tidying

Saneesh

1/24/2022

packages

```
# install.packages ('gapminder')
library(gapminder)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.3.6 v purrr
## v tibble 3.1.8
                        v dplyr 1.0.10
## v tidyr 1.2.1
                        v stringr 1.4.1
## v readr
           2.1.2
                        v forcats 0.5.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
shortcuts
alt+-will\ add<-
shift+ctrl+c to add # infront of a line
'—-' for a header, so it is easy to navigate through the script
command + shift + m
ctrl+alt+i for new code chunk # syntax Plain text
end a line with two spaces to start a new paragraph.
italics and italics
\mathbf{bold} \ \mathrm{and} \ \mathbf{bold}
superscript<sup>2</sup>
~strikethrough
link to rstudio
```

logical operations

```
1==1 \# equality
1!=3 \#unequal
13<14 \#13 smaller than 14
14>13 \#14 bigger than 13
12>=0 \#12 greater or equal to zero
12<=3 \#12 smaller or equal to zero
```

creating data.frame

family

```
name <- c('saneesh', 'sanusha', 'appu', 'kishan')</pre>
weight <- c(63,48, 20, NA)
height \leftarrow c(164, 150, NA, 75)
family <- data.frame(name, weight, height)</pre>
family %>% as_tibble()
## # A tibble: 4 x 3
    name
           weight height
     <chr>
              <dbl> <dbl>
                 63
## 1 saneesh
                        164
                        150
## 2 sanusha
                 48
                 20
## 3 appu
                        NA
## 4 kishan
               NA
                         75
library(tidyverse)
data <- data.frame(sex=c(rep('female', 10), rep('male', 8)),</pre>
                    score=c(rnorm(n= 10, mean = 7.56, sd = 1.978), rnorm(n= 8, mean=7.75, sd= 1.631)))
data
```

data frame with unequal values 10 and 8

```
##
        sex
                score
## 1 female 5.086595
## 2 female 5.616088
## 3 female 7.624725
## 4 female 10.488919
## 5 female 11.073935
## 6 female 7.456617
## 7 female 7.546695
## 8 female 5.953369
## 9 female 10.515885
## 10 female 4.730557
## 11 male 5.073760
## 12
       male 4.710225
## 13
       male 7.141875
## 14
       male 4.988168
       male 7.117418
## 15
## 16
       male 5.630331
## 17
       male 5.269851
       male 9.503780
data %>% group_by(sex) %>%
 summarise(score= n()) %>%
 mutate(freq=score/sum(score)*100)
```

```
## # A tibble: 2 x 3
## sex score freq
## <chr> <int> <dbl>
## 1 female 10 55.6
## 2 male 8 44.4
```

tibble

```
library(tidyverse)
years <- tribble(
    ~Location, ~Year, ~Month, ~Day,
    "Sydney", 2000, 9, 15,
    "Athens", 2004, 8, 13,
    "Beijing", 2008, 8, 8,
    "London", 2012, 7, 27,
    "Rio de Janeiro", 2016, 8, 5
)</pre>
```

tabyl

tabyl

```
library(janitor)

##
## Attaching package: 'janitor'

## The following objects are masked from 'package:stats':

##
## chisq.test, fisher.test

data <- data.frame(HairEyeColor)

data %>% tabyl(Hair, Eye) %>%
    adorn_percentages('row') %>%
    adorn_pct_formatting(digits = 2) %>%
    adorn_ns() %>%
    knitr::kable()
```

Hair	Brown	Blue	Hazel	Green
Black	25.00% (2)	25.00% (2)	25.00% (2)	25.00% (2)
Brown	25.00% (2)	25.00% (2)	25.00% (2)	25.00% (2)
Red	25.00% (2)	25.00% (2)	25.00% (2)	25.00% (2)
Blond	25.00% (2)	25.00% (2)	25.00% (2)	25.00% (2)

is.na

```
# identify location of NAs in vector
which(is.na(family))

## [1] 8 11

colSums(is.na(family))

## name weight height
## 0 1 1
```

replace na

```
mat <- matrix(sample(c(NA, 1:5), 50, replace = TRUE), 5)
df <- as.data.frame(mat)
df %>% replace(is.na(.), 0)%>% view()
```

clean names

```
# install.packages('janitor')
library(janitor)

id <- (c(1,1,2,2,3,3))
Country <- c('Angola', 'Angola', 'Botswana', 'Botswana', 'Zimbabwe', 'Zimbabwe')
year <- c('2006', '2007', '2008', '2009', '2010', '2006')
bank.ratio <- c(24,25,38,34,42,49)
Reserve.ratio <- c(77,59,64,65,57,86)
broad.money <- c(163,188,317,361,150,288)

bank <- data.frame(id, Country, year, bank.ratio, Reserve.ratio,broad.money)
bank %>% view()
as_tibble()

## Warning: The `x` argument of `as_tibble()` can't be missing as of tibble 3.0.0.

## # A tibble: 0 x 0

bank <- bank %>% clean_names() # replaced . with _
glimpse(bank)
```

filter bank data frame below such that it retains a country if a given id is satisfied e.g. filtering a data frame that has countries with id 1 and 2 only

```
bank %>%
 filter(id%in% c(1,2)) %>%
as_tibble()
## # A tibble: 4 x 6
       id country year bank_ratio reserve_ratio broad_money
##
                              <dbl>
                                       <dbl>
     <dbl> <chr>
                   <chr>>
                                                         <dbl>
## 1
        1 Angola
                   2006
                                               77
                                                           163
## 2
                                 25
                                                59
                                                           188
        1 Angola
                   2007
## 3
        2 Botswana 2008
                                 38
                                                64
                                                           317
## 4
        2 Botswana 2009
                                  34
                                                65
                                                           361
```

summarise fund available with each countries

count/ frequency

678

2 Botswana

3 Zimbabwe

```
mtcars %>%
  count(am) %>%
  as_tibble()

## # A tibble: 2 x 2
## am n
## <dbl> <int>
## 1 0 19
## 2 1 13
```

```
mtcars %>%
    count(gear)

## gear n
## 1 3 15
## 2 4 12
## 3 5 5
```

rename column

column: new name= old name

```
## S.len Sepal.Width Petal.Length Petal.Width Sp.
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
```

rename to lower

```
iris %>%
  rename_with(tolower) %>% head(3)
```

```
## sepal.length sepal.width petal.length petal.width species
                          1.4
## 1
                                      0.2 setosa
         5.1
                3.5
## 2
          4.9
                    3.0
                               1.4
                                        0.2 setosa
                    3.2
## 3
           4.7
                               1.3
                                        0.2 setosa
```

rename to lower specific columns

```
iris %>% select_at(vars(Species, Petal.Length), tolower) %>% head(3)
```

