

## REPORT DOCUMENTATION PAGE

*Form Approved  
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

|                                                                                                                                                     |                                          |                                         |                                                                 |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|----------------------------------|
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                    |                                          |                                         | 2. REPORT DATE<br>29 Jun 98                                     | 3. REPORT TYPE AND DATES COVERED |
| 4. TITLE AND SUBTITLE<br>DESIGNING AN (S, S) INVENTORY CONTROL SYSTEM                                                                               |                                          |                                         | 5. FUNDING NUMBERS                                              |                                  |
| 6. AUTHOR(S)<br>GARY RAFNSON                                                                                                                        |                                          |                                         |                                                                 |                                  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br>AUBURN UNIVERSITY AT ALABAMA                                                                  |                                          |                                         | 8. PERFORMING ORGANIZATION REPORT NUMBER<br>98-002 Major Report |                                  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>THE DEPARTMENT OF THE AIR FORCE<br>AFIT/CIA, BLDG 125<br>2950 P STREET<br>WPAFB OH 45433 |                                          |                                         | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER                  |                                  |
| 11. SUPPLEMENTARY NOTES                                                                                                                             |                                          |                                         |                                                                 |                                  |
| 12a. DISTRIBUTION AVAILABILITY STATEMENT<br>Unlimited distribution<br>In Accordance With AFI 35-205/AFIT Sup 1                                      |                                          |                                         | 12b. DISTRIBUTION CODE                                          |                                  |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                    |                                          |                                         |                                                                 |                                  |
| 14. SUBJECT TERMS                                                                                                                                   |                                          |                                         | 15. NUMBER OF PAGES<br>23                                       |                                  |
|                                                                                                                                                     |                                          |                                         | 16. PRICE CODE                                                  |                                  |
| 17. SECURITY CLASSIFICATION OF REPORT                                                                                                               | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | 20. LIMITATION OF ABSTRACT                                      |                                  |

# Designing an $(s, S)$ Inventory Control System

Gary Rafnson

18 July 1997

## Abstract

This project aims to provide some insight on a local company's  $(s, S)$  inventory control system. It does so by providing three completely new  $(s, S)$  approaches and comparing their simulated performance to the current system. Recommendations are made based on the results.

1  
9  
9  
8  
0  
7  
0  
8  
0  
6

## 1 Introduction: Quantegy, Inc.

Quantegy, Inc. (formerly known as Ampex) is an Opelika company that manufactures magnetic tape for worldwide distribution. It has been the sole producer of magnetic tape in the United States since last year, when Quantegy's only competitor, 3M, left the market. The company has been in business for over 50 years. Annual sales presently average \$120 million. Management estimates that nearly \$15 million is currently invested in worldwide inventory.

The facility in Opelika is Quantegy's only manufacturing plant. It also serves as the company's headquarters. Quantegy maintains ten regional distribution centers in North America, six in Europe, one in Asia, and one in Australia. These regional facilities conduct Quantegy's business in their respective areas, having their inventories periodically replenished with shipments from Opelika.

Quantegy uses an  $(s, S)$  inventory control policy to keep its regional facilities stocked. Specifically the inventory at each facility is reviewed from one to three times per week. When the inventory level for a particular stock keeping unit (hereafter an SKU) is found to be below its reorder point  $s$ , then a replenishment order is placed to Opelika. The amount

of the order is equal to the difference between the current inventory level and that SKU's order-up-to level  $S$ . All order amounts are integer multiples of the standard package size for that particular SKU. The distribution center can expect to receive the order after a delivery lagtime.

The reorder point  $s$  and order-up-to level  $S$  change from week to week, based on the demand forecast for that particular SKU. The forecast for the next week's demand is simply the average demand over the last 13 weeks (i.e. a 13 week moving average). The order-up-to level  $S$  is this forecast multiplied by a number called the ABC factor and then rounded to the nearest standard package size. Quantegy classifies its SKU's according to their own ABC system, where A items are the most important. Their system does not, however, use the classic Pareto rule (80/20) [1]. Instead each sales region requests a specific classification that is subject to the main planning department's final decision. The ABC factor is just a number that management creates and can adjust in times of irregular demand. The factor is typically larger for A items (e.g. 3) than for B or C items (e.g. 2.5). The reorder point  $s$  is 90% of the order-up-to level  $S$ , again rounded to the nearest standard package size.

For example, assume a B item. Its ABC factor is, arbitrarily, 2.5. Assume the average demand for the product over the last 13 weeks is 26.78 SKU's. The standard package size for this product is 10. It follows then that the order-up-to level  $S$  is  $26.78 * 2.5 = 66.95 \approx 70$ . The reorder point  $s$  is  $90\% * 66.95 = 60.255 \approx 60$ .

Each region also provides Opelika with its own demand forecasts to take into consideration when evaluating its inventory. The general idea is that the regional personnel should know when something irregular is happening in their area of responsibility. But these forecasts, however, are notoriously large. Regional managers evidently provide inflated numbers to maximize their own inventories at the expense of the other regions. As a result, the regional forecasts are virtually ignored by Opelika except in the most extreme cases.

Quantegy measures its fillrates by calculating the percentage of orders that are fulfilled

by on-hand demand. The sizes of the orders and the stockouts are ignored. Management typically expects A items to achieve a 95% fillrate and B items to achieve a 90% fillrate. C and D items are not expected to achieve anything close to 90%.

## 2 Project Overview

The project objective is to evaluate Quantegy's current  $(s, S)$  inventory control system (section 6) against the three different  $(s, S)$  approaches presented in this paper (sections 7-9). Evaluation comes in the form of a deterministic simulation (section 5) that uses actual demand data provided by analysts in Opelika (section 4). The results are then compared to the present system's simulated performance and recommendations are made (section 10).

The methodology used is relatively straightforward. The data is first partitioned into two sets. The first set, called the sample, is used to initialize the approach being looked at. (A "policy" or "approach" is simply how the  $s$  and  $S$  values are being computed.) No modifications to the control policy are allowed after initialization. The policy is then evaluated via simulation on the second set of demands, called the ex post [2]. Assuming a valid simulation, this approach discovers what would have happened (i.e. fillrates, number of orders, average on-hand inventory) had Quantegy actually implemented the policy in question, during the times represented by the ex post set, without any knowledge of the future (ex post) demands.

This analysis will hopefully provide management at Quantegy with a different perspective and some fresh insight on their inventory control system. This project does not claim to offer a panacea for all of Quantegy's inventory problems. Instead it offers some practical alternatives that appear to have significant and realistic improvements on paper.

### 3 Literature Review

The main research paper behind this project is [14]. It is an efficient approach that uses renewal analysis to find the minimum cost  $(s, S)$  policy (long-run expected holding, setup, and penalty). The authors themselves improve upon the work of [12], who solve the same problem by inefficiently enumerating all solutions in the  $(s, \Delta)$  plane and selecting the policy with the minimum cost.

Another paper worth mentioning is [7], which details a non-exact heuristic to solve the  $(s, S)$  problem subject to a Type 1 fillrate constraint (fraction of non-stockout time periods). This project attempts to do the same, but with renewal analysis and a Type 2 fillrate constraint (fraction of non-stockout orders). A classic paper on the  $(s, S)$  problem that was looked at but not used is [9], where the author introduces three methods for computing approximately optimal  $(s, S)$  policies for discrete time shortage cost systems.

[13] provides Croston's method, an advanced forecasting technique used in the project. [4] enables the avoidance of the common mistake of underestimating fillrates. Numerous textbooks provide miscellaneous support.

### 4 Data

Quantegy was able to provide data on 14 A items and 11 B items in their New York distribution center. Specifically they provided each item's standard cost, and the quantity shipped of that item to New York from Opelika every week, from June 1993 to October 1996 (172 weeks total). Needless to say, this data is not the actual *demand* for those items. It is, however, a reasonably close substitute and the only information Quantegy could give.

The raw data (attachment 1) can be generally described as erratic. Each item displays its own behavior such as trends, bulges, cutoffs, and long periods of inactivity. Graphs of the raw weekly demand for items A14 and B04 are included in attachment 2 as arbitrary

examples. The most notable characteristic common to all is the existence of outliers. Each item had at least one week in which the recorded demand was more than three standard deviations from the mean demand [6]. Such behavior is sure to pollute even the most robust control policy's performance. It is reasonable to assume that management knows about such aberrant orders beforehand and can prepare accordingly. To reflect this assumption and avoid the degradation of simulated performance, each data point that lies more than three standard deviations from the mean is replaced with the original sample mean. A summary of the exact changes is included in attachment 3. This outlier adjusted data (attachment 4) is much more tractible and predictably has lower means and standard deviations.

The next major modification dealt with changing the frequency of observations from every week to twice per week. Such a change is necessary because the inventory levels are reviewed twice per week at the New York facility. Converting the weekly numbers involves randomly splitting each observation into two half-week observations. But some extra analysis (below) is needed to avoid the high probablilty of these half-week observations always coming in pairs, an outcome that was pointed out at a presentation of this project at a local APICS meeting in February 1997.

Let  $f$  be the probability of demand in a particular week. Estimate it by dividing the number of non-zero observations by the total number of observations (172). Let  $p$  be the probability of demand in a particular half-week and assume that half-week demand is independent and identically distributed. The probability then of not incurring a demand in any week  $(1 - f)$  should be equal to the probability of not incurring a demand in both the first half and second half of any week  $((1 - p) * (1 - p))$ . Solving for  $p$  results in the following equation.

$$p = 1 - \sqrt{1 - f} \quad (1)$$

[The above equation can be generalized for any number  $n$  of time periods within the week

with the expression  $p = 1 - \sqrt[3]{1-f}.$ ]

There are two possible outcomes regarding the half-week demands, given that a non-zero demand has occurred. Either (1) the demand is split between both half-weeks or (2) the entire amount occurred in either the first or second half of the week. The probabilities of each of these occurrences can be calculated using conditional probabilities and the value of  $p$  above.

- $P(\text{Demand in both halves} \mid \text{Non-zero weekly demand}) = \frac{p^2}{p^2 + 2p(1-p)} = \frac{p}{2-p}$
- $P(\text{Demand in only one half} \mid \text{Non-zero weekly demand}) = \frac{2p(1-p)}{p^2 + 2p(1-p)} = \frac{2-2p}{2-p}$

The conversion procedure logically follows, where  $D$  is the observed weekly demand,  $D_1$  is the resulting demand in the first half of the week while  $D_2$  is the resulting demand in the second half of the week.

### **Week to Half-week Conversion Procedure**

For every item

- Calculate  $p$
- For every week
  - If  $D > 0$  then
    - \* Generate  $x = U(0,1)$
    - \* If  $x \leq \frac{p}{2-p}$  then **demand in both halves**
      - Generate  $y = U(0,1)$
      - $D_1 = y * D$  rounded to the nearest standard package size
      - $D_2 = D - D_1$
    - \* Else if  $x \leq \frac{1}{2-p}$  then **demand in first half only**
      - $D_1 = D$
      - $D_2 = 0$
    - \* Else **demand in second half only**
      - $D_1 = 0$
      - $D_2 = D$
  - Else **no demand in either half**

\*  $D_1 = D_2 = 0$

The set of half-week data used throughout this project that results from the above stochastic procedure is included in attachment 5.

The final modification, as described above, is to partition the data into the sample and ex post sets. The last year of data (51 weeks as defined by Quantegy) seemed an intuitively attractive amount of time for the ex post set, which provides ample data for initialization within the sample (121 weeks). This partition is represented by the horizontal line in attachment 5.

## 5 Simulation

As already stated, the simulation used to evaluate the inventory control policies is deterministic. It simply uses the half-week demands obtained above as the actual demands in the simulation, in the same order and with no changes.

Define the following. . .

$t \rightarrow$  the time period in half-weeks

(e.g. half-weeks 30.5 and 31.0 are the first and second halves of week 31, respectively)

$Y_t \rightarrow$  the demand in  $t$

$s_t \rightarrow$  the reorder point in  $t$

$S_t \rightarrow$  the order-up-to level in  $t$

$I_t \rightarrow$  the inventory position at the end of  $t$

$N_t \rightarrow$  the net inventory at the end of  $t$

$Q_t \rightarrow$  the amount of the order placed in  $t$

$q_t \rightarrow$  whether or not an order was placed in  $t$  (1 is yes, 0 is no)

$H_t \rightarrow$  the on-hand inventory at the end of  $t$

$B_t \rightarrow$  the amount of the backorder in  $t$

The simulation then is just the act of making the following calculations for every  $t$ . . .

$$I_t = I_{t-0.5} - Y_t + Q_{t-0.5}$$

$$N_t = N_{t-0.5} - Y_t + Q_{t-1.0}$$

$$Q_t = S_t - I_t \text{ if } I_t \leq s_t, \text{ otherwise } Q_t = 0$$

$$q_t = 1 \text{ if } Q_t > 0, \text{ otherwise } q_t = 0$$

$$H_t = N_t \text{ if } N_t > 0, \text{ otherwise } H_t = 0$$

$$B_t = -N_t - \max(0, B_{t-0.5} - Q_{t-1.0}) \text{ if } N_t < 0, \text{ otherwise } B_t = 0$$

To initialize,  $Y_0 = 0$ ,  $I_0 = N_0 = S_{0.5}$ , and  $N_{0.5} = N_0 - Y_{0.5}$ .

Some things are worth mentioning here. Quantegy updates the  $s$  and  $S$  parameters every week. As a result,  $s_t = s_{t+0.5}$  whenever  $t + 0.5$  is an integer. The same holds true for  $S$ . The equation for inventory position adds in the order from the last period because the delivery lag to New York is half a week long. The equation for net inventory adds in the order from an entire week prior to keep the on-hand inventory as accurate as possible for holding cost estimates. The expression for backorders prevents previous stockouts from being double counted if a demand is larger than normal.

The first measure of performance is the number of orders made by a policy. The fewer orders a policy has to make, the better in terms of ordering costs. It is calculated simply by summing the  $q_t$  values. The next measure is the average on-hand inventory and is calculated by averaging the  $H_t$  values in the simulation. Again, this measure is desired to be as small as possible to cut holding costs. The final measure of performance is the fillrate, calculated by the expression below.

$$1 - \frac{\sum_t B_t}{\sum_t Y_t} \quad (2)$$

This is commonly referred to as the  $\beta$ , or Type 2, fillrate and is different from the fillrate that Quantegy uses, commonly called the  $\alpha$ , or Type 1, fillrate [8]. The difference is that the  $\beta$  value measures the units of demand that were filled with on-hand inventory while the  $\alpha$  value measures the number of *orders* (or time periods) that were filled *entirely* by on-hand inventory, regardless of the size of the stockout. The  $\beta$  value is used because it gives better information. Take the case where 99 of 100 orders were filled by on-hand inventory. The  $\alpha$  fillrate here is equal to 99% because 99 of the 100 orders were filled. But now assume that there were 10000 total units demanded during all of these orders and that the one missed order (entirely!) was for 9901 units. The corresponding  $\beta$  value here is 1%, a much more

indicative number for the situation. Unlike the other measures of performance, the fillrate is desired to be as close to 1 as possible (maximized) and no smaller than the service objectives set by management.

## 6 Quantegy's Current Policy

Recall that Quantegy uses a dynamic inventory control policy where the values of  $s$  and  $S$  are updated every week.

Define the following. . .

$\hat{Y}_t \rightarrow$  the demand forecast for  $t$

$S_t^o \rightarrow$  the order-up-to level in  $t$  before rounding

$s_t^o \rightarrow$  the reorder point in  $t$  before rounding

$\kappa \rightarrow$  the ABC multiplier (3 for A items, 2.5 for B items)

Then for every integer value of  $t + 0.5$ . . .

$$\hat{Y}_t + \hat{Y}_{t+0.5} = \frac{\sum_{\text{last 13 weeks}} Y_t}{13}$$

$$S_t^o = \kappa * (\hat{Y}_t + \hat{Y}_{t+0.5})$$

$$s_t^o = 0.9 * S_t^o$$

$S_t = S_{t+0.5} = S_t^o$  rounded to the nearest standard package size

$s_t = s_{t+0.5} = s_t^o$  rounded to the nearest standard package size

This policy uses only the last 13 weeks of the sample set to initialize the moving average.

The detailed results of the ex post simulations for all 25 items are included in attachment

6. The table below summarizes the simulated performance of Quantegy's current inventory control policy. Overall the policy made a total of 1200 orders for all 25 items (out of a possible 2550). It kept an estimated \$98,408.33 worth of inventory on the shelves. Of the 25 items, 15 had fillrates of at least 90%. The average fillrate for the entire policy was 86.8%.

Since Quantegy does not keep information on past inventory performance, it is nearly impossible to exhaustively validate the simulation. Management did, however, indicate that the numbers were "reasonable" and "seemed right" in a meeting back in December of 1996.

| Performance Measure     | Current Policy |
|-------------------------|----------------|
| Total Orders            | 1200           |
| Avg OH Inv (\$)         | 98,408.33      |
| # Fillrates $\geq 90\%$ | 15             |
| Avg Fillrate            | 86.8%          |

Table 1: Performance of the Current Policy

## 7 Alternative 1: Different Forecasts

This approach tests the intuition that Quantegy's inventory control policy would perform better with a more accurate and sophisticated forecast than a 13-week moving average. It does so by replacing the moving average with three alternatives. No other changes are made to the policy.

The first forecasting alternative is the naive forecast, where the demand for the current week is simply the observation in the previous week. It uses only the last week of demand in the sample set to initialize. This forecast should perform poorly compared to the moving average and, as a result, have worse inventory performance. It is defined by the following equation, where  $t + 0.5$  is again an integer.

$$\hat{Y}_t + \hat{Y}_{t+0.5} = Y_{t-1.0} + Y_{t-0.5} \quad (3)$$

The second alternative is to use the mean demand over the entire sample set as the forecast for every demand in the ex post set. Needless to say it needs the entire sample set to initialize. This forecast results in a static policy where the values for  $s$  and  $S$  are constant over the entire simulation. Like above, this forecast should perform poorly both in terms of accuracy and inventory performance compared to the moving average. This forecast is defined by the following equation, where  $t + 0.5$  is integer.

So we say !

$$\hat{Y}_t + \hat{Y}_{t+0.5} = \frac{\sum_{sample} Y_t}{121} \quad (4)$$

The final alternative is called Croston's method [13]. It is a variant of single exponential smoothing that was designed to forecast random and intermittent demand like the data in this project. Specifically it makes separate exponential smoothing estimates for both the average size of a demand and the average interval between demands. The forecast is the ratio of these two values, or the expected demand per interval. It is only updated when a demand occurs. If demand is occurring in every time period, then Croston's method is equivalent to single exponential smoothing. Unlike the other alternatives, this forecast should be more accurate than a moving average and, as a result, have superior inventory performance.

Define the following. . .

$Z_t \rightarrow$  the estimate for the size of demand in  $t$

$P_t \rightarrow$  the estimate for the time interval between demands in  $t$

$d \rightarrow$  an integer counter

$\alpha \rightarrow$  smoothing parameter between 0 and 1

Croston's method follows, where  $t + 0.5$  is an integer.

- If  $Y_t + Y_{t+0.5} = 0$  then

$$\begin{aligned} - Z_t + Z_{t+0.5} &= Z_{t-1} + Z_{t-0.5} \\ - P_t + P_{t+0.5} &= P_{t-1} + P_{t-0.5} \\ d &= d + 1 \end{aligned}$$

- Else

$$\begin{aligned} - Z_t + Z_{t+0.5} &= Z_{t-1} + Z_{t-0.5} + \alpha * (Y_t + Y_{t+0.5} - Z_{t-1} + Z_{t-0.5}) \\ - P_t + P_{t+0.5} &= P_{t-1} + P_{t-0.5} + \alpha * (d - P_{t-1} + P_{t-0.5}) \\ d &= 1 \end{aligned}$$

- $\hat{Y}_t + \hat{Y}_{t+0.5} = \frac{Z_{t-1} + Z_{t-0.5}}{P_{t-1} + P_{t-0.5}}$

Initialization here uses the entire sample set and is a bit more involved.  $Z_{-0.5} + Z_0$ , or the initial estimate for the size of the demand, is the average size of the non-zero demands from  $Y_{0.5}$  to  $Y_{10.0}$ , the first ten weeks.  $P_{-0.5} + P_0$ , or the initial estimate for the time interval,

is the average size of the time intervals between  $Y_{0.5}$  to  $Y_{10.0}$ , cutting off the last interval if undefined by time 10.0. The first  $d$  value is 1. The initial  $\alpha$  value is 0.1. A search procedure (Excel solver) is then performed on  $\alpha$  to find a local minimum for the mean squared error (hereafter MSE) of this forecast over the sample set. Recall that the MSE is simply the average squared difference between forecast and observation over all relevant time periods. The initialization results are included in attachment 7.

Using MSE as the only forecast accuracy measure, the initialized naive and mean forecasts are less accurate over the ex post sample, as expected. The naive forecast results in MSE's that are 93% more, on average, than the MSE's produced by the 13 week moving average. The mean forecast is not as bad, having MSE's that are only 38% greater. Croston's method, on the other hand, is slightly more accurate than the moving average. It produces MSE's that are overall 1% lower. The specific accuracies for each item and each forecast are included in attachment 8.

The simulated performances of the three forecasts are summarized in the table below. The complete simulation results are included in attachment 9.

| Performance Measure     | Naive      | Mean      | Croston   |
|-------------------------|------------|-----------|-----------|
| Total Orders            | 590        | 1323      | 1151      |
| Avg OH Inv (\$)         | 173,144.69 | 41,052.26 | 98,448.15 |
| # Fillrates $\geq 90\%$ | 22         | 6         | 18        |
| Avg Fillrate            | 95.8%      | 70.2%     | 90.6%     |

Table 2: Performance Comparison For Different Forecasts

## 8 Alternative 2: A Two-Stage Heuristic

This approach relies heavily on the renewal analysis presented in [14] and is a complete change from Quantegy's current policy. The first stage involves selecting a  $S - s$  value for

each item by matching its classic economic order quantity (EOQ) to the corresponding order quantity defined by the renewal equations. The second stage involves increasing each item's  $s$  from 0, and likewise  $S$  from  $S - s$ , until the desired fillrate is achieved in the renewal analysis. The simulated performance of these static  $s$  and  $S$  values is then evaluated for each item in the ex post simulation for comparison with the other methods.

Some initialization is required, however, before beginning the heuristic. The first thing to be done is to choose, for each item, a discrete probability distribution to represent its demand. This was accomplished by fitting the first two moments of the half-week demands in the sample set, divided by their standard package sizes, to the negative binomial distribution defined below. The choice of distribution is appropriate (as compared to choosing the traditional normal, poisson, or binomial distributions) since the coefficient of variation ( $\frac{\sigma^2}{\mu}$ ) for each item's half-week demand is greater than 1 [11].

Define the following. . .

$\mu \rightarrow$  the mean of the sample half-week demands divided by their standard package sizes  
 $\sigma^2 \rightarrow$  the variance of the sample half-week demands divided by their standard package sizes

$p \rightarrow$  the probability of success approximated as  $p = \frac{\mu}{\sigma^2}$

$r \rightarrow$  a shape factor approximated as  $r = \frac{\mu^2}{\sigma^2 - \mu}$

$k \rightarrow$  the number of failures before the  $r$ th success in a sequence of independent Bernoulli trials

The form of the negative binomial [10] that was used follows.

$$p(Y = k) = \frac{\prod_{j=0}^{k+1} (-r - j)}{k!} p^r (1 - p)^k \quad (5)$$

Notice that  $r$  is allowed to take on real values. This relaxed version allows for better fits than the unrelaxed distribution and is usually referred to as a generalized negative binomial distribution [3].

Chi-square goodness-of-fit tests unfortunately do not unanimously support the choice of distribution. Only 8 of the 14 A items and 5 of the 11 B items failed to reject the null

hypothesis at  $\alpha = 0.01$  (critical value is 11.345 with 3 df)(attachment 10). One logical explanation is the erratic nature of the demand, which seems to prevent it from being modeled by any non-empirical distribution. Another explanation has to do with the structure of the tests. Using 6 intervals and having to estimate 2 distribution parameters leaves only 3 degrees of freedom to test the hypothesis. Having more intervals would increase the degrees of freedom and the critical chi-square value, possibly resulting in some rejection reversals. This, however, leads to manipulating the tests until the results are favorable, a time consuming and brow-raising activity.

The other initialization requirement for this heuristic is to have an EOQ value to work with for each item. Let  $K$  be the ordering cost,  $\lambda$  be the annual demand rate,  $I$  be the holding cost rate, and  $c$  be the standard cost for some item. The classic EOQ equation then [1], for the case where backorders are not allowed, is

$$EOQ = \sqrt{\frac{2K\lambda}{Ic}} \quad (6)$$

The value for  $\lambda$  can be estimated from the half-week demands in the sample. The  $c$  values are already provided. The values for  $K$  and  $I$  must be estimated since Quantegy was unable to provide such information.

Both [1] and [8] provide equations to estimate the ratio  $\frac{K}{I}$  using exchange curves. This approach assumes that  $\frac{K}{I}$  is constant across all items, which is not unreasonable. It also assumes a deterministic system where all items are being replenished with their EOQ values. Obviously this is not happening in reality. In fact most of the EOQ assumptions (i.e. no backorders, infinite production rates, constant and continuous demand, et cetera) are inappropriate here. But the EOQ value is just being used as an approximation for the supposed best value for  $S - s$ , the minimum order quantity in an  $(s, S)$  inventory control system. And making the EOQ assumptions incorporates each item's standard cost, something that Quantegy's current system ignores. This heuristic is just that: a heuristic. It does not claim

to provide optimal  $s$  and  $S$  values.

The exchange curve equation that relates the average number of orders per year over all  $n$  items (call it  $R$ ) is the following [1] [8]. . .

$$R = \sqrt{\frac{I}{K}} \sum_{t=1}^n \sqrt{\frac{\lambda_t c_t}{2}} \quad (7)$$

To estimate  $R$ , simulate Quantegy's current policy over the sample set minus the first 13 weeks (used to initialize the demand forecasts) (attachment 11).  $\hat{R}$  is the annualized total number of orders from these simulations. Substitute this value into the equation above and solve for  $\frac{K}{I}$  (attachment 12). The resulting value of  $\frac{K}{I}$  is 19.535, implying that the ordering cost varies from \$1.95 to \$5.86 as the holding cost rate varies from 10% to 30%. EOQ values can now be calculated for every item (attachment 12).

The first stage can now begin. Define the following [14]. . .

$p_j \rightarrow P[\text{one-period demand} = j]$ , defined by the distribution above, where  $j = 0, 1, 2, \dots$

$m(j) \rightarrow$  the expected number of visits to state  $y - j$  until the next order, where  $j = 0, 1, \dots, y - s - 1$

$M(j) \rightarrow$  the expected number of periods until the next order from state  $s + j$ , where  $j = 1, \dots, S - s$

The relevant renewal equations for the first stage follow below.

$$m(j) = \sum_{l=0}^j p_l m(j-l) \quad (8)$$

$$M(j) = M(j-1) + m(j-1) \quad (9)$$

where  $m(0) = \frac{1}{1-p_0}$  and  $M(0) = 0$ .

Recall that the first stage selects an  $S - s$  value for each item by matching its EOQ value to the corresponding order quantity defined by the renewal equations. This latter value is defined as  $M(S - s) * \mu$ , the expected cycle length (time) multiplied by the mean demand

per period (quantity/time). To select the appropriate  $S - s$  value, iterate through  $M(j)$ , starting at  $M(0)$ , until  $M(j) \geq \frac{EOQ}{\mu}$ . The resulting  $j$  value is  $S - s$  for that item.

Define the following for the second stage [14] . . .

$\Delta \rightarrow$ , the  $S - s$  value found in the first stage

$L(y) | n \rightarrow$  the expected number of stockouts after  $n$  halfweeks given initial inventory position  $y$

$H(s, y) \rightarrow$  the expected number of stockouts until the next order given initial inventory position  $y$

The only additional renewal equation is the following.

$$H(s, y) = \sum_{j=0}^{y-s-1} m(j)[L(y - j | 2) - L(y - j | 1)] \quad (10)$$

Representing the loss function in the equation for  $H(s, y)$  as a difference between the expected loss after 2 half-weeks (lagtime and review period) and the expected loss after 1 half-week (lagtime only) avoids the common mistake of double counting stockouts when the lagtime is not taken into account. Making the mistake leads to underestimating the true fillrate. This was pointed out by Johnson, et al. in their recent paper on the subject [4].

The second stage of this heuristic chooses the minimum  $(s, s + \Delta)$  policy that meets the specified fillrate. Let  $\beta$  be the specified fillrate. It follows that the expected number of stockouts until the next order for a given policy that achieves the fillrate is  $(1 - \beta) * M(\Delta) * \mu$ . To select the appropriate policy, iterate through  $H(s, s + \Delta)$ , starting with  $H(0, \Delta)$  until  $H(s, s + \Delta) \leq (1 - \beta) * M(\Delta) * \mu$ . The resulting policy is the solution.

The  $(s, S)$  values for each item that result from specifying 90%, 95%, and 99% fillrates are given in attachment 13. The simulated performance of these static policies over the ex post demands follows in the table below (attachment 14).

| Performance Measure     | $\beta = 90\%$ | $\beta = 95\%$ | $\beta = 99\%$ |
|-------------------------|----------------|----------------|----------------|
| Total Orders            | 997            | 997            | 997            |
| Avg OH Inv (\$)         | 77,905.49      | 106,028.00     | 170,019.44     |
| # Fillrates $\geq 90\%$ | 18             | 21             | 25             |
| Avg Fillrate            | 92.7%          | 96.2%          | 99.1%          |

Table 3: Performance Comparison For Two-Stage Heuristic at Specified Fillrates

## 9 Alternative 3: An Almost-Exact Algorithm

The section details an algorithm that minimizes an  $(s, S)$  policy's average ordering and holding costs subject to a minimum expected fillrate constraint. It differs from the problem Zheng and Federgruen solved in [14] in that here the backlogging costs associated with a policy are ignored, essentially being replaced with the fillrate constraint.

Define the following . . .

$h \rightarrow$  the annual holding cost per unit

$K \rightarrow$  the fixed cost to place an order

$G(y) \rightarrow$  the one-period expected holding costs for a given policy when starting from inventory position  $y$

$c(s, S) \rightarrow$  the long-run average cost for a given policy

$\beta(s, S) \rightarrow$  the expected fillrate for a given policy

$\bar{\beta} \rightarrow$  the minimum acceptable fillrate

$\bar{S} \rightarrow$  the upperbound on  $S$ , reflecting the storage capacity for the item at the location ordering it

$\bar{\Delta} \rightarrow$  the upperbound on  $S - s$ , reflecting the transportation capacity for the item on the vehicle delivering it

The relevant equations for the algorithm follow below.

$$G(y) = h * [S - y - (2\mu - L(S - y) / 2)] \quad (11)$$

$$c(s, S) = M(S - s)^{-1} [K + \sum_{j=0}^{S-s-1} m(j)G(j)] \quad (12)$$

$$\beta(s, S) = 1 - \frac{H(s, S)}{M(S - s)\mu} \quad (13)$$

The equation for  $G(y)$  is specific for Quantegy's case where the lagtime is one period and the review interval is one period. It captures the cost of holding what should currently be on-hand ( $S - y$ ) minus the overshoot caused by the order placed a week prior ( $2\mu - L(S - y) / 2$ ). The equation for  $c(s, S)$  can apply to any review interval/lagtime combination. The fillrate equation, when using the form of  $H(s, y)$  already described, is only applicable for Quantegy's situation. The  $m(j)$  and  $M(j)$  values are the same ones used in the prior section.

The problem then is to minimize  $c(s, S)$  subject to

$$\beta(s, S) \geq \bar{\beta}$$

$$S \leq \bar{S}$$

$$S - s \leq \bar{\Delta}$$

The following lemmas and theorems (proofs in attachment 15) guide the algorithm.



- **Lemma 1:**  $\beta(s, S) \leq \beta(s + 1, S)$
- **Lemma 2:**  $\beta(s, S) \leq \beta(s + 1, S + 1)$
- **Lemma 3:**  $c(s, S) \leq c(s + 1, S)$
- **Lemma 4:**  $c(s, S) \leq c(s + 1, S + 1)$
- **Theorem 1:** If  $(s^*, s^* + 1)$  is the minimum feasible policy such that  $\beta(s^*, s^* + 1) \geq \bar{\beta}$ , then all policies with  $S < s^*$  are infeasible.
- **Theorem 2:** For every  $\hat{S} \geq s^* + 1$  there is one  $\hat{s}$  for which (a) all policies with  $s < \hat{s}$  and  $S \leq \hat{S}$  are infeasible and (b) all policies with  $s > \hat{s}$  and  $S \geq \hat{S}$  are dominated.

The algorithm simply searches each feasible  $S$  for the dominant  $s$  value that satisfies Theorem 2, keeping track of the minimum cost policy as it goes.

## Exact $(s, S)$ Algorithm

For every item. . .

- Search for the  $(s^*, s^* + 1)$  policy defined by Theorem 1
- While  $S \leq \bar{S}$ 
  - While  $\beta(s, S) \geq \bar{\beta}$  and  $s \geq S - \bar{\Delta}$ 
    - \* Decrement  $s$
  - Increment  $s$  (become feasible again)
  - If  $c(s, S)$  is less than the current minimum cost policy, then  $(s, S)$  is the new current minimum cost policy
  - Increment  $s$  and  $S$

Like the values for  $K$  and  $h$ , the upperbounds  $\bar{S}$  and  $\bar{\Delta}$  are unknown. To accomodate this fact, the algorithm is modified to choose the first policy that is followed by 20 consecutive non-improving increments of  $S$ . This obviously no longer results in an optimal solution, since it is unknown whether policies more than twenty  $S$  values away have lower cost (hence the "Almost-Exact"). But the solutions appear to be optimal anyway because using a value of 200 instead of 20 did not result in any difference between the solutions. [The maximum number of states examined for each item was 2000.]

$K$  was approximated from the  $\frac{K}{I}$  value found in the prior section by assuming a holding cost rate  $(I)$  of 10%. The resulting  $K$  value is \$1.95. Using the same  $I$  value,  $h$  is approximated by the equation  $h = Ic$ , where  $c$  is each item's standard cost. It turns out that the algorithm is robust with respect to the choice of  $I$ , since the algorithm produced the same policies regardless of the  $I$  value used (non-zero of course). The specified fillrates again are 90%, 95%, and 99%. The specific policies that result from the algorithm are included in attachment 16. The simulated performance of the policies over the ex post set are summarized in the table below (attachment 17).

| Performance Measure     | $\beta = 90\%$ | $\beta = 95\%$ | $\beta = 99\%$ |
|-------------------------|----------------|----------------|----------------|
| Total Orders            | 1059           | 1066           | 1125           |
| Avg OH Inv (\$)         | 77,141.52      | 104,478.76     | 168,584.11     |
| # Fillrates $\geq 90\%$ | 18             | 21             | 25             |
| Avg Fillrate            | 92.4%          | 96.1%          | 99.0%          |

Table 4: Performance of Almost-Exact Alg. at Specified Fillrates

## 10 Recommendations and Conclusions

Croston's method was the clear winner of the forecasting alternatives. It resulted in fewer orders placed and superior fillrates than Quantegy's current method, all at a cost of a mere \$40 increase in on-hand inventory. The naive method actually produced better fillrates than Croston's method, but had unacceptably high levels of on-hand inventory. The mean forecast just had deplorable fillrates. The resulting conclusion is that Quantegy should consider using a more sophisticated forecast than a 13-week moving average with their current system.

The renewal analysis approaches at  $\beta = 90\%$  both produced results that were superior overall to Quantegy's current system. Both the two-stage heuristic and almost-exact policies had fewer orders, lower investments in on-hand inventory, and higher average fillrates. Increasing the specified fillrate to 95% and 99% predictably resulted in better fillrate performance, but pushed inventory costs to higher-than-current levels. As a result, no conclusions can be made with the 95% and 99% policies because of the subjective nature of the tradeoff between fillrates and holding costs. The 90% methods, on the other hand, appear to be clear recommendations to Quantegy's management, with the almost-exact policies barely edging out their two-stage heuristic competitors.

There is one drawback to these recommendations however. Quantegy's current simulated performance has all 14 of the A items, the most important, meeting at least a 90% fillrate. Both renewal analysis approaches, on the other hand, have only 8 of the 14 A items meeting a 90% fillrate. This may be unacceptable to Quantegy's service goals despite the overall

savings, depending on just how important the A items are.

The first intuitive explanation as to why this happens deals with the assumption of the underlying distribution. Since the renewal analysis is only exact if the specified probability distribution is exact, it follows that the items that failed to meet 90% had incorrect distributions. The chi-square goodness-of-fit (GOF) tests, however, do not support this conclusion. Eight of the 14 A items “passed” their GOF tests with respect to the sample demands. Of these same 8, only 3 (A07, A08, A13) still “passed” with respect to the ex post demands (attachment 18). Logically these 3 items should have met the 90% specified fillrate. But only A08 did so, with a 96.3% fillrate.

B item performance, on the other hand, is outstanding for the renewal analysis approaches. At  $\beta = 90\%$ , 10 of the 11 B items meet a 90% fillrate (B06). This is despite the fact that only 4 of the 11 B items “pass” the GOF test for the ex post demands. It seems that the accuracies of the simulated fillrates are unpredictable with respect to the GOF tests.

Perhaps the best method is a combination of both Croston’s method and the almost-exact algorithm. Specifically the almost-exact algorithm should be used on any item that “passes” its GOF test over the sample set, still supporting the intuition above. The remaining items (A02-A05, A11, A14, B02, B04-B06, B08, B10) use the Croston alternative. The table below summarizes the simulated performance of such an approach (attachment 19). Here 10 of the 14 A items now meet the 90% requirement, which is an improvement over the 8 that result from renewal analysis alone. The investment in on-hand inventory is the second lowest so far. The number of orders is between that of Croston’s method and the renewal analysis approaches. The fillrate performance is very competitive. Overall this approach appears to be a good compromise between the two methods. The ultimate decision on what tradeoff is best, however, and what approach to take is left to management.

A final word is in order about fairness. The renewal analysis policies would not be static in reality. The analysts at Quantegy would most likely update the policies monthly,

| Performance Measure     | Almost-Exact/Croston Hybrid |
|-------------------------|-----------------------------|
| Total Orders            | 1100                        |
| Avg OH Inv (\$)         | 67,956.66                   |
| # Fillrates $\geq 90\%$ | 17                          |
| Avg Fillrate            | 92.0%                       |

Table 5: Performance of Almost-Exact/Croston Hybrid Approach

if not weekly, as new information came in. But the approach in this paper was to hold the renewal analysis policies constant for an entire year. There is no doubt that the simulated performance of these policies would have improved had they been dynamic.

## 11 Tasks Before Submitting For Publication

The extension of [14] to include a service level constraint appears to be non-trivial. The main reason is that the upperbound on  $S$  that the authors present does not work when using a service level constraint, cutting off the optimal solution too soon in many cases. And the upperbounds presented in this paper ( $\bar{S}, \bar{\Delta}$ ) are questionable both in their existence and availability. For example, does a storage limit really exist for any one individual item in a warehouse? If it did, how would you get that data?

As it stands now there are no formally proven upperbounds / stopping criteria for the almost-exact algorithm. The bound with the most promise appears to be the minimum  $(1, S)$  policy such that  $c(1, S) \geq c(s^*, s^* + 1)$ , where  $s^*$  follows the notation in Theorem 1 above. Proving that  $c(1, S + 1) \geq c(1, S)$  under these assumptions is turning out to be harder than expected. Once this is accomplished, then the same theorems that drive the algorithm will stop it, resulting in an algorithm that optimally solves the  $(s, S)$  problem subject to a fillrate constraint.

No hard

## References

- [1] Elsayed, E., and Boucher, T. **Analysis and Control of Production Systems**, New Jersey, Prentice Hall (1994).
- [2] Gaynor, P., and Kirkpatrick, R. **Introduction to Time-Series Modeling and Forecasting in Business and Economics**, New York, McGraw Hill (1994).
- [3] Johnson, N., and Kotz, S. **Discrete Distributions**, Boston, Houghton Mifflin (1969).
- [4] Johnson, M., Lee, H., Davis T., and Hall R. "Expressions For Item Fill Rates In Periodic Inventory Systems," *Naval Research Logistics*, 42, 57-80 (1995).
- [5] Law, A. and Kelton, W. **Simulation Modeling and Analysis**, New York, McGraw Hill (1991).
- [6] Mendenhall, W., and Sincich, T. **Statistics for Engineering and the Sciences**, San Francisco, Dellen (1992).
- [7] Mitchell, J. "Multi-item Inventory Systems With A Service Objective," *Operations Research*, 36, 5, 747-755 (1988).
- [8] Nahmias, S. **Production and Operations Analysis**, Boston, Irwin (1993).
- [9] Porteus, E. "Inventory Policies for Periodic Review Systems," Graduate School of Business Research Paper, Stanford (1983).
- [10] Sox, C. "Modeling and Analysis of Quick Response," Ph.D. Dissertation, Cornell Univ. School of OR&IE (1992).
- [11] Sox, C. Lecture notes, ISE 525, Auburn University (Spring 1997).
- [12] Veinott, H. and Wagner, H. "Computing Optimal (s,S) Inventory Policies," *Management Science*, 11, 525-552 (1965).
- [13] Willemain, T., Smart, C., Shockor, J., and DeSautels, P. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," *International Journal of Forecasting*, 10, 529-538 (1994).
- [14] Zheng, Y., and Federgruen A. "Finding Optimal (s,S) Policies Is About As Simple As Evaluating A Single Policy," *Operations Research*, 654-665 (1991).

