STAGE TOTALCIN TOTALCW2 TOTALCW4 TOTALCW6 (SYSMIS = 999).

EXECUTE.

VALUE LABELS

TRT

0 "control" 1 "aleo treatment" 999 "missing"/ AGE WEIGHIN STAGE TOTALCIN TOTALCW2 TOTALCW4 TOTALCW6 999 "missing".

MISSING VALUES

TRT AGE WEIGHIN STAGE TOTALCIN TOTALCW2 TOTALCW4 TOTALCW6 (999).

Available on Canvas
Save to your computer
Edit the path to match

SPSS: SUMMARY STATISTICS W/FREQ

* you can ask for everything.

FREQUENCIES AGE
/FORMAT NOTABLE
/STATISTICS all.

Statistics

AGE Patient's Incoming Age

N Valid	25
Missing	0
Mean	59.64
Std. Error of Mean	2.586
Median	60.00
Mode	67
Std. Deviation	12.932
Variance	167.240
Skewness	348
Std. Error of Skewness	.464
Kurtosis	.584
Std. Error of Kurtosis	.902
Range	59
Minimum	27
Maximum	86
Sum	1491

st or just list out the ones you want.

FREQUENCIES AGE

/FORMAT NOTABLE
/STATISTICS MINIMUM MAXIMUM MEAN MEDIAN
STDDEV RANGE SKEWNESS KURTOSIS.

Statistics

N Vali	d 25
Mis	sing 0
Mean	59.64
Median	60.00
Std. Deviatio	n 12.932
Skewness	348
Kurtosis	.584
Range	59
Minimum	27
Maximum	86

SPSS: SUMMARY STATISTICS W/FREQ

* to get IQR or SIR, you need to ask for the quartiles and then do the math.

FREQUENCIES AGE

/NTILES(4)

/FORMAT NOTABLE.

Statistics

71021 41101110 11110011111197190							
N	Valid	25					
	Missing	0					
Percentiles	25	51.50					
	50	60.00					
	75	67.50					

$$IQR = Q3 - Q1 = 67.50 - 51.50 = 16.00$$

$$SIR = IQR / 2 = 16.00 / 2 = 8.00$$

SPSS: SUMMARY STATISTICS FOR EACH GROUP

```
*** USING EXAMINE COMMAND.

EXAMINE VARIABLES=AGE BY STAGE

/PLOT NONE

/STATISTICS=DESCRIPTIVES
/NOTOTAL.
```

Descriptives ^{a,b}

	STAGE P	atient's Stage of Cancer		Statistic	Std. Erro
AGE Patient's Incoming	1	Mean		61.67	4.506
Age		95% Comidence interval	Lower Bound	51.75	
		for Mean	Upper Bound	71.59	
		5% Trimmed Mean		62.24	
		Median		66.00	
	_	Variance		243 697	
		Std. Deviation		15.611	
		Minimum		27	
		Maximum		86	
		Range		59	
		Interquartile Range		15	
		Skewness		906	.63
		Kurtosis		1.321	1.232
	2	Mean		56.33	4.91
		95% Confidence Interval	Lower Bound	43.69	
		for Mean	Upper Bound	68.97	
		5% Trimmed Mean		55.87	
		Median		55.50	
		Variance		145.067	
		Std. Deviation		12.044	
		Minimum		44	
		Maximum		77	
		Range		33	
		Interquartile Range		19	
		Skewness		1.002	.845
		Kurtosis		.986	1.74
	4	Mean		56.80	3.61
		95% Confidence Interval	Lower Bound	46.77	
		for Mean	Upper Bound	66.83	
		5% Trimmed Mean		56.78	
		Median		56.00	
		Variance		65.200	
		Std. Deviation		8.075	
		Minimum		46	
		Maximum		68	
		Range		22	
		Interquartile Range		14	
		Skewness		.123	.913
		Kurtosis		.676	2.000

a. AGE Patient's Incoming Age is constant when STAGE Patient's Stage of Cancer = 0. It has been omitte

b. AGE Patient's Incoming Age is constant when STAGE Patient's Stage of Cancer = 3. It has been omitted

SPSS: SUMMARY STATISTICS FOR EACH GROUP

```
* FIRST: you have to SORT by the variable you are going to split on.

* SECOND: make sure you use a 'temporary.' command so its not permanent.

* THIRD: make sure you turn the split off at the end.

* FOURTH: its nice to go back to the original sorting.

SORT CASES by STAGE.

TEMPORARY.

SPLIT FILE by STAGE.

FREQUENCIES AGE

/FORMAT NOTABLE

/STATISTICS MEAN MEDIAN STDDEV.

SPLIT FILE off.

SORT CASES by id.
```

