Abstract

These notes are based on Julius Shaneson's lectures for the course "Algebraic Topology, Part I" at UPenn. Any mistake in what follows is my own.

Contents

1	Bac	ekground material	2
	1.1	Lecture 1	2
	1.2	Lecture 2	4
	1.3	Lecture 3	6
	1.4	Lecture 4	9
	1.5	Lecture 5	12
2	Fiber bundles		
	2.1	Lecture 6	15
	2.2	Lecture 7	16
	2.3	Lecture 8	18
	2.4	Lecture 9	21
	2.5	Lecture 10	23
	2.6	Lecture 11	27
3	Spectral sequences		
	3.1	Lecture 12	31
	3.2	Lecture 13	36
	Characteristic classes		
	11	Lecture 14	30

1 Background material

1.1 Lecture 1

Here are the topics for the course:

- fiber bundles over cell complexes,
- spectral sequences,
- characteristic classes, and
- cobordism theory.

To start, let's review some basic concepts from homology theory.

Definition 1.1.1. A (finite) cell complex is a (topological) space X that can be written as $\bigcup_{n=0}^{K} X^n$ for some $K \in \mathbb{N}$ (called the dimension of X) where

- X^0 is chosen to be finite,
- $X^n = \frac{X^{n-1} \coprod D_1^n \coprod \cdots \coprod D_{k_n}^n}{x \sim \varphi_i(x)},$
- $D_i^n \cong D^n := \{x \in \mathbb{R}^n : |x| \le 1\}$ for each $i \in \{1, \dots, k_n\}$, and
- $\varphi_i: \partial D_i^n = S^{n-1} \to X^{n-1}$, called an attaching map.

Terminology. Each D_i^n is called an n-cell of X.

Every attaching map $\varphi_i:\partial D_i^n\to X^{n-1}$ can be extended to a *characteristic map* given by the composite

$$D_i^n \hookrightarrow X^{n-1} \coprod D_1^n \coprod \cdots \coprod D_{k_n}^n \twoheadrightarrow X^n \hookrightarrow X.$$

Example 1.1.2. There are at least two ways of endowing S^2 with a cell structure.

- 1. $X^0 \equiv \{N, S\}, X^1 \equiv X^0 \cup_{\varphi_1} D_1^1 \cup_{\varphi_2} D_2^1$ where each φ_i is an embedding, and $X^2 \equiv X^1 \cup_{\varphi_1'} D_1^2 \cup_{\varphi_2'} D_2^2$ where each φ_i' is an embedding.
- 2. $\operatorname{pt} \cup_{\varphi} D^2$ where φ identifies the equator of the upper half-sphere with pt .

Definition 1.1.3. A cell complex X is regular if every characteristic map $D_i^n \to X$ is an embedding.

Definition 1.1.4. Given a family of functors $\{H_n : \mathbf{Top}^2 \to \mathbf{Ab}\}_{n \in \mathbb{N}}$ where \mathbf{Top}^2 denotes the category of (topological) pairs, we say that H_i is a *homology functor* if each of the following properties holds.

1. (LES) For any pair (X, A) of space, there is a natural long exact sequence

$$\cdots \longrightarrow H_i(A) \longrightarrow H_i(X) \longrightarrow H_i(X,A) \stackrel{\partial}{\longrightarrow} H_{i-1}(A) \longrightarrow \cdots,$$

where $H_i(Z) := H_i(Z, \emptyset)$ for any space Z.

2. (Excision) If $\operatorname{cl}(A) \subset \underset{open}{U} \subset X$, then $H_i(X \setminus A, U \setminus A) \cong H_i(X, U)$.

- 3. (Dimension) $H_i(\mathsf{pt}) = \begin{cases} 0 & i \neq 0 \\ \mathbb{Z} & i = 0 \end{cases}$.
- 4. (Homotopy) If f and g are homotopic, then $f_* = g_*$, where $h_* := H_i(h)$ for any map $h: (X, A) \to (Y, B)$.

Theorem 1.1.5. There exists a family of homology functors.

Example 1.1.6. In singular homology theory, we have that $H_i(S^n) = \begin{cases} \mathbb{Z} & i = 0, n \\ 0 & \text{otherwise} \end{cases}$.

Let X be a cell complex. Let $C_n(X)$ denote the free abelian group on the set of all n-cells of X. Define $\partial: C_n(X) \to C_{n-1}(X)$ by $\partial[D_i^n] = \sum_{j=1}^{k_{n-1}} \lambda_{ij} [D_j^{n-1}]$ where λ_{ij} is defined, up to sign, as follows. Consider the map

Then let λ_{ij} satisfy $\omega_*(x) = \lambda_{ij}x$ with x a chosen generator (i.e., orientation) of $H_{n-1}(S^{n-1}) \cong \mathbb{Z}$. Terminology. The integer λ_{ij} is called the degree of ω , denoted by $\deg(\omega)$.

Theorem 1.1.7. $\partial_n \partial_{n+1} = 0$, and $H_n(X) \cong \ker \partial_n /_{\operatorname{im} \partial_{n+1}}$, which is independent of our choice of generator x.

Example 1.1.8. Suppose that $f: S^n \to S^n$ is smooth. By Sard's theorem, we can find a regular value $x \in S^n$. There is some neighborhood U of x such that $f^{-1}(U) = U_1 \cup \cdots \cup U_n$ for some n. Using the inverse function theorem and the compactness of S^n , it follows that f^{-1} is of the form $\{x_1, \ldots, x_n\}$. Note that the differential $(df)_{x_i}: S^n_{x_i} \to S^n_x$ satisfies $\det(df)_{x_i} - \pm 1$. In fact,

$$\deg(f) = \sum_{i=1}^{n} \det (df)_{x_i}.$$

Exercise 1.1.9. Prove that any finite cell complex $X = X^K$ is homotopy equivalent to a regular cell complex. (Hint: Consider the map $S^{n-1} \to X^{n-1} \times D^n$ given by $x \mapsto (\varphi(x), x)$ where φ denotes an attaching map of X.)

Proof. Let us construct recursively a finite sequence A^0, A^1, \ldots, A^K of spaces such that each A^i carries the stricture of a regular cell complex and is homotopy equivalent to X^i . For each $n \in \{1, \ldots, K\}$, let k_n denote the necessarily finite number of attaching maps $\varphi_{\alpha_1}, \ldots, \varphi_{\alpha_{k_n}} : S^{n-1} \to X^{n-1}$ for the *n*-skeleton of X. Let

$$A^0 = X^0 \times D^1_{\alpha_1} \times \cdots D^1_{\alpha_{k_1}},$$

viewed as a product of finite cell-complexes. Note that the topology of A^0 is precisely the product topology. Thus, A^0 is homotopy equivalent to X^0 as D^1 is contractible. Now, suppose that $0 \le n \le K-1$ and that we have constructed our desired space A^n . This means that there is some homotopy equivalence $\gamma_n: X^n \to A^n$. Form A^{n+1} by attaching finitely many (n+1)-cells $e_{\alpha_1}^{n+1}, \ldots, e_{\alpha_{k_{n+1}}}^{n+1}$ to $Z_n \equiv A^n \times D_{\alpha_1}^{n+1} \times \cdots \times D_{\alpha_{k_{n+1}}}^{n+1}$ via the maps

$$\psi_{\alpha_i}: S^n \to A^n \times D_{\alpha_1}^{n+1} \times \dots \times D_{\alpha_{k_{n+1}}}^{n+1}$$
$$x \mapsto \left(\gamma_n \circ \varphi_i(x), 0, \dots, 0, \underbrace{x}_{i\text{-th spot}}, 0, \dots, 0\right)$$

where Z_n is viewed as a product of finite cell complexes (whose topology is precisely the product topology). It is easy to see that A^{n+1} is homotopy equivalent to X^{n+1} . Moreover, since each map ψ_{α_i} is an embedding and any n-disk has the structure of a regular cell complex, we see from our construction of (A^i) that A^K has the structure of a regular cell complex. By design, this space is homotopy equivalent to X^K , thereby completing our proof.

1.2 Lecture 2

Example 1.2.1 (Real projective space). Recall that $\mathbb{RP}^n = S^n/_{x \sim -x}$. Then $\mathbb{RP}^n = \mathbb{RP}^{n-1} \cup_{\pi_{n-1}} D^n$ where $\pi_{n-1}: S^{n-1} \to \mathbb{RP}^{n-1}$ denotes the canonical projection. Thus, \mathbb{RP}^n is an n-dimension cell complex with $(\mathbb{RP}^n)^m = \mathbb{RP}^m$ for each integer $0 \le m \le n$.

Now, for each $0 \leq m \leq n$, we have that $C_m(\mathbb{RP}^n) \cong \mathbb{Z}$ with generator $[D^m]$. To determine $\partial[D^m] \in C_{m-1}(\mathbb{RP}^m)$, we must find the degree of the map

Assume, for simplicity, that m=2. Choose a regular value $p \in S^1$ so that $\varphi^{-1}(p) = \{N, S\}$. Let φ_T and φ_B denote the restrictions of φ to the top and bottom components of $S^1 \setminus \{(-1,0),(1,0)\}$, respectively. Note that both of these are homeomorphisms and thus have degrees equal to ± 1 . If $a: S^{m-1} \to S^{m-1}$ denotes the antipodal map, we have that $\varphi_B \circ a = \varphi_T$. Hence $(d\varphi)_S \circ (da)_N = (d\varphi)_N$. Since $\deg(a) = \det(da) = (-1)^m$, it follows that

$$\deg(\varphi) = \begin{cases} \pm 2 & m \text{ even} \\ 0 & m \text{ odd} \end{cases}.$$

Thus, we get a chain complex

$$0 \longrightarrow C_n(\mathbb{RP}^n) \xrightarrow{\kappa_1} C_{n-1}(\mathbb{RP}^n) \xrightarrow{\kappa_2} \cdots \xrightarrow{0} C_2(\mathbb{RP}^n) \xrightarrow{\pm 2} C_1(\mathbb{RP}^n) \xrightarrow{0} C_0(\mathbb{RP}^n) \longrightarrow 0$$

where
$$\kappa_1 = \begin{cases}
0 & n \text{ odd} \\
\pm 2 & n \text{ even}
\end{cases}$$
 and $\kappa_2 = \begin{cases}
\pm 2 & n \text{ odd} \\
0 & n \text{ even}
\end{cases}$.

This proves that

$$H_i(\mathbb{RP}^n) = egin{cases} \mathbb{Z} & i = 0 \ \mathbb{Z}_2 & i = 1 \ 0 & i = 2 \ \mathbb{Z}_2 & i < n \ odd & odd \ 0 & i > n \ \mathbb{Z} & i = n \text{ odd} \ 0 & i = n \text{ even} \end{cases}.$$

Example 1.2.2. $H_{2i}(\mathbb{CP}^n) \cong \mathbb{Z}$.

Next, let's introduce some fundamental concepts from homotopy theory.

Definition 1.2.3. Let M(X,Y) denote the set of maps $X \to Y$.

1. For any compact $C \subset X$ and open $U \subset Y$, let

$$N(C,U) = \{ f: X \to Y \mid f(C) \subset U \}.$$

The compact-open topology on M(X,Y) consists of all unions of finite intersections of subsets of the form N(C,U). Under this topology, M(X,Y) is called a mapping space.

2. The *n*-th loop space of a pointed space (X, x) is

$$\Omega^{n-1}(X,x) := M((D^{n-1}, \partial D^{n-1}), (X,x)),$$

which is a subset of $M(D^{n-1}, X)$.

Definition 1.2.4 (Higher homotopy groups). If $n \geq 2$, then the *n*-th homotopy group of (X, x) is

$$\pi_n(X,x) := \pi_1(\Omega^{n-1}X, e_x).$$

Recall that $\pi_1(-)$ is a functor $\mathbf{Top}_* \to \mathbf{Grp}$. Also, $\Omega^{n-1}(-)$ is a functor $\mathbf{Top}_* \to \mathbf{Top}$ defined on morphisms $f: (X, x) \to (Y, y)$ by post-composition with f. Therefore, it's easy to see that $\pi_n(-)$ is a functor $\mathbf{Top}_* \to \mathbf{Grp}$ as well.

Notation. Let $f_* = \pi_n(f)$ for any $f: (X, x) \to (Y, y)$.

Proposition 1.2.5. There is a homeomorphism $M(X \times Y, Z) \cong M(X, M(Y, Z))$ so long as Y is locally compact and Hausdorff.

In particular, we have a composite

$$M(([0,1],\{0,1\}),(M((D^{n-1},\partial),(X,x)),e_x))\hookrightarrow M([0,1],M(D^{n-1},X))\stackrel{\cong}{\longrightarrow} M([0,1]\times D^{n-1},X),$$

whose image is precisely $M((D^n, \partial), (X, x)) \cong M((S^n, \mathsf{pt}), (X, x))$. This proves that $\pi_n(X, x)$ consists of all homotopy classes of maps $(I^n, \partial) \to (X, x)$ under the operation [f] * [g] = [f * g] where

$$f * g(t_1, \dots, t_n) = \begin{cases} f(2t_1, t_2, \dots, t_n) & 0 \le t_1 \le \frac{1}{2} \\ f(2t_1 - 1, t_2, \dots, t_n) & \frac{1}{2} \le t \le 1 \end{cases}.$$

Lemma 1.2.6. If $n \geq 2$, then $\pi_n(X, x)$ is abelian.

Proof. Let f_1 and f_2 be maps $(I^n, \partial) \to (X, x)$. We must find a homotopy $F : I^n \times I \to X$ between $f_1 * f_2$ and $f_2 * f_1$ such that $F(t_1, \ldots, t_n, s) = x$ for any $(t_1, \ldots, t_n) \in \partial I^n$ and $s \in I$. To this end, first shrink the domains of f_1 and f_2 to small n-cubes in I^n (thereby thickening the set of points mapped to x under F), then slide these small cubes past each other, and finally enlarge them to their original sizes as follows.

Remark 1.2.7. A map $f: S^{n-1} \to X$ is homotopic to the constant map if and only if there is some g such that

commutes.

Theorem 1.2.8 (Whitehead). If $\psi: X \to Y$ is a map of connected cell complexes, then f is a homotopy equivalence if and only if $\psi_*: \pi_n(X, x) \to \pi_n(Y, y)$ is an isomorphism for each $n \in \mathbb{N}$.

A map $f: X \to Y$ of path connected spaces is a weak homotopy equivalence if it induces an isomorphism $\pi_n(X) \to \pi_n(Y)$ for each $n \in \mathbb{N}$. Since any cell complex is locally path connected, it is connected if and only if it is path connected. Hence Theorem 1.2.8 says that ψ is a homotopy equivalence if and only if it is a weak homotopy equivalence.

1.3 Lecture 3

Definition 1.3.1. If $x \in A \subset X$, then the *n*-th relative homotopy group $\pi_n(X, A, x)$ consists of all homotopy classes of maps $(D^n, S^{n-1}, x_0) \to (X, A, x)$.

