Рубежный контроль №2

Мирсонов Вячеслав Александрович

Группа РТ5-61Б

Вариант 9

Постановка задачи

Условие

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Методы:

Метод №1: "Дерево решений". Метод №2: "Градиентный бустинг".

Набор данных: Houses to rent in Brazil.

https://www.kaggle.com/rubenssjr/brasilian-houses-to-rent

Импорт библиотек:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Загрузка и первичная подготовка данных:

```
# Загрузка данных
data = pd.read_csv("houses_to_rent_v2.csv")
data.shape

Out[38]:

(499, 13)
```

In [38]:

data

	city	area	rooms	bathroom	parking spaces	floor	animal	furniture	hoa (R\$)	rent amount (R\$)	property tax (R\$)	fire insurance (R\$)	Out[39]: total (R\$)
0	São Paulo	70	2	1	1	7	acept	furnished	2065	3300	211	42	5618
1	São Paulo	320	4	4	0	20	acept	not furnished	1200	4960	1750	63	7973
2	Porto Alegre	80	1	1	1	6	acept	not furnished	1000	2800	0	41	3841
3	Porto Alegre	51	2	1	0	2	acept	not furnished	270	1112	22	17	1421
4	São Paulo	25	1	1	0	1	not acept	not furnished	0	800	25	11	836
494	São Paulo	120	3	3	2	9	acept	furnished	1200	3500	109	45	4854
495	Rio de Janeiro	90	2	2	0	5	acept	not furnished	830	2500	84	33	3447
496	Porto Alegre	125	4	2	0	7	acept	not furnished	1006	1632	150	14	2802
497	São Paulo	200	3	4	3	6	acept	furnished	1800	5058	1200	65	8123
498	São Paulo	190	3	3	2	5	acept	not furnished	1800	3260	292	42	5394
499 rows × 13 columns													In [41]:
arra				rto Alegre		de Jai	neiro',	'Campina	as',				Out[41]:
# CI.], dtype=o	bject)								In [42]:
	a.dtypes												Out[42]:
city object area int64 rooms int64 bathroom int64 parking spaces int64 floor int64 animal object furniture object hoa (R\$) int64 rent amount (R\$) int64 property tax (R\$) int64 fire insurance (R\$) int64 total (R\$) int64 dtype: object													

Обработка пропусков в данных:

dtype: object

проверим, есть ли пропущенные значения data.isnull().sum()

In [43]:

```
Out[43]:
city
                      0
                     0
area
rooms
bathroom
                     0
parking spaces
                     Ω
floor
animal
                     0
furniture
hoa (R$)
rent amount (R$)
                     0
property tax (R$)
                     0
fire insurance (R$)
                     0
total (R$)
                     0
dtype: int64
Пропущенных данных нет, можем присутпать к масштабированию данных
Масштабирование данных:
MinMax масштабирование:
\ x_{\text{HOBый}} = \frac{x_{\text{CTарый}} - \min(X)}{\max(X) - \min(X)} 
                                                                                                    In [45]:
from sklearn.preprocessing import MinMaxScaler
                                                                                                    In [48]:
# список колонок с числовыми данными
# Гистограмма по признакам
for col in data[num_cols]:
    plt.hist(data[col], 50)
    plt.xlabel(col)
    plt.show()
80
60
40
20
 0
    ò
          200
                         600
                                 800
                                        1000
140
120
100
 80
 60
 40
 20
                      rooms
200
175
150
125
100
 75
```


Кодирование категориальных признаков:

```
# Выберем категориальные колонки
# Цикл по колонкам датасета
for col in data.columns:
    dt = str(data[col].dtype)
    if dt='object':
        temp_un = data[col].nunique()
        print('Колонка {}. Тип данных {}. Количество уникальных значений {}.'.format(col, dt, temp_un))

Колонка city. Тип данных object. Количество уникальных значений 5.
Колонка animal. Тип данных object. Количество уникальных значений 2.
Колонка furniture. Тип данных object. Количество уникальных значений 2.
```

