Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Вопрос по выбору, 3 семестр

Исследование работы импульсного преобразователя напряжения

Студент Георгий КОРЕПАНОВ 512 группа

Преподаватель Виктор Иванович Чивилёв

16 января 2017 г.

Введение

В практике радиолюбителей часто возникает задача преобразования постоянного (DC) напряжения. Использование трансформаторов требует тщательного расчёта параметров самого трансформатора, а преобразователь получается громоздким. Появление импульсных преобразователей (высокочастотный ток и соответствующий материал сердечника трансформатора позволяют многократно уменьшить размеры) перевернуло мир источников питания — современные адаптеры для мобильных телефонов легко помещаются в кармане. Однако трансформаторные преобразователи сложны схемотехнически и требуют тонкого расчёта.

В данной работе будет рассмотрена другая интересная идея преобразования DC напряжения, с использованием которой можно относительно просто изготовить простой преобразователь, работающий в широком диапазоне напряжений (напряжение $\mathbf{A}\mathbf{A}$ батарейки можно легко конвертировать до величин порядка $\mathbf{500}$ и более вольт).

Идея получения высокого напряжения

Возбуждение тока в катушке

Создадим начальный ток в катушке очень просто, замкнув её на землю (разумеется, подав на другой конец напряжение с источника):

Рис. 1: Создание начального тока в катушке

Нагнетание напряжения на конденсаторе

После создания в катушке некоторого тока его можно «пустить» его (размыканием ключа) в другом направлении. «Отправим» ток на конденсатор ёмкости C=10 мк Φ :

Рис. 2: Схема с подключенным конденсатором

Первые расчёты

Сразу перейдём к практике. Здесь и далее воспользуемся источником DC напряжения с $U_0=10~\mathrm{B}.$

Реальные катушки имеют конечное активное сопротивление (обыкновенное сопротивление постоянному току). Здесь и далее будем рассматривать катушку с R=1 Ом и L=200 мк Γ н (вполне типичные параметры для катушки с сердечником, подходящим для работы в режиме преобразования напряжения). Также разумно использовать обозначение для характерного времени установления тока в катушке $\tau=L/R$. Будем рассматривать эквивалентную схему с последовательно соединенными идеальной катушкой и резистором.

Рис. 3: Эквивалентная схема с активным сопротивлением катушки

Чтобы развить в катушке некоторый ток, придётся потерять часть энергии из-за потерь на резисторе, поэтому нет смысла держать ключ открытым слишком долгое время. Выясним, как эти потери зависят от времени.

Для создания преобразователя используем микросхему MAX1771, работающую на частоте $\nu=300~{\rm k\Gamma}$ ц. А значит, следует дальнейшие вычисления проводить для времен открытия ключа порядка $t_{\rm np}=1/\nu$ (очевидно, время $t_{\rm np}\ll\tau$). Это позволит сильно упростить полученные уравнения.

1. Найдём зависимость тока, возбужденного в катушке, от времени. Операторный ко-

эффициент передачи

$$K(p) = \frac{R}{pL + R},$$

значит, ток в катушке

$$I(t) = U_R(t)/R \stackrel{\cdot}{=} \frac{1}{R} \mathcal{L}(U(t)) = \frac{1}{p(p+R/L)} \stackrel{\cdot}{=} \frac{U_0}{R} \left(1 - e^{-t/\tau}\right) \simeq \frac{U_0}{R} \frac{t}{\tau}.$$

2. Подсчитаем также джоулевы потери на резисторе за это время (это, очевидно, необходимо для расчёта КПД преобразователя):

$$W_R(t) = \int_0^t I^2(t)R \ dt \simeq \frac{U_0^2}{R} \frac{t^3}{3\tau^2}.$$

3. После размыкания ключа процессы в цепи описываются обычным дифференциальным уравнением второго порядка для LRC-цепочки. Имеем

$$LC\ddot{U} + R\dot{U} + U = U_0,$$

где за U обозначено напряжение на конденсаторе. Общее решение – затухающие (апериодические колебания).

Приводим качественный график решения для начального напряжения на конденсаторе $U_C = U_0$:

Видно, что после размыкания ключа на конденсаторе происходит скачок напряжения на конденсаторе до значений, больших U_0 (также, как это происходило в первой части задачи). К сожалению, с приходом следующего периода достигнутый результат «теряется», напряжение быстро падает до начального (см. график U(t)). Но если

в схему добавить диод, пропускающий ток только в одном направлении, то ток не сможет течь в обратном направлении, и на конденсаторе останется максимальное напряжение:

Рис. 4: Схема с добавленным диодом

Большие напряжения

4. Теперь будем предполагать начальное напряжение на конденсаторе достаточно большим, $U_C = 100$ В. Это сильно упростит полученное дифференциальное уравнение, так как скачок напряжения $U_{\rm ck} \ll U_C$ (проверим это).

