Maximilian Vötsch

in maximilian-vötsch

✓ max@voets.ch

• boredoms
• voets.ch

₩ voetschm

Vienna, Austria

Arbeitserfahrung

Universität Wien Feb 2021 - Laufend

Prae-Doc Assistent in der Forschungsgruppe Theory and Applications of Algorithms (TAA)

- Forschung dazu wie mit Methoden aus der Algorithmentheorie effizientere Algorithmen für unsupervised Learning entwickelt werden können
- Implementierung, Benchmarking und Optimierung von Algorithmen in C++ nach Algorithm Engineering Praktiken
- Organisationserfahrung bei Workshops und Konferenzen, z.B. Organisator des Queer in AI Workshop bei ICML 2024 und lokaler Organisator der SEA 2024 Konferenz
- Erfahrung mit internationaler Kollaboration, sowohl Akademisch (Stanford, CMU, TU München, IIT Delhi, ...) als auch Industrie (Google)
- Expert Reviewer für hochrangige Konferenzen (NeurIPS, KDD, ICML, ALENEX, ICALP, SEA, ...)
- Mitbetreuung von Bachelorstudenten (Thema: Graph Clustering: A Comparison of Louvain and Leiden) und Masterstudenten (Thema: Repetition Free Longest Common Subsequence). Unterricht der Kurse "Advanced Algorithms" und "Algorithms and Data Structures for Computational Science", sowie der "PUE Mathematical Foundations of Computer Science 1".
- Erhalt des Fakultätsawards für signifikante Beiträge in der Kategorie Publikationen in höchstrangigen Venues für 2023

Projekte

XCut (publiziert bei KDD 2024)

Mai 2023 - Laufend

Der erste Algorithmus für Graph-Clustering der auf Expanderzerlegung basiert.

XCut löst das Normalized Cut Problem auf Graphen durch Sparsifizierung des Graphen zu einem Baum und ist der derzeitige State-of-the-Art Solver für dieses Problem. Ich habe am Design des Algorithmus gearbeitet, ihn in C++ implementiert und alle Experimente, sowie die Datenanalyse in Python durchgeführt. Das Projekt wurde mit dem Audience Appreciation Award der KDD 2024 geehrt, welcher an Paper mit hohem öffentlichen Interesse geht.

PRONE (publizert bei NeurIPS 2023)

Februar 2023 - Laufend

Ein neuer Algorithmus zum lösen des Euclidean k-means Problems und zum Erstellen von Coresets.

Die Laufzeit des Algorithmus ist $O(nnz(A) + n\log n)$. Der Algorithmus ist als Python Package für Data Scientists verfügbar. Die Hautpimplementation des Algorithmus ist in C++, mit C++, mit C++ implementiert und bindings zur Verfügung stellen zu können. Ich habe den Algorithmus co-designed, ihn in C++ implementiert und alle Experimente und die Datenaufarbeitung durchgeführt.

Ausbildung

Universität Wien Februar 2021 - März 2025

Dr. techn. Informatik

Betreuer: Univ.-Prof. Dr. Monika Henzinger und Ass.-Prof. Dr. Kathrin Hanauer, B.Sc. M.SC.

Thema: Efficient Algorithms for Problems in Clustering and Fairness

Universität Wien März 2018 - August 2020

M.Sc. Mathematik, Thema der Abschlussarbeit: Cofinitary Groups

Universität Wien Oktober 2014 - März 2018

B.Sc. Mathematik, Thema der Abschlussarbeit: Lattice Path Matroids

Fähigkeiten

Sprachen Technologien Libraries C++, Python, Haskell, Rust, German (native), English (fluent) Linux, git, unix shell, cmake, poetry, clang-tidy, vim, Docker Blaze, OpenMP, OpenMPI, Catch2, pandas, numpy, scikit-learn, pytorch

Persönliche Interessen