

LEVEL

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ADA 087461

METEOROLOGICAL DATA REPORT

19703B MLRS
Missile Numbers 34, 37
Round Numbers B-88, B-89
12 February 1980

by

White Sands Meteorological Team

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE COPY FURNISHED TO DDC CONTAINED A
STORIFICART NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

SELECTE DE SAUG 5 1860

THE SILE COPY

ECOM
WHITED STATES ARMY ELECTRONICS COMMAND

80 8 4 208

1

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorised documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED (14) ERADCOM/ASL-DR-1130/

SECURITY CLASSIFICATION OF THIS PAG	(Theo Suc Entered)	
REPORT DOCUME	NTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER
DR 1130	AD4087461	
197Ø3B_MLRS_	OTA 1-	S. TYPE OF REPORT & PERIOD COVERED
Missile Number 34, 37,	Melcon	ological dota rept
Round Numbers B-88, B-89	0-1	6. PERFORMING ORG. REPORT NUMBER
12 February 10	80 ~ \	8. CONTRACT OR GRANT NUMBER(s)
AUTHOR(S)	the second second second	CONTRACTOR GRANT NOMBERGY
		(16)
White Sands Meteorological		DA Task 1 F6657020127-02
9. PERFORMING ORGANIZATION NAME A	NO ADDRESS	10. PROGRAM BERNEYT, PROJECT, TASK
(12) 19		(17) 02/
11. CONTROLLING OFFICE NAME AND A		12. REPORT DATE
US Army Electronics Resear Atmospheric Sciences Labor		FEBRUARISE BE
White Sands Missile Range,	NM 88002	19
14. MONITORING AGENCY NAME & ADDR	· ·	15. SECURITY CLASS. (of this report)
US Army Electronics Resear Adelphi, MD 20783	ch & Development Cmd	UNCLASSIFIED
1.0017, 1.15 20.00		15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this R	epari)	i
DIS	TRIBUTION STATEMENT A	
	proved for public release;	
	Distribution Unlimited	
17. DISTRIBUTION STATEMENT (of the ab	stract entered in Block 20, if different fro	an Report)
Approved for public releas	e: distribution un imite	d.
18. SUPPLEMENTARY NOTES	/	
1		
		}
19. KEY WORDS (Continue on reverse elde i	i necessary and identity by Block number)	'
		i
1		
26. ABSTRACT (Continue on reverse stds N	necessary and identify by block number)	
Matagralagical data sathar	ad fan tha leweahine of 1	107020 MI DC M40-43-
Meteorological data gather Numbers 34, 37, and Round	ed for the launching of I Numbers B-88. B-89 are bi	resented in tabular form.

1		

SECURITY GLASSIFICATION OF THIS PAGE (Mini

		CONTENTS	GE
INTR	RODUCT	1CN	1
DISC	JUSS10	N	1
MAP-			2
TABL	_ES		
	١.	Surface Observation Taken at "C" Station	3
	2.	SMR Pilot Balloon Measured Wind Data at 1544 MST	4
	3.	LC-39 Pilot Balloon Measured Wind Data at 1600 MST	5
	4.	LC-39 Pilot Balloon Measured Wind Data at 1735 MST	6
	5.	WSD Significant Level Data at 1600 MST	7
	6.	WSD Upper Air Data at 1600 MST	8
	7.	WSD Mandatory Levels at 1600 MST	10
	8.	LC-37 Significant Level Data at 1715 MST	11
	9.	LC-37 Upper Air Data at 1715 MST	12
	10.	LC-37 Mandatory Levels at 1715 MST	15

Acces	sion for	
DDC 1	GRALI MB sounced fication	
By	ibution/	
,	lability Cod	05
Dist	Avail and/or special	

