

¹ Detailed List of Subjects for the Final Examination — English translation starts on

Page 11

14. IFT2015 Structures de données: Liste détaillée de sujets¹

FO Introduction

LE BUT DE CE DOCUMENT est de définir les compétences et connaissances requises dans le cours IFT2015 à l'examen final. L'examen constitue également la deuxième partie de l'examen pré-doctorale en structures de données (sous le sigle IFT6002).

- → J'ai marqué les connaissances par niveau de maîtrise correspondant :
 - * satisfaisant (50% des exercices au final),
 - ** bon (25%),
 - $\star\star\star$ excellent (25 40%).
- * Les notes marginales sont des références aux ouvrages suivants
 - S Sedgewick, R. Algorithmes en Java, 3e édition (2004)
 - SW Sedgewick, R. et K. Wayne. Algorithms, 4e édition (2011)
 - CLR Cormen, T., E. L. Leiserson, R. L. Rivest, et C. Stein. Algorithmique, 3^e édition.
- * Les notes de cours, présentations, et des liens vers ressources en-ligne sont affichés sur le site http://ift2015a17.wordpress.com/.
- Aucune documentation ne sera permise à l'examen final.

Principes d'analyse d'algorithmes F1

Références

- ▶ Sedgewick chapitre 2
- Sedgewick & Wayne §1.4²
- ▷ Cormen, Leiserson, Rivest & Stein chapitres 1–3
- ▶ Notes sur les fondations : handout01-recursion.pdf. Diapos: prez01-recursion.pdf.
- ▶ Notes sur l'analyse d'algorithmes : handout05-analysis.pdf. Diapos: prez05-analysis.pdf.

Sujets

- * Principes de base : pire cas, meilleur cas, moyen cas.
- * Algorithmes simples : plus grand diviseur commun, recherche dichotomique (binaire), recherche séquentielle
- * Validation expérimentale de temps de calcul
- * Croissances communes : constante, logarithmique, linéaire, linéarithmique $(n \log n)$, quadratique, polynomiale, exponentielle. Factorielle(n!)
- ** Approximation de Stirling³, nombres Fibonacci⁴, nombres harmoniques⁵.
- * Notation asymptotique⁶ : définitions de grand O(f)
- ** Petit o(f), $\Theta(f)$ et $\Omega(f)$. Application de la définition pour démontrer f = O(g) ou f = o(g).
- ** Asymptotiques exactes $f \sim g$. Expressions avec O() ou o(), règles d'arithmétique : O(f) + O(g), $O(f) \cdot O(g)$. Relations avec la limite

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \qquad \Rightarrow \qquad f(n) = O(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \Leftrightarrow \qquad f(n) = o(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \qquad \Leftrightarrow \qquad f(n) \sim g(n)$$

- ** Détermination du temps de calcul et d'usage de mémoire pour algorithmes (itératifs) simples, et pour algorithmes récursifs (comme expression récursive).
- ** Récurrences communes.

$$f(n) = f(n-1) + O(1)$$
 $f(n) = O(n);$
 $f(n) = f(n/2) + O(1)$ $f(n) = O(\log n);$
 $f(n) = 2f(n/2) + O(1)$ $f(n) = O(n\log n);$
 $f(n) = 2f(n/2) + O(n)$ $f(n) = O(n\log n);$

- ** Preuve par induction pour récurrences asymptotiques.
- ** Notion de temps amorti.
- ** Preuves de résultats sur le coût amorti d'opérations. Principe d'analyse crédit/débit⁷.

S§2.1,2.2,2.7; CLR 1

S§12.3-12.5

S§2.3

3
 $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$; $\lg(n!) \sim n \lg n$
 4 $F_{0} = 0$; $F_{1} = 1$; $F_{n} = F_{n-1} + F_{n-2} \{n > 1\}$
 5 $H_{n} = \sum_{i=1}^{n} 1/i = \ln n + \gamma + o(1)$
 6 $W_{(f)}$:comparaison asymptotique
S§2.4; CLR 3

² http://algs4.cs.princeton.edu/14analysis/

CLR₂ S§2.5,2.6

CLR§17.4

⁷ W_(en):accounting method

F2 Structures élémentaires et types abstraits

Références

- ⊳ Sedgewick chapitres 3 et 4
- \triangleright Sedgewick & Wayne §1.1⁸, §1.2⁹, §1.3¹⁰
- ▷ Cormen, Leiserson, Rivest & Stein §10.1, §10.2
- ▶ Notes sur les types abstraits : handout02-tad.pdf. Diapos: prez02-tad.pdf.
- ▷ Notes sur les tableaux : handout03-tableaux.pdf. Diapos: prez03-tableaux.pdf.
- ▶ Notes sur les listes : handout04-chaining.pdf. Diapos: prez04-chaining.pdf.

