# Assignment01

### Group 5

#### **Data Exploration and Preparation**

As the quality of our inputs decide the quality of your output, we will be spending more time and efforts in data exploration, cleaning and preparation. We will be following the below steps for our data exploration and preparation:

- 1- Variable Identification
- 2- Univariate Analysis
- 3- Bi-variate Analysis
- 4- Missing values treatment
- 5- Outlier treatment
- 6- Variable transformation
- 7- Variable creation

#### 1- Variable Identification

First let's display and examine the data dictionary or the data columns.

| VARIABLE_NAME        | DEFINITION                             | THEORETICAL_EFFECT      |
|----------------------|----------------------------------------|-------------------------|
| INDEX                | Identification Variable (do not use)   | None                    |
| TARGET_WINS          | Number of wins                         | Target                  |
| TEAM_BATTING_H       | Base Hits by batters (1B,2B,3B,HR)     | Positive Impact on Wins |
| TEAM_BATTING_2B      | Doubles by batters (2B)                | Positive Impact on Wins |
| TEAM_BATTING_3B      | Triples by batters (3B)                | Positive Impact on Wins |
| TEAM_BATTING_HR      | Homeruns by batters (4B)               | Positive Impact on Wins |
| TEAM_BATTING_BB      | Walks by batters                       | Positive Impact on Wins |
| TEAM_BATTING_HBP     | Batters hit by pitch (get a free base) | Positive Impact on Wins |
| TEAM_BATTING_SO      | Strikeouts by batters                  | Negative Impact on Wins |
| TEAM_BASERUN_SB      | Stolen bases                           | Positive Impact on Wins |
| TEAM_BASERUN_CS      | Caught stealing                        | Negative Impact on Wins |
| $TEAM\_FIELDING\_E$  | Errors                                 | Negative Impact on Wins |
| $TEAM\_FIELDING\_DP$ | Double Plays                           | Positive Impact on Wins |
| TEAM_PITCHING_BB     | Walks allowed                          | Negative Impact on Wins |
| TEAM_PITCHING_H      | Hits allowed                           | Negative Impact on Wins |
| TEAM_PITCHING_HR     | Homeruns allowed                       | Negative Impact on Wins |
| TEAM_PITCHING_SO     | Strikeouts by pitchers                 | Positive Impact on Wins |

We notice that all variables are numeric. The variable names seem to follow certain naming pattern to highlight certain arithmetic relationships. In other words, we can compute the number of '1B' hits by taking the difference between overall hits and '2B', '3B', 'HR'. Although such naming and construct is not recommended in normalized database design (as it violates third normal form), it is very frequent practice in the data analytics.

Then , we will identify Predictor (Input) and Target (output) variables. Next, we will identify the data type and category of the variables.

Our predictor input is made of 15 variables. And our dependent variable is one variable called TAR-

#### GET WINS.

Below are the variable that have been identified and their respective type and category:

| Type of variable | Data Type | Variable Category |
|------------------|-----------|-------------------|
| Dependent        |           |                   |
| TARGET_WINS      | numeric   | continuous        |
|                  |           |                   |
| Independent      |           |                   |
| TEAM_BATTING_H   | numeric   | continuous        |
| TEAM_BATTING_2B  | numeric   | continuous        |
| TEAM_BATTING_3B  | numeric   | continuous        |
| TEAM_BATTING_HR  | numeric   | continuous        |
| TEAM_BATTING_BB  | numeric   | continuous        |
| TEAM_BATTING_HBP | numeric   | continuous        |
| TEAM_BATTING_SO  | numeric   | continuous        |
| TEAM_BASERUN_SB  | numeric   | continuous        |
| TEAM_BASERUN_CS  | numeric   | continuous        |
| TEAM_FIELDING_E  | numeric   | continuous        |
| TEAM_FIELDING_DP | numeric   | continuous        |
| TEAM_PITCHING_BB | numeric   | continuous        |
| TEAM_PITCHING_H  | numeric   | continuous        |
| TEAM_PITCHING_HR | numeric   | continuous        |
| TEAM_PITCHING_SO | numeric   | continuous        |
|                  |           |                   |