INTRODUCTION

703B MLRS , Missile Numbers	34, 37	Round Humbers B-88, B-89
		, White Sands Missile Bange (WSMR),
New Mexico, at 1625:07 & 1741:1		
	DISCUS	SION
Meteorological data were record	ed and redu	iced by the Uhite Sands Meteorological
Team. Atmospheric Sciences Labo	ratory (ASL	.), White Sands Missile Range. New Mexico.
The data were obtained by the fe	ollowing me	thods:
1. Observations		
a. Surface		
(1) Standard sur	face observ	vations to include pressure, temperature
(OF), relative humidity, dew po	int (OF), w	vind direction and speed, and cloud cover
were made at the "C" Station	Met Sit	e.
(2) Monitor of w	ind speed a	nd direction from one anemometer was provid
ed in the launch control room.		
b. Upper Air		
(1) Low level wi	nd data wer	e obtained from RAPTS T-9 pibal observa-
tion at:		
	SITE AND A	LTITUDE
	LC-39	2 Km
	SMR	2 Km
(2) Air structur	e data (raw	vinsonde) were collected at the following
Met Sites.	•	and the same services are same services are same services and the same services are sa

SITE AND TIME

WSD 1600 MST

LC-37 1715 MST

DOVERA _60B 1 (19 radar)

TABLE 1
SURFACE OBSERVATIONS OBTAINED FROM "C" STATION OF 12 February 1980

TIME SAN CO	Mariat & Leave	PVIII	WEATHALL CONTROL OF THE PROPERTY OF THE PROPER			!		
7	DN91110NS	V (6) 1 [20	TO VIS		11 Mg 28	23		4110
0058 CLR	• • •		3	25.975	6.0	1	160	02
0158 CLR		20		25.980	26	24	120	06
0258 C LR	•	20		25.970	26	. 20	300	06
9358 CLR	• • • • • • • • • • • • • • • • • • • •	20		25.975	24	15	120	95
0458 CLR	en e	20		15.975	26	. 18	220	03
0558 CLR	• • • • • • • • • • • • • • • • • • • •	20		25.975	27	21	280	02
0658 250-SC	Ţ <u></u>	30		25.990	25	18	130	02
0758 250-SC	T	40	· · · • • · · ·	26.015	27	21	360	04
0858 250-BK I	N	40		26.030	34	27	369	02
0958 2 50- BKI	<u> </u>	40		26.030	42	30	030	02
1058 E250-BI	ĶN	40	· · · · · · · · · · · · · · · · · · ·	26.029	47	32	L270	03
1158 E250-B	KN	40	 	25.990	53	35	180	11
1258 60SCTE	250-BKN	40		25.945	5 <u>8</u>	30	200	[11]
1358 60SCTE	250-BKN	40	· · · · · · · · · · · · · · · · · · ·	25,925	54	. 29	2:0	11
1458 60SCTE	250 BKN	40		25.910	58	31	210	08
1558 60SCTE	250-BKN	40		25.900	58	31	310	98
1658 60SCTE	250-BKN	40		25.895	56	29	230	10
1758 60SCTE	250-BKN	40	i 	25,900	51	30	220	08
1858 250SCT		10		25,915	46		230	05
1958 CLR		10		25.930	42	_30	170	04
2058 CLR		10		25.945	40	30	150	04
2158 CLR		10		25,9 55	38	29	090	02
.2258 CLR		10		25.950	38	31	E100	06
2358 CLR		20	<u> </u>	25.940	35	31	200	07

PILOT BALLOON MEASURED WIND DATA

TABLE 2										
RELEASED	FROM	SMR		DATE	12 Fe	ь 80			rtmr 1544	MST
TRACKER	COC	RDINATE	S (W	STM) X≈	472,441.28	Υ.	= 2	14,137.5	64 H= 39	99.00
NOTE: WI	IND DIRECTI	ONS ARE	REF	ERENCED T	n True Nort i	ł				
HEIGHTS /	ARE METERS	AGL_X	OR	FEET AGL_	·					
HEIGHT AGL	DIRECTION DEGREES	SPEED KTS			DIRECTION DEGREES	SPEED KTS		HEIGHT AGL	DIRECTION DEGREES	SPEED KTS
SFC	245	08								
90	MISG	MISG								
150	242	15								
210	254	17						· · · · · · · · · · · · · · · · · · ·		
270	253	15]							
330	232	16] 						
390	223	18						·		
500	228	14						·		
650	235	15								
800	230	09								
950	248	09								
1150	226	10								
1350	246	06								
1550	224	06								
1750	245	08		<u> </u>						
2000	MISG	MISG								
			<u> </u>	<u> </u>						
							}			
			}							
]							
)
			}							
										