Найдём этот скачок напряжения. Сделаем замену $\varphi = U - U_0$, уравнение примет вид

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = 0,$$

где, как обычно, $\omega_0^2 = 1/LC, \, \gamma = R/2L.$

Примерный график в этом случае выглядит так:

При условии $\Delta t \ll T$ в разложении решения в ряд Тейлора в точке максимума t_0 можно ограничиться производной второго порядка:

$$\varphi(t_0 + \Delta t) \simeq \varphi(t_0) + \dot{\varphi}(t_0) \Delta t^{-0} + \ddot{\varphi}(t_0) \frac{\Delta t^2}{2}.$$

Учитывая, что в максимуме $\ddot{\varphi} = -\omega_0^2 \varphi(t_0)$, и $\varphi(t_0) = \varphi(0) + U_{\rm ck}$, а также, что $I = C\dot{\varphi}$ и $\dot{\varphi}(0) \simeq -\ddot{\varphi}\Delta t$, имеем

$$\Delta t = \frac{LI}{\varphi(0)}, \quad U_{\rm ck} = I^2 \frac{L}{2C} \frac{1}{\varphi(0)},$$

причём из условия $\Delta t \ll T$ следует

$$I \ll \sqrt{\frac{C}{L}}\varphi(0).$$

5. Проверим, что это соотношение выполнено даже для максимально возможного тока I в катушке (время возбуждения тока в катушке равно $t_{\rm np}$):

$$I_{\text{max}} = \frac{U_0}{R} \frac{t_{\text{np}}}{\tau} = 0.165 \text{ A}, \quad \sqrt{\frac{C}{L}} \varphi(0) = 20.1 \text{ A}$$

Реальный преобразователь

Теперь, чтобы повышать напряжение и дальше, нужно периодически замыкать и размыкать ключ. Тогда напряжение на конденсаторе будет скачками расти (хотя, очевидно, скачки будут тем слабее, чем больше напряжение конденсатора). Реально преобразователь работает следующим образом. Клеммы конденсатора есть выход схемы, к выходу подключают нагрузку, через которую течет ток, разряжающий конденсатор. А специализированная микросхема в это же время с высокой частотой открывает и закрывает ключ, подкачивая в конденсатор энергию и компенсируя потерю напряжения.

Расчёт работы преобразователя

Пусть на конденсаторе установилось стационарное напряжение $U_C = 100$ В. Предполагаем, что в нагрузку течет такой ток, что он полностью компенсирует рост напряжения в результате работы схемы, описанной выше, т.е. напряжение на конденсторе неизменно.

Считаем, что ключ замыкается на время t_L , размыкается на $t_{\rm np}-t_L$ (то есть имеем меандр со скважностью $s=t_L/t_{\rm np}$:

Рис. 5: График меандра переменной скважности

6. Считаем, что скважность сигнала не слишком велика, так что $t_0 < t_{\rm пp} - t_L$ (это верно при скважности, меньшей, чем

$$s_{\text{max}} = \frac{1}{1 + U_0/\varphi(0)} = 0.9,$$

т. е. скважность лежит в пределах [0;0,9].

Стабилизация напряжения

Реальный преобразователь должен подстраиваться под значение тока в нагрузке, стабилизируя напряжение на выходе (в противном случае либо мощности будет не хватать, и заряд с конденсатора быстро стравится в нагрузку, либо преобразователь будет нагнетать слишком большое напряжение на выходе). Для этого при уменьшении тока нагрузки уменьшается скважность меандра, управляющего ключом.

Тогда за период работы преобразователя в катушке возбуждается меньший ток, конденсатору передается меньшая энергия. В пределе, когда нагрузка отключена, а утечки конденсатора пренебрежимо малы, скважность сигнала стремится к 100% (ключ всегда закрыт, ток не течет).

7. Найдём зависимость скважности сигнала меандра от тока нагрузки:

$$U_{\rm ck} = \frac{\Delta q}{C} = \frac{\langle I \rangle t_{\rm np}}{C},$$

поэтому окончательно получаем

$$\langle I \rangle = \frac{CU_{\text{ck}}}{t_{\text{IID}}} = \frac{s^2}{\nu} \frac{U_0}{U_{\text{BMX}} - U_0} \frac{U_0}{2L}.$$

Производя расчёты, получим

$$I = s^2 \cdot 9.3 \text{ MA},$$

то есть максимальный ток, который может течь в нагрузке в рассмотренном режиме работы преобразователя

$$I_{\text{max}} = 0.9^2 \cdot 9 \text{ MA} = 7.5 \text{ MA}.$$

Мощность и КПД преобразователя

8. Зная выходной ток и напряжение, можем посчитать выходную мощность перобразователя:

$$W = \frac{s^2}{\nu} \frac{U_0 U_{\text{BMX}}}{U_{\text{BMX}} - U_0} \frac{U_0}{2L} \simeq \left| U_0 \ll U_{\text{BMX}} \right| \simeq \frac{s^2}{\nu} \frac{U_0^2}{2L}.$$

Видно, что увеличение индуктивности катушки и/или частоты преобразования ведёт к уменьшению выходной мощности преобразователя. Однако повысить мощность, уменьшив эти величины, на практике затруднительно, потому что уменьшение и той, и другой ведёт к увеличению максимального тока, протекающего по катушке:

$$I_{\max} = \frac{U_0}{\nu L}.$$

Таким образом заключаем, «чудес не бывает», т. е. при попытке увеличить мощность преобразователя мы наталкиваемся на непреодолимую физическую трудность в виде необходимости увеличивать максимальный ток катушки, что приводит к увеличению её размеров, и, как следствие, к увеличению размеров конечного устройства. Более совершенные схемы позволяют в какой-то степени обойти это ограничение, однако его общий характер сохраняется (так, блок питания ноутбука всегда значительно больше блока питания телефона).

