PROCEEDINGS

OF THE

NATIONAL ACADEMY OF SCIENCES INDIA

1969

Vol. XXXIX

SECTION-A

PART IV

Application on Jacobi Polynomials to some Nonlinear Oscillations

By

R. M. GARDE

Department of Mathematics, Government Engineering College, Jabalpur, M.P.

[Received on 25th March, 1968]

1. Introduction

Recently ultraspherical polynomials have been used to solve some nonlinear free oscillation problems [1, 2, 3]. The author [4, 5] has applied Gegenbauer polynomials to some nonlinear forced oscillation problems. The author [6] has also applied Jacobi polynomials to the study of nonlinear free oscillations.

In the present paper the general forced oscillation problem is solved with the help of Jacobi polynomials. The self sustained oscillations have also been considered.

2. Jacobi polynomials

Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$ are sets of polynomials orthogonal in the interval (-1,1) with respect to the weight factor $(1-x)^{\alpha}(1+x)^{\beta}$, each set corresponding to values of α and β such that $Re \alpha > -1$, $Re \beta > -1$. They may be obtained from [7, p. 271].

(2.1)
$$\sum_{n=0}^{\infty} P_n(\alpha,\beta) (x) t^n = 2^{\alpha+\beta} \rho^{-1} (1+t+\rho)^{-\beta} (1-t+\rho)^{-\alpha},$$

where

$$\rho = (1 - 2 x t + t^2)^{\frac{1}{2}}.$$

The ultraspherical (Gegenbauer), Legendre and Chebyshev polynomials are special cases of Jacobi polynomials.

In the interval (-A, A) Jacobi polynomials are defined as sets of polynomials orthogonal in this interval with respect to the weight factor $(1-x/A)^{\alpha}$ $(1+x/A)^{\beta}$. This gives rise to the polynomials $P_n^{(\alpha,\beta)}$ (x/A).

3. Linear Jacobi polynomial approximation

An arbitrary function restricted by very few conditions (absolute integrability suffices if Fejer's summation method is employed), can be expanded in a series of Jacobi polynomials [8, p. 451]. Thus for a function f(x) expandable in terms of these polynomials in the interval (-A, A), one obtains

(3.1)
$$f(x) = \sum_{n=0}^{\infty} a_n(\alpha, \beta) P_n(\alpha, \beta) (x/A),$$

where the coefficients $a_n(\alpha, \beta)$ are given by

(3.2)
$$a_n^{(\alpha,\beta)} = \frac{\int_{-1}^1 f(Ax) P_n^{(\alpha,\beta)}(x) (1-x)^{\alpha} (1+x)^{\beta} dx}{\int_{-1}^1 [P_n^{(\alpha,\beta)}(x)]^2 (1-x)^{\alpha} (1+x)^{\beta} dx}$$

If the series (3:1) is truncated after the second term, one obtains a linear approximation

(3.3)
$$f_*(x) = a_0^{(\alpha,\beta)} P_0^{(\alpha,\beta)} (x/A) + a_1^{(\alpha,\beta)} P_1^{(\alpha,\beta)} (x/A),$$
 where star denotes on which is the star denotes of the star denot

where star denotes approximation.

4. The forced oscillation problem

Here we consider the forced oscillation problem characterised by the differential equation

where either g(x) or f(x) or both may be nonlinear function of x.

It has been shown in [9] that if (i) f(x) and g(x) have first derivatives, (ii) m, n, p all positive numbers exist such that

(a)
$$g(x) > n > 0$$
 when $|x| > m$ otherwise $g(x) > -p$,

(b)
$$x f(x) > 0$$
 when $|x| > m$,

(c) Lt
$$|f(x)| = \infty$$
, so that if $F(x) = \int_0^x f(x) dx$, Lt $\frac{f(x)}{x \to \infty} = 0$,

then (4.1) has a solution of period $2\pi/\omega_{\bullet}$

Equation (4.1) can be written in the form

(4.2)
$$x + \frac{d}{d\tau} (G(x)) + f(x) \qquad E_0 + E_1 \cos \omega \tau, \text{ where } G(x) = \int_0^\infty g(x) dx.$$
 If γ and δ are the minimum and σ .

If γ and δ are the minimum and maximum amplitudes of the motion and if G(x) and f(x) are absolutely integrable functions, they can be expanded in the interval (γ, δ) in terms of shifted Jacobi polynomials $P_n^{(\alpha, \beta)}(x')$, where [10, p. 58]

(4·3)
$$x' = \frac{2x - \gamma - \delta}{\delta - \gamma}.$$

Letting $2A = \delta - \gamma$ and $x_c = \frac{\gamma + \delta}{2}$, (4.3) becomes

$$x' = \frac{x - x_c}{A}.$$

In case of symmetric oscillations, however,

$$\delta = -\gamma$$
 and $x' = x$.

Expanding G(x) and f(x) in a series of Jacobi polynomials, truncating after the linear term and substituting the resulting expressions in (4.2), we get

(4.5)
$$\ddot{x} + k_* \dot{x} + \omega_*^2 x = E_0 + E_1 \cos \omega \tau - \omega_1^2, \text{ where}$$

(4.6)
$$k_* = a_1^{(\alpha,\beta)} \frac{2 + \alpha + \beta}{2A}.$$

(4.7)
$$\omega_*^2 = b_1^{(\alpha,\beta)} \frac{2+\alpha+\beta}{2A} \quad \text{and} \quad$$

(4.8)
$$\omega_1^2 = b_0^{(\alpha,\beta)} + b_1^{(\alpha,\beta)} \left[\frac{\alpha - \beta}{2} - \frac{2 + \alpha + \beta}{2A} x_c \right],$$

 $a_0^{(\alpha,\beta)}$, $a_1^{(\alpha,\beta)}$, $b_0^{(\alpha,\beta)}$ and $b_1^{(\alpha,\beta)}$ being the first two coefficients in the expansions of G(x) and f(x) respectively.

The forced oscillation corresponding to the linearised equation (4.5) is given by

(4.9)
$$x_* = \frac{E_0 - \omega_1^2}{\omega_*^2} + \frac{E_1}{[k_*^2 \omega^2 + (\omega_*^2 - \omega^2)^2]^{\frac{1}{2}}} \cos(\omega_\tau + \phi),$$

where

$$\phi = \tan^{-1} \frac{k_{*}^{2} \omega}{\omega_{*}^{2} - \omega^{2}}$$

5. Self sustained oscillations

The present technique can also be applied to the study of free as well as forced self sustained oscillations typified by Vander Pol's equation. We shall first consider the free oscillations.

(a) Free oscillations

They are characterised by the Vander Pol's equation

(5·1)
$$\ddot{x} - \varepsilon (1 - x^2) \dot{x} + x = 0,$$

where ϵ is a parameter. They may also be represented by Rayleigh's equation

$$(5.2) \qquad \qquad \ddot{y} - \varepsilon \left(\dot{y} - \frac{\dot{y}^3}{3} \right) + y = 0,$$

which is obtained through the transformation $\dot{y} = x$.

Equation (5.1) is a special case of (4.2) with $G(x) = -s (x - \frac{x^3}{3})$, f(x) = x and $E_6 = E_1 = 0$.

Now Verma [11] has shown that

(5.3)
$$\int_{-1}^{1} x^{s} (1-x)^{\alpha} (1+x)^{\beta} P_{n}(\alpha,\beta) (x) dx$$

$$= \frac{2^{n+\alpha+\beta+1} s! \Gamma(1+\alpha+n) \Gamma(1+\beta+s)}{n! (s-n)! \Gamma(n+s+\alpha+\beta+2)} 2F_{1} \begin{bmatrix} -s+n, 1+\alpha+n; \\ -\beta-s; \end{bmatrix}, s>n.$$
We also have the result [7, p. 261]

and Bhonsle [12, p. 160] has shown that

$$(5.5) \quad \int_{-1}^{1} x^{n} (1-x)^{\alpha} (1+x)^{\beta} P_{n}(\alpha,\beta) (x) dx = \frac{2^{1+\alpha+\beta+n} \Gamma(1+\alpha+n) \Gamma(1+\beta+n)}{\Gamma(2+\alpha+\beta+n)}.$$

Approximating $\varepsilon(x-x^3/3)$ by means of linear Jacobi polynomials using equations (3.2), (3.3) and (5.3) to (5.5), one obtains

(5.6)
$$\{ (x-x^3/3) \}_* = k_* x + \frac{(\alpha-\beta)A}{2+\alpha+\beta} [k_*-\omega_1^2]$$
, where

A is the amplitude of the symmetric oscillation

(5.7)
$$k_* = \varepsilon \left[1 - \frac{A^2 \{ (\alpha - \beta)^2 + \alpha + \beta + 4 \}}{(\alpha + \beta + 4)(\alpha + \beta + 5)} \right] \text{ and }$$

(5.8)
$$\omega_1^2 = \epsilon \left[1 - \frac{A^2 \{ (\alpha - \beta)^2 + 3(\alpha + \beta) + 8 \}}{3(\alpha + \beta + 3)(\alpha + \beta + 4)} \right].$$

Linearising (5.1) with the help of (5.6), we get

$$(5.9) \dot{x} - k_* \dot{x} + x = 0.$$

Now for a steady state periodic motion to exist $k_* = 0$, which yields the condition on maximum amplitude of the periodic motion corresponding to a limit cycle. We then have

$$1 - \frac{(A^2 \{ \alpha - \beta)^2 + \alpha + \beta + 4 \}}{(\alpha + \beta + 4) (\alpha + \beta + 5)} = 0.$$

If $\alpha = \beta = -\frac{1}{2}$, (5.10) yields A = 2, which is a well-known result.

(b) Forced oscillations

Vander Pol's equation with a forcing term: We note that the linearisation scheme when applied to the equation

(5.11)
$$\ddot{x} - \varepsilon (1 - x^2) \dot{x} + \omega_0^2 x = E \cos (\omega \tau + \phi),$$

where ε , ω_0^2 and E are positive constants, yields the steady state solution

(5·12)
$$x = \frac{E \cos(\omega \tau + \phi + \delta)}{\left[(\omega_0^2 - \omega^2)^2 + \omega^2 \varepsilon^2 \left\{ 1 - \frac{(\alpha - \beta)^2 + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^2 \right\}^2 \right]^2}$$

where

(5.13)
$$\delta = \tan^{-1} \frac{\varepsilon \left\{ 1 - \frac{(\alpha - \beta)^2 + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^2 \right\}}{\omega_0^2 - \omega^2} = 0 \text{ as } k_* = 0.$$

The steady state amplitude is thus given by

(5·14)
$$A^{2} = E^{2} \left[(\omega_{0}^{2} - \omega^{2})^{2} + \omega^{2} \varepsilon^{2} \left\{ 1 - \frac{(\alpha - 2) + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^{2} \right\}^{2} \right]^{-1}$$

$$Putting \frac{\omega^{2} - \omega_{0}^{2}}{\omega \varepsilon} = x,$$

$$\frac{(\alpha - \beta)^{2} + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^{2} = y \text{ and}$$

$$\frac{E^{2}}{\omega^{2} \varepsilon^{2}} \frac{(\alpha - \beta)^{2} + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} = F, (5·14) \text{ becomes}$$

$$(5·15) \qquad x^{2} y + (1 - y)^{2} y = F$$

For $\alpha=\beta=-\frac{1}{2}$ this response relation is the same as obtained by other methods in [13, p. 82] and [14, p. 155]. The technique can also be used when the restoring force is non-linear. In this case only the value of ω_0^2 changes.

Discussion and conclusions

The results obtained by the present method agree with those obtained by other methods in case of self sustained oscillations as pointed above.

The linearisation of the nonlinear differential equation governing oscillations has been accomplished by linearising the nonlinear functions (damping and restoring) by means of linear Jacobi polynomials. The results of ultraspherical (Gegenbauer) polynomial approximation can be obtained from the corresponding results obtained in this paper by putting $\mathbf{a} = \beta = \lambda - \frac{1}{2}$. The differential equations discussed occur in several physical problem.

Acknowledgement

The author is highly thankful to Dr. B. R. Bhonsle, Professor of Applied Mathematics, Government Engineering College, Jabalpur for his guidance and valuable suggestions.

References

- 1. Denman, H. H. and Howard, J. E. Application of ultraspherical polynomials to nonlinear oscillations—I—Free oscillations of the pendulum. Quar. App. Math., 21(4), 325-330, 1964.
- 2. Denman, H. H. and Liu, Y. K. Application of ultraspherical polynomials to nonlinear oscillations—II—Free oscillations. Quar. App. Math., 22(4), 273-292, 1965.
- 3. Denman, H. H. Application of ultraspherical polynomials to asymmetric nonlinear oscillations. *Jour. Ind. Math. Soc.*, 14(1), 9-20, 1964.
- 4. Garde, R. M. Application of Gegenbauer polynomials to nonlinear oscillations—Forced and free oscillations without damping. *Indian Jour. Math.*, 7(2), 111-117, 1965.
- 5. Garde, R. M. Application of Gagenbauer polynomials to nonlinear damped oscillations. Communicated for publication to the Journal of Science and Engineering Research.
- Garde, R. M. Application of Jacobi polynomials to nonlinear oscillations—I—Free oscillations. Proceedings of National Academy of Sciences, India, A37(1), 1967.
- 7. Rainville, E.D. Special functions. McMillan Co., New York, Second Edition, 1960.
- 8. Lanczos, G. Applied Analysis. Sir Issac Pitman and Sons Ltd., London, 1957.
- 9. Levinson, N. and Smith, O. K. Existence of periodic solutions of second order differential equations with a forcing term. Jour. Math. Phy., 22, 41, 1943.
- 10. Szego, G. Orthogonal polynomials. Amer. Math. Soc. Colloquium Publication, 23, New York, 1939.
- 11. Verma, R. C. On some integrals involving Jacobi polynomials.

 To appear in Proc. National Academy of Sciences, India.
- 12. Bhonsle, B. R. On some results involving Jacobi polynomials. Bull. Cal. Math. Soc., 50, 160, 1958.
- 13. McLachlan, N. W. Ordinary nonlinear differential equations in Engineering and Physical Sciences. Second edition, Oxford, 1958.
- 14. Stoker, J. J. Nonlinear vibrations. Inter Science Publishers, Inc., New York, 1961.

Photocatalytic synthesis of aminoacids

By

N. R. DHAR & S. K. ARORA*

University of Allahabad, Allahabad, India

[Received on 7th March, 1968]

Abstract

Photosynthesis of aminoacids has been obtained by exposing a mixture of glucose and ammonia in the presence of an oxidising agent like $H_{\omega}O_2$ or potassium persulphate. Molybdic acid is a better catalyst than vanadium pentoxide. The synthesis of aminoacids is highly facilitated by the absorption of light and the addition of phosphates. Along with photosynthesis of aminoacids, photolysis is also taking place.

Introduction

Pavlovskaya and coworkers¹ observed the formation of aminoacids by the action of ultraviolet on the solution of formaldehyde and ammonium salts in the presence of adsorbents. Deschreider² obtained aminoacids by exposing to ultraviolet rays a mixture containing succinic acid, maleic acid or propionic acid and ammonia, ammonium carbonate or ammonium cyanate. Miller²,⁴,⁵ observed the synthesis of aminoacids by passing electric discharge in an atmosphere of mixture of gases such as hydrogen, methane and ammonia.

Recently Ranganayaki and Bahadur⁶ have investigated the possibility of nitrogen fixation without the help of bacteria and subsequent utilization of the fixed nitrogen in the formation of aminoacids in an aqueous mixture containing para formaldehyde as the source of carbon and colloidal molybdenum oxide as catalyst in a sterile set by exposing the solution to light of a 500 watt bulb.

Formation of complex organic compounds by the action of high energy source like ultraviolet rays, X-rays and electric discharge on the mixture of simple gases like methane, ammonia, hydrogen and water, has been demonstrated by many workers like Horowitz and Miller⁷. Miller and Urey⁸, Lowe et al⁹ and others¹⁰, 11.

In the present study the photosynthesis of aminoacids has been investigated by exposing mixtures of glucose and ammonia in presence of an oxidising agent like $\rm H_2O_2$ or potassium persulphate. The influence of phosphates, molybdic acid and vanadium pentoxide has also been studied.

Experimental

Sterilized sets were used in these experiments. 10 ml. of M/4 glucose solution and 10 ml of M/3 NH₃ and 0·2 gm titania were taken in six small conical flasks. 10 ml of M/40 H₂O₂ were added to all the flasks. 0·01 gm of molybdic acid or vanadium pentoxide was added in one flask each and the mixture of two in two flasks. Two sets were phosphated with 0·1 gm CaHPO₄.2H₂O (one with MoO₃+ V_2O_5) and one without it). Similar six flasks were prepared for dark set. All

^{*}Present Address: Punjab Agricultural University, Hissar, India.

the sets were exposed to 500 watt electric bulb, the dark sets were covered with thick black cloth. The contents of the flask were analysed for aminoacids after definite intervals of time. The qualitative detection was done by paper chromatography while the quantitative estimations were carried out with respect to standard solution colorimetrically 12 after desalting. A similar set was prepared with potassium persulphate instead of H_2O_2 and aminoacids analysed after a definite interval of time.

Sterilization of sets: Sterilization of the $\mathrm{NH_3-H_2O_2}$ - organic compound-titania or other catalysts-phosphate systems were carried out in the following way. Requisite amounts of glucose solution, photosensitiser and phosphate were taken in various flasks. The flasks were cotton plugged and sterilised in an autoclave under 15 lb pressure for 20 minutes. Requisite amounts of $\mathrm{NH_3}$, $\mathrm{H_2O_2}$ or persulphate solution were then introduced by means of a sterilized pipette under aseptic conditions.

The following abbreviations for the aminoacids studied have been used:

Glycine Gly	Glutamic a	cidGlut
Alanine Al	Serine	Se
ValineVal	Argenine .	,Ar
LeucineLeu	Methionin	e,Me
Aspartic acid Asp.	LysineLy,	ThreonineTh

TABLE 1 10 ml. M/4 glucose + 10 ml. M/3 NH₃ + 10 ml. M/40 $H_2O_2 + 0.2$ gm TiO_2

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIG	HT	DA	RK
1	Gly.,	0.0278		4 00
2	Gly., Al.,	0.0734	Gly.,	0.0247
3	Gly., Al.,	0.0746	Al.,	0.0231
4	Gly., Al.,	0 ·04 63	•••	***
5	Gly.,	0.0342	4 * *	***
	-			

TABLE 2

10 ml. M/4 glucose + 10 ml. M/3 NH₃ + 10 ml. M/40 H₂O₂ + 0·2 gm $TiO_2 + 0·1$ gm CaHPO₄·2H₂O

1 2 3	Gly., Al., Gly., Val., Asp., A Asp., Al., Th.,	0.0316 1., 0.0868 0.0923	Gly., Al., Gly., Al., Val.,	0 · 0276 0·0291
4 5	Gly., Val., Gly., Val., Asp., Gly., Val.,	0·0526 0·0368	Gly., Al., Gly., (faint)	0.0273 traces

TABLE 3 10 ml. M/4 glucose + 10 ml. M/3 NH $_3$ + 10 ml. M/40 H $_2$ O $_2$ + 0.2 gm TiO $_2$ + 0.01 gm Molybdic acid

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIG	HT	DAR	ζ
1 2 3	Gly., Val., Al., Gly., Val., Al., Gly., Val., Ly Th., Asp.,	, Glut. 0 [.] 0758	Gly., Al., Gly., Al.,	0 ·0 263 0·0242
4 5	Gly., Val., Ly. Al., Gly., Ly.,		faint 	•••
		TABLE 4		
10 n	al. M/4 glucose	$+ 10 \text{ ml. M/3 NH}_3 - \text{TiO}_2 + 0.01 \text{ gm}$	+ 10 ml. M/40 l n V ₂ O ₅	$H_2O_2 + 0.2 \text{ gm}$
1 2 3 4 5	Gly., Val., Al. Gly., Val., Glo Gly., Val., Ly Gly., Val., Al Gly., Val.,	ut., 0.0747 ., Asp., 0.0762	Gly., Al., Gly., Al., Gly., (faint)	0*0258 0*0237
		TABLE 5		
10 n		+ 10 ml. M/3 NH ₃ gm (MoO ₃ + V ₂ O ₅)		
1 2	Gly., Val., Al. Gly., Val., Se. Ly., Th.,	, Se., 0.0367	Gly., Val., Al.	
3	Gly., Val., Al		Gly., Val., Al.	, 0.0319
4 5	Se., Th., Asp Gly., Val., Al Asp., Gly., Al	., Asp., 0.0583	Ly., (faint) Gly., Val., Al Gly., Val.,	0.0304 0.0274
		TABLE 6	•	
10 n	nl. M/4 glucose	$+ 10 \text{ ml. M/3 NH}_3$ $\text{TiO}_2 + 0.02 \text{ gm (M}_3$	+ 10 ml. M/40 $(0O_3 + V_2O_5)$	$_{2}O_{2} + 0.2 \text{ gm}$
1 2 3	Al., Gly., Val.	.,Glut. 0.0782 ~	Gly., Al., Gly., Val., Al	0. 0 278 0. 0 259
4 5	Th., Ly., Gly., Val., Ly Gly., Al.,	0.0503 0.0362	Gly., Gly., (faint)	0.0224

TABLE 7

10 ml. M/4 glacose + 10 ml. M/3 NH₃ + 10 ml. M/40 Potassium persulphate + 0.2 gm TiO₂

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIG	HT	\mathbf{D}_{ℓ}	ARK
1 2 3 4 5	Gly., Val., Gly.,	0.0237 0.0672 , Asp., 0.0681 0.0383	Al., Val., Gly.,	0·0238 0·0190
		TABLE 8		
1	10 ml. M/4 gluce	ose + 10 ml. M/3 NF	$H_3 + 10 \text{ ml. M/s}$	10 potassium
	persulphat	$e + 0.2 \text{ gm TiO}_2 + $	0·1 gm CaHPO ₄	. 2H ₂ O
1 2	Gly., Val., Gly., Val., Al	0.0273 0.0836	•••	*
3 4	Asp., Ly., Gly., Val., Ly Gly., Val.,	0.0731 0.0386	Gly., Val., Al., Val.,	0·0248 0·0269
5	***	••1		••
		TABLE 9		
	10 ml. M/4 gluc	ose + 10 ml. M/3 N	$H_3 + 10 \text{ ml. M}$	/40 potassium
		phate + 0.2 gm TiO		
1 2 3 4 5	Gly., Gly., Val., Gly., Al., Va Gly., Al., Gly., Al.,	0.0256 0.0689 al., 0.0713 0.0462 0.0298	Gly., Val.,	0.0254 0.0223
		TABLE	10	
		cose + 10 ml. M/3 N ulphate + 0·2 gm Ti	-	
1 2 3 4 5	Gly., Gly., Val., Gly., Val., Gly., Val., Gly., Al.,	0.0242 0.0686 Al., 0.0702	Gly., Val.	•••

TABLE 11 10 ml. M/4 glucose + 10 ml. M/3 NH₃ + 10 ml. M/40 potassium persulphate + 0.2 gm TiO₂ + 0.02 gm (MoO₃ + V_2O_5)

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIGI	HT	DA	RK
1 2 3 4 5	Gly., Val., Gly., Val., Al.,	0·0278 0·0743	•••	•••
3	Al., Ly., Val.,	Asp., 0.0768	Gly., Val.,	0.0259
4 5	Al., Asp., Ly., Val., Al.,	Val., 0.04/9 0.0343	Al., Val.,	0.0239
			•••	•••
		TABLE 12		
10 ml. N	A/4 glucose + 10) ml. M/3 NH $_3 + 10$	0 ml. M/40 potas	sium persulphate
+	0.2 gm TiO ₂ +	0·02 gm MoO₃ + V	$_{2}O_{5} + 0.1 \text{ gm Ga}$	$^{3}\mathrm{HPO_{4}.2H_{2}O}$
1	Gly., Val.,	0.0328	•••	***
2	Gly., Val., Al.,	0 0783	Gly., Al.,	0.0272
3	Ly., Ap, Gly., Al., Val.,	Asp., 0.0878	Gly., Val., Al.,	0•0283
4 5	Gly., Val., Al.,	0.0672	Al., Gly.,	0.0267
5	Val.,	0.0386	•••	•••

Discussion

A perusal of the experimental results (table 1-12) shows that when the systems consisting solution of ammonia and glucose and an oxidising agent like H_2O_2 or potassium persulphate are exposed to light in the presence of titania and other photocatalysts MoO_3 or V_2O_5 , an appreciable amounts of aminoacids are formed. The quantity as well as the number of aminoacids produced increases when the systems are phosphated with dicalcium phosphate. It is clear from the results that H_2O_2 gives better results than potassium persulphate. This may be due to the fact that potassium persulphate produces sulphuric acid after sometime which is harmful. It is interesting to note that the phosphated sets contain more aminoacids than the unphosphated ones. The reason is that the phosphates form stable complexes with proteins and aminoacids, thus making the protein or aminoacids molecules much more stable towards decomposition.

It is further observed that in systems containing molybdic acid give better results than containing V_2O_5 and the mixture of these two photocatalysts gives an appreciable increase, which is more pronounced when the systems are phosphated. This may be probably due to the difference in their photocatalytic activity.

The synthesis of aminoacids in sterile set is highly facilitated by the absorption of light. In all the cases the amounts of aminoacids formed are much higher than in the dark. In the exposed sets it seems that the energy liberated by the oxidation of the energy material and the partial conversion of NH₃ into nitrite

and then to nitrate as well as the energy absorbed in the form of light are utilized in the formation of aminoacids. But in the covered sets, only small amounts of aminoacids are synthesised because only the thermo-chemical energy due to the oxidation of the organic compound and the conversion of NH3 into nitrite and nitrate is available.

It is interesting to note that aminoacids photosynthesised constantly undergo decomposition and ammonification aided by light and the addition of CaHPO. 2H2O checks the decomposition of these aminoacids by forming stable phosphorylated compound with the result that the amount of aminoacids appear to be larger in solutions which are phosphated.

Pavlovskaya et al. observed the formation of aminoacids by the action of ultraviolet light on the solution of formaldehyde and ammonium salts in the presence of adsorb nts. Bahadur and Ranganayaki13 observed that the formation of aminoacids in water containing dissolved CO2 and colloidal MoO3.

In all these systems it is observed that there is an increase in the amount of aminoacids synthesised in the beginning which is followed by a decrease on the prolonged exposure. It seems that along with photosynthesis of the aminoacids, photolysis is also taking place. Vaidyanathan, Kalyankar and Giri14 observed the photolysis of aminoacids in presence of different sensitisers.

References

- Pavlovskaya, T. E. Pasynskii, A. G. and Grebenikova, A. I. Doklady Akad. Nauk, U. S. S. R. 135, 473-476, 1960.
- Deschreider, A. R. Nature, 182, 528, 1958.

- Miller, S. L. Science, 117, 528, 1953.
 Miller, S. L. J. Amer. Chem. Soc., 77, 2351, 1955.
 Miller, S. L. Biochem. Biophys. Acta., 23, 480, 1957.
- 6. Ranganayki, S. and Bahadur K. Nature, 182, 1668, 1958.
- 7. Horowitz, N. H. and Miller, S. L. Fortsch, Chem. Org. Nat., 20, 423, 1962
- Miller, S. L. and Urey, H. C. Science, 130, 245, 1959.
- Lowe, C. U., R'ez, M. W. and Markham, R. Nature, 199, 219, 1963. Oro, J. Proc. Lun. Planet Expl. College, 3(2, 9), 1963.
- 10.
- Oparin A. I. Origin of life. Acad. Press, 1957. Harding and Mclean. J. Biol. Chem., 20, 217, 1915; 24, 503, 1916.
- Bahadur, K. and Ranganayaki, S. Izvest Acad. Nauk. S. S. S. R.
- Vaidyanathan, C. S., Kalyankar, G. D. and Giri, K. V. Proc. Nat. Acaa. Sci. India, 24(3), 286, 1955.

Nitrogen Fixation with Nitrogen free Oxide Surfaces

By

N. R. DHAR & G. N. BHAT
Sheila Dhar Institute of Soil Science, Allahabad University, Allahabad

[Received on 29th April, 1968]

For nitrogen fixation it is not necessary to have soil or sand as medium. Dhar and Seshacharyulu¹ have obtained considerable nitrogen fixation on adding energy materials to chemically pure surfaces, like oxides of metals, at ordinary temperature.

For throwing light an this problem, experiments were undertaken using chemically pure surfaces like oxides of different metals instead of soil or sand mixed with energy materials. The different oxides which have been used are Ferric oxide, Zinc exide and titania. In order to study the influence of phosphates, Tata basic slag and Trichinopoly rock phosphate were used. The organic materials used are Glucose, Wheat straw and sawdust.

Experimental

Pure samples (B. D. H. products) of ferric oxide, Zinc oxide and titania were taken, washed thoroughly and dried at room temperature. 100 gms of each sample were taken in clean dishes and energy materials were added to the extent of 0.8% carbon with and without phosphate sources containing 0.5% P₂O₅.

The results obtained are recorded in the succeeding pages.

TABLE 1 100 gms of Zinc oxide + 0.8% C as Glucose

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in Nitrogen %	Efficiency (amount of N fixed in mgm/gm. of carbon oxidised)	Total available P_2O_5 %
			Light			
0	0.7843			• • •	• • • •	• • •
30	0.6049	0.1794	0.0072	0.0072	40.1	• • •
60	0.5381	0.2462	0.0101	0.0101	41.0	•••
90	0.5023	0.2820	0.0117	0.0117	41.4	
120	0.4792	0.3051	U•01 24	0.0124	40.6	• • •
			Dark			
0	0.7843		•		• • •	•• *
30	0.6417	0.1426	0.0029	0.0029	20.3	
60	0.5805	0.2038	0.0044	0.0044	21.5	••
90	0.5489	0.2354	0.0052	0.0052	22.1	• • •
120	0.5247	0.2596	0.0055	0.0055	21-1	••

TABLE 2 100 gms of Zinc oxide + 0.8%% C as Glucose + 0.5% P_2O_5 as Tata basic slag

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exposure in	Un- oxidised	Oxidised	Nitrogen	in nitrogen	(amount of N fixed in mgm./gm of carbon	available P_2O_{κ}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Light			
30 0.5244 0.2124 0.0110 0.0110 51.7 0.2572 60 0.4566 0.2802 0.0148 0.0148 52.8 0.2711 90 0.4229 0.3159 0.0167 0.0167 53.2 0.2767 120 0.3977 0.3391 0.0179 0.0179 52.7 0.2795 ***Dark*** ***O****O***** ***O********* ***O******	0	0.7368	***	_			0.2316
60	30		0.2124		0.0110		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	0.4566	0.2802	0.0148	0.0148	52.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	0.4229					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	0.3977	0•3391	0.0179	U·0179	52.7	0.2795
30 0.5540 0.1828 0.0048 0.0048 26.2 0.2478 60 0.4912 0.2456 0.0068 0.0068 27.6 0.2601 90 0.4593 0.2775 0.0078 0.0078 28.1 0.2619 120 0.4307 0.3061 0.0085 0.0085 27.7 0.2671				Dark			
30 0.5540 0.1828 0.0048 0.0048 26.2 0.2478 60 0.4912 0.2456 0.0068 0.0068 27.6 0.2601 90 0.4593 0.2775 0.0078 0.0078 28.1 0.2619 120 0.4307 0.3061 0.0085 0.0085 27.7 0.2671 TABLE 3 100 gms. of Zinc oxide + 0.6% C as Glucose + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate Light 0 0.7707 0.0266 30 0.5676 0.2031 0.0094 0.0094 46.2 0.0421 60 0.5005 0.2702 0.0127 0.0127 47.0 0.0506 90 0.4676 0.3031 0.0144 0.0144 47.5 0.0562 120 0.4383 0.3324 0.0156 0.0156 46.9 0.0603	0	0.7368	• • •			***	0.2316
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	0.5540	0.1828	0.0048	0.0048	26.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	0.4912			0∙006೮	27.6	0.2601
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						28.1	0.2619
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	0.4307	0.3061	0•0085	0.0085	27.7	0.2671
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				JABLE 3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 gm	s, of Zinc of	xide + 0.8%	C as Glucose	+ 0.5% P	O as Trichi	nonol
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 8	5. 01 ZIII 0 0.	100 ro	ck phosohate	7 0 0 76 1	205 as Tricin.	пороту
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•
30 0·5676 0·2031 0·0094 0·0094 46·2 0·0421 60 0·5005 0·2702 0·0127 0·0127 47·0 0·0506 90 0·4676 0·3031 0·0144 0·0144 47·5 0·0562 120 0·4383 0·3324 0·0156 0·0156 46·9 0·0603	0	0.7707	•••	•			0.0266
60 0·5005 0·2702 0·0127 0·0127 47·0 0·0506 90 0·4676 0·3031 0·0144 0·0144 47·5 0·0562 120 0·4383 0·3324 0·0156 0·0156 46·9 0·0603	30	0.5676					
90	60	0 ·50 05	0.2702	0.0127	0.0127	47.0	
Dark 0 0.7707 0.0266 30 0.6019 0.1688 0.0040 0.0040 23.7 0.0385 60 0.5416 0.2291 0.0057 0.0057 24.8 0.0456 90 0.5059 0.2648 0.0067 0.0067 25.3 0.0498 120 0.4780 0.2927 0.0073 0.0073 24.9 0.0531 FABLE 4 Light 0 0.7843 30 0.6140 0.1703 0.0064 0.0064 37.5 90 0.5458 0.2385 0.0092 0.0092 38.5 90 0.5098 0.2745 0.0107 0.0107 38.9 120 0.4867 0.2976 0.0113 0.0113 37.9 0 0.7843 3				0.0144	0.0144	47•5	0.0562
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120	0.4383	0•3324		0.0156	46.9	0.0603
30 0.6019 0.1688 0.0040 0.0040 23.7 0.0385 60 0.5416 0.2291 0.0057 0.0057 24.8 0.0456 90 0.5059 0.2648 0.0067 0.0067 25.3 0.0498 120 0.4780 0.2927 0.0073 0.0073 24.9 0.0531 Carrier of Ferric oxide + 0.8% C as Glucose				$Dark^{\cdot}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_				•••		0.0266
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, -						
FABLE 4 Light 0 0.7843 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	0-4/00	0.2927		0.0073	24.9	0.0531
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	0 gms. of Fer	ric oxide + (0.8% C as G	lucose	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Light			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.7843	w • •	•	•••		•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						37.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·· -	0.5458		0.0092	0.0092		• , •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•••
0 0.7843	120	0.4867	0.2976		0.0113	37 ·9	• • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.7040		Dark			
60 0·5874 0·1969 0·0041 0·0041 20 8 90 0·5553 0·2290 0·0049 0·0049 21·3						•••	•••
$90 0.5553 0.2290 0.0049 0.0049 21.3 \dots$							•••
100							•••
220 0 300				-	•		
		0 0007	0 2000	0 0034	0 0002	4U 4	

TABLE 5

100 gms of Ferric oxide + 0.8% C as Glucose + 0.5% P₂O₅ as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅
			Light			
0	0.7368	***	•••	•••		0.2316
30	0.5336	0.2032	0.0101	0.0101	49.7	0.2524
60	0 4667	0.2701	0.0138	0.0138	51.0	0.2618
90 12 0	0.4328	0.3040	0.0157	0.0157	51.6	0.2669
120	0.4069	0.3299	0.0168	0.0168	50.9	0.2697
0	0.7368		Dark			
30	0.5627	0.1741	0.0044	0.0044		0.2316
30	0.5009	0.2359	0.0044	0.0044	25.2	0.2431
90	0.4687	0.2681	0.0073	0·0063	26.7	0.2528
120	0.4403	0.2965	0.0079	0 0073 0·0079	27 ·2 26 · 6	0.2583
		0 -000		0 0073	200	0.2614
100 ams o	f Ferric oxid	a : 0.90/ C	TABLE 6	0.50/ 0.0	m · · ·	_
100 giiis o	I Terrie oxid	le + 0.8% C:	as Glucose -	$-0.5\% P_2O_1$	s as Trichino	poly rock
			phosphate			
0	0.7707		Light			
0	0.7707	0.1040			• • •	0.0266
20 60	0.5765	0.1942	0.0086	0.0086	44.2	0.409
60 90	0·5098 0·4762	0.2602	0.0118	0.0118	45.2	0.0477
90 120	0.4481	0.2945	0.0135	0.0135	45.8	0.0523
120	0.4401	0.3226	0.0145	0.0145	44.9	0.0559
0	0.7707		Dark			0.0000
3 0	0.6106	0.1601	0 0036	0.0036	22.4	0.0266
60	0.5503	0.2204	0.0052	0.0052	23.5	0.0374
90	0.5154	0.2553	0.0062	0.0062	24·7	0·0432 0·0465
120	0.4867	0.2840	0.0068	0.0068	23.9	0.0403
			TABLE 7	0 0000	-0 5	0 0 131
	100	of Tito-i		o. Cl		
	100 8	gms of Titania		as Glucose		
	0.7049		Light			
0	0.7843	0.1000	0.0075	0.0075	41.7	•••
30	0·6015 0·5342	0.1828	0.0075	0.0075	41.1	•••
60 90	0.4988	0·2501 0·2855	0·0105 0·0121	0·0105 0·0121	41·9 42·3	•••
120	0.4764	0.3079	0.0121	0.0121	41.5	• • •
120	0 1/01	0 3073	Dark	0 0120	#1 J	***
0 .	0.7843	•••		•••	***	***
30	0.6393	0.1450	0.0031	0.0031	21.3	•••
60	0.5779	0.2064	0.0047	0.0047	22.7	•••
90	0.5465	0.2378	0.0055	0.0055	23.1	•••
120	0.5215	0.2628	0.0059	0.0059	22.4	•••

TABLE 8 100 gms of Titania + 0.3% C as Glucose + 0.5% P_2O_5 as Tata basic slag

Period of	Total C	Total C	Total	Increase	Efficiency (amount of	
Exposure in days	Un- oxidised %	Oxidised %	Nitrogen %	in nitrogen %	N fixed in mgm/gm of carbon	P_2O_5
	,,				oxidised)	, 0
			Light			
0	0.7368			***		0.2316
30	0.5210	0.2158	0.0114	0.0114	52.8	0.2595
60	0.4529	0.2839	0.0152	0.0152	53 ·5	0.2746
90	0.4188	0.3180	0.0172	0.0172	54.0	0.5808
120	0.3939	0.3429	0.0184	0.0184	53.6	0.2843
			Dark			
0	0.7368		•	•••	• • •	0.2316
30	0.5512	0.1856	0.0050	0.0050	26.9	0.2487
60	0.4877	0.2491	0.0070	0.0070	28-1	0.2618
90	0.4563	0.2805	0.0081	0.0081	28 ·8	0.2677
120	0.4273	0.3095	0.0088	0.0088	28•4	0.2708
		1	TABLE 9			
00 ame of	Titania + 0.8	3% C as Gluco		Or as Trich	inopoly rock	r nhosnha
oo giiis oi	titalia (0 c	76 6 45 61466	Light	206 000 22101	inopory rock	r phospita
0	0.7707		218,11			2.0266
3 0	0.5644	0.2063	0.0098	0.0098	47.5	0.0432
60	0.4969	0.2738	0.0132	0.0132	48.2	0.0523
90	0.4639	0.3068	0.0150	0.0150	48.8	0.0584
120	0 4349	0.3358	0.0162	0.0162	48.2	0.0632
			Dark			
. 0	0.7707	•••			•••	0.026
30	0.5983	0.1714	00042	0.0042	24· 5	0.039
60	0.5390	0.2317	0.0059	0.0059	25.4	0.047
90	0.5030	0.2677	0.0070	0.0070	26.1	0.052
		0.004	0.0070			
120	0•4753	0·2 954	0.0076	0.0076	25.7	0.055
120	0•4753			0.0076	25•7	0.055
120		า	ABLE 10			0.055
120			Cable 10 le + 0.8% C			0.055
0		า	ABLE 10			0.055
0	1 0 0 gn	า	CABLE 10 le + 0.8% C Light 0.0126	as Wheat st	traw ·	0.055
0 60	1 0 0 gn 0 ·7 837	ns of Zinc oxid	CABLE 10 le + 0.8% C Light	as Wheat st 0.0080		0·055
0	1 0 0 gn 0 ·7 837 0·5950	ns of Zinc oxid	CABLE 10 le + 0.8% C Light 0.0126 0.0206	as Wheat st	 42·3	0·055
0 60 120	100 gn 0.7837 0.5950 0.5346	ons of Zinc oxid 0.1887 0.2491	CABLE 10 le + 0.8% C Light 0.0126 0.0206 0.0233	as Wheat st 0.0080 0.0107	 42·3 42·9	•••
0 60 120 180	100 gn 0·7837 0·5950 0·5346 0·4964	ons of Zinc oxid 0.1887 0.2491	CABLE 10 le + 0.8% C Light 0.0126 0.0206 0.0233 0.0247 Dark	as Wheat st 0.0080 0.0107	42·3 42·9 42·1	•••
0 60 120 180	100 gn 0-7837 0-5950 0-5346 0-4964 0-7837	0.1887 0.2491 0.2873	CABLE 10 le + 0.8% C Light 0.0126 0.0206 0.0233 0.0247 Dark 0.0126	 0.0080 0.0107 0.0121	42·3 42·9 42·1	•••
0 60 120 180	100 gn 0·7837 0·5950 0·5346 0·4964	ons of Zinc oxid 0.1887 0.2491	CABLE 10 le + 0.8% C Light 0.0126 0.0206 0.0233 0.0247 Dark	as Wheat st 0.0080 0.0107	42·3 42·9 42·1	•••