) 			1							
			1				1 1			

PILOT BALLOON MEASURED WIND DATA

TABLE	3									
RELEASED	FROM LC-	39	· -	DATE	12 Febru	ary 1980)		TIME 160	0 MST
TRACKER	C 00	RDINATE	S (W	ISTM) X=	530,938.82	<u>Y</u>	= _]	86,564.9	96 H= 40	63.75
NOTE: W	IND DIRECTI	ONS ARE	RET	ERENCED T	o true north					
HEIGHTS /	ARE METERS	AGL_X	OR	FEET AGL_	•					
HEIGHT AGL	DIRECTION DEGREES	SPEED KTS			DIRECTION DEGREES	SPEED KTS		HEIGHT AGL	DIRECTION DEGREES	SPEED KTS
SFC	210	02								
90	278	08]							
150	269	05								
210	270	05	}							
270	273	04								
330	271	04]							
390	248	05								
500	252	06								
650	236	07								
800	239	06								
950	238	07								
1150	247	08								
1350	225	08								
1550	230	12		 						
1750	244	17		<u> </u>						
2000	257	14								
		<u> </u>								
			}							
	1	}	l	}						

PILOT BALLOON MEASURED WIND DATA

TABLE4	<u> </u>								
RELEASED	FROM LC	-39		DATE	12 F	ebruary	1980	TIME1735	MST
TRACKER	CO 0	RDINATE	S (W	ISTM) X=	530,938.82	γ	= 186,564.96	H= 4(063.75
					O TRUE NORTH				
HEIGHTS	ARE METERS	AGL_X	OR	FEET AGL_	·•				
HEIGHT AGL	DIRECTION DEGREES	SPEED KTS		HEIGHT AGL	DIRECTION DEGREES	SPEED KTS	HEIGHT AGL	DIRECTION DEGREES	SPEED KTS
SFC		CALM		ļ					
90	278	07							
150	233	09							
210	249	08							
270	251	10							
330	259	10]						
390	266	06	}			i			
500	256	06							
650	270	09							
800	255	11							
950	245	12							
1150	247	12							
1350	260	10							
1550	249	08							
1750	270	08	1						
2000	266	15	1						
			1						
			1						
			1						
			1						
			1						
		1	1						
		1	1						
		<u> </u>	1						
			1			****			
	†		1						
	 	 	1						
			1						
		 	1						
		 	1						

J		
	3989.00 PEET MSL	ASCENSION NO. /1
	STATION ALTITUDE	ASCENSION NO.

DATA		
LEVEL	120021	SANUS
SIGNIFICANT	0430020071	WHITE

GEODETIC COORDINATES 32.40043 LAT DEG 106.37033 LON DEG

ည
TABLE
1

-	PHESSURE	GEOMETHIC	1EMPL	TEMPERATURE	REL. HUM.
1	MILL IBAKS	ALTITUDE MSL FEET	AIK DEGKEES	DEMPOINT CENTIGHADE	PERCENI
	877.0	3989.0	12.8	5.9	51.0
	0.058	4847.2	6.6	ۍ. ا	47.0
	7/0.2	7501.2	2.2	-5.6	56.0
	700.0	10005.1	-5.0	4.1-	0.09
	648.0	10451.2	-6.2	0.5-	87.0
	6/7.2	10858.3	-6.2	-12·d	48.0
	659.2	11552.6	- 5.0	-19.c	30.13
	641.4	12259.1	-5.4	-50.5	•
	5/3.2	15126.8	-11.3	-24.7	32.0
	500.0	18519.0	-19.6	-31.4	34.0
		20790.6	-54.4	-36.0	•
	•	23840.3	-32.3	8.04-	45.0
		_	-35.8	147.0	43.0
		27213.9	-40.5	9.54-	0.07
	a	29220.3	-45.1	1.64-	59•0
		30300.2	-48.0		
	-		-54.0		
	258.1		-54.3		
	ó		-56.1		
	242.2		-57.0		
	216.4	37213.3	-53.1		
	200.02	38892.1	-51.7		

T MSL	Z Z	
AO PE	O THS	
3989.	91	Z
1110DE		ç
4	9	<u>₹</u>
STATION ALTITUDE 3989.NO PEET MSL	LE FEB.	ASCERISTON NO.

