9.25 MATERIAL PROPERTIES:

Modulus of Elasticity: E = 29000 ksi **Shear Modulus** G = 11200 ksi Yield Strength: $F_{v} =$ 50 ksi Ultimate Strength Fu_ 70 ksi

Reference: AISC 14th

Section

F

Eq/Fig/Table

PROBLEM

9.25

A beam of $F_y = 50$ ksi steel is used to support the loads shown in Fig. P9-24. Neglecting the beam self-weight, determine the lightest W shape to carry the loads if full lateral bracing is provided.

 $P: P_D = 8.5 \text{ k}, P_L = 6.0 \text{ k}$

FIGURE P9-24

9-25. Redesign the beam of Prob. 9-24 if lateral bracing is only provided at the supports and at the concentrated loads. Determine C_b (Ans. W16 × 26 LRFD, W14 × 30 ASD)

Required:

a) Design Beam of Figure P9-24

Method:

- i) Determine Beam Flexural Demand
- ii) Determine Moment Distribution on the beam
- iii) Determine Cb
- iv) Determine Beam Flexural Capacity

Solution:

Member Length Number of Point Loads	L =	38 5	ft		L =	38 5	ft		
Number of Supports		2				2			
Dead Load	DL=	8.5	kip		DL=	8.5	kip		
Live Load	LL=	6	kip		LL=	6	kip		
Factors	ϕ_t =	0.9			Ω_{t} =	1.5			
	ϕ_r =	0.75			Ω_{t} =	2			
Unbraced Length	L _{bx =}	8	ft		L _{bx =}	8	ft	Reference:	AISC 14th
								Section E	q/Fig/Table
LRFD				ASD				F	

1) Demand:

I) Demana.	_			
Load	Pu =	19.8	kip	
Reactions	Ry =	49.5	kip	R

Deman	a:	
Pa =	14.5	0

0

0

Ry =	49.5	kip	Reactions	Ry =	36.25	
Rx =	0	kip		Rx =	0	

Shear Distribution:

Load	Load Value	Distance	Shear
(#)	(kip)	(ft)	(kip)
1	-19.8	0	-19.8
Ra	49.5	8 16	29.7
2	-19.8	16 24	9.9
3	-19.8	24 32	-9.9 -9.9
4	-19.8	32	- 29.7
Rb	49.5	40	19.8
5	-19.8	48	0

Shear Distribution:

Load	Load Value	d	Shear
(#)	(kip)	(ft)	(kip)
1	-14.5	0	-14.5 -14.5
Ra	36.25	8	21.75
2	-14.5	16 24	7.25 7.25
3	-14.5	24 37	-7.25 -7.25
4	-14.5	32	-21.75
Rb	36.25	40	14.5
5	-14.5	48	0

Moment Distribution:

Load	Shear	Distance	Moment
(#)	(kip)	(ft)	(kip.ft)
1	-19.8	0	0
_	-19 X	8	-158.4
Ra	29.7	8	-158.4
_	29.7	16	79.2
2	9.9	16	79.2 158.4
3	-9.9	24	158.4
	-9.9	32	79.2
4	-29.7	32	79.2
-	-29.7	40	-158.4
Rb	19.8	40	-158.4
5	19.8 0	48 48	0

Moment Distribution:

Load	Shear	Distan ce	Moment
(#)	(kip)	(ft)	(kip.ft)
1	-14.5	0	0
	-14 5		
Ra	21.75	8	-116
	21.75		
2	7.25	16	58
	7 25		
3	-7.25	24	116
	-7.25		
4	-21.75	32	58
	-21.75		
Rb	14.5	40	-116
	14.5		
5	0	48	0

-200	Distance, ft	L ₁₅₀	Distance, ft	

1.25

USE

Check

M_{max}	$M_{.25}$	M _{.5}	$M_{.75}$	C_b
(kip.ft)	(kip.ft)	(kip.ft)	(kip.ft)	
158.4	39.6	79.2	118.8	1.67
158.4	99	39.6	19.8	2.17
158.40	99	118.8	138.6	1.25
158.4	19.8	39.6	99	2.17
158.4	118.8	79.2	39.6	1.67

ii) Determine Cb

M_{max}	$M_{.25}$	$M_{.5}$	$M_{.75}$	C_b
(kip.ft)	(kip.ft)	(kip.ft)	(kip.ft)	
116	29	58	87	1.67
116	72.5	29	14.5	2.17
116	72.5	87	101.5	1.25
116	14.5	29	72.5	2.17
116	87	58	29	1.67

 $C_b =$

Maximum Moment	$M_{max} =$	158.4	kip.ft
Effective Moment	$M_{ueff} =$	126.72	kip.ft
Unbraced Length	L _{by -}	8	ft

 $C_b =$

$$\begin{array}{lll} M_{max} = & 116 & \text{kip.ft} \\ M_{ueff} = & 92.8 & \text{kip.ft} \\ L_{bx} = & 8 & \text{ft} \end{array}$$

W14X30

5.26

14.9

4.63

118

2

 $L_{r=}$

 ϕ_b BF =

 $\phi_b M_{px} =$

Zone =

ft

ft

kips

kip.ft

1.25

ANSWER

Table 3-2

Table 3-2

Table 3-3

Table 3-4

Table 3-5

Table 3-6

Beam Selection				
Full plastic yield Length	L _{p =}			
LTB Length:	L _{r =}			
	ϕ_b BF =			
	$\varphi_b M_{px} =$			

$$\begin{array}{cccc} L_{p} = & 3.96 & \text{ft} \\ L_{r} = & 11.2 & \text{ft} \\ \varphi_b BF = & 8.98 & \text{kips} \\ \varphi_b M_{px} = & 166 & \text{kip.ft} \\ \text{Zone} = & 2 & \end{array}$$

W16X26

$$\begin{array}{ll} \varphi_b M_{nx} = & 162.2 \\ \varphi_b M_{nx} < \varphi_b M_{px} ? & OK \\ \varphi_b M_{nx} > M_u ? & OK \end{array}$$

M_{nx}/Ω_{b} =	131.6	Zone 2 Moment
$M_{nx/}\Omega_b < M_{px/}\Omega_b$?	N.G	Plastic Check
$M_{nx/}\Omega_b > Ma$?	ОК	Check

USE LRFD: W16X26	

ASD	: W16X26	ANSWER

9.32 MATERIAL PROPERTIES:

Modulus of Elasticity:	E =	29000	ksi
Shear Modulus	G =	11200	ksi
Yield Strength:	$F_{y=}$	50	ksi
Ultimate Strength	Fu =	70	ksi

Reference: AISC 14th
Section *Eq/Fig/Table*

F

PROBLEM

9.32

9-32. A W21 × 93 has been specified for use on your design project. By mistake, a W21 × 73 was shipped to the field. This beam must be erected today. Assuming that ½ in thick plates are obtainable immediately, select cover plates to be welded to the top and bottom flanges to obtain the necessary section capacity. Use F_y = 50 ksi steel for all materials and assume that full bracing is supplied for the compression flange. Use LRFD

and ASD methods.

