

Importance of Searching Algorithms

Huge Data

Memory Usage

Response Time

Performance

Linear Search

How it works?

In Linear search, we search an element or value in a given array by traversing the array from the starting, till the desired element or value is found.

Complexity

O(n)

When to use?

If the project requires to search this for very few times

Binary Search

How it works?

Searches a sorted array by repeatedly dividing the search interval in half. If the value is less than the item, narrow the interval to the lower half. Otherwise narrow it to the upper half. Repeat these steps.

Complexity

O(n*log(n) + log(n)) = O(n*log(n)) (sorting the array)

When to use?

If the project requires to search this data for plenty of times

Methods

Functions

Search algorithms for binary and linear search have been written to run the functions.

Random Generator

Random inputs have been generated for testing the algorithms to evaluate results

Run

Searching algorithms have been run using previously generated set of inputs.

Graphics

For different input sizes, running times have been evaluated and virtualized.

Array size = 50.000

Chart for the running time for array size 50.000

Array size = 500.000

Array size = 5 million

Time complexity for array size 5 million