---

# Attachments to Accompany "Designing an $(s, S)$ Inventory Control System"

Gary Rafnson

18 July 1997

1. Raw Data
2. Example Plots of Raw Data
3. Outlier Adjustment Summary
4. Outlier Adjusted Data
5. Half-Week Demands
6. Simulation Results - Existing Policy
7. Initialized Croston's Method Parameters
8. Forecast Accuracies
9. Simulation Results - Naive / Mean / Croston Forecasts
10. Sample Set Goodness-of-Fit Tests
11. Simulation Results - Existing Policy Over Sample Set
12. Exchange Curve / EOQ Calculations
13. Two-Stage Heuristic Policies
14. Simulation Results - Two-Stage Heuristic
15. Proofs of Lemmas and Theorems
16. Almost-Exact Algorithm Policies
17. Simulation Results - Almost-Exact Algorithm
18. Ex Post Set Goodness-of-Fit Tests
19. Simulation Results - Almost-Exact/Croston Hybrid

## Raw Data - A Items

Attachment 1

|              |    | A01     | A02    | A03   | A04   | A05    | A06    | A07    | A08    | A09    | A10    | A11    | A12   | A13    | A14    |
|--------------|----|---------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|
| Mean         |    | 1723.90 | 290.90 | 61.83 | 53.08 | 127.21 | 125.14 | 412.62 | 355.52 | 146.29 | 247.28 | 130.27 | 39.80 | 191.10 | 480.81 |
| Standard Dev |    | 1121.93 | 260.55 | 65.28 | 56.26 | 120.24 | 85.37  | 219.34 | 231.24 | 155.91 | 177.08 | 138.18 | 38.81 | 164.17 | 814.15 |
| f            |    | 0.99    | 0.94   | 0.89  | 0.84  | 0.96   | 0.99   | 1.00   | 1.00   | 0.99   | 1.00   | 0.97   | 0.89  | 0.99   | 0.90   |
| Std Package  |    | 10      | 10     | 5     | 5     | 10     | 10     | 10     | 10     | 10     | 1      | 2      | 7     | 7      | 10     |
| Yr           | Wk |         |        |       |       |        |        |        |        |        |        |        |       |        |        |
| 93           | 22 | 900     | 160    | 40    | 0     | 70     | 40     | 230    | 30     | 780    | 217    | 170    | 7     | 126    | 0      |
| 93           | 23 | 2400    | 160    | 270   | 55    | 0      | 30     | 340    | 80     | 190    | 553    | 386    | 70    | 280    | 220    |
| 93           | 24 | 340     | 180    | 60    | 70    | 40     | 90     | 520    | 140    | 140    | 224    | 350    | 133   | 168    | 450    |
| 93           | 25 | 1920    | 540    | 135   | 60    | 20     | 160    | 300    | 150    | 120    | 994    | 660    | 0     | 343    | 390    |
| 93           | 26 | 880     | 60     | 195   | 50    | 20     | 100    | 380    | 220    | 40     | 49     | 238    | 0     | 112    | 550    |
| 93           | 27 | 1120    | 0      | 155   | 0     | 0      | 120    | 310    | 80     | 290    | 14     | 96     | 0     | 0      | 40     |
| 93           | 28 | 1300    | 320    | 115   | 55    | 130    | 50     | 310    | 70     | 280    | 994    | 338    | 224   | 7      | 0      |
| 93           | 29 | 1280    | 260    | 325   | 50    | 20     | 190    | 650    | 170    | 230    | 532    | 176    | 140   | 287    | 0      |
| 93           | 30 | 1340    | 380    | 230   | 60    | 40     | 80     | 150    | 100    | 150    | 70     | 138    | 63    | 70     | 40     |
| 93           | 31 | 2460    | 200    | 40    | 0     | 40     | 60     | 100    | 140    | 100    | 245    | 234    | 0     | 112    | 600    |
| 93           | 32 | 1140    | 240    | 235   | 45    | 10     | 20     | 240    | 130    | 450    | 154    | 80     | 0     | 0      | 170    |
| 93           | 33 | 260     | 140    | 100   | 55    | 300    | 10     | 230    | 40     | 90     | 609    | 190    | 0     | 203    | 0      |
| 93           | 34 | 1540    | 180    | 160   | 75    | 50     | 60     | 320    | 260    | 710    | 322    | 312    | 119   | 322    | 420    |
| 93           | 35 | 830     | 260    | 235   | 35    | 40     | 30     | 200    | 210    | 60     | 420    | 300    | 0     | 56     | 350    |
| 93           | 36 | 480     | 350    | 60    | 65    | 60     | 60     | 430    | 100    | 250    | 203    | 110    | 0     | 483    | 20     |
| 93           | 37 | 300     | 234    | 160   | 0     | 30     | 70     | 200    | 200    | 250    | 441    | 208    | 105   | 763    | 250    |
| 93           | 38 | 180     | 20     | 235   | 55    | 50     | 30     | 430    | 140    | 110    | 266    | 148    | 7     | 49     | 310    |
| 93           | 39 | 700     | 0      | 40    | 80    | 100    | 70     | 380    | 180    | 410    | 455    | 320    | 63    | 105    | 550    |
| 93           | 40 | 1000    | 0      | 30    | 30    | 60     | 100    | 550    | 320    | 80     | 224    | 94     | 7     | 70     | 300    |
| 93           | 41 | 1880    | 180    | 115   | 55    | 10     | 70     | 300    | 300    | 200    | 196    | 240    | 7     | 28     | 410    |
| 93           | 42 | 940     | 360    | 0     | 100   | 120    | 90     | 450    | 140    | 130    | 280    | 204    | 21    | 105    | 80     |
| 93           | 43 | 2660    | 280    | 90    | 100   | 120    | 80     | 260    | 340    | 200    | 546    | 234    | 14    | 42     | 400    |
| 93           | 44 | 1500    | 260    | 120   | 50    | 10     | 40     | 100    | 130    | 180    | 329    | 116    | 77    | 105    | 10     |
| 93           | 45 | 1180    | 480    | 20    | 90    | 90     | 130    | 320    | 280    | 220    | 315    | 212    | 7     | 77     | 620    |
| 93           | 46 | 900     | 240    | 130   | 15    | 40     | 90     | 440    | 260    | 160    | 231    | 316    | 7     | 98     | 60     |
| 93           | 47 | 0       | 60     | 220   | 200   | 130    | 170    | 190    | 220    | 10     | 224    | 50     | 112   | 63     | 480    |
| 93           | 48 | 1360    | 240    | 25    | 50    | 80     | 90     | 260    | 180    | 220    | 336    | 274    | 49    | 217    | 30     |
| 93           | 49 | 420     | 180    | 140   | 15    | 20     | 100    | 530    | 290    | 142    | 441    | 198    | 91    | 147    | 650    |
| 93           | 50 | 1100    | 180    | 45    | 85    | 10     | 100    | 310    | 260    | 90     | 203    | 174    | 56    | 280    | 100    |
| 93           | 51 | 980     | 440    | 30    | 55    | 100    | 120    | 200    | 430    | 1270   | 630    | 374    | 119   | 259    | 460    |
| 94           | 1  | 920     | 0      | 25    | 60    | 60     | 30     | 300    | 160    | 230    | 350    | 172    | 0     | 217    | 560    |
| 94           | 2  | 3820    | 20     | 65    | 55    | 110    | 40     | 510    | 890    | 250    | 161    | 156    | 112   | 189    | 230    |
| 94           | 3  | 700     | 0      | 10    | 55    | 0      | 10     | 380    | 200    | 100    | 154    | 192    | 35    | 77     | 50     |
| 94           | 4  | 720     | 200    | 120   | 65    | 180    | 250    | 390    | 390    | 150    | 483    | 160    | 70    | 189    | 650    |
| 94           | 5  | 1340    | 380    | 75    | 10    | 10     | 30     | 520    | 500    | 210    | 308    | 298    | 35    | 350    | 450    |
| 94           | 6  | 380     | 100    | 115   | 75    | 60     | 50     | 170    | 230    | 20     | 49     | 110    | 21    | 154    | 0      |
| 94           | 7  | 3260    | 200    | 65    | 60    | 340    | 140    | 520    | 670    | 110    | 203    | 150    | 7     | 133    | 410    |
| 94           | 8  | 1120    | 280    | 10    | 130   | 20     | 30     | 120    | 350    | 30     | 196    | 162    | 21    | 133    | 50     |
| 94           | 9  | 1040    | 260    | 420   | 0     | 130    | 60     | 250    | 160    | 200    | 322    | 228    | 56    | 315    | 630    |
| 94           | 10 | 1100    | 460    | 85    | 35    | 90     | 100    | 530    | 420    | 200    | 665    | 356    | 126   | 770    | 400    |
| 94           | 11 | 760     | 100    | 150   | 60    | 40     | 120    | 520    | 390    | 160    | 581    | 406    | 70    | 245    | 0      |
| 94           | 12 | 220     | 60     | 25    | 50    | 70     | 10     | 590    | 950    | 70     | 462    | 112    | 42    | 469    | 0      |
| 94           | 13 | 880     | 580    | 160   | 100   | 150    | 70     | 280    | 370    | 180    | 994    | 1230   | 49    | 763    | 1270   |
| 94           | 14 | 3180    | 0      | 55    | 65    | 80     | 20     | 360    | 190    | 260    | 70     | 62     | 0     | 175    | 50     |
| 94           | 15 | 1300    | 280    | 20    | 60    | 50     | 80     | 430    | 630    | 230    | 329    | 202    | 35    | 77     | 10     |
| 94           | 16 | 1820    | 0      | 40    | 120   | 110    | 60     | 290    | 320    | 60     | 140    | 116    | 84    | 301    | 1560   |
| 94           | 17 | 700     | 660    | 140   | 70    | 30     | 70     | 380    | 130    | 400    | 224    | 126    | 28    | 105    | 8020   |
| 94           | 18 | 560     | 260    | 85    | 170   | 50     | 40     | 360    | 220    | 30     | 84     | 98     | 7     | 154    | 100    |
| 94           | 19 | 1360    | 120    | 30    | 5     | 120    | 190    | 620    | 470    | 720    | 217    | 116    | 21    | 140    | 1180   |
| 94           | 20 | 600     | 200    | 10    | 60    | 40     | 110    | 320    | 190    | 200    | 406    | 112    | 7     | 175    | 480    |
| 94           | 21 | 2620    | 0      | 130   | 55    | 100    | 60     | 480    | 320    | 220    | 252    | 152    | 35    | 105    | 620    |
| 94           | 22 | 900     | 0      | 100   | 60    | 0      | 40     | 510    | 230    | 60     | 84     | 60     | 21    | 98     | 5260   |
| 94           | 23 | 860     | 140    | 65    | 50    | 90     | 100    | 620    | 290    | 100    | 154    | 198    | 0     | 133    | 690    |
| 94           | 24 | 960     | 100    | 20    | 0     | 170    | 140    | 390    | 550    | 170    | 413    | 146    | 7     | 119    | 3750   |
| 94           | 25 | 1400    | 300    | 21    | 285   | 40     | 100    | 704    | 1645   | 330    | 294    | 288    | 0     | 112    | .50    |
| 94           | 26 | 620     | 100    | 50    | 75    | 80     | 90     | 280    | 840    | 200    | 308    | 200    | 28    | 133    | .340   |
| 94           | 27 | 3060    | 160    | 10    | 0     | 0      | 0      | 370    | 580    | 0      | 91     | 44     | 21    | 14     | 600    |
| 94           | 28 | 1100    | 420    | 35    | 35    | 50     | 50     | 400    | 290    | 140    | 147    | 74     | 14    | 147    | 910    |

## Raw Data - A Items

Attachment 1

|    |    |      |     |     |     |     |     |      |      |     |     |     |     |     |      |
|----|----|------|-----|-----|-----|-----|-----|------|------|-----|-----|-----|-----|-----|------|
| 94 | 29 | 460  | 40  | 15  | 150 | 80  | 70  | 220  | 220  | 190 | 238 | 172 | 14  | 161 | 100  |
| 94 | 30 | 1060 | 240 | 15  | 100 | 60  | 90  | 600  | 650  | 160 | 133 | 122 | 21  | 119 | 550  |
| 94 | 31 | 2060 | 220 | 0   | 5   | 60  | 60  | 290  | 270  | 100 | 210 | 126 | 84  | 133 | 180  |
| 94 | 32 | 1660 | 200 | 145 | 75  | 170 | 70  | 430  | 350  | 180 | 168 | 84  | 28  | 133 | 360  |
| 94 | 33 | 620  | 20  | 75  | 65  | 50  | 20  | 130  | 240  | 230 | 322 | 206 | 49  | 126 | 450  |
| 94 | 34 | 920  | 320 | 80  | 25  | 140 | 140 | 420  | 380  | 160 | 560 | 96  | 7   | 210 | 610  |
| 94 | 35 | 1140 | 140 | 110 | 95  | 80  | 80  | 470  | 460  | 150 | 224 | 114 | 0   | 266 | 60   |
| 94 | 36 | 1240 | 20  | 0   | 5   | 20  | 100 | 280  | 270  | 200 | 105 | 52  | 28  | 259 | 300  |
| 94 | 37 | 3020 | 280 | 20  | 170 | 140 | 90  | 700  | 460  | 150 | 308 | 180 | 14  | 273 | 410  |
| 94 | 38 | 520  | 100 | 30  | 110 | 100 | 70  | 220  | 400  | 150 | 189 | 82  | 28  | 91  | 940  |
| 94 | 39 | 1060 | 260 | 50  | 100 | 60  | 10  | 330  | 450  | 190 | 245 | 160 | 112 | 196 | 30   |
| 94 | 40 | 2360 | 140 | 35  | 0   | 130 | 120 | 260  | 220  | 70  | 119 | 90  | 42  | 168 | 400  |
| 94 | 41 | 1420 | 40  | 100 | 145 | 200 | 60  | 530  | 560  | 110 | 224 | 124 | 21  | 70  | 50   |
| 94 | 42 | 2940 | 440 | 10  | 20  | 130 | 150 | 380  | 630  | 180 | 231 | 164 | 63  | 217 | 260  |
| 94 | 43 | 1420 | 340 | 115 | 80  | 200 | 240 | 340  | 530  | 160 | 245 | 106 | 28  | 266 | 400  |
| 94 | 44 | 2560 | 280 | 60  | 60  | 0   | 180 | 590  | 510  | 40  | 112 | 134 | 7   | 112 | 430  |
| 94 | 45 | 740  | 640 | 50  | 400 | 190 | 180 | 420  | 510  | 310 | 371 | 128 | 0   | 238 | 120  |
| 94 | 46 | 1040 | 360 | 10  | 60  | 180 | 60  | 550  | 540  | 140 | 161 | 144 | 14  | 98  | 540  |
| 94 | 47 | 2840 | 360 | 10  | 20  | 200 | 80  | 120  | 220  | 150 | 168 | 148 | 49  | 119 | 500  |
| 94 | 48 | 1140 | 380 | 45  | 60  | 183 | 183 | 765  | 380  | 180 | 854 | 178 | 14  | 994 | 500  |
| 94 | 49 | 1240 | 400 | 60  | 60  | 10  | 130 | 460  | 400  | 610 | 301 | 332 | 42  | 196 | 0    |
| 94 | 50 | 1280 | 280 | 0   | 20  | 190 | 220 | 250  | 810  | 90  | 392 | 120 | 7   | 147 | 70   |
| 94 | 51 | 2080 | 600 | 170 | 50  | 150 | 230 | 690  | 665  | 330 | 707 | 720 | 140 | 700 | 480  |
| 95 | 1  | 1820 | 160 | 80  | 10  | 780 | 140 | 150  | 410  | 40  | 140 | 88  | 42  | 70  | 610  |
| 95 | 2  | 1680 | 40  | 60  | 0   | 110 | 200 | 370  | 360  | 130 | 119 | 32  | 28  | 112 | 500  |
| 95 | 3  | 2080 | 540 | 0   | 10  | 50  | 100 | 490  | 550  | 40  | 168 | 70  | 35  | 35  | 0    |
| 95 | 4  | 3180 | 480 | 35  | 35  | 120 | 90  | 400  | 820  | 140 | 189 | 26  | 21  | 56  | 130  |
| 95 | 5  | 560  | 240 | 25  | 70  | 60  | 160 | 840  | 460  | 470 | 294 | 106 | 0   | 119 | 500  |
| 95 | 6  | 1620 | 40  | 10  | 110 | 30  | 180 | 540  | 330  | 40  | 70  | 110 | 7   | 140 | 320  |
| 95 | 7  | 980  | 220 | 70  | 20  | 20  | 10  | 440  | 640  | 60  | 287 | 172 | 7   | 119 | 460  |
| 95 | 8  | 1540 | 260 | 10  | 60  | 87  | 60  | 190  | 440  | 90  | 119 | 62  | 21  | 161 | 190  |
| 95 | 9  | 3440 | 200 | 145 | 5   | 120 | 160 | 400  | 520  | 140 | 245 | 160 | 35  | 56  | 960  |
| 95 | 10 | 780  | 300 | 45  | 80  | 170 | 110 | 250  | 450  | 220 | 252 | 186 | 56  | 182 | 370  |
| 95 | 11 | 3640 | 100 | 50  | 30  | 120 | 100 | 480  | 390  | 50  | 189 | 122 | 119 | 231 | 60   |
| 95 | 12 | 1740 | 140 | 70  | 90  | 110 | 140 | 540  | 490  | 10  | 189 | 110 | 7   | 126 | 1010 |
| 95 | 13 | 4260 | 420 | 25  | 90  | 260 | 300 | 340  | 400  | 90  | 168 | 162 | 14  | 217 | 90   |
| 95 | 14 | 740  | 100 | 50  | 30  | 180 | 120 | 510  | 70   | 130 | 175 | 108 | 28  | 154 | 510  |
| 95 | 15 | 1020 | 420 | 0   | 55  | 160 | 60  | 390  | 430  | 20  | 245 | 124 | 35  | 154 | 410  |
| 95 | 16 | 1520 | 240 | 0   | 10  | 40  | 90  | 520  | 240  | 40  | 231 | 158 | 21  | 196 | 400  |
| 95 | 17 | 1060 | 240 | 65  | 110 | 70  | 110 | 330  | 430  | 50  | 105 | 160 | 0   | 168 | 280  |
| 95 | 18 | 3240 | 520 | 20  | 95  | 110 | 110 | 410  | 770  | 100 | 525 | 246 | 35  | 273 | 420  |
| 95 | 19 | 1620 | 340 | 70  | 10  | 380 | 310 | 790  | 390  | 30  | 364 | 220 | 112 | 189 | 460  |
| 95 | 20 | 4160 | 140 | 40  | 60  | 150 | 180 | 540  | 270  | 40  | 280 | 178 | 21  | 63  | 680  |
| 95 | 21 | 1060 | 120 | 20  | 0   | 200 | 240 | 1100 | 1210 | 60  | 175 | 24  | 28  | 861 | 60   |
| 95 | 22 | 160  | 400 | 84  | 100 | 50  | 110 | 400  | 320  | 650 | 532 | 0   | 7   | 641 | 100  |
| 95 | 23 | 2320 | 180 | 25  | 10  | 170 | 200 | 540  | 200  | 30  | 196 | 0   | 14  | 217 | 1040 |
| 95 | 24 | 1480 | 200 | 90  | 90  | 140 | 80  | 400  | 50   | 60  | 77  | 34  | 49  | 77  | 430  |
| 95 | 25 | 3980 | 80  | 30  | 60  | 210 | 110 | 480  | 110  | 40  | 112 | 10  | 35  | 91  | 70   |
| 95 | 26 | 3040 | 200 | 0   | 30  | 150 | 110 | 700  | 290  | 150 | 252 | 0   | 91  | 147 | 560  |
| 95 | 27 | 740  | 80  | 55  | 55  | 0   | 30  | 200  | 100  | 20  | 98  | 0   | 0   | 42  | 200  |
| 95 | 28 | 1220 | 120 | 20  | 125 | 220 | 350 | 770  | 170  | 70  | 231 | 10  | 56  | 77  | 610  |
| 95 | 29 | 1540 | 200 | 30  | 55  | 20  | 100 | 490  | 150  | 60  | 203 | 8   | 7   | 14  | 200  |
| 95 | 30 | 1860 | 520 | 80  | 0   | 160 | 170 | 272  | 135  | 130 | 238 | 10  | 56  | 42  | 550  |
| 95 | 31 | 1300 | 250 | 25  | 125 | 280 | 330 | 500  | 520  | 40  | 112 | 8   | 84  | 126 | 550  |
| 95 | 32 | 3760 | 200 | 35  | 20  | 150 | 160 | 430  | 560  | 100 | 63  | 28  | 49  | 119 | 460  |
| 95 | 33 | 1580 | 260 | 15  | 60  | 10  | 40  | 480  | 220  | 90  | 84  | 32  | 14  | 245 | 350  |
| 95 | 34 | 2740 | 260 | 15  | 115 | 40  | 90  | 310  | 370  | 40  | 203 | 14  | 42  | 189 | 180  |
| 95 | 35 | 1280 | 520 | 90  | 55  | 110 | 150 | 420  | 310  | 40  | 49  | 0   | 21  | 35  | 460  |
| 95 | 36 | 2440 | 580 | 50  | 110 | 80  | 120 | 330  | 480  | 30  | 259 | 24  | 49  | 196 | 0    |
| 95 | 37 | 1380 | 240 | 35  | 5   | 50  | 110 | 200  | 140  | 30  | 210 | 6   | 35  | 238 | 450  |
| 95 | 38 | 2620 | 220 | 0   | 55  | 140 | 200 | 520  | 510  | 150 | 329 | 54  | 14  | 70  | 470  |
| 95 | 39 | 1340 | 680 | 50  | 60  | 70  | 140 | 540  | 630  | 20  | 63  | 32  | 42  | 98  | 80   |
| 95 | 40 | 2500 | 140 | 0   | 0   | 60  | 50  | 520  | 670  | 110 | 140 | 44  | 42  | 56  | 580  |
| 95 | 41 | 1200 | 500 | 35  | 90  | 90  | 90  | 230  | 440  | 70  | 210 | 34  | 56  | 98  | 540  |

## Raw Data - A Items

Attachment 1

|    |    |      |      |     |     |     |     |      |      |     |     |     |     |     |      |
|----|----|------|------|-----|-----|-----|-----|------|------|-----|-----|-----|-----|-----|------|
| 95 | 42 | 2980 | 140  | 80  | 25  | 90  | 210 | 580  | 300  | 90  | 189 | 82  | 14  | 35  | 400  |
| 95 | 43 | 3160 | 620  | 20  | 130 | 100 | 210 | 260  | 630  | 130 | 210 | 92  | 49  | 658 | 150  |
| 95 | 44 | 4600 | 1100 | 65  | 0   | 50  | 100 | 480  | 920  | 50  | 231 | 52  | 21  | 154 | 0    |
| 95 | 45 | 1700 | 200  | 25  | 10  | 170 | 80  | 300  | 400  | 180 | 385 | 82  | 35  | 392 | 600  |
| 95 | 46 | 2840 | 180  | 10  | 10  | 110 | 180 | 620  | 740  | 90  | 315 | 2   | 91  | 385 | 800  |
| 95 | 47 | 780  | 280  | 10  | 0   | 120 | 160 | 200  | 140  | 140 | 350 | 130 | 35  | 252 | 80   |
| 95 | 48 | 2960 | 480  | 30  | 60  | 20  | 200 | 190  | 290  | 250 | 602 | 130 | 35  | 686 | 520  |
| 95 | 49 | 660  | 0    | 95  | 5   | 80  | 90  | 220  | 420  | 10  | 70  | 16  | 7   | 112 | 410  |
| 95 | 50 | 360  | 20   | 80  | 155 | 110 | 120 | 230  | 200  | 70  | 140 | 56  | 28  | 105 | 420  |
| 95 | 51 | 2360 | 740  | 5   | 260 | 250 | 170 | 980  | 430  | 50  | 203 | 36  | 28  | 42  | 450  |
| 96 | 1  | 400  | 260  | 0   | 0   | 60  | 90  | 800  | 270  | 30  | 42  | 16  | 7   | 35  | 400  |
| 96 | 2  | 940  | 140  | 0   | 10  | 20  | 0   | 220  | 30   | 60  | 245 | 26  | 42  | 175 | 0    |
| 96 | 3  | 3600 | 60   | 25  | 5   | 160 | 160 | 870  | 170  | 20  | 56  | 24  | 77  | 112 | 520  |
| 96 | 4  | 2700 | 860  | 30  | 110 | 90  | 320 | 420  | 320  | 70  | 98  | 40  | 70  | 56  | 400  |
| 96 | 5  | 1620 | 480  | 20  | 35  | 200 | 130 | 1020 | 290  | 60  | 301 | 12  | 14  | 161 | 490  |
| 96 | 6  | 2340 | 120  | 135 | 5   | 140 | 130 | 330  | 420  | 80  | 84  | 16  | 56  | 105 | 650  |
| 96 | 7  | 820  | 240  | 75  | 85  | 120 | 90  | 140  | 200  | 40  | 126 | 40  | 84  | 49  | 0    |
| 96 | 8  | 540  | 220  | 55  | 60  | 120 | 200 | 380  | 220  | 90  | 63  | 30  | 14  | 63  | 480  |
| 96 | 9  | 3020 | 380  | 0   | 40  | 60  | 70  | 160  | 500  | 30  | 147 | 62  | 7   | 133 | 0    |
| 96 | 10 | 3460 | 440  | 30  | 175 | 180 | 220 | 340  | 430  | 160 | 175 | 42  | 35  | 105 | 590  |
| 96 | 11 | 2480 | 260  | 15  | 10  | 140 | 110 | 300  | 130  | 10  | 119 | 56  | 28  | 203 | 400  |
| 96 | 12 | 3340 | 600  | 40  | 75  | 50  | 70  | 240  | 330  | 60  | 91  | 10  | 49  | 168 | 410  |
| 96 | 13 | 2940 | 220  | 50  | 5   | 220 | 150 | 310  | 460  | 150 | 252 | 48  | 63  | 147 | 3130 |
| 96 | 14 | 2580 | 300  | 0   | 15  | 130 | 90  | 420  | 430  | 60  | 105 | 44  | 7   | 77  | 550  |
| 96 | 15 | 2540 | 560  | 10  | 0   | 150 | 170 | 270  | 140  | 80  | 245 | 118 | 119 | 126 | 60   |
| 96 | 16 | 1620 | 0    | 60  | 0   | 130 | 330 | 600  | 170  | 80  | 63  | 96  | 49  | 210 | 450  |
| 96 | 17 | 2760 | 920  | 30  | 20  | 220 | 190 | 290  | 320  | 160 | 245 | 124 | 7   | 245 | 0    |
| 96 | 18 | 900  | 60   | 50  | 0   | 140 | 60  | 270  | 100  | 120 | 147 | 46  | 133 | 203 | 500  |
| 96 | 19 | 2600 | 140  | 10  | 5   | 290 | 120 | 400  | 280  | 20  | 70  | 12  | 7   | 196 | 980  |
| 96 | 20 | 1320 | 160  | 0   | 5   | 150 | 450 | 270  | 260  | 80  | 147 | 122 | 84  | 182 | 480  |
| 96 | 21 | 3640 | 860  | 65  | 20  | 120 | 350 | 170  | 190  | 60  | 133 | 30  | 49  | 182 | 490  |
| 96 | 22 | 2380 | 320  | 10  | 10  | 300 | 210 | 510  | 200  | 180 | 119 | 26  | 14  | 154 | 400  |
| 96 | 23 | 600  | 60   | 15  | 0   | 160 | 220 | 250  | 160  | 80  | 196 | 70  | 21  | 175 | 10   |
| 96 | 24 | 3520 | 780  | 45  | 80  | 450 | 180 | 530  | 220  | 80  | 224 | 108 | 168 | 238 | 720  |
| 96 | 25 | 1460 | 300  | 0   | 0   | 310 | 200 | 180  | 420  | 60  | 63  | 64  | 42  | 238 | 420  |
| 96 | 26 | 1060 | 540  | 20  | 5   | 280 | 50  | 540  | 240  | 230 | 315 | 108 | 42  | 371 | 520  |
| 96 | 27 | 3280 | 40   | 0   | 0   | 70  | 100 | 150  | 203  | 20  | 28  | 8   | 0   | 35  | 50   |
| 96 | 28 | 1480 | 240  | 105 | 15  | 180 | 50  | 310  | 380  | 20  | 126 | 88  | 42  | 182 | 980  |
| 96 | 29 | 1700 | 60   | 100 | 15  | 530 | 120 | 830  | 220  | 80  | 175 | 96  | 119 | 231 | 0    |
| 96 | 30 | 1840 | 360  | 30  | 20  | 260 | 180 | 370  | 550  | 80  | 168 | 156 | 35  | 273 | 420  |
| 96 | 31 | 1140 | 280  | 105 | 0   | 550 | 140 | 440  | 230  | 100 | 210 | 56  | 21  | 497 | 70   |
| 96 | 32 | 2640 | 980  | 35  | 0   | 360 | 150 | 620  | 310  | 120 | 161 | 52  | 28  | 154 | 900  |
| 96 | 33 | 680  | 260  | 10  | 0   | 130 | 220 | 350  | 400  | 60  | 224 | 74  | 7   | 287 | 0    |
| 96 | 34 | 2200 | 440  | 80  | 25  | 180 | 170 | 520  | 250  | 100 | 196 | 92  | 70  | 287 | 170  |
| 96 | 35 | 5660 | 360  | 0   | 10  | 210 | 140 | 270  | 381  | 170 | 84  | 34  | 0   | 175 | 840  |
| 96 | 36 | 1300 | 40   | 0   | 10  | 160 | 150 | 380  | 170  | 170 | 280 | 44  | 49  | 224 | 700  |
| 96 | 37 | 1400 | 780  | 80  | 0   | 460 | 280 | 510  | 510  | 70  | 147 | 34  | 35  | 266 | 450  |
| 96 | 38 | 820  | 660  | 35  | 0   | 200 | 541 | 410  | 110  | 100 | 252 | 132 | 21  | 259 | 400  |
| 96 | 39 | 6900 | 1740 | 80  | 0   | 750 | 360 | 1970 | 1100 | 50  | 217 | 22  | 70  | 189 | 120  |
| 96 | 40 | 2260 | 1600 | 15  | 10  | 20  | 160 | 130  | 230  | 80  | 63  | 30  | 21  | 119 | 400  |

## Raw Data - B Items

Attachment 1

|              |    | B01   | B02   | B03    | B04   | B05    | B06   | B07   | B08    | B09   | B10    | B12   |
|--------------|----|-------|-------|--------|-------|--------|-------|-------|--------|-------|--------|-------|
| Mean         |    | 81.56 | 19.45 | 77.99  | 3.62  | 97.62  | 62.23 | 29.48 | 163.60 | 21.33 | 71.51  | 20.29 |
| Standard Dev |    | 83.11 | 27.89 | 105.28 | 11.34 | 122.60 | 63.35 | 46.92 | 136.70 | 58.95 | 117.84 | 55.15 |
| f            |    | 0.93  | 0.69  | 0.84   | 0.30  | 0.88   | 0.86  | 0.67  | 0.97   | 0.24  | 0.38   | 0.27  |
| Std Package  |    | 10    | 5     | 10     | 1     | 10     | 10    | 10    | 2      | 40    | 20     | 5     |
| Yr           | Wk |       |       |        |       |        |       |       |        |       |        |       |
| 93           | 22 | 50    | 5     | 20     | 0     | 80     | 60    | 0     | 164    | 0     | 0      | 60    |
| 93           | 23 | 170   | 35    | 150    | 4     | 90     | 90    | 110   | 270    | 0     | 440    | 70    |
| 93           | 24 | 120   | 0     | 410    | 4     | 0      | 100   | 140   | 498    | 0     | 0      | 225   |
| 93           | 25 | 70    | 55    | 140    | 128   | 120    | 100   | 30    | 84     | 0     | 40     | 25    |
| 93           | 26 | 180   | 35    | 80     | 0     | 310    | 0     | 20    | 0      | 80    | 0      | 40    |
| 93           | 27 | 40    | 50    | 10     | 0     | 100    | 10    | 0     | 0      | 0     | 160    | 25    |
| 93           | 28 | 80    | 25    | 80     | 0     | 120    | 180   | 20    | 202    | 0     | 0      | 0     |
| 93           | 29 | 130   | 40    | 130    | 0     | 10     | 80    | 20    | 334    | 0     | 360    | 0     |
| 93           | 30 | 80    | 10    | 238    | 4     | 50     | 150   | 210   | 198    | 0     | 0      | 25    |
| 93           | 31 | 20    | 25    | 750    | 0     | 0      | 10    | 200   | 242    | 0     | 0      | 0     |
| 93           | 32 | 50    | 65    | 30     | 0     | 8      | 60    | 0     | 72     | 80    | 200    | 0     |
| 93           | 33 | 30    | 5     | 0      | 0     | 0      | 0     | 0     | 524    | 0     | 0      | 0     |
| 93           | 34 | 170   | 35    | 0      | 8     | 0      | 0     | 10    | 112    | 0     | 0      | 0     |
| 93           | 35 | 20    | 10    | 0      | 0     | 0      | 0     | 0     | 220    | 0     | 0      | 0     |
| 93           | 36 | 0     | 20    | 0      | 0     | 0      | 13    | 0     | 302    | 0     | 600    | 0     |
| 93           | 37 | 8     | 10    | 0      | 0     | 0      | 0     | 80    | 100    | 0     | 0      | 0     |
| 93           | 38 | 0     | 0     | 0      | 0     | 19     | 520   | 0     | 64     | 0     | 0      | 0     |
| 93           | 39 | 0     | 40    | 0      | 0     | 0      | 100   | 260   | 110    | 0     | 480    | 0     |
| 93           | 40 | 420   | 15    | 0      | 0     | 0      | 60    | 0     | 130    | 0     | 0      | 0     |
| 93           | 41 | 40    | 35    | 0      | 0     | 0      | 10    | 50    | 114    | 0     | 0      | 0     |
| 93           | 42 | 130   | 20    | 520    | 12    | 460    | 40    | 320   | 138    | 0     | 0      | 0     |
| 93           | 43 | 30    | 50    | 150    | 0     | 100    | 0     | 50    | 250    | 0     | 320    | 0     |
| 93           | 44 | 40    | 25    | 40     | 0     | 190    | 20    | 0     | 104    | 0     | 0      | 0     |
| 93           | 45 | 90    | 5     | 110    | 20    | 120    | 30    | 20    | 238    | 0     | 0      | 0     |
| 93           | 46 | 80    | 125   | 160    | 0     | 110    | 20    | 0     | 122    | 280   | 0      | 0     |
| 93           | 47 | 30    | 30    | 20     | 0     | 1000   | 10    | 0     | 86     | 0     | 0      | 0     |
| 93           | 48 | 90    | 15    | 90     | 0     | 30     | 70    | 0     | 290    | 0     | 0      | 0     |
| 93           | 49 | 190   | 20    | 50     | 0     | 70     | 10    | 10    | 166    | 0     | 160    | 0     |
| 93           | 50 | 80    | 0     | 10     | 0     | 90     | 50    | 30    | 212    | 0     | 80     | 0     |
| 93           | 51 | 100   | 50    | 260    | 20    | 170    | 0     | 90    | 196    | 0     | 360    | 0     |
| 94           | 1  | 210   | 15    | 80     | 0     | 60     | 40    | 10    | 256    | 0     | 0      | 0     |
| 94           | 2  | 190   | 10    | 130    | 0     | 230    | 60    | 30    | 220    | 0     | 360    | 0     |
| 94           | 3  | 20    | 25    | 50     | 25    | 70     | 50    | 0     | 194    | 0     | 200    | 0     |
| 94           | 4  | 440   | 20    | 40     | 0     | 60     | 40    | 0     | 110    | 0     | 0      | 0     |
| 94           | 5  | 120   | 30    | 100    | 0     | 180    | 230   | 50    | 334    | 0     | 160    | 20    |
| 94           | 6  | 50    | 0     | 30     | 0     | 120    | 20    | 10    | 82     | 0     | 0      | 0     |
| 94           | 7  | 80    | 20    | 80     | 0     | 40     | 130   | 140   | 260    | 80    | 80     | 0     |
| 94           | 8  | 40    | 0     | 50     | 0     | 70     | 0     | 30    | 184    | 80    | 0      | 0     |
| 94           | 9  | 20    | 0     | 80     | 0     | 240    | 60    | 10    | 282    | 0     | 320    | 20    |
| 94           | 10 | 60    | 45    | 160    | 0     | 80     | 50    | 50    | 458    | 0     | 0      | 0     |
| 94           | 11 | 90    | 10    | 100    | 8     | 100    | 90    | 30    | 206    | 0     | 0      | 30    |
| 94           | 12 | 240   | 10    | 50     | 0     | 60     | 80    | 20    | 640    | 0     | 0      | 0     |
| 94           | 13 | 40    | 20    | 40     | 0     | 60     | 60    | 40    | 968    | 0     | 0      | 20    |
| 94           | 14 | 190   | 100   | 140    | 0     | 90     | 0     | 10    | 90     | 0     | 240    | 0     |
| 94           | 15 | 420   | 10    | 10     | 0     | 30     | 60    | 20    | 160    | 40    | 0      | 20    |
| 94           | 16 | 40    | 0     | 40     | 8     | 70     | 20    | 10    | 92     | 0     | 0      | 0     |
| 94           | 17 | 80    | 120   | 100    | 0     | 190    | 20    | 100   | 156    | 0     | 0      | 20    |
| 94           | 18 | 20    | 10    | 180    | 24    | 130    | 70    | 0     | 120    | 0     | 160    | 0     |
| 94           | 19 | 160   | 0     | 120    | 0     | 60     | 0     | 20    | 158    | 0     | 120    | 0     |
| 94           | 20 | 140   | 10    | 10     | 0     | 0      | 70    | 0     | 194    | 80    | 160    | 10    |
| 94           | 21 | 50    | 15    | 160    | 0     | 80     | 70    | 40    | 144    | 0     | 40     | 0     |
| 94           | 22 | 190   | 0     | 30     | 0     | 20     | 0     | 0     | 94     | 0     | 200    | 0     |
| 94           | 23 | 200   | 40    | 100    | 0     | 30     | 70    | 10    | 146    | 0     | 80     | 0     |
| 94           | 24 | 50    | 0     | 50     | 0     | 90     | 10    | 0     | 262    | 0     | 319    | 0     |
| 94           | 25 | 80    | 35    | 220    | 0     | 84     | 70    | 40    | 202    | 0     | 0      | 0     |

## Raw Data - B Items

Attachment 1

|    |    |     |     |     |    |     |     |     |     |     |     |     |
|----|----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 94 | 26 | 0   | 25  | 20  | 0  | 300 | 80  | 10  | 178 | 160 | 160 | 0   |
| 94 | 27 | 30  | 0   | 30  | 0  | 0   | 40  | 0   | 44  | 0   | 0   | 100 |
| 94 | 28 | 20  | 35  | 350 | 0  | 110 | 30  | 140 | 114 | 0   | 120 | 0   |
| 94 | 29 | 110 | 20  | 80  | 0  | 40  | 30  | 0   | 106 | 40  | 0   | 10  |
| 94 | 30 | 240 | 5   | 140 | 0  | 180 | 60  | 10  | 200 | 0   | 160 | 200 |
| 94 | 31 | 160 | 120 | 110 | 0  | 50  | 40  | 0   | 200 | 40  | 120 | 0   |
| 94 | 32 | 90  | 10  | 100 | 0  | 220 | 70  | 0   | 194 | 80  | 0   | 260 |
| 94 | 33 | 70  | 80  | 150 | 0  | 70  | 20  | 20  | 262 | 0   | 0   | 10  |
| 94 | 34 | 130 | 140 | 60  | 0  | 0   | 100 | 0   | 130 | 40  | 200 | 0   |
| 94 | 35 | 80  | 15  | 250 | 0  | 60  | 50  | 10  | 278 | 80  | 160 | 0   |
| 94 | 36 | 10  | 0   | 80  | 0  | 20  | 10  | 10  | 102 | 0   | 0   | 30  |
| 94 | 37 | 50  | 5   | 160 | 0  | 30  | 90  | 90  | 164 | 0   | 240 | 300 |
| 94 | 38 | 130 | 60  | 120 | 0  | 30  | 40  | 0   | 144 | 0   | 0   | 0   |
| 94 | 39 | 20  | 0   | 100 | 8  | 290 | 30  | 50  | 246 | 0   | 0   | 0   |
| 94 | 40 | 70  | 10  | 50  | 0  | 60  | 110 | 70  | 96  | 0   | 0   | 5   |
| 94 | 41 | 20  | 0   | 120 | 0  | 70  | 20  | 0   | 104 | 0   | 120 | 0   |
| 94 | 42 | 170 | 35  | 110 | 0  | 10  | 40  | 60  | 124 | 40  | 320 | 5   |
| 94 | 43 | 80  | 35  | 10  | 0  | 50  | 60  | 30  | 280 | 0   | 160 | 120 |
| 94 | 44 | 130 | 5   | 70  | 0  | 20  | 30  | 40  | 274 | 80  | 0   | 0   |
| 94 | 45 | 190 | 125 | 60  | 0  | 0   | 0   | 110 | 316 | 40  | 0   | 0   |
| 94 | 46 | 80  | 10  | 40  | 16 | 50  | 90  | 10  | 216 | 0   | 320 | 0   |
| 94 | 47 | 0   | 5   | 20  | 0  | 620 | 90  | 0   | 176 | 0   | 0   | 0   |
| 94 | 48 | 10  | 25  | 20  | 4  | 500 | 20  | 30  | 252 | 0   | 0   | 0   |
| 94 | 49 | 120 | 5   | 10  | 8  | 0   | 30  | 10  | 502 | 40  | 0   | 0   |
| 94 | 50 | 60  | 60  | 80  | 0  | 60  | 20  | 10  | 870 | 0   | 120 | 0   |
| 94 | 51 | 40  | 25  | 30  | 0  | 140 | 0   | 0   | 604 | 0   | 0   | 0   |
| 95 | 1  | 90  | 135 | 70  | 0  | 340 | 30  | 20  | 104 | 560 | 0   | 325 |
| 95 | 2  | 100 | 10  | 120 | 0  | 120 | 50  | 90  | 98  | 0   | 0   | 0   |
| 95 | 3  | 50  | 25  | 0   | 0  | 30  | 110 | 20  | 122 | 0   | 0   | 0   |
| 95 | 4  | 80  | 5   | 20  | 0  | 120 | 20  | 0   | 118 | 108 | 0   | 0   |
| 95 | 5  | 20  | 40  | 110 | 0  | 90  | 40  | 0   | 126 | 0   | 0   | 0   |
| 95 | 6  | 200 | 25  | 230 | 0  | 230 | 70  | 30  | 92  | 0   | 0   | 15  |
| 95 | 7  | 40  | 50  | 30  | 10 | 140 | 40  | 20  | 204 | 0   | 0   | 0   |
| 95 | 8  | 10  | 25  | 0   | 24 | 20  | 0   | 0   | 130 | 0   | 0   | 230 |
| 95 | 9  | 290 | 25  | 280 | 24 | 110 | 30  | 100 | 182 | 120 | 0   | 90  |
| 95 | 10 | 20  | 30  | 20  | 4  | 80  | 70  | 0   | 222 | 0   | 160 | 0   |
| 95 | 11 | 160 | 25  | 40  | 0  | 70  | 20  | 10  | 178 | 80  | 0   | 0   |
| 95 | 12 | 40  | 25  | 240 | 0  | 140 | 80  | 10  | 142 | 0   | 40  | 0   |
| 95 | 13 | 40  | 10  | 60  | 0  | 170 | 10  | 10  | 242 | 160 | 0   | 200 |
| 95 | 14 | 50  | 10  | 0   | 20 | 30  | 50  | 40  | 218 | 0   | 80  | 25  |
| 95 | 15 | 60  | 20  | 170 | 8  | 60  | 80  | 70  | 114 | 0   | 0   | 0   |
| 95 | 16 | 70  | 0   | 80  | 8  | 100 | 0   | 10  | 230 | 0   | 0   | 0   |
| 95 | 17 | 80  | 5   | 20  | 0  | 80  | 0   | 20  | 220 | 40  | 200 | 0   |
| 95 | 18 | 10  | 5   | 40  | 0  | 50  | 80  | 20  | 282 | 0   | 0   | 0   |
| 95 | 19 | 40  | 50  | 80  | 0  | 140 | 60  | 10  | 164 | 40  | 0   | 0   |
| 95 | 20 | 240 | 35  | 110 | 8  | 150 | 0   | 80  | 252 | 0   | 160 | 100 |
| 95 | 21 | 20  | 0   | 60  | 0  | 20  | 30  | 20  | 212 | 0   | 160 | 0   |
| 95 | 22 | 110 | 0   | 40  | 0  | 140 | 50  | 40  | 160 | 0   | 0   | 0   |
| 95 | 23 | 80  | 30  | 20  | 4  | 310 | 0   | 0   | 34  | 0   | 40  | 0   |
| 95 | 24 | 80  | 20  | 0   | 0  | 10  | 70  | 40  | 24  | 0   | 40  | 0   |
| 95 | 25 | 20  | 0   | 200 | 8  | 60  | 20  | 40  | 24  | 40  | 0   | 0   |
| 95 | 26 | 40  | 110 | 40  | 0  | 170 | 130 | 10  | 36  | 0   | 160 | 50  |
| 95 | 27 | 20  | 5   | 0   | 0  | 0   | 0   | 0   | 0   | 40  | 0   | 0   |
| 95 | 28 | 30  | 0   | 50  | 0  | 50  | 50  | 0   | 68  | 40  | 0   | 0   |
| 95 | 29 | 50  | 0   | 60  | 4  | 20  | 70  | 0   | 0   | 80  | 400 | 0   |
| 95 | 30 | 300 | 15  | 10  | 0  | 10  | 10  | 60  | 0   | 0   | 0   | 0   |
| 95 | 31 | 0   | 0   | 60  | 0  | 70  | 60  | 0   | 2   | 0   | 0   | 0   |
| 95 | 32 | 40  | 5   | 50  | 8  | 30  | 60  | 60  | 46  | 0   | 0   | 0   |
| 95 | 33 | 40  | 0   | 20  | 0  | 50  | 20  | 20  | 54  | 40  | 0   | 0   |
| 95 | 34 | 50  | 0   | 0   | 0  | 20  | 20  | 10  | 0   | 0   | 0   | 0   |
| 95 | 35 | 20  | 0   | 50  | 18 | 10  | 30  | 0   | 88  | 0   | 0   | 0   |

