# Titanic Survival Prediction

```
library(data.table)
library(tidyverse)
library(dplyr)
library(stringr)
library(caret)
library(randomForest)
library(e1071)
library(rpart)
```

```
train <- fread("train.csv") %>% data.table()
test <- fread("test.csv") %>% data.table()
test$Survived <- NA
combi = rbind(train, test)
ntrain <- nrow(train)</pre>
```

str(train)

```
## Classes 'data.table' and 'data.frame': 891 obs. of 12 variables:
## $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
## $ Pclass : int 3 1 3 1 3 3 3 2 ...
## $ Pclass : int 3 1 3 1 3 3 2 3 2 ...
## $ Name : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)" "Heikki nen, Miss. Laina" "Futrelle, Mrs. Jacques Heath (Lily May Peel)" ...
## $ Sex : chr "male" "female" "female" "female" ...
## $ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
## $ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
## $ Sarch : int 0 0 0 0 0 0 0 1 2 0 ...
## $ Ticket : chr "A/5 21171" "PC 17599" "STON/02. 3101282" "113803" ...
## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Cabin : chr "" "C85" "" "C123" ...
## $ Embarked : chr "S" "C" "S" "S" "S" ...
## - attr(*, ".internal.selfref")=<externalptr>
```

str(test)

```
## Classes 'data.table' and 'data.frame': 418 obs. of 12 variables:
## $ PassengerId: int 892 893 894 895 896 897 898 899 900 901 ...
## $ Pclass : int 3 3 2 3 3 3 3 2 3 3 ...
## $ Name : chr "Kelly, Mr. James" "Wilkes, Mrs. James (Ellen Needs)" "Myles, Mr. Thomas Francis" "Wirz
, Mr. Albert" ...
## $ Sex : chr "male" "female" "male" ...
## $ Sex : chr "male" "female" "male" ...
## $ SibSp : int 0 1 0 0 1 0 0 1 0 2 ...
## $ Parch : int 0 0 0 0 1 0 0 1 0 2 ...
## $ Parch : chr "330911" "363272" "240276" "315154" ...
## $ Fare : num 7.83 7 9.69 8.66 12.29 ...
## $ Cabin : chr """"""""" ...
## $ Embarked : chr "Q" "S" "Q" "S" ...
## $ Survived : logi NA NA NA NA NA NA ...
## - attr(*, ".internal.selfref")=<externalptr>
```

```
ggplot(combi[1:ntrain,], aes(x = factor(Pclass), fill = factor(Survived))) +
geom_bar(width = 0.5, position="dodge") +
xlab("Pclass") +
ylab("Total Count") +
labs(fill = "Survived")
```

## Pclass vs Sex vs Survived



```
ggplot(combi[1:ntrain,], aes(x = factor(Sex), fill = factor(Survived))) +
  geom_bar(width = 0.5, position="dodge") +
  xlab("Sex") +
  ylab("Total Count") +
  labs(fill = "Survived")
```



```
ggplot(subset(combi[1:ntrain,],!is.na(Age)), aes(x = Age, fill = factor(Survived))) +
geom_histogram(bins = 30) +
xlab("Age") +
ylab("Total Count")
```



```
ggplot(subset(combi[1:ntrain,],!is.na(Age)), aes(Age, fill = factor(Survived))) +
geom_histogram(bins=30) +
xlab("Age") +
ylab("Count") +
facet_grid(.-Sex)+
scale_fill_discrete(name = "Survived") +
ggtitle("Age vs Sex vs Survived")
```

# Age vs Sex vs Survived



```
ggplot(combi[1:ntrain,], aes(Pclass, fill = factor(Survived))) +
  geom bar(stat = "count", position = "dodge")+
  xlab("Pclass") +
  facet_grid(.~Sex)+
  ylab("Count") +
  scale_fill_discrete(name = "Survived") +
  ggtitle("Pclass vs Sex vs Survived")
```

# Pclass vs Sex vs Survived



```
ggplot(combi[1:ntrain,], aes(x = Age, y = Sex)) +
geom_jitter(aes(colour = factor(Survived))) +
theme(legend.title = element_blank())+
facet_wrap(~Pclass) +
labs(x = "Age", y = "Sex", title = "Pclass vs Sex vs Age vs Survived")+
scale_fill_discrete(name = "Survived") +
scale_x_continuous(name="Age",limits=c(0, 81))
```

 $\mbox{\#\#}$  Warning: Removed 177 rows containing missing values (geom\_point).

