Zero as Nest and Modulus in UNNS

UNNS Research Notes

September 24, 2025

Abstract

In the UNNS substrate, zero is more than a trivial value. It functions structurally as a *universal absorbing nest* and algebraically as a *universal modulus anchor*. This expansion develops precise definitions, proves a theorem formalizing these dual roles, and provides a TikZ diagram visualizing zero's behavior in both the nesting and modulus perspectives.

1 Zero as a Nest

Definition 1.1 (Nest). A nest \mathcal{N} is a recursively defined subsequence structure generated by a recurrence relation of order r:

$$u_{n+r} = \sum_{j=1}^{r} c_j u_{n+r-j}, \quad n \ge 0,$$

with initial data (u_0, \ldots, u_{r-1}) .

Definition 1.2 (Zero Nest). The zero nest \mathcal{N}_0 is defined by

$$\mathcal{N}_0 = \{ u_n = 0 \mid n \in \mathbb{Z}_{>0} \}.$$

Remark 1.3. The zero nest is absorbing: once all terms equal zero, further recurrence steps preserve zero. Thus, it is the minimal valid nest structure.

2 Zero as a Modulus

Definition 2.1 (Modulus congruence). Given $m \in \mathbb{N}$, two sequences $\{u_n\}, \{v_n\}$ are congruent mod m if

$$u_n \equiv v_n \pmod{m}, \quad \forall n.$$

Definition 2.2 (Zero modulus class). The zero class modulo m is

$$[0]_m = \{ k \in \mathbb{Z} \mid k \equiv 0 \pmod{m} \}.$$

Remark 2.3. For every modulus m, the class $[0]_m$ is universal: it is the additive identity class, and every class reduces to it by multiplication with m.

3 Main Theorem: Dual Role of Zero

Theorem 3.1 (Zero as universal nest and modulus anchor). In the UNNS substrate:

- 1. (Nest property) \mathcal{N}_0 is a universal absorbing nest: for any recurrence of finite order with coefficients $\{c_i\}$, the zero nest satisfies the recurrence and absorbs collapse mappings.
- 2. (Modulus property) For any modulus $m \geq 2$, the zero class $[0]_m$ is the universal modulus anchor: every recurrence sequence $\{u_n\}$ satisfies

$$u_n \equiv 0 \pmod{m}$$
 iff $u_n \in [0]_m$,

and $[0]_m$ is the only class preserved under multiplication by m.

Proof. (1) Substituting $u_n = 0$ for all n into any recurrence yields

$$u_{n+r} = \sum_{j=1}^{r} c_j \cdot 0 = 0,$$

so \mathcal{N}_0 satisfies every recurrence. If a nest collapses to all zeros, it remains in \mathcal{N}_0 , so the nest is absorbing.

(2) By definition, $[0]_m$ is closed under addition and multiplication. For any $k \in \mathbb{Z}$, $m \cdot k \equiv 0 \pmod{m}$, so multiplication by m always maps into $[0]_m$. No other congruence class has this property. Thus $[0]_m$ is the universal modulus anchor.

4 Examples

Example 4.1 (Fibonacci seed). The Fibonacci sequence (0, 1, 1, 2, 3, 5, ...) uses $u_0 = 0$ as part of its initial nest. Here, zero is the seed nest placeholder anchoring the lattice.

Example 4.2 (Modulus collapse). Consider $u_{n+1} = 2u_n$ with $u_0 = 3$. Mod 6, we have $3, 0, 0, 0, \ldots$, collapsing immediately into $[0]_6$. Thus zero acts as the modulus anchor.

5 Diagram: Dual Role of Zero

6 Conclusion

Zero in UNNS is not trivial. As a *nest*, it is the universal absorbing container that recurrences can collapse into or restart from. As a *modulus*, it is the universal congruence anchor against which invariants and residues are measured. This duality makes zero both a structural and an algebraic cornerstone of the UNNS discipline.