Finite Automata | 73

Finite Automata | 73

■ For output, look into the next state and output column of the newly constructed Mealy machine. For a state as a next state (let qi) in the new constructed Mealy Machine if output is 0 then for the state (qi) as a present state in the constructing Moore Machine; the output will be 0.

73 Finite Automata

- For output, look into the next state and output column of the newly constructed Mealy machine. For a state as a next state (let qi) in the new constructed Mealy Machine if output is 0 then for the state (gi) as a present state in the constructing Moore Machine; the output will be 0.
- For the Moore machine, the output depends only on the present state. This means that from the beginning state for Λ input, we can get an output. If the output is 1, the newly constructed Moore machine can accept zero length string, which was not accepted by the given Mealy machine. To make the Moore machine not to accept Λ string, we have to add an extra state qb (new beginning state), whose state transactions will be identical with those of the existing beginning state, but with output as 0.

(For a Mealy machine with m number of states and n number of outputs, the Moore machine will be of n number of outputs but not more than mn+1 number of states.) The following examples (Example 3.18 to 3.20) describe the previous method.

Example 3.18 Convert the given Mealy machine to an equivalent Moore machine.

(For a Mealy machine with m number of states and n number of outputs, the Moore machine will be of n number of outputs but not more than mn+1 number of states.) The following examples (Example 3.18 to 3.20) describe the previous method.

Example 3.18 Convert the given Mealy machine to an equivalent Moore machine.

	I/P = 0				
				P = 1	
Present State	Next State	O/P	Next State	O/P	
$\rightarrow q_0$	q_0	1	q_1	0	_
q_1	q_3	1	q 3	1	
q_2	q_1	1	q_2	1	
<i>q</i> ₃	q_2	0	q_0	1	

Solution: Look into the next state and output columns of the given Mealy machine. For I/P 0 for q_1 as a next state, the output is 1. For I/P 1 for q_1 as a next state, the output is 0. The same thing happens for q_2 as a next state for input 0 and input 1. So the state q_1 is broken as q_10 and q_11 , and the state q_2 is broken as q_20 and q_21 . After breaking, the modified Mealy machine becomes

	I/P = 0			
			I/	P = 1
Present State	Next State	O/P	Next State	O/P
$ ightarrow q_0$	q_0	1	q_10	0
q_10	q_3	1	q ₃	1
q_11	q_3	1	q 3	1
$q_{2}0$	q_11	1	q_21	1
q_21	q_11	1	q_21	1
q ₃	$q_{2}0$	0	q_0	1

For the present state q_0 for input 1, the next state is q_10 , because there is no q_1 in the modifi ed Mealy machine. It has been broken into q_10 and q_11 depending on the output 0 and 1, respectively. For the present state q_0 for input 1, the output is 0. So the next state is q_10 . The same cases occur for the others also. For the broken states, the next states and outputs are the same as the original, from where the broken states have come.

74 Introduction to Automata Theory, Formal Languages and Computation

From this, the Moore machine becomes

74 Introduction to Automata Theory, Formal Languages and Computation

From this, the Moore machine becomes

	Next State			
Present State	I/P=0	I/P=1	O/P	
$ ightarrow q_0$	q_0	q_10	1	
q_10	q 3	q 3	0	
q_11	q 3	q 3	1	
$q_{2}0$	q_11	q_21	0	
q_21	q_11	q_21	1	
q ₃	$q_{2}0$	q_0	1	

For Moore machine the beginning state is q_0 and the corresponding output is 1.

