MATH355 2017-11-01

DETERMINANT: FRIEND OR FOE?

Friend.

The determinant is a function det: $M_{n \times n} \to R$ satisfying a ton of awesome properties.

- $\det A \neq 0$ if and only if A is invertible.
- $\det I = 1$.
- $det(\lambda A) = \lambda^n det(A)$.
- det(AB) = det(A) det(B).
- If A is invertible, $det(A^{-1}) = (det A)^{-1}$.
- $det(A^t) = det(A)$.
- If B is obtained from A by swapping two columns (or two rows) then $\det B = -\det A$.
- If any subset of the columns (or rows) of A is linearly dependent, then $\det A = 0$.

OK, say
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

$$\det A := ad - bc$$
.

Why? Well, $\vec{v}_1 = A\vec{e}_1$, $\vec{v}_2 = A\vec{e}_2$ are the images of the standard basis vectors of \mathbf{R}^2 . A geometric argument shows that det A is the (signed!) area of the parallelogram spanned by \vec{v}_1 , \vec{v}_2 .

For instance, if \vec{v}_1, \vec{v}_2 are lie on a line (i.e. they are linearly dependent, i.e. $\operatorname{rk} A \leq 1$) then they span a degenerate parallelogram, which has area zero. And viceversa, if $\det A = 0$, it means that the parallelogram was degenerate, therefore \vec{v}_1, \vec{v}_2 are linearly dependent (so A can't be invertible).

How to compute determinants in higher dimensions? Laplace expansion.

Date: John Calabrese, November 3, 2017.

I