Sujets

- * Blocs de construction pour programmes Java.
- * Notions de type abstrait, interface, implémentation, client.
- ★ Types abstraits: pile et queue/file FIFO.
- * Listes chaînées¹¹. Variations : listes circulaires, doublement chaînées. Sentinelles¹² pour la tête et/ou la queue. Manipulation d'éléments sur la liste, insertion et suppression. Parcours d'une liste.
- \star Tableaux¹³.
- * Implantations de pile et de queue par tableau ou liste chaînée. Efficacité d'implantations différentes (temps de calcul pour les opérations standardes). Débordement.

- 8 http://algs4.cs.princeton.edu/11model/
- 9 http://algs4.cs.princeton.edu/12oop/
- 10 http://algs4.cs.princeton.edu/13stacks/

S§3.1;SW§1.1 S§4.1;SW§1.2 S§4.2,4.7

11 W_(fr):liste chaînée S§3.3,3.4;CLR§10.2 12 W_(en):sentinel

 13 $W_{(fr)}$:tableau

S§3.2

S§4.4,4.5,4.7;SW§1.3;CLR§10.1

F3 Arbres

Références

- ▶ Sedgewick §4.3, §5.4–5.7
- ▷ Cormen, Leiserson, Rivest & Stein §10.4.
- Notes sur les listes et les arbres : handout04-chaining.pdf. Diapos: prez04-chaining.pdf.

Sujets

*	Algorithmes récursifs. Diviser pour régner.	S§5.1,5.2
*	Terminologie pour structures arborescentes : arbre k-aire, hauteur,	S§5.4
	niveau, profondeur. Implémentation d'un arbre.	CLR§10.4
*	Propriétés d'arbres binaires (relations entre le nombre de nœuds in-	S§5.5
	ternes et externes ou la hauteur).	
*	Parcours d'un arbre : préfixe/préordre, infixe/dans l'ordre, post-	S§5.6
	fixe/postordre, ordre de niveau.	
*	Algorithmes récursifs sur les arbres : calcul de taille, hauteur ou profon-	S§5.7
	deur de sous-arbres.	
*	Arbre syntaxique. Conversions d'expressions arithmétiques : notations	S§4.3
	infixe, postfixe et préfixe.	

F4 Algorithmes sur graphes

Références

- ▶ Sedgewick §3.7, §5.8
- Sedgewick & Wayne §4.1¹⁴, §4.2¹⁵

14 http://algs4.cs.princeton.edu/41graph/ 15 http://algs4.cs.princeton.edu/42digraph/

- De Cormen, Leiserson, Rivest & Stein chapitre 22

▶ Notes sur les graphes : handout06-graphes.pdf. Diapos: prez06-graphes.pdf.

Sujets

*	Représentation	d'un graphe : matrice d'adjacence et listes d'adja-	S§3.7 ;SW§4.1 ;CLR§22.1
	cence ¹⁶ .		16 W _(en) :adjacency list
*	Parcours d'un g	raphe par profondeur et par largeur.	S§5.8;SW§4.1;CLR§22.2,§22.3

** Applications de parcours : composantes connexes, bipartition, tri topologique, plus courts chemins (à partir d'une source).

SW§4.2;CLR§22.4

F5 Appartenance-union

Références

- ▷ Sedgewick §1.2–1.3
- ▷ Sedgewick & Wayne §1.5¹⁷
- ▷ Cormen, Leiserson, Rivest & Stein §21.1–21.4
- ▷ Notes sur Union-Find : handout08-unionfind.pdf. Diapos: prez08-extreme.pdf.

