知识点归纳·概率论与数理统计

$21305337 \ \textit{Betelgeuxe}$

仅供学习参考, 勿作商业用途

目录

1	概率	论的基本概念	1
	1.1	样本空间	1
	1.2	常用公式	1
	1.3	等可能概型(古典概型)	1
	1.4	实际推断原理	1
	1.5	条件概率 (乘法公式)	1
	1.6	全概率公式	2
	1.7	独立性	2
2	随机	变量	2
	2.1	离散型随机变量	2
		2.1.1 二项分布	3
		2.1.2 泊松分布	3
	2.2	连续型随机变量	3
		2.2.1 均匀分布	3
		2.2.2 指数分布	4
		2.2.3 正态分布	4
	2.3	[方法] 求一元函数的分布函数或密度函数	4
3	多维	随机变量及其分布	4
	3.1	联合分布	4
	3.2	边缘分布	5
	3.3	二维正态分布(要背)	5
	3.4	条件分布	5
		3.4.1 随机变量的独立性	6
		3.4.2 条件分布律 (离散情形)	6
		3.4.3 条件概率密度(连续情形)	6
	3.5	二元随机变量的一些函数的分布	6
		3.5.1 离散型	6
		3.5.2 连续型	7

随机	变量的数字特征 8
4.1	数学期望的定义及一些性质 8
	4.1.1 一元函数期望的计算公式
	4.1.2 二元函数期望的计算公式
4.2	方差 9
	4.2.1 切比雪夫不等式 9
4.3	协方差及相关系数 10
	4.3.1 协方差
	4.3.2 相关系数
4.4	矩、协方差矩阵
	4.4.1 协方差矩阵
大数	定律及中心极限定理 12
5.1	弱大数定律 (辛钦大数定律)
0.1	5.1.1 伯努利大数定律
5.2	中心极限定理(独立同分布)
	及抽样分布 13
6.1	常用的统计量
6.2	分位数
6.3	χ^2 分布
6.4	F 分布
6.5	t 分布
6.6	正态总体的抽样分布 (小样本分布)
	6.6.1 单正态总体的抽样分布
۵.	6.6.2 双正态总体的抽样分布
6.7	一般总体的抽样分布的极限分布 *
参数	(估计 16
7.1	点估计
	7.1.1 矩估计法 (ME 法)
	7.1.2 最大似然估计法 (MLE 法)
7.2	估计量的评选标准 18
	7.2.1 无偏性
	7.2.2 有效性
	17.2.2

1 概率论的基本概念

1.1 样本空间

1.2 常用公式

交換律: $A \cup B = B \cup A$; $A \cap B = b \cap A$

结合律: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

对偶律: $\overline{A \cup B} = \overline{A} \cap \overline{B}$; $\overline{A \cap B} = \overline{A} \cup \overline{B}$

其他: $P(A\overline{B}) = P(A) - P(AB)$

 $P(A \cup B) = P(A) + P(B) - P(AB)$ (加法公式)

1.3 等可能概型(古典概型)

条件: 1. 有穷性; 2. 等可能性 其中有放回抽样和不放回抽样

1.4 实际推断原理

概率很小的事件在一次试验中实际上几乎是不发生的

1.5 条件概率 (乘法公式)

$$P(B|A) = \frac{P(AB)}{P(A)}$$

2 随机变量 1.7 独立性

1.6 全概率公式

划分

设 S 为试验 E 的样本空间, B_1, B_2, \cdots, B_n 为 E 的一组事件。若 $B_i \cap B_j = \emptyset$, $i, j = 1, 2, \cdots, n$; 且 $\bigcap_{k=1}^n B_k = S$ 则 B_1, B_2, \cdots, B_n 为 S 的一个**划分**.

若 $B_1, B_2, \cdots, B_n S$ 的一个划分, 则

$$P(A) = \sum_{k=1}^{n} P(A|B_k)P(B_k)$$

贝叶斯 (Bayes) 公式

若 B_1, B_2, \cdots, B_n 为 S 的一个划分,则 $P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{k=1}^n P(A|B_k)P(B_k)}, i = 1, 2, \cdots, n.$

1.7 独立性

- 二元情形 def: 若 P(AB) = P(A)P(B), 则 A, B 互相独立(独立)
- 若 A, B 独立, 则 $A 与 \overline{B}, \overline{A} 与 B, \overline{A} 与 \overline{B}$ 也独立.

