Dominio funzioni

• Il campo di esistenza di una funzione/Condizioni di esistenza

Ci sono diversi tipi di domini:

- Funzioni <u>logaritmiche</u> $f(x) = log_{10}/ln$
 - o Condizione: argomento (dentro le parentesi) > 0
 - Es. $\ln(x+5)$ e voglio sapere il dominio D
 - $0 D: x + 5 > 0 \Rightarrow x > -5$
- Funzioni <u>irrazionali</u> $f(x) = \sqrt{x+8}$
 - Condizione: radicando (dentro la radice) \geq 0
 - Es. $\sqrt{x+8}$ avrà come dominio $D: x+8 \ge 0 \Rightarrow x \ge -8$
- Funzioni <u>fratte</u>: $f(x) = \frac{x \frac{3}{6}}{x + 2}$
 - \circ Condizione: denominatore (la parte sotto) $\neq 0$
 - Es. $\frac{x-\frac{3}{6}}{x+2}$ avrà come dominio $D: x+2 \neq 0 \Rightarrow x \neq -2$
- Funzioni "normali": $f(x) = x^2 + 4x 5$ (polinomio = composto da monomi)
 - o La funzione f(x) avrà come dominio "il fatto di esistere sempre"
 - o In matematica = per tutti i valori di x all'interno dell'insieme dei numeri R (cioè, tutti i possibili numeri)
 - $\forall x \in R$ (per tutti gli x all'interno dei numeri reali)
 - o Si può scrivere "sempre"

Ci possono essere funzioni composte = fare il dominio di tutte le funzioni

$$f(x) = \ln\left(\frac{x-1}{x-5}\right)$$

Il dominio è "tutto quello che c'è" = mettere insieme tutte le condizioni:

$$\begin{cases} x - 5 \neq 0 \\ \left(\frac{x - 1}{x - 5}\right) > 0 \end{cases}$$

Le funzioni goniometriche (seno e coseno) sono sempre definite e sono periodiche:

Simmetrie funzioni

Ci sono due casi:

- Funzioni <u>pari</u>
 - Simmetrica rispetto all'asse y
 - $\circ \quad f(-x) = f(x)$
- Funzioni dispari
 - Simmetrica rispetto all'origine degli assi (0 oppure Ø)
 - $\circ \quad f(-x) = -f(x)$

Ad esempio, volessi capire se la seguente funzione:

$$f(x) = x^2 - 4x + 5$$

è pari.

$$f(-x) = (-x)^2 - 4x + 5$$

La funzione è pari, infatti f(-x) = f(x)

Intersezioni con gli assi

- Intersezione con l'asse y:
 - \circ x = 0
 - \circ Con f(0)
- Intersezione con l'asse *x*:
 - $\circ \quad f(x) = 0$