Topology Note

Alex

June 26, 2022

Contents

1	Topology Spaces and Continuous Function		
	1.1	Basic Definition of Topology	
	1.2	Basis for a Topology	
		1.2.1 Exercise	
	1.3	The Order Topology	
	1.4	The Product Topology	
	1.5	The Subspace Topology	
	1.6	Closed Sets and Limit Points	
		1.6.1 Exercise	
	1.7	Continuous Function	

4 CONTENTS

Definitions

В	\mathbf{K}
basis, 6	K-topology on R, 6
boundary, 16	_
C closed, 11 closed in, 12 closure, 12 coarser, 5 strictly coarser, 5 finer, 5 strictly finer, 5 larger, 5	L limit, 14 cluster point, 13 limit point, 13 point of accumulation, 13 lower limit topology on R, 6 N neighbourhood, 13
strictly larger, 5	O
smaller, 5	open map, 10 open set, 5
strictly smaller, 5	open sets, 5
continuous, 17	ordered square, 9
continuous relative to, 17	order topology, 7
converge, 13	_
convex, 9	P
coordinate functions, 19	product topology, 8
D	projection, 8
D	R
diagonal, 16	ray, 8
discrete topology, 5	closed ray, 8
\mathbf{F}	open ray, 8
finite complement topology, 5	g
1 00/	S
H	standard topology on R, 6 subbasis, 7
Hausdorff space, 13	subspace, 9
homeomorphism, 18	subspace, 9 subspace topology, 9
т.	subspace topology, 5
I interior, 12 intersect, 12 interval, 7 closed interval, 7 half-open interval, 7 open interval, 7	T T_1 axiom, 14 topological imbedding, 18 topology, 5 topology generated by basis, 6 topology space, 5 trivial topology, 5

Chapter 1

Topology Spaces and Continuous Function

1.1 Basic Definition of Topology

Definition 1.1.1 (topology). A **topology** on a set X is a collection T of subsets of X having the following properties:

- \emptyset and \mathbb{X} are in \mathbb{T}
- The union of the elements of any sub collection of \mathbb{T} is in \mathbb{T}
- The intersection of the elements of any finite sub collection of $\mathbb T$ is in $\mathbb T$

Definition 1.1.2 (topology space). A topological space is a set X for which a topology T has been specified.

Definition 1.1.3 (open set). A open set \mathbb{U} is a subset of \mathbb{X} that belongs to a topology \mathbb{T} of \mathbb{X} .

Definition 1.1.4 (open sets). A topology can also be called a open sets

Definition 1.1.5 (discrete topology). The set of all subsets of a set X formed a topology called discrete topology

Definition 1.1.6 (trivial topology). The set consisting the set X and \emptyset only formed a topology of X called **trivial topology**

Definition 1.1.7 (finite complement topology). Let X be a set. Let \mathbb{T}_f be the collection of all subsets \mathbb{U} of X such that $X - \mathbb{U}$ either if a **finite** X of is all of X. Then X is a topology on X, called the **finite complement topology**.

Definition 1.1.8 (finer, larger, strictly finer, strictly larger, coarser, smaller, strictly coarser, strictly smaller, comparable). Let \mathbb{T} and \mathbb{T}' be two topology on a given set \mathbb{X} . If \mathbb{T} is a subset of \mathbb{T}' , we say that \mathbb{T}' is finer or larger than \mathbb{T} . If \mathbb{T} is a proper subset of \mathbb{T}' , we say that \mathbb{T}' is strictly finer or strictly larger than \mathbb{T} . We also say that \mathbb{T} is coarser or smaller or strictly coarser or strictly smaller than \mathbb{T}' . We say that \mathbb{T} and \mathbb{T}' is comparable if either \mathbb{T} is a subset of \mathbb{T}' or \mathbb{T}' is a subset of \mathbb{T} .

¹The set \mathbb{U} can form a topology because of the definition of topology is intersection of finite sub collection. If this can be intersection of infinite sub collection, \mathbb{U} will not be a topology.

1.2 Basis for a Topology

Definition 1.2.1 (basis). If X is a set, a **basis** for a topology on X is a collection B of subsets of X (called **basis elements**) such that:

- For each $x \in \mathbb{X}$, there is at least one basis element B containing x
- If x belongs to the intersection of two basis elements B_1 and B_2 , then there is another element $x \in B_3 \in \mathbb{B}$ such that $B_3 \subseteq B_1 \cap B_2$

Definition 1.2.2 (topology generated by basis). Let \mathbb{B} be a basis on \mathbb{X} . Let \mathbb{U} be a set containing all subsets U of \mathbb{X} such that for each element $x \in U$, there is $B \in \mathbb{B}$ that $x \in B \subseteq U$. Such \mathbb{U} formed a topology on \mathbb{X} , called **topology** \mathbb{T} **generated by** \mathbb{B}

Lemma 1.2.1. Let \mathbb{X} be a set. Let \mathbb{B} be a basis for a topology \mathbb{T} on \mathbb{X} . Then \mathbb{T} equals to the set of all possible unions of elements of \mathbb{B} .

Proof. Let set \mathbb{U} be the set of all possible unions of elements of \mathbb{B} . For any $U \in \mathbb{U}$. $U = \cup B$ ² for some $B \in \mathbb{B}$. Thus, for every $x \in U$, there exist a $B' \in \mathbb{B}$ that $x \in B' \subseteq U$. Thus, $U \in \mathbb{T}$. Conversely, for any $U \in \mathbb{T}$. For any $x \in U$, let $x \in B_x \in U$. Then, $U = \bigcup_{x \in U} B_x$. Thus, $U \in \mathbb{U}$.

Therefore, \mathbb{U} equals to \mathbb{T} .

Lemma 1.2.2. ³ Let \mathbb{X} be a topological space. Suppose that \mathbb{C} is a collection of open sets of \mathbb{X} such that for each open set U of \mathbb{X} and each $x \in U$, there is an element $C \in \mathbb{C}$ such that $x \in C \subseteq C$. Then \mathbb{C} is a basis for the topology of \mathbb{X} .

Lemma 1.2.3. ⁴ Let $\mathbb B$ and $\mathbb B'$ be basis for the topologies $\mathbb T$ and $\mathbb T'$, respectively, on $\mathbb X$. Then the following are equivalent:

- \mathbb{T}' is finer than \mathbb{T}
- For each $x \in \mathbb{X}$ and each basis element $B \in \mathbb{B}$ containing X, there is a basis element $B' \in \mathbb{B}'$ such that $x \in B' \subseteq B$.

