

FCC/IC- TEST REPORT

Report Number : **64.790.15.03581.01** Date of Issue: September 16, 2015

Model : OSK102, SK102, OSK103

Product Type : Smart Kit

Applicant : GD Midea Air-Conditioning Equipment Co., Ltd.

Address : Midea Industrial City, Beijiao, 528311 Shunde, Foshan, Guangdong,

PEOPLE'S REPUBLIC OF CHINA

Production Facility : GD Midea Air-Conditioning Equipment Co., Ltd.

Address : Midea Industrial City, Beijiao, 528311 Shunde, Foshan, Guangdong,

PEOPLE'S REPUBLIC OF CHINA

Test Result : ■ Positive □ Negative

Total pages including Appendices

44

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Report Number: 64.790.15.03581.01 Page 1 of 44

1 Table of Contents

1	Ta	able of Contents	2			
2		Details about the Test Laboratory				
3		Description of the Equipment under Test				
4	·					
5	S	Summary of Test Results	6			
6	G	General Remarks	7			
7	T	est Setups	8			
8	S	Systems test configuration	9			
9						
	9.1	Conducted Emission	10			
	9.2	Conducted peak output power	13			
	9.3	6dB Bandwidth	14			
	9.4	Power spectral density	21			
	9.5	Spurious RF conducted emissions	22			
	9.6	Band edge	35			
	9.7	Spurious radiated emissions for transmitter	40			
10)	Test Equipment List	43			
11	1	System Measurement Uncertainty	44			

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product: Smart Kit

Model No.: OSK102, SK102, OSK103

Remark: The three models are identical in circuit design, PCB layout and

components used but only different in appearance and the connection

interface. Tests were only performed on SK102.

FCC ID: 2ADQOMDNA15

IC: 12575A-MDNA15

Options and accessories: N/A

Rating: DC 5V input

RF Transmission 2412MHz-2462MHz

Frequency:

No. of Operated Channel: 11 channels (11B, 11G, 11N_20M_SISO)

7 channels (11N_40M_SISO)

Modulation: DSSS,OFDM

Duty Cycle: 100% during test

Antenna Type: PCB layout

Antenna Gain: 2.0dBi

Description of the EUT: EUT is a smart kit with WIFI function. It can be plugged into air-

conditioner for internet controlling by WIFI.

4 Summary of Test Standards

	Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2014 Edition	Subpart C - Intentional Radiators				
RSS-Gen Issue 4	General Requirements for the Certification of Radio Apparatus				
November 2014					
RSS-247	Digital Transmission Systems (DTSs), Frequency Hopping Systems				
Issue 1 May 2015	(FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices				

All the test methods were according to KDB558074 D01 DTS Meas Guidance v03r02 and ANSI C63.10 (2013).

Summary of Test Results

	Te	echnical Requirements		
FCC Part 15 Sub	part C	-		
Test Condition			Pages	Test Result
§15.207	RSS-GEN A7.2.4	Conducted emission AC power port	10	Pass
§15.247(b)(1)	RSS-247 Clause 5.4(2)	Conducted peak output power	13	Pass
§15.247(a)(2)	RSS-247 Clause 5.2(1)	6dB bandwidth	14	Pass
§15.247(e)	RSS-247 Clause 5.2(2)	Power spectral density*	21	Pass
§15.247(a)(1)	RSS-247 Clause 5.1(1)	20dB bandwidth and 99% Occupied Bandwidth		N/A
§15.247(a)(1)	RSS-247 Clause 5.1(2)	Carrier frequency separation		N/A
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(4)	Number of hopping frequencies		N/A
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(4)	Dwell Time		N/A
§15.247(d)	RSS-247 Clause 5.5	Spurious RF conducted emissions	22	Pass
§15.247(d)	RSS-247 Clause 5.5	Band edge	35	Pass
§15.247(d) & §15.209 &	& RSSGEN 7.2.5	Spurious radiated emissions for transmitter and receiver	40	Pass
§15.203	RSSGEN 7.1.2	Antenna requirement	See note 1	Pass

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses a PCB layout antenna, which gain is 2dBi. In accordance to §15.203 and RSS-Gen 8.3, It is considered sufficiently to comply with the provisions of this section.

General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ADQOMDNA15, IC: 12575A-MDNA15 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15 Subpart C Rules, RSS 247 and RSS-Gen rules.

