# **CiA Draft Standard Proposal DSP-402**



Device Profile for

Drives and Motion Control

Version 1.1

Date: October 8, 1998

## © CAN in Automation e.V.

not recommended for implementation may be changed without notification

### **History**

Changes made compared to revision 1.0 (old pages in brackets):

• page 57 (page 56)

Bit 7 Fault Reset set to 0 except for the transition Fault Reset. See explanation page 54 State Transition 15.

O page 193 (page 183)

Object 6058<sub>h</sub>, Subindex 1: vl\_frequency\_motor\_min\_amount.

O page 24 (page 23)

Object 1000h: Device Type.

Adaption to DS301 for multi profile devices.

Additional information bits 16..23 bit-encoded.

• page 62 (page 61)

controlword bit 13, Profile Velocity mode: *max\_slippage\_error*. See explenation page 161.

O page 161 (page 152)

Object 60F8<sub>h</sub>:

When the max\_slippage has been reached, the corresponding bit 13 max\_slippage\_error in the status message will be set to one.

O page 78, 79 (page 76, 77)

Object 6089<sub>h</sub>, Object 608A<sub>h</sub>: **software\_position\_limit** added.

O page 124, 125, 126, 128 (page 120, 121, 122, 123)
Object 6062<sub>h</sub>, Object 6064<sub>h</sub>, Object 6065<sub>h</sub>, Object 6067<sub>h</sub> *Units* changed to *position units*.

O page 100, 101, 102 (page 98, 99, 100)

Object 607F<sub>h</sub>, Object 6081<sub>h</sub>, Object 6082<sub>h</sub>

Value Range changed to 0..(2<sup>31</sup>-1).

O page 57 (page 56)

controlword bit 6, Profile Position Mode: defined

0: absolute

1: relative

O page 94 (page 92)

Figure 15: position demand value is index 60F2h.

O page 111, 114 (page 108, 111)

Homing Methods: there is a new structure.

Object 6098<sub>h</sub> is adapted to the new structure.

O page 120 (page 117)

Figure 31: Object 6063<sub>h</sub> position\_actual\_value\* is a normalised parameter.

O page 178 (page 170)

Figure 46: vl\_velocity\_target changed to vl\_target\_velocity see object 6042<sub>h</sub>.

- O page 38, 55 (page 37, 54)
  Object 603F<sub>h</sub>, Object 6040<sub>h</sub>
  Data Type changed to **Unsigned16**, therefore Value Range changed to 0..65553.
- O page 129
  Object 60F4<sub>h</sub>: **New**following\_error\_actual\_value: This object represents the actual value of the following
- O page 19-26 Index attached.
- O page 153 (page 144)
  Figure 40: target\_velocity indexnumber (60FFh) added. Unit changed to velocity units.
- O page 154 (page 146)

  Output Data Description wrong text deleted.
- O page 156 (page 148) velocity\_sensor\_actual\_value formatted.
- O page 156 (page 148) velocity\_actual\_value changed to velocity\_sensor\_actual\_value.
- O page 26,28 (page 25, 27) 4<sup>th</sup> RPDO second entry is **target\_velocity** Index 60FF<sub>h</sub>.
- O page 78, 79 (page 76, 77) target\_velocity added.

## **Table of Contents**

| 1              | Scope                                                                                            | 6        |
|----------------|--------------------------------------------------------------------------------------------------|----------|
| 2              | References                                                                                       | 8        |
| 3              | Definitions, Acronyms and Abbreviation                                                           | 9        |
| 4              | Overview                                                                                         | 10       |
| 4.1            | Access to the Drive                                                                              | 10       |
| 4.2            | Architecture of the Drive                                                                        | 11       |
| 5              | Operating Principle                                                                              | 15       |
| 5.1            | Introduction                                                                                     | 15       |
| 5.2            | Standardisation via Profiling                                                                    | 15       |
| 5.3<br>5.3.1   | The Object DictionaryIndex and sub-index usage                                                   | 16<br>17 |
| 6              | Emergency Messages                                                                               | 19       |
| 6.1            | Principle                                                                                        | 19       |
| 6.2            | Error Code Meanings                                                                              | 19       |
| 7              | Predefinitions                                                                                   | 24       |
| 7.1            | Naming conventions                                                                               |          |
| 7.2            | Predefined Objects                                                                               |          |
| 7.2.1          | Object 1000 <sub>h</sub> : Device Type                                                           | 24       |
| 7.2.2<br>7.2.3 | Object 1001 <sub>h</sub> : Error RegisterObject 67FF <sub>h</sub> : Single Device Type           |          |
| 7.2.3          | DDO 14                                                                                           |          |
| 7.3.1          | PDO MappingReceive PDOs                                                                          |          |
| 7.3.2          | Transmit PDOs                                                                                    | 30       |
| 8              | Object Dictionary                                                                                | 34       |
| 9              | Common Entries in the Object Dictionary                                                          | 35       |
| 9.1            | General Information                                                                              |          |
| 9.1.1          | Motor Data                                                                                       | 35       |
| 9.1.2          | Drive Data                                                                                       | 35       |
| 9.2            | Object Dictionary Entries                                                                        | 36       |
| 9.2.1          | Objects defined in this Chapter                                                                  |          |
| 9.3            | Object Description                                                                               |          |
| 9.3.1<br>9.3.2 | Object 6007 <sub>h</sub> : abort_connection_option_code<br>Object 603F <sub>h</sub> : error_code |          |
| 9.3.3          |                                                                                                  |          |
| 9.3.4          | Object 6403 <sub>h</sub> : motor_catalogue_number                                                | 39       |
| 9.3.5          | Object 6404 <sub>h</sub> : motor_manufacturer                                                    | 40       |

| 9.3.6            | Object 6405 <sub>h</sub> : http_motor_catalog_address                                                         |          |
|------------------|---------------------------------------------------------------------------------------------------------------|----------|
| 9.3.7            | Object 6406 <sub>h</sub> : motor_calibration_date                                                             | 41       |
| 9.3.8<br>9.3.9   | Object 6407 <sub>h</sub> : motor_service_period                                                               | 41<br>42 |
| 9.3.10           | Object 6410 <sub>h</sub> : motor_dataObject 6502 <sub>h</sub> : supported_drive_modes                         | 42<br>43 |
| 9.3.11           | Object 6503 <sub>h</sub> : drive_catalogue_number                                                             | 43<br>44 |
| 9.3.12           | Object 6504 <sub>h</sub> : drive_manufacturer                                                                 |          |
| 9.3.13           | Object 6505 <sub>h</sub> : http_drive_catalog_address                                                         | 45       |
| 9.3.14           |                                                                                                               |          |
| 9.3.15           | Object 60FD <sub>h</sub> : digital_inputs                                                                     | 46       |
| 9.3.16           | Object 60FE <sub>h</sub> : digital_outputs                                                                    | 47       |
| 10               | Device Control                                                                                                | 49       |
| 10.1             | General Information                                                                                           | 49       |
| 10.1.1           | Statemachine                                                                                                  | 50       |
| 10.2             | Object Dictionary Entries                                                                                     | 55       |
| 10.2.1           | Objects defined in this Chapter                                                                               | 55       |
| 10.3             | Object Description                                                                                            | 55       |
| 10.3.1           | Object 6040 <sub>h</sub> : controlword                                                                        | 55       |
| 10.3.2           | Object 6041 <sub>h</sub> : statusword                                                                         | 58       |
| 10.3.3           | Object 605B <sub>h</sub> : shutdown_option_code                                                               |          |
| 10.3.4           | Object 605C <sub>h</sub> : disable_operation_option_code                                                      |          |
| 10.3.5<br>10.3.6 | Object 605A <sub>h</sub> : quick_stop_option_code<br>Object 605D <sub>h</sub> : stop_option_code              |          |
| 10.3.7           |                                                                                                               |          |
| 10.3.7           | Object 6060 <sub>h</sub> : modes_of_operation                                                                 |          |
| 10.3.9           | Object 6061h: modes_of_operation_display                                                                      |          |
| 10.4             | Functional Description                                                                                        | 69       |
| 10.4.1           | Modes of Operation Function                                                                                   |          |
| 10.4.2           | Drive Disabeling Function                                                                                     |          |
|                  | Quick Stop Function                                                                                           |          |
|                  | Stop Function                                                                                                 |          |
| 10.4.5           | Fault Reaction                                                                                                | 72       |
| 11               | Factor Group                                                                                                  | 74       |
| 11.1             | General Information                                                                                           | 74       |
| 11.1.1           | Factors                                                                                                       | 74       |
| 11.1.2           | Relationship between Physical and Internal Units                                                              | 74       |
| 11.2             | Object Dictionary Entries                                                                                     | 77       |
| 11.2.1           | Objects defined in this Chapter                                                                               | 77       |
| 11.3             | Object Description                                                                                            |          |
| 11.3.1           | Object 6089 <sub>h</sub> : position_notation_index                                                            |          |
| 11.3.2           | , – – – – – – – – – – – – – – – – –                                                                           |          |
| 11.3.3           | , . ,                                                                                                         | 80<br>01 |
| 11.3.4<br>11.3.5 | Object 608C <sub>h</sub> : velocity_dimension_index<br>Object 608D <sub>h</sub> : acceleration_notation_index |          |
| 11.3.6           | Object 608B <sub>h</sub> : acceleration_notation_index                                                        |          |
| 11.3.7           |                                                                                                               |          |
|                  | Object 6090 <sub>h</sub> : velocity_encoder_resolution                                                        |          |
|                  | Object 6091 <sub>h</sub> : gear_ratio                                                                         |          |
|                  | Object 6092 <sub>h</sub> : feed_constant                                                                      |          |

|                  | 1 Object 6093 <sub>h</sub> : position_factor                                                          |          |
|------------------|-------------------------------------------------------------------------------------------------------|----------|
|                  | 2 Object 6094 <sub>h</sub> : velocity_encoder_factor                                                  |          |
|                  | 3 Object 6095 <sub>h</sub> : velocity_factor_1                                                        |          |
| 11.3.14          | 4 Object 6096 <sub>h</sub> : velocity_factor_2<br>5 Object 6097 <sub>h</sub> : acceleration_factor    | 91<br>92 |
| 11.3.16          | 6 Object 607E <sub>h</sub> : polarity                                                                 | 93       |
| 12               | Profile Position Mode                                                                                 | 94       |
| 12.1             | General Information                                                                                   |          |
| 12.1.1<br>12.1.2 |                                                                                                       |          |
| 12.2             | Object Dictionary Entries                                                                             |          |
| 12.2.1           | Objects defined in this Chapter                                                                       |          |
| 12.2.2           | Objects defined in other Chapters                                                                     | 96       |
| 12.3             | Object Description                                                                                    |          |
| 12.3.1<br>12.3.2 | , , , , , , , , , , , , , , , , , , , ,                                                               |          |
|                  | Object 607B <sub>h</sub> : position_range_limit<br>Object 607D <sub>h</sub> : software_position_limit |          |
| 12.3.4           | Object 607 B <sub>h</sub> : software_position_infit                                                   |          |
| 12.3.5           |                                                                                                       | 101      |
| 12.3.6           |                                                                                                       |          |
| 12.3.7           | ,                                                                                                     |          |
|                  | Object 6083 <sub>h</sub> : profile_acceleration                                                       | 102      |
|                  | Object 6084 <sub>h</sub> : profile_deceleration                                                       |          |
| 12.3.10          | 0 Object 6085 <sub>h</sub> : quick_stop_deceleration                                                  | 103      |
| 12.3.1           | 1 Object 6086 <sub>h</sub> : motion_profile_type                                                      | 104      |
| 12.3.12          | 2 Object 60C5 <sub>h</sub> : max_acceleration                                                         | 105      |
|                  | 3 Object 60C6 <sub>h</sub> : max_deceleration                                                         |          |
| 12.4             | Functional Description                                                                                | 106      |
| 13               | Homing Mode                                                                                           | 109      |
| 13.1             | General Information                                                                                   | 109      |
| 13.1.1           | Input Data Description                                                                                | 109      |
| 13.1.2           | Output Data Description                                                                               | 109      |
| 13.1.3           |                                                                                                       |          |
| 13.2             | Object Dictionary Entries                                                                             | 110      |
| 13.2.1           |                                                                                                       | 110      |
| 13.2.2           | ,                                                                                                     |          |
| 13.3             | Object Description                                                                                    |          |
| 13.3.1<br>13.3.2 |                                                                                                       |          |
|                  | Object 6098 <sub>h</sub> : homing_method<br>Object 6099 <sub>h</sub> : homing_speeds                  |          |
| 13.3.4           |                                                                                                       |          |
| 13.4             |                                                                                                       |          |
| 13.4.1           |                                                                                                       |          |
| _                | Homing Mode Sequence                                                                                  | 119      |
| 14               | Position Control Function                                                                             | 120      |
| 14.1             | General information                                                                                   |          |
|                  | Input Data Description                                                                                | 100      |

| 14.1.2           | Output Data Description                                                                                     | 122        |
|------------------|-------------------------------------------------------------------------------------------------------------|------------|
| 14.2             | Object Dictionary Entries                                                                                   | 123        |
| 14.2.1           | Objects defined in this Chapter                                                                             | 123        |
| 14.2.2           | Objects defined in other Chapters                                                                           | 123        |
| 14.3             | Object Description                                                                                          | 124        |
| 14.3.1           | Object 6062 <sub>h</sub> : position_demand_value                                                            | 124        |
| 14.3.2           | Object 6063 <sub>h</sub> : position_actual_value*                                                           | 124        |
| 14.3.3           | Object 6064 <sub>h</sub> : position_actual_value                                                            | 125        |
| 14.3.4           | Object 6065 <sub>h</sub> : following_error_window                                                           | 126        |
| 14.3.5           | Object 6066 <sub>h</sub> : following_error_time_out                                                         | 127<br>128 |
| 14.3.0           | Object 6067 <sub>h</sub> : position_window                                                                  | 120<br>129 |
|                  | Object 60F4 <sub>n</sub> : following_error_actual_value                                                     |            |
| 14.3.9           | Object 60FA <sub>h</sub> : control_effort                                                                   | 130        |
| 14.3.10          | Object 60FB <sub>h</sub> : position_control_parameter_set                                                   | 131        |
| 14.3.11          | Object 60FC <sub>h</sub> : position_demand_value*                                                           | 132        |
| 14.4             | Functional Description                                                                                      | 133        |
| 15 I             | Interpolated Position Mode                                                                                  | 134        |
| 15.1             | General Information                                                                                         | 134        |
| 15.1.1           | Input Data Description                                                                                      | 136        |
|                  | Output Data Description                                                                                     | 136        |
| 15.1.3           | Internal States                                                                                             | 137        |
| 15.1.4           | State Transitions of the Internal States                                                                    | 137        |
| 15.2             | Object Dictionary Entries                                                                                   | 138        |
| 15.2.1           | Objects defined in this Chapter                                                                             | 138        |
| 15.2.2           | Objects defined in other Chapters                                                                           | 139        |
| 15.3             | Object Descriptions                                                                                         | 140        |
| 15.3.1           | Object 60C0 <sub>h</sub> : interpolation_submode_select                                                     | 140        |
| 15.3.2           | Object 60C1 <sub>h</sub> : interpolation_data_record                                                        |            |
| 15.3.3           |                                                                                                             |            |
| 15.3.4           | Object 60C3 <sub>h</sub> : interpolation_sync_definition                                                    | 143        |
| 15.3.5           | Object 60C4 <sub>h</sub> : interpolation_data_configuration                                                 |            |
| 15.4             | Functional Description                                                                                      |            |
| 15.4.1           | Interpolated Position Mode                                                                                  |            |
| 15.4.2<br>15.4.3 | Linear Interpolated Position Mode with several Axles  Buffer Strategies for the Interpolated Position Mode  |            |
|                  | Profile Velocity Mode                                                                                       |            |
|                  |                                                                                                             |            |
| 16.1<br>16.1.1   | General Information                                                                                         |            |
| 16.1.1           | Input Data DescriptionOutput Data Description                                                               |            |
|                  |                                                                                                             |            |
| 16.2             | Object Dictionary Entries                                                                                   | 154        |
| 16.2.1           | Objects defined in this Chapter                                                                             | 154        |
| 16.2.2           | ,                                                                                                           |            |
| 16.3             | Object Description                                                                                          |            |
| 16.3.1<br>16.3.2 | position_encoder                                                                                            | 155        |
|                  | Object 6069 <sub>h</sub> : velocity_sensor_actual_value<br>Object 606A <sub>h</sub> : sensor_selection_code | 156<br>156 |
| 16 3 4           | Object 606R: velocity, demand, value                                                                        | 150<br>157 |

| 16.3.5           | Object 606C <sub>n</sub> : velocity_actual_value                                                | 158        |
|------------------|-------------------------------------------------------------------------------------------------|------------|
| 16.3.6           | Object 606D <sub>h</sub> : velocity_window                                                      | 158        |
| 16.3.7           | Object 606E <sub>h</sub> : velocity_window_time                                                 | 159        |
| 16.3.8           | Object 606F <sub>h</sub> : velocity_threshold                                                   | 159        |
| 16.3.9           | Object 6070 <sub>h</sub> : velocity_threshold_time                                              | 160        |
| 16.3.10          | Object 60FF <sub>h</sub> : target_velocity                                                      | 160        |
|                  | Object 60F8 <sub>h</sub> : max_slippage                                                         |            |
| 10.5.12          | Cobject our 9h. verocity_control_parameter_set                                                  | 102        |
| <b>17</b>        | Profile Torque Mode                                                                             | 163        |
| 17.1             | General Information                                                                             | 163        |
| 17.1.1           | Structure of the Profile Torque Mode                                                            | 164        |
| 17.2             | Object Dictionary Entries                                                                       | 165        |
| 17.2.1           | Objects defined in this Chapter                                                                 |            |
| 17.2.2           | Objects defined in other chapters                                                               | 165        |
| 17.3             | Object Description                                                                              | 166        |
| 17.3.1           | Object 6071 <sub>h</sub> : target_torque                                                        |            |
| 17.3.2           | Object 6072 <sub>h</sub> : max_torque                                                           | 166        |
| 17.3.3           | Object 6073 <sub>h</sub> : max_current                                                          | 167        |
| 17.3.4           | Object 6074 <sub>h</sub> : torque_demand_value                                                  |            |
| 17.3.5           | Object 6075 <sub>h</sub> : motor_rated_current                                                  |            |
| 17.3.6<br>17.3.7 | Object 6076 <sub>h</sub> : motor_rated_torqueObject 6077 <sub>h</sub> : torque_actual_value     |            |
|                  | Object 6077h. torque_actual_value                                                               |            |
| 17.3.9           | Object 6079 <sub>h</sub> : DC_link_circuit_voltage                                              | 100<br>170 |
| 17.3.10          | Object 6087 <sub>h</sub> : torque_slope                                                         | 170        |
| 17.3.11          | Object 6088 <sub>h</sub> : torque_profile_type                                                  | 171        |
| 17.3.12          | 2 Object 60F7 <sub>h</sub> : power_stage_parameters                                             | 172        |
| 17.3.13          | B Object 60F6 <sub>h</sub> : torque_control_parameters                                          | 173        |
| 18               | Velocity Mode                                                                                   | 174        |
|                  | General Description                                                                             | 174        |
| 18.1.1           | Input Data Description                                                                          |            |
| 18.1.2           | Output Data Description                                                                         | 175        |
| 18.1.3           | Structure of the Velocity Mode                                                                  | 175        |
| 18.1.4           | Subfunction Description                                                                         | 178        |
| 18.2             | Object Dictionary Entries                                                                       | 179        |
| 18.2.1           |                                                                                                 | 179        |
| 18.2.2           | Objects defined in other Chapters                                                               | 179        |
| 18.3             | Object Description                                                                              | 180        |
| 18.3.1           | Object 6042 <sub>h</sub> : vl_target_velocity                                                   | 180        |
| 18.3.2           | Object 6043 <sub>h</sub> : vl_velocity_demand                                                   | 181        |
| 18.3.3           | , –                                                                                             |            |
| 18.3.4           | Object 6054 <sub>h</sub> : vl_actual_percentage                                                 | 183        |
| 18.3.5           | Object 6055 <sub>h</sub> : vl_manipulated_percentage                                            | 184        |
| 10.3.6           | Object 604E <sub>h</sub> : vl_velocity_reference                                                | 185<br>186 |
| 10.3./<br>18 3 8 | Object 604C <sub>h</sub> : vl_dimension_factor<br>Object 604B <sub>h</sub> : vl_setpoint_factor | 186<br>188 |
|                  | Object 604b <sub>h</sub> . vi_serpoint_ractor<br>Object 604D <sub>h</sub> : vi_pole_number      |            |
|                  | Object 6046 <sub>h</sub> : vi_velocity_min_max_amount                                           |            |
|                  | Object 6047 <sub>h</sub> : vl_velocity_min_max                                                  |            |
|                  | 2 Object 6058 <sub>h</sub> : vl frequency motor min max amount                                  |            |

| 18.3.1 | 3 Object 6059 <sub>h</sub> : vl_frequency_motor_min_max                                                     | 195        |
|--------|-------------------------------------------------------------------------------------------------------------|------------|
|        | 4 Object 6056 <sub>h</sub> : vl_velocity_motor_min_max_amount                                               |            |
| 18.3.1 | 5 Object 6057 <sub>h</sub> : vl_velocity_motor_min_max6 Object 6048 <sub>h</sub> : vl_velocity_acceleration | 198<br>200 |
| 18.3.1 | 7 Object 6049 <sub>h</sub> : vl_velocity_acceleration                                                       | 200<br>202 |
| 18.3.1 | 8 Object 604A <sub>h</sub> : vl_velocity_quick_stop                                                         | 204        |
| 18.3.1 | 9 Object 604F <sub>h</sub> : vl_ramp_function_time                                                          | 205        |
|        | 0 Object 6050 <sub>h</sub> : vl_slow_down_time                                                              |            |
|        | 1 Object 6051 <sub>h</sub> : vl_quick_stop_time                                                             |            |
|        | 2 Object 6044 <sub>h</sub> : vl_control_effort                                                              |            |
|        | 3 Object 6045 <sub>h</sub> : vl_manipulated_velocity<br>4 Object 6052 <sub>h</sub> : vl_nominal_percentage  |            |
| 18.4   |                                                                                                             |            |
| 18.4.1 | Functional Description Percentage Function                                                                  |            |
| 18.4.2 | 9                                                                                                           | 210        |
| 18.4.3 |                                                                                                             |            |
| 18.4.4 | Velocity Limit Function                                                                                     | 212        |
| 18.4.5 |                                                                                                             | 212        |
| 18.4.6 | Ramp Function                                                                                               | 213        |
| 18.4.7 | Ramp Min Function                                                                                           | 214<br>215 |
|        | Reference CalculationClosed Open Loop Control Function                                                      | 215        |
| 19     | Appendix                                                                                                    | 19-1       |
|        |                                                                                                             |            |
| Α      | Object Dictionary by Chapter                                                                                | 19-1       |
| A.1    | Common Entries in the Object Dictionary                                                                     | 19-1       |
| A.2    | Device Control                                                                                              | 19-2       |
| A.3    | Factor Group                                                                                                | 19-3       |
| A.4    | Profile Position Mode                                                                                       | 19-5       |
| A.5    | Homing Mode                                                                                                 | 19-6       |
| A.6    | Position Control Function                                                                                   | 19-7       |
| A.7    | Interpolated Position Mode                                                                                  | 19-8       |
| 8.A    | Profile Velocity Mode                                                                                       | 19-9       |
| A.9    | Profile Torque Mode                                                                                         | 19-10      |
| A.10   | Velocity Mode                                                                                               | 19-11      |
| В      | Object Dictionary by Index                                                                                  | 19-13      |
| С      | Object Dictionary by Name                                                                                   | 19-18      |
| D      | Definition of Dimension Indices                                                                             | 19-23      |
| D.1    | Dimension/Notation Index Table                                                                              |            |
| D.2    | Emericion/retation mack rabio                                                                               | 13-23      |
| D.Z    | Examples for Notation Indices                                                                               |            |

### 1 Scope

This document represents the standardised CANopen Device Profile for digital controlled motion products like servo controllers, frequency converters or stepper motors.

All the above devices use communication techniques which conform to those described in the CiA Draft Standard DS-301 (CAL based communication profile for industrial systems). This document should be consulted in parallel to this profile.

#### 2 References

- /1/: ISO 7498, 1984, Information Processing Systems Open Systems Interconnection -Basic Reference Model
- /2/: ISO 11898, November 1993, Road Vehicles, Interchange of Digital Information Controller Area Network (CAN) for high-speed Communication
- /3/: CiA/DS 102, CAN Physical Layer for Industrial Applications, April 1994
- /4/: CiA/DS 201, CAN Reference Model, Version 1.1, Feb. 1996
- /5/: CiA/DS 202-1, CMS Service Specification, Version 1.1, Feb. 1996
- /6/: CiA/DS 202-2, CMS Protocol Specification, Version 1.1, Feb. 1996
- /7/: CiA/DS 202-3, CMS Encoding Rules, Version 1.1, Feb. 1996
- /8/: CiA/DS 203-1, NMT Service Specification, Version 1.1, Feb. 1996
- /9/: CiA/DS 203-2, NMT Protocol Specification, Version 1.1, Feb. 1996
- /10/: CiA/DS 204-1, DBT Service Specification, Version 1.1, Feb. 1996
- /11/: CiA/DS 204-2, DBT Protocol Specification, Version 1.1, Feb. 1996
- /12/: CiA/DS 207, Application Layer Naming Specification, Version 1.1, Feb. 1996
- /13/: CiA/DS 205-1, LMT Service Specification, Version 1.1, Feb. 1996
- /14/: CiA/DS 205-2, LMT Protocol Specification, Version 1.1, Feb. 1996
- /15/: CiA/DS 206, Application Specific Data Types, Version 1.1, Feb. 1996
- /16/: CiA/DS 301, CAL-based Communication Profile, Version 3.0, Oct. 1996
- /17/: CiA/DS 401, CANopen Device Profile for I/O Modules, Version 1.4, Dec. 1996
- /18/: DRIVECOM Profil Antriebstechnik/Profil 21
- /19/: DRIVECOM Profil Antriebstechnik/Servo 22, Jan. 1994

### 3 Definitions, Acronyms and Abbreviation

CAN <u>Controller Area Network</u>

**CAN** in Automation e. V. international users and manufactorers group.

CAN based Message Specification. One of the service elements of the

application layer in the CAN Reference Model.

COB <u>Communication Object (CAN Message)</u>. A unit of transportation in a CAN

network. Data must be sent across a network inside a COB.

COB-ID COB-Identifier. Identifies a COB uniquely in a network. The identifier

determines the priority of that COB in the MAC sub-layer too.

Distributor. One of the service elements of the application in the CAN

Reference Model. It's the responsibility of the DBT to distribute COB-IDs

to the COBs that are used by the CMS.

**LMT** Layer Management. One of the service elements of the application in the

CAN Reference Model. It serves to configure parameters of each layer in

the CAN Reference Model.

MAC <u>Medium Access Control.</u> One of the sub-layers of the Datalink Layer in the

CAN Reference Model that controls who gets access to the medium to

send a message.

**NMT** Network Management. One of the service elements of the application in

the CAN Reference Model. It performs initialisation, configuration and

error handling in a CAN network.

PDO Process Data Object. Object for data exchange between several devices.

SDO Service Data Object. Peer to peer communication with access to the

Object dictionary of a device.

pp Profile Position Mode

**pv** Profile Velocity Mode

vI Velocity Mode

hm Homing Mode

ip Interpolated Position Mode

tq Profile Torque Mode

all mandatory for all modes

**ce** Common Entries in the Object Dictionary

dc Device Control

pc Position Control Function

#### 4 Overview

#### 4.1 Access to the Drive

The access from the CAN network to the drive is done through data objects.

### **Data Objects of the Drive**

| PDO                              | SDO                       | IDO                                           |
|----------------------------------|---------------------------|-----------------------------------------------|
| Process Data Object              | Service Data Object       | Internal Data Object                          |
| described in chapters<br>9 to 18 | described in<br>chapter 7 | manufacturer specific normally not accessible |

Figure 1: Data Objects of the Drive

**Process Data Object (PDO):** PDOs are messages in an unconfirmed service (see /16/). They are used for the transfer of real-time data to and from the drive. The transfer is fast, because it is performed with no protocol overhead what means to transport eight application data bytes in one CAN-frame. The PDOs correspond to entries in the Object dictionary described in chapters 9 to 18. The data type and mapping of these objects into a PDO is described in chapter 7.

**Service Data Object (SDO):** SDOs are messages in a confirmed service with a kind of handshake (see /16/). They are used for the access to entries of the Object dictionary. Especially the configuration for the requested behaviour of the drive adapted to the various possible applications is done by these objects.

**Internal Data Object (IDO):** The internal data objects represent the adaptation of the manufacturer and device specific functionality to this profile. Normally these objects are not directly accessible; nevertheless a manufacturer can give the user access to the IDOs by SDO services.

#### 4.2 Architecture of the Drive



Figure 2: Communication Architecture

**Device Control:** The starting and stopping of the drive and several mode specific commands are executed by the statemachine. This is described in chapter 10. The mode specific actions are described in chapter 12 to 18.

**Modes of Operation:** The operation mode defines the behaviour of the drive. The following modes are defined in this profile:

Homing Mode (chapter 13)

This chapter describes the various methods to find a home position (also: reference point, datum, zero point).

Profile Position Mode (chapter 12)

The positioning of the drive is defined in this mode. Speed, position and acceleration can be limited and profiled moves using a Trajectory Generator are possible as well.

Interpolated Position Mode (chapter 15)

This chapter describes the time interpolation of single axles and the spatial interpolation of co-ordinated axles. Synchronisation mechanisms and interpolation data buffers are covered by this chapter.

Profile Velocity Mode (chapter 16)

The Profile Velocity Mode is used to control the velocity of the drive with no special regard of the position. It supplies limit functions and trajectory generation.

Profile Torque Mode (chapter 17)

In this chapter the torque control with all related parameters is described.

Velocity Mode (chapter 18)

Many frequency inverters use this simple mode to control the velocity of the drive with limits and ramp functions.

The Velocity Mode (chapter 18) is rather separated from the other modes and does not interfere with them so much. For this reason, the naming of object dictionary entries differs a little bit from the other chapters.

The manufacturer commits in the manual which modes are supported by his device.

If more than one mode is supported, then the manufacturer also defines whether the change of operation mode is allowed while the drive is moving or only when the drive is stopped.



Figure 3: Functional Architecture

**Trajectory Generator:** The chosen operation mode and the corresponding parameters (objects) define the input of the Trajectory Generator. The Trajectory Generator supplies the control loop(s) with the demand values. They are generally mode specific.

Each Mode may use its own Trajectory Generator. A general description of its functionality is given in chapter 12, which is related to the Profile Position Mode.



Figure 4: Possible Structures of the Control Loop

**Control Loop:** The implementation of the control loop is highly manufacturer specific and not described in this profile. Possible control loop structures are shown in the picture above.

The control loop can be open or closed and it can be operation mode specific or fixed. The objects which are described in chapter 12 to 18 must be implemented, if the corresponding mode is supported and if they are mandatory. But it is allowed that the manufacturer uses objects of the velocity controller in the Profile Position Mode; for example the control loop structure consists of a position controller producing a velocity demand value and a velocity controller using this as a demand value.

### 5 Operating Principle

#### 5.1 Introduction

The purpose of this profile is, to give drives an understandable and unique behaviour on the CAN network. The CANopen Device Profile for Drives and Motion Control is built on top of a CAN communication profile, called CANopen, describing the basic communication mechanisms common to all devices at the CAN-network.

The purpose of drive units is to connect axle controllers or other motion control products to the CAN bus. They can receive configuration information what is done via service data objects normally for I/O configurations, limit parameters for scaling or application specific parameters. At run time, data can be obtained from the drive unit via CAN bus by either polling or event driven (interrupt).

The motion control products have a process data object mapping for real time operation, which may be configured using service data objects (see /16/). This communication channel is used to interchange real-time data like setpoints or actual values like a position actual value e.g.

#### 5.2 Standardisation via Profiling

The two principal advantages of the profile approach for device specification are in the areas of system integration and device standardisation.

If two independent device manufacturers design products that have to communicate, then both manufacturers must be provided with a device specification from the other one. These specifications will widely differ in formal and terminological aspects from one company to another. The concept of device profiling provides a standard for producing such specifications. By adopting this approach, all manufacturers will specify their devices in a similar fashion, what greatly reduces the effort involved in system integration.

The other obvious advantage of the profile approach for device specification is, that it can be used to guide manufacturers into producing standardised devices. The advantages of standardised devices are numerous. Perhaps most important is the idea, that a standardised device decouples a system integrator from a specific supplier. If one supplier cannot meet special application demands, a system designer can use devices from another supplier with reduced effort. On the other hand the device manufacturers are not forced any more to implement private protocols for each customer.

A device profile defines a 'standard' device. This standard device represents really basic functionality, every device within this device class must support. This mandatory functionality is necessary to ensure, that at least simple non-manufacturer-specific operation of a device is possible. For example the standard drive unit provides a 'quickstop' function to stop a drive. This function is defined as mandatory, such that any drive unit supporting the CANopen Device Profile for Drives and Motion Control, can be halted using the same message.

The concept of device standardisation is extended by the notion of optional functionality defined within the standardised device profile. Such optional functionality does not have to

be implemented by all manufacturers. However, if a manufacturer implements such functionality he must do so in a fixed manner.

Providing optional functionality is a very powerful mechanism to ensure all manufacturers implementing particular functionality in a defined fashion. For example, the device profile covers multi-axles modules as well, which are still not very common. By defining a standardised access to the different axles, interchanging devices from different manufacturers becomes easier.

The device profiles provide a mechanism by which manufacturers wishing to implement truly manufacturer specific functionality can do so as well. This is clearly necessary since it would be impossible to anticipate all possible device functionality and define this in the optional category of each device class. This concept guarantees that the standard device profiles are 'future-proof'.

By defining mandatory device characteristics, basic network operation is guaranteed. By defining optional device features a degree of defined flexibility can be built in. By leaving 'hooks' for manufacturer specific functionality, manufacturers will not be constrained to an out-of-date standard.

#### 5.3 The Object Dictionary

The most important part of a device profile is the object dictionary description. The object dictionary is essentially a grouping of objects accessible via the network in an ordered predefined fashion. Each object within the dictionary is addressed using a 16-bit index so that the object dictionary may contain a maximum of 65536 entries.

The overall layout of the standard object dictionary is shown below. This layout closely conforms with device profiles for other fieldbus systems :

| Index (hex) | Object                             |
|-------------|------------------------------------|
| 0000        | not used                           |
| 0001-001F   | Static Data Types                  |
| 0020-003F   | Complex Data Types                 |
| 0040-005F   | Manufacturer Specific Data Types   |
| 0060-0FFF   | Reserved for further use           |
| 1000-1FFF   | Communication Profile Area         |
| 2000-5FFF   | Manufacturer Specific Profile Area |
| 6000-9FFF   | Standardised Device Profile Area   |
| A000-FFFF   | Reserved for further use           |

Table 1: Object Dictionary Structure

The static data types at indices  $0001_h$  through  $001F_h$  contain type definitions for standard data types like boolean, integer, floating point, string, etc. These entries are included for reference only, they cannot be read or written.

Complex data types at indices  $0020_h$  through  $003F_h$  are pre-defined structures that are composed out of standard data types and are common to all devices.

Manufacturer Specific Data Types at indices 0040<sub>h</sub> through 005F<sub>h</sub> are also structures composed of standard data types but are specific to a particular device.

The Communication Profile Area at indices 1000<sub>h</sub> through 1FFF<sub>h</sub> contains the parameters for the communication profile on the CAN network. These entries are common to all devices.

For multi axles devices the object range 6000<sub>h</sub> to 67FF<sub>h</sub> is shifted as follows:

| 6000 <sub>h</sub> to 67FF <sub>h</sub> | axle 0 |
|----------------------------------------|--------|
| $6800_h$ to $6FFF_h$                   | axle 1 |
| $7000_h$ to $77FF_h$                   | axle 2 |
| $7800_h$ to $7FFF_h$                   | axle 3 |
| $8000_h$ to $87FF_h$                   | axle 4 |
| $8800_h$ to $8FFF_h$                   | axle 5 |
| 9000 <sub>h</sub> to 97FF <sub>h</sub> | axle 6 |
| 9800 <sub>h</sub> to 9FFF <sub>h</sub> | axle 7 |

#### 5.3.1 Index and sub-index usage

A 16-bit index is used to address all entries within the object dictionary. In case of a simple variable this references the value of this variable directly. In case of records and arrays however, the index addresses the whole data structure. To allow individual elements of structures of data to be accessed via the network a sub-index has been defined. For single object dictionary entries such as an Unsigned8, Boolean, Integer32 etc. the value for the sub-index is always zero. For complex object dictionary entries such as arrays or records with multiple data fields the sub-index refers to fields within a data-structure pointed to by the main index. Index counting starts with one. For example in the chapter Factor Group exists the object  $608F_h$  named position\_encoder\_resolution. Because this may be a fraction, two integers in an array are used to describe it. The drive uses the two values in the following manner:

```
position_encoder_resolution = encoder_increments ------motor_revolutions
```

The sub-index concept can be used to access these individual fields which may be of different data type as shown below:

| Main Index | Sub Index | Variable Accessed  | Data Type  |
|------------|-----------|--------------------|------------|
| 648F       | 0         | Number of elements | Unsigned8  |
|            | 1         | Encoder_increments | Unsigned32 |
|            | 2         | Motor_revolutions  | Unsigned32 |

Table 2: Usage of index and sub-index

### **6 Emergency Messages**

#### 6.1 Principle

Emergency messages are triggered by internal errors in the device and they are assigned the highest possible priority to ensure that they get access to the bus without latency. By default, the emergency messages contain an error field with pre-defined error numbers and additional information.

The error number is of Unsigned32 type. The lower two bytes contain the error code, the upper two bytes may contain additional error information. The high byte of the error code is used for an error classification while the low byte contains the error number for this class (see also /16/).

Error numbers from  $xx00_h$  to  $xx7F_h$  are defined in the communication profile DS-301 or in this profile DSP402. Not defined error numbers within this range are reserved. Error numbers between  $xx80_h$  and  $xxFF_h$  can be used manufacturer specific.

#### 6.2 Error Code Meanings

| Error Code<br>(hex) | Meaning                       | Defined By   |
|---------------------|-------------------------------|--------------|
| 0000                | no error                      | Comm. Prof.  |
| 1000                | generic error                 | Comm. Prof.  |
| 2000                | current                       | Comm. Prof.  |
| 2100                | current on device input side  |              |
| 2110                | short circuit/earth leakage   | Drives Prof. |
| 2120                | earth leakage                 | Drives Prof. |
| 2121                | earth leakage phase L1        | Drives Prof. |
| 2122                | earth leakage phase L2        | Drives Prof. |
| 2123                | earth leakage phase L3        | Drives Prof. |
| 2130                | short circuit                 | Drives Prof. |
| 2131                | short circuit phases L1-L2    | Drives Prof. |
| 2132                | short circuit phases L2-L3    | Drives Prof. |
| 2133                | short circuit phases L3-L1    | Drives Prof. |
| 2200                | internal current              | Drives Prof. |
| 2211                | internal current No.1         | Drives Prof. |
| 2212                | internal current No.2         | Drives Prof. |
| 2213                | over-current in ramp function | Drives Prof. |
| 2214                | over-current in the sequence  | Drives Prof. |
| 2220                | continuous over current       | Drives Prof. |
| 2221                | continuous over current No.1  | Drives Prof. |
| 2222                | continuous over current No.2  | Drives Prof. |
| 2230                | short circuit/earth leakage   |              |
| 2240                | earth leakage                 | Drives Prof. |
| 2250                | short circuit                 | Drives Prof. |

| Error Code<br>(hex) | Meaning                       | Defined By   |
|---------------------|-------------------------------|--------------|
| 2300                | current on device output side | Drives Prof. |
| 2310                | continuous over current       | Drives Prof. |
| 2311                | continuous over current No.1  | Drives Prof. |
| 2312                | continuous over current No.2  | Drives Prof. |
| 2320                | short circuit/earth leakage   | Drives Prof. |
| 2330                | earth leakage                 | Drives Prof. |
| 2331                | earth leakage phase U         | Drives Prof. |
| 2332                | earth leakage phase V         | Drives Prof. |
| 2333                | earth leakage phase W         | Drives Prof. |
| 2340                | short circuit                 | Drives Prof. |
| 2341                | short circuit phases U-V      | Drives Prof. |
| 2342                | earth leakage phase V-W       | Drives Prof. |
| 2343                | earth leakage phase W-U       | Drives Prof. |
| 3000                | voltage                       | Comm. Prof.  |
| 3100                | mains voltage                 | Drives Prof. |
| 3110                | mains over-voltage            | Drives Prof. |
| 3111                | mains over-voltage phase L1   | Drives Prof. |
| 3112                | mains over-voltage phase L2   | Drives Prof. |
| 3113                | mains over-voltage phase L3   | Drives Prof. |
| 3120                | mains under-voltage           | Drives Prof. |
| 3121                | mains under-voltage phase L1  | Drives Prof. |
| 3122                | mains under-voltage phase L2  | Drives Prof. |
| 3123                | mains under-voltage phase L3  | Drives Prof. |
| 3130                | phase failure                 | Drives Prof. |
| 3131                | phase failure L1              | Drives Prof. |
| 3132                | phase failure L2              | Drives Prof. |
| 3133                | phase failure L3              | Drives Prof. |
| 3134                | phase sequence                | Drives Prof. |
| 3140                | mains frequency               | Drives Prof. |
| 3141                | mains frequency too great     | Drives Prof. |
| 3142                | mains frequency too small     | Drives Prof. |
| 3200                | DC link voltage               | Drives Prof. |
| 3210                | DC link over-voltage          | Drives Prof. |
| 3211                | over-voltage No. 1            | Drives Prof. |
| 3212                | over voltage No. 2            | Drives Prof. |
| 3220                | DC link under-voltage         | Drives Prof. |
| 3221                | under-voltage No. 1           | Drives Prof. |
| 3222                | under-voltage No. 2           | Drives Prof. |
| 3230                | load error                    | Drives Prof. |
| 3300                | output voltage                | Drives Prof. |
| 3310                | output over-voltage           | Drives Prof. |
| 3311                | output over-voltage phase U   | Drives Prof. |
| 3312                | output over-voltage phase V   | Drives Prof. |
| 3313                | output over-voltage phase W   | Drives Prof. |
| 3320                | armature circuit              | Drives Prof. |
| 3321                | armature circuit interrupted  | Drives Prof. |
| 3330                | field circuit                 | Drives Prof. |
| 3331                | field circuit interrupted     | Drives Prof. |

| Error Code (hex) | Meaning                           | Defined By   |
|------------------|-----------------------------------|--------------|
| 4000             | temperature                       | Comm. Prof.  |
| 4100             | ambient temperature               | Drives Prof. |
| 4110             | excess ambient temperature        | Drives Prof. |
| 4120             | too low ambient temperature       | Drives Prof. |
| 4130             | temperature supply air            | Drives Prof. |
| 4140             | temperature air outlet            | Drives Prof. |
| 4200             | temperature device                | Drives Prof. |
| 4210             | excess temperature device         | Drives Prof. |
| 4220             | too low temperature device        | Drives Prof. |
| 4300             | temperature drive                 | Drives Prof. |
| 4310             | excess temperature drive          | Drives Prof. |
| 4320             | too low temperature drive         | Drives Prof. |
| 4400             | temperature supply                | Drives Prof. |
| 4410             | excess temperature supply         | Drives Prof. |
| 4420             | too low temperature supply        | Drives Prof. |
| 5000             | device hardware                   | Comm. Prof.  |
| 5100             | supply                            | Drives Prof. |
| 5110             | supply low voltage                | Drives Prof. |
| 5111             | U1 = supply +/- 15V               | Drives Prof. |
| 5112             | U2 = supply +24 V                 | Drives Prof. |
| 5113             | U3 = supply +5 V                  | Drives Prof. |
| 5114             | U4 = manufacturer specific        | Drives Prof. |
| 5115             | U5 = manufacturer specific        | Drives Prof. |
| 5116             | U6 = manufacturer specific        | Drives Prof. |
| 5117             | U7 = manufacturer specific        | Drives Prof. |
| 5118             | U8 = manufacturer specific        | Drives Prof. |
| 5119             | U9 = manufacturer specific        | Drives Prof. |
| 5120             | supply intermediate circuit       | Drives Prof. |
| 5200             | control                           | Drives Prof. |
| 5210             | measurement circuit               | Drives Prof. |
| 5220             | computing circuit                 | Drives Prof. |
| 5300             | operating unit                    | Drives Prof. |
| 5400             | power section                     | Drives Prof. |
| 5410             | output stages                     | Drives Prof. |
| 5420             | chopper                           | Drives Prof. |
| 5430             | input stages                      | Drives Prof. |
| 5440             | contacts                          | Drives Prof. |
| 5441             | contact 1 = manufacturer specific | Drives Prof. |
| 5442             | contact 2 = manufacturer specific | Drives Prof. |
| 5443             | contact 3 = manufacturer specific | Drives Prof. |
| 5444             | contact 4 = manufacturer specific | Drives Prof. |
| 5445             | contact 5 = manufacturer specific | Drives Prof. |
| 5450             | fuses                             | Drives Prof. |
| 5451             | S1 = L1                           | Drives Prof. |
| 5452             | S2 = L2                           | Drives Prof. |
| 5453             | S3 = L3                           | Drives Prof. |
| 5454             | S4 = manufacturer specific        | Drives Prof. |
| 5455             | S5 = manufacturer specific        | Drives Prof. |
| 5456             | S6 = manufacturer specific        | Drives Prof. |
| 5457             | S7 = manufacturer specific        | Drives Prof. |

| Error Code<br>(hex) | Meaning                             | Defined By   |
|---------------------|-------------------------------------|--------------|
| 5458                | S8 = manufacturer specific          | Drives Prof. |
| 5459                | S9 = manufacturer specific          | Drives Prof. |
| 5500                | data storage                        | Drives Prof. |
| 5510                | RAM                                 | Drives Prof. |
| 5520                | EPROM                               | Drives Prof. |
| 5530                | EEPROM                              | Drives Prof. |
| 6000                | device software                     | Comm. Prof.  |
| 6010                | software reset (watchdog)           | Drives Prof. |
| 6100                | internal software                   | Drives Prof. |
| 6200                | user software                       | Drives Prof. |
| 6300                | data record                         | Drives Prof. |
| 6301                | data record No. 1                   | Drives Prof. |
|                     |                                     | Drives Prof. |
| 630F                | date record No.15                   | Drives Prof. |
| 6310                | loss of parameters                  | Drives Prof. |
| 6320                | parameter error                     | Drives Prof. |
| 7000                | additional modules                  | Comm. Prof.  |
| 7100                | power                               | Drives Prof. |
| 7110                | brake chopper                       | Drives Prof. |
| 7111                | failure brake chopper               | Drives Prof. |
| 7112                | over current brake chopper          | Drives Prof. |
| 7113                | protective circuit brake chopper    | Drives Prof. |
| 7120                | motor                               | Drives Prof. |
| 7121                | motor blocked                       | Drives Prof. |
| 7122                | motor error or commutation malfunc. | Drives Prof. |
| 7123                | motor tilted                        | Drives Prof. |
| 7200                | measurement circuit                 | Drives Prof. |
| 7300                | sensor                              | Drives Prof. |
| 7301                | tacho fault                         | Drives Prof. |
| 7302                | tacho wrong polarity                | Drives Prof. |
| 7303                | resolver 1 fault                    | Drives Prof. |
| 7304                | resolver 2 fault                    | Drives Prof. |
| 7305                | incremental sensor 1 fault          | Drives Prof. |
| 7306                | incremental sensor 2 fault          | Drives Prof. |
| 7307                | incremental sensor 3 fault          | Drives Prof. |
| 7310                | speed                               | Drives Prof. |
| 7320                | position                            | Drives Prof. |
| 7400                | computation circuit                 | Drives Prof. |
| 7500                | communication                       | Drives Prof. |
| 7510                | serial interface No. 1              | Drives Prof. |
| 7520                | serial interface No. 2              | Drives Prof. |
| 7600                | data storage                        | Drives Prof. |

| Error Code | Meaning                   | Defined By   |
|------------|---------------------------|--------------|
| (hex)      |                           |              |
| 8000       | monitoring                | Comm. Prof.  |
| 8100       | communication             | Drives Prof. |
| 8110       | process data monitoring   | Drives Prof. |
| 8120       | host monitoring           | Drives Prof. |
| 8200       | control                   | Drives Prof. |
| 8300       | torque control            | Drives Prof. |
| 8311       | excess torque             | Drives Prof. |
| 8312       | difficult start up        | Drives Prof. |
| 8313       | standstill torque         | Drives Prof. |
| 8321       | insufficient torque       | Drives Prof. |
| 8331       | torque fault              | Drives Prof. |
| 8400       | velocity speed controller | Drives Prof. |
| 8500       | position controller       | Drives Prof. |
| 8600       | positioning controller    | Drives Prof. |
| 8611       | following error           | Drives Prof. |
| 8612       | reference limit           | Drives Prof. |
| 8700       | sync controller           | Drives Prof. |
| 8800       | winding controller        | Drives Prof. |
| 9000       | external error            | Comm. Prof.  |
| F000       | additional functions      | Comm. Prof.  |
| F001       | deceleration              | Drives Prof. |
| F002       | sub-synchronous run       | Drives Prof. |
| F003       | stroke operation          | Drives Prof. |
| F004       | control                   | Drives Prof. |
| FF00       | device specific           | Comm. Prof.  |
|            |                           |              |
| FFFF       |                           |              |

Table 3: Error Codes

#### 7 Predefinitions

#### 7.1 Naming conventions

The first three characters of a CMS name is a device profile identification (see /16/) and is defined for this device profile as: <402> (according to the number of this standard).