两两独立 n>2 时,对于事件 A_1,A_2,\cdots,A_n ,若 $\forall i\neq j$ 有 $P(A_iA_j)=P(A_i)P(A_j)$,则称 A_1,A_2,\cdots,A_n **两两独立**.

互相独立 n>2 时,对于事件 A_1,A_2,\cdots,A_n ,若任意 $2,3,\cdots,n$ 个事件的积事件的概率都 等于各事件概率之积,则称 A_1,A_2,\cdots,A_n **互相独立**

2 随机变量

2.1 离散型随机变量

离散型随机变量 X 的分布律 表示 X 的所有可能取值及其概率的通式或表格

伯努利试验 试验 E 只有 A 及 \overline{A} 两种结果

n 重伯努利试验 将 E 独立重复进行 n 次

2.1.1 二项分布

设随机变量 X 为 n 次试验 E 中 A 发生的次数,则 $P(X=k)=\binom{n}{k}p^kq^{n-k}$,并记 $X\sim B(n,p)$.

2.1.2 泊松分布

若离散型随机变量 X 的分布律为

$$P\{X=k\} = \frac{\lambda^k}{e^{\lambda} k!}, \ (\lambda > 0)$$

则称 X 服从参数为 λ 的**泊松分布**,记为 $X \sim \pi(\lambda)$ 或 $Po(\lambda)$.

泊松定理 对常数 $\lambda, \forall n \in \mathbf{Z}$, 且有 $np_n = \lambda$, 则对 $\forall k \in \mathbf{Z}$ 有

$$\lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k}{e^{\lambda} k!}.$$

当 n 很大, p 很小 $(np = \lambda)$, 有

$$\binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{e^{\lambda} k!}.$$

2.2 连续型随机变量

分布函数 $F(x) = P\{X \le x\}$, 性质: 1. 单调非降 2. 右连续性 3. 左极限存在 4. 规范性.

概率密度
$$f(x)$$
, 其中 $F(x) = \int_{-\infty}^{x} f(t) dt$, $f(x) = \frac{\partial}{\partial x} F(x)$.

小结论 X 为连续型随机变量 $\Leftrightarrow F(x)$ 无间断点.

2.2.1 均匀分布

若 X 在 (a,b) 上服从均匀分布,记为 $X \sim U(a,b)$,密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & \text{其他}. \end{cases}$$

2.2.2 指数分布

若 X 服从参数为 $\theta(\theta > 0)$ 的指数分布, 密度函数为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0, \\ 0, & \text{ 其他.} \end{cases}$$

无记忆性 $P\{X > s + t | X > s\} = PX > t$.

2.2.3 正态分布

X 服从参数为 μ , θ 的正态分布, 记为 $X \sim N(\mu, \sigma^2)$, 概率密度为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty.$$

标准正态分布
$$X \sim N(0,1), \begin{cases}$$
概率密度 $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}}, \\$ 分布函数 $\varPhi(x) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{\frac{t^2}{2}}\mathrm{d}t. \end{cases}$

2.3 [方法] 求一元函数的分布函数或密度函数

分布函数方法 若已知 $F_X(x)$, 且 Y = g(X), 则

$$F_Y(y) = P\{Y \le y\} = P\{g(X) \le Y\}$$

密度函数方法 (次选) 若已知 $F_X(x)$, 有 Y = g(X), $h = g^{-1}$, 即 X = h(Y)(可数多段), 则

$$f_Y(y) = \sum f_X(x) \cdot |h'(y)| = \sum f_X[h(y)] \cdot |h'(y)|.$$

3 多维随机变量及其分布

n 维随机变量 $X(\omega) = (X_1(\omega), \cdots, X_n(\omega))$, 其中 X_1, \cdots, X_n 是定义在 S 上的随机变量.

