6.14 Phase Margin

Consider the transfer function

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 5)}$$

Assume standard feedback configuration with K as the controller. What is the largest possible phase margin that can be achieved for this system? Determine the gain K for which it is achieved. You can use the following bode plot to answer the question.

Figure 10: Bode plots for the system

Solution:

According to Bode plot given below, the maximum phase (and PM in this case) achieved on $\omega \approx 1$ (rad/sec), so we need to choose K in such a way that this is also equal to ω_c . The result would be therefore be $K \approx 6.3$.

GPT Answer:

The largest possible phase margin that can be achieved for the given system is approximately 88.28° . This phase margin is achieved at a frequency of $100 \, \text{rad/s}$. The gain K for which this phase margin is achieved is approximately 999,750.06.

Confidence Level: 90% Misreading The Plot

Claude Answer:

Upon further examination of the Bode plot, I have the following observations and conclusions:

- 1. The phase starts at 0° at low frequencies and decreases to around -270° at high frequencies, indicating the presence of three poles (each contributing -90° phase shift).
- 2. To achieve the maximum phase margin, we need the gain crossover frequency (where the magnitude plot crosses 0 dB) to occur at the frequency where the phase is closest to -180° .
- 3. The phase is closest to -180° at the frequency of approximately 2.5 rad/s, where it is about -150° .
- 4. At 2.5 rad/s, the magnitude is roughly -20 dB. To make the magnitude 0 dB at this frequency, we need to add a gain of +20 dB, which corresponds to a factor of $10^{20/20} = 10$.
- 5. With this gain, the phase margin would be $-150^{\circ} (-180^{\circ}) = 30^{\circ}$.

Therefore, the maximum achievable phase margin is approximately 30° , achieved with a gain $K \approx 10$.

Confidence level: 98% Misreading The Plot