РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ им. Патриса Лулумбы

Факультет физико-математических и естественных наук

Кафедра теории вероятности и кибербезопасности

ОТЧЕТ

ПО ЛАБОРАТОРНОЙ РАБОТЕ №8

дисциплина: Математическое моделирование

Студент: Кармацкий Никита Сергеевич

Номер студ.билета: 1032210091

Группа: НФИбд-01-21

Москва

2024 г.

Цель работы:

Изучить модель конкуренции двух фирм. Применить их на практике для решения задания лабораторной работы

Теоретическое введение. Математическая модель.

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия
- т длительность производственного цикла
- р рыночная цена товара
- \widetilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции
- δ доля оборотных средств, идущая на покрытие переменных издержек
- k постоянные издержки, которые не зависят от количества выпускаемой продукции

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k\frac{p}{S} = q(1 - \frac{p}{p_{cr}})$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{cr}})\right)$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр у зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} (\frac{p}{p_{cr}} - 1) - M^2 (\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr}}{Nq} - k$$

Это уравнение имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}}\tilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq\frac{\tau}{\delta}(1 - \frac{\widetilde{p}}{p_{cr}})\widetilde{p}, \widetilde{M_{-}} = k\widetilde{p}\frac{\tau}{\delta(p_{cr} - \widetilde{p})}$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M_{-}} неустойчиво, так, что при $M < \widetilde{M}_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Задание

Вариант 32

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}$$

$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}$$

$$b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}$$

$$c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}$$

$$c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

также введена нормировка $t=c_1\Theta$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках

рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00033) M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

$$M_0^1 = 3.3 M_0^2 = 2.2$$

 $p_{cr} = 26 N = 33 q = 1$
 $\tau_1 = 25 \tau_2 = 14$
 $\tilde{p}_1 = 5.5 \, \tilde{p}_2 = 11$

Задачи:

- 1. Изучить модель конкуренции двух фирм
- 2. Построить графики изменения оборотных средств двух фирм для обоих случаев

Основные этапы выполнения работы

Решение с помощью кода

1. Julia

Листинг програмы для первого случая на Julia:

```
using Plots
using DifferentialEquations

p_cr = 26
tau1 = 25
p1 = 5.5
```

```
tau2 = 14
p2 = 11.0
N = 33
q = 1
a1 = p_cr / (tau1 * tau1 * p1 * p1 * N * q)
a2 = p_{cr} / (tau2 * tau2 * p2 * p2 * N *q)
b = p_cr / (tau1 * tau1 * tau2 * tau2 * p1 * p1 * p2 * p2 * N * q)
c1 = (p_cr - p1) / (tau1 * p1)
c2 = (p_cr - p2) / (tau2 * p2)
function ode_fn(du, u, p, t)
  M1, M2 = u
  du[1] = u[1] - b / c1*u[1] * u[2] - a1 / c1*u[1] * u[1]
  du[2] = c2 / c1*u[2] - b / c1*u[1] * u[2] - a2 / c1*u[2] * u[2]
end
v0 = [3.3, 2.2]
tspan = (0.0, 30.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
M1 = [u[1] \text{ for } u \text{ in sol.u}]
M2 = [u[2] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt = plot(
           dpi = 300,
           legend = true)
plot!(
      plt,
      Τ,
      label = "Оборотные средства фирмы 1",
      color = :blue)
plot!(
      plt,
      Т,
      M2,
      label = "Оборотные средства фирмы 2",
      color = :green)
savefig(plt, "lab08_1.png")
```


Рис.1 График первого случая на Julia

Листинг программы для второго случая на Julia:

```
using Plots
using DifferentialEquations
p_cr = 26
tau1 = 25
p1 = 5.5
tau2 = 14
p2 = 11.0
N = 33
q = 1
a1 = p_cr / (tau1 * tau1 * p1 * p1 * N * q)
a2 = p_cr / (tau2 * tau2 * p2 * p2 * N *q)
b = p_cr / (tau1 * tau1 * tau2 * tau2 * p1 * p1 * p2 * p2 * N * q)
c1 = (p_cr - p1) / (tau1 * p1)
c2 = (p_cr - p2) / (tau2 * p2)
function ode_fn(du, u, p, t)
  M1, M2 = u
  du[1] = u[1] - b / c1*u[1] * u[2] - a1 / c1*u[1] * u[1]
  du[2] = c2 / c1*u[2] - (b / c1 + 0.00033)*u[1] * u[2] - a2 / c1*u[2] *
u[2]
```

```
end
v0 = [3.3, 2.2]
tspan = (0.0, 30.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
M1 = [u[1] \text{ for } u \text{ in sol.u}]
M2 = [u[2] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt = plot(
            dpi = 300,
            legend = true)
plot!(
      plt,
      Τ,
      M1,
      label = "Оборотные средства фирмы 1",
      color = :blue)
plot!(
      plt,
      Τ,
      M2,
      label = "Оборотные средства фирмы 2",
      color = :green)
savefig(plt, "lab08_2.png")
```


