

Spontaneous bacterial peritonitis

Portal Hypertension Session 10-29-2020

Niklas Krupka

Department of Visceral Surgery and Medicine, Division of Gastroenterology

Outline

- Definition of SBP and SBP variants
- Pathogenesis
- Clinical risk factors
- Diagnosis
- Treatment and prophylaxis

Definition of SBP and SBP variants

Definition of SBP

Spontaneous Peritonitis and Bacteremia in Laennec's Cirrhosis Caused by Enteric Organisms

A Relatively Common but Rarely Recognized Syndrome

HAROLD O. CONN, M.D., New Haven, Connecticut

TABLE 1	Cliniant	Manifestations

Patient	Initial Fever	Chills	Abdom- inal Pain	Rebound Tender- ness	Hypo- active Bowel Sounds	Hypo- tension	Impend- ing Hepatic Coma	No Free Air by X ray
	F							
1A	104	+	+	+	+	+	+	_
1B	104	+	+	+	+	+	+	+
2	102	+	+	+	+	+	+	+
3	101	+	+	+	0	+	+	+
4	101	+	+	+	+	+	+	+
5	101	+	+	+	+	+	+	+

TABLE 2. Laboratory Data

Patient	WBC	Serum				Ascitic Fluid		Blood Culture
	,	Amylase	Tur- bid- ity	Specific Gravity	Leuko- cytes	Smear of Sediment	Culture	- Culture
	/mm³				/mm²			
1A	15,000	<200	+	1.013	-	Many polymorpho- nuclear leuko- cytes; gram-nega- tive bacteria	E. coli	E. coli
1B	13,000	-	+	1.014	-	Many polymorpho- nuclear leuko- cytes; gram-nega- tive bacteria	E. coli	E. coli
2	13,000	<200	+	1.015	13,000	Many polymorpho- nuclear leuko- cytes	Aeromonas liquefaciens	Aeromonas liquefacien
3	11,000	<200	+	-	1,000	Many polymorpho- nuclear leuko- cytes; gram-nega- tive bacteria	E. coli	E. coli
4	42,000	<200	+	1.018	1,400	Many polymorpho- nuclear leuko- cytes	Enterococcus	Enterococcu
5	6,000	<200	+	1.019	2,700	Many polymorpho- nuclear leuko- cytes	E. coli	Aeromonas liquefacien.

Ascitic fluid infection without an evident intra-abdominal surgically treatable source

Conn, H. O. Ann. Intern. Med. 60, 568 (1964).

Variants of ascitic fluid infection

	PMN count cells/mm ³	Culture
Spontaneous bacterial peritonitis Culture-negative neutrocytic ascites Monomicrobial nonneutrocytic bacterascites	≥250 ≥250 <250	single organism negative single organism
Secondary bacterial peritonitis Polymicrobial bacterascites	≥250 <250	polymicrobial polymicrobial

Infection = Positive culture **OR** elevated PMN count

How frequent is SBP?

~20% of cirrhotic patients with ascites in 1 y

Distribution of infectious episodes according to the type of infection

Type of infection	Isolated episodes	Associated episodes	Repeated episodes	Total
SBP	14	14	4	32 (31.07%)
UTI	11	7	8	26 (25.24%)
Pneumonia	18	4	0	22 (21.37%)
Dermatolog. infections	10	2	0	12 (11.65%)
Septicaemia	3	1	0	4 (3.88%)
Bacterial endocarditis	2	1	0	3 (2.91%)
Others ^a	3	1	0	4 (3.88%)
Total	61 (59.22%)	30 (29.13%)	12 (11.65%)	103 (100%)

SBP, spontaneous bacterial peritonitis; UTI, urinary tract infections; Dermatolog., dermatological.

One of the most common infections in cirrhotic patients

Andreu, M. et al. Gastroenterology 104, 1133–1138 (1993).
Caly, W. R. & Strauss, E. J. Hepatol. 18, 353–358 (1993).

SBP 30.10.2020

[&]quot;Others (I case of pulmonary tuberculosis; I case of bacterial colitis; I case of hepatic abscess; I case of bacterial colangitis).

