Embedding Generalized Parsing in Haskell

For the parser generator crowd

For the parser generator crowd

Language integration

For the parser generator crowd

- Language integration
- Directly parse into a semantic value

```
numbers = (+) <$> number <* char ' ' <*> numbers <|> pure 0
> parse numbers "2 31 9"
Just 42
```

For the parser generator crowd

- Language integration
- Directly parse into a semantic value

```
numbers = (+) <\s> number <\s char ' ' <\s> numbers <\> pure 0 

> parse numbers "2 31 9"

Just 42
```

Abstract over common patterns in your grammar

```
maybe p = Just <>> p <|> pure Nothing
```

For the parser generator crowd

- Language integration
- Directly parse into a semantic value

```
numbers = (+) <\sim number <* char ' ' <*> numbers <|> pure 0 

> parse numbers "2 31 9"

Just 42
```

Abstract over common patterns in your grammar

```
maybe p = Just <>> p <|> pure Nothing
```

Monadic parsers enable data-dependent disambiguation (1)

```
ndots 0 = pure ()
ndots n = char '.' *> ndots (n - 1)
> parse (number >>= ndots) "5...."
Just ()
```

For the parser combinator crowd

For the parser combinator crowd

Left-recursion

$$D ::= 0 | 1 | ... | 9$$

 $N ::= N D | D$

For the parser combinator crowd

Left-recursion

$$D ::= 0 | 1 | ... | 9$$

 $N ::= N D | D$

Compositionality

"... it can be quite difficult to determine what language is defined by a TDPL program." ~ Aho and Ullman (2, p466)

For the parser combinator crowd

Left-recursion

$$D ::= 0 | 1 | ... | 9$$

 $N ::= N D | D$

Compositionality

"... it can be quite difficult to determine what language is defined by a TDPL program." ~ Aho and Ullman (2, p466)

Disambiguation through annotation rather than deformation

Aside: eliminating left-recursion

"Can't we just..."

```
• N ::= N D \mid D
becomes
N ::= D N'
N' ::= D N' \mid \epsilon
```

- Complicated for hidden left recursion and semantic values
- Grammar size can grow exponentially

GLL (3)

- Slots, Extended Packed Nodes, Descriptors, Commencements, Continuations
- Essentially building up big set of intermediate results
- O(n³) time and space

Partial normalization up front (Free MonadPlus)

- Partial normalization up front (Free MonadPlus)
- Then simple driver

- Partial normalization up front (Free MonadPlus)
- Then simple driver
- Stack of continuations

- Partial normalization up front (Free MonadPlus)
- Then simple driver
- Stack of continuations
- Actions
 - Descend (Push)
 - Loop (Append)
 - Continue (Read)
 - Ascend (Pop)

Stack entries consist of

- Stack entries consist of
 - nonterminal name and pivot

- Stack entries consist of
 - nonterminal name and pivot
 - list of loop continuations

- Stack entries consist of
 - nonterminal name and pivot
 - list of loop continuations
 - continuation parser

- Stack entries consist of
 - nonterminal name and pivot
 - list of loop continuations
 - continuation parser
- Loop continuations consist of

- Stack entries consist of
 - nonterminal name and pivot
 - list of loop continuations
 - continuation parser
- Loop continuations consist of
 - stack slice

- Stack entries consist of
 - nonterminal name and pivot
 - list of loop continuations
 - continuation parser
- Loop continuations consist of
 - stack slice
 - parser

When a nonterminal is encountered

- When a nonterminal is encountered
- If it is **not** on the stack at the current pivot: Descend

- When a nonterminal is encountered
- If it is **not** on the stack at the current pivot: Descend
 - Push it to the stack with an empty list of loop continuations and the current continuation

- When a nonterminal is encountered
- If it is **not** on the stack at the current pivot: Descend
 - Push it to the stack with an empty list of loop continuations and the current continuation
 - Enter the right hand side

