

FIG. 1

FIG. 2B

DRAFTS: SS SUBCLASS

FIG. 3

CONSTRUCTION OF pGst—lox:

V

F/G. 4

CONSTRUCTION OF pVL1392-lox:

FIG. 5

CONSTRUCTION OF pGAP24-lox:

DRAFTSTOTT

FIG. 6

CONSTRUCTION OF pGAL14-lox:

TRP1

CEN ARS

pGAL14 (5.6kb)

AP R

PGAL

FIG. 11

FIG. 9B

SS SUBCLASS

PY DRAFTS:

APP. T.

FIG. 10A

FIG. 10B

FIG. 13

12)	13)	11/35	14)	15)
T A T A C G A A G T T A T (SEQ 1D NO: 13121110 9 8 7 6 5 4 3 2 1	TATACGAAGTTAT (SEQ 1D NO:	13121110 9 8 7 6 5 4 3 2 1 T	T A T A C G A A G T T A T (SEQ 1D NO: 13121110 9 8 7 6 5 4 3 2 1	T A T A C G A A G T T A T (SEQ 1D NO: 13121110 9 8 7 6 5 4 3 2 1
GCATACAT	GCATACAT		GCATACAT	GCATACAT
A T A A C T T C G T A T A 1 2 3 4 5 6 7 8 910111213	T C	12345678910111213	A T A A C T T C G T A T A 1 2 3 4 5 6 7 8 910111213	T C
loxP:	loxP2:		loxP3:	10xP23:

FIG. 14

FIG. 15

GST-Cre	NUMBER OF Ap ^R	NUMBER OF KnR	Kn ^R /Ap ^R
(µg)	TRANSFORMANTS	TRANSFORMANTS	(%)
0	4.0 x 10 ⁵	0	0
0.02	3.0 x 10 ⁵	231	0.1
0.04	2.3 x 10 ⁵	406	0.2
0.06	2.4 x 10 ⁵	- 868	0.4
0.08	3.3 x 10 ⁵	1,336	0.4
0.10	6.0 x 10 ⁴	594	1.0
0.20	7.8 x 10 ⁴	580	0.7
0.40	5.8 x 10 ⁴	1,910	3.3
0.60	9.2 x 10 ⁴	10,750	11.7
0.80	3.1 x 10 ⁵	28,660	9.2
1.00	1.0 x 10 ⁵	16,840	16.8

GST-Skp1
$$GST$$
-lox-Skp1 $\frac{1}{1}$ $\frac{2}{2}$ $\frac{3}{3}$

IPTG: $-+-+-+-+$

1 2 3 4 5 6 7 8 coomassie

FIG. 16A

FIG. 17

APPLO FIG.

GST-ROUSS-ROUSS ROUSS ROUSS

1 2 3 4 5 6 insect cell

FIG. 18

control 3-lox F3

1 2 mammalian

FIG. 19

FIG. 21

Pvu II restriction analysis of recombinant plasmids made by one—step POT

M P1 P2 I 1 2 3 4 5 6 7 8 9 10

ORAFTS!

APPRE ..

17/35 FIG. 23A

Asc I (191)

SnaB I (355)

PUNI 10 POLYLINKER SEQUENCE

(40	<u>)1) N</u>	<u>otI</u>	<u> </u>	<u>nI </u>					<u> </u>					
GC	GGC	CGC	GGT	ACC	ATA	ACT	TCG	TAT	AGC	ATA	CAT	TAT	ACG	A
			Ec	oRI	Sr	naI		XhoI	 -		deI_		NcoI	
AG	TTA	TCT	GGA	ATT	CCC	CGG	GCT	CGA	GAA	CAT	ATG	GCC	ATG	G
Bo	amHI.		NotI	······································		/	HpaI			<u>S</u>	alI	Sac	I (53	<i>(0)</i>
GG	ATC	CGC	GGC	CGC	AAT								GCT	

18/35

FIG. 23B

PUNI 20 POLYLINKER SEQUENCE

CGC GGC CGC

GGT ACC ATA ACT TCG TAT AGC ATA CAT TAT ACG AAG TTA T

EcoR I Smal Xhol Nde I Nco I BamHI

CT GGA ATT CCC CGG GCT CGA GAA CAT ATG GCC ATG GGG ATC

Not I (246)