SUMMARY:

ΑII	tests	according	to the	regulations	cited	on pa	age 5	were

- Performed
- □ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

Sample Received Date: July 24, 2015

Testing Start Date: July 27, 2015

Testing End Date: September 2, 2015

- TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch -

Prepared by: Reviewed by:

Tony Liu

EMC Project Manager

Peter Jia

EMC Project Engineer

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

Description	Manufacturer	Model no.	S/N
Computer	Lenovo	X240	SL10F31638GS
Air-conditioner	Midea	KFR-26G/WEAB2	D11000113751541584F010

Test software: ART2_Kingfisher.1.1.2_beta 150601; AirConditionOEM_7_17.apk

The system was configured to channel 1(2412MHz), 6(2437MHz), and 11(2462MHz) for the tests of 802.11b/g/n(20).

The system was configured to channel 1(2422MHz), 6(2437MHz), and 11(2452MHz) for the tests of 802.11n(40).

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Decreasing linearly with logarithm of the frequency

Product Type : Smart Kit M/N : SK102

Operating Condition : WIFI communication mode.

Test Specification : L

Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.181500		36.32	54.42	18.10	L1	9.7
0.181500	39.61		64.42	24.81	L1	9.7
0.725500		34.06	46.00	11.94	L1	10.0
0.725500	38.21		56.00	17.79	L1	10.0
28.922500	-	36.61	50.00	13.39	L1	10.3
28.922500	42.17		60.00	17.83	L1	10.3

Product Type : Smart Kit M/N : SK102

Operating Condition : WIFI communication mode.

Test Specification : N

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.181500		37.22	54.42	17.20	N	9.7
0.181500	42.24		64.42	22.18	N	9.7
0.781500		34.04	46.00	11.96	N	9.9
0.781500	38.10		56.00	17.90	N	9.9
28.845500		33.85	50.00	16.15	N	10.3
28.845500	39.61	-	60.00	20.39	N	10.3

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Use a power meter to measure the conducted peak output power.

Limits

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

802.11B

002.110			
		Conducted Peak	
	Frequency	Output Power	Result
	MHz	dBm	
	Low channel 2412MHz	18.11	Pass
	Middle channel 2437MHz	18.65	Pass
	High channel 2462MHz	19.35	Pass
802.11G			
		Conducted Peak	
	Frequency	Output Power	Result
	MHz	dBm	
	Low channel 2412MHz	25.61	Pass
	Middle channel 2437MHz	26.02	Pass
	High channel 2462MHz	26.50	Pass
802.11N20			
		Conducted Peak	
	Frequency	Output Power	Result
	MHz	dBm	
	Low channel 2412MHz	25.67	Pass
	Middle channel 2437MHz	26.11	Pass
	High channel 2462MHz	26.42	Pass
	riigir channer 2402ivii iz	20.42	1 433

802.11N40

	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Low channel 2422MHz	25.45	Pass
Middle channel 2437MHz	26.47	Pass
High channel 2452MHz	26.34	Pass

Report Number: 64.790.15.03581.01

9.3 6dB Bandwidth

Test Method

- Use the following spectrum analyzer settings:
 RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]	
≥500	

Test result 802.11B

Frequency MHz	6dB bandwidth MHz	Result
Low channel 2412MHz	10.116	Pass
Middle channel 2437MHz	10.159	Pass
High channel 2462MHz	10.116	Pass

2412MHz

Date: 28.JUL.2015 12:15:30

Report Number: 64.790.15.03581.01

2437MHz

Date: 27.JUL.2015 17:30:12

2462MHz

Date: 27.JUL.2015 17:32:21

802.11G

Frequency MHz	6dB bandwidth MHz	Result
Low channel 2412MHz	16.237	Pass
Middle channel 2437MHz	16.237	Pass
High channel 2462MHz	16.281	Pass

2412MHz

Date: 27.JUL.2015 17:39:20

2437MHz Spectrum Ref Level 24.80 dBm Offset 1.80 dB RBW 100 kHz Att 40 dB 75.9 μs 🍅 **VBW** 300 kHz Mode Auto FFT ●1Pk Max D1[1] 1.38 dE 20 dBm-16.2370 MH M1[1] -0.05 dBm 2.4289250 GH 10 dBm -10 dBm-539 Herosal -40 dBm -50 dBm--60 dBm--70 dBm-691 pts Span 30.0 MHz CF 2.437 GHz Measuring... 27.07.2015 17:36:37