We see that

$$M((D^n, S^{n-1}, x), (X, A, x_0)) \cong M((I^n, I^{n-1} \times \{1\}, \underbrace{\partial I^n \setminus \operatorname{Int}(I^{n-1} \times \{1\})}_{\partial_0 I^n}), (X, A, x_0))$$

by considering the homeomorphism $(I^n/\partial_0 I^n, \partial I^n/\partial_0 I^n) \cong (D^n, S^{n-1})$. Therefore, $\pi_n(X, A, x)$ can be viewed as consisting of all homotopy classes of maps $(I^n, \partial I^n, \partial_0 I^n) \to (X, A, x)$.

Definition 1.3.2. In order to interpret an exact sequence involving objects in the category of pointed sets, we define the kernel of a function $f:(X,x)\to (Y,y)$ of pointed sets as $\ker f\equiv f^{-1}(y)$.

Proposition 1.3.3.

- 1. If $n \geq 2$, then $\pi_n(X, A, x)$ is, in fact, a group.
- 2. If n > 3, then $\pi_n(X, A, x)$ is abelian.
- 3. We have a long exact sequence

$$\cdots \longrightarrow \pi_n(A,x) \longrightarrow \pi_n(X,x) \longrightarrow \pi_n(X,A,x) \xrightarrow{\partial} \pi_{n-1}(A,x)$$

$$\pi_{n-1}(X,x) \longleftrightarrow \cdots \longrightarrow \pi_0(A,x) \longrightarrow \pi_0(X,x) \longrightarrow 0$$

with $\partial[f] = [f \upharpoonright_{I^{n-1}}].$

Theorem 1.3.4 (Hurewicz). Let $n \in \mathbb{Z}_{\geq 2}$. If $\pi_i(X) = 0$ for each i < n, then $\pi_n(X) \cong H_n(X)$.

Note 1.3.5. This result can't be improved in general. For example, $\pi_3(S^2) \cong \mathbb{Z}$, whereas $H_3(S^2) = 0$.

Let $A \subset X$ be a subcomplex. Recall that $H_i(X, A) \cong H_i(X/A.*)$ for each $i \geq 1$. But it is *not* the case that $\pi_i(X, A) \cong \pi_i(X/A.*)$, for otherwise $\pi_i(S^n) \cong \pi_i(D^n, S^{n-1}) \cong \pi_i(S^{n-1})$, which is known to be false exactly when i > 2n - 2.

Example 1.3.6. $\pi_4(S^3) \cong \mathbb{Z}_2 \ncong \pi_4(S^4)$.

Finally, let's review the notion of a fibration of spaces.

Consider any map $f: Z \to B$. Recall that if $p: E \to B$ is a covering projection, then TFAE.

- 1. There exists a unique $\hat{f}: Z \to E$ such that $p \circ \hat{f} = f$.
- 2. $f_*(\pi_1(Z)) \subset p_*(\pi_1(E))$.

The existence of \hat{f} follows from the fact that any covering space satisfies the homotopy lifting property.

Definition 1.3.7 (Fibration). Suppose that $p: E \to B$ is any map. We say that p is a (Serre) fibration if it satisfies the homotopy lifting property, i.e., given a commutative square

$$\begin{array}{ccc} X \times \{0\} & \stackrel{\widehat{f_0}}{\longrightarrow} & E \\ & & \downarrow^p, \\ X \times [0,1] & \stackrel{f}{\longrightarrow} & B \end{array}$$

where X is a cell complex, there is some G such that

$$X \times \{0\} \xrightarrow{\widehat{f_0}} E$$

$$\downarrow p$$

$$X \times [0,1] \xrightarrow{f} B$$

commutes.

Theorem 1.3.8. If $p: E \to B$ is a fibration with $e \in F := p^{-1}(b)$, then

$$p_*: \pi_i(E, F, e) \xrightarrow{\cong} \pi_i(B, b, b) = \pi_i(B, b).$$

Proof. Let $f:(I^n,\partial I^n)\to (B,b)$. To prove that p_* is surjective, it suffices to find some $G:(I^n,\partial I^n)\to (E,F)$ such that

$$\partial_0 I^n \longrightarrow \{e\} \hookrightarrow F \hookrightarrow E$$

$$\downarrow p$$

$$I^{n-1} \times [0,1] \xrightarrow{f} B$$

commutes, for in this case $[p \circ G'] = [f]$. Since p is a fibration, there is some G such that

$$I^{n-1} \times \{0\} \longrightarrow \{e\} \hookrightarrow F \hookrightarrow E$$

$$\downarrow p$$

$$I^{n-1} \times [0,1] \longrightarrow f$$

commutes. But $(I^n, \partial_0 I^n) \cong (I^n, I^{n-1} \times \{0\})$, and thus such a G' is enough.

Corollary 1.3.9. We have a long exact sequence

$$\cdots \longrightarrow \pi_i(F,e) \longrightarrow \pi_i(E,e) \longrightarrow \pi_i(B,b) \xrightarrow{\partial} \pi_{i-1}(F,e) \longrightarrow \cdots$$

Example 1.3.10.

1. Suppose that

$$\begin{array}{ccc} X \times \{0\} & \stackrel{\hat{f}}{\longrightarrow} & B \times F \\ & \downarrow & \downarrow \\ X \times [0,1] & \stackrel{f}{\longrightarrow} & B \end{array}$$

commutes. Then $\hat{f}(x,0) = (\hat{f}_1(x,0), \hat{f}_2(x,0))$ where $\hat{f}_1(x,0) = f(x,0)$. Let $G(X,t) = (f(x,t), \hat{f}_2(x,0))$. Then

$$\begin{array}{ccc} X \times \{0\} & \xrightarrow{\widehat{f_0}} B \times F \\ & \downarrow & \downarrow \\ X \times [0,1] & \xrightarrow{f} & B \end{array}$$

commutes, so that π_B is a fibration. (Moreover, $\pi_n(B \times F) \cong \pi_n(B) \times \pi_n(F)$.)

- 2. Let $A \subset X$ be a subcomplex. The map $\varphi: M(X,Y) \to M(A,Y)$ defined by $f \mapsto f \upharpoonright_A$ is a fibration.
- 3. Define the Hopf fibration as the quotient map

$$S^{3} = \left\{ (z_{1}, z_{2}) \in \mathbb{C}^{2} \mid z_{1}\overline{z_{1}} + z_{2}\overline{z_{2}} = 1 \right\} \twoheadrightarrow S^{3} / x \sim -x = \mathbb{CP}^{1} = S^{2}.$$

Corollary 1.3.11. $\pi_3(S^3) \cong \pi_3(S^2)$.

Proof. Since we have an exact sequence

$$\pi_3(S^1) \longrightarrow \pi_3(S^3) \longrightarrow \pi_3(S^2) \longrightarrow \pi_2(S^1)$$
,

it suffices to show that both $\pi_3(S^1)$ and $\pi_2(S^1)$ are trivial. To this end, note that since $\pi_1(S^k) = 0$ for every k > 1, we can always find, for any $f: S^k \to S^1$, a map \hat{f} such that

$$S^{k} \xrightarrow{\hat{f}} \mathbb{R}$$

$$\downarrow_{e^{2\pi ix}}$$

$$S^{1}$$

commutes. Thus, f is homotopic to the constant map. Since f was arbitrary, our proof is complete. \Box

Definition 1.3.12. A map $p: E \to B$ is locally trivial if for any $b \in B$, there exist a neighborhood $U \ni b$ in B, a space F, and a homeomorphism $\varphi: p^{-1}(U) \xrightarrow{\cong} U \times F$ such that $\pi_U \circ \varphi = p \upharpoonright_{p^{-1}(U)}$.

Theorem 1.3.13. Any locally trivial map $p: E \to B$ is a fibration whenever B is a cell complex.

Exercise 1.3.14. Prove that the Hopf fibration is locally trivial.

Proof. For each $k \in \{0,1\}$, let $U_k = \{[z_0, z_1] \in \mathbb{CP}^1 \mid z_k \neq 0\}$. Then U_0 and U_1 form an open cover of \mathbb{CP}^1 . Note that the preimage of U_k under the Hopf fibration q is precisely $\{(z_0, z_1) \in S^3 \mid z_k \neq 0\}$. Define $f: q^{-1}(U_k) \to U_k \times S^1$ by

$$(z_0, z_1) \mapsto \left(\left[z_0, z_1 \right], \frac{z_k}{|z_k|} \right).$$

This is clearly continuous. Further, define the map $g: U_k \times S^1 \to q^{-1}(U_k)$ by

$$([z_0, z_1], e^{i\theta}) \mapsto \frac{e^{i\theta} |z_k|}{z_k |(z_0, z_1)|} (z_0, z_1).$$

Since U_k is a saturated open set, we have that the restriction of q to $q^{-1}(U_k)$ is a quotient map. But $g \circ q \upharpoonright_{q^{-1}(U_k)}$ is continuous, so that g is also continuous by the characteristic property of quotient maps. Finally, it is easy to verify that g and f are inverses of each other and that $\pi_{U_I} \circ f = p \upharpoonright_{q^{-1}(U_k)}$.

1.4 Lecture 4

Theorem 1.4.1. Let $A \subset X$ be a subcomplex. Define $r : M(X,Y) \to M(A,Y)$ by $r(f) = f \upharpoonright_A$. Then r is a fibration.

Proof. We must fill any diagram of the form

$$Z \times \{0\} \xrightarrow{\hat{f}} M(X,Y)$$

$$\downarrow^F \qquad \downarrow^r$$

$$Z \times [0,1] \xrightarrow{f} M(A,Y)$$

It suffices to find a map \overline{F} such that

commutes for, in this case, we can set $F(z,t)(x) = \overline{F}(z,t,x)$.

Note 1.4.2. Suppose that such an \overline{F} exists. Define $g: Z \times X \to Y$ by $g(z,x) = \hat{f}(z,0,x)$. Define $h: Z \times X \times [0,1] \to Y$ by $H(z,x,t) = \overline{F}(z,t,x)$. Then

commutes where $K(z,a,t) = \bar{f}(z,t,a)$. In the case where $Z = \mathsf{pt}$, this means that if $K: A \times [0,1] \to Y$ is a homotopy from a map $f: A \to Y$ and g extends f to X, then there exists a homotopy $H: X \times [0,1] \to Y$ such that $H \upharpoonright_{A \times [0,1]} = K$. In other words, the extension problem for cell complexes is a homotopy problem.

Let's return to proving our theorem. By induction, it suffices to consider just the case where $X = A \cup_{\varphi} D^n$, with characteristic map $\chi: D^n \to X$. Thus, it suffices to find a map w such that

commutes for, in this case, we can set $H(z,x,t)=g\cup_{\varphi}w$, thereby making

commute. To this end, define the retraction $u: D^n \times [0,1] \to D^n \times \{0\} \cup S^{n-1} \times [0,1]$ by picking a point * directly above the cylinder $D^n \times [0,1]$ and then sending any point x in the cylinder to the unique point

where $D^n \times \{0\} \cup S^{n-1} \times [0,1]$ intersects the line containing * and x. Now, define w so that

$$Z\times (D^n\times [0,1]) \xrightarrow{w} Y$$

$$\mathrm{id}_Z\times u \Big| \qquad \qquad \mathrm{id}_Z\times \big(g\circ\chi\cup K\circ(\varphi\times\mathrm{id}_{[0,1]})\big)$$

$$Z\times (D^n\times \{0\}\cup S^{n-1}\times [0,1])$$

commutes. \Box

Exercise 1.4.3. Let $x \in X$. Consider the loop space $\Omega(X,x) \equiv M((S^1,\mathsf{pt}),(X,x))$. Prove that $\pi_n(\Omega X) \cong \pi_{n+1}(X)$.

Proof. Consider the path space $PX \equiv \{\gamma : [0,1] \to X \mid \gamma(0) = x\}$ of (X,x), equipped with the compact-open topology. We claim that PX is contractible. Indeed, define $K : PX \times [0,1] \to PX$ by

$$(\gamma, t) \mapsto (s \mapsto \gamma(s(1-t)))$$
.

Then K is a homotopy from id_{PX} to the constant map at the constant path at x.

Define the map $p: PX \to X$ by $\gamma \mapsto \gamma(1)$. Then $p^{-1}(x) = \Omega(X)$. By Corollary 1.3.9, it suffices to show that p is a fibration. To this end, suppose that the square

$$\begin{array}{ccc} Y \times \{0\} & \stackrel{\hat{f}}{\longrightarrow} PX \\ & & \downarrow^p \\ Y \times [0,1] & \stackrel{f}{\longrightarrow} X \end{array}$$

commutes. Define $H: Y \times [0,1] \to PX$ by $(y,t) \mapsto H(y,t)$ where

$$H(y,t)(s) = \begin{cases} \hat{f}(y) ((1+t)s) & 0 \le s \le \frac{1}{1+t} \\ f(y,(1+t)s-1) & \frac{1}{1+t} \le s \le 1 \end{cases}.$$

We see that H is continuous when viewed as a function of (y, t, s) and thus is continuous. It is easy to check that

$$Y \times \{0\} \xrightarrow{\hat{f}} PX$$

$$\downarrow p$$

$$Y \times [0,1] \xrightarrow{f} X$$

commutes, as desired.

Let $p: E \to B$ be a map. Recall that the pullback of p along $f: X \to B$ is given explicitly as

$$f^*E \equiv \{(x, e) \in X \times E \mid f(x) = p(e)\}.$$

Let f^*p denote the map $\pi_X \upharpoonright_{f^*E}$.

Proposition 1.4.4. If p is a fibration, then so is f^*p .

Lemma 1.4.5. If p is locally trivial, then so is f^*p .

Proof. Let $a \in X$. Since p is locally trivial by assumption, we can find a neighborhood U of f(a) in B and a homeomorphism $\varphi: p^{-1}(U) \to U \times F$. Observe that

$$(f^*p)^{-1}(f^{-1}(U)) = \{(x,e) \mid f(x) = p(e), \ f(x) \in U\} \subset f^{-1}(U) \times p^{-1}(U).$$

Further, we have a map $\psi: f^{-1}(U) \to p^{-1}(U) \to f^{-1}(U) \times F$ given by $(x, e) \mapsto (x, \pi_F(\varphi(e)))$. Define $\lambda: f^{-1}(U) \times F \to (f^*p)^{-1}(f^{-1}(U))$ by $(x, y) \mapsto (x, \varphi^{-1}(f(x), y))$. Using the fact that

$$p^{-1}(U) \xrightarrow{\varphi} U \times F$$

$$\downarrow^{\pi_U}$$

$$\downarrow^{\pi_U}$$

commutes, it is easy to check that ψ and λ are inverses of each other.

1.5 Lecture 5

Theorem 1.5.1. Let B be a cell complex and let $p: E \to B$ be locally trivial. Then p is a fibration.

Proof. It suffices to prove the following claim:

If $h: Z \to X \times [0,1]$ is locally trivial, $X = \bigcup_{i=0}^n X^i$ is a cell complex, and $\sigma_0: X \times \{0\} \to Z$ satisfies $h \circ \sigma_0 = \mathrm{id}_{X \times \{0\}}$, then there is some map $\sigma: X \times [0,1] \to Z$ such that $\sigma_{X \times \{0\}} = \sigma_0$ and $h \circ \sigma = \mathrm{id}_{X \times [0,1]}$.

