Adiabatic photoevaporation flow

Bornoulli equation: 1202 + W = constant

"Wis what Landand Lifshotz use. Whereas Shin uses h

Enthalpy,
$$W = \begin{cases} 150 \text{ THERMAL } C_s^2 \ln p/p_s = W_{\infty} \\ ADIABATIC \left(\frac{V}{8-1} \right) C_s^2 \left(\frac{p}{8}, V^{-1} \right) = W_{\infty} \end{cases}$$
 $h = \int_{-\infty}^{\infty} dp$

$$h = \int_{0.0}^{10} \frac{dP}{8}$$
So $\frac{P/P_0}{V_0} = \frac{V_0 V_0}{V_0} =$

So in the adiabatic case, the velocity increase is

limited, even as
$$p \to 0$$
.
 $\frac{1}{2}v^2 - 2.5c_0^2 = \frac{1}{2}c_0^2 \Rightarrow v^2 = 6c_0^2$
 $= 7v = 245c_0$

This will also affect calculation of h, smee do goes up at T goes down. Assuming & & IT - their we will have Invis dr vistead of Inodr

So, for mistance at constant velocity we would have Jo, for missionce in $\frac{1}{3}$ for $\frac{1}{3}$

So ni general
$$\left(\frac{\nabla}{C_0}\right)^2 = 1 - 2\frac{\forall}{C_0^2} \implies \nabla = \left(1 - 2\omega\right)^{1/2}$$
in units of Co

Advabatic: $w = \frac{5}{2}(9^{43}-1)$; $v^2 = 6-5p^{2/3}m$ units of Co Tsothermal: w = lup; $v^2 = 1-2lup$

J					
D	Isothernal		Adra	watic ~	Cs
1	1	1	1	1	1
0.5	1.55	1.13	1.68	1.09	0.79
0-1	2.36	2.06	222	2.12	047
0.01	3-19	5.6	1 7.41	6.44	0 22