### 7.2 Predefined Objects

The default values for communication objects 1000<sub>h</sub> to 1FFF<sub>h</sub> which are not defined by the communication profile (see /16/) are mentioned below.

#### 7.2.1 Object 1000<sub>h</sub>: Device Type

The object at index 1000<sub>h</sub> describes the type of a device and its functionality.

For multi device modules the additional information parameter contains FFFh and the device profile number referenced by object 1000h is the device profile of the first device in the object dictionary. All other devices of a multiple device module identify their profiles at object 67FFh + x \* 800h with x = internal number of the device (0..7).

| MSB L     |         |        |                       | SB_ |
|-----------|---------|--------|-----------------------|-----|
| additiona | l infor | mation | device profile number |     |
| mode bits | 3       | type   |                       |     |
| 31        | 24      | 23 16  | 15                    | 0   |

For devices in this device profile the following assignment exists:

| Device Profile Number:  | 402        |                                        |
|-------------------------|------------|----------------------------------------|
| additional information  |            |                                        |
| drive type bit encoded: | Bit 16 = 1 | Frequency Converter                    |
| bits 1623               | Bit 17 = 1 | Servo Drive                            |
|                         | Bit 18 = 1 | Stepper Motor                          |
|                         | Bit 23 = 1 | I/O module (only multi device modules) |
| manufacturer specific   |            |                                        |
| bits 2431               | 0          |                                        |

Table 4: Structure of the Device Type Entry in the Object Dictionary

#### 7.2.2 Object 1001<sub>h</sub>: Error Register

All bits are defined as in /16/. The device specific bit in the status word is used by the CANopen Device Profile for Drives and Motion Control. The error code can be read from the predefined error field at object 1003<sub>h</sub> and to be compatible with device profiles for drives available for other fieldbus systems from object 603F<sub>h</sub> as well.

#### 7.2.3 Object 67FF<sub>h</sub>: Single Device Type

The object at index  $67FF_h$  and multiples with an offset of  $800_h$  describe the type of each device within one drive unit and its functionality. The object structure is the same as defined in Object  $1000_h$ .

For a multi device module, there must be defined the  $device\_type$  at index  $1000_h$  with the value FFFF<sub>h</sub> instead.

#### 7.3 PDO Mapping

A drive supporting more then one mode will mostly use more than one standard PDO. Therefore a lot of PDOs are predefined in respect to the different possible modes of operation for drives.

The hereafter described PDO distribution should be used for every axle of a multi-device module with an offset of 64, e.g. the first PDO of the second axle gets the number 65. In this way a system with a maximum of 8 axles is supported.

It is open to a manufacturer to specify additional entries in the mapping table or define absolutely new PDO mappings and it is also open to a user to change these default settings by changing the mapping structure, if the module supports variable mapping on these PDOs.

#### 7.3.1 Receive PDOs

| PDO No. | Mapping<br>Object<br>Index             | Mapping Object<br>Name            | M/O | Comment                                                          |
|---------|----------------------------------------|-----------------------------------|-----|------------------------------------------------------------------|
| 1       | 6040 <sub>h</sub>                      | controlword                       | М   | controls the state machine                                       |
| 2       | 6040 <sub>h</sub><br>6060 <sub>h</sub> | controlword modes_of_operation    | 0   | controls the state machine and mode of operation                 |
| 3       | 6040 <sub>h</sub><br>607A <sub>h</sub> | controlword target_position       | 0   | controls the state machine and the target position (pp)          |
| 4       | 6040 <sub>h</sub><br>60FF <sub>h</sub> | controlword target_velocity       | 0   | controls the state machine and the target velocity (pv)          |
| 5       | 6040 <sub>h</sub><br>6071 <sub>h</sub> | controlword target_torque         | 0   | controls the state machine and the target torque (tq)            |
| 6       | 6040 <sub>h</sub><br>6042 <sub>h</sub> | controlword vl_target_velocity    | 0   | controls the state machine and the nominal speed (vI)            |
| 7       | 6040 <sub>h</sub><br>60FE <sub>h</sub> | controlword digital_outputs       | 0   | controls the state machine and the digital outputs               |
| 8       | 6040 <sub>h</sub><br>6060 <sub>h</sub> | controlword<br>modes_of_operation | 0   | controls the state machine and mode of operation (Broadcast PDO) |
| 9 - 20  |                                        |                                   | 0   | reserved                                                         |
| 21 - 64 |                                        |                                   | 0   | manufacturer specific                                            |

### 7.3.1.1 1<sup>st</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1400 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | see /16/      |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1600 <sub>h</sub> | 0        | number of mapped objects | 1                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |

## 7.3.1.2 2<sup>nd</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1401 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | see /16/      |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1601 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |
|                   | 2        | modes_of_operation       | 60600008 <sub>h</sub> |

## 7.3.1.3 3<sup>rd</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1402 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1602 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |
|                   | 2        | target_position          | 607A0020 <sub>h</sub> |

## 7.3.1.4 4<sup>th</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1403 <sub>h</sub> | 0        | number of entries  | see /17/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1603 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |
|                   | 2        | profile_velocity         | 60FF0020 <sub>h</sub> |

### 7.3.1.5 5<sup>th</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |  |
|-------------------|----------|--------------------|---------------|--|
| 1404 <sub>h</sub> | 0        | number of entries  | see /16/      |  |
|                   | 1        | COB-ID used by PDO | not defined   |  |
|                   | 2        | transmission type  | 255           |  |
|                   | 3        | inhibit time       | see /16/      |  |
|                   | 4        | CMS priority group | 3             |  |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1604 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |
|                   | 2        | target_torque            | 60710010 <sub>h</sub> |

## 7.3.1.6 6<sup>th</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1405 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1605 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |
|                   | 2        | nominal_speed_value      | 60420010 <sub>h</sub> |

## 7.3.1.7 7<sup>th</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |  |
|-------------------|----------|--------------------|---------------|--|
| 1406 <sub>h</sub> | 0        | number of entries  | see /16/      |  |
|                   | 1        | COB-ID used by PDO | not defined   |  |
|                   | 2        | transmission type  | 255           |  |
|                   | 3        | inhibit time       | see /16/      |  |
|                   | 4        | CMS priority group | 3             |  |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1606 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |
|                   | 2        | digital_outputs          | 60FE0020 <sub>h</sub> |

## 7.3.1.8 8<sup>th</sup> Receive PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1407 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1607 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | controlword              | 60400010 <sub>h</sub> |
|                   | 2        | modes_of_operation       | 60600008 <sub>h</sub> |

#### 7.3.2 Transmit PDOs

The task of the transmit PDOs is the monitoring of the drives behaviour. The TPDO 1,2 and 7 are event driven. The other PDOs can be implemented as synchronous or remotely requested (RTR) PDO.

| PDO No. | Mapping<br>Object<br>Index             | Mapping Object Name                      | M/O | Comment                                       |
|---------|----------------------------------------|------------------------------------------|-----|-----------------------------------------------|
| 1       | 6041 <sub>h</sub>                      | statusword                               | М   | shows status                                  |
| 2       | 6041 <sub>h</sub><br>6061 <sub>h</sub> | statusword<br>modes_of_operation_display | 0   | shows status and the actual mode of operation |
| 3       | 6041 <sub>h</sub><br>6064 <sub>h</sub> | statusword position_actual_value         | 0   | shows the status and the actual position (pp) |
| 4       | 6041 <sub>h</sub><br>606C <sub>h</sub> | statusword velocity_actual_value         | 0   | shows the status and the actual velocity (pv) |
| 5       | 6041 <sub>h</sub><br>6077 <sub>h</sub> | statusword<br>torque_actual_value        | 0   | shows the status and the actual torque (tq)   |
| 6       | 6041 <sub>h</sub><br>6044 <sub>h</sub> | statusword<br>vl_control_effort          | 0   | shows the status and the actual speed (vI)    |
| 7       | 6041 <sub>h</sub><br>60FD <sub>h</sub> | statusword<br>digital_inputs             | 0   | shows the status and the digital inputs       |
| 8 – 20  |                                        |                                          | 0   | reserved                                      |
| 21 - 64 |                                        |                                          | 0   | manufacturer specific                         |

## 7.3.2.1 1<sup>st</sup> Transmit PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1800 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | see /16/      |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1A00 <sub>h</sub> | 0        | number of mapped objects | 1                     |
|                   | 1        | statusword               | 60410010 <sub>h</sub> |

## 7.3.2.2 2<sup>nd</sup> Transmit PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1801 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | see /16/      |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                    | Default Value         |
|-------------------|----------|----------------------------|-----------------------|
| 1A01 <sub>h</sub> | 0        | number of mapped objects   | 2                     |
|                   | 1        | statusword                 | 60410010 <sub>h</sub> |
|                   | 2        | modes_of_operation_display | 60610008 <sub>h</sub> |

## 7.3.2.3 3<sup>rd</sup> Transmit PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1802 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | not defined   |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value          |
|-------------------|----------|--------------------------|------------------------|
| 1A02 <sub>h</sub> | 0        | number of mapped objects | 2                      |
|                   | 1        | statusword               | 60410010 <sub>h</sub>  |
|                   | 2        | position_actual_value    | 606400020 <sub>h</sub> |

## 7.3.2.4 4<sup>th</sup> Transmit PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1803 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | not defined   |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1A03 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | statusword               | 60410010 <sub>h</sub> |
|                   | 2        | velocity_actual_value    | 606C0020 <sub>h</sub> |

## 7.3.2.5 5<sup>th</sup> Transmit PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1804 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | not defined   |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1A04 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | statusword               | 60410010 <sub>h</sub> |
|                   | 2        | torque_actual_value      | 60770010 <sub>h</sub> |

# 7.3.2.6 6<sup>th</sup> Transmit PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1805 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | not defined   |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1A05 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | statusword               | 60410010 <sub>h</sub> |
|                   | 2        | vl_control_effort        | 60440010 <sub>h</sub> |

# 7.3.2.7 7<sup>th</sup> Transmit PDO

| Index             | Subindex | Comment            | Default Value |
|-------------------|----------|--------------------|---------------|
| 1806 <sub>h</sub> | 0        | number of entries  | see /16/      |
|                   | 1        | COB-ID used by PDO | not defined   |
|                   | 2        | transmission type  | 255           |
|                   | 3        | inhibit time       | see /16/      |
|                   | 4        | CMS priority group | 3             |

| Index             | Subindex | Comment                  | Default Value         |
|-------------------|----------|--------------------------|-----------------------|
| 1A06 <sub>h</sub> | 0        | number of mapped objects | 2                     |
|                   | 1        | statusword               | 60410010 <sub>h</sub> |
|                   | 2        | digital_inputs           | 60FD0020 <sub>h</sub> |

# **8 Object Dictionary**

Each drive shares the dictionary entries from  $6000_h$  to  $63FF_h$ . These entries are common to all drive modules and each module implements only the dictonary parts which are relevant for its functions.

Drives having also digital or analog I/O are using dictionary entries from  $8000_h$  to  $83FF_h$ as described in /19/ for the objects from  $6000_h$  to  $63FF_h$  with an offset of  $2000_h$ .

| Meaning of the      | e Table Rows:                                                                                                                                                               |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Index               | the 16-bit index to the object dictionary used by a module to represent a special function, data or task                                                                    |  |  |
| Name                | short description of the usage                                                                                                                                              |  |  |
| Object Code         | object type which represents the data, e.g. VAR, ARRAY, RECORD, etc.                                                                                                        |  |  |
| Data Type           | data type which represents the information, e.g. Unsigned32, Unsigned8 etc.                                                                                                 |  |  |
| Object Class        | entries in this row indicates wether an object is mandatory or not:  M this object is mandatory for all drives O this object is optional Dependent on the mode of operation |  |  |
| Access              | description how the object might be accessed: ro read only wo write only rw read and write                                                                                  |  |  |
| PDO mapping         | indicates the manner of PDO mapping for an object.  No mapping is not allowed  Possible mapping is allowed for the manufacturer  Yes this object is mapped by default       |  |  |
| Units               | physical units of the object value                                                                                                                                          |  |  |
| Value Range         | the value range allowed and requested for an object                                                                                                                         |  |  |
| Default Value       | default value of the object after device initialization.                                                                                                                    |  |  |
| Substitute<br>Value | if the object doesn't exist in the object dictionary description, this value will be used for internal calculations                                                         |  |  |
| Device Mode A       | Abbreviations:                                                                                                                                                              |  |  |
| рр                  | mandatory (m), optional (o) or not used (-) for the Profile Position Mode                                                                                                   |  |  |
| pv                  | mandatory (m), optional (o) or not used (-) for the Profile Velocity Mode                                                                                                   |  |  |
| vl                  | mandatory (m), optional (o) or not used (-) for the Velocity Mode                                                                                                           |  |  |
| hm                  | mandatory (m), optional (o) or not used (-) for the Homing Mode                                                                                                             |  |  |
| ip                  | mandatory (m), optional (o) or not used (-) for the Interpolated Position Mode                                                                                              |  |  |
| tq                  | mandatory (m), optional (o) or not used (-) for the Profile Torque Mode                                                                                                     |  |  |
| all                 | mandatory for all modes                                                                                                                                                     |  |  |
| Chapter Titel       | Chapter Titel Abbreviations                                                                                                                                                 |  |  |
| се                  | Common Entries in the Object Dictionary                                                                                                                                     |  |  |
| dc                  | Device Control                                                                                                                                                              |  |  |
| рс                  | mandatory (m), optional (o) or not used (-) for the Position Control Function                                                                                               |  |  |

## 9 Common Entries in the Object Dictionary

#### 9.1 General Information

#### 9.1.1 Motor Data

The objects  $6402_h$  to  $64FF_h$  serve as a database for motor parameters. The values are typically found on the motor's nameplate or the manufacturer's motor catalog and are used to maintain a service database within the controlling device of the drive. Most of the entries are typically entities from the manufacturer's motor catalog. Future drives should at least contain an entry to the electronically available catalog via a common net address, like a HTTP link to the manufactorers database, *http motor catalog address*.

The objects 6402<sub>h</sub> to 640F<sub>h</sub> are highly recommended.

Some objects are available in the object dictionary of other fieldbus systems, so their indices are not in the default range from 6400<sub>h</sub> to 64ff<sub>h</sub>.

There is one manufacturer specific data RECORD at object 6410<sub>h</sub>. It should contain as much as possible entries for the used motor. The structure of this record is described in the manufacturer's data sheet for the drive unit.

#### 9.1.2 Drive Data

The objects 6500<sub>h</sub> to 65FF<sub>h</sub> serve as a database for drive parameters.

There is one manufacturer specific data RECORD at object 6510<sub>h</sub>. It should contain as much as possible entries for the used drive. The structure of this record is described in the manufacturer's handbook. The data must be filled in while in commissioning. The values are typically found on the drive's datasheet or the manufacturer's drives catalog and are used to maintain a service database within the controlling device of the drive.

Most of the entries are typically entities from the manufacturer's drive catalog. Future drives should at least contain an entry to the electronically available catalog via a common net address, like a HTTP link to the manufactorers database, <a href="http://drive\_catalog\_address">http\_drive\_catalog\_address</a>.

In /16/ three optional objects for a CANopen device are recommended:

| Index             | Name                          |
|-------------------|-------------------------------|
| 1008 <sub>h</sub> | manufacturer device name      |
| 1009 <sub>h</sub> | manufacturer hardware version |
| 100A <sub>h</sub> | manufacturer software version |

# 9.2 Object Dictionary Entries

# 9.2.1 Objects defined in this Chapter

| Index             | Object | Name                         | Туре           | Attr. | M/O |
|-------------------|--------|------------------------------|----------------|-------|-----|
| 6007 <sub>h</sub> | VAR    | abort_connection_option_code | Integer16      | rw    | 0   |
| 603F <sub>h</sub> | VAR    | error_code                   | Unsigned16     | ro    | 0   |
| 6402 <sub>h</sub> | VAR    | motor_type                   | Unsigned16     | rw    | 0   |
| 6403 <sub>h</sub> | VAR    | motor_catalogue_number       | Visible String | rw    | 0   |
| 6404 <sub>h</sub> | VAR    | motor_manufacturer           | Visible String | rw    | 0   |
| 6405 <sub>h</sub> | VAR    | http_motor_catalog_address   | Visible String | rw    | 0   |
| 6406 <sub>h</sub> | VAR    | motor_calibration_date       | Date           | rw    | 0   |
| 6407 <sub>h</sub> | VAR    | motor_service_period         | Unsigned32     | rw    | 0   |
| 6410 <sub>h</sub> | RECORD | motor_data                   | -              | rw    | 0   |
| 6502 <sub>h</sub> | VAR    | supported_drive_modes        | Unsigned32     | ro    | 0   |
| 6503 <sub>h</sub> | VAR    | drive_catalogue_number       | Visible String | ro    | 0   |
| 6504 <sub>h</sub> | VAR    | drive_manufacturer           | Visible String | ro    | 0   |
| 6505 <sub>h</sub> | VAR    | http_drive_catalog_address   | Visible String | rw    | 0   |
| 6510 <sub>h</sub> | RECORD | drive_data                   | -              | rw    | 0   |
| 60FD <sub>h</sub> | VAR    | digital_inputs               | Unsigned32     | rw    | 0   |
| 60FE <sub>h</sub> | RECORD | digital_outputs              | -              | rw    | 0   |

# 9.3 Object Description

### 9.3.1 Object 6007<sub>h</sub>: abort\_connection\_option\_code

The content of this object selects the function to be performed when the connection to the network is lost.

| Index       | 6007 <sub>h</sub>            |
|-------------|------------------------------|
| Name        | abort_connection_option_code |
| Object Code | VAR                          |
| Data type   | Integer16                    |

### Value description

| Object Class     | M: -        | O: all |  |
|------------------|-------------|--------|--|
| Access           | rw          | rw     |  |
| PDO Mapping      | Possible    |        |  |
| Units            | -           |        |  |
| Value Range      | -3276832767 |        |  |
| Mandatory Range  | -           |        |  |
| Default Value    | 0           |        |  |
| Substitute Value | -           |        |  |

| Option Code | Meaning of the Option Code               |
|-------------|------------------------------------------|
| 0           | No action                                |
| 1           | Malfunction                              |
| 2           | Device control command "disable_voltage" |
| 3           | Device control command "quick_stop"      |
| 432767      | reserved                                 |
| -32768–1    | manufacturer specific                    |

### 9.3.2 Object 603F<sub>h</sub>: error\_code

The *error\_code* captures the code of the last error that occured in the drive. It corresponds to the value of the lower 16 bits of object 1003<sub>h</sub> *pre\_defined\_error\_field*.

| Index       | 603F <sub>h</sub> |
|-------------|-------------------|
| Name        | error_code        |
| Object Code | VAR               |
| Data type   | Unsigned16        |

### Value description

| Object Class     | M: -     | O: all |  |
|------------------|----------|--------|--|
| Access           | ro       |        |  |
| PDO Mapping      | Possible |        |  |
| Units            | -        |        |  |
| Value Range      | 065535   |        |  |
| Mandatory Range  | -        |        |  |
| Default Value    | 0        |        |  |
| Substitute Value | -        |        |  |

### 9.3.3 Object 6402<sub>h</sub>: motor\_type

The type of motor driven by the controller.

| Index       | 6402 <sub>h</sub> |
|-------------|-------------------|
| Name        | motor_type        |
| Object Code | VAR               |
| Data type   | Unsigned16        |

| Object Class     | M: -     | O: - |  |
|------------------|----------|------|--|
| Access           | rw       |      |  |
| PDO Mapping      | Possible |      |  |
| Units            | -        |      |  |
| Value Range      | 065535   |      |  |
| Mandatory Range  | -        |      |  |
| Default Value    | -        |      |  |
| Substitute Value | -        |      |  |

### **Data Description**

| Value | Motor Type                    |
|-------|-------------------------------|
| 0     | Non-Standard Motor            |
| 1     | Phase Modulated DC Motor      |
| 2     | Frequency Controlled DC Motor |
| 3     | PM Synchronous Motor          |
| 4     | FC Synchronous Motor          |
| 5     | Switched Reluctance Motor     |
| 6     | Wound Rotor Induction Motor   |
| 7     | Squirrel Cage Induction Motor |
| 8     | Stepper Motor                 |
| 9     | Micro-Step Stepper Motor      |
| 10    | Sinusoidial PM BL Motor       |
| 11    | Trapezoidal PM BL Motor       |

### 9.3.4 Object 6403<sub>h</sub>: motor\_catalogue\_number

The manufacturer's motor catalog number (nameplate number).

| Index       | 6403 <sub>n</sub>      |
|-------------|------------------------|
| Name        | motor_catalogue_number |
| Object Code | VAR                    |
| Data type   | Visible String         |

| Object Class     | M: -     | O: - |
|------------------|----------|------|
| Access           | rw       |      |
| PDO Mapping      | Possible |      |
| Units            | -        |      |
| Value Range      | -        |      |
| Mandatory Range  | -        |      |
| Default Value    | -        |      |
| Substitute Value | -        |      |

### 9.3.5 Object 6404<sub>h</sub>: motor\_manufacturer

The motor manufacturer's name.

| Index       | 6404 <sub>h</sub>  |
|-------------|--------------------|
| Name        | motor_manufacturer |
| Object Code | VAR                |
| Data type   | Visible String     |

### **Value Description**

| Object Class     | M: -     | O: - |  |
|------------------|----------|------|--|
| Access           | rw       |      |  |
| PDO Mapping      | Possible |      |  |
| Units            | -        | -    |  |
| Value Range      | -        | -    |  |
| Mandatory Range  | -        |      |  |
| Default Value    | -        | -    |  |
| Substitute Value | -        | -    |  |

# 9.3.6 Object 6405<sub>h</sub>: http\_motor\_catalog\_address

| Index       | 6405 <sub>h</sub>          |
|-------------|----------------------------|
| Name        | http_motor_catalog_address |
| Object Code | VAR                        |
| Data type   | Visible String             |

| Object Class     | M: -     | O: - |
|------------------|----------|------|
| Access           | rw       |      |
| PDO Mapping      | Possible |      |
| Units            | -        |      |
| Value Range      | -        |      |
| Mandatory Range  | -        |      |
| Default Value    | -        |      |
| Substitute Value | -        |      |

### 9.3.7 Object 6406<sub>h</sub>: motor\_calibration\_date

Date of the last motorbject 6406<sub>h</sub> inspection.

| Index       | 6406 <sub>n</sub>      |
|-------------|------------------------|
| Name        | motor_calibration_date |
| Object Code | VAR                    |
| Data type   | Date                   |

### **Value Description**

| Object Class     | M: -     | O: - |
|------------------|----------|------|
| Access           | rw       |      |
| PDO Mapping      | Possible |      |
| Units            | -        |      |
| Value Range      | -        |      |
| Mandatory Range  | -        |      |
| Default Value    | -        |      |
| Substitute Value | -        |      |

### 9.3.8 Object 6407<sub>h</sub>: motor\_service\_period

Value in hours of the nominal motor lifetime. The motor needs service after this time.

| Index       | 6407 <sub>h</sub>    |
|-------------|----------------------|
| Name        | motor_service_period |
| Object Code | VAR                  |
| Data type   | Unsigned32           |

| Object Class     | M: -                  | O: -     |  |
|------------------|-----------------------|----------|--|
| Access           | rw                    |          |  |
| PDO Mapping      | Possible              | Possible |  |
| Units            | -                     |          |  |
| Value Range      | 0(2 <sup>32</sup> -1) |          |  |
| Mandatory Range  | -                     |          |  |
| Default Value    | -                     | -        |  |
| Substitute Value | -                     |          |  |

### 9.3.9 Object 6410<sub>h</sub>: motor\_data

This object contains as much as possible information about the connected motor. The structure of this record is described in the drive manufacturer's handbook.

| Index              | 6410 <sub>h</sub> |
|--------------------|-------------------|
| Name               | motor_data        |
| Object Code        | RECORD            |
| Number of Elements | 0255              |

| Sub-Index        | 01 <sub>h</sub> 255h <sub>h</sub> |                       |  |
|------------------|-----------------------------------|-----------------------|--|
| Description      | Manufacturer specific             | Manufacturer specific |  |
| Object Class     | M: -                              | M: - O: all           |  |
| Access           | rw                                |                       |  |
| PDO Mapping      | Possible                          | Possible              |  |
| Units            | -                                 | -                     |  |
| Value Range      | -                                 |                       |  |
| Mandatory Range  | -                                 |                       |  |
| Default Value    | -                                 | -                     |  |
| Substitute Value | -                                 |                       |  |
| Data Type        | manufacturer defined              | manufacturer defined  |  |

### 9.3.10 Object 6502<sub>h</sub>: supported\_drive\_modes

A drive can support more then one and several distinct modes of operation. Many of them are described in this document. This object is read only.

| Index       | 6502 <sub>h</sub>     |
|-------------|-----------------------|
| Name        | supported_drive_modes |
| Object Code | VAR                   |
| Data type   | Unsigned32            |

### **Value Description**

| Object Class     | M: -                  | O: - |
|------------------|-----------------------|------|
| Access           | ro                    |      |
| PDO Mapping      | Possible              |      |
| Units            | -                     |      |
| Value Range      | 0(2 <sup>32</sup> -1) |      |
| Mandatory Range  | -                     |      |
| Default Value    | -                     |      |
| Substitute Value | -                     |      |

| Bit number | Description                |
|------------|----------------------------|
| 0          | Profile Position Mode      |
| 1          | Velocity Mode              |
| 2          | Profile Velocity Mode      |
| 3          | Profile Torque Mode        |
| 4          | reserved                   |
| 5          | Homing Mode                |
| 6          | Interpolated Position Mode |
| 7          | reserved                   |
| 8          | reserved                   |
| 9          | reserved                   |
| 1015       | reserved                   |
| 16 31      | manufacturer specific      |

### 9.3.11 Object 6503<sub>h</sub>: drive\_catalogue\_number

The manufacturer's drive catalog number (nameplate number).

| Index       | 6503 <sub>h</sub>      |
|-------------|------------------------|
| Name        | drive_catalogue_number |
| Object Code | VAR                    |
| Data type   | Visible String         |

### **Value Description**

| Object Class     | M: -     | O: -     |  |
|------------------|----------|----------|--|
| Access           | rw       |          |  |
| PDO Mapping      | Possible | Possible |  |
| Units            | -        | -        |  |
| Value Range      | -        |          |  |
| Mandatory Range  | -        |          |  |
| Default Value    | -        | -        |  |
| Substitute Value | -        |          |  |

### 9.3.12 Object 6504<sub>h</sub>: drive\_manufacturer

The drive manufacturer's name.

| Index       | 6504 <sub>h</sub>  |
|-------------|--------------------|
| Name        | drive_manufacturer |
| Object Code | VAR                |
| Data type   | Visible String     |

| Object Class     | M: -     | O: - |
|------------------|----------|------|
| Access           | rw       |      |
| PDO Mapping      | Possible |      |
| Units            | -        |      |
| Value Range      | -        |      |
| Mandatory Range  | -        |      |
| Default Value    | -        |      |
| Substitute Value | -        |      |

### 9.3.13 Object 6505<sub>h</sub>: http\_drive\_catalog\_address

The internet address of the manufacturer.

| Index       | 6505 <sub>h</sub>          |
|-------------|----------------------------|
| Name        | http_drive_catalog_address |
| Object Code | VAR                        |
| Data type   | Visible String             |

### **Value Description**

| Object Class     | M: -     | O: - |
|------------------|----------|------|
| Access           | rw       |      |
| PDO Mapping      | Possible |      |
| Units            | -        |      |
| Value Range      | -        |      |
| Mandatory Range  | -        |      |
| Default Value    | -        |      |
| Substitute Value | -        |      |

### 9.3.14 Object 6510<sub>h</sub>: drive\_data

This object contains as much as possible information about the drive unit. The structure of this record is described in the drive manufacturer's handbook.

| Index              | 6510 <sub>h</sub> |
|--------------------|-------------------|
| Name               | drive_data        |
| Object Code        | RECORD            |
| Number of Elements | 0255              |

| Sub-Index        | 01 <sub>h</sub> 255h <sub>h</sub> |        |  |
|------------------|-----------------------------------|--------|--|
| Description      | Manufacturer spec                 | fic    |  |
| Object Class     | M: -                              | O: all |  |
| Access           | rw                                | ·      |  |
| PDO Mapping      | Possible                          |        |  |
| Units            | -                                 |        |  |
| Value Range      | -                                 |        |  |
| Mandatory Range  | -                                 |        |  |
| Default Value    | -                                 |        |  |
| Substitute Value | -                                 |        |  |
| Data Type        | manufacturer defin                | ed     |  |

# 9.3.15 Object 60FD<sub>h</sub>: digital\_inputs

This index defines simple digital inputs for drives. The user may apply any signals to these inputs for special purposes like limit or reference switches.

| Index       | 60FD <sub>h</sub> |
|-------------|-------------------|
| Name        | digital_inputs    |
| Object Code | VAR               |
| Data type   | Unsigned32        |

### **Value Description**

| Object Class     | M: -                  | O: all |
|------------------|-----------------------|--------|
| Access           | ro                    |        |
| PDO Mapping      | Possible              |        |
| Units            | -                     |        |
| Value Range      | 0(2 <sup>32</sup> -1) |        |
| Mandatory Range  | -                     |        |
| Default Value    | 0                     |        |
| Substitute Value | -                     |        |

| Bit No | Digital Input Assignment                               |
|--------|--------------------------------------------------------|
| 0      | negative limit switch position switch is "active high" |
| 1      | positive limit switch position switch is "active high" |
| 2      | home switch                                            |
| 3      | interlock (enable) switch is "active high"             |
| 415    | reserved                                               |
| 1631   | manufacturer specific                                  |

### 9.3.16 Object 60FE<sub>h</sub>: digital\_outputs

This index defines simple digital outputs for drives.

| Index              | 60FE <sub>h</sub> |
|--------------------|-------------------|
| Name               | digital_outputs   |
| Object Code        | RECORD            |
| Number of Elements | 2                 |

### **Value Description**

| Sub-Index        | 01 <sub>h</sub>       |        |  |
|------------------|-----------------------|--------|--|
| Description      | physical_outputs      |        |  |
| Object Class     | M: -                  | O: all |  |
| Access           | rw                    |        |  |
| PDO Mapping      | Possible              |        |  |
| Units            | -                     |        |  |
| Value Range      | 0(2 <sup>32</sup> -1) |        |  |
| Mandatory Range  | -                     |        |  |
| Default Value    | 0                     |        |  |
| Substitute Value | -                     |        |  |
| Data Type        | Unsigned32            |        |  |

### **Data Description**

| Bit No | Assigned Digital Outputs |
|--------|--------------------------|
| 0      | set brake                |
| 115    | reserved                 |
| 1631   | manufacturer specific    |

This second sub-index describes a mask to specify which of the outputs shall be used, where a "1" selects and a "0" deselects an output.

| Sub-Index        | 02 <sub>h</sub> |        |  |
|------------------|-----------------|--------|--|
| Description      | bitmask         |        |  |
| Object Class     | M: -            | O: all |  |
| Access           | rw              |        |  |
| PDO Mapping      | Possible        |        |  |
| Units            | -               |        |  |
| Value Range      | 0, 1            |        |  |
| Mandatory Range  | 0, 1            |        |  |
| Default Value    | 0               |        |  |
| Substitute Value | -               |        |  |
| Data Type        | Unsigned32      |        |  |

#### 10 Device Control

#### 10.1 General Information

The device control function block controls all functions of the drive (drive function and power section). It is divided into:

Device Control of the Statemachine

**Operation Mode Function** 



Figure 5: Device-Controlling

The state of the drive can be controlled by the controlword

The state of the drive is shown in the statusword

In remote mode the device is controlled directly from the CAN-network by Process Data Objects (PDOs) and Service Data Objects (SDOs).

The statemachine is controlled externally by the *controlword* and external signals. The write access to the *controlword* is controlled by the optional hardware signal 'Remote'. The statemachine is also controlled by internal signals like faults and *modes\_of\_operation*.



Figure 6: Remote Mode

#### 10.1.1 Statemachine

The Statemachine describes the device status and the possible control sequence of the drive. A single state represents a special internal or external behaviour. The state of the drive also determines which commands are accepted. E.g. it is only possible to start a point-to-point move when the drive is in state OPERATION ENABLED.

States may be changed using the *controlword* and/or according to internal events. The current state can be read using the statusword.



Figure 7: Statemachine

The state diagram in Figure 7 describes the state machine of the device with respect to control of the power electronics as a result of user commands and internal drive faults.



Figure 8: State Diagram

#### **10.1.1.1** Drive States

The drive states may become more evident when considering the following (generic) block diagram of a drive:



Figure 9: Generic Control Loop Block Diagram

The sensor interface and the "in"-terminal are only present in drives with a feedback path. Normally the setpoint generator, the controller and the power amplifier can be disabled.

The following states of the device are possible:

#### O Not Ready to Switch On:

Low level Power (e.g. ±15V, 5V) has been applied to the drive.

The drive is being initialized or is running self test.

A brake, if present, has to be applied in this state.

The drive function is disabled.

#### O Switch On Disabled:

Drive Initialisation is complete.

The drive parameters have been set up.

Drive parameters may be changed.

High Voltage may not be applied to the drive, (e.g. for safety reasons).

The drive function is disabled.

#### O Ready to Switch On:

High Voltage may be applied to the drive.

The drive parameters may be changed.

The drive function is disabled.

#### O Switched On:

High Voltage has been applied to the drive.

The Power Amplifier is ready.

The drive parameters may be changed.

The drive function is disabled.

#### O Operation Enable:

No faults have been detected.

The drive function is enabled and power is applied to the motor.

The drive parameters may be changed.

(This corresponds to normal operation of the drive.)

#### O Quick Stop Active:

The drive parameters may be changed.

The Quick Stop function is being executed.

The drive function is enabled and power is applied to the motor.

If the 'Quick-Stop-Option-Code' is switched to 5 (Stay in Quick-Stop), you can't leave the Quick-Stop-State, but you can transmit to 'Operation Enable' with the command 'Enable Operation'.

#### O Fault Reaction Active:

The drive parameters may be changed.

A non-fatal fault has occured in the drive.

The Quick Stop function is being executed.

The drive function is enabled and power is applied to the motor.

#### O Fault:

The drive parameters may be changed.

A fault has occured in the drive.

The drive function is disabled.

#### 10.1.1.2 State Transitions of the Drive Supervisor

State Transitions are caused by internal events in the drive or by commands from the host via the controlword.

O State Transition 0: Startup ⇒ Not Ready to Swich On

Event: Reset.

Action: The drive self-tests and/or self-initialises.

O State Transition 1: Not Ready to Swich On ⇒ Switch On Disabled

Event: The drive has self-tested and/or initialised successfully. Action: Activate communisation and process data monitoring

O State Transition 2: Switch On Disabled ⇒ Ready to Switch On

Event: 'Shutdown' command received from host.

Action: None

O State Transition 3: Ready to Switch On ⇒ Switched On

Event: 'Switch On' command received from host.

Action: The power section is switched on if it is not already switched on.

O State Transition 4: Switched On ⇒ Operation Enabled

Event: 'Enable Operation' command received from host.

Action: The drive function is enabled.

O State Transition 5: Operation Enabled ⇒ Switched On

Event: 'Disable Operation' command received from host.

Action: The drive operation will be disabled.

O State Transition 6: Switched On ⇒ Ready to Switch On

Event: 'Shutdown' command received from host.

Action: The power section is switched off.

O State Transition 7: Ready to Switch On ⇒ Switch On Disable

Event: 'Quick stop' command received from host.

Action: None

O State Transition 8: Operation Enable ⇒ Ready to Switch On

Event: 'Shutdown' command received from host.

Action: The power section is switched off immediatly, and the motor is free to rotate if

unbraked

O State Transition 9: Operation Enable ⇒ Switch On Disable

Event: 'Disable Voltage' command received from host.

Action: The power section is switched off immediatly, and the motor is free to rotate if

unbraked

O State Transition 10: Switched On ⇒ Switched On Disable

Event: 'Disable Voltage' or 'Quick Stop' command received from host.

Action: The power section is switched off immediatly, and the motor is free to rotate if unbraked

O State Transition 11: Operation Enabled ⇒ Quick Stop Active

Event: 'Quick Stop' command received from host.

Action: The Quick Stop function is executed.

O State Transition 12: Quick Stop Active ⇒ Switch On Disabled

Event: 'Quick Stop' is completed or 'Disable Voltage' command received from host. This transition is possible, if the Quick-Stop-Option-Code is different 5 (Stay in Quick-Stop)

Action: The power section is switched off.

O State Transition 13: All states ⇒ Fault Reaction Active

A fatal fault has occurred in the drive.

Action: Execute appropriate fault reaction.

O State Transition 14: Fault Reaction Active ⇒ Fault

Event: The fault reaction is completed.

Action: The drive function is disabled. The power section may be switched off.

O State Transition 15: Fault ⇒ Switch On Disabled

Event: 'Fault Reset' command received from host.

Action: A reset of the fault condition is carried out if no fault exists currently on the drive. After leaving the 'Fault' state the Bit 'Fault Reset' of the controlword has to be cleared by the host.

O State Transition 16: Quick Stop Active ⇒ Operation Enable

Event: 'Enable Operation' command received from host. This transition is possible if the Quick-Stop-Option-Code is 5, 6, 7 or 8 (→ Chapter 10.3.5).

Action: The drive function is enabled.

#### Notes:

If a command is received which causes a change of state, this command must be processed completely and the new state attained before the next command can be processed.

'Drive function is disabled' implies no energy is supplied to the motor. This may be achieved by different manufacturers in different ways. Reference values are not processed.

'Drive function is enabled' implies that energy can be supplied to the motor. The reference values (Torque, Velocity, Position) are processed.

'Fault occurred' implies that a fault in the drive has occurred. In this case there is a transition to the state 'Fault Reaction Active'. In this state the device will execute a special fault reaction. After the execution of this fault reaction the device will switch to the state 'Fault'. This state can only be left by the command 'Fault reset', but only if the fault is not active any more.

# 10.2 Object Dictionary Entries

### 10.2.1 Objects defined in this Chapter

| Index             | Object | Name                          | Туре       | Attr. | M/O |
|-------------------|--------|-------------------------------|------------|-------|-----|
| 6040 <sub>h</sub> | VAR    | controlword                   | Unsigned16 | rw    | М   |
| 6041 <sub>h</sub> | VAR    | statusword                    | Unsigned16 | rw    | М   |
| 605B <sub>h</sub> | VAR    | shutdown_option_code          | Integer16  | rw    | 0   |
| 605C <sub>h</sub> | VAR    | disable_operation_option_code | Integer16  | rw    | 0   |
| 605A <sub>h</sub> | VAR    | quick_stop_option_code        | Integer16  | rw    | 0   |
| 605D <sub>h</sub> | VAR    | stop_option_code              | Integer16  | rw    | 0   |
| 605E <sub>h</sub> | VAR    | fault_reaction_option_code    | Integer16  | rw    | 0   |
| 6060 <sub>h</sub> | VAR    | modes_of_operation            | Integer8   | wo    | М   |
| 6061 <sub>h</sub> | VAR    | modes_of_operation_display    | Integer8   | ro    | М   |

## 10.3 Object Description

### 10.3.1 Object 6040<sub>h</sub>: controlword

The logical addition of several bits in the *controlword* and the external signals (transitions) results in the device-control-command. The *controlword* is always mapped into the first two bytes of the drive's command Message. The bits of the *controlword* are defined as follows:

| Index       | 6040 <sub>h</sub> |
|-------------|-------------------|
| Name        | controlword       |
| Object Code | VAR               |
| Data Type   | Unsigned16        |

| Object Class     | M: all O: -I |
|------------------|--------------|
| Access           | rw           |
| PDO Mapping      | Possible     |
| Units            | -            |
| Value Range      | 065535       |
| Mandatory Range  | -            |
| Default Value    | -            |
| Substitute Value | -            |

| MSB       |           |           |           |           |           | LSB      |          |          |          |          |          |          |          |          |       |
|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|
| Bit<br>15 | Bit<br>14 | Bit<br>13 | Bit<br>12 | Bit<br>11 | Bit<br>10 | Bit<br>9 | Bit<br>8 | Bit<br>7 | Bit<br>6 | Bit<br>5 | Bit<br>4 | Bit<br>3 | Bit<br>2 | Bit<br>1 | Bit 0 |
|           | High-Byte |           |           |           |           |          |          |          |          | Low      | -Byte    |          |          |          |       |

| Bit | Name                    | Mandatory |
|-----|-------------------------|-----------|
| 0   | Switch On               | √         |
| 1   | Disable Voltage         | √         |
| 2   | Quick Stop              | √         |
| 3   | Enable Operation        | √         |
| 4   | Operation Mode Specific |           |
| 5   | Operation Mode Specific |           |
| 6   | Operation Mode Specific |           |
| 7   | Reset Fault             | $\sqrt{}$ |
| 8   | Halt                    |           |
| 9   | Reserved                |           |
| 10  | Reserved                |           |
| 11  | Manufacturer Specific   |           |
| 12  | Manufacturer Specific   |           |
| 13  | Manufacturer Specific   |           |
| 14  | Manufacturer Specific   |           |
| 15  | Manufacturer Specific   |           |

Table 5 Bits in the controlword

Device control commands are triggered by the following bit patterns in the controlword:

| command/<br>Bit of the<br>controlword | Bit 7<br>Fault<br>Reset | Bit 3<br>Enable<br>Operation | Bit 2<br>Quick<br>Stop | Bit 1<br>Disable<br>Voltage | Bit 0<br>Switch<br>On | Transitions |
|---------------------------------------|-------------------------|------------------------------|------------------------|-----------------------------|-----------------------|-------------|
| Shutdown                              | 0                       | X                            | 1                      | 1                           | 0                     | 2,6,8       |
| Switch On                             | 0                       | X                            | 1                      | 1                           | 1                     | 3           |
| Disable<br>Voltage                    | 0                       | X                            | X                      | 0                           | X                     | 7,9,10,12   |
| Quick Stop                            | 0                       | X                            | 0                      | 1                           | X                     | 7,10,11     |
| Disable<br>Operation                  | 0                       | 0                            | 1                      | 1                           | 1                     | 5           |
| Enable<br>Operation                   | 0                       | 1                            | 1                      | 1                           | 1                     | 4,16        |
| Fault<br>Reset                        | _                       | X                            | X                      | Х                           | Х                     | 15          |

**Table 6: Device Control Commands** 

### 10.3.1.1 Description of the remaining Bits of the *controlword*

Bits 4, 5 and 6 are operation mode specific

| Bit |                  |                             | Operation Mode              |                           |                              |                               |  |  |  |
|-----|------------------|-----------------------------|-----------------------------|---------------------------|------------------------------|-------------------------------|--|--|--|
|     | Velocity<br>Mode | Profile<br>Position<br>Mode | Profile<br>Velocity<br>Mode | Profile<br>Torque<br>Mode | Homing<br>Mode               | Interpol.<br>Position<br>Mode |  |  |  |
| 4   | RFG disable      | new_set-<br>point           | reserved                    | reserved                  | Homing<br>Operation<br>Start | enable_ip_<br>mode            |  |  |  |
| 5   | RFG stop         | change_set<br>_immediatly   | reserved                    | reserved                  | reserved                     | reserved                      |  |  |  |
| 6   | RFG zero         | 0: absolute<br>1: relative  | reserved                    | reserved                  | reserved                     | reserved                      |  |  |  |
| 8   | Halt             | Halt                        | Halt                        | Halt                      | Halt                         | Halt                          |  |  |  |

Table 7: Mode specific Bits in the *controlword* 

RFG: Running up Frequency Generator (see chapter 18, Velocity Mode) Halt: Interrupts the move of a drive, and wait for release to continue.

#### Bits 9, 10 are reserved

These bits are reserved for further use. They are inactive by setting to zero. If they have no special function, they must be set to zero.

### Bits 11, 12, 13, 14 and 15 are manufacturer specific

### 10.3.2 Object 6041<sub>h</sub>: statusword

The *statusword* indicates the current status of the drive and is always mapped into the first two bytes of the actual message. The following bits are defined in the statusword.

| Index       | 6041 <sub>h</sub> |
|-------------|-------------------|
| Name        | statusword        |
| Object Code | VAR               |
| Data Type   | Unsigned16        |

### **Value Description**

| Object Class     | M: all   | O: - |  |
|------------------|----------|------|--|
| Access           | ro       |      |  |
| PDO Mapping      | Possible |      |  |
| Units            | -        |      |  |
| Value Range      | 065535   |      |  |
| Mandatory Range  | -        |      |  |
| Default Value    | -        |      |  |
| Substitute Value | -        |      |  |

| MSB       |           |           |           |           |           | LSB      |          |          |          |          |          |          |          |          |       |
|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|
| Bit<br>15 | Bit<br>14 | Bit<br>13 | Bit<br>12 | Bit<br>11 | Bit<br>10 | Bit<br>9 | Bit<br>8 | Bit<br>7 | Bit<br>6 | Bit<br>5 | Bit<br>4 | Bit<br>3 | Bit<br>2 | Bit<br>1 | Bit 0 |
|           | High-Byte |           |           |           |           |          |          | 1        | Low      | -Byte    | 1        | 1        |          |          |       |

| Bit | Name                    | Mandatory |
|-----|-------------------------|-----------|
| 0   | Ready to Switch On      | V         |
| 1   | Switched On             | V         |
| 2   | Operation Enabled       | V         |
| 3   | Fault                   | V         |
| 4   | Voltage Disabled        | V         |
| 5   | Quick Stop              | V         |
| 6   | Switch On Disabled      | V         |
| 7   | Warning                 |           |
| 8   | Manufacturer Specific   |           |
| 9   | Remote                  | V         |
| 10  | Target Reached          | V         |
| 11  | Internal Limit Active   | V         |
| 12  | Operation Mode Specific |           |
| 13  | Operation Mode Specific |           |
| 14  | Manufacturer Specific   |           |
| 15  | Manufacturer Specific   |           |

Table 8: Bits in the *statusword* 

### **Device Status Bit Meanings**

The following bits indicate the status of the device:

| State                        | Bit 6                | Bit 5         | Bit 3 | Bit 2               | Bit 1          | Bit 0                 |
|------------------------------|----------------------|---------------|-------|---------------------|----------------|-----------------------|
|                              | Switch On<br>Disable | Quick<br>Stop | Fault | Operation<br>Enable | Switched<br>On | Ready to<br>Switch On |
| Not Ready<br>to Switch<br>On | 0                    | X             | 0     | 0                   | 0              | 0                     |
| Switch On Disabled           | 1                    | X             | 0     | 0                   | 0              | 0                     |
| Ready to<br>Switch On        | 0                    | 1             | 0     | 0                   | 0              | 1                     |
| Switched<br>On               | 0                    | 1             | 0     | 0                   | 1              | 1                     |
| Operation<br>Enabled         | 0                    | 1             | 0     | 1                   | 1              | 1                     |
| Fault                        | 0                    | X             | 1     | 1                   | 1              | 1                     |
| Fault<br>Reaction<br>Active  | 0                    | Х             | 1     | 1                   | 1              | 1                     |
| Quick Stop<br>Active         | 0                    | 0             | 0     | 1                   | 1              | 1                     |

Table 9: Device State Bits

Bits marked X are irrelevant for that state. Other bit combinations are not allowed.

