

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 February 2005 (10.02.2005)

PCT

(10) International Publication Number
WO 2005/012534 A1

(51) International Patent Classification⁷: **C12N 15/85**, (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/GB2004/003263

(22) International Filing Date: 28 July 2004 (28.07.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0317656.7 28 July 2003 (28.07.2003) GB

(71) Applicant (for all designated States except US): **OXITEC LIMITED** [GB/GB]; 71 Milton Park, Abingdon, Oxfordshire OX14 4RX (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): **ALPHEY, Luke** [GB/GB]; 71 Milton Park, Abingdon, Oxfordshire OX14 4RX (GB).

(74) Agent: **LORD, Hilton, David**; Marks & Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS (GB).

(81) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/012534 A1

(54) Title: EXPRESSION SYSTEMS FOR INSECT PEST CONTROL

(57) Abstract: Promoters active in insects can be enhanced by positive feedback mechanisms and associated with repressible lethal effects.

EXPRESSION SYSTEMS FOR INSECT PEST CONTROL

The present invention relates to insect expression systems comprising a promoter.

The genetic manipulation of insect species other than *Drosophila melanogaster*, by recombinant DNA methods, is in its infancy (Alphey, 2002; Alphey and Andreasen, 2002; Alphey *et al.*, 2002; Benedict and Robinson, 2003; Berghammer *et al.*, 1999; Catteruccia *et al.*, 2000; Coates *et al.*, 1998; Handler, 2002; Horn *et al.*, 2002; Jasinskiene *et al.*, 1998; Lobo *et al.*, 2002; Lozovsky *et al.*, 2002; McCombs and Saul, 1995; Moreira *et al.*, 2004; Peloquin *et al.*, 2000; Perera *et al.*, 2002; Scott *et al.*, 2004), and very few transgenic lines of non-*Drosophila* insects have been made, using heterologous promoters.

Insect transformation is a low-efficiency system requiring the identification of rare transformants, in a background of larger numbers of non-transformed individuals. It is, therefore, important that the transformants have an easily scored marker. The current favourites are the fluorescent proteins, such as GFP, DsRed and their mutant derivatives. These require transcriptional control elements, including a promoter, for their function. The best known of these are from the *Drosophila* Actin5C (Act5C) and ubi-p63E (Pub) genes. A silk moth homologue of Act5C, BmA3, has also been used, as well as a couple of tissue-specific promoters (3xP3, a synthetic eye-specific promoter, and Act88F, specific to the indirect flight muscles).

However, none of these promoters is entirely satisfactory. Act5C has been used to transform various mosquitoes, as well as *Drosophila*, but its expression pattern in mosquitoes is far from ubiquitous (Catteruccia *et al.*, 2000; Pinkerton *et al.*, 2000). Efforts to use it as part of a transformation marker in medfly (*Ceratitis capitata*) have failed, where equivalent experiments with Pub have achieved good success. Pub has similar limitations: the expression pattern seen in medfly transformants is highly variable, suggesting that the expression pattern is at least highly sensitive to position effect. In addition, none of these promoters can be regulated in the sense of being turned on and off as desired.

Fussenegger *et al.*, (1998a; 1998b) illustrate positive feedback driving multi-cistronic transcripts, using a selection marker, in one instance. Experiments were restricted to mammalian systems. pTRIDENT is described as a tricistronic artificial mammalian operon. Expression or

transient expression of cell cycle arresting genes is described for “metabolic engineering”, *i.e.* regulating expression of desirable proteins, and it is mentioned that a transcriptional “squelching” effect by the VP16 transactivator domain may be lethal for the host cell, even at moderate expression levels (Berger *et al.*, 1990; Damke *et al.*, 1995; Gill and Ptashne, 1988; Gossen and Bujard, 1992; Salghetti *et al.*, 2001). The benefits of autoregulatory mono- or polycistronic systems are discussed, including one-step, auto-regulated and auto-selective multicistronic mammalian expression systems which included the tTA in a multicistronic, pTRIDENT-based or quattrocistronic configuration (pQuattro-tTA; Fussenegger *et al.*, (1998b); Figure 2). Since the tTA gene is encoded on the multicistronic expression unit itself, little or no tTA is expressed under repressive conditions. This positive feedback regulation system showed no signs of squelching. Experiments with a monocistronic positive feedback configuration in transgenic animals also showed no detrimental effects (Shockett *et al.*, 1995).

Very few promoters or other control elements have been characterised, and there remains a pressing need for such elements. It would be desirable to provide a universal promoter active in all or most cells of a wide range of insects, or to enable wider usage of an existing promoter. It is a further aim to regulate the activity of insect promoters, especially in a life stage- and/or sex-specific manner. It is also an aim to selectively reduce or eliminate the promoter activity in particular cells or tissues. The present invention provides such systems.

Surprisingly, it has now been found that it is possible to employ a positive feedback mechanism both to enhance the effect of an insect promoter, as well as to control its expression.

Thus, in a first aspect, the present invention provides an insect gene expression system, comprising at least one gene to be expressed and at least one promoter therefor, wherein a product of a gene to be expressed serves as a positive transcriptional control factor for the at least one promoter, and whereby the product, or the expression of the product, is controllable.

As used herein, the term “gene” refers to any DNA sequence that may transcribed or translated into a product, at least one such having activity or function *in vivo*. Such a gene will normally have at least a transcription promoter and a terminator operably associated therewith.

The product capable of positive transcriptional control may act in any suitable manner. In particular, the product may bind to an enhancer located in proximity to the promoter or promoters, thereby serving to enhance polymerase binding at the promoter, for example. Other mechanisms may be employed, such as repressor counteracting mechanisms, such as the blocking of an inhibitor of transcription or translation. Transcription inhibitors may be blocked, for example, by the use of hairpin RNA's or ribozymes to block translation of the mRNA encoding the inhibitor, for example, or the product may bind the inhibitor directly, thereby preventing inhibition of transcription or translation.

More preferably, the mechanism is a positive feedback mechanism, wherein the product, which may either be RNA or the translation product thereof, acts at a transcription enhancer site, normally by binding the site, thereby enhancing promoter activity. Enhancement of the promoter activity then serves to increase transcription of the gene for the product which, in turn, further serves to either lift inhibition or enhance promotion, thereby leading to a positive feedback loop.

Control of the product may be by any suitable means, and may be effective at any level. In particular, it is preferred that the control be effective either to block transcription of the control factor gene or to block translation of the RNA product thereof, or to prevent or inhibit action of the translation product of the gene.

For example, the gene product of tTA (tetracycline-repressible transcription activator) acts at the tetO operator sequence (Baron and Bujard, 2000; Gossen *et al.*, 1994; Gossen and Bujard, 1992). Upstream of a promoter, in either orientation, tetO is capable of enhancing levels of transcription from a promoter in close proximity thereto, when bound by the product of the tTA gene. If the tTA gene is part of the cassette comprising the tetO operator together with the promoter, then positive feedback occurs when the tTA gene product is expressed.

Control of this system is readily achieved by exposure to tetracycline, which binds to the gene product and prevents transactivation at tetO.

The tTA system also has the advantage of providing stage-specific toxicity in a number of species. In particular, "squelching" is observed in the development phases of many insects, the precise phase of susceptible insects being species-dependent. Some insects may reach

pupation before the larva dies, while others die early on. Susceptibility ranges from 100% fatality to a small reduction in survival rates. In general, though, adult insects appear to be immune to the squelching effect of tTA, so that it is possible to raise insects comprising a tTA positive feedback system in the presence of tetracycline, and then to release the adult insects into the wild. These insects are at little or no competitive disadvantage to the wild type, and will breed with the wild type insects, but larvae carrying the tTA positive feedback cassette will die before reaching maturity.

It is relatively straightforward to modify the tTA sequence to enhance compatibility with the desired insect species, and this has been demonstrated, in the accompanying Examples, with tTAV, which has an additional two amino acids to provide a protease site, but which is encoded by a sequence substantially changed from that of tTA in order to more closely follow *Drosophila* usage.

Accordingly, in a preferred aspect, the present invention provides a system as described, wherein at least one gene is tTA, or is a gene encoding a similar product to tTA effective to up-regulate the tetO promoter.

Thus, the present invention is useful in combination with a dominant lethal gene, allowing selective expression of the dominant lethal gene, or stage specific expression, as desired, of the lethal gene or the lethal phenotype. It will be appreciated that the dominant lethal gene does not need to be an integral part of the positive feedback mechanism, but may be part of a bicistronic cassette, for example. Use of the present invention in association with RIDL (Release of Insects carrying a Dominant Lethal) is particularly preferred.

Control of the feedback mechanism, in the case of tTA or an analogue thereof, is simply effected by the presence or absence of tetracycline, or by modulating tetracycline concentration, when the tTA gene product is used. In the case of another preferred positive feedback system, GAL4, this may be controlled by temperature, for example, thereby suppressing the effective gene, preferably a dominant lethal gene, until release of the insect.

Other mechanisms may also be employed, such as ribozymes or antisense or partially self-complementary RNA molecules, such as hairpin RNA, to inhibit or prevent expression of an activating peptide, or blocking agents that prevent binding of the activator to the enhancer site.

Such blocking agents may be expressed by the insect itself under selective conditions, or may be administered as part of the culture medium, for example.

Where the blocking, or controlling agents are produced by the insect, then it is preferred that their expression be selective, such as being sex specific. Administration of the blocking agent in the culture medium, for example, will enable suppression of the positive feedback cassette under all circumstances until release of the insect, after which stage- or sex- specific selection will occur, preferably in a succeeding generation, particularly preferably the following generation.

More preferably, the cassette comprising the positive feedback mechanism is associated with stage- or sex- specificity. For example, sex specific splicing is observed with the *transformer* and *doublesex* mechanisms seen in most insects, and can be employed to limit expression of the feedback system to a particular sex, either by employing sex specific splicing to delete all or part of the effector gene, or to incorporate a frameshift or stop codon, or to modulate RNA stability or mRNA translational efficiency, for example, or otherwise to affect expression so as to differentiate between the sexes. Targeting the females of pest species is particularly preferred.

Although it is possible to provide the effector gene in a separate location and even on a separate chromosome, it is generally preferable to link the effector gene with the feedback gene. This may be achieved either by placing the two genes in tandem, including the possibility of providing the two as a fusion product, or for example by providing each gene with its own promoter in opposite orientations but in juxtaposition to the enhancer site.

An effector gene is the gene whose expression it is desired to enhance. Where a positive feedback product is also effective as a stage-specific lethal, such as tTA in many species, then the effector and the feedback gene may be one and the same, and this is a preferred embodiment.

The effector gene will often be a lethal gene, and it is envisaged that the system of the present invention will most frequently be employed in the control of insect pest populations, particularly in combination with the RIDL technique or related method, as described hereinunder.

It is preferred to include a marker with the systems of the invention, such as DsRed, green fluorescent protein, and variants thereon, as transformation success rates in insects are extremely low, so that it is useful to be able to select in some way.

The promoter may be a large or complex promoter, but these often suffer the disadvantage of being poorly or patchily utilised when introduced into non-host insects. Accordingly, it is preferred to employ minimal promoters, such as the Hsp70 promoter which, while having a naturally somewhat low level of activity, can be substantially enhanced by a positive feedback scenario, such as by the use of tTA and tetO.

A promoter is a DNA sequence, generally directly upstream to the coding sequence, required for basal and/or regulated transcription of a gene. In particular, a promoter has sufficient information to allow initiation of transcription, generally having a transcription initiation start site and a binding site for the polymerase complex. A minimal promoter will generally have sufficient additional sequence to permit these two to be effective. Other sequence information, such as that which determines tissue specificity, for example, is usually lacking, and preferred minimal promoters are, normally as a direct result of this deficiency, substantially inactive in the absence of an active enhancer. Thus, a cistron, or system, the two terms preferably being generally interchangeable herein, of the invention will generally be inactive when the or each promoter is a minimal promoter, until a suitable enhancer or other regulatory element is de-repressed or activated, typically the gene product.

Thus, it will be appreciated that minimal promoters may be obtained directly from known sources of promoters, or derived from larger naturally occurring, or otherwise known, promoters. Suitable minimal promoters and how to obtain them will be readily apparent to those skilled in the art. For example, suitable minimal promoters include a minimal promoter derived from hsp70, a P minimal promoter (exemplified hereinunder as WTP-tTA), a CMV minimal promoter (exemplified hereinunder as JY2004-tTA), an Act5C-based minimal promoter, a BmA3

promoter fragment, and an Adh core promoter (Bieschke, E., Wheeler, J., and Tower, J. (1998). Doxycycline-induced transgene expression during Drosophila development and aging. Mol Gen Genet 258, 571-579). Act5C responds to tTA in transgenic *Aedes*, for example, and the invention.

Not all minimal promoters will necessarily work in all species of insect, but it is readily apparent to those skilled in the art as to how to ensure that the promoter is active. For example, a plasmid, or other vector, comprising a cistron of the invention with the minimal promoter to be tested further comprises a marker, such a gene encoding a fluorescent protein, under the control of a promoter known to work in that species, the method further comprising assaying putative transgenic individuals for expression of the marker, and wherein individuals expressing the marker are then assayed for expression of the gene under the control of the minimal promoter, such as by assaying transcribed RNA. Presence of the RNA above background levels under induced or de-repressed conditions is indicative that the minimal promoter is active in the species under investigation; absence or presence at low levels only of such RNA in non-induced or repressed conditions is indicative that the minimal promoter has low intrinsic basal activity.

We have used the following marker promoters, by way of example, only, but many more are useful and apparent to those skilled in the art:

mini-white (white promoter): WTP2-tTA, JY2004-tTA

Act5C promoter: LA513 and LA517

ubi-p63E promoter: LA656 and LA1038

BmA3 promoter: LA710

hr enhancer and ie1 promoter: LA928, LA1124 and LA1188

and all of these are useful as, or in the preparation of, minimal promoters.

It will be appreciated that a cistron or system of the invention may comprise two or more cistrons. A system may further comprise non-linked elements, such as where a second gene to be expressed is remote from the positive feedback cistron.

Thus, in a preferred aspect, the present invention provides positive feedback constructs of the general form shown in accompanying Figure 1. In this scenario, the tetracycline-repressible transcription activator (tTA) protein, when expressed, binds to the tetO operator sequence and

drives expression from a nearby minimal promoter. In the configuration shown, this then drives expression of tTA, which then binds to tetO, and so on, creating a positive feedback system. This system is inhibited by tetracycline, which binds to tTA and prevents it binding tetO.

Expression is controllable, and this may be achieved by operably linking the promoter to a controllable transcription factor. As illustrated above, this may be tTA (tetracycline-repressible or tetracycline-inducible), or any other factor controllable system, such as GAL4 (which is somewhat cold-sensitive, and can be further controlled by use of GAL80 or mutants thereof), or the streptogrammin regulated expression system, for example. It will be appreciated that other binding sites for the appropriate transcription factor will depend on the transcription factor concerned, such as UAS_{GAL4} (upstream activation sequence) for GAL4, for example.

Preferred systems of the present invention have high levels of induced expression, preferably available at several induced levels, with a low basal level of expression of the regulated gene but also of any other component, and preferably across a range of species. Basal levels are preferably low or substantially non-existent where expression is strongly deleterious, but acceptable levels will depend on the effect of the product. Maximum levels will not generally be an issue, as the positive feedback condition will often provide fatal levels of expression and, even where the expression product is not fatal, or associated with fatal consequences, it is likely to be expressed in far higher concentrations than most gene products.

Where a basal level of expression is desired, then a promoter sequence that does not need the presence of the enhancer may be employed, although there will then, generally, be feedback. Unless there is a cut-off level of feedback, below which the feedback product will not work, then it will be appreciated that it is preferred to keep to a minimum feedback gene expression

Different constructs of the invention (described in the accompanying Examples) have varying activity, according to the components of the constructs. For example, in *Drosophila*: WTP-tTA gives a low level of induced (non-repressed) expression
JY2004-tTA gives strong expression when not repressed, approximately equivalent to Act5C-tTA
LA513 is lethal when not repressed.

The first two appear to give constitutive expression, as judged by use of a reporter gene (tRE-EGFP), this is difficult to assess for the lethal LA513, although at 10µg/ml tet, just sufficient for good survival, LA513 in *Drosophila* drives expression of a tetO₇-EGFP reporter gene in both the male and female germline in adults, as well as in somatic cells. This distinguishes it from Act5C, commonly used as a “ubiquitous, constitutive” promoter, which does not, in fact, express well in these cells.

The properties of these constructs are shown in Table 1, below.

Table 1

	Max expression	Minimal promoter	Intron	Optimised coding region?	3'UTR and polyA
WTP-tTA	Low	P	PP1α96A	No	<i>fs(1)K10</i>
JY2004-tTA	High	CMV	Rabbit β-globin	No	Rabbit β-globin
LA513	V. high (lethal)	Hsp70	Adh	Yes	<i>fs(1)K10</i>

Accordingly, it will be appreciated that the induced or non-repressed expression level can be modified in a useful and predictable way by adjusting the sequence of the positive feedback system. Toxicity and/or activity of the tTA protein can be modified independently of the transcriptional and translational control signals by several approaches, e.g. use of a nuclear localisation signal, modification of the activation domain, etc. (see Fusseenegger, 2001 for more examples).

The lethality of LA513 is useful, for the reasons given above, and more particularly because:

- a) It provides a compact, highly effective repressible lethal gene system;
- b) As it uses only simple control elements from *Drosophila* (hsp70 minimal promoter, a small intron and a terminator from *fs(1)K10*), it, or its expression cassette, functions across a wide phylogenetic range;
- c) It has very little, if any, deleterious effect on adults, even in the absence of tetracycline. This is a highly desirable and surprising property for field use, for example in a RIDL-based control programme, as the released adults must be competitive and long-lived for full efficacy of

the programme. It will be appreciated that the effect of the system of the invention could be further modified by the incorporation of an adult-effective lethal, for example in the "positive feedback – bi-directional expression" configuration described herein; and

d) By its nature, "cross-talk" between various elements is minimised. This is because: (i) the core of the construct is only a single composite element, rather than the normal two in bipartite expression systems; (ii) the principal enhancer of the autoregulatory component, the tTA binding sites, is substantially active only in the absence of tetracycline and (iii) modest expression of tTA under the influence of a nearby enhancer, whether in another part of the construct or in nearby chromatin, is unlikely to be significantly deleterious.

JY2004-tTA is also useful, in the present invention.

Without being bound by theory, the mechanism by which LA513 kills embryos and early larvae, but not adults, appears to be an inherent property of its toxicity. tTA toxicity is believed to derive from "transcriptional squelching", in which high level expression of the transcriptional activator domain (in the case of tTA this is VP16 or a fragment thereof) binds elements of the transcriptional machinery and titrates them, leading to a general effect on transcription, although it may also act to saturate the ubiquitin degradation pathway. Transcriptional squelching is the effect which is thought to lead to deleterious effects in mammalian cell lines expressing tTA at high levels; in the optimised expression context of LA513 positive feedback drives tTA expression to lethal levels. However, developing stages may be more sensitive to disruption of transcription than adults: they have to express genes in a highly coordinated fashion to allow proper development, while adults may be more tolerant of disruption.

The development of LA513 heterozygotes on media with an intermediate level of tet (3 or 10 µg/ml), just sufficient for survival, showed a significant delay, relative to their wild type siblings. Parallel experiments using higher concentrations of tetracycline, e.g. 100 µg/ml, did not show any developmental delay, thereby suggesting that sub-lethal expression of tTA can adversely affect the normal development of the insects.

It is preferred that a positive feedback system show a higher on:off ratio and switch from on to off over a narrower concentration range than a conventional system, thereby allowing the use of a wider range of effector molecules. Lower-toxicity (lower specific activity) effector

molecules can be used, as they can be expressed at a high level under active conditions without leading to problems of toxicity at basal levels. Conversely, more toxic (higher specific activity) ones can be used as the necessary low basal level does not preclude high levels of expression when de-repressed or induced. Since basal level of expression is only partly determined by the level of tTA, this advantage is particularly clear in the case of lower-toxicity molecules. tTA is a preferred example of a low specific activity effector molecule that can be used as a lethal in the positive feedback context of LA513, for example. The advantage of switching from on to off over a narrow concentration range is that a modest concentration of repressor can be used without risk of residual (not fully repressed) expression leading to adverse effects and potentially selecting for resistance. Conversely, for an inducible system, modest concentrations of the activator can give full expression.

Activated or de-repressed drivers are useful for expressing effector molecules. Examples of effector molecules include functional RNA's, such as hairpin RNA's, ribozymes *etc.*, and one or more encoded proteins. It will be appreciated that, for different applications, different levels of expression are appropriate. Since the sequence-specific transcription factors used to drive the positive feedback system can also be used to express other genes in a bipartite expression system, this may be achieved by making two separate constructs, one with the driver (normally a promoter-transcription factor construct, here the positive feedback construct), the other with the gene or molecule of interest under the control of a composite promoter (binding site + minimal promoter) responsive to the transcription factor (Bello *et al.*, 1998; Brand *et al.*, 1994). This is also appropriate for these positive feedback drivers. Alternatively, the two elements may be combined on the same construct. This embodiment has significant advantages for most field applications, as it very substantially reduces the risk that the two functional elements can be separated by recombination. Further, the complete expression system can be introduced with only a single transformation event, as well as meaning that insects homozygous for the system are homozygous at only one locus rather than two, which makes them easier to construct by breeding, and tends to reduce the fitness cost due to insertional mutagenesis.

It is also possible to condense such an expression system into a more compact form, such as is illustrated in accompanying Figure 2.

This exploits the bi-directional nature of enhancers, in this case the tetO binding site in the presence of tTA. This arrangement further allows, or facilitates, the use of insulator elements to reduce the effect of enhancers or suppressors in the adjacent chromatin: in this arrangement the entire expression cassette can be flanked by insulators. This arrangement also removes the need to duplicate the transcription factor binding sites within the construct. Such duplication is preferably avoided, as it can lead to instability through homologous recombination. For similar reasons, it is generally preferred that non-identical insulators, such as scs and scs' are used, rather than using the same one twice.

It is further possible to condense the system to provide a single transcript, either bicistronic or expressing a single polypeptide, which may potentially be further processed into more than one protein, for example by use of the ubiquitin fusion technique (Varshavsky, 2000). Each of these approaches (bi-directional expression, bicistronic expression, fusion protein with transactivator) tends to reduce the size of the construct, which in turn will tend to increase the transformation frequency and reduce the mutagenic target. Such condensation can be achieved in several ways, as shown, diagrammatically, in accompanying Figure 3. Appropriate extensions to and variations of the arrangements shown diagrammatically will be apparent to those skilled in the art.

As an example of the utility of such a system, a general transformation marker might be constructed by using a transactivator system known to function over a wide phylogenetic range, for example those based on tetR, GAL4, lexA or AcNPV ie-1. Such a transactivator, functionally linked to a coding region for a fluorescent protein by any of the above methods (bi-directional expression, bicistronic expression, fusion protein with transactivator), would provide a genetic marker expressed in a wide range of tissues and developmental stages across a broad phylogenetic range. Such a marker would be useful not only for detecting transgenics in transformation and other lab experiments, but also for distinguishing, for example, transgenic flies from wild type flies in the field, or those caught in the field.

Another example is expression of a transposase. Integrated into the chromosomes, this would be a “jump-starter” construct, for example *piggyBac* transposase integrated into an insect chromosome using *mariner/mos1*. Such constructs are useful to remobilise *piggyBac* elements. A widely-applicable jump-starter should be expressed at a significant level across a wide

phylogenetic range. The expression system of this invention provides this. Furthermore, such a construct (*piggyBac* transposase under the control of a positive feedback system of one of the above structures) would also be useful in insect transformation *via* transient expression (co-expression of a “helper” plasmid, the most widely-used method for insect transformation), and again would be useful and functional across a wide phylogenetic range.

It is advantageous to regulate the action of an expression system at stage-, sex- or other levels, in addition to being able to regulate the expression level by changing environmental conditions. Suitable examples are as follows:

1. Expression of a repressor protein.

Repressor proteins are known or can be constructed for the main expression systems, *e.g.* GAL80 or its mutant derivatives for the GAL4 system, tetR fused to inhibitory proteins for the tet system, *etc.* Another alternative is gene silencing of the transcription factor using a hairpin RNA directed against part of the expression cassette. Basal expression from the positive feedback system is rather low, therefore it can readily be suppressed by expression of such an inhibitor.

Expression of a suitable inhibitor under suitable control will tend to inhibit expression from the positive feedback expression cassette where the inhibitor is expressed. Female-specific expression, for example, can therefore be achieved by expressing an inhibitor in males.

2. Integrating specificity into the positive feedback system.

Specificity can be integrated into the positive feedback system by using components that are themselves specific. For example, the hsp70 minimal promoter + SV40 intron and polyA signal combination of pUAST is known not to be expressed in the female germline of *Drosophila*, while the P minimal promoter + P intron + *fs(1)K10* polyA signal of pUASp is so expressed (Rorth, 1998). Positive feedback expression systems can, therefore, be constructed which specifically do or do not express in this tissue, depending on the use of appropriate regulatory elements.

In another embodiment, sex-specificity can be integrated into the system by use of sex-specific splicing. The sex-specific splicing of *doublesex* and its homologues is a conserved regulatory mechanism and, therefore, available for use in this way across a wide phylogenetic range. Sex-specific splicing of *transformer* and its homologues is another alternative. The use of sex-

specific splicing to integrate specificity into a positive feedback expression system can be achieved in several ways, as shown, diagrammatically, in accompanying Figure 4. Appropriate extensions to and variations of the arrangements shown diagrammatically will be apparent to those skilled in the art.

In another configuration, a specific splice site can be inserted into the transactivator coding region so that two (or more) alternative proteins are produced in different conditions, *e.g.* in different cell types or in different sexes. This can be arranged so that a transcriptional activator is produced in one cell type but a transcriptional repressor is produced in another cell type. This arrangement has the advantage that it is relatively robust to inefficient (imperfect) splicing – production of a relatively low proportion of transcriptional activator in the inappropriate cell type, *e.g.* in male cells, will be less likely to produce the positive feedback amplification as these cells are also producing a larger amount of repressor. Discrimination in output (ratio of levels of transcriptional activator in the two cell types, or ratio of expression of a reporter or other RNA or protein functionally linked to the expression of the transcriptional activator) between the two cell types is thereby enhanced.

It will be readily apparent to those skilled in the art that any of these specific transactivator arrangements can readily be combined with any of the arrangements disclosed herein for expression of an additional protein or RNA, *e.g.* bi-directional expression, bi- or multi-cistronic expression, expression of a fusion protein, or combined with one or more separate expression cassettes dependent on, or partly dependent on, expression of the transactivator, either combined on the same construct or elsewhere in the genome or cell.

3. Using a specific effector molecule

Specificity in phenotypic consequence can also be introduced by use of a specific effector molecule. Where a molecule, *e.g.* RNA or protein, expressed under the control of any of the expression systems described herein, has a specific effect only in particular cells, tissues, or sex, *etc*, then phenotypic specificity can be obtained with broader or less specific expression of the transactivator. For example, in the context of a RIDL-type mass-release insect population control programme, using the system to express a molecule only toxic, or preferentially toxic, to pre-adult stages, results in adults which are fully, or reasonably competitive, relative to wild type. This is desirable as the effectiveness of the programme depends on the competitiveness

and longevity of the adult forms, when released into the wild. Since their internal repressor (*e.g.* tetracycline) concentration is likely to decline in the wild, it would be advantageous to ensure that induction (de-repression) of the expression system, as and when it occurs in adults, has a minimal negative effect on them.

As another example, sex separation, or sex-specific effects, can be achieved by expression in both males and females of a molecule with differential effects in males and females. For example, expression of the Transformer protein in male *Drosophila* will tend to transform them into females, but have no effect on females. Similarly, expression of Male specific lethal-2 (MsL-2) protein in *Drosophila* will tend to kill females, but not males (Gebauer *et al.*, 1998; Kelley *et al.*, 1995; Matsuo *et al.*, 1997; Thomas *et al.*, 2000). Conversely, expression of a partially self-complementary RNA molecule with substantial homology in its self-complementary or double-strand-forming region to (“hairpin RNA against”) *transformer* will tend to transform genetic females into phenotypic males, while not affecting genetic males, and expression of hairpin RNA against *msl-2* will tend to be lethal to males but not to females. Expression of hairpin RNA against the male- or female-specific exons of *doublesex* will tend to affect those sexes only, and simultaneous expression of RNA encoding the other form of *doublesex* (*i.e.* Dsx^M in females or Dsx^F in males) will tend to modify or enhance this effect. This simultaneous expression of a protein and a hairpin RNA molecule can readily be accomplished by combining the bicistronic or fusion protein approach described above with expression of a hairpin RNA using the bi-directional expression system also described above. Sex-, stage- or other specificity can be further added to such a system by incorporation of appropriate specific splicing or other transcriptional, translational or other post-translational control signals to either part of the system as will be apparent to the person skilled in the art.

Multi-functional hairpin RNA molecules may be constructed and are envisaged. For example, RNAi against *transformer* in the Mediterranean fruit fly *Ceratitis capitata* Wiedmann (medfly) will tend to transform genetic females into fertile males. For an area-wide population control program based on mass-release of such insects, it is preferable to sterilise the released flies. This can be accomplished by using a composite RNA molecule that simultaneously disrupts expression of both *transformer* and a gene required for spermatogenesis or embryonic or larval viability. Many such genes are known in *Drosophila* with homologues in mosquitoes or other animals. With medfly, a suitable homologue can readily be isolated, using techniques

known to those skilled in the art. We prefer the use of a gene which allows the production of seminal fluid, and preferably also of sperm, to reduce the tendency of the female to re-mate after insemination by the affected male. We particularly prefer to direct this second part of the hairpin RNAi molecule against a paternal effect lethal, so that no viable progeny can be produced, or against a zygotically expressed gene required for embryonic or larval viability or development, so that progeny inheriting the construct will be affected. Other configurations are envisioned and will be readily apparent to those skilled in the art: for example expression of a female-specific lethal protein by bicistronic expression and a hairpin RNA leading to paternal-effect lethality by bi-directional expression. In common with the composite hairpin RNA against a suitable sex-determination gene and a paternal effect lethal, this allows the generation of a single-sex (male-only) population of insects, all of whose progeny die through the action of the paternal-effect lethal, irrespective of whether their progeny or mates feed on tetracycline. Thus, the present invention provides a controlled promoter, as defined, wherein the promoter is operably linked with DNA encoding an RNAi causing lethality or sterility. In this case, lethality may correspond to low fitness, such as flightless, rather than outright lethality, provided that the likelihood of breeding on is substantially reduced.

4. Using site-specific recombinase(s)

Specificity can also be introduced into the positive feedback system by inserting a "stuffer" fragment which inactivates it. If this "stuffer" fragment is flanked by target sites for a suitable site-specific recombinase, then it will tend to be excised in the presence of active recombinase. Any system for selective expression of active recombinase, for example, expression of the recombinase under the control of a female-specific promoter, will therefore tend to lead to selective expression of the positive feedback system, in this case in females only. If the recombinase is expressed in somatic cells only, for example by using the method described above, then the version transmitted to the next generation includes the stuffer fragment, which can again be daughters but not sons. Conversely, if the recombinase is expressed in the genome only, provision of active recombinase will lead to offspring in which the expression system is active, from parents in which it is inactive. This can be used, for example, to generate gametes containing an active dominant lethal or sterile gene system (e.g. female-specific or non-sex-specific) for use in an insect population control strategy.

In a preferred embodiment, the stuffer fragment encodes the recombinase. This embodiment is particularly compact. In another preferred embodiment, the stuffer fragment encodes a transcriptional repressor which tends to inactivate the positive feedback expression system – this embodiment tends to reduce the basal expression of the system in the presence of the stuffer fragment.

Conversely, the system can be specifically inactivated in certain cells, or clones of cells, by introducing target sites for a suitable site-specific recombinase at suitable positions, and then expressing or introducing the appropriate active recombinase in appropriate cells, such that one or more key functional elements of the expression system are removed or disrupted by recombination between the target sites for the recombinase.

Suitable recombinase systems include cre/lox and Flp/FRT.

The present invention is illustrated by the following, non-limiting, Examples. In the following Examples, the Figures are as follows:

Figure 1 shows a tetracycline-repressible transcription activator scenario;

Figure 2 shows a system of the invention using a bi-directional enhancer;

Figure 3 shows a sex-specific system;

Figure 4 shows another sex-specific system;

Figure 5 is a diagram of the tetO₇-tTA region of pJY2004;

Figure 6 is a schematic diagram of pLA513;

Figure 7 is a schematic diagram of the LA513 transposon;

Figure 8 is a schematic diagram of pLA517;

Figure 9 illustrates the bidirectional action of tetO₇ in 513A and 513B mosquitoes;

Figure 10 is a schematic diagram of pLA656;

Figure 11 is a schematic diagram of pLA928;

Figure 12 is a schematic diagram of pLA1124;

Figure 13 is a schematic diagram of pLA670;

Figure 14 is a schematic diagram of pLA1038;

Figure 15 is a schematic diagram of pLA710;

Figure 16 illustrates the sex-specific splicing of *Cctrα* in medfly;

Figure 17 is a schematic diagram of pLA1188; and

Figure 18 illustrates sex-specific splicing in medfly.

EXAMPLES

A series of constructs was made with tTA in a positive feedback configuration, *i.e.* with tTA expression regulated by tTA binding to tetO. Transgenic insects carrying these constructs were obtained and their properties analysed.

tTAV

In some cases, the intention was to obtain very high levels of expression of tTA in the absence of tetracycline. In various exemplified constructs described hereinbelow, tTA expression was so high as to be lethal. As part of the process of obtaining strong expression of tTA, part of the tTA open reading frame was redesigned to express a similar protein, but with codon usage closer to the norm for *Drosophila melanogaster*, and lacking some potential cryptic splice sites present in the original nucleotide sequence. This variant tTA sequence was named tTAV (SEQ ID NO. 31, protein sequence SEQ ID NO. 32).

EXAMPLE 1

WTP-tTA and JY2004-tTA in *Drosophila melanogaster*

The tTA coding region (SEQ ID NO. 29, tTA protein sequence SEQ ID NO. 30) from pUHD15-1 (SEQ ID NO. 33, Gossen *et al.*, 1994; Gossen and Bujard, 1992) was placed under tetO control, in a positive feedback configuration, by inserting it into pWTP2 (Bello *et al.*, 1998) or pJY2004, a version of pJY2000 that lacks insulators (Stebbins and Yin, 2001). These constructs were named pWTP-tTA and pJY2004-tTA, respectively. A diagram of tetO₇-tTA region of pJY2004 is provided as accompanying Figure 5, and is SEQ ID NO. 14.

In pWTP-tTA, the tetO₇ binding sites are followed by a minimal promoter from the *P* element, a leader sequence from *Drosophila hsp70*, a short intron from the *Drosophila PP1α96A* gene, the tTA coding region and a transcription terminator from *Drosophila hsp70*. In pJY2004-tTA, the minimal promoter and leader sequences are from CMV, followed by the tTA coding region and a transcription terminator from rabbit β-globin, as shown in Figure 5.

Transgenic *Drosophila melanogaster* carrying either of these constructs were fully viable, even without dietary tetracycline. Insects doubly heterozygous for WTP-EGFP and either of these constructs were examined for green fluorescence characteristic of EGFP expression. Insects with WTP-tTA and WTP-EGFP showed very weak fluorescence only slightly above background autofluorescence. In contrast, insects with JY2004-tTA and WTP-EGFP showed strong fluorescence, similar to that seen in insects carrying EGFP under the control of the Actin5C promoter, which is widely used as a strong, constitutive promoter in *Drosophila* (e.g. Reichhart and Ferrandon, 1998). Expression of EGFP was repressed to undetectable levels when the insects were raised on diet supplemented with tetracycline to 100 µg/ml. Control insects heterozygous for either WTP-EGFP, JY2004-tTA or WTP-tTA showed no fluorescence above background whether or not they were raised on a diet containing tetracycline.

We placed tTA under the control of the Actin5C promoter, in plasmid pP [Casper-Act5C-tTA]. Transgenic flies carrying this construct and WTP-EGFP, raised on a diet lacking tetracycline, showed green fluorescence at a comparable intensity to that observed in equivalent flies with JY2004-tTA and WTP-EGFP.

These results show that positive feedback constructs can be used to give strong (JY2004-tTA) or weak (WTP-tTA), tetracycline-repressible expression from a suitable construct (here WTP-EGFP).

EGFP is widely used as a neutral reporter. We further tested JY2004-tTA flies by crossing them to flies with constructs capable of expressing proteins known or predicted to be deleterious. We inserted the central domain of Nipp1Dm (Bennett *et al.*, 2003; Parker *et al.*, 2002) ("nipper"), into pJY2004, to make pJY2004-nipper, and transformed *Drosophila* with this construct. We also used flies carrying tetO-hid (Heinrich and Scott, 2000). In each case,

crossing to JY2004-tTA flies gave tetracycline-repressible lethality. Data from two example crosses are presented in Table 2, below.

Table 2

Use of positive feedback constructs to drive expression of lethal genes in *Drosophila*.

Male JY2004-tTA/CyO x Female tetO-hid/tetO-hid			[tetracycline] (μ g/ml)
JY2004-tTA	CyO		
0	15		0
9	10		100
Male JY2004-tTA/CyO x Female JY2004-nipper/JY2004-nipper			
JY2004-tTA	CyO		
0	20		0
16	13		100

EXAMPLE 2**LA513 in *Drosophila melanogaster***

We made construct pLA513 (SEQ ID NO. 16, schematic diagram shown in Figure 6), containing a non-autonomous *piggyBac* transposon. We generated transgenic *Drosophila melanogaster* carrying this construct by co-injection with a helper plasmid into a white-eyed strain (Handler, 2002; Handler and James, 2000). Potential transgenics were screened for fluorescence characteristic of DsRed2. 5 transgenic lines were recovered, and were designated O513, M8, M13, F23 and F24. A schematic diagram of the LA513 transposon is shown in accompanying Figure 7.

Drosophila melanogaster stocks were maintained at 25°C on yeast/sugar/maize/tetracycline medium (tetracycline (Sigma) at 100µg/ml final concentration), unless stated otherwise. All experiments were performed at 25°C.

Survival of LA513/+ transgenics with and without tetracycline

Heterozygous transgenics were crossed in at least triplicate to wild type on media with or without Tc (tetracycline). In the absence of any lethality, it would be expected that approximately half the progeny of such a cross would be transgenic. Progeny were scored as young adults for DsRed marker fluorescence [Matz *et al.*, 1999] using an Olympus SZX12 microscope with fluorescence capability, and the ratio of fluorescent (transgenic) to total flies was calculated. The results are shown in Table 3, below. In these experiments, all 5 transgenic lines showed 100% lethality, in the absence of tetracycline, and good survival (*i.e.* fluorescent:non-fluorescent ratio ~1:1), in the presence of 100µg/ml tetracycline. Inspection of the vials showed few or no large fluorescent larvae in the absence of Tc, although many very small fluorescent larvae were present, at a time when non-fluorescent (wild type for LA513) larvae were visible at all sizes. This suggests that, in the absence of tetracycline, LA513 causes lethality at an early (embryonic and/or early larval) developmental stage.

Table 3
LA513 insertions are tetracycline-repressible dominant lethals

LA513 line	0 µg/ml tetracycline		100 µg/ml tetracycline		
	# Flies	# Fluorescent	# Flies	# Fluorescent	Ratio
O513	490	0	1963	937	0.48
M8	74	0	66	25	0.38
M13	657	0	1838	892	0.49
F23	473	0	1914	845	0.44
F24	61	0	114	60	0.53
<i>Total</i>	1755	0	5895	2759	0.47

Dominant lethality could have several causes. Without being restricted by theory, it seems likely that, in the absence of tetracycline, tTAV accumulates to a relatively high concentration and that this is lethal, possibly due to transcriptional squelching, or interference with protein degradation. An alternative is that, in the absence of tetracycline, tTAV binds to tetO and acts as a long-range enhancer, perturbing the expression of genes near to the LA513 insertion. This appears unlikely, as all 5 transgenic lines gave similar results. Each of these lines was derived from a different G0 injection survivor, and these lines are, therefore, likely to carry LA513 integrated at different genomic sites. We verified this by inverse PCR. Table 4, below, shows the integration sites for 3 of the lines; in each case the LA513 insertion was at a TTAA sequence, as expected from the known insertion site preference of the *piggyBac* transposon. As expected, the 3 insertions were indeed at 3 different sites in the *Drosophila* genome.