Sujets

- * Problème de connexité, TA et opérations d'appartenance-union.
- * Structure Union-Find¹⁸. Techniques algorithmiques : union-parrang/union-par-taille, compression de chemin.
- ** Coût amorti d'opérations : $O(\alpha(m, n))$ pour Union-Find avec union équilibrée et compression de chemin; fonction d'Ackermann¹⁹ et son
- *** Croissance incalculable, fonction de Radó²⁰

S§1.2

 18 $W_{(fr)}$:union-find S§1.3;SW§1.5

19 W(fr):fonction d'Ackermann

17 http://algs4.cs.princeton.edu/15uf/

²⁰ W_(fr):fonction de Radó et le castor affairé

F6 File de priorité

Références

- ⊳ Sedgewick §9.1–9.6
- Sedgewick & Wayne §2.4²¹
- De Cormen, Leiserson, Rivest & Stein chapitre 6
- ▷ Notes sur la file de priorité : handout09-heap.pdf. Diapos: prez09-pq.pdf. Diapos: prez09-heapsort.pdf.

Sujets

- * Type abstrait de file de priorité²² min-tas/max-tas : opérations insert, deleteMin ou deleteMax. Implantations par tableau ou liste chaînée.
- * Arbre en ordre de tas²³. Tas binaire²⁴, sa représentation dans un ta-
- ** Manipulation du tas : nager/swim et couler/sink (heapisation montante et descendante).
- * heapify (établissement de l'ordre de tas dans un tableau); tri par tas²⁵, son temps de calcul et usage de mémoire.
- $\star\star\star$ Tas d-aire²⁶.

²¹ http://algs4.cs.princeton.edu/24pq/

S§9.1,9.5

 $^{22}\,W_{(en)} ; priority \; queue$

23 W(fr):tas

S§9.2,9.3;SW§2.4

24 W(fr):tas binaire

S§9.4

 25 $W_{(fr)}$:tri par tas

²⁶ W_(en):d-ary heap

F7Tableau de hachage

Références

- ⊳ Sedgewick chapitre 14
- Sedgewick & Wayne §3.4²⁷, §3.5²⁸.
- ²⁷ http://algs4.cs.princeton.edu/34hash/ 28 http://algs4.cs.princeton.edu/ ▷ Cormen, Leiserson, Rivest & Stein §11.1–11.4
- 35applications/ ▷ Notes sur le hachage : handout10-hashing.pdf. Diapos: prez10-hashing.pdf.

Sujets

* Type abstrait de dictionnaire/table de symboles/map.

* Notions de base pour tableaux de hachage²⁹ : facteur de charge/remplissage,

* Fonctions de hachage : méthodes de la division et de la multiplication.

* Résolution de collisions par chaînage séparé. Coût moyen des opérations de l'interface (table de symboles) en fonction de la facteur de charge.

* Addressage ouvert : notion de sondage/test. Procédures de recherche et d'insertion avec addressage ouvert. Suppression paresseuse et impatiente ; hachage dynamique (rehashing). Sondage linéaire, grappe forte. Double hachage.

- * Performance des opérations (pire cas, moyen cas)
- ** Coût moyen des opérations de l'interface avec sondage linéaire et double hachage en fonction de la facteur de charge.

S§12.1,12.2

S§14.1; CLR§11.2 ²⁹ W_(fr):table de hachage

CLR§11.3

S§14.2

S§14.3-14.6; CLR§11.4

F8 Méthodes de tri

Références

- ▷ Sedgewick §6.1–6.4, §6.6, §6.9; chapitres 7, 8 et 10.
- \triangleright Sedgewick & Wayne §2.1³⁰, §2.2³¹, §2.3³², §5.1³³, §6.2.
- ▷ Cormen, Leiserson, Rivest & Stein chapitres 2 et 7, §8.1–8.3.
- ▷ Notes sur les tris : handoutl1-sorting.pdf. Diapos: prezl1-sorting.pdf. Diapos: prez13-strings.pdf.

Sujets

- ★ Terminologie : tri interne et externe.
- \star Tri par sélection³⁴ et tri par insertion³⁵.
- * Performances des tris élémentaires (pire cas, meilleur cas, cas moyen).
- ** Tri de liste chaînée.
- * Fusion de 2 tableaux triés.
- * Tri par fusion³⁶ (descendant), sa performance.
- * Tri rapide³⁷ : algorithme de base. Améliorations : partition par la médiane-de-trois, petits sous-fichiers.
- * Performances du tri rapide (pire cas, meilleur cas, cas moyen)
- ** Génération d'une permutation aléatoire
- $\star\star\star$ Preuve de la performance moyenne $O(n\log n)$ du tri rapide.
- ** Preuve de la borne inférieure $\lg(n!) \sim n \lg n$ sur le nombre de comparaisons au pire pour trier
- ** Tri en temps linéaire : clés binaires, tri radix LSD et MSD

