

[Book Reading Session #3]

Exploratory Data Analysis

2025. 01. 10. 구나영

2025-01-10

Exploratory Data Analysis (EDA)

- the process of observing and understanding the collected data from various perspectives
- Purposes:
 - To understand the phenomena represented by the data and identify potential issues within it
 - To uncover patterns that might not have been considered during the problem definition stage
- Based on these findings, we can revise existing hypotheses or formulate new ones.

Exploratory Data Analysis (EDA)

<<u>Observation</u>> + Why?

- EDA highlights creativity to generate a large quantity of questions in good quality.
- You have to keep asking "why" throughout the whole process.

Exploratory Data Analysis (EDA)

- Visualization
- Transformation
- Modeling

1. Variation

- the behavior within values of a variable.
- it helps identify patterns, anomalies, and the overall distribution of data.
- How:
 - Distribution Analysis
 - Identifying Anomalies
 - Data Transformation

1. Variation

• Follow-up questions:

- Which values are the most common? + WHY?
- Which values are rare? + Does that match your expectations?
- Are there any unusual patterns? + What might explain them?

1. Variation — Typical Values

Distribution of smaller carats

- #subgroups
- Follow-up questions:
 - Why are there more diamonds at whole carats (i.e., 1.0, 2.0) and common fractions of carats (i.e., 0.25, 0.5, 1.5)
 - Why are there more diamonds slightly to the right of each peak?
 - How can you explain or describe the clusters?

1. Variation — Unusual Values

Outliers: unusual observations

They can be entry errors, extremes, or new discoveries

Follow-up questions:

 We know that diamonds cannot have a width of 0mm, so these values must be incorrect. → missing values

1. Variation — Unusual Values

- Dealing with missing values:
 - Drop the entire row with strange values
 - Replace the unusual values with missing values (Recommended

carat	cut	color	clarity	depth	table	price	x	у	z
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1.00	Very Good	Н	VS2	63.3	53	5139	0.00	NA	0.00
1.14	Fair	G	VS1	57.5	67	6381	0.00	NA	0.00
2.00	Premium	Н	SI2	58.9	57	12210	8.09	NA	8.06
1.56	Ideal	G	VS2	62.2	54	12800	0.00	NA	0.00
1.20	Premium	D	VVS1	62.1	59	15686	0.00	NA	0.00
2.25	Premium	Н	SI2	62.8	59	18034	0.00	NA	0.00
0.51	Ideal	Е	VS1	61.8	55	2075	5.15	NA	5.12
0.71	Good	F	SI2	64.1	60	2130	0.00	NA	0.00
0.71	Good	F	SI2	64.1	60	2130	0.00	NA	0.00

2. Covariation

- The behavior between variables.
- Understanding covariation is crucial for identifying relationships between variables, which can inform modeling and analysis decisions.

2. Covariation between a Categorical and a Numerical Variable

- Assess how the distribution of a numerical variable varies across the levels of a categorical variable.
- How to visualize:
 - **Boxplots**: Display the distribution of the numerical variable for each category, highlighting the median, quartiles, and potential outliers.
 - **Violin Plots**: Combine aspects of boxplots and density plots to show the distribution's shape for each category.
 - **Frequency Polygons:** Useful when the categorical variable has numerous levels; they display the density of the numerical variable across categories.

2. Covariation between Two Categorical Variables

- Explore the relationship between two categorical variables.
- How to visualize:
 - Count Tables: Summarize the frequency of each combination of categories.
 - **Heatmaps:** Graphically represents count tables, where color intensity indicates the <u>frequency</u> of category combinations.

• **Mosaic Plots:** Display the <u>proportion</u> of each combination of categories, with the area of each tile representing the frequency.

2. Covariation between Two Numerical Variables

- Investigate how two numerical variables are related.
- How to visualize:
 - Scatter Plots: Plot individual data points to observe relationships, trends, or clusters.
 - **Hexbin Plots:** For large datasets, hexbin plots bin data points into hexagonal cells, with color intensity representing the number of observations, reducing overplotting.
 - **Contour Plots:** Show density estimates with contour lines, useful for identifying areas of high concentration in the data.