add column

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	ob_no
##	1	5.1	3.5	1.4	0.2	setosa	1
##	2	4.9	3.0	1.4	0.2	setosa	2
##	3	4.7	3.2	1.3	0.2	setosa	3
##	4	4.6	3.1	1.5	0.2	setosa	4
##	5	5.0	3.6	1.4	0.2	setosa	5
##	6	5.4	3.9	1.7	0.4	setosa	6
##	7	4.6	3.4	1.4	0.3	setosa	7
##	8	5.0	3.4	1.5	0.2	setosa	8
##	9	4.4	2.9	1.4	0.2	setosa	9
##	10	4.9	3.1	1.5	0.1	setosa	10
##	11	5.4	3.7	1.5	0.2	setosa	11
##	12	4.8	3.4	1.6	0.2	setosa	12
##	13	4.8	3.0	1.4	0.1	setosa	13
##	14	4.3	3.0	1.1	0.1	setosa	14
##	15	5.8	4.0	1.2	0.2	setosa	15
##	16	5.7	4.4	1.5	0.4	setosa	16
##	17	5.4	3.9	1.3	0.4	setosa	17
##	18	5.1	3.5	1.4	0.3	setosa	18
##	19	5.7	3.8	1.7	0.3	setosa	19
##	20	5.1	3.8	1.5	0.3	setosa	20
##	21	5.4	3.4	1.7	0.2	setosa	21
##	22	5.1	3.7	1.5	0.4	setosa	22
##	23	4.6	3.6	1.0	0.2	setosa	23
##	24	5.1	3.3	1.7	0.5	setosa	24
##	25	4.8	3.4	1.9	0.2	setosa	25
##	26	5.0	3.0	1.6	0.2	setosa	26
##	27	5.0	3.4	1.6	0.4	setosa	27
##	28	5.2	3.5	1.5	0.2	setosa	28
##	29	5.2	3.4	1.4	0.2	setosa	29
##	30	4.7	3.2	1.6	0.2	setosa	30
##	31	4.8	3.1	1.6	0.2	setosa	31
##	32	5.4	3.4	1.5	0.4	setosa	32
##	33	5.2	4.1	1.5	0.1	setosa	33
##	34	5.5	4.2	1.4	0.2	setosa	34
##	35	4.9	3.1	1.5	0.2	setosa	35
##	36	5.0	3.2	1.2	0.2	setosa	36
##		5.5	3.5	1.3	0.2	setosa	37
##		4.9	3.6	1.4	0.1	setosa	38
##		4.4	3.0	1.3	0.2	setosa	39
##		5.1	3.4	1.5	0.2	setosa	40
##		5.0	3.5	1.3	0.3	setosa	41
##		4.5	2.3	1.3	0.3	setosa	42
##		4.4	3.2	1.3	0.2	setosa	43
##		5.0	3.5	1.6	0.6	setosa	44
##		5.1	3.8	1.9	0.4	setosa	45
##		4.8	3.0	1.4	0.3	setosa	46
##		5.1	3.8	1.6	0.2	setosa	47
##		4.6	3.2	1.4	0.2	setosa	48
##	49	5.3	3.7	1.5	0.2	setosa	49

##	50	5.0	3.3	1.4	0.2	setosa	50
##	51	7.0	3.2	4.7	1.4	versicolor	51
##	52	6.4	3.2	4.5	1.5	versicolor	52
##	53	6.9	3.1	4.9	1.5	versicolor	53
##	54	5.5	2.3	4.0	1.3	versicolor	54
##	55	6.5	2.8	4.6	1.5	versicolor	55
##	56	5.7	2.8	4.5	1.3	versicolor	56
##	57	6.3	3.3	4.7	1.6	versicolor	57
##	58	4.9	2.4	3.3	1.0	versicolor	58
##	59	6.6	2.9	4.6		versicolor	59
##	60	5.2	2.7	3.9	1.4	versicolor	60
##	61	5.0	2.0	3.5	1.0	versicolor	61
##	62	5.9	3.0	4.2	1.5	versicolor	62
##	63	6.0	2.2	4.0		versicolor	63
##	64	6.1	2.9	4.7		versicolor	64
##	65	5.6	2.9	3.6		versicolor	65
##	66	6.7	3.1	4.4		versicolor	66
##	67	5.6	3.0	4.5		versicolor	67
##	68	5.8	2.7	4.1		versicolor	68
##	69	6.2	2.2	4.5		versicolor	69
##	70	5.6	2.5	3.9		versicolor	70
##	71	5.9	3.2	4.8		versicolor	71
##	72	6.1	2.8	4.0		versicolor	72
##	73	6.3	2.5	4.9		versicolor	73
##	74	6.1	2.8	4.7		versicolor	74
##	75	6.4	2.9	4.3		versicolor	75
##	76	6.6	3.0	4.4		versicolor	76
##	77	6.8	2.8	4.8		versicolor	77
##	78	6.7	3.0	5.0		versicolor	78
##	79	6.0	2.9	4.5		versicolor	79
##	80	5.7	2.6	3.5		versicolor	80
##	81	5.5	2.4	3.8		versicolor	81
##	82	5.5	2.4	3.7		versicolor	82
##	83	5.8	2.7	3.9		versicolor	83
	84	6.0	2.7	5.1		versicolor	84
##	85	5.4	3.0	4.5		versicolor	85
##		6.0	3.4	4.5		versicolor	86
	87	6.7	3.1	4.7		versicolor	87
	88	6.3	2.3	4.4		versicolor	88
	89	5.6	3.0	4.1		versicolor	89
	90	5.5	2.5	4.0		versicolor	90
	91	5.5	2.6	4.4		versicolor	91
	92	6.1	3.0	4.6		versicolor	92
	93	5.8	2.6	4.0		versicolor	93
	94	5.0	2.3	3.3		versicolor	94
	95	5.6	2.7	4.2		versicolor	95
	96	5.7	3.0	4.2		versicolor	96
##	97	5.7	2.9	4.2		versicolor	97
##	98	6.2	2.9	4.3		versicolor	98
##	99	5.1	2.5	3.0		versicolor	99
	100	5.7	2.8	4.1		versicolor	100
	101	6.3	3.3	6.0	2.5	virginica	101
	102	5.8	2.7	5.1	1.9	virginica	102
	103	7.1	3.0	5.9	2.1	virginica	103
"			-	-	_·-		

##	104	6.3	2.9	5.6	1.8	virginica	104
##	105	6.5	3.0	5.8	2.2	virginica	105
##	106	7.6	3.0	6.6	2.1	virginica	106
##	107	4.9	2.5	4.5	1.7	virginica	107
##	108	7.3	2.9	6.3	1.8	virginica	108
	109	6.7	2.5	5.8	1.8	virginica	109
##	110	7.2	3.6	6.1	2.5	•	110
						virginica	
	111	6.5	3.2	5.1	2.0	virginica	111
	112	6.4	2.7	5.3	1.9	virginica	112
	113	6.8	3.0	5.5	2.1	virginica	113
	114	5.7	2.5	5.0	2.0	virginica	114
##	115	5.8	2.8	5.1	2.4	virginica	115
##	116	6.4	3.2	5.3	2.3	virginica	116
##	117	6.5	3.0	5.5	1.8	virginica	117
##	118	7.7	3.8	6.7	2.2	virginica	118
##	119	7.7	2.6	6.9	2.3	virginica	119
##	120	6.0	2.2	5.0	1.5	virginica	120
	121	6.9	3.2	5.7	2.3	virginica	121
	122	5.6	2.8	4.9	2.0	virginica	122
	123	7.7	2.8	6.7	2.0	virginica	123
	124	6.3	2.7	4.9	1.8	virginica	124
	125	6.7	3.3	5.7	2.1	virginica	125
	126					•	
		7.2	3.2	6.0	1.8	virginica 	126
	127	6.2	2.8	4.8	1.8	virginica	127
	128	6.1	3.0	4.9	1.8	virginica	128
	129	6.4	2.8	5.6	2.1	virginica	129
	130	7.2	3.0	5.8	1.6	virginica	130
##	131	7.4	2.8	6.1	1.9	virginica	131
##	132	7.9	3.8	6.4	2.0	virginica	132
##	133	6.4	2.8	5.6	2.2	virginica	133
##	134	6.3	2.8	5.1	1.5	virginica	134
##	135	6.1	2.6	5.6	1.4	virginica	135
##	136	7.7	3.0	6.1	2.3	virginica	136
##	137	6.3	3.4	5.6	2.4	virginica	137
##	138	6.4	3.1	5.5	1.8	virginica	138
	139	6.0	3.0	4.8	1.8	virginica	139
	140	6.9	3.1	5.4	2.1	virginica	140
	141	6.7	3.1	5.6	2.4	virginica	141
	142	6.9	3.1	5.1	2.3	virginica	142
	143	5.8	2.7	5.1	1.9	virginica	143
						•	
	144	6.8	3.2	5.9	2.3	virginica 	144
	145	6.7	3.3	5.7	2.5	virginica	145
	146	6.7	3.0	5.2	2.3	virginica	146
	147	6.3	2.5	5.0	1.9	virginica	147
	148	6.5	3.0	5.2	2.0	virginica	148
	149	6.2	3.4	5.4	2.3	virginica	149
##	150	5.9	3.0	5.1	1.8	virginica	150