19/35

FIG. 23C

PUNI 30 POLYLINKER SEQUENCE

<u>(37)</u>	<u> Kpn</u> I	·						L	OX				
GGT	ACC	ATA	ACT	TCG	TAT	AGC	ATA	CAT	TAT	ACG	AAG	TTA	TC
	Eco	oR I	<i>S</i>	maI_	<u> x</u>	(hoI	_		Ec	oIIII	\underline{I}		
T	GGA A	TT	CCC	CGG (GCT (CGA (GCC .	AGT (CCA	GCG	CTC	ACA.	ATT
											half	Iac0	
	Not .	<u> </u>			l paI	_		<u>_S</u>	al I	<u>Sa</u>	cI (1	<u>5</u> 5)	
GC	G GG	C GC	A AT	T GT	T AA	C AG	A TC	C GT	C GA	C GA	G CT	C GC	
		_	Mi	in T									

APPTO 1G.

UT 1633 SUBCLASS

DRAFTS 1

FIG. 26A-1

SEQUENCE DESCRIPTION: SEQ ID NO:1:

AATTCTGTCA GCCGTTAAGT GTTCCTGTGT CACTGAAAAT TGCTTTGAGA GGCTCTAAGG 9 GCTTCTCAGT GCGTTACATC CCTGGCTTGT TGTCCACAAC CGTTAAACCT TAAAAGCTTT

AAAAGCCTTA TATATTCTTT TTTTTTTT AAAACTTAAA ACCTTAGAGG CTATTTAAGT 180 TGCTGATTTA TATTAATTTT ATTGTTCAAA CATGAGAGCT TAGTACGTGA AACATGAGAG 240

CTTAGTACGT TAGCCATGAG AGCTTAGTAC GTTAGCCATG AGGGTTTAGT TCGTTAAACA

TGAGAGCTTA GTACGTTAAA CATGAGAGCT TAGTACGTGA AACATGAGAG CTTAGTACGT

ACTATCAACA GGTTGAACTG CTGATCAACA GATCCTCTAC GCGGCCGCGG TACCATAACT

TCGTATAGCA TACATTATAC GAAGTTATCT GGAATTCCCC GGGCTCGAGA ACATATGGCC

ATGGGGATCC GCGCCGCAA TTGTTAACAG ATCCGTCGAC GAGCTCGCTA TCAGCCTCGA

FIG. 26A-2

CTGTGCCTTC TAGTTGCCAG CCATCTGTTG TTTGCCCCTC CCCCGTGCCT TCCTTGACCC

TGGAAGGTGC CACTCCCACT GTCCTTTCCT AATAAAATGA GGAAATTGCA TCGCATTGTC 099 CTGGGGGGTG GGGTGGGGCA GGACAGCAAG GGGGAGGATT TGAGTAGGTG TCATTCTATT

GGGAAGACAA TAGCAGGCAT GCTGGGGATT CTAGAAGATC CGGCTGCTAA CAAAGCCCGA 780 AAGGAAGCTG AGTTGGCTGC TGCCACCGCT GAGCAATAAC TAGCATAACC CCTTGGGGCC 840

TCTAAACGGG TCTTGAGGGG TTTTTTGCTG AAAGGAGGAA CTATATCCGG ATATCCCGGG 006 CGGCGTCCCG GTGGGCGAAG AACTCCAGCA TGAGATCCCC GCGCTGGAGG ATCATCCAGC 096

GAAAACGATT CCGAAGCCCA ACCTTTCATA GAAGGCGGCG GTGGAATCGA AATCTCGTGA

TGGCAGGTTG GGCGTCGCTT GGTCGGTCAT TTCGAACCCC AGAGTCCCGC TCAGAAGAAC 1080

FIG. 26A-3

TCGTCAAGAA GGCGATAGAA GGCGATGCGC TGCGAATCGG GAGCGGCGAT ACCGTAAAGC

ACGAGGAAGC GGTCAGCCCA TTCGCCGCCA AGCTCTTCAG CAATATCACG GGTAGCCAAC

GCTATGTCCT GATAGCGGTC CGCCACACCC AGCCGGCCAC AGTCGATGAA TCCAGAAAAG

CGGCCATTTT CCACCATGAT ATTCGGCAAG CAGGCATCGC CATGGGTCAC GACGAGATCC

TCGCCGTCGG GCATGCGCGC CTTGAGCCTG GCGAACAGTT CGGCTGGCGC GAGCCCCTGA

TGCTCTTCGT CCAGATCATC CTGATCGACA AGACCGGCTT CCATCCGAGT ACGTGCTCGC

TCGATGCGAT GTTTCGCTTG GTGGTCGAAT GGGCAGGTAG CCGGATCAAG CGTATGCAGC 1500 CGCCGCATTG CATCAGCCAT GATGGATACT TTCTCGGCAG GAGCAAGGTG AGATGACAGG 1560 AGATCCIGCC CCGGCACTIC GCCCAAIAGC AGCCAGICCC ITCCCGCTIC AGIGACAACG

