Proteomics Informatics – Databases, data repositories and standardization (Week 7)

Protein Sequence Databases

RefSeq

Distinguishing Features of the RefSeq collection include:

- non-redundancy
- explicitly linked nucleotide and protein sequences
- updates to reflect current knowledge of sequence data and biology
- data validation and format consistency
- ongoing curation by NCBI staff and collaborators, with reviewed records indicated

http://www.ncbi.nlm.nih.gov/books/NBK21091/

Ensembl

- genome information for sequenced chordate genomes.
- evidenced-based gene sets for all supported species
- large-scale whole genome multiple species alignments across vertebrates
- variation data resources for 17 species and regulation annotations based on ENCODE and other data sets.

http://www.ensembl.org/

UniProt

The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information.

http://www.uniprot.org/

Species-Centric Consortia

For some organisms, there are consortia that provide high-quality databases:

Yeast (http://yeastgenome.org/)

Fly (http://flybase.org/)

Arabidopsis (http://arabidopsis.org/)

FASTA

RefSeq:

>gi|168693669|ref|NP_001108231.1| zinc finger protein 683 [Homo sapiens]

MKEESAAQLGCCHRPMALGGTGGSLSPSLDFQLFRGDQVFSACRPLPDMVDAHGPSCASWLCPLPLAPGRSALLACLQDL DLNLCTPQPAPLGTDLQGLQEDALSMKHEPPGLQASSTDDKKFTVKYPQNKDKLGKQPERAGEGAPCPAFSSHNSSSPPP LQNRKSPSPLAFCPCPPVNSISKELPFLLHAFYPGYPLLLPPPHLFTYGALPSDQCPHLLMLPQDPSYPTMAMPSLLMMV NELGHPSARWETLLPYPGAFQASGQALPSQARNPGAGAAPTDSPGLERGGMASPAKRVPLSSQTGTAALPYPLKKKNGKI LYECNICGKSFGQLSNLKVHLRVHSGERPFQCALCQKSFTQLAHLQKHHLVHTGERPHKCSVCHKRFSSSSNLKTHLRLH SGARPFQCSVCRSRFTQHIHLKLHHRLHAPQPCGLVHTQLPLASLACLAQWHQGALDLMAVASEKHMGYDIDEVKVSSTS OGKARAVSLSSAGTPLVMGODONN

Ensembl:

>ENSMUSP00000131420 pep:known supercontig:NCBIM37:NT_166407:104574:105272 gene:ENSMUSG00000092057 transcript:ENSMUST00000167991

MFSLMKKRRRKSSSNTLRNIVGCRISHCWKEGNEPVTQWKAIVLGQLPTNPSLYLVKYDGIDSIYGQELYSDDRILNLKVL PPIVVFPQVRDAHLARALVGRAVQQKFERKDGSEVNWRGVVLAQVPIMKDLFYITYKKDPALYAYQLLDDYKEGNLHMIPD TPPAEERSGGDSDVLIGNWVQYTRKDGSKKFGKVVYQVLDNPSVFFIKFHGDIHIYVYTMVPKILEVEKS

UniProt:

>sp|Q16695|H31T_HUMAN Histone H3.1t OS=Homo sapiens GN=HIST3H3 PE=1 SV=3

MARTKQTARKSTGGKAPRKQLATKVARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLMREIAQDFK TDLRFQSSAVMALQEACESYLVGLFEDTNLCVIHAKRVTIMPKDIQLARRIRGERA

http://en.wikipedia.org/wiki/FASTA_format

PEFF - PSI Extended Fasta Format

```
>sp:P06748 \ID=NPM_HUMAN \Pname=(Nucleophosmin) (NPM) (Nucleolar phosphoprotein B23) (Numatrin) (Nucleolar protein NO38) \NcbiTaxId=9606 \ModRes=(125|MOD:00046)(199|MOD:00047) \Length=294
```

```
>sp:P00761 \ID=TRYP_PIG
\Pname=(Trypsin precursor) (EC 3.4.21.4) \NcbiTaxId=9823
\Variant=(20|20|V)
\Processed=(1|8|PROPEP)(9|231|CHAIN)
\Length=231
```

http://www.psidev.info/node/363

Data Repositories

ProteomeExchange

http://www.proteomeexchange.org/

PRIDE

MySQL public DB instance, via

PRIDE Inspector (once opened, click on "Search PRIDE")

http://code.google.com/p/pride-toolsuite/wiki/PRIDEInspector

http://www.ebi.ac.uk/pride/

PeptideAtlas

PEPTIDEATLAS HOME

Seattle Proteome Center

PEPTIDEATLAS:

Overview

Contacts

Data Contributors

Publications

Software

Database Schema

Feedback

FAQ

ATLAS DATA:

Data Repository Human Plasma (Farrah, et al.) HPPP Data Central PeptideAtlas Builds

Search Database

Contribute Data Genome Browser Setup

RELATED: SRMAtlas Phosphopep

Expanded Search

GO

PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. Results may be queried and browsed at the PeptideAtlas web site. The raw data, search results, and full builds can also be downloaded for other uses

PeptideAtlas
Chromosome
Explorer
(Human only)

SRMAtlas

Search PeptideAtlas:

SRMAtlas interface for selection of best available SRM transitions

PeptideAtlas
Raw Data
Repository

PeptideAtlas SRM Experiment Library (PASSEL)

PeptideAtlas and the Chromosome-Centric Human Proteome Project

http://www.peptideatlas.org/

The Global Proteome Machine Databases (GPMDB)

accession	gpm #	sequence	keyword	GO
вто	Chr#	SNAP	pSYT	lists
home	statistics	species	thegpm	about

Information

about the GPM about gpmdb send us email

Search sites

Eukaryote proteomes

1 2 3 4 5 6 7

Boutique proteomes

human mouse cow bacteria

plant rat

Algorithms

X! P3 X! Hunter

Information

gpmDB wiki review lists

Some species

gpmDB statistics for Sun Mar 3 11:49:49 2013 UTC (#3315)

models = 217,125

proteins = 84,408,917

distinct proteins = 1,724,816

protein redundancy = $48.9 \times$

peptides = 687,211,623

distinct peptides = 4,286,043

peptide redundancy = 160.3 ×

residues = 9,620,962,722

statistics archive: GPMDB

pages viewed: global map

US visits map

European visits map

Asian visits map

Oceania visits map

South American visits map

African visits map

GPM sponsors

- Proteome Software
- Beavis Informatics
- MCPSB, UM
- LMSGIC, RU

data

- Tranche
- PeptideAtlas
- PRIDE

projects

- iMOP
- HPP
- C-HPP
- HPFP
- The HPA

general info

- ENSEMBL
- STRING DB
- Unimod
- NCTA

pathways

- KEGG
- Reactome

http://gpmdb.thegpm.org

Comparison with GPMDB

Most proteins show very reproducible peptide patterns

Comparison with GPMDB

Second best match In GPMDB

GPMDB usage last month

GPMDB usage last month

GPMDB Data Crowdsourcing

Any lab performs experiments

Raw data sent to public repository (TRANCHE, PRIDE)

Data imported by GPMDB

Data analyzed & accepted/rejected

Accepted information loaded into public collection

General community uses information and inspects data

Information for including a data set in GPMDB

1. MS/MS data (required)

- 1. MS raw data files
- 2. ASCII files: mzXML, mzML, MGF, DTA, etc.
- 3. Analysis files: DAT, MSF, BIOML

2. Sample Information (supply if possible)

- 1. Species: human, yeast
- 2. Cell/tissue type & subcellular localization
- 3. Reagents: urea, formic acid, etc.
- 4. Quantitation: SILAC, iTRAQ
- 5. Proteolysis agent: trypsin, Lys-C

3. Project information (suggested)

- 1. Project name
- 2. Contact information

How to characterize the evidence in GPMDB for a protein?

