Cheat Sheet dia 1

Esqueleto de um programa em C

```
#include <stdio.h> //eu sou um comentário de linha

int main ( ) {

    /*
    Eu sou um comentário de bloco
    */

    return 0;
}
```

É dentro da função "main" (principal, em inglês) que você escreverá todo o seu código. A função é chamada de principal porque no futuro, você verá que é possível criar suas próprias funções.

Tipos de Variáveis

Tipo	0 que armazena	Formatação de leitura e escrita	Tamanho na memória	Intervalo de valores
char	Caractere	%c	1 byte	-128 a 127
int	Número inteiro	%d	4 bytes	-2.147.483.648 a 2.147.483.647
float	Número de ponto flutuante (real)	%f	4 bytes	1, 175494 e-038 a 3,402823 e+038
double	Número de ponto flutuante de precisão dupla	%lf	8 bytes	2,225074 e-308 a 1,79693 e+308

float e double são chamados de ponto flutuante porque dentro da memória, um bit é reservado para representar o ponto e ele muda de lugar de acordo com a necessidade

Funções de leitura e escrita

- scanf("%d", &a): lê um inteiro do teclado e armazena na variável chamada 'a'
- scanf("%d %d", &a, &b): lê dois inteiros do teclado e armazena nas variáveis 'a' e 'b'
- printf("%d\n", a): imprime a variável 'a' na tela. O '\n' faz uma quebra de linha (enter)
- printf("%d %d\n", a, b): imprime as variáveis 'a' e 'b' na tela

1. Aquecendo

Reescreva o trecho de código a seguir, adicionando a indentação devida:
 #include<stdio.h>int main(){ int a = 3;int b=5;int soma=a+b;printf("%d", soma); return 0; }

2. Os trechos de código a seguir apresentam erros. Você sabe dizer quais?

```
a) include <stdio.h>
    int main()[
            printf("This is an example 1!\n");
            return 0;
    ]
b) #include <stdio.h>
    int main(){
            printf(This is an example 2!\n);
            return 0;
   }
c) #include <stdio.h>
    int main(){
            printf("This is an example 3!\n");
            return 0
   }
d) #include <stdio.h>
    int main(){
            scanf("%d", &a);
            printf("%d\n", a);
            return 0;
   }
e) #include <stdio.h>
    int main(){
            scanf("%d", b);
            printf("%d\n", b);
            return 0;
   }
```

2. Calculadora

Vamos exercitar a criação de variáveis, receber input do usuário e escrever na tela. Para isso, seu primeiro programa será uma calculadora bem básica. Vamos lá.

Nossa calculadora vai receber sempre dois valores e fazer contas com eles. Para isso, precisamos de, pelo menos, duas variáveis: uma para cada valor. Como queremos trabalhar com números inteiros, qual tipo de variável você deverá criar?

- 1. Escreva o esqueleto básico de um programa em C
- 2. Crie duas variáveis do tipo escolhido
- 3. Peça para o usuário digitar dois números e armazene-os nas variáveis criadas
- 4. Imprima, <u>uma operação por linha</u>, a soma, a diferença, o produto e o quociente entre os dois números.
- 5. Compile e execute.
- 6. Escolha dois números e teste seu programa.
- 7. Agora vamos arrumar a saída para ficar alinhado: dentro de todos os printf, substitua "%d" por "%2d". O que aconteceu?
- 8. Teste sua calculadora com os exemplos abaixo. Brinque um pouco com a sua calculadora inventando outros números.

Exemplo 1

Entrada		
47		
Saída		
11		
-3		
28		
0		

Exemplo 2

Entrada			
52			
Saída			
7			
3			
10			
2			

3. Calculadora Melhor

Nossa calculadora era legal, mas... não queremos fazer contas apenas com inteiros.

- 1. Altere o programa anterior para aceitar números com parte decimal. Lembre de olhar o código todo e ver o que precisa ser alterado.
- 2. Imprima os resultados com 2 casa decimais. Não é necessário estar alinhado à direita.
- 3. Teste seu programa com os exemplos.

Exemplo 1

Entrada		
4.3 7.5		
Saída		
11.80 -3.20 32.35 0.57		

Exemplo 2

Entrada			
5.7 2.1			
Saída			
7.80			
3.60			
7.80 3.60 11.97			
2.71			

4. Conversor de Temperatura

Agora vamos criar um novo programa. Dessa vez, vamos converter temperaturas.

- 1. Nosso conversor fará três conversões em um único programa:
 - a. de Celsius para Fahrenheit
 - b. de Fahrenheit para Celsius
 - c. de Kelvin para Celsius
- 2. Para cada conversão, seu programa deve pedir que o usuário digite a temperatura a ser convertida (em número Real). Serão três leituras no total.
- 3. A impressão deve ser feita com até duas casas decimais. Serão três impressões no total.

