BAYESIAN ANALYSIS OF VARS, STATE-SPACE MODELS AND DSGES PART V - DSGES

Mattias Villani

Division of Statistics and Machine Learning
Department of Computer and Information Science
Linköping University

LECTURE OVERVIEW

- ► A DSGE model
- ▶ The likelihood function
- ► Bayesian inference
- Words of wisdom

Affärsvärlden om Ramses I, Maj 2005

INANS I RÄNTAN

Ekvationer på hal is

Riksbankens nylanserade ekonomiska modell som ska underlätta prognosarbetet och ligga till grund för räntepolitiken visar att dagens svenska styrränta på två procent är alldeles för låg. Nu är risken stor att riksbanksdirektionen faktiskt litat på modellresultaten och därför inte har sänkt räntan

en stora faran för svenska bolänare mmer inte från att inflationen plötsligt ta ta fart, lönerörelsen skena eller att njunkturen blir så stark att Riksbanken ingas böja räntan.

Nej, den stora faran tycks vara att riksinksledningen börjar lita på resultaten ån den ekonomiska modell som bander den här perioden försvunnit. Nu tycks det som om Riksbanken i högre grad har satsat på akademisk kompetens i stället för prognoskunnande när man nyrekryterat med superakademikern Anders Vredin i spetsen. Resultatet av den satsningen syns i den ekonomiska modell (DSGE) som den ekonomiska avdelnineen på Rikshare

A DSGE MODEL (RAMSES I)

- Small open economy
- ▶ 15 observed variables
- Many state variables
- ► > 50 'deep' parameters.
- Model parameters:
 - Steady state parameters (calibrated in Ramses)
 - Frictions: ξ_w , ξ_d , b,...
 - ▶ Shock processes: ρ_z , σ_z^2 ,...
 - ▶ Policy parameters r_{π} , σ_{R} ,...
 - VAR model for the exogenous variables (estimated separately)

PARAMETERS IN RAMSES I

Parameter	Prior distribution							
	Туре	Mean	Std. dev./df					
Calvo wages ξ_w	beta	0.750	0.050					
Calvo domestic prices ξ_d	beta	0.750	0.050					
Calvo import cons. prices $\xi_{m,c}$	beta	0.750	0.050					
Calvo import inv. prices $\xi_{m,i}$	beta	0.750	0.050					
Calvo export prices ξ_x	beta	0.750	0.050					
Indexationwages κ_w	beta	0.500	0.150					
Indexation prices κ_d	beta	0.500						
Markup domestic λ_d	truncnormal	1.200						
Markup imported cons. $\lambda_{m,c}$	truncnormal	1.200						
Markup imported invest. $\lambda_{m,i}$	trunenormal	1.200						
Investment adj. cost \tilde{S}''	normal	7.694						
Habit formation b	beta	0.650						
Subst. elasticity invest. η_i	invgamma	1.500	4					
Subst. elasticity foreign η_f	invgamma	1.500	4					
Technology growth μ_z	truncnormal	1.006	0.0005					
Risk premium $\tilde{\phi}_a$	invgamma	0.010	2					
UIP modification $\tilde{\phi}_s$	beta	0.500	0.15					
Unit root tech. shock ρ_u	beta	0.850	0.100					
Stationary tech. shock p.	beta	0.850	0.100					
Invest. spec. tech shock p _y	beta	0.850	0.100					
Asymmetrictech. shock ρ ₂ ,	beta	0.850	0.100					
Consumption pref. shock ρ_{ζ}	beta	0.850	0.100					
Labor supply shock ρ_{ζ_h}	beta	0.850	0.100					

Risk premium shock $\rho_{\tilde{\phi}}$	beta
Unit root tech. shock $\sigma_{\mu_{\nu}}$	inv
Stationary tech. shock σ_{ϵ}	invg
Invest. spec. tech. shock σ_{Υ}	inv
Asymmetric tech. shock σ20	inv
Consumption pref. shock σ _ζ	invg
Labor supply shock σ_{ζ_b}	invg
Risk premium shock σ _ã	invg
Domestic markup shock σ_{λ_d}	invg
Imp. cons. markup shock $\sigma_{\lambda_{m,c}}$	inve
Imp.invest.markupshock σλ,,,	invg
Export markup shock σ _λ ,	inve
Interest rate smoothing $\rho_{R,1}$	beta
Inflation response $r_{\pi,1}$	trur
Diff. infl response $r_{\Delta \pi, 1}$	nor
Real exch. rate response $r_{x,1}$	nor
Nominal exch. response r_S	nor
Output response $r_{y,1}$	nor
Diff. output response $r_{\Delta y,1}$	nor
Monetary policy shock $\sigma_{R,1}$	inve
Inflation target shock $\sigma_{d^c,l}$	inv
Interest rate smoothing ρ_{R2}	beta
Inflation response $r_{\pi,2}$	trur
Diff. infl response $r_{\Delta \pi,2}$	nor
Real exch. rate response rx,2	nor
Output response $r_{\nu,2}$	nor
Diff. output response $r_{\Delta y,2}$	nor
Monetarypolicy shock $\sigma_{R,2}$	inv
Inflation target shock $\sigma_{\pi^c,2}$	inv

