Application of GLM Advancements to Non-Life Insurance Pricing

Leonardo Stincone

Università degli Studi di Trieste

10 Maggio 2021

Table of Contents

- 1. Il Pricing nelle Assicurazioni Danni
- 2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Cenni sugli Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

Table of Contents

1. Il Pricing nelle Assicurazioni Danni

 Modelli Statistici per il Pricing nelle Assicurazioni Danni Modelli Lineari Generalizzati (GLM) Modelli Additivi Generalizzati (GAM) Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM Cenni sugli Algoritmi di Machine Learning

3. Applicazione Pratica

Che cos'è un Contratto Assicurativo

Contratto di Assicurazione, Art. 1882, Codice Civile Italiano

L'assicurazione è il contratto col quale l'assicuratore, verso il pagamento di un **premio**, si obbliga a rivalere l'assicurato, entro i limiti convenuti,

- 1 del danno ad esso prodotto da un sinistro,
- 2 ovvero a pagare un capitale o una rendita al verificarsi di un evento attinente alla vita umana.

Da un punto di vista matematico

Distribuzione composta

Assumiamo che

- ① $\forall n > 0, Z_1 | N = n, Z_2 | N = n, \dots, Z_n | N = n \text{ siano i.i.d.};$
- ② la distribuzione di $Z_i|N=n,\ i\leq n$ non dipenda da n.

Sotto queste ipotesi diciamo che

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

ha distribuzione composta.

Proprietà

$$E(S) = E(N)E(Z)$$

Da un punto di vista matematico

Distribuzione composta

Assumiamo che:

- 1 $\forall n > 0, Z_1 | N = n, Z_2 | N = n, \dots, Z_n | N = n \text{ siano i.i.d.};$
- 2 | a distribuzione di $Z_i|N=n,\ i\leq n$ non dipenda da n.

Sotto queste ipotesi diciamo che:

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

ha distribuzione composta.

Proprietà

$$E(S) = E(N)E(Z)$$

Da un punto di vista matematico

Distribuzione composta

Assumiamo che:

- **1)** $\forall n > 0, Z_1 | N = n, Z_2 | N = n, \dots, Z_n | N = n \text{ siano i.i.d.};$
- 2 | a distribuzione di $Z_i|N=n,\ i\leq n$ non dipenda da n.

Sotto queste ipotesi diciamo che:

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

ha distribuzione composta.

Proprietà

$$E(S) = E(N)E(Z)$$

Personalizzazione e Variabili Esplicative

Variabili esplicative

Possibili variabili esplicative per il pricing delle assicurazioni motor:

- Informazioni sul veicolo assicurato:
- Informazioni generiche sul contraente;
- Informazioni assicurative sul contraente;
- Opzioni sulla polizza assicurativa;
- Dati telematici.

Queste variabili possono essere codificate come un vettore di numeri reali:

$$\boldsymbol{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X} \subseteq \mathbb{R}^p$$

Regola di Pricing

Una Regola di Pricing è una funzione $f(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce un prezzo P_i :

$$f: \quad \begin{array}{ccc} \mathcal{X} & \longrightarrow & R_{-} \\ & x_i & \longmapsto & P_i \end{array}$$

Modellare una variabile risposta

 $\label{eq:modellare una variabile risposta} Modellare una variabile risposta Y_i significa stimare una funzione <math>r(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce la distribuzione di Y_i o alcuni suoi momenti:

$$\begin{array}{cccc} r: & \mathcal{X} & \longrightarrow & \mathcal{C} \\ & x_i & \longmapsto & F_{Y_i}, E(Y_i), Var(Y_i) \end{array}$$

Personalizzazione e Variabili Esplicative

Variabili esplicative

Possibili variabili esplicative per il pricing delle assicurazioni motor:

- Informazioni sul veicolo assicurato:
- Informazioni generiche sul contraente;
- Informazioni assicurative sul contraente;
- Opzioni sulla polizza assicurativa;
- Dati telematici.

