WSTEP DO WPROWADZENIA DO TEORII ZBIOROW

Ze wstepem do matematyki jest jak z uswiadamianiem seksualnym dzieci - mowi im sie prawde, ale nie mowi im sie wszystkiego

ORGANIZACJA

ZASADY ZALICZENIA

- EGZAMIN USTNY
- dwa kolokwia na poczatku maja i pod koniec semestru, zalezy kiedy uda sie zrobic listy

CZESCI WYKLADU

- aksjomaty
- liczby porzadkowe
- aksjomat wyboru
- liczby kardnalne
- arytmetyka kardynalna

LITERATURA

- J.Kraszewski Wstep do matematyki (pierwsze wydanie ma duzo bledow)
- A. Blaszczyk i M. Turek Teoria mnogosci
- Just, Weese Discovering Modern Set Theory part I

jedyna poprawna strona internetowa: math.uni.wroc.pl/ kraszew

FUNKCJE

FUNKCJA - zbior par uporzadkowanych o wlasnosci jednoznacznosci, czyli nie ma dwoch par o tym samym poprzedniku i dwoch roznych nastepnikach

dziedzine i przeciwdziedzine okreslamy poza definicja funkcji - nie sa na tym samym poziomie co sama funkcja:

$$\begin{aligned} \operatorname{dom}(f) &= \{x: \exists \ y \ \langle x,y \rangle \in f\} \\ \operatorname{rng}(f) &= \{y: \exists \ x \ \langle x,y \rangle \in f\} \end{aligned}$$

warto pamietac, ze definicja funkcji jako podzbioru $f\subseteq X\times Y$ taki, ze dla kazdego $x\in X$ istnieje dokladnie jeden $y\in Y$ takie, ze $\langle x,y\rangle\in f$ jest tak samo poprawna definicja, tylko kladzie nacisk na inny aspekt funkcji

OPERACJE UOGOLNIONE

dla rodziny indeksowanej $\{A_i: i \in I\}$ definiujemy:

- jej sume: $\bigcup_{i\in I}A_i=\{x:\ \exists\ i\in I\quad x\in A_i\}$
- jej przekroj: $\bigcap_{i \in I} A_i = \{x: \ \forall \ i \in I \quad x \in A_i\}$

sume uogolniona i przekroj uogolniony mozna definiowac na nieindeksowanej rodzinie zbiorow \mathcal{A} :

- suma: $\bigcup A = \{x : \exists A \in A \mid x \in A\}$
- przekroj: $\bigcap A = \{x : \forall A \in A \mid x \in A\}$

UOGOLNIONY ILOCZYN KARTEZJANSKI (uogolniony proodukt) zbiorow

$$A_1 \times A_2 = \{\langle x, y \rangle : x \in A_1 \land y \in A_2\}$$
$$A_1 \times A_2 \times A_3 = \{\langle x, y, z \rangle : x \in A_1 \land y \in A_2 \land z \in A_3\}$$

pierwszym pomyslem na definiowanie iloczynu kartezjanskiego trzech zbiorow jest:

$$A_1 \times A_2 \times A_3 := (A_1 \times A_2) \times A_3$$

problem - czy iloczyn kartezjanski jest laczny? intuicyjnie tak, formalnie juz nie:

$$(A_1 \times A_2) \times A_3 \neq A_1 \times (A_2 \times A_3)$$

bo byty sa inne:

$$\langle \langle a_1, a_2 \rangle, a_3 \rangle \neq \langle a_1, \langle a_2, a_3 \rangle \rangle$$

mimo ze iloczyn kartezjanski nie jest laczny, matematycy nie maja problemu uznawac, ze jest laczny

ISTNIEJE NATURALNA, KANONICZNA, BIJEKCJA,

ktora lewej stronie intuicyjnie przypisuje prawa strone

Formalnie indeksowana rodzina zbiorow jest funkcja ze zbioru indeksow w rodzine zbiorow, wiec powinna byc zapisywana w nawiasach trojkatnych.

