

De La Salle University – Manila

Gokongwei College of Engineering

Electronics and Communications Engineering Department

Intelligent Systems for Engineering LBYEC3B

Project 1 Documentation

Wine Quality Classification

by

BAYETA IV, Reginald Geoffrey L. – 11811269

TAN, Adrienne Rafaela P. – 11809736

TUPAL, Isaiah Jassen L. – 11847115

Project 1: Wine Quality Classification

I. Statistical Analysis

Bias: Training data columns wine Type and id were removed.

Reasons:

- Parameter *id* is just for identification or index for each data sample.
- For *wineType*, there has been a previous attempt to separate data (red and white wine) and used it for training neural networks but outputs low accuracy.
- In addition, oversampling was done to both red and white wine train data which outputs high accuracy prediction as per the models, but low on actual accuracy as seen in Figure 1.
- To produce the outputs, both training data are being fed to a fitnet() model with hidden layers of [9 5 5 2] then the combined predicted results for both types are exported as .csv file (Refer to Appendix A).

Figure 1. Outputs for separated training parameters (by wine Type) using fitnet

From the aforementioned, we now have 12 parameters remaining: 11 features and 1 target (quality). To know more about the data, we generate a histogram and summary for each parameter as seen in Figure 2 and Table 1.

index	Parameters	Min	Median	Max
1	fixedAcidity	4.2	7.1	15.9
2	volatileAcidity	0.08	0.29	1.58
3	citricAcid	0	0.32	1.66
4	residualSugar	0.6	2.9	65.8
5	chlorides	0.012	0.047	0.611

Table 1. Wine Train Summary

6	freeSulfurDioxide	1	29	146.5
7	totalSulfurDioxide	6	122	366.5
8	density	0.98713	0.9952	1.039
9	рН	2.72	3.21	3.90
10	sulphates	0.22	0.51	2
11	alcohol	8	10.1	14.9
12	quality	3	6	9

By inspection from Table 1, it can be observed that there are outliers present in the data as seen in the disparity of the min and max of multiple table variables such as index 4, 6, 7, and 10. We can also see that there are parameters that fall within a small range such as in index 9, pH, as wines are usually on the acidic side of the spectrum of pH. We can confirm these observations by looking at Figure 2.

Figure 2. Wine Train Data Histograms

It should be evident that descriptive observations are subject to biases, and to combat this, we added another layer of proof for statistical observation: a correlation matrix (*corrplot*()) was generated that shows the correlations among pairs of variables in the training data as seen in Figure 3. In this correlation matrix, the row to focus would be *quality* vs other parameters which is summarized in Table 2. From Table 2, it is

apparent that the parameters with outliers such as index 4, 6, 7, and 10 are found to be in the middle in the intuitive ranking, which denotes little to no correlation compared to the outer extremes (-/+).

Figure 3. Wine Train Correlation Matrix

Table 2. Wine Train Summary by Correlation Result (with respect to quality)

Index	Parameters	Min	Median	Max	Correlation Score
8	density	0.98713	0.9952	1.039	-0.31
2	volatileAcidity	0.08	0.29	1.58	-0.26
5	chlorides	0.012	0.047	0.611	-0.20
1	fixedAcidity	4.2	7.1	15.9	-0.07
4	residualSugar	0.6	2.9	65.8	-0.05
7	totalSulfurDioxide	6	122	366.5	-0.04
9	рН	2.72	3.21	3.90	+0.04
10	sulphates	0.22	0.51	2	+0.04

6	freeSulfurDioxide	1	29	146.5	+0.06
3	citricAcid	0	0.32	1.66	+0.08
11	alcohol	8	10.1	14.9	+0.45

II. Preprocessing

The preprocessing step comprises of two parts: feature ranking and normalization of new training and testing data from selected ranked features. In addition, the results of the statistical analysis and feature ranking will be discussed.

a. Selecting feature ranking function

Upon checking MATLAB documentation, two main feature rankings were explored in this project: fscmrmr ("Rank features for classification using minimum redundancy maximum relevance (MRMR) algorithm") and fscchi2 ("Univariate feature ranking for classification using chi-square tests"). The latter was used as it performed better in previous submission attempts in terms of accuracy as seen in Figure 5, which outputs a high accuracy of 0.53976 compared to all samples shown in Figures 4 and 5.