gapminder

iris %>% as_tibble()

```
## # A tibble: 150 x 5
##
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
             <dbl>
##
                         <dbl>
                                       <dbl>
                                                   <dbl> <fct>
               5.1
                           3.5
                                                     0.2 setosa
##
                                         1.4
   1
##
               4.9
                           3
                                         1.4
                                                     0.2 setosa
   3
               4.7
                           3.2
                                         1.3
##
                                                     0.2 setosa
               4.6
                           3.1
                                         1.5
                                                     0.2 setosa
##
                                                     0.2 setosa
##
   5
               5
                           3.6
                                         1.4
##
    6
               5.4
                           3.9
                                         1.7
                                                     0.4 setosa
   7
               4.6
                                         1.4
##
                           3.4
                                                     0.3 setosa
   8
               5
                           3.4
                                         1.5
                                                     0.2 setosa
                           2.9
    9
               4.4
                                         1.4
                                                     0.2 setosa
##
                                         1.5
## 10
               4.9
                           3.1
                                                     0.1 setosa
## # ... with 140 more rows
summary(gapminder)
##
                           continent
                                            year
                                                         lifeExp
           country
##
   Afghanistan: 12
                       Africa:624
                                       Min.
                                              :1952
                                                      Min.
                                                              :23.60
  Albania
                       Americas:300
                                       1st Qu.:1966
                                                      1st Qu.:48.20
                  12
## Algeria
                  12
                       Asia
                                :396
                                       Median:1980
                                                      Median :60.71
                                              :1980
## Angola
                  12
                                                      Mean
                                                              :59.47
                       Europe :360
                                       Mean
                                                      3rd Qu.:70.85
## Argentina
                  12
                       Oceania: 24
                                       3rd Qu.:1993
##
  Australia
                                       Max.
                                              :2007
                                                      Max.
                                                              :82.60
                  12
##
    (Other)
               :1632
##
                           gdpPercap
         pop
           :6.001e+04
                        Min.
                                    241.2
   1st Qu.:2.794e+06
##
                        1st Qu.:
                                  1202.1
   Median :7.024e+06
                        Median :
                                   3531.8
##
  Mean
           :2.960e+07
                               : 7215.3
                        Mean
                        3rd Qu.: 9325.5
    3rd Qu.:1.959e+07
##
          :1.319e+09
                               :113523.1
   Max.
                        Max.
##
str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
    \ country \ : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
    $ continent: Factor w/ 5 levels "Africa", "Americas",...: 3 3 3 3 3 3 3 3 3 3 ...
```

recode observation

\$ year

change name of observation—mutate (variable=recode (variable, 'old name'='new name')))

\$ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...

\$ gdpPercap: num [1:1704] 779 821 853 836 740 ...

```
gapminder %>%
mutate(country=recode(country, 'India'='IND' )) %>%
filter(country=='IND')
```

: int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...

: int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 163

```
## # A tibble: 12 x 6
##
      country continent year lifeExp
                                              pop gdpPercap
                                 <dbl>
                                                      <dbl>
##
      <fct>
              <fct>
                        <int>
                                            <int>
##
   1 IND
                         1952
                                  37.4 372000000
                                                       547.
              Asia
   2 IND
                                        409000000
                                                       590.
##
              Asia
                         1957
                                  40.2
##
    3 IND
              Asia
                         1962
                                  43.6
                                        454000000
                                                       658.
   4 IND
              Asia
                         1967
                                  47.2
                                        506000000
                                                       701.
## 5 IND
                                                       724.
              Asia
                         1972
                                  50.7
                                        567000000
##
    6 IND
              Asia
                         1977
                                  54.2
                                        634000000
                                                       813.
##
  7 IND
              Asia
                         1982
                                  56.6 708000000
                                                       856.
  8 IND
              Asia
                         1987
                                  58.6 788000000
                                                       977.
## 9 IND
                         1992
                                  60.2 872000000
                                                      1164.
              Asia
## 10 IND
              Asia
                         1997
                                  61.8 959000000
                                                      1459.
## 11 IND
                                                      1747.
              Asia
                         2002
                                  62.9 1034172547
## 12 IND
              Asia
                         2007
                                  64.7 1110396331
                                                      2452.
```

select

```
gapminder %>%
  select(year, country, gdpPercap)
## # A tibble: 1,704 x 3
##
      year country
                        gdpPercap
      <int> <fct>
                            <dbl>
                             779.
##
   1 1952 Afghanistan
   2 1957 Afghanistan
                             821.
##
                             853.
##
   3 1962 Afghanistan
                             836.
##
   4 1967 Afghanistan
   5 1972 Afghanistan
                             740.
##
##
   6 1977 Afghanistan
                             786.
                             978.
   7 1982 Afghanistan
##
   8 1987 Afghanistan
                             852.
      1992 Afghanistan
                             649.
##
   9
## 10 1997 Afghanistan
                             635.
## # ... with 1,694 more rows
msleep %>% select(starts_with("sleep"))
```

```
## # A tibble: 83 x 3
      sleep total sleep rem sleep cycle
##
##
            <dbl>
                       <dbl>
                                    <dbl>
##
   1
             12.1
                        NA
                                   NA
##
    2
             17
                         1.8
                                   NΑ
##
             14.4
                         2.4
                                   NA
##
   4
             14.9
                         2.3
                                    0.133
##
   5
              4
                         0.7
                                    0.667
##
   6
             14.4
                         2.2
                                    0.767
##
    7
              8.7
                         1.4
                                    0.383
##
              7
                                   NA
   8
                        NA
##
    9
             10.1
                         2.9
                                    0.333
```

```
## 10
                                 NA
## # ... with 73 more rows
do not select
iris %>% select(-Sepal.Length, -Species) %>% head(3)
     Sepal.Width Petal.Length Petal.Width
## 1
            3.5
                         1.4
## 2
            3.0
                          1.4
                                     0.2
## 3
            3.2
                         1.3
                                     0.2
or
iris %>% select(-c(Sepal.Length)) %>% head(3)
     Sepal.Width Petal.Length Petal.Width Species
## 1
            3.5
                         1.4
                                 0.2 setosa
## 2
             3.0
                          1.4
                                     0.2 setosa
## 3
             3.2
                          1.3
                                     0.2 setosa
iris %>% select(!Sepal.Length) %>% head(3)
     Sepal.Width Petal.Length Petal.Width Species
## 1
            3.5
                         1.4
                                     0.2 setosa
## 2
             3.0
                                     0.2 setosa
                          1.4
## 3
            3.2
                         1.3
                                     0.2 setosa
ends_with
iris %>% select(ends_with('length')) %>% head(3)
    Sepal.Length Petal.Length
## 1
             5.1
                           1.4
## 2
              4.9
                           1.4
## 3
              4.7
                           1.3
starts_with
iris %>% select(starts_with('Sepal')) %>% head(3)
    Sepal.Length Sepal.Width
```

