IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Gerhard Meyer et al.

Filed: December 8, 2003

Application Ser. No. 10/539,877

•

For: Fire Protection Means and Method for the

Production Thereof

Confirmation No.: 6327

Art Unit: 1794

Examiner: Elizabeth A. Robinson

DECLARATION UNDER 37 C.F.R. §1.131

Valentino Villari, hereby states as follows:

- 1. I am an inventor of the invention described and claimed in the above-identified application, and am personally familiar with the documents attached hereto and the facts recited herein.
- 2. Attached as an exhibit are copies of documents describing and illustrating preparation of the invention disclosed and claimed in the above-identified application.
- 3. The dates on the exhibit have been deleted, but each is prior to September 18, 2002.
- 4. As shown in the exhibit, a fire protection means and fire protection glazing falling within the scope of the invention were prepared before September 18, 2002.
- 5. More specifically, the fire protection means comprised a hybrid film system, consisting of two or three layers. The two- and three-layered hybrid film system consisted of a film made from a mixture of waterglass and glycerin as intumescent material. This film was covered on one or both flat sides with PET-films (polyethylene-terephthalate) to yield a hybrid film system.

The two- and three-layers comprising hybrid film systems were put in between two sheets of glass, fixed with silicone glue and laminated. As shown in the laboratory notes, the glazing with three-layer hybrid film system had the following composition/build-up:

The fire glazing with a two-layer comprising hybrid system looked as follows:

Pre-lamination	glass 110 × 110
	PET
	Film
	Glass 110 x 110

In addition to the two different layer built-ups of the hybrid film system, the composition of the glycerine/waterglass film used in both cases as organic/ inorganic mixture was varied as shown in the following table to examine its impact on overall glazing properties, especially with respect to haze and transparency:

	WG	Glycerin calculated	solid material	added	%
1%	127.59	1.289	37.07	1.28	1.00
3%	127.82	3.952	38.34	3.94	3.00
7%	124.89	9.400	40.88	9.39 9.40	7.00
9%	111.57	11.034	42.15	11.11	9.00

Summarizing the above, fire protection glazings were prepared, consisting of two- or three-layered hybrid film systems laminated between two glass sheets. The hybrid film systems used consisted of an intumescent layer made from glycerine and waterglass in different ratios, i.e. a mixture of an organic and an inorganic component. The second and respectively third film of the hybrid film systems were made from PET, i.e. an organic polyester material, so that the intumenscent layer

and the PET-layer differed from each other with respect to their components/composition. The glazings prepared were transparent in the visible spectrum. Accordingly, the invention was already made at that time.

6. The acts described above in paragraph 4 and 5 were carried out in the Netherlands.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made punishable by fine or imprisonment, under Section 1001 of Title 18 of the United State Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

01.02.10

Date

Name: Valentino Villari

EXHIBIT

HINTE STATE

32 elige				
Joal Substr.	- Habal staan de regullo			
G Qas	507 37.10 356		315 m 340m	
	46,8 33,8 32,7			
C Qos	44,3 30,3 29,4	28.0	29,1	
PET	29,7	28 3		
PET	3,6		27.S	
PET	- 33		- 27 a	
<u> </u>	s voor droger.			
	0 % S:02 % H20	% Ge/2	1/0 tr-Compl. 1	o CR Comple
7.7 1.6	25,46,8	5,1	+ •	
6+ C 80	245 62,6		0.17	
	244 62,4		5) 26 -
Don Complosed	oxidatio.			
0/6 Na	20 % \$.02	% 2 R O	2	
9+4 233				
B+E 24,1		0,53%		
C+ F 24 6	0-9/0 74,694	0,80%		

FOU	iebevelcli	19 ltigs t	sto glycev.	ine low pe	utbelast	ing.
VS\$ 39,616	I	II.	TIG.	W		VII
ap substruat	99,50	100,50	9900	98.51	72,91	72.93
massa substraat	124,7661	125,3(6)	125,9719	123,8530	46,5795	16,6204.
inverg bevelund	10,72	10,93	20,62	20,52	15,19	15 20
imbelg.	20,72.	20,95	2067.	20,54.	15.24.	15,22.
MACUSSA by 25%	135,71	136,38	136.89	134.70	54.47	54,23
Dilte +	Haze 1	G				
zonder met !	Jus 8	И	zouder we	And the same of th	KT	愛 日
	051 91.8	0,11	1,56 2,0 1,57 7.0	3 0,46	91.6	0,28
1.58 214	020 31.7	0.18	1,56 2,00	0.53	9.9	013
		aan.				
					177	
16.35 I (360) 135,95	136,09	137,34.	135,16.	1 <u>7</u> 55,00	立 5萬,99.	
17.35 135,8176.	136.52	137.08	134,88	54,80	54.77-	
(42D) 18.35 135,66	136.CU	136,90	134,72	54,68	54,66	
(U8O)						
lausineven						
glasplaten v						
folie 15 mil					1	
Polie tusser	cle 2 ver	erme glas	optaten.	4 blews	aeu eusp	eu
terrig wd	e stool -					

massa tyd	MACISSCI WG1	UG 2.	2 vocat	WG12
3.0	118,87	118.76	36.8	21.8
11.10	48,43	110,74.	32.9	21.5
1350	18,00	118,71.	28,7.	21.1
	\$			