Required:

a) Select Plates to be welded on member

Method:

- i) Determine information on members
- ii) Specify trial plate thickness
- iii) Determine plate width

Referenc AISC 14th
Section <u>Eq/Fig/Table</u>

Solution:

USE

PROBLEM

LRFD

ASD

5.00

in

1) Demand: Demand: **Previous Selection:** W21X93 W21X93 in^3 Plastic Modulus 221 221 in³ Z = **New Section:** W21X73 W21X73 in^3 in³ Plastic Modulus Z = 172 Z = 172 Depth: d = 21.2 21.2 in d = **Plates Plates** Reinforcement: Number of Plates: 2 2 Enter trial thickness: 1/2 1/2 t = in t = in Min Width 4.52 4.52 in in $w_{min} =$ $w_{min} =$ USE 5.00 w = in w = 5.00 in

Plates

1/2

5.00

in

10.09 MATERIAL PROPERTIES:

Plates

Modulus of Elasticity: E = 29000 ksi G = **Shear Modulus** 11200 ksi Yield Strength: $F_{y} =$ 50 ksi Ultimate Strength Fu_ 70 ksi

1/2

Referenc AISC 14th

ANSWER

Section <u>Eq/Fig/Table</u>

- - - -

10.09

10-9. Three methods of supporting a roof are shown in Fig. P10-9. Using an elastic analysis with factored loads, F_y = 50 ksi, and assuming full lateral support in each case, select the lightest section if a dead uniform service load (including the beam self-weight) of 1.5 k/ft and a live uniform service load of 2.0 k/ft is to be supported. Consider moment only.

<i>∰</i>	28 ft	777. A77.	28 ft	1 111.	28 ft	<i>₹</i> //.
			(a)		(Ans. W2	4 × 55)
<i>₩</i>	28 ft	7//	28 ft	7/7/ 28 ▶ 4	ft 777	;

Required:

- a) Select member when using single span, simply supported beams
- b) Select member when using continuous span, simply supported beams
- c) Select member when using continuous span, with hinges

Method:

- i) Determine load demand on member
- ii) Determine largest moment
- iii) Enter table to obtain member with moment capacity to support demand

Solution:

Reference: AISC 14th
Section *Eq/Fig/Table*

PART A: SINGLE SPAN, SIMPLY SUPPORTED

Member Length	L =	28	ft	L =	28	ft
Type of Support:		Simply			Simply	
Dead Load	DL=	1.5	kip/ft	DL=	1.5	kip/f
Live Load	LL=	2	kip/ft	LL=	2	kip/1
Factors	ϕ_t =	0.9		Ω_{t} =	1.5	
	ϕ_r =	0.75		Ω_{t} =	2	
	ϕ_r =	0.75		Ω_{t} =	2	

LRFD ASD

1)	Demand:
----	---------

Load Pu = 5 kip/ft Moment Mu = 490 kip.ft

Demand:			
	Pa =	3.5	kip/ft
	Ma =	343	kip.ft

1) Capacity:

Capacity:

F

Check $\phi_b M_{nx} > M_u$? OK $M_{nx/}\Omega_b > Ma$? OK Check

USE LRFD: W24X55 ANSWER

PART B: CONTINUOUS SPAN, SIMPLY SUPPORTED

 Total Length
 84

 Number of Spans
 3

 Individual Length
 L = 28 ft
 40 L = 28 ft

 Type of Support:
 Case 39

Dead Load Live Load Factors $\begin{array}{lll} \text{DL=} & 1.5 & \text{kip/ft} \\ \text{LL=} & 2 & \text{kip/ft} \\ \phi_t = & 0.9 & \end{array}$

0.75

DL=	1.5	kip/ft
LL=	2	kip/ft
Ω_{t} =	1.5	

2

 Ω_{t} =

LRFD

ASD

1) Demand:

Load

Pu =	5	kip/ft

 $\phi_r =$

Pa = 3.5	kip/ft
----------	--------

d	Reaction	Shear	Moment
(ft)	(kip)	(kip)	(kip.ft)
0	56	56	0 313 b
11.2		0 -84	313.6
28	154	70	-392
42		0	98 -392
56	154	84	-392
72.8 84		0 -56	313.6
84	56	0	0
84		U	1

d	Reaction	Shear	Moment
(ft)	(kip)	(kip)	(kip.ft)
0	39.2	39.2	0
11.2		0 -58.8	219.52
28	107.8	49	-274.4
42		0	68.6 -274.4
56	107.8	58.8	-274.4
72.8 84		0 -39.2	219.52
84	39.2	0	0
84		U	1

Max (-) Moment Max (+) Moment **Max absolute** M_{min} = -392 kip.ft M_{max} = 313.6 kip.ft Mu = 392 kip.ft $M_{min} = -274.4$ kip.ft $M_{max} = 219.52$ kip.ft Mu = 274.4 kip.ft

1) Capacity:

Capacity:

W21X55 $M_{px}/\Omega_{b} =$ 314 kip.ft Table 3-2

Check

 $\phi_b M_{nx} > M_u$?

kip.ft

Table 3-2

N.G

 $M_{nx}/\Omega_b > Ma$?

