Лекция 6. Квадратичные функции. Задача об экстремуме.

Пекция 6. Квадратичные функции. Задача об экстремуме	
Параболоид	1
Задачи на минимум и максимум	4
Достаточные условия экстремума	
Задачи на экстремум	10
Критерий Сильвестра	15

Параболоид

Уравнение

$$ax + by + cz + d = 0$$

задает плоскость в трехмерном пространстве или линейную связь между переменными x,y,z. Если $c \neq 0$, то z -- линейная функция переменных x и y, а названная плоскость — ее график.

Уравнение

$$z = f(x, y)$$

задает поверхность, точки которой однозначно проектируются на плоскость xy: зная первые две координаты точки, лежащей на этой поверхности, можно однозначно восстановить третью по формуле z = f(x,y). При этом z — функция переменных x и y, а названная поверхность — ее график.

Аналогом параболы в теории функций многих переменных является параболоид.

Определение. Поверхность, заданная уравнением

$$z = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33}$$
,

называется параболоидом. При этом еще говорят, что z — квадратичная функция x и y.

$$plot3d(a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33})$$

Рис. 1. Параболоид.

Нетрудно заметить, что изменение параметров a_{13} , a_{23} , a_{33} не меняет формы параболоида, но лишь сдвигает всю поверхность относительно осей.

$$plot3d(x^2 + y^2 + 2a_{13}x + 2a_{23}y + a_{33})$$

Рис. 2. Параболоид: роль параметров a_{13} , a_{23} , a_{33}

Параметры a_{11} , a_{12} , a_{22} существенно влияют на форму параболоида. Сечение плоскостью, проходящей через ось z является параболой, а от значения этих параметров зависит, будут ли рога этой параболы направлены вверх или вниз.

$$plot3d(a_{11}x^2 + 2a_{12}xy + a_{22}y^2)$$

Рис. 3. Параболоид: роль параметров a_{11} , a_{12} , a_{22} .

Задачи на минимум и максимум

Определение. Говорят, что функция z = f(x, y), заданная в некоторой окрестности точки (a, b), имеет максимум, если верно неравенство:

$$f(x,y) \le f(a,b).$$

Максимум называют строгим, если *строго* неравенство верно при $(x,y) \neq (a,b)$. Максимум называют локальным, если выписанное неравенство выполняется лишь в некоторой окрестности точки (a,b). Точки, в которых функция имеет максимум или минимум, называют точками экстремума.

Задача. Для заданной квадратичной функции

$$z = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33}$$

найти все точки экстремума.

Определение. Точку, координаты которой удовлетворяют системе

$$\begin{cases} a_{11}x + a_{12}y + a_{13} = 0 \\ a_{12}x + a_{22}y + a_{23} = 0 \end{cases}$$

называют стационарной точкой параболоида.

Замечание. Стационарная точка играет ту же роль, что вершина параболы в теории функций одной переменной.

Теорема 1. Квадратичная функция может иметь экстремум только в стационарных точках.

Док-во. Если (a,b) -- точка локального максимума, то

$$f(x,b) \leq f(a,b)$$
,

поэтому функция

$$z = a_{11}x^2 + 2a_{12}xb + a_{22}b^2 + 2a_{13}x + 2a_{23}b + a_{33}$$

переменной х должна иметь экстремум при x=a, для чего необходимо, чтобы

$$\frac{dz}{dx} = 2a_{11}x + 2a_{12} + 2a_{13}$$

обращалась в нуль при x=a. Это дает первое уравнение системы. Меняя ролями х и у, получим второе уравнение.

Следствие 1. Если определитель матрицы

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$

не равен нулю, квадратичная функция может иметь экстремум в одной единственной точке, координаты которой однозначно определяются из системы

$$\begin{cases} a_{11}x + a_{12}y + a_{13} = 0, \\ a_{12}x + a_{22}y + a_{23} = 0. \end{cases}$$

Пример 1. Функция

$$z = x^2 + 2xy + 3y^2 + 2x$$

может иметь экстремум только в точке, координаты которой удовлетворяют системе

$$\begin{cases} x + y + 1 = 0 \\ x + 3y = 0 \end{cases}$$

$$solve\{x + y + 1 = 0, x + 3 y = 0\}$$

$$\left(x = -\frac{3}{2}, y = \frac{1}{2}\right)$$

По графику хорошо видно, что функция имеет в этой точке минимум.

$$z = x^2 + 2xy + 3y^2 + 2x$$

Рис. 4. График функции $z = x^2 + 2xy + 3y^2 + 2x$.

Пример 2. Функция

$$z = x^2 + 2xy + y^2 + 2x$$

может иметь экстремум только в точках, координаты которых удовлетворяют системе

$$\begin{cases} x + y + 1 = 0 \\ x + y = 0 \end{cases}$$

Эта система решений не имеет. Функция не имеет точек экстремума.

$$z = x^2 + 2xy + y^2 + 2x$$

Рис. 5. График функции $z = x^2 + 2xy + y^2 + 2x$.