1

2

3

5.1

4.9

4.7

3.5

3.0

3.2

filter

```
gapminder %>%
 select(year, country, lifeExp) %>%
 filter(country=="Eritrea", year>1950)
## # A tibble: 12 x 3
      year country lifeExp
##
     <int> <fct>
                     <dbl>
## 1 1952 Eritrea
                      35.9
## 2 1957 Eritrea
                     38.0
## 3 1962 Eritrea
                   40.2
## 4 1967 Eritrea
                    42.2
## 5 1972 Eritrea
                     44.1
## 6 1977 Eritrea
                     44.5
## 7 1982 Eritrea
                     43.9
## 8 1987 Eritrea
                     46.5
## 9 1992 Eritrea
                     50.0
## 10 1997 Eritrea
                     53.4
## 11 2002 Eritrea
                     55.2
## 12 2007 Eritrea
                      58.0
gapminder %>% filter(country=="Canada") %>% head(3) # from gapminder data filter country Canada and sho
## # A tibble: 3 x 6
    country continent year lifeExp
                                        pop gdpPercap
##
    <fct> <fct> <int> <dbl>
                                                <dbl>
                                      <int>
## 1 Canada Americas 1952
                              68.8 14785584
                                               11367.
## 2 Canada Americas 1957
                             70.0 17010154
                                              12490.
## 3 Canada Americas 1962 71.3 18985849
                                               13462.
except
gapminder %>% filter(country!="Oman") %>% head(3) # from gapminder data filter all the other countries
## # A tibble: 3 x 6
##
    country
              continent year lifeExp
                                            pop gdpPercap
    <fct>
                <fct>
                         <int>
                                 <dbl>
                                          <int>
                                                    <dbl>
                                  28.8 8425333
## 1 Afghanistan Asia
                          1952
                                                     779.
## 2 Afghanistan Asia
                          1957
                                  30.3 9240934
                                                     821.
## 3 Afghanistan Asia
                          1962
                                                     853.
                                  32.0 10267083
omit
```

iris %>% filter(Species!='setosa') %>% glimpse()

```
## Rows: 100
## Columns: 5
## $ Sepal.Length <dbl> 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.~
## $ Sepal.Width <dbl> 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.~
## $ Petal.Length <dbl> 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.~
## $ Petal.Width <dbl> 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.~
## $ Species <fct> versicolor, versicolor, versicolor, versicolor
```

omit multiple

```
iris %>% filter(!Species %in% c('setosa', 'versicolor')) %>% glimpse()

## Rows: 50

## Columns: 5

## $ Sepal.Length <dbl> 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.~

## $ Sepal.Width <dbl> 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.~

## $ Petal.Length <dbl> 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.~

## $ Petal.Width <dbl> 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.~

## $ Species <fct> virginica, virginica, virginica, virginica, virginica, virginica, virginica, virginica
```

filter between

```
iris %>% filter(Petal.Width >=2 & Petal.Width <= 5) %>% glimpse()

## Rows: 29

## Columns: 5

## $ Sepal.Length <dbl> 6.3, 7.1, 6.5, 7.6, 7.2, 6.5, 6.8, 5.7, 5.8, 6.4, 7.7, 7.~

## $ Sepal.Width <dbl> 3.3, 3.0, 3.0, 3.0, 3.6, 3.2, 3.0, 2.5, 2.8, 3.2, 3.8, 2.~

## $ Petal.Length <dbl> 6.0, 5.9, 5.8, 6.6, 6.1, 5.1, 5.5, 5.0, 5.1, 5.3, 6.7, 6.~

## $ Petal.Width <dbl> 2.5, 2.1, 2.2, 2.1, 2.5, 2.0, 2.1, 2.0, 2.4, 2.3, 2.2, 2.~

## $ Species <fct> virginica, virginica
```

pull

```
iris %>% pull(Species) # returns vector values
```

```
##
     [1] setosa
                   setosa
                               setosa
                                          setosa
                                                     setosa
                                                               setosa
##
     [7] setosa
                   setosa
                                                               setosa
                              setosa
                                          setosa
                                                    setosa
##
    [13] setosa
                   setosa
                              setosa
                                          setosa
                                                    setosa
                                                               setosa
##
   [19] setosa
                   setosa
                              setosa
                                         setosa
                                                    setosa
                                                               setosa
  [25] setosa
##
                   setosa
                              setosa
                                         setosa
                                                    setosa
                                                               setosa
## [31] setosa
                   setosa
                              setosa
                                                               setosa
                                         setosa
                                                    setosa
##
   [37] setosa
                   setosa
                              setosa
                                         setosa
                                                    setosa
                                                               setosa
## [43] setosa
                                         setosa
                                                    setosa
                   setosa
                              setosa
                                                               setosa
## [49] setosa
                   setosa
                              versicolor versicolor versicolor versicolor
## [55] versicolor versicolor versicolor versicolor versicolor
```

```
[61] versicolor versicolor versicolor versicolor versicolor
##
   [67] versicolor versicolor versicolor versicolor versicolor
##
  [73] versicolor versicolor versicolor versicolor versicolor
  [79] versicolor versicolor versicolor versicolor versicolor
##
   [85] versicolor versicolor versicolor versicolor versicolor
##
  [91] versicolor versicolor versicolor versicolor versicolor
  [97] versicolor versicolor versicolor virginica virginica
## [103] virginica virginica virginica virginica virginica virginica
## [109] virginica virginica virginica virginica virginica virginica
## [115] virginica virginica virginica
                                     virginica virginica
                                                         virginica
## [121] virginica virginica virginica virginica virginica
                                                         virginica
## [127] virginica virginica virginica
                                     virginica virginica
                                                         virginica
## [133] virginica virginica virginica virginica virginica
                                                         virginica
## [139] virginica virginica virginica virginica virginica
                                                         virginica
## [145] virginica virginica virginica virginica virginica virginica
## Levels: setosa versicolor virginica
```

