PSZT – Podstawy Sztucznej Inteligencji

Sprawozdanie z projektu pierwszego

1. Treść zadania

Naszym zadaniem było napisanie algorytmu genetycznego znajdującego optimum funkcji Ackley'a oraz porównanie działania trzech różnych algorytmów selekcji.

2. Interpretacja i założenia

Celem naszego projektu, oprócz napisania algorytmu genetycznego, jest zbadanie jego działania dla różnych parametrów takich jak: wymiar, liczebność populacji, ilość pokoleń, siła mutacji. Dodatkowo za cel postawiliśmy sobie porównać czas wykonania algorytmów dla różnych selekcji.

Wszelkie pomiary oraz wykresy, jakie znajdują się w naszej dokumentacji, to wartości uśrednione z 51 powtórzeń wykonania algorytmu genetycznego dla tych samych parametrów.

We wszystkich przeprowadzonych badaniach prawdopodobieństwo mutacji jest równe 0.2, zmienialiśmy jedynie jej siłę.

3. Realizacja

Stworzyliśmy algorytm, który w zależności od podanej przez standardowe wejście wartości, posługuje się odpowiednim algorytmem selekcji. Zastosowaliśmy selekcję ruletkową, turniejową oraz prosty algorytm, który wymyśleliśmy sami. Polega on na wyborze najlepszej części populacji oraz sklonowaniu jej (możliwy jest wybór jaki ułamek populacji zostanie sklonowany – przykładowo dla liczby 2 zostanie sklonowane najlepsze 50% populacji, dla liczby 3 – 33% populacji itd.). Wszystkie algorytmy są w całości zaimplementowane przez nas.

Posłużyliśmy się krzyżowaniem dwupunktowym.

Podczas mutacji liczone jest prawdopodobieństwo jej wystąpienia dla każdego genu. W przypadku wybrania danego genu, jego nowa wartość wyznaczana jest za pomocą rozkładu normalnego.

Program działa na systemach Windows oraz Linux.

Link do repozytorium: https://github.com/radamp11/GeneticAlgorithm

4. Podział zadań

Postanowiliśmy podzielić się opracowywaniem metod klasy Algorithm z pliku algorithm.cpp. Jakub zrealizował odpowiednio:

- Mutację
- Selekcję ruletkową
- Inicjalizację
- Zapis do pliku

Adam:

- Selekcję turniejową
- Selekcję bestFraction
- Krzyżowanie

Pozostałe części pracy wykonaliśmy wspólnie. Staraliśmy się zadbać o poprawność i przejrzystość kodu.

5. Tabele wyników

A. Wpływ wielowymiarowości problemu na dokładność. Im algorytm jest bliższy osiągniecia optimum globalnego, tym wartość funkcji celu jest bliższa "1". Stałe wartości: populacja = 50, sigma mutacji = 5, liczba generacji = 100

Selekcja Ruletkowa

Wymiar	Min	Max	Średnia	Odchylenie	Mediana
2	0.822079	0.997985	0.920312	0.059244207	0.921299
4	0.794493	0.981297	0.8619311	0.045911745	0.85073
10	0.552539	0.786	0.6756775	0.05685477	0.684525

Selekcja Turniejowa

Wymiar	Min	Max	Średnia	Odchylenie	Mediana
2	0.892132	0.998854	0.97485014	0.02345212	0.98244
4	0.903059	0.990861	0.95683535	0.02423385	0.959651
10	0.81343	0.94152	0.87245216	0.02608155	0.869558

Nasza selekcja

Wymiar	Min	Max	Średnia	Odchylenie	Mediana
2	0.947206	0.999252	0.98790967	0.01039666	0.99063
4	0.902874	0.996092	0.97182241	0.0182174	0.974524
10	0.846065	0.938193	0.89071943	0.02334293	0.893289

Krótki wniosek: im większy jest wymiar problemu, tym trudniej jest algorytmom znaleźć jego optimum.

B. Teraz badamy wpływ siły mutacji.

Stałe wartości: populacja = 50, wymiar = 4, liczba generacji = 100

Selekcja Ruletkowa

MUTACJA (sigma)	Min	Max	Średnia	Odchylenie	Mediana
0.3	0.323113	0.899867	0.64765298	0.1237536	0.647956
2	0.797345	0.966624	0.87195424	0.03880882	0.862557
5	0.744639	0.915895	0.84936661	0.0361098	0.855688
8	0.72658	0.949786	0.84329747	0.04688718	0.843792

Selekcja Turniejowa

MUTACJA (sigma)	Min	Max	Średnia	Odchylenie	Mediana
0.3	0.402684	0.998638	0.75322806	0.18064298	0.773502
2	0.959263	0.997873	0.98693873	0.0081768	0.987584
5	0.909361	0.996925	0.95920957	0.02211154	0.964362
8	0.863969	0.991556	0.93107055	0.03105407	0.925769

Nasza selekcja

MUTACJA (sigma)	Min	Max	Średnia	Odchylenie	Mediana
0.3	0.551286	0.999913	0.84568629	0.13803985	0.883736
2	0.978897	0.998343	0.99202016	0.00504255	0.99377
5	0.916411	0.995144	0.97260782	0.01774592	0.976413
8	0.884391	0.994564	0.95445545	0.0261884	0.961143

Krótki wniosek: Mniejsza siła mutacji dawała lepsze wyniki maksymalne (poza selekcją ruletkową), lecz za mała sprawiała, że algorytm utykał w minimach lokalnych co odkładało się na pogorszeniu jakości. Biorąc pod uwagę średnie wyniki najlepiej wypadła mutacja o sile sigma = 2.

