Řešitelé: Tomáš Skopal (374549) Vojtěch Bělovský (374032)

Příklad 1

Základem našeho řešení je algoritmus MergeSort. Označme vstupní seznam budov (trojic) B_L , jeho velikost je n. Nejdříve potřebujeme seznam uspořádat. Konkrétně seznam uspořádáme podle souřadnice levého okraje budovy (L). Pokud budou souřadnice L_i a L_j budov B_i a B_j shodné pak porovnáme ještě podle výšky budovy H_i a H_i , tak, že nižší budovu dáme před vyšší.

Takto uspořádaný seznam nazvěme B_s.

MergeSort – pracuje tak, že nejdříve pole rozdělí na jednotlivé prvky a ty poté slučuje.

Jakmile je seznam uspořádaný využijeme druhou část MergeSortu a to právě slučování. Ze seznamu B_s budeme brát budovy po dvojicích a vytvářet z každé dvojice dílčí siluetu. Při spojování budov B_i a B_{i+1} mohou nastat 3 situace:

- a) 1 budova "obsahuje" druhou: Například $B_i = (1,1,2)$ a $B_{i+1} = (1,3,4)$. V takovém případě bude silueta trojicí takovou, že ($L(B_i)$, $MAX(H(B_i)$, $H(B_{i+1})$), $MAX(R(B_i)$, $R(B_{i+1})$))
- b) Budovy se částečně překrývají: V takovém případě bude silueta pěticí takovou, že (L(B_i),

Řešitelé: Tomáš Skopal (374549) Vojtěch Bělovský (374032)

Řešitelé: Tomáš Skopal (374549) Vojtěch Bělovský (374032)

Řešitelé: Tomáš Skopal (374549) Vojtěch Bělovský (374032)

Řešitelé: Tomáš Skopal (374549) Vojtěch Bělovský (374032)