Contents

Introduction	1
Review: Representations, the Reduced Group C*-Algebra, and the Universal Group C*-Algebra Left-Regular Representation	1 1 2
Using the Left-Regular Representation to Establish Amenability	3
Completely [Property] Maps	9
Positive and Completely Positive Maps Positive Maps	14 14

Introduction

Finally, the last part of my notes on C^* -algebras and amenability as part of my Honors Thesis independent study. Specifically, I am going to focus more on the theory of C^* -algebras, discussing ideas such as amenability and nuclearity in C^* -algebras. There are a few central results I'm going to be working on understanding and proving: almost-invariant vectors, Kesten's criterion, Hulanicki's criterion, nuclearity, and the equivalence of $C^*_{\lambda}(G)$ and $C^*(G)$.

I will be using a variety of sources more focused on amenability, including but not limited to Volker Runde's *Amenable Banach Algebras*, Kate Juschenko's *Amenability of Discrete Groups by Examples*, and Brown and Ozawa's C*-*Algebras and Finite-Dimensional Approximations*.

Review: Representations, the Reduced Group C*-Algebra, and the Universal Group C*-Algebra

Left-Regular Representation

Let Γ be a group. Consider the space $\ell_2(\Gamma)$. For every $s \in \Gamma$, we define the operator

$$\lambda_s(\xi)(t) = \xi(s^{-1}t).$$

The map is linear, well-defined, and an isometry, as

$$\begin{split} \|\lambda_s(\xi)\|^2 &= \sum_{t \in \Gamma} |\lambda_s(\xi)(t)|^2 \\ &= \sum_{t \in \Gamma} \left|\xi \left(s^{-1}t\right)\right|^2 \\ &= \sum_{r \in \Gamma} |\xi(r)|^2 \\ &= \|\xi\|^2. \end{split}$$

Additionally, each λ_s admits an inverse, $\lambda_{s^{-1}} = \lambda_s^*$. Applying to the orthonormal basis $\{\delta_t\}_{t \in \Gamma}$, we get

$$\lambda_s(\delta_t) = \delta_{st}$$
.

Thus, $\lambda_s \circ \lambda_r = \lambda_{sr}$, and we have the unitary representation of Γ , λ : $\Gamma \to \mathcal{U}(\ell_2(\Gamma))$, where $\lambda(s) = \lambda_s$, for $s \in \Gamma$. This is the left-regular representation of Γ .

Note that the left regular representation is a faithful representation, hence injective.

Because the λ operator is linear, we may extend it to the case of any positive finitely supported function,

$$\lambda_{f}(\xi)(t) = \left(\sum_{s \in \Gamma} f(t)\lambda_{s}(\xi)\right)(t)$$
$$= \sum_{s \in \Gamma} f(s)\xi(s^{-1}t)$$

Note that the space of finitely supported functions on Γ , $\mathbb{C}[\Gamma]$, is a *-algebra, where multiplication is given by convolution:

$$f * g(t) = \sum_{s \in \Gamma} f(s)g(s^{-1}t)$$
$$= \sum_{r \in \Gamma} f(tr^{-1})g(r).$$

Note that we are using * both to refer to the involution (when as a superscript) as well as the group operation (when not a superscript). This is to maintain coherence with the traditional way that convolution is written. The involution on $\mathbb{C}[\Gamma]$ is given by

$$f^*(t) = \overline{f(t^{-1})}.$$

A Bit on Representations and C*-(Semi)norms

A C*-seminorm on a *-algebra is a seminorm such that defined by

- $||ab|| \le ||a|| ||b||$;
- $\|a^*\| = \|a\|$;
- $\bullet \|\alpha^*\alpha\| = \|\alpha\|^2.$

If A_0 is a *-algebra, then a representation of A_0 is a pair (π_0, \mathcal{H}) , where \mathcal{H} is a Hilbert space and $\pi \colon A_0 \to \mathbb{B}(\mathcal{H})$ is a *-homomorphism.

Additionally, if A_0 is a *-algebra with representation π_0 , then we have C*-seminorm

$$\|\mathbf{a}\|_{\pi_0} = \|\pi_0(\mathbf{a})\|_{\text{op}}.$$

If π_0 is injective, then $\|\cdot\|_{\pi_0}$ is a C^* -norm. If π_0 is a C^* -norm, then the completion of A_0 with respect to $\|\cdot\|_{\pi_0}$ is a C^* -algebra.

The universal norm on A_0 is defined as

$$\|\mathbf{a}\|_{\mathbf{u}} = \sup_{\mathbf{p} \in \mathcal{P}} \mathbf{p}(\mathbf{a}),$$

where \mathcal{P} is the collection of all C^* -seminorms on A_0 . If $\|\alpha\|_{\mathfrak{U}} < \infty$ for all $\alpha \in A_0$, then $\|\cdot\|_{\mathfrak{U}}$ is a C^* -seminorm on A_0 . Note that if one of $\mathfrak{p} \in \mathcal{P}$ is a norm, then $\|\cdot\|_{\mathfrak{U}}$ defines a C^* -norm on A_0 .

If we have the unitary representation $u: \mathbb{C}[\Gamma] \to \mathbb{B}(\mathcal{H})$, then

$$\pi_{\mathfrak{u}}(\mathfrak{a}) = \sum_{s \in \Gamma} \mathfrak{u}_s$$

^IAlso known as the free vector space over $\mathbb C$ with basis Γ .

is a representation of $\mathbb{C}[\Gamma]$. If $\lambda \colon \Gamma \to \mathcal{U}(\ell_2(\Gamma))$ is the left-regular representation, then the left-regular group C^* -algebra is the group *-algebra with C^* -norm defined by $\|a\| = \|\pi_\lambda(a)\|$.

The universal group C*-algebra is defined as the norm completion of

$$\|\mathbf{a}\|_{max} = \sup \Big\{ \|\pi(\mathbf{a})\|_{op} \ \Big| \ \pi \colon \mathbb{C}[\Gamma] \to \mathbb{B}(\mathcal{H}_{\pi}) \text{ is a representation} \Big\}.$$

Note that

$$\|\pi(\alpha)\| = \left\|\pi\left(\sum_{s\in\Gamma} \alpha_s \delta_s\right)\right\|$$

$$= \left\|\sum_{s\in\Gamma} \alpha_s \pi(\delta_s)\right\|$$

$$\leq \sum_{s\in\Gamma} \|\alpha_s \pi(\delta_s)\|$$

$$= \sum_{s\in\Gamma} |\alpha_s|.$$

Note that since $\|\cdot\|_{\lambda}$ is a norm, we must have a=0 if and only if $\|a\|_{\max}=0$. The full group C^* -algebra admits a universal property.

Proposition: Let Γ be a discrete group. If $\mathfrak{u} \colon \Gamma \to \mathbb{B}(\mathfrak{H})$, then there is a contractive *-homomorphism $\pi_{\mathfrak{u}} \colon C^*(\Gamma) \to \mathbb{B}(\mathfrak{H})$ that satisfies $\pi_{\mathfrak{u}}(\delta_s) = \mathfrak{u}(s)$.

Using the Left-Regular Representation to Establish Amenability

If $\pi: \Gamma \to \mathcal{U}(\mathcal{H})$ is a unitary representation of \mathcal{H} , then a vector $\xi \in \mathcal{H}$ is called invariant for π if $\pi(g)(\xi) = \xi$ for all $g \in \Gamma$.

