Pregătire pentru prima parte a examenului: TEMA INDIVIDUALĂ

Claudia MUREŞAN

Universitatea din București, Facultatea de Matematică și Informatică c.muresan@yahoo.com, cmuresan@fmi.unibuc.ro, claudia.muresan@unibuc.ro

2020-2021, Semestrul I

Amintesc că o latice mărginită $(L, \vee, \wedge, 0, 1)$ se zice netrivială ddacă $0 \neq 1$.

Următoarele denumiri și notații sunt ad-hoc.

Pentru orice mulțimi A, B, orice relație binară $\rho \subseteq A^2$ și orice funcție $f: A \to B$, notăm cu:

$$f(\rho) = \{ (f(x), f(y)) \mid (x, y) \in \rho \} \subseteq B^2.$$

Dacă $\mathcal{P}=(P,\leq,0,1)$ şi $\mathcal{Q}=(Q,\sqsubseteq,\bot,\top)$ sunt poseturi mărginite, iar $g:P\to Q$, spunem că g este morfism de poseturi mărginite de la \mathcal{P} la \mathcal{Q} ddacă f este izotonă şi satisface $g(0)=\bot$ şi $g(1)=\top$.

Pentru orice latici mărginite $\mathcal{L} = (L, \vee, \wedge, 0, 1)$ și $\mathcal{M} = (M, \vee, \wedge, 0, 1)$ și orice funcție $h: L \to M$, notăm cu:

$$\gamma(\mathcal{L}) = \{(x, y) \in L^2 \mid x \text{ si } y \text{ sunt complemente unul altuia în } \mathcal{L}\},$$

și spunem că:

- $h \text{ păstrează } \gamma \text{ ddacă } h(\gamma(\mathcal{L})) \subseteq \gamma(\mathcal{M});$
- $h \in compatibil \operatorname{cu} \gamma \operatorname{ddacă} h(\gamma(\mathcal{L})) = \gamma(\mathcal{M}).$

Exercițiul 1. (a) Să se demonstreze că:

- orice morfism de latici mărginite păstrează γ ;
- orice morfism surjectiv de latici mărginite e compatibil cu γ .
- b Să se demonstreze că, pentru orice latice mărginită \mathcal{L} :
- $\gamma(\mathcal{L})$ este simetrică;
- $\gamma(\mathcal{L})$ este ireflexivă ddacă \mathcal{L} este netrivială ddacă $\gamma(\mathcal{L})$ este netranzitivă;
- dacă \mathcal{L} e distributivă, atunci, pentru orice element x al lui \mathcal{L} , $|x/\mathcal{E}(\gamma(\mathcal{L}))| \leq 2$;
- $dac\check{a} \mathcal{L} e \ latice \ boolean\check{a}, \ atunci, \ pentru \ orice \ element \ x \ al \ lui \ \mathcal{L}, \ |x/\mathcal{E}(\gamma(\mathcal{L}))| \in \{1,2\};$
- dacă \mathcal{L} e latice booleană netrivială, atunci, pentru orice element x al lui \mathcal{L} , $|x/\mathcal{E}(\gamma(\mathcal{L}))| = 2$.

Exercițiul 2. Considerăm cele mai mici latici nedistributive: \mathcal{M}_3 (diamantul) și \mathcal{N}_5 (pentagonul). (1) Să se determine:

- morfismele de latici mărginite de la \mathcal{M}_3 la \mathcal{N}_5 ;
- morfismele de latici mărginite de la \mathcal{N}_5 la \mathcal{M}_3 ;
- morfismele de poseturi mărginite de la \mathcal{M}_3 la \mathcal{N}_5 ;
- morfismele de poseturi mărginite de la \mathcal{N}_5 la \mathcal{M}_3 ;
- morfismele de poseturi mărginite compatibile cu γ de la \mathcal{N}_5 la \mathcal{M}_3 .
- (ii) Să se demonstreze că:
- $(\gamma(\mathcal{M}_3) \circ \gamma(\mathcal{M}_3)) \setminus \Delta_{\mathcal{M}_3} = \gamma(\mathcal{M}_3);$
- $(\gamma(\mathcal{N}_5) \circ \gamma(\mathcal{N}_5)) \cap \gamma(\mathcal{N}_5) = \emptyset;$
- $|\mathcal{M}_3/\mathcal{E}(\gamma(\mathcal{M}_3))| = |\mathcal{N}_5/\mathcal{E}(\gamma(\mathcal{N}_5))| = 2.$