PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-306240

(43) Date of publication of application: 28.11.1997

(51)Int.CI.

H01B 1/22 1/09 H05K

(21)Application number: **08-150105**

(71)Applicant : **TOYOBO CO LTD**

(22)Date of filing:

20.05.1996

(72)Inventor: AOKI TAKAO

TACHIKA HIROSHI

SHINOHARA KAZUHIRO

(54) CONDUCTIVE PASTE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a circuit material with its good fine pattern printing property and bending resistance in a membrane circuit and with its low resistance by means of a conductive paste using conductive powder mainly containing silver powder.

SOLUTION: As a conductive powder, a silver powder of which a primary particle of 0.1 to 5µm in particle size μ is coagulated three-dimensionally and a secondary particle of 1 to 20 μ m in particle size is obtained is mainly used. In addition, as a bond, a copolymer polyester resin of 3000 or more in average molecules or the like is employed. Further, a curing agent, mainly polyol is used in combination as required. In this case, a mixture ratio of bond and curing agent is 100/0 to 50/50 in weight rate. In addition, a solvent may be employed as required. There is no particular limitation to type of solvent, however, in the case of performing screen printing or the like, high bonding point solvent such as ethyl carbitol acetate is preferable. Thus, a circuit material with its good connector insertion and removal resistance and blocking resistance can be obtained.

LEGAL STATUS

[Date of request for examination]

13.05.2003

[Date of sending the examiner's decision of

rejection

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-306240

(43)公開日 平成9年(1997)11月28日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	ΓI			技術表示箇所
H01B	1/22			H01B	1/22	Α	
H05K	1/09			H05K	1/09	Α	

	審査請求	未請求 請求項の数1 FD (全 11 頁)				
特願平8 -150105	(71)出顧人	000003160 東洋紡績株式会社				
平成8年(1996)5月20日 大阪府大阪市北区堂島浜2丁						
	(72)発明者	背木 孝男 滋賀県大津市堅田二丁目1番1号 東洋紡 額株式会社総合研究所内				
	(72)発明者	田近 弘 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内				
	(72)発明者	篠原 和浩 滋賀県大津市堅田二丁目1番1号 東洋紡 額株式会社総合研究所内				
		特願平8-150105 (71)出顧人 平成8年(1996) 5月20日 (72)発明者				

(54)【発明の名称】 導電性ペースト

(57) 【要約】

【課題】 メンブレン回路において、ファインパターン の印刷性と耐屈曲性の良好な回路材料を提供する。

【解決手段】 粒子径0.1~5μmの1次粒子が3次 元状につながって形成された粒子径1~20μmの2次 粒子の銀粉を主体とする導電粉と数平均分子量が3,0 00以上の結合剤、必要によりこれに反応しうる硬化剤 および溶剤からなる導電性ペースト。

20

30

【特許請求の範囲】

【請求項1】 粒子径0.1~5μmの1次粒子が3次 元状につながって形成された粒子径1~20μmの2次 粒子の銀粉を主体とする導電粉(A)、数平均分子量が 3、000以上の結合剤(B)、これと反応し得る硬化 剤(C)および溶剤(D)を主成分とする硬化後に金属 めっきをしない導電性ペーストであって、(A)/ ((B)+(C))が60/40~95/5(重量比) かつ(B)/(C)が100/0~50/50(重量 比) であることを特徴とする導電性ペースト。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は導電性ペーストに関 するものであり、さらに詳しくは導電性ペーストをフィ ルムまたは基板上に塗布または印刷、硬化することによ り導電性を与え、回路を形成したり、電子部品の端子や リード線の接着を行ったり、電子装置を電磁波障害(E MI) から保護することに利用する導電性ペーストに関 わるものであり、特に高い導電性と耐屈曲性、ファイン パターン印刷性の要求される回路用に適した導電性ペー ストに関し、印刷または塗布、硬化後に金属めっきしな い用途の導電性ペーストである。

[0002]