Table 4
Insertion sites of LA513 in *Drosophila* genome

Line	Sequence Amplified or at Site of Integration	<i>Predicted chromosome arm</i>	<i>Predicted Drosophila cytology</i>	Nearest predicted gene
O513	Cacagcgcatgatgaggcaca TTAA caaaaatgttagtaaaatagga (SEQ ID NO. 1)	2L	25F4-25F5	CG9171
M8	Gtttcgataaatattgctat TTAA aatgcttatttcaatgcta (SEQ ID NO. 2)	2L	36F6-36F6	CG15160
F24	Tttgtttctaacgttaag TTAA agagagtccagccacattt (SEQ ID NO. 3)	2L	21C4-21C5	CG13691

Flanking sequence is shown with the TTAA insertion site capitalised. Predicted chromosome locations, and the nearest predicted gene, are also shown; these are based on the published *Drosophila* genome sequence.

EXAMPLE 3**Reducing the toxicity of tTAV**

The toxic effect of high level expression of tTAV is thought to be due to transcriptional squelching and/or interference with ubiquitin-dependent proteolysis, *via* the VP16-derived section (Gossen and Bujard, 1992; Salghetti *et al.*, 2001). We, therefore, modified tTAV by removing the VP16 section and replacing it with a synthetic sequence which encodes 3 copies of a peptide (PADALDDFDLDM) derived from VP16 (Baron and Bujard, 2000; Baron *et al.*, 1997). This derivative was named tTAF; the resulting plasmid was named pLA517, and is SEQ ID NO. 17, and is shown, diagrammatically, in accompanying Figure 8.

Drosophila melanogaster were transformed with this construct, and one transgenic line was obtained. LA513 heterozygous males were crossed to wild type (for LA513) females and the progeny scored for fluorescence (as adults). If all progeny are equally likely to survive, the expected proportion of the total progeny that are fluorescent is 50%. In the absence of tetracycline, this proportion was 32%, only a modest reduction compared with 48% when parents and progeny were raised on diet supplemented with tetracycline to 100 µg/ml. The results are shown in Table 5, below. We tested whether supplying tetracycline in the diet of the parents but not of the progeny could reduce this lethality. In this case, we observed an intermediate proportion of 0.37, indicating that maternally contributed tetracycline has a modest beneficial effect.

Table 5

Effect of tetracycline on the survival of LA517/+ *Drosophila* and their +/- siblings

LA517		Parent [Tc] µg/ml	Progeny [Tc] µg/ml	Non-Fluorescent Fluorescent	
0	0	0	165	78	
100	100	100	524	482	
100	0	0	502	297	

Since LA517, alone, had little impact on viability, unlike the closely related construct LA513, we tested whether it was capable of driving expression of a heterologous gene under tetO control. For this we used tetO-hid (Heinrich and Scott, 2000). Flies homozygous for tetO-hid were crossed with flies heterozygous for LA517. In the absence of tetracycline, only 3.4% of the adult progeny carried LA517. In the presence of 100 µg/ml tetracycline, this proportion was 42%. LA517 is, therefore, capable of driving effective expression of a heterologous gene.

Table 6

Effect of tetracycline on the survival of LA517/+ , +/tetO-hid *Drosophila* and their +/+, +/tetO-hid siblings

TetO-Hid x LA517/+		
[Tc]	Non-Fluorescent	Fluorescent
0	636	23
100	174	127

EXAMPLE 4**Use of analogues of tetracycline**

Line F23 was used to determine whether chemical analogues of tetracycline could be used in place of tetracycline to suppress the lethality of LA513. For this purpose we tested 3 analogues at a range of concentrations from 0 to 100 µg/ml (suppliers: tetracycline and doxycycline, Sigma; 4-epi-oxytetracycline, Acros Organics; chlortetracycline Fuzhou Antibiotic Group Corp.). We calculated the concentrations required for half-maximal survival. These are shown in Table 7, below.

Table 7

Efficacy of Tc analogues

Line	Tc/Analogue	Concentration for half-maximal survival, µg/ml
F23	Tetracycline	5.0
F23	Doxycycline	3.9
F23	7-chlortetracycline	1.7
F23	4-epi-oxytetracycline	42.0

EXAMPLE 5**Longevity of LA513/+ adults in the absence of tetracycline**

LA513 clearly confers dominant lethality, active at an embryonic and/or early larval stage. Larvae were raised on a diet supplemented with 100µg/ml tetracycline. After eclosion, adults were transferred to a diet lacking tetracycline. The lifespan of these adults was measured, and also of comparable w^{1118} non-transgenic adults. As shown in Table 8, below, the transgenic lines showed good adult survival relative to the non-transgenic control. This suggests that stage-specificity can be obtained in this way – here LA513 is a larval/embryonic lethal, but not an adult lethal.

Table 8

Mean adult lifespan of LA513/+ transgenic *Drosophila*.

<i>Line</i>	Mean post-eclosion survival time, days	Standard deviation	Number of Flies
O513	40.3	12.3	66
M8	26.1	2.5	9
M13	29.5	9.9	47
F23	29.6	11.3	83
F24	19.9	10.0	9
w^{1118}	22.2	8.6	88

It is possible to explain these longevity data by postulating that larvae accumulate tetracycline by feeding, and retain this tetracycline into adulthood, so that they survive even in the absence of dietary tetracycline as adults. To examine this, flies heterozygous for LA513/+ (M13 line) were raised as larvae on various concentrations of tetracycline. After eclosion, adults were transferred to diet lacking tetracycline and the lifespan of these adults was measured, as above. As shown in Table 9, below, the concentration of dietary tetracycline as larvae had no obvious effect on subsequent adult longevity in the absence of tetracycline, implying that adult survival is not primarily due to retention of tetracycline from larval feeding. At a concentration of 1 µg / ml, no transgenics survived to adulthood, and at 3 µg/ml only about half of the expected number survived to adulthood, so that this concentration is close to the minimum for larval survival.

Table 9

Effect of larval tetracycline on adult longevity

Larval tetracycline µg / ml	Mean post- eclosion survival time, Standard			Number of Flies
	days	deviation		
1	-	-	-	-
3	33.5	13.2		9
10	28.4	9.6		17
30	26.3	11.3		23
100	29.5	9.9		47

Another possible explanation for the survival of LA513/+ adults is that tTAV is inactive in adults, so that the positive feedback cycle does not work, and tTAV does not accumulate. We examined this by measuring the amount of tTAV mRNA by quantitative PCR following a reverse transcriptase reaction (quantitative rt-PCR, or qPCR). We used Taqman chemistry and reagents (ABI), and an ABI Prism 7000 qPCR instrument. Each sample was assayed in triplicate; data are the mean of these three assays. The 18S primers anneal to *Drosophila melanogaster*, *Ceratitis capitata* and *Aedes aegypti* 18S RNA, so these primers were used for all three species.

Primers used:

	SEQ ID NO.
18S RNA	
Forward Primer: ACGCGAGAGGTGAAATTCTTG	4
Reverse Primer: GAAAACATCTTGGCAAATGCTT	5
TaqMan MGB Probe: 6-Fam-CCGTCGTAAGACTAAC-MGB	6

tTAV

Forward Primer: CATGCCGACGCGCTAGA	7
Reverse Primer: GTAAACATCTGCTCAAACTCGAAGTC	8
TaqMan MGB Probe: VIC-TCGATCTGGACATGTTGG-MGB	9

We found that O513 raised on 100 µg/ml tetracycline had a tTA:18S ratio of 0.00016 (larvae) and 0.00013 (adult). Adults raised as larvae on 100 µg/ml tetracycline, but then transferred to non-tetracycline diet as adults had ratios of 0.0061, 0.0047, 0.0087 and 0.011 after 1, 2, 4 and 8 days without tetracycline, respectively. This 28- to 64-fold increase in expression relative to the tetracycline-fed control indicates that the tTAV-based positive feedback expression system is functional in adults.

EXAMPLE 6

LA513 in *Aedes aegypti*

Aedes aegypti (the yellow fever mosquito, also the major vector of urban dengue fever) were transformed with LA513. Two independent insertion lines, LA513A and LA513B, were obtained.

Males heterozygous for LA513A (reared as larvae on 30 µg/ml tetracycline) were allowed to mate with wild type females. Eggs were collected and the resulting larvae raised in normal media, or in media supplemented with tetracycline (Tc) to 30 µg/ml. The number of transgenic and non-transgenic adults resulting from these eggs was determined. Data are the sum of at least 5 experiments. Larvae were reared at a density of ≤ 250 individuals per litre; all the eggs in "no tetracycline" experiments were washed twice before submergence to avoid transferring tetracycline. For the "with tetracycline" experiments, the parental blood and sugar-water was supplemented with tetracycline to 30 µg/ml; for the "no tetracycline" experiments it was not. χ^2 test for differentiation in ratio of the transgene and wild types for survival to adult: "with tetracycline", either orientation: P>0.05 ; "without tetracycline, either orientation P<0.001 (null hypothesis: genotype with respect to LA513 has no effect on survival).

LA513A is, therefore, a repressible dominant lethal, with a penetrance in these experiments of 95-97%. LA513B is also a repressible dominant lethal, with a penetrance in these experiments of 100%. The results are shown in Table 10, below.

Table 10Effect of tetracycline on the survival of LA513A/+ *Aedes aegypti* and their +/- siblings.

Parents		Progeny								
Male	Female	Tc as larvae	Genotype	1 st instar larvae	2 nd	3 rd	4 th	Pupae	Adults	
		Egg								
LA513A/+	+/+	1000	Yes	LA513A/+	489	468	446	442	437	434
				Wild type	444	431	403	400	396	392
+/+	LA513A/+	1000	Yes	LA513A/+	442	420	404	399	393	383
				Wild type	466	444	428	417	412	404
LA513A/+	+/+	540	No	LA513A/+	274	265	235	208	155	7
				Wild type	233	225	214	212	209	206
+/+	LA513A/+	497	No	LA513A/+	216	205	181	168	131	9
				Wild type	241	225	216	214	211	207

Parents		Progeny								
Male	Female	Tc as larvae	Genotype	1 st instar larvae	2 nd	3 rd	4 th	Pupae	Adults	
		Egg								
LA513B/+	+/+	377	Yes	LA513B/+	161	153	147	141	139	131
				Wild type	178	171	165	160	157	153
+/+	LA513B/+	442	Yes	LA513B/+	189	181	170	166	161	153
				Wild type	203	198	185	182	180	176
LA513B/+	+/+	188	No	LA513B/+	69	19	0	0	0	0
				Wild type	85	84	83	83	82	81
+/+	LA513B/+	240	No	LA513B/+	91	60	0	0	0	0
				Wild type	107	104	99	98	95	93

We examined the survival of LA513A/+ males that had been raised on tetracycline (30µg/ml), as larvae, but not given tetracycline as adults. We found that all males tested survived for three weeks, irrespective of genotype (LA513A/LA513A, LA513A/+ or +/-) or the presence or absence of tetracycline in their diet (n≥40 for each genotype).

We examined the survival of LA513A/+ males that had been raised on tetracycline (30µg/ml), as larvae, but not given tetracycline as adults. We found that all males tested survived for three weeks, irrespective of genotype (LA513A/LA513A, LA513A/+ or +/+) or the presence or absence of tetracycline in their diet (n≥40 for each genotype).

We investigated the induction kinetics of tTAV in adult LA513B/+ mosquitoes after withdrawal of tetracycline, using qPCR. As shown in Table 11, below, tTAV increased in males and females following withdrawal of tetracycline. Induction of tTA expression is fairly rapid after removal of Tc, as with *Drosophila*. In each case, shifting between diets containing different levels of tetracycline provides a level of control over the expression level of genes controlled by tTA (here exemplified by tTA itself), using such a positive feedback system.

Table 11

Induction of tTA expression in LA513B/+ males following withdrawal of tetracycline

Sex	Time (days) without tTA:18S expression	tTA:18S expression		
		tetracycline	ratio	relative to male with tetracycline
Male	0		0.00036	1
Female	0		0.00060	1.7
Male	3		0.0043	12
Female	3		0.014	38
Male	4		0.054	150
Female	4		0.019	530
Male	8		0.012	34
Female	8		0.52	1500
Male	16		0.10	280
Female	16		0.032	88

EXAMPLE 7**Tetracycline-repressible enhancement of a nearby promoter by tTAV in a positive feedback configuration**

We observed that the fluorescent marker in LA513A and LA513B transgenic mosquitoes showed a different pattern of fluorescence in the absence of tetracycline, compared with the pattern in the presence of tetracycline. Fluorescence in the presence of tetracycline was typical of Actin5C-driven expression in mosquitoes (Catteruccia *et al.*, 2000; Pinkerton *et al.*, 2000), and limited largely to the swollen part of the thorax. In contrast, in the absence of tetracycline, expression was much stronger and evident substantially throughout the body of transgenic individuals. In each case, assessment of fluorescence intensity and expression pattern was made by visual observation using fluorescence microscopy.

Elevated expression of tTAV in this positive feedback situation appears, therefore, to be stimulating expression from the nearby Actin5C promoter. This is illustrated, diagrammatically, in Figure 9. We also found that intermediate concentrations of tetracycline, just sufficient substantially to suppress the lethality of LA513, did not suppress this broader expression pattern of fluorescence. At these intermediate concentrations of tetracycline, tTAV accumulates to an intermediate level – sub-lethal, but higher than in 30 µg/ml tetracycline, and which still influences the expression of DsRed2. This again exemplifies the additional control available by modulating tetracycline concentration.

Figure 9 illustrates the bidirectional action of tetO₇ in 513A and 513B mosquitoes. In 513, DsRed2 is under the transcriptional control of the *Drosophila* Actin5C promoter.

- (A) In the presence of tetracycline, relatively little tTAV is produced, this binds tetracycline and has little or no effect on DsRed2 expression. DsRed2 is seen in a pattern typical of Actin5C expression in mosquitoes.
- (B) In the absence of tetracycline, tTAV stimulates its own expression in a positive feedback loop.
- (C) tTAV binding to the tetO sites enhances expression of both the hsp70 minimal promoter, and hence tTAV, but also the Actin5C promoter, and hence DsRed2.

EXAMPLE 8

LA656, LA928 and LA1124 in *Ceratitis capitata*

No transgenic lines of the Mediterranean fruit fly (medfly, *Ceratitis capitata* Wiedmann) were obtained, using pLA513, probably indicating that the Actin5C-based marker of pLA513 is inappropriate for use in medfly. This emphasises the desirability of expression constructs with a wide species range. We, therefore, modified the construct to include a polyubiquitin (ubi-p63E)-based marker instead of the Actin5C-based one of pLA513. One such construct is pLA656. We also made two additional constructs, pLA928 and pLA1124 (SEQ ID NO's 18, 20 and 21, respectively, and shown, diagrammatically, in Figures 10, 11 and 12), using a marker based on the hr5 enhancer and ie1 promoter from a baculovirus (*Autographica californica* nuclear polyhedrosis virus, *AcMNPV*). These differ in the orientation of the marker with respect to the tetO-tTAV cassette. The hr enhancer is closer to the tetO-tTAV cassette in pLA1124 than in pLA928. Furthermore, pLA1124 has 21, rather than 7, copies of tetO and additionally has a putative GAGA-factor binding region related to that of pUASp (Rorth, 1998).

One transgenic line was obtained from pLA656, three for pLA928, and three for pLA1124. These lines are assumed to have independent insertions, as they were derived from different G0 injection survivors.

Males heterozygous for each line were crossed to wild type females. The progeny were raised on standard yeast/sugar/wheatgerm or yeast/sugar/maize *Drosophila* diet, supplemented with tetracycline as appropriate. The parents were raised on the same diet, supplemented with tetracycline to 100µg/ml in the case of the transgenic males. The wild type females to which these males were mated were raised without tetracycline, to eliminate any potential maternal contribution of tetracycline. The number of transgenic and non-transgenic pupae and adults obtained from each cross was determined by scoring for DsRed2 by fluorescence microscopy.

The results of these crosses are shown in Table 12, below. In each case, in the absence of tetracycline, survival of the heterozygous transgenics was less than 2% relative to their wild type

shifting between diets containing different levels of tetracycline, modifying the construct, and using position effect, are discussed elsewhere herein.

Table 12

Effect of tetracycline on the survival of transgenic medfly heterozygous for various constructs, and their +/- siblings

LA656	Progeny [Tc] (μ g / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	84 / 1161	7	6	2	530	551	0.7
	0.1	16 / 423	4	0	0	205	177	0
	1	124 / 384	32	34	12	155	174	14
	3	258 /370	70	84	53	165	133	46
	10	249 / 252	99	91	98	107	127	81
	100	330 / 307	107	151	150	134	148	107

<u>LA928m1</u>	Progeny [Tc] (μg / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	28 / 1499	1.87	5	1	661	639	0.46
	0.1	0 / 765	0	0	0	347	246	0
	1	190 / 256	74	62	59	119	101	55
	3	290 / 302	96	133	98	143	107	92
	10	nd	nd	nd	nd	nd	nd	nd
	100	222 / 286	77	117	84	146	126	74

<u>LA928m3</u>	Progeny [Tc] (μg / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	68 / 1026	6.6	13	4	489	449	1.8
	0.1	0 / 265	0	0	0	117	91	0
	1	358 / 446	80	154	100	228	164	65
	3	105 / 105	100	39	35	42	38	93
	10	nd	nd	nd	nd	nd	nd	nd
	100	245 / 245	100	109	121	117	108	100

<u>LA928f1</u>	Progeny [Tc] (μ g / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	17 / 1331	1.3	2	0	639	599	0.16
	0.1	2 / 254	0.8	0	0	100	84	0
	1	461 / 567	81	218	146	244	181	85
	3	520 / 527	99	214	182	249	202	88
	10	350 / 399	91	139	112	131	159	87
	100	126 / 117	108	63	57	57	49	113

<u>LA1124f1</u>	Progeny [Tc] (μ g / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	104 / 213	51	0	3	95	62	1.9
	100	478 / 536	89	218	208	205	203	104

<u>LA1124m1</u>	Progeny [Tc] (μ g / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	337 / 437	77	2	1	176	207	0.78
	100	84 / 90	93	35	31	30	26	118

<u>LA1124m2</u>	Progeny [Tc] (µg / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	104 / 145	72	0	1	46	34	1.3
	100	77 / 77	100	24	14	19	13	119

F: fluorescent;

NF: non-fluorescent.

Pupae were collected and scored for fluorescence (column 3), then allowed to eclose. Surviving adults were scored for sex and fluorescence (columns 5-8). From these data on adults, the ratio of fluorescent to non-fluorescent survivors was calculated, presented in column 9 as the percentage of fluorescent adults observed relative to non-fluorescent. It is to be expected that these crosses give, on average, equal numbers of transgenic and non-transgenic individuals; if an equal proportion of transgenic and non-transgenic individuals were to survive to adulthood, then this would give an “adult survival ratio” of 100%.

We further investigated the expression of tTA in these transgenic lines by quantitative (real-time) rt-PCR (qPCR). The results are given in Table 13, below.

Table 13

Expression levels of tTA in wild type and transgenic medfly

Sample	tTA/18S ratio	NT/T ratio
<i>Larvae</i>		
WT tet	3.13E-06	
WT NT	2.81E-06	
656 tet	5.80E-06	1.00
656 NT	2.06E-04	36
670A tet	2.71E-06	1.00
670A NT	1.10E-04	41
670e tet	9.70E-06	1.00

670e NT	8.40E-05	8.7
---------	----------	-----

Adults

WT female	2.83E-06
-----------	----------

WT male	2.16E-07
---------	----------

Heterozygous

656 tet M 0d	5.52E-06	1.00
--------------	----------	------

656 tet M 8d	1.12E-05	2.0
--------------	----------	-----

656 NT M 0d	4.49E-05	8.1
-------------	----------	-----

656 NT M 2d	2.77E-04	50
-------------	----------	----

656 NT M 4d	2.22E-04	40
-------------	----------	----

656 NT M 8d	9.71E-05	18
-------------	----------	----

656 NT M 16d	1.49E-04	27
--------------	----------	----

670 M tet	4.21E-06	1.00
-----------	----------	------

670 F tet	2.86E-06	0.68
-----------	----------	------

670 M NT S	6.93E-05	16.45
------------	----------	-------

670 F NT S	1.92E-04	45.57
------------	----------	-------

928Am1 F tet	7.17E-06	1.00
--------------	----------	------

928Am1 M tet	8.56E-06	1.19
--------------	----------	------

928Am1 M NT		
-------------	--	--

2d	1.71E-04	23.81
----	----------	-------

928Am1 M NT		
-------------	--	--

4d	5.36E-04	74.72
----	----------	-------

928Am1 M NT		
-------------	--	--

8d	1.91E-04	26.66
----	----------	-------

928Am1 M NT		
-------------	--	--

16d	1.01E-05	1.41
-----	----------	------

928Am1 M tet		
--------------	--	--

8d	1.11E-06	0.16
----	----------	------

928Am1 M NT S	2.22E-04	31.02
---------------	----------	-------

928Am1 M NT S	1.51E-04	21.11
---------------	----------	-------

928Am3 F tet	9.09E-07	1.00
--------------	----------	------

928Am3 M tet	9.09E-07	1.00
928Am3 F NT S	3.62E-05	39.85
928Am3 F NT S	8.74E-04	962.07
928Am3 F NT		
S	2.99E-04	329.32
928Am3 M NT		
S	5.53E-05	60.83
928Am3 M NT S	9.18E-04	1009.90
1124f1 F tet	2.86E-05	1.00
1124f1 F NT 7d	4.11E-04	14.35
1124m1 M tet	1.62E-05	1.00
1124m1 F NT S	9.30E-04	57.55
1124m2 F tet	8.98E-05	1.00
1124m2 F NT 7d	7.90E-04	8.79

homozygous

656 tet 8d	1.49E-05	1.00
656 NT 0d	9.23E-05	6.2
656 NT 2d	3.90E-03	262
656 NT 4d	1.92E-03	129
656 NT 8d	4.70E-03	316
656 NT 16d	8.58E-04	58

M: male;

F: female;

tet: raised on diet supplemented with tetracycline to 100 µg/ml;

NT S: raised on standard diet (0 µg/ml tetracycline);

d: days post-eclosion;

NT (n)d: raised on tet diet, then held as adults on non-tet (NT) diet for n days, as indicated;

tet (n)d: raised on tet diet, then held as adults on tet diet for n days, as indicated.

EXAMPLE 9**LA670 in *Ceratitis capitata***

We obtained a single transgenic line of medfly by transformation with pLA670, a construct which closely resembles pLA656. This plasmid is illustrated in accompanying Figure 13, and is SEQ ID NO. 23.

However, this transgenic line gave a significant number of adult transgenic progeny, even when raised as larvae on diet lacking tetracycline (Table 14). However, this LA670 insertion line does produce a readily detectable amount of tTAV mRNA in the absence of tetracycline, and this is substantially reduced by dietary tetracycline (assessed by qPCR, results shown in Table 13, above). LA670, therefore, represents a useful regulatable source of tTAV with which to drive the expression of tTAV-responsive genes. The difference in phenotype between LA656 and LA670, which are extremely similar in structure, is probably due to position effect, which is the variation in expression of transgenes depending on where they have inserted in the genome. Such variation is also shown by the variation in phenotype and tTAV expression levels between different transgenic lines with the same construct, as shown in Table 13, above. A simple method for obtaining transgenic lines carrying positive feedback constructs with different expression levels and phenotypic consequences is therefore provided, comprising generating a panel of insertion lines and screening for suitable basal and de-repressed expression levels and patterns.

Table 14

Effect of tetracycline on the survival of transgenic medfly heterozygous for LA670, and their +/+ siblings

LA670	Progeny [Tc] (μg / ml)	F/NF pupae	Pupal survival ratio (%)	F male	F female	NF male	NF female	Adult survival ratio (%)
	0	182 / 220	83	72	35	102	103	52
	100	10 / 8	125	5	3	5	3	100

F: fluorescent;

NF: non-fluorescent.

Pupae were collected and scored for fluorescence (column 3), then allowed to eclose. Surviving adults were scored for sex and fluorescence (columns 5-8). From these data on adults, the ratio of fluorescent to non-fluorescent survivors was calculated, presented in column 9 as the percentage of fluorescent adults observed relative to non-fluorescent. It is to be expected that these crosses give, on average, equal numbers of transgenic and non-transgenic individuals; if an equal proportion of transgenic and non-transgenic individuals survived to adulthood, this would give an "adult survival ratio" of 100%.

We tested the ability of LA670 to drive expression of sequences placed under the transcriptional control of tetO. We analysed the expression of two potential mRNAs from pLA1038 (Figure 14, SEQ ID NO. 24), which contains two potential tTA-responsive transcription units, divergently transcribed. These are CMV-tTA and hsp70-Cctr-a-nipper. PCR analysis, with controls, was performed on the expression of these transcription units in the presence and absence of pLA670. Both transcription units are expressed in the presence of pLA670. CMV-tTA is expressed at a lower, but detectable, level in LA1038/+ transgenics in the absence of LA670. hsp70-Cctr-a-nipper is not detectably expressed in the absence of pLA670, showing that expression is indeed driven by, and dependent on, tTAV supplied by pLA670.

EXAMPLE 10

LA710 in *Pectinophora gossypiella*

Pectinophora gossypiella (pink bollworm, a lepidopteran) was transformed with LA710 (Figure 15, SEQ ID NO. 19) by standard methods (Peloquin *et al.*, 2000). Four transgenic lines were recovered. Males of these lines were crossed with females wild type for LA710. Newly hatched larvae were placed in individual 1.7 ml vials with diet, either with or without 7-chlortetracycline (40µg/ml), and scored for fluorescence. No significant difference was observed in the numbers of transgenics surviving to adulthood relative to numbers of their wild type siblings, either with or without chlortetracycline. We conclude that LA710 does not typically lead to the accumulation of lethal levels of tTAV, even in the absence of dietary chlortetracycline.

We examined the expression of tTAV mRNA in LA710 transgenics by PCR following a reverse transcriptase reaction (rt-PCR). We found that tTAV mRNA was not detectable in chlortetracycline-fed larvae, but was detectable in larvae which had not received chlortetracycline (data not shown). This positive feedback construct LA710, therefore, provides, in these moths, a source of tTAV that can be regulated by supplying dietary chlortetracycline, and for which de-repressed expression, though readily detectable, is non-lethal. We also observed significant variation in the intensity of the band corresponding to tTAV mRNA in samples from different lines.

EXAMPLE 11

LA1124 in *Pectinophora gossypiella*

Pectinophora gossypiella (pink bollworm, a lepidopteran) was transformed with LA1124 (Figure 12, SEQ ID NO. 21) by standard methods (Peloquin *et al.*, 2000). A single transgenic line was recovered. Males of this line were crossed with females wild type for LA1124. Newly hatched larvae were placed in individual 1.7 ml vials with diet, either with or without 7-chlortetracycline (40 μ g/ml), and scored for fluorescence. These larvae were screened again when they had had time to develop to a late larval stage. All larvae survived, except for the fluorescent (LA1124 $^{+/+}$) larvae on diet lacking chlortetracycline, as shown in Table 15, below.

Table 15

Pink bollworm: survival from early to late larval stage of LA1124 $^{+/+}$ or their wild type siblings, on diet with or without chlortetracycline

100 μg/ml chlortetracycline		0 μg/ml chlortetracycline	
LA1124$^{+/+}$	Wild-type	LA1124$^{+/+}$	Wild-type
3 (0 dead)	11 (0 dead)	8 (8 dead)	7 (0 dead)

We examined the expression of tTAV mRNA in LA1124 pink bollworm by PCR following a reverse transcriptase reaction (rt-PCR). We found that tTAV mRNA was readily detectable in chlortetracycline-fed larvae, but considerably elevated in larvae which had not received chlortetracycline (data not shown). The significant basal expression of tTAV mRNA in

this construct is probably due to the inclusion in LA1124 of the hr enhancer, which was included for this reason. Comparison of the structure and function of LA1124 with that of LA710 clearly illustrates that basal and maximum levels of the gene product can readily be selected by appropriate modification of the expression construct, this principle being demonstrated, here, by regulating levels of expression of a tTAV-dependent RNA (in this case the tTAV mRNA).

EXAMPLE 12

Sex-specific expression using positive feedback

It is preferred to control, by design, the expression of tTAV from a positive feedback construct, so that it can be differentially expressed in different tissues, or different developmental stages, or different sexes, for example. One application for this is in genetic sexing, in which a sexual dimorphism is induced between the two sexes and this is used as a basis for separating the two sexes. In the context of the Sterile Insect Technique, e.g. for medfly, this preferably means killing the females, most preferably at an early stage in their development. No early-acting female-specific promoters are known for medfly, which limits the potential of the two-component repressible dominant lethal system exemplified for *Drosophila* using promoters or enhancers from yolk protein genes (Heinrich and Scott, 2000; Thomas *et al.*, 2000). It would clearly be advantageous to be able to combine the beneficial characteristics of a conditional positive feedback system with a mechanism conferring female specificity.

We, therefore, modified a non-sex-specific positive feedback construct by inserting a sex-specific intronic region from *Cctrα*, the medfly homologue of the *Drosophila melanogaster* gene *transformer* (Pane *et al.*, 2002). The sex-specific splicing of *Cctrα* is illustrated diagrammatically in Figure 16, which is adapted from (Pane *et al.*, 2002)*supra*. Figure 16 shows the genomic organisation of the medfly *tra* gene. The top line represents the genomic *Cctrα* locus. Exons are shown as blocks; aug marks the shared start codon. The alternate splice junctions are marked i. Putative *tra*/*tra-2* binding sites are marked with arrowheads. Transcript F1, the only one to encode functional *Cctrα* protein, is specific to females. Transcripts M1 and M2 are found in both males and females.

Three main transcripts are produced: M1, M2 and F1. Transcript F1 is found only in females, and is the only one to encode full-length, functional Cctrα protein. Transcripts M1 and M2 are found in both males and females, and include additional exonic sequence, which inserts one or more stop codons relative to transcript F1, leading to truncation of the open reading frame.

We inserted the *Cctrα* intron into the open reading frame of tTAV, so that excision by splicing of the complete intron, in the manner of transcript F1, would reconstitute an intact tTAV coding region, but splicing in the manner of either M1 or M2 would result in a truncated protein incapable of acting as a transcriptional enhancer. The resulting plasmid, pLA1188 (Figure 17, SEQ ID NO. 22), was injected into medfly embryos. Surviving larvae were recovered, and extracts from these larvae were analysed by rt-PCR to determine the splicing pattern of the tTAV transcript.

Female larvae yielded PCR products corresponding to the expected sizes that would result from splicing in the pattern of the endogenous *Cctrα* gene, in other words corresponding to splicing in the M1, M2 and F1 patterns. These data indicate that the *Cctrα* intron can splice correctly in a heterologous context and, therefore, provides a suitable method for introducing sex-specificity into a positive feedback construct. Furthermore, since *tra* function is conserved across a wide phylogenetic range (Saccone *et al.*, 2002), and other sex-specific introns are known, *e.g.* in the *Drosophila melanogaster* gene *double-sex* (*dsx*), which is also well conserved, this provides a general method for manipulating the expression of genes. It will be apparent to the person skilled in the art that such manipulations can alternatively, or additionally, be applied to other genes responsive to a transcriptional activator, so that sex-specific expression of a target gene can be achieved by combining non-sex-specific expression of a transcriptional activator with sex-specific expression, *e.g.* through splicing, of a functional RNA under the transcriptional control of the transcriptional activator. Furthermore, it will also be apparent that this provides a simple mechanism for differential expression of two, or more, different target genes, or gene products, such that one, or one group, is expressed in both sexes and the other, or other group, in only one sex. This is illustrated for medfly in Figure 18.

The primers used were :

Tra(tTAV)Seq+: 5'-CCTGCCAGGACTCGCCTTCC (SEQ ID NO. 12)

Tra(tTAV)Seq-: 5'-GTCATCAACTCCGCCTGGAGC (SEQ ID NO. 13)

RT-PCR products of ~600 and ~200 bp were produced when cDNA derived from female medflies 1 and 2 was used as a template, representing “male” (M1 and M2) and female-specific (F1) spliced forms of mRNA respectively (data not shown). The ~200 bp product could have been produced due to contamination with tTAV DNA – the female spliced form completely removes the Cctra intron and so leads to a PCR product that is identical to that which would be obtained from any of several tTAV-containing plasmids or samples handled in the same laboratory. The ~600 bp band, in contrast, retains ~400bp of Cctra sequence and is diagnostic of correct splicing of the construct.

In another experiment (data not shown), expression of transcripts from LA1038 in response to tTAV from LA670 was analysed by gel chromatography (data not shown), using:

A: rt-PCR for expression of CMV-tTA from LA1038 in extracts from LA1038/+, LA670/+ double heterozygotes;

B: rt-PCR for expression of hsp70-Cctra-nipper in extracts from LA1038/+, LA670/+ double heterozygotes; and

C: rt-PCR for expression of CMV-tTA from LA1038 in extracts from LA1038/+ heterozygotes without LA670.

All flies were raised in the absence of dietary tetracycline. In A and C, two bands were present between 200 bp and 400 bp and represent cDNA from spliced mRNA (lower molecular weight band) and genomic DNA or cDNA from unspliced message (higher molecular weight band) respectively. In B, a band at approximately 200 bp represents cDNA from mRNA spliced in the pattern of the Cctra female-specific F1 transcript, an upper band of approximately 1500bp representing genomic DNA or cDNA from unspliced message, and bands of intermediate size representing cDNA spliced in the pattern of the Cctra non-sex-specific M1 and M2 transcripts, or non-specific bands.

Primer sequences used were:

hsp70-Cctr-a-nipper: NIP: 5'-CATCGATGCCAGCATTGAGATG and
HSP: 5'-CAAGCAAAGTGAACACACGTCGCTAAGCGAAAGCTA;
CMV-tTA: CMV: 5'- GCCATCCACGCTGTTTGACCTCCATAG and
TTA: 5'-GCCAATAACAATGTAGGCTGCTACAC

These data (not shown) demonstrate that the hsp-Cctr-a-nipper section of LA1038 is shown to be correctly spliced in the female form in 6/6 females, and in the male form in 6/6 males.

Reference sequences:

JY2004-tTA (SEQ ID NO. 14) - sequence of the tetO₇-tTA region only

pP[Casper-Act5C-tTAJ (SEQ ID NO. 15)

pLA513 (SEQ ID NO. 16)

pLA517 (SEQ ID NO. 17)

pLA656 (SEQ ID NO. 18)

pLA670 (SEQ ID NO. 23)

pLA710 (SEQ ID NO. 19)

pLA928 (SEQ ID NO. 20)

pLA1038 (SEQ ID NO. 24)

pLA1124 (SEQ ID NO. 21)

pLA1188 (SEQ ID NO. 22)

References

Alphey, L. (2002). Re-engineering the Sterile Insect Technique. *Insect Biochem Mol Biol* 32, 1243-1247.

Alphey, L., and Andreasen, M. H. (2002). Dominant lethality and insect population control. *Mol Biochem Parasitol* 121, 173-178.

Alphey, L., Beard, B., Billingsley, P., Coetzee, M., Crisanti, A., Curtis, C. F., Eggleston, P., Godfray, C., Hemingway, J., Jacobs-Lorena, M., et al. (2002). Malaria control with genetically modified vectors. *Science* 298, 119-121.

Baron, U., and Bujard, H. (2000). Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. *Meth Enzymol* 327.

Baron, U., Gossen, M., and Bujard, H. (1997). Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. *Nucl Acids Res* 25, 2723-2729.

Bello, B., Resendez-Perez, D., and Gehring, W. (1998). Spatial and temporal targeting of gene expression in *Drosophila* by means of a tetracycline-dependent transactivator system. *Development* 125, 2193-2202.

Benedict, M., and Robinson, A. (2003). The first releases of transgenic mosquitoes: an argument for the sterile insect technique. *Trends Parasitol* 19, 349-355.

Bennett, D., Szoor, B., Gross, S., Vereshchagina, N., and Alphey, L. (2003). Ectopic expression of inhibitors of Protein Phosphatase type 1 (PP1) can be used to analyse roles of PP1 in *Drosophila* development. *Genetics* 164, 235-245.

Berger, S. L., Cress, W. D., Cress, A., Triezenberg, S. J., and Guarente, L. (1990). Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. *Cell* 61, 1199-1208.

Berghammer, A. J., Klingler, M., and Wimmer, E. A. (1999). A universal marker for transgenic insects. *Nature* 402, 370-371.

Brand, A., Manoukian, A., and Perrimon, N. (1994). Ectopic expression in *Drosophila*. *Meth Cell Biol* 44, 635-654.

Catteruccia, F., Nolan, T., Loukeris, T., Blass, C., Savakis, C., Kafatos, F., and Crisanti, A. (2000). Stable germline transformation of the malaria mosquito *Anopheles stephensi*. *Nature* 405, 959-962.

Coates, C., Jasinskiene, N., Miyashiro, L., and James, A. (1998). Mariner transposition and transformation of the yellow fever mosquito, *Aedes aegypti*. *Proc Natl Acad Sci USA* 95, 3748-3751.

Damke, H., Gossen, M., Freundlieb, S., Bujard, H., and Schmid, S. (1995). Tightly regulated and inducible expression of dominant interfering dynamin mutant in stably transformed HeLa cells. *Meth Enz* 257, 209-220.

Fussenegger, M. (2001). The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies. *Biotechnol Prog* 17, 1-51.

Fussenegger, M., Mazur, X., and Bailey, J. (1998a). pTRIDENT, a novel vector family for tricistronic expression in mammalian cells. *Biotech Bioeng* 57, 1-10.

Fussenegger, M., Moser, S., and Bailey, J. (1998b). pQuattro vectors allow one-step transfection and auto-selection of quattrocistronic artificial mammalian operons. *Cytotechnology* 28, 229-235.

Gebauer, F., Merendino, L., Hentze, M. W., and Valcarcel, J. (1998). The *Drosophila* splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. *RNA* 4, 142-150.

Gill, G., and Ptashne, M. (1988). Negative effect of the transcriptional activator GAL4. *Nature* *334*, 721-724.

Gossen, M., Bonin, A., Freundlieb, S., and Bujard, H. (1994). Inducible gene expression systems for higher eukaryotic cells. *Curr Opin Biotechnol* *5*, 516-520.

Gossen, M., and Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline- responsive promoters. *Proc Natl Acad Sci U S A* *89*, 5547-5551.

Handler, A. (2002). Use of the *piggyBac* transposon for germ-line transformation of insects. *Insect Biochem Mol Biol* *32*, 1211-1220.

Handler, A., and James, A. (2000). Insect transgenesis: methods and applications (Boca Raton, CRC Press).

Heinrich, J., and Scott, M. (2000). A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. *Proc Nat'l Acad Sci (USA)* *97*, 8229-8232.

Horn, C., Schmid, B., Pogoda, F., and Wimmer, E. (2002). Fluorescent transformation markers for insect transgenesis. *Insect Biochem Mol Biol* *32*, 1221-1235.

Jasinskiene, N., Coates, C., Benedict, M., Cornel, A., Rafferty, C., James, A., and Collins, F. (1998). Stable transformation of the yellow fever mosquito, *Aedes aegypti*, with the Hermes element from the housefly. *Proc Natl Acad Sci USA* *95*, 3743-3747.

Kelley, R. L., Solovyeva, I., Lyman, L. M., Richman, R., Solovyev, V., and Kuroda, M. I. (1995). Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in *Drosophila*. *Cell* *81*, 867-877.

Lobo, N., Hua-Van, A., Li, X., Nolen, B., and Fraser, M. (2002). Germ line transformation of the yellow fever mosquito, *Aedes aegypti*, mediated by transpositional insertion of a *piggyBac* vector. *Insect Molecular Biology* *11*, 133-139.

Lozovsky, E., Nurminsky, D., Wimmer, E., and Hartl, D. (2002). Unexpected stability of *mariner* transgenes in *Drosophila*. *Genetics* *160*, 527-535.

