

Introdução à Engenharia Química e Bioquímica

Aula 3 Balanços Energéticos MIEQB ano lectivo de 2020/2021

Sumário da aula

Balanços energéticos a sistemas não reactivos

- Estado de referência e propriedades de estado
- Variações entálpicas associadas a processos químicos
- Variação de temperatura a pressão constante. Calor específico

Balanço de energia a um sistema aberto

$$\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_s}$$

- Não existem partes móveis no sistema $\dot{W}_s = 0$
- As velocidades de todas as correntes são iguais $\Delta \dot{E_c} = 0$
- Todas as correntes entram e saem à mesma altura $\Delta E_p = 0$

Importância da entalpia, H!

Balanço de energia a um Reactor

Energia que entra = Energia que sai

$$\Delta \dot{E_c} = 0$$

$$\Delta \dot{E_p} = 0$$

$$\dot{W_S} = 0$$

$$\Delta \dot{H} = (\dot{H}_2 - \dot{H}_1) = \dot{Q}$$

Balanço de energia a um Reactor

Energia que entra = Energia que sai

H é uma função de estado!

$$\Delta \widehat{H} = \widehat{H}_{(vapor, 300^{\circ}C, 3 atm)} - \widehat{H}_{(s\'olido, 25^{\circ}C, 1 atm)}$$

PROBLEMA: não existem valores medidos!!!

- H depende apenas das variáveis termodinâmicas temperatura, pressão e estado físico (para misturas, também a composição)
- Não depende da forma percurso como as espécies atingem esse estado termodinâmico

 $F = Fenol (C_6H_5OH)$

$$\Delta \widehat{H} = \widehat{H}_{(vapor, 300^{\circ}C, 3 atm)} - \widehat{H}_{(s\'olido, 25^{\circ}C, 1 atm)}$$

Percurso "hipotético":

 $F = Fenol(C_6H_5OH)$

 T_F (Fenol, 1atm) = 42.5 °C

 T_{eb} (Fenol, 1atm) = 181.4 °C

①: Processo com variação de pressão (T e estado físico constantes)

②: Processo com variação de temperatura (P e estado físico constantes)

③: Processo com <u>mudança de fase</u> (p,T constantes)

Variações entálpicas associadas aos processos com interesse na indústria química

- 1. Variações de pressão a T e estado físico constantes
- 2. Variações de temperatura a P e estado físico constantes
- 3. Mudança de fase a P,T constantes
- 4. Mistura de dois líquidos ou solubilização de um gás ou sólido num líquido a P,T constantes
- 5. Reacção química a P,T constantes

- 1. Variações de pressão a T e estado físico constantes
 - Comprimir hidrogénio de 1 atm até 300 atm a 25°C
- 2. Variações de temperatura a P e estado físico constantes
- 3. Mudança de fase a P,T constantes
 - Fundir gelo a 0°C e de seguida aquecer a água liquida até 30°C, à pressão de 1atm
- 4. Mistura de dois líquidos ou solubilização de um gás ou sólido num líquido a P,T constantes
- 5. Reacção química a P,T constantes

Variações entálpicas associadas aos processos com interesse na indústria química

- Variações de pressão a T e estado físico constantes
- 2. <u>Variações de temperatura</u> a P e estado físico constantes
- 3. <u>Mudança de fase</u> a P,T constantes
- Mistura de dois líquidos ou solubilização de um gás ou sólido num líquido a P,T constantes
- 5. <u>Reacção química</u> a P,T constantes

Variações entálpicas associadas aos processos com interesse na indústria química

- Variações de pressão a T e estado físico constantes
- 2. Variações de temperatura a P e estado físico constantes
- 3. Mudança de fase a p,T constantes
- Mistura de dois líquidos ou solubilização de um gás ou sólido num líquido a T,P constantes
- Reacção química a p, T constantes

<u>Processos com variação da temperatura (P e estado físico constantes)</u>

Num processo de aquecimento a pressão constante, a variação de entalpia do sistema depende fortemente da temperatura

$$C_P(T) = \left\{ \lim_{\Delta T \to 0} \frac{\Delta \widehat{H}}{\Delta T} \right\} = \left(\frac{\partial \widehat{H}}{\partial T} \right)_P$$

C_P: Calor especifico a <u>pressão</u> constante

Quantidade de energia (entalpia) necessária fornecer a uma unidade de matéria de substância para fazer elevar a sua temperatura de 1 grau térmico

Calor específico a pressão constante, C_P

☐ É uma propriedade física dos materiais

Tabela de calores específicos a 25 °C			
Substância	Fase	Calor específico, C _p (massa)	Calor específico, C _p (molar)
		J-g ⁻¹ -K ⁻¹	J-mol ⁻¹ -K ⁻¹
Ar (nível do mar, seco, 0°C)	gás	1.0035	29.07
Ar (condições ambiente)	gás	1.012	29.19
Dióxido de carbono	gás	0.839	36.94
Etanol	líquido	2.44	112
Octano	líquido	2.22	228
Mercúrio	líquido	0.1395	27.98
Metanol	líquido	2.14	68.62
Néon	gás	1.0301	20.7862
Azoto	gás	1.04	29.12
Oxigénio	gás	0.918	29.38

Calor especifico a pressão constante, C_P

- ☐ É uma propriedade física dos materiais
- ☐ Depende da temperatura e do estado físico da matéria!