lastsubmission14.csv 12 hours ago by Ding Bayeta IV idx1 8, same as before	0.53771	
lastsubmission13.csv 12 hours ago by Ding Bayeta IV	0.53309	
675, idx1 1-9, same as b4		

Figure 4. Accuracy utilizing fscmrmr()

NB. idx1 refers to the index list of the feature ranking generated by fscmrmr lastsubmission14 used Top 8 selected ranked features, while lastsubmission13 used Top 9.

lastsubmission11.csv 19 hours ago by Ding Bayeta IV bg idx2 1-7 655 same param with others	0.52385	
lastsubmission10.csv 19 hours ago by Ding Bayeta IV bg671, idx2 1-9	0.53771	
lastsubmission9.csv 20 hours ago by Ding Bayeta IV bg 66 idx2 1-8	0.53976	

Figure 5. *Accuracy utilizing fscchi2()*

NB. idx2 refers to the index list of the feature ranking generated by fscchi2() lastsubmission 11 \rightarrow Top 7, lastsubmission 9 \rightarrow Top 8, lastsubmission 10 \rightarrow Top 9 selected ranked features.

b. Generating feature ranking of training data by using fscchi2

Figure 6. Predictor rank vs Predictor importance score for fscchi2

When calling fscchi2, it returns two parameters, idx2 and scores2 (variables used in code) which represent the column index sorted by top feature rankings and their corresponding scores. As per the documentation of fscchi2, a higher score indicates that its corresponding predictor variable is important relative to the target parameter. Table 3 highlights the top column features and corresponding scores, which is also reflected in Figure 6. In addition, the returned score matches with the correlation score as well as the discussed descriptive observations.

Ranking	Column Index	Feature	Score	Correlation Score
1	11	alcohol	524.07	+0.45
2	8	density	278.25	-0.31
3	5	chlorides	163.76	-0.20
4	2	volatileAcidity	132.27	-0.26
5	3	citricAcid	102.38	+0.08
6	6	freeSulfurDioxide	63.745	+0.06
7	7	totalSulfurDioxide	57.681	-0.04
8	10	sulphates	23.13	+0.04

9	4	residualSugar	18.091	-0.05
10	1	fixedAcidity	15.259	-0.07
11	9	рН	7.7558	+0.04

c. Generating normalized new training and testing data from selected ranked features

The selected range for the top-ranked features to be used in the final training and testing data to be normalized is the Top 8 with the results shown in Figure 5 as the basis. Using Top 8 features outperforms Top 7 and Top 9 in terms of accuracy.

```
% Normalize train and test data
norm_train = normalize(wine_train);
norm_test = normalize(wine_test);
% Select ranked features
mask = idx2(1:8)
wine_feature = norm_train{:, mask};
wine_target = double(qlty);
wine_testing = norm_test{:, mask};
```

III. Models and Training

1 Ensemble Acc	curacy (Validation): 66.9%	☆ 11 Neural Network	Accuracy (Validation): 54.1%
Last change: Bagged Trees	8/8 features La	ast change: Trilayered Neural Network	8/8 features
	curacy (Validation): 67.7%	12 Neural Network	Accuracy (Validation): 55.3%
Last change: 'Number of learners' = '100'		ast change: Medium Neural Network	8/8 features
△ 3 KNN Acc Last change: Weighted KNN	curacy (Validation): 65.4% 8/8 features	△ 13 SVM	Accuracy (Validation): 52.4%
4 SVM Acc	curacy (Validation): 62.8%	ast change: Coarse Gaussian SVM	8/8 features
Last change: Fine Gaussian SVM	8/8 features	14 Ensemble	Accuracy (Validation): 67.9%
	curacy (Validation): 52.8%	ast change: 'Number of learners' = '250'	8/8 features
Last change: Fine Tree	8/8 features	△ 15 KNN	Accuracy (Validation): 53.3%
↑ KNN Acc	curacy (Validation): 54.5% La	ast change: Coarse KNN	8/8 features
Last change: Cubic KNN	8/8 features	☆ 18 SVM	Canceled
8 Ensemble Acc	curacy (Validation): 32.7%	ast change: Quadratic SVM	8/8 features
Last change: RUSBoosted Trees	8/8 features	19 Ensemble	Accuracy (Validation): 67.3%
9 Ensemble Acc	curacy (Validation): 53.2%	<u>~</u>)	, ,
Last change: Boosted Trees	8/8 features	ast change: 'Number of learners' = '68'	8/8 features
10 KNN Acc	curacy (Validation): 68.0%	20 Ensemble	Accuracy (Validation): 68.3%
Last change: 'Number of neighbors' = '68'	8/8 features La	ast change: 'Number of learners' = '500'	8/8 features
11 Neural Network Acc	curacy (Validation): 54.1%	21 Ensemble	Accuracy (Validation): 68.0%
Last change: Trilayered Neural Network	8/8 features La	ast change: 'Number of learners' = '1000'	8/8 features