【従来の技術】PETフィルムなどに導電性ペーストを 印刷したメンプレン回路は低コストで軽量であり、キー ボードやスイッチなどに広く使用されている。しかしな がら、年々要求特性は厳しくなってきており、従来以上 の高度の耐屈曲性やコネクター使用時の耐挿抜性、耐ブ ロッキング性、よりファインパターンの印刷性などが要 求されているが、従来技術では耐屈曲性が充分ではな く、さらには耐屈曲性と耐コネクター挿抜性、耐コネク ターブロッキング性を両立するものはなく、また、ファ インパターンの印刷性も不充分であり改良が望まれてい る。

[0003]

【発明が解決しようとする課題】公知の導電性ペースト としては特開昭59-206459号公報がある。この ものは、公知のフレーク状(りん片状)または球状の銀 粉とポリブタジエン系樹脂とブロック化イソシアネート 化合物を結合剤に使用したメンブレン回路用の銀ペース トであるが、耐屈曲性を出すためにかなり軟質の結合剤 を使用しており、耐コネクター挿抜性、耐コネクターブ ロッキング性が不良である。また、耐屈曲性もフレーク 状または球状の銀粉を使用しているため、それほど良好 ではない。また、特開平1-159906号公報ではフ レーク状(りん片状)銀粉と共重合ポリエステル樹脂と プロック化イソシアネート化合物を結合剤に使用した銀 ペーストが知られているが、銀粉にフレークを用いてい るため、ファインパターンの印刷性が不充分であり、ま た、耐屈曲性を得るためにはかなり軟質な共重合ポリエ ステルを結合剤に使用する必要があり、耐コネクター挿 抜性、耐コネクタープロッキング性が不良である。この 場合もフレーク状銀粉を使用しており耐屈曲性は必ずし も充分ではなく、繰り返し屈曲使用されるなど高度の耐 屈曲性が要求される用途には充分ではない。

[0004]

【課題を解決するための手段】このような問題を解決す るために、鋭意検討した結果、粒子径 0. 1~5μmの 1次粒子が3次元状につながって形成された粒子径1~ 10 20μmの2次粒子の銀粉を主体とする導電粉を使用す ることにより、驚くべきことに低抵抗で著しく耐屈曲性 が向上し、さらにはファインパターンの印刷性に優れる ことを見いだし、本発明に到達した。また、この導電粉 を用いることにより、ファインパターンの印刷性に優 れ、通常ポリマー型導電性ペーストに使用されるフレー ク状銀粉と比較して耐コネクター挿抜性、耐コネクター ブロッキング性が改善され、さらには硬質な結合剤を用 いた場合でも、良好な耐屈曲性を得られる。このため、 耐屈曲性と耐コネクター挿抜性や耐コネクターブロッキ ング性が両立できる。さらに、ブロック化イソシアネー ト化合物などの硬化剤を配合しない場合においても良好 な耐屈曲性が得られるため、従来技術より低温速硬化が 可能となる。すなわち、本発明は粒子径 $0.1\sim5\mu$ m の1次粒子が3次元状につながって形成された粒子径1 ~20μmの2次粒子の銀粉を主体とする導電粉

- (A)、数平均分子量が3、000以上の結合剤
- (B)、これと反応し得る硬化剤(C)および溶剤
- (D) を主成分とする硬化後に金属めっきをしない導電 性ペーストであって、(A)/((B)+(C))が6 0/40~95/5 (重量比) かつ (B)/(C)が1 00/0~50/50 (重量比) であることを特徴とす る導電性ペーストである。

[0005]

【発明の実施の形態】本発明に使用する導電粉(A)は 図1~3に示したような粒子径が $0.1~5\mu m$ 、好ま しくは0. 2~1μmの銀の1次粒子が3次元状に凝集 して1~20 μ m、好ましくは2~10 μ mの2次粒子 を主体とするものである。すなわち、図1~3は本発明 で用いる導電粉の主体をなす銀粒子の電子顕微鏡写真で あり、それぞれ図1は1200倍、図2は3200倍、 40 図3は8000倍の写真である。この銀粉の形状は特開 平1-159906号公報などに記載された電解銀など に見られる公知の樹枝状 (デンドライト状) の形状とは 全く異なるものである。この銀粉の好ましい比表面積は 1. $0 \sim 2$. $0 \text{ m}^2 / \text{g}$ 、さらに好ましくは 1. $3 \sim$ $1.8 \,\mathrm{m}^2$ /gである。驚くべきことに、この形状の銀 粉を使用することにより、ファインパターンの印刷性に 優れ、低抵抗で著しく良好な耐屈曲性が得られる。

