Détection et classification d'arbres à partir d'imagerie haute résolution de forêts

Augustin Albert

20 mai 2021

Dans quelle mesure la recherche d'extremums permet-elle de détecter simultanément des espèces variées d'arbres à partir d'imagerie haute résolution. Et est-il possible de les classifier à l'aide d'un réseau de neurones entraîné avec peu d'images ou des images de faible résolution?

- 1 Détection des houppiers
- 2 Identification des espèces
- 3 Évaluation des résultats et prolongements envisageables

Modélisation des houppiers

Figure – Modélisation d'un houppier

Différentes approches :

- imes seuillage de la luminosité
- × détection simple de contours
- √ détection de blob

Une approche élégante : la théorie de l'Espace d'échelle de Lindbergh

Figure – Exemple de pyramide d'image, Original, CC BY-SA 1.0

Principe de la théorie de l'Espace d'échelle

Générer une famille d'image dont les détails fins disparaissent progressivement : la pyramide d'échelle

Aucune génération d'artefacts supplémentaires

⇒ filtre gaussien

$$G_{\sigma}(x,y) := \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

A chaque étape, σ est multiplié par un ratio.

3 paramètres :

- \bullet σ
- le nombre d'octave o
- le nombre d'intervalle i

Application de l'opérateur laplacien normalisé : pyramide d'échelle du LoG

$$LoG_{\sigma}(x,y) := -\frac{1}{\pi\sigma^4}(1 - \frac{x^2 + y^2}{2\sigma^2})\exp(-\frac{x^2 + y^2}{2\sigma^2})$$

On recherche dans la pyramide :

- minimum local relativement à l'espace
- minimum global relativement à l'échelle

On obtient :

- centre des houppiers
- rayons caractéristiques r : $\sqrt{2}\sigma = r$

Figure – Calcul des minimums dans la pyramide d'échelle de l'opérateur DoG

Comportement du LoG

- (a) Réponse à une marche
- (b) Réponse à un créneau pour $\sigma=1$. $\sigma=2$ et $\sigma=3$

Figure – Réponse de l'opérateur LoG à différents signaux

(a) Réponses à des créneaux pour $\sigma=1$

Figure – Réponse de l'opérateur LoG à différents signaux

Convolution et séparabilité du filtre gaussien

Filtrage = Produit de convolution discrèt Nombre d'opérations élémentaires : $\simeq NM \times h^2$

Réduction du nombre d'opérations :

- Approximation du LoG par la différence des gaussiennes ("DoG")
- Taille du noyau gaussien : $1 + 3 \times E(\sigma)$
- Noyau gaussien séparable $\Rightarrow NM \times 2h$ $G_{\sigma}(x,y) = G_{1D,\sigma}(x) \times G_{1D,\sigma}(y)$ où $G_{1D,\sigma}(y) := \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{x^2}{2\sigma^2})$
- Sous-échantillonnage (théorème de Shannon)

Détection des houppiers

0000000000

- 1 Conversion en nuance de gris
- Q Génération de la pyramide d'échelle :
 - création du noyau gaussien
 - convolution de l'image
 - stockage dans un tableau Numpy 3D
- 3 Détection des minimums :
 - parcours du tableau par échelle décroissante
 - comparaison des cases aux 26 voisins
 - élimination des chevauchements et des petits rayons
- 4 Extraction des houppiers

Application au parc naturel régional du Morvan

- forêt historique de feuillus
- remplacement par de la monoculture intensive de pin de Douglas
- 50 % du parc est aujourd'hui constitué de conifères

Imagerie aérienne via Géoportail ©IGN :

- haute résolution : < 0,1m/pixels
- échelle : 1 :1000

Paramètres retenus :

- rayons Douglas : 1-5m
- rayons feuillus : 5-15m
- 5 octaves, 5 intervalles et $\sigma = 0.5$

Résultats de la détection

Figure – Pyramide d'échelle de l'opérateur LoG grossière (6 octaves sans intervalle). Image originale ©IGN, 2021

(b) Feuillus désordonnés et Douglas semi-ordonné,©IGN, 2021

Figure – Résultats obtenus pour 5 octaves, 5 intervalles et $\sigma = 0.5$

Identification des espèces

Problème de reconnaissance de forme («pattern recognition»)

⇒ Entraînement supervisé d'un réseau de neurones

Base de donnée :

- Douglas × 173
- Feuillus × 199
- Non labellisées × 91
- + transformations (rotations)

Architecture inspirée de RESNET-BASED TREE SPECIES CLASSIFICATION USING UAV IMAGES

Figure – Test du modèle : Feuillus et Douglas étiquettés et arbres non étiquettés, ©IGN, 2021 (Légende: %Douglas/%Feuillus)

Évaluation des résultats et prolongements envisageables

Prolongements envisageables:

- 1 prise en compte des différents stades de la croissance du Douglas dans le modèle.
- 2 méthode de délinéation fine : segmentation par ligne de partage des eaux avec marqueurs («watershed segmentation»)
- 3 séparation préalable des zones forestières des routes et zones aménagées.