Figure 7. Classification Learner models used for training and testing

IV. Testing Results

a. Accuracy of models in validation vs official submission

As shown in Table 4, Bagged Trees, or also referred to as the Random Forest model has garnered the best accuracy out of 17 instances of models trained. Bagged Trees with 500 learners outclassed the other Bagged Trees instances with a 0.56695 accuracy score.

 Table 4. Models' validation vs official submission accuracy

Index	Model Used	Validation Accuracy (VA)	Actual Accuracy
1	Bagged Trees (default)	0.669	0.53617
2	Bagged Trees (learners = 100)	0.677	0.55720
3	Weighted KNN (default)	0.654	0.47870
4	Fine Gaussian SVM (default)	0.628	0.48435
5	Fine Tree (default)	528	0.50846
6	Cubic KNN (default)	0.545	0.50384
7	RUS Boosted Trees (default)	0.327	0.30938
8	Boosted Trees (default)	0.532	0.54232
9	Weighted KNN (k = 68)	0.680	0.53873
10	Trilayered Neural Net (default)	0.541	0.53771
11	Medium Neural Net (default)	0.553	0.52591
12	Coarse Gaussian SVM (default)	0.524	0.53976
13	Bagged Trees (learners = 250)	0.679	0.55823
14	Coarse KNN (default)	0.533	0.53822
15	Bagged Trees (learners = 68)	0.673	0.55053 (Rank 3)
16	Bagged Trees (learners = 500)	0.683	0.56695 (Rank 1)
17	Bagged Trees (learners = 1000)	0.680	0.56541 (Rank 2)

b. Confusion Matrices of models

 Table 5. Trained models' validation confusion matrices

	<u> </u>		Γ					Mod	iel 8				_														
				4.8%	19.0%	33.3%	19.0%	4.8%		19.0%		4.8%	95.2%														
			3	4.8%	19.0%	33.3%	19.0%	4.8%		19.0%		4.8%	95.2%														
		4	4.0%	31.1%	37.1%	15.9%	3.3%	1.3%	7.3%		31.1%	68.9%															
			5	6.3%	15.2%	49.5%	18.2%	3.2%	1.7%	5.9%		49.5%	50.5%														
7	RUS Boosted Trees	0.327	True Class	5.1%	8.8%	26.0%	28.2%	8.2%	7.5%	16.3%		28.2%	71.8%														
	(default)		7	3.2%	5.2%	11.0%	22.1%	13.5%	16.2%	28.9%		13.5%	86.5%														
			8	4.4%	1.5%	5.9%	16.3%	13.3%	25.9%	32.6%		25.9%	74.1%														
			9			33.3%		33.3%		33.3%		33.3%	66.7%														
				3	4	5	6	7 Predicte	8 ed Class	9		TPR	FNR														
								Mod	del 9		1																
		0.532	3			57.1%	42.9%						100.0%														
				4			58.3%	41.1%	0.7%					100.0%													
																		5		0.1%	59.9%	39.2%	0.7%				59.9%
8	Boosted Trees		True Class			25.9%	67.6%	6.5%				67.6%	32.4%														
(de	(default)		7			5.4%		23.6%				23.6%	76.4%														
			8			1.5%	61.5%	34.8%	2.2%			31.1% 68.9% 49.5% 50.5% 28.2% 71.8% 13.5% 86.5% 25.9% 74.1% 33.3% 66.7% TPR FNR 100.03 100.03 40.1% 67.6% 32.4% 23.6% 76.4% 2.2% 97.8%	97.8%														
			9				66.7%	33.3%					100.0%														
				3	4	5	6	7 Predicte	8 ed Class	9		TPR	FNR														