3.1 联合分布

联合分布函数 $F(x,y) = P\{(X \le x) \cap (Y \le y)\}, 记为 P\{X \le x, Y \le y\}.$

- 关于 x 与 y 均单调非降, 右连续
- $\forall x_1 < x_2, y_1 < y_2, F(x_2, y_2) + F(x_1, y_1) \ge F(x_1, y_2) + F(x_2, y_1).$

联合概率密度 $f(x,y), F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) dx dy, \ \left(f(x,y) = \frac{\partial^{2}}{\partial x \partial y} F(x,y) \right), \ \text{则} (X,Y)$ 为二维连续型随机变量, f(x,y)(x,y) 的概率密度 $(X \ \text{和} \ Y \ \text{的联合概率密度})$

3.2 边缘分布

边缘分布律(离散) (X,Y) 关于 X 的边缘分布律 $p_{i\bullet} = \sum_{i} p_{ij} = P\{X = x_i\}.$

边缘概率密度(连续) (X,Y) 关于 X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \frac{\partial F(x, +\infty)}{\partial x}.$$

3.3 二维正态分布(要背)

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \times \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} \right] \right\}$$

其中 $\sigma_1, \sigma_2 > 0, -1 \le \rho \le 1$,称 (X, Y) 服从参数为 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$ 的二维正态分布,记为 $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.

- $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho) \Longrightarrow \begin{cases} X \sim (\mu_1, \sigma_1) \\ Y \sim (\mu_2, \sigma_2) \end{cases}$
- n 维正态随机变量的每个分量都是正态随机变量; **相互独立的** n 个正态随机变量 组成 n 维正态随机变量.
- $\rho = 0 \implies f(x,y) = f_X(x) \cdot f_Y(y)$.
- 若 (X_1, \dots, X_n) 服从 n 维正态分布, 则 X_1, \dots, X_n 相互独立等价于两两不相关.
- n 维正态分布的线性组合仍服从正态分布 (包括一维和多维).(P114)

三项分布 * $P\{(X,Y) = (i,j)\} = C_n^i C_{n-1}^j p^i q^j r^{n-i-j} = \frac{n!}{i! j! (n-i-j)!} p^i q^j r^{n-i-j}$, 其中 $p+q+r=1, i,j,n\in Z^+$, 则称 (X,Y) 服从三项分布.

3.4 条件分布

 $Y \le y$ 条件下 X 的条件分布函数:

$$F(x|Y \le y) = P(X \le x|Y \le y) = \frac{P(X \le x, Y \le y)}{P(Y \le y)} = \frac{F(x,y)}{F_Y(y)}$$

•Y = y 条件下 X 的条件分布函数:

$$F_{X|Y}(x|y) = P(X \le x|Y = y)$$

$$= \begin{cases} \frac{P(X \le x, Y = y)}{P(Y = y)} \\ \lim_{\Delta y \to 0} \frac{P(X \le x, y - \Delta y < Y \le y)}{P(y - \Delta y < Y \le y)} = \frac{\int_{-\infty}^{x} f(u, y) du}{f_{Y}(y)} = \int_{-\infty}^{x} \frac{f(u, y) du}{f_{Y}(y)} \end{cases}$$

3.4.1 随机变量的独立性

若 $\forall x, y$, 均有

$$P(X \in I, Y \in J) = P(X \in I) \cdot P(Y \in J), \forall I, J$$

 $\iff F(x,y) = F_X(x) \cdot F_Y(y)$
 $\iff f(x,y) = f_X(x) \cdot f_Y(y)$ 在除去"面积"为 0 的集合成立
 $\implies F_X(x) = F(x|Y \le y), F_Y(y) = F(y|X \le x)$ (代替条件概率)

则称随机变量 X, Y相互独立.

- | A 与 B 互相独立 \Leftrightarrow A 与 \overline{B} 互相独立 \Leftrightarrow \overline{A} 与 B 互相独立 \Leftrightarrow \overline{A} 与 \overline{B} 互相独立
- 随机变量 X_1, X_2, \dots, X_n 互相独立,对 $\forall g_1(t), g_2(t), \dots, g_n(t)$,随机变量 $g_1(X_1), g_2(X_2), \dots, g_n(X_n)$ 互相独立

3.4.2 条件分布律(离散情形)

在 $Y = y_i$ 条件下随机变量 X 的条件分布律为:

$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{\bullet y}}$$

3.4.3 条件概率密度(连续情形)

Y = y 条件下 X 的**条件概率密度**为:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{$$
概率密度
边缘概率密度

3.5 二元随机变量的一些函数的分布

3.5.1 离散型

二项分布 若 $X \sim B(n,p), Y \sim B(m,p), X, Y$ 互相独立,则 $X + Y \sim B(n+m,p)$.