Estratégias

Seu programa terá que fazer três leituras e três cálculos diferentes. Você tem diferentes estratégias para fazer isso:

- a. Receber as três entradas, calcular e depois imprimir cada saídas
- b. Receber uma entrada por vez, calcular e imprimir o resultado. Fazer isso três vezes.

Qual estratégia você prefere? Fique à vontade para escolher.

Fórmulas

De Celsius para Fahrenheit: F = C * (9.0 / 5.0) + 32.0
 De Fahrenheit para Celsius: C = 5.0 * (F - 32.0)/9.0
 De Kelvin para Celsius: C = K - 273.15

Exemplo 1

Entrada 100.00 100.00 100.00 Saída 212.00 37.78 -173.15

Exemplo 2

Entrada
0.00 0.00 0.00
Saída
32.00 -17.78 -273.15

5. Círculo

Receba como entrada o raio da um círculo (como um número real) e imprima na tela:

- a. A área
- b. A circunferência

Assuma pi=3.14159

Exemplo 1

Entrada

5.0

Saída

area: 78.539750

circunferencia: 31.415900

6. Salário

Márcio trabalha em um loja como vendedor e recebe no final do mês um salário fixo mais uma comissão de 15% sobre o valor total das vendas realizadas. Escreva um programa que leia

- c. o salário fixo
- d. valor total das vendas realizadas

E imprima na tela o total recebido por Márcio com duas casas decimais

Exemplo 1

Entrada

1000.00 20000.00

Saída

total: 4000.00

7. Consumo de gasolina

Joãozinho quer calcular e mostrar a quantidade de litros de combustível gastos em uma viagem ao utilizar um automóvel que faz 12km/L. Faça um programa que receba:

- 0 tempo gasto na viagem (em horas)
- A velocidade média durante a viagem (em km/h)

E ajude Joãozinho a calcular quantos litros são necessários para fazer a viagem. Imprima seu resultado com precisão de três dígitos após o ponto decimal.

Exemplo 1

Entrada

8.060.0

Saída

total: 40.000

8. Anastacia

Anastácia está passando por dificuldades na faculdade e quer saber quantos dias faltam para a sua prova final. Faça um programa que a ajude nesse cálculo. Receba:

- uma data inicial (dois inteiros, representando o dia e o mês)
- uma data final (dois inteiros, representando o dia e o mês)

Imprima a diferença entre essas datas em dias. A data inicial deve ser anterior à data final. Assuma que todos os meses têm 30 dias.

Exemplo 1

Entrada10 08 15 08

Saída

05

Exemplo 2

Entrada

01 01 31 12

Saída

360 (estamos assumindo que todos os meses têm 30 dias)

9. Distância entre dois pontos

Faça um programa que receba dois pontos quaisquer no plano cartesiano, de coordenadas (x, y) e calcule a distância euclidiana entre eles. Dica: a biblioteca math.h contém a função sqrt(), que recebe como parâmetro uma variável double e retorna a raiz quadrada.

- Receba dois valores reais x e y referentes ao ponto a
- Receba dois valores reais x e y referentes ao ponto b
- Distância euclidiana:

$$distancia = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

Imprima a distância com 2 casas decimais. Curiosidade: a distância euclidiana é comumente utilizada em algoritmos de machine learning, ramo da inteligência artificial.

Exemplo 1

Entrada

1234

Saída

2.83

10. Caixa eletrônico

Considerando a existência de notas (cédulas) nos valores R\$ 100, R\$ 50, R\$ 20, R\$ 10, R\$ 5, R\$ 2 e R\$ 1, escreva um programa que receba um valor inteiro e determine o **menor** número de notas para se obter o montante fornecido. O programa deve exibir o número de notas para cada um dos valores de nota existentes.

Exemplo 1

Entrada

188

Saída

1 nota(s) de R\$ 100,00

1 nota(s) de R\$ 50,00

1 nota(s) de R\$ 20,00

1 nota(s) de R\$ 10,00

1 nota(s) de R\$ 5,00

1 nota(s) de R\$ 2,00

1 nota(s) de R\$ 1,00

Exemplo 2

Entrada

8473947

Saída

84739 nota(s) de R\$ 100,00

0 nota(s) de R\$ 50,00

2 nota(s) de R\$ 20,00

0 nota(s) de R\$ 10,00

1 nota(s) de R\$ 5,00

1 nota(s) de R\$ 2,00

0 nota(s) de R\$ 1,00