עבורה Vol $_n:\mathcal{P}\left(\mathbb{R}^n
ight)
ightarrow [0,\infty]$ עבורה אזי לא קיימת $n\in\mathbb{N}$ יהי

- $.Vol_n([0,1]^n) = 1 \bullet$
- . $\operatorname{Vol}_n\left(\biguplus_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{n}\operatorname{Vol}_n\left(A_i\right)$ אזי $\left\{A_i
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(\mathbb{R}^n
 ight)$ תהיינה
- . $\mathrm{Vol}_n\left(arphi\left(A
 ight)
 ight)=\mathrm{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

קבוצות חופפות בחלקים: $X,Y\subseteq\mathbb{R}^n$ עבורן קיים $X,Y\subseteq\mathbb{R}^n$ קיימות עבורן איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות $X,Y\subseteq\mathbb{H}^n$ וכן $X,Y\subseteq\mathbb{H}^n$ איזומטריות המקיימות $X,Y\subseteq\mathbb{H}^n$ וכן $Y,Y_i=\emptyset$ איזומטריות אייים איזומטריים איזומטריות איזומטריות איזומטריות איזומטריות איזומטריות איזומטריות איזומטריות איזומטריים איזומטריי

 $X \equiv Y$ אזי בחלקים חופפות $X,Y \subseteq \mathbb{R}^n$ סימון: תהיינה

 $X \equiv Y$ אזי $(Y) \neq \varnothing$ וכן $(X) \neq \varnothing$ וונן וונן $(X) \neq \varnothing$ חסומות עבורן חסומות ווהיינה ווהיינה

- $.Vol_n([0,1]^n)=1 \bullet$
- . $\mathrm{Vol}_n\left(A \uplus B\right) = \mathrm{Vol}_n\left(A\right) + \mathrm{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- . $\mathrm{Vol}_n\left(arphi\left(A
 ight)
 ight)=\mathrm{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

עבורה $\operatorname{Vol}_n:\mathcal{P}\left(\mathbb{R}^n
ight) o [0,\infty]$ אזי קיימת $n\in\{1,2\}$ יהי יהי

- $.Vol_n([0,1]^n)=1 \bullet$
- $\operatorname{Vol}_n\left(A \uplus B\right) = \operatorname{Vol}_n\left(A\right) + \operatorname{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- $\operatorname{Vol}_n\left(arphi\left(A
 ight)
 ight)=\operatorname{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

אלגברה: תהא א קבוצה אזי תהא אלגברה: אלגברה אלגברה

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . | או סופית מתקיים בכל $E\subseteq\mathcal{A}$

 $A\cap B\in\mathcal{A}$ אזי א $A,B\in\mathcal{A}$ טענה: תהא

אידיאל: תהא $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא אידיאל: תהא

- $X \notin \mathcal{I} \bullet$
- $. \forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $E \in \mathcal{A}$ סופית מתקיים $E \subset \mathcal{A}$ לכל

המקיימת $\mathcal{A}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה X המקיימת σ

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

מסקנה: תהא $\mathcal A$ אלגברה אזי σ אלגברה.

המקיימת $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא X המקיימת σ

- $X \notin \mathcal{I} \bullet$
- $\forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

טענה: תהיינה $G \cap_{\alpha \in I} A_{\alpha}$ אזי אזי $\sigma \in A_{\alpha}$ אלגברה $G \cap_{\alpha \in I} G \cap_{\alpha \in I} G$

אזי A אזי מעל X המכילות מעל כל ה σ ־אלגברה נוצרת: תהא אזי $A\subseteq\mathcal{P}\left(X\right)$ ותהיינה ותהא $A\subseteq\mathcal{P}\left(X\right)$ המכילות את $\sigma\left(A\right)=\bigcap_{\alpha\in I}\mathcal{A}_{\alpha}$

A את המכילה ביותר המטנה ה־ σ אזי אזי הינה הי σ אזי אזי אזי אזי $A\subseteq\mathcal{P}\left(X\right)$ אזי מסקנה:

 $\mathcal{B}\left(X
ight)=\sigma\left(\left\{\mathcal{O}\in\mathcal{P}\left(X
ight)\mid$ פתוחה $\mathcal{O}
ight\}$ פתחה מטרי אזי יהי מרחב מטרי אזי מרחב מטרי אזי