## Pclass vs Sex vs Age vs Survived



table(combi[1:ntrain,]\$SibSp)

```
##
## 0 1 2 3 4 5 8
## 608 209 28 16 18 5 7
```

```
ggplot(combi[1:ntrain,], aes(x = SibSp, fill = factor(Survived))) +
  geom_histogram(binwidth=0.5, position="dodge") +
  xlab("Number of Siblings/Spouses") +
  ylab("Total Count") +
  labs(fill = "Survived")
```



```
ggplot(combi[1:ntrain,], aes(x=Fare , y = Pclass)) +
geom_jitter(aes(color = factor(Survived)))
```



```
table(combi[1:ntrain,]$Parch)
```

```
##
## 0 1 2 3 4 5 6
## 678 118 80 5 4 5 1
```

```
ggplot(combi[1:ntrain,], aes(x = Parch, fill = factor(Survived))) +
geom histogram(binwidth=0.5, position="dodge", stat = "count") +
facet_grid(.~Sex)+
xlab("Number of Parents/Children") +
ylab("Total Count") +
labs(fill = "Survived")
```

```
## Warning: Ignoring unknown parameters: binwidth, bins, pad
```



## in each column

| # : | # PassengerId | Survived | Pclass | Name | Sex   | Age      |
|-----|---------------|----------|--------|------|-------|----------|
| # : | # 0.00        | 31.93    | 0.00   | 0.00 | 0.00  | 20.09    |
| # : | # SibSp       | Parch    | Ticket | Fare | Cabin | Embarked |
| # : | # 0.00        | 0.00     | 0.00   | 0.08 | 77.46 | 0.15     |

# Ignoring attribute Cabin since 77% of data is missing, replacing NA in Embarked to S $\,$

table(combi\$Embarked)

```
##
## C Q S
## 2 270 123 914
```

```
combi$Embarked[combi$Embarked ==""] <- 'S'
combi$Embarked[combi$Embarked ==""] <- 'S'
combi$Fsize <- combi$SibSp + combi$Farch + 1
```

# Family Size vs Survived 300 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 -

table(combi\$Pclass)

```
## ## 1 2 3
## 323 277 709
```

```
ggplot(combi[1:ntrain,], aes(Embarked, fill = factor(Survived))) +
  geom bar(stat = "count", position = "dodge")+
  xlab("Pclass") +
  ylab("Count") +
  facet_grid(.~Pclass) +
  scale_fill_discrete(name = "Survived") +
  ggtitle("Embarked vs Pclass vs Survived")
```

## Embarked vs Pclass vs Survived

3



```
combi$Title <- NA
combi$Title <- sapply(combi$Name , function(x) str_trim(str_split(x,"[,.]")[[1]][2],side ="both"))
unique(combi$Title)</pre>
```

```
## [1] "Mr" "Mrs" "Miss" "Master"

## [5] "Don" "Rev" "Dr" "Mme"

## [9] "Ms" "Major" "Lady" "Sir"

## [13] "Mlle" "Col" "Capt" "the Countess"

## [17] "Jonkheer" "Dona"
```

```
combi$Title[combi$Title%in%c("Mme")] <- "Mrs"
combi$Title[combi$Title%in%c("Mnle","Ms")] <- "Miss"
officer <- c('Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev')
royalty <- c('Dona', 'Lady', 'the Countess','Sir', 'Jonkheer')
combi$Title[combi$Title %in% royalty] <- 'Royalty'
combi$Title[combi$Title %in% officer] <- 'Officer'</pre>
```

```
ggplot(combi[1:ntrain,] , aes(x=Title , fill = factor(Survived))) +
geom_histogram(bins = 6 , stat = "count") +
ggtitle("Title By Survived")+
theme(axis.text.x=element_text(angle=60, hjust=1))
```

```
## Warning: Ignoring unknown parameters: binwidth, bins, pad
```