Matsuo, T., Takahashi, K., Kondo, S., Kaibuchi, K., and Yamamoto, D. (1997). Regulation of cone cell formation by Canoe and Ras in the developing *Drosophila* eye. *Development* *124*, 2671-2680.

McCombs, S., and Saul, S. (1995). Translocation-based genetic sexing system for the oriental fruit-fly (Diptera, Tephritidae) based on pupal color dimorphism. *Ann Ent Soc Am* *88*, 695-698.

Moreira, L., Wang, J., Collins, F., and Jacobs-Lorena, M. (2004). Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development. *Genetics* *166*, 1337-1341.

Pane, A., Salvemini, M., Delli Bovi, P., Polito, C., and Saccone, G. (2002). The *transformer* gene in *Ceratitis capitata* provides a genetic basis for selecting and remembering the sexual fate. *Development* *129*, 3715-3725.

Parker, L., Gross, S., Beullens, M., Bollen, M., Bennett, D., and Alphey, L. (2002). Functional interaction between NIPP1 and PP1 in *Drosophila*: lethality of over-expression of NIPP1 in flies and rescue by the over-expression of PP1. *Biochem J* *368*, 789-797.

Peloquin, J. J., Thibault, S. T., Staten, R., and Miller, T. A. (2000). Germ-line transformation of pink bollworm (Lepidoptera: gelechiidae) mediated by the *piggyBac* transposable element. *Insect Mol Biol* *9*, 323-333.

Perera, O., Harrell, R., and Handler, A. (2002). Germ-line transformation of the South American malaria vector, *Anopheles albimanus*, with a *piggyBac*-EGFP transposon vector is routine and highly efficient. *Insect Molecular Biology* *11*, 291-297.

Pinkerton, A., Michel, K., O'Brochta, D., and Atkinson, P. (2000). Green fluorescent protein as a genetic marker in transgenic *Aedes aegypti*. *Insect Molecular Biology* *9*, 1-10.

Reichhart, J., and Ferrandon, D. (1998). Green balancers. *Drosophila Information Service* 81, 201-202.

Rorth, P. (1998). Gal4 in the *Drosophila* female germline. *Mech Dev* 78, 113-118.

Saccone, G., Pane, A., and Polito, C. (2002). Sex determination in flies, fruitflies and butterflies. *Genetica* 116, 15-23.

Salghetti, S., Caudy, A., Chenoweth, J., and Tansey, W. (2001). Regulation of transcriptional activation domain function by ubiquitin. *Science* 293, 1651-1653.

Scott, M., Heinrich, J., and Li, X. (2004). Progress towards the development of a transgenic strain of the Australian sheep blowfly (*Lucilia cuprina*) suitable for a male-only sterile release program. *Insect Biochem Mol Biol* 34, 185-192.

Shockett, P., Difilippantonio, M., Hellman, N., and Schatz, D. (1995). A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. *Proc Nat'l Acad Sci (USA)* 92, 6522-6526.

Stebbins, M., and Yin, J. (2001). Adaptable doxycycline-regulated gene expression systems for *Drosophila*. *Gene* 270, 103-111.

Thomas, D., Donnelly, C., Wood, R., and Alphey, L. (2000). Insect population control using a dominant, repressible, lethal genetic system. *Science* 287, 2474-2476.

Varshavsky, A. (2000). Ubiquitin fusion technique and its descendants. *Meth Enz* 327.

Claims:

1. An insect gene expression system, comprising at least one gene to be expressed and at least one promoter therefor, wherein a product of a gene to be expressed serves as a positive transcriptional control factor for the at least one promoter, and whereby the product, or the expression of the product, is controllable.
2. A system according to claim 1, wherein an enhancer is associated with the promoter, the gene product serving to enhance activity of the promoter *via* the enhancer.
3. A system according to claim 2, wherein the control factor is the tTA gene product or an analogue thereof, and wherein one or more tetO operator units is operably linked with the promoter and is the enhancer, tTA or its analogue serving to enhance activity of the promoter *via* tetO.
4. A system according to claim 4, in which the gene encodes the tTAV or tTAF product.
5. A system according to any preceding claim, wherein the gene is modified to at least partially follow codon usage in a species in which the system is for use.
6. A system according to any preceding claim, wherein the promoter is substantially inactive in the absence of the positive transcriptional control factor.
7. A system according to any preceding claim, wherein the promoter is a minimal promoter.
8. A system according to claim 7, wherein the promoter is selected from: hsp70, a P minimal promoter, a CMV minimal promoter, an Act5C-based minimal promoter, a BmA3 promoter fragment, an Adh core promoter, and anAct5C minimal promoter, or combinations thereof.
9. A system according to any preceding claim, wherein the promoter is derived from, or is a fragment of, CMV or Hsp70.

10. A system according to any preceding claim which substantially reduces fitness when activated or de-repressed.
11. A system according to claim 10, comprising a lethal gene under the control of the a promoter of the system.
12. A system according to claim 11, wherein the lethal gene is a dominant lethal.
13. A system according to claim 11 or 12, wherein the lethal gene and the positive control are the same.
14. A system according to claim 13, wherein the gene is tTA or an analogue thereof.
15. A system according to claim 11 or 12, wherein the lethal gene and positive control gene are different.
16. A system according to claim 10, wherein the reduced fitness is a high mortality rate.
17. A system according to any preceding claim, wherein expression of the positive control gene is selective.
18. A system according to claim 17, wherein expression of the gene is determined by sex.
19. A system according to claim 18, comprising a *doublesex*, *transformer* or sex-specific lethal sequence.
20. A system according to any preceding claim, wherein an effector gene is operably linked with at least one said promoter.
21. A system according to claim 20, wherein the effector gene is a dominant lethal gene.
22. A system according to claim 20, wherein the effector gene encodes RNAi.

23. A system according to any of claims 20 to 22, wherein activation of a promoter to which the effector gene is operably linked leads to a selective effect *via* a transcription or translation product of DNA under the control of the promoter.
24. A system according to any of claims 17 to 23, wherein selection is species specific.
25. A system according to any of claims 17 to 24, wherein selection is developmental stage specific.
26. A system according to any preceding claim, which is at least one cistron.
27. A system according to claim 26, which is at least two cistrons, said cistrons being linked to an enhancer under the control of the positive control gene.
28. A system according to any preceding claim, wherein expression of the positive control gene on removal of a suppressor for the gene has substantially no effect on the fitness of an adult from which the suppressor has been removed.
29. A system according to any preceding claim, bounded by insulator elements.
30. A system according to claim 29, wherein the insulators are non-identical insulators.
31. pLA513 as identified by SEQ ID NO. 16.
32. JY2004-tTA as identified by SEQ ID NO. 14.
33. A vector comprising the system of any of claims 1 to 30.
34. A vector according to claim 33, further comprising an expression marker.
35. A vector according to claim 34, wherein the expression marker is a fluorescent protein or resistance marker.

36. A vector according to any of claims 33 to 35, further comprising an expressible transposase gene.
37. An insect comprising, in its genome, a system according to any of claims 1 to 30.
38. An insect according to claim 37, which is substantially uncompromised by the system under permissive conditions where the positive control gene is not expressed.
39. An insect according to claim 37 or 38 which is from a pest species.
40. An insect according to any of claims 37 to 39, which is selected from: mosquito, bollworm, medfly, and *Drosophila*.
41. An insect according to any of claims 37 to 40, wherein expression of the positive control gene is blockable or controllable by dietary supplements.
42. A method to establish compatibility of a promoter with a species, comprising transforming said species with a plasmid, or other vector, comprising a system according to any of claims 1 to 28 with the promoter to be tested, said promoter being operably associated with a gene to be assayed, said plasmid further comprising a marker, under the control of a promoter appropriate to said species, the method further comprising assaying putative transgenic individuals for expression of the marker, and wherein individuals expressing the marker are subsequently assayed for expression of the gene to be assayed.

1/16

Fig.1

Fig.2

2/16

Fig.3

3/16

Fig.4

4/16

Fig.5

5/16

Fig.6

Fig.7

6/16

Fig.8

7/16

Fig.9

8/16

Fig.10

9/16

Fig.11

10/16

Fig.12

11/16

Fig.13

12/16

Fig.14

13/16

Fig.15

14/16

Fig.16

15/16

Fig.17

16/16

Potential PCR products generated:

1. If intron is not excised → ~1550 bp
2. If intron is spliced in male form (M1 or M2) → ~600 bp
3. If intron is spliced in female form → ~200 bp

Fig.18

1

SEQUENCE LISTING

<110> Oxitec Limited

<120> Pest Control

<130> WPP88353

<150> UK 0317656.7

<151> 2003-07-28

<160> 33

<170> PatentIn version 3.2

<210> 1

<211> 44

<212> DNA

<213> Drosophila sp.

<400> 1

cacagcgcat gatgagcaca ttaacaaaaat gtagtaaaat agga

44

<210> 2

<211> 44

<212> DNA

<213> Drosophila sp.

<400> 2

gtttcgataa atattgctat ttaaaatgct tattttcaat gcta

44

<210> 3

<211> 44

<212> DNA

<213> Drosophila sp.

<400> 3

tttgtttct aacgttaaag ttaaagagag tccagccaca tttt

44

<210> 4

<211> 21

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 4

acgcgagagg tgaaattctt g

21

<210> 5

<211> 23

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 5

gaaaacatct ttggcaaatg ctt

23

<210> 6
<211> 16
<212> DNA
<213> Artificial

<220>
<223> Nucleotide portion of TaqMan MGB probe

<400> 6
ccgtcgtaag actaac 16

<210> 7
<211> 17
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 7
catgccgacg cgctaga 17

<210> 8
<211> 26
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 8
gtaaaacatct gctcaaactc gaagtc 26

<210> 9
<211> 18
<212> DNA
<213> Artificial

<220>
<223> Nucleotide portion of TaqMan MGB probe

<400> 9
tcgatctgga catgttgg 18

<210> 10
<211> 25
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 10
gccctcgatg gtagaccgcgt aatttg 25

<210> 11
<211> 27
<212> DNA
<213> Artificial

<220>

<223> PCR Primer	
<400> 11 gctaaaacaat ctgcaggtac cctggcg	27
 <210> 12 <211> 20 <212> DNA <213> Artificial	
 <220> <223> PCR Primer	
<400> 12 cctgccagga ctcgcattcc	20
 <210> 13 <211> 22 <212> DNA <213> Artificial	
 <220> <223> PCR Primer	
<400> 13 gtcatcaact ccgcgttggaa gc	22
 <210> 14 <211> 2556 <212> DNA <213> Artificial	
 <220> <223> JY2004-tTA	
<400> 14 gcggccgcatt agtcgacatt tcgagtttac cactccatat cagtgataga gaaaaagtggaa	60
agtcgagttt accactccct atcagtgata gagaaaaagtggaa agtcgagt ttaccactcc	120
ctatcagtga tagagaaaaag tgaaagtgcgat gtttaccact ccctatcagt gatagagaaaa	180
agtggaaagtgcgat gagtttacca cttccatcatca gtgatagaga aaagtggaaag tcgagtttac	240
cactccatat cagtgataga gaaaaagtggaa agtcgagttt accactccct atcagtgata	300
gagaaaaagtggaa agtcgagtcgatcccg ggtcgaggta ggcgtgtacg gtgggaggcc	360
tatataagca gagtcggtt agtgaaccgt cagatcgccct ggagacgcca tccacgctgt	420
tttgacaccttcc atagaagaca ccgggaccga tccagccctcc gccccccgat attcgagctc	480
ggtagccggg gatccccgct cgagctgaat aggaaattgg gaattggagc agaggtgggt	540
tcttcgcatt acactgttcg ccacaatctt gtttattcat tcgccttgca gggtgccacc	600
atggaaattga gattagataa aagtaaagtgcgat aacacagcg cattagagct gcttaatgag	660
gtcggaaatcg aagggttaac aaccctgtaaa ctcgcccaga agcttaggtgt agagcagcc	720
acattgtatt ggcgtgtaaa aaataagcgg gctttgctcg acgccttagc cattgagatg	780
tttagatagggc accatactca cttttgccttcc tttagaagggg aaagctggca agatttttta	840

cgttaataacg	ctaaaagttt	tagatgtgct	ttactaagtgc	atcgcgatgg	agcaaaagta	900
catttaggtac	cacggcctac	agaaaaacag	tatgaaactc	tcgaaaatca	attagccttt	960
ttatgccaac	aaggttttc	actagagaat	gcattatatg	cactcagcgc	tgtggggcat	1020
tttacttttag	gttgcgtatt	ggaagatcaa	gagcatcaag	tcgctaaaga	agaaagggaa	1080
acacctacta	ctgatagtat	gccgccatta	ttacgacaag	ctatcgaatt	atttgatcac	1140
caaggtgcag	agccagcctt	cttattcggc	cttgaattga	tcatatgcgg	attagaaaaa	1200
caacttaaat	gtgaaagtgg	gtccgcgtac	agccgcgcgc	gtacgaaaaa	caattacggg	1260
tctaccatcg	agggcctgct	cgatctcccg	gacgacgacg	cccccgaaaga	ggcggggctg	1320
goggctccgc	gcctgtcctt	tctccccgcg	ggacacacgc	gcagactgtc	gacggcccc	1380
ccgaccgatg	tcagcctggg	ggacgagctc	cacttagacg	gcgaggacgt	ggcgatggcg	1440
catgccgacg	cgctagacga	tttcgatctg	gacatgttgg	gggacggggaa	ttccccgggt	1500
ccgggattta	ccccccacga	ctccgcccc	tacggcgctc	tggatatggc	cgacttcgag	1560
tttgagcaga	tgtttaccga	tgcccttgga	attgacgagt	acggtgggta	gtgaaacgcg	1620
tctagagctg	agaacttcag	ggtgagtttgc	gggacccttg	attgttcttt	cttttcgct	1680
attgtaaaat	tcatgttata	tggagggggc	aaagtttca	gggtgttgg	tagaatggga	1740
agatgtccct	tgtatcacca	tggaccctca	tgataatttt	gtttcttca	ctttctactc	1800
tgttgacaac	cattgtctcc	tcttattttc	tttcattttt	ctgtaacttt	ttcgtaaaac	1860
tttagcttc	atttgaacgt	aattttaaa	ttcacttttgc	tttatttgc	agattgtaaag	1920
tactttctct	aatcactttt	ttttcaaggc	aatcagggta	tattatattg	tacttcagca	1980
cagttttaga	gaacaattgt	tataattaaa	tgataaggta	gaatatttct	gcataaaaaat	2040
tctggctggc	gtggaaatat	tcttatttgt	agaaacaact	acaccctgg	catcatcctg	2100
cctttctctt	tatggttaca	atgatataca	ctgtttgaga	tgaggataaa	atactctgag	2160
tccaaaccgg	gcccctctgc	taaccatgtt	catgccttct	tctcttcct	acagctcctg	2220
ggcaacgtgc	tggttgttgt	gctgtctcat	cattttggca	aagaattcac	tcctcagggt	2280
caggctgcct	atcagaaggt	ggtggctgg	gtggccaatg	ccctggctca	caaataaccac	2340
tgagatcttt	ttccctctgc	caaaaattat	ggggacatca	tgaagccct	tgagcatctg	2400
acttctggct	aataaaggaa	atttattttc	attgcaatag	tgtgtggaa	ttttttgtgt	2460
ctctcactcg	gaaggacata	tgggagggca	aatcatttaa	aacatcagaa	tgagtatttg	2520
gttttagagtt	tggcaacata	tgcccatagc	ggccgc			2556

<210> 15
 <211> 12087
 <212> DNA
 <213> Artificial

<220>

<223> pP [Casper-Act5C-tTA]

<400>	15					
gatccatgag	caattagcat	gaacgttctg	aaaagcgctg	ttagctctcc	actacttaca	60
catattctat	gctgcaatat	tgaaaatcta	ataaacaaaa	ctaatgtaca	ttaattcttc	120
agtttgaat	atccttctcc	tgactttctt	atttagaatt	aatataatac	tgcatacatt	180
aatactgtaa	atatgataag	tacctgcaaa	acactgcagc	tcaagtctta	atgagggtct	240
gcgatagctt	agcataatta	gtaacttatac	gcgcagaatt	ccctaatgtt	cccgacctac	300
atgtacttct	gatagttgcc	gaggtcaaatt	gttgggttat	ttgttattata	cctcaatatt	360
ggtatattca	atatctaata	gtacccaatt	caattgcaaa	gatagtcatt	aaaaaaaaacot	420
aaatcacttg	caaattgact	tttctgccgg	aaaagcaacc	ttgacacaca	aagtttaatta	480
gttatctgg	aagtcatgtg	agaaatttgt	aaataaaaatt	tttcgcagta	attttaagtgg	540
gcctaattccc	ttttaagcat	cttgggttta	cgatgacacc	gcaataaggt	acaactttat	600
attgttttg	caatcagctt	gagttttat	taggcatacag	tctttctctc	taagtttctt	660
cgtgcaataa	atgagggttcc	aaactccgta	gattttcct	tctttgttga	atccagatcc	720
tgcaaagaaa	aaagagcaaa	ccccctaggc	tgtccaggaa	tgtatttcg	tgtttgtcga	780
tcgaccatgg	tctcgagagg	ccttgcagcc	aagctttcg	tactcgcaaa	ttattaaaaaa	840
taaaaacttta	aaaataattt	cgtctaatta	atattatgag	ttaattcaaa	ccccacggac	900
atgctaaggg	ttaatcaaca	atcatatcgc	tgtctcactc	agactcaata	cgacactcag	960
aatactattc	ctttcactcg	cacttattgc	aagcatacgt	taagtggatg	tctttgcgcg	1020
acgggaccac	cttatgttat	ttcatcatgg	tctggccatt	ctcatcgtga	gcttccgggt	1080
-gctegcatat-	ctggctctaa-	gacttcgggc	ccgacgcgaag	gagtagccga	catastatccg	1140
aaataactgc	ttgttttttt	tttaccatt	attaccatcg	tgtttactgt	ttattgcccc	1200
ctcaaaaagc	taatgttaatt	atatttgc	caataaaaaac	aagatatgac	ctatagaata	1260
caagtatttc	cccttcgaac	atccccacaa	gtagactttg	gatttgcctt	ctaacccaaaa	1320
gacttacaca	cctgcatacc	ttacatcaaa	aactcggtt	tcgctacata	aaacaccggg	1380
atatattttt	tatatacata	ctttcaaat	cgcgccct	cttcataatt	caccccccacc	1440
acaccacgtt	tcgttagttgc	tcttcgctg	tctcccaccc	gctctccgca	acacattcac	1500
ctttgttgc	acgacccctgg	agcgactgtc	gttagttccg	cgcgattcgg	tgcggatttt	1560
cacaccgcac	atggtgact	ctcagttacaa	tctgtctga	tgccgcatac	ttaagccagc	1620
cccgacacccc	gccaacacccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg -	1680 -
cttacagaca	agctgtgacc	gtctccggga	gctgcatacg	tcagaggttt	tcaccgtcat	1740
caccgaaacg	cgcgagacga	aagggcctcg	tgataacgcct	atttttatag	gttaatgtca	1800
tgataataat	ggtttcttag	acgtcaggtg	gcactttcg	ggaaatgtg	cgcggaaaccc	1860
ctatttgttt	attttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	1920

gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg	1980
cccttattcc ctttttgcg gcatttgcc ttcctgttt tgctcaccca gaaacgctgg	2040
tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc	2100
tcaacagcgg taagatccctt gagagtttc gccccgaaga acgtttcca atgatgagca	2160
cttttaaagt tctgctatgt ggccgcgtat tatcccgtat tgacgccggg caagagcaac	2220
tcggtcgccc catacactat tctcagaatg acttgggtga gtactcacca gtcacagaaa	2280
agcatcttac ggtatggcatg acagtaagag aattatgcag tgctgccata accatgagtg	2340
ataaacactgc ggccaactta cttctgacaa cgatcggagg accgaaggag ctaaccgctt	2400
ttttgcacaa catggggat catgttaactc gccttgatcg ttggaaaccg gagctgaatg	2460
aagccatacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc	2520
gcaaactatt aactggcgaa ctacttactc tagttcccg gcaacaatta atagactggaa	2580
tggaggcggg taaagttgca ggaccacttc tgcgctcggc cttccggct ggctggttta	2640
ttgctgataa atctggagcc ggtgagcgtg ggtctcgcgg tatcattgca gcaactgggc	2700
cagatggtaa gccctccgt atcgtagtta tctacacgac ggggagtcag gcaactatgg	2760
atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt	2820
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa	2880
ggatcttaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagttt	2940
cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatcctttt	3000
ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggttgtt	3060
tgccggatca-agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga	3120
taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag aactctgttag	3180
caccgcctac atacctcgct ctgctaattcc ttttaccagt ggctgctgcc agtggcgata	3240
agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggcgg	3300
gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga	3360
gataacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca	3420
ggtatccggta aagcggcagg gtcggAACAGC gagagcgcac gagggagctt ccagggggaa	3480
acgcctggta tctttatagt cctgtcggtt ttcgcaccc ctgacttgag cgtcgatttt	3540
tgtgatgctc gtcagggggg cggagcctat gaaaaaacgc cttcttcttgc aactcgggct	3600
cggtgccagt atacctcaaa tggttgtcg acctctcatg gttccgttac gccaacgagg	3660
gtctgcgtat taaccaatgg gcggacgtgg agccggcgaa aattagctgc acatcgctga	3720
acaccacgtg ccccagttcg ggcaaggta tcctggagac gcttaacttc tccggccgg	3780
atctgcccgt ggactacgtg ggtctggccc atgatgaaat aacataaggt ggtcccgtcg	3840
aaagccgaag cttaccgaag tatacactta aattcagtgc acgtttgctt gttgagagga	3900

aaggttgtgt gcggacgaat ttttttttga aaacattaac ccttacgtgg aataaaaaaaa	3960
aatgaaatat tgcaaattt gctgcaaagc tgtgactgga gtaaaattaa ttcacgtgcc	4020
gaagtgtgct attaagagaa aattgtggga gcagagcctt gggtgccagcc ttggtgaaaa	4080
ctcccaaatt tgtgataccc actttaatga ttcgcagtgg aaggctgcac ctgcaaaagg	4140
tcagacattt aaaaggaggc gactcaacgc agatgccgta cctagtaaag tgatagagcc	4200
tgaaccagaa aagataaaag aaggctatac cagtgggagt acacaaacag agtaagttt	4260
aatagtaaaa aaaatcattt atgtaaacaa taacgtgact gtgcgttagg tcctgttcat	4320
tgttaatga aaataagagc ttgagggaaa aaattcgtac tttggagtac gaaatgcgtc	4380
gttttagagca gcagccgaat taattctagt tccagtgaaa tccaagcatt ttctaaattha	4440
aatgtattct tattattata gttgttattt ttgatataata taaacaacac tattatgcc	4500
accatTTTT tgagatgcat ctacacaagg aacaaacact ggatgtcaact ttcaagttcaa	4560
attgtAACGC taatcactcc gaacaggtca caaaaaattta ccttaaaaag tcataatatt	4620
aaattagaat aaatatagct gtgagggaaa tatatacaaa tatattggag caaataaaatt	4680
gtacatacaa atatttatta ctaatttcta ttgagacgaa atgaaccact cgaaaccatt	4740
tgagcgaacc gaatcgcgcg gaactaacga cagtcgctcc aaggtcgctg aacaaaagg	4800
gaatgtgttg cggagagcgg gtggagaca gcgaaagagc aactacgaaa cgtggtgtgg	4860
tggaggtgaa ttatgaagag ggcgcgcgat ttgaaaagta tgtatataaa aaatataatcc	4920
cgggtttta tgttagcgata aacgagtttt ttagtgcagg tatgcaggtg tgtaagtctt	4980
ttggtagaa gacaaatcca aagtctactt gtggggatgt tcgaagggaa aatacttgta	5040
-ttctataggt catatcttgc ttttattggc acaaataaa ttacattagc tttttgaggg	5100
ggcaataaac agtaaacacg atgtaataa tggtaaaaaaa aaaaaacaag cagttatttc	5160
ggatatatgt cggctactcc ttgcgtcggg cccgaagtct tagagccaga tatgcgagca	5220
cccgaaagct cacgatgaga atggccagac ccacgtagtc cagcggcaga tcggcggcgg	5280
agaagttaag cgtctccagg atgaccttgc ccgaactggg gcacgtggg ttgcacgtatg	5340
tgcaagctaat ttgcggcggc tccacgtccg cccattgggt aatcagcaga ccctcggtgg	5400
cgttaacggaa ccatgagagg tacgacaacc atttgaggta tactggcacc gagccccag	5460
tcaagaagaa gccgc当地aaag agcaggaatg gtatgataac cggcggaccc acagacagcg	5520
ccatcgaggt cgaggagctg gcgcaggata ttagatatcc gaaggacgtt gacacattgg	5580
ccaccagagt gaccagcgcc aggcagttga agaagtgeag cactccggcc cgcagtcgca	5640
tcatcgata ggcaatcgcc gtgaagacca gtggcactgt gagaAAAAGC ggcaattcgg	5700
caatcggtt gcccagaaag tatgtgtcac agcgataaaag tcgacttcgg gcctccctca	5760
taaaaaactgg cagctctgag gtgaacacacaaatcgaatc gattcattag aaagtttagta	5820
aattattgaa atgcaaatgt attctaaaca tgacttacat ttatcggttgc aaagacgttt	5880

tgaaaaggta	tgttggtcag	gaagaggaag	atggctccgt	tgatattcat	cacaccact	5940
tgcgtgagtt	gttggccaa	aaagatgagg	ccaatcaaga	tggcaaccat	ctgcaaatta	6000
aaatgttact	cgcacatctcat	taatattcgc	gagttaaatg	aaatttattt	atcttctgca	6060
aaactataaa	ctatacatct	cattaaaaaa	aactaagaag	ggtgtggaat	caggcaattc	6120
tatctaaaat	ctagcgaatt	tgttccaag	aattgttaagc	gttatatcat	ttgtttccac	6180
tggaaccact	caccgttgtc	tgaataagtc	gcactttac	gaggagtgg	tccttgagca	6240
ccgacagcca	ggatcgcoac	aggaccgccc	ggaactgcat	gaaccagg	gccttgttagg	6300
tgtacccatt	ctccggctgc	tccagtggct	tctccagatt	tttggtgcc	aacaactgct	6360
ccatatcccc	ggctactttg	ctaattggcaa	aattgtcgcc	atatcttggc	gatccgatca	6420
cgggactcga	tctcccgtcc	gggcacaacg	gccaaacac	gtacgtaaaa	gtccgcccgg	6480
ttgttagttgg	taggacactg	ggcacccacg	ctggatagga	gtttagatgt	aatgtaatgc	6540
tagataccct	taataaacac	atcgaactca	ctaggaaaag	aagtgcacgg	cttcgctggg	6600
agtgcacaag	aaagctaccc	tgcctcggc	catcagaagg	atcttgc	agagctcaaa	6660
cagctcgaa	gacggctgat	gaatggtcag	gtgcacgg	ttgccttct	gogacagctt	6720
cttcagcacc	tggacgacgc	tgtggcggt	aatgagtcc	agtccggagg	tggctcattc	6780
gcagatcaga	agcggcggat	cggtagtgc	ctcgaggcg	aatgcacac	gcttccttcc	6840
tccgcggac	agaccttca	ccctgcggg	cacaccatg	atcgtgtgc	gacatttgct	6900
gagcggaaagc	tcctggatca	cctgatccac	gcggggccact	cgctccgat	aggtcagatg	6960
tcgtggcatc	cgcaccatgg	cttggaaaat	caggtgttcc	ctggccgtta	gggagccgat	7020
aaagaggtca	tcctgctgga	cataggcgca	cctggcctgc	atctcattgg	cgtccacagg	7080
ttggccattg	agcagtcgca	tcccgatgg	cgataactgg	atgcctgcg	gcatcgaaa	7140
ggcaaggcga	ttcagcagg	tcgtcttcc	ggcacccggaa	ctgccccatca	cggccaaaag	7200
ttcgcccgga	taggccacgc	cgcaaaactga	gtttcaaatt	ggtaattgga	ccctttatta	7260
agatttcaca	cagatcagcc	gactgcgaat	agaaactc	cgttcttgc	caaattgttc	7320
ctgggcggcg	gtatgtgtcg	ctcggtcag	aatagtccgc	gtgtccgg	gaccagctgc	7380
cgcacatccgg	agcccggtg	attgaccg	ccaaagatgt	ccatattgt	ccaggcatag	7440
gtgagggttct	cggctagttg	gccgcctcc	gaaccggagt	cctccggcg	actgggtggc	7500
aggagcgtgc	cgtagttttt	ggcctgccc	aagccctgg	taatgcagct	ctgcgaagcg	7560
tccgctgtca	ccctgeaatg	atagggatc	tcaaataatca	actacaagcg	ttatgctcat	7620
ctaaccggaa	acaaaacgaa	gtatcctacg	aagttaggtt	atactttat	ttatTTTGT	7680
tgcatagctt	aaaatatctg	gttggatata	ttttgtaaa	aaagaatgt	gtcgaaaatg	7740
aatgccttta	gatgtcttga	tcatgatatg	atcttaaaaa	ttgtcttata	tagcgagcac	7800
agctaccaga	ataatctgtt	tcgtgtca	atttgggtgt	gcgattgcgg	tttgggattt	7860

ttgtggtcg cagttctcac gccgcagaca atttgatgtt gcaatcgac ttcctata	7920
tcaagtgaac ttaagatgta tgacatgtc ctactcacat tgccatgtc ctcggcagat	7980
gggtgtttgc tgcctccgcg aattaatgc tcctgatcct cttggccat tgccggatt	8040
ttcacactt tccccctgtt acccacccaa aaccaatcac caccccaatc actcaaaaaa	8100
caaacaaaaa taagaagcga gaggagttt ggcacagcac tttgtgttta attgatggcg	8160
taaacccgctt ggagcttcgt cacgaaaccg ctgacaaagt gcaactgaag gcggacattg	8220
acgctaggta acgctacaaa cggtggcgaa agagatagcg gacgcagcgg cgaaagagac	8280
ggcgatattt ctgtggacag agaaggaggc aaacagcgt gactttgagt ggaatgtcat	8340
tttgagttag aggttaatcga aagaacctgg tacatcaaaccctggat cgaagtaaat	8400
ttaaaactga tcagataagt tcaatgatccat ccagtgcagt aaaaaaaaaa aatgtttttt	8460
ttatctactt tccgcaaaaaa tgggttttat taacttacat acatactaga attctaaaaa	8520
aaatcatgaa tggcatcaac tctgaatcaa atctttgcag atgcacccat ttctcatttc	8580
cactgtcaca tcattttcc agatctcgct gcctgttatg tggcccaaaaa accaagacac	8640
gttttatggc cattaaagct ggctgatcgt cgccaaacac caaatacata tcaatatgt	8700
cattcgagaa agaagcgatc aaagaagcgt ctgcggcgaa gtaggagaat gcggaggaga	8760
aggagaacga gctgatctag tatctctcca caatccatg ccaactgacc aactggccat	8820
attcggagca atttgaagcc aatttccatc gcctggcgat cgctccattt ttggctatat	8880
gtttttcacc gttcccgggg ccattttcaa agactcgatc gtaagataag attgtgtc	8940
tcgctgtctc tcttcatttgc tcgaagaatg ctgaggaatt tcgcgtatgc gtcggcgagt	9000
attttgaaga atgagaataa ttgttatttacgaaaaatc agtttagtggaa attttctaca	9060
aaaacatgtt atctatagat aattttgttgc caaaatatgt tgactatgac aaagattgt	9120
tgtatataacc tttaatgtat tctcattttc ttatgtattt ataatggcaa tgatgatact	9180
gatgatattt taagatgtat ccagaccaca ggctgatttc tgcgtctttt gcccacgc	9240
gtgcgtgtgc ggttgggtt ttttggata gtttcaattt tcggactgtc cgctttgatt	9300
tcagtttctt ggcttattca aaaagccaaag taaagccaaa aaagcgagat ggcaatacc	9360
aatgcggcaa aacggtagtg gaaggaaagg ggtgcggggc agcggaaagga aggggtgggc	9420
ggggcgtggc ggggtctgtg gctggcgac acgtcaccga cggtggagcc actcccttgc	9480
ccatgtgtgc gtgtgtgtat tattcgtgtc tcgcccactcg ccgggttgc ttttctttt	9540
atctcgctct ctctagcgcc atctcgatcg catgctcaac gcaccgcatttgc ttgcgtgtc	9600
ctttatgcgt cattttggct cgaaataggc aattatattaa acaaagatta gtcaacgaaa	9660
acgctaaaaat aaataagtct acaatatggt tacttattgc catgtgtgtc cagccaaacga	9720
tagcaacaaa agcaacaaca cagttggctt ccctcttca cttttgtttt gcaagcgcgt	9780
gcgagcaaga cggcacgacc ggcaacgcgca attacgctga caaagagcag acgaagttt	9840

ggccgaaaaa catcaaggcg cctgatacga atgcatttc aataacaatt gcgatattta	9900
atattgttta tgaagctgtt tgacttcaa acacacaaaa aaaaaataa aacaattat	9960
ttgaaagaga attaggaatc ggacagctt tcgttacggg ctaacagcac accgagacga	10020
aatagcttac ctgacgtcac agcctctgga agaactgccc ccaaggagac gatgcagagg	10080
acgacacata gagtagcggg gttagccagc gtagtacgca tgtgcttgtg tgtgaggcgt	10140
ctctctttc gtctcctgtt tgcgcaaacg catagactgc actgagaaaa tcgattacct	10200
atttttatg aatgaatatt tgcactatta ctattcaaaa ctattaagat agcaatcaca	10260
ttcaatagcc aaatactata ccacctgagc gatgcaacga aatgatcaat ttgagcaaaa	10320
atgctgcata ttttaggacgg catcattata gaaatgcttc ttgctgtgtc cttttctctc	10380
gtctggcagc tgtttcgccc ttattgttaa aaccggctt agttaggtgt gttttctacg	10440
actagtgtatg cccctactat aagatgtgtg ttgcacaaat gtccctgaat aaccaatttg	10500
aagtgcagat agcagtaaac gtaagctaat atgaatatta tttaactgta atgttttaat	10560
atcgctggac attactaata aaccactat aaacacatgt acatatgtat gttttggcat	10620
acaatgagta gttggggaaa aaatgtgtaa aagcaccgtg accatcacag cataaagata	10680
accagctgaa gtagtcaata tgagtaaccc ccaaattgaa tcacatgccc caactgatag	10740
gacccatgga agtacactct tcattggcgat atacaagaca cacacaagca cgaacaccca	10800
gttgcggagg aaattctccg taaatgaaaa cccaatcgcc gaacaattca tacccatata	10860
tggtaaaagt tttgaacgacg actttagagc ggagagcatt gcggctgata aggttttagc	10920
gctaagcggg ctttataaaa cgggctgccc gaccagttt catatcacta ccgtttgagt	10980
-tcttgtctg -tgtggatact .cctcccgaca .caaagccgct ccattcagcca gcagtcgtct	11040
aatccagaga cccccggatct agaaccaaaa tggcttagatt agataaaagt aaagtgatta	11100
acagcgcatt agagctgctt aattaggtcg gaatcgaagg tttaacaacc cgtaaactcg	11160
cccagaagct aggtgttagag cagocatcat tgtattggca tgtaaaaaat aagcgggctt	11220
tgctcgacgc ctttagccatt gagatgttag ataggcacca tactcacttt tgccctttag	11280
aaggggaaag ctggcaagat ttttacgta ataacgctaa aagttttaga tgtgctttac	11340
taagtcatcg cgatggagca aaagtacatt taggtacacg gcctacagaa aaacagtatg	11400
aaactctcga aaatcaatata gccttttat gccacaacagg tttttcacta gagaatgcat	11460
tatatgcact cagcgctgtg gggcattttt ctttaggttg cgtattggaa gatcaagagc	11520
atcaagtcgc taaagaagaa agggaaacac ctactactga tagtatgccc ccattattac	11580
gacaagctat cgaattatgtt gatcaccaag gtgcagagcc agccttctt ttcggccctt	11640
aattgatcat atgcggattt gaaaaacaac ttaaatgtga aagtgggtcc gcgtacagcc	11700
gcgcgcgtac gaaaaacaat tacgggtcta ccatcgaggg cctgctcgat ctcccgaaacg	11760
acgacgcccc cgaagaggcg gggctggcgg ctcccgccct gtcctttctc cccgcgggac	11820

acacgcgcag actgtcgacg gcccccccgaa ccgatgtcag cctggggac gagctccact 11880
tagacggcga ggacgtggcg atggcgcatg ccgacgcgct agacgatttc gatctggaca 11940
tgttggggga cggggattcc ccgggtccgg gatttacccc ccacgactcc gccccctacg 12000
gcgctctgga tatggccgac ttcgagtttgc agcagatgtt taccgatgcc cttggaaattg 12060
acgagtacgg tgggtagggg gcgcgag 12087