Pathogenesis

Pathogenesis – Early hypotheses

DISCUSSION

What is the pathogenesis of this syndrome? Is it primarily a bacteremia with secondary seeding of the ascitic fluid, or does it represent a peritonitis with secondary bacteremia? The most satisfying hypothesis suggests that both occur sequentially. It assumes that the initial event is the escape of bacteria from the intestinal tract into the blood, causing transient bacteremia. In the cirrhotic patient, in whom the bacterial filtering mechanism of the liver is impaired, the duration of such bacteremia is prolonged. This offers the organisms greater opportunity to invade the ascitic fluid and to cause bacterial peritonitis, which in turn causes a secondary bacteremia.

WINSELGRUPPE

Pathogenesis – Small-intestinal bacterial overgrowth (SIBO)

~60% of cirrhotic patients have SIBO (>10⁵ jejunal CFU)

Table 3. Results of Quantitative Jejunal Cultures in 70 Patients With Cirrhosis

Patients (n)	$SIBO_{D1}$
All (70)	61
Not on acid-suppressive	_
therapy*	
Child Pugh Class	
A (17)	41
B (15)	33
C (8)	63
Total (40)	43
On acid-suppressive therapy*	
Child Pugh Class	
A (12)	92
B (9)	67
C (9)	100
Total (30)	87†

Reasons:

- Disturbed motility
- Paneth cell disorders
- Portal-hypertensive enteropathy

Sartor, R. B. Gastroenterology **134**, 577–594 (2008). Bauer, T. M. et al. Am. J. Gastroenterol. **96**, 2962–7 (2001).

Pathogenesis – Translocation (I)

Flora of the 16 rats with cirrhosis that translocated and had culture-positive ascitic fluid

Ascitic fluid culture	Mesenteric lymph node culture	Colonies per mg of ascitic fluid		
		Colonies per mg of lymph node		
E. coli	E. coli	0.34		
E. coli	E. coli	0.125		
E. coli	E. coli	0.5		
E. coli	E. coli	0.93		
E. coli	E. coli & Morganella morganii	0.016		
E. coli & Shigella	E. coli & Shigella	0.62		
E. coli	E. coli & Micrococcus	0.024		
Klebsiella oxytoca	E. coli & Klebsiella oxytoca	0.22		
E. coli	Enterobacter	0.175		
Pseudomonas aeruginosa	Shigella	0.21		
Proteus mirabilis	Proteus mirabilis	0.015		
Klehsiella pneumoniae	Klebsiella pneumoniae	0.25		
Klebsiella oxytoca	Klebsiella oxytoca	0.034		
Citrobacter freundii	Citrobacter freundii	0.32		
Gram-negative rod	Gram-negative rod	0.2		
Nonenterococcal Group D Strep		0.33		

- Frequent translocation of enteric bacteria into MLN in a rat cirrhosis model
- Same organisms in MLN and ascitic fluid

Pathogenesis – Translocation (II)

TABLE 3. Effect of Propranolol on Bacterial Translocation, Intestinal Bacterial Overgrowth, Intestinal Transit, and Intestinal Permeability of Cirrhotic Rats With Ascites

	Placebo	Propranolol
Number of animals	12	13
Portal pressure (mm Hg)	20.9 ± 4	17.2 ± 4*
Bacterial translocation (%)	58	15*
Spontaneous bacterial peritonitis (%)	33	8
Intestinal bacterial overgrowth (%)	67	15*
Aerobic bacterial stool count (logCFU/g)	7.7 ± 0.3	7.1 ± 0.3
Intestinal transit (geometric center ratio)	0.23 ± 0.1	0.44 ± 0.1
Intestinal permeability (% urinary excretion		
of 99mTc-DTPA)	16.4 ± 7	19.5 ± 8

^{*}P < .05 vs. placebo. †P < .01 vs. placebo.

- The gut of cirrhotic patients is "leaky" (and immunodeficient)
- Barrier defect is aggravated by beta-adrenergic signals

Cirera, I. et al. J. Hepatol. **34**, 32–37 (2001). Scarpellini, E. et al. Am. J. Gastroenterol. **105**, 323–327 (2010). Pérez-Paramo, M. et al. Hepatology. **31**, 43–48 (2000). Sorribas, M. et al. Digestion (2019). doi:10.1159/000502112

Pathogenesis – Translocation (III)

Role of FXR

- PH alone does not increase BT
- FXR agonists can restore barrier

Sorribas, M. et al. J. Hepatol. **71**, 1126–1140 (2019). Úbeda, M. et al. J. Hepatol. **64**, 1049–1057 (2016).

