Verteilte Systeme

...für C++ Programmierer

DHCP

bγ

Dr. Günter Kolousek

Überblick

- Dynamic Host Configuration Protocol
- Zweck: Host automatisch mit Konfigurationsparameter versorgen, z.B.:
 - ▶ IP Adresse
 - Subnetzmaske
 - Default-Router
 - DNS-Server
 - Proxy-Konfiguration
 - NTP-Server
 - SMTP-Server
 - ► IMAP und POP-Server

Eckpunkte

- ► Transportprotokoll: UDP
- Ports
 - ► Server: 67
 - Client: 68
- Zuordnungsarten (Server)
 - Manuelle Zuordnung (statisches DHCP)
 - Automatische Zuordnung: permanente Zuordnung aus einem Bereich von IP Adressen
 - ▶ Dynamische Zuordnung: temporäre Zuordnung \rightarrow Lease!

Anforderung

- Client schickt DHCPDISCOVER
 - ➤ Zieladresse 255.255.255.255 (oder spezifsche Subnetz-Broadcastadresse, wenn bekannt)
 - Quelladresse 0.0.0.0
- Server schickt DHCPOFFER
 - Zieladresse 255.255.255.255
 - außer Client fordert Unicast an, dann an MAC-Adresse und im DHCPDISCOVER-Request bereitgestellte Adresse

Anforderung – 2

- 1. Client wählt ein Angebot mit DHCPREQUEST aus
 - Zieladdresse 255.255.255.255
 - mit Serveridentifier
 - andere Server werten dies als Absage
- Server antwortet mit DHCPACK
 - Unicast!
 - beinhaltet Lease-Zeit
- 3. Client sollte Adresse mittels ARP überprüfen
 - wg. doppelter Vergabe durch mehrere Server
 - ▶ wenn belegt → DHCPDECLINE

Freigabe

- Ablauf der Lease
 - Nach Ablauf der Hälfte der Least-Zeit → Ansuchen um Verlängerung: DHCPREQUEST (Unicast)
 - Server
 - wird mit DHCPACK (oder DHCPNAK) antworten
 - antwortet nicht: neuer Versuch nach % der Lease-Zeit (per Broadcast)
 - antwortet überhaupt nicht: Neuanforderung!
- Vorzeitige Rückgabe durch Client: DHCPRELEASE

Interessante Aspekte

- ▶ mehrere Server → Redundanz
- Für jedes Teilnetz eigener Server? → DHCP Relay-Agent
 - leitet alle Anfragen per Unicast an Server weiter
- ▶ DHCP und DNS: Dynamic DNS, DDNS, DynDNS
 - gemäß RFC 2136: UDP, TCP und DNS Nachrichtenformat
 - ▶ Weitere Entwicklungen: RFC 2137, RFC 3007
 - DDNS über HTTP je Provider: für Home-Server,...

Sicherheit

- keine Authentifizierung, keine Geheimhaltung, keine Integrität!
- physischer Zugriff zum Netzwerk
 - Eigener DHCP Server...
 - umleiten auf fremde Server
 - \blacktriangleright DoS (Denial of Service) Angriff: falsche Informationen \rightarrow kein regulärer Zugriff
 - bösartiger DHCP Client...
 - wiederholte Anforderung von IP Adressen bis keine mehr vorhanden