Linear Algebra Exercises

Lance Remigio

November 17, 2023

Chapter 1

Vector Spaces

1.1 Vector Spaces

Exercise 1.2.1

Label the following statements as true or false.

- (a) Every vector space contains a zero vector.
- (b) A vector space may have more than one zero vector.
- (c) In any vector space, ax = bx implies that a = b.
- (d) In any vector space, ax = ay implies that x = y.

Exercise 1.2.7

Let $S = \{0, 1\}$ and $F = \mathbb{R}$. In $\mathcal{F}(S, \mathbb{R})$, show that f = g and where f(t) = 2t + 1, $g(t) = 1 + 4t - 2t^2$, and $h(t) = 5^t + 1$.

Proof. To show that f = g, we have to show that for each $s \in S$ that f(s) = g(s). Since $S = \{0, 1\}$, we can just evaluate both f and g for elements in S. Note that

$$f(0) = 2(0) + 1 = 1$$

and likewise,

$$q(0) = 1 + 4(0) - 2(0)^{2}$$
.

Hence, f(0) = g(0). Now let us evaluate both functions f and g at s = 1. Hence, we have

$$f(1) = 2(1) + 1 = 3$$

and

$$g(1) = 1 + 4(1) - 2(1)^2 = 3.$$

Thus, we must have f(s) = g(s) for all $s \in S$.

Now, we need to show that f+g=h. Like we did above, we have to show that this is the case for all $s \in S$. Note that

$$(f+g)(s) = f(s) + g(s).$$

Hence, we have

$$f(s) + q(s) = 2 + 6s - 2s^2$$
.

Evaluating at s = 0, we have

$$f(0) + g(0) = 2.$$

and likewise,

$$h(0) = 5^0 + 1 = 2.$$

Hence, (f+g)(0) = h(0). Now let us evaluate f+g at s=1

$$f(1) + g(1) = 2 + 6(1) - 2(1)^2 = 6$$

and likewise, we have

$$h(1) = 5^1 + 1 = 6.$$

Hence, we have (f+g)(1)=h(1). Thus, we have that f+g=h for all $s\in S$.

Exercise 1.2.8

In any vector space V, we have

$$(a+b)(x+y) = ax + ay + bx + by$$

for any $x, y \in V$ and any $a, b \in F$.

Proof. Observe the following set equalities:

$$(a+b)(x+y) = a(x+y) + b(x+y)$$
 (VS 8)
= $ax + ay + bx + by$. (VS 7)

Hence, we have that

$$(a+b)(x+y) = ax + ay + bx + by$$

for any $x, y \in V$ and any $a, b \in F$.

Exercise 1.2.10

Let V denote the set of all differentiable real-valued functions defined on the real line. Prove that V is a vector space with the operations of addition and scalar multiplication defined in Example 3.

Proof. Let V denote the set of all differentiable real-valued functions defined on the real line. We need to show that V is a vector space over \mathbb{R} with addition and scalar multiplication defined in Example 3.

(VS 1) Let $f, g \in V$. We need to show that f + g = g + f for all $x \in \mathbb{R}$. Let $x \in \mathbb{R}$. Since f(x) and g(x) are also real numbers, we have

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).$$

Hence, we have f + g = g + f.

(VS 2) Let $f, g, h \in V$. We need to show that f + (g + h) = (f + g) + h. Let $x \in \mathbb{R}$. Since $f(x), g(x), h(x) \in \mathbb{R}$, we can see that

$$(f + (g + h))(x) = f(x) + (g + h)(x)$$

$$= f(x) + g(x) + h(x)$$

$$= (f + g)(x) + h(x)$$

$$= ((f + g) + h)(x).$$

Hence, we have f + (g + h) = (f + g) + h.

(VS 3) Observe that $f_0(x) = 0$ for all $x \in \mathbb{R}$ is also a real-valued function that is differentiable. We need to show that $f + f_0 = f$. Hence, we have

$$(f + f_0)(x) = f(x) + f_0(x) = f(x) + 0 = f(x).$$

Hence, $f + f_0 = f$ for all $x \in \mathbb{R}$.

(VS 4) Take c = -1 and perform a scalar operation with a $f \in V$. Observe that $(-1 \cdot f)(x) = (-1)f(x) = -f(x)$. Denote g = -f. Since additive inverses exists in \mathbb{R} , we have

$$(f-g)(x) = (f-f)(x)$$

$$= f(x) - f(x)$$

$$= 0$$

$$= f_0(x).$$

Hence, $f - g = f_0$ for all $x \in \mathbb{R}$.

(VS 5) Let $f \in V$ and let $x \in \mathbb{R}$. We need to show that $1 \cdot f = f$. Since $f(x) \in \mathbb{R}$, we can see that multiplicative identities in \mathbb{R} are also preserved in V; that is, we have

$$(1f)(x) = 1 \cdot f(x) = f(x).$$

Hence, we have 1f = f for all $x \in \mathbb{R}$.

(VS 6) Let $a, b \in \mathbb{R}$ and $f \in V$. Let $x \in \mathbb{R}$ be arbitrary. Then observe that

$$((ab)f)(x) = (ab)f(x) = a(bf(x)) = a(bf)(x).$$

Hence, we have (ab)f = a(bf) for all $x \in \mathbb{R}$.

(VS 7) Let $a \in \mathbb{R}$ and let $f, g \in V$. We need to show that a(f+g) = af + ag. Let $x \in \mathbb{R}$. Observe that $f(x), g(x) \in \mathbb{R}$ imply

$$(a(f+g))(x) = a(f+g)(x) = a(f(x) + g(x)) = af(x) + ag(x) = (af)(x) + (ag)(x).$$

Hence, we conclude that a(f+g) = af + ag for all $x \in \mathbb{R}$.

(VS 8) Let $a, b \in \mathbb{R}$ and let $f \in V$. Let $x \in \mathbb{R}$. Then we have

$$((a+b)f)(x) = (a+b)f(x)$$
$$= af(x) + bf(x)$$
$$= (af)(x) + (bf)(x).$$

Hence, we have (a+b)f = af + bf for all $x \in \mathbb{R}$.

Since all the properties of a vector space have been satisfied, we conclude that V is a vector space.

Exercise 1.2.11

Let $V = \{0\}$ consist of a single vector O and define O + O = O and cO = O for each scalar $c \in F$. Prove that V is a vector space over F.

Proof. Let $x, y \in O$. Since $V = \{0\}$, we know that x and y are both the 0 vector. By using the addition defined on V, we can see that

$$x + y = O + O = y + x.$$

Note that $x+y\in V$ implies that x+y=O+O and likewise y+z=O+O for every $x,y,z\in V$. Hence, we have that

$$x + (y + z) = O + (O + O) = (O + O) + O = (x + y) + z.$$

Since V consists of only the zero vector O, we know that (VS 3) and (VS 4) are satisfied. By

the same reasoning, (VS 5) is satisfied because

$$1 \cdot O = O$$
.