泊松分布 若 $X \sim Po(\lambda_1), Y \sim Po(\lambda_2), X, Y$ 互相独立, 则 $X + Y \sim Po(\lambda_1 + \lambda_2).$

3.5.2 连续型

(-) Z = X + Y 的分布

卷积公式

设 (X,Y) 具有概率密度 f(x,y), 且 X,Y 独立,则 Z=X+Y 的概率密度为:

$$F_{X+Y}(z) = \begin{cases} \int_{-\infty}^{+\infty} f(z-y,y) dy \\ \int_{-\infty}^{+\infty} f(x,z-x) dx = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dy \end{cases} \equiv f_X * f_Y$$

正态分布 若 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), X, Y$ 互相独立,那么 $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$

(二)
$$Z = \frac{Y}{X}, Z = XY$$
 的分布

设 (X,Y) 具有概率密度 f(x,y),且 X,Y 独立,则 $Z=\frac{Y}{X}$, Z=XY 的概率密度分别为:

$$f_{Y/X}(z) = \int_{-\infty}^{+\infty} |x| f(x, xz) dx = \int_{-\infty}^{+\infty} |x| f_X(x) f_Y(xz) dx$$

$$f_{XY}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f(x, \frac{z}{x}) dx = \int_{-\infty}^{+\infty} \frac{1}{|x|} f_X(x) f_Y(\frac{z}{x}) dx$$

(Ξ) $\max\{X,Y\}$ 和 $\min\{X,Y\}$ 的分布

设 $U \equiv \max\{X_1, \cdots, X_n\}$, 则有

$$F_U(u) = P\{X_1, \dots, X_n \le u\} = \frac{X_1, \dots, X_n \text{ degree}}{X_n} \prod_{i=1}^n F_{X_i}(x_i).$$

设 $V \equiv \min\{X_1, \cdots, X_n\}$, 则有

$$F_V(v) = P\{X_1, \dots, X_n \le u\} = 1 - P\{X_1, \dots, X_n > u\} \xrightarrow{X_1, \dots, X_n \text{ degree}} 1 - \prod_{i=1}^n [1 - F_{X_i}(x_i)].$$

(四) $g_1(x,y)$ 和 $g_2(x,y)$ 的联合分布

$$F(g_{1}, g_{2}) = P(g_{1} \leq z_{1}, g_{2} \leq z_{2}) = \iint_{\substack{g_{1}(x, y) \leq z_{1} \\ g_{2}(x, y) \leq z_{2}}} f(x, y) dxdy \xrightarrow{\underset{y = \psi(g_{1}, g_{2})}{\underbrace{\mathbb{E}} \frac{x = \varphi(g_{1}, g_{2})}{y = \psi(g_{1}, g_{2})}}} \iint_{\substack{g_{1} \leq z_{1} \\ g_{2} \leq z_{2}}} f(\varphi, \psi) \cdot |J| dg_{1} dg_{2}$$

$$= \iint_{\mathcal{F}} f(\varphi, \psi) \cdot \frac{D(\varphi, \psi)}{D(g_{1}, g_{2})} dg_{1} dg_{2}$$

4 随机变量的数字特征

4.1 数学期望的定义及一些性质

定义(离散情形) 若级数 $\sum_{k}^{+\infty} x_k P(X=x_k)$ **绝对收敛**则数学期望存在,(注意:条件收敛不保证期望存在!)则记

$$E(X) = \sum_{k} x_k P(x = x_k) = \sum_{k} x_k p_k$$

并称 E(X) 为 X 的**数学期望**, 简称**期望**, 又称均值.

定义(连续情形) 若 $\left| \int_{-\infty}^{+\infty} x |f(x)| \, \mathrm{d}x \right| < +\infty$ (绝对收敛),则记

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx \qquad \left(= \int_{0}^{1} x dF(x) \right) < +\infty$$

并称 E(X) 为 X 的**期望**.

4.1.1 一元函数期望的计算公式

g(x) 是实函数,

1) 若 X 为离散型,

$$E(g(X)) = \sum_{k} g(x_k) P\{X = x_k\}$$

2) 若 X 为连续型, 密度函数为 f(x),

$$E(g(X)) = \int_{-\infty}^{+\infty} g(x)f(x)dx.$$

以上两式都可写为

$$E(g(X)) = \int_0^1 g(x) dF(x)$$
 (勒贝格积分)