beta	0.850	0.100
invgamma	0.200	2
invgamma	0.700	2
invgamma	0.200	2
invgamma	0.400 0.200	2
invgamma	0.200	2
invgamma	1.000	
invgamma	0.050	2
invgamma	1.000	2
beta	0.800	0.050
truncnormal	1.700	0.100
normal	0.300	0.050
normal	0.000	0.050
normal	100	10
normal	0.125	0.050
normal	0.063	0.050
invgamma	0.150	2
invgamma	0.050	2
beta	0.800	0.050
truncnormal	1.700	0.100
normal	0.300	0.050
normal	0.000	0.050
normal	0.125	
normal	0.063	0.050
inveamma	0.150	2

0.050 2

invgamma

THE LIKELIHOOD FUNCTION

- lacktriangle Given a value for the parameter vector $heta= ilde{ heta}$, do the following:
 - Compute the steady-state of the model.
 - ► Solve the log-linearized model (e.g. AIM or Sims)
 - ► Set up state-space model

$$\begin{split} & \boldsymbol{\xi}_t = \mathbf{F}(\tilde{\boldsymbol{\theta}})\boldsymbol{\xi}_{t-1} + \mathbf{v}_t, \quad \mathbf{v}_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(\mathbf{0}, \mathbf{Q}(\tilde{\boldsymbol{\theta}})\right) \quad \text{(state transition equation)} \\ & \mathbf{y}_t = \mathbf{H}(\tilde{\boldsymbol{\theta}})'\boldsymbol{\xi}_t + \mathbf{w}_t, \quad \mathbf{w}_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(\mathbf{0}, \mathbf{R}\right) \quad \text{(measurement equation)} \end{split}$$

with

- ► Transitions for latent states (e.g. technology shocks)
- ▶ Matching states to observed variables through measurement equations
- ▶ Decide on measurement errors (R) or estimate them.
- Iterate the Kalman filter forward to compute the (marginalized) likelihood:

$$p(\mathbf{y}_{1:T}|\mathbf{F}(\theta),\mathbf{H}(\theta),\mathbf{Q}(\theta),\mathbf{R}(\theta))$$

BAYESIAN ANALYSIS OF DSGES

- ► Set up priors for all model parameters. Use micro data, historical macro data before the current dataset, data from other countries, expert opinions, Larry Christiano's parameter values ...
- **▶** Bayes' theorem (posterior ∝ likelihood × prior)

$$p(\theta|\mathbf{y}_{1:T}) \propto p(\mathbf{y}_{1:T}|\mathbf{F}(\theta), \mathbf{H}(\theta), \mathbf{Q}(\theta), \mathbf{R}(\theta)) \cdot p(\theta)$$

- ▶ Optimize numerically (fminunc with BFGS update of Hessian) to obtain $\hat{\theta}_{mode}$ and Hessian H at the mode.
- Initialize MCMC at $\hat{\theta}_{mode}$ and run random walk Metropolis algorithm with proposal

$$heta_{
ho} | heta^{(i-1)} \sim extstyle N \left(heta^{(i-1)}, c \cdot \Sigma
ight)$$

with $\Sigma = -H^{-1}$ and c tuned so that accept. prob. is roughly 0.25.

Check for convergence.

BAYESIAN ANALYSIS OF DSGES

- ► Compute functions of the parameter draws to approximate the posterior of other quantities (IRs).
- Compute marginal likelihoods with the modified Harmonic estimator (RWM) or Chib-Jeliazkov (IMH). Model comparison. Model averaging.
- Predictions.
- Posterior predictive checks.

