CSCI5654 (Linear Programming, Fall 2013) Lecture-6

Today's Lecture

- 1. Initialization (overview).
- 2. Redo the proofs (less handweaving).
- 3. Degeneracy.
- 4. Cycling.
- 5. Ways to avoid cycling.

We solve two problems and discuss initialization Simplex for first 15 minutes.

Initialization

- 1. Formulate auxilliary problem.
- 2. Force x_0 to enter and variable with least -ve constant term to leave.
- 3. Iterate according to basic simplex.
 - \blacktriangleright Whenever x_0 can leave the basis, force it leave.
- 4. If optimal value is 0:
 - ightharpoonup Remove x_0 from the dictionary.
 - Replace original objective function.
- 5. If optimal value is < 0, declare solution INFEASIBLE.

Linear Programming Problem

LP in standard form:

maximize
$$\sum_{i} c_{i}x_{i}$$
s.t.
$$a_{11}x_{1} + \cdots + a_{1n}x_{n} \leq b_{1}$$

$$a_{21}x_{1} + \cdots + a_{2n}x_{n} \leq b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + \cdots + a_{mn}x_{n} \leq b_{m}$$

$$x_{1}, \dots, x_{n} \geq 0$$

Auxilliary Problem

Idea: Add new variable x_0 .

Modified Problem:

maximize
$$-x_0$$

s.t. $a_{11}x_1 + \cdots + a_{1n}x_n - x_0 \le b_1$
 $a_{21}x_1 + \cdots + a_{2n}x_n - x_0 \le b_2$
 \vdots
 $a_{m1}x_1 + \cdots + a_{mn}x_n - x_0 \le b_m$
 $x_0, x_1, \dots, x_n \ge 0$

Auxilliary Problem: Theorems

Theorem: The auxilliary LP problem:

- 1. Is always feasible.
- 2. Has an optimal solution that is ≤ 0 .
- 3. Optimal solution is 0 iff original LP is feasible.

Proof: Proofs follow from the following observations:

- 1. Choose arbitrary non-negative values for x_1, \ldots, x_n :
 - **Claim:** Can choose a value for x_0 that satisfies auxilliary LP constraints.
- 2. $x_0 \ge 0$ is a constraint and objective is $z = -x_0$. Therefore, $z \le 0$.
- 3. (x_1, \ldots, x_n) satisfies the original LP constraints iff $(x_0 = 0, x_1, \ldots, x_n)$ satisfies the auxilliary LP.

Lecture 6

Important fact about dictionaries #1

$$x_{j1} = b_1 - \sum_i a_{1i}x_i$$

$$x_{j2} = b_2 - \sum_i a_{2i}x_i$$

$$\vdots$$

$$\mathbf{x_{jr}} = \mathbf{b_r} - \sum_i \mathbf{a_{ri}x_i}$$

$$\vdots$$

$$z_{jm} = b_m - \sum_i a_{mi}x_i$$

$$z = c_0 - \sum_i c_ix_i$$

Current Basic Solution: $(x_1 = 0, ..., x_n = 0, x_{j_1} = b_1, ..., x_{j_m} = b_m).$

- ▶ For entering var. x_e , let $x_e = t$ be the maximum possible increase.
- If we set $x_e = t$ then in the <u>next dictionary</u> D', we have

$$x_{jr} = b_r - a_{re}t$$
, for $r = 1, \ldots, m$

Fact: Any variable x_{jr} s.t. $b_r - a_{re}t = 0$ is a candidate to leave the basis in D.

Lecture 6

Important fact about dictionaries #2

Take dictionary *D*:

$$x_{j1} = b_1 - \sum_i a_{1i}x_i$$

$$x_{j2} = b_2 - \sum_i a_{2i}x_i$$

$$\vdots$$

$$\mathbf{x_{jr}} = \mathbf{b_r} - \sum_i \mathbf{a_{ri}x_i}$$

$$\vdots$$

$$z_{jm} = b_m - \sum_i a_{mi}x_i$$

$$z = c_0 - \sum_i c_ix_i$$

Suppose we perform a pivoting step (x_i enters and some x_j leaves). We obtain a new dictionary D'.

 D^{\prime} is algebraically equivalent to D

Auxilliary Dictionary: Final State

If original LP is feasible, initialization phase LP ends with the following dictionary D:

$$x_{i_1} = \cdots \quad i_1 \neq 0$$

$$\vdots \quad \vdots \quad \vdots$$

$$x_{i_m} = \cdots \quad i_m \neq 0$$

$$w = -x_0$$

Proof:

- Final dictionary D has optimal value 0.
- Assume (for contradication's sake) that x_0 is a basic (LHS, dependent) variable in D.
- Let D' be the dictionary previous to D. Cleary w < 0 in D' (because it is not yet optimal). But $w = -x_0$. So $x_0 > 0$ in D'.
- Let x_e be the entering variable in D' and x_i be the leaving variable.
- Clearly, $x_0 = 0$ in D. Therefore x_0 was a candidate to leave in the previous dictionary D'.
- Rule for initialization: whenever x_0 was a candidate to leave then it has to leave.
- If x_0 were not independent var. in D, we have clearly violated the rule above.
- Therefore, x_0 must be independent (RHS, non-basic) variable in D.