4.1.2 二元函数期望的计算公式

线性函数的期望

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

X,Y 独立的情形 (线性性) 若 X,Y 互相独立,则

$$E(XY) = E(X)E(Y)$$

- 一般二元函数的期望 g(x,y) 是实函数,
 - 1) 若 (X,Y) 为离散型,

$$E(g(X,Y)) = \sum_{i,j} g(x_i, y_j) P\{X = x_i, Y = y_j\}$$

2) 若 (X,Y) 为连续型, 密度函数为 f(x,y),

$$E(g(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy.$$

以上两式都可写为

$$E(g(X,Y)) = \iint g(x,y) dF(x,y)$$
 (勒贝格积分)

4.2 方差

$$D(X) \equiv E\{[X - E(X)]^2\} = E(X^2) - [E(X)]^2.$$

- $D(X) = 0 \Longleftrightarrow P\{X = E(X)\} = 1.$
- $D(aX+c)=a^2D(X)$.
- 如果X, Y独立,则 $D(X \pm Y) = D(X) + D(Y)$.

4.2.1 切比雪夫不等式

设随机变量 X 具有数学期望 E(X), 方差 D(X), 则对 $\forall \varepsilon > 0$,

$$P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}.$$

4.3 协方差及相关系数

4.3.1 协方差

$$cov(X,Y) = \sigma_{XY} \equiv E\{[X - E(X)][Y - E(Y)]\}$$

上式称为 X 和 Y 的协方差, 即 X 和 Y 的二阶混合中心矩.

- X 和 Y 成线性关系 $(Y = aX + b, a \neq 0) \Longleftrightarrow cov(X, Y) = \sqrt{D(X)D(Y)}$
- $X \land X \land Y \land X \Leftrightarrow cov(X, Y) = 0$
- 若 X 和 Y 独立, 则 cov(X,Y) = 0(反之不成立)
- $D(X \pm Y) = D(X) + D(Y) \pm 2cov(X, Y)$
- cov(X, aY + bZ + c) = acov(X, Y) + bcov(X, Z)
- cov(X,Y) = E(XY) E(X)E(Y)
- $D(\sum_{i=1}^{n} a_i X_i + b) = \sum_{i=1}^{n} a_i^2 D(X_i) + \sum_{i < j} 2a_i a_j \text{cov}(X_i, X_j)$

4.3.2 相关系数

若 $D(X) \neq 0, D(Y) \neq 0$, 则 X, Y 的相关系数为

$$\rho_{XY} \equiv \frac{\text{cov}(X,Y)}{\sqrt{D(X)D(Y)}}$$

上式称为 X 和 Y 的协方差, 即 X 和 Y 的二阶混合中心矩.

- $|\rho_{XY}| \leq 1$
- $Y = aX + b(a > 0) \Longleftrightarrow \rho_{XY} = 1$
- $Y = aX + b(a < 0) \Longleftrightarrow \rho_{XY} = -1$
- X 和 Y 不相关 $\iff \rho_{XY} = 0$
- 若 X 和 Y 独立, 则 $\rho_{XY} = 0$ (反之不成立)
- • X,Y 为二元正态分布或都是二值随机变量,则不相关性与独立性等价.

4.4 矩、协方差矩阵

X 的 K 阶原点矩 (K 阶矩) 若 $E(X^k)$ 存在,则称为 X 的 K 阶原点矩 (K 阶矩).

X 的 K 阶中心矩 若 $E\{[X-E(X)]^k\}$ 存在, 则称为 X 的 K 阶中心矩.

X 和 Y 的 k+l 阶混合矩 若 $E(X^kY^l)$ 存在, 则称为 X 和 Y 的 k+l 阶混合矩.

X 和 Y 的 k+l 阶混合中心矩 若 $E\{[X-E(X)]^k[Y-E(Y)]^l\}$ 存在,则称为 X 和 Y 的 k+l 阶混合中心矩.

4.4.1 协方差矩阵

 (X_1, X_2, \cdots, X_n) 中分量的两两的协方差都存在, 则协方差矩阵为

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

n **维正态分布** n 维正态随机变量 (X_1, X_2, \cdots, X_n) 的概率密度定义为

$$f(x_1, x_2, \cdots, x_n) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{|C|}} \exp[-\frac{1}{2} (X - \mu)^T C^{-1} (X - \mu)],$$

其中
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \, \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}.$$

5 大数定律及中心极限定理

5.1 弱大数定律 (辛钦大数定律)

依概率收敛

若 X_1, X_2, \cdots 是一个无穷的随机变量列, 若 $\forall \varepsilon > 0$ 都有

$$\lim_{n \to \infty} P\{|X_n - X| < \varepsilon\} = 1 ,$$

则称序列 X_1, X_2, \cdots 依概率收敛于随机变量 X(退化情况为常数 a),记为 $X_n \stackrel{P}{\to} X$.

