1 Attribute Type

Answer: interval

2 Missing values

Answer

- Eliminate data objects with missing values
- Estimate missing values
- Ignore missing values during data analysis

3 Jaccard coefficient

Answer: 0.5

4 CityBlock distance

Answer: 5

5 Modeling

Answer:

6 OLAP

Answer:

• {Month, ItemName, City}: Yes, after roll-up from ItemName to Brand

- {Month, Brand, Country}: No, cannot retrieve city in the query
- {Year, Brand, City}: No, cannot retrieve month and city in the query
- {ItemName, City} where year = 2016: No, cannot retrieve the specified month in the query

7 Apriori Algorithm

```
Answer:
```

```
1) Applying Apriori
                                                                     Candidate k-itemsets and their support
                                                                                                                                                                                                                                                                                                                                                        Frequent k-itemsets
                                                                      \{H\}(4), \{B\}(2), \{K\}(2), \{C\}(3), \{I\}(4)
                                                                                                                                                                                                                                                                                                                                                          {H}, {B}, {K}, {C}, {I}
                      k=1
                                                                      \{H, B\}(2), \{H, K\}(1), \{H, C\}(2), \{H, I\}(2), \{B, K\}(1), \{H, B\}(2), \{H, B\}(2)
                     k=2
                                                                                                                                                                                                                                                                                                                                                         {H, B}, {H, C}, {H, I}, {C, I}
                                                                      \{B, C\}(0), \{B, I\}(0), \{K, C\}(0), \{K, I\}(1), \{C, I\}(3)
                                                                                                                                                                                                                                                                                                                                                         \{H, C, I\}
                     k=3
                                                                      \{H, C, I\}(2)
                      k=4
                                                                      {}
                2)
                      \{H\} \rightarrow \{C, I\}
                                                                                                     (confidence=2/4=0.5)
                       \{C\} \rightarrow \{H, I\}
                                                                                                     (confidence=2/3=0.66)
                      {I} \rightarrow {H, C}
                                                                                                     (confidence=2/4=0.5)
                      \{H, C\} \rightarrow \{I\}
                                                                                                     (confidence=2/2=1)
                      \{H, I\} \rightarrow \{C\}
                                                                                                     (confidence=2/2=1)
                      \{C, I\} \rightarrow \{H\}
                                                                                                    (confidence=2/3=0.66)
                Therefore, the four qualified association rules are \{C\} \to \{H, I\}, \{H, C\} \to \{C\}
\{I\}, \{H, I\} \to \{C\}, \text{ and } \{C, I\} \to \{H\}.
```

8 FP-growth

Answer:

1)

2)			
Item	Conditional sub-database	Conditional FP-tree	Frequent Item sets
f	$\{\{b,d,e\}:3\}$	$\langle b:3,d:3,e:3\rangle$	${f}:3, {b,f}:3, {d,f}:3, {e,f}:3,$
			$\{b,d,f\}:3, \{b,e,f\}:3, \{d,e,f\}:3, \{b,d,e,f\}:3$
e	$\{\{b,d\}:3, \{b\}:2, \{d\}:2\}$	$\langle b:5,d:3\rangle,\ \langle d:2\rangle$	{e}:7, {d,e}:5, {b,e}:5
ed	{{b}:3}	b:3	${b,d,e}:3$
(eb	empty	empty)	
d	{{b}:5}	b:5	{d}:7, {b,d}:5
b	empty	empty	{b}:7

9 K-means clustering

Step 1a: compute squared Euclidean distances between data points and mean vectors $m_1 = (2,0)$ $m_2 = (3,4)$

	$m_1 = (2,0)$	$m_2 = (3,4)$
$x^{(1)} = (0,3)$	(0-2)2+(3-0)2=13	(0-3)2+(3-4)2=10
$x^{(2)} = (1,4)$	(1-2)2+(4-0)2=17	(1-3)2+(4-4)2=4
$x^{(3)} = (3,1)$	(3-2)2+(1-0)2=2	(3-3)2+(1-4)2=9
$x^{(4)} = (4,2)$	(4-2)2+(2-0)2=8	(4-3)2+(2-4)2=5
$x^{(5)} = (5,1)$	(5-2)2+(1-0)2=10	(5-3)2+(1-4)2=13

Pick the smallest in each row, which results that $x^{(1)}$, $x^{(2)}$, and $x^{(4)}$ belong to Cluster 2, and $x^{(3)}$, and $x^{(5)}$ belong to Cluster 1

Step 1b: update mean vectors
$$m_1 = (x^{(3)} + x^{(5)})/2 = ((3,1) + (5,1))/2 = (4,1) \\ m_2 = (x^{(1)} + x^{(2)} + x^{(4)})/3 = ((0,3) + (1,4) + (4,2))/3 = (5/3,3) \text{ or } (1.67,3)$$

Step 2a: compute squared Euclidean distances between data points and mean vectors

Pick the smallest in each row, which results that $x^{(1)}$ and $x^{(2)}$ belong to Cluster 2, and $x^{(3)}$, $x^{(4)}$, and $x^{(5)}$ belong to Cluster 1