Definition 1.2.3 (standard topology on the real line). Let be $\mathbb{B} = \{B | B = \{x | a < x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. \mathbb{B} formed a basis on real line. The topology generated by \mathbb{B} is called the standard topology on the real line 5 .

Definition 1.2.4 (lower limit topology on the real line). Let be $\mathbb{B} = \{B | B = \{x | a \leq x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. \mathbb{B} formed a basis on real line. The topology generated by \mathbb{B} is called the **lower limit topology on the real line**. When \mathbb{R} is given this topology, we denote it by \mathbb{R}_l .

Definition 1.2.5 (K-topology on the real line). Let be $\mathbb{B} = \{B|B = \{x|a < x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. Let $K = \{x|x = \frac{1}{n}, n \in \mathbb{Z}_+\}$. $\mathbb{B} \cup \{B - K|B \in \mathbb{B}\}$ formed a basis on real line. The topology generated by \mathbb{B} is called the **K-topology on the real line**. When \mathbb{R} is given this topology, we denote it by $\mathbb{R}_{\mathbb{K}}$.

Lemma 1.2.4. ⁶ The topologies \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is strictly finer than the standard topology on \mathbb{R} .

²Note that this expression may not be unique.

 $^{^3}$ We omit the proof of this lemma as it is obvious.

⁴We omit the proof of this lemma as it is obvious.

 $^{^5}$ Whenever we consider $\,\mathbb{R}\,$, we shall suppose it is given this topology unless we specifically state otherwise.

⁶We omit the proof of this lemma as it is obvious.

Lemma 1.2.5. The topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is not comparable.

Proof. Let \mathbb{T}_l and $\mathbb{T}_{\mathbb{K}}$ be topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ respectively. Let $K = \{x | x = \frac{1}{n}, n \in \mathbb{Z}_+\}$. We first proof that \mathbb{T}_l is not finer than $\mathbb{T}_{\mathbb{K}}$. Let $U = \{x | -1 < x < 1\} - K, x = 0$. If there exist $B = \{x | a \le x < b\} \in \mathbb{T}_l$ such that $x \in B \subseteq U$, then 0 < b < 1. Thus, there exist $n \in \mathbb{Z}_+$ that $0 < \frac{1}{n} < b$. Thus B is not a subset of U.

Then we proof that $\mathbb{T}_{\mathbb{K}}$ is not finer than \mathbb{T}_{l} . Let $U' = \{x | a' \leq x < b'\}$. If there exist $B' = \{x | a'' < x < b''\} or \{x | a'' < x < b''\} - K \text{ such that } a' \in B \subseteq U. \text{ Thus } a'' < a < b''. \text{ Thus } a'' < a < b''.$ there exist c that $a'' < x < a, x \in B, x \notin U'$. Thus $B' \not\subseteq U'$.

Thus the topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is not comparable.

Definition 1.2.6 (subbasis). A subbasis \mathbb{S} for a topology on \mathbb{X} is a collection of subsets of $\mathbb X$ whose union equals $\mathbb X$. The topology generated by the subbasis $\mathbb S$ is defined to be the collection \mathbb{T}^{-7} of all unions of finite intersections of elements of \mathbb{S} .

1.2.1 Exercise

1. Show that if \mathbb{A} is a basis for a topology on \mathbb{X} , then the topology generated by \mathbb{A} equals the intersection of all topologies on $\mathbb X$ that contain $\mathbb A$. Prove the same if $\mathbb A$ is a subbasis.

Proof. As a subbasis is also a basis, we will directly prove the case of subbasis here.

Let $\mathbb{S} = \{\mathbb{T}_{\alpha}\}$ be set contain all the topologies that contain \mathbb{A} . Let \mathbb{T} be the topology that A generated. Let $\mathbb{T}' = \cap \mathbb{T}_{\alpha}$.

First, $\mathbb{A} \subseteq \mathbb{T}_{\alpha}$. Thus, $\mathbb{T} \subseteq \mathbb{T}_{\alpha}$. Thus, $\mathbb{T} \subseteq \mathbb{T}'$.

Also, $\mathbb{A} \subseteq \mathbb{T}$. Thus, $\mathbb{T} \in \mathbb{S}$. Thus, $\mathbb{T}' \subseteq \mathbb{T}$.

Thus, $\mathbb{T} = \mathbb{T}'$

The Order Topology

Definition 1.3.1 (interval). Let X is a set having a simple order relation <. Given elements a and b of X such that a < b, there are four subsets of X that are called **intervals** determined by a and b:

- $(a,b) = \{x | a < x < b\}$
- $(a,b] = \{x | a < x \le b\}$
- $[a,b) = \{x | a \le x < b\}$
- $[a,b] = \{x | a \le x \le b\}$

(a,b) is called an **open interval** on $\mathbb X$. [a,b] is called an **closed interval** on $\mathbb X$. (a,b]and [a,b) is called **half-open intervals**.

Definition 1.3.2 (order topology). ⁹ Let X be a set with a simple order relation; assume X has more than one element. Let B be the collection of all sets of the following types:

• All open intervals (a,b) in X.

⁷It is obvious that \mathbb{T} is a topology, we just omit the proof here.

⁸It is obvious that \mathbb{T}' is also a topology, we just omit the proof here.

 $^{^9}$ The standard topology on $\,\mathbb{R}\,$ is an order topology derived from the usual order on $\,\mathbb{R}\,$.

- All intervals of the form $[a_0,b)$, where a_0 is the smallest element (if exist) of \mathbb{X} .
- All intervals of the form $(a,b_0]$, where b_0 is the largest element(if exist) of $\mathbb X$.

The collection \mathbb{B} formed a basis for a topology on \mathbb{X} , which is called the order topology.

Definition 1.3.3 (ray). ¹⁰¹¹ If X is an ordered set, and a is an element of X, there are four subsets of X that are called **rays** determined by a:

- $(a, +\infty) = \{x | x > a\}$
- $(-\infty, a) = \{x | x < a\}$
- $[a, +\infty) = \{x | x \ge a\}$
- $(-\infty, a] = \{x | x \le a\}$

 $(a, +\infty)$ and $(-\infty, a)$ are called **open rays**. $[a, +\infty)$ and $(-\infty, a]$ are called **closed rays**.

1.4 The Product Topology

Definition 1.4.1 (product topology). Let \mathbb{X} and \mathbb{Y} be topological spaces. The **product** topology on $\mathbb{X} \times \mathbb{Y}$ having a basis \mathbb{B} containing all sets of the form $U \times V$, where U and V is open sets of \mathbb{X} and \mathbb{Y} respectively.