- 30 http://algs4.cs.princeton.edu/ 21elementary/
- 31 http://algs4.cs.princeton.edu/22mergesort/
- 32 http://algs4.cs.princeton.edu/23quicksort/
- 33 http://algs4.cs.princeton.edu/51radix

S§6.1

S§6.3,6.4; SW§2.1

34 W(fr):tri par sélection

 $^{35}\,W_{(fr)}$:tri par insertion

S§6.6

S§3.4,6.9

S§8.1

S§8.3,8.4; SW§2.2

36 W_(fr):tri fusion

 37 W_(fr):tri rapide

S§7.1,7.4,7.5; SW§2.3

S§7.2,7.3; SW§2.3; CLR 7

SW§2.2; CLR§8.1

SW§5.1;S§10.2,10.3,10.5;CLR§8.2,8.3

F9 Arbre binaire de recherche

Références

▷ Sedgewick chapitre 12, §13.1–13.4, §16.1–1	6.3
--	-----

▶ Sedgewick & Wayne §3.1³⁸, §3.2³⁹, §3.3⁴⁰, §6.2 (B-trees)

De Cormen, Leiserson, Rivest & Stein chapitres 12, 13, et 18

▷ Diapos: prez12-abr.pdf. Diapos: prez13-strings.pdf.

38 http://algs4.cs.princeton.edu/

31elementary/

39 http://algs4.cs.princeton.edu/32bst/

40 http://algs4.cs.princeton.edu/33balanced

Sujets

* Arbre binaire de recherche⁴¹. Procédures fondamentales sur un ABR : recherche, insertion, suppression. Recherche de minimum ou maximum, successeur ou prédecesseur.

* Performance moyenne des opérations sur un ABR standard avec clés aléatoires.

* Notion d'un ABR équilibré. Maintenance d'équilibre : rotations simples et doubles.

** ABR splay. Principle de déploiement (splaying). Coût amorti des opérations de l'interface (table de symboles).

*** Règles de déploiement.

* ABR rouge et noir⁴². Définition par rang (hauteur noire) ou coloriage; équivalence des deux définitions. Coût des opérations dans le pire cas.

** Hauteur maximale de l'arbre rouge et noir.

** Techniques de base avec l'ABR rouge et noir : promotion/rétrogradation, changement de couleur, rotation. Déroulement général d'une insertion ou suppression.

 $\star\star\star$ Déroulement détaillé de l'insertion et de la suppression dans l'arbre

** Arbre 2-3-4⁴³, et son équivalence avec l'arbre rouge et noir. Techniques de base sur les arbres 2-3-4 : décalage et découpage, leur relation aux rotations et promotions.

 $\star\star\star$ Arbre AVL, sa hauteur maximale; insertion dans l'arbre AVL.

** Recherche externe, recherche séquentielle indexée, arbre B

41 W(fr):ABR

S§12.6-12.9

S§13.1

S§13.2

42 W(fr):arbre bicolore

S§13.4

CLR§13.1,13.2

CLR§13.3,13.4

43 W_(en):2-3-4 tree

S§13.3

S§16.1-16.3; CLR 18

Introduction E0

THIS DOCUMENT defines the skills and knowledge for the final examination in IFT2015, which is also the second part of the examen pré-doctoral in data structures (as IFT6002).

- → I marked the subjects by levels of mastery :
 - ★ satisfactory (50% at the final),
 - ** good (25%),
 - $\star\star\star$ excellent (25 40%).
- * The margin notes refer to the following books:
 - S Sedgewick, R. Algorithms in Java, Parts 1-4, 3rd edition (2003)
 - SW Sedgewick, R. and K. Wayne. Algorithms, 4th edition (2011)
 - CLR Cormen, T., E. L. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd edition.
- * The class notes and links to Wikipedia articles are available on the webpage http://ift2015a17.wordpress.com/.
- This is a closed-book exam.

Principles of algorithm analysis E1

References

- ▷ Sedgewick chapter 2
- ⊳ Sedgewick & Wayne §1.4⁴⁴

44 http://algs4.cs.princeton.edu/14analysis/

- ▷ Cormen, Leiserson, Rivest & Stein chapters 1–3
- ▶ Notes on the foundations: handout01-recursion.pdf. Slides: prez01-recursion.pdf.
- ▶ Notes on algorithm analysis: handout05-analysis.pdf. Slides: prez05-analysis.pdf.