## imputing missing age by predicting the age based on variables Pclass, Sex, title, SibSp, Parch, fare, Title

```
## Call:
## rpart(formula = Age ~ Pclass + Sex + Embarked + SibSp + Parch +
    Fsize + Fare + Title, data = combi[!is.na(combi$Age), ],
       method = "anova")
##
##
               CP nsplit rel error
## 1 0.21028409
                    0 1.0000000 1.0021794 0.04531621
1 0.7897159 0.7921058 0.03520690
## 2 0.10512853
## 3 0.09537135
                       2 U.6845874 0.7502329 0.03593644
3 0.5892160 0.5953120 0.03049945
4 0.5748521 0.6028027 0.03090432
5 0.5621824 0.5919662 0.03086995
6 0.551602 0.501402 0.03086995
                         2 0.6845874 0.7502329 0.03593644
## 4 0.01436395
## 5 0.01266967
## 6 0.01056208
                         6 0.5516203 0.5884412 0.03089030
##
## Variable importance
##
     Title Fare Pclass Parch Fsize SibSp 28 16 16 11 11 8
                                                                            Sex Embarked
##
## Node number 1: 1046 observations, complexity param=0.2102841
    mean=29.88114, MSE=207.5502
##
     left son=2 (266 obs) right son=3 (780 obs)
##
     Primary splits:
          Title splits as LLRRRR, improve=0.21028410, (0 missing)
Pclass < 1.5 to the right, improve=0.15460490, (0 missing)
SibSp < 2.5 to the right, improve=0.07107333, (0 missing)
##
##
          SibSp < 2.5 to the right, improve=0.07107333, (0 missing)
Fare < 49.5021 to the left, improve=0.05839866, (1 missing)
##
##
                                to the right, improve=0.05804572, (0 missing)
##
     Surrogate splits:
                    splits as LR,
                                                    agree=0.782, adj=0.143, (0 split)
##
                     < 2.5     to the right, agree=0.773, adj=0.109, (0 split)
< 4.5     to the right, agree=0.762, adj=0.064, (0 split)</pre>
##
          SibSp
##
                    < 4.5
           Fsize
##
           Parch
                    < 1.5
                                   to the right, agree=0.751, adj=0.023, (0 split)
          Embarked splits as RLR,
                                                     agree=0.748, adj=0.008, (0 split)
##
## Node number 2: 266 observations.
                                              complexity param=0.09537135
    mean=18.56831, MSE=164.0627
     left son=4 (128 obs) right son=5 (138 obs)
##
     Primary splits:
        Parch < 0.5
##
                               to the right, improve=0.4744399, (0 missing)
                               to the right, improve=0.3884753, (0 missing)
           Fsize < 2.5
##
          Sex splits as RL,
Title splits as LR----,
                                           improve=0.2597037, (0 missing)
improve=0.2597037, (0 missing)
##
##
                               to the right, improve=0.2127207, (0 missing)
           SibSp < 0.5
##
     Surrogate splits:
##
         Fsize < 1.5
                               to the right, agree=0.932, adj=0.859, (0 split)
          SibSp < 0.5 to the right, agree=0.786, adj=0.555, (0 split)

Fare < 13.20835 to the right, agree=0.744, adj=0.469, (0 split)
##
##
                                               agree=0.711, adj=0.398, (0 split)
##
          Sex splits as RL,
Title splits as LR----,
##
                                                agree=0.711, adj=0.398, (0 split)
## Node number 3: 780 observations, complexity param=0.1051285
##
    mean=33.7391, MSE=163.8521
     left son=6 (562 obs) right son=7 (218 obs)
##
##
     Primary splits:
          Fare < 24.86875 to the left, improve=0.17857830, (0 missing)
Title splits as --LRRR, improve=0.03939711, (0 missing)
Sev splits as FL improve=0.03939711, (0 missing)
##
##
##
           Sex splits as RL,
                                                 improve=0.01923511, (0 missing)
                                to the left, improve=0.01239742, (0 missing)
##
     Surrogate splits:
                     < 26.26875 to the left, agree=0.908, adj=0.670, (0 split)
         Fare
          Embarked splits as RLL,
Title splits as --LLRR,
                                                   agree=0.765, adj=0.161, (0 split)
agree=0.731, adj=0.037, (0 split)
##
##
## Node number 4: 128 observations, complexity param=0.01266967
     mean=9.407578, MSE=73.70615
##
     left son=8 (103 obs) right son=9 (25 obs)
      Primary splits:
         Fare < 48.2
Pclass < 1.5
##
                                 to the left, improve=0.2915456, (0 missing)
                                 to the right, improve=0.2562854, (0 missing)
##
          Sex splits as RL,
Title splits as LR----,
                                          improve=0.1522839, (0 missing) improve=0.1522839, (0 missing)
##
##
                                to the right, improve=0.0349171, (0 missing)
           SibSp <
##
     Surrogate splits:
                                 to the right, agree=0.961, adj=0.8, (0 split)
##
          Pclass < 1.5
## Node number 5: 138 observations,
                                             complexity param=0.01436395
    mean=27.06522, MSE=97.83633
```

```
left son=10 (69 obs) right son=11 (69 obs)
##
    Primary splits:
        Pclass < 2.5
                          to the right, improve=0.2309667000, (0 missing)
                ##
        Fare
##
        Embarked splits as RLL,
        SibSp < 0.5
Fsize < 1.5
##
                        to the right, improve=0.0008847728, (0 missing)
##
                          to the right, improve=0.0008847728, (0 missing)
##
    Surrogate splits:
               < 10.17085 to the left, agree=0.935, adj=0.870, (0 split)
##
        Fare
        Embarked splits as RLL,
                                       agree=0.645, adj=0.290, (0 split)
              ##
        SibSp
        Fsize
##
        Sex
                splits as RL,
                                       agree=0.507, adj=0.014, (0 split)
## Node number 6: 562 observations, complexity param=0.01056208
## mean=30.37011, MSE=116.7829
    left son=12 (361 obs) right son=13 (201 obs)
##
    Primary splits:
        Pclass < 2.5
                         to the right, improve=0.03493722, (0 missing)
               ##
        Fare
##
        Title
##
        Embarked splits as LRL,
                                       improve=0.01586441, (0 missing)
                         to the left, improve=0.01382681, (0 missing)
##
        Parch
               < 3.5
##
    Surrogate splits:
      Fare < 10.48125 to the left, agree=0.835, adj=0.537, (0 split)
##
       Title splits as --LRR-,
Sex splits as RL,
                                  agree=0.669, adj=0.075, (0 split)
agree=0.651, adj=0.025, (0 split)
##
## Node number 7: 218 observations
## mean=42.42431, MSE=180.5023
## Node number 8: 103 observations
   mean=7.123786, MSE=43.27704
##
##
   mean=18.8168, MSE=89.05189
## Node number 10: 69 observations
## mean=22.31159, MSE=42.00074
## Node number 11: 69 observations
   mean=31.81884, MSE=108.4781
##
## Node number 12: 361 observations
##
   mean=28.86288, MSE=100.2727
##
## Node number 13: 201 observations
## mean=33.07711, MSE=135.0276
```

```
combi$Age[is.na(combi$Age)] <- predict(agefit , combi[is.na(combi$Age),])
## child or adult based on age
combi$Child[combi$Age < 18] <- 'Child'
combi$Child[combi$Age >= 18] <- 'Adult'</pre>
```

```
ggplot(data = combi[1:ntrain,] , aes(x=Child , fill = factor(Survived))) +
  geom_bar(stat = "count", position = "dodge") + facet_grid(.~Sex)
```



```
combi$Pclass <- factor(combi$Pclass)
combi$Sex <- as.integer(combi$Sex=="male")
combi$Child <- as.integer(combi$Child=="Child")
combi$Embarked <- factor(combi$Embarked)
combi$Title <- as.factor(combi$Title)

sapply(combi, function(x) {ifelse(sum(is.na(x))!=0 , round(sum(is.na(x))*100/nrow(combi),2) , round(sum(x=="")*100/nrow(combi),2))})</pre>
```