Theorem 1.4.1. ¹²If \mathbb{B} and \mathbb{C} is basis for the topology of \mathbb{X} and \mathbb{Y} respectively, then the collection

$$\mathbb{D} = \{B \times C | B \in \mathbb{B} and C \in \mathbb{C}\}\$$

is a basis for the topology of $\mathbb{X} \times \mathbb{Y}$

Definition 1.4.2 (projection). Let $\pi_1 : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$ be defined by the equation:

$$\pi_1(x,y) = x$$

Let $\pi_2: \mathbb{X} \times \mathbb{Y} \to \mathbb{Y}$ be defined by the equation:

$$\pi_1(x,y)=y$$

The maps π_1 and π_2 are called the **projections** of $\mathbb{X} \times \mathbb{Y}$ onto its first and second factors, respectively.

Theorem 1.4.2. ¹³ The collection

$$\mathbb{S} = \{\pi_1^{-1}(U)|Uopenin\mathbb{X}\} \cup \{\pi_2^{-1}(V)|Vopenin\mathbb{Y}\}$$

is a subbasis for the product topology on $\mathbb{X} \times \mathbb{Y}$.

 $^{^{10}}$ open rays are always open sets in the order topology

¹¹the open rays also formed a subbasis of the order topology

 $^{^{12}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

¹³We omit the proof of this lemma as it is obvious.

1.5 The Subspace Topology

Definition 1.5.1 (subspace topology). Let \mathbb{X} be a topological space with topology \mathbb{T} . If Y is a subset of \mathbb{X} , the collection $\mathbb{T}_Y = \{Y \cap U | U \in \mathbb{T}\}$ is a topology on Y, called the **subspace** topology.

Y is also called a **subspace** of X

Lemma 1.5.1. ¹⁴If \mathbb{B} is basis for the topology of \mathbb{X} , Y is a subset of \mathbb{X} then the collection

$$\mathbb{B}_Y = \{ B \cap Y | B \in \mathbb{B} \}$$

is a basis for the subspace topology on Y

Lemma 1.5.2. ¹⁵Let Y be a subspace of \mathbb{X} . If U is open in Y and Y is open in \mathbb{X} , then U is open in \mathbb{X} .

Theorem 1.5.1. ¹⁶ If A is a subspace of \mathbb{X} and B is a subspace of \mathbb{Y} , then the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $\mathbb{X} \times \mathbb{Y}$

Proof. Let $\mathbb{B}_{\mathbb{X}}$ and $\mathbb{B}_{\mathbb{Y}}$ and $\mathbb{B}_{\mathbb{X}\mathbb{Y}}$ be basis of topology of \mathbb{X} and \mathbb{Y} and $\mathbb{X} \times \mathbb{Y}$ respectively. Let $\mathbb{B}'_{\mathbb{X}}$ and $\mathbb{B}'_{\mathbb{Y}}$ and $\mathbb{B}'_{\mathbb{X}\mathbb{Y}}$ be basis of topology of A and A and $A \times B$ respectively. We will show that $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}} = \mathbb{B}'_{\mathbb{X}\mathbb{Y}}$. Thus, the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $\mathbb{X} \times \mathbb{Y}$.

First, every element in $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$ can be represented by $B_A \cap A \times B_B \cap B = B_A \times B_B \cap A \times B \in \mathbb{B}'_{\mathbb{X}\mathbb{Y}}$ where $B_A \in \mathbb{B}'_{\mathbb{X}}, B_B \in \mathbb{B}'_{\mathbb{Y}}$. Thus $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}} \subseteq \mathbb{B}'_{\mathbb{X}\mathbb{Y}}$.

Next, we show that $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$ generate the topology $A \times B$ inherits as a subspace of $\mathbb{X} \times \mathbb{Y}$. For any open set U in $\mathbb{X} \times \mathbb{Y}$, and $\forall x \in U \cap A \times B, \exists B_{\mathbb{X}} \times B_{\mathbb{Y}} \in \mathbb{B}_{\mathbb{X}\mathbb{Y}}, x \in B_{\mathbb{X}} \times B_{\mathbb{Y}} \subseteq \mathbb{X} \times \mathbb{Y}$. Thus $x \in B_{\mathbb{X}} \times B_{\mathbb{Y}} \cap A \times B \subseteq A \times B, B_{\mathbb{X}} \times B_{\mathbb{Y}} \cap A \times B \in \mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$. Thus $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$ generate the topology $A \times B$ inherits as a subspace of $\mathbb{X} \times \mathbb{Y}$.gi

Definition 1.5.2 (ordered square). Let I = [0,1]. The set $I \times I$ in the dictionary order ¹⁷ topology will be called **ordered square**, and denoted by I_o^2

Definition 1.5.3 (convex). Given an ordered set \mathbb{X} , let us say that a subset \mathbb{Y} of \mathbb{X} is **convex** in \mathbb{X} if for each pair of points a < b of \mathbb{Y} , the entire interval (a,b) of points of \mathbb{X} lies in \mathbb{Y}

$$X_1 = (x_1, x_2, x_3...)$$

 $X_2 = (x'_1, x'_2, x'_3...)$

 $X_1 > X_2$ only when

$$\exists k \in \mathbb{Z}_+, \forall i \in \mathbb{Z}_+, 0 < i < k$$
$$x_i = x_i'$$
$$x_k > x_k'$$

 $^{^{14}}$ We omit the proof of this lemma as it is obvious.

 $^{^{15}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

 $^{^{16}\}text{If}\ \mathbb{X}$ is an ordered set in the order topology, and $\ \mathbb{Y}$ is a subset of $\ \mathbb{X}$. The order relation, when restricted to $\ \mathbb{Y}$, makes $\ \mathbb{Y}$ into and ordered set. However, the resulting order topology on $\ \mathbb{Y}$ need not be the same as the topology that $\ \mathbb{Y}$ inherits as a subspace of $\ \mathbb{X}$.

¹⁷the dictionary means for $X_1, X_2 \in \mathbb{Y} = \mathbb{X}_1 \times \mathbb{X}_2 \times \mathbb{X}_3 \dots$ which:

Theorem 1.5.2. ¹⁸ Let \mathbb{X} be an ordered set in the order topology. Let \mathbb{Y} be a subset of \mathbb{X} that is convex in \mathbb{X} . Then the order topology on \mathbb{Y} is the same as the topology \mathbb{Y} inherits as a subspace of \mathbb{X} .