Let $a, b \in F$. Then (VS 6) and (VS 7) are satisfied because

$$(ab)O = 0 = a \cdot 0 = a(bO)$$
 and $a(O + O) = 0 = O + O = aO + aO$ respectively.

Let $a, b \in F$ again. Then we have

$$(a+b)O = 0$$
$$= O + O$$
$$= aO + bO.$$

Hence, (VS 8) is satisfied.

Exercise 1.2.12

A real-valued function f defined on the real line is called an **even function** if f(-t) = f(t) for all $t \in \mathbb{R}$. Prove that the set of even functions defined on \mathbb{R} with the operations of addition and scalar multiplication defined in Example 3 is a vector space.

Proof. First, let us show that for every $t \in \mathbb{R}$ that (f+g)(t) is also an even function for every pair of even functions f, g and likewise (cf)(t) is an even function for every $c \in \mathbb{R}$. Observe that

$$(f+g)(-t) = f(-t) + g(-t)$$

= $f(t) + g(t)$
= $(f+g)(t)$.

Hence, the function f + g is also even. Now observe that

$$(cf)(-t) = cf(-t)$$
$$= cf(t)$$
$$= (cf)(t).$$

Hence, cf is also even function.

Now we can show that the set of even functions is a vector space.

(VS 1) Let f, g be a pair of real-valued even functions. Let $t \in \mathbb{R}$ be arbitrary. We need to show that f + g = g + f. Since f(t) and g(t) are real numbers, observe that

$$(f+g)(t) = f(t) + g(t) = g(t) + f(t) = (g+f)(t).$$

Hence, we have that f + g = g + f.

(VS 2) Let f, g, h be even functions and let $t \in \mathbb{R}$ be arbitrary. We need to show that f + (g + h) = (f + g) + h. By the same reasoning we used to prove (VS 1), observe that

$$f(t) + ((g+h)(t)) = f(t) + (g(t) + h(t))$$
$$= (f(t) + g(t)) + h(t)$$
$$= ((f+q)(t)) + h(t)$$

Hence, we have that f + (g + h) + (f + g) + h.

(VS 3) Let f be an even function. Note that the zero function is an even function. Denote the zero function as f_0 . For every $t \in \mathbb{R}$, we have $f_0(x) = O$. We need to show that $f + f_0 = f$. Since $f_0(x)$ is just a real number, we have

$$(f + f_0)(t) = f(t) + f_0(t) = f(t) + O = f(t).$$

(VS 4) Let f be an even function and let f_0 be the zero function defined above. We need to show that there exists a even function g such that $f + g = f_0$. Let $t \in \mathbb{R}$ be arbitrary. Note that

$$(f+g)(t) = f(t) + g(t)$$

Since f(t) and g(t) are real numbers and there exists an additive identity in the real numbers, we have that $f(t) + g(t) = f_0(t)$. Hence, (VS 5) is satisfied.

- (VS 5) Let $x \in \mathbb{R}$ and f an even function. Then we immediately have $(1 \cdot f)(t) = 1f(t) = f(t)$.
- (VS 6) Let $a, b \in \mathbb{R}$. We need to show that (ab)f = a(bf). Hence, let $t \in \mathbb{R}$. Then we have

$$(abf)(t) = a(bf)(t).$$

(VS 7) Let $a \in \mathbb{R}$ and let f, g be even functions. Let $t \in \mathbb{R}$. We need to show that a(f+g) = af + ag. Then we have

$$a(f+g)(t) = a[f(t) + g(t)]$$
$$= af(t) + ag(t).$$

Hence, (VS 7) is satisfied.

(VS 8) Now let $a, b \in \mathbb{R}$ and let f be an even function. We need to show that (a+b)f = af + bf. Let $t \in \mathbb{R}$ be arbitrary. Observe that

$$(a+b)f(t) = af(t) + bf(t)$$
$$= (af)(t) + (bf)(t)$$

Hence, (VS 8) is satisfied.

Exercise 1.2.13

Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + a_2, a_2b_2)$$
 and $c(a_1, a_2) = (ca_1, a_2)$.

Is V is a vector space over \mathbb{R} with these operations? Justify your answer.

Proof. We have that V is not a vector space of \mathbb{R} . To see why, let $(2,1), (4,2) \in V$ where x = (2,1) and y = (4,2). We will show that (VS 1) does not hold; that is, $x + y \neq y + x$. Hence, observe that

$$(2,1) + (4,2) = (2+1,2) = (3,2)$$

and

$$(4,2) + (2,1) = (4+2,2) = (6,2)$$

Hence, we have $x + y \neq y + x$ and so V is **NOT** a vector space.

Exercise 1.2.14

Let $V = \{(a_1, a_2, \dots, a_n) : a_i \in C \text{ for } i = 1, 2, \dots, n)\}$; so V is a vector space over C by Example 1. Is V is a vector space over the field of real numbers with the operations of coordinate-wise addition and multiplication?

Proof. Yes, V where

$$V = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{R} \text{ for } i = 1, 2, \dots, n\}$$

is a vector space of \mathbb{R} .

