ELEMENTOS FÍSICOS

Network Interface Card
AP (punto acceso inalámbrico)
Puentes (Bridges)
Conmutadores (Switch)

Capa 7: Nivel de Aplicación Capa 6: Nivel de Presentación Capa 5: Nivel de Sesión Datos Capa 4: Nivel de Transporte Capa 3: Nivel de Red Capa 2: Nivel de Enlace Capa 1: Nivel Físico Dirección MAC

Encaminadores o Routers

Modem, Repetidores
Concentradores de cable (HUB)

DISPOSITIVOS FÍSICOS RED

Un **MÓDEM** es un dispositivo que permite el intercambio de información entre dos ordenadores usando la red telefónica. La palabra **MÓDEM** es contracción de los términos modulación y demodulación y opera mediante el paso de los datos digitales a transmitir a analógicos y en el equipo receptor efectúa el proceso inverso.

Un **REPETIDOR** es un dispositivo analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital). Un dispositivo digital que amplifica, conforma, retemporiza o lleva a cabo una combinación de cualquiera de estas funciones sobre una señal digital de entrada para su retransmisión.

El **CONCENTRADOR** (hub) es el dispositivo que permite centralizar el cableado de una red de computadoras, para luego poder ampliarla.

La TARJETA DE RED(NIC) es un componente de hardware importante que se utiliza para proporcionar conexiones de red.

PUNTO DE ACCESO(punto de acceso inalámbrico): Un punto de acceso inalámbrico (WAP) es un dispositivo de red que permite que un dispositivo compatible con Wi-Fi se conecte a una red con cable.

PUENTE DE RED es el dispositivo de interconexión de redes de computadoras. Interconecta segmentos de red haciendo la transferencia de datos de una red hacia otra con base en la dirección física de destino de cada paquete.

Un **SWITCH** o conmutador es un dispositivo de interconexión utilizado para conectar equipos en red formando lo que se conoce como una red de área local (LAN) y cuyas especificaciones técnicas siguen el estándar conocido como Ethernet (o técnicamente IEEE 802.3).

DISPOSITIVOS FÍSICOS RED

Un **ROUTER** se encarga de establecer qué ruta se destinará a cada paquete de datos dentro de una red informática. Puede ser beneficioso en la interconexión de computadoras, en la conexión de los equipos a Internet o para el desarrollo interno de quienes proveen servicios de Internet.

En líneas muy generales podemos establecer que existen tres tipos claros de routers:

- **Básico.** Es aquel que tiene como función el comprobar si los paquetes de información que se manejan tiene como destino otro ordenador de la red o bien el exterior.
- Sofisticados. Esta clase de routers es el que se utiliza más frecuentemente en el ámbito doméstico pues cubre a la perfección las necesidades que puede tener el usuario en cualquier momento. Sus señas de identidad principales son que tienen capacidad para manejar multitud de información y que protegen muy bien del exterior a la red doméstica.
- *Potentes.* En empresas y entidades de gran calado es donde se apuesta por emplear este tipo de routers ya que no sólo tiene capacidad para manejar millones de datos, sino también para optimizar el tráfico.

Importante, diferenciar router, switch, hub

TIPOS REDES AREA LOCAL DEFINIDOS POR IEEE

Nombre	Medio	Distancia máx	Estándar				
Ethernet (10 Mbps)							
10BASE5	Coaxial grueso	500 m	802.3				
10BASE2	Coaxial fino	185 m	802.3a				
10BASE-T	Par trenzado cat. 3 o 5	100 m	802.3i				
10BASE-FL	MMF 850 nm	2 km	802.3j				
FastEthernet (100 Mbps)							
100BASE-TX	Par trenzado cat. 5	100 m	802.3u				
100BASE-FX	MMF 1310 nm	2 km					
GigabitEthernet (1000 Mbps)							
1000BASE-T	Par trenzado >= cat. 5	100 m	802.3ab				
1000BASE-SX	MMF 850 nm	550 m	-802.3z				
1000BASE-LX	MMF y SMF 1310 nm	10 km					
10 GigabitEthernet (10 Gbps)							
10GBASE-T	Par trenzado >= cat 6	100 m	802.3an				
10GBASE-SR	MMF 850 nm	400 m	802.3ae				
10GBASE-LR	SMF	10 Km					
40 GigabitEthernet (40 Gbps)							
40GBASE-SR4	MMF	125 m	802.3ba				
40GBASE-LR4	SMF	10 km	. 502.3ba				
100 GigabitEthernet (100 Gbps)							
100GBASE-SR10	MMF	125 m	802.3ba				
100GBASE-LR4	SMF	10 km					

REDES INALÁMBRICAS

Wi-Fi generations							
	Wefi 4	Wi:Fi5	Wi-fi 6	Wi-Fi 6E	Wi-Fi 7 (expected)		
Launch date	2007	2013	2019	2021	2024		
(EEE standard	802.11n	802.11ac	802.11ac		802.11be		
Mas data rute	1,2 Gbps	3.5 Gbps	9.6 Gbps		46 Gbps		
Bands	2.4 GHz and 5 GHz	5 GHz	2.4 GHz and 5 GHz	6 GHz	1-7.25 GHz (including 2.4 GHz, 5 GHz, 6 GHz bands)		
Security	WPA-2	WPA 2	WPA 3		WPA3		
Channel use	20, 40 MHz	20, 40, 80, 80+80, 160 MHz	20, 40, 80, 80+80, 160 MHz	20, 40, 80, 80+80, 160 MHz	Up to 320 MHz		
Modulation	64-QAM DEDM	256-QAM QFDM	1024-QAM DEDMA		4096-QAM OFDMA (with extensions)		
мімо	4x4 MIMO	4x4 MIMO, DL MU-MIMO	8x8 UL/DL MU-MIMO		16x16 MU- MIMO		

Source IEEE, Intel Corporation, Wi-Fi Alliance

PROTOCOLO IP (NIVEL INTERRED EN TCP/IP)

En esta capa en la arquitectura TCP/IP se lleva a cabo el direccionamiento y encaminamiento de la información, utilizando para ello el protocolo IP. En este nivel trabajamos con datos que llamamos datagramas, que siguen el formato establecido en el protocolo IP.

Direccionamiento: todo elemento en la red es claramente diferenciado mediante una dirección IP que identifica la red a la que pertenece y el equipo concreto dentro de esta.

Encaminamiento: todo elemento en la red es encaminado, conducido a su destino, con la ayuda de componentes que mantienen tablas de direcciones con caminos alternativos.

Versión del protocolo IP más utilizado: IPv4 / IPv6

Tipos de direcciones

Unicast: identifica un único interfaz de red. El protocolo de Internet entrega los paquetes enviados a una dirección unicast al interfaz específico.

Multicast: una dirección multidifusión está asociada con un grupo de receptores interesados. De acuerdo al RFC 3171, las direcciones desde la 224.0.0.0 a la 239.255.255.255 están destinadas para ser direcciones de multidifusión. Este rango se llama formalmente "Clase D".

Broadcast: aquella dirección IP que permite la transmisión de datos a una multitud de nodos receptores contenidos en una misma subred y de forma simultánea. La dirección de broadcast de cierta de dirección IP, será la dirección más alta de la sub red que incluya dicha dirección IP.