Homework 30, Section 5.4: 7, 12, 14, 24, 25

Alex Gordon

April 16, 2014

Homework

7.

Since
$$T(b_1) = t(1) = 3 + 5t$$
, $(T(b_1))_B = \begin{bmatrix} 3 \\ 5 \\ 0 \end{bmatrix}$. also, since $T(b_2) = T(t) = -2t + 4t^2$, $(T(b_2))_B = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix}$, and $T(b_3) = T(t^2) = t^2$, $(T(b_3))_b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Thus the matrix representation of T relative to the basis b is $\begin{bmatrix} 3 & 0 & 0 \\ 5 & -2 & 0 \\ 0 & 4 & 1 \end{bmatrix}$

12.

The eigenvalues of the matrix are 1 and 3.

For
$$\lambda=1, A-I=\begin{bmatrix} -1 & 1 \\ -3 & 3 \end{bmatrix}$$
. The basis vector for the eigenspace, with x_2 being free, is $v_1=\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ For $\lambda=3, A-I=\begin{bmatrix} -3 & 1 \\ -3 & 1 \end{bmatrix}$. The basis vector for the eigenspace, with x_2 being free, is $v_1=\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

14.

24.

If $A = PBP^{-1}$ then rank $A = \text{rank } P(BP^{-1} = \text{rank } BP^{-1}$. Also, Rank $BP^{-1} = \text{rank } B$, since p^{-1} is invertible. Thus, rank A = rank B.

25.

IF $A = PBP^{-1}$ then by the trace property $tr(A) = tr(P^{-1}PB) = tr(IB) = tr(B)$. if B is diagonal, then the diagonal entries of B must be the eigenvalues of A, by the diagonalization theorem. So, tra = tr b = the sum of the eigenvalues of A.