- When a nonterminal is encountered
- If it is **not** on the stack at the current pivot: Descend
 - Push it to the stack with an empty list of loop continuations and the current continuation
 - Enter the right hand side
- If it is on the stack at the current pivot: Loop

- When a nonterminal is encountered
- If it is **not** on the stack at the current pivot: Descend
 - Push it to the stack with an empty list of loop continuations and the current continuation
 - Enter the right hand side
- If it is on the stack at the current pivot: Loop
 - Capture a slice up to that occurrence

- When a nonterminal is encountered
- If it is **not** on the stack at the current pivot: Descend
 - Push it to the stack with an empty list of loop continuations and the current continuation
 - Enter the right hand side
- If it is on the stack at the current pivot: Loop
 - Capture a slice up to that occurrence
 - Append that slice along and current continuation to the loop continuations

- When a nonterminal is encountered
- If it is **not** on the stack at the current pivot: Descend
 - Push it to the stack with an empty list of loop continuations and the current continuation
 - Enter the right hand side
- If it is on the stack at the current pivot: Loop
 - Capture a slice up to that occurrence
 - Append that slice along and current continuation to the loop continuations
 - Bail out

Continue & Ascend

Continue & Ascend

When a nonterminal is fully parsed, both

- When a nonterminal is fully parsed, both
- Continue

- When a nonterminal is fully parsed, both
- Continue
 - Peek at the list of loop continuations

- When a nonterminal is fully parsed, both
- Continue
 - Peek at the list of loop continuations
 - Choose one

- When a nonterminal is fully parsed, both
- Continue
 - Peek at the list of loop continuations
 - Choose one
 - Append its slice to the current stack

- When a nonterminal is fully parsed, both
- Continue
 - Peek at the list of loop continuations
 - Choose one
 - Append its slice to the current stack
 - Continue with its parser

- When a nonterminal is fully parsed, both
- Continue
 - Peek at the list of loop continuations
 - Choose one
 - Append its slice to the current stack
 - Continue with its parser
- Ascend

- When a nonterminal is fully parsed, both
- Continue
 - Peek at the list of loop continuations
 - Choose one
 - Append its slice to the current stack
 - Continue with its parser
- Ascend
 - Pop the stack

- When a nonterminal is fully parsed, both
- Continue
 - Peek at the list of loop continuations
 - Choose one
 - Append its slice to the current stack
 - Continue with its parser
- Ascend
 - Pop the stack
 - Continue with the final continuation

Stack Grammar Input Action

Stack	Grammar	Input	Action
ε	$ \mathbf{X} $	5 + 3 + 7	descend X

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N

Parsing 5+3+7 with $X:=X+X\mid \mathbb{N}$

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]

Parsing 5+3+7 with $X:=X+X\mid \mathbb{N}$

Stack	Grammar	Input	Action	
ε	X	5 + 3 + 7	descend X	
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]	
$X_0[+X]$	N	5 + 3 + 7	parse N	
$X_0[+X]$	ε	+3 + 7	continue [+ X]	
$X_0[+X]$	+ X	+3 + 7	parse +	

Stack	Grammar	Input	Action
ε	\mathbf{X}	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3 + 7	continue [+ X]
$X_0[+X]$	+ X	+3 + 7	parse +
$X_0[+X]$	X	3 + 7	descend X

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]
$X_0[+X]$	+ X	+3 + 7	parse +
$X_0[+X]$	X	3 + 7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]

Stack	Grammar	Input	Action	
ε	X	5 + 3 + 7	descend X	
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]	
$X_0[+X]$	N	5 + 3 + 7	parse N	
$X_0[+X]$	ε	+3 + 7	continue [+ X]	
$X_0[+X]$	+ X	+3 + 7	parse +	
$X_0[+X]$	X	3 + 7	descend X	
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]	
$X_0[+X];X_2[+X]$	N	3 + 7	parse N	

