```
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, TensorDataset
received = pd.read csv("Received data set.csv")
transmitted = pd.read csv("Transmitted data set.csv")
received.columns = ["Received Signal"]
transmitted.columns = ["Transmitted Signal"]
mean X, std X = received["Received Signal"].mean(),
received["Received Signal"].std()
X = (received["Received Signal"] - mean X) / std X
X = X.values.reshape(-1, 1)
Y = (received["Received Signal"] -
transmitted["Transmitted Signal"]).values.reshape(-1, 1)
indices = np.arange(X.shape[0])
np.random.shuffle(indices)
X, Y = X[indices], Y[indices]
sample = X.shape[0]
size t = int(sample * 0.5)
size v = int(sample * 0.2)
X t, Y t = X[:size t], Y[:size t]
X v, Y v = X[size t:size t + size v], Y[size t:size t + size v]
X test, Y test = X[size t + size v:], Y[size t + size v:]
device = torch.device("cpu")
X t tensor, Y t tensor = torch.FloatTensor(X t).to(device),
X v tensor, Y v tensor = torch.FloatTensor(X v).to(device),
torch.FloatTensor(Y v).to(device)
X test tensor, Y test tensor = torch.FloatTensor(X test).to(device),
torch.FloatTensor(Y test).to(device)
class NoisePredictorMLP(nn.Module):
   def init (self):
       super(NoisePredictorMLP, self). init ()
       self.fc1 = nn.Linear(1, 64)
       self.fc2 = nn.Linear(64, 32)
       self.fc3 = nn.Linear(32, 16)
```

```
self.fc4 = nn.Linear(16, 1)
   def forward(self, x):
       x = torch.relu(self.fc1(x))
       x = torch.relu(self.fc2(x))
       x = torch.relu(self.fc3(x))
       x = self.fc4(x)
model = NoisePredictorMLP().to(device)
loss function = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
num epochs = 100
train losses = []
val losses = []
train dataset = TensorDataset(X t tensor, Y t tensor)
train loader = DataLoader(train dataset, batch size=16, shuffle=True)
for epoch in range (num epochs):
   model.train()
   epoch loss = 0.0
       batch X = batch X.to(device)
       batch Y = batch Y.to(device)
       optimizer.zero grad()
       outputs = model(batch X)
       loss = loss function(outputs, batch Y)
       loss.backward()
       optimizer.step()
       epoch_loss += loss.item()
   avg_train_loss = epoch_loss / len(train_loader)
   val loss = loss function(model(X v tensor), Y v tensor).item()
   train losses.append(avg train loss)
   val losses.append(val loss)
   if epoch % 10 == 0 or epoch == num epochs:
       print(f"Epoch [{epoch}/{num epochs}], Train Loss:
{avg train loss:.4f}, Val Loss: {val loss:.4f}")
model.eval()
with torch.no grad():
```

```
predictions = model(X test tensor).cpu().numpy()
test results = pd.DataFrame({
   "Predicted Noise": predictions.flatten()
test results 20 = test results.head(20)
print("\n20개 샘플")
print(test results 20)
mae 20 = np.mean(np.abs(test results 20["Actual Noise"] -
test results 20["Predicted Noise"])) # 원래 노이즈 - 예상 노이즈의 평균
print(f"\n 평균 오차 (MAE): {mae 20:.4f}")
plt.figure(figsize=(8, 5))
plt.plot(range(num_epochs), train_losses, label='Train Loss')
plt.plot(range(num epochs), val losses, label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Loss Trend')
plt.legend()
plt.show()
```

received와 transmitted를 직접 대응시킬 경우 생각보다 loss가 매우컸다. 데이터들이 1열로 단순하기 때문에 어떤 상관관계를 분석하기 어렵기 때문이라고 추청. 아이디어를 수정하여 y에 보낸 값과 받은 값의 차이, 즉 노이즈를 대응. 보낸 값에 대한 노이즈를 예측하는 이 모델을 통과시켜 깨끗한 신호로 복원 가능.