For, in this case, Lemma 1.4.5 implies that given any commutative square

$$\begin{array}{ccc} X \times \{0\} & \stackrel{\hat{f}}{\longrightarrow} & E \\ & & \downarrow^p, \\ X \times [0,1] & \stackrel{f}{\longrightarrow} & B \end{array}$$

we can find some σ such that

$$f^*E \longrightarrow E$$

$$\downarrow \int \sigma \qquad \qquad \downarrow p$$

$$X \times \{0\} \longrightarrow X \times [0,1] \longrightarrow B$$

commutes where $\sigma_0(x,0) = (x,0,\hat{f}(x,0)).$

For induction, let us assume that our claim is true for each $X^0, X^1, \ldots, X^{n-1}$. We may assume, wlog, that $X = D^n$. It suffices to find a map $\tau : S^{n-1} \times [0,1] \to Z$ such that $h \circ \tau = \mathrm{id}_{S^{n-1} \times [0,1]}$ and

$$D^{n} \times \{0\} \xrightarrow{\sigma_{0}} D^{n} \times [0,1] \xrightarrow{\tau} S^{n-1} \times [0,1]$$

$$S^{n-1} \times \{0\}$$

commutes as there is a retraction

$$r: D^n \times [0,1] \to D^n \times \{0\} \cup S^{n-1} \times [0,1]$$
.

To this end, fix a positive integer m. For each $j \in \{0, 1, ..., m\}$, let $a_j = \frac{j}{m}$ and let $I_j = [a_j, a_{j+1}]$. Since $D^n \times [0, 1]$ is compact, by making m large enough, we can ensure that $h \upharpoonright_{h^{-1}(I_{j_1} \times ... \times I_{j_{n+1}})}$ is trivial.

Claim. $h \upharpoonright_{h^{-1}(I_{j_1} \times \cdots \times I_{j_n} \times [0,1])}$ is also trivial.

Proof. We may assume, wlog, that h is trivial on $h^{-1}(I_{j_1} \times \cdots \times I_{j_n} \times I_j)$ for any j. Let $k \in \{0, 1, \dots, m-1\}$ and assume, for induction, that h is trivial on $h^{-1}(I_{j_1} \times \cdots \times I_{j_n} \times [0, a_k])$. Let $K = I_{j_1} \times \cdots \times I_{j_n}$ and $J = K \times [0, a_k]$ and $\tilde{J} = K \times [a_k, a_{k+1}]$. By assumption, there exists a homeomorphism $\varphi : h^{-1}(J) \xrightarrow{\cong} J \times F$ such that $\pi_J \circ \varphi = h$. Likewise, there exists a homeomorphism $\psi : h^{-1}(\tilde{J}) \xrightarrow{\cong} \tilde{J} \times F$ such that $\pi_{\tilde{J}} \circ \psi = h$. If $\psi = \varphi$ on $K \times \{a_k\}$, then $h^{-1}(J \cup \tilde{J}) \xrightarrow{\varphi \cup \psi} (J \cup \tilde{J}) \times F$ is a well-defined trivialization, in which case we're done. With this in mind, let

$$w = \left(\varphi \upharpoonright_{K \times \{a_k\}} \circ \left(\psi \upharpoonright_{K \times \{a_k\}}\right)^{-1}\right) \times \mathrm{id}_{[a_k, a_{k+1}]}.$$

Note that

$$h^{-1}(\tilde{J}) \xrightarrow{\psi} \tilde{J} \times F$$

$$\downarrow \downarrow w \times \mathrm{id}_F$$

$$\tilde{J} \leftarrow \pi_{\tilde{J}} \qquad \tilde{J} \times F$$

commutes and that $\gamma := ((w \times id_F) \circ \psi)$ agrees with φ on $K \times \{a_k\}$. Hence we may take $\varphi \cup \gamma$ as our desired trivialization.

As a result, we may assume that h is trivial on its entire domain, i.e., that h is the projection

$$(D^n \times [0,1]) \times F \twoheadrightarrow D^n \times [0,1]$$
.

Moreover, by induction, we can find a right inverse $\sigma: X^{n-1} \times [0,1] \to D^n \times [0,1]$ of $h: Z \to X^{n-1} \times [0,1]$ that extends $\sigma_0 \upharpoonright_{X^{n-1} \times \{0\}}$. But X^{n-1} consists of all (n-1)-dimensional faces of the n-cube, and thus we have a map

$$\tau \equiv \sigma \upharpoonright_{\partial I^n \times [0,1]} : S^{n-1} \times [0,1] \to (D^n \times [0,1]) \times F,$$

which has the form $(x,t) \mapsto (x,t,\tilde{\tau}(x,t))$. Further, σ_0 has the form $(x,0) \mapsto (x,0,\tilde{\sigma}_0(x,0))$. Therefore, our desired map $\sigma: D^n \times [0,1] \to (D^n \times [0,1]) \times F$ is given by

$$\sigma(x,t) = (x,t,(\tilde{\sigma}_0 \cup \tilde{\tau})(r(x,t))).$$

2 Fiber bundles

Definition 2.0.1. A topological group G is a group such that both multiplication $G \times G \stackrel{\mu}{\longrightarrow} G$ and inversion $G \stackrel{-^{-1}}{\longrightarrow} G$ are continuous.

Definition 2.0.2 (Fiber bundle). Let G be a topological group.

1. A fiber F of G is a space equipped with a faithful (i.e., injective) group action $\rho: G \to \operatorname{Homeo}(F) \subset M(F,F)$.

2. An atlas for the structure of a (fiber) bundle with group G and fiber F on a map $p: E \to B$ consists of

- (a) a family $(U_{\alpha}, h_{\alpha})_{\alpha \in A}$ where each U_{α} is open and each h_{α} is a homeomorphism $p^{-1}(U_{\alpha}) \to U_{\alpha} \times F$ and
- (b) a family of continuous transition functions $\{h_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to G\}_{\alpha,\beta \in A}$

such that

i
$$B = \bigcup_{\alpha \in A} U_{\alpha}$$
,
ii $\pi_{U_{\alpha}} \circ h_{\alpha} = p \upharpoonright_{p^{-1}(U_{\alpha})}$, and
iii $x \in U_{\alpha} \cap U_{\beta} \implies h_{\beta} \circ h_{\alpha}^{-1}(x, f) = (x, h_{\beta\alpha}(x) \cdot f)$

- 3. Two atlases are *compatible* if their union is an atlas.
- 4. A bundle structure on B is a maximal atlas on p.

Terminology. If B is equipped with a bundle structure, then we say that p is a (fiber) bundle.

Example 2.0.3.

1. The tangent bundle $\pi: TM \to M$ of a smooth n-manifold M is a bundle with group $GL(n,\mathbb{R})$.

Proof. Let (U, φ) be any coordinate chart for M with coordinate functions (x^i) . Define $h : \pi^{-1}(U) \to U \times \mathbb{R}^n$ by

$$v^{i} \frac{\partial}{\partial x^{i}}(p) \mapsto (p, (v^{1}, \dots, v^{n})).$$

It is clear that $\pi_U(h(p)) = \pi(c)$ for any $c \in \pi^{-1}(U)$. To see that h is a homeomorphism, note that the composite $(\varphi \times \mathrm{id}_{\mathbb{R}^n}) \circ h : \pi^{-1}(U) \to \varphi(U) \times \mathbb{R}^n$ is given by

$$v^i \frac{\partial}{\partial x^i}(p) \mapsto (x^1(p), \dots, x^n(p), v^1, \dots, v^n),$$

the inverse of which is given by $(x^1, \ldots, x^n, v^1, \ldots, v^n) \mapsto v^i \frac{\partial}{\partial x^i} (\varphi^{-1}(x))$. Therefore, $(\varphi \times id_{\mathbb{R}^n}) \circ h$ is given locally by

$$(x^1, \dots, x^n, v^1, \dots, v^n) \mapsto (\tilde{x}^1(x), \dots, \tilde{x}^n(x), \frac{\partial \tilde{x}^1}{\partial x^j}(x)v^j, \dots, \frac{\partial \tilde{x}^n}{\partial x^j}(x)v^j),$$

which is smooth. Thus, h is a diffeomorphism as the composite of two diffeomorphisms. In particular, h is a homeomorphism.

It remains to describe the transition functions $\{h_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n,\mathbb{R})\}$ for TM. Note that

$$U_{\alpha\beta} \times \mathbb{R}^n \xleftarrow{h_{\alpha}} \pi^{-1}(U_{\alpha\beta}) \xrightarrow{h_{\beta}} U_{\beta\alpha} \times \mathbb{R}^n$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$U_{\alpha\beta}$$

commutes. In particular, $\pi_1 \circ h_{\beta} \circ h_{\alpha}^{-1} = \pi_1$, which implies that $h_{\beta} \circ h_{\alpha}^{-1}(u,v) = (u, f(u,v))$ for some smooth map $f: U_{\alpha\beta} \times \mathbb{R}^n \to \mathbb{R}^n$. This must be a linear isomorphism when restricted to $\{u\} \times \mathbb{R}^n$ for any $u \in U_{\alpha\beta}$, which is uniquely determined by an element $h_{\beta\alpha}(u)$ of $GL(n,\mathbb{R})$ (provided that we have fixed a basis of \mathbb{R}^n). Hence

$$h_{\beta} \circ h_{\alpha}^{-1}(u,v) = (u, h_{\beta\alpha}(u)v)$$
.

Since the map $h_{\beta\alpha}: U_{\alpha\beta} \to \mathrm{GL}(n,\mathbb{R})$ is continuous, our proof is complete.

2. Let $p: E \to B$ be any bundle with group $\{e\}$. Then p is the trivial bundle, i.e., is isomorphic to the projection map.

Proof. We have that $h_{\beta} = h_{\alpha}$ on $p^{-1}(U_{\alpha} \cap U_{\beta}) = p^{-1}(U_{\alpha}) \cap p^{-1}(U_{\beta})$, so that $h \equiv \bigcup_{\alpha \in A} h_{\alpha}$ is a well-defined homeomorphism $E \cong B \times F$.

2.1 Lecture 6

Let $\{(U_{\alpha}, h_{\alpha})\}$ be a bundle structure with group G and fiber F on $p: E \to B$. Let $U = U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Consider the commutative diagram

$$U \times F \xrightarrow{h_{\alpha}^{-1}} p^{-1}(U) \xrightarrow{h_{\gamma}} U \times F \xrightarrow{h_{\beta}^{-1}} p^{-1}(U) \xrightarrow{h_{\gamma}} U \times F$$

The bottom row is given by $(u, f) \mapsto (u, h_{\beta\alpha}(u) \cdot f) \mapsto (u, h_{\gamma\beta}(u) \cdot (h_{\beta\alpha}(u) \cdot f)) = (u, (h_{\gamma\beta}(u)h_{\beta\alpha}(u)) \cdot f)$, and the top composite is given by $(u, f) \mapsto (u, h_{\gamma\alpha}(u) \cdot f)$. It follows that

$$h_{\gamma\beta}(u)h_{\beta\alpha}(u) = h_{\gamma\alpha}(u)$$

for each $u \in U$. This property is known as the *cocycle condition*.

Theorem 2.1.1. Let G be a topological group acting on a space F. Suppose that $\{U_{\alpha}\}$ is an open cover of B and $\{h_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to G\}$ is a family of continuous functions satisfying the cocycle condition. Then there exists a bundle $p: E \to B$ with group G, fiber F, and transition functions $h_{\beta\alpha}$.

Proof sketch. Let $E = \coprod_{\alpha} U_{\alpha} \times F_{\nearrow \sim}$ where $(u, f)_{\alpha} \sim (u, h_{\beta\alpha}(u) \cdot f)_{\beta}$. Define $p : E \to B$ by $(u, f) \mapsto u$. \square

Definition 2.1.2 (Bundle map). A morphism of bundles p_1 and p_2 with group G and fiber F is a commutative square of the form

$$E_1 \xrightarrow{\hat{g}} E_2$$

$$\downarrow^{p_1} \qquad \qquad \downarrow^{p_2}.$$

$$B_1 \xrightarrow{g} B_2$$

Suppose that (\hat{g}, g) is a bundle map $p_1 \to p_2$. Let $\{(U_\alpha, h_\alpha)\}$ and $\{(V_\beta, k_\beta)\}$ be bundle structures on B_2 and B_1 , respectively. We have a commutative diagram

so that $d_{\alpha\beta}(x,f) = (g(x), \lambda_{\alpha\beta}(x) \cdot f)$ for some continuous map $\lambda_{\alpha\beta} : g^{-1}(U_{\alpha}) \cap V_{\beta} \to G$. Letting $W = g^{-1}(U_{\alpha} \cap U_{\alpha'}) \cap (V_{\beta} \cap V_{\beta'})$, we have that

$$h_{\alpha'\alpha}(w)\lambda_{\alpha\beta}(w)k_{\beta\beta'}(w) = \lambda_{\alpha'\beta'}(w) \tag{\dagger}$$

for every $w \in W$.

Exercise 2.1.3 (Pullback bundle). Let $\{(U_{\alpha}, h_{\alpha})\}$ be a bundle structure on $p : E \to B$ with group G and consider the pullback diagram

$$\begin{array}{ccc} g^*E & \longrightarrow & E \\ & \downarrow^p \cdot & & \downarrow^p \cdot \\ X & \xrightarrow{g} & B \end{array}$$

Define $h'_{\beta\alpha}: g^{-1}(U_{\alpha}) \cap g^{-1}(U_{\beta}) \to G$ as the composite $h_{\beta\alpha} \circ g$ restricted to $g^{-1}(U_{\alpha} \cap U_{\beta})$. Show that the family $\{h'_{\beta\alpha}\}$ induces a bundle structure on g^*p .

Theorem 2.1.4. Every bundle map

$$E_1 \xrightarrow{\hat{g}} E_2$$

$$\downarrow^{p_1} \qquad \qquad \downarrow^{p_2}$$

$$B_1 \xrightarrow{q} B_2$$

factors as

$$E_{1} \xrightarrow{\tau} g^{*}E_{2} \xrightarrow{\bar{g}} E_{2}$$

$$\downarrow^{p_{1}} \qquad \qquad \downarrow^{g^{*}p_{2}} \qquad \downarrow^{p_{2}}$$

$$B_{1} \xrightarrow{\operatorname{id}_{B_{1}}} B_{1} \xrightarrow{g} B_{2}$$

where $\tau(e) = (p_1(e), \hat{g}(e))$ for any $e \in E_1$.

2.2 Lecture 7

Note 2.2.1. If $\{h_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to G\}$ is a family of transition functions, then

$$h_{\alpha\beta}(x) = (h_{\beta\alpha}(x))^{-1}$$

for any $x \in U_{\alpha} \cap U_{\beta}$. In particular, $h_{\alpha\alpha}(x) = (h_{\alpha\alpha}(x))^{-1}$.

Theorem 2.2.2. Any bundle map of the form

$$E_1 \xrightarrow{\hat{g}} E_2$$

$$\downarrow^{p_2}$$

$$B$$

is an isomorphism.

