DEFINITION:

- (1) An \mathbb{N} -grading on a ring R is
 - a decomposition of R as additive groups $R = \bigoplus_{d \ge 0} R_d$
 - such that $x \in R_d$ and $y \in R_e$ implies $xy \in R_{d+e}$.
- (2) An \mathbb{N} -graded ring is a ring with an \mathbb{N} -grading.
- (3) We say that an element $x \in R$ in an N-graded ring R is homogeneous of degree d if $x \in R_d$.
- (4) The **homogeneous decomposition** of an element $r \neq 0$ in an N-graded ring is the sum

$$r = r_{d_1} + \cdots + r_{d_k}$$
 where $r_{d_i} \neq 0$ homogeneous of degree d_i and $d_1 < \cdots < d_k$.

The element r_{d_i} is the **homogeneous component** r **of degree** d_i .

- (5) An ideal I in an N-graded ring is **homogeneous** if $r \in I$ implies every homogenous component of r is in I.
- (6) A homomorphism $\phi: R \to S$ between \mathbb{N} -graded rings is **graded** if $\phi(R_d) \subseteq S_d$ for all $d \in \mathbb{N}$.

DEFINITION: For an abelian semigroup (G, +), one defines G-grading as above with G in place of N and $g \in G$ in place of $d \ge 0$. The other definitions above make sense in this context.

DEFINITION: Let K be a field, and $R = K[X_1, \dots, X_n]$ be a polynomial ring. Let G be a group acting on R so that for every $g \in G$, $r \mapsto g \cdot r$ is a K-algebra homomorphism. The **ring of invariants** of G is

$$R^G := \{ r \in R \mid \text{for all } g \in G, \ g \cdot r = r \}.$$

- (1) Basics with graded rings: Let R be an \mathbb{N} -graded ring.
 - (a) If $f \in R$ is homogeneous of degree a and $g \in R$ is homogeneous of degree b, what about f + gand fq?
 - **(b)** Translate the definition of graded ring to explain why every nonzero element has a unique homogeneous decomposition.
 - (c) Does every element in an N-graded ring have a degree? What about "top degree" or "bottom degree"?
 - **(d)** What is the degree of zero?
- **(2)** The **standard grading** on a polynomial ring: Let A be a ring.
 - (a) Let R = A[X]. Discuss: the decomposition $R_d = A \cdot X^d$ gives an N-grading on R.
 - **(b)** Let $R = A[X_1, \dots, X_n]$. Discuss: the decomposition

$$R_d = \sum_{d_1 + \dots + d_n = d} A \cdot X_1^{d_1} \cdots X_m^{d_m}$$

gives an \mathbb{N} -grading on R. What is the homogeneous decomposition of $f = X_1^3 + 2X_1X_2 - X_3^2 + 3$?

- (c) Let R = A[X]. Explain why the decomposition $R_n = A \cdot X^n$ does not give an N-grading on R.
- (3) Weighted gradings on polynomial rings: Let A be a ring, $R = A[X_1, \dots, X_n]$ and $a_1, \dots, a_m \in \mathbb{N}$. (a) Discuss: $R_n = \sum_{\substack{d_1 a_1 + \dots + d_m a_m = n}} A \cdot X_1^{d_1} \cdots X_m^{d_m}$ gives an \mathbb{N} -grading of R where the degree of X_i is a_i .
 - **(b)** Can you find a_1, a_2, a_3 such that $X_1^2 + X_2^3 + X_3^5$ is homogeneous? Of what degree?

¹Hint: This is a trick question, but specify exactly how.

(4) The fine grading on polynomial rings: Let A be a ring and $R = A[X_1, \dots, X_n]$. Discuss why

$$R_d = A \cdot X^d$$
 for $d = (d_1, \dots, d_m) \in \mathbb{N}^n$, where $X^d := X_1^{d_1} \cdots X_m^{d_m}$

yields an \mathbb{N}^m -grading on R. What are the homogeneous elements?

- (5) More basics with graded rings. Let R be \mathbb{N} -graded.
 - (a) Show² that if $e \in R$ is idempotent, then e is homogeneous of degree zero. In particular, 1 is homogeneous of degree zero.
 - (b) Show that R_0 is a subring of R, and each R_n is an R_0 -module.
 - (c) Show that if I is homogeneous, then R/I is also \mathbb{N} -graded where $(R/I)_n$ consists of the classes of homogeneous elements of R of degree n.
 - (d) Show that I is homogeneous if and only if I is generated by homogeneous elements.
 - (e) Suppose that $\phi: R \to S$ is a homomorphism of K-algebras, and that R and S are \mathbb{N} -graded with K contained in R_0 and S_0 . Show that ϕ is graded if ϕ preserves degrees for all of the elements in some homogeneous generating set of R.
- (6) Semigroup rings: Let S be a subsemigroup of \mathbb{N}^n with operation + and identity $(0, \ldots, 0)$. The **semigroup ring** of S is

$$K[S] := \sum_{\alpha \in S} KX^{\alpha} \subseteq R, \qquad \text{where } X^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n}.$$

- (a) Show that K[S] is a K-subalgebra that is a graded subring of R in the fine grading.
- (b) Let $S = \langle 4, 7, 9 \rangle \subseteq \mathbb{N}$. Draw a picture of S. What is K[S]?
- (c) Find a semigroup $S \subseteq \mathbb{N}^2$ such that K[S] is Noetherian, and another such that K[S] is not Noetherian. Draw pictures of these semigroups.
- (d) Show that every K-subalgebra that is a graded subring of R in the fine grading is of the form K[S] for some S.
- (7) Homogeneous elements: Let R be an \mathbb{N} -graded ring.
 - (a) Show that R is a domain if and only if for all homogeneous elements x, y, xy = 0 implies x = 0 or y = 0.
 - (b) Show that the radical of a homogeneous ideal is homogeneous.
- (8) In the setting of the definition of "ring of invariants" suppose that each $g \in G$ acts as a graded homomorphism. Show that R^G is an \mathbb{N} -graded K-subalgebra of R.

²Hint: If not, write $e = e_0 + e_d + X$ where e_0 has degree zero and e_d is the lowest nonzero positive degree component. Apply uniqueness of homogeneous decomposition to $e^2 = e$ and show that $2e_0e_d = e_0e_d$...