

Claims:

1. A method of binding a kappa opioid receptor in a subject in need thereof,
comprising:
5 administering to said subject a composition comprising a kappa opioid receptor
antagonist and a physiologically acceptable carrier, wherein the kappa opioid receptor
antagonist is a compound of formula (I):

wherein Q is H or COC₁₋₈ alkyl;
R₁ is C₁₋₈ alkyl, or one of the following structures:

Sch
B8

Y₁ is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

Y₂ is H, CF₃, CO₂R₉, C₁₋₆alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

R₂ is H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl or CH₂aryl substituted by one or more groups Y₁;

R₃ is H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl or CH₂aryl substituted by one or more groups Y₁;

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

R₄ is hydrogen, C₁₋₈ alkyl, CO₂C₁₋₈ alkylaryl substituted by one or more groups Y₁, CH₂aryl substituted by one or more groups Y₁, or CO₂C₁₋₈ alkyl;

Z is N, O or S; where Z is O or S, there is no R₅

R₅ is H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl, CH₂CO₂C₁₋₈ alkyl, CO₂C₁₋₈ alkyl or CH₂aryl substituted by one or more groups Y₁;

n is 0, 1, 2 or 3;

R₆ is a group selected from the group consisting of structures (a)-(bbb):

Suh
β8

Sub
B8

*Sub
B8*

0 10 20 30 40 50 60 70 80 90 100

- 5
10
15
20
25
30
- ~~X₁ is hydrogen, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl;~~
- ~~X₂ is hydrogen, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl;~~
- ~~or X₁ and X₂ together form =O, =S, =NH;~~
- ~~R₇ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁,~~
- ~~NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, CH₂(CH₂)_nY₂, C(=NH)NR₁₆R₁₇.~~
- ~~R₈ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁, CONR₁₃R₁₄,~~
- ~~CH₂(CH₂)_nY₂;~~
- ~~R₉ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- ~~R₁₀ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- ~~R₁₁ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- ~~R₁₂ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- ~~R₁₃ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- ~~R₁₄ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- ~~R₁₅ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- ~~R₁₆ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;~~
- and
- R₁₇ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂.
2. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein R₁, R₄, R₅, Y₁, Y₂, Z, n, X₁, X₂, and R₇-R₁₇ are as indicated above;
- Y₃ is H;
- R₂ and R₃ are each, independently, H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl, CH₂aryl substituted by one or more substituents Y₁; and
- R₆ is a group having a formula selected from the group consisting of structures (a)-(cc).
- and pharmaceutically acceptable salts thereof.
3. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I) wherein Y₁, Y₂, R₄, R₅, Z, n, X₁, X₂ and R₈-R₁₅ are as indicated above;
- R₁ is C₁₋₈ alkyl,

*Suh
AB*

Y_3 is H;

R₂ and R₃ are each, independently, H or C₁₋₈ alkyl, wherein R₂ and R₃ cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r); and

R₇ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, or CH₂(CH₂)_nY₂.

4. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I) wherein Y₁, Z, n, X₁, X₂ and R₈-R₁₅ are as noted above;

R₁ is C₁₋₈ alkyl;

Y₂ is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, CH₂OH, CH₂OR₈, COCH₂R₉;

Y_3 is H;

R₂ and R₃ are each, independently, H or methyl, wherein R₂ and R₃ cannot both be H at the same time;

15 R₄ is H, C₁₋₈ alkyl, CO₂C₁₋₈alkyl, aryl substituted by one or more substituents Y₁ and the stereocenter adjacent to R₄ is in an (S) configuration;

R₅ is H, C₁₋₈ alkyl, CH₂CO₂C₁₋₈ alkyl;

R₆ is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

20 R₇ is H, C₁₋₈alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, or CH₂(CH₂)_nY₂.

5. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y₁, Z, n, X₁, X₂ and R₈-R₁₄ are as indicated above;

*Su
B8*

R₁ is methyl,

Y₂ is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H;

5 R₂ and R₃ are each H or methyl, such that when R₂ is H, R₃ is methyl and vice versa;

R₄ is C₁₋₈ alkyl, CO₂C₁₋₈ alkyl, and the stereocenter adjacent to R₄ has a configuration of (S);

R₅ is H;

10 R₆ is a group having a formula selected from the group consisting of structures (a) and (b); and

R₇ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁ or CH₂(CH₂)_nY₂.

6. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound selected from formulae 14-21 of Fig. 1.