- (VS 1) Let $x, y \in V$ such that $x = (a_1, a_2, \dots, a_n)$ and $y = (b_1, b_2, \dots, b_n)$. Since addition is entrywise in V and each entry in both x and y are elements of \mathbb{R} (where \mathbb{R} is a field), we have $a_i + b_i = b_i + a_i$ for all $i = 1, 2, \dots, n$. Hence, x + y = y + x.
- (VS 2) Let $x, y, z \in V$ with x and y as defined as before where z contains entries c_i for all i = 1, 2, ..., n. We can see that the entries of x, y, z are elements of \mathbb{R} so associativity is preserved; that is, $a_i + (b_i + c_i) = (a_i + b_i) + c_i$ for all i = 1, 2, ..., n. Hence, we have x + (y + z) = (x + y) + z.
- (VS 3) Since \mathbb{R} contains the zero element 0 and V is the set of n-tuples, there exists an element denoted by O such that this element consisting of entries that only have the zero element 0; that is, $O = (0, 0, \dots, 0)$. Take $x \in V$. Hence, we have $a_i + 0 = a_i$ for every $i = 1, 2, \dots, n$. Thus, we must have x + O = x.
- (VS 4) Let $x \in V$ be arbitrary as defined before. Since every entry in x is an element of \mathbb{R} ; that is, every $a_i \in \mathbb{R}$ for all i = 1, 2, ..., n, we know that every entry contains an element c_i such that $a_i + c_i = 0$ for every i = 1, 2, ..., n. Denote $x' = (c_1, c_2, ..., c_n)$. Hence, we have x + x' = O.
- (VS 5) Let $x \in V$. Every entry $a_i \in \mathbb{R}$ for all i = 1, 2, ..., n, we have $1 \cdot a_i = a_i$ which holds for all i. Denote this identity element as I with entries consisting only of 1. Hence, we have $I \cdot x = x$.
- (VS 6) Let $e, r \in \mathbb{R}$ and let $x \in V$. For every entry $a_i \in \mathbb{R}$ for all i = 1, 2, ..., n, we have $(er)a_i = e(ra_i)$ for all i = 1, 2, ..., n. By using the operations of scalar multiplication for n-tuples, this tells us that (er)x = e(rx). Hence, (VS 6) is satisfied.
- (VS 7) Let $e \in \mathbb{R}$ and let $x, y \in V$. We need to show that e(x + y) = ex + ey. Note that $a_i, b_i \in \mathbb{R}$ implies that $e(a_i + b_i) = ea_i + eb_i$. Hence, we have e(x + y) = ex + ey.
- (VS 8) Let $e, r \in \mathbb{R}$ and $x \in V$ as defined before. We need to show that (e+r)x = ex + rx. Since $a_i \in \mathbb{R}$ with $e, r \in \mathbb{R}$, we are guaranteed to have $(e+r)a_i = ea_i + ra_i$ for all $i = 1, 2, \ldots, n$. Hence, we have (e+r)x = ex + rx.

Exercise 1.2.16

8

Let V denote the set of all $m \times n$ matrices with real entries; so V is a vector space over \mathbb{R} by Example 2. Let F be the field of rational numbers. Is V a vector space over F with the usual definitions of matrix addition and scalar multiplication?

- **Proof**(NS 1) Let $A, B \in V$. Since A, B consist of elements $A_{ij}, B_{ij} \in \mathbb{R}$, we know that $A_{ij} + B_{ij} = B_{ij} + A_{ij}$. Hence, A + B = B + A.
- (VS 2) Let $A, B, C \in V$ with A, B defined as before and C containing real entries C_{ij} . With the same reasoning used to prove (VS 1), we know that $A_{ij} + (B_{ij} + C_{ij}) = (A_{ij} + B_{ij}) + C_{ij}$. Hence, we have A + (B + C) = (A + B) + C.
- (VS 3) Let $A \in V$ once again. Since the entries of A imply that there exists an element O such that $A_{ij} + 0 = A_{ij}$, we know that A + O = A where O is the **zero matrix** of V.
- (VS 4) Since the real entries of A also consists of an element A'_{ij} such that $A_{ij} + A'_{ij} = 0$, this implies that A + A' = O where A' is the additive inverse matrix of V.
- (VS 5) Let $x \in V$ as defined as before. Every entry of A, $A_{ij} \in \mathbb{R}$, has the following property: $1 \cdot A_{ij} = A_{ij}$ for all $1 \leq i \leq m$ and for all $1 \leq j \leq n$. The matrix whose entries consists of only one we can define as the **identity matrix** denoted by I where $I_{ij} = 1$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$. Hence, we have $A \cdot I = A$.

CHAPTER 1. VECTOR SPACES

- (VS 6) Let $r, t \in \mathbb{Q}$ and let $A \in V$ as defined before. We need to show that (rt)A = r(tA). Since $A_{ij} \in \mathbb{R}$, entry-wise scalar multiplication implies that $(rt)A_{ij} = r(tA_{ij})$ for all $1 \le i \le m$ and $1 \le j \le n$. Hence, we must have (rt)A = r(tA).
- (VS 7) Let $r \in \mathbb{Q}$ and $A, B \in V$ as defined before. Since $A_{ij}, B_{ij} \in \mathbb{R}$, we know that $r(A_{ij} + B_{ij}) = rA_{ij} + rB_{ij}$. Hence, we have r(A + B) = rA + rB.
- (VS 8) Let $r, t \in \mathbb{Q}$ and let $A \in V$ as defined before. Since $A_{ij} \in \mathbb{R}$ for all i, j, we must have $(r+t)A_{ij} = rA_{ij} + tA_{ij}$. Hence, we have (r+t)A = rA + tA. Hence, V is a vector space over \mathbb{Q} .

Exercise 1.2.17

Let $V = \{(a_1, a_2) : a_1, a_2 \in F\}$, where F is a field. Define addition of elements of V coordinate-wise, and for $c \in F$ and $(a_1, a_2) \in V$, define

$$c(a_1, a_2) = (ca_1, 0).$$

Is V a vector space over F with these operations? Justify your answer.

Proof. We claim that V is not a vector space over F because V fails to satisfy (VS 5). To see why, let $(1,2) \in V$. Using (VS 5), we have

$$1 \cdot (1,2) = (1,0) \neq (1,2).$$

Hence, V cannot be a vector space.

Exercise 1.2.18

Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)$$
 and $c(a_1, a_2) = (ca_1, ca_2)$.

Is V a vector space over $F = \mathbb{R}$ with these operations? Justify your answer?

Proof. We claim that V is not a vector space over \mathbb{R} and we will use (VS 1) to show this. Let $x, y \in V$ be defined by x = (1, 2) and y = (3, 4). Observe that

$$x + y = (1, 2) + (3, 4) = (7, 14)$$

and

$$y + x = (3, 4) + (1, 2) = (5, 10).$$

Clearly, we have $x + y = (7, 14) \neq (5, 10) = y + x$ and so (VS 1) does not hold.

Exercise 1.2.19

Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. Define addition of elements of V coordinate-wise, and for $(a_1, a_2) \in V$ and $c \in \mathbb{R}$, define

$$c(a_1, a_2) = \begin{cases} (0, 0) & \text{if } c = 0\\ \left(ca_1, \frac{a_2}{c}\right) & \text{if } c \neq 0. \end{cases}$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Proof. We claim that V is not a vector space over \mathbb{R} . To see why, consider (VS 8). If we let $(0,1) \in V$ with c=2+1=3. Observe that

$$(2+1)(0,1) = \left(0, \frac{1}{2+1}\right) = \left(0, \frac{1}{3}\right).$$

Likewise, we have

$$2(0,1) + 1(0,1) = \left(0, \frac{1}{2}\right) + \left(0, 1\right) = \left(0, \frac{3}{2}\right).$$

Notice that $(2+1)(0,1) \neq 2(0,1) + 1(0,1)$. Hence, V cannot be a vector space over \mathbb{R} .