TABLE 11

100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P₂O₅ as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C oxidised %	Total Nitrogen %	Increase in Nitrogen	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅ %
			Light			
0	0.7362	• • •	0.0118			0.2314
0	0.5144	0.2218	0.0237	0.0119	53.6	0.2523
60 120	0.5516	0.2846	0.0272	0.0154	5 4 ·1	0.2648
180	0.4204	0.3158	0.0287	0.0169	53.3	0.2724
100	0 1201	• • •	Dark			
_	0•7362		0.0118	••		0.2314
0	0.5459	0.1903	0 0170	0.0052	27:3	0•2445
60	0.4831	0.2531	0.0189	0.0071	28.0	0.2551
120	0.4488	0 2874	0.0197	0.€079	27•4	0.2632
180	0 4100					
			TABLE 12			
100 gms	of Zinc oxide	e + 0.8% C a	phosphate	w+0·5% P ₂	O ₅ as Trich	inopoly roc
			Light			
0	0.7701	• • •	0.0124		•••	0.0266
0 60	0.55 5 8	0.2143	0.0228	0.0104	48.5	0.040
120	0.4930	0.2771	0.0260	0.0136	49.0	0.047
180	0.4580	0.3121	0.0275	0.0151	48.3	0.052
100	0 1000		Dark			
	0.7701	•••	0.0124	•••	•••	0•0 2 6
0	0.5889	0.1812	0.0169	0.0045	24.8	0.036
60	0.5273	0.2428	0.0187	0.0063		0.042
120	0.4910	0.2791	0.0195	C•0073	25.4	0.047
180	0 1010		TABLE 13			
	100	gms of Ferric	oxide + 0.83	6 C as Whe	at straw	
	100 }	gins of 1 critic	Light			
			_		***	
0	0.7837		0.0126	0.007		
60	0.6043	0.0001	0·0198 0·0 2 24	0.009	- 40.0	
120	0.5446	~ ^774	0.0237	0.011		• • •
180	0.5063	0.2774		0 011		
			Dark			
0	0-7837		0.0126	0.009	20.4	••
	0.6468				0.1 5	•••
ፍ ስ			0.0179	0· 0 04	-, 410	• •
60 1 2 0	0.5656	6 0·2181 6 0·2492		0.005		

TABLE 14 100 gms of Ferric oxide + 0.8% as Wheat straw + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	$\begin{array}{c} {\rm Total} \\ {\rm available} \\ {\rm P_2O_5} \\ \% \end{array}$
			Light			
0 60 120 180	0·7362 0·5235 0·4604 0·4299	0·2127 0·2758 0·3063	0·0118 0·0143 0·0261 0·0275	0·0109 0·0143 0·0157	51·2 51·8 51·2	0·2314 0·2499 0·2594 0·2653
0 60 120	0·7362 0·5541 0·4917	0·1821 0·2445 0·2781	Dark 0.0118 0.0166 0.0185 0.0193	0·0048 0·0067 0·0075	26·3 2 7 ·4 26·9	0·2314 0·2423 0·2498 0·2557
180	0.4581		TABLE 15	0 0073		0 2337
100 gms c	of Ferric oxid	le + 0.8% Ca		aw + 0.5% e	P ₂ O ₅ as Tri	chinopoly
0 60 120 180	0·7701 0·5653 0·5024 0·4672	0*2048 0*2677 0*3029	0·0124 0·0219 0·0250 0·0264	0·0095 0·0126 0·0140	46·3 47·0 46·3	0.0266 0.0381 0.0446 0.0484
0 60 120 180	0•7701 0•5484 0•5366 0•5018	0·1717 0·2335 0·2683	Dark 0.0124 0.0165 0.0182 0.0189	0·0041 0·0058 0·0065	23·8 24·8 24·2	0·0266 0·0347 0·0401 0·0433
			TABLE 16			
	100	gms of Titan		Cas Wheat	straw	
0 60 120 180	0·7837 0·5916 0·5309 0·4924	0·1921 0·2528 0·2913	Light 0.0126 0.0209 0.0237 0.0251 Dark	0·0083 0·0111 0·0125	 43·2 43·7 42·9	•••
0 60 120 180	0·7837 0·6251 0·5526 0·5228	0·1586 0·2311 0·2609	0.0126 0.0161 0.0180 0.0185	0·0035 0·0054 0·0059	22 · 0 23·0 22 · 6	•••

TABLE 17 100 gms of Titania + 0.8% C as Wheat straw + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen	Increase in nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P_2O_5
			Light			
0 60 120 180	0·7362 0·5111 0·4477 0·4172	0·2551 0·2885 0·3190	0.0118 0.0241 0.0277 0.0292	0·0123 0·0159 0·0174	54·6 55·1 54·5	0·2314 0·2538 0·2674 0·2756
0 60 120	0·7362 0·5427 0·4799	0·1935 0·256 3	Dark 0.0118 0.0172 0.0192	0·0054 0·0074	27•9 28·8	0·2314 0·2459 0·2573
180	0.4444	0-2918	0.0201	0.0083	28.4	0•2661
			TABLE 18			
100 gm	s of Titania	+ 0.8% C as	Wheat stra	w + 0.5% P	2O5 as Trich	inopoly
			Light			•
0 60 120 180	0·7701 0·5520 0·4839 0·4537	0•2181 0•2812 0•3164	0·0124 0·0233 0·0266 0·0282 Dark	0.0109 0.0142 0.0158	49·9 50·5 49·9	0·0266 0·0412 0·0497 0·0551
0 60 120 180	0·7701 0·5855 0·5240 0·4863	0·1846 0·2461 0·2838	0.0124 0.0171 0.0189 0.0198	0.0047 0.0065 0.0074	25·4 26·4 26·0	0·0266 0·0367 0·0441 0·0489
			TABLE 19	9		
	100 :	gms of Zinc	xide + 0.89	6 C as Sawd	ust	
		55	Light	•		
0 60 120 180	0.7860 0.6281 0.5787 0.5339	0·1579 0·2073 0·2521	0.0084 0.0137 0.0155 0.0169	0·0053 0·0071 0·0085	33·5 34·2 33·3	•••
0 60 120 180	0·7860 0·6582 0·6016 0·5662	0-1278 0-1844 0-2198	0·0084 0·0106 0·0118 0·01 23	0·0022 0·0034 0·0039	17·2 18·4 17·7	•••

TABLE 20 100 gms of Zinc oxide + 0.8% C as Sawdust + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in Nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	${f Total} \ {f available} \ {f P_2O_5} \ {f \%}$
			Light			
0	0.7383		0.0079			0 2321
60	0 ·5488	0.1895	0.0164	0.0085	44.8	0.2497
120	0.4887	0.2496	0.0192	0.0113	45.2	0.2592
180	0.4502	0.2881	0.0208	0.0129	44.7	0.2655
			Dark			
0	0.7383		0.0079	•••	•••	0.2321
60	0.5832	0.1551	0.0115	0.0036	23.2	0.2426
120	0· 52 7 4	0.2109	0.0130	0·0 051	24·1	0 ·2 492
180	0.4922	0.2461	0.0137	0.0058	2 3· 5	0.2543
			TABLE 21			
100 gm	s of Zinc oxi	de + 0.8% C	l as Sawdust ck phosphate	+ 0.5% P ₂ C	o ₅ as Trichin	opoly
			Light			
0	0.7724	•••	0. 008 3	•••	***	0· 0 266
60	0.5948	0.1778	0.0154	0.0071	3 9 ·9	0· 03 87
120	0.5343	0.2381	0.0179	0.0096	40.3	0.0449
180	0.4981	0.2743	0.0192	0.0109	39.7	0.0494
			Dark			
0	0.7724	•••	0.0083	• • •	• • •	0.0266
60	0.6264	0.1460	0.0113	0.0030	20.4	0.0351
120	0.5735	0.1989	0.0125	0.0042	21.1	0.0404
180	0.5368	0.2356	0.0132	0.0049	20.7	0.0435
			TABLE 22			
	100 g	ms of Ferric	oxide + 0.89	% C as Sawd	lust	
			Light			
. 0	0.7860		0.0084			• •
60	0.6366	0.1494	0.0131	0.0047	31.4	• • •
120	0.5872	0.1988	0.0148	0.0064	$32 \cdot 1$	• • •
180	0 5421	0.2439	0.0160	0.0076	31.1	
. 0	0.5000		Dark			
0	0.7860	0.1104	0.0084	0.0000	10.7	••
60 120	0•6666 0•6102	0·1194 0·1758	0.0104	0.0020	16·7 17·6	•••
140	0.0104	() 1/30	0.0112	0.0031	17.0	• • •

TABLE 23 $$100~\rm{gms}$ of Ferric oxide + 0.8% C as Sawdust + 0.5% P_2O_5 as Tata basic slag

Period of Exposu e in days	Total C Un- oxidised	Total C Oxidised %	Total Nitrogen %	Increase in Nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅
			Light			
0 60	0•7383 0•5569	0.1814	0·0079 0·0157 0·0184	0.0078 0.0105	42·9 43·4	0·2321 0·2478 0·2556
120 180	0·4968 0·4587	0·2415 0·2796	0.0184 0.0199 Dark	0.0120	42 9	0.2608
0 60 120 180	0·7383 0·5918 0·5362 0·5011	0·1465 0·2021 0·2372	0·0079 0·0112 0·0126 0·0133	0·0033 0·0047 0·0054	22·5 23·2 22·7	0•2321 0·2408 0·2456 0·2495
			TABLE 24			
100 gms	of Ferric or	xide + 0.8% r	C as Sawdust ock phosphate	+ 0.5% P	₂ O ₅ as Trich	inopoly
0 60 120 180	0·7724 0·6033 0·5426 0·5063	0·1691 0·22º8 0·2661	Light 0.0083 0.0147 0.0171 0.0183 Dark	0.0064 0.0088 0.0100	37·8 38·2 37·5	0·0262 0·0365 0·0416 0 0449
0 60 120 180	0.7724 0.6349 0.5820 0.5460	0·1375 0·1904 0·2264	0·0083 0·0110 0·0122 0·0128	0·0027 0·0030 0·0045	19 6 20·4 19·8	0·0266 0·0341 0·0386 0·0414
			TABLE 25			
	100	gms of Titz	inia + 0.8% (C as Sawdu	st	
0 60 120 180	0·7860 0·6249 0·5757 0·5319	0·1611 0·2103 0·2541	Light 0.0084 0.0180 0.0158 0.0171 Dark	0.0056 0.0074 0.0087	34•7 35•1 34•2	•••
0 60 120 180	0•7860 0•6548 0•5992 0•5632	0·1312 0·18(8 0·2228	0.0084 0.0108 0.0120 0.0125	0·0024 0·0036 0·0041	18·2 19·2 18·4	

						•
Period of Exposure in days	Total C Un- oxidised %	Total C oxidised %	Total Nitrogen %	Increase in nitrogen	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅
			Light			
0	0.7383	11.	0.0079			0.2321
60	0.5452	0.1931	0.0168	0.0089	46 0	0.250
120	0.4851	0.2532	0.0197	0.0118	46 6	0.2620
180	0.4465	0.2918	0.0213	0.0134	45.9	0.268
			Dark			
0	0.7383		0.0097			0.232
60	0.5799	0.1584	0.0117	0.0038	23.9	0.232
120	0.5241	0.2142	0.0132	0.0053	24.7	0.251
180	0.4890	0.2493	0.0139	0.0060	24.0	0.258
			TABLE 27			
100 ~~	og of Titouis) 0.00/ C		0.60/ 7.0	m	_
100 gn	us of litania	+ 0.8% C a	s Sawdust + phosphate	0.5% P ₂ O ₅	Trichinopoly	y rock
			Light			
0	0.7724		0.0083			0.026
60	0.5912	0.1812	0.0157	0.0074	40.8	0.039
1 2 0	0 ·53 09	0.2415	0.0183	0.0100	41.4	0.046
180	0.4943	0.2781	0.0197	0.0114	40.9	0.052
			Dark			
0	0.7724	•	0.0083		• • •	0.026
60	0.6232	0.1492	0.0115	0.0032	21.4	0.035
120	0.5703	0.2021	0.0128	0.0045	22.2	0.041
180	0.5340	0.2384	0.0135	0.0052	21.8	0.046

Discussion

From a close examination of the foregoing data it is seen that there is a decrease in the carbon content of the system with concomitant fixation of nitrogen when Glucose, Wheat straw and Sawdust are mixed with Zinc oxide, iron oxide and titania and allowed to undergo slow oxidation in air at ordinary temperature. It is observed that the oxidation of carbon and fixation of nitrogen are much greater in the sets exposed to light than in the sets kept in the dark, showing thereby the marked influence of light on the fixation of atmospheric nitrogen.

The rate of oxidation of carbon, fixation of nitrogen and efficiency, that is, the amount of nitrogen fixed in mgms per gram of carbon oxidised is in the order

Glucose > Wheat straw > Sawdust

As far as the surfaces are concerned, the activity is in the following order:

$$\rm TiO_2 > ZnO > Fe_2O_3$$

This marked difference in the rate of carbon oxidation, nitrogen fixation and efficiency with the three surfaces can be due to the difference in their power of photo-sensitization. The photosensitizing action may be different in its nature from catalysts, as not only spontaneous reactions but also those involving an increase in the free energy of the system, can be realised by the introduction of suitable photosensitizers. The well known example of photosensitization involving an increase in the free energy of the system is the carbon assimilation process sensitized by chlorophyll.

That nitrogen fixation is possible with chemically pure surfaces like Zinc oxide, ferric oxide and titania shows that soil is not absolutely necessary for nitrogen fixation. What really seems indispensable is a suitable surface, where water, oxygen, nitrogen and energy materials are property adsorbed and are in intimate contact in such a way that the oxidation of the energy materials is possible.

Moreover, it can be observed from the data, that when phosphates are added the rate of fall in the efficiency of nitrogen fixation is checked. It seems that phosphates play a vital role in the improvement and maintenance of the nitrogen status of soils. The proteins that are present in the soil humus or those formed due to the fixation of nitrogen are likely to be stabilised by the formation of more or less stable phospho-proteins with the combination of phosphates and proteins. It is also observed that phosphates enhance the oxidation of carbonaceous materials and a part of nitrogen may be fixed due to the release of this extra-energy.

The forgoing results, further, show that there is a considerable increase in the avilability of phosphate when phosphates are added to the system containing oxide surface and organic matter and allowed to undergo slow oxidation in air at ordinary temperature. It is also observed that the increase in the availability of phosphate varies with the surface, ferric oxide showing the least increase in comparison to Zinc oxide or titania. The process of phosphate fixation has received considerable attention and many theories have been advanced to explain it. The experimental results of Bass and Sieling², Bear and Toth³, Cole and Jackson⁴, Coleman⁵, Ford⁶, Haseman et al.⁷ and many others ^{8,9,16} indicate that specific compounds of iron and Aluminium, which are relatively insoluble, are formed when soluble phosphates are added to acid soils. These compounds have been identified recently by Cole and Jackson⁴ as Ferric dihydroxyl dihydrogen phosphate (Strengite, and aluminium dihydroxyl dihydrogen phosphate (Variscite) or amorphous combinations of the two (Barrandite).

Many investigators ¹¹, ¹², ¹³, ¹⁴, ¹⁵ have observed that these retained phosphates are rendered soluble by the help of organic matter. The action of organic matter has been explained on the basis of the formation of fixation resisting organic phosphates¹⁶, replacement of the phosphate caused by the humate part of organic matter¹⁷ and the delay which it may cause in the absorption of phosphates by iron and aluminium¹⁸.

References

- 1. Dhar, N. R. and Seshacharyulu, E. V. J. Ind. Chem. Soc., 16 (2), 1959.
- 2. Bass, G. B. and Sieling, D. H. Soil Sci., 69, 269-280, 1950.
- 3. Bear, F. E. and Toth, S. J. Indus. and Engin. Chem., 34, 49-52, 1942.
- 4. Cole, C. V. and Jackson, M. L. Soil Sci. Soc. Amer. Proc., 15, 84-89, 1951.
- 5. Coleman, R. Soil Sci. Soc. Amer. Proc., 9, 72-78, 1945.
- 6. Ford, M. C. J. Amer. Soc. Agron., 25, 134-144, 1933.
- 7. Haseman, J. F., Brown, E. H. and Whitt, G. D. Soil Sci., 74, 257-271, 1950.
- 8. Midgley, A. R. and Dunklea, D. E. Vt. Agr. Exp. Sta. Bul., 525, 1945.
- 9. Perkins, A. T. Soil Sci. Amer. Proc., 12, 185-187, 1948.
- 10. Swenson, R. M., Gole, G. V. and Sieling, D. H. Soil Sci., 67, 3-22, 1949.
- 11. Singh, D. and Najhawan, S. D. Ind. I. Agri. Sci., 13, 140, 1943.
- 12. Bauer, F. G. Soil. Sci., 12, 21-41, 1921.
- 13. Ramaswami, S. Mem. Deptt. Agri. Ind. Chem. Series, 7, 145-200, 1925.
- 14. McGeorge, W. T. Soil Sci., 38, 347-353, 1934.
- 15. Rahn, E. M. Proc. Amer. Soc. Hort. Sci., 37, 713-717, 1939.
- 16. Spencer, V. E. and Stawart, R. Soil Sci., 38, 65-79, 1934.
- 17. Scarseth, G. D. J. Amer. Soc. Agron., 27, 596-616, 1936.
- 18. Hester, J. W. and Sheldon, F. A. Va. Truck. Exp. Sta. Bul., 94, 1937.

Complex Differential Systems and Conditional Stability

 B_{y}

A. A. KAYANDE

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada

and

D. B. MULAY

Govt. Arts and Science College, Aurangabad, India
[Received on 5th March, 1968]

1. It is a well-known result that Lyapunov's Second method depends essentially on the fact that a function satisfying a scalar differential inequality can be majorised by the maximal solution of the corresponding equation. This principle was extended by Wazewski [4] to vector differential inequalities, under certain monotonic restrictions. This comparison principle was used by Lakshmikantham[2] to derive sufficient conditions for conditional stability and boundedness of a set with respect to an ordinary differential system in the real domain.

Vejvoda[3] discussed the stability of differential equations in the complex domain, the independent variable being real. Kayande and Lakshmikantham[1], using the comparison principle stated above, obtained sufficient conditions for the stability and boundedness of the origin, with respect to a class of complex differential systems in which independent variable is also complex. We introduce in this paper the concepts of conditional stability and boundedness of a compact set with respect to a class of complex differential systems, and obtain sufficient conditions in terms of vector Lyapunov-like functions. This extends the work of Lakshmikantham[2] to complex systems and includes the results in[1] as special cases. Example is constructed to illustrate the results.

2. Let D denote the region of the complex plane: $0 \le a \le |z| < \infty$, $\alpha \le \arg z \le \beta$, where a, α, β are real numbers. Let the interval $0 \le a \le t \le \infty$ be denoted by I. Let C^n and R^n denote the complex and real n-space respectively. We shall say that a function $f \in (D, C^n)$ if it is defined on $D \times C^n$ into C^n and is regular-analytic on D and entire on C^n . Consider the complex differential system

$$(2.1) y' = f(z, y) y(z_0) = y_0, z_0 \in D, \left(' \equiv \frac{d}{dz} \right)$$

where $f \in (D, C^n)$. By a solution of $(2\cdot 1)$ we mean a complex *n*-vector function $y = y(z), y(z_0) = y_0, (z_0 \in D)$, that is regular-analytic in z on D and satisfies $(2\cdot 1)$ for all $z \in D$. We assume the existence of solutions for $(2\cdot 1)$.

3. Let a real n-vector function w = w(t, r) be defined and continuous on $I \times R^n$. Let $r = (r_1, r_2, r_3, \dots, r_n)$. The function w, defined above, is said to possess property (P) if for each $t \in I$ and for each i, (i = 1, 2, ..., n), the i^{th} component of w denoted by $w_i(t, r)$, is non-decreasing in $r_1, r_2, ..., r_{i-1}, r_{i+1}, ..., r_n$. Let the function w possess the property (P). Then it is known[4] that the differential system

(3·1)
$$\dot{r} = w(t, r), r(t_0) = r_0, t_0 \in I, \left(\cdot \equiv \frac{d}{dt} \right)$$

has the maximal solution, in the sense of componentwise majorisation, existing to the right of t_0 .

Let a function $V = V(z, y) \in (D, C^n)$. Define

$$(3.2) V*(z,y) = \frac{\partial V}{\partial z} + \frac{\partial V}{\partial y} \cdot f(z,y)$$

where denotes scalar multiplication of vectors. For $y \in C^n$ let |y| denote a vector in R^n such that $|y| = (|y_1|, |y_2|, ..., |y_n|) |y_i|$ is the modulus of y_i , the i^{th} component of y. The following lemma is established in [1].

Lemma: Let there exist a function $V = V(z, y) \in (D, C^n)$ such that $V^*(z, y)$ of (3.2) satisfies the vector inequality

$$|V^*(z,y)| \leqslant w(|z|,|V(z,y)|)$$

where w has the monotonic property (P). Suppose r(t): is the maximal solution of the system $(3\cdot1)$. If y(z) is any solution of $(2\cdot1)$ with

$$|V(z_0, y(z_0))| \leq r_0, (|z_0| = t_0),$$

then

$$|V(z, y(z))| \leqslant r(t), (z \in D, |z| = t), t \geqslant t_0.$$

Note: Any two vectors belonging to \mathbb{R}^n are said to satisfy vector inequality if the same inequality holds for each of the corresponding components of the vectors.

4. In this section we formulate in a natural way conditions for conditional stability and boundedness of solutions of $(2\cdot 1)$ with respect to a compact set $A \subset C^n$. We assume that A contains the origin. Define

$$d(y, \overline{y}) = \sum_{i=1}^{n} |y_i - \overline{y_i}|, \text{ for } y, \overline{y} \in C^n.$$
 Let

$$d(y, A) = \inf_{\widetilde{y} \in A} d(y, \widetilde{y}).$$
 The sets $\{y : d(y, A) < a\}$ and

$$\{y:d(y,A)\leqslant \alpha\}$$
 will be denoted by $S(A,\alpha)$ and $\overline{S(A,\alpha)}$

respectively. Let M be a set such that $A \subset M \subset C^n$. A is said to be invariant for system (2.1), if $y(z_0) \in A \Longrightarrow y(z) \in A$, for all $z \in D$. We state the following conditions.

(i) For any arbitrary $\varepsilon > 0$, $z_0 \varepsilon D$, there exist a positive function $\delta = \delta(|z_0|, \varepsilon)$ that is continuous in $|z_0|$ for each ε such that

$$y(z) \subseteq S(A, \varepsilon) \quad (z \in D, |z| \geqslant |z_0|)$$

whenever

$$y(z_0) \in \overline{S(A, \delta)} \cap M$$
.

- (ii) The δ in (i) is independent of $|z_0|$, $z_0 \in D$.
- (iii) For any arbitrary $\varepsilon > 0$, $\gamma \ge 0$ and $z_0 \varepsilon D$, there exist a positive number $T = T(|z_0|, \gamma, \varepsilon)$ such that

$$y(z) \subset S(A, \varepsilon) (z \varepsilon D, |z| \geqslant |z_0| + T)$$

whenever

$$y(z_0) \in \overline{S(A, \gamma)} \cap M.$$

- (iv) The T in (iii) is independent of $|z_0|$.
- (v) Conditions (i) and (iii) hold simultaneously.
- (vi) Conditions (ii) and (iv) hold simultaneously.
- (vii) For each $\gamma \geq 0$, $z_0 \in D$, there exists a positive function $\eta = \eta(|z_0|, \gamma)$ that is continuous in $|z_0|$ for each γ , such that

$$y(\varepsilon) \subseteq S(A, \eta), (z \in D, |z| \geqslant |z_0|)$$

whenever

$$y(z_0) \in \overline{S(A, \gamma)} \cap M.$$

- (viii) The η in (vii) is independent of $|z_0|$.
- (ix) For each $\gamma > 0$ and $z_0 \in D$ there exist positive numbers B and

$$T = T(|z_0|, \gamma)$$
 such that

$$y(z) \subset S(A, B), (z \in D, |z| \ge |z_0| + T)$$

whenever

$$y(z_0) \in \overline{S(A, \gamma)} \cap M.$$

- (x) The T in (ix) is independent of $|z_0|$.
- (xi) The conditions (vii) and (ix) hold simultaneously.
- (xiii) The conditions (viii) and (x) hold simultaneously.

Note: These conditions are natural extensions of the corresponding conditions of conditional stability and boundedness for real ordinary systems with respect to a set A[2]. If $M = C^n$ the conditions reduce to the corresponding conditions of stability and boundedness for complex systems with respect to

a set A. However, if $M = C^n$ and $A = \{0\}$, these reduce to the corresponding conditions in [1]. We are not assuming that A is invariant nor uniqueness of solutions. But the invariancy or otherwise of A is implied by the conditions. For example, if the condition (i) holds and $M = C^n$ then A must be invariant.

5. Let $||V(z,y)|| = \sum_{i=1}^{n} |V_i(z,y)|$. The following assumptions will be used subsequently whenever necessary.

(5.1) For
$$t_0 \in I$$
, $r(t_0) = r_0 = (r_{10}, r_{20}, \ldots, r_{k0}, 0, 0, \ldots, 0)$, $r_0 \in \mathbb{R}^n$, $k \leq n$.

(5.2) There exist a scalar function p(z) that is regular-analytic in z on D such that a function $V \in (D, C^n)$ satisfying the conditions of the lemma equals $p(z) V_1(z, y)$, where $V_1 \in (D, C^n)$. For fixed

$$|z|$$
, min $|p(z)| = \phi(t)$, $|z| = t$, and $\phi(t) \to \infty$ as $t \to \infty$.

Also V_1 satisfies (5.5).

(5.3) There exists a continuous and non-decreasing function $b=b(r), r\geqslant 0$, b(r)>0 for r>0 and $b(d(y,A))\leqslant \parallel V(z,y)\parallel$ for all $(z,y)\in D\times C^n$, and $b(r)\to\infty$ as $r\to\infty$.

$$(5.4) || V(z, y) || \rightarrow 0 \text{ as } d(y, A) \rightarrow 0 \text{ for each } z \in D.$$

(5.5)
$$||V(z, y)|| \to 0$$
 as $d(y, A) \to 0$ uniformly in $z \in D$.

(5.6)
$$V(z, y) \equiv 0$$
 whenever $y \in A$.

(5.7)
$$M = \{ y : V_i(z, y) \equiv 0, i = k + 1, \ldots, n \},$$

Corresponding to the conditions (i), (ii), (vii) and (viii) given in section 4, following conditions are stated for the system $(3\cdot1)$.

(ia) Given $\varepsilon > 0$ and $t_0 \varepsilon I$, there exists a positive function $d = d(t_0, \varepsilon)$ that is continuous in t_0 , for each ε , such that

$$\sum_{i=1}^{n} r_i(t) < \varepsilon(t \geqslant t_0),$$

whenever

$$\sum_{i=1}^{n} r_{i0} \leqslant d, \text{ where } r_{0} \text{ satisfies } (5\cdot1).$$

Conditions (iia), (viia) and (viiia) can be similarly formulated. For conditions (iiia), (iva), (ixa) and (xa) it is assumed that (5.2) holds. We state the condition (iiia) only. Others can be similarly formulated.

(iiia) Given $\epsilon > 0$, $\alpha \ge 0$ and $t_0 \in I$, there exists a positive number $T = T(t_0, \epsilon, \alpha)$ such that

$$\sum_{i=1}^{n} r(t) < \varepsilon \phi(t), t \ge t_0 + T,$$

whenever

$$\sum_{i=1}^{n} r_{i0} \leq \alpha \ \phi(t_0)$$

where r_0 satisfies (5.1) and $\phi(t)$ is as defined in (5.2).

We state and prove the following theorem:

Theorem 1: Let the assumptions of the lemma hold together with (5.3), (5.4), (5.6) and (5.7), then

- (I) condition $(ia) \Longrightarrow$ condition (i),
- (II) condition (viia) => condition (vii).

If the condition (5.4) is strengthened to (5.5), then

- (1II) condition (iia) \Longrightarrow condition (ii),
- (IV) condition (viiia) => condition (viii).

Proof: Consider (I). For any given $\varepsilon > 0$, if $d(y, A) = \varepsilon$, (5.3) shows that (5.8) $b(\varepsilon) \le ||V(z, y)||$.

If (ia) holds, given $b(\varepsilon) > 0$ and $t_0 \in I$, there exists a positive function $d = d(t_0, \varepsilon)$ that is continuous in t_0 for each ε , such that

whenever

$$\sum_{i=1}^{n} r_{i0} \leq d, \text{ where } r_{0} \text{ satisfies (5.1)}.$$

In view of (5.4) $\exists a \delta = \delta(|z_0|, d) = \delta(|z_0|, \epsilon)$ such that

(5.11)
$$\sup_{d(y_0, A) \leqslant \delta} \| V(z_0, y(z_0)) \| \leqslant d$$

where

$$y_0 = y(z_0).$$

Due to vector inequality it follows from the lemma that

(5·12)
$$||V(z, y(z))|| \leq \sum_{i=1}^{n} r_i(t), (|z| = t \geq t_0)$$

[473]

whenever

(5.13)
$$|V_i(z_0, y_0)| \leq r_{i_0}, (i = 1, 2, ..., n).$$

But (5·13) together with (5·1) and (5·7) imply that

We claim that whenever $y_0 \in S(A, \delta) \cap M$, every solution y(z) of (2.1) satisfies $y(z) \subset S(A, \epsilon)$ i.e. $d(y(z), A) < \epsilon$ for all $z \in D, |z| \ge |z_0|$. Otherwise there exists a solution y(z) with $y_0 \in S(A, \delta) \cap M$ such that for some $z_1 \in D$, $|z_1| \ge |z_0|$, $d(y(z_1), A) = \varepsilon$. But this fact together with (5.11), (5.13), (5.12) and (5.10) leads

$$b(\epsilon) \leq \| V(z_1, y(z_1)) \| \leq \sum_{i=1}^n r_i(t_i) < b(\epsilon).$$

Consider now proposition (II). Let $\gamma \geqslant 0$, $z_0 \in D$ be given

Due to (5.1) $\exists a \gamma_1 = \gamma_1(|z_0|, \gamma)$ satisfying

(5.14)
$$\sup_{d(y_0, A) \leqslant \gamma} \| V(z_0, y_0) \| \leqslant \gamma_1.$$

As condition (viia) holds, given $\gamma_1 \geqslant 0$ and $t_0 \in I$, there is a positive function $\eta = \eta (t_0, \gamma_1) = \eta (t_0, \gamma)$ that is continuous in t_0 for each γ , with property that

(5·15)
$$\sum_{i=1}^{n} r_i(t) < \eta \text{ for all } t \ge t_0$$
 whenever

$$\sum_{i=1}^{n} r_{i0} \leqslant \gamma.$$

where r_0 satisfies (5.1). Let $j_0 \in \overline{S(A, \gamma)} \cap M$. Then due to (5.14), (5.1) and (5.16) every solution y(z) of (2.1), with $y(z_0) = y_0$, satisfies (5.12) by a proper choice of r_0 . As $b(r) \to \infty$ as $r \to \infty$ at $a = L(\eta)$ such that

$$(5^{\bullet}17) \qquad \qquad n \leq b(L).$$

term transfer of the Then every solution y(z) of (2·1), with $y_0 \in \overline{S(A, \gamma)} \cap M$, satisfies d(y(z), A)< L for all $z \in D$, $|z| \ge |z_0|$. For otherwise π a solution y(z) of (2.1), with $y_0 \in \widehat{S(A, \gamma)} \cap M$, and $a z_1 \in D$, $|z_1| \geqslant |z_0|$, such that $d(y(z_1), A) = L$. But this

$$b(L) \leq ||V(z_1, y(z_1))|| \leq \sum_{i=1}^{n} r_i(t_1) < \eta \leq b(L),$$

due to (5.3), (5.12), (5.15) and (5.17).

Proofs for propositions III and IV follow easily from the one given above, for due to the uniformity conditions (iia), (viiia) and (5.5), the δ and L are independent of t_0 . We state the following theorem without proof as the arguments follow similar to those in [1], with the necessary modifications indicated in Theorem 1.

Theorem 2: Let the assumptions of the lemma hold together with (5.2), (5.4), (5.6) and (5.7). Then

(V) condition (iiia) => condition (iii)

(VI) condition $(ixa) \Longrightarrow$ condition (ix).

If the assumption (5.4) is strengthened to (5.5), then

(VII) condition (iva) => condition (iv).

'VIII) condition $(xa) \Longrightarrow$ condition (x).

Combining the results of Theorems 1 and 2 we show that the other conditions listed in section 4 also have these properties.

6. In this section we give an example to illustrate the results

Example: Consider the system

$$y_1' = \alpha y_1 + \beta y_2$$

(6.1)

$$y_2' = \gamma y_1 + \delta y_2,$$

where α , β , γ , δ are regular-analytic functions of z on a certain domain D of the complex plane. Let $V_1 = p(z)$ ($y_1 - y_2$) and $V_2 = p(z)$ ($y_1 + y_2$, where p(z) is regular-analytic in z on D and satisfies the condition of (5·2), with $|p(z)| \ge 1$ on D. Now $||V|| = |p(z)|\{|y_1 + y_2|\} \ge |y_1 + y_2| + |y_1 - y_2| \ge |y_1| + |y_2| \ge |y|$. Hence the function b of (5·3) can be the identity function i.e. b r) = r. Also (5·4) holds. We have from (3·2)

$$V_1^* = a_1 p(z) (y_1 + y_2) + [\beta_1 p(z) + p'(z)] [y_1 - y_2],$$

$$V_2^* = [(\alpha + \gamma) y_1 + (\beta + \delta) y_2] p(z) + p'(z) (y_1 + y_2)$$

where

$$\alpha_1 = \frac{\alpha + \beta - \gamma - \delta}{2}$$
 and $\beta_1 = \frac{\alpha - \beta - \gamma + \delta}{2}$.

Assume that α , β , γ , δ are so chosen that $|\alpha_1|p(z)| \leq \psi(|z|)$, $|\beta_1|p(z)+p'(z|) \leq \phi(|z|)$ and $|V_2^*| \leq \theta(|z|)|y_1+y_2|$. Then the system (3·1) reduces to

$$\dot{r_1} = \phi(t) \ r_1 + \psi(t) \ r_2$$

The unique solution of (6.2) through $r_0 = (r_{10}, r_{20})$ is given by

$$r_{1}(t) = r_{10} \exp \int_{t_{0}}^{t} \phi(s) ds + r_{20} \int_{t_{0}}^{t} \psi(s) \exp \left[\int_{t_{0}}^{t} \theta(u) du \right]$$
[475]

(6.3)
$$+ \int_{s}^{t} \phi(u) \ du \ ds, \quad r_{2}(t) = r_{20} \exp \int_{t_{0}}^{t} \theta(s) \ ds.$$

Let

$$\exp \int_{L}^{t} \theta(s) ds \to \infty \text{ as } t \to \infty.$$

Then taking k = 1, $r_0 = (r_{10}, 0)$ the system (6.3) reduces to

$$r_1(t) = r_{10} \exp \int_{t_0}^t \phi(s) ds,$$

$$r_2(t) \equiv 0.$$

Also from (5.7) the set M is the set of points $\{y: y_1 + y_2 = 0\}$, A being the set $\{0\}$. Obviously $A \subset M$. All the required assumptions of the

Illustration 1: Let $\int_{t_0}^{t} \phi(s) ds \leqslant M(t_0) < \infty$, then (6.2) has the property (ia).

Theorem 1 shows that the system (6.1) has the property (i), with A and M as defined above.

Illustration 2: Let
$$\min_{z \in D, \text{ arg } z} |p(z)| = P(t), t = |z|$$
.

Then

$$\frac{\exp \int_{t_0}^t \phi(s) ds}{P(t)} \to 0 \text{ as } t \to \infty$$

implies that (6.2) has the property (iiia), Then the application of Theorem 2 shows that (6.1) has the property (iii).

References

Kayande, A. A. and Lakshmikantham, V. Complex differential Systems and Extension of Lyapunov's Method. J. Math. Anal. Appl., 13, 337-347, 1966.

2. Lakshmikantham, V. Vector Lyapunov Functions and conditional

- Stability. J. Math. Anal. Appl., 10, 368-377, 1965. Vejvoda, O. The stability of a system of differential equations in the complex domain. Czechoslov. Math., 7(82), 137-159, [English Summary]
- 4. Wazewski T. Systemes des equations et des inequalities differentielles ordinaries aux deuxiemes membres monotones et leurs applications. Ann. Soc. Pol. Math., 23, 112-166, 1950.

A relation between generalised Kontorovitch-Lebdev transform and Weyl (Fractional) integral

By

(MISS) ASHA PENDSE

Department of Mathematics, University of Rajasthan, Jaipur

[Received on 25th April, 1968]

Abstract

The aim of this paper is to establish a relation between Generalised Kontorovitch Lebdev Transform and Weyl (Fractional) Integral. Certain new Weyl (Fractional) Integrals are solved with the help of this relation.

1. Introduction

The Generalised Kontorovitch-Lebdev Transform defined by Jet Wimp in his paper, "A Class Of Integral Transform," [(1); p. 37; (4.9) and (4.10)], is defined as follows:

$$f(x) \equiv T \frac{k}{a:x} : g(t) = \left(\frac{\pi}{ax}\right)^{1/2} \int_{0}^{\infty} W_{k,it}(ax) g(t) dt$$
 (1.1)

and its inversion formula:

$$g(t) = \frac{a}{\pi^{5/3}} t \sinh(2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it)$$

$$\times \int_{0}^{\infty} (ax)^{-3/2} W_{k, it} (ax) f(x) dx \qquad (1-2)$$

The aim of the present paper is to establish a relation between the above transform and the Weyl (Fractional) Integral, defined as:

$$K_{y}^{\mu}: \{f(x)\} = [\Gamma(\mu)]^{-1} \int_{0}^{\infty} f(x) (x-y)^{\mu-1} dx$$
 (I·3)

Further, this relation between (I·1) and (1·3) is used to get the solution of certain Weyl (Fractional) Integrals, which are supposed to be new.

By virtue of the identity:

$$W_{o,\mu}(x) = \left(\frac{\pi}{x}\right)^{\frac{1}{2}} K_{\mu} \left(\frac{x}{2}\right) \tag{1.4}$$

(1.1) reduces to the Kontorovitch-Lebdev Transform:

$$f(x) \equiv T_{2:x}^{0} : \{g(t)\} = \int_{0}^{\infty} K_{it}(x) g(t) dt$$
 (1.5)

when we put k = 0 and a = 2.

2. Theorem

If
$$R(\mu) > 0$$
, $R(a) > 0$ and $g(t) \in L(0, \infty)$ then

$$T \frac{k-\mu}{a:y} : \{ g(t) \} = e^{1/2} ay. y^{1/2-k} K \frac{\mu}{y} : [e^{-\frac{1}{2}ax}. x^{k-\mu-\frac{1}{2}}. T \frac{k}{a:x} : \{ g(t) \}]$$
 (2.1)

Proof:

Since, by hypothesis:

$$T_{a:x}^{k}:\{g(t)\}=\left(\frac{\pi}{ax}\right)^{\frac{1}{2}}\int_{0}^{\infty}W_{k,it}(ax)\ g(t)\ dt \tag{2.2}$$

Multiplying both the sides by $\{e^{-\frac{1}{2}ax}, x^{k-\mu-\frac{1}{2}}, (x-y)^{\mu-1}\}$ and integrating with respect to x within the limits y to ∞ , we have:

$$\int_{y}^{\infty} e^{-\frac{t}{2}ax} \cdot x^{k-\mu-\frac{t}{2}} (x-y)^{\mu-1} T \frac{x}{a:x} : \{g(t)\} dx$$

$$= \left(\frac{\pi}{a}\right)^{\frac{1}{2}} \int_{y}^{\infty} e^{-\frac{t}{2}ax} \cdot x^{k-\mu-1} \cdot (x-y)^{\mu-1} \cdot \int_{0}^{\infty} W_{k,it} (ax) g(t) dt \cdot dx. \tag{2.3}$$

Changing the order of integration, we have

$$\int_{y}^{\infty} e^{-\frac{1}{2}ax} \cdot x^{k-\mu-\frac{1}{2}} \cdot (x-y)^{\mu-1} \cdot T \frac{k}{ax} : \{g(t)\} dx$$

$$= \left(\frac{\pi}{a}\right)^{\frac{1}{2}} \int_{0}^{\infty} g(t) dt \int_{y}^{\infty} e^{-\frac{1}{2}ax} \cdot x^{k-\mu-1} \cdot W_{k,it}(ax) (x-y)^{\mu-1} \cdot dx$$
(2.4)

Solving the inner integral on the right hand side with the help of the result [(2); p. 211; (73)]; viz:

$$K \stackrel{\mu}{y} : \{ x^{k-\mu-1}. \ e^{-\frac{1}{2}\alpha x}. \ W_{k,\lambda} (ax) \} = y^{k-1}. \ e^{-\frac{1}{2}\alpha y}. \ W_{k-\mu,\lambda} (ay)$$
 (2.5)

where

$$R(\mu) > 0$$
, $R(ay) > 0$,

we have:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{e^{-\frac{1}{2}ax} \cdot x^{k-\mu-\frac{1}{2}} \cdot T^{k}_{ax} : g(t) \} (x-y)^{\mu-1} \cdot dx$$

$$= e^{-\frac{1}{2}ay} \cdot y^{k-\frac{1}{2}} \cdot T^{k-\mu}_{ay} : \{ g(t) \}. \tag{2.6}$$

which is the required result.

The proof of the theorem involves the change of order of integration. To justify the same, we observe that since by [(3); p. 264; (5)] and [(3); p. 183;(1)]:

$$W_{k,it}(ax) = e^{-ax/2} \cdot (ax)^k \, {}_{2}F_{0}\left(\frac{1}{2} - k + it, \, \frac{1}{2} - k - it; -\frac{1}{ax}\right)$$

$$= e^{-ax/2} \cdot (ax)^k \, \sum_{n=0}^{\infty} \frac{\Gamma(\frac{1}{2} - k + it + n) \, \Gamma(\frac{1}{2} - k - it + n)}{n=0 \, (n) \, ! \, \Gamma(\frac{1}{2} - k + it) \, \Gamma(\frac{1}{2} - k - it)} - \left(-\frac{1}{ax}\right)^n$$

If we use $[(3); p. 47; (6)]; viz_{\bullet}:$

$$\begin{array}{c|c} Lim & \Gamma(x+iy) = (2\pi)^{\frac{1}{2}} \cdot e^{\frac{1}{2}\pi + y} \cdot |y|^{\frac{1}{2}-x}; x, y \text{ real} \end{array}$$

we have:

$$Lt \atop t \to \infty \quad W_{k,it}(ax) = Lt \atop t \to \infty \quad e^{-ax/2}. (ax)^k \cdot e^{-\left[ax \mid t^2 \mid \right]^{-1}}$$

Hence, $W_{k,it}(ax)$ is bounded for large values of t, and for finite a and x.

