Op.155. No.6 双液系气液平衡相图

孙肇远 PB22030708, Oct. 2024 University of Science and Technology of China, Hefei, Anhui, China

1. 引言

本实验旨在利用回流冷凝法测定水—正丙醇双液系在沸点时液相与气相的组成, 绘制相图 并确定其最低恒沸点温度及恒沸混合物的组成.

对于完全互溶双液系, 沸点为压强与组分的函数, 对于理想液体混合物, 溶液的蒸气压和沸点介于两纯组分蒸气压及沸点之间.

而对于存在偏差的液体混合物, 其固定压力 p 时的 $T \sim x$ 图可能出现极值, 这对应着恒沸现象, 此处组分固定, 沸点由压强决定.

获得组分可通过折光率, 只需一个标准的 折光率 ~ 组分 曲线即可获得全部二者的双射.

2. 实验

2.1. 实验过程

配置标准溶液,得到标准折光率.

记录压强, 安装沸点仪, 加入 40 mL 纯水, 加热至沸点并记录, 取液相气相测定折光率. 依次加入 1.5, 2, 2.5, 4 mL 正丙醇, 重复上述记录.

取出 20 mL 溶液并加入 30 mL 正丙醇, 记录.

加入 6 mL 纯水, 记录.

3. 结果与讨论

3.1. 数据图表

实验前	实验中	实验后
100.90	100.89	100.89

Table 1. 压强/kPa

实验操作	沸点温度/℃			液相折光率/nD	气相折光率/nD
40 mL H ₂ O	100.062	100.067	100.061	1.3319	1.3319
$+0.5~\mathrm{mL}$ PrOH	97.519	97.500	97.503	1.3324	1.3552
$+1.5~\mathrm{mL}~\mathrm{PrOH}$	95.869	95.968	95.916	1.3332	1.3616
$+2~\mathrm{mL}$ PrOH	93.980	93.991	93.986	1.3347	1.3657
$+2.5~\mathrm{mL}$ PrOH	92.371	92.366	92.409	1.3361	1.3689
$+4~\mathrm{mL}$ PrOH	89.489	89.447	89.448	1.3401	1.3718
-20 mL then +30 mL PrOH	88.608	88.613	88.609	1.3795	1.1765
$+6 \text{ mL H}_2\text{O}$	87.657	87.654	87.654	1.3746	1.3745

Table 2. 沸点及折光率原始数据

实验操作	平均沸点温度/℃	液相折光率/nD	气相折光率/nD
$40~\mathrm{mL~H_2O}$	100.063	1.3319	1.3319
$+0.5~\mathrm{mL}$ PrOH	97.507	1.3324	1.3552
$+1.5~\mathrm{mL}$ PrOH	95.918	1.3332	1.3616
$+2~\mathrm{mL}~\mathrm{PrOH}$	93.986	1.3347	1.3657
$+2.5~\mathrm{mL}$ PrOH	92.382	1.3361	1.3689
$+4~\mathrm{mL}~\mathrm{PrOH}$	89.461	1.3401	1.3718
-20 mL then +30 mL PrOH	88.610	1.3795	1.1765
$+6 \text{ mL H}_2\text{O}$	87.655	1.3746	1.3745

Table 3. 沸点及折光率绘图数据 孙肇远

同时对于正丙醇加水体系, 得到周韦屹的数据:

平均沸点温度/℃	液相折光率/nD	气相折光率/nD
97.428	1.3811	1.3810
95.666	1.3811	1.3808
92.985	1.3810	1.3794
90.587	1.3805	1.3779
88.868	1.3795	1.3764
88.059	1.3780	1.3755
87.787	1.3752	1.3746
87.776	1.3746	1.3745
87.767	1.3746	1.3745
87.761	1.3745	1.3745

Table 4. 沸点及折光率绘图数据 周韦屹

3. 结果与讨论 3

序号	正丙醇质量 m ₁ / g	水质量 m ₂ / g	正丙醇摩尔分数 x	折光率 r / nD
1			0	1.3320
2	0.4925	4.5555	0.03139082	1.3405
3	1.0473	4.0854	0.071361978	1.3495
4	1.5008	3.4987	0.113936963	1.3554
5	1.9962	3.0905	0.162215242	1.3605
6	2.5180	2.5075	0.231373673	1.3658
7	3.0033	2.0352	0.306691651	1.3699
8	3.5120	1.5640	0.402319314	1.3740
9	3.9962	1.0837	0.525032356	1.3769
10	4.5441	0.5230	0.722571656	1.3798
11			1	1.3811

