安徽大学 2019—2020 学年第一学期

《线性代数 A》期中考试试卷

(闭卷 时间 120 分钟)

一、选择题(每小题2分,共10分)

1. A,B,C,D 是 n 阶矩阵,O 为 n 阶零矩阵, a_i,b_i,c_i,d_i (i=1,2) 是实数,则下列正确 的是()

(A)
$$\begin{vmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix}$$
 (B) $\begin{vmatrix} O & A \\ B & D \end{vmatrix} = -|A||B|$

(C)
$$\begin{vmatrix} A & B \\ B & A \end{vmatrix} = |A|^2 - |B|^2$$
 (D) $\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & c_1 & d_1 & 0 \\ c_2 & 0 & 0 & d_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ c_2 & d_2 \end{vmatrix} \cdot \begin{vmatrix} a_2 & b_2 \\ c_1 & d_1 \end{vmatrix}$

2. A,B 是 n 阶矩阵,则下列结论中正确的是()

(A)
$$AB = O \Leftrightarrow A = O \coprod B = O$$

(B)
$$|A| = 0 \Leftrightarrow A = O$$

(C)
$$|AB| = 0 \Leftrightarrow |A| = 0 \Rightarrow |B| = 0$$
 (D) $(A+B)(A-B) = A^2 - B^2$

(D)
$$(A+B)(A-B) = A^2 - B^2$$

3. 设A为 3 阶方阵,将A的第 2 行加到第 1 行得B,再把B的第 1 列的-1 倍加到

第 2 列得
$$C$$
 , 记 $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 则 ()

(A)
$$C = PAP^{-}$$

(A)
$$C = PAP^{-1}$$
 (B) $C = P^{-1}AP$ (C) $C = P^{T}AP$ (D) $C = PAP^{T}$

(C)
$$C = P^T A P$$

(D)
$$C = PAP^T$$

4. 设 A, B 为 2 阶矩阵, A^*, B^* 分别为 A, B 伴随矩阵,且|A| = 2, |B| = 3,则 $\begin{pmatrix} O & A \\ B & O \end{pmatrix} =$

(A)
$$\begin{pmatrix} O & 2A^* \\ 3B^* & O \end{pmatrix}$$
 (B) $\begin{pmatrix} O & 3A^* \\ 2B^* & O \end{pmatrix}$ (C) $\begin{pmatrix} O & 3B^* \\ 2A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}$

5. 设A为 4×3 矩阵,且r(A) = 2,而 $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$,则r(AB) = ()

(C) 2 (D) 无法确定

二、填空题 (每小题 2 分, 共 10 分)

6. 设 A 是一个三阶方阵,|A|=1,则 $|2A^*|=$ ______

9. 设
$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
,若 A 的伴随矩阵的秩为 1,则 $k =$ _____.

10. 已知
$$a,b,c,d$$
 为实数,且 $ad-bc \neq 0$,则 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} =$ ______.

三、计算题 (每小题 10 分, 共 60 分)

12. 计算n阶行列式
$$D_n = \begin{pmatrix} x & x + \frac{1}{2} & x & \cdots & x \\ x & x & x + \frac{1}{3} & \cdots & x \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x & x & x & \cdots & x + \frac{1}{n} \end{pmatrix}$$

13. 设行列式
$$D = \begin{vmatrix} 2 & 0 & 1 & 3 \\ 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \\ 0 & 0 & 3 & 2 \end{vmatrix}$$
, A_{ij} 是 D 中元素 a_{ij} 的代数余子式,计算

 $3A_{11} + 2A_{12} - 3A_{13} + A_{14}$ 的值.

14. 设 $A = E - XX^T$, 其中 $X = (x_1, x_2, \dots x_n)^T$, E 为 n 阶单位矩阵, 且 $X^T X = 1$.

(1) 计算 A^2 ; (2) 利用 (1) 的结果计算 $(A+E)^{-1}$.

16. 把矩阵
$$A = \begin{pmatrix} 0 & 0 & -1 & -1 & 2 \\ 1 & 4 & -1 & 0 & 2 \\ -1 & -4 & 2 & -1 & 0 \\ 2 & 8 & 1 & 1 & 0 \end{pmatrix}$$
 化成标准形.

四、分析题 (每小题 12分, 共12分)

17. 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \\ 3 & 5 & 1 & 7 \end{pmatrix}$$
, 其中 a , b 为待定常数,求矩阵 A 的秩.

- 五、证明题(每小题8分,共8分)
- **18.** A是任一n阶矩阵,证明:
- (1) $A + A^T$ 是对称阵, $A A^T$ 是反对称阵;
- (2) 任何n阶方阵都可以表示成一个对称阵和一个反对称阵的和.

3. 设行列式 D=0123, A,是 D 中元素 A, 的代数余子式, 计算

34,+242-341+4,的低

14. 设 $A = E - XX^T$, 其中 $X = (x_1, x_2, \dots x_n)^T$, $E 为 n 的 单位矩阵, 且 <math>X^T X = 1$

(1) 计算 A²; (2) 利用 (1) 的结果计算 (A+E)⁻¹