Exercises for practice lesson 8

(1) Assume in the vector space \mathbb{R}^2 given the mapping

$$\langle u, v \rangle = u_1 v_1 - u_1 v_2 - u_2 v_1 + 3u_2 v_2$$

- (a) Show that this mapping is dot product.
- (b) For $u = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ and $v = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ find $\langle u, v \rangle$, ||u|| and ||v||.
- (2) Let V be the vector space of polynomials over R of degree ≤ 2 with dot product defined by

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

Find a basis of the subspace W orthogonal to h(t) = 2t + 1.

- (3) Let $w = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 3 \end{pmatrix}$ be a vector in Euclidean space \mathbb{R}^4 . Find
 - (a) an orthogonal basis for w^{\perp} ;
 - (b) an orthonormal basis for w^{\perp} .
- (4) Let U be the subspace of Euclidean space \mathbb{R}^4 spanned by

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 2 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 \\ 2 \\ -3 \\ -4 \end{pmatrix}$$

- (a) Apply the Gram–Schmidt algorithm to find an orthogonal and an orthonormal basis for U;
- (b) Find the projection of $v = \begin{pmatrix} 1 \\ 2 \\ -3 \\ 4 \end{pmatrix}$ onto U.
- (5) Consider P(t) with dot product

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$$

1

and the subspace $W = P_3(t)$:

- (a) Find an orthogonal basis for W by applying the Gram-Schmidt algorithm to $\{1, t, t^2, t^3\}$;
- (b) Find the projection of $f(t) = t^5$ onto W.

Home work 8

- (1) Show that each of the following is not a dot product on \mathbb{R}^3
 - (a) $\langle u, v \rangle = u_1 v_1 + u_2 v_2;$
 - (b) $\langle u, v \rangle = u_1 v_2 u_3 + v_1 u_2 v_3$.
- (2) Let $M = M_{2\times 2}$ with dot product $\langle A, B \rangle = tr(B^T A)$. Find an orthogonal basis for the orthogonal complement of
 - (a) diagonal matrices;
 - (b) symmetric matrices.
- (3) Consider the subspace $W = P_2(t)$ of P(t) with dot product

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

- (a) Find an angle between vectors f(t) = t + 1 and $g(t) = t^2 1$;
- (b) Find an orthogonal basis for W with integer coefficients;
- (c) Find the projection of $f(t) = t^3$ onto W.
- (4) Find an orthonormal basis for this subspace of Euclidean space R^4 .

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} : x - y - z + w = 0 \text{ and } x + z = 0 \right\}.$$