DS4400 HW1

Xin Guan

- 1. Let $a \in \mathbb{R}^n$ be an n-dimensional vector and let $\mathbf{U} \in \mathbb{R}^{n \times n}$ be an orthonormal matrix, i.e., $U^TU = UU^T = I_n$. show the following:
 - (a) trace(aa^{T}) = $||a||_{2}^{2}$ Solution:

Proof. Let $\mathbf{a} = \langle a_1, a_2, a_3 ... a_n \rangle$

Then,
$$\mathbf{a}\mathbf{a}^{T} = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} \cdot \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \cdot a_{1} & a_{1} \cdot a_{2} & \cdots & a_{1} \cdot a_{n} \\ a_{2} \cdot a_{1} & a_{2} \cdot a_{2} & \cdots & a_{2} \cdot a_{n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n} \cdot a_{1} & a_{n} \cdot a_{2} & \cdots & a_{n} \cdot a_{n} \end{bmatrix}$$

Therefore, trace(aa^T) = $a_1 \cdot a_1 + a_2 \cdot a_2 + \cdots + a_n \cdot a_n = \sum_{i=1}^n a_i^2 = ||a||_2^2$ Thus, trace($\boldsymbol{a}\boldsymbol{a}^T$) = $\|\boldsymbol{a}\|_2^2$

П

(b)
$$||Ua||_2^2 = ||a||_2^2$$

Solution:

Proof. We can write *U* as follow:

$$\boldsymbol{U} = \begin{bmatrix} -v_1^T - \\ -v_2^T - \\ \dots \\ -v_n^T - \end{bmatrix}, \text{ where } v_i \in \mathbb{R}^n, i \in \mathbf{Z}, 1 \le i \le n.$$

Since *U* is orthonormal, we have:

$$\forall i \neq k, v_i * v_k = \overline{\mathbf{0}}$$

 $\forall i \in \mathbf{Z}, 1 \leq i \leq n, v_i^T v_i = 1$

Then, we can write
$$\mathbf{U}\mathbf{a} = \begin{bmatrix} v_1^T \mathbf{a} \\ v_2^T \mathbf{a} \\ \vdots \\ v_n^T \mathbf{a} \end{bmatrix}$$

Therefore,
$$\|\boldsymbol{U}\boldsymbol{a}\| = (v_1^T\boldsymbol{a})^2 + (v_2^T\boldsymbol{a})^2 + \dots + (v_n^T\boldsymbol{a})^2$$

$$= \sum_{i=1}^n (v_i^T\boldsymbol{a}) = \sum_{i=1}^n (v_i^T\boldsymbol{a})^T (v_i^T\boldsymbol{a}) = \sum_{i=1}^n (\boldsymbol{a}^T v_i)(v_i^T\boldsymbol{a})$$

$$= \sum_{i=1}^n (\boldsymbol{a}^T (v_i v_i^T) \boldsymbol{a})$$

Since $\forall i \in \mathbb{Z}, 1 \leq i \leq n, v_i^T v_i = 1$, we have:

$$\sum_{i=1}^{n} (\mathbf{a}^{T} (v_{i} v_{i}^{T}) \mathbf{a}) = \sum_{i=1}^{n} (\mathbf{a}^{T} \mathbf{a}) = ||\mathbf{a}||_{2}^{2}$$

Thus, $\|\boldsymbol{U}\boldsymbol{a}\|_{2}^{2} = \|\boldsymbol{a}\|_{2}^{2}$.

- 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times n}$ be arbitrary but invertible matrices and let α be a scalar. Show the following:
 - (a) $(AB)^{-1} = B^{-1}A^{-1}$

Solution:

Proof. By the definition of inverse, we have:

$$(\boldsymbol{A}\boldsymbol{B})(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{I}_n$$

Multiply both sides by A^{-1} :

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{B}(\mathbf{A}\mathbf{B})^{-1} = \mathbf{A}^{-1}\mathbf{I}_n$$

Then we have:

$$\boldsymbol{B}(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{A}^{-1}$$

Multiply both sides by B^{-1} :

$$B^{-1}B(AB)^{-1} = B^{-1}A^{-1}$$

Then we have:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Therefore, $(AB)^{-1} = B^{-1}A^{-1}$

(b) $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$

Solution:

Proof. By the definition of inverse, we have $A^{-1}A = I_n$. Then we transpose both sides:

$$(\boldsymbol{A}^{-1}\boldsymbol{A})^T = (\boldsymbol{I}_n)^T$$

Then we have:

$$\boldsymbol{A}^T(\boldsymbol{A}^{-1})^T = \boldsymbol{I}_n$$

Multiply both sides by $(\mathbf{A}^T)^{-1}$:

$$(\boldsymbol{A}^T)^{-1}\boldsymbol{A}^T(\boldsymbol{A}^{-1})^T = (\boldsymbol{A}^T)^{-1}\boldsymbol{I}_n$$

Then we have:

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$$

(c) trace($\alpha \mathbf{A}$) = α trace(\mathbf{A})

Solution:

Proof. Let
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & & \vdots \\ a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}$$
Then $\alpha \mathbf{A} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \vdots & \ddots & & \vdots \end{bmatrix}$

Then
$$\alpha \mathbf{A} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \vdots & \ddots & & \vdots \\ \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{nn} \end{bmatrix}$$

Then, trace(αA) = $\alpha a_{11} + \alpha a_{22} + \dots \alpha a_{nn} = \sum_{i=1}^{n} \alpha a_{ii} = \alpha \sum_{i=1}^{n} a_{ii}$ On the other hand, α trace(\mathbf{A}) = $\alpha \cdot (a_{11} + a_{22} + \dots + a_{nn}) = \alpha \sum_{i=1}^{n} a_{ii}$

Therefore, trace($\alpha \mathbf{A}$) = α trace(\mathbf{A})