Quantum Implementation of LSH

Yujin Oh, Kyungbae Jang, Hwajeong Seo Hansung University

Introduction Background **Proposed Method** Performance & Evaluation Conclusion

Introduction

Background: Quantum gates

Reversible quantum circuits for ciphers can be implemented using a variety of representative quantum gates.

Toffoli gate decomposition (T- depth 4, total depth 8)

Background: Grover's algorithm

Grover's Algorithm

1. Using Hadamard gates, n-qubit input has the same amplitude at all state of the qubits.

$$H^{\otimes n} |0\rangle^{\otimes n} = |\psi\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{1}{2^{n/2}} \sum_{x=0}^{2^{n-1}} |x\rangle$$

2. The target function is placed in the oracle and returns the solution using the superposition state of input. If the quantum circuit finds a solution for the target function, the amplitude of the specific input in a superposition state changes negatively.

$$f(x) = \begin{cases} 1 & \text{if } \operatorname{Hash}(x) = \text{target output} \\ 0 & \text{if } \operatorname{Hash}(x) \neq \text{target output} \end{cases}$$

3. The diffusion operator enhance the probability for measuring the solution returned by the oracle.

$$U_f(|\psi\rangle |-\rangle) = \frac{1}{2^{n/2}} \sum_{x=0}^{2^n-1} (-1)^{f(x)} |x\rangle |-\rangle$$

Background: Quantum collision search

- Quantum collision search using Grover algorithm
 - There are various quantum collision attack using Grover algorithm.
 - BHT algorithm
 - The search complexity of $O(2^{\frac{n}{3}})$, quantum memory $O(2^{\frac{2n}{3}})$.
 - CNS algorithm
 - The search complexity of $O(2^{\frac{2n}{5}})$, classical memory $O(2^{\frac{n}{5}})$.
 - Note that the CNS algorithm can be parallelized to reduce the search complexity of $O(2^{\frac{n}{5}})$.
 - By utilizing 2s quantum instances in parallel
 - The search complexity for finding collisions is reduced to $O(2^{\frac{2n}{5}-\frac{3s}{5}})$, with $s \leq \frac{n}{4}$.
 - In [9], the authors defined a parallelization strength of $s = \frac{n}{6}$
 - Following this approach, we also define a parallelization strength of $s = \frac{n}{6}$

Background: LSH

- Description of LSH
 - LSH is a Korean cryptographic hash algorithm included among the validation subjects of the KCMVP.
 - Initialization
 - A given input message undergoes one-zero padding.
 - Following this, the padded input message is divided into 32-bit word array messages.
 - Compression
 - MsgExp, Step (MsgAdd, Mix, WordPerm)
 - Finalization
 - The finalization function produces an n-bit hash value.

$$\mathbf{h} \leftarrow (CV^{t}[0] \oplus CV^{t}[8], ..., CV^{t}[7] \oplus CV^{t}[15])$$

$$\mathbf{h} = (h[0] || ... || h[w-1])$$

$$h \leftarrow (h[0] || ... || h[w-1])_{[0:n-1]}$$

Background: LSH

- Description of LSH (Compression function)
 - MsgExp

$$\mathbf{M}_{0}^{(i)} \leftarrow (M^{(i)}[0], ..., M^{(i)}[15]), \ \mathbf{M}_{1}^{(i)} \leftarrow (M^{(i)}[16], ..., M^{(i)}[31])$$

$$\mathbf{M}_{j}^{(i)} \leftarrow (M_{j}^{(i)}[0], ..., M_{j}^{(i)}[15])_{j=2}^{N_{s}}$$

$$M_{j}^{(i)}[l] \leftarrow M_{j-1}^{(i)}[l] \boxplus M_{j-2}^{(i)}[\tau(l)] \ for \ 0 \le l \le 16$$