<210> 16
<211> 11920
<212> DNA
<213> Artificial

<220>
<223> pLA513

<400> 16
ggcccgatct gacaatgttc agtgcagaga ctcggctacg cctcgtggac tttgaagttg 60
accaacaatg ttatttctta cctctaatacg tcctctgtgg caaggtcaag attctgttag 120
aagccaatga agaacctggt tggtaataaa cattttgttc gtctaatttc tcactaccgc 180
ttgacgttgg ctgcacttca tgtacccat ctaaaacgc ttcttctgtt tcgctctgga 240
cgtcatcttc acttacgtga tctgatattt cactgtcaga atcctcacca acaagctcgt 300
catcgcttg cagaagagca gagaggatat gctcatgtc taaagaacta cccattttat 360
tatatattag tcacgatatac tataacaaga aaatataatata ataataagtt atcacgttaag 420
tagAACATGA AATAACAATA TAATTATCGT ATGAGTTAAA TCTTTAAAGT CACGTAAAG 480
ataatcatgc gtcattttga ctcacgcggc cgttatagtt caaaatcagt gacacttacc 540
_gcattgacaa_gcacgcctca_cgggagctcc aagcggcgac tgagatgtcc taaatgcaca 600
gcgacggatt cgcgctattt agaaagagag agcaatattt caagaatgca tgcgtcaatt 660
ttacgcagac tatctttcta gggtaaaaaa agatttgcgc tttactcgac ctaaacttta 720
aacacgtcat agaatcttcg tttgacaaaa accacattgt ggccaagctg tggacgcga 780
cgcgcgctaa agaatggcaa accaagtgcgc gcgagcgtcg acctgcaggc atgcaagctt 840
gcatgcctgc aggtcgaaat tcgtaatcat ggtcatagct gttcctgtg tgaaatttgtt 900
atccgctcac aattccacac aacatacggc ccggaaagcat aaagtgtaaa gcctgggggtg 960
cctaattgagt gagctaactc acattaattt cggtgcgtc actgcccgt ttcagtcgg 1020
gaaacctgtc gtgccagctg cattaatgaa tcggccaaacg cgccgggaga ggccgtttgc 1080
gtattggcg ctcttcgct tcctcgctca ctgactcgct ggcgtcgatc gttcggctgc 1140
ggcgagcggc atcagctcac tcaaaggcgg taatacgggtt atccacagaa tcaggggata 1200
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1260
cggtgcgtgc gttttccat aggctccgccc cccctgacga gcatcacaat aatcgacgct 1320
caagtcagag gtggcgaaac ccgacaggac tataaaagata ccaggcggtt cccctggaa 1380

gctccctcggt	gcgctctcct	gttccgaccc	tgcgcgttac	cggataacctg	tccgcctttc	1440
tcccttcagg	aagcgtggcg	ctttctcaat	gctcacgctg	taggtatctc	agttcggtgt	1500
aggcggtcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	1560
ccttatccgg	taactatcggt	cttgagtc	acccggtaag	acacgactta	tcgcccactgg	1620
cagcagccac	tggtaaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	1680
tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatac	tgcgctctgc	1740
tgaagccagt	tacccctcgga	aaaagagttg	gtagctcttgc	atccggcaaa	caaaccaccc	1800
ctggtagcgg	tggttttttt	gtttgcaagc	agcagattac	gcccggaaaa	aaaggatctc	1860
aagaagatcc	tttgatcttt	tctacgggg	ctgacgctca	gtggAACGAA	aactcacgtt	1920
aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	1980
aatgaagttt	taaatcaatc	taaagtataat	atgagtaaac	ttggcttgac	agttaccaat	2040
gcttaatcag	tgagggcacct	atctcagcga	tctgtcttatt	tcgttcatcc	atagttgcct	2100
gactccccgt	cgtgtagata	actacgatac	gggagggcctt	accatctggc	cccagtgcgt	2160
caatgataacc	gcgagaccca	cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	2220
ccggaagggc	cgagcgcaga	agtggctctg	caactttatc	cgccctccatc	cagtcttatta	2280
attgttgcgg	ggaagctaga	gtaagtagtt	cgccagttaa	tagttgcgc	aacgttgg	2340
ccattgctac	aggcatcgtg	gtgtcacgct	cgtcggttgg	tatggcttca	ttcagctccg	2400
gttcccaacg	atcaagggcga	gttacatgtat	cccccatgtt	gtgcggaaaa	gcggtagct	2460
ccttcggtcc	tccgatcggt	gtcagaagta	agttggccgc	agtgttatca	ctcatggtta	2520
tggcagca	gcataattct	cttactgtca	tgccatccgt	aagatgtttt	tctgtgactg	2580
gtgagtagtc	aaccaagtca	ttctgagaat	agtgtatgcg	gcccggaggt	tgctcttgcc	2640
cggcgtcaat	acgggataat	accgcgccac	atagcagaac	tttaaaaatg	ctcatcattg	2700
gaaaacgttc	ttcggggcga	aaactctcaa	ggatcttacc	gctgttgaga	tccagttcga	2760
tgtaacccac	tcgtgcaccc	aactgtatctt	cagcatctt	tactttcacc	agcgtttctg	2820
ggtgagcaaa	aacaggaagg	caaaatgcgg	caaaaaagg	aataagggcg	acacggaaat	2880
gttgaatact	catactcttc	cttttcaat	attattgaag	catttatcag	gtttattgtc	2940
tcatgagcgg	atacatat	aatgtat	agaaaaataa	acaaataggg	gttccgcgc	3000
catttccccg	aaaagtgc	cctgacgtct	aagaaaccat	tattatcatg	acattaacct	3060
ataaaaaatag	gcgtatcag	aggcccttcc	gtctcgccg	tttcgggtat	gacggtgaaa	3120
acctctgaca	catgcagctc	ccggagacgg	tcacagctg	tctgtaaagcg	gatgccggg	3180
gcagacaagc	ccgtcagg	gcgtcagcgg	gtgtggcgg	gtgtcggg	tggcttaact	3240
atgcggcatc	agagcagatt	gtactgagag	tgcaccat	gcggtgtgaa	ataccgcaca	3300
gatgcgtaa	gagaaaatac	cgcacatcaggc	gccattcgcc	attcaggctg	cgcaactgtt	3360

gggaagggcg atcggtgccg gcctttcg tattaccca gctggcgaaa gggggatgtg	3420
ctgcaaggcg attaagttgg gtaacgccag gttttccca gtcacgacgt tgtaaaacga	3480
cggccagtgc caagcttgc taaaaatata acaaaattgt gatcccacaa aatgaagtgg	3540
ggcaaaatca aataattaat agtgtccgt aacttgggt tcctcaactt tttgaggaac	3600
acgttggacg gcaaatccgt gactataaca caagttgatt taataatttt agccaacacg	3660
tcgggctgcg tgggggtgc cgacgcgtct gtgtacacgt tgattaactg gtcgattaaa	3720
ctgttggaaat aatttaattt ttgggtcttc tttaaatctg tgatgaaatt tttttaaaaata	3780
actttaaatt cttcattggt aaaaaatgcc acgtttgca acttggagg gtctaataatg	3840
aggtaact cagtaggagt tttatccaaa aaagaaaaaca tgattacgtc tgtacacgaa	3900
cgcgtattaa cgcagagtgc aaagtataag agggtaaaaa aatataatttt acgcaccata	3960
tacgcatcg gttgatatcg ttaatatggc tcaatttgcg cagttgatta acgtgtctct	4020
gctcaagtct ttgatcaaaa cgcaatcga cggaaatgtg tcggacaata tcaagtcgat	4080
gagcgaaaaaa ctaaaaaggc tagaatacga caatctcaca gacagcggt agatatacgg	4140
tattcagcac agcaggctga ataataaaaa aatttagaaac tattatattt ccctagaaag	4200
ataatcatat tgtgacgtac gttaaagata atcatgcgt aatttgacgc atgtgtttt	4260
tcggctgtat tatcgagggtt tatttattt tttgaataga tattaagttt tattatattt	4320
acacttacat actaataata aattcaacaa acaattttat tatgtttatt tatttattt	4380
aaaaaaaaacaa aaactcaaaa tttcttctat aaagtaacaa aactttaaa cattctct	4440
tttacaaaaaa taaaacttatt ttgtacttta aaaacagtca tggtgttata taaaataagt	4500
-aattagctt-aacttatacat..aatagaaaca..aattataactt attagtcagt cagaaacaac	4560
tttggcacat atcaatatta tgctctcgac aaataacttt tttgcatttt ttgcacgatg	4620
cattgcctt tcgccttatt ttagaggggc agtaagtaca gtaagtacgt ttttcatta	4680
ctggctttc agtactgtca tctgtatgtac cagggacttc atttggcaaa atattagaga	4740
tattatcgcg caaatatctc ttcaagtag gagcttctaa acgcttacgc ataaacgatg	4800
acgtcaggct catgtaaagg tttctcataa atttttgcg actttggacc ttttctccct	4860
tgctactgac attatggctg tatataataa aagaatttat gcaggcaatg tttatcattc	4920
cgtacaataa tgccataggc cacctattcg tcttcctact gcaggtcatc acagaacaca	4980
tttggcttag cgtgtccact ccgcctttag ttgttattata atacataacc atttgcgggt	5040
taccggtaact ttctgtata gaagcatcct catcacaaga tgataataag tataccatct	5100
tagctggctt cggttatata gagaaggagag taaggggtcc gtcaaaacaa aacatcgatg	5160
ttccccactgg cctggagcga ctgttttca gtacttccgg tatctcgct ttgtttgatc	5220
gcacgggttcc cacaatggtt gcggccggcc agatttaaat gagcggccgc agatatccag	5280
tgcagtaaaa aaaaaaaaaatg tttttttat ctactttccg caaaaatggg ttttattaac	5340

ttacatacat actagaattc tatattctaa aaacacaaaat gataacttcta aaaaaaatca	5400
tgaatggcat caactctgaa tcaaattcttt gcagatgcac ctacttctca tttccactgt	5460
cacatcattt ttccagatct cgctgcctgt tatgtggccc acaaacccaag acacgtttta	5520
tggccattaa agctggctga tcgtcgccaa acacccaaata catatcaata tgtacattcg	5580
agaaaagaagc gatcaaagaa gcgttccgg gcgagtagga gaatgcggag gagaaggaga	5640
acgagctgat ctagtatctc tccacaatcc aatgccaact gaccaactgg ccatattcgg	5700
agcaatttga agccaaatttc catgcctgg cgatcgctcc attcttgct atatgttttt	5760
caccgttccc ggggccattt tcaaagactc gtccgtaaga taagattgtg tcactcgctg	5820
tctctttca tttgtcgaag aatgctgagg aatttcgcga tgacgtcggc gagtttttg	5880
aagaatgaga ataatttga tttatacgaa aatcagttag tgaaattttc tacaaaaaca	5940
tgttatctat agataatttt gttgaaaaat atgttgacta tgacaaaaagat tgtatgtata	6000
taccttaat gtattctcat tttcttatgt atttataatg gcaatgatga tactgatgat	6060
attttaagat gatgccagac cacaggctga tttctgcgtc ttttgcgaa cgcagtgcac	6120
gtgcggttgt tgtttttgg aatagttca attttcggac tgtccgctt gatttcagtt	6180
tcttggctta ttcaaaaagc aaagtaaagc caaaaaagcgc agatggcaat accaaatgcg	6240
gcaaaacggc agtggaaagga aagggtgcg gggcagcggc aggaagggtg gggcggggcg	6300
tggcggggtc tgtggctggc cgacgtca ccgacgttgg agccactcct ttgaccatgt	6360
gtgcgtgtgt gtattattcg tgtctcgcca ctgcgggtt gttttttct ttttatctcg	6420
ctctctctag cgcacatctcg tacgcatgct caacgcaccc catgttgcgg tgtcctttat	6480
gcgtcatttt ggctcgaaat aggcaattat ttaaacaag attagcaac gaaaacgcta	6540
aaataaataa gtctacaata tggttactta ttgcacatgtg tgtgcagcca acgatagcaa	6600
caaaaagcaac aacacagtgg ctccccctct ttcacttttt gtttgcacgc gcgtgcgagc	6660
aagacggcac gaccggcaaa cgcaattacg ctgacaaaaga gcacacgaag ttttggccga	6720
aaaacatcaa ggcgcctgtat acgaatgcat ttgcataaac aattgcgata tttaatattg	6780
tttatgaagc tgtttgactt caaaaacacac aaaaaaaaaa ataaaaacaaa ttatggaaa	6840
gagaattagg aatcggacac cttatcggtt cgggctaaca gcacacccgag acgaaatagc	6900
ttacctgacg tcacagcctc tggaagaact gcccacacgc agacgatgca gaggacgaca	6960
catagagtag cggagtaggc cagcgtagta cgcacgtgtct ttttgtgtgag gcgtctctct	7020
cttcgtctcc tgtttgcgc aacgcatacgtt ctgcactgag aaaatcgatt-acctattttt	7080
tatgaatgaa tatttgcact attactattc aaaactatta agatagcaat cacattcaat	7140
agccaaatac tataaccacct gagcgtatgc acgaaatgat caatttgagc aaaaatgctg	7200
catatttagg acggcatacat tatagaaatg ottcttgctg tgtactttc tctcgctgg	7260
cagctgtttc gcocttatttgc ttaaaaccgg cttaagttag gtgtgttttc tacgacttagt	7320

gatcccccta ctagaagatg tgtgttgcac aaatgtccct gaataaccaa tttgaagtgc	7380
agatagcagt aaacgtaagc taatatgaat attatttaac tgtaatgttt taatatcgct	7440
ggacattact aataaaccca ctataaacac atgtacatat gtatgtttg gcataacaatg	7500
agtagttggg gaaaaaatgt gtaaaagcac cgtgaccatc acagcataaa gataaccagc	7560
tgaagtatcg aatatgagta acccccaaat tgaatcacat gccgcaactg ataggaccca	7620
tgaaagtaca ctcttcatgg cgatatacaa gacacacaca agcacgaaca cccagttgcg	7680
gaggaaattc tccgtaaatg aaaacccaaat cggcgaacaa ttcataccca tatatggtaa	7740
aagtttgaa cgcgacttga gagcggagag cattgcggct gataaggttt tagcgctaag	7800
cgggctttat aaaacgggct gcgggaccag ttttcatatc actaccgtt gagttcttgt	7860
gctgtgtgga tactcctccc gacacaaagc cgctccatca gccagcagtc gtctaattcca	7920
gagaccccg atctagaacc aaaatggcta gaatggcctc ctccgagaac gtcatcacccg	7980
agttcatgcg cttcaagggtg cgcatggagg gcaccgtgaa cggccacgag ttcgagatcg	8040
agggcgaggg cgagggccgc ccctacgagg gccacaacac cgtgaagctg aaggtgacca	8100
agggcggccc cctgcccttc gcctggaca tcctgtcccc ccagttccag tacggctcca	8160
aggtgtacgt gaagcacccc gcgcacatcc ccgactacaa gaagctgtcc ttccccgagg	8220
gcttcaagtg ggagcgcgtg atgaacttcg aggacggcgg cgtggcgacc gtgacccagg	8280
actcctccct gcaggacggc tgcttcatct acaaggtgaa gttcatcgcc gtgaacttcc	8340
cctccgacgg ccccgtgatg cagaagaaga ccatgggctg ggaggcctcc accgagcgc	8400
tgtacccccc cgacggcgtg ctgaagggcg agacccacaa ggccctgaag ctgaaggacg	8460
gcggccacta cctggtgag ticaagtcca tctacatggc caagaagccc gtgcagctgc	8520
ccggctacta ctacgtggac gccaaagctgg acatcacctc ccacaacgag gactacacca	8580
tcgtggagca gtacgagcgc accgagggcc gccaccacct gttctgtga gatccatgag	8640
caattagcat gaacgttctg aaaagcgcgt ttagctctcc actacttaca catattctat	8700
gctgcaatat tgaaaatcta ataaacaaaa ctaatgtaca ttaattcttc agttttgaat	8760
atccttctcc tgactttctt atttagaatt aatataatac tgcatacatt aatactgtaa	8820
atatgataag tacctgcaaa acactgcagc tcaagtctta atgaggttct gcgatagctt	8880
agoataatta gtaacttata gcgcagaatt ccctaattttt cccgacctac atgtacttct	8940
gatagttgcc gaggtcaaatt gttgttgtat ttgtattata cctcaatatt ggtatattca	9000
atatctaata gtacccaaatt caattgcaaa gatagtcatt aaaaaaacct aaatcacttg	9060
caaattgact ttctgcggc aaaagcaacc ttgacacaca aagttaaattt gtttatctgg	9120
aagtcatgtg agaaatttgt aaataaaatt ttctgcagta atttaagtgg gcctaattccc	9180
ttttaagcat ttgggtttta cgatgacacc gcaataaggt acaactttat attgtttttg	9240
caatcagctt gagtcttat taggcatcag tctttcttc taagtttctt cgtgcaataa	9300

atgagggttcc aaactccgta gattttcct tctttgttga atccagatcc tgcaaagaaa	9360
aaagagcaaa cccctaggc tgtccaggaa tgtatttcg tgtttgcga tcgaccatgg	9420
tctcgagggg gggccttaat taagaggcgc gccaggttc gactttcaact tttctctatc	9480
actgataggg agtggtaaac tcgactttca cttttctcta tcactgatag ggagtggtaa	9540
actcgacttt cacttttctc tatcaactgat agggagtggt aaactcgact ttcaactttc	9600
tctatcactg atagggagtg gttaaactcga ctttcaactt tctctatcac tgatagggag	9660
tggtaaactc gactttcaact tttctctatc actgataggg agtggtaaac tcgactttca	9720
cttttctcta tcactgatag ggagtggtaa actcgaaaac gagcgcggaa gtataaatag	9780
aggcgcttcg tctacggagc gacaattcaa ttcaaacaag caaagtgaac acgtcgctaa	9840
gcgaaagcta agcaaataaa caagcgcagc tgaacaagct aaacaatctg cggtaccctg	9900
gcggttaagtt gatcaaagga aacgcaaagt tttcaagaaa aaacaaaact aatttgattt	9960
ataaacacctt tagaaaccac catgggcagc cgcctggata agtccaaagt catcaactcc	10020
gcgttggagc tggtaaacga agttggcatt gagggactga cgaccggcaa gttggcgcag	10080
aagctggcg tggagcagcc caccctctac tggcacgtga agaataagcg ggcgctgctg	10140
gatgccctgg ccatcgagat gctcgaccgc caccacacgc atttttgcgg gttggaaggc	10200
gagtcctggc aggacttcct ccgcaataac gccaagtcgt tccgctgcgc tctgctgtcc	10260
caccgagacg gtgccaaagt ccatctcggc acgcgcccga ccgaaaagca atacgagaca	10320
ctggagaacc agctcgctt cctgtgccag caaggcttca gcctggaaaa tgctctctac	10380
gctctgagcg ccgtcggtca ctttaccctg ggctgcgtgc tggaggacca agagcatcaa	10440
.gtcgccaaag aggagcgcga gacccaaaca accgattcga tgccccact gctgcgtcag	10500
gcaatcgagc tggatcgatca tcaaggagcc gagccggcat tcctgttcgg ctggagctg	10560
attatctgcg gattggaaaa gcaactgaaa tgcgagtccg gctcgccc cgcgtacagc	10620
cgcgcgcgta cgaaaaacaa ttacgggtct accatcgagg gcctgctcga tctccggac	10680
gacgacgccc ccgaagagggc ggggctggcg gctccgcgcc tgcctttct ccccgccggaa	10740
cacacgcgca gactgtcgac ggcccccccg accgatgtca gcctggggga cgagctccac	10800
ttagacggcg aggacgtggc gatggcgcat gccgacgcgc tagacgatt cgatctggac	10860
atgttggggg acggggattc cccgggtccg ggatttaccc cccacgactc cgccccctac	10920
ggcgctctgg atatggccga cttcgagttt gagcagatgt ttaccgatgc ctttggaaatt	10980
gacgagtacg gtgggtagtt ctagagtcga cctcgaaegt taacgttaac gtaacgttaa	11040
ctcgaggagc ttgataacat tatacctaaa cccatggtca agagtaaaca tttctgcct	11100
tgaagttgag aacacaatta agcatccccct ggttaaacct gacattcata cttgttaata	11160
gcgccataaa catagcacca atttcgaaga aatcagttaa aagcaattag caatttagcaa	11220
ttagcaataa ctctgctgac ttcaaaacga gaagagttgc aagtatttgt aaggcacagt	11280

ttatagacca ccgacggctc attagggctc gtcatgtaac taagcgcggt gaaacccaat	11340
tgaacatata gtggaattat tattatcaat ggggaagatt taaccctcag gtagcaaagt	11400
aatttaattt caaatagaga gtcctaagac taaataatat atttaaaaat ctggcccttt	11460
gaccttgctt gtcaggtgca tttgggttca atcgtaaagtt gcttctatat aaacactttc	11520
cccatccccg caataatgaa gaataccgca gaataaaagag agatttgcaa caaaaaataa	11580
aggcattgcg aaaactttt atgggggatc attacactcg ggcctacggt tacaattccc	11640
agccacttaa gcgacaagtt tggccaacaa tccatctaat agctaatacg gcaatcactg	11700
gtaatcgcaa gagtatatag gcaatagaac ccatggattt gaccaaaggt aaccgagaca	11760
atggagaagc aagaggattt caaactgaac acccacagta ctgtgtacta ccaactggcgc	11820
gtttgggagc tccaagcggc gactgagatg tcctaaatgc acagcgacgg attcgcgcta	11880
tttagaaaaga gagagcaata tttcaagaaaa aacggcgccc	11920

<210> 17
<211> 11570
<212> DNA
<213> Artificial

<220>
<223> pLA517

<400> 17	
ggccgctcat ttaaatctgg ccggccgcaa ccattgtggg aaccgtgcga tcaaacaaaac	60
gcgagataacc ggaagtactg aaaaacagtc gctccaggcc agtggaaaca tcgatgtttt	120
gttttgcgg accccttact ctcgtctcat ataaaccgaa gccagctaag atggtatact	180
...tattatcatc_ttgtgtatgag_gatgttctta_tcaacgaaaag_taccgtaaa_ccgcaaatgg	240
ttatgtatta taatcaaact aaaggcggag tggacacgct agaccaaatg tggtctgtga	300
tgacctgcag taggaagacg aataggtggc ctatggcatt attgtacgga atgataaaaca	360
ttgcctgcat aaattctttt attatataca gccataatgt cagtagcaag ggagaaaagg	420
tccaaaagtgc caaaaaattt atgagaaacc tttacatgag cctgacgtca tcgtttatgc	480
gtaagcgttt agaagctcct actttgaaga gatatttgcg cgataatatc tctaataattt	540
tgccaaatga agtgcctggt acatcagatg acagtaactga agagccagta atgaaaaaaac	600
gtacttaactg tacttactgc ccctctaaaa taaggcgaaa ggcaaatgca tcgtgcaaaa	660
aatgcaaaaa agttatgtt cgagagcata atattgatat gtgc当地atgt tgtttctgac	720
tgactaataa gtataatttg_tttcttattat gtataagtta agctaattac ttatTTTATA	780
atacaacatg actgtttta aagtacaaaa taagtttattttttaaagggaaaag agagaatgtt	840
taaaaatgtttt gttactttat agaagaaaatt ttgagttttt gttttttttt aataaaataaa	900
taaaacataaa taaattgttt gttgaattta ttatttagt gtaagtgtaa atataataaa	960
acttaataatc tattcaaaatt aataaaataaa cctcgatata cagaccgata aaacacatgc	1020

gtcaatttta	cgcattgatta	tcttaacgt	acgtcacaat	atgattatct	ttctagggtt	1080
aaataatagt	ttctaatttt	tttattattc	agcctgctgt	cgtgaatacc	gtatatctca	1140
acgctgtctg	tgagattgtc	gtattctagc	cttttagtt	tttcgctcat	cgacttgata	1200
ttgtccgaca	cattttcgtc	gatttgcgtt	ttgatcaaag	acttgagcag	agacacgtta	1260
atcaactgtt	caaattgatc	catattaacg	atatcaaccc	gatgcgtata	tggtgcgtaa	1320
aatatatttt	ttaaccctct	tatacttgc	actctgcgtt	aatacgcgtt	cgtgtacaga	1380
cgtaatcatg	ttttcttttt	tggataaaaac	tcctacttag	tttgacctca	tattagaccc	1440
tcacaagttg	caaaacgtgg	catttttac	caatgaagaa	tttaaagtta	ttttaaaaaaa	1500
tttcatcaca	gatttaaaga	agaacccaaa	attaaattat	ttcaacagtt	taatcgacca	1560
gttaatcaac	gtgtacacag	acgcgtcggc	aaaaaacacg	cagcccgacg	tgttggctaa	1620
aattattaaa	tcaacttgc	ttatagtcac	ggatttgccg	tccaacgtgt	tcctcaaaaaa	1680
gttgaagacc	aacaagtttta	cgAACACTAT	taattatttg	atTTTCCCC	acttcatttt	1740
gtgggatcac	aattttgtta	tattttaaac	aaagcttggc	actggccgtc	gttttacaac	1800
gtcgtgactg	ggaaaaccct	ggcgttaccc	aacttaatcg	ccttgcagca	catccccctt	1860
tcgccagctg	gcgtaatagc	gaagaggccc	gcACCGATCG	cccttcccaa	cagttgcgcga	1920
gcctgaatgg	cgaatggcgc	ctgatgcggt	atTTTCTCCT	tacgcacatcg	tgcgttattt	1980
cacaccgcat	atggtgca	ctcagtcacaa	tctgcacatcg	tgccgcata	ttaagccagc	2040
cccgacaccc	gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	2100
cttacagaca	agctgtgacc	gtctccggga	gctgcacatcg	tcaAGGTTT	tcaccgtcat	2160
..caccgaaacg	cgcgagacga	.aagggcctcg	tgatacgcct	atTTTATAG	gttaatgtca	2220
tgataataat	ggtttcttag	acgtcaggtg	gcactttcg	gggaaatgtg	cgcggAACCC	2280
ctatTTGTTT	atTTTCTAA	atACATTCAA	atATGTATCC	gctcatgaga	caataaccc	2340
gataaaatgct	tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	2400
cccttattcc	ctttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	2460
tgaaaagtaaa	agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	2520
tcaacagcgg	taagatcctt	gagagtttc	gccccgaaga	acgtttcca	atgatgagca	2580
cttttaaagt	tctgcacatgt	ggcgcggtat	tatcccgtat	tgacGCCGGG	caagagcaac	2640
tcggtcgccc	catacactat	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	2700
..agcatcttac	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg	2760
ataaacactgc	ggccaaactta	cttctgacaa	cgatcgagg	accgaaggag	ctAACCGCTT	2820
ttttgcacaa	catggggat	catgtacatc	gccttgcgt	ttggaaaccg	gagctgaatg	2880
aagccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	2940
gcaaactatt	aactggcgaa	ctacttactc	tagcttcccc	gcaacaatta	atagactgga	3000

tggaggcgga taaagttgca ggaccacttc tgcgctcggc cttccggct ggctggttt	3060
ttgctgataa atctggagcc ggtgagcgtg ggtctcgccc tatcattgca gcactggggc	3120
cagatggtaa gccctccgt atcgttagtta tctacacgac ggggagtcag gcaactatgg	3180
atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt	3240
cagaccaagt ttactcatat atacttaga ttgatttaaa acttcatttt taatttaaaa	3300
ggatcttagt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagttt	3360
cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatcctttt	3420
ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggttgtt	3480
tgccggatca agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga	3540
taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag aactctgttag	3600
caccgcctac atacctcgct ctgctaattcc tgttaccagt ggctgctgcc agtggcgata	3660
agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggcgg	3720
gctgaacggg gggttcgtgc acacagccca gttggagcg aacgacctac accgaactga	3780
gataacctaca gcgtgagcat tgagaaagcg ccacgcttcc cgaaggaga aaggcggaca	3840
ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa	3900
acgcctggta tctttatagt cctgtcgggt ttcgcccacct ctgacttgag cgtcgatTTT	3960
tgtgatgctc gtcagggggg cggagcctat gaaaaaacgc cagcaacgcg gccttttac	4020
ggttcctggc cttttgctgg cttttgctc acatgttctt tcctgcgtt accccctgatt	4080
ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgcgc agccgaacga	4140
ccgagcgcag cgagtcaagt agcgaggaag cggaaagagcg cccaaatacgc aaaccgcctc	4200
tccccgcgcg ttggccgatt cattaatgca gctggcacga caggttccc gactggaaag	4260
cggcagtga ggcacacgca attaatgtga gttagctac tcattaggca cccaggctt	4320
tacactttat gttccggct cgtatgtgt gtggattgt gagcggataa caatttcaca	4380
caggaaacag ctatgaccat gattacgaat ttcgacctgc aggcatgcaa gcttgcacgc	4440
ctgcaggtcg acgctcgcgc gacttggttt gccattctt agcgcgcgtc gcgtcacaca	4500
gcttggccac aatgtggttt ttgtcaaacg aagattctat gacgtttta aagtttaggt	4560
cgagtaaagc gcaaatactt ttaacccta gaaagatagt ctgcgtaaaa ttgacgcac	4620
cattctgaa atattgctct ctctttctaa atagcgcgaa tccgtcgctg tgcatttagg	4680
acatctcagt cggcgcttgg agctcccggt aggcgtgcct gtcaatgcgg taagtgtcac	4740
tgatTTTgaa ctataacgac cgcgtgagtc aaaatgacgc atgattatct tttacgtgac	4800
tttaagatt taactcatac gataattata ttgttatttc atgttctact tacgtgataa	4860
cttattat atatattttc ttgttataga ttcgtgact aatataataat aaaatgggtt	4920
gttctttaga cgatgagcat atccctctcg ctcttctgca aagcgatgac gagcttgg	4980

gtgaggattc tgacagtcaa atatcagatc acgtaagtga agatgacgac cagagcgata	5040
cagaagaagc gtttatagat gaggtacatg aagtgcagcc aacgtcaagc ggttagtggaaa	5100
tattagacga acaaaaatgtt attgaacaac caggttcttc attggcttct aacagaatct	5160
tgaccttgcc acagaggact attagaggta agaataaaaca ttgttgtca acttcaaagt	5220
ccacgaggcg tagccgagtc tctgcactga acattgtcag atcggcccg ggcgcgttcc	5280
ccaaacgcgc cagtggtagt acacagtact gtgggtgttc agtttggaaat cctcttgctt	5340
ctccattgtc tcgggttacct ttggtcaaatt ccatgggttc tattgcctat atactcttgc	5400
gattaccagt gattgcgcta ttagctatta gatggattgt tggccaaact tgtcgcttaa	5460
gtggctggga attgttaaccg taggcccag tggtaatgatc ccccaataaaa agttttcgca	5520
atgcctttat tttttgttgc aaatctctct ttattctgcgt gtattcttca ttattgcggg	5580
gatggggaaa gtgtttatata agaagcaact tacgattgaa cccaaatgca cctgacaagc	5640
aaggtaaagg ggccagattt ttaaatatat tathtagtct taggactctc tatttgcaat	5700
taaattactt tgctacctga gggtaaatac ttccccattt ataataataa ttccactata	5760
tgtcaatttgc ggttcacccg cgcttagtta catgacgagc cctaattgagc cgtcggtgg	5820
ctataaactg tgcccttacaa atacttgcaa ctcttctcgt tttgaagtca gcagagttat	5880
tgctaatttgc taatttgcataa ttgctttaa ctgatttctt cgaaatttgggt gctatgttta	5940
tggcgctatt aacaagtatg aatgtcaggt ttaaccagg gatgcttaat tgtgttctca	6000
acttcaaagg cagaaatgtt tacttttgac catgggttta ggtataatgt tatcaagctc	6060
ctcgagttaa cgttacgttta acgttaacgt tcgaggtcga ctctagatta ttacagcatg	6120
tcgagatcaa agtcgtccaa agcatcagcg ggcaacatata ccaagtcaaa atcatcgaga	6180
gcgtccgcgc gcagcatatc caggtcgaag tcatccagg gatcggccggg gcccggccc	6240
gacttcgcatt tcagttgtt ttccaatccg cagataatca gctccaagcc gaacaggaat	6300
gccggctcggtt ctccttgcgt atcgaacagc tcgattgcct gacgcagcg tggggcattc	6360
gaatcggttgc ttgggttctc ggcgttctct tttgcgtt gatgctcttgc tccctccagg	6420
acgcagccca gggtaaagtgc accgacggcg otcagagcgt agagagcatt ttccaggctg	6480
aaggcttgcgtt ggcacaggaa cgcgagctgg ttctccagtg tctcgatttgc ttttcggc	6540
gggcgcgtgc cgagatggac tttggcacccg tctcggtggg acagcagagc gcagcggaaac	6600
gacttggcgt tatttgcggag gaagtctgc caggactcgc cttccaaacgg gcaaaaatgc	6660
gtgtggtggc ggtcgagcat ctcgttgcgttcc agggcatcca gcagcggcccg cttattcttc	6720
acgtgccagt agagggtggg ctgcgtccacg cccagttct ggcacaactt ggggtcgtc	6780
agttccctcaa tgccaaacttc gttcaacagc tccaaacggg agttgtatgc tttggactta	6840
tccaggcggc tgcccatggt ggtttctaaa ggtgttataa atcaaatttgc ttttgggtttt	6900
tcttgaaaac ttgcgttcc ctttgatcaa cttaccggca gggtaaccgca gattgttttag	6960

cttggtcagc tgcgtttgtt tatttgctta gctttcgctt agcgacgtgt tcactttgct	7020
tgtttgaatt gaattgtcgc tccgtagacg aagcgccctct atttatactc cggcgctcgt	7080
tttcgagttt accactccct atcagtgata gagaaaaagtg aaagtcgagt ttaccactcc	7140
ctatcagtga tagagaaaaag tgaaagtcga gtttaccact ccctatcagt gatagagaaa	7200
agtgaaagtc gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagttac	7260
cactccstat cagtgataga gaaaagtgaa agtcgagttt accactccct atcagtgata	7320
gagaaaaagtg aaagtcgagt ttaccactcc ctatcagtga tagagaaaaag tgaaagtcga	7380
aacctggcgc gcctcttaat taaggcccc cctcgagacc atggtcgatc gacaaacacg	7440
aaaatacatt cctggacaga cctaggggtt tgctctttt tctttgcagg atctggattc	7500
aacaaagaag gaaaaatcta cgtagtttgg aacctcattt attgcacgaa gaaacttaga	7560
gagaaagact gatgccta at aaagactcaa gctgattgca aaaacaatat aaagttgtac	7620
cttattgcgg tgcatacgta aaaccaagat gctaaaagg gattaggccc acttaaatta	7680
ctgcgaaaaaa ttttattttac aaatttctca catgacttcc agataaaacta attaacttttgcgg	7740
tgtgtcaagg ttgctttcc ggcagaaaaag tcaatttgca agtgatttag gtttttttaa	7800
tgactatctt tgcaattgaa ttgggtacta ttagatattt aatataccaa tattgaggtta	7860
taatacaaat acaacaacat ttgacctcgg caactatcag aagtacatgt aggtcgggaa	7920
cattaggaa ttctgcgcga taagttacta attatgctaa gctatcgcag aacctcatta	7980
agacttgagc tgcagtgttt tgcaggtact tatcatattt acagtattaa tgtatgcagt	8040
attatattaa ttctaaataa gaaagtcagg agaaggatat tcaaaaactga agaattaatg	8100
-tacatttagtt ttgttttatta_gattttcaat.attgcagcat agaatatgtg taagtagtgg	8160
agagctaaac ggcctttca gaacgttcat gctaattgct catggatctc acaggaacag	8220
gtgggtggcgg ccctcggtgc gctcgactg ctccacgatg gtgttagtcct cggtgtgggaa	8280
ggtgatgtcc agcttggcgt ccacgttagta gtagccggc agctgcacgg gcttcttggc	8340
catgttagatg gacttgaact ccaccaggtta gtggccgcgc tccttcagct tcagggcctt	8400
gtgggtctcg cccttcagca cgccgtcgcg ggggtacagg cgctcggtgg aggcctccca	8460
gcccatggtc ttcttctgca tcacggggcc gtcggagggg aagttcacgc cgatgaactt	8520
cacctttagt atgaagcagc cgtcctgcag ggaggagttc tgggtcacgg tcgcccacgcc	8580
gcccgtcctcg aagttcatca cgccgtccca cttgaagccc tcggggaaagg acagcttctt	8640
-gtagtcgggg atgtcggcgg ggtgcttcac gtacaccttg gagccgtact ggaactgggg	8700
ggacaggatg tcccaggcga agggcagggg gcccgccttg gtcacccatca gttcacgg	8760
gttggggcc tcgttaggggc ggcctcgcc ctgcgcctcg atctcgaact cgtggccgtt	8820
cacgggtgccc tccatgcgca cttgaagcgc catgaactcg gtgatgacgt tctcggagga	8880
ggccattcta gccattttgg ttcttagatcc ggggtctctg gattagacga ctgctggctg	8940

atggagcggc	tttgtgtcg	gaggagtatc	cacacagcac	aagaactcaa	acggtagtga	9000
tatgaaaact	ggtcccgcag	cccgaaaaat	aaagccccgt	tagcgctaaa	accttatcat	9060
ccgcaatgct	ctccgccttc	aagtgcgtt	caaaaactttt	accatatatg	ggtatgaatt	9120
gttcggcgat	tgggtttca	tttacggaga	atttcctccg	caactgggtg	ttcgtgcttg	9180
tgtgtgtctt	gtatatcgcc	atgaagagtg	tacttccatg	ggtcctatca	gttgcggcat	9240
gtgattcaat	ttgggggtta	ctcatattcg	atacttcagc	tggttatctt	tatgctgtga	9300
tggtcacggt	gcttttacac	atttttccc	caactactca	ttgtatgcc	aaacatacat	9360
atgtacatgt	gtttatagtg	ggtttattag	taatgtccag	cgatattaaa	acattacagt	9420
taaataatat	tcatattagc	ttacgtttac	tgctatctgc	acttcaaatt	ggtttattcag	9480
ggacatttgt	gcaacacaca	tcttctagta	ggggcatcac	tagtctgaga	aaacacacacct	9540
aacttaagcc	ggtttaaca	ataacggcga	aacagctgcc	agacgagaga	aaagtacaca	9600
gcaagaagca	tttctataat	gatgccgtcc	taaatatgca	gcattttgc	tcaaatttgat	9660
catttcgttgc	catcgctcag	gtggtatagt	atttggctat	tgaatgtgat	tgctatctta	9720
atagtttga	atagtaatag	tgcaaataatt	cattcataaa	aaataggtaa	tcgattttct	9780
cagtgcagtc	tatgcgtttg	cgcaaacagg	agacgaagag	agagacgcct	cacacacaag	9840
cacatgcgtta	ctacgctggc	ctactccgct	actctatgt	tcgtccctcg	catcgctcgc	9900
ttggcggcag	ttcttccaga	ggctgtgacg	tcaaggtaagc	tatccgtct	cggtgtgctg	9960
ttagcccgta	acgataagct	gtccgattcc	taattctctt	tcaaataatt	tgttttattt	10020
tttttttgt	gtgtttgaa	gtcaaacagc	ttcataaaaca	atattaaata	tcgcaattgt	10080
tattgcaaata	gcattcgtat	caggcgccctt	gatgttttc	ggccaaaact	tcgtctgctc	10140
tttgcagcg	taattgcgtt	tgccggcgt	gccgtttgc	tcgcacgcgc	ttgcaaacaa	10200
aaagtgaaag	agggaaagcc	actgtgtgt	tgcttttgc	gctatcggt	gctgcacaca	10260
catggcaata	agtaaccata	ttgttagactt	atttattttt	gcgtttcg	tgactaatct	10320
ttgtttaaat	aattgcctat	ttcgagccaa	aatgacgcac	aaaggacacg	gcaacatgcg	10380
gtgcgtttag	catgcgtacg	agatggcgct	agagagagcg	agataaaaag	aaaaaaaaacaa	10440
ccggcgagtg	gcfagacacg	aataatacac	acacgcacac	atggtcaaag	gagtggctcc	10500
aacgtcggtg	acgtcgcc	cagccacaga	ccccgcccacg	ccccgcccc	cccttccttc	10560
cgctgccccg	caccccttcc	cttccactac	cgtttgcgg	catttggat	tgccatctcg	10620
cttttttggc	tttactttgc	tttttgaata	agccaaagaaa	ctgaaatcaa	agcggacagt	10680
ccgaaaaattt	aaactattcc	aaaaaacaac	aaccgcacat	gcactgcgtt	cgccaaaaga	10740
cgcagaaatc	agcctgttgt	ctggcatcat	cttaaaat	catcagtatc	atcattgcca	10800
ttataaaatac	ataagaaaat	gagaatacat	taaaggtata	tacatacaat	ctttgtcata	10860
gtcaacatata	tttgcacaaa	aattatctat	agataacatg	tttttgtaga	aaattccact	10920

aactgatttt	cgtataaaata	caaatttattc	tcattcttca	aaataactcg	cgacgtcatc	10980	
gcgaaattcc	tcagcattct	tcgacaaaatg	aagagagaca	gcgagtgaca	caatcttac	11040	
ttaccgacga	gtctttgaaa	atggccccgg	gaacggtgaa	aaacatata	ccaagaatgg	11100	
agcgatcgcc	aggcgatgga	aattggcttc	aaattgctcc	gaatatggcc	agttggtcag	11160	
ttggcattgg	attgtggaga	gatactagat	cagctcg	tccttctcct	ccgcattctc	11220	
ctactcgccc	gaagacgc	cttgcattgc	ttctttctcg	aatgtacata	ttgatatgt	11280	
tttggtgttt	ggcgacgatc	agccagctt	aatggccata	aaacgtgtct	tggtttgtgg	11340	
gccacataac	aggcagc	gagatctggaaa	atgatgtgac	agtggaaatg	agaagtaggt	11400	
gcacatcgcaa	agat	tttgatt	cagagttgat	gccattcatg	atttttttta	gaagtatcat	11460
ttgtgttttt	agaatata	tagatgtat	gtatgtaa	taataaaaacc	cattttgcg	11520	
gaaagtagat	aaaaaaaaaca	ttttttttt	ttactgcact	ggatatctgc		11570	