Proof. Note that

commutes. We have that $h_{\beta} \circ \hat{g} \circ k_{\alpha}^{-1}(x, f) = (x, \lambda_{\beta\alpha}(x) \cdot f)$. Thus, if $h_{\alpha}(e) = (x, f)$, then $h_{\alpha}(\hat{g}(e)) = (x, \lambda_{\alpha\alpha}(x) \cdot d)$. Let

$$(\hat{g})^{-1}(e) = k_{\alpha}^{-1}(x, \lambda_{\alpha\alpha}(x)^{-1} \cdot f)$$

where $(x, f) = h_{\alpha}(e)$. If this is well-defined on E_2 (??), then it indeed equals the inverse of \hat{g} . Moreover, by Note 2.2.1, it is easy to check that $d_{\alpha'\beta'}(x)^{-1}$ satisfies (†), and thus it can be shown that $(\hat{g})^{-1}$ is a bundle map.

Corollary 2.2.3. Every bundle $E \to X$ is isomorphic to the pullback of E by id_X .

Let $\{(U_{\alpha}, h_{\alpha})\}$ be a bundle structure with group G and fiber G on $p: E \to X$. In particular,

$$U_{\alpha} \times G \xleftarrow{h_{\alpha}} p^{-1} (U_{\alpha})$$

$$\downarrow \qquad \qquad p$$

$$U_{\alpha}$$

commutes. Define the free action $E \times G \to E$ by

$$e \cdot g = h_{\alpha}^{-1} \left(h_{\alpha}(e) \cdot g \right).$$

where $p(e) \in U_{\alpha}$ and $(u,h) \cdot g \equiv (u,hg)$. This is well-defined because it does not depend on our choice of α . Indeed, suppose that p(e) also belongs to U_{β} . We have that $h_{\alpha}(e) = (p(e),h)$ and $h_{\beta}(e) = (p(e),h')$ for some $h,h' \in G$. Then $e \cdot g = h_{\alpha}^{-1}(p(e),hg)$, and we must show that this equals $h_{\beta}^{-1}(p(e),h'g)$. Note that $h_{\beta}(e \cdot g) = (p(e),h_{\beta\alpha}(p(e))hg)$. But

$$(p(e), h_{\beta\alpha}(p(e))h) = h_{\beta}(h_{\alpha}^{-1}(p(e), h)) = (p(e), h'),$$

so that $h_{\beta\alpha}(p(e))h = h'$, and thus $h_{\beta}(e \cdot g) = (p(e), h'g)$, as desired.

Note 2.2.4. $E/G \cong \{p^{-1}(x) \mid x \in X\} \cong X$.

Definition 2.2.5 (Balanced product). Let F be a space. The balanced product $E \times_G F$ of E and F is the quotient space $E \times F/_{\sim}$ where

$$(e,f) \sim (eg,g^{-1}f)$$

for any $e \in E$ and $f \in F$.

By the universal property of the quotient space, there is a unique map \bar{p} such that

$$E \times F \longrightarrow E \times_G F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Notation. Let $\mathcal{B}(X, G, \rho, F)$ denote the set of all isomorphism classes of bundles over X with group G and fiber F.

Lemma 2.2.6. \bar{p} is a bundle with group G and fiber F.

Proof. As $(g, f) \sim (e_G, gf)$, we see that $(U \times G) \times_G F \cong U \times F$. Thus, we can endow \bar{p} with local trivializations and transition functions that are exactly similar to those for p.

Proposition 2.2.7. The function $p \mapsto \bar{p}$ defines a set isomorphism $\mathcal{B}(X, G, \rho, G) \stackrel{\cong}{\longrightarrow} \mathcal{B}(X, G, \rho, F)$.

Let $p_1: E \to B_1$ and $p_2: E \to B_2$ be bundles. Let $e_1 \in E_1$, $e_2 \in E_2$, and $b_1 \in B_1$.

Question. Can we find a bundle map

$$E_1 \xrightarrow{p_1} E_2$$

$$\downarrow^{p_2}$$

$$B_1 \xrightarrow{p_2} B_2$$

such that $e_1 \mapsto e_2$ and $e_1 \mapsto b_1$?

Define the action $G \times E_2 \to E_2$ by $g * e_2 = e_2 \cdot g^{-1}$. From this, we obtain a bundle

$$\psi: \underbrace{E_1 \times_G E_2}_{(E_1 \times E_2)/G} \to E_1 \times_G \mathsf{pt} \cong B_1$$

with fiber E_2 .

Lemma 2.2.8. There is a one-to-one correspondence between bundle maps $p_1 \rightarrow p_2$ and sections of ψ .

Proof. Suppose that σ is a section of ψ . As G acts freely on $E_1 \times E_2$, we see that for any $e \in E_1$, there exists a unique \tilde{e} such that $\sigma(p(e)) = [(e, \tilde{e})]$. Define $\hat{g} : E_1 \to E_2$ by $e \mapsto \tilde{e}$. This respects the action of G and thus must be a bundle map.

Now, let $A \subset B_1$ and suppose that

$$\begin{array}{ccc} p_1^{-1}(A) & \longrightarrow & E_2 \\ \downarrow & \alpha & & \downarrow^{p_2} \\ A & \longrightarrow & B_2 \end{array}$$

is a bundle map. Then α extends when ??. Also, the corresponding section

$$\sigma: A \to p^{-1}(A) \times_G E_2 \subset E_1 \times_G E_2$$

extends.

Definition 2.2.9 (Principal bundle). Let G be a topological group. A principal G-bundle is a fiber bundle with group G and fiber G with G acting on itself by left translation.

Theorem 2.2.10. Let f and g be homotopic maps $X \to Y$. Let $p: E \to Y$ be any bundle with group G and fiber F. Then $f^*p \cong g^*p$.

2.3 Lecture 8

Before proving this, we wish to determine when, given any two bundles $p_1: E_1 \to B_1$ and $p_2: E_2 \to B_2$ and any map $g: B_1 \to B_2$, we can find a map \hat{g} such that

$$E_1 \xrightarrow{\hat{g}} E_2$$

$$\downarrow^{p_1} \qquad \qquad \downarrow^{p_2}$$

$$B_1 \xrightarrow{g} B_2$$

commutes.

Define the diagonal action ΔG of G on $E_1 \times E_2$ by

$$(e_1, e_2) \cdot h = (e_1 \cdot h, e_2 \cdot h),$$

so that $E_1 \times_G E_2 = E_1 \times E_2 / \Delta_G$. By (\star) , we can find a unique map τ such that

$$E_1 \times_G E_2$$

$$\downarrow \qquad \qquad \tau$$

$$B_1 \leftarrow \xrightarrow{\pi_1} B_1 \times B_2$$

commutes.

Exercise 2.3.1. Show that \hat{g} exists if and only if there is some $\lambda: B_1 \to E_1 \times_G E_2$ such that $\tau(\lambda(b_1)) = (b_1, g(b_1))$.

Proof.

(\Leftarrow) As G acts freely on $E_1 \times E_2$, we see that $(e,e') \sim (e,e'') \implies e' = e''$ for any $e',e'' \in E_2$. Hence for any $e \in E_1$, there exists a unique $\hat{e} \in E_2$ such that $\lambda(p_1(e)) = [(e,\hat{e})]$. Let $\hat{g}(e) = \hat{e}$. Then \hat{g} is clearly continuous and G-equivariant, and thus (\hat{g},g) is a bundle map.

(\Longrightarrow) Consider the homeomorphism $\varphi: B_1 \xrightarrow{\cong} E_1/_G$ with $\varphi(b) = p_1^{-1}(b)$. Let $b \in B_1$. Let $\varphi(b) = [e]$. Define $\lambda: B_1 \to E_1 \times_G E_2$ by $\lambda(b) = [(e, \hat{g}(e))]$. Since \hat{g} is G-equivariant, we see that λ is well-defined. Further, λ is continuous as the quotient of the map

$$f: E_1 \to E_1 \times E_2, \quad f(x) = (x, \hat{g}(x))$$

by G. Finally, it is easy to check that $\tau(\lambda(b_1)) = (b_1, g(b_1))$ for any $b_1 \in B_1$.

Lemma 2.3.2. τ is locally trivial, hence a fibration.

Proof. Locally, we have that $E_1 \cong U \times G$ and $E_2 \cong V \times G$, so that $E_1 \times E_2 \cong U \times V \times G \times G$. It follows that, locally, $E_1 \times_G E_2 \cong U_1 \times U_2 \times G \times G / \Delta G$ where $\Delta G \equiv \{(g,g) \mid g \in G\}$.

Remark 2.3.3. In fact, τ is a bundle with fiber $G \times G/_{\Lambda G} \cong G$.

Proof of Theorem 2.2.10. Due to Proposition 2.2.7, we may assume that p is a principal G-bundle. By assumption, there is some homotopy $H: X \times I \to Y$ from f to g. Let $\omega = H^*p$. Then

$$f^*p = \omega \upharpoonright_{\omega^{-1}(X \times \{0\})} : \omega^{-1}(X \times \{0\}) \to X \times \{0\} \cong X$$

 $g^*p = \omega \upharpoonright_{\omega^{-1}(X \times \{1\})} : \omega^{-1}(X \times \{1\}) \to X \times \{1\} \cong X.$

Therefore, it suffices to show that $f^*p \times \mathrm{id}_I \cong \omega$ such that the diagram

commutes. For, in this case, our isomorphism restricts over $X \times \{1\}$, i.e., $g^*p = \omega \upharpoonright_{X \times \{1\}} \cong f^*p$. It thus suffices to exhibit a bundle map $f^*p \times I \to \omega$ over $\mathrm{id}_{X \times I}$ that equals the identity over $\omega \upharpoonright_{X \times \{0\}} = f^*p$.

Remark 2.3.4. It is easy to show that there is some bundle map $f^*p \times id_I \to \omega$. Indeed, by the homotopy lifting property, we obtain a section σ fitting into the commutative diagram

$$(f^*E \times I) \times_G H^*E$$

$$\downarrow^{\gamma}_{/\sigma}$$

$$X \times \{0\} \longrightarrow X \times I$$

in which case we obtain our desired map by Lemma 2.2.8. As mentioned, however, we want a bundle map that equals the identity over f^*p .

To get such a map, we must find a section λ such that

$$(f^*E \times I) \times_G H^*E$$

$$\downarrow^{\uparrow}_{I} \lambda \qquad \qquad \uparrow$$

$$X \times \{0\} \xrightarrow{\lambda_0} X \times I \xrightarrow{\Delta} (X \times I) \times (X \times I)$$

commutes. But λ must exist since τ is a fibration by virtue of Lemma 2.3.2.

Corollary 2.3.5. Any bundle over a contractible space B is trivial.

Proof. Let $i: \mathsf{pt} \to B$ and $\pi: B \to \mathsf{pt}$ denote inclusion and projection, respectively. Then

$$p \cong (\mathrm{id})^* p$$
$$\cong (i\pi)^* p$$
$$\cong \pi^* \underbrace{i^* p}_{\text{trivial}},$$

which is trivial since the pullback of a trivial bundle is trivial.

Corollary 2.3.6. Every bundle p over $X \times I$ is isomorphic to $(p \upharpoonright_{p^{-1}(X \times \{0\})}) \times \mathrm{id}_I$.

Example 2.3.7. Consider $S^1 \subset \mathbb{R}^2$ with center the origin. Let $p: E \to S^1$ be a bundle with group G and fiber F. Cover S^1 with the open intervals $I_1 := S^1 \setminus \{-1\}$ and $I_2 := S^1 \setminus \{1\}$. We may assume that $F = p^{-1}(-1)$. Then $E = E_1 \cup E_2$ where $E_i \cong I_i \times F$ via, say, φ_i for each i = 1, 2. By Corollary 2.3.6, we see that

$$\varphi_1 \upharpoonright_{\varphi_1^{-1}(\{1\} \times F)} = \varphi_2 \upharpoonright_{\varphi_2^{-1}(\{-1\} \times F)} = \mathrm{id}_F.$$

Moreover, the transition function $\varphi_2^{-1} \circ \varphi_1 \upharpoonright_{p^{-1}(1)} : F \to F$ is given by multiplication by some $g \in G$. Hence the map $G \to \mathcal{B}(S^1, G, F)$ is surjective. In fact, it can be shown that this maps descends to an isomorphism

$$\pi_0(G) \cong G/_{G_0} \xrightarrow{\cong} \mathcal{B}(S^1, G, F)$$

where G_0 denotes the connected component of e_G .

For example, if $G = F = GL(n, \mathbb{R})$, then $\pi_0(G)$ consists of the set of matrices with positive determinant and the set of matrices with negative determinant, so that $\mathcal{B}(S^1, G, F) \cong \mathbb{Z}_2$.

Example 2.3.8. The set $\mathcal{B}(S^2, G, F)$ is isomorphic to the set of homotopy classes of maps $S^1 \to G$, As it turns out, we can ignore base points, so that $\mathcal{B}(S^2, G, F) \cong \pi_1(G)$.

For example, if G = F = SO(2), then $G \cong S^1$, so that $\mathcal{B}(S^2, G, F) \cong \mathbb{Z}$.

2.4 Lecture 9

Theorem 2.4.1. Let X be a cell complex with dim $X \le n$. Let $A \subset X$ be a subcomplex. Let $p : E \to X$ be a bundle with fiber F such that $\pi_i(F, f) = 0$ for each $i \le n - 1$. Suppose that $\sigma_0 : A \to E$ satisfies $p \circ \sigma_0(a) = a$ for each $a \in A$. Then σ_0 extends to a section $\sigma : X \to E$ of p.

$$\begin{array}{c}
E \\
\downarrow \\
A & \longrightarrow X
\end{array}$$

Proof. First, assume that X is a regular complex. Since X is finite, we may assume that $X = A \cup_{S^{k-1}} D^k$ where $k \leq n$. Further, we may assume, wlog, that $X = D^k$. Thus, we must find a section σ such that

$$S^{k-1} \stackrel{E}{\longleftrightarrow} D^k$$

commutes. Since D^k is contractible, we have that $E \cong D^k \times F$. Then $\sigma_0(x) = (x, \tilde{\sigma}_0(x))$ for each $x \in S^{k-1}$. But $\tilde{\sigma}_0(x) : S^{k-1} \to F$ extends to a map $\tilde{\sigma} : D^k \to F$ because $\pi_{k-1}(F) = 0$. Hence we can take σ to be the map defined by $x \mapsto (x, \tilde{\sigma}(x))$.

Next, drop the assumption that X is regular. Using Exercise 1.1.9, we get a homotopy equivalence

$$(X,A)$$
 $(\overline{X},\overline{A})$
 $(\overline{X},\overline{A})$
regular

of pairs. Define $\overline{A} \to g^*E$ by $\overline{\sigma}_0(a) = (a, \sigma_0(g(a)))$. By our preceding discussion, this extends to a section $\overline{\sigma}$ on \overline{X} . We wish to find σ such that

$$g^*E \longrightarrow E$$

$$\bar{\sigma}_0 \left(\begin{array}{c} \downarrow \\ \overline{X} \\ \overline{X} \\ \overline{A} \end{array} \right) \xrightarrow{g} X \xrightarrow{g} A$$

commutes. But since $p \cong h^*g^*p$, we have a commutative diagram

from which we obtain our desired section σ .

