

CV Course 2 SOTA CNN

Blake

Outline

- Basic concept and principle of CNN
- Classic
 - VGG
- SOTA
 - Inception structure (Inception V1-V4)
 - Residual block (ResNet)
- Hands-on

Convolution

Sobel filter

$$\mathbf{G_x} = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \quad ext{and} \quad \mathbf{G_y} = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

CNN (Convolutional Neural Network)

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

VGG

Increasing depth using an architecture with very small (3×3) convolution filters

ConvNet Configuration					
A	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Inception v1

Figure 2: Inception module

Inception v1

32 filters, $1 \times 1 \times 192$

Inception v2/v3

Figure 4. Original Inception module as described in [20].

Figure 5. Inception modules where each 5×5 convolution is replaced by two 3×3 convolution, as suggested by principle 3 of Section 2.

Inception v2/v3 factorization

Inception v2/v3

Figure 6. Inception modules after the factorization of the $n \times n$ convolutions. In our proposed architecture, we chose n=7 for the 17×17 grid. (The filter sizes are picked using principle 3)

Figure 7. Inception modules with expanded the filter bank outputs. This architecture is used on the coarsest (8×8) grids to promote high dimensional representations, as suggested by principle 2 of Section 2. We are using this solution only on the coarsest grid, since that is the place where producing high dimensional sparse representation is the most critical as the ratio of local processing (by 1×1 convolutions) is increased compared to the spatial aggregation.

ResNet v2

Inception v4, Inception-ResNet

Figure 14. The stem of the Inception-ResNet-v1 network.

Inception v4, Reduction A/B

Figure 7. The schema for 35×35 to 17×17 reduction module. Different variants of this blocks (with various number of filters) are used in Figure [9], and [15] in each of the new Inception(-v4, -ResNet-v1, -ResNet-v2) variants presented in this paper. The k, l, m, n numbers represent filter bank sizes which can be looked up in Table [1]

Figure 12. "Reduction-B" 17×17 to 8×8 grid-reduction module. This module used by the smaller Inception-ResNet-v1 network in Figure 15.

Inception v4, Inception-ResNet Inception-Resnet-A/B/C

Reference

- 1. Cinnamon AI medium: CNN
 https://cinnamonaitaiwan.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-cnn%E5%8E
 %9F%E7%90%86-keras%E5%AF%A6%E7%8F%BE-432fd9ea4935
- 2. Sobel https://zh.wikipedia.org/wiki/%E7%B4%A2%E8%B2%9D%E7%88%BE%E7%AE%97%E5%AD%90
- 3. LeNet paper http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
- 4. VGG https://arxiv.org/abs/1409.1556
- 5. Inception v1 https://arxiv.org/abs/1409.4842
- 6. Inception v2/v3 https://arxiv.org/abs/1512.00567
- 7. Inception v4 https://arxiv.org/abs/1602.07261
- 8. Restnet https://arxiv.org/abs/1512.03385