iris %>% select(Species) # returns a table with one column

```
##
           Species
## 1
            setosa
## 2
           setosa
## 3
           setosa
## 4
            setosa
## 5
           setosa
## 6
            setosa
## 7
            setosa
## 8
            setosa
## 9
            setosa
## 10
            setosa
## 11
            setosa
## 12
            setosa
## 13
            setosa
## 14
            setosa
## 15
           setosa
## 16
           setosa
## 17
            setosa
## 18
           setosa
## 19
            setosa
## 20
           setosa
## 21
            setosa
## 22
           setosa
## 23
            setosa
## 24
            setosa
## 25
            setosa
## 26
            setosa
## 27
            setosa
## 28
            setosa
## 29
            setosa
## 30
           setosa
## 31
            setosa
## 32
            setosa
## 33
            setosa
## 34
           setosa
```

```
## 35
           setosa
## 36
           setosa
## 37
           setosa
## 38
           setosa
## 39
           setosa
## 40
           setosa
## 41
           setosa
## 42
           setosa
## 43
           setosa
## 44
           setosa
## 45
           setosa
## 46
           setosa
## 47
           setosa
## 48
           setosa
## 49
           setosa
## 50
           setosa
## 51
       versicolor
## 52
       versicolor
## 53
       versicolor
## 54
       versicolor
## 55
       versicolor
## 56
       versicolor
## 57
       versicolor
## 58
       versicolor
## 59
       versicolor
## 60
       versicolor
## 61
       versicolor
## 62
       versicolor
## 63
       versicolor
## 64
       versicolor
## 65
       versicolor
## 66
       versicolor
## 67
       versicolor
## 68
       versicolor
## 69
       versicolor
## 70
       versicolor
## 71
       versicolor
## 72
       versicolor
## 73
       versicolor
## 74
       versicolor
## 75
       versicolor
## 76
       versicolor
##
  77
       versicolor
## 78
       versicolor
## 79
       versicolor
## 80
       versicolor
## 81
       versicolor
## 82
       versicolor
## 83
       versicolor
## 84
       versicolor
## 85
       versicolor
## 86
       versicolor
## 87
       versicolor
## 88 versicolor
```

89 versicolor ## 90 versicolor ## 91 versicolor ## 92 versicolor ## 93 versicolor ## 94 versicolor ## 95 versicolor ## 96 versicolor ## 97 versicolor ## 98 versicolor ## 99 versicolor ## 100 versicolor ## 101 virginica ## 102 virginica ## 103 virginica ## 104 virginica ## 105 virginica ## 106 virginica ## 107 virginica ## 108 virginica ## 109 virginica ## 110 virginica ## 111 virginica ## 112 virginica ## 113 virginica ## 114 virginica ## 115 virginica ## 116 virginica ## 117 virginica ## 118 virginica ## 119 virginica ## 120 virginica ## 121 virginica ## 122 virginica ## 123 virginica virginica ## 124 ## 125 virginica ## 126 virginica ## 127 virginica ## 128 virginica ## 129 virginica ## 130 virginica ## 131 virginica ## 132 virginica ## 133 virginica ## 134 virginica ## 135 virginica ## 136 virginica ## 137 virginica ## 138 virginica ## 139 virginica ## 140 virginica

141 virginica
142 virginica

```
## 143 virginica
## 144 virginica
## 145 virginica
## 146 virginica
## 147
       virginica
## 148 virginica
## 149 virginica
## 150 virginica
iris %>% select(everything()) %>% head(3)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
                         3.5
                                       1.4
             5.1
                                                   0.2 setosa
## 2
                          3.0
             4.9
                                       1.4
                                                   0.2 setosa
## 3
             4.7
                          3.2
                                       1.3
                                                   0.2 setosa
multiple conditions
gapminder %>%
  filter(country=="Oman" &
          year>1980 &
          year<=2000) %>% head(4)
## # A tibble: 4 x 6
                                         pop gdpPercap
##
     country continent year lifeExp
     <fct>
            <fct>
                       <int>
                               <dbl>
                                       <int>
                                                 <dbl>
## 1 Oman
            Asia
                       1982
                                62.7 1301048
                                                12955.
## 2 Oman
            Asia
                                67.7 1593882
                                                18115.
                        1987
## 3 Oman
            Asia
                        1992
                               71.2 1915208
                                                18617.
## 4 Oman
                               72.5 2283635
            Asia
                        1997
                                                19702.
gapminder %>%
 select(country, year) %>%
  filter(year>=1980, country=="India"|
          country=="Oman"|
           country=="Canada")
## # A tibble: 18 x 2
##
      country year
##
      <fct>
              <int>
##
  1 Canada
               1982
## 2 Canada
              1987
## 3 Canada
              1992
## 4 Canada
              1997
## 5 Canada
              2002
## 6 Canada
              2007
## 7 India
              1982
## 8 India
              1987
## 9 India
              1992
```

10 India

1997

```
## 11 India
               2002
## 12 India
               2007
## 13 Oman
               1982
## 14 Oman
               1987
## 15 Oman
               1992
## 16 Oman
               1997
## 17 Oman
               2002
## 18 Oman
               2007
gapminder %>% filter(country!="Oman") %>% head(3) # from gapminder data filter all the other countires
## # A tibble: 3 x 6
##
     country
                 continent year lifeExp
                                               pop gdpPercap
     <fct>
                 <fct>
                           <int>
                                   <dbl>
                                             <int>
                                                       <dbl>
## 1 Afghanistan Asia
                            1952
                                    28.8 8425333
                                                        779.
## 2 Afghanistan Asia
                                    30.3 9240934
                            1957
                                                        821.
## 3 Afghanistan Asia
                            1962
                                    32.0 10267083
                                                        853.
filter multipe using %in%
gapminder %>% filter(country %in% c('Hungary', 'Iceland', 'Mongolia')) %>% head(3)
## # A tibble: 3 x 6
     country continent year lifeExp
                                           pop gdpPercap
     <fct>
             <fct>
                       <int>
                               <dbl>
                                         <int>
                                                   <dbl>
## 1 Hungary Europe
                        1952
                                64.0 9504000
                                                   5264.
## 2 Hungary Europe
                        1957
                                66.4 9839000
                                                   6040.
## 3 Hungary Europe
                        1962
                                68.0 10063000
                                                   7550.
target <- c('Hungary','Iceland', 'Mongolia')</pre>
gapminder %>% filter(country %in% target) %>% head (3)
## # A tibble: 3 x 6
                                           pop gdpPercap
     country continent year lifeExp
##
     <fct>
           <fct>
                       <int>
                               <dbl>
                                         <int>
                                                   <dbl>
## 1 Hungary Europe
                        1952
                                64.0 9504000
                                                   5264.
## 2 Hungary Europe
                        1957
                                66.4 9839000
                                                   6040.
## 3 Hungary Europe
                        1962
                                68.0 10063000
                                                   7550.
friends <- data.frame(Names=c('Saneesh', 'Appu', 'Shruti', 'Aradhana', 'Arathi', 'James Bond'),</pre>
                      age=c(40,9, 25, 25, 25, 50))
# data frame is friends
# columns in friends are Names, Age, Height, etc.
# Colum Name have 'Saneesh', 'Appu', 'Shruti', 'Aradhana', 'Arathi', 'James Bond'
# We want to filter information related to Sanees and James Bond only, so we created a vector with
# these names in it.
target <- c('Appu', 'James Bond') #and then</pre>
friends %>% filter(Names %in% target)
```

```
##
          Names age
## 1
           Appu 9
## 2 James Bond 50
friends %>% filter(Names== 'Appu'| Names== 'James Bond')
##
          Names age
## 1
           Appu
## 2 James Bond 50
friends %>% filter(Names %in% c('Appu', 'James Bond'))
##
          Names age
## 1
           Appu
## 2 James Bond 50
```

drop

```
gapminder %>%
  select(-year,-pop) %>%
 head(5)
## # A tibble: 5 x 4
##
     country
                continent lifeExp gdpPercap
                       <dbl>
##
     <fct>
                 <fct>
                                       <dbl>
## 1 Afghanistan Asia
                             28.8
                                       779.
## 2 Afghanistan Asia
                             30.3
                                       821.
## 3 Afghanistan Asia
                             32.0
                                       853.
## 4 Afghanistan Asia
                             34.0
                                        836.
## 5 Afghanistan Asia
                              36.1
                                       740.
```

