Segundo Parcial - Probabilidad y Estadística

28 de Junio de 2012

Número de prueba		API	Cédula de	Cédula de identidad		
		1100	1.500	7.504	3505	1
	MO1	MO2	MO3	MO4	MO5	

Cada pregunta múltiple opción correcta vale 4 puntos. Respuestas incorrectas restan 0,8 puntos. Un total negativo en múltiple opción se considera de cero.

Rellenar con claridad en mayúscula la opción que considere correcta en las casillas superiores. La duración total del parcial es de 4 horas.

Se permite el uso de cuadernos, textos, calculadora y lápices, exclusivamente.

Problema 1 (10 puntos)

Se consideran $K \ge 4$ y la función f tal que $f(x) = bx^{-K}$ si $x \ge 1$, y f(x) = 0 en caso contrario.

- (a) Calcular b en función de K para que f sea función de densidad.
- (b) Sea X una variable aleatoria con densidad $f_X = f$. Calcular E(X) y $E(X^2)$.
- (c) Sean X_1, \ldots, X_{54} iid $\sim X$. Estimar el parámetro K sabiendo que $\overline{X}_{54} = 1, 2$.
- (d) Con el valor de K antes estimado, hallar aproximadamente $P(\overline{X}_{54} > 1, 1)$.

Problema 2 (15 puntos)

Se desea modelar la duración de llamadas en una central telefónica. Para ello, se observa que las personas no pueden atender y cortar en pocos milisegundos, por lo que la duración de las llamadas cursadas es nunca menor que un tiempo de respuesta T positivo, que se deduce experimentalmente. Para modelar la duración de las llamadas cursadas se considera entonces una variable aleatoria absolutamente continua X medida en minutos, con densidad:

$$f_X(x) = \begin{cases} 0 & \text{si } x < T \\ \lambda e^{\lambda(T-x)} & \text{si } x \ge T \end{cases}$$

donde λ representa la tasa de envejecimiento post-respuesta de la llamada.

- (a) Sea x > T. Calcular, en función de T y λ , la probabilidad que una llamada cursada dure más de x minutos: $P\{X > x\}$.
- (b) Calcular E(X), es decir, la duración media de una llamada. Asuma de ahora en más que $\lambda = 3$.
- (c) Estimar el tiempo de respuesta T por el método de los momentos, considerando la duración total de diez llamadas independientes (medidas en minutos):

(d) Estimar T por máxima verosimilitud, a partir de la muestra anterior. ¿El humano no podría cortar el teléfono antes que ese tiempo, en minutos? Explique.

Problema 3 (15 puntos)

Una variable aleatoria X sigue la ley doble exponencial $\mathcal{P}(\mu, b)$ si su densidad es f_X : $f_X(x) = \frac{1}{2b}e^{-\frac{|x-\mu|}{b}}$, siendo b > 0 y $\mu > 0$.

- (a) Calcular la esperanza y la varianza de una variable doble exponencial.
- (b) A partir de una muestra X_1, \ldots, X_{100} iid $\sim \mathcal{P}(\mu, 5)$ se determina $\overline{X}_{100} = 38$. Hallar un intervalo de confianza aproximado para μ a nivel $\alpha = 0, 1$.
- (c) Hallar el estimador por máxima verosimilitud para μ . Sugerencia: la función $\sum_{i=1}^{n} |X_i - \mu|$ se minimiza cuando μ es la mediana empírica.
- (d) Hallar $P(|X \mu| > 2b)$.

Múltiple Opción

Pregunta 1 Se pretende construir un intervalo de confianza a nivel 80% para la media, a partir del promedio de muestras X_1, \ldots, X_n iid normales con desvío $\sigma = 0,04$. ¿Cuál es el mínimo n que asegura que la longitud del intervalo será menor que 0,01?

A): 103.

B): 104.

C): 105.

D): 106.

E): 107.

F): Ninguna de las opciones anteriores es correcta.

