

Complete Chemistry for Cambridge IGCSE®

Second Edition

Complete Chemistry for Cambridge IGCSE®

Second Edition

Oxford and Cambridge leading education together

UNIVERSITY PRESS

Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

© RoseMarie Gallagher and Paul Ingram 2011

The moral rights of the authors have been asserted

Database right Oxford University Press (maker)

First published as Complete Chemistry (ISBN 9780199147991)

This edition first published in 2007

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

ISBN 978-0-19-913878-4

109876

Printed in Malaysia by Vivar Printing Sdn. Bhd.

Paper used in the production of this book is a natural, recyclable product made from wood grown in sustainable forests. The manufacturing process conforms to the environmental regulations of the country of origin.

Acknowledgments

®IGCSE is the registered trademark of Cambridge International Examinations.

The publisher would like to thank Cambridge International Examinations for their kind permission to reproduce past paper questions.

Cambridge International Examinations bears no responsibility for the example answers to questions taken from its past question papers which are contained in this publication.

The acknowledgments for the photographs are on page 320.

Introduction

If you are taking IGCSE chemistry, using the Cambridge International Examinations syllabus 0620, then this book is for you. It covers the syllabus fully, and has been endorsed by the exam board.

Finding your way around the book

The contents list on the next page shows how the book is organised. Take a look. Note the extra material at the back of the book too: for example the questions from past exam papers, and the glossary.

Finding your way around the chapters

Each chapter is divided into two-page units. Some colour coding is used within the units, to help you use them properly. Look at these notes:

Core curriculum

If you are following the Core curriculum, you can ignore any material with a red line beside it.

Extra material

Pages of this colour contain extra material for some topics. We hope that you will find it interesting – but it is not needed for the exam.

Extended curriculum

For this, you need *all* the material on the white pages, including the material marked with a red line.

Chapter checkups

There is a revision checklist at the end of each chapter, and also a set of exam-level questions about the chapter, on a coloured background.

Making the most of the book and CD

We want you to understand chemistry, and do well in your exams. This book, and the CD, can help you. So make the most of them!

Work through the units The two-page units will help you build up your knowledge and understanding of the chemistry on your syllabus.

Use the glossary If you come across a chemical term that you do not understand, try the glossary. You can also use the glossary to test yourself.

Answer the questions It is a great way to get to grips with a topic. This book has lots of questions: at the end of each unit and each chapter, and questions from past exam papers at the end of the book.

Answers to the numerical questions are given at the back of the book. Your teacher can provide the answers for all the others.

Use the CD The CD has an interactive test for each chapter, advice on revision, sample exam papers, and more.

And finally, enjoy! Chemistry is an important and exciting subject. We hope this book will help you to enjoy it, and succeed in your course.

