2021-2022 秋冬 概率论

(1) $\{A_n\}$ 为独立事件列, $\sum\limits_{n=1}^{\infty}P(A_n)=\infty$,求证: $P(\bigcup\limits_{n=m}^{\infty}A_n)=1$, $\forall m$ (Borel Cantelli 引理)

(2) X,Y为独立且服从几何分布的随机变量,参数为p,求证: $P(X=i \mid X+Y=n)=\frac{1}{n-1}, i=1,2,\dots$

$$\equiv$$
 , $~S_n = \sum\limits_{k=1}^n sin^2(kU)$, $U \sim U(0,2\pi)$

- (1) 求 ES_n
- (2) 证明: $\frac{S_n}{n} \stackrel{P}{\longrightarrow} c$, 并求出 c

 \equiv , $X,Y\sim N(0,0,1,1,r)$

- (1) 求出 a, 使得 Y = X aY 不相关, 并求出 X aY 的分布函数
- (2) 求 X^2 与 Y^2 的相关系数

四、 $p(x,y) = C(x-y)^2 exp\{-\frac{1}{2}(x^2+y^2)\}$ 为X, Y联合密度

- (1) 求 C
- (2) 求 EX, EY, VarX, VarY
- (3) 证明: X Y = X + Y 独立
- (4) 求 $X^2 + Y^2$ 的密度

五、 针对X,Y为离散形式的情况,利用期望的定义,证明: $EXY=EX\cdot EY$

六、 已知 $\xi_i \stackrel{i.i.d}{\longrightarrow} \varepsilon(\lambda)$ (参数为 λ 的指数分布), $E(\xi_1) = \frac{1}{\lambda}$, $N_n \sim \mathscr{P}(n)$ (参数为n的 Poisson 分布)

记
$$\eta_n = rac{\sum\limits_{k=1}^{N_n} \xi_k}{n}$$
 :

- (1) 证明 η_n 是随机变量, 求出 η_n 的特征函数
- (2) $\sqrt{n}(\eta_n-a)\stackrel{d}{\longrightarrow} N(0,b)$, 求出对应的 a 和 b

七、附加题(做出可以找zlx老师要推荐信,不计入分数,没来及看,略过)