

Universidad Peruana Cayetano Heredia Facultad de Ciencias y Filosofía Departamento de Ciencias Exactas

Computación 2022 Verano

TAREA N° 4

Fecha límite de envío: domingo 06 de febrero, hasta las 23:59 hr.

Para los siguientes ejercicios, implemente el programa Python correspondiente.

1. Un polinomio de grado n es una función matemática de la forma:

```
p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n
```

donde x es el parámetro y $a_0, a_1, ..., a_n$ son números reales dados.

Algunos ejemplos de polinomios son:

- $p(x)=1+2x+x^2$,
- q(x) = 4-17x,
- $r(x) = -1 5x^3 + 3x^5$,
- $s(x) = 5x^{40} + 2x^{80}$.

Los grados de estos polinomios son, respectivamente, 2, 1, 5 y 80.

Evaluar un polinomio significa reemplazar \mathbf{x} por un valor y obtener el resultado. Por ejemplo, si evaluamos el polinomio \mathbf{p} en el valor $\mathbf{x}=3$, obtenemos el resultado:

```
p(3)=1+2*3+3^2=16
```

Un polinomio puede ser representado como una lista con los valores $a_0, a_1, ..., a_n$. Por ejemplo, los polinomios anteriores pueden ser representados en un programa como:

```
>>> p = [1, 2, 1]

>>> q = [4, -17]

>>> r = [-1, 0, 0, -5, 0, 3]

>>> s = [0] * 40 + [5] + [0] * 39 + [2]
```

a) Escriba la función grado (p) que entregue el grado de un polinomio:

```
>>> grado(r)
5
>>> grado(s)
80
```

b) Escriba la función evaluar (p, x) que evalúe el polinomio p (representado como una lista) en el valor x:

```
>>> evaluar(p, 3)
16
>>> evaluar(q, 0.0)
4.0
>>> evaluar(r, 1.1)
-2.82347
>>> evaluar([4, 3, 1], 3.14)
23.2796
```

c) Escriba la función sumar_polinomios(p1, p2) que entregue la suma de dos polinomios:

```
>>> sumar_polinomios(p, r)
[0, 2, 1, -5, 0, 3]
```

d) Escriba la función derivar polinomio (p) que entregue la derivada de un polinomio:

```
>>> derivar_polinomio(r)
[0, 0, -15, 0, 15]
```

e) Escriba la función multiplicar_polinomios (p1, p2) que entregue el producto de dos polinomios:

```
>>> multiplicar_polinomios(p, q)
[4, -9, -30, -17]
```

2. Implemente una función que reciba como parámetros tres listas y devuelva una nueva lista con el promedio de las otras tres, elemento por elemento.

```
list1 = [12, 9, 28, 11, 2, 35]
list2 = [2, 8, 95, 12]
list3 = [24, 81, 64, 35, 67, 18, 94]
prom = [13, 33, 62, 19, 35, 27, 94]
```

3. En un informe anual de CastilloGas S.A., el presidente informa a sus accionistas la cantidad anual de producción de barriles de 50 litros de lubricantes normal, extra y súper, en sus dos refinerías:

Refinería	Normal	Extra	Súper
А	3000	7000	2000
В	4000	500	600

Además, informa que en cada barril de 50 litros de lubricante existe la siguiente composición en litros de aceites finos, alquitrán y grasas residuales:

Componente	Normal	Extra	Súper
Aceites finos	10	5	35
Alquitrán	15	4	31
Grasas residuales	18	2	30

- a) Escriba la función totales_anuales(a, b) que reciba como parámetros ambas matrices y retorne un arreglo con los totales de aceites finos, alquitrán y grasas residuales presentes en la producción anual.
- b) Escriba la función maximo_alquitran(a, b) que reciba como parámetros ambas matrices y retorne el máximo de litros de alquitrán consumidos por ambas refinerías.
- c) Determine cuál es la matriz que entrega el consumo de todos los elementos que forman parte de un lubricante, en cada refinería.

Guarde todos vuestros programas y vuestra hoja de respuestas en una carpeta con el nombre su **Apellido** paterno seguido de vuestro **DNI**, luego comprima esta carpeta. Envíe este archivo a <u>victor.melchor.e@upch.pe</u>, especificando como asunto **Tarea4**.