

Projet numérique en physique moderne Effet Ramsauer-Townsend

DERRIEN Enzo DRECOURT Raphaël NISAR Sofiane

Groupe 5B
PréIng 2 MI5
Année universitaire 2024-2025

Sommaire

- 1. Observation de la propagation d'un paquet d'ondes
- 2. Algorithme permettant de trouver les états stationnaires
- 3. Résolution analytique du problème
- 4. Comparaison des prédictions avec les mesures experimentales

Algorithme de résolution d'équation différentielle

```
for i in range(1, nt):
    if i % 2 != 0:
        b[1:-1] = im[1:-1]
        im[1:-1] = im[1:-1] + s * (re[2:] + re[:-2]) - 2 * re[1:-1] * (s + V[1:-1] * dt)
        densite[i,1:-1] = re[1:-1]*re[1:-1] + im[1:-1]*b[1:-1]
    else:
        re[1:-1] = re[1:-1] - s * (im[2:] + im[:-2]) + 2 * im[1:-1] * (s + V[1:-1] * dt)
```

Comment résoudre l'équation de Schrödinger en numérique?

11.7.1. ALGORITHME DE VERLET OU DE SAUTE-MOUTON

Notons y(t) la fonction inconnue, solution de l'équation différentielle particulière :

$$y'' = f(t, y) \tag{11.27}$$

où la variable indépendante peut être le temps. La méthode résulte du remplacement de la dérivée seconde par une approximation bien connue

$$y''|_n \cong \frac{1}{h^2}[y_{n+1} - 2y_n + y_{n-1}],$$

où l'erreur de troncation est $\mathcal{O}(h^2)$. L'algorithme de Stoermer-Verlet s'écrit donc

$$y_{n+1} = 2y_n - y_{n-1} + h^2 f(t_n, y_n). (11.28)$$

Jean-Paul Grivet. Méthodes numériques appliquées pour les sciences et l'ingénieur. EDP Sciences, 2013.

Séparer la partie réelle et imaginaire de l'onde

En posant
$$\psi(x,t)=\mathrm{Re}(x,t)+i\,\mathrm{Im}(x,t)$$
 On a $i\,(\partial_t\mathrm{Re}+i\,\partial_t\mathrm{Im})=-rac{1}{2}(\partial_{xx}\mathrm{Re}+i\,\partial_{xx}\mathrm{Im})+V(x)(\mathrm{Re}+i\,\mathrm{Im})$

Par identification $\begin{cases} \partial_t \mathrm{Im} = -\frac{1}{2} \, \partial_{xx} \mathrm{Re} - V(x) \, \mathrm{Re} \\ \partial_t \mathrm{Re} = -\frac{1}{2} \, \partial_{xx} \mathrm{Im} + V(x) \, \mathrm{Im} \end{cases}$

$$egin{cases} rac{\partial_t ext{Im}}{\partial_t ext{Im}} = rac{1}{2} \, \partial_{xx} ext{Re} - V(x) \, ext{Re} \ \partial_t ext{Re} = -rac{1}{2} \, \partial_{xx} ext{Im} + V(x) \, ext{Im} \end{cases}$$

Approximation temporelle:

$$\partial_t ext{Im} pprox rac{ ext{Im}_i^{n+1} - ext{Im}_i^n}{\Delta t}$$

Approximation du laplacien:

$$\partial_{xx} ext{Im}_i pprox rac{ ext{Im}_{i+1}^n - 2 ext{Im}_i^n + ext{Im}_{i-1}^n}{\Delta x^2}$$

$$rac{\operatorname{Im}_i^{n+1} - \operatorname{Im}_i^n}{\Delta t} = rac{1}{2} \cdot rac{\operatorname{Re}_{i+1}^n - 2 \operatorname{Re}_i^n + \operatorname{Re}_{i-1}^n}{\Delta x^2} - V_i \operatorname{Re}_i^n$$

$$ext{approx} ext{Im}_i^{n+1} = ext{Im}_i^n + rac{\Delta t}{2\Delta x^2} (ext{Re}_{i+1}^n - 2 ext{Re}_i^n + ext{Re}_{i-1}^n) - \Delta t \, V_i \, ext{Re}_i^n \, .$$

$$egin{cases} \partial_t ext{Im} = rac{1}{2} \, \partial_{xx} ext{Re} - V(x) \, ext{Re} \ \partial_t ext{Re} = -rac{1}{2} \, \partial_{xx} ext{Im} + V(x) \, ext{Im} \end{cases}$$