Proof. Consider the ray $(a, +\infty)$ in \mathbb{X} . If $a \in \mathbb{Y}$, then

$$(a, +\infty) \cap \mathbb{Y} = \{x | x \in \mathbb{Y} and x > a\}$$

This is an open ray of the ordered set of \mathbb{Y} . if $a \notin Y$, then a is either a lower bound on \mathbb{Y} or an upper bound on \mathbb{Y} , since \mathbb{Y} is convex. In the former case, the set $(a, +\infty) \cap \mathbb{Y}$ equals all of \mathbb{Y} , in the latter case, it is empty.

A similar remark shows that the intersection of the rat $(-\infty, a)$ with $\mathbb Y$ is either an open ray of $\mathbb Y$, or $\mathbb Y$ itself, or empty. Since the sets $(a, +\infty)\mathbb Y$ and $(-\infty, a)\cap\mathbb Y$ form a subbasis for the subspace topology on $\mathbb Y$, and since each is open in the order topology, the order topology contains the subspace topology.

To prove the reverse, note that any open ray of \mathbb{Y} equals the intersection of an open ray of \mathbb{X} with \mathbb{Y} , so it is open in the subspace topology on \mathbb{Y} . Since the open rays of \mathbb{Y} are a subbasis for the order topology on \mathbb{Y} , this topology is contained in the subspace topology. \square

Exercise

1. A map $f: \mathbb{X} \to \mathbb{Y}$ is said to be a **open map** if for every open set $U \subseteq \mathbb{X}$, the set f(U) is open in \mathbb{Y} . Show that $\pi: \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$ is open map.

Proof. An open set in $\mathbb{X} \times \mathbb{Y}$ can be represented by

$$\cup (U_i \times U_i')$$

where U_i, U'_i are open sets in \mathbb{X} , \mathbb{Y} , respectively.

Also,

$$\cup (U_i \times U_i') = \cup (U_i) \times \cup (U_i')$$

Thus,

$$\pi(\cup(U_i\times U_i'))=\cup(U_i)$$

Thus, $\pi(U)$ is open in \mathbb{X} .

- 2. Let $\mathbb X$ and $\mathbb X'$ denote a single set in the topologies $\mathbb T$ and $\mathbb T'$, respectively; let $\mathbb Y$ and $\mathbb Y'$ denote a single set in the topologies $\mathbb U$ and $\mathbb U'$, respectively. ¹⁹ Assume these sets are nonempty.
 - (a) Show that if $\mathbb{T}'\supseteq\mathbb{T}$ and $\mathbb{U}'\supseteq\mathbb{U}$, then the product topologies $\mathbb{X}'\times\mathbb{Y}'$ is finer than the product topology on $\mathbb{X}\times\mathbb{Y}$.
 - (b) Does the converse of the previous statement hold?

¹⁸Given $\mathbb X$ is an ordered set in the order topology and $\mathbb Y$ is a subset of $\mathbb X$, we shall assume that $\mathbb Y$ is given the subspace topology unless we specifically state otherwise.

¹⁹what does \mathbb{X} , \mathbb{X}' , \mathbb{Y}' really mean here?? I do not know, so I just put the exercise here without a proof.

3. Show that the countable collection²⁰

$$\{(a,b) \times (c,d) | a < b, c < d, a \in \mathbb{Q}, b \in \mathbb{Q}, c \in \mathbb{Q}, d \in \mathbb{Q}\}$$

is a basis for \mathbb{R}^2

Proof. This is obvious if you prove that $(a,b) \times (c,d)$ is a rectangle in the \mathbb{R}^2 plane. \square

4. Let \mathbb{X} be an ordered set. If \mathbb{Y} is a proper subset of \mathbb{X} that is convex in \mathbb{X} prove that \mathbb{Y} may not be an interval or a ray in \mathbb{X} .

Proof. Let $\mathbb{X} = \mathbb{R}^2$ with dictionary order. Then $Y = \{(x,y)| -1 \le x \le 1\}$ is convex in \mathbb{X} , however it is not an interval or a ray.

There is a false prove given by myself.

Proof. Let $\mathbb S$ be a set that contain all intervals and rays of $\mathbb Y$. We define a partial order on $\mathbb S$ by inclusion. So if there is a chain in $\mathbb S$:

$$S_1 \subseteq S_2 \subseteq S_3 \dots$$

Let

$$S = S_1 \cup S_2 \cup S_3 \cup \dots$$

Thus, S is an upper bound of the chain.

Thus, by Zorn's Lemma, there is a maximal element of $\,\mathbb{S}\,$, say $\,U$, then we prove that $U=\mathbb{Y}\,$.

If $U \neq \mathbb{Y}$, then $\exists x, x \in \mathbb{Y} - U$.

If U is a ray say $(a, +\infty)$. Then x < a, thus $U \subseteq (x, +\infty) \subseteq \mathbb{B}$, then there is contradiction with the maximal element.

If U is an interval, the circumstance is similar with the proof of U is a ray.

Thus \mathbb{Y} is a ray or an interval.

However, there is issue with this proof, the set S does exists. However, it may not be an interval or ray, so it may not be contained in S

1.6 Closed Sets and Limit Points

Definition 1.6.1 (closed). ²¹ A subset A of a topological space is said to be closed if the set $\mathbb{X} - A$ is open.

Theorem 1.6.1. ²²Let X be a topological space. Then the following conditions hold

1. \emptyset and \mathbb{X} are closed.

²⁰The prove of this set is countable is typically similar to Cantor's enumeration of a countable collection of countable sets

 $^{^{21}}$ A set can be open, or closed, or both, or neither

 $^{^{22}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

- 2. Arbitrary intersections of closed sets are closed
- 3. Finite unions of closed sets are closed

Definition 1.6.2 (closed in). Let \mathbb{X} be a topological space; let \mathbb{Y} be a subspace of \mathbb{X} . We say that a set A is **closed in** \mathbb{Y} if A is a subset of \mathbb{Y} and A is closed in the subspace topology of \mathbb{Y}

Theorem 1.6.2. Let \mathbb{Y} be a subspace of \mathbb{X} . Then a set A is closed in \mathbb{Y} if and only if it equals the intersection of a closed set of \mathbb{X} with \mathbb{Y}

Proof. First we proof that if A is closed in $\mathbb Y$, then $\exists B\subseteq \mathbb X, B\cap \mathbb Y=A$. As the origin topology form a surjective map to its subspace topology, there exists a B closed in $\mathbb X$ that $\mathbb Y-A=(\mathbb X-B)\cap \mathbb Y$. Then $B\cap \mathbb Y=A$

Conversely, if $\exists B \subseteq \mathbb{X}, B \cap \mathbb{Y} = A$. Then, $\mathbb{Y} - A = (\mathbb{X} - B) \cap \mathbb{Y}$. Then $\mathbb{X} - B$ is open in \mathbb{Y} , $\mathbb{Y} - A$ is open in \mathbb{Y} . Then A is closed in \mathbb{Y}

Theorem 1.6.3. ²³ Let \mathbb{Y} be a subspace of \mathbb{X} . If A is closed in \mathbb{Y} and \mathbb{Y} is closed in \mathbb{X} , then A is closed in \mathbb{X} .

