APPLICATION CERTIFICATION On Behalf of MEERA INTERNATIONAL LIMITED

Bluetooth Mini Speaker

Model No.: MS300BT, MS-100,MS-200BT,MS-400BT,MS-500BT, MS-600BT,MS-700BT,MS-800BT,NS-100,NS-200BT,NS-300NFC, NS-400BT,NS-500BT,NS-600BT,NS-700BT,NS-800BT

FCC ID: 2AASX-MS300BT

Prepared for : MEERA INTERNATIONAL LIMITED

Address : 301, Kam On Building, 176A-Queens Road Central,

HongKong

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20131732

Date of Test : Aug 09-Aug 18, 2013

Date of Report : Aug 19, 2013

TABLE OF CONTENTS

Description	Page
-------------	------

Test Rep	ort Cer	tification	n
----------	---------	------------	---

1.	G	ENERAL INFORMATION	5
1.			
	1.1. 1.2.	Description of Test Facility	
	1.2.	Description of Test Facility	
2		ž	
2.		IEASURING DEVICE AND TEST EQUIPMENT	
3.		PERATION OF EUT DURING TESTING	
	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	
4.	\mathbf{T}	EST PROCEDURES AND RESULTS	9
5.	20	ODB BANDWIDTH TEST	
	5.1.	Block Diagram of Test Setup	10
	5.2.	The Requirement For Section 15.247(a)(1)	
	5.3.	EUT Configuration on Measurement	10
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Test Result	11
6.	C	ARRIER FREQUENCY SEPARATION TEST	13
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	13
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.	N	UMBER OF HOPPING FREQUENCY TEST	16
	7.1.	Block Diagram of Test Setup	16
	7.2.	The Requirement For Section 15.247(a)(1)(iii)	16
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	D	WELL TIME TEST	18
	8.1.	Block Diagram of Test Setup	18
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	18
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	M	IAXIMUM PEAK OUTPUT POWER TEST	25
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(b)(1)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	
	9.5.	Test Procedure	26

9.6.	Test Result	26
10. RA	DIATED EMISSION TEST	28
10.1.	Block Diagram of Test Setup	28
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	29
10.4.	Configuration of EUT on Measurement	29
10.5.	est Procedure	30
10.6.	The Field Strength of Radiation Emission Measurement Results	31
11. BA	ND EDGE COMPLIANCE TEST	43
11.1.	Block Diagram of Test Setup	43
11.2.	The Requirement For Section 15.247(d)	43
11.3.	EUT Configuration on Measurement	
11.4.	Operating Condition of EUT	
11.5.	Test Procedure	44
11.6.	Test Result	44
12. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.	207(A)54
12.1.	Block Diagram of Test Setup	54
12.2.	The Emission Limit	54
12.3.	Configuration of EUT on Measurement	55
12.4.	Operating Condition of EUT	55
12.5.	Test Procedure	
12.6.	Power Line Conducted Emission Measurement Results	55
13. AN	TENNA REQUIREMENT	58
13.1.	The Requirement	58
13.2.	Antenna Construction	58

Test Report Certification

Applicant : MEERA INTERNATIONAL LIMITED

Manufacturer : MEERA INTERNATIONAL LIMITED

EUT Description : Bluetooth Mini Speaker

(A) MODEL NO.: MS300BT,MS-100,MS-200BT,MS-400BT, MS-500BT,MS-600BT,MS-700BT,MS-800BT,NS-100, NS-200BT,NS-300NFC,NS-400BT,NS-500BT,NS-600BT, NS-700BT,NS-800BT

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.7V (Lithium ion battery) & DC 5V

(D) Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4- 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Aug 09-Aug 18, 2013		
Prepared by :	2-2		
	(Engineer)		
Approved & Authorized Signer :	Lemb		
	(Manager)		

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Bluetooth Mini Speaker

Model Number : MS300BT, MS-100, MS-200BT, MS-400BT,

MS-500BT, MS-600BT, MS-700BT, MS-800BT, NS-100, NS-200BT, NS-300NFC, NS-400BT, NS-500BT, NS-600BT, NS-700BT, NS-800BT (Note: These samples are same except for the model number is difference. So we prepare the MS300BT for

FCC test.)

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Modulation type : GFSK Antenna Gain : 0dBi

Antenna type : PCB Antenna Power Supply : DC 3.7V&DC 5V

Applicant : MEERA INTERNATIONAL LIMITED

Address : 301, Kam On Building, 176A-Queens Road Central,

HongKong

Manufacturer : MEERA INTERNATIONAL LIMITED

Address : 301, Kam On Building, 176A-Queens Road Central,

HongKong

Date of sample received: Aug 09, 2013

Date of Test : Aug 09-Aug 18, 2013

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 11, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 11, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 11, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 11, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Feb. 06, 2013	Feb. 05, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Feb. 06, 2013	Feb. 05, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 11, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 11, 2014

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

EUT

(EUT: Bluetooth Mini Speaker)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Bluetooth Mini Speaker)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2402	0.798	Pass
Middle	2441	0.798	Pass
High	2480	0.798	Pass

The spectrum analyzer plots are attached as below.