Therefore, the t - integral in the equation (2.3) is absolutely convergent if g't $\in L(0,\infty)$ as $W_k, it(ax)$ shall be bounded for large values of t; and the integrand in the x-integral, in the same equation (2.3), for large values of x is comparable $|e^{-ax}, x^{2(k-1)}|$ since:

$$W_{k,m}(x) \sim A e^{-\frac{1}{2}x}$$
. x^k ; for large values of x.

Hence, the x-integral will be convergent if R(a) > 0.

The resulting integral on the left of (2.3) will be convergent if $g(t) \in L(0,\infty)$ by the same argument written before.

3. Examples

(i) Let us start with

$$g(t) = t \sin h (2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it) \Gamma(k + \rho + it - \frac{1}{2}) \Gamma(k + \rho - it - \frac{1}{2}) \times W_{1-k-\rho}, it(ay),$$
(3.1)

then from the inversion formula, we have:

$$f(x) \equiv T \frac{k}{ax} : \{g(t)\} = \pi^{-8/2} \cdot a^{\frac{1}{2}} \cdot z^{1-k} \cdot \Gamma(\rho) \cdot e^{-\frac{a}{2}(x+z)} \cdot x^{k+\rho-\frac{1}{2}} \cdot (x+z)^{-\rho}$$
 (3.2)

wher

$$|\arg z| < \pi$$
, $R(a) > 0$, $R(\rho) > 0$, $R(k+\rho-2) > -3/2$

Hence, (2.1) yields:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{ e^{-\alpha x} \cdot x^{2k+\rho-1-\mu} \cdot (x+z)^{-\rho} \} (x-y)^{\mu-1} \cdot dx$$

$$= e^{-\alpha y} \cdot y^{2k+\rho-1-\mu} \cdot (y+z)^{-\rho} \cdot z^{-\mu} . \tag{3.3}$$

where: $|\arg z| < \pi$, R(a) > 0, $R(\rho) > 0$, $R(\mu) > 0$ and $R(k+\rho-2) > -3/2$.

(ii) Let us start with:

$$g(t) = t \sinh(2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it) \Gamma(\frac{1}{2} + \nu + it + \rho)$$

$$\times \Gamma(\frac{1}{2} + \nu - it + \rho) {}_{3}F_{2}\left(\begin{array}{c} \frac{1}{2} + \lambda + \nu, \frac{1}{2} + \nu + it + \rho, \frac{1}{2} + \nu - it + \rho \\ 2\nu + 1, 1 - k + \nu + \rho \end{array}; -\frac{2b}{a}\right)$$
(3.4)

then from the inversion formula, we have:

$$f(x) \equiv T_{ax}^{k} : \{g(t)\} = \pi^{5/2} \cdot (2b)^{-\nu - \frac{1}{2}} \cdot a^{\nu + \rho} \cdot \Gamma(1 - k + \nu + \rho) \cdot (ax)^{\rho}$$

$$\times \exp \left[-\frac{1}{2} (a + 2b)x \right] M_{\lambda, \nu}(2bx)$$

$$R(b) > 0, R(a) > 0, R(\rho - \frac{1}{2} + \nu) > -1.$$

$$\{479\}$$

Hence, from (2.1) we have:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{e^{-(a+b)x}, x^{k+\rho-\mu-\frac{1}{2}}, M_{\lambda,\nu}(2bx)\} (x-y)^{\mu-1}, dx$$

$$= \frac{\Gamma(1-k-\mu+\nu+\rho)}{\Gamma(1-k+\nu+\rho)} y^{k+\rho-\frac{1}{2}}, \exp[-(a+b)y], M_{\lambda,\nu}(2by)$$
(3.6)

where

$$R(b) > 0$$
, $R(a) > 0$, $R(\rho - \frac{1}{2} + \nu) > -1$, $R(\mu) > 0$

(iii) Let us start with

$$g(t) = t \sin h(2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it)$$

$$\times G \frac{23}{33} \left(2 \left| \frac{\frac{1}{2} + it, \frac{1}{2} - it, \frac{1}{2} + k + \rho}{\nu + \rho, -\nu + \rho, k} \right. \right)$$
(3.7)

then from the inversion formula, we have:

$$f(x) \equiv T \frac{k}{ax} : \{g(t)\} = \pi^{5/2} \cdot 2^{\rho - \frac{1}{2}} \cdot a^{2\rho - \frac{1}{2}} \cdot \Gamma(\frac{1}{2} - k + \nu)$$

$$\times \Gamma(\frac{1}{2} - k - \nu) \cdot x^{\rho} \cdot e^{ax/2} \cdot W_{k,\nu}(2ax). \tag{3.8}$$

$$R(a) > 0, R(\mu) < R(\rho - \frac{1}{2}).$$

Hence, substituting to values of $T \frac{k}{ax}$: $\{g(t)\}$ and $T \frac{k-\mu}{ay}$: $\{g(t)\}$ in (2.1), we have:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{ x^{\rho+k-\mu-\frac{1}{2}} \cdot W_{k,\nu}(2ax) \} (x-y)^{\mu-1} \cdot dx$$

$$= \frac{\Gamma(\frac{1}{2}-k-\mu+\nu) \Gamma(\frac{1}{2}-k-\mu-\nu)}{\Gamma(\frac{1}{2}-k+\nu) \Gamma(\frac{1}{2}-k-\nu)} y^{\rho+k-\frac{1}{2}} \cdot W_{k-\mu,y}(2ay)$$
(3.9)

with the conditions:

$$R(a) > 0, \quad 0 < R(\mu) < R(\rho + \frac{1}{2}).$$

Acknowledgments

I am highly thankful to Dr. K. C. Sharma for his kind guidance during the preparation of this paper.

References

- Jet Wimp. A Class Of Integrals Transform. Proc. Edin. Math. Soc., 14, 33-34, 1964.
- Erdelyi, A. Tables Of Integral Transform, Vol. 11, Bateman Manuscript Project, 1954.
- 3. Erdelyi, A. Higher Transcendental Functions, Vol. 1, Bateman Manuscript Project, 1953.

An Inversion Formula for H-function Transform

By

(MISS) ASHA PENDSE

Department of Mathematics, University of Rajasthan, Jaipur

[Received on 25th April, 1968]

Abstract

The aim of the present paper is to generalise the results given by Jet Wimp in his paper, "A Class Of Integral Transform," Proc. Edin. Math. Soc, (1), 14 (19, 4) and to derive an inversion formula for H-function.

1. Introduction

Recently Jet Wimp has generalised the Kontorovitch Lebdev transform pair, [(2); p. 173], and the generalised Mehler transform pair [(5)]. These transforms are used in solving certain boundary value problems. The object of this paper is to generalise futher the transform pair [(3); p. 36; (3.9) and (2.10)], given by Jet Wimp, whose kernel involves a function defined by Charles Fox [4); p. 408], written below, slightly in a different form, viz:

$$H \ \frac{m, \ n}{p, \ q} \left[\ x \ \left| \begin{array}{c} (a_1, \ e_1) \ (a_2, \ e_2), \ldots, (a_p, \ e_p) \\ (b_1, f_1), \ (b_2, f_2), \ldots, (b_q, f_q), \end{array} \right]$$

$$= \frac{1}{2\pi i} \int_{L}^{\frac{m}{\frac{\pi}{2}}} \frac{\Gamma(b_{j} - f_{j}s) \prod_{j=1}^{n} \Gamma(1 - a_{j} + e_{j}s)}{\prod_{j=1}^{q} \Gamma(1 - b_{j} + f_{j}s) \prod_{j=1}^{p} \Gamma(a_{j} - e_{j}s)} x^{s} ds$$

$$(1.1)$$

where p, q, m, n are all non negative integers: e's and f's are all positive and an empty product is interpreted as 1; L is a suitable contour of Barnes type such that the poles of $\Gamma(b_j - f_j \xi) j = 1, \ldots, m$ lie on the right hand side of the contour and those of $\Gamma(1 - a_j + e_j \xi)$; $j = 1, \ldots, n$ lie on the left hand side. Also the parameters are so restricted that the integral on the right of (1-1) is convergent.

Symbolically, we will write (1.1) as:

$$H \stackrel{m, n}{p, q} \left[x \mid \begin{bmatrix} a_p, e_p \\ b_q, f_q \end{bmatrix} \right]$$
 (1.2)

where $[a_p, e_p]$ stands for an ordered set of parameters

$$(a_1, e_1), (a_2, e_2), \ldots, (a_p, e_p).$$
 (1.3)

Section 2, contains some preliminary results and definitions and Section 3, contains the main result and its derivation.

2. Some definitions and results

Throughout this paper, we shall denote by $M_s\{f(x)\}$ and $M_x^{-1}\{g(s)\}$ the Mellin transform of f(x) and the inverse Mellin Transform of g(s), respectively, *i.e.*

$$g(s) = M_s \{ f(x) \} = \int_0^\infty x^{s-1} f(x) dx$$
 (2.1)

and

$$f(x) = M_x^{-1} \{ g(s) \} = \frac{1}{2\pi i} \int_{c+i\infty}^{c+i\infty} x^{-s} g(s) ds.$$
 (2.2)

In what follows, λ , μ and ν are given by :

$$\lambda = \frac{b-a}{2}, \ \mu = \frac{b-1}{A} \tag{2.3}$$

and

$$\nu = 2 A + \sum_{j=1}^{m} (f_j) - \sum_{j=1}^{q} (r_j) + \sum_{j=1}^{n} (e_{j,j}) - \sum_{j=1}^{p} (\varepsilon_j)$$
 (2.4)

where A is a positive integer.

By virtue of the results 1.1) and (2.2), we have

$$M(s) = M_s \left\{ H_{n+p+2, m+q}^{m, n+2} \left[x \mid (1-\lambda, A), (\frac{1}{2}-\lambda, A), [a_n-\mu e_n, e_n], [\alpha_p-\mu \varepsilon_p, \varepsilon_p] \right] \right\}$$

$$= \frac{\int_{j=1}^{m} \Gamma(b_{j} - \mu f_{j} + f_{j}s) \prod_{j=1}^{n} \Gamma(1 - a_{j} + \mu e_{j} - e_{j}s) \Gamma(\lambda - As) \Gamma(\frac{1}{2} + \lambda - As)}{\int_{j=1}^{q} \Gamma(1 - \beta_{j} + \mu \sigma_{j} - \sigma_{j}s) \prod_{j=1}^{p} \Gamma(\alpha_{j} - \mu \varepsilon_{j} + \varepsilon_{j}s)}$$
(2.5)

where

- (1) m, n, p and q are all non negative integers,
- (2) $\nu > 0$; value of ν is given by (2.4),

(3) max.
$$R \left[\frac{a_k - 1}{e_k}; \lambda \right] < R(\mu - \lambda) < \min R \left[\frac{b_h}{f_h} \right]$$

 $k = 1, 2, \dots, n \text{ and } h = 1, 2, \dots, m.$

Again, by virtue of the result (2.2), we have:

$$G(s) = M_{s} \{ \sqrt{\pi} \, 4^{-\lambda} \, (\bar{x})^{A\mu} \, (1+x)^{2\lambda} \, \bar{g}(x) \}$$

$$= \int_{0}^{\infty} (\bar{x})^{s-1} \, [\sqrt{\pi} \, 4^{-\lambda} \, (\bar{x})^{A\mu} \, (1+x)^{2\lambda} \, \bar{g}(x)] \, d\bar{x}$$
(2.6)

where the value of \bar{x} is given by the equation (3.7).

Using the same results (1.1) and (2.2), we also have

$$\frac{2^{2\lambda}}{\sqrt{\pi}} \delta^{\mu} M_{s} \left\{ \frac{1}{(1+x)^{2}\lambda^{-}} H_{n+p+2, m+q}^{m, n+2} \left[\left\{ \frac{ax}{(1+x)^{2}} \right\}^{A} \delta \right] \right.$$

$$\left. (1-\lambda, A), \left(\frac{1}{2}-\lambda, A \right), \left[a_{n}-\mu e_{n}, e_{n} \right], \left[\alpha_{p}-\mu \varepsilon_{p}, \varepsilon_{p} \right] \right] \right\}$$

$$\left[b_{m}-\mu f_{m}, f_{m} \right], \left[\beta_{q}-\mu \sigma_{q}, \sigma_{q} \right]$$

$$= H_{n+p+2, m+q}^{m, n+2} \left[\delta \left[\frac{(a+s, A), b-s, A), \left[a_{n}, e_{n} \right], \left[\alpha_{p}, \varepsilon_{p} \right]}{[b_{m}, f_{m}], \left[\beta_{q}, \sigma_{q} \right]} \right]$$
with the conditions:
$$(2\cdot7)$$

- (1) m, n, p and q are non negative integers,
- (2) $\nu > 0$; value of ν is given by (2.4),
- (2) $|\arg \delta| < \frac{1}{2}\pi \nu$,
- (4) $R(s) < R(\lambda)$,

(5) max.
$$R\left[\frac{a_k-1}{e_n}, -\lambda\right] < R(\mu-s) < \min. R\left[\frac{b_h}{f_h}\right]$$

 $k=1, 2, \ldots, n \text{ and } R=1, 2, \ldots, m.$

Lastly, here is a property of H-function, of which, we shall make use in the derivation of our result later on.

3. The main result

The aim of this paper is to obtain the following transform pair:

Ιf

$$g(x) = \int_{0}^{\infty} H \frac{m, n+2}{n+p+2, m+q} \left[t \mid \frac{(a+ix,A), (b-ix,A), [a_n,e_n], [a_p+e_p]}{[b_m, f_m], [\beta_q, a_q]} \right] f(t) dt \quad (3.1)$$
where
$$(m+n) \ge p+q-2.$$

where then

$$f(x) = \frac{D}{\pi} \int_{-\pi}^{+\infty} \frac{(2\lambda - 2it + s + \nu A - 2)}{\Gamma(2\lambda - it - 2)} e^{\pi t} g(t)$$

$$\times H_{n+p+3, m+q+1}^{q+1, p+1}$$

$$\begin{bmatrix} xe^{\pi i} & (it-\mu A, 1), [1-\alpha_p-\epsilon'_p, \epsilon_p], [1-a_n+\epsilon'_n, \epsilon_n], (\lambda-A, A), (\frac{1}{2}+\lambda-A, A) \\ (2\lambda-4-\mu A, 1), [1-\beta_q-\sigma'_q, \sigma_q], [1-b_m-f'_m, f_m] \end{bmatrix} dt \quad (3.2)$$

where

$$D = \sqrt{\pi} \cdot 4^{1-\lambda - s - \mu} A \cdot e^{\pi i (\mu A + 1)}, \text{ and}$$
 (3.3)

$$f'_{j} = f_{j}(\mu - 1), e'_{j} = e_{j}(\mu - 1), \sigma'_{j} = \sigma_{j}(\mu - 1), \varepsilon'_{j} = \varepsilon_{j}(\mu - 1)$$

$$(3.4)$$

Proof

In order to achieve our aim, let us start from the integral equation (3.1). Substituting x = -i u, multiplying it by x^{-u} and integrating with respect to u in the limits $c + i \infty$ to $c - i \infty$, we get:

$$\int_{c-i_{\infty}}^{c+i_{\infty}} x^{-u}. g(-iu) du$$

$$= \int_{c-i\infty}^{c+i\infty} x^{-u} \int_{0}^{\infty} H \frac{m, n+2}{n+p+2, m+q} \left[t \mid (a+u,A), (b-u,A)[a_n,e_n], [\alpha_p, e_p] \right] f(t) dt. du$$
Putting
$$[b_m, f_m], [\beta_q, \sigma_q]$$
(3.5)

$$\overline{g}(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-u} g(-iu) du$$
 (3.5)

Hence, by virtue of the result (2.7), we have:

$$\frac{1}{g(x)} = \frac{1}{2\pi i} \int_{\sigma - i_{\infty}}^{\sigma + i_{\infty}} x^{-u} \left[\int_{\sigma}^{\infty} \frac{2^{2\lambda}}{\sqrt{\pi}} \cdot t^{\mu} \cdot M_{\mu} \left\{ \frac{1}{(1+x)} 2_{\lambda} \times \right. \right]$$

$$H \left[\begin{array}{c} m, n+2 \\ n+p+2, m+q \end{array} \right] \left[\begin{array}{c} A \\ (\overline{x}) \cdot t \end{array} \right] (1-\lambda, A), (\frac{1}{2}-\lambda, A), [a_{n}-\mu e_{n}, e_{n}], [a_{p}-\mu e_{p}, e_{p}] \\ [b_{m}-\mu f_{m}, f_{m}], [\beta_{q}-\mu \sigma_{q}, \sigma_{q}] \end{array} \right] \right\} \times f(t) dt du \qquad (3.7)$$
where

where

$$\overline{x} = \frac{4x}{(1+x)^2} \tag{3.8}$$

Changing the order of integration and on simplification, if we invoke (2.7) we get

$$\sqrt{\pi} \cdot 4 \cdot (x) \cdot (1+x) \cdot \frac{2\lambda}{g}(x)$$

$$= \int_{0}^{\infty} H^{m, n+2}_{n+p+2, m+q} \left[(x)^{A} \cdot t \mid (1-\lambda+\mu A, A), (\frac{1}{2}-\lambda+\mu A, A), [a_{n}, e_{n}], [a_{p}, e_{p}] \right] f(t) dt \quad (3.9)$$

Substituting the values of \bar{x} and $\bar{g}(x)$ from (3.8) and (3.6) respectively replacing s by 1-s in the result (2.6), we have, after adjusting the parameters with the help of the result [(1); p. 310; (24)].

$$G(1-s) = \frac{\sqrt{\pi}}{4\pi i} \cdot 4^{1-s-\lambda+\mu} \int_{c-i_{\infty}}^{c+i_{\infty}} e^{-\pi i (u+s-\mu A-1)} \times (2\lambda - 2u - s + \mu A - 1) \frac{\Gamma(2\lambda + s - \mu A - 4) \Gamma(\mu A - s - u + 1)}{\Gamma(2\lambda - u - 2)} g(-iu) du$$
 (3·10)

And in the result (2.5), putting s = 1 - s, we have :

$$M(1-s) = \frac{\prod_{j=1}^{m} \Gamma(b_{j}-f'_{j}-f_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+e'_{j}+e_{j}s) \Gamma(\lambda-A+As) \Gamma(\frac{1}{2}+\lambda-A+As)}{\prod_{j=1}^{q} \Gamma(1-\beta_{j}+\sigma'_{j}+\sigma_{j}s) \prod_{j=1}^{p} \Gamma(\alpha_{j}-\epsilon'_{j}-\epsilon_{j}s)}$$
(3.11)

where e'_{j} , f'_{j} , σ'_{j} and e'_{j} are given by (3.4),

Hence, from the results (3.10) and (3.11), we get:

$$f(x) = \frac{\sqrt{\pi}}{(2\pi i)^2} \cdot 4^{1-\lambda-s+\mu_A} \int_{c-i\infty}^{c+i\infty} x^{-s} ds \int_{c-i\infty}^{c+i\infty} e^{-\pi i(u+s-\mu_{A-1})} \cdot g(-iu)$$

$$\times \frac{\Gamma(2\lambda + s - \mu_A - 4) \Gamma(\mu_A - s - u + 1)}{\Gamma(2\lambda - u - 2)} (2\lambda - 2u + s - \mu_A - 2)$$

$$\times \frac{\int_{j=1}^{q} \Gamma(1-/j+\sigma'j+\sigma_{j}s) \prod_{j=1}^{p} \Gamma(\alpha_{j}-\varepsilon'_{j}-\varepsilon_{j}s)}{\prod_{j=1}^{m} \Gamma(b_{j}-f'_{j}-f_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+e'_{j}+e_{j}s) \Gamma(\lambda-A+As) \Gamma(\frac{1}{2}+\lambda-A+As)} du (3.12)$$

or

$$f(x) = \frac{\sqrt{\pi}}{2\pi i} 4^{1-\lambda-s+\mu} A \int_{c-i\infty}^{c+i\infty} \frac{(2\lambda-2u-s+\mu A-2)}{\Gamma(2\lambda-u-2)} e^{-\pi i(u-\mu A-1)}, g(-iu)$$

$$\times M \int_{xe}^{1} \left\{ \frac{q}{j=1} \frac{\Gamma(1-\beta_{j}+\sigma_{j}+\sigma_{j}s) \Gamma(2\lambda-4-\mu A+s) \prod_{j=1}^{p} \Gamma(\alpha_{j}-\epsilon'_{j}-\epsilon_{j}s) \Gamma(\mu A+1-u-s)}{\prod_{j=1}^{m} \Gamma(b_{j}-f'_{j}-f_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+\epsilon'_{j}+e_{j}s) \Gamma(\lambda-A+As) \Gamma(\frac{1}{2}-\lambda-A+As)} \right\} du$$

$$(3.13)$$

Therefore by virtue of the result (2.2), we get:

$$f(x) = \frac{D}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{(2\lambda - 2u - s + \mu A - 2)}{\Gamma(2\lambda - u - 2)} e^{-\pi i u} \cdot g(-iu)$$

$$\times H_{n+p+3, m+q+1}^{q+1, p+1} \left[xe^{\pi i} \left[\frac{(u-\mu A, 1), [1-\alpha_p-\epsilon'_p, \epsilon_p], [1-a_n+e'_n, \epsilon_n]}{(2\lambda-4, \mu A, 1), [1-\beta_q+\sigma'_q, \sigma_q]} \right] \times$$

 $\begin{array}{c} (\lambda-A, A), \left(\frac{1}{2}+\lambda-A, A\right) \\ \left[1-b_m-f'_m, f_m\right] \end{array} \right] du$ (3.14)

where D is given by (3.5).

Putting c = 0 in (3.14), we get the required result (3.2), viz.:

$$f(x) = \frac{D}{\pi} \int_{-\infty}^{+\infty} \frac{2\lambda - 2i \ t + s + \mu A - 2}{\Gamma(2\lambda - it - 2)} e^{\pi t} \ g(t)$$

$$\times H \stackrel{q+1}{n+p+3}, \frac{p+1}{m+q+1} \left[xe^{\pi i} \middle| \frac{(it - \mu A, 1), [1 - \alpha_p - \epsilon'_p, \epsilon_p], [1 - a_n + \epsilon'_n, \epsilon_n]}{(2\lambda - 4 \mu A, 1), [1 - \beta_q + \sigma'_q, \sigma_q],} \right] \times \left[\frac{[\lambda - A, A], [\frac{1}{2} + \lambda - A, A]}{[1 - b_m - f'_m, f_m]} \right] dt \qquad (3.15)$$

where D is given by (3.5).

Acknowledgement

I am thankful to Dr. K. C. Sharma, University of Rajasthan, India, for making many helpful suggestions during the preparation of this paper.

References

- 1. Erdelyi, A. Tables of Integral Transform. Vol. I, McGraw-Hill, New York, 1954.
- 2. Erdelyi, A. Tables of Integral Transform, Vol. 11, McGraw-Hill, New York, 1954.
- 3. Jet Wimp. A Class Of Integral Transform. Proc. Edin. Math. Soc. (1), 14, 33-34, 1964.
- 4. Rosenthal, P. L. On a Generalisation of Mehler's Inversion Formula and Some of its Applications. Dissertation (Oregon State University, 1961.)

Studies on the effect of various levels of nitrogen at different times of application on the seed yield, oil content and quantity of yellow sarson (B compestris)

By

N. S. SINHA

Physiological Chemist, Crop Physiology Section, Kanpur

[Received on 30th April, 1968]

Oil seeds occupy an important place as a good source of foreign currency. An area of 1.6 thousand hectares is under cultivation of rape and mustard crop in Uttar Pradesh. Studies on breeding of yellow sarson for higher seed yields have been conducted in the past. But, little published evidence is at hand, on the effects of the time of application of fertilizers it's relationship with plant characters, yield and the quality of oil.

Sinha et al. (1961) observed increased protein content and inverse relationship by tween protein and oil content in yellow sarson plants where nitrogenous feetilizers were used. They also reported in the case of rai, an uptake of nitrogen upto maturity and depressions in the oil percentage due to nitrogenous manuring. Mehrotra et al. (1967) notice d a progressive nitrogen and phosphorus uptake upto the maturity of the crop. Sen and Sarkar (1958) found significant increases in mustard yield with phosphate manuring. S n and Lahiri (1960) also reported increased dry matter and seed yield in sarson with phosphate. The present investigations were taken up with a view to study the influence of nitrogenous fertilizers, applied at different growth phases of yellow sarson, on general morphology of the crop seed and oil yield and quantity of oil.

Materials and Methods

The experiment was laid out in medium loam soil of PIRRCOM Farm, Kalianpur, Kanpur. The lay out was randomized block design with eleven treatments and four replications. Three levels of nitrogen (0, 30 and 60 lb/ac.) were applied at different stages.

Levels of ${\mathcal N}$		Time of Application
No - No nitrogen		To - No application of fertiliser
$N_1 - 30 lb N/ac.$	X	 T_1 - Full dose at sowing.
$N_2 - 60 lb N/ac$.		T ₂ - Full dose at one month stage.
		$T_8 - \frac{1}{2}$ at sowing $+\frac{1}{2}$ at one month.
		$T_4 - \frac{1}{2}$ at sowing $+ \frac{1}{2}$ at two months.
		$T_5 - \frac{1}{2}$ at one month $+ \frac{1}{2}$ at two months.

Important plant characters, viz., height of the plant, number of branches per plant, number of pods per plant and seed yield were recorded after the harvest of the Crop. Seed samples of yellow sarson were also collected at the time of harvesting of the crop in polythene bags. These samples were cleaned and made free of

all extraneous matters and stored in airtight bottles for chemical analyses in the laboratory.

. Thr morphological and yield data are given in Table 1 and oil content and its quality are given in Table 2,

Seed yield and plant characters of yellow sarson as influenced by the time of nitrogen
application

	CONTRACTOR OF THE PARTY OF THE	apprecateor	•	
Treatments	Height plant in cms.	No. of branches/ plant	No. of pods plant	Yield in kgms/ acre
A N ₁ T ₁ B N ₁ T ₂ C N ₁ T ₃ D N ₁ T ₄ E N ₁ T ₅ F N ₂ T ₁ G N ₂ T ₂ H N ₂ T ₃ I N ₂ T ₄ J N ₂ T ₅ K N ₆ T ₆ 'F' test S. E. M. ± C. D. at 5%	148·00 141·22 141·30 147·95 138·50 153·90 143·05 154·07 143·22 135·75 129·65 Sign. at 1% 4·4 12·67	5·50 5·17 4·47 4·72 4·95 7·22 6·15 7·32 6·80 5·45 2·87	106·85 94·00 81·85 90·20 83·15 147·17 107·10 145·82 121·22 92·45 58·67 Sign. at 1% 11·02	579·62 631·49 625·69 617·96 579·94 751·35 771·65 772·93 697·86 741·04 337·33 Sign at 1%
G. D. at 1%	_	1.98	42.76	194.923

TABLE 2

Effect of various levels of nitrogen at different times of application on the content and quality of oil of yellow sarson.

Treatments	Oil %	Proteins %	Allylis- othiocy- nate value	Iodine value	Acid value	Free fatty acid
A 30 lb. N/acre full at sowing	46.3	5.34	0.27	107-2	2.09	1.05
B 30 lb. N/acre at one month	46.3	5.64	0.26	99.0	2.25	1.13
C 30 lb N/acre \frac{1}{2} at sowing	46.2	5.99	0.26	105.0	1.60	0.808
$+\frac{1}{2}$ at one month						
D 30 lb. N/acre ½ at sowing	44·9	5.95	0.27	105.0	1.70	808
$+\frac{1}{2}$ at 2 months.						
E 30 lb. N/acre ½ at one	4 3·9	5.95	0.28	106.4	1.77	0•8 9
month $+\frac{1}{2}$ at 2 months						
F 60 lb. N/acre full at sowing	45.1	5.64	0.27	97.6	2.09	1.05
G 60 lb. N/acre at one month	45 ·0	5 ·67	0.28	99.0	1.77	0.89
H 60 lb. N/acre ½ at sowing	44· 7	5.82	0.28	100.5	1.93	0.97
$+\frac{1}{2}$ at one month						
I 60 lb. N/acre \frac{1}{2} at sowing +	44.6	5.87	0~27	104.2	1.77	0.89
at two months						
J 60 lb. N/acre ½ at one	44.3	5 95	0·2 8	1 0 2·0	1.60	0 81
month $+\frac{1}{2}$ at 2 months						
K Control	46.3	5 ·3 2	0.25	105.0	2.25	1.13

Results and Discussion

Morphological Characters and seed yield:

The nitrogen application was found to be very effective in promoting all growth and yield contributing factors.

Occular differences in the growth and development of the plants were marked due to nitrogenous fertilizers and all the plant characters under study were significantly altered by nitrogen application. The results obtained with regard to seed yield were in line with growth characters. The average responsiveness of nitrogen at N₈₀ was seen to be 269.61 Kg/ac which was further augmented to 409.63 Kg./ac in case of N₈₀. These responses ultimately showed an increase yield of about 80 and 121% respectively over control. No marked differences in yield due to nitrogenous manuring were observed.

Oil content and it's quality: The application of nitrogen at 30 lb. N/acre full at sowing, or one month after and half at sowing and the other half one month after did not depress the oil content, whereas, in other treatments at 30 or 60 lb. N/per acre the oil content was appreciably depressed. The decrease in oil content was comparatively higher in treatments where nitrogen was given two months after sowing. This may be due to the fact that the oil formation starts on fifth day after flowering (Sinha and Agarwal, 1963) and the application of nitrogen at late stages might be hampering with the formation of oil adversely. There was a positive correlation between nitrogenous manuring and protein content. Allylisothiocynate value has also increased slightly in comparison to unmanured seeds.

Summary and Conclusions

- 1. The yield of yellow sarson seed (B. Compestris; responded well to higher doses of manuring.
- 2. The oil content was depressed due to nitrogenous manuring at higher doses.

Acknowledgements

The author is highly grateful to Dr. Dharampal Singh, the then Head, Regional Research Centre (Oilseeds and Millets) I. C. A. R., Kanpur, for his keen interest during the course of the investigations reported here.

References

1. Mehrotra, O. N., Sinha, N. S., Srivastava, R. D. L. and Kumar Rajendra. Effect of fertilizers on uptake of nutrients, yield and oil content of Indian Mustard. B. Juncea (communicated Ind. Jour. Agric. Sci.)

 Sen, P. K. and Saik, A. K. Studies on nutrition of oilseed crop II. Effect of phosphorus on growth, yield and oil content of Mustard (B. Juncea). *Indian Agriculturist*, 2, 113-119, 1958.

3. Sen, P. K. and Lahiri, A. Studies on the nutrition of oilseed Grop. IV. Effect of phosphorus and sulphur on the uptake of nitrogen and growth, yield and oil content of sesame. *Ind. Agriculturist*, 4, 23-26, 1960.

4. Sinha, N. S., Singh, N. and Agarwal, P. N. Effect of mode of application of nitrogen on the yield and quality of oil in yellow sarson. J. oil Techno. Assoc. India, 10, 45-47, 1961.

5. Sinha, N. S., Singh, N. and Agarwal, P. N. Studies on the Nutrition of oilseed crops. I. Effect of various levels of Nitrogen at different times of application on the yield and quality of oil of Rai T₁₁ (B. Juncea) plants. *Ind. Oilseeds Jour.* 6, 24-214, 1:62.

6. Sinha, N. S. and Agarwal, P. N. Studies on the development of oil in Rai and yellow Sarson. *Ind. Oilseeds Jour.*, 7 (4), 268-271, 1963.

Studies on nutrition of Indian cereals—III. The uptake of phosphorus by wheat plants at different growth phases in relation to fertilizer application

By

O. N. MEHROTRA, N. S. SINHA & R. D. L. SRIVASTAVA Crop Physiology Section, Govt. Research Farm, Kanpur [Received on 30th April, 1968]

Introduction

Experimental evidence with regard to effects of nitrogenous and phosphatic fertilizers on the composition and uptake of phosphorus by wheat plants is somewhat contradictory. Larson et al. (1952) reported increased percentage of phosphorus in wheat plants with phosphatic fertilizers, while De Turk (1942), working on phosphate deficient soils of Illinois, observed decreased phosphorus content in wheat plants due to phosphorus application. Similarly, depressive effect of nitrogen on phosphorus concentration of wheat has been reported by Sharma (1962) in contrast to the findings of Rennie and Soper (1958) and Singh (1962), who noted beneficial effect of nitrogen on phosphorus absorption. Combined application of nitrogen and phosphorus has, however, been shown to be superior in promoting the absorption of these nutrients by the plants as compared with their single application (Arakeri et al., 1961 and Bolaria and Mann, 1964).

In an earlier paper the authors (1967) have reported the results of the uptake of nitrogen by wheat plant at various stages of growth as influenced by phosphorus. The present communication deals with the pattern of uptake of phosphorus by wheat at different growth phases in relation to fertilizer application.

Materials and Methods

The present study was undertaken in 1962-63 on wheat var. N. P. 710 grown at the Experimental Station, Dilkusha Farm, Lucknow. The layout adopted was randomized block design with 9 treatments and 4 replications. Three levels of nitrogen, i. e., 0, 28 and 56 Kg N/ha (N₀, N₁ and N₂), as sulphate of ammonia, were applied alone or in combination with three doses of phosphorus, i. e., 0, 22.4 and 44.8 Kg P_2O_5/ha (P_0 , P_1 and P_2) given as single superphosphate. The soil was sandy loam with a moderate fertility and average 7.3 pH.

Wheat plant samples (above ground portion only) were collected from each plot and composite samples were made according to each treatment. The samplings were done at successive growth stages of the crop, viz., seedling, active tillering, jointing, flag leaf, earning, ripening and harvest. These samples were dried at a temperature of 105°C for 48 hours and ground in a laboratory mill. Phosphorus content of plant samples was determined according to the method described by Snell and Snell (1949) using Spekker's Absorptiometer. Uptake of phosphorus was calculated on dry matter production basis and recovery of added phosphorus evaluated by Donee's formula (1934).

Results

The phosphorus concentration, dry matter content and uptake of phosphorus by wheat at different phases of growth are shown in Tables 1, 2 and 3 respectively.

1. Phosphorus concentration in wheat plant as affected by levels of fertilizers.

The absorption of phosphorus by wheat plant, irrespective of treatments, started from the seedling stage of the crop, was maximum at active tiller development stage and gradually declined with ontogeny. Application of phosphates improved the phosphorus content in plants, whereas nitrogenous fertilizers alone slightly depressed it. A combined dressing of nitrogen and phosphorus was more beneficial with regard to concentration of phosphorus, which was maximum in plants treated with 56 Kg N + 44.8 Kg $P_2 O_6/ha$.

TABLE 1

Total phosphorus (% dry weight basis) in wheat plants as affected by various levels of nitrogenous and phosphalic fertilizers

Treat- m nts Kg/ha	Seedling	Tillering	Growt Jointing	h Stages Flag leaf	Earing	Ripening	Harvest
$N_{\mathbf{q}}P_{\mathbf{q}}$	0.2750	0.4500	0.4125	0.4000	0.3725	0.3400	0.3000
$N_{\mathbf{o}}P_{\mathbf{i}}$	0.3000	0.4500	0.4175	0.4062	0.3775	0.2425	0.3075
N_0P_2	0.3125	0.4575	0.4260	0.4185	0.3825	0.1425	0.3100
N_1P_0	0.2500	0.4475	0.4075	0.3900	0.2675	0.3370	0.3000
N_1P_1	0.3250	0.4875	0.4250	0.4250	0.3900	0.3500	0.3150
N_1P_2	0.3750	0.5000	0.4₹50	0.4375	0.3975	0.3575	0.3275
N_2P_0	0.2700	0.4375	0.4100	0.3825	0.3650	0.3370	0.2975
N_2P_1	0.3900	0.5425	0.4450	0.4435	0:402 0	0.3620	0.3320
N_2P_2	0.4000	0.5500	0.4550	0.4475	0.4070	0*3695	0.3395

TABLE 2

Dry matter production of wheat plants (per plant in Gms.)

Treat- ment Kg/ha	Seedling	Tillering	Growth S Jointing	Stages Flag leaf	Earing	Ripening	Harvest
N_0P_0	0.082	2.49	2.98	3.20	8•42	10.00	10.50
N_0P_1	0.083	2.51	3.01	3.41	0.98	10•45	1 1·0 0
N_0P_2	0.085	2.52	3.24	3.62	9.14	11.00	11.35
$N_i P_0$	0.087	2.68	3.30	3.78	9.88	11.75	12.00
N_1P_1	0.090	2.76	3.90	4.05	10.23	12.51	13· 0 0
N_1P_2	0.091	2.93	3. 98	4.19	10.58	13.00	13.70
N_2P_0	0.104	3.04	3.99	4.53	11.72	13.87	14.95
N_2P_1	0.106	3.06	4.48	4.87	11.75	1 4·2 5	15.27
N_2P_2	0.110	3.13	4.49	5.04	12.00	14.98	17.25

2. Uptake of phosphorus at different growth stages of wheat

The data portrayed in Table 3 reveal a steady uptake of phosphorus from seedling to harvest stages of the crop in all the treatments. Fertilizing the crop with nitrogen or phosphorus was associated with an increased phosphorus uptake which was more pronounced when combined dressings of both the fertilizers were done. Highest uptake (19 Kg phosphorus per hectare) was observed at maturity where 56 Kg N + 44.8 Kg P_2O_5 per hectare was applied. Of the total phosphorus absorbed by the plant, about 70% was taken upto the earing stage.

TABLE 3
Uptake of phosphorus by wheat plants at different phases of growth and yield of grain (Kg/ha)

Treat- ment, Kg/ha	Seedling	Tillering	Gr Jointing	owth Sta Flag leaf	ages Earing	Ripening	Harvest	Yield of of Grain
NoPo	0.065	3.237	3.546	3.712	9.084	9.900	11.760	1894
$N_{\mathbf{o}}P_{1}$	0 072	3.263	3.642	4.024	9.788	10.345	12.430	1819
N_0P_2	0.076	3•326	3.953	4.380	10.054	10.890	13.052	1792
N_1P_0	0.063	3.457	3.894	4.272	10.473	11.515	13.320	2311
N_1P_1	0.085	3.892	4.797	4.981	11.560	12.635	15-210	2387
N_{2}	0.098	4.248	5.015	5.321	11.167	13.520	16.303	247 3
N_2P_0	180.0	3.830	4.748	5· 0 82	12.306	13.593	16•445	2728
N_2P_1	0.120	4.804	5.779	5.912	13.630	14.962	17.713	2766
N_2P_2	0.128	4.977	5.927	6.552	14•160	16.029	20.355	3145

Discussion

Absorption of phosphorus by wheat plants in the present study was highest at the tillering stage, which is in agreement with the results reported by Boatwright and Haas (1961) and Bolaria and Mann (1964) in wheat. The decrease in phosphorus concentration after the tillering stage may be attributed to the progressive dilution of phosphorus by CHO, which is associated with the maturation of the crop (Dougall, 1963). Increased percentage of phosphorus due to superphosphate application has also been reported by Larson et al. and Arakeri et al. (loc. cit.). Higher phosphorus content of plants fertilized with combined N and P might have resulted from an increase in acidity caused by ammonium sulphate, which in turn reduced the rate of fixation of the phosphorus fertilizers (Rennie and Mitchell, 1954).

The phosphorus uptake continued from seedling stage to harvest regardless of combined fertilizer applications. This is in confirmity with the results obtained by Mattingly and Widdowson (1958) in wheat. Stimulated uptake of phosphorus caused by application of nitrogen alone was possibly due to more dry matter production. Considerable increase in the uptake of phosphorus in plants where nitrogen and phosphorus were applied together might be due to stimulated top and root growth and a decreased pH and consequently an increased uptake of fertilizer phosphorus (Grunes et al., 1958).

A perusal of data summarised in Tables 1, 2 and 3 show that the uptake of phosphorus by wheat plants appears to be mo e a function of the increases in dry matter production than the increases in phosphorus content of the plants, which is in accordance with the findings of Bennett et al. (1953).

Increases in doses of phosphorus when applied alone were associated with a corresponding decrease in the percent recovery of phosphorus applied through fertilizer, which was 3.45 and 2.94 at 32.4 Kg and 44.8 Kg. P2O5 per hectare respectively. Application of nitrogen alongwith phosphatic fertilizers enhanced the percent recovery of phosphorus. The best recovery of phosphorus (27%) was observed in treatment, where 56 Kg N + 44.8 Kg P₂O₅ per hectare were applied together.

References

- Arakeri, H. R., Patil, S. V. and Nimbalkar, R. V. Indian J. Agron., 5(4). 240-244, 1961.
- 2. Bennett, W. F., Stanford, G. and Dumenil, L. Soil Sci. Proc., 17(3). 252-258, 1953.
- Boatwright, G. O. and Hass, H. J. Agron. J., 53, 33-35, 1961.
 Bolaria, T. S. and Mann, H. S. Indian J. Agron., 1, 30-40, 1964.
- 5. De Turk, E. E. Illinois Agric Exp. Sta. Bull., 484, 1942.
- 6. Doneen, L. D. State College Washington. Agric. Exp. Sta. Bull., 296, 1934.
- 7. Dougall, H. W. E. Afr. Agric. J., 28, 182-189, 1963.
- Grunes, D. L., Haise, H. R. and Fine, L. O. Soil Sci. Soc. America Proc. **22**(1), 49 52, 1958.
- Larson, W. E., Nelson, L. B. and Hunter, A. S. Agron. J., 43, 357-361.
- Mattingly, G. E. G. and Widdowson, F. V. Plant and Soil, 9(3), 286-304.
- 11. Mehrotra, O. N., Sinha, N. S. and Srivastava, R. D. L. Plant and Soil, **26**(2), 361 368, 1967.
- Rennie, D. A. and Mitchell, J. Can. J. Agric. Sci., 34, 353-363, 1954. Rennie, D. A. and Soper, R. J. J. Soil Sci., 9(1), 155-167, 1958. Sharma, K. C. Ph. D. The sis of Agra University, 1962.