High confidence Medium confidence Low confidence No observation

Statistical model for 212 observations of TP53

Star t	End	N	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	Skew	Kurt
214	248	539	0.15	0.18	0.22	0.17	0.15	0.07	0.03	0.01	0.01	0.00	-0.01	-2.01
249	267	1010	0.04	0.09	0.13	0.16	0.16	0.14	0.13	0.06	0.04	0.05	-0.08	-1.89
182	196	832	0.09	0.15	0.20	0.19	0.18	0.13	0.05	0.01	0.00	0.00	-0.12	-1.84
250	267	4	0.25	0.00	0.25	0.00	0.25	0.00	0.00	0.00	0.00	0.25	0.48	-2.28
1	24	269	0.10	0.12	0.12	0.17	0.12	0.12	0.14	0.04	0.04	0.03	-0.33	-0.88
24	65	51	0.22	0.22	0.20	0.14	0.06	0.00	0.04	0.08	0.02	0.04	0.47	-1.62
66	101	334	0.09	0.08	0.11	0.11	0.09	0.11	0.09	0.13	0.08	0.12	0.10	-1.21
249	273	60	0.02	0.00	0.20	0.10	0.13	0.25	0.20	0.07	0.03	0.00	0.45	-1.36
214	242	10	0.00	0.10	0.00	0.00	0.00	0.00	0.30	0.20	0.20	0.20	0.54	-1.39
214	239	32	0.03	0.06	0.16	0.16	0.09	0.22	0.09	0.16	0.00	0.03	0.20	-0.99
111	120	117	0.09	0.20	0.15	0.26	0.29	0.01	0.00	0.00	0.00	0.00	0.62	-1.36
251	267	16	0.00	0.00	0.13	0.25	0.19	0.13	0.13	0.13	0.06	0.00	0.24	-0.60
214	241	14	0.00	0.00	0.00	0.07	0.29	0.21	0.07	0.29	0.00	0.07	0.87	-0.97
159	174	100	0.30	0.25	0.31	0.03	0.07	0.03	0.01	0.00	0.00	0.00	0.99	-1.07
68	101	10	0.00	0.00	0.00	0.00	0.00	0.20	0.10	0.10	0.30	0.30	0.86	-0.91
235	248	30	0.00	0.03	0.00	0.00	0.30	0.20	0.23	0.13	0.03	0.07	0.81	-0.82

Statistical model for observations of DNAH2

Start	End	N	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	Skew	Kurtosis
3173	3178	2	0.50	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.78	1.41
614	625	9	0.78	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.77	7.86
2539	2546	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
1515	1546	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
2388	2397	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
3496	3507	2	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
3230	3239	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
3062	3068	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
136	173	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
3519	3541	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
485	504	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
404	411	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
496	518	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
3240	3253	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
2260	2268	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
3173	3177	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
3146	3157	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00

Statistical model for observations of GRAP2

Start	End	N	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	Skew	Kurtosis
37	48	167	0.17	0.21	0.23	0.17	0.15	0.04	0.02	0.02	0.00	0.00	0.15	-2.06
84	97	224	0.05	0.15	0.18	0.19	0.18	0.13	0.06	0.04	0.01	0.01	0.08	-1.98
317	330	344	0.09	0.10	0.15	0.13	0.18	0.16	0.12	0.06	0.01	0.01	-0.50	-0.72
222	232	79	0.24	0.25	0.16	0.11	0.16	0.04	0.03	0.00	0.00	0.00	0.44	-1.53
164	184	59	0.27	0.22	0.29	0.12	0.05	0.00	0.02	0.03	0.00	0.00	0.82	-1.20
27	36	67	0.24	0.21	0.12	0.03	0.13	0.10	0.04	0.10	0.01	0.00	0.51	-0.66
278	312	10	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.30	0.20	0.30	0.86	-0.91
260	272	201	0.22	0.23	0.33	0.15	0.05	0.00	0.01	0.00	0.00	0.00	0.86	-0.79
98	106	52	0.33	0.21	0.29	0.10	0.08	0.00	0.00	0.00	0.00	0.00	0.95	-0.75
27	48	11	0.00	0.09	0.18	0.09	0.27	0.09	0.18	0.00	0.09	0.00	0.61	-0.16
7	26	15	0.13	0.33	0.33	0.13	0.07	0.00	0.00	0.00	0.00	0.00	1.17	-0.02
113	127	9	0.33	0.33	0.11	0.00	0.11	0.11	0.00	0.00	0.00	0.00	1.20	0.14
66	75	118	0.13	0.19	0.27	0.37	0.03	0.01	0.01	0.00	0.00	0.00	1.19	0.20
261	272	80	0.36	0.34	0.14	0.04	0.05	0.03	0.03	0.00	0.01	0.01	1.50	0.72
250	259	2	0.00	0.00	0.50	0.50	0.00	0.00	0.00	0.00	0.00	0.00	1.78	1.41
222	233	4	0.50	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.78	1.41
186	221	19	0.16	0.05	0.37	0.00	0.05	0.21	0.11	0.05	0.00	0.00	1.50	2.14
317	324	9	0.56	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.85	1.87
58	65	3	0.33	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.28	4.77
208	221	8	0.13	0.00	0.13	0.13	0.50	0.00	0.13	0.00	0.00	0.00	2.26	5.88
234	259	7	0.00	0.57	0.14	0.14	0.00	0.14	0.00	0.00	0.00	0.00	2.41	6.34
49	57	89	0.69	0.24	0.07	0.01	0.00	0.00	0.00	0.00	0.00	0.00	2.61	6.98
113	121	11	0.64	0.09	0.18	0.09	0.00	0.00	0.00	0.00	0.00	0.00	2.64	7.39
76	83	21	0.95	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.15	9.93
188	221	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	1.00	0.00	3.16	10.00
66	83	1	0.00	0.00	0.0	1.00	00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
317	328	2	0.00	0.02	1.00	100	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
110	121	1	0.00	0.00	1.00	J.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
226	232	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
1	6	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00
128	133	1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.16	10.00