OK

Check

USE

LRFD: W21X48 ASD: W21X55

ANSWER

PART C: CONTINUOUS SPAN, WITH HINGES IN THE MIDDLE

Total Length		84	ft
Number of Spans		3	
Individual Length	L =	28	ft
Type of Support:		Case 39h	
Distance to hinge		6	ft
Distance between hinges		16	ft
Dead Load	DL=	1.5	kip/ft
Live Load	LL=	2	kip/ft
Factors	ϕ_t =	0.9	
	$\phi_r =$	0.75	

		84	ft
		3	
40	L =	28	ft
		Case 39h	

6 ft 16 ft DL= 1.5 kip/ft LL= 2 kip/ft

2

 Ω_t = 1.5

 Ω_t =

LRFD

ASD

A - MIDDLE MEMBER:

1) Demand:

Hinge Member Load	Pu =	80	kip
Reaction/Shear:	Vu =	40	kip
Moment	Mu =	160	kip.ft

Pa =	56	kip
Va =	28	kip

kip.ft Check Moment Ma = 112

2) Capacity:

Beam Selection		W16X26	
Capacity	$\phi_b M_{px} =$	166	kip.ft

Capacity:

W14X30 $M_{px}/\Omega_{b} =$ 118 kip.ft

Table 3-2 Table 3-2

Check

 $\phi_b M_{nx} > M_u$?

OK

 $M_{nx}/\Omega_b > Ma$? ОК Check

ANSWER

USE

LRFD: W16X26 ASD: W14X30

B - END MEMBERS:

1) Demand:

Pu = 5 kip/ft Load

Demand:

Pa =	3.5	kip/ft

d Reaction Shear Moment **Reactior Shear Moment**

(ft)	(kip)	(kip)	(kip.ft)
0	58.2	58.2	0
11.2		0	338.9
11.64		0	338.9
28	151.8		-330
28	151.8	70.0	-330
34			0
34		0	0

(ft)	(kip)	(kip)	(kip.ft)
0	40.8	40.8	0
11.2		0	
11.64		0	237.2
28	106.3		-231
28	106.3	49.0	-231
34			0
34		0	0

Distance calculated

Max (-) Moment Max (+) Moment

Max absolute

 $\begin{array}{lll} M_{min} = & -330 & kip.ft \\ M_{max} = & 338.9 & kip.ft \\ Mu = & 338.9 & kip.ft \end{array}$

 $M_{min} = -231$ kip.ft $M_{max} = 237.22$ kip.ft Ma = 237.22 kip.ft

1) Capacity:

Beam Selection
Capacity

 $\begin{array}{c} & & \textbf{W21X44} \\ \varphi_b M_{px \ =} & 358 & \text{kip.ft} \end{array}$

Capacity:

 $M_{px}/\Omega_{b} = \frac{W21X44}{238}$ kip.ft

Table 3-2 Table 3-2

Check

 $\phi_b M_{nx} > M_u$?

ОК

 $M_{nx}/\Omega_b > Ma?$ OK

Check

USE

LRFD: W21X44

ASD: W21X44

ANSWER

10.17 MATERIAL PROPERTIES:

Modulus of Elasticity: E = 29000 ksi Shear Modulus G = 11200 ksi Yield Strength: $F_{y=}$ 50 ksi

Reference: AISC 14th

Ultimate Strength Fu = 70 ksi

Section Eq/Fig/Table

PROBLEM

10.17

10-17. A 24-ft, simply supported beam must support a moving concentrated service live load of 50 k in addition to a uniform service dead load of 2.5 k/ft. Using 50 ksi steel, select the lightest section considering moments and shear only. Use LRFD and ASD methods and neglect the beam self-weight. (Ans. W24 × 76 LRFD and ASD)

Required:

a) Select lightest section considering moments and shear only

Method:

- i) Determine load demand on member
- ii) Determine largest shear and moment
- iii) Enter table to obtain member with moment and shear capacity to support demand

Solution:

Reference: AISC 14th Section *q/Fig/Table*

PART A: SINGLE SPAN, SIMPLY SUPPORTED

Member Length	L =	24	ft	L =	24	ft
Type of Support:		Simply			Simply	
Dead Load	DL=	2.5	kip/ft	DL=	2.5	kip/ft
Live Load	LL=	50	kip	LL=	50	kip
Factors	ϕ_t =	0.9		Ω_{t} =	1.5	
	ϕ_r =	0.75		Ω_{t} =	2	

LRFD ASD

1) Demand: Demand:

Load	Pu =	80	kip	Pa =	50	kip
Uniform Load	wu =	3	kip/ft	wa =	2.5	kip/ft
Shear	Vu =	116	kip	Va =	80	kip
Moment	Mu =	696	kip.ft	Ma =	480	kip.ft

1) Capacity: Capacity:

Beam Selection		W24X76			W24X76	Table 3	-2
Capacity	$\phi_b M_{px} =$	22.4	kip.ft	$M_{px}/\Omega_b =$	76	kip.ft Table 3	-2
	$\phi_v V_{nx} =$	0		$V_{nx}/\Omega_{v} =$	0		
Check	$\phi_v V_{nx} > V_u$?	ОК		$V_{nx/}\Omega_v > Va$?	OK	Check Shear	
	$\phi_b M_{nx} > M_u$?	N.G		$M_{nx/}\Omega_b > Ma$?	N.G	Check Flexure	

USE LRFD: W24X76 ASD: W24X76 ANSWER

10.24 MATERIAL PROPERTIES:

Modulus of Elasticity:	E =	29000	ksi	E =	29000	ksi		
Shear Modulus	G =	11200	ksi	G =	11200	ksi		
Yield Strength:	F _v =	50	ksi	F _{v=}	50	ksi	Reference:	AISC 14th

Eq/Fig/Table

Section

Ultimate Strength

Fu₌ 70 ksi

Fu₌ 70 ksi

PROBLEM 10.24 F

10-23. Select the lightest available W sections ($F_y = 50 \, \mathrm{ksi}$) for the beams and girders shown in Fig. P10-23. The floor slab is 6 in reinforced concrete (weight = 145 lb/ft³) and supports a 125 psf uniform live load. Assume that continuous lateral bracing of the compression flange is provided. The maximum permissible TL deflection is L/240. (Ans. Beam = W21 × 44 LRFD and ASD, Girder = W24 × 62 LRFD and ASD)

10-24. Repeat Prob. 10-23 if the live load is 250 psf.