Пример 3. Функция

$$z = x^2 + 2xy + y^2 + 2x + 2y$$

может иметь экстремум только в точках, координаты которых удовлетворяют системе

$$\begin{cases} x + y + 1 = 0 \\ x + y + 1 = 0 \end{cases}$$

Все точки прямой

$$x + y + 1 = 0$$

являются стационарными. По графику хорошо видно, что все точки этой прямой — точки нестрого минимума.

$$z = x^2 + 2xy + y^2 + 2x + 2y$$

Рис. 6. График функции $z = x^2 + 2xy + y^2 + 2x + 2y$.

Достаточные условия экстремума

Лемма. Пусть (a, b) – стационарная точка квадратичной функции

$$z = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33}$$
,

тогда

$$z = a_{11}(x-a)^2 + 2a_{12}(x-a)(y-b) + a_{22}(y-b)^2 + c$$

где

$$c = a_{11}a^2 + 2a_{12}ab + a_{22}b^2 + 2a_{13}a + 2a_{23}b + a_{33}.$$

Положим для краткости

$$r = \sqrt{(x-a)^2 + (y-b)^2}, \qquad \xi = \frac{x-a}{r}, \qquad \eta = \frac{y-b}{r}$$

тогда

$$z - c = f(x, y) - f(a, b) = r^2(a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2)$$

Выражение $a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2$ – квадратичная форма относительно переменных ξ,η , принимающих значение на единичной окружности

$$\xi^2 + \eta^2 = 1.$$

Определение. Квадратичная форма

$$a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2$$

называется:

- 1. строго положительно определенной, если $a_{11}\xi^2+2a_{12}\xi\eta+a_{22}\eta^2>0$ на единичной окружности;
- 2. нестрого положительно определенной, если $a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2 \ge 0$ на единичной окружности, причем это выражение обращается в нуль в некоторых точках;
- 3. строго отрицательно определенной, если $a_{11}\xi^2+2a_{12}\xi\eta+a_{22}\eta^2<0$ на единичной окружности;
- 4. нестрого положительно определенной, если $a_{11}\xi^2+2a_{12}\xi\eta+a_{22}\eta^2\leq 0$ на единичной окружности, причем это выражение обращается в нуль в некоторых точках;
- 5. знакопеременной, если $a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2$ принимает как положительные, так и отрицательные значения на единичной окружности.

Теорема 2. Пусть (a,b) — стационарная точка квадратичной функции

$$z = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33}.$$

Если квадратичная форма $a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2$

- 1. строго положительно определена, то в точке (a,b) достигается строгий и глобальный минимум,
- 2. нестрого положительно определена, то в точке (a,b) достигается нестрогий, но глобальный минимум,
- 3. строго отрицательна определена, то в точке (a,b) достигается строгий и глобальный максимум,
- 4. нестрого отрицательно определена, то в точке (a,b) достигается нестрогий, но глобальный максимум,
- 5. знакопеременна, то точка (a,b) не является точкой экстремума, даже локального.

Док-во. В силу леммы знак

$$f(x,y) - f(a,b)$$

определяется знаком квадратичной формы

$$a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2.$$

Если форма строго положительно определена, то

$$f(x,y) - f(a,b) > 0$$

при всех x,y. Если форма определена не строго, то в некоторой точке (ξ_0,η_0) форма обращается в нуль и в точках

$$x = a + r\xi_0, y = b + r\eta_0$$

при произвольно малом r будет выполняться равенство

$$f(x,y) - f(a,b) = 0$$

Это означает, что в сколь угодно близко к точке (a,b) строгость

$$f(x,y) - f(a,b) > 0$$

неравенства будет нарушаться. Поэтому при всех (х,у) будет выполняться только нестрогое неравенство, а стало быть минимум будет нестрогим. Случаи 3-4 рассматриваются аналогично. В случае 5 имеются точки, в которых форма имеет разные знаки, поэтому даже в произвольно малой окрестности точки (a,b) разность

$$f(x,y) - f(a,b)$$

будет менять знак. Следовательно, в этой точке нет даже локального экстремума. Теорема доказана.

Случай 5 не имеет аналогов в теории функций одной переменной.

Определение. Если форма $a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2$ является знакопеременной, то стационарную точку квадратичной функции называют седлом.

На занятии № 6 было доказано, что на единичной окружности форма $a_{11}\xi^2+2a_{12}\xi\eta+a_{22}\eta^2$ принимает значения, заключенные между собственными значениями матрицы

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$

Задачи на экстремум

Задача 1. Укажите все точки экстремума квадратичной функции

$$z = x^2 + xy + y^2 + 2x - 4y + 2.$$

Решение.

Шаг 1. Стационарные точки определяются из системы

solve{
$$2x + y + 2 = 0, x + 2y - 4 = 0$$
}
$$\left(x = -\frac{8}{3}, y = \frac{10}{3}\right)$$

Шаг 2. Собственные значения матрицы

$$\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$$

являются корнями уравнения

$$\det\begin{pmatrix} 1-\lambda & \frac{1}{2} \\ \frac{1}{2} & 1-\lambda \end{pmatrix} = 0$$

$$\lambda = \frac{1}{2} \text{ или } \lambda = \frac{3}{2}$$

Оба корня – положительные, следовательно, форма

$$x^2 + xy + y^2$$

положительно определенная, а стационарная точка – точка минимума.

