Basi Di Dati e di conoscenza

Vincoli d'integrità

Contenuti della lezione

- Vincoli di integrità
- Vincoli di ennupla
- Chiavi e schemi di relazione
- Chiavi e valori nulli
- Vincoli di integrità referenziale

Vincoli d'integrità

• Esistono istanze di basi di dati che, pur sintatticamente corrette, non rappresentano informazioni possibili per l'applicazione di interesse

Una base di dati "scorretta"

Esami

Studente	Voto	Lode	Corso
276545	32		01
276545	30	e lode	02
787643	27	e lode	03
739430	24		04

Studenti

Matricola	Cognome	Nome
276545	Rossi	Mario
787643	Neri	Piero
787643	Bianchi	Luca

Vincolo d'integrità

- Proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione
- Un vincolo è una funzione booleana (un **predicato** basato sulla logica del prim'ordine) che associa ad ogni istanza il valore **vero** o **falso**
- I vincoli d'integrità consentono unadescrizione più accurata della realtà e vengono usati dai DBMS nella esecuzione delle interrogazioni

Tipi di vincoli

- vincoli intrarelazionali
 - vincoli su valori (o di dominio)
 - vincoli di ennupla
- vincoli interrelazionali

Vincoli d'integrità: Esempio

Esami

Studente	Voto	Lode	Corso
276545	32		01
276545	30	e lode	02
787643	27	e lode	03
739430	24		04

Studenti

Matricola	Cognome	Nome
276545	Rossi	Mario
787643	Neri	Piero
787643	Bianchi	Luca

Contenuti della lezione

- Vincoli di integrità
- Vincoli di ennupla
- Chiavi e schemi di relazione
- Chiavi e valori nulli
- Vincoli di integrità referenziale

Vincoli di ennupla

- Esprimono condizioni sui valori di ciascuna ennupla, indipendentemente dalle altre ennuple
- Caso particolare:
 - Vincoli di dominio: coinvolgono un solo attributo
- Una possibile sintassi:
 - espressione booleana di atomi che confrontano valori di attributo o espressioni aritmetiche su di essi

```
(Voto \geq 18) AND (Voto \leq 30)
```

```
(Voto = 30) OR NOT (Lode = "e lode")
```

Vincoli di ennupla: esempio

Stipendi

Impiegato	Lordo	Rite	enute	Ne	etto
Rossi	55.000,	00€	12.500,	00€	42.500,00€
Neri	45.000,	00€	10.000,	00€	35.000,00€
Bruni	47.000,	00€	11.000,	00€	36.000,00€

Lordo = (Ritenute + Netto)

Contenuti della lezione

- Vincoli di integrità
- Vincoli di ennupla
- Chiavi e schemi di relazione
- Chiavi e valori nulli
- Vincoli di integrità referenziale

Identificazione delle ennuple

- non ci sono due ennuple con lo stesso valore sull'attributo Matricola
- non ci sono due ennuple uguali su tutti e tre gli attributi Cognome, Nome e Data di Nascita

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Matem.	5/12/78
78763	Rossi	Mario	Fisica	3/11/76
65432	Neri	Piero	Biologia	10/7/79
87654	Neri	Mario	Fisica	3/11/76
67653	Rossi	Piero	Biologia	5/12/78

Chiave

• Insieme di attributi che identificano univocamente le ennuple di una relazione

Formalmente:

- un insieme **K** di attributi è superchiave per r se r non contiene due ennuple distinte \mathbf{t}_1 e \mathbf{t}_2 con $\mathbf{t}_1[\mathbf{K}] = \mathbf{t}_2[\mathbf{K}]$
- \mathbf{K} è chiave per r se è una superchiave minimale per r (ossia, non contiene un'altra superchiave)

Una chiave

- Matricola è una chiave:
 - è superchiave
 - contiene un solo attributo e quindi è minimale

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Matem.	5/12/78
78763	Rossi	Mario	Fisica	3/11/76
65432	Neri	Piero	Biologia	10/7/79
87654	Neri	Mario	Fisica	3/11/76
67653	Rossi	Piero	Biologia	5/12/78

Chiave alternativa

- Cognome, Nome, Nascita è un'altra chiave:
 - è superchiave
 - minimale

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Matem.	5/12/78
78763	Rossi	Mario	Fisica	3/11/76
65432	Neri	Piero	Biologia	10/7/79
87654	Neri	Mario	Fisica	3/11/76
67653	Rossi	Piero	Biologia	5/12/78

Altre chiavi?