Figure 8. Official Kaggle Submission with a 0.56695 accuracy

V. Appendix

a. **Appendix A.** Live Script for training separate Red and White wine types into fitnet with hidden layers of [9 2 2 5]

```
clc; clearvars;
% Read data set for wine quality classification train and test
wine_train = readtable('train.csv');
wine_test = readtable('test.csv');

% change wine to index
wine_train.wineType = grp2idx(wine_train.wineType)
wine_test.wineType = grp2idx(wine_test.wineType)

tabulate(wine_train.wineType)
```

```
% Remove id
test id
                     = wine_test.id;
wine train.id
                     = [];
wine test.id
                     = [];
tabulate(wine train.quality)
% Get sample each
quality_3 = wine_train(wine_train.quality == 3, :);
quality_4 = wine_train(wine_train.quality == 4, :);
quality_5 = wine_train(wine_train.quality == 5, :);
quality_6 = wine_train(wine_train.quality == 6, :);
quality_7 = wine_train(wine_train.quality == 7, :);
quality 8 = wine train(wine train.quality == 8, :);
quality 9 = wine train(wine train.quality == 9, :);
% Get k samples based from each quality clusters
k = 1000;
quality 3s = datasample(quality 3, k);
quality 4s = datasample(quality 4, k);
quality_5s = wine_train(wine_train.quality == 5, :)
quality 6s = wine train(wine train.quality == 6, :)
quality_7s = wine_train(wine_train.quality == 7, :)
% quality_5s = datasample(quality_5, k);
% quality 6s = datasample(quality 6, k);
% quality_7s = datasample(quality_7, k);
quality 8s = datasample(quality 8, k);
quality_9s = datasample(quality_9, k);
% Combine all new data
new_wine_train = [quality_3s;quality_4s; quality_5s;
quality_6s;quality_7s;quality_8s;quality_9s];
% Tabulate updated quality
tabulate(new_wine_train.quality)
% Target quality
                    new_wine_train(new_wine_train.wineType == 1,
red_wine_target =
"quality")
red_wine_target = table2array(red_wine_target)
white wine target = new wine train(new wine train.wineType == 2,
"quality")
white wine target = table2array(white wine target)
```

% Separate train and test

```
red_train = new_wine_train(new_wine_train.wineType == 1, :)
white_train = new_wine_train(new_wine_train.wineType == 2, :)
red test = wine test(wine test.wineType == 1, :)
white test = wine test(wine test.wineType == 2, :)
% Normalize train and test
red wine train
                  = normalize(removevars(red train, {'quality',
'wineType'}), 'range');
white wine train
                   = normalize(removevars(white train, {'quality',
'wineType'}), 'range');
                = normalize(removevars(red test, {'wineType'}), 'range');
red wine test
white wine test
                   = normalize(removevars(white_test, {'wineType'}),
'range');
red wine train
[idx,scores]
                = fscchi2(red_wine_train, red_wine_target)
bar(scores(idx))
xlabel('Predictor rank')
ylabel('Predictor importance score')
white_wine_train
                  = fscchi2(white wine train, white wine target)
[idx2,scores2]
bar(scores2(idx2))
xlabel('Predictor rank')
ylabel('Predictor importance score')
```

Test

```
% id = test_id;
% quality = BGTREE88.predictFcn(wine_test_fin);
% results = table(id, quality);
% writetable(results , 'matlabSubmission12.csv');

% RED Feature, Target, Testing param
red_ft = idx(1:7)
red_feature = red_wine_train{:, red_ft} % idx(1:9)
red_target = double(red_wine_target)
red_testing = red_wine_test{:, red_ft} % idx(1:9)

red_x = red_feature(:,:)';
red_y = red_target';
red_z = red_testing(:,:)';
```

```
tabulate(red_y)
% WHITE Feature, Target, Testing param
white_ft = idx2(1:7)
white_feature = white_wine_train{:,white_ft} % idx(1:9)
white_target = double(white_wine_target)
white_testing = white_wine_test{:, white_ft} % idx(1:9)
white_x = white_feature(:,:)';
white_y = white_target';
white_z = white_testing(:,:)';
tabulate(white y)
redNet = fitnet([9 2 2 5], 'trainlm');
redNet.trainParam.max_fail = 10;
redTrainNet = train(redNet, red_x, red_y);
whiteNet = fitnet([9 2 2 5], 'trainlm');
whiteNet.trainParam.max_fail = 10;
whiteTrainNet = train(whiteNet, white_x, white_y);
red results = round(redTrainNet(red z))
tabulate(red_y)
tabulate(red_results)
white results = round(whiteTrainNet(white z))
```

