Лекция 3 Floating point

Floating Point

- Fixed point
- IEEE 754
- Операции с плавающей точкой
- Decimal

•

 http://www.cs.cmu.edu/afs/cs/academic/class/1 5213-f15/www/lectures/04-float.pdf

Фиксированная точка (fixed point)

• Представление дробных чисел

Представление fixed point

- Фиксированное число бит для целой и дробной части
- Рассмотрим пример: 4 бита целая часть, 4 бита дробная часть
 - 1 → 00010000₂ (первые 4 бита (старшие) целая часть,
 младшие 4 бита дробная)
 - $-2.5 \rightarrow 00101000_2$
 - $-5.6875 \rightarrow 01011011_{2}$
- ULP (unit at the last place) = $0.0001_2 = 0.0625$
- ULP/2 = .03125

Преобразование из десятичной записи

- Не всегда преобразование может быть выполнено точно
 - -10 = 2 * 5
 - 1/5 (0.2) бесконечная периодичная двоичная дробь:
 0.001100110011[0011]..
 - 00000011₂ → 0.1875: ошибка = 0.0125
 - $-0.1_{10} = 0.0001100110011[0011]..$
 - 00000010₂ → 0.125: ошибка 0.025
 - 00000001₂ → 0.0625: ошибка 0.0375 хуже чем 0.025
 - 00000001₂ → 0.0625 вес младшего разряда (ULP),
 ошибка преобразования не превышает половины веса младшего разряда (ULP/2) (0.03125)

Операции с фиксированной точкой

- Сложение, вычитание как целые числа
- Умножение:
 - Умножаем как целые числа, получаем 16-битный результат
 - 0010.0110 * 0100.0010 = 1001.11001100
 округляем до 1001.1101
 - Точный результат: 9.796875, округленный: 9.8125, ошибка: .015625

Деление с фиксированой точкой

- 0100.0010 / 0010.0110
 - Деление как целые даст только целую часть
 - Дополняем справа 8 нулями, получаем 16-битное число 0100001000000000₂ (16896)
 - Делим как целое: 16896 / 38 = 444 = 1101111100₂
 - Ставим точку на свое место и округляем 110111100_2 → 1.10111100_2 → 1.1100_2 = 1.75
 - Точные вычисления: 4.125 / 2.375 = 1.73684210...
 - Ошибка: 0.01315789...
- Вопрос: какое минимальное количество нулей справа нужно добавить, чтобы получить ошибку не больше ULP/2?

Округление (rounding)

Значение	1.40	1.60	1.50	2.50	-1.50
K нулю (towards 0)	1	1	1	2	-1
Вниз (-∞)	1	1	1	2	-2
Вверх (+∞)	2	2	2	3	-1
К ближайшем у целому вверх	1	2	2	3	-1
Ближайшее четное (умолчанию)	1	2	2	2	-2

Округление к ближайшему четному

- Статистически несмещенное (прочие способы округления статистически смещены)
 - При суммировании накапливается систематическая ошибка
- При применении к другим десятичным/битовым позициям:
 - Когда ровно между двумя возможными значениями округляем к четной последней цифре:

```
7.8949999 7.89(Less than half way)
7.8950001 7.90(Greater than half way)
7.8950000 7.90(Half way—round up)
7.8850000 7.88(Half way—round down)
```

Округление в fixed point

- Четное младший значащий бит = 0
- "Half-Way" биты справа от позиции округления равны 100000...
- Примеры (два знака после "."):
 - $-2.09375 = 10.00011_2 \rightarrow 10.00 = 2 down$
 - $-2.1875 = 10.00110_2 \rightarrow 10.01 = 2.25 up$
 - $-2.875 = 10.11100_2 \rightarrow 11.00 = 3 up$
 - $-2.625 = 10.10100_2 \rightarrow 10.10 = 2.5 down$

IEEE Floating Point

- Стандарт IEEE 754
 - 1985 год, до этого форматы производителей обрудования
 - Поддерживается в основных ЦП
- Появление обусловлено требованиями числовых расчетов
 - Стандарт для переполнений, антипереполнений, округления
 - Трудно реализуется аппаратно
 - Gcc поддерживает -ffast-math и прочие флаги

Представление чисел

Числовая форма:

$$(-1)^{s} M 2^{E}$$

- Sign bit s определяет положительное или отрицательное число
- Significand M мантисса определяет значение числа [1.0,2.0).
- Exponent E порядок умножает мантиссу на степень 2

Encoding

- MSB S бит знака S
- ехр поле кодирует Е (но не равно Е)
- frac поле кодирует М (но не равно М)

S	exp	frac
---	-----	------

Точность

Single precision (одиночная): 32 bits – тип float

S	exp	frac
1	8-bits	23-bits

Double precision (двойная): 64 bits – тип double

S	exp	frac
1	11-bits	52-bits

Extended precision (расширенная): 80 bits (Intel only)

S	exp	frac
1	15-bits	63 or 64-bits

Нормализованные значения

- exp != 0...0 && exp != 1...1 (не все нулевые и не все единичные биты)
- Порядок кодируется со смещением: E = exp bias
 - Ехр беззнаковое значение
 - Bias = 2^{k-1}, k число бит порядка:
 - Float: 127 (exp: 1..254, E: -126..127)
 - Double: 1023 (exp: 1..2046, E: -1022..1023)
- Мантисса кодируется со "скрытой" ведущей 1: M = 1.xxxxxx₂
 - Хххххх: биты мантиссы
 - Минимальное значение: frac = 0..0 (M = 1.0)
 - Максимальное значение: frac = 1..1 (M = 2 eps)