【0006】公知のフレーク状銀粉では比較的良好な比 50 抵抗は得られるが、ファインパターンの印刷性が不充分

40

4

であり、また、耐屈曲性がそれほど良好ではないため、良好な耐屈曲性を得るためには前述したように軟質な結合剤とブロック化イソシアネートを硬化剤に使用する必要があり、耐コネクター挿抜性、耐コネクターブロッキング性の両立が困難である。また、熱硬化タイプであるため、熱可塑タイプに比較して硬化性にも劣る。前述した公知の樹枝状(デンドライト状)銀粉はペースト粘度、揺変度が高くなり印刷性の面から好ましくなく、耐屈曲性も不良である。球状銀粉では比抵抗が著しく高くなり好ましくない。

【0007】本発明に使用する導電粉(A)としては、特性を低下しない範囲で公知のフレーク状銀粉、球状銀粉、樹枝状銀粉、グラファイト粉、カーボン粉、ニッケル粉、銅粉、アルミ粉、インジウム粉などを併用しても良いが、図1~3に示したような形状の粒子径が0.1~5 μ mの高次構造の2次粒子を形成した銀粉を少なくとも全導電粉量の50%以上、好ましくは70%以上使用することが必要である。

【0008】本発明に使用する導電粉(A)の配合量は、(A)/((B)+(C))が $60/40\sim95/5$ (重量比)であり、好ましくは $80/20\sim90/10$ である。(A)が(A)/((B)+(C))において60/40未満では良好な導電性、耐屈曲性が得られず、95/5を越えると耐屈曲性、密着性、印刷性が低下する。

【0009】本発明に使用する結合剤(B)はその種類 に制限はないが、数平均分子量が3、000以上、好ま しくは8、000以上であることが必要である。数平均 分子量が3、000未満であると良好な耐屈曲性が得ら れず、また、ペースト粘度が低下して好ましくない。耐 コネクター挿抜性、耐コネクターブロッキング性の面か らガラス転移点温度は25℃以上、好ましくは45℃以 上のものが好ましい。また、結合剤(B)の種類として は、共重合ポリエステル樹脂、ポリエステルウレタン樹 脂、ポリエーテルウレタン樹脂、ポリカーボネートウレ タン樹脂、塩化ビニル・酢酸ビニル共重合体、エポキシ 樹脂、フェノール樹脂、アクリル樹脂、ニトロセルロー ス、セルロース・アセテート・プチレート(CAB)、 セルロース・アセテート・プロピオネート (САР) な どの変性セルロース類などが挙げられる。このうちPE Tフィルムを基材として使用する場合は、耐屈曲性と基 材に対する密着性の面から、共重合ポリエステル樹脂、 ポリエステルウレタン樹脂、塩化ビニル・酢酸ビニル共 重合体が特に好ましい。

【0010】本発明に使用する結合剤(B)は必要に応 タル酸、イソフタル酸、オルソフタル酸、2,6-ナフ じて硬化剤(C)と組み合わせて使用される。結合剤 タレンジカルボン酸などの芳香族ジカルボン酸、コハク (B)と硬化剤(C)との配合比は、(B)/(C) 酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジ (重畳比)が100/0~50/50、好ましくは10 カルボン酸、アゼライン酸などの脂肪族ジカルボン酸、0/0~70/30である。(C)が50を超えると良 50 炭素数12~28の2塩基酸、1,4-シクロヘキサン

好な耐屈曲性、硬化性が得られない。本発明の導電粉 (A)を使用することにより、適切な結合剤を選定すれば硬化剤(C)は配合しなくても良好な耐屈曲性、密着性を得ることができる。硬化剤(C)を配合しない場合(熱可塑タイプ)はより低温速硬化が可能で、従来技術の熱可塑タイプと比較して著しく優れた耐屈曲性が得られる。

