2. ອາກກຸຍມັງຂອງຈຳນວນສົນ

16 พฤษภาคม 2565 9:12

2. ອາກກຸຍມັງຂອງຈຳນວນສົນ $z \neq 0$

ໃຫ້ M ແມ່ນເມັດໜຶ່ງຢູ່ໃນໜ້າພູງຈຳນວນສົນທີ່ສະແດງຈຳນວນສົນ z=a+bi ມູມ φ ທີ່ປະກອບລະຫວ່າງ OM ກັບແກນຈິງເບື້ອງບວກ ເອີ້ນວ່າອາກກຸຍມັງຂອງຈຳນວນສົນ z ແລະ ສັນຍະລັກດ້ວຍ $a \operatorname{rg} z = \varphi$ ເຊິ່ງ $\tan \varphi = \frac{b}{a}$ ແລະ φ ແມ່ນມູມບວກນ້ອຍ

ສູດ. (0 ≤ φ < 2π)

ຕົວຢ່າງ 4. ຈົ່ງຊອກອາກກຸຍມັງຂອງຈຳນວນສົນລຸ່ມນີ້:

1)
$$z_1 = 1 + i\sqrt{3}$$

2)
$$z_1 = 1 - i\sqrt{3}$$

3)
$$z_1 = -1 + i\sqrt{3}$$

4)
$$z_1 = -1 - i\sqrt{3}$$

ບົດແກ້:

1)
$$z_1 = 1 + i\sqrt{3}$$
 ເຮົາມີ $\tan \varphi = \frac{\sqrt{3}}{1} = \sqrt{3}$ ເຊິ່ງ $\sqrt{3} = \tan \frac{\pi}{3}$ ຈາກ $z_1 = 1 + i\sqrt{3}$ ສັງເກດເຫັນວ່າ $a = 1 > 0$, $b = \sqrt{3} > 0$ ຈຳນວນສົນຢູ່ໃນສ່ວນສີ່ທີ່ໜຶ່ງສະນັ້ນ $\varphi = \frac{\pi}{3}$

- 2) $z_1 = 1 i\sqrt{3}$ ເຮົາມີ $\tan \varphi = \frac{-\sqrt{3}}{1} = -\sqrt{3}$ ເຊິ່ງ $\sqrt{3} = \tan \frac{\pi}{3}$ ຈາກ $z_1 = 1 i\sqrt{3}$ ສັງເກດເຫັນວ່າ a = 1 > 0, $b = -\sqrt{3} < 0$ ຈຳນວນສົນຢູ່ໃນສ່ວນສີ່ທີສີ່ ສະນັ້ນ $\varphi = 2\pi \frac{\pi}{3} = \frac{5\pi}{3}$
- 3) $z_1 = -1 + i\sqrt{3}$ ເຮົານີ $\tan \varphi = \frac{\sqrt{3}}{-1} = -\sqrt{3}$ ເຊິ່ງ $\sqrt{3} = \tan \frac{\pi}{3}$ ຈາກ $z_1 = -1 + i\sqrt{3}$ ສັງເກດເຫັນວ່າ $a = -1 < 0, \ b = \sqrt{3} > 0$ ຈຳນວນສົນຢູ່ໃນສ່ວນສີ່ທີສອງສະນັ້ນ $\varphi = \pi \frac{\pi}{3} = \frac{2\pi}{3}$
- 4) $z_1 = -1 i\sqrt{3}$ ເຮົາມີ $\tan \varphi = \frac{-\sqrt{3}}{-1} = \sqrt{3}$ ເຊິ່ງ $\sqrt{3} = \tan \frac{\pi}{3}$ ຈາກ $z_1 = -1 i\sqrt{3}$ ສັງເກດເຫັນວ່າ $a = -1 < 0, \ b = -\sqrt{3} < 0$ ຈຳນວນສົນຢູ່ໃນສ່ວນສີ່ທີສາມ ສະນັ້ນ $\varphi = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$

a, 6 =