Save the results to .csv

tabulate(white_y)

tabulate(white_results)

```
id = test_id;
quality = [red_results, white_results]'
tabulate(quality)
exported = table(id, quality);
writetable(exported , 'results.csv');
```

LBYEC3B PROJECT 1 - BAYETA | TAN | TUPAL

Wine Quality Classification

```
% Clearvars
clc; clearvars;

% Read data set for wine quality classification train and test
wine_train = readtable('train.csv');
wine_test = readtable('test.csv');
```

Statistical Analysis

```
% Change wineType from str to idx
% wine train.wineType = grp2idx(wine train.wineType);
% wine_test.wineType = grp2idx(wine_test.wineType);
% Remove ID
test_id
                    = wine_test.id;
                    = wine_train.quality;
alty
wine_train.id
                    = [];
wine_test.id
                    = [];
wine_train.wineType = [];
wine_test.wineType = [];
% Displays the wine features
colnames = wine_train.Properties.VariableNames
figure('Name','Wine Features', 'NumberTitle', 'off')
for idx = 1: length(colnames)
    col_name = string(colnames(:,idx));
        subplot(4,3,idx)
        histogram(wine_train.(col_name))
        title(col_name)
        % disp(idx)
end
```

```
summary(wine_train)
```

```
% Generate correlation matrix
figure()
corrplot(wine_train)

% Display colnames
colnames
```

Preprocessing

```
% Feature ranking by chi-squared test
% Univariate feature ranking for classification using chi-square tests
% fscchi2 examines whether each predictor variable is independent of
% a response variable by using individual chi-square tests.
figure()
[idx2,scores2]
                  = fscchi2(removevars(wine train, {'quality'}), qlty)
bar(scores2(idx2))
xlabel('Predictor rank')
ylabel('Predictor importance score')
% Tabulate idx2 vs scores2
top_col = idx2';
top_col_scores = scores2';
idx2vsscores2 = table(top_col, top_col_scores);
idx2vsscores2
% Display colnames
colnames
% Drop quality
wine train.quality = [];
% Functions for outliers (did not work)
% new_data = filloutliers(wine_train, 'spline', 'percentile', [10 90]);
% Normalize
norm train = normalize(wine train);
norm_test = normalize(wine_test);
% Select ranked features
mask = idx2(1:8)
wine_feature = norm_train{:, mask};
wine target = double(qlty);
wine_testing = norm_test{:, mask};
```