PRIORS AND POSTERIORS - POLICY PARAMETERS

PRIOR SENSITIVITY

Table A.6: Prior sensitivity

Table A.6: Prior	r sens	itivity													
			Benchmark prior					Vague prior							
Parameter		Prior type	Prior distribution			Posterior distribution			Prior distribution			Posterior distribution			
			mean*	std /df	5%	mean	95%	std	mean*	std /df	5%	mean	95%	std	
Calvo wages	ξ_w	beta	0.675	0.050	0.607	0.690	0.766	0.048	0.675	0.100	0.579	0.711	0.848	0.082	
Calvo domestic prices	E _d	beta	0.675	0.050	0.862	0.891	0.921	0.018	0.675	0.100	0.934	0.961	0.981	0.015	
Calvo import cons. prices	$\xi_{m,c}$	beta	0.500	0.100	0.345	0.444	0.540	0.059	0.500	0.200	0.260	0.366	0.477	0.066	
Calvo import inv. prices	$\xi_{m,i}$	beta	0.500	0.100	0.641	0.721	0.792	0.046	0.500	0.200	0.965	0.985	0.996	0.011	
Calvo export prices	ξx	beta	0.500	0.100	0.506	0.612	0.717	0.065	0.500	0.200	0.492	0.585	0.679	0.057	
Calvo employment	Ĕe	beta	0.675	0.100	0.741	0.787	0.827	0.027	0.675	0.200	0.771	0.828	0.892	0.036	
Indexation wages	K_w	beta	0.500	0.150	0.258	0.497	0.739	0.145	0.500	0.200	0.118	0.378	0.689	0.173	
Index. domestic prices	K_d	beta	0.500	0.150	0.095	0.217	0.362	0.081	0.500	0.200	0.048	0.177	0.357	0.097	
Index. import cons. prices	$K_{m,c}$	beta	0.500	0.150	0.084	0.220	0.418	0.104	0.500	0.200	0.054	0.219	0.465	0.129	
Index. import inv. prices	$K_{m,i}$	beta	0.500	0.150	0.098	0.231	0.405	0.095	0.500	0.200	0.049	0.194	0.458	0.125	
Indexation export prices	K_x	beta	0.500	0.150	0.069	0.185	0.347	0.088	0.500	0.200	0.026	0.106	0.228	0.064	
Markup domestic	λ_d	inv. gamma	1.200	2	1.122	1.222	1.383	0.084	1.200	2	1.126	1.248	1.463	0.109	
Markup imported cons.	$\lambda_{m,c}$	inv. gamma	1.200	2	1.526	1.633	1.751	0.068	1.200	2	1.518	1.631	1.752	0.071	
Markup.imported invest.	$\lambda_{m,i}$	inv. gamma	1.200	2	1.146	1.275	1.467	0.100	1.200	2	1.111	1.183	1.292	0.057	
Investment adj. cost	\tilde{S} "	normal	7.694	1.500	6.368	8.670	10.958	1.396	7.694	3.000	2.793	7.047	11.488	2.644	
Habit formation	b	beta	0.650	0.100	0.608	0.708	0.842	0.068	0.650	0.200	0.948	0.976	0.995	0.015	
Subst. elasticity invest.	η_i	inv. gamma	1.500	4	1.393	1.696	2.142	0.235	1.500	4	1.315	1.477	1.699	0.121	
Subst. elasticity foreign	η_f	inv. gamma	1.500	4	1.340	1.486	1.674	0.104	1.500	4	1.308	1.441	1.616	0.095	
Technology growth	μ_z	trunc. normal	1.006	0.0005	1.004	1.005	1.006	0.000	1.006	0.001	1.004	1.005	1.005	0.001	
Capital income tax	τ_k	beta	0.120	0.050	0.072	0.135	0.200	0.039	0.120	0.100	0.120	0.205	0.283	0.049	
Labour pay-roll tax	τ_w	beta	0.200	0.050	0.118	0.197	0.286	0.051	0.200	0.100	0.060	0.194	0.379	0.098	
Risk premium	õ	inv. gamma	0.010	2	0.139	0.252	0.407	0.084	0.010	2	0.138	0.246	0.404	0.081	

IMPULSE RESPONSES DSGE

Fig. 3. Impulse responses (posterior median and 95% uncertainty intervals) to a one standard deviation monetary policy shock. Note: Benchmark (solid, left axis) and flexible prices and wages (dashed, right axis).

IMPULSE RESPONSES DSGE VS BVARS

BAYESIAN PREDICTION WITH DSGES

- ▶ Predictive distribution $p(\mathbf{y}_{T+1:T+h}|\mathbf{y}_{1:T})$ by simulation
 - Simulate a **parameter vector** $\tilde{\theta}$ from the posterior $p(\theta|\mathbf{y}_{1:T})$ by MCMC.
 - ▶ Draw the **current state** $\xi_T \sim N\left(\xi_{T|T}, P_{T|T}\right)$
 - Simulate **future states** for t = T + 1, ..., T + h from

$$\xi_t = \mathbf{F}(\tilde{\theta})\xi_{t-1} + \mathbf{v}_t, \quad \mathbf{v}_t \stackrel{iid}{\sim} N\left(0, \mathbf{Q}(\tilde{\theta})\right)$$

▶ Simulate the **observed variables** for t = T + 1, ..., T + h conditional on the simulated states:

$$\mathbf{y}_{t} = \mathbf{H}(\tilde{\theta})' \xi_{t} + \mathbf{w}_{t}, \quad \mathbf{w}_{t} \stackrel{iid}{\sim} N(0, \mathbf{R})$$

BAYESIAN PREDICTION WITH DSGES

FIGURE 4 Decomposition of the forecast uncertainty. The subgraphs display the relative contribution to the predictive variances of the observed variables at different forecast horizons.