Ответ: функция имеет единственную точку экстремума, а именно точку $\left(-\frac{8}{3},\frac{10}{3}\right)$, в которой функция имеет глобальный строгий минимум.

$$z = x^2 + xy + y^2 + 2x - 4y + 2$$

Рис. 7. График функции $z = x^2 + xy + y^2 + 2x - 4y + 2$.

Задача 2. Укажите все точки экстремума квадратичной функции

$$z = x^2 - 4xy + y^2 + 2x - 4y + 2.$$

Решение.

Шаг 1. Стационарные точки определяются из системы

$$solve{2 x - 4y + 2 = 0, -4x + 2 y - 4 = 0}$$
$$(x = -1, y = 0)$$

Шаг 2. Собственные значения матрицы

$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

являются корнями уравнения

$$\det\begin{pmatrix} 1-\lambda & -2\\ -2 & 1-\lambda \end{pmatrix} = 0$$

$$\lambda = -1$$
 или $\lambda = 3$

Корни имеют разные знаки, следовательно, форма

$$x^2 + xy + y^2$$

знакопеременная, а стационарная точка – седло.

Ответ: функция не имеет точек экстремума.

$$z = x^2 - 4xy + y^2 + 2x - 4y + 2$$

Рис. 8. График функции $z = x^2 - 4xy + y^2 + 2x - 4y + 2$.

Задача 3. Укажите все точки экстремума квадратичной функции

$$z = x^2 - 2xy + y^2 + 2x + 2.$$

Решение. Шаг 1. Стационарные точки определяются из системы

$$solve\{2 x - 2y + 2 = 0, -2x + 2 y = 0\}$$

Эта система не имеет решений.

Ответ: функция не имеет точек экстремума.

Задача 4. Укажите все точки экстремума квадратичной функции

$$z = x^2 - 2xy + y^2 + 2x - 2y + 2$$
.

Решение.

Шаг 1. Стационарные точки определяются из системы

$$solve\{2 x - 2 y + 2 = 0, -2 x + 2 y - 2 = 0\}$$

Эта система имеет бесконечно много решений:

$$(x = y - 1, y \in \mathbb{R})$$

Шаг 2. Собственные значения матрицы

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

являются корнями уравнения

$$\det\begin{pmatrix} 1-\lambda & -1\\ -1 & 1-\lambda \end{pmatrix} = 0$$

$$\lambda = 0$$
 или $\lambda = 2$

Форма

$$x^2 - 2xy + y^2$$

принимает значения между 0 и 2 и потому является нестрого положительной.

Ответ: функция имеет бесконечно много точек, в которых функция имеет нестрогий минимум, все эти точки составляют прямую x=y-1.

$$z = x^2 - 2xy + y^2 + 2x - 2y + 2$$

Рис. 9. График функции $z = x^2 - 2xy + y^2 + 2x - 2y + 2$.

Критерий Сильвестра

Ключевым моментом при решении задач на экстремум является определения знаков корней квадратного уравнения

$$\det\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{pmatrix} = 0$$

или

$$\lambda^2 - (a_{11} + a_{22})\lambda + a_{11} a_{22} - a_{12}^2 = 0.$$

По формулам Виета

$$\lambda_1 \lambda_2 = a_{11} a_{22} - a_{12}^2 = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$

И

$$\lambda_1 + \lambda_2 = a_{11} + a_{22}.$$

Сумму диагональных элементов матрицы называют следом (trace) матрицы, поэтому последнюю формулу записывают в виде

$$\lambda_1 + \lambda_2 = a_{11} + a_{22} = \operatorname{tr} \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}.$$

По знакам этих двух выражений можно определить знаки корней. Сформулируем это правило, принадлежащее Сильвестру, в виде таблицы.

Форма	$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$	$\operatorname{tr}\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$
Строго положительно определенная	+	+
Нестрого положительно определенная	0	+
Строго отрицательно определенная	+	-
Нестрого отрицательно определенная	0	-
Знакопеременная	-	Неважно

Тривиальный случай, когда матрица состоит из одних нулей не рассматривается.

Как следствие теоремы 3 сразу имеем:

Квадратичная функция имеет:	$\det\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$	$\operatorname{tr}\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$
строгий минимум	+	+
нестрого минимум	0	+
строгий максимум	+	-
нестрогий максимум	0	-
седло	-	Неважно

1. Найдите точки экстремума следующих функций. Укажите какой именно экстремум имеется в найденных точках (min/max, строгий/нестрогий, глобальный/локальный).

a.)
$$z = x^2 + 4xy - 8y^2 - 2x + 2y + 3$$

b.)
$$z = x^2 + 2xy + y^2$$

c.)
$$z = -x^2 - xy - y^2 - 2x - 4y + 3$$

d.)
$$z = x^2 + 2x - y^2 + 2x - 1$$