若 X_1, X_2, \dots, X_n 相互独立且服从同一分布,且有 $E(X_k) = \mu$,则 $\overline{X} \stackrel{P}{\to} \mu$ n 充分大时,频率接近概率.

依分布收敛*

若 X_1, X_2, \cdots 是一个无穷的随机变量列, 分布函数为 $F_1(x), F_2(x), \cdots$, 如果对 X 的分布函数 F(x) 的任意连续点 x, 都有

$$\lim_{n\to\infty} F_n(x) = F(x) ,$$

则称随机变量列 X_1, X_2, \cdots 依分布收敛于 X, 记为 $X_n \stackrel{L}{\to} X$.

5.1.1 伯努利大数定律

若 $f_A \sim B(n,p)$, 则 $\frac{f_A}{n} \stackrel{L}{\to} p$.

5.2 中心极限定理(独立同分布)

若 X_1, X_2, \cdots 相互独立且服从同一分布,且有 $E(X_k) = \mu, \sqrt{D(X_k)} = \sigma$,设 $S_n = X_1 + \cdots + X_n$,则

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \stackrel{L}{\to} X, \not \sqsubseteq r \times N(0,1).$$

Tips

大数定律 定性 切比雪夫不等式 定量 中心极限定理 较精确的定量

样本及抽样分布 6

基本概念 总体 ⊇ 样本 ⊇ 个体 总体的容量 > 样本容量

样本的性质 独立性、代表性.

样本值 样本 (X_1, \dots, X_n) 的值 (x_1, \dots, x_n) .

样本分布
$$F(x_1, \dots, x_n) = \prod_{i=1}^n F(x_i).$$

样本密度函数
$$f(x_1, \dots, x_n) = \prod_{i=1}^n f(x_i).$$

样本的概率分布
$$p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i).$$

统计量 (statistic) 样本 (X_1, \dots, X_n) 的函数 $g(X_1, \dots, X_n)$, 函数 g 必须是确定的, 不含未 知参数,g 的取值可以是一维、多维的.

常用的统计量

样本均值
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

样本标准差 $S = \sqrt{S^2}$.

未修正样本方差
$$S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
. k 阶样本原点矩 $a_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

修正样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
. k 阶样本中心矩 $m_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{(X)})^k$.

顺序统计量 随机变量 X_1, \cdots, X_n 互相独立且同分布, 分布函数为 F(x), 将其从小到大排 序: $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$,则 $X_{(k)}$ 的分布函数为 $F_k(x) = \sum_{i=1}^n C_n^i F^i(x) [1 - f(x)]^{n-i}$.

样本极小、极大值 $X_{(1)}$ 、 $X_{(n)}$

样本极差 $X_{(n)} - X_{(1)}$

6.2 分位数

上侧 α 分位数 若 $\alpha \in (0,1)$, $x_{\alpha} \in \mathbb{R}$ 满足 $P\{X > x_{\alpha}\} = \alpha$, 则称 x_{α} 为 X 的上侧 α 分位数.

通常,对于上 α 分位数,

标准正态分布的记作 z_{α} , $-\alpha$ $\chi^{2}(n)$ 分布的记作 $\chi^{2}_{\alpha}(n)$, t(n) 分布的记作 $t_{\alpha}(n)$, $F(n_{1}, n_{2})$ 分布的记作 $F_{\alpha}(n_{1}, n_{2})$.

双侧 α **分位数** 设 X 是对称分布 (密度函数是偶函数) 的连续性随机变量, 若 $\alpha \in (0,1)$, $T_{\alpha} \in \mathbb{R}$ 满足 $P\{|X| > T_{\alpha}\} = \alpha$, 则称 T_{α} 为 X 的双侧 α 分位数.

6.3 χ^2 分布

 $X = X_1^2 + \dots + X_n^2$, $X_1^2 + \dots + X_n^2 \sim N(0,1)$ 且相互独立, 则称 X 服从自由度为 n 的 χ^2 分布, 记为 $X \sim \chi^2(n)$.