Exercise 1.2.20

Let V denote the set of all real-valued functions f defined on the real line such that f(1) = 0. Prove that V is a vector space with the operations of addition and scalar multiplication defined in Example 3.

Proof. Define V as a vector space with the operations of addition and scalar multiplication defined in Example 3. We must show that V is a vector space.

(VS 1) Let $f, g \in V$. This means that f(1) = 0 and g(1) = 0. We need to show that f + g = g + f. Since $f(1), g(1) \in \mathbb{R}$ and commutativity holds in \mathbb{R} , we can write

$$(f+g)(1) = f(1) + g(1)$$

= $g(1) + f(1)$
= $(g+f)(1)$

Hence, we have f + g = g + f.

(VS 2) Let $f, g, h \in V$ then f(1) = g(1) = h(1) = 0. We need to show that f + (g + h) = (f + g) + h. Observe that

$$(f + (g + h))(1) = f(1) + (g + h)(1)$$

$$= f(1) + g(1) + h(1)$$

$$= (f + g)(1) + h(1)$$

$$= ((f + g) + h)(1).$$

Hence, we have f + (g + h) = (f + g) + h.

(VS 3) Let $f \in V$. We need to show that $f + f_0 = f$ for some $f_0 \in V$. Since V contains elements of $f \in V$ such that f(1) = 0, we can choose f_0 such that $f_0(1) = 0$. We can show that this is indeed the additive inverse of V by writing the following:

$$(f + f_0)(1) = f(1) + f_0(1) = f(1) + 0 = f(1).$$

Hence, we have $f + f_0 = f$.

(VS 4) Let $f \in V$. We need to find an element $g \in V$ such that $f + g = f_0$ By definition of V, f(1) = 0. We need to show that $f + g = f_0$ with f_0 defined as before. Choose g = -f as our additive inverse and observe that

$$(f+g)(1) = (f-f)(1)$$

$$= f(1) - f(1)$$

$$= 0 - 0$$

$$= 0$$

$$= f_0(1).$$

Hence, g = -f an element such that $f + g = f_0$.

(VS 5) Let $f \in V$. By definition of V, we have f(1) = 0. Since $f(1) \in \mathbb{R}$, we know that $1 \cdot f(1) = f(1)$. We need to show that 1f = f. Observe that

$$(1f)(1) = 1 \cdot f(1) = f(1).$$

Hence, (VS 5) holds.

10

(VS 6) Let $a, b \in \mathbb{R}$ and let $x \in V$. We need to show that (ab)f = a(bf). By using scalar multiplication, we can see that

$$(ab \cdot f)(1) = (ab)f(1) = a(bf(1)) = a(b \cdot f)(1).$$

Hence, (VS 6) must hold.

(VS 7) Let $a \in \mathbb{R}$ and let $f, g \in V$. We need to show that a(f+g) = af + ag. Observe that

$$a(f+g)(1) = a(f(1) + g(1))$$

$$= af(1) + ag(1)$$

$$= (af)(1) + (ag)(1).$$

Hence, a(f+g) = af + ag and so (VS 7) is satisfied.

(VS 8) Let $a, b \in \mathbb{R}$ and let $f \in V$. Observe that

$$(a+b)f(1) = af(1) + bf(1)$$

= $(af)(1) + (bf)(1)$

Hence, (a+b)f = af + bf. Thus, V must be a vector space over \mathbb{R} .

Exercise 1.2.21

Let V and W be vector spaces over a field F. Let

$$Z = \{(v, w) : v \in v \text{ and } w \in W\}.$$

Prove that Z is a vector space over F with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$.

Proof. Let V and W be vector spaces over a field F.

(VS 1) Let $x, y \in Z$ where $x = (v_1, w_1)$ and $y = (v_2, w_2)$. Since V and W are vector spaces, commutativity holds. Since the addition defined on both V and W is entry-wise, we can see that

$$x + y = (v_1, w_1) + (v_2, w_2)$$

$$= (v_1 + v_2, w_1 + w_2)$$

$$= (v_2 + v_1, w_2 + w_1)$$

$$= (v_2, w_2) + (v_1, w_1)$$

$$= y + x.$$

Hence, we can see that (VS 1) is satisfied.

(VS 2) Let $x, y, z \in Z$ with x and y as defined before as well as $z = (z_3, w_3)$. Using the entry-wise addition defined for Z, we can see that

$$x + (y + z) = (v_1, w_1) + ((v_2, w_2) + (v_3, w_3))$$

$$= (v_1, w_1) + (v_2 + v_3, w_2 + w_3)$$

$$= (v_1 + (v_2 + v_3), w_1 + (w_2 + w_3))$$

$$= ((v_1 + v_2) + v_3, (w_1 + w_2) + w_3)$$

$$= (v_1 + v_2, w_1 + w_2) + (v_3, w_3)$$

$$= (x + y) + z.$$

(VS 3) Since V and W are vector spaces, we know that there exists an additive identity O_V and O_W respectively. Hence, we have $(O_V, O_W) \in Z$ and denote $O_Z = (O_V, O_W)$. Now, let $x \in Z$ as defined before. Observe that

$$x + O_Z = (v_1, w_1) + (O_V, O_W)$$

$$= (v_1 + O_V, w_1 + O_W)$$

$$= (v_1, w_1)$$

$$= x.$$

(VS 4) Observe that V and W contain additive inverses for each $v \in V$ and $w \in W$ respectively. Since $x = (v_1, w_1)$ with $v_1 \in V$ and $w_1 \in W$, there exists an additive inverse $v_1' \in V$ and $w_1' \in W$ such that $v_1 + v_1' = O_V$ and $w_1 + w_1' = O_W$. This implies that $(v_1', w_1') \in Z$ which we will denote by x' such that

$$x + x' = (v_1, w_1) + (O_V, O_W)$$

= $(v_1 + v'_1, w_1 + w'_1)$
= (O_V, O_W)
= O_Z .