Pathogenesis – Reduced opsonic activity

TABLE 1. ASCITIC FLUID AND SERUM ANALYSIS

Fluid	Parenchymal liver disease	Peritoneal carcinomatosis	Massive liver metastases	Cardiac	Miscellaneous
Ascitic fluid					
Total protein (gm/dl)	1.1 ± 0.7	3.80 ± 0.73	1.6 ± 0.6	2.4 ± 2.1	3.3 ± 0.9
CH ₁₀₀ (units/ml)	12.3 ± 10.7	62.1 ± 7.8	34.7 ± 16.7	33.8 ± 23.2	22.5 ± 9.5
$C_3 \text{ (mg/dl)}$	16.8 ± 15.6	59.2 ± 10.6	43.5 ± 16.0	42.5 ± 37.5	44.0 ± 13.2
C4 (mg/dl)	2.7 ± 3.5	17.5 ± 2.4	12.0 ± 2.2	9.3 ± 7.8	8.8 ± 7.1
Opsonic activity (log-kill)	0.69 ± 0.98	2.53 ± 0.22	2.60 ± 0.44	1.39 ± 1.46	2.50 ± 0.33

Fig. 1. Correlation of ascitic fluid opsonic activity and ascitic fluid total protein concentration; lacktriangle, cirrhotics; lacktriangle, noncirrhotics.

- Cirrhotic AF has reduced opsonic activity
- Low ascitic protein is associated with SBP

Runyon, B. A., Morrissey, R. L., Hoefs, J. C. & Wyle, F. A. *Hepatology* **5**, 634–7 (1985). Runyon, B. A. *Gastroenterology* **91**, 1343–1346 (1986).

Pathogenesis – Peritoneal immune system (I)

The peritoneal cavity of mice contains distinct subsets of resident and non-resident macrophages

Ghosn, E. E. B. et al. Proc. Natl. Acad. Sci. U. S. A. 107, 2568–73 (2010). Grootjans, J., Krupka N. et al. Science 363, 993–998 (2019).

Pathogenesis – Peritoneal immune system (II)

- Human peritoneal LPM are inflammatory
- LPM from cirrhotic patients: inflammatory \\ \↑

Stengel, S. et al. Gastroenterology 158, 1745-1761 (2020).

75

31

90 days

22 at risk

7 at risk

27 at risk

SBP 30.10.2020 15

Pathogenesis of SBP – Summary

Sheer, T. A. & Runyon, B. A. Dig. Dis. 23, 39-46 (2005).

Risk factors

SBP

MINSELGRUPPE

Risk factors - PPI

- PPI use is associated with SBP
- Potential mechanism: SIBO

Lin, L. et al. Hepatol. Res. 50, 233-245 (2020).

Risk factors – Ascitic protein

Table 4. Prognostic Variables in Cox's Regression Model

Variable	Regression coefficient		
AF opsonic activity	-1.40511	0.0001	
Serum albumin	0.10299	0.033	
Prothrombin activity	-1.21597	0.038	
Serum bilirubin	0.13869	0.046	

- Low AF protein is associated with SBP
- Mechanism: Low opsonic activity

Risk factors – Genetic polymorphisms

Table 5. Numbers of Carriers of Any NOD2 Risk Allele in Patients With Cirrhosis With and Without SBP (PMN Cell Count $>250/\mu$ L)

(A) Prospective Analysis							
	SBP (PMN >250/μL)	No SBP (PMN <250/μL)	$P(\chi^2 \text{ test})$				
NOD2 risk allele	13	24	0.008				
No <i>NOD2</i> risk allele	17	96	OR = 3.06 (95% CI 1.31-7.15)				

NOD2/TLR2 polymorphisms are associated with SBP

Appenrodt, B. et al. Hepatology **51**, 1327–1333 (2010). Nischalke, H. D. et al. J. Hepatol. **55**, 1010–1016 (2011).