- E(X) = n, D(X) = 2n.
- 可加性 若 $X \sim \chi^2(m), Y \sim \chi^2(n), \, \text{则 } X + Y \sim \chi^2(m+n).$
- n=1,2 时单调递减; $n\geq 3$ 时先增后减,极大值点为 x=n-2.
- $\chi^2(2) = e\left(\frac{1}{2}\right).$ (指数分布)
- n 充分大时,(如 n > 40), $\chi_{\alpha}^{2}(n) \approx \frac{1}{2} \left(z_{\alpha} + \sqrt{2n-1} \right)$.

6.4 F 分布

 $X = \frac{U/m}{V/n}$, $U \sim \chi^2(m)$, $V \sim \chi^2(n)$ X, Y 相互独立, 则称 X 服从第一自由度为 m, 第二自由度为 n 的 F 分布, 记为 $X \sim F(m,n)$.

• 若 $X \sim F(m,n)$, 则 $\frac{1}{X} \sim F(n,m)$; $F_{1-\alpha}(m,n) = \frac{1}{F_{\alpha}(n,m)}$

6.5 t 分布

 $X=rac{U}{\sqrt{V/n}},\ U\sim N(0,1),\ V\sim \chi^2(n),\ X,Y$ 相互独立, 则称 X 服从自由度为 n 的 t 分布, 记为 $X\sim t(n)$.

- 当 n 充分大 (如 n > 50), t(n) 近似于 N(0,1).
- $E(X) = 0, D(X) = \frac{n}{n-2}$

6.6 正态总体的抽样分布 (小样本分布)

6.6.1 单正态总体的抽样分布

若 $X \sim N(\mu, \sigma^2)$, X_1, \dots, X_n 为样本, \overline{X} 和 S^2 分别为样本均值和样本方差 (修正后), 有

$$\begin{cases} U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \\ \\ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \\ (\mu$$
已知时用于推断 σ^2) \Longrightarrow
$$T = \frac{U}{S}\sigma = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1). \\ (\sigma^2$$
已知时用于推断 μ)

6.6.2 双正态总体的抽样分布

若 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X_1, \dots, X_{n_1} 与 Y_1, \dots, Y_{n_2} 为样本, \overline{X} , \overline{Y} 和 S_1^2, S_2^2 分别为样本均值和样本方差 (修正后), 有

6.7 一般总体的抽样分布的极限分布*

若 X_1, \dots, X_n 为总体 X 的样本, \overline{X} 和 S^2 分别为样本均值和样本方差 (修正后), 设 $E(X) = \mu, D(X) = \sigma^2,$ 有

$$U_n = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{L}{\to} N(0,1) \quad (\sigma^2 \mathbf{L}\mathbf{M}$$
时用于推断 μ)
$$T_n = \frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{L}{\to} N(0,1) \quad (\sigma^2 \mathbf{未}\mathbf{M}$$
时用于推断 μ)

7 参数估计

7.1 点估计

估计 $\hat{\theta}(X_1,\dots,X_n)$ 为参数 θ 的估计量, $\hat{\theta}(x_1,\dots,x_n)$ 为参数 θ 的估计值, 二者统称为估计.

7.1.1 矩估计法 (ME 法)

设总体 X 的分布依赖于参数 $\theta=(\theta_1,\cdots,\theta_m),\ X_1,\cdots,X_n$ 是样本, 估计参数 θ 的过程如下:

Step1 由于各阶矩是参数的函数, 故可以列出方程组:

$$\begin{cases} \alpha_1 = E(X) = g_1(\theta_1, \dots, \theta_m), \\ \alpha_2 = E(X^2) = g_2(\theta_1, \dots, \theta_m), \\ \vdots \\ \alpha_m = E(X^m) = g_m(\theta_1, \dots, \theta_m). \end{cases} - \Re \text{ filh Top } \text{ filh $\theta_1 = h_1(\alpha_1, \dots, \alpha_m)$} \\ \theta_2 = h_1(\alpha_2, \dots, \alpha_m) \\ \vdots \\ \theta_m = h_m(\alpha_1, \dots, \alpha_m). \end{cases}$$

注: 有时会出现某一个方程 (通常是期望的方程) 是恒等方程, 则需要把 m+1 阶矩的方程也列出, 才能解出方程.(有效方程个数 = 未知参数个数)