(VS 5) Let $x \in Z$. Since V and W are vector spaces (VS 5) implies that $1 \cdot v_1 = v_1$ and $1 \cdot w_1 = w_1$ respectively. Then observe that

$$1 \cdot x = 1 \cdot (v_1, w_1)$$

$$= (1 \cdot v_1, 1 \cdot w_1)$$

$$= (v_1, w_1)$$

$$= x.$$

(VS 6) Let $x \in Z$ and $a, b \in F$. Then

$$(ab)x = (ab)(v_1, w_1)$$

$$= ((ab)v_1, (ab)w_1)$$

$$= (a(bv_1), a(bw_1))$$

$$= a(bv_1, bw_1)$$

$$= a(bx)$$

$$(V, W \text{ vector space})$$

(VS 7) Let $x, y \in Z$ as defined before. Let $a \in F$. Then

$$a(x+y) = a\Big((v_1, w_1) + (v_2, w_2)\Big)$$

$$= a\Big((v_1 + v_2, w_1 + w_2)\Big)$$

$$= (a(v_1 + v_2), a(w_1 + w_2))$$

$$= (av_1 + av_2, aw_1 + aw_2)$$

$$= (av_1, av_2) + (aw_1, aw_2)$$

$$= a(v_1, v_2) + a(w_1, w_2)$$

$$= ax + ay.$$

(VS 8) Let $a, b \in F$ and let $x \in V$ as defined before. Since V and W are vector spaces, we know that

(VS 8) holds for bot entries $v_1 \in V$ and $w_1 \in W$. Hence, observe that

$$(a+b)x = (a+b)(v_1, w_1)$$

$$= ((a+b)v_1, (a+b)w_1)$$

$$= (av_1 + bv_1, aw_1 + bw_1)$$

$$= (av_1, aw_1) + (bv_1, bw_1)$$

$$= a(v_1, w_1) + b(v_1, w_1)$$

$$= ax + bx.$$

Hence, Z is a vector space.

1.2 Subspaces

Exercise 1.3.3

Prove that $(aA + bB)^t = aA^t + bB^t$ for any $A, B \in M_{m \times n}(F)$ and any $a, b \in F$.

Proof. Let $A, B \in M_{m \times n}(F)$ and let $a, b \in F$ be arbitrary. Using scalar multiplication defined on $M_{m \times n}(F)$, we have

$$(aA + bB)^t = (aA)^t + (bB)^t$$
$$= aA^t + bB^t.$$

Hence, we are done.

Exercise 1.3.5

Prove that $A + A^t$ is symmetric for any square matrix A.

Proof. Let A be an arbitrary square matrix. Since square matrices are symmetric, we have that $A^t = A$. We need to show that $(A + A^t)^t$. Observe that

$$(A + At)t = At + (At)t$$
$$= A + At.$$

Hence, we have $A + A^t$ is symmetric.

Exercise 1.3.

Prove that tr(aA + bB) = atr(A) + btr(B) for any $A, B \in M_{n \times n}(F)$.

Proof. Let $A, B \in M_{n \times n}(F)$ and let $a, b \in F$ be arbitrary. Now, let i = j and observe that

$$\operatorname{tr}(aA + bB) = \sum_{i,j \in \mathbb{N}}^{n} (aA + aB)_{ij}$$

$$= \sum_{i,j \in \mathbb{N}}^{n} (aA)_{ij} + (bB)_{ij}$$

$$= \sum_{i,j \in \mathbb{N}}^{n} (aA)_{ij} + \sum_{i,j \in \mathbb{N}}^{n} (bB)_{ij}$$

$$= \sum_{i,j \in \mathbb{N}}^{n} aA_{ij} + \sum_{i,j \in \mathbb{N}}^{n} bB_{ij}$$

$$= a\sum_{i,j \in \mathbb{N}}^{n} A_{ij} + b\sum_{i,j \in \mathbb{N}}^{n} B_{ij}$$

$$= a\operatorname{tr}(A) + b\operatorname{tr}(B).$$

Hence, we conclude

$$tr(aA + bB) = atr(A) + btr(B)$$

for any $A, B \in M_{n \times n}(F)$.

Exercise 1.3.7

Prove that diagonal matrices are symmetric matrices.

Proof. Let $A \in M_{n \times n}(F)$ be diagonal. Let $i \neq j$ where $A_{ij} = 0$. We need to show that $A^t = A$. If we apply a transpose on A, we get that $A_{ji} = 0$ since A^t is also diagonal and square. Since $A_{ij} = A_{ji} = 0$ for all $1 \le i \le n$ and $1 \le j \le n$. Hence, $A^t = A$

Exercise 1.3.8

Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answers.

(a) $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\}$

Proof. We claim that W_1 is a subspace of \mathbb{R}^3 .

- (a) Note that O_{ℝ³} ∈ W₁ where O_{ℝ³} = (0,0,0) because 0 = 3 · 0 and 0 = −1 · 0.
 (b) Let x, y ∈ W₁ where x = (a₁, a₂, a₃) and y = (b₁, b₂, b₃). We need to show that x + y ∈ W₁. Since a₁ = 3a₂ and a₃ = −a₂ as well as b₁ = 3b₂ and b₃ = −b₂, we can write a₁ + b₁ = 3(a₂ + b₂) and a₃ + b₃ = −(a₂ + b₂). Hence, x + y ∈ W₁.
- (c) Let $c \in \mathbb{R}$ and $x \in W_1$ with x defined as before. Then observe that $ca_1 = c(3a_2) = 3(ca_2)$ and $ca_3 = c(-a_2) = -(ca_2)$. Hence, $cx \in W_1$.

Since all the properties of a Theorem 3 have been satisfied, we can conclude that W_1 is a

- (b) $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = a_3 + 2\}$
- (c) $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 7a_2 + a_3 = 0\}$
- (d) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 4a_2 3a_3 = 1\}$
- (e) $W_5 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 3a_3 = 1\}$
- (f) $W_6 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 5a_1^2 3a_2^2 + 6a_3^2 = 0\}$

Exercise 1.3.9

Let W_1, W_3, W_4 be as in Exercise 8. Describe $W_1 \cap W_3, W_1 \cap W_4$, and $W_3 \cap W_4$ and observe that each is a subspace of \mathbb{R}^3 .

Proof.

Exercise 1.3.11

Prove that the set $W_1 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 + a_2 + \dots + a_n = 0\}$ is a subspace of F^n , but $W_2 = \{(a_1, a_2, \dots, a_n)\} \in F^n : a_1 + a_2 + \dots + a_n = 1$ is not.

Proof. We need to show that W_1 is a subspace of F^n . We proceed by satisfying the properties of Theorem 3 to do this.

- (a) Note that $O_{F^n} \in W_1$ since $0 + 0 + \cdots + 0 = 0$ n times.
- (b) Let $x, y \in W_1$ with $x = (a_1, a_2, \dots, a_3)$ and $y = (b_1, b_2, \dots, b_n)$. By definition of W_1 , we can see that

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

$$= 0 + 0$$

$$= 0$$

Hence, $x + y \in W_1$ which tells us that W_1 is closed under addition.

(c) Let $x \in W_1$ and $c \in F$. Then observe that

$$\sum_{i=1}^{n} (ca_i) = c \sum_{i=1}^{n} a_i = c \cdot 0 = 0.$$

Hence, we have $cx \in F^n$.

