Laboratorium problemowe 2 - stanowisko wahadła rekacyjnego

Sprawozdanie z zajęć nr 4

Dawid Lisek

Paweł Mańka

Pon. 8.00 23.10.2023

```
% time = [0, 3, 5, 7, 10, 13, 16, 19, 22]

% amp = [0, 0.2, 0.4, 0.6, 0.3, -0.3, -0.3, 0.2, -0.3]

time = [0, 3, 6, 9, 12, 15, 18, 21, 24];

amp = [0, 0.3, -0.3, 0.5, -0.5, 0.6, -0.6, 0.7, -0.7];
```

Na zajęciac z pomocą multimetra zostalo zmierzone napiecie przy wysokich wartosciach sterowania.

Widac na wykresie ze silnik po jakims czasie wylacza sie (ma przerwy w przeplywie pradu) co skutkuje niedokladnym

Zauważono rowniez roznice wzgledem multimetra a napiecia (funkcja napiecia od sterowania nie jest lniowa) dlatego zrobiona zostala tabelka napiecia od sterowania pwm

```
voltage = [-11.71, -10.69, -9.51, -8.32, -7.13, -5.93, -4.74, -3.55, -2.36, -1.18, 0, 1.61, 2.3
u = -1:0.1:1;
Sterowanie = transpose(u);
Napiecie = transpose(voltage);
```

Tabelka:

T = table(Sterowanie, Napiecie)

T = 1	21×2 table	
	Sterowanie	Napiecie
1	-1	-11.7100
2	-0.9000	-10.6900
3	-0.8000	-9.5100
4	-0.7000	-8.3200
5	-0.6000	-7.1300
6	-0.5000	-5.9300
7	-0.4000	-4.7400
8	-0.3000	-3.5500
9	-0.2000	-2.3600
10	-0.1000	-1.1800
11	0	0
12	0.1000	1.6100
13	0.2000	2.3300
14	0.3000	3.5300
15	0.4000	4.6900
16	0.5000	5.9100
17	0.6000	7.1000
18	0.7000	8.2700
19	0.8000	9.4700
20	0.9000	10.6600
21	1	11.7500

Następnie zostal sprawdzony sygnal schodkowy dla duzych wartosci i dziala

```
model_rzeczywisty = sygnal_schodkowy_nr1;
signal_model_real = sygnal_schodkowy_nr1.signals;
```

```
% model rzeczywisty = walidacja modelu nr5;
% signal_model_real = walidacja_modelu_nr5.signals;
% sim("src\simulink models\model walidacyjny\model matematyczny 2018a.slx");
model_matematyczny = out.model_matematyczny_nr1;
signal_model_mat = model_matematyczny.signals;
figure;
subplot(2, 1, 1)
plot(model rzeczywisty.time, signal model real(8).values)
xlabel('Time [s]')
legend('rzeczywiste')
ylabel('Control')
title('Walidacja Modelu')
subplot(2, 1, 2)
plot(model_rzeczywisty.time, signal_model_real(1).values)
hold on;
val = reshape(signal model mat(1).values, 1, []);
plot(model_matematyczny.time, val)
hold off;
legend('rzeczywiste', 'model')
xlabel('Time [s]')
ylabel('Angle [rad]')
title('Pomiar położenia kątowego')
```



```
figure;
subplot(2, 1, 1)
plot(model_rzeczywisty.time, signal_model_real(8).values)
xlabel('Time [s]')
legend('rzeczywiste', 'model')
```

Warning: Ignoring extra legend entries.

```
ylabel('Control')
title('Walidacja Modelu')

subplot(2, 1, 2)
plot(model_rzeczywisty.time, signal_model_real(4).values)
hold on;
val = reshape(signal_model_mat(2).values, 1, []);
plot(model_matematyczny.time, val)
hold off;
xlabel('Time [s]')
legend('rzeczywiste')
ylabel('Velocity [rad/s]')
title('Pomiar prędkości kątowej')
```



```
figure;
subplot(2, 1, 1)
```

```
plot(model_rzeczywisty.time, signal_model_real(8).values)
xlabel('Time [s]')
legend('rzeczywiste')
ylabel('Control')
title('Walidacja Modelu')

subplot(2, 1, 2)
plot(model_rzeczywisty.time, signal_model_real(6).values)
hold on;
val = reshape(signal_model_mat(3).values, 1, []);
plot(model_matematyczny.time, val)
hold off;
xlabel('Time [s]')
legend('rzeczywiste', 'model')
ylabel('Velocity [rad/s]')
title('Pomiar prędkości koła zamachowego')
```


Następnie sprawdziliśmy male sterowania -0.1, 0, 0.1

```
model_rzeczywisty = sygnal_schodkowy_nr2;
```

Wartośc napięcia zmierzona na silniku w zależności od sterowania:

```
voltage = [-11.71, -10.69, -9.51, -8.32, -7.13, -5.93, -4.74, -3.55, -2.36, -1.18, 0, 1.61, 2.3
```

```
voltage = 1 \times 21
  -11.7100 -10.6900
                       -9.5100
                                 -8.3200
                                          -7.1300
                                                    -5.9300
                                                              -4.7400
                                                                        -3.5500 ...
u = -1:0.1:1
u = 1 \times 21
   -1.0000
             -0.9000
                       -0.8000
                                 -0.7000
                                           -0.6000
                                                     -0.5000
                                                              -0.4000
                                                                        -0.3000 ...
p_volt = polyfit(u, voltage, 1)
p_volt = 1 \times 2
   11.8238
              0.0095
figure
hold on
plot(u, voltage, 'o')
plot(u, polyval(p_volt, u))
hold off
grid on
title('Wykres napięcia na silniku od sterowania')
```


xlabel('Sterowanie u')
ylabel('Napiecie [V]')

Następnie przy pomocy narzędzie model linearizer został wyznaczony punkt równowagi w dolnym położeniu wahadła. Wyznaczona została macierz stanu oraz sterowalności. Na podstawie macierzy stanu oraz macierzy wejść obliczone zostały wzmocnienia dla regulatora LQR, który będzie testowany na następnych zajęciach oraz dostrajany.

linsys1.A

```
ans = 3 \times 3

0 1.0000 0

-4.9764 -1.1417 0.0145

0 0 -1.1309
```

linsys1.B

ans = 3×1 0 -5.2369 488.6480

linsys1.C

ans = 3×3 1 0 0 0 1 0 0 0 1

linsys1.D

ans = 3×1 0 0

co = ctrb(linsys1.A, linsys1.B)

co = 3×3 0 -5.2369 13.0867 -5.2369 13.0867 3.0816 488.6480 -552.6005 624.9228

rank(co)

ans = 3

K = lqr(linsys1.a, linsys1.b, eye(3), 1)

K = 1×3 -0.0278 -0.0041 0.9977