<210> 18
<211> 11251
<212> DNA
<213> Artificial

<220>
<223> pLA656

<400> 18						
cgccaggcga	tggaaattgg	cttcaaattg	ctccgaatat	ggccagttgg	tca	60
ttggattgtg	gagagata	act agatc	gatc	gttctcc	tc	120
gcccgaagac	gcttcttga	tcg	cttctt	ctc	gat	180
gttggcgac_gatc	cgac_c	ttt	aatggc_c	ataaaacgt	gt	240
taacaggcag	cgagatctgg	aaaaatgatg	tgac	agtgg	taat	300
gcaaagattt	gattc	agagt	tgat	ccatt	cat	360
ttttagaata	tagaattcta	gtatgtatgt	aagttaataa	aacccatttt	tg	420
agataaaaaaa	aacattttt	tttttactg	cactggat	ctgcggccgc	tc	480
ctggccggcc	gcaaccattt	tggaaaccgt	g	cgatcaa	aaac	540
actgaaaaac	agtcgctcca	ggccagtg	gg	aacatcgat	tg	600
tactctcg	tc	atataaa	cga	aggcc	actt	660
tgaggatgct	tctatca	acg	aa	gttaccgg	ttt	720
aactaaaggc	ggagtg	gaca	cg	ctagacca	ttt	780
gacgaatagg	tggc	cata	tt	aatgtgtt	gt	840
tttttattata	ta	ca	ta	gtgtac	gac	900
atttatgaga	aa	c	tt	atgtgtt	at	960
tcctactttg	a	ag	tt	atgtgtt	at	1020
aagagatatt	tg	cg	cgataa	tatctcta	tttgc	
tg	cg	cgataa	tatctcta	at	atgaa	
tc	act	tttgc	at	gt	gt	

tggtacatca gatgacagta ctgaagagcc agtaatgaaa aaacgtactt actgtactta	1080
ctgccccctct aaaataaggc gaaaggcaaa tgcattcggtc aaaaaatgca aaaaagttat	1140
ttgtcgagag cataatattt atatgtgcc aagttgttc tgactgacta ataagtataa	1200
tttgtttcta ttatgtataa gttaagctaa ttacttattt tataatacaa catgactgtt	1260
tttaaagtac aaaataagtt tattttgtt aagagagaaa tgttaaaag ttttgttact	1320
ttatagaaga aattttgagt ttttgggg ttttaataaa taaataaaaca taaataaaatt	1380
gtttgttcaa ttttatttta gtatgttaatgtt gtaaatataa taaaacttaa tatctattca	1440
aattaataaa taaacctcgatatacagacc gataaaacac atgcgtcaat ttacgcatttca	1500
attatcttta acgtacgtca caatatgattt atctttcttag gtttaataaa tagtttctaa	1560
tttttttattt attcagcctg ctgtcgtaa taccgtatataatctcaac gctgtgagat	1620
tgtcgttattt tagcctttt agttttcgcc tcatcgactt gatattgtcc gacacatttt	1680
cgtcgatttgcgatc aaagacttga gcagagacac gttatcaac tgttcaaattt	1740
gatccatattt aacgatataca acccgatgcg tatatggtgc gtaaaatataa ttttttaacc	1800
ctcttataact ttgcactctg cgtaataacg cgttcgta cagacgtaat catgtttct	1860
ttttggata aaactccttac tgagtttgac ctcatattttag accctcacaa gttgcaaaac	1920
gtggcattttt ttaccaatga agaattttaa gttattttaa aaaatttcat cacagatttta	1980
aagaagaacc aaaaattttaa ttatttcaac agtttataatcg accagttat caacgtgtac	2040
acagacgcgtt cggcaaaaaa cacgcacccc gacgtgtgg cttaaaatttataatcaact	2100
tgtgttatacg tcacggattt gccgtccaac gtgttccctca aaaagttgaa gaccaacaag	2160
tttacggaca_ctatttaatttta tttgatttttgc cccacttca ttttggggta tcacaatttt	2220
gttatattttt aaacaaagct tggcactggc cgtcgatttta caacgtcgatg actggaaaa	2280
ccctggcggtt acccaacttta atcgcccttgc agcacatccc ccttgcggca gctggcgtaa	2340
tagcgaagag gccccgcaccc atcgcccttc ccaacagtttgc cgcagctga atggcgaatg	2400
gcgcctgatg cggatttttc tccttacgca tctgtgggtt atttcacacc gcatatggtg	2460
cactctcagt acaatctgtt ctgatgcgc atagttaaac cagccccgac acccgccaaac	2520
acccgctgac gcccctgac gggcttgcgtt gtcggccggca tccgcttaca gacaagctgt	2580
gaccgtctcc gggagctgca tgtgtcagag gttttcacccg tcattcacccgaa acgcgcgcag	2640
acgaaaggc ctcgtgatac gcctattttt ataggtaat gtcattataa taatggtttc	2700
ttagacgtca ggtggcactt ttccggaaa tgtgcgcggaa accccattttt gtttattttt	2760
ctaaatacat tcaaataatgtt atccgctcat gagacaataa ccctgataaa tgcttcaata	2820
atattggaaa aggaagagta tgagtttca acattttccgt gtcggccctta ttcccttttt	2880
tgcggcattt tgccttcctg ttttgcgtca cccagaaacg ctggtaaag taaaagatgc	2940
tgaagatcag ttgggtgcac gagttgggtta catcgaaactg gatctcaaca gcggttaagat	3000

ccttgagagt	tttcgccccg	aagaacgtt	tccaatgatg	agcac	ttta	aagt	tctgct	3060	
atgtggcg	cg	gtattatccc	gtattgacgc	cgggcaagag	caactcggtc	gccgcata	aca	3120	
ctattctc	ag	aatgacttgg	ttgagtactc	accagtcaca	gaaaagcatc	ttacggatgg	3180		
catgacag	ta	agagaattat	gcagtgc	cataaccatg	agtgataaca	ctgcggccaa	3240		
c	tttacttctg	acaacgatcg	gaggaccgaa	ggagctaacc	gtt	tttgc	acaacatggg	3300	
ggatcatg	ta	actcgcc	tttgc	accggagctg	aatgaagcca	taccaa	acg	3360	
cgagcgt	gac	accacgatgc	ctgtagca	at ggcaacaac	ttgc	gcaaa	actgg	3420	
cgaactactt	actctag	tttgc	cccgcaaca	attaatagac	tggatggagg	cg	gataaa	3480	
tg	caggac	ca	tttgc	cg	ggctggctgg	tttattgctg	at	aaatctgg	3540
agccgg	tgag	cgtgg	gtc	gcgttatcat	tgcagcactg	ggccagatg	gt	aaaggccctc	3600
ccgtatcg	ta	gttatctaca	cgacggggag	tcaggcaact	atggatgaac	gaaatagaca	3660		
gatcg	ctgag	ataggtgc	cactgattaa	gcattggta	ctgtcagacc	aagt	tttactc	3720	
atata	actt	tagattgatt	taaaacttca	tttttaattt	aaaaggatct	agg	tgaa	gat	3780
cctttt	gat	aatctcatg	ccaaaatccc	ttaacgtg	tttgc	ttcc	actgagc	gtc	3840
agaccc	cgta	gaaaagatca	aaggatctc	ttgagatc	ttt	ttctgc	gcg	taatctg	3900
ctg	ttgca	aa	caccgctacc	agcgg	ttttgc	ccgg	atca	agagct	3960
accaact	c	tttccgaagg	taactgg	ttt	cagcag	atg	atgtc	cct	4020
tct	tagt	gt	ccgt	tagttag	gcc	accactt	caag	actct	4080
cg	ct	g	ta	cgtt	gg	cc	at	acatac	4140
gtt	ggact	ca	agacgata	gt	accgata	gg	cg	cg	4200
gt	gcac	ac	agc	gtt	gac	ct	acacc	gaa	4260
gc	attg	gag	agc	cc	acc	tt	cc	agg	4320
cagg	gt	gag	ac	ac	gg	tt	cc	agg	4380
tag	cct	gt	tc	ac	ct	gt	tc	agg	4440
gggg	cgg	ac	at	gg	cc	ttt	cc	ttt	4500
ct	gg	aa	ac	cc	ttt	cc	ttt	cc	4560
tac	cc	ttt	gag	ct	cc	ttt	cc	ttt	4620
agt	gag	cg	gag	ct	cc	ttt	cc	ttt	4680
gatt	catt	aa	tgc	act	gg	aa	ac	gg	4740
cg	caat	aa	tg	act	cc	ttt	cc	ttt	4800
gg	ct	at	tg	act	cc	ttt	cc	ttt	4860
ccat	gatt	ac	tg	cagg	cc	ttt	cc	ttt	4920
gc	cg	act	tg	gttgc	cc	tttgc	cc	tttgc	4980

gtttttgtca aacgaagatt ctatgacgtg tttaaagttt aggtcgagta aagcgcaaat	5040
cttttttaac cctagaaaaga tagtctgcgt aaaattgacg catgcattct taaaaatattg	5100
ctctctctt ctaaatagcg cgaatccgtc gctgtgcatt taggacatct cagtcgcccgc	5160
ttggagctcc cgtgaggcgt gcttgtcaat gcggtaagtgcactgattt tgaactataa	5220
cgaccgcgtg agtcaaaatg acgcatgatt atctttacg tgactttaa gatttaactc	5280
atacgataat tatattgtta tttcatgttc tacttacgtg ataacttatt atatatata	5340
tttcttgttta tagatatcgt gactaatata taataaaaatg ggtagttctt tagacgatga	5400
gcataccctc tctgctcttc tgcaaagcga tgacgagctt gttggtgagg attctgacag	5460
tgaatatatca gatcacgtaa gtgaagatga cgtccagagc gatacagaag aagcgtttat	5520
agatgaggta catgaagtgc agccaacgtc aagcggtagt gaaatatttag acgaacaaaa	5580
tgttattgaa caaccagggtt cttcattggc ttctaacaga atcttgacct tgccacagag	5640
gactattaga ggtaagaata aacattgttgc tcaacttca aagtccacga ggcgtagccg	5700
agtctctgca ctgaacatttgc tcaagatcgcc ccgggcgcgcg tttttcttga aatattgctc	5760
tctctttcta aatagcgcga atccgtcgct gtgcatttag gacatctcag tcgcccgttg	5820
gagctcccaa acgcgccagt ggttagtacac agtactgtgg gtgttcagtt tgaatccctc	5880
ttgcttctcc attgtctcgg ttacctttgg tcaaataccat gggttctatt gcctatatac	5940
tcttgcattt accagtgatt gcgcatttag ctattagatg gattgttggc caaacttgc	6000
gcttaagtgg ctggaaatttgc taaaccgtagg cccgagtgtt atgatccccataaaaaagtt	6060
ttcgcaatgc ctttattttt tggcaaat ctcttttat tctgcgttat tcttcattat	6120
tgccccggatg gggaaaagtgt ttatataaa gcaacttacg attgaacccaaatgcacctg	6180
acaagcaagg tcaaaggccc agattttaa atatattttt tagtctttagg actctctatt	6240
tgcattttttt ttactttgtt acctgagggt taaatcttcc ccattgataa taataattcc	6300
actatatgtt caattgggtt tcaccgcgtc tagttacatg acgagcccta atgagccgtc	6360
gggtgtctat aaactgtgcc ttacaataac ttgcaactct tctcggttttgc aagtgcagcag	6420
agttatttgc aattgtcaat tgctaattgc ttttaactga tttcttcgaa attgggtctaa	6480
tgtttatggc gctattaaca agtataatgc tcaagggtttaa ccagggatg cttaattgtt	6540
ttctcaactt caaaggcaga aatgtttact cttgaccatg gggttaggtttaaatgttatac	6600
aagctccctcg agttaacgtt acgttaacgt taacgttgcgaa gggtcgactct agaactaccc	6660
accgtactcg tcaattccaa gggcatcggt aaacatctgc tcaaaactcga agtccggccat	6720
atccagagcg ccgtaggggg cggagtcgtg gggggtaaat cccggaccccg gggaaatcccc	6780
gtcccccaac atgtccagat cgaaatcggtc tagcgcgtcg gcatgcgccta tcgcccacgtc	6840
ctcgccgtct aagtggagct cgtcccccaag gctgacatcg gtcggggggg ccgtcgacag	6900
tctgcgcgtg tggcccgccgg ggagaaagga caggcgccggaa gccgcacagcc ccccttcc	6960

ggggcgctcg tcgtccggga gatcgagcag gccctcgatg gtagaccgt aattgtttt	7020
cgtacgcgcg cggctgtacg cggggcccga gcccactcg catttcagtt gctttccaa	7080
tcccgagata atcagctcca agccgaacag gaatgccggc tcggctcctt gatgatcgaa	7140
cagctcgatt gcctgacgca gcagtgggg catcgaatcg gttgttgggg tctcgcgctc	7200
ctctttgcg acttgatgct cttggcctc cagcacgcag cccaggtaa agtaccgac	7260
ggcgctcaga gcgttagagag cattttccag gctgaagcct tgctggcaca ggaacgcgag	7320
ctggttctcc agtgtctcg attgttttc ggtcggcgc gtgcccagat ggactttggc	7380
accgtctcgg tgggacagca gagcgcagcg gaacgacttg gcgttattgc ggaggaagtc	7440
ctgccaggac tcgccttcca acggcaaaa atgcgtgtgg tggcggtcga gcatctcgat	7500
ggccaggcga tccagcagcg cccgcttatt cttcacgtgc cagtagaggg tggctgctc	7560
cacgcccagc ttctgcgcca acttgccccgt cgtagtccc tcaatgccaa ctgcgttcaa	7620
cagctccaaac gcggagttga tgactttgga cttatccagg cggctgccc tgggtggttc	7680
taaagggtgtt ataaatcaaa ttagtttgt tttttcttga aaactttgcg tttcctttga	7740
tcaacttacc gccagggtac cgcaattgtt ttagcttgcg ttagctgcgt tgtttatttg	7800
cttagcttcc gcttagcgac gtgttcaatt tgcttgcgtt aattgaatttgcg tggctccgt	7860
gacgaagcgc ctctatttat actccggcgc tcgtttcga gtttaccact ccctatcagt	7920
gatagagaaa agtggaaagtc gagttacca ctccctatca gtgatagaga aaagtggaaag	7980
tcgagttac cactccctat cagtataga gaaaagtgaa agtcgagttt accactccct	8040
atcagtgata gagaaaagtg aaagtgcgat ttaccactcc ctatcagtga tagagaaaag	8100
tgaaagtcga gtttaccact ccctatcagt gatagagaaa agtggaaagtc gagtttacca	8160
ctccctatca gtgatagaga aaagtggaaag tcgaaacctg gcgccctct taattaactc	8220
gcgttaagat acattgatga gtttggacaa accacaacta gaatgcagtg aaaaaaatgc	8280
tttatttgcg aaattttgtga tgctattgcg ttatttgcg ccattataag ctgcaataaa	8340
caagtttaca acaacaattt cattttat atgtttcagg ttcagggggg ggtgtgggg	8400
gttttttaaa gcaagtaaaa cctctacaaa tgtggatgg ctgattatga tcagttatct	8460
agatccgggtg gatcttacgg gtcctccacc ttccgcgtt tcttgggtcg agatctcagg	8520
aacaggtgg ggcggccctc ggtgcgcctcg tactgctcca cgatgggtgt gtcctcggt	8580
tgggaggtga tgtccagctt ggcgtccacg tagtagtagc cggcagctg cacggcgttc	8640
ttggccatgt agatggactt gaactccacc aggttagtggc egccgcctt cagcttcagg	8700
gccttgcggg tctcgccctt cagcacgcgc tcgcgggggt acaggcgctc ggtggaggcc	8760
tcccgccca tggctttctt ctgcacgcacg gggccgtcgg agggaaagtt cacggccat	8820
aacttcaccc tggatgatgaa gcagccgtcc tgcaggagg agtcctgggt cacggcgtcc	8880
accccgccgt cctcgaagtt catcacgcgc tcccacttga agccctcgaaa gaaggacagc	8940

ttctttagt cggggatgtc ggcggggtgc ttcacgtaca cttggagcc gtactggaac	9000
tgggggaca ggatgtccca ggcgaagggc agggggccgc cttggtcac cttcagctc	9060
acggtgttgc ggccctcgta gggcgcccc tcgcctcgcc ctcgatctc gaactcgtgg	9120
ccgttacgg tgccctccat gcgcaccttg aagcgcatga actcggtgat gacgttctcg	9180
gaggaggcca tggtggcgac cggttgcgc ttcttcttgg gtggggtggg atccccgatc	9240
tgcattttgg attattctgc gggtaaaaat agagatgtgg aaaatttagta cgaaatcaaa	9300
tgagttcgt tgaatttaca aaactattga aactaacttc ctggctgggg aataaaaaatg	9360
ggaaaacttat ttatcgacgc caactttgtt gagaaacccc tattaaccct ctacgaatat	9420
tggaacaaaag gaaagcgaag aaacaggaac aaaggttagtt gagaaacctg ttccgttgc	9480
cgtcatcggtt ttccataatgc gagtgtgtgc atgtatatat acacagctga aacgcacgca	9540
tacacattat ttgtgtgtta tatgtgtacg tcacaactac taagcaataa gaaattttcc	9600
agacgtggct ttccgttcaa gcaacctact ctatccagc taaaataaag tggatttcgt	9660
tggtaaaata cttcaattaa gcaaagaact aactaactaa taacatgcac acaaattgctc	9720
gagtgcgttc gtgatttctc gaatttcaa atgcgtcact gcgaatttca caatttgc	9780
ataaaatcttgc gcgaaaatca acacgcaagt ttatattata gatttgggg cgttttgatg	9840
ccaaattgatt gggaaaacaa gatgcgtggc tgccaaatttc ttatattgtta attacgttaga	9900
gcgttgaata aaaaaaaaaat ggccgaacaa agaccttggaa atgcagttt tcttggaaatt	9960
actcaacgtc ttgttgcctt tattactaat tggtaacage gagtaaaaaa cttacgttcc	10020
ttgtgacttt cgagaatgtt ctttaattt tactttatc accaacaatt aagtataaaat	10080
_ttttcgctga_ttgcgcttta ctttctgctt gtacttgctg ctgcaaattgt caattggttt	10140
tgaaggcgac cggtcgccaa cgctgtttat atacccctgg tgccgttga aaatcactaa	10200
aaaataccgt agtgttgcgtt acacttttagt acagagaaaaaaa aaaaattgtgc cgaaatgttt	10260
ttgatacgtt cgaataccctt gtataaaat ttttatgtat ttctgtgtat cactttttt	10320
ttgtgtttttt cgtttaactt caccacagttt caaaacaata aaatattttt aagacaattt	10380
caaattgaga ctttctcgtt actgacttga ccggctgaat gaggatttctt acctagacga	10440
cctacttctt accatgacat tgaatgcaat gccacccctt atctaaactt acaaaagtcc	10500
aaggcttgcgtt aggattgggtt tttatattgtt ttgttttgc aatagcactg tcttctctac	10560
cggttataat ttgttttttttgc gcaatgttgc tggaaattttt aaaaatgtt ctgtgttaggt	10620
aaagggtgtt ttaaaatgtt gatgtgttgc gcttgcggc aacgactgtt atttatgtat	10680
atattttcaaa aacttattgtt ttgttttttttgc ttttttttttgc aatgttgcgttgc	10740
cataatcttca cacaagctttt tcttaatccaa ttttttttttgc aatgttgcgttgc	10800
ggccaaataat ttgttttttttgc cttaatccaa ttttttttttgc aatgttgcgttgc	10860
catattataaa tattaaaaca tataatccaa ttttttttttgc aatgttgcgttgc	10920

aaaaaaagttt attttcgcag agccccgac ggtcacacta cggttcggcg attttcgatt 10980
ttggacagta ctgattgcaa gcgcaccgaa agcaaaatgg agctggagat tttgaacgcg 11040
aagaacagca agccgtacgg caaggtgaag gtgcctccg ggcgcacgcc catcgccgat 11100
ctgcgcgcac taattcacaa gaccctgaag cagaccccac acgcgaatcg ccagtcgctt 11160
cgtctggAAC tgaaggcAA aagcctgAAA gatacggaca cattggAAtc tctgtcgctg 11220
cgTTCCGGCG acaagatcg ggtaccgcga t 11251

<210> 19
<211> 9468
<212> DNA
213 <214> 1

<220>
<223> pIA710

<400> 19
ggccgctcat ttaaatctgg ccggccgcaa ccattgtggg aaccgtgcga tc当地
gagataacc ggaagtactg aaaaacagtc gctccaggcc agtggaaaca tc当地
gttttgacgg accccttaact ctcgtctcat ataaaaccgaa gccagctaag atgg
tataatcatc ttgtgatgag gatgcttcta tcaacgaaag taccggtaaa cc当地
ttatgttatta taatcaaact aaaggcggag tggacacgct agaccaaatg tg
tgacctgcag taggaagacg aataggtggc ctatggcatt attgtacgga atgata
ttgcctgcat aaattctttt attatataca gccataatgt cagtagcaag gg
tccaaagtcg caaaaaattt atgagaaacc tttacatgag cctgacgtca tc当地
gtaagcgttt_agaagctcct_actttgaaga_gatatttgcg cgataatatc tct
tgccaaatga agtgcctggt acatcagatg acagtactga agagccagta atg
gtacttactg tacttactgc ccctctaaaa taaggcgaaa ggcaaattgca tc当地
aatgcaaaaa agttatttgt cgagagcata atattgatat gtgc当地
tgactaataa gtataatttg tttctattat gtataagttt agctaattac tt当地
atacaacatg actgtttta aagtacaaaa taagtttatt ttgtaaaag agaga
taaaagttt gttactttat agaagaattt ttgagttttt gttttttt aata
taaacataaa taaattgttt gttgaattt ttatttagtat gtaagtgtaa atata
acttaatatc tattcaaatt aataaataaa cctcgatata cagaccgata aa
gtcaattttt cgcattgatta tctttAACGT acgtcacaat atgattatct tt
aaataatagt ttctaaatttt tttatttttc agcctgctgt cgtgaataacc
acgctgtctg tgagattgtc gtattctagc ct当地
ttgtccgaca catttcgtc gatttgcgtt ttgatcaaag acttgagcag ag
atcaactgtt caaattgtat catattaacg atatcaaccc gatgcgtata
1320

aatatatttt ttaaccctct tatactttgc actctgcgtt aatacgcgtt cgtgtacaga	1380
cgtaatcatg ttttctttt tggataaaac tcctactgag tttgacctca tatttagaccc	1440
tcacaagttg caaaacgtgg catttttac caatgaagaa tttaaagtta tttaaaaaaa	1500
tttcatcaca gatttaaaga agaaccaaaa attaaattat ttcaacagtt taatcgacca	1560
gttaatcaac gtgtacacag acgcgtcggc aaaaaacacg cagccgacg tggtggctaa	1620
aattattaaa tcaacttgg ttagtgcac ggatttgcgg tccaacgtgt tcctcaaaaa	1680
gttgaagacc aacaagttt cggacactat taattattt attttcccc acttcatttt	1740
gtgggatcac aattttgtta tatttaaac aaagcttggc actggccgtc gttttacaac	1800
gttgtgactg gaaaaaccct ggcgttaccc aacttaatcg cttgcagca catccccctt	1860
tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg cccttccaa cagttgcgca	1920
gcctgaatgg cgaatggcgc ctgatgcggt attttctcct tacgcacatcg tgcggtattt	1980
cacaccgcacat atggtgcaact ctcagtcacaa tctgctctga tgccgcatacg ttaagccagc	2040
cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc cccgcatccg	2100
cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat	2160
caccgaaacg cgcgagacga aagggcctcg tgatacgcct attttatag gttaatgtca	2220
tgataataat ggttcttag acgtcaggtg gcactttcg gggaaatgtg cgccgaaccc	2280
ctatttgttt attttctaa atacattcaa atatgtatcc gctcatgaga caataaccct	2340
gataaatgct tcaataatat tgaaaaagga agagtagatgatgattcaacat ttccgtgtcg	2400
cccttattcc ctttttgcg gcattttgcc ttctgtttt tgctcacccca gaaacgctgg	2460
.tgaaagtaaa_agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc	2520
tcaacagcgg taagatcctt gagagtttc gccccgaaga acgtttcca atgatgagca	2580
cttttaaagt tctgctatgt ggccggat tatccgtat tgacgccggg caagagcaac	2640
tcggtcgccc catacactat tctcagaatg acttgggtga gtactcacca gtcacagaaaa	2700
agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg	2760
ataacactgc ggccaactta cttctgacaa cgatcgagg accgaaggag ctaaccgctt	2820
ttttgcacaa catggggat catgtaactc gcttgatcg ttggaaaccg gagctgaatg	2880
aagccataacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc	2940
gcaaaactatt aactggcgaa ctacttactc tagctcccg gcaacaatta atagactgg	3000
tggaggcggtaaaagttgca ggaccacttc tgatcgcc cttccggct ggctggttt	3060-
ttgctgatcaa atctggagcc ggtgagcgtg ggtctcgccggtatcattgca gcaactgggc	3120
cagatggtaa gcccctccgt atcgttagtta tctacacgac ggggagtcag gcaactatgg	3180
atgaacgaaa tagacagatc gctgagatag gtgcctact gattaagcat tggtaactgt	3240
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa	3300

ggatctaggtaa	3360
tttgataatc	
tcatgaccaa	
aatcccttaa	
cgtgagtttt	
cgttccactg	3420
agcgtcagac	
cccgtagaaa	
agatcaaagg	
atcttcttga	
gatccctttt	
ttctgcgcgt	3480
aatctgctgc	
ttgcaaaca	
aaaaaccacc	
gctaccagcg	
gtggtttgtt	
tgccggatca	3540
agagctacca	
actcttttc	
cgaaggtaac	
tggcttcagc	
agagcgcaga	
taccaaatac	3600
tgtccttcta	
gtgtagccgt	
agtttaggcc	
ccacttcaag	
aactctgtag	
caccgcctac	3660
atacctcgct	
ctgctaattcc	
tgttaccagt	
ggctgctgcc	
agtggcgata	
agtcgtgtct	3720
taccgggttg	
gactcaagac	
gatagttacc	
ggataaggcg	
cagcggtcgg	
gctgaacggg	3780
gggttcgtgc	
acacagccca	
gcttggagcg	
aacgacctac	
accgaactga	
gataacctaca	3840
gcgtgagcat	
tgagaaagcg	
ccacgcttcc	
cgaagggaga	
aaggcggaca	
ggtatccgg	3900
aagcggcagg	
gtcggAACAG	
gagagcgcac	
gagggagctt	
ccagggggaa	
acgcctggta	3960
tctttatagt	
cctgtcggtt	
ttcggccac	
ctgactttag	
cgtcgatttt	
tgtgatgctc	4020
gtcaggggggg	
cggagcctat	
ggaaaaaacgc	
cagcaacgcg	
gcctttttac	
ggttcctggc	4080
cttttgctgg	
ccttttgctc	
acatgttctt	
tcctgcgtta	
tcccctgatt	
ctgtggataa	4140
ccgtattacc	
gcctttgagt	
gagctgatac	
cgctcgccgc	
agccgaacga	
ccgagcgcag	4200
cgagtcagtg	
agcgaggaag	
cggaaagagcg	
cccaatacgc	
aaaccgcctc	
tccccgcgcg	4260
ttggccgatt	
cattaatgca	
gctggcacga	
caggtttccc	
gactggaaag	
cgggcagtga	4320
gwgcaacgca	
attaatgtga	
gttagctcac	
tcattaggca	
ccccaggctt	
tacactttat	4380
gcttccggct	
cgtatgttgt	
gtggaaattgt	
gagcggataa	
caattttcaca	
caggaaacag	4440
ctatgaccat	
gattacgaat	
ttcgacctgc	
aggcatgcaa	
gcttgcac	
ctgcaggctcg	4500
acgctcgccgc	
gactgggtt	
gccattctt	
agcgcgcgtc	
gcgtcacaca	
gcttggccac	4560
aatgtggttt	
ttgtcaaacg	
aagattctat	
gacgtgttta	
aagtttaggt	
cgagtaaagc	4620
gcaaattctt	
tttaacccta	
gaaagatagt	
ctgcgtaaaa	
ttgacgcac	
cattcttcaa	4680
atattgctct	
ctctttctaa	
atagcgcgaa	
tccgtcgctg	
tgcatttagg	
acatctcagt	4740
cggcgcttgg	
agctcccggt	
aggcgtgctt	
gtcaatgcgg	
taagtgtcac	
tgattttgaa	4800
ctataacgac	
cgcgtgagtc	
aaaatgacgc	
atgattatct	
tttacgtgac	
ttttaagatt	4860
taactcatac	
gataattata	
ttgttatttc	
atgttctact	
tacgtgataa	
cattattat	4920
atatattttc	
ttgttataga	
tatcgact	
aatatataat	
aaaatgggta	
gttctttaga	4980
cgtgagcat	
atcctctctg	
ctcttctgca	
aagcgatgac	
gagcttgg	
gtgaggattc	5040
tgacagtgaa	
atatcgatc	
acgtaagtga	
agatgacgac	
cagagcgata	
cagaagaagc	5100
gtttatagat	
gaggtacatg	
aagtgcagcc	
aacgtcaagc	
ggttagtgaaa	
tattagacga	5160
acaaaatgtt	
attgaacaac	
caggtttttc	
attggcttct	
aacagaatct	
tgacccctgcc	5220
acagaggact	
attagaggta	
agaataaaca	
ttgttggtca	
acttcaaagt	
ccacgaggcg	5280
tagccgagtc	
tctgcactga	
acattgtcag	
atcggccccgg	
gcccggtttt	

tcttcaaata ttgctctc tttctaaata gcgcaatcc gtcgctgtgc atttaggaca	5340
tctcagtcgc cgcttgagc tcccaaacgc gccagtggta gtacacagta ctgtgggtgt	5400
tcaaaaaaa atcctcttgc ttctccattt tctcggttac ctttggtcaa atccatgggt	5460
tctattgcct atataacttgc gcgattacca gtgattgcgc tattagctat tagatggatt	5520
gttggccaaa cttgtcgctt aagtggctgg gaattgtaac cgtaggcccc agtgtaatga	5580
tccccccataa aaagtttgc caatgcctt atttttgtt gcaaatctctt ctttattctg	5640
cggtattctt cattattgcg gggatgggaa aagtgtttat atagaagcaa cttacgattt	5700
aacccaaatg cacctgacaa gcaaggtcaa agggccagat ttttaatat attatttat	5760
cttaggactc tctatggca attaaatttac tttgctacct gagggtaaaa tcttccccat	5820
tgataataat aattccacta tatgttcaat tgggtttcac cgcgotttagt tacatgacga	5880
gccctaataa gccgtcggtg gtctataaac tgtgccttac aaatacttgc aactcttctc	5940
gttttgaagt cagcagagtt attgctaatt gctaatttgc aattgtttt aactgatttc	6000
ttcgaaattt gtgctatgtt tatggcgcta ttaacaagta tgaatgtcag gtttaaccag	6060
gggatgctta attgtgttctt caacccaaa ggcagaaatg tttactctt accatgggtt	6120
taggtataat gttatcaagc tcctcgagtt aacgttacgt taacgttaac gttcgaggc	6180
gactctagaa ctacccaccc tactcgtaa ttccaaggc atcgtaaac atctgctcaa	6240
actcgaagtc ggccatatcc agagcgccgt agggggcgga gtcgtggggg gtaaatccc	6300
gacccggggg atccccgtcc cccaaacatgt ccagatcgaa atcgcttagc gctcgccat	6360
gcccacatcg cacgtcctcg ccgtctaagt ggagctcgcc cccaggctg acatcggtcg	6420
ggggggccgt cgacagctcg cgctgtgtc ccgcggggag aaaggacagg cgccggcccg	6480
ccagccccgc ctcttcgggg gcgtcgtagt ccggagatc gagcaggccc tcgatggtag	6540
accgttaatt gttttcgta cgccgcggc tgtacgcggg gcccggccccc gactcgcat	6600
tcaatggctt ttccaatccg cagataatca gctccaagcc gaacaggaat gcccgtcg	6660
ctccttgatg atcgaaacgc tcgattgcct gacgcagcag tggggccatc gaatcggtt	6720
ttggggtctc gcgctccctt tttgcgactt gatgctcttgc gtcctccagc acgcagccca	6780
gggtaaagtg accgacggcg ctcagagcgt agagagcatt ttccaggctg aagccttgc	6840
ggcacaggaa cgcgagctgg ttctccagtg tctcgatttgc cttttcggtc gggcgctgc	6900
cgagatggac tttggcaccg tctcggtggg acagcagagc gcagcggAAC gacttggcgt	6960
tattgcggag gaagtccctgc caggactcgcc tttccaacgg gaaaaatgc gtgtgggtggc	7020
ggtcgagcat ctcgatggcc agggcatcca gcagcgcccg cttattcttc acgtgccagt	7080
agagggtggg ctgctccacg cccagcttgc gcgccaaactt gcgggtcgcc agtccctcaa	7140
tgcctaaacttc gttcaacagc tccaacgcgg agttgatgac tttggactta tccaggcggc	7200
tgcccatggt ggtttctaaa ggtgttataa atcaaatttgc ttttgggggggg tcttgaaaac	7260

tttgcgttcc	cattgtatcaa	cttaccggcca	gggttacccgca	gattgttttag	cttgcgttcagc	7320
tgcgcgttgtt	tatggctta	gctttcgctt	agcgacgtgt	tcactttgtt	tgtttgaatt	7380
gaattgtcgcc	tccgttagacg	aaggccctct	atttatactc	cggcgctcggt	tttcgagttt	7440
accactccct	atcagtgata	gagaaaagtg	aaagtcgagt	ttaccactcc	ctatcagtga	7500
tagagaaaag	tgaaagtcga	gtttaccact	ccctatcagt	gatagagaaa	agtgaaaagtc	7560
gagtttacca	ctccctatca	gtgatagaga	aaagtgaaag	tcgagtttac	cactccctat	7620
cagtgataga	gaaaaagtgaa	agtcgagttt	accactccct	atcagtgata	gagaaaagtg	7680
aaagtcgagt	ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	aacctggcgc	7740
gcctcttaat	taactcgcgt	taagatacat	tgttgagttt	ggacaaacca	caactagaat	7800
gcagtgaaaaa	aaatgctta	tttggaaat	ttgtgatgtt	attgttttat	ttgttaaccat	7860
tataagctgc	aataaaacaag	ttaacaacaa	caattgcatt	cattttatgt	ttcaggttca	7920
gggggaggtg	tgggaggttt	tttggagcaaa	gtaaaacctc	tacaaatgtg	gtatggctga	7980
ttatgatcag	ttatcttagat	ccgggtggatc	ttacgggtcc	tccaccttcc	gttttttctt	8040
gggtcgagat	ctcaggaaca	ggtgtggcg	gccctcggtg	cgctcgact	gctccacgat	8100
ggtgttagtcc	tcgttgtggg	aggtgatgtc	cagcttggcg	tccacgtgt	agtagccggg	8160
cagctgcacg	ggcttcttgg	ccatgttagat	ggacttgaac	tccaccagg	agtggccgoc	8220
gtccttcagc	ttcagggcct	tgtgggtctc	gcccttcagc	acgcccgtcg	gggggtacag	8280
gcgcctcggtg	gaggcctccc	agcccatgg	cttcttctgc	atcacggggc	cgtcgagg	8340
gaagttcacg	ccgatgaact	tcaccttgtt	gatgaagcag	ccgtcctgca	gggaggagtc	8400
-ctgggtcacg-gtcgccacgc	cgccgtcctc	gaagttcatc	acgcgtccc	acttgaagcc		8460
ctcgggaaag	gacagcttct	tgttagtcggg	gatgtcgccg	gggtgcttca	cgtacacctt	8520
ggagccgtac	tggacttggg	gggacaggat	gtcccaggcg	aaggccagg	ggcccccctt	8580
ggtcaccttc	agttcacgg	tgttgtggcc	ctcgttaggg	cggccctcg	cctcgccctc	8640
gatctcgAAC	tcgtggccgt	tcacggtgcc	ctccatcg	accttgaagc	gcatgaactc	8700
ggtgatgacg	ttctcgagg	aggccatgg	ggcgaccgg	ttgcgtttct	tcttgggtgg	8760
ggtgggatcc	tcgtcgacaa	tcttgaatta	gtctgcaaga	aaagaaaaaa	aacaattcaa	8820
actacattct	cattccatac	attatactaa	gtaaacgaca	aatttatttg	cgtccatcta	8880
tttagtgacg	ttaaagaaaa	ctgtataaga	ttcataattc	actgttccca	atttctgttt	8940
ccgaattgat-cgatgcgagt	ggacactttt	aatgtcggt	ccaataaaact	tatttcttat		9000
ttagtagtgt	ttatataacat	ctgcagtgaca	ctaaattccg	aaaaatgttt	ttttttataaa	9060
aaaatttcac	ttcacttagtt	atgcaacaat	tatgtaacgt	aacacgtt	cattagcgta	9120
ttattaaaaaa	aaaaaaacac	tcaaacatata	gtaataactt	aaggtaaagg	gacggagaac	9180
cttcgaaatt	caaatttac	aaataaataa	atatgtttt	ttttcttcg	caattttaaa	9240

ataaaaactt acatagtatt attaaataag tgacaagtac gtagatgcga atgcgcactg	9300
ttcggcaca ccttagtaaa tgagaaccga ctcgtgagga taaactatat aaaagagccg	9360
ttatcacaat ttacacagta tcggctccag tttgttttc caccaatcgc gggctgactc	9420
agttttgtc accatataatg gtaacgcgca cgctatcagg taccatgc	9468
<210> 20	
<211> 10140	
<212> DNA	
<213> Artificial	
<220>	
<223> pLA928	
<400> 20	
ggccgctcat taaaatctgg ccggccgcaa ccattgtggg aaccgtgcga tcaaacaaac	60
gcgagatacc ggaagtactg aaaaacagtc gctccaggcc agtggaaaca tcgatgttt	120
gttttgacgg accccttact ctcgtctcat ataaaccgaa gccagctaag atggtatact	180
tattatcattc ttgtgtatgag gatgttcta tcaacgaaag taccggtaaa ccgcaaatgg	240
ttatgtatta taatcaaact aaaggcggag tggacacgct agaccaaatg tggtctgtga	300
tgacctgcag taggaagacg aataggtggc ctatggcatt attgtacgga atgataaaca	360
ttgcctgcat aaattcttt attatataca gccataatgt cagtagcaag ggagaaaagg	420
tccaaagtgcg caaaaaattt atgagaaacc tttacatgag cctgacgtca tcgttatgc	480
gtaagcgttt agaagctcct actttgaaga gatatttgcg cgataatatc tctaataattt	540
tgccaaatga agtgccttgt acatcagatg acagtactga agagccagta atgaaaaaac	600
...gtacttactg tacttactgc ccctctaaaa taaggcgaaa ggcaaatgca tcgtgcaaaa	660
aatgcaaaaa agttattgt cgagagcata atattgatgt gtgc当地gt tggtctgtac	720
tgactaataa gtataattt ttttattat gtataagttt agctaattac ttatattata	780
atacaacatg actgtttta aagtacaaaa taagtttatt tttgtaaaag agagaatgtt	840
taaaaatttt gttactttt agaagaaatt ttgagtttt gttttttt aataaataaa	900
taaacataaa taaattgttt gttgaattta ttattatgtt gtaagtgtaa atataataaa	960
acttaatatc tattcaaatt aataaataaa cctcgatata cagaccgata aaacacatgc	1020
gtcaatttta cgcatgatta tcttaacgt acgtcacaat atgattatct ttctagggtt	1080
aaataatagt ttcttaatttt ttttattatc agcctgctgt cgtgaataacc gtatatctca	1140
acgtgtctg tgagattgtc gtattctagc ctttttagtt tttcgctcat cgacttgata	1200
ttgtccgaca cattttcgtc gatttgcgtt ttgatcaaag acttgaggcag agacacgtta	1260
atcaactgtt caaattgtac catattaacg atatcaaccc gatgcgtata tgggtgcgtaa	1320
aatatatttt ttaaccctct tatactttgc actctgcgtt aatacgcgtt cgtgtacaga	1380
cgtaatcatg ttttctttt tggataaaaac tcctactgag tttgacctca tattagaccc	1440

tcacaagttg caaaacgtgg catttttac caatgaagaa tttaaagtta tttaaaaaaa	1500
ttccatcaca gatttaaaga agaacaaaa attaaattat ttcaacagtt taatcgacca	1560
gttaatcaac gtgtacacag acgcgtcggc aaaaaacacg cagcccgacg tggtggctaa	1620
aattattaaa tcaacttgc ttatagtcac ggatttgccg tccaacgtgt tcctcaaaaa	1680
gttgaagacc aacaagttt cggacactat taattatgg attttgcgg acttcatttt	1740
gtgggatcac aattttgtt tattttaaac aaagcttggc actggccgtc gtttacaac	1800
gtcgtactg ggaaaaccct ggcgttaccc aacttaatcg cttgcagca catccccctt	1860
tcgccagctg gcgtaatacg gaagaggccc gcacccgatcg cccttccaa cagttgcgca	1920
gcctgaatgg cgaatggcgc ctgatgcggt attttctct tacgcacatcg tgcggtattt	1980
cacaccgcat atggtgcaact ctcagtacaa tctgctctga tgccgcatag ttaagccagc	2040
cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg	2100
cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat	2160
caccgaaacg cgcgagacga aaggccctcg tgatacgcct attttatag gttaatgtca	2220
tgataataat gtttcttag acgtcaggtg gcactttcg gggaaatgtg cgccgaaccc	2280
ctatttgttt attttctaa atacattcaa atatgtatcc gctcatgaga caataaccct	2340
gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg	2400
cccttattcc ctttttgcg gcattttgcc ttccctgttt tgctcacccca gaaacgctgg	2460
tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc	2520
tcaacagcgg taagatcctt gagagtttc gccccgaaga acgtttcca atgatgagca	2580
cttttaaagt_tctgctatgt_ggcgcgtat_tatcccgtat_tgacgccggg_caagagcaac	2640
tcggtcgccc catacactat tctcagaatg acttgggtga gtactcacca gtcacagaaa	2700
agcatcttac gnatggcatg acagtaagag aattatgcag tgctgccata accatgagtg	2760
ataacactgc ggccaactta cttctgacaa cgatcggagg accgaaggag ctaaccgctt	2820
ttttgcacaa catggggat catgtaactc gccttgcgtg ttggaaacccg gagctgaatg	2880
aagccataacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc	2940
gcaaactatt aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga	3000
tggaggcggaa taaagttgca ggaccacttc tgcgctcggc cttccggct ggctggttta	3060
ttgctgataa atctggagcc ggtgagcgtg ggtctcgccg tatcattgca gcactgggc	3120
cagatggtaa gccctccgt atcgttagtta tctacacgac ggggagtcag gcaactatgg-	3180
atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt	3240
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taattttaaa	3300
ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatccctaa cgtgagttt	3360
cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatcctttt	3420

ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt	3480
tgcaggatca agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga	3540
taccaaatac tgtccttcta gtgtagccgt agttaggccaa ccacttcaag aactctgttag	3600
caccgcctac atacctcgct ctgctaattcc tgttaccagt ggctgctgcc agtggcgata	3660
agtctgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg	3720
gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga	3780
gatacctaca gcgtgagcat tgagaaaagcg ccacgcttcc cgaagggaga aaggcggaca	3840
ggtatccgggt aagcggcagg gtcggAACAG gagagcgcac gagggagctt ccagggggaa	3900
acgcctggta tctttatagt cctgtcgggt ttcgcccacct ctgactttag cgctcgatttt	3960
tgtgatgctc gtcaggggggg cggagcctat ggaaaaacgc cagcaacgcg gccttttac	4020
ggttcctggc cttttgcggc cttttgctc acatgttctt tcctgcgtta toccctgatt	4080
ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc agccgaacga	4140
ccgagcgcag cgagtcaagt agcgaggaag cggaagagcg cccaatacgc aaaccgcctc	4200
tccccgcgcg ttggccgatt catatatgcg gctggcacga caggttccc gactggaaag	4260
cgggcagtga ggcgaacgcg attatatgtga gttagctcac tcattaggca ccccaggctt	4320
tacactttat gcttccggct cgtatgttgt gtggatttgt gagcggataa caatttcaca	4380
caggaaacag ctatgaccat gattacgaat ttgcacctgc aggcatgcaa gcttgcac	4440
ctgcaggctcg acgctcgccg gacttggttt gccattttt agcgcgcgtc ggcgcacaca	4500
gcttggccac aatgtggttt ttgtcaaacg aagattctat gacgttta aagtttaggt	4560
cgagtaaagc gcaaatacttt tttaacccta gaagatagt ctgcgtaaaa ttgacgcac	4620
cattcttgcgaa atattgctct ctctttctaa atagcgcgaa tccgtcgctg tgcattttagg	4680
acatctcagt cgccgcggg agctcccgtg aggctgtgtt gtcaatgcgg taagtgtcac	4740
tgattttgaa ctataacgcg cgcgtgagtc aaaatgacgc atgattatct ttacgtgac	4800
tttttaagatt taactcatac gataattata ttgttatttc atgttctact tacgtgataa	4860
cttattatata atatattttc ttgttataga tatcgtgact aatataataat aaaatgggtt	4920
gttctttaga cgatgagoat atcctctctg ctcttctgca aagcgatgac gagcttgg	4980
gtgaggattc tgacagtgaa atatcagatc acgtaagtga agatgacgtc cagagcgcata	5040
cagaagaagc gtttatacatg gaggtacatg aagtgcagcc aacgtcaagc ggttagtggaa	5100
tattagacga acaaaatgtt attgaacaac caggttcttc attggcttct aacagaatct	5160
tgaccttgcg acagaggact attagaggta agaataaaaca ttgttggtca acttcaaagt	5220
ccacgaggcg tagccgagtc tctgcactga acattgtcag atcggcccg ggcgcgtttt	5280
tcttggaaata ttgtctctc tttctaaata ggcgaatcc gtcgtgtgc atttaggaca	5340
tctcagtcgc cgcttggagc tccaaaacgc gccagtggtt gtacacagta ctgtgggtgt	5400

tcagttgaa atcctcttgc ttctccattg tctcggttac ctttggtaa atccatgggt 5460
tctattgcct atatactott gcgattacca gtgattgcgc tattagctat tagatggatt 5520
gttggccaaa ctgtcgctt aagtggctgg gaattgtaac cgtaggccc agtgtaatga 5580
tccccataa aaagtttcg caatgcctt attttttgtt gcaaatctct ctttattctg 5640
cggtattctt cattattgcg gggatgggaa aagtgtttat atagaagcaa cttacgattg 5700
aacccaaatg cacctgacaa gcaaggtaa agggccagat ttttaaatat attattttagt 5760
cttaggactc tctatttgca attaaattac tttgctaccc gagggtaaaa tctccccat 5820
tgataataat aattccacta tatgtcaat tgggttcac cgcgcttagt tacatgacga 5880
gccctaataatg gccgtcggtg gtctataaac tgtgccttac aaatacttgc aactcttctc 5940
gttttgaagt cagcagagtt attgctaatt gctaattgct aattgctttt aactgatttc 6000
ttcgaaattt gtcgtatgtt tatggcgcta ttaacaagta tgaatgtcag gtttaaccag 6060
gggatgctta attgtgttct caacttcaaa ggcagaaatg tttactctt accatgggtt 6120
taggtataat gttatcaagc tcctcgagtt aacgttacgt taacgttaac gttcgaggtc 6180
gactctagaa ctacccaccc tactcgtaa ttccaaggc atcggtaaac atctgctcaa 6240
actcgaagtc ggcataatcc agagcgccgt agggggcgga gtcgtgggg gtaatcccg 6300
gaccggggaa atccccgtcc cccaaatgt ccagatcgaa atcgtctagc gcgtcgccat 6360
gcgcacatcgc cacgtcctcg ccgtctaagt ggagctcgcc ccccaggctg acatcggtcg 6420
ggggggccgt cgacagtctg cgctgtgtc ccggggggag aaaggacagg cgccggagccg 6480
ccagccccgc ctcttcgggg gcgtcgctgt ccggagatc gaggcaggccc tcgatggtag 6540
.accctgttaatt .gttttgcgt .cgcgcgccg tgtaacgcggg gcccggagccc gactcgccatt 6600
tcagttgctt ttccaaatccg cagataatca gctccaagcc gaacaggaat gcccggctcg 6660
ctccttgatg atcgaacagc tcgattgcct gacgcagcag tgggggcattc gaatcggttg 6720
ttggggtctc gcgctcctct tttgcgactt gatgctcttgc tgcctccagc acgcagccca 6780
ggtaaaagtg accgacggcg ctcagagcgt agagagcatt ttccaggctg aagccttgc 6840
ggcacaggaa cgcgagctgg ttctccagtg tctcgatttgc ctttgcgtcc gggcgccgtgc 6900
cgagatggac ttggcaccgc tctcggtggg acagcagagc gcagcggaaac gacttggcg 6960
tattgcggag gaagtccctgc caggactcgatc cttccaaacgg gaaaaatgc gtgtgggtgc 7020
ggtcgagcat ctcgatggcc agggcatcca gcagcgcccg cttattcttc acgtgccagt 7080
agaggggtggg ctgctccacg cccagcttct- ggcggccactt gggggtcgtc agtccctcaa 7140
tgccaaacttc gttcaacagc tccaaacgcgg agttgatgac tttggactta tccaggcggc 7200
tgcccatggt gttttctaaa ggtgttataa atcaaatttgc gtttttttt tcttgaaaac 7260
tttgcgtttc ctttgcgtt cttaccgcgca gggtaaccgca gattgttttag cttgttcagc 7320
tgcgcttgcgtt tatttgctta gctttgcgtt agcgacgtgt tcactttgc tggttgaatt 7380

gaattgtcgc tccgttagacg aagcgctct atttatactc cggcgctcg tttcgagttt	7440
accactccct atcagtgata gagaaaagtg aaagtcgagt ttaccactcc ctatcagtga	7500
tagagaaaag tgaaagtcga gtttaccact ccctatcagt gatagagaaa agtggaaagtc	7560
gagtttacca ctccctatca gtgatagaga aaagtggaaag tcgagttac cactccctat	7620
cagtgataga gaaaagtgaa agtcgagttt accactccct atcagtgata gagaaaagtg	7680
aaagtcgagt ttaccactcc ctatcagtga tagagaaaag tgaaagtcga aacctggcgc	7740
gcctcttaat taactcgctg taagatacat tgatgagttt ggacaaacca caactagaat	7800
gcagtgaaaa aaatgctta tttgtgaaat ttgtgatgct attgctttat ttgttaaccat	7860
tataagctgc aataaaacaag ttaacaacaa caattgcatt cattttatgt ttcagggtca	7920
gggggaggtg tgggaggttt tttaaagcaa gtaaaaccc tacaaatgtg gtatggctga	7980
ttatgatcag ttatctagat ccgggtggatc ttacgggtcc tccacccctt gcttttctt	8040
gggtcgagat ctcaggaaca ggtgggtggcg gcccctggcg cgctcgtaact gctccacgat	8100
ggtgttagtcc tcgttgggg aggtgatgtc cagcttggcg tccacgtagt agtagccggg	8160
cagctgcacg ggcttcttgg ccatgttagat ggacttgaac tccaccaggat agtggccgcc	8220
gtccttcagc ttcagggcct tgtgggtctc gcccctcagc acgcccgtgc ggggtacag	8280
gcccctggcg gaggcctccc agcccatggt ottcttcgc atcacggggc cgccggaggg	8340
gaagttcacg ccgtgaact tcaccctgtt gatgaagcag ccgtcctgca gggaggagtc	8400
ctgggtcacg gtcgccacgc cgccgtccctc gaagttcatc acgcgcctccc acttgaagcc	8460
ctcggggaaag gacagcttct tgttagtggg gatgtcggcg ggggtgctca cgtacacctt	8520
ggagccgtac tggaaactggg gggacaggat gtcccaggcg aagggcaggg ggcccccctt	8580
ggtcaccttc agcttcacgg tgggtggcc ctctgtgggg cgccctcgcc cctcgccctc	8640
gatctcgAACAC tcgtggccgt tcacgggtcc ctccatgcgc accttgaagc gcatgaactc	8700
ggtgatgacg ttctcggagg aggccatggt ggccgaccggg ttgcgttct tcttgggtgg	8760
ggtggggatct cccatgggtgg cctgaatctc aacttgcacc tgaaggtagt gcagcaagga	8820
ttagcaaaaag ggaagaacccc agaaaagaac gggaaaactt accccaatta gaattgcttg	8880
tccggccag tgtcaacttg caactgaaac aatatccaaac atgaacgtca atttatactg	8940
ccctaattggc gaacacgata acaatatttc ttttattatg ccctctaaaa ccaacgcgggt	9000
tatcgtttat ttattcaaat tagatataga acatccggccg acatacaatg ttaatgcaaa	9060
aacgcgtttg-gtgagcggat acgaaaacag tcggccgata aacattaatc tgagggtcgat	9120
aacaccgtcc ttgaacggaa cacgaggagc gtacgtgatc agctgcattc gcgccggcg	9180
cctttatcga gatttatttg catacaacaa gtacactgctg ccgttggat ttgtggtaac	9240
gccccacacat gcagagctgc aagtgtggca cattttgtct gtgcgaaaa cctttgaagc	9300
caaaaagtacg aggtccgtta cgggcattgct agcgcacacg gacaatggac cggacaaaatt	9360

ctacgccaag	gatttaatga	taatgtcggg	caacgtatcc	gttcatttta	tcaataacct	9420
acaaaaatgt	cgcgcgcac	acaaagacat	cgatatattt	aaacatttat	gtcccgaact	9480
gcaaatcgat	aatagtgtt	tgcaacctcg	agcgtccgtt	tgatttaacg	tatagcttgc	9540
aaatgaatta	tttaattatc	aatcatgttt	tacgcgtaga	attctacccg	taaagcgagt	9600
ttagttatga	gccatgtgca	aaacatgaca	tcagctttt	tttttataac	aaatgacatc	9660
atttcttgc	tgtgtttac	acgtagaatt	ctactcgtaa	agcgagttca	gttttgaaaa	9720
acaatgaca	tcatctttt	gattgtgc	tacaagttaga	attctacccg	taaatcaagt	9780
tcggtttga	aaaacaaatg	agtcatattg	tatgatatac	tattgaaaa	caaatgactc	9840
atcaatcgat	cgtgcgttac	acgtagaatt	ctactcgtaa	agcgagttt	tgagccgtgt	9900
gcaaaacatg	acatcatctc	gattgaaaa	acaaatgaca	tcatccactg	atcg	9960
acaagtagaa	ttctactcgt	aaagccagtt	cggttatgag	ccgtgtacaa	aacatgacat	10020
cagattatga	ctcatacttg	attgtgttt	acgcgtagaa	ttctactcgt	aaagccagtt	10080
caattttaaa	aacaaatgac	atcatccaaa	ttaataaaatg	acaagcaatg	ggtaccatgc	10140

<210> 21
 <211> 10522
 <212> DNA
 <213> Artificial

<220>
 <223> pLA1124

<400> 21	gtggtttttgc	tcaaacgaag	attctatgac	gtgtttaaag	tttaggtcga	gtaaagcgca	60		
	-aatctttttt	aaccctagaa	_agatagtctg	cgtaaaattt	acgc	atgc	cat	tcttgaata	120
	ttgctctctc	tttctaaata	g	cg	cg	at	cc	gt	180
	cgcttggagc	tcccgtgagg	cgt	gtt	gt	act	ga	ttt	240
	taacgaccgc	gtgagtcaaa	atgacgc	at	at	ttt	ttt	ttt	300
	ctcatacgat	aattatattt	ttat	ttat	ttat	ttt	ttt	ttt	360
	tat	ttt	ttt	ttt	ttt	ttt	ttt	ttt	420
	tgagcatatc	ctctctgctc	ttctgcaaag	cgatgac	cgag	ctt	gtt	gg	480
	cagtgaaata	tcagatcac	taagtgaaga	tgacgtcc	agc	gat	acag	aaga	540
	tatagatgag	gtacatgaag	tg	cag	cc	aa	g	cc	600
	aaatgttatt	gaacaaccag	gtt	ttt	catt	gg	ttt	cc	660
	gaggactatt	agaggtaaga	ata	aa	acattt	ttt	ttt	ttt	720
	ccgagtctct	gcactgaaca	tt	gt	tcagatc	gg	cc	cc	780
	ctctctctt	ctaaatagcg	cga	atcc	gtgc	attt	ttt	ttt	840
	ttggagctcc	caa	ac	cg	cc	ttt	ttt	ttt	900

ctcttgcttc tccattgtct cggttacctt tggtaaaatc catggttct attgcctata	960
tactcttgcg attaccagtg attgcgctat tagtattag atggattgtt ggccaaactt	1020
gtcgcttaag tggctggaa ttgttaaccgt aggcccaggt gtaatgatcc cccataaaaa	1080
gttttcgcaa tgcccttatt ttttgttca aatctcttt tattctgcgg tattcttcat	1140
tattgcgggg atggggaaag tgtttatata gaagcaactt acgattgaac ccaaattgcac	1200
ctgacaaggca aggtcaaagg gccagattt taaatatatt atttagtctt aggactctct	1260
atttgcaatt aaattacttt gctacctgag ggttaaatct tccccattga taataataat	1320
tccactatat gttcaattgg gttcacccgc gcttagttac atgacgagcc ctaatgagcc	1380
gtcggtggtc tataaactgt gccttacaaa tacttgcac tcttcgtt ttgaagtcag	1440
cagagttatt gctaattgct aattgctaatt tgcttttaac tgatttctt gaaattggtg	1500
ctatgtttat ggcgtattt acaagtatga atgtcagggtt taaccagggg atgcttaatt	1560
gtgttctcaa cttcaaaggc agaaaatgtt actcttgacc atgggtttag gtataatgtt	1620
atcaagctcc tcgagttAAC gttacgttAA cgttaacgtt cgaggtcgac tctagaacta	1680
cccaccgtac tcgtcaattt caagggcatc ggttaaacatc tgctcaaact cgaagtcggc	1740
catatccaga ggcgtttagg gggcgagtc gtggggggta aatccggac ccggggaaatc	1800
cccgcccccc aacatgtcca gatgaaatc gtcgtcccg tcggcatgctg ccatcgccac	1860
gtcctcgccg tctaagtggc gtcgtcccg caggctgaca tcggcgggg gggccgtcga	1920
cagtctgcgc gtgtgtcccg cggggagaaa ggacaggcgc ggagccgcca gccccgcctc	1980
ttcgccggcg tcgtcgccg ggagatcgag caggccctcg atggtagacc cgtaattgtt	2040
-tttcgtacgc- ggeggctgt acgcggggcc .cgagccgcac tcgcatttca gttgttttc	2100
caatccgcag ataatcagct ccaagccgaa caggaatgcc ggctcggttc cttgtatgtc	2160
gaacagctcg attgcctgac gcagcagtgg gggcatcgaa tcgggtgttgg gggtctcg	2220
ctcctttt ggcacttgat gtcgtggc ctccagcacg cagccaggg taaaagtgacc	2280
gacggcgctc agagcgtaga gagcattttc caggctgaag cttgtctggc acaggaacgc	2340
gagctggttc tccagtgtct cgtattgtt ttgcgtccgg cgcgtccga gatggacttt	2400
ggcacccgtct cggtgggaca gcagagcgcac gcggaaacgcac ttggcggtt tgccggaggaa	2460
gtcctgcccag gactcgccctt ccaacggca aaaatgcgtg tgggtggcggt cgagcatctc	2520
gatggccagg gcatccagca ggcggccgtt attcttcacg tgccagtaga gggtgggctg	2580
ctccacgccc agcttcgtcg ccaacttgcg ggtcgctagt ccctcaatgc- caacttcgtt	2640
caacagctcc aacgcggagt tgcgtactt ggacttatcc aggcggctgc ccatgggtgg	2700
ttctaaaggt gttataatc aaattagttt tggtttttct tgaaaacttt gcgtttccctt	2760
tgatcaactt accgccaggg taccgcagat tggttagctt gttcagctgc gcttgggtt	2820
ttgcgttagct ttgcgttagc gacgtgttca ctttgcgtgt ttgaattgaa ttgcgtcc	2880

gtagacgaag cgccctctatt tatactccgg cgctcgaaaaa	2940
agtgatagag aaaagtgaaa gtcgagttt ccactcccta tcagtgatag agaaaagtga	3000
aagtgcgagtt taccactccc tatcagtgtat agagaaaaagt gaaagtcgag tttaccactc	3060
cctatcagtatc atagagaaaaa gtgaaaagtgc agtttaccac tccctatcag tgatagagaa	3120
aagtgaaaagt cgagtttacc actccctatc agtgcgatagag aaaagtgaaa gtcgagttt	3180
ccactcccta tcagtgtatc agaaaaagtga aagtgcgaaac ctggcgcccgccatcg	3240
agaaaagagag agagaagaga agagagagaa cattcgagaa agagagagag aagagaagag	3300
agagaacata ctccctatca gtgcgatagaga agtccctatc agtgcgatagag atgtccctat	3360
cagtgataga gagttcccta tcagtgtatc agacgtccct atcagtgtata gagaagtcgg	3420
tatcagtgtatc agagagatcc ctatcagtga tagagatttc cctatcagtatc atagagaggt	3480
ccctatcagt gatagagact tccctatcag tgatagagaa atccctatca gtgcgatagaga	3540
catccctatc agtgcgatagag aactccctatc agtgcgataga gacccctatc tcagtgtatc	3600
agatcgcgatgc ggccgcatgg taccattgc ttgtcattta ttaatttggatgtgtcatt	3660
tgtttttaaa attgaaactgg cttaacgagt agaattctac gcgtaaaaca caatcaagta	3720
tgagtcataa tctgtatgtca tggtttgtac acggctcata accgaactgg cttaacgagt	3780
agaattctac ttgtatgtca cgatcagtgg atgatgtcat ttgttttca aatcgagatg	3840
atgtcatgtt ttgcacacgg ctcataaaact cgctttacga gtgcgatgtt acgtgtacg	3900
cacgatcgtatc tgcgatgtca ttgttttgc aatatgtat catacaaatat gactcatttgc	3960
tttttcaaaa ccgaacttgc ttacgggtt gaattctact tgtaaaggcac aatcaaaaag	4020
atgtatgtcat ttgttttca aaactgtact cgctttacga gtgcgatgtt acgtgtaaaa	4080
cacaatcaag aaatgtatgtc atttgttata aaaataaaag ctgtatgtcat ttgtttgcaca	4140
tggctcataa ctaaactcgc ttacgggtt gaattctacg cgtaaaacat gattgataat	4200
taaataatttca atttgcaaggc tatacgttac atcaaacggc cgctcgagggt tgccacaacac	4260
tattatcgtatc ttgcagttcg ggacataaat gttttatcgtatcgtatgttgc	4320
cgcgacattt ttgttaggttta ttgataaaaat gaacggatac gttgccgcatttattatcatta	4380
aatccttggc gtgcgatgttgc ttgggtccat tgcgtgttgc cgctgcgtatc cccgtacgg	4440
acctcgact ttgggtttca aagggtttgc gcacagacaa aatgtgccac acttgcagct	4500
ctgcgtatgtgt gcgcgttacc acaaatccccca acggcgacgt gtactgttgc tatgcataata	4560
aatctcgata aaggcgccgc gcgcgtatgc agctgtatcgtatcgtatgttgc	4620
tcaaggacgg tggttatcgtatcgtatgttgc ttacattgttgc ttgtatccgc	4680
tcaccaaaacg cgtttttgc ttacattgttgc ttgtatccgc ttgtatccgc	4740
ataaataaaac gataaccgcg ttgggttttag agggcataat aaaagaaata ttgttgcgtatcgtatcgtatgttgc	4800
gttgcgtatcgtatgttgc ttgtatccgc ttgtatccgc ttgtatccgc	4860

gacactggcg	gcgacaagca	attctaattg	ggtaagttt	tcccgttctt	ttctgggttc	4920
ttccctttg	ctcatccttgc	ctgcaactacc	ttcaggtgca	agttgagatt	caggccacca	4980
tggagatcc	caccccaccc	aagaagaagc	gcaaaccggt	cgccaccatg	gcctcctccg	5040
agaacgtcat	caccgagttc	atgcgcttca	aggtgcgcat	ggagggcacc	gtaacggcc	5100
acgagttcga	gatcgagggc	gagggcgagg	gccccccta	cgagggccac	aacaccgtga	5160
agctgaaggt	gaccaagggc	ggccccctgc	ccttcgcctg	ggacatcctg	tccccccagt	5220
tccagtacgg	ctccaagggt	tacgtgaagc	accccgccga	catccccgac	tacaagaagc	5280
tgtccttccc	cgagggcttc	aagtgggagc	gcgtgatgaa	cttcgaggac	ggcggcgtgg	5340
cgaccgtgac	ccaggactcc	tccctgcagg	acggctgctt	catctacaag	gtgaagttca	5400
tcggcgtgaa	cttccctcc	gacggccccc	tgatgcagaa	gaagaccatg	ggctgggagg	5460
cctccaccga	gcccctgtac	ccccgcgacg	gcgtgctgaa	ggcggagacc	cacaaggccc	5520
tgaagctgaa	ggacggcggc	cactacctgg	tggagttcaa	gtccatctac	atggccaaga	5580
agcccgtgca	gctgcccggc	tactactacg	tggacgccaa	gctggacatc	acctcccaca	5640
acgaggacta	caccatcg	gagcagtacg	agcgcaccga	ggccgcac	cacctgttcc	5700
ttagatctcg	acccaagaaa	aagcggagg	tggaggaccc	gtaagatcca	ccggatctag	5760
ataactgatc	ataatcagcc	ataccacatt	tgtagaggtt	ttacttgctt	taaaaaaacct	5820
cccacacctc	cccctgaacc	tgaaacataa	aatgaatgca	atttgtgtt	ttaacttgtt	5880
tattgcagct	tataatggtt	acaataaag	caatagcatc	acaatttca	caaataaagc	5940
attttttca	ctgcattcta	gttgtggttt	gtccaaactc	atcaatgtat	cttaacgcga	6000
gttaattaag	gcccgtcatt	taaatctggc	cgcccgcaac	cattgtggga	accgtgcgat	6060
caaacaaacg	cgagataccg	gaagtactga	aaaacagtgc	ctccaggcca	gtgggaacat	6120
cgatgttttgc	ttttgacgga	ccccctactc	tcgtctcata	taaaccgaag	ccagctaaga	6180
tggtatactt	attatcatct	tgtgatgagg	atgcttctat	caacgaaagt	accggtaaac	6240
cgcaaatggt	tatgtattat	aatcaaacta	aaggcggagt	ggacacgcta	gaccaaatgt	6300
gttctgtgat	gacctgcagt	aggaagacga	ataggtggcc	tatggcatta	ttgtacggaa	6360
tgataaacat	tgcctgcata	aattctttta	ttatatacag	ccataatgtc	agtagcaagg	6420
gagaaaaggt	ccaaagtcgc	aaaaaattta	tgagaaacct	ttacatgagc	ctgacgtcat	6480
cgtttatgcg	taagcgttta	gaagctccta	ctttgaagag	atatttgcgc	gataatatct	6540
ctaataattt	gccaaatgaa	gtgcctggta	catcagatga	cagtactgaa	gagccagtaa	6600
tgaaaaaaacg	tacttactgt	acttactgcc	cctctaaaat	aaggcgaaag	gcaaataatgc	6660
cgtcaaaaaa	atgcaaaaaaa	gttatttgtc	gagagcataa	tattgatatg	tgccaaagtt	6720
gtttctgact	gactaataag	tataatttgt	ttctattatg	tataagttaa	gctaattact	6780
tatTTTataa	tacaacatga	ctgttttaa	agtacaaaat	aagtttattt	ttgtaaaaga	6840

gagaatgttt aaaagtttg ttactttata gaagaaaattt tgagttttg tttttttta 6900
ataaataaaat aaacataaaat aaattgtttg ttgaatttat tattagtatg taagtgtaaa 6960
tataataaaa ctaaatatct attcaaatta ataaataaaac ctcgatatac agaccgataa 7020
aacacatgcg tcaattttac gcatgattat cttaacgta cgtcacaata tgattatctt 7080
tcttagggta aataatagtt tctaattttt ttattattca gcctgctgta gtgaataccg 7140
tatatctcaa cgctgtctgt gagattgtcg tattctagcc ttttagttt ttgcgtcatc 7200
gacttgatat tgtccgacac atttcgtcg atttgcgtt tgatcaaaga cttgaggaga 7260
gacacgttaa tcaactgttc aaattgatcc atattaacga tatcaacccg atgcgtatat 7320
ggtgctaaa atatattttt taaccctctt atactttgca ctctgcgtt atacgcgttc 7380
gtgtacagac gtaatcatgt tttcttttt ggataaaaact cctactgagt ttgacctcat 7440
attagaccct cacaagttgc aaaacgtggc attttttacc aatgaagaat ttaaagttat 7500
tttaaaaaat ttcacatcacag atttaaagaa gaaccaaaaa ttaaatttatt tcaacagttt 7560
aatcgaccag ttaatcaacg tgtacacaga cgcgtcggca aaaaacacgc agcccgacgt 7620
gttggctaaa attattaaat caacttgtgt tatagtcacg gatttgcgtt ccaacgtgtt 7680
cctcaaaaaag ttgaagacca acaagttac ggacactatt aattatttga ttttgcggca 7740
cttcattttg tgggatcaca attttgttat attttaaaca aagcttggca ctggccgtcg 7800
ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc cttgcagcac 7860
atcccccttt cgccagctgg cgtaatagcg aagaggccccg caccgatcgc cttcccaac 7920
agttgcgcag cctgaatggc gaatggcgcc tgatgcggta ttttctccctt acgcacatctgt 7980
.gcggtatattc.acaccgcata tggtgcaactc tcagtacaat ctgcgtctgat gcccgcata 8040
taagccagcc ccgacaccccg ccaacaccccg ctgacgcgcctc ctgacgggt tgcgtctcc 8100
cgccatccgc ttacagacaa gctgtgaccg tctccggag ctgcacatgtt cagaggttt 8160
caccgtcattc accgaaacgc gcgagacgaa agggcctcgat gatacgccata tttttatagg 8220
ttaatgtcat gataataatg gtttcttaga cgtcagggtgg cactttcgg ggaaatgtgc 8280
gcggaaacccc tattttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac 8340
aataaccctg ataaatgctt caataatatt gaaaaaggaa gagttatgcgtt attcaacatt 8400
tccgtgtcgc ctttattccct tttttgcgg cattttgcctc ttctgtttt gtcaccccg 8460
aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg 8520
.aactggatct caacagcggt aagatccttg agagtttgcg ccccgaaagaa cgttttccaa 8580
tgatgagcac ttttaaagtt ctgctatgtg gcgcggattt atcccgatatt gacgccgggc 8640
aagagcaact cggtcgccgc atacactatt ctcaaaatga cttgggttgcgt tactcaccag 8700
tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa 8760
ccatgagtgta taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc 8820

taaccgctt	tttgacacaac	atgggggatc	atgttaactcg	ccttgatcg	tgggaaccgg	8880
agctgaatga	agccatacca	aacgacgagc	gtgacaccac	gatgcctgta	gcaatggcaa	8940
caacgttgcg	caaactatta	actggcgaac	tacttactct	agcttcccgg	caacaattaa	9000
tagactggat	ggaggcggat	aaagttgcag	gaccacttct	gcgctcgcc	cttccggctg	9060
gctggtttat	tgctgataaaa	tctggagccg	gtgagcgtgg	gtctcgccgt	atcattgcag	9120
cactggggcc	agatggtaag	ccctcccgta	tcgttagttat	ctacacgacg	gggagtcagg	9180
caactatgga	tgaacgaaat	agacagatcg	ctgagatagg	tgcctcactg	attaagcatt	9240
ggtaactgtc	agaccaagtt	tactcatata	tacttttagat	tgatttaaaa	cttcattttt	9300
aatttaaaag	gatcttagtg	aagatccctt	ttgataatct	catgaccaaa	atcccttaac	9360
gtgagtttgc	gttccactga	gcgtcagacc	ccgtagaaaa	gatcaaagga	tcttctttag	9420
atcccttttt	tctgcgcgta	atctgctgct	tgcaaacaaa	aaaaccaccg	ctaccagcgg	9480
tggtttgg	gccggatcaa	gagctaccaa	ctcttttcc	gaaggtaact	ggcttcagca	9540
gagcgcagat	accaaatact	gtccttctag	tgtagccgta	gttaggccac	cacttcaaga	9600
actctgttagc	accgcctaca	tacctcgctc	tgctaattct	gttaccagtg	gctgctgcca	9660
gtggcgataa	gtcgtgtctt	accgggttgg	actcaagacg	atagttaccg	gataaggcgc	9720
agcggtcggg	ctgaacgggg	ggttcgtca	cacagcccag	cttggagcga	acgacacctaca	9780
ccgaactgag	atacctacag	cgtgagcatt	gagaaagcgc	cacgcttccc	gaagggagaa	9840
aggcggacag	gtatccggta	agcggcaggg	tcggaacagg	agagcgcacg	agggagcttc	9900
cagggggaaa	cgcctggat	ctttatagtc	ctgtcggtt	tcgccccctc	tgacttgaga	9960
gtcgattttt	-gtgatgctcg	-teagggggc-	ggagcctatg	gaaaaacgcc	agcaacgcgg	10020
cctttttacg	gttcctggcc	ttttgctggc	ottttgctca	catgttctt	cctgcgttat	10080
ccctgttattc	tgtggataac	cgttattaccg	cctttgagtg	agctgataacc	gctgcccga	10140
gccgaacgac	cgagcgcagc	gagtcagtga	gcgaggaagc	ggaagagcgc	ccaataacgca	10200
aaccgcctct	ccccgcgcgt	tggccgattc	attaatgcag	ctggcacgac	aggtttcccg	10260
actggaaagc	gggcagttag	cgcaacgaa	ttaatgttag	ttagctcact	cattaggcac	10320
cccaggctt	acactttatg	cttccggctc	gtatgttg	tggaattgtg	agcggataac	10380
aatttcacac	aggaaacagc	tatgaccatg	attacgaatt	tcgacactgca	ggcatgcaag	10440
cttgcatgcc	tgcaggtcga	cgctcgcccg	acttggtttg	ccattttta	gwgwgwgtcg	10500
cgtcacacag	cttggccaca	at				10522

<210> 22

<211> 11867

<212> DNA

<213> Artificial

<220>

<223> pLA1188

<400>	22					
gtggtttttg	tcaaacgaag	attctatgac	gtgtttaaag	tttaggtcga	gtaaagcgca	60
aatctttttt	aaccctagaa	agatagtctg	cgtaaaattg	acgcatgcat	tcttcaaata	120
ttgctctctc	tttctaaata	gcgcgaatcc	gtcgctgtgc	atttaggaca	tctcagtcgc	180
cgcttggagc	tcccgtgagg	cgtgcttgc	aatgcggtaa	gtgtcactga	ttttgaacta	240
taacgaccgc	gtgagtc当地	atgacgc当地	attatcttt	acgtgacttt	taagattnaa	300
ctcatacgat	aattatattt	ttatccatg	ttctacttac	gtgataactt	attatataata	360
tattttcttg	ttatagatat	cgtgactaat	atataataaa	atgggttagtt	cttttagacga	420
tgagcatatc	ctctctgtc	ttctgcaaag	cgatgacgag	cttgggttg	aggattctga	480
cagtgaataa	tcagatcacg	taagtgaaga	tgacgtccag	agcgatacag	aagaagcggt	540
tatagatgag	gtacatgaag	tgcaagccaa	gtcaagcggt	agtgaaaatat	tagacgaaca	600
aaatgttatt	gaacaaccag	gttcttcatt	ggcttcta	agaatcttga	ccttgccaca	660
gaggactatt	agaggttaaga	ataaacattt	ttggtcaact	tcaaagtcca	cgaggcgttag	720
ccgagtctct	gcactgaaca	ttgtcagatc	ggccccggcg	ccgttttct	tgaaatattt	780
ctctctctt	ctaaatagcg	cgaatccgtc	gctgtgcatt	taggacatct	cagtcgcccgc	840
ttggagctcc	caaacgcgcc	agtggtagta	cacagtactg	tgggtgttca	gtttgaaatc	900
ctcttgcttc	tccattgtct	cggcacctt	tggtcaaatc	catgggttct	attgcctata	960
tactcttgcg	attaccagt	attgcgtat	tagtatttag	atggattgtt	ggccaaactt	1020
gtcgcttaag	tggctggaa	ttgttaaccgt	aggcccaggt	gtaatgatcc	cccataaaaa	1080
--gttttcgca-	tgcctttatt-	tttttgtca	aatctctt	tattctgcgg	tattcttcat	1140
tattgcgggg	atggggaaag	tgttatata	gaagcaactt	acgattgaac	ccaaatgcac	1200
ctgacaaggca	aggtaaagg	gccagatttt	taaatatatt	atttagtctt	aggactctct	1260
atttgcaatt	aaattacttt	gctacctgag	ggttaaatct	tccccattga	taataataat	1320
tccactat	gttcaatttg	gttccaccgc	gcttagttac	atgacgagcc	ctaatgagcc	1380
gtcggtggtc	tataaactgt	gccttacaaa	tacttgcaac	tcttctcggt	ttgaagtctag	1440
cagagttatt	gctaattgt	aattgcta	tgcttttaac	tgatttctt	gaaattgggt	1500
ctatgtttat	ggcgctatta	acaagtatga	atgtcaggtt	taaccagggg	atgcttaatt	1560
gtgttctcaa	cttcaaaggc	agaaatgttt	actcttgacc	atgggtttag	gtataatgtt	1620
atcaagctcc	tcgagttaa	gttacgttaa	cgttaacggt	cgaggtcgac	tctagaacta	1680
cccaccgtac	tcgtcaattc	caagggcatc	ggttaacatc	tgctcaaact	cgaagtcggc	1740
catatccaga	gcgcgttagg	gggcggagtc	gtggggggta	aatccggac	ccggggaaatc	1800
cccgcccccc	aacatgtcca	gatcgaaatc	gtctagcgccg	tccgc当地	ccatcgccac	1860
gtcctcgccg	tctaagtgga	gctcgcccc	caggctgaca	tccgtcgffff	ggggccgtcga	1920

cagtcgtgcgc	gtgtgtcccc	cggggagaaaa	ggacaggcgc	ggagccgcca	gccccgcctc	1980
ttcggggcg	tcgttgtccg	ggagatcgag	caggccctcg	atggtagacc	cgtaattgtt	2040
ttcgtacgc	gcgcggctgt	acgcggggcc	cgagcccgcac	tcgcatttca	gttgctttc	2100
caatccgcag	ataatcagct	ccaagccgaa	caggaatgcc	ggctcggtc	cttgatgatc	2160
gaacagctcg	attgcctgac	gcagcagtgg	gggcattcgaa	tcggttgttgc	gggtctcgcg	2220
ctccttttt	gcgacttgat	gctctggtc	ctccagcacg	cagcccgagg	taaagtgacc	2280
gacggcgctc	agagcgtaga	gagcattttc	caggctgaag	cttgtctggc	acaggaacgc	2340
gagctggttc	tccagtgtct	cgtattgctt	ttcggtcggg	cgctgtccga	gatggacttt	2400
ggcaccgtct	cggtgggaca	gcagagcgca	gcggAACGAC	ttggcggttat	tgccggaggaa	2460
gtcctgccag	gactcgccctt	ccaacgggca	aaaatgcgtg	tggtggcggt	cgagcatctc	2520
gatggccagg	gcatccagca	gcccgcctt	attttcacc	tatagataacc	atagatgtat	2580
ggatttagtat	catatacata	caaaggctat	ttttgggaca	tattaatatt	aacaatttcc	2640
gtgatagttt	tcaccatttt	tgttgaatgt	tacgttggaaa	atttaaattt	gttttaaatt	2700
aattttacca	gtcatgtgtt	ctaaaaagtt	tttatgattt	aaacggcata	aagtggttca	2760
aaaatttatac	aagaaaggct	ttcccttttt	aaatcttatac	tttttcttctt	aaaaatcact	2820
agtcaattca	ttattaattt	gttaacttga	atttggaaatg	tctatttact	ttcagataaaa	2880
ttaaagcaag	aaacttaata	ttcgaaaaaa	attgattcta	aatggaaattt	cacttgatct	2940
tcatgtatgc	atatcaattt	ttatttacat	tgtataataa	gtttcgagtt	gattgttga	3000
atccacaggt	gtcccgagaga	attaaattcc	aaattaccac	agtttattga	atgttggatt	3060
tagtttca	tgctttgttg	ctgcaacaat	ggcttggta	ttgttagat	tttccctttc	3120
cttggtttac	ttattacata	gactgaaaaa	gaggttact	ttttgatac	ttatgaaaaa	3180
tttctattag	tgattactaa	ccaatcgcta	tatgtttact	agaaaaacaaa	taaactcttt	3240
acatataacat	tcaataatgt	ttgctctgta	accgacaatt	gaaggcgta	cagcaacagt	3300
aatataacta	gcttcctaac	cctcatctat	taaccccatc	gtttaaaaca	ctatgttaaa	3360
tggtctaaca	aatctagata	ctaatacgatg	tcttattact	tagcagccac	agctgcaaca	3420
tccaaagacaa	tttttggaaac	ttcttattga	gtcttggca	gcagaaatgt	tggtattttt	3480
cacagcttcc	tgaaagacccg	gcaccccttcc	ccgggtcccc	tttctgaatt	caagaggatt	3540
tccgacccccc	aattaatccc	gaaacaaata	aggtatattc	aaaatgatgg	aaaagtcatg	3600
gctgctgacc	ttatTTTAT	tccttattgat	agaatattat	tccctttta	aatacactgt	3660
actaaagaggt	ccggctataa	ttttactcac	ttgtcgat	tcccatagaa	tgttggatt	3720
agttggttgc	ttttccaggt	gagagttgat	caagtcacaa	aagttagcgt	gtgttggatt	3780
tagatttggaa	ggtaaaataa	tttttgacc	cattcatcg	gtaaaacgtt	ctccatagaa	3840
tacatttcca	tcgataattt	ataactttag	aatttcaaag	aaaaaaatat	gttttaaaa	3900