We claim that W_2 is not a subspace because W_2 is not closed under addition. Let $(0,1), (1,0) \in F^2$. Observe that 0+1=1 and 1+0=1, but (0+1)+(1+0)=1+1=2. Hence, $(0,1)+(1,0) \notin W_2$.

15

Exercise 1.3.11

Is the set $W = \{f(x) \in P(F) : f(x) = 0 \text{ or } f(x) \text{ has degree } n\}$ a subspace of P(F) if $n \ge 1$? Justify your answer.

Exercise 1.3.12

Prove that the set of $m \times n$ upper triangular matrices is a subspace of $M_{m \times n}(F)$.

Proof. Let V denote the set of $m \times n$ upper triangular matrices. We will show that V is a subspace of $M_{m \times n}(F)$ using Theorem 3.

- (a) The zero matrix O from $M_{m \times n}(F)$ contains entries $O_{ij} = 0$ whenever i > j. Hence, $O \in V$.
- (b) Let $A, B \in V$. By definition of V, A and B are upper triangular where $A_{ij} = 0$ and $B_{ij} = 0$ whenever i > j. Observe that

$$(A+B)_{ij} = A_{ij} + B_{ij} = 0 + 0 = 0$$

whenever i > j. Hence, $A + B \in V$.

(c) Let $c \in F$ and $A \in V$ as defined before. Let i > j and observe that $(cA)_{ij} = cA_{ij} = c \cdot 0 = 0$. Hence, $cA \in V$.

Since all the properties of theorem 3 have been satisfied, we conclude that V is indeed a subspace of $M_{m\times n}(F)$.

Exercise 1.3.13

Let S be nonempty set and F is a field. Prove that for any $s_0 \in S$, the set $\{f \in \mathcal{F}(S, F) : f(s_0) = 0\}$, is a subspace of $\mathcal{F}(S, F)$.

Proof. We will proceed to prove that S is a subspace of $\mathcal{F}(S,F)$ over the field F by satisfying the properties of Theorem 3. Let $V = \{ f \in \mathcal{F}(S,F) : f(s_0) = 0 \}$.

- (a) Note that the zero function $f_0 \in \mathcal{F}(S, F)$ where $f_0(s_0) = 0$ for any $s_0 \in S$ implies that $f_0 \in V$.
- (b) Let $f, g \in V$. By definition of V, $f(s_0) = 0$ and $g(s_0) = 0$ for any $s_0 \in S$. We have $f + g \in V$ since

$$(f+g)(s_0) = f(s_0) + g(s_0) = 0 + 0 = 0.$$

Hence, V is closed under addition.

(c) Let $f \in V$ and $c \in F$. We have $cf \in V$ since

$$(cf)(s_0) = cf(s_0) = c \cdot 0 = 0$$

for any $s_0 \in S$. Hence, V is closed under scalar multiplication.

Exercise 1.3.14

Let S be a nonempty set and F a field. Let C(S, F) denote the set of all functions $f \in \mathcal{F}(S, F)$ such that f(s) = 0 for all but a finite number of elements of S. Prove that C(S, F) is a subspace of $\mathcal{F}(S, F)$.

Proof. We proceed by using Theorem 3 to prove that C(S, F) is a subspace where S is a nonempty set and F is a field.

- (a) Note that the zero vector $f_0 \in \mathcal{F}(S, F)$ is in $\mathcal{C}(S, F)$ because $f_0(x_n) = 0$ where $x_n \in S$ for finitely many n.
- (b) Let $f, g \in \mathcal{C}(S, F)$. We need to show that $f + g \in \mathcal{C}(S, F)$. Let $x_n \in S$ for finitely many n. Then using the addition defined on $\mathcal{F}(S, F)$, we can write

$$(f+g)(x_n) = f(x_n) + g(x_n) = 0 + 0 = 0.$$

(c) Let $f \in \mathcal{C}(S, F)$ and $c \in F$. We need to show that $cf \in \mathcal{C}(S, F)$. Let $x_n \in S$ for finitely many n. Using the scalar operation defined on $\mathcal{F}(S, F)$, we can write

$$(cf)(x_n) = cf(x_n) = c \cdot 0 = 0.$$

Since all the properties of Theorem 3 have been satisfied, we conclude that C(S, F) is indeed a subspace of F(S, F).

Exercise 1.3.15

Is the set of all differentiable real-valued functions defined on \mathbb{R} a subspace of $C(\mathbb{R})$?

Proof. We claim that the set of all differentiable real-valued functions defined on \mathbb{R} is a subspace of $C(\mathbb{R})$. Denote this set as V.

(a) Note that the zero function f_0 is differentiable for all $x \in \mathbb{R}$ and continuous for all $x \in \mathbb{R}$.

Hence, $f_0 \in V$.

- (b) Let $f, g \in V$. Using the addition operation defined on $C(\mathbb{R})$, we get that the sum (f+g)(x) = f(x) + g(x) differentiable which implies that the sum of functions f, g is also continuous. Hence, $f + g \in V$.
- (c) Let $f \in V$ and let $c \in \mathbb{R}$. Then (cf)(x) = cf(x) is differentiable for all $x \in \mathbb{R}$ which means that cf is also continuous. Hence, $cf \in V$.

Hence, V is a subspace of $C(\mathbb{R})$.

Exercise 1.3.16

Let $C^n(\mathbb{R})$ denote the set of all real-valued functions defined on the real line that have a continuous nth derivative. Prove that $C^n(\mathbb{R})$ is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Proof.

Exercise 1.3.17

Prove that a subset W of a vector space V is a subspace of V if and only if $W \neq \emptyset$ and, whenever $a \in F$ and $x, y \in W$, then $ax \in W$ and $x + y \in W$.

Proof. For the forwards direction, let $W \subseteq V$ where V is a vector space and W is a subspace of V. Let $a \in F$ and $x, y \in W$. Since W is a subspace, we know that $O_V \in W$. So, W is nonempty. Since W is closed under addition and multiplication, we get that $x + y \in W$ and $ax \in W$ and we are done.

For the backwards direction, let $W \neq \emptyset$ and $W \subseteq V$. Let $a \in F$ and $x, y \in W$ be arbitrary such that $ax \in W$ and $x + y \in W$. We need to show that W is a subspace of V. We need only show that $O_V \in W$ since W is closed under addition and scalar multiplication. Let $x \in W$. We can pick any $c \in F$ such that c = 0. So, we have $c \cdot x = 0 \cdot x = O_w$. Since the zero vector $O_W \in W$ is unique, we must have $O_V = O_W$. Hence, $O_V \in W$ and we conclude that W is a subspace of V.

Exercise 1.3.18

Prove that a subset W of a vector space V is a subspace of V if and only if $O \in W$ and $ax + y \in W$ whenever $a \in F$ and $x, y \in W$.