Topics

* Basic principles: worst case, best case, average case.

S§2.1,2.2,2.7; CLR 1

- * Experimental validation of running time
- * Simple algorithms : sequential search, binary search, greatest common divisor
- * Common growth orders : constant, logarithmic, linear, linearithmic $(n \log n)$, quadratic, polynomial, exponential. Factorial (n!),
- ** Stirling's formula⁴⁵, Fibonacci numbers⁴⁶, harmonic numbers⁴⁷.
- * Asymptotic notation 48 : definitions of big-Oh O(f)
- ** small-oh o(f), $\Theta(f)$, and $\Omega(f)$. Using the definitions to prove f = O(g) or f = o(g).
- ** Arithmetic expressions involving asymptotics, rules : O(f) + O(g), $O(f) \cdot O(g)$. Connections to lim

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \qquad \Rightarrow \qquad f(n) = O(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \Leftrightarrow \qquad f(n) = o(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \qquad \Leftrightarrow \qquad f(n) \sim g(n)$$

- ⁴⁵ $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n; \lg(n!) \sim n \lg n$ 46 $F_n = F_{n-1} + F_{n-2}$ $^{47}H_n = \sum_{i=1}^n 1/i = \ln n + \gamma + o(1)$ 48 W_(en):big-O notation
- S§2.4;CLR 3

S§2.3

- ** Determination of space and time complexity for simple (iterative) algorithms, and for recursive algorithms (as a recursive expression).
- CLR 2 S§2.5,2.6

- f(n) = f(n-1) + O(1) f(n) = O(n); f(n) = f(n/2) + O(1) $f(n) = O(\log n);$
- f(n) = 2f(n/2) + O(1) f(n) = O(n); f(n) = 2f(n/2) + O(n) $f(n) = O(n \log n);$
- $\star\star\star$ Proof by induction for asymptotic recurrences.
- ** Notion of amortized cost.

* Basic recurrences.

** Proving amortized cost. Credit/debit method.

CLR §17.4

Elementary structures and abstract data types E2

References

- ⊳ Sedgewick chapters 3 et 4
- \triangleright Sedgewick & Wayne $\S 1.1^{49}$, $\S 1.2^{50}$, $\S 1.3^{51}$
- ▷ Cormen, Leiserson, Rivest & Stein \$10.1, \$10.2
- ▶ Notes on abstract data types: handout02-tad.pdf. Slides: prez02-tad.pdf.
- ▶ Notes on tables: handout03-tableaux.pdf. Slides: prez03-tableaux.pdf.
- ▶ Notes on linked lists: handout04-chaining.pdf. Slides: prez04-chaining.pdf.

Topics

- ★ Java building blocks.
- * Concept of an abstract data type, interface, implementation, client.
- * Abstract types for stacks and queues.
- ★ Linked lists⁵². Variations: circular, doubly-linked lists. Sentinels⁵³ for head and/or tail. Manipulation of elements, insertion and deletion. List traversal.
- \star Arrays⁵⁴.
- * Implementations of stack and queue by tables or linked lists. Running time for standard operations in different implementations. Overflow/underflow.

- 49 http://algs4.cs.princeton.edu/11model/
- 50 http://algs4.cs.princeton.edu/12oop/
- 51 http://algs4.cs.princeton.edu/13stacks/

S§3.1;SW§1.1

S§4.1;SW§1.2;

S§4.2,4.7

52 W(en):linked list S§3.3,3.4;CLR§10.2

53 W_(en):sentinel

54 W_(en):array

S§3.2

S§4.4,4.5,4.7;SW§1.3;CLR§10.1

E3 Trees

References

- Sedgewick §4.3, §5.4–5.7
- ▷ Cormen, Leiserson, Rivest & Stein §10.4.
- ▶ Notes on lists and trees: handout04-chaining.pdf. Slides: prez04-chaining.pdf.