- Singh, G. Indian J. Agron., 7(3), 215-210, 1963. Snell, F. D. and Snell, C. T. Colorimetric methods of analysis. III edition. (2) D. Van Nostrand Company, Inc. Tononto, London, 551-552 and 669-670, 1949.

On some results involving Generalized Hypergeometric and Gegenbauer (Ultraspherical) Polynomials

By

MANILAL SHAH

Department of Mathematics, P. M. B. G. Science College, Indore (M. P.)

[Received on 3rd July, 1968]

Abstract

The object of this paper is to obtain some results involving the generalized hypergeometric and Gegenbauer polynomials by defining the polynomial in the form

$$F_n(x) = x^{(m-1)n} \,_{p+m} F_q \left[\begin{array}{c} \Delta (m, -n), \, a_1, \, \ldots, \, a_p \\ b_1, \, \ldots, \, b_q \end{array}; \, \lambda x^c \right]$$

where \triangle (m, -n) represents the set of m-parameters:

$$\frac{-n}{m}$$
, $\frac{-n+1}{m}$, ..., $\frac{-n+m-1}{m}$

and m, n are positive integers. The polynomial is in a generalized form which yields many known polynomials by particular choice of parameters. A number of known and new results are also given.

1. Introduction

We have defined the generalized hypergeometric polynomial [(7), p. 79, eqn. (2·1)] by means of

(1.1)
$$F_{m}(x) = x^{(\delta-1)m} p + \delta^{F_{q}} \left[\begin{array}{c} \Delta(\delta, -m), a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{q} \end{array}; \mu x^{c} \right]$$

where m and δ are positive integers and the symbol \triangle (δ , -m) denotes the set of δ – parameters:

$$\frac{-m}{\delta}$$
, $\frac{-m+1}{\delta}$, ..., $\frac{-m+\delta-1}{\delta}$.

This polynomial has arisen in the course of an attempt to unify and to extend the study of most of the well-known sets of polynomials.

Address for Communication:

Manilal Shah, 6/6, Mahatma Gandhi Road, Indore-2 (M. P.) India.

In what follows for sake of brevity a_p stands for a_1, \ldots, a_p ; $(a_p)_r$ denotes $\frac{p}{a_1}$ $(a_j)_r$ and similarly for $(b_q)_r$.

In this paper we have established some results of integrals involving the product of generalized hypergeometric and Gegenbauer (Ultraspherical) polynomials. Some expansion formulae for generalized hypergeometric polynomials have been derived with the help of these integrals. Many known and new results have also obtained on specializing the parameters. Therefore the results obtained in this paper are of general character.

2. Integrals:

In this section we have evaluated some integrals involving generalized hypergeometric and Gegenbauer polynomials.

The integrals to be evaluated are

$$(2\cdot1) \qquad \int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) \left\{ x^{(\delta-1)m} _{p+\delta} F_{q} \left[\begin{array}{c} \triangle(\delta,-m), a_{p} \\ b_{q} \end{array}; \mu_{x^{c}} \right] \right\} dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+(\delta-1) m+1) \Gamma(\lambda+(\delta-1) m-\nu+\frac{3}{2})}{n! \Gamma(2\nu) \Gamma(\lambda+(\delta-1) m-\nu-n+\frac{3}{2}) \Gamma(\lambda+(\delta-1) m+\nu+n+\frac{3}{2})}$$

$$\times _{p+\delta+2c} F_{q+2c} \left[\begin{smallmatrix} \triangle(\delta,-m), \ a_p, \ \triangle(c, \lambda+(\delta-1)\ m+1), \ \triangle(c, \lambda+(\delta-1)m-\nu+\frac{3}{2}) \\ b_q, \ \triangle(c, \lambda+(\delta-1)\ m-\nu-n+\frac{3}{2}), \ \triangle(c, \lambda+(\delta,-1)\ m+\nu+n+\frac{3}{2}) \end{smallmatrix} ; \mu \right]$$

where δ , m and c are positive integers, $Re(\lambda + (\delta - 1) m) > -1$, and $Re(\nu) > -\frac{1}{2}$.

(2.2)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) \left\{ x^{(\delta-1)m} _{p+\delta} F_{q} \left[\begin{array}{c} \triangle(\delta,-m), a_{p} \\ b_{q} \end{array}; \mu x^{-c} \right] \right\} dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+(\delta-1) m+1) \Gamma(\lambda+(\delta-1) m-\nu+\frac{3}{2})}{n! \Gamma(2\nu) \Gamma(\lambda+(\delta-1) m-\nu-n+\frac{3}{2}) \Gamma(\lambda+(\delta-1) m+\nu+n+\frac{3}{2})}$$

$$\times \ _{p+\delta+2c}F_{q+2c} \left[\begin{array}{c} \triangle (\delta,-m), \ a_p, \ \triangle (c,-\lambda-(\delta-1) \ m+\nu+n-\frac{1}{2}), \ \triangle (c,-\lambda-(\delta-1) \ m-\nu-n-\frac{1}{2}), \\ b_q, \ \triangle (c,-\lambda-(\delta-1) \ m), \ \triangle (c,-\lambda-(\delta-1) \ m+\nu-\frac{1}{2}) \end{array} \right] \mu \right]$$

valid for $Re(\lambda + (\delta - 1) m) > -1$, $Re(\nu) > -\frac{1}{2}$, m, c and δ are positive integers.

Proofs:

(A) To prove (2·1), we write down the eries for the generalized hypergeometric polynomial in the integrand, change the order of integration and summation which we suppose to be permissible due to the absolute convergence of the integral and summation involved in the process, we obtain

$$\sum_{r=0}^{\infty} \frac{\int_{i=0}^{\delta-1} \left(\frac{-m+i}{\delta}\right)_r (a_p)_r \, \mu^r}{r! \, (b_q)_r} \int_{0}^{1} x^{\lambda + (\delta-1)m + cr} \, (1-x)^{\nu - \frac{1}{2}} \, C_n^{\nu} \, (2x-1) \, dx.$$

Now evaluating the integral with the help of the known result [(1), p. 280,(3)]:

(2.3)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) dx$$

$$= \frac{\Gamma(\lambda+1) \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda-\nu+\frac{3}{2})}{! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})},$$

valid for $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$ and using the following relations

$$(\alpha)_n = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}$$
, and $(\alpha)_{nk} = k^{nk} \prod_{i=0}^{k-1} \left(\frac{\alpha+i}{k}\right)_{n=0}$

we have

$$\frac{\Gamma(\nu+\frac{1}{2})\ \Gamma(2\nu+n)\ \Gamma(\lambda+(\delta-1)\ m+1)\ \Gamma(\lambda+(\delta-1)\ m-\nu+\frac{3}{2})}{n!\ \Gamma(2\nu)\ \Gamma(\lambda+(\delta-1)\ m-\nu-n+\frac{3}{2})\ \Gamma(\lambda+(\delta-1)\ m+\nu+n+\frac{3}{2})}$$

$$\sum_{r=0}^{\infty} \frac{\prod_{i=0}^{\delta-1} \left(\frac{-m+i}{\delta}\right)_{r} (a_{p})_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m+1+i}{c}\right)_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m-\nu + \frac{3}{2}+i}{c}\right)_{r} \mu^{r}}{r! (b_{q})_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m-\nu - n + \frac{3}{2}+i}{c}\right)_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m+\nu + n + \frac{3}{2}+i}{c}\right)_{r}}$$

which yields the value of the integral (2.1).

(B) Integral (2.2) may be derived on applying the same procedure as above and after using (2.3) and following relations

$$(\alpha)_n = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)} , \frac{\Gamma(1-\alpha-n)}{\Gamma(1-\alpha)} = \frac{(-1)^n}{(\alpha)_n} , (\alpha)_{nk} = k^{nk} \prod_{i=0}^{k-1} \left(\frac{\alpha+i}{k}\right)_n,$$

we get

$$\frac{\Gamma(\nu+\frac{1}{2})\ \Gamma(2\nu+n)\ \Gamma(\lambda+(\delta-1)\ \underline{m+1})\ \Gamma(\lambda+(\delta-1)\ \underline{m-\nu+\frac{3}{2}})}{n\ !\ \Gamma(2\nu)\ \Gamma(\lambda+(\delta-1)\ \underline{m-\nu-n+\frac{3}{2}})\ \Gamma(\lambda+(\delta-1)\ \underline{m+\nu+n+\frac{3}{2}})}$$

$$\times \sum_{r=0}^{\delta - 1} \frac{\prod_{i=0}^{\delta - 1} \left(\frac{-m+i}{\delta} \right)_{r} (a_{p})_{r} \prod_{i=0}^{c-1} \left(\frac{-\lambda - (\delta - 1)m + \nu + n - \frac{1}{2} + i}{c} \right)_{r}}{r ! (b_{q})_{r} \prod_{i=0}^{c-1} \left(\frac{-\lambda - (\delta - 1)m + i}{c} \right)_{r}}$$

$$= \frac{\prod_{i=0}^{c-1} \left(\frac{-\lambda - (\delta - 1)m - \nu - n - \frac{1}{2} + i}{c} \right)_{r} \mu^{r}}{\prod_{i=0}^{c-1} \left(\frac{-\lambda - (\delta - 1)m + \nu - \frac{1}{2} + i}{c} \right)_{r}}$$

which is the right hand side of (2.2).

3. Expansions

This section is concerned with the expansion formulas for the generalized hypergeometric polynomials in series of Gegenbauer polynomials which have been derived with the application of the integrals evaluated in section 2.

Expansion formulas to be established are

$$(3\cdot1) \qquad x^{\lambda} \left\{ x^{(\delta-1)m} \ _{p+\delta}F_{q} \left[\begin{array}{c} \triangle(\delta,-m), \ a_{p} \\ b_{q} \end{array} ; \ \mu \ x^{c} \right] \right\}$$

$$= \frac{2^{2\nu} \Gamma(\nu)}{\sqrt{\pi} \Gamma(\lambda+\nu+(\delta-1) \ m+\frac{1}{2})} \sum_{r=0}^{\infty} \frac{(-1)^{r} \ (\nu+r) \ (-\lambda-(\delta-1) \ m)_{r}}{(\lambda+2\nu+(\delta-1) \ m+1)_{r}}$$

$$\times _{p+\delta+2} c_{q+2}F_{q+2} \left[\begin{array}{c} \triangle(\delta,-m), \ a_{p}, \ \triangle(c, \ \lambda+\nu+(\delta-1) \ m+\frac{1}{2}), \ \triangle(c, \ \lambda+(\delta-1) \ m+r+1) \\ b_{q}, \ \triangle(c, \ \lambda+(\delta-1) \ m-r+1), \ \triangle(c, \ \lambda+2\nu+(\delta-1) \ m+r+1) \end{array} ; \right. \mu \right]$$

$$C_{r}^{\nu} (2x-1)$$

valid for $R(\lambda + (\delta - 1) m) > -\frac{1}{2}$, $Re(\nu) > 0$, δ , m and c are positive integers.

(3.2)
$$x^{\lambda} \left\{ x^{(\delta-1)m} p + \delta^{F} q \left[\sum_{k=0}^{\infty} (\delta, -m), a_{p} ; \mu_{x}^{-c} \right] \right\}$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(\lambda + \nu + (\delta-1) m + \frac{1}{2})}{\sqrt{\pi} \Gamma(\lambda + 2\nu + (\delta-1) m + 1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu + r) (-\lambda - (\delta-1) m)_{r}}{(\lambda + 2\nu + (\delta-1) m + 1)_{r}}$$

$$\times \ _{p+\delta+2c}F_{q+2c} \left[\begin{tabular}{l} \triangle (\delta,-m), \ a_{p}, \ \triangle (c,-\lambda-(\delta-1) \ m+r), \ \triangle (c,-\lambda-2\nu-(\delta-1) \ m-r) \\ b_{q}, \ \triangle (c,-\lambda-\nu+\frac{1}{2}-(\delta-1) \ m), \ \triangle (c,-\lambda-(\delta-1) \ m) \end{tabular} \right] \\ C_{r}^{\nu} \ (2x-1)$$

where $R(\lambda + (\delta - 1) m) > -\frac{1}{2}$, Re(v) > 0, δ , m and c are positive integers.

Proof:

Let

(3.3)
$$\begin{cases} f(x) = x^{\lambda} \left\{ x^{(\delta^{-1})m} _{p+\delta} F_q \left[\begin{array}{c} \Delta(\delta, -m), a_p \\ b_q \end{array}; \mu x^c \right] \right\} = \sum_{r=0}^{\infty} A_r C_r^{\nu} (2x \ 1) \\ C_r^{\nu} (2x-1) = \frac{(2\nu)_r}{r!} _{2} F_1 \left(\begin{array}{c} -r, r+2\nu \\ \nu+\frac{1}{2} \end{array}; 1-x \right), \end{cases}$$

Here $C_r^{\nu}(2x-1)$ is a Gegenbauer polynomial [(6), p. 279, (15)]. Equation (3.3) is valid since f(x) is continuous and of bounded variation in the open interval (0, 1). Now multiply both sides of (3.3) by $x^{\nu-\frac{1}{2}}(1-x)^{\nu-\frac{1}{2}}C_n^{\nu}(2x-1)$ and integrate with respect to x from 0 to 1. Change the order of integration and summation which is easily seen to be justified on the right, we have

$$(3.4) \int_{0}^{1} x^{\lambda+\nu-\frac{1}{2}} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) \left\{ x^{(\delta-1)m} \right\}_{p+\delta} \overline{F}_{q} \left[\begin{array}{c} \triangle(\delta,-m), a_{p}, \mu x^{c} \\ b_{q} \end{array} \right] \right\} dx$$

$$= \sum_{r=0}^{\infty} A_{r} \int_{0}^{1} x^{\nu-\frac{1}{2}} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) C_{r}^{\nu} (2x-1) dx$$

where $Re(\lambda + \nu + (\delta - 1) m) > -\frac{1}{2}$, $Re(\nu) > -\frac{1}{2}$.

Using the orthogonality property for the Gegenbauer polynomials [(6), p. 281, (28)]:

$$\int_0^1 x^{\nu-\frac{1}{2}} (1-x)^{\nu-\frac{1}{2}} \left[C_n^{\nu} (2x-1) \right]^2 dx = \frac{\sqrt{\pi} \Gamma(2\nu+n) \Gamma(\nu+\frac{1}{2})}{2^{2\nu} n! (\nu+n) \Gamma(2\nu) \Gamma(\nu)},$$

valid for $Re(v) > -\frac{1}{2}$,

on the right and the result (2.1) on the left of (3.4), we obtain.

(3.5)
$$A_{n} = \frac{2^{2\nu} (\nu + n) \Gamma(\nu) \Gamma(\lambda + \nu + (\delta - 1) m + \frac{1}{2}) \Gamma(\lambda + (\delta - 1) m + 1)}{\sqrt{\pi} \Gamma(\lambda + (\delta - 1) m - n + 1) \Gamma(\lambda + 2\nu + (\delta - 1) m + n + 1)}$$

$$\times p + \delta + 2c F_{q+2c} \begin{bmatrix} \triangle(\delta, -m), a_{p}, \triangle(c, \lambda + \nu + (\delta - 1) m + \frac{1}{2}), \triangle(c, \lambda + (\delta - 1) m + 1) \\ b_{q}, \triangle(c, \lambda + (\delta - 1) m - n + 1), \triangle(c, \lambda + 2\nu + (\delta - 1) m + n + 1) \end{bmatrix}; \mu$$
where $Re(\nu) > 0$, $Re(\lambda + (\delta - 1) m) > -1$.

With the help of (3.3) and (3.5), we obtain the expansion formula (3.1).

The expansion formula (3.2) is similarly established on the same lines as above and using the result (2.2).

4. Applications:

In this section we have considered a number of particular cases of the integrals and expansion formulas established in sections 2 and 3.

- (A) Special cases of (2·1) and (3·1) with $\delta = \mu = c = 1$:
- (a) Taking $a_1 = m + \alpha + \beta + 1$, $b_1 = 1 + \alpha$, $b_2 = \frac{1}{2}$ and multiplying both sides by $\frac{(1+\alpha)_m}{m!}$, we obtain

$$\int_{0}^{1} x\lambda(1-x)^{\nu-\frac{1}{2}} C \frac{\nu}{n} (2x-1) f \frac{(\alpha,\beta)}{m} \left(\frac{a_{2},\dots,a_{p}}{b_{3},\dots,b_{q}};x\right) dx
= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\lambda-\nu+\frac{3}{2})}{n! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})}
\times f \frac{(\alpha,\beta)}{m} \left(\frac{a_{2},\dots,a_{p},\lambda+1,\lambda-\nu+\frac{3}{2}}{b_{3},\dots,b_{q},\lambda-\nu-n+\frac{3}{2},\lambda+\nu+n+\frac{3}{2}};1\right)$$

valid for $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$(4\cdot2) \qquad x^{\lambda} f_{m}^{(\alpha,\beta)} \begin{pmatrix} a_{2}, \dots, a_{p} \\ b_{3}, \dots, b_{q} \end{pmatrix}; x$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(\lambda+\nu+\frac{1}{2})}{\sqrt{\pi} \Gamma(\lambda+2\nu+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda)_{r}}{(\lambda+2\nu+1)_{r}}$$

$$\times f_{m}^{(\alpha,\beta)} \begin{pmatrix} a_{2}, \dots, a_{p}, \lambda+\nu+\frac{1}{2}, \lambda+1 \\ b_{3}, \dots, b_{q}, \lambda-r+1, \lambda+2\nu+r+1 \end{pmatrix}; 1 C_{r}^{\nu} (2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and

$$f_{m}^{(\alpha,\beta)}\left(\begin{array}{c} a_{2},\ldots,a_{p} \\ b_{3},\ldots,b_{q} \end{array};x\right) = \frac{(1+\alpha)_{m}}{m!} p_{+1}F_{q}\left[\begin{array}{c} -m, m+\alpha+\beta+1, a_{2},\ldots,a_{p} \\ 1+\alpha,\frac{1}{2}, b_{3},\ldots,b_{q} \end{array};x\right]$$

is a generalized Sister Celine's polynomial [(7), eqn. (2.2), p. 80] which reduces to Sister Celine's polynomial [(3), eqn. (1), p. 806] on putting $\alpha = \beta = 0$.

In (4·1) and (4·2), substituting p=q=3, $a_2=\rho$, $a_3=\frac{1}{2}$ and $b_3=\sigma$, we have

$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) H_{m}^{(\alpha,\beta)} (\rho, \sigma, x) dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\lambda-\nu+\frac{3}{2}) (1+\alpha)_{m}}{n! m! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})}$$

$$\times {}_{5}F_{4} \begin{bmatrix} -m, m+\alpha+\beta+1, \rho, \lambda+1, \lambda-\nu+\frac{3}{2} \\ 1+\alpha, \sigma, \lambda-\nu-n+\frac{3}{2}, \lambda+\nu+n+\frac{3}{2} \end{bmatrix}; 1$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$(4.4) x^{\lambda} H_{m}^{(\alpha,\beta)}(\rho,\sigma,x)$$

$$= \frac{2^{2\nu} \Gamma(\nu)}{\sqrt{\pi} m} \frac{\Gamma(\lambda+\nu+\frac{1}{2}) (1+\alpha)_{m}}{\Gamma(\lambda+2\nu+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda)_{r}}{(\lambda+2\nu+1)_{r}}$$

$$\times {}_{5}F_{4} \begin{bmatrix} -m, m+\alpha+\beta+1, \rho, \lambda+\nu+\frac{1}{2}, \lambda+1 \\ 1+\alpha, \sigma, \lambda-r+1, \lambda+2\nu+r+1 \end{bmatrix}; 1 \end{bmatrix} C_{r}^{\nu} (2x-1),$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and

$$H_{m}^{(\alpha,\beta)}(\rho,\sigma,x) = \frac{(1+\alpha)_{m}}{m!} {}_{3}F_{2}\begin{bmatrix} -m, m+\alpha+\beta+1, \rho \\ 1+\alpha, \sigma \end{bmatrix} \text{ is a generalized}$$

Rice's polynomial [(4), p. 158, (2·3)] which reduces to Rice's polynomial [(5), p. 108] when $\alpha = \beta = 0$.

Further setting $\rho = \sigma$, $\alpha = \beta = \mu - \frac{1}{2}$, in (4.3) and (4.4) and using the following relations [(1), p. 267]:

$$C_n^{\nu}(x) = (-1)^n C_n^{\nu}(-x), C_n^{\nu}(x) = \frac{(2\nu)_n}{(\nu + \frac{1}{2})_n} P_n^{(\nu - \frac{1}{2}, \nu - \frac{1}{2})}(x),$$

we obtain a known result [(1), p. 283, (16)]:

$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (1-2x) C_{m}^{\mu} (1-2x) dx$$

$$= \frac{\Gamma(2\mu+m) \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\nu-\lambda+n-\frac{1}{2})}{m! n! \Gamma(2\mu) \Gamma(2\nu) \Gamma(\nu-\lambda-\frac{1}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})}$$

$$\times {}_{4}F_{3} \begin{bmatrix} -m, m+2\mu, \lambda+1, \lambda-\nu+\frac{3}{2} \\ \frac{1}{2}+\mu, \lambda-\nu-n+\frac{3}{2}, \lambda+\nu+\frac{3}{2}+n \end{cases}; 1$$

valid for $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

(4.5)
$$x^{\lambda} C_{m}^{\mu} (1-2x)$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(2\mu+m) \Gamma(\lambda+\nu+\frac{1}{2})}{m! \sqrt{\pi} \Gamma(2\mu) \Gamma(\lambda+2\nu+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda)_{r}}{(\lambda+2\nu+1)_{r}}$$

$$\times {}^{1}_{4}F_{3} \begin{bmatrix} -m, m+2\mu, \lambda+\nu+\frac{1}{2}, \lambda+1 \\ \mu+\frac{1}{2}, \lambda-r+1, \lambda+2\nu+r+1 \end{bmatrix} C_{r}^{\nu} (2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$.

(b) With p = 0, q = 1, $b_1 = 1 + a$, and multiplying both sides by $\frac{(1+\alpha)_m}{m!}$, we have

(4.6)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) L_{m}^{(a)}(x) dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\lambda-\nu+\frac{3}{2}) (1+a)_{m}}{n! m! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})}$$

$$\times {}_{3}F_{3} \begin{bmatrix} -m, \lambda+1, \lambda-\nu+\frac{3}{2} \\ 1+\alpha, \lambda-\nu-n+\frac{3}{2}, \lambda+\nu+n+\frac{3}{2} \end{bmatrix}; 1$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$(4.7) x^{\lambda} L_{m}^{(\alpha)}(x)$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(\lambda + \nu + \frac{1}{2}) (1 + \alpha)_{m}}{\sqrt{\pi} m! \Gamma(\lambda + 2\nu + 1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu + r) (-\lambda)_{r}}{(\lambda + 2\nu + 1)_{r}}$$

$$\times {}_{3}F_{3} \begin{bmatrix} -m, \lambda + \nu + \frac{1}{2}, \lambda + 1 \\ 1 + \alpha, \lambda - r + 1, \lambda + 2\nu + r + 1 \end{bmatrix} C_{r}^{\nu} (2x - 1)$$

where $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and $L_n^{(a)}(x)$ is a generalized Laguerre polynomial.

(B) Particular cases of (2.2) and (3.2) with $\delta = c = 2$:

(i) Substituting p=1, q=2, $a_1=\gamma-\beta$, $b_1=\gamma$, $b_2=1-\beta-m$, $\mu=1$ and multiplying both sides by $\frac{2^m(\beta)_m}{m!}$, we get

(4.8)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) R_{m}(\beta, \gamma; x) dx$$

$$= \frac{2^{m}(\beta)_{m} \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+m+1) \Gamma(\lambda+m-\nu+\frac{3}{2})}{m! n! \Gamma(2\nu) \Gamma(\lambda+m-\nu-n+\frac{3}{2}) \Gamma(\lambda+m+\nu+n+\frac{3}{2})}$$

$$\times_{7}F_{6}\left[\begin{array}{c}\triangle(2,-m),\ ?-\beta,\ \triangle(2,-\lambda-m+\nu+n-\frac{1}{2}),\ \triangle(2,-\lambda-m-\nu-n-\frac{1}{2})\\ \gamma,\ 1-\beta-m,\ \triangle(2,-\lambda-m),\ \triangle(2,-\lambda-m+\nu-\frac{1}{2})\end{array};\ 1\right]$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

With n = 0, $\nu = M - \frac{1}{2}$, and $\lambda = L - 1$, (4.8) reduces to a known result [(7), p. 90]:

$$\int_{0}^{1} x^{L-1} (1-x)^{M-1} R_{m} (\beta, \gamma; x) dx$$

$$=\frac{\Gamma(M) \Gamma(L+m) 2^{m} (\beta)_{m}}{m ! \Gamma(L+M+m)} \quad {}_{5}F_{4}\left(\begin{array}{c} \frac{-m}{2}, \frac{-m+1}{2}, \gamma-\beta, \frac{1-L-M-m}{2}, \frac{2-L-M-m}{2} \\ \gamma, 1-\beta-m, \frac{1-L-m}{2}, \frac{2-L-m}{2} \end{array}\right)$$

valid for Re(L) > 0, Re(M) > 0.

$$(4.9) x^{\lambda} R_m(\beta, \gamma; x)$$

$$=\frac{2^{2\nu+m} (\beta)_m \Gamma(\nu) \Gamma(\lambda+\nu+m+\frac{1}{2})}{\sqrt{\pi} m! \Gamma(\lambda+2\nu+m+1)} \sum_{r=0}^{\infty} \frac{(-1)^r (\nu+r) (-\lambda-m)_r}{(\lambda+2\nu+m+1)_r}$$

$$\times {}_{7}F_{8}\left[\begin{array}{c} \triangle(2,-m), \ \gamma-\beta, \ \triangle(2,-\lambda-m+r), \ \triangle(2,-\lambda-2\nu-m-r) \\ \gamma, \ 1-\beta-m, \ \triangle(2,-\lambda-\nu-m+\frac{1}{2}), \ \triangle(2,-\lambda-m) \end{array} \right] C_{r}^{\nu} (2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and $R_m(\beta, \gamma; x)$ is a Bedient's polynomial [(6), p. 297, (1)] which reduces to the Gegenbauer polynomial $C_m^{(\beta)}(x)$ when $\lim_{\gamma \to \infty} R_m(\beta, \gamma; x)$.

(4.10) Setting p = q = 0, $\mu = -1$ and multiply both sides by 2^m , we obtain $\int_0^1 x^{\lambda} (1-x)^{\nu-1} C_n^{\nu} (2x-1) H_m(x) dx$

$$=\frac{2^{m}\Gamma(\nu+\frac{1}{2})\Gamma(2\nu+n)\Gamma(\lambda+m+1)\Gamma(\lambda+m-\nu+\frac{3}{2})}{n!\Gamma(2\nu)\Gamma(\lambda+m-\nu-n+\frac{3}{2})\Gamma(\lambda+m+\nu+n+\frac{3}{2})}$$

$$\times {}_{6}F_{4}\left[\begin{array}{c} \triangle(2,-m), \ \triangle(2,-\lambda-m+\nu+n-\frac{1}{2}), \ \triangle(2,-\lambda-m-\nu-n-\frac{1}{2}) \\ \triangle(2,-\lambda-m), \ \triangle(2,-\lambda-m+\nu-\frac{1}{2}) \end{array}\right];-1$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$\times {}_{6}\dot{F}_{4}\left[\begin{array}{c}\Delta(2,-m),\ \triangle(2,-\lambda-m+r),\ \triangle(2,-\lambda-2\nu-m-r)\\ \triangle(2,-\lambda-\nu-m+\frac{1}{2}),\ \triangle(2,-\lambda-m)\end{array};-1\right]C_{r}^{\nu}(2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and $H_m(x)$ is the Hermite polynomial.

(iii) With p=0, q=1, $b_1=\frac{1}{2}-m$, $\mu=1$ and mutiplying both sides by $\frac{2^m(\frac{1}{2})_m}{m}$, we have

$$(4.12) \qquad \int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) P_{m}(x) dx$$

$$= \frac{2^{m}(\frac{1}{2})_{m} \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+m+1) \Gamma(\lambda+m-\nu+\frac{3}{2})}{m! n! \Gamma(2\nu) \Gamma(\lambda+m-\nu-n+\frac{3}{2}) \Gamma(\lambda+m+\nu+n+\frac{3}{2})}$$

$$\times {}_{0}F_{5} \left[\begin{array}{c} \Delta(2,-m), \ \Delta(2,-\lambda-m+\nu+n-\frac{1}{2}), \ \Delta(2,-\lambda-m-\nu-n-\frac{1}{2}) \\ \frac{1}{2}-m, \ \Delta(2,-\lambda-m), \ \Delta(2,-\lambda-m+\nu-\frac{1}{2}) \end{array} \right]; 1 \right]$$

where $Re(\lambda) > -1$, $Re(v) > -\frac{1}{2}$.

$$\times {}_{6}F_{5}\left[\begin{array}{c} \triangle(2,-m),\ \triangle(2,-\lambda-m+r),\ \triangle(2,-\lambda-2\nu-m-r)\\ \frac{1}{2}-m,\ \triangle(2,-\lambda-\nu-m+\frac{1}{2}),\ \triangle(2,-\lambda-m) \end{array};\ 1\right]C_{r}^{\nu}(2x-1)$$

where Re(v) > 0, $Re(\lambda) > -\frac{1}{2}$ and $P_m(x)$ is the Legendre polynomial.

(c) Special case: With $\mu = 0$, $\delta = 1$ either in (3.1) or (3.2) and replacing x by $\left(\frac{1-X}{2}\right)$ and using the relation

$$\hat{C}_{n}^{\nu}(X) = (-1)^{n} \hat{C}_{n}^{\nu}(-X),$$

we obtain a known result [(2), p. 213, (6)]:

$$(1-X)^{\lambda} = 2^{2\nu+\lambda} \pi^{-\frac{1}{2}} \Gamma(\nu) \Gamma(\lambda+\nu+\frac{1}{2}) \sum_{r=0}^{\infty} \frac{(\nu+r) (-\lambda)_r}{\Gamma(\lambda+2\nu+r+1)} C_r^{\nu} (X),$$

$$-1 < X < 1, -\lambda < \frac{1}{2} (\nu + 1) \text{ if } \nu \geqslant 0, -\lambda < \frac{1}{2} + \nu \text{ if } -\frac{1}{2} < \nu \leqslant 0.$$

Acknowledgement

The author wishes to express his gratitude to Dr. V. M. Bhise of G. S. Tech. Institute, Indore for his help in the preparation of this paper.

References

- Erdèlyi, A. Tables of integral transforms, Vol. II, McGraw-Hill, 1. New York, 1954.
- Erdelyi, A. Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1954.
- Fasenmyer Sister M. Celine. Some generalized hypergeometric polynomial. Bull. Amer. Math. Soc., 53, 806-812, 1947.
 Khandekar, P. R. On a generalization of Rice's polynomial-1. Proc.
- Nat. Acad. Sci. India, A-34(2), 157-162, 1964.
- 5. Rice, S. O. Some properties of ${}_{3}F_{2}$ $\begin{pmatrix} -n, n+1, \xi \\ 1, p \end{pmatrix}$; v, Duke Math. J. 6, 108-119, 1960.
- Rainville, É. D. Special-functions. Macmillan Company, New York, 1960.
- Shah Manilal. Certain integrals involving the product of two generalized hypergeometric polynomials. *Proc. Nat. Acad. Sci., India, A-37*(1), 79-96, 1967.

On some results involving H-functions and associated Legendre Functions

By

MANILAL SHAH

Department of Mathematics, P. M. B. G. Science College, Indore (M. P.)

[Recevied on 3rd July, 1968]

Abstract

In this paper the integral involving H-and associated Legendre functions has evaluated. This integral has been employed to establish the expansion formula for the H-function in series of the associated Legendre functions.

1. Fox [(5), p. 408] has recently introduced the H-function in the form of Mellin-Barnes type integral as

$$(1.1) H^{m, n} \left[x \mid (a_1, a_1), (a_2, a_2), \dots, (a_p, a_p) \atop (b_1, \beta_1), (b_2, \beta_2), \dots, (b_q, \beta_q) \right]$$

$$= \frac{1}{2\pi i} \int_{L}^{m} \frac{\prod_{j=1}^{m} \Gamma(b_j - \beta_j \xi)}{\prod_{j=m+1}^{m} \Gamma(1 - b_j + \beta_j \xi)} \prod_{j=m+1}^{m} \Gamma(a_j - a_j \xi)$$

$$= \frac{1}{2\pi i} \int_{L}^{m} \prod_{j=m+1}^{m} \Gamma(1 - b_j + \beta_j \xi) \prod_{j=m+1}^{m} \Gamma(a_j - a_j \xi)$$

where x is not equal to zero and an empty product is interpreted as unity; p, q, m, n are integers satisfying $1 \le m \le q, 0 \le n \le p$; $a_j (j = 1, \ldots, p), b_j (j = 1, \ldots, p)$ are complex numbers and $a_j (j = 1, \ldots, p), b_j (j = 1, \ldots, q)$ are complex numbers such that no pole of $\Gamma(b_h - \beta_h \xi)$, $(h = 1, \ldots, m)$ coincides with any pole of $\Gamma(1 - a_i + \alpha_i \xi)$, $(i = 1, \ldots, n)$ i.e.,

(1·2)
$$\alpha_{i}(b_{h}+r) \neq (a_{i}-\eta-1) \beta_{h}$$
$$(\gamma, \eta = 0, 1, \ldots, j, h = 1, \ldots, m; i = 1, \ldots, n).$$

Further the contour L runs from $\sigma - i \infty$ to $\sigma + i \infty$ such that the points:

(1.3)
$$\xi = \frac{(b_h + \gamma)}{\beta_h}, (h = 1, \ldots, m : \gamma = 0, 1, \ldots)$$

which are poles of $\Gamma(b_h - \beta_h \xi)$ lie to the right and the points:

Address for Communication :

Manilal Shah, 6/6, Mahatma Gandhi Road, Indore-2 (M. P.) India.

(1.4)
$$\xi = \frac{(a_i - \eta - 1)}{a_i}, (i = 1, \ldots, n, \eta = 0, 1, \ldots)$$

which are poles of $\Gamma(1-a_i+a_i\xi)$ lie to the left of L. Such a contour is possible on account of (1.2). These assumptions for the H-function will be adhered to throughout this paper.

Braaksma [(1), p. 278] has studied in detail the asymptotic expansions and analytic continuations for a class of Barnes-integrals.

The associated Legendre function has defined by MacRobert [(6), p. 123]:

(1.5)
$$P_n^m(x) = \frac{\Gamma(n+m+1) (-1)^{\frac{1}{2}m}}{\Gamma(n-m+1) m!} \left(\frac{1-x}{1+x}\right)^{\frac{1}{2}m} F[-n, n+1; m+1; \frac{1}{2} (1-x)]:$$

where m is a positive integer and n is unrestricted.

We shall abbreviate the H-function (1.1) as

(1.6)
$$H \stackrel{m, n}{p, q} \left[x \left| \left\{ (a_p, \alpha_p) \right\} \right. \right]$$

where $\{(a_p, \alpha_p)\}$ represents the set of parameters $(a_1, a_1), \ldots, (a_p, a_p)$ and similarly for $\{(b_q, \beta_q)\}$.

The symbol \triangle (m, n) stands for the parameters:

$$\frac{n}{m}$$
, $\frac{n+1}{m}$, ..., $\frac{n+m-1}{m}$.

7. In this section, we have derived the following integral.

The formula to be proved is

(2.1)
$$\int_{0}^{1} x^{\frac{1}{2}\mu+k} (1-x)^{\frac{1}{2}\mu} P_{l}^{\mu} (2x-1) H_{p,q}^{m,n} \left[zx^{\delta} \left| \begin{cases} (a_{p}, \alpha_{p}) \end{cases} \right. \right] dx$$

$$=\frac{(-1)^{\frac{1}{2}\mu}\Gamma(\mu+l+1)}{\mu!}\frac{\Gamma(\mu+l+1)}{\Gamma(l-\mu+1)}\frac{H^{m,n}+2\delta}{\delta^{\mu+1}} + \frac{(\triangle(\delta,-k),1)}{(b_{q},\beta_{q})}, (\triangle(\delta,-k-\mu),1), \{(a_{p},\alpha_{p})\} \}$$

where δ , μ are positive integers, and l is unrestricted, $k > -\mu - 1$, and

$$\sum_{1}^{p} \alpha_{\boldsymbol{j}} - \sum_{1}^{q} \beta_{\boldsymbol{j}} \equiv \mathcal{I} \leqslant 0, \sum_{1}^{n} \alpha_{\boldsymbol{j}} - \sum_{n+1}^{p} \alpha_{\boldsymbol{j}} + \sum_{1}^{m} \beta_{\boldsymbol{j}} - \sum_{m+1}^{q} \beta_{\boldsymbol{j}} \equiv \lambda > 0, |\arg z| < \frac{1}{2} \pi \lambda$$

and
$$Re\left(1+\delta \frac{b_h}{\beta_h}\right) > 0$$
, $(h = 1, \ldots, m)$.

Proof:

To prove (2·1), we express the H-function in the integrand of (2·1) in the form of Mellin-Barnes type of integral (1·1) and change the order of integration which is easily seen to be justified under the condition stated in (2·1), we obtain

$$(2\cdot2) \frac{1}{2\pi i} \int \frac{\prod_{j=1}^{m} \Gamma(b_{j} - \beta_{j} s) \prod_{j=1}^{n} \Gamma(1 - a_{j} + \alpha_{j} s) z^{s}}{\prod_{j=m+1}^{q} \Gamma(1 - b_{j} + \beta_{j} s) \prod_{j=n+1}^{p} \Gamma(a_{j} - \alpha_{j} s)} \left\{ \int_{0}^{1} x^{\frac{1}{2}\mu + k + \delta s} (1 - x)^{\frac{1}{2}\mu} P_{l}^{\mu} (2x - 1) dx \right\} ds$$

Now evaluating x-integral with the help of the known result [(2), p. 104,(2.2)]:

$$\int_{0}^{1} x^{\frac{1}{2}m+p} (1-x)^{\frac{1}{2}m} P_{n}^{m} (2x-1) dx = \frac{(-1)^{\frac{1}{2}m} \Gamma(m+n+1) \Gamma(p+1) \Gamma(p+m+1)}{m! \Gamma(n-m+1) \Gamma(p+m+n+2) \Gamma(p+m-n+1)}$$

where m is a positive integer and p > -m-1, and using the Gauss' multiplication theorem for Gamma functions [(3), p. 4, (11)]:

$$\Gamma(mz) = (2\pi)^{\frac{1}{2}(1-m)} m^{mz-\frac{1}{2}} \prod_{l=1}^{m} \Gamma\left(z + \frac{l-1}{m}\right)$$

where m is a positive integer, (2.2) reduces to

(2·3)
$$\frac{(-1)^{\frac{1}{2}\mu} \Gamma(\mu+l+1)}{\mu! \Gamma(l-\mu+1) \delta^{\mu+1}}$$

$$\times \frac{1}{2\pi i} \int \frac{\prod\limits_{j=1}^{m} \Gamma(b_{j} - \beta_{j} s) \prod\limits_{j=1}^{n} \Gamma(1 - a_{j} + a_{j} s) \prod\limits_{i=0}^{\delta - 1} \Gamma\left(\frac{k+1+i}{\delta} + s\right)}{\prod\limits_{j=m+1}^{q} \Gamma(1 - b_{j} + \beta_{j} s) \prod\limits_{j=n+1}^{p} \Gamma(a_{j} - a_{j} s) \prod\limits_{i=0}^{\delta - 1} \Gamma\left(\frac{k+\mu+l+2+i}{\delta} + s\right)} \times$$

$$\frac{\prod_{i=0}^{\delta-1} \Gamma\left(\frac{k+\mu+l+i}{\delta}+s\right) z^{e}}{\prod_{i=0}^{\delta-1} \left(\frac{k+\mu-l+l+i}{\delta}+s\right)} ds$$

which yields the value of the integral (2.1) in accordance with the definition of the H-function (1.1).

3. Expansion

The expansion formula to be established is

$$(3.1) x^{\frac{1}{2}\mu+k} (1-x)^{\frac{1}{2}\mu} H_{p,q}^{m,n} \left[zx^{\delta} \mid \left\{ (b_q, \beta_q) \right\} \right]$$

$$[505]$$

$$= \frac{(-1)^{\frac{1}{2}\mu}}{\mu ! \delta^{\mu+1}} \sum_{r=0}^{\infty} (2r+1) H_{p+2\delta,q+2\delta}^{m,n+2\delta}$$

$$\times \left[z \mid_{\{(b_q, \beta_q)\}, (\triangle(\delta, -\mu-k-r-1), 1), \{(a_p, \alpha_p)\}}^{(\triangle(\delta, -k), 1), (\triangle(\delta, -\mu-k-r-1), 1), \{(a_p, \alpha_p)\}} \right] P_r^{\mu} (2x-1)$$

where μ , δ are positive integers, $k > -\mu - 1$ and

$$\sum_{1}^{p} \alpha_{j} - \sum_{1}^{q} \beta_{j} \equiv \mathcal{I} \leqslant 0, \sum_{1}^{n} \alpha_{j} - \sum_{n+1}^{p} \alpha_{j} + \sum_{1}^{m} \beta_{j} - \sum_{m+1}^{q} \beta_{j} \equiv \lambda > 0, |\arg z| < \frac{1}{2} \pi_{\lambda}$$
and $Re\left(1 + \delta \frac{b_{h}}{\beta_{h}}\right) > 0, (h = 1, \ldots, m).$

Proof: Let

$$(3.2) f(x) = x^{\frac{1}{2}\mu + k} (1 - x)^{\frac{1}{2}\mu} H_{p, q}^{m, n} \left[zx^{\delta} \left| \left\{ (a_{p}, \sigma_{p}) \right\} \right. \right] = \sum_{r=0}^{\infty} C_{r} P_{r}^{\mu} (2x - 1),$$

$$(0 < x < 1).$$

Equation (3.2) is valid since f(x) is continuous and of bounded variation in the open interval (0, 1).

