Algebra

September 17, 2016

1 Group theory

Def 1. A non-empty set G with a binary function $f: G \times G \to G, (a,b) \mapsto ab$ is a group if it satisfies

- 1. (ab)c = a(bc).
- 2. $\exists 1 \in G \text{ s.t. } 1a = a1 = a, \forall a \in G.$
- 3. $\exists a^{-1} \in G \text{ s.t. } aa^{-1} = a^{-1}a = 1.$

CONCON

Def 2. Let G be a group. Then G is said to be abelian if $\forall a, b \in G, ab = ba$.

Ex 1. Let G be a semigroup. Then TFAE (the following are equivalent)

- 1. G is a group.
- 2. For all $a, b \in G$ and the equations bx = a, yb = a, each of them has a solution in G.
- 3. $\exists e \in G \text{ s.t. } ae = a \ \forall a \in G \text{ and if we fix such } e, \text{ then } \forall b \in G \ \exists b' \in G \text{ s.t. } bb' = e.$

Ex 2. Let G be a group. Show that

- 1. $\forall a \in G, a^2 = 1$, then G is abelian.
- 2. G is abelian $\iff \forall a, b \in G, (ab)^n = a^n b^n$ for three consecutive integer n.

Def 3. Let G be a group and $H \subseteq G, H \neq \phi$. Then H is said to be a subgroup of G, denoted by $H \subseteq G$, if

- 1. $\forall a, b \in H, ab \in H$.
- 2. $1 \in H$.
- 3. $\forall a \in H, a^{-1} \in H$.

useful criterion: $H \leq G \iff \forall a, b \in H, ab^{-1} \in H$.

pf:

- \Rightarrow $b \in H \implies b^{-1} \in H$, and $a \in H$, so $ab^{-1} \in H$.
- \Leftarrow 1. $H \neq \phi \implies \exists a \in H \implies aa^{-1} = 1 \in H$.
 - 2. $1, a \in H \implies 1a^{-1} = a^{-1} \in H$.
 - 3. $a, b^{-1} \in H \implies a(b^{-1})^{-1} = ab \in H$.

Eg 1. $(\mathbb{Z}, +, 0) \le (\mathbb{Q}, +, 0) \le (\mathbb{R}, +, 0) \le (\mathbb{C}, +, 0)$; $(\mathbb{Q}^{\times}, \times, 0) \le (\mathbb{R}^{\times}, \times, 1) \le (\mathbb{C}^{\times}, \times, 1)$

Eg 2.

- Special linear group $SL(n, \mathbb{F}) = \{ A \in GL(n, \mathbb{F}) \mid \det A = 1 \}$
- Orthogonal group $O(n) = \{ A \in GL(n, \mathbb{R}) \mid A^t A = I_n \}$
- Unitary group $U(n) = \{ A \in GL(n, \mathbb{C}) \mid A^*A = I_n \}$
- Special orthogonal group $SO(n) = SL(n, \mathbb{R}) \cap O(n)$
- Special unitary group $SU(n) = SL(n, \mathbb{C}) \cap U(n)$

Def 4. Let $f: G_1 \to G_2$. f is called an *isomorphism* if

- 1. *f* is 1-1 and onto.
- 2. $\forall a, b \in G_1, f(ab) = f(a)f(b)$. (homomorphism)

, denoted by $G_1 \cong G_2$.

Remark 1. (practice)

- 1. f(1) = 1.
- 2. $f(a^{-1}) = f(a)^{-1}$.
- 3. If f is an isomorphism, then $\exists f^{-1}$ is also a homomorphism.

Eg 3.

- $U(1) = \{ z \in \mathbb{C}^{\times} \mid \bar{z}z = 1 \}, z = \cos \theta + \sin \theta i$
- $SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}$

notice that U(1) \cong SO(2). $S^1 = \{ (a, b) \in \mathbb{R}^2 \mid a^2 + b^2 = 1 \},$

Eg 4. Let
$$A \in SU(2) \implies A = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \alpha\bar{\alpha} + \beta\bar{\beta} = 1, \alpha, \beta \in \mathbb{C}.$$

 $\begin{array}{l} & \text{Quaternion}(\mathbb{H} = \{\, a+bi+cj+dk \mid a,b,c,d \in \mathbb{R} \,\} i^2 = j^2 = k^2 = -1, ij = k, jk = i, ki = j (\implies ij = -ji) \\ & x = a+bi+cj+dk, \bar{x} = a-bi-cj-dk \\ & x = a+bi+cj+dk = (a+bi)+(c+di)j\\ & x = a+bi+cj+dk = (a+bi)+(a$

Ex 3. Find a way to regard $M_{n\times n}(\mathbb{H})$ as a subset of $M_{2n\times 2n}(\mathbb{C})$, which preserves addition and multiplication, and then there is a way to characterize $GL(n,\mathbb{H})$.

Def 5 (symplectic group). $\operatorname{Sp}(n,\mathbb{F}) = \{ A \in \operatorname{GL}(2n,\mathbb{F}) \mid A^{\operatorname{t}}JA = J \}$ where $J = \begin{pmatrix} O & I_n \\ -I_n & O \end{pmatrix}$. $(A^{\operatorname{t}}JA = J \text{ preserving non-degenerate skew-symmetric forms})$ $\operatorname{Sp}(n) = \{ A \in \operatorname{GL}(n,\mathbb{H}) \mid A^*A = I_n \}.$

Ex 4. Show $\operatorname{Sp}(n) \cong \operatorname{U}(2n) \cap \operatorname{Sp}(n, \mathbb{C})$.

$$SU(2)$$
 $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$