Center 2.402 GHz

300 kHz/

Span 3 MHz

Middle channel

High channel

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Bluetooth Mini Speaker)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz. Adjust Span to 2 MHz.
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.004	25KHz or 20dB bandwidth	PASS
Middle	2440 2441	1.004	25KHz or20dB bandwidth	PASS
High	2479 2480	1.004	25KHz or 20dB bandwidth	PASS

The spectrum analyzer plots are attached as below.

Low channel

Middle channel

High channel

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Bluetooth Mini Speaker)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Bluetooth Mini Speaker)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Get the pulse time.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
	2402	0.420	134.40	400
DH1	2441	0.420	134.40	400
	2480	0.420	134.40	400
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	ulse time \times (1600/(2**	79))×31.6
	2402	1.680	268.80	400
DH3	2441	1.680	268.80	400
	2480	1.695	271.20	400
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	alse time \times (1600/(4*7)	79))×31.6
	2402	2.960	315.73	400
DH5	2441	2.960	315.73	400
	2480	2.960	315.73	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

DH1 Low channel

DH1 Middle channel

DH1 High channel

DH3 Low channel

DH3 Middle channel

DH5 Low channel

DH5 Middle channel

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Bluetooth Mini Speaker)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz
- 9.5.3.Measurement the maximum peak output power.

9.6.Test Result

Channel	Frequency (MHz)	Peak Output Power (dBm)	Limits dBm / W
Low	2402	4.10	30/1.0
Middle	2441	5.31	30/1.0
High	2480	6.20	30/1.0

The spectrum analyzer plots are attached as below.

Low channel

Middle channel

High channel

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and simulators

(EUT: Bluetooth Mini Speaker)

10.1.2. Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS 3 METERS -

GROUND PLANE

(EUT: Bluetooth Mini Speaker)

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$		
13.36-13.41					

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4- 2009 on radiated emission measurement.

The bandwidth of test receiver (R&S ESI26) is set at 120 KHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

10.6. The Field Strength of Radiation Emission Measurement Results

Note:

- 1. The fundamental radiated emissions were reduced by 2.4G Band Reject Filter in the attached plots.
- 2. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #1
Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Bluetooth Mini Speaker

Model: TX 2402MHz
Model: MS300BT
Manufacturer: MEERA

MS300BT

Note: Report No:ATE20131732

Polarization: Horizontal Power Source: DC 5V Date: 2013/08/13 Time: 12:09:13

Engineer Signature: Ricky

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #2

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2402MHz
Model: MS300BT
Manufacturer: MEERA

Polarization: Vertical Power Source: DC 5V Date: 2013/08/13

Time: 12:10:43

Engineer Signature: Ricky

Distance: 3m

Note: Report No:ATE20131732

36.7811

48.0392

405.3551

1 2

3

16.66

13.67

8.85

15.28

14.45

22.61

31.94

28.12

31.46

40.00

40.00

46.00

-8.06

-11.88

-14.54

QP

QP

QP

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #3

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2441MHz MS300BT Model: Manufacturer: MEERA

Polarization: Vertical Power Source: DC 5V Date: 2013/08/13

Time: 12:12:27 Engineer Signature: Ricky

Distance: 3m

Note: Report No:ATE20131732

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #4
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2441MHz Model: MS300BT Manufacturer: MEERA Polarization: Horizontal Power Source: DC 5V Date: 2013/08/13 Time: 12:13:23

Engineer Signature: Ricky

Distance: 3m

Note: Report No:ATE20131732

3

384.5446

14.03

21.69

35.72

46.00

-10.28

QP

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #5

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: Model: MS300BT Manufacturer: MEERA

TX 2480MHz

Note: Report No:ATE20131732

Polarization: Horizontal Power Source: DC 5V Date: 2013/08/13

Time: 12:14:44

Engineer Signature: Ricky

Distance: 3m

3

391.3599

13.52

21.93

35.45

46.00

-10.55

QP

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #6

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2480MHz
Model: MS300BT
Manufacturer: MEERA

Polarization: Vertical Power Source: DC 5V

Date: 2013/08/13 Time: 12:15:52

Engineer Signature: Ricky

Distance: 3m

Note: Report No:ATE20131732

No.	Freq. (MHz)	(dBuV/m)	Factor (dB)	(dBuV/m)	(dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	37.4328	16.14	15.13	31.27	40.00	-8.73	QP			
2	48.2083	12.82	14.45	27.27	40.00	-12.73	QP			
3	185.8143	11.04	13.83	24.87	43.50	-18.63	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #7 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2402MHz Model: MS300BT Manufacturer: MEERA

