Microprocessor Systems: Principles and Implementation

Chun-Jen Tsai NYCU 09/16/2022

Before We Start ...

- □ What is "hacker spirit?"

 Cracker

 Cracker
- □ Jargon File: a hacker is a person who enjoys exploring the details of programmable systems and stretching their capabilities, as opposed to most users, who prefer to learn only the minimum necessary.

(Requese for comments)

RFC-1392: a hacker is a person who delights in having an intimate understanding of the internal workings of a system, computers and computer networks in particular.

A Human Being Has No Limit

- □ A senior U\$ high school student, Sam Zeloof, built an IC (an OP AMP in 5µm process) in a garage in 2018
- □ In 2021, he made an IC with the same 10µm polysilicon gate process used by Intel's 4004 CPU

(source URL: sam.zeloof.xyz)

Introduction to the Course

- □ Lecture outline ISA 3 not that important, he de desgn of men Arcitectum
 - Introduction to the Course and Target Platform
 - RISC-V Instruction Set Architecture Architecture (ISA) micro Architectine
 - Microprocessor Design: History and Review
 - Application Processors and Aquila SoC
 - Memory Subsystem of Microprocessors
 - I/O Subsystem of Microprocessors
 - **Operating System Support of Microprocessors**
 - Multicore Organization of Microprocessors

50MH7

-) + Domain Specific Accelerator

Homework & Grading

- □ Homework (based on RISC-V processor for FPGA):
 - 0: Simulation of a HW-SW platform
 - 1: Real-time debugging of a HW-SW platform
 - 2: Branch predictor analysis and improvement
 - 3: Cache analysis and improvement
 - 4: Multithread synchronization improvement under RTOS
 - 5: Domain-specific accelerator for application processors
- □ Grading
 - HW# 1 ~ 5: 70%
 - Midterm online test: 5%, Final online test: 25%

The Open-Source Aquila SoC

☐ In this course, our homework will be based on the open-source Aquila SoC:

http://github.com/eisl-nctu/aquila

- ☐ The Aquila SoC is an open-source processor core:
 - Developed at the EISLab, Dept. of CS, NYCU (NCTU)
 - RISC-V RV32-IMA compliant
 - In-order, single-issue, five-stage pipeline microarchitecture
 - Capable of running multi-threading RTOS
 - 0.97 Dhrystone MIPS/MHz

A Short Table of DMIPS/MHz

□ Dhrystone is one of the oldest CPU benchmarks:

Computer/CPU	Year	Clock (MHz)	DMIPS/MHz
UNIVAC I (first ISA computer)	1951	2.25	0.0008
Intel 4004 (first microprocessor) 2300 Warstor	1971	0.74	0.124
IBM PC/Intel 8088 (begins the fall of mainframes)	1979	4.77	0.145
PDP-11/70 (where UNIX & C were created)	1970	? (~ 10)	0.15
Apple II (origin of Taiwan's PC industry)	1977	1	0.43
Alpha 21064 (descendent used in SunWay) Trist Syntony Merc	19 93	150	0.675
ARM 7 (popular for 2G mobile phones)	1994	45	0.889 ← Aquila (1.00)
ARM Cortex M4 (intended for microcontrollers)	2010	200	1.25
Cray I (first super computer)	1975	80	2.0 Falco (1.84)
ARM Cortex A53 (popular in 4G smartphones)	2014	1500	✓ MediumBoor 2.24 (2.18)
ARM Cortex A9 (popular for 3G feature phones)	2009	1500	2.5 — Boom (3.9)
ARM Cortex A76 (popular in 4G smartphones)	2018	3000	12.4
Intel i9-9900K	2018	4700	10.96

Apple Jul Commerce Stages

Cortex: TuperScalari

Skill Requirements

- □ Verilog programming for HW design
 - Using FPGA as digital design target
 - Using waveform simulator for functional debugging
 - Using embedded logic analyzer for live debugging
- C programming for SW design
 - Using GCC toolchain for SW development
 - Using linker script usage for SW memory organization
 - Tracing assembly code for SW debugging

Implementation of Computing Systems

- □ All computing systems are used to compute functions
 - A function can be implemented in software, hardware, or both
 - Software: processor instructions or FPGA program bits

■ Hardware: analog circuits or digital circuits

Hardwred.

Board-Level System Implementation

- □ Integrate different ICs on a printed circuit board (PCB):
 - A PCB has multiple layers
 - Trace layers: connecting IC ports to other IC ports
 - Power layers: supply power to circuit components on the PCB
 - Ground layers: provide electrical grounds for signals
- □ Each IC implement analog and/or digital functions
 - Digital ICs: data processing, buffering, signal arbitration and bridging, etc.
 - Analog ICs: voltage regulation, AD/DA, signal amplification, etc.

Chip-Level System Implementation

- □ A System-on-Chip (SoC) is a complex IC that integrates the major functional components of a computing system into a single chip
- The SoC design typically incorporates several computing components (aka (Ps) Intollected Property.
 - Embedded processor cores (RISC/DSP/GPU/AI)
 - On-chip memory blocks
 - Accelerator Logic blocks
 - I/O logic blocks
 - Embedded software

"Board-level" vs. "Chip-level" Design

- □ Board-level Design
 - More flexible in development cycle
 - High manufacturing cost for large quantities
 - Larger form factor and higher power consumption
- □ Chip-level Design (i.e. SoC)
 - More demanding in design, debug, and verification
 - Low cost for large quantities
 - Smaller form factor and lower power consumption

□ A new trend: package-level design, aka system-inpackage R Merry

dicelet

HBM High Badwolth Morry, eg) FPGA, GPV.

Application Processor Concept

- □ You probably have learned the following terms:
 - CPU
 - Microprocessor
 - Microcontroller
 - **I**..,
- ☐ The concept of "Application Processor (AP)" comes from the big boom of smartphones

HW-SW Codesigh

- □ An AP is an SoC that contains:
 - Processor cores
 - Optimized domain-specific accelerators (DSAs)
 - An efficient memory subsystem

The Architecture of the Aquila SoC

- ☐ The Aquila SoC specification on Arty A7-100T:
 - A 32-bit RISC-V core @ 41.6667 MHz
 - L1 4-way set associative I/D-caches
 - 64KB tightly-coupled memory (TCM) / 256MB DDR3 DRAM
 - Integrated UART, Timer, and device controllers

The Target Development Board

- □ Arty A7-100T contains an XC7A100T FPGA:
 - 63,400 LUTs, 126,800 FFs, 600KB BRAMs, and 220 DSPs
- □ Aquila core uses 7,300 LUTs, 5,000 FFs, and 4 DSPs

The System HW-SW Layers

- □ The layered structure of the HW-SW in this course:
 - BSP stands for Board Support Package, it contains a basic set of I/O routines, usually for C programs (similar to BIOS for PC)

□ For FPGAs, the on-chip RAM can be initialized with a program (such as boot code).

16/18

System Convergence

- □ Today, smart devices have many things in common:
 - Powerful processors and accelerators
 - Sensor integrations
 - Audio/video recording and/or playback
 - Complex feedback control of motors
 - Wireless communication capabilities
- □ One platform for all devices (Drones, ADAS, etc.)?
 - Application Processor
 - GPS
 - AV codecs
 - Motor control
 - Wi-Fi and BT

Discussions

- ☐ This course tries to teach you the entire HW-SW system, with almost all source code exposed to you
- □ Taiwan has an IT industry today because back in 1977, the co-funder of Apple, Steve Wozniak, insisted that the entire source code and the schematics of the Apple II computer should be available to users