## Raw Data - B Items

Attachment 1

|    |    |     |    |     |    |     |     |     |     |     |     |     |
|----|----|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 95 | 36 | 40  | 20 | 30  | 4  | 70  | 70  | 70  | 110 | 0   | 240 | 10  |
| 95 | 37 | 20  | 40 | 120 | 4  | 0   | 140 | 0   | 76  | 0   | 0   | 0   |
| 95 | 38 | 10  | 0  | 0   | 0  | 110 | 20  | 70  | 76  | 0   | 160 | 10  |
| 95 | 39 | 130 | 20 | 80  | 0  | 160 | 50  | 10  | 60  | 0   | 0   | 0   |
| 95 | 40 | 150 | 0  | 10  | 0  | 110 | 60  | 10  | 90  | 40  | 0   | 0   |
| 95 | 41 | 0   | 0  | 0   | 0  | 120 | 20  | 10  | 56  | 40  | 120 | 5   |
| 95 | 42 | 70  | 0  | 0   | 4  | 520 | 10  | 50  | 94  | 0   | 0   | 0   |
| 95 | 43 | 120 | 5  | 130 | 4  | 100 | 70  | 20  | 208 | 0   | 160 | 40  |
| 95 | 44 | 160 | 0  | 50  | 0  | 30  | 50  | 10  | 34  | 240 | 0   | 0   |
| 95 | 45 | 50  | 15 | 0   | 0  | 90  | 90  | 50  | 66  | 0   | 440 | 30  |
| 95 | 46 | 40  | 5  | 0   | 0  | 60  | 20  | 20  | 6   | 0   | 80  | 200 |
| 95 | 47 | 120 | 10 | 100 | 0  | 0   | 50  | 0   | 36  | 80  | 0   | 0   |
| 95 | 48 | 50  | 5  | 190 | 4  | 170 | 20  | 10  | 390 | 0   | 0   | 0   |
| 95 | 49 | 10  | 0  | 30  | 0  | 110 | 0   | 20  | 32  | 0   | 0   | 0   |
| 95 | 50 | 30  | 30 | 0   | 12 | 50  | 0   | 0   | 66  | 0   | 0   | 0   |
| 95 | 51 | 370 | 0  | 160 | 0  | 210 | 0   | 10  | 54  | 0   | 0   | 0   |
| 96 | 1  | 50  | 0  | 60  | 4  | 30  | 90  | 140 | 32  | 0   | 0   | 0   |
| 96 | 2  | 30  | 20 | 20  | 8  | 10  | 0   | 0   | 64  | 0   | 0   | 0   |
| 96 | 3  | 30  | 20 | 20  | 12 | 0   | 130 | 20  | 30  | 0   | 120 | 0   |
| 96 | 4  | 0   | 5  | 20  | 12 | 10  | 50  | 10  | 30  | 40  | 0   | 0   |
| 96 | 5  | 100 | 0  | 10  | 4  | 80  | 130 | 30  | 42  | 0   | 0   | 15  |
| 96 | 6  | 60  | 25 | 50  | 12 | 80  | 190 | 0   | 28  | 0   | 0   | 50  |
| 96 | 7  | 0   | 0  | 0   | 0  | 50  | 60  | 20  | 66  | 0   | 0   | 0   |
| 96 | 8  | 30  | 0  | 400 | 0  | 90  | 200 | 0   | 48  | 0   | 120 | 0   |
| 96 | 9  | 60  | 10 | 10  | 0  | 100 | 150 | 0   | 80  | 0   | 0   | 50  |
| 96 | 10 | 90  | 0  | 10  | 0  | 20  | 150 | 40  | 80  | 0   | 120 | 0   |
| 96 | 11 | 70  | 0  | 20  | 4  | 170 | 100 | 10  | 112 | 0   | 0   | 0   |
| 96 | 12 | 50  | 0  | 30  | 0  | 50  | 90  | 0   | 54  | 0   | 120 | 0   |
| 96 | 13 | 20  | 5  | 30  | 0  | 70  | 230 | 10  | 134 | 80  | 40  | 0   |
| 96 | 14 | 10  | 0  | 110 | 3  | 40  | 50  | 10  | 162 | 40  | 0   | 0   |
| 96 | 15 | 20  | 20 | 30  | 0  | 40  | 10  | 100 | 74  | 0   | 40  | 0   |
| 96 | 16 | 30  | 0  | 10  | 1  | 440 | 170 | 20  | 136 | 0   | 80  | 35  |
| 96 | 17 | 10  | 5  | 30  | 4  | 50  | 60  | 10  | 168 | 0   | 80  | 0   |
| 96 | 18 | 100 | 0  | 40  | 0  | 90  | 140 | 0   | 94  | 0   | 40  | 0   |
| 96 | 19 | 80  | 20 | 10  | 4  | 0   | 80  | 0   | 172 | 0   | 0   | 0   |
| 96 | 20 | 50  | 0  | 20  | 4  | 200 | 70  | 20  | 226 | 80  | 0   | 0   |
| 96 | 21 | 50  | 10 | 0   | 0  | 70  | 40  | 10  | 150 | 0   | 160 | 5   |
| 96 | 22 | 100 | 10 | 0   | 0  | 30  | 60  | 0   | 158 | 0   | 0   | 0   |
| 96 | 23 | 10  | 0  | 60  | 0  | 110 | 180 | 0   | 134 | 0   | 0   | 100 |
| 96 | 24 | 40  | 0  | 50  | 0  | 50  | 190 | 20  | 186 | 0   | 0   | 0   |
| 96 | 25 | 60  | 5  | 20  | 0  | 50  | 10  | 20  | 90  | 0   | 160 | 105 |
| 96 | 26 | 80  | 0  | 70  | 4  | 50  | 110 | 40  | 240 | 80  | 0   | 0   |
| 96 | 27 | 120 | 0  | 10  | 0  | 50  | 0   | 0   | 60  | 0   | 0   | 0   |
| 96 | 28 | 20  | 5  | 10  | 0  | 140 | 150 | 100 | 124 | 0   | 0   | 0   |
| 96 | 29 | 0   | 0  | 0   | 5  | 70  | 50  | 0   | 92  | 0   | 0   | 0   |
| 96 | 30 | 30  | 0  | 20  | 0  | 120 | 100 | 0   | 144 | 0   | 0   | 0   |
| 96 | 31 | 190 | 0  | 50  | 0  | 60  | 110 | 10  | 258 | 0   | 0   | 0   |
| 96 | 32 | 360 | 5  | 20  | 0  | 20  | 120 | 30  | 150 | 40  | 300 | 0   |
| 96 | 33 | 50  | 5  | 50  | 5  | 100 | 140 | 0   | 112 | 0   | 120 | 0   |
| 96 | 34 | 70  | 5  | 40  | 0  | 0   | 120 | 0   | 176 | 0   | 320 | 0   |
| 96 | 35 | 30  | 10 | 66  | 40 | 120 | 200 | 20  | 134 | 0   | 0   | 55  |
| 96 | 36 | 20  | 0  | 0   | 0  | 60  | 70  | 20  | 138 | 160 | 0   | 0   |
| 96 | 37 | 40  | 0  | 130 | 0  | 110 | 160 | 20  | 194 | 0   | 0   | 95  |
| 96 | 38 | 0   | 0  | 40  | 0  | 40  | 200 | 0   | 172 | 40  | 0   | 0   |
| 96 | 39 | 40  | 0  | 600 | 15 | 280 | 40  | 70  | 142 | 0   | 0   | 0   |
| 96 | 40 | 0   | 15 | 0   | 0  | 20  | 10  | 0   | 82  | 0   | 0   | 0   |

Raw Weekly Demand - Item A14

Attachment 2

A14



Raw Weekly Demand - Item B04

Attachment 2



## Outlier Adjustment Summary

Attachment 3

|     | Outlier<br>Lower Bound<br>(Mean+3StdDev) | Obs > Lower Bound<br>(Year \ Week) | Replacement<br>Value<br>(Rounded Mean) |
|-----|------------------------------------------|------------------------------------|----------------------------------------|
| A01 | 5089.68                                  | 96\35,39                           | 1720                                   |
| A02 | 1072.54                                  | 95\44 96\39,40                     | 300                                    |
| A03 | 257.66                                   | 93\23,29 94\9                      | 60                                     |
| A04 | 221.85                                   | 94\25,45 95\51                     | 55                                     |
| A05 | 487.94                                   | 95\1 96\29,31,39                   | 130                                    |
| A06 | 381.25                                   | 96\20,38                           | 130                                    |
| A07 | 1070.65                                  | 95\21 96\39                        | 410                                    |
| A08 | 1049.24                                  | 94\25 95\21 96\39                  | 360                                    |
| A09 | 614.02                                   | 93\22,34,51 94\19,22               | 150                                    |
| A10 | 778.52                                   | 93\25,28 94\13,48                  | 247                                    |
| A11 | 544.81                                   | 93\25 94\13,51                     | 130                                    |
| A12 | 156.22                                   | 93\28 96\24                        | 42                                     |
| A13 | 683.60                                   | 93\37 94\10,13,48,51 95\21,48      | 189                                    |
| A14 | 2923.27                                  | 94\17,22,24 96\13                  | 480                                    |
| B01 | 330.89                                   | 93\40 94\4,15 95\51 96\32          | 80                                     |
| B02 | 103.11                                   | 93\46 94\17,31,34,45 95\1,26       | 20                                     |
| B03 | 393.83                                   | 93\24,31,42 96\8,39                | 80                                     |
| B04 | 37.63                                    | 93\25 96\34                        | 4                                      |
| B05 | 465.43                                   | 93\47 94\47,48 95\42               | 100                                    |
| B06 | 252.28                                   | 93\38                              | 60                                     |
| B07 | 170.24                                   | 93\30,31,39,42                     | 30                                     |
| B08 | 573.70                                   | 94\12,13,50,51                     | 164                                    |
| B09 | 198.18                                   | 93\46 95\1,44                      | 40                                     |
| B10 | 425.04                                   | 93\23,36,39 95\45                  | 80                                     |
| B12 | 185.75                                   | 93\24 94\30,32,37 95\1,8,13,46     | 20                                     |

## Outlier Adjusted Data - A Items

Attachment 4

|              |         | A01    | A02   | A03   | A04    | A05    | A06    | A07    | A08    | A09    | A10    | A11   | A12    | A13    | A14  |
|--------------|---------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|------|
| Mean         | 1670.87 | 270.14 | 56.98 | 48.55 | 115.06 | 120.89 | 399.54 | 338.80 | 126.64 | 230.72 | 117.36 | 38.01 | 166.60 | 374.77 |      |
| Standard Dev | 1004.30 | 203.28 | 53.19 | 43.31 | 86.92  | 75.11  | 176.05 | 189.62 | 94.45  | 138.37 | 90.44  | 34.76 | 105.93 | 286.40 |      |
| f            | 0.99    | 0.94   | 0.89  | 0.84  | 0.96   | 0.99   | 1.00   | 1.00   | 0.99   | 1.00   | 0.97   | 0.89  | 0.99   | 0.90   |      |
| Std Package  | 10      | 10     | 5     | 5     | 10     | 10     | 10     | 10     | 10     | 1      | 2      | 7     | 7      | 10     |      |
| Yr           | Wk      |        |       |       |        |        |        |        |        |        |        |       |        |        |      |
| 93           | 22      | 900    | 160   | 40    | 0      | 70     | 40     | 230    | 30     | 150    | 217    | 170   | 7      | 126    | 0    |
| 93           | 23      | 2400   | 160   | 60    | 55     | 0      | 30     | 340    | 80     | 190    | 553    | 386   | 70     | 280    | 220  |
| 93           | 24      | 340    | 180   | 60    | 70     | 40     | 90     | 520    | 140    | 140    | 224    | 350   | 133    | 168    | 450  |
| 93           | 25      | 1920   | 540   | 135   | 60     | 20     | 160    | 300    | 150    | 120    | 247    | 130   | 0      | 343    | 390  |
| 93           | 26      | 880    | 60    | 195   | 50     | 20     | 100    | 380    | 220    | 40     | 49     | 238   | 0      | 112    | 550  |
| 93           | 27      | 1120   | 0     | 155   | 0      | 0      | 120    | 310    | 80     | 290    | 14     | 96    | 0      | 0      | 40   |
| 93           | 28      | 1300   | 320   | 115   | 55     | 130    | 50     | 310    | 70     | 280    | 247    | 338   | 42     | 7      | 0    |
| 93           | 29      | 1280   | 260   | 60    | 50     | 20     | 190    | 650    | 170    | 230    | 532    | 176   | 140    | 287    | 0    |
| 93           | 30      | 1340   | 380   | 230   | 60     | 40     | 80     | 150    | 100    | 150    | 70     | 138   | 63     | 70     | 40   |
| 93           | 31      | 2460   | 200   | 40    | 0      | 40     | 60     | 100    | 140    | 100    | 245    | 234   | 0      | 112    | 600  |
| 93           | 32      | 1140   | 240   | 235   | 45     | 10     | 20     | 240    | 130    | 450    | 154    | 80    | 0      | 0      | 170  |
| 93           | 33      | 260    | 140   | 100   | 55     | 300    | 10     | 230    | 40     | 90     | 609    | 190   | 0      | 203    | 0    |
| 93           | 34      | 1540   | 180   | 160   | 75     | 50     | 60     | 320    | 260    | 150    | 322    | 312   | 119    | 322    | 420  |
| 93           | 35      | 830    | 260   | 235   | 35     | 40     | 30     | 200    | 210    | 60     | 420    | 300   | 0      | 56     | 350  |
| 93           | 36      | 480    | 350   | 60    | 65     | 60     | 60     | 430    | 100    | 250    | 203    | 110   | 0      | 483    | 20   |
| 93           | 37      | 300    | 234   | 160   | 0      | 30     | 70     | 200    | 200    | 250    | 441    | 208   | 105    | 189    | 250  |
| 93           | 38      | 180    | 20    | 235   | 55     | 50     | 30     | 430    | 140    | 110    | 266    | 148   | 7      | 49     | 310  |
| 93           | 39      | 700    | 0     | 40    | 80     | 100    | 70     | 380    | 180    | 410    | 455    | 320   | 63     | 105    | 550  |
| 93           | 40      | 1000   | 0     | 30    | 30     | 60     | 100    | 550    | 320    | 80     | 224    | 94    | 7      | 70     | 300  |
| 93           | 41      | 1880   | 180   | 115   | 55     | 10     | 70     | 300    | 300    | 200    | 196    | 240   | 7      | 28     | 410  |
| 93           | 42      | 940    | 360   | 0     | 100    | 120    | 90     | 450    | 140    | 130    | 280    | 204   | 21     | 105    | 80   |
| 93           | 43      | 2660   | 280   | 90    | 100    | 120    | 80     | 260    | 340    | 200    | 546    | 234   | 14     | 42     | 400  |
| 93           | 44      | 1500   | 260   | 120   | 50     | 10     | 40     | 100    | 130    | 180    | 329    | 116   | 77     | 105    | 10   |
| 93           | 45      | 1180   | 480   | 20    | 90     | 90     | 130    | 320    | 280    | 220    | 315    | 212   | 7      | 77     | 620  |
| 93           | 46      | 900    | 240   | 130   | 15     | 40     | 90     | 440    | 260    | 160    | 231    | 316   | 7      | 98     | 60   |
| 93           | 47      | 0      | 60    | 220   | 200    | 130    | 170    | 190    | 220    | 10     | 224    | 50    | 112    | 63     | 480  |
| 93           | 48      | 1360   | 240   | 25    | 50     | 80     | 90     | 260    | 180    | 220    | 336    | 274   | 49     | 217    | 30   |
| 93           | 49      | 420    | 180   | 140   | 15     | 20     | 100    | 530    | 290    | 142    | 441    | 198   | 91     | 147    | 650  |
| 93           | 50      | 1100   | 180   | 45    | 85     | 10     | 100    | 310    | 260    | 90     | 203    | 174   | 56     | 280    | 100  |
| 93           | 51      | 980    | 440   | 30    | 55     | 100    | 120    | 200    | 430    | 150    | 630    | 374   | 119    | 259    | 460  |
| 94           | 1       | 920    | 0     | 25    | 60     | 60     | 30     | 300    | 160    | 230    | 350    | 172   | 0      | 217    | 560  |
| 94           | 2       | 3820   | 20    | 65    | 55     | 110    | 40     | 510    | 890    | 250    | 161    | 156   | 112    | 189    | 230  |
| 94           | 3       | 700    | 0     | 10    | 55     | 0      | 10     | 380    | 200    | 100    | 154    | 192   | 35     | 77     | 50   |
| 94           | 4       | 720    | 200   | 120   | 65     | 180    | 250    | 390    | 390    | 150    | 483    | 160   | 70     | 189    | 650  |
| 94           | 5       | 1340   | 380   | 75    | 10     | 10     | 30     | 520    | 500    | 210    | 308    | 298   | 35     | 350    | 450  |
| 94           | 6       | 380    | 100   | 115   | 75     | 60     | 50     | 170    | 230    | 20     | 49     | 110   | 21     | 154    | 0    |
| 94           | 7       | 3260   | 200   | 65    | 60     | 340    | 140    | 520    | 670    | 110    | 203    | 150   | 7      | 133    | 410  |
| 94           | 8       | 1120   | 280   | 10    | 130    | 20     | 30     | 120    | 350    | 30     | 196    | 162   | 21     | 133    | 50   |
| 94           | 9       | 1040   | 260   | 60    | 0      | 130    | 60     | 250    | 160    | 200    | 322    | 228   | 56     | 315    | 630  |
| 94           | 10      | 1100   | 460   | 85    | 35     | 90     | 100    | 530    | 420    | 200    | 665    | 356   | 126    | 189    | 400  |
| 94           | 11      | 760    | 100   | 150   | 60     | 40     | 120    | 520    | 390    | 160    | 581    | 406   | 70     | 245    | 0    |
| 94           | 12      | 220    | 60    | 25    | 50     | 70     | 10     | 590    | 950    | 70     | 462    | 112   | 42     | 469    | 0    |
| 94           | 13      | 880    | 580   | 160   | 100    | 150    | 70     | 280    | 370    | 180    | 247    | 130   | 49     | 189    | 1270 |
| 94           | 14      | 3180   | 0     | 55    | 65     | 80     | 20     | 360    | 190    | 260    | 70     | 62    | 0      | 175    | 50   |
| 94           | 15      | 1300   | 280   | 20    | 60     | 50     | 80     | 430    | 630    | 230    | 329    | 202   | 35     | 77     | 10   |
| 94           | 16      | 1820   | 0     | 40    | 120    | 110    | 60     | 290    | 320    | 60     | 140    | 116   | 84     | 301    | 1560 |
| 94           | 17      | 700    | 660   | 140   | 70     | 30     | 70     | 380    | 130    | 400    | 224    | 126   | 28     | 105    | 480  |
| 94           | 18      | 560    | 260   | 85    | 170    | 50     | 40     | 360    | 220    | 30     | 84     | 98    | 7      | 154    | 100  |
| 94           | 19      | 1360   | 120   | 30    | 5      | 120    | 190    | 620    | 470    | 150    | 217    | 116   | 21     | 140    | 1180 |
| 94           | 20      | 600    | 200   | 10    | 60     | 40     | 110    | 320    | 190    | 200    | 406    | 112   | 7      | 175    | 480  |
| 94           | 21      | 2620   | 0     | 130   | 55     | 100    | 60     | 480    | 320    | 220    | 252    | 152   | 35     | 105    | 620  |
| 94           | 22      | 900    | 0     | 100   | 60     | 0      | 40     | 510    | 230    | 60     | 84     | 60    | 21     | 98     | 480  |
| 94           | 23      | 860    | 140   | 65    | 50     | 90     | 100    | 620    | 290    | 100    | 154    | 198   | 0      | 133    | 690  |
| 94           | 24      | 960    | 100   | 20    | 0      | 170    | 140    | 390    | 550    | 170    | 413    | 146   | 7      | 119    | 480  |
| 94           | 25      | 1400   | 300   | 21    | 55     | 40     | 100    | 704    | 360    | 330    | 294    | 288   | 0      | 112    | 50   |
| 94           | 26      | 620    | 100   | 50    | 75     | 80     | 90     | 280    | 840    | 200    | 308    | 200   | 28     | 133    | 340  |
| 94           | 27      | 3060   | 160   | 10    | 0      | 0      | 0      | 370    | 580    | 0      | 91     | 44    | 21     | 14     | 600  |
| 94           | 28      | 1100   | 420   | 35    | 35     | 50     | 50     | 400    | 290    | 140    | 147    | 74    | 14     | 147    | 910  |

## Outlier Adjusted Data - A Items

Attachment 4

|    |    |      |     |     |     |     |     |     |     |     |     |     |     |     |      |
|----|----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 94 | 29 | 460  | 40  | 15  | 150 | 80  | 70  | 220 | 220 | 190 | 238 | 172 | 14  | 161 | 100  |
| 94 | 30 | 1060 | 240 | 15  | 100 | 60  | 90  | 600 | 650 | 160 | 133 | 122 | 21  | 119 | 550  |
| 94 | 31 | 2060 | 220 | 0   | 5   | 60  | 60  | 290 | 270 | 100 | 210 | 126 | 84  | 133 | 180  |
| 94 | 32 | 1660 | 200 | 145 | 75  | 170 | 70  | 430 | 350 | 180 | 168 | 84  | 28  | 133 | 360  |
| 94 | 33 | 620  | 20  | 75  | 65  | 50  | 20  | 130 | 240 | 230 | 322 | 206 | 49  | 126 | 450  |
| 94 | 34 | 920  | 320 | 80  | 25  | 140 | 140 | 420 | 380 | 160 | 560 | 96  | 7   | 210 | 610  |
| 94 | 35 | 1140 | 140 | 110 | 95  | 80  | 80  | 470 | 460 | 150 | 224 | 114 | 0   | 266 | 60   |
| 94 | 36 | 1240 | 20  | 0   | 5   | 20  | 100 | 280 | 270 | 200 | 105 | 52  | 28  | 259 | 300  |
| 94 | 37 | 3020 | 280 | 20  | 170 | 140 | 90  | 700 | 460 | 150 | 308 | 180 | 14  | 273 | 410  |
| 94 | 38 | 520  | 100 | 30  | 110 | 100 | 70  | 220 | 400 | 150 | 189 | 82  | 28  | 91  | 940  |
| 94 | 39 | 1060 | 260 | 50  | 100 | 60  | 10  | 330 | 450 | 190 | 245 | 160 | 112 | 196 | 30   |
| 94 | 40 | 2360 | 140 | 35  | 0   | 130 | 120 | 260 | 220 | 70  | 119 | 90  | 42  | 168 | 400  |
| 94 | 41 | 1420 | 40  | 100 | 145 | 200 | 60  | 530 | 560 | 110 | 224 | 124 | 21  | 70  | 50   |
| 94 | 42 | 2940 | 440 | 10  | 20  | 130 | 150 | 380 | 630 | 180 | 231 | 164 | 63  | 217 | 260  |
| 94 | 43 | 1420 | 340 | 115 | 80  | 200 | 240 | 340 | 530 | 160 | 245 | 106 | 28  | 266 | 400  |
| 94 | 44 | 2560 | 280 | 60  | 60  | 0   | 180 | 590 | 510 | 40  | 112 | 134 | 7   | 112 | 430  |
| 94 | 45 | 740  | 640 | 50  | 55  | 190 | 180 | 420 | 510 | 310 | 371 | 128 | 0   | 238 | 120  |
| 94 | 46 | 1040 | 360 | 10  | 60  | 180 | 60  | 550 | 540 | 140 | 161 | 144 | 14  | 98  | 540  |
| 94 | 47 | 2840 | 360 | 10  | 20  | 200 | 80  | 120 | 220 | 150 | 168 | 148 | 49  | 119 | 500  |
| 94 | 48 | 1140 | 380 | 45  | 60  | 183 | 183 | 765 | 380 | 180 | 247 | 178 | 14  | 189 | 500  |
| 94 | 49 | 1240 | 400 | 60  | 60  | 10  | 130 | 460 | 400 | 610 | 301 | 332 | 42  | 196 | 0    |
| 94 | 50 | 1280 | 280 | 0   | 20  | 190 | 220 | 250 | 810 | 90  | 392 | 120 | 7   | 147 | 70   |
| 94 | 51 | 2080 | 600 | 170 | 50  | 150 | 230 | 690 | 665 | 330 | 707 | 130 | 140 | 189 | 480  |
| 95 | 1  | 1820 | 160 | 80  | 10  | 130 | 140 | 150 | 410 | 40  | 140 | 88  | 42  | 70  | 610  |
| 95 | 2  | 1680 | 40  | 60  | 0   | 110 | 200 | 370 | 360 | 130 | 119 | 32  | 28  | 112 | 500  |
| 95 | 3  | 2080 | 540 | 0   | 10  | 50  | 100 | 490 | 550 | 40  | 168 | 70  | 35  | 35  | 0    |
| 95 | 4  | 3180 | 480 | 35  | 35  | 120 | 90  | 400 | 820 | 140 | 189 | 26  | 21  | 56  | 130  |
| 95 | 5  | 560  | 240 | 25  | 70  | 60  | 160 | 840 | 460 | 470 | 294 | 106 | 0   | 119 | 500  |
| 95 | 6  | 1620 | 40  | 10  | 110 | 30  | 180 | 540 | 330 | 40  | 70  | 110 | 7   | 140 | 320  |
| 95 | 7  | 980  | 220 | 70  | 20  | 20  | 10  | 440 | 640 | 60  | 287 | 172 | 7   | 119 | 460  |
| 95 | 8  | 1540 | 260 | 10  | 60  | 87  | 60  | 190 | 440 | 90  | 119 | 62  | 21  | 161 | 190  |
| 95 | 9  | 3440 | 200 | 145 | 5   | 120 | 160 | 400 | 520 | 140 | 245 | 160 | 35  | 56  | 960  |
| 95 | 10 | 780  | 300 | 45  | 80  | 170 | 110 | 250 | 450 | 220 | 252 | 186 | 56  | 182 | 370  |
| 95 | 11 | 3640 | 100 | 50  | 30  | 120 | 100 | 480 | 390 | 50  | 189 | 122 | 119 | 231 | 60   |
| 95 | 12 | 1740 | 140 | 70  | 90  | 110 | 140 | 540 | 490 | 10  | 189 | 110 | 7   | 126 | 1010 |
| 95 | 13 | 4260 | 420 | 25  | 90  | 260 | 300 | 340 | 400 | 90  | 168 | 162 | 14  | 217 | 90   |
| 95 | 14 | 740  | 100 | 50  | 30  | 180 | 120 | 510 | 70  | 130 | 175 | 108 | 28  | 154 | 510  |
| 95 | 15 | 1020 | 420 | 0   | 55  | 160 | 60  | 390 | 430 | 20  | 245 | 124 | 35  | 154 | 410  |
| 95 | 16 | 1520 | 240 | 0   | 10  | 40  | 90  | 520 | 240 | 40  | 231 | 158 | 21  | 196 | 400  |
| 95 | 17 | 1060 | 240 | 65  | 110 | 70  | 110 | 330 | 430 | 50  | 105 | 160 | 0   | 168 | 280  |
| 95 | 18 | 3240 | 520 | 20  | 95  | 110 | 110 | 410 | 770 | 100 | 525 | 246 | 35  | 273 | 420  |
| 95 | 19 | 1620 | 340 | 70  | 10  | 380 | 310 | 790 | 390 | 30  | 364 | 220 | 112 | 189 | 460  |
| 95 | 20 | 4160 | 140 | 40  | 60  | 150 | 180 | 540 | 270 | 40  | 280 | 178 | 21  | 63  | 680  |
| 95 | 21 | 1060 | 120 | 20  | 0   | 200 | 240 | 410 | 360 | 60  | 175 | 24  | 28  | 189 | 60   |
| 95 | 22 | 160  | 400 | 84  | 100 | 50  | 110 | 400 | 320 | 150 | 532 | 0   | 7   | 641 | 100  |
| 95 | 23 | 2320 | 180 | 25  | 10  | 170 | 200 | 540 | 200 | 30  | 196 | 0   | 14  | 217 | 1040 |
| 95 | 24 | 1480 | 200 | 90  | 90  | 140 | 80  | 400 | 50  | 60  | 77  | 34  | 49  | 77  | 430  |
| 95 | 25 | 3980 | 80  | 30  | 60  | 210 | 110 | 480 | 110 | 40  | 112 | 10  | 35  | 91  | 70   |
| 95 | 26 | 3040 | 200 | 0   | 30  | 150 | 110 | 700 | 290 | 150 | 252 | 0   | 91  | 147 | 560  |
| 95 | 27 | 740  | 80  | 55  | 55  | 0   | 30  | 200 | 100 | 20  | 98  | 0   | 0   | 42  | 200  |
| 95 | 28 | 1220 | 120 | 20  | 125 | 220 | 350 | 770 | 170 | 70  | 231 | 10  | 56  | 77  | 610  |
| 95 | 29 | 1540 | 200 | 30  | 55  | 20  | 100 | 490 | 150 | 60  | 203 | 8   | 7   | 14  | 200  |
| 95 | 30 | 1860 | 520 | 80  | 0   | 160 | 170 | 272 | 135 | 130 | 238 | 10  | 56  | 42  | 550  |
| 95 | 31 | 1300 | 250 | 25  | 125 | 280 | 330 | 500 | 520 | 40  | 112 | 8   | 84  | 126 | 550  |
| 95 | 32 | 3760 | 200 | 35  | 20  | 150 | 160 | 430 | 560 | 100 | 63  | 28  | 49  | 119 | 460  |
| 95 | 33 | 1580 | 260 | 15  | 60  | 10  | 40  | 480 | 220 | 90  | 84  | 32  | 14  | 245 | 350  |
| 95 | 34 | 2740 | 260 | 15  | 115 | 40  | 90  | 310 | 370 | 40  | 203 | 14  | 42  | 189 | 180  |
| 95 | 35 | 1280 | 520 | 90  | 55  | 110 | 150 | 420 | 310 | 40  | 49  | 0   | 21  | 35  | 460  |
| 95 | 36 | 2440 | 580 | 50  | 110 | 80  | 120 | 330 | 480 | 30  | 259 | 24  | 49  | 196 | 0    |
| 95 | 37 | 1380 | 240 | 35  | 5   | 50  | 110 | 200 | 140 | 30  | 210 | 6   | 35  | 238 | 450  |
| 95 | 38 | 2620 | 220 | 0   | 55  | 140 | 200 | 520 | 510 | 150 | 329 | 54  | 14  | 70  | 470  |
| 95 | 39 | 1340 | 680 | 50  | 60  | 70  | 140 | 540 | 630 | 20  | 63  | 32  | 42  | 98  | 80   |
| 95 | 40 | 2500 | 140 | 0   | 0   | 60  | 50  | 520 | 670 | 110 | 140 | 44  | 42  | 56  | 580  |
| 95 | 41 | 1200 | 500 | 35  | 90  | 90  | 90  | 230 | 440 | 70  | 210 | 34  | 56  | 98  | 540  |

## Outlier Adjusted Data - A Items

Attachment 4

|    |    |      |     |     |     |     |     |      |     |     |     |     |     |     |     |
|----|----|------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| 95 | 42 | 2980 | 140 | 80  | 25  | 90  | 210 | 580  | 300 | 90  | 189 | 82  | 14  | 35  | 400 |
| 95 | 43 | 3160 | 620 | 20  | 130 | 100 | 210 | 260  | 630 | 130 | 210 | 92  | 49  | 658 | 150 |
| 95 | 44 | 4600 | 290 | 65  | 0   | 50  | 100 | 480  | 920 | 50  | 231 | 52  | 21  | 154 | 0   |
| 95 | 45 | 1700 | 200 | 25  | 10  | 170 | 80  | 300  | 400 | 180 | 385 | 82  | 35  | 392 | 600 |
| 95 | 46 | 2840 | 180 | 10  | 10  | 110 | 180 | 620  | 740 | 90  | 315 | 2   | 91  | 385 | 800 |
| 95 | 47 | 780  | 280 | 10  | 0   | 120 | 160 | 200  | 140 | 140 | 350 | 130 | 35  | 252 | 80  |
| 95 | 48 | 2960 | 480 | 30  | 60  | 20  | 200 | 190  | 290 | 250 | 602 | 130 | 35  | 189 | 520 |
| 95 | 49 | 660  | 0   | 95  | 5   | 80  | 90  | 220  | 420 | 10  | 70  | 16  | 7   | 112 | 410 |
| 95 | 50 | 360  | 20  | 80  | 155 | 110 | 120 | 230  | 200 | 70  | 140 | 56  | 28  | 105 | 420 |
| 95 | 51 | 2360 | 740 | 5   | 55  | 250 | 170 | 980  | 430 | 50  | 203 | 36  | 28  | 42  | 450 |
| 96 | 1  | 400  | 260 | 0   | 0   | 60  | 90  | 800  | 270 | 30  | 42  | 16  | 7   | 35  | 400 |
| 96 | 2  | 940  | 140 | 0   | 10  | 20  | 0   | 220  | 30  | 60  | 245 | 26  | 42  | 175 | 0   |
| 96 | 3  | 3600 | 60  | 25  | 5   | 160 | 160 | 870  | 170 | 20  | 56  | 24  | 77  | 112 | 520 |
| 96 | 4  | 2700 | 860 | 30  | 110 | 90  | 320 | 420  | 320 | 70  | 98  | 40  | 70  | 56  | 400 |
| 96 | 5  | 1620 | 480 | 20  | 35  | 200 | 130 | 1020 | 290 | 60  | 301 | 12  | 14  | 161 | 490 |
| 96 | 6  | 2340 | 120 | 135 | 5   | 140 | 130 | 330  | 420 | 80  | 84  | 16  | 56  | 105 | 650 |
| 96 | 7  | 820  | 240 | 75  | 85  | 120 | 90  | 140  | 200 | 40  | 126 | 40  | 84  | 49  | 0   |
| 96 | 8  | 540  | 220 | 55  | 60  | 120 | 200 | 380  | 220 | 90  | 63  | 30  | 14  | 63  | 480 |
| 96 | 9  | 3020 | 380 | 0   | 40  | 60  | 70  | 160  | 500 | 30  | 147 | 62  | 7   | 133 | 0   |
| 96 | 10 | 3460 | 440 | 30  | 175 | 180 | 220 | 340  | 430 | 160 | 175 | 42  | 35  | 105 | 590 |
| 96 | 11 | 2480 | 260 | 15  | 10  | 140 | 110 | 300  | 130 | 10  | 119 | 56  | 28  | 203 | 400 |
| 96 | 12 | 3340 | 600 | 40  | 75  | 50  | 70  | 240  | 330 | 60  | 91  | 10  | 49  | 168 | 410 |
| 96 | 13 | 2940 | 220 | 50  | 5   | 220 | 150 | 310  | 460 | 150 | 252 | 48  | 63  | 147 | 480 |
| 96 | 14 | 2580 | 300 | 0   | 15  | 130 | 90  | 420  | 430 | 60  | 105 | 44  | 7   | 77  | 550 |
| 96 | 15 | 2540 | 560 | 10  | 0   | 150 | 170 | 270  | 140 | 80  | 245 | 118 | 119 | 126 | 60  |
| 96 | 16 | 1620 | 0   | 60  | 0   | 130 | 330 | 600  | 170 | 80  | 63  | 96  | 49  | 210 | 450 |
| 96 | 17 | 2760 | 920 | 30  | 20  | 220 | 190 | 290  | 320 | 160 | 245 | 124 | 7   | 245 | 0   |
| 96 | 18 | 900  | 60  | 50  | 0   | 140 | 60  | 270  | 100 | 120 | 147 | 46  | 133 | 203 | 500 |
| 96 | 19 | 2600 | 140 | 10  | 5   | 290 | 120 | 400  | 280 | 20  | 70  | 12  | 7   | 196 | 980 |
| 96 | 20 | 1320 | 160 | 0   | 5   | 150 | 130 | 270  | 260 | 80  | 147 | 122 | 84  | 182 | 480 |
| 96 | 21 | 3640 | 860 | 65  | 20  | 120 | 350 | 170  | 190 | 60  | 133 | 30  | 49  | 182 | 490 |
| 96 | 22 | 2380 | 320 | 10  | 10  | 300 | 210 | 510  | 200 | 180 | 119 | 26  | 14  | 154 | 400 |
| 96 | 23 | 600  | 60  | 15  | 0   | 160 | 220 | 250  | 160 | 80  | 196 | 70  | 21  | 175 | 10  |
| 96 | 24 | 3520 | 780 | 45  | 80  | 450 | 180 | 530  | 220 | 80  | 224 | 108 | 42  | 238 | 720 |
| 96 | 25 | 1460 | 300 | 0   | 0   | 310 | 200 | 180  | 420 | 60  | 63  | 64  | 42  | 238 | 420 |
| 96 | 26 | 1060 | 540 | 20  | 5   | 280 | 50  | 540  | 240 | 230 | 315 | 108 | 42  | 371 | 520 |
| 96 | 27 | 3280 | 40  | 0   | 0   | 70  | 100 | 150  | 203 | 20  | 28  | 8   | 0   | 35  | 50  |
| 96 | 28 | 1480 | 240 | 105 | 15  | 180 | 50  | 310  | 380 | 20  | 126 | 88  | 42  | 182 | 980 |
| 96 | 29 | 1700 | 60  | 100 | 15  | 130 | 120 | 830  | 220 | 80  | 175 | 96  | 119 | 231 | 0   |
| 96 | 30 | 1840 | 360 | 30  | 20  | 260 | 180 | 370  | 550 | 80  | 168 | 156 | 35  | 273 | 420 |
| 96 | 31 | 1140 | 280 | 105 | 0   | 130 | 140 | 440  | 230 | 100 | 210 | 56  | 21  | 497 | 70  |
| 96 | 32 | 2640 | 980 | 35  | 0   | 360 | 150 | 620  | 310 | 120 | 161 | 52  | 28  | 154 | 900 |
| 96 | 33 | 680  | 260 | 10  | 0   | 130 | 220 | 350  | 400 | 60  | 224 | 74  | 7   | 287 | 0   |
| 96 | 34 | 2200 | 440 | 80  | 25  | 180 | 170 | 520  | 250 | 100 | 196 | 92  | 70  | 287 | 170 |
| 96 | 35 | 1720 | 360 | 0   | 10  | 210 | 140 | 270  | 381 | 170 | 84  | 34  | 0   | 175 | 840 |
| 96 | 36 | 1300 | 40  | 0   | 10  | 160 | 150 | 380  | 170 | 170 | 280 | 44  | 49  | 224 | 700 |
| 96 | 37 | 1400 | 780 | 80  | 0   | 460 | 280 | 510  | 510 | 70  | 147 | 34  | 35  | 266 | 450 |
| 96 | 38 | 820  | 660 | 35  | 0   | 200 | 130 | 410  | 110 | 100 | 252 | 132 | 21  | 259 | 400 |
| 96 | 39 | 1720 | 290 | 80  | 0   | 130 | 360 | 410  | 360 | 50  | 217 | 22  | 70  | 189 | 120 |
| 96 | 40 | 2260 | 290 | 15  | 10  | 20  | 160 | 130  | 230 | 80  | 63  | 30  | 21  | 119 | 400 |