UPPER AIK DATA 0430U2U071 WHITE SANUS

6E0DETIC COONDINATES 32.40043 LAT DEG 106.37033 LON DEG

•	4	>
L		
-		į
•	ž	Č

GEUNE INIC	PRESSURE	A	TEMPERATURE R DEWPOINT	REL.HUM. PERCENT	۲ ۲	SPEEU OF	WIND DATA DIRECTION S	TA SPEED	INDEX
MS. FEE!	MILLIBAMS	3	CENTIGRADE		MLTEX	KNOTS	DEGREES (TN)	KNOTS	REFRACTION
3989.0	B77.0	12.8	2.9	51.0	1065.0		9 •	•	1.000272
4000.0	476.0	12.8	5.0	50.9	1064.7		242.9	0•	.00027
4500.0	860.8	-		48.6	1052-1		545.9	1.5	00026
2000.0	2.549	9.5	-1.1	47.5	1039.2	655.7	5+5+5	2.9	•
2500.0	829.b	8.0	-2.0	49.2	1025.5	0.469	6.242	4.4	•00025
D000	814.4	6.0	-2.9	80.9	1011.9	652.3	6.242	5.8	•00054
6500.0	** 66/	5.1	-3.8	52.6	99806	•	258.4	0.4	•
7000.0	184.1	3.7	L.#-	54.3	985.5	649.8	299.1	2.7	1.000241
7500.0	7.00	2•5	-5.6	56.0	912.6	647.1	280.3	2.8	•
8000·0	155.1	10	6.5 -	8∙09	959.2	545.4	262.6	3.5	•
8200.0	141.4	``	-6.3	9.59	0.046	643.7	258.7	~	•
90000	121.4	-2.1	-6.8	4.07	953.1	642.0	235.4	0	•00022
9500.0	113.6	-3.5	-7.5	75.2	4.026	640.3	240.3	0	•
10000.0	1.00/	-5.U	-7.9	80.0	907.9	6.809	242.7	-	•
10500.0	980	7.9-	-8.7	å	9.468	•	Z+++Z	11.3	•
11000.0	073.5	-6.0	-16.1	た・コナ	817.2	•	244.0	11.5	•
11500.0	060.5	-5.1	-19.4	31.4		6,80	5+++2	11.6	•
12000-0	カ・ハカロ	-5.3	-20-1	30•0	841.9	637.9	240.2	-	1.000194
12500.0	635.4	-5.9	-20.6	30.2	827.6	637.1	248.6	10.8	•0001
13000.0	b23.u	7.9-	-21.3	30.5	814.7	635.9	250·1	10.4	1.000167
13200.0	\$10°	-B-U	•	30.9	802.0	_	254.0	10.3	•
14000.0	1.666	1.6-	-22.9	31.2	749.6	_	200.3	10.9	1.000181
14500.0	287.5	-10·n	-23.7	31.6	717.3	652.1	203.3	12.4	1.000178
15000.0	270-1	-11.0	-24.5	31.9	765.2		204.9	14.2	
15500.0	264.6	-12.2	-25.4	32.2	753.5	6.629	205.0	14.9	•
16000.	555.4	*	-26.4	32.5	741.9	6,8,0	205.7	15.7	•
10500.0	247.4	-14./	-27.4	32.8	730.6	979	267.1	16.6	•
17000.0	531.5	-15.9	-28.4	33.1	719.5	6,5	201.B	17.7	•
17200.0	550.9		-59.4	す。のの	708.5	7 9	200.1	19.1	1.000161
18000.0	510.0	-18.3	-30°	33.7	697.7	622	204.0	50.6	•
14500.0	3000	-19.6	-31.4	34.0	687.1	•	203.3	22.3	•
19000.0	7.06*	-20.6	-55.4	33.8	0.9/9	619.2	262.B	54.4	1.000153
19500.0	480.1	-21.7	-53.4	33.6	6.499	•	262.4	26.5	•
20000.0	470.5	-22.1	3.20-	'n	654·1	å	263.1	27.1	
20500.0	* 09*	•	-35.4	33.1	643.4	•	263.6	27.5	1.000145
21000.0	451.2	6.42-	-36.3	'n	633.1	÷	203.2	27.1	1.000143
21500.0	+41.		-37.0	Š	623.1	612.2	262.3	27.1	1.000140
44100.0	432.0	27.	-37.8	•	÷	9.010	201.1	27.4	3
22500.0	#52*	-28.8	-38·0	8	603.6	•	262.2	•	1.000136
25000.0	414.0	-30.1	1.65-	39.5	294.1	b07.4	202.2	27.4	1.000134