Notation. $[X,Y] := (\text{homotopy classes of maps } X \to Y).$

Corollary 2.4.2. Let $p: E \to B$ be a principal G-bundle and suppose that $\pi_i(E) = 0$ for any $i \le n-1$. The function $\chi_X: [X, B] \to \mathcal{B}(X, G, G)$ given by $f \mapsto f^*p$ is bijective.

¹As dim \overline{X} > dim X, we tacitly rely on the fact that $\pi_i(F)$ is trivial for large enough i.

Proof.

Surjective: Let $p_1: E_1 \to X$ be a bundle. Due to Theorem 2.1.4, it suffices to find a bundle map (\hat{f}, f) such that

$$E_1 \xrightarrow{\hat{f}} E$$

$$\downarrow^{p_1} \qquad \qquad \downarrow$$

$$X \xrightarrow{f} B$$

commutes. Such a map can be found precisely when there exists a section of the bundle $E_1 \times_G E \to X$, which holds by applying Theorem 2.4.1 to the case where $A = \emptyset$.

Injective: Suppose that $\chi_X(f) = \chi_X(g)$. We must show that $f \simeq g$, i.e., that there is some bundle map (\hat{H}, H) such that

commutes. This is equivalent to finding a section λ such that

$$(X \times \{0,1\}) \times B \xleftarrow{\tau} (f^*p \times I) \times_G E$$

$$\uparrow \uparrow \qquad \qquad \downarrow \uparrow \lambda$$

$$X \times \{0,1\} \longleftrightarrow X \times I$$

commutes where

$$\gamma(x,t) = \begin{cases} (x,t,f(x)) & t = 0\\ (x,t,g(x)) & t = 1 \end{cases}.$$

But this exists by Theorem 2.4.1 because $\pi_i(E) = 0$ by assumption.

Definition 2.4.3 (Classifying space). A classifying space for principal G-bundles is a space B such that χ_X is bijective for every cell complex X.

Example 2.4.4. Let $G = \{\pm 1\}$. Then any principal G-bundle over X is a two-fold covering space of X, i.e., a subgroup of index two in $\pi(X)$, i.e., a nontrivial homomorphism $\pi_1 X \to G$.

For example, let $\{U_i\}$ denote the usual open covering of $\mathbb{RP}^n = S^n/G$. Let $\pi: S^n \to \mathbb{RP}^n$ denote the projection map. We have that $\pi^{-1}(U_i) \cong U_i \times G$. Indeed, define $h_i: \pi^{-1}(U_i) \to U_i \times G$ by

$$(x_0,\ldots,x_n)\mapsto\left(\left[x_0,\ldots,x_n\right],\frac{x_i}{\left|x_i\right|}\right),$$

the inverse of which is given by

$$(y_0, \dots y_n) \leftarrow ([x_0, \dots, x_n], \epsilon)$$

$$y_k \equiv \epsilon x_k \cdot \frac{|x_i|}{x_i}.$$

Note that any transition function $h_{ji}: U_i \cap U_j \to G$ is given by $h_{ji}(x) = -1$.

Using the fact that π_1 is the abelianization of H_1 along with the universal coefficient theorem for cohomology, one can prove the following.

Proposition 2.4.5. $\mathcal{B}(X,\mathbb{Z}_2,F)\cong [X,\mathbb{RP}^n]\cong \mathrm{Hom}(\pi_1(X),\mathbb{Z}_2)\cong H^1(X;\mathbb{Z}_2).$

Let $w_1 \in H^1(\mathbb{RP}^n; \mathbb{Z}_2) \cong \mathbb{Z}_2$ be nonzero. Let $p_1 : E \to X$ be a \mathbb{Z}_2 -bundle. We call $w_1(p_1) := f^*w_1 \in H^1(X; \mathbb{Z}_2)$ the first Stiefel-Whitney class of p.

2.5 Lecture 10

Example 2.5.1. Let $n \in \mathbb{N}$. Recall that \mathbb{CP}^n , by definition, consists of all the complex lines in \mathbb{C}^{n+1} . Let $G = S^1$. Then G acts on \mathbb{C}^{n+1} by $g \cdot (z_0, \ldots, z_n) = (gz_0, \ldots, gz_n)$. We have that $\mathbb{CP}^n \cong S^{2n+1}$ where $z \sim \zeta \cdot z$ for any $\zeta \in S^1$. Consider the projection map $\pi : S^{2n+1} \twoheadrightarrow \mathbb{CP}^n$. For each $i \in \{0, \ldots, n\}$, let $H_i = \{z \in \mathbb{CP}^n \mid z_i = 0\} \cong \mathbb{CP}^{n-1}$ and let $U_i = \mathbb{CP}^n \setminus H_i$. Then the U_i form an open cover of \mathbb{CP}^n . Define $h_i : \pi^{-1}(U_i) \to U_i \times S^1$ by $(z_0, \ldots, z_n) \mapsto \left([z_0, \ldots, z_n], \frac{z_i}{|z_i|}\right)$.

Exercise 2.5.2.

- 1. Prove that h_i is a homeomorphism.
- 2. Find the transition functions $h_{ij}: U_j \cap U_i \to S^1$.

Proof.

1. It is obvious that h_i is continuous. Define $g_i: U_i \times S^1 \to \pi^{-1}(U_i)$ by

$$([z_0, \dots, z_n], \epsilon) \mapsto (y_0, \dots, y_n)$$

$$y_k \equiv \epsilon z_k \cdot \frac{|z_i|}{z_i}, \ k = 0, \dots, n.$$

It is easy to check that this is well-defined and that g_i is the inverse of h_i . It remains to show that g_i is continuous. Consider the quotient map $q := \pi \times \mathrm{id}_{S^1} : S^{2n+1} \times S^1 \to \mathbb{CP}^n \times S^1$. Let $\widetilde{U}_i = \{z \in S^{2n+1} \mid z_i \neq 0\}$. Note that $g_i \circ q \upharpoonright_{\widetilde{U}_i \times S^1}$ is clearly continuous. But $\widetilde{U}_i \times S^1$ is both open in $S^{2n+1} \times S^1$ and saturated with respect to q. Hence $\upharpoonright_{\widetilde{U}_i \times S^1}$ is a quotient map, so that g_i is continuous.

2. Note that

$$h_i \circ h_j^{-1}\left(\left[z_0, \dots, z_n\right], \epsilon\right) = \left(\left[z_0, \dots, z_n\right], \epsilon \frac{|z_j|}{|z_j|} \cdot \frac{|z_i|}{|z_i|}\right)$$

for any $[z_0, \ldots, z_n] \in U_i \cap U_j$. This implies that

$$h_{ij}\left([z_0,\ldots,z_n]\right) = \frac{|z_j|}{z_j} \cdot \frac{z_i}{|z_i|}.$$

It follows that π is a principal S^1 -bundle. Since each homotopy group $\pi_i\left(S^{2n+1}\right)$ is trivial, Corollary 2.4.2 implies that

$$\mathcal{B}\left(X,S^{1},F\right)\cong\left[X,\mathbb{CP}^{n}\right],$$

which for large enough n, is isomorphic to $[X,\mathbb{CP}^{\infty}]$ where X denotes and any cell complex and

$$\mathbb{CP}^{\infty} \equiv \bigcup_{k \in \mathbb{N}} \mathbb{CP}^k$$

equipped with the weak topology.

Definition 2.5.3. An Eilenberg-MacLane space of type K(G,n) is a space satisfying

$$\begin{cases} \pi_i K = 0 & i \neq n \\ \pi_i K \cong G & i = n \end{cases}.$$

Theorem 2.5.4. If X is a cell complex, then $[X, K(G, n)] \cong H^n(X; G)$.

Example 2.5.5. By inspecting the long exact sequence

$$\underbrace{\pi_1\left(S^1\right)}_{\mathbb{Z}} \xrightarrow{\pi_2\left(\mathbb{CP}^n\right)} \pi_2\left(\mathbb{CP}^n\right) \\
\underbrace{\pi_1\left(S^1\right)}_{\mathbb{Z}} \xrightarrow{\pi_1\left(S^{2n+1}\right)} \cdots,$$

we see that \mathbb{CP}^n is an Eilenberg-MacLane space of type $K(\mathbb{Z},2)$. Moreover, there is a commutative triangle

for any $i \in \mathbb{N}$. Thus, $\pi_i(\mathbb{CP}^{\infty}) = \pi_i(\mathbb{CP}^n)$ when n is large enough. This means that \mathbb{CP}^{∞} is also an Eilenberg-MacLane space of type $K(\mathbb{Z}, 2)$. By Theorem 2.5.4, we have that

$$\mathcal{B}(X, S^1, F) \cong H^2(X; \mathbb{Z})$$

whenever X is a cell complex.

For us, a CW complex refers to a cell complex X for which there may be infinitely many attaching maps of any dimension. In this name, "C" stands for the property *closure-finite*, i.e., every open cell e^i is contained in a finite subcomplex of X. Further, "W" stands for the weak topology, with which X is equipped.

Remark 2.5.6. Each of our results holds even if we assume that a certain space is merely a CW complex rather than a cell complex.

We want to ensure that a classifying space for any topological group G exists. There are at least two famous ways of finding a classifying space for G.

Theorem 2.5.7 (Milnor construction). There is some functor $TopGrp \rightarrow PrinBund$ that maps each topological group G to a principal G-bundle

$$E_G \xrightarrow{p_G} B_G$$

such that B_G is a CW complex and $\pi_i(E_G) = 0$.

This means that B_G is a classifying space for principal G-bundles. Moreover, by applying our LES on homotopy groups to p_G , we see that $\pi_i(B_G) \cong \pi_{i-1}(G)$.

Our next method is slightly less powerful than Theorem 2.5.7 in that it produces a classifying space for principal G-bundles only over pointed connected (equivalently, path connected) CW complexes. At the same time, it produces "classifying" objects in settings other than that of principal G-bundles.

Theorem 2.5.8 (Brown representability). Consider the homotopy category $\operatorname{Ho}(\mathbf{CW}^{conn}_*)$ of pointed connected CW complexes. Let F be a functor $\operatorname{Ho}(\mathbf{CW}^{conn}_*)^{\operatorname{op}} \to \mathbf{Set}_*$ with the following properties.

(i) (Wedge axiom) F takes coproducts in $Ho(\mathbf{CW}^{conn}_*)$ to products in \mathbf{Set}_* , i.e.,

$$F\left(\bigvee_{\alpha}X_{\alpha}\right)\cong\prod_{\alpha}F(X_{\alpha}).$$

(ii) (Mayer-Vietoris axiom) F takes weak pushouts to weak pullbacks, i.e., the universal morphism

$$F(B \cup_A C) \to F(B) \times_{F(A)} F(C)$$

is a surjection (or split epimorphism) for any two cofibrations $A \to B$ and $A \to C$ in \mathbf{CW}^{conn}_* .

Then F is representable.²

By the Yoneda lemma, this means that there exists a pointed connected CW complex B along with an element $b \in F(B)$ such that the set map $[X, B] \to F(X)$ given by $g \mapsto F(g)(b)$ is a natural bijection in X. In particular, Theorem 2.5.8 applied to the functor taking any pointed connected CW complex to the set of all pointed principal G-bundles over X makes the object (B'_G, b) representing F a classifying space for G.

Remark 2.5.9. The converse of Theorem 2.5.8 is true because any representable contravariant functor takes colimits to limits.

Proof sketch of Theorem 2.5.8.

We say that a pointed connected CW complex B along with an element $b \in F(B)$ spherically represents F if the set map $\nu_X : [X, B] \to F(X)$ given by $g \mapsto F(g)(b)$ is a natural bijection in $X \in \{S^n \mid n \in \mathbb{Z}_{\geq 1}\}$.

Suppose that (B, b) and (B', b') are two objects spherically representing F. Let $f: B \to B'$ be a map such that F(f)(b') = b. Then f induces a weak homotopy equivalence. By Theorem 1.2.8, f must be a homotopy equivalence.

Now, let X be a pointed CW complex and $x \in F(X)$. It is known that there exist an object (B, b) spherically representing F and a map

$$\varphi: X \to B, \quad F(\varphi)(b) = x.$$
 (•)

Therefore, it suffices to prove the following assertion.

Claim. Any object (B,b) spherically representing F represents F.

Proof. We must show that ν_X is a bijection. In the interest of space, let us prove just that it is surjective. Let $x \in F(X)$ and consider the coproduct

$$X \xrightarrow{i_1} X \vee B \xleftarrow{i_2} B$$
.

By the wedge axiom, we have that $F(X \vee B) \cong F(X) \times F(B)$ with $F(i_1) \cong \pi_1$ and $F(i_2) \cong \pi_2$. Thus, we have an element $(x,b) \in F(X \vee B)$ such that $F(i_1)(x,b) = x$ and $F(i_2)(x,b) = b$. Thanks to (\bullet) , we can find

²According to a certain MathOverflow answer, Theorem 2.5.8 holds when F is instead a functor $\mathbf{CW} \to \mathbf{Ab}$.

an object $(\widehat{B}, \widehat{b})$ spherically representing F along with a map $\varphi : X \vee B \to \widehat{B}$ such that $F(\varphi)(\widehat{b}) = (x, b)$. It follows that

$$F(\varphi \circ i_1) \left(\hat{b} \right) = x$$
$$F(\varphi \circ i_2) \left(\hat{b} \right) = b.$$

Hence $\varphi \circ i_2$ is a homotopy equivalence $B \to \widehat{B}$, with homotopy inverse, say, η . This implies that

$$F(\eta \circ \varphi \circ i_2)(b) = x,$$

so that ν_X is surjective.

Let us turn to the question of uniqueness of a classifying space, having just considered the question of existence.

Lemma 2.5.10. Let $p_1: E_1 \to B_1$ and $p_2: E_2 \to B_2$ be classifying spaces for principal G-bundles. Then $B_1 \simeq B_2$.

Proof. By Corollary 2.4.2, there is some map $f: B_1 \to B_2$ such that $f^*p_2 \cong p_1$. Likewise, there is some map $g: B_2 \to B_1$ such that $g^*p_1 \cong p_2$. Therefore,

$$(f \circ g)^* p_2 \cong g^* f^* p_2$$
$$\cong g^* p_1$$
$$\cong p_2$$
$$\cong \mathrm{id}_{B_2}^* p_2.$$

Therefore, $f \circ g \simeq \mathrm{id}_{B_2}$. Similarly, $g \circ f \simeq \mathrm{id}_{B_1}$.

In particular, $B_G \simeq B'_G$.

Example 2.5.11. $B_{S^1} = \mathbb{CP}^{\infty}$.

Let $H \leq G$. Consider the commutative square

$$E_{G} \xrightarrow{q} E_{G}/H$$

$$\downarrow^{p_{G}} \qquad \qquad \downarrow^{r} .$$

$$B_{G} = E_{G}/G$$

Note that, locally, r looks like the trivial map with fiber G_H . Thus, q locally looks like the map

$$U \times G \to U \times G/_{H}$$
.