טענה: יהי X מרחב מטרי אזי הקבוצות הבאות שוות

- .X אלגברה בורל על σ
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r>0\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r\in\mathbb{Q}_+\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\{B_r\left(a
 ight)\mid (r\in\mathbb{Q}_+)\wedge (a\in Y)\}
 ight)$ צפופה אזי $Y\subseteq X$ תהא

 $A=igcap_{i=1}^\infty \mathcal{O}_i$ עבורה קיימות פתוחות פתוחות איימות $\{\mathcal{O}_i\}_{i=1}^\infty$ עבורה קיימות עבורה איימות $A\subseteq X:G_\delta$

```
A=igcup_{i=1}^\infty \mathcal{O}_i עבורה קיימות \{\mathcal{O}_i\}_{i=1}^\infty סגורות המקיימות A\subseteq X:F_\delta מסקנה: תהא A קבוצה G_\delta ותהא B קבוצה B אזי G_\delta ותהא B שענה: הקבוצות הבאות שוות \mathbb{R}^n טענה: הקבוצות הבאות שוות \sigma \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{Q}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{Q}\}) משפט: תהא f:\mathbb{R} \to \mathbb{R} ותהא f:\mathbb{R} \to \mathbb{R} ותהא f:\mathbb{R} \to \mathbb{R} אזי קיימת f עבורה f:\mathbb{R} אזי קיימת f עבורה f:\mathbb{R}
```

```
\operatorname{cint}\left(\overline{A}
ight)=arnothing המקיימת A\subseteq X המקיימת A\subseteq X המרחב מטרי אזי A=\bigcup_{i=1}^\infty B_i דלילות עבורן \{B_i\}_{i=1}^\infty אינות קבוצה מקטגוריה ראשונה: יהי A=\bigcup_{i=1}^\infty B_i מרחב מטרי אזי A\subseteq X שאינה מקטגוריה ראשונה. A\subseteq X מרחב מטרי אזי A\subseteq X מקטגוריה ראשונה אזי A\subseteq X מקטגוריה ראשונה אזי A\subseteq X מקטגוריה ראשונה אזי A^{\mathcal{C}}
```

למה: יהי X מרחב מטרי אזי

- . דלילה $B \subseteq A$ אזי אזי $A \subseteq X$ תהא $A \subseteq X$ תהא
- . דלילה $\bigcup_{i=1}^n A_i$ אזי דלילות אזי $A_1 \ldots A_n \subseteq X$ דלילה.
 - . דלילה אזי \overline{A} דלילה אזי $A\subseteq X$ דלילה.

מסקנה: קבוצות דלילות מהוות אידיאל.

 $\operatorname{cint}(A)=arnothing$ אזי משפט בייר: יהי X מרחב מטרי שלם ותהא $A\subseteq X$ מקטגוריה אזי משפט מייר:

מסקנה: קבוצות דלילות מהוות σ ־אידיאל.

 $\mathbb{Q} \notin G_{\delta}$:מסקנה

 $A=F\uplus N$ אזי קיימת איים וקיימת איימת משפט: תהא אזי קיימת הקטגוריה מקטגוריה אזי קיימת אזי קיימת אזי קיימת משפט

משפט בנך: במרחב המטרי $\{f\in C\left([0,1]\right)\mid\exists x\in\left(0,1\right).f\in\mathcal{D}\left(x\right)\}$ היא מקטגוריה מקסימום הקבוצה $C\left([0,1]\right)$ היא מקטגוריה במרחב המטרי ראשונה.

הערה: "רוב" הפונקציות הרציפות לא גזירות באף נקודה.

משפט: תהא $A\subseteq X$ מקטגוריה ראשונה עבורה $F\subseteq X$ סגורה בייר) \Longleftrightarrow (קיימת בייר) אזי (ל-A אזי ל-A אזי ל-A אזי אזי (ל- $A\subseteq X$).

מסקנה: תהא $A^{\mathcal{C}}$ בעלת תכונת בייר אזי $A\subseteq X$ בעלת תכונת בייר.

