אלגברה ב – פולינום מינימאלי

נושאים:

- 1. תזכורת: משפט קיילי המילטון
 - 2. חוגים ואידיאליים
 - 3. פולינום מינימאלי

תזכורת: משפט קיילי המילטון

- ,V של B_V ממימד מים אופרטור. בהינתן בסיס n יהי ע מ"ו מעל F יהי 'חיהי 'חיה' 'חיהי 'חיה' 'חיהי 'חיה' 'חיהי 'חיהי 'חיהי 'חיהי 'חיה' 'חיהי 'חיהי 'חיה' 'חיה' 'חיה' 'חיהי 'חיה' . $det(\lambda I - [T]_{B_v})$ בתור בתור הפולינום האופייני של
- ראינו כי . $[T]_{\mathcal{C}_{v}}$ אם נבחר בסיס אחר , $^{\mathrm{U}}$ של של $^{\mathrm{U}}$ של אם נבחר בסיס אחר , במקרה זה יש P הפיכה המקיימת $P^{-1}[T]_{B_v}P=[T]_{C_v}$ במקרה זה יש P במקרה זה יש לכן , $\det(\lambda\,I-[T]_{B_v})=\det(\lambda\,I-[T]_{C_v})$ – לכן גמו כן, אנו יודעים במקרה זה ש לבסיס $det(\lambda\,I-[T]_{B_n})$ בתור (בתור $det(\lambda\,I-[T]_{B_n})$ לבסיס .(V של B_{ν} כלשהו
 - .V פולינום עם מקדמים בF-, אזי p(x) הוא אופרטור על p(x)
 - . $a_n=1$ בקרא מתוקן אם $p(x)=a_nx^n+...+a_1x+a_0$ בקרא מתוקן אם $p(x)=a_nx^n+...+a_1x+a_0$

משפט (קיילי המילטון): האופרטור T מאפס את הפולינום האופייני שלו.

• ברור כי קיימים פולינומים נוספים אותם T מאפס (חוץ מהפולינום האופייני). איך ניתן לאפיין את כל הפולינומים אותם T מאפס?

חוגים ואידיאליים

:נקרא חוג (עם יחידה) אם מקיים $(R,+,\cdot)$ נקרא ונקרא $(R,+,\cdot)$

- 1. (R, +) חבורה קומוטטיבית (ז"א יש סגירות, אסוציאטיביות, אבר אדיש לחיבור ולכל איבר יש הפיך).
 - .($a \cdot b \in R$ מתקיים $a, b \in R$ מתקיים .2
 - .($(a \cdot b) \cdot c = a \cdot (b \cdot c)$ מתקיים $a, b, c \in R$ 3.
 - $a \in R$ לכל $a \cdot 1 = 1 \cdot a = a$ כך ש $a \cdot 1 = 1 \cdot a = a$ לכל $a \cdot b \cdot c \in R$ לכל $a \cdot b \cdot c \in R$ לכל $a \cdot (b + c) = a \cdot b + a \cdot c$ ($a \cdot b \cdot c \in R$ לכל $a \cdot (b + c) = a \cdot b + a \cdot c$).

דוגמאות:

- 1. כל שדה הוא בפרט חוג קומוטטיבי.
- 2. הקבוצה Z (המספרים השלמים), עם חיבור וכפל רגיל הוא חוג קומוטטיבי.
- ג. עבור שדה F, הקבוצה F[x] (כל הפולינומים מכל הדרגות) עם חיבור וכפל 3. פולינומים רגיל היא חוג קומוטטיבי.
 - .(עם חיבור וכפל מטריצות). $M_{nxn}(F)$.4

 $(a,b \in R \ \ \,$ לכל ab=ba לכל ab=ba לכל ab=ba לכל R נקרא קומוטטיבי אם הכפל בו קומוטטיבי

- . $ab=0 \rightarrow a=0 \lor b=0$ מתקיים $a,b\in R$ מתקיים אפס" אפס" אפס" אם לכל
 - . $a \cdot b = b \cdot a = 1$ כך ש $b \in R$ קיים $0 \neq a \in R$ 3.

: מקיים I מקיים I מקיים I בדר אם I מקיים I מקיים:

- . $a+b\in I$ מתקיים $a,b\in I$ לכל
- . $r \cdot a \in I$, $a \cdot r \in I$ מתקיים $a \in I$, $r \in R$ 2.

נקרא $I = \{r_1x_1 + ... + r_nx_n | r_i \in R\}$ נקרא . $x_1, ..., x_n \in R$ נקרא ווג קומוטטיבי, $x_1, ..., x_n \in R$

דוגמאות:

nים אידיאל (הנוצר ע"י n). מרכי הכפולות של המשל הכפולות של nהם אידיאל (הנוצר ע"י n).

 $(qp)(T)=q(T)p(T)=p_1(T)+p_2(T)=0$ מתקיים $p_1,p_2\in I_T$ לכן (qp)(T)=q(T)p(T)=0 מתקיים $p\in I_T,q\in F[x]$ כמו כן, עבור $p_1+p_2\in I_T$ לכן $qp\in I_T$

טענה: יהי R=F[x] חוג הפולינומים, I < R אידיאל שונה מאפס, אזי קיים פולינום מתוקן I = R יחיד I = (d) כך שI = (d) כר

הפולינום המינימלי

הפולינום המקיים $m_T{\in}F[x]$ יהי V אופרטור אופרטור T אופרטור על V מ"ו מעל V הגדרה: יהי או מעל m_T אז הפולינום המינימלי של m_T , אז m_T נקרא "הפולינום המינימלי של

<u>הערה:</u> באופן דומה מוגדר כמובן הפולינום המינימלי של מטריצה.

תשפט: יהי V מ"ו מעל F, יהי T אופרטור על V. לפולינום האופייני של V ולפולינום המינימלי דיש את אותם שורשים (עד כדי ריבוי אלגברי).

q(T)אזי ניתן m_T אזי ניתן p_T אזי ניתן p_T אזי ניתן p_T אזי ניתן $q(T) \neq 0$ אזי ניתן $p_T \neq 0$ און $p_T \neq 0$ אזי ניתן $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און ניתן $p_T \neq 0$ און ניתן $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ אבל $p_T \neq 0$ און $p_T \neq 0$ און p

מסקנה: יהי T אופרטור לכסין, אז הדרגה של הפולינום המינימלי של אופרטור שווה למספר ערכיו העצמיים.

<u>הערה:</u> נשים לב כי בפולינום האופייני של אופרטור על מ"ו ממשי יכול להיות גורם אי פריק מדרגה 2 (למשל x^2+1). במקרה זה גורם זה יהיה גם גורם בפולינום המינימלי. זו אינה מסקנה מיידית מהמשפט, אבל נובע ממה שלמדנו על מרכוב – ז"א הפולינום האופייני והמינימלי של המרכוב של T הוא בדיוק אותו פולינום כמו של T עצמו, ואז לאופרטור המרוכב הפולינום מתפרק לגורמים ליניארים, ונובע מהמסקנה למעלה.