- a. Montrez que la suite géométrique de premier  $\frac{1}{10}$  et de raison 5 a pour terme général
- b. Montrez que la suite géométrique de premier terme  $u_0=12$  et de raison  $rac{1}{4}$  a pour terme général  $u_n=\frac{3}{4^{n-1}}.$
- c. Montrez que la suite géométrique de premier terme  $u_1=\frac{1}{60}$  et de raison  $\frac{1}{10}$  a pour terme général  $u_n=\frac{10^{-n}}{6}$ .
- Q2 Pour chacune des suites suivantes : calculez les trois premiers termes ; vérifiez que l'on passe d'un terme à son suivant en multipliant toujours par le même nombre, exprimez  $\overline{u_{n+1}}$  , montrez que la suite est géométrique.
- a.  $u_n=rac{4}{3^{n-1}}$

b. 
$$u_n=6 imes 7^{-n}$$
 c.  $u_n=8^n-8^{n-1}$ 

Q3 Associez la suite au terme général.

$$u_0=2 ext{ et } q=3 ullet$$

$$ullet u_n=3 imes 2^n$$

$$u_1=2 ext{ et } q=3$$
  $ullet$ 

$$ullet u_n=2 imes 3^n$$

$$u_0=3 ext{ et } q=2 ullet$$

$$ullet u_n=3 imes 2^{n-1}$$

$$u_1 = 3$$
 et  $q = 2$   $\bullet$ 

$$\bullet \ u_n = 2 imes 3^{n-1}$$

- Q4 On se propose de démontrer la formule pour la somme  $1+q+q^2+\ldots+q^n$  où q est un nombre réel.
- **a.** Montrez que si q=1 alors
- $1 + q + q^2 + \ldots + q^n = n + 1$ .
- b. Qu'elle est le résultat de la soustraction suivante:

- c. Notons  $S=1+q+q^2+\ldots+q^n$  où  $q \neq 1$ . Déduire de la question précédente que  $S(1-q)=1-q^{n+1}$ . Conclure.
- d. En déduire la formule pour les suites géométriques.
- **Q5** Associez chaque suite à sa somme.

$$u_n=6 imes 4^n ext{ et } S=u_0+\ldots+u_8$$
  $ullet$ 

$$\bullet \ S = 4^{10} - 1$$

$$u_n=3 imes 4^n$$
 et  $S=u_1+\ldots+u_9$   $ullet$ 

$$\bullet S = 3(4^{10} - 1)$$

$$u_n=3 imes 4^n$$
 et  $S=u_0+\ldots+u_9$   $ullet$ 

• 
$$S = 2(4^9 - 1)$$

$$u_n = 9 imes 4^n ext{ et } S = u_0 + \ldots + u_9 ullet$$

$$\bullet \ S = 4^{10} - 4$$

Q6 Pour chacun des cas, calculer les quatres premiers termes de la suite 
$$(u_n)_{n\in\mathbb{N}}$$
, conjecturez les variations de la suite puis démontrez votre

conjecture. a.  $u_n=3 imes (-2)^n$ 

b. 
$$u_n=3\times 2^n$$

c. 
$$u_n = -3 imes 2^n$$

d. 
$$u_n=3 imes\left(rac{1}{2}
ight)^{ au}$$

e. 
$$u_n=-3 imes\left(rac{1}{2}
ight)^r$$

c. 
$$u_n=-3 imes 2^n$$
 d.  $u_n=3 imes \left(rac{1}{2}
ight)^n$  e.  $u_n=3 imes \left(rac{1}{2}
ight)^n$  f.  $u_n=3 imes \left(-rac{1}{2}
ight)^n$ 

g. 
$$u_n = -3 imes \left(-rac{1}{2}
ight)^n$$

Associez chaque figure à une suite ci-dessus.



2.



3.



4.



5.



6.



7.



Quelles sont les limites de ces suites si elles existent ?