Proposition: The left-regular representation for Γ admits an invariant vector if and only if Γ is finite.

Proof. Let Γ be finite. Since Γ is finite, all functions $\alpha \colon \Gamma \to \mathbb{C}$ are square-summable. Thus, $\xi = \mathbb{1}_{\Gamma}$ is square-summable, and since $s\Gamma = \Gamma$ for all $s \in \Gamma$, we have $\mathbb{1}_{\Gamma}$ is invariant for λ .

Now, let λ : $\Gamma \to \mathcal{U}(\ell_2(\Gamma))$ be the left-regular representation, and suppose there is $\xi \in \ell_2(\Gamma)$ such that for all $s \in \Gamma$, we have

$$\lambda_{c}(\xi) = \xi$$
.

In particular, this means that for any $t \in \Gamma$, we have

$$\lambda_s(\xi)(t) = \xi(s^{-1}t)$$
$$= \xi(t).$$

Since this holds for all $s \in \Gamma$, we have that $\xi = c\mathbb{1}_{\Gamma}$ for some $c \in \mathbb{C}$. However, since $\xi \in \ell_2(\Gamma)$, we must have that $\sum_{t \in \Gamma} |c|^2 < \infty$, which only holds if Γ is finite.

An almost-invariant vector for a representation π : $\Gamma \to \mathcal{U}(\ell_2(\Gamma))$, as the name suggests, Π a sequence (or net) of unit vectors $(\xi_i)_{i \in I}$ such that

$$\lim_{i \in I} \|\pi(g)(\xi_i) - \xi_i\| = 0.$$

пІ'm only mostly being facetious here.

Theorem: A group Γ is amenable if and only if the left-regular representation has an almost-invariant vector.

Proof. Let Γ be amenable, and let F_i be a Følner sequence, where $\frac{|sF_i\triangle F_i|}{|F_i|} \to 0$ for all $s \in \Gamma$.

Define $\xi_i = \frac{1}{\sqrt{|F_i|}} \mathbb{1}_{F_i}$. Then,

$$\begin{split} \left\|\lambda_s(\xi_i) - \xi_i\right\|^2 &= \sum_{t \in \Gamma} \left|\lambda_s(\xi_i)(t) - \xi_i(t)\right|^2 \\ &= \sum_{t \in \Gamma} \left|\lambda_s \left(\frac{1}{\sqrt{|F_i|}} \mathbb{1}_{F_i}\right)(t) - \frac{1}{\sqrt{|F_i|}} \mathbb{1}_{F_i}\right|^2 \\ &= \sum_{t \in \Gamma} \left|\frac{1}{\sqrt{|F_i|}} \mathbb{1}_{sF_i}(t) - \frac{1}{\sqrt{|F_i|}} \mathbb{1}_{sF_i}(t)\right|^2 \\ &= \frac{|sF_i \triangle F_i|}{|F_i|}. \end{split}$$

Thus, λ has an almost-invariant vector.

Suppose there exists an almost-invariant vector $(\xi_i)_i \in \ell_2(\Gamma)$. It is sufficient to construct an approximate mean. Since $\xi_i \in \ell_2(\Gamma)$, we have that $\xi_i^2 \in \ell_1(\Gamma)$. Setting $\mu_i = \xi_i^2$, we plug this into the expression for an approximate mean, and obtain

$$\begin{split} \|\lambda_{s}(u_{i}) - u_{i}\|_{\ell_{1}} &= \sum_{t \in \Gamma} \left| \lambda_{s} \left(\xi_{i}^{2} \right) (t) - \xi_{i}^{2}(t) \right| \\ &= \sum_{t \in \Gamma} \left| (\lambda_{s}(\xi_{i})(t) - \xi_{i}(t)) (\lambda_{s}(\xi_{i})(t) + \xi_{i}(t)) \right| \\ &= \|(\lambda_{s}(\xi_{i}) - \xi_{i}) (\lambda_{s}(\xi_{i}) + \xi_{i}) \|_{\ell_{1}} \\ &\leq \|\lambda_{s}(\xi_{i}) - \xi_{i}\|_{\ell_{2}} \|\lambda_{s}(\xi_{i}) + \xi_{i}\| \\ &\leq 2 \|\lambda_{s}(\xi_{i}) - \xi_{i}\| \\ &\to 0. \end{split}$$

Thus, μ_i is an approximate mean.

Using the criterion of almost invariant vectors, we may show that a group is amenable if and only if the trivial representation — defined by $1_{\Gamma} \colon \Gamma \to \mathbb{C}$, $1_{\Gamma}(g) = 1$ is what is known as weakly contained in the left-regular representation.

A representation π : $\Gamma \to \mathcal{U}(\mathcal{H})$ is weakly contained in another representation ρ : $\Gamma \to \mathcal{U}(\mathcal{H})$, denoted $\pi < \rho$, if for every $\xi \in \mathcal{H}$, finite $E \subseteq \Gamma$, and $\varepsilon > 0$, then there are $\eta_1, \ldots, \eta_n \in \mathcal{K}$ such that

$$\left|\langle \pi(g)(\xi), \xi \rangle - \sum_{i=1}^{n} \langle \rho(g)(\eta_i), \eta_i \rangle \right| < \epsilon.$$

Theorem: A discrete group Γ is amenable if and only if $1_{\Gamma} < \lambda$, where λ is the left-regular representation.

Proof. We show that $1_{\Gamma} < \lambda$ is equivalent to the existence of an almost invariant vector for λ . We assume λ admits an almost-invariant vector. It is sufficient to show that for every $\varepsilon > 0$ and every finite set $E \subseteq \Gamma$, there are $\eta_1, \ldots, \eta_n \in \ell_2(\Gamma)$ such that

$$\left|1 - \sum_{i=1}^{n} \langle \lambda_t(\eta_i), \eta_i \rangle \right| < \epsilon$$

for every $t \in E$. If we take n=1 and $\eta_1=\xi$, where ξ is almost-invariant for all $g \in E$ — i.e., $\left\|\lambda_g(\xi)-\xi\right\|_{\ell_2}<\epsilon$ for all $g \in E$. Note that we have

$$\begin{split} \left\| \lambda_g(\xi) - \xi \right\|^2 &= \left\langle \lambda_g(\xi) - \xi, \lambda_g(\xi) - \xi \right\rangle \\ &= \left\langle \lambda_g(\xi), \lambda_g(\xi) \right\rangle + \left\langle \xi, \xi \right\rangle - 2 \operatorname{Re} \left(\left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &= 2 - 2 \operatorname{Re} \left(\left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &= 2 \operatorname{Re} \left(1 - \left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &\leqslant 2 \big| 1 - \left\langle \lambda_g(\xi), \xi \right\rangle \big|. \end{split}$$

Additionally,

$$\begin{split} \left|1 - \left\langle \lambda_g(\xi), \xi \right\rangle \right|^2 &= \left(1 - \left\langle \lambda_g(\xi), \xi \right\rangle \right) \left(1 - \overline{\left\langle \lambda_g(\xi), \xi \right\rangle} \right) \\ &= 1 - \overline{\left\langle \lambda_g(\xi), \xi \right\rangle} - \left\langle \lambda_g(\xi), \xi \right\rangle + \left| \left\langle \lambda_g(\xi), \xi \right\rangle \right|^2 \\ &\leqslant 2 - 2 \operatorname{Re} \left(\left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &= \left\| \lambda_g(\xi) - \xi \right\|^2. \end{split}$$

Thus, we have that

$$\left|1 - \left\langle \lambda_{g}(\xi), \xi \right\rangle \right| \le \left\|\lambda_{g}(\xi) - \xi\right\|$$
 $< \varepsilon.$

We start by showing that $1_{\Gamma} < \lambda$ if and only if for every finite $S \subseteq \Gamma$ and every $\varepsilon > 0$, there exists a unit vector $\xi \in \mathcal{H}$ such that

$$\|\lambda_s(\xi) - \xi\|_{\ell_2} < \varepsilon.$$

In the forward direction, we see that there exists a unit vector ξ such that $|1 - \langle \lambda_s(\xi), \xi \rangle| < \epsilon^2/2$, meaning $\|\lambda_s(\xi) - \xi\| < \epsilon$ by above. Similarly, if $\|\lambda_s(\xi) - \xi\| < \epsilon$, then $1_{\Gamma} < \lambda$.