| ## | PassengerId | Survived | Pclass | Name | Sex   | Age      |
|----|-------------|----------|--------|------|-------|----------|
| ## | 0.00        | 31.93    | 0.00   | 0.00 | 0.00  | 0.00     |
| ## | SibSp       | Parch    | Ticket | Fare | Cabin | Embarked |
| ## | 0.00        | 0.00     | 0.00   | 0.08 | 77.46 | 0.00     |
| ## | Fsize       | Title    | Child  |      |       |          |
| ## | 0.00        | 0.00     | 0.00   |      |       |          |

```
#creating indices
trainIndex <- createDataPartition(combi[1:ntrain,]$Survived,p=1,list=FALSE)
#splitting data into training/testing data using the trainIndex object
train_titanic <- combi[trainIndex,]
test_titanic <- combi[-trainIndex,]

#creating indices to split train into train and validation
Index2 <- createDataPartition(train_titanic$Survived,p=0.8,list=FALSE)
train <- train_titanic[Index2,]
validation <- train_titanic[-Index2,]</pre>
```

## Logistic Regression

```
model_glm <- glm(Survived ~ Pclass+Sex+Fsize+Child+Fare+Embarked+Title ,data = train, family = binomial(link =
"logit") )
summary(model_glm)</pre>
```

```
## Call:
## glm(formula = Survived ~ Pclass + Sex + Fsize + Child + Fare +
          Embarked + Title, family = binomial(link = "logit"), data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1463 -0.5656 -0.3809 0.5329 2.6420
## Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
## (Intercept) 19.153678 500.065168 0.038 0.9694

## Pclass2 -1.100031 0.350589 -3.138 0.0017 **

## Pclass3 -2.145112 0.344665 -6.224 4.85e-10 ***

## Sex -14.758669 500.064477 -0.030 0.9765
                     -0.539416 0.108508 -4.971 6.65e-07 ***

0.488847 0.432319 1.131 0.2582

0.003918 0.003286 1.192 0.2332

-0.212344 0.478981 -0.443 0.6575

-0.358904 0.292326 -1.228 0.2195
## Fsize
## Child
## Fare
## EmbarkedO
## EmbarkedS
## TitleMiss -15.530429 500.064856 -0.031 0.9752
## TitleMiss -15.530429 500.064856 -0.031 0.9752
## TitleMr -3.969396 0.689670 -5.755 8.64e-09 ***
## TitleMrs -15.032857 500.064975 -0.030 0.9760
## TitleOfficer -4.292622 0.923427 -4.649 3.34e-06 ***
## TitleRoyalty -3.517950 1.590117 -2.212 0.0269 *
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
\#\# (Dispersion parameter for binomial family taken to be 1)
## Null deviance: 939.87 on 712 degrees of freedom
## Residual deviance: 568.60 on 699 degrees of freedom
## AIC: 596.6
## Number of Fisher Scoring iterations: 13
```

```
# validation
predglm <- predict(model_glm, validation , type ="response" )
logit_survived = as.numeric(predglm >= 0.5)
table(logit_survived)
```

```
## logit_survived
## 0 1
## 105 73
```

