MACHINE LEARNING

ASSIGNMENT NO.-01

- # Predict the price of the Uber ride from a given pickup point to the agreed drop-off location.
- # Perform following tasks:
- # 1. Pre-process the dataset.
- # 2. Identify outliers.
- # 3. Check the correlation.
- # 4. Implement linear regression and random forest regression models.
- # 5. Evaluate the models and compare their respective scores like R2, RMSE, etc.
- # Dataset link: https://www.kaggle.com/datasets/yasserh/uber-fares-datase

Import necessary libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import r2_score, mean_squared_error

Load the dataset

data = pd.read_csv("Uber.csv")

data

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5
199995	42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	-73.986525	40.740297	1
199996	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	-74.006672	40.739620	1
199997	27804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	-73.858957	40.692588	2
199998	20259894	2015-05-20 14:56:25.0000004	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	-73.983215	40.695415	1
199999	11951496	2010-05-15 04:08:00.00000076	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	-73.985508	40.768793	1
200000 rows × 9 columns									

1. Pre-process the dataset

Remove unnecessary column

data["pickup_datetime"] = pd.to_datetime(data["pickup_datetime"])

missing_values = data.isnull().sum()

print("Missing values in the dataset:")

print(missing_values)

Handle missing values

We can choose to drop rows with missing values or fill them with appropriate values.

data.dropna(inplace=True)

```
# data.fillna(data.mean(), inplace=True)

# Ensure there are no more missing values
missing_values = data.isnull().sum()
print("Missing values after handling:")
print(missing_values)

# 2. Identify outliers
# visualization to detect outliers.
sns.boxplot(x=data["fare_amount"])
plt.show()
```

To fill missing values with the mean value of the column:

```
Missing values in the dataset:
                     0
key
fare_amount
                     0
pickup_datetime
                     0
pickup_longitude
                     0
pickup_latitude
                     0
dropoff longitude
                     1
dropoff_latitude
passenger_count
                     0
dtype: int64
Missing values after handling:
key
                     0
fare_amount
                     0
pickup_datetime
                     0
pickup_longitude
                     0
pickup_latitude
                     0
dropoff_longitude
                     0
dropoff_latitude
                     0
passenger_count
                     0
dtype: int64
```


Calculate the IQR for the 'fare_amount' column

Q1 = data["fare_amount"].quantile(0.25)

Q3 = data["fare_amount"].quantile(0.75)

IQR = Q3 - Q1

Define a threshold (e.g., 1.5 times the IQR) to identify outliers

threshold = 1.5

lower_bound = Q1 - threshold * IQR

upper_bound = Q3 + threshold * IQR

Remove outliers

data_no_outliers = data[(data["fare_amount"] >= lower_bound) & (data["fare_amount"] <=
 upper_bound)]</pre>

Visualize the 'fare_amount' distribution without outliers
sns.boxplot(x=data_no_outliers["fare_amount"])
plt.show()

data.plot(kind="box", subplots=True, layout=(7, 2), figsize=(15, 20))


```
# 3. Check the correlation
# Determine the correlation between features and the target variable
(fare_amount).
correlation_matrix = data.corr()
sns.heatmap(correlation_matrix, annot=True)
plt.show()
```



```
# 4. Implement linear regression and random forest regression models
# Split the data into features and target variable
X = data[['pickup_longitude', 'pickup_latitude', 'dropoff_longitude',
   'dropoff_latitude', 'passenger_count']]
y = data['fare_amount']  #Target
y
```

```
0 7.5

1 7.7

2 12.9

3 5.3

4 16.0

...

199995 3.0

199996 7.5

199997 30.9

199998 14.5

199999 14.1

Name: fare_amount, Length: 199999, dtype: float64
```

```
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random state=42)
# Create and train the linear regression model
lr_model = LinearRegression()
lr model.fit(X train, y train)
# Create and train the random forest regression model
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf model.fit(X train, y train)
# 5. Evaluate the models
# Predict the values
y_pred_lr = lr_model.predict(X_test)
y pred lr
print("Linear Model:",y_pred_lr)
y_pred_rf = rf_model.predict(X test)
print("Random Forest Model:", y pred rf)
# Calculate R-squared (R2) and Root Mean Squared Error (RMSE) for both models
r2_lr = r2_score(y_test, y_pred_lr)
rmse_lr = np.sqrt(mean_squared_error(y_test, y_pred lr))
# Compare the scores
print("Linear Regression - R2:", r2_lr)
print("Linear Regression - RMSE:", rmse lr)
Linear Regression - R2: 0.00034152697863043535
Linear Regression - RMSE: 10.197470623964248
r2_rf = r2_score(y_test, y_pred_rf)
rmse_rf = np.sqrt(mean_squared_error(y_test, y_pred_rf))
print("Random Forest Regression R2:", r2 rf)
print("Random Forest Regression RMSE:",rmse_rf)
Random Forest Regression R2: 0.7011790407391916
```

Random Forest Regression RMSE: 5.575350372469675