

Maschinelles Lernen Mathematische Grundlagen – Multivariate Analysis

Prof. Dr. Rainer Stollhoff

Motivation: Multivariate Regression

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: Quadratische Verlustfunktion

$$L(y,\hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$$

Maschine: vereinfachte lineare Regression mit

$$f(x_1, x_2; \theta_0, \theta_1, \theta_2) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2$$

Lernen: Finde Werte für $\theta = (\theta_0, \theta_1, \theta_2)$, die die quadratische Verlustfunktion minimieren

Inhaltsübersicht

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Motivation / Einleitung
- Funktionen mehrerer Veränderlicher
- Partielle Ableitungen
- Lineare Algebra

Beispiel: Funktion mehrerer Veränderlicher

$$\bullet \ f(x_1) = x_1^2$$

x1		f(x1)	
	-2		4
	-1		1
	0		0
	1		1
	2		4

$$f(x_1) = g(x_1, 0)$$

•	$g(x_1,$	x_2)	=	x_1^2	+	χ_2^2
---	----------	---------	---	---------	---	------------

		x2				
	$x_1^2 + x_2^2$	-2	-1	0	1	2
	-2	8	5	4	5	8
	-1	5	2	1	2	5
x1	0	4	1	0	1	4
	1	5	2	1	2	5
	2	8	5	4	5	8

$$y = x_1^2 + x_2^2$$

Funktion mehrerer Veränderlicher

	Technische
	Hochschule
	Wildau
	Technical University
	of Applied Sciences
WIIDAII	• •

•	$f(x_1)$	(x_2)	=	χ_1^2
		\mathcal{L}_{ZJ}		\mathcal{I}_{1}

$$g(x_1, x_2) = x_1^2 + x_2^2$$

•
$$g(x_1, x_2) = x_1^2 + x_2^2$$

• $h(x_1, x_2) = x_1^2 - x_2^2$

		x2				
	$x_1^2 - x_2^2$	-2	-1	0	1	2
	-2	0	3	4	3	0
	-1	-3	0	1	0	-3
x1	0	-4	-1	0	-1	-4
	1	-3	0	1	0	-3
	2	0	3	4	3	0

$$y = x_1^2 - x_2^2$$

Funktion mehrerer Veränderlicher

- $f(x_1, x_2) = x_1^2$
- $g(x_1, x_2) = x_1^2 + x_2^2$
- $h(x_1, x_2) = x_1^2 x_2^2$

Wir gehen davon aus, dass x_1, x_2, \dots, x_n reellwertige, voneinander unabhängige Veränderliche sind

$$x_i \in \mathbb{R} \quad (i = 1, 2, \dots, n)$$

und nennen eine Vorschrift f, mit der jeder zum Definitionsbereich $\mathbb{D}(f)$ von f gehörenden Kombination (x_1, x_2, \ldots, x_n) der Veränderlichen genau ein Wert $f(x_1, x_2, \ldots, x_n) \in \mathbb{R}$ zugeordnet wird, eine reelle **Funktion f der n unabhängigen Variablen x_1, x_2, \ldots, x_n**. Als Zuordnungsvorschrift benutzen wir die **Funktionsgleichung**

$$y = f(x_1, x_2, \ldots, x_n).$$

$$y = x_1^2 + x_2^2$$

$$y = x_1^2$$

Höhenlinien

	Technische
	Hochschule
	Wildau
	Technical University
	of Applied Sciences
WIIDAU	

•	$f(x_1)$	(x_2)	=	χ_1^2
	7 (11	, /		

•
$$g(x_1, x_2) = x_1^2 + x_2^2$$

• $g(x_1, x_2) = c$?

$$g(x_1, x_2) = c ?$$

	α –	/6/	5.	4 3	5 \	6
	- -			2		
>	0 -					
	7 -					
	7 –	6	5.		5/	
		-2	-1	0	1	2
				X		

				x2		
	$x_1^2 + x_2^2$	-2	-1	0	1	2
	-2	8	5	4	5	8
	-1	5	2	1	2	5
x1	0	4	1	0	1	4
	1	5	2	1	2	5
	2	8	5	4	5	8

3D Function Grapher

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d2/

Inhaltsübersicht

Hochschule
Wildau
Technical University
of Applied Sciences

- Motivation / Einleitung
- Funktionen mehrerer Veränderlicher
- Partielle Ableitungen
- Lineare Algebra

Partielle Ableitungen

• Erster Ordnung = Ableitung in Richtung einer der Veränderlichen

Zweiter Ordnung

$$\frac{\partial f}{\partial x_i} = \frac{\partial}{\partial x_i} f = f'_{x_i}.$$

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (x_1, x_2, \dots, x_n) = \frac{\partial^2}{\partial x_j \partial x_i} f(x_1, x_2, \dots, x_n)
= \frac{\partial^2 f(x_1, x_2, \dots, x_n)}{\partial x_j \partial x_i}
= f''_{x_i x_j} (x_1, x_2, \dots, x_n).$$

