Feuille 10 (Probabilités 4) Variables aléatoires, et lois, continues

Les feuilles d'exercices sont découpées en trois types d'exercice :

- Les indispensables : à savoir faire en autonomie.
- Les exercices d'application : pour mieux maîtriser et comprendre le cours.
- Pour aller plus loin : exercices présentant des développements mathématiques ou des études de modélisations de phénomènes issues d'autres disciplines.

Indispensables _____

Exercice 1. Densité de probabilité :

On donne la fonction suivante :

$$f(t) = 0$$
 si $t < 0$, $f(t) = 2e^{-t} - 2e^{-2t}$ si $t \ge 0$

où la variable t représente un temps.

- 1. Montrer que cette fonction est une densité de probabilité.
- 2. L'intégrale entre les instants t_1 et t_2 (exprimés en minutes) de cette fonction représente en fait la probabilité pour qu'une population d'oiseaux revienne sur leur branche, entre les instants t_1 et t_2 , après en être partis, à la suite d'un bruit violent. Quelle est la probabilité que la population d'oiseaux revienne avant 5 minutes?
- 3. Quel est le temps moyen au bout duquel les oiseaux reviennent?

Exercice 2. Loi exponentielle:

La durée, X, de l'attente entre l'instant d'ouverture et celui d'arrivée du premier client dans un magasin suit une loi exponentielle. On estime à cinq minutes la durée moyenne d'attente.

- (a) Calculer le paramètre de la loi de X.
- (b) Calculer la probabilité que l'on doive attendre un quart d'heure avant que n'arrive le premier client.
- (c) Sachant que l'on a attendu cinq minutes et que le premier client n'est toujours pas arrivé, calculer la probabilité qu'il faille attendre encore dix minutes avant l'arrivée d'un client.

Exercice 3. Utilisation de la loi normale :

1. $\mathcal{N}(0,1)$

Sachant que $U = \mathcal{N}(\mu = 0, \sigma = 1)$, calculer :

- (a) P(U = 1, 96); $P(U \le 1, 96)$; P(U > 1, 96); $P(U \le -1, 96)$; P(U > 2, 575).
- (b) $P(-1,21 \le U \le 1,53)$; $P(|U| \le 1,96)$; $P(|U| \le 2,575)$.
- (c) la valeur de u telle que $P(U \le u) = 0, 10$ ou $P(|U| \le u) = 0, 8$.
- 2. Centrage et réduction de la loi normale $\mathcal{N}(\mu, \sigma)$

Sachant que X suit une loi normale $\mathcal{N}(\mu = 5, \sigma = 2)$, calculer:

- (a) $P(X \le 7)$; P(X > 1); P(X > 2); $P(X \le 3)$.
- (b) $P(4 \le X \le 7)$; $P(1 \le X \le 3)$.

LU1MA002 Mathématiques pour les Études Scientifiques II

3. Calcul de probabilité avec la loi normale $\mathcal{N}(\mu, \sigma)$

La masse, en grammes, d'une graine de pin pignon suit une loi normale $\mathcal{N}(\mu=0.5$, $\sigma=0.02)$.

On choisit une graine au hasard.

- (a) Avec quelle probabilité aura-t-elle une masse comprise entre 0,496 g et 0,504 g?
- (b) Avec quelle probabilité aura-t-elle une masse exactement égale à 0,5 g?
- (c) Avec quelle probabilité aura-t-elle une masse égale à (0.50 ± 0.01) g?

Exercice 4. Soit X une variable aléatoire dont la fonction de répartition est F et la densité continue f. On définit la variable aléatoire $Y = X^2$.

- 1) Déterminer la fonction de répartition G et la densité g de la variable Y.
- 2) On suppose que X suit une loi normale centrée réduite $\mathcal{N}(0,1)$. Expliciter la fonction g et calculer l'espérance de Y.

Exercice 5. 1) On considère une variable aléatoire Z dont la fonction de répartition est définie sur $I\!\!R$ par

$$\forall y \in IR, F(y) = \frac{1}{1 + \mathbf{e}^{-y}}.$$

Déterminer la densité de probabilité de Z.