## Outlier Adjusted Data - B Items

Attachment 4

|              |    | B01   | B02   | B03   | B04  | B05   | B06   | B07   | B08    | B09   | B10   | B12   |
|--------------|----|-------|-------|-------|------|-------|-------|-------|--------|-------|-------|-------|
| Mean         |    | 72.20 | 15.17 | 64.73 | 2.69 | 84.60 | 59.55 | 24.42 | 149.50 | 15.74 | 61.97 | 9.94  |
| Standard Dev |    | 61.55 | 17.31 | 65.42 | 5.43 | 80.70 | 52.73 | 31.79 | 96.56  | 32.89 | 97.98 | 23.00 |
| f            |    | 0.93  | 0.69  | 0.84  | 0.30 | 0.88  | 0.86  | 0.67  | 0.97   | 0.24  | 0.38  | 0.27  |
| Std Package  |    | 10    | 5     | 10    | 1    | 10    | 10    | 10    | 2      | 40    | 20    | 5     |
| Yr           | Wk |       |       |       |      |       |       |       |        |       |       |       |
| 93           | 22 | 50    | 5     | 20    | 0    | 80    | 60    | 0     | 164    | 0     | 0     | 60    |
| 93           | 23 | 170   | 35    | 150   | 4    | 90    | 90    | 110   | 270    | 0     | 80    | 70    |
| 93           | 24 | 120   | 0     | 80    | 4    | 0     | 100   | 140   | 498    | 0     | 0     | 20    |
| 93           | 25 | 70    | 55    | 140   | 4    | 120   | 100   | 30    | 84     | 0     | 40    | 25    |
| 93           | 26 | 180   | 35    | 80    | 0    | 310   | 0     | 20    | 0      | 80    | 0     | 40    |
| 93           | 27 | 40    | 50    | 10    | 0    | 100   | 10    | 0     | 0      | 0     | 160   | 25    |
| 93           | 28 | 80    | 25    | 80    | 0    | 120   | 180   | 20    | 202    | 0     | 0     | 0     |
| 93           | 29 | 130   | 40    | 130   | 0    | 10    | 80    | 20    | 334    | 0     | 360   | 0     |
| 93           | 30 | 80    | 10    | 238   | 4    | 50    | 150   | 30    | 198    | 0     | 0     | 25    |
| 93           | 31 | 20    | 25    | 80    | 0    | 0     | 10    | 30    | 242    | 0     | 0     | 0     |
| 93           | 32 | 50    | 65    | 30    | 0    | 8     | 60    | 0     | 72     | 80    | 200   | 0     |
| 93           | 33 | 30    | 5     | 0     | 0    | 0     | 0     | 0     | 524    | 0     | 0     | 0     |
| 93           | 34 | 170   | 35    | 0     | 8    | 0     | 0     | 10    | 112    | 0     | 0     | 0     |
| 93           | 35 | 20    | 10    | 0     | 0    | 0     | 0     | 0     | 220    | 0     | 0     | 0     |
| 93           | 36 | 0     | 20    | 0     | 0    | 0     | 13    | 0     | 302    | 0     | 80    | 0     |
| 93           | 37 | 8     | 10    | 0     | 0    | 0     | 0     | 80    | 100    | 0     | 0     | 0     |
| 93           | 38 | 0     | 0     | 0     | 0    | 19    | 60    | 0     | 64     | 0     | 0     | 0     |
| 93           | 39 | 0     | 40    | 0     | 0    | 0     | 100   | 30    | 110    | 0     | 80    | 0     |
| 93           | 40 | 80    | 15    | 0     | 0    | 0     | 60    | 0     | 130    | 0     | 0     | 0     |
| 93           | 41 | 40    | 35    | 0     | 0    | 0     | 10    | 50    | 114    | 0     | 0     | 0     |
| 93           | 42 | 130   | 20    | 80    | 12   | 460   | 40    | 30    | 138    | 0     | 0     | 0     |
| 93           | 43 | 30    | 50    | 150   | 0    | 100   | 0     | 50    | 250    | 0     | 320   | 0     |
| 93           | 44 | 40    | 25    | 40    | 0    | 190   | 20    | 0     | 104    | 0     | 0     | 0     |
| 93           | 45 | 90    | 5     | 110   | 20   | 120   | 30    | 20    | 238    | 0     | 0     | 0     |
| 93           | 46 | 80    | 20    | 160   | 0    | 110   | 20    | 0     | 122    | 40    | 0     | 0     |
| 93           | 47 | 30    | 30    | 20    | 0    | 100   | 10    | 0     | 86     | 0     | 0     | 0     |
| 93           | 48 | 90    | 15    | 90    | 0    | 30    | 70    | 0     | 290    | 0     | 0     | 0     |
| 93           | 49 | 190   | 20    | 50    | 0    | 70    | 10    | 10    | 166    | 0     | 160   | 0     |
| 93           | 50 | 80    | 0     | 10    | 0    | 90    | 50    | 30    | 212    | 0     | 80    | 0     |
| 93           | 51 | 100   | 50    | 260   | 20   | 170   | 0     | 90    | 196    | 0     | 360   | 0     |
| 94           | 1  | 210   | 15    | 80    | 0    | 60    | 40    | 10    | 256    | 0     | 0     | 0     |
| 94           | 2  | 190   | 10    | 130   | 0    | 230   | 60    | 30    | 220    | 0     | 360   | 0     |
| 94           | 3  | 20    | 25    | 50    | 25   | 70    | 50    | 0     | 194    | 0     | 200   | 0     |
| 94           | 4  | 80    | 20    | 40    | 0    | 60    | 40    | 0     | 110    | 0     | 0     | 0     |
| 94           | 5  | 120   | 30    | 100   | 0    | 180   | 230   | 50    | 334    | 0     | 160   | 20    |
| 94           | 6  | 50    | 0     | 30    | 0    | 120   | 20    | 10    | 82     | 0     | 0     | 0     |
| 94           | 7  | 80    | 20    | 80    | 0    | 40    | 130   | 140   | 260    | 80    | 80    | 0     |
| 94           | 8  | 40    | 0     | 50    | 0    | 70    | 0     | 30    | 184    | 80    | 0     | 0     |
| 94           | 9  | 20    | 0     | 80    | 0    | 240   | 60    | 10    | 282    | 0     | 320   | 20    |
| 94           | 10 | 60    | 45    | 160   | 0    | 80    | 50    | 50    | 458    | 0     | 0     | 0     |
| 94           | 11 | 90    | 10    | 100   | 8    | 100   | 90    | 30    | 206    | 0     | 0     | 30    |
| 94           | 12 | 240   | 10    | 50    | 0    | 60    | 80    | 20    | 164    | 0     | 0     | 0     |
| 94           | 13 | 40    | 20    | 40    | 0    | 60    | 60    | 40    | 164    | 0     | 0     | 20    |
| 94           | 14 | 190   | 100   | 140   | 0    | 90    | 0     | 10    | 90     | 0     | 240   | 0     |
| 94           | 15 | 80    | 10    | 10    | 0    | 30    | 60    | 20    | 160    | 40    | 0     | 20    |
| 94           | 16 | 40    | 0     | 40    | 8    | 70    | 20    | 10    | 92     | 0     | 0     | 0     |
| 94           | 17 | 80    | 20    | 100   | 0    | 190   | 20    | 100   | 156    | 0     | 0     | 20    |
| 94           | 18 | 20    | 10    | 180   | 24   | 130   | 70    | 0     | 120    | 0     | 160   | 0     |
| 94           | 19 | 160   | 0     | 120   | 0    | 60    | 0     | 20    | 158    | 0     | 120   | 0     |
| 94           | 20 | 140   | 10    | 10    | 0    | 0     | 70    | 0     | 194    | 80    | 160   | 10    |
| 94           | 21 | 50    | 15    | 160   | 0    | 80    | 70    | 40    | 144    | 0     | 40    | 0     |
| 94           | 22 | 190   | 0     | 30    | 0    | 20    | 0     | 0     | 94     | 0     | 200   | 0     |
| 94           | 23 | 200   | 40    | 100   | 0    | 30    | 70    | 10    | 146    | 0     | 80    | 0     |
| 94           | 24 | 50    | 0     | 50    | 0    | 90    | 10    | 0     | 262    | 0     | 319   | 0     |
| 94           | 25 | 80    | 35    | 220   | 0    | 84    | 70    | 40    | 202    | 0     | 0     | 0     |

## Outlier Adjusted Data - B Items

Attachment 4

|    |    |     |    |     |    |     |     |     |     |     |     |     |
|----|----|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 94 | 26 | 0   | 25 | 20  | 0  | 300 | 80  | 10  | 178 | 160 | 160 | 0   |
| 94 | 27 | 30  | 0  | 30  | 0  | 0   | 40  | 0   | 44  | 0   | 0   | 100 |
| 94 | 28 | 20  | 35 | 350 | 0  | 110 | 30  | 140 | 114 | 0   | 120 | 0   |
| 94 | 29 | 110 | 20 | 80  | 0  | 40  | 30  | 0   | 106 | 40  | 0   | 10  |
| 94 | 30 | 240 | 5  | 140 | 0  | 180 | 60  | 10  | 200 | 0   | 160 | 20  |
| 94 | 31 | 160 | 20 | 110 | 0  | 50  | 40  | 0   | 200 | 40  | 120 | 0   |
| 94 | 32 | 90  | 10 | 100 | 0  | 220 | 70  | 0   | 194 | 80  | 0   | 20  |
| 94 | 33 | 70  | 80 | 150 | 0  | 70  | 20  | 20  | 262 | 0   | 0   | 10  |
| 94 | 34 | 130 | 20 | 60  | 0  | 0   | 100 | 0   | 130 | 40  | 200 | 0   |
| 94 | 35 | 80  | 15 | 250 | 0  | 60  | 50  | 10  | 278 | 80  | 160 | 0   |
| 94 | 36 | 10  | 0  | 80  | 0  | 20  | 10  | 10  | 102 | 0   | 0   | 30  |
| 94 | 37 | 50  | 5  | 160 | 0  | 30  | 90  | 90  | 164 | 0   | 240 | 20  |
| 94 | 38 | 130 | 60 | 120 | 0  | 30  | 40  | 0   | 144 | 0   | 0   | 0   |
| 94 | 39 | 20  | 0  | 100 | 8  | 290 | 30  | 50  | 246 | 0   | 0   | 0   |
| 94 | 40 | 70  | 10 | 50  | 0  | 60  | 110 | 70  | 96  | 0   | 0   | 5   |
| 94 | 41 | 20  | 0  | 120 | 0  | 70  | 20  | 0   | 104 | 0   | 120 | 0   |
| 94 | 42 | 170 | 35 | 110 | 0  | 10  | 40  | 60  | 124 | 40  | 320 | 5   |
| 94 | 43 | 80  | 35 | 10  | 0  | 50  | 60  | 30  | 280 | 0   | 160 | 120 |
| 94 | 44 | 130 | 5  | 70  | 0  | 20  | 30  | 40  | 274 | 80  | 0   | 0   |
| 94 | 45 | 190 | 20 | 60  | 0  | 0   | 0   | 110 | 316 | 40  | 0   | 0   |
| 94 | 46 | 80  | 10 | 40  | 16 | 50  | 90  | 10  | 216 | 0   | 320 | 0   |
| 94 | 47 | 0   | 5  | 20  | 0  | 100 | 90  | 0   | 176 | 0   | 0   | 0   |
| 94 | 48 | 10  | 25 | 20  | 4  | 100 | 20  | 30  | 252 | 0   | 0   | 0   |
| 94 | 49 | 120 | 5  | 10  | 8  | 0   | 30  | 10  | 502 | 40  | 0   | 0   |
| 94 | 50 | 60  | 60 | 80  | 0  | 60  | 20  | 10  | 164 | 0   | 120 | 0   |
| 94 | 51 | 40  | 25 | 30  | 0  | 140 | 0   | 0   | 164 | 0   | 0   | 0   |
| 95 | 1  | 90  | 20 | 70  | 0  | 340 | 30  | 20  | 104 | 40  | 0   | 20  |
| 95 | 2  | 100 | 10 | 120 | 0  | 120 | 50  | 90  | 98  | 0   | 0   | 0   |
| 95 | 3  | 50  | 25 | 0   | 0  | 30  | 110 | 20  | 122 | 0   | 0   | 0   |
| 95 | 4  | 80  | 5  | 20  | 0  | 120 | 20  | 0   | 118 | 108 | 0   | 0   |
| 95 | 5  | 20  | 40 | 110 | 0  | 90  | 40  | 0   | 126 | 0   | 0   | 0   |
| 95 | 6  | 200 | 25 | 230 | 0  | 230 | 70  | 30  | 92  | 0   | 0   | 15  |
| 95 | 7  | 40  | 50 | 30  | 10 | 140 | 40  | 20  | 204 | 0   | 0   | 0   |
| 95 | 8  | 10  | 25 | 0   | 24 | 20  | 0   | 0   | 130 | 0   | 0   | 20  |
| 95 | 9  | 290 | 25 | 280 | 24 | 110 | 30  | 100 | 182 | 120 | 0   | 90  |
| 95 | 10 | 20  | 30 | 20  | 4  | 80  | 70  | 0   | 222 | 0   | 160 | 0   |
| 95 | 11 | 160 | 25 | 40  | 0  | 70  | 20  | 10  | 178 | 80  | 0   | 0   |
| 95 | 12 | 40  | 25 | 240 | 0  | 140 | 80  | 10  | 142 | 0   | 40  | 0   |
| 95 | 13 | 40  | 10 | 60  | 0  | 170 | 10  | 10  | 242 | 160 | 0   | 20  |
| 95 | 14 | 50  | 10 | 0   | 20 | 30  | 50  | 40  | 218 | 0   | 80  | 25  |
| 95 | 15 | 60  | 20 | 170 | 8  | 60  | 80  | 70  | 114 | 0   | 0   | 0   |
| 95 | 16 | 70  | 0  | 80  | 8  | 100 | 0   | 10  | 230 | 0   | 0   | 0   |
| 95 | 17 | 80  | 5  | 20  | 0  | 80  | 0   | 20  | 220 | 40  | 200 | 0   |
| 95 | 18 | 10  | 5  | 40  | 0  | 50  | 80  | 20  | 282 | 0   | 0   | 0   |
| 95 | 19 | 40  | 50 | 80  | 0  | 140 | 60  | 10  | 164 | 40  | 0   | 0   |
| 95 | 20 | 240 | 35 | 110 | 8  | 150 | 0   | 80  | 252 | 0   | 160 | 100 |
| 95 | 21 | 20  | 0  | 60  | 0  | 20  | 30  | 20  | 212 | 0   | 160 | 0   |
| 95 | 22 | 110 | 0  | 40  | 0  | 140 | 50  | 40  | 160 | 0   | 0   | 0   |
| 95 | 23 | 80  | 30 | 20  | 4  | 310 | 0   | 0   | 34  | 0   | 40  | 0   |
| 95 | 24 | 80  | 20 | 0   | 0  | 10  | 70  | 40  | 24  | 0   | 40  | 0   |
| 95 | 25 | 20  | 0  | 200 | 8  | 60  | 20  | 40  | 24  | 40  | 0   | 0   |
| 95 | 26 | 40  | 20 | 40  | 0  | 170 | 130 | 10  | 36  | 0   | 160 | 50  |
| 95 | 27 | 20  | 5  | 0   | 0  | 0   | 0   | 0   | 0   | 40  | 0   | 0   |
| 95 | 28 | 30  | 0  | 50  | 0  | 50  | 50  | 0   | 68  | 40  | 0   | 0   |
| 95 | 29 | 50  | 0  | 60  | 4  | 20  | 70  | 0   | 0   | 80  | 400 | 0   |
| 95 | 30 | 300 | 15 | 10  | 0  | 10  | 10  | 60  | 0   | 0   | 0   | 0   |
| 95 | 31 | 0   | 0  | 60  | 0  | 70  | 60  | 0   | 2   | 0   | 0   | 0   |
| 95 | 32 | 40  | 5  | 50  | 8  | 30  | 60  | 60  | 46  | 0   | 0   | 0   |
| 95 | 33 | 40  | 0  | 20  | 0  | 50  | 20  | 20  | 54  | 40  | 0   | 0   |
| 95 | 34 | 50  | 0  | 0   | 0  | 20  | 20  | 10  | 0   | 0   | 0   | 0   |
| 95 | 35 | 20  | 0  | 50  | 18 | 10  | 30  | 0   | 88  | 0   | 0   | 0   |

## Outlier Adjusted Data - B Items

Attachment 4

|    |    |     |    |     |    |     |     |     |     |     |     |     |
|----|----|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 95 | 36 | 40  | 20 | 30  | 4  | 70  | 70  | 70  | 110 | 0   | 240 | 10  |
| 95 | 37 | 20  | 40 | 120 | 4  | 0   | 140 | 0   | 76  | 0   | 0   | 0   |
| 95 | 38 | 10  | 0  | 0   | 0  | 110 | 20  | 70  | 76  | 0   | 160 | 10  |
| 95 | 39 | 130 | 20 | 80  | 0  | 160 | 50  | 10  | 60  | 0   | 0   | 0   |
| 95 | 40 | 150 | 0  | 10  | 0  | 110 | 60  | 10  | 90  | 40  | 0   | 0   |
| 95 | 41 | 0   | 0  | 0   | 0  | 120 | 20  | 10  | 56  | 40  | 120 | 5   |
| 95 | 42 | 70  | 0  | 0   | 4  | 100 | 10  | 50  | 94  | 0   | 0   | 0   |
| 95 | 43 | 120 | 5  | 130 | 4  | 100 | 70  | 20  | 208 | 0   | 160 | 40  |
| 95 | 44 | 160 | 0  | 50  | 0  | 30  | 50  | 10  | 34  | 40  | 0   | 0   |
| 95 | 45 | 50  | 15 | 0   | 0  | 90  | 90  | 50  | 66  | 0   | 80  | 30  |
| 95 | 46 | 40  | 5  | 0   | 0  | 60  | 20  | 20  | 6   | 0   | 80  | 20  |
| 95 | 47 | 120 | 10 | 100 | 0  | 0   | 50  | 0   | 36  | 80  | 0   | 0   |
| 95 | 48 | 50  | 5  | 190 | 4  | 170 | 20  | 10  | 390 | 0   | 0   | 0   |
| 95 | 49 | 10  | 0  | 30  | 0  | 110 | 0   | 20  | 32  | 0   | 0   | 0   |
| 95 | 50 | 30  | 30 | 0   | 12 | 50  | 0   | 0   | 66  | 0   | 0   | 0   |
| 95 | 51 | 80  | 0  | 160 | 0  | 210 | 0   | 10  | 54  | 0   | 0   | 0   |
| 96 | 1  | 50  | 0  | 60  | 4  | 30  | 90  | 140 | 32  | 0   | 0   | 0   |
| 96 | 2  | 30  | 20 | 20  | 8  | 10  | 0   | 0   | 64  | 0   | 0   | 0   |
| 96 | 3  | 30  | 20 | 20  | 12 | 0   | 130 | 20  | 30  | 0   | 120 | 0   |
| 96 | 4  | 0   | 5  | 20  | 12 | 10  | 50  | 10  | 30  | 40  | 0   | 0   |
| 96 | 5  | 100 | 0  | 10  | 4  | 80  | 130 | 30  | 42  | 0   | 0   | 15  |
| 96 | 6  | 60  | 25 | 50  | 12 | 80  | 190 | 0   | 28  | 0   | 0   | 50  |
| 96 | 7  | 0   | 0  | 0   | 0  | 50  | 60  | 20  | 66  | 0   | 0   | 0   |
| 96 | 8  | 30  | 0  | 80  | 0  | 90  | 200 | 0   | 48  | 0   | 120 | 0   |
| 96 | 9  | 60  | 10 | 10  | 0  | 100 | 150 | 0   | 80  | 0   | 0   | 50  |
| 96 | 10 | 90  | 0  | 10  | 0  | 20  | 150 | 40  | 80  | 0   | 120 | 0   |
| 96 | 11 | 70  | 0  | 20  | 4  | 170 | 100 | 10  | 112 | 0   | 0   | 0   |
| 96 | 12 | 50  | 0  | 30  | 0  | 50  | 90  | 0   | 54  | 0   | 120 | 0   |
| 96 | 13 | 20  | 5  | 30  | 0  | 70  | 230 | 10  | 134 | 80  | 40  | 0   |
| 96 | 14 | 10  | 0  | 110 | 3  | 40  | 50  | 10  | 162 | 40  | 0   | 0   |
| 96 | 15 | 20  | 20 | 30  | 0  | 40  | 10  | 100 | 74  | 0   | 40  | 0   |
| 96 | 16 | 30  | 0  | 10  | 1  | 440 | 170 | 20  | 136 | 0   | 80  | 35  |
| 96 | 17 | 10  | 5  | 30  | 4  | 50  | 60  | 10  | 168 | 0   | 80  | 0   |
| 96 | 18 | 100 | 0  | 40  | 0  | 90  | 140 | 0   | 94  | 0   | 40  | 0   |
| 96 | 19 | 80  | 20 | 10  | 4  | 0   | 80  | 0   | 172 | 0   | 0   | 0   |
| 96 | 20 | 50  | 0  | 20  | 4  | 200 | 70  | 20  | 226 | 80  | 0   | 0   |
| 96 | 21 | 50  | 10 | 0   | 0  | 70  | 40  | 10  | 150 | 0   | 160 | 5   |
| 96 | 22 | 100 | 10 | 0   | 0  | 30  | 60  | 0   | 158 | 0   | 0   | 0   |
| 96 | 23 | 10  | 0  | 60  | 0  | 110 | 180 | 0   | 134 | 0   | 0   | 100 |
| 96 | 24 | 40  | 0  | 50  | 0  | 50  | 190 | 20  | 186 | 0   | 0   | 0   |
| 96 | 25 | 60  | 5  | 20  | 0  | 50  | 10  | 20  | 90  | 0   | 160 | 105 |
| 96 | 26 | 80  | 0  | 70  | 4  | 50  | 110 | 40  | 240 | 80  | 0   | 0   |
| 96 | 27 | 120 | 0  | 10  | 0  | 50  | 0   | 0   | 60  | 0   | 0   | 0   |
| 96 | 28 | 20  | 5  | 10  | 0  | 140 | 150 | 100 | 124 | 0   | 0   | 0   |
| 96 | 29 | 0   | 0  | 0   | 5  | 70  | 50  | 0   | 92  | 0   | 0   | 0   |
| 96 | 30 | 30  | 0  | 20  | 0  | 120 | 100 | 0   | 144 | 0   | 0   | 0   |
| 96 | 31 | 190 | 0  | 50  | 0  | 60  | 110 | 10  | 258 | 0   | 0   | 0   |
| 96 | 32 | 80  | 5  | 20  | 0  | 20  | 120 | 30  | 150 | 40  | 300 | 0   |
| 96 | 33 | 50  | 5  | 50  | 5  | 100 | 140 | 0   | 112 | 0   | 120 | 0   |
| 96 | 34 | 70  | 5  | 40  | 0  | 0   | 120 | 0   | 176 | 0   | 320 | 0   |
| 96 | 35 | 30  | 10 | 66  | 4  | 120 | 200 | 20  | 134 | 0   | 0   | 55  |
| 96 | 36 | 20  | 0  | 0   | 0  | 60  | 70  | 20  | 138 | 160 | 0   | 0   |
| 96 | 37 | 40  | 0  | 130 | 0  | 110 | 160 | 20  | 194 | 0   | 0   | 95  |
| 96 | 38 | 0   | 0  | 40  | 0  | 40  | 200 | 0   | 172 | 40  | 0   | 0   |
| 96 | 39 | 40  | 0  | 80  | 15 | 280 | 40  | 70  | 142 | 0   | 0   | 0   |
| 96 | 40 | 0   | 15 | 0   | 0  | 20  | 10  | 0   | 82  | 0   | 0   | 0   |

## Half-Week Demands - A Items

Attachment 5

|              | A01     | A02    | A03   | A04   | A05   | A06   | A07    | A08    | A09   | A10    | A11   | A12   | A13   | A14    |
|--------------|---------|--------|-------|-------|-------|-------|--------|--------|-------|--------|-------|-------|-------|--------|
| Sample Mean  | 762.11  | 118.40 | 32.56 | 28.64 | 47.89 | 52.86 | 200.42 | 174.21 | 71.41 | 126.35 | 70.93 | 18.43 | 78.29 | 182.60 |
| Sample S.D.  | 758.27  | 135.57 | 46.18 | 36.68 | 60.30 | 49.58 | 150.59 | 158.96 | 74.02 | 111.29 | 75.18 | 26.75 | 78.91 | 233.51 |
| Ex Post Mean | 1009.41 | 174.61 | 18.82 | 13.92 | 80.39 | 78.43 | 198.24 | 157.98 | 44.12 | 89.28  | 29.61 | 20.38 | 95.19 | 198.73 |
| Ex Post S.D. | 863.83  | 214.97 | 27.81 | 31.13 | 83.81 | 66.94 | 160.31 | 134.97 | 41.01 | 79.11  | 32.06 | 22.51 | 97.33 | 256.41 |
| Overall Mean | 835.44  | 135.07 | 28.49 | 24.27 | 57.53 | 60.44 | 199.77 | 169.40 | 63.32 | 115.36 | 58.68 | 19.01 | 83.30 | 187.38 |
| Overall S.D. | 797.82  | 164.87 | 42.02 | 35.72 | 69.60 | 56.42 | 153.30 | 152.23 | 67.09 | 104.08 | 68.06 | 25.55 | 84.99 | 240.26 |
| Half-Week #  |         |        |       |       |       |       |        |        |       |        |       |       |       |        |
| 0.5          | 0       | 0      | 40    | 0     | 70    | 20    | 100    | 10     | 50    | 196    | 170   | 7     | 98    | 0      |
| 1.0          | 900     | 160    | 0     | 0     | 0     | 20    | 130    | 20     | 100   | 21     | 0     | 0     | 28    | 0      |
| 1.5          | 2210    | 10     | 5     | 0     | 0     | 10    | 230    | 60     | 70    | 237    | 298   | 7     | 182   | 220    |
| 2.0          | 190     | 150    | 55    | 55    | 0     | 20    | 110    | 20     | 120   | 316    | 88    | 63    | 98    | 0      |
| 2.5          | 230     | 20     | 20    | 70    | 0     | 40    | 10     | 110    | 40    | 3      | 342   | 126   | 84    | 50     |
| 3.0          | 110     | 160    | 40    | 0     | 40    | 50    | 510    | 30     | 100   | 221    | 8     | 7     | 84    | 400    |
| 3.5          | 730     | 490    | 60    | 60    | 10    | 80    | 190    | 120    | 60    | 26     | 0     | 0     | 77    | 0      |
| 4.0          | 1190    | 50     | 75    | 0     | 10    | 80    | 110    | 30     | 60    | 221    | 130   | 0     | 266   | 390    |
| 4.5          | 630     | 0      | 0     | 0     | 10    | 70    | 280    | 160    | 40    | 44     | 18    | 0     | 28    | 90     |
| 5.0          | 250     | 60     | 195   | 50    | 10    | 30    | 100    | 60     | 0     | 5      | 220   | 0     | 84    | 460    |
| 5.5          | 660     | 0      | 0     | 0     | 0     | 10    | 150    | 40     | 240   | 11     | 4     | 0     | 0     | 40     |
| 6.0          | 460     | 0      | 155   | 0     | 0     | 110   | 160    | 40     | 50    | 3      | 92    | 0     | 0     | 0      |
| 6.5          | 1050    | 200    | 45    | 55    | 130   | 20    | 20     | 20     | 240   | 140    | 200   | 0     | 7     | 0      |
| 7.0          | 250     | 120    | 70    | 0     | 0     | 30    | 290    | 50     | 40    | 107    | 138   | 42    | 0     | 0      |
| 7.5          | 540     | 260    | 60    | 35    | 0     | 0     | 360    | 120    | 140   | 188    | 62    | 140   | 77    | 0      |
| 8.0          | 740     | 0      | 0     | 15    | 20    | 190   | 290    | 50     | 90    | 344    | 114   | 0     | 210   | 0      |
| 8.5          | 970     | 0      | 0     | 0     | 0     | 0     | 70     | 100    | 110   | 48     | 106   | 0     | 56    | 40     |
| 9.0          | 370     | 380    | 230   | 60    | 40    | 80    | 80     | 0      | 40    | 22     | 32    | 63    | 14    | 0      |
| 9.5          | 2180    | 0      | 40    | 0     | 0     | 40    | 100    | 20     | 40    | 177    | 122   | 0     | 91    | 300    |
| 10.0         | 280     | 200    | 0     | 0     | 40    | 20    | 0      | 120    | 60    | 68     | 112   | 0     | 21    | 300    |
| 10.5         | 260     | 80     | 235   | 45    | 10    | 20    | 140    | 30     | 260   | 41     | 34    | 0     | 0     | 150    |
| 11.0         | 880     | 160    | 0     | 0     | 0     | 0     | 100    | 100    | 190   | 113    | 46    | 0     | 0     | 20     |
| 11.5         | 120     | 0      | 0     | 0     | 30    | 10    | 150    | 20     | 30    | 560    | 0     | 0     | 91    | 0      |
| 12.0         | 140     | 140    | 100   | 55    | 270   | 0     | 80     | 20     | 60    | 49     | 190   | 0     | 112   | 0      |
| 12.5         | 170     | 0      | 160   | 0     | 40    | 40    | 70     | 40     | 0     | 268    | 62    | 63    | 42    | 40     |
| 13.0         | 1370    | 180    | 0     | 75    | 10    | 20    | 250    | 220    | 150   | 54     | 250   | 56    | 280   | 380    |
| 13.5         | 450     | 110    | 0     | 35    | 40    | 30    | 50     | 170    | 10    | 237    | 0     | 0     | 35    | 60     |
| 14.0         | 380     | 150    | 235   | 0     | 0     | 0     | 150    | 40     | 50    | 183    | 300   | 0     | 21    | 290    |
| 14.5         | 140     | 170    | 5     | 0     | 60    | 40    | 400    | 100    | 0     | 85     | 28    | 0     | 0     | 10     |
| 15.0         | 340     | 180    | 55    | 65    | 0     | 20    | 30     | 0      | 250   | 118    | 82    | 0     | 483   | 10     |
| 15.5         | 300     | 20     | 60    | 0     | 0     | 40    | 110    | 70     | 40    | 36     | 80    | 105   | 84    | 0      |
| 16.0         | 0       | 214    | 100   | 0     | 30    | 30    | 90     | 130    | 210   | 405    | 128   | 0     | 105   | 250    |
| 16.5         | 160     | 20     | 10    | 0     | 50    | 30    | 160    | 40     | 20    | 142    | 0     | 0     | 14    | 310    |
| 17.0         | 20      | 0      | 225   | 55    | 0     | 0     | 270    | 100    | 90    | 124    | 148   | 7     | 35    | 0      |
| 17.5         | 240     | 0      | 40    | 80    | 10    | 50    | 340    | 60     | 300   | 93     | 132   | 0     | 77    | 40     |
| 18.0         | 460     | 0      | 0     | 0     | 90    | 20    | 40     | 120    | 110   | 362    | 188   | 63    | 28    | 510    |
| 18.5         | 1000    | 0      | 20    | 30    | 50    | 70    | 310    | 230    | 30    | 19     | 90    | 7     | 63    | 110    |
| 19.0         | 0       | 0      | 10    | 0     | 10    | 30    | 240    | 90     | 50    | 205    | 4     | 0     | 7     | 190    |
| 19.5         | 1630    | 180    | 60    | 10    | 10    | 0     | 10     | 270    | 160   | 120    | 240   | 7     | 21    | 260    |
| 20.0         | 250     | 0      | 55    | 45    | 0     | 70    | 290    | 30     | 40    | 76     | 0     | 0     | 7     | 150    |
| 20.5         | 40      | 210    | 0     | 0     | 0     | 90    | 420    | 80     | 0     | 140    | 106   | 0     | 63    | 20     |
| 21.0         | 900     | 150    | 0     | 100   | 120   | 0     | 30     | 60     | 130   | 140    | 98    | 21    | 42    | 60     |
| 21.5         | 2130    | 80     | 0     | 100   | 120   | 0     | 110    | 210    | 110   | 331    | 138   | 14    | 14    | 400    |
| 22.0         | 530     | 200    | 90    | 0     | 0     | 80    | 150    | 130    | 90    | 215    | 96    | 0     | 28    | 0      |
| 22.5         | 710     | 70     | 10    | 50    | 10    | 0     | 100    | 120    | 150   | 291    | 116   | 35    | 42    | 0      |
| 23.0         | 790     | 190    | 110   | 0     | 0     | 40    | 0      | 10     | 30    | 38     | 0     | 42    | 63    | 10     |
| 23.5         | 450     | 0      | 10    | 0     | 30    | 80    | 40     | 90     | 140   | 36     | 0     | 7     | 77    | 0      |
| 24.0         | 730     | 480    | 10    | 90    | 60    | 50    | 280    | 190    | 80    | 279    | 212   | 0     | 0     | 620    |
| 24.5         | 540     | 170    | 85    | 0     | 10    | 30    | 220    | 150    | 140   | 228    | 28    | 0     | 63    | 10     |
| 25.0         | 360     | 70     | 45    | 15    | 30    | 60    | 220    | 110    | 20    | 3      | 288   | 7     | 35    | 50     |
| 25.5         | 0       | 20     | 220   | 200   | 10    | 60    | 40     | 180    | 10    | 54     | 32    | 21    | 7     | 480    |
| 26.0         | 0       | 40     | 0     | 0     | 120   | 110   | 150    | 40     | 0     | 170    | 18    | 91    | 56    | 0      |
| 26.5         | 310     | 0      | 0     | 0     | 50    | 0     | 240    | 140    | 140   | 195    | 208   | 42    | 147   | 0      |
| 27.0         | 1050    | 240    | 25    | 50    | 30    | 90    | 20     | 40     | 80    | 141    | 66    | 7     | 70    | 30     |
| 27.5         | 420     | 20     | 0     | 0     | 0     | 100   | 250    | 100    | 0     | 117    | 82    | 56    | 14    | 650    |

## Half-Week Demands - A Items

Attachment 5

|      |      |     |     |     |     |     |     |     |     |     |     |     |     |      |
|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 28.0 | 0    | 160 | 140 | 15  | 20  | 0   | 280 | 190 | 142 | 324 | 116 | 35  | 133 | 0    |
| 28.5 | 260  | 120 | 45  | 85  | 10  | 100 | 150 | 100 | 40  | 173 | 0   | 0   | 259 | 0    |
| 29.0 | 840  | 60  | 0   | 0   | 0   | 0   | 160 | 160 | 50  | 30  | 174 | 56  | 21  | 100  |
| 29.5 | 170  | 440 | 0   | 25  | 90  | 40  | 40  | 40  | 80  | 229 | 272 | 0   | 182 | 0    |
| 30.0 | 810  | 0   | 30  | 30  | 10  | 80  | 160 | 390 | 70  | 401 | 102 | 119 | 77  | 460  |
| 30.5 | 920  | 0   | 20  | 60  | 50  | 0   | 210 | 10  | 80  | 85  | 72  | 0   | 140 | 0    |
| 31.0 | 0    | 0   | 5   | 0   | 10  | 30  | 90  | 150 | 150 | 265 | 100 | 0   | 77  | 560  |
| 31.5 | 2490 | 10  | 5   | 55  | 80  | 0   | 260 | 60  | 250 | 111 | 0   | 49  | 182 | 0    |
| 32.0 | 1330 | 10  | 60  | 0   | 30  | 40  | 250 | 830 | 0   | 50  | 156 | 63  | 7   | 230  |
| 32.5 | 470  | 0   | 5   | 0   | 0   | 0   | 50  | 20  | 100 | 107 | 82  | 35  | 21  | 50   |
| 33.0 | 230  | 0   | 5   | 55  | 0   | 10  | 330 | 180 | 0   | 47  | 110 | 0   | 56  | 0    |
| 33.5 | 670  | 10  | 60  | 45  | 170 | 10  | 280 | 160 | 130 | 300 | 74  | 0   | 70  | 0    |
| 34.0 | 50   | 190 | 60  | 20  | 10  | 240 | 110 | 230 | 20  | 183 | 86  | 70  | 119 | 650  |
| 34.5 | 360  | 280 | 75  | 0   | 0   | 10  | 470 | 40  | 140 | 280 | 298 | 14  | 343 | 350  |
| 35.0 | 980  | 100 | 0   | 10  | 10  | 20  | 50  | 460 | 70  | 28  | 0   | 21  | 7   | 100  |
| 35.5 | 0    | 90  | 100 | 0   | 20  | 30  | 10  | 0   | 20  | 15  | 40  | 21  | 140 | 0    |
| 36.0 | 380  | 10  | 15  | 75  | 40  | 20  | 160 | 230 | 0   | 34  | 70  | 0   | 14  | 0    |
| 36.5 | 20   | 160 | 0   | 60  | 0   | 110 | 230 | 430 | 60  | 138 | 4   | 7   | 28  | 340  |
| 37.0 | 3240 | 40  | 65  | 0   | 340 | 30  | 290 | 240 | 50  | 65  | 146 | 0   | 105 | 70   |
| 37.5 | 1120 | 0   | 5   | 130 | 20  | 10  | 60  | 320 | 30  | 164 | 36  | 7   | 98  | 50   |
| 38.0 | 0    | 280 | 5   | 0   | 0   | 20  | 60  | 30  | 0   | 32  | 126 | 14  | 35  | 0    |
| 38.5 | 890  | 10  | 0   | 0   | 130 | 30  | 80  | 0   | 110 | 170 | 210 | 49  | 0   | 530  |
| 39.0 | 150  | 250 | 60  | 0   | 0   | 30  | 170 | 160 | 90  | 152 | 18  | 7   | 315 | 100  |
| 39.5 | 630  | 460 | 10  | 35  | 0   | 40  | 340 | 340 | 110 | 75  | 316 | 105 | 189 | 400  |
| 40.0 | 470  | 0   | 75  | 0   | 90  | 60  | 190 | 80  | 90  | 590 | 40  | 21  | 0   | 0    |
| 40.5 | 270  | 0   | 85  | 60  | 10  | 20  | 380 | 230 | 30  | 316 | 126 | 0   | 140 | 0    |
| 41.0 | 490  | 100 | 65  | 0   | 30  | 100 | 140 | 160 | 130 | 265 | 280 | 70  | 105 | 0    |
| 41.5 | 190  | 0   | 25  | 5   | 20  | 0   | 230 | 420 | 70  | 262 | 112 | 14  | 21  | 0    |
| 42.0 | 30   | 60  | 0   | 45  | 50  | 10  | 360 | 530 | 0   | 200 | 0   | 28  | 448 | 0    |
| 42.5 | 10   | 540 | 110 | 100 | 90  | 30  | 20  | 30  | 20  | 76  | 66  | 35  | 0   | 1000 |
| 43.0 | 870  | 40  | 50  | 0   | 60  | 40  | 260 | 340 | 160 | 171 | 64  | 14  | 189 | 270  |
| 43.5 | 2980 | 0   | 50  | 55  | 0   | 10  | 170 | 190 | 210 | 8   | 62  | 0   | 91  | 50   |
| 44.0 | 200  | 0   | 5   | 10  | 80  | 10  | 190 | 0   | 50  | 62  | 0   | 0   | 84  | 0    |
| 44.5 | 640  | 200 | 0   | 0   | 0   | 40  | 40  | 60  | 150 | 312 | 140 | 35  | 42  | 10   |
| 45.0 | 660  | 80  | 20  | 60  | 50  | 40  | 390 | 570 | 80  | 17  | 62  | 0   | 35  | 0    |
| 45.5 | 1790 | 0   | 40  | 10  | 90  | 0   | 10  | 40  | 0   | 118 | 74  | 0   | 119 | 720  |
| 46.0 | 30   | 0   | 0   | 110 | 20  | 60  | 280 | 280 | 60  | 22  | 42  | 84  | 182 | 840  |
| 46.5 | 160  | 390 | 0   | 50  | 0   | 10  | 70  | 60  | 40  | 75  | 102 | 7   | 105 | 0    |
| 47.0 | 540  | 270 | 140 | 20  | 30  | 60  | 310 | 70  | 360 | 149 | 24  | 21  | 0   | 480  |
| 47.5 | 140  | 260 | 55  | 135 | 50  | 20  | 60  | 80  | 10  | 76  | 0   | 0   | 35  | 100  |
| 48.0 | 420  | 0   | 30  | 35  | 0   | 20  | 300 | 140 | 20  | 8   | 98  | 7   | 119 | 0    |
| 48.5 | 680  | 80  | 10  | 0   | 90  | 140 | 280 | 430 | 50  | 144 | 62  | 21  | 140 | 810  |
| 49.0 | 680  | 40  | 20  | 5   | 30  | 50  | 340 | 40  | 100 | 73  | 54  | 0   | 0   | 370  |
| 49.5 | 0    | 130 | 0   | 0   | 0   | 60  | 110 | 20  | 120 | 353 | 112 | 7   | 70  | 480  |
| 50.0 | 600  | 70  | 10  | 60  | 40  | 50  | 210 | 170 | 80  | 53  | 0   | 0   | 105 | 0    |
| 50.5 | 890  | 0   | 100 | 10  | 100 | 60  | 160 | 30  | 180 | 30  | 98  | 14  | 28  | 0    |
| 51.0 | 1730 | 0   | 30  | 45  | 0   | 0   | 320 | 290 | 40  | 222 | 54  | 21  | 77  | 620  |
| 51.5 | 680  | 0   | 20  | 60  | 0   | 20  | 380 | 220 | 40  | 35  | 26  | 21  | 28  | 480  |
| 52.0 | 220  | 0   | 80  | 0   | 0   | 20  | 130 | 10  | 20  | 49  | 34  | 0   | 70  | 0    |
| 52.5 | 320  | 140 | 65  | 20  | 50  | 0   | 20  | 250 | 70  | 61  | 0   | 0   | 112 | 0    |
| 53.0 | 540  | 0   | 0   | 30  | 40  | 100 | 600 | 40  | 30  | 93  | 198 | 0   | 21  | 690  |
| 53.5 | 720  | 90  | 20  | 0   | 110 | 80  | 380 | 350 | 160 | 62  | 0   | 7   | 14  | 0    |
| 54.0 | 240  | 10  | 0   | 0   | 60  | 60  | 10  | 200 | 10  | 351 | 146 | 0   | 105 | 480  |
| 54.5 | 0    | 10  | 0   | 35  | 10  | 90  | 210 | 330 | 100 | 41  | 0   | 0   | 49  | 30   |
| 55.0 | 1400 | 290 | 21  | 20  | 30  | 10  | 494 | 30  | 230 | 253 | 288 | 0   | 63  | 20   |
| 55.5 | 0    | 80  | 50  | 75  | 0   | 90  | 190 | 190 | 130 | 121 | 24  | 14  | 0   | 330  |
| 56.0 | 620  | 20  | 0   | 0   | 80  | 0   | 90  | 650 | 70  | 187 | 176 | 14  | 133 | 10   |
| 56.5 | 260  | 160 | 0   | 0   | 0   | 0   | 300 | 190 | 0   | 18  | 44  | 21  | 14  | 310  |
| 57.0 | 2800 | 0   | 10  | 0   | 0   | 0   | 70  | 390 | 0   | 73  | 0   | 0   | 0   | 290  |
| 57.5 | 370  | 250 | 35  | 0   | 20  | 20  | 310 | 240 | 110 | 29  | 14  | 14  | 0   | 710  |
| 58.0 | 730  | 170 | 0   | 35  | 30  | 30  | 90  | 50  | 30  | 118 | 60  | 0   | 147 | 200  |
| 58.5 | 400  | 20  | 15  | 55  | 80  | 10  | 10  | 80  | 120 | 238 | 30  | 14  | 14  | 40   |
| 59.0 | 60   | 20  | 0   | 95  | 0   | 60  | 210 | 140 | 70  | 0   | 142 | 0   | 147 | 60   |

