Astha Chopde

Capstone_Project...astha

a Quick Submit

Quick Submit

Symbiosis International University

Document Details

Submission ID

trn:oid:::1:3207912305

Submission Date

Apr 7, 2025, 3:58 PM GMT+5:30

Download Date

Apr 7, 2025, 4:03 PM GMT+5:30

File Name

Capstone_Project.docx

File Size

2.0 MB

19 Pages

1,727 Words

10,300 Characters

10% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Match Groups

13 Not Cited or Quoted 10%

Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%

 $\label{eq:matches} \mbox{Matches that are still very similar to source material}$

0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources

3% Publications

6% Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

13 Not Cited or Quoted 10%

 $\label{eq:matches} \mbox{Matches with neither in-text citation nor quotation marks}$

• Missing Quotations 0%

Matches that are still very similar to source material

0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources

3% Publications

6% Land Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Secure Quantum Communication Using BB84 Protocol Enhanced with AI-based Error Correction and Visualization

A PROJECT REPORT

Submitted for the partial fulfillment

of

Capstone Project requirement of B. Tech CSE

Submitted by

- 1. Shravan Aswale, 23070521501
- 2. Atharv Gadge, 22070521138
- 3. Astha Chopde, 22070521081

B. Tech Computer Science and Engineering

Under the Guidance of

Prof. Rajeshwar Balla

SYMBIOSISINSTITUTE OF TECHNOLOGY, NAGPUR

Wathoda, Nagpur

2025

CERTIFICATE

This is to certify that the Capstone Project work titled "Secure Quantum Communication Using BB84 Protocol Enhanced with AI-based Error Correction and Visualization" that is being submitted by Shravan Aswala- 23070521501, Atharv Gadge- 22070521138, Astha Chopde - 22070521081 is in partial fulfillment of the requirements for the Capstone Project is a record of bonafide work done under my guidance. The contents of this Project work, in full or in parts, have neither been taken from any other source nor have been submitted to any other Institute or University for award of any degree or diploma, and the same is certified.

Name of PBL Guide & Signature

Prof. Rajeshwar Balla

Verified by:

Dr. Parul Dubey Capstone Project Coordinator

The Report is satisfactory/unsatisfactory

Approved by

Prof. (Dr.) Nitin Rakesh Director, SIT Nagpur

ABSTRACT

The advancing quantum computing era now menaces operations secured by classical systems such as RSA encryption thereby demanding the development of encrypting protocols that will remain secure in the future. This research studies Quantum Key Distribution through the application of B84 designed protocol for secure key establishment using quantum principles. The Python simulation of BB84 protocol establishes a secure channel between Alice and Bob through which Eve's eavesdropping attempts and quantum noise are included as part of the model.

An AI-based error correction system using a neural network examines simulated transmission data for implementation as a reliability enhancement mechanism. The AI model obtains abilities to recognize and fix errors triggered by quantum interference as well as eavesdropping while strengthening the cryptographic key exchange accuracy. The protocol's actions alongside interference impacts and AI correction effectiveness appear through visual animations together with detailed graphical representations.

Quantum physics paired with machine learning creates a new method which allows viable development of secure communications systems that will operate within the upcoming quantum era.

TABLE OF CONTENTS

Chapter	Title	Page
		Number
	Abstract	3
	Table of Contents	4
1	Introduction	5
1.1	Objectives	6
1.2	Literature Survey	7
1.3	Organization of the Report	8
2	Secure Quantum Communication Using BB84 Protocol Enhanced with AI-based Error Correction and Visualization	12
3	Project Model	13
4	Results, Metrics & Analysis	17
5	Conclusion and Future Works	18
6	Appendix	18
7	References	19

INTRODUCTION

• What is quantum mechanics?

The Science of how tiny particles like atoms and photons behave in strange ways, such as being in multiple states at once or instantly affecting each other.

What is Quantum Computing?

A type of computing that uses tiny particles(qubits) to solve problems much faster than regular computers.

What is Quantum Cryptography?

A way to protect information using the rules of quantum physics so no one can secretly steal it.

Why is secure Communication Important?

To keep messages private and safe from hackers or spies.

Quantum Key Distribution (QKD)

What is QKD?

QKD protocol is a method for two people to share a secret key using quantum mechanics securely.

Purpose and Need for QKD:

Today, encryption (like RSA) relies on math problems that take regular computers thousands of years to solve.

• Threats to Classical Encryption:

Quantum computers can solve math problems much faster using special algorithms: Example: **Shor's algorithm** quickly factors large numbers, making RSA encryption vulnerable to quantum computers.

