

PHYSICS Chapter 24

2nd

SECONDARY

CONEXIÓN DE RESISTORES

@ SACO OLIVEROS

L	Α	P	A	Z	R	Α	Е	F	U	G	Е	R	Е	С	С	U
Е	О	A	R	С	Е	M	P	Α	Ι	Ε	R	I	S	A	0	P
A	Е	R	Е	С	S	0	S	Y	N	N	L	N	О	С	M	0
A	L	A	S	0	Ι	R	A	L	T	E	Е	Α	L	Ι	I	Т
Ε	Y	S	Ι	M	S	S	Ε	Α	Е	R	Y	0	Ι	R	D	E
A	N	S	S	P	Т	Α	R	D	N	0	D	О	D	T	Α	N
Н	U	Α	T	R	Е	Q	Е	Е	S	S	Е	R	Α	С	Α	С
Е	Е	N	Е	Е	N	U	P	Α	I	I	0	N	R	Е	R	Ι
N	A	T	N	N	С	Α	M	D	D	D	Н	Α	Ι	L	L	Α
Е	Y	N	С	Е	Ι	Α	A	Α	A	Α	M	N	D	Е	U	L
J	U	S	Ι	I	Α	I	0	D	D	D	R	E	Α	Е	C	Е
L	Е	0	Α	0	Е	R	A	L	L	С	A	0	D	T	N	L
Y	A	L	Е	N	Q	G	A	S	Е	R	I	Е	0	N	T	Е
A	S	D	L	A	U	Е	V	U	A	S	С	U	D	Е	E	С
С	0	N	Е	X	Ι	0	N	Ε	S	В	I	\mathbf{E}	N	Ι	S	T
L	I	В	С	R	V	Α	D	I	F	E	A	L	Ι	R	C	R
A	C	В	T	X	Α	Α	В	X	K	I	Q	Α	Α	R	Z	Ι
Х	A	Ι	R	D	L	S	P	Α	R	Α	L	Е	L	0	S	С
S	M	X	Ι	A	Е	P	Е	P	G	О	A	D	D	C	Z	0
Н	В	В	С	S	N	X	N	0	A	Е	D	X	Y	X	Α	I
I	I	0	Α	0	Т	D	0	Α	P	A	S	U	Q	R	В	Ñ
A	A	X	P	X	\mathbf{E}	A	S	S	Q	X	A	0	Z	I	N	0

CONEXIÓN DE RESISTORES

Los resistores pueden asociarse o conectarse, entre dos puntos, de diferentes maneras; estas pueden ser: en SERIE, en PARALELO o una combinación de ambas.

RESISTENCIA EQUIVALENTE (R_{eq})

Es aquel resistor que causa el mismo efecto resistivo que las que se encuentran conectadas.

CONEXIÓN EN SERIE

• Por cada resistor pasa la misma intensidad de corriente eléctrica(I).

• Su resistencia equivalente es:

$$R_{eq} = R_1 + R_2 + R_3$$

CONEXIÓN EN PARALELO

La diferencia de potencial en cada resistor es la misma.

Para el caso particular de dos resistencias la resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

Determine la resistencia del resistor equivalente de los resistores conectados en serie.

RESOLUCIÓN

Al tratarse de una conexión en serie, su resistencia equivalente es:

$$R_{eq} = R_1 + R_2$$

$$R_{eq} = 45\Omega + 78\Omega$$

$$R_{eq} = 123 \Omega$$

Determine la resistencia R_1 si la resistencia del resistor equivalente es de 200 Ω .

RESOLUCIÓN

Se trata de una conexión en serie, su resistencia equivalente es:

$$R_{eq} = R_1 + R_2$$

$$200\Omega = R_1 + 50\Omega$$

$$R_1 = 150 \Omega$$

Se muestra dos resistores conectados en paralelo. Determine la resistencia del resistor equivalente.

RESOLUCIÓN

Al tratarse de una conexión en paralelo, su resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

$$R_{eq} = \frac{(3\Omega)(7\Omega)}{3\Omega + 7\Omega} = \frac{21\Omega}{10}$$

$$R_{eq}=2,1\Omega$$

Determine la resistencia del resistor equivalente de los resistores mostrados que están conectados en paralelo.

$$R_1 = 30\Omega$$

$$R_2 = 30\Omega$$

Se trata de una conexión en paralelo, su resistencia equivalente es:

$$R_{eq} = rac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_{eq} = \frac{(30\Omega)(30\Omega)}{30\Omega + 30\Omega} = \frac{30\Omega}{2}$$

$$R_{eq} = 15 \Omega$$

Si la resistencia del resistor equivalente es de 15 Ω , determine la resistencia R_1 .

RESOLUCIÓN

Se trata de una conexión en paralelo, su resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

$$R_{eq} = \frac{(R_1)(30\Omega)}{R_1 + 30\Omega} = 15\Omega$$

$$2R_1 = R1 + 30\Omega$$

$$R_1 = 30\Omega$$

etermine la resistencia R_2 si la resistencia del resistor equivalente es de 40 Ω .

RESOLUCIÓN

Se trata de una conexión en paralelo, su resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

$$R_{eq} = \frac{(60\Omega)(R_2)}{60\Omega + R_2} = 40\Omega$$

$$6R_2 = 4R_2 + 240\Omega$$

$$R_2 = 120 \Omega$$

Determine la resistencia del resistor equivalente entre A y B.

RESOLUCIÓN

Veamos la conexión en paralelo entre R1 y R2:

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{(80\Omega)(20\Omega)}{80\Omega + 20\Omega} = 16\Omega$$

Ahora la conexión es en serie Req y R3:

$$R_{eq\,A\,y\,B} = R_{eq} + R_3$$
$$R_{eq\,A\,y\,B} = 16\Omega + 40\Omega$$

$$R_{eq\,Ay\,B} = 56\Omega$$

Se muestra 3 focos instalados como se muestra. Si la resistencia de cada uno es de 30 Ω , determine la resistencia equivalente entre los puntos A y B.

$R_{1} = R_{2}$ $R_{2} = R_{3}$

RESOLUCIÓN

Veamos la conexión en serie R1 y R2:

$$R_{eq} = R_1 + R_2 = 30\Omega + 30\Omega = 60\Omega$$

Ahora la conexión es en paralelo Req y R3:

$$R_{eq\,A\,y\,B} = \frac{(60\Omega)(30\Omega)}{60\Omega + 30\Omega} = 20\Omega$$

$$R_{eq\,A\,y\,B} = 20\Omega$$

Se agradece su colaboración y participación durante el tiempo de la clase.