#### 10.3.2.1 Description of the remaining Bits of the *statusword*

#### Bit 4: voltage\_disable

The Disable Voltage request is active when the *voltage\_disabled* bit is cleared to 0.

#### Bit 5: quick stop

When reset, this bit indicates that the drive is reacting on a quick stop request. Bits 0, 1 and 2 of the *statusword* must be set to 1 to indicate that the drive is capable to regenerate. The setting of the other bits indicates the status of the drive (e.g. the drive is performing a quick stop as result of a reaction to a non-fatal fault. The fault bit is set as well as bits 0, 1 and 2).

#### Bit 7: warning

A drive warning is present if bit 7 is set. The cause means no error but a state that has to be mentioned, e.g. temperature limit, job refused. The status of the drive does not change. The cause of this warning may be found by reading the fault code parameter. The bit is set and reset by the device.

#### Bit 8 is manufacturer specific

This bit may be used by a drive manufacturer to implement any manufacturer specific functionality.

#### Bit 9: remote

If bit 9 is set, then parameters may be modified via the CAN-network, and the drive executes the content of a command message. If the bit *remote* is reset, then the drive is in local mode and will not execute the command message. The drive may transmit messages containing valid actual values like a *position\_actual\_value*, depending on the actual drive configuration. The drive will accept accesses via service data objects (SDOs) in local mode.

#### Bit 10: target\_reached

If bit 10 is set by the drive, then a setpoint has been reached (torque, speed or position depending on the *modes\_of\_operation*). The change of a target value by software alters this bit.

If *quickstop\_option\_code* is 5, 6, 7 or 8, this bit must be set, when the quick stop operation is finished and the drive is halted.

If Halt occured and the drive has halted then this bit is set too.

#### Bit 11: internal\_limit\_active

This bit set by the drive indicates, that an internal limitation is active (e.g. position\_range\_limit).

### Bit 12, 13 are operation mode specific

| E | 3it | Velocity<br>mode | Profile<br>Position<br>Mode | Profile<br>Velocity<br>mode | Profile<br>Torque<br>mode | Homing<br>mode  | Interpol.<br>Position<br>mode |
|---|-----|------------------|-----------------------------|-----------------------------|---------------------------|-----------------|-------------------------------|
|   | 12  | reserved         | setpoint acknowledge        | Speed = 0                   | reserved                  | Homing attained | Ip-Mode active                |
| • | 13  | reserved         | following<br>error          | max_slippage error          | reserved                  | Homing error    | reserved                      |

Table 10: Mode specific bits in the *statusword* 

### Bit 14, 15 are manufacturer specific

These bits may be used by a drive manufacturer to implement any manufacturer specific functionality.

#### Note:

All bits reflect the actual/current state of the drive. No bits are latched.

### 10.3.3 Object 605B<sub>h</sub>: shutdown\_option\_code

The parameter <code>shutdown\_option\_code</code> determines what action should be taken if there is a transition 'OPERATION ENABLE' ⇒ 'READY TO SWITCH ON'

| Index       | 605B <sub>h</sub>    |  |  |  |  |  |
|-------------|----------------------|--|--|--|--|--|
| Name        | shutdown_option_code |  |  |  |  |  |
| Object Code | VAR                  |  |  |  |  |  |
| Data Type   | Integer16            |  |  |  |  |  |

### **Value Description**

| Object Class     | M: -                  | O: all |
|------------------|-----------------------|--------|
| Access           | rw                    |        |
| PDO Mapping      | No                    |        |
| Units            | -                     |        |
| Value Range      | -3276832767           |        |
| Mandatory Range  | Profile Specific Code |        |
| Default Value    | 0                     |        |
| Substitute Value | -                     |        |

| reset_option_code | Action                                                      |
|-------------------|-------------------------------------------------------------|
| -32768 –1         | Manufacturer Specific                                       |
| 0                 | Disable drive function                                      |
| 1                 | Slow down with slow down ramp disable of the drive function |
| 2 32767           | reserved                                                    |

### 10.3.4 Object 605C<sub>h</sub>: disable\_operation\_option\_code

The parameter  $disable\_operation\_option\_code$  determines what action should be taken if there is a transition 'OPERATION ENABLE'  $\Rightarrow$  'SWITCHED ON'.

| Index       | 605C <sub>h</sub>             |
|-------------|-------------------------------|
| Name        | disable_operation_option_code |
| Object Code | VAR                           |
| Data Type   | Integer16                     |

### **Value Description**

| Object Class     | M: -        | O: all |
|------------------|-------------|--------|
| Access           | rw          |        |
| PDO Mapping      | No          |        |
| Units            | -           |        |
| Value Range      | -3276832767 |        |
| Mandatory Range  | -           |        |
| Default Value    | 1           |        |
| Substitute Value | -           |        |

| disable_operation_option_code | Action                                                                 |
|-------------------------------|------------------------------------------------------------------------|
| -327681                       | Manufacturer Specific                                                  |
| 0                             | disable drive function                                                 |
| 1                             | Slow down with slow down ramp and then disabling of the drive function |
| 2 32767                       | reserved                                                               |

### 10.3.5 Object 605A<sub>h</sub>: quick\_stop\_option\_code

The parameter <code>quick\_stop\_option\_code</code> determines what action should be taken if the Quick Stop Function is executed.

| Index       | 605A <sub>h</sub>      |
|-------------|------------------------|
| Name        | quick_stop_option_code |
| Object Code | VAR                    |
| Data Type   | Integer16              |

### **Value Description**

| Object Class     | M: -        | O: all |
|------------------|-------------|--------|
| Access           | rw          |        |
| PDO Mapping      | No          |        |
| Units            | -           |        |
| Value Range      | -3276832767 |        |
| Mandatory Range  | -           |        |
| Default Value    | 2           |        |
| Substitute Value | -           |        |

| quick_stop_option_code | Action                                                |  |
|------------------------|-------------------------------------------------------|--|
| -327681                | Manufacturer Specific                                 |  |
| 0                      | Disable drive function                                |  |
| 1                      | Slow down on slow down ramp                           |  |
| 2                      | Slow down on quick stop ramp                          |  |
| 3                      | Slow down on the current limit                        |  |
| 4                      | Slow down on the voltage limit                        |  |
| 5                      | Slow down on slow down ramp and stay in Quick-Stop    |  |
| 6                      | Slow down on quick stop ramp and stay in Quick-Stop   |  |
| 7                      | Slow down on the current limit and stay in Quick-Stop |  |
| 8                      | Slow down on the voltage limit and stay in Quick-Stop |  |
| 9 32767                | reserved                                              |  |

### 10.3.6 Object 605D<sub>h</sub>: stop\_option\_code

The parameter  $stop\_option\_code$  determines what action should be taken if the Stop Function is active.

| Index       | 605D <sub>h</sub> |
|-------------|-------------------|
| Name        | stop_option_code  |
| Object Code | VAR               |
| Data Type   | Integer16         |

### **Value Description**

| Object Class     | M: -        | O: all |
|------------------|-------------|--------|
| Access           | rw          |        |
| PDO Mapping      | No          |        |
| Units            | -           |        |
| Value Range      | -3276832767 |        |
| Mandatory Range  | -           |        |
| Default Value    | 1           |        |
| Substitute Value | -           |        |

| stop_option_code | Action                                 |  |
|------------------|----------------------------------------|--|
| -327681          | Manufacturer Specific                  |  |
| 0                | Disable drive, Motor is free to rotate |  |
| 1                | Slow down on slow down ramp            |  |
| 2                | Slow down on quick stop ramp           |  |
| 3                | Slow down on the current limit         |  |
| 4                | Slow down on the voltage limit         |  |
| 5 32767          | reserved                               |  |

### 10.3.7 Object 605E<sub>h</sub>: fault\_reaction\_option\_code

The parameter *fault\_reaction\_option\_code* determines what action should be taken if a fault occurs in the drive.

| Index       | 605E <sub>h</sub>          |
|-------------|----------------------------|
| Name        | fault_reaction_option_code |
| Object Code | VAR                        |
| Data Type   | Integer16                  |

### **Value Description**

| Object Class     | M: -        | O: all |
|------------------|-------------|--------|
| Access           | rw          |        |
| PDO Mapping      | No          |        |
| Units            | -           |        |
| Value Range      | -3276832767 |        |
| Mandatory Range  | -           |        |
| Default Value    | 2           |        |
| Substitute Value | -           |        |

| fault_reaction_option_code | Action                                 |
|----------------------------|----------------------------------------|
| -327681                    | Manufacturer specific                  |
| 0                          | Disable drive, motor is free to rotate |
| 1                          | Slow down on slow down ramp            |
| 2                          | Slow down on quick stop ramp           |
| 3                          | Slow down on the current limit         |
| 4                          | Slow down on the voltage limit         |
| 5 32767                    | reserved                               |

### 10.3.8 Object 6060<sub>h</sub>: modes\_of\_operation

The parameter *modes\_of\_operation* switches the actually choosen operation-mode.

| Index       | 6060 <sub>h</sub>  |
|-------------|--------------------|
| Name        | modes_of_operation |
| Object Code | VAR                |
| Data Type   | Integer8           |

### **Value Description**

| Object Class     | M: all   | O: - |  |
|------------------|----------|------|--|
| Access           | wo       |      |  |
| PDO Mapping      | Possible |      |  |
| Units            | -        |      |  |
| Value Range      | -128127  |      |  |
| Mandatory Range  | -        |      |  |
| Default Valu     | -        |      |  |
| Substitute Value | -        |      |  |

### **Data description**

| Modes of Operation | Action                                   |
|--------------------|------------------------------------------|
| -1128              | Manufacturer specific modes of operation |
| 0                  | reserved                                 |
| 1                  | Profile Position Mode                    |
| 2                  | Velocity Mode                            |
| 3                  | Profile Velocity Mode                    |
| 4                  | Torque Profile Mode                      |
| 5                  | reserved                                 |
| 6                  | Homing Mode                              |
| 7                  | Interpolated Position Mode               |
| 8 127              | reserved                                 |

#### Note:

The actual mode is reflected in the  $modes\_of\_operation\_display$  (index  $6061_h$ ), and not in the  $modes\_of\_operation$  (index  $6060_h$ ). It may be changed by writing to  $modes\_of\_operation$ 

#### 10.3.9 Object 6061h; modes\_of\_operation\_display

The *modes\_of\_operation\_display* shows the current mode of operation. The meaning of the returned value corresponds to that of the *modes\_of\_operation* option code (index 6060<sub>h</sub>)

| Index       | 6061 <sub>n</sub>          |
|-------------|----------------------------|
| Name        | modes_of_operation_display |
| Object Code | VAR                        |
| Data Type   | Integer8                   |

#### **Value Description**

| Object Class     | M: all   | :- |
|------------------|----------|----|
| Access           | ro       |    |
| PDO Mapping      | Possible |    |
| Units            | -        |    |
| Value Range      | -128127  |    |
| Mandatory Range  | -        |    |
| Default Value    | -        |    |
| Substitute Value | -        |    |

#### **Data description**

Same as for Object 6060<sub>h</sub> modes\_of\_operation.

#### Note:

The actual mode is reflected in the  $modes\_of\_operation\_display$  (index  $6061_h$ ), and not in the  $modes\_of\_operation$  (index  $6060_h$ ).

#### 10.4 Functional Description

#### **10.4.1 Modes of Operation Function**

The device behaviour depends on the activated modes of operation.

It is possible to implement different device modes. Since it is not possible to operate the modes in parallel, the user is able to activate the required function by selecting a mode of operation. An example of exclusive functions are those for position and torque control, which can only control one variable at any one time. The variables can perform at most a limited function. Such hybrids are regarded as the particular characteristics of a mode of operation. Position control operation and encoder profile support can be active at the same time, for example. Consequently encoder profile support is not regarded as a mode of operation.



Figure 10: Operation Mode Function

It is possible for the user to switch between the various modes of operation as long as this is supported by the device. It is possible for the manufacturer to allow dynamic switching between different modes of operation at any time or to limit switching for example to the state 'SWITCH ON'. Switching can also be limited to the state 'local control'; i.e. not possible via the CAN-network. A device characteristic listed in the device function list can possible have several modes of operation.

The following modes of operation are listed:

- Velocity Mode (AC/DC drives, no feedback)
- Profile Velocity Mode (servo drives, feedback)
- O Torque Profile Mode
- Homing Mode
- O Profile Position Mode
- Interpolated Position Mode

With the exception of the 'Homing Mode', these listed modes of operation can all be put under the heading of 'setpoint setting'.

In parallel to this, manufacturer-specific modes of operation may also be available. These are not limited to setpoint settings.

The reference operation is regarded as a special form of a program function. The program function allows the user to run complex of time-critical sequence, e. g. tool change or special reference operations, directly in the device.

The switching between the modes of operation listed above should not incur any automatic reconfiguration of the process data channel. Problems which occur through switching of setpoint values during change of mode of operation must be monitored by the user. If necessary they can be rectified by prior reconfiguration of the process data channel.

Two objects are defined for management of the modes of operation.

- O modes\_of\_operation
- O modes\_of\_operation\_display

The *statusword* contains bits, whose meaning is dependent on the mode of operation. When switching the mode of operation, the bits changing their meaning need to be monitored.

#### 10.4.2 Drive Disabeling Function

The drive disabeling function defines the behaviour of the drive when transitioning from the 'OPERATION ENABLED' state to the 'READY TO SWITCH ON' (Shutdown command) or 'SWITCH ON' (Disable operation command) state.



Figure 11: Modes of Operation Function

#### 10.4.3 Quick Stop Function

The Quick Stop Function is triggered by the Quick Stop command.



Figure 12: Quick-Stop-Function

#### 10.4.4 Stop Function

The Stop Function may be triggered by resetting the bit 'RFG-disable' in the *controlword*.



Figure 13: Stop-Function

#### 10.4.5 Fault Reaction

Drive faults may be classified as fatal or non-fatal faults.

#### 10.4.5.1 Fatal Faults

When a fatal fault occures, the drive is no longer able to control the motor, so an immediate switch-off of the drive is necessary.

#### 10.4.5.2 Non-Fatal Faults

When a non-fatal fault occures, the drive can run the motor in a controlled fashion. The actions which are executed depend on the *fault\_reaction\_option\_code*.

Once a fault occures the drive will always enter the FAULT state, even if the fault clears before the drive enters the FAULT state. The FAULT state may only be left if the 'Fault Reset' command is received from a host, and no further fault is present in the drive.

# 11 Factor Group

#### 11.1 General Information

#### **11.1.1 Factors**

There is a need to interchange physical dimensions and sizes into the device internal units. To implement the interchange, several factors are necessary. This chapter describes how these factors have an influence on the system, how they are calculated and which data is necessary to build them. Normalised parameters are denoted with an asterisk \*.



Figure 14: Influence of Factors

#### 11.1.2 Relationship between Physical and Internal Units

The factors defined in the factor group set up a relationship between device internal units and physical units.

The factors are result of the calculation of two parameters called dimension index and notation index, which are defined in **Table D** (see appendix Definiton of Dimension Indices). One parameter indicates the physical dimension, the other the physical unit and a decimal exponent for the values. These factors are directly used to normalise the physical values.

The application specific parameters will be used in the corresponding mode of operation to build the described factors.

Parameters that are commonly used will be integrated in the object dictionary without defining their junctions. This guaranties a common parameter number for further use without the need for a predefinition.

| parameter typical values     |                         |
|------------------------------|-------------------------|
| feed_constant                | 0.1 1000 position units |
| position_encoder_resolution  | 50 10 <sup>6</sup> inc  |
| velocity_encoder_resolution  | 0 10 <sup>6</sup> inc/s |
| gear_ratio                   | 0.1 1000                |
| position_dimension_index     | mm, inch, grade         |
| position_notation_index      | -3                      |
| velocity_dimension_index     | m/s, 1/min              |
| velocity_notation_index      | -3                      |
| acceleration_dimension_index | 1/s²                    |
| acceleration_notation_index  | 0                       |
|                              |                         |
| constants                    | value                   |
| torque resolution            | 0.001                   |

The dimension index defines the physical dimension of the parameter. The notation index can be used in two ways:

- For a unit with decimal scaling and notation index < 64
  the notation index defines the exponent/decimal place of the unit.</li>
- or a unit with non-decimal scaling and notation index > 64
   the notation index defines the sub-index of the physical dimension of the unit.

#### **Examples for notation indices < 64:**

For notation index <64 the value is used as an exponent. The unit is defined by the physical dimension and calculated by unit type and exponent, all declared in the dimension/notation index table **Table D** (see appendix Definition of Dimension Indices).

#### position unit

dimension index = 1: length notation index = -6: micro meter

position\_units =  $10^{\text{notation\_index}} \times f(\text{dimension\_index})$ 

 $= 10^{-6} \text{ m}$ 

dimension index = 12: angle notation index = 0: radian

position\_units = 10<sup>notation\_index</sup> x f(dimension\_index)

= radian

#### velocity unit

dimension index = 13: velocity

notation index = -3: milli metre per second

velocity\_units =  $10^{\text{notation\_index}} \times f(\text{dimension\_index})$ 

 $= 10^{-3} \text{ m/s}$ 

#### frequency units

dimension index = 28: frequency notation index = 3: kilo hertz

frequency\_units =  $10^{\text{notation\_index}} \times \text{f(dimension\_index)}$ =  $10^3 \text{ Hz}$ 

#### Examples for notation indices > 64:

The unit is defined by the physical dimension and unit type, both declared in the dimension/notation index table **Table D** (see appendix Definition of Dimension Indices)

#### time units

dimension index = 4: time notation index = 77: day

time\_units = f(dimension\_index,notation\_index)

= day

#### position unit

dimension index = 12: angle notation index = 76: minute

position units = f(dimension index, notation index)

= minute

# 11.2 Object Dictionary Entries

# 11.2.1 Objects defined in this Chapter

| Index             | Object | Name                         | Туре       | Attr. | M/O |
|-------------------|--------|------------------------------|------------|-------|-----|
| 6089 <sub>h</sub> | VAR    | position_notation_index      | Integer8   | rw    | 0   |
| 608A <sub>h</sub> | VAR    | position_dimension_index     | Unsigned8  | rw    | 0   |
| 608B <sub>h</sub> | VAR    | velocity_notation_index      | Integer8   | rw    | 0   |
| 608C <sub>h</sub> | VAR    | velocity_dimension_index     | Unsigned8  | rw    | 0   |
| 608D <sub>h</sub> | VAR    | acceleration_notation_index  | Integer8   | rw    | 0   |
| 608E <sub>h</sub> | VAR    | acceleration_dimension_index | Unsigned8  | rw    | 0   |
| 608F <sub>h</sub> | ARRAY  | position_encoder_resolution  | Unsigned32 | rw    | 0   |
| 6090 <sub>h</sub> | ARRAY  | velocity_encoder_resolution  | Unsigned32 | rw    | 0   |
| 6091 <sub>h</sub> | ARRAY  | gear_ratio                   | Unsigned32 | rw    | 0   |
| 6092 <sub>h</sub> | ARRAY  | feed_constant                | Unsigned32 | rw    | 0   |
| 6093 <sub>h</sub> | ARRAY  | position_factor              | Unsigned32 | rw    | 0   |
| 6094 <sub>h</sub> | ARRAY  | velocity_encoder_factor      | Unsigned32 | rw    | 0   |
| 6095 <sub>h</sub> | ARRAY  | velocity_factor_1            | Unsigned32 | rw    | 0   |
| 6096 <sub>h</sub> | ARRAY  | velocity_factor_2            | Unsigned32 | rw    | 0   |
| 6097 <sub>h</sub> | ARRAY  | acceleration_factor          | Unsigned32 | rw    | 0   |
| 607E <sub>h</sub> | VAR    | polarity                     | Unsigned8  | rw    | 0   |

# 11.3 Object Description

Objects in this group represent factors which are necessary to normalise the physical inputs and outputs. The user has to consider that the correct dimension and unit are used.

#### 11.3.1 Object 6089<sub>h</sub>: position\_notation\_index

The *position\_notation\_index* is used to scale the following objects:

position\_actual\_value position\_demand\_value target\_position position\_window following\_error\_window home\_offset position\_range\_limit software\_position\_limit target\_velocity

| Index       | 6089 <sub>h</sub>       |
|-------------|-------------------------|
| Name        | position_notation_index |
| Object Code | VAR                     |
| Data type   | Integer8                |

| Object Class     | M: -     | O: pc pp ip hm pv tq |
|------------------|----------|----------------------|
| Access           | rw       |                      |
| PDO Mapping      | Possible |                      |
| Units            | -        |                      |
| Value Range      | -128127  |                      |
| Mandatory Range  | -        |                      |
| Default Value    | 0        |                      |
| Substitute Value | -        |                      |

# 11.3.2 Object 608A<sub>h</sub>: position\_dimension\_index

The *position\_dimension\_index* is necessary for:

position\_actual\_value position\_demand\_value target\_position position\_window following\_error\_window home\_offset position\_range\_limit software\_position\_limit target\_velocity

| Index       | 608A <sub>h</sub>        |
|-------------|--------------------------|
| Name        | position_dimension_index |
| Object Code | VAR                      |
| Data type   | Unsigned8                |

| Object Class     | M: -     | O: pc pp ip hm pv tq |
|------------------|----------|----------------------|
| Access           | rw       |                      |
| PDO Mapping      | Possible |                      |
| Units            | -        |                      |
| Value Range      | 0255     |                      |
| Mandatory Range  | 032      |                      |
| Default Value    | -        |                      |
| Substitute Value | -        |                      |

# 11.3.3 Object 608B<sub>h</sub>: velocity\_notation\_index

The *velocity\_notation\_index* is necessary for:

velocity\_actual\_value velocity\_demand\_value end\_velocity profile\_velocity velocity\_window max\_profile\_velocity velocity\_threshold homing\_speeds

| Index       | 608B <sub>h</sub>       |
|-------------|-------------------------|
| Name        | velocity_notation_index |
| Object Code | VAR                     |
| Data Type   | Integer8                |

| Object Class     | M: -     | O: pc pp ip hm pv tq |  |
|------------------|----------|----------------------|--|
| Access           | rw       |                      |  |
| PDO Mapping      | Possible | Possible             |  |
| Units            | -        |                      |  |
| Value Range      | -128127  |                      |  |
| Mandatory Range  | -        |                      |  |
| Default Value    | 0        |                      |  |
| Substitute Value | -        |                      |  |

# 11.3.4 Object 608C<sub>h</sub>: velocity\_dimension\_index

The *velocity\_dimension\_index* is necessary for:

velocity\_actual\_value velocity\_demand\_value end\_velocity profile\_velocity velocity\_window max\_profile\_velocity velocity\_threshold homing\_speeds

| Index       | 608C <sub>h</sub>        |
|-------------|--------------------------|
| Name        | velocity_dimension_index |
| Object Code | VAR                      |
| Data Type   | Unsigned8                |

| Object Class     | M: -     | O: pc pp ip hm pv tq |  |
|------------------|----------|----------------------|--|
| Access           | rw       |                      |  |
| PDO Mapping      | Possible | Possible             |  |
| Units            | -        |                      |  |
| Value Range      | 0255     |                      |  |
| Mandatory Range  | -        |                      |  |
| Default Value    | -        |                      |  |
| Substitute Value | -        |                      |  |

# 11.3.5 Object 608D<sub>h</sub>: acceleration\_notation\_index

The *acceleration\_notation\_index* is necessary for:

profile\_acceleration profile\_deceleration quick\_stop\_deceleration homing\_acceleration

| Index       | 608D <sub>h</sub>           |  |
|-------------|-----------------------------|--|
| Name        | acceleration_notation_index |  |
| Object Code | VAR                         |  |
| Data type   | Integer8                    |  |

| Object Class     | M: -     | O: pc pp ip hm pv tq |
|------------------|----------|----------------------|
| Access           | rw       |                      |
| PDO Mapping      | Possible |                      |
| Units            | -        |                      |
| Value Range      | -128127  |                      |
| Mandatory Range  | -        |                      |
| Default Value    | -        |                      |
| Substitute Value | -        |                      |

# 11.3.6 Object 608E<sub>h</sub>: acceleration\_dimension\_index

The *acceleration\_dimension\_index* is necessary for:

profile\_acceleration profile\_deceleration quick\_stop\_deceleration homing\_acceleration

| Index       | 608E <sub>h</sub>            |  |
|-------------|------------------------------|--|
| Name        | acceleration_dimension_index |  |
| Object Code | VAR                          |  |
| Data type   | Unsigned8                    |  |

| Object Class     | M: -     | O: pc pp ip hm pv tq |
|------------------|----------|----------------------|
| Access           | rw       |                      |
| PDO Mapping      | Possible |                      |
| Units            | -        |                      |
| Value Range      | 0255     |                      |
| Mandatory Range  | -        |                      |
| Default Value    | -        |                      |
| Substitute Value | -        |                      |

# 11.3.7 Object 608F<sub>h</sub>: position\_encoder\_resolution

The *position\_encoder\_resolution* defines the ratio of encoder increments per motor revolution.

| Index              | 608F <sub>h</sub>           |  |
|--------------------|-----------------------------|--|
| Name               | position_encoder_resolution |  |
| Object Code        | ARRAY                       |  |
| Number of Elements | 2                           |  |
| Data Type          | Unsigned32                  |  |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>        |  |
|------------------|-----------------------|------------------------|--|
| Description      | encoder_increment     | encoder_increments     |  |
| Object Class     | M: -                  | M: - O: pc pp ip pv tq |  |
| Access           | rw                    |                        |  |
| PDO Mapping      | Possible              | Possible               |  |
| Units            | inc                   | inc                    |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)  |  |
| Mandatory Range  | -                     | -                      |  |
| Default Value    | 1                     | 1                      |  |
| Substitute Value | -                     | -                      |  |

| Sub-Index        | 02 <sub>h</sub>       | 02 <sub>h</sub>       |  |
|------------------|-----------------------|-----------------------|--|
| Description      | motor_revolutions     | motor_revolutions     |  |
| Object Class     | M: -                  | O: pc pp ip pv tq     |  |
| Access           | rw                    |                       |  |
| PDO Mapping      | Possible              | Possible              |  |
| Units            | inc                   | inc                   |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |
| Mandatory Range  | -                     | -                     |  |
| Default Value    | 1                     | 1                     |  |
| Substitute Value | -                     | -                     |  |

# 11.3.8 Object 6090h: velocity\_encoder\_resolution

The *velocity\_encoder\_resolution* defines the ratio of encoder increments/sec. per motor revolutions/sec.

| Index              | 6090 <sub>h</sub>           |  |
|--------------------|-----------------------------|--|
| Name               | velocity_encoder_resolution |  |
| Object Code        | ARRAY                       |  |
| Number of Elements | 2                           |  |
| Data Type          | Unsigned32                  |  |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>               |  |
|------------------|-----------------------|-------------------------------|--|
| Description      | encoder_increment     | encoder_increments_per_second |  |
| Object Class     | M: -                  | O: pc pp ip pv tq             |  |
| Access           | rw                    |                               |  |
| PDO Mapping      | Possible              | Possible                      |  |
| Units            | inc/sec               | inc/sec                       |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)         |  |
| Mandatory Range  | -                     | -                             |  |
| Default Value    | 1                     | 1                             |  |
| Substitute Value | -                     | -                             |  |

| Sub-Index        | 02 <sub>h</sub>              |  |
|------------------|------------------------------|--|
| Description      | motor_revolutions_per_second |  |
| Object Class     | M: - O: pc pp ip pv tq       |  |
| Access           | rw                           |  |
| PDO Mapping      | Possible                     |  |
| Units            | inc/sec                      |  |
| Value Range      | 0(2 <sup>32</sup> -1)        |  |
| Mandatory Range  | -                            |  |
| Default Value    | 1                            |  |
| Substitute Value | -                            |  |

# 11.3.9 Object 6091<sub>h</sub>: gear\_ratio

The *gear\_ratio* defines the ratio of feed in position units per driving shaft revolutions. This includes the gear if present.

| Index              | 6091 <sub>n</sub> |
|--------------------|-------------------|
| Name               | gear_ratio        |
| Object Code        | ARRAY             |
| Number of Elements | 2                 |
| Data Type          | Unsigned32        |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>       |  |
|------------------|-----------------------|-----------------------|--|
| Description      | motor_revolutions     | motor_revolutions     |  |
| Object Class     | M: -                  | O: pc pp ip pv tq     |  |
| Access           | rw                    |                       |  |
| PDO Mapping      | Possible              | Possible              |  |
| Units            | -                     | -                     |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |
| Mandatory Range  | -                     | -                     |  |
| Default Value    | 1                     | 1                     |  |
| Substitute Value | -                     | -                     |  |

| Sub-Index        | 02 <sub>h</sub>       | 02 <sub>h</sub>       |  |  |  |
|------------------|-----------------------|-----------------------|--|--|--|
| Description      | shaft_revolutions     | shaft_revolutions     |  |  |  |
| Object Class     | M: -                  | O: pc pp ip pv tq     |  |  |  |
| Access           | rw                    | rw                    |  |  |  |
| PDO Mapping      | Possible              | Possible              |  |  |  |
| Units            | -                     | -                     |  |  |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |  |  |
| Mandatory Range  | -                     |                       |  |  |  |
| Default Value    | 1                     | 1                     |  |  |  |
| Substitute Value | -                     | -                     |  |  |  |

# 11.3.10 Object 6092<sub>h</sub>: feed\_constant

The *feed\_constant* defines the ratio of feed in position units per driving shaft revolutions. This includes the gear if present.

| Index              | 6092 <sub>h</sub> |
|--------------------|-------------------|
| Name               | feed_constant     |
| Object Code        | ARRAY             |
| Number of Elements | 2                 |
| Data Type          | Unsigned32        |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>       |  |  |  |
|------------------|-----------------------|-----------------------|--|--|--|
| Description      | feed                  | feed                  |  |  |  |
| Object Class     | M: -                  | O: pc pp ip pv tq     |  |  |  |
| Access           | rw                    |                       |  |  |  |
| PDO Mapping      | Possible              | Possible              |  |  |  |
| Units            | -                     | -                     |  |  |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |  |  |
| Mandatory Range  | -                     |                       |  |  |  |
| Default Value    | 1                     | 1                     |  |  |  |
| Substitute Value | -                     |                       |  |  |  |

| Sub-Index        | 02 <sub>h</sub>        |    |  |  |
|------------------|------------------------|----|--|--|
| Description      | shaft_revolutions      |    |  |  |
| Object Class     | M: - O: pc pp ip pv tq |    |  |  |
| Access           | rw                     | rw |  |  |
| PDO Mapping      | Possible               |    |  |  |
| Units            | -                      |    |  |  |
| Value Range      | 0(2 <sup>32</sup> -1)  |    |  |  |
| Mandatory Range  | -                      |    |  |  |
| Default Value    | 1                      |    |  |  |
| Substitute Value | -                      |    |  |  |

#### 11.3.11 Object 6093<sub>h</sub>: position\_factor

The *position\_factor* converts the desired position (in position units) into the internal format (in increments). This parameter may be calculated internally in the drive; nevertheless it is specified as read-writeable as the objects necessary for the calculation are defined as optional too and need not to be present in an implementation.

| Index              | 6093 <sub>h</sub> |
|--------------------|-------------------|
| Name               | position_factor   |
| Object Code        | ARRAY             |
| Number of Elements | 2                 |
| Data Type          | Unsigned32        |

| Sub-Index        | 01 <sub>h</sub>       |                       |  |  |  |
|------------------|-----------------------|-----------------------|--|--|--|
| Description      | numerator             | numerator             |  |  |  |
| Object Class     | M: -                  | O: pc pp ip           |  |  |  |
| Access           | rw                    |                       |  |  |  |
| PDO Mapping      | Possible              |                       |  |  |  |
| Units            | -                     |                       |  |  |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |  |  |
| Mandatory Range  | -                     |                       |  |  |  |
| Default Value    | 1                     |                       |  |  |  |
| Substitute Value | -                     |                       |  |  |  |

| Sub-Index        | 02 <sub>h</sub>       |    |  |  |  |
|------------------|-----------------------|----|--|--|--|
| Description      | feed_constant         |    |  |  |  |
| Object Class     | M: - O: pc pp ip      |    |  |  |  |
| Access           | rw                    | rw |  |  |  |
| PDO Mapping      | Possible              |    |  |  |  |
| Units            | -                     |    |  |  |  |
| Value Range      | 0(2 <sup>32</sup> -1) |    |  |  |  |
| Mandatory Range  | -                     |    |  |  |  |
| Default Value    | 1                     |    |  |  |  |
| Substitute Value | -                     |    |  |  |  |

# 11.3.12 Object 6094h: velocity\_encoder\_factor

The *velocity\_encoder\_factor* converts the desired velocity (in velocity units) into the internal format (in increments).

| Index              | 6094 <sub>h</sub>       |
|--------------------|-------------------------|
| Name               | velocity_encoder_factor |
| Object Code        | ARRAY                   |
| Number of Elements | 2                       |
| Data Type          | Unsigned32              |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>       |  |  |  |
|------------------|-----------------------|-----------------------|--|--|--|
| Description      | numerator             | numerator             |  |  |  |
| Object Class     | M: -                  | M: - O: pv            |  |  |  |
| Access           | rw                    | rw                    |  |  |  |
| PDO Mapping      | Possible              | Possible              |  |  |  |
| Units            | -                     |                       |  |  |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |  |  |
| Mandatory Range  | -                     | -                     |  |  |  |
| Default Value    | 1                     | 1                     |  |  |  |
| Substitute Value | -                     | -                     |  |  |  |

| Sub-Index        | 02 <sub>h</sub>       |            |  |  |  |
|------------------|-----------------------|------------|--|--|--|
| Description      | divisor               | divisor    |  |  |  |
| Object Class     | M: -                  | M: - O: pv |  |  |  |
| Access           | rw                    | ·          |  |  |  |
| PDO Mapping      | Possible              |            |  |  |  |
| Units            | -                     |            |  |  |  |
| Value Range      | 0(2 <sup>32</sup> -1) |            |  |  |  |
| Mandatory Range  | -                     |            |  |  |  |
| Default Value    | 1                     | 1          |  |  |  |
| Substitute Value | -                     |            |  |  |  |

# 11.3.13 Object 6095<sub>h</sub>: velocity\_factor\_1

The *velocity\_factor\_1* is used to convert motor data (e.g. maximum motor revolutions) into velocity data (e.g. maximum velocity), because both data items are based on different physical dimensions.

| velocity_factor_1 = | feed_constant    | *     | velocity_unit      | *      | sec         | *                   | F <sub>position_unit</sub> (notation_index) |
|---------------------|------------------|-------|--------------------|--------|-------------|---------------------|---------------------------------------------|
|                     | 60 sec/min * gea | ar_ra | atio * velocity_un | it * F | velocity_ur | <sub>nit</sub> (not | tation_index)                               |

| Index              | 6095 <sub>h</sub> |
|--------------------|-------------------|
| Name               | velocity_factor_1 |
| Object Code        | ARRAY             |
| Number of Elements | 2                 |
| Data Type          | Unsigned32        |

| Sub-Index        | 01 <sub>h</sub>       |                   |
|------------------|-----------------------|-------------------|
| Description      | numerator             |                   |
| Object Class     | M: -                  | O: pc pp ip pv tq |
| Access           | rw                    |                   |
| PDO Mapping      | Possible              |                   |
| Units            | -                     |                   |
| Value Range      | 0(2 <sup>32</sup> -1) |                   |
| Mandatory Range  | -                     |                   |
| Default Value    | 1                     |                   |
| Substitute Value | -                     |                   |

| Sub-Index        | 02 <sub>h</sub>       |                   |
|------------------|-----------------------|-------------------|
| Description      | divisor               |                   |
| Object Class     | M: -                  | O: pc pp ip pv tq |
| Access           | rw                    | ·                 |
| PDO Mapping      | Possible              |                   |
| Units            | -                     |                   |
| Value Range      | 0(2 <sup>32</sup> -1) |                   |
| Mandatory Range  | -                     |                   |
| Default Value    | 1                     |                   |
| Substitute Value | -                     |                   |

# 11.3.14 Object 6096h: velocity\_factor\_2

The *velocity\_factor\_2* is used to convert encoder data for positions into encoder data for velocity, because both data items are based on different physical dimensions. The velocity encoder system is transformed to the position encoder.

| Index              | 6096 <sub>n</sub> |
|--------------------|-------------------|
| Name               | velocity_factor_2 |
| Object Code        | ARRAY             |
| Number of Elements | 2                 |
| Data Type          | Unsigned32        |

| Sub-Index        | 01 <sub>h</sub>       |                   |
|------------------|-----------------------|-------------------|
| Description      | numerator             |                   |
| Object Class     | M: -                  | O: pc pp ip pv tq |
| Access           | rw                    |                   |
| PDO Mapping      | Possible              |                   |
| Units            | -                     |                   |
| Value Range      | 0(2 <sup>32</sup> -1) |                   |
| Mandatory Range  | -                     |                   |
| Default Value    | 1                     |                   |
| Substitute Value | -                     |                   |

| Sub-Index        | 02 <sub>h</sub>       |                   |
|------------------|-----------------------|-------------------|
| Description      | divisor               |                   |
| Object Class     | M: -                  | O: pc pp ip pv tq |
| Access           | rw                    |                   |
| PDO Mapping      | Possible              |                   |
| Units            | -                     |                   |
| Value Range      | 0(2 <sup>32</sup> -1) |                   |
| Mandatory Range  | -                     |                   |
| Default Value    | 1                     |                   |
| Substitute Value | -                     |                   |

# 11.3.15 Object 6097<sub>h</sub>: acceleration\_factor

The acceleration\_factor converts the acceleration (in acceleration units/sec²) into the internal format (in increments/sec²).

| Index              | 6097 <sub>h</sub>   |
|--------------------|---------------------|
| Name               | acceleration_factor |
| Object Code        | ARRAY               |
| Number of Elements | 2                   |
| Data Type          | Unsigned32          |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>   |  |
|------------------|-----------------------|-------------------|--|
| Description      | numerator             |                   |  |
| Object Class     | M: -                  | O: pc pp ip pv tq |  |
| Access           | rw                    |                   |  |
| PDO Mapping      | Possible              |                   |  |
| Units            | -                     |                   |  |
| Value Range      | 0(2 <sup>32</sup> -1) |                   |  |
| Mandatory Range  | -                     |                   |  |
| Default Value    | 1                     |                   |  |
| Substitute Value | -                     |                   |  |

| Sub-Index        | 02 <sub>h</sub>       |                   |
|------------------|-----------------------|-------------------|
| Description      | divisor               |                   |
| Object Class     | M: -                  | O: pc pp ip pv tq |
| Access           | rw                    |                   |
| PDO Mapping      | Possible              |                   |
| Units            | -                     |                   |
| Value Range      | 0(2 <sup>32</sup> -1) |                   |
| Mandatory Range  | -                     |                   |
| Default Value    | 1                     |                   |
| Substitute Value | -                     |                   |

# 11.3.16 Object 607E<sub>h</sub>: polarity

Position\_demand\_value and position\_actual\_value are multiplied by 1 or -1 depending on the value of the polarity flag.

| Index       | 607E <sub>h</sub> |
|-------------|-------------------|
| Name        | polarity          |
| Object Code | VAR               |
| Data type   | Unsigned8         |

| Object Class     | M: -     | O: pc pp pv tq ip |
|------------------|----------|-------------------|
| Access           | rw       |                   |
| PDO Mapping      | Possible |                   |
| Units            | -        |                   |
| Value Range      | 0255     |                   |
| Mandatory Range  | 0192     |                   |
| Default Value    | 0        |                   |
| Substitute Value | -        |                   |

| Bit | Meaning                      |
|-----|------------------------------|
| 7   | Position polarity            |
|     | 0 => multiply by 1 (default) |
|     | 1 => multiply by -1          |
| 6   | Velocity polarity            |
|     | 0 => multiply by 1 (default) |
|     | 1 => multiply by -1          |

#### 12 Profile Position Mode

#### 12.1 General Information

The overall structure for this mode is shown in Figure 15. A *target\_position* is applied to the Trajectory Generator. It is generating a *position\_demand\_value* for the position control loop described in the Position Control Function (chapter 14). These two function blocks are optionally controlled by individual parameter sets.



Figure 15: Overall Structure for the Profile Position Mode





Figure 16: The Trajectory Generator

At the input to the Trajectory Generator, parameters may have optional limits applied before being normalised to internal units. Normalised parameters are denoted with an asterisk. The simpliest form of a Trajectory Generator is just to pass through a *target\_position* and to transform it to a *position\_demand\_value\** with internal units (increments) only.

