Problem 5 (Resnick, pg. 63 Problem 1) Let Ω be a nonempty set, and let \mathcal{F}_0 be the collection of all subsets such that either A or A^c is finite.

Define, for each $A \in \mathcal{F}_0$, the set function \mathbb{P} , where

$$\mathbb{P}(A) = \left\{ \begin{array}{ll} 0, & \text{if } A \text{ is finite;} \\ 1, & \text{if } A^c \text{ is finite.} \end{array} \right.$$

- (a) If Ω is countably infinite, show \mathbb{P} is additive on \mathcal{F}_0 , but not countably additive.
- (b) If Ω is uncountable, show \mathbb{P} is countably additive on \mathcal{F}_0 .

Proof.

Let $\{A_k\}_{k>1} \subset \mathcal{F}_0$ be pairwise disjoint.

We claim there is at most one A_k in $\{A_k\}_{k=1}^{\infty}$ satisfying that A_k^c is finite.

Suppose there are disjoint sets A_k and A_j satisfying that both of A_k^c and A_j^c are finite.

Then $A_k \cap A_j = \emptyset$ and

$$\mathbb{P}(A_k \cap A_j) = 0. \tag{1}$$

We also have $(A_k)^c \cup (A_j)^c = (A_k \cap A_j)^c$ is finite by assumption.

So $\mathbb{P}(A_k \cap A_i) = 1$, which is contradicted by (1).

Thus, there is at most one A_k in $\{A_k\}_{k=1}^n$ satisfying that A_k^c is finite.

- (a) (1) Consider finite subsets $\{A_k\}_{k=1}^n$ of \mathcal{F}_0 .
 - (i) If A_k is finite for $1 \le k \le n$, $\bigcup_{k=1}^n A_k$ is finite. Then $\mathbb{P}(A_k) = 0$, for $1 \le k \le n$ and $\mathbb{P}(\bigcup_{k=1}^n A_k) = 0$. So $\sum_{k=1}^{n} \mathbb{P}(A_k) = 0 = \mathbb{P}(\bigcup_{k=1}^{n} A_k)$.
 - (ii) Assume there exists the unique $i \in \mathbb{N}, 1 \leq i \leq n$ such that A_i^c is finite. Then $\mathbb{P}(A_i) = 1$ and $\mathbb{P}(A_j) = 0$ for $j \neq i, 1 \leq j \leq n$.

So $\sum_{i=1}^{n} \mathbb{P}(A_i) = 1$.

Morevoer, $(\bigcup_{k=1}^n A_k)^c = \bigcap_{k=1}^n A_k^c \subset A_i^c$. Then $(\bigcup_{k=1}^n A_k)^c$ is finite, and $\mathbb{P}(\bigcup_{k=1}^n A_k) = 1 = \sum_{i=1}^n \mathbb{P}(A_i)$.

Thus, \mathbb{P} is additive on \mathcal{F}_0 when Ω is countably infinite.

(2) Consider countable many subsets $\{A_k\}_{k\geq 1}$ of \mathcal{F}_0 .

If A_k is finite for all $k \geq 1$, then $\mathbb{P}(A_k) = 0$.

So
$$\sum_{k=1}^{\infty} \mathbb{P}(A_k) = 0$$
.

However, $(\bigcup_{k=1}^{\infty} A_k)^c$ can be finite.

For example, let $\Omega = \mathbb{N}$ and $A_k = k$ for $k \geq 1$, then A_k 's are disjoint, and $(\bigcup_{k=1}^{\infty} A_k)^c = 0$ $(\bigcup_{k=1}^{\infty} k)^c = (\mathbb{N})^c = \emptyset$. So $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}_o$, but $\mathbb{P}(\bigcup_{k=1}^{\infty} A_k) = 1 \neq \sum_{k=1}^{\infty} \mathbb{P}(A_k)$. Thus, \mathbb{P} is not countably additive when Ω is countably infinite.

- (b) Just consider countable many subsets $\{A_k\}_{k\geq 1}$ of \mathcal{F}_0 .
 - (1) If A_k is finite for all $k \geq 1$, $\bigcup_{k=1}^{\infty} A_k$ is countably infinite.

Then
$$\mathbb{P}(A_k) = 0, k \geq 1$$
.

So
$$\sum_{k=1}^{n} \mathbb{P}(A_k) = 0$$
.

Besides, $(\bigcup_{k=1}^{\infty} A_k)^c = \Omega \setminus (\bigcup_{k=1}^{\infty} A_k)$ is uncountably infinite since Ω is uncountable.

So both $\bigcup_{k=1}^{\infty} A_k$ and $(\bigcup_{k=1}^{\infty} A_k)$ are infinite.

As a result, when A_k is finite for all $k \geq 1$, $\bigcup_{k=1}^{\infty} A_k \notin \mathcal{F}_0$.

(2) Assume there exists the unique $i \in \mathbb{N}, i \geq 1$ such that A_i^c is finite. Then $\mathbb{P}(A_i) = 1$ and $\mathbb{P}(A_j) = 0$ for $j \neq i, j \geq 1$. So $\sum_{i=1}^{\infty} \mathbb{P}(A_i) = 1$. Morevoer, $(\bigcup_{k=1}^{\infty} A_k)^c = \bigcap_{k=1}^{\infty} A_k^c \subset A_i^c$. Then $(\bigcup_{k=1}^{\infty} A_k)^c$ is finite, and $\mathbb{P}(\bigcup_{k=1}^{\infty} A_k) = 1 = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

Thus, \mathbb{P} is countably additive on \mathcal{F}_0 when Ω is uncountable.