

Background Estimation

in the Daya Bay Reactor Antineutrino Experiment

顾文强 上海交通大学

on behave of the Daya Bay collaboration April 21st, 2012, 昆明

Background Sources

- Accidental background
 Two unrelated signals mimic an IBD
- Correlated background
 - Muon spallation products
 - ⁹Li/⁸He
 - Fast neutron
 - $-(\alpha,n)$
 - $-241 Am^{13}C$

Formation of Accidental Background

Two unrelated signals can accidentally mimic an IBD: $\gamma\gamma,\gamma n,nn$

- γ : Liquid Scintillator/PMT/SS tank/rock natural radioactivity/ AmC
- n: spallation neutron/long-lived cosmogenic isotopes(B/N/Li/C)/ (α ,n)

Main source of n-like singles*	Rate of singles(/day/AD)	Fraction(%)
AmC sources	~250	~18.2
¹² B/ ¹² N	~648	~47.3
⁸ Li/ ⁸ B	~270	~19.7
⁹ C	~50	~3.6

^{*}n-like single: uncorrelated signal in neutron energy region

Accidental Backgrounds Evaluation

$$N_{\rm accBkg} = \sum_{i} N_{\rm n-like \ singles}^{i} \bullet \underbrace{\left(1 - e^{-R_{e^+-like \ triggers}^{i} \bullet 200 \, \rm As}\right) \pm \frac{N_{\rm accBkg}}{\sqrt{\sum_{i} N_{\rm n-like \ singles}^{i}}}^{N_{\rm accBkg}}}$$

 $N^{i}_{n-like\ singles}$: number of singles in neutron energy region $R^{i}_{e^{+}-like\ triggers}$: rate of the triggers in prompt energy region

Random coincidence in 200µs

Accidental Backgrounds: Cross Checks

- Prompt-delayed distance distribution. Check the fraction of prompt-delayed pair with distance>2m
- Results in agreement within 1%.

2012/4/21 5

9 Li/ 8 He: β -n decay

Muon interactions in LS produce radioactive isotopes.

⁹Li and ⁸He are long-lived β,n emitters that can fake the IBD signature

β-n decay:

- Prompt: β-decay

- Delayed: neutron capture

⁹Li: $\tau_{\frac{1}{2}}$ = 178 ms, Q = 13. 6 MeV

⁸He: $\tau_{1/2}$ = 119 ms, Q = 10.6 MeV

Time since last muon fit

NIM A 564 (2006) 471-474

$$f(t) = \sum_{i} N_{i} \cdot \lambda_{i} \exp(-\lambda_{i}t) + N_{\mu} \cdot R_{\mu} \cdot \exp(-R_{\mu}t)$$

 R_{μ} : muon rate

$$\lambda_i = R_{\mu} + \frac{1}{\tau_i^{isotope}}$$

 N_i : counts of the specific kind of isotopes $\tau_i^{isotope}$: life time of the specific kind of isotopes

When R_{μ} is close to or greater than $\frac{1}{\tau_i^{isotope}}$

The precision of the fitted ⁹Li rate is given by

$$\sigma_b = \frac{1}{N} \cdot \sqrt{(1 + \tau R_\mu)^2 - 1}$$

Measure 9Li with two selection methods based on the **energy deposited** in the AD and the detected **co-production of neutrons**. The neutron co- production requirement reduces the muon rate and allows a measurement of the ⁹Li rate. Comparison of rates allows uncertainty estimate.

Compare measured and expected ⁹Li spectra

Energy (MeV)

Data from all ADs with >2.5 GeV muon energy cut

Signal window: (1ms, 1s) Off window: (1s, 2s)

Require distance between prompt and delayed <1m

2012/4/21

80

60

40

20

8

Fast neutron

"Fast" neutrons produced by cosmic muons external to the AD can enter the AD, slow and be captured.

It can fake IBD events via:

- Prompt: proton recoil in antineutrino detector
- Delayed: neutron captured on Gd

Validate extrapolation method

Check validity of extrapolation by tagging fast neutrons using the water pool and RPCs.