Required:

a) Select lightest section considering moments, shear and TL deflection < L/240

Method:

- i) Determine load demand on member
- ii) Determine largest shear and moment
- iii) Enter table to obtain member with moment and shear capacity to support demand **Solution:**

PART A: BEAMS							E
Beam Length	L =	30	ft		L =	30	ft
Beam Spacing	s =	8	ft		s =	8	ft
Concrete Weight	yc =	145	pcf		yc =	145	pcf
Concrete Slab Thickness		6	in			6	in
Dead Load	DL=	580	kip		DL=	580	kip
Uniform Live Load	Llu=	250	psf				
Live Load	LL=	2000	kip		LL=	2000	kip
Factors	ϕ_t =	0.9			Ω_{t} =	1.5	
	$\phi_r =$	0.75			Ω_{t} =	2	
LRFD			<u></u>	ASD			

1) Demand:

Demand:

Load	wu =	3896	lb/ft	wa =	2580	lb/ft	
Demand Values:				Demar	d Value	s:	
Ultimate Moment,	$M_u =$	438.3	kip.ft	Ma =	290.3	kip.ft	
Ultimate Shear,	V _u =	58.4	kip	Va =	38.7	kip	
Allowed Deflection	Δa =	1.5	in	Δ a =	1.5	in	
Beam Selection,	W:	W21X55	6:		W21X55		Capacity
	φM _n	473.0	kip.ft	$M_{px/}\Omega_b =$		kip.ft	AISC 14th Table 3-2
	ϕV_n	234.0	kip	$V_{nx}/\Omega_{v} =$	156.0	kip	AISC 14th Table 3-2
Beam Depth:	d	20.8	in	d	20.8	in	
Moment of Inertia	I _{x =}	1140.0	in⁴	I _{x =}	1140.0		
	l _{y =}	48.4	in⁴	l _{y =}	48.4	in⁴	
Largest M.I =	lx =	1140.0	in ⁴	lx =	1140.0	in ⁴	
Beam Deflection:	$\Delta TL =$	1.42	in	$\Delta TL =$	1.42	in	
Design Check:	$\phi M_n > M_u$?	YES		$M_{nx}/\Omega_b > Ma$?	YES		Design Check
Design eneck.	$\phi V_n > V_u$?	YES		$V_{nx}/\Omega_{v} > Va$?	YES		Design eneck
	$\Delta_{TL} < \Delta_{a}$?	YES		$\Delta_{\text{TL}} < \Delta_{\text{a}}$?	YES		
	△ L , △a ,	123		∡ار ، ∠a .	123		
Use	LRFD:	W21X55		ASD:	W21X55	5	ANSWER
PART B: GIRDERS							E
	Lg =	24	ft	Lg =	24	ft	E
PART B: GIRDERS Girder Length Tributary Area	Lg = At =	24 192	ft ft	Lg = At =	24 192	ft ft	<u>E</u>
Girder Length				-			<u>E</u>
Girder Length				-			E
Girder Length Tributary Area LRFD				At =			E
Girder Length Tributary Area				At =			E From beams above
Girder Length Tributary Area LRFD 1) Demand:	At =	192	ft =	At = ASD Demand:	192	ft	
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load	At =	192 3896	ft = lb/ft	At = ASD Demand: wa = Pa =	192 2580 77.4	ft Ib/ft Ib/ft	
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values:	At = wu = Pu =	3896 116.88	ft = b/ft b/ft	At = ASD Demand: wa = Pa = Deman	2580 77.4	ft b/ft b/ft	
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment,	Wu = Pu =	3896 116.88 935.0	ft	At = ASD Demand: wa = Pa = Demand Ma =	2580 77.4 ad Values 619.2	lb/ft lb/ft s: kip.ft	
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment, Ultimate Shear,	$At = \begin{bmatrix} wu = \\ Pu = \\ \end{bmatrix}$ $M_u = \\ V_u = \\ \end{bmatrix}$	3896 116.88 935.0 116.9	ft	At = ASD Demand: wa = Pa = Deman Ma = Va =	2580 77.4 ad Values 619.2 77.4	lb/ft lb/ft s: kip.ft	
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment,	Wu = Pu =	3896 116.88 935.0	ft	At = ASD Demand: wa = Pa = Demand Ma =	2580 77.4 ad Values 619.2	lb/ft lb/ft s: kip.ft	
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment, Ultimate Shear,	$At = \begin{bmatrix} wu = \\ Pu = \\ \end{bmatrix}$ $M_u = \\ V_u = \\ \end{bmatrix}$	3896 116.88 935.0 116.9	ft	At = ASD Demand: wa = Pa = Deman Ma = Va =	2580 77.4 ad Values 619.2 77.4	lb/ft lb/ft s: kip.ft kip	
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment, Ultimate Shear, Allowed Deflection	$At = \begin{bmatrix} wu = \\ Pu = \\ \end{bmatrix}$ $M_u = \\ V_u = \\ \Delta a = $	3896 116.88 935.0 116.9 1.2	ft	At = ASD Demand: wa = Pa = Deman Ma = Va =	2580 77.4 ad Values 619.2 77.4 1.2	lb/ft lb/ft s: kip.ft kip	From beams above
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment, Ultimate Shear, Allowed Deflection	$At = \begin{bmatrix} wu = \\ Pu = \\ \end{bmatrix}$ $M_u = \begin{bmatrix} V_u = \\ \Delta a = \\ \end{bmatrix}$ $W: \begin{bmatrix} W: \\ \end{bmatrix}$	3896 116.88 935.0 116.9 1.2	ft	At = $\frac{ASD}{Demand:}$ Wa = $\frac{Pa}{Pa}$ Demand: Ma = $\frac{Va}{Aa}$	2580 77.4 ad Values 619.2 77.4 1.2	lb/ft lb/ft s: kip.ft kip in	From beams above Capacity
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment, Ultimate Shear, Allowed Deflection Beam Selection,	$At = \begin{bmatrix} wu & = \\ Pu & = \end{bmatrix}$ $M_u = \begin{bmatrix} V_u & = \\ \Delta a & = \end{bmatrix}$ $\Phi M_n = \begin{bmatrix} \Phi M_n & \Phi M_n & \Phi M_n & \Phi M_n \end{bmatrix}$	3896 116.88 935.0 116.9 1.2 W30X90 1060.0 374.0	ft	$At = \frac{ASD}{ASD}$ Demand: $wa = Pa = \frac{Deman}{Ma}$ $Ma = Va = \Delta a = \frac{M_{px}/\Omega_b}{V_{nx}/\Omega_v} = \frac{M_{px}/\Omega_v}{V_{nx}/\Omega_v} = \frac{M_{px}/\Omega_v}{V_$	2580 77.4 od Values 619.2 77.4 1.2 W30X90 706.0 249.0	Ib/ft Ib/ft s: kip.ft kip in	From beams above Capacity AISC 14th Table 3-2
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment, Ultimate Shear, Allowed Deflection Beam Selection,	$At = \begin{bmatrix} wu & = \\ Pu & = \end{bmatrix}$ $M_u = \begin{bmatrix} V_u & = \\ \Delta a & = \end{bmatrix}$ $\Phi M_n = \begin{bmatrix} \Phi M_n & \Phi M_n \\ \Phi M_n & \Phi M_n \end{bmatrix}$	3896 116.88 935.0 116.9 1.2 W30X90 1060.0 374.0	ft	$\begin{array}{c} \text{ASD} \\ \\ \text{Demand:} \\ \\ \text{Wa} = \\ \\ \text{Pa} = \\ \\ \\ \text{Demand:} \\ \\ \text{Ma} = \\ \\ \text{Va} = \\ \\ \Delta \text{a} = \\ \\ \\ \\ \text{M}_{px}/\Omega_b = \\ \\ \text{V}_{nx}/\Omega_v = \\ \\ \\ \text{d} \end{array}$	2580 77.4 ad Values 619.2 77.4 1.2 W30X90 706.0 249.0	Ib/ft Ib/ft kip.ft kip in kip.ft kip	From beams above Capacity AISC 14th Table 3-2
Girder Length Tributary Area LRFD 1) Demand: Uniform Load Load Demand Values: Ultimate Moment, Ultimate Shear, Allowed Deflection Beam Selection,	$At = \begin{bmatrix} wu & = \\ Pu & = \end{bmatrix}$ $M_u = \begin{bmatrix} V_u & = \\ \Delta a & = \end{bmatrix}$ $\Phi M_n = \begin{bmatrix} \Phi M_n & \Phi M_n & \Phi M_n & \Phi M_n \end{bmatrix}$	3896 116.88 935.0 116.9 1.2 W30X90 1060.0 374.0	ft	$At = \frac{ASD}{ASD}$ Demand: $wa = Pa = \frac{Deman}{Ma}$ $Ma = Va = \Delta a = \frac{M_{px}/\Omega_b}{V_{nx}/\Omega_v} = \frac{M_{px}/\Omega_v}{V_{nx}/\Omega_v} = \frac{M_{px}/\Omega_v}{V_$	2580 77.4 od Values 619.2 77.4 1.2 W30X90 706.0 249.0	Ib/ft Ib/ft kip.ft kip in kip.ft kip	From beams above Capacity AISC 14th Table 3-2