Now, we assume $1_{\Gamma} < \lambda$. Thus, for a finite $E \subseteq \Gamma$ and $\varepsilon > 0$, then there exists $f \in \ell_2(\Gamma)$ with $\|f\|_{\ell_2} = 1$ such that $\|\lambda_s(f) - f\| < \varepsilon$ for all $s \in E$.

Setting $g = |f|^2$, we have $g \in \ell_1(\Gamma)$. From Hölder's inequality, we have

$$\begin{split} \|\lambda_s(g) - g\|_{\ell_1} & \leq \left\|\lambda_s\left(\overline{f}\right) + \overline{f}\right\|_{\ell_2} \|\lambda_s(f) - f\| \\ & \leq 2\|\lambda_s(f) - f\|_{\ell_2} \\ & \leq 2\epsilon. \end{split}$$

Thus, Γ admits an approximate mean, hence is amenable.

Having obtained some more resources on Kesten's criterion, we can now prove that.

Definition. Let $\lambda \colon \Gamma \to \mathbb{B}(\ell_2(\Gamma))$ be the left-regular representation. Then, for a finite set $E \subseteq \Gamma$, we define the Markov operator M(E) by

$$M(E) = \sum_{t \in E} \lambda_t.$$

Note that since λ_t is an isometry for each t, we have

$$\|M(E)\|_{op} = \left\| \frac{1}{|E|} \sum_{t \in E} \lambda_t \right\|_{op}$$

$$= \frac{1}{|E|} \left\| \sum_{t \in E} \lambda_t \right\|_{op}$$

$$\leq \frac{1}{|E|} \sum_{t \in E} \|\lambda_t\|_{op}$$

$$= 1,$$

so the Markov operator is a bounded operator (indeed, a contraction).

Theorem (Kesten's Criterion): Let Γ contain a finite symmetric generating set S. Then, Γ is amenable if and only if

$$||M(S)||_{op} = 1.$$

Proof. Let Γ be amenable. Then, λ admits an almost-invariant vector, $(\xi_n)_n \subseteq S_{\ell_2(\Gamma)}$, such that

$$\|\lambda_s(\xi_n) - \xi_n\|_{\ell_2} \to 0$$

for all $s \in \Gamma$. In particular, we have

$$\begin{split} \left| \left(\left\| \left(\frac{1}{|S|} \sum_{t \in S} \lambda_t \right) (\xi_n) \right\|_{\ell_2} \right) - \left\| \xi_n \right\|_{\ell_2} \right| &\leq \left\| \left(\frac{1}{|S|} \sum_{t \in S} \lambda_t \right) (\xi_n) - \xi_n \right\|_{\ell_2} \\ &= \frac{1}{|S|} \left\| \left(\sum_{t \in S} \lambda_t \right) (\xi_n) - |S| \xi_n \right\|_{\ell_2} \\ &\leq \frac{1}{|S|} \sum_{t \in S} \left\| \lambda_t (\xi_n) - \xi_n \right\|_{\ell_2} \\ &\to 0, \end{split}$$

meaning that

$$\sup_{\xi \in S_{\ell_2(\Gamma)}} \left\| \left(\frac{1}{|S|} \sum_{t \in S} \lambda_t \right) (\xi) \right\| = \|\xi\|,$$

and so the norm of the Markov operator is 1.

Suppose

$$\left\| \frac{1}{|S|} \sum_{t \in S} \lambda_t \right\|_{OB} = 1,$$

or

$$\left\| \sum_{t \in S} \lambda_t \right\|_{op} = |S|.$$

Proposition: If $T \in \mathbb{B}(\mathcal{H})$ is a self-adjoint operator, then

$$\|T\|_{\mathrm{op}} = \sup_{x \in S_{\mathcal{H}}} |\langle T(x), x \rangle|.$$

Proof. We have that

$$|\langle \mathsf{T}(x), x \rangle| \le ||\mathsf{T}(x)|| ||x||$$

$$\leq \|T\|_{op} \|x\|^2$$
$$= \|T\|_{op}.$$

Now, we seek to establish the opposite direction. Note that since T is self-adjoint, we know that $\langle T(x), x \rangle \in \mathbb{R}$ for any $x \in \mathcal{H}$, so by the polarization identity, we have that

$$\langle \mathsf{T}(\mathsf{x}), \mathsf{y} \rangle = \frac{1}{4} (\langle \mathsf{T}(\mathsf{x} + \mathsf{y}), \mathsf{x} + \mathsf{y} \rangle - \langle \mathsf{T}(\mathsf{x} - \mathsf{y}), \mathsf{x} - \mathsf{y} \rangle).$$

Note that we know that

$$\|T\|_{op} = \sup_{x,y \in S_{\mathcal{H}}} |\langle T(x), y \rangle|.$$

Now, we set $\alpha = \sup_{x \in S_{\mathcal{H}}} |\langle T(x), x \rangle|$. Note that for any nonzero $x \in \mathcal{H}$, we have

$$\left| \left\langle \mathsf{T} \left(\frac{\mathsf{x}}{\|\mathsf{x}\|} \right), \frac{\mathsf{x}}{\|\mathsf{x}\|} \right\rangle \right| \leq \alpha$$
$$\left| \left\langle \mathsf{T} (\mathsf{x}), \mathsf{x} \right\rangle \right| \leq \alpha \|\mathsf{x}\|^{2}.$$

Now, for any $x, y \in \mathcal{H}$, we may assume that $\langle T(x), y \rangle \in \mathbb{R}$, as we may multiply $\langle T(x), y \rangle$ by $sgn(\langle T(x), y \rangle)$. Thus, by the polarization identity and the fact that T is self-adjoint, we have

$$\begin{split} \langle \mathsf{T}(\mathsf{x}), \mathsf{y} \rangle &= \frac{1}{4} (\langle \mathsf{T}(\mathsf{x} + \mathsf{y}), \mathsf{x} + \mathsf{y} \rangle - \langle \mathsf{T}(\mathsf{x} - \mathsf{y}), \mathsf{x} - \mathsf{y} \rangle) \\ |\langle \mathsf{T}(\mathsf{x}), \mathsf{y} \rangle| &= \left| \frac{1}{4} (\langle \mathsf{T}(\mathsf{x} + \mathsf{y}), \mathsf{x} + \mathsf{y} \rangle - \langle \mathsf{T}(\mathsf{x} - \mathsf{y}), \mathsf{x} - \mathsf{y} \rangle) \right| \\ &\leq \frac{1}{4} (|\langle \mathsf{T}(\mathsf{x} + \mathsf{y}), \mathsf{x} + \mathsf{y} \rangle| + |\langle \mathsf{T}(\mathsf{x} - \mathsf{y}), \mathsf{x} - \mathsf{y} \rangle|) \\ &\leq \frac{\alpha}{4} \Big(||\mathsf{x} + \mathsf{y}||^2 + ||\mathsf{x} - \mathsf{y}||^2 \Big) \\ &= \frac{\alpha}{4} \Big(2||\mathsf{x}||^2 + 2||\mathsf{y}||^2 \Big) \\ &= \alpha. \end{split}$$

Thus, we have $\|T\|_{op} \le \sup_{x \in S_{\mathcal{H}}} |\langle T(x), x \rangle|$.