Definition 1.6.3 (interior). Given a subset A of a topological space \mathbb{X} , the **interior** of A is defined as the union of all open sets contained in A. Denoted by Int(A).

Definition 1.6.4 (closure). Given a subset A of a topological space \mathbb{X} , the **closure** of A is defined as the intersection of all closed sets containing A. Denoted by Cl(A) or \overline{A}

Theorem 1.6.4. ²⁴²⁵ Let $\mathbb Y$ be a subspace of a topological space $\mathbb X$; let A be a subset of $\mathbb X$. Let \overline{A} denote the closure of A in $\mathbb X$. Then the closure of A in $\mathbb Y$ equals $\overline{A} \cap \mathbb Y$

Definition 1.6.5 (intersect). We say that a set A intersects B if $A \cap B$ is not empty.

Theorem 1.6.5. Let A be a subset of the topological space X

- 1. The $x \in \overline{A}$ if and only if every open set U containing x intersect A.
- 2. Supposing the topology of X is given by a basis, then $x \in \overline{A}$ if and only if every basis element B containing x intersects A

Proof. There are only two types of closed set U in X:

- 1. $U \supset \overline{A}$
- $2. \ U \cap A \neq A$

Thus, there are only two types of open set U in \mathbb{X} respectively.

- 1. U does not intersects A.
- 2. $U \cap \overline{A} \neq \emptyset$

²³As the proof is similar to the case in the open set, so we omit the proof here.

 $^{^{24}}$ We omit the proof of this lemma as it is obvious.

 $^{^{25}\}mathrm{As}$ the closure of A in $\,\mathbb X\,$ and the closure $\,A\,$ in $\,\mathbb Y\,$ will sometimes be different. We always use $\,\overline{A}\,$ to denote the closure of $\,A\,$ in $\,\mathbb X\,$

1. If $x \in \overline{A}$, then every open set containing x is the open set of second type, thus every open set containing x intersects A

If every open set containing x intersect A, suppose $x \notin \overline{A}$. Then $X - \overline{A}$ is a open set containing x, however, it does not intersects A. Thus, $x \in \overline{A}$.

2. If $x \in \overline{A}$, as every basis element of $\mathbb X$ is a open set, thus every basis element containing x intersects $\mathbb A$

If every open set containing x intersect \mathbb{A} , suppose $x \notin \overline{A}$.

As every open sets can be represented by union of basis. Let

$$\mathbb{X} - \overline{A} = B_1 \cup B_2 \cup B_3 \cup \cdots \cup B'_1 \cup B'_2 \cup B'_3 \cup \cdots$$

where B are bases containing x, and B' are bases that does not contain x.

Thus,

$$x \in B_1 \cup B_2 \cup B_3 \cup \dots \subseteq \mathbb{X} - \overline{A}$$

Then $B_1 \cup B_2 \cup B_3 \cup \ldots$ that is a open set can be generated by all the bases containing x, however, that does not intersects A. So, $x \in \overline{A}$.

Definition 1.6.6 (neighbourhood). ²⁶ If we say U is a neighbourhood of x in \mathbb{X} , then U is an open set in \mathbb{X} containing x

Definition 1.6.7 (limit point, point of accumulation, cluster point). ²⁷ If A is a subset of topological space \mathbb{X} . We say that x is a limit point of A if and only if every open sets containing x intersects A with some points other than x.

This condition is also equivalent to the condition that if x is a limit point of A if and only if $x \in \overline{A - \{x\}}$

Theorem 1.6.6. ²⁸Let A be a subset of topological space \mathbb{X} ; let A' be the set of all limit points of A. Then

$$\overline{A} = A \cup A'$$

Corollary 1.6.1. ²⁹ A subset of a topological space is closed if and only if it contains all its limit point.

Definition 1.6.8 (converge). ³⁰ We say that a sequence of $x_1, x_2, x_3 \ldots$ converge to x. When for every neighbourhood U of x, there exists a positive integer N, such that for all n > N, $x_n \in U$.

Definition 1.6.9 (Hausdorff space). A topological space is called a **Hausdorff space**, if for every distinct x_1 , x_2 in $\mathbb X$, there exists disjoint neighbourhood of U_1 , U_2 of x_1 , x_2 in $\mathbb X$.

 $^{^{26}}$ Some other mathematicians use neighbourhood to say that $\,U\,$ merely contains an open set containing $\,x\,$. The book does not give a formal definition for the word merely, and I am not sure either.

 $^{^{27}\}mathrm{Note}$ that, ~x~ may belong to ~A~ or not, this does not matter.

 $^{^{28}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

²⁹We omit the proof of this lemma as it is obvious.

³⁰In real line, a sequence can not converge to multiple points, but for an arbitrary topological space, this is possible.

Theorem 1.6.7. 3132 Every finite point set in a Hausdorff space \mathbb{X} is closed.

Proof. Let A be a finite point set in a Hausdorff space \mathbb{X} .

Suppose A only have one element. Then for every $x \in \mathbb{X} - A$, there exists a neighbourhood of x that does not intersect with A. So A is closed.

Suppose A is a closed finite point set. We take $x_0 \in \mathbb{X} - A$. As finite union of closed set is closed, $A \cup \{x_0\}$ is closed.

Then, from induction, all finite point set in a Hausdorff space is closed. \Box

Theorem 1.6.8. If X is a Hausdorff space, then a sequence of points in X converges to at most one point.

Proof. Suppose that the following sequence

$$x_1, x_2, x_3 \dots$$

Converge to more than one points say

$$y_1, y_2, y_3 \dots$$

Then there exists

$$n_1, n_2, n_3 \ldots, U_1, U_2, U_3 \ldots$$

Such that for $n > n_i$

$$x_n \in U_i, y_i \in U_i$$

If we take disjoint U_1, U_2 which is possible as this is a Hausdorff space.