【0011】結合剤(B)としてポリウレタン樹脂を使 用する場合は公知の方法により、ポリオールと必要に応 じて鎖延長剤をイソシアネート化合物と反応させて合成 したものを使用できる。ポリウレタン樹脂に使用する分 子量500以上のポリオールはポリエーテルポリオー ル、(メタ) アクリルポリオール、ポリエステルポリオ ール、ポリカーボネートジオール、ポリプタジエンポリ オールなどがあるが、接着性、耐屈曲性、耐久性より芳 香族ポリエステルポリオール、ポリカーボネートジオー ルまたはポリエステルカーボネートジオールが特に好ま しい。鎖延長剤として使用する分子量500未満のポリ オールとしてはネオペンチルグリコール、1,6-ヘキ 20 サンジオール、エチレングリコール、HPN(ネオペン チルグリコールのヒドロキシピバリン酸エステル)、ト リメチロールプロパン、グリセリンなどの公知のポリオ ールが挙げられる。さらにジメチロールプロピオン酸の ようなカルボキシル基含有ポリオールなども鎖延長剤と して使用できる。

【0012】ポリウレタン樹脂に使用するジイソシアネート化合物は、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートなどが挙げられる。結合剤(B)としてのポリウレタン樹脂のウレタン基濃度は密着性、耐屈曲性の面から500~4000当量/10⁶gが好ましい。数平均分子量は耐屈曲性およびペースト粘性から8,000~40,000が好ましい。

【0013】本発明の結合剤(B)として共重合ポリエステル樹脂を使用する場合は公知の方法により常圧または減圧下で重縮合して得られたものを使用できる。共重合ポリエステルは飽和ポリエステルが好ましい。また、ポリエステル樹脂を重合後、180~230℃でεーカプロラクトンなどの環状エステルを後付加(開環付加)してブロック化したり、無水トリメリット酸、無水フタル酸などの酸無水物を後付加して酸価を付与してもよい。ポリエステルに共重合するジカルボン酸は、テレフタル酸、イソフタル酸、オルソフタル酸、2、6-ナフタル酸、イソフタル酸、オルソフタル酸、2、6-ナフタレンジカルボン酸などの芳香族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸などの脂肪族ジカルボン酸、カルボン酸、アゼライン酸などの脂肪族ジカルボン酸、カルボン酸、アゼライン酸などの脂肪族ジカルボン酸、

ジカルボン酸、1、3 - シクロヘキサンジカルボン酸、1、2 - シクロヘキサンジカルボン酸、4 - メチルヘキサヒドロ無水フタル酸、3 - メチルヘキサヒドロ無水フタル酸、3 - メチルヘキサヒドロ無水フタル酸、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールA、ジカルボン酸、トリシクロデカンジカルボン酸などの脂環族ジカルボン酸が挙げられる。また、発明の内容を損なわない範囲で、無水トリット酸、無水ピロメリット酸などの多価のカルボン酸、フマール酸などの不飽和ジカルボン酸、さらに、5 - スルホイソフタル酸ナトリウム塩などのスルホン酸金属塩基含有ジカルボン酸を併用してもよい。

【0014】本発明の結合剤(B)として使用されるポ リエステルに用いられるアルキレングリコールは、エチ レングリコール、プロピレングリコール、1、3-プロ パンジオール、1,4-ブタンジオール、1,5-ペン タンジオール、ネオペンチルグリコール、1,6-ヘキ サンジオール、3-メチル-1,5-ペンタンジオー ル、2-メチル-1,5-ペンタンジオール、2,2-ジエチルー1,3-プロパンジオール、2-プチルー2 -エチル-1, 3-プロパンジオール、1, 9-ノナン ジオール、1,10-デカンジオール、1,4-シクロ ヘキサンジメタノール、1,3-シクロヘキサンジメタ ノール、1,2-シクロヘキサンジメタノール、ダイマ ージオールなどが挙げられる。また、発明の内容を損な わない範囲でトリメチロールエタン、トリメチロールプ ロパン、グリセリン、ペンタエリスリトール、ポリグリ セリンなどの多価ポリオールを併用してもよい。このう ち、耐久性の面より、酸成分は芳香族ジカルボン酸、脂 環族ジカルボン酸、炭素数10以上の脂肪族ジカルボン 酸の組み合わせが好ましく、グリコール成分はネオペン チルグリコール、炭素数5~10の長鎖脂肪族ジオール が特に好ましい。