30.10.2020

20

Diagnosis

MINSELGRUPPE

Diagnosis

In cirrhotic patients with

- Fever
- Abdominal pain/tenderness
- Altered mental status
- Hypotension

Ascitic tap as early as possible +3%/h in-hospital mortality

Image: James Heilman (<u>CC BY-SA 3.0</u>) Kim, J. J. et al. Am. J. Gastroenterol. **109**, 1436–1442 (2014).

Diagnosis

Table 1. Comparison of the Conventional Method of Ascitic Fluid Culture (and Its Modifications) to the Blood Culture Bottle Method (Using 10 ml of Inoculum)

	Episodes of bacterial growth		Total	Posi-	osi- Differ-		_
Culture method	Posi- tive	Nega- tive	epi- sodes	tive {%}		ence (%)	
Conventional ^a Blood culture bottle ^a	13 28	17 2	30 30	43 93	}	50	- (optimistic
Conventional ^b (plus two modifications) Blood culture bottle ^b	17 28	13	30 30	57 93	}	36	

- PMN are better than Leukocytes to discriminate between uncomplicated ascites and SBP
- Bedside inoculation of blood culture bottles with ≥10ml

Jones, S. R. West. J. Med. 126, 344–346 (1977). Runyon, B. A., Canawati, H. N. & Akriviadis, E. A. Gastroenterology 95, 1351–1355 (1988).

Treatment and prophylaxis

Treatment – Choice of antibiotics (I)

 Table 2
 Causative microorganisms of spontaneous

 bacterial peritonitis, bacterascites and secondary peritonitis

Microorganisms	SBP (%)	Bacterascites (%)	Secondary peritonitis (%)
Monomicrobial			
Escherichia coli	37	27	20
Klebsiella pneumoniae	17	11	7
Pneumococcus	12	9	0
Streptococcus viridans	9	2	0
Staphylococcus aureus	0	7	11
Miscellaneous Gram-negative	10	14	7
Miscellaneous Gram-positive	14	10	0
Polymicrobial .	1	0	53

SBP, spontaneous bacterial peritonitis.

Reproduced from Sleisenger's & Fordtran's gastrointestinal and liver disease, 7th ed, with permission from Elsevier.

- 3rd generation cephalosporin as early as possible
- Lack of high-quality RCTs

"Practice [...] based on impression, not evidence"
(Chavez-Tapia, N. C., Cochrane Database Syst. Rev. 2009)

Koulaouzidis, A. et al. Postgrad. Med. J. 83, 379-383 (2007).

WINSELGRUPPE

Treatment – Recent developments

Table 2. Microorganisms and 3rd-generation cephalosporins-resistant strains in SBP episodes.