Proof. (\Rightarrow) Let $W \subseteq V$ where W is a subspace of V. Since W is a subspace of V, we know that W is closed under addition and scalar multiplication. Let $a \in F$ and $x, y \in W$. Using the third property of Theorem 3, we can see that $ax \in W$. Since W is closed under addition, we can take $y \in W$ and $ax \in W$ such that $ax + y \in W$. Since W is also a vector space by definition, we know that $O_W \in W$. But $O_W = O_V$ so $O_V \in W$.

 (\Leftarrow) Let $a \in F$ and $x, y \in W$. We want to show that $W \subseteq V$ is a subspace of V. We can do this by using Theorem 3.

- (a) By assumption, the zero vector $O_V \in W$.
- (b) Let $x, y \in W$. Choose a = 1 such that ax + y = x + y. Since $ax + y \in W$ and ax + y = x + y, we also have $x + y \in W$. Hence, W is closed under addition.
- (c) Let $x \in W$ and $O_V \in W$. Let $a \in F$. Then we have $ax + O_V = ax \in W$.

Hence, W is a subspace of V by Theorem 3.

Exercise 1.3.19

Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Proof. (\Rightarrow) Let $W_1 \cup W_2$ is a subspace of V. We need to show that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. We

proceed by showing the contrapositive. Assume $W_2 \not\subseteq W_1$ and $W_1 \not\subseteq W_2$. We need to show that $W_1 \cup W_2$ is **NOT** a subspace of V. By assumption, $x \in W_1$ is not contained in W_2 as well as $y \in W_2$ is not contained in W_1 . This implies that $W_1 \cup W_2 = \emptyset$. Since $W_1 \cup W_2$ is empty where $W_1 \cup W_2$ does not contain O_V , it cannot possibly be a subspace of V.

(\Leftarrow) Let $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. We need to show that $W_1 \cup W_2$ is a subspace of V. We proceed by using Theorem 3 to do this. Without loss of generality, assume $W_1 \subseteq W_2$. The proof will be the same if we use $W_2 \subseteq W_1$.

- (a) Since W_1 is a subspace of V, we get that $O_W \in W_1$. Furthermore, $W_1 \subseteq W_2$ implies that $O_V \in W$. Since $O_V \in W_1$ and $O_V \in W_2$, we get that $O_V \in W_1 \cup W_2$ by definition of union.
- (b) Let $x, y \in W_1$. Since W_1 is a subspace, we get that $x + y \in W_1$. Since $W_1 \subseteq W_2$, we also get that $x + y \in W_2$. Since both $x + y \in W_1$ and $x + y \in W_2$, we know that $x + y \in W_1 \cup W_2$ by definition of the union.
- (c) Let $x \in W_1$ and $c \in F$. Since W_1 is closed under scalar multiplication, we have that $cx \in W_1$. But $W_1 \subseteq W_2$ so W_2 also contains $cx \in W_1$. So we must have $cx \in W_1 \cup W_2$.

Hence, $W_1 \cup W_2$ is a subspace of a vector space V.

Exercise 1.3.20

Prove that if W is a subspace of a vector space V and w_1, w_2, \ldots, w_n are in W, then $a_1w_1 + a_2w_2 + \cdots + a_nw_n$.

Proof. Let W be a subspace of a vector space V. Our goal is to show that the following statement: $a_1w_1 + a_2w_2 + \cdots + a_nw_n \in W$ for all $1 \leq i \leq n$. We proceed by induction on $i \geq 1$. Let i = 1. Since W is closed under scalar multiplication, we know that $a_1 \in F$ and $w_1 \in W$ implies that $a_1w_1 \in W$. Now let i = 2, then $w_1, w_2 \in W$ and $a_1, a_2 \in F$ implies that $a_1w_1 + a_2w_2 \in W$ since W is closed under scalar multiplication and addition. Now, assume that our result holds for all $1 \leq i \leq n$. We want to show that it also holds for i = n + 1. By our inductive hypothesis, we know that $a_1w_1 + a_2w_2 + \cdots + a_nw_n \in W$. Let $a_{n+1} \in F$ and $w_{n+1} \in W$. Using vector addition and scalar multiplication, we know that

$$(a_1w_1 + a_2w_2 + \dots + a_nw_n) + a_{n+1}w_{n+1} \in W.$$

Exercise 1.3.21

Let V denote the vector space of sequences in \mathbb{R} , as defined in Example 5 of section 1.2. Show that the set of convergent sequences (a_n) (that is, those for which $\lim_{n\to\infty} a_n$ exists) is a subspace of V.

Proof. We will show that W (the set of convergent sequences in \mathbb{R}) is a subspace of V by using Theorem 3.

- (a) Note that the zero sequence O_n is zero for all n = 1, 2, ... Hence, the limit of O_n converges to 0 and so we have $O_n \in W$.
- (b) Let (a_n) and (b_n) be two convergent sequences in \mathbb{R} . Then we get that $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$ exists. Observe that

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n.$$

Since the a_n and b_n are both convergent sequences, we also get that the sum $(a_n + b_n)$ also converges. Hence, $(a_n + b_n) \in W$.

(c) Let $t \in F$ and $a_n \in W$ as before. Then we have

$$\lim_{n \to \infty} t a_n = t \lim_{n \to \infty} a_n.$$

Since any constant $t \in F$ multiplied by a convergent sequence is convergent, we also get that the sequence (ta_n) is also convergent. Hence, $ta_n \in W$.

Exercise 1.3.22

Let F_1 and F_2 be fields. A function $g \in \mathcal{F}(F_1, F_2)$ is called an **even function** if g(-t) = g(t) for each $t \in F_1$ and is called an **odd function** if g(-t) = -g(t) for each $t \in F_1$. Prove that the set of all even functions in $\mathcal{F}(F_1, F_2)$ and the set of all odd functions in $\mathcal{F}(F_1, F_2)$ are subspaces of $\mathcal{F}(F_1, F_2)$.

Proof. Let V be the set of all even functions and let W be the set of all odd functions. We will first prove that V is a subspace of $\mathcal{F}(F_1, F_2)$ and the same with W.

- (a) Note that the zero function f_0 from $\mathcal{F}(F_1, F_2)$ is even since $f_0(-t) = 0 = f_0(t)$ for all $t \in F_1$. Hence, $f_0 \in V$.
- (b) Let $f, g \in V$. We need to show that $f + g \in V$; that is, we need to show that it is even. Let $t \in F_1$. Then observe that

$$(f+g)(-t) = f(-t) + g(-t) = f(t) + g(t) = (f+g)(t)$$

Hence, (f+g)(-t) = (f+g)(t) for all $t \in F_1$.