Then the previews condition does not stand. So, every sequence of points in a Hausdorff space can only converge to at most one point. \Box

Definition 1.6.10 (limit). If a sequence x_n of points in Hausdorff space converge to the point x, we denote this by $x_n \to x$ and we say the **limit** of x_n is x.

Definition 1.6.11 (T_1 axiom). The condition that all finite point set of a topological space is closed is called T_1 axiom.

Theorem 1.6.9. Let X be a space satisfying the T_1 axiom; let A be a subset of X. Then the point x is a limit point of A if and only if every neighbourhood of x contains infinitely many points of A.

Proof. If every neighbourhood of x contains infinitely many point of A. Than every neighbourhood of x intersect with A with infinite element other than x, then x is a limit point of A.

If x is a limit point of A. Suppose that there exists a open set U containing x and intersect with A for finite many points. Let

$$U' = U \cap (A - x)$$

Then, $x \notin U'$. Let

$$U'' = U - U'$$

 $^{^{31}}$ This implies that a sequence in a Hausdorff space cannot converge to multiple points. The following theorem prove this.

 $^{^{32}}$ The condition every finite point set is closed is weaker than the Hausdorff space condition. For instance, the finite complement topology of \mathbb{R} met the condition of finite point set. However it is not a Hausdorff space.

Then U'' is open as U' is a finite point set and

$$U'' = U - U' = U \cap (X - U')$$

Also, $x \in U''$. Thus, U'' is a open set containing x that only intersect A with x or do not intersect A. This is a contradiction of x is a limit point. Thus there does not exists a open set U containing x and intersect with A for finite many points.

Theorem 1.6.10. ³³Every simply ordered set is a Hausdorff space in order topology.

Theorem 1.6.11. ³⁴ The product of two Hausdorff space is a Hausdorff space.

Theorem 1.6.12. ³⁵A subspace of a Hausdorff space is a Hausdorff space.

1.6.1 Exercise

1. Give an counter example why $\overline{\cup A_{\alpha}} = \cup \overline{A_{\alpha}}$ dose not hold.

Proof. Consider the X be the K-topology on the real line.

Let

$$\begin{array}{rcl} A_n & = & (\frac{1}{n+1}, \frac{1}{n}), n \in \mathbb{Z}_+ \\ A & = & \cup A_n \end{array}$$

Then

$$\begin{array}{rcl} \overline{A_n} & = & [\frac{1}{n+1}, \frac{1}{n}] \\ \cup \overline{A_n} & = & (0, 1] \end{array}$$

However, as every neighbourhood of 0 intersect $\cup A_{\alpha}$. $0 \in \overline{\cup A_{\alpha}}$.

Thus,
$$\overline{\cup A_{\alpha}} \neq \overline{\cup A_{\alpha}}$$

2. Prove that

$$\overline{A-B} \supset \overline{A} - \overline{B}$$

Proof. If $x \in \overline{A} - \overline{B}$. Then

$$x \in \overline{A}, x \notin \overline{B}$$

•

Thus for open set U containing x

$$\exists \quad U_1 \cap B = \emptyset$$
$$\forall \quad U \cap A \neq \emptyset$$

 $^{^{33}}$ We omit the proof of this lemma as it is obvious.

 $^{^{34}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

³⁵We omit the proof of this lemma as it is obvious.

Suppose that $x \notin \overline{A-B}$. Then

$$\exists U_0 \cap (A - B) = \emptyset$$

Thus,

$$U_0 \cap A \subseteq B$$

Thus,

$$U_1 \cap B = \emptyset$$

$$U_1 \cap U_0 \cap A = \emptyset$$

As $U_1 \cap U_0$ is an open set containing x, so there is contradiction with $x \in \overline{A}$. Thus $x \in \overline{A-B}$.

3. A *diagonal* is a subset $\Delta = \{x \times x | x \in \mathbb{X}\}$ of the product topology $\mathbb{X} \times \mathbb{X}$ where \mathbb{X} is a topological space. Show that the diagonal is closed in $\mathbb{X} \times \mathbb{X}$ if and only if \mathbb{X} is a Hausdorff space.

Proof. If $\mathbb X$ is a Hausdorff space. For every element $x \times y$ of $\mathbb X \times \mathbb X$ that not in Δ . We take disjoint set U_x, U_y where $x \in U_x, y \in U_y$. Then $\mathbb X \times \mathbb X - \Delta = \cup_{x \neq y} U_x \times U_y$. Where $\cup_{x \neq y} U_x \times U_y$ is an open set. Thus Δ is a closed set.

Conversely, if Δ is a closed set, suppose that $\mathbb X$ is not a Hausdorff space. Then there exists distinct x,y such that every neighbourhood of x and y intersect. Let $\mathbb B$ be a basis of topology of $\mathbb X$. Then $x\times y\in \mathbb X\times \mathbb X-\Delta$. However we cannot find $B_1,B_2\in \mathbb B, x\times y\in B_1\times B_2\subset \mathbb X\times \mathbb X-\Delta$. Then Δ is not a closed set. So there is a contradiction, then $\mathbb X$ must be a Hausdorff space.

4. Prove that T_1 axiom is equivalent to the condition such that for every distinct pair x, y of \mathbb{X} , there exists neighbourhood of x does not contain y.

Proof. First if T_1 axiom hold, then for every pair x,y, the neighbourhood $\mathbb{X}-\{y\}$ of x does not contain y, so the second condition hold.

Conversely, if the second condition hold. Suppose that we can find a finite points set say $\{x_1, x_2, x_3 \dots\}$, then there must exists $\underline{x} \in \{x_1, x_2, x_3 \dots\}$ such that the set $\{x\}$ is not closed. Then $\{x\} - \{x\} \neq \emptyset$. Let $y \in \{x\} - \{x\}$, then every neighbourhood of y must contain x, this is a contradiction to the second condition, so the T_1 axiom must hold. \square

5. If $A \subseteq \mathbb{X}$, we define the **boundary** of A by the equation

$$BdA = \overline{A} \cap \overline{X - A}$$

(a) Show that Int A and BdA are disjoint and $\overline{A} = \text{Int } A \cup \text{BdA}$.

Proof. For every $x \in \operatorname{Bd} A$, every open set contain x must intersect A and X - A so, there is no open set U contain x, $U \subseteq A$.

