Lambda Calculus

Lambda Calculus

Lambda calculus is a framework developed by Alonzo
 Church in 1930s to study computations with functions.

- Function creation Church introduced the notation λx.E to denote a function in which 'x' is a formal argument and 'E' is the functional body. These functions can be of without names and single arguments.(lambda abstraction)
- □ Function application Church used the notation $\mathbf{E_1}$. $\mathbf{E_2}$ to denote the application of function $\mathbf{E_1}$ to actual argument $\mathbf{E_2}$. And all the functions are on single argument.

Syntax of Lambda Calculus

Lamdba calculus includes three different types of expressions, i.e.,

```
E::= x (variables)
| E_1 E_2  (function application)
| \lambda x.E  (function creation)
```

Where $\lambda x.E$ is called Lambda abstraction and E is known as λ -expressions.

EVALUATING LAMBDA CALCULUS

Pure lambda calculus has no built-in functions.

□ Eg:

$$(+(*56)(*83))$$

☐ Here, we can't start with '+' because it only operates on numbers. There are two reducible expressions: (* 5 6) and (* 8 3).

□ We can reduce either one first. For example −

$$(+ (* 5 6) (* 8 3))$$

 $(+ 30 (* 8 3))$
 $(+ 30 24) = 54$

FREE AND BOUND VARIABLES

- In an expression, each appearance of a variable is either "free" (to λ) or "bound" (to a λ).
- $\ \square$ β -reduction of $(\lambda x \cdot E)$ y replaces every x that occurs free in E with y
- **Bound Variable**: a variable that is associated with some lambda.
- □ **Free Variable**: a var that is *not* associated with any lambda.

A-CONVERSION

Alpha conversions allow us to rename bound variables.

A bound name x in the lambda abstraction (λ x.e) may be substituted by any other name y, as long as there are *no free occurrences of y in e:*

B-REDUCTION RULE

Use need a reduction rule to handle λs:- applying functions to their arguments

1.
$$(\lambda x \cdot *2 x) 4$$

 $(*2 4) = 8$

2.
$$(\lambda x \cdot + x \cdot x) \cdot 4$$
 $(+44) = 8$

ETA REDUCTION

 η -reduction allows you to convert between $\lambda x.(f\ x)$ and f whenever x is not a free variable in f. That is, $f=\lambda x(f\ x)$.

imagine that we have a simple function f x = g x. Both g and f take the same argument, x, and the function application function results in the same value (specified by the equality symbol). Since both f and g take the same argument and produce the same result, we can simplify the equation to just f = g. In lambda calculus, this simplification is called η -reduction.