Models and Results

Models are trained under the Classification App of MATLAB. It can be replicated by checking the parameters stated in each section below.

```
% % Bagged Trees (Random-Forest), Default Params
% id = test_id;
% quality = FBGTREE DEF 669.predictFcn(wine testing);
% disp('Quality Prediction for Final1')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final1_baggedtrees_def_669.csv');
% % Bagged Trees (Random-Forest), 100 learners
% id = test id;
% quality = FBGTREE_100L_677.predictFcn(wine_testing);
% disp('Quality Prediction for Final2')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final2_baggedtrees_100L_677.csv');
% % Weighted KNN, Default Params
% id = test id:
% quality = FWKNN_DEF_654.predictFcn(wine_testing);
% disp('Quality Prediction for Final3')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final3_weightedKNN_def_654.csv');
% % Fine Gaussian SVM, Default Params
% id = test_id;
% quality = FFGSVM DEF 628.predictFcn(wine testing);
% disp('Quality Prediction for Final4')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final4 finegaussianSVM def 628.csv');
% % Fine Tree, default parameters
% id = test id;
% quality = FFTREE DEF 528.predictFcn(wine testing);
% disp('Quality Prediction for Final5')
% tabulate(quality)
% exported = table(id, quality);
```

```
% writetable(exported , 'final5_finetree_def_528.csv');
% % Cubic KNN, default
% id = test id;
% quality = FCKNN_DEF_545.predictFcn(wine_testing);
% disp('Quality Prediction for Final6')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final6_cubicKNN_def_545.csv'); % 7 in window
% % RUS Boosted Trees, default parameters
% id = test id;
% quality = FRUSBST_DEF_327.predictFcn(wine_testing);
% disp('Ouality Prediction for Final7')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final7_RUSBoostedTrees_def_327.csv');
% % Boosted Trees, default
% id = test id;
% quality = FBSTREE_DEF_532.predictFcn(wine_testing);
% disp('Quality Prediction for Final8')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final8_BoostedTrees_def_532.csv');
% % Weighted KNN, k = 68
% id = test id;
% quality = FWKNN_68K_680.predictFcn(wine_testing);
% disp('Quality Prediction for Final9')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final9 WKNN 68k 680.csv');
% % Trilayered NN, default
% id = test_id;
% quality = WTRINN_DEF_541.predictFcn(wine_testing);
% disp('Quality Prediction for Final10')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final10 TRINN 541.csv');
% % Medium NN, default
% id = test id;
```

```
% quality = FMEDNN_DEF_553.predictFcn(wine_testing);
% disp('Quality Prediction for Final11')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final11_MEDNN_553.csv');
% % Coarse Gaussian SVM
% id = test id;
% quality = FCGSVM DEF 524.predictFcn(wine testing);
% disp('Quality Prediction for Final12')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final12_CoarseGaussSVM_524.csv');
% % Bagged Trees (Random Forest), 250 learners
% id = test id;
% quality = FBGTREE 250L 679.predictFcn(wine testing);
% disp('Quality Prediction for Final13')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final13_baggedtrees_250L_679.csv');
% % Coarse KNN, default
% id = test_id;
% quality = FCKNN DEF 533.predictFcn(wine testing);
% disp('Quality Prediction for Final14')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final14 coarseKNN def 533.csv');
% % Bagged Trees (Random Forest), 68 learners
% id = test id;
% quality = FBGTREE 68L 673.predictFcn(wine testing);
% disp('Quality Prediction for Final15')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final15_baggedtrees_68L_673.csv');
% % Bagged Trees (Random Forest), 500 learners
% disp('nag run ako')
% id = test id;
% quality = FBGTREE 500L 683.predictFcn(wine testing);
% disp('Quality Prediction for Final16')
% tabulate(quality)
```

```
% exported = table(id, quality);
% writetable(exported , 'final16_baggedtrees_500L_683.csv');
% % Bagged Trees (Random Forest), 1000 learners
% id = test id;
% quality = FBGTREE 1000L 680.predictFcn(wine testing);
% disp('Quality Prediction for Final17')
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'final17_baggedtrees_1000L_680.csv');
% id = test id;
% quality = BAGTREE5K66.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'lastsubmission3.csv');
% id = test_id;
% quality = BAGTREE5k668.predictFcn(wine testing);
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'lastsubmission4.csv');
% id = test_id;
% quality = WKK5k65.predictFcn(wine testing);
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'lastsubmission5.csv');
% id = test id;
% quality = DEFBGTREE68.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'lastsubmission6.csv');
% id = test id;
% quality = DEFWKNN669.predictFcn(wine testing);
% tabulate(quality)
% exported = table(id, quality);
% writetable(exported , 'lastsubmission7.csv');
% id = test id;
% quality = BAGTREESIDX1_67.predictFcn(wine_testing);
```

```
% tabulate(quality)
% exported = table(id, quality);
% %idx1 (11 param)
% writetable(exported , 'lastsubmission8.csv');
% id = test id;
% quality = bg66idx8.predictFcn(wine testing);
% tabulate(quality)
% exported = table(id, quality);
% %idx2 (9 param)
% writetable(exported , 'lastsubmission9.csv');
% id = test id;
% quality = bg671.predictFcn(wine testing);
% tabulate(quality)
% exported = table(id, quality);
% %idx2 (9 param 1-9)
% writetable(exported , 'lastsubmission10.csv');
% id = test id;
% quality = bgg655id2x17.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
% %idx2 (9 param 1-9)
% writetable(exported , 'lastsubmission11.csv');
% id = test id;
% quality = BAGTREEUPDATED677IDX28.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
% %idx2 (9 param 1-9)
% writetable(exported , 'lastsubmission12.csv');
% id = test id;
% quality = bg673idx19.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
% %idx2 (9 param 1-9)
% writetable(exported , 'lastsubmission13.csv');
% id = test id;
% quality = bg658idx18.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
```

```
% %idx2 (9 param 1-9)
% writetable(exported , 'lastsubmission14.csv');

% id = test_id;
% quality = bg67idx18.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
% %idx2 (9 param 1-9)
% writetable(exported , 'lastsubmission15.csv');

% id = test_id;
% quality = trainedModelbg100677idx28.predictFcn(wine_testing);
% tabulate(quality)
% exported = table(id, quality);
% %idx2 (9 param 1-9)
% writetable(exported , 'lastsubmission16.csv');
```