group by & summarise

```
gapminder %>%
 filter(year==2007) %>%
  group_by(country) %>%
  summarise(meanLE=mean(lifeExp)) %>%
  arrange(meanLE, decreasing = TRUE)
## # A tibble: 142 x 2
##
      country
                               meanLE
##
      <fct>
                                <dbl>
                                 39.6
##
  1 Swaziland
## 2 Mozambique
                                 42.1
```

```
## 3 Zambia
                                  42.4
## 4 Sierra Leone
                                  42.6
                                  42.6
## 5 Lesotho
## 6 Angola
                                  42.7
## 7 Zimbabwe
                                  43.5
## 8 Afghanistan
                                  43.8
## 9 Central African Republic
                                  44.7
## 10 Liberia
                                  45.7
## # ... with 132 more rows
gapminder %>%
  group_by(country) %>%
  summarise(minLE=min(lifeExp)) %>%
  arrange(minLE,decreasing=FALSE)
## # A tibble: 142 x 2
##
      country
                    minLE
##
      <fct>
                    <dbl>
##
  1 Rwanda
                     23.6
## 2 Afghanistan
                     28.8
## 3 Gambia
                     30
## 4 Angola
                     30.0
## 5 Sierra Leone
                     30.3
## 6 Cambodia
                     31.2
## 7 Mozambique
                     31.3
## 8 Burkina Faso
                     32.0
## 9 Guinea-Bissau 32.5
## 10 Yemen, Rep.
                     32.5
## # ... with 132 more rows
grouped by continent, then summarise two things, first n=n() number of rows in which each continent are
or the size of each group, then the mean of the mean of the lifeExp variable.
gapminder %>%
  group_by(continent) %>%
  summarise(n=n(),
            meanLife=mean(lifeExp))
## # A tibble: 5 x 3
##
     continent
                 n meanLife
##
     <fct>
               <int>
                        <dbl>
## 1 Africa
                 624
                         48.9
## 2 Americas
                 300
                         64.7
## 3 Asia
                 396
                         60.1
## 4 Europe
                 360
                         71.9
## 5 Oceania
                 24
                         74.3
gapminder %>%
 group_by(continent) %>%
  summarise(PopConti=sum(pop))
```

A tibble: 5 x 2

```
##
     continent PopConti
    <fct>
##
                    <dbl>
## 1 Africa 6187585961
## 2 Americas 7351438499
## 3 Asia 30507333901
## 4 Europe 6181115304
## 5 Oceania
              212992136
pets <- data.frame(names=c(rep('saneesh', 3), rep('appu', 2), 'sanusha'),</pre>
                  pet=c(rep('dog', 3), rep('cat', 2), 'tiger'), number=c(2,2,5,7,8,1),
                  size=c(rep('medium', 2), rep('small', 3), 'big'))
pets
##
      names pet number
                           size
## 1 saneesh dog 2 medium
## 2 saneesh dog
                       2 medium
## 3 saneesh dog
                     5 small
                     7 small
       appu cat
## 4
## 4 appu cat 7 small
## 5 appu cat 8 small
## 6 sanusha tiger 1 big
library(tidyverse)
pets %>% group_by(pet, size) %>%
 summarise(totalpet= sum(number))
## `summarise()` has grouped output by 'pet'. You can override using the `.groups`
## argument.
## # A tibble: 4 x 3
## # Groups: pet [3]
    pet size totalpet
   <chr> <chr>
                    <dbl>
## 1 cat small
                     15
## 2 dog medium
## 3 dog small
## 4 tiger big
                       1
```

summarise

```
library(tidyverse)
plot <- c(rep(1,2), rep(2,4), rep(3,3))
bird <- c('a','b', 'a','b', 'c', 'd', 'a', 'b', 'c')
area <- c(rep(10,2), rep(5,4), rep(15,3))

birdlist <- data.frame(plot,bird,area)
birdlist</pre>
```

```
## plot bird area
## 1
      1
           a
               10
## 2
              10
       1
## 3
       2 a
             5
       2
## 4
              5
## 5
      2 c 5
## 6
     2 d 5
## 7
         a 15
      3
         b 15
## 8
       3
## 9
       3 c 15
# summarize the following data frame to a summary table.
# option 1
birdlist %>%
 group_by(plot) %>%
 summarise(bird = n(), area = unique(area))
## # A tibble: 3 x 3
## plot bird area
## <dbl> <int> <dbl>
## 1 1 2 10
## 2 2 4 5
## 3
      3 3 15
# option 2
birdlist %>%
count(plot, area, name = "bird")
## plot area bird
## 1 1 10
## 2
       2
         5
                4
## 3
       3
          15
               3
gapminder %>%
summarise(mean(lifeExp))
## # A tibble: 1 x 1
## `mean(lifeExp)`
             <dbl>
##
## 1
             59.5
gapminder %>%
 summarise(range(lifeExp))
## # A tibble: 2 x 1
## `range(lifeExp)`
##
              <dbl>
## 1
              23.6
## 2
             82.6
```

```
gapminder %>%
  filter(country=="India") %>%
  group_by(country) %>%
  summarise(GDPmax=max(gdpPercap),
            GDPmin=min(gdpPercap),
            GDPmean=mean(gdpPercap))
## # A tibble: 1 x 4
     country GDPmax GDPmin GDPmean
                             <dbl>
##
     <fct>
             <dbl> <dbl>
## 1 India
              2452.
                      547.
                             1057.
count/summarize
library(tidyverse)
plot \leftarrow c(rep(1,2), rep(2,4), rep(3,3))
bird <- as.factor(c('a', 'b', 'a', 'b', 'c', 'd', 'a', 'b', 'c'))
area \leftarrow c(rep(10,2), rep(5,4), rep(15,3))
birdlist <- data.frame(plot,bird,area)</pre>
birdlist
    plot bird area
## 1
        1
                 10
            a
## 2
        1
            b
                 10
## 3
       2
                  5
            a
## 4
                  5
## 5
       2
                  5
           С
## 6
       2
                 5
## 7
            a 15
       3
## 8
       3
                15
            b
## 9
       3
            c 15
#birdlist %>% group_by(plot, area) %>% mutate(count(bird))
birdlist %>%
  group_by(plot, area) %>%
  dplyr::summarize(bird = n(), # when summarize doesn't work directly use it (dplyr::)like this
        .groups = "drop") # to summarize of a column with reference to two other variables.
## # A tibble: 3 x 3
     plot area bird
##
     <dbl> <dbl> <int>
## 1
       1 10
## 2
       2
              5
                     4
```