7. A kappa opioid receptor antagonist compound represented by the formula (I):

(I)

wherein Q is H or COC₁₋₈ alkyl;

R₁ is C₁₋₈ alkyl, or one of the following structures:

Y_1 is H, OH, Br, Cl, F, CN, CF_3 , NO_2 , N_3 , OR_8 , CO_2R_9 , C_{1-6} alkyl, $\text{NR}_{10}\text{R}_{11}$, NHCOR_{12} , $\text{NHCO}_2\text{R}_{12}$, $\text{CONR}_{13}\text{R}_{14}$, $\text{CH}_2(\text{CH}_2)_n Y_2$;

Y_2 is H, CF_3 , CO_2R_9 , C_{1-6} alkyl, $\text{NR}_{10}\text{R}_{11}$, NHCOR_{12} , $\text{NHCO}_2\text{R}_{12}$, $\text{CONR}_{13}\text{R}_{14}$, CH_2OH , CH_2OR_8 , COCH_2R_9 ;

Y_3 is H, OH, Br, Cl, F, CN, CF_3 , NO_2 , N_3 , OR_8 , CO_2R_9 , C_{1-6} alkyl, $\text{NR}_{10}\text{R}_{11}$, NHCOR_{12} , $\text{NHCO}_2\text{R}_{12}$, $\text{CONR}_{13}\text{R}_{14}$, $\text{CH}_2(\text{CH}_2)_n Y_2$;

R_2 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

R_3 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

wherein R_2 and R_3 may be bonded together to form a C_{2-8} alkyl group;

R_4 is hydrogen, C_{1-8} alkyl, $\text{CO}_2\text{C}_{1-8}$ alkylaryl substituted by one or more groups Y_1 , CH_2 aryl substituted by one or more groups Y_1 or $\text{CO}_2\text{C}_{1-8}$ alkyl;

Z is N, O or S; when Z is O or S there is no R_5

15 R_5 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $\text{CH}_3\text{CO}_2\text{C}_{1-8}$ alkyl, $\text{CO}_2\text{C}_{1-8}$ alkyl or CH_2 aryl substituted by one or more groups Y_1 ;

n is 0, 1, 2 or 3;

R_6 is a group selected from the group consisting of structures (a)-(bbb):

SUB
B8
PROPOSED FOR REGISTRATION

(s)

(t)

(u)

Sub
B8

(v)

(w)

(x)

(y)

(z)

(aa)

~~X₁ is hydrogen, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl;~~
~~X₂ is hydrogen, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl;~~
or X₁ and X₂ together form =O, =S, =NH;
R₇ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁,
5 NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, CH₂(CH₂)_nY₂, C(=NH)NR₁₆R₁₇;
R₈ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁, CONR₁₃R₁₄,
CH₂(CH₂)_nY₂;
R₉ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;
R₁₀ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;
10 R₁₁ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;
R₁₂ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;
R₁₃ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;
R₁₄ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;
R₁₅ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;
R₁₆ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

and

R₁₇ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂ and pharmaceutically acceptable salts thereof.

8. The kappa opioid receptor antagonist compound of claim 7, wherein R₁, R₄, R₅, Y₁, Y₂, Z, n, X₁, X₂, and R₇-R₁₇ are as indicated above;

Y₃ is H;

R₂ and R₃ are each, independently, H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl, CH₂aryl substituted by one or more substituents Y₁; and

R₆ is a group having a formula selected from the group consisting of structures (a)-(cc).

9. The kappa opioid receptor antagonist compound of claim 7, wherein Y₁, Y₂, R₄, R₅, Z, n, X₁, X₂ and R₈-R₁₅ are as indicated above;

R₁ is C₁₋₈ alkyl,

Sch
β8

X₃ is H;

R₂ and R₃ are each, independently, H or C₁₋₈ alkyl, wherein R₂ and R₃ cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r) shown above; and

5 R₇ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, or CH₂(CH₂)_nY₂.

10 10. The kappa opioid receptor antagonist compound of claim 7, wherein Y₁, Z, n, X₁, X₂ and R₈-R₁₅ are as noted above;

R₁ is C₁₋₈ alkyl;

15 Y₂ is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H;

20 R₂ and R₃ are each, independently, H or methyl, wherein R₂ and R₃ cannot both be H at the same time;

R₄ is H, C₁₋₈ alkyl, CO₂C₁₋₈alkyl, aryl substituted by one or more substituents Y₁ and the stereocenter adjacent to R₄ is in an (S) configuration;

R₅ is H, C₁₋₈ alkyl, CH₂CO₂C₁₋₈ alkyl;

25 R₆ is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

R₇ is H, C₁₋₈alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, or CH₂(CH₂)_nY₂.

11. The kappa opioid receptor antagonist compound of claim 7, wherein Y₁, Z, n, X₁, X₂ and R₈-R₁₄ are as indicated above;

R₁ is methyl,

25 Y₂ is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H;

R₂ and R₃ are each H or methyl, such that when R₂ is H, R₃ is methyl and vice versa;

*Suh
B8*

R₄ is C₁₋₈ alkyl, CO₂C₁₋₈ alkyl, and the stereocenter adjacent to R₄ has a configuration of (S);

R₅ is H;

R₆ is a group having a formula selected from the group consisting of structures (a) and (b); and

R₇ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁ or CH₂(CH₂)_nY₂.

