

Customer Claim Prediction at Singlife Travel Insurance

Presented by: Sulthan Mahdi M. D.

Table of contents

O1 Business Problem

02 Data
Understanding

Data Cleaning & Preprocessing

O4 Analytics (Modeling)

05 Conclusion

06 Recommendation

01

Business Problem

SingLife Travel Insurance, based in **Singapore**, is a **digital life insurance company** renowned for its innovative financial products. Specializing in the insurance sector, the company offers a range of digital insurance products, with a particular emphasis on **travel insurance**. Their coverage caters to both leisure and business travelers, reflecting their commitment to providing comprehensive and convenient insurance solutions.

Problem and Goals

Despite SingLife's commitment to delivering insurance services, it has encountered challenges in efficiently handling customer insurance claims. To address this issue, the company is seeking the expertise of a data scientist. The data scientist's role would involve analyzing and predicting whether a customer is likely to file an insurance claim. This predictive analysis aims to enhance the company's claim handling processes, ensuring more effective and timely responses to customer needs.

Create a Machine Learning model that can be used by insurance companies to predict which customers will claim/not claim.

Machine learning Models must be able to minimize losses to the smallest possible extent.

Metrics Evaluation

- FN: The company estimates a loss of 800 SGD for cases where customers who actually make a claim (default) go undetected. This figure encompasses the loss from both the enrolled customers who file claims and the marketing costs incurred in acquiring new customers.
- FP: Meanwhile, the loss for situations where customers do not make a claim but are erroneously identified as claimants is 4000 SGD. This amount represents the average insurance coverage cost for these customers.

We need to use fscore metrics with beta 1/5, this is because the precision value is 5x more important than the recall value

Data UnderStanding

02

Data

1. Agency	Name of agency
2. Agency Type	Type of travel insurance agencies
3. Distribution Channel	Channel of travel insurance agencies
4. Product Name	Name of the travel insurance products
5. Gender	Gender of insured
6. Duration	Duration of travel
7. Destination	Destination of travel
8. Net Sales	Amount of sales of travel insurance policies
9. Commission (in value)	Commission received for travel insurance
10. Age	Age of insured
11. Claim	Claim status

Data

	Agency	Agency Type	Distribution Channel	Product Name	Gender	Duration	Destination	Net Sales	Commision (in value)	Age	Claim
0	C2B	Airlines	Online	Annual Silver Plan	F	365	SINGAPORE	216.0	54.0	57	No
1	EPX	Travel Agency	Online	Cancellation Plan	NaN	4	MALAYSIA	10.0	0.0	33	No
2	JZI	Airlines	Online	Basic Plan	М	19	INDIA	22.0	7.7	26	No
3	EPX	Travel Agency	Online	2 way Comprehensive Plan	NaN	20	UNITED STATES	112.0	0.0	59	No
4	C2B	Airlines	Online	Bronze Plan	М	8	SINGAPORE	16.0	4.0	28	No

RangeIndex: 44328 entries, 0 to 44327 Data columns (total 11 columns):

νατα	columns (total II columns):				
#	Column	Non-Null Count	Dtype		
0	Agency	44328 non-null	object		
1	Agency Type	44328 non-null	object		
2	Distribution Channel	44328 non-null	object		
3	Product Name	44328 non-null	object		
4	Gender	12681 non-null	object		
5	Duration	44328 non-null	int64		
6	Destination	44328 non-null	object		
7	Net Sales	44328 non-null	float64		
8	Commision (in value)	44328 non-null	float64		
9	Age	44328 non-null	int64		
10	Claim	44328 non-null	object		
<pre>dtypes: float64(2), int64(2), object(7)</pre>					

```
df.isna().sum()/len(df)*100
 ✓ 0.0s
Agency
                         0.000000
                         0.000000
Agency Type
Distribution Channel
                         0.000000
Product Name
                         0.000000
Gender
                        71.392799
Duration
                         0.000000
Destination
                         0.000000
Net Sales
                         0.000000
Commission (in value)
                         0.000000
Age
                         0.000000
Claim
                         0.000000
dtype: float64
```

```
df["Claim"].value_counts()
```

Claim No 38651 Yes 673

Name: count, dtype: int64

03

Data Cleaning & Preprocessing

Numerical Before Cleaning

Numerical After Cleaning

Categorical - Product Name

Categorical - Destination

Column Transformer

```
transformer = ColumnTransformer([
      ("binary_encoding", BinaryEncoder(), ["Agency", "Product Name", "Destination"]),
      ("onehot_encoding", OneHotEncoder(drop="first"), ["Agency Type", "Distribution Channel"]),
      ("robust scaling", RobustScaler(), ['Duration', 'Net Sales', 'Commission (in value)', 'Age'])
  ], remainder= "passthrough")
  transformer
  0.0s
                                                                                                                                                    Pythor
                                                                    ColumnTransformer
             binary encoding
                                                      onehot encoding
                                                                                                        robust scaling
                                                                                                                                            remainder
['Agency', 'Product Name', 'Destination'] ['Agency Type', 'Distribution Channel'] ['Duration', 'Net Sales', 'Commission (in value)', 'Age']
                                                                                                                                            passthrough
             ▼ BinaryEncoder
                                                        OneHotEncoder
                                                                                                       RobustScaler
                                                OneHotEncoder(drop='first')
                                                                                                                                            passthrough
             BinaryEncoder()
                                                                                                       RobustScaler()
```

