GMR Institute of Technology

An Autonomous Institute Affiliated to JNTUK, Kakinada

COURSE HANDOUT

B.Tech- 4th Semester

Course Title: **THEORY OF COMPUTATION** Dated: 27-11-2017

Course Code: 16CS405 Academic Year: 2017-18

Course Structure: 3-1-0-4

Course coordinator: V.Srinadh

Instructor(s) : V.Srinadh, Ch.Chakradhara Rao, V.Mahalakshmi

Course Description:

The phrase *theory of computation* refers to a theoretical treatment of what can be computed and how fast it can be done. In the study of the mathematical foundations of computation: what is an appropriate mathematical model of a computer, what types of computations are possible in the model, what types are not, the inherent complexities of certain computations and so forth.

Department	CSE	Contact Hours			
Title of Course	THEORY OF COMPUTATION	Lecture	Tutorial	Practical	Credits
Course code	16CS405				
Designation	Required	3	1	0	4
Continuous Assessment	40 M	30 marks from 80% of best sessional +20% of other sessional 10 marks from comprehensive examination			
Final Examination	60 M	Semester end examination of three hours duration for 60 maximum marks			
Prerequisites	Mathematical found	natical foundations for Computer Science			

Scope and Objective:

The course content enables students to

- Understand the concept of Set Operations, Cardinality and Denumerable sets. Acquire knowledge to design, specify and test deterministic and nondeterministic finite automata that recognize regular languages.
- Understand tuple descriptions of Mealy and Moore finite-state machines, State diagrams, state tables and their relationship.
- Acquire the idea to write regular expressions and regular grammars that produce regular languages.
- Identify non-regular languages using the Pumping Lemma.

GMR Institute of Technology

An Autonomous Institute Affiliated to INTUK, Kakinada

Text Books:

- 1. Introduction to Automata Theory Language and Computation by Jeffery D. Ullman and John E. Hopcroft, Narosa Publishing House.
- 2. Intoduction to Computer Theory, Daniel I.A cohen, John Wiley.

Reference books:

- 1. Theory of computer science -Automata language and computation Mishra and Chandrashekaran, 2nd
- 2. Elements of theory of computation, Lewis H.P & Papadimitriou C.H, Pearson/PHI

SYLLABUS:

UNIT - I 12+4 Hrs

Finite Automata:

Symbol - String & their operation - DFA - NFA - Recognition of a language by an Automaton -Equivalence of DFA and NFA - Finite Automata with Null-Closure - Minimization of FA - Equivalence of FAs - Finite Automata with output: Mealy and Moore Machines;

Regular Languages: Regular Sets and Languages - Equivalence of FA & regular expression - Pumping Lemma for Regular Languages - Closure Properties of Regular Sets -Kleen"s Theorem - Decision Algorithm.

Mealy machine to More machine conversion and vice versa

UNIT - II1 11+4 Hrs

Context-free Languages and Push-Down Automata

Non-regular Languages - CFLs - Closure Properties of CFLs - CFGs - derivation trees - Simplification -Ambiguity - Push-Down Automata - Normal Forms - Relationship between PDA and Context Free Languages; Pumping Lemma for CFL. Decision Algorithm;

Generation of CFG - simplification of CFG

UNIT-III 11+4 Hrs

Chomsky Hierarchy and Turing Machines

Unrestricted Grammars - Context Sensitive Languages and Grammars - - Relations between Classes of languages The Turing Machine Model - Computable Languages and Functions - Turing Machines variants - Universal TMs -Church's Hypothesis - Turing Machines as Enumerators;

Linear Bounded Automata

UNIT-IV

Undesirability and Complexity Classes

Recursive Functions and Sets - Recursively Enumerable Sets - properties of Recursive and Recursively Enumerable Languages - Rice"s Theorem - Post Correspondence Problem - Halting Problem -Space and Time Complexity - P TIME - NP - P SPACE etc. - Polynomial Reducibility P - NP - NP-Complete - and NP-Hard Problem 11+3 Hrs

GMR Institute of Technology

An Autonomous Institute Affiliated to INTUK, Kakinada

Course Outcomes:

At the end of the course students will be able to:

- Write regular expressions and regular grammars that produce regular languages Illustrate problems that cannot be solved by computers.
- Define Chomsky and Greibach normal forms.
- Design, specify and test deterministic and nondeterministic finite automata that recognize regular languages
- Write State diagrams, state tables and their relationship
- Illustrate whether a specific language is decidable. In particular, that there exist un-computable functions and that some tasks are unsolvable (i.e. no algorithm exists).

Course Plan:

No.	Learning objectives	Topic(s) to be covered	Chapter in the
Lect			
ure			textbook/refer
			ence
	To know about Strings and their	UNIT-I : Finite Automata	
1	operations	Symbol, Strings and their operations	T-2,C-1
			T-1, C-2
2	To learn about DFA	DFA: Deterministic Finite Automata	
			T-1, C-2
3	To learn about NFA	NFA: Nondeterministic Finite Automata	
4	Problems on DFA and NFA	Tutorial-1	
			T-1, C-2
5		Equivalence of NFA and DFA	
	To learn about Finite automata with null		
6	transitions	Finite automata with null closure	T-1, C-2
			T-1, C-2
7	To know how to minimize finite automata	Minimization of Finite automata	
8	Problems on Minimization and E-moves	Tutorial-2	
	To know how to check equivalence of two		
	FAs	Equivalence of finite automata	T-1, C-2
10	To know about finite automata with output		T-1, C-2
	To learn about Regular grammars and	Regular sets and grammar, equivalence of	
	regular expressions	finite automata and Regular expressions.	T-1, C-3
	Problems on equivalence of Finite	m	
12	automata, Mealy and Moore machines.	Tutorial-3	
1.2	To know about Pumping lemma for		T. 2. C. 2
	Regular Languages	Pumping Lemma for Regular Languages	T-2, C-3
	To know about closure properties of	Classon managedias of war-1-1-1-1-1-	$\begin{bmatrix} \mathbf{T} 1 & \mathbf{C} 2 \end{bmatrix}$
14	regular sets.	Closure properties of regular sets	T-2, C-3

