INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT32Quad 2-input OR gate

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT32

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT32 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT32 provide the 2-input OR function.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

CVMPOL	PARAMETER	CONDITIONS	TYP	LINUT	
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY	C _L = 15 pF; V _{CC} = 5 V	6	9	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	16	28	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \left(C_L \times V_{CC}^2 \times f_o \right)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 V$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT32

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 9, 12	1A to 4A	data inputs
2, 5, 10, 13	1B to 4B	data inputs
3, 6, 8, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

74HC/HCT32

Fig.4 Functional diagram.

FUNCTION TABLE

INP	UTS	OUTPUT				
nA	nB	nY				
L	L	L				
L	Н	Н				
Н	L	Н				
Н	Н	Н				

Notes

H = HIGH voltage level
 L = LOW voltage level

74HC/HCT32

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: SSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS		
SYMBOL		74HC								WAVEFORMS	
STWIBOL		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING	
		min.	typ.	max.	min.	max.	min.	max.		(' '	
t _{PHL} / t _{PLH}	propagation delay		22	90		115		135	ns	2.0	Fig.7
	nA, nB to nY		8	18		23		27		4.5	
			6	15		20		23		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.7
			7	15		19		22		4.5	
			6	13		16		19		6.0	

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

 I_{CC} category: SSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, nB	1.20

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
SYMBOL		74HCT								Vcc	WAVEFORMS
		+25		-40 to +85		-40 to +125		UNIT	(V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY		11	24		30		36	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.7

Philips Semiconductors Product specification

Quad 2-input OR gate

74HC/HCT32

AC WAVEFORMS

Fig.7 Waveforms showing the input (nA, nB) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".