Machine Learning Homework Sheet 11

Clustering

1 Gaussian Mixture Model

Problem 1: Consider a mixture of K Gaussians

$$p(\boldsymbol{x}) = \sum_{k} \pi_{k} \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}).$$

Derive the expected value $\mathbb{E}[x]$ and the covariance Cov[x].

Hint: it is helpful to remember the identity $\text{Cov}[\boldsymbol{x}] = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^T] - \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{x}]^T$.

For $\mathbb{E}[x]$ we use the law of iterated expectations

$$\begin{split} \mathbb{E}[\boldsymbol{x}] &= \mathbb{E}_{p(\boldsymbol{z})}[\mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{z})}[\boldsymbol{x}|\boldsymbol{z}]] \\ &= \sum_{k=1}^{K} \pi_k \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{z})}[\boldsymbol{x}|\boldsymbol{z}] \end{split}$$

plugging in the mean of multivariate Gaussian, we get

$$=\sum_{k=1}^K \pi_k \boldsymbol{\mu}_k$$

For covariance, we first compute $\mathbb{E}[xx^T]$ again using the law of iterated expectations

$$egin{aligned} \mathbb{E}[oldsymbol{x}oldsymbol{x}^T] &= \mathbb{E}_{p(oldsymbol{z})}[\mathbb{E}_{p(oldsymbol{x}|oldsymbol{z})}[oldsymbol{x}oldsymbol{x}^T \mid oldsymbol{z}]] \ &= \sum_k \pi_k \mathbb{E}_{p(oldsymbol{x}|oldsymbol{z})}[oldsymbol{x}oldsymbol{x}^T|oldsymbol{z}] \end{aligned}$$

plugging in the covariance of multivariate Gaussian, we get

$$=\sum_{k=1}^K \pi_k(oldsymbol{\Sigma}_k + oldsymbol{\mu}_k oldsymbol{\mu}_k^T)$$

and thus

$$Cov[\boldsymbol{x}] = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^T] - \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{x}]^T$$
$$= \sum_{k=1}^K \pi_k(\boldsymbol{\Sigma}_k + \boldsymbol{\mu}_k \boldsymbol{\mu}_k^T) - \sum_{k=1}^K \sum_{j=1}^K \pi_k \pi_j \boldsymbol{\mu}_k \boldsymbol{\mu}_j^T$$

Problem 2: Consider a mixture of K isotropic Gaussians, all with the same known covariances $\Sigma_k = \sigma^2 I$.

Derive the EM algorithm for the case when $\sigma^2 \to 0$, and show that it's equivalent to Lloyd's algorithm for K-means.

We consider a GMM with identical, isotropic covariances. In that case, the responsibilities take the following form:

$$p(z_{ik} = 1 \mid \boldsymbol{x}, \boldsymbol{\theta}) = \frac{p(\boldsymbol{x} \mid z_{ik} = 1, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) p(z_{ik} = 1 \mid \pi_k)}{\int p(\boldsymbol{x} \mid \boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z}}$$
(1)

$$= \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$
(2)

$$= \frac{\pi_k \exp\left(\frac{-||\boldsymbol{x} - \boldsymbol{\mu}_k||^2}{2\sigma^2}\right)}{\sum_l \pi_l \exp\left(\frac{-||\boldsymbol{x} - \boldsymbol{\mu}_l||^2}{2\sigma^2}\right)}$$
(3)

$$= \frac{1}{\sum_{l} \frac{\pi_{l}}{\pi_{k}} \exp\left(\frac{-||\boldsymbol{x} - \boldsymbol{\mu}_{l}||^{2} + ||\boldsymbol{x} - \boldsymbol{\mu}_{k}||^{2}}{2\sigma^{2}}\right)}$$
(4)

If μ_k denotes the center that is closest to x, then

$$\frac{-||x - \mu_l||^2 + ||x - \mu_k||^2}{2\sigma^2} \le 0$$

for all l, with equality if and only if k = l. For $\sigma \to 0$, the denominator of Equation 4 converges to 1: If k = l, the argument of $\exp(\cdot)$ is exactly zero, while for $k \neq l$ we are exponentiating increasingly negative arguments.

If μ_k denotes a center that is not closest to x, there is at least one $l \neq k$ for which

$$0 < \frac{-||\boldsymbol{x} - \boldsymbol{\mu}_l||^2 + ||\boldsymbol{x} - \boldsymbol{\mu}_k||^2}{2\sigma^2} \longrightarrow \infty, \quad \text{as } \sigma \to 0.$$

Consequently, the denominator of Equation 4 converges to ∞ , too.

This means that the responsibilities degenerate to a hard one-hot assignment of the data point x to the component closest to x. This coincides with step 1 of Lloyd's algorithm.

Inserting one-hot responsibilities into the general GMM M-step immediately yields step 2 in Lloyd's algorithm. Notice that we do not learn covariances, they are assumed fixed. Moreover, we don't have to worry about π_k 's, because they are irrelevant as the term π_l/π_k always gets overshadowed by the $\exp(\cdot)$ next to it.

We can conclude that Lloyd's algorithm for K-Means is a special case of the more general EM algorithm for GMM.

Problem 3: The dataset displayed on the right has been generated using a Gaussian mixture model with K=4 components, each with its own mean μ_k and covariance matrix Σ_k .

Match the covariance matrices in the table on the left with their corresponding Gaussian components in

the plot on the right. Explain each of the answers with 1 sentence.

$oldsymbol{\Sigma}_k$	Cluster
$ \left[\begin{array}{cc} 2 & -1.7 \\ -1.7 & 2 \end{array}\right] $	
$ \begin{bmatrix} 0.9 & -0.8 \\ -0.8 & 1.2 \end{bmatrix} $	
$ \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix} $	
$ \left[\begin{array}{cc} 0.5 & 0 \\ 0 & 0.5 \end{array}\right] $	

- 1. plot (a) Has same shape as 2 (plot (c)), but has higher variance in all directions.
- 2. plot (c) Has same shape as 1 (plot (a)), but has lower variance in all directions.
- 3. plot (b) Aligned with the axes (offdiagonal entries are 0); more variance along the x_1 dimension.
- 4. plot (d) Isotropic Gaussian same variance in all directions.

Problem 4:

a) Given is the dataset displayed in the figure below. Apply the K-means algorithm to this data using K=2 and using the circled points as initial centroids.

Figure 1: K-Means Dataset

What are the clusters after K-Means converges? Draw your solution in the figure above, i.e. mark the location of the centroids with \times 's and show the clusters by drawing two bounding boxes around the points assigned to each cluster.

How many iterations did it take for K-Means to converge in the above problem?

One.

b) Provide a different initialization, for which the algorithm will take **more** iterations to converge to the **same** solution. Make sure that your initialization does not lead to ties. Draw your initialization in the figure below.

Figure 2: Provide your initialization