DNA Repair

accession	gpm #	sequence	keyword	GO
вто	Chr#	SNAP	pSYT	lists
home	statistics	species	thegpm	about

Ontology Collection, GO:0006281 DNA repair

excel txt

#	accession	total	log(e)	EC	description
1.	ENSP00000263801	2168	-2647.6	•	TP53BP1, tumor protein p53 binding protein 1
2.	ENSP00000371475	2117	-2647.6	•	TP53BP1, tumor protein p53 binding protein 1
3.	ENSP00000411532	2643	-2274.6	•	TOP2A, topoisomerase (DNA) II alpha 170kDa
4.	ENSP00000355759	4539	-1988.3	•	PARP1, poly (ADP-ribose) polymerase 1
5.	ENSP00000369497	217	-1889.2	•	BRCA2, breast cancer 2, early onset
6.	ENSP00000381295	1132	-1325.3	•	E3 ubiquitin-protein ligase UHRF1 (EC 6.3.2) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) (Inverted CCAAT box-binding protein of 90 kDa) (Transcription factor ICBP90) [Source:Uniprot/SWISSPROT;Acc:Q96T88]
7.	ENSP00000262952	1182	-1282.1	•	UHRF1, ubiquitin-like with PHD and ring finger domains 1
8.	ENSP00000409986	1105	-1282.1	•	UHRF1, ubiquitin-like with PHD and ring finger domains 1
9.	ENSP00000261609	785	-1268.8	•	HERC2, hect domain and RLD 2
10.	ENSP00000265421	367	-1169.8	•	POLB, polymerase (DNA directed), beta

DNA Repair

553.	ENSP00000359285	11	-2.8	•	CHRNA4, cholinergic receptor, nicotinic, alpha 4
554.	ENSP00000364389	13	-2.7	•	CDC14B, CDC14 cell division cycle 14 homolog B (S. cerevisiae)
555.	ENSP00000413377	9	-2.5	•	CCDC108, coiled-coil domain containing 108
556.	ENSP00000409117	9	-2.5	•	CCDC108, coiled-coil domain containing 108
557.	ENSP00000404368	4	-2.4	•	PARP3, poly (ADP-ribose) polymerase family, member 3 [Source:HGNC Symbol;Acc:2 Q9Y6F1; NP_005476]
558.	ENSP00000385879	4	-2.4	•	KBTBD12, kelch repeat and BTB (POZ) domain containing 12
559.	ENSP00000430639	5	-2.1	•	ENDOV, endonuclease V
560.	ENSP00000404213	4	-2.1	•	REV1, REV1 homolog (S. cerevisiae)
561.	ENSP00000430509	4	-2.1	•	ENDOV, endonuclease V
562.	ENSP00000298129	9	-2	•	ZNF488, zinc finger protein 488 [Source:HGNC Symbol;Acc:23535; Q96MN9; NP_694579
563.	ENSP00000379054	8	-2	•	ZNF488, zinc finger protein 488
564.	ENSP00000387138	1	-1.7	•	RAD9B, RAD9 homolog B (S. pombe) [Source:HGNC Symbol;Acc:21700]
565.	ENSP00000378754	2	-1.7	•	FANCC, Fanconi anemia, complementation group C [Source:HGNC Symbol;Acc:3584]
566.	ENSP00000293273	6	-1.7	•	RDM1, RAD52 motif 1
567.	ENSP00000380672	3	-1.4	•	CDNA FLI39025 fis, clone NT2RP7004559, weakly similar to ENDONUCLEASE C1F12.06((EC 3.1) (Hypothetical protein FLI35220). [Source:Uniprot/SPTREMBL;Acc:Q8N8Q3]
568.	ENSP00000421819	2	-1.2	•	POLK, polymerase (DNA directed) kappa [Source:HGNC Symbol;Acc:9183]
569.	ENSP00000403782	2	-1.2	•	POLK, polymerase (DNA directed) kappa [Source:HGNC Symbol;Acc:9183]
570.	ENSP00000393993	0	nf	•	POLH, polymerase (DNA directed), eta [Source:HGNC Symbol;Acc:9181]
571.	ENSP00000402713	0	nf	•	OGG1, 8-oxoguanine DNA glycosylase

out of 571

TP53BP1:p, tumor protein p53 binding protein 1

Page 1 of 129 for ENSP00000263801 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | >> | 129 | ■ observed 2564 × 国