Même démarche pour la partie réelle

$$\partial_t ext{Re} pprox rac{ ext{Re}_i^{n+1} - ext{Re}_i^n}{\Delta t} \qquad \partial_{xx} ext{Re}_i pprox rac{ ext{Re}_{i+1}^n - 2 ext{Re}_i^n + ext{Re}_{i-1}^n}{\Delta x^2},$$

$$rac{ ext{Re}_i^{n+1} - ext{Re}_i^n}{\Delta t} = -rac{1}{2} \cdot rac{ ext{Im}_{i+1}^{n+1} - 2 ext{Im}_i^{n+1} + ext{Im}_{i-1}^{n+1}}{\Delta x^2} + V_i \, ext{Im}_i^{n+1}$$

$$ightarrow ext{Re}_i^{n+1} = ext{Re}_i^n - rac{\Delta t}{2\Delta x^2} (ext{Im}_{i+1}^{n+1} - 2 ext{Im}_i^{n+1} + ext{Im}_{i-1}^{n+1}) + \Delta t \, V_i \, ext{Im}_i^{n+1} .$$

Calcul de la densité de probabilité de présence

```
\begin{split} \rho_i^n &= |\psi_i^n|^2 \\ &= (\mathrm{Re}_i^n)^2 + (\mathrm{Im}_i^n)^2 \end{split} \qquad \text{for i in range(1, nt):} \\ &= (\mathrm{Re}_i^n)^2 + (\mathrm{Im}_i^n)^2 \qquad \text{for i in range(1, nt):} \\ &= (\mathrm{Re}_i^n)^2 + (\mathrm{Im}_i^n)^2 \qquad \text{for i in range(1, nt):} \\ &= (\mathrm{Re}_i^n)^2 + (\mathrm{Im}_i^n)^2 \qquad \text{for i in range(1, nt):} \\ &= (\mathrm{li-1}] = \mathrm{im}[1:-1] \\ &= (\mathrm{li-1}] = \mathrm{im}[1:-1] \\ &= (\mathrm{li-1}] = \mathrm{re}[1:-1] - \mathrm{s} \times (\mathrm{im}[2:] + \mathrm{im}[1:-2]) + 2 \times \mathrm{im}[1:-1] \times (\mathrm{s} + \mathrm{V}[1:-1] \times \mathrm{dt}) \end{split}
```

Algorithme permettant de trouver les états stationnaires

Х

Résolution analytique du problème

<u>Equation de Schrodinger indépendante du temps :</u>

$$-rac{\hbar^2}{2m}rac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$$

$$\psi(x)$$
 fonction d'onde $V(x)$ potentiel

Modèle du potentiel

$$V(x) = egin{cases} 0 & ext{si } x < 0 \ -V_0 & ext{si } 0 \leq x \leq a \ 0 & ext{si } x > a \end{cases}$$

Les solution s'écrivent sous différentes formes

$$egin{array}{ll} Ae^{ikx}+Be^{-ikx} & ext{si } x < 0 \ Ce^{ik_1x}+De^{-ik_1x} & ext{si } 0 \leq x \leq a \ Fe^{ikx} & ext{si } x > a \end{array}$$

Il n'y a pas de barrière après le puits, donc rien à réfléchir

Physiquement, seule une onde vers la droite existe ici

La solution en zone II peut s'écrire : $Ccos(k_1x) + Dsin(k_1x)$

En interprétant physiquement le problème,

On peut dire que,

$$\psi_I(x) = e^{ikx} + Re^{-ikx}$$

R coeff de réfléxion

$$\psi_{II}(x)=Ae^{ik_1x}+Be^{-ik_1x}$$

$$\psi_{III}(x) = Te^{ikx}$$

T coeff de transmission

Grâce à la continuité du potentiel et de sa dérivée, On obtient aux conditions limites,

$$\psi_I(0)=\psi_{II}(0)\Rightarrow 1+R=A+B$$
 $\psi_I'(0)=\psi_{II}'(0)\Rightarrow ik(1-R)=ik_1(A-B)$

$$\psi_{II}(a)=\psi_{III}(a)\Rightarrow Ae^{ik_1a}+Be^{-ik_1a}=Te^{ika}$$
 $\psi_{II}'(a)=\psi_{III}'(a)\Rightarrow ik_1(Ae^{ik_1a}-Be^{-ik_1a})=ikTe^{ika}$