Now multiply both sides of (3.2) by P_l^{μ} (2x-1) and integrate with respect to x from 0 to 1. Change the order of integration and summation (which is permissible) on the right, we have

(3.3)
$$\int_{0}^{1} x^{\frac{1}{2}\mu+k} (1-x)^{\frac{1}{2}\mu} P_{l}^{\mu} (2x-1) H_{p,q}^{m,n} \left[zx^{\delta} \left| \left\{ (a_{p}, \alpha_{p}) \right\} \right. \right] dx$$
$$= \sum_{r=0}^{\infty} C_{r} \int_{0}^{1} P_{l}^{\mu} (2x-1) P_{r}^{\mu} (2x-1) dx.$$

Using the orthogonality property for the associated Legendre functions [(4), p. 279, (27)]:

$$\int_{0}^{1} \left[P_{n}^{m} (2x-1) \right]^{2} dx = \frac{1}{(2n+1)} \frac{(n+m)!}{(n-m)!}, m \leq n$$

on the right and the result (2.1) on the left of (3.3), we obtain

(3.4)
$$C_{l} = \frac{(-1)^{\frac{1}{2}\mu} (2l+1)}{\mu ! 8^{\mu+1}}$$

$$\times H_{p+2\delta, q+2\delta}^{m, n+2\delta} \left[z \mid {(\triangle(\delta, -k), 1), (\triangle(\delta, -k-\mu), 1), \{(a_p, a_p)\} \atop \{(b_q, \beta_q)\}, (\triangle(\delta, -k-\mu-l-1), 1), (\triangle(\delta, -k-\mu+l), 1)} \right].$$

With the help of (3.2) and (3.4), the expansion formula (3.1) is obtained.

The H-function is in a more generalized form which yields many know functions on specializing the parameters. By taking $\alpha_j = \beta_h = 1$ $(i = 1, \ldots, p; h = 1, \ldots, q)$ in (1·1), the H-function reduces to Meijer's G-functions [(3), p. 207, (1)] which is itself a more generalized function of many known special functions used in pure and applied branches of Mathematics [(3), p. 215-222].

Hence the formulae established in this paper are of general character.

Acknowledgement

I am very thankful to Dr. V. M. Bhise, for his help during the preparation of this paper.

References

- Braaksma, B. L. J. Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math. 15, 239-341 1963.
 Bhonsle, B. R. and Verma, C. B. L. On some integrals involving
- Legendre function, associated Legendre function and Jacobi polynomials. Bull. Cal. Math. Soc., 48-2, 103-108, 1956.
- Erdèlyi, A. Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.
- 4. Erdelyi, A. Tables of integral transforms, Vol. II, McGraw-Hill, New York, 1954.
- 5. Fox, C. G and H-functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc., 98, 395-429, 1961.
 6. MacRobert, T. M. Spherical Harmonics. Methuen & Co. Ltd., London,
- 1947.

Changes in the Physico-chemical properties of a soil on the addition of weeds as a source of organic matter

By

O. P. VIMAL & G. C. SHUKLA

Division of Chemistry, Indian Agricultural Research Institute, New Delhi

[Recevied on 29th February, 1968]

Abstract

Incubation studies were made to find the changes in the physico-chemical properties of a soil as a result of humification of weeds both under arable as well as under submerged conditions. It was reported earlier that the addition of weeds to this soil caused significant increase in the yield of wheat and paddy grain and straw.

In general, an initial decrease in pH and increase in conductivity was observed under both the conditions. Subsequently, pH increased and conductivity decreased. These changes were within the limits specified for the healthy growth of crop plants. The total exchangeable bases, the exchangeable calcium, magnesium, potassium and sodium increased. The increase was more under submerged conditions than under well-drained conditions. The humic acid content also improved. Under well drained conditions an increase in percentage water-stable aggregates, maximum water holding capacity and sticky point was noted.

Introduction

It was reported that the addition of weeds to a soil caused significant increase in the yield of paddy grain and straw¹⁹. Similarly, incorporation of weeds increased the yield of wheat crop under the arable conditions²⁴. Incubation studies made separately, revealed that available NPK increased appreciably as a result of humification of weeds in the soil. Since, the growth is related to soil physical conditions also, the present investigations were undertaken to determine the changes in the physico-chemical properties of this soil e.g. pH, conductivity, the exchangeable bases, humic acid content, percentage water-stable aggregates etc. which take place on the addition of weeds under arable as well submerged conditions.

Experimental

(i) Meterials: Surface soil, 022.5 cms. was collected from the main block of the Agronomy Division Farm, I. A. R. I. Delhi. The soil was air dried and passed through 2 mm. sieve for incubation studies and chemical analysis. The physico-chemical properties of the soil are given in Table 1.

TABLE 1 Physico-chemical properties of the soil

J. Tropostos of the	
Conductivity (mhos/cm at 25°C)	0.70
pH (1:2.5)	8.05
Maximum water-holding capacity	33.81%
Sticky point	10.09%

Texture class	Sa	ndy—Clay loam
Water-stable aggregates:	Saj	ndy—Gray Ioam
2 mm		0.76%
2-1 mm		3.84%
1-0·5 mm		19.12%
0·5–0·25 mm		11.66%
Total water-stable aggregates/0.25 mm		35•38%
Organic carbon		,-
Total Nitrogen		0.561%
C/N ratio		0.065%
Exchangeable bases:		8.62
Galcium	11·14 (me	eq/100 gm soil)
Magnesium	2.21	•
Potassium	0.90	,,
Sodium	0.32	99
CEC	15.52	99
·	10 04	23

Twentyone weeds commonly available in kharif and rabi seasons were collected at the flowering stage from the Agronomy Division Farm, I. A. R. I. The weeds were identified for their botanical names. These were analysed for organic and inorganic constituents. The results of analysis have been published. However, it is pertinent to record that these were found quite rich in minerals like N, P, K, Na, Ca, Mg, S, etc. The plant materials were screened after grinding through 2 mm sieve for incubation experiments.

- (ii) Incubation studies: 800 gms. of 2 mm sieved soil was mixed with a screened plant material and kept in a wide mouthed glass jar of 2 lbs. capacity each at 35°C. The different weeds were added @ 2% soil weight. The experiments were conducted in two series, one under well-drained and the other under submerged conditions. In the first series, moisture was maintained at 50% of maximum water-holding capacity. In the second series, submerged conditions were maintained with 2.5 cms. free film of water during the entire period. The mouths of the jar were tightened with perforated polythene sheets so as to check excessive moisture loss by evaporation but, at the same time ensure adequate aeration of the soil. Incubation period lasted from 1.6.66 to 28-9-66. Soil samples were drawn from both the series at periodical intervals of 10, 20, 40, 80 and 120 days to determine various physico-chemical properties.
- (iii) Soil analysis: pH was determined using Beckman glass electrode pH meter in 1:2.5 soil water suspension. Conductivity was measured with the help of a solubridge in 1:2.5 filtered water extract and expressed in millimhos/cm at 25°C. Keen-Rackzowski boxes were used for the estimation of water-holding capacity as outlined in Piper¹⁵. Different fractions of water-stable aggregates were determined according to Yoder²³: sticky point by a procedure due to Coutts⁵. Exchangeable bases were estimated using Puri's method¹⁷ and total cation exchange capacity by neutral ammonium acetate leaching method of Schollenberger as mentioned in Piper¹⁵. Humic acid content was found by Chaminade's method³ with some modifications discussed by Vimal²². The periods effect represented in some of the tables are the average mean values.

Results and Discussions

(a) Changes in soil reaction (pH) during humification of weeds both under well-drained and submerged conditions:

It is evident from table 2 (a and b) that on the addition of weeds, there was a decrease in pH upto first ten days both under well-drained and submerged conditions. Subsequently, pH increased and did not suffer marked changes. In the initial stages, during the decomposition of organic matter, the formation of carbon dioxide and organic acids cause a decrease in soil pH. Subsequent increase in pH may be attributed to the consumption of organic acids by micro-organisms, decrease of CO₂, accumulation of NH₃ as affected by protein content of organic materials and release of exchangeable bases e.g. Ca, Mg, Na etc.

In the experiments made pH varied from 6.8 to .7.8 as found at different periods. This pH range is favourable for the healthy growth of crop plants. According to International Rice Research Institute⁸, stabilization of pH in soils from 6.5 to .7.5, 2-3 weeks following flooding has an important bearing on the nutrient uptake by rice plants. A pH of 6.5-7.5 increases the rate of organic matter mineralisation (Mitsuila), enhances the destruction of organic acids (Acharya¹), decreases the concentration of CO₂, Fe⁺⁺ and Al⁺⁺⁺ (Ponnamperuma¹⁶), favours denitrification (De and Sarkar⁶; Delwiche⁷) and reduces phosphate fixation (Aoki²).

(b) Changes in specific conductivity during humification of weeds both under well-drained and submerged conditions:

Data in table 3 (a and b) showed that under all the treatments, conductivity at first increased and thereafter it decreased. The changes in conductivity as of pH are related to the liberation, accumulation and loss of the products of plant and microbial origin. Sharma and Bhattacharya¹⁸ found that the addition of organic matter at first resulted in increased conductivity and, decreased soil pH.

A comparison of the table (a) with (b) revealed that on submergence, there was a greater increase in specific conductivity as compared to well-drained conditions. This is compatible with more exchangeable cations, Ca, Mg, Na and K found under anaerobic conditions. It is interesting to observe that specific conductivity never exceeded 4 millimhos/cm which is the limit specified by the United States Salinity Laboratory²¹ for the healthy growth of plants.

(c) Exchangeable calcium, magnesium, sodium, potassium and total bases during humification of weeds both under well-drained and submerged conditions:

It is seen from the table 4 (a and b) that on the addition of weeds, the content of exchangeable bases increased. Calcium, magnesium sodium potassium and total exchangeable base varied from 9·19-12·73, 1·77-3·42, 0·18-0·93, 0·61-4·97 and 11·76-20·94 meq/100 gm. soil, and from 10·51-15·03, 1·90-3·97, 0·27-1·25, 0·76-5·92 and 13·44-24·62 meq/100 gm under well-drained and submerged conditions respectively. This increase in exchangeable bases is related to the observed increase in humic acid content (table 5) and conductivity (table 3). Mc-George¹² found that lignin, ligno-hemicelluloses and ligno-cellulose fractions function largely as exchangeable compounds of soil organic matter. Xylan, a constituent of hemicelluloses is particularly important. An increase in base exchange capacity due to the decomposition of organic matter has been reported by Peevy and Norman¹⁴.

TABLE 2(a)

Changes in soil reaction (pH) during humification of weeds under well-drained conditions

Days		mg namijicai	on of weeds	unaer well-	drained cond	itions
Treatment	0	10	20	40	80	120
C. Soil alone	8.05	7.95	8.00	7.95	8.00	8.00
1 Soil + T. monogyna	7.75	7.60	7.80	7.95	7 · 85	7.75
2 Soil + L Camara	7.65	7• 35	7.65	7.75	7·7 0	
3 Soil + H. eichwaldii	7.70	7.45	7.60	7•85	7·75	7·65
4 Soil + C. sparsiflorus		7.05	7.35	7.55	7.50	7·70
5 Soil + C. sativa	7.40	7· 15	7.40	7.50	7·50	7·45
6 Soil + X-strumarium	7.65	7.35	7.45	7.65	7.70	7.45
7 Soil + C. oxyacantha	. 7:70	7:30	7.35	7.45	7·60	7.60
8 Soil + C. murale	7.75	7.45	7.55	7·65		7.60
9 Soil + F. parviflora	7.40	7.05	7.40	7·50	7·75	7.70
10 Soil + A. tenuifolius	7 ·3 5	7.10	7.35	7·45	7·50	7.45
11 Soil + A. arvensis	7.45	7.20	7·40		7·50	7.40
12 Soil + S. arvensis	7.65	7.40	7.50	7·55	7·60	7.55
13 Soil + C. album	7.75	7.45	7·60	7.60	7.65	7.65
14 Soil + M. indica	7.65	7.25		7·65	7.70	7.75
15 Soil + M. denticulate		7·15	7.45	7.60	7.70	7.65
16 Soil + C. didymus	7.55	7·13 7·10	7·45	7.50	7.55	7.50
			7.35	7-45	7·4 5	7.45
17 Soil + P. lanceolata	7.65	7.55	- 7.70	7.80	7 ·75	7.65
18 Soil + P. minor	7·30	7.05	7· 25	7.35	7.45	7.45
19 Soil + C. dactylon	7.35	7.10	7•35	7·4 0	7 •50	7.40
20 Soil + C. rotundus	7.40	7.10	7:30	7:35	7.45	7.45
21 Soil + A. viridus	· 7•65	7.35	7.50	7.55	7.70	7 65
Periods effect	7.57	7.29	7-49	7.59	7.63	7.58
Changes in soil reacti	an(pH)ds	TABLE : uring humific	2(b) ation of wee	ds under sub	merged cond	itions
C. Soil alone	8.05	7 ⋅75	7.90	7.95	8 ·0 0	8.00
l Soil + T. monogyna	7.75	7·25	7·50	7 •55	7.65	
0 T	7.65	7.15	7·40	7·50		7·85
0 TT =:=l====1.4!!		7·10	7·30	7·45	7·65	7.70
1 1 C amanai@ama		6· 90	7·30 7·15		7.60	7.75
	7·40			7.30	7.45	7.55
		6.95	7.35	7.40	7.60	7.70
6,, + X. strumariur		6·90	7.30	7·4 0	7.65	7•70
7, + C. oxyacantha		7.05	7.35	7.60	7.70	7.80
8 ,, + C. murale	7.75	7.25	7.45	7 ·60	7.75	7.80
9 ,, + F. parviflora	7.40	6.85	7.10	7.30	7.55	7.65
10 ,, + A. tenuifolius	7.35	6.80	7·0 5	7.20	7.45	7.50
11 ,, + A. arvensis	7·4 5	6 ·8 5	7.00	7:30	7·4 0	7.45
12 ,, + S. arvensis	7•65	7.25	7.40	7.65	7.70	7·7 5
13 ,, + C. album	7.75	7 ⋅25	7.50	7.60	7.75	7.85
14 ,, + M. indica	7.65	7.05	7.25	7.55	7.65	7.70
15 ,, + M. denticulat	a 7·45	7.10	7.35	7.55	7.60	7.65
16 ,, + C. didymus	7 ·5 5	6.85	7.10	7.25	7.50	7.50
17 , + P. lanceolata	7.65	7.20	7.45	7.55	7.65	7.75
18 ,, + P. minor	7· 3 0	6.70	6.90	7•25	7.40	7.50
10 doctrilon	7.35	6.85	7.00	7.15	7.35	7.45
00 10 100	7·40	6.80	7.10	7.20	7.40	7.50
20 ,, + C. rotundus 21 ,, + A. viridus	7.65	7·15	7·3 5	7.60	7·70	7.75
Period effect	7.57	7•04	7.28	7.45	7.59	7.67

TABLE 3(a) Changes in specific conductivity during humification of weeds under well-drained conditions

Changes in specific condu Days						ditions
Treatments	0	10	20	40	80	120
			(M	illimhos/cn	at 25°C)	
C. Soil alone	0.70	0.80	1.00	0.95	1.10	1.00
$\frac{1}{2}$ Soil + T. monogyna	1.65	2.15	2.90	3.10	2.60	2.40
2 ,, +L. camara	1.50	2.10	3.00	2.75	2.60	2.30
3 ,, + H. eichwaldii	1.35	2.00	2.55	2.85	2.90	2 ·25
4 ,, + C. sparsiflorus	1.20	1.50	1.85	2.65	2.75	2.00
5 ,, + C. sativa	1.35	1.80	2.10	2.80	3.05	1.85
6 ,, + X. strumarium 7 + C. oxyacantha		1.90	2.50	2.75	2.60	1.95
,,, ,,,,	1.50	2.10	2.45	2.80	3.00	2.45
_ ,,	1.80	1.95	2.55	2.95	3.05	2.10
,,	1.35	2.05	2.40	2.80	2.65	1.80
10 ,, + A. tenuifolius 11 ,, + A. arvensis	1.20	1.35	1.90	2.05	2.00	1.60
19 "	1.30	2.10	2.50	2.85	2.65	2.15
19 / (0 -11	1.45	2.25	2.75	2.95	2.40	2· 2 5
	1.85	2.20	3.25	2.85	2.75	2.60
,,	1.40	1.90	2.25	2.75	2.40	2.10
	1.35	2.00	2.35	2.95	2.55	2.05
	1.30	2.05	2.30	2.55	2.25	1.85
10 D	1.45	2.25	2.75	2.95	2.40	2.25
_ ,,	1.10	1.85	2.00	2.20	2.00	1.75
,,	1.25	1.60	2.20	2•20	1.90	1.65
	1.20	1.35	1.90	2.00	2.05	1.60
,,	1.70	2.10	2.35	2 ·80	3.10	2.70
Periods effect	1.40	1.88	2.35	2.61	2.49	2.03
Channes in the ic		TABLE 3(b)			
Changes in specific condu	ictivity	during humific	ation of wee	eds under sub	merged cond	itions
G. Boll alone	0.70	0.85	1.05	1.25	1.15	1.05
1,, +T. monogyna	1.65	2.95	3.40	3.50	2.85	2.25
2 ,, +L. camara	1.50	2 ·65	2.90	3.15	2.45	2·20
3, + H. eichwaldii 4, + C. sparsiflorus	1.35	2.25	3.50	3.00	2.80	1.95
4 ,, + C. sparsiflorus	1.20	1.95	3.10	2.65	2.60	2.25
5 ,, + C. sativa 6 + X. strumarium	1.35	2.45	3 ·25	3.00	2.80	2.10
,,	1.65	2.80	3.35	3.15	2.70	2.05
"	1.50	2.85	3.10	3.25	2.60	2.20
	1.80	2 ·90	3.60	3.20	2.70	2.12
A ,,	1.35	2.70	2.90	3.10	2.80	2.00
,,	1.20	2.05	2.35	2.15	2.05	1.95
,,	1.30	1.90	2.75	3.30	2.90	1.80
,,	1.45	2.55	3.25	3.00	2.80	2.10
	1.85	3.00	3.50	2.85	2.25	1.95
	1.40	2· 0 0	2.70	3.20	2.10	1.90
	1.35	2.40	3-15	2.65	2.45	1.95
	1,30	2.25	3.00	2.90	2.20	1.65
) D	1.45	2.75	3.50	2.95	2.30	2.05
	1.10	1.80	2.20	2.35	2.15	1.60
,,	1.25	1.90	2.45	2.25	2.10	1.80
	1.20	1.85	2.25	2.35	1.95	1.85
,,	1.70	2.40	2.95	3·45	2.60	2.25
Periods effect	1.40	2.33	2.92			
	-	- 00	4 34	2.84	2.42	1.96

TABLE 4(0)

Effect of weeds on exchangeable Ca, Mg, Na, K and total bases at the end of 120 days

period under well drained conditions

Exchangeable bases	Ga Ca	Mg	Na	K	Total exch
Treatments	(I)	/leq./100g	Soil)		angeable
C. Soil alone	9.19	1.77	0.18	0.01	bases
1 ,, + T. monogyna	11.84	2.74	0.89	0.61	11.75
2 ,, + L. camara	12-17	2.32		2.14	17.61
3 ,, + H. eichwaldii	11.64	2.21	0·64	1.54	16.67
1 C enargiflaria	11.41	2.37	0.43	1.96	16•24
6 I C cotivo	11.62		0.38	1.53	15.59
6 J. V etrumarium	11.96	2.52	0.33	1.81	16.28
7 LC orresponding	12.07	2.71	0.42	2.73	17.82
8 ,, + C. murale	12-07	2.29	0.51	1.82	16.63
	12.14	2.81	0.61	4.12	19.68
9 ,, + F. parviflora	11.64	2 ·28	0.48	1.54	19.94
10 ,, + A. tenuifolius	11.38	1.81	0.59	1.12	14.90
11 ,, + A. arvensis	11.46	2.02	0.35	1.81	
12 ,, + S. arvensis	10.17	3.42	0.38	2.07	15.64
13 ,, + C. album	12.42	2.74	0.79	4.97	15.98
14 ,, + M. indica	11.53	2.48	0.51		20.49
15 ,, + M. denticulata	11.58	2.69	0*48	1.92	16.44
16 ,, + C. didymus	11.60	2.32	0.41	1.41	16.16
17 , + P. lanceolata	12.73	2.39		2.07	16.40
10 I P minor	10.69	1.96	0.93	1.81	17-86
10 4 C dactulon	11.36	2•28	0.47	1.32	14.44
o C motum due	11.32		0.43	1.56	15•63
N A reinidad	11.90	2.42	0.28	1.22	15.24
21 ,, + A. viridus		2.86	0.38	2.54	17.58
Effect of meeds on exchange	abla Ca. Ma	BLE 4(b)		_	
Effect of weeds on exchange	period under s	Na, n ana ubmerged co	total bases d nditions	it the end o	f 120 days
C. Soil alone	10.51	1.90	0.27	0.76	•• • •
1 Soil + T. monogyna	13.97	3.02	1.25	0.76	13.44
2 ,, + L. camara	14.37	2.93		2.91	21.13
9 (T.T:	13.92		0.86	1.96	20.12
4 Companiforms	13.53	2.72	0.71	2.67	-20•02
5 Cantiro		2.96	2.83	2.39	19-71
	13.79	3.18	0.78	2.71	20.46
	14.40	3.06	0.81	3.15	21.42
7 ,, + C. oxyacantha	14.15	2.86	0-79	2.10	19.90
8 ,, + C. murale	14.53	3 ·22	0.84	5.36	23.95
9 ,, + F. parviflora	13.96	3.13	0.73	2.78	20.60
0 ,, + A. tenuifolius	13.58	2.19	0.76	1.98	18.51
l ,, + A. arvensis	13.84	2.27	0.62	2.18	18.93
2 ,, + S. arvensis	13.12	3.97	0.68	3.84	21.61
3 ,, + C album	14.58	3.19	0.93	5.92	24.62
4 ,, + M. indica	13.72	3.20	0.82	2.86	20.60
,, + M. denticulata	13.89	3.04	0.71	1.98	19.62
5 ,, + C. didymus	13.85	2.61	0.73	2.69	
7 (1) 1 1	15.03	2.73	1.10		19.88
D	13.03	2.28		2.14	21.00
) (f) do etados			0.75	1.67	17.79
	13.46	2.86	0.69	1.76	18.77
) ,, + C. rotundus	13.51	2.74	0.72	2.08	19.05
,, + A. viridus	14.33	3.54	0.56	3.10	21 47

TABLE 5

Effect of weeds on humic acid content at the end of 120 days period both under welldrained and submerged conditions

Treatments	Well-drained (Percer	Submerged
C. Soil alone	0.044	0.047
l Soil + T. monogyna	0.204	0.183
2 ,, + L. camara 3 ,, + H. eichwaldii	0.218	0.192
	0.196	. 0.177
4 ,, + C. sparsiflorus	0.182	0.168
5 ,, + C, sativa	0 ·1 66	0.154
6 ',, + X. strumatium	0.198	0.171
 4 ,, + C. sparsiflorus 5 ,, + C. sat iva 6 ,, + X. strumatium 7 ,, + C. oxyacantha 8 ,, + C. murale 9 ,, + F. Parviflora 	0.224	0.202
8 ,, + C. murale	0-206	0.184
9 ,, + F. Parviflora	0.200	0.176
10 ,, + A. tenuifolius	0.168	0.152
11 ,, + A. arvensis	0.184	0.168
12 ,, + S. arvensis	0.192	0.199
13 ,, + C. album	0.183	0.171
14 ,, + M. indica	0 ·174	0.159
15 ,, + M. denticulata	0.164	0.155
16 ,, + C. didymus	0.178	0.167
17 ,, + P. lanceolata	0.246	0.214
18 ,, + P. minor	0.168	0.123
19 ., + C dactylon	0.192	0.175
20 ,, + C. rotundus	0.183	0.157
21 ,, + A. viridus	0.179	0•172

A comparison of table (a) and (b) would reveal that under sumberged conditions, the amount of exchangeable bases was higher compared to well-drained conditions. It may be related that conductivity also increased more under submerged than under well-drained conditions. It was found that as a result of displacement of K from the exchange complex, the concentration of K^+ in the soil may be almost doubled. Calcium increased from 10 ppm to 138 ppm while Mg from 3.5-5.0 ppm with 0.8% rice straw submerged for 48 days (Clark and Resnicky⁴).

(d) Humic acid content during humification of weeds both under well-drained and submerged conditions:

Consequent on the decomposition of weeds added to the soil, the humic acid content increased (table 5). The lignin content of the weeds which is comparatively resistant to the decomposition might have increase the humic acid content. The addition of *P. lanceolata* which has the highest lignin content (15.86%) re ulted in the maximum humic acid content also (0.246% under well-drained and 0.214% under submerged conditions). The data also showed that humic acid content was slightly higher under well-drained as compared to submerged conditions. This may be due to the fact that aeration stimulates organic matter breakdown. Acharyal demonstrated that the decomposition of rice straw was most rapid aerobically, slower under water-logged conditions and least pronounced under complete anaerobiasis.

TABLE 6

Effect of weeds on water-stable aggregates, maximum water-holding capacity and sticky point at the end of 120 days period under well-drained conditions

	Physical properties	Water-stable aggregates %					Maximum	Sticky
ا بعد	Treatments	2mm 2-1mm 1-0·5mm 0·5-0·2mm Total 0·25mm					water- holding capacity %	point
C	Soil alone	0.05	1.24	16.70	13.50	31.49	3 2· 0 8	9.46
1	Soil + T. monogyna	8.18	6.10	7.72	28.06	5 0·06	41.14	18.10
2	,, + L. camara	8.80	7.45	6.44	28.76	51· 4 5	40.82	16.86
3	,, + H. eichwaldii	6.65	6.90	9.76	27.81	51.12	41.61	17.12
4	,, + C. sparsiflorus	7.16	9.45	7.92	27.40	51.93	43.38	18.65
5	,, + C. sativa	9.12	7.16	6.52	33.02	55.82	45.12	19.08
6	, + X. strumarium	6.74	9.46	5.83	28.18	50.21	41.19	18.21
7	,, + C. oxyacantha	5.36	6.90	9.40	28.30	49 ·96	40.32	16.40
8	,, + C. murale	11.04	6.80	7.35	31.83	57.02	45.74	19.12
9	,, + F. parviflora	6.55	7.26	8.48	28.32	50.61	41.88	15.75
10	,, + A. tenuifolius	8•46	6.95	6.18	33.35	54.94	43.92	17.36
11	,, + A. arvensis	10.95	7.42	6.21	32.23	56.75	41.10	15.90
12	,, + S. arvensis	6.72	8.30	11.38	27.46	53.86	42.34	16.88
13	,, + C. album	12.18	6.10	5.12	35.14	58.34	44.26	20.12
14	,, + M. indica	7.95	5.86	10.42	27.50	51.73	42.72	17.96
15	,, + M. denticulata	9.42	8.26	7.75	27.28	52.75	46.38	18.27
16	,, + C. didymus	6.98	8.18	6.16	28.10	49.36	41.62	15.61
17	,, + P. lanceolata	6.10	6.72	7.10	30.14	50.06	41.14	16.90
18	,, + P. minor	9.20	6.13	5.38	32.42	53.13	43.91	16.12
19	,, + C. dactylon	5.31	7.46	10.34	26.76	49.87	41.78	16.64
20	,, + C. rotundus	7.46	8.12	6.24	28.98	50.80	40.16	16.88
21	,, + A. viridus	11.35	5.24	7.40	33.51	57.50	47.64	17.16
A	verage treatment effect	7.81	6.97	7•99	. 29.00	51.77	42.28	17.05

⁽e) Water-stable aggregates, maximum water-holding capacity and sticky point during humification of weeds both under well-drained and submerged conditions.

As a result of the humification of weeds for a period of 120 days, an increase in soil-aggregates greater in size than 0.25 mm was found (table 6). This showed an improvement in soil structure. Comparison of different weeds indicated that C. album formed the highest percentage of soil aggregates greater than 0.25 mm (58.54%) followed by A. viridus, C. album and A. arvensis. This may be due to higher hemicellulose content of these weeds. The organic materials containing more than 11% hemicelluloses and 18% cellulose increased crumb formation. Martin and Anderson¹¹ and Martin^{8,10} have shown that during the decomposition of organic matter large quantities of polysaccharide gums are produced which greatly encourage the formation of water-stable aggregates. It is interesting to record that on analysis, these weeds were found rich in easily decomposable organic constituents like, cellulose and hemicellulose, and accordingly are highly effective in promoting aggregation. On account of the decomposition of weeds, maximum water-holding capacity and sticky point also increased. The humus colloids have the capacity to hold several times its weight of water.

References

Acharya, C. N. Biochem. Jour., 29, 1116-1120, 1935.
 Aoki, M. J. Sci. Soil Manure, Japan, 15, 182-202, 1941.
 Chaminade, R. Ann. Agron., 16, 117-132, 1946.

4. Clark, F. D. and Resnicky, J. W. Report 6th Int. Cong. Soil Sci. Part C. 545-548, 1956.

5. Coutts, J. R. H. J. Agri. Sci., 20, 407-413, 1930.

6. De, P. K. and Sarkar, S. N. Soil Sci., 42, 143-155, 1936.

- 7. Delwiche, C. C. "Denitrification" In W. D. Mc Eldoy and B. Glass eds. Inorganic nitrogen metabolism. The Johns Hopkin Press Baltimore.
- 8. International Rice Research Institute, Los Banos, Laguna, Phillipines Ann, Rept., 1962

9. Martin, J. P. Soil Sci., 59, 163-174, 1945.

Ibid. **61**, 157–166, 1946.

11. Martin, T. L. and Anderson, O. A. Proc. Soil Sci. Soc. Amer., 7, 215-217.

 McGeorge, W. T. J. Amer. Soc. Agron., 26, 575-579, 1934.
 Mitsui, S. Inorganic nutrition, fertilization and soil amelioration for lowland rice. Yokends Ltd. Japan, 1955.

14. Peevy, W. J. and Norman, A. G. Soil Sci., 65, 209-226, 1948.

15. Piper, C. S. Soil and Plant Analysis Univ. of Adelaide, Australia, 1950. 16. Poonamperuma, F. N. Ph.D. Thesis. Cornell Univ. Ithaca., 1955.

17. Puri, A. N. Ann. Prog. Rept. Sch. Std. Methods, 1956-1957, 1958.

- 18. Sharma, S. S. and Bhattacharya, A. K. Univ. Sagar (India) Sect. A8, 1-5, 1962.
- 19. Shukla, G. C. and Vimal, O. P. Proc. Nat. Acad. Sci. India, 38-A (1 & 2). 32-40, 1968.

Ind. Jour. Agric. Sci., 39(1), 162-166, 1969.

21. United States Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. U.S.D.A. Hand book No. 6. U. S. Govt. Printing Office, Washington, 1954.

22. Vimal, O.P. Ph.D. Thesis. Indian Agricultural Research Institute, New

Delhi, 1967.

23. Yoder, R. E. J. Amer. Soc. Agron., 28, 337-351, 1936.

Influence of Organic matter, Phosphates and Light intensity on Synthesis of amino acids during carbon nitrogen transformations

N. R. DHAR & G. N. BHAT

Sheila Dhar Institute of Soil Science, Allahabad University, Allahabad

[Received on 29th April, 1968]

Amino-acids that occur in a free state in soils are of potential importance both to microbial nutrition and plant life. Lochhead and his associates^{1,2} have called attention reportedly to a nutritional group of soil bacteria characterized by their dependence on pre-formed amino-acids, while the work of Ghosh and Burris³ with sterile plants has shown that intact amino-acids can be assimilated by certain higher plants.

For a considerable length of time it was held that amino-acids do not occur in free form in soil (Bremner4). The isolation of amino-acids from soil is rendered difficult by the presence of large amounts of extraneous material. However it has now been established that amino-acids exist in the free state in at least some quantities. Dodd, Fowden and Pearsall⁵ investigated the presence of free aminoacids in organic soil types using paper-partition chromatography.

The presence of free amino-acids in soil has also been reported by Payne, Rouatt and Katznelson6, who stated that large numbers of bacteria requiring amino-acids for growth occur in soil. This suggests the possibility that aminoacids exist at least in traces in an uncombined state in soil. The results of these workers suggest that even the mild heat treatment in the concentration of an aqueous soil leachate can prevent the detection of amino acids which may be present in the free soil solution. Putnam and Schmidt, using elution chromatography of concentrated ethanolic extracts, demonstrated the occurrence of free amino acids in a range of concentration from 2 to 287 µg. per kg.

In view of the above observations an endeavour has been made to identify, separate and estimate the free amino-acids produced during the slow oxidation of different organic materials mixed with sand, TiO2, ZnO and Fe2O3 as surfaces aided by light absorption.

Experimental

100 gms of air dried sand and pure samples (B. D. H. products) of ferric oxide, Zinc oxide and titania were taken in clean white enamelled dishes. To these the energy materials were added to the extent of 0.8% carbon with and without phosphate sources in the form of Tata basic slag and Trichinopoly rock phosphate.

For experimental purposes representative samples were taken out at definite intervals after exposure for the estimation of total nitrogen, identification, separation and estimation of amino-acids.

The procedure for the preparation of the extract for amino-acids was the same as followed by Payne and others6. The identication and separation of amino-acids was undertaken with the help of paper chromatography. The amino acids estimations were carried out according to the colorimetric method of Harding and McLean⁸.

The amino-acids which have been identified and separated chromatographically are represented in the following abbreviations:

Glycine = Gly.
Aspartic acid = Asp.
Proline = Pro.
Leucine = Leu.

Arginine = Ar.
Valine = Va.
Glutamic acid = Glu.
Lycine = Ly.

Alanine = Al.
Asparagine = As.
Histidine = His.
Threonine = Threo.

TABLE 1

100 gms of Ganges sand + 0.8% C as Glucose

		100 gms of Gang	ges sand +	0.8% C	as Glucose	
Period of exposure in days	Total nitroger mgm.%	Amino-acids and identified to (chromato-	mount of nino-acids ith respect o glycine mgm.% olorimetrically)	Total Nitrogen mgm.%	graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetr- ically)
		L i ght			Dark	
0	4.5		-	4.5	-	
30	9.8	Gly, Al, Va, Ly,	0.2745	6.7	Gly, Al, Va,	0.1385
60	12.2	Al, Va, Ly, Glu, Threo.	0.3665	7.9	Gly, Al, Va, Ly	0.1976
90	13.4	Al, Va, Ly, Glu, Threo, Pro.	0.4288	8.6	Al, Va, Ly, Glu	0.2595
120	13.9	Al, Va, Ly, Glu, Threo, Pro.	0.4035	8.8	Threo. Al, Va, Ly, Glu,	0.2552
		Timeo, Fro.				
			TABLE 2	2	,	
.*		100 gms of Jamun	a sand +	0.8% C a	s Glucose	
0	4.0	_		4.0	-	
· . 3 0	10.3	Gly, Al, Va, Glu	ı 0 ·2 987	7.5	Gly, Al, Va	0.1575
60	13.1	Al, Va, Ly, Glu, Threo.	0.4061		Gly, Al, Va, Ly	0.2054
90	14.5	Al, Va, Ly, Glu, Threo, Pro.	0.4785	8.6	Al, Va, Ly, Glu, Threo.	0.2665
120	15.1	Al, Va, Ly, Glu, Threo, Pro.	0 -4681	8.9	Al, Va, Ly, Glu, Threo.	0.2581
			TABLE 3			
100 gm	s of Gan	ges sand $+ 0.8\%$	Cas Gluce	nse I n.F	5% P ₂ O ₅ as Tata	harda alam
0	4·1	— — — — — — — — — — — — — — — — — — —		4·1	7/6 1205 as Tata	Dasic stag
30	12.0	Al, Va, Ly, Glu, Threo, Asp	0.6125		Gly, Al, Va, Ly, Glu	0.3136
60	15.1	Al, Va, Ly, Glu,	0.8312	9.0	Al, Va, Glu, Ly,	0.4235
90	16.5	Threo, Asp, Ar. Va, Ly, Glu, Asp	0.9570		Threo Al, Va, Glu, Ly,	0.4958
120	17.5	Ar, Threo, Lue, P Va, Ly, Glu, As, Ar, Threo, Leu,	0.9535		Asp, Threo, Leu Al, Va, Glu, Ly,	0· 4 924
	CCC.ML. JCOM 10:40	· · · · · · · · · · · · · · · · · · ·	LIU.		Asp, Threo, Leu	

TABLE 4

100 gms of Jamuna sand + 0.8% C as Glucose + 0.5% P₂O₅ as Tata basic slag

Light Dark 0 3.7 - 3.7 - 3.7 - 7.6 Gly, Al, Va, Ly,	- 0·3345
0 3.7 - 3.7 ~	- 0·3345
	0.3345
Three, Asp. Glu.	
60 16.2 Al, Va, Ly, Glu, 0.9235 9.5 Al, Va, Glu, Ly, Threo, Asp, Ar. Threo.	0.4659
90 17.9 Va, Ly, Glu, Asp, 1.0735 10.4 Al, Va, Glu, Ly, Threo, Ar, Leu, Pro. Asp, Threo, Leu.	0.5415
120 19.0 Va, Ly, Glu, Asp, 1.0702 11.0 Al, Va, Glu, Ly, Ar, Threo, Leu, Pro. Asp, Threo, Leu.	0.5398
TABLE 5	
100 gms of Ganges sand + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Trichi rock phosphate	inopoly
0 4.4 4.4 -	-
30 11.1 Al, Va, Glu, Ly, 0.4995 7.2 Ly, Gly, Al, Va, Asp, Threo. Glu.	0·2 7 38
60 14.0 Al, Va, Glu, Ly, 0.7112 8.6 Ly, Al, Va, Glu, Asp, Threo.	0.3695
90 15 4 Al, Va, Glu, Ly, 0.8164 9.3 Ly, Al, Va, Glu, Asp, Threo, Leu. Threo.	0.4279
120 16.1 Al, Va, Glu, Ly, 0.7995 9.8 Ly, Al, Va, Glu, Asp, Threo, Leu. Threo.	0.4125
TABLE 6	
100 gms of Jamuna sand + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Trich rock phosphate	inopoly
0 3.9 - 3.9 -	-
30 11.8 Al, Va, Glu, Ly, 0.5549 7.1 Ly, Gly, Al, Va,	0•2845
60 14 8 Al, Va, Glu, Ly, 0.7695 8.7 Ly, Al, Va, Glu, Asp, Three. Three, Asp. Three, Asp.	0.3923
90 16·3 Al, Va, Glu, Ly, 0·8968 9·5 Ly, Al, Va, Glu,	0.4565
Asp, Threo, Leu. 120 17.3 Al, Va, Glu, Ly, 0.8823 10.0 Ly, Al, Va, Glu, As, Threo, Leu Threo. Asp.	6.4426

TABLE 7
100 gms of Ganges sand + 0.8% C as Wheat straw

Period of exposure in days	Total nitrogen mgm.%	Amino-acids identified (chromatog- raphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	Total nitroge mgm.%	Amino-acids an identified with the control of the c	amount of mino-acids ith respect to glycine mgm.% colorimet- rically)
		Light			Dark	
0	17.1	-	_	17-1	-	
60	28.2	Al, Va, Glu, Asp,	Ly. 0·4645	19.7	Al, Glu, Va, Asi	0.3542
120	2 5·5	Al, Va, Glu, As Ly, Threo, Leu		20.9	Al, Glu, Va, Asp Ly, Threo.	, 0.6275
180	26.4	Al, Va, Glu, As Ly, Threo, Leu.	p, (1085	21.4	Al, Glu, Va, Asp Ly, Threo.	, 0.7706
			TABLE 8	~ 14	71	
	100	gms of Jamuna	sand $+ 0.8\%$	G as W	heat straw	
0	16.6	· –	- ,	16.6	_	-
60 -	23.6	Al, Va, Glu, Asp,	Ly 0.5196	19.5	Al, Glu, Va, Asp	· 0·3905
120	26.1	Al, Va, Glu, As	p, 0 [.] 9658	2 1· 1	Al, Glu, Va, Asp Ly, Thr e o.	, 0.6728
180	27.4	Ly, Threo, Leu. Al, Va, Glu, As Ly, Threo, Leu	p, 1·2065	21.5	Al, Glu, Va, Asp Ly, Threo.	o, 0°3416
			TABLE 9			
100	gms of C	Ganges sand + 0	·8% C as Wh	neat stra	$1 \text{ w} + 0.5\% \text{ as } P_2 C$	O₅ as
		r	'ata basic sla	g		
0	16.1	_		16.1		_
60	25.0	Al, Va, Ly, Asj Glu, Asp, Threo		20.0	Al, Va, Ly, Gla Asp, Threo.	u, 0.7015
120	28.0	Ly, Va, As, Gla As, Ar, His, The Leu.	ı, 1.5965 reo,	21.5	Al, Va, Ly, Glu Asp, Ar, His, Thre	i, 1·0796
180	29.4	Ly, Va, Asp, G As, Ar, His, Th Leu.		22•2	Al, Va, Ly, Glu Asp, Ar, His, Threo.	, 1.4215

TABLE 10 100 gms of Jamuna sand + 0.8% C as Wheat straw + 0.5% P_2O_5 as Tata basic slag