C. Wpływ ilości osobników w populacji.

Stałe wartości: siła mutacji = 5, wymiar = 4, liczba generacji = 100

Selekcja Ruletkowa

OSOBNIKI	Min	Max	Średnia	Odchylenie	Mediana
25	0.721799	0.991056	0.80576575	0.05030106	0.799727
75	0.792184	0.968202	0.87464657	0.04398693	0.870901
200	0.852824	0.979544	0.92686429	0.03366389	0.92744

Selekcja Turniejowa

OSOBNIKI	Min	Max	Średnia	Odchylenie	Mediana
25	0.835658	0.985152	0.90830324	0.04008244	0.899351
75	0.923457	0.998764	0.9715359	0.01492554	0.973572
200	0.974006	0.998393	0.99249882	0.00517461	0.993734

Nasza selekcja

OSOBNIKI	Min	Max	Średnia	Odchylenie	Mediana
25	0.859859	0.985719	0.93360633	0.03239777	0.943456
75	0.952379	0.997026	0.98190306	0.01122138	0.985947
200	0.982461	0.999231	0.99546847	0.00299504	0.99625

Krótki wniosek: Zwiększenie liczby osobników w populacji korzystnie przekłada się na dokładność znalezionego optimum, lecz w zamian przedłuża czas działania algorytmu.

D. Wpływ liczby generacji

Stałe wartości: populacja = 50, siła mutacji = 5, wymiar = 4

Selekcja Ruletkowa

GENERACJE	Min	Max	Średnia	Odchylenie	Mediana
50	0.676922	0.893619	0.80248937	0.05394887	0.815934
200	0.786567	0.962482	0.86711259	0.03775734	0.860335
1000	0.813673	0.987166	0.91858396	0.04809134	0.927382

Selekcja Turniejowa

GENERACJE	Min	Max	Średnia	Odchylenie	Mediana
50	0.838015	0.973027	0.902443	0.03281104	0.905192
200	0.952556	0.997551	0.98231635	0.01028967	0.985087
1000	0.991846	0.999466	0.99771067	0.00137703	0.997869

Nasza selekcja

GENERACJE	Min	Max	Średnia	Odchylenie	Mediana
50	0.851461	0.986475	0.93551473	0.03337148	0.94086
200	0.967898	0.998201	0.98821014	0.0065	0.988817
1000	0.996458	0.999629	0.99859845	0.00069368	0.998722

Krótki wniosek: Zwiększenie liczby generacji korzystnie przekłada się na dokładność znalezionego optimum, lecz w zamian przedłuża czas działania algorytmu.

E. Badanie czasu działania algorytmu w zależności od zastosowanej selekcji. Stałe wartości: populacja = 50, liczba generacji = 2000, wymiar = 4,

Czas wykonania	Selekcja
89.59 sec	ruletkowa
178.41 sec	turniejowa
82.75 sec	nasza selekcja

Testy wykonane w Visual Studio 2019 w systemie Windows 10.

6. Wnioski

We wszystkich wymiarach najlepiej się spisał nasz algorytm selekcji. Ponadto (na podstawie wykresów w oddzielnym pliku) widać, że najszybciej dąży on do wartości pożądanej. Także istotnym wnioskiem jest to, że dokładność znalezionego optimum zależy głównie od siły mutacji. Krzyżowanie nie wprowadza aż tak zauważalnych efektów.

Wykresy załączyliśmy oddzielnie w celu zwiększenia czytelności. Ich celem jest zobrazowanie, w jaki sposób wygląda dążenie do optimum dla różnych algorytmów selekcji oraz wymiarowości. Zauważamy, że nasz algorytm selekcji dąży do optimum najszybciej.

Przeprowadziliśmy również test, który miał na celu sprawdzenie znaczenia początkowej populacji. Gdy zainicjowane wartości wszystkich genów nie różniły się zbytnio (inicjacja w przedziale wartości 20 – 25) wszystkie nasze algorytmy utykały w minimach lokalnych nawet dla sił mutacji przewyższających "sigma = 1.5". Jak można odczytać z tabel, przy równomiernym rozsianiu osobników, nawet "sigma = 0.3" dawała w pewnych przypadkach zadawalające wyniki. Pokazuje to znaczący wpływ sposobu inicjacji populacji na końcowy efekt.