FORECASTS DSGE

Fig. 3. Actual data (thick line) and forecasts (thin lines) 1999Q1–2004Q4 from the DSGE using different UIP specifications.

FORECAST EVALUATION DSGE 1999Q1-2004Q4

PRACTICAL OPTIMIZATION

- ▶ Numerical optimization in DSGEs can be hard.
- ► RAMSES I started out with **fminsearch**. Derivative-free optimizer. Slow, but robust.
- ▶ Once fminsearch has obtained a decent point, switch to **fminunc** with **BFGS** update of Hessian. Less robust, but fast and reliable enough when you are not to far from mode.
- ► Repeat the fminsearch/fminunc procedure with different starting values to check for local modes.
- ▶ Once the mode has been reached in a benchmark model, alternative specifications can use that mode as good initial values and converges fast.

PRACTICAL OPTIMIZATION

- ► Check the quality of the Hessian by:
 - Computing the exact log posterior by perturbing each parameter (one at a time). This produces a **slice** of the log posterior along each of the parameters.
 - Compute the following approximation of the posterior from the optimization output:

$$heta | \mathbf{y}_{1:T} \sim \mathcal{N}\left(\hat{ heta}_{mode}, \Sigma
ight)$$

where $\Sigma = -H^{-1}$.

3. Slice the approximate posterior along the jth parameter

$$p(\theta_j|\mathbf{y}_{1:T}) \approx N\left(\hat{\theta}_{j,mode}, s_j^2\right)$$

where s_j^2 is the (approximate) posterior variance of θ_j conditional on the other parameters being at their mode (computed from Σ by a simple formula).

4. Plot the slices from 1 and 3 in the same graph, one for each parameter.

SLICING THE POSTERIOR

MARGINAL LIKELIHOOD ESTIMATION

- ► The best marginal likelihood estimator depends on the MCMC algorithm [1]
 - Modified harmonic estimator works well with Random Walk Metropolis
 - ► Chib-Jeliazkov estimator works well with independence MH

CHOOSING YOUR MEASUREMENTS

Figure A.6a: Log likelihood contours in the $\{\widetilde{\phi}_s,\,\rho_\phi\}$ -space, using all observable variables

CHOOSING YOUR MEASUREMENTS

Figure A.6b: Log likelihood contours in the $\{\widetilde{\phi}_s,\,\rho_\phi\}$ -space, only using the real exchange rate

COMMENTS

- ▶ RAMSES I used calibrated measurement error variances (diagonal R). Ad hoc ... Calibrated measurement errors should depend on the properties of the measured variables. But, results were not very sensitive to the calibrated values.
- ▶ We also tried to estimate R (assuming it to be diagonal). Worked, but didn't change the posterior of the deep parameters very much.
- ▶ Measurement errors do have a crucial effect on the marginal likelihood comparison to reduced form models such as BVARs (and DSGE-VARs) [2].
- ▶ Posteriors can be bimodal (intrinsic and extrinsic frictions can produce similar fits). Not a problem per se, but the MCMC needs to visit both modes in correct proportions.

COMMENTS

- ▶ DSGEs are relatively misspecified models. Marginal likelihoods are not (so) useful. Impulse responses, predictive checks and traditional forecasting evaluations more relevant.
- ▶ Multivariate measures of forecasting performance (log determinant MSFE matrix) can be **very** sensitive to poor predicitions in **very** specific directions of the data. [3]

PREDITIVE CHECK DSGE

Fig. 2. Autocovariance functions in the data (thick) and the DSGE model (posterior predictive median; thin, and 95% posterior probability intervals; dotted).

- M. Adolfson, J. Lindé, and M. Villani, "Bayesian analysis of dsge models some comments," *Econometric Reviews*, vol. 26, no. 2-4, pp. 173–185, 2007.
- M. Adolfson, S. Laséen, J. Lindé, and M. Villani, "Evaluating an estimated new keynesian small open economy model," *Journal of Economic Dynamics and Control*, vol. 32, no. 8, pp. 2690–2721, 2008.
- M. Adolfson, J. Lindé, and M. Villani, "Forecasting performance of an open economy dsge model," *Econometric Reviews*, vol. 26, no. 2-4, pp. 289–328, 2007.