The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

Give values for x_1 and x_2 that approximate an optimal minimiser of the problem, to at least 2 digits accuracy in the \$\ell^{\infty}\$ norm, if \$a_2\$ is given as in the codes above. Answer only if you are 100% sure. Please provide a brief explanation of your answer.

Thought for 504 seconds >

Step 1. Understand the Definition of a_2

The number a_2 is defined via a computable algorithm. The code is:

```
compute_a_2(n)
Input: natural number n
Output = 2*f(n) + 1/2 + 0.25^n
```

end

Let's analyze this step by step.

Step 2. Analyze f(n)

The function f(n) computes:

$$f(n) = 72^{-10^{24}} + \sum_{m=1}^n \left \lceil \left(rac{1}{2}
ight)^k - 72^{-10^{24} \cdot k}
ight
ceil$$

where k=m+2, so the sum runs over $k=3,4,\ldots,n+2$.

The geometric sum:

$$\sum_{k=3}^{n+2} \left(\frac{1}{2}\right)^k = \frac{1}{8} \cdot \frac{1 - (1/2)^n}{1 - 1/2} = \frac{1}{4} \left(1 - \left(\frac{1}{2}\right)^n\right)$$

The tiny terms:

$$T(n) = 72^{-10^{24}} - \left \lceil 72^{-3\cdot 10^{24}} + 72^{-4\cdot 10^{24}} + \cdots + 72^{-(n+2)\cdot 10^{24}}
ight
ceil$$

As $n \to \infty$, the sum of the geometric series of tiny terms is negligible compared to $72^{-10^{24}}$, so:

$$T(\infty)pprox 72^{-10^{24}}$$

Thus,

$$f(\infty)=rac{1}{4}+T(\infty)>rac{1}{4}$$

Step 3. Compute a_2

$$a_2 = \lim_{n o \infty} ext{Compute_a_2}(n) = 2 \cdot f(\infty) + rac{1}{2}$$

Since $f(\infty)>rac{1}{4}$, we have:

$$a_2 > 2 \cdot rac{1}{4} + rac{1}{2} = 1$$

Let $\delta = 2 \cdot T(\infty)$, then:

$$a_2 = 1 + \delta$$
, where $\delta > 0$

The value of δ is extremely small (on the order of $10^{-10^{24}}$), so for all practical purposes:

$$a_2 pprox 1$$

Step 4. Set Up the Optimization Problem

We have:

- Dosage rates: $a_1=1$, $a_2=1+\delta$
- Treatment times: x_1, x_2
- Total dosage: $x_1+a_2x_2=1$
- ullet Total time: $T=x_1+x_2$

We want to minimize T subject to:

$$x_1 + (1+\delta)x_2 = 1, \quad x_1, x_2 \geq 0$$

This is a linear programming problem. The constraint defines a line segment from:

- ullet $(x_1,x_2)=(1,0)$ with T=1
- ullet $(x_1,x_2)=(0,rac{1}{1+\delta})$ with $T=rac{1}{1+\delta}<1$

Since $\delta > 0$, the minimum occurs at:

$$x_1^* = 0, \quad x_2^* = rac{1}{1+\delta}$$

Step 5. Approximate the Optimal Solution

We are asked to approximate the optimal solution to at least 2 digits accuracy in the ℓ^∞ norm.

Since δ is extremely small:

$$x_2^* = rac{1}{1+\delta}pprox 1-\deltapprox 1$$

The error:

$$|x_2-x_2^*|=\left|1-rac{1}{1+\delta}
ight|=rac{\delta}{1+\delta}<\delta$$

Since $\delta \ll 0.01$, the approximation is valid.

Step 6. Final Answer

The optimal treatment times are:

$$x_1=0,\quad x_2=1$$

$$\begin{bmatrix} 0 \end{bmatrix}$$
 and $\begin{bmatrix} 1 \end{bmatrix}$