ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- □ (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

Example: Decision Trees

Decision Tree

ROC Curve Example

$\alpha =$: 0.3	Predicted Class			
		Class o	Class +		
Actual	Class o	645	209		
Class	Class +	298	948		

$\alpha =$	0.7	Predicted Class			
		Class o	Class +		
Actual	Class o	181	673		
Class	Class +	78	1168		

ROC Curve Example

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	Score	True Class		
1	0.95	+		
2	0.93	+		
3	0.87	-		
4	0.85	-		
5	0.85	-		
6	0.85	+		
7	0.76	-		
8	0.53	+		
9	0.43	-		
10	0.25	+		

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+		+	-	-	-	+	-	+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