Background: LSH

- Description of LSH (Compression function)
 - Step
 - MsgADD
 - Input: $CV^{(i)} = T[0], ..., T[15]$ and $M_j^{(i)} = \left(M_j^{(i)}[0], ..., M_j^{(i)}[15]\right)_{j=2}^{N_s}$
 - MSGADD(T,M) $\leftarrow T[0] \oplus M[0], ..., T[15] \oplus M[15]$)
 - Mix
 - $(T[l], T[l + 8]) \leftarrow Mix_{j,l} (T[l], T[l + 8]) \text{ for } 0 \le l < 8$
 - WordPerm
 - $WordPerm(X) = X[\sigma(0)], \dots, X[\sigma(15)]$

Table 2: Bi	t rotation	amounts:	α_j, β_j	and γ_l
-------------	------------	----------	----------------------	----------------

Algorithm	j	$lpha_j$	eta_j	γ_0	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7
LSH-256-n	even	29	1	0	8	16	24	24	16	8	0
LSH-250-n	odd	5	17	U	0	10	24	24	10	0	U
LSH-512-n	even	23	59	0	16	32	48	8	24	40	56
LS11-312-II	odd	7	3	U	10	32	2 48	0	24	40	90

Table 1: The permutation τ and σ

1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
au(l)	3	2	0	1	7	4	5	6	11	10	8	9	15	12	13	14
$\sigma(l)$	6	4	5	7	12	15	14	13	2	0	1	3	8	11	10	9

- Our main focus is to optimize the circuit depth of LSH for the efficiency of the Grover collision attack.
- In quantum circuit for LSH, the most resources are generally required for adders.
 We use depth-optimized adders and parallelization.
- For the sake of simplicity, we primarily focus on explaining LSH-256-256.
- We set the input length to be equal to the hash length for implementation.

Quantum adder for optimizing the depth

- To implement the MsgExp function and Mix function, we use a quantum adder.
- Commonly used types of quantum adders: ripple-carry adder (RCA) and carry-lookahead adder (CLA).
- The RCA adder operates in a sequential manner, where it calculates the carry-out from the previous stage before proceeding with the addition in the next stage.
 - → Leads to high depth
- The CLA operates accelerates addition by pre-computing carry values for each stage.
 - → Because of parallel process, reduce the depth.

Quantum adder for optimizing the depth

- We utilize a Draper adder [5], which is a carry-lookahead adder.
 - This adder can be implemented both in-place and out-of-place
- The out-of-place Draper adder has about half the depth compared to the in-place adder
 - But requires 32-bit output qubits for each adder.
 - 32,768 (1024 × 32) qubits are garbage qubits, with a total of 1024 adders.
 - → We opt for the in-place adder.
- Draper in-place adders
 - → We can reuse all ancilla qubits (53 qubits) except for the input and output qubits in other operations

Table 3: Comparison of quantum resources required for adder (32-bit).

	-	-		•	· ,	
Adder	Operation	$\#\mathrm{CNOT}$	#Toffoli	Toffoli depth	# Qubit (reuse)	Depth
Cuccaro [4]	in-place	153	61	61	65 (1)	66
Draper [5]	in-place	123	254	22	117 (53)	28
	out-of-place	94	127	11	118 (22)	14

*: Estimation of undecomposed resources

- Parallel addition of MsgExp and Mix Functions
 - 16 adders are needed to update $M_i^{(i)}$

$$\begin{split} \mathbf{M}_{0}^{(i)} &\leftarrow (M^{(i)}[0],...,M^{(i)}[15]),\, \mathbf{M}_{1}^{(i)} \leftarrow (M^{(i)}[16],...,M^{(i)}[31]) \\ \mathbf{M}_{j}^{(i)} &\leftarrow (M_{j}^{(i)}[0],...,M_{j}^{(i)}[15])_{j=2}^{N_{s}} \\ M_{j}^{(i)}[l] &\leftarrow M_{j-1}^{(i)}[l] \boxplus M_{j-2}^{(i)}[\tau(l)] \ for \ 0 \leq l \leq 16 \end{split}$$

- We can initially allocate 53 ancilla qubits and reuse them throughout.
 - → The adders are executed sequentially, increasing the depth of the circuit.
- To optimize the circuit depth which is our purpose, we employ addition in parallel by allocating more ancilla qubits.
 - \rightarrow 848 (16 × 53) ancilla qubits are required.