For every $x' \in \operatorname{Int} A$, there exists $U' \subseteq A$, so $\operatorname{Bd} A$ and $\operatorname{Int} A$ are disjoint sets. For every $x \in \overline{A}$, $x \in \operatorname{Bd} A$ or $x \notin \operatorname{Bd} A$. We discuss the condition that $x \notin \operatorname{Bd} A$. Then $x \notin \overline{\mathbb{X} - A}$, then there exists a open set U containing x, that does not intersect with $\mathbb{X} - A$. Thus $U \subseteq A$, thus $x \in \operatorname{Int} A$. So $\overline{A} \subseteq \operatorname{Int} A \cup \operatorname{Bd} A$.

Then, $\operatorname{Bd} A \subseteq \overline{A}$, $\operatorname{Int} A \subseteq A \subseteq \overline{A}$. Thus, $\overline{A} \supseteq \operatorname{Int} A \cup \operatorname{Bd} A$

So,
$$\overline{A} = \text{Int} A \cup \text{Bd} A$$

(b) Show that $BdA = \emptyset$ if and only if A is both open and closed.

Proof. So, $\operatorname{Int} A = \overline{A}$, then $\operatorname{Bd} A = \emptyset$ follows directly from $\overline{A} = \operatorname{Int} A \cup \operatorname{Bd} A$.

(c) Show that U is open if and only if $BdU = \overline{U} - U$.

Proof. Suppose U is open. Then $\overline{\mathbb{X}-U}=\mathbb{X}-U$. Then for every $x\in U$, $x\notin \mathbb{X}-U, x\notin \overline{\mathbb{X}-U}$. Thus $\overline{U}\cap \overline{\mathbb{X}-U}=\overline{U}-U$.

Conversely, suppose $\operatorname{Bd} U=\overline{U}-U$. Then for every $x\in U$, $x\notin\operatorname{Bd} U$. Then as $\overline{U}=\operatorname{Int} U\cup\operatorname{Bd} U$, $x\in\operatorname{Int} U$. So $\operatorname{Int} U\supseteq U$. Thus $U=\operatorname{Int} U$. Thus, U is open.

1.7 Continuous Function

Definition 1.7.1 (continuous). ³⁶ Let \mathbb{X} and \mathbb{Y} be topological spaces. A function $f: \mathbb{X} \to \mathbb{Y}$ is said to be **continuous** if for each open subset V of \mathbb{Y} , the set $f^{-1}(V)$ is an open subset of \mathbb{X} .

Theorem 1.7.1. Let \mathbb{X} and \mathbb{Y} be topological spaces; let $f: \mathbb{X} \to \mathbb{Y}$. Then the following are equivalent.

- 1. f is continuous.
- 2. For every subset A of X, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- 3. For every closed set B of \mathbb{Y} , the set $f^{-1}(B)$ is closed in \mathbb{X} .
- 4. For each $x \in \mathbb{X}$ and each neighbourhood of V of f(x), there is a neighbourhood U of x such that $f(U) \subseteq V$.

Proof.

 $1 \Rightarrow 3$:

Let A be a open set in \mathbb{Y} . $f^{-1}(\mathbb{Y} - A) = \mathbb{X} - f^{-1}(A)$.

 $3 \Rightarrow 1$:

Let A be a closed set in \mathbb{Y} . $f^{-1}(\mathbb{Y} - A) = \mathbb{X} - f^{-1}(A)$.

 $1 \Rightarrow 2$:

For $x \in \overline{A}$, we take a open set $f(x) \in U \subseteq Y$. Thus $x \in f^{-1}(U) \cap A \neq \emptyset$. Thus $U \cap f(A) \neq \emptyset$. So $f(x) \in \overline{f(A)}$. Thus $f(\overline{A}) \subseteq \overline{f(A)}$.

 $2 \Rightarrow 3$:

Suppose f is not continuous. Then there must exists V, such that $f^{-1}(V) = U$ is not closed. Thus $\overline{U} \supset B = f^{-1}(A)$. Thus $f\overline{B} \supset A$. However $f(\overline{B}) \subseteq \overline{f(B)} = A$. There is a contradiction. So f must be continuous.

³⁶As the continuity of a function is different as the topological spaces are different. So if we want to emphasis this fact, we say that f is continuous *relative* to specific topologies on $\mathbb X$ and $\mathbb Y$.

 $1 \Rightarrow 4$:

For every neighbourhood V of f(x), $f^{-1}(V)$ is a neighbourhood of x that $f(f^{-1}(V)) \subseteq V$

 $4 \Rightarrow 1$:

We take a open set V of \mathbb{Y} . Let S be the collection of all open set U in \mathbb{X} such that $f(U)\subseteq V$. The set cannot be empty unless $f^{-1}(V)=\emptyset$. Let U_0 denote the union of all the

element in S. We prove that $U_0 = f^{-1}(V)$. For all element $x \in U_0$, $f(x) \in V$. Thus $U_0 \subseteq f^{-1}(V)$. For all element $x \in f^{-1}(V)$. There is a U' such that $x \in U'$, $f(U') \subseteq V$. This follows from the condition 4. Thus $U' \in S$. Thus $x \in U_0$. Thus $U_0 \subseteq f^{-1}(V)$. As U_0 is union of open set, U_0 is also open. Thus, $f^{-1}(V)$ is also open.

Thus f is continuous.

Definition 1.7.2 (homeomorphism). ³⁷ Let \mathbb{X} and \mathbb{Y} be topological space; let $f: \mathbb{X} \to \mathbb{Y}$ be a bijection. If both the function f and the inverse function

$$f^{-1}: \mathbb{Y} \to \mathbb{X}$$

are continuous, then f is called a homeomorphism

Definition 1.7.3 (topological imbedding). Suppose that $f: \mathbb{X} \to \mathbb{Y}$ is an injective continuous map, where \mathbb{X} and \mathbb{Y} are topological spaces. Let \mathbb{Z} be the image set $f(\mathbb{X})$, considered as a subspace of \mathbb{Y} ; then the function $f': \mathbb{X} \to \mathbb{Z}$ obtained by restricting the range of f is bijective. If f' happens to be a homeomorphism of $\mathbb X$ with $\mathbb Z$, we say that the map $f:\mathbb X\to\mathbb Y$ is a topological imbedding, or simply an imbedding, of X in Y.