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3 + 7	continue [+ X]
$X_0[+X]$	+ X	+3 + 7	parse +
$X_0[+X]$	X	3+7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$	N	3 + 7	parse N
$X_0[+X];X_2[+X]$	ε	+7	continue [+ X]

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3 + 7	continue [+ X]
$X_0[+X]$	+ X	+3 + 7	parse +
$X_0[+X]$	X	3 + 7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$	N	3 + 7	parse N
$X_0[+X];X_2[+X]$	ε	+ 7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+ 7	parse +

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3 + 7	continue [+ X]
$X_0[+X]$	+ X	+3+7	parse +
$X_0[+X]$	X	3 + 7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$		3 + 7	parse N
$X_0[+X];X_2[+X]$	ε	+7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+7	parse +
$X_0[+X];X_2[+X]$	X	7	descend X

Stack	Grammar	Input	Action
ε	\mathbf{X}	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]
$X_0[+X]$	+ X	+3+7	parse +
$X_0[+X]$	\mathbf{X}	3 + 7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$	N	3 + 7	parse N
$X_0[+X];X_2[+X]$	ε	+ 7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+ 7	parse +
$X_0[+X];X_2[+X]$	X	7	descend X
$X_0[+X];X_2[+X];X_4$	$X + X \mid \mathbb{N}$	7	fail*

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	\mathbb{N}	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]
$X_0[+X]$	+ X	+3+7	parse +
$X_0[+X]$	X	3 + 7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$		3 + 7	parse N
$X_0[+X];X_2[+X]$	ε	+ 7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+ 7	parse +
$X_0[+X];X_2[+X]$	X	7	descend X
$X_0[+X];X_2[+X];X_4$	$X + X \mid \mathbb{N}$	7	fail*
$X_0[+X];X_2[+X];X_4$	N	7	parse N

Stack	Grammar	Input	Action
ε	X	5+3+7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	N	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]
$X_0[+X]$	+ X	+3+7	parse +
$X_0[+X]$	X	3+7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$	N	3+7	parse N
$X_0[+X];X_2[+X]$	ε	+ 7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+ 7	parse +
$X_0[+X];X_2[+X]$	X	7	descend X
$X_0[+X];X_2[+X];X_4$	$X + X \mid \mathbb{N}$	7	fail*
$X_0[+X];X_2[+X];X_4$	N	7	parse N
$X_0[+X];X_2[+X];X_4$	ε	ε	ascend

Parsing 5+3+7 with $X:=X+X\mid \mathbb{N}$

Stack	Grammar	Input	Action
ε	X	5+3+7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	\mathbb{N}	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]
$X_0[+X]$	+ X	+3+7	parse +
$X_0[+X]$	X	3+7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3+7	loop X, [+ X]
$X_0[+X];X_2[+X]$		3+7	parse N
$X_0[+X];X_2[+X]$	ε	+ 7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+ 7	parse +
$X_0[+X];X_2[+X]$	X	7	descend X
$X_0[+X];X_2[+X];X_4$	$X + X \mid \mathbb{N}$	7	fail*
$X_0[+X];X_2[+X];X_4$	N	7	parse N
$X_0[+X];X_2[+X];X_4$	ε	ε	ascend
$X_0[+X];X_2[+X]$	ε	ε	ascend

Parsing 5+3+7 with $X:=X+X\mid \mathbb{N}$

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	\mathbb{N}	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]
$X_0[+X]$	+ X	+3+7	parse +
$X_0[+X]$	X	3 + 7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$		3 + 7	parse N
$X_0[+X];X_2[+X]$	ε	+ 7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+ 7	parse +
$X_0[+X];X_2[+X]$	X	7	descend X
$X_0[+X];X_2[+X];X_4$	$X + X \mid \mathbb{N}$	7	fail*
$X_0[+X];X_2[+X];X_4$		7	parse N
$X_0[+X];X_2[+X];X_4$	ε	ε	ascend
$X_0[+X];X_2[+X]$	ε	ε	ascend
$X_0[+X]$	ε	ε	ascend