נסמן lpha+1 נסמן, $\mathcal{F}_0=\mathcal{T}\cup\{\varnothing,\Omega\}$ נסמן $\mathcal{T}\subseteq\mathcal{P}\left(X
ight)$ נסמן $\mathcal{T}\subseteq\mathcal{T}$, לכל סודר עוקב משפט:

באשר $\sigma\left(\mathcal{T}\right)=\mathcal{F}_{\omega_{1}}$ אזי $\mathcal{F}_{\lambda}=\bigcup_{\alpha<\lambda}\mathcal{F}_{\alpha}$ נסמן λ נסמן $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\alpha}\cup\left\{A^{\mathcal{C}}\mid A\in\mathcal{F}_{\alpha}\right\}\cup\left\{\bigcap_{n=1}^{\infty}A_{n}\mid A_{n}\in\mathcal{F}_{\alpha}\right\}$ באשר ... הסודר הגבולי הקטן ביותר שאינו בן מניה.

 $|\sigma\left(X
ight)|=leph$ אזי און אוי עבורה עבורה X קבוצה עבורה א

 (X,Σ) אזי האז היד: תהא הרחב מדיד: תהא קבוצה ותהא הרחב מדיד: תהא קבוצה אזי קבוצה מידה: אזי $\mu:\Sigma\to [0,\infty]$ מרחב מדיד אזי (X,Σ) המקיימת פונקציית מידה: יהי מידה: אזי (מרחב מדיד אזי

- $.\mu(\varnothing) = 0 \bullet$
- $.\mu\left(\biguplus_{i=1}^\infty B_i\right)=\sum_{i=1}^\infty \mu\left(B_i\right)$ אז אזי זרות אזי $\{B_i\}_{i=1}^\infty\subseteq\Sigma$ אדטיביות: תהיינה ס הרחב מדיד ותהא μ פונקציית מידה אזי (X,Σ,μ) מרחב מדיד ותהא ש פונקציית מידה אזי (X,Σ,μ) מרחב מדיד ותהא

 $.\mu\left(X\right) <\infty$ המקיימת μ מידה פונקציית פונקציית מידה סופית:

 $. orall i\in\mathbb{N}_+.\mu\left(B_i
ight)<\infty$ וכן $X=igcup_{i=1}^\infty B_i$ מידה σ ־סופית: פונקציית מידה μ עבורה קיימים $\{B_i\}_{i=1}^\infty\subseteq\Sigma$ המקיימת μ המקיימת μ המקיימת פונקציית מידה μ המקיימת μ המקיימת μ

טענה: יהי (X,Σ,μ) מרחב מידה אזי

- $.\mu\left(A
 ight) \leq \mu\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\Sigma$ יהיו הייו מונוטוניות:
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}\right)$ אזי $\left\{A_{i}\right\}_{i=1}^{\infty}\subseteq\Sigma$ התראדיטיביות: תהיינה σ
- $\mu\left(igcup_{i=1}^{\infty}A_{i}
 ight)=\lim_{n o\infty}\mu\left(A_{n}
 ight)$ אזי $orall i\in\mathbb{N}_{+}.A_{i}\subseteq A_{i+1}$ באשר באשר $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ אזי סלעיל: תהיינה $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$
- $\mu\left(\bigcap_{i=1}^{\infty}A_{i}
 ight)=\lim_{n
 ightarrow\infty}\mu\left(A_{n}
 ight)$ אזי $\mu\left(A_{1}
 ight)<\infty$ וכן $\forall i\in\mathbb{N}_{+}.A_{i}\supseteq A_{i+1}$ באשר $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ רציפות מלרע: תהיינה $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ באשר

 $\mu\left(E
ight)=0$ המקיימת $E\in\Sigma$ המס\זניחה:

 $\mathcal{N}=\left\{ E\in\Sigma\mid\mu\left(E
ight)=0
ight\}$ סימון: יהי $\left(X,\Sigma,\mu
ight)$ מרחב מידה אזי

. אניחה $\bigcup_{i=1}^\infty E_i$ אזיחות אזי $\{E_i\}_{i=1}^\infty\subseteq \Sigma$ טענה: תהיינה

כמעט בכל מקום (כ.ב.מ.): יהי ψ פרידיקט עבורו קיימת $E\in\mathcal{N}$ המקיים כי ψ מתקיים לכל Xackslash E אזי נאמר כי ψ נכונה ψ בכל מקום..