#### 12.1.1 Input Data Description

| Operating Mode        | Input Parameters Used                                                                                                                                                                                                                                                                                                            |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profile Position Mode | target_position, profile_velocity, end_velocity, profile_acceleration, profile_deceleration, quick_stop_deceleration, position_factor, quick_stop_option_code, polarity, velocity_encoder_factor, motion_profile_type, max_profile_velocity, max_motor_speed, position_range_limit, software_position_limit, acceleration_factor |

# 12.1.2 Output Data Description

The output value provided by the Trajectory Generator is the input for Position Control Function. In that chapter the remotely accessible parameters of the device for a position control are described.

| Operating Mode        | Output Parameters Used |
|-----------------------|------------------------|
| Profile Position Mode | position_demand_value* |

# 12.2 Object Dictionary Entries

#### 12.2.1 Objects defined in this Chapter

| Index             | Object | Name                    | Туре       | Attr. | M/O |
|-------------------|--------|-------------------------|------------|-------|-----|
| 607A <sub>h</sub> | VAR    | target_position         | Integer32  | rw    | М   |
| 607B <sub>h</sub> | ARRAY  | position_range_limit    | Integer32  | rw    | 0   |
| 607D <sub>h</sub> | ARRAY  | software_position_limit | Integer32  | rw    | 0   |
| 607F <sub>h</sub> | VAR    | max_profile_velocity    | Unsigned32 | rw    | 0   |
| 6080 <sub>h</sub> | VAR    | max_motor_speed         | Unsigned16 | rw    | 0   |
| 6081 <sub>h</sub> | VAR    | profile_velocity        | Unsigned32 | rw    | М   |
| 6082 <sub>h</sub> | VAR    | end_velocity            | Unsigned32 | rw    | 0   |
| 6083 <sub>h</sub> | VAR    | profile_acceleration    | Unsigned32 | rw    | М   |
| 6084 <sub>h</sub> | VAR    | profile_deceleration    | Unsigned32 | rw    | М   |
| 6085 <sub>h</sub> | VAR    | quick_stop_deceleration | Unsigned32 | rw    | 0   |
| 6086 <sub>h</sub> | VAR    | motion_profile_type     | Integer16  | rw    | М   |
| 60C5 <sub>h</sub> | VAR    | max_acceleration        | Unsigned32 | rw    | 0   |
| 60C6 <sub>h</sub> | VAR    | max_deceleration        | Unsigned32 | rw    | 0   |

# 12.2.2 Objects defined in other Chapters

| Index             | Object | Name                    | Туре       | Chapter |
|-------------------|--------|-------------------------|------------|---------|
| 6040 <sub>h</sub> | VAR    | controlword             | Integer16  | dc      |
| 6041 <sub>h</sub> | VAR    | statusword              | Unsigned16 | dc      |
| 605A <sub>h</sub> | VAR    | quick_stop_option_code  | Integer16  | dc      |
| 607E              | VAR    | polarity                | Unsigned8  | fg      |
| 6093 <sub>h</sub> | ARRAY  | position_factor         | Unsigned32 | fg      |
| 6094 <sub>h</sub> | ARRAY  | velocity_encoder_factor | Unsigned32 | fg      |
| 6095 <sub>h</sub> | ARRAY  | velocity_factor_1       | Unsigned32 | fg      |
| 6097 <sub>h</sub> | ARRAY  | acceleration_factor     | Unsigned32 | fg      |

# 12.3 Object Description

#### 12.3.1 Object 607A<sub>h</sub>: target\_position

The *target\_position* is the position that the drive should move to in position profile mode using the current settings of motion control parameters such as velocity, acceleration, deceleration, *motion\_profile\_type* etc. The *target\_position* is given in user defined position units. It is converted to position increments using the *position\_factor* (see chapter Factor Group). The *target\_position* will be interpreted as absolute or relative depending on the *absolute\_relative* flag (bit 6) in the *controlword*.

| Index       | 607A <sub>h</sub> |
|-------------|-------------------|
| Name        | target_position   |
| Object Code | VAR               |
| Data type   | Integer32         |

| Object Class     | M: pp pc ip                             | O: |
|------------------|-----------------------------------------|----|
| Access           | rw                                      |    |
| PDO Mapping      | Possible                                |    |
| Units            | position units                          |    |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |    |
| Mandatory Range  | -                                       |    |
| Default Value    | -                                       |    |
| Substitute Value | -                                       |    |

# 12.3.2 Object 607B<sub>h</sub>: position\_range\_limit

Position\_range\_limit contains two sub-parameters, min\_position\_range\_limit and max\_position\_range\_limit. These limit the numerical range of the input value. On reaching or exceeding these limits, the input value automatically wraps to the other end of the range. Wrap-around of the input value can be prevented by setting software position limits.

| Index              | 607B <sub>h</sub>    |
|--------------------|----------------------|
| Name               | position_range_limit |
| Object Code        | ARRAY                |
| Number of Elements | 2                    |
| Data Type          | Integer32            |

| Sub-Index        | 01 <sub>h</sub>                         | 01 <sub>h</sub>          |  |
|------------------|-----------------------------------------|--------------------------|--|
| Description      | min_position_range_lim                  | min_position_range_limit |  |
| Object Class     | M: -                                    | O: pp pc ip              |  |
| Access           | rw                                      |                          |  |
| PDO Mapping      | possibble                               | possibble                |  |
| Units            | position units                          |                          |  |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                          |  |
| Mandatory Range  | -                                       |                          |  |
| Default Value    | -2 <sup>31</sup>                        |                          |  |
| Substitute Value | -                                       |                          |  |

| Sub-Index        | 02 <sub>h</sub>                         |                          |  |
|------------------|-----------------------------------------|--------------------------|--|
| Description      | max_position_range_limit                | max_position_range_limit |  |
| Object Class     | M: -                                    | O: pp pc ip              |  |
| Access           | rw                                      |                          |  |
| PDO Mapping      | Possible                                |                          |  |
| Units            | position units                          |                          |  |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                          |  |
| Mandatory Range  | -                                       |                          |  |
| Default Value    | 2 <sup>31</sup> -1                      |                          |  |
| Substitute Value | -                                       |                          |  |

#### 12.3.3 Object 607D<sub>h</sub>: software\_position\_limit

Software\_position\_limit contains the sub-parameters min\_position\_limit and max\_position\_limit. These parameters define the absolute position limits for the position\_demand\_value and the position\_actual\_value. Every new target\_position must be checked against these limits. The limit positions are specified in position units (same as target\_position) and are always relative to the machine home position. Before being compared with the target\_position they must be corrected internally by the home\_offset as follows:

12 Profile Position Mode

```
corrected_min_position_limit = min_position_limit - home_offset
corrected_max_position_limit = max_position_limit - home_offset
```

This calculation needs only be performed when *home\_offset* or *software\_position\_limit* is changed.

| Index              | 607D <sub>h</sub>       |
|--------------------|-------------------------|
| Name               | software_position_limit |
| Object Code        | ARRAY                   |
| Number of Elements | 2                       |
| Data Type          | Integer32               |

| Sub-Index        | 01 <sub>h</sub>                         | 01 <sub>h</sub>    |  |
|------------------|-----------------------------------------|--------------------|--|
| Description      | min_position_limit                      | min_position_limit |  |
| Object Class     | M: -                                    | O: pp pc ip        |  |
| Access           | rw                                      |                    |  |
| PDO Mapping      | Possible                                |                    |  |
| Units            | position units                          |                    |  |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                    |  |
| Mandatory Range  | -                                       |                    |  |
| Default Value    | -2 <sup>31</sup>                        | -2 <sup>31</sup>   |  |
| Substitute Value | -                                       | -                  |  |

| Sub-Index        | 02 <sub>h</sub>                         | 02 <sub>h</sub>    |  |
|------------------|-----------------------------------------|--------------------|--|
| Description      | max_position_limit                      | max_position_limit |  |
| Object Class     | M: -                                    | O: pp pc ip        |  |
| Access           | rw                                      |                    |  |
| PDO Mapping      | Possible                                | Possible           |  |
| Units            | position units                          | position units     |  |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                    |  |
| Mandatory Range  | -                                       |                    |  |
| Default Value    | 2 <sup>31</sup> -1                      | 2 <sup>31</sup> -1 |  |
| Substitute Value | -                                       | -                  |  |

#### 12.3.4 Object 607F<sub>h</sub>: max\_profile\_velocity

The *max\_profile\_velocity* is the maximum allowed speed in either direction during a profiled move. It is given in the same units as *profile\_velocity*.

| Index       | 607F <sub>h</sub>    |
|-------------|----------------------|
| Name        | max_profile_velocity |
| Object Code | VAR                  |
| Data type   | Unsigned32           |

| Object Class     | M: -                  | O: pp ip pv tq |
|------------------|-----------------------|----------------|
| Access           | rw                    |                |
| PDO Mapping      | Possible              |                |
| Units            | speed units           |                |
| Value Range      | 0(2 <sup>31</sup> -1) |                |
| Mandatory Range  | -                     |                |
| Default Value    | -                     |                |
| Substitute Value | -                     |                |

#### 12.3.5 Object 6080h: max\_motor\_speed

The *max\_motor\_speed* is the maximum allowable speed for the motor in either direction and is given in rpm. This is used to protect the motor and can be taken from the motor data sheet.

| Index       | 6080 <sub>h</sub> |
|-------------|-------------------|
| Name        | max_motor_speed   |
| Object Code | VAR               |
| Data type   | Unsigned16        |

#### Value description

| Object Class     | M: -     | O: all |
|------------------|----------|--------|
| Access           | rw       |        |
| PDO Mapping      | Possible |        |
| Units            | rpm      |        |
| Value Range      | 065535   |        |
| Mandatory Range  | -        |        |
| Default Value    | -        |        |
| Substitute Value | -        |        |

#### 12.3.6 Object 6081<sub>h</sub>: profile\_velocity

The *profile\_velocity* is the velocity normally attained at the end of the acceleration ramp during a profiled move and is valid for both directions of motion. The *profile\_velocity* is given in user defined speed units. It is converted to position increments per second using the *velocity\_encoder\_factor* (see chapter Factor Group).

| Index       | 6081 <sub>n</sub> |
|-------------|-------------------|
| Name        | profile_velocity  |
| Object Code | VAR               |
| Data type   | Unsigned32        |

#### Value description

| Object Class     | M: pp pv              | O: |
|------------------|-----------------------|----|
| Access           | rw                    |    |
| PDO Mapping      | Possible              |    |
| Units            | speed units           |    |
| Value Range      | 0(2 <sup>31</sup> -1) |    |
| Mandatory Range  | -                     |    |
| Default Value    | -                     |    |
| Substitute Value | -                     |    |

# 12.3.7 Object 6082<sub>h</sub>: end\_velocity

The *end\_velocity* defines the velocity which the drive must have on reaching the *target\_position*. Normally, the drive stops at the *target\_position*, i.e. the *end\_velocity* = 0. The *end\_velocity* is given in the same units as *profile\_velocity*.

| Index       | 6082 <sub>h</sub> |
|-------------|-------------------|
| Name        | end_velocity      |
| Object Code | VAR               |
| Data type   | Unsigned32        |

#### Value description

| Object Class     | M: -                  | O: pp |
|------------------|-----------------------|-------|
| Access           | rw                    |       |
| PDO Mapping      | Possible              |       |
| Units            | speed units           |       |
| Value Range      | 0(2 <sup>31</sup> -1) |       |
| Mandatory Range  | -                     |       |
| Default Value    | 0                     |       |
| Substitute Value | -                     |       |

#### 12.3.8 Object 6083<sub>h</sub>: profile\_acceleration

The *profile\_acceleration* is given in user defined acceleration units. It is converted to position increments per second <sup>2</sup> using the normalizing factors (see chapter Factor Group).

| Index       | 6083 <sub>h</sub>    |
|-------------|----------------------|
| Name        | profile_acceleration |
| Object Code | VAR                  |
| Data type   | Unsigned32           |

#### Value description

| Object Class     | M: pp pv              | O: |
|------------------|-----------------------|----|
| Access           | rw                    |    |
| PDO Mapping      | Possible              |    |
| Units            | acceleration units    |    |
| Value Range      | 0(2 <sup>32</sup> -1) |    |
| Mandatory Range  | -                     |    |
| Default Value    | -                     |    |
| Substitute Value | -                     |    |

#### 12.3.9 Object 6084h: profile\_deceleration

The *profile\_deceleration* is given in the same units as *profile\_acceleration*. If this parameter is not supported, then the *profile\_acceleration* value is also used for deceleration.

| Index       | 6084 <sub>h</sub>    |
|-------------|----------------------|
| Name        | profile_deceleration |
| Object Code | VAR                  |
| Data type   | Unsigned32           |

#### Value description

| Object Class     | M: pp pv              | O: |
|------------------|-----------------------|----|
| Access           | rw                    |    |
| PDO Mapping      | Possible              |    |
| Units            | acceleration units    |    |
| Value Range      | 0(2 <sup>32</sup> -1) |    |
| Mandatory Range  | -                     |    |
| Default Value    | -                     |    |
| Substitute Value | -                     |    |

# 12.3.10 Object 6085<sub>h</sub>: quick\_stop\_deceleration

The <code>quick\_stop\_deceleration</code> is the deceleration used to stop the motor if the quick stop command (bit 2 of the <code>controlword</code>) is given and the <code>quick\_stop\_option\_code</code> (605Ah) is set to 2. The <code>quick\_stop\_deceleration</code> is given in the same units as the <code>profile\_acceleration</code>.

| Index       | 6085 <sub>h</sub>       |
|-------------|-------------------------|
| Name        | quick_stop_deceleration |
| Object Code | VAR                     |
| Data type   | Unsigned32              |

# Value description

| Object Class     | M: -                  | O: pp ip pv vo tq hc |
|------------------|-----------------------|----------------------|
| Access           | rw                    |                      |
| PDO Mapping      | Possible              |                      |
| Units            | acceleration units    |                      |
| Value Range      | 0(2 <sup>32</sup> -1) |                      |
| Mandatory Range  | -                     |                      |
| Default Value    | -                     |                      |
| Substitute Value | -                     |                      |

# 12.3.11 Object 6086<sub>h</sub>: motion\_profile\_type

The *motion\_profile\_type* is used to select the type of motion profile used to perform a profiled move.

| Index       | 6086 <sub>n</sub>   |
|-------------|---------------------|
| Name        | motion_profile_type |
| Object Code | VAR                 |
| Data type   | Integer16           |

| Object Class     | М: рр рv    | O: |
|------------------|-------------|----|
| Access           | rw          |    |
| PDO Mapping      | Possible    |    |
| Units            | none        |    |
| Value Range      | -3276832767 |    |
| Mandatory Range  | -           |    |
| Default Value    | 0           |    |
| Substitute Value | 0           |    |

| Profile Code | Profile Type                      |  |
|--------------|-----------------------------------|--|
| -327681      | Manufacturer specific             |  |
| 0            | Linear ramp (trapezoidal profile) |  |
| 1            | Sin <sup>2</sup> ramp             |  |
| 2            | Jerk-free ramp                    |  |
| 3            | Jerk-limited ramp                 |  |
| 4 32767      | Reserved for future profile types |  |

## 12.3.12 Object 60C5<sub>h</sub>: max\_acceleration

To prevent the motor and the application from being destroyed, the *max\_acceleration* can be used to limit the acceleration to an acceptable value.

The max\_acceleration is given in user defined *acceleration\_units*  $(608D_h, 608E_h)$ . It is converted to position increments per second <sup>2</sup> using the *acceleration\_factor*  $(6097_h)$ .

| Index       | 60C5 <sub>h</sub> |
|-------------|-------------------|
| Name        | max_acceleration  |
| Object Code | VAR               |
| Data type   | Unsigned32        |

### Value description

CiA DSP-402 V 1.1

| Object Class     | M: -                           | O: ip pp pc |
|------------------|--------------------------------|-------------|
| Access           | rw                             |             |
| PDO Mapping      | Possible                       |             |
| Units            | acceleration units             |             |
| Value Range      | 0(2 <sup>32</sup> -1)          |             |
| Mandatory Range  | -                              |             |
| Default Value    | -                              |             |
| Substitute Value | 0 (no accelaration limitation) |             |

### 12.3.13 Object 60C6<sub>h</sub>: max\_deceleration

To prevent the motor and the application from being destroyed, the *max\_deceleration* can be used to limit the deceleration to an acceptable value.

The max\_deceleration is given in the same units as the  $max\_acceleration$  (60C5<sub>h</sub>). If this parameter is not supported, then the max\_acceleration value is also used for deceleration.

| Index       | 60C6 <sub>h</sub> |
|-------------|-------------------|
| Name        | max_deceleration  |
| Object Code | VAR               |
| Data type   | Unsigned32        |

#### Value description

| Object Class     | M: -                  | O: ip pp pc |
|------------------|-----------------------|-------------|
| Access           | rw                    |             |
| PDO Mapping      | Possible              |             |
| Units            | acceleration units    |             |
| Value Range      | 0(2 <sup>32</sup> -1) |             |
| Mandatory Range  | -                     |             |
| Default Value    | -                     |             |
| Substitute Value | max_acceleration      |             |

### 12.4 Functional Description

Two different ways to apply *target\_positions* to a drive, are supported by this device profile.

#### Set of setpoints:

After reaching the target\_position the drive unit immediatly processes the next target\_position which results in a move where the velocity of the drive normally is not reduced to zero after achieving a setpoint.

#### Single setpoints:

After reaching the *target\_position* the drive unit signals this status to a host computer and then receives a new setpoint. After reaching a *target\_position* the velocity normally is reduced to zero before starting a move to the next setpoint.

The two modes are controlled by the timing of the bits <code>new\_setpoint</code> and <code>change\_set\_immediatly</code> in the <code>controlword</code> and <code>setpoint\_acknowledge</code> in the <code>statusword</code>. These bits allow to set up a request-response mechanism in order to prepare a set of setpoints while another set still is processed in the drive unit. This minimizes reaction times within a control program on a host computer.



Figure 17: Setpoint transmission from a host computer

Figure 17, Figure 18 and Figure 19 show the difference between the "set of setpoints" mode and the "single setpoint" mode. The initial status of the bit *change\_set\_immediatly* in the *controlword* determines which mode is used. To keep simple these examples, only trapezoidal moves are used.

If the bit <code>change\_set\_immediatly</code> is "0" (continuously drawn line in Figure 17) a single setpoint is expected by the drive (1). After data is applied to the drive, a host signals that the data is valid by changing the bit <code>new\_setpoint</code> to "1" in the <code>controlword</code> (2). The drive responds with <code>setpoint\_acknowledge</code> set to "1" in the <code>statusword</code> (3) after it recognized and buffered the new valid data. Now the host may release <code>new\_setpoint</code> (4) and afterwards the drive signals with <code>setpoint\_acknowledge</code> equal "0" its ability to accept new data again (5). In Figure 18 this mechanism results in a velocity of zero after ramping down in order to reach a <code>target\_position x\_1.at t\_1</code>. After signalling to the host, that the setpoint is reached like described above, the next <code>target\_position x\_2</code> is processed at  $t_2$  and reached at  $t_3$ .



Figure 18: Single setpoint

With *change\_set\_immediatly* set to "1" (6), symbolized by the dashed line in Figure 17, the host advises the drive to apply a new setpoint immediatly after reaching the last one. The relative timing of the other signals is unchanged. This behaviour causes the drive to already process the next setpoint  $x_2$  and to keep its velocity when it reaches the *target\_position*  $x_1$  at  $t_1$ . Then drive moves immediatly to the already calculated next *target\_position*  $x_2$ .



Figure 19: Change set immediatly

# 13 Homing Mode

#### 13.1 General Information

This chapter describes the method by which a drive seeks the home position (also called, the datum, reference point or zero point). There are various methods of achieving this using limit switches at the ends of travel or a home switch (zero point switch) in mid-travel, most of the methods also use the index (zero) pulse train from an incremental encoder.



Figure 20: The Homing Function

#### 13.1.1 Input Data Description

The user can specify the speeds, acceleration and the method of homing. There is a further object *home\_offset* which allows the user to displace zero in the user's coordinate system from the home position.

There are two *homing\_speeds*; in a typical cycle the faster speed is used to find the home switch and the slower speed is used to find the index pulse. The manufacturer is allowed some discretion in the use of these speeds as the response to the signals may be Dependent upon the hardware used.

### 13.1.2 Output Data Description

There is no output data except for those bits in the *statusword* which return the status or result of the homing process and the demand to the position control loops.

#### 13.1.3 Internal States

There is only one internal state called homing which is reflected in the bits of the statusword.

### 13.2 Object Dictionary Entries

### 13.2.1 Objects defined in this Chapter

| Index             | Object | Name                | Туре       | Attr. | M/O |
|-------------------|--------|---------------------|------------|-------|-----|
| 607C <sub>h</sub> | VAR    | home_offset         | Integer32  | rw    | 0   |
| 6098 <sub>h</sub> | VAR    | homing_method       | Integer8   | rw    | М   |
| 6099 <sub>h</sub> | ARRAY  | homing_speeds       | Unsigned32 | rw    | М   |
| 609A <sub>h</sub> | VAR    | homing_acceleration | Unsigned32 | rw    | 0   |

### 13.2.2 Objects defined in other Chapters

| Index             | Object | Name        | Туре       | Chapter |
|-------------------|--------|-------------|------------|---------|
| 6040 <sub>h</sub> | VAR    | controlword | Integer16  | dc      |
| 6041 <sub>h</sub> | VAR    | statusword  | Unsigned16 | dc      |

### 13.3 Object Description

### 13.3.1 Object 607C<sub>h</sub>: home\_offset

The *home\_offset* object is the difference between the zero position for the application and the machine home position (found during homing). During homing the home position is found and once the homing is completed the zero position is offset from the home position by adding the *home\_offest* to the home position. All subsequent absolute moves shall be taken relative to this new zero position. This is illustrated in the following diagram.



Figure 21: Home Offset

If the *home\_offset* is not implemented then it shall be zero.

| Index       | 607C <sub>h</sub> |
|-------------|-------------------|
| Name        | home_offset       |
| Object Code | VAR               |
| Data type   | Integer32         |

## **Value Description**

| Object Class     | M: -                                    | O: hm |  |
|------------------|-----------------------------------------|-------|--|
| Access           | rw                                      |       |  |
| PDO Mapping      | Possible                                |       |  |
| Units            | position units                          |       |  |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |       |  |
| Mandatory Range  | -                                       |       |  |
| Default Value    | 0                                       |       |  |
| Substitute Value | 0                                       |       |  |

# 13.3.2 Object 6098<sub>h</sub>: homing\_method

The homing\_method object determines the method that will be used during homing.

| Index       | 6098 <sub>h</sub> |
|-------------|-------------------|
| Name        | homing_method     |
| Object Code | VAR               |
| Data Type   | Integer8          |

# **Value Description**

| Object Class     | M: hm    | O: |
|------------------|----------|----|
| Access           | rw       |    |
| PDO Mapping      | Possible |    |
| Units            | -        |    |
| Value Range      | -128127  |    |
| Mandatory Range  | 0        |    |
| Default Value    | 0        |    |
| Substitute Value | 0        |    |

# **Data Description**

| homing_method | Meaning                                          |
|---------------|--------------------------------------------------|
| -1281         | Manufacturer specific                            |
| 0             | No homing operation required                     |
| 135           | Methods 1 to 35 (see the functional description) |
| 36 127        | Reserved                                         |

# 13.3.3 Object 6099<sub>h</sub>: homing\_speeds

This entry in the object dictionary defines the speeds used during homing.

| Index              | 6099 <sub>h</sub> |
|--------------------|-------------------|
| Name               | homing_speeds     |
| Object Code        | ARRAY             |
| Number of Elements | 2                 |
| Data Type          | Unsigned32        |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>                |  |
|------------------|-----------------------|--------------------------------|--|
| Description      | speed_during_sear     | speed_during_search_for_switch |  |
| Object Class     | M: hm                 | M: hm O: -                     |  |
| Access           | rw                    | rw                             |  |
| PDO Mapping      | Possible              | Possible                       |  |
| Units            | velocity Units        | velocity Units                 |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)          |  |
| Mandatory Range  | -                     | -                              |  |
| Default Value    | 0                     | 0                              |  |
| Substitute Value | 0                     | 0                              |  |

| Sub-Index        | 02 <sub>h</sub>              |      |  |
|------------------|------------------------------|------|--|
| Description      | speed_during_search_for_zero |      |  |
| Object Class     | M: hm                        | O: - |  |
| Access           | rw                           |      |  |
| PDO Mapping      | Possible                     |      |  |
| Units            | velocity units               |      |  |
| Value Range      | 0(2 <sup>32</sup> -1)        |      |  |
| Mandatory Range  | -                            |      |  |
| Default Value    | 0                            |      |  |
| Substitute Value | 0                            |      |  |

### 13.3.4 Object 609A<sub>h</sub>: homing\_acceleration

The homing\_acceleration establishes the acceleration to be used for all accelerations and decelerations with the standard homing modes.

| Index       | 609A <sub>h</sub>   |
|-------------|---------------------|
| Name        | homing_acceleration |
| Object Code | VAR                 |
| Data Type   | Unsigned32          |

#### **Value Description**

| Object Class     | M: -                  | O: hm |
|------------------|-----------------------|-------|
| Access           | rw                    |       |
| PDO Mapping      | Possible              |       |
| Units            | acceleration units    |       |
| Value Range      | 0(2 <sup>32</sup> -1) |       |
| Mandatory Range  | -                     |       |
| Default Value    | -                     |       |
| Substitute Value | -                     |       |

### 13.4 Functional Description

By choosing a method of homing by writing a value to homing method will clearly establish

- O the homing signal (positive limit switch, negative limit switch, home switch)
- O the direction of actuation and where appropriate
- O the position of the index pulse.

The home position and the zero position are offset by the home\_offset, see the definition of home offset for how this offset is used.

Various homing positions are illustrated in the following diagrams. An encircled number indicates the code for selection of this homing position. The direction of movement is also indicated. Further homing methods may be defined by the manufacturer using the negative values of homing\_method.

There are four sources of homing signal available, these are the negative and positive limit switches, the home switch and the index pulse from an encoder:

In the diagrams of homing sequences shown below, the encoder count increases as the axle's position moves to the right, in other words the left is the minimum position and the right is the maximum position.

For the operation of positioning drives, an exact knowledge of the absolute position is normally required. Since for cost reasons, drives often do not have an absolute encoder, a

homing operation is necessary. There are several, application-specific methods. The homing\_method is used for selection.

The exact sequence of the homing operation is clearly described by the method. In some circumstances, a device has several methods to choose from, using the homing\_method.

### 13.4.1 Homing Methods

The following sub-sections describe the details of how each of the homing modes shall function.

## 13.4.1.1 Method 1: Homing on the Negative Limit Switch

Using this method the initial direction of movement is leftward if the negative limit switch is inactive (here shown as low). The home position is at the first index pulse to the right of the position where the negative limit switch becomes inactive.



Figure 22: Homing on the Negative Limit Switch

### 13.4.1.2 Method 2: Homing on the Positive Limit Switch

Using this method the initial direction of movement is rightward if the positive limit switch is inactive (here shown as low). The position of home is at the first index pulse to the left of the position where the positive limit switch becomes inactive.



Figure 23: Homing on the Positive Limit Switch

### 13.4.1.3 Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse

Using methods 3 or 4 the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either to the left or the right of the point where the home switch changes state. If the initial position is sited so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.



Figure 24: Homing on the Positive Home Switch and Index Pulse

### 13.4.1.4 Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse

Using methods 5 or 6 the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either to the left or the right of the point where the home switch changes state. If the initial position is sited so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.



Figure 25: Homing on the Negative Home Switch and Index Pulse

#### 13.4.1.5 Methods 7 to 14: Homing on the Home Switch and Index Pulse

These methods use a home switch which is active over only portion of the travel, in effect the switch has a 'momentary' action as the axle's position sweeps past the switch.

Using methods 7 to 10 the initial direction of movement is to the right, and using methods 11 to 14 the initial direction of movement is to the left except if the home switch is active at the start of the motion. In this case the initial direction of motion is Dependent on the edge being sought. The home position is at the index pulse on either side of the rising or falling edges of the home switch, as shown in the following two diagrams. If the initial direction of movement leads away from the home switch, the drive must reverse on encountering the relevant limit switch.



Figure 26: Homing on the Home Switch and Index Pulse - Positive Initial Move



Figure 27: Homing on the Home Switch and Index Pulse - Negative Initial Move

#### 13.4.1.6 Methods 15 and 16: Reserved

These methods are reserved for future expansion of the homing mode.

### 13.4.1.7 Methods 17 to 30: Homing without an Index Pulse

These methods are similar to methods 1 to 14 except that the home position is not dependent on the index pulse but only Dependent on the relevant home or limit switch transitions. For example methods 19 and 20 are similar to methods 3 and 4 as shown in the following diagram.



Figure 28: Homing on the Positive Home Switch

#### 13.4.1.8 Methods 31 and 32: Reserved

These methods are reserved for future expansion of the homing mode.

### 13.4.1.9 Methods 33 to 34: Homing on the Index Pulse

Using methods 33 or 34 the direction of homing is negative or positive respectively. The home position is at the index pulse found in the selected direction.



Figure 29: Homing on the Index Pulse

## 13.4.1.10 Method 35: Homing on the Current Position

In method 35 the current position is taken to be the home position.

### 13.4.2 Homing Mode Sequence

The homing operation is started by setting bit 4 in the device controlword. The successful completion is indicated by a one in bit 12 of the device statusword. A one in bit 13 of the statusword indicates an error was detected during the homing operation. The cause is found by reading the error codes.

| Bit 4 | Meaning                    |
|-------|----------------------------|
| 0     | homing operation inactive  |
| 0→1   | Start homing operation     |
| 1     | homing operation active    |
| 1→0   | Interrupt homing operation |

Table 11: Extended Description of the Bits in the controlword

| Bit 13 | Bit 12 | Meaning                                       |
|--------|--------|-----------------------------------------------|
| 0      | 0      | homing operation not yet completed            |
| 0      | 1      | homing operation carried out successfully     |
| 1      | 0      | homing operation not successfully carried out |
| 1      | 1      | prohibited condition                          |

Table 12: Extended Description of the Bits in the statusword

## **14 Position Control Function**

#### 14.1 General information

In this chapter, all parameters are described which are necessary for a closed loop position control. The control loop is fed with the position\_demand\_value as one of the outputs of the Generator and with the output of the position (position\_actual\_value) like a resolver or encoder as input parameters. The behaviour of the control may be influenced by control parameters which are externally applicable. To keep stable the loop, a relative limitation of the output using the previous control\_effort is possible. In order not to exceed physical limits of a drive, an absolute limit function is implemented for the control\_effort. The control\_effort may be a velocity\_demand\_value, a position demand value or any other output value, depending on the modes of operation implemented by a manufacturer. Especially in cascaded control structures, where a position control is followed by a torque control e.g., the control\_effort of the position control loop is used as an input for a further calculation.

All values are transformed - if necessary - from user defined units to normalised units like increments with the functions of the chapter Factor Group.



Figure 31: Position Control Function

Within this chapter, the following sub-functions are defined:

#### 1. Following Error

A *position\_actual\_value* outside the allowed range of the *following\_error\_window* around a *position\_demand\_value* for longer than the *following\_error\_time\_out* results in setting bit 13 *following\_error* in the *statusword*.



Figure 31: Following Error - Functional Overview

#### 2. Position Reached

This function offers the possibility to define a position range around a position\_demand\_value to be regarded as valid. If a drive's position is within this area for a specified time - the position\_window\_time - the related control bit 10 target\_reached in the statusword is set.



Figure 32: Position Reached - Functional Overview

The control functions following error and position reached have direct access to the *statusword* and give immediate notification to the user if their results change.

# 14.1.1 Input Data Description

Depending on the supported modes of operation and on the capabilities of different categories of drives, only some of the mentioned input parameters may be necessary.

| Operating Mode                                               | Input Parameters used                                                                                                                                                                                                    |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| position mode,<br>homing mode,<br>interpolated position mode | position_demand_value*, position_window_time, position_window, following_error_time_out, following_error_window, position_actual_value, digital_inputs, target_position, position_factor, position_range_limit, polarity |

### 14.1.2 Output Data Description

| Operating Mode                                               | Output Parameters used                      |
|--------------------------------------------------------------|---------------------------------------------|
| position mode,<br>homing mode,<br>interpolated position mode | statusword, control_effort, digital_outputs |

# 14.2 Object Dictionary Entries

# 14.2.1 Objects defined in this Chapter

| Index             | Object | Name                           | Туре       | Attr. | M/O |
|-------------------|--------|--------------------------------|------------|-------|-----|
| 6062 <sub>h</sub> | VAR    | position_demand_value          | Integer32  | ro    | 0   |
| 6063 <sub>h</sub> | VAR    | position_actual_value*         | Integer32  | ro    | 0   |
| 6064 <sub>h</sub> | VAR    | position_actual_value          | Integer32  | ro    | М   |
| 6065 <sub>h</sub> | VAR    | following_error_window         | Unsigned32 | rw    | 0   |
| 6066 <sub>h</sub> | VAR    | following_error_time_out       | Unsigned16 | rw    | 0   |
| 6067 <sub>h</sub> | VAR    | position_window                | Unsigned32 | rw    | 0   |
| 6068 <sub>h</sub> | VAR    | position_window_time           | Unsigned16 | rw    | 0   |
| 60F4 <sub>h</sub> | VAR    | following_error_actual_value   | Integer32  | ro    | 0   |
| 60FA <sub>h</sub> | VAR    | control_effort                 | Integer32  | ro    | 0   |
| 60FB <sub>h</sub> | RECORD | position_control_parameter_set | -          | rw    | 0   |
| 60FC <sub>h</sub> | VAR    | position_demand_value*         | Integer32  | ro    | 0   |

# 14.2.2 Objects defined in other Chapters

| Index             | Object | Name                    | Туре       | Chapter |
|-------------------|--------|-------------------------|------------|---------|
| 607A <sub>h</sub> | VAR    | target_position         | Integer32  | рр      |
| 607B <sub>h</sub> | VAR    | position_range_limit    | Integer32  | рр      |
| 607C <sub>h</sub> | VAR    | home_offset             | Integer32  | hm      |
| 607D <sub>h</sub> | VAR    | software_position_limit | Integer32  | рр      |
| 607E <sub>h</sub> | VAR    | polarity                | Unsigned8  | fg      |
| 6093 <sub>h</sub> | VAR    | position_factor         | Unsigned32 | fg      |
| 6094 <sub>h</sub> | ARRAY  | velocity_encoder_factor | Unsigned32 | fg      |
| 6095 <sub>h</sub> | ARRAY  | velocity_factor_1       | Unsigned32 | fg      |
| 6096 <sub>h</sub> | ARRAY  | acceleration_factor     | Unsigned32 | fg      |
| 6041 <sub>h</sub> | VAR    | controlword             | Integer16  | dc      |
| 6041 <sub>h</sub> | VAR    | statusword              | Unsigned16 | dc      |

## 14.3 Object Description

### 14.3.1 Object 6062<sub>h</sub>: position\_demand\_value

| Index       | 6062 <sub>h</sub>     |
|-------------|-----------------------|
| Name        | position_demand_value |
| Object Code | VAR                   |
| Data type   | Integer32             |

### **Value Description**

| Object Class     | M: -                                    | O: pc |
|------------------|-----------------------------------------|-------|
| Access           | ro                                      |       |
| PDO Mapping      | Possible                                |       |
| Units            | position units                          |       |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |       |
| Mandatory Range  | -                                       |       |
| Default Value    | -                                       |       |
| Substitute Value | -                                       |       |

### 14.3.2 Object 6063<sub>h</sub>: position\_actual\_value\*

The actual value of the position measurement device is one of the two input values of the closed loop position control. The data unit is defined as increments. If necessary, the data unit must be transformed with the *position\_factor* defined in the Factor Group from user defined units to increments.

| Index       | 6063 <sub>n</sub>      |
|-------------|------------------------|
| Name        | position_actual_value* |
| Object Code | VAR                    |
| Data type   | Integer32              |

| Object Class     | M: -                                    | O: pc, pp, ip, hm, tq |  |
|------------------|-----------------------------------------|-----------------------|--|
| Access           | ro                                      |                       |  |
| PDO Mapping      | Possible                                | Possible              |  |
| Units            | increments                              | increments            |  |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                       |  |
| Mandatory Range  | -                                       |                       |  |
| Default Value    | -                                       |                       |  |
| Substitute Value | -                                       |                       |  |

# 14.3.3 Object 6064h: position\_actual\_value

This object represents the actual value of the position measurement device in user defined units.

| Index       | 6064 <sub>h</sub>     |
|-------------|-----------------------|
| Name        | position_actual_value |
| Object Code | VAR                   |
| Data type   | Integer32             |

| Object Class     | M: pc                                   | O: pc, pp, ip, hm, tq |
|------------------|-----------------------------------------|-----------------------|
| Access           | ro                                      |                       |
| PDO Mapping      | Possible                                |                       |
| Units            | position units                          |                       |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                       |
| Mandatory Range  | -                                       |                       |
| Default Value    | -                                       |                       |
| Substitute Value | -                                       |                       |

### 14.3.4 Object 6065<sub>h</sub>: following\_error\_window

The following\_error\_window defines a range of tolerated position values symmetrically to the position\_demand\_value. As it is in most cases used with user defined units, a transformation into increments with the position\_factor is necessary. If the position\_actual\_value is out out of the following\_error\_window, a following error occurs

A following error might occur when:

- a drive is blocked
- unreachable profile velocity
- -wrong closed loop coefficients

If the value of the following error window is  $2^{32}$ -1, the following control is switched off.

| Index       | 6065 <sub>h</sub>      |
|-------------|------------------------|
| Name        | following_error_window |
| Object Code | VAR                    |
| Data type   | Unsigned32             |

| Object Class     | M: -                  | O: pc, pp             |  |
|------------------|-----------------------|-----------------------|--|
| Access           | rw                    | rw                    |  |
| PDO Mapping      | Possible              | Possible              |  |
| Units            | position units        | position units        |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |
| Mandatory Range  | -                     | -                     |  |
| Default Value    | -                     | -                     |  |
| Substitute Value | -                     |                       |  |

## 14.3.5 Object 6066<sub>h</sub>: following\_error\_time\_out

When a following error occurs longer than the defined value of the time-out, the corresponding bit 13 *following\_error* in the status message will be set to one. The reaction of the drive when a following error occurs, is manufacturer specific.

| Index       | 6066 <sub>h</sub>        |
|-------------|--------------------------|
| Name        | following_error_time_out |
| Object Code | VAR                      |
| Data type   | Unsigned16               |

| Object Class     | M: -         | O: pc, pp |
|------------------|--------------|-----------|
| Access           | rw           |           |
| PDO Mapping      | Possible     |           |
| Units            | milliseconds |           |
| Value Range      | 065535       |           |
| Mandatory Range  | -            |           |
| Default Value    | -            |           |
| Substitute Value | 0            |           |

### 14.3.6 Object 6067<sub>h</sub>: position\_window

The *position\_window* defines a symmetrical range of accepted positions relatively to the *target\_position*. If the actual value of the position encoder is within the *position\_window*, this *target\_position* is regarded as reached. As the user mostly preferes to specify the *position\_window* in his application in user defined units, the *position\_factor* of the Factor Group must be used to transform this value into increments. The *target\_position* has to be handled in the same manner as in the Trajectory Generator concerning limiting functions and transformation into internal machine units before it can be used with this function.

If the value of the position window is  $2^{32}$ -1, the position window control is switched of.

| Index       | 6067 <sub>h</sub> |
|-------------|-------------------|
| Name        | position_window   |
| Object Code | VAR               |
| Data type   | Unsigned32        |

| Object Class     | M: -                  | O: pc    |  |
|------------------|-----------------------|----------|--|
| Access           | rw                    |          |  |
| PDO Mapping      | Possible              | Possible |  |
| Units            | position units        |          |  |
| Value Range      | 0(2 <sup>32</sup> -1) |          |  |
| Mandatory Range  | -                     |          |  |
| Default Value    | -                     |          |  |
| Substitute Value | 0                     |          |  |

## 14.3.7 Object 6068<sub>h</sub>: position\_window\_time

When the actual position is within the *position\_window* during the defined *position\_window\_time*, the corresponding bit 10 *target\_reached* in the *statusword* will be set to one.

| Index       | 6068 <sub>n</sub>    |
|-------------|----------------------|
| Name        | position_window_time |
| Object Code | VAR                  |
| Data type   | Unsigned16           |

### **Value Description**

| Object Class     | M: -         | O: pc |
|------------------|--------------|-------|
| Access           | rw           |       |
| PDO Mapping      | Possible     |       |
| Units            | milliseconds |       |
| Value Range      | 065535       |       |
| Mandatory Range  | -            |       |
| Default Value    | -            |       |
| Substitute Value | 0            |       |

### 14.3.8 Object 60F4<sub>h</sub>: following\_error\_actual\_value

This object represents the actual value of the following error.

| Index       | 60F4 <sub>h</sub>            |
|-------------|------------------------------|
| Name        | following_error_actual_value |
| Object Code | VAR                          |
| Data type   | Integer32                    |

| Object Class     | M: -                                    | O: pc, pp, ip, hm, tq |
|------------------|-----------------------------------------|-----------------------|
| Access           | ro                                      |                       |
| PDO Mapping      | Possible                                |                       |
| Units            | position units                          |                       |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                       |
| Mandatory Range  | -                                       |                       |
| Default Value    | -                                       |                       |
| Substitute Value | -                                       |                       |

## 14.3.9 Object 60FA<sub>h</sub>: control\_effort

The output of the position control loop is the *control\_effort*. It is particular to the Position Control Function that the notation of the *control\_effort* is mode dependent and therefore not specified in the object description.

| Index       | 60FA <sub>h</sub> |
|-------------|-------------------|
| Name        | control_effort    |
| Object Code | VAR               |
| Data type   | Integer32         |

| Object Class     | M: -                                    | O: pc, pp, ip, hm, tq |
|------------------|-----------------------------------------|-----------------------|
| Access           | ro                                      |                       |
| PDO Mapping      | Possible                                |                       |
| Units            | -                                       |                       |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                       |
| Mandatory Range  | -                                       |                       |
| Default Value    | -                                       |                       |
| Substitute Value | -                                       |                       |

## 14.3.10 Object 60FB<sub>h</sub>: position\_control\_parameter\_set

In order to control the behaviour of the position control loop, one or more parameters are necessary. This object is a means to define control parameters which are highly manufacturer specific. For this reason, these parameters shall not be described in this document at all.

| Index              | 60FB <sub>h</sub>              |
|--------------------|--------------------------------|
| Name               | position_control_parameter_set |
| Object Code        | RECORD                         |
| Number of Elements | 0255                           |

| Sub-Index        | 01 <sub>h</sub> 255h <sub>h</sub> |                            |  |
|------------------|-----------------------------------|----------------------------|--|
| Description      | Manufacturer specifi              | С                          |  |
| Object Class     | M: -                              | M: - O: pc, pp, ip, hm, tq |  |
| Access           | rw                                |                            |  |
| PDO Mapping      | Possible                          |                            |  |
| Units            | -                                 |                            |  |
| Value Range      | -                                 |                            |  |
| Mandatory Range  | -                                 |                            |  |
| Default Value    | -                                 |                            |  |
| Substitute Value | -                                 |                            |  |
| Data Type        | user defined                      |                            |  |

## 14.3.11 Object 60FC<sub>h</sub>: position\_demand\_value\*

This output of the *trajectory\_generator* in *position\_mode* is an internal value using increments as unit what is expressed with an \*. To save calculation time for some applications, this object is additionally introduced to the *position\_demand\_value* (6062<sub>h</sub>).

| Index       | 60FC <sub>h</sub>      |
|-------------|------------------------|
| Name        | position_demand_value* |
| Object Code | VAR                    |
| Data type   | Integer32              |

| Object Class     | M: -                                    | O: pc, pp, ip, hm; tq |
|------------------|-----------------------------------------|-----------------------|
| Access           | ro                                      |                       |
| PDO Mapping      | Possible                                |                       |
| Units            | increments                              |                       |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                       |
| Mandatory Range  | -                                       |                       |
| Default Value    | -                                       |                       |
| Substitute Value | -                                       |                       |

### 14.4 Functional Description

Figure 32 shows the meaning of the subfunctions position reached and following error. Symmetrically around the target\_position  $x_i$  a window is defined for the accepted position range between  $x_i$ - $x_0$  and  $x_i$ + $x_0$ . The positions  $x_{t0}$  and  $x_{t1}$  e.g. are situated within this position\_window. If a drive is sensed in the accepted range a virtual timer can be imagined to be started. This timer is available as communication object called position\_window\_time. To change the status bit (bit 10) target\_reached it is necessary that the position\_window\_time expires while the drive position is still in this range between  $x_i$ - $x_0$  and  $x_i$ + $x_0$ .



Figure 33: Position reached

Another position area - the *following\_error\_window* - may be defined to mark a *following\_error*. In this case the *following\_error\_time\_out* is used to specify the time the *actual\_position* may be outside the *position\_window* without a *following\_error* to be stated in the *statusword* at bit 13.



Figure 34: Following error

## 15 Interpolated Position Mode

#### 15.1 General Information

The Interpolated Position Mode is used to control multiple coordinated axles or a single axle with the need for time-interpolation of setpoint data. The Interpolated Position Mode normally uses time synchronization mechanisms like the sync object defined in /16/ for a time coordination of the related drive units.

The <code>interpolation\_data\_record</code> contains the interpolation data; the data type of the members of this structure is not detailed by the CANopen Device Profile for Drives and Motion Control. Only the record size is fixed in the <code>size\_of\_data\_record</code> as sub-index of the <code>interpolation data configuration</code>

For synchronous operation the interpolation cycle time is defined by the object *interpolation\_time\_period*. For asynchronous operation, the *interpolation\_time\_period* for each time slice must be included in the *interpolation\_data\_record*.

Time synchronization can be done by the CANopen sync message (see /16/), a specific group sync signal (broadcast) or in specified time slices which are activated with the start signal.

The Interpolated Position Mode allows a host controller to transmit a stream of interpolation data with either an implicit or explicit time reference to a drive unit. If the drive supports an input buffer, the interpolation data may be sent in bursts rather than continously in real time. The actually available and the maximum size of the input buffer can be requested by a host using the <a href="interpolation\_data\_configuration">interpolation\_data\_configuration</a>. The buffer size is the number of <a href="interpolation\_data\_records">interpolation\_data\_records</a> which may be sent to a drive to fill the input buffer and it is not the size in bytes. Devices without input buffer capabilities can only but must accept at least one interpolation data item.

The interpolation algorithm is defined in the <code>interpolation\_submode\_select</code>. Linear interpolation is the default interpolation method. This requires only one interpolation data item to be buffered for the calculation of the next demand value. For each interpolation cycle, the drive will calculate a <code>position\_demand\_value</code> by interpolating positions over a period of time.

Optionally the common limit functions for speed, acceleration and deceleration may be applied to the interpolation data.





Figure 35: Interpolation Controller

### 15.1.1 Input Data Description

| Operating Mode | Input Parameters Used                                                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                | interpolation_submode_select, max_profile_velocity, profile_acceleration, profile_deceleration, quick_stop_deceleration*, quick_stop_mode |

### 15.1.2 Output Data Description

The output values provided by the Interpolated Position Mode depend on the number and type of interpolation functions implemented by a manufacturer. For the predefined linear time interpolation the output is a *position\_demand\_value\**.

| Operation Mode             | Output Parameter used  |
|----------------------------|------------------------|
| Interpolated Position Mode | position_demand_value* |

#### 15.1.3 Internal States



Figure 36: Internal States for the Interpolated Position Mode

1)see statemachine

### O Interpolation inactive

This state is entered when the device is in state Operation enabled and the Interpolated Position Mode is selected. The drive unit will accept input data and will buffer it for interpolation calculations, but it does not move the axles.

#### O Interpolation active

This state is entered when the device is in state Operation enabled, the Interpolated Position Mode is selected and enabled. The drive unit will accept input data and it moves the axles.

#### 15.1.4 State Transitions of the Internal States

State Transition 1: NO IP-MODE SELECTED => IP-MODE INACTIVE Event: Select ip-mode with *controlword* while operation enabled

State Transition 2: IP-MODE INACTIVE => NO IP-MODE SELECTED Event: Select any other mode *controlword* while operation enabled

State Transition 3: IP-MODE INACTIVE => IP-MODE ACTIVE Event: Set bit enable\_ip\_mode (bit4) of the *controlword* while in ip-mode and operation enabled State Transition 4: IP-MODE ACTIVE => IP-MODE INACTIVE
Event: Reset bit enable\_ip\_mode (bit4) of the *controlword* while in ip-mode and operation enabled

# 15.2 Object Dictionary Entries

# 15.2.1 Objects defined in this Chapter

| Index             | Object | Name                             | Туре       | Attr. | M/O |
|-------------------|--------|----------------------------------|------------|-------|-----|
| 60C0 <sub>h</sub> | VAR    | interpolation_submode_select     | Integer16  | rw    | 0   |
| 60C1 <sub>h</sub> | RECORD | interpolation_data_record        | Integer32  | rw    | 0   |
| 60C2 <sub>h</sub> | RECORD | interpolation_time_period        | Unsigned8  | rw    | 0   |
| 60C3 <sub>h</sub> | ARRAY  | interpolation_sync_definition    | Unsigned8  | rw    | 0   |
| 60C4 <sub>h</sub> | RECORD | interpolation_data_configuration | Unsigned16 | rw    | 0   |

# 15.2.2 Objects defined in other Chapters

| Index             | Object | Name                          | Туре       | Chapter |
|-------------------|--------|-------------------------------|------------|---------|
| 6040 <sub>h</sub> | VAR    | controlword                   | Integer16  | dc      |
| 6041 <sub>h</sub> | VAR    | statusword                    | Unsigned16 | dc      |
| 605A <sub>h</sub> | VAR    | quick_stop_mode               | Integer16  | tg      |
| 6060 <sub>h</sub> | VAR    | modes_of_operation            | Unsigned8  | dc      |
| 6061 <sub>h</sub> | VAR    | modes_of_operation_display    | Unsigned8  | dc      |
| 6062 <sub>h</sub> | VAR    | position_reference_variable   | Integer32  | рр      |
| 6063 <sub>h</sub> | VAR    | position_encoder_actual_value | Integer32  | рр      |
| 606A <sub>h</sub> | VAR    | sensor_selection_code         | Unsigned8  | pv      |
| 607F <sub>h</sub> | VAR    | max_profile_speed             | Unsigned32 | рр      |
| 6089 <sub>h</sub> | VAR    | position_notation_index       | Integer8   | fg      |
| 608A <sub>h</sub> | VAR    | position_dimension_index      | Unsigned8  | fg      |
| 608B <sub>h</sub> | VAR    | velocity_notation_index       | Integer8   | fg      |
| 608C <sub>h</sub> | VAR    | velocity_dimension_index      | Unsigned8  | fg      |
| 608D <sub>h</sub> | VAR    | acceleration_notation_index   | Integer8   | fg      |
| 608E <sub>h</sub> | VAR    | acceleration_dimension_index  | Unsigned8  | fg      |
| 608F <sub>h</sub> | ARRAY  | position_encoder_solution     | Unsigned32 | fg      |
| 6090 <sub>h</sub> | ARRAY  | velocity_encoder_solution     | Unsigned32 | fg      |
| 6091 <sub>h</sub> | ARRAY  | gear_ratio                    | Unsigned32 | fg      |
| 6092 <sub>h</sub> | ARRAY  | feed_constant                 | Unsigned32 | fg      |
| 6093 <sub>h</sub> | ARRAY  | position_factor               | Unsigned32 | fg      |
| 6094 <sub>h</sub> | ARRAY  | velocity_encoder_factor       | Unsigned32 | fg      |
| 6095 <sub>h</sub> | ARRAY  | velocity_factor_1             | Unsigned32 | fg      |
| 6098 <sub>h</sub> | ARRAY  | velocity_factor_2             | Unsigned32 | fg      |
| 6097 <sub>h</sub> | ARRAY  | acceleration_factor           | Unsigned32 | fg      |
| 60C5 <sub>h</sub> | VAR    | max_acceleration              | Integer32  | рр      |
| 60C6 <sub>h</sub> | VAR    | max_deceleration              | Integer32  | рр      |

### 15.3 Object Descriptions

### 15.3.1 Object 60C0<sub>h</sub>: interpolation\_submode\_select

For the Interpolated Position Mode a manufacturer may offer different interpolation algorithms. This object reflects or changes the actually choosen interpolation mode.

| Index       | 60C0 <sub>h</sub>            |
|-------------|------------------------------|
| Name        | interpolation_submode_select |
| Object Code | VAR                          |
| Data type   | Integer16                    |

### Value description

| Object Class     | M: -        | O: ip |
|------------------|-------------|-------|
| Access           | rw          |       |
| PDO Mapping      | Possible    |       |
| Units            | -           |       |
| Value Range      | -3276832767 |       |
| Mandatory Range  | 0           |       |
| Default Value    | 0           |       |
| Substitute Value | -           |       |

#### **Data Description**

| Interpolation Submode | Description           |
|-----------------------|-----------------------|
| -327681               | manufacturer specific |
| 0                     | linear interpolation  |
| +1+32767              | reserved              |

## 15.3.2 Object 60C1<sub>h</sub>: interpolation\_data\_record

The *interpolation\_data\_record* are the data words which are necessary to perform the interpolation algorithm. The number of data words in the record is defined by *interpolation\_data\_configuration*. The interpretation of the data words in *interpolation\_data\_record* may vary with the different possible interpolation modes as set by the *interpolation\_submode\_select*.

For the linear interpolation mode each interpolation data record simply can be regarded as a new position setpoint. To describe a cubic spline interpolation e.g., four or more data words are needed for the spline coefficients, and further interpolation parameters.

