Theoretical expectation
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 $E(X^2) = \int_{0}^{\infty} x^2 f(x) dx$, $E(f(x)) = \int_{0}^{\infty} f(x) f(x) dx$
 $VAR(X) = E[(X-E(X))^2] = E(X^2) - (E(X))^2$

Let (X,Y) be $x = 2$ dirensional by with loint density $A(x_0)$ the gival density of X : $f_1(y) = \int_{0}^{\infty} f(x_0) dy$

the gival density of Y : $f_2(y) = \int_{0}^{\infty} f(x_0) dy$
 $f_3(y) = \int_{0}^{\infty} f(x_0) dx$
 $f_3(y) = \int_{0}^{\infty} f(x_0) dx$
 $f_3(y) = \int_{0}^{\infty} f(x_0) dx$
 $f_3(y) = \int_{0}^{\infty} f(x_0) dx$

Combinional distribution $f_3(y) = \int_{0}^{\infty} f_3(x_0) dx$

Scanned with CamScanner