STATION AL	111406 39	89.00 FEET M 1600 HRS MSF	OO FEET MSL O HKS MS	_	UPPER AIM LATA 0430U2U071 WHITE SANIS	ATA 71		GEODETI	GEODETIC COORDINATES
ASCENSION NO.	7					2		106.	37033 LON DEG
					TABLE 6 (CONT)	(LNO		ı	
GEUME INIC	PRESSURE	JE SE	TEMPERATURE	REL.HUM.	DENSITY	SPEED OF	MIND DATA	4 L	INCEX
AL 11TUDE		AIA	DEWPOINT	PERCENT	ن	SOUND	DIRECT10,	SPEEU	o.
MSL FEET	MILLIBAKS	DEGREES	CENTIGRADE		METER	KNOTS	DEGREES (TIA)	KNOTS	REFRACTION
23500.0	#02°B	-31.4	-40.5	41.0	584.7	605.8	263.8	27.4	1.000131
24000.0	397.2	-32./	-41.2	42.1	5/2.5	604.1	264.3	27.2	1.000129
24500.0	7880	0 · +P-	-42.3	45.5	566.2	602.5	504.9	27.0	1.000127
250UU.0	280.4	-35.4	するのすー	45.9	557.2	600°B	204.5	27.7	1.000125
25500.0	372.1	-36.6	-43.6	4-24	547.9	599.3	203.7	28.5	1.000123
26000·0	364.0	-37.7	-43.5	54.0	558.5	5y7.8	201.9	29.6	1.000121
20500.0	356·U	-38.9	-43.6	9.09	529+3	596.3	200.0	30.4	1.000119
27000-0	248.0	-40·c	-43.7	67.2	520+3		559.9	31.0	1.000117
27500.0	340.0	-41.2	L. p.p.	68.4	511.4		259.6	30.7	1.000115
280UU.0	333.0	-42.3	-46.1	65.7	502.5		259•0	29.9	1.000113
28200.0	325.0	+•6+-	-47.6	65.9	493.7	590.5	254.0	29.6	1.1000.1
59000.0	318.3	9.44-	-49.1	60.2	485.2	589.U	254.0	29.4	1.000109
29500.0	2110	F#2.9	-53.0	43.74#	476.9		201.3	29.5	1.000107
20000	204.5	7.7.	-61.9	16.4**	468.9	585.6	265.1	28.9	1.000105
30500.0	297.2	-48·5			6.094		562.6	27.8	1.000103
31000.0		R*6%-			452.9		0.ba2	27.1	1.000101
31500.0		-51.1			442.0		509.9	26.6	1.000099
350nn•0		-55.4			437.3	578.8	2/0.5	25.8	1.000097
32500.0	7.027	-53.7			459.7	5,77.2	5/0.6	54.9	1.000096
33000.0	******	-54.1			450.6	570.6	505.0	25.8	1.000094
23500.0	2.862	-54.3			411.0	570.3	259.5	27.2	1.000092
34000.0	222.2	-55.6			403.8	574.6	250.4	32.0	1.000090
24500.0	240.2	-56.5			396.0	573.4	254.3	36.6	1.0000x8
35000.0	**O**	-56.7			387.0	573.1	554.9	39.4	1.000066
35500.0	234·B	-55.9			376.5	574.2	255.0	42.0	1.000064
361100.0	7.622	-55.1			366.2	575.3	255.1	43.9	1.000082
30540.0	423.9	-54.3			356.3	570.4	251.7	46.0	1.000079
37000.0	218·p	-53.5			346.0	577.4	252.3	49.3	1.000077
A24.1111.5	8 3 5 5	D. C. 44			7.646	0	1		