After the last item of an *interpolation\_data\_record* is written to the device`s input buffer, the pointer of the buffer is automatically incremented to the next buffer position.

| Index              | 60C1 <sub>h</sub>                                                |
|--------------------|------------------------------------------------------------------|
| Name               | interpolation_data_record                                        |
| Object Code        | RECORD                                                           |
| Number of Elements | defined by interpolation_data_configuration (60C4 <sub>h</sub> ) |

| Sub-Index        | 01 <sub>h</sub>               | 01 <sub>h</sub>                                               |  |
|------------------|-------------------------------|---------------------------------------------------------------|--|
| Description      | x <sub>1</sub> : the first pa | $x_1$ : the first parameter of ip function $f_{ip}(x_1, x_N)$ |  |
| Object Class     | M: -                          | O: ip                                                         |  |
| Access           | rw                            |                                                               |  |
| PDO Mapping      | Possible                      | Possible                                                      |  |
| Units            | -                             | -                                                             |  |
| Value Range      | -                             |                                                               |  |
| Mandatory Range  | -                             |                                                               |  |
| Default Value    | -                             | -                                                             |  |
| Substitute Value | -                             | -                                                             |  |
| Data Type        | Interpolated Posit            | ion Mode dependent                                            |  |

| Sub-Index (N > 1) | 02 <sub>h</sub> N                                            |          |  |
|-------------------|--------------------------------------------------------------|----------|--|
| Description       | $x_i$ : the i-th parameter of ip function $f_{ip}(x_1, x_N)$ |          |  |
| Object Class      | M: - O: ip                                                   |          |  |
| Access            | rw                                                           |          |  |
| PDO Mapping       | Possible                                                     | Possible |  |
| Units             | -                                                            |          |  |
| Value Range       | -                                                            |          |  |
| Mandatory Range   | -                                                            |          |  |
| Default Value     | -                                                            |          |  |
| Substitute Value  | -                                                            |          |  |
| Data Type         | Interpolated Position Mode dependent                         |          |  |

# 15.3.3 Object 60C2<sub>h</sub>: interpolation\_time\_period

The *interpolation\_time\_period* is used for time synchronized Interpolated Position Modes.

| Index              | 60C2 <sub>h</sub>         |
|--------------------|---------------------------|
| Name               | interpolation_time_period |
| Object Code        | RECORD                    |
| Number of Elements | 2                         |

| Sub-Index        | 01 <sub>h</sub>                      | 01 <sub>h</sub>                       |  |
|------------------|--------------------------------------|---------------------------------------|--|
| Description      | ip_time_units                        | ip_time_units                         |  |
| Object Class     | M: -                                 | O: ip                                 |  |
| Access           | rw                                   |                                       |  |
| PDO Mapping      | Possible                             | Possible                              |  |
| Units            | 10 <sup>ip_time_index</sup> • second | 10 <sup>ip_time_index</sup> • seconds |  |
| Value Range      | 1255                                 |                                       |  |
| Mandatory Range  | 1                                    |                                       |  |
| Default Value    | 1                                    | 1                                     |  |
| Substitute Value | -                                    | -                                     |  |
| Data Type        | Unsigned8                            |                                       |  |

| Sub-Index        | 02 <sub>h</sub>      |       |
|------------------|----------------------|-------|
| Description      | ip_time_index        |       |
| Object Class     | M: -                 | O: ip |
| Access           | rw                   |       |
| PDO Mapping      | Possible             |       |
| Units            | -                    |       |
| Value Range      | 63128                |       |
| Mandatory Range  | -3 ( = milli second) |       |
| Default Value    | -3                   |       |
| Substitute Value | -                    |       |
| Data Type        | Integer8             |       |

### 15.3.4 Object 60C3<sub>h</sub>: interpolation\_sync\_definition

Devices in the Interpolated Position Mode often interact with other devices. Therefore it is necessary to define a communcation object which is used to synchronize these interactions.

This can be done by the general sync-signal as described in /16/, or a specific group-sync-signal. Each reception of this trigger-signal or a specified number of occurences of the trigger-signal can synchronize the devices; a second opportunity is to use fixed time slices for synchronisation.

| Index              | 60C3 <sub>h</sub>             |
|--------------------|-------------------------------|
| Name               | interpolation_sync_definition |
| Object Code        | ARRAY                         |
| Number of Elements | 2                             |
| Data Type          | Unsigned8                     |

| Sub-Index        | 01 <sub>h</sub>      | 01 <sub>h</sub>         |  |
|------------------|----------------------|-------------------------|--|
| Description      | syncronize on grou   | syncronize on group     |  |
| Object Class     | M: -                 | M: - O: ip              |  |
| Access           | rw                   | rw                      |  |
| PDO Mapping      | Possible             | Possible                |  |
| Units            | number               | number                  |  |
| Value Range      | 0255                 | 0255                    |  |
| Mandatory Range  | -                    | -                       |  |
| Default Value    | 0: general sync is ι | 0: general sync is used |  |
| Substitute Value | -                    | -                       |  |

| Sub-Index        | 02 <sub>h</sub>      | 02 <sub>h</sub>       |  |
|------------------|----------------------|-----------------------|--|
| Description      | ip_sync every n even | ip_sync every n event |  |
| Object Class     | M: -                 | M: - O: ip            |  |
| Access           | rw                   | ·                     |  |
| PDO Mapping      | Possible             | Possible              |  |
| Units            | counts               | counts                |  |
| Value Range      | 0255                 | 0255                  |  |
| Mandatory Range  | -                    |                       |  |
| Default Value    | 1 ( = each)          | 1 ( = each)           |  |
| Substitute Value | -                    |                       |  |

# 15.3.5 Object 60C4<sub>h</sub>: interpolation\_data\_configuration

It is possible to offer different algorithms of interpolation. Most of them need a larger number of position to calculate the actual postion the axles should reach. To enable the device to recieve the needed data in advance a data space is used to store the positions and further data sended by the host.

| Index              | 60C4 <sub>h</sub>                |
|--------------------|----------------------------------|
| Name               | interpolation_data_configuration |
| Object Code        | RECORD                           |
| Number of Elements | 6                                |

| Sub-Index        | 01 <sub>h</sub>       |       |
|------------------|-----------------------|-------|
| Description      | max_buffer_size       |       |
| Object Class     | M: -                  | O: ip |
| Access           | ro                    |       |
| PDO Mapping      | Possible              |       |
| Units            | number                |       |
| Value Range      | 0(2 <sup>32</sup> -1) |       |
| Mandatory Range  | 1                     |       |
| Default Value    | 1                     |       |
| Substitute Value | -                     |       |
| Data Type        | Unsigned32            |       |

| Sub-Index        | 02 <sub>h</sub>       | 02 <sub>h</sub> |  |
|------------------|-----------------------|-----------------|--|
| Description      | actual_size           | actual_size     |  |
| Object Class     | M: -                  | O: ip           |  |
| Access           | rw                    |                 |  |
| PDO Mapping      | Possible              | Possible        |  |
| Units            | number                | number          |  |
| Value Range      | 0(2 <sup>32</sup> -1) |                 |  |
| Mandatory Range  | -                     |                 |  |
| Default Value    | 0                     | 0               |  |
| Substitute Value | -                     |                 |  |
| Data Type        | Unsigned32            |                 |  |

| Sub-Index        | 03 <sub>h</sub>     | 03 <sub>h</sub>     |  |
|------------------|---------------------|---------------------|--|
| Description      | buffer_organisation | buffer_organisation |  |
| Object Class     | M: -                | O: ip               |  |
| Access           | rw                  |                     |  |
| PDO Mapping      | Possible            |                     |  |
| Units            | number              | number              |  |
| Value Range      | 0255                | 0255                |  |
| Mandatory Range  | -                   |                     |  |
| Default Value    | 0                   |                     |  |
| Substitute Value | -                   | -                   |  |
| Data Type        | Unsigned8           |                     |  |

# **Data Description**

| buffer_organisation | description |
|---------------------|-------------|
| 0                   | FIFO-buffer |
| 1                   | ring-buffer |
| all others          | reserved    |

| Sub-Index        | 04 <sub>h</sub> |       |  |
|------------------|-----------------|-------|--|
| Description      | buffer_position |       |  |
| Object Class     | M: -            | O: ip |  |
| Access           | rw              |       |  |
| PDO Mapping      | Possible        |       |  |
| Units            | number          |       |  |
| Value Range      | 065535          |       |  |
| Mandatory Range  | -               |       |  |
| Default Value    | 0               |       |  |
| Substitute Value | -               |       |  |
| Data Type        | Unsigned16      |       |  |

| Sub-Index        | 05 <sub>h</sub>     |                     |  |
|------------------|---------------------|---------------------|--|
| Description      | size_of_data_record | size_of_data_record |  |
| Object Class     | M: -                | O: ip               |  |
| Access           | wo                  |                     |  |
| PDO Mapping      | Possible            |                     |  |
| Units            | number              |                     |  |
| Value Range      | 1255                | 1255                |  |
| Mandatory Range  | -                   |                     |  |
| Default Value    | 1                   |                     |  |
| Substitute Value | -                   |                     |  |
| Data Type        | Unsigned8           |                     |  |

| Sub-Index        | 06 <sub>h</sub> |       |  |
|------------------|-----------------|-------|--|
| Description      | buffer_clear    |       |  |
| Object Class     | M: -            | O: ip |  |
| Access           | wo              | ·     |  |
| PDO Mapping      | Possible        |       |  |
| Units            | -               |       |  |
| Value Range      | 0, 1            |       |  |
| Mandatory Range  | -               |       |  |
| Default Value    | 0               |       |  |
| Substitute Value | -               |       |  |
| Data Type        | Unsigned8       |       |  |

# **Data Description**

| buffer_clear | description                                                  |
|--------------|--------------------------------------------------------------|
| 0            | clear input buffer/access disabled clear all ip_data_records |
| 1            | enable access to the input buffer for the drive functions    |
| all others   | reserved                                                     |

### 15.4 Functional Description

#### 15.4.1 Interpolated Position Mode

A drive can be controlled and supervised by the *controlword* and the *statusword* respectively. To choose the operation mode, the *modes\_of\_operation* is used. The activated operation mode is monitored by *modes\_of\_operation\_display*.

A drive manufacturer has to specify the way the device handles a just received interpolation data record. This can be in a way corresponding to the standard position mode, or might be a more complex algorithm. The standard method is to apply new data immediatly, respectively after the next sync-signal.

An input buffer for interpolation data records is not mandatory, although it eases the data exchange between a host and a drive unit. The real-time requirements to the CAN-bus as well as to the drive unit decrease in this case, because an input buffer decouples the data processing in the drive from the data transmission via the bus line.

#### 15.4.2 Linear Interpolated Position Mode with several Axles

In order to follow a two- or more-dimensional curve through the space with a defined speed, a host (an interpolation controller or a PLC) calculates the different positions  $P_i$  for each set of coordinates which have to be reached at specified times  $t_i$ .

To use the interpolation mode with several axles the host calculates the next or more positions and timestamps, and transmits them to the different axles. For each setpoint  $P_i$  the interpolation controller has to calculate  $x_i$ ,  $y_i$ ... and  $t_i$ . Each axle gets a set of interpolation\_data\_records which each axle has to process internally independent from the other axles according to the choosen interpolation mode.



Figure 37: Interpolation for two Axles

In a centralized drive system with a remote motion device doing the interpolation calculation, a central clocking scheme for synchronization of the different axles based on any kind of sync-signal is used. This results in a movement depending on the calculation cycle time of the interpolation controller. The velocity becomes more or less a fixed value for each axle.

| calculated       | ip_data_records for   |                         |                                                         |
|------------------|-----------------------|-------------------------|---------------------------------------------------------|
| positions        | x-axle                | y-axle                  | z-axle                                                  |
| Pi               | $x_i$ , $t_i$         | $y_i$ , $t_i$           | $z_i$ , $t_i$                                           |
| P <sub>i+1</sub> | $x_{i+1}$ , $t_{i+1}$ | $y_{i+1} \ , \ t_{i+1}$ | $z_{\scriptscriptstyle i+1},t_{\scriptscriptstyle i+1}$ |
| $P_{i+2}$        | $x_{i+2}$ , $t_{i+2}$ | $y_{i+2}$ , $t_{i+2}$   | $z_{i+2} \;, t_{i+2}$                                   |
| $P_{i+3}$        | $x_{i+3}$ , $t_{i+3}$ | $y_{i+3} \;,\; t_{i+3}$ | $z_{i+3} \;, t_{i+3}$                                   |
| •                | •                     | •                       | •                                                       |
| •                | •                     | •                       | •                                                       |
| •                | •                     | •                       | •                                                       |
| $P_{i+n}$        | $x_{i+n}$ , $t_{i+n}$ | $y_{i+n}$ , $t_{i+n}$   | $z_{i+n}$ , $t_{i+n}$                                   |

 Table 13:
 Position Calculation in Interpolated Position Mode for several Axles

In decentralized motion systems a host starts all relevant axles by changing the mode-internal state to Interpolation active after preparing and sending one or more interpolation\_data\_records to all axles and synchonizes them by a (group) sync-signal. Each axle calculates internally and inDependently the necessary speed and acceleration needed to move from one position to the next. This can be done done by calculating a linear or any other move between two given position setpoints. Along this track every axle controls the movement between the setpoints indepently from the other axles. The axles may

continue their move, as long as there is enough data to continue the calculations. Therefore it is easy to use the input buffer to give data records ahead.

With this information each axle can act like it is shown in Figure 37.



Figure 38: Linear Interpolation for one Axle

### 15.4.3 Buffer Strategies for the Interpolated Position Mode

If a device provides an input buffer for <code>interpolation\_data\_records</code> its size can be organized by a host using the <code>interpolation\_data\_configuration</code>. The host splits the available buffer capacity into pages which have the size of one <code>interpolation\_data\_record</code> each. This is done by <code>size\_of\_data\_record</code>. If one page remains, which can not keep one complete data record, it can not be used. After the reorganisation of the input buffer all previous stored data will be lost. All devices supporting the Interpolated Position Mode need to implement an input buffer, which at least can keep one <code>interpolation\_data\_record</code>.

The contens of the buffer items can only be accessed via the <code>interpolation\_data\_record</code>.

Commonly first-in-first-out (FIFO) structures or ring buffers are used as input buffers.

#### O FIFO:

If the buffer is organizied as FIFO, every new received *interpolation\_data\_record* is placed at the end of the queue, and the device takes the next data record from the top of the queue. When the last item of a data record is stored, the buffer pointer is incremented in order to point to the next buffer position. For this buffer principle the object *buffer position* does not have any influence.

#### O Ring Buffer:

If the buffer is structured as a ring, the host can place an interpolation\_data\_record into

any valid position in the ring by changing the pointer defined in *buffer\_position*. Without changing the *buffer\_position* all data records will be written at the same location. The drive reads the next entry out of the buffer by an internal ring pointer. It is set to the first data record with *buffer\_clear*, and after the reorganisation of the input buffer.

| $\uparrow$   | parameter 1 | ip_data_record 1  |
|--------------|-------------|-------------------|
| data_        | parameter 2 |                   |
| record_      | •           |                   |
| size         | •           |                   |
| $\downarrow$ | parameter n |                   |
| $\uparrow$   | parameter 1 | ip_data_record 2  |
| data_        | parameter 2 |                   |
| record_      | •           |                   |
| size         | •           |                   |
| $\downarrow$ | parameter n |                   |
|              |             | more data records |
|              |             | •                 |
|              |             | •                 |
|              |             | •                 |
|              |             | •                 |
| $\uparrow$   | parameter 1 | ip_data_record i  |
| data_        | parameter 2 |                   |
| record_      | •           |                   |
| size         | •           |                   |
| <b>\</b>     | parameter n |                   |
|              |             | not accessable    |
|              |             |                   |

Figure 39: Input Buffer Organisation

# **16 Profile Velocity Mode**

#### 16.1 General Information

The Profile Velocity Mode includes the following subfunctions:

- demand value input via Trajectory Generator
- velocity capture using position sensor or velocity sensor
- velocity control function with appropriate input and output signals
- limitation of torque\_demand\_value
- monitoring of the *profile\_velocity* using a window-function
- monitoring of velocity\_actual\_value using a threshold

The operation of the reference value generator and its input parameters:

- profile\_velocity;
- profile\_acceleration ;
- profile deceleration;
- emergency\_stop and
- motion\_profile\_type

are described in the Profile Position Mode.

Various sensors can be used for velocity capture. In particular the aim is that costs should be reduced and the system should be simplified by evaluating position and velocity using a common sensor, such as is possible using a resolver or an encoder.

The velocity control function is not specified more precisely at this point as it is highly manufacturer specific, but the format and maximum number of control coefficients are established.

The velocity controller calculates a torque variable. This is added to a torque pre control calculated by the Trajectory Generator and limited to a *torque\_max\_value*. The limited total is used as input to the torque controller as a *torque\_demand\_value*.

Monitoring functions for the *velocity\_actual\_value* provide status information for super-ordinated systems.





Figure 40: Structure of the Profile Velocity Mode

# 16.1.1 Input Data Description

| Operating Mode        | Input Parameters Used                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profile Velocity Mode | target_velocity, velocity_factor_1, velocity_factor_2, velocity_window, velocity_window_time, velocity_threshold, velocity_threshold_time, max_slippage, profile_acceleration, profile_deceleration, quick_stop_deceleration, max_acceleration, max_deceleration, polarity, quick_stop_option_code, motion_profile_type, max_profile_velocity, max_motor_speed |

# 16.1.2 Output Data Description

| Operation Mode        | Output Parameter used                                    |
|-----------------------|----------------------------------------------------------|
| Profile Velocity Mode | velocity_actual_value, velocity_demand_value, statusword |

# 16.2 Object Dictionary Entries

# 16.2.1 Objects defined in this Chapter

| Index             | Object | Name                           | Туре       | Attr. | M/O |
|-------------------|--------|--------------------------------|------------|-------|-----|
| 6069 <sub>h</sub> | VAR    | velocity_sensor_actual_value   | Integer32  | ro    | М   |
| 606A <sub>h</sub> | VAR    | sensor_selection_code          | Integer16  | rw    | М   |
| 606B <sub>h</sub> | VAR    | velocity_demand_value          | Integer32  | ro    | М   |
| 606C <sub>h</sub> | VAR    | velocity_actual_value          | Integer32  | ro    | М   |
| 606D <sub>h</sub> | VAR    | velocity_window                | Unsigned16 | rw    | 0   |
| 606E <sub>h</sub> | VAR    | velocity_window_time           | Unsigned16 | rw    | 0   |
| 606F <sub>h</sub> | VAR    | velocity_threshold             | Unsigned16 | rw    | 0   |
| 6070 <sub>h</sub> | VAR    | velocity_threshold_time        | Unsigned16 | rw    | 0   |
| 60FF <sub>h</sub> | VAR    | target_velocity                | Integer32  | rw    | М   |
| 60F8 <sub>h</sub> | VAR    | max_slippage                   | Integer32  | rw    | 0   |
| 60F9 <sub>h</sub> | RECORD | velocity_control_parameter_set |            | rw    | 0   |

### 16.2.2 Objects defined in other Chapters

| Index             | Object | Name                         | Туре       | Chapter |
|-------------------|--------|------------------------------|------------|---------|
| 6040 <sub>h</sub> | VAR    | controlword                  | Integer16  | dc      |
| 6041 <sub>h</sub> | VAR    | statusword                   | Unsigned16 | dc      |
| 6063 <sub>h</sub> | VAR    | position_actual_value*       | Integer32  | рс      |
| 6069 <sub>h</sub> | VAR    | velocity_sensor_actual_value | Integer32  | рс      |
| 6071 <sub>h</sub> | VAR    | torque_demand_extern         | Integer16  | tq      |
| 6072 <sub>h</sub> | VAR    | max_torque_value             | Unsigned16 | tq      |
| 607E <sub>h</sub> | VAR    | polarity                     | Unsigned8  | fg      |
| 607F <sub>h</sub> | VAR    | max_profile_velocity         | Unsigned32 | рр      |
| 6080 <sub>h</sub> | VAR    | max_motor_speed              | Unsigned32 | рр      |
| 6083 <sub>h</sub> | VAR    | profile_acceleration         | Unsigned32 | рр      |
| 6084 <sub>h</sub> | VAR    | profile_deceleration         | Unsigned32 | рр      |
| 6085 <sub>h</sub> | VAR    | quick_stop_deceleration      | Unsigned32 | рр      |
| 6086 <sub>h</sub> | VAR    | motion_profile_type          | Integer16  | рр      |
| 6094 <sub>h</sub> | ARRAY  | velocity_encoder_factor      | Unsigned32 | fg      |
| 6095 <sub>h</sub> | ARRAY  | velocity_factor_1            | Unsigned32 | fg      |
| 6096 <sub>h</sub> | ARRAY  | velocity_factor_2            | Unsigned32 | fg      |

# 16.3 Object Description

The factors necessary for scaling

velocity\_reference\_factor
velocity\_factor\_1
velocity\_factor\_2

all have a linear relationship and are therefore described in the Factor Group.

The *polarity* is described in the Factor Group as well.

### 16.3.1 position\_encoder

The actual velocity can be obtained through differentiation from the position encoder and is represented in position encoder increments.

It is described in greater detail in the position function.

#### 16.3.2 Object 6069<sub>h</sub>: velocity\_sensor\_actual\_value

The *velocity\_sensor\_actual\_value* describes the value read from a velocity encoder (if present) in increments (in the case of encoders) and in increments per second (in the case of tachometers and AD converters. This value is scaled to the format of the position encoder using the scaling factor *velocity\_factor\_2*.

| Index       | 6069 <sub>h</sub>            |  |
|-------------|------------------------------|--|
| Name        | velocity_sensor_actual_value |  |
| Object Code | VAR                          |  |
| Data Type   | Integer32                    |  |

#### **Value Description**

| Object Class     | M: pv                                   | O: - |
|------------------|-----------------------------------------|------|
| Access           | ro                                      |      |
| PDO Mapping      | Possible                                |      |
| Units            | increments/sec                          |      |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |      |
| Mandatory Range  | -                                       |      |
| Default Value    | -                                       |      |
| Substitute Value | -                                       |      |

#### 16.3.3 Object 606A<sub>h</sub>: sensor\_selection\_code

The source of the *velocity\_sensor\_actual\_value* can be determined using the *sensor\_selection\_code*. This determines whether a differentiated position signal or the signal from a separate velocity sensor is to be evaluated.

| Index       | 606A <sub>h</sub>     |  |
|-------------|-----------------------|--|
| Name        | sensor_selection_code |  |
| Object Code | VAR                   |  |
| Data Type   | Integer16             |  |

| Object Class     | M: pv       | O: - |
|------------------|-------------|------|
| Access           | rw          |      |
| PDO Mapping      | Possible    |      |
| Units            | -           |      |
| Value Range      | -3276832767 |      |
| Mandatory Range  | -           |      |
| Default Value    | -           |      |
| Substitute Value | -           |      |

# **Data Description**

| Selection Code | Meaning of the Selection Function           |  |
|----------------|---------------------------------------------|--|
| -327681        | manufacturer specific                       |  |
| 0              | velocity actual value from position encoder |  |
| 1              | velocity actual value from velocity encoder |  |
| 232767         | reserved for other profiles                 |  |

# 16.3.4 Object 606B<sub>h</sub>: velocity\_demand\_value

The output value of the Trajectory Generator may be corrected by the output value of the Position Control Function. It is then provided as a demand value for the velocity controller.

| Index       | 606B <sub>h</sub>     |
|-------------|-----------------------|
| Name        | velocity_demand_value |
| Object Code | VAR                   |
| Data Type   | Integer32             |

| Object Class     | M: pv                                   | O: |
|------------------|-----------------------------------------|----|
| Access           | ro                                      |    |
| PDO Mapping      | Possible                                |    |
| Units            | velocity units G2                       |    |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |    |
| Mandatory Range  | -                                       |    |
| Default Value    | -                                       |    |
| Substitute Value | -                                       |    |

# 16.3.5 Object 606C<sub>h</sub>: velocity\_actual\_value

The *velocity\_actual\_value* is also represented in velocity units and is coupled to the velocity used as input to the velocity controller.

| Index       | 606C <sub>h</sub>     |
|-------------|-----------------------|
| Name        | velocity_actual_value |
| Object Code | VAR                   |
| Data Type   | Integer32             |

### **Value Description**

| Object Class     | M: pv                                   | O: - |
|------------------|-----------------------------------------|------|
| Access           | ro                                      |      |
| PDO Mapping      | Possible                                |      |
| Units            | velocity units G2                       |      |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |      |
| Mandatory Range  | -                                       |      |
| Default Value    | -                                       |      |
| Substitute Value | -                                       |      |

# 16.3.6 Object 606D<sub>h</sub>: velocity\_window

The *velocity\_window* monitors whether the required process velocity has been achieved after an eventual acceleration or braking phase.

| Index       | 606D <sub>h</sub> |
|-------------|-------------------|
| Name        | velocity_window   |
| Object Code | VAR               |
| Data Type   | Unsigned16        |

| Object Class     | M: -              | O: pv |
|------------------|-------------------|-------|
| Access           | rw                |       |
| PDO Mapping      | Possible          |       |
| Units            | velocity units G2 |       |
| Value Range      | 065535            |       |
| Mandatory Range  | -                 |       |
| Default Value    | -                 |       |
| Substitute Value | -                 |       |

### 16.3.7 Object 606E<sub>h</sub>: velocity\_window\_time

The corresponding bit 10 <code>target\_reached</code> is set in the <code>statusword</code> when the difference between the <code>target\_velocity</code> and the <code>velocity\_actual</code> is within the <code>velocity\_window</code> longer than the <code>velocity\_window\_time</code>.

| Index       | 606E <sub>h</sub>    |
|-------------|----------------------|
| Name        | velocity_window_time |
| Object Code | VAR                  |
| Data Type   | Unsigned16           |

#### **Value Description**

| Object Class     | M: -        | O: pv |
|------------------|-------------|-------|
| Access           | rw          |       |
| PDO Mapping      | Possible    |       |
| Units            | millisecond |       |
| Value Range      | 065535      |       |
| Mandatory Range  | -           |       |
| Default Value    | 0           |       |
| Substitute Value | -           |       |

### 16.3.8 Object 606F<sub>h</sub>: velocity\_threshold

As soon as the *velocity\_actual\_value* exceeds the *velocity\_threshold* longer than the *velocity\_threshold\_time* bit 12 velocity = 0 is reset in the status word. Below this threshold the bit is set and indicates that the axle is stationary.

| Index       | 606F <sub>h</sub>  |
|-------------|--------------------|
| Name        | velocity_threshold |
| Object Code | VAR                |
| Data Type   | Unsigned16         |

| Object Class     | M: -              | O: pv |
|------------------|-------------------|-------|
| Access           | rw                |       |
| PDO Mapping      | Possible          |       |
| Units            | velocity units G2 |       |
| Value Range      | 065535            |       |
| Mandatory Range  | -                 |       |
| Default Value    | -                 |       |
| Substitute Value | -                 |       |

# 16.3.9 Object 6070<sub>h</sub>: velocity\_threshold\_time

| Index       | 6070 <sub>h</sub>       |
|-------------|-------------------------|
| Name        | velocity_threshold_time |
| Object Code | VAR                     |
| Data Type   | Unsigned16              |

# **Value Description**

| Object Class     | M: -        | O: pv |
|------------------|-------------|-------|
| Access           | r/w         |       |
| PDO Mapping      | Possible    |       |
| Units            | millisecond |       |
| Value Range      | 065535      |       |
| Mandatory Range  | -           |       |
| Default Value    | -           |       |
| Substitute Value | -           |       |

# 16.3.10 Object 60FF<sub>h</sub>: target\_velocity

The *target\_velocity* is the input for the Trajectory Generator.

| Index       | 60FF <sub>h</sub> |
|-------------|-------------------|
| Name        | target_velocity   |
| Object Code | VAR               |
| Data Type   | Integer32         |

| Object Class     | M: pv                                   | O: |
|------------------|-----------------------------------------|----|
| Access           | rw                                      |    |
| PDO Mapping      | Possible                                |    |
| Units            | velocity units G2                       |    |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |    |
| Mandatory Range  | -                                       |    |
| Default Value    | -                                       |    |
| Substitute Value | -                                       |    |

# 16.3.11 Object 60F8<sub>h</sub>: max\_slippage

The *max\_slippage* monitors whether the maximal slippage has actually been reached.

This value is scaled to the format of the position encoder using the scaling factor *velocity\_factor\_2*.

When the max\_slippage has been reached, the corresponding bit 13 *max\_slippage\_error* in the status message will be set to one. The reaction of the drive when the max\_slippage error occurs, is manufacturer specific.

| Index       | 60F8 <sub>h</sub> |
|-------------|-------------------|
| Name        | max_slippage      |
| Object Code | VAR               |
| Data Type   | Integer32         |

| Object Class     | M: pv                                   | O: - |
|------------------|-----------------------------------------|------|
| Access           | ro                                      |      |
| PDO Mapping      | Possible                                |      |
| Units            | velocity units G2                       |      |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |      |
| Mandatory Range  | -                                       |      |
| Default Value    | -                                       |      |
| Substitute Value | -                                       |      |

# 16.3.12 Object 60F9<sub>h</sub>: velocity\_control\_parameter\_set

In order to control the behaviour of the velocity control loop, one or more parameters are necessary. This object defines a rudimentary set of three parameters for a PID-control which may be enlarged by the manufacturer up to 255 parameters.

| Index              | 60F9 <sub>h</sub>              |
|--------------------|--------------------------------|
| Name               | velocity_control_parameter_set |
| Object Code        | RECORD                         |
| Number of Elements | 3255                           |

| Sub-Index        | 01 <sub>h</sub> |       |  |
|------------------|-----------------|-------|--|
| Description      | V: gain         |       |  |
| Object Class     | M: -            | O: pv |  |
| Access           | rw              |       |  |
| PDO Mapping      | Possible        |       |  |
| Units            | -               | -     |  |
| Value Range      | 065535          |       |  |
| Mandatory Range  | -               |       |  |
| Default Value    | -               |       |  |
| Substitute Value | -               |       |  |
| Data Type        | unsigned16      |       |  |

| Sub-Index        | 02 <sub>h</sub>                           |          |  |
|------------------|-------------------------------------------|----------|--|
| Description      | T <sub>i:</sub> integration time constant |          |  |
| Object Class     | M: - O: pv                                |          |  |
| Access           | rw                                        |          |  |
| PDO Mapping      | Possible                                  | Possible |  |
| Units            | -                                         |          |  |
| Value Range      | 065535                                    |          |  |
| Mandatory Range  | -                                         |          |  |
| Default Value    | -                                         |          |  |
| Substitute Value | -                                         |          |  |
| Data Type        | unsigned16                                |          |  |

# 17 Profile Torque Mode

#### 17.1 General Information

This chapter describes the Profile Torque Mode. The Profile Torque Mode allows a host (external) control system (i.e. closed-loop speed controller, open-loop transmission force controller) to transmit the *target\_torque* value, which is processed via the Trajectory Generator. The *torque\_slope* and *torque\_profile\_type* parameters are required.

Should the host control system switch the *controlword* bit 8 (hold) from 0 to 1 or from 1 to 0, than the Trajectory Generator ramps its *control\_effort* output down to zero, respectively up to the *target\_torque*. In both cases the Trajectory Generator takes the *torque\_slope* and *torque\_profile type* into consideration.

All definitions within this document refer to rotating motors. Using linear motors instead requires that all "torque" objects refer to a "force" instead. For the sake of simplicity, the objects are not duplicated and their names should not be modified. As an example, the linear motor target force must be transmitted using the <code>target\_torque</code> object. Refer to the object descriptions for additional information.

The manufacturer-specific torque control and power-stage functions are not described as they fall beyond the scope of this standard. They are only mentioned for showing how some parameters affect them. As an example the closed-loop torque control coefficients (if any) are to be defined and described by the manufacturer.

The *torque\_control\_parameters*, *power\_stage\_parameters* and *motor\_parameters* are defined as objects in order that they can be handled (i.e. downloaded) in a standard way. Their detailed data content is manufacturer-specific.

The torque\_demand, torque\_actual\_value, current\_actual\_value and DC\_link\_voltage may be available to the user as parameters, if they are monitored.

Depending on the drive and motor technologies the manufacturer-specific torque control function has to be active when another mode is selected (hc, pv, pc, ip). In such a case, selecting one of these modes implicitly activates the torque control and power-stage function, using the *control\_effort* as input.

# 17.1.1 Structure of the Profile Torque Mode



Figure 41: Structure of the Profile Torque Mode

# 17.2 Object Dictionary Entries

# 17.2.1 Objects defined in this Chapter

| Index             | Object | Name                      | Туре       | Attr. | M/O |
|-------------------|--------|---------------------------|------------|-------|-----|
| 6071 <sub>h</sub> | VAR    | target_torque             | Integer16  | rw    | М   |
| 6072 <sub>h</sub> | VAR    | max_torque                | Unsigned16 | rw    | 0   |
| 6073 <sub>h</sub> | VAR    | max_current               | Unsigned16 | rw    | 0   |
| 6074 <sub>h</sub> | VAR    | torque_demand_value       | Integer16  | ro    | 0   |
| 6075 <sub>h</sub> | VAR    | motor_rated_current       | Unsigned32 | rw    | 0   |
| 6076 <sub>h</sub> | VAR    | motor_rated_torque        | Unsigned32 | rw    | 0   |
| 6077 <sub>h</sub> | VAR    | torque_actual_value       | Integer16  | ro    | 0   |
| 6078 <sub>h</sub> | VAR    | current_actual_value      | Integer16  | ro    | 0   |
| 6079 <sub>h</sub> | VAR    | DC_link_circuit_voltage   | Unsigned32 | ro    | 0   |
| 6087 <sub>h</sub> | VAR    | torque_slope              | Unsigned32 | rw    | M   |
| 6088 <sub>h</sub> | VAR    | torque_profile_type       | Integer16  | rw    | М   |
| 60F7 <sub>h</sub> | RECORD | power_stage_parameters    |            | rw    | 0   |
| 60F6 <sub>h</sub> | RECORD | torque_control_parameters |            | rw    | 0   |

# 17.2.2 Objects defined in other chapters

| Index             | Object | Name             | Туре      | Chapter |
|-------------------|--------|------------------|-----------|---------|
| 6040 <sub>h</sub> | VAR    | controlword      | Integer16 | dc      |
| 60F9 <sub>h</sub> | RECORD | motor_parameters |           | go      |

# 17.3 Object Description

# 17.3.1 Object 6071<sub>h</sub>: target\_torque

This parameter is the input value for the torque controller in Profile Torque Mode.

| Index       | 6071 <sub>h</sub> |
|-------------|-------------------|
| Name        | target_torque     |
| Object Code | VAR               |
| Data type   | Integer16         |

### Value description

| Object Class     | M: tq                        | O: - |
|------------------|------------------------------|------|
| Access           | rw                           |      |
| PDO Mapping      | optional                     |      |
| Units            | per thousand of rated torque |      |
| Value Range      | -3276832767                  |      |
| Mandatory Range  | -                            |      |
| Default Value    | 0                            |      |
| Substitute Value | -                            |      |

### 17.3.2 Object 6072<sub>h</sub>: max\_torque

This value represents the maximum permissible torque in the motor.

| Index       | 6072 <sub>h</sub> |
|-------------|-------------------|
| Name        | max_torque        |
| Object Code | VAR               |
| Data Type   | Unsigned16        |

| Object Class     | M: -                         | O: tq, hc, pv, pp, ip |
|------------------|------------------------------|-----------------------|
| Access           | rw                           |                       |
| PDO Mapping      | optional                     |                       |
| Units            | per thousand of rated torque |                       |
| Value Range      | 065535                       |                       |
| Mandatory Range  | -                            |                       |
| Default Value    | 0                            |                       |
| Substitute Value | -                            |                       |

# 17.3.3 Object 6073<sub>h</sub>: max\_current

This value represents the maximum permissible torque creating current in the motor.

| Index       | 6073 <sub>h</sub> |
|-------------|-------------------|
| Name        | max_current       |
| Object Code | VAR               |
| Data Type   | Unsigned16        |

### Value description

| Object Class     | M: -                                | O: tq, hc, pv, pp, ip |
|------------------|-------------------------------------|-----------------------|
| Access           | rw                                  |                       |
| PDO Mapping      | optional                            |                       |
| Units            | Jnits per thousand of rated current |                       |
| Value Range      | 065535                              |                       |
| Mandatory Range  | -                                   |                       |
| Default Value    | 0                                   |                       |
| Substitute Value | -                                   |                       |

### 17.3.4 Object 6074<sub>h</sub>: torque\_demand\_value

This parameter is the output value of the torque limit function (if available wintin the torque control and power-stage function).

| Index       | 6074 <sub>h</sub>   |
|-------------|---------------------|
| Name        | torque_demand_value |
| Object Code | VAR                 |
| Data Type   | Integer16           |

| Object Class     | M: -                | O: tq, hc, pv, pp, ip        |  |
|------------------|---------------------|------------------------------|--|
| Access           | ro                  |                              |  |
| PDO Mapping      | optional            | optional                     |  |
| Units            | per thousand of rat | per thousand of rated torque |  |
| Value Range      | -3276832767         |                              |  |
| Mandatory Range  | -                   |                              |  |
| Default Value    | 0                   |                              |  |
| Substitute Value | -                   |                              |  |

### 17.3.5 Object 6075<sub>h</sub>: motor\_rated\_current

This value is taken from the motor name plate and is entered as units of 1 milliamp (or 0.001 amp). Depending on the motor and drive technology this current may be either DC, peak or rms (root-mean-square) current. All relative current data refers to this value.

| Index       | 6075 <sub>h</sub>   |
|-------------|---------------------|
| Name        | motor_rated_current |
| Object Code | VAR                 |
| Data Type   | Unsigned32          |

#### Value description

| Object Class     | M: -                  | O: tq, hc, pv, pp, ip |
|------------------|-----------------------|-----------------------|
| Access           | rw                    |                       |
| PDO Mapping      | optional              |                       |
| Units            | 1 mA                  |                       |
| Value Range      | 0(2 <sup>32</sup> -1) |                       |
| Mandatory Range  | -                     |                       |
| Default Value    | 0                     |                       |
| Substitute Value | -                     |                       |

#### 17.3.6 Object 6076<sub>h</sub>: motor\_rated\_torque

This value is taken from the motor name plate and is entered as units of 0.001 Nm. All relative torque data refer to this value.

For linear motors, the object name is not changed, but the motor rated force value must be entered as units of  $0.001\ N.$ 

| Index       | 6076 <sub>h</sub>  |
|-------------|--------------------|
| Name        | motor_rated_torque |
| Object Code | VAR                |
| Data Type   | Unsigned32         |

| Object Class     | M: -                  | O: tq, hc, pv, pp, ip |  |
|------------------|-----------------------|-----------------------|--|
| Access           | rw                    |                       |  |
| PDO Mapping      | optional              | optional              |  |
| Units            | 0.001 Nm              | 0.001 Nm              |  |
| Value Range      | 0(2 <sup>32</sup> -1) |                       |  |
| Mandatory Range  | -                     |                       |  |
| Default Value    | 0                     |                       |  |
| Substitute Value | -                     |                       |  |

# 17.3.7 Object 6077<sub>h</sub>: torque\_actual\_value

The torque actual value corresponds to the instantaneous torque in the drive motor.

| Index       | 6077 <sub>h</sub>   |
|-------------|---------------------|
| Name        | torque_actual_value |
| Object Code | VAR                 |
| Data Type   | Integer16           |

### Value description

| Object Class     | M: -                         | O: tq, hc, pv, pp, ip |
|------------------|------------------------------|-----------------------|
| Access           | ro                           |                       |
| PDO Mapping      | optional                     |                       |
| Units            | per thousand of rated torque |                       |
| Value Range      | -3276832767                  |                       |
| Mandatory Range  | -                            |                       |
| Default Value    | 0                            |                       |
| Substitute Value | -                            |                       |

### 17.3.8 Object 6078<sub>h</sub>: current\_actual\_value

The current actual value refers to the instantaneous current in the drive motor.

| Index       | 6078 <sub>h</sub>    |
|-------------|----------------------|
| Name        | current_actual_value |
| Object Code | VAR                  |
| Data Type   | Integer16            |

| Object Class     | M: -                  | O: tq, hc, pv, pp, ip         |  |
|------------------|-----------------------|-------------------------------|--|
| Access           | ro                    |                               |  |
| PDO Mapping      | optional              | optional                      |  |
| Units            | per thousand of rated | per thousand of rated current |  |
| Value Range      | -3276832767           | -3276832767                   |  |
| Mandatory Range  | -                     | -                             |  |
| Default Value    | 0                     | 0                             |  |
| Substitute Value | -                     | -                             |  |

# 17.3.9 Object 6079<sub>h</sub>: DC\_link\_circuit\_voltage

This parameter describes the instantaneous DC link current voltage at the drive controller.

| Index       | 6079 <sub>h</sub>       |  |
|-------------|-------------------------|--|
| Name        | DC_link_circuit_voltage |  |
| Object Code | VAR                     |  |
| Data Type   | Unsigned32              |  |

# Value description

| Object Class     | M: -                  | O: tq, hc, pv, pc, ip |
|------------------|-----------------------|-----------------------|
| Access           | ro                    |                       |
| PDO Mapping      | optional              |                       |
| Units            | milli volts           |                       |
| Value Range      | 0(2 <sup>32</sup> -1) |                       |
| Mandatory Range  | -                     |                       |
| Default Value    | 0                     |                       |
| Substitute Value | -                     |                       |

# 17.3.10 Object 6087<sub>h</sub>: torque\_slope

This parameter describes the rate of change of torque in units of per thousand of rated torque per second.

| Index       | 6087 <sub>h</sub> |
|-------------|-------------------|
| Name        | torque_slope      |
| Object Code | VAR               |
| Data Type   | Unsigned32        |

| Object Class     | M: tq                 | O:                                      |  |
|------------------|-----------------------|-----------------------------------------|--|
| Access           | rw                    |                                         |  |
| PDO Mapping      | optional              | optional                                |  |
| Units            | per thousand of rat   | per thousand of rated torque per second |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)                   |  |
| Mandatory Range  | -                     | -                                       |  |
| Default Value    | 0                     | 0                                       |  |
| Substitute Value | -                     | -                                       |  |

# 17.3.11 Object 6088<sub>h</sub>: torque\_profile\_type

The torque\_profile\_type is used to select the type of torque profile used to perform a torque change.

| Index       | 6088 <sub>n</sub>   |
|-------------|---------------------|
| Name        | torque_profile_type |
| Object Code | VAR                 |
| Data Type   | Integer16           |

### Value description

| Object Class     | M: tq       | O: |  |
|------------------|-------------|----|--|
| Access           | rw          | rw |  |
| PDO Mapping      | optional    |    |  |
| Units            | none        |    |  |
| Value Range      | -3276832767 |    |  |
| Mandatory Range  | -           |    |  |
| Default Value    | 0           |    |  |
| Substitute Value | -           |    |  |

# **Data Description**

| Profile Code | Profile Type                       |
|--------------|------------------------------------|
| -327681      | Vendor specific                    |
| 0            | Linear ramp (trapezoidal profile)  |
| 1            | Sin <sup>2</sup> ramp              |
| 2 32767      | Reserved for further profile types |

# 17.3.12 Object 60F7<sub>h</sub>: power\_stage\_parameters

The *power\_stage\_parameters* object is used to handle (i.e. download) all manufacturer-specific power-stage parameters as a whole, in a standard way.

| Index              | 60F7 <sub>h</sub>      |
|--------------------|------------------------|
| Name               | power_stage_parameters |
| Object Code        | RECORD                 |
| Number of Elements | 1255                   |

| Sub-Index        | 01 <sub>h</sub> |                       |
|------------------|-----------------|-----------------------|
| Description      |                 |                       |
| Object Class     | M: -            | O: tq, hc, pv, pp, ip |
| Access           | rw              |                       |
| PDO Mapping      | Possible        |                       |
| Units            | -               |                       |
| Value Range      |                 |                       |
| Mandatory Range  | -               |                       |
| Default Value    | -               |                       |
| Substitute Value | -               |                       |
| Data Type        |                 |                       |

# 17.3.13 Object 60F6<sub>h</sub>: torque\_control\_parameters

The *torque\_control\_parameters* object is used to handle (i.e. download) all manufacturer-specific torque control parameters as a whole, in a standard way.

| Index              | 60F6 <sub>h</sub>         |
|--------------------|---------------------------|
| Name               | torque_control_parameters |
| Object Code        | RECORD                    |
| Number of Elements | 1255                      |

| Sub-Index        | 01 <sub>h</sub> |                       |
|------------------|-----------------|-----------------------|
| Description      |                 |                       |
| Object Class     | M: -            | O: tq, hc, pv, pp, ip |
| Access           | rw              |                       |
| PDO Mapping      | Possible        |                       |
| Units            | -               |                       |
| Value Range      |                 |                       |
| Mandatory Range  | -               |                       |
| Default Value    | -               |                       |
| Substitute Value | -               |                       |
| Data Type        |                 |                       |

# 18 Velocity Mode

### **18.1 General Description**

The Velocity Mode is based on /18/ and /19/ and refers to the Speed Function Group 1 of /19/.

The most frequently used devices with this mode are low-cost frequency inverters. But this profile could be used with all types of drives and other devices where it fits. Therefore data objects are almost 16bit wide. The calculation of variables at the drive is possible by usual 8 bit microprocessors.

Most applications use a velocity setpoint and a control word for switching the drive on and off

Example for a minimal implementation of the Velocity Mode.

See chapter 10 for Device Control.



Figure 42: Example of a Velocity Mode application

#### 18.1.1 Input Data Description

The Velocity Mode has the following input parameter:

| Operating Mode | Input Parameters Used                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Velocity Mode  | vl_target_velocity, vl_nominal_percentage, vl_pole_number, vl_dimension_factor; vl_velocity_min_max_amount, vl_velocity_min_max, vl_velocity_motor_min_max_amount - vl_velocity_motor_min_max, vl_frequency_motor_min_max_amount, vl_frequency_motor_min_max, vl_velocity_acceleration, vl_velocity_deceleration, vl_velocity_quick_stop, vl_ramp_function_time, vl_slow_down_time, vl_quick_stop_time, vl_velocity_reference, vl_setpoint_factor |

These objects are only used for the Velocity Mode.

### 18.1.2 Output Data Description

The Velocity Mode provides the following output parameters:

| Operation Mode | Output Parameter used                                                                                                                 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Velocity Mode  | vl_control_effort, vl_manipulated_velocity, vl_percentage_demand, vl_actual_percentage, vl_velocity_demand, vl_manipulated_percentage |

These objects are only used for the Velocity Mode.

#### 18.1.3 Structure of the Velocity Mode

The diagram below shows the overall structure of the Velocity Mode. All mandatory and optional objects are used. It is not intended with it to specify implementations, but to describe the scope of functions. In these structures, the unit in which the velocity values in the speed functions are calculated is rpm. The descriptions of the drive functions refer to this structure. The Device Control is of course used in the Velocity Mode, but it is described in an extra chapter.





Figure 43: Velocity Mode with all Objects

All device using this profile and supporting the Velocity Mode have to implement the mandatory objects and there functionality. The diagram below shows the structure all devices will have at minimum.



Figure 46: Velocity Mode with mandatory Objects only

### 18.1.4 Subfunction Description

The Velocity Mode is composed of the following subfunctions:

- Reference Calculation
- Factor Function, Reverse Factor Function
- Percentage Function, Reverse Percentage Function
- Pole Number Function, Reverse Pole Number Function
- Velocity Limit Function
- Velocity Motor Limit Function
- Ramp Function
- Ramp Min Function
- Closed Open Loop Control Function

These subfunctions are only used for the Velocity Mode.