Queste variabili possono essere codificate come un vettore di numeri reali:

$$\boldsymbol{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X} \subseteq \mathbb{R}^p$$

Regola di Pricing

Una Regola di Pricing è una funzione $f(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce un prezzo P_i :

$$\begin{array}{cccc} f: & \mathcal{X} & \longrightarrow & R_+ \\ & \boldsymbol{x}_i & \longmapsto & P_i \end{array}$$

Modellare una variabile risposta

Modellare una variabile risposta Y_i significa stimare una funzione $r(\cdot)$ che da una $\boldsymbol{x}_i \in \mathcal{X}$ restituisce la distribuzione di Y_i o alcuni suoi momenti:

$$r: \mathcal{X} \longrightarrow \mathcal{C}$$

 $\mathbf{x}_i \longmapsto F_{Y_i}, E(Y_i), Var(Y_i)$

Variabili Risposta

Distribuzione di Poisson

$$p_N(n) = P(N = n) = e^{-\lambda} \frac{\lambda^n}{n!}, \quad \lambda > 0$$

Distribuzione Gamma

$$f_Z(z) = \frac{\rho^{\alpha}}{\Gamma(\alpha)} z^{\alpha - 1} e^{-\rho z}, \quad \alpha > 0, \ \rho > 0$$

Pricing Tecnico e Commerciale

Definizione di Premio

Ottimizzazione del Prezzo

Si basa su

- Pricing Tecnico
- 2 Aspettativa del Cliente
- 3 Strategia di Business

Ulteriori modelli

- New Business: Probabilità di Conversion
- Rinnovi: Probabilità di Retention

Pricing Tecnico e Commerciale

Definizione di Premio

$$\begin{split} P_i^{(\text{risk})} &= E(S_i) \\ P_i^{(\text{tech})} &= E(S_i) + \text{Expenses}_i \\ & & \text{Altri Caricamenti} \\ & \text{Vincoli Normativi} \\ & \text{Commercializzazioni} \\ P_i^{(\text{tariff})} &= P_i^{(\text{tariff})} - \text{Discount}_i \end{split}$$

Ottimizzazione del Prezzo

Si basa su

- Pricing Tecnico
- Aspettativa del Cliente
- 3 Strategia di Business

Ulteriori modelli

- New Business: Probabilità di Conversion
- Rinnovi: Probabilità di Retention

Table of Contents

- 1. Il Pricing nelle Assicurazioni Dann
- 2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Cenni sugli Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

Modelli Lineari Generalizzati (GLM)

Dato
$$\mathcal{D} = \{(\boldsymbol{x}_1, \omega_1, y_1), \dots, (\boldsymbol{x}_n, \omega_n, y_n)\}$$

con $\boldsymbol{y} = (y_1, \dots, y_n)^t$ realizzazione di $\boldsymbol{Y} = (Y_1, \dots, Y_n)^t$.

Assumiamo che:

1 $Y = (Y_1, ..., Y_n)^t$ siano indipendenti con distribuzione appartenente a una stessa famiglia esponenziale lineare:

$$f(y_i; \theta_i, \phi, \omega_i) = \exp\left\{\frac{\omega_i}{\phi} \left[y_i \theta_i - b(\theta_i)\right]\right\} c(y_i, \phi, \omega_i), \quad y_i \in \mathcal{Y} \subseteq \mathbb{R}$$

2 $m{x}_i = (1, x_{i1}, \dots, x_{ip})^t$ agisca su Y_i tramite il predittore lineare η_i

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

3 η_i sia legato a $\mu_i = E(Y_i)$ tramite la funzione legame $g(\cdot)$

$$g(\mu_i) = \eta_i = \boldsymbol{x}_i^t \boldsymbol{\beta}$$

Stima di un GLM

Stima di massima verosimiglianza

Data la funzione di verosimiglianza

$$L: \quad \mathbb{R}^{p+1} \times \Lambda \quad \longrightarrow \quad [0, +\infty[$$
$$(\boldsymbol{\beta}, \phi) \quad \longmapsto \quad f_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\theta}, \phi)$$

La stima di massima verosimiglianza è:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi; \boldsymbol{y}\right)$$

Devianza La devianza

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = -2\phi \left(\ell \left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y} \right) - \ell_S \left(\boldsymbol{\beta}^*, \phi; \boldsymbol{y} \right) \right)$$

dove
$$\ell\left(\hat{m{eta}},\phi;m{y}
ight)=\log L\left(\hat{m{eta}},\phi;m{y}
ight)$$
e $m{eta}^*$ sono i parametri del modello saturo

La stima di massima verosimiglianza può essere ottenuta come:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D(\boldsymbol{\beta}, \boldsymbol{y})$$

