Analysis Spatial pattern

Lorette Noiret

September 13, 2017

1 Study goals

1.1 Aims

Understand the spatio-temporal pattern of gene expression and the link this pattern with the phenotypes (pattern of lamination...).

In a first step, we are focusing on each time point separately. This step should also help to identify regions that will be used for single-cell analyses.

- Identifiation of the regions.
 - How many regions can we identify?
 - Should we identify the regions manually (contouring) or automatically?
 - Should we identify the region based on gene expressions (descritptive analysis, clusetering) or based the phenotypic pattern (PLS?)?
 - is it necessary to apply a mask (defined manually) to find those regions (e.g. exclusion cuticule)? Yohanns also suggested to create a mask automatically (by selecting x number of pixels around the 'zero area')
 - should we average the expression of a specific gene in several animals or only consider one animal at a time?
- Analyse the pattern of some key gene expression.
 - which genes are co-expressed together in each region? Clustering is useful to better understand the pattern even if we do not use the results for the single-cell analysis.
 - do the pattern of gene expression (spatial organization of cluster) correlate with the phenotypic pattern?

Other ideas:

Compare the gene expression profiles with the fly of different size.

2 Step1 - Spatial analysis at 12apf

2.1 Data

Genes express in the notum at 12apf.

Source directory: 'Patt_CellProp_Rescaled_2017_sept_06th_test_raw_data'.

Initial dataset:

- Yohanns and Maria selected 10 genes of interest (ara, BH1, bi, esg, eyg, hth, pct, sd, Sr, Ush) measured in 10 individuals. Better understand the limitations associated with data acquisation: expression, max projection, stiching...
- Some phenotypic map are also available (Delamination, proliferation, TissueDeform, TissueStress)
- a file contains the macrocheataetae

Comments and challenges associated with these data:

- The gene barH1 (bh1) was measured on a smaller notum, so comparisons we should perform the clustering with and without it and compare the results
- Nothing tell us that those genes are the one explaining the spatial phenotypic organization (at that time point). Maybe a PLS before clustering could be useful (more than a PCA)
- Should we pool the data from several animals?
- Image includes the growing cuticule, should we exclude it (by applying a mask delimited by Maria or an automatic approach)

2.2 Statistical Analysis

2.2.1 Workflow

- 1. read image
- 2. Apply mask (only if UseMask==1)
- 3. Normalize each image on 0-1 scale (divide all the pixel by the maximum intensity value). Impact normalization?
- 4. vectorize image
- 5. TO DO: impact if we do a PCA before hand?
- 6. remove unwanted (if pixel=0 on all image then it is a background point and I can exclude it to make the code faster)

- 7. k-mean 2 to 10 clusters (max iteration 1000).
 - Use 3 to 5 replicates to insure that we find a global minimum.
 - Assess quality clustering: silhouette (how well each object lies within cluster), but not doable of full-size image. BIC but based on log-likelihood (gaussian assumption seems wrong). Wilks statistics

2.2.2 Smoothing

The images have taken in high resolution and the nucleus are apparent (black area). We should try to do some interpolation before clustering?

- Smoothing data: using gaussian filter or another one
- resize: decrease the image size with a filter (resizem). Advantage: faster computation, can compute silhouette.
- kriging: spatial interpolation, can take into account anisotropie and discontinuity TO DO, available in Matlab??

(filtering, resize or kriging)?

Challenges: how to choose the optimal parameters (sigma/distance for gaussian filter, scaling and filter for resizing)?

Smoothing with a distance of 15 pixels remove completely the discountinuous aspects, but also blur the small patterns (becoming non-apparent when create the clusters).

2.2.3 Automatic detection of cluster (methods)

Different approach can be tested:

- Hierarchical approach (AHC): tried it but matlab memory bugged. Maybe I did something wrong or should implement it in Python?
- Kmeans I tried euclidian distance, but could try other metric as well. Ask bioinformatician if some metric works better with gene expression
- Kmedoid: interest if we look at the expression qualitatively (expressed / not expressed). Advantage: center of class is a datapoint (use L1 metric). TO DO, available in matlab
- Quid of spatial clustering. Some approach must exist, check litterature

kmeans To identify the regions, we classify the 10 genes expression map using a k-means algorithm (from 2 to 10 clusters).