# 18.2 Object Dictionary Entries

# 18.2.1 Objects defined in this Chapter

| Index             | Object | Name                       | Туре       | Attr. | M/O |
|-------------------|--------|----------------------------|------------|-------|-----|
| 6042 <sub>h</sub> | VAR    | vl_target_velocity         | Integer16  | rw    | М   |
| 6043 <sub>h</sub> | VAR    | vl_velocity_demand         | Integer16  | ro    | М   |
| 6044 <sub>h</sub> | VAR    | vl_control_effort          | Integer16  | ro    | М   |
| 6045 <sub>h</sub> | VAR    | vl_manipulated_velocity    | Integer16  | ro    | 0   |
| 6046 <sub>h</sub> | ARRAY  | vl_velocity_min_max_amount | Unsigned32 | rw    | М   |
| 6047 <sub>h</sub> | ARRAY  | vl_velocity_min_max        | Unsigned32 | rw    | 0   |
| 6048 <sub>h</sub> | RECORD | vl_velocity_acceleration   | Ramp       | rw    | М   |
| 6049 <sub>h</sub> | RECORD | vl_velocity_deceleration   | Ramp       | rw    | М   |
| 604A <sub>h</sub> | RECORD | vl_velocity_quick_stop     | Ramp       | rw    | 0   |
| 604B <sub>h</sub> | ARRAY  | vl_setpoint_factor         | Integer16  | rw    | 0   |
| 604C <sub>h</sub> | ARRAY  | vl_dimension_factor        | Integer32  | rw    | 0   |
| 604D <sub>h</sub> | VAR    | vl_pole_number             | Unsigned8  | rw    | 0   |
| 604E <sub>h</sub> | VAR    | vl_velocity_reference      | Unsigned32 | rw    | 0   |
| 604F <sub>h</sub> | VAR    | vl_ramp_function_time      | Unsigned32 | rw    | 0   |
| 6050 <sub>h</sub> | VAR    | vl_slow_down_time          | Unsigned32 | rw    | 0   |
| 6051 <sub>h</sub> | VAR    | vl_quick_stop_time         | Unsigned32 | rw    | 0   |
| 6052 <sub>h</sub> | VAR    | vl_nominal_percentage      | Integer16  | rw    | 0   |
| 6053 <sub>h</sub> | VAR    | vl_percentage_demand       | Integer16  | ro    | 0   |
| 6054 <sub>h</sub> | VAR    | vl_actual_percentage       | Integer16  | ro    | 0   |

# 18.2.2 Objects defined in other Chapters

| Index             | Object | Name                          | Туре       | Chapter |
|-------------------|--------|-------------------------------|------------|---------|
| 603F <sub>h</sub> | VAR    | error_code                    | Integer16  | ce      |
| 6040 <sub>h</sub> | VAR    | controlword                   | Unsigned16 | dc      |
| 6041 <sub>h</sub> | VAR    | statusword                    | Integer16  | dc      |
| 605A <sub>h</sub> | VAR    | quick_stop_option_code        | Integer16  | dc      |
| 605B <sub>h</sub> | VAR    | shut_down_option_code         | Integer16  | dc      |
| 605C <sub>h</sub> | VAR    | disable_operation_option_code | Integer16  | dc      |
| 605D <sub>h</sub> | VAR    | stop_option_code              | Integer16  | dc      |
| 6060 <sub>h</sub> | VAR    | modes_of_operation            | Integer8   | dc      |
| 6061 <sub>h</sub> | VAR    | modes_of_operation_display    | Integer8   | dc      |

# 18.3 Object Description

### 18.3.1 Object 6042<sub>h</sub>: vl\_target\_velocity

The *vl\_target\_velocity* is the required velocity of the system. It is multiplied by the *vl\_dimension\_factor* and the *vl\_setpoint\_factor*, if these are implemented. The *vl\_target\_velocity* is converted to the unit [rpm] by multiplying the *vl\_target\_velocity* by the *vl\_dimension\_factor*. The unit of the *vl\_target\_velocity* is interpreted as [rpm] if the *vl\_dimension\_factor* is not implemented or has the value 1.

| Index       | 6042 <sub>h</sub>  |
|-------------|--------------------|
| Name        | vl_target_velocity |
| Object Code | VAR                |
| Data Type   | Integer16          |

| Object Class     | M: vI           | O: |  |
|------------------|-----------------|----|--|
| Access           | rw              | rw |  |
| PDO Mapping      | Possible        |    |  |
| Units            | Speed Units G1a |    |  |
| Value Range      | -3276832767     |    |  |
| Mandatory Range  | -327680+32767   |    |  |
| Default Value    | 0               |    |  |
| Substitute Value | -               |    |  |

# 18.3.2 Object 6043<sub>h</sub>: vl\_velocity\_demand

The *vl\_velocity\_demand* is the instantaneous velocity provided by the Ramp\_function, scaled to the unit of the *vl\_target\_velocity*. The value ranges from -32768 to 32767 (Integer16). The parameter could only be read, because it is changed only by the drive.

| Index       | 6043 <sub>h</sub>  |
|-------------|--------------------|
| Name        | vl_velocity_demand |
| Object Code | VAR                |
| Data Type   | Integer16          |

| Object Class     | M: vI                     | O: |
|------------------|---------------------------|----|
| Access           | ro                        |    |
| PDO Mapping      | Possible                  |    |
| Units            | Speed Units G1a           |    |
| Value Range      | -3276832767               |    |
| Mandatory Range  | -327680+32767             |    |
| Default Value    | - (drive output variable) |    |
| Substitute Value | -                         |    |

### 18.3.3 Object 6053<sub>h</sub>: vl\_percentage\_demand

The *vl\_percentage\_demand* is calculated on the basis of the *vl\_velocity\_demand* by using the Percentage Function. It is the velocity provided by the Ramp\_function in percent. Accordingly, the *vl\_percentage\_demand* is within the same value range as the *vl\_nom-inal\_percentage*. The value ranges from -32768 to 32767 (Integer16). The value 16383 corresponds to 100% of the *vl\_velocity\_reference*. Accordingly, an indication range of +/-200% is possible. The parameter is read-only.

| Index       | 6053 <sub>h</sub>    |
|-------------|----------------------|
| Name        | vl_percentage_demand |
| Object Code | VAR                  |
| Data Type   | Integer16            |

| Object Class     | M:                        | O: vl |
|------------------|---------------------------|-------|
| Access           | ro                        |       |
| PDO Mapping      | Possible                  |       |
| Units            | (100/16383) %             |       |
| Value Range      | -3276832767               |       |
| Mandatory Range  | -327680+32767             |       |
| Default Value    | - (drive output variable) |       |
| Substitute Value | -                         |       |

# 18.3.4 Object 6054h: vl\_actual\_percentage

The *vl\_actual\_percentage* is calculated on the basis of the *vl\_control\_effort* by using the Percentage Function. In this way, the *vl\_actual\_percentage* has the same value range as the *vl\_nominal\_percentage*. The value ranges from -32768 to 32767 (Integer16). The value 16383 corresponds to 100% of the *vl\_velocity\_reference*. Therefore, an indication range of +/- 200% is possible. The parameter is read-only.

| Index       | 6054 <sub>h</sub>    |
|-------------|----------------------|
| Name        | vl_actual_percentage |
| Object Code | VAR                  |
| Data Type   | Integer16            |

| Object Class     | M:                        | O: vl |
|------------------|---------------------------|-------|
| Access           | ro                        |       |
| PDO Mapping      | Possible                  |       |
| Units            | (100/16383) %             |       |
| Value Range      | -3276832767               |       |
| Mandatory Range  | -327680+32767             |       |
| Default Value    | - (drive output variable) |       |
| Substitute Value | -                         |       |

# 18.3.5 Object 6055<sub>h</sub>: vl\_manipulated\_percentage

The *vl\_manipulated\_percentage* is calculated on the basis of the *vl\_manipulated\_velocity*. In this way, the *vl\_manipulated\_percentage* is shown in the same value range as the *vl\_nominal\_percentage*. The value ranges from -32768 to 32767 (Integer16). The value 16383 corresponds to 100% of the *vl\_velocity\_reference*. Therefore, an indication range of +/- 200% is possible. The parameter is read-only.

| Index       | 6055 <sub>h</sub>         |
|-------------|---------------------------|
| Name        | vl_manipulated_percentage |
| Object Code | VAR                       |
| Data Type   | Integer16                 |

| Object Class     | M:                        | O: vl |
|------------------|---------------------------|-------|
| Access           | ro                        |       |
| PDO Mapping      | Possible                  |       |
| Units            | (100/16383) %             |       |
| Value Range      | -3276832767               |       |
| Mandatory Range  | -327680+32767             |       |
| Default Value    | - (drive output variable) |       |
| Substitute Value | -                         |       |

## 18.3.6 Object 604E<sub>h</sub>: vl\_velocity\_reference

This parameter serves to represent *velocity values* (setpoints, actual values and ramps) as relative values. If the *vl\_velocity\_reference* is modified, the ramps slopes, if objects *vl\_ramp\_function\_time*, *vl\_slow\_down\_time* or *vl\_quick\_stop\_time* are implemented, are changed relative to the change in the *vl\_velocity\_reference*.

This parameter has the same unit as the *vl\_target\_velocity* and the following value range: 0....4 294 967 295 (Unsigned32).

| Index       | 604E <sub>h</sub>     |
|-------------|-----------------------|
| Name        | vl_velocity_reference |
| Object Code | VAR                   |
| Data Type   | Unsigned32            |

# Value description

| Object Class     | M:                       | O: vI |  |
|------------------|--------------------------|-------|--|
| Access           | rw                       |       |  |
| PDO Mapping      | Possible                 |       |  |
| Units            | Speed Units G1a          |       |  |
| Value Range      | 0(2 <sup>32</sup> -1)    |       |  |
| Mandatory Range  | 0+ 4294967295            |       |  |
| Default Value    | - (drive output variable | 9)    |  |
| Substitute Value | -                        |       |  |

## Converting percentages to velocity values

# Converting velocity values to percentages

Percentage = 
$$\frac{\text{Velocity value * 3FFF}_{h}}{\text{vl velocity reference}}$$

## 18.3.7 Object 604Ch: vl\_dimension\_factor

The *vl\_dimension\_factor* is generated by division using a numerator subparameter and a denominator subparameter. These parameter have a value ranging from -2 147 483 648 to 2 147 483 647 (Integer32), but except the value 0!

The *vl\_dimension\_factor* serves to include gearing in calculation or serves to scale the frequencies or specific units of the user. It influences the specified setpoint, the velocity limit and the Ramp\_function as well as the output variables of the Speed Function .

| Index              | 604C <sub>h</sub>   |
|--------------------|---------------------|
| Name               | vl_dimension_factor |
| Object Code        | ARRAY               |
| Number of Elements | 2                   |
| Data Type          | Integer32           |
|                    |                     |

| Sub-Index        | 01 <sub>h</sub>                         |       |
|------------------|-----------------------------------------|-------|
| Description      | vl_dimension_factor_numerator           |       |
| Object Class     | M: -                                    | O: vl |
| Access           | rw                                      |       |
| PDO Mapping      | Possible                                |       |
| Units            | -(no units)                             |       |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |       |
| Mandatory Range  | 1                                       |       |
| Default Value    | manufacturer defined                    |       |
| Substitute Value | 1                                       |       |

| Sub-Index        | 02 <sub>h</sub>                         | 02 <sub>h</sub>                 |  |
|------------------|-----------------------------------------|---------------------------------|--|
| Description      | vl_dimension_factor                     | vl_dimension_factor_denominator |  |
| Object Class     | M: -                                    | O: vl                           |  |
| Access           | rw                                      | rw                              |  |
| PDO Mapping      | Possible                                |                                 |  |
| Units            | -(no units)                             |                                 |  |
| Value Range      | (-2 <sup>31</sup> )(2 <sup>31</sup> -1) |                                 |  |
| Mandatory Range  | 1                                       |                                 |  |
| Default Value    | manufacturer defir                      | manufacturer defined            |  |
| Substitute Value | 1                                       |                                 |  |

### Calculating the vl\_dimension\_factor

Every user's specific speed consists of a specific unit referred to a specific unit of time (e.g. 1/sec, bottles/min, m/sec,...).

The purpose of the dimension factor is to convert this specific unit to the revolutions/minute unit.

Specific unit \* DF = 1 revolution (motor shaft)

$$I \cdot DF = O$$

I = vl\_target\_velocity expressed as the user's specific speed

Input value of the Factor Function

Unit of I: [I] = Specific unit

O = Speed value in [rpm]

Output value of the Factor Function

Unit of O: 
$$[O] = \frac{1}{\min} = \frac{\text{Revolution}}{\min}$$

DF = Dimension factor

Unit of DF: [DF] = 
$$\frac{1}{\text{Specific unit}} * \frac{1}{\text{min}}$$

Refer to the application note for an examples.

### 18.3.8 Object 604B<sub>h</sub>: vl\_setpoint\_factor

The *vl\_setpoint\_factor* is generated by division, using a numerator subparameter and a denominator subparameter. These subparameter have no unit and have values within a range from -32768 to 32767 (Integer16), but excluding the value 0!

The *vl\_setpoint\_factor* serves to modify the resolution or directing range of the specified setpoint. It is included in calculation of the specified setpoint and the output variables of the Speed Function only.

| Index              | 604B <sub>h</sub>  |
|--------------------|--------------------|
| Name               | vl_setpoint_factor |
| Object Code        | ARRAY              |
| Number of Elements | 2                  |
| Data Type          | Integer16          |

| Sub-Index        | 01 <sub>h</sub>      | 01 <sub>h</sub>              |  |
|------------------|----------------------|------------------------------|--|
| Description      | vl_setpoint_factor_i | vl_setpoint_factor_numerator |  |
| Object Class     | M:                   | O: vl                        |  |
| Access           | rw                   |                              |  |
| PDO Mapping      | Possible             |                              |  |
| Units            | -(no units)          | -(no units)                  |  |
| Value Range      | -3276832767          |                              |  |
| Mandatory Range  | 1                    |                              |  |
| Default Value    | manufacturer define  | manufacturer defined         |  |
| Substitute Value | 1                    | 1                            |  |

| Sub-Index        | 02 <sub>h</sub>                |       |
|------------------|--------------------------------|-------|
| Description      | vl_setpoint_factor_denominator |       |
| Object Class     | M:                             | O: vI |
| Access           | rw                             |       |
| PDO Mapping      | Possible                       |       |
| Units            | -(no units)                    |       |
| Value Range      | -3276832767                    |       |
| Mandatory Range  | 1                              |       |
| Default Value    | manufacturer defined           |       |
| Substitute Value | 1                              |       |

### 18.3.9 Object 604D<sub>h</sub>: vl\_pole\_number

The user must describe the *vl\_pole\_number* parameter with a value corresponding to the number of poles belonging to the connected motor. This parameter has no unit. The value range depends on the manufacturer-specific need and is represented as unsigned 8. If the Object *vl\_pole\_number* does fit for the desired type of motor, this object could left out or set to value 2.

| Index       | 604D <sub>h</sub> |
|-------------|-------------------|
| Name        | vl_pole_number    |
| Object Code | VAR               |
| Data Type   | Unsigned8         |

### Value description

| Object Class     | M:                  | O: vl |
|------------------|---------------------|-------|
| Access           | rw                  |       |
| PDO Mapping      | Possible            |       |
| Units            | - (number of poles) |       |
| Value Range      | 0255                |       |
| Mandatory Range  | 2                   |       |
| Default Value    | manufacturer define | ed    |
| Substitute Value | 2                   |       |

If the number of pole pairs is known, the number of poles is: vl\_pole\_number = 2 \* pole pairs

### Converting velocity values to frequency values

Frequency = 
$$\frac{\text{Velocity * vl \_pole\_number}}{60 * 2}$$

### Converting frequency values to velocity values

$$Velocity = \frac{Frequency * 60 * 2}{vl pole_number}$$

### 18.3.10 Object 6046<sub>h</sub>: vl\_velocity\_min\_max\_amount

The *vl\_velocity\_min\_max\_amount* parameter is composed of the *vl\_velocity\_min\_amount* and *vl\_velocity\_max\_amount* subparameter. These subparameters don't have units and have values within a range from 0 to 4 294 967 295 (unsigned 32):

The vl\_velocity\_max\_amount subparameter is mapped internally to the vl\_velocity\_max\_pos and vl\_velocity\_max\_neg values. The vl\_velocity\_min\_amount subparameter is mapped internally to the vl\_velocity\_min\_pos and vl\_velocity\_min\_neg values.

Only the positive values are returned if the *vl\_velocity\_min\_max\_amount* parameter is read out.

| Index              | 6046 <sub>h</sub>          |
|--------------------|----------------------------|
| Name               | vl_velocity_min_max_amount |
| Object Code        | ARRAY                      |
| Number of Elements | 2                          |
| Data Type          | Unsigned32                 |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>        |  |
|------------------|-----------------------|------------------------|--|
| Description      | vl_velocity_min_am    | vl_velocity_min_amount |  |
| Object Class     | M: vI                 | O:                     |  |
| Access           | rw                    | rw                     |  |
| PDO Mapping      | Possible              |                        |  |
| Units            | G1b                   |                        |  |
| Value Range      | 0(2 <sup>32</sup> -1) |                        |  |
| Mandatory Range  | 0 manufacturer de     | efined                 |  |
| Default Value    | manufacturer define   | ed                     |  |
| Substitute Value | -                     |                        |  |

| Sub-Index        | 02 <sub>h</sub>        |    |
|------------------|------------------------|----|
| Description      | vl_velocity_max_amount |    |
| Object Class     | M: vI                  | O: |
| Access           | rw                     |    |
| PDO Mapping      | Possible               |    |
| Units            | G1b                    |    |
| Value Range      | 0(2 <sup>32</sup> -1)  |    |
| Mandatory Range  | 0 manufacturer defined |    |
| Default Value    | manufacturer defined   |    |
| Substitute Value | -                      |    |

This transfer characteristic results from *vl\_velocity\_min\_max\_amount* 



Figure 45: vl\_velocity\_min\_max\_amount transfer characteristic

### 18.3.11 Object 6047<sub>h</sub>: vl\_velocity\_min\_max

The *vl\_velocity\_min\_max* parameter is composed of the vl\_velocity\_min\_pos, vl\_velocity\_max\_pos, vl\_velocity\_min\_neg and vl\_velocity\_max\_neg subparameter. These subparameter have no units and have values within a range from 0 to 4 294 967 295 (unsigned 32).

The subparameter are mapped internally to the corresponding values.

| Index              | 6047 <sub>h</sub>   |
|--------------------|---------------------|
| Name               | vl_velocity_min_max |
| Object Code        | ARRAY               |
| Number of Elements | 4                   |
| Data Type          | Unsigned32          |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>       |  |
|------------------|-----------------------|-----------------------|--|
| Description      | vl_velocity_min_pos   | vl_velocity_min_pos   |  |
| Object Class     | M:                    | M: O: vI              |  |
| Access           | rw                    |                       |  |
| PDO Mapping      | Possible              | Possible              |  |
| Units            | G1b                   | G1b                   |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |
| Mandatory Range  | manufacturer define   | manufacturer defined  |  |
| Default Value    | manufacturer define   | manufacturer defined  |  |
| Substitute Value | -                     | -                     |  |

| Sub-Index        | 02 <sub>h</sub>       | 02 <sub>h</sub>       |  |
|------------------|-----------------------|-----------------------|--|
| Description      | vl_velocity_max_po    | vl_velocity_max_pos   |  |
| Object Class     | M:                    | M: O: vI              |  |
| Access           | rw                    |                       |  |
| PDO Mapping      | Possible              | Possible              |  |
| Units            | G1b                   | G1b                   |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1) |  |
| Mandatory Range  | manufacturer defin    | manufacturer defined  |  |
| Default Value    | manufacturer defin    | manufacturer defined  |  |
| Substitute Value | -                     | -                     |  |

| Sub-Index        | 03 <sub>h</sub>       |                      |  |
|------------------|-----------------------|----------------------|--|
| Description      | vl_velocity_min_neg   | vl_velocity_min_neg  |  |
| Object Class     | M:                    | O: vl                |  |
| Access           | rw                    |                      |  |
| PDO Mapping      | Possible              | Possible             |  |
| Units            | G1b                   |                      |  |
| Value Range      | 0(2 <sup>32</sup> -1) |                      |  |
| Mandatory Range  | manufacturer defined  | manufacturer defined |  |
| Default Value    | manufacturer defined  | manufacturer defined |  |
| Substitute Value | -                     | -                    |  |

| Sub-Index        | 04 <sub>h</sub>       |       |
|------------------|-----------------------|-------|
| Description      | vl_velocity_max_neg   |       |
| Object Class     | M:                    | O: vl |
| Access           | rw                    |       |
| PDO Mapping      | Possible              |       |
| Units            | G1b                   |       |
| Value Range      | 0(2 <sup>32</sup> -1) |       |
| Mandatory Range  | manufacturer defined  |       |
| Default Value    | manufacturer defined  |       |
| Substitute Value | -                     |       |

This transfer characteristic results from *vl\_velocity\_min\_max* 



Figure 46: vl\_velocity\_min\_max transfer characteristic

## 18.3.12 Object 6058<sub>h</sub>: vl\_frequency\_motor\_min\_max\_amount

The frequency parameter of the *vl\_frequency\_motor\_min\_max\_*amount objects are mapped internally to the parameter of the corresponding speed objects.

| Index              | 6058 <sub>h</sub>                 |
|--------------------|-----------------------------------|
| Name               | vl_frequency_motor_min_max_amount |
| Object Code        | ARRAY                             |
| Number of Elements | 2                                 |
| Data Type          | Unsigned32                        |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>               |  |
|------------------|-----------------------|-------------------------------|--|
| Description      | vl_frequency_mot      | vl_frequency_motor_min_amount |  |
| Object Class     | M:                    | M: O: vI                      |  |
| Access           | rw                    | ·                             |  |
| PDO Mapping      | Possible              | Possible                      |  |
| Units            | -                     | -                             |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)         |  |
| Mandatory Range  | 0 manufacturer        | 0 manufacturer defined        |  |
| Default Value    | manufacturer defi     | manufacturer defined          |  |
| Substitute Value | -                     | -                             |  |

| Sub-Index        | 02 <sub>h</sub>           |                               |  |
|------------------|---------------------------|-------------------------------|--|
| Description      | vl_frequency_motor_max_am | vl_frequency_motor_max_amount |  |
| Object Class     | M:                        | O: vl                         |  |
| Access           | rw                        |                               |  |
| PDO Mapping      | Possible                  | Possible                      |  |
| Units            | -                         |                               |  |
| Value Range      | 0(2 <sup>32</sup> -1)     |                               |  |
| Mandatory Range  | 0 manufacturer defined    |                               |  |
| Default Value    | manufacturer defined      |                               |  |
| Substitute Value | -                         |                               |  |

This transfer characteristic results from vl\_frequency\_motor\_min\_max\_amount



Figure 47: vl\_frequency\_motor\_min\_max\_amount transfer characteristic

# 18.3.13 Object 6059<sub>h</sub>: vl\_frequency\_motor\_min\_max

The frequency parameter of the *vl\_frequency\_motor\_min\_max* objects are mapped internally to the parameter of the corresponding speed objects.

| Index              | 6059 <sub>h</sub>          |
|--------------------|----------------------------|
| Name               | vl_frequency_motor_min_max |
| Object Code        | ARRAY                      |
| Number of Elements | 4                          |
| Data Type          | Unsigned32                 |

| Sub-Index        | 01 <sub>h</sub>            |       |
|------------------|----------------------------|-------|
| Description      | vl_frequency_motor_min_pos |       |
| Object Class     | M:                         | O: vl |
| Access           | rw                         |       |
| PDO Mapping      | Possible                   |       |
| Units            | -                          |       |
| Value Range      | 0(2 <sup>32</sup> -1)      |       |
| Mandatory Range  | manufacturer defined       |       |
| Default Value    | manufacturer defined       |       |
| Substitute Value | -                          |       |

| Sub-Index        | 02 <sub>h</sub>            |       |
|------------------|----------------------------|-------|
| Description      | vl_frequency_motor_max_pos |       |
| Object Class     | M:                         | O: vl |
| Access           | rw                         |       |
| PDO Mapping      | Possible                   |       |
| Units            | -                          |       |
| Value Range      | 0(2 <sup>32</sup> -1)      |       |
| Mandatory Range  | manufacturer defined       |       |
| Default Value    | manufacturer defined       |       |
| Substitute Value | -                          |       |

| Sub-Index        | 03 <sub>h</sub>       | 03 <sub>h</sub>            |  |
|------------------|-----------------------|----------------------------|--|
| Description      | vl_frequency_moto     | vl_frequency_motor_min_neg |  |
| Object Class     | M:                    | M: O: vI                   |  |
| Access           | rw                    | rw                         |  |
| PDO Mapping      | Possible              | Possible                   |  |
| Units            | - (1/1000 rpm)        | - (1/1000 rpm)             |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)      |  |
| Mandatory Range  | manufacturer defir    | manufacturer defined       |  |
| Default Value    | manufacturer defir    | manufacturer defined       |  |
| Substitute Value | -                     | -                          |  |

| Sub-Index        | 04 <sub>h</sub>            |  |
|------------------|----------------------------|--|
| Description      | vl_frequency_motor_max_neg |  |
| Object Class     | M: O: vI                   |  |
| Access           | rw                         |  |
| PDO Mapping      | Possible                   |  |
| Units            | -                          |  |
| Value Range      | 0(2 <sup>32</sup> -1)      |  |
| Mandatory Range  | manufacturer defined       |  |
| Default Value    | manufacturer defined       |  |
| Substitute Value | -                          |  |

This transfer characteristic results from vl\_velocity\_min\_max



Figure 48: vl\_velocity\_min\_max transfer characteristic

### 18.3.14 Object 6056<sub>h</sub>: vl\_velocity\_motor\_min\_max\_amount

The *vl\_velocity\_motor\_min\_max\_amount* parameter is composed of the *vl\_velocity\_motor\_min\_amount* and *vl\_velocity\_motor\_max\_amount* parameter. These subparameters have the unit [(1/1000) rpm] and values within a range from 0 to 4294967295 [(1/1000) rpm] (Unsigned32). This results in a limiting range from 0..4294967295[rpm].

The vl\_velocity\_motor\_max\_amount subparameter is mapped internally to the vl\_velocity\_motor\_max\_pos and vl\_velocity\_motor\_max\_neg values. The vl\_velocity\_motor\_min\_amount subparameter is mapped internally to the vl\_velocity\_motor\_min\_pos and vl\_velocity\_motor\_min\_neg values.

Only the positive values are returned if the *vl\_velocity\_motor\_min\_max\_amount* parameter is read.

| Index              | 6056 <sub>h</sub>                |
|--------------------|----------------------------------|
| Name               | vl_velocity_motor_min_max_amount |
| Object Code        | ARRAY                            |
| Number of Elements | 2                                |
| Data Type          | Unsigned32                       |

| Sub-Index        | 01 <sub>h</sub>              |    |  |
|------------------|------------------------------|----|--|
| Description      | vl_velocity_motor_min_amount |    |  |
| Object Class     | M: O: vI                     |    |  |
| Access           | rw                           | rw |  |
| PDO Mapping      | Possible                     |    |  |
| Units            | (1/1000 rpm)                 |    |  |
| Value Range      | 0(2 <sup>32</sup> -1)        |    |  |
| Mandatory Range  | 0 manufacturer defined       |    |  |
| Default Value    | manufacturer defined         |    |  |
| Substitute Value | -                            |    |  |

| Sub-Index        | 02 <sub>h</sub>       | 02 <sub>h</sub>              |  |
|------------------|-----------------------|------------------------------|--|
| Description      | vl_velocity_motor_    | vl_velocity_motor_max_amount |  |
| Object Class     | M:                    | M: O: vI                     |  |
| Access           | rw                    | rw                           |  |
| PDO Mapping      | Possible              | Possible                     |  |
| Units            | (1/1000 rpm)          | (1/1000 rpm)                 |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)        |  |
| Mandatory Range  | 0 manufacturer of     | 0 manufacturer defined       |  |
| Default Value    | manufacturer defir    | manufacturer defined         |  |
| Substitute Value | -                     | -                            |  |

This transfer characteristic results from vI velocity motor min max amount



Figure 49: vl\_velocity\_motor\_min\_max\_amount transfer characteristic

### 18.3.15 Object 6057<sub>h</sub>: vl\_velocity\_motor\_min\_max

The *vl\_velocity\_motor\_min\_max* parameter is composed of the *vl\_velocity\_motor\_min\_pos*, *vl\_velocity\_motor\_max\_pos*, *vl\_velocity\_motor\_min\_neg* and *vl\_velocity\_motor\_max\_neg* subparameter. These subparameters have the unit [1/(1000 min)] and values within a range from 0 ... 4 294 967 295 [1/(1000 min)] (Unsigned32). This results in a limiting range from 0...4 294 967 [rpm].

The subparameter are mapped internally to the corresponding values.

| Index              | 6057 <sub>h</sub>         |
|--------------------|---------------------------|
| Name               | vl_velocity_motor_min_max |
| Object Code        | ARRAY                     |
| Number of Elements | 4                         |
| Data Type          | Unsigned32                |

| Sub-Index        | 01 <sub>h</sub>       | 01 <sub>h</sub>           |  |
|------------------|-----------------------|---------------------------|--|
| Description      | vl_velocity_motor_    | vl_velocity_motor_min_pos |  |
| Object Class     | M:                    | M: O: vI                  |  |
| Access           | rw                    |                           |  |
| PDO Mapping      | Possible              | Possible                  |  |
| Units            | - (1/1000 rpm)        | - (1/1000 rpm)            |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)     |  |
| Mandatory Range  | manufacturer defir    | manufacturer defined      |  |
| Default Value    | manufacturer defir    | manufacturer defined      |  |
| Substitute Value | -                     | -                         |  |

| Sub-Index        | 02 <sub>h</sub>       | 02 <sub>h</sub>           |  |
|------------------|-----------------------|---------------------------|--|
| Description      | vl_velocity_motor_    | vl_velocity_motor_max_pos |  |
| Object Class     | M:                    | M: O: vl                  |  |
| Access           | rw                    |                           |  |
| PDO Mapping      | Possible              | Possible                  |  |
| Units            | - (1/1000 rpm)        | - (1/1000 rpm)            |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)     |  |
| Mandatory Range  | manufacturer defin    | manufacturer defined      |  |
| Default Value    | manufacturer defin    | manufacturer defined      |  |
| Substitute Value | -                     | -                         |  |

| Sub-Index        | 03 <sub>h</sub>       |                           |  |
|------------------|-----------------------|---------------------------|--|
| Description      | vl_velocity_motor     | vl_velocity_motor_min_neg |  |
| Object Class     | M:                    | M: O: vI                  |  |
| Access           | rw                    | rw                        |  |
| PDO Mapping      | Possible              | Possible                  |  |
| Units            | - (1/1000 rpm)        | - (1/1000 rpm)            |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)     |  |
| Mandatory Range  | manufacturer defi     | manufacturer defined      |  |
| Default Value    | manufacturer defi     | manufacturer defined      |  |
| Substitute Value | -                     | -                         |  |

| Sub-Index        | 04 <sub>h</sub>       | 04 <sub>h</sub>           |  |
|------------------|-----------------------|---------------------------|--|
| Description      | vl_velocity_motor_n   | vl_velocity_motor_max_neg |  |
| Object Class     | M:                    | M: O: vI                  |  |
| Access           | rw                    | rw                        |  |
| PDO Mapping      | Possible              | Possible                  |  |
| Units            | - (1/1000 rpm)        | - (1/1000 rpm)            |  |
| Value Range      | 0(2 <sup>32</sup> -1) | 0(2 <sup>32</sup> -1)     |  |
| Mandatory Range  | manufacturer define   | manufacturer defined      |  |
| Default Value    | manufacturer define   | manufacturer defined      |  |
| Substitute Value | -                     | -                         |  |

This transfer characteristic results from vl\_velocity\_min\_max



Figure 50: vl\_velocity\_min\_max transfer characteristic

### Limit-Value

The Limit-Value message is generated if the input value of the *Velocity\_motor\_limit\_function* results in a value outside of the operating range of the *Velocity\_motor\_limit\_function*. The Limit-Value message is mapped as one bit in the status word.

### 18.3.16 Object 6048<sub>h</sub>: vl\_velocity\_acceleration

The *vl\_velocity\_*acceleration parameter specifies the slope of the acceleration ramp. It is generated as the quotient of the delta\_speed and delta\_time subparameter.

| Index              | 6048 <sub>h</sub>        |
|--------------------|--------------------------|
| Name               | vl_velocity_acceleration |
| Object Code        | RECORD                   |
| Number of Elements | 2                        |

| Sub-Index        | 01 <sub>h</sub>       |    |
|------------------|-----------------------|----|
| Description      | delta_speed           |    |
| Object Class     | M: vI                 | O: |
| Access           | rw                    |    |
| PDO Mapping      | Possible              |    |
| Units            | G1b                   |    |
| Value Range      | 0(2 <sup>32</sup> -1) |    |
| Mandatory Range  | 0manufacturer defined |    |
| Default Value    | manufacturer defined  |    |
| Substitute Value | -                     |    |
| Data Type        | Unsigned32            |    |

| Sub-Index        | 02 <sub>h</sub>     | 02 <sub>h</sub>       |  |
|------------------|---------------------|-----------------------|--|
| Description      | delta_time          | delta_time            |  |
| Object Class     | M: vI               | O:                    |  |
| Access           | rw                  |                       |  |
| PDO Mapping      | Possible            | Possible              |  |
| Units            | Seconds (s)         | Seconds (s)           |  |
| Value Range      | 065535              | 065535                |  |
| Mandatory Range  | 0manufacturer def   | 0manufacturer defined |  |
| Default Value    | manufacturer define | manufacturer defined  |  |
| Substitute Value | -                   | -                     |  |
| Data Type        | Unsigned16          | Unsigned16            |  |

## delta\_speed

The delta\_speed has the same unit as the *vl\_target\_velocity*. This subparameter has the following value range: 0 ... 4294967295 (unsigned 32).

### delta\_time

This subparameter is specified in sec and has the following value range: 0 ... 65 535 [sec] (unsigned 16).

This function directly follows the setpoint if the parameter 0 is defined for the delta\_time value.

$$vl\_velocity\_acceleration = \frac{delta\_speed}{delta\_time} = a_B$$



Figure 51: vl\_velocity\_acceleration transfer characteristic

# 18.3.17 Object 6049<sub>h</sub>: vl\_velocity\_deceleration

The *vl\_velocity\_deceleration* parameter specifies the slope of the deceleration ramp. It is generated as the quotient of the delta\_speed and delta\_time subparameter.

| index              | 6049 <sub>h</sub>        |
|--------------------|--------------------------|
| name               | vl_velocity_deceleration |
| object code        | RECORD                   |
| number of elements | 2                        |

| sub-index        | 01 <sub>h</sub>    | 01 <sub>h</sub>      |  |
|------------------|--------------------|----------------------|--|
| description      | delta_speed        | delta_speed          |  |
| object class     | M: vI              | O:                   |  |
| access           | rw                 |                      |  |
| PDO mapping      | Possible           |                      |  |
| units            | G1b                | G1b                  |  |
| value range      | 0+4294967295       |                      |  |
| mandatory range  | 0 manufacturer d   | efined               |  |
| default value    | manufacturer defin | manufacturer defined |  |
| substitute value | -                  | -                    |  |
| Data Type        | Unsigned32         | Unsigned32           |  |

| sub-index        | 02 <sub>h</sub>        |    |
|------------------|------------------------|----|
| description      | delta_time             |    |
| object class     | M: vI                  | O: |
| access           | rw                     |    |
| PDO mapping      | Possible               |    |
| units            | Seconds (s)            |    |
| value range      | 0+ 65535               |    |
| mandatory range  | 0 manufacturer defined |    |
| default value    | manufacturer defined   |    |
| substitute value | -                      |    |
| Data Type        | Unsigned16             |    |

### delta\_speed

The delta\_speed has the same unit as the *vl\_target\_velocity*. This subparameter has the following value range:

## delta\_time

This subparameter is specified in sec and has the following value range:

0..65535 [sec] (Unsigned16).

This function directly follows the setpoint if the value 0 is defined for the delta\_time parameter.

$$vl\_velocity\_deceleration = \frac{delta\_speed}{delta\_time} = a_v$$



Figure 52: vl\_velocity\_deceleration transfer characteristic

# 18.3.18 Object 604A<sub>h</sub>: vl\_velocity\_quick\_stop

The *vl\_velocity\_quick\_stop* parameter specifies the slope of the quick stop ramp. It is generated as the quotient of the delta\_speed and delta\_time subparameter.

| Index              | 604A <sub>h</sub>      |
|--------------------|------------------------|
| Name               | vl_velocity_quick_stop |
| Object Code        | RECORD                 |
| Number of Elements | 2                      |

# Value description

| Sub-Index        | 01 <sub>h</sub>     | 01 <sub>h</sub>      |  |
|------------------|---------------------|----------------------|--|
| Description      | delta_speed         | delta_speed          |  |
| Object Class     | M:                  | O: vl                |  |
| Access           | rw                  |                      |  |
| PDO Mapping      | Possible            |                      |  |
| Units            | G1b                 |                      |  |
| Value Range      | 0+4294967295        |                      |  |
| Mandatory Range  | 0 manufacturer d    | efined               |  |
| Default Value    | manufacturer define | manufacturer defined |  |
| Substitute Value | -                   | -                    |  |
| Data Type        | Unsigned32          |                      |  |

| Sub-Index        | 02 <sub>h</sub>       |       |
|------------------|-----------------------|-------|
| Description      | delta_time            |       |
| Object Class     | M:                    | O: vl |
| Access           | rw                    |       |
| PDO Mapping      | Possible              |       |
| Units            | Seconds (s)           |       |
| Value Range      | 065535                |       |
| Mandatory Range  | 0manufacturer defined |       |
| Default Value    | manufacturer defined  |       |
| Substitute Value | -                     |       |
| Data Type        | Unsigned16            |       |

## delta\_speed

The velocity has the same unit as the *vl\_target\_velocity*. This subparameter has the following value range:

0..(2<sup>32</sup>-1) (unsigned 32).

### delta time

This subparameter is specified in sec and has the following value range:

0..65535 [sec] (unsigned 16).

This function directly follows the setpoint if the parameter 0 is defined for the delta\_time value.

velocity\_quick\_stop = 
$$\frac{delta_speed}{delta_time} = a_s$$



Figure 53: vl\_velocity\_quick\_stop transfer characteristic

### 18.3.19 Object 604F<sub>h</sub>: vl\_ramp\_function\_time

The *vl\_ramp\_function\_time* specifies the time during which the drive starts up from zero to the *vl\_velocity\_reference*.



Figure 54: vI ramp function time transfer characteristic

This parameter is specified in ms and has the following value range:

By setting the parameter 0 for the *vl\_ramp\_function\_time*, the ramp becomes infinite and the reference variable directly follows the setpoint.

| Index       | 604F <sub>h</sub>     |
|-------------|-----------------------|
| Name        | vl_ramp_function_time |
| Object Code | VAR                   |
| Data Type   | Unsigned32            |

| Object Class     | M:                    | O: vl |
|------------------|-----------------------|-------|
| Access           | rw                    |       |
| PDO Mapping      | Possible              |       |
| Units            | Milliseconds (ms)     |       |
| Value Range      | 0(2 <sup>32</sup> -1) |       |
| Mandatory Range  | manufacturer defined  |       |
| Default Value    | manufacturer defined  |       |
| Substitute Value | -                     |       |

## 18.3.20 Object 6050h: vl\_slow\_down\_time

The *vl\_slow\_down\_time* specifies the time during which the drive slows down from *vl\_velocity\_reference* to zero.



Figure 55: vl\_slow\_down\_time transfer characteristic

This parameter is specified in ms and has the following value range:

0..(2<sup>32</sup>-1) [msec] (unsigned 32).

By defining the parameter 0 for the *vl\_slow\_down\_time*, the ramp becomes infinite and the reference variable directly follows the setpoint.

| Index       | 6050 <sub>h</sub> |
|-------------|-------------------|
| Name        | vl_slow_down_time |
| Object Code | VAR               |
| Data Type   | Unsigned32        |

| Object Class     | M:                    | O: vl |
|------------------|-----------------------|-------|
| Access           | rw                    |       |
| PDO Mapping      | Possible              |       |
| Units            | Milliseconds (ms)     |       |
| Value Range      | 0(2 <sup>32</sup> -1) |       |
| Mandatory Range  | manufacturer defined  |       |
| Default Value    | manufacturer defined  |       |
| Substitute Value | -                     |       |

## 18.3.21 Object 6051<sub>h</sub>: vl\_quick\_stop\_time

The *vl\_quick\_stop\_time* specifies the time during which the drive slows down from *vl\_velocity\_reference* to zero in the QUICK STOP ACTIVE state.



Figure 56: vl\_quick\_stop\_time transfer characteristic

This parameter is specified in ms and has the following value range:

By defining the parameter 0 for the *vl\_quick\_stop\_time*, the ramp becomes infinite and the reference variable directly follows the setpoint.

| Index       | 6051 <sub>h</sub>  |
|-------------|--------------------|
| Name        | vl_quick_stop_time |
| Object Code | VAR                |
| Data Type   | Unsigned32         |

| Object Class     | M:                    | O: vl |
|------------------|-----------------------|-------|
| Access           | rw                    |       |
| PDO Mapping      | Possible              |       |
| Units            | Milliseconds (ms)     |       |
| Value Range      | 0(2 <sup>32</sup> -1) |       |
| Mandatory Range  | manufacturer defined  |       |
| Default Value    | manufacturer defined  |       |
| Substitute Value | -                     |       |

### 18.3.22 Object 6044h: vl\_control\_effort

The *vl\_control\_*effort is the velocity at the motor spindle or load, scaled to the unit of the *vl\_target\_velocity*. Depending on the system, velocity deviations may occur between the *vl\_control\_effort* and the physical velocity. For simple drives without closed loop control or observer this value reads the object *vl\_velocity\_demand*. The value ranges from -32768 to 32767 (Integer16).

| Index       | 6044 <sub>h</sub> |
|-------------|-------------------|
| Name        | vl_control_effort |
| Object Code | VAR               |
| Data Type   | Integer16         |

### Value description

| Object Class     | M: vI                     | O: |
|------------------|---------------------------|----|
| Access           | ro                        |    |
| PDO Mapping      | Possible                  |    |
| Units            | Speed Units G1a           |    |
| Value Range      | -3276832767               |    |
| Mandatory Range  | -327680+32767             |    |
| Default Value    | - (drive output variable) |    |
| Substitute Value | -                         |    |

### 18.3.23 Object 6045<sub>h</sub>: vl\_manipulated\_velocity

The *vl\_manipulated\_velocity* is the velocity of the motor spindle or load with a compensation value, scaled to the unit of the *vl\_target\_velocity*. The compensation value is generated by the controller/control function. The value ranges from -32768 to 32767 (Integer16). The parameter is read-only.

| Index       | 6045 <sub>n</sub>       |
|-------------|-------------------------|
| Name        | vl_manipulated_velocity |
| Object Code | VAR                     |
| Data Type   | Integer16               |

| Object Class     | M:                        | O: vl |
|------------------|---------------------------|-------|
| Access           | ro                        |       |
| PDO Mapping      | Possible                  |       |
| Units            | Speed Units G1a           |       |
| Value Range      | -3276832767               |       |
| Mandatory Range  | -327680+32767             |       |
| Default Value    | - (drive output variable) |       |
| Substitute Value | -                         |       |

## 18.3.24 Object 6052<sub>h</sub>: vl\_nominal\_percentage

The *vl\_nominal\_percentage* is converted by the percent function to a velocity value. The *vl\_nominal\_percentage* has no unit (better (100 / 16383) %). Its value ranges from -32768 to 32767 (Integer16). The value 16383 corresponds to 100% of the *vl\_velocity\_reference*. Accordingly, a total range of the manipulated variable amounting to +/- 200% is possible. The parameter could be read and written.

| Index       | 6052 <sub>h</sub>     |
|-------------|-----------------------|
| Name        | vl_nominal_percentage |
| Object Code | VAR                   |
| Data Type   | Integer16             |

| Object Class     | M:            | O: vl |  |
|------------------|---------------|-------|--|
| Access           | rw            |       |  |
| PDO Mapping      | Possible      |       |  |
| Units            | (100/16383) % |       |  |
| Value Range      | -3276832767   |       |  |
| Mandatory Range  | -327680+32767 |       |  |
| Default Value    | 0             |       |  |
| Substitute Value | 0             |       |  |

## 18.4 Functional Description

### 18.4.1 Percentage Function

The Percentage Function serves to convert percentages to velocity values and vice versa.



Figure 57: Percentage Function

and vice versa



Figure 58: Reverse Percentage Function

### 18.4.2 Factor Function and Reverse Factor Function

The Factor Function multiplies the input variables by the assigned factors.

- The  $vl\_target\_velocity$  is multiplied by the  $vl\_dimension\_factor$  and the  $vl\_setpoint\_factor$ .
- The values of the velocity limit and the values for the Ramp Function are only multiplied by the *vl\_dimension\_factor*.

A factor has a value of 1 if it is not implemented.

The Factor Function for two factors is built of two function in series connection.



Figure 59: Factor Function

The Reverse Factor Function divides the input variables by the assigned factors.

- The output variables of the Velocity Mode are calculated by division with the *vl\_dimension\_factor* and the *vl\_setpoint\_factor* and therefore returned to the scaling of the specified setpoint.



Figure 60: Reverse Factor Function

#### 18.4.3 Pole Number Function

The Pole Number Function serves to convert frequency values to velocity values



Figure 61: Pole Number Function

and vice versa



Figure 62: Reverse Pole Number Function

# 18.4.4 Velocity Limit Function

The velocity limit defines the valid velocity range for the drive. Limits could be specified in the user specific units by including the *vl\_dimension\_factor* in the speed limit.

#### Limit-Value

The Limit-Value message is generated if the input value of the speed limit results in a value outside the speed limit's operating range. The Limit-Value message is mapped as one bit in the *statusword*.



Figure 63: Velocity Limit Function

### 18.4.5 Velocity Motor Limit Function

The Velocity Motor Limit Function limits the motor velocity range. This parameter has a safety function that ensures that the range of the set value of motor velocity cannot be exceeded inadvertently by a modification of a factor.



Figure 64: Velocity Motor Limit Function

### 18.4.6 Ramp Function

The Ramp Function is used to limit the increase and decrease of velocity. The velocity output is equal to the input as long as the changes are below  $a_{B_{\min}}$ ,  $a_{V_{\min}}$  or  $a_{S_{\min}}$ .



Figure 65: Velocity Profile



Figure 66: Ramp Function

The internal ramp values  $a_{B_{\min}}$  and  $a_{V_{\min}}$  directly consist of the  $vl\_velocity\_acceleration$  and  $vl\_velocity\_deceleration$  parameter.

The internal ramp values  $a_{B_{\min}}$ ,  $a_{V_{\min}}$  and  $a_{S_{\min}}$  are the output values of the *Ramp\_min\_function*, weighted with the  $vl\_dimension\_factor$ .

### 18.4.7 Ramp Min Function

The Ramp Min Function selects the minimal change of velocity.



Figure 67: Ramp Min Function

The internal ramp values ( $a_{Bmin}$ ,  $a_{Vmin}$ ,  $a_{Smin}$ ) are recalculated as follows if one of the input parameter for the Ramp Function is modified.

$$a_{B_{\min}} = MIN \left( a_B, \frac{vl\_velocity\_reference}{vl\_ramp\_function\_time} \right)$$

$$a_{V_{\min}} = MIN \left( a_V, \frac{vl\_velocity\_reference}{vl\_slow\_down\_time} \right)$$

$$a_{S_{min}} = MIN \left( a_S, \frac{vl\_velocity\_reference}{vl\_quick\_stop\_time} \right)$$

The Ramp Min Function selects the lower respective value of the slopes.

#### 18.4.8 Reference Calculation

This subfunction decides on the setpoint processing. The setpoint value may be given as an percentage and (or) as an absolute value. Therefore two objects are defined in this profile. The first object is the <code>vl\_target\_velocity</code> containing the absolute setpoint value. This is an mandatory object for every drive. Some drives may have implemented the object <code>vl\_nominal\_percentage</code> which consist of an percentage setpoint value. So these manufactures have to specify how this two values are handled within the drive. Most profile implementations will add the percentage and the absolute setpoint value to calculate the internal setpoint. It is also possible to use only one value. Then the last written object is used internally.

### 18.4.9 Closed Open Loop Control Function

On the basis of the *vl\_control\_effort*, the controller/control function returns the *vl\_control-effort* and the *vl\_manipulated velocity*.

Depending on realisation of the function, the  $vl\_control\_effort$  is the  $vl\_control\_effort$  or a calculated or measured  $vl\_control\_effort$ .