Topics

*	Recursive algorithms. Divide-and-conquer.	S§5.1,5.2
*	Terminology for tree structures: k-ary tree, height, level, depth. Tree	S§5.4
	implementations.	CLR §10.4
*	Mathematical properties of binary trees (relationships between number	S§5.5
	of internal and external nodes, height)	
*	Tree traversal: preorder, inorder, postorder, level-order.	S§5.6
*	Recursions on trees: computing the size, height, or depth of subtrees.	S§5.7
*	Syntax tree. Conversion between arithmetic notations : infix, prefix	S§4.3
	and postfix.	

E4 Graph algorithms

References

▶ Sedgewick §3.7, §5.8

Sedgewick & Wayne §4.1⁵⁵, §4.2⁵⁶

De Cormen, Leiserson, Rivest & Stein chapter 22

▷ Notes on graphs: handout06-graphes.pdf. Slides: prez06-graphes.pdf.

55 http://algs4.cs.princeton.edu/41graph/

56 http://algs4.cs.princeton.edu/42digraph/

Topics

★ Graph representations by adjacency matrix and adjacency lists ⁵ /.	S§3.7;SW§4.1;CLR§22.1	
★ Depth-first and breadth-first search (DFS and BFS) in a graph	⁵⁷ W _(en) :adjacency list	
** Applications of graph traversal : connected components, bipartite	S§5.8;SW§4.1;CLR§22.2	
graph, topological sort, (single-source) shortest paths	S§4.2;CLR§22.4	

Union-find E5

References

- ▷ Sedgewick §1.2–1.3
- Sedgewick & Wayne §1.5⁵⁸
- ▷ Cormen, Leiserson, Rivest & Stein §21.1–21.4
- ▷ Notes on Union-Find: handout08-unionfind.pdf. Slides: prez08-extreme.pdf.

Topics

- * Connectivity problems, union-find operations.
- ★ Union-Find⁵⁹ data structure. Techniques: union-by-rank/union-bysize, path compression.
- ** Amortized cost per operation : $O(\alpha(m, n))$ for Union-Find with balanced trees and path compression; Ackermann⁶⁰ function and its
- $\star\star\star$ Non-computable function, Radó's busy beaver function⁶¹

- S§1.2
- 59 $W_{\text{(en)}}$:union-find S§1.3;SW§1.5
- 60 W_(en):Ackermann function

58 http://algs4.cs.princeton.edu/15uf/

 $^{61}\,W_{\text{(en)}}\text{:busy beaver function}$

E6 Priority queue

References

- ▶ Sedgewick §9.1–9.6
- Sedgewick & Wayne §2.4⁶²
- De Cormen, Leiserson, Rivest & Stein Chapter 6
- ▷ Notes on priority queue: handout09-heap.pdf. Slides: prez09-pq.pdf. Slides: prez09-heapsort.pdf.

62 http://algs4.cs.princeton.edu/24pq/

Topics

- \star ADT for priority queue⁶³: operations insert, deleteMin or deleteMax. Implementations by table or linked list.
- * Heap⁶⁴ order for a tree. Binary heap⁶⁵, its representation in a table.
- ★★ Heap manipulation : swim and sink.
- * heapify (linear-time construction of heap order in a table); Heapsort⁶⁶, its running time and memory use.
- $\star\star\star$ d-ary heap⁶⁷.

S§9.1,9.5

 63 $W_{\text{(en)}}$:priority queue

64 W(en):heap

S§9.2,9.3;SW§2.4

65 W_(en):binary heap S§9.4

 $^{66}\ W_{(en)} : heapsort$

67 W_(en):d-ary heap

Hash table E7

Reference

- ▷ Sedgewick chapter 14.
- Sedgewick & Wayne §3.4⁶⁸, §3.5⁶⁹.
- ▷ Cormen, Leiserson, Rivest & Stein §11.1–11.4
- ▶ Notes on hashing: handout10-hashing.pdf. Slides: prez10-hashing.pdf.

68 http://algs4.cs.princeton.edu/34hash/

69 http://algs4.cs.princeton.edu/ 35applications/

Topics

- ★ Abstract data type for dictionary = symbol table = map.
- \star Basic notions for hashtables⁷⁰: load factor, collisions.
- * Hash functions : division and multiplication methods.
- ★ Collision resolution by separate chaining. Average-case performance with separate chaining as function of the load factor.
- ★ Open addressing: probe sequence. Search and insertion with open addressing. Lazy and eager deletion, dynamic hashing. Linear probing, primary clustering. Double hashing.
- * Average and worst-case performance of operations
- ** Cost of operations with linear and quadratic probing in function of the load factor.