A 100 PM

WAS USED IN IME INTERPOLATION AT LEAS! ONE ASSUMED RELATIVE HUMIDITY VALUE

1.000073 1.000073

575.3 577.4 578.2 578.8 579.3

5000 1000

229.2 423.9 218.0 213.5

403.1

37500.0 34000.0 38500.0

346.6 357.6 329.2 320.9

MANDATONY LEVELS 0430U20@71 WHITE SANUS

STATION ALTITUDE 3989.00 FEET MSL 12 PEB: 80 1600 MS MSI ASCENSION NO: 71

GEODETIC COONDINATES 32.40043 LAT DEG 106.37033 LON DEG

TABLE 7

PMESSURE		GEUPOTENTIAL		TEMPERA I URL	REL . HUM.		A
		,	AIR	DEMPOSE	PEKCENT	DIREC 10N	SPEED
MILLIBARS	Ş	FLET	DEGREES	CENI 16KADE		_	-
95	0:0	*****	6.6	6:1	47.	242.9	2.5
98	0:0	6483.	5.2	-3.7	53.	257.6	D. #
75	0.0	8197.	٠,	-6.1	63.	5.642	4.9
2	9:0	9995	0.4-	-7.9	80.	242.7	11.0
65	0.0	11903.	-5.2	-50.0	30.	245.7	11.3
9	0:0	13953.	-8.9	-22.6	31.	259.8	10.8
55	9.0	16144.	-13.A	-26.7	33.	566.4	16.0
90	0:0	18493.	-19.6	-31.4	34.	263.5	22.4
4	0.0	21034.	-25.1	-36.4	4.	263•1	27.1
0.4	9.0	23801.	-32.3	8.04-	42.	264 • 1	27.3
35	9.0	26843.	-39.8	-t3.7	• 00	260•0	30.8
Õ	0.0	50241.	0.81-			564.6	26.3
25	250.0	34108.	-56.1			255.5	33.6
20	0:0	38800.	-51.7				
,	}		•				

. AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

SIATIUN ALTITUDE 4047.27 PEET MSL
12 FEB: 80 1715 MS MSI
ASCENSION NO. 4

SIGNIFICANT LEVEL DATA 0430160004 LC-37

GEODETIC COORDINATES 32.41141 LAT EEG 106.30852 LON DEG

The state of the s

TABLE 8

MIL Ī

PRESSURE	GEOME THIC	TEMPI	TEMPERATUME	REL. HUM
		AIR	DEWPOINT	PERCENT
ILL IBAKS		חבפעבבא	CEMI TORAUE	
8/5-1	4047.3	12.8	-3.5	32.0
820.0	4845.7	10.1	-2.2	42.0
746.8	322	8.	3.0	010
=	10013.9	-5.0	-0-t	87.0
_	10815.2	-5.7	•	26.0
659.8	11541.0	-4.1	-22.0	22.0
•	12980.1	-6.5	-24.1	•
•	18535.3	-19.2	-33.0	28.0
÷	19886.0	-22.0	-30.2	26.0
9	22464.1	-28.6	つ・つきー	31.0
0.00*	23860.1		-3g.c	•
	24304.6	-33.2	-39°c	•
_	25409.2	-35.9	-34.0	73.0
	27276.8	-40.5	-43.0	72.0
353.0	28029.1	-42.2	•	01.0
316.6	29146.6	-45.1	0.64-	0.00
300.0	30323.7	6-14-		
260.2	33364.8	-55.3		
3	34203.6	-56.1		
7	36188.5	-55.9		
Δ	37018.0	-54.7		
205.6	38312.5	•		
200.0	38899.0	-52.9		
•	43401.3	-50.6		
150.0	45044.7	-53.4		