Design Check:

Beam Deflection:

Largest M.I =

 $\phi M_n > M_u$? YES

lx =

 $\Delta TL =$

 $M_{nx}/\Omega_b > Ma$?

Design Check

Flexure: Shear:

 $\phi V_n > V_u$?

 $V_{nx}/\Omega_v > Va$?

YES YES

Deflection:

 $\Delta_{\mathsf{TL}} < \Delta_{\mathsf{a}}$? YES $\Delta_{\mathsf{TL}} < \Delta_{\mathsf{a}}$?

 $\Delta TL =$

Use

LRFD: W30X90

3610.0

0.00

YES

ASD: W30X90

 $Ix = 3610.0 in^4$

0.61

YES

in

ANSWER

Check with Self-Weight

Ultimate Moment, Ultimate Shear,

Allowed Deflection

 $M_u =$ $V_u =$

 $\Delta a =$

942.8

118.2

0.01

kip.ft

in

in⁴

in

kip

Ma = Va =

> 0.62 ∆a = in

627.0

78.7

kip.ft

kip

Design Check:

 $\phi M_n > M_u$?

YES

 $M_{nx}/\Omega_b > Ma$?

YES

YES

Design Check

 $\phi V_n > V_u$? $\Delta_{\mathsf{TL}} < \Delta_{\mathsf{a}}$?

YES YES $V_{nx}/\Omega_v > Va$?

 $\Delta_{\mathsf{TL}} < \Delta_{\mathsf{a}}$? YES

Use

LRFD: W30X90 ASD: W30X90

ANSWER

10.27 MATERIAL PROPERTIES:

E =	29000	ksi
G =	11200	ksi
F _{y=}	50	ksi
Fu ₌	70	ksi
	G = F _{y=}	$G = 11200$ $F_{y} = 50$

29000 ksi G = 11200 ksi $F_{v} =$ 50 ksi

70

ksi

Fu_

AISC 14th Reference: Section q/Fig/Table

PROBLEM 10.27

10-27. The beam shown in Fig. P10-27 is a W14 × 34 of A992 steel and has lateral support of the compression flange at the ends and at the points of the concentrated loads. The two concentrated loads are service live loads. Check the beam for shear and for Web Local Yielding and Web Crippling at the concentrated load if $l_b = 6$ in. Neglect the self-weight of the beam. (Ans. Shear and web crippling N.G., web local yielding OK)

Required:

- a) Select lightest section considering moments, shear
- b) Web Local Yielding and Crippling at the concentrated load

Method:

- i) Determine load demand on member
- ii) Determine largest shear and moment
- iii) Enter table to obtain member with moment and shear capacity to support demand

Solution:

BEAM SHEAR, MOMENT & DEFLECTION								
Beam Length	L =	8	ft		L =	8	ft	
x, Point Load:	Lx =	1.5	ft		Lx =	1.5		
Dead Load	DL =	0	kip		DL =	0		
Live Load	LL=	85	kip		LL=	85	kip	
Factors	ϕ_t =	0.9			Ω_{t} =	1.5		
	ϕ_r =	0.75			Ω_{t} =	2		
Bearing Length:	Ib=	6	in		Ib =	6	in	
LRFD				ASD				

4 1	D	
	Demand:	

Load	Pu =	136	kip	Pa =	

kip.ft

Demand Values:

Ultimate Moment,	M _u =	204.0	kip.ft
Ultimate Shear,	$V_u =$	136.0	kip
Allowed Deflection	∆a =	0.4	in

Beam Selection, W: W14X34 ϕM_n 205.0

	ϕV_n	120.0	kip
Beam Depth:	d	14.0	in
Moment of Inertia	$I_x =$	340.0	in⁴
	$I_y =$	23.3	in⁴
Largest M.I =	lx =	340.0	in ⁴
Beam Deflection:	$\Delta TL =$	0.00	in

Design Check:

Use

Flexure:	$\phi M_n > M_u$?	YES
Shear:	$\phi V_n > V_u$?	YES
Deflection:	$\Delta_{TL} < \Delta_{a}$?	YES

LRFD:

W14X34

_				
Demand Values:				
Ma =	127.5	kip.ft		

85

kip

Va =	85.0	kip
∆a =	0.4	in

	W14X34		Capacity		
$M_{px}/\Omega_b =$	136.0	kip.ft	AISC 14th	Table	3-2
$V_{nx}/\Omega_v =$	79.8	kip	AISC 14th	Table	3-2

d	14.0	in	
$I_x =$	340.0	in⁴	
$I_y =$	23.3	in⁴	
lx =	340.0	in ⁴	
$\Delta TL =$	0.00	in	С

TL =	0.00	in	Case 9	Pg	3-215
------	------	----	--------	----	-------

YES	$M_{nx}\Omega_b > Ma$?
NO	$V_{nx}/\Omega_v > Va$?
YES	$\Delta_{TL} < \Delta_{a}$?