#### 2- Univariate Analysis

At this stage, we explore variables one by one. Method to perform uni-variate analysis will depend on whether the variable type is categorical or continuous. in our case all variables are coutinous. Hence we need to understand the central tendency and spread of each variable. These are measured using various statistical metrics visualization methods:

```
##
     TARGET_WINS
                     TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B
##
    Min.
          : 0.00
                     Min.
                            : 891
                                    Min.
                                           : 69.0
                                                    Min.
                                                           : 0.00
    1st Qu.: 71.00
                     1st Qu.:1383
                                    1st Qu.:208.0
                                                    1st Qu.: 34.00
##
##
    Median: 82.00
                     Median:1454
                                    Median :238.0
                                                    Median: 47.00
##
    Mean
          : 80.79
                     Mean
                            :1469
                                    Mean
                                           :241.2
                                                    Mean
                                                           : 55.25
##
    3rd Qu.: 92.00
                     3rd Qu.:1537
                                    3rd Qu.:273.0
                                                    3rd Qu.: 72.00
##
    Max.
          :146.00
                     Max.
                            :2554
                                    Max.
                                           :458.0
                                                    Max.
                                                           :223.00
##
##
   TEAM_BATTING_HR
                     TEAM_BATTING_BB TEAM_BATTING_SO
                                                      TEAM BASERUN SB
                                                      Min. : 0.0
##
   Min.
          : 0.00
                     Min.
                          : 0.0
                                     Min.
                                          : 0.0
##
    1st Qu.: 42.00
                     1st Qu.:451.0
                                     1st Qu.: 548.0
                                                      1st Qu.: 66.0
                     Median :512.0
##
  Median :102.00
                                     Median : 750.0
                                                      Median :101.0
  Mean : 99.61
                     Mean :501.6
                                     Mean : 735.6
                                                      Mean :124.8
                     3rd Qu.:580.0
                                     3rd Qu.: 930.0
    3rd Qu.:147.00
##
                                                      3rd Qu.:156.0
```

| Central Tendency | Measure of<br>Dispersion | Visualization<br>Methods |
|------------------|--------------------------|--------------------------|
| Mean             | Range                    | Histogram                |
| Median           | Quartile                 | Box Plot                 |
| Mode             | IQR                      |                          |
| Min              | Variance                 |                          |
| Max              | Standard Deviation       |                          |
|                  | Skewness and<br>Kurtosis |                          |
|                  |                          |                          |

Figure 1: Alt text

```
##
    Max.
            :264.00
                              :878.0
                                        Max.
                                                :1399.0
                                                           Max.
                                                                  :697.0
                      Max.
##
                                        NA's
                                                :102
                                                           NA's
                                                                  :131
##
    TEAM_BASERUN_CS TEAM_BATTING_HBP TEAM_PITCHING_H TEAM_PITCHING_HR
##
    Min.
            : 0.0
                     Min.
                             :29.00
                                        Min.
                                                : 1137
                                                          Min.
                                                                    0.0
##
    1st Qu.: 38.0
                     1st Qu.:50.50
                                        1st Qu.: 1419
                                                          1st Qu.: 50.0
    Median: 49.0
                     Median :58.00
                                        Median: 1518
##
                                                         Median :107.0
##
    Mean
            : 52.8
                             :59.36
                                                : 1779
                                                                 :105.7
                     Mean
                                        Mean
                                                          Mean
##
    3rd Qu.: 62.0
                     3rd Qu.:67.00
                                        3rd Qu.: 1682
                                                          3rd Qu.:150.0
                                                :30132
##
    Max.
            :201.0
                     Max.
                             :95.00
                                        Max.
                                                          Max.
                                                                  :343.0
##
    NA's
            :772
                     NA's
                             :2085
##
    TEAM PITCHING BB TEAM PITCHING SO
                                          TEAM FIELDING E
                                                             TEAM FIELDING DP
                0.0
                                                  : 65.0
##
                      Min.
                                    0.0
                                                             Min.
                                                                     : 52.0
##
    1st Qu.: 476.0
                       1st Qu.:
                                 615.0
                                          1st Qu.: 127.0
                                                             1st Qu.:131.0
##
    Median : 536.5
                                          Median: 159.0
                                                             Median :149.0
                      Median:
                                 813.5
##
    Mean
            : 553.0
                       Mean
                                 817.7
                                          Mean
                                                  : 246.5
                                                             Mean
                                                                     :146.4
##
    3rd Qu.: 611.0
                       3rd Qu.:
                                 968.0
                                          3rd Qu.: 249.2
                                                             3rd Qu.:164.0
##
    Max.
            :3645.0
                              :19278.0
                                          Max.
                                                  :1898.0
                                                                     :228.0
                       Max.
                                                             Max.
##
                       NA's
                              :102
                                                             NA's
                                                                     :286
```

#### 3- Bi-variate Analysis

Bi-variate Analysis finds out the relationship between two variables. Here, we look for association and disassociation between variables at a pre-defined significance level.

In our case we have only continuous variables we will be doing bi-variate analysis between two continuous variables. We will use scatter plot and find out the relationship between two variables: We are looking to find the pattern and if the relationship between the variables is linear or non-linear.

