Used Car Price Prediction

Fadhiil Dzaki Mulyana

Background

The automotive industry is one of the largest in the world, with the used car market playing a significant role. Understanding the factors that influence the pricing of used cars is crucial for various stakeholders, including buyers, sellers, and dealerships. Factors such as mileage, brand, model, count of previous owners, condition, ext. can all impact the price of a used car. Analyzing these factors through regression analysis can provide valuable insights into pricing trends and help stakeholders make informed decisions.

Goal

create a robust regression model that accurately predicts the prices of used cars.

problem

we dont know yet the best method that accurately estimates the price of used cars based on various attributes.

Use full for:

- Dealer
- Car Entushiast
- People who wants to buy a car

Objektive

- · Data Visualization.
- End-to-End Regression Project.
- Hyperparameter tuning.

Used Car Prices in UK Dataset is a comprehensive collection of automotive information extracted from the popular automotive marketplace website, autotrader.co.uk. This dataset comprises 3,685 data points, each representing a unique vehicle listing, and includes thirteen distinct features providing valuable insights into the world of automobiles.

duplicated values: 826

Automobile Dataset (kaggle.com)

missing values:	128.79%
Previous Owners	1409
Engine	45
Doors	25
Seats	35
Emission Class	87
Service history	3145

14 COLUMNS X 3685 ROWS

Unnamed: 0	-
Title	Brand & Model
Price	Sale price (pounds.)
Mileage	Travelled distance (miles)
Registration year	officially registered year
Previous owners	Count of previous owners
Fuel type	Type of fuel used
Body type	General vehicle's shape
Engine	Engine's displacement
Gearbox	Transmission type
Doors	Count of doors
Seats	Seating capacity
Emission class	Standard emission (Euro)
Service history	Service completion

Important Columns

Unsused Columns

- Registration year
- Mileage
- Price

- Unnamed: 0
- Service history

Preprocessing Step

01

02

03

Data Cleaning

Data Transformation Feature Engineering

04

05

Feature Selection Scaling

Data Cleaning

Unused Features

 Drop service history and unnamed: 0 columns.

columns: 14 columns: 12

Outliers

Delete with IQR Method

Duplicated Value

Drop duplicate

duplicated values: 826 3685 baris

duplicated values: 0 tersisa 2859 baris

Missing Value

dropna

missing values: 39.14%
previous_owners 34.38
engine 0.59
doors 0.87
seats 1.22
emission_class 2.06

KNN Imput

1.16% missing values: 0.0%

34.16 tersisa 2793 baris

New Features:

Brand continent: Extracted from Title feature.

- Europe
- Asia
- North America

Regroup Fuel

Before	After
Petrol	Petrol
Diesel	Diesel
Electric	Electric
Petrol Hybrid	Hybrid
Petrol Plug-in Hybrid	
Diesel hybrid	

Convert Dtype

title	object
price	int64
mileage	int64
registration_year	int64
previous_owners	int64
fuel_type	object
body_type	object
engine	object
gearbox	object
doors	float64
seats	float64
emission_class	object

Feature Selection

Registration year and emission class seems to have high VIF score, indicates multicollinearity.

Registration year has more correlation with the target than emission class.

Drop emisission class.

Categorical Encode

Labeling: 2 categories

One-hot: >2 categories

Count : >10 categories

mileage	float64
registration_year	float64
previous_owners	int64
body_type	float64
engine	float64
doors	float64
seats	float64
emission_class	float64
fuel_type_Hybrid	float64
fuel_type_Petrol	float64
gearbox_Manual	float64
price	float64
europe_brand	uint8
America brand	uint8

Continuous Features Distribution

Price

The majority of vehicles price are low, but there are very expensive vehicles in the market. There could be special demand for rare vehicles, which could drive their prices higher than average.

Mileage

Most vehicles in the dataset have mileage values that are representative of typical usage patterns for vehicles of their type and age.

Reg. Year

most vehicles were registered evenly across different years, without a significant bias towards any particular time period.

Categorical Features

Title Extraction Features

- The majority of vehicles are coming from Vauxhall with Corsa model.
- The majority of brands are European, as 6 of the top 10 brand countries are in Europe.

Price VS Continuous Features

VS mileage

The further the distance travelled, the lower the price will be.

VS Reg. Year

the newer the registration year, the higher the price will be.