## Half-Week Demands - A Items

Attachment 5

|      |      |     |     |     |     |     |     |     |     |     |     |    |     |     |
|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|
| 59.5 | 660  | 0   | 0   | 85  | 10  | 10  | 540 | 570 | 160 | 101 | 36  | 21 | 63  | 550 |
| 60.0 | 400  | 240 | 15  | 15  | 50  | 80  | 60  | 80  | 0   | 32  | 86  | 0  | 56  | 0   |
| 60.5 | 1810 | 120 | 0   | 0   | 60  | 30  | 220 | 0   | 60  | 72  | 116 | 70 | 91  | 150 |
| 61.0 | 250  | 100 | 0   | 5   | 0   | 30  | 70  | 270 | 40  | 138 | 10  | 14 | 42  | 30  |
| 61.5 | 1620 | 0   | 145 | 0   | 80  | 50  | 20  | 220 | 150 | 38  | 0   | 21 | 42  | 0   |
| 62.0 | 40   | 200 | 0   | 75  | 90  | 20  | 410 | 130 | 30  | 130 | 84  | 7  | 91  | 360 |
| 62.5 | 350  | 0   | 75  | 0   | 0   | 0   | 70  | 90  | 20  | 311 | 84  | 49 | 56  | 0   |
| 63.0 | 270  | 20  | 0   | 65  | 50  | 20  | 60  | 150 | 210 | 11  | 122 | 0  | 70  | 450 |
| 63.5 | 40   | 0   | 0   | 10  | 0   | 140 | 80  | 190 | 160 | 513 | 46  | 7  | 84  | 540 |
| 64.0 | 880  | 320 | 80  | 15  | 140 | 0   | 340 | 190 | 0   | 47  | 50  | 0  | 126 | 70  |
| 64.5 | 930  | 140 | 0   | 0   | 60  | 50  | 170 | 400 | 140 | 176 | 80  | 0  | 266 | 0   |
| 65.0 | 210  | 0   | 110 | 95  | 20  | 30  | 300 | 60  | 10  | 48  | 34  | 0  | 0   | 60  |
| 65.5 | 880  | 20  | 0   | 5   | 10  | 100 | 240 | 50  | 50  | 92  | 40  | 0  | 21  | 300 |
| 66.0 | 360  | 0   | 0   | 0   | 10  | 0   | 40  | 220 | 150 | 13  | 12  | 28 | 238 | 0   |
| 66.5 | 1940 | 150 | 10  | 5   | 30  | 20  | 200 | 380 | 80  | 224 | 100 | 7  | 161 | 200 |
| 67.0 | 1080 | 130 | 10  | 165 | 110 | 70  | 500 | 80  | 70  | 84  | 80  | 7  | 112 | 210 |
| 67.5 | 160  | 100 | 0   | 0   | 0   | 50  | 30  | 80  | 110 | 130 | 64  | 21 | 42  | 0   |
| 68.0 | 360  | 0   | 30  | 110 | 100 | 20  | 190 | 320 | 40  | 59  | 18  | 7  | 49  | 940 |
| 68.5 | 430  | 260 | 25  | 5   | 10  | 10  | 170 | 90  | 180 | 230 | 0   | 56 | 77  | 0   |
| 69.0 | 630  | 0   | 25  | 95  | 50  | 0   | 160 | 360 | 10  | 15  | 160 | 56 | 119 | 30  |
| 69.5 | 770  | 140 | 20  | 0   | 0   | 120 | 260 | 20  | 50  | 102 | 70  | 42 | 168 | 400 |
| 70.0 | 1590 | 0   | 15  | 0   | 130 | 0   | 0   | 200 | 20  | 17  | 20  | 0  | 0   | 0   |
| 70.5 | 1100 | 10  | 0   | 0   | 200 | 50  | 70  | 120 | 100 | 61  | 112 | 14 | 56  | 0   |
| 71.0 | 320  | 30  | 100 | 145 | 0   | 10  | 460 | 440 | 10  | 163 | 12  | 7  | 14  | 50  |
| 71.5 | 980  | 140 | 0   | 20  | 130 | 10  | 300 | 540 | 120 | 122 | 56  | 49 | 70  | 0   |
| 72.0 | 1960 | 300 | 10  | 0   | 0   | 140 | 80  | 90  | 60  | 109 | 108 | 14 | 147 | 260 |
| 72.5 | 1380 | 0   | 45  | 0   | 110 | 230 | 100 | 200 | 120 | 116 | 68  | 14 | 84  | 290 |
| 73.0 | 40   | 340 | 70  | 80  | 90  | 10  | 240 | 330 | 40  | 129 | 38  | 14 | 182 | 110 |
| 73.5 | 20   | 0   | 50  | 60  | 0   | 70  | 140 | 60  | 10  | 17  | 102 | 7  | 112 | 120 |
| 74.0 | 2540 | 280 | 10  | 0   | 0   | 110 | 450 | 450 | 30  | 95  | 32  | 0  | 0   | 310 |
| 74.5 | 330  | 640 | 0   | 0   | 40  | 90  | 330 | 410 | 210 | 266 | 0   | 0  | 105 | 0   |
| 75.0 | 410  | 0   | 50  | 55  | 150 | 90  | 90  | 100 | 100 | 105 | 128 | 0  | 133 | 120 |
| 75.5 | 700  | 210 | 10  | 30  | 120 | 40  | 150 | 170 | 90  | 146 | 66  | 0  | 7   | 70  |
| 76.0 | 340  | 150 | 0   | 30  | 60  | 20  | 400 | 370 | 50  | 15  | 78  | 14 | 91  | 470 |
| 76.5 | 2840 | 340 | 10  | 0   | 150 | 50  | 50  | 140 | 120 | 159 | 102 | 0  | 0   | 0   |
| 77.0 | 0    | 20  | 0   | 20  | 50  | 30  | 70  | 80  | 30  | 9   | 46  | 49 | 119 | 500 |
| 77.5 | 1040 | 320 | 35  | 5   | 0   | 140 | 480 | 370 | 100 | 192 | 118 | 0  | 42  | 500 |
| 78.0 | 100  | 60  | 10  | 55  | 183 | 43  | 285 | 10  | 80  | 55  | 60  | 14 | 147 | 0   |
| 78.5 | 830  | 160 | 60  | 60  | 10  | 60  | 450 | 270 | 460 | 81  | 258 | 28 | 196 | 0   |
| 79.0 | 410  | 240 | 0   | 0   | 0   | 70  | 10  | 130 | 150 | 220 | 74  | 14 | 0   | 0   |
| 79.5 | 560  | 180 | 0   | 20  | 0   | 120 | 130 | 440 | 60  | 314 | 82  | 7  | 35  | 70  |
| 80.0 | 720  | 100 | 0   | 0   | 190 | 100 | 120 | 370 | 30  | 78  | 38  | 0  | 112 | 0   |
| 80.5 | 1560 | 600 | 60  | 0   | 10  | 170 | 400 | 100 | 0   | 329 | 66  | 77 | 56  | 470 |
| 81.0 | 520  | 0   | 110 | 50  | 140 | 60  | 290 | 565 | 330 | 378 | 64  | 63 | 133 | 10  |
| 81.5 | 310  | 0   | 0   | 0   | 70  | 40  | 70  | 90  | 30  | 64  | 88  | 0  | 14  | 600 |
| 82.0 | 1510 | 160 | 80  | 10  | 60  | 100 | 80  | 320 | 10  | 76  | 0   | 42 | 56  | 10  |
| 82.5 | 380  | 40  | 25  | 0   | 30  | 60  | 110 | 250 | 110 | 75  | 0   | 28 | 112 | 0   |
| 83.0 | 1300 | 0   | 35  | 0   | 80  | 140 | 260 | 110 | 20  | 44  | 32  | 0  | 0   | 500 |
| 83.5 | 1180 | 540 | 0   | 5   | 0   | 0   | 410 | 140 | 10  | 56  | 0   | 35 | 7   | 0   |
| 84.0 | 900  | 0   | 0   | 5   | 50  | 100 | 80  | 410 | 30  | 112 | 70  | 0  | 28  | 0   |
| 84.5 | 1130 | 480 | 10  | 0   | 0   | 70  | 140 | 70  | 50  | 12  | 4   | 21 | 42  | 0   |
| 85.0 | 2050 | 0   | 25  | 35  | 120 | 20  | 260 | 750 | 90  | 177 | 22  | 0  | 14  | 130 |
| 85.5 | 60   | 200 | 20  | 45  | 0   | 90  | 0   | 150 | 430 | 261 | 42  | 0  | 35  | 440 |
| 86.0 | 500  | 40  | 5   | 25  | 60  | 70  | 840 | 310 | 40  | 33  | 64  | 0  | 84  | 60  |
| 86.5 | 330  | 0   | 0   | 0   | 30  | 0   | 240 | 220 | 40  | 11  | 110 | 7  | 21  | 0   |
| 87.0 | 1290 | 40  | 10  | 110 | 0   | 180 | 300 | 110 | 0   | 59  | 0   | 0  | 119 | 320 |
| 87.5 | 240  | 160 | 25  | 20  | 10  | 0   | 350 | 620 | 50  | 126 | 44  | 0  | 42  | 0   |
| 88.0 | 740  | 60  | 45  | 0   | 10  | 10  | 90  | 20  | 10  | 161 | 128 | 7  | 77  | 460 |
| 88.5 | 460  | 180 | 10  | 0   | 87  | 20  | 40  | 10  | 20  | 3   | 34  | 21 | 147 | 0   |
| 89.0 | 1080 | 80  | 0   | 60  | 0   | 40  | 150 | 430 | 70  | 116 | 28  | 0  | 14  | 190 |
| 89.5 | 350  | 180 | 145 | 0   | 30  | 40  | 40  | 150 | 40  | 166 | 24  | 14 | 42  | 90  |
| 90.0 | 3090 | 20  | 0   | 5   | 90  | 120 | 360 | 370 | 100 | 79  | 136 | 21 | 14  | 870 |
| 90.5 | 290  | 180 | 45  | 35  | 170 | 50  | 60  | 260 | 70  | 35  | 36  | 28 | 182 | 360 |

## Half-Week Demands - A Items

Attachment 5

|       |      |     |    |     |     |     |     |     |     |     |     |     |     |      |
|-------|------|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 91.0  | 490  | 120 | 0  | 45  | 0   | 60  | 190 | 190 | 150 | 217 | 150 | 28  | 0   | 10   |
| 91.5  | 3480 | 10  | 50 | 30  | 10  | 20  | 180 | 90  | 40  | 145 | 102 | 0   | 224 | 60   |
| 92.0  | 160  | 90  | 0  | 0   | 110 | 80  | 300 | 300 | 10  | 44  | 20  | 119 | 7   | 0    |
| 92.5  | 30   | 0   | 0  | 85  | 100 | 80  | 440 | 420 | 0   | 113 | 0   | 7   | 126 | 0    |
| 93.0  | 1710 | 140 | 70 | 5   | 10  | 60  | 100 | 70  | 10  | 76  | 110 | 0   | 0   | 1010 |
| 93.5  | 390  | 420 | 10 | 0   | 260 | 210 | 180 | 70  | 20  | 145 | 38  | 0   | 105 | 30   |
| 94.0  | 3870 | 0   | 15 | 90  | 0   | 90  | 160 | 330 | 70  | 23  | 124 | 14  | 112 | 60   |
| 94.5  | 330  | 100 | 50 | 5   | 180 | 60  | 170 | 20  | 70  | 175 | 32  | 14  | 77  | 210  |
| 95.0  | 410  | 0   | 0  | 25  | 0   | 60  | 340 | 50  | 60  | 0   | 76  | 14  | 77  | 300  |
| 95.5  | 530  | 0   | 0  | 0   | 160 | 0   | 170 | 320 | 20  | 9   | 30  | 35  | 147 | 410  |
| 96.0  | 490  | 420 | 0  | 55  | 0   | 60  | 220 | 110 | 0   | 236 | 94  | 0   | 7   | 0    |
| 96.5  | 820  | 170 | 0  | 0   | 40  | 70  | 500 | 150 | 40  | 54  | 158 | 14  | 49  | 220  |
| 97.0  | 700  | 70  | 0  | 10  | 0   | 20  | 20  | 90  | 0   | 177 | 0   | 7   | 147 | 180  |
| 97.5  | 160  | 40  | 15 | 70  | 50  | 10  | 270 | 280 | 50  | 67  | 160 | 0   | 168 | 0    |
| 98.0  | 900  | 200 | 50 | 40  | 20  | 100 | 60  | 150 | 0   | 38  | 0   | 0   | 0   | 280  |
| 98.5  | 1880 | 430 | 0  | 90  | 70  | 60  | 330 | 730 | 0   | 52  | 22  | 35  | 273 | 0    |
| 99.0  | 1360 | 90  | 20 | 5   | 40  | 50  | 80  | 40  | 100 | 473 | 224 | 0   | 0   | 420  |
| 99.5  | 1200 | 230 | 70 | 10  | 380 | 140 | 640 | 0   | 10  | 348 | 220 | 112 | 28  | 320  |
| 100.0 | 420  | 110 | 0  | 0   | 0   | 170 | 150 | 390 | 20  | 16  | 0   | 0   | 161 | 140  |
| 100.5 | 270  | 70  | 40 | 50  | 30  | 180 | 490 | 210 | 20  | 155 | 0   | 7   | 56  | 660  |
| 101.0 | 3890 | 70  | 0  | 10  | 120 | 0   | 50  | 60  | 20  | 125 | 178 | 14  | 7   | 20   |
| 101.5 | 0    | 110 | 5  | 0   | 150 | 60  | 140 | 280 | 20  | 74  | 24  | 0   | 168 | 60   |
| 102.0 | 1060 | 10  | 15 | 0   | 50  | 180 | 270 | 80  | 40  | 101 | 0   | 28  | 21  | 0    |
| 102.5 | 10   | 0   | 15 | 95  | 10  | 30  | 270 | 110 | 0   | 59  | 0   | 7   | 266 | 80   |
| 103.0 | 150  | 400 | 69 | 5   | 40  | 80  | 130 | 210 | 150 | 473 | 0   | 0   | 375 | 20   |
| 103.5 | 1960 | 10  | 10 | 0   | 50  | 120 | 120 | 50  | 20  | 99  | 0   | 7   | 126 | 930  |
| 104.0 | 360  | 170 | 15 | 10  | 120 | 80  | 420 | 150 | 10  | 97  | 0   | 7   | 91  | 110  |
| 104.5 | 50   | 200 | 90 | 0   | 110 | 10  | 70  | 40  | 0   | 57  | 34  | 0   | 0   | 180  |
| 105.0 | 1430 | 0   | 0  | 90  | 30  | 70  | 330 | 10  | 60  | 20  | 0   | 49  | 77  | 250  |
| 105.5 | 3360 | 20  | 0  | 30  | 100 | 50  | 210 | 20  | 40  | 106 | 0   | 21  | 0   | 20   |
| 106.0 | 620  | 60  | 30 | 30  | 110 | 60  | 270 | 90  | 0   | 6   | 10  | 14  | 91  | 50   |
| 106.5 | 1500 | 30  | 0  | 30  | 130 | 0   | 220 | 200 | 130 | 160 | 0   | 0   | 105 | 340  |
| 107.0 | 1540 | 170 | 0  | 0   | 20  | 110 | 480 | 90  | 20  | 92  | 0   | 91  | 42  | 220  |
| 107.5 | 360  | 30  | 25 | 15  | 0   | 10  | 110 | 20  | 0   | 20  | 0   | 0   | 7   | 0    |
| 108.0 | 380  | 50  | 30 | 40  | 0   | 20  | 90  | 80  | 20  | 78  | 0   | 0   | 35  | 200  |
| 108.5 | 70   | 80  | 20 | 0   | 120 | 160 | 20  | 30  | 50  | 156 | 4   | 49  | 7   | 580  |
| 109.0 | 1150 | 40  | 0  | 125 | 100 | 190 | 750 | 140 | 20  | 75  | 6   | 7   | 70  | 30   |
| 109.5 | 1350 | 180 | 20 | 55  | 20  | 100 | 270 | 150 | 10  | 29  | 8   | 7   | 0   | 90   |
| 110.0 | 190  | 20  | 10 | 0   | 0   | 0   | 220 | 0   | 50  | 174 | 0   | 0   | 14  | 110  |
| 110.5 | 790  | 200 | 75 | 0   | 150 | 110 | 170 | 20  | 50  | 213 | 4   | 0   | 42  | 550  |
| 111.0 | 1070 | 320 | 5  | 0   | 10  | 60  | 102 | 115 | 80  | 25  | 6   | 56  | 0   | 0    |
| 111.5 | 0    | 140 | 25 | 125 | 230 | 240 | 30  | 300 | 30  | 69  | 6   | 21  | 0   | 0    |
| 112.0 | 1300 | 110 | 0  | 0   | 50  | 90  | 470 | 220 | 10  | 43  | 2   | 63  | 126 | 550  |
| 112.5 | 1900 | 70  | 15 | 20  | 50  | 80  | 170 | 10  | 80  | 55  | 0   | 28  | 0   | 0    |
| 113.0 | 1860 | 130 | 20 | 0   | 100 | 80  | 260 | 550 | 20  | 8   | 28  | 21  | 119 | 460  |
| 113.5 | 1480 | 260 | 15 | 5   | 0   | 20  | 130 | 200 | 50  | 20  | 0   | 0   | 147 | 0    |
| 114.0 | 100  | 0   | 0  | 55  | 10  | 20  | 350 | 20  | 40  | 64  | 32  | 14  | 98  | 350  |
| 114.5 | 1010 | 230 | 5  | 35  | 0   | 90  | 310 | 260 | 10  | 102 | 0   | 42  | 154 | 0    |
| 115.0 | 1730 | 30  | 10 | 80  | 40  | 0   | 0   | 110 | 30  | 101 | 14  | 0   | 35  | 180  |
| 115.5 | 390  | 290 | 35 | 40  | 60  | 30  | 50  | 20  | 40  | 12  | 0   | 21  | 28  | 380  |
| 116.0 | 890  | 230 | 55 | 15  | 50  | 120 | 370 | 290 | 0   | 37  | 0   | 0   | 7   | 80   |
| 116.5 | 1140 | 540 | 50 | 65  | 0   | 90  | 290 | 330 | 30  | 150 | 0   | 49  | 140 | 0    |
| 117.0 | 1300 | 40  | 0  | 45  | 80  | 30  | 40  | 150 | 0   | 109 | 24  | 0   | 56  | 0    |
| 117.5 | 730  | 240 | 0  | 5   | 50  | 110 | 10  | 80  | 20  | 25  | 6   | 28  | 182 | 450  |
| 118.0 | 650  | 0   | 35 | 0   | 0   | 0   | 190 | 60  | 10  | 185 | 0   | 7   | 56  | 0    |
| 118.5 | 1280 | 220 | 0  | 55  | 20  | 120 | 120 | 230 | 150 | 326 | 54  | 7   | 35  | 470  |
| 119.0 | 1340 | 0   | 0  | 0   | 120 | 80  | 400 | 280 | 0   | 3   | 0   | 7   | 35  | 0    |
| 119.5 | 0    | 220 | 0  | 25  | 0   | 50  | 40  | 360 | 0   | 7   | 26  | 0   | 14  | 0    |
| 120.0 | 1340 | 460 | 50 | 35  | 70  | 90  | 500 | 270 | 20  | 56  | 6   | 42  | 84  | 80   |
| 120.5 | 20   | 0   | 0  | 0   | 30  | 10  | 10  | 600 | 40  | 64  | 30  | 7   | 21  | 280  |
| 121.0 | 2480 | 140 | 0  | 0   | 30  | 40  | 510 | 70  | 70  | 76  | 14  | 35  | 35  | 300  |
| 0.5   | 190  | 0   | 20 | 0   | 20  | 30  | 60  | 420 | 60  | 92  | 10  | 56  | 70  | 220  |
| 1.0   | 1010 | 500 | 15 | 90  | 70  | 60  | 170 | 20  | 10  | 118 | 24  | 0   | 28  | 320  |

## Half-Week Demands - A Items

Attachment 5

|      |      |     |     |     |     |     |     |     |     |     |     |     |     |     |
|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.5  | 1520 | 140 | 35  | 0   | 90  | 210 | 170 | 240 | 90  | 23  | 0   | 7   | 7   | 0   |
| 2.0  | 1460 | 0   | 45  | 25  | 0   | 0   | 410 | 60  | 0   | 166 | 82  | 7   | 28  | 400 |
| 2.5  | 1960 | 0   | 15  | 100 | 10  | 180 | 30  | 410 | 50  | 204 | 92  | 7   | 105 | 110 |
| 3.0  | 1200 | 620 | 5   | 30  | 90  | 30  | 230 | 220 | 80  | 6   | 0   | 42  | 553 | 40  |
| 3.5  | 3980 | 280 | 65  | 0   | 20  | 80  | 40  | 900 | 20  | 157 | 46  | 0   | 119 | 0   |
| 4.0  | 620  | 10  | 0   | 0   | 30  | 20  | 440 | 20  | 30  | 74  | 6   | 21  | 35  | 0   |
| 4.5  | 1160 | 70  | 15  | 10  | 30  | 10  | 90  | 260 | 110 | 80  | 0   | 0   | 98  | 340 |
| 5.0  | 540  | 130 | 10  | 0   | 140 | 70  | 210 | 140 | 70  | 305 | 82  | 35  | 294 | 260 |
| 5.5  | 2410 | 180 | 10  | 10  | 80  | 140 | 220 | 250 | 60  | 295 | 0   | 7   | 245 | 800 |
| 6.0  | 430  | 0   | 0   | 0   | 30  | 40  | 400 | 490 | 30  | 20  | 2   | 84  | 140 | 0   |
| 6.5  | 120  | 80  | 10  | 0   | 100 | 130 | 100 | 40  | 140 | 82  | 114 | 14  | 210 | 0   |
| 7.0  | 660  | 200 | 0   | 0   | 20  | 30  | 100 | 100 | 0   | 268 | 16  | 21  | 42  | 80  |
| 7.5  | 2920 | 480 | 0   | 40  | 20  | 130 | 180 | 240 | 90  | 363 | 104 | 35  | 168 | 110 |
| 8.0  | 40   | 0   | 30  | 20  | 0   | 70  | 10  | 50  | 160 | 239 | 26  | 0   | 21  | 410 |
| 8.5  | 0    | 0   | 95  | 5   | 20  | 30  | 30  | 70  | 10  | 26  | 16  | 7   | 14  | 320 |
| 9.0  | 660  | 0   | 0   | 0   | 60  | 60  | 190 | 350 | 0   | 44  | 0   | 0   | 98  | 90  |
| 9.5  | 110  | 10  | 20  | 155 | 10  | 60  | 70  | 190 | 20  | 115 | 26  | 14  | 105 | 0   |
| 10.0 | 250  | 10  | 60  | 0   | 100 | 60  | 160 | 10  | 50  | 25  | 30  | 14  | 0   | 420 |
| 10.5 | 2180 | 520 | 5   | 50  | 170 | 90  | 540 | 240 | 10  | 199 | 0   | 0   | 42  | 450 |
| 11.0 | 180  | 220 | 0   | 5   | 80  | 80  | 440 | 190 | 40  | 4   | 36  | 28  | 0   | 0   |
| 11.5 | 400  | 60  | 0   | 0   | 40  | 10  | 680 | 220 | 0   | 0   | 16  | 0   | 7   | 0   |
| 12.0 | 0    | 200 | 0   | 0   | 20  | 80  | 120 | 50  | 30  | 42  | 0   | 7   | 28  | 400 |
| 12.5 | 870  | 60  | 0   | 10  | 0   | 0   | 120 | 20  | 10  | 145 | 4   | 42  | 168 | 0   |
| 13.0 | 70   | 80  | 0   | 0   | 20  | 0   | 100 | 10  | 50  | 100 | 22  | 0   | 7   | 0   |
| 13.5 | 2220 | 60  | 25  | 5   | 110 | 60  | 720 | 30  | 20  | 34  | 22  | 63  | 21  | 250 |
| 14.0 | 1380 | 0   | 0   | 0   | 50  | 100 | 150 | 140 | 0   | 22  | 2   | 14  | 91  | 270 |
| 14.5 | 440  | 50  | 30  | 105 | 90  | 230 | 280 | 290 | 40  | 21  | 8   | 42  | 14  | 400 |
| 15.0 | 2260 | 810 | 0   | 5   | 0   | 90  | 140 | 30  | 30  | 77  | 32  | 28  | 42  | 0   |
| 15.5 | 1300 | 440 | 20  | 35  | 100 | 130 | 810 | 110 | 20  | 40  | 0   | 14  | 119 | 400 |
| 16.0 | 320  | 40  | 0   | 0   | 100 | 0   | 210 | 180 | 40  | 261 | 12  | 0   | 42  | 90  |
| 16.5 | 710  | 50  | 0   | 0   | 40  | 130 | 120 | 270 | 60  | 7   | 0   | 14  | 49  | 0   |
| 17.0 | 1630 | 70  | 135 | 5   | 100 | 0   | 210 | 150 | 20  | 77  | 16  | 42  | 56  | 650 |
| 17.5 | 450  | 240 | 25  | 5   | 120 | 90  | 100 | 0   | 30  | 101 | 8   | 49  | 28  | 0   |
| 18.0 | 370  | 0   | 50  | 80  | 0   | 0   | 40  | 200 | 10  | 25  | 32  | 35  | 21  | 0   |
| 18.5 | 110  | 70  | 5   | 0   | 40  | 80  | 260 | 200 | 70  | 32  | 30  | 0   | 63  | 90  |
| 19.0 | 430  | 150 | 50  | 60  | 80  | 120 | 120 | 20  | 20  | 31  | 0   | 14  | 0   | 390 |
| 19.5 | 580  | 0   | 0   | 0   | 60  | 60  | 90  | 140 | 0   | 50  | 52  | 0   | 0   | 0   |
| 20.0 | 2440 | 380 | 0   | 40  | 0   | 10  | 70  | 360 | 30  | 97  | 10  | 7   | 133 | 0   |
| 20.5 | 1110 | 440 | 20  | 0   | 170 | 70  | 130 | 190 | 130 | 50  | 40  | 7   | 21  | 0   |
| 21.0 | 2350 | 0   | 10  | 175 | 10  | 150 | 210 | 240 | 30  | 125 | 2   | 28  | 84  | 590 |
| 21.5 | 2080 | 80  | 15  | 0   | 110 | 110 | 170 | 90  | 10  | 112 | 32  | 0   | 154 | 0   |
| 22.0 | 400  | 180 | 0   | 10  | 30  | 0   | 130 | 40  | 0   | 7   | 24  | 28  | 49  | 400 |
| 22.5 | 160  | 450 | 30  | 0   | 40  | 10  | 160 | 80  | 20  | 23  | 8   | 49  | 105 | 0   |
| 23.0 | 3180 | 150 | 10  | 75  | 10  | 60  | 80  | 250 | 40  | 68  | 2   | 0   | 63  | 410 |
| 23.5 | 2080 | 60  | 35  | 5   | 220 | 100 | 190 | 110 | 50  | 200 | 42  | 35  | 70  | 0   |
| 24.0 | 860  | 160 | 15  | 0   | 0   | 50  | 120 | 350 | 100 | 52  | 6   | 28  | 77  | 480 |
| 24.5 | 30   | 300 | 0   | 0   | 0   | 0   | 250 | 120 | 60  | 76  | 36  | 0   | 70  | 0   |
| 25.0 | 2550 | 0   | 0   | 15  | 130 | 90  | 170 | 310 | 0   | 29  | 8   | 7   | 7   | 550 |
| 25.5 | 1250 | 330 | 10  | 0   | 60  | 100 | 0   | 120 | 50  | 235 | 100 | 119 | 119 | 0   |
| 26.0 | 1290 | 230 | 0   | 0   | 90  | 70  | 270 | 20  | 30  | 10  | 18  | 0   | 7   | 60  |
| 26.5 | 1220 | 0   | 60  | 0   | 130 | 30  | 170 | 110 | 80  | 5   | 36  | 14  | 77  | 40  |
| 27.0 | 400  | 0   | 0   | 0   | 0   | 300 | 430 | 60  | 0   | 58  | 60  | 35  | 133 | 410 |
| 27.5 | 1690 | 0   | 0   | 10  | 0   | 60  | 250 | 260 | 0   | 15  | 38  | 0   | 7   | 0   |
| 28.0 | 1070 | 920 | 30  | 10  | 220 | 130 | 40  | 60  | 160 | 230 | 86  | 7   | 238 | 0   |
| 28.5 | 80   | 60  | 10  | 0   | 120 | 0   | 90  | 80  | 30  | 120 | 34  | 63  | 98  | 0   |
| 29.0 | 820  | 0   | 40  | 0   | 20  | 60  | 180 | 20  | 90  | 27  | 12  | 70  | 105 | 500 |
| 29.5 | 460  | 0   | 5   | 5   | 290 | 30  | 70  | 150 | 20  | 42  | 8   | 7   | 42  | 0   |
| 30.0 | 2140 | 140 | 5   | 0   | 0   | 90  | 330 | 130 | 0   | 28  | 4   | 0   | 154 | 980 |
| 30.5 | 240  | 130 | 0   | 5   | 80  | 10  | 150 | 30  | 10  | 3   | 0   | 35  | 126 | 480 |
| 31.0 | 1080 | 30  | 0   | 0   | 70  | 120 | 120 | 230 | 70  | 144 | 122 | 49  | 56  | 0   |
| 31.5 | 780  | 520 | 0   | 0   | 0   | 120 | 130 | 190 | 30  | 44  | 28  | 49  | 35  | 490 |
| 32.0 | 2860 | 340 | 65  | 20  | 120 | 230 | 40  | 0   | 30  | 89  | 2   | 0   | 147 | 0   |
| 32.5 | 1440 | 240 | 5   | 10  | 300 | 110 | 210 | 10  | 170 | 82  | 0   | 7   | 112 | 0   |

## Half-Week Demands - A Items

Attachment 5

|      |      |     |     |    |     |     |     |     |     |     |     |    |     |     |     |
|------|------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|
| 33.0 | 940  | 80  | 5   | 0  | 0   | 100 | 300 | 190 | 10  | 37  | 26  | 7  | 42  | 400 |     |
| 33.5 | 250  | 0   | 15  | 0  | 10  | 100 | 200 | 30  | 20  | 24  | 0   | 14 | 28  | 0   |     |
| 34.0 | 350  | 60  | 0   | 0  | 0   | 150 | 120 | 50  | 130 | 60  | 172 | 70 | 7   | 147 | 10  |
| 34.5 | 750  | 780 | 0   | 0  | 0   | 160 | 130 | 480 | 200 | 60  | 129 | 98 | 28  | 42  | 0   |
| 35.0 | 2770 | 0   | 45  | 80 | 290 | 50  | 50  | 20  | 20  | 20  | 95  | 10 | 14  | 196 | 720 |
| 35.5 | 1360 | 220 | 0   | 0  | 0   | 240 | 20  | 60  | 250 | 10  | 46  | 0  | 7   | 140 | 110 |
| 36.0 | 100  | 80  | 0   | 0  | 0   | 70  | 180 | 120 | 170 | 50  | 17  | 64 | 35  | 98  | 310 |
| 36.5 | 270  | 500 | 20  | 0  | 0   | 50  | 240 | 130 | 40  | 258 | 16  | 42 | 0   | 30  |     |
| 37.0 | 790  | 40  | 0   | 5  | 280 | 0   | 300 | 110 | 190 | 57  | 92  | 0  | 371 | 490 |     |
| 37.5 | 1150 | 40  | 0   | 0  | 30  | 10  | 70  | 70  | 10  | 7   | 4   | 0  | 7   | 50  |     |
| 38.0 | 2130 | 0   | 0   | 0  | 40  | 90  | 80  | 133 | 10  | 21  | 4   | 0  | 28  | 0   |     |
| 38.5 | 0    | 70  | 0   | 15 | 10  | 0   | 170 | 220 | 10  | 77  | 10  | 42 | 49  | 0   |     |
| 39.0 | 1480 | 170 | 105 | 0  | 170 | 50  | 140 | 160 | 10  | 49  | 78  | 0  | 133 | 980 |     |
| 39.5 | 1100 | 0   | 10  | 15 | 100 | 70  | 210 | 120 | 40  | 37  | 82  | 63 | 126 | 0   |     |
| 40.0 | 600  | 60  | 90  | 0  | 30  | 50  | 620 | 100 | 40  | 138 | 14  | 56 | 105 | 0   |     |
| 40.5 | 0    | 360 | 20  | 20 | 70  | 0   | 60  | 150 | 80  | 75  | 122 | 0  | 70  | 80  |     |
| 41.0 | 1840 | 0   | 10  | 0  | 190 | 180 | 310 | 400 | 0   | 93  | 34  | 35 | 203 | 340 |     |
| 41.5 | 10   | 170 | 95  | 0  | 0   | 20  | 310 | 130 | 60  | 208 | 42  | 7  | 0   | 30  |     |
| 42.0 | 1130 | 110 | 10  | 0  | 130 | 120 | 130 | 100 | 40  | 2   | 14  | 14 | 497 | 40  |     |
| 42.5 | 500  | 910 | 15  | 0  | 240 | 90  | 600 | 20  | 50  | 114 | 42  | 0  | 105 | 0   |     |
| 43.0 | 2140 | 70  | 20  | 0  | 120 | 60  | 20  | 290 | 70  | 47  | 10  | 28 | 49  | 900 |     |
| 43.5 | 90   | 120 | 0   | 0  | 90  | 130 | 170 | 260 | 20  | 191 | 0   | 0  | 273 | 0   |     |
| 44.0 | 590  | 140 | 10  | 0  | 40  | 90  | 180 | 140 | 40  | 33  | 74  | 7  | 14  | 0   |     |
| 44.5 | 470  | 180 | 80  | 15 | 90  | 170 | 110 | 210 | 50  | 102 | 72  | 35 | 98  | 0   |     |
| 45.0 | 1730 | 260 | 0   | 10 | 90  | 0   | 410 | 40  | 50  | 94  | 20  | 35 | 189 | 170 |     |
| 45.5 | 70   | 90  | 0   | 5  | 60  | 50  | 150 | 180 | 60  | 32  | 2   | 0  | 21  | 820 |     |
| 46.0 | 1650 | 270 | 0   | 5  | 150 | 90  | 120 | 201 | 110 | 52  | 32  | 0  | 154 | 20  |     |
| 46.5 | 580  | 20  | 0   | 10 | 120 | 100 | 300 | 10  | 40  | 91  | 0   | 49 | 168 | 700 |     |
| 47.0 | 720  | 20  | 0   | 0  | 40  | 50  | 80  | 160 | 130 | 189 | 44  | 0  | 56  | 0   |     |
| 47.5 | 180  | 780 | 80  | 0  | 460 | 10  | 440 | 60  | 50  | 83  | 8   | 28 | 266 | 0   |     |
| 48.0 | 1220 | 0   | 0   | 0  | 0   | 270 | 70  | 450 | 20  | 64  | 26  | 7  | 0   | 450 |     |
| 48.5 | 570  | 330 | 30  | 0  | 0   | 70  | 110 | 10  | 90  | 208 | 62  | 0  | 0   | 230 |     |
| 49.0 | 250  | 330 | 5   | 0  | 200 | 60  | 300 | 100 | 10  | 44  | 70  | 21 | 259 | 170 |     |
| 49.5 | 1720 | 290 | 5   | 0  | 50  | 20  | 200 | 340 | 0   | 138 | 22  | 14 | 98  | 0   |     |
| 50.0 | 0    | 0   | 75  | 0  | 80  | 340 | 210 | 20  | 50  | 79  | 0   | 56 | 91  | 120 |     |
| 50.5 | 1690 | 290 | 15  | 0  | 0   | 110 | 0   | 100 | 10  | 35  | 12  | 21 | 28  | 400 |     |
| 51.0 | 570  | 0   | 0   | 10 | 20  | 50  | 130 | 130 | 70  | 28  | 18  | 0  | 91  | 0   |     |

## Half-Week Demands - B Items

Attachment 5

|              | B01   | B02   | B03   | B04  | B05   | B06   | B07   | B08   | B09   | B10   | B12   |
|--------------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Sample Mean  | 40.36 | 9.67  | 37.80 | 1.38 | 42.73 | 23.57 | 13.22 | 82.25 | 8.21  | 34.71 | 4.57  |
| Sample S.D.  | 52.39 | 15.52 | 57.94 | 4.40 | 59.44 | 31.94 | 24.84 | 89.44 | 24.73 | 79.44 | 15.66 |
| Ex Post Mean | 26.57 | 2.65  | 19.47 | 1.26 | 41.27 | 44.51 | 9.80  | 56.96 | 7.06  | 22.16 | 5.93  |
| Ex Post S.D. | 35.72 | 5.48  | 31.39 | 2.97 | 53.32 | 59.15 | 21.11 | 60.51 | 23.49 | 56.84 | 19.62 |
| Overall Mean | 36.27 | 7.59  | 32.37 | 1.34 | 42.30 | 29.78 | 12.21 | 74.75 | 7.87  | 30.99 | 4.97  |
| Overall S.D. | 48.41 | 13.72 | 52.15 | 4.03 | 57.62 | 42.88 | 23.81 | 82.66 | 24.34 | 73.61 | 16.92 |
| Half-Week #  |       |       |       |      |       |       |       |       |       |       |       |
| 0.5          | 50    | 0     | 20    | 0    | 80    | 60    | 0     | 136   | 0     | 0     | 0     |
| 1.0          | 0     | 5     | 0     | 0    | 0     | 0     | 0     | 28    | 0     | 0     | 60    |
| 1.5          | 10    | 0     | 150   | 0    | 60    | 90    | 0     | 0     | 0     | 0     | 0     |
| 2.0          | 160   | 35    | 0     | 4    | 30    | 0     | 110   | 270   | 0     | 80    | 70    |
| 2.5          | 120   | 0     | 0     | 4    | 0     | 0     | 40    | 58    | 0     | 0     | 20    |
| 3.0          | 0     | 0     | 80    | 0    | 0     | 100   | 100   | 440   | 0     | 0     | 0     |
| 3.5          | 70    | 0     | 120   | 0    | 50    | 100   | 10    | 44    | 0     | 0     | 5     |
| 4.0          | 0     | 55    | 20    | 4    | 70    | 0     | 20    | 40    | 0     | 40    | 20    |
| 4.5          | 0     | 25    | 80    | 0    | 140   | 0     | 20    | 0     | 0     | 0     | 0     |
| 5.0          | 180   | 10    | 0     | 0    | 170   | 0     | 0     | 0     | 80    | 0     | 40    |
| 5.5          | 0     | 45    | 10    | 0    | 0     | 0     | 0     | 0     | 0     | 160   | 25    |
| 6.0          | 40    | 5     | 0     | 0    | 100   | 10    | 0     | 0     | 0     | 0     | 0     |
| 6.5          | 20    | 0     | 30    | 0    | 80    | 160   | 20    | 202   | 0     | 0     | 0     |
| 7.0          | 60    | 25    | 50    | 0    | 40    | 20    | 0     | 0     | 0     | 0     | 0     |
| 7.5          | 80    | 40    | 120   | 0    | 0     | 80    | 10    | 334   | 0     | 360   | 0     |
| 8.0          | 50    | 0     | 10    | 0    | 10    | 0     | 10    | 0     | 0     | 0     | 0     |
| 8.5          | 40    | 0     | 90    | 4    | 30    | 30    | 0     | 0     | 0     | 0     | 0     |
| 9.0          | 40    | 10    | 148   | 0    | 20    | 120   | 30    | 198   | 0     | 0     | 25    |
| 9.5          | 0     | 25    | 0     | 0    | 0     | 10    | 30    | 8     | 0     | 0     | 0     |
| 10.0         | 20    | 0     | 80    | 0    | 0     | 0     | 0     | 234   | 0     | 0     | 0     |
| 10.5         | 30    | 0     | 30    | 0    | 0     | 60    | 0     | 0     | 40    | 0     | 0     |
| 11.0         | 20    | 65    | 0     | 0    | 8     | 0     | 0     | 72    | 40    | 200   | 0     |
| 11.5         | 10    | 5     | 0     | 0    | 0     | 0     | 0     | 524   | 0     | 0     | 0     |
| 12.0         | 20    | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 12.5         | 150   | 35    | 0     | 8    | 0     | 0     | 0     | 112   | 0     | 0     | 0     |
| 13.0         | 20    | 0     | 0     | 0    | 0     | 0     | 10    | 0     | 0     | 0     | 0     |
| 13.5         | 20    | 10    | 0     | 0    | 0     | 0     | 0     | 186   | 0     | 0     | 0     |
| 14.0         | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 34    | 0     | 0     | 0     |
| 14.5         | 0     | 0     | 0     | 0    | 0     | 13    | 0     | 136   | 0     | 80    | 0     |
| 15.0         | 0     | 20    | 0     | 0    | 0     | 0     | 0     | 166   | 0     | 0     | 0     |
| 15.5         | 0     | 10    | 0     | 0    | 0     | 0     | 50    | 34    | 0     | 0     | 0     |
| 16.0         | 8     | 0     | 0     | 0    | 0     | 0     | 30    | 66    | 0     | 0     | 0     |
| 16.5         | 0     | 0     | 0     | 0    | 0     | 60    | 0     | 8     | 0     | 0     | 0     |
| 17.0         | 0     | 0     | 0     | 0    | 19    | 0     | 0     | 56    | 0     | 0     | 0     |
| 17.5         | 0     | 40    | 0     | 0    | 0     | 20    | 0     | 110   | 0     | 0     | 0     |
| 18.0         | 0     | 0     | 0     | 0    | 0     | 80    | 30    | 0     | 0     | 80    | 0     |
| 18.5         | 0     | 15    | 0     | 0    | 0     | 30    | 0     | 26    | 0     | 0     | 0     |
| 19.0         | 80    | 0     | 0     | 0    | 0     | 30    | 0     | 104   | 0     | 0     | 0     |
| 19.5         | 30    | 35    | 0     | 0    | 0     | 0     | 50    | 88    | 0     | 0     | 0     |
| 20.0         | 10    | 0     | 0     | 0    | 0     | 10    | 0     | 26    | 0     | 0     | 0     |
| 20.5         | 60    | 15    | 30    | 12   | 120   | 40    | 0     | 96    | 0     | 0     | 0     |
| 21.0         | 70    | 5     | 50    | 0    | 340   | 0     | 30    | 42    | 0     | 0     | 0     |
| 21.5         | 30    | 0     | 150   | 0    | 30    | 0     | 50    | 212   | 0     | 320   | 0     |
| 22.0         | 0     | 50    | 0     | 0    | 70    | 0     | 0     | 38    | 0     | 0     | 0     |
| 22.5         | 0     | 25    | 40    | 0    | 190   | 20    | 0     | 104   | 0     | 0     | 0     |
| 23.0         | 40    | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 23.5         | 60    | 5     | 0     | 0    | 0     | 0     | 10    | 104   | 0     | 0     | 0     |
| 24.0         | 30    | 0     | 110   | 20   | 120   | 30    | 10    | 134   | 0     | 0     | 0     |
| 24.5         | 20    | 0     | 150   | 0    | 110   | 0     | 0     | 88    | 40    | 0     | 0     |
| 25.0         | 60    | 20    | 10    | 0    | 0     | 20    | 0     | 34    | 0     | 0     | 0     |
| 25.5         | 30    | 30    | 10    | 0    | 20    | 10    | 0     | 0     | 0     | 0     | 0     |
| 26.0         | 0     | 0     | 10    | 0    | 80    | 0     | 0     | 86    | 0     | 0     | 0     |
| 26.5         | 90    | 0     | 60    | 0    | 30    | 0     | 0     | 0     | 0     | 0     | 0     |
| 27.0         | 0     | 15    | 30    | 0    | 0     | 70    | 0     | 290   | 0     | 0     | 0     |
| 27.5         | 100   | 15    | 10    | 0    | 40    | 10    | 0     | 54    | 0     | 0     | 0     |