Ces calculs vont nous permettre d'obtenir le coefficient T, tel que le module de T au carré est la probabilité de transmission

Lien avec l'effet Ramsauer

L'effet se manifeste quand $|R|^2 pprox 0$ pour certaines valeurs de l'énergie EEE, donc $|T|^2 pprox 1$

```
def calcul_transmission(E):
    k = math.sqrt(2 * E)
    cpt = A * np.exp(1j * k * o - ((o - xc) ** 2) / (2 * (sigma ** 2)))
    re = np.real(cpt) # partie réelle
    im = np.imag(cpt) # partie imaginaire
    dens = np.sum(np.abs(cpt)**2) * dx

for i in range(1, nt):
    if i % 2 != 0:
        im[1:-1] = im[1:-1] + s * (re[2:] + re[:-2] - 2 * re[1:-1]) - 2 * re[1:-1] * V[1:-1] * dt
    else:
        re[1:-1] = re[1:-1] - s * (im[2:] + im[:-2] - 2 * im[1:-1]) + 2 * im[1:-1] * V[1:-1] * dt

densite_finale = re**2 + im**2
    borne_transmission = int((fin_puits + 0.1) / dx)
    transmission = np.sum(densite_finale[borne_transmission:]) * dx / dens
    return transmission
```

Transmission par simulation

```
def transmission_analytique(E_vecteur, v0, a):
    T = [] # tab des transmitions
    V0 = abs(v0)
    for E in E_vecteur:
        if E <= 0: # état lié
            T.append(0)
            continue
        q = np.sqrt(2 * (E + V0))
        denom = 4 * E * (E + V0)
        if denom == 0:
            T.append(0)
        else:
            T.append(1 / (1 + ((V0**2) * (np.sin(q * a))**2) / denom))
    return np.array(T)</pre>
```

Transmission par méthode analytique (conditions aux bornes du puit)

Comparaison des prédictions (simulation) avec les mesures experimentales

code: calcul_transmission.py

Etude analytique d'une particule diffusée comme un paquet d'ondes

<u>Equation de Schrodinger dépendante du temps :</u>

$$i\hbarrac{\partial\Psi(x,t)}{\partial t}=\left[-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}+V(x)
ight]\Psi(x,t)$$

Paquet d'onde ≠ onde plane

Onde plane

$$\psi(x,t) = arphi k(x) exp(-iE(k)t/\hbar)$$

Paquet d'onde

$$\psi(x,t) = arphi k(x) exp(-iE(k)t/\hbar) \hspace{1cm} \Psi(x,t) = \int_0^{+\infty} A(k) \, \phi_k(x) \, e^{-iE(k)t/\hbar} \, dk$$

Un paquet d'onde est construit comme une superposition d'ondes planes stationnaires de différentes énergies.

$$\Psi(x,t) = \int_0^{+\infty} A(k)\,\phi_k(x)\,e^{-iE(k)t/\hbar}\,dk$$

- A(k) est une fonction de poids (par exemple, une gaussienne centrée en k_0)
- $\phi_k(x)$ est la solution stationnaire (onde plane généralisée) associée à un vecteur d'onde k
- ullet E(k) est l'énergie associée à chaque composante k

Il faut donc étudier chaque région car l'onde stationnaire est différente d'une zone à l'autre

Zone I
$$\Phi(x,t) = \int_0^{+\infty} A(k) \left(e^{ikx} + Re^{-ikx}
ight) e^{-iE(k)t/\hbar} \, dk$$

Zone II
$$\Phi(x,t)=\int_0^{+\infty}A(k)\left(A(k)e^{ik_1x}+B(k)e^{-ik_1x}
ight)e^{-iE(k)t/\hbar}\,dk$$

Zone III
$$\Phi(x,t) = \int_0^{+\infty} A(k) \left(T(k)e^{ikx}
ight) e^{-iE(k)t/\hbar} \, dk$$

Interprétation physique globale

Le paquet d'onde arrive de la gauche (zone I), rencontre le puits

Une partie est réfléchie (retourne vers -∞)

Une partie traverse (zone III)

Une partie reste temporairement piégée dans le puits (zone II)

Les coefficients R(k) et T(k) dépendent de l'énergie \rightarrow la forme du paquet évolue avec le temps (dispersion)

Merci de votre écoute