Depending on realisation of the function, the *vl\_manipulated\_velocity* is the *vl\_control\_effort* or a calculated speed\_output.

# 19 Appendix

# A Object Dictionary by Chapter

## A.1 Common Entries in the Object Dictionary

| object            | object name                  | object | type           | sub-  | attr. | PDO      | units | man | dator | y for |    |    |    |    | description |
|-------------------|------------------------------|--------|----------------|-------|-------|----------|-------|-----|-------|-------|----|----|----|----|-------------|
| 10                |                              | code   |                | index |       |          |       | all | hm    | рр    | ip | pv | tq | vI |             |
| 6007 <sub>h</sub> | abort_connection_option_code | VAR    | Integer16      |       | rw    | Possible | -     | 0   |       |       |    |    |    |    |             |
| 6007 <sub>h</sub> | abort_connection_option_code | VAR    | Integer16      |       | rw    | Possible | -     | 0   |       |       |    |    |    |    |             |
| 03F <sub>h</sub>  | error_code                   | VAR    | Unsigned16     |       | ro    | Possible | -     | 0   |       |       |    |    |    |    |             |
| 402 <sub>h</sub>  | motor_type                   | VAR    | Unsigned16     |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 403 <sub>h</sub>  | motor_catalogue_number       | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 404 <sub>h</sub>  | motor_manufacturer           | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 405h              | http_motor_catalog_address   | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 406 <sub>h</sub>  | motor_calibration_date       | VAR    | Date           |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 407 <sub>h</sub>  | motor_service_period         | VAR    | Unsigned32     |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 410 <sub>h</sub>  | motor_data                   | RECORD |                |       |       |          |       |     |       |       |    |    |    |    |             |
| 502 <sub>h</sub>  | supported_drive_modes        | VAR    | Unsigned32     |       | ro    | Possible | -     |     |       |       |    |    |    |    |             |
| 503 <sub>h</sub>  | drive_catalogue_number       | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 504 <sub>h</sub>  | drive_manufacturer           | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 505 <sub>h</sub>  | http_drive_catalog_address   | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 510 <sub>h</sub>  | drive_data                   | RECORD |                |       |       |          |       |     |       |       |    |    |    |    |             |
| 0FD <sub>h</sub>  | digital_inputs               | VAR    | Unsigned32     |       | ro    | Possible | -     | 0   |       |       |    |    |    |    |             |
| 0FE <sub>h</sub>  | digital_outputs              | RECORD |                |       |       |          |       |     |       |       |    |    |    |    |             |
|                   | physical_outputs             | RECORD |                | 01    | rw    | Possible | -     | 0   |       |       |    |    |    |    |             |
|                   | bitmask                      | RECORD |                | 02    | rw    | Possible | -     | 0   |       |       |    |    |    |    |             |

### A.2 Device Control

| Objec             | t Dictionary for Chapter      | Device | Control    |       |       |          |       |     |       |       |    |    |    |    |             |
|-------------------|-------------------------------|--------|------------|-------|-------|----------|-------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                   | object | type       | sub-  | attr. | PDO      | units | man | dator | y for |    |    |    |    | description |
| no                |                               | code   |            | index |       |          |       | all | hm    | pp    | ip | pv | tq | νI |             |
| 6040 <sub>h</sub> | controlword                   | VAR    | Unsigned16 |       | rw    | Possible | -     | m   |       |       |    |    |    |    |             |
| 6041 <sub>h</sub> | statusword                    | VAR    | Unsigned16 |       | ro    | Possible | -     | m   |       |       |    |    |    |    |             |
| 605B <sub>h</sub> | shutdown_option_code          | VAR    | Integer16  |       | rw    | No       | -     | 0   |       |       |    |    |    |    |             |
| 605C <sub>h</sub> | disable_operation_option_code | VAR    | Integer16  |       | rw    | No       | -     | 0   |       |       |    |    |    |    |             |
| 605A <sub>h</sub> | quick_stop_option_code        | VAR    | Integer16  |       | rw    | No       | -     | 0   |       |       |    |    |    |    |             |
| 605D <sub>h</sub> | stop_option_code              | VAR    | Integer16  |       | rw    | No       | -     | 0   |       |       |    |    |    |    |             |
| 605E <sub>h</sub> | fault_reaction_option_code    | VAR    | Integer16  |       | rw    | No       | -     | 0   |       |       |    |    |    |    |             |
| 6060 <sub>h</sub> | modes_of_operation            | VAR    | Integer8   |       | wo    | Possible | -     | m   |       |       |    |    |    |    |             |
| 6061 <sub>h</sub> | modes_of_operation_display    | VAR    | Integer8   |       | ro    | Possible | -     | m   |       |       |    |    |    |    |             |

# A.3 Factor Group

| object            | object name                   | object | type       | sub-  | attr. | PDO      | units   | man | dator | y for |    |    |    |    | description |
|-------------------|-------------------------------|--------|------------|-------|-------|----------|---------|-----|-------|-------|----|----|----|----|-------------|
| no                |                               | code   |            | index |       |          |         | all | hm    | pp    | ip | pν | tq | νl |             |
| 6089 <sub>h</sub> | position_notation_index       | VAR    | Integer8   |       | rw    | Possible | -       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608A <sub>h</sub> | position_dimension_index      | VAR    | Unsigned8  |       | rw    | Possible | -       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 08B <sub>h</sub>  | velocity_notation_index       | VAR    | Integer8   |       | rw    | Possible | -       |     | 0     | 0     | 0  | 0  | О  |    |             |
| 608C <sub>h</sub> | velocity_dimension_index      | VAR    | Unsigned8  |       | rw    | Possible | -       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608D <sub>h</sub> | acceleration_notation_index   | VAR    | Integer8   |       | rw    | Possible | -       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 08E <sub>h</sub>  | acceleration_dimension_index  | VAR    | Unsigned8  |       | rw    | Possible | -       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608F <sub>h</sub> | position_encoder_resolution   | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
| 000111            | encoder increments            | ARRAY  | _          | 01    | rw    | Possible | inc     |     |       | 0     | 0  | 0  | 0  |    |             |
|                   | motor revolutions             | ARRAY  | 1          | 02    | rw    | Possible | inc     |     | 1     | 0     | 0  | 0  | 0  |    |             |
| 6090 <sub>h</sub> | velocity_encoder_resolution   | ARRAY  | Unsigned32 | -     | 1     |          |         |     | 1     | Ť     | Ť  | Ť  | Ť  |    |             |
| *11               | encoder_increments_per_second | ARRAY  |            | 01    | rw    | Possible | inc/sec |     | 1     | 0     | 0  | 0  | 0  |    |             |
|                   | motor_revolutions_per_second  | ARRAY  |            | 02    | rw    | Possible | inc/sec |     |       | 0     | 0  | 0  | 0  |    |             |
| 6091 <sub>h</sub> | gear_ratio                    | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
| 11                | motor_revolutions             | ARRAY  |            | 01    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
|                   | shaft_revolutions             | ARRAY  |            | 02    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
| 6092 <sub>h</sub> | feed_constant                 | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
|                   | feed                          | ARRAY  |            | 01    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
|                   | shaft_revolutions             | ARRAY  |            | 02    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
| 6093 <sub>h</sub> | position_factor               | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
|                   | numerator                     | ARRAY  |            | 01    | rw    | Possible | -       |     |       | 0     | 0  |    |    |    |             |
|                   | feed_constant                 | ARRAY  |            | 02    | rw    | Possible | -       |     |       | 0     | 0  |    |    |    |             |
| 6094 <sub>h</sub> | velocity_encoder_factor       | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
|                   | numerator                     | ARRAY  |            | 01    | rw    | Possible | -       |     |       |       |    | 0  |    |    |             |
|                   | divisor                       | ARRAY  |            | 02    | rw    | Possible | -       |     |       |       |    | 0  |    |    |             |
| 6095 <sub>h</sub> | velocity_factor_1             | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
|                   | numerator                     | ARRAY  |            | 01    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
|                   | divisor                       | ARRAY  |            | 02    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
| 6096 <sub>h</sub> | velocity_factor_2             | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
|                   | numerator                     | ARRAY  |            | 01    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
|                   | divisor                       | ARRAY  |            | 02    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
| 6097 <sub>h</sub> | acceleration_factor           | ARRAY  | Unsigned32 |       |       |          |         |     |       |       |    |    |    |    |             |
|                   | numerator                     | ARRAY  |            | 01    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |
|                   | divisor                       | ARRAY  |            | 02    | rw    | Possible | -       |     |       | 0     | 0  | 0  | 0  |    |             |

| Objec             | t Dictionary for Chapter I | Factor G | roup      |       |       |          |       |     |        |       |    |    |    |    |             |
|-------------------|----------------------------|----------|-----------|-------|-------|----------|-------|-----|--------|-------|----|----|----|----|-------------|
| object            | object name                | object   | type      | sub-  | attr. | PDO      | units | man | datory | y for |    |    |    |    | description |
| no                |                            | code     |           | index |       |          |       | all | hm     | pp    | ip | pν | tq | νl |             |
| 607E <sub>h</sub> | polarity                   | VAR      | Unsigned8 |       | rw    | Possible | -     |     |        | 0     | 0  | 0  | 0  |    |             |

### A.4 Profile Position Mode

| Objec             | t Dictionary for Chapte  | er Profile F | Position Mo | de    |       |           |                    |     |       |       |    |    |    |    |             |
|-------------------|--------------------------|--------------|-------------|-------|-------|-----------|--------------------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name              | object       | type        | sub-  | attr. | PDO       | units              | man | dator | y for |    |    |    |    | description |
| no                |                          | code         |             | index |       |           |                    | all | hm    | pp    | ip | pv | tq | vI |             |
| 607A <sub>h</sub> | target_position          | VAR          | Integer32   |       | rw    | Possible  | position units     |     |       | m     | m  |    |    |    |             |
| 607B <sub>h</sub> | position_range_limit     | ARRAY        | Integer32   |       |       |           |                    |     |       |       |    |    |    |    |             |
|                   | min_position_range_limit | ARRAY        |             | 01    | rw    | possibble | position units     |     |       | 0     | 0  |    |    |    |             |
|                   | max_position_range_limit | ARRAY        |             | 02    | rw    | Possible  | position units     |     |       | 0     | 0  |    |    |    |             |
| 607D <sub>h</sub> | software_position_limit  | ARRAY        | Integer32   |       |       |           |                    |     |       |       |    |    |    |    |             |
|                   | min_position_limit       | ARRAY        |             | 01    | rw    | Possible  | position units     |     |       | 0     | 0  |    |    |    |             |
|                   | max_position_limit       | ARRAY        |             | 02    | rw    | Possible  | position units     |     |       | 0     | 0  |    |    |    |             |
| 607F <sub>h</sub> | max_profile_velocity     | VAR          | Unsigned32  |       | rw    | Possible  | speed units        |     |       | 0     | 0  | 0  | 0  |    |             |
| 6080 <sub>h</sub> | max_motor_speed          | VAR          | Unsigned16  |       | rw    | Possible  | rpm                | 0   |       |       |    |    |    |    |             |
| 6081 <sub>h</sub> | profile_velocity         | VAR          | Unsigned32  |       | rw    | Possible  | speed units        |     |       | m     |    | m  |    |    |             |
| 6082 <sub>h</sub> | end_velocity             | VAR          | Unsigned32  |       | rw    | Possible  | speed units        |     |       | 0     |    |    |    |    |             |
| 6083 <sub>h</sub> | profile_acceleration     | VAR          | Unsigned32  |       | rw    | Possible  | acceleration units |     |       | m     |    | m  |    |    |             |
| 6084 <sub>h</sub> | profile_deceleration     | VAR          | Unsigned32  |       | rw    | Possible  | acceleration units |     |       | m     |    | m  |    |    |             |
| 6085 <sub>h</sub> | quick_stop_deceleration  | VAR          | Unsigned32  |       | rw    | Possible  | acceleration units |     |       | 0     | 0  | 0  | 0  |    |             |
| 6086 <sub>h</sub> | motion_profile_type      | VAR          | Integer16   |       | rw    | Possible  | none               |     |       | m     |    | m  |    |    |             |
| 60C5 <sub>h</sub> | max_acceleration         | VAR          | Unsigned32  |       | rw    | Possible  | acceleration units |     |       | 0     | 0  |    |    |    |             |
| 60C6 <sub>h</sub> | max_deceleration         | VAR          | Unsigned32  |       | rw    | Possible  | acceleration units |     |       | 0     | 0  |    |    |    |             |

## A.5 Homing Mode

| Objec             | t Dictionary for Chapter       | Homing | Mode       |       |       |          |                    |     |        |       |    |    |    |    |             |
|-------------------|--------------------------------|--------|------------|-------|-------|----------|--------------------|-----|--------|-------|----|----|----|----|-------------|
| object            | object name                    | object | type       | sub-  | attr. | PDO      | units              | man | datory | y for |    |    |    |    | description |
| no                |                                | code   |            | index |       |          |                    | all | hm     | рр    | ip | pv | tq | vI |             |
| 607C <sub>h</sub> | home_offset                    | VAR    | Integer32  |       | rw    | Possible | position units     |     | 0      |       |    |    |    |    |             |
| 6098 <sub>h</sub> | homing_method                  | VAR    | Integer8   |       | rw    | Possible | -                  |     | m      |       |    |    |    |    |             |
| 6099 <sub>h</sub> | homing_speeds                  | ARRAY  | Unsigned32 |       |       |          |                    |     |        |       |    |    |    |    |             |
|                   | speed_during_search_for_switch | ARRAY  |            | 01    | rw    | Possible | velocity Units     |     | m      |       |    |    |    |    |             |
|                   | speed_during_search_for_zero   | ARRAY  |            | 02    | rw    | Possible | velocity units     |     | m      |       |    |    |    |    |             |
| 609A <sub>h</sub> | homing_acceleration            | VAR    | Unsigned32 |       | rw    | Possible | acceleration units |     | 0      |       |    |    |    |    |             |

### A.6 Position Control Function

| Objec             | t Dictionary for Chapter       | Position | Control Fu | unctio | n     |          |                |     |       |       |    |    |    |    |             |
|-------------------|--------------------------------|----------|------------|--------|-------|----------|----------------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                    | object   | type       | sub-   | attr. | PDO      | units          | mar | dator | y for |    |    |    |    | description |
| no                |                                | code     |            | index  |       |          |                | all | hm    | pp    | ip | pν | tq | νI |             |
| 6062 <sub>h</sub> | position_demand_value          | VAR      | Integer32  |        | ro    | Possible | position units |     |       |       |    |    |    |    |             |
| 6063 <sub>h</sub> | position_actual_value*         | VAR      | Integer32  |        | ro    | Possible | increments     |     | 0     |       |    |    |    |    |             |
| 6064 <sub>h</sub> | position_actual_value          | VAR      | Integer32  |        | ro    | Possible | position units |     | 0     |       |    |    |    |    |             |
| 6065 <sub>h</sub> | following_error_window         | VAR      | Unsigned32 |        | rw    | Possible | position units |     |       |       |    |    |    |    |             |
| 6066 <sub>h</sub> | following_error_time_out       | VAR      | Unsigned16 |        | rw    | Possible | milliseconds   |     |       |       |    |    |    |    |             |
| 6067 <sub>h</sub> | position_window                | VAR      | Unsigned32 |        | rw    | Possible | position units |     |       |       |    |    |    |    |             |
| 6068 <sub>h</sub> | position_window_time           | VAR      | Unsigned16 |        | rw    | Possible | milliseconds   |     |       |       |    |    |    |    |             |
| 60F4 <sub>h</sub> | following_error_actual_value   | VAR      | Integer32  |        | ro    | Possible | position units |     | 0     |       |    |    |    |    |             |
| 60FA <sub>h</sub> | control_effort                 | VAR      | Integer32  |        | ro    | Possible | -              |     | 0     |       |    |    |    |    |             |
| 60FB <sub>h</sub> | position_control_parameter_set | RECORD   |            |        |       |          |                |     |       |       |    |    |    |    |             |
| 60FC <sub>h</sub> | position_demand_value*         | VAR      | Integer32  |        | ro    | Possible | increments     |     | 0     |       |    |    |    |    |             |

## A.7 Interpolated Position Mode

| -                    | bject name                      | object | type      | sub-  | attr. | PDO      | units                        | man | dator | y for |    |    |    |    | description |
|----------------------|---------------------------------|--------|-----------|-------|-------|----------|------------------------------|-----|-------|-------|----|----|----|----|-------------|
| no                   |                                 | code   |           | index |       |          |                              | all | hm    | pp    | ip | pv | tq | νI |             |
| oCO <sub>h</sub> in  | nterpolation_submode_select     | VAR    | Integer16 |       | rw    | Possible | -                            |     |       |       | 0  |    |    |    |             |
| 60C1 <sub>h</sub> in | nterpolation_data_record        | RECORD |           |       |       |          |                              |     |       |       |    |    |    |    |             |
|                      | nterpolation_time_period        | RECORD |           |       |       |          |                              |     |       |       |    |    |    |    |             |
| ip                   | o_time_units                    | RECORD |           | 01    | rw    | Possible | 10ip_time_index<br>( seconds |     |       |       | 0  |    |    |    |             |
| ip                   | o_time_index                    | RECORD |           | 02    | rw    | Possible | -                            |     |       |       | 0  |    |    |    |             |
| 60C3 <sub>h</sub> in | nterpolation_sync_definition    | ARRAY  | Unsigned8 |       |       |          |                              |     |       |       |    |    |    |    |             |
| S                    | yncronize on group              | ARRAY  |           | 01    | rw    | Possible | number                       |     |       |       | 0  |    |    |    |             |
| ip                   | o_sync every n event            | ARRAY  |           | 02    | rw    | Possible | counts                       |     |       |       | 0  |    |    |    |             |
| 60C4 <sub>h</sub> in | nterpolation_data_configuration | RECORD |           |       |       |          |                              |     |       |       |    |    |    |    |             |
| m                    | nax_buffer_size                 | RECORD |           | 01    | ro    | Possible | number                       |     |       |       | 0  |    |    |    |             |
| a                    | ctual_size                      | RECORD |           | 02    | rw    | Possible | number                       |     |       |       | 0  |    |    |    |             |
| b                    | ouffer_organisation             | RECORD |           | 03    | rw    | Possible | number                       |     |       |       | 0  |    |    |    |             |
| b                    | ouffer_position                 | RECORD |           | 04    | rw    | Possible | number                       |     |       |       | 0  |    |    |    | _           |
| Si                   | ize_of_data_record              | RECORD |           | 05    | wo    | Possible | number                       |     |       |       | 0  |    |    |    |             |
| b                    | ouffer_clear                    | RECORD |           | 06    | wo    | Possible | -                            |     |       |       | 0  |    |    |    |             |

# A.8 Profile Velocity Mode

| object            | object name                    | object | type       | sub-  | attr. | PDO      | units             | man | dator | y for |    |    |    |    | description |
|-------------------|--------------------------------|--------|------------|-------|-------|----------|-------------------|-----|-------|-------|----|----|----|----|-------------|
| no                |                                | code   |            | index |       |          |                   | all | hm    | pp    | ip | pv | tq | νI |             |
| 6069 <sub>h</sub> | velocity_sensor_actual_value   | VAR    | Integer32  |       | ro    | Possible | increments/sec    |     |       |       |    | m  |    |    |             |
| 6069 <sub>h</sub> | velocity_sensor_actual_value   | VAR    | Integer32  |       | ro    | Possible | increments/sec    |     |       |       |    | m  |    |    |             |
| 606A <sub>h</sub> | sensor_selection_code          | VAR    | Integer16  |       | rw    | Possible | -                 |     |       |       |    | m  |    |    |             |
| 606B <sub>h</sub> | velocity_demand_value          | VAR    | Integer32  |       | ro    | Possible | velocity units G2 |     |       |       |    | m  |    |    |             |
| 606C <sub>h</sub> | velocity_actual_value          | VAR    | Integer32  |       | ro    | Possible | velocity units G2 |     |       |       |    | m  |    |    |             |
| 606D <sub>h</sub> | velocity_window                | VAR    | Unsigned16 |       | rw    | Possible | velocity units G2 |     |       |       |    | 0  |    |    |             |
| 606E <sub>h</sub> | velocity_window_time           | VAR    | Unsigned16 |       | rw    | Possible | millisecond       |     |       |       |    | 0  |    |    |             |
| 606F <sub>h</sub> | velocity_threshold             | VAR    | Unsigned16 |       | rw    | Possible | velocity units G2 |     |       |       |    | 0  |    |    |             |
| 6070 <sub>h</sub> | velocity_threshold_time        | VAR    | Unsigned16 |       | r/w   | Possible | millisecond       |     |       |       |    | 0  |    |    |             |
| 60FF <sub>h</sub> | target_velocity                | VAR    | Integer32  |       | rw    | Possible | velocity units G2 |     |       |       |    | m  |    |    |             |
| 60F8 <sub>h</sub> | max_slippage                   | VAR    | Integer32  |       | ro    | Possible | velocity units G2 |     |       |       |    | m  |    |    |             |
| 60F9 <sub>h</sub> | velocity_control_parameter_set | RECORD |            |       |       |          |                   |     |       |       |    |    |    |    |             |
|                   | V: gain                        | RECORD |            | 01    | rw    | Possible | =                 |     |       |       |    | 0  |    |    |             |
|                   | Ti: integration time constant  | RECORD |            | 02    | rw    | Possible | -                 |     |       |       |    | 0  |    |    |             |
|                   | vl_velocity_min_neg            | RECORD |            | 03    | rw    | Possible | G1b               |     |       |       |    |    |    | 0  |             |

## A.9 Profile Torque Mode

| Objec             | t Dictionary for Chapte   | r Profile T | orque Mod  | le    |       |          |                                         |     |        |       |    |    |    |    |             |
|-------------------|---------------------------|-------------|------------|-------|-------|----------|-----------------------------------------|-----|--------|-------|----|----|----|----|-------------|
| object            | object name               | object      | type       | sub-  | attr. | PDO      | units                                   | mai | ndator | y for |    |    |    |    | description |
| no                |                           | code        |            | index |       |          |                                         | all | hm     | рр    | ip | pv | tq | vI |             |
| 6071 <sub>h</sub> | target_torque             | VAR         | Integer16  |       | rw    | optional | per thousand of rated torque            |     |        |       |    |    | m  |    |             |
| 6072 <sub>h</sub> | max_torque                | VAR         | Unsigned16 |       | rw    | optional | per thousand of rated torque            |     |        | 0     |    |    | 0  |    |             |
| 6073 <sub>h</sub> | max_current               | VAR         | Unsigned16 |       | rw    | optional | per thousand of rated current           |     |        | 0     |    |    | 0  |    |             |
| 6074 <sub>h</sub> | torque_demand_value       | VAR         | Integer16  |       | ro    | optional | per thousand of rated torque            |     |        | 0     |    |    | 0  |    |             |
| 6075 <sub>h</sub> | motor_rated_current       | VAR         | Unsigned32 |       | rw    | optional | 1 mA                                    |     |        | 0     |    |    | 0  |    |             |
| 6076 <sub>h</sub> | motor_rated_torque        | VAR         | Unsigned32 |       | rw    | optional | 0.001 Nm                                |     |        | 0     |    |    | 0  |    |             |
| 6077 <sub>h</sub> | torque_actual_value       | VAR         | Integer16  |       | ro    | optional | per thousand of rated torque            |     |        | 0     |    |    | 0  |    |             |
| 6078 <sub>h</sub> | current_actual_value      | VAR         | Integer16  |       | ro    | optional | per thousand of rated current           |     |        | 0     |    |    | 0  |    |             |
| 6079 <sub>h</sub> | DC_link_circuit_voltage   | VAR         | Unsigned32 |       | ro    | optional | milli volts                             |     |        |       |    |    | 0  |    |             |
| 6087 <sub>h</sub> | torque_slope              | VAR         | Unsigned32 |       | rw    | optional | per thousand of rated torque per second |     |        |       |    |    | m  |    |             |
| 6088 <sub>h</sub> | torque_profile_type       | VAR         | Integer16  |       | rw    | optional | none                                    |     |        |       |    |    | m  |    |             |
| 60F7 <sub>h</sub> | power_stage_parameters    | RECORD      |            |       |       |          |                                         |     |        |       |    |    |    |    |             |
|                   |                           | RECORD      |            | 01    | rw    | Possible | =                                       |     |        | 0     |    |    | 0  |    |             |
| 60F6 <sub>h</sub> | torque_control_parameters | RECORD      |            |       |       |          |                                         |     |        |       |    |    |    |    |             |
|                   |                           | RECORD      |            | 01    | rw    | Possible | -                                       |     |        | 0     |    |    | 0  |    |             |

# A.10 Velocity Mode

| object            | object name                        | object | type       | sub-  | attr. | PDO      | units               | man | dator | y for |    |    |    |    | description |
|-------------------|------------------------------------|--------|------------|-------|-------|----------|---------------------|-----|-------|-------|----|----|----|----|-------------|
| no                |                                    | code   |            | index |       |          |                     | all | hm    | рр    | ip | pv | tq | νI |             |
| 5042 <sub>h</sub> | vl_target_velocity                 | VAR    | Integer16  |       | rw    | Possible | Speed Units G1a     |     |       |       |    |    |    | m  |             |
| 6043 <sub>h</sub> | vl_velocity_demand                 | VAR    | Integer16  |       | ro    | Possible | Speed Units G1a     |     |       |       |    |    |    | m  |             |
| 6053 <sub>h</sub> | vl_percentage_demand               | VAR    | Integer16  |       | ro    | Possible | (100/16383) %       |     |       |       |    |    |    | 0  |             |
| 6054 <sub>h</sub> | vl_actual_percentage               | VAR    | Integer16  |       | ro    | Possible | (100/16383) %       |     |       |       |    |    |    | 0  |             |
| 6055 <sub>h</sub> | vl_manipulated_percentage          | VAR    | Integer16  |       | ro    | Possible | (100/16383) %       |     |       |       |    |    |    | 0  |             |
| 04E <sub>h</sub>  | vl_velocity_reference              | VAR    | Unsigned32 |       | rw    | Possible | Speed Units G1a     |     |       |       |    |    |    | 0  |             |
| 604C <sub>h</sub> | vl_dimension_factor                | ARRAY  | Integer32  |       |       |          |                     |     |       |       |    |    |    |    |             |
|                   | vl_dimension_factor_numerator      | ARRAY  |            | 01    | rw    | Possible | -(no units)         |     |       |       |    |    |    | 0  |             |
|                   | vl_dimension_factor_denominato     | ARRAY  |            | 02    | rw    | Possible | -(no units)         |     |       |       |    |    |    | 0  |             |
| 604B <sub>h</sub> | vl_setpoint_factor                 | ARRAY  | Integer16  |       |       |          |                     |     |       |       |    |    |    |    |             |
| - 11              | vl setpoint factor numerator       | ARRAY  |            | 01    | rw    | Possible | -(no units)         |     |       |       |    |    |    | 0  |             |
|                   | vl_setpoint_factor_denominator     | ARRAY  |            | 02    | rw    | Possible | -(no units)         |     |       |       |    |    |    | 0  |             |
| 604D <sub>h</sub> | vl_pole_number                     | VAR    | Unsigned8  |       | rw    | Possible | - (number of poles) |     |       |       |    |    |    | 0  |             |
| 6046 <sub>h</sub> | vl_velocity_min_max_amount         | ARRAY  | Unsigned32 |       |       |          |                     |     |       |       |    |    |    |    |             |
|                   | vl_velocity_min_amount             | ARRAY  |            | 01    | rw    | Possible | G1b                 |     |       |       |    |    |    | m  |             |
|                   | vl_velocity_max_amount             | ARRAY  |            | 02    | rw    | Possible | G1b                 |     |       |       |    |    |    | m  |             |
| 6047 <sub>h</sub> | vl_velocity_min_max                | ARRAY  | Unsigned32 |       |       |          |                     |     |       |       |    |    |    |    |             |
|                   | vl_velocity_min_pos                | ARRAY  |            | 01    | rw    | Possible | G1b                 |     |       |       |    |    |    | 0  |             |
| -                 | vl_velocity_max_pos                | ARRAY  |            | 02    | rw    | Possible | G1b                 |     |       |       |    |    |    | 0  |             |
|                   | vl_velocity_min_neg                | ARRAY  |            | 03    | rw    | Possible | G1b                 |     |       |       |    |    |    | 0  |             |
|                   | vl_velocity_max_neg                | ARRAY  |            | 04    | rw    | Possible | G1b                 |     |       |       |    |    |    | 0  |             |
| 8058 <sub>h</sub> | vl_frequency_motor_min_max_a mount | ARRAY  | Unsigned32 |       |       |          |                     |     |       |       |    |    |    |    |             |
|                   | vl_frequency_motor_min_amount      | ARRAY  |            | 01    | rw    | Possible | -                   |     |       |       |    |    |    | 0  |             |
|                   | vl_frequency_motor_max_amoun t     | ARRAY  |            | 02    | rw    | Possible | -                   |     |       |       |    |    |    | 0  |             |
| 059 <sub>h</sub>  | vl_frequency_motor_min_max         | ARRAY  | Unsigned32 |       |       |          |                     |     |       |       |    |    |    |    |             |
|                   | vl_frequency_motor_min_pos         | ARRAY  |            | 01    | rw    | Possible | -                   |     | Ì     |       |    |    |    | 0  |             |
|                   | vl_frequency_motor_max_pos         | ARRAY  |            | 02    | rw    | Possible | -                   |     |       |       |    |    |    | 0  |             |
|                   | vl_frequency_motor_min_neg         | ARRAY  |            | 03    | rw    | Possible | - (1/1000 rpm)      |     |       |       |    |    |    | 0  |             |
|                   | vl_frequency_motor_max_neg         | ARRAY  |            | 04    | rw    | Possible | -                   |     |       |       |    |    |    | 0  |             |

| Objec             | t Dictionary for Chapter             | Velocity | Mode       |       |       |          |                   |     |       |       |    |    |    |    |             |
|-------------------|--------------------------------------|----------|------------|-------|-------|----------|-------------------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                          | object   | type       | sub-  | attr. | PDO      | units             | man | dator | y for |    |    |    |    | description |
| no                |                                      | code     |            | index |       |          |                   | all | hm    | pp    | ip | pv | tq | vI |             |
| 6056 <sub>h</sub> | vl_velocity_motor_min_max_amo<br>unt | ARRAY    | Unsigned32 |       |       |          |                   |     |       |       |    |    |    |    |             |
|                   | vl_velocity_motor_min_amount         | ARRAY    |            | 01    | rw    | Possible | (1/1000 rpm)      |     |       |       |    |    |    | 0  |             |
|                   | vl_velocity_motor_max_amount         | ARRAY    |            | 02    | rw    | Possible | (1/1000 rpm)      |     |       |       |    |    |    | 0  |             |
| 6057 <sub>h</sub> | vl_velocity_motor_min_max            | ARRAY    | Unsigned32 |       |       |          |                   |     |       |       |    |    |    |    |             |
|                   | vl_velocity_motor_min_pos            | ARRAY    |            | 01    | rw    | Possible | - (1/1000 rpm)    |     |       |       |    |    |    | 0  |             |
|                   | vl_velocity_motor_max_pos            | ARRAY    |            | 02    | rw    | Possible | - (1/1000 rpm)    |     |       |       |    |    |    | 0  |             |
|                   | vl_velocity_motor_min_neg            | ARRAY    |            | 03    | rw    | Possible | - (1/1000 rpm)    |     |       |       |    |    |    | 0  |             |
|                   | vl_velocity_motor_max_neg            | ARRAY    |            | 04    | rw    | Possible | - (1/1000 rpm)    |     |       |       |    |    |    | 0  |             |
| 6048 <sub>h</sub> | vl_velocity_acceleration             | RECORD   |            |       |       |          |                   |     |       |       |    |    |    |    |             |
|                   | delta_speed                          | RECORD   |            | 01    | rw    | Possible | G1b               |     |       |       |    |    |    | m  |             |
|                   | delta_time                           | RECORD   |            | 02    | rw    | Possible | Seconds (s)       |     |       |       |    |    |    | m  |             |
| 6049 <sub>h</sub> | vl_velocity_deceleration             | RECORD   |            |       |       |          |                   |     |       |       |    |    |    |    |             |
|                   | delta_speed                          | RECORD   |            | 01    | rw    | Possible | G1b               |     |       |       |    |    |    | m  |             |
|                   | delta_time                           | RECORD   |            | 02    | rw    | Possible | Seconds (s)       |     |       |       |    |    |    | m  |             |
| 604A <sub>h</sub> | vl_velocity_quick_stop               | RECORD   |            |       |       |          |                   |     |       |       |    |    |    |    |             |
|                   | delta_speed                          | RECORD   |            | 01    | rw    | Possible | G1b               |     |       |       |    |    |    | 0  |             |
|                   | delta_time                           | RECORD   |            | 02    | rw    | Possible | Seconds (s)       |     |       |       |    |    |    | 0  |             |
| 604F <sub>h</sub> | vl_ramp_function_time                | VAR      | Unsigned32 |       | rw    | Possible | Milliseconds (ms) |     |       |       |    |    |    | 0  |             |
| 6050 <sub>h</sub> | vl_slow_down_time                    | VAR      | Unsigned32 |       | rw    | Possible | Milliseconds (ms) |     |       |       |    |    |    | 0  |             |
| 6051 <sub>h</sub> | vl_quick_stop_time                   | VAR      | Unsigned32 |       | rw    | Possible | Milliseconds (ms) |     |       |       |    |    |    | 0  |             |
| 6044 <sub>h</sub> | vl_control_effort                    | VAR      | Integer16  |       | ro    | Possible | Speed Units G1a   |     |       |       |    |    |    | m  |             |
| 6045 <sub>h</sub> | vl_manipulated_velocity              | VAR      | Integer16  |       | ro    | Possible | Speed Units G1a   |     |       |       |    |    |    | 0  |             |
| 6052 <sub>h</sub> | vl_nominal_percentage                | VAR      | Integer16  |       | rw    | Possible | (100/16383) %     |     |       |       |    |    |    | 0  |             |

# **B** Object Dictionary by Index

| object            | t Dictionary sorted by Ind        | object | type          | sub-  | attr. | PDO      | units               | man | dator | v for |    |    |    |    | description |
|-------------------|-----------------------------------|--------|---------------|-------|-------|----------|---------------------|-----|-------|-------|----|----|----|----|-------------|
| no                | object name                       | code   | type          | index | diti. | . 50     | unito               | all | hm    | _     | ip | pv | tq | vI | description |
|                   |                                   | )/AD   | Late we mad 0 |       |       | D 11-1-  |                     |     |       | PP    | ıp | PV | 14 | ٧. |             |
| 6007 <sub>h</sub> | abort_connection_option_code      | VAR    | Integer16     |       | rw    | Possible | -                   | 0   |       |       |    |    |    |    |             |
| 603F <sub>h</sub> | error_code                        | VAR    | Unsigned16    |       | ro    | Possible | =                   | 0   |       |       |    |    |    |    |             |
| 6040 <sub>h</sub> | controlword                       | VAR    | Unsigned16    |       | rw    | Possible | -                   | m   |       |       |    |    |    |    |             |
| 6041 <sub>h</sub> | statusword                        | VAR    | Unsigned16    |       | ro    | Possible | -                   | m   |       |       |    |    |    |    |             |
| 042h              | vl_target_velocity                | VAR    | Integer16     |       | rw    | Possible | Speed Units G1a     |     |       |       |    |    |    | m  |             |
| 043h              | vl_velocity_demand                | VAR    | Integer16     |       | ro    | Possible | Speed Units G1a     |     |       |       |    |    |    | m  |             |
| 6044h             | vl_control_effort                 | VAR    | Integer16     |       | ro    | Possible | Speed Units G1a     |     |       |       |    |    |    | m  |             |
| 6045h             | vl_manipulated_velocity           | VAR    | Integer16     |       | ro    | Possible | Speed Units G1a     |     |       |       |    |    |    | o  |             |
| 6046h             | vl_velocity_min_max_amount        | ARRAY  | Unsigned32    |       |       |          |                     |     |       |       |    |    |    |    |             |
| 6047h             | vl_velocity_min_max               | ARRAY  | Unsigned32    |       |       |          |                     |     |       |       |    |    |    |    |             |
| 048h              | vl_velocity_acceleration          | RECORD |               |       |       |          |                     |     |       |       |    |    |    |    |             |
| 049h              | vl_velocity_deceleration          | RECORD |               |       |       |          |                     |     |       |       |    |    |    |    |             |
| 04Ah              | vl_velocity_quick_stop            | RECORD |               |       |       |          |                     |     |       |       |    |    |    |    |             |
| 04Bh              | vl_setpoint_factor                | ARRAY  | Integer16     |       |       |          |                     |     |       |       |    |    |    |    |             |
| 04Ch              | vl_dimension_factor               | ARRAY  | Integer32     |       |       |          |                     |     |       |       |    |    |    |    |             |
| 04Dh              | vl_pole_number                    | VAR    | Unsigned8     |       | rw    | Possible | - (number of poles) |     |       |       |    |    |    | О  |             |
| 04Eh              | vl_velocity_reference             | VAR    | Unsigned32    |       | rw    | Possible | Speed Units G1a     |     |       |       |    |    |    | o  |             |
| 604Fh             | vl_ramp_function_time             | VAR    | Unsigned32    |       | rw    | Possible | Milliseconds (ms)   |     |       |       |    |    |    | 0  |             |
| 050h              | vl_slow_down_time                 | VAR    | Unsigned32    |       | rw    | Possible | Milliseconds (ms)   |     |       |       |    |    |    | О  |             |
| 051h              | vl_quick_stop_time                | VAR    | Unsigned32    |       | rw    | Possible | Milliseconds (ms)   |     |       |       |    |    |    | О  |             |
| 052h              | vl_nominal_percentage             | VAR    | Integer16     |       | rw    | Possible | (100/16383) %       |     |       |       |    |    |    | О  |             |
| 053h              | vl_percentage_demand              | VAR    | Integer16     |       | ro    | Possible | (100/16383) %       |     |       |       |    |    |    | О  |             |
| 054h              | vl_actual_percentage              | VAR    | Integer16     |       | ro    | Possible | (100/16383) %       |     |       |       |    |    |    | o  |             |
| 055h              | vl_manipulated_percentage         | VAR    | Integer16     |       | ro    | Possible | (100/16383) %       |     |       |       |    |    |    | 0  |             |
| 056h              | vl_velocity_motor_min_max_amount  | ARRAY  | Unsigned32    |       |       |          |                     |     |       |       |    |    |    |    |             |
| 057h              | vl_velocity_motor_min_max         | ARRAY  | Unsigned32    |       |       |          |                     |     |       |       |    |    |    |    |             |
| 058h              | vl_frequency_motor_min_max_amount | ARRAY  | Unsigned32    |       |       |          |                     |     |       |       |    |    |    |    |             |
| 6059h             | vl_frequency_motor_min_max        | ARRAY  | Unsigned32    |       |       |          |                     |     |       |       |    |    |    |    |             |

| object            | object name                   | object | type       | sub-  | attr. | PDO      | units             | mar | dator | y for |    |    |    |    | description |
|-------------------|-------------------------------|--------|------------|-------|-------|----------|-------------------|-----|-------|-------|----|----|----|----|-------------|
| no                |                               | code   |            | index |       |          |                   | all | hm    | pp    | ip | pv | tq | νI |             |
| 605A <sub>h</sub> | quick_stop_option_code        | VAR    | Integer16  |       | rw    | No       | -                 | О   |       |       |    |    |    |    |             |
| 605B <sub>h</sub> | shutdown_option_code          | VAR    | Integer16  |       | rw    | No       | -                 | 0   |       |       |    |    |    |    |             |
| 605C <sub>h</sub> | disable_operation_option_code | VAR    | Integer16  |       | rw    | No       | -                 | 0   |       |       |    |    |    |    |             |
| 605D <sub>h</sub> | stop_option_code              | VAR    | Integer16  |       | rw    | No       | -                 | 0   |       |       |    |    |    |    |             |
| 605E <sub>h</sub> | fault_reaction_option_code    | VAR    | Integer16  |       | rw    | No       | -                 | 0   |       |       |    |    |    |    |             |
| 6060 <sub>h</sub> | modes_of_operation            | VAR    | Integer8   |       | wo    | Possible | -                 | m   |       |       |    |    |    |    |             |
| 6061 <sub>h</sub> | modes_of_operation_display    | VAR    | Integer8   |       | ro    | Possible | -                 | m   |       |       |    |    |    |    |             |
| 6062 <sub>h</sub> | position_demand_value         | VAR    | Integer32  |       | ro    | Possible | position units    |     |       |       |    |    |    |    |             |
| 6063 <sub>h</sub> | position_actual_value*        | VAR    | Integer32  |       | ro    | Possible | increments        |     | 0     |       |    |    |    |    |             |
| 6064 <sub>h</sub> | position_actual_value         | VAR    | Integer32  |       | ro    | Possible | position units    |     | 0     |       |    |    |    |    |             |
| 6065 <sub>h</sub> | following_error_window        | VAR    | Unsigned32 |       | rw    | Possible | position units    |     |       |       |    |    |    |    |             |
| 6066 <sub>h</sub> | following_error_time_out      | VAR    | Unsigned16 |       | rw    | Possible | milliseconds      |     |       |       |    |    |    |    |             |
| 6067 <sub>h</sub> | position_window               | VAR    | Unsigned32 |       | rw    | Possible | position units    |     |       |       |    |    |    |    |             |
| 6068 <sub>h</sub> | position_window_time          | VAR    | Unsigned16 |       | rw    | Possible | milliseconds      |     |       |       |    |    |    |    |             |
| 6069h             | velocity_sensor_actual_value  | VAR    | Integer32  |       | ro    | Possible | increments/sec    |     |       |       |    | m  |    |    |             |
| 6069h             | velocity_sensor_actual_value  | VAR    | Integer32  |       | ro    | Possible | increments/sec    |     |       |       |    | m  |    |    |             |
| 606Ah             | sensor_selection_code         | VAR    | Integer16  |       | rw    | Possible | -                 |     |       |       |    | m  |    |    |             |
| 606Bh             | velocity_demand_value         | VAR    | Integer32  |       | ro    | Possible | velocity units G2 |     |       |       |    | m  |    |    |             |
| 606Ch             | velocity_actual_value         | VAR    | Integer32  |       | ro    | Possible | velocity units G2 |     |       |       |    | m  |    |    |             |
| 606Dh             | velocity_window               | VAR    | Unsigned16 |       | rw    | Possible | velocity units G2 |     |       |       |    | 0  |    |    |             |
| 606Eh             | velocity_window_time          | VAR    | Unsigned16 |       | rw    | Possible | millisecond       |     |       |       |    | 0  |    |    |             |
| 606Fh             | velocity_threshold            | VAR    | Unsigned16 |       | rw    | Possible | velocity units G2 |     |       |       |    | 0  |    |    |             |
| 6070h             | velocity_threshold_time       | VAR    | Unsigned16 |       | r/w   | Possible | millisecond       |     |       |       |    | 0  |    |    |             |
| 6071h             | target_torque                 | VAR    | Integer16  |       | rw    | optional | per thousand of   | f   |       |       |    |    | m  |    |             |
|                   |                               |        |            |       |       |          | rated torque      |     |       |       |    |    |    |    |             |
| 6072h             | max_torque                    | VAR    | Unsigned16 |       | rw    | optional | per thousand of   | f   |       | О     |    |    | О  |    |             |
|                   |                               |        |            |       |       |          | rated torque      |     |       |       |    |    |    |    |             |
| 6073h             | max_current                   | VAR    | Unsigned16 |       | rw    | optional | per thousand of   | f   |       | О     |    |    | О  |    |             |
|                   |                               |        |            |       |       |          | rated current     |     |       |       |    |    |    |    |             |
| 6074h             | torque_demand_value           | VAR    | Integer16  |       | ro    | optional | per thousand of   | f   |       | О     |    |    | О  |    |             |
|                   |                               |        |            |       |       |          | rated torque      |     |       |       |    |    |    |    |             |
| 6075h             | motor_rated_current           | VAR    | Unsigned32 |       | rw    | optional | 1 mA              |     |       | 0     |    |    | 0  |    |             |

| Objec             | t Dictionary sorted by In    | dex    |            |       |       |          |                                         |     |       |       |    |    |    |    |             |
|-------------------|------------------------------|--------|------------|-------|-------|----------|-----------------------------------------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                  | object | type       | sub-  | attr. | PDO      | units                                   | man | dator | y for |    |    |    |    | description |
| no                |                              | code   |            | index |       |          |                                         | all | hm    | рр    | ip | pν | tq | vI |             |
| 6076h             | motor_rated_torque           | VAR    | Unsigned32 |       | rw    | optional | 0.001 Nm                                |     |       | 0     |    |    | 0  |    |             |
| 6077h             | torque_actual_value          | VAR    | Integer16  |       | ro    | optional | per thousand of rated torque            |     |       | 0     |    |    | 0  |    |             |
| 6078h             | current_actual_value         | VAR    | Integer16  |       | ro    | optional | per thousand of rated current           |     |       | 0     |    |    | 0  |    |             |
| 6079h             | DC_link_circuit_voltage      | VAR    | Unsigned32 |       | ro    | optional | milli volts                             |     |       |       |    |    | 0  |    |             |
| 607A <sub>h</sub> | target_position              | VAR    | Integer32  |       | rw    | Possible | position units                          |     |       | m     | m  |    |    |    |             |
| 607B <sub>h</sub> | position_range_limit         | ARRAY  | Integer32  |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 607C <sub>h</sub> | home_offset                  | VAR    | Integer32  |       | rw    | Possible | position units                          |     | 0     |       |    |    |    |    |             |
| 607D <sub>h</sub> | software_position_limit      | ARRAY  | Integer32  |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 607E <sub>h</sub> | polarity                     | VAR    | Unsigned8  |       | rw    | Possible | -                                       |     |       | 0     | 0  | 0  | 0  |    |             |
| 607F <sub>h</sub> | max_profile_velocity         | VAR    | Unsigned32 |       | rw    | Possible | speed units                             |     |       | 0     | 0  | 0  | 0  |    |             |
| 6080 <sub>h</sub> | max_motor_speed              | VAR    | Unsigned16 |       | rw    | Possible | rpm                                     | 0   |       |       |    |    |    |    |             |
| 6081 <sub>h</sub> | profile_velocity             | VAR    | Unsigned32 |       | rw    | Possible | speed units                             |     |       | m     |    | m  |    |    |             |
| 6082 <sub>h</sub> | end_velocity                 | VAR    | Unsigned32 |       | rw    | Possible | speed units                             |     |       | 0     |    |    |    |    |             |
| 6083 <sub>h</sub> | profile_acceleration         | VAR    | Unsigned32 |       | rw    | Possible | acceleration units                      |     |       | m     |    | m  |    |    |             |
| 6084 <sub>h</sub> | profile_deceleration         | VAR    | Unsigned32 |       | rw    | Possible | acceleration units                      |     |       | m     |    | m  |    |    |             |
| 6085 <sub>h</sub> | quick_stop_deceleration      | VAR    | Unsigned32 |       | rw    | Possible | acceleration units                      |     |       | 0     | 0  | 0  | 0  |    |             |
| 6086 <sub>h</sub> | motion_profile_type          | VAR    | Integer16  |       | rw    | Possible | none                                    |     |       | m     |    | m  |    |    |             |
| 6087h             | torque_slope                 | VAR    | Unsigned32 |       | rw    | optional | per thousand of rated torque per second |     |       |       |    |    | m  |    |             |
| 6088h             | torque_profile_type          | VAR    | Integer16  |       | rw    | optional | none                                    |     |       |       |    |    | m  |    |             |
| 6089 <sub>h</sub> | position_notation_index      | VAR    | Integer8   |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608A <sub>h</sub> | position_dimension_index     | VAR    | Unsigned8  |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608B <sub>h</sub> | velocity_notation_index      | VAR    | Integer8   |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608C <sub>h</sub> | velocity_dimension_index     | VAR    | Unsigned8  |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608D <sub>h</sub> | acceleration_notation_index  | VAR    | Integer8   |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608E <sub>h</sub> | acceleration_dimension_index | VAR    | Unsigned8  |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608F <sub>h</sub> | position_encoder_resolution  | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 6090 <sub>h</sub> | velocity_encoder_resolution  | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |

| Objec             | t Dictionary sorted by In        | dex    |                |       |       |          |                    |     |       |       |    |    |    |    |             |
|-------------------|----------------------------------|--------|----------------|-------|-------|----------|--------------------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                      | object | type           | sub-  | attr. | PDO      | units              | man | dator | y for |    |    |    |    | description |
| no                |                                  | code   |                | index |       |          |                    | all | hm    | pp    | ip | pν | tq | νI |             |
| 6091 <sub>h</sub> | gear_ratio                       | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 6092 <sub>h</sub> | feed_constant                    | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 6093 <sub>h</sub> | position_factor                  | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 6094 <sub>h</sub> | velocity_encoder_factor          | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 6095 <sub>h</sub> | velocity_factor_1                | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 6096 <sub>h</sub> | velocity_factor_2                | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 5097 <sub>h</sub> | acceleration_factor              | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 6098 <sub>h</sub> | homing_method                    | VAR    | Integer8       |       | rw    | Possible | -                  |     | m     |       |    |    |    |    |             |
| 6099 <sub>h</sub> | homing_speeds                    | ARRAY  | Unsigned32     |       |       |          |                    |     |       |       |    |    |    |    |             |
| 609A <sub>h</sub> | homing_acceleration              | VAR    | Unsigned32     |       | rw    | Possible | acceleration units |     | 0     |       |    |    |    |    |             |
| 60C0 <sub>h</sub> | interpolation_submode_select     | VAR    | Integer16      |       | rw    | Possible | -                  |     |       |       | 0  |    |    |    |             |
| 50C1 <sub>h</sub> | interpolation_data_record        | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60C2 <sub>h</sub> | interpolation_time_period        | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60C3 <sub>h</sub> | interpolation_sync_definition    | ARRAY  | Unsigned8      |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60C4 <sub>h</sub> | interpolation_data_configuration | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60C5 <sub>h</sub> | max_acceleration                 | VAR    | Unsigned32     |       | rw    | Possible | acceleration units |     |       | 0     | 0  |    |    |    |             |
| 60C6 <sub>h</sub> | max_deceleration                 | VAR    | Unsigned32     |       | rw    | Possible | acceleration units |     |       | 0     | 0  |    |    |    |             |
| 60F4 <sub>h</sub> | following_error_actual_value     | VAR    | Integer32      |       | ro    | Possible | position units     |     | 0     |       |    |    |    |    |             |
| 60F6h             | torque_control_parameters        | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60F7h             | power_stage_parameters           | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60F8h             | max_slippage                     | VAR    | Integer32      |       | ro    | Possible | velocity units G2  |     |       |       |    | m  |    |    |             |
| 60F9h             | velocity_control_parameter_set   | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60FA <sub>h</sub> | control_effort                   | VAR    | Integer32      |       | ro    | Possible | -                  |     | 0     |       |    |    |    |    |             |
| 60FB <sub>h</sub> | position_control_parameter_set   | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60FC <sub>h</sub> | position_demand_value*           | VAR    | Integer32      |       | ro    | Possible | increments         |     | 0     |       |    |    |    |    |             |
| 60FD <sub>h</sub> | digital_inputs                   | VAR    | Unsigned32     |       | ro    | Possible | -                  | 0   |       |       |    |    |    |    |             |
| 60FE <sub>h</sub> | digital_outputs                  | RECORD |                |       |       |          |                    |     |       |       |    |    |    |    |             |
| 60FFh             | target_velocity                  | VAR    | Integer32      |       | rw    | Possible | velocity units G2  |     |       |       |    | m  |    |    |             |
| 6402 <sub>h</sub> | motor_type                       | VAR    | Unsigned16     |       | rw    | Possible | -                  |     |       |       |    |    |    |    |             |
| 6403 <sub>h</sub> | motor_catalogue_number           | VAR    | Visible String |       | rw    | Possible | -                  |     |       |       |    |    |    |    |             |
| 6404 <sub>h</sub> | motor_manufacturer               | VAR    | Visible String |       | rw    | Possible | -                  |     | İ     |       |    | İ  |    |    |             |

| Objec             | t Dictionary sorted by Ir  | ndex   |                |       |       |          |       |     |       |       |    |    |    |    |             |
|-------------------|----------------------------|--------|----------------|-------|-------|----------|-------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                | object | type           | sub-  | attr. | PDO      | units | man | dator | y for |    |    |    |    | description |
| no                |                            | code   |                | index |       |          |       | all | hm    | pp    | ip | pv | tq | vI |             |
| 6405 <sub>h</sub> | http_motor_catalog_address | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 6406 <sub>h</sub> | motor_calibration_date     | VAR    | Date           |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 6407 <sub>h</sub> | motor_service_period       | VAR    | Unsigned32     |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 6410 <sub>h</sub> | motor_data                 | RECORD |                |       |       |          |       |     |       |       |    |    |    |    |             |
| 6502 <sub>h</sub> | supported_drive_modes      | VAR    | Unsigned32     |       | ro    | Possible | -     |     |       |       |    |    |    |    |             |
| 6503 <sub>h</sub> | drive_catalogue_number     | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 6504 <sub>h</sub> | drive_manufacturer         | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 6505 <sub>h</sub> | http_drive_catalog_address | VAR    | Visible String |       | rw    | Possible | -     |     |       |       |    |    |    |    |             |
| 6510 <sub>h</sub> | drive_data                 | RECORD |                |       |       |          |       |     |       |       |    |    |    |    |             |