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Matem.	5/12/78
78763	Rossi	Mario	Fisica	3/11/76
65432	Neri	Piero	Biologia	10/7/79
87654	Neri	Mario	Fisica	3/11/76
67653	Rossi	Piero	Biologia	5/12/78

- Non ci sono ennuple uguali su Cognome e Corso:
 - Cognome e Corso formano una chiave
- Ma è sempre vero?

Vincoli, schemi e istanze

- I vincoli corrispondono a proprietà del mondo reale modellato dalla base di dati
- Interessano a livello di schema (con riferimento cioè a tutte le istanze)
- Ad uno schema associamo un insieme di vincoli e consideriamo corrette (valide, ammissibili) le istanze che soddisfano tutti i vincoli
- Un'istanza può soddisfare altri vincoli ("per caso")

Esempio

Studenti

Matricola Cognome Nome Corso Nascita

- Chiavi:
 - > Matricola
 - ➤ Cognome, Nome, Nascita

Esempio

- È corretta: soddisfa i vincoli
- Ne soddisfa anche altri ("per caso"):
 - Cognome, Corso è chiave

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Matem.	5/12/78
78763	Rossi	Mario	Fisica	3/11/76
65432	Neri	Piero	Biologia	10/7/79
87654	Neri	Mario	Fisica	3/11/76
67653	Rossi	Piero	Biologia	5/12/78

Esistenza delle chiavi

- Una relazione non può contenere ennuple distinte ma uguali
- Ogni relazione ha come superchiave l'insieme degli attributi su cui è definita

quindi ha (almeno) una chiave

Importanza delle chiavi

- l'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati
- le chiavi permettono di correlare i dati in relazioni diverse:
 - il modello relazionale è basato su valori

Contenuti della lezione

- Vincoli di integrità
- Vincoli di ennupla
- Chiavi e schemi di relazione
- Chiavi e valori nulli
- Vincoli di integrità referenziale

Chiavi e valori nulli

- In presenza di valori nulli, i valori della chiave non permettono
 - di identificare le ennuple
 - di realizzare facilmente i riferimenti da altre relazioni

Chiavi e valori nulli

Matricola	Cognome	Nome	Corso	Nascita
NULL	NULL	Mario	Matem.	5/12/78
78763	Rossi	Mario	Fisica	3/11/76
65432	Neri	Piero	Biologia	10/7/79
87654	Neri	Mario	Fisica	NULL
NULL	Rossi	Piero	NULL	5/12/78

• La presenza di valori nulli nelle chiavi deve essere limitata

Chiave primaria

- La chiave primaria è una chiave su cui non sono ammessi nulli
- Viene prescelta fra l'insieme di chiavi secondo dei criteri di efficienza
 - Notazione: sottolineatura

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Matem.	5/12/78
78763	Rossi	Mario	Fisica	3/11/76
65432	Neri	Piero	Biologia	10/7/79
87654	Neri	Mario	Fisica	3/11/76
67653	Rossi	Piero	Biologia	5/12/78

Contenuti della lezione

- Vincoli di integrità
- Vincoli di ennupla
- Chiavi e schemi di relazione
- Chiavi e valori nulli
- Vincoli di integrità referenziale

Integrità referenziale

- informazioni in relazioni diverse sono correlate attraverso valori comuni
- in particolare, valori delle chiavi (primarie)
- le correlazioni debbono essere "coerenti"

Esempio

Infrazion	i			Vig	jili
Codice	Data	Vigile	Prov	Numero	
34321	1/2/95	3987	MI	39548K	
53524	4/3/95	3295	TO	E39548	
64521	5/4/96	3295	PR	839548	
73321	5/2/98	9345	PR	839548	

Matricola	Cognome	Nome
3987	Rossi	Luca
3295	Neri	Piero
9345	Neri	Mario
7543	Mori	Gino

Infrazioni

Codice	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	TO	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto

Prov	Numero	Cognome	Nome
MI	39548K	Rossi	Mario
ТО	E39548	Rossi	Mario
PR	839548	Neri	Luca

Vincolo di integrità referenziale

 Un vincolo di integrità referenziale ("foreign key") fra gli attributi X di una relazione R₁ e un'altra relazione R₂ impone ai valori su X in R₁ di comparire come valori della chiave primaria di R₂