11

STATION ALTITUDE 4047.27 FEET MSL
12 FEB. 80 1715 HKS MSI
ASCENSION NO. 4

UPPER AIK UAIA 0430180004 LC-37

GEODETIC COONDINATES 32-41141 LAT LEG 106-30852 LON LEG

TABLE 9

INDEX OF REFRACTION 1.000259 1.000256 1.000256 1.000256
PEED C NOTS REFR 0 11-6 11-6 11-6 11-6 11-6 11-6 11-6 11-
#1MD DA1A DIRECTION S DEGREES(TN) K 234.0 234.0 234.0
SPEED OF KNOTS 659.5 651.7 655.9 654.4 655.8
DENSITY S GM/CUBIC METER 1052-0 1036-5 1024-2 1010-2
REL. HUM. PERCENT 32.0 37.7 42.8 48.5
MPEHATURE UEMPOINT S CENTIGRADE -3.5 -2.5 -2.7
PHESSUME FLMPL AIM AIM
PHESSUME ILLIBANS BYS-1 B60-8 B45-1 B29-5 B14-2
PRES IILLI 87 88 88 88

SIATION ALTITUDE *0*7.27 FEET MSL
12 FEB* 80 1715 HMS MST
ASCEHSION NO. *

UPPER AIR DATA 0430180004 .LC-37

GEODETIC COOKDINATES 32-41141 LAT LEG 106-30852 LON LEG

TABLE 9 (CONT)

SEUM: INIC	PRESSURE	SE SE	EMPERATURE	REL.MUM.		SPELD OF	WIND DATA	TA.	INDEX	
ALIITUVE NSL FEET	HILLIBAMS	AIK DEGREES	UEWPOINT CENTIGRADE	PERCENT	GM/CUBIC METER	SOUND	DIRECTION DEGREES(IN)	SPEED	OF KEFRACTION	
24008.0	397.6	-32.6	-39.1	52.0	575.6	604.3	256.8	24.4	1.000130	
•	1986	-33.1	-39.4	55.7	565.9	602.9	256.6	25.9	1.000127	
25000.0	7-080	_	-39.1	65.2	9-945	601.4	256.4	27.6		
25500.0	372.5	-36.1	-39.5	73.0	247.4	599.8	256.3	28.8	1.000123	
200nn · 0	264.4	-37.4	+-0+	72.7	538.2	5,48.3	256.1	29.6	1.000121	
26588.0	256.4	-38.6	-41.6	72.4	5.625	596.7	250.8	30.4	•	
67000.0	9.24°	9.66-	-42.9	72.1	520.4	595.1	257.5	31.1	•	
27500.0	747.0	-41.0	5.44-	64.7	511.6	593.0	257.9	31.1		
0.000az	333.4	-42.1	9.9%-	61.4	502.8	592.2	258.3	31.2		
24566.0	326.0	4.54-	47.9	9.09	で・からす	540.5	0.85%	31.3	1.000111	
29000-0)1B./	1 . 44-	7.64-	60.1	0.984	5d8.8	258.1	31.2	1.000109	
29500.0	211.5	45.4	-53.4	45.0**	417.6	507.2	259.2	30.3	1.000107	
200000	204.5	-47.1	-61.8	16.5**	469.3	585.7	200.3	29.3	1.000105	
30500	C-167	-48.3			461.0	504.1	201.7	27.9	1.000103	
0.00016 3	7.062	1.64-			452.8	502.6	203.2	27.1	1.000101	
31500.	483. 7	-50.8			8.444	5,01.0	204.5	27.0		
32000.0	4.175	-52.0			436.9	579.4	2002	26.8	1.000097	
32500.0	4.072	-53.2			459.1	577.8	200.4	26.5	1.000096	
22000.0	/•+97	104.4			421.5	576.2	261.6	27.5		
33500.0	<58·2	-55.4			413.7	574.B	204 • 3	30.0	1.000092	
0.000	252.4	-55.9			8·+0+	5,4.2	200.4	34.2	1.000090	
24566.0	246.5	-56.1			395.6	574.0	250.7	40.5		
32000.0	7.042	-56.0			386.1	574.1	255.3	1.22	1.0000cc	
35580.0	<32.0°	-56.0			376.9	574.1	500.4	45.6	1.000014	
30000.0	429.5	-55.4			366.0	574.2	253.0	46.3	1.0000:2	
30,000.0	424.1	-55.4			350.5	574.6	£002	46.2	1 - Oftware	
3/066.0	418.8	-54./			340.9	575.6	255.b	47.9	1.000078	
27506.0	×13./	124.4			340.3	5/6.1	755.0	50.7	1.000076	
26000.0	40p./	-54.2			352.0	570.5	524.4	53.7	1.000074	
35500.0	403.8	-53.6			323.4	577.4	255.4	56.6	1.006072	
27966.0	199.	-52.8			314.8	578.2	253.7	59.4		
39568.0	1.361				307.1	578.6	253.0	61.9		
46046.0	7.587				299.7	578.9	524.4	63.3		
46260.A	182.0				292.4	579.2	255.4	4.49		
41060.0	181.5				285.3	579.6	255.4	65.7	1.0000.4	
41500.0	17/1.1	-51.6			278.4	579.4	255.5	67.0	1.00001	
42000.0	173.0	-51.3			271.6	5005	0·+c2	4.79		
42500.0	169.0	-51.1			265.1	5 ₆ 0.6	252.3	67.6	1.0000.9	
_	165.1	-50.8			250.0	560.9	243.9	4.79	1.00058	
43560.0	161.3	2.05-			252.6	501.0	247.0	67.2	1.0000056	

