Summary for lectures 3 and 4

We are studying sets.

We defined sets, and the notation for sets, and gave several examples.

We discussed the notion of a set being well-defined.

Introduced the notation \in and \subseteq .

We computed the number of subsets of a finite set.

We discussed the empty set \emptyset and the power set of A, $\mathcal{P}(A)$.

We defined the bit vector, and showed how to order the subsets of A.

We defined intersection, \cap , and union, \cup , and complement $(--)^c$ and their relationship.

Exercises for Lectures 3 and 4

- 1. Discuss whether or not each of these determines a well-defined set:
 - (a) The set of people in the United States.
 - (b) The set of people in the United States.
 - (c) The set of current members of congress.
 - (d) The set students in this class.
 - (e) the set of bicycles on the WPI campus.
 - (f) the set of cars registered in Massachusetts
- 2. Discuss whether or not each of these determines a well-defined set:
 - (a) The set of numbers numbers which are the sum of two prime numbers.
 - (b) The set of integers which are larger than any prime number.
 - (c) The set of rational numbers which are prime.
 - (d) The set of natural numbers which are the lengths of words in Shake-speare's "Hamlet".
- 3. List all the elements of each of the following sets:
 - (a) $\{n \in \mathbb{N} \mid 5 < n^2 < 100, n = 3k, k \in \mathbb{N}\}\$
 - (b) $\{n^2 + m^2 \mid m \in \mathbb{N}, n \in \mathbb{N}, n + m < 10\}$
 - (c) $\{n+m \mid n \in \mathbb{Z}, m \in \mathbb{N}, n^2+m^2 \le 5\}$
 - (d) $\{n+m \mid n \in \mathbb{Z}, m \in \mathbb{Z}, n^2+m^2 \le 5\}$
 - (e) $\{n+m \mid n \in \mathbb{N}, m \in \mathbb{N}, n^2+m^2 \le 5\}$
- 4. Let $A = \{a, b, c, d, \dots, x, y, z\}$ be the set of lower case letters in the alphabet.
 - (a) How many sets are subsets of A?

- (b) How many subsets of A are also subsets of a subset of A?
- (c) How many subsets of A contain both the elements f and s?
- (d) What is the set of subsets of A such that a is it's first element?
- (e) How many subsets of A do not contain a vowel? $(\{a, e, i, o, u\})$
- 5. Let $B = \{b, o, d\}$, $F = \{a, b, c, d\}$, and $S = \{c, d, o, i\}$. Give each of the following sets:
 - (a) $B \cup F$.
 - (b) $B \cap F$.
 - (c) $(B \cap F) \cup (S \cap F)$.
 - (d) $(B \cup F) \cap (S \cup F)$.
 - (e) $(B \cup F) \cap (S \cup F) \cap (B \cup S)$.
 - (f) $B \cap F \cap S$.
- 6. Let $B=\{b,o,d\},\ F=\{a,b,c,d\},$ and $S=\{c,d,o,i\}.$ Give each of the following sets:
 - (a) $\mathcal{P}(B) \cup \mathcal{P}(F)$.
 - (b) $\mathcal{P}(B \cup F)$.
 - (c) $\mathcal{P}(B) \cap \mathcal{P}(F)$.
 - (d) $\mathcal{P}(B \cap F)$.
 - (e) $\mathcal{P}(B) \cap \mathcal{P}(F) \cap \mathcal{P}(F)$.
 - (f) $\mathcal{P}(B) \cup \mathcal{P}(F) \cup \mathcal{P}(F)$.
- 7. List the elements of the set $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$. (There are only four.)
- 8. Show using the double inclusion method that $(X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z)$.
- 9. Show using the double inclusion method that $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$.
- 10. Show using the double inclusion method that $(X \cup Y)^c = X^c \cap Y^c$.
- 11. Show using the double inclusion method that $(X \cap Y)^c = X^c \cup Y^c$.