Bonus Guestion Problem 1: let xt be a 2x1 vector containing x, and x2 as the binary input at time to let ht be a 3x1 vector containing hi, hz and hz at Let y't) be a scalar output binary digit. $U = \begin{cases} 11 \\ 1 \\ 1 \end{cases} \qquad W = \begin{cases} 1 \\ 1 \\ 1 \end{cases} \qquad b_h = \begin{cases} 0.5 \\ -1.5 \\ -2.5 \end{cases} \qquad V = \begin{cases} 1-11 \\ -2.5 \end{cases}$ by = -0.5Then for all t≥1 $h^{(t)} = Ux^{t} + Wh^{t-1} + b_{h} \dots$ $y^{(t)} = V^{h(t)} + by$ (1)Expanding equation(1) we get, $h_1^{(t)} = \chi_1^{(t)} + \chi_2^{(t)} + h_1^{(t-1)} - 0.5$ $h_2^{(t)} = \chi_1^{(t)} + \chi_2^{(t)} + h_2^{(t-1)} - 1.5$ $h_3^{(t)} = \chi_1^{(t)} + \chi_2^{(t)} + h_3^{(t-1)} - 0.5$ $y^{(t)} = h_1^{(t)} - h_2^{(t)} + h_3^{(t)} - 0.5$

This satisfies the touth table.

%)	2(2	(+-1) h ₁	(+) h ₁	(t-1) h2	h ^(†)	(t~1) hz	h3 (t)	y	
' 			/					0	-
0	0	0	0	0	0	0	0	0	
0	O	1	1	1	0	1	0	1	
0	1	0	1	Ó	()	0	0	1	
0	1	1	1	1	1	1	0	0	
	0	O	1	0	0	0	Ò	1	
1	0	1	1	1	1	1	O	0	
1	1	0	1	0	1	0	0	0	
1	1	1	1	1	1	1	1	1	

$$\frac{-}{h^{(t)}} = 14$$

$$h^{(+)} = 1 + i^{(++1)} \frac{\partial i^{(++1)}}{\partial h^{(++1)}} + i^{(++1)} \frac{\partial f^{(++1)}}{\partial h^{(++1)}} + o^{(++1)} \frac{\partial o^{(++1)}}{\partial h^{(++1)}} + g^{(++1)} \frac{\partial g^{(++1)}}{\partial h^{(++1)}}$$

$$+ g^{(++1)} \frac{\partial g^{(++1)}}{\partial h^{(++1)}}$$

$$h^{(t)} = 1+$$

$$h^{(t)} = 1 + 1$$

$$o^{(+)} = 1 +$$

 $\overline{g(t)} = c^{(+)} \frac{\partial c^{(+)}}{\partial g^{(+)}}$

 $0^{(+)} = \overline{h^{(+)}} \partial h^{(+)}$

 $f^{(+)} = c^{(+)} \frac{\partial c^{(+)}}{\partial f^{(+)}}$

 $=c^{(t)}i^{(t)}$

= h(+) tanh (c(+))

 $= \frac{(+-1)}{(+-1)}$

 $= \widetilde{i}^{(+)} = C^{(+)} g^{(+)}$

 $C^{(t)} = h^{(t)} \frac{\partial h^{(t)}}{\partial c^{(t)}} + C^{(t+1)} \frac{\partial c^{(t+1)}}{\partial c^{(t)}}$

= $h^{(+)} o^{(+)} + anh^{-1} (c^{(+)}) + c^{\frac{1}{1+1}} f^{(+)}$

with
$$h^{(+)}$$
) π to with $h^{(+)}$) π to with $h^{(+)}$) π to with $h^{(+)}$ π to with $h^{(+)}$ π to π .

This is because when $f^{(+)} = 1$
 $f^{(+)} = 0$
 $f^{(+)} = 0$
 $f^{(+)} = 0$

Wix = \(\int \int \tag{(+)} \) \(\int \tag{\text{win}} \tag{+} \)

2·

$$\frac{c(t)}{c(t)} = h^{(t)} o^{(t)} tanh^{-1}(c^{(t)}) + c^{(t+1)}(t)$$

$$= c^{(t+1)}$$

$$= c^{(t+1)}$$

$$= 0$$

$$\frac{c(t)}{c(t)} = c^{(t)} i^{(t)}$$

$$= 0$$

$$\frac{c(t)}{c(t)} = h^{(t)} tanh(c^{(t)})$$

$$\frac{c(t)}{c(t)} = c^{(t)} c^{(t-1)}$$

$$g(t) = 0$$

$$= 0$$

$$\overline{0^{(+)}} = h^{(+)} \tanh(c^{(t)})$$

$$\overline{f^{(+)}} = \overline{c^{(+)}} c^{(+)}$$

$$\overline{i^{(+)}} = \overline{c^{(+)}} \frac{\partial c^{(+)}}{\partial i^{(+)}}$$

$$= \overline{c^{(+)}} g^{(+)}$$
then $\overline{c^{(+)}} = \overline{c^{(++)}}$ stay thu