Step 2b: update mean vectors

$$m_1 = (x(3) + x(4) + x(5))/3 = ((3,1) + (4,2) + (5,1))/3 = (4,4/3) \text{ or } (4,1.33)$$

 $m_2 = (x(1) + x(2))/2 = ((0,3) + (1,4))/2 = (0.5,3.5)$

Step 3a: compute squared Euclidean distances between data points and mean vectors

$$m_1 = (4,4/3) m_2 = (1/2,7/2)$$

$$x^{(1)} = (0,3) (0-4)2+(3-4/3)2=18+7/9 (or 18.78) (0-0.5)2+(3-3.5)2=0.5$$

$$x^{(2)} = (1,4) (1-4)2+(4-4/3)2=16+1/9 (or 16.11) (1-0.5)2+(4-3.5)2=0.5$$

$$x^{(3)} = (3,1) (3-4)2+(1-4/3)2=1+1/9 (or 1.11) (3-0.5)2+(1-3.5)2=12.5$$

$$x^{(4)} = (4,2) (4-4)2+(2-4/3)2=4/9 (or 0.44) (4-0.5)2+(2-3.5)2=14.5$$

$$x^{(5)} = (5,1) (5-4)2+(1-4/3)2=1+1/9 (or 1.11) (5-0.5)2+(1-3.5)2=26.5$$

Pick the smallest in each row, which results that $x^{(1)}$ and $x^{(2)}$ belong to Cluster 2, and $x^{(3)}$, $x^{(4)}$, and $x^{(5)}$ belong to Cluster 1.

Since there is no change in the cluster assignment, the algorithm ends and outputs

```
m_1 = (4, 4/3) \text{ or } (4,1.33)

m_2 = (0.5, 3.5)

Cluster(x^{(1)})=2

Cluster(x^{(2)})=2

Cluster(x^{(3)})=1

Cluster(x^{(4)})=1

Cluster(x^{(5)})=1
```

10 DBSCAN pros and cons

Answer:

- Data is high-dimensional
- Data has varying densities

11 Cross-validation

Purpose of cross validation. One of the following answers or the like is acceptable:

- Cross-validation can be used to evaluate the performance of a supervised model (e.g. a classifier or regressor)
- Cross-validation is any of various similar model validation techniques for assessing how the results of a statistical analysis will generalize to an independent data set.
- Cross-validation can be used to tune hyper-parameters in algorithms or models

Cross validation procedure. It requires the following parts in the answer

- has explained training/validation/test sets
- has correctly show K-fold rotation steps

12 Decision tree

Answer:

1)

Entropy(p) =
$$-\frac{3}{8} \cdot \log_2 \frac{3}{8} - \frac{5}{8} \cdot \log_2 \frac{5}{8} \approx 0.9544$$

If using "NotHeavy" for root splitting,

$$\sum_{i=1}^{k} \frac{n_i}{n} \text{ Entropy } (i) = \frac{5}{8} \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) + \frac{3}{8} \left(-\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \right) \approx 0.9512$$

GAIN_{NotHeavy} = Entropy
$$(p) - \sum_{i=1}^{k} \frac{n_i}{n}$$
 Entropy $(i) = 0.0032$

If using "Smelly" for root splitting,

$$\sum_{i=1}^{k} \frac{n_i}{n} \text{ Entropy } (i) = \frac{3}{8} \left(-\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \right) + \frac{5}{8} \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) \approx 0.9512$$

$$GAIN_{Smelly} = Entropy(p) - \sum_{i=1}^{k} \frac{n_i}{n} Entropy(i) = 0.0032$$

If using "Spotted" for root splitting,

$$\sum_{i=1}^{k} \frac{n_i}{n} \text{ Entropy } (i) = \frac{3}{8} \left(-\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \right) + \frac{5}{8} \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) \approx 0.9512$$

GAIN_{Spotted} = Entropy
$$(p) - \sum_{i=1}^{k} \frac{n_i}{n}$$
 Entropy $(i) = 0.0032$

If using "Smooth" for root splitting,

$$\sum_{i=1}^k \frac{n_i}{n} \text{ Entropy } (i) = \frac{4}{8} \left(-\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4} \right) + \frac{4}{8} \left(-\frac{2}{4} \log_2 \frac{2}{4} - \frac{2}{4} \log_2 \frac{2}{4} \right) \approx 0.9056$$

$$GAIN_{Smooth} = Entropy(p) - \sum_{i=1}^{k} \frac{n_i}{n} Entropy(i) = 0.0488$$

So we should use "Smooth" for the root splitting because its GAIN is the largest.

2)

Node 1: Smooth = 0

Node 2: Smooth = 1

It can be seen that after splitting with "Smooth" and then "Smelly", all training samples have been classified. The Entropy after the two-level decision becomes zero (i.e. giving the maximum GAIN). The GAINs using other features are smaller. Therefore the resulting decision tree is

3)

- For U: Smooth = 1, Smelly = $1 \Rightarrow \text{Edible} = 1$
- For V: Smooth = 1, Smelly = $1 \Rightarrow \text{Edible} = 1$
- For W: Smooth = 0, Smelly = $1 \Rightarrow \text{Edible} = 0$