Expressões polinomiais em função da temperatura

<- derivados de valores experimentais!

Form 1:
$$C_p[kJ/(mol \cdot ^{\circ}C)]$$
 or $[kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3$
Form 2: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^{-2}$

Example:
$$(C_p)_{\text{acetone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$$
, where T is in °C.

Calor especifico a pressão constante, Cp

- ☐ É uma propriedade física dos materiais
- ☐ Depende da temperatura e do estado físico da matéria!
- ☐ Unidades de J/mol.K; J/g.K; Btu/lbm.ºF

Pergunta:

$$C_p = 1 \text{ J/mol.K}$$

$$C_p = 1 \text{ J/mol.K}$$
 $C_p = ? \text{ J/mol.}^{\circ}C$

Equação que nos permite estimar variações de entalpia associadas a processos com variação da temperatura

$$C_P(T) = \left\{ \lim_{\Delta T \to 0} \frac{\Delta \widehat{H}}{\Delta T} \right\} = \left(\frac{\partial \widehat{H}}{\partial T} \right)_P$$

$$\Delta H = m \int_{T_1}^{T_2} C_P(T) dT$$

Caso de misturas

Misturas gasosas ou líquidas

$$(C_P)_{mix}(T) = \sum_{\substack{todos\ os\ componentes}} y_i C_{Pi}(T)$$

$$\Delta \widehat{H}_{mix} = \int_{T_1}^{T_2} (C_P)_{mix}(T) dT$$

5.9.

Calcule o calor necessário para aquecer uma mole de ar de 400 a 1000ºC a pressão constante (1 atm).

Dados:

 c_p (cal.mol⁻¹.K⁻¹) = 6.713 + 0.04697E-2 T (T em Kelvin, p=1 atm)

Calor transferido para aquecer ou arrefecer a temperatura de uma ou mais substâncias sem mudança de fase: Calor sensível

Base de cálculo: 1 mole de ar

$$\Delta H^{\rho,T} = \int_{T_{ref}}^{T} n.C_{\rho}(T).dT$$

$$\Delta H_{1} + Q = \Delta H_{2}$$

$$\Delta H_{2} = \int_{Tref}^{1*} 1*Cp(T)*dT$$

$$Q = \Delta H_{2} - \Delta H_{1}$$

$$\Delta H_{2} = \int_{Tref}^{400+273} 1*Cp(T)*dT$$

$$\Delta H_{1} = \int_{Tref}^{400+273} 1 * Cp(T) * dT$$

$$Q = \int_{Tref}^{1000+273} 1 * Cp(T) * dT - \int_{Tref}^{400+273} 1 * Cp(T) * dT$$

$$Q = \int_{400+273}^{1000+273} 1 * Cp(T) * dT$$

$$\Delta H^{\rho,T} = \int_{T_{ref}}^{T} n.C_{\rho}(T).dT$$

$$Q = \int_{400+273}^{1000+273} 1 * Cp(T) * dT$$

$$Q = \int_{400+273}^{1000+273} (6,713+0,04697\times10^{-2}T)dT$$

$$Q = \left[6,713*(T_f - T_i)\right] + \left[\frac{1}{2}*0,04697\times10^{-2}*(T_f^2 - T_i^2)\right]$$

$$Q = 4690cal$$

$$\int x^n = \frac{x^{n+1}}{n+1}$$

$$Cp_{ar}(cal / mol.K) = 6,713 + 0,04697 \times 10^{-2}T$$

5.10.

2,000 L (STP)/min de metano são aquecidos de 20 °C até à temperatura final. Sabendo que a quantidade de calor fornecida ao sistema pelo exterior foi de 12.9 kW, determine a temperatura de saída da corrente gasosa.

Dados:

 $c_p CH_4 (J.mol^{-1}.K^{-1}) = 19.87 + 5.021E-2 T (T em Kelvin, p=1 atm)$

2,000 L (STP)/min de metano são aquecidos de 20 °C até à temperatura final. Sabendo que a quantidade de calor fornecida ao sistema pelo exterior foi de 12.9 kW, determine a temperatura de saída da corrente gasosa.

$$\Delta H^{p,T} = \int_{T_{ref}}^{T} n.C_{p}(T).dT$$

$$V_{molar}$$
 STP = 22.711 L/mol

$$Q = \Delta H_2 - \Delta H_1$$

$$Q = n \int_{20+273}^{T} C_p(T) dT$$

$$n = \frac{2000 L/min}{22.711 L/mol} = 88.1 mol/min$$

$$12,900 J/s = \frac{88.1}{60} mol/s \int_{293}^{T} (19.87 + 5.021 \times 10^{-2} T) dT$$

$$12,900 J/s = \frac{88.1}{60} mol/s \int_{293}^{T} (19.87 + 5.021 \times 10^{-2} T) dT$$

$$12,900 = \frac{88.1}{60} \left[19.87(T - 293) + \frac{1}{2} 5.021 \times 10^{-2} (T^2 - 293^2) \right]$$

$$T_2 = 512K = 239$$
°C

$$\int x^n = \frac{x^{n+1}}{n+1}$$