How to determine the optimal number of cluster?

- Compare pattern with the one defined by Maria
- Look at some automatic features:

- silhouette
- Wilks statistic, variance within cluster, distance between centroids
- Stability: how robust a clustering solution is under pertubation or sub-sampling

_

Other technical aspects

- Number of repeats: kmeans with n groups performed several times to limit the impact of centroids initialization. I took 3, maybe should go up to 5.
- Choice metric. Only tested euclidian so far
- Choice color for clusters. Choice of color makes a difference in term of vizualization and apparent quality of clusters

Open questions (to discuss):

- Data are not continuous (cells border). Should we smooth the image first?
- Should we consider another algorithm? I initially tried hierarchical cluster analysis, but the size was to large, and Matlab crashes. Is there a better way to do it (another sotware? another algorithm?)?

2.2.4 Other points

Does a preliminary PCA change the results? Rather than PCA, PLS could help?

2.2.5 Classification approach

2.3 Results

2.3.1 Descriptive analysis

Visually description of the pattern of each gene and phenotype.

name	some functions	comments
ara (arau-	TF, notum cell fate	expressed latterally (except 2 zones (wings or an-
can)	specification	other phenotype later?), midline +/- empty, a few
		intense spots
bh1	TF, chaeta morpho-	Fly is much smaller \rightarrow problem?, opposition poste-
(BarH1)	genesis; compound	rior/anterior, only expressed in region clode to neck
	eye photoreceptor cell	+ few spot close to scutellum
1.1 (D.G.1)	differentiation	
bi (Bifid)	TF, development of sev-	pattern both vertical and horizontal. More ex-
	eral tissues such as	pressed in scutellum, 3 empty spots in vertical mid-
ogm (Eggan	brain, eyes and wings	dle, problem stitching?
esg (Escar-	TF, maintenance of cell number	scutellum except 2 spots and along horizontal axis
got) eyg (eye-	TF (transcriptional re-	(physio?) not in scutelum, pattern not uniform in scutum (ver-
eyg (eye- gone)	pressor), notum devel-	tical pattern),true or artefact?
gone)	opment	tical pattern), true of arteract:
hth (ho-	TF, phenotypes mani-	
mothorax)	fest in adult abdominal	signal seems noisy, scutellum, 2 patch in lateral scu-
,	segment, regulation of	tum
	cell fate commitment;	
	macromolecule local-	
	ization, formation of	
	anatomical boundary	
ptc	hedgehog receptor	expressed on the two posterior/anterior lines, (neck
(patched)	activity, cell morpho-	
	genesis involved in	
	differentiation; colum-	
	nar/cuboidal epithelial	
ad (agg)	cell differentiation	aggential negtonicy line
sd (scalloped)	TF, tissue morphogenesis; regulation cell com-	essential posterior line
ioped)	munication, regul mul-	
	ticellular organismal de-	
	velopment, stem cell	
	proliferation	
Sr (stripe)	nucleic acid binding, ep-	parallel horizontal strip in scutum
(1 /	ithelial cell migration,	•
	ectoderm development,	
	determination of muscle	
	attachment site	
Ush (u-	TF binding, leading	everywhere except lateral border and 2 spots in
shaped)	edge cell differentia-	scutellum
	tion, pattern, epithelial	
	cell fate commitment	
D.1	specification process	. 11
Delamination		scutellum and horizontal midline
Proliferation		scutellum, horizontal midline + parallel stripe in
Deformation	5	scutum
Deformation		

 Stress

TF = transcription factor Comments:

- ask Boris to describe Deformation and stress
- $\bullet\,$ No phenotypic region correspond to the empty lateral spots and 2 spot in scutellum.

2.3.2 Clustering analysis

Using raw data or the mask? Le noir et 20 en plus

Manual versus automatic