## Half-Week Demands - B Items

Attachment 5

|      |     |     |     |    |     |     |     |     |     |     |     |
|------|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 28.0 | 90  | 5   | 40  | 0  | 30  | 0   | 10  | 112 | 0   | 160 | 0   |
| 28.5 | 30  | 0   | 0   | 0  | 40  | 20  | 30  | 192 | 0   | 0   | 0   |
| 29.0 | 50  | 0   | 10  | 0  | 50  | 30  | 0   | 20  | 0   | 80  | 0   |
| 29.5 | 60  | 50  | 30  | 0  | 120 | 0   | 90  | 190 | 0   | 360 | 0   |
| 30.0 | 40  | 0   | 230 | 20 | 50  | 0   | 0   | 6   | 0   | 0   | 0   |
| 30.5 | 40  | 10  | 40  | 0  | 10  | 0   | 10  | 108 | 0   | 0   | 0   |
| 31.0 | 170 | 5   | 40  | 0  | 50  | 40  | 0   | 148 | 0   | 0   | 0   |
| 31.5 | 30  | 0   | 0   | 0  | 230 | 50  | 20  | 204 | 0   | 360 | 0   |
| 32.0 | 160 | 10  | 130 | 0  | 0   | 10  | 10  | 16  | 0   | 0   | 0   |
| 32.5 | 0   | 5   | 0   | 0  | 30  | 50  | 0   | 194 | 0   | 200 | 0   |
| 33.0 | 20  | 20  | 50  | 25 | 40  | 0   | 0   | 0   | 0   | 0   | 0   |
| 33.5 | 10  | 0   | 20  | 0  | 0   | 30  | 0   | 84  | 0   | 0   | 0   |
| 34.0 | 70  | 20  | 20  | 0  | 60  | 10  | 0   | 26  | 0   | 0   | 0   |
| 34.5 | 10  | 30  | 40  | 0  | 20  | 180 | 50  | 334 | 0   | 0   | 10  |
| 35.0 | 110 | 0   | 60  | 0  | 160 | 50  | 0   | 0   | 0   | 160 | 10  |
| 35.5 | 0   | 0   | 10  | 0  | 120 | 10  | 0   | 0   | 0   | 0   | 0   |
| 36.0 | 50  | 0   | 20  | 0  | 0   | 10  | 10  | 82  | 0   | 0   | 0   |
| 36.5 | 40  | 20  | 80  | 0  | 0   | 130 | 0   | 158 | 0   | 0   | 0   |
| 37.0 | 40  | 0   | 0   | 0  | 40  | 0   | 140 | 102 | 80  | 80  | 0   |
| 37.5 | 40  | 0   | 20  | 0  | 0   | 0   | 30  | 184 | 0   | 0   | 0   |
| 38.0 | 0   | 0   | 30  | 0  | 70  | 0   | 0   | 0   | 80  | 0   | 0   |
| 38.5 | 0   | 0   | 0   | 0  | 240 | 60  | 10  | 116 | 0   | 320 | 0   |
| 39.0 | 20  | 0   | 80  | 0  | 0   | 0   | 0   | 0   | 166 | 0   | 20  |
| 39.5 | 0   | 45  | 0   | 0  | 20  | 50  | 50  | 194 | 0   | 0   | 0   |
| 40.0 | 60  | 0   | 160 | 0  | 60  | 0   | 0   | 264 | 0   | 0   | 0   |
| 40.5 | 0   | 0   | 20  | 0  | 100 | 20  | 0   | 82  | 0   | 0   | 0   |
| 41.0 | 90  | 10  | 80  | 8  | 0   | 70  | 30  | 124 | 0   | 0   | 30  |
| 41.5 | 200 | 0   | 40  | 0  | 20  | 0   | 20  | 164 | 0   | 0   | 0   |
| 42.0 | 40  | 10  | 10  | 0  | 40  | 80  | 0   | 0   | 0   | 0   | 0   |
| 42.5 | 40  | 0   | 10  | 0  | 40  | 40  | 0   | 86  | 0   | 0   | 20  |
| 43.0 | 0   | 20  | 30  | 0  | 20  | 20  | 40  | 78  | 0   | 0   | 0   |
| 43.5 | 70  | 0   | 140 | 0  | 20  | 0   | 10  | 0   | 0   | 0   | 0   |
| 44.0 | 120 | 100 | 0   | 0  | 70  | 0   | 0   | 90  | 0   | 240 | 0   |
| 44.5 | 30  | 10  | 10  | 0  | 20  | 0   | 0   | 112 | 0   | 0   | 20  |
| 45.0 | 50  | 0   | 0   | 0  | 10  | 60  | 20  | 48  | 40  | 0   | 0   |
| 45.5 | 10  | 0   | 0   | 0  | 0   | 20  | 0   | 92  | 0   | 0   | 0   |
| 46.0 | 30  | 0   | 40  | 8  | 70  | 0   | 10  | 0   | 0   | 0   | 0   |
| 46.5 | 0   | 5   | 0   | 0  | 0   | 0   | 100 | 20  | 0   | 0   | 20  |
| 47.0 | 80  | 15  | 100 | 0  | 190 | 20  | 0   | 136 | 0   | 0   | 0   |
| 47.5 | 10  | 5   | 180 | 0  | 0   | 30  | 0   | 16  | 0   | 120 | 0   |
| 48.0 | 10  | 5   | 0   | 24 | 130 | 40  | 0   | 104 | 0   | 40  | 0   |
| 48.5 | 160 | 0   | 0   | 0  | 60  | 0   | 0   | 38  | 0   | 120 | 0   |
| 49.0 | 0   | 0   | 120 | 0  | 0   | 0   | 20  | 120 | 0   | 0   | 0   |
| 49.5 | 0   | 10  | 10  | 0  | 0   | 10  | 0   | 0   | 0   | 0   | 10  |
| 50.0 | 140 | 0   | 0   | 0  | 0   | 60  | 0   | 194 | 80  | 160 | 0   |
| 50.5 | 30  | 15  | 160 | 0  | 40  | 60  | 40  | 18  | 0   | 0   | 0   |
| 51.0 | 20  | 0   | 0   | 0  | 40  | 10  | 0   | 126 | 0   | 40  | 0   |
| 51.5 | 80  | 0   | 30  | 0  | 10  | 0   | 0   | 88  | 0   | 40  | 0   |
| 52.0 | 110 | 0   | 0   | 0  | 10  | 0   | 0   | 6   | 0   | 160 | 0   |
| 52.5 | 0   | 25  | 100 | 0  | 0   | 30  | 0   | 146 | 0   | 80  | 0   |
| 53.0 | 200 | 15  | 0   | 0  | 30  | 40  | 10  | 0   | 0   | 0   | 0   |
| 53.5 | 0   | 0   | 0   | 0  | 0   | 10  | 0   | 262 | 0   | 140 | 0   |
| 54.0 | 50  | 0   | 50  | 0  | 90  | 0   | 0   | 0   | 0   | 179 | 0   |
| 54.5 | 0   | 0   | 220 | 0  | 84  | 70  | 40  | 188 | 0   | 0   | 0   |
| 55.0 | 80  | 35  | 0   | 0  | 0   | 0   | 0   | 14  | 0   | 0   | 0   |
| 55.5 | 0   | 0   | 10  | 0  | 220 | 60  | 10  | 158 | 0   | 0   | 0   |
| 56.0 | 0   | 25  | 10  | 0  | 80  | 20  | 0   | 20  | 160 | 160 | 0   |
| 56.5 | 0   | 0   | 10  | 0  | 0   | 10  | 0   | 44  | 0   | 0   | 0   |
| 57.0 | 30  | 0   | 20  | 0  | 0   | 30  | 0   | 0   | 0   | 0   | 100 |
| 57.5 | 10  | 35  | 350 | 0  | 0   | 30  | 140 | 52  | 0   | 100 | 0   |
| 58.0 | 10  | 0   | 0   | 0  | 110 | 0   | 0   | 62  | 0   | 20  | 0   |
| 58.5 | 30  | 20  | 80  | 0  | 40  | 0   | 0   | 106 | 40  | 0   | 0   |
| 59.0 | 80  | 0   | 0   | 0  | 0   | 30  | 0   | 0   | 0   | 0   | 10  |

## Half-Week Demands - B Items

Attachment 5

|      |     |    |     |    |     |     |     |     |     |     |     |
|------|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 59.5 | 0   | 5  | 140 | 0  | 0   | 60  | 10  | 166 | 0   | 20  | 5   |
| 60.0 | 240 | 0  | 0   | 0  | 180 | 0   | 0   | 34  | 0   | 140 | 15  |
| 60.5 | 0   | 0  | 80  | 0  | 30  | 20  | 0   | 110 | 40  | 120 | 0   |
| 61.0 | 160 | 20 | 30  | 0  | 20  | 20  | 0   | 90  | 0   | 0   | 0   |
| 61.5 | 0   | 5  | 0   | 0  | 220 | 70  | 0   | 80  | 80  | 0   | 0   |
| 62.0 | 90  | 5  | 100 | 0  | 0   | 0   | 0   | 114 | 0   | 0   | 20  |
| 62.5 | 40  | 80 | 140 | 0  | 50  | 0   | 20  | 248 | 0   | 0   | 5   |
| 63.0 | 30  | 0  | 10  | 0  | 20  | 20  | 0   | 14  | 0   | 0   | 5   |
| 63.5 | 130 | 20 | 0   | 0  | 0   | 30  | 0   | 22  | 40  | 0   | 0   |
| 64.0 | 0   | 0  | 60  | 0  | 0   | 70  | 0   | 108 | 0   | 200 | 0   |
| 64.5 | 80  | 15 | 0   | 0  | 60  | 0   | 0   | 170 | 0   | 0   | 0   |
| 65.0 | 0   | 0  | 250 | 0  | 0   | 50  | 10  | 108 | 80  | 160 | 0   |
| 65.5 | 10  | 0  | 50  | 0  | 20  | 0   | 0   | 36  | 0   | 0   | 30  |
| 66.0 | 0   | 0  | 30  | 0  | 0   | 10  | 10  | 66  | 0   | 0   | 0   |
| 66.5 | 0   | 5  | 0   | 0  | 10  | 90  | 40  | 100 | 0   | 0   | 0   |
| 67.0 | 50  | 0  | 160 | 0  | 20  | 0   | 50  | 64  | 0   | 240 | 20  |
| 67.5 | 0   | 40 | 120 | 0  | 30  | 20  | 0   | 0   | 0   | 0   | 0   |
| 68.0 | 130 | 20 | 0   | 0  | 0   | 20  | 0   | 144 | 0   | 0   | 0   |
| 68.5 | 20  | 0  | 0   | 8  | 190 | 30  | 50  | 94  | 0   | 0   | 0   |
| 69.0 | 0   | 0  | 100 | 0  | 100 | 0   | 0   | 152 | 0   | 0   | 0   |
| 69.5 | 30  | 10 | 20  | 0  | 20  | 0   | 50  | 96  | 0   | 0   | 0   |
| 70.0 | 40  | 0  | 30  | 0  | 40  | 110 | 20  | 0   | 0   | 0   | 5   |
| 70.5 | 10  | 0  | 110 | 0  | 40  | 0   | 0   | 78  | 0   | 120 | 0   |
| 71.0 | 10  | 0  | 10  | 0  | 30  | 20  | 0   | 26  | 0   | 0   | 0   |
| 71.5 | 110 | 0  | 20  | 0  | 10  | 0   | 60  | 90  | 0   | 0   | 5   |
| 72.0 | 60  | 35 | 90  | 0  | 0   | 40  | 0   | 34  | 40  | 320 | 0   |
| 72.5 | 10  | 0  | 0   | 0  | 10  | 60  | 30  | 0   | 0   | 40  | 0   |
| 73.0 | 70  | 35 | 10  | 0  | 40  | 0   | 0   | 280 | 0   | 120 | 120 |
| 73.5 | 70  | 0  | 0   | 0  | 0   | 20  | 40  | 66  | 0   | 0   | 0   |
| 74.0 | 60  | 5  | 70  | 0  | 20  | 10  | 0   | 208 | 80  | 0   | 0   |
| 74.5 | 180 | 20 | 0   | 0  | 0   | 0   | 110 | 284 | 0   | 0   | 0   |
| 75.0 | 10  | 0  | 60  | 0  | 0   | 0   | 0   | 32  | 40  | 0   | 0   |
| 75.5 | 60  | 10 | 0   | 0  | 0   | 20  | 0   | 170 | 0   | 0   | 0   |
| 76.0 | 20  | 0  | 40  | 16 | 50  | 70  | 10  | 46  | 0   | 320 | 0   |
| 76.5 | 0   | 5  | 0   | 0  | 100 | 90  | 0   | 160 | 0   | 0   | 0   |
| 77.0 | 0   | 0  | 20  | 0  | 0   | 0   | 0   | 16  | 0   | 0   | 0   |
| 77.5 | 10  | 15 | 10  | 0  | 60  | 20  | 30  | 214 | 0   | 0   | 0   |
| 78.0 | 0   | 10 | 10  | 4  | 40  | 0   | 0   | 38  | 0   | 0   | 0   |
| 78.5 | 0   | 0  | 10  | 8  | 0   | 30  | 10  | 0   | 40  | 0   | 0   |
| 79.0 | 120 | 5  | 0   | 0  | 0   | 0   | 0   | 502 | 0   | 0   | 0   |
| 79.5 | 20  | 60 | 40  | 0  | 50  | 0   | 10  | 164 | 0   | 120 | 0   |
| 80.0 | 40  | 0  | 40  | 0  | 10  | 20  | 0   | 0   | 0   | 0   | 0   |
| 80.5 | 40  | 25 | 30  | 0  | 110 | 0   | 0   | 2   | 0   | 0   | 0   |
| 81.0 | 0   | 0  | 0   | 0  | 30  | 0   | 0   | 162 | 0   | 0   | 0   |
| 81.5 | 60  | 20 | 10  | 0  | 80  | 0   | 20  | 0   | 40  | 0   | 20  |
| 82.0 | 30  | 0  | 60  | 0  | 260 | 30  | 0   | 104 | 0   | 0   | 0   |
| 82.5 | 90  | 5  | 60  | 0  | 110 | 30  | 40  | 50  | 0   | 0   | 0   |
| 83.0 | 10  | 5  | 60  | 0  | 10  | 20  | 50  | 48  | 0   | 0   | 0   |
| 83.5 | 50  | 25 | 0   | 0  | 10  | 20  | 20  | 22  | 0   | 0   | 0   |
| 84.0 | 0   | 0  | 0   | 0  | 20  | 90  | 0   | 100 | 0   | 0   | 0   |
| 84.5 | 80  | 0  | 20  | 0  | 60  | 0   | 0   | 0   | 108 | 0   | 0   |
| 85.0 | 0   | 5  | 0   | 0  | 60  | 20  | 0   | 118 | 0   | 0   | 0   |
| 85.5 | 0   | 0  | 0   | 0  | 0   | 40  | 0   | 126 | 0   | 0   | 0   |
| 86.0 | 20  | 40 | 110 | 0  | 90  | 0   | 0   | 0   | 0   | 0   | 0   |
| 86.5 | 30  | 10 | 0   | 0  | 230 | 20  | 30  | 66  | 0   | 0   | 0   |
| 87.0 | 170 | 15 | 230 | 0  | 0   | 50  | 0   | 26  | 0   | 0   | 15  |
| 87.5 | 40  | 50 | 30  | 0  | 40  | 0   | 0   | 22  | 0   | 0   | 0   |
| 88.0 | 0   | 0  | 0   | 10 | 100 | 40  | 20  | 182 | 0   | 0   | 0   |
| 88.5 | 0   | 10 | 0   | 0  | 10  | 0   | 0   | 74  | 0   | 0   | 20  |
| 89.0 | 10  | 15 | 0   | 24 | 10  | 0   | 0   | 56  | 0   | 0   | 0   |
| 89.5 | 220 | 25 | 0   | 0  | 50  | 30  | 100 | 10  | 0   | 0   | 90  |
| 90.0 | 70  | 0  | 280 | 24 | 60  | 0   | 0   | 172 | 120 | 0   | 0   |
| 90.5 | 0   | 20 | 10  | 4  | 30  | 70  | 0   | 108 | 0   | 0   | 0   |

## Half-Week Demands - B Items

Attachment 5

|       |     |    |     |    |     |     |    |     |     |     |     |
|-------|-----|----|-----|----|-----|-----|----|-----|-----|-----|-----|
| 91.0  | 20  | 10 | 10  | 0  | 50  | 0   | 0  | 114 | 0   | 160 | 0   |
| 91.5  | 160 | 10 | 40  | 0  | 70  | 0   | 0  | 6   | 0   | 0   | 0   |
| 92.0  | 0   | 15 | 0   | 0  | 0   | 20  | 10 | 172 | 80  | 0   | 0   |
| 92.5  | 0   | 25 | 40  | 0  | 140 | 0   | 10 | 26  | 0   | 40  | 0   |
| 93.0  | 40  | 0  | 200 | 0  | 0   | 80  | 0  | 116 | 0   | 0   | 0   |
| 93.5  | 20  | 10 | 60  | 0  | 0   | 10  | 0  | 38  | 160 | 0   | 15  |
| 94.0  | 20  | 0  | 0   | 0  | 170 | 0   | 10 | 204 | 0   | 0   | 5   |
| 94.5  | 30  | 5  | 0   | 20 | 0   | 0   | 30 | 26  | 0   | 80  | 0   |
| 95.0  | 20  | 5  | 0   | 0  | 30  | 50  | 10 | 192 | 0   | 0   | 25  |
| 95.5  | 60  | 0  | 170 | 0  | 60  | 0   | 70 | 4   | 0   | 0   | 0   |
| 96.0  | 0   | 20 | 0   | 8  | 0   | 80  | 0  | 110 | 0   | 0   | 0   |
| 96.5  | 20  | 0  | 70  | 0  | 100 | 0   | 0  | 106 | 0   | 0   | 0   |
| 97.0  | 50  | 0  | 10  | 8  | 0   | 0   | 10 | 124 | 0   | 0   | 0   |
| 97.5  | 40  | 0  | 0   | 0  | 80  | 0   | 20 | 36  | 40  | 0   | 0   |
| 98.0  | 40  | 5  | 20  | 0  | 0   | 0   | 0  | 184 | 0   | 200 | 0   |
| 98.5  | 0   | 0  | 30  | 0  | 50  | 0   | 0  | 282 | 0   | 0   | 0   |
| 99.0  | 10  | 5  | 10  | 0  | 0   | 80  | 20 | 0   | 0   | 0   | 0   |
| 99.5  | 40  | 0  | 0   | 0  | 140 | 30  | 0  | 146 | 40  | 0   | 0   |
| 100.0 | 0   | 50 | 80  | 0  | 0   | 30  | 10 | 18  | 0   | 0   | 0   |
| 100.5 | 0   | 35 | 0   | 7  | 0   | 0   | 0  | 30  | 0   | 160 | 0   |
| 101.0 | 240 | 0  | 110 | 1  | 150 | 0   | 80 | 222 | 0   | 0   | 100 |
| 101.5 | 20  | 0  | 60  | 0  | 0   | 30  | 10 | 24  | 0   | 60  | 0   |
| 102.0 | 0   | 0  | 0   | 0  | 20  | 0   | 10 | 188 | 0   | 100 | 0   |
| 102.5 | 30  | 0  | 40  | 0  | 20  | 20  | 0  | 122 | 0   | 0   | 0   |
| 103.0 | 80  | 0  | 0   | 0  | 120 | 30  | 40 | 38  | 0   | 0   | 0   |
| 103.5 | 0   | 0  | 0   | 4  | 70  | 0   | 0  | 0   | 0   | 40  | 0   |
| 104.0 | 80  | 30 | 20  | 0  | 240 | 0   | 0  | 34  | 0   | 0   | 0   |
| 104.5 | 70  | 0  | 0   | 0  | 0   | 70  | 0  | 12  | 0   | 40  | 0   |
| 105.0 | 10  | 20 | 0   | 0  | 10  | 0   | 40 | 12  | 0   | 0   | 0   |
| 105.5 | 10  | 0  | 200 | 8  | 50  | 0   | 0  | 6   | 0   | 0   | 0   |
| 106.0 | 10  | 0  | 0   | 0  | 10  | 20  | 40 | 18  | 40  | 0   | 0   |
| 106.5 | 40  | 20 | 30  | 0  | 0   | 60  | 10 | 16  | 0   | 0   | 50  |
| 107.0 | 0   | 0  | 10  | 0  | 170 | 70  | 0  | 20  | 0   | 160 | 0   |
| 107.5 | 0   | 5  | 0   | 0  | 0   | 0   | 0  | 0   | 0   | 0   | 0   |
| 108.0 | 20  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 40  | 0   | 0   |
| 108.5 | 10  | 0  | 0   | 0  | 30  | 50  | 0  | 0   | 0   | 0   | 0   |
| 109.0 | 20  | 0  | 50  | 0  | 20  | 0   | 0  | 68  | 40  | 0   | 0   |
| 109.5 | 50  | 0  | 0   | 0  | 20  | 50  | 0  | 0   | 0   | 400 | 0   |
| 110.0 | 0   | 0  | 60  | 4  | 0   | 20  | 0  | 0   | 80  | 0   | 0   |
| 110.5 | 0   | 0  | 10  | 0  | 10  | 0   | 60 | 0   | 0   | 0   | 0   |
| 111.0 | 300 | 15 | 0   | 0  | 0   | 10  | 0  | 0   | 0   | 0   | 0   |
| 111.5 | 0   | 0  | 60  | 0  | 70  | 30  | 0  | 2   | 0   | 0   | 0   |
| 112.0 | 0   | 0  | 0   | 0  | 0   | 30  | 0  | 0   | 0   | 0   | 0   |
| 112.5 | 0   | 5  | 0   | 3  | 20  | 60  | 50 | 14  | 0   | 0   | 0   |
| 113.0 | 40  | 0  | 50  | 5  | 10  | 0   | 10 | 32  | 0   | 0   | 0   |
| 113.5 | 0   | 0  | 20  | 0  | 50  | 20  | 20 | 10  | 40  | 0   | 0   |
| 114.0 | 40  | 0  | 0   | 0  | 0   | 0   | 0  | 44  | 0   | 0   | 0   |
| 114.5 | 0   | 0  | 0   | 0  | 20  | 20  | 10 | 0   | 0   | 0   | 0   |
| 115.0 | 50  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0   | 0   | 0   |
| 115.5 | 20  | 0  | 0   | 0  | 0   | 30  | 0  | 54  | 0   | 0   | 0   |
| 116.0 | 0   | 0  | 50  | 18 | 10  | 0   | 0  | 34  | 0   | 0   | 0   |
| 116.5 | 0   | 0  | 0   | 0  | 50  | 70  | 70 | 96  | 0   | 0   | 5   |
| 117.0 | 40  | 20 | 30  | 4  | 20  | 0   | 0  | 14  | 0   | 240 | 5   |
| 117.5 | 20  | 40 | 120 | 0  | 0   | 140 | 0  | 76  | 0   | 0   | 0   |
| 118.0 | 0   | 0  | 0   | 4  | 0   | 0   | 0  | 0   | 0   | 0   | 0   |
| 118.5 | 10  | 0  | 0   | 0  | 110 | 10  | 70 | 54  | 0   | 160 | 10  |
| 119.0 | 0   | 0  | 0   | 0  | 0   | 10  | 0  | 22  | 0   | 0   | 0   |
| 119.5 | 0   | 20 | 80  | 0  | 160 | 10  | 0  | 12  | 0   | 0   | 0   |
| 120.0 | 130 | 0  | 0   | 0  | 0   | 40  | 10 | 48  | 0   | 0   | 0   |
| 120.5 | 60  | 0  | 0   | 0  | 60  | 0   | 0  | 54  | 0   | 0   | 0   |
| 121.0 | 90  | 0  | 10  | 0  | 50  | 60  | 10 | 36  | 40  | 0   | 0   |
| 0.5   | 0   | 0  | 0   | 0  | 0   | 20  | 0  | 24  | 40  | 120 | 5   |
| 1.0   | 0   | 0  | 0   | 0  | 120 | 0   | 10 | 32  | 0   | 0   | 0   |

## Half-Week Demands - B Items

Attachment 5

|      |     |    |     |    |     |     |     |     |    |     |    |
|------|-----|----|-----|----|-----|-----|-----|-----|----|-----|----|
| 1.5  | 0   | 0  | 0   | 4  | 100 | 10  | 0   | 66  | 0  | 0   | 0  |
| 2.0  | 70  | 0  | 0   | 0  | 0   | 0   | 50  | 28  | 0  | 0   | 0  |
| 2.5  | 40  | 5  | 0   | 0  | 60  | 60  | 20  | 142 | 0  | 160 | 40 |
| 3.0  | 80  | 0  | 130 | 4  | 40  | 10  | 0   | 66  | 0  | 0   | 0  |
| 3.5  | 0   | 0  | 50  | 0  | 0   | 0   | 10  | 34  | 40 | 0   | 0  |
| 4.0  | 160 | 0  | 0   | 0  | 30  | 50  | 0   | 0   | 0  | 0   | 0  |
| 4.5  | 50  | 15 | 0   | 0  | 90  | 0   | 50  | 0   | 0  | 80  | 30 |
| 5.0  | 0   | 0  | 0   | 0  | 0   | 90  | 0   | 66  | 0  | 0   | 0  |
| 5.5  | 20  | 0  | 0   | 0  | 50  | 0   | 20  | 6   | 0  | 80  | 20 |
| 6.0  | 20  | 5  | 0   | 0  | 10  | 20  | 0   | 0   | 0  | 0   | 0  |
| 6.5  | 0   | 0  | 100 | 0  | 0   | 50  | 0   | 32  | 80 | 0   | 0  |
| 7.0  | 120 | 10 | 0   | 0  | 0   | 0   | 0   | 4   | 0  | 0   | 0  |
| 7.5  | 50  | 0  | 0   | 0  | 170 | 0   | 0   | 88  | 0  | 0   | 0  |
| 8.0  | 0   | 5  | 190 | 4  | 0   | 20  | 10  | 302 | 0  | 0   | 0  |
| 8.5  | 0   | 0  | 20  | 0  | 60  | 0   | 20  | 18  | 0  | 0   | 0  |
| 9.0  | 10  | 0  | 10  | 0  | 50  | 0   | 0   | 14  | 0  | 0   | 0  |
| 9.5  | 20  | 0  | 0   | 1  | 0   | 0   | 0   | 42  | 0  | 0   | 0  |
| 10.0 | 10  | 30 | 0   | 11 | 50  | 0   | 0   | 24  | 0  | 0   | 0  |
| 10.5 | 10  | 0  | 70  | 0  | 210 | 0   | 0   | 16  | 0  | 0   | 0  |
| 11.0 | 70  | 0  | 90  | 0  | 0   | 0   | 10  | 38  | 0  | 0   | 0  |
| 11.5 | 30  | 0  | 60  | 4  | 0   | 90  | 0   | 20  | 0  | 0   | 0  |
| 12.0 | 20  | 0  | 0   | 0  | 30  | 0   | 140 | 12  | 0  | 0   | 0  |
| 12.5 | 30  | 0  | 0   | 0  | 10  | 0   | 0   | 42  | 0  | 0   | 0  |
| 13.0 | 0   | 20 | 20  | 8  | 0   | 0   | 0   | 22  | 0  | 0   | 0  |
| 13.5 | 20  | 20 | 10  | 11 | 0   | 10  | 0   | 2   | 0  | 80  | 0  |
| 14.0 | 10  | 0  | 10  | 1  | 0   | 120 | 20  | 28  | 0  | 40  | 0  |
| 14.5 | 0   | 5  | 20  | 0  | 10  | 40  | 10  | 30  | 40 | 0   | 0  |
| 15.0 | 0   | 0  | 0   | 12 | 0   | 10  | 0   | 0   | 0  | 0   | 0  |
| 15.5 | 90  | 0  | 0   | 0  | 80  | 0   | 20  | 0   | 0  | 0   | 15 |
| 16.0 | 10  | 0  | 10  | 4  | 0   | 130 | 10  | 42  | 0  | 0   | 0  |
| 16.5 | 60  | 15 | 50  | 0  | 30  | 40  | 0   | 28  | 0  | 0   | 50 |
| 17.0 | 0   | 10 | 0   | 12 | 50  | 150 | 0   | 0   | 0  | 0   | 0  |
| 17.5 | 0   | 0  | 0   | 0  | 30  | 0   | 20  | 0   | 0  | 0   | 0  |
| 18.0 | 0   | 0  | 0   | 0  | 20  | 60  | 0   | 66  | 0  | 0   | 0  |
| 18.5 | 10  | 0  | 30  | 0  | 90  | 200 | 0   | 8   | 0  | 120 | 0  |
| 19.0 | 20  | 0  | 50  | 0  | 0   | 0   | 0   | 40  | 0  | 0   | 0  |
| 19.5 | 0   | 0  | 10  | 0  | 70  | 40  | 0   | 0   | 0  | 0   | 0  |
| 20.0 | 10  | 10 | 0   | 0  | 30  | 110 | 0   | 80  | 0  | 0   | 50 |
| 20.5 | 0   | 0  | 10  | 0  | 0   | 0   | 30  | 0   | 0  | 0   | 0  |
| 21.0 | 40  | 0  | 0   | 0  | 20  | 150 | 10  | 80  | 0  | 120 | 0  |
| 21.5 | 30  | 0  | 20  | 4  | 170 | 0   | 10  | 112 | 0  | 0   | 0  |
| 22.0 | 30  | 0  | 0   | 0  | 0   | 100 | 0   | 0   | 0  | 0   | 0  |
| 22.5 | 0   | 0  | 0   | 0  | 50  | 20  | 0   | 16  | 0  | 0   | 0  |
| 23.0 | 80  | 0  | 30  | 0  | 0   | 70  | 0   | 38  | 0  | 120 | 0  |
| 23.5 | 120 | 5  | 30  | 0  | 60  | 0   | 0   | 102 | 80 | 40  | 0  |
| 24.0 | 0   | 0  | 0   | 0  | 10  | 230 | 10  | 32  | 0  | 0   | 0  |
| 24.5 | 10  | 0  | 50  | 0  | 20  | 40  | 10  | 68  | 40 | 0   | 0  |
| 25.0 | 10  | 0  | 60  | 3  | 20  | 10  | 0   | 94  | 0  | 0   | 0  |
| 25.5 | 0   | 5  | 10  | 0  | 10  | 0   | 70  | 32  | 0  | 40  | 0  |
| 26.0 | 0   | 15 | 20  | 0  | 30  | 10  | 30  | 42  | 0  | 0   | 0  |
| 26.5 | 10  | 0  | 10  | 0  | 220 | 0   | 0   | 136 | 0  | 0   | 35 |
| 27.0 | 20  | 0  | 0   | 1  | 220 | 170 | 20  | 0   | 0  | 80  | 0  |
| 27.5 | 70  | 0  | 30  | 4  | 0   | 60  | 0   | 38  | 0  | 40  | 0  |
| 28.0 | 120 | 5  | 0   | 0  | 50  | 0   | 10  | 130 | 0  | 40  | 0  |
| 28.5 | 80  | 0  | 40  | 0  | 90  | 140 | 0   | 44  | 0  | 0   | 0  |
| 29.0 | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 50  | 0  | 40  | 0  |
| 29.5 | 40  | 15 | 0   | 0  | 0   | 40  | 0   | 0   | 0  | 0   | 0  |
| 30.0 | 10  | 5  | 10  | 4  | 0   | 40  | 0   | 172 | 0  | 0   | 0  |
| 30.5 | 0   | 0  | 10  | 0  | 200 | 70  | 0   | 26  | 80 | 0   | 0  |
| 31.0 | 70  | 0  | 10  | 4  | 0   | 0   | 20  | 200 | 0  | 0   | 0  |
| 31.5 | 20  | 10 | 0   | 0  | 30  | 0   | 0   | 6   | 0  | 0   | 0  |
| 32.0 | 10  | 0  | 0   | 0  | 40  | 40  | 10  | 144 | 0  | 160 | 5  |
| 32.5 | 10  | 10 | 0   | 0  | 0   | 10  | 0   | 0   | 0  | 0   | 0  |

## Half-Week Demands - B Items

Attachment 5

|      |     |    |    |    |     |     |     |     |     |     |     |
|------|-----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| 33.0 | 10  | 0  | 0  | 0  | 30  | 50  | 0   | 158 | 0   | 0   | 0   |
| 33.5 | 10  | 0  | 10 | 0  | 0   | 0   | 0   | 12  | 0   | 0   | 0   |
| 34.0 | 0   | 0  | 50 | 0  | 110 | 180 | 0   | 122 | 0   | 0   | 100 |
| 34.5 | 0   | 0  | 50 | 0  | 50  | 190 | 20  | 182 | 0   | 0   | 0   |
| 35.0 | 40  | 0  | 0  | 0  | 0   | 0   | 0   | 4   | 0   | 0   | 0   |
| 35.5 | 10  | 0  | 20 | 0  | 10  | 10  | 0   | 58  | 0   | 0   | 0   |
| 36.0 | 50  | 5  | 0  | 0  | 40  | 0   | 20  | 32  | 0   | 160 | 105 |
| 36.5 | 10  | 0  | 0  | 4  | 0   | 10  | 40  | 0   | 0   | 0   | 0   |
| 37.0 | 70  | 0  | 70 | 0  | 50  | 100 | 0   | 240 | 80  | 0   | 0   |
| 37.5 | 120 | 0  | 0  | 0  | 40  | 0   | 0   | 0   | 0   | 0   | 0   |
| 38.0 | 0   | 0  | 10 | 0  | 10  | 0   | 0   | 60  | 0   | 0   | 0   |
| 38.5 | 20  | 5  | 0  | 0  | 80  | 150 | 0   | 104 | 0   | 0   | 0   |
| 39.0 | 0   | 0  | 10 | 0  | 60  | 0   | 100 | 20  | 0   | 0   | 0   |
| 39.5 | 0   | 0  | 0  | 5  | 50  | 20  | 0   | 92  | 0   | 0   | 0   |
| 40.0 | 0   | 0  | 0  | 0  | 20  | 30  | 0   | 0   | 0   | 0   | 0   |
| 40.5 | 10  | 0  | 20 | 0  | 110 | 100 | 0   | 144 | 0   | 0   | 0   |
| 41.0 | 20  | 0  | 0  | 0  | 10  | 0   | 0   | 0   | 0   | 0   | 0   |
| 41.5 | 150 | 0  | 0  | 0  | 60  | 80  | 10  | 92  | 0   | 0   | 0   |
| 42.0 | 40  | 0  | 50 | 0  | 0   | 30  | 0   | 166 | 0   | 0   | 0   |
| 42.5 | 80  | 0  | 10 | 0  | 0   | 20  | 20  | 46  | 40  | 0   | 0   |
| 43.0 | 0   | 5  | 10 | 0  | 20  | 100 | 10  | 104 | 0   | 300 | 0   |
| 43.5 | 30  | 5  | 30 | 5  | 100 | 130 | 0   | 112 | 0   | 120 | 0   |
| 44.0 | 20  | 0  | 20 | 0  | 0   | 10  | 0   | 0   | 0   | 0   | 0   |
| 44.5 | 60  | 0  | 0  | 0  | 0   | 120 | 0   | 54  | 0   | 0   | 0   |
| 45.0 | 10  | 5  | 40 | 0  | 0   | 0   | 0   | 122 | 0   | 320 | 0   |
| 45.5 | 30  | 0  | 66 | 4  | 50  | 190 | 0   | 94  | 0   | 0   | 0   |
| 46.0 | 0   | 10 | 0  | 0  | 70  | 10  | 20  | 40  | 0   | 0   | 55  |
| 46.5 | 10  | 0  | 0  | 0  | 60  | 20  | 20  | 54  | 0   | 0   | 0   |
| 47.0 | 10  | 0  | 0  | 0  | 0   | 50  | 0   | 84  | 160 | 0   | 0   |
| 47.5 | 20  | 0  | 90 | 0  | 110 | 160 | 20  | 46  | 0   | 0   | 95  |
| 48.0 | 20  | 0  | 40 | 0  | 0   | 0   | 0   | 148 | 0   | 0   | 0   |
| 48.5 | 0   | 0  | 30 | 0  | 20  | 170 | 0   | 172 | 0   | 0   | 0   |
| 49.0 | 0   | 0  | 10 | 0  | 20  | 30  | 0   | 0   | 40  | 0   | 0   |
| 49.5 | 40  | 0  | 70 | 0  | 160 | 0   | 70  | 0   | 0   | 0   | 0   |
| 50.0 | 0   | 0  | 10 | 15 | 120 | 40  | 0   | 142 | 0   | 0   | 0   |
| 50.5 | 0   | 15 | 0  | 0  | 0   | 10  | 0   | 0   | 0   | 0   | 0   |
| 51.0 | 0   | 0  | 0  | 0  | 20  | 0   | 0   | 82  | 0   | 0   | 0   |

## Simulation Results - Existing Policy

Attachment 6

|     | C        | Avg OH Inv | \$ OH Inv | # Orders            | Fillrate                 | Meet 90%? |
|-----|----------|------------|-----------|---------------------|--------------------------|-----------|
| A01 | 5.475    | 4142.549   | 22680.46  | 61                  | 1.000                    | 1         |
| A02 | 7.075    | 665.882    | 4711.12   | 53                  | 0.964                    | 1         |
| A03 | 31.205   | 71.373     | 2227.19   | 48                  | 0.904                    | 1         |
| A04 | 33.906   | 83.284     | 2823.83   | 24                  | 0.954                    | 1         |
| A05 | 6.049    | 270.980    | 1639.16   | 63                  | 0.996                    | 1         |
| A06 | 6.703    | 283.235    | 1898.52   | 66                  | 0.998                    | 1         |
| A07 | 9.161    | 793.333    | 7267.72   | 70                  | 1.000                    | 1         |
| A08 | 17.468   | 682.275    | 11917.98  | 66                  | 1.000                    | 1         |
| A09 | 10.987   | 161.275    | 1771.93   | 65                  | 0.998                    | 1         |
| A10 | 17.164   | 345.745    | 5934.37   | 65                  | 0.991                    | 1         |
| A11 | 57.509   | 101.529    | 5838.83   | 61                  | 0.942                    | 1         |
| A12 | 35.970   | 80.637     | 2900.51   | 52                  | 0.997                    | 1         |
| A13 | 20.977   | 330.922    | 6941.75   | 65                  | 0.952                    | 1         |
| A14 | 5.292    | 775.098    | 4101.82   | 50                  | 0.974                    | 1         |
|     |          | Subtotal   | Subtotal  |                     | Subaverage % Meeting 90% |           |
|     |          | 82655.19   | 809       |                     | 0.976                    | 1.000     |
| B01 | 9.744    | 94.216     | 918.04    | 46                  | 0.830                    | 0         |
| B02 | 22.467   | 10.490     | 235.68    | 22                  | 0.778                    | 0         |
| B03 | 7.689    | 62.882     | 483.50    | 40                  | 0.785                    | 0         |
| B04 | 63.440   | 4.706      | 298.55    | 25                  | 0.636                    | 0         |
| B05 | 10.928   | 121.177    | 1324.22   | 51                  | 0.843                    | 0         |
| B06 | 11.360   | 116.863    | 1327.56   | 52                  | 0.879                    | 0         |
| B07 | 6.916    | 35.980     | 248.84    | 33                  | 0.750                    | 0         |
| B08 | 70.470   | 140.569    | 9905.90   | 68                  | 0.935                    | 1         |
| B09 | 3.106    | 31.373     | 97.44     | 11                  | 0.556                    | 0         |
| B10 | 3.576    | 86.471     | 309.22    | 23                  | 0.602                    | 0         |
| B12 | 28.399   | 21.275     | 604.19    | 20                  | 0.430                    | 0         |
|     |          | Subtotal   | Subtotal  |                     | Subaverage % Meeting 90% |           |
|     |          | 15753.14   | 391       |                     | 0.729                    | 0.091     |
|     | Total    | Total      | Average   | Total % Meeting 90% |                          |           |
|     | 98408.33 | 1200       | 0.868     | 0.600               |                          |           |

## Initialized Croston's Method Parameters

Attachment 7

|     | Alpha | Z       | d | P      |
|-----|-------|---------|---|--------|
| A01 | 0.053 | 1942.13 | 1 | 1.0003 |
| A02 | 0.035 | 276.06  | 1 | 1.0205 |
| A03 | 0.090 | 45.64   | 2 | 1.1597 |
| A04 | 0.060 | 62.64   | 2 | 1.0740 |
| A05 | 0.093 | 110.92  | 1 | 1.0304 |
| A06 | 0.078 | 138.40  | 1 | 1.0005 |
| A07 | 0.047 | 442.12  | 1 | 1.0000 |
| A08 | 0.172 | 437.08  | 1 | 1.0000 |
| A09 | 0.074 | 78.26   | 1 | 1.0006 |
| A10 | 0.049 | 201.34  | 1 | 1.0000 |
| A11 | 0.141 | 41.36   | 1 | 1.1690 |
| A12 | 0.032 | 39.25   | 1 | 1.1136 |
| A13 | 0.014 | 153.71  | 1 | 1.0251 |
| A14 | 0.063 | 403.31  | 1 | 1.0651 |
| B01 | 0.013 | 84.53   | 1 | 1.0360 |
| B02 | 0.053 | 22.14   | 2 | 1.5047 |
| B03 | 0.028 | 79.49   | 1 | 1.1509 |
| B04 | 0.076 | 9.11    | 4 | 3.0303 |
| B05 | 0.008 | 93.19   | 1 | 1.1648 |
| B06 | 0.047 | 53.57   | 1 | 1.1521 |
| B07 | 0.030 | 36.88   | 1 | 1.4011 |
| B08 | 0.164 | 79.86   | 1 | 1.1776 |
| B09 | 0.143 | 56.91   | 1 | 3.4576 |
| B10 | 0.053 | 165.17  | 3 | 2.5910 |
| B12 | 0.026 | 30.27   | 3 | 2.6915 |

## Forecast Accuracies

Attachment 8

|                                     | MvAvg MSE  | Naive MSE         | % Diff | Mean MSE          | % Diff | Croston MSE       | % Diff |
|-------------------------------------|------------|-------------------|--------|-------------------|--------|-------------------|--------|
| A01                                 | 1121244.51 | 2189474.51        | 0.95   | 2622322.19        | 1.34   | 1084032.66        | -0.03  |
| A02                                 | 70674.52   | 172766.67         | 1.44   | 120198.47         | 0.70   | 70187.93          | -0.01  |
| A03                                 | 1288.07    | 2278.92           | 0.77   | 1207.58           | -0.06  | 1261.72           | -0.02  |
| A04                                 | 1703.79    | 3498.04           | 1.05   | 1738.13           | 0.02   | 1799.73           | 0.06   |
| A05                                 | 8090.67    | 15537.25          | 0.92   | 22034.13          | 1.72   | 8529.13           | 0.05   |
| A06                                 | 6220.22    | 10888.24          | 0.75   | 16621.66          | 1.67   | 6065.49           | -0.02  |
| A07                                 | 49696.75   | 98488.24          | 0.98   | 83616.57          | 0.68   | 47345.25          | -0.05  |
| A08                                 | 29552.67   | 50387.84          | 0.71   | 47289.51          | 0.60   | 26922.41          | -0.09  |
| A09                                 | 3319.97    | 6507.84           | 0.96   | 3211.24           | -0.03  | 3117.15           | -0.06  |
| A10                                 | 11705.68   | 20807.71          | 0.78   | 13351.72          | 0.14   | 10775.47          | -0.08  |
| A11                                 | 1829.78    | 2906.90           | 0.59   | 1672.23           | -0.09  | 1659.12           | -0.09  |
| A12                                 | 1040.44    | 2418.29           | 1.32   | 1463.10           | 0.41   | 1000.54           | -0.04  |
| A13                                 | 15015.78   | 23305.75          | 0.55   | 26278.86          | 0.75   | 14720.43          | -0.02  |
| A14                                 | 79470.31   | 189066.67         | 1.38   | 117962.83         | 0.48   | 75355.84          | -0.05  |
|                                     |            | <b>Avg % Diff</b> | 0.94   | <b>Avg % Diff</b> | 0.60   | <b>Avg % Diff</b> | -0.03  |
| B01                                 | 2425.25    | 3805.88           | 0.57   | 2290.58           | -0.06  | 2612.46           | 0.08   |
| B02                                 | 61.18      | 131.86            | 1.16   | 76.41             | 0.25   | 82.49             | 0.35   |
| B03                                 | 2035.08    | 3735.92           | 0.84   | 1868.33           | -0.08  | 2218.13           | 0.09   |
| B04                                 | 17.39      | 27.33             | 0.57   | 16.52             | -0.05  | 15.55             | -0.11  |
| B05                                 | 6490.78    | 14476.47          | 1.23   | 7408.36           | 0.14   | 5863.66           | -0.10  |
| B06                                 | 4332.85    | 7307.84           | 0.69   | 8496.92           | 0.96   | 4462.99           | 0.03   |
| B07                                 | 864.66     | 1915.69           | 1.22   | 840.61            | -0.03  | 834.26            | -0.04  |
| B08                                 | 5016.01    | 9250.82           | 0.84   | 6267.06           | 0.25   | 4891.71           | -0.02  |
| B09                                 | 1071.49    | 2227.45           | 1.08   | 1027.69           | -0.04  | 1012.43           | -0.06  |
| B10                                 | 6184.34    | 11278.43          | 0.82   | 5697.22           | -0.08  | 5856.01           | -0.05  |
| B12                                 | 769.61     | 1612.75           | 1.10   | 745.36            | -0.03  | 699.34            | -0.09  |
|                                     |            | <b>Avg % Diff</b> | 0.92   | <b>Avg % Diff</b> | 0.11   | <b>Avg % Diff</b> | 0.01   |
| <b>Overall Average % Difference</b> |            | 0.93              |        | 0.38              |        |                   | -0.01  |