Zapis w klamrach oznacza zbior wartości tej funkcji i nie ma znaczenia czy dany zbior pojawia sie jeden czy 30 razy - nie przeszkadza to definiowac sumy czy przekroju

$$\langle A_i:i\in I
angle$$
 - indeksowana rodzina zbiorow, czyli $A:I o igcup_{i\in I}A_i$ $A(i)=A_i$

Wyobrazmy sobie iloczyn kartezjanskich dwoch zbiorow nie jako punkt na plaszczyznie, a jako dwuelementowy ciag:

To przedstawienie latwo przelozyc na nieskonczenie dlugi iloczyn kartezjanski - dorysowuje sie kolejna os z elementami kolejnego podozbioru rodziny:

W ten sposob powstaje funkcja, ktora kolejnym inteksom przypisuje element z tego indeksu:

$$f: I \to \bigcup_{i \in I} A_i$$

$$f(i) \in A$$

wiec iloczyn uogolniony to zbior funkcji ze zbioru

indeksowego w rodzine indeksowana

$$\prod_{i \in I} A_i = \{ f \in (\bigcup_{i \in I} A_i)^I : \forall f(i) \in A_i \}$$

AAAALEEEE

$$\prod_{i \in I} A_i \neq A_1 \times A_2 \quad I = \{1, 2\}$$

Po lewej mamy zbior funkcji, a po prawej mamy iloczyn kartezjanski - mozna pokazac naturalnie bijekcje miedzy lewa a prawa strona, ale byty sa rozne. Matematycy wiedza, ze to jest co innego, ale sie tym calkowicie nie przejmuja <3

JEZYK LOGIKI

JEZYK RZEDU ZERO czyli rachunek zdan: $p,q,r,...,\lor,\land,\lnot,\Longrightarrow$, \Longleftrightarrow

JEZYK PIERWSZEGO RZEDU jest nadzbiorem jezyka rzedu zero

czesec logiczna

symbole zmiennych: $V = \{x_0, x_1, x_2, ...\}$ symbole spojnikow logicznych: $\{\neg, \lor, \land, \Longrightarrow, \iff\}$ symbole kwantyfikatorow: $\{\forall, \exists\}$ symbol rownosci: =

czesc pozalogiczna

symbole funkcyjne: $F=\{f_i:i\in I\}$ symbole relacyjne (predykaty): $R=\{r_j:j\in J\}$ symbole stale: $C=\{c_k:k\in K\}$

ARNOSC - odpowiada liczbie argumentow funkcji lub relacji, kazdy symbol ma swoja arnosc

SYGNATURA - zawiera informacje ile jest symboli funkcyjnych, relacyjnych lub stalych i jakiej sa arnosci w danym jezyku

sygnatura charakteryzuje jezyk

SYNTAKTYKA vs SEMANTYKA

Na wyspach Bergamuta - piekny wierszyk o zbiorze pustym (elementy \emptyset maja dowolna wartosc, tak jak to co sie dzieje na wyspach, ale ich nie ma)

Sum - jak odjac 0 od 10:

semantycznie: 10-0=10

syntaktycznie: 10 odjac 0 to 1

SEMANTYKA - patrzy na znaczenie napisow, nie sam napis

SYNTAKTYKA - interesuje ja tylko zapis, jezyk, a znaczenie nie ma, well, znaczenia (czyli 10 to tylko ciag dwoch symboli)

KONSTRUOWANIE JEZYKA

TERMY - bazowy zbior termow to zbior zmiennych i zbior stalych:

$$T_0 = V \cup C$$

do ich budowy wykorzystujemy symbole funkcyjne

Zalozmy, ze mamy skonstruowane termy az do rzedu n i chcemy skonstruowac termy rzedu n+1. Jesli mamy symbol funkcyjny arnosci k, to termem jest zastosowanie tego symbolu funkcyjnego do wczesniej skonstruowanych termow, ktorych jest k:

$$f \in F$$
 $f-$ arnosci k

$$f(t_1,...,t_k)$$
 $t_1,...,t_k \in \bigcup_{i=0}^n T_i$

Czyli jesli mamy zbior termow, to biore wszystkie dostepne symbole funkcyjne i stosuje je na wszystkie mozliwe sposoby do dotychczas skonstruowanych termow.

Termy to potencjalne wartosci funkcji.

FORMULY - budujemy rekurencyjnie, zaczynamy od formul atomowych:

$$t = s, \quad t, s \in TM$$

wszystkie rownosci termow

$$r \in R$$
 $r(t_1, ..., t_k)$

zastosowanie symbolu relacyjnego na odpowiedniej liczbie termow

Bazowy poziom formul jest formula atomowa:

$$F_{m_0} = \{ \varphi : \varphi - \text{ formula atomowa} \}$$

Jesli mamy F_{m_k} dla k < n, czyli mamy ponizej n wszystkie formuly skonstruowane, to

$$F_{m_n} : \neg(\varphi), \; \varphi \vee \psi, \; \varphi \wedge \psi, \dots \quad \text{ dla } \varphi, \psi \in \bigcup_{k < n} F_{m_k}$$

czyli uzywamy wszysktich spojnikow logicznych dla poprzednich formul

$$F_{m_n}:\,orall\,x_iarphi\;\exists\;x_iarphi\;\;\; {
m dla}\;arphi\inigcup_{k< n}F_{m_k},\;x_i\in V$$

czyli kwantyfikujemy tez po wszystkich mozliwych zmiennych wszystkie mozliwe formuly

$$FM = \bigcup_{n=0}^{\infty} F_{m_n}$$

$$L = \{\in\}$$

sklada sie z jednego binarnego predykatu, ktory nie jest jeszcze nalezeniem

W rachunku zdan przejscie z syntaktyki do semantyki to nadanie symbolom wartosci prawda lub falsz.