ENGLISH TRANSLATION OF EXHIBIT

Lamination

Pre-lamination	glass 110 × 110
	PET
	Film
	Glass 110 x 110

No. 10 in pre-heated kiln at 80 °C [176 °F] put away with 2 x pre-heated metal plates on it

WG (waterglass) with glycerin 1%, 3%, 7%, 9%

	WG	glycerin calculated	solid material	added	%
1%	127.59	1.289	37.07	1.28	1.00
3%	127.82	3.952	38.34	3.94	3.00
7%	124.89	9.400	40.88	9.39 9.40	7.00
9%	111.57	11.034	42.15	11.11	9.00

Side view of substrate structure

Top view of substrate structure

Calculations

The table below shows the results of the core moisture calculations

Dish	Substrate	130 m	205 m	230 m	265 m	315 m	340 m
Α	glass	50.7	37.10	35.6		30.8	29.7
В	glass	46.8	33.8	32.7	39.8	29.1	***
C	glass	44.3	30.3	29.4	28.0	shoor.	
D	PET	-		29.7	28.3	nunci	attice
	PET	•••		31.6		vun.	27.5
	PET		<u></u>	33.7	 -	mer.	27.9

Remaining percentages before drying

No.	% Na ₂ O	% SiO ₂	% H ₂ O	% glyc.	% Zr	% Zr
					Compl. 1	Compl. 2
A + D	7.7	25.4	61.8	5.1	ems	***
B+E	7.8	24.5	62.6	5.0	0.17	
C + F	8.0	24.4	62.4	4.9		0.26

After complete oxidation

No.	% Na ₂ O	% SiO ₂	$\% ZrO_2$
A + D	23.3%	76.7%	AND STATE OF THE S
B+E	24.1%	75.3%	0.53%
C + F	24.6%	74.6%	0.80%

Film preparation WG + 5% glycerin for purposes of point loading

VS% 39.61%	**************************************	**************************************	enterna Tartes	IV	V	VI
substrate surface	99.50	100.50	99.00	98.51	72.91	72.99
substrate weight	124.7661	125.3161	125.9719	123.8530	46.5795	46.6204
calculated weighed- in quantity	20.72	20.93	20.62	20.52	15.19	15.20
weighed-in quantity	20.72	20.95	20.67	20.54	15.24	15.22
weight at 25%	135.71	136.38	136.89	134.70	54.47	54.23

Thickness + haze G

without	with	film	T	H	without	with	film	T	Н
1.56	2.07	0.51	91.8	0.11	1.56	2.04	0.48	91.6	0.28
1.56	2.07	0.51	91.4	0.20	1.57	2.03	0.46	91.7	0.18
1.56	2.14	0.58	91.9	0.18	1.56	2.09	0.53	91.9	0.13
1.57	2.15	0.58	91.7	0.17	1.58	2.18	0.60	91.7	0.34

9:50 a.m. O₂ 400 l/h oven on

10:10 a.m. oven on

10:35 a.m. oven 80°C [176°F]

	1			IV	V	VI
4:35 p.m. (360)	135.95	136.69	137.34	135.16	55.00	54.99
5:35 p.m. (420)	135.76	136.52	137.08	134.88	54.80	54.77
6:35 p.m. (480)	135.66	136.41	136.90	134.72	54.68	54.66

Lamination P-B

Glass plates 100 × 100 pre-heated to 80 °C [176 °F]

Film sealed in PE for 15 minutes, pre-heated to 80 °C [176 °F]

Film between the two hot glass plates, 4 clamps on them and back into the kiln

Experiment: flattening the film prior to lamination

Film PP-C

total weight: 245.75 g pressure weight: 3003.18 g

3029.83 g

Photos for PP-C01

PP-C02

1:30 p.m. into the kiln at 80 °C [176 °F]

4:00 p.m. weight 245.71 g photos

5:30 p.m.

Haze	WG3	WG3		WG4		
На	ze 7	rans.		Haze		Trans.
5.7	7 ε	35.6		5.94		87.3
23.	.7 ε	34.6		5.58		87.5
4.2	:9 8	85.8		1.17		87.9

Ok photos after PP-C03
PP-C04

Filed in A4 folder under "glass"

		Weight		% Moisture	
weight	Time	WG1	WG2	WG1	WG2
	9:10 a.m.	118.87	118.76	36.8	21.8
	11:10 a.m.	118.43	118.74	32.9	21.5
	13:50 a.m.	118.00	118.71	28.7	21.1

Point loading

T (time)	M (mass)	Αû	Bû	Cû	Dΰ
0	206.5	O	O		O
1	+ 100	2.49	1.78		2.51
2	11	4.30	2.36		3.05
3	11	2.14 tear			2.20 tear
4	Ħ				

A begins to tear immediately

C as well

Lamination P-C

12:30 p.m. placed into the kiln at 80 ℃ [176 °F] with clamping tool

1:45 p.m. PET replaced with 100 \times 100 glass plate

WG ref. 124
$$\frac{106.12}{1.6\text{-BDO}(5,58)}$$
 24.60 $\frac{1.6\text{-BDO}(5,58)}{0.46 + 0.84 \text{ g after dissolving } \pm 3.5 \text{ hrs.}}$ demi (demi-water) 5.59

[illegible]

1.59 0.60

0.88

Solid material content 32.59

1.4-BDO 4.1283%