TCGAGCACAG CTGCGCAAGG AACGCCCGTC GTGGCCAGCC ACGATAGCCG CGCTGCCTCG

FIG. 26A-4

TCCTGCAGTT CATTCAGGGC ACCGGACAGG TCGGTCTTGA CAAAAAGAAC CGGGCGCCCC

TGCGCTGACA GCCGGAACAC GGCGGCATCA GAGCAGCCGA TTGTCTGTTG TGCCCAGTCA

TAGCCGAATA GCCTCTCCAC CCAAGCGGCC GGAGAACCTG CGTGCAATCC ATCTTGTTCA

ATCATGCGAA ACGATCCTCA TCCTGTCTCT TGATCAGATC TTGATCCCCT GCGCCATCAG

ATCCTTGGCG GCAAGAAGC CATCCAGTTT ACTTTGCAGG GCTTCCCAAC CTTACCAGAG

GGCGCCCCAG CTGGCAATTC CGGTTCGCTT GCTGTCCATA AAACCGCCCA GTCTAGCTAT

CGCCATGIAA GCCCACTGCA AGCIACCIGC ITICICITITG CGCITGCGII ITCCCTIGIC

CAGATAGCCC AGTAGCTGAC ATTCATCCGG GGTCAGCACC GTTTCTGCGG ACTGGCTTTC

TACGTGTTCC GCTTCCTTTA GCAGCCCTTG CGCCCTGAGT GCTTGCGGCA GCGTGAAGCT

APPIGE FIG.

FIG. 26B-1

SEQUENCE DESCRIPTION: SEQ ID NO:10:

Pro CCC CAA Gln CTA GGT TAT TGG AAA ATT AAG GGC CTT GTG Gly Leu Val Lys11e 10 Lys Trp TyrLeu Gly Ile CCT ATA Pro Ser Met

TTG Len CAT His Glu Glu 30 TAT GAA GAG TyrGAA GAA AAA Glu Glu Lys 25 Len TTG GAA TAT CTT Leu Glu Tyr Leu 20 CTTLeu CTTCGA Arg

Len GAT GAA GGT GAT AAA TGG CGA AAC AAA AAG TTT GAA TTG Glu Phe Lys Lys 45 Arg Asn Trp Glu Gly Asp Lys Asp Glu Arg GAG CGC Tyr 144

TTG GAG TTT CCC AAT CTT CCT TAT TAT ATT GAT GGT GAT GTT AAA Tyr Tyr Ile Asp Gly Asp Val Lys 60 Pro Asn Leu Pro 55 Phe Glu Leu 192

Ser Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn 70 ACA CAG TCT ATG GCC ATC ATA CGT TAT ATA GCT GAC AAG CAC AAC Gln Thr

AF. - 1G.
DRAFTS: ...

FIG. 26B-2

GAA		Glu	
CTT GAA		Leu Glu	95
		Met	
GCA GAG ATT TCA ATG		Ser	
ATT		Ile	
GAG		Ala Glu Ile	
GCA		Ala	90
CGT		Arg)
GAG		Glu	
CCA AAA GAG		Pro Lys Glu Arg	ı
CCA		Pro	
ΓGT		Cys	85
. GGT		>	•
GGT		Gly	1
TTG		Leu Gly Gl	
ATG	288	Met	

AGT	Ser
TAT	Tyr
GCA	Ala 110
	Ile
AGA ATT	Arg :
TCG 7	Ser
	Val
GGT GTT	G1y 105
TAC	Tyr
AGA	Arg
ATT	Ile
GAT	Asp
TTG	Leu 100
GTT	Val
BDB	Ala
GGA	336 Gly

GAA		Glu	
CCT		Pro	
CTA		Leu	
GIT GAT TIT CIT AGC AAG CIA CCI GAA		; Val Asp Phe Leu Ser Lys Leu Pro Glu	125
AGC		Ser	
CTT		Leu	
TTT		Phe	
GAT	-	Asp	
\mathtt{GTT}		Val	120
AAA		Lys	
AA ACT CTC AAA		Glu Thr Leu Lys	
ACT		Thr	
GAA		Glu	
m TTT		Phe	115
GAC		Asp	
AAA	384	Lys	