This shows that if the natural projection $G \to {}^G/_H$ is a principal H-bundle, then so is q. In this case, we have that $B_H \simeq {}^E G/_H$ by Corollary 2.4.2 together with Lemma 2.5.10.

Theorem 2.5.12. If G is a Lie group and H is a closed subgroup of G, then the natural projection $G \to {}^{G}\!\!/_{\!H}$ is a principal H-bundle.

Definition 2.5.13. The orthogonal group $O(n, \mathbb{R})$ is the group of $n \times n$ real matrices A such that $AA^t = A^t A = I_n$, equivalently, $Av \bullet Aw = v \bullet w$ for any $v, w \in \mathbb{R}^n$. We call such an A orthogonal.

In particular, if A is orthogonal, then ||Av|| = ||v|| for any $v \in \mathbb{R}^n$.

Example 2.5.14. The orthogonal group $O(n, \mathbb{R})$ is a closed subgroup of $GL(n, \mathbb{R})$ because $O(n, \mathbb{R}) = f^{-1}(I_n)$ where $f: GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$ is given by $X \mapsto XX^t$. Let $\gamma: GL(n, \mathbb{R}) \to O(n, \mathbb{R})$ denote the map given by the Gram-Schmidt procedure. Let $i: O(n, \mathbb{R}) \to GL(n, \mathbb{R})$ denote the inclusion map. Then γ and i are homotopy inverses of each other, so that

$$GL(n, \mathbb{R}) \simeq O(n, \mathbb{R})$$
.

Since $\pi: \mathrm{GL}\,(n,\mathbb{R}) \to \underbrace{\mathrm{GL}\,(n,\mathbb{R})}_{M}$ is an $\mathrm{O}\,(n,\mathbb{R})$ -bundle by Theorem 2.5.12, our LES on homotopy

groups applied to π shows that $\pi_i(M) = 0$ for each $i \in \mathbb{N}$. Further, our LES applied to the M-bundle $r: B_{\mathcal{O}(n,\mathbb{R})} \to B_{\mathrm{GL}(n,\mathbb{R})}$ shows that

$$\pi_i\left(B_{\mathrm{O}(n,\mathbb{R})}\right) \cong \pi_i\left(B_{\mathrm{GL}(n,\mathbb{R})}\right)$$

for each i. By Theorem 1.2.8, it follows that

$$B_{\mathrm{O}(n,\mathbb{R})} \simeq B_{\mathrm{GL}(n,\mathbb{R})}.$$

An exactly similar argument proves that $B_{\mathrm{U}(n,\mathbb{C})} \simeq B_{\mathrm{GL}(n,\mathbb{C})}$.

Eventually, we want to describe $H^*(B_G)$. This will lead us to the notion of a spectral sequence.

2.6 Lecture 11

Before moving to spectral sequences, let us look at a couple more examples of fiber bundles.

Example 2.6.1. Let $\{e_i\}_{1\leq i\leq n}$ denote the standard basis of \mathbb{R}^n . Consider the map $\rho: \mathrm{GL}(n,\mathbb{R}) \to \mathbb{R}^n \setminus \{0\}$ given by $A \mapsto Ae_n$ and its restriction $\tau: \mathrm{O}(n,\mathbb{R}) \to S^{n-1}$. Note that $\rho^{-1}(e_n)$ consists of all $n \times n$ matrices of the form

$$\begin{pmatrix} B & 0 \\ * & 1 \end{pmatrix}$$

where B denotes an invertible $(n-1) \times (n-1)$ matrix. This means that $\rho^{-1}(e_n) \simeq GL(n-1,\mathbb{R})$. Similarly, we see that $\tau^{-1}(e_n) \simeq O(n-1,\mathbb{R})$. Moreover, both ρ and τ are locally trivial. In particular, this yields a LES

Since $\pi_i(S^{n-1})$ is trivial for any $0 \le i \le n-2$, we see that the map $\pi_i(O(n-1)) \to \pi_i(O(n))$ is an isomorphism for any $i \le n-3$ and an epimorphism when i = n-2. The same result holds with O(n) replaced by $GL(n,\mathbb{R})$.

Example 2.6.2. Consider the *Stiefel manifold* $V_{n+k,k}$ consisting of orthonormal k-frames (i.e., k-tuples) in \mathbb{R}^{n+k} . If we view the standard basis of \mathbb{R}^k as the "zero element" of $V_{n+k,k}$, then we have a "short exact sequence"

$$0 \longrightarrow \mathcal{O}(n) \stackrel{i}{\longleftrightarrow} \mathcal{O}(n+k) \stackrel{p_1}{\longrightarrow} V_{n+k,k} \longrightarrow 0$$

where i is given by $A \mapsto \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$ and p_1 is given by $A \mapsto (Ae_{n+1}, \dots, Ae_{n+k})$. In this case,

$$V_{n+k,k} \cong \frac{\mathrm{O}(n+k)}{\mathrm{O}(n)},$$

a coset space. Note that i induces an isomorphism $\pi_i(O(n)) \xrightarrow{\cong} O(n+k)$ for each $i \leq n-2$ and an epimorphism when i = n-1.

Claim. The map p_1 is a fiber bundle.

Proof. Let $F \in V_{n+k,k}$ and choose any orthonormal basis B of the n-plane orthogonal to F. For any n-plane near B, take the orthogonal projection of B onto B' and then apply the Gram-Schmidt process to the new basis to obtain an orthonormal basis $\underline{B'}$ of B'. The assignment $B \mapsto \underline{B'}$ is continuous, and the space of all n-planes orthogonal to any (n+k)-plane near F is identifiable with $V_n(\mathbb{R}^n) \cong O(n)$. Therefore, we get a trivialization around F, which was arbitrary.

Using the LES obtained from Corollary 1.3.9, we see that $\pi_i(V_{n+k,k}) = 0$ for each $i \leq n-1$. Consider now the Grassmann manifold

$$G_{n+k,k} \equiv \frac{\mathrm{O}(n+k)}{\mathrm{O}(n) \times \mathrm{O}(k)}$$

where each pair $(A, B) \in O(n) \times O(k)$ is identified with the orthogonal $(n + k) \times (n + k)$ matrix $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Note that $G_{n_k,k}$ may be viewed as the space of all k-dimensional planes in \mathbb{R}^{n+k} .

Proposition 2.6.3.

- 1. The space $E_{O(k)}$ consists of all orthonormal k-frames in \mathbb{R}^{∞} .
- 2. The Grassmannian $G_{\infty,k} \equiv B_{O(k)} = B_{GL(k)}$ consists of all k-planes in \mathbb{R}^{∞} .
- 3. Similarly, the space $B_{U(k)}$ consists of all k-planes in \mathbb{C}^{∞} .

Define $p_2: V_{n+k,k} \to G_{n+k,k}$ by sending each $v \in V_{n+k,k}$ to the subspace of \mathbb{R}^{n+k} spanned by v.

Claim. The map p_2 is a principal O(k)-bundle.

Proof. This follows from the fact that $O(n+k) \to G_{n+k,l}$ is a principal $O(n) \times O(k)$ -bundle.

As a result, $\pi_i(G_{n+k,k}) = 0$ for each $i \leq n-2$.

3 Spectral sequences

We are given a fibration:

where X is a connected cell complex and $F = \pi^{-1}(x)$ for some distinguished point x.

Question. What is $H_n(E)$ if we know $H_n(F)$ and $H_n(X)$?

Recall that $H_n(X) = \frac{\ker \partial_n}{\operatorname{im} \partial_{n+1}}$ where ∂_n is defined as the composite

$$\overbrace{H_n(X^n, X^{n-1})}^{C_n(X)} \longrightarrow H_{n-1}(X^{n-1}) \longrightarrow \overbrace{H_{n-1}(X^{n-1}, X^{n-2})}^{C_{n-1}}(X) ,$$

where $H_i(X^n, X^{n-1}) = 0$ for any $i \neq n$. Furthermore, letting $E_n = \pi^{-1}(X_n)$, we have that $H_*(E_n, E_{n-1}) = C_*(X) \otimes H_*(F)$.

At this point, it is useful to generalize our situation by developing the theory of spectral sequences. For each $r \in \mathbb{Z}_{\geq 0}$, let $\{E^r_{p,q}\}_{p,q \in \mathbb{Z}}$ be a family of abelian groups and let $\{d^{p,q}_r : E^r_{p,q} \to E^r_{p-r,q+r-1}\}_{p,q \in \mathbb{Z}}$ be a family of maps (called *differentials*) such that

(a)
$$d_r^{p,q} \circ d_r^{p+r,q-r+1} = 0$$
 and

(b)
$$E_{p,q}^{r+1} = \frac{\ker d_r^{p,q}}{\operatorname{im} d_r^{p+r,q-r+1}}.$$

Such a sequence $(E^r, d_r)_{r \in \mathbb{Z}_{\geq 0}}$ of pairs is called a *homological spectral sequence*, and each double complex (E^r, d_r) is called the r-th page of the sequence.

Note 3.0.1.
$$E^{r+1} = H_*(E^r, d_r)$$
.

We shall consider only first-quadrant spectral sequences, i.e., those for which $E_{p,q}^r = 0$ unless $p, q \ge 0$.

As a result, there is some $k \in \mathbb{N}$ such that $E^r = E^{r+1}$ for any $r \geq k$.

Notation. $E^{\infty} := E^k$.

Definition 3.0.2 (Convergence). We say that a spectral sequence $E^* := (E^r, d_r)$ converges to a sequence of abelian groups $\{A_n\}_{n \in \mathbb{Z}_{\geq 0}}$, written as

$$E^* \Longrightarrow \{A_n\}$$
,

if for each n, there exists a filtration

$$\cdots \subset A_{-1,n+1} = \{0\} \subset A_{0,n} \subset \cdots \cap A_{n-1,1} \subset A_{n,0} = A_n$$

of A_n such that $\frac{A_{p,q}}{A_{p-1,q+1}} \cong E_{p,q}^{\infty}$.

Theorem 3.0.3. Let B be a simply connected, path connected cell complex with n-skeleton B^n and suppose that $\pi: E \to B$ is a fibration with fiber F. There exists a (first-quadrant) spectral sequence (E^r, d_r) that

- (a) converges to $\{H_n(E)\}_{n\in\mathbb{Z}_{>0}}$ and
- (b) satisfies $E_{p,q}^2 \cong H_p(B; H_q(F))$.

The filtration $D_{p,q} := (H_n(E))_{p+q=n}$ witnessing this convergence is given by $\operatorname{im}(H_n(\pi^{-1}(B^p)) \to H_n(E))$.

Remark 3.0.4. This holds without the hypothesis that B is a cell complex.

Example 3.0.5. Consider the path space fibration

Recall that PX is contractible. Let $n \geq 2$ and $X = S^n$. Then

$$E_{p,q}^2 \cong H_p(S^n; H_q(\Omega S^n)) = \begin{cases} H_q(\Omega S^n) & p = 0, n \\ 0 & \text{otherwise} \end{cases},$$

and $(E^r, d_r) \Rightarrow \{\mathbb{Z}, 0, 0, \ldots\}$. This means that $d_k = 0$ for any $k \neq n$, so that

$$E^2 = E^3 = \dots = E^n$$
$$E^{n+1} = E^{n+2} = \dots = E^{\infty}$$

As a result, each differential $d_n^{p,q}$ is an isomorphism provided that $(p,q) \neq (n,1-n)$ for, otherwise, $E_{p,q}^{n+1}$ is

nontrivial, which is impossible. Hence the n-th page looks like

$$3(n-1)$$
 $H_{3n-3}(\Omega S^n)$ $H_{3n-3}(\Omega S^n)$ iso.
$$2(n-1)$$
 $H_{2n-2}(\Omega S^n)$ $H_{2n-2}(\Omega S^n)$ iso.
$$n-1$$
 $H_{n-1}(\Omega S^n)$ $H_{n-1}(\Omega S^n)$ iso.
$$0$$
 \mathbb{Z} \mathbb{Z}

This implies that $H_q(\Omega S^n) \cong H_{q+n-1}(\Omega X)$ for any $q \in \mathbb{Z}_{\geq 0}$. But ΩS^n is path connected since S^n is simply connected. By induction, it follows that

$$H_q(\Omega X) \cong \begin{cases} \mathbb{Z} & q \equiv 0 \mod (n-1) \\ 0 & \text{otherwise} \end{cases}$$
.

3.1 Lecture 12

Suppose that

$$F \longrightarrow E \longrightarrow R$$

is a fibration with B simply connected and F path connected. Thanks to Theorem 3.2.5, we have the inclusion

$$E_{0,n}^{\infty} \cong \frac{D_{0,n}}{D_{-1,n+1}} = D_{0,n} \subset H_n(E)$$

as well as a commutative diagram

of abelian groups. Let i denote the inclusion map $i: F \cong p^{-1}(b) \to E$ where b is any chosen element of B. This induces a map i_* in homology

Now, consider the commutative diagram

$$\pi_{n}(B) \xrightarrow{\partial} \pi_{n-1}(F)$$

$$\downarrow^{h_{n}} \qquad \downarrow^{h_{n-1}}$$

$$H_{n}(B) \xrightarrow{\partial} H_{n-1}(F)$$

$$\cong \uparrow \qquad \qquad \downarrow$$

$$E_{n,0}^{2} \qquad E_{0,n-1}^{3}$$

$$\vdots \qquad \qquad \vdots$$

$$\downarrow^{\bullet} \qquad \downarrow^{\bullet}$$

$$E_{n,0}^{n} \xrightarrow{d_{n}} E_{0,n-1}^{n}$$

where h_n denotes the *Hurewicz homomorphism*, defined for an arbitrary path connected space X as follows. Let $\gamma := [f]$ be any element of $\pi_n(X, x)$, so that f is a map $(S^n, x_0) \to (X, x)$. Choose any generator $\tau \in H_n(S^n) \cong \mathbb{Z}$ and let

$$h(\gamma) = f_*(\tau) \in H_n(X).$$

Likewise, we can define the relative Hurewicz homomorphism $\tilde{h}: \pi_n(X,A) \to H_n(X,A)$ by

$$\left[f:\left(D^{n},S^{n-1},x_{0}\right)\rightarrow\left(X,A,\operatorname{pt}\right)\right]\mapsto f_{*}(\sigma)$$

where σ is any chosen generator of $H_n(D^n, S^{n-1}) \cong \mathbb{Z}$.

Theorem 3.1.1 (Hurewicz). Let $n \in \mathbb{Z}_{\geq 2}$. If $\pi_i(X) = 0$ for each $1 \leq i \leq n-1$, then h_n is an isomorphism and h_{n+1} is surjective.

Theorem 3.1.2 (Relative Hurewicz). Let $n \in \mathbb{Z}_{\geq 2}$. If both X and A are simply connected and $\pi_i(X, A) = 0$ for each $i \leq n-1$, then \tilde{h}_n is an isomorphism and \tilde{h}_{n+1} is surjective.

