

#### **Advanced Classification - Part 4**

One should look for what is and not what he thinks should be. (Albert Einstein)

#### Warm up

- Before we continue, check out these examples of how machine learning is used: link
- In the chat, answer the following questions:
  - How do you use machine learning?
  - How do you plan to use methods and tools we've learned about so far? Think about specific tasks and goals you would like to achieve.

# Module completion checklist

| Objective                                               | Complete |
|---------------------------------------------------------|----------|
| Implement base GBM model and assess its performance     |          |
| Optimize GBM model using RandomizedCV method            |          |
| Use performance metrics to compare all ensemble methods |          |

### Loading packages

Let's load the packages we will be using in this module

```
# Helper packages.
import os
import pickle
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
from pathlib import Path

# Scikit-learn packages for building models and model evaluation.
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import RandomizedSearchCV
from sklearn import metrics
```

#### Recap: boosting intuition

- In simple linear regression, you can clearly see the residuals, which are the multiple points around the linear model
- Let's think of these residuals, but apply the concept to decision trees
- When gradient boosting uses decision trees, it follows these three steps:
  - It sees the errors from a decision tree on the dataset
  - Identifies the pattern of errors and builds a new decision tree on them
  - It repetitively leverages these patterns in residuals to strengthen the overall model

#### Gradient boosted trees



Image source

### Recap: boosting process

- Gradient boosting can be used with classification or regression
- The three simple steps of gradient boosting
  - Fit a decision tree model to the data
  - Fit a decision tree model to the residuals
  - Create a new model

- The generalization of the multiple weak learners occurs by the optimization of a differentiable loss function
- The loss function will change based on the model's target variable:
  - Regression: gradient descent used to minimize MSE
  - Binary classification: logistic function, yes, the same one we use for estimation of log loss!

#### Review data cleaning steps

- Today, we will be loading the cleaned dataset we used earlier
- To recap, the steps to get to this cleaned dataset were:
  - Remove household ID and individual ID
  - Remove variables with over 50% NAs
  - Transformed target variable to binary

## Directory settings

- In order to maximize the efficiency of your workflow, you should encode your directory structure into variables
- We will use the pathlib library
- Let the main\_dir be the variable corresponding to your course folder
- Let data\_dir be the variable corresponding to your data folder

```
# Set 'main_dir' to location of the project folder
home_dir = Path(".").resolve()
main_dir = home_dir.parent.parent
print(main_dir)
```

```
data_dir = str(main_dir) + "/data"
print(data_dir)
```

#### Load the cleaned dataset and model metrics

- Let's load the dataset: costa\_clean
- Assign it to costa\_clean variable

```
costa_clean = pickle.load(open(data_dir + "/costa_clean.sav","rb"))
metrics_gbm = pickle.load(open(data_dir + "/metrics_forest.sav","rb"))
print(costa_clean.head())
```

#### Print info for our data

Let's view the column names

```
costa_clean.columns
```

```
Index(['rooms', 'tablet', 'males_under_12', 'males_over_12', 'males_tot',
       'females_under_12', 'females_over_12', 'females_tot', 'ppl_under_12',
       'ppl_over_12', 'ppl_total', 'years_of_schooling', 'wall_block_brick', 'wall_socket', 'wall_prefab_cement', 'wall_wood', 'floor_mos_cer_terr',
       'floor cement', 'floor_wood', 'ceiling', 'electric_public',
       'electric_coop', 'toilet_sewer', 'toilet_septic', 'cookenergy_elec',
       'cookenergy_gas', 'trash_truck', 'trash_burn', 'wall_bad', 'wall_reg',
       'wall_good', 'roof_bad', 'roof_reg', 'roof_good', 'floor_bad',
       'floor_reg', 'floor_good', 'disabled_ppl', 'male', 'female', 'under10',
       'free', 'married', 'separated', 'single', 'hh_head', 'hh_spouse',
       'hh_child', 'num_child', 'num_adults', 'num_65plus', 'num_hh_total',
       'dependency_rate', 'male_hh_head_educ', 'female_hh_head_educ',
       'meaneduc', 'educ_none', 'educ_primary_inc', 'educ_primary',
       'educ_secondary_inc', 'educ_secondary', 'educ_undergrad', 'bedrooms',
       'ppl_per_room', 'house_owned_full', 'house_owned_paying',
       'house_rented', 'house_other', 'computer', 'television',
       'num_mobilephones', 'region_central', 'region_Chorotega',
       'region_pacifico', 'region_brunca', 'region_antlantica',
```