## Simulation Results - Naive Forecast

Attachment 9

|            | <b>c</b> | <b>Avg OH Inv</b> | <b>\$ OH Inv</b> | <b># Orders</b> | <b>Fillrate</b> | <b>Meet 90%?</b>    |
|------------|----------|-------------------|------------------|-----------------|-----------------|---------------------|
| <b>A01</b> | 5.475    | 5517.647          | 30209.12         | 32              | 0.998           | 1                   |
| <b>A02</b> | 7.075    | 1333.333          | 9433.33          | 20              | 0.987           | 1                   |
| <b>A03</b> | 31.205   | 168.529           | 5258.95          | 21              | 0.880           | 0                   |
| <b>A04</b> | 33.906   | 276.177           | 9364.06          | 8               | 0.919           | 1                   |
| <b>A05</b> | 6.049    | 411.078           | 2486.61          | 31              | 0.996           | 1                   |
| <b>A06</b> | 6.703    | 403.333           | 2703.54          | 37              | 0.979           | 1                   |
| <b>A07</b> | 9.161    | 1165.000          | 10672.57         | 31              | 0.973           | 1                   |
| <b>A08</b> | 17.468   | 881.000           | 15389.31         | 34              | 1.000           | 1                   |
| <b>A09</b> | 10.987   | 322.941           | 3548.15          | 24              | 1.000           | 1                   |
| <b>A10</b> | 17.164   | 545.873           | 9369.36          | 38              | 1.000           | 1                   |
| <b>A11</b> | 57.509   | 193.451           | 11125.17         | 32              | 0.981           | 1                   |
| <b>A12</b> | 35.970   | 152.628           | 5490.03          | 24              | 0.983           | 1                   |
| <b>A13</b> | 20.977   | 497.206           | 10429.89         | 43              | 0.942           | 1                   |
| <b>A14</b> | 5.292    | 1366.275          | 7230.33          | 28              | 0.994           | 1                   |
|            |          | Subtotal          |                  | Subtotal        | Subaverage      | % Meeting 90%       |
|            |          |                   | 132710.42        | 403             | 0.974           | 0.929               |
| <b>B01</b> | 9.744    | 219.118           | 2135.09          | 15              | 0.963           | 1                   |
| <b>B02</b> | 22.467   | 27.892            | 626.65           | 13              | 0.944           | 1                   |
| <b>B03</b> | 7.689    | 167.333           | 1286.62          | 16              | 0.894           | 0                   |
| <b>B04</b> | 63.440   | 12.794            | 811.65           | 16              | 0.876           | 0                   |
| <b>B05</b> | 10.928   | 283.039           | 3093.05          | 20              | 0.943           | 1                   |
| <b>B06</b> | 11.360   | 204.902           | 2327.69          | 32              | 0.958           | 1                   |
| <b>B07</b> | 6.916    | 162.059           | 1120.80          | 8               | 0.900           | 1                   |
| <b>B08</b> | 70.470   | 341.549           | 24068.96         | 35              | 0.979           | 1                   |
| <b>B09</b> | 3.106    | 161.177           | 500.62           | 6               | 1.000           | 1                   |
| <b>B10</b> | 3.576    | 295.882           | 1058.07          | 14              | 0.938           | 1                   |
| <b>B12</b> | 28.399   | 119.902           | 3405.10          | 12              | 0.926           | 1                   |
|            |          | Subtotal          |                  | Subtotal        | Subaverage      | % Meeting 90%       |
|            |          |                   | 40434.29         | 187             | 0.938           | 0.818               |
|            |          | Total             |                  | Total           | Average         | Total % Meeting 90% |
|            |          |                   | 173144.71        | 590             | 0.958           | 0.880               |

## Simulation Results - Mean Forecast

Attachment 9

|     | c      | Avg OH Inv | \$ OH Inv | # Orders | Fillrate                 | Meet 90%?           |
|-----|--------|------------|-----------|----------|--------------------------|---------------------|
| A01 | 5.475  | 620.980    | 3399.87   | 82       | 0.693                    | 0                   |
| A02 | 7.075  | 120.882    | 855.24    | 69       | 0.562                    | 0                   |
| A03 | 31.205 | 61.814     | 1928.91   | 42       | 0.924                    | 1                   |
| A04 | 33.906 | 59.853     | 2029.38   | 27       | 0.799                    | 0                   |
| A05 | 6.049  | 31.373     | 189.78    | 78       | 0.521                    | 0                   |
| A06 | 6.703  | 36.177     | 242.49    | 79       | 0.660                    | 0                   |
| A07 | 9.161  | 230.490    | 2111.52   | 88       | 0.868                    | 0                   |
| A08 | 17.468 | 214.333    | 3743.97   | 78       | 0.932                    | 1                   |
| A09 | 10.987 | 119.216    | 1309.83   | 68       | 0.987                    | 1                   |
| A10 | 17.164 | 201.735    | 3462.58   | 72       | 0.921                    | 1                   |
| A11 | 57.509 | 148.961    | 8566.60   | 53       | 1.000                    | 1                   |
| A12 | 35.970 | 20.931     | 752.89    | 57       | 0.724                    | 0                   |
| A13 | 20.977 | 79.265     | 1662.74   | 77       | 0.737                    | 0                   |
| A14 | 5.292  | 211.471    | 1119.10   | 52       | 0.794                    | 0                   |
|     |        | Subtotal   |           | Subtotal | Subaverage % Meeting 90% |                     |
|     |        |            | 31374.88  | 922      | 0.794                    | 0.357               |
| B01 | 9.744  | 53.922     | 525.42    | 51       | 0.731                    | 0                   |
| B02 | 22.467 | 18.529     | 416.29    | 17       | 0.889                    | 0                   |
| B03 | 7.689  | 56.804     | 436.77    | 53       | 0.780                    | 0                   |
| B04 | 63.440 | 1.824      | 115.71    | 23       | 0.403                    | 0                   |
| B05 | 10.928 | 44.804     | 489.62    | 59       | 0.672                    | 0                   |
| B06 | 11.360 | 15.882     | 180.42    | 53       | 0.359                    | 0                   |
| B07 | 6.916  | 17.353     | 120.01    | 37       | 0.600                    | 0                   |
| B08 | 70.470 | 98.333     | 6929.53   | 69       | 0.903                    | 1                   |
| B09 | 3.106  | 15.686     | 48.72     | 6        | 0.389                    | 0                   |
| B10 | 3.576  | 55.294     | 197.73    | 20       | 0.496                    | 0                   |
| B12 | 28.399 | 7.647      | 217.17    | 13       | 0.198                    | 0                   |
|     |        | Subtotal   |           | Subtotal | Subaverage % Meeting 90% |                     |
|     |        |            | 9677.38   | 401      | 0.584                    | 0.091               |
|     |        | Total      |           | Total    | Average                  | Total % Meeting 90% |
|     |        | 41052.27   |           | 1323     | 0.702                    | 0.240               |

## Simulation Results - Croston Forecast

Attachment 9

|     | c      | Avg OH Inv | \$ OH Inv | # Orders | Fillrate   | Meet 90%?           |
|-----|--------|------------|-----------|----------|------------|---------------------|
| A01 | 5.475  | 4034.314   | 22087.87  | 66       | 1.000      | 1                   |
| A02 | 7.075  | 549.314    | 3886.40   | 54       | 0.957      | 1                   |
| A03 | 31.205 | 73.480     | 2292.94   | 43       | 0.930      | 1                   |
| A04 | 33.906 | 102.206    | 3465.40   | 23       | 0.975      | 1                   |
| A05 | 6.049  | 257.843    | 1559.69   | 62       | 0.994      | 1                   |
| A06 | 6.703  | 276.471    | 1853.19   | 65       | 1.000      | 1                   |
| A07 | 9.161  | 830.392    | 7607.22   | 68       | 1.000      | 1                   |
| A08 | 17.468 | 679.137    | 11863.17  | 65       | 1.000      | 1                   |
| A09 | 10.987 | 160.294    | 1761.15   | 66       | 1.000      | 1                   |
| A10 | 17.164 | 382.912    | 6572.30   | 63       | 1.000      | 1                   |
| A11 | 57.509 | 104.529    | 6011.36   | 54       | 0.974      | 1                   |
| A12 | 35.970 | 72.333     | 2601.82   | 53       | 0.983      | 1                   |
| A13 | 20.977 | 281.510    | 5905.24   | 65       | 0.946      | 1                   |
| A14 | 5.292  | 762.255    | 4033.85   | 46       | 0.984      | 1                   |
|     |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|     |        |            | 81501.59  | 793      | 0.982      | 1.000               |
| B01 | 9.744  | 131.471    | 1281.05   | 42       | 0.959      | 1                   |
| B02 | 22.467 | 20.539     | 461.45    | 20       | 0.963      | 1                   |
| B03 | 7.689  | 104.647    | 804.63    | 35       | 0.967      | 1                   |
| B04 | 63.440 | 5.216      | 330.90    | 21       | 0.705      | 0                   |
| B05 | 10.928 | 119.706    | 1308.15   | 52       | 0.893      | 0                   |
| B06 | 11.360 | 82.157     | 933.30    | 49       | 0.833      | 0                   |
| B07 | 6.916  | 42.255     | 292.24    | 29       | 0.800      | 0                   |
| B08 | 70.470 | 148.235    | 10446.12  | 67       | 0.941      | 1                   |
| B09 | 3.106  | 31.373     | 97.44     | 11       | 0.611      | 0                   |
| B10 | 3.576  | 108.628    | 388.45    | 20       | 0.761      | 0                   |
| B12 | 28.399 | 21.225     | 602.77    | 12       | 0.463      | 0                   |
|     |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|     |        |            | 16946.51  | 358      | 0.809      | 0.364               |
|     |        | Total      |           | Total    | Average    | Total % Meeting 90% |
|     |        | 98448.10   |           | 1151     | 0.906      | 0.720               |

## Sample Set GOF Test Results - A items

Attachment 10

**A01**

| Interval    | Prob   | O  | E       | Stat   |
|-------------|--------|----|---------|--------|
| 0 thr 13    | 0.1620 | 38 | 39.2120 | 0.0375 |
| 14 thr 30   | 0.1656 | 36 | 40.0833 | 0.4160 |
| 31 thr 52   | 0.1680 | 46 | 40.6573 | 0.7021 |
| 53 thr 82   | 0.1643 | 38 | 39.7634 | 0.0782 |
| 83 thr 133  | 0.1666 | 41 | 40.3057 | 0.0120 |
| 134 thr inf | 0.1735 | 43 | 41.9783 | 0.0249 |
|             |        |    |         | 1.2705 |

**A08**

| Interval   | Prob   | O  | E       | Stat   |
|------------|--------|----|---------|--------|
| 0 thr 3    | 0.1520 | 41 | 36.7842 | 0.4832 |
| 4 thr 8    | 0.1980 | 48 | 47.9185 | 0.0001 |
| 9 thr 13   | 0.1640 | 36 | 39.6835 | 0.3419 |
| 14 thr 19  | 0.1490 | 34 | 36.0677 | 0.1185 |
| 20 thr 30  | 0.1695 | 37 | 41.0140 | 0.3928 |
| 31 thr inf | 0.1675 | 46 | 40.5321 | 0.7376 |
|            |        |    |         | 2.0742 |

**A02**

| Interval   | Prob   | O  | E       | Stat    |
|------------|--------|----|---------|---------|
| 0 thr 1    | 0.1884 | 77 | 45.6013 | 21.6195 |
| 2 thr 3    | 0.1300 | 18 | 31.4704 | 5.7658  |
| 4 thr 7    | 0.1878 | 25 | 45.4587 | 9.2075  |
| 8 thr 12   | 0.1567 | 25 | 37.9126 | 4.3979  |
| 13 thr 21  | 0.1630 | 52 | 39.4515 | 3.9914  |
| 22 thr inf | 0.1740 | 45 | 42.1056 | 0.1990  |
|            |        |    |         | 45.1810 |

**A09**

| Interval   | Prob   | O  | E       | Stat   |
|------------|--------|----|---------|--------|
| 0          | 0.1130 | 31 | 27.3374 | 0.4907 |
| 1 thr 2    | 0.1998 | 43 | 48.3454 | 0.5910 |
| 3 thr 5    | 0.2245 | 58 | 54.3296 | 0.2480 |
| 6 thr 8    | 0.1532 | 34 | 37.0758 | 0.2552 |
| 9 thr 13   | 0.1523 | 36 | 36.8581 | 0.0200 |
| 14 thr inf | 0.1572 | 40 | 38.0537 | 0.0995 |
|            |        |    |         | 1.7044 |

**A03**

| Interval   | Prob   | O  | E       | Stat    |
|------------|--------|----|---------|---------|
| 0          | 0.2504 | 83 | 60.5853 | 8.2928  |
| 1          | 0.1245 | 13 | 30.1271 | 9.7367  |
| 2 thr 3    | 0.1576 | 34 | 38.1316 | 0.4477  |
| 4 thr 6    | 0.1442 | 29 | 34.8945 | 0.9957  |
| 7 thr 12   | 0.1542 | 42 | 37.3152 | 0.5882  |
| 13 thr inf | 0.1692 | 41 | 40.9462 | 0.0001  |
|            |        |    |         | 20.0611 |

**A10**

| Interval    | Prob   | O  | E       | Stat   |
|-------------|--------|----|---------|--------|
| 0 thr 30    | 0.1623 | 45 | 39.2657 | 0.8374 |
| 31 thr 59   | 0.1642 | 38 | 39.7402 | 0.0762 |
| 60 thr 95   | 0.1726 | 37 | 41.7654 | 0.5437 |
| 96 thr 138  | 0.1561 | 34 | 37.7779 | 0.3778 |
| 139 thr 215 | 0.1733 | 42 | 41.9442 | 0.0001 |
| 216 thr inf | 0.1715 | 46 | 41.5066 | 0.4864 |
|             |        |    |         | 2.3217 |

**A04**

| Interval   | Prob   | O  | E       | Stat    |
|------------|--------|----|---------|---------|
| 0          | 0.2170 | 98 | 52.5087 | 39.4118 |
| 1          | 0.1322 | 16 | 31.9990 | 7.9993  |
| 2 thr 3    | 0.1788 | 18 | 43.2578 | 14.7478 |
| 4 thr 6    | 0.1662 | 22 | 40.2127 | 8.2487  |
| 7 thr 11   | 0.1496 | 41 | 36.2011 | 0.6361  |
| 12 thr inf | 0.1563 | 47 | 37.8207 | 2.2279  |
|            |        |    |         | 73.2716 |

**A11**

| Interval   | Prob   | O  | E       | Stat    |
|------------|--------|----|---------|---------|
| 0 thr 5    | 0.1720 | 67 | 41.6143 | 15.4858 |
| 6 thr 12   | 0.1503 | 18 | 36.3752 | 9.2824  |
| 13 thr 23  | 0.1775 | 36 | 42.9664 | 1.1295  |
| 24 thr 38  | 0.1665 | 29 | 40.2926 | 3.1649  |
| 39 thr 63  | 0.1618 | 48 | 39.1552 | 1.9979  |
| 64 thr inf | 0.1719 | 44 | 41.5962 | 0.1389  |
|            |        |    |         | 31.1995 |

**A05**

| Interval   | Prob   | O  | E       | Stat    |
|------------|--------|----|---------|---------|
| 0          | 0.2293 | 71 | 55.4965 | 4.3311  |
| 1          | 0.1446 | 32 | 35.0045 | 0.2579  |
| 2          | 0.1084 | 12 | 26.2368 | 7.7253  |
| 3 thr 4    | 0.1548 | 32 | 37.4515 | 0.7935  |
| 5 thr 9    | 0.2038 | 51 | 49.3240 | 0.0569  |
| 10 thr inf | 0.1590 | 44 | 38.4867 | 0.7898  |
|            |        |    |         | 13.9545 |

**A12**

| Interval  | Prob   | O  | E       | Stat   |
|-----------|--------|----|---------|--------|
| 0         | 0.3710 | 98 | 89.7834 | 0.7520 |
| 1         | 0.1760 | 38 | 42.5878 | 0.4942 |
| 2         | 0.1139 | 26 | 27.5572 | 0.0880 |
| 3 thr 4   | 0.1391 | 29 | 33.6598 | 0.6451 |
| 5 thr 7   | 0.1038 | 24 | 25.1190 | 0.0499 |
| 8 thr inf | 0.0963 | 27 | 23.2929 | 0.5900 |
|           |        |    |         | 2.6191 |

**A06**

| Interval   | Prob   | O  | E       | Stat   |
|------------|--------|----|---------|--------|
| 0 thr 1    | 0.2307 | 60 | 55.8387 | 0.3101 |
| 2          | 0.1179 | 30 | 28.5436 | 0.0743 |
| 3 thr 4    | 0.1993 | 38 | 48.2329 | 2.1710 |
| 5 thr 6    | 0.1465 | 36 | 35.4481 | 0.0086 |
| 7 thr 9    | 0.1406 | 37 | 34.0320 | 0.2588 |
| 10 thr inf | 0.1649 | 41 | 39.9046 | 0.0301 |
|            |        |    |         | 2.8529 |

**A13**

| Interval   | Prob   | O  | E       | Stat   |
|------------|--------|----|---------|--------|
| 0 thr 1    | 0.1440 | 45 | 34.8511 | 2.9554 |
| 2 thr 4    | 0.1901 | 36 | 46.0102 | 2.1779 |
| 5 thr 8    | 0.1946 | 40 | 47.0906 | 1.0676 |
| 9 thr 12   | 0.1396 | 34 | 33.7933 | 0.0013 |
| 13 thr 20  | 0.1689 | 48 | 40.8623 | 1.2468 |
| 21 thr inf | 0.1628 | 39 | 39.3925 | 0.0039 |
|            |        |    |         | 7.4529 |

**A07**

| Interval   | Prob   | O  | E       | Stat   |
|------------|--------|----|---------|--------|
| 0 thr 6    | 0.1645 | 48 | 39.8133 | 1.6834 |
| 7 thr 11   | 0.1729 | 41 | 41.8367 | 0.0167 |
| 12 thr 16  | 0.1607 | 30 | 38.8837 | 2.0297 |
| 17 thr 23  | 0.1780 | 32 | 43.0854 | 2.8522 |
| 24 thr 32  | 0.1493 | 44 | 36.1229 | 1.7177 |
| 33 thr inf | 0.1746 | 47 | 42.2580 | 0.5321 |
|            |        |    |         | 8.8318 |

**A14**

| Interval   | Prob   | O  | E       | Stat     |
|------------|--------|----|---------|----------|
| 0          | 0.1166 | 83 | 28.2161 | 106.3672 |
| 1 thr 4    | 0.2172 | 26 | 52.5532 | 13.4164  |
| 5 thr 10   | 0.1829 | 29 | 44.2619 | 5.2625   |
| 11 thr 17  | 0.1358 | 11 | 32.8685 | 14.5498  |
| 18 thr 34  | 0.1795 | 37 | 43.4342 | 0.9531   |
| 35 thr inf | 0.1680 | 56 | 40.6660 | 5.7820   |
|            |        |    |         | 146.3310 |

## Sample Set GOF Test Results - B Items

Attachment 10

**B01**

| Interval  | Prob   | O  | E       | Stat   |
|-----------|--------|----|---------|--------|
| 0         | 0.2634 | 77 | 63.7385 | 2.7592 |
| 1         | 0.1564 | 25 | 37.8391 | 4.3564 |
| 2         | 0.1131 | 24 | 27.3687 | 0.4146 |
| 3 thr 4   | 0.1550 | 42 | 37.5112 | 0.5372 |
| 5 thr 8   | 0.1649 | 41 | 39.8965 | 0.0305 |
| 9 thr inf | 0.1473 | 33 | 35.6460 | 0.1964 |
|           |        |    |         | 8.2943 |

**B07**

| Interval  | Prob   | O   | E        | Stat   |
|-----------|--------|-----|----------|--------|
| 0         | 0.5737 | 147 | 138.8417 | 0.4794 |
| 1         | 0.1626 | 34  | 39.3492  | 0.7272 |
| 2         | 0.0869 | 15  | 21.0338  | 1.7309 |
| 3         | 0.0537 | 12  | 13.0041  | 0.0775 |
| 4 thr 5   | 0.0598 | 20  | 14.4661  | 2.1170 |
| 6 thr inf | 0.0632 | 14  | 15.3050  | 0.1113 |
|           |        |     |          | 5.2432 |

**B02**

| Interval  | Prob   | O   | E        | Stat    |
|-----------|--------|-----|----------|---------|
| 0         | 0.4584 | 129 | 110.9239 | 2.9457  |
| 1         | 0.1780 | 27  | 43.0763  | 5.9998  |
| 2         | 0.1057 | 18  | 25.5773  | 2.2448  |
| 3         | 0.0700 | 13  | 16.9383  | 0.9157  |
| 4 thr 5   | 0.0837 | 28  | 20.2560  | 2.9606  |
| 6 thr inf | 0.1042 | 27  | 25.2282  | 0.1244  |
|           |        |     |          | 15.1909 |

**B08**

| Interval   | Prob   | O  | E       | Stat    |
|------------|--------|----|---------|---------|
| 0 thr 5    | 0.1633 | 59 | 39.5181 | 9.6043  |
| 6 thr 14   | 0.1701 | 31 | 41.1584 | 2.5072  |
| 15 thr 26  | 0.1654 | 29 | 40.0387 | 3.0434  |
| 27 thr 44  | 0.1693 | 28 | 40.9791 | 4.1108  |
| 45 thr 74  | 0.1617 | 47 | 39.1381 | 1.5793  |
| 75 thr inf | 0.1701 | 48 | 41.1676 | 1.1339  |
|            |        |    |         | 21.9790 |

**B03**

| Interval  | Prob   | O   | E       | Stat   |
|-----------|--------|-----|---------|--------|
| 0         | 0.3508 | 102 | 84.8960 | 3.4460 |
| 1         | 0.1493 | 29  | 36.1349 | 1.4088 |
| 2         | 0.0980 | 15  | 23.7233 | 3.2076 |
| 3 thr 4   | 0.1274 | 29  | 30.8331 | 0.1090 |
| 5 thr 8   | 0.1336 | 31  | 32.3431 | 0.0558 |
| 9 thr inf | 0.1408 | 36  | 34.0697 | 0.1094 |
|           |        |     |         | 8.3365 |

**B09**

| Interval  | Prob   | O   | E        | Stat   |
|-----------|--------|-----|----------|--------|
| 0         | 0.8623 | 211 | 208.6716 | 0.0260 |
| 1         | 0.0952 | 18  | 23.0347  | 1.1004 |
| 2         | 0.0273 | 9   | 6.5981   | 0.8743 |
| 3         | 0.0094 | 2   | 2.2772   | 0.0337 |
| 4         | 0.0035 | 2   | 0.8528   | 1.5434 |
| 5 thr inf | 0.0023 | 0   | 0.5656   | 0.5656 |
|           |        |     |          | 4.1435 |

**B04**

| Interval   | Prob   | O   | E        | Stat    |
|------------|--------|-----|----------|---------|
| 0          | 0.7573 | 209 | 183.2654 | 3.6137  |
| 1          | 0.0739 | 1   | 17.8893  | 15.9452 |
| 2          | 0.0379 | 0   | 9.1833   | 9.1833  |
| 3 thr 4    | 0.0426 | 11  | 10.3043  | 0.0470  |
| 5 thr 9    | 0.0463 | 10  | 11.2030  | 0.1292  |
| 10 thr inf | 0.0420 | 11  | 10.1548  | 0.0704  |
|            |        |     |          | 28.9887 |

**B10**

| Interval  | Prob   | O   | E        | Stat    |
|-----------|--------|-----|----------|---------|
| 0         | 0.6229 | 187 | 150.7400 | 8.7222  |
| 1         | 0.1189 | 2   | 28.7712  | 24.9102 |
| 2         | 0.0643 | 8   | 15.5491  | 3.6651  |
| 3 thr 4   | 0.0724 | 8   | 17.5213  | 5.1740  |
| 5 thr 7   | 0.0540 | 10  | 13.0701  | 0.7212  |
| 8 thr inf | 0.0676 | 27  | 16.3483  | 6.9402  |
|           |        |     |          | 50.1328 |

**B05**

| Interval  | Prob   | O  | E       | Stat    |
|-----------|--------|----|---------|---------|
| 0         | 0.2888 | 91 | 69.8963 | 6.3718  |
| 1         | 0.1493 | 19 | 36.1230 | 8.1166  |
| 2         | 0.1042 | 23 | 25.2114 | 0.1940  |
| 3 thr 4   | 0.1413 | 29 | 34.1924 | 0.7885  |
| 5 thr 8   | 0.1538 | 39 | 37.2154 | 0.0856  |
| 9 thr inf | 0.1627 | 41 | 39.3615 | 0.0682  |
|           |        |    |         | 15.6247 |

**B12**

| Interval  | Prob   | O   | E        | Stat   |
|-----------|--------|-----|----------|--------|
| 0         | 0.8005 | 202 | 193.7263 | 0.3534 |
| 1         | 0.0680 | 9   | 16.4625  | 3.3828 |
| 2         | 0.0337 | 5   | 8.1648   | 1.2267 |
| 3 thr 4   | 0.0363 | 13  | 8.7930   | 2.0128 |
| 5 thr 8   | 0.0319 | 6   | 7.7167   | 0.3819 |
| 9 thr inf | 0.0295 | 7   | 7.1367   | 0.0026 |
|           |        |     |          | 7.3601 |

**B06**

| Interval  | Prob   | O   | E       | Stat    |
|-----------|--------|-----|---------|---------|
| 0         | 0.3544 | 108 | 85.7678 | 5.7629  |
| 1         | 0.1929 | 20  | 46.6884 | 15.2558 |
| 2         | 0.1267 | 31  | 30.6595 | 0.0038  |
| 3         | 0.0879 | 24  | 21.2815 | 0.3473  |
| 4 thr 5   | 0.1081 | 18  | 26.1550 | 2.5427  |
| 6 thr inf | 0.1299 | 41  | 31.4478 | 2.9015  |
|           |        |     |         | 26.8140 |

|     | c      | Avg OH Inv           | \$ OH Inv        | # Orders            | Fillrate                 | Meet 90%? |
|-----|--------|----------------------|------------------|---------------------|--------------------------|-----------|
| A01 | 5.475  | 2886.296             | 15802.47         | 137                 | 0.990                    | 1         |
| A02 | 7.075  | 446.398              | 3158.27          | 114                 | 0.968                    | 1         |
| A03 | 31.205 | 139.579              | 4355.55          | 96                  | 0.989                    | 1         |
| A04 | 33.906 | 115.093              | 3902.33          | 104                 | 0.974                    | 1         |
| A05 | 6.049  | 195.417              | 1182.08          | 113                 | 0.965                    | 1         |
| A06 | 6.703  | 201.870              | 1353.14          | 133                 | 0.983                    | 1         |
| A07 | 9.161  | 774.556              | 7095.70          | 143                 | 1.000                    | 1         |
| A08 | 17.468 | 672.593              | 11748.85         | 143                 | 0.997                    | 1         |
| A09 | 10.987 | 299.426              | 3289.79          | 120                 | 0.985                    | 1         |
| A10 | 17.164 | 519.954              | 8924.49          | 143                 | 0.986                    | 1         |
| A11 | 57.509 | 326.296              | 18764.97         | 112                 | 0.997                    | 1         |
| A12 | 35.970 | 75.509               | 2716.07          | 93                  | 0.930                    | 1         |
| A13 | 20.977 | 315.208              | 6612.12          | 130                 | 0.980                    | 1         |
| A14 | 5.292  | 724.398              | 3833.51          | 106                 | 0.972                    | 1         |
|     |        | Subtotal<br>92739.34 | Subtotal<br>1687 | Subaverage<br>0.980 | % Meeting<br>1.000       |           |
| B01 | 9.744  | 127.630              | 1243.62          | 106                 | 0.922                    | 1         |
| B02 | 22.467 | 32.917               | 739.54           | 80                  | 0.872                    | 0         |
| B03 | 7.689  | 129.444              | 995.30           | 92                  | 0.853                    | 0         |
| B04 | 63.440 | 7.005                | 444.37           | 37                  | 0.511                    | 0         |
| B05 | 10.928 | 139.769              | 1527.39          | 104                 | 0.839                    | 0         |
| B06 | 11.360 | 70.194               | 797.41           | 105                 | 0.928                    | 1         |
| B07 | 6.916  | 43.102               | 298.09           | 72                  | 0.799                    | 0         |
| B08 | 70.470 | 272.444              | 19199.16         | 122                 | 0.981                    | 1         |
| B09 | 3.106  | 34.815               | 108.13           | 26                  | 0.591                    | 0         |
| B10 | 3.576  | 142.875              | 510.92           | 57                  | 0.759                    | 0         |
| B12 | 28.399 | 27.917               | 792.81           | 31                  | 0.565                    | 0         |
|     |        | Subtotal<br>26656.74 | Subtotal<br>832  | Subaverage<br>0.784 | % Meeting<br>0.273       |           |
|     |        | Total<br>119396.09   | Total<br>2519    | Average<br>0.893    | Total % Meeting<br>0.680 |           |

## Exchange Curve / EOQ Calculations

Attachment 12

|     |        | Mean        |           | SQRT of  | Resulting |
|-----|--------|-------------|-----------|----------|-----------|
|     | c      | Hfwk Demand | lambda    | c*lambda | EOQ Value |
| A01 | 5.475  | 775.694     | 79120.829 | 658.169  | 751.407   |
| A02 | 7.075  | 119.602     | 12199.394 | 293.787  | 259.554   |
| A03 | 31.205 | 29.144      | 2972.639  | 304.567  | 61.007    |
| A04 | 33.906 | 29.421      | 3000.973  | 318.984  | 58.805    |
| A05 | 6.049  | 50.231      | 5123.611  | 176.048  | 181.915   |
| A06 | 6.703  | 54.551      | 5564.195  | 193.124  | 180.090   |
| A07 | 9.161  | 205.653     | 20976.586 | 438.368  | 299.101   |
| A08 | 17.468 | 187.732     | 19148.613 | 578.349  | 206.952   |
| A09 | 10.987 | 68.991      | 7037.055  | 278.058  | 158.190   |
| A10 | 17.164 | 125.435     | 12794.390 | 468.618  | 170.656   |
| A11 | 57.509 | 66.333      | 6766.000  | 623.784  | 67.799    |
| A12 | 35.970 | 17.986      | 1834.583  | 256.885  | 44.640    |
| A13 | 20.977 | 78.315      | 7988.111  | 409.349  | 121.975   |
| A14 | 5.292  | 191.250     | 19507.500 | 321.300  | 379.501   |
| B01 | 9.744  | 39.713      | 4050.722  | 198.671  | 127.444   |
| B02 | 22.467 | 9.051       | 923.194   | 144.019  | 40.068    |
| B03 | 7.689  | 37.546      | 3829.723  | 171.601  | 139.499   |
| B04 | 63.440 | 1.431       | 145.917   | 96.213   | 9.480     |
| B05 | 10.928 | 43.764      | 4463.917  | 220.866  | 126.331   |
| B06 | 11.360 | 22.514      | 2296.417  | 161.516  | 88.871    |
| B07 | 6.916  | 12.917      | 1317.500  | 95.456   | 86.272    |
| B08 | 70.470 | 79.648      | 8124.111  | 756.641  | 67.113    |
| B09 | 3.106  | 8.463       | 863.222   | 51.780   | 104.204   |
| B10 | 3.576  | 34.995      | 3569.528  | 112.981  | 197.483   |
| B12 | 28.399 | 3.889       | 396.667   | 106.136  | 23.361    |

Sum of SQRT's 5257.529

Total # orders from Sample Set sim 2519

Avg # Replenishments / Year 1189.5278

K/I Estimate 19.535034

| Desired |          |      |      |
|---------|----------|------|------|
| Item    | Fillrate | s    | S    |
| A01     | 0.90     | 3010 | 3020 |
|         | 0.95     | 3670 | 3680 |
|         | 0.99     | 5140 | 5150 |
| A02     | 0.90     | 430  | 560  |
|         | 0.95     | 550  | 680  |
|         | 0.99     | 830  | 960  |
| A03     | 0.90     | 135  | 160  |
|         | 0.95     | 175  | 200  |
|         | 0.99     | 265  | 290  |
| A04     | 0.90     | 125  | 150  |
|         | 0.95     | 160  | 185  |
|         | 0.99     | 240  | 265  |
| A05     | 0.90     | 160  | 290  |
|         | 0.95     | 210  | 340  |
|         | 0.99     | 330  | 460  |
| A06     | 0.90     | 130  | 260  |
|         | 0.95     | 170  | 300  |
|         | 0.99     | 260  | 390  |
| A07     | 0.90     | 540  | 680  |
|         | 0.95     | 660  | 800  |
|         | 0.99     | 910  | 1050 |
| A08     | 0.90     | 630  | 660  |
|         | 0.95     | 760  | 790  |
|         | 0.99     | 1040 | 1070 |
| A09     | 0.90     | 220  | 310  |
|         | 0.95     | 290  | 380  |
|         | 0.99     | 430  | 520  |
| A10     | 0.90     | 388  | 446  |
|         | 0.95     | 475  | 533  |
|         | 0.99     | 665  | 723  |
| A11     | 0.90     | 272  | 274  |
|         | 0.95     | 336  | 338  |
|         | 0.99     | 474  | 476  |
| A12     | 0.90     | 77   | 98   |
|         | 0.95     | 105  | 126  |
|         | 0.99     | 154  | 175  |
| A13     | 0.90     | 266  | 315  |
|         | 0.95     | 336  | 385  |
|         | 0.99     | 483  | 532  |
| A14     | 0.90     | 800  | 950  |
|         | 0.95     | 1020 | 1170 |
|         | 0.99     | 1540 | 1690 |

| Desired |          |     |     |
|---------|----------|-----|-----|
| Item    | Fillrate | s   | S   |
| B01     | 0.90     | 150 | 230 |
|         | 0.95     | 200 | 280 |
|         | 0.99     | 310 | 390 |
| B02     | 0.90     | 40  | 65  |
|         | 0.95     | 55  | 80  |
|         | 0.99     | 95  | 120 |
| B03     | 0.90     | 170 | 250 |
|         | 0.95     | 240 | 320 |
|         | 0.99     | 380 | 460 |
| B04     | 0.90     | 21  | 24  |
|         | 0.95     | 29  | 32  |
|         | 0.99     | 49  | 52  |
| B05     | 0.90     | 180 | 250 |
|         | 0.95     | 240 | 310 |
|         | 0.99     | 380 | 450 |
| B06     | 0.90     | 80  | 140 |
|         | 0.95     | 100 | 160 |
|         | 0.99     | 160 | 220 |
| B07     | 0.90     | 60  | 120 |
|         | 0.95     | 90  | 150 |
|         | 0.99     | 150 | 210 |
| B08     | 0.90     | 308 | 310 |
|         | 0.95     | 376 | 378 |
|         | 0.99     | 526 | 528 |
| B09     | 0.90     | 80  | 160 |
|         | 0.95     | 120 | 200 |
|         | 0.99     | 200 | 280 |
| B10     | 0.90     | 260 | 360 |
|         | 0.95     | 380 | 480 |
|         | 0.99     | 620 | 720 |
| B12     | 0.90     | 85  | 90  |
|         | 0.95     | 115 | 120 |
|         | 0.99     | 190 | 195 |

## Simulation Results - Two-Stage Heuristic at 90%

Attachment 14

|            | c      | Avg OH Inv | \$ OH Inv | # Orders | Fillrate   | Meet 90%?           |
|------------|--------|------------|-----------|----------|------------|---------------------|
| <b>A01</b> | 5.475  | 1158.137   | 6340.80   | 96       | 0.861      | 0                   |
| <b>A02</b> | 7.075  | 250.098    | 1769.44   | 51       | 0.759      | 0                   |
| <b>A03</b> | 31.205 | 115.147    | 3593.17   | 30       | 0.990      | 1                   |
| <b>A04</b> | 33.906 | 114.902    | 3895.87   | 19       | 0.958      | 1                   |
| <b>A05</b> | 6.049  | 111.569    | 674.88    | 38       | 0.793      | 0                   |
| <b>A06</b> | 6.703  | 82.059     | 550.04    | 41       | 0.809      | 0                   |
| <b>A07</b> | 9.161  | 279.412    | 2559.69   | 63       | 0.897      | 0                   |
| <b>A08</b> | 17.468 | 349.824    | 6110.72   | 83       | 0.965      | 1                   |
| <b>A09</b> | 10.987 | 193.628    | 2127.39   | 32       | 1.000      | 1                   |
| <b>A10</b> | 17.164 | 261.490    | 4488.22   | 64       | 0.946      | 1                   |
| <b>A11</b> | 57.509 | 214.824    | 12354.28  | 79       | 1.000      | 1                   |
| <b>A12</b> | 35.970 | 54.284     | 1952.61   | 44       | 0.953      | 1                   |
| <b>A13</b> | 20.977 | 135.882    | 2850.41   | 65       | 0.851      | 0                   |
| <b>A14</b> | 5.292  | 542.255    | 2869.61   | 42       | 0.962      | 1                   |
|            |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|            |        |            | 52137.12  | 747      | 0.910      | 0.571               |
| <b>B01</b> | 9.744  | 146.275    | 1425.30   | 21       | 0.963      | 1                   |
| <b>B02</b> | 22.467 | 50.245     | 1128.86   | 8        | 1.000      | 1                   |
| <b>B03</b> | 7.689  | 183.471    | 1410.71   | 17       | 1.000      | 1                   |
| <b>B04</b> | 63.440 | 21.324     | 1352.76   | 20       | 1.000      | 1                   |
| <b>B05</b> | 10.928 | 150.000    | 1639.20   | 31       | 0.922      | 1                   |
| <b>B06</b> | 11.360 | 55.392     | 629.25    | 32       | 0.711      | 0                   |
| <b>B07</b> | 6.916  | 79.118     | 547.18    | 11       | 0.940      | 1                   |
| <b>B08</b> | 70.470 | 197.843    | 13942.00  | 80       | 0.983      | 1                   |
| <b>B09</b> | 3.106  | 117.255    | 364.19    | 5        | 1.000      | 1                   |
| <b>B10</b> | 3.576  | 308.039    | 1101.55   | 14       | 0.973      | 1                   |
| <b>B12</b> | 28.399 | 78.431     | 2227.37   | 11       | 0.942      | 1                   |
|            |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|            |        |            | 25768.38  | 250      | 0.949      | 0.909               |
|            |        | Total      |           | Total    | Average    | Total % Meeting 90% |
|            |        | 77905.49   |           | 997      | 0.927      | 0.720               |

## Simulation Results - Two-Stage Heuristic at 95%

Attachment 14

|     | c      | Avg OH Inv | \$ OH Inv | # Orders | Fillrate   | Meet 90%?           |
|-----|--------|------------|-----------|----------|------------|---------------------|
| A01 | 5.475  | 1724.900   | 9443.83   | 96       | 0.945      | 1                   |
| A02 | 7.075  | 345.784    | 2446.42   | 51       | 0.860      | 0                   |
| A03 | 31.205 | 154.951    | 4835.25   | 30       | 1.000      | 1                   |
| A04 | 33.906 | 148.775    | 5044.37   | 19       | 1.000      | 1                   |
| A05 | 6.049  | 153.333    | 927.51    | 38       | 0.871      | 0                   |
| A06 | 6.703  | 115.392    | 773.47    | 41       | 0.876      | 0                   |
| A07 | 9.161  | 387.941    | 3553.93   | 63       | 0.941      | 1                   |
| A08 | 17.468 | 476.490    | 8323.33   | 83       | 0.978      | 1                   |
| A09 | 10.987 | 263.627    | 2896.47   | 32       | 1.000      | 1                   |
| A10 | 17.164 | 345.931    | 5937.56   | 64       | 0.974      | 1                   |
| A11 | 57.509 | 278.824    | 16034.89  | 79       | 1.000      | 1                   |
| A12 | 35.970 | 81.186     | 2920.27   | 44       | 0.993      | 1                   |
| A13 | 20.977 | 197.578    | 4144.59   | 65       | 0.917      | 1                   |
| A14 | 5.292  | 756.275    | 4002.21   | 42       | 0.986      | 1                   |
|     |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|     |        |            | 71284.09  | 747      | 0.953      | 0.786               |
| B01 | 9.744  | 195.294    | 1902.94   | 21       | 0.996      | 1                   |
| B02 | 22.467 | 65.245     | 1465.86   | 8        | 1.000      | 1                   |
| B03 | 7.689  | 253.471    | 1948.94   | 17       | 1.000      | 1                   |
| B04 | 63.440 | 29.324     | 1860.28   | 20       | 1.000      | 1                   |
| B05 | 10.928 | 208.039    | 2273.45   | 31       | 0.967      | 1                   |
| B06 | 11.360 | 69.706     | 791.86    | 32       | 0.782      | 0                   |
| B07 | 6.916  | 108.529    | 750.59    | 11       | 0.970      | 1                   |
| B08 | 70.470 | 264.980    | 18673.14  | 80       | 0.998      | 1                   |
| B09 | 3.106  | 157.255    | 488.43    | 5        | 1.000      | 1                   |
| B10 | 3.576  | 427.451    | 1528.56   | 14       | 1.000      | 1                   |
| B12 | 28.399 | 107.745    | 3059.85   | 11       | 1.000      | 1                   |
|     |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|     |        |            | 34743.91  | 250      | 0.974      | 0.909               |
|     |        | Total      |           | Total    | Average    | Total % Meeting 90% |
|     |        | 106028.00  |           | 997      | 0.962      | 0.840               |

## Simulation Results - Two-Stage Heuristic at 99%

Attachment 14

|     | c         | Avg OH Inv | \$ OH Inv | # Orders | Fillrate            | Meet 90%?     |
|-----|-----------|------------|-----------|----------|---------------------|---------------|
| A01 | 5.475     | 3138.040   | 17180.77  | 96       | 0.999               | 1             |
| A02 | 7.075     | 596.863    | 4222.81   | 51       | 0.969               | 1             |
| A03 | 31.205    | 244.951    | 7643.70   | 30       | 1.000               | 1             |
| A04 | 33.906    | 228.775    | 7756.85   | 19       | 1.000               | 1             |
| A05 | 6.049     | 263.137    | 1591.72   | 38       | 0.968               | 1             |
| A06 | 6.703     | 197.549    | 1324.17   | 41       | 0.960               | 1             |
| A07 | 9.161     | 626.275    | 5737.31   | 63       | 0.991               | 1             |
| A08 | 17.468    | 752.471    | 13144.16  | 83       | 0.997               | 1             |
| A09 | 10.987    | 403.627    | 4434.65   | 32       | 1.000               | 1             |
| A10 | 17.164    | 533.637    | 9159.35   | 64       | 1.000               | 1             |
| A11 | 57.509    | 416.824    | 23971.13  | 79       | 1.000               | 1             |
| A12 | 35.970    | 130.049    | 4677.86   | 44       | 1.000               | 1             |
| A13 | 20.977    | 337.304    | 7075.63   | 65       | 0.967               | 1             |
| A14 | 5.292     | 1273.430   | 6738.99   | 42       | 1.000               | 1             |
|     |           | Subtotal   |           | Subtotal | Subaverage          | % Meeting 90% |
|     |           | 114659.08  |           | 747      | 0.989               | 1.000         |
| B01 | 9.744     | 305.196    | 2973.83   | 21       | 1.000               | 1             |
| B02 | 22.467    | 105.245    | 2364.54   | 8        | 1.000               | 1             |
| B03 | 7.689     | 393.471    | 3025.40   | 17       | 1.000               | 1             |
| B04 | 63.440    | 49.324     | 3129.08   | 20       | 1.000               | 1             |
| B05 | 10.928    | 346.667    | 3788.38   | 31       | 1.000               | 1             |
| B06 | 11.360    | 120.490    | 1368.77   | 32       | 0.914               | 1             |
| B07 | 6.916     | 167.941    | 1161.48   | 11       | 1.000               | 1             |
| B08 | 70.470    | 414.863    | 29235.40  | 80       | 1.000               | 1             |
| B09 | 3.106     | 237.255    | 736.91    | 5        | 1.000               | 1             |
| B10 | 3.576     | 667.451    | 2386.80   | 14       | 1.000               | 1             |
| B12 | 28.399    | 182.745    | 5189.78   | 11       | 1.000               | 1             |
|     |           | Subtotal   |           | Subtotal | Subaverage          | % Meeting 90% |
|     |           | 55360.36   |           | 250      | 0.992               | 1.000         |
|     | Total     |            | Total     | Average  | Total % Meeting 90% |               |
|     | 170019.44 |            | 997       | 0.991    | 1.000               |               |

Proofs of Lemmas and Theorems  
(as they apply to the specific problem in this project)

- **Lemma 1:**  $\beta(s, S) \leq \beta(s + 1, S)$

**Proof:** By contradiction. Assume the opposite, that  $\beta(s, S) > \beta(s + 1, S)$ . It follows that

$$1 - \beta(s, S) < 1 - \beta(s + 1, S),$$

$$\frac{H(s, S)}{M(S-s)\mu} < \frac{H(s+1, S)}{M(S-s-1)\mu},$$

$$\frac{H(s, S)}{M(S-s-1)+m(S-s-1)} < \frac{H(s+1, S)}{M(S-s-1)},$$

$$M(S - s - 1) * H(s, S) < [M(S - s - 1) + m(S - s - 1)] * H(s + 1, S),$$

$$M(S - s - 1) \sum_{j=0}^{S-s-1} m(j)[L(S - j | 2) - L(S - j | 1)] < [M(S - s - 1) + m(S - s - 1)] \sum_{j=0}^{S-s-2} m(j)[L(S - j | 2) - L(S - j | 1)],$$

$$M(S - s - 1)[L(s + 1 | 2) - L(s + 1 | 1)] < \sum_{j=0}^{S-s-2} m(j)[L(S - j | 2) - L(S - j | 1)],$$

$$\sum_{j=0}^{S-s-2} m(j)[L(s + 1 | 2) - L(s + 1 | 1)] < \sum_{j=0}^{S-s-2} m(j)[L(S - j | 2) - L(S - j | 1)],$$

→ which contradicts the fact that

$$[L(s + 1 | 2) - L(s + 1 | 1)] > [L(S - j | 2) - L(S - j | 1)] \text{ for } j = 0 \dots S - s - 2.$$

Hence what we assumed is false and  $\beta(s, S) \leq \beta(s + 1, S)$ .