【0015】本発明の結合剤(B)として使用される塩化ビニル・酢酸ビニル共重合体は公知の市販品を使用することができる。ポリマー中の塩化ビニルの含有量は85~95%のものが好ましい。また、塩化ビニル、酢酸ビニル以外のモノマーとして、マレイン酸、ビニルアルコールなどを少量共重合して極性基を導入してもよい。マレイン酸によりカルボキシル基を導入すると金属に対する密着性が向上し、ビニルアルコールにより水酸基を導入するとイソシアネート化合物を硬化剤として使用できる。

【0016】本発明の結合剤(B)として公知のエポキシ樹脂、フェノール樹脂を使用してもよい。耐屈曲性の面からこれらの樹脂は単独ではなく、前述したポリエステル樹脂、ポリウレタン樹脂などと併用することが好ましい。エポキシ樹脂またはフェノール樹脂を適量配合することにより、密着性を向上することができる。

【0017】本発明に使用する結合剤(B)に反応し得る硬化剤(C)は、種類は限定しないが接着性、耐屈曲性、硬化性などからイソシアネート化合物が特に好ましい。さらに、これらのイソシアネート化合物はブロック化して使用すことが貯蔵安定性から好ましい。イソシアネート化合物以外の硬化剤としては、メチル化メラミン、プチル化メラミン、ベンゾグアナミン、尿素樹脂な

どのアミノ樹脂、酸無水物、イミダゾール類、エポキシ

樹脂、フェノール樹脂などの公知の化合物が挙げられ

6

10 る。

【0018】イソシアネート化合物としては、芳香族、 脂肪族のジイソシアネート、3価以上のポリイソシアネ ートがあり、低分子化合物、高分子化合物のいずれでも よい。例えば、テトラメチレンジイソシアネート、ヘキ サメチレンジイソシアネート、トルエンジイソシアネー ト、ジフェニルメタンジイソシアネート、水素化ジフェ ニルメタンジイソシアネート、キシリレンジイソシアネ ート、水素化キシリレンジイソシアネート、イソホロン ジイソシアネートあるいはこれらのイソシアネート化合 20 物の3量体、及びこれらのイソシアネート化合物の過剰 量と、例えばエチレングリコール、プロピレングリコー ル、トリメチロールプロパン、グリセリン、ソルビトー ル、エチレンジアミン、モノエタノールアミン、ジエタ ノールアミン、トリエタノールアミン等の低分子活性水 素化合物または各種ポリエステルポリオール類、ポリエ ーテルポリオール類、ポリアミド類の高分子活性水素化 合物などと反応させて得られる末端イソシアネート基含 有化合物が挙げられる。

【0019】プロックイソシアネート化剤としては、例 えばフェノール、チオフェノール、メチルチオフェノー ル、エチルチオフェノール、クレゾール、キシレノー ル、レゾルシノール、ニトロフェノール、クロロフェノ ールなどのフェノール類、アセトキシム、メチルエチル ケトオキシム、シクロヘキサノンオキシムなどのオキシ ム類、メタノール、エタノール、プロパノール、プタノ ールなどのアルコール類、エチレンクロルヒドリン、 1, 3-ジクロロ-2-プロパノールなどのハロゲン置 換アルコール類、t-ブタノール、t-ペンタノールな どの第三級アルコール類、 ε -カプロラクタム、δ-バ 40 レロラクタム、γ-ブチロラクタム、β-プロピロラク タムなどのラクタム類が挙げられ、その他にも芳香族ア ミン類、イミド類、アセチルアセトン、アセト酢酸エス テル、マロン酸エチルエステルなどの活性メチレン化合 物、メルカプタン類、イミン類、イミダゾール類、尿素 類、ジアリール化合物類、重亜硫酸ソーダ等も挙げられ る。このうち、硬化性よりオキシム類、イミダゾール 類、アミン類がとくに好ましい。これらの架橋剤には、 その種類に応じて選択された公知の触媒あるいは促進剤 を併用することもできる。