AAT		Asn	
		Leu Asn	
TTA TGT CAT AAA ACA TAT TTA		Tyr	
ACA		\mathtt{Thr}	
AAA			140
CAT		His Lys	
\mathtt{TGT}		Cys	
TTA		Arg Leu Cys	
CGT		Arg	
rg ttc gaa gat		Asp	135
GAA		Glu	
TTC		Phe	
ATG		Met	
AAA		Lys	
CTG		Leu	130
ATG	432	Met	

GAT		Asp	160
CTT GAT		Leu	
GCT		Ala	
GAC		Asp	•
TAT		Tyr	
TTG		Leu Tyr	155
ATG		Met	
TTC		Phe	
GAC		Asp	
CCT		Pro	
CAT		His	150
ACC		Thr	
GTA		Val	
CAT		His	
GAT		Asp	
GGT	480	Gly	145

	 SSAJOCTASS	
APPER	 DRAFTS, T.T.	

FIG. 26B-3

TTA	Leu
CCA AAA TTA	
	Pro Lys
TTC	Phe
909	Ala Phe
GAT	Asp
CTG GAT	Leu 170
TGC C	Cys
ATG	Met
CCA ATG	Pro Met
GAC	Asp
ATG	Met 165
TAC	Tyr
TTA	Leu
GTT	Val
GTT 528	Val

Ŋ	ĭ
TAC	Тy
AAG	Lys Tyr
GAT	Asp 190
ATT	Ile
CAA ATT	Gln
CCA	Pro
ATC	Ile
GCT ATC	Ala Ile Pro 185
CGT ATT GAA	Glu
ATT	Ile Glu
CGT	Arg
AA AAA	s Lys 0
\mathbf{A}	Lys 180
TTT	Phe
TGT	Cys
GTT 576	Val

<u>ن</u> .	מ
225	Ala
CAA	Gln
TGG	Trp
CCC	Gly 205
CAG	Gln
CCT TTG CAG	Leu
CCT	Pro
TGG	Trp Pro Leu Gln
GCA	Ala 200
AGC AAG TAT ATA GCA TGG	Ile Ala 200
TAT	Tyr
AAG	Lys Tyr
AGC	Ser
TCC	Ser 195
AAA	Lys
TTG 624	Leu

CGT	Arg
GGT GGC GAC CAT CCT CCA AAA TCG GAT CTG GTT CCG	' Asp His Pro Pro Lys Ser Asp Leu Val Pro Arg 215
GTT	Val
CTG	Leu
GAT	Asp 220
TCG	Ser
AAA	Lys
CCA	Pro
CCT	Pro
CAT	His 215
GAC	Asp
Sec	lу Gly
GGT	. G1y
GGT	${ t Gl} { t y}$
TTT GGT	Phe 210
ACG	672 Thr

, TTA	Leu	240
AAT	Asn	
CCC	Ala	
ATG	Met	
CCC ATG GCC AAT	Pro Met	
ATG	Met	235
CAT	His	
TCG CAT ATG	Ser His	
GGA	Gly	
GTT	Val	
\mathtt{TCT}	Ser	230
GCA TCT	Ala	
CGT	Arg	
CGT	Arg	
TCT CGT	Ser	
GGA 720	G1y	225

AGT	Ser	
GCA ACG AGT	Thr	255
GGA	Ala	
GAT	Asp Ala	
GTC	Val	
SCCG	Pro Val	
TTA	Leu	250
GCA	Ala	
CCT	Leu Pro Ala	
TTG	Leu	
AAT	Asn	
CAA	Gln	245
CAC	His	
GTA	Val	
CTG ACC GTA CAC 768	Leu Thr	
CTG 768	Leu	

DRAFTS:12:17

FIG. 26B-4

GCG Ala CAG Gln CGC Arg 270 Asp GAT AGG Arg TTCPhe ATG Met GAC Asp 265 AAC CTG ATG Leu Met Asn CGC AAG LysArg 260 GTT Val GAG Glu Asp

TGG Trp TCGSer CGG Arg $_{\mathrm{TGC}}$ Cys 285 GLL Val TCC Ser CTGLeu Len CTT Met 280 ATG AAA Lys TGG TrpACC Thr CAT His Glu GAG 275 Ser TCTPhe

