Построение оптимального маршрута при заданной модели движения других участников транспортной сети

Разумова Л.Е., 610 группа Научный руководитель: к.ф.-м.н. Афонин С.А.

15 мая 2022

Кафедра вычислительной математики

Постановка задачи

Неформальная постановка

Рассматривается задача построения оптимального маршрута движения автотранспортного средства (ATC) при условии, что известны:

- дорожная сеть;
- время старта и маршруты движения других участников;
- правила, определяющие модель движения участников.

Маршруты других участников фиксированы. Скорость их движения определяется моделью движения. Задача состоит в прокладывании оптимального маршрута нового участника.

Сложность и новизна задачи

Маршруты движения участников могут пересекаться. Это приводит к изменению скоростного режима и образованию заторов.

Традиционно, задачи прокладывания маршрута решают на основе статистического или исторического прогноза заторов («здесь каждое утро пробка»). В данной работе мы считаем, что маршруты движения всех участников заранее известны.

Модель движения

Дорожная сесть представляется ориентированным графом $G = \langle V, E, l \rangle$, Вершины — перекрестки, ребра — дороги. Каждое ребро имеет длину, т.е. задана функция $l: E \to \mathbb{R}$.

Моделью движения АТС назовем

$$M = (n, G, S, F, \{t_i\}_{i=1}^n, \{\varphi_i\}_{i=1}^n),$$

где n — количество участников движения, G — граф дорожной сети, S — множество состояний, которые могут принимать участники, $F \subset S$ — множество заключительных состояний, $t_i: S^n \to R_{>=0}$ — функция критического момента движения участника $i, \varphi_i: S^n \times \mathbb{R}_{>=0} \to S$ — функция перехода состояния i-ого участника в некоторый момент времени t.

Модель движения как автомат

Диаграмма для i-ого участника в модели движения, где d — расстояние до впереди идущего участника, D — максимальное расстояние взаимодействия с впереди идущим участником, v_{max} —максимально возможная скорость, v_{min} —минимально возможная скорость, t_{st} — время старта.

Задача прокладывания маршрута

Пусть P(A, B) есть множество путей из A в B в графе G.

Для заданной модели движения

 $M=(n,G,S,F,\{t_i\}_{i=1}^n,\{\varphi_i\}_{i=1}^n)$ на графе дорожной сети G=(V,E,l) при движении n участников по путям p_1,\ldots,p_n требуется найти такой путь p^* из A в B, что движение нового участника по этому пути p^* будет onmumanbho, то есть

$$p^* = \underset{p \in P(A,B)}{\operatorname{argmin}} T(p),$$

где T(p) есть время прибытия (n+1)-ого участника в вершину B при движении по маршруту p в соответствии с моделью M.

План решения

Кратчайший путь в динамическом графе

Рассматривается вспомогательная задача поиска пути в графе.

Пусть на каждом ребре $e \in E$ графа G(V, E) определена функция временных затрат $\phi_e(t) : \mathbb{R}_+ \to \mathbb{R}_+$. Если мы оказались в начальной вершине ребра e в момент времени t, то время преодоления ребра будет равняться $\phi_e(t)$.

Задача состоит в нахождении пути p^* с минимальной суммой $\sum_{e \in p^*} \phi_e(t)$.

Модифицированный алгоритм Дейкстры

Пусть \mathcal{A} — алгоритм Дейкстры поиска кратчайшего пути, в котором при посещении каждой вершины фиксируется время ее посещения и пересчитываются значения функции временных затрат на всех ребрах, исходящих из этой вершины.

Теорема

Если

$$\phi_e(t) \le \Delta + \phi_e(t + \Delta), \quad \Delta \ge 0,$$

то алгоритм \mathcal{A} находит маршрут c минимальной суммой $\sum_{e \in p^*} \phi_e(t)$.

Построение функций $\phi_e(t)$

Значения функций временных затрат $\phi_e(t)$ получаются в процессе симуляции движения АТС согласно модели движения

$$M = (n, G, S, F, \{t_i\}_{i=1}^n, \{\varphi_i\}_{i=1}^n).$$

Для состояния S в момент t вычисляется ближайший критический момент $t'=\min_{i\in\{1,\dots,n\}}t_i(S)$. На промежутке [t,t'] движение вычисляется по известным формулам, далее производится изменение состояния и вычисляется следующий критический момент.

Результаты численных

экспериментов

Модель следования за лидером

В рамках численных экспериментов была реализована модель следования за лидером, определенная правилами, представленными на диаграмме.

Параметры модели:

- ullet Безопасное расстояние D, дистанция торможения l
- Максимальная v_{max} , минимальная v_{min} скорости и ускорение a
- Время старта t_{st}

Результаты моделирования

Граф дорожной сети G, на котором производилось моделирование движения. $|V|=46,\ |E|=60,\$ ребра произвольной длины.

Результаты моделирования

Были получены результаты:

t_{st}	v_{max}	v_{min}	a	$T(p^*)$
5	60	10	4.375	955.321
5	60	20	4	935.259
5	80	10	7.875	716.872
5	80	20	7.5	707.094
40	60	10	4.375	1172.52
40	60	20	4	1083
40	80	10	7.875	906.91
40	80	20	7.5	864.625

Таблица 1: Результаты запуска модифицированного алгоритма Дейкстры. В таблце представлены значения времени на прохождение оптмального пути с параметрами $v_{max},\ v_{min},\ a=\frac{v_{max}^2-v_{min}^2}{2(D-l)}.$

Выводы

- Предложена автоматная форма определения модели движения АТС.
- Разработан и реализован алгоритм симуляции движения ATC в соответствии с заданной моделью движения.
- Сформулировано необходимое условие, при котором модифицированный алгоритм Дейкстры приводит к нахождению оптимального решения.
- Показано, что для модели следования за лидером возможно отклонение найденного решения от оптимального.

Спасибо за внимание!