ПЕРВОЕ ЗАДАНИЕ

Автор:	Маллаев	Руслан
--------	---------	--------

От: 4 мая 2023 г.

Содержание

1		2 2 2 2 2 2
2	Методы	2
3	Коэффициент самодиффузии методом Эйнштейна-Смолуховского	3
4	Коэффициент самодиффузии методом Грина-Кубо	4
5	Расчет вязкости	5
6	Гидродинамический радиус (радиус Стокса)	6
7	Масштабирование Розенфельдовского типа	6
8	Выводы	11

1 Теоретическое введение

1.1 Коэффициент самодиффузии

Вычисляется двумя способами

• через среднеквадратичные смещения частиц по формуле Эйнштейна-Смолуховского

$$D = \lim_{t \to \infty} \frac{\left\langle \Delta \vec{r}^2(t) \right\rangle}{6t}$$

• по формуле Грина-Кубо через автокорреляционную функцию скорости (АКФС)

$$D = \frac{1}{3} \int_0^\infty \langle \vec{v}(t)\vec{v}(t+\tau)\rangle d\tau$$

1.2 Сдвиговая вязкость

Вычисляется через автокорреляционную функцию сдвиговых напряжений

$$P_{IJ} = \frac{1}{V} \left(\sum_{k=1}^{N} m_k v_{k,I} v_{k,J} + \sum_{k=1}^{N'} r_{k,I} f_{k,J} \right)$$
$$\eta = \frac{V}{k_B T} \int_0^\infty \left\langle P_{xy}(t) P_{xy}(t+\tau) \right\rangle d\tau$$

1.3 Гидродинамический радиус (радиус Стокса)

$$R_H = a = \frac{k_{\rm B}T}{6\pi\eta D}$$

1.4 Масштабирование Розенфельдовского типа

 $\ln{(\eta^*)}$ является универсальной функцией от $S2/(Nk_B)$

 η^* - обезразмеренная вязкость, равная $\eta \rho^{-2/3} (\mathbf{m} k_B T)^{-1/2}$, где ρ - плотность в частицах на единицу объема, m - масса молекулы.

$$\frac{S_2}{Nk_B} = -2\pi\rho \int_0^\infty [g(r)\ln g(r) - (g(r) - 1)]r^2 dr$$

q(r) - парная корреляционная функция.

По Розенфельду, $\eta^* \sim \exp\left(-s_2/k_BT\right)$, более точные расчеты предлагают нелинейную зависимосты $\ln\left(n^*\right) = P_4(s2)$, где P_4 обозначает полином 4-й степени.

2 Методы

В целях экономии вычислительного времени расчет разбит на несколько этапов:

- Вывод системы с заданной плотностью на равновесие при заданной температуре и запись конечного состояния в файл.
- Чтение записанного файла и расчет коэффициента самодиффузии по формуле Эйнштейна-Смолуховского.
- Чтение записанного файла и расчет коэффициента самодиффузии по формуле Грина-Кубо.
- Чтение записанного файла и расчет сдвиговой вязкости.
- Расчет радиусв Стокса
- Проверка масштабирования Розенфельдовского типа

После каждого расчета файл, из которого считывается начальное состояние, перезаписывается конечным состоянием расчета.

3 Коэффициент самодиффузии методом Эйнштейна-Смолуховского

Построим зависимость среднеквадратичного смещения от времени и измерим коэффициенты самодиффузии из коэффициентов наклона на графике. Результаты представим в виде таблицы

Таблица 1: Коэффициент самодиффузии из коэффициента наклона

Также построим зависимость коэффициента самодиффузии от времени:

Таблица 2: Коэффициент самодиффузии усреднением

4 Коэффициент самодиффузии методом Грина-Кубо

Построим АФКС и ее интеграл, а также представим полученные коэффициенты самодиффуззии в таблице.

Рис. 1: АКФС

Рис. 2: Коэффициент самодиффузии от времени по Грина-Кубо

	T = 1.4	T = 1.5
$\rho = 0.61$	0.217	0.226
$\rho = 0.64$	0.191	0.209
$\rho = 0.67$	0.178	0.190

Таблица 3: Коэффициент самодиффузии методом Грина-Кубо

5 Расчет вязкости

Построимграфики автокоррелятора и его интеграла, а также рассчитаем значение коэффициента вязкости для представленых значений температуры и давления. Если интеграл автокоррелятора это I, то вязкость рассчитываем по формуе (масса = 1):

$$\eta = \frac{V}{T}I = \frac{15^3I}{\rho T}$$

Рис. 3: Автокорреляционная функция сдвиговых напряжений

	T = 1.4	T = 1.5
$\rho = 0.61$	0.75	1.01
$\rho = 0.64$	1.03	0.88
$\rho = 0.67$	1.11	1.28

Таблица 4: Коэффициент вязкости

Рис. 4: Значение интеграла

6 Гидродинамический радиус (радиус Стокса)

Для имеющихся систем посчитаем радиус Стокса. Выводы в конце файла

	T = 1.4	T = 1.5
$\rho = 0.61$	0.465	0.347
$\rho = 0.64$	0.374	0.437
$\rho = 0.67$	0.391	0.332

Таблица 5: Радиус Стокса

7 Масштабирование Розенфельдовского типа

Для начала, по выходным данным из in.equilibrate построим радиальные функции распределения для всех систем:

Рис. 5: Радиальная функция распределения

Теперь посчитаем интегралы и получим величину $S2/(Nk_B)$:

Рис. 6: Значение интеграла

	T = 1.4	T = 1.5
$\rho = 0.61$	0.522	0.487
$\rho = 0.64$	0.700	0.671
$\rho = 0.67$	0.780	0.748

Таблица 6: Величина $S2/(Nk_B)$

Построим зависимость η^* от $exp(S2/(Nk_B))$, а также попытаемся аппроксимировать зависимость η^* от S2 полиномом 40й степени.

Рис. 7: По Розенфельду

Рис. 8: Полином 4ой степени

8 Выводы

В ходе работы мы получили

- Зависимость $D(\rho,T)$ и $\eta(\rho,T)$.
- Найден радиус Стокса R = 0.391. Он имеет близкие значения для всех систем, но все таки он не сохраняется (предполагаю, что я где то совершил ошибку)
- зависимость η^* от S_2 , а также проверили масштабируемость по Розенфельду. Нами было померено мало точек, поэтому странно говорить о полноценной проверке закона, но в целом неплохо аппроксимируется полиномом 40й степени.
- Позже сделаю больше точек и проверю последние два пункта еще раз