Abb. 7.4 Höhenlinie von $y = x_1^2 + x_2^2$

Abb. 7.5 Höhenlinien von $y = x_1^2$

Partielle Ableitungen

$$f(x_1, x_2) = 5\sqrt{x_1 x_2}$$

$$f(x_1, x_2) = x_1^2 + x_2^2$$

$$\bullet \ \frac{\partial f(x_1, x_2)}{\partial x_1} =$$

$$\bullet \ \frac{\partial f(x_1, x_2)}{\partial x_2} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_2 \ \partial x_1} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \ \partial x_2} =$$

$$\bullet \ \frac{\partial f(x_1, x_2)}{\partial x_1} =$$

$$\bullet \ \frac{\partial f(x_1, x_2)}{\partial x_2} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_2 \ \partial x_1} =$$

$$\bullet \ \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \ \partial x_2} =$$

Extremwerte Beispiele

•
$$f(x_1, x_2) = x_1^2$$

•
$$g(x_1, x_2) = x_1^2 + x_2^2$$

•
$$h(x_1, x_2) = x_1^2 - x_2^2$$

$$y = x_1^2 + x_2^2$$

$$y = x_1^2$$

Extremwerte

Merksatz

Sei $f = f(x_1, x_2)$ eine Funktion mit zwei voneinander unabhängigen Variablen x_1 und x_2 . Die Funktion f sei zweimal partiell differenzierbar, d. h., es mögen die partiellen Ableitungen erster Ordnung f'_{x_1} und f'_{x_2} sowie die partiellen Ableitungen zweiter Ordnung $f'_{x_1x_1}$ und $f'_{x_1x_2}$ ebenso wie $f'_{x_2x_1}$ und $f'_{x_2x_2}$ existieren. Dann gilt: Die Funktion f besitzt an der Stelle $P_0 = P_0(x_{1_0}, x_{2_0})$ einen **lokalen Extremwert**, wenn die Bedingungen

$$f'_{x_1}(x_{1_0}, x_{2_0}) = f'_{x_2}(x_{1_0}, x_{2_0}) = 0$$

und

$$f_{x_1x_1}''(x_{1_0}, x_{2_0}) \cdot f_{x_2x_2}''(x_{1_0}, x_{2_0}) - (f_{x_1x_2}''(x_{1_0}, x_{2_0}))^2 > 0$$

erfüllt sind.

Sofern $f''_{x_1x_1}(x_{1_0}, x_{2_0}) < 0$ ist, handelt es sich um ein **lo-kales Maximum**. Ist $f''_{x_1x_1}(x_{1_0}, x_{2_0}) > 0$, liegt ein **lokales Minimum** vor.

Beispiel:

$$f(x_1, x_2) = x_1^2 + x_2^2$$

•
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \cdot \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \frac{\partial^2 f(x_1, x_2)}{\partial x_1} > 0$$

Gradientenvektor und Hesse-Matrix

$$\frac{\partial f}{\partial x_i} = \frac{\partial}{\partial x_i} f = f'_{x_i}.$$

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (x_1, x_2, \dots, x_n) = \frac{\partial^2}{\partial x_j \partial x_i} f(x_1, x_2, \dots, x_n)$$

$$= \frac{\partial^2 f(x_1, x_2, \dots, x_n)}{\partial x_j \partial x_i}$$

$$= f''_{x_i x_j} (x_1, x_2, \dots, x_n).$$

Gradientenvektor
Partielle Ableitungen 1. Ordnung

$$\nabla f(x) = \begin{pmatrix} \frac{\partial}{\partial x_1} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{pmatrix}$$

Hesse-Matrix
Partielle Ableitungen 2. Ordnung

$$\nabla(\nabla f(x)) = \mathbf{H}_f(x) = \begin{pmatrix} \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_1} f(x) & \dots & \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_n} f(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_n} \frac{\partial}{\partial x_1} f(x) & \dots & \frac{\partial}{\partial x_n} \frac{\partial}{\partial x_n} f(x) \end{pmatrix}$$

Inhaltsübersicht

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Motivation / Einleitung
- Funktionen mehrerer Veränderlicher
- Partielle Ableitungen
- Lineare Algebra

Vektoren und Matrizen

Technische Hochschule Wildau **Technical University** of Applied Sciences

Tabellen

	Produkt 1	Produkt 2	Produkt 3	Produkt 4
Kunde 1	20	300	10	100
Kunde 2	55	80	0	210
Kunde 3	0	1000	70	350

Matrizen mxn

$$\left(\begin{array}{ccccc}
20 & 300 & 10 & 100 \\
55 & 80 & 0 & 210 \\
0 & 1000 & 70 & 350
\end{array}\right)$$

Zeilenvektor Spaltenvektor 1xn mx1

$$(10; 4; 6; 2)$$
 bzw. $\begin{pmatrix} 10 \\ 4 \\ 6 \\ 2 \end{pmatrix}$

Quadratische Matrix

$$\left(\begin{array}{cccc}
1 & 3 & -4 \\
3 & 12 & -2 \\
-4 & -2 & 5
\end{array}\right)$$

