

- Information Redundancy -

Christoph Hoopmann Michael Krane

Agenda

- I. Kodierungsgrundlagen
- II. Parity Codes & Checksums
- III.M-of-N & Berger Codes
- IV. Cyclic Codes
- V. Arithmetic Codes
- VI. RAID Levels
- VII.Data replication
- VIII.Primary Backup Approach
- IX. Algorithm-based Fault Tolerance

Einführung

Übertragung/Speichern von Daten ist fehleranfällig Redundanz nötig um Fehler zuerkennen

1. Teil: Grundlagen von Kodierungen

2. Teil: Anwendung am Beispiel von RAID

3. Teil: Daten Replikation in verteilten Systemen

I Kodierungsgrundlagen

Kodierung

d-bit Datenwort wird zu c-bit Codewort kodiert c > d

Mehr Codewörter als Datenwörter ==> nicht gültige Codewörter Dekodierungs-Versuch von nicht gültigem führt zu Fehler

Einteilung der Methoden anhand folgender Parameter

- Anzahl erkennbarer/korrigierbarer Fehler
- Overhead von Speicher und Laufzeit

Anzahl erkennbarer Fehler

Hamming-Distanz : Anzahl Unterschiede in zwei Code-Wörtern

k Fehler erkennen : $H_{dist} >= k + 1$

k Fehler beheben : $H_{dist} >= 2k + 1$

$$\{001,010,100,111\} => H_{dist} = 2$$

 $\{000,111\} => H_{dist} = 3$

Overhead

Speicher:

1 bit(Parität) <= Overhead <=d bits (M-of-2M)

Laufzeit:

– Separierbar vs. Nicht separierbar $d_3d_2d_1d_0p_2p_1p_0$ nach d_0 abschneiden $c_7c_6c_5c_4c_3c_2c_1c_0$ Umwandeln mittels HW/SW

II Parity Codes & Checksums

Parität Codes

Extra Bit am Ende, sodass Anzahl 1-bits (un)gerade

Abhängig davon ob Alles-0 oder Alles-1 Fehler wahrscheinlicher

Kodierung/Error-Check mittels XOR-Verknüpfung

$$a0 \oplus a1 \oplus a2 \oplus a3 = P$$

$$a0 \oplus a1 \oplus a2 \oplus a3 \oplus P = error_{sig} [0 = kein Error]$$

separierbar, Overhead 1 bit, H_{dist} = 2

Varianten Parität-Codes

Fehler-Korrektur mittels überlappender Parität

m * n Datenwort in Matrix, m + n + 1 Paritätbits

- Alle Bitfehler erkennbar, 1 Bitfehler korrigierbar
- Großer Overhead

Alle Paritätbits nötig?

d + r mögliche Fehler-Positionen + kein Fehler

$$2^r >= d + r + 1$$

Varianten Parität-Codes (2)

(7,4) SEC (single-error correcting) code

$$d = 4 \text{ Bits } a_3 a_2 a_1 a_0 ==> 2^3 >= 4 + 3 + 1 => 3 \text{ Bits}$$

$$c = 7 \text{ Bits } a_3 a_2 a_1 a_0 p_2 p_1 p_0$$

Falsche Paritätbits weisen auf Fehler

$$- p_2 p_1 p_0 \oplus p'_2 p'_1 p'_0$$

- (8,4) SEC/DED (double-error detecting)
- (7,4) SEC wird um normales Paritätsbit erweitert

$$-c_3 == 1 => Fehlercode korrekt$$

Varianten Parität-Codes (3)

Berechnung Fehler-Code in einem Schritt

Checksum

Fehler-Erkennung in Datenübertragung in Netzwerken Summe der Daten mod n wird verglichen d-Bit Wörter: $n = 2^d$ oder $n = 2^(2d)$

Residue: LSB += carry_{MSB}

separierbar, Overhead d oder 2d bits

III M-of-N & Berger Code

M-of-N-Kodierung

Unidirektional (0 \rightarrow 1 Fehler oder 1 \rightarrow 0 Fehler) N-Bit Codewörter mit M gesetzten Bits