Now, since S is symmetric, we have that M(S) is self-adjoint. Therefore, we know that there is some $\xi_n \in S_{\mathcal{H}}$ such that

$$1 - \frac{1}{n} < \left(\left(\frac{1}{|S|} \sum_{t \in S} \lambda_t \right) (\xi_n), \xi_n \right)$$

$$\leq \left(\left(\frac{1}{|S|} \sum_{t \in S} \lambda_t \right) (|\xi_n|), |\xi_n| \right).$$

Thus, rearranging, we have

$$1 - \left(\left(\frac{1}{|S|} \sum_{t \in S} \lambda_t \right) (|\xi_n|), |\xi_n| \right) < \frac{1}{n}.$$

Since M(S) is a self-adjoint operator, we have that $\text{Re}\Big(\Big(\Big(\frac{1}{|S|}\sum_{t\in S}\lambda_t\Big)(\xi_n),\xi_n\Big)\Big)=\Big(\Big(\frac{1}{|S|}\sum_{t\in S}\lambda_t\Big)(\xi_n),\xi_n\Big).$ This gives

$$\left\| \left(\frac{1}{S} \sum_{t \in S} \lambda_t \right) (\xi) - \xi \right\| \leqslant \frac{1}{|S|} \sum_{t \in S} \left\| \lambda_t(\xi) - \xi \right\|$$

$$\leq \frac{1}{|S|} \sum_{t \in S} \sqrt{2} |1 - \langle \lambda_t(\xi), \xi \rangle|$$

$$= \sqrt{2} \left| 1 - \frac{1}{|S|} \sum_{t \in S} \langle \lambda_t(\xi), \xi \rangle \right|$$

$$\to 0.$$

Thus, λ admits an almost-invariant vector.

Next, we turn to Hulanicki's Criterion.

Definition. Let $f \in \ell_1(\Gamma)$. Then, we define the bounded operator

$$\lambda_{f(t)} = \sum_{t \in \Gamma} f(t) \lambda_t.$$

Theorem: If Γ is a discrete group, then Γ is amenable if and only if for every positive finitely-supported $f: \Gamma \to \mathbb{C}$, we have

$$\sum f(t) \leqslant \left\| \lambda_{f(t)} \right\|_{op}.$$

Proof. Suppose Γ is amenable. Let $f \ge 0$ be a finitely supported function, and let $(F_n)_n$ be a Følner sequence such that for every g ∈ supp(f), we have

$$\frac{|gF_n\Delta F_n|}{|F_n|} \leqslant \frac{1}{n}.$$

Let $\xi_n = \frac{1}{\sqrt{|F_n|}} \mathbb{1}_{F_n}$. Note that $\|\xi_n\|_{\ell_2} = 1$.

We will use the fact that

$$\sup_{x \in S_{\mathcal{H}}} |\langle T(x), x \rangle| \le ||T||_{\text{op}}.$$

We see that

$$\begin{split} \left| \left\langle \left(\sum_{t \in \Gamma} f(t) \lambda_t \right) (\xi_n), \xi_n \right\rangle \right| &= \left| \sum_{t \in \Gamma} f(t) \langle \lambda_t(\xi_n), \xi_n \rangle \right| \\ &= \left| \sum_{t, s \in \Gamma} f(t) \xi_n \left(t^{-1} s \right) \xi_n(s) \right| \\ &\leq \left\| \lambda_{f(t)} \right\|, \end{split}$$

meaning

$$\lim_{n\to\infty}\left|\left(\left|\sum_{t\in\Gamma}f(t)\lambda_t\right|(\xi_n),\xi_n\right)\right|\leqslant \left\|\lambda_{f(t)}\right\|.$$

Notice that ξ_n is an almost-invariant vector for λ , meaning that $\xi_n \left(t^{-1} s \right) \to \xi_n(s)$. Therefore, this means

$$\begin{split} \lim_{n \to \infty} & \left| \sum_{t,s \in \Gamma} f(t) \xi_n \Big(t^{-1} s \Big) \xi_n(s) \right| = \lim_{n \to \infty} \left| \sum_{t,s \in \Gamma} f(t) |\xi_n(s)|^2 \right| \\ & = \sum_{t \in \Gamma} f(t) \left| \sum_{s \in \Gamma} |\xi_n(s)|^2 \right| \end{split}$$

$$\begin{split} &= \sum_{t \in \Gamma} f(t) \\ &\leqslant \left\| \lambda_{f(t)} \right\|_{op}. \end{split}$$

This establishes that there is some C > 0 such that

$$\sum_{t \in \Gamma} f(t) \leqslant C \|\lambda_{f(t)}\|_{op}.$$

To show that C = 1, we note that, by the definition of convolution, we must have

$$\left(\sum_{t\in\Gamma}f(t)\right)^n=\sum_{t\in\Gamma}(f*\cdots*f)(t),$$

and

$$(\lambda_{f(t)})^n = \left(\sum_{t \in \Gamma} f(t)\lambda_t\right)^n$$

$$= \sum_{t \in \Gamma} (f * \cdots * f)(t)\lambda_t$$

$$= \lambda_{(f * \cdots * f)(t)}.$$

Thus, we have

$$\begin{split} \left(\sum_{t \in \Gamma} f(t)\right)^n &= \sum_{t \in \Gamma} (f * \cdots * f)(t) \\ &\leqslant C \left\|\lambda_{(f * \cdots * f)(t)}\right\| \\ &= C \left(\left\|\lambda_{f(t)}\right\|_{op}\right)^n. \end{split}$$

This means we have

$$\sum_{t\in\Gamma}f(t)\leqslant C^{1/n}\big\|\lambda_{f(t)}\big\|_{op}.$$

Since n is arbitrary, this means C = 1.

Now, if for all finitely supported f, we have

$$\sum_{t\in\Gamma}f(t)\leqslant\left\|\lambda_{f(t)}\right\|_{op}.$$

If $f = \mathbb{1}_E$ for some finite $E \subseteq \Gamma$, we see that

$$\left\| \sum_{t \in E} \lambda_t \right\|_{op} = |E|,$$

so by Kesten's criterion, we have that Γ is amenable.

Completely [Property] Maps

We begin this section with an overview of positive maps, completely positive maps, and extensions. These will be useful for understanding the theorem that a group is amenable if and only if the reduced group

 C^* -algebra is nuclear. The ultimate goal here is to prove Arveson's extension theorem (i.e., that $\mathbb{B}(\mathcal{H})$ is injective with respect to completely positive maps). The primary text for this purpose will be Vern Paulsen's *Completely Bounded Maps and Operator Algebras*.

The idea behind completely positive maps is that they are positive when subjected to a certain amplification process related to the matrix algebras.