TP53BP1:p, tumor protein p53 binding protein 1

ENSP00000263801: TP53BP1:p, tumor protein p53 binding protein 1 log(e) = -2647.6 [Source: HGNC 11999]

IPR015125 53-BP1 Tudor

IPR001357 (×6) BRCT dom

X

1	mdptgsqldsdfsqqdtpcliiedsqpesqvleddsgshfsmlsrhlpnlqthkenpvld MDPTGSQLDSDFSQQDTPCLIIEDSQPESQVLEDDSGSHFSMLSRHLPNLOTHKENPVLD	60
61	vvsnpeqtageergdgnsgfnehlkenkvadpvdssnldtcgsisqvieqlpqpnrtssv VVSNPEQTAGEERGDGNSGFNEHLKENKVADPVDSSNLDTCGSISQVIEQLPQPNRTSSV	120
121	lgmsvesapaveeekgeeleqkekekeedtsgntthslgaedtassqlgfgvlelsqsqd LGMSVESAPAVEEEKGEELEQKEKEKEEDTSGNTTHSLGAEDTASSQLGFGVLELSQSQD	180
181	veentvpyevdkeqlqsvttnsgytrlsdvdantaikheeqsnedipiaeqsskdipvta VEENTVPYEVDKEQLQSVTTNSGYTRLSDVDANTAIKHEEQSNEDIPIAEQSSKDIPVTA	240
241	qpskdvhvvkeqnppparsedmpfspkasvaameakeqlsaqelmesglqiqkspepevl QPSKDVHVVKEQNPPPARSEDMPFSPKASVAAMEAKEQLSAQELMESGLQIQKSPEPEVL	300
301	<pre>stqedlfdqsnktvssdgcstpsreeggcslastpattlhllqlsgqrslvqdslstnss</pre>	360
361	STQEDLFDQSNKTVSSDGCSLPSREEGGCSLASTPATTLHLLCLSGORSLVQDSLSTNSS dlvapspdafrstpfivpsspteqegrqdkpmdtsvlseeggepfqkklqsgepvelenp	420
421	DLVAPSPDAFRSTPFIVPSSPTEQEGRODKPMDTSVLSEEGGEPFOKKLQSGEPVELENP pllpestvspqastpisqstpvfppgslpipsqpqfshdifipspsleeqsndgkkdgdm	480
481	PLLPESTVSPQASTPISQSTPVFPPGSLPIPSQPQFSHDIFIPSPSLEEQSNDGKKDGDM hsssltvecsktseiepknspedlglsltgdscklmlstseysqspkmeslsshridedg	540
541	HSSSLTVECSKTSEIEPKNSPEDLGLSLTGDSCKLMLSTSEYSQSPKMESLSSHRIDEDG entqiedtepmspvlnskfvpaendsilmnpaqdgevqlsqnddktkgddtdtrddisil	600
601	ENTOIEDMEPMSPVLNSKFVPAENDSILMNPAODGEVQLSQNDDKTKGDDTDTRDDISIL atgckgreetvaedvcidltcdsgsqavpspatrsealssvldqeeameikehhpeegss	660
661	ATGCKGREETVAEDVCIDLTCDSGSQAVPSPATRSEALSSVLDQEEAMEIKEHHPEEGSS gseveeipetpcesqgeelkeenmesvplhlsltetqsqglclqkempkkecseamevet	720
	GSEVEEIPETPCESQGEELKEENMESVPLHLSLTETQSQGLCLQKEMPKKECSEAMEVET svisidspqklaildqelehkeqeaweeatsedssvvivdvkepsprvdvscepleqvek	
	SVISIDSPOKLAILDQELEHKEQEAWEEATSEDSSVVIVDVKEPSPRVDVSCEPLEGVEK csdsqswediapeiepcaenrldtkeeksveyegdlksgtaetepveqdssqpslplvra	
701	csdsdswedraberebcdeurrackeekskeledarksdraerebkedassdbsrbikra	010