SYSTEM ALGEBRAICZNY:

$$A = \langle A, \{F_i : i \in I\}, \{R_j : j \in J\}, \{C_k : k \in K\} \rangle$$

odpowiednio: zbior (uniwersum), funkcje na A, relacje na A, stale w A

przyklady: $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$, $\langle \mathbb{R}, +, \cdot, 0, 1, \leq \rangle$ Mozemy interpretowac jezyk L w systemie \mathcal{A} , o ile maja te sama sygnature

INTERPRETACJA to funkcja ze zbioru wartosci w uniwersum:

$$i:V\to \mathcal{A}$$

a to sie rozszerza do funkcji ze zbioru termow w uniwersum:

$$\bar{i}:TM o\mathcal{A}$$
 $i\subset\bar{i}$

Poniewaz sygnatury sa takie same, to kazdemu symbolowi funkcyjnemu odpowiada funkcja o dokladnie tej samej arnosci. Czyli jesli mam symbol funkcyjny nakladany na termy, to odpowiadajaca mu funkcje nakladam na wartosci termow.

W systemie $\mathcal A$ formula φ jest spelniona przy interpretacji i: $\mathcal A \models \varphi[i]$

Zaczynamy od formul atomowych, czyli:

 $\mathcal{A} \models (t=s)[i]$ wtedy i tylko wtedy, gdy maja te sama interpretacje $(\bar{i}(t)=\bar{i}(s))$

 $\mathcal{A} \models r_j(t_1,...,t_k)[i]$ wtedy i tylko wtedy, gdy odpowiadajace temu predykatowi relacja zachodzi na wartosciach termow $(R_j(\bar{i}(t_1),...,\bar{i}(t_k)))$

 $\mathcal{A}\models (\neg\varphi)[i]$ wtedy i tylko wtedy, gdy nieprawda, ze $\mathcal{A}\models \varphi[i]$, i tak ze wszystkimi spojnikami logicznymi

 $\mathcal{A}\models (\forall\ x_m)\varphi[i]$ wtedy i tylko wtedy, gdy dla kazdego $a\in A$ mamy $\mathcal{A}\models \varphi[i(\frac{x_m}{a})]$, co znaczy ze biore konkretne a i sprawdzam, czy spelnione jest φ , tylko ze biore podstawienie i wszedzie poza x_m , a x_m przypisuje to konkretne a

AKSJOMATY

ZBIOR i NALEZENIE sa pojeciami pierwotnymi - nie defniujemy ich, ale opisujemy ich wlasnosci

AKSOMAT EKSTENSJONALNOSCI - zbior jest

jednoznacznie wyznaczony przez swoje elementy

$$\forall x \forall y \quad (x = y \iff \forall z \quad (z \in x \iff z \in y))$$

Od tego momentu zakladamy, ze od tego momentu istnieja wylacznie zbiory. Nie ma nie-zbiorow. Naszym celem jest budowanie uniwersum zbiorow i okazuje sie, ze w tym swiece mozna zinterpretowac cala matematyke.

AKSJOMAT ZBIORU PUSTEGO - istnieje zbior pusty Ø

$$\exists x \forall y \quad \neg y \in x$$

Na podstawie tych dwoch aksjomatow mozna udowodnic, ze istnieje dokladnie jeden zbior pusty:

Istnienie - aksjomat zbioru pustego

Jedynosci - niech P_1 , P_2 beda zbiorami pustymi. Wtedy dla dowolnego $z \neg z \in P_1 \land \neg z \in P_2$, czyli $z \in P_1 \iff z \in P_2$. Wobec tego na mocy aksjomatu ekstensjonalnosci mamy $P_1 = P_2$.

Przyjrzyjmy sie nastepujacemu systemowi algebraicznemu:

$$\mathcal{A}_1 = \langle \mathbb{N} \cap [10, +\infty), < \rangle$$

W systemie spelnione sa oba te aksjomaty:

$$\mathcal{A}_1 \models A_1 + A_2$$

Spelnianie bez interpretacji oznacza, ze dla dowolnej interpretacji jest to spelnione.