RoseMarie Gallagher Paul Ingram

Contents

(1)	States of matter		(6)	Jsing mole
1.1	Everything is made of particles	6	6.1	The mole
1.2	Solids, liquids, and gases	8	6.2	Calculati
1.3	The particles in solids, liquids, and gases	10	6.3	Reactions
1.4	A closer look at gases	12	6.4	The conc
	Checkup on Chapter 1	14	6.5	Finding t
			6.6	From emp
2	Separating substances		6.7	Finding %
2.1	Mixtures, solutions, and solvents	16		Checkup
2.2	Pure substances and impurities	18	7	D = d =
2.3	Separation methods (part I)	20		Redox read
2.4	Separation methods (part II)	22	7.1	Oxidation
2.5	More about paper chromatography	24	7.2	Redox an
	The chromatography detectives	26	7.3	Redox an
	Checkup on Chapter 2	28	7.4	Oxidising
3	Atoms and elements			Checkup
		20	8	Electricity
3.1 3.2	Atoms and elements More about atoms	30 32		
3.3	Isotopes and radioactivity	32 34	8.1	Conducto
3.4	How electrons are arranged	3 4 36	8.2	The princ
3.4	How our model of the atom developed	38	8.3	The react
	The atom: the inside story	40	8.4 8.5	The elect
3.5	The metals and non-metals	42	0.3	Two more
3.3	Checkup on Chapter 3	44		Checkup
	checkup on chapter 3		(9)	Energy cha
(4)	Atoms combining		9.1	Energy ch
4.1	Compounds, mixtures, and chemical change	46	9.2	Explainin
4.2	Why do atoms form bonds?	48	9.3	Energy fr
4.3	The ionic bond	50	9.4	Giving ou
4.4	More about ions	52		The batte
4.5	The covalent bond	54	9.5	Reversibl
4.6	Covalent compounds	56	9.6	Shifting t
4.7	Comparing ionic and covalent compounds	58		Checkup
4.8	Giant covalent structures	60		•
4.9	The bonding in metals	62	(10)	The speed
	Checkup on Chapter 4	64	10.1	Rates of i
5	Poseting macros, and chemical equations		10.2	Measurin
	Reacting masses, and chemical equations		10.3	Changing
5.1	The names and formuale of compounds	66	10.4	Changing
5.2	Equations for chemical reactions	68	10.5	Explainin
5.3	The masses of atoms, molecules. and ions	70	10.6	Catalysts
5.4	Some calculations about masses and %	72		More abo
	Checkup on Chapter 5	74	10.7	Photoche
				Checkun

6	Using moles	
6.1	The mole	76
6.2	Calculations from equations, using the mole	78
6.3	Reactions involving gases	80
6.4	The concentration of a solution	82
6.5	Finding the empirical formula	84
6.6	From empirical to final formula	86
6.7	Finding % yield and % purity	88
	Checkup on Chapter 6	90
7	Redox reactions	
7.1	Oxidation and reduction	92
7.2	Redox and electron transfer	94
7.3	Redox and changes in oxidation state	96
7.4	Oxidising and reducing agents	98
	Checkup on Chapter 7	100
8	Electricity and chemical change	
8.1	Conductors and insulators	102
8.2	The principles of electrolysis	104
8.3	The reactions at the electrodes	106
8.4	The electrolysis of brine	108
8.5	Two more uses of electrolysis	110
	Checkup on Chapter 8	112
9	Energy changes, and reversible reactions	
9.1	Energy changes in reactions	114
9.2	Explaining energy changes	116
9.3	Energy from fuels	118
9.4	Giving out energy as electricity	120
	The batteries in your life	122
9.5	Reversible reactions	124
9.6	Shifting the equilibrium	126
	Checkup on Chapter 9	128
10	The speed of a reaction	
10.1	Rates of reaction	130
10.2	Measuring the rate of a reaction	132
10.3	Changing the rate of a reaction (part I)	134
10.4	Changing the rate of a reaction (part II)	136
10.5	Explaining rates	138
10.6	Catalysts	140
	More about enzymes	142
10.7	Photochemical reactions	144
	Checkup on Chapter 10	146