Price VS Categorical Features

VS Previous Owner

The more owners there are, the lower the price will be.

VS Emission Class

The higher the emission standard of a vehicle, the higher the price.

This may be due to the strong correlation between model year and emissions class.

VS Fuel Type

Ignoring Hybrid fuel, diesel vehicle has higher price than petrol.

Title Extracted columns

- The mosh expensive car in the dataset is Hyundai Kona, but Hyundai isn't in top10 average brand price list. This may because Hyundai isn't quite much and the price of other model is low.
- Europe has the highest price average and 7 of europe brands are in the top 10 brands country average prices.

As you can see, model column has less outliers than the other title extaracted columns, but 469 unique value are there (too much).

Brand or country has less unique value than model, but there are too many outliers.

Brand continent is the more stable features, because it has only 3 unique, the outliers not as much as country or brand, and can represent title very well.

Take a look at these plots

These are plots separated by transmission type.

Automatic

Distribution between manual and automatic price is the same,

Most of the plots shows that automatic transmission has higher price than manual.

Model Building

Model	R2		MAE		MSE	
Woder	Train	Test	Train	Test	Train	Test
Linear	0.739213	0.739583	1224.402536	1237.239468	2.455937e+06	2.415864e+06
Ridge	0.739212	0.739580	1224.382666	1237.202174	2.455939e+06	2.415894e+06
Lasso	0.739211	0.739553	1224.313579	1237.237101	2.455952e+06	2.416145e+06
ElasticNet	0.661870	0.663136	1379.822427	1381.488873	3.184306e+06	3.125055e+06
Decision Tree	0.999875	0.596637	1.385831	1381.013384	1.174466e+03	3.741965e+06
Random Forest	0.972173	0.786783	369.142032	1074.890739	2.620548e+05	1.977993e+06
Gradient Boosting	0.856403	0.813298	854.548768	1008.101459	1.352308e+06	1.732021e+06
Neural Network	-0.448340	-0.422354	2954.646243	2889.601282	1.363959e+07	1.319506e+07

Choosing The Best Model

- The Random Forest model has the highest test R2 (0.786783) and relatively low test MAE and test MSE compared to other models.
- Decision Tree model has exceptionally high R2 on the training set (0.999875), but it doesn't generalize well on the test set.
- Linear, Ridge, Lasso and ElasticNet have a stable score on test and train data for all metrics, but the score is very low.
- Neural Network seems to perform the worst based on all metrics.

Gradient Boosting 0.856403 0.813298 854.548768 1008.101459 1.352308e+06 1.732021e+06

Best Model

The **Gradient Boosting** model does indeed have strong performance, especially in terms of test R2 (0.813298). It also has relatively low test MAE and test MSE compared to many other models.

The **Gradient Boosting** model captures about 81.33% of the variability of the unseen data in the target variable, which is considered quite good.

Hyperparameter Tuning

Madal	R2		MAE		MSE	
Model	Train	Test	Train	Test	Train	Test
Gradient Boosting	0.856403	0.813298	854.548768	1008.101459	1.352308e+06	1.732021e+06
Gradient Boosting (Tuned)	0.889526	0.821414	762.330661	977.320034	1.040374e+06	1.656728e+06

- Overall, hyperparameter tuning seems to have enhanced the Gradient Boosting model's performance.
- The R2 score increased for both the training and test sets, indicating better model fit.
- The MAE and MSE decreased, which suggests improved accuracy and precision in predictions.

Conclusion

- Important Features: registration_year and mileage are the most important features to determine prices due to imbalance data in other features.
- Vehicles with lower mileage, newer year, fewer owners, European brands, and/or automatic transmission are more likely to have a higher price.
- Best model: Gradient Boosting Regressor with Hyperparameters. Accuracy increased, MAE and MSE decreased.

Note:

The available data may be incomplete or may not cover all factors that influence the price of used cars.

Recomendation

- Utilize the insights gained from the prediction model to adjust pricing strategies for used cars.
- Segment customers based on their preferences and predicted buying behavior using the insights from the prediction model.
- Establish a feedback loop to continuously monitor the performance of the prediction model and incorporate new data or insights to improve its accuracy over time.
- choose Vehicles with lower mileage, newer year, fewer owners, European brands, and/or automatic transmission to get more stable price.

ThakYou

linkedin.com/in/fadhiildzaki

https://github.com/FadhiilDzaki/used_car_price_prediction.git