CCT Pro GAA Glu GCA Ala CCC Pro Phe 300 TTTTrp TGG AAA Lys CGG Arg Asn AAT AAC Asn 295 TTGLeu AAG Lys TGC Cys $^{\mathrm{TGG}}$ Trp GCA Ala 290 Ala GCG

Ala 320 GCA Leu CTGGly GGTCGC Arg CCC Ala Gln CAG 315 CTTLeu TAT TyrCTALen Leu CTTTyr310 TAT Asp GAT CGC Arg GTT Val Asp GAT Glu 305 GAA 960

Arg CGT CAT His 335 Leu CTTGGC CAG CTA AAC ATG Leu Asn Met Gln 330 Gly Len CAA CAT TTG His Gln Gln GTA AAA ACT ATC CAG 325 Ile Thr Val Lys

Val GTT Leu CTG TCA Ser 350 GTTVal Asn Ala CGA CCA AGT GAC AGC AAT GCT Ser Asp 345 Ser Pro Arg Pro CCA CTGGly Leu 340 CGG TCC GGG Arg Ser 1056

APPTER 16. 16. CRASS SUBCLASS

FIG. 26B-5

Lys GCC GGT GAA CGT GCA AAA Ala Arg Glu 365 Gly Ala GAT Asp GTT Val Asn 360 AAC GAA Glu CGG CGG ATC CGA AAA Lys Arg Ile Arg 355 Met Arg

CTC Leu CGT TCA Ser Val Arg GTTThr Asp. Phe Asp Gln ACT GAT TTC GAC CAG 380 Arg 375 CAG GCT CTA GCG TTC GAA CGC Glu Phe Ala Leu Gln Ala 1152

Leu 400 CTG Phe GCA Ala Len CTGAsn CGT AAT Arg 395 Ile TGC CAG GAT ATA Gln Asp Cys CGC Arg 390 Asp AGC GAT Ser ATG GAA AAT Glu Asn Met

ATC Ile AGG CCC Ala Ile GCC GAA ATT Glu Ala Ile 410 ATA TTA CGT Leu Leu Arg CIGACC Thr AAC Asn 405 TyrTAT GCT Ala Gly Ile

His CAT ATC Ile TTA Leu 430 Met ATG AGA Gly Arg 999 G1yGGTAsp 425 GAC Thr ACT CGTArg TCA Ser ATC Ile GAT Asp 420 AAA Lys AGG GTT Arg Val

GCA Ala AAG Glu Lys GAG GTA Gly Val 445 GGT Ala GCA ACC \mathtt{Thr} AGC Ser GTT Leu Val 440 CTG Thr ACG AAA LysACG Thr AGA Ile Gly Arg ATT GGC

APPRICES CONTROLASS

DRAFTSEAN

FIG. 26B-6

TCTSer CGA TGG ATT TCC GTC Val Ser Ile TrpArg Glu GTC GAG Leu Val CTG GGG GTA ACT AAA CTG Leu Gly Val Thr Lys 455 AGC Leu Ser 450

Lys 480 AAA AGA Arg Val , TGC CGG GTC Arg Cysm TTTPhe Leu CTG TyrCCG AAT AAC TAC Asn Asn Pro Asp GAT GAT Asp GCT Ala GTA Gly Val 465 GGT

GCC Ala Arg 495 CGC Thr TCA ACT Ser CAG CTA Leu Gln AGC Ser 490 Thr GCC ACC Ala TCTSer CCA Pro CCG Ala 485 CCC Ala GTTVal Asn Gly AAT GGT

AAG Lys GCT Ala Gly 510 CCC TAC TyrATT Ile TTGLeu Arg CGA His CAT 505 ThrACT GCA Ala GAA Glu TTT Phe Ile. 500 ATT QQQGly CTG GAA Leu Glu

CGT CCCAla Ser AGT CAC His 525 GGA Gly Ser TCTTGGTrpCCAla Leu CTG520 TyrTAC AGA Arg Gln CAG GlyGGT Ser TCTAsp Asp GAT GAC

GAG Glu Pro SSS ATA Ile TCA Ser Val GTT 540 Gly GGA GCT Ala Arg CGC Ala CCC Met ATG 535 Asp GAT Arg CGA. gce Ala GCC Ala Gly GGA Val (

AFP: CTT | F. F. IG.

