_ § 2.2 - The Limit of a Function, part 1

- In this video, we will:
 - · Rephrese the vedocity problem in terms
 of Limits
 - · Give an intuitive definition of a limit · Explore limits with technology.

Recall: If set)=3t2, what is the instantaneous velocity of t=2, v(2)

- The formula for average velocity, $V(t_1,t_2] = \frac{S(t_1)-S(t_1)}{t_2-t_1}$ does not work =) $\frac{S(2)-S(2)}{2-2} = \frac{S(t_1)-S(1)}{2}$
 - (2) I can visualize v(2) as the slope of the line tangent to s(t) at t=2

3) How do we find the slope of the tengent line with only one point, t= 2?

Idea we need to formalize:

t	Any vel from 2 to £
3	15
2.5	13.5
2.1	12.3
2.01	12.03
2.001	12.003
;	:
2	UNDEFINED

We need the value of $\frac{V(+)-V(2)}{t-2}$ as t gets really, Really, REALLY close to 2 by doesn't actually touch it.

The idea of a Limit: The limit of fox) as x approaches a : 6

lin f(x) x→a

is the value fix) approaches as x approaches a.