

Hands-On Modelling for Digital Twins

By Likhith Kanigolla,

Advisor: Dr. Karthik Vaidhyanathan Software Engineering Research Centre, IIITH

What are Digital Twins?

Digital twins are virtual representations of physical objects, processes, or systems that serve as the real-time digital counterparts of physical entities. In the IoT context, digital twins enable:

- Real-time monitoring and visualization
- Predictive analytics and simulation
- Enhanced decision-making capabilities
- Optimized performance and maintenance

Problem

Existing infrastructure often lacks readily usable models and manual simulation setup is complex and slow.

What we need

Efficient simulation of complex, interconnected IoT systems (like in Smart Cities) for analysis & optimization.

Model-Driven Simulation Generation

High-level models defined in a Domain-Specific Modelling Language (DSML).

Automated Model-to-Text (M2T) transformation generates simulation code.

Executable Python code using the Python PDEVS simulation framework.

Model-Driven Simulation Generation

High-level models defined in a Domain-Specific Modelling Language (DSML).

Automated Model-to-Text (M2T) transformation generates simulation code.

Executable Python code using the Python PDEVS simulation framework.

Modeling and Simulating IoT Infrastructures

Philipp Zech¹ ^{©a}, Karthik Vaidhyanathan² ^{©b}, Likhith Kanigolla² ^{©c}, Luca Rahm¹, and Ruth Breu¹ ^{©d}

¹Department of Computer Science, University of Innsbruck, Technikerstrasse 21a, Innsbruck, Austria

²Software Engineering Research Center, IIIT Hyderabad, Gachibowli, India

{philipp.zech, luca.rahm, ruth.breu}@uibk.ac.at, karthik.vaidhyanathan@iiit.ac.in,likhith.kanigolla@research.iiit.ac.in

Discrete Event System Specification (DEVS)

Atomic DEVS

Behaviour of a single component.

$$aDEVS = \langle S, ta, \delta_{int}, X, \delta_{ext}, Y, \lambda \rangle$$

Coupled DEVS

How multiple components connect & interact.

$$cDEVS = \langle X_{self}, Y_{self}, D, \{M_i\}, \{I_i\}, \{Z_{i,j}\}, select \rangle$$

DSML for Modeling Connected IoT Infrastructures

Algorithm

```
Input: Node node with links, frequency, and priority
   Output: Atomic DEVS model
 1 Initialize nodeLinks (list) and distinctLinkTypes (set) from node.links;
 3 Compute postFrequency from node.freqValue and node.freqUnit;
 5 Determine knownController based on node.controller type;
 6 Generate Class NodeState definition:
       Initialize data_aggregated (empty) and set next_internal_time with randomness around postFrequency;
 9 Generate Class Node (AtomicDEVS) definition:
       Initialize (name, pinout):
10
           Set state (NodeState), timeLast (0.0), pins (pinout);
11
           Create input ports for distinctLinkTypes;
12
           Define output port and set node priority;
13
       Generate Function timeAdvance():
14
           Return time until next event if data exists, else INFINITY:
15
       Generate Function extTransition(inputs):
16
           Update state with received inputs if matching links exist;
17
           Update timeLast to next_internal_time;
18
       Generate Function intTransition():
19
           Increment next_internal_time and update timeLast;
20
       Generate Function outputFunc():
21
          If data exists, package with timestamp, send via output, and clear state;
22
```

What About the Hardware?

CAPS Modeling Framework

A Model-Driven Engineering (MDE) framework designed for engineering Situational Aware Cyber-Physical Systems (SiA-CPS)

Three distinct views: Software Architecture, Hardware Configuration, and Physical Space

Built upon the Eclipse Modeling Framework (EMF)

CupCarbon

- A Smart City & IoT network simulator
- Models wireless sensor networks (WSN), mobile IoT nodes
- Allows realistic visualization on maps (Google Maps/OpenStreetMap)
- Open-source, used for teaching, research, and prototyping

Time for Hands-on!

Any Questions?