System PAM4 Jitter Analysis

'Jitter' VCO

•VCO nie ma zaimplementowanego jitteru termicznego, jednak jego architektura wprowadza pewna niestabilnosc czestotliwosci

- •BER -10^{-10}
- $\alpha = 12.723$
- •Przyjety JitterRMS VCO − 2ps
- •Peak to peak Jitter VCO 25.446ps
- •Zapas VCO: Setup/Hold time p2p Jitter VCO/2

- •PJ_main zmienna określająca jak duze ma byc maksymalne przesuniecie zbocza zegara w dziedzinie czasu
- •PJ=PJ_main * f_PJ/freq maksymalne przesuniecie zbocza zegara w wyniku jitteru jest stale dla danego PJ_main rozne wartości przyjmuje maksymalny odchyl czestotliwości wyzsza pochodna funkcji jitteru
- •PJ_tot zmienna akumulacyjna jitteru, jest inkrementowana:
 - PJ_tot=PJ_tot+PJ*f_PJ/freq
 - Gdy PJ_tot>PJ, zmiany czestotliwosc zmieniaja kierunek
- •Chwilowa czestotliwosc zegara obliczana jest wzorem:
 - $f_{in}=freq+PJ*sin(PJ_{tot}/PJ*\pi);$

Jitter Main [MHz]	Jitter amp.[ps]
100	0.3185
200	0.6365
500	1.591
1000	3.1815
1500	4.7715
2000	6.36
2500	7.95

- •PJ_main=100MHz, f_PJ=100MHz
- •Przesuniecie zegara w wyniku jitteru obliczane wzgledem momentow zbocza zegara idealnego:

•Zmiany czestotliwosci w wyniku jitteru:

•PJ_main=100MHz, f_PJ=200MHz

•Przesuniecie zegara w wyniku jitteru obliczane wzgledem momentow zbocza zegara idealnego:

•Zmiany czestotliwosci w wyniku jitteru:

•Setup/Hold Time w obecnosci Jitteru:

•Setup/Hold Time w obecnosci Jitteru:

•Maksymalny Jitter dla CDR w zaleznosci od czestotliwosci:

KANAŁ

Eyediagram dla długości kanału 5 mm

Charakterystyka częstotliwościowa channel_data dla kanału = 5 mm

Eyediagram dla długości kanału 10 mm

Charakterystyka częstotliwościowa channel_data dla kanału = 10 mm

Eyediagram dla długości kanału 15 mm