11	Acids and bases		16.3	Fertilisers	228
11.1	Acids and alkalis	148	16.4	Sulfur and sulfur dioxide	230
11.2	A closer look at acids and alkalis	150	16.5	Sulfuric acid	232
11.3	The reactions of acids and bases	152	16.6	Carbon and the carbon cycle	234
11.4	A closer look at neutralisation	154	16.7	Some carbon compounds	236
11.5	Oxides	156	16.8	Greenhouse gases, and global warming	238
11.6	Making salts	158	16.9	Limestone	240
11.7	Making insoluble salts by precipitation	160		Checkup on Chapter 16	242
11.8	Finding concentrations by titration	162	17	Organic chemistry	
	Checkup on Chapter 11	164			244
			17.1	Petroleum: a fossil fuel	244
12	The Periodic Table		17.2	Refining petroleum	246
12.1	An overview of the Periodic Table	166	17.3	Cracking hydrocarbons	248
12.2	Group I: the alkali metals	168	17.4	Families of organic compounds	250
12.3	Group VII: the halogens	170	17.5 17.6	The alkanes The alkenes	252
12.4	Group 0: the noble gases	172	17.0	The alcohols	254
12.5	The transition elements	174	17.7	The accords The carboxylic acids	256 258
12.6	Across the Periodic Table	176	17.8	Checkup on Chapter 17	260
	How the Periodic Table developed	178		Checkup on Chapter 17	200
	Checkup on Chapter 12	180	(18)	Polymers	
13	The behaviour of metals		18.1	Introducing polymers	262
			18.2	Addition polymerisation	264
13.1	Metals: a review	182	18.3	Condensation polymerisation	266
13.2	Comparing metals for reactivity	184	18.4	Making use of synthetic polymers	268
13.3	Metals in competition	186	18.5	Plastics: here to stay?	270
13.4	The reactivity series	188	18.6	The macromolecules in food (part I)	272
13.5	Making use of the reactivity series	190	18.7	The macromolecules in food (part II)	274
	Checkup on Chapter 13	192	18.8	Breaking down the macromolecules	276
14	Making use of metals			Checkup on Chapter 18	278
14.1	Metals in the Earth's crust	194	19	In the lab	
14.2	Extracting metals from their ores	196			
14.3	Extracting friction from their ores	198	19.1	Chemistry: a practical subject	280
14.4	Extracting aluminium	200	19.2	Example of an experiment	282
14.5	Making use of metals and alloys	202	19.3	Working with gases in the lab	284
14.6	Steels and steel-making	204	19.4	Testing for ions in the lab	286
	Metals, civilisation, and you	206		Checkup on Chapter 19	288
	Checkup on Chapter 14	208	_		
			Answ	ers to the numerical questions in this book	290
15	Air and water			Your Cambridge IGCSE chemistry exam	
15.1	What is air?	210			
15.2	Making use of air	212		About the Cambridge IGCSE chemistry exam	291
15.3	Pollution alert!	214		Exam questions from Paper 2	292
15.4	The rusting problem	216		Exam questions from Paper 3	298
15.5	Water supply	218		Exam questions from Paper 6	304
	Living in space	220		Reference	
_	Checkup on Chapter 15	222			240
16	Some non-metals and their compounds			Glossary The Periodic Table and atomic masses	310 314
16.1	Hydrogen, nitrogen, and ammonia	224		Index	316
16.2	Making ammonia in industry	224		and	510
	r laking animoma in maastiy	220			

1.1)

Everything is made of particles

Made of particles

Rock, air, and water look very different. But they have one big thing in common: they are all made of very tiny pieces, far too small to see. For the moment, we will call these pieces **particles**.

In fact everything around you is made of particles – and so are you!

Particles on the move

In rock and other solids, the particles are not free to move around. But in liquids and gases, they move freely. As they move they collide with each other, and bounce off in all directions.

So the path of one particle, in a liquid or gas, could look like this:

The particle moves in a random way, changing direction every time it hits another particle. We call this **random motion**.

▲ All made of particles!

Some evidence for particles

There is evidence all around you that things are made of particles, and that they move around in liquids and gases. Look at these examples.

Evidence outside the lab

1 Cooking smells can spread out into the street. This is because 'smells' are caused by gas particles mixing with, and moving through, the air. They dissolve in moisture in the lining of your nose.

2 You often see dust and smoke dancing in the air, in bright sunlight. The dust and smoke are clusters of particles. They dance around because they are being bombarded by tiny particles in the air.

Evidence in the lab

1 Place a crystal of potassium manganate(VII) in a beaker of water. The colour spreads through the water. Why? First, particles leave the crystal – it **dissolves**. Then they mix among the water particles.

2 Place an open gas jar of air upside down on an open gas jar containing a few drops of red-brown bromine. The colour spreads upwards because particles of bromine vapour mix among the particles of air.

Diffusion

In all those examples, particles mix by colliding with each other and bouncing off in all directions. This mixing process is called **diffusion**.

The overall result is the flow of particles from where they are more concentrated to where they are less concentrated, until they are evenly spread out.

So what are these particles?

The very smallest particles, that we cannot break down further by chemical means, are called **atoms**.