ttacgtgcca gtagagggtg ggctgctcca cgcccagctt ctgcggcaac ttgcgggtcg	3960
tcagtccctc aatgccaaact tcgttcaaca gctccaacgc ggagttgatg actttggact	4020
tatccaggcg gctgccccatg gtggtttcta aagggtttat aaatcaaatt agttttgttt	4080
tttcttgaaa actttgcgtt tccttgatc aacttaccgc cagggtaccg cagattgttt	4140
agcttgttca gctgcgctt ttttttgc tagtttgc ttagcgacgt gttcactttgc	4200
cttggttgaa ttgaatttgc gctccgtaga cgaagcgctt ctatttatac tccggcgctc	4260
gttttcgagt ttaccactcc ctatcagtga tagagaaaaag tgaaagtgc gtttaccact	4320
ccctatcagt gatagagaaaa agtggaaatgc gagtttacca ctccctatca gtgatagaga	4380
aaagtggaaatgc tcgagtttac cactccctat cagtgataga gaaaagtggaa agtcgagttt	4440
accactccct atcagtgata gagaaaaatgc aaagtcgagt ttaccactcc ctatcagtga	4500
tagagaaaaatgc tgaaagtgc gtttaccact ccctatcagt gatagagaaaa agtggaaatgc	4560
gaaacctggc gcgcgcgcgc catcgagaaaa gagagagaga agagaagaga gagaacattc	4620
gagaaaaagaga gagagaagag aagagagaga acataactccc tatcagtgat agagaagtcc	4680
ctatcagtga tagagatgtc cctatcagtga atagagagtt ccctatcagt gatagagacgc	4740
tccctatcagt tgatagagaa gtcctatca gtgatagaga gatccctatc agtgatagag	4800
atttccctat cagtgataga gaggtcccta tcagtgatag agacttccct atcagtgata	4860
gagaaaaatccc tatcagtgat agagacatcc ctatcagtga tagagaactc cctatcagtgc	4920
atagagacct ccctatcagt gatagagatc gatgcggccg catggtaacc attgcttgc	4980
atttattaaat ttggatgatg tcatttgc ttaaaattga actggctta cgagtagaaat	5040
tcatacgcgtaa aacacacaatc aagtatgatgatacatctga tgtcatgttt tgtacacggc	5100
tcataaccga actggctta cgagtagaaat tctacttgcata atgcacgatc agtggatgat	5160
gtcatttgc ttccaaatcg agatgatgtc atgtttgcac cacggctcat aaaactcgctt	5220
tacgagtaga attctacgtg taacgcacga tcgattgatg agtcatttgc ttgcataat	5280
gatatcatac aatatgactc atttgcattttt caaaaaccgaa cttgatttac gggtagaaatt	5340
ctacttgcata agcacaatca aaaagatgat gtcatttgc ttcaaaaact gaactcgctt	5400
tacgagtaga attctacgtg taaaacacaa tcaagaaaatg atgtcatttgc ttataaaaat	5460
aaaagctgat gtcatttgc ttcaaaaact gtcatttgc cataactaaa ctcgcatttac gggtagaaatt	5520
ctacgcgtaa aacatgatttgcataat aattcattttgcataatcatac gttaaaatcaaa	5580
.acggacgcgtc gaggttgcac aacacttata tcgatttgcataatcatac gttaaaatcaaa	5640
aatatatcgatgtcattttgcataatcataatcatac gttatttgcataatcatac gttaaaatcaaa	5700
gatacgttgc ccgacattat cattaaatcc ttggcgtaga atttgcggg tccattgtcc	5760
gtgtgcgtca gcatgcccgt aacggacctc gtactttgg cttcaaaggt tttgcgcaca	5820
gacaaaaatgt gccacacttgc cagctctgca tgtgtgcgcg ttaccacaaa tcccaacggc	5880

gcagtgtact tgggttatgc aaataaatct cgataaaggc gcggcgcg aatgcagctg	5940
atcacgtacg ctccctcggt tccgttcaag gacgggttta tcgaccctag attaatgttt	6000
atcgccgac tggttcgtta tccgctcacc aaacgcgtt ttgcattaaac attgtatgtc	6060
ggcggatgtt ctatatctaa tttgaataaa taaacgataa ccgcgttggt tttagagggc	6120
ataataaaaag aaatattgtt atcggtttcg ccattaggc agtataaatt gacgttcatg	6180
ttggatattg ttccgttgc aagttgacac tggcggcgac aagcaattct aattgggttta	6240
agttttcccg ttctttctg ggttcttccc tttgctcat ctttgcgtca ctaccttcag	6300
gtgcaagttg agattcaggc caccatgggat gatcccaccc cacccaaagaa gaagcgcaaa	6360
ccggtcgcca ccatggcctc ctccgagaac gtcatcaccc agttcatgcg cttcaagggtg	6420
cgcacatggagg gcaccgtgaa cggccacgag ttccgagatcg agggcgaggg cgagggccgc	6480
ccctacgagg gccacaacac cgtgaagctg aaggtgacca agggcggccc octgcccctc	6540
gcctgggaca tcctgtcccc ccagttccag tacggctcca aggtgtacgt gaagcacc	6600
gccgacatcc ccgactacaa gaagctgtcc ttccccgagg gcttcaagtg ggagcgcgtg	6660
atgaacttcg aggacggcg cgtggcgacc gtgaccagg actccctccct gcaggacggc	6720
tgcttcatct acaaggtgaa gttcatcgcc gtgaacttcc cctccgacgg ccccgtgatg	6780
cagaagaaga ccatggctg ggaggcctcc accgagcgcc tgtacccccc cgacggcgtg	6840
ctgaagggcg agaccacaa ggccctgaag ctgaaggacg gcggccacta cctggtgag	6900
ttcaagtcctt cttccatggc caagaagccc gtgcagctgc ccggctacta ctacgtggac	6960
gccaaagctgg acatcaccc tcacaaacgag gactacacca tcgtggagca gtacgagcgc	7020
accgagggcc_gccaccacct gttccctgaga tctcgaccctt agaaaaagcg gaaggtggag	7080
gaccgcgtt atccaccgga tctagataac tgatcataat cagccataacc acatttgcgt	7140
aggtttact tgctttaaaa aacctccac acctccccctt gaacctgaaa cataaaatgt	7200
atgaaattgt tgggtttaac ttgtttattt cagttataaa tggttacaaa taaagcaata	7260
gcatcacaaa ttccacaaa aaagcatttt ttccactgca ttcttagttt ggttgtcca	7320
aactcatcaa tggatctttaa cgcgagttaa ttaaggccgc tcattttaaat ctggccggcc	7380
gcaaccattt tggaaaccgt gcatcaaac aaacgcgaga taccggaaatg actgaaaaac	7440
agtgcgttca ggccagtggg aacatcgatg ttttgcgtt acggaccct tactctcg	7500
tcatataaac cgaagccagc taagatggta tacttattat catcttgcgttgatgt	7560
tctatcaacg aaagtaccgg taaaccgaa atggttatgtt attataatca aactaaaggc	7620
ggagtggttca cgcttagacca aatgtttctt gtgtatgttgcgttgcgttgcgttgcgtt	7680
tggcctatgg cattattgtt cggaaatgtt aacattgcgttgcgttgcgttgcgttgcgttgcgtt	7740
tacagccata atgtcagtagt caagggagaa aaggtccaaa gtcgcaaaaa atttatgaga	7800
aacccttaca tgaggctgac gtcatcgatg tgggttgcgttgcgttgcgttgcgttgcgttgcgtt	7860

aagagatatt tgccgcataa tatctcta atttgccaa atgaagtgcc tggcacatca 7920
gatgacagta ctgaagagcc agaatgaaa aaacgtactt actgtactta ctgcccctct 7980
aaaataaggc gaaaggcaaa tgcacgtgc aaaaaatgca aaaaagttat ttgtcgagag 8040
cataatattt atatgtgcc aagttgttc tgactgacta ataagtataa tttgtttctta 8100
ttatgtataa gttaagctaa ttacttattt tataatacaa catgactgtt tttaaagtac 8160
aaaataagtt tattttgtta aaagagagaa tgttaaaag ttttgttact ttatagaaga 8220
aattttgagt tttgttttt ttttaataaaa taaataaaaca taaataaaatt gtttgtgaa 8280
tttatttataa gtatgttaatgt gtaaatataa taaaacttaa tatctattca aattaataaa 8340
taaacctcga tatacagacc gataaaacac atgcgtcaat tttacgcatg attatcttta 8400
acgtacgtca caatatgatt atctttcttag gtttaataa tagttctaa tttttttattt 8460
attcagccctg ctgtcgtgaa taccgtatata ctcaacgctg tctgtgagat tgctgtattc 8520
tagcctttttt agttttcgc tcatcgactt gatattgtcc gacacatttt cgctcgatttg 8580
cgttttgatc aaagacttga gcagagacac gttaatcaac tgttcaaatt gatccatatt 8640
aacgatatac acccgatgca tatatggtgc gtaaaatata ttttttaacc ctcttataact 8700
ttgcactctg cgttaatacg cggtcgtgta cagacgtaat catgtttct tttttggata 8760
aaactccctac tgagtttgac ctcataattag accctcacaa gttgcaaaac gtggcatttt 8820
ttaccaatga agaatttaaa gttattttaa aaaatttcat cacagattta aagaagaacc 8880
aaaaatttaaa ttatttcaac agtttaatcg accagttaat caacgtgtac acagacgcgt 8940
cggcaaaaaaaaaa cacgcagccc gacgtgttgg ctaaaattat taaatcaact tgtgttatag 9000
tcacggattt _gccccgtccaaac_gtcgttccctca aaaagttgaa gaccaacaag tttacggaca 9060
ctattaatta ttgttattttt cccccacttca ttttgcgttca tcacaattttt gttatatttt 9120
aaacaaagct tggcactggc cgtcgtttta caacgtgtg actggaaaaa ccctggcggt 9180
acccaactta atcgcccttgc agcacatccc ccttcgcca gctggcgtaa tagcgaagag 9240
gccccgcacccg atcgcccttc ccaacagttg cgccagcctga atggcgaatg gcccctgtatg 9300
cggttattttc tccttacgca tctgtgcgggt atttcacacc gcatatggtg cactctcagt 9360
acaatctgct ctgatgccgc atagtttaagc cagccccgac acccgccaac acccgctgac 9420
gccccctgac gggcttgcgt gctccggca tccgcttaca gacaagctgt gaccgtctcc 9480
gggagctgca tggcgtcagag gttttcacccg tcacccgttca aacgcgcgag acgaaaaggcc 9540
ctcggtatac gccttattttt ataggttaat gtcatgataa taatggttc-ttagacgtca 9600
ggtggcactt ttccggaaaa tggcgtcggca accccctattt gtttattttt ctaaatacat 9660
tcaaatatgt atccgctcat gagacaataa ccctgataaa tgcttcaata atattgaaaa 9720
aggaagagta tgagtattca acatttccgt gtcggccctta ttccctttt tgccggcattt 9780
tgccctcctg ttttgctca cccagaaaacg ctggtgaaag taaaagatgc tgaagatcag 9840

ttgggtgcac gagtgggta catcgaactg gatctcaaca gcggtaagat ctttgagagt	9900
tttcgccccg aagaacgtt tccaatgatg agcactttt aagttctgct atgtggcgcg	9960
gtattatccc gtattgacgc cggcaagag caactcggtc gccgcataca ctattctcag	10020
aatgacttgg ttgagtagtc accagtcaca gaaaagcatc ttacggatgg catgacagta	10080
agagaattat gcagtgcgc cataaccatg agtataaca ctgcggccaa cttacttctg	10140
acaacgatcg gaggaccgaa ggagctaacc gctttttgc acaacatggg ggatcatgta	10200
actcgccttgc atcgttgga accggagctg aatgaagcca taccaaaccg cgagcgtgac	10260
accacgatgc ctgttagcaat ggcaacaacg ttgcgcaaac tattaactgg cgaactactt	10320
actctagctt cccggcaaca attaatagac tggatggagg cggataaaagt tgcaggacca	10380
cttctgcgtcgccggcccttcc ggctggctgg tttattgctg ataaatctgg agccggtag	10440
cgtgggtctc gcggtatcat tgcaactg gggccagatg gtaagccctc ccgtatcgta	10500
gttatctaca cgacggggag tcaggcaact atggatgaac gaaatagaca gatcgctgag	10560
ataggtgcct cactgattaa gcattggtaa ctgtcagacc aagttactc atatataactt	10620
tagattgatt taaaactca ttttaattt aaaaggatct aggtgaagat ctttttgat	10680
aatctcatga caaaaatccc ttaacgtgag tttcggttcc actgagcgctc agaccccgta	10740
gaaaagatca aaggatcttc ttgagatcct tttttctgc gcgtaatctg ctgcttgaa	10800
acaaaaaaaaac caccgctacc agcggtggtt tggttgcgg atcaagagct accaactctt	10860
tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag	10920
ccgtagtttag gccaccactt caagaactct gtacgaccgc ctacataacct cgctctgcta	10980
atccgttac.cagtggtc tgccagtggc gataagtctgt gtcttaccgg gttggactca	11040
agacgatagt taccggataa ggcgcagcgg tcgggctgaa cgggggggttc gtgcacacag	11100
cccgagttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gcattgagaa	11160
agcgccacgc ttcccgaagg gagaaggcg gacaggtatc cggttaagcgg cagggtcgg	11220
acaggagagc gcacgaggga gcttccaggg gaaaacgcct ggtatctta tagtcctgtc	11280
gggttcgccc acctctgact tgagcgtcga tttttgtat gtcgtcagg ggggcggagc	11340
ctatggaaaa acgccagcaa cgccgcctt ttacgggttcc tggccttttgc tggcctttt	11400
gctcacatgt tcttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt	11460
gagttagctg ataccgctcg ccgcagccga acgaccgagc gcagcgtgc agtgagcgg	11520
gaagcggaaag agcgccaaat acgcaaaceg cctctcccg cgcgtggcc gattcattaa	11580
tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgc当地 cgcaattaa	11640
gtgagtttagc tcactcatta ggcacccag gctttacact ttatgcttcc ggctcgatgc	11700
tttgttgaa ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac	11760
gaatttcgac ctgcaggcat gcaagcttgc atgcctgcag gtcgacgc当地 gcgcgacttg	11820

gtttgccatt	cttttagcgcg	cgtcgctca	cacagcttgg	ccacaat	11867	
<210> 23						
<211> 10786						
<212> DNA						
<213> Artificial						
<220>						
<223> pLA670						
<400> 23						
ggccgctcat	ttaaatctgg	ccggccgcaa	ccattgtggg	aaccgtgcga	tcaaacaaac	60
gcgagatacc	ggaagtactg	aaaaacagtc	gctccaggcc	agtggaaaca	tcgatgtttt	120
gttttgcgg	acccttact	ctcgctctat	ataaaccgaa	gccagctaag	atggtataact	180
tattatcatac	tttgtatgag	gatgcttcta	tcaacgaaag	taccggtaaa	ccgcaaattgg	240
ttatgtatta	taatcaaact	aaaggcggag	tggacacgct	agaccaaattg	tgttctgtga	300
tgacctgcag	taggaagacg	aatagggtggc	ctatggcatt	attgtacgga	atgataaaaca	360
ttgcctgcat	aaattctttt	attatataca	gccataatgt	cagtagcaag	ggagaaaagg	420
tccaaagtgc	caaaaaattt	atgagaaacc	tttacatgag	cctgacgtca	tcgttttatgc	480
gtaagcgttt	agaagctcct	actttgaaga	gatatttgcg	cgataatatc	tctaataatttt	540
tgc当地atga	agtgcctggt	acatcagatg	acagtaactga	agagccagta	atgaaaaaaac	600
gtacttaactg	tacttactgc	ccctctaaaa	taaggcgaaa	ggcaaatgca	tcgtgc当地aa	660
aatgc当地aaa	agttattttgt	cgagagcata	atattgatat	gtgc当地aa	tgttctgtac	720
tgactaataa	gtataatttg	tttctattat	gtataagtta	agctaattac	ttatttata	780
atacaacatg	actgtttta	aagtacaaaa	taagtttatt	tttgtaaaag	agagaatgtt	840
taaaaagtttt	gttactttat	agaagaaatt	ttgagttttt	gtttttttt	aataaataaaa	900
taaacataaa	taaatttttt	gttgaattta	ttattttat	gtaagtgtaa	atataataaaa	960
acttaataatc	tattcaaatt	aataaataaa	cctcgatata	cagaccgata	aaacacatgc	1020
gtcaattttta	cgc当地atgat	tctttaacgt	acgtcacaat	atgattatct	ttctagggtt	1080
aaataatagt	ttctaaatttt	tttatttttc	agcctgctgt	cgtgaatacc	gtatatctca	1140
acgctgtctg	tgagattgtc	gtattctagc	cttttttagtt	tttcgctcat	cgacttgata	1200
ttgtccgaca	cattttcgtc	gatttgcgtt	ttgatcaaag	acttgaggcag	agacacgtta	1260
atcaactgtt	caaattgtatc	catattaacg	atatacc	gatgcgtata	ttgtgcgtaa	1320
aatatatttt	ttaaccctct	tatactttgc	actctgcgtt	aatacgcgtt	cgtgtacaga	1380
cgtaatcatg	ttttcttttt	tggataaaaac	tcctactgag	tttgacctca	tattagaccc	1440
tcacaagttg	caaaaacgtgg	catttttac	caatgaagaa	tttaaagtta	ttttaaaaaa	1500
tttcatcaca	gatttaaaga	agaaccaaaa	attaaattat	ttcaacagtt	taatcgacca	1560
gttaatcaac	gtgtacacag	acgogtcggc	aaaaaaacacg	cagcccgacg	tgttggctaa	1620

aattattaaa tcaacttgtg ttatagtcac ggatttgcgg tccaacgtgt tcctcaaaaa	1680
gttgaagacc aacaagtta cggacactat taattatttg attttgcggc acttcatttt	1740
gtgggatcac aattttgtta tattttaaac aaagcttggc actggccgtc gttttacaac	1800
gtcgtgactg ggaaaacctt ggcgttaccc aacttaatcg cttgcagca catccccctt	1860
tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg cccttcccaa cagttgcgcga	1920
gcctgaatgg cgaatggcgc ctgatgcggt attttctcct tacgcatctg tgccgttattt	1980
cacaccgcacat atggtgcaact ctcagtacaa tctgctctga tgccgcatacg ttaagccagc	2040
cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg	2100
cttacagaca agctgtgacc gtctccggga gctgcatacg tcagaggttt tcaccgtcat	2160
caccgaaacg cgcgagacga aagggcctcg tgatacgcct atttttatag gttaatgtca	2220
tgataataat ggtttcttag acgtcagggtg gcactttcg gggaaatgtg cgccgaaccc	2280
ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct	2340
gataaatgct tcaataatat taaaaaggaa agatgtatgag tattcaacat ttccgtgtcg	2400
cccttattcc cttttttgcg gcattttgcc ttccctgttt tgctcacccca gaaacgctgg	2460
tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc	2520
tcaacagcgg taagatcctt gagagtttc gccccgaaga acgtttcca atgatgagca	2580
cttttaaagt tctgctatgt ggcgcggtat tatcccgat tgacgcccgg caagagcaac	2640
tcggcgcgcg catacactat tctcagaatg acttgggtga gtactcacca gtcacagaaa	2700
agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg	2760
ataacactgc ggccaactta cttctgacaa cgatcgagg accgaaggag ctaaccgctt	2820
ttttgcacaa catggggat catgtaactc gccttgatcg ttgggaaccg gagctgaatg	2880
aagccataacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc	2940
gcaaactatt aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga	3000
tggaggcggaa taaagttgca ggaccacttc tgcgctcgcc cttccggct ggctggttta	3060
ttgctgataa atctggagcc ggtgagcgtg ggtctcgccg tatcattgca gcactggggc	3120
cagatggtaa gcccctccgt atcgtagttt tctacacgac ggggagtcag gcaactatgg	3180
atgaacgaaa tagacagatc gctgagatag gtgcctcaact gattaagcat tggtaactgt	3240
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa	3300
ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatccctaa cgtgagtttt	3360
cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttgc gatccttttt	3420
ttctgctcggt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgg	3480
tgccggatca agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga	3540
taccaaatac tgtccttcta gtgtagccgt agttaggcac ccacttcaag aactctgttag	3600

caccgcctac atacctcgct ctgctaattcc tggtaaccgt ggctgctgcc agtggcgata	3660
agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg	3720
gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga	3780
gatacctaca gcgtgagcat tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca	3840
ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa	3900
acgcctggta tccttatagt cctgtcggtt ttcgcccacct ctgacttgag cgtcgatttt	3960
tgtgatgctc gtcagggggg cggagcctat gaaaaaacgc cagcaacgcg gccttttac	4020
ggttcctggc cttttgcgtt cctttgctc acatgttctt tcctgcgtta tccccgtatt	4080
ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc agccgaacga	4140
ccgagcgcag cgagtcagt agcgaggaag cggaaagagcg cccaatacgc aaaccgcctc	4200
tccccgcgc ttggccgatt cattaatgca gctggcacga caggttccc gactggaaag	4260
cgggcagtga ggcgaacgca attaatgtga gttagctcac tcattaggca cccaggctt	4320
tacactttat gcttccggct cgtatgtgt gtggattgt gagcggataa caatttcaca	4380
cagaaaaacag ctatgaccat gattacgaat ttgcacctgc aggcatgcaa gcttgcacgc	4440
ctgcaggctcg acgctcgccg gacttggttt gccattctt agcgcgcgtc gcgtcacaca	4500
gcttggccac aatgtggttt ttgtcaaacg aagattctat gacgtttta aagtttaggt	4560
cgagtaaagc gcaaattttt tttaacccta gaaagatagt ctgcgtaaaa ttgacgcatt	4620
cattcttcaa atattgctct ctctttctaa atagcgcgaa tccgctcgctg tgcatttagg	4680
acatctcagt cggcgcttgg agctcccggt aggcgtgtt gtcaatgcgg taagtgtcac	4740
tgatittgaa ctataacgac cgcgtgagtc aaaatgacgc atgattatct ttacgtgac	4800
tttaagatt taactcatac gataattata ttgttatttc atgttctact tacgtgataa	4860
cttattatata atatattttc ttgttataga tatcgtgact aatataataaaaatggta	4920
gttctttaga cgtgagcat atcctctctg ctcttctgca aagcgatgac gagcttgg	4980
gtgaggattc tgacagtgaa atatcagatc acgttaagtga agatgacgtc cagagcgata	5040
cagaagaagc gtttatagat gaggtacatg aagtgcagcc aacgtcaagc ggtagtgaaa	5100
tattagacga acaaaaatgtt attgaacaac caggttcttc attggcttct aacagaatct	5160
tgaccttgcc acagaggact attagaggta agaataaaca ttgttggtca acttcaaagt	5220
ccacgaggcg tagccgagtc tctgcactga acattgtcag atcggcccg ggcggcttt	5280
tcttggaaata ttgcgtctc tttctaaata gcgcgaatcc gtcgctgtgc atttaggaca	5340
tctcagtcgc cgcttggagc tcccaaacgc gccagtggtt gtacacagta ctgtgggtgt	5400
tcagtttggaa atcctcttc ttctccatttgc tctcggttac ctgtggtaaa atccatgggt	5460
tctattgcct atatacttcc gcgattacca gtgattgcgc tattagctat tagatggatt	5520
gttggccaaa cttgtcgctt aagtggctgg gaattgtAAC cgtaggcccc agtgtaatga	5580

tccccataa aaagtttcg caatgcctt atttttgtt gcaaatctct ctttattctg	5640
cggtattctt cattattgcg gggatggga aagtgttat atagaagcaà cttacgattg	5700
aacccaaatg cacctgacaa gcaaggtaa agggccagat ttttaaatat attattnat	5760
cttaggactc tctatttgc attaaattac tttgctacct gagggtaaa tcttccccat	5820
tgataataat aattccacta tatgttcaat tgggtttcac cgcgcttagt tacatgacga	5880
gccctaataa gccgtcggtg gtctataaac tgtgccttac aaatacttgc aactcttctc	5940
gtttgaagt cagcagagtt attgctaatt gctaattgtc aattgtttt aactgatttc	6000
ttcgaatttgcgttatgtt tatggcgcta ttaacaagta tgaatgtcag gtttaaccag	6060
gggatgctt attgtgttct caacctaaa ggcagaaatg tttactctt accatgggtt	6120
taggtataat gttatcaagc tcctcgagtt aacgttacgt taacgttaac gttcgaggc	6180
gactctagaa ctacccaccc tactcgtcaa ttccaagggc atcggtaaac atctgctcaa	6240
actcgaagtc ggccatatcc agagcgccgt agggggcgga gtcgtgggg gtaaatcccg	6300
gaccgggga atccccgtcc cccaaacatgt ccagatcgaa atcgtctagc gcgtcggcat	6360
gcgcacatcgac cacgtcctcg ccgtctaagt ggagctcgcc ccccaggctg acatcggtcg	6420
ggggggccgt cgacagtctg cgctgtgtc ccggggagatc gagcaggccc tcgatggtag	6480
ccagccccgc ctcttcgggg gcgtcgctgt ccgggagatc gagcaggccc tcgatggtag	6540
acccgttaatt gtttttagta cgcgcgcggc tgtacgcggg gcccggcccc gactcgccatt	6600
tcagttgctt ttccaaatccg cagataatca gtcctcaagcc gaacaggaat gcccggctcg	6660
ctccttgatg atcgaacacgc tcgattgcct gacgcagcag tgggggcattc gaatcggttg	6720
ttgggtctc_gcgctcctctttgcgactt_gatgctcttgcgtccctcagc acgcagccca	6780
gggtaaagtgc accgacggcg ctcagagcgt agagagcatt ttccaggctg aagccttgc	6840
ggcacaggaa cgcgagctgg ttctccagtg tctcgatatttgcgtccctcagc acgtcgccat	6900
cgagatggac tttggcaccgc tctcggtggg acagcagagc gcagcggAAC gacttggcgt	6960
tattgcggag gaagtccctgc caggactcgc cttccaaacgg gaaaaatgc gtgtggggc	7020
ggtcgagcat ctcgatggcc agggcatcca gcagcggcccg cttattcttc acgtcgccat	7080
agagggtggg ctgctccacg cccagcttct ggcggccactt ggcggccgtc agtccctcaa	7140
tgccaaacttc gttcaacacgc tccaaacgcgg agttgatgac tttggactta tccaggcggc	7200
tgcccatggt ggtttctaaa ggtgttataa atcaaattatg ttttgtttt tcttgaaaac	7260
tttgcgttcc ctttgcgttcaaa-cttaccgcga-gggtaccgca gattgttttag cttgttgc	7320
tgcgcttgcgtt tatttgcgtt gcttcgcatt agcgacgtgt tcactttgcgt tggttgcatt	7380
gaattgtcgac tccgttagacg aagcgccctt atttatactc cggcgctgtt tttcgagttt	7440
accactccct atcagtgata gagaaaatgc aaagtcgagt ttaccactcc ctatcgtga	7500
tagagaaaag tgaaagtgcgatgttaccact ccctatcgt gatagagaaa agtggaaatgc	7560

gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagttac cactccatat	7620
cagtgataga gaaaagtgaa agtcgagttt accactccct atcagtgata gagaaaagtg	7680
aaagtcgagt ttaccactcc ctatcagtga tagagaaaag tgaaagtcga aacctggcgc	7740
gcctcttaat taactcggtt taagatacat tgatgagttt ggacaaacca caactagaat	7800
gcagtgaaaa aaatgctttt ttttgaaat ttgtgatgct attgctttat ttgttaaccat	7860
tataagctgc aataaacaag ttaacaacaa caattgcatt catttatgt ttcaggttca	7920
gggggaggtg tgggaggttt tttaaagcaa gtaaaacctc tacaaatgtg gtatggctga	7980
ttatgatcag ttatcttagat ccggtggtatc ttacgggtcc tccaccttcc gcttttctt	8040
gggtcgagat ctcaggaaca ggtggtggcg gccctcggtg cgctcgtaact gctccacgat	8100
ggtgttagtcc tcgttgtggg aggtgatgtc cagcttggcg tccacgtagt agtagccggg	8160
cagctgcacg ggcttcttgg ccatgttagat ggacttgaac tccaccaggt agtggccgcc	8220
gtccttcagc ttcaaggccct tgggtgtcc gcccctcagc acgcccgtgc ggggtacag	8280
gctcggtg gaggcctccc agcccatggt cttcttctgc atcacggggc cgtcggaggg	8340
gaagttcacg ccgatgaact tcaccttgc gatgaagcag ccgtcctgca gggaggagtc	8400
ctgggtcacg gtcgcccacgc cgccgtcctc gaagttcatc acgcgtccc acttgaagcc	8460
ctcgggaaag gacagcttct tgggtcggtt gatgtcggtcg ggggtctca cgtacacctt	8520
ggagccgtac tggaaacttggg gggacaggat gtcccaggcg aagggcaggg ggccgcctt	8580
ggtcaccttc agttcacgg tgggtggcc ctcgttagggg cgccctcgcc ctcgccttc	8640
gatctcgaac tcgtggccgt tcacggtgcc ctccatgcgc accttgaagc gcatgaactc	8700
gggtgatgacg ttctcgagg aggccatggt ggccacctgt ttgcgtttct tcttgggtgg	8760
ggtgggatcc ccgatctgca ttttggatta ttctcggtt caaaatagag atgtggaaaa	8820
tttagtacgaa atcaaatgag tttcggttca attacaaaac tattgaaact aacttcctgg	8880
ctgggaaata aaaatggaa acttattttat cgacgccaac tttgttgaga aacccttatt	8940
aaccctctac gaatatttgg acaaaggaaa gcgaagaaa acggacaaaag gtagttgaga	9000
aacctgttcc gttgctcgatc atcggtttca taatgcgagt gtgtgcgtt atatatacac	9060
agctgaaacg catgcataca cattatgg tggatgtatgt gtgacgtcac aactactaag	9120
caataagaaa tttccagac gtggcttcg tttcaagcaa cctactctat ttctggctaa	9180
aataagtggaa ttccgttggt aaaatacttc aattaagcaa agaactaact aactaataac	9240
atgcacacaaa atgctcgagt gcgttcgtga tttctcgat tttcaaatgc gtcactgcga	9300
atttcacaat ttgccaataa atcttggcgaa aatcaacac gcaagtttta ttatagatt	9360
tgtttcggtt ttgtatgcca ttgattgggaa aaacaagatg cgtggctgcc aatttcttat	9420
tttgttattt cgtagagcgt tgaataaaaaaaa aaaaatggcc gaacaaagac cttgaaatgc	9480
agtttttctt gaaattactc aacgtttgt tgctttatt actaattggt aacagcgagt	9540

taaaaaactta	cgtttcttgt	gactttcgag	aatgttcttt	taattgtact	ttaatcacca	9600
acaattaagt	ataaaatttt	cgctgattgc	gctttacttt	ctgcttgtac	ttgctgctgc	9660
aaatgtcaat	tggtttgaa	ggcgaccgtt	cgcgaacgct	gtttatatac	cttcgggtgc	9720
cgttgaaaat	cactaaaaaa	taccgttagtg	ttcgtaacac	tttagtacag	agaaaaaaaaa	9780
ttgtgccgaa	atgttttga	tacgtacgaa	tacctgtat	taaaatttt	tatgatttct	9840
gtgtatcact	tttttttgt	gttttcgtt	taaactcacc	acagtacaaa	acaataaaaat	9900
attttaaga	caatttcaaa	ttgagacctt	tctcgtactg	acttgaccgg	ctgaatgagg	9960
atttctacct	agacgaccta	cttcttacca	tgacattgaa	tgcaatgcca	cctttgatct	10020
aaacttacaa	aagtccaaagg	cttggtagga	ttgggtttta	tttagttgc	ttttgaaata	10080
gcactgtctt	ctctaccggc	tataatttt	aaactcgca	cttgactgga	aattttaaaaa	10140
gtaattctgt	gtaggtaaag	ggtggttaa	aagtgtgatg	tgttgaggct	tgcggcaacg	10200
actgctat	atgtatata	tttcaaaaact	tattgtttt	gaagtgtttt	aatggagct	10260
atctggcaac	gctgcgcata	atcttacaca	agctttctt	aatccattt	taagtgaaat	10320
ttgttttac	tctttcggca	aataattgtt	aaatcgctt	aagtggcctt	acatctggat	10380
aagtaatgaa	aacctgcata	ttataatatt	aaaacatata	atccactgtg	ctttccccgt	10440
gtgtggccat	atacctaaaa	aagtttattt	tgcgcagagcc	ccgcacggc	acactacgg	10500
tcggcgattt	tcgattttgg	acagtaactga	ttgcaagcgc	accgaaagca	aaatggagct	10560
ggagatttt	aacgcgaaga	acagaagcc	gtacggcaag	gtgaagggtgc	cctccggcgc	10620
cacccccatc	ggcgatctgc	gcgccttaat	tcacaagacc	ctgaagcaga	ccccacacgc	10680
.._gaatcgccag	_tcgatttagtc	_tggaactgaa	.gggcaaaagc	ctgaaagata	cgacacatt	10740
ggaatctctg	tcgctgcgtt	ccggcgacaa	gatcggggta	ccatgc		10786