Sequence Annotations

show legend @ mydgp lower case sequence is the latest sequence from ENSEMBL for this accession number rekigee lower case transition from black to blue letters indicates an exon boundary; a red residue indicates a triplet shared between exons MVDOP upper case sequence is the protein sequence originally analyzed dydnas synonymous SNP with no residue change and non-synonymous SNP which changes the residue TIME residues part of at least one observed peptide domain TREEO residues predicted to be difficult to observe by standard techniques HFOL residue found is a single amino-acid polymorphism AYNG residue found is chemically modified Complete mods: Carbamidomethyl@C, Carbamidomethyl@U Potential mods: Oxidation@M, Label:+6 Da@K, Label:+6 Da@R Oxidation@M, Oxidation@W, Deamidated@N, Deamidated@Q iii. Dioxidation@M. Dioxidation@W Protein-specific PTMs: Phospho@S, Phospho@T, Phospho@Y

Ammonia-loss@Q, Ammonia-loss@C, Dehydrated@E (peptide)

ragged, Acetyl (protein).

N-terminal:

TP53BP1:p, tumor protein p53 binding protein 1

spectrum	log(e)	log(I)	m+h	delta	ζ	sequence		n
1124.1	-4.2	6.11	1093.6208	0.0015	2/4	mlsr46	HLPNLQTH <mark>K</mark> ⁵⁴ enpv	(323)
32342.1	-3.5	5.84	1087.6007	0.0009	3/4	mlsr46	HLPNLQTHK ⁵⁴ enpv	(323)
14727.1	-14.2	4.91	2082.9938	0.0021	2/2	qthk55	ENPVLDVVSN PEQTAGEER 73gdgn	(1702)
15139.1	-10.1	6.47	2082.9938	0.0027	3/3	qthk55	ENPVLDVVSN PEQTAGEER 73gdgn	(1702)
3585.1	-11.4	5.97	1839.9083	0.0012	2/2	hken57	PVLDVVSNPE QTAGEER 73gdgn	(15)
20574.1	-8.0	5.02	1274.5760	-0.0007	2/3	geer74	GDGNSGFNEH LK 85enkv	(359)
1585.1	-3.7	6.55	1275.5600	0.0015	3/3	geer74	GDGNSGFNEH LK 85enkv	(359)
32608.1	-2.9	5.66	1657.7967	-0.0012	3/4	geer74	GDGNSGFNEH L <mark>K</mark> EN <mark>K</mark> ⁸⁸ vadp	(30)
32889.1	-2.1	5.25	1102.5276	-0.0021	2/3	ergd76	GNSGFNEHLK ⁸⁵ enkv	(5)
1026.1	-3.2	5.62	937.4833	0.0016	2/3	gdgn78	SGFNEHL <mark>K</mark> ⁸⁵ enkv	(10)
6246.1	-11.3	6.97	3045.4889	0.0052	3/3	kenk89	VADPVDSSNL DTCGSISQVI EQLPQPNR 116tssv	(2944)
6403.1	-10.9	4.72	3039.4688	0.0038	2/2	kenk89	VADPVDSSNL DTCGSISQVI EQLPQPNR 116tssv	(2944)
36424.1	-13.3	4.91	1965.9321	0.0010	2/2	qpnr117	TSSVLGMSVE SAPAVEEEK ¹³⁵ geel	(169)
4458.1	-12.4	5.42	2775.3643	-0.0021	2/3	qpnr117	TSSVLGMSVE SAPAVEEEKG EELEOK 142 ekek	(3519)
37304.1	-9.0	4.60	2795.3139	0.0002	3/3	qpnr117	TSSVLGMSVE SAPAVEEEKG EELEQK 142 ekek	(3519)
2575.1	-9.7	6.10	2100.0381	0.0002	2/3	vlgm124	SVESAPAVEE E <mark>K</mark> GEELEO <mark>K ¹⁴²ekek</mark>	(170)
2542.1	-7.7	6.92	2100.0381	0.0006	3/3	vlgm124	SVESAPAVEE E <mark>K</mark> GEELEO <mark>K ¹⁴²ekek</mark>	(170)
2121.1	-5.3	5.18	1772.8549	-0.0004	3/3	msve127	SAPAVEEEKG EELEQK ¹⁴² ekek	(5)
2738.1	-9.6	5.39	2067.0391	0.0002	2/3	tvpy189	EVDKEQLQSV TTNSGYTR 206 Isdv	(35)
35349.1	-8.2	5.54	2054.9989	-0.0008	3/3	tvpy189	EVDKEQLQSV TTNSGYTR 206 Isdv	(35)

