Data Analysis and Preprocessing, Transform

2020.10

References:

- KPC, DSAC(Data Scientist Academy & Certificate) Manual, 2019
- many internet sites

데이터 형태

형식	내용
정형 (structured)	 데이터의 포맷이 정해져 있는 데이터 서식이 정해진 데이터(엑셀의 표 등) CSV(comma separated value) 파일 JSON 파일
비정형 (unstructured)	 미리 정해진 포맷을 가지지 않는 데이터 블로그, 트위터 데이터 등 임의의 문장 (Text) 등 오디오나 비디오 데이터
반정형 (semi-structured)	 데이터 내부에는 논리적인 형식을 가지고 있으나 외형상으로 는 데이터 포맷이 정형 데이터처럼 완전하게 정의되어 있지는 않은 데이터 센서 데이터, 웹 사용 기록 등 HTML/XML

DATA Types

Numerical (수치형)

- Discrete data: numbers that are limited to integers
 - (ex) Numbers in dice game, True or False, Classes
- Continuous data: numbers that are of infinite value
 - (ex) Height, Weight, Housing cost, etc.

Categorical (or nominal) (범주형)

- Values that can not be measured up against each other
- (ex) colors, days of a week, months, blood types

Ordinal (순서형)

- Data are like categorical, but can be measured up against each other
- (ex) school grades (A>B>C), size of clothes (XL>L>M>S)

Data Types

- 수치형(Numerical): 숫자의 양이 어떤 의미를 가지는 데이터
 - 무게, 길이, 온도, 압력, 속도, 화폐 단위
 - 덧셈과 뺄셈, 순서, 평균 등의 결과가 의미를 갖는다.
- **범주형(Categorical)**: <u>클래스</u>를 구분하는 데이터
 - 성별, 국가명, 요일, 사람 이름 등은 범주형 데이터이다.
 - 범주형은 대부분 문자로 표현되지만 편의상 숫자로 대체하여 표현 하기도 한다. 예를 들어 월요일=1, 화요일=2, 수요일=3 등
- 순서형(Ordinal): 순서가 의미를 가지는 데이터
 - 여성의 옷 사이즈를 나타내는 44, 55, 66 같은 숫자, 달력의 1일,
 2일, 3일 등이 순서형 데이터이다.
 - 순서형 데이터에서는 덧셈이나 뺄셈이 아무런 의미가 없다.

데이터 탐색과 시각화

탐색적 데이터 분석

- 수집한 데이터의 전체적인 특성을 분석
 - Exploratory Data Analysis: EDA
- 본격적인 데이터 분석에 앞서 수집한 데이터가 분석에 적절 한지 알아보는 과정
- 기본적인 통계적 특성 파악
 - 숫자형 데이터의 평균, 최대값, 최소값, 표준편차, 분산 등
 - 시각화 도구 이용

데이터 시각화

- 데이터 시각화(visualization)란 그래프, 도표, 도형 등을 이용 하여 데이터의 특징을 파악하게 하는 것
- 숨어 있던 새로운 의미를 찾아낼 수 있음
- 데이터 탐색 뿐만 아니라 분석 결과를 고객에게 설명할 때에 도 필수
- 위치, 길이, 각도, 방향, 형태, 면적, 부피, 명암, 색상 정보를 활용

기본적 시각 모형 - 위치

산포도(scattering plot), 덴드로그램(dendrogram)

영국인

미국인

기본적 시각 모형 - 길이

• 히스토그램, 바플롯(막대그래프), 박스플롯

한국 인구증가

박스 플롯 boxplot()

기본적 시각 모형 - 각도, 면적/부피

■ Pie Chart(원그래프), Heatmap (히트맵)

기본적 시각 모형 - 각도, 면적/부피

Pairplot (페어플롯)