Analytics (Modeling)

04

Cross Validation

```
f1per5_scorer = make_scorer(fbeta_score, beta=1/5)
models = [logreg, knn, tree, voting, stacking, bagging, rf, adaboost, gboost]
for i in models:
   pipe_model = Pipeline([
        ("preprocessing", transformer),
       ("modeling",i)
   1)
   model_cv = cross_val_score(
       estimator= pipe_model,
       X = X \text{ train}
       y = y_{train}
       cv = 5
       scoring = f1per5_scorer,
       error_score = "raise",
       n jobs = -1
```

Cross Validation Score

	algo	all_score	mean_score	std_score
0	LogisticRegression(random_state=0)	[0.7303, 0.8016, 0.6648, 0.7973, 0.7758]	0.753945	0.051268
4	StackingClassifier(estimators=[('clf1', Logist	[0.7383, 0.8068, 0.6557, 0.7937, 0.7671]	0.752311	0.053740
3	VotingClassifier(estimators=[('clf1', Logistic	[0.6935, 0.8016, 0.651, 0.7875, 0.7535]	0.737410	0.057083
8	GradientBoostingClassifier(random_state=0)	[0.6603, 0.7785, 0.6437, 0.7818, 0.7405]	0.720947	0.058388
7	AdaBoostClassifier(random_state=0)	[0.6758, 0.7531, 0.6478, 0.7403, 0.7241]	0.708248	0.039992
5	BaggingClassifier(estimator=KNeighborsClassifi	[0.6765, 0.7698, 0.6305, 0.7362, 0.7255]	0.707670	0.048826
6	RandomForestClassifier(random_state=0)	[0.6683, 0.7863, 0.6384, 0.7403, 0.7049]	0.707639	0.052156
1	KNeighborsClassifier()	[0.6727, 0.7758, 0.6178, 0.7438, 0.7181]	0.705655	0.055358
2	DecisionTreeClassifier(random_state=0)	[0.6054, 0.6864, 0.6185, 0.6347, 0.6453]	0.638058	0.027728

Hyperparameter Tuning

```
hyperparam = {
    "modeling_clf1_C": np.logspace(5, -5, 11),
    "modeling_clf1_solver": ['lbfgs', 'liblinear'],
    "modeling__clf2__n_neighbors": range(1, 50, 2),
    "modeling_clf2_weights": ['uniform', 'distance'],
    "modeling__clf3__criterion": ['gini', 'entropy', 'log_loss'],
    "modeling_clf3_max_depth": range(2, 50, 1),
    "modeling clf3 min samples split": range(2, 50),
    "modeling clf3 min samples leaf": range(1, 25),
    "modeling_final_estimator": [logreg, knn, tree]
pipe_model = Pipeline([
    ("preprocessing", transformer),
    ("modeling", stacking)
randomsearch = RandomizedSearchCV(
    estimator= pipe_model,
    n_{jobs} = -1,
    scoring= f1per5_scorer,
    param distributions= hyperparam,
    random state=0.
    n iter=10000
randomsearch
```

```
RandomizedSearchCV

estimator: Pipeline

preprocessing: ColumnTransformer

binary_encoding > onehot_encoding > robust_scaling > remainder

BinaryEncoder > OneHotEncoder > RobustScaler > passthrough

modeling: StackingClassifier

clf1 clf2 clf3

LogisticRegression > KNeighborsClassifier > DecisionTreeClassifier

final_estimator

LogisticRegression
```

Hyperparameter Tuning Best Estimator

Best Threshold

	threshold	f1/5 train	f1/5 test
16	0.76	0.974625	0.856654
12	0.72	0.978815	0.853682
7	0.67	0.965551	0.853458
5	0.65	0.965119	0.852700
2	0.62	0.965354	0.850701

- 0.7948411750656795 No treatment
- 0.802469135802469 Parameter Tuning
- 0.8566538296961916 Parameter Tuning + Optimized Threshold

05

Conclusion

Confusion Matrix

Before Tuning:

- FP:

 $32 \times 4000 \text{ SGD} = 128000 \text{ SGD}$

- FN:

59 x 800 SGD = 47200 SGD

Total loss: 175200 SGD

After Tuning:

- FP:

 $31 \times 4000 \text{ SGD} = 124000 \text{ SGD}$

- FN:

 $57 \times 800 \text{ SGD} = 45600 \text{ SGD}$

Total loss: 169600 SGD

After Tuning + Threshold:

- FP:

9 x 4000 SGD = 36000 SGD

- FN:

 $110 \times 800 \text{ SGD} = 88000 \text{ SGD}$

Total loss: 124000 SGD

Feature Importance

Recommendation

Recommendations

Recommendations to improve model performance:

- Perform Hyperparameter tuning with GridSearchCV to find the optimal parameter combination in the model.
- Add data to the Claim target in the positive class (Claim = 1).
- Try to handle imbalance using other methods besides Random Under Sampling.
- Try using other metrics such as a combination of Recall and FPR.

Thank You!