 $F \in \mathcal{N}$ מתקיים $F \subseteq E$ ולכל ולכל עבורה לכל עבורה מידה מידה פונקציית מידה שלמה:

 $.\overline{\Sigma}=\{E\cup F\mid (E\in\Sigma)\wedge (\exists N\in\mathcal{N}.F\subseteq N)\}$ השלמה של σ ־אלגברה: יהי (X,Σ,μ) מרחב מידה אזי

. טענה: יהי $\overline{\Sigma}$ אזי מרחב מידה מידה (X,Σ,μ) טענה: טענה

. $u_{|_{\Sigma}} = \mu$ מרחב מידה אזי קיימת ויחידה מידה אזי קיימת מידה מרחב מידה (X, Σ, μ) טענה: יהי

 $.\overline{\mu}_{\Gamma_{\Sigma}}=\mu$ מרחב מידה אזי המידה השלמה $\overline{\mu}$ על $\overline{\Sigma}$ עבורה (X,Σ,μ) השלמה של מידה: יהי

. טענה: יהי $(X,\overline{\Sigma},\overline{\mu})$ מרחב מידה אזי (X,Σ,μ) מרחב מידה טענה:

המקיימת $\mathcal{D}\subseteq\mathcal{P}\left(X\right)$ אזי $X\neq\varnothing$ תהא דינקין: מחלקת

- $X \in \mathcal{D} \bullet$
- $.B \backslash A \in \mathcal{D}$ אזי אזי $A \subseteq B$ באשר $A, B \in \mathcal{D}$ יהיו •
- $.igcup_{i=1}^\infty A_i\in\mathcal{D}$ אזי $orall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\mathcal{D}$ ההיינה ullet

 $\bigcap_{i=1}^n A_i \in \Pi$ מערכת $A_1 \dots A_n \in \Pi$ עבורה לכל עבורה אזי אזי אזי אזי $\Pi \subseteq \mathcal{P}\left(X\right)$ אזי אזי $X
eq \varnothing$

. טענה: תהיינה $\bigcap_{\alpha\in I}\mathcal{D}_{\alpha}$ אזי אחלקות דינקין מחלקת $\{\mathcal{D}_{\alpha}\}_{\alpha\in I}\subseteq\mathcal{P}\left(X\right)$ טענה: תהיינה

 $d\left(A
ight) = igcap_{lpha \in I} \mathcal{D}_lpha$ אזי אזי A אזי אזי אזי אולקת דינקין המחלקת ביותר המחלקת המח

למה: תהא A אלגברה על X עבורה לכל A עבורה לכל A באשר $A_i \subseteq \mathbb{N}_+$ מתקיים $A_i \in \mathbb{N}_+$ אזי A ס־אלגברה. למה: תהא A אלגברה על $A_i \in \mathbb{N}_+$ עבורה לכל $A_i \in \mathbb{N}_+$ באשר $A_i \subseteq \mathbb{N}_+$ מתקיים $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ למה: תהא $A_i \in \mathcal{A}$ אלגברה על עבורה לכל $A_i \in \mathcal{A}$ באשר $A_i \subseteq A_i \subseteq \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \subseteq \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \subseteq \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$

עבורן Σ עבורן סופיות סופיות על Σ ותהיינה μ, ν מידות חוב מדיד היי עבורה $\Pi\subseteq\mathcal{P}(X)$ מערכת מדיד תהא עבור יהי (X,Σ) יהי $\mu_{\lceil \Pi}=\nu_{\lceil \Pi}=\nu_{\lceil \Pi}$ אזי ע $\mu_{\lceil \Pi}=\nu_{\lceil \Pi}=\nu_{\lceil \Pi}$

