

Online Learning on a Mobile Robot

Viktor Losing
Bielefeld University

supervised by:

Heiko Wersing, HRI-EU Barbara Hammer, Bielefeld University

Motivation:

- Adaptation to user habits & environment
- Current methods rather simple

Benefits:

- Incremental learning
- Incorporation of new classes
- Control of model complexity
- Handling of drift

Challenges:

Stability - Plasticity

- 1. Realization of a new interactive Learning Scenario on a Mobile Robot
 - Outdoor object recognition in a garden environment
 - Interaction via iPad
 - Recording of a challenging outdoor benchmark dataset for learning

- 2. Improvement of incremental learning for LVQ
 - Analysis of prototype placement strategies
 - Comparison on artificial/real datasets

- Random exploration
- Grass-segmentation for obstacle detection
- Labeling via iPad
- Object specific actions
 - Comment
 - Drive around/over
- Confidence estimation
 - Unknown objects
 - Drive around in case of low confidence

Perception and Control

- Color based: simple & robust
- rg-Chromaticity histogram
- Intensity invariant
- e.g. r = R / R + G + B
- 21 dimensions
- Hist.-normalization for size invariance

- 40 objects
- 5 sequences in cloudy/sunny conditions
- 10 images per sequence

Sequences

All objects

- Supervised, prototype-based
- $E(X, W) = \sum_{i=1}^{n} \Phi[(d_{i}^{+} d_{i}^{-})/(d_{i}^{+} + d_{i}^{-})]$
- $w \stackrel{\pm}{:=} w \stackrel{\pm}{-} \lambda \frac{\partial E(X,W)}{\partial w^{\pm}}$
- Minimized in stochastic gradient descent scheme

¹ A.Sato, K.Yamada "Generalized Learning Vector Quantization", 1995

 $\Psi := \langle (x_i, y_i, d_i^+, d_i^-) \mid i \in 1, ..., t \rangle$, window of recent t samples

Ψ

$$\begin{bmatrix} x_0, y_0 \\ d^+_0, d^-_0 \end{bmatrix}$$

$$x_{n-t+1}, y_{n-t+1}$$

 $d^{+}_{n-t+1}, d^{-}_{n-t+1}$

$$\begin{bmatrix} x_{n-1}, y_{n-1} & x_n, y_n \\ d^+_{n-1}, d^-_{n-1} & d^+_n, d^-_n \end{bmatrix}$$

 x_n, y_n

0

n-t+1

n-1

sample idx. n

- Based on class-local heuristics
- Use misclassifications only

¹ S.Kirstein, H.Wersing "Rapid Online Learning of objects in a biologically motivated architecture", 2005

² M.Grbovic, S. Vucetic "Learning Vector Quantization with adaptive prototype addition and removal", 2009

³ S. Bermejo, J. Cabestany "A new dynamic lvq-based classifier and its application to handwritten digits", 1998

- $\widehat{\Psi} \subseteq \Psi$, $|\widehat{\Psi}| = \widehat{t}$
- $\forall (x_i, y_i) \in \widehat{\Psi}$:
 - $\widehat{W}_i := \{W \cup (x_i, y_i)\}$
 - $\dot{\Psi}_i$ = update Ψ
 - Calculate cost-function value $E(\dot{\Psi}_i, \widehat{W}_i)$
- Choose \widehat{W}_i s.t. $E(\dot{\Psi}_i, \widehat{W}_i)$ is minimized

Cross-class optimization

Border-DS	Acc.	Nodes
SamplingCost	93.51	38.2
Closest	90.17	58.2
Cluster	91.93	42.9
Voronoi	91.71	46.4

Overlap-DS	Acc.	Nodes
SamplingCost	78.74	21.3
Closest	65.76	29.8
Cluster	74.85	25.6
Voronoi	74.08	26.4

Random-order	Test acc.	Train acc.	Nodes
SamplingCost	81.58	85.94	234.8
Closest	78.03	83.23	253.4
Cluster	78.55	83.06	247.0
Voronoi	81.18	85.62	236.6

Sequence-order	Test acc.	Train acc.	Nodes
SamplingCost	61.38	91.04	232.0
Closest	59.58	88.04	245.8
Cluster	59.18	88.96	235.6
Voronoi	58.81	89.22	231.3

Sequence-order	Acc. / Nodes	Acc. / Nodes	Acc. / Nodes
	500 samples	1500 samples	2800 samples
SamplingCost-GLVQ	42.9 / 116.4	58.6 / 446.2	64.3 / 948.8
SamplingCost-GMLVQ	44.1 / 100.4	59.3 / 376.6	67.1 / 773.5
iSVM	40.6 / 363.3	57.5 / 777.0	65.2 / 1347

Easy Difficult

- New interactive real-time learning scenario
- Outdoor benchmark dataset for learning
- Proposal of cost-function based placement strategy
- Comparison to current strategies on artificial and real datasets
- SamplingCost performs superior, especially for Overlaps
- Representation not robust enough, could be extended by shape based features