# Split into training and test sets

```
# Select the predictors and target.
X = costa_clean.drop(['Target'], axis = 1)
y = np.array(costa_clean['Target'])

# Set the seed to 1.
np.random.seed(1)

# Split into training and test sets.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
```

#### Vanilla GBM model

```
# Initialize GBM model.
gbm = GradientBoostingClassifier()

# Fit the model to train data.
gbm.fit(X_train, y_train)
```

GradientBoostingClassifier()

### Convenience function for performance metrics

```
def get_performance_scores(y_test, y_predict, y_predict_prob, eps=1e-15, beta=0.5):
    from sklearn import metrics
    # Scores keys.
    metric_keys = ["accuracy", "precision", "recall", "f1", "fbeta", "log_loss", "AUC"]
    # Score values.
    metric_values = [None]*len(metric_keys)
    metric_values[0] = metrics.accuracy_score(y_test, y_predict)
    metric_values[1] = metrics.precision_score(y_test, y_predict)
    metric_values[2] = metrics.recall_score(y_test, y_predict)
    metric_values[3] = metrics.f1_score(y_test, y_predict)
    metric_values[4] = metrics.fbeta_score(y_test, y_predict, beta=beta)
    metric_values[5] = metrics.log_loss(y_test, y_predict_prob[:, 1], eps=eps)
    metric_values[6] = metrics.roc_auc_score(y_test, y_predict_prob[:, 1])
    perf_metrics = dict(zip(metric_keys, metric_values))
    return(perf_metrics)
```

#### Predict and evaluate vanilla GBM model

```
# Predict on test data for GBM model.
gbm_y_predict = gbm.predict(X_test)

# Get prediction probabilities for the GBM model.
gbm_y_predict_proba = gbm.predict_proba(X_test)

# Get the GBM performance scores.
gbm_scores = get_performance_scores(y_test, gbm_y_predict, gbm_y_predict_proba)
```

#### Precision vs recall curve: the tradeoff

Plot precision vs recall curve for GBM classifier



#### ROC curve: the tradeoff

- Looks like the ROC curve shows similar results
- Let's see if parameter tuning of the GBM can make it better



#### Append to other model performance scores

```
metrics_gbm.update({"GBM": gbm_scores})
print(metrics_gbm)
```

```
{'RF': {'accuracy': 0.9483960948396095, 'precision': 0.9447424892703863, 'recall':
0.9750830564784053, 'f1': 0.9596730245231607, 'fbeta': 0.9506586050529044, 'log_loss':
0.21947942349408847, 'AUC': 0.986855647527701}, 'Optimized RF': {'accuracy':
0.9483960948396095, 'precision': 0.9400212314225053, 'recall': 0.9806201550387597, 'f1':
0.9598915989159891, 'fbeta': 0.9478698351530723, 'log_loss': 0.21667604220201855, 'AUC':
0.9876901226920936}, 'GBM': {'accuracy': 0.8291492329149233, 'precision':
0.8374358974358974, 'recall': 0.9042081949058693, 'f1': 0.869542066027689, 'fbeta':
0.8499895898396836, 'log_loss': 0.39102395649143923, 'AUC': 0.902052011186816}}
```

# Module completion checklist

| Objective                                               | Complete |
|---------------------------------------------------------|----------|
| Implement base GBM model and assess its performance     |          |
| Optimize GBM model using RandomizedCV method            |          |
| Use performance metrics to compare all ensemble methods |          |

## Ways to optimize gradient boosting

- As with our RF model, we can use various parameter tuning techniques
- In this instance we will repeat the process of randomized grid search
- Since GBM parameters are almost identical to those of RF models, we will keep all of them the same except for one:
  - We will not use ccp\_alpha it will be set to default 0.0 value
  - We will instead tune learning\_rate the rate with which the error is corrected