- **Lemma 2:**  $\beta(s, S) \leq \beta(s + 1, S + 1)$

**Proof:** By contradiction. Assume the opposite, that  $\beta(s, S) > \beta(s + 1, S + 1)$ . It follows that

$$1 - \beta(s, S) < 1 - \beta(s + 1, S + 1),$$

$$\frac{H(s, S)}{M(S-s)\mu} < \frac{H(s+1, S+1)}{M(S+1-s-1)\mu},$$

$$H(s, S) < H(s + 1, S + 1),$$

$$\sum_{j=0}^{S-s-1} m(j)[L(S - j | 2) - L(S - j | 1)] < \sum_{j=0}^{S-s-1} m(j)[L(S + 1 - j | 2) - L(S + 1 - j | 1)],$$

→ which contradicts the fact that . . .

$$[L(S - j | 2) - L(S - j | 1)] > [L(S + 1 - j | 2) - L(S + 1 - j | 1)] \text{ for } j = 0 \dots S - s - 1.$$

Hence what we assumed is false and  $\beta(s, S) \leq \beta(s + 1, S + 1)$ .

- **Lemma 3:**  $c(s, S) \leq c(s + 1, S)$

Already proven as Lemma 0 in [14].

- **Lemma 4:**  $c(s, S) \leq c(s + 1, S + 1)$

**Proof:** By contradiction. Assume the opposite, that  $c(s, S) > c(s + 1, S + 1)$ . It follows that

$$\frac{K+h \sum_{j=0}^{S-s-1} m(j)[S-j-2\mu+L(S-j|2)]}{M(S-s)} > \frac{K+h \sum_{j=0}^{S-s-1} m(j)[S+1-j-2\mu+L(S+1-j|2)]}{M(S-s)},$$

$$\sum_{j=0}^{S-s-1} m(j)[S-j-2\mu+L(S-j|2)] > \sum_{j=0}^{S-s-1} m(j)[S+1-j-2\mu+L(S+1-j|2)],$$

$$\sum_{j=0}^{S-s-1} m(j)[-j+L(S-j|2)] > \sum_{j=0}^{S-s-1} m(j)[1-j+L(S+1-j|2)],$$

$$\sum_{j=0}^{S-s-1} m(j)[-j+L(S-j|2)] > \sum_{j=0}^{S-s-1} m(j)[1-j+L(S-j|2) - F(S-j|2)],$$

$$\text{where } F(S-j|2) = 1 - \sum_{j=0}^{S-j} p(j) < 1.$$

→ The final statement then contradicts the fact that . . .

$$[-j+L(S-j|2)] < [1-j+L(S-j|2) - F(S-j|2)] \text{ for } j = 0 \dots S-s-1.$$

Hence what we assumed is false and  $c(s, S) \leq c(s + 1, S + 1)$ .

- **Theorem 1:** If  $(s^*, s^* + 1)$  is the minimum feasible policy such that  $\beta(s^*, s^* + 1) \geq \bar{\beta}$ , then all policies with  $S < s^*$  are infeasible.
- **Theorem 2:** For every  $\hat{S} \geq s^* + 1$  there is one  $\hat{s}$  for which (a) all policies with  $s < \hat{s}$  and  $S \leq \hat{S}$  are infeasible and (b) all policies with  $s > \hat{s}$  and  $S \geq \hat{S}$  are dominated.

**Proofs:** The proofs are by simple manipulation of the lemmas above.

| Desired |          |      |      |
|---------|----------|------|------|
| Item    | Fillrate | s    | S    |
| A01     | 0.90     | 2740 | 3070 |
|         | 0.95     | 3410 | 3730 |
|         | 0.99     | 5000 | 5160 |
| A02     | 0.90     | 450  | 540  |
|         | 0.95     | 560  | 670  |
|         | 0.99     | 860  | 930  |
| A03     | 0.90     | 140  | 155  |
|         | 0.95     | 180  | 195  |
|         | 0.99     | 275  | 285  |
| A04     | 0.90     | 125  | 145  |
|         | 0.95     | 160  | 180  |
|         | 0.99     | 240  | 260  |
| A05     | 0.90     | 190  | 240  |
|         | 0.95     | 250  | 290  |
|         | 0.99     | 360  | 420  |
| A06     | 0.90     | 140  | 230  |
|         | 0.95     | 180  | 270  |
|         | 0.99     | 280  | 340  |
| A07     | 0.90     | 600  | 650  |
|         | 0.95     | 700  | 770  |
|         | 0.99     | 940  | 1020 |
| A08     | 0.90     | 590  | 660  |
|         | 0.95     | 720  | 790  |
|         | 0.99     | 1050 | 1060 |
| A09     | 0.90     | 220  | 310  |
|         | 0.95     | 300  | 360  |
|         | 0.99     | 430  | 510  |
| A10     | 0.90     | 413  | 438  |
|         | 0.95     | 507  | 524  |
|         | 0.99     | 696  | 714  |
| A11     | 0.90     | 266  | 274  |
|         | 0.95     | 314  | 340  |
|         | 0.99     | 468  | 476  |
| A12     | 0.90     | 77   | 98   |
|         | 0.95     | 105  | 119  |
|         | 0.99     | 154  | 175  |
| A13     | 0.90     | 266  | 315  |
|         | 0.95     | 343  | 378  |
|         | 0.99     | 490  | 525  |
| A14     | 0.90     | 780  | 950  |
|         | 0.95     | 1020 | 1170 |
|         | 0.99     | 1540 | 1680 |

| Desired |          |     |     |
|---------|----------|-----|-----|
| Item    | Fillrate | s   | S   |
| B01     | 0.90     | 160 | 210 |
|         | 0.95     | 210 | 260 |
|         | 0.99     | 330 | 370 |
| B02     | 0.90     | 45  | 60  |
|         | 0.95     | 55  | 80  |
|         | 0.99     | 100 | 110 |
| B03     | 0.90     | 180 | 240 |
|         | 0.95     | 250 | 300 |
|         | 0.99     | 390 | 440 |
| B04     | 0.90     | 19  | 25  |
|         | 0.95     | 27  | 33  |
|         | 0.99     | 48  | 52  |
| B05     | 0.90     | 180 | 250 |
|         | 0.95     | 250 | 300 |
|         | 0.99     | 380 | 440 |
| B06     | 0.90     | 90  | 120 |
|         | 0.95     | 120 | 140 |
|         | 0.99     | 180 | 200 |
| B07     | 0.90     | 70  | 110 |
|         | 0.95     | 100 | 130 |
|         | 0.99     | 160 | 200 |
| B08     | 0.90     | 300 | 310 |
|         | 0.95     | 366 | 378 |
|         | 0.99     | 514 | 528 |
| B09     | 0.90     | 40  | 160 |
|         | 0.95     | 80  | 200 |
|         | 0.99     | 160 | 280 |
| B10     | 0.90     | 260 | 360 |
|         | 0.95     | 380 | 460 |
|         | 0.99     | 620 | 720 |
| B12     | 0.90     | 65  | 95  |
|         | 0.95     | 105 | 120 |
|         | 0.99     | 180 | 195 |

## Simulation Results - Almost-Exact Algorithm at 90%

Attachment 17

|            | <b>C</b> | <b>Avg OH Inv</b> | <b>\$ OH Inv</b> | <b># Orders</b> | <b>Fillrate</b> | <b>Meet 90%?</b>    |
|------------|----------|-------------------|------------------|-----------------|-----------------|---------------------|
| <b>A01</b> | 5.475    | 1177.255          | 6445.47          | 78              | 0.866           | 0                   |
| <b>A02</b> | 7.075    | 235.196           | 1664.01          | 53              | 0.743           | 0                   |
| <b>A03</b> | 31.205   | 114.559           | 3574.81          | 40              | 0.997           | 1                   |
| <b>A04</b> | 33.906   | 110.294           | 3739.63          | 21              | 0.972           | 1                   |
| <b>A05</b> | 6.049    | 94.118            | 569.32           | 59              | 0.789           | 0                   |
| <b>A06</b> | 6.703    | 69.314            | 464.61           | 49              | 0.803           | 0                   |
| <b>A07</b> | 9.161    | 274.608           | 2515.68          | 90              | 0.895           | 0                   |
| <b>A08</b> | 17.468   | 344.431           | 6016.52          | 73              | 0.963           | 1                   |
| <b>A09</b> | 10.987   | 193.628           | 2127.39          | 32              | 1.000           | 1                   |
| <b>A10</b> | 17.164   | 262.480           | 4505.21          | 84              | 0.943           | 1                   |
| <b>A11</b> | 57.509   | 214.118           | 12313.71         | 70              | 1.000           | 1                   |
| <b>A12</b> | 35.970   | 54.284            | 1952.60          | 44              | 0.953           | 1                   |
| <b>A13</b> | 20.977   | 135.882           | 2850.40          | 65              | 0.851           | 0                   |
| <b>A14</b> | 5.292    | 539.020           | 2852.49          | 41              | 0.961           | 1                   |
|            |          | Subtotal          |                  | Subtotal        | Subaverage      | % Meeting 90%       |
|            |          |                   | 51591.86         | 799             | 0.910           | 0.571               |
| <b>B01</b> | 9.744    | 138.922           | 1353.66          | 27              | 0.978           | 1                   |
| <b>B02</b> | 22.467   | 49.755            | 1117.85          | 12              | 1.000           | 1                   |
| <b>B03</b> | 7.689    | 181.255           | 1393.67          | 21              | 1.000           | 1                   |
| <b>B04</b> | 63.440   | 20.265            | 1285.61          | 11              | 1.000           | 1                   |
| <b>B05</b> | 10.928   | 150.000           | 1639.20          | 31              | 0.922           | 1                   |
| <b>B06</b> | 11.360   | 46.078            | 523.45           | 43              | 0.672           | 0                   |
| <b>B07</b> | 6.916    | 75.098            | 519.38           | 13              | 0.930           | 1                   |
| <b>B08</b> | 70.470   | 197.549           | 13921.28         | 75              | 0.982           | 1                   |
| <b>B09</b> | 3.106    | 115.294           | 358.10           | 4               | 0.944           | 1                   |
| <b>B10</b> | 3.576    | 308.039           | 1101.55          | 14              | 0.973           | 1                   |
| <b>B12</b> | 28.399   | 82.255            | 2335.96          | 9               | 0.967           | 1                   |
|            |          | Subtotal          |                  | Subtotal        | Subaverage      | % Meeting 90%       |
|            |          |                   | 25549.70         | 260             | 0.943           | 0.909               |
|            |          | Total             | 77141.55         | Total           | Average         | Total % Meeting 90% |
|            |          |                   |                  | 1059            | 0.924           | 0.720               |

|            | <b>c</b> | <b>Avg OH Inv</b>    | <b>\$ OH Inv</b> | <b># Orders</b> | <b>Fillrate</b>                      | <b>Meet 90%?</b> |
|------------|----------|----------------------|------------------|-----------------|--------------------------------------|------------------|
| <b>A01</b> | 5.475    | 1747.549             | 9567.83          | 78              | 0.946                                | 1                |
| <b>A02</b> | 7.075    | 338.628              | 2395.79          | 51              | 0.852                                | 0                |
| <b>A03</b> | 31.205   | 154.510              | 4821.48          | 40              | 1.000                                | 1                |
| <b>A04</b> | 33.906   | 144.510              | 4899.76          | 21              | 1.000                                | 1                |
| <b>A05</b> | 6.049    | 136.078              | 823.14           | 61              | 0.874                                | 0                |
| <b>A06</b> | 6.703    | 101.078              | 677.53           | 49              | 0.881                                | 0                |
| <b>A07</b> | 9.161    | 378.726              | 3469.51          | 83              | 0.941                                | 1                |
| <b>A08</b> | 17.468   | 470.804              | 8224.00          | 73              | 0.978                                | 1                |
| <b>A09</b> | 10.987   | 251.961              | 2768.30          | 40              | 1.000                                | 1                |
| <b>A10</b> | 17.164   | 347.314              | 5961.30          | 90              | 0.971                                | 1                |
| <b>A11</b> | 57.509   | 275.235              | 15828.49         | 49              | 1.000                                | 1                |
| <b>A12</b> | 35.970   | 75.696               | 2722.79          | 49              | 0.987                                | 1                |
| <b>A13</b> | 20.977   | 195.177              | 4094.23          | 72              | 0.913                                | 1                |
| <b>A14</b> | 5.292    | 756.275              | 4002.21          | 42              | 0.986                                | 1                |
|            |          | Subtotal<br>70256.34 | Subtotal<br>798  |                 | Subaverage % Meeting 90%<br>0.952    | 0.786            |
| <b>B01</b> | 9.744    | 188.333              | 1835.12          | 27              | 1.000                                | 1                |
| <b>B02</b> | 22.467   | 65.245               | 1465.86          | 8               | 1.000                                | 1                |
| <b>B03</b> | 7.689    | 245.177              | 1885.17          | 23              | 1.000                                | 1                |
| <b>B04</b> | 63.440   | 28.265               | 1793.13          | 11              | 1.000                                | 1                |
| <b>B05</b> | 10.928   | 204.314              | 2232.74          | 36              | 0.952                                | 1                |
| <b>B06</b> | 11.360   | 61.078               | 693.85           | 46              | 0.760                                | 0                |
| <b>B07</b> | 6.916    | 100.098              | 692.28           | 16              | 0.980                                | 1                |
| <b>B08</b> | 70.470   | 264.451              | 18635.86         | 73              | 0.997                                | 1                |
| <b>B09</b> | 3.106    | 154.510              | 479.91           | 4               | 1.000                                | 1                |
| <b>B10</b> | 3.576    | 407.451              | 1457.04          | 14              | 1.000                                | 1                |
| <b>B12</b> | 28.399   | 107.451              | 3051.50          | 10              | 1.000                                | 1                |
|            |          | Subtotal<br>34222.46 | Subtotal<br>268  |                 | Subaverage % Meeting 90%<br>0.972    | 0.909            |
|            |          | Total<br>104478.80   | Total<br>1066    |                 | Average Total % Meeting 90%<br>0.961 | 0.840            |

|            | <b>c</b>           | <b>Avg OH Inv</b>     | <b>\$ OH Inv</b> | <b># Orders</b>              | <b>Fillrate</b>        | <b>Meet 90%?</b> |
|------------|--------------------|-----------------------|------------------|------------------------------|------------------------|------------------|
| <b>A01</b> | 5.475              | 3139.412              | 17188.28         | 85                           | 0.997                  | 1                |
| <b>A02</b> | 7.075              | 575.098               | 4068.82          | 58                           | 0.971                  | 1                |
| <b>A03</b> | 31.205             | 244.951               | 7643.70          | 42                           | 1.000                  | 1                |
| <b>A04</b> | 33.906             | 224.510               | 7612.24          | 21                           | 1.000                  | 1                |
| <b>A05</b> | 6.049              | 251.471               | 1521.15          | 55                           | 0.973                  | 1                |
| <b>A06</b> | 6.703              | 174.118               | 1167.11          | 60                           | 0.955                  | 1                |
| <b>A07</b> | 9.161              | 616.078               | 5643.89          | 81                           | 0.995                  | 1                |
| <b>A08</b> | 17.468             | 745.412               | 13020.86         | 95                           | 0.996                  | 1                |
| <b>A09</b> | 10.987             | 396.177               | 4352.80          | 35                           | 1.000                  | 1                |
| <b>A10</b> | 17.164             | 534.755               | 9178.53          | 90                           | 1.000                  | 1                |
| <b>A11</b> | 57.509             | 416.118               | 23930.53         | 70                           | 1.000                  | 1                |
| <b>A12</b> | 35.970             | 130.049               | 4677.86          | 44                           | 1.000                  | 1                |
| <b>A13</b> | 20.977             | 334.696               | 7020.92          | 72                           | 0.965                  | 1                |
| <b>A14</b> | 5.292              | 1267.843              | 6709.43          | 43                           | 1.000                  | 1                |
|            |                    | Subtotal<br>113736.11 | Subtotal<br>851  | Subaverage<br>0.989          | % Meeting 90%<br>1.000 |                  |
| <b>B01</b> | 9.744              | 305.098               | 2972.87          | 34                           | 1.000                  | 1                |
| <b>B02</b> | 22.467             | 101.520               | 2280.85          | 14                           | 1.000                  | 1                |
| <b>B03</b> | 7.689              | 385.177               | 2961.63          | 23                           | 1.000                  | 1                |
| <b>B04</b> | 63.440             | 48.069                | 3049.50          | 13                           | 1.000                  | 1                |
| <b>B05</b> | 10.928             | 339.118               | 3705.88          | 31                           | 1.000                  | 1                |
| <b>B06</b> | 11.360             | 110.980               | 1260.73          | 46                           | 0.910                  | 1                |
| <b>B07</b> | 6.916              | 164.020               | 1134.36          | 13                           | 1.000                  | 1                |
| <b>B08</b> | 70.470             | 414.157               | 29185.64         | 72                           | 1.000                  | 1                |
| <b>B09</b> | 3.106              | 234.510               | 728.39           | 4                            | 1.000                  | 1                |
| <b>B10</b> | 3.576              | 667.451               | 2386.80          | 14                           | 1.000                  | 1                |
| <b>B12</b> | 28.399             | 182.451               | 5181.43          | 10                           | 1.000                  | 1                |
|            |                    | Subtotal<br>54848.09  | Subtotal<br>274  | Subaverage<br>0.992          | % Meeting 90%<br>1.000 |                  |
|            | Total<br>168584.19 | Total<br>1125         | Average<br>0.990 | Total % Meeting 90%<br>1.000 |                        |                  |

## Ex Post Set GOF Test Results - A Items

Attachment 18

| <b>A01</b>  |        |    |         |         |
|-------------|--------|----|---------|---------|
| Interval    | Prob   | O  | E       | Stat    |
| 0 thr 13    | 0.1620 | 16 | 16.5274 | 0.0168  |
| 14 thr 30   | 0.1656 | 9  | 16.8946 | 3.6890  |
| 31 thr 52   | 0.1680 | 13 | 17.1365 | 0.9985  |
| 53 thr 82   | 0.1643 | 16 | 16.7598 | 0.0344  |
| 83 thr 133  | 0.1666 | 17 | 16.9884 | 0.0000  |
| 134 thr inf | 0.1735 | 31 | 17.6933 | 10.0076 |
|             |        |    |         | 14.7464 |

| <b>A08</b> |        |    |         |        |
|------------|--------|----|---------|--------|
| Interval   | Prob   | O  | E       | Stat   |
| 0 thr 3    | 0.1520 | 20 | 15.5041 | 1.3037 |
| 4 thr 8    | 0.1980 | 13 | 20.1971 | 2.5646 |
| 9 thr 13   | 0.1640 | 18 | 16.7261 | 0.0970 |
| 14 thr 19  | 0.1490 | 18 | 15.2021 | 0.5150 |
| 20 thr 30  | 0.1695 | 22 | 17.2869 | 1.2850 |
| 31 thr inf | 0.1675 | 11 | 17.0838 | 2.1665 |
|            |        |    |         | 7.9318 |

| <b>A02</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0 thr 1    | 0.1884 | 28 | 19.2204 | 4.0104  |
| 2 thr 3    | 0.1300 | 3  | 13.2644 | 7.9429  |
| 4 thr 7    | 0.1878 | 17 | 19.1603 | 0.2436  |
| 8 thr 12   | 0.1567 | 8  | 15.9797 | 3.9848  |
| 13 thr 21  | 0.1630 | 15 | 16.6283 | 0.1594  |
| 22 thr inf | 0.1740 | 31 | 17.7470 | 9.8970  |
|            |        |    |         | 26.2381 |

| <b>A09</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0          | 0.1130 | 13 | 11.5224 | 0.1895  |
| 1 thr 2    | 0.1998 | 27 | 20.3770 | 2.1527  |
| 3 thr 5    | 0.2245 | 32 | 22.8992 | 3.6169  |
| 6 thr 8    | 0.1532 | 16 | 15.6270 | 0.0089  |
| 9 thr 13   | 0.1523 | 9  | 15.5353 | 2.7492  |
| 14 thr inf | 0.1572 | 5  | 16.0392 | 7.5978  |
|            |        |    |         | 16.3150 |

| <b>A03</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0          | 0.2504 | 41 | 25.5359 | 9.3647  |
| 1          | 0.1245 | 9  | 12.6982 | 1.0771  |
| 2 thr 3    | 0.1576 | 19 | 16.0720 | 0.5334  |
| 4 thr 6    | 0.1442 | 14 | 14.7076 | 0.0340  |
| 7 thr 12   | 0.1542 | 9  | 15.7279 | 2.8780  |
| 13 thr inf | 0.1692 | 10 | 17.2583 | 3.0526  |
|            |        |    |         | 16.9399 |

| <b>A10</b>  |        |    |         |         |
|-------------|--------|----|---------|---------|
| Interval    | Prob   | O  | E       | Stat    |
| 0 thr 30    | 0.1623 | 26 | 16.5500 | 5.3959  |
| 31 thr 59   | 0.1642 | 23 | 16.7500 | 2.3321  |
| 60 thr 95   | 0.1726 | 19 | 17.6036 | 0.1108  |
| 96 thr 138  | 0.1561 | 13 | 15.9229 | 0.5365  |
| 139 thr 215 | 0.1733 | 12 | 17.6790 | 1.8242  |
| 216 thr inf | 0.1715 | 9  | 17.4945 | 4.1245  |
|             |        |    |         | 14.3241 |

| <b>A04</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0          | 0.2170 | 58 | 22.1317 | 58.1306 |
| 1          | 0.1322 | 12 | 13.4872 | 0.1640  |
| 2 thr 3    | 0.1788 | 14 | 18.2326 | 0.9826  |
| 4 thr 6    | 0.1662 | 5  | 16.9491 | 8.4241  |
| 7 thr 11   | 0.1496 | 4  | 15.2583 | 8.3069  |
| 12 thr inf | 0.1563 | 9  | 15.9410 | 3.0222  |
|            |        |    |         | 79.0305 |

| <b>A11</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0 thr 5    | 0.1720 | 40 | 17.5399 | 28.7604 |
| 6 thr 12   | 0.1503 | 18 | 15.3317 | 0.4644  |
| 13 thr 23  | 0.1775 | 23 | 18.1098 | 1.3205  |
| 24 thr 38  | 0.1665 | 8  | 16.9828 | 4.7514  |
| 39 thr 63  | 0.1618 | 13 | 16.5035 | 0.7437  |
| 64 thr inf | 0.1719 | 0  | 17.5323 | 17.5323 |
|            |        |    |         | 53.5726 |

| <b>A05</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0          | 0.2293 | 18 | 23.3911 | 1.2425  |
| 1          | 0.1446 | 6  | 14.7540 | 5.1940  |
| 2          | 0.1084 | 9  | 11.0585 | 0.3832  |
| 3 thr 4    | 0.1548 | 13 | 15.7853 | 0.4915  |
| 5 thr 9    | 0.2038 | 22 | 20.7895 | 0.0705  |
| 10 thr inf | 0.1590 | 34 | 16.2217 | 19.4844 |
|            |        |    |         | 26.8661 |

| <b>A12</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0          | 0.3710 | 30 | 37.8426 | 1.6253  |
| 1          | 0.1760 | 18 | 17.9502 | 0.0001  |
| 2          | 0.1139 | 12 | 11.6150 | 0.0128  |
| 3 thr 4    | 0.1391 | 12 | 14.1872 | 0.3372  |
| 5 thr 7    | 0.1038 | 21 | 10.5874 | 10.2408 |
| 8 thr inf  | 0.0963 | 9  | 9.8177  | 0.0681  |
|            |        |    |         | 12.2843 |

| <b>A06</b> |        |    |         |         |
|------------|--------|----|---------|---------|
| Interval   | Prob   | O  | E       | Stat    |
| 0 thr 1    | 0.2307 | 20 | 23.5353 | 0.5311  |
| 2          | 0.1179 | 4  | 12.0308 | 5.3607  |
| 3 thr 4    | 0.1993 | 7  | 20.3296 | 8.7399  |
| 5 thr 6    | 0.1465 | 19 | 14.9409 | 1.1027  |
| 7 thr 9    | 0.1406 | 19 | 14.3441 | 1.5113  |
| 10 thr inf | 0.1649 | 33 | 16.8193 | 15.5664 |
|            |        |    |         | 32.8120 |

| <b>A13</b> |        |    |         |        |
|------------|--------|----|---------|--------|
| Interval   | Prob   | O  | E       | Stat   |
| 0 thr 1    | 0.1440 | 15 | 14.6893 | 0.0066 |
| 2 thr 4    | 0.1901 | 15 | 19.3927 | 0.9950 |
| 5 thr 8    | 0.1946 | 16 | 19.8481 | 0.7461 |
| 9 thr 12   | 0.1396 | 9  | 14.2435 | 1.9303 |
| 13 thr 20  | 0.1689 | 26 | 17.2230 | 4.4729 |
| 21 thr inf | 0.1628 | 21 | 16.6034 | 1.1642 |
|            |        |    |         | 9.3150 |

| <b>A07</b> |        |    |         |        |
|------------|--------|----|---------|--------|
| Interval   | Prob   | O  | E       | Stat   |
| 0 thr 6    | 0.1645 | 15 | 16.7808 | 0.1890 |
| 7 thr 11   | 0.1729 | 17 | 17.6337 | 0.0228 |
| 12 thr 16  | 0.1607 | 20 | 16.3890 | 0.7956 |
| 17 thr 23  | 0.1780 | 23 | 18.1600 | 1.2900 |
| 24 thr 32  | 0.1493 | 12 | 15.2253 | 0.6833 |
| 33 thr inf | 0.1746 | 15 | 17.8112 | 0.4437 |
|            |        |    |         | 3.4243 |

| <b>A14</b> |        |    |         |          |
|------------|--------|----|---------|----------|
| Interval   | Prob   | O  | E       | Stat     |
| 0          | 0.1166 | 43 | 11.8928 | 81.3656  |
| 1 thr 4    | 0.2172 | 7  | 22.1505 | 10.3627  |
| 5 thr 10   | 0.1829 | 7  | 18.6559 | 7.2824   |
| 11 thr 17  | 0.1358 | 6  | 13.8537 | 4.4522   |
| 18 thr 34  | 0.1795 | 10 | 18.3070 | 3.7694   |
| 35 thr inf | 0.1680 | 29 | 17.1402 | 8.2061   |
|            |        |    |         | 115.4383 |

**Ex Post Set GOF Test Results - B Items**

Attachment 18

**B01**

| Interval  | Prob   | O  | E       | Stat          |
|-----------|--------|----|---------|---------------|
| 0         | 0.2634 | 35 | 26.8650 | 2.4634        |
| 1         | 0.1564 | 21 | 15.9487 | 1.5999        |
| 2         | 0.1131 | 13 | 11.5356 | 0.1859        |
| 3 thr 4   | 0.1550 | 12 | 15.8105 | 0.9184        |
| 5 thr 8   | 0.1649 | 14 | 16.8159 | 0.4715        |
| 9 thr inf | 0.1473 | 7  | 15.0243 | 4.2857        |
|           |        |    |         | <u>9.9247</u> |

**B07**

| Interval  | Prob   | O  | E       | Stat          |
|-----------|--------|----|---------|---------------|
| 0         | 0.5737 | 65 | 58.5201 | 0.7175        |
| 1         | 0.1626 | 14 | 16.5852 | 0.4030        |
| 2         | 0.0869 | 14 | 8.8655  | 2.9737        |
| 3         | 0.0537 | 2  | 5.4811  | 2.2109        |
| 4 thr 5   | 0.0598 | 3  | 6.0973  | 1.5733        |
| 6 thr inf | 0.0632 | 4  | 6.4509  | 0.9312        |
|           |        |    |         | <u>8.8096</u> |

**B02**

| Interval  | Prob   | O  | E       | Stat           |
|-----------|--------|----|---------|----------------|
| 0         | 0.4584 | 75 | 46.7530 | 17.0661        |
| 1         | 0.1780 | 13 | 18.1561 | 1.4643         |
| 2         | 0.1057 | 6  | 10.7805 | 2.1199         |
| 3         | 0.0700 | 5  | 7.1393  | 0.6410         |
| 4 thr 5   | 0.0837 | 2  | 8.5377  | 5.0062         |
| 6 thr inf | 0.1042 | 1  | 10.6334 | 8.7274         |
|           |        |    |         | <u>35.0248</u> |

**B08**

| Interval   | Prob   | O  | E       | Stat           |
|------------|--------|----|---------|----------------|
| 0 thr 5    | 0.1633 | 27 | 16.6564 | 6.4234         |
| 6 thr 14   | 0.1701 | 15 | 17.3477 | 0.3177         |
| 15 thr 26  | 0.1654 | 20 | 16.8758 | 0.5784         |
| 27 thr 44  | 0.1693 | 14 | 17.2722 | 0.6199         |
| 45 thr 74  | 0.1617 | 18 | 16.4962 | 0.1371         |
| 75 thr inf | 0.1701 | 8  | 17.3517 | 5.0401         |
|            |        |    |         | <u>13.1166</u> |

**B03**

| Interval  | Prob   | O  | E       | Stat           |
|-----------|--------|----|---------|----------------|
| 0         | 0.3508 | 49 | 35.7826 | 4.8823         |
| 1         | 0.1493 | 18 | 15.2304 | 0.5036         |
| 2         | 0.0980 | 8  | 9.9991  | 0.3997         |
| 3 thr 4   | 0.1274 | 9  | 12.9958 | 1.2286         |
| 5 thr 8   | 0.1336 | 13 | 13.6322 | 0.0293         |
| 9 thr inf | 0.1408 | 5  | 14.3600 | 6.1009         |
|           |        |    |         | <u>13.1444</u> |

**B09**

| Interval  | Prob   | O  | E       | Stat          |
|-----------|--------|----|---------|---------------|
| 0         | 0.8623 | 91 | 87.9525 | 0.1056        |
| 1         | 0.0952 | 6  | 9.7088  | 1.4168        |
| 2         | 0.0273 | 4  | 2.7810  | 0.5343        |
| 3         | 0.0094 | 0  | 0.9598  | 0.9598        |
| 4         | 0.0035 | 1  | 0.3594  | 1.1417        |
| 5 thr inf | 0.0023 | 0  | 0.2384  | 0.2384        |
|           |        |    |         | <u>4.3965</u> |

**B04**

| Interval   | Prob   | O  | E       | Stat           |
|------------|--------|----|---------|----------------|
| 0          | 0.7573 | 79 | 77.2441 | 0.0399         |
| 1          | 0.0739 | 3  | 7.5401  | 2.7337         |
| 2          | 0.0379 | 0  | 3.8706  | 3.8706         |
| 3 thr 4    | 0.0426 | 12 | 4.3431  | 13.4990        |
| 5 thr 9    | 0.0463 | 3  | 4.7219  | 0.6279         |
| 10 thr inf | 0.0420 | 5  | 4.2801  | 0.1211         |
|            |        |    |         | <u>20.8923</u> |

**B10**

| Interval  | Prob   | O  | E       | Stat           |
|-----------|--------|----|---------|----------------|
| 0         | 0.6229 | 82 | 63.5351 | 5.3664         |
| 1         | 0.1189 | 0  | 12.1267 | 12.1267        |
| 2         | 0.0643 | 6  | 6.5537  | 0.0468         |
| 3 thr 4   | 0.0724 | 4  | 7.3850  | 1.5516         |
| 5 thr 7   | 0.0540 | 5  | 5.5089  | 0.0470         |
| 8 thr inf | 0.0676 | 5  | 6.8906  | 0.5187         |
|           |        |    |         | <u>19.6572</u> |

**B05**

| Interval  | Prob   | O  | E       | Stat          |
|-----------|--------|----|---------|---------------|
| 0         | 0.2888 | 36 | 29.4604 | 1.4516        |
| 1         | 0.1493 | 8  | 15.2254 | 3.4289        |
| 2         | 0.1042 | 9  | 10.6263 | 0.2489        |
| 3 thr 4   | 0.1413 | 12 | 14.4117 | 0.4036        |
| 5 thr 8   | 0.1538 | 20 | 15.6858 | 1.1865        |
| 9 thr inf | 0.1627 | 17 | 16.5904 | 0.0101        |
|           |        |    |         | <u>6.7296</u> |

**B12**

| Interval  | Prob   | O  | E       | Stat           |
|-----------|--------|----|---------|----------------|
| 0         | 0.8005 | 89 | 81.6532 | 0.6610         |
| 1         | 0.0680 | 2  | 6.9387  | 3.5152         |
| 2         | 0.0337 | 0  | 3.4414  | 3.4414         |
| 3 thr 4   | 0.0363 | 2  | 3.7062  | 0.7854         |
| 5 thr 8   | 0.0319 | 3  | 3.2525  | 0.0196         |
| 9 thr inf | 0.0295 | 6  | 3.0080  | 2.9760         |
|           |        |    |         | <u>11.3987</u> |

**B06**

| Interval  | Prob   | O  | E       | Stat           |
|-----------|--------|----|---------|----------------|
| 0         | 0.3544 | 39 | 36.1501 | 0.2247         |
| 1         | 0.1929 | 12 | 19.6786 | 2.9962         |
| 2         | 0.1267 | 7  | 12.9226 | 2.7144         |
| 3         | 0.0879 | 3  | 8.9699  | 3.9733         |
| 4 thr 5   | 0.1081 | 12 | 11.0240 | 0.0864         |
| 6 thr inf | 0.1299 | 29 | 13.2549 | 18.7033        |
|           |        |    |         | <u>28.6982</u> |

## Simulation Results - Almost-Exact/Croston Hybrid

Attachment 19

|     | c      | Avg OH Inv | \$ OH Inv | # Orders | Fillrate   | Meet 90%?           |
|-----|--------|------------|-----------|----------|------------|---------------------|
| A01 | 5.475  | 1177.255   | 6445.47   | 78       | 0.866      | 0                   |
| A02 | 7.075  | 549.314    | 3886.40   | 54       | 0.957      | 1                   |
| A03 | 31.205 | 73.480     | 2292.94   | 43       | 0.930      | 1                   |
| A04 | 33.906 | 102.206    | 3465.40   | 23       | 0.975      | 1                   |
| A05 | 6.049  | 257.843    | 1559.69   | 62       | 0.994      | 1                   |
| A06 | 6.703  | 69.314     | 464.61    | 49       | 0.803      | 0                   |
| A07 | 9.161  | 274.608    | 2515.68   | 90       | 0.895      | 0                   |
| A08 | 17.468 | 344.431    | 6016.52   | 73       | 0.963      | 1                   |
| A09 | 10.987 | 193.628    | 2127.39   | 32       | 1.000      | 1                   |
| A10 | 17.164 | 262.480    | 4505.21   | 84       | 0.943      | 1                   |
| A11 | 57.509 | 104.529    | 6011.36   | 54       | 0.974      | 1                   |
| A12 | 35.970 | 54.284     | 1952.60   | 44       | 0.953      | 1                   |
| A13 | 20.977 | 135.882    | 2850.40   | 65       | 0.851      | 0                   |
| A14 | 5.292  | 762.255    | 4033.85   | 46       | 0.984      | 1                   |
|     |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|     |        |            | 48127.52  | 797      | 0.935      | 0.714               |
| B01 | 9.744  | 138.922    | 1353.66   | 27       | 0.978      | 1                   |
| B02 | 22.467 | 20.539     | 461.45    | 20       | 0.963      | 1                   |
| B03 | 7.689  | 181.255    | 1393.67   | 21       | 1.000      | 1                   |
| B04 | 63.440 | 5.216      | 330.90    | 21       | 0.705      | 0                   |
| B05 | 10.928 | 119.706    | 1308.15   | 52       | 0.893      | 0                   |
| B06 | 11.360 | 82.157     | 933.30    | 49       | 0.833      | 0                   |
| B07 | 6.916  | 75.098     | 519.38    | 13       | 0.930      | 1                   |
| B08 | 70.470 | 148.235    | 10446.12  | 67       | 0.941      | 1                   |
| B09 | 3.106  | 115.294    | 358.10    | 4        | 0.944      | 1                   |
| B10 | 3.576  | 108.628    | 388.45    | 20       | 0.761      | 0                   |
| B12 | 28.399 | 82.255     | 2335.96   | 9        | 0.967      | 1                   |
|     |        | Subtotal   |           | Subtotal | Subaverage | % Meeting 90%       |
|     |        |            | 19829.14  | 303      | 0.901      | 0.636               |
|     |        | Total      |           | Total    | Average    | Total % Meeting 90% |
|     |        |            | 67956.66  | 1100     | 0.920      | 0.680               |

# Designing an $(s, S)$ Inventory Control System

Gary Rafnson

18 July 1997

## Abstract

This project aims to provide some insight on a local company's  $(s, S)$  inventory control system. It does so by providing three completely new  $(s, S)$  approaches and comparing their simulated performance to the current system. Recommendations are made based on the results.

## References

- [1] Elsayed, E., and Boucher, T. **Analysis and Control of Production Systems**, New Jersey, Prentice Hall (1994).
- [2] Gaynor, P., and Kirkpatrick, R. **Introduction to Time-Series Modeling and Forecasting in Business and Economics**, New York, McGraw Hill (1994).
- [3] Johnson, N., and Kotz, S. **Discrete Distributions**, Boston, Houghton Mifflin (1969).
- [4] Johnson, M., Lee, H., Davis T., and Hall R. "Expressions For Item Fill Rates In Periodic Inventory Systems," *Naval Research Logistics*, 42, 57-80 (1995).
- [5] Law, A. and Kelton, W. **Simulation Modeling and Analysis**, New York, McGraw Hill (1991).
- [6] Mendenhall, W., and Sincich, T. **Statistics for Engineering and the Sciences**, San Francisco, Dellen (1992).
- [7] Mitchell, J. "Multi-item Inventory Systems With A Service Objective," *Operations Research*, 36, 5, 747-755 (1988).
- [8] Nahmias, S. **Production and Operations Analysis**, Boston, Irwin (1993).
- [9] Porteus, E. "Inventory Policies for Periodic Review Systems," Graduate School of Business Research Paper, Stanford (1983).
- [10] Sox, C. "Modeling and Analysis of Quick Response," Ph.D. Dissertation, Cornell Univ. School of OR&IE (1992).
- [11] Sox, C. Lecture notes, ISE 525, Auburn University (Spring 1997).
- [12] Veinott, H. and Wagner, H. "Computing Optimal  $(s, S)$  Inventory Policies," *Management Science*, 11, 525-552 (1965).
- [13] Willemain, T., Smart, C., Shockor, J., and DeSautels, P. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," *International Journal of Forecasting*, 10, 529-538 (1994).
- [14] Zheng, Y., and Federgruen A. "Finding Optimal  $(s, S)$  Policies Is About As Simple As Evaluating A Single Policy," *Operations Research*, 654-665 (1991).

# Designing an $(s, S)$ Inventory Control System

Gary Rafnson

18 July 1997

## Abstract

This project aims to provide some insight on a local company's  $(s, S)$  inventory control system. It does so by providing three completely new  $(s, S)$  approaches and comparing their simulated performance to the current system. Recommendations are made based on the results.

## References

- [1] Elsayed, E., and Boucher, T. **Analysis and Control of Production Systems**, New Jersey, Prentice Hall (1994).
- [2] Gaynor, P., and Kirkpatrick, R. **Introduction to Time-Series Modeling and Forecasting in Business and Economics**, New York, McGraw Hill (1994).
- [3] Johnson, N., and Kotz, S. **Discrete Distributions**, Boston, Houghton Mifflin (1969).
- [4] Johnson, M., Lee, H., Davis T., and Hall R. "Expressions For Item Fill Rates In Periodic Inventory Systems," *Naval Research Logistics*, 42, 57-80 (1995).
- [5] Law, A. and Kelton, W. **Simulation Modeling and Analysis**, New York, McGraw Hill (1991).
- [6] Mendenhall, W., and Sincich, T. **Statistics for Engineering and the Sciences**, San Francisco, Dellen (1992).
- [7] Mitchell, J. "Multi-item Inventory Systems With A Service Objective," *Operations Research*, 36, 5, 747-755 (1988).
- [8] Nahmias, S. **Production and Operations Analysis**, Boston, Irwin (1993).
- [9] Porteus, E. "Inventory Policies for Periodic Review Systems," Graduate School of Business Research Paper, Stanford (1983).
- [10] Sox, C. "Modeling and Analysis of Quick Response," Ph.D. Dissertation, Cornell Univ. School of OR&IE (1992).
- [11] Sox, C. Lecture notes, ISE 525, Auburn University (Spring 1997).
- [12] Veinott, H. and Wagner, H. "Computing Optimal  $(s, S)$  Inventory Policies," *Management Science*, 11, 525-552 (1965).
- [13] Willemain, T., Smart, C., Shockor, J., and DeSautels, P. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," *International Journal of Forecasting*, 10, 529-538 (1994).
- [14] Zheng, Y., and Federgruen A. "Finding Optimal  $(s, S)$  Policies Is About As Simple As Evaluating A Single Policy," *Operations Research*, 654-665 (1991).