Pregunta 2 Se tienen datos iid de tiempos de vida de 20 lamparitas. Se desea testear si dichos tiempos provienen de una distribución exponencial. A tales efectos se realiza el test de Lilliefors:

 $\begin{cases} H_0: X_1, ..., X_{20} \text{ tienen distribución exponencial} \\ H_1: \text{no } H_0 \end{cases}$

El supremo de las distancias entre la distribución empírica y la exponencial de parámetro $\hat{\lambda} = 1/\overline{X}_{20}$ es 0.23. Sea \mathcal{R} la región crítica de este test, a nivel α . Entonces:

A): $\mathcal{R} = \{D_{20} < 0.212\}$, por lo tanto se acepta H_0 al nivel 0.1.

B): $\mathcal{R} = \{D_{20} < 0.212\}$, por lo tanto se rechaza H_0 al nivel 0.1.

C): $\mathcal{R} = \{D_{20} > 0.212\}$, por lo tanto se acepta H_0 al nivel 0.1.

D): $\mathcal{R} = \{D_{20} > 0.212\}$, por lo tanto se rechaza H_0 al nivel 0.1.

E): El p-valor es $\alpha^* = 0.212$, por lo tanto se acepta H_0 al nivel 0.1.

F): Ninguna de las opciones anteriores es correcta.

Pregunta 3 Se tiene una muestra iid U_1, \ldots, U_n de variables uniformes en el intervalo [0,1]. Para p > 0 se considera el estadístico $T_n = \frac{1}{n} \# \{i : U_i > e^{-p}\}$. Al tender n a infinito:

A): T_n es un estimador consistente de pe^{-p} .

B): T_n es un estimador consistente de e^{-p} .

C): T_n es un estimador consistente de $p(1-e^{-p})$.

D): T_n es un estimador consistente de $(1 - e^{-p})$.

E): T_n es un estimador consistente de $(1 - pe^{-p})$.

F): Ninguna de las opciones anteriores es correcta.

Pregunta 4 Se considera la sucesión de variables aleatorias $(U_i)_{i\geq 1}$ iid uniformes en [0,1], y el conjunto de variables aleatorias $Y_n = \max\{U_1, \dots, U_n\}$. Para cada $n \geq 1$, sea $F_{Y_n}(t)$ la distribución de Y_n . Entonces:

- **A):** $(Y_n)_{n\geq 1}$ son iid, y además $Y_n \xrightarrow[n]{c.s.} 1$.
- C): $(Y_n)_{n\geq 1}$ son iid y $F_{Y_n}(t)=t^n$ cuando $0\leq t<1$.
- **B):** $(Y_n)_{n\geq 1}$ no son idénticamente distribuidas, y además $Y_n \stackrel{c.s.}{\xrightarrow{}} 1/2$.
- **D):** $(Y_n)_{n\geq 1}$ no son independientes, y además $F_{Y_n}(t) = \max\{F_{U_1}(t), \dots, F_{U_n}(t)\}$. **E):** $(Y_n)_{n\geq 1}$ no son idénticamente distribuidas, y además $Y_n \xrightarrow[n]{c.s.} 1$.
- **F):** Ninguna de las opciones anteriores es correcta.

Pregunta 5 Se dispone de un dado y se pretende determinar si el mismo está equilibrado. Al arrojarlo 1500 veces se obtienen los siguientes resultados:

	_					
Resultado	1	2	3	4	5	6
Frecuencia	164	303	278	291	294	170

Se considera el siguiente test

$$\begin{cases} H_0: \text{el dado está equilibrado} \\ H_1: \text{el dado no está equilibrado} \end{cases}$$

con región crítica $\{|\overline{X_n} - E(X)| > a\}$. Se pide hallar la constante a para que el test sea de nivel aproximado $\alpha = 0, 1$, y decidir si se rechaza o no H_0 :

- **A):** $a \approx 0,073$ y no se rechaza H_0
- **B):** $a \approx 0,062$ y no se rechaza H_0
- C): $a \approx 0,042$ y se rechaza H_0
- **D):** $a \approx 0,023$ y se rechaza H_0
- **E):** $a \approx 0,015$ y se rechaza H_0
- **F):** Ninguna de las opciones anteriores es correcta.