TP53BP1:p, tumor protein p53 binding protein 1

E N-P V-L D-V V S N P-E-Q-T-A-G E-E R

Peptide observations, catalase

Peptide Sequence	Observations
FSTVAGESGSADTVR	2633
FNTANDDNVTQVR	2432
AFYVNVLNEEQR	1722
LVNANGEAVYCK	1701
GPLLVQDVVFTDEMAHFDR	1637
LSQEDPDYGIR	1560
LFAYPDTHR	1499
NLSVEDAAR	1400
FYTEDGNWDLVGNNTPIFFIR	1386
ADVLTTGAGNPVGDK	1338

Peptide frequency (w), catalase

Peptide Sequence	ω
FSTVAGESGSADTVR	0.08
FNTANDDNVTQVR	0.07
AFYVNVLNEEQR	0.05
LVNANGEAVYCK	0.05
GPLLVQDVVFTDEMAHFDR	0.05
LSQEDPDYGIR	0.04
LFAYPDTHR	0.04
NLSVEDAAR	0.04
FYTEDGNWDLVGNNTPIFFIR	0.04
ADVLTTGAGNPVGDK	0.04

Global frequency of observation (w), catalase

Omega (Ω) value for a protein identification

For any set peptides observed in an experiment assigned to a particular protein (1 to j):

$$\Omega(protein) = \sum_{j} \omega_{j}$$

$$\Omega(protein) \leq 1$$

Protein Ω 's for a set of identifications

Protein ID	Ω (z=2)	Ω (z=3)
SERPINB1	0.88	0.82
SNRPD1	0.88	0.59
CFL1	0.81	0.87
SNRPE	0.8	0.81
PPIA	0.79	0.64
CSTA	0.79	0.36
PFN1	0.76	0.61
CAT	0.71	0.78
GLRX	0.66	0.8
CALM1	0.62	0.76
FABP5	0.57	0.17

Retention Time Distribution

Mass Accuracy

GO Cellular Processes

KEGG Pathways

GPM70110008836: KEGG pathway display

model | context | group | gel | chip | peptide | table | details | GO | BTO | path | ppi | doms | snaps | mh | \(\zeta \) XML |

assigned accession: GPM70110008836

Sample information

KEGG ID	Pathway	log(I)	log(p) 🐣	Protein Description	1/11 V I V V V 1
hsa:00190	Oxidative phosphorylation	6.0	-7.8	54/23 proteins of 331	
hsa:03050	Proteasome	5.1	-7.2	29/9 proteins of 132	
hsa:00970	Aminoacyl-tRNA biosynthesis	5.3	-6.2	27/9 proteins of 130	
hsa:00020	Citrate cycle (TCA cycle)	5.7	-5.6	24/8 proteins of 119	
hsa:00280	Valine, leucine and isoleucine degradation	5.7	-5.5	29/11 proteins of 159	
hsa:03030	DNA replication	5.6	-4.5	20/7 proteins of 110	
hsa:00062	Fatty acid elongation in mitochondria	5.2	-4.1	7/1 proteins of 28	
hsa:03420	Nucleotide excision repair	5.3	-3.6	21/9 proteins of 138	
hsa:04110	Cell cycle	6.0	-3.2	44/27 proteins of 390	

Open-Source Resources

ProteoWizard

info v download user docs v dev docs v contact

ProteoWizard

The ProteoWizard Library and Tools are a set of modular and extensible open-source, cross-platform tools and software libraries that facilitate proteomics data analysis.

The libraries enable rapid tool creation by providing a robust, pluggable development framework that simplifies and unifies data file access, and performs standard chemistry and LCMS dataset computations.

Core code and libraries are under the Apache open source license; the vendor libraries fall under various vendor-specific licenses.

Features

- · reference implementation of the new HUPO-PSI mzML standard mass spectrometry data format
- implementation of the new HUPO-PSI <u>mzIdentML</u> standard mass spectrometry data format
- modern C++ techniques and design principles
- cross-platform with native compilers (MSVC on Windows, gcc on Linux, XCode on OSX)
- · modular design, for testability and extensibility
- framework for rapid development of data analysis tools
- open source license suitable for both academic and commercial projects (Apache v2)
- · support for reading directly from many vendor raw data formats (on Windows)

http://proteowizard.sourceforge.net

Protein Prospector

http://prospector.ucsf.edu/

PROWL

http://prowl.rockefeller.edu/

Proteogenomics - PGx

http://pgx.fenyolab.org/

UCSC Genome Browser

http://genome.ucsc.edu/

Slice - Scalable Data Sharing for Remote Mass Informatics

Developed by Manor Askenazi Slice.ionomix.com

Most mass spectrometry data is acquired in discovery mode, meaning that the data is amenable to open-ended analysis as our understanding of the target biochemistry increases. In this sense, mass spectrometry based discovery work is more akin to an astronomical survey, where the full list of object-types being imaged has not yet been fully elucidated, as opposed to e.g. micro-array work, where the list of probes spotted onto the slide is finite and well understood.