Obere (untere) Dreiecksmatrix

$$\begin{pmatrix} 1 & 3 & -4 \\ 3 & 12 & -2 \\ -4 & -2 & 5 \end{pmatrix} . \quad \begin{pmatrix} -2 & 1 & 10 & -5 \\ 0 & 4 & -3 & 9 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 11 \end{pmatrix} \qquad \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Diagonalmatrix

$$\left(\begin{array}{cccccc}
2 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)$$

Einheitsmatrix

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

Rechnen mit Vektoren und Matrizen

• Transponieren

Addieren

$$\begin{pmatrix} 20 & 300 & 10 & 100 \\ 55 & 80 & 0 & 210 \\ 0 & 1000 & 70 & 350 \end{pmatrix}^{T} = \begin{pmatrix} 20 & 55 & 0 \\ 300 & 80 & 1000 \\ 10 & 0 & 70 \\ 100 & 210 & 350 \end{pmatrix}$$

• Multiplizieren mit Ska

$$0,2 \leftarrow \begin{pmatrix} 20 & 300 & 10 & 100 \\ 55 & 80 & 0 & 210 \\ 0 & 1000 & 70 & 350 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 60 & 2 & 20 \\ 11 & 16 & 0 & 42 \\ 0 & 200 & 14 & 70 \end{pmatrix}$$

Matrix mal Vektor

•
$$=\begin{pmatrix} 1660 \\ 1290 \\ 5120 \end{pmatrix}$$
. $(3x4)\cdot(4x1)=(3x1)$

$$(4x5)\cdot(5x3)=(4x3)$$

Inverse einer Matrix

Inverse

$$(X^{-1})X = E = X(X^{-1})$$

Lineares Gleichungssystem
 Gauß-Verfahren

$$\begin{pmatrix} 3000 & 2500 & | & 1 & 0 \\ 7500 & 1300 & | & 0 & 1 \end{pmatrix}$$

Ziel & Ergebnis

$$\begin{pmatrix} 1 & 0 & X_{11}^{-1} & X_{12}^{-1} \\ 0 & 1 & X_{21}^{-1} & X_{22}^{-1} \end{pmatrix}$$

Lösung

$$X^{-1} = \begin{pmatrix} X_{11}^{-1} & X_{12}^{-1} \\ X_{21}^{-1} & X_{22}^{-1} \end{pmatrix}$$

Probe

$$(X^{-1})X =$$

Lineare Gleichungssysteme und Inverse

Lineares Gleichungssystem Gauß-Verfahren

- Kurzschreibweise
$$\begin{pmatrix} 2 & 2 & 4 \\ 4 & 6 & 5 \\ 2 & 3 & 3 \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$

Rechenoperationen

- Ziel und Ergebnis
- Lösung:

- Vertauschen zweier Zeilen,
- Multiplizieren einer Zeile mit einer Zahl ungleich null,
- Addition einer Zeile zu einer anderen Zeile.

$$\begin{array}{c|ccccc}
1 & 0 & 0 & -19 \\
0 & 1 & 0 & 8 \\
0 & 0 & 1 & 6
\end{array}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -19 \\ 8 \\ 6 \end{pmatrix}$$

Inverse

$$(A^{-1})A = E = A(A^{-1})$$

Lineares Gleichungssytem
 Gauß-Verfahren

$$\left(\begin{array}{cc|c}
2 & 1 & 1 & 0 \\
-4 & 3 & 0 & 1
\end{array}\right)$$

Ziel & Ergebnis

Lösung und Probe

$$\left(\begin{array}{cc|cc}
1 & 0 & \frac{3}{10} & -\frac{1}{10} \\
0 & 1 & \frac{2}{5} & \frac{1}{5}
\end{array}\right)$$

LGS mittels Inverser

$$A^{-1} \cdot A = \begin{pmatrix} \frac{3}{10} & -\frac{1}{10} \\ \frac{2}{5} & \frac{1}{5} \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A \cdot x = b$$
 $\Rightarrow A^{-1} \cdot A \cdot x = x = A^{-1} \cdot b$

Determinanten und lineare Abhängigkeit

Matrix mit linear unabhängigen Zeilen

$$X = \begin{pmatrix} 3 & 4 \\ 6 & 1 \end{pmatrix}$$

Determinante ungleich Null

$$\det(X) = |X| = 3 \cdot 1 - 6 \cdot 4 = -21$$

Matrix mit linear abhängigen Zeilen

$$Y = \begin{pmatrix} 3 & 4 \\ 6 & 8 \end{pmatrix}$$

Determinante gleich Null

$$\det(X) = |X| = 3 \cdot 8 - 6 \cdot 4 = 0$$

Matrix mit linear abhängigen oder unabhängigen Zeilen?

$$Z = \begin{pmatrix} 3 & 4 & 1 \\ 7 & 8 & 3 \\ 1 & 0 & 1 \end{pmatrix}$$

$$det(X) = |X| = +3 \cdot (8 \cdot 1 - 0 \cdot 3) -7 \cdot (4 \cdot 1 - 0 \cdot 1) +1 \cdot (4 \cdot 3 - 8 \cdot 1) = 3 \cdot 8 - 7 \cdot 4 + 1 \cdot 4 = 0$$

Matrix mit linear abhängigen Zeilen