 $orall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\Pi$ מסקנה: יהי $\Sigma=\sigma(\Pi)$ מערכת מערכת מערכת $\Pi\subseteq\mathcal{P}(X)$ מידות מידות מידות אזי μ,ν מידות על $\mu_{\uparrow\Pi}=\nu_{\uparrow\Pi}$ וכן $\nu_{\uparrow\Pi}=\nu_{\uparrow\Pi}$ וכן $\nu_{\uparrow\Pi}=\nu_{\uparrow\Pi}=\nu_{\uparrow\Pi}$ וכן $\nu_{\uparrow\Pi}=\nu_{\uparrow\Pi}=\nu_{\uparrow\Pi}$ וכן $\nu_{\uparrow\Pi}=\nu$

חוג למחצה: תהא X קבוצה אזי $\mathcal{E}\subseteq\mathcal{P}\left(X
ight)$ המקיימת

- $\mathscr{A} \in \mathcal{E}$ •
- $A\cap B\in\mathcal{E}$ אזי $A,B\in\mathcal{E}$ יהיו
- $A \backslash B = [+]_{i=1}^n C_i$ עבורם $C_1 \dots C_n \in \mathcal{E}$ אזי קיימים $A, B \in \mathcal{E}$ יהיו

טענה: יהי $A_1 \dots A_n \in \mathcal{E}$ ויהיו למחצה חוג ל $\mathcal{E} \subseteq \mathcal{P}\left(X\right)$ אזי

- $P ackslash igcup_{i=1}^n A_i = igoplus_{i=1}^m B_i$ עבורם $B_1 \dots B_m \in \mathcal{E}$ אזי קיימים $P \in \mathcal{E}$ יהי
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^m\biguplus_{j=1}^mB_{i,j}$ עבורם עבורם $\{B_{i,j}\mid (i\in[n])\wedge(j\in[m_i])\}\subseteq\mathcal{E}$ קיימים •
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^\infty\biguplus_{j=1}^{\check{m}_i}B_{i,j}$ עבורם $\{B_{i,j}\mid(i\in\mathbb{N}_+)\wedge(j\in[m_i])\}\subseteq\mathcal{E}$ פיימים $\mu:\mathcal{E}\to[0,\infty]$ חוג למחצה אזי $\mathcal{E}\subseteq\mathcal{P}(X)$ המקיימת
 - $.\mu(\varnothing) = 0 \bullet$
- $\mu\left(A\uplus B
 ight)=\mu\left(A
 ight)+\mu\left(B
 ight)$ אזי $A\uplus B\in\mathcal{E}$ עבורם $A,B\in\mathcal{E}$ אדיטיביות: תהיינה
 - $.\mu\left(A
 ight) \leq \mu\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{E}$ מונוטוניות: תהיינה

 $\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}\right)$ אזי $\left\{A_{i}\right\}_{i=1}^{\infty}\subseteq\mathcal{E}$ התראדטיביות: תהיינה σ

 $\{[a,b)\mid a\leq b\}$ עולה ורציפה משמאל אזי $\mu_F\left([a,b)
ight)=F\left(b
ight)-F\left(a
ight)$ אזי מידה שמאל אזי $F:\mathbb{R} o\mathbb{R}$ מידה חיצונית: יהי $X
eq\emptyset$ אזי $X
eq\emptyset$ אזי $Y=\emptyset$ המקיימת $Y=\emptyset$ המקיימת

- $.\mu^*\left(\varnothing\right) = 0 \bullet$
- $.\mu^{st}\left(A
 ight)\leq\mu^{st}\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{P}\left(X
 ight)$ מונוטוניות: תהיינה
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}
 ight)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}
 ight)$ אזי $\left\{A_{i}
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(X
 ight)$ התראדטיביות: תהיינה σ

 $ho\left(\varnothing
ight)=0$ עבורה $ho:\mathcal{E} o [0,\infty]$ אוהא $ho(X)\in\mathcal{E}$ באשר $ho:\mathcal{E} o [0,\infty]$ אבורה $ho:\mathcal{E} o [0,\infty]$ נגדיר המידה החיצונית הנוצרת על ידי $ho:\mathcal{E}(X)$ יהי יהי $ho(X)=\mathcal{E}(X)$ באשר $ho:\mathcal{E}(X)\to [0,\infty]$ באשר $ho:\mathcal{E}(X)\to [0,\infty]$