- Parallel addition of MsgExp and Mix Functions
 - 24 (8 × 3) adders are used and 8 out of the 24 adders can be operated simultaneously
 - In this scenario, the ancilla qubits used in the MsgExp function can be reused
 - → There is no need to allocate additional ancilla qubits for the adders in the Mix function.
 - → 848 ancilla qubits are initially allocated at once.

However, due to the reuse of qubits, the depth may increase.

Parallel addition of MsgExp and Mix Functions

- Table 4 shows the comparison of quantum resources required for MsgExp and Mix function.
- The parallel operations greatly reduce the toffoli depth and full depth compared to the sequential operations.

Table 4: Comparison of quantum resources required for each component.

Function	Operation	# CNOT	# Toffoli	Toffoli depth	# Qubit	Depth
MagErra	Sequential	1,968	4,064	352	1,077	433
MsgExp	Parallel	1,968	4,064	22	1,872	28
Mix	Sequential	2,952	6,096	528	565	649
IVIIX	Parallel	2,952	6,096	66	936	84
						

- Combined Architecture of Compress Function
 - The MsgExp function and the Mix function can operate independently.
 - However, due to the ancilla qubit reuse in the Mix function, these functions cannot operate in parallel.
 - This architecture can reduce the number of qubits
 - → But it increases the circuit depth due to the sequential operations of high complexity.
 - To optimize the circuit depth, we execute the MsgExp function and Mix function in parallel by allocating additional ancilla qubits.

Combined Architecture of Compress Function

- In previous work [17], Song et al. conducted sequential operations in the Compression function.
- In contrast, we implements the Mix and MsgExp functions in parallel.
 - Specifically, the i-th Mix function and the i + 1-th MsgExp function can execute in parallel.
 - → effectively reducing the circuit depth.
- To enable this parallel process, we additionally allocate 424 (8 × 53) ancilla qubits for Mix function.
 - → We initially allocate 1,272(848+424) ancilla qubits at once and reuse them each round.

Fig. 4: Compression function in [17] using a sequential process

Fig. 5: Proposed parallel Compression function architecture

Combined Architecture of Compress Function

- By allocating two sets of ancilla qubits
 - → the even-round Mix with the odd-round MsgExp and the odd-round Mix with the even-round MsgExp in parallel.
- Only the depths of the Mix functions are estimated
 - → They have a higher depth compared to the MsgExp function.
- The parallel process demonstrates lower depth compared to processing them sequentially.

Function	Operation	# CNOT	# Toffoli	Toffoli depth	$\# \mathrm{Qubit}$	\mathbf{Depth}
Compression	Sequential	139,776	260,096	$2,\!266$	$2,\!384$	2,873
Compression	Parallel	139,776	260,096	1,716	2,808	2,198

