- Tableau des dérivées usuelles
- Opérations sur les dérivées
 - Somme de deux fonctions
 - Produit d'un réel par une fonction
 - Produit de deux fonctions
 - Quotient de deux fonctions
- Remarques
 - Tableau récapitulatif des opérations
 - Comment calculer une dérivée?

Tableau récapitulatif des dérivées

Fonction f définie par $f(x) =$	Dérivée f' définie par $f'(x) =$	Domaine de dérivation
k (nombre réel)	0	R
x	1	R
x^2	2 <i>x</i>	R
x^3	$3x^2$	R
$x^n, n \in \mathbb{N}^*$	nx^{n-1}	R
$\frac{1}{x}$	$-\frac{1}{x^2}$	R*
$\sin(x)$	$\cos(x)$	R
$\cos(x)$	$-\sin(x)$	R

Somme de deux fonctions - Propriété

Soit I un intervalle de $\mathbb R$ et u et v deux fonctions définies et dérivables sur I.

Propriété

Soit la fonction f définie sur I par : f(x) = u(x) + v(x). La fonction dérivée, notée f'(x), est

$$f'(x) = u'(x) + v'(x).$$

Somme de deux fonctions - Exemple

Exemple

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 + \cos(x)$. Calculer sa dérivée f'(x).

f est définie comme la somme de deux fonctions. Donc :

$$f(x) = \underbrace{x^2 + \cos(x)}_{u(x)+v(x)}$$

$$f'(x) = \underbrace{2x + (-\sin(x))}_{f'(x)}$$

$$f'(x) = 2x - \sin(x)$$
Donc
$$f'(x) = 2x - \sin(x)$$

5 / 14

Produit d'un réel par une fonction - Propriété

Soit I un intervalle de \mathbb{R} , u une fonction définie et dérivable sur I et k un nombre réel.

Propriété

Soit la fonction f définie sur I par : $f(x) = k \times u(x)$. La fonction dérivée, notée f'(x), est

$$f'(x) = k \times u'(x).$$

Produit d'une réel par une fonction - Exemple

Exemple

Soit la fonction f définie sur \mathbb{R} par $f(x) = 5x^3$.

Calculer sa dérivée f'(x).

f est définie comme le produit d'un nombre réel par une fonction.

Donc :

$$f(x) = \underbrace{5x^3}_{k \times u(x)}$$

$$f'(x) = \underbrace{5 \times 3x^2}_{f'(x)}$$

$$f'(x) = 15x^2$$

Donc
$$f'(x) = 15x^2$$
.

Produit de deux fonctions - Propriété

Soit I un intervalle de \mathbb{R} , u et v deux fonctions définies et dérivables sur I.

Propriété

Soit la fonction f définie sur I par : $f(x) = u(x) \times v(x)$. La fonction dérivée, notée f'(x), est

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x).$$

Produit de deux fonctions - Exemple

Exemple

Soit la fonction f définie sur \mathbb{R} par $f(x) = (2x + 5)\sin(x)$. Calculer sa dérivée f'(x).

f est définie comme le produit de deux fonctions. Donc :

$$f(x) = u(x) \times v(x)$$
, avec :

$$u(x) = 2x + 5;$$
 $u'(x) = 2;$
 $v(x) = \sin(x);$ $v'(x) = \cos(x).$

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$f'(x) = 2 \times \sin(x) + (2x + 5) \times \cos(x)$$

Donc
$$f'(x) = 2\sin(x) + (2x+5)\cos(x)$$
.

Quotient de deux fonctions - Propriété

Soit I un intervalle de \mathbb{R} , u une fonction définie et dérivable sur I et v une fonction définie et dérivable sur I ne s'annulant pas sur I.

Propriété

Soit la fonction f définie sur I par : $f(x) = \frac{u(x)}{v(x)}$.

La fonction dérivée, notée f'(x), est

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2}.$$

Quotient de deux fonctions - Exemple

Exemple

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^2 + 1}{\sin(x)}$.

Calculer sa dérivée f'(x).

f est définie comme le quotient de deux fonctions. Donc :

$$f(x) = \frac{u(x)}{v(x)}$$
), avec :

$$u(x) = x^2 + 1;$$
 $u'(x) = 2x + 1;$ $v(x) = \sin(x);$ $v'(x) = \cos(x).$

Quotient de deux fonctions - Exemple - suite

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2}$$

$$f'(x) = \frac{(2x+1) \times \sin(x) - (x^2+1) \times \cos(x)}{(5x-12)^2}.$$

Donc
$$f'(x) = \frac{(2x+1)\sin(x) - (x^2+1)\cos(x)}{(5x-12)^2}$$
.

Tableau récapitulatif des opérations

u et v dérivables sur I	Fonction	Fonction dérivée
Somme	u + v	u' + v'
Produit par un réel	ku	ku'
Produit de deux fonctions	uv	u'v + uv'
Inverse d'une fonction qui ne s'annule pas	$\frac{1}{u}$	$-\frac{u'}{u^2}$
Quotient avec dénominateur qui ne s'annule pas	$\frac{u}{v}$	$\frac{u'v-uv'}{v^2}$

Comment calculer une dérivée?

Lorsqu'on doit calculer la dérivée d'une fonction, la première chose à faire est d'analyser l'expression de la fonction.

On doit se demander si

- Est-ce une somme?
- Est-ce le produit d'un nombre par un réel?
- Est-ce un produit?
- Est-ce un quotient?
- Est-ce une somme de produits?

Puis, on applique les méthodes vues dans cette fiche!