Statistics						
AGE P	atient's Incoming Age	e				
0	N Valid	1				
_	Missing	0				
	Mean	73.00				
	Median	73.00				
1	N Valid	12				
	Missing	0				
	Mean	61.67				
	Median	66.00				
	Std. Deviation	15.611				
2	N Valid	6				
	Missing	0				
	Mean	56.33				
	Median	55.50				
	Std. Deviation	12.044				
3	N Valid	1				
	Missing	0				
	Mean	56.00				
	Median	56.00				
4	N Valid	5				
	Missing	0				
	Mean	56.80				
	Median	56.00				
	Std. Deviation	8.075				

SPSS: CREATE BOXPLOTS

Case Processing Summary

		Cases								
	Valid Missing Total						Valid		lid Missing	
	N Percent		N	Percent	N	Percent				
AGE Patient's Incoming Age	25	100.0%	0	0.0%	25	100.0%				

AGE Patient's Incoming Age

AGE Patient's Incoming Age is constant when STAGE Patient's Stage of Cancer = 0. It will be included in any boxplots produced but other output will be omitted. AGE Patient's Incoming Age is constant when STAGE Patient's Stage of Cancer = 3. It will be included in any boxplots produced but other output will be omitted.

STAGE Patient's Stage of Cancer

Case Processing Summary

		Cases					
	STAGE Patient's Stage of	Va	lid	Miss	sing	To	tal
	Cancer	N	Percent	N	Percent	N	Percent
AGE Patient's Incoming	0	1	100.0%	0	0.0%	1	100.0%
Age	1	12	100.0%	0	0.0%	12	100.0%
	2	6	100.0%	0	0.0%	6	100.0%
	3	1	100.0%	0	0.0%	1	100.0%
	4	5	100.0%	0	0.0%	5	100.0%

SPSS: CREATE BOXPLOTS

```
* seperately by two grouping variables.

EXAMINE VARIABLES=AGE

/PLOT=BOXPLOT

/STATISTICS=NONE

/NOTOTAL.
```

TRT Treatment Group*STAGE Patient's Stage of Cancer

Case Processing Summary

			Cases					
	STAGE Patient's Stage of		Va	lid	Miss	sing	To	tal
	TRT Treatment Group	Cancer	N	Percent	N	Percent	N	Percent
AGE Patient's Incoming	0 control	1	8	100.0%	0	0.0%	8	100.0%
Age		2	3	100.0%	0	0.0%	3	100.0%
		3	1	100.0%	0	0.0%	1	100.0%
		4	2	100.0%	0	0.0%	2	100.0%
	1 aleo treatment	1	4	100.0%	0	0.0%	4	100.0%
		2	3	100.0%	0	0.0%	3	100.0%
		4	3	100.0%	0	0.0%	3	100.0%
		0	1	100.0%	0	0.0%	1	100.0%

SPSS: RESTRICTING CASES

```
* Create a box plot
ONLY for cases with stage greater than 1.

TEMPORARY.
SELECT IF STAGE > 1.

EXAMINE VARIABLES=AGE BY STAGE
/PLOT=BOXPLOT
/STATISTICS=NONE
/NOTOTAL.
```

STAGE Patient's Stage of Cancer

Case Processing Summary

				Cas	ses		
	STAGE Patient's Stage of Cancer	Va	lid	Miss	sing	To	tal
		Ν	Percent	Z	Percent	N	Percent
AGE Patient's Incoming	2	6	100.0%	0	0.0%	6	100.0%
Age	3	1	100.0%	0	0.0%	1	100.0%
	4	5	100.0%	0	0.0%	5	100.0%

SPSS: RESTRICTING CASES

```
* Create a box plot ONLY for cases
with stage 1 & in the treatment group.

TEMPORARY.
SELECT IF STAGE = 1 & TRT = 1.

EXAMINE VARIABLES=AGE
/PLOT=BOXPLOT
/STATISTICS=NONE
/NOTOTAL.
```

Explore

Case Processing Summary							
	Cases						
	Valid Missing Total						
	N Percent N Percent N				N	Percent	
AGE Patient's Incoming Age	4	100.0%	0	0.0%	4	100.0%	