# **C** Object Dictionary by Name

| Objec             | t Dictionary sorted by N      | ame    |                |       |       |          |                               |     |        |       |    |    |    |    |             |
|-------------------|-------------------------------|--------|----------------|-------|-------|----------|-------------------------------|-----|--------|-------|----|----|----|----|-------------|
| object            | object name                   | object | type           | sub-  | attr. | PDO      | units                         | mar | ndator | y for |    |    |    |    | description |
| no                |                               | code   |                | index |       |          |                               | all | hm     | pp    | ip | pv | tq | vI |             |
| 6007 <sub>h</sub> | abort_connection_option_code  | VAR    | Integer16      |       | rw    | Possible | -                             | 0   |        |       |    |    |    |    |             |
| 608E <sub>h</sub> | acceleration_dimension_index  | VAR    | Unsigned8      |       | rw    | Possible | -                             |     | 0      | 0     | 0  | 0  | 0  |    |             |
| 6097 <sub>h</sub> | acceleration_factor           | ARRAY  | Unsigned32     |       |       |          |                               |     |        |       |    |    |    |    |             |
| 608D <sub>h</sub> | acceleration_notation_index   | VAR    | Integer8       |       | rw    | Possible | -                             |     | 0      | 0     | 0  | 0  | 0  |    |             |
| 60FA <sub>h</sub> | control_effort                | VAR    | Integer32      |       | ro    | Possible | -                             |     | 0      |       |    |    |    |    |             |
| 6040 <sub>h</sub> | controlword                   | VAR    | Unsigned16     |       | rw    | Possible | -                             | m   |        |       |    |    |    |    |             |
| 6078h             | current_actual_value          | VAR    | Integer16      |       | ro    | optional | per thousand of rated current |     |        | 0     |    |    | o  |    |             |
| 6079h             | DC_link_circuit_voltage       | VAR    | Unsigned32     |       | ro    | optional | milli volts                   |     |        |       |    |    | 0  |    |             |
| 60FD <sub>h</sub> | digital_inputs                | VAR    | Unsigned32     |       | ro    | Possible | -                             | 0   |        |       |    |    |    |    |             |
| 60FE <sub>h</sub> | digital_outputs               | RECORD |                |       |       |          |                               |     |        |       |    |    |    |    |             |
| 605C <sub>h</sub> | disable_operation_option_code | VAR    | Integer16      |       | rw    | No       | -                             | 0   |        |       |    |    |    |    |             |
| 6503 <sub>h</sub> | drive_catalogue_number        | VAR    | Visible String |       | rw    | Possible | -                             |     |        |       |    |    |    |    |             |
| 6510 <sub>h</sub> | drive_data                    | RECORD |                |       |       |          |                               |     |        |       |    |    |    |    |             |
| 6504 <sub>h</sub> | drive_manufacturer            | VAR    | Visible String |       | rw    | Possible | -                             |     |        |       |    |    |    |    |             |
| 6082 <sub>h</sub> | end_velocity                  | VAR    | Unsigned32     |       | rw    | Possible | speed units                   |     |        | 0     |    |    |    |    |             |
| 603F <sub>h</sub> | error_code                    | VAR    | Unsigned16     |       | ro    | Possible | -                             | 0   |        |       |    |    |    |    |             |
| 605E <sub>h</sub> | fault_reaction_option_code    | VAR    | Integer16      |       | rw    | No       | -                             | 0   |        |       |    |    |    |    |             |
| 6092 <sub>h</sub> | feed_constant                 | ARRAY  | Unsigned32     |       |       |          |                               |     |        |       |    |    |    |    |             |
| 60F4 <sub>h</sub> | following_error_actual_value  | VAR    | Integer32      |       | ro    | Possible | position units                |     | 0      |       |    |    |    |    |             |
| 6066 <sub>h</sub> | following_error_time_out      | VAR    | Unsigned16     |       | rw    | Possible | milliseconds                  |     |        |       |    |    |    |    |             |
| 6065 <sub>h</sub> | following_error_window        | VAR    | Unsigned32     |       | rw    | Possible | position units                |     |        |       |    |    |    |    |             |
| 6091 <sub>h</sub> | gear_ratio                    | ARRAY  | Unsigned32     |       |       |          |                               |     |        |       |    |    |    |    |             |
| 607C <sub>h</sub> | home_offset                   | VAR    | Integer32      |       | rw    | Possible | position units                |     | 0      |       |    |    |    |    |             |
| 609A <sub>h</sub> | homing_acceleration           | VAR    | Unsigned32     |       | rw    | Possible | acceleration units            |     | 0      |       |    |    |    |    |             |
| 6098 <sub>h</sub> | homing_method                 | VAR    | Integer8       |       | rw    | Possible | -                             |     | m      |       |    |    |    |    |             |
| 6099 <sub>h</sub> | homing_speeds                 | ARRAY  | Unsigned32     |       |       |          |                               |     |        |       |    |    |    |    |             |
| 6505 <sub>h</sub> | http_drive_catalog_address    | VAR    | Visible String |       | rw    | Possible | -                             |     |        |       |    |    |    |    |             |

| Objec             | t Dictionary sorted by Na        | ame    |                |       |       |          |                               |     |       |       |    |    |    |    |             |
|-------------------|----------------------------------|--------|----------------|-------|-------|----------|-------------------------------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                      | object | type           | sub-  | attr. | PDO      | units                         | man | dator | y for |    |    |    |    | description |
| no                |                                  | code   |                | index |       |          |                               | all | hm    | pp    | ip | pν | tq | νI |             |
| 6405 <sub>h</sub> | http_motor_catalog_address       | VAR    | Visible String |       | rw    | Possible | -                             |     |       |       |    |    |    |    |             |
| 60C4 <sub>h</sub> | interpolation_data_configuration | RECORD |                |       |       |          |                               |     |       |       |    |    |    |    |             |
| 60C1 <sub>h</sub> | interpolation_data_record        | RECORD |                |       |       |          |                               |     |       |       |    |    |    |    |             |
| 60C0 <sub>h</sub> | interpolation_submode_select     | VAR    | Integer16      |       | rw    | Possible | -                             |     |       |       | 0  |    |    |    |             |
| 60C3 <sub>h</sub> | interpolation_sync_definition    | ARRAY  | Unsigned8      |       |       |          |                               |     |       |       |    |    |    |    |             |
| 60C2 <sub>h</sub> | interpolation_time_period        | RECORD |                |       |       |          |                               |     |       |       |    |    |    |    |             |
| 60C5 <sub>h</sub> | max_acceleration                 | VAR    | Unsigned32     |       | rw    | Possible | acceleration units            |     |       | 0     | 0  |    |    |    |             |
| 6073h             | max_current                      | VAR    | Unsigned16     |       | rw    | optional | per thousand of rated current |     |       | 0     |    |    | 0  |    |             |
| 60C6 <sub>h</sub> | max_deceleration                 | VAR    | Unsigned32     |       | rw    | Possible | acceleration units            |     |       | 0     | 0  |    |    |    |             |
| 6080 <sub>h</sub> | max_motor_speed                  | VAR    | Unsigned16     |       | rw    | Possible | rpm                           | 0   |       |       |    |    |    |    |             |
| 607F <sub>h</sub> | max_profile_velocity             | VAR    | Unsigned32     |       | rw    | Possible | speed units                   |     |       | 0     | 0  | 0  | 0  |    |             |
| 60F8h             | max_slippage                     | VAR    | Integer32      |       | ro    | Possible | velocity units G2             |     |       |       |    | m  |    |    |             |
| 6072h             | max_torque                       | VAR    | Unsigned16     |       | rw    | optional | per thousand of rated torque  |     |       | 0     |    |    | 0  |    |             |
| 6060 <sub>h</sub> | modes_of_operation               | VAR    | Integer8       |       | wo    | Possible | -                             | m   |       |       |    |    |    |    |             |
| 6061 <sub>h</sub> | modes_of_operation_display       | VAR    | Integer8       |       | ro    | Possible | -                             | m   |       |       |    |    |    |    |             |
| 6086 <sub>h</sub> | motion_profile_type              | VAR    | Integer16      |       | rw    | Possible | none                          |     |       | m     |    | m  |    |    |             |
| 6406 <sub>h</sub> | motor_calibration_date           | VAR    | Date           |       | rw    | Possible | -                             |     |       |       |    |    |    |    |             |
| 6403 <sub>h</sub> | motor_catalogue_number           | VAR    | Visible String |       | rw    | Possible | -                             |     |       |       |    |    |    |    |             |
| 6410 <sub>h</sub> | motor_data                       | RECORD |                |       |       |          |                               |     |       |       |    |    |    |    |             |
| 6404 <sub>h</sub> | motor_manufacturer               | VAR    | Visible String |       | rw    | Possible | -                             |     |       |       |    |    |    |    |             |
| 6075h             | motor_rated_current              | VAR    | Unsigned32     |       | rw    | optional | 1 mA                          |     |       | 0     |    |    | 0  |    |             |
| 6076h             | motor_rated_torque               | VAR    | Unsigned32     |       | rw    | optional | 0.001 Nm                      |     |       | 0     |    |    | О  |    |             |
| 6407 <sub>h</sub> | motor_service_period             | VAR    | Unsigned32     |       | rw    | Possible | -                             |     |       |       |    |    |    |    |             |
| 6402 <sub>h</sub> | motor_type                       | VAR    | Unsigned16     |       | rw    | Possible | -                             |     |       |       |    |    |    |    |             |
| 607E <sub>h</sub> | polarity                         | VAR    | Unsigned8      |       | rw    | Possible | -                             |     |       | 0     | 0  | 0  | 0  |    |             |
| 6064 <sub>h</sub> | position_actual_value            | VAR    | Integer32      |       | ro    | Possible | position units                |     | 0     |       |    |    |    |    |             |
| 6063 <sub>h</sub> | position_actual_value*           | VAR    | Integer32      |       | ro    | Possible | increments                    |     | 0     |       |    |    |    |    |             |
| 60FB <sub>h</sub> | position_control_parameter_set   | RECORD |                |       |       |          |                               |     |       |       |    |    |    |    |             |
| 6062 <sub>h</sub> | position_demand_value            | VAR    | Integer32      |       | ro    | Possible | position units                |     |       |       |    |    |    |    |             |

| object            | object name                 | object | type       | sub-  | attr. | PDO      | units                        | man | dator | y for |    |    |    |    | description |
|-------------------|-----------------------------|--------|------------|-------|-------|----------|------------------------------|-----|-------|-------|----|----|----|----|-------------|
| no                |                             | code   |            | index |       |          |                              | all | hm    | pp    | ip | pν | tq | vI |             |
| 60FC <sub>h</sub> | position_demand_value*      | VAR    | Integer32  |       | ro    | Possible | increments                   |     | 0     |       |    |    |    |    |             |
| 608A <sub>h</sub> | position_dimension_index    | VAR    | Unsigned8  |       | rw    | Possible | -                            |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 608F <sub>h</sub> | position_encoder_resolution | ARRAY  | Unsigned32 |       |       |          |                              |     |       |       |    |    |    |    |             |
| 6093 <sub>h</sub> | position_factor             | ARRAY  | Unsigned32 |       |       |          |                              |     |       |       |    |    |    |    |             |
| 5089 <sub>h</sub> | position_notation_index     | VAR    | Integer8   |       | rw    | Possible | -                            |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 607B <sub>h</sub> | position_range_limit        | ARRAY  | Integer32  |       |       |          |                              |     |       |       |    |    |    |    |             |
| 6067 <sub>h</sub> | position_window             | VAR    | Unsigned32 |       | rw    | Possible | position units               |     |       |       |    |    |    |    |             |
| 6068 <sub>h</sub> | position_window_time        | VAR    | Unsigned16 |       | rw    | Possible | milliseconds                 |     |       |       |    |    |    |    |             |
| 60F7h             | power_stage_parameters      | RECORD |            |       |       |          |                              |     |       |       |    |    |    |    |             |
| 6083 <sub>h</sub> | profile_acceleration        | VAR    | Unsigned32 |       | rw    | Possible | acceleration units           |     |       | m     |    | m  |    |    |             |
| 6084 <sub>h</sub> | profile_deceleration        | VAR    | Unsigned32 |       | rw    | Possible | acceleration units           |     |       | m     |    | m  |    |    |             |
| 5081 <sub>h</sub> | profile_velocity            | VAR    | Unsigned32 |       | rw    | Possible | speed units                  |     |       | m     |    | m  |    |    |             |
| 6085 <sub>h</sub> | quick_stop_deceleration     | VAR    | Unsigned32 |       | rw    | Possible | acceleration units           |     |       | 0     | 0  | 0  | 0  |    |             |
| 605A <sub>h</sub> | quick_stop_option_code      | VAR    | Integer16  |       | rw    | No       | -                            | 0   |       |       |    |    |    |    |             |
| 606Ah             | sensor_selection_code       | VAR    | Integer16  |       | rw    | Possible | -                            |     |       |       |    | m  |    |    |             |
| 605B <sub>h</sub> | shutdown_option_code        | VAR    | Integer16  |       | rw    | No       | -                            | 0   |       |       |    |    |    |    |             |
| 607D <sub>h</sub> | software_position_limit     | ARRAY  | Integer32  |       |       |          |                              |     |       |       |    |    |    |    |             |
| 6041 <sub>h</sub> | statusword                  | VAR    | Unsigned16 |       | ro    | Possible | -                            | m   |       |       |    |    |    |    |             |
| 605D <sub>h</sub> | stop_option_code            | VAR    | Integer16  |       | rw    | No       | -                            | 0   |       |       |    |    |    |    |             |
| 6502 <sub>h</sub> | supported_drive_modes       | VAR    | Unsigned32 |       | ro    | Possible | -                            |     |       |       |    |    |    |    |             |
| 607A <sub>h</sub> | target_position             | VAR    | Integer32  |       | rw    | Possible | position units               |     |       | m     | m  |    |    |    |             |
| 6071h             | target_torque               | VAR    | Integer16  |       | rw    | optional | per thousand of rated torque |     |       |       |    |    | m  |    |             |
| 60FFh             | target_velocity             | VAR    | Integer32  |       | rw    | Possible | velocity units G2            |     |       |       |    | m  |    |    |             |
| 6077h             | torque_actual_value         | VAR    | Integer16  |       | ro    | optional | per thousand of rated torque |     |       | 0     |    |    | 0  |    |             |
| 60F6h             | torque_control_parameters   | RECORD |            |       |       |          |                              |     |       |       |    |    |    |    |             |
| 6074h             | torque_demand_value         | VAR    | Integer16  |       | ro    | optional | per thousand of rated torque |     |       | 0     |    |    | 0  |    |             |
| 5088h             | torque profile type         | VAR    | Integer16  |       | rw    | optional | none                         |     |       |       |    |    | m  |    |             |

| Objec             | t Dictionary sorted by Na         | ıme    |            |       |       |          |                                         |     |       |       |    |    |    |    |             |
|-------------------|-----------------------------------|--------|------------|-------|-------|----------|-----------------------------------------|-----|-------|-------|----|----|----|----|-------------|
| object            | object name                       | object | type       | sub-  | attr. | PDO      | units                                   | man | dator | y for |    |    |    |    | description |
| no                |                                   | code   |            | index |       |          |                                         | all | hm    | pp    | ip | pv | tq | νI |             |
| 6087h             | torque_slope                      | VAR    | Unsigned32 |       | rw    | optional | per thousand of rated torque per second |     |       |       |    |    | m  |    |             |
| 606Ch             | velocity_actual_value             | VAR    | Integer32  |       | ro    | Possible | velocity units G2                       |     |       |       |    | m  |    |    |             |
| 60F9h             | velocity_control_parameter_set    | RECORD |            |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 606Bh             | velocity_demand_value             | VAR    | Integer32  |       | ro    | Possible | velocity units G2                       |     |       |       |    | m  |    |    |             |
| 608C <sub>h</sub> | velocity_dimension_index          | VAR    | Unsigned8  |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 6094 <sub>h</sub> | velocity_encoder_factor           | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 6090 <sub>h</sub> | velocity_encoder_resolution       | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 6095 <sub>h</sub> | velocity_factor_1                 | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 6096 <sub>h</sub> | velocity_factor_2                 | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 608B <sub>h</sub> | velocity_notation_index           | VAR    | Integer8   |       | rw    | Possible | -                                       |     | 0     | 0     | 0  | 0  | 0  |    |             |
| 6069h             | velocity_sensor_actual_value      | VAR    | Integer32  |       | ro    | Possible | increments/sec                          |     |       |       |    | m  |    |    |             |
| 6069h             | velocity_sensor_actual_value      | VAR    | Integer32  |       | ro    | Possible | increments/sec                          |     |       |       |    | m  |    |    |             |
| 606Fh             | velocity_threshold                | VAR    | Unsigned16 |       | rw    | Possible | velocity units G2                       |     |       |       |    | 0  |    |    |             |
| 6070h             | velocity_threshold_time           | VAR    | Unsigned16 |       | r/w   | Possible | millisecond                             |     |       |       |    | 0  |    |    |             |
| 606Dh             | velocity_window                   | VAR    | Unsigned16 |       | rw    | Possible | velocity units G2                       |     |       |       |    | o  |    |    |             |
| 606Eh             | velocity_window_time              | VAR    | Unsigned16 |       | rw    | Possible | millisecond                             |     |       |       |    | o  |    |    |             |
| 6054h             | vl_actual_percentage              | VAR    | Integer16  |       | ro    | Possible | (100/16383) %                           |     |       |       |    |    |    | 0  |             |
| 6044h             | vl_control_effort                 | VAR    | Integer16  |       | ro    | Possible | Speed Units G1a                         |     |       |       |    |    |    | m  |             |
| 604Ch             | vl_dimension_factor               | ARRAY  | Integer32  |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 6059h             | vl_frequency_motor_min_max        | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 6058h             | vl_frequency_motor_min_max_amount | ARRAY  | Unsigned32 |       |       |          |                                         |     |       |       |    |    |    |    |             |
| 6055h             | vl_manipulated_percentage         | VAR    | Integer16  |       | ro    | Possible | (100/16383) %                           |     |       |       |    |    |    | 0  |             |
| 6045h             | vl_manipulated_velocity           | VAR    | Integer16  |       | ro    | Possible | Speed Units G1a                         |     |       |       |    |    |    | o  |             |
| 6052h             | vl_nominal_percentage             | VAR    | Integer16  |       | rw    | Possible | (100/16383) %                           |     |       |       |    |    |    | 0  |             |
| 6053h             | vl_percentage_demand              | VAR    | Integer16  |       | ro    | Possible | (100/16383) %                           |     |       |       |    |    |    | 0  |             |
| 604Dh             | vl_pole_number                    | VAR    | Unsigned8  |       | rw    | Possible | - (number of poles)                     |     |       |       |    |    |    | 0  |             |
| 6051h             | vl_quick_stop_time                | VAR    | Unsigned32 |       | rw    | Possible | Milliseconds (ms)                       |     |       |       |    |    |    | 0  |             |
| 604Fh             | vl_ramp_function_time             | VAR    | Unsigned32 |       | rw    | Possible | Milliseconds (ms)                       |     |       |       |    |    |    | 0  |             |
| 604Bh             | vl_setpoint_factor                | ARRAY  | Integer16  |       |       |          |                                         |     |       |       |    |    |    |    |             |

| Objec  | t Dictionary sorted by Na        | ame    |            |       |       |          |                   |     |       |       |    |    |    |    |             |
|--------|----------------------------------|--------|------------|-------|-------|----------|-------------------|-----|-------|-------|----|----|----|----|-------------|
| object | object name                      | object | type       | sub-  | attr. | PDO      | units             | man | dator | y for |    |    |    |    | description |
| no     |                                  | code   |            | index |       |          |                   | all | hm    | pp    | ip | pν | tq | vI |             |
| 6050h  | vl_slow_down_time                | VAR    | Unsigned32 |       | rw    | Possible | Milliseconds (ms) |     |       |       |    |    |    | 0  |             |
| 6042h  | vl_target_velocity               | VAR    | Integer16  |       | rw    | Possible | Speed Units G1a   |     |       |       |    |    |    | m  |             |
| 6048h  | vl_velocity_acceleration         | RECORD |            |       |       |          |                   |     |       |       |    |    |    |    |             |
| 6049h  | vl_velocity_deceleration         | RECORD |            |       |       |          |                   |     |       |       |    |    |    |    |             |
| 6043h  | vl_velocity_demand               | VAR    | Integer16  |       | ro    | Possible | Speed Units G1a   |     |       |       |    |    |    | m  |             |
| 6047h  | vl_velocity_min_max              | ARRAY  | Unsigned32 |       |       |          |                   |     |       |       |    |    |    |    |             |
| 6046h  | vl_velocity_min_max_amount       | ARRAY  | Unsigned32 |       |       |          |                   |     |       |       |    |    |    |    |             |
| 6057h  | vl_velocity_motor_min_max        | ARRAY  | Unsigned32 |       |       |          |                   |     |       |       |    |    |    |    |             |
| 6056h  | vl_velocity_motor_min_max_amount | ARRAY  | Unsigned32 |       |       |          |                   |     |       |       |    |    |    |    |             |
| 604Ah  | vl_velocity_quick_stop           | RECORD |            |       |       |          |                   |     |       |       |    |    |    |    |             |
| 604Eh  | vl_velocity_reference            | VAR    | Unsigned32 |       | rw    | Possible | Speed Units G1a   |     |       |       |    |    |    | 0  |             |

### **D** Definition of Dimension Indices

### **D.1** Dimension/Notation Index Table

| physical<br>dimension | dimension index | units<br>exponent | unit typ   | notation index |
|-----------------------|-----------------|-------------------|------------|----------------|
| non                   | 0               | units             |            | 0              |
| length                | 1               |                   | metre      | 0              |
|                       |                 | milli             | metre      | -3             |
|                       |                 | kilo              | metre      | 3              |
|                       |                 | micro             | metre      | -6             |
| area                  | 2               | square            | metre      | 0              |
|                       |                 | square milli      | metre      | -6             |
|                       |                 | square kilo       | metre      | 6              |
| volume                | 3               | cubic             | metre      | 0              |
| time                  | 4               |                   | second     | 0              |
|                       |                 |                   | minute     | 70             |
|                       |                 |                   | hour       | 74             |
|                       |                 |                   | day        | 77             |
|                       |                 | milli             | second     | -3             |
|                       |                 | micro             | second     | -6             |
| actual power          | 9               |                   | watt       | 0              |
|                       |                 | kilo              | watt       | 3              |
|                       |                 | mega              | watt       | 6              |
|                       |                 | milli             | watt       | -3             |
| apparent power        | 10              |                   | voltampere | 0              |
|                       |                 | kilo              | voltampere | 3              |
|                       |                 | mega              | voltampere | 6              |
| no. of revolutions    | 11              |                   | per second | 0              |
|                       |                 |                   | per minute | 73             |
|                       |                 |                   | per hour   | 74             |
| angle                 | 12              |                   | radian     | 0              |
|                       |                 |                   | second     | 75             |
|                       |                 |                   | minute     | 76             |
|                       |                 |                   | degree     | 77             |
|                       |                 |                   | newdegree  | 78             |

| physical              | dimension | units      |                 | notation |
|-----------------------|-----------|------------|-----------------|----------|
| dimension             | index     | exponent   | unit typ        | index    |
| velocity              | 13        |            | metre p. second | 0        |
|                       |           | milli      | metre p. second | -3       |
|                       |           | milli      | metre p. minute | 79       |
|                       |           |            | metre p. minute | 80       |
|                       |           | kilo       | metre p. minute | 81       |
|                       |           | milli      | metre p. hour   | 82       |
|                       |           |            | metre p. hour   | 83       |
|                       |           | kilo       | metre p. hour   | 84       |
| torque                | 16        |            | newton metre    | 0        |
|                       |           | kilo       | newton metre    | 3        |
|                       |           | mega       | newton metre    | 6        |
| temperature           | 17        |            | kelvin          | 0        |
|                       |           |            | centigrade      | 94       |
|                       |           |            | Fahrenheit      | 95       |
| voltage               | 21        |            | Volt            | 0        |
|                       |           | kilo       | Volt            | 3        |
|                       |           | milli      | Volt            | -3       |
|                       |           | micro      | Volt            | -6       |
| current               | 22        |            | Ampere          | 0        |
|                       |           | kilo       | Ampere          | 3        |
|                       |           | milli      | Ampere          | -3       |
|                       |           | micro      | Ampere          | -6       |
| ratio                 | 24        |            | percent         | 0        |
| frequency             | 28        |            | Hertz           | 0        |
|                       |           | kilo       | Hertz           | 3        |
|                       |           | mega       | Hertz           | 6        |
|                       |           | giga       | Hertz           | 9        |
| steps                 | 32        |            | steps           | 0        |
| encoder<br>resolution | 33        | revolution | steps per       | 0        |

Table 14: Dimension/Notation Index Table

### D.2 Examples for Notation Indices

#### **Examples for notation indices < 64:**

For notation index <64 the value is used as an exponent. The unit is defined by the physical dimension and calculated by unit type and exponent, all declared in the dimension/notation index table above.

#### position unit

dimension index = 1: length notation index = -6: micro meter

position\_units =  $10^{\text{notation\_index}}$  x f(dimension\_index) =  $10^{-6}$  m

dimension index = 12: angle notation index = 0: radian

position\_units =  $10^{\text{notation\_index}}$  x f(dimension\_index)

= radian

#### velocity unit

dimension index = 13: velocity

notation index = -3: milli metre per second

velocity\_units =  $10^{\text{notation\_index}}$  x f(dimension\_index) =  $10^{-3}$  m/s

#### frequency units

dimension index = 28: frequency notation index = 3: kilo hertz

frequency\_units =  $10^{\text{notation\_index}}$  x f(dimension\_index) =  $10^3$  Hz

### Examples for notation indices > 64:

The unit is defined by the physical dimension and unit type, both declared in the dimension/notation index table.

#### time units

dimension index = 4: time notation index = 77: day

time\_units =  $f(dimension_index, notation_index)$ 

= day

#### position unit

dimension index = 12: angle notation index = 76: minute

position\_units = f(dimension\_index,notation\_index)

= minute

## E Index

| *                                       | 74   |
|-----------------------------------------|------|
| Abbreviation                            |      |
| abort_connection_option_code            |      |
| acceleration_dimension_index            | 83   |
| acceleration_factor                     | 92   |
| acceleration_notation_index             | 82   |
| Acronyms                                | 10   |
| Appendix                                | 19-1 |
| asterisk                                | 74   |
| broadcast                               |      |
| buffer_clear                            |      |
| buffer_position                         |      |
| CAN                                     |      |
| ce 10                                   |      |
| change_set_immediatly                   | 106  |
| Chapters                                |      |
| Common entries in the object dictionary |      |
| Device Control                          |      |
| Emergency Messages                      |      |
| Factor Group                            | 74   |
| Homing Mode                             |      |
| Interpolated Position Mode              |      |
| Object Dictionary                       |      |
| Operating Principle                     |      |
| Position Control Function               |      |
| Predefinitions                          | 24   |
| Profile Position Mode                   | 94   |
| Profile Velocity Mode                   | 151  |
| Profile Torque Mode                     |      |
| Velocity Mode                           |      |
| CiA                                     |      |
| CMS                                     | 10   |
| COB                                     |      |
| COB-ID.                                 |      |
| Communication Object                    |      |
| Communication Profile Area              |      |
| Complex Data Types                      |      |
| Control Loop                            |      |
| control_effort                          |      |
| Control-Functions                       |      |
| controlword                             | 55   |
| current_actual_value                    |      |
| DBT                                     |      |
| dc 10                                   |      |
| DC_link_circuit_voltage                 |      |
| Definitions                             |      |
| Device Control                          |      |
| Device Control Commands                 |      |
| device profile area                     |      |
| Device type                             |      |
| Device-Controlling                      |      |
| digital_inputs                          |      |
| digital_outputs                         |      |
| Dimension Indices, Definition           |      |

| disable_operation_option_code          |                                       |
|----------------------------------------|---------------------------------------|
| Drive Data                             |                                       |
| drive disabling function               |                                       |
| Drive States                           |                                       |
| Drive Supervisor                       |                                       |
| drive_catalogue_number                 |                                       |
| drive_data                             |                                       |
| drive_manufacturer                     |                                       |
| Emergency messages                     |                                       |
| end_velocity                           |                                       |
| error classification                   |                                       |
| Error code                             |                                       |
| Error Register                         |                                       |
| error_code                             |                                       |
| Factors                                |                                       |
| Fault                                  |                                       |
| Fault Reaction                         |                                       |
| Fault Reaction Active                  |                                       |
| fault_reaction_option_code             |                                       |
| feed_constant                          |                                       |
| fifo                                   |                                       |
| Following_error                        |                                       |
| following_error_actual_value           | 129                                   |
| following_error_time_out               | 127                                   |
| following_error_window                 | 126                                   |
| force                                  | 163                                   |
| gear_ratio                             | 86                                    |
| general sync signal                    | 134                                   |
| group sync signal                      |                                       |
| hm                                     |                                       |
| home_offset                            |                                       |
| Homing Function                        |                                       |
| Homing Methods                         |                                       |
| Homing Mode                            |                                       |
| homing_acceleration                    |                                       |
| homing_method                          |                                       |
| homing_speeds                          |                                       |
| http_drive_catalog_address             |                                       |
| http_motor_catalog_address             |                                       |
| IDO                                    |                                       |
| Index                                  |                                       |
| Index Pulse                            |                                       |
| Input Buffer                           |                                       |
| Internal Data Object                   |                                       |
| internal units                         |                                       |
| Interpolated Position Mode             |                                       |
| interpolation algorithm                |                                       |
| interpolation data buffer organisation |                                       |
| •                                      |                                       |
| interpolation motion controller        |                                       |
| Interpolation Position Mode            |                                       |
| interpolation_data                     |                                       |
| interpolation_data_configuration       |                                       |
| interpolation_data_record              |                                       |
| interpolation_submode_select           |                                       |
| interpolation_sync_definition          |                                       |
| interpolation_time_period              | 134, 142                              |
| ip 10                                  | -                                     |
| ip_data_record                         |                                       |
| Limit Switch                           | · · · · · · · · · · · · · · · · · · · |
| linear interpolation                   | 149                                   |

| Linear Interpolation Position Mode |     |
|------------------------------------|-----|
| LMT                                |     |
| MAC                                |     |
| Manufacturer Specific Data Types   |     |
| max_ current                       |     |
| max_acceleration                   | 105 |
| max_deceleration                   | 106 |
| max_motor_speed                    | 101 |
| max_profile_velocity               |     |
| max_slippage                       |     |
| max_torque                         | 166 |
| modes_of_operation                 | 68  |
| modes_of_operation_display         |     |
| motion_profile_type                | 104 |
| Motor Data                         |     |
| motor_calibration_date             |     |
| motor_catalogue_number             |     |
| motor_data                         |     |
| motor_manufacturer                 |     |
| motor_rated_current                |     |
| motor_rated_torque                 |     |
| motor_service_period.              |     |
| motor_type                         |     |
| Naming conventions                 |     |
| NMT                                |     |
| Not Ready to Switch On.            |     |
| Object 1000 <sub>h</sub> :         |     |
| Object 1000 <sub>h</sub> :         |     |
| Object 6007 <sub>h</sub> :         |     |
| Object 603F <sub>h</sub> :         |     |
| Object 6040 <sub>h</sub> :         |     |
|                                    |     |
| Object 6041 <sub>h</sub> :         |     |
| Object $6042_h$                    |     |
| Object 6043 <sub>h</sub>           |     |
| Object 6044 <sub>h</sub>           |     |
| Object 6045 <sub>h</sub>           |     |
| Object 6046 <sub>h</sub>           |     |
| Object 6047 <sub>h</sub>           |     |
| Object 6048 <sub>h</sub>           |     |
| Object 6049 <sub>h</sub>           |     |
| Object 604A <sub>h</sub>           |     |
| Object 604B <sub>h</sub>           |     |
| Object 604C <sub>h</sub>           |     |
| Object 604D <sub>h</sub>           |     |
| Object 604E <sub>h</sub>           |     |
| Object 604F <sub>h</sub>           |     |
| Object 6050 <sub>h</sub>           |     |
| Object 6051 <sub>h</sub>           | 207 |
| Object 6052 <sub>h</sub>           | 209 |
| Object 6053 <sub>h</sub>           | 182 |
| Object 6054 <sub>h</sub>           | 183 |
| Object 6055 <sub>h</sub>           | 184 |
| Object 6056 <sub>h</sub>           | 197 |
| Object 6057 <sub>h</sub>           |     |
| Object 6058 <sub>h</sub>           |     |
| Object 6059 <sub>h</sub>           |     |
| Object 605A <sub>h</sub> :         |     |
| Object 605B <sub>h</sub> :         |     |
| Object 605C <sub>h</sub> :         |     |
| Object 605D <sub>h</sub> :         |     |

| Object 605E <sub>h</sub> : |     |
|----------------------------|-----|
| Object 6060 <sub>h</sub> : |     |
| Object 6061 <sub>h:</sub>  |     |
| Object 6062 <sub>h</sub> : |     |
| Object 6063 <sub>h</sub> : | 124 |
| Object 6064 <sub>h</sub> : | 125 |
| Object 6065 <sub>h</sub> : | 126 |
| Object 6066 <sub>h</sub> : |     |
| Object 6067 <sub>h</sub> : |     |
| Object 6068 <sub>h</sub> : |     |
| Object 6069 <sub>h</sub> : |     |
| Object 606A <sub>h</sub> : |     |
| Object 606B <sub>h</sub> : |     |
| Object 606C <sub>h</sub> : |     |
| Object 606D <sub>h</sub> : |     |
|                            |     |
| Object 606E <sub>h</sub> : |     |
| Object 606F <sub>h</sub> : |     |
| Object 6070 <sub>h</sub> : |     |
| Object 6071 <sub>h</sub> : |     |
| Object 6072 <sub>h</sub> : |     |
| Object 6073 <sub>h</sub> : |     |
| Object 6074 <sub>h</sub> : |     |
| Object 6075 <sub>h</sub> : | 168 |
| Object 6076 <sub>h</sub> : | 168 |
| Object 6077 <sub>h</sub> : | 169 |
| Object 6078 <sub>h</sub>   | 169 |
| Object 6079 <sub>h</sub>   | 170 |
| Object 607A <sub>h</sub> : |     |
| Object 607B <sub>h</sub> : |     |
| Object 607C <sub>h</sub> : |     |
| Object 607D <sub>h</sub> : |     |
| Object 607E <sub>h</sub> : |     |
| Object 607F <sub>h</sub> : |     |
| Object 6080h:              |     |
| Object 6080 <sub>h</sub> : |     |
| Object 6082 <sub>h</sub> : |     |
| •                          |     |
| Object 6083 <sub>h</sub> : |     |
| Object 6084 <sub>h</sub> : |     |
| Object 6085 <sub>h</sub> : |     |
| Object 6086 <sub>h</sub> : |     |
| Object 6087 <sub>h</sub>   |     |
| Object 6088 <sub>h</sub>   |     |
| Object 6089 <sub>h</sub> : |     |
| Object 608A <sub>h</sub> : |     |
| Object $608B_h$ :          | 80  |
| Object 608C <sub>h</sub> : | 81  |
| Object 608D <sub>h</sub> : | 82  |
| Object 608E <sub>h</sub> : | 83  |
| Object 608F <sub>h</sub> : |     |
| Object 6090 <sub>h</sub> : |     |
| Object 6091 <sub>h</sub> : |     |
| Object 6092 <sub>h</sub> : |     |
| Object 6093 <sub>h</sub> : |     |
| Object 6094 <sub>h</sub> : |     |
| •                          |     |
| Object 6095 <sub>h</sub> : |     |
| Object 6096 <sub>h</sub> : |     |
| Object 6097 <sub>h</sub> : |     |
| Object $6098_h$ :          |     |
| Object 6099 <sub>h</sub> : |     |
| Object 609A <sub>h</sub> : | 113 |

| Object 60CO <sub>h</sub> :     | 140     |
|--------------------------------|---------|
| Object 60C1 <sub>h</sub> :     | 140     |
| Object 60C2 <sub>h</sub> :     | 142     |
| Object 60C3 <sub>h</sub> :     | 143     |
| Object 60C4 <sub>h</sub> :     | 144     |
| Object 60C5 <sub>h</sub> :     | 105     |
| Object 60C6 <sub>h</sub> :     | 106     |
| Object 60F4 <sub>h</sub>       |         |
| Object 60F6 <sub>h</sub>       |         |
| Object 60F7 <sub>h</sub>       |         |
| Object 60F8 <sub>h</sub> :     | 161     |
| Object 60F9 <sub>h</sub>       |         |
| Object 60FA <sub>h</sub> :     |         |
| Object 60FB <sub>h</sub> :     |         |
| Object 60FC <sub>h</sub> :     |         |
| Object 60FD <sub>h</sub> :     |         |
| Object 60FE <sub>h</sub> :     |         |
| Object 60FF <sub>h</sub> :     |         |
| Object 6402 <sub>h</sub>       |         |
| Object 6403 <sub>h</sub> :     |         |
| Object 6404 <sub>h</sub>       |         |
| Object 6405 <sub>h</sub> :     |         |
| Object 6406 <sub>h</sub>       |         |
| Object 6407 <sub>h</sub> :     |         |
| Object 6410 <sub>h</sub> :     |         |
| Object 6502 <sub>h</sub>       |         |
| Object 6503 <sub>h</sub> :     |         |
| Object 6504 <sub>h</sub> :     |         |
| Object 6505 <sub>h</sub> :     |         |
| Object 6510 <sub>h</sub> :     |         |
| Object 67FF <sub>h</sub> :     |         |
| Object Dictionary              |         |
| Object Dictionary by Chapter   |         |
| Object Dictionary by Index     |         |
| Object Dictionary by Name      |         |
| Operation Enable               |         |
| Operation Mode                 |         |
| Operation mode function        |         |
| Operation Modes                |         |
| hm                             | 109     |
| Profile Velocity Mode          |         |
| pv mode                        |         |
| Profile Torque Mode            |         |
| tq 163                         |         |
| tq mode                        | 163     |
| Velocitiy Mode                 |         |
| pc 10                          |         |
| PDO                            | 11      |
| PDO Mapping                    |         |
| physical in-/outputs           |         |
| digital inputs                 | 46      |
| digital outputs                |         |
| physical units                 |         |
| polarity                       |         |
| Position Control Function      |         |
| Position Range Limit           |         |
| position_actual_value          |         |
| position_actual_value*         | 124     |
| position_control_parameter_set | 131     |
| position demand value          | 124 124 |

| position_demand_value*      | 132 |
|-----------------------------|-----|
| position_dimension_index    |     |
| position_encoder            |     |
| position_encoder_resolution |     |
| position_factor             |     |
| position_notation_index     |     |
| Position_reached            |     |
| position_window             |     |
| position_window_time        |     |
| power_stage_parameters      | 172 |
| pp 10                       |     |
| pre_defined_error_field     |     |
| Predefined Objects          |     |
| Process Data Object         |     |
| Profile Position Mode       |     |
| Profile Velocity Mode       |     |
| profile_acceleration        |     |
| profile_deceleration        |     |
| profile_velocity            | 101 |
| pv 10, 151                  |     |
| Quick Stop Active           |     |
| quick stop function         |     |
| quick_stop_deceleration     |     |
| quick_stop_option_code      |     |
| Ready to Switch On          |     |
| Receive PDOs                |     |
| reserved areas              |     |
| Ring Buffer                 |     |
| SDO                         |     |
| sensor_selection_code       |     |
| Service Data Object         |     |
| Setpoint, Set of            |     |
| Setpoint, Single            |     |
| setpoint_acknowledge        |     |
| shutdown_option_code        |     |
| software_position_limit     |     |
| standard device             |     |
| State Diagram               |     |
| State Transitions           |     |
| statemachine                |     |
| Statemachine                |     |
| Static Data Types           |     |
| statusword                  |     |
| stop_option_code            |     |
| sub-index                   |     |
| supported_drive_modes       |     |
| Switch On Disabled          |     |
| Switched On State           |     |
| synch_signal                |     |
| target_position             |     |
| target_torque               |     |
| target_velocity             |     |
| Profile Torque Mode         |     |
| torque_actual_value         |     |
| torque_control_parameters   |     |
| torque_demand_value         |     |
| torque_profile_type         |     |
| torque_slope                | 170 |
| tq 10                       |     |
| trajectory generator        | 95  |

| Trajectory Generator              | 14            |
|-----------------------------------|---------------|
| Transmit PDOs                     | 30            |
| Velocity Mode                     | 174, 175, 177 |
| Closed_open_loop_control_function | 215           |
| Factor_function                   | 210           |
| General Description               | 174           |
| Percentage_function               | 210           |
| Pole_number_function              | 211           |
| Ramp_function                     | 213           |
| Ramp_min_function                 | 214           |
| Reference_calculation             | 215           |
| Reverse_factor_function           | 210           |
| Structure of                      | 175           |
| Velocity_limit_function           | 212           |
| Velocity_motor_limit_function     | 212           |
| vl_actual_percentage              |               |
| vl_dimension_factor               | 186           |
| vl_frequency_motor_min_max_amount | 193           |
| vl_manipulated_percentage         |               |
| vl_manipulated_velocity           |               |
| vl_nominal_percentage             |               |
| vl_percentage_demand              |               |
| vl_pole_number                    |               |
| vl_ramp_function_time             |               |
| vl_setpoint_factor                |               |
| vl_velocity_acceleration          |               |
| vl_velocity_deceleration          |               |
| vl_velocity_demand                |               |
| vl_velocity_min_max               |               |
| vl_velocity_min_max_amount        |               |
| vl_velocity_motor_min_max         |               |
| vl_velocity_quick_stop            |               |
| vl_velocity_reference             |               |
| velocity actual value             |               |
| velocity_control_parameter_set    |               |
| velocity_demand_value             |               |
| velocity_dimension_index          |               |
| velocity_encoder_factor           |               |
| velocity encoder resolution       |               |
| velocity_factor_1                 |               |
| velocity factor 2                 |               |
| velocity notation index           |               |
| velocity_sensor_actual_value      |               |
| velocity_threshold                |               |
| velocity_threshold_time           |               |
| velocity_window                   |               |
| velocity_window_time              |               |
| vl 10                             |               |
| vl_control_effort                 | 208           |
| vl_frequency_motor_min_max        |               |
| vl_quick_stop_time                |               |
| vl_slow_down_time                 |               |
| vl_target_velocity                |               |
| vl_velocity_motor_min_max_amount. |               |
| vm                                | 174           |