Digit	Codeword
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

1 Bitfehler ändert M um +1 oder -1 nicht separierbar, Overhead (N-d) bit

M-of-N-Kodierung (2) - M-of-2M

d Bits werden angehängt, sodass M Bits gesetzt 111001 => 111001000011 (6-of-12)

separierbar, Overhead d Bits

Berger Code

Anzahl gesetzte Bits als Komplement angehängt 11101 => 11101011

separierbar, Overhead ceil(log₂(d+1)) Bits

IV Cyclic Codes

Cyclic Codes

Code-Wörter sind "geshifted"

— a₃a₂a₁a₀ Codewort, dann a₀a₃a₂a₁ auch

Kodierung: d-Bit Datenwort * Konstante mod 2

Dekodierung: c-Bit Codewort / Konstante

- Rest == 0 => Kein Fehler / Rest != 0 => Fehler
- Erkennt einzelne Bit-Fehler, und (c d 1)
 lange Fehler-Blöcke

nicht separierbar, Overhead (c - d) Bits

Cyclic Code (2) - Konstante

Konstante für (c,d) Cyclic Code

- (c d +1) Bit Zahl, als Polynom (c d) Grad
- Faktor von x^c + 1

(15,11) Code
$$G(x) = x^4 + x^3 + 1$$
, $d=100\ 0110\ 0101$

Kodierung:
$$G(x)$$
 als $Zahl = 11001$

c=110 0001 0001 1101

1000	01100101
×	11001
1000	01100101
00000	0000000
000000	000000
1000110	00101
10001100	0101
11000010	00011101

Cyclic Code (3) - Fehler Erkennung

|Fehlerblock| <= 3, ansonsten nicht

```
110000111010101:11001 = 10001101101
1100000011011101:11001 = 10001110011
11001
                                        11001
    10011
                                            10111
    11001
                                            11001
    10100
                                             11100
     11001
                                             11001
                                               10110
     11011
      11001
                                                11001
          10110
                                                 11111
          11001
                                                 11001
          11111
                                                   11001
          11001
                                                   11001
          00110
                                                   00000
```


V Arithmetic Codes

Arithmetic Codes – AN Codierung

Erkennen von 1 Bit Fehler in der ALU Operanten sind codiert, Ergebnis behält Codierung

AN – Codierung

- Multiplikation und Addition : X' = A * X; Y' = A * Y
- Fehler-Erkennung: X' und Y' Vielfache von A =>Ergebnis auch Vielfaches von A
- Fehler nicht erkennbar wenn Anzahl mod A == 0
 nicht separierbar, Overhead ceil(log₂(A)) Bits

Arithmetic Codes (2) - Residue Code

Operanten werden mit $C(X) = c_n ... c_0$ erweitert

$$a_3a_2a_1a_0 ==> a_3a_2a_1a_0C(X)$$

- $-C(X) = X \mod A = |X|_A$
- $Addition => |X + Y| = ||X|_A + |Y|_A|_A$
- Multiplikation => $|X * Y| = ||X|_A * |Y|_A|_A$
- Division: $X R = Q * Y ==> ||X|_A |R|_A|_A = ||Q|_A * |Y|_A|_A$

Extra ALU Operation nötig

separierbar, Overhead ceil(log₂(A)) Bits

Arithmetic Codes (3) - Residue Code

Fehler-Erkennung benötigt extra ALU-Operation Ergebnisse Vergleichen:

== ==> Ergebniss korrekt

!= ==> Ergebnis inkorrekt

Arithmetic Codes (4) - Residue Code Bsp

A = 3, X = 7, Y = 5 ==>
$$|X|_3 = 1$$
 und $|Y|_3 = 2$
Addition: $|7 + 5|_3 = 0 = ||X|_3 + |Y|_3|_3 = |1 + 2|_3$
Mult: $|7 * 5|_3 = 2 = ||X|_3 * |Y|_3|_3 = |1 * 2|_3$
Q = X/Y = 1, Rest = 2
Divison: $||X|_3 - |\text{Rest}|_3|_3 = |1 - 2|_3 = 2$
 $||Y|_3 * |Q|_3|_3 = |5 * 1|_3 = 2$

Redundant Array of Independent Disks

Ausfallsicherheit

IO Performance

Kosteneffizienz

Hot-Swap

Speichergröße

RAID-0 Stripe, Granularität

RAID-1 Mirror

RAID-2 Bit-Stripe, Hamming Code

RAID-3 Byte-Stripe, zentr. Parität

RAID-4 Block-Stripe, zentr. Parität

RAID-5 Bl. Stripe, vert. Parität

RAID-6 Bl. Stripe, dp. vert. Parität

RAID-0

Striping n disks, Granularität Keine Redundanz #Disks * R-rate, 1 W-rate

- Seq. R/W
- Random R/W
- Disk failure

RAID-1

Mirror n disks

Vollständige Redundanz

May #Disks * R-rate, 1 W-rate

- Seq. R/W
- Random R/W
- Kostspielig, Speichergr.