Also we will use the scatter plot to show the strength of the relationship between two variable. To find the strength of the relationship, we use Correlation. Correlation varies between -1 and +1.

- -1: perfect negative linear correlation
- +1:perfect positive linear correlation and
- 0: No correlation

### Correlogram of moneyball data



Correlation of our dependable variable  $TARGET\_WINS$  relative to the other 15 independable variables:

#### 4- Missing values treatment

Missing data in the training data set can reduce the power / fit of a model or can lead to a biased model because we have not analysed the behavior and relationship with other variables correctly. It can lead to wrong prediction or classification.

First let identify the missing data and find the mean for each variable by excluding the missing the data.

| Variable           | Count.Missing.Values | Mean       | Correlation | Theoretical.Impact.     |
|--------------------|----------------------|------------|-------------|-------------------------|
| TARGET_WINS        | 0                    | 80.79086   | 1.0000000   | Target                  |
| $TEAM\_BATTING\_H$ | 0                    | 1469.26977 | 0.3887675   | Positive Impact on Wins |
| TEAM_BATTING_2B    | 0                    | 241.24692  | 0.2891036   | Positive Impact on Wins |

| Variable             | Count.Missing.Values | Mean       | Correlation | Theoretical.Impact.     |
|----------------------|----------------------|------------|-------------|-------------------------|
| TEAM_BATTING_3B      | 0                    | 55.25000   | 0.1426084   | Positive Impact on Wins |
| TEAM_BATTING_HR      | 0                    | 99.61204   | 0.1761532   | Positive Impact on Wins |
| TEAM_BATTING_BB      | 0                    | 501.55888  | 0.2325599   | Positive Impact on Wins |
| TEAM_BATTING_HBP     | 2085                 | 59.35602   | 0.0735042   | Positive Impact on Wins |
| TEAM_BATTING_SO      | 102                  | 735.60534  | -0.0317507  | Negative Impact on Wins |
| TEAM_BASERUN_SB      | 131                  | 124.76177  | 0.1351389   | Positive Impact on Wins |
| TEAM_BASERUN_CS      | 772                  | 52.80386   | 0.0224041   | Negative Impact on Wins |
| $TEAM\_FIELDING\_E$  | 0                    | 246.48067  | -0.1764848  | Negative Impact on Wins |
| $TEAM\_FIELDING\_DP$ | 286                  | 146.38794  | -0.0348506  | Positive Impact on Wins |
| TEAM_PITCHING_BB     | 0                    | 553.00791  | 0.1241745   | Negative Impact on Wins |
| TEAM_PITCHING_H      | 0                    | 1779.21046 | -0.1099371  | Negative Impact on Wins |
| TEAM_PITCHING_HR     | 0                    | 105.69859  | 0.1890137   | Negative Impact on Wins |
| TEAM_PITCHING_SO     | 102                  | 817.73045  | -0.0784361  | Positive Impact on Wins |

Now that we have identified the count of missing for each variable and the correlation of each variable to our dependent variable TARGET\_WINS, we need to decide how to handle the missing the data and which variables to keep based on their correlation.

We observe that the sign of the correlation roughly matches up with our initial proposed theoretical effect; with BATTING\_SO, FIELDING\_E, and PITCHING\_H indicating a negative correlation. However, there are some instances where the sign conflicts with the proposed theoretical effect for instance PITCHING\_HR, and PITCHING\_BB have the opposite signs.

Based on the correlations and missing values, we infer that we abandon imputing values for BATTING\_HBP, BATTING\_SO, BASERUN\_CS, FIELDING\_DP due to low correlation to TARGET\_WINS.

However, we are considering the need to impute BASERUN\_SB as it has a correlation of 0.1351389 which is relatively acceptable to other correlations. There are few methods to treat missing data such as:

- 1- Deletion: Either list wise deletion or pair wise deletion, the deletion method is the simplest method.
- **2- Mean/ Mode/ Median Imputation:** Imputation is a method to fill in the missing values with estimated ones. The objective is to employ known relationships that can be identified in the valid values of the data set to assist in estimating the missing values. Mean / Mode / Median imputation is one of the most frequently used methods
- **3- Prediction Model:** This is one of the sophisticated methods for handling missing data. Here, we create a predictive model to estimate values that will substitute the missing data by dividing our data set into two sets. One set with no missing values for the variable and another one with missing values.
- **4- KNN Imputation:** In this method of imputation, the missing values of an attribute are imputed using the given number of attributes that are most similar to the attribute whose values are missing. The similarity of two attributes is determined using a distance function

## Appendix A



## [1] 0.3887675

## [1] 0.3502207

















TEAM\_PITCHING\_SO vs. WIN

TEAM\_PITCHING\_SO