Proof of Theorem 3.1.1. Suppose that $\pi_i(X) = 0$ for each $1 \le i \le n-1$. For induction, assume that h_{n-1} is an isomorphism for any path connected space. From Example 3.0.5, we gather that the *n*-th page of the spectral sequence induced by the path space fibration $\Omega X \to PX \to X$ looks like

where d_n is an isomorphism. Thanks to our inductive hypothesis together with Exercise 1.4.3, we have now a commutative square of the form

$$\pi_{n}(X) \xrightarrow{\frac{\partial}{\cong}} \pi_{n-1}(\Omega X)$$

$$\downarrow h_{n} \qquad \qquad \downarrow h_{n-1} \qquad (*)$$

$$H_{n}(X) \xrightarrow{\frac{\cong}{d_{n}}} H_{n-1}(\Omega X)$$

This implies that h_n is an isomorphism. It remains to verify our base case. Note that $\pi_1(\Omega X)$ is isomorphic to $\pi_2(X)$ and thus abelian. It can be shown directly that h_1 factors as a composite

$$\pi_1(\Omega X) \xrightarrow{\cong} \pi_1(\Omega X)^{\mathrm{ab}} \xrightarrow{\cong} H_1(\Omega X)$$

of isomorphisms. Hence h_2 must be an isomorphism in light of (*).

Question. Does a similar argument work for Theorem 3.1.2?

Answer. Yes, in the sense that there is a spectral sequence proof of it. Specifically, there is a relative version of the spectral sequence. Suppose that B' is a simply connected subspace of B and let $E' = \pi^{-1}(B')$, yielding a fibration $F \to E' \xrightarrow{\pi \upharpoonright_{E'}} B'$. Then there exists a spectral sequence E^* converging to $H_*(E, E')$ such that

$$E_{p,q}^2 \cong H_p(B, B'; H_q(F)).$$

One can use this to deduce Theorem 3.1.2 from Theorem 3.1.1.

Corollary 3.1.3. Let X be path connected.

- 1. $H_1(X) \cong \pi_1^{ab}(X)$.
- 2. If X is simply connected and $H_i(X) = 0$ for every $1 \le i \le n-1$, then $\pi_i(X) = 0$ for every $1 \le i \le n-1$.
- 3. If $\pi_i(X) = 0$ for each $0 \le i \le n-1$, then $\widetilde{H}_i(X) = 0$ for each $0 \le i \le n-1$.

Let $n \geq 2$ and pick any generator [f] of $\pi_{n-1}(\Omega S^n) \cong \pi_n(S^n) \cong \mathbb{Z}$. By Theorem 3.1.1, the induced map $f_*: H_{n-1}(S^{n-1}) \to H_{n-1}(\Omega S^n)$ is an isomorphism.

Remark 3.1.4. Let $g: X \to Y$ be any map of spaces. Recall the mapping cylinder

$$Cyl(g) \equiv \frac{(X \times I) \coprod Y}{(x,0) \sim g(x)}$$

of g.

This is precisely the pushout of the span $X \times I \stackrel{\sigma_0}{\longleftrightarrow} X \stackrel{g}{\longrightarrow} Y$. As it turns out, g factors as

$$X \xrightarrow{\iota} \operatorname{Cyl}(g) \xrightarrow{h} Y$$

for some deformation retraction h. Further, ι is a cofibration, the dual notion to a fibration.

Consider the subspace of ΩS^n consisting of all great circles passing through, say, the north pole. This is clearly homeomorphic to S^{n-1} . Thus, we get a LES in homology

From this, we deduce that

$$H_i(\Omega S^n, S^{n-1}) = \begin{cases} 0 & i \le 2n - 3 \\ \mathbb{Z} & i = 2n - 2 \end{cases}.$$

By Corollary 3.1.3(2), this means that

$$\pi_i(\Omega S^n, S^{n-1}) = \begin{cases} 0 & i \le 2n - 3 \\ \mathbb{Z} & i = 2n - 2 \end{cases}.$$

This yields a LES in homotopy

which proves the following statement.

Theorem 3.1.5 (Suspension). If $0 \le i \le 2n-4$, then $\pi_i(S^{n-1}) \cong \pi_{i+1}(S^n)$.

This can be generalized as follows.

Exercise 3.1.6 (Freudenthal suspension). Let $i \in \mathbb{Z}_{\geq 1}$ and suppose that the space X satisfies $\pi_n(X) = 0$ for each $0 \leq n \leq i-1$. Show that

$$\pi_i(X) \cong \pi_{i+1}(SX)$$

through around dimension 2i-3 (figure this out exactly), where S(-) denotes the suspension functor.

Proof. We could use a spectral sequence argument together with the relative Hurewicz theorem. Rather, let us show that it follows from the following famous theorem in homotopy theory:

Theorem 3.1.7 (Blakers-Massey). Suppose that

$$\begin{array}{ccc}
X & \longrightarrow & B \\
\downarrow & & \downarrow \\
A & \longrightarrow & C
\end{array}$$

is a pushout diagram. Also, suppose that $\pi_n(B,X) = 0$ and $\pi_m(A,X) = 0$ for each $0 \le n \le k_1$ and each $0 \le m \le k_2$. The map $(A,X) \to (C,B)$ of pairs induces an isomorphism $\pi_n(A,X) \xrightarrow{\cong} \pi_n(C,B)$ for each $0 \le n \le k_1 + k_2 - 1$.

Now, let us prove the Freudenthal suspension theorem with an upper bound of 2i-2 rather than 2i-3. To start, decompose SX into the union of two cones $C_{+}X$ and $C_{-}X$ that meet at a copy of X. Note that SX is precisely the pushout of the diagram

$$C_{-}X \longleftrightarrow X \longleftrightarrow C_{+}X.$$

As C^+X is contractible, the LES of homotopy groups for the pair (C_+X,X) shows that the map ∂ : $\pi_{n+1}(C_+X,X) \to \pi_n(X)$ is an isomorphism. Similarly, we see that the map $\iota: \pi_{n+1}(SX) \to \pi_{n+1}(SX,C_-X)$ induced by inclusion is an isomorphism. Consider the sequence of homomorphisms

$$\pi_n(X) \xrightarrow{\partial^{-1}} \pi_{n+1}(C_+X, X) \xrightarrow{\psi} \pi_{n+1}(SX, C_-X) \xrightarrow{\iota^{-1}} \pi_{n+1}(SX)$$

where ψ is induced by pullback. Since $\pi_n(X) = 0$ for each $0 \le n \le i - 1$, the LES for the pair $(C_{\pm}X, X)$ also shows that $\pi_n(C_{\pm}X) = 0$ for any $0 \le n \le i$. By Theorem 3.1.7, it follows that ψ is an isomorphism so long as $n + 1 \le 2i - 1$. Hence $\pi_n(X) \cong \pi_{n+1}(SX)$ for any $n \le 2i - 2$, as desired.

Furthermore, the upper bound of 2i-2 is sharp. Indeed, we have that

- $\pi_0(S^2) = \pi_1(S^2) = 0$,
- $\pi_3(S^2) \cong \mathbb{Z}$, and
- $\pi_4(S^3) \cong \mathbb{Z}/2$.

If we could increase our upper bound to 2i-1, then we would have an isomorphism $\pi_3(S^2) \cong \pi_4(S^3)$, which is impossible.

3.2 Lecture 13

As expected, spectral sequences have exact analogues in cohomology. Before introducing them, let us review a bit of singular cohomology theory. Let X be a cell complex and let $n \in \mathbb{Z}_{\geq 0}$. Recall that $C_n(X)$ the free abelian group on the set of all n-cells of X and the boundary map $\partial_n : C_n(X) \to C_{n-1}(X)$. Let

$$C^n(X) = \operatorname{Hom}(C_n(X), \mathbb{Z})$$

and define the homomorphism $\delta^n:C^n(X)\to C^{n+1}(X)$ by

$$\delta^n(\varphi) = \varphi \circ \partial_n.$$

Theorem 3.2.1. $H^n(X; \mathbb{Z}) \cong \frac{\ker \delta^{n+1}}{\operatorname{im} \delta^n}$.

Example 3.2.2. $H^*(\mathbb{CP}^n; \mathbb{Z}) \cong \mathbb{Z}[x]/(x^{n+1})$ with |x| = 2.

Theorem 3.2.3 (Poincaré duality). If M is a connected orientable n-manifold, then $H_i(M) \cong H^{n-i}(M)$.

Now, a cohomological spectral sequence consists of the following data:

- for each $r \in \mathbb{Z}_{\geq 0}$, a family of abelian groups $\{E_r^{p,q}\}_{p,q \in \mathbb{Z}}$ and
- a family of maps $\{d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}\}_{p,q\in\mathbb{Z}}$ (called differentials) such that
- $d_r^{p,q} \circ d_r^{p-r,q+r-1} = 0$ and
- $E_{r+1}^{p,q} = \frac{\ker d_r^{p,q}}{\operatorname{im} d_r^{p-r,q+r-1}}.$

Again, we shall consider only first-quadrant spectral sequences, i.e., those for which $E_r^{p,q} = 0$ unless $p, q \ge 0$. As a result, there is some $k \in \mathbb{N}$ such that $E_r = E_{r+1}$ for any $r \ge k$.

Notation. $E_{\infty} := E_k$.

Definition 3.2.4 (Convergence). We say that a spectral sequence $E_* := (E_r, d_r)$ converges to a sequence of abelian groups $\{D^n\}_{n \in \mathbb{Z}_{>0}}$, written as

$$E_* \Longrightarrow \{D^n\}$$
,

if for each n, there exists a filtration

$$\cdots \subset D^{n+1,-1} = \{0\} \subset D^{n,0} \subset \cdots D^{1,n-1} \subset D^{0,n} = D^n$$

of D^n such that $\frac{D^{p,q}}{D^{p+1,q-1}} \cong E^{p,q}_{\infty}$.

Theorem 3.2.5. Let B be simply connected and path connected and suppose that $\pi: E \to B$ is a fibration with fiber F. There exists a (first-quadrant) spectral sequence (E^r, d_r) that

- (a) converges to $\{H^n(E)\}_{n\in\mathbb{Z}_{\geq 0}}$ and
- (b) satisfies $E_2^{p,q} \cong H^p(B; H^q(F))$.

In pictures, we have

Page 2

Let X be a cell complex. Recall the *cup product* operation $H^i(X) \times H^j(X) \xrightarrow{\smile} H^{i+j}(X)$ on cohomology, which is both bilinear and *anti-commutative* in the sense that

$$x \smile y = (-1)^{ij} y \smile x.$$

Consider the constant map $C_0(X) \to \mathbb{Z}$ given by $D^0 \mapsto 1$, which corresponds to an element **1** of $H^0(X)$ via Theorem 3.2.1. We have that

$$-1 \smile x = x \smile 1 = 1.$$

Suppose that Y is another cell complex. Let $x \in H^i(X)$ and $y \in H^j(X)$ and let f denote a map $Y \to X$. Then

$$f^*(x \smile y) = f^*(x) \smile f^*(y),$$

i.e., f^* is a graded ring homomorphism. Now, $X \times Y$ carries a cell complex structure with n-cells of the form

$$D^i \times D^j$$
, $i+j=n$

and n-skeleton

$$(X \times Y)^n \equiv \bigcup_{i+j=n} X^i \times Y^j.$$

We have that

$$C_n(X \times Y) \cong C_n(X) \otimes_{\mathbb{Z}} C_n(Y)$$

and, in light of the fact that $\partial(D^i \times D^j) = (\partial D^i \times D^j) \cup (D^i \times \partial D^j)$, that

$$\partial[D^i \times D^j] = \partial[D^i] \otimes D^j + (-1)^i [D^i] \otimes \partial[D^j].$$

Consider any two maps $f: C_i(X) \to \mathbb{Z}$ and $g: C_j(X) \to \mathbb{Z}$, extending them both by 0 to the entire graded abelian group $C_*(X)$. Define $f \otimes g: C_m(X) \times C_m(X) \otimes C_m(Y) \to \mathbb{Z}$ by

$$(f \otimes g) (u \otimes v) = f(u) \cdot g(v).$$

Proposition 3.2.6. $\delta(f \otimes g) = \delta f \otimes g + (-1)^i f \otimes \delta g$.

As it turns out, this means that the map $(f,g) \mapsto (f \otimes g)$ induces an operation $H^i(X) \times H^j(Y) \xrightarrow{\times} H^{i+j}(X \times Y)$ on cohomology known as the *cross product*. The relation between the cup and cross product has the form $\Delta^*(x \times y) = x \smile y$, where $\Delta : X \to X \times X$ denotes the diagonal map.

In general, let R_1 , R_2 , and R_3 be commutative rings and let $\mu: R_1 \times R_2 \to R_3$ denote "multiplication." This induces the cup product on cohomology

$$H^{i}(X; R_{1}) \times H^{j}(X; R_{2}) \xrightarrow{\smile} H^{i+j}(X; R_{3})$$

$$\downarrow \downarrow$$

$$H^{p}(B, H^{q}(F)) \times H^{p'}(B, H^{q'}(F)) \xrightarrow{\smile} H^{p+p'}(B, H^{q+q'}(F))$$

$$E_{2}^{p,q} \times E_{2}^{p',q'} \xrightarrow{\smile} E_{2}^{p+p',q+q'}.$$

Proposition 3.2.7. For any $r \in \mathbb{Z}_{\geq 2}$, there is a certain operation \smile_r : $E_r^{p,q} \times E_r^{p',q'} \to E_r^{p+p',q+q'}$ such that

$$d_r(x \smile y) = d_r(x) \smile y + (-1)^{p+q} x \smile d_r(y).$$

Construction. Let $r \in \mathbb{Z}_{\geq 2}$ and suppose, for induction, that we have already constructed \smile_r . Let $x \in E_r^{p,q}$ and $y \in E_r^{p',q'}$. Suppose that $d_r x = d_r y = 0$, so that $d_r (x \smile y) = 0$. If $y = d_r(z)$, then

$$x \smile y = x \smile d_r(z) = d(x \smile z) \pm \underbrace{d_r(x)}_0 \smile z.$$

by induction. This means that \smile_r induces a pairing \smile_{r+1} on E_{r+1} . To complete our induction on r, simply take the ordinary cup product on cohomology to be \smile_2 .

Now, given the filtration

$$\{0\} \subset D^{n,0} \subset \cdots \subset D^{0,n} \subset H^n(E),$$

the operation \smile_r on E_r carries $D^{p,q} \times D^{p',q'}$ to $D^{p+p',q+q'}$ where p+q=p'+q'=n, thereby inducing a pairing

$$\smile_{\infty}: E^{p,q}_{\infty} \times E^{p',q'}_{\infty} \to E^{p+p',q+q'}_{\infty}$$

on E_{∞} .