### Randomized CV for GBM optimization: parameters

```
gbm = GradientBoostingClassifier()
# Number of trees in random forest.
n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 20)]
# Number of features to consider at every split.
max_features = ['auto', 'sqrt']
# Maximum number of levels in tree.
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
max_depth.append(None)
# Minimum number of samples required to split a node.
min_samples_split = [2, 5, 10]
# Minimum number of samples required at each leaf node.
min_samples_leaf = [1, 2, 4]
# Define learning rate parameters.
learning_rate = [0.001, 0.01, 0.1, 0.2, 0.3]
```

## Randomized CV for GBM optimization: create grid

## Randomized CV for GBM optimization: fit

- Initialize randomized search for GBM
- Fit the model to the train data

This function may run 30+ minutes! If you would like to skip this step, simply load the presaved model as shown below.

```
gbm_random = pickle.load(open(data_dir + "/gbm_random.sav","rb"))

gbm_random.best_params_

{'n_estimators': 578, 'min_samples_split': 5, 'min_samples_leaf': 4, 'max_features': 'auto', 'max_depth': 30, 'learning_rate': 0.1}
```

## Implement optimized GBM model

- Now, we will run the optimized model on our X\_train
- We will again pass the parameters to GMB classifier directly from the result of our randomized search by using the \*\*parameters notation

```
# Pass parameters from randomized search to GBM classifier.
optimized_gbm = GradientBoostingClassifier(**gbm_random.best_params_)
# Fit model to train data.
optimized_gbm.fit(X_train, y_train)
```

# Knowledge check 1



#### Exercise 1



# Module completion checklist

| Objective                                               | Complete |
|---------------------------------------------------------|----------|
| Implement base GBM model and assess its performance     |          |
| Optimize GBM model using RandomizedCV method            |          |
| Use performance metrics to compare all ensemble methods |          |

26

### Predict and evaluate optimized GBM model

- Predict on test using the optimized GBM model
- Compute performance metrics

#### Precision vs recall curve: the tradeoff

- Plot precision vs recall fore optimized GBM model
- Add all previous model curves to compare

 We can clearly see how much better the optimized GBM performed compared to the vanilla GBM



#### ROC curve: the tradeoff

- Plot precision vs recall fore optimized GBM model
- Add all previous model curves to compare

The same holds for the ROC curve and the AUC!



#### Append to other model performance scores

 Let's append optimized GBM scores to the dictionary and then take a look at them all next to each other

```
metrics_gbm.update({"Optimized GBM": optimized_gbm_scores})
print(metrics_gbm)
```

```
{'RF': {'accuracy': 0.9483960948396095, 'precision': 0.9447424892703863, 'recall':
0.9750830564784053, 'f1': 0.9596730245231607, 'fbeta': 0.9506586050529044, 'log_loss':
0.21947942349408847, 'AUC': 0.986855647527701}, 'Optimized RF': {'accuracy':
0.9483960948396095, 'precision': 0.9400212314225053, 'recall': 0.9806201550387597, 'f1':
0.9598915989159891, 'fbeta': 0.9478698351530723, 'log_loss': 0.21667604220201855, 'AUC':
0.9876901226920936}, 'GBM': {'accuracy': 0.8291492329149233, 'precision':
0.8374358974358974, 'recall': 0.9042081949058693, 'f1': 0.869542066027689, 'fbeta':
0.8499895898396836, 'log_loss': 0.39102395649143923, 'AUC': 0.902052011186816}, 'Optimized GBM': {'accuracy': 0.9592050209205021, 'precision': 0.9678670360110804, 'recall':
0.9673311184939092, 'f1': 0.9675990030462477, 'fbeta': 0.9677598050077555, 'log_loss':
0.5621060823499561, 'AUC': 0.9918591095177615}}
```