3

3 15

3

count sites

```
treatment <- c(rep('ab',2), rep('bgrnf', 8), rep('bgpnf', 4))</pre>
site <- c('ab1', 'ab2',
          rep('bgrnf1', 3),
          rep('bgrnf2', 2),
          'bgrnf3',
          'bgrnf4',
          'bgrnf5',
          rep('bgpnf1', 2),
          rep('bgpnf2', 2))
data <- data.frame(treatment, site)</pre>
library(tidyverse)
# to find the site per each treatment
data %>% group_by(treatment) %>% count(treatment)
## # A tibble: 3 x 2
## # Groups: treatment [3]
   treatment n
##
    <chr> <int>
##
## 1 ab
## 2 bgpnf
## 3 bgrnf
                   8
```

case when new column

```
library(dplyr)
library(stringr)
feedback <- c('good_book', 'good_read', 'good_story', 'good for knowledge')
book <- c('ramayana', 'bible', 'encyclopedia', 'Mbharatha')

df <- data.frame(feedback, book)

df %>%
  mutate(response = case_when(str_starts(feedback, 'good') ~ 'good')) %>%
  select(book, response) %>% as_tibble()
```

separate

text to columns

```
df <- data.frame(films = c("Spider_man", "James_bond", "Iron_man", "Bat_man"))</pre>
##
          films
## 1 Spider_man
## 2 James_bond
## 3
       Iron_man
## 4
        Bat_man
df1 <- df %>%
  separate(films, c("a", "b"), sep='([_])')
##
               b
## 1 Spider man
## 2 James bond
## 3
      Iron man
## 4
        Bat man
```

unite

join

across

for multiple variables

```
library(tidyverse)
srno <- c(1:2)</pre>
film <- c("arabica", "robust")</pre>
rate <- c("good", "better")</pre>
lang_Eng <- c("yes", "yes")</pre>
films <- data.frame(srno, film, rate, lang_Eng)</pre>
str(films)
## 'data.frame':
                    2 obs. of 4 variables:
## $ srno : int 1 2
            : chr "arabica" "robust"
## $ film
## $ rate : chr "good" "better"
## $ lang_Eng: chr "yes" "yes"
films <- films %>%
 mutate(across(c(rate, lang_Eng), as.factor))
str(films)
## 'data.frame':
                    2 obs. of 4 variables:
## $ srno
           : int 12
              : chr "arabica" "robust"
## $ film
             : Factor w/ 2 levels "better", "good": 2 1
## $ lang_Eng: Factor w/ 1 level "yes": 1 1
```

everthing

select a key variable and everything

```
library(gapminder)
gapminder %>% select(pop, everything())
```

```
## # A tibble: 1,704 x 6
##
          pop country
                          continent year lifeExp gdpPercap
         <int> <fct>
                          <fct>
                                    <int>
                                            <dbl>
                                                      <dbl>
##
                                                       779.
## 1 8425333 Afghanistan Asia
                                     1952
                                             28.8
## 2 9240934 Afghanistan Asia
                                     1957
                                             30.3
                                                       821.
## 3 10267083 Afghanistan Asia
                                     1962
                                             32.0
                                                       853.
## 4 11537966 Afghanistan Asia
                                     1967
                                             34.0
                                                       836.
## 5 13079460 Afghanistan Asia
                                     1972
                                             36.1
                                                       740.
## 6 14880372 Afghanistan Asia
                                     1977
                                             38.4
                                                       786.
## 7 12881816 Afghanistan Asia
                                     1982
                                             39.9
                                                       978.
## 8 13867957 Afghanistan Asia
                                     1987
                                             40.8
                                                       852.
## 9 16317921 Afghanistan Asia
                                     1992
                                                       649.
                                             41.7
## 10 22227415 Afghanistan Asia
                                     1997
                                             41.8
                                                       635.
## # ... with 1,694 more rows
```

toupper

tolower

factor

change order of factor

```
data %>% mutate(len= fct_relevel(len, c('low', 'medium', 'high')))

## Dose.Cm Len.km len
## 1 d1 high high
## 2 D2 low low
## 3 D3 medium medium
```

parse_number

This drops any non-numeric characters before or after the first number. The grouping mark specified by the locale is ignored inside the number.

```
library(tidyverse)
class <- c('8th', '9th', '10th')
students <- c('25-30', '35-41', '21-28')
school <- data.frame(class, students)</pre>
school
##
    class students
## 1 8th
             25-30
## 2 9th
             35-41
## 3 10th
             21-28
glimpse(school) # notice students is a binned variable it is a not a numeric.
## Rows: 3
## Columns: 2
              <chr> "8th", "9th", "10th"
## $ class
## $ students <chr> "25-30", "35-41", "21-28"
school %>% mutate(students= parse_number(students)) %>% glimpse()
## Rows: 3
## Columns: 2
## $ class
             <chr> "8th", "9th", "10th"
## $ students <dbl> 25, 35, 21
school %>% mutate(students= parse_number(students))
##
     class students
## 1
      8th
## 2
                 35
      9th
## 3 10th
# now students because number with first value of the column
```

pivot longer

```
library(tidyverse)
rawdata <- data.frame(species_1=rnorm(n = 40, mean = 300, sd = 18.5), species_2=rnorm(40, 305, 16.7))
data <- pivot_longer(data = rawdata, cols = species_1:species_2, names_to = 'species', values_to = 'weignes_to = 'species_to = 'specie
```

ggplot

bar plot

```
library(ggplot2)
# Basic barplot
p<-ggplot(data=df, aes(x=dose, y=len)) +
   geom_bar(stat="identity")
p</pre>
```



```
# Horizontal bar plot
# p + coord_flip()

# Change the width of bars
ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", width=0.5)
```



```
# Change colors
ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", color="blue", fill="white")
```



```
# Minimal theme + blue fill color
p<-ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", fill="steelblue")+
  theme_minimal()
p</pre>
```


$geom_vline$

scatter plot with lm

```
library(ggplot2)

ggplot(iris, aes(Petal.Length, Petal.Width))+
  geom_point()+
  geom_smooth(method = 'lm')
```

`geom_smooth()` using formula 'y ~ x'

raincloud plot

```
library(ggdist)
library(tidyverse)
library(tidyquant)

## Loading required package: lubridate
```

```
## Hoading required package: Tubridate
## ## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
```

```
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
##
       first, last
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
       legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##
    method
                       from
     as.zoo.data.frame zoo
##
mpg %>% filter(cyl %in% c(4,6,8)) %>%
  ggplot(aes( x= factor(cyl), y= hwy, fill=factor(cyl)))+
# add half violin from `ggdist` package
ggdist::stat_halfeye(
  \# custom bandwidth
 adjust = 0.5,
  # move geom to right
  justification= -0.2,
  # remove slab interval
  .width = 0,
  point_color= NA
  # add boxplot
  geom_boxplot(
   width= 0.12,
    # remove outliers
    outlier.colour = NA,
   alpha= 0.5
  # add dot plots from `ggdist` package
  ggdist::stat_dots(
   #orientation of the plot
   side= 'left',
    # move geom to the left
    justification= 1.1,
    # adjust grouping of observation
```

```
binwidth=0.25
)+
# adjust theme
scale_fill_tq()+
theme_tq()+
labs(
   title= 'raincloud plot',
   subtitle= 'showing bimodel distribution of 6 cylinder vehicles',
   x= 'highway fuel efficiency',
   y= 'cylinders'
)+
coord_flip()
```

raincloud plot

factor(cyl) 0 4 0 6 5 8

months

```
library(lubridate)
months <- seq(month(1:12)) # make moths
months <- month.abb[months] # make abbriviations
temperature <- c(10,12,22,32,35,30,33,28,29,25,19,14)
myframe <- data.frame(months,temperature) # creating a new data frame
library(tidyverse)
glimpse(myframe)</pre>
```

 $scale_x_discrete(limits = month.abb) # this will order months on the x axis$

Temperature of months

ggtitle('Temperature of months')+


```
p + scale_x_discrete(limits=c("D0.5", "D2"))
```

