# Session 4: Norms and inner-products

Optimization and Computational Linear Algebra for Data Science

#### **Contents**

- Why do we care about all these things?
  Application to data science: image compression
- 2. Norms & inner-products
- 3. Orthogonality
- 4. Orthogonal projection
- 5. Proof of the Cauchy-Schwarz inequality

## **Orthogonality**

Orthogonality 1/5

#### **Definition**

#### Definition (Orthogonality)

- We say that vectors x and y are orthogonal if  $\langle x, y \rangle = 0$ . We write then  $x \perp y$ .
- We say that a vector x is orthogonal to a set of vectors  $A \subset V$  if x is orthogonal to all the vectors in A, i.e.  $\forall y \in A, \ \langle x,y \rangle = 0$ . We write then  $x \perp A$ .
- More generality we say that  $A \subset V$  and  $B \subset V$  are orthogonal if  $\langle x,y \rangle = 0$  for all  $x \in A$  and all  $y \in B$ . As before, we write  $A \perp B$ .

If x is orthogonal to  $v_1, \ldots, v_k$  then x is orthogonal to any linear combination of these vectors i.e.  $x \perp \operatorname{Span}(v_1, \ldots, v_k)$ .

Orthogonality 2/5

## **Pythagorean Theorem**

#### Theorem (Pythagorean theorem)

Let  $x, y \in V$ . Then

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2.$$





### **Orthogonal & orthonormal families**

#### Definition

Let  $v_1, \ldots, v_k$  be vectors of V. We say that the family of vectors  $(v_1, \ldots, v_k)$  is

- orthogonal if the vectors  $v_1, \ldots, v_n$  are pairwise orthogonal, i.e.  $\langle v_i, v_j \rangle = 0$  for all  $i \neq j$ .
- orthonormal if it is orthogonal and if all the  $v_i$  have unit norm:  $||v_1|| = \cdots = ||v_k|| = 1$ .

Orthogonality 4/:

## A toy example

Orthonormal basis are particularly convenient for computing coordinates of vectors:

#### Proposition

Assume that  $\dim(V) = n$  and let  $(v_1, \ldots, v_n)$  be an **orthonormal** basis of V. Then the coordinates of a vector  $x \in V$  in the basis  $(v_1, \ldots, v_n)$  are  $(\langle v_1, x \rangle, \ldots, \langle v_n, x \rangle)$ :

$$x = \langle v_1, x \rangle v_1 + \dots + \langle v_n, x \rangle v_n.$$

Moreover, for all  $y \in V$ , we have

$$\langle x,y \rangle = \langle v_1,x \rangle \langle v_1,y \rangle + \cdots + \langle v_n,x \rangle \langle v_n,y \rangle$$
. Taking  $y=x$  leads to

$$||x|| = \sqrt{\langle v_1, x \rangle^2 + \dots + \langle v_n, x \rangle^2}.$$

Orthogonality 5

## **Questions?**