50 【0020】本発明に使用される溶剤(D)はその種類

に制限はなく、エステル系、ケトン系、エーテルエステ ル系、塩素系、アルコール系、エーテル系、炭化水素系 などが挙げられる。このうち、スクリーン印刷する場合 はエチルカルビトールアセテート、プチルセロソルプア セテート、イソホロン、シクロヘキサノン、アープチロ ラクトンなどの高沸点溶剤が好ましい。

[0021]

【実施例】以下、本発明を実施例を用いて説明する。実 施例中、単に部とあるものは重量部を示す。また、各測 定項目は以下の方法に従った。

1. 還元粘度、η s p/c (d l/g)

サンプル樹脂をフェノール/テトラクロロエタン(60 /40重量比) 混合溶媒に0. 400g/100mlの 濃度で溶解し、オストワルト粘度計を用いて、30℃で 測定した。

【0022】2. 分子量

GPCによりポリスチレン換算の数平均分子量を測定し た。

3. ガラス転移点温度 (Tg)

示差走査熱量計(DSC)を用いて、20℃/分の昇温 速度で測定した。サンプルは試料5mgをアルミニウム 押え蓋型容器に入れ、クリンプした。

【0023】4.酸価

試料0.2gを精秤し20m1のクロロホルムに溶解し た。ついで、0.01Nの水酸化カリウム(エタノール 溶液)で滴定して求めた。指示薬には、フェノールフタ レイン溶液を用いた。

【0024】5. 比抵抗

150℃で30分間加熱硬化した導電性ペーストの比抵 抗を4深針抵抗測定器を用いて測定した。

【0025】6. 耐屈曲性

導電性ペーストを100μmのアニール処理PETフィ ルムに乾燥後の膜厚が8~10μmになるようにスクリ ーン印刷し、150℃で30分乾燥、硬化してテストピ ースを作成した。これをMIT耐屈曲性試験機でR=2 mm、荷重=500gの条件で1000回屈曲試験を行 った。耐屈曲性は次式により試験前後の回路抵抗の変化 量で評価した。

耐屈曲性(Ω)=初期の回路抵抗(Ω)ー試験後の回路 抵抗(Ω)

【0026】7. 耐コネクター挿抜性

6と同様に作成したテストピースの裏面に125μmの 補強フィルムを粘着したものにコネクターを10回挿抜 を繰り返し、導電ペースト塗膜の剥がれの程度で評価し た。

○:剥がれなし

△:わずかに剥離する

×:剥離する

【0027】8. 耐コネクタープロッキング性

6と同様に作成したテストピースの裏面に125μmの 50 【0032】銀粉A-2の調整

補強フィルムを粘着したものにコネクターを装着し、6 0℃、95%RHの条件下で100時間放置し、コネク ターから抜き取り導電ペースト塗膜の穴あきの程度で評 価した。

〇:穴あきなし

 Δ : わずかに穴あきあり

×:穴あきあり

【0028】9. ファインパターン印刷性

線幅150μm、線間150μmのテストパターンを4 10 00メッシュのステンレススクリーンを用いてスクリー ン印刷した。印刷硬化後の線幅の太り幅(左右の合計) で評価した。

○:太り幅30 μm以下

Δ:太り幅30~60μm

×:太り幅60μm以上

【0029】合成例.1 (ポリエステル樹脂 I)

グビリュー精留塔を具備した四口フラスコにジメチルテ レフタル酸101部、ジメチルイソフタル酸35部、エ チレングリコール93部、ネオペンチルグリコール73 20 部、テトラプチルチタネート0.068部を仕込み、1 80℃、3時間エスエル交換を行なった。ついで、セバ シン酸61部を仕込み、さらにエステル化反応を行なっ た。次に、1mmHg以下まで徐々に減圧し、240 ℃、1時間重合した。得られた共重合ポリエステルの組 成は、テレフタル酸/イソフタル酸/セバシン酸//エ チレングリコール/ネオペンチルグリコール=52/1 8/30//55/45 (モル比) で還元粘度0.64 d 1/g、数平均分子量22,000、酸価1.5mg

30 【0030】合成例.2(ポリエステル樹脂II) 合成例. 1と同様に合成した。 得られた共重合ポリエ ステルの組成は、テレフタル酸/イソフタル酸//エチ レングリコール/ネオペンチルグリコール=50/50 //51/49 (モル比) で還元粘度0. 55d1/ g、数平均分子量21,000、酸価1.5mgKOH /g、Tg=67℃であった。