Warning: Removed 1 rows containing missing values (position_stack).


```
# Outside bars
ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=len), vjust=-0.3, size=3.5)+
  theme_minimal()
```



```
# Inside bars
ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=len), vjust=1.6, color="white", size=3.5)+
  theme_minimal()
```



```
# Stacked barplot with multiple groups
ggplot(data=df2, aes(x=dose, y=len, fill=supp)) +
  geom_bar(stat="identity")
```



```
# Use position=position_dodge()
ggplot(data=df2, aes(x=dose, y=len, fill=supp)) +
geom_bar(stat="identity", position=position_dodge())
```



```
# Change the colors manually
p <- ggplot(data=df2, aes(x=dose, y=len, fill=supp)) +
geom_bar(stat="identity", color="black", position=position_dodge())+
    theme_minimal()
# Use custom colors
p + scale_fill_manual(values=c('#999999','#E69F00'))</pre>
```


Use brewer color palettes
p + scale_fill_brewer(palette="Blues")

hex plot

```
library(tidyverse)
# install.packages("hexbin")
class <- c(rep('10th', 8))
students <- c('10 to 15'),
              "15-20",
              "17 to 24",
              "20 to 25",
              "25 to 30",
              "30 to 40",
              "45 to 47",
              '50 to 55')
latitude <- c(11.50897246,
              11.48323136,
              11.48719031,
              11.46366611,
              11.41097322,
              11.52111154,
              11.44491386,
              11.46569568)
longitude <- c(76.06032062,
               76.06192685,
```

```
76.04266851,
76.04156575,
76.05075092,
76.02846331,
76.03084141,
76.01766216)

school <- data.frame(class, students, latitude, longitude)

school %>% mutate(students= parse_number(students)) %>%
ggplot(aes(latitude, longitude, z= students))+
stat_summary_hex()+
scale_fill_viridis_c(alpha= 0.8)+
labs(fill='students', title = 'school students')
```

school students

Color Palettes

Resources

- https://colorhunt.co/
- https://coolors.co/
- https://colorpalettes.net/
- https://www.canva.com/colors/color-palettes/
- https://color.adobe.com/de/create/color-wheel
- https://mycolor.space/

• http://colormind.io/

```
#install.packages(c("tidyverse", "gapminder", "MetBrewer"))
```

libraries

```
library(tidyverse)
library(gapminder)
# install.packages('MetBrewer')
library(MetBrewer)
```

Plot the point plot using GDP per Capita as the x- axis and LE as the y axis. Numerical variable Population to control the size of each point.

To use color in the plot, assign the Population variable to the color aesthetic. Since nothing is specied, ggplot2 chooses a color spectrum for this numerical variable (shades of blue).

To control the color spectrum, we need to introduce a color scale. In the following plot, we have to provide a vector of hex color values. You would choose this if you got your colors from one of the mentioned above websites.

```
plot + geom_point(aes(gdpPercap, lifeExp, size= pop/1000000, color= pop/1000000))+
    scale_color_gradientn(colors = c("#003049", "#D62828", "#F77F00", "#FCBF49", "#EAE2B7"))
```


To apply one of the MetBrewer palettes, replace the hex-vector with a MetBrewer function. Within the function call, you provide the palette's name, then several colors, and tell it that we need a continuous palette since it is a numerical variable.

```
plot + geom_point(aes(gdpPercap, lifeExp, size= pop/1000000, color= pop/1000000))+
    scale_color_gradientn(colors = met.brewer('Cross', n=500, type = 'continuous'))
```


You might also want to use color palettes with non-numerical variables. Let us assume we want to apply color to the Continent variable. This implies using a manual color scale and providing a MetBrewer palette.

```
plot + geom_point(aes(gdpPercap, lifeExp, size= pop/1000000, color= continent))+
    scale_color_manual(values = met.brewer('Navajo', 5))
```


Please note if you want to apply color to the fill aesthetic rather than the color aesthetic, consider using the scale_fill_manuel function instead of the scale_color_manuel. This is useful for boxplots or bar charts.

scale fill manual

themes

```
df <- data.frame(
    Names=as.factor(c('Bacteria', 'Yeast', 'None')),
    Quantity=c(2.5, 5.5, 7.5))

library(ggplot2)
library(tidyverse)
df <- df %>% mutate(Names= fct_relevel(Names, c('Bacteria', 'Yeast', 'None')))

ggplot(df, aes(Names, Quantity, fill= Names))+
```

```
geom_bar(stat = 'identity')+
    scale_fill_manual(values = c('#110a62', '#fcd749','#b5b4b5'))+
labs(y='Necter pH', x= 'Microbe added to nectar')+
theme_classic()+
    theme(legend.position = 'none', axis.ticks.x = element_blank())+
theme(axis.text = element_text(size = 22, color= 'black'))+
theme(axis.line.x = element_blank())+
theme(axis.line.x = element_line(size = 1, color="black"),
    axis.ticks.length = unit(.5, "cm"))+
theme(text = element_text(size = 22))
```


graphics

```
x11() # opne a new window for graphics
graphics.off() # close the new window
```

Normal distribution

Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean.

Functions

dice

```
dice <- c(1:6)
myluck<- function(x){
  myluck <- sample(dice, size = 1, replace = T)</pre>
```

```
return(myluck)
}
myluck()
## [1] 2
```

```
names <- c('saneesh','appu','sanusha')
who <- function(x) {
  who <- sample(names, 1, T)
  return(who)
}</pre>
```

[1] "saneesh"

pick a name

function to split

```
df <- data.frame(name=as.factor(c('James Bond', 'Spider Man', 'Iron Man')))
# df <- df %>% separate(name, c('Genus', 'Species'), sep = '([])')
shorten <- function(df){
   name_split <- df %>% separate(name, c('Genus', 'Species'), sep = '([])')
   print(name_split)
}
shorten(df)
## Genus Species
```

```
## 1 James Bond
## 2 Spider Man
## 3 Iron Man
```

Rmarkdown

knitr golbal options

```
to apply to every chunk in the file
inside the chunk write knitr::opts_chunk$set(include= ,echo = , message= , warning= )
# knitr::opts_chunk$set(message = TRUE, echo = TRUE, warning = TRUE)
```

include: to show or hide code and results from appearing
echo: to show or hide code in the output but shows result
message to hide or show the messages generated by the code
warning: to show or hide warning generated by the code

these options can be written for individual chunks as well

[1] 5

Heading 1

Heading 2

Heading 3

 $\begin{array}{c} italics\\ italic \end{array}$

bold

 \mathbf{bold}

 ${\tt plot()}$ to show r code/function @Saneesh

blockquotes are writtedn after >

this is a blockquote
— Saneesh

plain code

hello

unordered items

- item 1
- item 2
 - sub item 1a
 - sub item 2b

ordered items

- 1. Item 1
- 2. Item 2
 - Item 2a # give two spaces before the +
 - Item 2b

writing mathematical functions

adding a link

mathematical notations

```
\begin{array}{l} by \\ \mu \\ \sum \\ a \pm b \\ x = y \\ x > y \\ x^2 \\ x \leq y \\ \sum_{n=1}^{10} n^2 \\ x_1 + x_2 + \dots + x_n \\ |A| \\ A \subset B \\ A \subseteq B \\ A \cup B \\ A \cap B \\ P(A|B) \\ \alpha \\ \beta \\ \gamma \\ \theta \\ H_2O \end{array}
```

\mathbf{table}

using knitr::kable()

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
6.3 6.3	3.3 2.9	6.0 5.6	2.5 1.8	virginica virginica
6.3	2.7	4.9	1.8	virginica
6.3 6.3	$\frac{2.8}{3.4}$	5.1 5.6	$1.5 \\ 2.4$	virginica virginica
6.3	2.5	5.0	1.9	virginica