Design Check
ANSWER

ANSWER ASD: W14X34

BEAM: WEB LOCAL YIELDING & WEB CRIPPLING

Ε

Web Local	Yielding
------------------	-----------------

web Local Yielding							
Factor	φ=	1		Ω=	1.5		
Web Yield Strength:	Fyw =	50	ksi	Fyw =	50	ksi	
Beam Selection,	W:	W14X34			W14X34	l .	
Beam Depth:	d	14.0	in	d	14.0	in	
Moment of Inertia	k =	0.855	in	k =	0.855	in	
Thickness of Web	$t_w =$	0.285	in	$t_w =$	0.285	in	
Thickness of Flange	$t_f =$	0.455	in	$t_f =$	0.455	in	
Bearing Length:	N =	6	in	N =	6	in	
Location of P load		18	in		18	in	
Location x > beam d?		Yes			Yes		
Web Yield Capacity	ь.	4.46.42		5	446.42		F-41 . N. 4 F 4 ·
	Rn =	146.42			146.42		5*k+N * Fyw * tv
	$\phi R_n =$	146.42		$R_n/\Omega =$	97.61		
Check	Rn < Vu ?	YES		Rn < Va ?	YES		ANSWER

Web Crippling

Factor	ϕ_r =	0.75		$\Omega_{ m t}$ = 2
Location of P load Location x > beam d/2	2?	18 Yes	in	18 in Yes
Web Resistance Capa	city			
	Rn =	161.88		$Rn = 161.88$ $.8*tw^2$
Web Res. Strength	$\phi R_n =$	121.41		$R_n/\Omega = 80.94$
Check	Rn < Vu ?	N.G.		Rn < Va ? N.G. ANSWER

10.28 MATERIAL PROPERTIES:

Ultimate Strength	Fu =	70	ksi	Fu ₌	70	ksi
Yield Strength:	F _{y=}	50	ksi	F _{y=}	50	ksi
Shear Modulus	G =	11200	ksi	G =	11200	ksi
Modulus of Elasticity:	E =	29000	ksi	E =	29000	ksi

10-28. A 7-ft beam with full lateral support for its compression flange is supporting a moving concentrated live load of 58 k. Using 50 ksi steel, select the lightest W section. Assume the moving load can be placed anywhere in the middle 5 ft of the beam span. Choose a member based on moment then check if it is satisfactory for shear, and compute the minimum length of bearing required at the supports from the standpoint of web local yielding and web crippling. Neglect self-weight.

Required:

- a) Select lightest section considering moments, shear
- b) Web Local Yielding and Crippling at the concentrated load

Method:

- i) Determine load demand on member
- ii) Determine largest shear and moment
- iii) Enter table to obtain member with moment and shear capacity to support demand

Solution:

1) Demand:

BEAM SHEAR, MOME	NT & DEFLEC	TION					
Beam Length	L =	7	ft		L =	7	ft
x, Point Load:	Lx =	3.5	ft		Lx =	3.5	
Dead Load	DL =	0	kip		DL =	0	
Live Load	LL=	58	kip		LL=	58	kip
Factors	ϕ_t =	0.9			Ω_{t} =	1.5	
	ϕ_r =	0.75			Ω_{t} =	2	
Bearing Length:	Ib=	12	in		Ib =	6	in
LRFD				ASD			

-, - ca				- Ciliana.			
Load	Pu =	92.8	kip	Pa =	58	kip	
Demand Values:				Dema	nd Values	:	
Ultimate Moment,	$M_u =$	162.4	kip.ft	Ma =	101.5	kip.ft	Max @ Mid-Span
Ultimate Shear,	$V_u =$	79.5	kip	Va =	49.7	kip	Max closest to edge
Allowed Deflection	∆a =	0.4	in	Δa =	0.4	in	
Beam Selection,	W:	W16X26			W16X26		Capacity
	ϕM_n	166.0	kip.ft	$M_{px/}\Omega_b =$	110.0	kip.ft	AISC 14th Table 3-2
	ϕV_n	106.0	kip	$V_{nx/}\Omega_{v} =$	70.5	kip	AISC 14th Table 3-2
Beam Depth:	d	15.7	in	d	15.7	in	

Demand:

Moment of Inertia

in⁴ $I_x =$ 301.0 in⁴ $I_v =$ 9.6

YES

W16X26

 $l_x = 301.0$ in⁴ in⁴ $I_v =$ 9.6

Largest M.I = **Beam Deflection:**

in⁴ lx = 301.0 $\Delta TL =$ 0.01 in

in⁴ lx = 301.0 $\Delta TL =$ 0.01 in

Case 9 Pg 3-215

Design Check:

Deflection:

Use

Flexure: Shear:

 $\phi M_n > M_u$? YES $\phi V_n > V_u$? YES

 $\Delta_{\mathsf{TL}} < \Delta_{\mathsf{a}}$?

LRFD:

 $M_{nx}/\Omega_b > Ma$? $V_{nx}/\Omega_v > Va$?

YES YES **Design Check**

ANSWER

 $\Delta_{\mathsf{TL}} < \Delta_{\mathsf{a}}$? YES

ASD: W16X26

ANSWER

BEAM: WEB LOCAL YIELDING & WEB CRIPPLING

Web Local Yielding

Factor

φ= 1

ksi

in

Ω= 1.5

Web Yield Strength: Fyw =

50

Fyw = 50 ksi

Beam Selection, Beam Depth:

W: W16X26 d 15.7 Moment of Inertia k= 0.747 Thickness of Web $t_w =$ 0.250

Thickness of Flange $t_f =$ **Bearing Length:** N =

in 0.345 in 2.65 in

42

d 15.7 in k =0.747 in 0.250

W16X26

 $t_f =$ 0.345 in

N = 2.24 in **ANSWER**

in

Location of P load Location x > beam d?