Polarization: Vertical Power Source: DC 5V Date: 2013/08/13 Time: 12:35:56

Engineer Signature: Ricky

Distance: 3m

AVG

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #8
Standard: FCC 15C PK
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2402MHz
Model: MS300BT
Manufacturer: MEERA

Polarization: Horizontal Power Source: DC 5V Date: 2013/08/13 Time: 12:38:36

Engineer Signature: Ricky

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #9 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2441MHz Model: MS300BT Manufacturer: MEERA

Polarization: Horizontal Power Source: DC 5V Date: 2013/08/13

Time: 12:42:50 Engineer Signature: Ricky

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #10
Standard: FCC 15C PK
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Model: TX 2441MHz Model: MS300BT Manufacturer: MEERA Polarization: Vertical Power Source: DC 5V

Date: 2013/08/13 Time: 12:44:45

Engineer Signature: Ricky

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #11
Standard: FCC 15C PK
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Model: TX 2480MHz
Model: MS300BT
Manufacturer: MEERA

Polarization: Vertical Power Source: DC 5V Date: 2013/08/13 Time: 12:47:04

Engineer Signature: Ricky

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #12 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2480MHz
Model: MS300BT
Manufacturer: MEERA

Polarization: Horizontal Power Source: DC 5V Date: 2013/08/13 Time: 12:48:12

Engineer Signature: Ricky

Distance: 3m

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Bluetooth Mini Speaker)

11.2.The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
2390.00	52.44	> 20dBc
2483.50	55.20	> 20dBc

The spectrum analyzer plots are attached as below.

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

> Polarization: Vertical Power Source: DC 5V Date: 2013/08/13

Time: 14:57:26

Engineer Signature: Ricky

Distance: 3m

Job No.: rucky6 #15
Standard: FCC 15C PK
Test item: Radiation Test
Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Bluetooth Mini Speaker

Mode: TX 2402MHz Model: MS300BT Manufacturer: MEERA

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	(dBuV/m)		Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2400.000	58.33	-7.46	50.87	74.00	-23.13	peak			
2	2400.000	55.26	-7.46	47.80	54.00	-6.20	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #16
Standard: FCC 15C PK
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2402MHz Model: MS300BT Manufacturer: MEERA

Note: Report No:ATE20131732

Polarization: Horizontal Power Source: DC 5V

Date: 2013/08/13 Time: 15:01:20

Engineer Signature: Ricky

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2400.004	55.78	-7.46	48.32	74.00	-25.68	peak			
2	2400.004	52.14	-7.46	44.68	54.00	-9.32	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #14 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2480MHz Model: MS300BT Manufacturer: MEERA

Note: Report No:ATE20131732 Polarization: Horizontal Power Source: DC 5V

Date: 2013/08/13 Time: 14:52:53

Engineer Signature: Ricky

Distance: 3m

(MHz)

1

2

2483.529

2483.529

(dBuV/m)

40.18

37.23

(dB)

-7.37

-7.37

(dBuV/m)

32.81

29.86

(dBuV/m)

74.00

54.00

(dB)

-41.19

-24.14

peak

AVG

(deg.)

(cm)

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: rucky6 #13 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 % EUT: Bluetooth Mini Speaker

Mode: TX 2480MHz MS300BT Manufacturer: MEERA

Model:

Polarization: Vertical Power Source: DC 5V Date: 2013/08/13 Time: 14:50:31

Engineer Signature: Ricky

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.529	40.56	-7.37	33.19	74.00	-40.81	peak			
2	2483.529	37.51	-7.37	30.14	54.00	-23.86	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #5031 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth Mini Speaker

Model: TX 2402MHz

Model: MS300BT Manufacturer: MEERA

Note: Report No.:ATE201231732

Polarization: Vertical Power Source: DC 5V

Date: 13/08/13/
Time: 11/36/29
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	38.37	-7.81	30.56	74.00	-43.44	peak			
2	2310.000	33.20	-7.81	25.39	54.00	-28.61	AVG			
3	2390.000	38.74	-7.53	31.21	74.00	-42.79	peak			
4	2390.000	31.30	-7.53	23.77	54.00	-30.23	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #5033 Polarization: Horizontal Standard: FCC PK Power Source: DC 5V

Test item: Radiation Test Date: 13/08/13/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 11/41/57

EUT: Bluetooth Mini Speaker Engineer Signature:
Mode: TX 2402MHz Distance: 3m

Model: MS300BT Manufacturer: MEERA

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	39.11	-7.81	31.30	74.00	-42.70	peak			
2	2310.000	32.83	-7.81	25.02	54.00	-28.98	AVG			
3	2390.000	41.59	-7.53	34.06	74.00	-39.94	peak			
4	2390.000	33.14	-7.53	25.61	54.00	-28.39	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #5040 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth Mini Speaker

