

<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivat... / Lecture 4: Introduction to vectors and dot pro...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:17:17

Lecture due Aug 18, 2021 20:30 IST Completed

Synthesize

Perpendicular vectors

Start of transcript. Skip to the end.

PROFESSOR: We'll talk a bunch, well, over the course over many days about why

this is useful and important.

One comment is that if we know v and w

and we'd like to find the angle between them,

this is a good way to do it because it's easy to find--

0:00 / 0:00

▶ 2.0x

X

CC

"

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

If we have two perpendicular vectors, then the angle between them is $heta=rac{\pi}{2}$ and so we get

$$ec{v}\cdotec{w}=|ec{v}||ec{w}|\cos{(\pi/2)}=0.$$

Similarly, if the dot product is zero, the angle between two vectors must be $\pm \pi/2$. This gives us a definition of what it means for two vectors to be perpendicular.

Theorem A vector \vec{v} is **perpendicular** to a vector \vec{w} if and only if $\vec{v} \cdot \vec{w} = 0$.

Example 14.2 Let $ec{v}=\langle 1,0
angle$ and $ec{w}=\langle 0,5
angle$. Then

 $ec{v}\cdotec{w}=\langle 1,0
angle\cdot\langle 0,5
angle=(1)\,(0)+(0)\,(5)=0.$ (3.49)

Dot product concept check

1/1 point (graded)

Let $ec v=\langle 2,1
angle$ and $ec w=\langle -1,1
angle$. True or False: The vectors ec v and ec w are perpendicular.

True

False

Solution:

We have

$$\vec{v} \cdot \vec{w} = \langle 2, 1 \rangle \cdot \langle -1, 1 \rangle = (2)(-1) + (1)(1) = -2 + 1 = -1 \neq 0.$$
 (3.50)

Since $ec{v} \cdot ec{w}
eq 0$, we can conclude that the two vectors are not perpendicular.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Find a perpendicular vector

1.0/1 point (graded)

Find a vector \vec{v} perpendicular to $\langle 2, 3 \rangle$.

(Enter vector as a pair of values between square brackets: e.g. type **[a,b]** for $\langle a,b \rangle$.)

[-3,2]

✓ Answer: [-3,2]

Solution:

$$0=ec{v}\cdot(2,3)=2v_1+3v_2.$$

Therefore if say $v_2=2$, then $v_1=-3$. Note there are infinitely many solutions, but all solutions point in the same direction as the vector $\langle -3,2\rangle$.

Submit

Show all posts

You have used 1 of 10 attempts

1 Answers are displayed within the problem

14. Perpendicular vectors

Hide Discussion

by recent activity >

Topic: Unit 2: Geometry of Derivatives / 14. Perpendicular vectors

Add a Post

4

? Perpendicular vectors finding issue

<u>Is there a more systematic way to solve for perpendicular method except hit and trial?</u>

<u>ıstanı t</u>	typo in equation 3.50	3
	n to Find a perpendicular vector ution mentions that all solutions point in the same direction as the vector Obviously, vectors pointing in the opposi	4 te directi
Zero ve	ector ero vector perpendicular to any other vector, including itself?	6
<u>14. Perp</u>	pendicular vectors	3
	a definition or a theorem? *"This gives us a definition of what it means for two vectors to be perpendicular."*	
So is it a	a definition or a theorem? *"This gives us a definition of what it means for two vectors to be perpendicular."* error in solution for Dot Product Concept Check ould you please correct the final sentence of the worked solution for "Dot Product Concept Check"? It makes the wrong	2
So is it a [STAFF]	error in solution for Dot Product Concept Check	2
So is it a So IS IT AFF	error in solution for Dot Product Concept Check	2
So is it a So is it a	error in solution for Dot Product Concept Check	2

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

<u>Donate</u>

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>