Quicksort

Quicksort

Review: Quicksort

- Sorts in place
- Sorts O(n lg n) in the average case
- Sorts O(n²) in the worst case
 - But in practice, it's quick
 - And the worst case doesn't happen often (but more on this later...)

Quicksort

- Another divide-and-conquer algorithm
 - The array A[p..r] is *partitioned* into two nonempty subarrays A[p..q] and A[q+1..r]
 - ◆ Invariant: All elements in A[p..q] are less than all elements in A[q+1..r]
 - The subarrays are recursively sorted by calls to quicksort
 - Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quicksort Code

```
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r);
        Quicksort(A, p, q);
        Quicksort(A, q+1, r);
    }
}</pre>
```

Partition

- Clearly, all the action takes place in the partition() function
 - Rearranges the subarray in place
 - End result:
 - ◆Two subarrays
 - ◆ All values in first subarray ≤ all values in second
 - Returns the index of the "pivot" element separating the two subarrays
- How do you suppose we implement this?

Partition In Words

- Partition(A, p, r):
 - Select an element to act as the "pivot" (*which*?)
 - Grow two regions, A[p..i] and A[j..r]
 - ♦ All elements in A[p..i] <= pivot
 - ◆ All elements in A[j..r] >= pivot
 - Increment i until A[i] >= pivot
 - Decrement j until $A[j] \le pivot$
 - Swap A[i] and A[j]
 - Repeat until $i \ge j$

Note: slightly different from book's partition()

■ Return j

Partition Code

```
Partition(A, p, r)
   x = A[p];
                                   Illustrate on
    i = p - 1;
                          A = \{5, 3, 2, 6, 4, 1, 3, 7\};
    j = r + 1;
    while (TRUE)
        repeat
            j--;
        until A[j] <= x;
                                    What is the running time of
        repeat
                                        partition()?
            i++;
        until A[i] >= x;
        if (i < j)
            Swap(A, i, j);
        else
            return j;
```

Partition Code

```
Partition(A, p, r)
   x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
            j--;
        until A[j] <= x;
        repeat
                                  partition() runs in O(n) time
            i++;
        until A[i] >= x;
        if (i < j)
            Swap(A, i, j);
        else
            return j;
```

Analyzing Quicksort

- What will be the worst case for the algorithm?
 - Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which is more likely?
 - The latter, by far, except...
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

Analyzing Quicksort

• In the worst case:

$$T(1) = \Theta(1)$$

$$T(n) = T(n-1) + \Theta(n)$$

Works out to

$$T(n) = \Theta(n^2)$$

Analyzing Quicksort

• In the best case:

$$T(n) = 2T(n/2) + \Theta(n)$$

• What does this work out to?

$$T(n) = \Theta(n \lg n)$$

Improving Quicksort

- The real liability of quicksort is that it runs in $O(n^2)$ on already-sorted input
- Book discusses two solutions:
 - Randomize the input array, OR
 - Pick a random pivot element
- How will these solve the problem?
 - By insuring that no particular input can be chosen to make quicksort run in O(n²) time

- For simplicity, assume:
 - All inputs distinct (no repeats)
 - Slightly different partition() procedure
 - partition around a random element, which is not included in subarrays
 - ◆ all splits (0:n-1, 1:n-2, 2:n-3, ..., n-1:0) equally likely
- What is the probability of a particular split happening?
- Answer: 1/n

- So partition generates splits (0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0) each with probability 1/n
- Let T(n) be the expected running time.

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} [T(k) + T(n-1-k)] + \Theta(n)$$

- What is each term under the summation for?
 - Recursion
- What is the $\Theta(n)$ term for? Cost of partitioning.

• So...

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} [T(k) + T(n-1-k)] + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n)$$

- Note: this is just like the book's recurrence (p187), except that the summation starts with k=0
- We'll take care of that in a second

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ◆ What's the answer?
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ♦ $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ♦ $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - ♦ What's the inductive hypothesis?
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - ◆ T(n) ≤ an $\lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ♦ $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - ♦ $T(n) \le an \lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - ♦ What value?
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - ◆ T(n) ≤ an $\lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - \bullet The value k in the recurrence
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - ◆ T(n) ≤ an $\lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - \bullet The value k in the recurrence
 - Prove that it follows for n
 - ♦ Grind through it...

$$T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=0}^{n-1} (ak \lg k + b) + \Theta(n)$$
Plug in inductive hypothesis
$$\leq \frac{2}{n} \left[b + \sum_{k=1}^{n-1} (ak \lg k + b) \right] + \Theta(n)$$
Expand out the k=0 case
$$= \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \frac{2b}{n} + \Theta(n)$$
So fold it into $\Theta(n)$

$$= \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)$$
Note: leaving the same recurrence as the book

This summation gets its own set of slides later

$$T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n)$$

$$\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + 2b + \Theta(n)$$

$$= an \lg n - \frac{a}{4} n + 2b + \Theta(n)$$

$$= an \lg n + b + \left(\Theta(n) + b - \frac{a}{4} n \right)$$

$$\leq an \lg n + b$$

$$\leq an \lg n + b$$

$$\leq an \lg n + b$$

$$The recurrence to be solved$$

$$Distribute the (2a/n) term$$

$$Pick a large enough that an/4 dominates $\Theta(n) + b$$$

- So $T(n) \le an \lg n + b$ for certain a and b
 - Thus the induction holds
 - Thus $T(n) = O(n \lg n)$
 - Thus quicksort runs in O(n lg n) time on average (phew!)
- Oh yeah, the summation...

Tightly Bounding The Key Summation

$$\sum_{k=1}^{n-1} k \lg k = \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg k$$

$$\leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg n$$

$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

Split the summation for a tighter bound

The $\lg k$ in the second term is bounded by $\lg n$

Move the lg n outside the summation

Tightly Bounding The Key Summation

$$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$\leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg (n/2) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k (\lg n - 1) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= (\lg n - 1) \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \log n - 1$$

$$= \log n - 1$$

$$= \log n - 1$$
Move $(\lg n - 1)$ outside the summation

Tightly Bounding The Key Summation

$$\sum_{k=1}^{n-1} k \lg k \leq (\lg n - 1) \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \lg n \sum_{k=1}^{\lceil n/2 \rceil - 1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$

$$= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$

$$= \lg n \left(\frac{(n-1)(n)}{2} \right) - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$
The Guassian series

Tightly Bounding The Key Summation

$$\sum_{k=1}^{n-1} k \lg k \le \left(\frac{(n-1)(n)}{2}\right) \lg n - \sum_{k=1}^{\lceil n/2 \rceil - 1} k \qquad \text{The summation bound so far}$$

$$\le \frac{1}{2} \left[n(n-1) \right] \lg n - \sum_{k=1}^{n/2 - 1} k \qquad \text{Rearrange first term, place upper bound on second}$$

$$\le \frac{1}{2} \left[n(n-1) \right] \lg n - \frac{1}{2} \left(\frac{n}{2}\right) \left(\frac{n}{2} - 1\right) \text{ X Guassian series}$$

$$\le \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4} \qquad \text{Multiply it all out}$$

Tightly Bounding The Key Summation

$$\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4}$$

$$\le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \text{ when } n \ge 2$$

Done!!!