<210> 24
<211> 14720
<212> DNA
<213> Artificial

<220>
<223> pLA1038

<400> 24	gggctatggc	gcgcggacg	cgcaagtct	gcgagctt	atttacgtgg	atctccgg	60
	tgtccatcat	tcggcatcat	atcataaacg	acgaattcca	ataaaaaactt	tgcttgttga	120
..	taacacctga	tgttcagaga	tgcccgataa	aatcacagct	gttctgg	ttc acagtcacca-	180 -
	gaaataaaaa	atatttggaaat	tgagatgtac	acaattaacg	atatttataa	atatcttccg	240
	atagtctatc	gtccggtaa	tcaaaataaa	gtgcgacgaa	ttaacatatt	ttcaaaaatta	300
	agacgctt	atagatgtat	ttgtatagag	atagaaatta	aggtaaaaat	aacataaaatg	360
	ccaaagttta	gagcactatt	caataattct	cttgatttca	aattgaaata	atacacaata	420

taacattttc taacactaca aagtacgat attcttccac caaccgatag tatcgacac	480
ttgccattcg cctcatcacf cacacgcccgtt cttcacaatt caaacgaacg gcattttatt	540
ttcacaggat cccggggagtc gtgaatgttt tacccaaatcgactttcat tgttaactga	600
ccaaaattgt aatctgttct gtttagttgtc gagtgccgt gccgcgatcg ctatggccat	660
atgttgc当地 actctaaacc aaatactcat tctgatgttt taaatgattt gccctcccat	720
atgtccttcc gagtgagaga cacaaaaat tccaaacacac tattgcaatg aaaataaatt	780
tcctttatta gccagaagtc agatgctcaa ggggcttcat gatgtccccat taatttttgg	840
cagaggaaaa aagatctcag tggtatttgt gagccagggc attggccaca ccagccacca	900
ccttctgata ggcagcctgc acctgaggag tgaattctt gccaaaatga tgagacagca	960
caacaaccag cacgttgc当地 aggagctgtt ggaaagagaa gaaggcatga acatggtag	1020
cagagggcc cggttggac tcagagtatt ttatcctcat ctcaaacagt gtatatcatt	1080
gtaaccataa agagaaaggc aggatgtatccaggggtgtt gttgtttcta ccaataagaa	1140
tatttccacg ccagccagaa ttttatatgca gaaatattct accttatcat ttaattataa	1200
caattgttct ctaaaaactgt gctgaagtac aatataatat accctgatttgc cttgaaaaaa	1260
aaagtgatta gagaaagtac ttacaatctg acaaataaacc aaaaatgttataaattc	1320
gttacaaatg caagctaaag tttaacgaaa aagttacaga aaatgaaaag aaaataagag	1380
gagacaatgg ttgtcaacag agtagaaaatgtt gaaagaaaaca aaattatcat gagggtccat	1440
ggtgatacaa gggacatctt cccattctaa acaacaccctt gaaaactttg cccctccat	1500
ataacatgaa ttttacaataa gcgaaaaaaga aagaacaatc aagggtcccc aaactcacc	1560
tgaagtctc agtctatagac ggcgttcaact acccaccgtt ctcgtcaattt ccaaggccat	1620
cggtaaacat ctgctcaaaac tcgaagtcgg ccatatccag agcgccgtt ggggcggaggt	1680
cgtgggggtt aaatccccggc cccggggat cccgtcccc caacatgtcc agatcgaaat	1740
cgtctagcgc gtcggcatgc gccatcgcca cgtcctcgcc gtctaatgtgg agctcgcccc	1800
ccaggctgac atcggctggg gggggccgtcg acagtctgtcg cgtgtgtcccc gcggggagaa	1860
aggacaggcg cggagccgccc agcccccctt ctccgggggc gtcgtcgttcc gggagatcga	1920
gcaggccctc gatggtagac ccgttaattgtt tttcgttacg cgcgcggctg tacgcggacc	1980
cactttcaca tttaagttgtt ttttctaatac cgcataatgtt caattcaagg ccgaataaaga	2040
aggctggctc tgcaccccttgg tgatcaaataaatttgcgttccat aatggccggca	2100
tactatcagt agtaggtgtt tccctttctt cttagcgttccat ttgtatgttccat tgatcttcca	2160
atacgcaacc taaagtaaaa tgccccacag cgctgagtgc atataatgca ttctcttagtgc	2220
aaaaaaccttgc ttggcataaaa aaggcttattt gatggccggat agtttccatc tggtttctg	2280
taggcccgtgtt acctaaatgtt acttttgc当地 catgcgcgttgc acttagtaaa gcacatctaa	2340
aacttttagc gttattacgt aaaaaatctt gccagcttcc cccctctaaa gggcaaaaatgtt	2400

gagtatggtg cctatctaac atctcaatgg ctaaggcgtc gagcaaagcc cgcttatttt	2460
ttacatgcc aatacatgt a ggcgtctca cacctagctt ctggcgagt ttacgggttg	2520
ttaaaccttc gattccgacc tcattaagca gctctaattgc gctgttaatc actttacttt	2580
tatctaattct caattccatg gtggcaacct gcaaggcgaa tgaataaaaca agattgtggc	2640
gaacagtgt a atgcgaagaa cccacctctg ctccaattcc caattcccta ttca gctcga	2700
gcgggatcc ccgggtaccc agctcgaatt cggggccgca gaggctggat cggcccgg	2760
gtcttctatg gaggtcaaaa cagcgtggat ggcgtctcca ggcatctga cggtcacta	2820
aacgagctct gcttatata ggcctccacc gtacacgcct acctcgaccc ggtaaccgag	2880
ctcgacttcc actttctct atcactgata gggagtggta aactcgactt tcactttct	2940
ctatcactga tagggagtgg taaactcgac ttca ctatcact gataggaggt	3000
ggtaaactcg actttactt ttctctatca ctgataggta gtggtaaact cgactttcac	3060
tttctctat cactgatagg gagtggtaaa ctgcacttcc actttctct atcactgata	3120
gggagtggta aactcgactt tcactttct ctatcactga tagggagtgg taaactcgaa	3180
atgtcgacta tgccggaccga gcgcggagt ataaatagag ggcgttcgtc tacggagcga	3240
caattcaatt caaacaagca aagtgaacac gtcgctaagc gaaagctaag caaataaaaca	3300
agcgcagctg aacaagctaa acaatctcg ctagccacca tggtgttat taaacgtaga	3360
tttggtaatt taaaagcat atttttctt ttgaaattca taagttatca attatcgatg	3420
gaaatgtatt ctatggagaa cgtttaccc gatgaatggg tgcaaaaatt atttaccc	3480
caa atctaca atcaacacac gctaactttt gtgacttgat caactctcac ctggaaaagc	3540
-a accaactac -aatcaacatt .ctatggata .atcgacaagt gagtaaaatt atagccggac	3600
ctcttagtac agtgtattta aaagggaaat aatattctat caataggaat aaaaataagg	3660
tcagcagcca tgactttcc atcatttga atatacctt tttttcgg gattaattgg	3720
gggtcggaaa tcctctt gaa ttca gaaacccggag gaagggtgccg gtctttcaga	3780
aagctgtgaa aaataccaaac atttctgctg ccaagagctc aataagaagt ttcaaaaatt	3840
gtcttggatg ttgcagctgt ggctgctaa taataagaca tctattagta tctagatttg	3900
ttagaccatt taacatagtg tttaaacga tggggtaat agatgagggt taagaagcta	3960
gttatattac ttttgcgtt a cgccttcaa ttgtcggtt cagagcaa ac attattgaat	4020
gttaatgtaa agagtttatt tttttctat taaacatata gcgattggat agtaatcact	4080
aatagaaatt tttcataatg atcaaaaaag taaacctt tttcgtctca tgtaataatg	4140
aaaccaagga aaggaaaaat atctacaatc aacaagccat ttttgcagca acaaagcaac	4200
tgaaactaca atcaacatcc aataaactt ggtatgg aatttaattc tctggacac	4260
ctgtggatta caacaatcaa ctcgaaactt attatacaat gtaaataaaa attgatatgc	4320
atacatgaag atcaagtgaa attccattt gaatcaattt ttttcaata ttaagtttct	4380

tgcttttaatt tatctgaaag taaaatagaca ttccaaattc aagttAACAA attaataatg 4440
aattgactag tgatTTTaa gagaaaaaga taagattaa AAAAGGAAAG ccttcttga 4500
taaatttttgc aaccacTTA tgccgttca atcataaaaaa ctTTTAAGAA cacatgactg 4560
gtAAAATTAA ttAAAACAA atttAAATTT tcaacgtAAC attcaACAAA aatggtaAA 4620
actatcacgg aaattgttaa tattaatATG tccccAAAt agcCTTGTa tgtatATGat 4680
actaatCCAT acatCTATGG tatCTATAAGG tGAAGGCTCA aAGCCTCTGG gCGCTCTCCT 4740
gggcctgccc gaaAGCCAA cgGAGCTGA taatCTTACA gaatacAACa CGGCCACAA 4800
tcggcgcatc tcaatGCTGG gcATCGATGA tgatACCAAT atGCGAAAGC AAAACGCCTT 4860
gaaacaggGA CGGCGCACTC gaaatgtcac atttaACGAT gaggAGATTG tcATCAATCC 4920
tgaggatgtg gatCCTAATG tgggacgCTT cAGGAACttG gtACAAACCA ctgtggTGcc 4980
cgccaagagg gctcgctgCG acgtCAACCA ttAGTgATAA CGCGTCTAGA gctgagaACT 5040
tcagggtgag tttggggacc CTTGATTGTT CTTTCTTTT CGCTATTGTA AAATTCAATG 5100
tatATGGAGG gggcaaAGTT ttcagggtgt tgTTAGATAA gggAAGATGT CCCTTGTATC 5160
accggtgatc ataATCAGCC ataccACATT tGTAAGAGTT ttACTTGCTT taaaaaacCT 5220
cccacacCTC ccoctGAACC tGAAACATAA AATGAATGCA ATTGTTGTT ttaacttGTT 5280
tattgcagCT tataATGGTT acaaATAAAG caATAGCATC acaaATTCA CAAATAAAGC 5340
atTTTTTCa CTGcATTCTA GTTGTTGTT GTCCAACACTC ATCAATGTAT CTTAACGCGA 5400
gtttaaacgc gtccgcatac gtccgctCAC gttaAGTTCC gcAGAGAGAA gttGTTGAAA 5460
acataAAACAG aatcacttGT tGCACTCTT gagaAAACTG gggCTATTGc ggAAAAAAACC 5520
-aactaaaaat-attgeaggTT -agggGTacta -cgctcgattG. gCGTACGGCC accACTTTG 5580
cgactTCact gttaACCgCT acCTTCATAG agACTTTAC ccGATAAATG ttATGTagTT 5640
tgactTTCTC tGTTAATCac aagaaaaAT attGTggAAA ttAAAATTAT ctCAAACtCA 5700
ataAGGAAAT aataATATAT acACCTATGT tttatAGAAG tcaACAGTAA ataAGTTATT 5760
tggAAAACCA ttGtagCCGT ttaaATAAAT CTCCTGAGT gtGTTTAAA taACGGTcat 5820
taagtatatt acttggccCT ctGAATTCT tGAATTACAC catTTTTGA aataATCAA 5880
tCCAAAAGAC tactTTTGG tggCAAATGA ACTGCATAAA aAGTAACAAA agAAATATGT 5940
ttttGAAATA acAGTATAGC tGAAGTGTAT taaaaAAACt CGTCAATGtA gCGACCCGCT 6000
gttaccgCTT cgctgCGAAT gacaAAACGG gCTGAGCAAG AAAATGGCGT agaAGGCGAC 6060
gaaaATTCGT ttCACTCGTG aagaaaaACCT CGATAACTGA ggaATACAGC tggGATTAA 6120
agAGCATATT CGAACTACAA GCAGAGATGT ttCCCTGGTGG AAACGGAAAC gCCGATTGG 6180
gCTACAACAA GcatGCCAC gtCCATGGAC ttGGACAACA tggCCATGGG cacaACCATA 6240
atcacaATCA GttCCTGCGC AGCCCCACc ACCCCCCACA catTTTCAc tGCCCTCCGG 6300
gggcggTCAG ggcATGGTGA CGCCCATGGT AGCCGCCGc CTGCCGCTCG ccatGcAGGG 6360

tggcgttggc atcgattggc gcagctgcc cagcaatgga ttaattaact cgcgtaaga	6420
tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaaaatg ctttatttgt	6480
gaaatttgtg atgctattgc tttatttgta accattataa gctgcaataa acaagttaac	6540
aacaacaatt gcattcattt tatgtttcag gttcaggggg aggtgtggg gttttttaa	6600
agcaagtaaa acctctacaa atgtggatg gctgattatg atcagttatc tagatccggt	6660
ggatcttacg ggtcctccac cttccgctt ttcttggtc gagatctcag gaacaggtgg	6720
tggcgccct cgggtcgctc gtactgctcc acgatgggt agtcctcggt gtgggaggtg	6780
atgtccagct tggcgtccac gtagtagtag ccgggcagct gcacgggctt cttggccatg	6840
tagatggact tgaactccac caggttagtgg ccgcccgtct tcagttcag ggccttgtgg	6900
gtctcgccct tcagcacgccc gtcgcggggg tacaggcgct cggtgaggc ctcccagccc	6960
atggtcttct tctgcatacac gggccgtcg gaggggaagt tcacgcccgt gaaacttcacc	7020
tttagatga agcagccgtc ctgcagggag gagtccctgg tcacggcgtc cacgcccggc	7080
tcctcgaagt tcatacagcg ctccccacttg aagccctcgg ggaaggacag cttctttag	7140
tcggggatgt cggcggggtg cttcacgtac accttggagc cgtactggaa ctggggggac	7200
aggatgtccc aggccaaggg cagggggccg cccttggtca cttcagctt cacgggtttg	7260
tggccctcg aggggcggcc ctcgcccccg ccctcgatct cgaactcggt gccgttcaeg	7320
gtggccctcca tgccgaccc ttgagcgcatg aactcggtga tgacgttctc ggaggaggcc	7380
atggtggcga cccgtttcg cttcttctt ggtgggggtt gatccccgt ctgcattttg	7440
gattattctg cgggtcaaaa tagagatgtg gaaaattagt acgaaatcaa atgagttcg	7500
-ttgaaattac...aaaactattt aaactaactt..cctggctgg .gaataaaaaat gggaaactta	7560
tttatcgacg ccaactttgt tgagaaaccc ctattaaccc tctacgaata ttggaaacaaa	7620
ggaaagcggaa gaaacaggaa caaaggtagt tgagaaacct gttccgttgc tcgtcatcg	7680
tttcataatg cgagtgtgtg catgtatata tacacagctg aaacgcgtgc atacacatta	7740
ttttgtgtgt atatggtgc gtcacaacta ctaagcaata agaaattttc cagacgtggc	7800
tttcgtttca agcaacctac tctatttcag ctaaaaataa gtggatttcg ttggtaaaaat	7860
acttcaatta agcaaagaac taactaacta ataacatgca cacaatgct cgagtgcgtt	7920
cgtgatttct cgaattttca aatgcgtcac tgcgaatttc acaatttgc aataaatctt	7980
ggcggaaatc aacacgcaag ttttattttt agatttgcgtt gcgtttgtat gccaaattgtat	8040
-tggaaaaca agatgcgtgg ctgccaattt cttatggat aattacgttag agcgttgaat	8100
aaaaaaaaaaa tggccgaaca aagaccttga aatgcagttt ttcttggaaat tactcaacgt	8160
cttggcttc ttattactaa ttggtaacag cgagttaaa acttacgttt cttgtgactt	8220
tcgagaatgt tcttttaatt gtactttaat caccaacaat taagtataaa ttttcgtcg	8280
attgcgtttt actttctgt tttttttttt gctgcaaatg tcaatggtt ttgaaggcga	8340

ccgttcgcga acgctgtta tatacctcg gtgtccgttg aaaatcacta aaaaataccg	8400
tagtgttcgt aacactttag tacagagaaa aaaaattgtg ccgaaatgtt tttgatacgt	8460
acgaataacct tgtattaaaa tttttatga tttctgtgt tcactttttt tttgtgtttt	8520
tcgtttaaac tcaccacagt acaaaacaat aaaatattt taagacaatt tcaaatttag	8580
acctttctcg tactgacttg accggctgaa tgaggatttc tacctagacg acctacttct	8640
taccatgaca ttgaatgcaa tgccacctt gatctaaact tacaaaagtc caaggcttgt	8700
taggatttgt gtttatttag tttgttttg aaatagcact gtcttctcta ccggctataa	8760
ttttgaaact cgcagcttga ctggaaattt aaaaagtaat tctgtgttagg taaagggtgt	8820
tttaaaagtg tgatgtgtg agcgttgcgg caacgactgc tatttatgttata tattttca	8880
aaacttattt ttttgaagt gttttaatg gagctatctg gcaacgctgc gcataatctt	8940
acacaagctt ttcttaatcc attttaagt gaaattttttt tttactctt cggcaaataa	9000
ttgtttaatc gctttaagtggcttacatc tggataagta atgaaaacct gcatttata	9060
atattaaaac atataatcca ctgtgcttcc cccgtgtgtg gccatataacc taaaaaaagtt	9120
tattttcgca gagccccgca cggcacact acgggttcggc gattttcgat tttggacagt	9180
actgattgca agcgcaccga aagcaaaatg gagctggaga ttttgaacgc gaagaacagc	9240
aagccgtacg gcaagggtgaa ggtgccctcc ggcccacgc ccatcggcga tctgcgcgcc	9300
ctaattcaca agaccctgaa gcagacccca cacgcgaatc gccagtcgt tcgtctggaa	9360
ctgaagggca aaagcctgaa agatacggac acattggaaat ctctgtcgat gcttccggc	9420
gacaagatcg gggtaccatg cggccgctca tttaaatctg gccggctgg ccgtatctgac	9480
-aatgttcaatgcagagactc ggctacgcct cgtggacttt gaagttgacc aacaatgttt	9540
attcttacat ctaatagtcc tctgtggcaa ggtcaagatt ctgttagaag ccaatgaaga	9600
acctgggtgt tcaataacat tttgttcgtc taatatttca ctaccgcttg acgttggctg	9660
cacttcatgt acctcatota taaacgcttc ttctgtatcg ctctggacgt catcttca	9720
tacgtatct gatatttacat tgcagaatc ctcaccaaca agctcgatcg cgctttgcag	9780
aagagcagag aggatatgct catcgctaa agaactaccc attttatttattt atattatgtca	9840
cgatatctat aacaagaaaa tatatatata ataagttatc acgttaagtag aacatgaaat	9900
aacaatataa ttatcgatg agttaaatct taaaagtcac gtaaaagata atcatgcgtc	9960
attttgactc acgcggctgt tatagttcaa aatcgtgac acttaccgca ttgacaagca	10020
cgccctacgg gagctccaag cggcgactga gatgtccctaa atgcacagcg acggattcgc	10080
gctattttaga aagagagagc aatatttcaa gaatgcgtgc gtcaatttta cgcagactat	10140
ctttcttaggg ttaaaaaaga tttgcgtttt actcgaccta aactttaaac acgtcataga	10200
atcttcgttt gacaaaaacc acattgtggc caagctgtgt gacgcgacgc ggcctaaaga	10260
atggcaaacc aagtgcgcgc agcgtcgacc tgcaggcatg caagcttgca tgcctgcagg	10320

tcgaaattcg taatcatgg tatacgctgtt tcctgtgtga aattgttatac cgctcacaat	10380
tccacacaac atacgagccg gaagcataaaa gtgtaaagcc tggggtgccct aatgagttag	10440
ctaactcaca ttaattgcgt tgcgctcaact gcccgccttc cagtcggaa acctgtcg	10500
ccagctgcata taatgaatcg gccaacgcgc ggggagaggc ggtttgcgtt ttggcgctc	10560
ttccgcgttcc tcgctcaactg actcgctgcg ctgcgtcggtt cggctgcggc gagcggat	10620
agctcactca aaggcggtaa tacggttatac cacagaatca ggggataacg caggaaagaa	10680
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcg	10740
tttccatagg ctccgcggcc ctgacgagca tcacaaaaat cgacgctcaa gtcagagg	10800
gcgaaacccg acaggactat aaagatacca ggctttccc cctggaaagct ccctcg	10860
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc cttcgaaag	10920
cgtggcgctt tctcaatgtc cacgctgttag gtatctcgt tgggtgttgg tcgttcg	10980
caagctgggc tgtgtgcacg aacccccctg tcaagccgcac cgctgcgcct tatccgg	11040
ctatcgctt gagtccaacc cgtaagaca cgacttatcg ccactggcag cagccactgg	11100
taacaggatt agcagagcga ggtatgttagg cggtgctaca gagttttga agtgggtgg	11160
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac	11220
cttcggaaaa agagttggta gctttgatc cggcaaaacaa accaccgcgt gtagcgg	11280
ttttttgtt tgcaagcgc agattacgcg cagaaaaaaaaa ggatctcaag aagatcctt	11340
gatctttct acggggtotc acgctcagtg gaacgaaaac tcacgttaag ggatttgg	11400
catgagatta tcaaaaagga tcttaccta gatccttttta aattaaaaat gaagttttaa	11460
.atcaatctaa_agtatataatg .agtaaaacttg gtctgacagt_taccaatgtc_taatcgt	11520
ggcacctatc tcagcgatct gtctatttcg ttcattccata gttgcctgac tccccgtcg	11580
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgc	11640
agacccacgc tcaccggotc cagatttatac agcaataaac cagccagccg gaaggcccga	11700
gcccggcggc ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccgg	11760
agctagagta agtagttcgc cagttaatag tttgcgcacac gttgttgcca ttgctacagg	11820
catcggttg tcacgcttgt cgtttggat ggcttcattc agctccgggtt cccaaacgatc	11880
aaggcgagtt acatgatccc ccatgttgcg caaaaaagcg gttagctcct tcggcctcc	11940
gatcggtgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgc	12000
taattcttctt actgtcatgc catccgtaaatg atgctttctt gtgactggcg agtactcaac	12060
caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcggc cgtcaatacg	12120
ggataataacc gcgccacata gcagaacttt aaaagtgcac atcattggaa aacggttcttc	12180
ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg	12240
tgcacccaaac tgatcttcag catctttac tttcaccagc gtttctgggt gagcaaaaaac	12300

aggaaggcaa aatgccgcaa aaaaggaaat aagggcgaca cgaaaaatgtt gaataactcat 12360
 actcttcatttttcaatattt attgaagcat ttatcaggg tattgtctca tgagcggata 12420
 catatggaa tgtatTTAGA aaaataaaaca aataggGGTT ccgcgcacat ttccccgaaa 12480
 agtgcaccc gacgtctaag aaaccattat tatcatgaca ttaacctata aaaataggcg 12540
 tatacggagg cccttcgtc tcgcgcgtt cggtgatgac ggtaaaaacc tctgacacat 12600
 gcagctcccg gagacggtca cagcttgtct gtaagcggat gccgggagca gacaagcccg 12660
 tcagggcgcg tcagcgggtg ttggcgggtg tcggggctgg cttaactatg cggcatcaga 12720
 gcagattgta ctgagagtgc accatatatg cggtgtgaaa taccgcacag atgcgtaagg 12780
 agaaaatacc gcatcaggcg ccattcgcca ttcaggctgc gcaactgtt ggaaggcga 12840
 tcggcggg cctcttcgct attacgccag ctggcgaaag gggatgtgc tgcaaggcga 12900
 ttaagttggg taacgccagg gtttcccag tcacgacgtt gtaaaaacgac ggccagtgcc 12960
 aagcttgtt taaaatataa caaaattgtg atccccacaaa atgaagtggg gcaaaatcaa 13020
 ataattaataa gtgtccgtaa acttgggtt cttcaacttt ttgaggaaca cggtggacgg 13080
 caaatccgtg actataaacac aagttgattt aataattttt gccaacacgt cgggctgcgt 13140
 gtttttgcc gacgcgtctg tgtacacgtt gattaactgg tcgattaaac tgttgaaata 13200
 atttaatttt tggttcttct ttaaatctgt gatgaaattt tttaaaataa ctttaaattc 13260
 ttcattggta aaaaatgcca cgtttgcaa cttgtgaggg tctaataatga ggtcaaactc 13320
 agtaggagtt ttatccaaaa aagaaaacat gattacgtct gtacacgaac gcgttattaa 13380
 gcagagtgc aagtataaga gggtaaaaaa atatattttt cgcaccatatacgcattcggg 13440
 .ttgatatcgt .taatatggat..caatttgaac agttgattaa cgtgtctctg ctcaagtctt 13500
 tgatcaaaac gcaaatcgac gaaaatgtgt cggacaatataa caagtcgatg agcgaaaaac 13560
 taaaaggct agaatacgcac aatctcacag acagcgttga gatatacggt attcacgcaca 13620
 gcaggctgaa taataaaaaaa attagaaaact attatTTAA cctagaaaaga taatcatatt 13680
 gtgacgtacg ttaaagataa tcatcgtaa aattgacgca tgggtttat cggctctgtat 13740
 atcgaggttt atttattaaat ttgaatagat attaagttttt attatattta cacttacata 13800
 ctaataataa attcaacaaa caatttattt atgtttattt atttattaaa aaaaaacaaaa 13860
 aactcaaaat ttcttcataa aagtaacaaa acttttaaac attctctttt ttacaaaaat 13920
 aaacttattt tgtactttaa aaacagtcat gttgtattat aaaataagta attagcttaa 13980
 cttatacata atagaaacaa attatactta ttagtcagtc agaaacaact ttggcacata 14040
 tcaatattat gctctcgaca aataactttt ttgcattttt tgcacgatgc atttgccttt 14100
 cgccttattt tagaggggca gtaagtacag taagtacgtt tttcattac tggctttca 14160
 gtactgtcat ctgatgtacc aggcaattca ttggcaaaaa tattagagat attatcgcc 14220
 aaatatctct tcaaagttagg agcttctaaa cgcttacgca taaacgatga cgtcaggctc 14280

atgtaaaggt ttctcataaaa tttttgcga ctttggacct tttctccctt gctactgaca 14340
 ttatggctgt atataataaaa agaatttatg caggcaatgt ttatcattcc gtacaataat 14400
 gccataggcc acctatttgt cttcctactg caggtcatca cagaacacat ttggcttagc 14460
 gtgtccactc cgcccttagt ttgattataa tacataacca tttcggttt accggtaactt 14520
 tcgttgatag aagcatcctc atcacaagat gataataagt ataccatctt agctggcttc 14580
 ggtttatatg agacgagagt aagggtccg tcaaaacaaa acatcgatgt tcccactggc 14640
 ctggagcgac tgaaaaatcg tactccgtt atctcgctt tgaaaaatcg cacggttccc 14700
 acaatggttg cggccagccc 14720

<210> 25
 <211> 23
 <212> DNA
 <213> Artificial

<220>
 <223> PCR Primer

<400> 25
 catcgatgcc cagcatttag atg

23

<210> 26
 <211> 34
 <212> DNA
 <213> Artificial

<220>
 <223> PCR Primer

<400> 26
 - caagcaaagt gaacacgtcg ctaagcgaaa gcta

34

<210> 27
 <211> 28
 <212> DNA
 <213> Artificial

<220>
 <223> PCR Primer

<400> 27
 gccatccacg ctgtttgac ctccatag

28

<210> 28
 <211> 27
 <212> DNA
 <213> Artificial

<220>
 <223> PCR Primer

<400> 28
 gccaataacaa tgtaggctgc tctacac

27

<210> 29
 <211> 1005
 <212> DNA
 <213> Artificial

 <220>
 <223> coding region of tTA from pUHD15-1

 <400> 29
 atgtctagat tagataaaaag taaagtgatt aacagcgcatt tagagctgct taatgaggtc 60
 ggaatcgaag gtttaacaac ccgtaaactc gcccagaagc taggtgtaga gcagccata 120
 ttgtattggc atgtaaaaaa taagcgggct ttgctcgacg ccttagccat tgagatgtta 180
 gataggcacc atactcactt ttgccttta gaaggggaaa gctggcaaga tttttacgt 240
 aataacgcta aaagttttag atgtgcttta ctaagtcata gcgtatggagc aaaagtacat 300
 ttaggtacac ggcctacaga aaaacagtat gaaactctcg aaaatcaatt agcctttta 360
 tgccaacaag gttttcact agagaatgca ttatatgcac tcagcgtgt gggcatttt 420
 actttagtt gcgtattgga agatcaagag catcaagtcg ctaaagaaga aaggaaaca 480
 cctactactg atagtatgcc gccattatta cgacaagcta tcgaattatt tgatcaccaa 540
 ggtgcagagc cagccttctt attcggcctt gaattgatca tatgcggatt agaaaaacaa 600
 cttaaatgtg aaagtgggct cgcgtacagc cgcgcgcgtc cgaaaaacaa ttacgggtct 660
 accatcgagg gcctgctcga tctccggac gacgacgccc ccgaagaggc ggggctggcg 720
 gctccgcgcc tgcctttct ccccgcccc cacacgcgcac gactgtcgac ggcccccccg 780
 accgatgtca gcctggggca cgagctccac tttagacggcg aggacgtggc gatggcgcac 840
 gccgacgcgc tagacgattt cgatctggac atgttgggg acggggattc cccgggtccg 900
 ggatttaccc cccacgactc cgcccccctac ggccgtctgg atatggccga cttcgagttt 960
 gagcagatgt ttaccgatgc ctttggatt gacgagtgac gtggg 1005

<210> 30
 <211> 336
 <212> PRT
 <213> Artificial

 <220>
 <223> tTA

 <400> 30

Met Gly Ser Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu
 1 5 10 15

Leu Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala
 20 25 30

Gln Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn
 35 40 45

Lys Arg Ala Leu Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His
 50 55 60

His Thr His Phe Cys Pro Leu Glu Gly Glu Ser Trp Gln Asp Phe Leu
 65 70 75 80

Arg Asn Asn Ala Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp
 85 90 95

Gly Ala Lys Val His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu
 100 105 110

Thr Leu Glu Asn Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu
 115 120 125

Glu Asn Ala Leu Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly
 130 135 140

Cys Val Leu Glu Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu
 145 150 155 160

Thr Pro Thr Thr Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu
 165 170 175

Leu Phe Asp His Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu
 180 185 190

Leu Ile Ile Cys Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser
 195 200 205

Ala Tyr Ser Arg Ala Arg Thr Lys Asn Asn Tyr Gly Ser Thr Ile Glu
 210 215 220

Gly Leu Leu Asp Leu Pro Asp Asp Asp Ala Pro Glu Glu Ala Gly Leu
 225 230 235 240

Ala Ala Pro Arg Leu Ser Phe Leu Pro Ala Gly His Thr Arg Arg Leu
 245 250 255

Ser Thr Ala Pro Pro Thr Asp Val Ser Leu Gly Asp Glu Leu His Leu
 260 265 270

Asp Gly Glu Asp Val Ala Met Ala His Ala Asp Ala Leu Asp Asp Phe
 .. 275 280 285

Asp Leu Asp Met Leu Gly Asp Gly Asp Ser Pro Gly Pro Gly Phe Thr
 290 295 300

Pro His Asp Ser Ala Pro Tyr Gly Ala Leu Asp Met Ala Asp Phe Glu
 305 310 315 320

Phe Glu Gln Met Phe Thr Asp Ala Leu Gly Ile Asp Glu Tyr Gly Gly
 325 330 335

```
<210> 31  
<211> 1017  
<212> DNA  
<213> Artificial
```

<220>
<223> tTAV

<400> 31
atgggcagcc gcctggataa gtccaaagtc atcaactccg cggtggagct gttgaacgaa 60
gttggcattg agggactgac gacccgcaag ttggcgcaaga agctgggcgt ggagcagccc 120
accctctact ggcacgtgaa gaataagcgg gcgctgctgg atgcctggc catcgagatg 180
ctcgaccgcc accacacgca ttttgccccg ttggaaggcg agtcctggca ggacttcctc 240
cgcaataacg ccaagtcgtt ccgctgcgct ctgctgtccc accgagacgg tgccaaagtc 300
catctcggca cgccccgac cgaaaagcaa tacgagacac tggagaacca gtcgcgttc 360
ctgtgccagc aaggcttcag cctggaaaaat gctctctacg ctctgagcgc cgtcggtcac 420
tttaccctgg gtcgtgtct ggaggaccaa gagcatcaag tcgcaaaaga ggagcgcgag 480
accccaacaa ccgattcgat gcccccaactg ctgcgtcagg caatcgagct gttcgatcat 540
caaggagccg agccggcatt cctgttcggc ttggagctga ttatctgcgg attggaaaag 600
caactgaaat gcgagtcggg ctggggcccc gcttacagcc ggcgcgtac gaaaaacaat 660
tacgggtcta ccatcgaggg cctgctcgat ctcccgacg acgacgcccc cgaagaggcg 720
gggctggcg~ctcccgccct gtccttttc-cccgccggac acacgcgcag actgtcgacg 780
gcccccccgaa ccgatgtcag cctgggggac gagctccact tagacggcga ggacgtggcg 840
atggcgcatg ccgacgcgt agacgatttc gatctggaca tggtggggga cggggattcc 900
ccgggtccgg gatttacccc ccacgactcc gccccctacg ggcgtctggaa tatggccgac 960
ttcgagtttgcg agcagatgtt taccgatgcc cttgaaatttgcg acgagtacgg tgggttag 1017

<210> 32
<211> 338
<212> PRT
<213> Artificial

<220>
<223> ttAV

<400> 32

Leu Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala
20 25 30

Gln Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn
35 40 45

Lys Arg Ala Leu Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His
50 55 60

His Thr His Phe Cys Pro Leu Glu Gly Glu Ser Trp Gln Asp Phe Leu
65 70 75 80

Arg Asn Asn Ala Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp
85 90 95

Gly Ala Lys Val His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu
100 105 110

Thr Leu Glu Asn Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu
115 120 125

Glu Asn Ala Leu Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly
130 135 140

Cys Val Leu Glu Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu
145 150 155 160

Thr Pro Thr Thr Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu
165 170 175

Leu Phe Asp His Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu
180 185 190

Leu Ile Ile Cys Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser
195 200 205

Gly Pro Ala Tyr Ser Arg Ala Arg Thr Lys Asn Asn Tyr Gly Ser Thr
210 215 220

Ile Glu Gly Leu Leu Asp Leu Pro Asp Asp Asp Ala Pro Glu Glu Ala
225 230 235 240

Gly Leu Ala Ala Pro Arg Leu Ser Phe Leu Pro Ala Gly His Thr Arg
245 250 255

Arg Leu Ser Thr Ala Pro Pro Thr Asp Val Ser Leu Gly Asp Glu Leu
260 265 270

His Leu Asp Gly Glu Asp Val Ala Met Ala His Ala Asp Ala Leu Asp
275 280 285

Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp Ser Pro Gly Pro Gly
 290 295 300

Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala Leu Asp Met Ala Asp
 305 310 315 320

Phe Glu Phe Glu Gln Met Phe Thr Asp Ala Leu Gly Ile Asp Glu Tyr
 325 330 335

Gly Gly

<210> 33
<211> 4455
<212> DNA
<213> Artificial

<220>
<223> pUHD15-1

<400> 33
ctcgaggagc ttggcccatt gcatacgttg tatccatatac ataatatgtta catttatatt 60
ggctcatgtc caacattacc gccatgttga cattgattat tgacttagtta ttaatagtaa 120
tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg 180
gtaaatggcc cgccctggctg accgccccaaac gaccccccgc cattgacgtc aataatgacg 240
tatgttccca tagtaacgcc aatagggact ttccattgac gtcaatgggt ggagtattta 300
cgctaaactg cccacttggc agtacatcaa gtgtatcata tgccaagtac gccccctatt 360
gacgtcaatg acggtaaatg gcccgcctgg cattatgccc agtacatgac cttatggac 420
tttcctactt ggcagtgacat ctacgtatta gtcatcgcta ttaccatgggt gatgcgggtt 480
tggcagtaca tcaatggcg tggatagcgg tttgactcac ggggatttcc aagtctccac 540
cccattgacg tcaatggag tttgtttgg caccaaaatc aacgggactt tccaaaatgt 600
cgtaacaact ccgcccatt gacgaaatg ggcggtaggc gtgtacggtg ggaggtctat 660
ataaggcagag ctcgttttagt gaaccgtcag atcgccctgga gacgccatcc acgctgtttt 720
gacctccata gaagacacccg ggaccgatcc agcctccgcg gccccgaatt catatgtcta 780
gattagataa aagtaaagtg attaacagcg cattagagct gcttaatgag gtcggaatcg 840
aaggtttaac aacccgtaaa ctcgcccaga agcttaggtgt agagcagcct acattgtatt 900
ggcatgtaaa aaataagcgg gctttgctcg acgccttagc cattgagatg ttagataggc 960
accataactca cttttgcctt ttagaagggg aaagctggca agattttta cgtaataacg 1020
ctaaaagttt tagatgtgct ttactaagtc atcgcgatgg agcaaaagta catttaggtt 1080
cacggcctac agaaaaacag tatgaaaactc tcgaaaatca attagccctt ttatgccaac 1140
aaggtttttc actagagaat gcattatatg cactcagcgc tgtggggcat tttacttttag 1200
gttgcgtatt ggaagatcaa gagcatcaag tcgctaaaga agaaaggaa acacctacta 1260

ctgatagtagat gcccgcattt ttacgacaagg ctatcgaaatt atttgatcac caagggtgcgg 1320
agccagcctt cttatttcggc cttgaatttgat tcataatgcgg attagaaaaaa caacttaaat 1380
gtgaaaagtgg gtcccgctac agccgcgcgc gtacgaaaaaa caattacggg tctaccatcg 1440
agggcctgct cgatctccccg gacgacgacg cccccgaaga ggcggggctg ggggtccgc 1500
gcctgtcctt tctccccggc ggacacacgc gcagactgtc gacggcccccc cggaccgatg 1560
tcagcctggg ggacgagctc cacttagacg gcgaggacgt ggcgatggcg catgccgacg 1620
cgcttagacga tttcgatctg gacatgttgg gggacggggta ttccccgggt ccgggattta 1680
ccccccacga ctccgcgggg tacggcgctc tggatatggc cgacttcgag tttgagcaga 1740
tgtttaccga tgcccttgaa attgacgagt acgggtggta gggggcgcgaa ggatccagac 1800
atgataagat acattgatga gtttggacaa accacaacta gaatgcagtg aaaaaaaatgc 1860
tttatttggaa aaatttggaa tgctattgtct ttatttggtaa ccattataag ctgcaataaa 1920
caagttaaca acaacaattt cattcatttt atgtttcagg ttcaggggtaa ggtgtgggag 1980
gttttttaaa gcaagtaaaa cctctacaaa tgtggatgg ctgattatga tccctgcaagc 2040
ctcgtcgctt ggcgggacca cgctatctgt gcaaggtccc cggacgcgcg ctccatgagc 2100
agagcgccccg cccgggaggc aagactcggtt cggcccccgtt cccgtcccac caggtcaaca 2160
ggcggttaacc ggccttca tcgggaatgc gcgcgacctt cagcatcgcc ggcattgtccc 2220
ctggcggacg ggaagtatca gctcgaccaa gcttggcgag atttttagga gctaaggaag 2280
ctaaaatggaa gaaaaaaatc actggatata ccaccgttga tatatcccaa tggcatcgta 2340
aagaacattt tgagggcattt cagtcagttt ctcaatgtac ctataaccag accgttcagc 2400
tgcatatgtt aatcggccaa cggcggggtaa gaggcggtt gcttattggg cgcttcccg 2460
cttcctcgct cactgactcg ctgcgctcggt tcgttcggctt gggcgagcg gtatcagctc 2520
actcaaaggc ggtaataacgg ttatccacag aatcaggggtaa taacgcagga aagaacatgt 2580
gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gctttttcc 2640
ataggctccg ccccccgtac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa 2700
acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgtctc 2760
ctgttcccgac cctgcccgtt accggataacc tgcgttcggctt tctcccttcg ggaagcgtgg 2820
cgcttttcata atgctcacgc tgcgttcggctt gtaggttcgtt cgctccaagc 2880
tgggtgtgtt gcacgaaccc cccgttcagc cggaccggctg cgccttatcc ggttaactatc 2940
gtcttgcgttca aacccggta agacacgact tatcgccact ggcagcagcc actggtaaca- 3000
ggatttagcag agcgaggtat gtaggcgggtg ctacagagtt cttgaagtgg tggcttaact 3060
acggctacac tagaaggaca gtatttggta tctgcgtct gctgaagcca gttaccttcg 3120
gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggtttt 3180
ttgtttggcaaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct 3240

tttctacggg gtctgacgct cagtggAACG AAAACTCACG TTAAGGGATT TTGGTCATGA	3300
gattatcaaa aaggatCTTC acctagatcc ttttaaatta AAAATGAAGT TTAAATCAA	3360
tctaaagtat atatgagtaa acttggTCTG acagttacca ATGCTTAATC AGTGAGGCAC	3420
ctatctcAGC gatctgtcta tttcgTTcat ccatagttgc CTGACTCCCC GTCGTGTagA	3480
taactacgat acgggagggc ttaccatctg GCCCCAGTGC TGCAATGATA CGCGAGACC	3540
cacgctcacc ggctccagat ttatcagcaa taaaccAGCC AGCCGGAAGG GCGAGCGCA	3600
gaagtggTCC TGCAACTTTA TCCGCCCTCCA TCCAGTCTAT TAATTGTTGC CGGGAAGCTA	3660
gagtaagttag ttccGCCAGTT AATAGTTGC GCAACGTTGT TGCCATTGCT ACAGGCATCG	3720
TGGTGTcACG CTCGTCGTTT GGTATGGCTT CATTcAGCTC CGGTCCCAA CGATCAAGGC	3780
gagttacatg atccccatg ttgtgcAAAAA aAGCGGTTAG CTCCTTCGGT CCTCCGATCG	3840
ttgtcagaag taagttggCC GCAGTGTtat CACTCATGGT TATGGCAGCA CTGCTATAATT	3900
CTCTTACTGT CATGCCATCC GTAAGATGCT TTTCTGTGAC TGGTAGTAC TCAACCAAGT	3960
CATTCTGAGA ATAGTGTATG CGGCGACCGA GTTGCTCTG CCCGGCGTCAtACGGGATA	4020
ATACCGCGCC ACATAGCAGA ACTTTAAAAG TGCTCATCAT TGGAAAACGT TCTTCGGGGC	4080
GAAAACtCTC AAGGATCTTA CCAGTGTGA GATCCAGTTC GATGTAACCC ACTCGTGCAC	4140
CCAACtGATC TTCAGCATCT TTTACTTTCA CCAGCGTTTC TGGGTGAGCA AAAACAGGAA	4200
GGCAAAATGC CGCAAAAAAG GGAATAAGGG CGACACGGAA ATGTTGAATA CTCATACTCT	4260
TCCCTTTCA ATATTATTGA AGCATTATC AGGGTTATTG TCTCATGAGC GGATACATAT	4320
TTGAATGTAT TTAGAAAAAT AAACAAATAG GGTTCCGCG CACATTCCC CGAAAAGTGC	4380
.. CACCTGACGT CTAAGAAACC ATTATTATCA TGACATTAAC CTATAAAAAT AGGCgtATCA	4440
CGAGGCCCTT TCGTC	4455

INTERNATIONAL SEARCH REPORT

Application No
'GB2004/003263

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/85 A01K67/033

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N A01K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HORN C ET AL: "A transgene-based, embryo-specific lethality system for insect pest management." NATURE BIOTECHNOLOGY, vol. 21, no. 1, January 2003 (2003-01), pages 64-70, XP002301699 ISSN: 1087-0156 the whole document ----- WO 01/39599 A (ALPHEY LUKE ; THOMAS DEAN (GB); ISIS INNOVATION (GB)) 7 June 2001 (2001-06-07) the whole document ----- -----	1-30, 33-42
X		1-30, 33-42 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

21 October 2004

Date of mailing of the international search report

05/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Cupido, M

INTERNATIONAL SEARCH REPORT

Application No
'GB2004/003263

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	THOMAS D D ET AL: "Insect population control using a dominant, repressible, lethal genetic system" SCIENCE (WASHINGTON D C), vol. 287, no. 5462, 31 March 2000 (2000-03-31), pages 2474-2476, XP002301700 ISSN: 0036-8075 cited in the application the whole document -----	1-30, 33-42
X	WU T-Y ET AL: "Expression of highly controllable genes in insect cells using a modified tetracycline-regulated gene expression system" JOURNAL OF BIOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 80, no. 1, June 2000 (2000-06), pages 75-83, XP004201980 ISSN: 0168-1656 the whole document -----	1-9, 33-36, 42
X	CHEN H-H ET AL.: "The use of a modified tetracycline regulatory expression system with reduced basal level to develop an in vivo biopesticide expression system" FOOD SCIENCE AND AGRICULTURAL CHEMISTRY, vol. 2, no. 4, October 2000 (2000-10), pages 220-225, XP008037322 TAIPEI the whole document -----	1-9
A	ALPHEY L ET AL: "Dominant lethality and insect population control" MOLECULAR AND BIOCHEMICAL PARASITOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 121, no. 2, May 2002 (2002-05), pages 173-178, XP002297190 ISSN: 0166-6851 cited in the application page 175 - page 177 -----	10-30

INTERNATIONAL SEARCH REPORT

Application No
'GB2004/003263

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0139599	A	07-06-2001		GB 2355459 A AU 1716501 A CA 2392111 A1 CN 1433475 T EP 1246927 A2 WO 0139599 A2 NZ 519175 A SK 7352002 A3 US 2003213005 A1 ZA 200204167 A		25-04-2001 12-06-2001 07-06-2001 30-07-2003 09-10-2002 07-06-2001 27-02-2004 06-11-2002 13-11-2003 25-08-2003