Stima di un GLM

Stima di massima verosimiglianza

Data la funzione di verosimiglianza

$$\begin{array}{cccc} L: & \mathbb{R}^{p+1} \times \Lambda & \longrightarrow & [0, +\infty[\\ & (\boldsymbol{\beta}, \phi) & \longmapsto & f_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\theta}, \phi) \end{array}$$

La stima di massima verosimiglianza è:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi; \boldsymbol{y}\right)$$

Devianza

La devianza è

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = -2\phi \left(\ell \left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y} \right) - \ell_S \left(\boldsymbol{\beta}^*, \phi; \boldsymbol{y} \right) \right)$$

dove
$$\ell\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right) = \log L\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right)$$
 e $\boldsymbol{\beta}^*$ sono i parametri del modello saturo.

La stima di massima verosimiglianza può essere ottenuta come:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D(\boldsymbol{\beta}, \boldsymbol{y})$$

Effetto delle variabili in un GLM

(c) Quantitativa e qualitativa senza interazione

(b) Qualitativa

(d) Quantitativa e qualitativa con interazione

Variabili quantitative ed effetti non lineari

Funzione Legame e risposta

(c) Poisson - log

(b) Binomial - logit

(d) Gamma - log

Grafici per visualizzare l'effetto delle variabili

(a) No effect - ungrouped

(c) No effect - grouped

(b) Positive effect - ungrouped

(d) Positive effect - grouped

Criteri per la selezione delle variabili nei GLM

Criteri per la selezione delle variabili

- Visualizzazione
- Test di verifica di ipotesi

$$\begin{cases} H_0: & \beta_{j_k} = 0 \ \forall k \in \{1, 2, \dots, s\} \\ H_1: & \exists k: \beta_{j_k} \neq 0 \end{cases}$$

Criteri di informazione

$$AIC = -2\ell(\beta) + 2(p+1)$$

$$BIC = -2\ell(\beta) + \log(n)(p+1)$$

- Divisione del dataset tra training set e test set
- Cross validation

 \Longrightarrow Algoritmi stepwise

Modello Additivo Generalizzato (GAM)

- 1 Variabile risposta Y come GLM;
- 2 Predittore lineare

$$\eta_i = oldsymbol{x}_i^t oldsymbol{eta} + \sum_{l=1}^q f_l(z_{i,l}), \quad i \in \{1,2,\ldots,n\}$$

con $f_l(\cdot)$ spline cubica;

3 Funzione legame $g(\cdot)$ come GLM.

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\mathbf{f}} = \underset{\mathbf{f}}{\operatorname{arg\,min}} \left\{ D(\mathbf{f}, \mathbf{y}) + \sum_{l=1}^{q} \lambda_l \int_{a_l}^{b_l} (f_l''(x_l))^2 dx \right\}$$

con $\lambda_1, \lambda_2, \ldots, \lambda_q$ iperparametri di smoothing.

GAM: esempio

(c) $\lambda = 10^3$

(d)
$$\lambda = 10^6$$

Trade-off tra Bias e Varianza

Scomposizione dello scarto quadratico medio (MSE)

$$MSE\left(\tilde{\beta}_{j}\right) \stackrel{\mathsf{def}}{=} E\left(\left(\tilde{\beta}_{j} - \beta_{j}\right)^{2}\right) = \underbrace{\left(E(\tilde{\beta}_{j}) - \beta_{j}\right)^{2}}_{\mathsf{Blas}^{2}} + \underbrace{Var\left(\tilde{\beta}_{j}\right)}_{\mathsf{Variance}}$$

Modello sottostante:GLM

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \|\boldsymbol{\beta}_{\backslash 0}\|_2^2 \right\}$$

dove

- $\|\beta_{\setminus 0}\|_2^2 = \sum_{j=1}^p \beta_j^2$
- ullet $\lambda \geq 0$ iperparametro di penalizzazione

Regressione Ridge: esempio

Regressione LASSO

Regressione LASSO: esempio

Elastic Net

Stimatori Bayesiani per i GLM

Cenni sugli Algoritmi di Machine Learning

Titolo di prova

Table of Contents

- 1. Il Pricing nelle Assicurazioni Danni
- 2. Modelli Statistici per il Pricing nelle Assicurazioni Dann

Modelli Additivi Generalizzati (GAM)

Wodell Additivi Generalizzati (GAIVI)

Stimatori Shrinkage per i GLM

Stimatori Bayesianı per i GLM

Cenni sugli Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

