Problemas de métodos iterativos para resolver sistemas lineales.

(1) Consideremos el siguiente sistema de ecuaciones con 4 ecuaciones y 4 incógnitas:

$$10x_1 + 5x_2 = 6,$$

$$5x_1 + 10x_2 - 4x_3 = 25,$$

$$-4x_2 + 8x_3 - x_4 = -11,$$

$$-x_3 + 5x_4 = -11.$$

- a) Haz un programa que, dado un sistema lineal, un valor inicial $\mathbf{x}^{(0)}$ y una tolerancia ϵ halle la solución aproximada del sistema usando la tolerancia anterior usando los métodos de Jacobi y Gauss-Seidel.
- b) Usando el programa anterior con el método de Jacobi, con $\mathbf{x}^{(0)} = \mathbf{0}$, resolver el sistema anterior con una tolerancia de 0.0001 en la norma infinito.
- c) Hacer lo mismo pero usando el método de Gauss-Seidel.
- (2) Supongamos que un objeto puede estar en n+1 puntos equiespaciados x_0, x_1, \ldots, x_n de una recta. Cuando el objeto está en la posición x_i , se puede mover con igual probabilidad a x_{i-1} o x_{i+1} y no se puede mover a ningún otro lugar. En el caso en que el objeto esté en x_0 , sólo se puede mover a x_1 y si está en x_n sólo se puede mover a x_{n-1} . Supongamos que el objeto está en la posición x_i . Definimos P_i como la probabilidad de que el objeto alcance la posición x_0 antes que la posición x_n , para $i=0,1,\ldots,n$. Claramente $P_0=1$ y $P_n=0$. Además, como el objeto si está en la posición x_i , sólo se puede mover a x_{i-1} o x_{i+1} con la misma probabilidad, se verifica que

$$P_i = \frac{1}{2}P_{i-1} + \frac{1}{2}P_{i+1}, \quad i = 1, 2, \dots, n.$$

a) Demostrar que:

$$\begin{bmatrix} 1 & -\frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & \dots & \dots & 0 & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_{n-1} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- b) Usando los programas del ejercicio anterior, resolver el sistema anterior para n = 10, 50 y n = 100 usando los métodos de Jacobi y Gauss-Seidel con una tolerancia de 0.0001 y $\mathbf{x}^{(0)} = \mathbf{0}$.
- c) Cambiar las probabilidades de ir a x_{i-1} o x_{i+1} por α y deducir que sistema lineal resulta para las probabilidades P_i , $i=1,\ldots,n-1$.
- d) Resolver el sistema anterior para $\alpha = \frac{1}{3}$.
- (3) Haz un programa que, dado un sistema lineal, un valor inicial $\mathbf{x}^{(0)}$, un valor ω y una tolerancia ϵ , halle una solución aproximada del sistema lineal usando el método S.O.R. con una tolerancia ϵ y con valor inicial $\mathbf{x}^{(0)}$. Usando dicho programa, resolver el sistema del problema 1 usando el método de sobrerelajación con $\mathbf{x}^{(0)} = \mathbf{0}$, $\omega = 1.5$ con una tolerancia de 0.0001.
- (4) La matriz del problema 2 es simétrica, definida positiva y tridiagonal para cualquier valor de n. Vamos a estimar el parámetro \tilde{w} óptimo si se usa el método S.O.R. para resolver el sistema de dicho ejercicio para n=10. Para ello, considerar 19 parámetros w_i equiespaciados en el intervalo (0,2): $w_i=\frac{i}{10}$, $i=1,\ldots,19$ y calcular el número de iteraciones necesarias para hallar la solución con una tolerancia de 0.0001. Realizar un gráfico del número de iteraciones en función de los parámetros w_i y estimar

el mínimo. A partir de dicho mínimo, estimar el valor de $\rho(\mathbf{T}_J)$, donde $\rho(\mathbf{T}_J)$ es el radio espectral si usamos el método de Jacobi.