- 2) Soit y un réel positif. Établir une relation entre f(y) et f(-y).
- 3) Montrer que Z admet une espérance et la déterminer.
- 4) Soit U une variable aléatoire de loi uniforme sur]0,1[. Etudier la fonction de répartition de la variable aléatoire $W = \ln\left(\frac{U}{1-U}\right)$ et en déduire la loi de W.

Exercice 6. On rappelle qu'une variable aléatoire suit la loi exponentielle de paramètre μ ($\mu > 0$) si elle admet pour densité la fonction f_{μ} définie par

$$f_{\mu}(x) = \begin{cases} \mu \mathbf{e}^{-\mu x} & \text{si} \quad x \geqslant 0\\ 0 & \text{si} \quad x < 0 \end{cases}$$

- 1) Soit X une variable aléatoire suivant la loi exponentielle de paramètre μ .
 - (a) Donner l'espérance E(X) et la variance V(X).
 - (b) Déterminer une relation de récurrence entre $E(X^{n+1})$ et $E(X^n)$ pour tout entier naturel n.
 - (c) En déduire $E(X^n)$ pour tout n > 0.
 - (d) Retrouver la valeur de V(X) à l'aide de la question précédente.

2) Propriété caractéristique

Soient $\mu > 0$ et X une variable aléatoire de loi exponentielle de paramètre μ .

Justifier que pour tout réel x positif ou nul, le nombre (X > x) est non nul.

Montrer que pour tous réels positifs x et y,

$$(X > x + y | X > x) = (X > y)$$

LU1MA002 Mathématiques pour les Études Scientifiques II

La table indique, pour u>0, la fonction de répartition F(u) de la loi normale centrée réduite.

$$F(u) = \int_{-\infty}^{u} \frac{\exp(-x^2/2)}{\sqrt{2\pi}} dx$$
.

Pour u < 0, on utilise la relation : F(u) = 1 - F(-u).

									u	
u	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0, 1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0, 2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0, 4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0, 5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0, 7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1, 1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1, 2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2, 1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2, 2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2, 3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2, 4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2, 5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2, 6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	$0,9^2893$	$0,9^2896$	0,9990
3, 1	$0,9^303$	$0,9^306$	$0,9^310$	$0,9^313$	$0,9^316$	$0,9^318$	$0,9^321$	$0,9^324$	$0,9^326$	$0,9^329$
3, 2	$0,9^331$	$0,9^334$	$0,9^336$	$0,9^338$	$0,9^340$	$0,9^342$	$0,9^344$	$0,9^346$	$0,9^348$	$0,9^350$
3, 3	$0,9^352$	$0,9^353$	$0,9^355$	$0,9^357$	$0,9^358$	$0,9^360$	$0,9^361$	$0,9^362$	$0,9^364$	$0,9^365$
3,4	$0,9^{3}66$	$0,9^368$	$0,9^369$	$0,9^370$	$0,9^371$	$0,9^372$	$0,9^373$	$0,9^374$	$0,9^375$	$0,9^376$
3, 5	$0,9^377$	$0,9^378$	$0,9^378$	$0,9^379$	$0,9^380$	$0,9^381$	$0,9^381$	$0,9^382$	$0,9^383$	$0,9^383$
3,6	$0,9^384$	$0,9^385$	$0,9^385$	$0,9^386$	$0,9^386$	$0,9^387$	$0,9^387$	$0,9^388$	$0,9^388$	$0,9^389$
3,7	0.9^389	$0,9^390$	$0,9^400$	0.9^404	$0,9^408$	0.9^412	0.9^415	0.9^418	$0,9^422$	$0,9^425$
3,8	$0,9^428$	$0,9^431$	$0,9^433$	$0,9^436$	$0,9^438$	$0,9^441$	$0,9^443$	$0,9^446$	$0,9^448$	$0,9^450$
3,9	0.9^452	0.9^454	0.9^456	0.9^458	0.9^459	0.9^461	0.9^463	0.9^464	0.9^466	0.9^467
$\frac{3,0}{4,0}$	0.9^468	0.9^470	0.9^471	0.9^472	0.9^473	0.9^474	0.9^475	0.9^476	$0,9^477$	0.9^478

La variable u est la somme des entêtes des lignes et des colonnes, soit par exemple : F(0,6+0,04)=0,7389. Dans la notation 0.9^386 , l'exposant est le nombre de 9, soit par exemple $F(3,63)=0.9^386=0,99986$.