A systematic approach to data cleaning with R

Mark van der Loo

markvanderloo.eu | @markvdloo

Budapest | September 3 2016

Demos and other materials

https://github.com/markvanderloo/satRday

Contents

- The statistical value chain
- From raw data to technically correct data
 - Strings and encoding
 - Regexp and approximate matching
 - Type coercion
- From technically correct data to consistent data
 - Data validation
 - Error localization
 - Correction, imputation, adjustment

The statistical value chain From raw to technically correct data from technically correct to consistent data

The statistical value chain

Statistical value chain

Concepts

Technically correct data

- Well-defined format (data structure)
- Well-defined types (numbers, date/time,string, categorical...)
- Statistical units can be identified (persons, transactions, phone calls...)
- Variables can be identified as properties of statistical units.
- Note: tidy data ⊂ technically correct data

Consistent data

- Data satisfies demands from domain knowledge
- (more on this when we talk about validation)

The statistical value chain From raw to technically correct data From technically correct to consistent data

From raw to technically correct data

Dirty tabular data

Demo

Coercing while reading: /table

Tabular data: long story short

- read.table: R's swiss army knife
 - fairly strict (no sniffing)
 - Very flexible
 - Interface could be cleaner (see this talk)
- readr::read_csv
 - Easy to switch between strict/lenient parsing
 - Compact control over column types
 - Fast
 - Clear reports of parsing failure

Really dirty data

Demo

Output file parsing: /parsing

A few lessons from the demo

- (base) R has great text processing tools.
- ► Need to work with regular expressions¹
- Write many small functions extracting single data elements.
- ▶ Don't overgeneralize: adapt functions as you meet new input.
- Smart use of existing tools (read.table(text=))

¹Mastering Regular Expressions (2006) by Jeffrey Friedl is a great resource

Packages for standard format parsing

- jsonlite: parse JSON files
- yaml: parse yaml files
- xm12: parse XML files
- rvest: scrape and parse HTML files

Some tips on regular expressions with R

- stringr has many useful shorthands for common tasks.
- ► Generate regular expressions with rex

```
library(rex)
# recognize a number in scientific notation
rex(one_or_more(digit)
    , maybe(".",one_or_more(digit))
    , "E" %or% "e"
    , one_or_more(digit))
```

```
## (?:[[:digit:]])+(?:\.(?:[[:digit:]])+)?(?:E|e)(?:[[:dig
```


Regular expressions

Express a pattern of text, e.g.

$$"(a|b)c*" = {"a", "ac", "acc", ..., "b", "bc", "bcc", ...}$$

Task stringr function:

string splitting str split(string, pattern)

Base R: grep grepl | regexpr regmatches | sub gsub | strsplit

String normalization

Bring a text string in a standard format, e.g.

- Standardize upper/lower case (casefolding)
 - stringr: str_to_lower, str_to_upper, str_to_title
 - base R: tolower, toupper
- Remove accents (transliteration)
 - stringi: stri_trans_general
 - base R: iconv
- Re-encoding
 - stringi: stri_encode
 - base R: iconv
- Uniformize encoding (unicode normalization)
 - stringi: stri_trans_nfkc (and more)

Encoding

Encoding in R

Encoding in R

Character vector X

Encoding
$$(X) \leftarrow "urf-3"$$
 $urf-3"$ urf

Use iconv() to change the encoding

Encoding in R

Demo

Normalization, re-encoding, transliteration: /strings

A few tips

```
Detect encoding stringi::stri_enc_detect
```

Conversion options iconvlist() stringi::stri_enc_list()

Approximate text matching

Approximate text matching

Demo

Approximate matching and normalization: /matching

Approximate text matching: edit-based distances

Distance	Allowed operation			
	substitution	deletion	insertion	transposition
Hamming	✓	×	×	×
LCS	×	~	~	×
Levenshtein	✓	~	~	×
OSA	✓	~	~	✓*
Damerau-	✓	~	~	✓
Levenshtein				

^{*}Substrings may be edited only once.

"leela"
$$ightarrow$$
 "leea" $ightarrow$ "leia"

[1] 2

Some pointers for approximate matching

- Normalisation and approximate matching are complementary
- See my useR2014 talk or paper on stringdist for more distances
- ► The fuzzyjoin package allows fuzzy joining of datasets

Other good stuff

lubridate: extract dates from strings

```
lubridate::dmy("17 December 2015")
## [1] "2015-12-17"
```

- tidyr: many data cleaning operations to make your life easier
- readr: Parse numbers from text strings

```
readr::parse_number(c("2%","6%","0.3%"))
## [1] 2.0 6.0 0.3
```


The statistical value chain From raw to technically correct data From technically correct to consistent data

From technically correct to consistent data

The mantra of data cleaning

- Detection (data conflicts with domain knowledge)
- ► Selection (find the value(s) that cause the violation)
- Correction (replace them with better values)

Detection, AKA data validation

Informally:

Data Validation is checking data against (multivariate) expectations about a data set.