In [51]:

In [52]:

Кодирование категорий наборами бинарных значений - one-hot encoding

```
cat_cols = ['city', 'animal', 'furniture']
one_hot = pd.get_dummies(data[cat_cols].astype(str))
one_hot.head()
```

	city_Belo Horizonte	city_Campinas	city_Porto Alegre	city_Rio de Janeiro	city_São Paulo	animal_acept	animal_not acept	furniture_furnished	furniture_not furnished	
0	0	0	0	0	1	1	0	1	0	
1	0	0	0	0	1	1	0	0	1	
2	0	0	1	0	0	1	0	0	1	
3	0	0	1	0	0	1	0	0	1	
4	0	0	0	0	1	0	1	0	1	

In [53]:

Замена исходных категориальных колонок наборами бинарных значений data = data.join(one_hot)

In [54]:

первые 5 строк получившегося набора данных data.head()

data.drop(columns=cat cols, inplace=True)

Out[54]:

	area	rooms	bathroom	parking spaces	floor	hoa (R\$)	rent amount (R\$)	property tax (R\$)	fire insurance (R\$)	total (R\$)	city_Belo Horizonte	city_Campinas	city_Porto Alegre	city_Rio de Janeiro
0	0.055894	0.142857	0.000	0.125	0.259259	0.001849	0.141388	0.022211	0.141700	0.004473	0	0	0	C
1	0.309959	0.428571	0.375	0.000	0.740741	0.001074	0.226735	0.184211	0.226721	0.006577	0	0	0	C
2	0.066057	0.000000	0.000	0.125	0.222222	0.000895	0.115681	0.000000	0.137652	0.002886	0	0	1	C
3	0.036585	0.142857	0.000	0.000	0.074074	0.000242	0.028895	0.002316	0.040486	0.000724	0	0	1	C
4	0.010163	0.000000	0.000	0.000	0.037037	0.000000	0.012853	0.002632	0.016194	0.000201	0	0	0	C
4	1													F

Построение моделей:

Разделение выборки на обучающую и тестовую

In [55]:

from sklearn.model_selection import train_test_split
data_train, data_test, data_y_train, data_y_test = train_test_split(data[data.columns.drop('total (R\$)')], dat

Модель "Дерево решений"

In [56]:

from sklearn.tree import DecisionTreeRegressor
dtc = DecisionTreeRegressor(random_state=1).fit(data_train, data_y_train)
data test predicted dtc = dtc.predict(data test)

Модель "Градиентный бустинг"

In [57]:

from sklearn.ensemble import GradientBoostingRegressor

gboostreg = GradientBoostingRegressor(random_state=10).fit(data_train, data_y_train)
gboostreg_predict = gboostreg.predict(data_test)

Оценка качества моделей:

В качестве метрик для оценки качества моделей будем использовать Mean squared error (средняя квадратичная ошибка), как наиболее часто используемую метрику для оценки качества регрессии, и метрику \$R^2\$ (коэффициент детерминации), потому что эта метрика является нормированной.

In [58]:

from sklearn.metrics import mean_squared_error, r2_score

Mean squared error - средняя квадратичная ошибка

print('Метрика MSE:\nДерево решений: {}\nГрадиентный бустинг: {}'.format(mean_squared_error(data_y_test, data

Метрика MSE:

Дерево решений: 4.009125408728235e-07 Градиентный бустинг: 6.742776208219548e-07

In [60]:

print('Meтрика R\u00B2:\nДерево решений: {}\nГрадиентный бустинг: {}'.format(r2_score(data_y_test, data_test_и

Метрика R^2 :

Дерево решений: 0.974242110132498 Градиентный бустинг: 0.9566789089225258

Выводы о качестве построенных моделей:

Исходя из оценки качества построенных моделей, можно увидеть, что модель "Дерево решений" лучше справляется с задачей по сравнению с моделью "Градиентный бустинг", что может свидетельствовать о переобучении модели "Градиентный бустинг".