Period of exposure in days	Total nitrogen mgm.%	Amino acids wit to (chromatographically)	mount of ino-acids h respect glycine agm.% lorimetri cally)	Total nitrogen mgm.%	Amino acids identified (chromato- graphically	Amount of amino-acids with respect to glycine mgm.% (colorimet- rically)
		Light			Dark	
0	15.6			15.6	_	_
60	25.8	Al, Va, Ly, Asp, Glu, As, Threo, Pro-	1.1352	20.2	Al, Va, Ly, Asp, Threo.	Glu, 0·7475
120	29·1	Ly, Va, Asp, Glu, As, Ar, His, Three Leu.	1.7169	21.9	Al, Va, Ly, C Asp, Ar, His, Threo.	3lu, 1·1393
180	30.5	Ly, Va, Asp, Glu, As, Ar, His, Three Leu.	2·1965 o,	22.7	Al, Va, Ly, C Asp, Ar, His	
	100 gms o	f Ganges sand + 0. Trichinop	TABLE 11 8% C as ooly rock	Wheat st phospha	raw + 0.5% F te	P_2O_5 as
0	16.8	-	_	16.8	_	-
60	24.6	Al, Va, Ly, Glu, Asp, Threo.	0.9105	20.3	Al, Va, Ly, C	Glu, 0•6295
120	27.3	Al, Va, Ly, Glu, Asp, Threo, Pro,	1•3925	21.7	Ai, Va, Ly, G Asp, Threo.	lu, 0.9768
180	28 6	Leu. Al, Va, Ly, Glu, Asp, Threo, Pro, Leu.	1.8014	22•3	Al, Va, Ly, C Asp, Threo, I	
•			TABLE 1			
	100 gms o	of Jamuna sand + (Trichino)·8% C a poly rock	s Wheat c phospha	straw + 0.5% ate	P ₂ O ₈ as
			_	16.3	- -	
$\begin{array}{c} 0 \\ 60 \end{array}$	16•3 25·3	Al, Va, Ly, Gu,	0.9865	20.2	Al, Va, Ly, Asp.	
120	28.3	Asp, Threo. Al, Va, Ly, Glu, Asp, Threo, His, A	1•4996	21.8	Al, Va, Ly, Asp, Threo	His.
180	29		1.9015	22.5	Al, Na, Ly, Asp. Three	Glu, 1.3030

TABLE 13 100 gms of Ganges sand + 0.8% C as Saw dust

Light	Period of exposure in days	Total nitrogen mgm.%	Amino-acids identified (chromato-	Amount of amino-acids with respect to glycine mgm.% colorimetri- cally)	Total nitroger mgm.%	Amino acids identified	Total amino- acids with respect to glycine mgm.% (colorimetri- cally)
60 16·8 Gly, Al, Va, Glu. 0·3025 14·3 Gly, Al, Va. 0·2445 120 18·3 Gly, Al, Va, Glu, 0·6438 15·2 Glu, Al, Va, Gly, 0·4418 Threo. 180 19·0 Al, Va, Glu, Asp, 0·7615 15·6 Gly, Al, Va, Glu, 0·5465 Threo, Leu. TABLE 14 100 gms of Jamuna sand + 0·8 % C as Saw dust 0 12·1 12·1 16·6 Gly, Al, Va. 0·2665 120 18·2 Gly, Al, Va, Glu, 0·6556 15·0 Glu, Al, Va, Gly, 0·4653 Asp, Threo. 180 19·4 Al, Va, Glu, Asp, 0·8345 15·5 Gly, Al, Va, Glu, 0·5735 Threo, Leu. TABLE 15 100 gms of Ganges sand + 0·8 % C as Sawdust + 0·5 % P ₂ O ₅ as Tata basic slag 0 11·9 - 11·9 - 11·9 - 11·9	0	12.6	Light _		12.6	Dark -	-
120 18·3 Gly, Al, Va, Glu, 0·6438 15·2 Glu, Al, Va, Gly, 0·4418 Asp, Threo. 180 19·0 Al, Va, Glu, Asp, 0·7615 15·6 Gly, Al, Va, Glu, 0·5465 Threo, Leu. TABLE 14 100 gms of Jamuna sand + 0·8 % C as Saw dust 0 12·1 12·1 60 16·6 Gly, Al, Va, Glu, 0·3488 14·0 Gly, Al, Va, Gly, 0·4653 Asp, Threo. 180 19·4 Al, Va, Glu, 0·6556 15·0 Gly, Al, Va, Gly, 0·4653 Asp, Threo. 180 19·4 Al, Va, Glu, Asp, 0·8345 15·5 Gly, Al, Va, Glu, 0·5735 Threo, Leu. TABLE 15 100 gms of Ganges sand + 0·8 % C as Sawdust + 0·5 % P ₂ O ₅ as Tata basic slag 0 11·9 11·9 11·9 60 18·2 Al, Va, Glu, Asp, 0·7285 14·6 Al, Va, Glu, Asp, 0·4968 Threo, Leu. 120 20·6 Al, Va, Glu, Asp, 1·1338 15·8 Al, Va, Glu, Asp, 0·7745 Threo, Leu. 180 21·8 Al, Va, Glu, Asp, 1·4825 16·4 Al, Va, Glu, Asp, 0·7745 Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0·8 % C as Sawdust + 0·5 % P ₂ O ₅ as Tata basic slag 0 11·4 11·4 10·4 Al, Va, Glu, Asp, 0·5225 Threo, Leu. 120 21·1 Al, Va, Glu, Asp, 0·7915 14·5 Al, Va, Glu, Asp, 0·5225 Threo, Leu. 180 22·5 Al, Va, Glu, Asp, 1·2236 Threo, Leu, 180 22·5 Al, Va, Glu, Asp, 1·5975 16·5 Al, Va, Glu, Asp, 1·0565			Gly Al Va Gl	n 0:3025	14.3	Glv. Al. Va.	0.2445
Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo. Asp, Threo, Leu. TABLE 14 100 gms of Jamuna sand + 0.8% C as Saw dust 0 12·1			Gly, Al. Va. Gly				Gly, 0.4418
TABLE 15 100 gms of Ganges sand + 0.8 % C as Sawdust + 0.5 % P ₂ O ₅ as Tata basic slag 0 11.9 - 11.9 - 11.9 - 11.9 - 11.0 100 gms of Jawuna sand + 0.5 % P ₂ O ₅ as Tata basic slag 0 11.9 - 11.9 - 11.9 - 11.9 100 gms of Ganges sand + 0.8 % C as Sawdust + 0.5 % P ₂ O ₅ as Tata basic slag 10 11.9 - 11.9 - 11.9 - 11.9 100 gms of Ganges sand + 0.8 % C as Sawdust + 0.5 % P ₂ O ₅ as Tata basic slag 10 11.9 - 11.9 - 11.9 - 11.9 100 gms of Ganges sand + 0.8 % C as Sawdust + 0.5 % P ₂ O ₅ as Tata basic slag 10 11.9 - 11.9 - 11.9 - 11.9 10 20.6 Al, Va, Glu, Asp, 0.7285 14.6 Al, Va, Glu, Asp, 0.745 Threo, Leu. 15.8 Al, Va, Glu, Asp, 1.1338 15.8 Al, Va, Glu, Asp, 0.7745 Threo, Leu. 16.0 16.4 Al, Va, Glu, Asp, 1.0236 11.4 - 11.4 10.9 12.1 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.5025 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.5089 Threo, Leu. 15.8 Al, Va, Glu, Asp, 0.5089 Threo, Leu. 15.9 Al, Va, Glu, Asp, 1.0565	120	100	Asp. Threo.	.,			,,
100 gms of Jamuna sand + 0.8 % C as Saw dust 0 12·1 12·1 12·1	180	19.0	Al, Va, Glu, As	p, 0.7615	15.6		Glu, 0.5465
0 12·1 — — — — — — — — — — — — — — — — — — —		•		TABLE 14			
60 166 Gly, Al, Va, Glu, 0.3488 14.0 Gly, Al, Va. 0.2665 120 18.2 Gly, Al, Va, Glu, 0.6556 15.0 Glu, Al, Va, Gly, 0.4653		•	100 gms of Jamus	na sand + 0	·8% C a	s Saw dust	
120 18·2 Gly, Al, Va, Glu, 0·6556 15·0 Glu, Al, Va, Gly, 0·4653	0	12.1	-			_	
Asp, Threo. 180 19.4 Al, Va, Glu, Asp, 0.8345 Threo, Leu. TABLE 15 100 gms of Ganges sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Tata basic slag 0 11.9 60 18.2 Al, Va, Glu, Asp, 0.7285 Threo, Leu. 120 20.6 Al, Va, Glu, Asp, 1.1338 Threo, Leu. 180 21.8 Al, Va, Glu, Asp, 1.4825 Ar, As, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Tata basic slag 0 11.4 - 11.4	60	16.6					
180 19.4 Al, Va, Glu, Asp, 0.8345 15.5 Gly, Al, Va, Glu, 0.5735 Threo, Leu. TABLE 15 100 gms of Ganges sand + 0.8% C as Sawdust + 0.5% P2O5 as Tata basic slag 0 11.9 - 11.9 11.9 60 18.2 Al, Va, Glu, Asp, 0.7285 14.6 Al, Va, Glu, Asp, 0.4968 Threo, Leu. 120 20.6 Al, Va, Glu, Asp, 1.1338 15.8 Al, Va, Glu, Asp, 0.7745 Threo, Leu. 180 21.8 Al, Va, Glu, Asp, 1.4825 16.4 Al, Va, Glu, Asp, 1.0236 Ar, As, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P2O5 as Tata basic slag 0 11.4 - 11.4 11.4 60 18.5 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 120 21.1 Al, Va, Glu, Asp, 1.2236 15.8 Al, Va, Glu, Asp, 0.8089 Threo, Leu. 180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	120	18.2	Gly, Al, Va, Gl	u, 0.6556	15.0		Gly, 0.4653
100 gms of Ganges sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Tata basic slag 0 11.9 11.9 60 18.2 Al, Va, Glu, Asp, 0.7285 14.6 Al, Va, Glu, Asp, 0.4968 Threo, Leu. 120 20.6 Al, Va, Glu, Asp, 1.1338 15.8 Al, Va, Glu, Asp, 0.7745 Threo, Leu. 180 21.8 Al, Va, Glu, Asp, 1.4825 16.4 Al, Va, Glu, Asp, 1.0236 Ar, As, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₈ as Tata basic slag 0 11.4 11.4 4.60 18.5 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 120 21.1 Al, Va, Glu, Asp, 1.2236 15.8 Al, Va, Glu, Asp, 0.8089 Threo, Leu. 180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	180	19.4	Al, Va, Glu, As	sp, 0.8345	15.5	Gly, Al, Va,	Glu, 0·5735
0 11·9 - 11·9 - 7 60 18·2 Al, Va, Glu, Asp, 0·7285 14·6 Al, Va, Glu, Asp, 0·4968 Threo, Leu. Threo. 120 20·6 Al, Va, Glu, Asp, 1·1338 15·8 Al, Va, Glu, Asp, 0·7745 Threo, Leu. Threo, Leu. 180 21·8 Al, Va, Glu, Asp, 1·4825 16·4 Al, Va, Glu, Asp, 1·0236 Ar, As, Threo, Leu. Ar, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0·8% C as Sawdust + 0·5% P ₂ O ₈ as Tata basic slag 0 11·4 - 11·4 - 160 18·5 Al, Va, Glu, Asp, 0·7915 14·5 Al, Va, Glu, Asp, 0·5225 Threo, Leu. Threo. 120 21·1 Al, Va, Glu, Asp, 1·2236 15·8 Al, Va, Glu, Asp, 0·8089 Threo, Leu. Threo, Leu, 180 22·5 Al, Va, Glu, Asp, 1·5975 16·5 Al, Va, Glu, Asp, 1·0565				TABLE 15	;		
60 18·2 Al, Va, Glu, Asp, 0·7285 14·6 Al, Va, Glu, Asp, 0·4968 Threo, Leu. Threo. 120 20·6 Al, Va, Glu, Asp, 1·1338 15·8 Al, Va, Glu, Asp, 0·7745 Threo, Leu. Threo, Leu. 180 21·8 Al, Va, Glu, Asp, 1·4825 16·4 Al, Va, Glu, Asp, 1·0236 Ar, As, Threo, Leu. Ar, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0·8% C as Sawdust + 0·5% P ₂ O ₈ as Tata basic slag 0 11·4 11·4 11·4 160 18·5 Al, Va, Glu, Asp, 0·7915 14·5 Al, Va, Glu, Asp, 0·5225 Threo, Leu. Threo. 120 21·1 Al, Va, Glu, Asp, 1·2236 15·8 Al, Va, Glu, Asp, 0·8089 Threo, Leu. Threo, Leu, 180 22·5 Al, Va, Glu, Asp, 1·5975 16·5 Al, Va, Glu, Asp, 1·0565	100 gn	ns of Gan	ges sand + 0.8%	G as Sawdi	ıst + 0·	5% P_2O_5 as Ta	ta basic slag
Threo, Leu. 120 20.6 Al, Va, Glu, Asp, 1.1338 15.8 Al, Va, Glu, Asp, 0.7745 Threo, Leu. 180 21.8 Al, Va, Glu, Asp, 1.4825 16.4 Al, Va, Glu, Asp, 1.0236 Ar, As, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Tata basic slag 0 11.4 11.4 11.4 60 18.5 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 120 21.1 Al, Va, Glu, Asp, 1.2236 15.8 Al, Va, Glu, Asp, 0.8089 Threo, Leu. Threo, Leu. Threo, Leu, 180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	0	11.9	~	_	11.9		-
120 20.6 Al, Va, Glu, Asp, 1.1338 15.8 Al, Va, Glu, Asp, 0.7745 Threo, Leu. 180 21.8 Al, Va, Glu, Asp, 1.4825 Ar, As, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Tata basic slag 0 11.4 - 11.4 - 11.4 - 60 18.5 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 120 21.1 Al, Va, Glu, Asp, 1.2236 15.8 Al, Va, Glu, Asp, 0.8089 Threo, Leu. Threo, Leu, 180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	60	18.2		sp, 0.7285	14.6		Asp, 0.4968
180 21.8 Al, Va, Glu, Asp, 1.4825 16.4 Al, Va, Glu, Asp, 1.0236 Ar, As, Threo, Leu. TABLE 16 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₈ as Tata basic slag 0 11.4 - 11.4 - 60 18.5 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. 120 21.1 Al, Va, Glu, Asp, 1.2236 15.8 Al, Va, Glu, Asp, 0.8089 Threo, Leu. 180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	120-	20•6	Al, Va, Glu, A	sp, 1·1338	15.8		Asp, 0.7745
100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₈ as Tata basic slag 0 11.4 - 11.4 - 60 18.5 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. Threo. 120 21.1 Al, Va, Glu, Asp, 1.2236 15.8 Al, Va, Glu, Asp, 0.8089 Threo, Leu. Threo, Leu, 180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	180	21.8	Al, Va, Glu, A	sp, 1·4825 Leu.	16.4	Al, Va, Glu,	Asp, 1.0236 Leu.
0 11·4 11·4 10·5 Al, Va, Glu, Asp, 0·7915 14·5 Al, Va, Glu, Asp, 0·5225 Threo, Leu. Threo. 120 21·1 Al, Va, Glu, Asp, 1·2236 15·8 Al, Va, Glu, Asp, 0·8089 Threo, Leu. Threo, Leu, 180 22·5 Al, Va, Glu, Asp, 1·5975 16·5 Al, Va, Glu, Asp, 1·0565				TABLE 16	5		
60 18.5 Al, Va, Glu, Asp, 0.7915 14.5 Al, Va, Glu, Asp, 0.5225 Threo, Leu. Threo. 120 21.1 Al, Va, Glu, Asp, 1.2236 15.8 Al, Va, Glu, Asp, 0.8089 Threo, Leu. Threo, Leu, Threo, Leu, 180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	100 gn	ns of Jam	una sand $+ 0.8\%$	C as Sawdi	ıst + 0·	$5\%~{ m P_2O_5}$ as ${ m Ta}$	nta basic slag
Threo, Leu. Threo. 120 21·1 Al, Va, Glu, Asp, 1·2236 15·8 Al, Va, Glu, Asp, 0·8089 Threo, Leu. Threo, Leu, 180 22·5 Al, Va, Glu, Asp, 1·5975 16·5 Al, Va, Glu, Asp, 1·0565	•	11.4	-		11.4	-	-
120 21·1 Al, Va, Glu, Asp, 1·2236 15·8 Al, Va, Glu, Asp, 0·8089 Threo, Leu, Threo, Leu, 180 22·5 Al, Va, Glu, Asp, 1·5975 16·5 Al, Va, Glu, Asp, 1·0565	60	18.5		sp, 0.7915	14.5		Asp, 0.5225
180 22.5 Al, Va, Glu, Asp, 1.5975 16.5 Al, Va, Glu, Asp, 1.0565	120	21.1	Al, Va, Glu, A	sp, 1.2236	15.8	. Al, Va, Glu,	Asp, 0.8089
	180	22.5	Al, Va, Glu, A		16.5	Al, Va, Glu,	Asp, 1.0565

TABLE 17
100 gms of Ganges sand + 0.8% C as Sawdust + 0.5% P₂O₅ as Trichinopoly rock phosphate

		rock phosphate
		Amount of Amount of
Period	rr 1	Amino acids amino-acids amino-acids
\mathbf{of}	Total	identified with respect rotal identified with respect
• .	nitrogen	(chromato-
in	mgm.%	graphically) , ingin. 70 graphically) ingm %
days		11
	10.4	Light Dark
0	12.4	- 12·4
60	17 ·6	Al, Va, Asp, Glu, 0.6165 14.6 Al, Va, Asp, Glu. 0.4384
	10.7	Threo. Al, Va, Asp, Glu, 0.9654 15.7 Al, Va, Glu, Asp, 0.6908
120	19.7	Threo, Leu, Ar. Threo, Leu.
1.00	20•6	Al, Va, Asp, Glu, 1.2566 16.2 Al, Va, Glu, Asp, 0.8915
180	20 0	Threo, Leu, Ar. Threo, Leu.
		·
*		TABLE 18
100 g	ms of Jan	nuna sand + 0.8% C as Sawdust + 0.5% P2O3 as Trichinopoly
	, ,	rock phosphate
0	11.9	11.9
60	17.8	Al, Va, Glu, Asp, 0.6769 14.4 Al, Va, Glu, Asp. 0.4465
00		Threo.
120	20.1	Al, Va, Glu, Asp, 1.0452 15.5 Al, Va, Glu, Asp, 0.7136
		Threo, Leu, Ar. Threo, Leu.
180	21.3	Al, Va, Glu, Asp, 1.03845 16.1 Al, Va, Glu, Asp, 0.9018
,		Threo, Leu, Ar. Threo, Leu.
•		TABLE 19
		100 gms of Zinc oxide + 0.8% C as Glucose
0		100 gms of Zinc oxide + 0 0/6 d as olders
0	7.2	Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579
30	10.1	Gly, Al, Va, Ly, 0.3135 4.4 Al, Va, Gly, Ly, 0.1145
60	10.1	Threo, Pro.
90	11.7	Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, 0.1612
90	11,	Pro Leu Three, Pro.
12 0	12.4	Al, Va, Ly, Threo, 0.3726 5.5 Al, Va, Ly, Threo, 0.1548
120		Pro, Leu. Pro.
•	* \$ 100	TABLE 20
100	-£ 7:	nc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag
	gms of Zi	
0	11.0	Al, Va, Gly, Three, 0.5725 4.8 Al, Va, Gly, 0.2125
30	11 0	L.V. 0.2254
- 60	14.8	1 Vo Three Ly 0.8436 0.8 Al, va, 1 mee, 0.8836
. 00	110	Pro Glu. Leu.
90	16.7	Al, Va, Three, Ly, 1.0130
90	10 ,	Glu, Leu, Asp. 0.5 Al Vo Phree 0.4015
120	17.9	Al. Va, Three, Ly, 10103
140		Pro, Glu, Leu, Asp. Ly, Fro, Glu, Lcu.

TABLE 21 $_{100~gms}$ of Zinc oxide + 0.8% C as Glucose + 0.5% P_2O_5 as Trichinopoly rock phosphate

Period of exposure in days	Total nitrogen mgm.%	(chromato-	Amount of amino-acids with respect to glycine mgm.% (colorimetrically)	Total nitrogen mgm.	Amino-acids identified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetrically)
		Light			Dark	
0	_		_	-	*****	_
0	9.4	Al, Va, Threo, Gl	y. 0.4415	4.0	Al, Va, Glu, Tl	hreo. 0·1636
60	12.7	Al, Va, Threo,	0.6606	5.7	Al, Va, Thre	o, 0 2565
		Ly, Pro, Leu, C	Hu.		Ly, Pro. Leu	•
9 0	14.4	Al, Va, Threo, 1	Ly, 0·7920	6.7	Al, Va, Thre	o, 0.321 8
		Pro, Leu Glu,	Asp.		Ly, Pro. Leu,	Glu.
120	15.6	Al, Va, Threo,	Ly, 0·7804	7· 3	Al, Va, Three	o, Ly,0·3161
		Pro.Leu,Glu, A			Pro, Leu, Gli	u.
			TABLE 22			
		100 gms of Ferr	ric oxide 🕂 0	·8% C a	s Glucose	
0	_	_	_		_	_
30	6.4	Al, Gly, Va, Ly	. 0.1795	2.6	Al, Gly, Va,	0.0525
6 0	9.2	Al, Gly, Va, Ly		4.1	Al, Gly, Va, I	
00	· ·	Threo.	, 02.00		Threo.	-,,
90	10.7	Al, Va, Ly,	0.3462	4.9	Al, Gly, Va, L	y, 0·1475
30	10 /	Three, Pro.	0 0102		Threo.	.,, 0
120	11.3		0.3277	5.2	Al, Va, Ly,	0.1404
120	11.5	Threo, Pro.	0 0277		Threo, Gly.	0 0 -
		111100, 110.			111100, 01 7.	
•						
			TABLE 23			
100 gn	as of Ferr	ric oxide + 0.8%	, C as Glucos	se + 0·5	$\%$ P_2O_5 as Tat	a basic slag
0	_		_	. =		-
30	10.1	Ly, Al, Va, Gly	y, 0·5145	4.4	Al, Va, Gly,	0.1849
•		Threo.			Threo.	
60	13.8	Ly, Al, Va, Thre		6.3	Al, Va, Threo	, Ly, 0·2965
0.0	a - +	Pro, Glu, Leu.			Pro, Glu.	T 0.005-
90	15.7			7.3	Al, Va, Threo,	Ly, 0.3655
100		Leu, Ly, Al, Va			Pro, Glu.	* 0.0010
120	16•8				Al, Va, Threo	, Ly, 0·3613
		Pro. Glu, Leu.			Pro, Glu.	

TABLE 24 $100~\rm{gms~of~Ferric~oxide}~+~0.8\%~C~as~Glucose~+~0.5\%~P_2O_5~as~Trichinopoly~rock~phosphate$

Period of exposure in days	Total nitrogen mgm.º/o	Amino-acids identified (chromato-	Amount of mino-acids with respect to glycine mgm.% colorimetri- cally)	$mgm_{\bullet/0}$	Amino-acids identified (chromato-	Amount of mino-acids with respect to Glycine mgm.% colorimetrically)
		Light			Dark	
0 ··· 30	- 8·6	Al, Va, Gly,	0.3872	3·6	Al, Va, Gly, Threo.	0.1368
60	11.8	Threo, Ly. Al, Va, Threo, Pro, Ly, Leu.	0.5932	5.2	Al, Va, Threo, Pro.	
90	13.5	Al, Va, Threo,	0.7155	6.2	Al, Va, Threo, Pro, Glu.	Ly, 0.2852
120	14.5	Pro, Ly, Leu, G Al, Va, Threo, Pro, Leu, Glu.	0.7031	6.8	Al, Va, Threo, Pro, Glu.	, Ly, 0· 27 91
			TABLE 25	i		
		100 gms of T	itania + 0·8	3% C as 9	Glucose	
90 120	7·5 10·5 12·1 12·8	Al, Gly, Va, Ly, Al, Gly, Va, Ly, Threo, Pro. Al, Va, Ly, Threo, Leu. Al, Va, Ly, Threo, Leu.	7, 0.2246 7, 0.3365 eeo, 0.411	- 3° 7 4° 5 5	1 Al, Gly, Va 7 Al, Gly, Va	0·1764 0·1702
			TABLE 2	6		
- x · 10	00 gms of	Titania + 0.8%	C as Glucos	se + 0.5%	$_{c}^{\prime}$ $P_{2}O_{5}$ as Tata	basic slag
0 30	- 11·4		0.60		·0 Al, Va, Th	reo, 0·2653
60		Threo, Ly.	Ly, 0.88	318 7	·0 Al, Va, Th Lv. Pro. C	Hu, Leu.
90	17.2	Pro, Giu, Leo	Ly, 1.0	492	Al, Va, Th Ly, Pro,	Glu, Leu.
120	18.4	Pro, Glu, Leu Al, Va, Threo Pro, Glu, Leu	, ∟у, г∨	445 8	3-8 Al, Va, Th Ly, Pro, C	nreo, 0·5066 Glu, Leu

TABLE 27 100 gms of Titania + 0.8% C as Glucose + 0.5% P_2O_5 as Trichinopoly rock phosphate

Period of exposure in days	Total nitrogen mgm.º/ ₀	Amino-acids identified (chromato- graphically)	Amount of amino acids with respect to glycine mgm.% (colorimetrically)	Total nitrogen mgm.%	Amino-acids identified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimet- rically)
_		Light			Dark	
0	- ·	-	·	_		
30	9.8	Al, Va, Gly, Threo, Ly.	0.4802	4·2 .	Al, Va, Gly, Threo.	0-1785
60	13.2	Al, Va, Threo, Pro, Leu, Glu		5.9	Al, Va, Three	o, 0·2832
90	15.0	Al, Va, Threo, Pro,Leu,Glu,A	Ly, 0•8545	7· 0	Ly, Pro, Leu Al, Va, Three	o. 0·3576
120	16.2	Al, Va, Three, Ly, Pro, Leu, Gl	0.8424	7:6	Ly, Pro, Leu, Al, Va, Thre Ly, Pro, Leu	o, 0·3522
			TABLE 28			
	10	0 gms of Zinc o	xide + 0.8%	Cas Wh	eat straw	
0	12.6			10.6		
60	20.6	Ly, Va, Glu, A	Al. 0.4535	12.6	T ~	
*	, •	Gly, Asp.		16.0	Ly, Glu, Va, Gly.	Al, 0.3196
120	23.3	Ly, Glu, Va, A	d, 0.8624	17.8	Ly, Glu, Va.	Al, 0.5698
180	24.7	Three, Asp, Le	l, 1.0869	18.3	Ly,Glu, Va,	1 1
		Threo, Asp, L	eu.	•	Threo, Asp.	11.0
			TABLE 29			
100 gms	of Zinc or	xide + 0.8% C		w → 0·5	0/ P O oo To	. 1
0	11.0	,		.,, , 0 5	/0 1 2 0 5 as 1 at	a basic slag
-	11.8		_	11.8		
60	23.7	Ly, Asp, Glu, Va, Al Threo,	1·0428 Pro:	17.0	Ly, Asp, Gl	u, 0.6295
14.0	27.2	Ly, Asp, Glu, Va, Al, Threo,	1.6046	18.9 -	Va, Al, Thro Ly, Asp, Glu	u, 0.9828
100	00.7	As, His.			Va, Al, Thr Pro.	eo,
180	28.7	Ly, Asp, Glu, Al, Threo, Pro, A	Va, 2·0665 S.His.	19.7	Ly, Asp, Glu	ı, 1·2806
		• •			Va, Al, Thre	o, Pro, His.

TABLE 30
100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P₂O₅ as Trichinopoly rock phosphate

		Amount of		
Period				Amount of
\mathbf{of}	Total	TATALO GOLOS	Total	Amino-acids amino-acids
	nitrogen		itrogen	identified WILL respect
in	mgm.%		under 07	(chromato- to glycine
days	870	graphically) mgm.% r (colorimet-	mgm.%	graphically) mgm. %
days		rically)		(colorimetri-
				cally)
		Light		Dark
0	12.4		12.4	
60	22 8	Ly, Asp, Glu, 0.8895	16.9	Ly, Asp, Glu, 0.5409
		Va, Al, Threo.		Ly, Asp, Glu, 0.5409 Va, Al.
1 2 0	26· 0	Ly, Asp, Glu, Va, 1.3790	18.7	
		Al, Threo, Pro.		Ly, Asp, Glu, Va, 0.8788 Al, Threo, Pro.
180	27.5	Ly, Asp, Glu, Va, 1.8150	19.5	Tr. As Cl. 77 1-180
		Al, Threo, Pro, Leu.	13 3	Ly, Asp, Glu, Va, 1.1325
		,,,,,		Al, Threo Pro.
		TABLE 31		
	10	0 gms of Ferric oxide + 0.8%	C as W	heat straw
0	12.6		12.6	_
60	19· 8		15.6	Al, Gly, Ly, Va. 0.2809
		Ly.		111, Gly, Ly, Va. 0 2009
120	$22 \cdot 4$	Al, Va, Glu, Ly, 0.7835	17.3	Gly Al Vo Tu A.FLOC
•		Threo, Asp.	1, 0	Gly, Al, Va, Ly, 9.5186
180	23.7	Al, Va, Glu, Ly, 0.9958	17.8	Three, Glu.
100	_0,	Threo, Asp.	17 0	Gly, Al, Va, Ly, 0.6408
		rinco, risp.		Threo, Glu.
		TABLE 32		•
100	gms of Fe	rric oxide + 0.8% C as Whea	t straw	+ 0.5% PoOr as Tata
	J	basic slag	•	1 - 0 /0 - 20 5 45 7 444
0	11.8		11.8	
60	22.7	Ly, Asp, Va, 0.9538	16.6	Ly, Asp, Glu, Va, 0.5815
		Glu, Al, Threo. Pro.		Al, Threo.
120	26.1	Ly, Asp, Glu, Va, 1.4876	18.5	Ly, Asp, Glu, Va, 0.9256
	201	Al, Threo, Pro, As.	100	Al, Three, Pro.
180	2 7·5	Ly, Asp, Glu, Va, 1 9251	19.3	Ty Asp Cly Vo 1.9249
100	47 3	Al, Threo, Pro,	13 3	Ly, Asp, Glu, Va, 1.2348
				Al, Threo, Pro, His.
		His, As.	* -	
		TABLE 33		
1	00 gms of	Ferric oxide + 0.8% C as Wh	neat stra	$aw + 0.5\% P_2O_s$ as
	0	Trichinopoly rock p	hospha	te
0	12.4	· - 1	2.4	
60	21.9		16•5	Ly, Asp, Glu, Al, 0.5116
•		Va, Al, Threo.		Va.
120	25.0	Ly, Asp, Glu, Va, 1.2752	18•2	Ly, Asp, Glu, Al, 0.8796
140	200	Al, Threo, Pro.		Va, Threo.
180	26•4	Ty App Cly Vo 1:6506	18•9	Ly, Asp, Glu, Va, 1.0534
100	20°4		100	Al, Threo, Pro.
-		Al, Threo, Pro,Leu.		,,

TABLE 34
100 gms of Titania + 0.8% C as Wheat straw

		rod Bris or Trea	and the second state of the second se	SALAMAN MARKET AND MARKET ASSESSMENT	Care of the contract of the co	Amount
			Amount of	,		Amount of amino-acids
Period		Amino-acid	amino-acids		Amino-acids	with respect
of	Total	identified	to glycine	nitrogen	identified	to glycine
exposure	nitrogen	(chromato-	mgm.%	mgm.%	(Cin omato-	mgm.%
in	$mgm_{*/0}^{0/}$	graphically)	(colorimetri-		graphically)	(colorimetri-
days		•	cally)		•••	cally)
-, -, -, -, -, -, -, -, -, -, -, -, -, -		Light		AND DESCRIPTION OF THE PROPERTY OF THE PERSON OF THE PERSO	Dark	
		Light		12.6		~
0	12.6	In Clar Clar	0.4807	16.1	Ly, Glu, Va,	Al, 0.3542
60	20.9	Ly, Glu, Gly, Al, Asp.	0 100		Gly.	,
190	23.7	Ly, Gly, Va,	1. 1.8998	18.0	Ly, Glu, Va,	Al, 0.6125
120	23 1	Threo, Asp, L	eu.		Asp, Threo. Ly, Glu, Va,	
180	25.1	Ly, Glu, Va A	1, 1.1549	18.5	Ly, Glu, Va,	Al, 0.7406
100		Threo, Asp, L	eu.		Asp, Threo.	
		, , ,				
			TABLE 35		/ D O T-4	. 1 ! . 1
100 gm	s of Titar	nia + 0.8% C a	s Wheat stra	w + 0.3%	$_{0}$ $P_{2}O_{5}$ as 1 at	a basic slag
0	11.8	•		11.8	***	_
60	24.1	Ly, Asp, Glu,	1.1246	17.2	Ly, Asp, Glu	
	ű.	Va, Ar, As, T	hreo,		Al. Threo, P	ro.
		Pro.	1	10.0	T. Am Ch	. Va 1.0867
120	27.7	Ly, Asp, Glu,	Va, 1.0083	19.2	Ly, Asp, Gh Al, Threo, P	
		As, Ar, Threo	,		Ai, inico, i	r () .
100		Pro, His.	V2 2:1602	20.1	Lv. Asp. Gli	a, Va, 1.3459
180	29•2	Ly, Asp, Glu,	va, 2 1002	20 1	Al, Threo, F	Pro.
		As, Ar, Three Pro, His.	' ,		His.	- ",
		110, 1115.			,	
			TABLE 3			. i .
100 gr	ms of Tita	nia + 0.8% C	as Wheat str	raw + 0.5	$^{\circ}\%$ P_2O_5 as 1 i	cicninopoly
	10.4		rock phosph			
0	12.4	A1 -37- X C	- 0.0551	12·4 17·1	Al Ty Va	Glu, 0.5815
60	23.3	Al, Va, Ly, C	iu, 0.933 i	1/ 1	Asp, Threo.	Giu, 0 3013
100	26.6	Threo, Asp. Al, Ly, Va, A	cn 1:4631	18.9	Al Ly Va	Asp, 0.9456
120	-, 200	Glu, Threo, Hi	s Pro	,100	Glu, Threo,	Pro.
180	28.2	Al, Ly, Va, A	sp. 1:9176	19.8	Al, Ly, Va,	
100	20 4	Glu, Three, I		10 0	Glu, Threo,	Pro.
			TABLE 37		•	,
		100 gms of Zir	c oxide + 0	.8% C as	Sawdust	
0	8.4			8.4	. v	_
60	13.7	Al,Gly,Va,Th	rco. 0.2877	10.6	Al, Gly, Va	0.2125
120	15.5	Al, Glu, Va,	0.5578	11.8	Al, Gly, Va	0.3658
		Threo, Leu.			Threo, Leu.	
180	16.9	Al, Glu, Va,	0 ·7269	12.3	Al, Gly, Va	
		Threo, Leu.			Threo, Leu	

TABLE 38

100 gms of Zinc oxide + 0.8% C as Sawdust + 0.5% P₂O₅ as Tata basic slag

-						
Period of exposure in days	Total nitrogen mgm.%	Amino-acids id ntified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	Total nitrogen mgm.%	graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)
	*	Light			Dank	
0	7.9	_		7.9	Dark	
60	16.4	Al, Va, Glu,	0.7056	11.5	Al Va Ol-	0.4145
00	101	Asp. Three.	0 7030	113	Al, Va, Glu, Asp.	, 0.4145
120	19.2	Asp, Threo. Al. Va, Asp,	1.1133	13.0	Al, Va, Glu,	0.6638
		Glu, Threo, L		700	Asp, Threo.	0 0038
180	20.8	Al, Va, Asp, Glu, Threo, L	1 4769	13•7	Al, Va, Glu, Asp, Threo.	0.8769
			TABLE 39		•	
100 gn	os of Zinc	oxide + 0.8%		t 4 0.5 %	PO as Triol	sinonoly
100 81	13 01 21110	ox. ac 1 0070	rock phospha	te	, 1 ₂ O ₅ as 1 rici	шюрогу
0	8.3		-	8 ·3	· _	-
60	15.4	Gly, Al, Glu, Va, Threo.	0.5859	11.3	Al, Gly, Va, Glu.	0.3503
120	17.9	Al, Glu, Va, Threo, Asp.	0.9508	12.5	Al, Gly, Glu, Va, Threo.	0.5753
180	19.2	Al, Glu, Va, Threo, Asp, Le	1·2485 u.	13.2	Al, Glu, Va, I hreo, Asp.	0.7395
•		•			· •	
			TABLE 40		. *	
	100	gms of Ferric	oxide + 0.89	/ _α C as Sa	ıwdust	
0	8.4	٠ - سف	_	8.4	•	~ *
60	13.1	Al, Va, Gly, Thr	eo.0·2358	10.4	Al, Va, Gly.	0.1768
120	14.8	Al, Va, Gly, Threo.	0.4985	11.5	Al, Va, Gly, Threo.	0.3335
180	16.0	Al, Va, Gly, Threo, Leu.	0.6413	11.9	Al, Va, Gly, Threo.	0.4168
			TABLE 41		•	
100 gms	of Ferric	oxide + 0:8%		+ 0.5%	P ₂ O ₅ as Tata	basic slag
0	7.9	/0		7.9	_	
6U		Al,Va,Glu,Thr	eo.0·6286	11.0	Al, Va, Glu, A	sp. 0.3815
120		Al, Va, Asp, Gl		12.6	Al, Va, Glu,	Asp,0.6178
•=~		Leu, Threo.	,		Threo.	
	19.9	Al, Va, Asp,Gl		13.3	Al, Va, Glu,	0.8379

TABLE 42

100 gms of Ferric oxide + 0.8% G as Sawdust + 0.5% P₂O₆ as Trichinopoly rock phosphate

Period of exposure in days	Total nitroge n gm.%		Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	Total nitrogen mgm.°;	Amino-acids am identified (chromato-graphically) (co	amount of nino-acids th respect of glycine mgm.% clorimetrically)
		Light			Dark	
0	8.3		• 🕳	8.3	_	_
60	14.7	Al, Gly, Glu, Va, Threo.	0.5146	11.0	Al, Gly, Va, Glu,	0.3815
120	17.1	Al, Glu, Va,	0.8379	12.2	Al, Gly, Glu,	0 ·536૧
180	18.3	Threo, Asp. Al, Glu, Va,	1.1041	12.8	Va, Threo. Al, Glu, Va,	0.7035
		Three, Asp, L	eu,	•	Asp, Threo.	
			TABLE 13			
		. 100 gms of Tit	ania + 0.8%	C as Saw	dust	
	0.4	, 100 gms 01 11	ama , 00%		aust	
0	8.4		- -	8.4	A 1 X Y . C 1 1	_
60	14.0	Al, Va, Three	,Glu.0.3125	10.8	Al, Va, Gly, Th	rdo. 0•2168
120	15.8	Al, Va, Three		12.0	Al, Va, Threo	, 0.3858
		Glu, Leu, Asp	•		Glu, Leu.	
180	17-1	Al, Va, Threo Glu, Leu, Asp	, 0.7528	12.5	Al, Va, Threo Glu, Leu.	. 0.5105
		, <u>-</u> <u>-</u> <u>-</u> -	,		, , , , , , , , , , , , , , , , , , , ,	
•			TABLE 44			• .
و 100	ms of Ti	itania $+ 0.8\%$ (as Sawdust	+ 0.5% P	₂ O ₅ as Tata basic	slag
0	7.9	- '`	_	7.9	_	-
60	16.8	Al, Va, Glu,	Asp. 0.6392	11.7	Al, Va, Glu,	0.4329
		Threo, Leu.			Asp, Threo.	0 .040
120	19.7	Al, Va, Glu,	Asp. 1-1625	13.2	Al, Va, Glu, Asp	0.6864
•		Threo, Leu, A	r 1020	10 2	Threo, Leu.	, 0 0004
180	21.3	Al, Va, Glu,		13.9		0.0025
	-1.0	Threo, Leu, A	72h, 1 2240	13 3	Al, Va, Glu,	0 9035
		Imco, Ecu, A	·I.		Asp, Ihreo, Le	su.
	*					
		0.7	TABLE 45			
100	gms of T	itania + 0.8%	C as Sawdust rock phospha	+ 0.5%]	205 as Trichinol	ooly
0 2	8.3			8•3		
60	15.7	Al, Glu, Va,	Asp. 0.6225	-	A137 O1	0.0500
00		Threo.	13p, 0 0403	11.5	Al, Va, Glu,	0.3568
120	18.3		A 0.0000	10.0	Threo.	0.00
120	103	Al, Glu, Va,	usb, 0.2882	12.8	Al, Va, Glu,	0.6144
180	19-7	Threo, Leu.	1 0100		Threo, Leu.	
100	15.7	Al, Glu, Va,	rsb, 1.3199	13.5	Al, Va, Threo	, 0· 7 838
		Threo, Leu, A	r.		Glu, Leu, Asp.	

Discussion

The experimental results recorded in the foregoing pages show that when organic materials, like Glucose, Wheat straw and Sawdust are mixed with sand or metallic oxides as surface, amino-acids are produced in small amounts. It is also observed that the number as well as the amount of amino-acids produced is greater in the sets exposed to light than in those kept in the dark.

It is observed that the rate of increase in total nitrogen is in the following order with different energy materials utilised:

Glucose > Wheat straw > Sawdust

From these observations it is clear that the increase in nitrogen is directly related to the oxidation of carbon, since the oxidation of carbon also takes place in the same order with the said energy materials⁹. With respect to metallic oxides as sarfaces, it is of the following order:

$$TiO_2 > ZnO > Fe_2O_3$$
.

The difference in activity with different metallic oxides as surfaces is due to their difference in the power of Photo-sensitization, showing thereby the marked influence of light absorption on nitrogen fixation and the subsequent utilisation of fixed nitrogen in the formation of amino-acids.