【0031】銀粉A-1の調整

濃度37%の硝酸銀水溶液275部と濃度18%の水酸 化ナトリウム水溶液220部とを40~50℃で攪拌下 40 で反応させ、反応終了後に蒸留水70部を添加した。つ いで、これに濃度23%のホルマリン水溶液60部を加 え、30~40℃で反応させた。反応終了後のpHは8 であった。得られた銀粉を濾過し、水洗、脱水を繰り返 した後、メタノールで置換した上で濾過し、80℃で2 4時間減圧乾燥した。得られた銀粉は図1~3に示す形 状を有し、1次粒子の平均粒子径は走査型電子顕微鏡写 真より0.5μmであり、2次粒子の平均粒子径は光散 乱法により測定したところ11 µm、比表面積1.62 m^2/g であった。

市販のフレーク状銀粉(福田金属箔粉工業(株)製)を そのまま用いた。光散乱法による平均粒子径は4.5μ m、比表面積 $0.7m^2$ /gであった。

【0033】銀粉A-3の調整

市販のフレーク状銀粉(福田金属箔粉工業(株)製)を そのまま用いた。光散乱法による平均粒子径は4.5μ m、比表面積0.65m²/gであった。

【0034】実施例. 1

銀粉A-1、85部、塩化ビニル・酢酸ビニル共重合体 VAGH(ユニオンカーバイト(株)製)の γ -ブチロ 10 ーストを作成、評価した。結果を表1に示す。 ラクトン溶液11. 3固形部、ブロックイソシアネート 化合物 C-1(ヘキサメチレンジイソシアネート、イソ シアヌレートアダクトのメチルエチルケトオキシムブロ ック体、固形分80%) 3. 7固形部、分散剤0. 2固

形部を配合し、充分プレミックスした後、チルド3本口 ール混練り機で、3回通して分散した。得られた銀ペー ストは比抵抗 1. $5 \times 10^{-5} \Omega \cdot cm$ と低抵抗であり、 耐屈曲性はMIT耐屈曲試験1000回後の抵抗増加が +10Ωで非常に良好であった。ファインパターンの印 刷性は太り幅 25μ mで良好であった。また、耐コネク ター挿抜性、耐コネクタープロッキング性も良好であっ

【0035】実施例1と同様に実施例2~6の導電性ペ

【0036】実施例1と同様に比較例1~5の導線性ペ ーストを作成評価した。結果を表2に示す。

[0037]

【表1】

	11					12			
			L	2	3	4	5	6	
	導電粉 (A)		A-11)	A-1	A-1/ A-2 ²⁾	A-1	A-1	A-1	
Æ	, ,	亚亚部	85	85	70/15	80	89	89	
配	結合剂 (B)		VAGH ³⁾	VAGH/ホ*リ エステル(『)	VYHH ^{1}}	ur-1400	ポリエステル (Ⅰ)	本°リエステル (II)	
ជា		固形部	11.3	9.0/2.3	15.0	17.0	9.4	9.4	
	硬化剂	硬化剤(C)		C-1	なし	C-27)	C-2	C-1	
		临形部	3.7	3.7		3.0	1.6	1.6	
	少散剂 (固形部) 溶剂 (D)		0.2	0.2	0.2	0.2	0.2	0.2	
			ツ ー プチルラクトン	γ — プチロラクトン	ァー ブーラクトン	酢酸エナル カルビトール	所: 1後ェチル カルと・トール	酢酸エチル カルビトール	
	(A)/((B)+	(C))	85/15	85/15	85/15	80/20	89/11	89/11	
(B)/(C)			75/25	75/25	100/0	85/15	85/15	85/15	
(В)のТ g (℃)			69	69	72	83	7	67	
	数平均分	广 根	44,000	41,000	42,000	41,000	22,000	21,000	
沧	耐屈曲性 (Ω)		+10	+11	+20	+10	+18	+8	
空膜 物	耐コネクター・挿抜作		0	0	0	0	0	0	
性性	耐コネクターフ、ロッキンク、作		0	0	0	0	Δ	0	
	比抵抗(×10 ⁻⁶ Ω·cm)		1.5	1.3	1.0	8.5	1.1	1.0	
	印刷	性	0	0	0	0	0	0	

