Dimension-reduced Interior Point Method

Discussion 4. Part 1

August 25, 2022

Simplex constrained QP formulation

$$\min_{\mathbf{y}, \mathbf{u} = (\mathbf{x}, \mathbf{s}, \kappa, \tau)} f(\mathbf{u}) := \frac{1}{2} ||\hat{\mathbf{A}}(\mathbf{y}; \mathbf{u})||^2$$
subject to
$$\mathbf{e}^{\top} \mathbf{u} = 1$$
$$\mathbf{u} \ge \mathbf{0}.$$

Using the potential function

$$\varphi(\mathbf{u}) := \rho \log (f(\mathbf{u})) - B(\mathbf{x}) - B(\mathbf{s}) - \log \kappa - \log \tau$$

• y is treated unconstrained

$$\min_{\mathbf{d}, \alpha^g, \alpha^m} \quad \frac{1}{2} \mathbf{d}^\top \mathbf{H} \mathbf{d} + \mathbf{h}^\top \mathbf{d}$$
subject to
$$\|\mathbf{U}^{-1} \mathbf{u}\|^2 \le \beta \le 1$$

$$\mathbf{d} = \alpha^g \mathbf{g}^k + \alpha^m \mathbf{m}^k.$$

The new method

- is able to solving NETLIB LPs to $10^{-3} \sim 10^{-4}$ relative accuracy (20000 iterations)
- slows down in reducing potential half way

Figure 1. Reduction in potential

Main observation: steps may be trapped at local solutions.

So we use one more direction to escape it.

Note that

• \mathbf{v}_{\min} that corresponds to $\lambda_{\min}(\nabla_{\mathbf{x}\mathbf{x}}\varphi)$ is an ideal direction to escape a local solution.

We only need to consider $\begin{array}{ll} \min_{\mathbf{v}\neq\mathbf{0}} & \frac{\langle \mathbf{v}, \nabla_{\mathbf{x}\mathbf{x}}\varphi\mathbf{v}\rangle}{\|\mathbf{v}\|^2} \\ \mathrm{subject\ to} & \mathbf{e}^\top\mathbf{v}=0, \end{array} \text{ or simply }$

$$\min_{\mathbf{v}\neq\mathbf{0}} \ \frac{\langle \mathbf{v}, \mathbf{P}_{\Delta} \nabla_{\mathbf{x}\mathbf{x}} \varphi \mathbf{P}_{\Delta} \mathbf{v} \rangle}{\|\mathbf{v}\|^2}$$

- ullet Finding the miminum (negative) eigenvalue of ${f P}_\Delta
 abla_{{f x}{f x}} arphi {f P}_\Delta$
- Efficiently solvable using Lanczos exploiting

$$\nabla_{\mathbf{x}\mathbf{x}}\varphi(\mathbf{x}) = \rho \left(-\frac{\nabla f(\mathbf{x})\nabla f(\mathbf{x})}{f(\mathbf{x})^2}^\top + \frac{\mathbf{A}^\top \mathbf{A}}{f(\mathbf{x})} \right) + \mathbf{X}^{-2}$$

and structure of A.

In practice we can add curvature

- if $\varphi(\mathbf{x}^k) \varphi(\mathbf{x}^{k+1}) \leq \varepsilon$
- ullet every K iterations

Figure 2. Adding negative curvature

Original: solving NETLIB LPs to $10^{-3} \sim 10^{-4}$ relative accuracy in 20000 iterations

Now: solving NETLIB LPs to $10^{-5} \sim 10^{-8}$ relative accuracy in 1000 iterations