Definition. An element of a C^* -algebra is positive if and only if it is self-adjoint and its spectrum is contained in the nonnegative reals. Alternatively, $b \in A$ is of the form $b = a^*a$ for some $a \in A$.

To introduce a norm such that $Mat_n(A)$ becomes a C^* -algebra, we begin with the most basic C^* -algebra, $\mathbb{B}(\mathcal{H})$, and consider the n-fold amplification of \mathcal{H} , $\mathcal{H}^{(n)}$. This is a Hilbert space equipped with inner product

$$\left\langle \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}, \begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} \right\rangle = \sum_{j=1}^n \langle h_j, k_j \rangle.$$

Meanwhile, we may consider $\operatorname{Mat}_n(\mathbb{B}(\mathcal{H}))$ as a linear map on $\mathcal{H}^{(n)}$, by taking

$$(T_{ij})_{ij} = \begin{pmatrix} \sum_{j=1}^{n} T_{1j}(h_j) \\ \vdots \\ \sum_{j=1}^{n} T_{nj}(h_j) \end{pmatrix}.$$

This yields a *-isomorphism between $Mat_n(\mathbb{B}(\mathcal{H}))$ and $\mathbb{B}(\mathcal{H}^{(n)})$.

Given any C^* -algebra A, we may theorize $\operatorname{Mat}_n(A)$ by first isometrically representing $\mathcal A$ on some Hilbert space $\mathcal H$, letting A be a C^* -subalgebra of $\mathbb B(\mathcal H)$, and then identifying $\operatorname{Mat}_n(A)$ as a *-subalgebra of $\operatorname{Mat}_n(\mathbb B(\mathcal H))$.

Using a faithful *-representation of A, we now have a way to turn $Mat_n(A)$ into a C^* -algebra. However, since the norm is unique on a C^* -algebra, the norm on $Mat_n(A)$ defined in this fashion is independent of the representation of A that we choose. Furthermore, since *-isomorphisms are positive maps, the positive elements of $Mat_n(A)$ are uniquely determined. This means that every C^* -algebra carries with it a set of canonically defined norms and orders on each $Mat_n(A)$.

For example, consider $\operatorname{Mat}_k(\mathbb{C})$, which can be identified with $\mathcal{L}(\mathbb{C}^k)$. We identify $\operatorname{Mat}_n(\operatorname{Mat}_k(\mathbb{C})) \cong \operatorname{Mat}_{nk}(\mathbb{C})$. With this identification, the usual multiplication and involution on $\operatorname{Mat}_n(\operatorname{Mat}_k(\mathbb{C}))$ become multiplication and involution on $\operatorname{Mat}_{nk}(\mathbb{C})$.

Now, let X be a compact Hausdorff space, and let C(X) be the C^* -algebra of continuous functions with $f^*(x) = \overline{f(x)}$, equipped with the norm $\|f\| = \sup_{x \in X} |f(x)|$. Then, an element $F = (f_{ij})_{ij}$ of $Mat_n(C(X))$ can be considered as a continuous $Mat_n(C)$ -valued function. Addition, multiplication, and involution in $Mat_n(C(X))$ are pointwise. Recalling that the norm on $Mat_n(C(X))$ is unique, we may let $\|F\| = \sup_{x \in X} \|F(x)\|$, where the latter norm is the canonical matrix norm on $Mat_n(C(X))$. The positive elements of $Mat_n(C(X))$ are those F for which F(x) is a positive matrix for all x.

Now, given two C^* -algebras A and B and a map $\phi \colon A \to B$, there are maps $\phi_n \colon Mat_n(A) \to Mat_n(B)$, given by

$$\phi_{n}\left(\left(\alpha_{ij}\right)_{ij}\right)=\left(\phi\left(\alpha_{ij}\right)\right)_{ij}.$$

In general, when we say that ϕ is completely [property], then we say that all the ϕ_n have that property. For instance, if ϕ is positive, in that it maps positive elements of A to positive elements of B, then we say

 ϕ is completely positive if ϕ_n is a positive map for each n, where the positive elements of $Mat_n(A)$ and $Mat_n(B)$ are defined canonically.

Unfortunately, it's not always the case that (e.g.) positive maps are completely positive, or even that $\|\phi_n\|_{op} = \|\phi\|_{op}$ for each n.

There is an isomorphism between $\operatorname{Mat}_n(A)$ and the tensor product $\operatorname{Mat}_n(\mathbb{C}) \otimes A$. We detail it here. The proof is from Timothy Rainone's *Functional Analysis-En Route to Operator Algebras*.

Theorem: Let A be an algebra, and let $Mat_n(A)$ denote the matrix algebra of A. Then, there is a *-isomorphism

$$\operatorname{Mat}_{n}(A) \cong \operatorname{Mat}_{n}(\mathbb{C}) \otimes A.$$

Proof. Define $\varphi \colon \operatorname{Mat}_{n}(A) \to \operatorname{Mat}_{n}(\mathbb{C}) \otimes A$ by

$$\varphi\Big(\big(a_{ij}\big)_{ij}\Big) = \sum_{i,j=1}^n e_{ij} \otimes x_{ij}.$$

Recall that if A and B are two algebras, multiplication in $A \otimes B$ is defined by

$$(a \otimes b)(c \otimes d) = ac \otimes bd,$$

and if A and B are *-algebras, then the involution is defined by

$$(a \otimes b)^* = a^* \otimes b^*.$$

We start by showing that $\mathrm{Mat}_n(A) \cong \mathrm{Mat}_n(\mathbb{C}) \otimes A$ as vector spaces. By the definition of the tensor product, the map φ is linear.

Now, suppose

$$\varphi((\alpha_{ij})_{ij}) = \sum_{i,j=1}^{n} e_{ij} \otimes \alpha_{ij}$$
$$= 0.$$

Then, since $\left\{e_{ij}\right\}_{ij}$ is linearly independent, we know that $x_{ij}=0$ for all i,j, so $\left(a_{ij}\right)_{ij}=0$, so ϕ is injective.

Now, let $t \in Mat_n(\mathbb{C}) \otimes A$ be given by

$$t = \sum_{k} m_{k} \otimes a_{k},$$

where $m_k \in Mat_n(\mathbb{C})$ and $a_k \in A$. Then, using the matrix units, we write each m_k as

$$m_k = \sum_{i,j=1}^n m_k(i,j)e_{ij}.$$

This gives

$$t = \sum_{k} \left(\sum_{i,j=1}^{n} m_{k}(i,j)e_{ij} \right) \otimes \alpha_{k}$$
$$= \sum_{i,j=1}^{n} e_{ij} \otimes \left(\sum_{k} m_{k}(i,j)\alpha_{k} \right).$$

Defining $\mathfrak{a}_{\mathfrak{i}\mathfrak{j}}\coloneqq\sum_{k}\mathfrak{m}_{k}(\mathfrak{i},\mathfrak{j})\mathfrak{a}_{k},$ we get

$$t = \sum_{i,j=1}^{n} e_{ij} \otimes a_{ij},$$

meaning that

$$\phi\Big(\big(x_{ij}\big)_{ij}\Big)=t.$$

Thus, φ is surjective.