Mode: TX 2480MHz Model: MS300BT Manufacturer: MEERA

Note: Report No.:ATE201231732

Polarization: Vertical

Power Source: DC 5V Date: 13/08/13/ Time: 12/27/42 Engineer Signature:

Distance: 3m

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	1	2483.500	40.33	-7.37	32.96	74.00	-41.04	peak			
	2	2483.500	32.12	-7.37	24.75	54.00	-29.25	AVG			
	3	2500.000	38.94	-7.40	31.54	74.00	-42.46	peak			
Ī	4	2500.000	30.10	-7.40	22.70	54.00	-31.30	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #5042 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth Mini Speaker

Mode: TX 2480MHz
Model: MS300BT
Manufacturer: MEERA

Note:

Report No.:ATE201231732

Polarization: Horizontal Power Source: DC 5V

Date: 13/08/13/ Time: 12/52/52 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	48.61	-7.37	41.24	74.00	-32.76	peak			
2	2483.500	40.00	-7.37	32.63	54.00	-21.37	AVG			
3	2500.000	41.91	-7.40	34.51	74.00	-39.49	peak			
4	2500.000	32.58	-7.40	25.18	54.00	-28.82	AVG			

12.AC POWER LINE CONDUCTED EMISSION FOR FCC PART

15 SECTION 15.207(A)

12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and simulators

12.1.2.Shielding Room Test Setup Diagram

(EUT: Bluetooth Mini Speaker)

12.2.The Emission Limit

12.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit dB(μV)						
(MHz)	Quasi-peak Level	Average Level					
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *					
0.50 - 5.00	56.0	46.0					
5.00 - 30.00	60.0	50.0					

^{*} Decreases with the logarithm of the frequency.

12.3. Configuration of EUT on Measurement

The equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4. Operating Condition of EUT

- 12.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 12.4.2. Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Operation) mode measure it.

12.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4- 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

The frequency range from 150 kHz to 30MHz is checked.

12.6.Power Line Conducted Emission Measurement Results

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Bluetooth Mini Speaker M/N: MS300BT

Manufacturer: MEERA Operating Condition: Operation

1#Shielding Room Test Site:

Operator: Ricky

Test Specification: L 120V/60Hz

Report No:ATE20131732 Comment: Start of Test: 2013/08/13 / 3:39:46PM

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. ΙF Transducer

Width Time Bandw.

Frequency Frequency 150.0 kHz 30.0 MHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 0.8 %

Average

MEASUREMENT RESULT: "EK-V14 fin"

2013/08/13	3:41PM						
Frequenc	y Level	Transd	Limit	Margin	Detector	Line	PE
MH	Iz dBµV	dB	dBµV	dB			
0.16442	56.40	11.1	65	8.8	QP	L1	GND
3.47154	9 40.60	11.5	56	15.4	QP	L1	GND
19.63155	33.30	11.1	60	26.7	QP	L1	GND

MEASUREMENT RESULT: "EK-V14 fin2"

2013/08/13	3:41PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dBµV	dB	dΒμV	dB			
0.170439	42.10	11.1	55	12.8	AV	$_{\rm L1}$	GND
0.241214	33.90	11.4	52	18.2	AV	L1	GND
2.982924	31.60	11.6	46	14.4	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Bluetooth Mini Speaker M/N: MS300BT

Manufacturer: MEERA
Operating Condition: Operation

Test Site: 1#Shielding Room

Operator: Ricky

Test Specification: N 120V/60Hz

Comment: Report No:ATE20131732 Start of Test: 2013/08/13 / 3:42:48PM

SCAN TABLE: "V 150K-30MHz fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

56 16.9 QP

MEASUREMENT RESULT: "EK-V15 fin"

20	13/08/13 3 :	45PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz		dB		dB			
				3.2 pt 1				
	0.167739	54.90	11.1	65	10.2	OP	N	GND
						~		
	0.176674	56.20	11.1	65	8.4	QP	N	GND

MEASUREMENT RESULT: "EK-V15 fin2"

39.10 11.5

2013/08/13	3:45PM						
-	y Level				Detector	Line	PΕ
MH	z dBµV	dB	dΒμV	dB			
0 17040	2 41 22			10 5			
0.17249	3 41.30	11.1	55	13.5	AV	N	GND
0.23456	7 33.70	11.4	52	18.6	AV	N	GND
3.04306	1 32.00	11.6	46	14.0	AV	N	GND

3.349036

GND

N

13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2.Antenna Construction

The antenna is PCB Layout antenna, no consideration of replacement. Therefore, the equipment complies with the antenna requirement of Section 15.203.

