Задание №I Простейшие функции

I. Общая постановка задачи

На языке Standard ML опишите реализацию функции f1, получающую вещественнозначные параметры и возвращающую необходимую величину. Количество параметров и необходимая величина определяются заданием в соответствии с Вашим вариантом.

При описании функции f1 должны быть явно прописаны типы аргументов и тип результата. Сигнатура функции f1 должна строго соответствовать сигнатуре, указанной в задании.

В функции не должно определяться имён, используемых только один раз. Если с именем связано значение некоторого выражения, то это имя должно использоваться не менее двух раз.

В функции ни одно выражение не должно вычисляться дважды. В случае необходимости такого вычисления нужно связать значение вычисленного выражения с некоторым локальным именем для дальнейшего использования.

Реализация функции должна предполагать, что в ходе вызова параметры заданы корректно (не следует добавлять реализацию «защиты от дурака»).

В файле с программой приведите несколько вызовов функции f1, демонстрирующих корректную работу в различных ситуациях.

Файлу с программой дайте имя task1-NN.sml, где вместо NN — номер вашего варианта. Полученный файл загрузите на портал в качестве решения задания.

Вспомогательные функции и значения (ели они необходимы для решения) должны определяться только в качестве локальных. Результат загрузки файла с решением в интерпретатор — только определение функции f1.

Решением каждой задачи должна быть функция с указанным именем и возвращающая значение в той форме, в которой спрашивается в задании. Прежде чем отправить решение на проверку проводите сравнение сигнатуры написанной вами функции с соответствующей сигнатурой из задания.

Не следует делать предположений насчёт задания, не сформулированных явно в условии. Если возникают сомнения — задайте вопрос на форуме «Язык Standard ML».

2. Пример выполнения задания

0. Дана сторона a квадрата. Функция должна выдавать периметр P=4a квадрата.

Решение: Содержимое файла task1-00.sml:

```
fun f1 (x : real) : real =
    4.0 * x

val test1 = f1 3.5 (* 14.0 *)
val test2 = f1 5.0 (* 20.0 *)
val test3 = f1 1.0 (* 4.0 *)
```

Текст примера (файл task1-00.sml) можно загрузить с портала.

3. Необходимый минимум

Для выполнения работы потребуются сведения о следующих функциях, операциях и конструкциях:

- конструкции fun и val для определения функций и переменных
- конструкция let...in...end
- арифметические операции (функции) +, -, *, /
- значение числа π Math.pi
- функция вычисления абсолютного значения abs
- функция вычисления квадратного корня вещественного числа Math.sqrt

Нельзя использовать конструкции и функции, не перечисленные в этом разделе (за исключением функций собственного сочинения, при необходимости). Если вы считаете, что для выполнения какого-то из заданий необходима функция/конструкция, отсутствующая в перечислении, то задайте вопрос на форуме «Язык Standard ML»;

4. Варианты заданий

Если после номера задания указано примечание «X% бонус», то за решение задания будут начислены дополнительные бонусные баллы в размере X% от начисленных баллов за решение. Бонусные баллы будут отображаться на портале в разделе «Бонусы».

- **І.** Дана сторона квадрата a. Функция должна выдавать его площадь $S=a^2$. Сигнатура итоговой функции: real -> real .
- **2.** Даны стороны прямоугольника a и b. Функция должна выдавать его площадь S=ab. Сигнатура итоговой функции: real * real -> real .
- **3.** Даны стороны прямоугольника a и b. Функция должна выдавать его периметр P=2(a+b). Сигнатура итоговой функции: real * real -> real .
- **4.** Дан диаметр окружности d. Функция должна выдавать ее длину $L=\pi d$. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

- **5.** Дана длина ребра куба a. Функция должна выдавать объем куба $V=a^3$. Сигнатура итоговой функции: real -> real .
- **6.** Дана длина ребра куба a. Функция должна выдавать площадь его поверхности $S=6a^2$. Сигнатура итоговой функции: real -> real.
- **7.** Даны длины ребер a,b,c прямоугольного параллелепипеда. Функция должна выдавать его объем V=abc. Сигнатура итоговой функции: real * real * real .
- **8.** Даны длины ребер a,b,c прямоугольного параллелепипеда. Функция должна выдавать площадь его поверхности

$$S = 2(ab + bc + ac).$$

Сигнатура итоговой функции: real * real * real -> real.

9. Функция должна выдавать длину окружности L заданного радиуса r: $L=2\pi r$. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

10. Функция должна выдавать площадь круга S заданного радиуса r: $S=\pi r^2$. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

- **I I.** Даны два числа a и b. Функция должна выдавать их среднее арифметическое: (a+b)/2. Сигнатура итоговой функции: real * real -> real.
- **12.** Даны два неотрицательных числа a и b. Функция должна выдавать их среднее геометрическое, то есть квадратный корень из их произведения \sqrt{ab} .

Сигнатура итоговой функции: real * real -> real.

13. Даны два ненулевых числа. Функция должна выдавать сумму их квадратов.

Сигнатура итоговой функции: real * real -> real.

14. Даны два ненулевых числа. Функция должна выдавать разность их квадратов. Сигнатура итоговой функции: real * real -> real.

.- .