GMR Institute of Technology An Autonomous Institute Affiliated to JNTUK, Kakinada

15	To know about Kleen's theorem, Decision Algorithm	Kleen's Theorem, Decision Algorithm	T-2, C-3
16	Problems on regular expressions	Tutorial-4	1-2, C-3
17	To study the basics of context free languages	UNIT-2: CFLS and PDA CFLs	T-1, C-5
18	To study about the closure properties of CFLs	Closure properties of CFLs	T-1, C-5
19	To learn the concepts of converting RE to DFA and problems	CFGs	T-1, C-5
20	Problems on writing CFGs	Tutorial-5	
21	To learn about derivation tree and ambiguous grammar	Derivation tree and Ambiguity	T-1, C-4
22	To know about how to convert CFG into CNF	Chomsky Normal Form	T-1, C-4
23	To know about how to convert CFG into GNF	Greibach Normal form	T-1, C-4
24	Problems on CNF andGNF	Tutorial-6	
25	To learn about Push Down Automata model	Push Down Automata	
26	To learn about Push Down Automata design	Push Down Automata	T-1, C-5
27	To know the relation between PDA and CFL	Relationship between PDA vs CFL	T-1, C-5
28	Problems on Push Down Automata	Tutorial-7	
29	To learn pumping lemma for Context free languages	Pumping Lemma for CFLs	T-1, C-5
30	To Learn about Decision algorithm.	Decision Algorithm	T-1, C-5
	To study about unrestricted	UNIT-3: Chomsky Hierarchy and Turing Machines	
31 32	grammars Problems on pumping lamms	Unrestricted Grammars Tutorial-8	T-1, C-9
34	Problems on pumping lemma To study the context sensitive	1 4(0)141-0	
33	grammars and languages	Context sensitive grammar and languages	T-1, C-9
34	To study about the classification of languages	Chomsky classification of languages	T-1, C-9
35	To study about the Turing machine model	Turing machine model	T-1, C-7
36	Problems on Grammars and languages	Tutorial-9	
37	To know how to design Turing machine.	Turing machine Design	T-1, C-7

GMR Institute of Technology An Autonomous Institute Affiliated to JNTUK, Kakinada

38	To learn about computable languages and functions	Computable languages and functions	T-4, C-7
39	To study about the Turing machine variants	Turing machine variants	T-1, C-7
40	Problems on Turing machine	Tutorial-10	
41	To know about the working of Universal Turing Machine	Universal Turing machine	T-1, C-7
42	To know about the Church's hypothesis.	Church's hypothesis	T-1, C-7
43	To study Turing machine as enumerations	Turing machine as enumerators	T-5, C-7
44	Problems on Turing machine	Tutorial-11	
45	To study the concept of recursive Functions and sets	UNIT-4: Undecidability and complex classes Recursive functions and sets	T-1, C-9
46	To study the concept of Recursive Enumerable languages	Recursively enumerable sets	T-1, C-9
47	To know the construction of Turing machines – Examples	Properties of Recursive and Recursive enumerable Languages.	T-1, C-9
48	Problems on Recursive enumerable languages	Tutorial-12	
49	To learn about Rice's theorem	Rice's theorem	T-1, C-8
50	To know how to solve Post Correspondence Problem To know how to solve Post	Post correspondence problem	T-1, C-8
51	Correspondence Problem	Post correspondence problem	T-1, C-8
52	To study Halting problem	Halting problem	T-1, C-8
53	Problems on PCP	Tutorial-13	
54	To know how to compute time complexity of an algorithm.	Time complexity	T-1, C-13
55	To know how to compute space complexity of an algorithm.	Space Complexity	T-1, C-13
56	To know about P-Problems	P-problems	T-1, C-13
57	Problems on Time complexity and space complexity	Tutorial-14	T-1, C-13
58	To learn about the Classes of P and NP – Problems solvable in Polynomial Time with examples	Problems solvable in NP-Problems	
59	To learn about the polynomial reducibility	Polynomial reducibility	T-1, C-13

GMR Institute of Technology An Autonomous Institute Affiliated to INTUK, Kakinada

60	Questions on P and NP problems	Tutorial-15	

Evaluation Procedure:

Component	Duration (minutes)	Marks	% of weightage	Date & Time	Venue
Sessional Test – 1	90	40	30 marks from 80% of best	29.01.2018-03.02.2018 9:00-10:30 A.M	Block-5
Sessional Test – 2	90	40	sessional +20% of other sessional		Block-5
Comprehensive	(0)	20	50	9:00-10:30 A.M 09.04.2018-14.04.2018	D1 1.5
Examination	60	20	50		Block-5
Semester End Examination	180	60	100	23.04.2018-05.05.2018	Block-5

Chamber Consultation Hour:

Venue: CSE staff room-II Notices: Main notice board

Signature of the Instructor

Signature of the course-coordinator