confusionMatrix(as.factor(validation\$Survived), as.factor(logit survived))

```
## Confusion Matrix and Statistics
##
            Reference
## Prediction 0 1
       0 86 14
1 19 59
##
##
##
##
                Accuracy : 0.8146
     95% CI : (0.7496, 0.8688)
No Information Rate : 0.5899
##
##
     P-Value [Acc > NIR] : 1.274e-10
##
                     Kappa : 0.6208
## Mcnemar's Test P-Value : 0.4862
##
              Sensitivity: 0.8190
##
              Specificity: 0.8082
##
           Pos Pred Value : 0.8600
##
           Neg Pred Value : 0.7564
                Prevalence : 0.5899
##
          Detection Rate : 0.4831
##
    Detection Prevalence : 0.5618
        Balanced Accuracy : 0.8136
##
         'Positive' Class : 0
##
```

```
# predicting Test
test_glm <- predict(model_glm, test_titanic , type ="response" )
print(RMSE(validation$Survived,logit_survived))</pre>
```

```
## [1] 0.4305732
```

```
## Confusion Matrix and Statistics
##
             Reference
## Prediction 0 1
## 0 91 9
## 1 24 54
##
                   Accuracy : 0.8146
95% CI : (0.7496, 0.8688)
##
##
     No Information Rate : 0.6461
##
      P-Value [Acc > NIR] : 6.012e-07
##
                       Kappa : 0.6153
## Mcnemar's Test P-Value : 0.01481
                Sensitivity: 0.7913
##
                Specificity: 0.8571
             Pos Pred Value : 0.9100
##
            Neg Pred Value : 0.6923
##
##
                 Prevalence : 0.6461
           Detection Rate : 0.5112
##
     Detection Prevalence : 0.5618
Balanced Accuracy : 0.8242
##
##
          'Positive' Class : 0
##
```

print (RMSE (validation\$Survived, rf\_pred))

```
## [1] 0.4305732
```

### SVM

```
## Warning in train.default(x, y, weights = w, ...): You are trying to do ## regression and your outcome only has two possible values Are you trying to ## do classification? If so, use a 2 level factor as your outcome column.
```

```
svm_pred <- predict(Rsvm , validation )
svm_pred = as.numeric(svm_pred >= 0.5)
confusionMatrix(as.factor(validation$Survived) ,as.factor(svm_pred))
```

```
## Confusion Matrix and Statistics
##
            Reference
## Prediction 0 1
        0 80 20
##
##
##
                 Accuracy: 0.7921
                    95% CI : (0.7251, 0.8492)
##
     No Information Rate : 0.5449
     P-Value [Acc > NIR] : 5.144e-12
##
                    Kappa : 0.5796
##
## Mcnemar's Test P-Value : 0.7423
##
##
              Sensitivity: 0.8247
           Specificity: 0.7531
Pos Pred Value: 0.8000
##
##
##
           Neg Pred Value : 0.7821
##
               Prevalence: 0.5449
           Detection Rate : 0.4494
     Detection Prevalence : 0.5618
##
        Balanced Accuracy : 0.7889
##
         'Positive' Class : 0
##
```

```
print (RMSE (validation$Survived, svm_pred))
```

```
## [1] 0.4559223
```

## **Gradient Boosting**

```
## n.trees interaction.depth shrinkage n.minobsinnode
## 4 300 6 0.01 10
```

```
gbm_pred <- predict(fit_gbm , validation )
gbm_pred = as.numeric(gbm_pred >= 0.5)
confusionMatrix(as.factor(validation$Survived) ,as.factor(gbm_pred))
```

```
\#\# Confusion Matrix and Statistics
##
                      Reference
## Prediction 0 1
## 0 95 5
## 1 25 53
##
        Accuracy : 0.8315
95% CI : (0.7682, 0.8833)
No Information Rate : 0.6742
P-Value [Acc > NIR] : 1.724e-06
##
##
##
## Kappa : 0.6478
## Mcnemar's Test P-Value : 0.0005226
                         Sensitivity: 0.7917
##
                  Sensitivity: 0.991/
Specificity: 0.9138
Pos Pred Value: 0.9500
Neg Pred Value: 0.6795
Prevalence: 0.6742
Detection Rate: 0.5337
##
##
##
##
##
##
       Detection Prevalence : 0.5618
Balanced Accuracy : 0.8527
                'Positive' Class : 0
##
```

```
print(RMSE(validation$Survived,gbm_pred))
```

```
## [1] 0.4105354
```