Date: 27.JUL.2015 17:36:37

Date: 27.JUL.2015 17:34:28

802.11N20

Frequency MHz	6dB bandwidth MHz	Result
Low channel 2412MHz	17.540	Pass
Middle channel 2437MHz	17.540	Pass
High channel 2462MHz	17.583	Pass

Date: 27.JUL.2015 17:40:57

Report Number: 64.790.15.03581.01

2437MHz

Date: 27.JUL.2015 17:43:16

2462MHz

Date: 27.JUL.2015 17:44:47

802.11N40

Frequency MHz	6dB bandwidth MHz	Result
Low channel 2422MHz	33.517	Pass
Middle channel 2437MHz	34.038	Pass
High channel 2452MHz	33.690	Pass

2422MHz

Date: 27.JUL.2015 17:50:57

2437MHz Spectrum Ref Level 24.80 dBm Offset 1.80 dB • RBW 100 kHz 132.7 μs **ভ VBW** 300 kHz Att 40 dB SWT Mode Auto FFT ●1Pk Max D1[1] 20 dBm 34.0380 MHz -2.47 dBm 2.4205020 GHz M1[1] 10 dBm· 1 M1 1 49 dBm 49 dBm 0 dBm--10 dBm -20 dBm 39.dBm+ 40 dBm -50 dBm -60 dBm 70 dBm CF 2.437 GHz 691 pts Span 60.0 MHz 27.07.2015 17:53:08 Measuring...

Date: 27.JUL.2015 17:53:09

2452MHz

Date: 27.JUL.2015 17:54:38

9.4 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.

Limit [dBm]

3. Repeat above procedures until other frequencies measured were completed.

Limit

		[]	
		≤8	
Test result			
802.11 B			
		Power spectral	
	Frequency	density	Result
	MHz	dBm	
_	Low channel 2412MHz	-6.77	Pass
	Middle channel 2437MHz	-6.47	Pass
	High channel 2462MHz	-5.60	Pass
802.11 G			
		Power spectral	
	Frequency	density	Result
	MHz	dBm	
_	Low channel 2412MHz	-6.27	Pass
	Middle channel 2437MHz	-5.59	Pass
	High channel 2462MHz	-4.91	Pass
802.11 N20			
		Power spectral	
	Frequency	density	Result
	MHz	dBm	
_	Low channel 2412MHz	-6.16	Pass
	Middle channel 2437MHz	-5.85	Pass
	High channel 2462MHz	-5.25	Pass
802.11 N40			
002.1111470		Power spectral	
	Fraguency		Result
	Frequency	density	Resuit

Report Number: 64.790.15.03581.01 Page 21 of 44

MHz

Low channel 2422MHz Middle channel 2437MHz

High channel 2452MHz

dBm -9.71

-8.82

-9.22

Pass

Pass Pass

9.5 Spurious RF conducted emissions

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

Report Number: 64.790.15.03581.01 Page 22 of 44

802.11 b Low channel

Date: 28.JUL.2015 11:16:44

Date: 28.JUL.2015 11:15:37

Middle channel

Date: 28.JUL.2015 11:14:07

Date: 28.JUL.2015 11:13:29

Date: 28.JUL.2015 11:10:10

802.11 g Low channel

Date: 28.JUL.2015 11:20:27

Date: 28.JUL.2015 11:19:23

Middle channel

Date: 28.JUL.2015 11:24:09

Date: 28.JUL.2015 11:22:50

Date: 28.JUL.2015 11:25:37

802.11 n20 Low channel

Date: 28.JUL.2015 11:37:11

Date: 28.JUL.2015 11:36:24

Middle channel

Date: 28.JUL.2015 11:34:40

Date: 28.JUL.2015 11:33:43

High channel Spectrum Ref Level 28.80 dBm Offset 1.80 dB @ RBW 100 kHz 9.7 ms 🁄 **VBW** 300 kHz Att 45 dB SWT Mode Auto Sweep ●1Pk Max -39.97 dBm 814.00 MHz M1[1] 20 dBm-10 dBm· 0 dBm-D1 -13.450 dBm -20 dBm--30 dBm· -50 dBm--60 dBm-Start 30.0 MHz 691 pts Stop 1.0 GHz

4/0

Measuring...

