Learning-based Coordination of Transmission and Distribution Operations

EURO Conference 2021

S. Pineda, J. M. Morales, Y. Dvorkin

OASYS group, University of Málaga (Spain)

July 12, 2021

Transmission-Distribution in the past/present

- DN only included inflexible consumers
- DN's consumption was easily predicted
- TN operation was determined by replacing DN with fix loads
- Low computational burden, no information exchange

Transmission-Distribution in the future

- DN includes flexible consumers and DERs.
- DN's consumption is sensitive to the electricity price
- How should TN be operated in this scenario?

- Exact methods
 - Centralized
 - Decomposition
 - Decentralized
- Approximate methods
 - Single-bus
 - Price-agnostic
 - Price-aware

- Exact methods
 - Centralized
 - Full representation of transmission and distribution networks
 - Full access to all distribution networks information
 - Very high computational time
 - Decomposition
 - Decentralized
- Approximate methods
 - Single-bus
 - Price-agnostic
 - Price-aware

- Exact methods
 - Centralized
 - Decomposition
 - Few complicating constraints/variables allow for decomposition
 - Full access to all distribution networks information
 - Significant time reductions
 - Decentralized
- Approximate methods
 - Single-bus
 - Price-agnostic
 - Price-aware

- Exact methods
 - Centralized
 - Decomposition
 - Decentralized
 - Iterative methods with limited information exchange
 - It relies on robust communication infrastructure
 - Significant time reductions
- Approximate methods
 - Single-bus
 - Price-agnostic
 - Price-aware

- Exact methods
 - Centralized
 - Decomposition
 - Decentralized
- Approximate methods
 - Single-bus
 - All topology parameters of DNs are ignored
 - Very low computational time
 - Good results only for uncongested DNs
 - Price-agnostic
 - Price-aware

- Exact methods
 - Centralized
 - Decomposition
 - Decentralized
- Approximate methods
 - Single-bus
 - Price-agnostic
 - It assumes that the response of DNs is independent of price
 - It only requires access to historical data at main substation
 - Good results only for passive DNs
 - Price-aware

- Exact methods
 - Centralized
 - Decomposition
 - Decentralized
- Approximate methods
 - Single-bus
 - Price-agnostic
 - Price-aware
 - It accounts for network congestion and price impact
 - It only requires access to historical data at main substation
 - Response of DNs dependent on contextual information

1) For each DN, we have access to price-response historical data

- 2) For a given context, we select the closest price-response pairs
- 3) We approximate the data using a step-wise non-increasing function
- 4) We operate the TN using the step-wise functions

- 1) For each DN, we have access to price-response historical data
- 2) For a given context, we select the closest price-response pairs

- 3) We approximate the data using a step-wise non-increasing function
- 4) We operate the TN using the step-wise functions

- 1) For each DN, we have access to price-response historical data
- 2) For a given context, we select the closest price-response pairs
- 3) We approximate the data using a step-wise non-increasing function

4) We operate the TN using the step-wise functions

- 1) For each DN, we have access to price-response historical data
- 2) For a given context, we select the closest price-response pairs
- 3) We approximate the data using a step-wise non-increasing function
- 4) We operate the TN using the step-wise functions

Evaluation procedure

- 1) Solve the operation of the TN using the following approximations:
 - Single-bus (SB)
 - Price-agnostic (PAG)
 - Price-aware (PAW)
- 2) Determine the electricity prices at substations
- 3) Compute the optimal operation of DNs for those prices
- 4) Quantify the power imbalance between expected and actual response
- 5) Measure the social welfare loss with respect to the exact solution

Case study

- 1 TN with 118 buses and 186 lines
- 91 DN with 32 buses and 32 lines
- DN include flexible consumers and solar power units
- End-customers react linearly to price
- DN parameters are varied to simulate different congestion levels
- Demand and solar forecast used as contextual information
- 8760 hours for training and 100 hours for testing

Results

- SB works for low congestion since network can be disregarded
- PAG works for high congestion since response is independent of price
- \bullet PAW works for low and high congestion. Average imbalance <0.7%

Results

- Maximum loss for SB and PAG are 2% and 4%, respectively
- Maximum loss for PAW is 0.1%

Conclusions

- Exact methods for TSO-DSO coordination rely on access to private information and/or robust communication infrastructures
- We propose a learning-based approach that
 - only requires measurement data at substations
 - does not depend on communication infrastructure
 - uses a step-wise function to model the response of DN
 - can be easily implemented in current market procedures
 - accounts for contextual information
- If compared with other approximations, the proposed approach
 - reduces the power imbalances (< 0.7%)
 - reduces the social welfare loss (< 0.1%)

Thanks!! Questions??

website: oasys.uma.es

J.M. Morales, S. Pineda, and Y. Dvorkin, "Learning-based Coordination of Transmission and Distribution Operations", under review