Step2 计算

再用 A_1, \dots, A_m 或 a_1, \dots, a_m 代替上式中的 $\alpha_1, \dots, \alpha_m$, 得到矩估计量或矩估计值

$$\begin{cases} \hat{\theta}_1 = h_1(A_1, \dots, A_m) \\ \vdots \\ \hat{\theta}_m = h_m(A_1, \dots, A_m). \end{cases} \quad \vec{\mathbb{R}} \begin{cases} \hat{\theta}_1 = h_1(a_1, \dots, a_m) \\ \vdots \\ \hat{\theta}_m = h_m(a_1, \dots, a_m). \end{cases}$$

7 参数估计 7.1 点估计

7.1.2 最大似然估计法 (MLE 法)

Step 1

1° **离散型** 若总体 X 属离散型, 其分布律 $P\{X=x\}=p(x;\theta_1,\cdots,\theta_m),\theta_i\in\Theta_i$ 的 形式已知 $\Big($ 如 B(n,p), 未知参数 $\theta_1=n,\theta_2=p\Big)$, 则事件 $\{X_1=x_1,X_2=x_2,\cdots,X_n=x_n\}$ 发生的概率为

$$L(x_1, x_2, \dots, x_n; \theta_1, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \dots, \theta_m).$$

 2° **连续型** 若总体 X 属离散型, 其密度函数 $f\{X=x\}=f(x;\theta_1,\cdots,\theta_m), \theta_i\in\Theta_i$ 的形式已知, 可设

$$L(x_1, x_2, \dots, x_n; \theta_1, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \dots, \theta_m).$$

Step 2

取 $\hat{\theta}_1, \dots, \hat{\theta}_m$ 使

$$L(x_1, x_2, \cdots, x_n; \hat{\theta}_1, \cdots, \hat{\theta}_m) = \max_{\theta_i \in \Theta_i} L(x_1, x_2, \cdots, x_n; \theta_1, \cdots, \theta_m).$$

这样得到的 $\hat{\theta}_i$ 与样本值 x_1, x_2, \dots, x_n 有关, 常记为 $\hat{\theta}_i(x_1, x_2, \dots, x_n)$, 称为参数 θ_i 的 最大似然估计值, 相应的统计量 $\hat{\theta}_i(X_1, X_2, \dots, X_n)$ 称为参数 θ_i 的最大似然估计量.

Tips

连续型时, Step 2 通常是一个极值问题, 可以转化为求解以下方程

$$\frac{\mathrm{d}}{\mathrm{d}\theta_i}L(\theta_1,\cdots,\theta_m)=0,$$

若 L > 0, 有时 $L(\theta_1, \dots, \theta_m)$ 的对数更容易求导, 则可转化为**对数似然方程**, 即

$$\frac{\mathrm{d}}{\mathrm{d}\theta_i}\ln\left(L(\theta_1,\cdots,\theta_m)\right)=0.$$

注: 并不是所有连续型都可以通过以上两条方程解出极值点, 有时还要考虑定义域端点是否为最大值点.

7.2 估计量的评选标准

7.2.1 无偏性

设 $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ 是参数 θ 的估计量, 若 $E(\hat{\theta}) = \theta$, 则称 $\hat{\theta}$ 为 θ 的无偏估计.

若 $\lim_{n\to\infty} E(\hat{\theta}) = \theta$, 则称 $\hat{\theta}$ 为 θ 的**渐进无偏估计**.

7.2.2 有效性

设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 都是参数 θ 的**无偏估计量** $\forall \theta \in \Theta$, 都有 $D(\hat{\theta}_1) \leq D(\hat{\theta}_1)$, 则一般情况下可 称 $\hat{\theta}_1$ **较** $\hat{\theta}_2$ **有效**.

设 $\hat{\theta}_0$ 是参数 θ 的**无偏估计量**, 若对 $\forall \theta$ 的无偏估计量 $\hat{\theta}$, 有 $D(\hat{\theta}_0) \leq D(\hat{\theta})$, 则称 $\hat{\theta}_0$ 为 θ 的**最有效无偏估计**.

7.2.3 相合性

若 $\hat{\theta} \stackrel{P}{\to} \theta$, 即对 $\forall \varepsilon > 0$, $\lim_{n \to \infty} P\{|\hat{\theta} - \theta| < \varepsilon\} = 1$, 则称 $\hat{\theta}$ 为 θ 的 (弱) 相合估计.

若 $\lim_{n\to\infty} P\{\hat{\theta}=\theta\}=1$, 则称 $\hat{\theta}$ 为 θ 的强相合估计.