5 12. The kappa opioid receptor antagonist of claim 7, wherein said compound is a compound selected from formulae 14-21 of Fig. 1.

10 13. A pharmaceutical composition comprising:
an effective amount of a kappa opioid receptor antagonist and a physiologically acceptable carrier, wherein the kappa opioid receptor antagonist is a compound of formula (I):

(I)

wherein Q is H or COC₁₋₈ alkyl;
R₁ is C₁₋₈ alkyl, or one of the following structures:

*Sub
β8*

Y₁ is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

Y₂ is H, CF₃, CO₂R₉, C₁₋₆alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

R₂ is H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl or CH₂aryl substituted by one or more groups Y₁;

R₃ is H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl or CH₂aryl substituted by one or more groups Y₁;

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

R₄ is hydrogen, C₁₋₈ alkyl, CO₂C₁₋₈ alkylaryl substituted by one or more groups Y₁, CH₂aryl substituted by one or more groups Y₁, or CO₂C₁₋₈ alkyl;

Z is N, O or S; when Z is O or S, there is no R₅

R₅ is H, C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl, CH₂CO₂C₁₋₈ alkyl, CO₂C₁₋₈ alkyl or CH₂aryl substituted by one or more groups Y₁;

n is 0, 1, 2 or 3;

R₆ is a group selected from the group consisting of structures (a)-(bbb):

Sch
B8

Sub
B8

$S_C \downarrow$
 $\beta 8$

- Suh
158
- 5 X_1 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl;
 X_2 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl;
or X_1 and X_2 together form =O, =S, =NH;
 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$,
NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, $CH_2(CH_2)_nY_2$, C(=NH)NR₁₆R₁₇;
- 10 R_8 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , CONR₁₃R₁₄,
 $CH_2(CH_2)_nY_2$;
- 15 R_9 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
 R_{10} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
 R_{11} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
 R_{12} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
 R_{13} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
 R_{14} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
 R_{15} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
 R_{16} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;
and
20 R_{17} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$
or a pharmaceutically acceptable salt thereof.
- 25 14. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein R_1 , R_4 , R_5 , Y_1 , Y_2 , Z , n , X_1 , X_2 , and R_7-R_{17} are as indicated above;
- 30 Y_3 is H;
R₂ and R₃ are each, independently, H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, CH_2 aryl substituted by one or more substituents Y_1 ; and
R₆ is a group having a formula selected from the group consisting of structures (a)-(cc).
15. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Y_2 , R_4 , R_5 , Z , n , X_1 , X_2 and R_8-R_{15} are as indicated above;
- 30 R₁ is C_{1-8} alkyl,

*Suh
B8*

Y₃ is H;
R₂ and R₃ are each, independently, H or C₁₋₈ alkyl, wherein R₂ and R₃ cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r) shown above; and

R₇ is H, C₁₋₈ alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, or CH₂(CH₂)_nY₂.

16. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y₁, Z, n, X₁, X₂ and R₈-R₁₅ are as noted above;

10 R₁ is C₁₋₈ alkyl;

Y₂ is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H;

15 R₂ and R₃ are each, independently, H or methyl, wherein R₂ and R₃ cannot both be H at the same time;

R₄ is H, C₁₋₈ alkyl, CO₂C₁₋₈alkyl, aryl substituted by one or more substituents Y₁ and the stereocenter adjacent to R₄ is in an (S) configuration;

R₅ is H, C₁₋₈ alkyl, CH₂CO₂C₁₋₈ alkyl;

20 R₆ is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

R₇ is H, C₁₋₈alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, or CH₂(CH₂)_nY₂.

17. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Z , n , X_1 , X_2 and R_8-R_{14} are as indicated above;

R_1 is methyl,

5 Y_2 is H, CF_3 , CO_2R_9 , C_{1-6} alkyl, $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{12}$, $CONR_{13}R_{14}$,

CH_2OH , CH_2OR_8 , $COCH_2R_9$:

Y_3 is H;

R_2 and R_3 are each H or methyl, such that when R_2 is H, R_3 is methyl and vice versa;

10 R_4 is C_{1-8} alkyl, CO_2C_{1-8} alkyl, and the stereocenter adjacent to R_4 has a configuration of (S);

R_5 is H;

15 R_6 is a group having a formula selected from the group consisting of structures (a) and (b); and

R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 or $CH_2(CH_2)_nY_2$.

20 18. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound selected from formulae 14-21 of Fig. 1.

19. The pharmaceutical composition of claim 13, wherein said composition is an injectable composition.

20 20. The pharmaceutical composition of claim 13, wherein said composition is an orally administrable composition.

21. The pharmaceutical composition of claim 20, wherein said orally administrable composition is in a form selected from the group consisting of tablets, capsules, troches, powders, solutions, dispersions, emulsions and suspensions.

add

A1

add

B8