

University of Engineering & Management, Kolkata

Term - II Examination, October - November, 2021

Programme Name: B.Tech in Computer Science Semester: 5th

Paper Name: Operating Systems

Paper Code: PCC CS501

Full Marks: 100 Time: 3 hours

GROUP A (20 Marks)

Answer the following questions. Each question is of 2 marks.

1.

- i. Define CPU utilization?
- ii. Explain what is lock based protocol in process synchronization?
- iii. Define atomic operations.
- iv. Define semaphore.
- v. State the difference between binary semaphore and counting semaphore
- vi. Explain principles of locality. What are the types of locality?
- vii. Explain logical and physical address space.
- viii.Explain types of address binding.
- ix. Define thrashing. What is the reason of thrashing?
- x. Explain different types of fragmentation.

GROUP B (30 Marks)

Answer the following questions. Each question is of 5 marks.

- 2. Discuss Peterson's solution for two-process synchronization Solution.
- **3.** Discuss the drawbacks of RR scheduling algorithm with a suitable example.
- **4.** Illustrate how do you use deadlock avoidance with a single instance of resource type?
- **5.** A. Illustrate the difference between a process and a thread? OR
 - B. Explain the message passing system for process communication.
- **6.** A. Describe Belady's anomaly? Which algorithm may lead to Belady's anomaly? OR

- B. Consider page reference string 1, 3, 0, 3, 5, 6,1,0,6 with 3 page frames. Find number of page faults using FIFO algorithm.
- 7. A. Discuss about memory management requirements.

OR

B. Discuss dynamic partitioning. What are the advantages of dynamic partitioning?

GROUP C (50 Marks)

Answer the following questions. Each question is of 10 marks.

- **8.** Write down and describe the algorithm for Deadlock detection with multiple instances of resources.
- **9.** "Co-operating processes need IPC"—illustrate.
- **10.** A. Consider a system with the following information. Determine the order of processes such that the system is in safe state.

R1	R2	R3
15	8	8

Process	Max			Allocation		
	R1	R2	R3	R1	R2	R3
P1	5	6	3	2	1	0
P2	8	5	6	3	2	3
Р3	4	9	2	3	0	2
P4	7	4	3	3	2	0
P5	4	3	3	1	0	1

OR

B. Describe the types of cryptography, brief on each with proper example and algorithm names.

- 11. A. Let the page fault service time be 10 ms in a computer with average memory access time being 20 ns. If one page fault is generated for every 10 ⁶ memory accesses, what is the effective access time for the memory?

 OR
 - B. Discuss paging system with block diagram. Explain the steps of logical to physical address conversion in simple paging scheme.
- **12.** A. Describe different type of security services

OR

B. Describe different types of passive attacks
