

Metrology and Sensing

Lecture 6-1: Wavefront sensors

2020-12-08

Herbert Gross

Winter term 2020 www.iap.uni-jena.de

Content

Hartmann-Shack WFS:

- Principle
- Examples
- Properties

Basic principle

Ref: S. Merx

Hartmann Shack Wavefront Sensor

- Lenslet array divides the wavefront into subapertures
- Every lenslet generates a simgle spot in the focal plane
- The averaged local tilt produces a transverse offset of the spot center
- Integration of the derivative matrix delivers the wave front W(x,y)

Hartmann Shack Wavefront Sensor

Typical setup for component testing

Lenslet array

Spot Pattern of a HS - WFS

- Aberrations produce a distorted spot pattern
- Calibration of the setup for intrinsic residual errors
- Problem: correspondence of the spots to the subapertures

Array Signal

Lenslet array ideal signal

- Real signal:
 - 1. discretization
 - 2. quantization
 - 3. noise

HS - WFS : Size of Sub-Apertur

- Dynamic range: ratio of spot diameter to size of sub-aperture
- Averaging of wavefront slope inside sub-aperture

HS-WFS

- Real spot pattern:
 - broadening of spots
 - real boundary definition
 - signal to noise ratio
 - separation of spots
 - correspondence of spots to subapertures

HS-WFS

- Finding the boundary
- Special problem for determining Zernike polynomials

HS-WFS

- Assignment of spots
 - dynamic range limitation
 - integrability can solve the problem
 - practical help: shift arrows
- Pitfalls:
 - large broadening
 - overlapp of spots
 - missing spots
 - clear assignment of spots to sub-aperture

Measurement of the Human Eye by HS-WFS

 More or less motivating product advertisements

Real Measurement of a HS-WFS

- Problem in practice: exact determination of the spot centroid:
 - noise
 - discretization
 - quantization
 - broadening by partial coherence
 - broadening by local curvature
 - error by centroid affecting coma
 - error by partly illuminated pixels

Parametrization of a HS-WFS

Layout parametrization:

Fresnel number

$$N_F = \frac{D_{meas}^2}{4\lambda f N_{sub}^2 \eta^2} = \frac{D_{sub}^2}{4\lambda f}$$

Fill factor

$$\eta = \frac{D_{meas}}{D_{array}}$$

Spot size

$$\frac{D_{spot}}{D_{sub}} = \frac{1}{2N_F}$$

Accuracy:

$$\theta_{\min} = \frac{k \cdot P}{f} \cdot \frac{m_{rel}}{\Gamma}$$
 $\theta_{\max} = h \cdot \frac{D_{sub}}{2 f \cdot \Gamma^2}$

pixel size sensor relative sub-pixel accuracy m_{rel} magnification of relay lens

angle magnification of additional telescope

Properties of a Hartmann-Shack - Sensor

- Wavefront is averaged over one lens subaperture
- Fresnel number determines the relative spotsize
- Resolution with pixel size p and number of sub-apertures N
- Relation / assignment of spots to subapertures
- Reconstruction of wavefront from gradients
- Measurement of centroids with sub-pixel accuracy
- Problems with partially illuminated lenses
- No trouble with spectral width, polarization, coherence

$$N_F = \frac{\varnothing_{sub}^2}{4\lambda \cdot f}$$

$$W_{\min} = \frac{4p\lambda \cdot N}{\varnothing_{mess}} \cdot N_f$$

$$\Delta x = -\frac{f}{n} \cdot \frac{\partial W}{\partial x}$$

Errors in the HS - Wavefrontsensor

- Tilted sensor plane
- Rotated sensor in the azimuth
- Scattering of focal lengths of the lenslets
- Average of slope inside the subaperture area
- Errors in the wavefront reconstruction algorithms
- Coma of lenses
- Wrong focal length due to dispersion for different wavelength
- Sensor plane not exactly matched with focal plane
- Partly illuminated lenslets
- Electronical noise
- Zernike errors due to bad known normalization radius / edge of pupil
- Geometrical distortions of the array
- Truncation of spot by the corresponding subaperture / cross talk
- Discrete finite number of pixels
- Quantization of signal on the detector

Dynamic Range due to Local Curvature

- Theoretical largest curvature: R = f
- Real size of point spread function:
- Larger curvature: cross talk generates errors

$$R_{\min} = \frac{f}{1 - \frac{1}{2N_F}}$$

HS-WFS: Discretization Errors

Signal errors due to finite pixel size discretization of the point spread function
 N: number of pixels per sub-aperture

Averaging of Subapertures: Example

- Determination of wavefront of a microscopic lens
- Number ns of subapertures (linear):16, 32, 64, 100
- Calculated:
 - 1. gradient of wavefront
 - 2. reconstructed wavefront
 - 3. errors Zernikes
- Errors due to averaging and shifted center of the subaperture

Institute of Applied Physics

Friedrich-Schiller-Universität Jena

Fresnel Number and Crosstalk

 Relative size of the spot in a HS WFS: determined by Fresnel number $\frac{D_{spot}}{D_{sub}} = \frac{2\lambda \cdot f}{D_{sub}^2} = \frac{1}{2N_F}$

- Small NF: large PSF, crosstalk of neighbouring apertures
- Larger error of centroid calculation for subapertures at the edge

HS-WFS: Partly Illuminated Sub-Apertures

- Partly illuminated sub-aperture: change of centroid and error of signal
- Wrong signal for constant phase plateaus

HS-WFS: Partly Illuminated Sub-Apertures

Example
 Change of point spread function due to partly illumination