(c) Let $f \in V$ and let $c \in F_2$. Then observe that

$$(cf)(-t) = cf(-t) = cf(t) = (cf)(t).$$

Hence, $cf \in V$.

Since all the properties of V are satisfied, we have that V is a subspace of $\mathcal{F}(F_1, F_2)$. Now we will prove W is a subspace of $\mathcal{F}(F_1, F_2)$.

- (a) Note that the zero function f_0 is in W because for any $t \in F_1$ we have $f_0(-t) = 0 = -1 \cdot 0 = -f(t)$. Hence, $f_0 \in W$.
- (b) Let $f, g \in W$ and Let $t \in F_1$. Observe that

$$(f+g)(-t) = f(-t) + g(-t) = -f(t) - g(t) - (f+g)(t).$$

Hence, $f + g \in W$.

(c) Let $c \in F_2$ and $f \in W$. Let $t \in F_1$ such that f(-t) = -f(t). Then observe that

$$(cf)(-t) = cf(-t) = cf(t) = (cf)(t).$$

Hence, $cf \in W$.

Hence, W is a subspace of $\mathcal{F}(F_1, F_2)$

Definition 1 (Sum of Two Sets). If S_1 and S_2 are nonempty subsets of a vector spaces V, then the sum S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } y \in S_2\}$.

Definition 2 (Direct Sum). A vector space V is called the **direct sum** of W_1 and W_2 if W_1 and W_2 are subspaces of V such that $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.

Exercise 1.3.23

Let $W_1 + W_2$ is a subspace of a vector space V.

(a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .

Proof. Let W_1 and W_2 be subspaces of a vector space V. Define $W_1 + W_2$ as the set

$$\{x_1 + y_2 : w_1 \in W_1 \text{ and } w_2 \in W_2\}.$$

- (a) Since W_1 and W_2 are subspaces of V, we know that the zero vector O_V is contained in both W_1 and W_2 . Hence, the sum $O_V = O_V + O_V \in W_1 + W_2$.
- (b) Let $u, v \in W_1 + W_2$ with $u = x_1 + y_1$ and $v = x_2 + y_2$. Since W_1 and W_2 are subspaces of V, we know that addition is closed in both subsets W_1 and W_2 . Hence, $x_1 + x_2 \in W_1$ and $y_1 + y_2 \in W_2$. Observe that

$$u + v = (x_1 + y_1) + (x_2 + y_2)$$

= $(x_1 + x_2) + (y_1 + y_2) \in W_1 + W_2$.

Hence, addition is closed in $W_1 + W_2$.

(c) Let $c \in F$ where F is a field and let $u \in W_1 + W_2$ with $u = x_1 + y_1$. Since W_1 and W_2 are subspaces of V, we know that $cx_1 \in W_1$ and $cx_2 \in W_2$. Observe that

$$cu = c(x_1 + y_1)$$

= $cx_1 + cy_1 \in W_1 + W_2$.

Hence, $W_1 + W_2$ is a subspace of V.

(b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.

Proof. Let X be a subspace of V. Suppose X contains both W_1 and W_2 ; that is, $W_1 \subseteq X$ and $W_2 \subseteq X$. We must show that $W_1 + W_2 \subseteq X$. Let $u \in W_1 + W_2$ with $u = x_1 + y_1$. By definition, we have $x_1 \in W_1$ and $y_1 \in W_2$. Since $W_1 \subseteq X$ and $W_2 \subseteq X$, we have $x_1 \in X$ and $y_1 \in X$. Since X is a subspace of V and X is closed under addition, we have $x_1 + y_1 \in X$. Hence, $u \in X$ and we conclude $W_1 + W_2 \subseteq X$.

Exercise 1.3.24

Show that F^n is the direct sum of the subspaces

$$W_1 = \{(a_1, a_2, \dots a_n) \in F^n : a_n = 0\}$$

and

$$W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 = a_2 = \dots = a_{n-1} = 0\}$$

Proof. Let W_1 and W_2 be subspaces of F^n . Since W_1 and W_2 are subspaces, they both contain the zero vector O_{F^n} . Observe that for any element $x \in W_1$, we have the *n*th element $a_n = 0$. On the other hand, $y \in W_2$ implies that $a_1 = a_2 = \cdots = a_{n-1} = 0$ except for the *n*th element. Thus, the only element that W_1 and W_2 have in common is the zero vector O_{F^n} . Hence, we have $W_1 \cap W_2 = \{O_{F^n}\}$.

Now, we show $W_1 + W_2 = F^n$. To do this, we need to show the following containments:

- (i) $W_1 + W_2 \subseteq F^n$ and
- (ii) $F^n \subseteq W_1 + W_2$.

Let $u \in W_1 + W_2$ with $u = x_1 + x_2$ where $x_1 \in W_1$ and $y_1 \in W_2$. Since $W_1 \subseteq F^n$, we know that $x_1 \in F^n$. Likewise, $W_2 \subseteq F^n$ implies that $y_1 \in F^n$. Since F^n is a vector space where addition is closed, we have that $u = x_1 + y_1 \in F^n$. Hence, $W_1 + W_2 \subseteq F^n$.

Now, let $u \in F^n$. Since F^n is a vector space over F, each entry in U (where each entry is an element of a field F) can written and separated using the addition defined in F^n in the following

way:

$$u = (a_1, a_2, \dots, a_n)$$

= $(a_1 + 0, a_2 + 0, \dots, 0 + a_n)$
= $(a_1, a_2, \dots, 0) + (0, 0, \dots, a_n)$

where the first term is an element of W_1 and the second term is an element of W_2 . Hence, $u \in W_1 + W_2$.

Since both containments are satisfied, we that $W_1 + W_2 = F^n$. Thus, $W_1 \oplus W_2 = F^n$.

Exercise 1.3.25

Let W_1 denote the set of all polynomials f(x) in P(F) such that in the representation

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

we have $a_i = 0$ whenever i is even. Likewise, let W_2 denote the set of all polynomials g(x) in P(F) such that in the representation

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

we have $b_i = 0$ whenever i is odd. Prove that $P(F) = W_1 \oplus W_2$.

Proof. TO DO.

Exercise 1.3.26

In $M_{m\times n}(F)$ define $W_1=\{A\in M_{m\times n}(F): A_{ij}=0 \text{ whenever } i>j\}$ and $W_2=\{A\in M_{m\times n}(F): A_{ij} \text{ whenever } i\leq j\}$. Show that $M_{m\times n}(F)=W_1\oplus W_2$. (W_1 is the set of all triangular matrices as defined in the previous section.)

Proof. TO DO.