Degeneracy

Recall: Basic Solution (associated with dictionary)

$$x_4 = 1$$
 $-2x_3$
 $x_5 = 3$ $-2x_1$ $+4x_2$ $-6x_3$
 $x_6 = 2$ $+x_1$ $-3x_2$ $-4x_3$
 $z = 2x_1$ $-x_2$ $+8x_3$

Q1: What solution is associated with this dictionary?

Q2: x_3 is the entering variable, what variable should leave?

Degeneracy

Definition: A dictionary is degenerate, iff one or more basic variables have the value 0 in the basic solution.

$$x_3 = .5$$
 $-.5x_4$
 $x_5 = -2x_1 + 4x_2 + 3x_4$
 $x_6 = x_1 -3x_2 + 2x_4$
 $z = 4 + 2x_1 -x_2 -4x_4$

Solution: $(x_1 = 0, x_2 = 0, x_4 = 0; x_3 = .5, x_5 = 0, x_6 = 0).$

Q: If x_1 is the entering variable, what is the leaving variable?

Degeneracy

Prove: If we move from dictionary D to D' and the objective function value does not change then D, D' are degenerate dictionaries.

Proof:

- ▶ Let $(x_1, ..., x_n)$ be the value of the basic solution associated with D.
- ightharpoonup Let x_e be the entering variable we choose.
- ▶ Assumed that objective did not increase from $D \rightarrow D'$.
- ► Therefore, increase to x_e is limited to zero by some basic variable x_r (draw a figure).
- ▶ Claim that $x_r = 0$ in D and x_i (basic variable in D') will be zero.

Cycling

Cycling: Simplex goes from a dictionary *D* back to itself.

$$D \rightarrow D_1 \rightarrow D_2 \cdots D_m \rightarrow D$$
.

Cycling can happen: Page 31,32 of Chvátal.

Prove: Dictionaries D, D_1, \ldots, D_m are all degenerate.

Termination of Simplex

Observation: If a Simplex execution does not terminate,

it must **cycle**. This follows from the following theorem:

Theorem: The number of possible dictionaries for a given problem is finite.

Proof: We will prove that if two dictionaries D, D' have the same set of basic variables x_1, \ldots, x_m , then they must be <u>identical</u>.

Given a dictionary with m slack variables and n decision variables, upper

bound on number of dictionaries is $\begin{pmatrix} n+m \\ m \end{pmatrix}$

Avoiding Cycling: Bland's Rule

Rank Variables: $x_1 \prec x_2 \prec \cdots \prec x_{n+m}$. Assume <u>index</u> of variable x_i is i. **Bland's Rule:** For each dictionary D:

- 1. If x_{e_1}, \ldots, x_{e_k} are the possible entering variables, choose the one with the least subscript index.
- 2. If x_{r_1}, \ldots, x_{r_j} are the possible leaving variables, then choose the one with the least subscript index.

If we choose entering, leaving variables using Bland's rule, then Simplex will not cycle.

Thus far...

- Degeneracy.
- Cycling.
- ► Termination through Bland's rule.

Complexity

Consider instance with n variables, m constraints.

Upper bound on number of iterations: $\binom{n+m}{m}$.

Q: What does it take to achieve this upper bound?

Klee-Minty Examples

max.
$$10^{n-1}x_1 + 10^{n-2}x_2 + \ldots + 10x_{n-1} + 1x_n$$

s.t. $x_1 \leq 1$
 $20x_1 + x_2 \leq 100$
 $200x_1 + 20x_2 + x_3 \leq 100^2$
 \ldots
 $2(\sum_{j=1}^{i-1} 10^{i-j}x_j) + x_i \leq 100^{i-1}$
 \ldots
 $x_1, \ldots, x_n \geq 0$

Theorem: If we follow the largest coefficient rule, then simplex requires $2^n - 1$ iterations to converge.

Average Case Complexity

Result #1: Many random problem instances, generated using various distribution. Expected complexity is polynomial time.

Result #2 [Spielman+Teng, 2001]: If we add random Gaussian noise to the coefficients of a problem, the expected running time becomes polynomial in the size of the initial problem.

max.
$$\vec{c} \cdot \vec{x}$$
 s.t. $(A + \underbrace{G(0,\sigma)}_{\text{random matrix}})\vec{x} \leq \vec{b} + \vec{g}(0,\sigma)$

Informally: If we perturb each hard instance enough, we are <u>very likely</u> to find an easy instance of Simplex.

Next Lecture

- Duality
- Complementary Slackness