Date: 28.JUL.2015 11:30:35

802.11 n40 Low channel

Date: 28.JUL.2015 11:42:36

Date: 28.JUL.2015 11:41:35

Middle channel

Date: 28.JUL.2015 11:44:32

Date: 28.JUL.2015 11:43:52

Date: 28.JUL.2015 11:46:19

9.6 Band edge

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen8.10, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Test result

Date: 28.JUL.2015 10:45:54

Report Number: 64.790.15.03581.01 Page 35 of 44

Date: 28.JUL.2015 11:02:42

Date: 28.JUL.2015 10:49:34

Date: 28.JUL.2015 11:01:04

Date: 28.JUL.2015 10:51:16

Date: 28.JUL.2015 10:59:01

Date: 28.JUL.2015 10:53:32

Date: 28.JUL.2015 10:57:35

9.7 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

 Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak,

 Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Report Number: 64.790.15.03581.01 Page 40 of 44

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, B mode) test result is listed in the report.

Transmitting spurious emission test result as below:

Emission below 1GHz

Frequency (MHz)	QP (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol
81.470625	28.63	40.00	11.37	Н
152.523125	27.82	43.50	15.68	Н
196.900625	29.49	43.50	14.01	Н
250.008125	31.59	46.00	14.41	Н
42.913125	32.64	40.00	7.36	V
64.603125	35.97	40.00	4.03	V
146.824375	30.09	43.50	13.41	V

Emission above 1GHz

2412MHz

Fraguenay	MaxPeak	Limit	Marain	Dal	Com
Frequency			Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
1297.000000	39.94	74.00	34.06	Н	-13.9
1598.000000	38.82	74.00	35.18	Н	-12.6
2390.000000	43.69	74.00	30.31	Н	-8.6
4818.750000	56.09	74.00	17.91	Н	-0.4
9855.625000	41.98	74.00	32.02	Н	5.7
17786.875000	49.90	74.00	24.10	Н	18.3
1113.000000	38.73	74.00	35.27	٧	-14.6
2806.000000	40.32	74.00	33.68	٧	-7.0
4824.375000	58.49	74.00	15.51	٧	-0.3
9646.875000	44.22	74.00	29.78	٧	5.5
17736.875000	50.16	74.00	23.84	٧	18.2

2437MHz

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
1599.000000	37.31	74.00	36.69	Н	-12.6
2205.500000	42.21	74.00	31.79	Н	-9.0
17988.750000	50.37	74.00	23.63	Н	19.1
4864.375000	53.35	74.00	20.65	Н	-0.2
1399.500000	40.42	74.00	33.58	٧	-13.5
2791.500000	38.59	74.00	35.41	٧	-7.2
4872.500000	54.85	74.00	19.15	٧	-0.2
9788.125000	43.36	74.00	30.64	V	5.5
17935.625000	50.62	74.00	23.38	٧	18.8

2462MHz

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
2231.000000	40.39	74.00	33.61	Н	-8.9
2812.000000	39.29	74.00	34.71	Н	-6.9
4918.125000	51.94	74.00	22.06	Н	-0.2
9846.250000	43.36	74.00	30.64	Н	5.7
17704.375000	50.19	74.00	23.81	Н	17.9
1596.000000	36.40	74.00	37.60	٧	-12.6
2824.000000	39.48	74.00	34.52	٧	-6.9
4927.500000	53.79	74.00	20.21	٧	-0.1
9851.250000	46.77	74.00	27.23	٧	5.7
17970.625000	50.46	74.00	23.54	٧	19.0

Remark:

- (1) AV Emission Level= PK Emission Level+20log (dutycycle)
- (2) Data of measurement within 30-1000MHz frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
	EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2016-7-24
	LISN	Rohde & Schwarz	ENV4200	100249	2016-7-24
	LISN	Rohde & Schwarz	ENV216	100326	2016-7-24
	ISN	Rohde & Schwarz	ENY81	100177	2016-7-24
CE	ISN	Rohde & Schwarz	ENY81- CAT6	101664	2016-7-24
	High Voltage Proble	Rohde & Schwarz	TK9420(VT9 420)	9420-58	2016-7-24
	RF Current probe	Rohde & Schwarz	EZ-17	100816	2016-7-24
С	Signal Generator	Rohde & Schwarz	SMB100A	108272	2016-7-24
	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2016-7-24
	Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2016-7-24
	RF Switch Module	Rohde & Schwarz	OSP120/OS P-B157	101226/10085 1	2016-7-24
	EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2016-7-24
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2016-8-14
RE	Horn Antenna	Rohde & Schwarz	HF907	102294	2016-7-24
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2016-7-24
	3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Radiation emission	U=4.32dB (30MHz-25GHz)
Output power test	0.94 dB
Power density test	2.10 dB
Bandwidth	1x10 ⁻⁹