Standardization

Standardization - MIAPE

PERSPECTIVE

nature biotechnology

The minimum information about a proteomics experiment (MIAPE)

Chris F Taylor^{1,2}, Norman W Paton^{1,3}, Kathryn S Lilley^{1,4}, Pierre-Alain Binz^{1,5,6}, Randall K Julian Jr^{1,7}, Andrew R Jones^{1,3}, Weimin Zhu^{1,2}, Rolf Apweiler^{1,2}, Ruedi Aebersold^{1,8}, Eric W Deutsch^{1,9}, Michael J Dunn¹⁰, Albert J R Heck¹¹, Alexander Leitner¹², Marcus Macht¹³, Matthias Mann¹⁴, Lennart Martens^{1,2}, Thomas A Neubert¹⁵, Scott D Patterson¹⁶, Peipei Ping¹⁷, Sean L Seymour^{1,18}, Puneet Souda¹⁹, Akira Tsugita²⁰, Joel Vandekerckhove²¹, Thomas M Vondriska²², Julian P Whitelegge¹⁹, Marc R Wilkins²³, Ioannnis Xenarios²⁴, John R Yates III²⁵ & Henning Hermjakob^{1,2}

MIAPE	MIAPE Principles document	1.0	release
MIAPE-MS	Mass Spectrometry	2.98	release
MIAPE-MSI	Mass Spectrometry Informatics	1.1	release
MIAPE-Quant	Mass Spectrometry Quantification	1.0	release
MIAPE-GE	Gel Electrophoresis	1.4	release
MIAPE-GI	Gel Informatics	1	release
MIAPE-CC	Column Chromatography	1.1	release
MIAPE-CE	Capillary Electrophoresis	0.9.3	release
MIMIX	Molecular Interactions	1-1-2	release

Standardization - MIAPE-MSI

The following section, detailing the reporting guidelines for the use of protein and peptide identification and characterisation software, is subdivided as follows:

- 1. General features; the software employed.
- Input data and parameters.
- The output from the procedure; the list of peptides and proteins identified, characterised or quantified.
- Interpretation and validation.

Reporting guidelines for protein and peptide identification and characterisation software

1. General features

- a) Global descriptors
 - Date stamp (as YYYY-MM-DD)
 - Responsible person (or institutional role if more appropriate); provide name, affiliation and stable contact information
 - Software name, version and manufacturer
 - Customisations made to that software
 - Availability of that software
 - Location of the files generated; parameter files, spectral data (input/output)

Any other relevant parameters

3. The output from the procedure

The procedure might generate all or part of the elements described below (identified proteins, identified peptides, quantization information). Select the elements that apply.

- a) For identified proteins
 - Accession code in the queried database
- Protein description
- Protein scores
- Validation status
- Number of different peptide sequences (without considering modifications) assigned to the protein
- Percent peptide coverage of protein
- Identity of supporting peptides
- In the case of PMF, number of matched/unmatched peaks

b) For identified peptides

- Sequence (indicate any deviation from the expected protein cleavage specificity)
- Peptide scores
- Chemical modifications (artefactual) and post-translational modifications (naturallyoccurring); sequence polymorphisms with experimental evidence (particularly for isobaric modifications)

Standardization - XML Formats

mzML - experimental results obtained by mass spectrometric analysis of biomolecular compounds

mzIdentML - describe the outputs of proteomics search engines

TraML - exchange and transmission of transition lists for selected reaction monitoring (SRM) experiments

mzQuantML - describe the outputs of quantitation software for proteomics

mzTab - defines a tab delimited text file format to report proteomics and metabolomics results.

MIF - decribes the molecular interaction data exchange format.

GeIML - describes the processing and separations of proteins in samples using gel electrophoresis, within a proteomics experiment.

Standardization - mzML

Standardization - mzIdentML

Proteomics Informatics – Databases, data repositories and standardization (Week 7)