		CA		HCR			NA		Total	
		N (%)	Resistant (%)*	N (%)	Resistant (%)*	N (%)	Resistant (%)*	N (%)	Resistant (%)*	
	E. coli	39 (45.9)	1 (16.7)	36 (37.9)	5 (25.0)	25 (37.9)	4 (14.8)	100 (40.7)	10 (18.9)	
m	Klebsiella spp.	6 (7.1)	-	10 (10.5)	1 (5.0)	4 (6.1)	2 (7.4)	20 (8.1)	3 (5.7)	
e i	Other Enterobacteriaceae	3 (3.5)	1 (16.7)	-	-	6 (9.1)	4 (14.8)	9 (3.7)	5 (9.4)	
pac	P. aeruginosa	-	-	3 (3.2)	3 (15.0)	3 (4.5)	3 (11.1)	6 (2.4)	6 (11.3)	
<u>e</u>	A. baumannii	-	-	1 (1.1)	1 (5.0)	4 (6.1)	4 (14.8)	5 (2.0)	5 (9.4)	
gat	A. hydrophyla	4 (4.7)	-	2 (2.1)	-	-	-	6 (2.4)	-	
J-n	C. jejuni	1 (1.2)	1 (16.7)	-	-	2 (3.0)	2 (7.4)	3 (1.2)	3 (5.7)	
Gram-negative bacteria	Other Gram-negatives	1 (1.2)	-	3 (3.2)	-	2 (3.0)	1 (3.7)	6 (2.4)	1 (1.9)	
	Anaerobes	-	-	-	-	2 (3.0)	2 (7.4)	2 (0.8)	2 (3.8)	
	All Gram-negatives	54 (63.5)	3 (50.0)	55 (57.9)	10 (50.0)	48 (72.7)	22 (81.5)	157 (63.8)	35 (66.0)	
	S. pneumoniae	13 (15.3)	-	8 (8.4)	-	3 (4.5)	-	24 (9.8)	-	
	S. bovis	5 (5.9)	-	7 (7.4)	-	1 (1.5)	-	13 (5.3)	-	
	S. agalactiae	3 (3.5)	-	1 (1.1)	-	1 (1.5)	-	5 (2.0)	-	
<u>.</u>	S. mitis	3 (3.5)	-	5 (5.3)	-	5 (7.6)	1 (3.7)	13 (5.3)	1 (1.9)	
cte	S. sanguis	2 (2.4)	-	2 (2.1)	-	1 (1.5)	-	5 (2.0)	-	
e pa	S. salivarius	-	-	4 (4.2)	-	-	-	4 (1.6)	-	
itive	Other S. viridans	2 (2.4)	-	3 (3.2)	-	2 (3.0)	-	7 (2.8)	-	
Gram-positive bacteria	E. faecalis	-	-	4 (4.2)	4 (20.0)	1 (1.5)	1 (3.7)	5 (2.0)	5 (9.4)	
	E. faecium	-	-	1 (1.1)	1 (5.0)	1 (1.5)	1 (3.7)	2 (0.8)	2 (3.8)	
	Other Enterococci	1 (1.2)	1 (16.7)	2 (2.1)	2 (10.0)	-	-	3 (1.2)	3 (5.7)	
	S. aureus	1 (1.2)	1 (16.7)	1 (1.1)	1 (5.0)	2 (3.0)	2 (7.4)	4 (1.6)	4 (7.5)	
	Other Gram-positives	1 (1.2)	1 (16.7)	1 (1.1)	1 (5.0)	1 (1.5)	-	3 (1.2)	2 (3.8)	
	All Gram-positives	31 (36.5)	3 (50.0)	39 (41.1)	9 (45.0)	18 (27.3)	5 (18.5)	88 (35.8)	17 (32.1)	
Other	Candida albicans	-	-	1 (1.1)	1 (5.0)	-	-	1 (0.4)	1 (1.9)	
OTAL		85 (34.6)	6 (7.1)	95 (38.6)	20 (21.1)	66 (26.8)	27 (40.9)	246 (100)	53 (21.5)	

- Gram+ infections↑
- Resistance to 3rd-gen cephalosporins↑

Ariza, X. et al. J. Hepatol. **56**, 825–832 (2012). Fernández, J. et al. J. Hepatol. **70**, 398–411 (2019).

Treatment – Duration of antibiotics

Table 4. Results of the Trial

Tubic 1: Hebanb by the			
	Short	P	Long
	course	(95% CI)	course
No. of patients	43		47
Susceptible flora	27 (93.1)	NS	32 (94.1)
Infection-related	0 (0)	NS	2 (4.3)
mortality		(-12.3, 37)	
Hospitalization mortality	14 (32.6)	NS	20 (42.5)
		(-32.1, 12.1)	
Bacteriologic cure	27 (93.1)	NS	31 (91.2)
		(-14.5, 18.4)	
Additional antibiotic			
needed because of			
resistance	2 (4.7)	NS	2 (4.3)
Normalized neutrophil			
count	38 (88.4)	NS	43 (91.5)
Afebrile in 72 h	23 (79.3)	NS	24 (75)
Pain-free in 72 h	20 (76.9)	NS	17 (68)
Side effect	2 (4.7)	NS	1 (2.1)
Relapse	1(2.3)	NS	2 (4.3)
Reinfection	4 (9.3)	NS	4 (8.5)
Overall recurrence	5 (11.6)	NS	6 (12.8)
of infection		(-16.9, 14.6)	
Superinfection	0 (0)	NS	0 (0)
Days of hospitalization	37 ± 38	NS	50 ± 68
Drug and administration			
costs/patient (\$)	259 ± 34	< 0.0001	486 ± 117

Short-course treatment (5d) is as efficacious as long-course therapy and significantly less expensive