We will show now that ϕ is multiplicative and *-preserving. If $\left(a_{ij}\right)_{ij}$ and $\left(b_{ij}\right)_{ij}$ belong to $Mat_n(A)$.

$$\begin{split} \phi((\alpha_{ik})_{ik})\phi\Big(\big(b_{lj}\big)_{lj}\Big) &= \left(\sum_{i,k=1}^n e_{ik} \otimes \alpha_{ik}\right) \left(\sum_{l,j=1}^n e_{lj} \otimes b_{lj}\right) \\ &= \sum_{i,j,k,l=1}^n (e_{ik} \otimes \alpha_{ik}) \big(e_{lj} \otimes b_{lj}\big) \\ &= \sum_{i,j,k,l=1}^n e_{ik} e_{lj} \otimes \alpha_{ik} b_{lj} \\ &= \sum_{i,j,k=1}^n e_{ik} e_{kj} \otimes \alpha_{ik} b_{kj} \\ &= \sum_{i,j,k=1}^n e_{ij} \otimes \alpha_{ik} b_{kj} \\ &= \sum_{i,j=1}^n e_{ij} \otimes \left(\sum_{k=1}^n \alpha_{ik} b_{kj}\right) \\ &= \phi\bigg(\bigg(\sum_{k=1}^n \alpha_{ik} b_{kj}\bigg)_{ij}\bigg) \\ &= \phi\bigg(\bigg(\alpha_{ij}\big)_{ij} \big(b_{ij}\big)_{ij}\bigg). \end{split}$$

Similarly,

$$\begin{split} \phi\Big(\big(\alpha_{ij}\big)_{ij}\Big)^* &= \left(\sum_{i=1}^n e_{ij} \otimes \alpha_{ij}\right)^* \\ &= \sum_{i,j=1}^n \big(e_{ij} \otimes \alpha_{ij}\big)^* \\ &= \sum_{i,j=1}^n e_{ij}^* \otimes \alpha_{ij}^* \\ &= \sum_{i,j=1}^n e_{ji} \otimes \alpha_{ij}^* \\ &= \sum_{i,j=1}^n e_{ij} \otimes \alpha_{ji}^* \end{split}$$

$$= \varphi\left(\left(\alpha_{ji}^{*}\right)_{ij}\right)$$
$$= \varphi\left(\left(\alpha_{ij}\right)_{ij}^{*}\right).$$

There are lots of useful results using amplification to the matrix algebras.

Example (Dilating an Isometry). Let V be an isometry, and let $P = I_{\mathcal{H}} - VV^*$ be the projection onto $Ran(V)^{\perp}$. Define U on $\mathcal{K} = \mathcal{H} \oplus \mathcal{H}$ by

$$\mathbf{U} = \begin{pmatrix} \mathbf{V} & \mathbf{P} \\ \mathbf{0} & \mathbf{V}^* \end{pmatrix}.$$

We find that

$$\begin{split} U^* &= \begin{pmatrix} V^* & 0 \\ P & V \end{pmatrix} \\ UU^* &= \begin{pmatrix} V & P \\ 0 & V^* \end{pmatrix} \begin{pmatrix} V^* & 0 \\ P & V \end{pmatrix} \\ &= \begin{pmatrix} VV^* + P & PV \\ V^*P & V^*V \end{pmatrix} \\ &= \begin{pmatrix} I_{\mathcal{H}} & 0 \\ 0 & I_{\mathcal{H}} \end{pmatrix} \\ &= I_{\mathcal{K}} \\ U^*U &= \begin{pmatrix} V^* & 0 \\ P & V \end{pmatrix} \begin{pmatrix} V & P \\ 0 & V^* \end{pmatrix} \\ &= I_{\mathcal{K}}. \end{split}$$

Thus, U is a unitary on \mathcal{K} . We may identify $\mathcal{H} \cong \mathcal{H} \oplus 0$, and take

$$V^n = P_{\mathcal{H}} U^n|_{\mathcal{H}}$$

for all $n \ge 0$. Thus, we are able to realize any isometry V as the restriction of some unitary to a subspace that respects powers.

Example (Dilating a Contraction). Similarly, we may define the isometric dilation of a contraction. Let T be an operator on $\mathcal H$ with $\|T\| \le 1$, and define $D_T = (I - T^*T)^{1/2}$. We see that

$$||T(h)||^{2} + ||D_{T}(h)||^{2} = \langle T^{*}T(h), h \rangle + \langle D_{T}^{2}(h), h \rangle$$
$$= ||h||^{2}.$$

We consider now the sequence space

$$\ell_2(\mathcal{H}) = \Bigg\{ \big(h_n\big)_{n \in \mathbb{N}} \ \Bigg| \ h_n \in \mathcal{H}, \sum_{n=1}^{\infty} \lVert h_n \rVert^2 < \infty \Bigg\}.$$

We have the norm

$$\|(h_n)_n\|^2 = \sum_{n=1}^{\infty} \|h_n\|^2$$

and the inner product

$$\langle (\mathbf{h}_n)_n, (\mathbf{k}_n)_n \rangle = \sum_{n=1}^{\infty} \langle \mathbf{h}_n, \mathbf{k}_n \rangle.$$

We define the operator $V: \ell_2(\mathcal{H}) \to \ell_2(\mathcal{H})$ by

$$V((h_n)_n) = (T(h_1), D_T(h_1), h_2, ...).$$

It then follows that V is an isometry on $\ell_2(\mathcal{H})$, and that if we identify $\mathcal{H} \cong \mathcal{H} \oplus 0 \oplus \cdots$, then $T^n = P_{\mathcal{H}}V^n|_{\mathcal{H}}$.

Theorem (Sz.-Nagy's Dilation Theorem): Let T be a contraction operator on \mathcal{H} . There is a Hilbert space \mathcal{K} containing \mathcal{H} as a subspace, and a unitary operator U on \mathcal{K} such that $T^n = P_{\mathcal{H}}U^n|_{\mathcal{H}}$.

Proof. Take $\mathcal{K} = \ell_2(\mathcal{H}) \oplus \ell_2(\mathcal{H})$, and identify \mathcal{H} as $(\mathcal{H} \oplus 0 \oplus \cdots) \oplus 0$. Let V be the isometric dilation of T on $\ell_2(\mathcal{H})$, and let U be the unitary dilation of V on $\ell_2(\mathcal{H}) \oplus \ell_2(\mathcal{H})$. Then, since $\mathcal{H} \subseteq \ell_2(\mathcal{H}) \oplus 0$, we have that $P_{\mathcal{H}}U^n|_{\mathcal{H}} = P_{\mathcal{H}}V^n|_{\mathcal{H}} = T^n$ for all $n \ge 0$.

Whenever Y is an operator on \mathcal{K} , \mathcal{H} a (closed) subspace of \mathcal{K} , and $X = P_{\mathcal{H}}Y|_{\mathcal{H}}$, then we say X is a compression of Y.

Corollary (Von Neumann's Inequality): Let T be a contraction on a Hilbert space. Then, for any polynomial p,

$$||p(T)|| \leqslant \sup_{|z| \leqslant 1} |p(z)|.$$

Proof. Let U be a unitary dilation of T. Since $T^n = P_{\mathcal{H}}U^n|_{\mathcal{H}}$, linearity means we have $p(T) = P_{\mathcal{H}}p(U)|_{\mathcal{H}}$. Since U is defined on a larger space than T, then $\|p(T)\| \le \|p(U)\|$. Furthermore, since unitaries are normal, we have

$$||p(U)|| = \sup_{\lambda \in \sigma(U)} |p(\lambda)|,$$

where $\sigma(U)$ is the spectrum of U. Since U is unitary, $\sigma(U) \subseteq \mathbb{T}$, so von Neumann's inequality follows.

