

DATA SCIENCE OVERVIEW

OUTLINE

Overview

- Motivation
- Big Picture

Stages

- Selection of Topic / Problem
- Data Acquisition
- Exploratory Data Analysis
- Modeling and Analysis
- Experimental Design
- Conclusions

Documentation

Example: RMD reports

MOTIVATION FOR DATA SCIENCE

Data is ubiquitous

 Recently we have the capability to acquire and analyze big data

Leveraging Data

- Analyzing data can yield evidence to support decisions
 - Data-Driven Decisions

DATA SCIENCE PIPELINE

- I. Identify Problem to Solve
 - I. Hypothesis
 - II. Decision to support
- II. Data Acquisition
 - I. Cleaning
- III. Exploratory Data Analysis
- IV. Modeling and Analysis
- V. Experimental Design
- VI. Concluding Remarks

I. SELECTION PROBLEM

Identify a Problem to Solve

Categories

- Decision or Prediction based
 - EG. Prediction stock market based on twitter data
 - EG. Decide whether to buy / sell a stock based on twitter data
- Exploratory or Investigation
 - EG. Are there measureable patterns in twitter data related to stocks

DATA ACQUISITION

Finding a data set

- Very important
- Must be able to support your investigation
 - Is there enough data?
 - Are the correct variables in the set?
 - Can you acquire the data?

Data is dirty ... time to clean / tidy

- Missing Values
- Missing labels
- Text cleaning
 - Think twitter data ☺

EXPLORATORY DATA ANALYSIS

Finding patterns in your data

Focus on relevant variables

- Correlations
- Associations

Data Viz

MODELING AND ANALYSIS

Based on EDA, determine a set of models that will help in your investigation

- Must determine which models / analytical techniques are appropriate
 - Based on data type: quantitative, qualitative, ...
 - Based on EDA: which variables are relevant
 - Based on Category of Problem
 - Prediction
 - Investigation

EXPERIMENTAL DESIGN AND RESULTS

Experiments: Validation of Models / Analysis

- Design an appropriate validation scheme
 - Separate training and testing sets
 - Cross-validation Techniques
 - K-fold
 - Random Sample

Results

- Measures of error accuracy of each trial
 - RMSE, Confusion Matrix, ROC curve, ...
- Measures of "repeatability" or "variability" of the trial results.
 - Assess variability across trial folds.

CONCLUSIONS

Relate Results back to Problem Statement

Do results support a decision / prediction?

Do results identify measurable patterns in the data?

DOCUMENTATION

Documenting a Data Science Project is VERY Important

- Document all stages
- Document "good" and "bad" results / findings
- Documentation should include good viz: figures, tables, plots, ...

Reports

- R-markdown
 - Everything is contain in 1 file!!!
 - Otherwise multiple files: coding, report, figures, jpgs, ...

