Preferences as binary relations

Brice Mayag

University Paris Dauphine LAMSADE FRANCE

Chapter 1

1/20

Definition

- ullet A subset of ordered pairs of a set X is called a binary relation.
- Formally, R is a binary relation on X if $R \subseteq X \times X$.
- Usually we write x R y if $(x, y) \in R$

Relation as Directed Graphs

Let be R a relation on a set A. A direct graph representation of relation R is G = (A, E) where A is the set of nodes and E the set of direct edges where

$$(a,b) \in R \iff (a,b) \in E(\text{an arrow from } a \text{ to } b)$$

Relation as Matrices

Let be R a relation on a set A. The matrix representation of relation R is $M_R = [m_{ab}]_{(a,b) \in R}$ where

$$\begin{cases} m_{ab} = 1 & \text{if } (a, b) \in R \\ m_{ab} = 0 & \text{if } (a, b) \notin R \end{cases}$$

3/20

Properties

A binary relation R on X is

- Reflexive if for every $x \in X$, $x \in X$;
- Irreflexive if for every $x \in X$, not(x R x)
- Complete if for every $x, y \in X$, x R y or y R x (possibly both);
- Weakly complete if for every $x, y \in X$, $x \neq y \Longrightarrow [x \ R \ y \ \text{or} \ y \ R \ x]$ (possibly both);
- Symmetric if for every $x, y \in X$, $[x \ R \ y \Longrightarrow y \ R \ x]$;
- Asymmetric if for every $x, y \in X$, $[x \ R \ y \Longrightarrow not(y \ R \ x)]$;
- Antisymmetric if for every $x, y \in X$, $[x \ R \ y \ \text{and} \ y \ R \ x \Longrightarrow x = y]$;
- Transitive if for every $x, y, z \in X$, $[x R y \text{ and } y R z \Longrightarrow x R z]$;
- Negatively transitive if for every $x, y, z \in X$, $[not(x R y) \text{ and } not(y R z) \Longrightarrow not(x R z)];$
- Semi-transitive if for every $x, y, z, t \in X$, $[(x R y) \text{ and } (y R z)] \Longrightarrow [(x R t) \text{ or } (t R z)]$

Properties

For all $x, y \in X$,

- There is a path from x to y if there exist x_1, x_2, \ldots, x_n such that $x = x_1 R x_2 R \ldots R x_{n-1} R x_n = y$;
- There is a cycle from x to x if there is a path from x to x.

Relations P and I from R

For a binary relation R on X, we define a symmetric part I and an asymmetric part P as follows: for all $x, y \in X$

- \bullet x I y if [x R y and y R x]
- x P y if [x R y and not(y R x)]

Concatenation of two binary relations

Let be $\mathcal R$ and $\mathcal R'$ two binary relations on X. For all $x,y\in X$

$$x \mathcal{R} \bullet \mathcal{R}' y \iff \text{there exists } z \in X \text{ s.t. } [x \mathcal{R} z \text{ and } z \mathcal{R}' y]$$

Proposition

Let be R a binary relation on X.

- \bigcirc \mathcal{R} asymmetric $\Longrightarrow \mathcal{R}$ irreflexive
- lacktriangledown \mathcal{R} complete $\Longleftrightarrow \mathcal{R}$ reflexive and weakly complete
- lacktriangledown A asymmetric and negative transitive $\Longrightarrow \mathcal{R}$ transitive
- **5** \mathcal{R} complete and transitive $\Longrightarrow \mathcal{R}$ negative transitive

Definition

- A binary relation R on X that is reflexive, symmetric and transitive is called an equivalence relation.
- A binary relation R on X is a preorder if R is reflexive and transitive.
- A binary relation R on X is a weak order or a complete preorder if R is complete and transitive.
- A binary relation *R* on *X* is a total order or a linear order if *R* is complete, antisymmetric and transitive.

Exercise 1

Let be \mathcal{B} a binary relation on a set $X = \{a, b, c, d, e, f\}$ defined by:

- lacktriangle Give a matrix and a graphical representation of ${\cal B}$
- $oldsymbol{0}$ Is $\mathcal B$ reflexive? symmetric? asymmetric? transitive? negative transitive? semi-transitive?