Example 3.2.8. Consider the fiber bundle $S^1 \to S^{2n+1} \to \mathbb{CP}^n$, so that

$$E_2^{p,q} \cong H^p(\mathbb{CP}^n; H^q(S^1)).$$

Pick a generator x of the group $H^1(S^1) \cong \mathbb{Z}$. Then the cohomology ring $H^*(S^1)$ is isomorphic to $\mathbb{Z}[x]/(x^2)$, and

$$H^{i}(S^{1}) \cong \begin{cases} \mathbb{Z} & i = 0, 1 \\ 0 & i > 1 \end{cases}.$$

Moreover, recall that

$$H^i(\mathbb{CP}^n) \cong \begin{cases} \mathbb{Z} & 0 \leq i \leq 2n, \ i \equiv 0 \mod 2 \\ 0 & \text{otherwise} \end{cases},$$

which yields

where each d_2 is an isomorphism. Suppose that x is a generator of $H^1(S^1)$ and let $c = d_2(x)$. Then

$$d_2(c \smile x) = c \smile d_2(x) = c^2,$$

which is a generator of $H^4(\mathbb{CP}^n)$. Similarly, c^i is a generator of $H^{2i}(\mathbb{CP}^n)$ for each $i \in \mathbb{Z}_{>0}$.

By letting $c^0 = 1$ and making n large enough, we have determined the ring structure of $H^*(\mathbb{CP}^{\infty})$.

Theorem 3.2.9. If
$$c_1$$
 is a generator of $H^2(\mathbb{CP}^{\infty}) \cong \mathbb{Z}$, then $\underbrace{H^*(B_{S^1}) = H^*(\mathbb{CP}^{\infty})}_{Example \ 2.5.11} \cong \mathbb{Z}[c_1]$.

4 Characteristic classes

4.1 Lecture 14

Recall the space $B_{\mathrm{U}(n)}=B_{\mathrm{GL}(n,\mathbb{C})}$ of *n*-planes in \mathbb{C}^{∞} as well as the space $B_{\mathrm{O}(n)}=B_{\mathrm{GL}(n,\mathbb{R})}$ of *n*-planes in \mathbb{R}^{∞} . We want to classify the graded rings $H^*(B_{\mathrm{U}(n)};\mathbb{Z})$ and $H^*(B_{\mathrm{O}(n)};\mathbb{Z}_2)$. Let's begin with the former.

Consider the embedding $U(n-1) \hookrightarrow U(n)$ given by $A \mapsto \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$. Consider also the mapping $U(n) \to S^{2n-1}$ given by $A \mapsto Ae_n$. These fit into a "short exact sequence"

$$0 \to \mathrm{U}(n-1) \to \mathrm{U}(n) \to S^{2n-1} \to 0 \tag{1}$$

of spaces, and thus the bundle

$$\frac{\mathrm{U}(n)}{\mathrm{U}(n-1)} \to B\mathrm{U}(n-1) \xrightarrow{\pi} B\mathrm{U}(n) \tag{2}$$

has fiber S^{2n-1} .

Remark 4.1.1. Let us make (1) precise. Note that U(n) acts transitively on S^{2n-1} because any point in S^{2n-1} belongs to at least one orthonormal bases of \mathbb{C}^n . This means that S^{2n-1} is a homogenous U(n)-space.

Proposition 4.1.2. Any homogenous G-space X is homeomorphic to the coset space G /Stab_G(\vec{o}) where \vec{o} is any choice of "identity."

In our case, let $\vec{o} = e_n$, so that $\operatorname{Stab}_{\mathrm{U}(n)}(\vec{o}) = \mathrm{U}(n-1)$.

Now, (2) induces a spectral sequence E_* converging to $H^*(BU(n-1))$ such that

$$E_2^{p,q} = H^p(BU(n); H^q(S^{2n-1}))$$

and

commutes. If p < 2n, then $H^p(B\mathrm{U}(n)) \cong E^{p,0}_\infty$, in which case π^* is injective. Also, we have that $E^{p-k,k}_2 = E^{p-k,k}_\infty$ whenever 0 < p-k < 2n+1, so that π^* is surjective whenever p < 2n. It follows that π^* is an isomorphism

$$H^p(BU(n)) \cong H^p(BU(n-1)) \tag{3}$$

when $p \leq 2n - 1$.

Consider the differential $d_2: \underbrace{H^{2n-1}(S^{2n-1})}_{\mathbb{Z}} \to H^{2n}(B\mathrm{U}(n))$ and pick a generator g_n of $H^{2n-1}(S^{2n-1})$, i.e.,

an orientation of S^{2n-1} . Let

$$c_n = d_2(g_n).$$

In light of (3), we see that

$$c_i \in H^{2i}(BU(n)) \cong \cdots \cong H^{2i}(BU(i+1)) \cong H^{2i}(BU(i))$$

for each $i \leq n$. Abusing notation, we shall write $c_i \in H^{2i}(BU(i))$.

Theorem 4.1.3. $H^*(BU(n); \mathbb{Z}) \cong \mathbb{Z}[c_1, \ldots, c_n]$

Proof. Proceed by induction on $n \in \mathbb{N}$. Our base case holds by virtue of Theorem 3.2.9. Assume that

$$H^*(BU(n-1)) \cong \mathbb{Z}[c_1, \dots, c_{n-1}].$$

Note that $E_{2n} = E_{\infty}$ and $E_{2n-1} = E_2$, yielding

??

We call c_i the *i*-th Chern class of BU(n). The following may be seen as a real analogue to Theorem 4.1.3.

Theorem 4.1.4. $H^*(BO(n), \mathbb{Z}_2) \cong \mathbb{Z}[w_1, \dots, w_n]$ for certain cohomology classes $w_i \in H^i(BO(n), \mathbb{Z}_2)$.

We call w_i the *i*-th Stiefel-Whitney class of BO(n).

Example 4.1.5. Let M be a smooth n-manifold. Consider the tangent bundle TM with group O(n) and fiber \mathbb{R}^n . Let $f: M \to BO(n)$ denote the classifying map for $TM \xrightarrow{\pi} M$, so that $f^*\gamma_n = \pi$ where γ_n denotes the universal O(n)-bundle. For each $i \in \{1, 2, ..., n\}$, the i-th Stiefel-Whitney class for M is exactly the element

$$w_i(M) \equiv f^* w_i \left(E_{\mathcal{O}(n)} \right)$$

of $H^i(M, \mathbb{Z}_2)$. Note that w_i is natural in the sense that $w_i\left(f^*E_{\mathrm{O}(n)}\right) = f^*w_i\left(E_{\mathrm{O}(n)}\right)$. Now, the complexification of π is the vector bundle $T_{\mathbb{C}}M$, with classifying map $f: M \to B\mathrm{U}(n)$. In this case, the *i*-th Chern class for M is exactly the element

$$c_i(M) \equiv f^* c_i \left(E_{\mathrm{U}(n)} \right)$$

of $H^{2i}(M,\mathbb{Z})$. In general, any vector bundle ξ with group $O(n) \subset U(n)$ and fiber \mathbb{R}^n has a complexification $\xi \otimes \mathbb{C}$ with group U(n) and fiber \mathbb{C}^n . Every fiber E_x of ξ is converted to a fiber $E_x \oplus E_x$ of $\xi \otimes \mathbb{C}$ with scalar multiplication given by $i \cdot (x,y) \equiv (-y,x)$. The *i-th Pontryagin class* for M is exactly

$$p_i(M) \equiv (-1)^i c_{2i}(TM \otimes \mathbb{C}).$$

For any two complex vector bundles ξ and η over X with groups $\mathrm{U}(n)$ and $\mathrm{U}(m)$, respectively, we can form a new vector bundle $\xi \oplus \eta$ with group $\mathrm{U}(n+m)$ and fiber $\mathbb{C}^n \times \mathbb{C}^m$ such that

$$h_{\alpha\beta}(\xi\oplus\eta)\equivegin{bmatrix}h_{lphaeta}(\xi)&0\0&h_{lphaeta}(\eta)\end{bmatrix}.$$

Terminology. The sum $c(\xi) := 1 + c_1 + c_2 + \cdots + c_n \in H^*(X, \mathbb{Z})$ is called the total Chern class for η . If ξ is instead a real vector bundle, then we have the total Stiefel-Whitney class $w(\xi) := 1 + w_1 + w_2 + \cdots + w_n \in H^*(X, \mathbb{Z}_2)$.

Theorem 4.1.6 (Whitney sum formulas).

- 1. $c(\xi \oplus \eta) = c(\xi) \smile c(\eta)$, i.e., $c_k(\xi \oplus \eta) = \sum_{i+j=k} c_i(\xi) \smile c_j(\eta)$, $c_0 \equiv 1$.
- 2. $w(\xi \oplus \eta) = w(\xi) \smile c(\eta), i.e., w_k(\xi \oplus \eta) = \sum_{i+j=k} w_i(\xi) \smile w_j(\eta), w_0 \equiv 1.$

Exercise 4.1.7. Let ξ and η be fiber bundles over a CW complex X with group $U(1) \cong S^1$ and fiber \mathbb{C} , i.e., (complex) line bundles over X. Consider the tensor bundle $\xi \otimes \eta$.

- (a) Show that the set $\mathcal{LB}(X)$ of isomorphism classes of line bundles over X is an abelian group under \otimes .
- (b) Compute $c_1(\xi \otimes \eta)$ where c_1 denotes the first Chern class.

Proof.

(a) It is easy to see that \otimes is commutative and associative. It is also easy to see that the natural isomorphism $\mathbb{C} \otimes \mathbb{C} \cong \mathbb{C}$ extends to an isomorphism between $\xi \otimes \eta$ and the trivial line bundle $X \times \mathbb{C}$, which is thus the identity element of $\mathcal{LB}(X)$.

It remains to show that $\mathcal{LB}(X)$ has all inverses. To this end, consider the conjugate line bundle $\bar{\xi}$. If $h_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to S^1$ is any transition function for ξ , then the corresponding transition function for $\xi \otimes \bar{\xi}$ is given by

$$\tilde{h}_{\beta\alpha} := h_{\beta\alpha} \otimes \overline{h_{\beta\alpha}} : U_{\alpha} \cap U_{\beta} \to S^1, \quad x \mapsto h_{\beta\alpha}(x) \cdot \overline{h_{\beta\alpha}(x)}.$$

But this means that every transition function for $\xi \otimes \bar{\xi}$ is the constant map at 1. As a result,

$$\tilde{h}_{\beta} \circ \tilde{h}_{\alpha}^{-1}(x,f) = (x,f), \qquad (\star)$$

i.e., the local trivializations \tilde{h}_{α} and \tilde{h}_{β} for $\xi \otimes \bar{\xi}$ agree on $U_{\alpha} \cap U_{\beta}$. By gluing together these local trivializations, we get a well-defined bundle isomorphism

$$\tilde{h} \equiv \bigcup_{\alpha} h_{\alpha} : \xi \otimes \bar{\xi} \xrightarrow{\cong} X \times \mathbb{C}.$$

This proves that $\bar{\xi}$ is the inverse of ξ .

(b) Since U(1) is a topological group, we can apply the Milton construction to it to obtain the universal bundle

$$p_{U(1)}: L \to BU(1) = \mathbb{CP}^{\infty}.$$

For each $i \in \{1, 2\}$, let $\pi_i : \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$ denote the *i*-th projection. Consider now the tensor bundle

$$\tilde{L} := \underbrace{\pi_1^*(L)}_{L_1} \otimes \underbrace{\pi_2^*(L)}_{L_2}$$

over $\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}$. Then $c_1(\tilde{L})$ belongs to $H := H^2(\mathbb{CP}^n \times \mathbb{CP}^n; \mathbb{Z})$. From lecture, we know that $H^*(\mathbb{CP}^{\infty}; \mathbb{Z})$ is precisely the infinite cyclic group generated by $c_1(L)$. In particular, it is a finitely-generated abelian group. Further, \mathbb{CP}^{∞} is a CW complex as the colimit of CW complexes. Since $H^0(\mathbb{CP}^{\infty}; \mathbb{Z}) = \mathbb{Z}$ and $H^1(\mathbb{CP}^{\infty}; \mathbb{Z}) = 0$, it follows from the Künneth theorem that

$$H \cong \left(H^2(\mathbb{CP}^\infty; \mathbb{Z}) \otimes \mathbb{Z}\right) \oplus \left(\mathbb{Z} \otimes H^2(\mathbb{CP}^\infty; \mathbb{Z})\right) \cong H^2(\mathbb{CP}^\infty; \mathbb{Z}) \oplus H^2(\mathbb{CP}^\infty; \mathbb{Z}). \tag{1}$$

Under this sequence of isomorphisms, $c_1(\tilde{L}) \in H$ corresponds uniquely to $(nc_1(L), mc_1(L))$ for some $n, m \in \mathbb{Z}$. Choose any point $P \in \mathbb{CP}^{\infty}$ and let $i : \{P\} \times \mathbb{CP}^{\infty} \hookrightarrow \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}$ denote the inclusion map. Taking the pullback of L along i yields a line bundle i^*L over $\{P\} \times \mathbb{CP}^{\infty} \cong \mathbb{CP}^{\infty}$ that is isomorphic to L_2 viewed over \mathbb{CP}^{∞} . Hence $c_1(i^*L) = c_1(L)$. But $i^*(c_1(L)) = mc_1(L)$, so that $c_1(L) = mc_1(L)$ by naturality of c_1 . It follows that m = 1. Similarly, we see that n = 1.

By inspection, $c_1(L_1) + c_1(L_2)$ also corresponds uniquely to $(c_1(L), c_1(L))$ under (1). This means that

$$c_1(L_1) + c_1(L_2) = c_1(\tilde{L}). (2)$$

From (2), we can derive that $c_1(\xi \otimes \eta) = c_1(\xi) + c_1(\eta)$. Indeed, there must be maps $g_1, g_2 : X \to BU(1)$ such that $\xi \cong f_1^*L$ and $\eta \cong f_2^*L$. Note that the map $F := (f_1, f_2) : X \to BU(1) \times BU(1)$ satisfies

$$F^*(L_1) = F^*(\pi_1^*(L)) \cong (\pi_1 \circ F)^*(L) = f_1^*L \cong \xi$$

$$F^*(L_2) = F^*(\pi_2^*(L)) \cong (\pi_2 \circ F)^*(L) = f_2^*L \cong \eta.$$
(3)

Now, recalling that for any line bundle E over X, the local trivializations and transition functions of $F^*(E)$ are given by precomposition with F, we easily see that

$$c_1(F^*(L_1) \otimes F^*(L_2)) = c_1(F^*(L_1 \otimes L_2)). \tag{4}$$

Finally, by combining (2), (3), (4), and the naturality of c_1 , we get

$$c_{1}(\xi \otimes \eta) = c_{1}(F^{*}(L_{1}) \otimes F^{*}(L_{2}))$$

$$= c_{1}(F^{*}(L_{1} \otimes L_{2}))$$

$$= F^{*}(c_{1}(L_{1} \otimes L_{2}))$$

$$= F^{*}(c_{1}(L_{1}) + c_{1}(L_{2}))$$

$$= F^{*}(c_{1}(L_{1})) + F^{*}(c_{1}(L_{2}))$$

$$= c_{1}(F^{*}(L_{1})) + c_{1}(F^{*}(L_{2}))$$

$$= c_{1}(\xi) + c_{1}(\eta).$$