Yes

in

42 Yes

Web Yield Capacity

Rn = 79.81 $\phi R_n =$ 79.81

kip kip

Rn = 74.69 kip $R_n/\Omega =$ 49.79 kip Goal Seek

Check

Rn > Vu?

YES

Rn < Va ? YES

ANSWER

Web Crippling

Factor

 $\phi_r =$ 0.75

42 in

Location of P load Location x > beam d/2?

42 Yes

in

in

Yes

2

Bearing Length:

N = 4.25 N =

 Ω_t =

3.45 in **ANSWER**

Web Resistance Capacity

Web Re	s. Strength	$Rn = \phi R_n = Rn < Vu ?$	106.16 79.62 OK	kip kip	$Rn = R_n/\Omega = Rn < Va ?$	49.75	•	.8*tw^2 Goal Seek ANSWER
USE	W16X26	Nmin =	4.25	in	W16X26 Nmin =	3.5	in	ANSWER

10.30 MATERIAL PROPERTIES:

Modulus of Elasticity:	E =	29000	ksi	E =	29000	ksi	
Shear Modulus	G =	11200	ksi	G =	11200	ksi	
Yield Strength:	F _{y=}	50	ksi	F _{y=}	50	ksi	
Ultimate Strength	Fu₌	70	ksi	Fu ₌	70	ksi	Reference:
							Section I
PROBLEM	10.30						F

10-30. A W21 \times 68 member is used as a simply supported beam with a span length of 12 ft. Determine C_b , since the lateral support of the compression flange is provided only at the ends. The member is uniformly loaded. The loads will produce factored moments of $M_{Dx}=75$ ft-k, $M_{Lx}=90$ ft-k and $M_{Dy}=15$ ft-k, $M_{Ly}=18$ ft-k. Is this member satisfactory for bending strength based on the interaction equation in Chapter H of the AISC Specification?

Required:

a) Determine Cb for the member

Method:

- i) Determine Member Demand
- ii) Determine Member Capacity

Solution:

Reference: AISC 14th
Section *Eq/Fig/Table*

F

PART A: SINGLE SPAN, SIMPLY SUPPORTED

Member Length	L =	12	ft	L =	12	ft
Type of Support:		Simply			Simply	
Dead Moment, x	DLx=	75	kip/ft	DLx=	75	kip/ft
Live Moment, x	LLx=	90	kip/ft	LLx=	90	kip/ft
Dead Moment, y	DLy=	15	kip/ft	DLy=	15	kip/ft
Live Moment, y	LLy=	18	kip/ft	LLy=	18	kip/ft
Factors	ϕ_t =	0.9		Ω_{t} =	1.669	
	ϕ_r =	0.75		Ω_{t} =	2	

ASD

1) Demand:	Demand:
------------	---------

Moment, x	Mu =	234	kip/ft	Ma =	165	kip/ft
Moment, y	Muy =	46.8	kip/ft	May =	33	kip/ft

1) Capacity:

PROBLEM

Capacity:

Plastic Zones Len	gths and Info:								
Beam Selection		W21X68			W21X68			Table	3-2
Full plastic yield L	engtł L _{p =}	6.36	ft	$L_{p} =$	6.36	ft			
LTB Length:	L _{r =}	18.7	ft	L _{r=}	18.7	ft			
	ϕ_b BF =	18.8	kips	ϕ_b BF =	18.8	kips			
Capacity	$\phi_b M_{px} =$	600	kip.ft	$M_{px}/\Omega_b =$	399	kip.ft		Table	3-2
	Fy.Zy =	101.67	kip.ft	Fy.Zy =	101.67	kip.ft			
	1.6Fy.Sy =	104.67	kip.ft	1.6Fy.Sy =	104.67	kip.ft			
	M_{cy} =	91.5	kip.ft	M_{cy} =	60.9	kip.ft			
Check	$\phi_b M_{nx} > M_u$?	ОК		$M_{nx/}\Omega_b > Ma$?	ОК		Check		
Determine Cb:									
Uniform Load	Cb =	1.14		Cb =	1.14			Table	3-1
	Zone =	2		Zone =	2				
	$\phi M_{nx} =$	563.12		φM _{nx} =	374.49		BF Equation	on	
Check	$\phi_b M_{nx} \leq Mpx$?	ОК		$M_{nx}/\Omega_b < Mpx$?	ОК		Check		
Circux	₩IIX <= Þ ./	O.K			O.K		Check		
Equation H1-1b	Ratio =	0.93		Ratio =	0.98		Н	Eq	H1-1b
Check	Eq H1-1b < 1	ОК		Eq H1-1b < 1	ОК		Check	•	
USE	LRFD:	W21X68		ASD:	W21X68		ANSWER		
10.31 MATERIA	L PROPERTIES:								
Modulus of Elastici	ty: E =	29000	ksi	E =	29000	ksi			
Shear Modulus	G =	11200	ksi	G =	11200	ksi			
Yield Strength:	F _{y=}	50	ksi	F _{y=}	50	ksi			
Ultimate Strength	Fu =	70	ksi	Fu =	70	ksi	Reference	: AIS	SC 14th
							Section	Eq/Fig	g/Table

F

10-31. The 30-ft, simply supported beam shown in Fig. P10-31 has full support of its compression flange and is A992 steel. The beam supports a gravity service dead load of 132 lb/ft (includes beam weight) and gravity live load of 165 lb/ft. The loads are assumed to act through the c.g. of the section. Select the lightest available W10 section. (Ans. W10 × 22 LRFD, W10 × 26 ASD)

Capacity

Required:

a) Determine lightest W10 section

Method:

- i) Determine Member Demand
- ii) Determine Member Capacity

Solution:

Reference: AISC 14th Section *Eq/Fig/Table*

F

PART A: SINGLE SPAN, SIMPLY SUPPORTED

Member Length Type of Support:	L =	30 Simply	ft
Dead Load	DL=	132	lb/ft
Live Load	LL=	165	lb/ft
Factors	ϕ_t =	0.9	
	ϕ_r =	0.75	
Datum Rise		3	
Datum Run		12	
Slope		12.37	

L =	30	ft		
	Simply			
DLx=	132	lb/ft		
LLx=	165	lb/ft		
$\Omega_{\rm t}$ =	1.669			
$\Omega_{\rm t}$ =	= 2			
	3			
	12			
	12.37			