Positive and Completely Positive Maps

Positive Maps

There are certain results on positive maps that are useful in the study of completely positive maps. We introduce them here.

Definition. If S is a subset of a C^* -algebra A, we say S is an operator system if A is unital and S is a self-adjoint subspace of A with $1_A \in S$.

Note that if S is an operator system and $h \in S$ is self-adjoint, then though the values h_+ and h_- , defined by the continuous functional calculus with

$$f^{+}(x) = \max\{0, x\}$$
$$f^{-}(x) = \min_{0, -x}$$

may not belong to S, we can write h as the difference of two positive elements in s by

$$h = \frac{1}{2}(\|h\|1_A + h) - \frac{1}{2}(\|h\|1_A - h).$$

Definition. If S is an operator system, B is a C*-algebra, and $\phi \colon S \to B$ is a linear map, then ϕ is called positive if it maps positive elements of S to positive elements of B.

Theorem: If ϕ is a positive linear functional on an operator system S, then $\|\phi\| = \phi(1_A)$.

When the range of ϕ is not \mathbb{C} , but rather a \mathbb{C}^* -algebra, then the situation is a bit different.

Proposition: Let S be an operator system, and let B be a C^* -algebra. If $\phi \colon S \to B$ is a positive map, then ϕ is bounded, with

$$\|\phi\| \le 2\|\phi(1_A)\|.$$

Proof. Note that if p is positive, then $0 \le p \le ||p||1_A$, so $0 \le \phi(p) \le ||p||\phi(1_A)$ since positive functions are order-preserving. Thus, we get $||\phi(p)|| \le ||p|| ||\phi(1)||$ when $p \ge 0$.

Note that when p_1 and p_2 are positive, then $||p_1 - p_2|| \le \max\{||p_1||, ||p_2||\}$. If h is self-adjoint, then we have

$$\|\phi(h)\| = \frac{1}{2}\phi(\|h\|1_A + h) - \frac{1}{2}\phi(\|h\|1_A - h),$$

which is the difference of two positive elements in B. Thus, we have

$$\|\phi(h)\| \leq \frac{1}{2} \max\{\|\phi(\|h\|1_A + h)\|, \|\phi(\|h\|1_A - h)\|\}$$

$$\leq \|h\|\|\phi(1)\|.$$

Finally, if α is arbitrary then write $\alpha = h + ik$ via the Cartesian decomposition, where $\|h\|$, $\|k\| \le \|\alpha\|$, and h, k are self-adjoint. Thus, we have

$$\|\phi(a)\| \le \|\phi(h)\| + \|\phi(k)\|$$

 $\le 2\|a\|\|\phi(1_A)\|.$

As it turns out, 2 is the best constant.

Example. Let \mathbb{T} be the unit circle in \mathbb{C} , and $C(\mathbb{T})$ be the continuous functions on z. Let z be the cordinate function, and let $S \subseteq C(\mathbb{T})$ be the subspace spanned by $1, z, \overline{z}$. Defining

$$\phi(\alpha + bz + c\overline{z}) = \begin{pmatrix} \alpha & 2b \\ 2c & \alpha \end{pmatrix},$$

An element of S is positive if and only if $c = \overline{b}$ and $a \ge 2|b|$, and an element of $Mat_2(\mathbb{C})$ is positive if and only if its diagonal entries and determinant are nonnegative real numbers. Thus, it is the case that ϕ is a positive map, but also

$$2\|\phi(1)\| = 2$$
$$= \|\phi(z)\|$$
$$\leq \|\phi\|,$$

meaning $\|\phi\| = 2\|\phi(1)\|$.

We are interested in seeing when unital, positive maps are contractive.

Lemma: Let A be a C*-algebra, and let p_i be positive elements of A such that

$$\sum_{i=1}^{n} p_i \leq 1.$$

If λ_i are scalars with $|\lambda_i| \leq 1$, then

$$\left\| \sum_{i=1}^n \lambda_i p_i \right\| \leq 1.$$

Proof. Note that

$$\begin{pmatrix} \sum_{i=1}^{n} \lambda_{i} p_{i} & 0 & \cdots 0 \\ 0 & 0 & \cdots 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} p_{1}^{1/2} \cdots & p_{n}^{1/2} \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n}) \begin{pmatrix} p_{1}^{1/2} & 0 & \cdots & 0 \\ p_{1}^{1/2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ p_{n}^{1/2} & 0 & \cdots & 0 \end{pmatrix}.$$

The norm on the matrix on the left is $\left\|\sum_{i=1}^{n} \lambda_{i} p_{i}\right\|$, while the three matrices on the right have norm less than 1, using the fact that $\|\alpha^{*}\alpha\| = \|\alpha\|^{2}$.

Theorem: Let B be a C*-algebra, X a compact Hausdorff space, and C(X) the continuous functions on X. Let $\phi: C(X) \to B$ be a positive map. Then, $\|\phi\| = \|\phi(1)\|$.

Proof. We may assume $\phi(1) \le 1$. Let $f \in C(X)$ with $\|f\| \le 1$, and let $\varepsilon > 0$. Now, we may choose a finite open cover $\{U_i\}_{i=1}^n$ of X such that $|f(x) - f(x_i)| < \varepsilon$ for all $x \in U_i$, and let $\{p_i\}_{i=1}^n$ be a partition of unity subordinate to the cover. That is, $\{p_i\}_{i=1}^n$ are nonnegative continuous functions satisfying $\sum_{i=1}^n p_i = 1$ and $p_i(x) = 0$ for $x \notin U_i$.

Set $\lambda_i = f(x_i)$, and note that if $p_i(x) \neq 0$ for some i, then $x \in U_i$ and $|f(x) - \lambda_i| < \epsilon$. Hence, for any x, we have

$$\left| f(x) - \sum_{i=1}^{n} \lambda_{i} p_{i}(x) \right| = \left| \sum_{i=1}^{n} (f(x) - \lambda_{i}) p_{i}(x) \right|$$

$$\leq \sum_{i=1}^{n} |f(x) - \lambda_{i}| p_{i}(x)$$

$$< \sum_{i=1}^{n} \varepsilon p_{i}(x)$$

$$= \varepsilon.$$

By above, we know that $\left\|\sum_{i=1}^{n} \lambda_i p_i\right\| \le 1$, we have

$$\|\phi(f)\| \le \left\| \phi \left(f - \sum_{i=1}^{n} \lambda_i p_i \right) \right\| + \left\| \sum_{i=1}^{n} \phi(p_i) \right\|$$
$$< 1 + \varepsilon \|\phi\|.$$

Since ε was arbitrary, we have $\|\phi\| \le 1$.

Lemma (Riesz–Fejér Theorem): Let $\tau(e^{i\theta}) = \sum_{n=-N}^{N} a_n e^{in\theta}$ be a strictly positive function on \mathbb{T} . Then, there is a polynomial $p(z) = \sum_{n=0}^{n} p_n z^n$ such that

$$\tau\left(e^{i\theta}\right) = \left|p\left(e^{i\theta}\right)\right|^2.$$

Proof. Note that τ is real-valued, so $a_{-n} = \overline{a_n}$, and a_0 is real. Assuming $a_{-N} \neq 0$, we take $g(z) = \sum_{n=-N}^{N} a_n z^{n+N}$, so that g is a polynomial of degree 2n, $g(0) \neq 0$.