Theorem 1.7.2 (Rules for constructing continuous functions). Let X, Y, and Z be topological

- 1. (Constant function) If $f: \mathbb{X} \to \mathbb{Y}$ maps all of \mathbb{X} into the single point y_0 of \mathbb{Y} , then f is continuous.
- 2. (Inclusion) If A is a subspace of \mathbb{X} , the inclusion function $j:A\to\mathbb{X}$ is continuous.
- 3. (Composites) If $f: \mathbb{X} \to \mathbb{Y}$ and $g: \mathbb{Y} \to \mathbb{Z}$ are continuous, then the map $g \circ f: \mathbb{X} \to \mathbb{Z}$ is continuous.
- 4. (Restricting the domain) If $f: \mathbb{X} \to \mathbb{Y}$ is continuous, and if A is a subspace of \mathbb{X} , then the restriction function $f|A:A\to \mathbb{Y}$ is continuous.
- 5. (Restricting or expanding the range) Let $f: \mathbb{X} \to \mathbb{Y}$ is continuous. Let \mathbb{Z} be a subspace of $\mathbb Y$ containing the image $f(\mathbb X)$, the function $h:\mathbb X\to\mathbb Z$ obtained by restricting the range of f is continuous. If \mathbb{Z} is a space having \mathbb{Y} as a subspace, then the function $h: \mathbb{X} \to \mathbb{Y}$ obtained by expanding the range of f is continuous.
- 6. (Local formulation of continuity) The map $f: \mathbb{X} \to \mathbb{Y}$ is continuous if \mathbb{X} can be written as the union of open sets U_{α} such set $f|U_{\alpha}$ is continuous for each α

Proof.

1. $f^{-1}(U)$ of any open set U is \mathbb{X} , thus f is continuous.

 $[\]overline{^{37}}$ A equivalent way to define homeomorphism, is that for any open subset U of \mathbb{X} , f(U) is open if and only if U is open.

- 2. For every open subset U of \mathbb{X} , $j^{-1}(U) = U \cap A$ is continuous in A. Thus j is a continuous function.
- 3. For every open subset U of \mathbb{Z} , $f^{-1}(U)$ is open in \mathbb{Y} , and $g^{-1}(f^{-1}(U))$ is open in \mathbb{X} . Thus, $g \circ f$ is continuous
- 4. For every open subset U of \mathbb{Y} , $f^{-1}(U)$ is open in \mathbb{X} , thus $f^{-1}(U) \cap A$ is open in A . Thus the function f|A is continuous.
- 5. If \mathbb{Z} is a subspace of \mathbb{Y} , then every open subset of \mathbb{Z} can be represented as $U \cap \mathbb{Z}$, where U is a open subset of \mathbb{Y} . Thus $h^{-1}(U \cap \mathbb{Z}) = g^{-1}(\mathbb{Z}) \cap g^{-1}(U) = \mathbb{X} \cap g^{-1}(U)$ which is a open subset of X, thus h is continuous.

If $\mathbb Y$ is a subspace of $\mathbb Z$. Then we take a open subset U of $\mathbb Z$. $h^{-1}(U)=g^(-1)(U\cap \mathbb Y)$ which is open in \mathbb{X} , thus h is continuous.

6. if $f|U_{\alpha}$ is continuous for each α . For every open subset U of $\mathbb {Y}$.

$$U = \cup_{\alpha} (U_{\alpha} \cap U)$$

where $U_{\alpha} \cap U$ is open both in U_{α} and in \mathbb{Y} .

Thus,

$$f^{-1}(U) = f^{-1}(\cup_{\alpha}(U_{\alpha} \cap U))$$

= $\cup_{\alpha}((f|U_{\alpha})^{-1}(U_{\alpha} \cap U))$

and each $(f|U_{\alpha})^{-1}(U_{\alpha}\cap U)$ is open, thus $f^{-1}(U)$ is open.

Theorem 1.7.3 (The pasting lemma). ³⁸ Let $X = A \cup B$, where A, B are closed in X. Let $f:A\to\mathbb{Y}$ and $g:B\to\mathbb{Y}$ be continuous. If f(x)=g(x) for every $x\in A\cap B$, then f,gcombine to give a continuous function $h: \mathbb{X} \to \mathbb{Y}$, defined by setting $h(x) = f(x), x \in A$ and $h(x) = g(x), x \in B$.

Theorem 1.7.4 (Maps into products). ³⁹ Let $f: A \to \mathbb{X} \times \mathbb{Y}$ be given by the equation

$$f(a) = (f_1(a), f_2(a))$$

Then, the function f is continuous if and only if the functions

$$f_1:A\to\mathbb{X},\,f_2:A\to\mathbb{Y}$$

are continuous.

Proof. Let π_1, π_2 be the projection function

$$\pi_1 : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$$
 $\pi_2 : \mathbb{X} \times \mathbb{Y} \to \mathbb{Y}$

 $^{^{38}}$ The proof of this theorem is similar to the "Local formulation of continuity" condition of "Rules for constructing continuous functions", so we omit the proof here.

39The map f_1, f_2 are called the *coordinate functions* of f

We first proof that if $\ U$ is an open subset of $\ \mathbb{X} \times \mathbb{Y}$,

$$f^{-1}(U) = f_1^{-1}(\pi_1(U)) \cap f_2^{-1}(\pi_2(U))$$

Let $x \times y \in U$, $f^{-1}(x \times y)$ contains all a such that $f(a) = x \times y$. Then for any $a \in f^{-1}(x \times y)$, $a \in f^{-1}_1(\pi_1(x \times y))$, $a \in f^{-1}_2(\pi_2(x \times y))$. Thus, $f^{-1}(x \times y) \subseteq f^{-1}_1(\pi_1(x \times y)) \cap f^{-1}_2(\pi_2(x \times y))$. Thus $f^{-1}(U) \subseteq f^{-1}_1(\pi_1(U)) \cap f^{-1}_2(\pi_2(U))$.

Also, if $a \in f_1^{-1}(\pi_1(x \times y)), a \in f_2^{-1}(\pi_2(x \times y))$, $f_1(a) = x, f_2(a) = y$. Thus $f(a) = x \times y$. Thus $a \in f^{-1}(x \times y)$. Thus $f^{-1}(U) = f_1^{-1}(\pi_1(U)) \cap f_2^{-1}(\pi_2(U))$

Let U be any open subset of $\mathbb{X} \times \mathbb{Y}$

$$f^{-1}(U) = f_1^{-1}(\pi_1(U)) \cap f_2^{-1}(\pi_2(U))$$

Where $f_1^{-1}(\pi_1(U))$ and $f_2^{-1}(\pi_2(U))$ are both open set. Thus $f^{-1}(U)$ is open.