. טענה: יהי ho^* אזי ho^* אזי $ho(\varnothing)=0$ עבורה $ho:\mathcal{E} o[0,\infty]$ ותהא $ho(X)\in\mathcal{E}$ באשר באשר באשר באשר

 $.m_{ exttt{\tiny LM}}^* = m$ אזי אלמנטרית מידה מידה ותהא חוג למחצה חוג למחצה חוג למחצה ותהא

קבוצה $E\in\mathcal{A}$ אזי א $\lambda\left(\varnothing\right)=0$ אזי א $\lambda:\mathcal{A}\to\left[0,\infty\right]$ אתנברה ותהא אלגברה לכל $\mathcal{A}\subseteq\mathcal{P}\left(X\right)$ אזי א קבוצה אורה לכל $\lambda:\mathcal{A}\to\left[0,\infty\right]$ אלגברה ותהא $\lambda:\mathcal{A}\to\left[0,\infty\right]$ אלגברה ותהא אלגברה ותהא $\lambda:\mathcal{A}\to\left[0,\infty\right]$ אורה אלגברה ותהא אלגברה ותהא

 $.\Gamma_0=\{E\in\mathcal{A}\mid\lambda$ קבוצה $E\}$ אזי $\lambda\left(arnothing
ight)=0$ סימון: תהא $\lambda\left(arnothing
ight)=\lambda:\mathcal{A} o\left[0,\infty
ight]$ אלגברה ותהא $\lambda\left(arnothing
ight)=0$ אנברה ותהא $\lambda\left(arnothing
ight)=0$ אלגברה ותהא $\lambda\left(arnothing
ight)=0$ אלגברה ותהא $\lambda\left(arnothing
ight)=0$ אלגברה ותהא $\lambda\left(arnothing
ight)=0$ אלגברה ותהא $\lambda\left(arnothing
ight)=0$

- .אלגברה Γ_0
- $.\Gamma_0$ אדיטיבית על א λ
- $\lambda\left(\biguplus_{i=1}^{n}\left(E_{k}\cap F\right)\right)=\sum_{i=1}^{n}\lambda\left(E_{n}\cap F\right)$ אזי $F\in\mathcal{A}$ ויהי $E_{1}\ldots E_{n}\in\Gamma_{0}$ תהיינה

קבוצה מדידה ביחס למידה חיצונית: תהא μ^* מידה חיצונית: תהא $A\subseteq X$ אזי אזי $A\subseteq X$ מתקיים μ^* מתקיים: $\mu^*(E)=\mu^*(E\cap A)+\mu^*(E\setminus A)$

 $\Sigma_{\mu^*} = \{A \subseteq X \mid \mu^*$ מדידה $A\}$ אזי על X איזי חיצונית על מידה מידה μ^* מידה מימון: תהא

 $\mathcal{M}\subseteq \Sigma_{m^*}$ אזי אלמנטרית מידה מידה ותהא חוג למחצה חוג למחצה חוג למחצה ותהא

משפט הלמה של קרתאודורי: תהא μ^* מידה חיצונית על אזי

- . אלגברה σ Σ_{μ^*}
- . מידה שלמה $\mu_{\upharpoonright_{\Sigma_{..*}}}^*$

 Σ_{m^*} מידה מעל $\mu=m^*$ מידה אלמנטרית מידה m מידה חוג למחצה חוג למחצה ותהא חוג למחצה ותהא

משפט: יהי \mathcal{M} חוג למחצה תהא מידה אלמנטרית ותהא (X,Σ',μ') המשכת מידה אלמנטרית מידה מידה m משפט: יהי \mathcal{M} חוג למחצה תהא

- $\mu'(A) \leq \mu(A)$ מתקיים $A \in \Sigma' \cap \Sigma_{m^*}$ •
- $.\mu'\left(A
 ight)=\mu\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^*}$ אזי לכל $\mu\left(X
 ight)<\infty$.
- $.\mu'\left(A
 ight)=\mu\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^*}$ לכל σ מיסופית פינים •

. מסקנה: יהי אחוג למחצה ותהא של מידה אלמנטרית מידה אלמנטרית המשכת קרתיאודורי יחידה מסקנה: יהי $\mathcal M$ חוג למחצה ותהא