From our experimental results it is also observed that in the systems containing Gluco e as energy material, the amount of amino acids gradually increases in the beginning but shows a slight decrease at the final stage. On the other hand, in the systems with Wheat straw or Sawdust as energy materials, the amino-acids appear gradually and instead of decrease at the final stage, the amount of amino. acids is greatly increased. The observations show that in the systems with Glucose, the amino-acids are synthesised from the fixed nitrogen formed by the oxidation of the energy material aided by the absorption of light, since there is no original protein or amino acid in the material and the decrease of amino acids can be attributed to the fact that amino acids being readily oxidisable undergo ammonification and nitrification aided by light radiations and the net result being a tendency towards loss at the final stage. On the other hand, in the systems with Wheat straw or Sawdust, the amino-acids may be partly derived from the protein originally present in these energy material, because, the original protein of the materials can undergo hydrolysis in the course of time with the result that amino-acids derived from the proteins show their presence in large quantities at the final stage.

It is very interesting to note from our experimental results that some amino-acids which are formed in the beginning, completely disappear afterwards and new ones are formed. This is due to the fact that amino-acids, synthesised in the beginning, do not remain in the system for long, they constantly undergo decomposition and ammonification aided by the absorption of light while new ones are formed. Recently, Bahadur¹⁰ has observed that if under sterilized conditions a mixture of paraformaldehyde, potassium nitrate, ferric chloride and water is exposed to artificial light from a 500 watt electric bulb, a number of amino-acids are synthesised in the mixture. According to him most of the amino-acids formed in the beginning disappear after sometime and new ones are formed. According to Santamaria¹¹. Furshine red helps in this synthesis.

Moreover, the foregoing data show that in the systems where phosphates are added, the amount as well as the number of amino-acids increases to a greater extent in contrast to those containing very little or no phosphate. This observa-tion further lends support to the fact that phosphates form stable complexes with proteins both in soil, plant tissue as well as in vitro12, thus making protein or amino-acids molecule much more stable towards oxidation and decomposition. This observation has important bearing on the soil processes. Soils containing greater amounts of phosphate are richer in nitrogen according to Thompson's Biswas and Das's, in order to study the excretion of free amino-acids in soil during the growth of a fodder legume Berseem (Trifolium alexandrium), found that soils from the plots growing Berseem were distinctly richer in their content of free amino-acids than those of the fallow soil, but what is more interesting they detected Arginine under Berseen with phosphate fertilisation.

Furthermore, a close survey of the experimental results reveals that the amino-acids produced by the slow oxidation of the said organic materials are Glycine, Alanine, Valine, Aspartic acid, Lysine, Glutamic acid, Threonine, Proline, Histidine, Arginine, Asparagine and Leucine. Amongst these, aspartic acid, glutamic acid and lysine, threonine, proline and leucine were found in abundance; Alanine, Valine and Glycine were mostly found in the system with little or no phosphate and the rest in the systems containing phosphate in greater quantity. Of all these amino-acids Asparagine was least detected.

References

er (M. 2). Barriera (M.

dan derikan dilak Kining Patandan (1988) Mengelah di Kabupatèn dan dilak berajak dilak Mengelah dilak dilak

- Lochhead, A. G. and Thexton, R. H. Can. J. Research, C 25, 20-26, 1947. Wallach, R. H. and Lochhead, A. G. Can. J. Research, 28, i-6, 1950.
- 3. Gho h, B. P. and Burris, R. H. Soil Sci., 70, 187-203, 1950.
 4. Bremner, J. M. Biochem. J., 47, 538-542, 1950.

 - 5. Dodd, C. C., Fowden, L. and Pearsall, W. H. J. Soil Sci., 4, 59-71, 1953.
 - 6. Payne, T. M. B., Rouatt, J. W and Katznelson, H. Soil Sci., 82, 521-524, 1956.
 - Putnam, H. D. and Schmidt, E L. Soil Sci., 87, 22-27, 1959.
 Harding and Mclean. J. Biol. chem., 20, 217, 1915; 24, 503, 1916.

 - 9. Bhat, G. N. D Phil. Thesis, Allahabad Univ. Chap. III, 1963.
- 10. Bahadur, K. Natur, 173, 1141, 1954.
 - 11. Santamaria, L. Instt. di Patologia Generale, Milano, Italy, Private communication, June, 11, 1954.
- 12. Dhar, N. R., and Ghosh, G. P. Proc. Nat. Acad. Sci., India, 25-A(6), 1956
 - Thompson, L. M. Fertility, 155-157, 1952 13.
 - 14. Biswas, T. D. and Das, N. B. J. Indian Soc. Soil Sci., 5, 31, 1957.

Some Generating Functions for Jacobi Polynomials

By

G. K. GOYAL

Department of Mathematics, University of Rajasthan, Jaipur [Received on 25th April, 1968]

R. K. Saxena (3) has obtained a generating function for Jacobi polynomial $P = \binom{\alpha, \beta}{n}(x)$. Here two more generating functions are obtained and interesting particular cases given.

1. Introduction

The object of the present paper is to obtain two new generating functions for the Jacobi polynomials defined by (2, p. 268)

$$P_n^{\alpha,\beta}(x) = {\binom{\alpha+n}{n}}_2 F_1\left(-n, n+\alpha+\beta+1; \alpha+1; \frac{1-x}{2}\right)$$
 where $|1-x| < 2$.

The following symbols have been used throughout this paper.

$$(a)_{m} = \Gamma(a+m)/\Gamma(a)$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{\Gamma(a+1)}{\Gamma(b+1)\Gamma(a-b+1)}$$

Also that the Appell's hypergeometric function of two variables defined by (1, p. 224)

(1.2)
$$F_4(\alpha, \beta; \gamma, \gamma'; x, y) = \sum_{\substack{n,n=0}\\ m,n=0}^{\infty} \frac{(\alpha'_{m+n}(\beta)_{m+n}}{(\gamma)_m (\gamma')_n |\underline{m}|_n} x^m y^n$$

where $|x|^{\frac{1}{2}} + |y|^{\frac{1}{2}} < 1$

reduces to the form (1, p. 238)

(1·3)
$$F_{4}[\alpha, \gamma + \gamma' - \alpha - 1; \gamma, \gamma'; x(1 - y), y(1 - x)] = {}_{2}F_{1}(\alpha, \gamma + \gamma' - \alpha - 1; \gamma; x). {}_{2}F_{1}(\alpha, \gamma + \gamma' - \alpha - 1; \gamma'; y)$$

The following generating functions are developed in the next section.

(1.4)
$$\sum_{n=0}^{\infty} \frac{\Gamma(\alpha+2)}{\Gamma(2n+\alpha+\beta+1)} (a)_n (b)_n (1+\alpha+n)_{\beta} y^{-n} P_n^{\alpha,\beta} (x) \times F_4(a+n,b+n;a+\beta+2n+2,1+\nu;y,w)$$

$$=F_4(a,b;1+\alpha,1+\nu;\frac{y(1-x)}{2},w)$$

where $|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1, |1-x| < 2.$

(1.5)
$$\sum_{n=0}^{\infty} \frac{(2n+\alpha+\beta+1) \Gamma(\alpha+1)}{\Gamma(2\alpha+2\beta+2n+3)} \frac{(a)_n (b)_n (\alpha+n+1)_{\beta}}{c^{2n}} P_n^{a_n \beta} (x) \times F_4(a+n, b+n; \alpha+\beta+2n+2, 1+\nu; y, w)$$

$$= F_4(a, b; 1+\alpha, 1+\nu; \frac{y(1-x)}{2}, w)$$

where $|y|^{\frac{1}{k}} + |w|^{\frac{1}{k}} < 1, |1-x| < 2$

2. Development of generating functions

To obtain the generating function (1.4) we start with Watson's formula (5, p. 140)

(2.1)
$$\sum_{n=0}^{\infty} \frac{(2n+\xi) \Gamma(n+\xi)}{\frac{n}{2}} {}_{2}F_{1}(n+\xi,-n;\mu+1;x^{2}) J_{2n+\xi} (z)$$

$$= \Gamma(\mu+1) (z/2)^{\xi-\mu} x^{-\mu} J_{\mu} (xz)$$

where $\xi > 0$, $\mu \ge \xi - 1$, 0 < x < 1.

On multiplying both sides of (2.1) by $z^{\lambda-1} \int_{\nu} (\delta z) k_{\rho}(\gamma z)$ and integrating w.r.t. z in $(0, \infty)$ with the help of the integral (2, p. 373)

(2.2)
$$\int_{0}^{\infty} x^{\lambda-1} J_{\mu}(\alpha x) \tilde{J}_{\nu}(\beta x) K_{\rho}(\gamma x) dx$$

$$= \frac{2^{\lambda-2} \alpha^{\mu} \beta^{\nu} \gamma^{-\lambda-\mu-\nu} \Gamma_{\frac{1}{2}}(\lambda+\mu+\nu-\rho) \Gamma_{\frac{1}{2}}(\lambda+\mu+\nu+\rho)}{\Gamma(1+\mu) \Gamma(1+\nu)}$$

$$\times F_{4} \left(\frac{\lambda+\mu+\nu-\rho}{2} , \frac{\lambda+\mu+\nu+\rho}{2} ; 1+\mu, 1+\nu; -\frac{\alpha^{2}}{\gamma^{2}}, -\frac{\beta^{2}}{\gamma^{2}} \right)$$

where $R(\lambda + \mu + \nu) > |R(\rho)|$, $R(\gamma) > |I_m(\alpha)| + |I_m(\beta)|$

we have

(2.3)
$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\xi)}{\frac{n}{2} \Gamma(2n+\xi)} \left(\frac{\lambda+\xi+\nu-\rho}{2} \right)_{n} \left(\frac{\lambda+\xi+\nu+\rho}{2} \right)_{n} \gamma^{-2n} \times {}_{2}F_{1}(n+\xi,-n;1+\mu;x^{2}) \times F_{4}\left(\frac{\lambda+\nu+\xi-\rho}{2} + n, \frac{\lambda+\nu+\xi+\rho}{2} + n; 1+\xi+2n, 1+\nu; -\frac{1}{\gamma^{2}}, -\frac{\delta^{2}}{\gamma^{2}} \right)$$
[534]

$$=F_4\left(\frac{\lambda+\xi+\nu-\rho}{2},\frac{\lambda+\xi+\nu+\rho}{2};1+\mu,1+\nu;-\frac{x^2}{\gamma^2},-\frac{\delta^2}{\gamma^2}\right)$$

$$R(\lambda+\xi+\nu)>|R(\rho)|,R(\gamma)>|I_m(\alpha)|+|I_m(\delta)|$$

where

If we now replace $\frac{\lambda+\xi+\nu-\rho}{2}$ by $a, \frac{\lambda+\xi+\nu+\rho}{2}$ by b, x^2 by $x, -1/\gamma^2$ by y

and $-\delta^2/\gamma^2$ by w, we see that

(2.4)
$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\xi)}{\Gamma(2n+\xi)} (a)_n (b)_n y^{-n} {}_{2}F_{1}(n+\xi,-n;1+\mu;x)$$

$$\times F_{4}(a+n,b+n;1+\xi+2n,1+\nu;y,w)$$

$$= F_{4}(a,b;1+\mu,1+\nu;xy,w)$$

where

$$|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1$$
 and $|x| < 1$

(1.4) immediately follows from (2.4) on using (1.1).

Following a similar procedure and using an integral given by Sharma (4)

(2.5)
$$\int_{0}^{\infty} x^{k-1} J_{\rho}(ax) \int_{\sigma}(bx) K_{\mu}(cx) dx$$

$$= \frac{2^{k-2} a^{\rho} b^{\sigma} \Gamma_{\frac{1}{2}}(k+\sigma+\mu+\rho) \Gamma_{\frac{1}{2}}(k+\sigma-\mu+\rho)}{\Gamma(1+\rho) \Gamma(1+\sigma) c^{k+\rho+\sigma}}$$

$$\times F_{4} \left(\frac{k+\sigma-\mu+\rho}{2}, \frac{k+\sigma+\mu+\rho}{2}; 1+\rho, 1+\sigma; -\frac{a^{2}}{c^{2}}, \frac{b^{2}}{c^{2}} \right)$$

where

$$R(k+\sigma\pm\mu+\rho) > 0$$
, $a > 0$, $R(c-b) > 0$.

we get (1.5) on interpreting the result by (1.1).

3. Particular Cases

If we write 2y for y, $v+\alpha-a+1$ for b and x(1-y) for w in (1.4) and (1.5) and make use of (1.3), we get

(3.1)
$$\sum_{n=0}^{\infty} \frac{(n+\alpha+\beta+1) \Gamma(\alpha+2)}{\Gamma(2n+\alpha+\beta+1) \Gamma(\alpha+n+1)} (a)_n (\nu+\alpha-a+1)_n (2y)^{-n} P_n^{\alpha,\beta} (x)$$

$$\times F_4(a+n, \nu+\alpha-a+n+1; 2+\alpha+\beta+2n, 1+\nu; 2y, x(1-y))$$

$$= {}_2F_1(a, \nu+\alpha-a+1; 1+\nu; x) {}_2F_1(a, \nu+\alpha-a+1; 1+\alpha; y)$$
where $|1-x| < 2, |y| < 1$
and

$$(3\cdot2) \sum_{n=0}^{\infty} \frac{(2n+\alpha+\beta+1) \Gamma(\alpha+\beta+n+1) \Gamma(\alpha+1)}{\Gamma(2\alpha+2\beta+2n+3) \Gamma(\alpha+n+1)} (a)_n (\alpha-\alpha+\nu+1)_n e^{-2n} P_n^{\alpha,\beta}(x)$$

$$\times F_4(a+n, \nu+\alpha-a+1+n; \alpha+\beta+2n+2, 1+\nu; 2y, x(1-y))$$

= ${}_2F_1(a, \nu+\alpha-a+1; 1+\nu; x) {}_2F_1(a, \nu+\alpha-a+1; 1+\alpha; y)$

where |1-x| < 2, |y| < 1respectively.

Lastly by virtue of the formula

(3.3)
$$P^{\alpha-\frac{1}{2}}, \quad \alpha^{-\frac{1}{2}}(x) = \frac{(\alpha+\frac{1}{2})_n}{(2\alpha)_n} \quad c_n^{\alpha}(x)$$

from (1.4) and (1.5) we obtain

$$(3.4) \qquad \sum_{n=0}^{\infty} \frac{\Gamma(\alpha + \frac{3}{2}) \ \Gamma(2\alpha)}{\Gamma(\alpha + \frac{1}{2}) \ \Gamma(2\alpha + 2n)} \ (a)_n \ (b)_n \ y^{-n} \ c \frac{\alpha}{n} \ (x)$$

$$\times F_4(a+n, b+n; 2\alpha + 2n+1, 1+\nu; y, w)$$

$$= F_4\left(a, b; \alpha + \frac{1}{2}, 1+\nu; \frac{y(1-x)}{2}, w\right)$$
where $|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1, 1, |1-x| < 2$

$$(3.5) \qquad \sum_{n=0}^{\infty} \frac{(2n+2\alpha) \ \Gamma(2\alpha)}{\Gamma(4^{1/2}+2n+1)} \ (a)_n \ (b)_n \ c^{-2n} \ c \frac{\alpha}{n} \ (x)$$

$$\times F_4(a+n, b+n; 2\alpha + 2n+1, 1+\nu : y, w)$$

$$= F_4\left(a, b; \alpha + \frac{1}{2}, 1+\nu; \frac{y(1-x)}{2}, w\right)$$
where $|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1, |x| < 1$

respectively.

Acknowledgement

The author is highly thankful to Dr. K. C. Sharma, University of Rajasthan, Jaipur, for his help in the preparation of the paper.

References

- Erdelyi et al. Higher Transcendental Functions, Vol. 1, 1954. Erdelyi et al. Tables of Integral Transforms, Vol. 2, 1954. Saxena, R. K. A generating function for Jacobi polynomials. Canad., Math. Bull., 9(2), 1966.
 Sharma, K. C. Theorems relating Hankel and Meijer's Bessel trans-
- iorms. The Proc. of the Glas. Math. Assn., 6(2), 1963.
- 5. Watson, G. N. Theory of Bessel functions, 1944.

Photosynthesis of Amino-acids from a mixture of nitrates and glucose or nitrates and Citric acid

By

N. R. DHAR & G. N. BHAT

Sheila Dhar Institute of Soil Science, Allahabad University, Allahabad

[Received on 29th April, 1968]

The influence of light on the formation of the green colour of Plants and its bleaching action in the dark were probably noted by Aristotle¹. Anderson² observed that the amount of nitrate found in the plants would depend upon the time of the day. According to him, a plant "Solanum dulcamera" showed considerably less nitrate in the morning than later in the daytime. Oparin³ Bernal⁴ and Urey⁵ have stressed the idea that life is based on organic compounds which were formed when methane, ammonia, water and hydrogen were the components of the atmosphere. Miller⁶ succeeded in testing this hypothesis, producing amino-acids synthetically by circulating methane, ammonia, water and hydrogen in electric discharge.

Bahadur⁷ observed that when an aqueous mixture of paraformaldehyde and potassium nitrate in the presence of Ferric chloride as a catalyst is exposed to sunlight about a dozen of amino-acids are formed. It has been found that the hydrogen ion concentration of the mixture has a great influence on the nature of the amino-acids formed. Depending upon the pH value of the mixture and the period of exposure, different amino-acids are found to be present in the mixture and what is more interesting a number of amino-acids in the beginning disappear and new ones are formed.

In the present work an attempt has been made to identify, separate and estimate the amino-acids, synthesised from a mixture of nitrates and glucose, or nitrates and Citric acid with and without dicalcium phosphate in the presence of titania as a photo-sensitizer.

Experimental

10 cc M/2 solutions of each ammonium, potassium and sodium nitrates together with 10 cc M/2 solutions of glucose or Citric acid were taken in 100 ml. Pyrex conical flasks. 0.1 gm. titania was added to each of the flasks, as photosensitizer. In another set of similar conical flasks, in addition to the above substance, 0.5 gm. of dicalcium phosphate was also added. Another identical set of flasks containing the above substances with and without dicalcium phosphate was also taken.

One set of flasks was exposed to light under 100 watt. electric bulb and the other set was placed beside the exposed flasks, covered with a black cloth. A thermometer was hung over the sets in order to record the temperature.

After definite intervals of time, definite portions of solutions were filtered and the filtrate was analysed for identification of amino-acids employing simple paper chromatography (Circular as well as two dimensional). Quantitative estimations were carried out colorimetrically.

Note: In the results following abbreviations have been used for aminoacids.

Glycine = Gly
Alanine = Al

Valine = Va
Proline = Pro
Histidine = Ly

Arginine = Ar.
Aspartic acid = Asp
Asparagine = As
Glutamic = Glu
Leucine = Leu
Threonine = Threo

TABLE 1

10 cc M/2 Ammonium nitrate + 10 cc M/2 Glucose + 0·1 gm. Titania

Period of exposure in hours	chromato- graphically	Amount of amino-acids with respect to glycine m.gm. colorimetrically	Amino-acids identified chromato-graphically	Amount of amino acids with respect to glycine m.gm. colorimetricall
8.	Light Ly, Al, Va, Gly	0.0475	Dark Al, Va, Gly	Traces
16. 24.	Ly, Al, Va, Gly Ly, Al, Va, Gly, Thr	0.0907	Al, Va, Gly, Ly	0.0612
32.	Ly, Al, Va, Gly, Thr	co 0·1598	Al, Va Gly, Ly Al, Va, Gly, Ly,	0.0926 Threo 0.1125
40. 48.	Ly, Al, Va, Threo, P Pro, Ly, Va, Al, Thr		Threo, Al, Va, G Al, Va, Ly, Thre	Gly, Ly 0•1258 60 0•1065

TABLE 2

10 cc M/2 Potassium nitrate + 10 cc M/2 Glucose + 0·1 gm. Titania

	Light		Dark	
8.	Al, Va, Gly	Traces	Al, Gly	Traces
16.	Al, Va, Gly, Ly	0·0 7 95 ·	Al, Gly, Va	0.0565
24.	Al, Va, Gly, Ly	0.1187	Al, Gly, ∨a	0.0863
32.	Al, Va, Gly, Ly, Threo	0.1455	Al, Gly, Va, Ly	0.1038
40.	Al, Va, Ly, Threo	0.1201	Al, Gly, Va, Ly	0.1152
48.	Al, Va, Ly, Threo	0.1016	Al, Va, Ly	0.0975

TABLE 3

10 cc M/2 Sodium nitrate + 10 cc M/2 Glucose + 0-1 gm. Titania

	Light		Dark	
8. 16. 24. 32. 40.	Al, Va, Gly Al, Va, Gly Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo Al, Va, Ly, Threo	Traces 0.0705 0.1073 0.1288 0.1092	Al, Gly Al, Gly Al, Gly, Va Al, Gly, Va, Ly Al, Gly, Va, Ly	Traces 0.0457 0.0731 0.0865 0.0966
48.	Al, Va, Ly, Threo	0.0925	Al, Va, Ly	0.0835

10 cc M/2 Ammonium nitrate + 10 cc M/2 Glucose + 0.5 gm. dicalcium phosphate + 0.1 gm. Titania

Period of exposure in hours		ide chi	entif roma		a v to g	Amount of mino-acids vith respect lycine m. gr primetrically			mino-aci identified chromato graphica	1	ami with to gly	nount of ino-acids a respect cine m.gm. imetrically
			Ligh	ı t					Dari	k		y
8.					Γ hreo	0.0556			Va, Gly,			0.0405
16.	Al,	Va,	Ly,	Thre	o, Pro	0.1052	Α	1,	Va, Gly,	Ly		0.0797
24.	Al,	Va, Glu	Ly,	Three	o, Pro	0.1471	A	l,	Va, Ly, T	hre	o, Pro	0.1093
32.	Al,	Va, Glu.			o, Pro,	0.1795	A	1, P	Va,Ly, G ro	lu,	Threo,	0.1308
40.	Al,		Ly,	Thre	o, Pro,	0.2096	A		Va,Ly, Ț lu	hre	o, Pro,	0.1495
48.	Va		Th		ro, Glu	, 0.1835	A		Va, Ly, T lu	'hre	o, Pro,	0.1319

TABLE 5

10 cc M/2 Potassium nitrate + 10 cc M/2 Glucose + 0.5 gm. Dicalcium phosphate + 0.1 gm. Titania

	Light		Dark	
8. 16. 24 32.	Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo Al, Va, Ly, Threo, Pro Al, Va, Ly, Threo, Pro,	0·0515 0·0998 0·1397 0·1685	Al, Va, Gly Al, Gly, Va, Ly Al, Va, Gly, Ly, Thre Al, Va, Gly, Ly, Pro,	Traces 0.0718 eo 0.0991 0.1194
40. 48.	Glu Al, Va, Ly, Threo, Pro, Gly Va, Ly. Threo, Pro, Glu		Threo Gly, Al, Va, Ly, Three Pro Al, Va, Ly, Threo, Pro	

TABLE 6

10 cc M/2 Sodium nitrate + 10 cc M/2 Glucose + 0.5 gm. Dicalcium phosphate + 0.1 gm. Titania

	Light		Dark	
8. 16. 24.	Al, Va, Gly Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo Al, Va, Ly, Threo, Pro,	Taaces 0.0775 0.1127 0.1406	Al, Gly Traces Al, Gly, Va 0 0695 Al, Gly, Va, Ly 0 0955 Al, Gly, Va, Ly, Threo, 0 1143	
32. 40.	Glu Va, Ly, Threo, Pro, Glu	0.1654	Pro Gly, Al, Va, Ly, Threo, 0.1295	
48.	Va, Ly, Threo, Pro, Glu	0.1463	Al, Va, Ly, Threo, Pro, 0.1156	

TABLE 7
10 cc M/2 Ammonium nitrate + 10 cc M/2 Citric acid + 1 gm. Titania

Period of exposure in hours	Amino-acids identified chromato- graphically to	Amount of amino-acids with respect glycine m. gm olorimetrically	Amino-acids identified chromato- graphically	Amount of amino-acids with respect to glycine m. gm colorimetrically
	Light		Dark	
8. (Gly, Al, Va,	0.0453	Al, Gly	(TD
16.	Gly, Al, Va, Ly	0.0885	Gly, Al, Va	Traces
24.	Al, Va, Gly, Ly, Threo	0.1269	Gly, Al, Va, Ly	0.0504
32.	Al, Va, Gly, Ly, Threo, Pro	0.1554	Gly, Al, Va, Ly,	0.0803
40.	Al, Va, Ly, Threo, Pro	0.1275	Gly, Al, Va, Ly,	Three 0.1112
48.	Al, Va, Ly, Threo, Pro	0.1076	Al, Va, Gly, Thr	rureo 0 1119
	, , , ,, ,,,	TABLE 8	,,,,	eo 0·0928
10 cc	M/2 Potassium nitrate		litric acid 1 0.1	was This
10 00	Light			gm. 1 itania
8.	Al, Va, Gly	T	Dark	_
16.	Al, Va, Gly		Al, Gly	Traces
24.	Al, Va, Gly, Ly,	0.1004	Al, Gly, Va	0.0449
32. A	Al, Va, Gly, Ly, Threo	0.1094	Al, Gly, Va	0.0732
	Al, Va, Ly, Threo		Al, Gly, Va, Ly	0.0903
48. A	Al, Va, Ly, Threo	0.0927	Al, Gly, Va, Ly Al, Va, Ly	0.1014
10.	11, va, 11, 111100		ai, va, Ly	0.0835
10	M/O Cadiana miamata k	TABLE 9		
10 cc	M/2 Sodium nitrate +	10 cc M/2 Cit	ric acid + 0.1 gn	n. Titania
0	Light	m.	Dark	
	Al, Gly	Traces	Al, Gly	Traces
16.	Al, Gly, Va		Al, Gly	Γ races
24. A	Al, Gly, Va, Ly,	0.0979	Al, Gly, Va	0.0683
32. A	Al, Gly, Va, Ly, Threo Al, Gly, Va, Ly, Threo	0.1188 A	Al, Gly, Va, Ly,	0.0811
40. A	M. Wa, Ly, Inreo		Al, Gly, Va, Ly	0.0901
40.	Al, Va, Ly, Threo		A _I , Va, Ly,	0.0749
10 oo M	/O A	TABLE 10		
10 cc wi		$+ 10 \text{ cc M/2 G}_1$	tric acid + 0•5 gi Titania	n. Dicalcium
	Light		Dark	
8. A	Al, Gly, Ly	0.0495	Al, Va, Gly	Traces
16. A	Al, Va, Gly, Ly, Threo	0.0977	Al' Va, Gly	0.0655
24. A	Al, Va, Gly, Ly,		Al, Va, Gly, Ly,	Three 0.0938
	Threo, Pro		,,,,	- 11100 0 0000
3 2. A	Al, Va, Ly, Threo, Glu,	0.1689	Al, Va, Gly, Ly, T	Threo, 0.1139
40. A	Pro Al Va Ly Three Cla		Pro	
, , ,	Al, Va, Ly, Threo, Glu, Pro	0.1914	Gly, Al, Va, Ly, 7	Threo, 0·1312
48. A	Al, Va, Ly, Threo, Glu, Pro	0.1716	Pro Al, Va, Ly, Three	, Pro 0·1151

TABLE 11

10 cc M/2 Potassium nitrate + 10 cc M/2 Citric acid + 0.5 gm. Dicalcium phosphate + 0.1 gm. Titania

Period of exposure in hours	chromato- graphically t	Amount of amino-acids with respect to glycine m. gm. colorimetrically	Amino-acids identified chromato- graphically	Amount of amino-acids with respect to glycine m. gm. colorimetrically
	Light		Dark	
8.	Al, Va, Gly	Traces	Al, Gly	Traces
16.	Al, Va, Gly, Ly		Al, Gly, Va	0.0605
24.	Al, Va, Gly, Ly, Thr		Al, Gly, Va, Ly	
32.	Al, Va, Gly, Ly, Thr Pro	eo, 0·1503	Al, Gly, Va, Ly,	
40.	Al, Va, Ly, Threo, P	ro 0·1724	Gly, Al, Va, Ly,	Threo 0.1214
48.	Al, Va, Ly, Threo, P		Al, Va, Ly, Thr	eo 0•1071

TABLE 12

10 cc M/2 Sodium nitrate + 10 cc M/2 Citric acid + 0.5 gm. Dicalcium phosphate + 0.1 gm. Titania

Light			Dark	
8. 16. 24. 32.	Al, Va, Gly Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo Al, Va, Gly, Ly, Threo,	Traces 0.0706 0.1041 0.1305	Al, Gly Al, Gly, Va Al, Gly, Va, Ly Gly, Al, Va, Ly, Threo	Traces 0-0615 0-0868 0-1049
40. 48.	Pro Al, Va, Ly, Threo, Pro Al, Va, Ly, Threo, Pro	0·1514 0·1339	Gly, Al, Va, Ly, Threo Al, Va, Ly, Threo	0·1197 0·1065

Discussion

From the experimental results (vide Tables 1-12) it can be observed that when nitrate solutions mixed with glucose or citric acid as a source of carbon in the presence of titania as photocatalyst are exposed to light, amino acids are synthesised in smaller amounts. It is also observed that the number and amount of amino-acids synthesised is greater in the sets exposed to light than those kept in the dark showing thereby the influence of light on amino-acid synthesis.

Moreover our experimental results show that the number and also the amount of amino-acids synthesised is slightly greater in the sets containing glucose that those containing citric acid as a source of carbon. It seems that glucose acts as a better energy material than citric acid in the system resulting in the formation of amino-acids.

It is further observed that in the system containing nitrate solutions, titania and glucose or citric as carbonaceous material, the amount of amino-acids gradually increases but after 32 hours of exposure, the amount of amio-acid tends to decrease steadily. The amino-acids synthesised undergo ammonification and decomposition constantly aided by the absorption of light radiations, thus resulting in the loss of amino-acids on prolonging the period of exposure. In the sets kept

in the dark, the amount of amino acids lends to decrease after 40 hours showing thereby that the ammonification and decomposition of amino acid is slower than in similar sets exposed to light. These observations seem to be in agreement with the experimental results of Dhar and Mukerji8 who reported the disappearance of amine-acid photosynthesised, on prolonging the period of exposure.

Our experimental results further indicate that some of the amino-acid formed in the beginning disappear at a later stage while new ones are formed. The amino-acid synthesised in the beginning might have undergone oxidation aided by the absorption of light and new molecules were formed on prolonging the period of exposure as has been observed by Ranganayaki and Bahadur⁹ in their experiments with Paraformaldehyde and nitrate solutions.

Furthermore, it is observed that the number and the amount of amino-acids synthesised varies with different nitrate solutions in the following order:

$$NH_4NO_3 > KNO_3 > NaNO_3$$

It is interesting to note that solutions containing dicalcium phosphate produce greater yield of amino-acid than the solutions containing no phosphate. Moreover the loss of amino-acids is also checked in the solutions containing phosphate as the amino-acid content tends to decrease after 40 hours of exposure in contrast to the sets containing no phosphate where the loss of amino-acid synthesised starts after 32 hours of exposure. These observations are important from the view point that phosphates form stable complexes with proteins in soil, plant tissue and in Vitro in presence of phosphate which make the protein or amino-acid molecule more stable towards oxidation and decomposition. Moreover, it appears that the amino-acids synthesised do not remain in the solution for long. They constantly undergo decomposition and ammonification aided by light absorption while new ones are formed, addition of phosphates checks the decomposition of these amino-acids by forming stable phosphorylated compounds with them, with the result that the total amount of amino-acid; detected colorimetrically appears to be greater in solution containing dicalcium phosphate.

References

- 1. Compare Dhar, N. R. The chemical action of light. Blackie and Sons, Ltd. London and Glasgow, 1931.
- Anderson, V. L. Ann. Bot., 38, 699-706, 1924.
- Oparin, A. J. The origin life. Macmillan, New York, 1938.
 Bernal, J. D. Proc. Phys. Soc. Lond., 62A, 537, 1949.
- Urey, H. C. Proc. U. S. Nat. Acad. Sci., 38, 351, 1952.
- Miller, S. L. Science, 117, 528, 1953.

- Bahadur, K. Nature, 173, 1141, 1954.
 Dhar, N. R. and Mukerji, S. K. Nature, 134, 499, 1934.
 Ranganayaki, S. and Bahadur, K. Proc. Nat. Acad. Sci., India, 23A, 21,
- Dhar, N. R. and Ghosh, G. P. Proc. Nat. Acad. Sci., India, 25A(6), 1956.

On a class of periodic orbits in the restricted problem of three bodies in a three dimensional coordinate system

 B_1

RAM KISHORE CHOUDHRY

Department of Mathematics, Bhagalpur University, Bhagalpur

[Received on 26th March, 1968]

Abstract

In this paper a periodic solution of the restricted problem of three bodies is shown to exist. Here we have taken the solution of the plane problem of two fixed centres for the generating solution.

1. Equation of motion and their transformations

We shall consider here the circular restricted problem of three bedies in a three-dimensional coordinate system. Let us take two finite masses m_1 and m_2 placed at the points M_1 and M_2 respectively. We shall take them to be point-masses. Let the centre of inertia of the two masses m_1 and m_2 be taken for the origin. The two masses m_1 and m_2 will be assumed to rotate uniformly about the origin with the angular velocity n. Let the orbital plane of these point-masses be taken for the xy-plane and the line joining M_1 and M_2 for the x-axis. Let the distance M_1 M_2 be equal to 2c. Then the force function U of the point-masses at M(x, y, z), whose motion is under consideration, is

$$U = f\left(\frac{m_1}{r_1} + \frac{m_2}{r_2}\right)$$

where

$$r_1^2 = M_1 M^2 = \left(x - \frac{2m_2c}{m_1 + m_2}\right)^2 + y^2 + z^2$$

$$r_2^2 = M_2 M^2 = \left(x + \frac{2m_1c}{m_1 + m_2}\right)^2 + y^2 + z^2$$

and the kinetic energy is given by $2T = (x - ny)^2 + (y + nx)^2 + z^2$ For the generalized coordinates, we take $x = Q_1$, $y = Q_2$, $z = Q_3$ and so for the impulses, we have

$$P_1 = \dot{Q}_1 - nQ_2, P_2 = \dot{Q}_2 + nQ_1, P_3 = \dot{Q}_3$$

and for the Hamiltonian function,

$$H = \frac{1}{2} (P_1^2 + P_2^2 + P_3^2) + n (P_1 Q_2 - P_2 Q_1) - U(Q_1, Q_2, Q_3)$$

Introducing the contact transformation

$$\xi_1 = Q_1 + \frac{m_1 - m_2}{m_1 + m_2}$$
 c, $\xi_2 = Q_2$, $\xi_3 = Q_3$
 $\eta_1 = P_1$, $\eta_2 = P_2$, $\eta_3 = P_3$

we find that the Hamiltonian function reduces to

$$H = \frac{1}{2} (\eta_1^2 + \eta_2^2 + \eta_3^2) + n (\eta_1 \xi_2 - \eta_2 \xi_1) + n \frac{m_1 - m_2}{m_1 + m_2} c \eta_2 - U(\xi_1, \xi_2, \xi_3)$$
(1)

Taking into consideration our further study, we shall prefer to use the following elliptic canonic variables $(q_1, q_2, q_3; p_1, p_2, p_3)$ defined by formulae

$$\xi_1 = c \cos q_1 \cosh q_2$$
, $\eta_1 = \frac{1}{cI} [-p_1 \sin q_1 \cosh q_2 + p_2 \cos q_1 \sinh q_2]$

 $\xi_2 = -c \sin q_1 \sin q_2 \cos q_3, \ \eta_2 = \frac{1}{cI} \left[-p \cos q_1 \sin q_2 \cos q_3 - p_2 \sin q_1 \cot q_2 \cos q_3 + \frac{1}{cI} \right]$

$$+p_3\frac{I\sin q_3}{\sin q_1\sin q_2}$$
]

 $\xi_3 = -c \sin q_1 \sin q_2 \sin q_3$, $\eta_3 = \frac{1}{cI} \left[-p \cos q_1 \sin q_2 \sin q_3 - p_2 \sin q_1 \cot q_2 \sin q_3 - p_3 \sin q_3 + p_4 \sin q_3 + p_5 \sin q_5 + p_5 +$

$$-p_3 \frac{I \cos q_3}{\sin q_1 \sin q_2} \bigg]$$

where $I = \operatorname{ch}^2 q_2 - \cos^2 q_1$.

It is easily seen that the Hamilton function (1) now reduces to

$$H = \frac{1}{2c^{2} I} \left(p_{1}^{2} + p_{2}^{2} + p_{3}^{2} \frac{I}{\sin^{2}q_{1} \sinh^{2}q_{2}} \right) - \frac{f}{cI} \left[(m_{1} + m_{2}) \cosh q_{2} + (m_{1} - m_{2}) \cos q_{1} \right] +$$

$$+ \frac{n}{I} \left[p_{1} \sinh q_{2} \cos q_{3} \left(\cosh q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \cos q_{1} \right) +$$

$$+ p_{2} \sin q_{1} \cos q_{3} \left(\cos q_{1} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \cosh q_{2} \right) -$$

$$- p_{3} I \sin q_{3} \left(\cos q_{1} \cosh q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right) \left| \sin q_{1} \sinh q_{2} \right]$$

Then the differential equations of motion in the canonical form can be written as

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i} \quad (i = 1, 2, 3)$$

2. Regularisation of the equations of motion

A look at the expression for H shows that at the instant of collision with any of the two finite masses, the right hand sides of (2) reduce to infinity. Thus in the neighbourhoods of the two finite masses the solution seems to be singular.

In order to have a regular solution, we shall try to regularize our differential equations. For this we shall introduce an independent variable τ instead of t by means of the relation $dt = I d\tau$

Since the Hamiltonian function H does not involve t explicitly, so the system of equations (2) will admit the energy integral

$$H = h \tag{3}$$

With the introduction of τ our equations (2) will be transformed into

$$dq_i/d\tau = I \ \partial H/\partial p_i, \ dp_i/d\tau = -I \ \partial H/\partial q_i$$
 (4)

We find that $\frac{\partial}{\partial p_i}(HI) = 1\frac{\partial H}{\partial p_i} + H\frac{\partial I}{\partial p_i}$, whence by using the integral

we have
$$I \frac{\partial H}{\partial p_i} = \frac{\partial \{(H-h)I\}}{\partial p_i}$$
 and similarly, $I \frac{\partial H}{\partial q_i} = \frac{\partial \{(H-h)I\}}{\partial q_i}$

Consequently, (4) may be written as

$$\frac{dq_i}{d\tau} = \frac{\partial\Omega}{\partial p_i} , \frac{dp_i}{d\tau} = -\frac{\partial\Omega}{\partial q_i}$$
 (5)

where $\Omega = (H - h) I$.

Here the integral of energy may be written as $\Omega = 0$.

Now as in the equations (5), r_1 or r_2 no longer appears in the dominators and so equations (5) may be taken to be regularised.