Bit-level striping

Hamming-Code

 $\lceil \log_2 d + 1 \rceil = \mathbf{p}$ data bit $\rightarrow 3$ bit Parity

- Durchsatz
- Speichergr.
- Kostspielig

Byte-level striping XOR-Parität separat

- Onur 1x P-disk
- ⊕Seq. R/W
- Random W
- **◯**W-IO P-disk

Block-level striping XOR-Parität separat

Random W

◯W-IO P-disk

Block-level striping

XOR-Parität verteilt

Kapazität: (n - 1) * kl. Disk

- 1 disk failure
- Online rebuild
- 😯Seq. R/W
- Random W

Block-level striping

XOR-Parität 2x verteilt

Kapazität: (n - 2) * kl. Disk

- 2 disk failures
- Online rebuild
- Seq. R/W
- Random W

Mischformen

RAID-10 → Striped Mirror

RAID-51 → Mirrored RAID-5

RAID-55

RAID 55 RAID 5

• •

V RAID levels

RAID-0

$$n=2$$
 $MTBF = 50000 h$
 $MTTDL = MTBF / n$
 $MTTDL \approx 2,85 \text{ years}$
 $DL_t = t / MTTDL * 100$
 $DL_2 \approx 70,18 \%$
 $DL_{10} \ge 100 \%$

V RAID levels

RAID-1

$$n=2$$
 $MTTR=24h$
 $MTBF=50000h$
 $MTTDL=(MTBF^2)/(n*(n-1)*MTTR)$
 $MTTDL\approx 5945,59 \text{ years}$
 $DL_t=t/MTTDL*100$
 $DL_2\approx 0,037\%$
 $DL_{10}\approx 0,168\%$

V RAID levels

RAID-5

$$n=5$$
 $MTTR=24h$
 $MTBF=50000h$
 $MTTDL=(MTBF^2)/(n*(n-1)*MTTR)$
 $MTTDL\approx 594,56 \text{ years}$
 $DL_t=t/MTTDL*100$
 $DL_2\approx 0,336\%$
 $DL_{10}\approx 1,682\%$

Quorum Consensus

Α	В	С	D	Е	F	G
42	42	42	42	42	42	42

Quorum Consensus

Quorum Consensus

Quorum Consensus → r, w

$$w>v/2$$
 $r+w>v$

$$V = 7 #Nodes$$

$$w \rightarrow 4$$

$$r \rightarrow 4$$

A: 1

B: 1

C: 1

D: 1

E: 1

F: 1

G: 1

Quorum Consensus

Quorum Consensus

VI Data replication Majority Consensus

Problem:

r-Quorum, große Cluster

Lösung:

Majority Consensus

VI Data replication Majority Consensus

VI Data replication Majority Consensus

IX Algorithm-based fault tolerance

Matrix Arithmetic

1	0	1	0	0	1	1	2	0	1
0	1	0	1	2	0	0	1	0	0
0	1A:	* 16 =	0	1	0	0	0	1	1
1	0	0	1	1	0	0	2	0	1

A

В

Matrix Arithmetic

1	0	1	0
0	1	0	1
0	1	0	0
1	0	A*B	3≠ 1
3	2	1	2

A

Highest Random Weight

Distributed Hash Table Problem

Consistent Hashing

Consistent Hashing

Consistent Hashing

Consistent Hash Load Distribution

10,000 keys

Rendezvous Hashing (HRW)

"www.google.com" "www.ebay.de" "heise.de" "www.paypal.com" "blog.fefe.de"

Rendezvous Hashing (HRW)

"www.google.com" "www.ebay.de" "heise.de" "www.paypal.com" "blog.fefe.de"

Rendezvous Hashing (HRW)

Rendezvous Hash Load Distribution

10,000 keys

Vielen Dank

Noch Fragen?

