第四讲、MPEG-2压缩数字视频码流(3)

章文辉

八、MPEG-2系统复用中的码率控制

- 固定比特率(Constant Bit Rate) CBR
- 可变比特率(Variable Bit Rate) VBR。

1. CBR编码复用方式

- (1) 控制缓存器充盈度的方法
- (2) 预分配法
- (3) Test Model 5 (TM5) 码率控制

2. VBR编码复用方式

- 统计复用技术可以降低多路业务复用后码率的波动,提高信道利用率。
- 1) 帧平移统计复用

```
      *I *B *B *P *B *B *P *B *B *P *B *B *I
      *第1路

      *I *B *B *P *B *B *P *B *B *P *B *B *I
      *第2路

      *I *B *B *P *B *B *P *B *B *P *B *B *I
      *第3路
```

2. VBR编码复用方式

- 2) 联合码率控制
- 信道恒定速率,各信源编码输出变速率

九、码流复用信息的调整

- 1、时间信息的调整
- 码流复用对时间信息产生影响
- · PCR间隔—两次PCR信号的时间间隔
- · PCR精度—PCR 信号的准确度和稳定度

2、PSI-SI服务信息的编辑

- 多路节目参数冲突,需要复用时进行调整;
- · 输入流的PSI-SI信息进行编辑;
- 两种方法:
- · 复用器提供手工编辑PSI-SI和PID映射的功能;
- 用户指定要复用的节目号和输入流,复用器根据输入的PSI-SI自动生成输出流的PSI-SI,并进行映射。

一种PMT编辑界面

十、MPEG-2基带接口

十、MPEG-2基带接口

十、MPEG-2基带接口

- · DVB 定义
 - 同步并行接口 Synchronous Parallel Interface (SPI)
 - 低电压差分信号 Low Voltage Differential Signal (LVDS)
 - 异步串行接口 Asynchronous Serial Interface (ASI)
 - 同步串行接口 Synchronous Serial Interface (SSI)
- ATSC 接口
 - **SMPTE310M**

1、DVB-SPI基带接口连接

• 同步并行接口 Synchronous Parallel Interface (SPI) 以ITU-R BT656-2为基础,用于短距离的信号连接,数据以字节的时钟进行同步。共有11对信号线,采用低电压差分信号 Low Voltage Differential Signal (LVDS)传送,接头采用DB25。

DVB-SPI接口数据传输格式

DVB-SPI接口数据传输格式

DVB-SPI接口连接器定义

Pin	Signal line	Pin	Signal line			
1	Clock A	14	Clock B			
2	System Gnd	15	System Gnd			
3	Data 7 A(MSB)	16	Data 7 B			
4	Data 6 A	17	Data 6 B			
5	Data 5 A	18	Data 5 B			
6	Data 4 A	19	Data 4 B			
7	Data 3 A	20	Data 3 B			
8	Data 2 A	21	Data 2 B			
9	Data 1 A	22	Data 1 B			
10	Data 0 A	23	Data 0 B			
11	DVALID A	24	DVALID B			
12	PSYNC A	25	PSYNC B			
13	Cable Shield					

2、DVB-ASI基带接口

- DVB-ASI接口即DVB的异步串行接口,已经成为MPEG-2专业设备之间连接的主流接口,ETSIEN500083-9标准定义了75Ω同轴电缆接口以及使用LED发射器的多模光纤接口。
- · DVB-ASI是一种固定码率的串行接口,时钟速率为 270Mbps,以包异步方式传输MPEG-2数据。

异步传输例子

DVB-ASI 基带接口连接

插入MPEG空数据包的字节填充方式

▶至少 两个 K28.5 码 20 bit ▶至少 两个 K28.5 码 20 bit

▶至少 两个 K28.5 码 20 bit

▶8B/10B编码的 MPEG 传输包 1880bit/2040bit

▶ 8B/10B 编 码 的MPEG传输包 1880bit/2040bit (空包) ▶8B/10B编码的 MPEG 传输包 1880bit/2040bit(空包) ▶8B/10B 编 码 的MPEG传输包 1880bit/2040bit(空包)

DVB-ASI 数据传输格式

Figure B.7: Transmission format with data packets (example for 188 Bytes)

Figure B.8: Transmission format with data bursts (example for 188 Bytes)

DVB-ASI接口 8/10Bit转换

The terminology of encoding used in table C.1 is described as follows:

Data Byte	d7	d6	d5		d4	d3	d2	d1	d0	6:	
8B information character	Н	G	F		Ш	D	С	В	Α	(S)	
10B transmission character	а	b	С	d	е	i	9	f	g	h	j

Bit a is transmitted first. Each transmission character in the table (Valid data character) is associated with a name Dx.y, where

x is the decimal value of the bits EDCBA

$$(x)_{dec} \equiv (EDCBA)_{bin}$$

y is the decimal value of the bits HGF:

$$(y)_{dec} \equiv (HGF)_{bin}$$

In addition there are further 10B code words named Valid Special Characters Kx.y, see table C.2. Only the Special Character: K28.5 (Comma) is here used as stuffing data and for byte synchronization.

DVB-ASI接口 8/10Bit转换

Encoding of the MPEG synchronous byte 47_{hex} = 0100 0111 (Data byte name D7.2).

8B information Character	0	1	0		0	0	1	1	1		
10B transmission Character RD₊	1	1	1	0	0	0		0	1	0	1
10B transmission Character RD.	0	0	0	1	1	1		0	1	0	1

8/10Bit 转换表格

Data	Bits	Current RD -	Current RD +	Data	Bits	Current RD -	Current RD +
Byte				Byte			
Name	HGF EDCBA	abcdei fghj	abcdei fghj	Name	HGF EDCBA	abcdei fghj	abcdei fghj
D0.0	000 00000	100111 0100	011000 1011	D16.1	001 10000	011011 1001	100100 1001
D1.0	000 00001	011101 0100	100010 1011	D17.1	001 10001	100011 1001	100011 1001
D2.0	000 00010	101101 0100	010010 1011	D18.1	001 10010	010011 1001	010011 1001
D3.0	000 00011	110001 1011	110001 0100	D19.1	001 10011	110010 1001	110010 1001
D4.0	000 00100	110101 0100	001010 1011	D20.1	001 10100	001011 1001	001011 1001
D5.0	000 00101	101001 1011	101001 0100	D21.1	001 10101	101010 1001	101010 1001
D6.0	000 00110	011001 1011	011001 0100	D22.1	001 10110	011010 1001	011010 1001
D7.0	000 00111	111000 1011	000111 0100	D23.1	001 10111	111010 1001	000101 1001
D8.0	000 01000	111001 0100	000110 1011	D24.1	001 11000	110011 1001	001100 1001
D9.0	000 01001	100101 1011	100101 0100	D25.1	001 11001	100110 1001	100110 1001
D10.0	000 01010	010101 1011	010101 0100	D26.1	001 11010	010110 1001	010110 1001
D11.0	000 01011	110100 1011	110100 0100	D27.1	001 11011	110110 1001	001001 1001
D12.0	000 01100	001101 1011	001101 0100	D28.1	001 11100	001110 1001	001110 1001
D13.0	000 01101	101100 1011	101100 0100	D29.1	001 11101	101110 1001	010001 1001
D14.0	000 01110	011100 1011	011100 0100	D30.1	001 11110	011110 1001	100001 1001
D15.0	000 01111	010111 0100	101000 1011	D31.1	001 11111	101011 1001	010100 1001
D16.0	000 10000	011011 0100	100100 1011	D0.2	010 00000	100111 0101	011000 0101
D17.0	000 10001	100011 1011	100011 0100	D1.2	010 00001	011101 0101	100010 0101
D18.0	000 10010	010011 1011	010011 0100	D2.2	010 00010	101101 0101	010010 0101
D19.0	000 10011	110010 1011	110010 0100	D3.2	010 00011	110001 0101	110001 0101
D20.0	000 10100	001011 1011	001011 0100	D4.2	010 00100	110101 0101	001010 0101
D21.0	000 10101	101010 1011	101010 0100	D5.2	010 00101	101001 0101	101001 0101
D22.0	000 10110	011010 1011	011010 0100	D6.2	010 00110	011001 0101	011001 0101
D23.0	000 10111	111010 0100	000101 1011	D7.2	010 00111	111000 0101	000111 0101
D24.0	000 11000	110011 0100	001100 1011	D8.2	010 01000	111001 0101	000110 0101

DVB-ASI 特殊字符

Special	Current RD -	Current RD +
Code		
Name	abcdei fghj	abcdei fghj
K28.0	001111 0100	110000 1011
K28.1	001111 1001	110000 0110
K28.2	001111 0101	110000 1010
K28.3	001111 0011	110000 1100
K28.4	001111 0010	110000 1101
K28.5	001111 1010	110000 0101
K28.6	001111 1000	110000 1001
K23.7	111010 1000	000101 0111
K27.7	110110 1000	001001 0111
K29.7	101110 1000	010001 0111
K30.7	011110 1000	100001 0111