That means, with null length input (no input), we are getting an output of 1-

That is, the Moore machine accepts 0 length sequence [because here output depends only on the present state] which is not acceptable for the Mealy machine. To overcome this situation, we must add a new beginning state qb with the same transactions as q_0 , but with output as 0. By including the new state, the Moore machine is

That is, the Moore machine accepts 0 length sequence [because here output depends only on the present state] which is not acceptable for the Mealy machine. To overcome this situation, we must add a new beginning state qb with the same transactions as q_0 , but with output as 0. By including the new state, the Moore machine is

	Next State				
Present State	I/P=0	I/P=1	O/P		
$ ightarrow q_b$	q_0	q_10	0		
q_0	q_0	q_10	1		
q_1 0	q 3	q 3	0		
q_11	q 3	q 3	1		
$q_{2}0$	q_11	q_21	0		
q_21	q_11	q_21	1		
q_3	$q_2 0$	q_0	1		

Convert the given Mealy machine to an equivalent Moore machine.

Convert the given Mealy machine to an equivalent Moore machine.

			I/	P = 1
Present State	Next State	O/P	Next State	O/P
$\rightarrow q_0$	q_2	Z_0	q_1	Z_1
q_1	q_0	Z_0	q_2	Z_0
q ₂	q_0	Z_1	q_2	Z_1

Convert the given Mealy machine to an equivalent Moore machine.

	-			P = 1
Present State	Next State	O/P	Next State	O/P
$\rightarrow q_0$	q_2	Z_0	q_1	Z_1
q_1	q_0	Z_0	q_2	Z_0
q ₂	q 0	Z_1	q_2	Z_1

Solution: For q0 for input 0, the output differs. For q2 for inputs 0 and 1, the output differs. So the states are broken as q00, q01 and q20, q21. According to the new states, the modified Mealy machine becomes

Convert the given Mealy machine to an equivalent Moore machine.

	I/P =	0		
			I/	P = 1
Present State	Next State	O/P	Next State	O/P
$ ightarrow q_0$	q_2	Z_0	q_1	Z_1
q_1	q_0	Z_0	q_2	Z_0
q_2	q_0	Z_1	q_2	Z_1

Solution: For q0 for input 0, the output differs. For q2 for inputs 0 and 1, the output differs. So the states are broken as q00, q01 and q20, q21. According to the new states, the modified Mealy machine becomes

	I/P = 0	0		
			1/	P=1
Present State	Next State	O/P	Next State	O/P
$ ightarrow q_0 0$	$q_{2}0$	Z_0	q_1	Z_1
q_01	$q_{2}0$	Z_0	q_1	Z_1

Finite Automata | 75

Finite Automata | 75

			1/	P = 1
Present State	Next State	O/P	Next State	O/P
$ ightarrow q_1$	q_00	Z_0	$q_2 0$	Z_0
$q_{2}0$	q_01	Z_1	q_21	Z_1
q_21	q_01	Z_1	q_21	Z_1

From this modified Mealy machine, the Moore machine is

From this modified Mealy machine, the Moore machine is

	Ne		
Present State	I/P=0	I/P=1	O/P
$ ightarrow q_0 0$	$q_{2}0$	q_10	Z_0
q_01	$q_{2}0$	q ₃	Z_1
q_1	q_00	q 3	Z_1
$q_{2}0$	q_01	q_21	Z_0
q_21	q_01	q_21	Z_1

Convert the given Mealy machine to an equivalent Moore machine.

Convert the given Mealy machine to an equivalent Moore machine.

	I/P =	0			
			I/	P = 1	
Present State	Next State	O/P	Next State	O/P	
$ ightarrow q_0$	q_2	0	q_1	0	
q_1	q_0	1	q ₃	0	
q_2	q_1	1	q_0	1	
q ₃	q_3	1	q_2	1	

Example 3.20

Convert the given Mealy machine to an equivalent Moore machine.

	I/P = 0	0		
			I/	P = 1
Present State	Next State	O/P	Next State	O/P
$\rightarrow q_0$	q_2	0	q_1	0
q_1	q_0	1	q ₃	0
q_2	q_1	1	q_0	1
q ₃	q_3	1	q_2	1

Solution: In the next state column of the given Mealy machine, the output differs for q_1 and q_3 as the next state. So, the states are divided as q_10 , q_11 and q_30 , q_31 , respectively.