- **15.** Даны два ненулевых числа. Функция должна выдавать произведение их квадратов. Сигнатура итоговой функции: real * real -> real.
- **16.** Даны два ненулевых числа. Функция должна выдавать частное их квадратов. Сигнатура итоговой функции: real * real -> real.
- **17.** Даны два ненулевых числа. Функция должна выдавать сумму их модулей. Сигнатура итоговой функции: real * real -> real.
- **18.** Даны два ненулевых числа. Функция должна выдавать разность их модулей. Сигнатура итоговой функции: real * real -> real .
- **19.** Даны два ненулевых числа. Функция должна выдавать произведение их модулей. Сигнатура итоговой функции: real * real -> real .
- **20.** Даны два ненулевых числа. Функция должна выдавать частное их модулей. Сигнатура итоговой функции: real * real -> real.
- **21.** Даны катеты прямоугольного треугольника a и b. Функция должна выдавать его гипотенузу c:

$$c = \sqrt{a^2 + b^2}.$$

Сигнатура итоговой функции: real * real -> real.

22. Даны катет a и гипотенуза c прямоугольного треугольника. Функция должна выдавать длину его второго катета b, учитывая что

$$c = \sqrt{a^2 + b^2}.$$

Сигнатура итоговой функции: real * real -> real.

23. Дана длина L окружности. Функция должна выдавать ее радиус r, учитывая, что $L=2\pi r$. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

24. Дана длина L окружности. Функция должна выдавать площадь S круга, ограниченного этой окружностью, учитывая, что $L=2\pi R$, $S=\pi R^2$. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

25. Дана площадь S круга. Функция должна выдавать его диаметр d, учитывая, что $S=\pi d^2/4$. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

26. Функция должна выдавать расстояние между двумя точками на числовой оси с заданными координатами x_1 и x_2 : $|x_2-x_1|$.

Сигнатура итоговой функции: real * real -> real.

27. Даны три точки x_1 , x_2 , x_3 на числовой оси. Функция должна выдавать сумму длин отрезков x_1x_3 и x_2x_3 . Сигнатура итоговой функции: real * real * real .

28. Даны три точки x_1 , x_2 , x_3 на числовой оси. Точка x_3 расположена между точками x_1 и x_2 . Функция должна выдавать произведение длин отрезков x_1x_3 и x_2x_3 .

Сигнатура итоговой функции: real * real * real -> real.

29. Даны координаты двух противоположных вершин прямоугольника: (x_1, y_1) , (x_2, y_2) . Стороны прямоугольника параллельны осям координат. Функция должна выдавать периметр данного прямоугольника.

Сигнатура итоговой функции: real * real * real * real -> real.

30. Даны координаты двух противоположных вершин прямоугольника: (x_1, y_1) , (x_2, y_2) . Стороны прямоугольника параллельны осям координат. Функция должна выдавать площадь данного прямоугольника.

Сигнатура итоговой функции: real * real * real * real -> real.

31. Функция должна выдавать расстояние d между двумя точками с заданными координатами (x_1,y_1) и (x_2,y_2) на плоскости. Расстояние вычисляется по формуле

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Сигнатура итоговой функции: real * real * real * real -> real.

32. Дано значение угла α в градусах ($0 < \alpha < 360$). Функция должна выдавать значение этого же угла в радианах, учитывая, что $180^\circ = \pi$ радианов. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

33. Дано значение угла α в радианах ($0<\alpha<2\pi$). Функция должна выдавать значение этого же угла в градусах, учитывая, что $180^\circ=\pi$ радианов. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

34. Дано значение температуры T_F в градусах Фаренгейта. Функция должна выдавать значение этой же температуры в градусах Цельсия. Температура по Цельсию T_C и температура по Фаренгейту T_F связаны следующим соотношением: $T_C = 5(T_F - 32)/9$.

Сигнатура итоговой функции: real -> real.

35. Дано значение температуры T_C в градусах Цельсия. Функция должна выдавать значение этой же температуры в градусах Фаренгейта. Температура по Цельсию T_C и температура по Фаренгейту T_F связаны следующим соотношением: $T_C = 5(T_F - 32)/9$.

Сигнатура итоговой функции: real -> real.

36. Функция должна выдавать решение линейного уравнения Ax + B = 0, заданное своими коэффициентами A и B (коэффициент A не равен 0).

Сигнатура итоговой функции: real * real -> real.

37 (25% бонус). Даны катеты прямоугольного треугольника a и b. Функция должна выдавать его периметр P, учитывая что

$$c = \sqrt{a^2 + b^2}, \quad P = a + b + c.$$

Сигнатура итоговой функции: real * real -> real.

38 (25% бонус). Дана площадь S круга. Функция должна выдавать длину L окружности, ограничивающей этот круг, учитывая, что $L=\pi d$, $S=\pi d^2/4$. В качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real -> real.

39 (25% бонус). Даны два круга с общим центром и радиусами r_1 и r_2 ($r_1>r_2$). Функция должна выдавать площадь S_3 кольца, внешний радиус которого равен r_1 , а внутренний радиус равен r_2 :

$$S_1 = \pi r_1^2$$
, $S_2 = \pi r_2^2$, $S_3 = S_1 - S_2$.

B качестве значения π использовать Math.pi.

Сигнатура итоговой функции: real * real -> real.

40 (30% бонус). Даны координаты трёх вершин треугольника: (x_1, y_1) , (x_2, y_2) , (x_3, y_3) . Функция должна выдавать его периметр, используя формулу для расстояния между двумя точками на плоскости

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Сигнатура итоговой функции: real * real * real * real * real * real * real .

4 I (50% бонус). Даны координаты трёх вершин треугольника: (x_1, y_1) , (x_2, y_2) , (x_3, y_3) . Функция должна выдавать его площадь, используя формулу для расстояния между двумя точками на плоскости

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

и формулу Герона для нахождения площади треугольника со сторонами a, b, c

$$S = \sqrt{p(p-a)(p-b)(p-c)},$$

где p = (a + b + c)/2 — полупериметр.

Сигнатура итоговой функции: real * real * real * real * real * real * real .