Both spectra are flat

Approximately 30% of fast neutrons untaggable by the water pool can be tagged by the RPCs based on MC and data.

Cross Checks

- Fast neutrons from water pools
 - Obtain the rate and energy spectrum of fast neutrons by tagged muons in water pool. Consistent with MC simulation.
 - Estimate the untagged fast neutron by using water pool inefficiency
- Fast neutrons from nearby rock
 - Estimated based on MC simulation

	Fast neutron (event/day)	Cross checks(event/day)
AD1	0.84±0.28	0.6±0.4
AD2	0.84±0.28	0.6±0.4
AD3	0.74 ± 0.44	0.6±0.4
AD4	0.04 ± 0.04	0.04 ± 0.04
AD5	0.04 ± 0.04	0.04 ± 0.04
AD6	0.04 ± 0.04	0.04 ± 0.04

Background $^{13}C(\alpha,n)^{16}O$

Two kinds of ${}^{13}C(\alpha,n){}^{16}O$ bkg.

- 16 O excited states: $\gamma + n \ cpature$
- 16 O ground state: $p \ recoil + n \ capture$

Neutron yield calculated from α rate and (α,n) cross section analytically

Alpha rate determination

Alpha rate determined from cascade decays in

²³⁸U, ²³²Th, ²²⁷Ac, ²¹⁰Po

²³⁸U: ²¹⁴Bi $\xrightarrow{\beta}$ ²¹⁴Po $\xrightarrow{\alpha}$ ²¹⁰Po

²³²Th: ²¹²Bi $\xrightarrow{\beta}$ ²¹²Po $\xrightarrow{\alpha}$ ²⁰⁸Pb

²²⁷Ac: ²¹⁹Rn $\stackrel{\alpha}{\rightarrow}$ ²¹⁵Po $\stackrel{\alpha}{\rightarrow}$ ²¹¹Pb

Uncertainty: 50%

	Components	Total α rate	BG rate
Region A	Acc. Coincidence of ²¹⁰ Po& ²¹⁰ Po	²¹⁰ Po: 10Hz at DYB	0.02/day at DYB
Region B	Acc. Coincidence of ²¹⁰ Po& ⁴⁰ K	8Hz at LA	0.015/day at LA
Region C	Acc. Coincidence of ⁴⁰ K& ²¹⁰ Po	6Hz at Far	0.01/day at Far
Region D	Acc. Coincidence of ²⁰⁸ TI& ²¹⁰ Po		
Region E	Cascade decay in ²²⁷ Ac chain	1.4 Bq	0.01/day
Region F	Cascade decay in ²³⁸ U chain	0.07Bq	0.001/day
Region G	Cascade decay in ²³² Th chain	1.2Bq	0.01/day

²⁴¹Am-¹³C background

Position of neutron capture

Ifrom simulation Mean x Mean y RMSx 4000 RMS v 12 3500 10 3000 2500

 ~ 0.5 Hz 241 Am 13 C source

During physics data-taking, nearly no AmC neutron leak into AD, but gamma from neutron will.

n capture:

- contribute to accidental bkg. n inelastic scattering + n capture:
 - contribute to correlated bkg.

Far site ADs Y vs X for delayed candidates

Am-C background rate

- Measured single neutron background due to AmC $^{\sim}$ 230 \pm 40 /day/module
- Agrees well with Monte Carlo prediction 285 /day/module

Estimate ratio of correlated/uncorrelated rate using Monte Carlo, which predicts a 0.2/day/module correlated background from AmC source (we take it with 100% uncertainty)

Summary of Backgrounds

Background	Near	Far	Fractional Accuracy (%)
Accidental	~1.4 %	~4.5 %	<1%
Fast Neutrons	~0.1%	~0.06%	<100%
⁸ He/ ⁹ Li	~0.4%	~0.2%	<70%
Am-C	~0.03%	~0.3%	100%
(α-n)	~0.01%	~0.04%	<70%

谢谢!