After dividing the states, the modified Mealy machine becomes

After dividing the states, the modified Mealy machine becomes

	I/P = 0			
			I/P = 1	
Present State	Next State	O/P	Next State	O/P
$ ightarrow q_0$	q_2	0	q_10	0
q_1 0	q_0	1	$q_{3}0$	0
q_11	q_0	1	q_30	0
q_2	q_11	1	q_0	1
$q_{3}0$	q_31	1	q_2	0
q_31	q_31	1	q_2	0

After dividing the states, the modified Mealy machine becomes

	I/P = 0			
			I/P = 1	
Present State	Next State	O/P	Next State	O/P
$ ightarrow q_0$	q_2	0	q_10	0
q_10	q_0	1	q_30	0
q_11	q_0	1	q_30	0
q_2	q_11	1	q_0	1
q_30	q_31	1	q_2	0
q_31	q_31	1	q_2	0

In the next state column of the modified Mealy machine, when q0 is a next state, the output is 0. So, in the constructing Moore machine, for the present state q0, the output is also 0. Similarly, for the present

76 Introduction to Automata Theory, Formal Languages and Computation

state q_2 , the output is 0. For the divided states like q_10 , q_11 , there is no need to mention the output as they were divided according to the distinguished output. So, the constructing Moore machine is

state q_2 , the output is 0. For the divided states like q_10 , q_11 , there is no need to mention the output as they were divided according to the distinguished output. So, the constructing Moore machine is

	Ne		
Present State	I/P=0	I/P=1	O/P
$ ightarrow q_0 0$	q_2	q_10	1
q_10	q_0	q ₃ 0	0
q_11	q_0	q_30	1
q_2	q_11	q_0	0
$q_{3}0$	$q_{3}1$	q_2	0
q_31	q_31	q_2	1

To get rid of the problem of the occurrence of null string, we need to include another state, qa, with same transactions as of q0 but with output 0. The modified final Moore machine equivalent to the given Mealy machine becomes

To get rid of the problem of the occurrence of null string, we need to include another state, qa, with same transactions as of q0 but with output 0. The modified final Moore machine equivalent to the given Mealy machine becomes

	Next State		
Present State	I/P=0	I/P=1	O/P
$ ightarrow q_{ extstyle a}$	q_2	q_10	0
q_0	q_2	q_10	1
q_10	q_0	$q_{3}0$	0
q_11	q_0	$q_{3}0$	1
q_2	q_11	q_0	0
q_30	q_31	q_2	0
q_31	q_31	q_2	1

From the transitional diagram of a Moore or Mealy machine, conversion can be done easily. That process is described here.

From the transitional diagram of a Moore or Mealy machine, conversion can be done easily. That process is described here.

3.13.2.1 Moore Machine to Mealy Machine

From the transitional diagram of a Moore or Mealy machine, conversion can be done easily. That process is described here.

3.13.2.1 Moore Machine to Mealy Machine

Let us assume that a Moore machine Mo is to be converted to an equivalent Mealy machine MC. There are certain steps for this conversion. **Step I:** For a Moore machine, each state is labelled with the output, because for a Moore machine, output depends only on the present state. For the conversion, let us take a state S, which is labelled with output O. Look into the incoming edges to the state S. These incoming edges are labelled by the input alphabets of the Moore machine. These incoming edges are relabelled by the input alphabet as well as the output of the state S. The output for the state must be removed.

Step I: For a Moore machine, each state is labelled with the output, because for a Moore machine, output depends only on the present state. For the conversion, let us take a state S, which is labelled with output O. Look into the incoming edges to the state S. These incoming edges are labelled by the input alphabets of the Moore machine. These incoming edges are relabelled by the input alphabet as well as the output of the state S. The output for the state must be removed.

Step II: Keep the outgoing edges from the state S as it was. (The outgoing edge of a state must be the incoming edge of some other state.)