- In some substances, the particles are just single atoms. For example argon, a gas found in air, is made up of single argon atoms.
- In many substances, the particles consist of two or more atoms joined together. These particles are called **molecules**. Water, bromine, and the gases nitrogen and oxygen in air, are made up of molecules.
- In other substances the particles consist of atoms or groups of atoms that carry a charge. These particles are called **ions**. Potassium manganate(VII) is made of ions.

You'll find out more about all these particles in Chapters 2 and 3.

'Seeing' particles

We are now able to 'see' the particles in some solids, using very powerful microscopes. For example the image on the right shows palladium atoms sitting on carbon atoms. In this image, the atoms appear over 70 million times larger than they really are!

▲ This image was taken using a tunneling electron microscope. The white blobs are palladium atoms, the blue ones are carbon. (The colour was added to help us see them.)

- Q
 - The particles in liquids and gases show *random motion*. What does that mean, and why does it occur?
 - **2** Why does the purple colour spread when a crystal of potassium manganate(VII) is placed in water?
- **3** Bromine vapour is heavier than air. Even so, it spreads upwards in the experiment above. Why?
- **4 a** What is *diffusion*? **b** Use the idea of diffusion to explain how the smell of perfume travels.

1.2)

Solids, liquids, and gases

What's the difference?

It is easy to tell the difference between a solid, a liquid and a gas:

A solid has a fixed shape and a fixed volume. It does not flow. Think of all the solid things around you: their shapes and volumes do not change.

A liquid flows easily. It has a fixed volume, but its shape changes. It takes the shape of the container you pour it into.

A gas does not have a fixed volume or shape. It spreads out to fill its container. It is much lighter than the same volume of solid or liquid.

Water: solid, liquid and gas

Water can be a solid (ice), a liquid (water), and a gas (water vapour or steam). Its state can be changed by heating or cooling:

1 Ice slowly changes to water, when it is put in a warm place. This change is called **melting**. The thermometer shows 0 °C until all the ice has melted. So 0 °C is called its **melting point**.

2 When the water is heated its temperature rises, and some of it changes to water vapour. This change is called evaporation. The hotter the water gets, the more quickly it evaporates.

3 Soon bubbles appear in the water. It is **boiling**. The water vapour shows up as steam. The thermometer stays at 100 °C while the water boils off. 100 °C is the **boiling point** of water.

And when steam is cooled, the opposite changes take place:

You can see that:

- condensing is the opposite of evaporating
- freezing is the opposite of melting
- the freezing point of water is the same as the melting point of ice, 0°C.

Other things can change state too

It's not just water! Nearly all substances can exist as solid, liquid and gas. Even iron and diamond can melt and boil! Some melting and boiling points are given below. Look how different they are.

Substance	Melting point/°C	Boiling point/°C	
oxygen	-219	-183	
ethanol	–15	78	
sodium	98	890	
sulfur	119	445	
iron	1540	2900	
diamond	3550	4832	

Showing changes of state on a graph

Look at this graph. It shows how the temperature changes as a block of ice is steadily heated. First the ice melts to water. Then the water gets warmer and warmer, and eventually turns to steam:

Look at the step where the ice is melting. Once melting starts, the temperature stays at 0 °C until *all* the ice has melted. When the water starts to boil, the temperature stays at 100 °C until *all* the water has turned to steam. So the melting and boiling points are clear and sharp.

▲ Molten iron being poured out at an iron works. Hot – over 1540°C!

▲ Evaporation in the sunshine ...

- Q
 - Write down two properties of a solid, two of a liquid, and two of a gas.
 - 2 Which word means the opposite of:
 - **a** boiling?
- **b** melting?
- **3** Which has a lower freezing point, oxygen or ethanol?
- 4 Which has a higher boiling point, oxygen or ethanol?
- 5 Look at the heating curve above.
 - **a** About how long did it take for the ice to melt, once melting started?
 - **b** How long did boiling take to complete, once it started?
 - **c** Try to think of a reason for the difference in **a** and **b**.
- **6** See if you can sketch a heating curve for sodium.