BB84 Protocol (Benett and Brassard 1984 protocol)

The BB84 protocol is to allow people(one to one) to share a secret key securely, which can then be used to encrypt messages. The Security of this protocol is based on quantum mechanics; if any eavesdropper tries to intercept the communication, the people will immediately detect it.

Why is BB84 secure?

- 1. **No cloning theorem:** quantum info cannot be copied perfectly.
- 2. **Hein'sberg Uncertainity Principle** *If Eve tries to measure a qubit, it changes, revealing her presence*
- 3. Randomness of Quantum State- Even if Eve intercepts, they will generate errors.

Small Model:

Bit	Basis (Alice)	Photon sent

1	+	•
0	*	•
1	*	•
0	+	•

Bob randomly chooses his bases:

Basis (Bob)	Measurement Result
+(match)	Correct(1)
+(wrong)	Random bit
*(Match)	Correct(1)
*(wrong)	Random bit

They compare their bases and discard on non-matching ones.

1.1 Objectives

- To design and simulate the BB84 Quantum key distribution protocol.
- To demonstrate secure communication using quantum principle.
- To detect and handle eavesdropping during key exchange.
- To build a machine learning model that can help correct quantum transmission errors.
- To visualize the flow of quantum bits and erros using animations and plots.

1.2 Literature Survey:

AUTHOR & Year	TITLE	METHODOLOGY	ACCURACY	OBSERVATIONS

Bennett & Brassard (1984)	Quantum Cryptography: Public Key Distribution and Coin Tossing	Introduced BB84 protocol using quantum states and bases	Conceptual	First proof-of-concept for quantum key sharing; detects eavesdropping using quantum principles
Ekert (1991)	Quantum Cryptography Based on Bell's Theorem	Proposed entanglement-based QKD (E91 protocol)	Conceptual	Entanglement allows higher security and potential for device- independent protocols
Lo, Chau & Ardehali (2005)	Quantum Cryptography Based on Bell's Theorem	Proposed entanglement-based QKD (E91 protocol)	Conceptual	Entanglement allows higher security and potential for device- independent protocols
Scarani et al. (2009)	The Security of Practical Quantum Key Distribution	Analyzed security of various QKD protocols with real-world constraints	Theoretical	Defined new bounds for secure QKD in imperfect conditions
Curty et al. (2014)	Finite-Key Analysis for Measurement- Device- Independent QKD	Addressed finite-key scenarios in QKD and device imperfections	~90–95%	Enabled secure implementation under limited key lengths

Lucamarini et al. (2018)	Overcoming the Rate–Distance Limit of Quantum Key Distribution	Developed Twin-Field QKD to enhance long-distance key sharing	High	Broke distance barrier for QKD by using phase correlation
Lu, Zhang & Liang (2020)	AI-Based Error Correction in Quantum Communication	Used neural networks to detect/correct transmission noise in QKD	Up to 97%	AI enables reliable correction of quantum errors
Bera et al. (2021)	Quantum Key Distribution using Deep Learning: A Survey	Surveyed deep learning applications in QKD		Summarized benefits of AI in error mitigation and anomaly detection
Kumar & Singh (2	Python-Based Simulation of BB84 Protocol for QKD	Implemented BB84 using NumPy and matplotlib with basic eavesdropping simulation		Validated simulation with visual representation of quantum bit flow

Younis et al. (2022)	Quantum Machine Learning for QKD Error Detection	Combined QML with QKD to improve detection of noise and tampering	~94%	QML outperformed classical methods in detecting quantum channel disruptions

Thapliyal & Banerjee (2022)	Machine Learning for Enhancing Security of QKD Networks	Proposed supervised learning models to classify error/noise patterns	~90–95%	Showed how SVM and neural networks can boost security in noisy QKD environments
Zhang et al. (2022)	Quantum Simulation Framework for Secure Communications	Developed full simulation stack using Python, TensorFlow, and Qiskit	92–96%	Demonstrated integration of quantum and classical AI models
Bhosale & Patil (2022)	AI-Based BB84 Protocol Enhancement Using Noise Detection Models	Used custom-trained neural networks to improve bit recovery after noise	~96%	Achieved improved sifted key quality with noise filtering AI
Wang et al. (2023)	Neural Error Correction Codes for Quantum Key Distribution	Designed and trained neural networks for decoding noisy quantum signals	~98%	Neural ECC outperformed traditional ECCs in quantum transmission scenarios

Patel et al. (2024)	Simulation and AI- Based Enhancement of BB84 Protocol using Python	Python-based end-to- end implementation of BB84 + AI-based bit correction	95.6%	Added visual simulation, AI models for bit restoration, and eavesdrop detection visualization
---------------------	--	--	-------	---

Secure Quantum Communication Using BB84 Protocol Enhanced with AI-based Error Correction and Visualization

This Chapter describes the existing system, proposed system, software and hardware details.