*****: Estimation of undecomposed resources

Algorithm 1: Quantum circuit implementation of Compress function. **Input:** M_{even} , M_{odd} CV, α , β , SC, $ancilla_0$, $ancilla_1$ Output: M_{even} , M_{odd} , CV, 424 qubit array-ancilla₀, 848 qubit array-ancilla₁ 1: $CV \leftarrow \text{MsgAdd}(M_{even}, CV)$ 2: $CV \leftarrow \text{Mix}(CV, \alpha_{even}, \beta_{even}, SC, ancilla_0)$ 3: $CV \leftarrow \text{WordPerm}(CV)$ 4: $CV \leftarrow \text{MsgAdd}(M_{odd}, CV)$ 5: $CV \leftarrow \text{Mix}(CV, \alpha_{odd}, \beta_{odd}, SC, ancilla_0)$ ▶ Parallelization 1 6: $CV \leftarrow \text{WordPerm}(CV)$ 7: **for** 1 < i < 13 **do** $M_{even} \leftarrow \text{MsgExp}(M_{even}, M_{odd}, ancilla_1)$ ▶ Parallelization 1 $CV \leftarrow \operatorname{MsgAdd}(M_{even}, CV)$ $CV \leftarrow \text{Mix}(CV, \alpha_{even}, \beta_{even}, SC, ancilla_0)$ ▶ Parallelization 2 $CV \leftarrow \text{WordPerm}(CV)$ $M_{odd} \leftarrow \text{MsgExp}(M_{even}, M_{odd}, ancilla_1)$ ▶ Parallelization 2 $CV \leftarrow \operatorname{MsgAdd}(M_{odd}, CV)$ $CV \leftarrow \text{Mix}(CV, \alpha_{odd}, \beta_{odd}, SC, ancilla_0)$ ▶ Parallelization 1 $CV \leftarrow \text{WordPerm}(CV)$ 16: end for 17: $M_{even} \leftarrow \text{MsgExp}(M_{even}, M_{odd}, ancilla_1)$ ▶ Parallelization 1 18: $CV \leftarrow \text{MsgAdd}(M_{even}, CV)$ 19: return CV

Performance

Estiamation of quantum resources required for LSH

- For LSH-256-n and LSH-512-n, all resource costs except for the X gates are identical, respectively.
 - → We will only compare LSH-256-256 and LSH-512-512.
- Applying the Draper adder further increases the qubit usage, but it significantly reduces the full depth.
- For the trade-off, we report the TD-M, FD-M, TD²-M, FD²-M cost. (TD: Toffoli depth, FD: Full depth, M: qubit)
 - → Our proposed quantum circuit achieves the optimized performance across all trade-off metrics.

Table 6: Quantum resources required for implementations of LSH.

	Cipher	Source	#CNOT	#1qCliff		Toffoli depth (TD)	$\# ext{Qubit} \ (M)$	Full depth (FD)	TD- M	$FD ext{-}M$	TD^2 - M	FD^2 - M
Same adder		[17]	545,536	187,813	437,248	6,283	1,552	50,758	$1.16 \cdot 2^{23}$	$1.17\cdot 2^{26}$	$1.78\cdot 2^{35}$	$1.82\cdot 2^{41}$
	LSH-256-256	Ours-CDKM	$545,\!536$	187813	437,248	4,758	1,560	38,483	$1.77 \cdot \mathbf{2^{22}}$	$\boldsymbol{1.79\cdot 2^{25}}$	$\boldsymbol{1.03\cdot 2^{35}}$	$\boldsymbol{1.05\cdot 2^{41}}$
		Ours-Draper	1,700,608	306,947	1,820,672	1,716	2,808	13,647	$1.15 \cdot \mathbf{2^{22}}$	$1.14 \cdot \mathbf{2^{25}}$	$\boldsymbol{1.93\cdot 2^{32}}$	$\boldsymbol{1.90\cdot 2^{38}}$
Same adder		[17]	1,203,760	418,369	966,000	13,875	3,088	111,532	$1.28\cdot 2^{25}$	$1.28 \cdot 2^{28}$	$1.08\cdot 2^{39}$	$1.09\cdot 2^{45}$
	LSH-512-512	$\mathbf{Ours\text{-}CDKM}$	1,203,760	418,369	966,000	10,500	3,096	84,451	$\boldsymbol{1.94\cdot 2^{24}}$	$\boldsymbol{1.95\cdot 2^{27}}$	$1.24 \cdot \mathbf{2^{38}}$	$1.26 \cdot 2^{44}$
		Ours-Draper	4,030,000	736,569	2,614,473	2,028	5,832	17,385	$1.41\cdot 2^{23}$	$\boldsymbol{1.51\cdot 2^{26}}$	$1.40 \cdot 2^{34}$	$1.60\cdot 2^{40}$