LRFD

1) Demand:			
Load	wu =	422.40	lb/ft
Load in local x	wux =	409.79	lb/ft
Load in local y	wuy =	102.45	lb/ft
Moment, x	Mu =	46.10	k.ft
Moment, y	Muy =	11.53	k.ft

ASD

Demand:

wa =	297.00	lb/ft
wax =	288.13	lb/ft
way =	72.03	lb/ft
Ma =	32.41	k.ft
May =	8.10	k.ft

1) Capacity:

Plastic Zones Lengths and Info:

Beam Selection		W10X22	
Unbraced Length	Lb =	0	ft
Full plastic yield Lengtl	$L_{p} =$	4.7	ft
LTB Length:	$L_{r=}$	13.8	ft
	ϕ_b BF =	4.02	kips
Compression Zone	Zone =	1	
Zone 1 Capacity	$\phi M_{nx} =$	97.50	
Zone 2 Capacity	$\varphi_b M_{px} =$	97.5	kip.ft
Along y axis	Fy.Zy =	25.42	kip.ft

Capacity:

	W10X26			Table	3-2
Lb =	0	ft			
$L_{p} =$	4.8	ft		Table	3-2
L _{r=}	14.9	ft		Table	3-2
ϕ_b BF =	4.34	kips		Table	3-2
Zone =	1				
$\phi M_{nx} =$	78.14		Zone 1		
$M_{px}/\Omega_b =$	78.1	kip.ft	Zone 2	Table	3-2
Fy.Zy =	31.25	kip.ft			

Y axis capacity	1.6 Fy.Sy = M_{cy} =	26.47 22.9	kip.ft kip.ft	$1.6 \text{Fy.Sy} = M_{\text{cy}}$		kip.ft kip.ft	Capacit	y in y	
Check	$\phi_b M_{nx} > M_u$?	ОК		$M_{ny}/\Omega_b > Ma$?	ОК		Check		
	$\phi_b M_{nx} \ll Mpx$?	ОК		$M_{ny}/\Omega_b < Mpy$?	ОК		Check		
	$\phi_b M_{ny} > M_u$?	ОК		$M_{ny}/\Omega_b > Ma$?	ОК		Check		
	$\phi_b M_{ny} \ll Mpy$?	ОК		$M_{ny/}\Omega_b < Mpy$?	ОК		Check		
Equation H1-1b	Ratio =	0.98		Ratio =	0.85		Н	Eq	H1-1b
Check	Eq H1-1b < 1	OK		Eq H1-1b < 1	OK		Check		
USE	LRFD:	W10X22		ASD: \	W10X26	5	ANSWE	R	

10.32 MATERIAL PROPERTIES:

PROBLEM	10.32						_	
							Section q/Fi	g/Table
Ultimate Strength	Fu =	70	ksi	Fu =	70	ksi	Reference:	AISC 14th
Yield Strength:	F _{y=}	50	ksi	F _{y=}	50	ksi		
Shear Modulus	G =	11200	ksi	G =	11200	ksi		
Modulus of Elasticity:	E =	29000	ksi	E =	29000	ksi		

10-32. Design a steel bearing plate from A572 (Grade 50) steel for a W18 \times 35 beam, with end reactions of $R_D=12$ k and $R_L=16$ k. The beam will bear on a reinforced concrete wall with $f_c'=3$ ksi. In the direction perpendicular to wall, the bearing plate maximum length of end bearing may not be longer than 6 in. W18 is A992 steel.

Required:

a) Bearing Plate for concrete wall

Method:

- i) Determine Member Demand
- ii) Determine Member Capacity

Solution:

Beam Length	L =	30	ft		L =	30	ft
Concrete Strength	fc' =	3	ksi		fc' =	3	ksi
Dead Load	DL=	12	kip		DL=	12	kip
Live Load	LL=	16	kip		LL=	16	kip
Factors	ϕ_t =	0.9			Ω_{t} =	1.5	
	ϕ_r =	0.75			Ω_{t} =	2	
	$\phi_c =$	0.6			$\Omega_{\rm c}$ =	2.	5
LRFD				ASD			

Demand:

1) Demand:

Load	wu =	40	kip
•			

wa =	28	kip	LOAD
			_
	Plates		BEARING PLATE
	1		
A =	27.45	in ²	
l =	7	in	

Bearing Plate		Plates	
Number of Plates:		1	
Area of Plate:	A =	26.14	in ²
Enter trial length:	l =	7	in
Min Width	$w_{min} =$	3.73	in
USE	N =	4.00	in
Check Limit	N < 6 in ?	ОК	
Plate Thickness	h =	2.67	
	tmin =	0.67	in
Use Thickness:	t =	0.75	in

N =	4.00	in	BEARING LENGTH
N < 6 in ?	ОК		

USE	Plates	7	4.00	in	
		thickness	0.75	in	

Plates 7	4.00	in	ANSWER
thickness	0.00	0	

 $w_{min} = 3.92$ in

BEAM: WEB LOCAL YIELDING & WEB CRIPPLING

Ε

Web Local Yielding

Factor	φ=	1		Ω=	1.5		
Web Yield Strength:	Fyw =	50	ksi	Fyw =	50	ksi	
Beam Selection,	W:	W18X35			W18X35		
Beam Depth:	d	17.7	in	d	17.7	in	
Moment of Inertia	k =	0.827	in	k =	0.827	in	
Thickness of Web	$t_w =$	0.300	in	$t_w =$	0.300	in	
Thickness of Flange	$t_f =$	0.425	in	$t_f =$	0.425	in	
Bearing Length:	N =	4.00	in	N =	4.00	in	
Web Yield Capacity							
	Rn =	91.01	kip	Rn =	91.01	kip	5*k+N * Fyw * tw
	$\phi R_n =$	91.01	kip	$R_n/\Omega =$	60.68	kip	
Check	Rn < Vu ?	YES		Rn < Va ?	YES		ANSWER

Web Crippling

Factor	ϕ_r =	0.75		Ω_{t} =	2		
Web Resistance Cap	acity						
	Rn =	72.34	kip	Rn =	72.34	kip	.8*tw^2
Web Res. Strength	$\phi R_n =$	54.26	kip	$R_n/\Omega =$	36.17	kip	
Check	Rn < Vu ?	ОК		Rn < Va ?	ОК		ANSWER