3、DVB-SSI 基带接口

▶ DVB-SSI是一种包同步类型接口,时钟频率锁定在传输速率上,因此,接口不需要填充字节。如果不包括纠错编码字节,数据率等于原始时钟频率。

DVB-SSI 基带接口连接

DVB-SSI 基带接口数据编码

- 三种传输格式区分:
 - 1、传输188字节包,同步字为0X47,周期188字节;
 - 2、传输204字节包,包含16字节空包,同步字为 0X47,周期204字节;
 - 3、传输204字节,包含16字节RS码,同步字为0XB8,周期204字节;
- 串并转换最高有效位在前;
- 双相数据编码

双相编码规则

a transition always occurs at the beginning of the bit whatever its value is (0 or 1).

for logical 1, a transition occurs in the middle of the bit for logical 0, there is no transition on the middle of the bit.

4、SMPTE 310M 接口

· SMPTE 310M接口也是目前广播电视专业领 域的主流基带MPEG-2接口,是一种同步串 行接口,主要用于ATSC标准的数字电视设备, 为驱动发射设备输入而设计的点到点单向连 接,可以在专业设备之间(如从编码器到复 用器)传送基带MPEG-2传输流。

SMPTE 310M 接口连接

SMPTE 310M 接口特点

- SMPTE 310M接口是一种包同步类型接口,接口以固定的码率19.39Mpbs或38.78Mpbs传输。
- · SMPTE已经将速率扩展到80Mbps的范围。
- · SMPTE 310M接口对时钟抖动的容限要求非常严格。
- · 只有传输流的数据码率等于接口的固定码率才能通过 SMPTE310M接口传输,接口不用对传输流进行字节 填充处理。
- · 数据进行双向标记编码(Biphase mark encoding)。

SMPTE 310M 接口数据编码规则

- 3.2 The encoding rules are as follows:
 - A transition always occurs at the beginning of the bit whatever its value is (0 or 1).
 - For logical 1, a transition occurs in the middle of the bit.
 - For logical 0, there is no transition in the middle of the bit.

SMPTE310M 接口波形

5、SMPTE310M 与DVB-SSI接口差别

• 接口速率:

SMPTE310M规定两个固定速率: 19,392,658.46b/s, 38,785316.92b/s;

DVB-SSI接口速率可变;

• 数据包格式:

SMPTE310M 只有188字节的数据包;

DVB-SSI可以是188字节、188字节+16个空字节、188字节+16字节RS码;

6、传输码率和接口码率

- 发送数据的码率取决于所使用的接口。
- Synchronous Parallel Interfaces (SPI) 同步并行接口的发送数据的接口码率等于传输码率。
- · ASI 以 270Mbits/s的固定接口码率发送数据。因此:
 - 270Mbits/s = 传输码率 + ASI 填充比特率。
- SMPTE 310M以恒定的 19.39Mbit/s发送数据, 但没有为接口预留填充字节,因此传输码率必须等于接口码率。
 - 19.39Mbit/s = 传输码率

6、传输码率和接口码率

- In general therefore:
 - 接口码率 = 数据码率 + 空包码率+ 接口填充数据率

总结

- PS流构成及特点
- TS流构成及特点
- · 数字电视码流中的时间信息PCR\PTS\DTS
- PSI及作用
- 数字电视码流复用及信息调整
- 码率控制方式
- 基带MPEG-2接口——DVB-ASI接口
- 其它几种接口
- 接口码率和传输码率关系

作业4(3月31日)

- 1、DVB-ASI接口所用的270Mb/s传输速率的时钟与系统时钟有无直接关系? 在接收端分别如何恢复?
- 2、DVB-ASI接口的最大数据传输码率是多少?说明如何得到的。
- 3、请分别说明DVB-ASI、DVB-SSI、DVB-SPI、SMPTE 310M 接口的特点,以及它们各自的接口码率与数据传输码率的关系。
- 4、数字电视码流复用和再复用时,需要对哪些信息进行重组和调整?
- 5、帧平移复用法属于哪种编码复用方式?阐述其复用的其本思路和方法。
- 6、(P133: 5-10) 简述MPEG-2系统中码率控制原理。