#### Convert metrics dictionary to dataframe

Let's convert our dictionary to a dataframe

```
# Convert all metrics for each model to a dataframe.
metrics_gbm_df = pd.DataFrame(metrics_gbm)
metrics_gbm_df["metric"] = metrics_gbm_df.index
metrics_gbm_df = metrics_gbm_df.reset_index(drop = True)
print(metrics_gbm_df.head())
```

|   | RF       | Optimized RF | GBM      | Optimized GBM | metric    |
|---|----------|--------------|----------|---------------|-----------|
| 0 | 0.948396 | 0.948396     | 0.829149 | 0.959205      | accuracy  |
| 1 | 0.944742 | 0.940021     | 0.837436 | 0.967867      | precision |
| 2 | 0.975083 | 0.980620     | 0.904208 | 0.967331      | recall    |
| 3 | 0.959673 | 0.959892     | 0.869542 | 0.967599      | f1        |
| 4 | 0.950659 | 0.947870     | 0.849990 | 0.967760      | fbeta     |

### Convert wide to long format

• To help with plotting, let's switch our wide dataframe to long format using melt function

```
metric model value
0 accuracy RF 0.948396
1 precision RF 0.944742
2 recall RF 0.975083
3 f1 RF 0.959673
4 fbeta RF 0.950659
```

• Take a look at the documentation here for more details on this function

## Plot all models by metric

- Since we converted our metrics dataframe to long format, it's now easy to plot each model grouped by metric in a grid
- Each plot within a grid will be a bar chart with as many bars as there are models

```
# Create a 2X3 grid.
fig, axes = plt.subplots(2, 3, figsize = (12, 6))
# For each group in a grouped by metric dataframe, assign a metric to an axis object.
for (metric, group), ax in zip(metrics_gbm_long.groupby("metric"), axes.flatten()):
    # Plot each metric as a bar plot.
    group.plot(x = 'model',
                                                            #<- model on x-axis
               y = 'value',
                                                            #<- metric value on y-axis
                                                            #<- bar plot
               kind = 'bar',
               color = ["red", "green", "blue", "orange"], #<- color for each model</pre>
                                                            #<- axis object
               ax = ax
                                                            #<- plot title
               title = metric,
                                                            #<- remove auto-legend
               legend = None,
               sharex = True)
                                                            #<- use the same x-axis
    ax.xaxis.set_tick_params(rotation = 45, labelsize=10)
                                                                          #<- rotate labels for
prettiness
plt.tight_layout(0.5)
                                                            #<- make sure no space is unused
plt.show()
```

## Plot all models by metric



#### Wrap comparison plot into a function

```
def compare_metrics(metrics_dict, color_list = None):
    metrics_df = pd.DataFrame(metrics_dict)
    metrics_df["metric"] = metrics_df.index
    metrics_df = metrics_df.reset_index(drop = True)
    metrics_long = pd.melt(metrics_df, id_vars = "metric", var_name = "model",
                           value_vars = list(metrics_dict.keys()))
    if color list is None:
        cmap = plt.rcParams['axes.prop_cycle'].by_key()['color']
        colors = cmap[:len(metrics_dict.keys())]
    else:
        colors = color list
    fig, axes = plt.subplots(2, 3, figsize = (12, 6))
    for (metric, group), ax in zip(metrics_long.groupby("metric"), axes.flatten()):
        group.plot(x = 'model', y = 'value', kind = 'bar', color = colors, ax = ax,
                   title = metric, legend = None, sharex = True)
        ax.xaxis.set_tick_params(rotation = 45, labelsize=10)
    plt.tight_layout(0.5)
    return((fig, axes))
```

#### Test function

fig, axes = compare\_metrics(metrics\_gbm)

plt.show()



#### Discuss model champion

- All metrics in this instance were championed by the optimized GBM model
- All but one were close to each other
- The log loss was noticeably lower for the optimized GBM
- We have our ensemble method winner optimized GBM model!

#### Exercise 2



# Module completion checklist

| Objective                                               | Complete |
|---------------------------------------------------------|----------|
| Implement base GBM model and assess its performance     |          |
| Optimize GBM model using RandomizedCV method            |          |
| Use performance metrics to compare all ensemble methods |          |

#### Next Steps

- So far, we have studied ensemble methods like Random Forest and Gradient Boosting Models for classification
- Every dataset is different and no one classification algorithm is a best fit for all types of datasets
- What if you have high dimensional data at work and you have to classify a target variable?
- What if your dataset contains more categorical variables?
- In the next module, we will learn about Support vector machines which were developed to handle such issues in our dataset

# Congratulations on completing this module!