Validation rules

Often these expectations can be expressed as a set of simple validation rules.

Data validation

Demo

The validate package /validate

The validate package, in summary

- Make data validation rules explicit
- Treat them as objects of computation
 - store to / read from file
 - manipulate
 - annotate
- Confront data with rules
- Analyze/visualize the results

Tracking changes when altering data

Tracking changes in rule violations

Use rules to correct data

Main idea

Rules restrict the data. Sometimes this is enough to derive a correct value uniquely.

Examples

- Correct typos in values under linear restrictions
 - ▶ $123 + 45 \neq 177$, but $123 + \underline{54} = 177$.
- Derive imputations from values under linear restrictions
 - ▶ 123 + NA = 177, compute 177 123 = 54.

Both can be generalized to systems $\mathbf{A}\mathbf{x} \leq \mathbf{b}$.

Deductive correction and imputation

Demo

The deductive package: /deductive.

Selection, or: error localization

Fellegi and Holt (1976)

Find the least (weighted) number of fields that can be imputed such that all rules can be satisfied.

Note

- Solutions need not be unique.
- Random one chosen in case of degeneracy.
- Lowest weight need not guarantee smallest number of altered variables.

Error localization

Demo

The errorlocate package: /errorlocate

Notes on errorlocate

- For in-record rules
- Support for
 - linear (in)equality rules
 - Conditionals on categorical variables (if male then not pregnant)
 - ▶ Mixed conditionals (has job then age >= 15)
 - lacktriangle Conditionals w/linear predicates (staff > 0 then staff cost > 0)
- Optimization is mapped to MIP problem.

Missing values

Mechanisms (Rubin):

- ► MCAR: missing completely at random
- ▶ MAR: P(Y = NA) depends on value of X
- ▶ MNAR: P(Y = NA) depends on value of Y

Imputation

Purpose of imputation vs prediction

- Prediction: estimate a single value (often for a single use)
- Imputation: estimate values such that the completed data set allows for valid inference^a

Imputation methods

- Deductive imputation
- Imputation based on predictive models
- Donor imputation (knn, pmm, sequential/random hot deck)

^aThis is very difficult!

Predictive model-based imputation

$$\hat{y} = \hat{f}(\mathbf{x}) + \epsilon$$

e.g.Linear regression

$$\hat{\mathbf{y}} = \alpha + \mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}} + \epsilon$$

- Residual:
 - $\epsilon = 0$ Impute expected value
 - $ightharpoonup \epsilon$ drawn from observed residuals e
 - $\epsilon \sim N(0, \sigma)$ parametric residual, $\hat{\sigma}^2 = \text{var}(e)$
- Multiple imputation (Bayesian bootstrap)
 - \triangleright Draw β from parametric distribution, impute multiple times.

Donor imputation (hot deck)

Method variants:

- ▶ Random hot deck: copy value from random record.
- Sequential hot deck: copy value from previous record.
- ► *k*-nearest neighbours: draw donor from *k* neares neigbours
- ▶ Predictive mean matching: copy value closest to prediction

Donor pool variants:

- per variable
- per missing data pattern
- per record

Note on multivariate donor imputation

Many multivariate methods seem relatively *ad hoc*, and more theoretical and empirical comparisons with alternative approaches would be of interest.

Andridge and Little (2010) A Review of Hot Deck Imputation for Survey Non-response. Int. Stat. Rev. **78**(1) 40–64

Demo time

Demo

Imputation / imputation

- ► VIM: visualisation, GUI, extensive methodology
- simputation: simple, scriptable interface to common methods

Methods supported by simputation

- Model based (optionally add [non-]parametric random residual)
 - linear regression
 - robust linear regression
 - CART models
 - Random forest
- Donor imputation (including various donor pool specifications)
 - k-nearest neigbour (based on gower's distance)
 - sequential hotdeck (LOCF, NOCB)
 - random hotdeck
 - Predictive mean matching
- Other
 - (groupwise) median imputation (optional random residual)
 - Proxy imputation (copy from other variable)

Credits

- deductive Mark van der Loo, Edwin de Jonge
- errorlocate Edwin de Jonge, Mark van der Loo
- gower Mark van der Loo
- jsonlite Jeroen Ooms, Duncan Temple Lang, Lloyd Hilaiel
- magrittr Stefan Milton Bache, Hadley Wickham
- rex Kevin Ushey Jim Hester, Robert Krzyzanowski
- simputation Mark van der Loo
- stringdist Mark van der Loo, Jan van der Laan, R Core, Nick Logan
- stringi Marek Gagolewski, Bartek Tartanus
- stringr Hadley Wickham, RStudio
- tidyr Hadley Wickham, RStudio
- validate Mark van der Loo, Edwin de Jonge
- VIM Matthias Templ, Andreas Alfons, Alexander Kowarik, Bernd Prantner
- xm12 Hadley Wickham, Jim Hester, Jeroen Ooms, RStudio, R foundation