Пример

$$v = (-1)^s M 2^E$$

E = Exp - Bias

- Значение: float F = 15213.0
 - $-15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$
- Мантисса:

$$M = 1.1101101101101_2$$

Frac = 1101101101101000000000₂

• Порядок:

E = 13

Bias = 127

 $Exp = 140 = 10001100_{2}$

- Результат
- 0 10001100 11011011011010000000000

Денормализованные значения

- Условие: exp = 0..0 (все нулевые биты)
- $v = (-1)^s M 2^E$ E = Exp - Bias

- Порядок: E = 1 Bias
- Мантисса кодируется со "скрытым" 0: М = 0.хххххх2
 - Ххххх биты мантиссы
- Случаи:
 - Exp = 0..0, frac = 0.0
 - Представление 0
 - Поддерживается знак нуля (0.0 и -0.0)
 - Значение 0.0 все нулевые биты
 - Exp = 0..0, frac != 0..0 (ненулевые биты мантиссы)
 - Самые близкие к 0 числа
 - На равном расстоянии друг от друга

Специальные значения

Exp = 1..1 (все единичные биты)

- $v = (-1)^s M 2^E$ E = Exp - Bias
- Exp = 1..1, frac = 0..0 (все нулевые биты)
 - Представляет бесконечное значение
 - Для операций, результат которых переполняется
 - Сохраняет знак
 - Примеры: $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Exp = 1..1, frac != 0..0 (ненулевые биты)
 - Нечисло (Not-a-number NaN)
 - Для случаев, когда числовой результат не существует
 - Примеры: sqrt(-1), $\infty \infty$, $\infty \times 0$

Визуализация значний

• Визуализация на числовой прямой

Распределение значений

• 6-битовый формат типа IEEE

•

•

S	ехр	frac
1	3-bits	2-bits

• Значения "уплотняются" к нулю

Операции с плавающей точкой

- Сначала вычисляется точный результат
- Потом помещается в требуемую точность
 - Возможное переполнение (+INF или -INF) если порядок слишком велик
 - Округление чтобы поместить в мантиссу

FP Multiplication

- $-(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign S: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- $-(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign S, significand M:
 - Result of signed align & add
 - Exponent E: E1

Get binary points lined up

- Fixing
 - If M ≥ 2, shift M right, increment E
 - ■if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Свойства операций

• Сложение неассоциативно: (a+b)+c != a+ (b+c):

```
(3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
```

• Умножение неассоциативно:

```
(1e20*1e20)*1e-20=inf, 1e20*(1e20*1e-20)=1e20
```

• Умножение недистрибутивно: a*(b+c) != a*b+a*c

```
1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = NaN
```

ULP

- ULP (unit in the last place) единица на младшей позиции, если a, b – ближайшие друг к другу представимые числа, a < b, то ULP = b – a
- Если a == 1.0, то ULP machine epsilon
- #include <float.h>
 FLT_EPSILON / DBL_EPSILON /
 LDBL_EPSILON

IEEE 754 Precision

- Все операции (включая алгебраические и трансцедентные: sqrt, sin/cos, atan2, exp, ln) должны давать ошибку не более ULP/2
- Известно, что x86 sin/cos дает намного большую ошибку, пользоваться процессорными инструкциями нельзя
- Glibc реализует вычисления, не используя инструкции процессора

Накопление ошибки

- Ошибка одной операции ULP/2
- Предположим, что ошибка E равномерно распределенная случайная величина [-ULP/2;ULP/2]
- Мат. Ожидание M[E] = 0.0
- Дисперсия: D[E] = ?

Накопление ошибки

- Дисперсия: D[E] = 1/12, σ = 1/(2√3) ≈ 0.289
 ULP
- Какова будет ошибка при сложении 100 чисел?

Центральная предельная теорема

• N – норм. Распр. (0, 1)

- $rac{S_n \mu n}{\sigma \sqrt{n}} o N(0,1)$
- То есть СКО растет $\sigma \sqrt{n}$ пропорционально корню из числа чисел
- В случае 100 чисел, σ ≈ 2.89 ULP
- "правило 3-х сигм": с вероятность 99.8% результат лежит на отрезке [-8.66ULP;8.66ULP]

Cancellation (потеря точности)

 При сложении двух близких чисел разных знаков в результате сложения останется мало значащих цифр:

```
• 123457.1467 - 123456.659

e=5; s=1.234571

- e=5; s=1.234567

------

e=5; s=0.000004

e=-1; s=4.000000
```

• e = -1; s = 4.877000 - ошибка 20%

Сложение чисел

- Чтобы минимизировать эффекты от потери точность последовательность вещественных чисел следует складывать следующим образом:
 - Положительные числа в порядке возрастания
 - Отрицательные числа в порядке убывания
 - Сложить два результата сложения, полученных выше

Математические библиотеки

- GMP (libgmp: https://gmplib.org/) целые и рациональные числа произвольной точности
- MPFR (libmpfr: http://www.mpfr.org/) floatingpoint числа произвольной точности

Финансовые вычисления

• Важно точное представление десятичных знаков после точки:

EUR/USD: 1.10685

• Для каждой операции четко определены правила выполнения промежуточных вычислений и округлений:

ОФЗ 26207: цена 111,4650, 8.15%, НКД 19.20

• Обычный floating-point нельзя использовать из-за ошибки преобразования и накопления ошибки при сложении/вычитании

Финансовые вычисления

- Использование decimal fixed point
 - Хранение в целых числах (например, int64_t) с десятичным масштабным коэф. (например, 10000)
 - Использование "длинной арифметики" (BigDecimal в Java)
- Типы decimal floating point порядок десятичный!
 - IEEE 754-2008
 - Тип decimal (C#)
 - Ожидается поддержка в C/C++ (<decimal/decimal>)