1 | Preliminaries

1.1 Descriptive set theory

Convention 1.1.1. We will be using the "logician's reals", meaning that $\mathbb{R} := {}^{\omega}\omega$ with the product topology, having the sets $\{x \in \mathbb{R} \mid x \supseteq s\}$ for $s \in {}^{<\omega}\omega$ as a clopen basis.

Definition 1.1.2. Let $A, B \subseteq \mathbb{R}$. We say that A is Wadge reducible to B (in symbols $A \leq_W B$) iff there is some continuous function $f: \mathbb{R} \to \mathbb{R}$ such that

$$A = f^{-1}[B] := \{ a \in A \mid f(a) \in B \}.$$

We write $A <_W B$ iff $A \leq_W B$ and $B \nleq_W A$.

Remark 1.1.3. \mathbb{R} and \mathbb{R}^n , for $1 \leq n \leq \omega$ are homeomorphic and we shall often identify them with one another.

Definition 1.1.4. Subseteq of \mathcal{R} are called *pointsets*. Subsets of $\mathcal{P}(\mathbb{R})$ are called *pointclasses*.

0

0

Definition 1.1.5. Let Γ be a pointclass. We define

- (i) $\exists^{\mathbb{R}}\Gamma := \{A \mid \exists B \in \Gamma \colon A = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R}(x,y) \in B\}\},\$
- $(ii) \quad \forall^{\mathbb{R}}\Gamma := \{A \mid \exists B \in \Gamma \colon A = \{x \in \mathbb{R} \mid \forall y \in \mathbb{R}(x,y) \in B\}\}.$

0

Definition 1.1.6. Let Γ be a pointclass. We define

- (i) $\overset{\smile}{\Gamma} := \{ \mathbb{R} \setminus A \mid A \in \Gamma \} ,$
- (ii) $\Delta_{\Gamma} := \Gamma \cap \overset{\smile}{\Gamma}$ and
- (iii) $\Gamma := \exists^{\mathbb{R}}\Gamma$.

0

Lemma 1.1.7 ([?]). Assume ZF + AD and let $A, B \subseteq \mathbb{R}$. Then

$$A \leq_W B \text{ or } B \leq_W \mathbb{R} \setminus A.$$

Lemma 1.1.8 (Martin-Monk-Wadge). Assume $ZF + AD + DC_{\mathbb{R}}$. Then \leq_W is wellfounded.¹

Remark 1.1.9. When considering $(\mathcal{P}(\mathbb{R}); \leq_W)$ in a $\mathsf{ZF} + \mathsf{AD} + \mathsf{DC}_{\mathbb{R}}$ context, we will often tacitly identify $A \subseteq \mathbb{R}$ with its complement, making $<_W$ a wellorder.

Definition 1.1.10 (ZF + AD + DC_{\mathbb{R}}). Let $A \subseteq \mathbb{R}$. Then the Wadge rank of A is defined recursively as $|A|_W := \sup\{|B|_W + 1 \mid B <_W A\}$.

Definition 1.1.11. Let X be a set. We write OD_X for the collection of all A for which there is some formula ϕ , ordinals $\alpha_0, \ldots, \alpha_k$ and $x_0, \ldots, x_l \in X$ with

$$A = \{ a \mid \phi[a, \alpha_0, \dots, \alpha_k, x_0, \dots, x_l] \}.$$

0

We write HOD_X for the collection of all A such that $trcl(\{A\}) \subseteq OD_X$. If $X = \emptyset$, we will often drop the subscript and simply write OD and HOD for OD_{\emptyset} and HOD_{\emptyset} respectively.

Definition 1.1.12 (ZF + AD + DC_{\mathbb{R}}). For $B \subseteq \mathbb{R}$ let

$$\begin{split} \theta_B := \sup\{|A|_W \mid \exists x \in \mathbb{R} \colon A \in \mathrm{OD}_{\mathbb{R} \cup \{B\}}\} \\ = \sup\{\alpha \in \mathsf{On} \mid \text{ there is a } \mathrm{OD}_{\mathbb{R} \cup \{B\}} \text{-surjection } f \colon \mathbb{R} \to \alpha\}. \end{split}$$

Verify that these two values are in fact identical.

Definition 1.1.13 (ZF+AD+DC_{\mathbb{R}}). Define the *Solovay sequence* $\langle \theta_{\alpha} \mid \alpha \leq \Omega \rangle$ as follows:

- (i) $\theta_0 := \theta_\emptyset$,
- (ii) if there is some B such that $|B|_W = \theta_\alpha$ let $\theta_{\alpha+1} := \theta_B$.

¹See [?] for a proof.

²Since continuous functions are coded by reals, this is independent of the choice of B.

0

 \dashv

(iii) if α is a limit ordinal, we let $\theta_{\alpha} := \sup_{\beta < \alpha} \theta_{\beta}$. Finally, Ω is the least ordinal such that $\theta_{\alpha+1} = \theta_{\alpha}$, and $\Theta := \theta_{\Omega}$.

1.2 Ideals

Definition 1.2.1. Let I be an ideal on a nonempty set Z. Let

- (i) $I^+ := \mathcal{P}(Z) \setminus I$,
- (ii) for $a, b \in I^+$ let $a \sim_I b$ iff $a\Delta b \in I$,
- (iii) $\mathcal{P}(Z)/I := \mathcal{P}(Z)/\sim_I$ is the Boolean algebra with subset inclusion modulo \sim_I .

We call $\mathcal{P}(Z)/I$ the associated forcing to I.

Definition 1.2.2. If I is an ideal on a cardinal κ and $g \subseteq \mathcal{P}(\kappa)/I$ V-generic then g is a V-ultrafilter on κ in V[g], so that we may take the generic ultrapower Ult(V,g).

Proposition 1.2.3. Let I be an ideal on a cardinal κ . Then..

- (i) if I is κ -complete then so is any generic ultrafilter;
- (ii) if I is normal then so is any generic ultrafilter.

define κ -complete and normal for an ideal. Add reference.

Definition 1.2.4. Let λ be any cardinal. Then an ideal I on a cardinal κ is...

- precipitous if the generic ultrapower is wellfounded;
- λ -saturated if the associated forcing has the λ -chain condition;
- λ -dense if the associated forcing has a dense subset of size λ .

Note that λ -dense trivially implies λ^+ -saturated. We'll need the following facts about ω_2 -saturated ideals on ω_1 :

Proposition 1.2.5. Let I be an ω_2 -saturated ideal on ω_1 . Then I is precipitous, and letting $j: V \to M$ be the generic ultrapower map, it holds that

- (i) M is closed under ω -sequences in V[g];
- (ii) $j(\omega_1^V) = \omega_2^V = \omega_1^{V[g]};$
- $(iii) \quad j(\omega_2^V) \in (\omega_2^V, \omega_3^V);$

Parts (ii)-(v) is Example 4.29 in Foreman's handbook chapter. Perhaps include the proof.

(iv) j is continuous at
$$\omega_2^V$$
;

As for the density, we in particular need the following fact:

Proposition 1.2.6. Let I be an ω_1 -dense ideal on ω_1 . Then the associated forcing is forcing equivalent to $\operatorname{Col}(\omega, \omega_1)$, so in particular it's homogeneous.

PROOF. [?, Proposition 10.20].