2.1 Existing System

This version implements only the basic BB84 protocol without AI enhancements:

2.2 Proposed System

Project Model

3.1 Dataset Generated

-	Alice_Bits	Alice_Bases	Bob_Bases	Eve_Present	Noise_Level	Bob_Received_Bits	Error_Detected
0	0	0	1	0	0.80	0	0
1	1	0	0	1	0.48	0	1
2	0	0	0	0	0.12	0	0
3	0	1	0	0	0.13	0	0
4	0	0	0	0	0.69	0	0
5	1	0	0	1	0.43	0	1
6	0	1	1	0	0.20	0	0
7	0	0	0	0	0.49	0	0
8	0	1	1	1	0.06	0	0
9	1	1	1	1	0.58	0	1

Model Training and evaluation:

tori, import matalatlih numlat ar alt

3.2 Visualisations:

Error rate with and without Eavesdropping

Noise vs. error Detected

• Alice vs Bob: Bit Agreement Heatmap

• Distribution of Eve's Presence and absence

Networking Concepts:

Handshaking in QKD:

In QKD, handshaking refers to the secure agreement phase where Alice and Bob verify the basis they used and agree on the final key, discarding mismatches. It's a way to ensure mutual understanding before using the key.

```
[16]: # Simulating quantum handshake (basic analogy)
print("\n Performing Quantum Handshake...")
if np.array_equal(alice_bases, bob_bases):
    print(" Handshake Successful - Bases Matched")
else:
    print(" Handshake Partial - Some Bases Mismatched")

Performing Quantum Handshake...
Handshake Partial - Some Bases Mismatched
```

- TTL(time to live) in Quantum Simulation and RTT (Round trip Time)as measured in simulation:
- 1. RTT is the time it takes for a signal (qubit or classical message) to travel from sender to receiver and back. In QKD, it's important to measure communication delay, especially in real-time transmission systems.
- 2. TTL limits how long a data packet (or qubit in this concept) is valid during transmission. In QKD, TTL can conceptually represent how long a qubit stays usable before noise or decoherence affects it.

```
]: # TTL (Time to Live) & RTT (Round Trip Time) Simulation
# TTL: Number of times a qubit can be transmitted before decaying (simplified)

ttl = np.random.randint(1, 4, num_bits)

rtt = np.random.uniform(0.01, 0.1, num_bits)

print("\nTTL values (Qubit Lifespan):", ttl)

print("RTT values (in seconds):", np.round(rtt, 3))

TTL values (Qubit Lifespan): [2 2 2 3 1 1 3 2 1 1]

RTT values (in seconds): [0.062 0.028 0.089 0.045 0.05 0.073 0.087 0.019 0.015 0.084]
```


RESULTS AND DISCUSSIONS

Simulation Summary

- The BB84 protocol was simulated successfully with randomized bit and basis generation.
- Eve's interference (30% chance) caused visible errors in Bob's bits, demonstrating QKD's ability to detect eavesdropping.

AI Model Outcome

- A neural network was trained using a dataset of quantum bit transmissions.
- The model achieved ~95% accuracy in detecting and correcting transmission errors.
- AI helped recover original bits effectively, even under noise and interference.

Visual Insights

- Bit flow animations clearly showed qubit transmission and eavesdropping points.
- Accuracy and loss graphs validated the AI model's performance.
- Visualization of sifted key and error correction made results easy to interpret.

CONCLUSION AND FUTURE WORK

In this project, we built and tested the BB84 Quantum Key Distribution (QKD) protocol to show how quantum physics can be used to send information securely. We added noise, eavesdropping, and randomness to make the simulation more realistic. Then, we used AI to fix the errors caused during transmission. This made the communication more accurate. We also added animations and visualizations to make the project more fun and easier to understand. This helps students, researchers, and beginners learn how quantum communication works.

Future Enhancements:

- Hardware Implementation Possibilities
- Real-Time QKD on Quantum Networks
- Advanced AL models (eg, LSTM, CNN)

CHAPTER 6

APPENDIX

https://github.com/astha10chopde/quantum-qkd-project/tree/main

REFERENCES

- 1. Bennett, C. H., & Brassard, G. (1984). *Quantum cryptography: Public key distribution and coin tossing*. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing.
- 2. Qiskit Documentation: https://qiskit.org/documentation/
- 3. Cirq Documentation: https://quantumai.google/cirq
- 4. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information.
- 5. IBM Quantum Experience: https://quantum-computing.ibm.com/
- 6. Scikit-learn: https://scikit-learn.org/
- 7. TensorFlow Documentation: https://www.tensorflow.org/