Parsing 5+3+7 with X:=X+X

Stack	Grammar	Input	Action
ε	X	5 + 3 + 7	descend X
X_0	$X + X \mid \mathbb{N}$	5 + 3 + 7	loop X, [+ X]
$X_0[+X]$	\mathbb{N}	5 + 3 + 7	parse N
$X_0[+X]$	ε	+3+7	continue [+ X]
$X_0[+X]$	+ X	+3+7	parse +
$X_0[+X]$	X	3 + 7	descend X
$X_0[+X];X_2$	$X + X \mid \mathbb{N}$	3 + 7	loop X, [+ X]
$X_0[+X];X_2[+X]$	N	3+7	parse \mathbb{N}
$X_0[+X];X_2[+X]$	ε	+ 7	continue [+ X]
$X_0[+X];X_2[+X]$	+ X	+ 7	parse +
$X_0[+X];X_2[+X]$	X	7	descend X
$X_0[+X];X_2[+X];X_4$	$X + X \mid \mathbb{N}$	7	fail*
$X_0[+X];X_2[+X];X_4$	N	7	parse \mathbb{N}
$X_0[+X];X_2[+X];X_4$	ε	ε	ascend
$X_0[+X];X_2[+X]$	ε	ε	ascend
$X_0[+X]$	ε	ε	ascend
ε	ε	ε	done

Template Haskell (4) quotes

• Template Haskell (4) quotes

```
number :: Parser Int
number = 'number
::= (\x y → 10 * x + y) <$> number <*> digit
<|> digit
```

• Template Haskell (4) quotes

```
number :: Parser Int number = 'number :: (\x y \rightarrow 10 * x + y) < number <*> digit <|> digit
```

• Alternative: GADTs (5)

• Template Haskell (4) quotes

```
number :: Parser Int number = 'number :: (\x y \rightarrow 10 * x + y) < number <*> digit <|> digit
```

Alternative: GADTs (5)

```
data Number a where
Number :: Number Int
```

• Template Haskell (4) quotes

```
number :: Parser Int number = 'number :: (\x y \rightarrow 10 * x + y) < number <*> digit <|> digit
```

• Alternative: GADTs (5)

```
data Number a where
Number :: Number Int
```

Combined with Data Types à la Carte (6)

Conclusion

- We can combine
 - lightweight
 - embedded
 - generalized
 - monadic
- Parser combinators

• Disambiguation (Layout, Precedence, Fixity)

- Disambiguation (Layout, Precedence, Fixity)
- Memoization

- Disambiguation (Layout, Precedence, Fixity)
- Memoization
- Higher-order combinators

- Disambiguation (Layout, Precedence, Fixity)
- Memoization
- Higher-order combinators
- Actually start writing parsers

Thank you!

https://github.com/noughtmare/gigaparsec

References

- (1) Trevor Jim, Yitzhak Mandelbaum, & David Walker. (2010, January). Semantics and algorithms for data-dependent grammars. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages (pp. 417-430).
- (2) Alfred V. Aho and Jeffrey D. Ullman. (1972). *The Theory of Parsing, Translation and Compiling*, volume 1 Parsing of Series in Automatic Computation. Prentice-Hall.
- (3) Thomas van Binsbergen. (2019). Executable formal specification of programming languages with reusable components (Doctoral dissertation, Royal Holloway, University of London).
- (4) Tim Sheard and Simon Peyton Jones. (2002). *Template meta-programming for Haskell.* In Proceedings of the 2002 ACM SIGPLAN workshop on *Haskell (Haskell '02)*.
- (5) Simon Peyton Jones, Geoffrey Washburn, Stephanie Weirich. (2004). Wobbly types: type inference for generalised algebraic data types. Technical Report MS-CIS-05-26, Univ. of Pennsylvania.
- (6) Wouter Swierstra. (2008). Data Types à la Carte. In Journal of functional programming, 18(4), 423-436.