- 1) 高次構造銀粉 (比表面積1.62 m²/g、形状を図-1に示す)
- 2) フレーク状銀粉 (平均粒子径4.5μm、比表面積0.70m²/g)
- 3) ビニルアルコールを共重合した塩化ビニル・酢酸ビニル共重合体 (ユニオンカーバイド(株)製)
- 4) 塩化ビニル・酢酸ビニル共重合体 (ユニオンカーバイド (株) 製)
- 5) ポリエステルウレタン樹脂(東洋紡績(株) 製) の溶剤を酢酸エテルカルピトールに置換したもの
- 6) ブロックイソシアネート化合物 (ヘキサメチレンジイソシアネート、イソシアヌレートア ダクトのメチルエチルケトオキシムブロック体)
- 7) ブロックイソシアネート化合物 (ヘキサメチレンジイソシアネート、ピウレット3量体の メチルエチルケトオキシムブロック体)

[0038]

40 【表2】

13						14
		1	2	3	4	5
導電粉 (A)		A-2	A-2	A-2	A-3*)	A-4°1
	加州部	85	85	89	89	80
結合剂	結合剤 (B)		VYIH	ポ リエステル (I)	ポ リエステル (II)	ポリプタジエン R−45HT ¹⁰
	阿那部	11.3	15.0	9.4	9.4	10
砚化剂 (C)		C-1	なし	C-2	C-1	ユーロック Q-9062 ¹ ¹ ¹
	周形部	3.7		1.6	1.6	10
分散剂 (固形部)	0.2	0.2	0.2	0.2	0.2
溶剂 (D)		ツ ー フ゛チロラクトン	γ − プチロラクトン	酢酸エチル カルビトール	所に酸エチル カルヒ・トール	酢酸エチル カルビトール
(A)/((B)+(C))		85/15	85/15	89/11	89/11	80/20
(B)/(C)		75/25	100/0	85/15	85/15	50/50
(B)のTg (℃)		69	72	7	67	-
数平均分子量		44,000	42,000	22,000	21,000	-
耐屈曲性 (Ω)		+ 97	+130	+ 125	_	断線
耐スネクター挿抜性		0	Δ	Δ	_	×
耐コネクターフ・ロッキンク・ヤ生		Δ	×	×		×
比抵抗(×10 ⁻⁶ Ω·cm)		25.0	28.0	7.5	1000以上	55.0
印刷性		×	×	Δ	Δ	×
	導電粉 結合剤 砂化剤 (A)/((B)+ (B)/(C (B)のT g 数平均分 耐コネクターブで 比抵抗(×10	導電粉 (A)	1 A-2 A-2	1 2 A-2 A-2	1 2 3 3 3 3 4 - 2 4	1 2 3 4 4 4 4 4 4 4 4 4

- 8) 球状銀粉 (平均粒子径1.5 μm、比表面積1.35 m²/g)
- 9) フレーク状銀粉 (平均粒子径4.5μm、比表面積0.65m²/g)
- 10) 末端水酸基ポリプタジエン(出光石油化学(株)製)
- 11) ポリブタジエン系フェノールブロック化イソシアネートプレポリマー (出光石油化学(株)製)

[0039]

【発明の効果】本発明の導電性ペーストによりファインパターンの印刷性が優れ、低抵抗で耐屈曲性を大幅に向上でき、さらにはコネクター装着時の良好な耐コネクター挿抜性、耐ブロッキング性をも合わせ持つ優れた回路材料を作成することが可能となる。

【図面の簡単な説明】

【図1】 本発明で使用する導電粉の主体をなす銀粒子 40 の倍率1200倍の電子顕微鏡写真である。

【図2】 本発明で使用する導電粉の主体をなす銀粒子の倍率3200倍の電子顕微鏡写真である。

【図3】 本発明で使用する導電粉の主体をなす銀粒子の倍率8000倍の電子顕微鏡写真である。

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

【図1】

図面代用写真

G1100

【図2】

図而代用写真

13200

【図3】

x8000

図面代用写真

9000