КПД преобразователя

9. Практически важным вопросом также является КПД такого преобразователя. Выходная мощность уже известна. Подсчитаем работу источника. Работа по возбуждению тока в катушке:

$$A_1 = \int_0^t U_0 I \ dt = \frac{U_0^2}{\nu^2} \frac{s^2}{2L}$$

Работа источника после размыкания ключа:

$$A_2 = U_0 \Delta q = U_0 C U_{\text{ck}} = \frac{U_0 \langle I \rangle}{\nu} = \frac{s^2}{\nu^2} \frac{U_0^2}{U_{\text{Bbix}} - U_0} \frac{U_0}{L}$$

Полная мощность источника

$$W_{\text{\tiny MCT}} = \frac{A_1 + A_2}{t_{\text{\tiny IIp}}} = \frac{U_0^2}{\nu} \frac{s^2}{2L} \left(1 + \frac{2U_0}{U_{\text{\tiny BMX}} - U_0} \right).$$

10. Окончательно получим для КПД системы

$$\eta = \frac{W}{W_{\text{mct}}} = \frac{1}{1 + \frac{2U_0}{U_{\text{---}} - U_0}} \cdot \frac{U_{\text{Bbix}}}{U_{\text{Bbix}} - U_0} = \frac{1}{1 + \frac{U_0}{U_{\text{----}}}} \simeq \left| U_0 \ll U_{\text{Bbix}} \right| \simeq 1.$$

Мы получили примечательное соотношение, которое показывает, что КПД импульсного преобразователя сверху ограничен только единицей, и не падает (а, согласно нашей формуле, даже растёт) с ростом разницы напряжений. Этот вывод, конечно, не учитывает прочих потерь в схеме (см. экспериментальную часть), которые, вообще говоря, растут с ростом напряжения, а, значит, не может считаться вполне правильным. Но он показывает, что для КПД такой схема нет **принципиальных** ограничений сверху.

Пару слов о существующих схемах

Рис. 6: Принципиальная схема преобразователя

И реальный вид:

Рис. 7: Фото собранного перобразователя

11. В схеме кроме описанных в работе элементов есть два дополнительных: резистор $R_{\rm SENSE}$, по напряжению на котором определяется и ограничивается максимальный ток в цепи, предохраняя преобразователь от короткого замыкания и перенагрузки), и резисторный делитель R2-R3-10k, с помощью которого микросхема и «определяет» напряжение на выходе преобразователя.

Экспериментальная часть

Для проверки теоретически полученных результатов измерим КПД преобразователя и снимем зависимость I(s), подключая к выходу преобразователя потенциометр и варьируя его сопротивление.

Измерение КПД

$I_{\rm BX}, {\rm MA}$	$U_{\rm BX},{ m B}$	$I_{\text{вых}}$, мА	$U_{\text{вых}}$, В	$\eta,\%$
22,8	12,0	2	182	75
35,0	12,0	3	182	77
57,6	12,0	5	182	76
72,8	12,0	6	182	80
98,2	12,0	8	182	81
124,4	12,0	10	182	82
195,9	12,0	15	182	86

Таблица 1: измерение КПД при разных нагрузках

Заметно, что в силу особенностей работы схемы проявляется зависимость КПД от тока в нагрузке. Выявить явный вид этой зависимости не удалось, но теоретическая оценка на среднее значение КПД даёт приблизительно верный результат (разумеется, завышенный, ведь мы не учитывали ни питание микроконтроллера, ни дополнительные потери в катушке, ни утечки конденсатора, ни даже потери в ключевом транзисторе):

$$\langle \eta \rangle \approx (80 \pm 6) \%,$$

$$\eta_{\text{reop}} = 93 \%$$
.

Измерение зависимости тока от скважности сигнала

Чтобы убедиться в справедливости наших изысканий, снимем упомянутую зависимость:

Рис. 8: Аппроксимация полученной зависимости параболой

Лианеризованный график:

Рис. 9: Лианеризованная зависимость

Выводы

- 1. Успешно разработана схема преобразователя
- 2. Схема реализована на монтажной плате и протестирована
- 3. Изучен принцип работы схемы
- 4. Из чисто физических соображений были получены практически важные зависимости, имеющие значение при разработке преобразователей
- 5. Упомянутые зависимости были качественно проверены экспериментом