S§12.1,12.2 S§14.1; CLR §11.2 $^{70}\,W_{(en)}$:hashtable CLR §11.3 S§14.2

S§14.3-14.6; CLR §11.4

E8 Sorting algorithms

References

- ▶ Sedgewick §6.1–6.4, §6.6, §6.9; chapters 7, 8 and 10.
- ▶ Sedgewick & Wayne §2.1⁷¹, §2.2⁷², §2.3⁷³, §5.1⁷⁴, §6.2.
- ▷ Cormen, Leiserson, Rivest & Stein Chapters 2 and 7, §8.1–8.3.
- ▶ Notes on sorting algorithms: handoutl1-sorting.pdf.
- ▷ Slides: prez11-sorting.pdf. Slides: prez13-strings.pdf.

Topics

- * Terminology: internal and external sort.
- \star Insertion⁷⁵ sort and selection⁷⁶ sort.
- * Performance of elementary sorting algorithms (worst case, best case, average case).
- ** Sorting a linked list.
- * Merging sorted arrays.
- * Mergesort⁷⁷ (top-down), its performance.
- * Quicksort⁷⁸: basic algorithm. Improvements: pivoting by median-ofthree, small subarrays.
- * Performance of quicksort (worst case, best case, average case).
- ** Generating a random permutation
- $\star \star \star$ Proof of $O(n \log n)$ average running time for quicksort.
- ** Proof of the lower bound $\lg(n!) \sim n \lg n$ for the worst-case number of comparisons
- * Linear-time sorting: binary keys, radix sort

- 71 http://algs4.cs.princeton.edu/ 21elementary/
- 72 http://algs4.cs.princeton.edu/22mergesort/
- 73 http://algs4.cs.princeton.edu/23quicksort/
- 74 http://algs4.cs.princeton.edu/51radix

S§6.1

 $^{75}\,W_{(en)}$:insertion sort

⁷⁶ W_(en):selection sort

S§6.3,6.4; SW§2.1

S§6.6

S§3.4,6.9

S§8.1

 $^{77}\ W_{(en)} ; merge\ sort$

S§8.3,8.4; SW§2.2

78 W_(en):quicksort

S§7.1,7.4,7.5; SW§2.3; CLR 7

S§7.2,7.3

SW§2.2; CLR§8.1

SW§5.1;S§10.2,10.3,10.5;CLR§8.2,8.3

E9 Binary search trees

Reference

- ▶ Sedgewick chapters 12, §13.1, §13.3 and §13.4, §16.1–16.3
- ▶ Sedgewick & Wayne §3.1⁷⁹, §3.2⁸⁰, §3.3⁸¹, §6.2 (B-trees)
- De Cormen, Leiserson, Rivest & Stein chapters 12, 13 and 18
- ▷ Diapos: prez12-abr.pdf. Diapos: prez13-strings.pdf.

Topics

- ★ Binary search tree⁸². Basic techniques: search, insertion, deletion. Searching for minimum or maximum, successor or predecessor.
- * Average performance of a standard BST with random keys.
- * Notion of a balanced BST. Maintaining the balance : simple and double
- ** Splay trees. Principle of splaying. Amortized cost of operations.
- *** Splaying rules.
- * Red-black tree⁸³. Definition by rank (black height) or coloring; equivalence of the two definitions. Time complexity for operations in the worst-case.
- ** Maximum height of a red-black tree.
- ** Basic techniques for red-black trees: promotion/demotion, recoloring, rotations. General outline of insertion and deletion.
- $\star\star\star$ Detailed (case-by-case) steps in insertion and deletion in a red=black
- ** 2-3-4 tree⁸⁴, its equivalence with the red-black tree. Basic techniques with 2-3-4 trees: shifting and splitting, relationship with promotions and rotations in red-black tree.
- ** * AVL tree, definition, and bound on height; insertion in AVL tree
- ** External search, indexed sequential access, B tree

79 http://algs4.cs.princeton.edu/ 31elementary/

80 http://algs4.cs.princeton.edu/32bst/

81 http://algs4.cs.princeton.edu/33balanced

S§13.2

S§13.1

82 W(en):BST S§12.6-12.9

83 W_(en):red-black tree S§13.4

CLR§13.1,13.2

CLR§13.3,13.4 84 W(en):2-3-4 tree S§13.3

S§16.1-16.3; CLR 18