FIG. 26B-7

Tyr 560 ATC ATG CAA GCT GGT GGC TGG ACC AAT GTA AAT ATT GTC ATG AAC TAT Met Asn Ile Val Asn 555 Thr Asn Val Trp Gly Gly 7 550 Gln Ala 1680 Ile Met (545

Leu Leu Glu 575 ATC CGT AAC CTG GAT AGT GAA ACA GGG GCA ATG GTG CGC CTG CAA Ser Glu Thr Gly Ala Met Val Arg 570 Ile Arg Asn Leu Asp

GAT GGC GAT TAG

1740

Asp Gly Asp

FIG. 26C-1

SEQUENCE DESCRIPTION: SEQ ID NO:11:

Gln Pro 15 Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val 5 Ser Met

Leu Glu Lys Tyr Glu Glu His Arg Leu Leu Glu Tyr Leu Glu 20 Thr

Len Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu 35

Lys Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val 55 Leu Glu Phe 50

Asn Tyr Ile Ala Asp Lys His 75 Ile Arg Thr Gln Ser Met Ala Ile Leu 65

Glu Ser Met Leu Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile 85 Met

Tyr Ser Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala 100 Lys Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys Leu Pro 115

DRAFTS. 1315 SUBCLASS

FIG. 26C-2

Asn	Asp 160	Leu	Tyr	Ala	Arg	Leu 240	er	Ala
					ro A		hr S 55	
Leu	Leu	Lys 175	Lys	Gln	Pr	Asn	Thr 255	Gln
Tyr	Ala	Pro	Asp 190	Trp	Val	Ala	Ala	Arg 270
Thr	Asp	Phe	Ile	G1y 205	Leu	Met	Asp	Asp
Lys 140	Tyr	Ala	Gln	Gln	Asp 220	Pro	Val	Arg
His	Leu 155	Asp	Pro	Leu	Ser	Met 235	Pro	Phe
Cys	Met	Leu 170	Ile	Pro	Lys	His	Leu 250	Met
Leu	Phe	Cys	Ala 185	Trp	Pro	Ser	Ala	Asp 265
Arg	Asp	Met	Glu	Ala 200	Pro	Gly	Pro	Met
Asp 135	Pro	Pro	Ile	Ile	His 215	Val	Leu	Leu
Glu	His 150	Asp	Arg	Tyr	Asp	Ser 230	Asn	Asn
Phe	\mathtt{Thr}	Met 165	Lys	Lys	Gly	Ala	Gln 245	Lys
Met	Val	Tyr	Lys 180	Ser	Gly	Arg	His	Arg 260
Lys	His	Leu	Phe	Ser 195	G1y	Arg	Val	Val
Leu 130	Asp	Val	Cys	Lys	Phe 210	Ser	Thr	Glu
Met	Gly 145	Val	Val	Leu	Thr	G1y 225	Leu	Asp

DRAFTS.....

FIG. 26C-3

Val Cys Arg Ser Trp	285
Ser	
Leu	
Leu	
Met	280
Lys	
Trp	
Thr	
His	
Glu	275
Ser	
Phe	

-	
Arg Met Leu Ile His	430
Asp Gly Gly	125
Arg Thr A	7
Ile Ser	
Arg Val Lys Asp	420
Aı	

FIG. 26C-4

Ala Glu Lys Ala Gly Val 445 Thr Ser Lys Thr Leu Val \mathtt{Thr} Gly Arg ' Ile

Ser Val Ser Ile Glu Arg Val Len Leu Gly Val Thr Leu

Trp 460 Lys 455 Ser 450

Arg Cys Arg Val Phe 475 Leu TyrAsn Asn Pro 470 Asp Asp Ala Val Gly 465 Ala Arg 495 Thr Leu Ser Gln Ser 490 Thr Ala Ser Pro Ala 485 Ala Val Asn

Lys Ala Gly 510 TyrIle Leu Arg His 505 Thr Ala Glu Phe Ile 500 Gly Glu Leu

Arg Ala Ser His 525 Gly Ser Trp Ala Leu 520 TyrGln Arg G1ySer 515 Asp Asp

Glu Pro Ile Ser Val 540 Gly Ala Arg Ala Met 535 Asp Arg Ala Ala 530 Val

Tyr 560 Asn Met Val Ile Asn 555 Val Asn Thr Trp Gly 550 Gly Ala Gln Met Ile 545

Glu Leu 575 Leu Arg Val Met Ala Gly Thr Glu Ser Asp 565 Leu Asn Ile

Asp Gly Asp