Fig. 5. 标准溶液配置数据

3.2. 数据分析与结果讨论

标准曲线拟合

出于表达式简洁及极限情况考虑,采用指数函数而非多项式函数,得到

Fig. 6. 标准溶液曲线

折光率函数为

$$y = -0.04718 \exp[-x/0.1901] + 1.38039,$$

$$x = -0.1901 \ln\left[\frac{y - 1.38039}{-0.04718}\right],\tag{2}$$

将折光率换算为摩尔分数,得到相图

Fig. 7. 相图

读图可知, 正丙醇-水体系的最低恒沸点在 87.655 \sim 87.761 $^{\circ}$ C 之间, 平均值为 87.708 $^{\circ}$ C, 与理论值 87.69 $^{\circ}$ C 接近, 误差 $\eta=0.02\%$.

3.3. 误差分析讨论

本实验可能误差如下:

- 1° 因为加入水或正丙醇后,体系没有充分平衡导致,或体系持续蒸出气体,组分时刻改变;
- 2°标准曲线非线性关系,函数选择有很大影响,且存在摩尔分数不存在或为负的情况;
- 3°两组实验所用的仪器存在差别.

3.4. 实验体会与认识

在本实验中,学习了正丙醇-水双液系气液平衡相图的绘制办法,学习了使用大气压计,沸点仪,折光计等仪器. 撰写实验报告时,练习了使用 Origin 进行数据处理,绘制非线性拟合

图像, 培养了数据处理和分析能力.

4. 附件

					д.
	A(X1)	B(X2)	C (Y2)	D (X3) 🗖	E(X4)
长名称					
单位					
注释	气相折光率	液相折光率	沸点	气相摩尔分	液相摩尔分
F(x)=				ln((A-1.38	ln((B-1.3803
类别					
1	1. 381	1. 3811	97. 42833		
2	1. 3808	1. 3811	95. 66567		
3	1. 3794	1. 381	92. 985	0. 73455	
4	1. 3779	1. 3805	90. 587	0. 55921	
5	1. 3764	1. 3795	88. 86833	0. 46958	0. 75479
6	1. 3755	1. 378	88. 05867	0. 43091	0. 56701
7	1. 3746	1. 3752	87. 78667	0. 3988	0. 4196
8	1. 3745	1. 3746	87. 776	0. 39554	0. 3988
9	1. 3745	1. 3746	87. 767	0. 39554	0. 3988
10	1. 3745	1. 3745	87. 76067	0. 39554	0. 39554
11	1. 3319	1. 3319	100. 063	-0.00521	-0.00521
12	1. 3552	1. 3324	97. 507	0. 11929	-0.00324
13	1. 3616	1. 3332	95. 918	0. 17501	-4. 0288E-5
14	1. 3657	1. 3347	93. 986	0. 22181	0. 0061
15	1. 3689	1. 3361	92. 382	0. 26851	0. 01202
16	1. 3718	1. 3401	89. 461	0. 32381	0. 03001
17	1.3765	1. 3795	88. 61	0. 47441	0. 75479
18	1. 3745	1. 3746	87.655	0.39554	0. 3988
19					
2.0					

Fig. 8. origin 绘图数据

2、大流物铁	线制(新量)			
Make Make	序号	冰的 医量	であるを量	
	0%	咿	12/3	
	10%	4.55559	0.4925 g	
	20%	4.08549	1.04739	
	30%	34. 4987 g 3.4987g	1.50089	
	4.%	3.0905 3	1.99629	
	% %	2.5075 g	2.51809	
	6%	2.03529	3.00339	
	70%	1.56409	3.51209	
	80%	1.08379	3.99629	
	90%	0.5230g	4.0047g 4	.54
	100%	P3	PR	
			t. h.l. 1	
			黄纸龙	

Fig. 9. 标准曲线

Fig. 10. 沸点及折光率记录