^{..} AT LEAST ONE ASSUMED RELATIVE MUMIDITY VALUE WAS USED IN THE INTERPOLATION.

Statles At	,117u0£ 40	Station alittude 4047.27 FEET HSL	-	UPPER AIM LATA 0430164064 LC-37	۲ ۲ ۲		6E00ET1 32.	GEODETIC COORDINATES 32.41141 LAT DEG 106.30852 LON DEG
ANCENTRA				TABLE 9 (CONT)	(CONT)			
GE COME THE	PHESSUME	GEONE HAIC PRESSURE TENPERATURE REL. HUM. DENSITY SPEED OF WIND DATA	REL.HUM. PFRCENT	DENS11Y GM/CUBIC	SPEED OF	WIND DA	SPEED	INJEX
ALLITUTE FEET	HILLIBANS	DEGNEES CENTIGRADE		METER	KNOTS	Degrees (TN)	KNOIX	KEPKACI 1971
0.0000	157.5	-51.6		242.9	242.9 578.7			1.000055 1.000054 1.000053

		MANDA
SIATION ALTITUDE	**************************************	3
12 FEB. 80	1715 HKS HSI	<u>.</u>
ASCENSION NO	•	

	4847.27 b66	7	*	MANDATONY LLVELS	-VELS		GEOUETIC COOKDINATES
}	1715 HHS MSI	H\$1		LC-37			32.41141 LAT UEG 106.50852 LOH DEG
				TABLE 10			
	19 THISSTAL	PRESSURE GEOPOTENTIAL		TEMPERATURE	REL . HU.4.	WIND DATA	11.4
	MILL LOAK			AIR DEMPOINT	PERCENT	DIRECTION DEGREES(TN)	SPEED KNOTS
			Secure Control				
	850.0	4842.	1001	-2.2	42.		1.3
	900.0	6483.	5.7	-3.6	51.	241.8	6.3
	750.0	8202.	1.1	-5-7	60 •		8.8
	760.0	10004	-t.0	-6.8	87.		6.0
	0.069	11916.	F-4-	-23.0	22.		70.5
	0.009	13967.	-8.7	-25.7			11.5
	550.0	16158.	-13.7	-29.1	• 9 ?		*•9 1
	200.0	18510.	-19.2	-33.0	.62		1.5
	450.0	21053.	-25.0	-38.1	• Q.V		5.6
	C.00*	23821.	-32.3	-38.8	52.		
	350.0	.99897	-39.6	-42.7	74.		0.10
	3000	30265.	0.7.5-				*•
	250.0	34131.	1.96-				*.9 2
	200.0	38806.	-52.9				30-70
	175.0	41642.	-51.4				7.4
	150.0	**925	-53.4				

.. AF LEAST ONE ASSUMED RELATIVE HAMIDITY VALUE WAS USED IN 114 INTERPOLATION.