Generating solution With (Charlier, 1907) we shall decompose the characteristic function Ω into two parts given as $\Omega = \Omega_0 + n \Omega_1$

where

$$\Omega_{0} = \frac{1}{2c} \left[p_{1}^{2} + p_{2}^{2} + p_{3}^{2} \frac{I}{\sin^{2}q_{1} \sin^{2}q_{2}} \right] -$$

$$-\frac{f}{c} \left[(m_{1} + m_{2}) \operatorname{ch} q_{2} + (m_{1} - m_{2}) \cos q_{1} \right] - h(\operatorname{ch}^{2}q_{2} - \cos^{2}q_{1})$$

$$\Omega_{1} = p_{1} \left[\operatorname{ch} q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \cos q_{1} \right] \operatorname{sh} q_{2} \cos q_{3} +$$

$$+ p_{2} \left[\cos q_{1} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \operatorname{ch} q_{2} \right] \sin q_{1} \cos q_{3} -$$

$$- p_{3} \left[\cos q_{1} \operatorname{ch} q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right] \frac{I \sin q_{3}}{\sin q_{1} \sin q_{2}},$$
When to the Hamiltonian

We shall take the solution of the equations (5) corresponding to the Hamiltonian function Ω_0 for the generating solution. This generating solution is seen to be of the form [Demin, 1960]:

cos
$$q_{10} = -\frac{a + cn \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}{1 + a cn \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}$$

$$\begin{bmatrix} 545 \end{bmatrix}$$

$$p_{10} = -\frac{c^2 \sigma_0 \sqrt{1 - a^2} dn \left[\sigma_0 (\tau - \tau_0), k \right]}{1 + a cn \left[\sigma_0 (\tau - \tau_0), k \right]}$$
(6)

$$ch \ q_{20} = -f \ \frac{m_1 + m_2}{2h \ c}$$

$$p_{20}=0=q_{30}=p_{30},$$

[The suffix (0) denotes that the value has been obtained under the assumption that n = 0]

Here
$$a = \frac{m_1 + m_2}{4(m_1 - m_2) \operatorname{ch} q_{20}} \left[\sqrt{1 + 2 \frac{m_1 - m_2}{m_1 + m_2} \operatorname{ch} q_{20} + \operatorname{ch}^2 q_{20}} - \sqrt{1 - 2 \frac{m_1 - m_2}{m_1 + m_2} \operatorname{ch} q_{20} + \operatorname{ch}^2 q_{20}} \right]^2$$

$$k^2 = \frac{1}{2} \left[1 - \frac{(m_1 + m_2) \operatorname{sh}^2 q_{20}}{\sqrt{(m_1 + m_2)^2 \operatorname{sh}^4 q_{20} + 16 m_1 m_2 \operatorname{ch}^2 q_{20}}} \right]$$

$$\sigma_0^2 = \frac{f}{c^3 \operatorname{ch} q_{20}} \sqrt{(m_1 + m_2)^2 \operatorname{sh}^4 q_{20} + 16 m_1 m_2 \operatorname{ch}^2 q_{20}}$$

In the solutions (6) h and τ_0 are arbitrary constants of integration. It is clear that the generating solution (6, define a family of elliptic orbits with the focii at the attracting masses. This solution is periodic relative to τ with the period T where

$$T = \frac{4}{\sigma_0} \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}} = \frac{4}{\sigma_0} K(k)$$

4. First Approximation of the general solution

We shall now aim to find the solution in series expanded in ascending powers of n, i.e.

$$q_{1} = q_{10} + \sum_{i=1}^{\infty} n^{i} q_{1i}, q_{2} = q_{20} + \sum_{i=1}^{\infty} r^{i} q_{2i}, q_{3} = q_{20} + \sum_{i=1}^{\infty} n^{i} q_{3i}$$

$$p_{1} = p_{10} + \sum_{i=1}^{\infty} n^{i} p_{1i}, p_{2} = p_{20} + \sum_{i=1}^{\infty} n^{i} p_{2i}, p_{3} = p_{30} + \sum_{i=1}^{\infty} n_{i} p_{3i}$$

$$(7)$$

In this section we shall try to find q_{11} , q_{21} , q_{31} , p_{11} , p_{21} , and p_{31} . For this evaluation we shall substitute the series (7) for q_1 , q_2 , . . . in the differential equations (7) and we shall equate the coefficients of n on the two sides. Thus we shall have the following system of differential equations for q_{11} , q_{21} ,

$$\frac{dq_{i_1}}{d\tau} = p_{i_1} \left(\frac{\hat{r}^2 \Omega_0}{\hat{r} p_{i_1}^2} \right)_0 + \left(\frac{\hat{r} \Omega_1}{\hat{r} p_{i_1}} \right)_0$$
 (8)

$$\frac{dp_{i_1}}{\hat{r}t} = -q_{i_1} \left(\frac{\hat{r}^2 \Omega_0}{\hat{r}q_{i^2}} \right)_0 - \left(\frac{\hat{r}\Omega_1}{\hat{r}q_{i}} \right)_0$$
 (9)

The index zero in the equations (8) and (9) denotes that in the partial derivatives of Ω_0 and Ω_1 with respect to q_i and p_i we should replace q_i and p_i by after the differentiation. Equations (8) and (9) may be seen to be reduced to the following form:

$$\frac{d^2q_{11}}{d\tau^2} + \left[\frac{f}{c^3} \left(m_1 - m_2 \right) \cos q_{10} + \frac{f}{c_3} \left(m_1 + m_2 \right) \frac{\cos 2 q_{10}}{\cosh q_{20}} \right] q_{11} = 0$$
 (10)

$$\frac{d^2 q_{21}}{d\tau^2} + \frac{f(m_1 + m_2)}{c^3 \operatorname{ch} q_{20}} \operatorname{sh}^2 q_{20} q_{21} = -(\operatorname{ch} 2 q_{20} - \cos 2 q_{10}) \frac{p_{10}}{c^2}$$
 (11)

$$\frac{dq_{31}}{d\tau} = \frac{p_{31}}{c^2} \frac{I}{\sin^2 q_{10} \sinh^2 q_{20}} \tag{12}$$

$$\frac{dp_{31}}{d\tau} = 0 \tag{13}$$

With [Demin, 1960] the solution of the differential equations (10) - (13) may be written as

$$q_{11} = q_{10}' \left(\beta_3 \int \frac{d\tau}{q_{10}'^2} + \beta_4 \right) \tag{14}$$

$$p_{11} = c^2 q_{10}'' \left(\beta_3 \int_{q_{10}'^2}^{\dot{q'_1}} + \beta_4 \right) + \frac{c^2 \beta_3}{q_{10}'}$$
 (15)

$$q_{21} = \beta_1 \cos \sigma(\tau - \tau_0) + \beta_2 \sin \sigma(\tau - \tau_0) + F(\tau)$$

$$p_{21} = -\beta_1 \sigma c^2 \sin \sigma(\tau - \tau_0) + \beta_2 \sigma c^2 \cos \sigma(\tau - \tau_0) + F_1(\tau)$$
(16)

$$p_{21} = -\beta_1 \sigma c^2 \sin \sigma (\tau - \tau_0) + \beta_2 \sigma c^2 \cos \sigma (\tau - \tau_0) + F_1(\tau)$$
 (17)

$$q_{31} = \frac{\beta_5}{c^2} \left[\tau(\operatorname{cosech}^2 q_{20} + 2) - \frac{2 - a^2}{\sigma_0(1 - a^2)} \{ E(u) + \sin^{-1} (\operatorname{cn} u \operatorname{dn} u) \} - \frac{1}{\sigma_0(1 - a^2)} \right]$$

$$-\frac{2a}{\sigma_{\mathbf{g}}(1-a^2)}\frac{dn\ u}{sn\ u} + \beta_{\mathbf{g}}$$
 (18)

$$p_{31} = \beta_5 \tag{19}$$

where

$$\int \frac{d\tau}{q_{10}'^{2}} = \frac{\pi^{2} \tau}{4 \sigma_{0}^{2} (1 - a^{2}) K} \left[\frac{1}{k'^{2}} \left(1 + 2 \sum_{\nu=1}^{\infty} \operatorname{sech}^{2} 2^{\nu \rho} \right) + \frac{2a^{2}}{k^{2}} \sum_{\nu=1}^{\infty} \operatorname{cosech}^{2} (2 \nu - 1) \rho + P. T. \right]$$

$$K^{\prime 2} = 1 - K^2, \, \rho = \frac{\pi K^{\prime}}{2K}, \, K^{\prime} = K(k^{\prime})$$

 $P. T = periodic terms in \tau$

$$\frac{1}{q'_{10}} = -\frac{1 + a \operatorname{cn} \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}{\sigma_0 \sqrt{1 - a^2} \operatorname{dn} \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}$$

 $F(\tau) = a$ periodic function in τ

 $F_1(\tau) = a$ periodic function in τ .

The solutions (14) - (19) are the first approximations of the general solution. In the same way the second and the higher approximations may be calculated.

5. Existence of periodic solution

In this section we shall examine if there exists a periodic solution with the period of the generating solution, i.e., T. It is clear that if q_{11} , q_{21} , q_{31} , p_{21} and p_{31} are the solutions and if they are periodic with the period T, then the condition of periodicity may be written as

or periodicity may be written as
$$\psi_{1} = q_{11} (\tau_{0} + T) - q_{11} (\tau_{0}) = 2s_{1}\pi \\
\psi_{2} = q_{21} (\tau_{0} + T) - q_{21} (\tau_{0}) = 0 \\
\psi_{3} = q_{31} (\tau_{0} + T) - q_{31} (\tau_{0}) = 2 s_{2}\pi \\
\psi_{4} = p_{11} (\tau_{0} + T) - p_{11} (\tau_{0}) = 0 \\
\psi_{5} = p_{21} (\tau_{0} + T) - p_{21} (\tau_{0}) = 0 \\
\psi_{6} = p_{31} (\tau_{0} + T) - p_{31} (\tau_{0}) = 0$$
where s_{1} and s_{2} are arbitrary integers. By virtue of the solutions (14) – (19), we have

we have

$$\psi_{1} = \beta_{3} \frac{\pi^{2}}{\sigma_{0}^{2} (1 + a) \sqrt{1 - a^{2} K}} \left[\frac{1}{k^{\prime 2}} \left(1 + 2 \sum_{\nu=1}^{\infty} \operatorname{sec} h^{2} 2\nu \rho \right) + \frac{2a^{2}}{k^{2}} \sum_{\nu=1}^{\infty} \operatorname{cosec} h^{2} (2\nu - 1) \rho \right] = 2 s_{1}\pi$$

$$\psi_{2} = \beta_{1} (\cos \sigma T - 1) + \beta_{2} \sin \sigma T = 0$$

$$\psi_{3} = \frac{\beta_{5}}{c^{2}} \left\{ (\operatorname{cosec} h^{2} q_{20} + 2) - (1 - k^{2}) \frac{2 - a^{2}}{1 - a^{2}} \right\} T = 2 s_{2}\pi$$

$$\psi_{4} = 0$$

$$\psi_{5} = -\beta_{1} \sigma c^{2} \sin \sigma T + \beta_{2} \sigma c^{2} (\cos \sigma T - 1) = 0$$

$$\psi_{6} = 0$$
(20)

Now if the constants β_1 , β_2 , β_3 and β_5 can be found such as to satisfy the equations (2), then the periodic solution will exist. We have an integral of energy and so one relation can be taken to be dependent, say, $\psi_4 = 0$. As we are now left with four constants β_1 , β_2 , β_3 and β_5 and we have five equations, so if it is shown that a fundamental determinant of the fourth order is not zero, then the existence of the periodic solution will be proved. We find now that

$$\frac{\hat{\xi}(\psi_1, \psi_2, \psi_3, \psi_6)}{\hat{\xi}(\beta_1, \beta_2, \beta_3, \beta_6)} = 4 \sigma \sin^2 \frac{\sigma \tau}{2} \left\{ \operatorname{cosech}^2 q_{20} + (1 - k^2) \frac{2 - a^2}{1 - a^2} \right\} T \times \frac{\pi^2}{\sigma_0^2 (1 + a) \sqrt{1 - a^2} K} \left[\frac{1}{k'^2} \left(1 + 2 \sum_{\nu=1}^{\infty} \operatorname{sech}^2 2^{\nu \rho} \right) + \frac{2a^2}{k^2} \sum_{\nu=1}^{\infty} \operatorname{cosech}^2 (2^{\nu} - 1)^{\rho} \right]$$

is definitely distinct from zero, if $2k\sigma \neq p\sigma_0 \pi$ where p is an arbitrary integer. We can proceed for the existence of periodic solution in the further approximations similarly, but in that case the question of convergence of the series representing the solution will arise.

Reference s

Charlier, C. L. Die Mechanik des Himmels, 2, Leipzig.

Demin, V. G. A new class of periodic solution in the restricted problem of three bodies. Bulletin ITA, No. 10(93) (Russian).

Demin, V. G. Ganeralised problem of two fixed centres. Soviet Astronomical Journal No. 6, 1960.

Poincare, H. Nouvelles Methodes de la Mecanique Celeste.

Hancock, H. Elliptic Integrals, Dover Publications, New York, 1958.

The Effect of Mode of Micronutrient Application on Wheat: Yield, Uptake of Nitrogen and Phosphorus, and the relationship between Copper, Nitrogen, Zinc and Phosphorus

By

G. C. SHUKLA & A. R. BHANDARI

Division of Chemistry, Indian Agricultural Research Institute, New Delhi

[Received on 29th February, 1968]

Abstract

Foliar spray of copper or zinc improved the yield of grains and straw at Pant Nagar. Copper, zinc and all micro-nutrients in combination when applied to soil or foliage only gave beneficial effect at Patiala.

All the applied trace elements were effective in improving wheat straw nitrogen at Pant Nagar. Foliar fertilization of Zn, B, Cu and Mn, and soil dressing with Mn, Mo and Cu had a beneficial effect on grain nitrogen. At Patiala, soil application of Mo alone, increased grain nitrogen. The phosphorus content of the straw and of grains, improved under slightly acidic soils of Pant Nagar only.

The possibility of a relationship between the amounts of zinc, phosphorus, copper and nitrogen, present in straw and grain from both the places was also studied.

Micronutrients play a significant role in the plant metabolism and growth, hence their application not only affects the yield but the quality of the crop produce also. There are conflicting reports with regards to the effect of trace element application on plant uitrogen and phosphorus. Application of Cu, Mn, Zn, B and Mo increased nitrogen content of plants (Ozolina²¹, Kokin¹⁸, Sadaphal and Das²⁴, Aliev¹, Kholi¹⁶, and Gautam et al¹¹). The same authors have shown that fertilization with the same trace elements decreased N content as well. Similar to the effect observed on the uptake of nitrogen, the addition of trace elements may offset the plant phosphorus in either way (Kastori and Saric¹⁵, Gopalkrishnan¹² Fedorenko⁶, and Karim and Deraj¹⁴).

Investigations have been made to find out the relationship between the uptake of Cu, N, Zn and P. Positive interaction between plant N and Cu has been reported in citrus seedlings (Vsevolozhskaya²⁷), barley plants (Ozolina²¹) and in cholum and ragi (Gopalkrishnan¹²). For Zn and P, positive correlation was found in rye and cauliflower (Luders²⁰), citrus (Frank¹⁰), and grapes (Fedorenko⁶). Inverse relationship between Zn and P has been also reported (Thompson²⁶) Paribok et al²² and Terman et al²⁵).

The present study aims at finding out the effect of Cu, Zn, Mo, Mn and B, applied to the soil as well as to the foliage of two high yielding varieties of wheat on yield, uptake of nitrogen and phosphorus and on possible relation of Cu, N, Zn, and P contents.

Experimental

The soil and plant samples for the present investigations were collected at harvesting stage from Model Agronomic Trial Centres at Patiala and Pant Nagar. The soils of both these places were sandy loam in texture. Their chemical analysis is reported in table 1A. Wheat varieties PV-18 and G-306 were grown at Patiala and Pant Nagar respectively. The experiments were laid in a randomized block design, giving similar treatments at both the places (table 1B). Each treatment was replicated four times. Net plot size at Pant Nagar was 32 square metres and at Patiala it was 25 square metres. The application of the fertilizer doses was made as given in tables 1G and 1D. Two foliar applications of trace elements were made after 40 and 55 days of sowing. Soil fertilization of NPK and trace elements was done before sowing (broadcasting).

TABLE 1A Soil Chemical Analysis

Analysed	Pant Nagar	Patiala
Organic Carbon%	0·89	0·39
Total Nitrogen%	0·16	0·075
CaCO ₃ %	1·64	1·43
pH	6·2	7·5

TABLE 1B
Treatments at Patiala and Pant Nagar

S. No.	Treatment	Symbol	Mode of application
1. 2. 3. 4. 5. 6. 7.	Control NPK NPK + Cu NPK + Zn NPK + B NPK + Mn NPK + Mo NPK + Mo NPK + All trace	C NPK NPK + Cu(S) NPK + Zn(S) NPK + B (S) NPK + Mn (S) NPK + Mo (S)	Soil application
9. 10. 11. 12. 13. 14.	elements Spartin NPK + Cu NPK + Zn NPK + B NPK + Mn NPK + Mo NPK + Mo NPK + All trace elements	NPK + All (S) Sp (S) NPK + Cu (F) NPK + Zn (F) NPK + B (F) NPK + Mn (F) NPK + Mo (F) NPK + All (F)	Soil application Soil application Foliar spray Foliar spray Foliar spray Foliar spray Foliar spray Foliar spray

TABLE 1C

Basal doses and forms of NPK fertilizers applied in kgs per hectare

-Calle contro		Rate of application				
Na	me of the centre	N	P	K		
en :	Patiala Pant Nagar	120 (C. A. N) 35 (Urea)	60 (Superphos.) 35 (Superphos.)	60 (KCl) 35 (KCl)		

TABLE 1D

Dosage and form of trace element applied in kgs per hectare

Microelement	Soil application	Foliar application	Name of the compound used
Manganese Zinc Copper Boron Molybdenum Mixture of all trace elements	12·33 5·70 6·36 1·15 0·46 370·00	6·16 2·85 3·18 0·55 0·23	Mn SO ₄ ·4H ₂ O ZnSO ₄ ·7H ₂ O CuSO ₄ ·5H ₂ O Na ₂ B ₄ O ₇ ·10H ₂ O Na ₂ MoO ₄ *Spartin-B

^{*}Spartin is supposed to contain all the essential trace elements along with NPK.

The soil samples representative of a particular plot were collected at the harvesting stage. Only surface samples from 0.22 cms were taken with the help of a soil sample and packed in alkathene bags. After drying in the air, the soil samples were powdered in a porcelain pestle and mortar. Before use, the porcelain pestle and mortar was treated with hydrochloric acid, washed with double distilled water and cleaned with a piece of cloth. The powdered sample was passed through a muslin cloth sieve and stared in an alkathene bag.

The representative samples of the plant material, collected at the harvesting stage, were dried in an oven at 100°C. The plant samples were further powdered, screened and stored in a manner already detailed for the preparation of soil samples. The results of chemical analysis of composite soil and plant samples were expressed on oven dry basis at 100°C.

Soil pH was determined in soil water suspension of 1:2.5 ratio with the help of Beckman glass electrode pH meter. Organic carbon and calcium carbonate were estimated as mentioned in Piper²³. The results of organic carbon were expressed as Walkley and Black values. Kjeldahl's method was followed for the determination of total nitrogen in soils (A. O. A. C.³).

Total nitrogen of the plant samples were determined by the Kjeldahl-Gunning's method as given in A. O. A. C.³. Total phosphorus, zinc and copper were estimated in the triacid (60% HClO₄, conc. H₂SO₄ and conc. HNO₃ in 2:1:5 by volume) extract. Phosphorus was determined by the chlorimetric method of Fiske and Subbarow⁷ as modified by King¹⁷. Zinc and copper were estimated using dithizone (A. O. A. C.³) and carbamate (Chang and Bray⁵) reagents.

TABLE 2

Effect of trace element application on the yield of wheat

S. No.	Treatment symbol	Yield in Kgs per plot Patiala Pant Name			
D. 140.		Grain Straw		Pant Nagar	
		~ · · · · · · · · · · · · · · · · · · ·	Duaw	Grain	Straw
1.	C	7-00	11.97	10.25	
2.	NPK	12.02	23.97	10.80	17.70
; 3.	NPK + Cu(S)	13.07	24.92	10.15	20.70
· 4.	NPK + Zn (S)	12.97	24.27	11.50	15.35
5.	NPK + B(S)	12.10	25.15	10.65	18.10
6.	$NPK + M\hat{n}$ (S)	12.02	24.22	8.35	17.20
7.	NPK + Mo(S)	11.72	23.02	11-10	15.95
8.	NPK + All(S)	14.12	26.37	10.65	18.20
9.	Sp. (S)	11.95	24.05	11.55	18.45
10.	NPK + Cu(F)	12.85	22.77	12.45	19.30
11.	NPK + Zn (F)	13.00	22.75	12.20	22.35
12.	$NPK + B(\hat{F})'$	12.47	23.52	8.85	23.45
13.	NPK + Mn(F)	11.85	24.40	10.35	12.55
14.	NPK + Mo(F)	12.72	26.02	10.95	20.60
15.	NPK + All(F)	13.25	22.75	8.80	19· 9 5
			77.70	0.00	18.30

TABLE 3

Effect of trace element application on nitrogen and phosphorus in wheat plants (Patiala)

S. No.	Treatment symbol	Nitrogen %		Phosphorus %	
		Straw	Grain	Straw	Grain
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	C NPK NPK + Cu (S) NPK + Zn (S) NPK + B (S) NPK + Mn (S) NPK + Mo (S) NPK + All (S) Sp. (S) NPK + Cu (F) NPK + Zn (F) NPK + B (F) NPK + Mn (F) NPK + Mo (F) NPK + All (F)	0·43 0·64 0·62 0·44 0·56 0·62 0·48 0·57 0·60 0·58 0·48 0·66 0·60 0·60	2·06 2·06 2·04 1·88 1·81 1·95 2·40 3·08 1·87 2·12 2·14 2·06 1·98 2·08 1·92	0·199 0·212 0·144 0·153 0·153 0·212 0·127 0·153 0·212 0·229 0·127 0·187 0·238 0·187 0·188	0·569 0·595 0·399 0·518 0·459 0·561 0·603 0·476 0·535 0·500 0·425 0·425 0·442

TABLE 4

Effect of trace element application on nitrogen and Phosphorus in wheat plant (Pant Nagar)

S. No.		Nitroge	en %	Phosphorus %		
	Treatment symbol	Straw	Grain	Straw	Grain	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	C NPK NPK + Cu (S) NPK + Zn (S) NPK + B (S) NPK + Mn (S) NPK + Mo (S) NPK + All (S) Sp. (S) NPK + Cu (F) NPK + Zn (F) NPK + B (F) NPK + Mn (F)	0·35 0·38 0·36 0·40 0·40 0·50 0·40 0·35 0·40 0·38 0·43 0·32 0·36	1·84 1·96 1·96 2·06 2·18 2·10 1·98 1·92 2·07 2·27 2·12 2·00	0·119 0·120 0·102 0·119 0·119 0·178 0·195 0·161 0·238 0·178 0·144 0·153 0·229	0·408 0·391 0·348 0·433 0·459 0·408 0·450 0·459 0·425 0·408 0·323 0·391	
13. 14. 15.	NPK + Mo (F) NPK + All (F)	0·43 0·40	1·97 1·96	0·204 0·212	0-238 0-408	

TABLE 5

Copper and Zinc content in wheat plants (Patiala)

		Сор	Copper in ppm		Zinc in ppm	
S. No.	Treatment symbol	Straw	Grain	Straw	Grain	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	C NPK NPK + Cu (S) NPK + Zn (S) NPK + B (S) NPK + Mn (S) NPK + Mo (S) NPK + All (S) Sp. (S) NPK + Cu (F) NPK + Zn (F) NPK + B (F) NPK + Mn (F) NPK + Mn (F) NPK + Mo (F) NPK + Mo (F) NPK + All (F)	13·33 13·00 9·17 10·42 6·46 7·08 11·25 8·75 11·89 14·72 5·83 9·17 8·89 10·00 17·22	2·00 2·50 4·25 2·00 6·75 11·25 4·50 7·37 13·25 5·25 2·75 2·00 1·50 2·25 4·00	31·20 27·50 27·60 28·00 19·80 27·20 14·12 29·72 25·52 37·20 32·00 23·00 12·20 7·60 44·00	48·6 43·5 37·2 42·0 39·6 51·9 36·6 64·2 48·6 49·5 60 9 53·1 37·5 40·5 58·5	

S. No. Treatment symbol	Cop	pper in ppm	Zinc in ppm	
	Straw	Grain	Straw	Grain
1. C 2. NPK 3. NPK + Cu (S) 4. NPK + Zn (S) 5. NPK + B (S) 6. NPK + Mn (S) 7. NPK + Mo (S) 8. NPK + All (S) 9. Sp. (S) 10. NPK + Cu (F) 11. NPK + Zn (F) 12. NPK + B (F) 13. NPK + Mn (F) 14. NPK + Mo (F) 15. NPK + All (F)	8.61 7.50 13.47 14.44 12.50 5.67 7.14 5.88 5.46 6.30 10.08 5.88 5.67 7.14 8.40	6·00 4·00 8·25 5·75 12·50 4·00 3·50 4·25 10·25 4·75 5·50 3·75 8·00 9·00 5·50	30·40 52·00 23·40 26·00 15·40 51·60 76·00 74·00 70·00 21·60 14·00 60·00 92·80 32·40	49·5 48·9 51·3 68·4 78·0 58·2 54·0 52·8 48·6 36·0 80·7 43·2 53·4 54·6 61·5

Results and Discussion

(i) Effect of trace element application on the yield of wheat:

Data in table 2 show that at Patiala Cu and Zn were beneficial in increasing grain yield when applied directly to the soil or as foliar spray. Response to the application of all micronutrients in combination was superior to the effect of Cu or Zn alone, especially when applied to the soil. At Pant Nagar Cu and Zn were beneficial as foliar sprays. The addition of all micronutrients in combination was found harmful under soil dressing or foliar spray. Soil application of spartin was ineffective both at Patiala and Pant Nagar.

The data reveal the importance of soil reaction in determining the response to micronutrients in relation to the method of application. Soil application of microelements slightly augmented the grain yield under slightly alkaline soil conditions, while the responsiveness of the above elements as foliar spray was evident under the acidic soil conditions of Pant Nagar.

Soil application of Mn and B and foliar spray of Mn and Zn were found beneficial for wheat grain yield (Koraddi and Sethio). Gautam et alii reported that soil application of Zn and other microelements (Cu, Mn, B, Mo, Fe and Mg) was superior as compared to foliar spray.

(ii) Effect on the uptake of nitrogen:

A study of table 3 shows that the uptake of nitrogen in straw was depressed appreciably on soil dressing with Zn, Mo and on foliar spray of Zn in Patiala soils. The effect of other treatments was less marked. On the other hand, the application of trace elements to Pant Nagar soils improved straw nitrogen in many cases (Table 4). The effect of Mn applied to the soil was most marked. On foliar spray Zn and Mo were found to exert some beneficial effect.

The uptake of nitrogen by grains was not markedly affected in general, in experiments conducted at Patiala. However, application of Mo to this soil resulted in an increase in grain nitrogen. The soil dressing of Zn, B and spartin slightly lowered the nitrogen content of grains. Under the acidic soil conditions of Pant Nagar, foliar spray of Zn markedly improved N content of the grains. Soil dressing with B, Mn and Mo and foliar fertilization with B, Cu and Mn caused slight improvement in grain nitrogen content.

Koraddi and Seth¹⁹ reported that application of micro-nutrients (Mn, Zn, B and Cu) except Zn applied to the soil increased the N content of wheat grains. In the same year Govindarajan and Gopalarao¹³ reported that Mn fertilization did not improved N content of wheat plants. Andrushchenke² revealed that the effectiveness of trace elements in increasing NO₃ accumulation in spring wheat decreased in the order of Zn, B, Mo, Cu and Mn.

(iii) Effect on the uptake of phosphorus :

Foliar spray of Cu or Mn alone improved P uptake in straw at Patiala. Soil application of any single or, all the micro-nutrients in combination did not result in any such beneficial effect. At Pant Nagar, soil dressing of Cu considerably depressed P uptake in straw whereas Zn or B did not appear to effect P uptake in either way. All other treatments improved P content of straw.

Soil dressing with Cu and foliar spray of B or Mo had depressive effect on P uptake in grains at Pant Nagar. The remaining treatments enhanced P uptake by grains. At Patiala all treatments, except soil application of all micronutrients in combination depressed P content in grains. In slightly acidic soils of Pant Nagar, in general, the phosphorus content of the straw as well as of grains had improved under all treatments. In contrast at Patiala at most of the treatments had depressive effect on the uptake of P in plants. The increased P uptake under slightly acidic soil conditions may be related to the existence of physicochemical conditions conducive for the release of fixed P. In slightly alkaline soils, the deficiency of mobile P becomes a limiting factor in the uptake of phosphorus.

Mo and Cu application to acidic soils improved P uptake in plants (Zhiznevskaya²⁸). Zn and B have also favourable effect on P absorption by plants (Baroccio⁴). Kastori and Saric¹⁵ showed that P uptake varied greatly at low concentrations of trace elements applied whereas higher concentrations they (Cu, Zn, B and Mn) favourably affected P uptake in plants. Gopalkrishnan¹² and Forster⁸ observed that Cu application decreased P content of plants.

(iv) Uptake of copper in relation to nitrogen and that of Zinc in relation to phosphorus:

Data in tables 3 to 6 revealed that there was little variation in N content with change in Cu concentration in straw at Patiala (r = +0.33) and Pant Nagar (r = 0.42). Similarly, relationship between Cu and N content of the grains was found non-significant. An examination of the data of some of the individual treatments would however reveal the existence of such a relationship e.g., soil application of Mo increased nitrogen along with Cu content of grains at Patiala.

A study of tables 3 to 6 indicated no significant relationship between Zn and P uptake in straw of both the varieties of wheat grown at Patiala (r = +0.13) and Pant Nagar (r = +0.448). In the grains at Patiala correlation coefficient (r = +0.506) was significant at 5% level. Similar data for grains at Pant Nagar was not found statistically significant (r = +0.220).

Zinc and P applied at moderate rates had a positive interaction between them in the plant tissue (Luders²⁰ and Fedorenko⁶). Tortini and Morini⁹ observed that an application of moderate quantity of Zn (20 ppm) not only eliminated the

depressive effect of heavy P fertilization (300 to 1000 ppm) but also improved the uptake of Zn with P content in tomato and spinach.

Acknowledgements

The authors wish to express their thanks to Dr. N. P. Datta, Head of the Division of Soil Science and Agricultural Chemistry, I. A. R. I., New Delhi for providing necessary laboratory facilities.

References

1. Aliev, D. A. Primen Mikroelem Sel. Khoz Medits. Baku: 1959.

2. Andrushchenko, G. A. Nauch. Zap. Ivov. S. Kh. Inst., 7, 92-121, 1958. 3. Association of Official Agricultural Chemists. Official and tentative methods of analysis. 8th Ed. A. O. A. C. Washington, D. C. 1955.

Baroccio, A. Ann. Stag. Chim. Agr. Roma Ser. III Publ. No. 206, 1-7, 1962.
 Chang, K. L. and Bray, R. H. Anal. Chem. 25, 655-659, 1953.

6. Fedorenko, I. V. Mikroelem. est-estr. Radioaktirn. Pochv. go., 3, 199-201,

7. Fiske, C. H. and Subbarow, Y. J. Biol. Chem., 66, 375-400, 1925.

8. Forster, W. A. Ann. Appl. Biol., 41, 637-651, 1954.

9. Fortini, S. and Morini, V. Agrochimica., 4, 209-215, 1960. 10. Frank, T. Bingham. Soil Sci. Soc. Amer. Proc., 27, 389-391, 1963.

Gautam, O. P., Ahuja, L. R. and Mukhopadhyay, D. J. Ind. Soc. Soil Sci., 12, 411-421, 1964.

- 12. Gopalkrishnan, S. Madras Agric. J., 47, 95-108, 1960.
 13. Govindarajin, S. V. and Gopalarao, H. G. J. Ind. Soc. Soil Sci., 12, 355-362, 1964.
- Karim, A. Q. M. B. and Deraj, O. Soil Sci., 92, 408-412, 1961. Kastori, R. and Saric, M. Phosphorsaure, 25, 281-288, 1965.
- Kholi, A. F. El. Versl. landb. Onderz. Wageningen. 67, 78, 1961.

King, E. J. Biochem. J., 26, 292-297, 1932. 17.

- Kokin, A. Ya. Primen. Microelem. Sel. Khoz. Medits. Baku., 331-334, 1959.
- Koraddi, V. R. and Seth, J. J. Ind. Soc. Soil Sci., 12, 387-392, 1964. Luders, R. Z. Pfl. Ernahr. Dung., 68, 56-65, 1955.

- Ozolina, G. Microelem. Prod. Rast., 103-111, 1965.
 Paribok, T. A., Kuznetsova, G. N. and Alekseeva-Popova, N. V. Agrokhimiya, 9, 98-104, 1964.
- Piper, C. S. Soil and Plant Analysis, University of Adelaide (Australia), 1950. Sadaphal, M. N. and Das, N. B. J. Ind. Soc. Soil Sci., 9, 257-267, 1961.
- Terman, G. L., Allen, S. E. and Bradford, B. N. Soil Sci. Soc. Amer. Proc., 30 119-124, 1966.

Thompson, J. W. Soil Sci., 94, 323-330, 1962.

Vsevolozhskaya, G. K. Primen, Mikroelem, Sel. Khoz. Medits. Baku., 471–479, 1959.

Zhiznevskaya, G. Mikroelem. Urozh., 3, 77-104, 1961. 28.

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Banerjee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur,
- 8. Prof. S. Ghosh, Jabalpur
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Izatnagar
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Muzaffarpur
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretary)

Editors

Dr. H. C. Khare, Allahabad (Physical Sciences)

	Page
The Fatty Acid Composition of Sterospermum suaveolens Root Fat.	
S. P. Tandon, V. K. Saxena and K. P. Tiwari	1
Infinite integrals involving Fox's H-function and Confluent Hypergeometric functions S. L. Kalla	. 3
On the Steady flow of Reiner Philippoff Ruid between Parallel plates	
and Coaxial cylinders in linear movement	
P. D. Verma and S. C. Rajvanshi	7
Calcium carbonate – Phosphoric acid neutralisation at 5° and 30°C.	
N. R. Dhar and G. N. Pant	17
Some Expansion Formulae for H-function—III P. Anandani	23
Some Formulae involving Hermite, Laguerre and Gegenbauer Polynomials. B. L. Sharma and H. L. Manocha	35
Series solution of Dual integral equations with Bessel Function	
Kernels	3 9
On a generalised Stieltjes transform P. C. Golas	42
Some Theorems on Fractional Integration, II S. L. Kalla	49
Chemical Examination of the Plant Pterospermum acerifolium Study of the Seed Oil S. P. Tandon, V. K. Saxena and K. P. Tiwari	57
Neutralization of phosphoric acid with barium and strontium car- bonates N. R. Dhar and G. N. Pant	60
On Flexural Vibrations of a Viscoelastic Rod In a Magnetic Field D. K. Sinha and R. R. Giri	65
The Response of Paddy to Application of Phosphates Under Varying Levels of Nitrogen. O. N. Mehrotra, N. S. Sinha and R. D. L. Srivastava	69
Kinetics and Mechanism of the Silver (I) catalysed Oxidation of	
Thallium (I) by Peroxydisulphate. R. K. Shinghal, U. S. Mehrotra and S. P. Mushran	73
A method of inclusion of zero-point energy in the Potential parameters of inert Gas-solids N. P. Gupta and B. Dayal	79
Some theorems concerning generalised Hankel and Laplace trans-	
forms	85
Talc as a medium of growth for Nitrate-forming Bacteria	
S. P. Tandon and M. M. Mishra	89
Proanthocyanidins of Symplocos racemosa Bark Part I	92
An Spectroscopic investigation of complex formation in Cobalt (II)	
Chloride-aliphatic amine system.	
· · · · Padmaja Rewa Shukla (Miss) and Gopal Narain	97
Effect of Nitrogen and Phosphorus of the Composition of Oat.	101
	101
Secondary flow of an Elastico-viscous fluid between two coaxial cones having the same vertex and rotating about a common axis.	
P. L. Bhatnagar, R. K. Bhatnagar and H. Solomon	107

Published by Prof. S. P. Tandon, for the National Academy of Sciences, India, Allahabad and Printed by E. K. Raja, at the Capital Printing Works, Allahabad.

Secretary Editorial Board—Prof. S. P. Tandon.

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Banerjee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur
- 8. Prof. S. Ghosh, Jabalpur
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Izatnagar
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Muzaffarpur
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretary)

Editors

Dr. H. C. Khare, Allahabad (Physical Sciences)

	Page
On the sum of a Special ${}_4F_3$	121
Algebraic formulations of a topological space R. N. Lal	124
Some integrals involving generalized Legendre associated functions	
and H-function	127
Liquid solid countercurrent distribution of fatty acids of Brassica	
oil with Urea. Part I Brassica compestris variety YS Pb. 24	
Self reciprocal functions	137
Self reciprocal functions M. A. Pathan	140
Variety of Problems of Neutral functional differential equations.	
On For H-Transform in two variables	145
On For H-Iransform in two variables	149
Bessel Transform	161
Integrals involving Bessel coefficients of two arguments . S. L. Gupta	167
Nitrogen Transformations in Soil—Effect of nitrogenous fertilizer, organic matter and phosphate S. P. Jaiswal	
organic matter and phosphate	169
Non Radial Hydromagnetic Oscillations of an incompressible cylinder K. M. Srivastava and R. S. Kushwaha	
Kinetics of oxidation of D-glucose and D-xylose with vanadium (V)	174
in acid medium . P. N. Pathak, M. P. Singh and B. B. L. Saxena	105
Integrals Involving Products of G. Function S. C. Cunto	185
Integrals Involving Products of G-Function . S. C. Gupta A finite integral Involving H-function G. K. Goyal	193 201
Recovery of Fertilizer Nitrogen by Oats as affected by Nitrogen	201
Fortilization Levels and Soil Moisture Supply	
M. C. Saxena and H. Marschner	204
Effect of Some Rare-elements on Nitrification by Nitrohacter agilia	201
(In liquid culture medium) . S. P. Tandon and M. M. Mishra	209
(In liquid culture medium) S. P. Tandon and M. M. Mishra Operational representations and Hypergeometric Functions of three	
variables	217
Reactions between Chromium and Iron salts and Alkali	
B. R. Guha and B. P. Gyani The thermal and photo chemical oxidation of alcohols by Potassium	223
The thermal and photo chemical oxidation of alcohols by Potassium	100
Dichromate Part III. The photo chemical oxidation of ethylene	
Isolation and Investigations on the Alkaloid from the Root of Delphin-	22 9
isolation and investigations on the Alkaloid from the Root of Delphin-	
ium denudatum Wall S. P. Tandon and K. P. Tiwari Chemical Examination of the Root of Butea monosperma	233
Quemical Examination of the Root of Butea monosperma	005
Che confluent Hypergeometric functions of three variables.	237
C T Discount of three variables	040
Rayleigh's Wave in a Thermoelastic Medium with Sinusoidal Wavy	240
Boundary Subbar Charles Charles Charles	249
Boundary Subhas Chandra Ghosh Effect of sulphur and its compounds on the availability of manga-	249
nese in soil . A. N. Pathak, Hari Shanker and R. K. Awasthi	25 9
A New Alkaloid from the Seeds of Erythrina lithosperma	4,00
S. P. Tandon, K. P. Tiwari and A. P. Gupta	26 3
A Generalised integral transform of two complex variables	2,00
R. U. Verma	265
A theorem on Varma Transform	268
disanteer the second se	

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Banerjee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur
- 8. Prof. S. Ghosh, Allahabad
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Allahabad
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Allahabad
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretary)

Editors

Dr. H. G. Khare, Allahabad (Physical Sciences)

	Page
Oxidation of Lactic Acid by Hexavalent Chromium . K. S. Srivastava	273
Kernel . C. Singh Kernel . C. Singh Kernel . S. K. Chosh	279
Kernel	
	281
The studies on the distribution of activity among the different carbon	201
The studies on the distribution of activity among the photochemical oxidation of	
The studies on the distributed from the photochemical oxidation of atom of aminoacids formed from the photochemical oxidation of	289
atom of amindacids formation of amindacids formation of amindacids formation of amindacids formation of the state of the s	403
Separation and Determination of Constituents in some Ternary and	
	297
Quaternary Mixtures by the King State of the King Studies on the Ilkovic Equation with a Dropping Mercury Electrode Studies on the Ilkovic Equation with a Dropping Mercury Electrode Studenber Lal P.S. Lain and S. N. Srivastava	291
Studies on the Ilkovic Equation when I al Dropping words N Spirography	204
	304
	309
On Generalized Double Hypergeometric and the solution of dual integral equations R. K. Saxena The use of Bessel function and Jacobi polynomial in the cooling of a	313
The use of Bessel function and Jacobi polynomial in the cooling of a	990
heated cylinder	3 20
The use of Bessel function and Jacobi polyholidates. S. D. Bajpai heated cylinder On certain integral equations involving Hypergeometric and incomparation integral equations. R. N. Jagetya	000
On certain integral equations involving stype geometric and intended plete Gamma functions	323
On Distribution and Frequency Functions of Several Variables.	000
On Distribution and Frequency Functions of Several Variables. Jamuna Prasad Ambasht K. C. Rusia Adsorption of lodide by Soils S. K. De and Suresh K. Srivastava On some integrals involving generalized Legendre's associated func- P. Anandani	329
A Class of Integral Equations	334
Adsorption of lodide by Soils . S. K. De and Suresh K. Srivastava	337
On some integrals involving generalized Legendre's associated func-	
tions and H-functions	341
On some integrals involving generalized degeneral properties of the properties of th	
tion. K. C. Rusia H. Function and Heat Production in a Cylinder O P. Sharma	349
H. Function and Heat Production in a Cylinder O P. Sharma	355
I I'-L-:::/a taahainna anniigh in iwo involvou boundaires iva	
	361
On Meijer-Laplace Transform of Two Variables . N. C. Jain	366
On Meijer-Laplace Transform of Two Variables N. C. Jain On the spiral structure as an explosive phenomenon . S. K. Gurtu	373
a in a least of the age an explosive phenomenon in a large of the	3/1
a lateral ampations involving Macobi Dolvinumials IX. C. IXula	381
Animal thormal banding of Diezoelectric Diates . D. N. Ollilla	389
or the fat from the Not the National Control of Maninga	
A P Linnia K. P. Hwari ana D. F. Landon	393
g Reversal Problems of Heat Conduction	331
Algebraic Classification of the Curvature Tensor in General Theory of Relativity D. N. Sharma and S. I. Husain	
of Relativity D. N. Sharma and S. I. Husain	405
as a signal mathod for the determination of true density of solis	
. K. D. Jain, Ajay Kumar Jain and I. G. Sharma	414
Certain mixed boundary value problems of potential theory A. P. Dwivedi	
A. P. Dwivedi	417
Utilization of an alkali soil by the addition of Nag-phana H. (Cactus)	
and Argemone-Mexicana	
. S. K. De, Suresh K. Srivastava and R. S. Srivastava	421
The magnetic field in an isotropic space-time	
V. Ivengar and K. Mohan	432
Radial Oscillations of a Particular Magnetic stellar Model	
	437
Determination of Cadmium with Isoquinoline	1
A. L. J. Rao and B. K. Puri	442
TOTAL CONTROL OF THE PROPERTY	

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Banerjee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur
- 8. Prof. S. Ghosh, Allahabad
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Allahabad
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Allahabad
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretari)

Editors

Dr. H. C. Khare, Allahabad (Physical Sciences)

		40111				D
Application on	Jacobi	Polynomials	to some l	Nonlinear O	cillations	Page
	• •		• • •		w. Garde	445
Photocatalytic s	ynthesis	of aminoacie	is. N.	R. Dhar and S	S. K. Arora	451
Nitrogen Fixatio			. N.	K. Dhar ana	G. N. Bhat	457
Complex Differe	•	,	A. A. E	ayande and L	•	469
A relation betwee Weyl (Fraction	nal) inte	egral		. (IMISS) A	sna Pendse	477
An Inversion For	rmula fo	r H-function	Transfor	m. (Miss) A	sha Pendse	481
Studies on the of application sarson (B. com	pestris)	seed yield, oi	l content	ind quantity	N. S. Sinha	486
Studies on nutri rus by whea fertilizer app	t plants	at differer	t growth	phases in	relation to	400
	. 0.	N. Mehrotra,	N. S. Sinha	and R. D. L	. Srivastava	489
On some results bauer (Ultras	pherical) Polynomial		M	lanilal Shah	493
On some result		. 114.	• •	M	anilal Shah	503
Changes in the	source (of organic ma	atter. O. P	. Vimal and C	3. C. Shukla	508
Influence of O Synthesis of	rganic n amino-a	cids during o	arbon nit	d Light in rogen transf . R. Dhar <i>and</i>	ormations	517
Some Generation	g Functi	ons for Jacob	i Polynon	aials	G. K. Goyal	533
	tes and	Citric acids	N.	R. Dhar and	G. N. Bhat	
On a class of bodies in a t	periodio hree dim	orbits in tensional coo	the réstri rdinate sy	stem . Ram Kishor		
The Effect of M Uptake of N Copper, Nitr	itrogen a	nd Phosphor	us, and the	e relationsh	ip between	
			G. C. S.	hukla and A.	k. Bhandari	549