Vincolo di integrità referenziale: esempio

- vincoli di integrità referenziale fra:
 - l'attributo Vigile della relazione INFRAZIONI e la relazione VIGILI
 - gli attributi Prov e Numero di INFRAZIONI e la relazione AUTO

Violazione di vincolo di integrità referenziale

Infrazioni

Codice	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	ТО	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto	Prov	Numero	Cognome	Nome
	MI	E39548	Rossi	Mario
	TO	39548K	Rossi	Mario
za - Vincoli d'inte	PR	839548	Neri	Luca

Vincoli di integrità referenziale: commenti

- Giocano un ruolo fondamentale nel concetto di "modello basato su valori."
- In presenza di valori nulli i vincoli possono essere resi meno restrittivi
- Sono possibili meccanismi per il supporto alla loro gestione ("azioni" compensative a seguito di violazioni)

Integrità referenziale e valori nulli

Impiegati

Matricola	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

Codice	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
ВОН	09/2001	24	150

Azioni compensative

- Esempio:
 - Viene eliminata una ennupla causando cosi' una violazione
- Azioni
 - Rifiuto dell'operazione
 - Eliminazione in cascata
 - Introduzione di valori nulli

Eliminazione in cascata

Impiegati

Matricola	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

Codice	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
вон	09/2001	24	150

Introduzione di valori nulli

Impiegati

Matricola	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	NULL
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

Codice	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
вон	09/2001	24	150

Other Types of Constraints

Semantic Integrity Constraints:

- based on application semantics and cannot be expressed by the model per se
- E.g., "the max. no. of hours per employee for all projects he or she works on is 56 hrs per week"
- A constraint specification language may have to be used to express these
- SQL-99 allows triggers and ASSERTIONS to allow for some of these

Figure 7.5 Schema diagram for the COMPANY relational database schema; the primary keys are underlined.

FNAME MINIT LNAME SSN BDATE

DEPARTMENT

DNAME DN	<u>UMBER</u> MGF	RSSN MGR	STARTDATE
----------	------------------	----------	-----------

ADDRESS

SEX

SALARY

SUPERSSN

DNO

DEPT_LOCATIONS

DNUMBER	DLOCATION	
		_

PROJECT

WORKS_ON

DEPENDENT

ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP

 ${\small \textcircled{\textbf{@}}}\ \textbf{Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition}$

Figure 7.6 One possible relational database state corresponding to the COMPANY schema.

										_
EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John		Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
	Franklin		Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	86866555	5
	Alicia		Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	П	25000	987654321	4
	Jennifer		Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	т	43000	888665555	4
	Ramesh		Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce		English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad		Jaibbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James		Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

					DEPT_LUCAT	UND	DINUND
DEPARTMENT	DNAME	DNUMBER	MGRSSN	MGR	STARTDATE		
	Research	5	333445555	1:	988-05-22	1	
	Administration	4	987654321	1:	995-01-01		
	Headquarters	1	888665555	15	981-06-19		

WORKS_ON	ESSN	PNO	HOURS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	967987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	nuil

PROJECT	PNAME	PNUMBER	PLOCATION	DNUM
	ProductX	1	Bellaire	5
	ProductY	2	Sugarland	5
	ProductZ	3	Houston	5
	Computerization	10	Stafford	4
	Reorganization	20	Houston	1
	Newbenefits	30	Stafford	4

DEPENDENT	<u>ESSN</u>	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
	333445555	Alice	F	1986-04-05	DAUGHTER
	333445555	Theodore	М	1983-10-25	SON
	333445555	Joy	F	1958-05-03	SPOUSE
	987654321	Abner	М	1942-02-28	SPOUSE
	123456789	Michael	M	1988-01-04	SON
	123456789	Alice	F	1988-12-30	DAUGHTER
	123456789	Elizabeth	F	1967-05-05	SPOUSE

[©] Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

Figure 7.7 Referential integrity constraints displayed on the COMPANY relational database schema diagram.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

Update Operations on Relations

- INSERT a tuple.
- DELETE a tuple.
- MODIFY a tuple.
- Integrity constraints should not be violated by the update operations.
- Several update operations may have to be grouped together.
- Updates may *propagate* to cause other updates automatically. This may be necessary to maintain integrity constraints.

Update Operations on Relations

- In case of integrity violation, several actions can be taken:
 - Cancel the operation that causes the violation (REJECT option)
 - Perform the operation but inform the user of the violation
 - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
 - Execute a user-specified error-correction routine