Exercise 2

Let be \mathcal{B} and \mathcal{B}' two equivalence relations on a set X:

① Prove that $\mathcal{B} \cap \mathcal{B}'$ is an equivalence relation.

$$x (\mathcal{B} \cap \mathcal{B}') y \iff [x \mathcal{B} y \text{ and } x \mathcal{B}' y], \quad \text{For all } x, y \in X$$

a Is $\mathcal{B} \cup \mathcal{B}'$ an equivalence relation ?

$$x (\mathcal{B} \cup \mathcal{B}') y \iff [x \mathcal{B} y \text{ or } x \mathcal{B}' y], \quad \text{For all } x, y \in X$$

3 Could we have the same conclusions if \mathcal{B} and \mathcal{B}' are two complete preorders on a set X?

Reflexive closure

Given a relation R, we want to add to it just enough "edges" to make the resulting relation satisfy the reflexive property.

Reflexive Closure of R is $r(R) = R \cup Eq$, where Eq is the reflexive relation.

Example:

$$r(R) = R \cup Eq = \{(a,b),(b,a),(b,c),(a,a),(b,b),(c,c)\}$$

Symmetric closure

Given a relation R, we want to add to it just enough "edges" to make the resulting relation satisfy the symmetric property.

Symmetric Closure of R is $s(R) = R \cup R^c$ where R^c is the converse relation.

$$x R^c y \iff y R x$$

Example:

$$s(R) = R \cup R^c = \{(a,b),(b,a),(b,c),(c,b)\}$$

Transitive closure

Given a relation R, we want to add to it just enough "edges" to make the resulting relation satisfy the transitivity property.

Transitive Closure of R is
$$t(R) = R \cup R^2 \cup R^3 \dots$$

Note: If the number of elements is n (finite) then $t(R) = R \cup R^2 \cup R^3 \cup ... \cup R^n$

Example:

$$t(R) = R \cup R^2 \cup R^3 = \{(a,b),(b,a),(b,c),(a,a),(b,b),(a,c)\}$$

If there is a path from x to y, then add an edge directly from x to y.

Topological Sorting

- Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge uv, vertex u comes before v in the ordering.
- Topological Sorting for a graph is not possible if the graph is not a DAG.

Topological Sorting

- A topological sorting of the previous graph is 542310.
- There can be more than one topological sorting for a graph. For example, another topological sorting of the previous graph is 452310. The first vertex in topological sorting is always a vertex with in-degree as 0 (a vertex with no incoming edges).

How to extend a partial pre-order to a complete preorder?

By applying a topological sorting when there is no strict cycle in the preferences.

Idea of the numerical representation

We try to construct a binary relation \succeq on X such that there exists a numerical function $f:X\longrightarrow \mathbb{R}$ satisfying the property:

$$x \succsim y \iff f(x) \ge f(y)$$

In general, \succeq is assumed to be a preorder.

- x ≿ y means x is at least as good as y
- ullet \succ is the asymmetric part of \succsim
- ullet \sim is the symmetric part of \succsim

Theorem (Cantor, 1895)

Let be X a countable set (finite or infinite countable). Let be \succsim a binary relation on X.

$$\left[\exists f: X \longrightarrow \mathbb{R} \text{ s.t. } \forall x, y \in X, \ x \succsim y \iff f(x) \ge f(y)\right]$$

 \downarrow

 \succeq is a complete preorder on X

Proposition

Let be \succeq a preorder (complete) on X representable by a function $f: X \longrightarrow \mathbb{R}$, i.e., $\forall x, y \in X, x \succsim y \iff f(x) \ge f(y)$

The following two properties are equivalent:

- \emptyset $v: X \longrightarrow \mathbb{R}$ is a function representing \succeq
- lacktriangledown There exists a strictly increasing function $arphi: \mathsf{f}(\mathsf{X}) \longrightarrow \mathbb{R}$ such that $\mathsf{v} = arphi \circ \mathsf{f}$

Remark

f is an ordinal scale (See Chapter 2).

Reference

- D. Bouyssou and Ph. Vincke, Binary Relations and Preference Modeling, in "Concept and Methods for decision aiding", Ch. 2, 2009
- S. MORETTI, M. OZTÜRK and A. TSOUKIAS. Preference Modelling. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, (2nd edition 2016). Available at http://www.lamsade.dauphine.fr/~ozturk/publicationsbis.html