We have $g(e^{i\theta}) = \tau(e^{i\theta})e^{iN\theta} \neq 0$, and that $\overline{g(1/\overline{z})} = z^{-2N}g(z)$.

We write the 2N zeros of q as $z_1, \ldots, z_N, 1/\overline{z_1}, \ldots, 1/\overline{z_N}$.

Set
$$q(z) = (z - z_1) \cdots (z - z_N)$$
 and $h(z) = (z - 1/\overline{z_1}) \cdots (z - 1/\overline{z_N})$. We have that $q(z) = a_N q(z)h(z)$,

where

$$\overline{h(z)} = \frac{(-1)^N \overline{z}^N q(1/\overline{z})}{z_1 \cdots z_N}.$$

Thus, we have

$$\begin{split} \tau\!\left(e^{\mathrm{i}\theta}\right) &= e^{-\mathrm{i}N\theta} g\!\left(e^{\mathrm{i}\theta}\right) \\ &= \left|g\!\left(e^{\mathrm{i}\theta}\right)\right| \\ &= \left|a_N q\!\left(e^{\mathrm{i}\theta}\right) \overline{h}\!\left(e^{\mathrm{i}\theta}\right)\right| \\ &= \frac{a_N}{z_1 \cdots z_N} \left|q\!\left(e^{\mathrm{i}\theta}\right)\right|^2. \end{split}$$

Theorem: Let T be an operator on \mathcal{H} with $\|T\| \le 1$, and let $S \subseteq C(\mathbb{T})$ be the operator system defined by

$$S = \Big\{ p\Big(e^{\mathfrak{i}\theta}\Big) + \overline{q(e^{\mathfrak{i}\theta})} \ \Big| \ p,q \ \text{are polynomials} \Big\}.$$

Then, $\phi \colon S \to \mathbb{B}(\mathcal{H})$, given by $\phi(p + \overline{q}) = p(T) + q(T)^*$ is positive.

Proof. It is enough to prove that $\phi(\tau)$ is positive for every *strictly* positive τ .

Let $\tau(e^{i\theta})$ be strictly positive in S, meaning $\tau(e^{i\theta}) = \sum_{\ell,k=0}^{n} \alpha_{\ell} \overline{\alpha_{k}} e^{i(\ell-k)\theta}$. We must prove that

$$\phi(\tau) = \sum_{\ell,k=0}^{n} \alpha_{\ell} \overline{\alpha_{k}} T(\ell - k),$$

where

$$T(j) = \begin{cases} T^j & j \geqslant 0\\ (T^*)^{-j} & j < 0. \end{cases}$$

Fix $x \in \mathcal{H}$. Note that

$$\langle \varphi(\tau)(x), x \rangle = \begin{pmatrix} I & T^* & \cdots & (T^*)^n \\ T & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & T^* \\ T^n & \cdots & T & I \end{pmatrix} \begin{pmatrix} \overline{\alpha_1}x \\ \overline{\alpha_2}x \\ \vdots \\ \overline{\alpha_n}x \end{pmatrix}, \begin{pmatrix} \overline{\alpha_1}x \\ \overline{\alpha_2}x \\ \vdots \\ \overline{\alpha_n}x \end{pmatrix},$$
(*)

where our matrix operator acts on $\mathcal{H}^{(n)}$. Thus, we only need to show that this matrix operator is positive.

To that end, define the $n \times n$ matrix

$$R = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ T & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & T & 0 \end{pmatrix},$$

and note that $R^{n+1} = 0$, with $||R||_{op} \le 1$ (as T is a contraction).

We let I denote the identity operator on $\mathcal{H}^{(n)}$. The matrix operator (*) can be written as

$$I + R + R^{2} + \cdots + R^{n} + R^{*} + \cdots + (R^{*})^{n} = (I - R)^{-1} + (I - R^{*})^{-1} - I$$

where we used the fact that $R^{n+1}=0$ in the geometric series for $(I-R)^{-1}$ and $(I-R^*)^{-1}$. To see that this operator is positive, we let $h \in \mathcal{H}^{(n)}$, and let h = (I-R)y for some $y \in \mathcal{H}^{(n)}$. Then,

$$\begin{split} \left\langle \left((I-R)^{-1} + (I-R^*)^{-1} - I \right) (h), h \right\rangle &= \left\langle y, (I-R)y \right\rangle + \left\langle (I-R)(y), y \right\rangle - \left\langle (I-R)(y), (I-R)(y) \right\rangle \\ &= \|y\|^2 - \|R(y)\|^2 \\ &\geqslant 0, \end{split}$$

since R is a contraction.

Now, we may prove von Neumann's inequality in a different way.

Theorem (von Neumann's Inequality): Let T be an operator on a Hilbert space with $\|T\|_{op} \le 1$. Then, for any polynomial p, we have

$$\|p(T)\|_{op} \leq \|p\|,$$

where $\|\mathbf{p}\| = \sup_{\theta} |\mathbf{p}(e^{i\theta})|$.

Proof. The operator system defined by

$$S = \left\{ p\left(e^{i\theta}\right) + \overline{q(e^{i\theta})} \mid p, q \text{ polynomials} \right\}$$

is a *-algebra that separates points, so by the Stone–Weierstrass theorem, S is dense in $C(\mathbb{T})$. We know that ϕ is bounded, so it extends $C(\mathbb{T})$. The extension to $\overline{S} = C(\mathbb{T})$ also positive, so ϕ is contractive.

Note that if $A(\mathbb{D})$ denotes the functions analytic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$, we know that by the maximum modulus principle that the supremum of any function in $A(\mathbb{D})$ occurs on \mathbb{T} . We may thus consider $A(\mathbb{D})$ as a closed subalgebra of $C(\mathbb{T})$.

Furthermore, polynomials are dense in $A(\mathbb{D})$. Thus, the homomorphism $\mathfrak{p} \mapsto \mathfrak{p}(T)$ extends to a homomorphism $\mathfrak{f} \mapsto \mathfrak{f}(T)$ that satisfies $\|\mathfrak{f}(T)\|_{op} \leq \|\mathfrak{f}\|$ for all $\mathfrak{f} \in A(\mathbb{D})$.

Another consequence is that if α is an element of some unital C^* -algebra A with $\|\alpha\| \le 1$, then there is a unital, positive map $\phi \colon C(\mathbb{T}) \to A$ such that $\phi(p) = p(\alpha)$.

Corollary: Let B and C be unital C*-algebras. Let A be a unital subalgebra of B, and let $S = A + A^*$ be an operator space. If $\phi: S \to C$ is positive, then $\|\phi(a)\| \le \|\phi(1)\| \|a\|$.

Proof. Let $\alpha \in A$ with $\|\alpha\| \le 1$. We may extend ϕ to a positive map on \overline{S} . There is also a positive map $\psi \colon C(\mathbb{T}) \to B$ with $\psi(p) = p(\alpha)$. Since A is an algebra, we must have $Ran(\psi) \subseteq \overline{S}$.

The composition of positive maps is positive, so we have

$$\|\phi(a)\| = \|\phi \circ \psi(e^{i\theta})\|$$

$$\leq \|\phi \circ \psi(1)\| \|e^{i\theta}\|$$

$$= \|\phi(1)\|.$$

If $\phi(1) = 1$, then ϕ is a contraction on A, though ϕ may not be a contraction on all of S.

Corollary: Let A and B be unital C*-algebras with $\phi: A \to B$ a positive map. Then, $\|\phi\|_{op} = \|\phi(1)\|$.