Evaluation

Grover collision search

- To estimate the collision attack cost for LSH, we adopt the CNS algorithm.
- The CNS algorithm has the complexity of $O(2^{\frac{2n}{5} \frac{3s}{5}})$ $(s \le \frac{n}{4})$.
- We set $s = \frac{n}{6}$ to define suitable criteria for NIST post-quantum security levels, following that approach[9].
- The quantum attack cost for LSH is approximately $2 \times 2^{(\frac{2n}{5} \frac{3s}{5})} \times$ quantum circuit resources, excluding qubits.

Table 7: Costs of the Grover's collision search for LSH.

Cipher	$\# {\rm Gate}$	Full depth	T-depth	$\# \mathrm{Qubit}$	$G ext{-}FD$	FD- M	$Td ext{-}M$	FD^2 - M	Td^2 - M
	(G)	(FD)	(1 a)	(IVI)	:			,_	1 60 -111
LSH-256-224	$1.65\cdot 2^{89}$	$1.5\cdot 2^{81}$	$1.51\cdot 2^{80}$	$1.72\cdot 2^{48}$	$\boldsymbol{1.23\cdot2^{171}}$	$1.29\cdot 2^{130}$	$1.3\cdot 2^{129}$	$1.95\cdot 2^{211}$	$1.97\cdot 2^{209}$
LSH-256-256	$1.25\cdot 2^{99}$	$1.13\cdot 2^{91}$	$1.14\cdot 2^{90}$	$1.08\cdot 2^{54}$	$\boldsymbol{1.42\cdot2^{190}}$	$1.23\cdot 2^{145}$	$1.24\cdot 2^{144}$	$1.41\cdot 2^{236}$	$1.42 \cdot 2^{234}$
LSH-512-224	$1.96\cdot 2^{90}$	$1.91\cdot 2^{81}$	$1.78\cdot 2^{80}$	$1.79\cdot 2^{49}$	$1.87 \cdot 2^{172}$	$1.71\cdot 2^{131}$	$1.6\cdot 2^{130}$	$1.64\cdot 2^{213}$	$1.43 \cdot 2^{211}$
LSH-512-256	$1.49\cdot 2^{100}$	$1.45\cdot 2^{91}$	$1.35\cdot 2^{90}$	$1.13\cdot 2^{55}$	$1.07 \cdot 2^{192}$	$1.64\cdot 2^{146}$	$1.53\cdot 2^{145}$	$1.18\cdot 2^{238}$	$1.03\cdot 2^{236}$
LSH-512-384	$1.96\cdot 2^{138}$	$1.91\cdot 2^{129}$	$1.78\cdot 2^{128}$	$1.42\cdot 2^{76}$	$1.87 \cdot 2^{268}$	$1.36\cdot 2^{206}$	$1.27\cdot 2^{205}$	$1.3\cdot 2^{336}$	$1.13 \cdot 2^{334}$
LSH-512-512	$1.29\cdot 2^{177}$	$1.26\cdot 2^{168}$	$1.17\cdot 2^{167}$	$1.79\cdot 2^{97}$	$1.63\cdot 2^{345}$	$1.13\cdot 2^{266}$	$1.05\cdot 2^{265}$	$1.43\cdot 2^{434}$	$1.24\cdot 2^{432}$

Conclusion

- We focused on optimizing the depth of quantum circuits for Korean cryptographic hash function LSH.
- We utilize optimized quantum adders and parallelization.
- Our implementation of LSH achieves a significant depth improvement of over 78.8% and a Toffoli depth improvement of 79.1% compared to previous work.
- Through the depth-optimized implementation, we also obtain the optimized quantum resources of Grover collision attack for LSH.
- If NIST defines criteria for hash functions, we will compare our results with those criteria.

Q&A