Рис.2 График 2 на Julia

2. OpenModelica

Листинг программы для первого случая на OpenModelica

```
model Lab8_1
  Real p_{cr} = 26;
  Real tau1 = 25;
  Real p1 = 5.5;
  Real tau2 = 14;
  Real p2 = 11.0;
  Real N = 33;
  Real q = 1;
  Real a1 = p_cr / (tau1 * tau1 * p1 * p1 * N * q);
  Real a2 = p_cr / (tau2 * tau2 * p2 * p2 * N * q);
  Real b = p_cr / (tau1 * tau1 * tau2 * tau2 * p1 * p1 * p2 * p2 * N * q);
  Real c1 = (p_cr - p1) / (tau1 * p1);
  Real c2 = (p_cr - p2) / (tau2 * p2);
  Real M1;
  Real M2;
initial equation
```

```
M1 = 3.3;
M2 = 2.2;
equation
  der(M1) = M1 - b/c1*M1*M2 - a1/c1*M1*M1;
  der(M2) = c2/c1*M2 - b/c1*M1*M2 - a2/c1*M2*M2;
  annotation(experiment(StartTime = 0, StopTime = 30, Interval = 0.05));
end Lab8_1;
```


Рис.3 График первого случая на OpenModelica

Листнг программы для второго случая для OpenModelica

```
model Lab8_2
Real p_{cr} = 26;
  Real tau1 = 25;
  Real p1 = 5.5;
  Real tau2 = 14;
  Real p2 = 11.0;
  Real N = 33;
  Real q = 1;
  Real a1 = p_cr / (tau1 * tau1 * p1 * p1 * N * q);
  Real a2 = p_cr / (tau2 * tau2 * p2 * p2 * N * q);
  Real b = p_cr / (tau1 * tau1 * tau2 * tau2 * p1 * p1 * p2 * p2 * N * q);
  Real c1 = (p_cr - p1) / (tau1 * p1);
  Real c2 = (p_cr - p2) / (tau2 * p2);
  Real M1;
  Real M2;
initial equation
 M1 = 3.3;
 M2 = 2.2;
equation
  der(M1) = M1 - b/c1*M1*M2 - a1/c1*M1*M1;
  der(M2) = c2/c1*M2 - (b/c1 + 0.00033)*M1*M2 - a2/c1*M2*M2;
```

annotation(experiment(StartTime = 0, StopTime = 30, Interval = 0.05));
end Lab8_2;

Рис.6 График второго случая на OpenModelica

Анализ полученных результатов. Сравнение языков.

В итоге проделанной работы на языках Julia и Open Modelica мы построили графики изменения обортных средств для двух фирм со случаями, когда конкурентная борьба ведется только рыночными методами и когда, помимо экэномического фактора влияния, используется еще и социальнопсихологичнские факторы.

Построение модели на языке OpenModelica занимает значительно меньше строк и времени, чем аналогичное построение на языке Julia.

Вывод:

В ходе выполнения лабораторной работы была изучена модель конкуренции двух фирм и в дальнейшем построена модель на языках Julia и Open Modelica.

Список литературы. Библиография

• Документация по Julia: https://docs.julialang.org/en/v1/

- Документация по OpenModelica: https://openmodelica.org/
- Решение дифференциальных уравнений: https://www.wolframalpha.com/
- Мальтузианская модель роста: https://www.stolaf.edu//people/mckelvey/envision.dir/malthus.html
- Математические модели конкурентной среды: https://dspace.spbu.ru/bitstream/11701/12019/1/Gorynya_2018.pdf
- Разработка математических моделей конкурентных процессов:
 https://www.academia.edu/9284004/
 Наумейко_РАЗРАБОТКА_МАТЕМАТИЧЕСКОЙ_МОДЕЛИ_КОНКУРЕНТНЫХ_
 ПРОЦЕССОВ