Problem P	PInfeas	DInfeas.	Compl.	Problem	PInfeas	DInfeas.	Compl.
DLITTLE 1.3	347e-10	2.308e-10	2.960e-09	KB2	5.455e-11	6.417e-10	7.562e-11
AFIRO 7.6	641e-11	7.375e-11	3.130e-10	LOTFI	2.164e-09	4.155e-09	8.663e-08
AGG2 3.3	374e-08	4.859e-08	6.286e-07	MODSZK1	1.527e-06	5.415e-05	2.597e-04
AGG3 2.2	248e-05	1.151e-06	1.518e-05	RECIPELP	5.868e-08	6.300e-08	1.285e-07
BANDM 2.4	444e-09	4.886e-09	3.769e-08	SC105	7.315e-11	5.970e-11	2.435e-10
BEACONFD 5.7	765e-12	9.853e-12	1.022e-10	SC205	6.392e-11	5.710e-11	2.650e-10
BLEND 2.0	018e-10	3.729e-10	1.179e-09	SC50A	1.078e-05	6.098e-06	4.279e-05
BOEING2 1.3	144e-07	1.110e-08	2.307e-07	SC50B	4.647e-11	3.269e-11	1.747e-10
BORE3D 2.3	389e-08	5.013e-08	1.165e-07	SCAGR25	1.048e-07	5.298e-08	1.289e-06
BRANDY 2.7	702e-05	7.818e-06	1.849e-05	SCAGR7	1.087e-07	1.173e-08	2.601e-07
CAPRI 7.5	575e-05	4.488e-05	4.880e-05	SCFXM1	4.323e-06	5.244e-06	8.681e-06
E226 2.6	656e-06	4.742e-06	2.512e-05	SCORPION	1.674e-09	1.892e-09	1.737e-08
FINNIS 8.5	577e-07	8.367e-07	1.001e-05	SCTAP1	5.567e-07	8.430e-07	5.081e-06
FORPLAN 5.8	874e-07	2.084e-07	4.979e-06	SEBA	2.919e-11	5.729e-11	1.448e-10
GFRD-PNC 4.5	558e-05	1.052e-05	4.363e-05	SHARE1B	3.367e-07	1.339e-06	3.578e-06
GROW7 1.2	276e-04	4.906e-06	1.024e-04	SHARE2B	2.142e-04	2.014e-05	6.146e-05
ISRAEL 1.4	422e-06	1.336e-06	1.404e-05	STAIR	5.549e-04	8.566e-06	2.861e-05
STANDATA 5.6	645e-08	2.735e-07	5.130e-06	STANDGUB	2.934e-08	1.467e-07	2.753e-06
STOCFOR1 6.6	633e-09	9.701e-09	4.811e-08	VTP-BASE	1.349e-10	5.098e-11	2.342e-10

Table 1. Solving NETLIB LPs in 1000 iterations

One observation:

Pre-conditioning by $\mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\top})^{-1}\mathbf{A} \in \mathbb{R}^{n \times n}$ sometimes unfriendly to HSD since $\tau \to 0$.

Following aspects may accelerate the algorithm

- Adjust ρ adaptively
- More careful matrix scaling to enhance conditioning
- Faster eigen-routine (may be randomized)

Solving the eigen-problem below

$$\lambda_{\min} \left\{ \nabla_{\mathbf{x}\mathbf{x}} \varphi(\mathbf{x}) = \rho \left(-\frac{\nabla f(\mathbf{x}) \nabla f(\mathbf{x})}{f(\mathbf{x})^2}^{\top} + \frac{\mathbf{A}^{\top} \mathbf{A}}{f(\mathbf{x})} \right) + \mathbf{X}^{-2} \right\}$$

with randomized technique for negative curvature

More directions

Efficient Eigen-decomposition for Sparse Matrices

Discussion 4. Part 2

August 25, 2022

The eigen routine in HDSDP is now re-written and presented as a stand-alone library SPEIGS It targets the problem

$$\mathbf{AV} = \Lambda \mathbf{V}$$

for **extremely** sparse $\mathbf{A} \in \mathbb{S}^{n \times n}$ and needs the full spectrum.

Recall that in dual-scaling

$$\langle \mathbf{C}, \mathbf{S}^{-1} \mathbf{A} \mathbf{S}^{-1} \rangle = \sum_{i=1}^{r(\mathbf{A})} \lambda_i \langle \mathbf{a}_i, \mathbf{C} \mathbf{a}_i \rangle.$$

- Efficient eigen-routine is critical as a pre-processing step
- Generally hard to exploit sparsity in full-eigen decomposition problem
- Benson implements a method that targets decomposition of SDPs

Many SDP coefficient matrices are so sparse that very few entries exist

Benson's idea: permute the useful entries to a smaller dense block

Then Lapack is invoked on the smaller system.

1000x faster than running direct factorization. Simple but useful.

SPEIGS now implments a standard-alone library for factorizing extremely sparse matrices.

It implements

- Submatrix detection and permutation
- Diagonal detection
- Givens' rotation
- Rank-one fast detection

for both sparse and dense matrices and works efficiently for SDP matrices (and probably real-life matrices that are sparse)

Available in Matlab and C.