## 결과: 첫번째 데이터셋

```
Epoch [0/100], Train Loss: 0.3815, Val Loss: 0.2545
Epoch [10/100], Train Loss: 0.2557, Val Loss: 0.2595
Epoch [20/100], Train Loss: 0.2544, Val Loss: 0.2521
Epoch [30/100], Train Loss: 0.2537, Val Loss: 0.2532
Epoch [40/100], Train Loss: 0.2544, Val Loss: 0.2523
Epoch [50/100], Train Loss: 0.2528, Val Loss: 0.2534
Epoch [60/100], Train Loss: 0.2524, Val Loss: 0.2515
Epoch [70/100], Train Loss: 0.2531, Val Loss: 0.2565
Epoch [80/100], Train Loss: 0.2517, Val Loss: 0.2526
Epoch [90/100], Train Loss: 0.2522, Val Loss: 0.2582
```

-> 큰 loss값

| 20JH | 샘플           |                 |
|------|--------------|-----------------|
|      | Actual Noise | Predicted Noise |
| 0    | -1.198660    | -0.672723       |
| 1    | 0.088624     | -0.406842       |
| 2    | -0.727190    | -0.229257       |
| 3    | -1.609000    | -2.099042       |
| 4    | 0.152770     | -0.338279       |
| 5    | 0.055854     | -0.439568       |
| 6    | -0.837060    | -0.327377       |
| 7    | -0.273540    | -0.737704       |
| 8    | -0.328640    | 0.216280        |
| 9    | 1.991600     | 1.636667        |
| 10   | 0.700000     | 1.315316        |
| 11   | -0.632600    | -1.113947       |
| 12   | -2.522900    | -3.013796       |
| 13   | 1.306700     | 1.982606        |
| 14   | 2.482400     | 2.173417        |
| 15   | 0.135180     | -0.357136       |
| 16   | -2.896600    | -3.381291       |
| 17   | 0.195830     | -0.294086       |
| 18   | -2.646900    | -3.137294       |
| 19   | -2.101300    | -1.601965       |
|      |              |                 |
| 평균   | 오차 (MAE):    | 0.4949          |

-> 랜덤하게 고른 20개의 샘플에 대한 평균 오차 는 0.4949로 매우 큰 값을 보였다.



-> loss 그래프도 유의미한 변 화를 보여주진 않음

## 두번째 데이터셋: 동일모델, 데이터셋만 바꿈

```
Epoch [0/100], Train Loss: 0.1271, Val Loss: 0.0471
Epoch [10/100], Train Loss: 0.0258, Val Loss: 0.0264
Epoch [20/100], Train Loss: 0.0251, Val Loss: 0.0261
Epoch [30/100], Train Loss: 0.0252, Val Loss: 0.0261
Epoch [40/100], Train Loss: 0.0251, Val Loss: 0.0263
Epoch [50/100], Train Loss: 0.0251, Val Loss: 0.0261
Epoch [60/100], Train Loss: 0.0249, Val Loss: 0.0262
Epoch [70/100], Train Loss: 0.0250, Val Loss: 0.0265
Epoch [80/100], Train Loss: 0.0250, Val Loss: 0.0261
Epoch [90/100], Train Loss: 0.0250, Val Loss: 0.0262 -> 작아진 loss
```

| 20개 샘플 |             |                 |  |
|--------|-------------|-----------------|--|
| A      | ctual Noise | Predicted Noise |  |
| 0      | -0.288680   | -0.343667       |  |
| 1      | -1.806000   | -1.805401       |  |
| 2      | -1.914600   | -1.913348       |  |
| 3      | -1.970400   | -1.969398       |  |
| 4      | -1.394600   | -1.393303       |  |
| 5      | -1.088300   | -1.086229       |  |
| 6      | -1.807900   | -1.807295       |  |
| 7      | -1.133100   | -1.130680       |  |
| 8      | -0.964820   | -0.964007       |  |
| 9      | -0.528700   | -0.487327       |  |
| 10     | -0.014070   | 0.020942        |  |
| 11     | -1.058400   | -1.056563       |  |
| 12     | -0.305820   | -0.273122       |  |
| 13     | -0.434660   | -0.403950       |  |
| 14     | -0.992921   | -0.491740       |  |
| 15     | 0.172500    | 0.207954        |  |
| 16     | 0.345100    | 0.386642        |  |
| 17     | -1.007700   | -1.006417       |  |
| 18     | -1.868000   | -1.866572       |  |
| 19     | -0.076420   | -0.040813       |  |
|        |             |                 |  |
| 평균.    | 오차(MAE): 0  | .0412           |  |

-> 20개 샘플에 대한 평균 오차는 0.0412로 작아졌으며, actual noise와 predicted noise 의 차이가 크지 않음을 확인 가능



두번째 데이터셋에 대한 손실그래프, 특정 반복을 넘어가면 training 데이터에 과적합되어 validation 데이터들에 대해서 손실이 조금씩 증가하는 현상을 관찰 가능하다.

개선점: 손실 값이 0.002대에서 수렴하는 것을 조금 더 낮출 방법을 모색해야 한다. MLP의 뉴런 수를 늘려서 더 깊은 모델을 만드는 방법, dropout을 추가하는 방법을 시도해봄직 하다. 혹은 시계열모델인 RNN, LSTM을 적용해보아도 좋을 듯하다.