Treatment – Role of Albumin (I)

TABLE 2. CLINICAL OUTCOME ACCORDING TO THE ASSIGNED TREATMENT.*

OUTCOME VARIABLE	CEFOTAXIME (N=63)	CEFOTAXIME PLUS ALBUMIN (N=63)	P Value
Resolution of infection — no. (%)†	59 (94)	62 (98)	0.36
Duration of antibiotic therapy — days	6±1	5 ± 1	0.48
Paracentesis for ascites after resolution of infection — no. (%)‡	16 (25)	14 (22)	0.83
Hospital stay — days	13±1	14±1	0.48
Renal impairment — no. (%)	21 (33)	6 (10)	0.002
Death — no. (%) In hospital§ At three months¶	18 (29) 26 (41)	6 (10) 14 (22)	0.01 0.03

Table 4. In-Hospital Mortality According to Variables with Independent Predictive Value.*

Variable		FAXIME =63)	CEFOTAXIME PLUS ALBUMIN (N=63)			
	BUN <30 mg/dl	BUN ≥30 mg/dl	BUN <30 mg/dl	BUN ≥30 mg/dl		
	no. of patients who died/total no. (%)					
Bilirubin <4 mg/dl Prothrombin time ≥60% of control Prothrombin time	0/13 0/7	3/6 (50) 2/8 (25)	0/10 0/14	1/10 (10) 2/5 (40)		
<60% of control Bilirubin ≥4 mg/dl	,			, , ,		
Prothrombin time ≥60% of control	1/3 (33)	1/5 (20)	0/0	0/1		
Prothrombin time <60% of control	4/12 (33)	7/9 (78)	0/16	3/7 (43)		
Total	5/35 (14)	13/28 (46)	0/40	6/23 (26)		

I.v. albumin \rightarrow Renal impairment $\downarrow \rightarrow$ Mortality \downarrow

Sort, P. et al. N. Engl. J. Med. 341, 403-9 (1999).

Treatment – Role of Albumin (II)

Recommendation

 The administration of albumin (1.5 g/kg at diagnosis and 1 g/kg on day 3) is recommended in patients with SBP (I;1).

Don't forget the d3 albumin!

Angeli, P. et al. J. Hepatol. **69**, 406–460 (2018). Peeraphatdit, T., et al. Aliment. Pharmacol. Ther. **42**, 241–2 (2015).

Treatment – What to do with NSBB?

- NSBBs in SBP were associated with hemodynamic instability, HRS and death in a retrospective analysis
- But:
 - Results not confirmed in other studies
 - NSBB prevent decompensation and death (PREDESCI)
- Consider temporary NSBB stop and/or dose adjustment.
- → SBP is NO contraindication for NSBB

Mandorfer, M. et al. Gastroenterology 146, 1680–1690 (2014). Villanueva, C. et al. Lancet 393, 1597–1608 (2019).

MINSELGRUPPE

Prophylaxis

70% risk of SBP recurrence within 1 year
 Titó L. et al. Hepatology 1988

 Cirrhotic patients with AF protein <10 g/L and/or high serum bilirubin at high risk of developing SBP

Llach, J. et al. Hepatology 1992

Agent of choice: Norfloxacin 400 mg/d

Secondary prophylaxis is effective

Primary prophylaxis is effective in high-risk patients

Ginés, P. et al. Hepatology 12, 716–724 (1990). Loomba, R. et al. Clin. Gastroenterol. Hepatol. 7, 487–493 (2009).

MINSELGRUPPE

Concluding remarks

- SBP is frequent and easy to miss
 - → Diagnose and treat early, don't forget albumin
- Bacterial overgrowth/translocation and peritoneal immune status are critical
 - → Critically assess PPI therapy
 - → More studies needed to define roles of FXR agonists and peritoneal immunity
- Emergence of drug resistance is concerning
 - → Consider broad-spectrum therapy in critically-ill patients and/or nosocomial infections
 - → Observe local resistance patterns
- Role of NSBB is controversial
 - → Do not routinely stop NSBB, consider dose adjustment
- Prophylaxis is important, but long-term survival poor after first episode of SBP
 - Consider transplant

SBP 30.10.2020