Numerical & Numerical

- Scatter Plot
- Linear Correlation

Categorical & Categorical

- Stacked column chart
- Combination chart
- Chi-square Test

Numerical & Categorical

- Line chart with Error bars
- Combination chart
- Z-test and t-test

Numerical & Numerical

- Scatter Plot
- Linear Correlation

$$r = \frac{Covar(x, y)}{\sqrt{Var(x)Var(y)}}$$

$$Covar(x,y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{n}$$

$$Var(x) = \frac{\sum (x - \bar{x})^2}{n}$$

$$Var(y) = \frac{\sum (y - \bar{y})^2}{n}$$

r: Linear Correlation

Covar : Covariance

Var : Variance

Categorical & Categorical

- Stacked column chart
- Combination chart
- Chi-square Test (교차분석)

Categorical & Numerical

- Line chart with Error bars
- Combination chart
- Z-test and t-test

데이터전처리

데이터 전처리(preprocessing)

- 수집한 데이터를 분석하기 좋게 변환하는 모든 작업으로 데이터 정제(Data Cleaning)라고도 함
- 분석 목적에 맞는지 데이터의 품질을 확인하고 필요하면 품질을 높이는 작업
- 데이터 품질
 - 신뢰성
 - 정확성
 - 적시성 (최신성) 등

데이터 전처리 종류

구분	처리 방법
결축치 처리 (missing value) 처리	 결측치가 포함된 항목을 모두 버리는 방법 (버리는 항목의 비중이 크면 무시하기 어려움) 결측치를 적절한 값으로 대체 (평균값, 인접 값으로 추정, 0, 최소값, 특정 상수 등) 분석 단계로 결측치 처리를 넘김(NA로 표기) 별도의 범주형 변수를 정의하여 추적 가능하게 관리 dataframe.dropna() dataframe.fillna(0) dataframe.fillna(data.mean())
틀린값 처리 (invalid value) 처리	 틀린 값이 포함된 항목을 모두 버리는 방법 틀린 값을 다른 적절한 값으로 대체 분석 단계로 틀린 값의 처리를 넘김 (예) 키 3.7 미터, 양수가 있어야 할 곳에 음수, 등

데이터 전처리 종류

구분	처리 방법
이상치 처리 (outliers)	 값이 일반적인 범위를 벗어나 특별한 값을 갖는 경우 데이터 분석 과정의 활동이므로 분석 단계로 넘김 도난 카드의 사용, 불법 보험료 청구 등의 탐지 (예) 키 2.0 미터 – 극히 드물지만 가능
데이터변환	 범주형 데이터 변환 로그변환 역수변환 스케일링(min-Max Scaling, Standard Scaling, Robust Scaling)

데이터 변환

- 데이터를 주어진 그대로 사용하지 않고 다른 형태로 바꾸어 사용하는 것이 필요한 경우가 많다.
 - 같은 성적을 나타내는데 A, B, C 등 학점으로 표현하거나 100점 만점으로 환산하기도 한다 (97, 94, 91 등).

범주형으로 변환

- 수치 데이터의 개별 값 구분이 오히려 혼란스러울 때
- 나이 => 10대, 20대, 30대, 40대
- 연간 소득 => 고소득층, 중간층, 저소득층
- 내신 등급 분포 (등급 차이에 대한 느낌이 같도록 정한다)

범주형 변수 코딩 *

- 예를 들어 요일을 1, 2, 3, 4, 5, 6, 7 등으로 표시한 경우 이 변수를 컴퓨터가 연산(덧셈이나 곱셈)을 할 수 있는 숫자로 인식해서는 안 된다.
- 이 숫자를 범주형(카테고리형)으로 분명하게 처리되어야 한다. 컴퓨터가 범주형(카테고리형) 변수를 분명히 인식하게 하는 방법이 필요하다

One Hot Encoding

- 하나로 하나의 특성(컬럼)만 1이 될 수 있고 다른 특성은 모두 0으로 코딩하는 방법
- 판다스가 제공하는 get_dummies()를 사용하면 카테고리형 변수 들을 One-Hot encoding 으로 만들어준다
- Ordinal Encoding: 순서 있는 범주형
- Label Encoding: target 변수의 encoding

스케일링(Scaling)

- 원래 데이터가 갖는 값의 범위를 다르게 조정하는 작업
- 스케일링을 하는 이유는 여러 특성 변수의 중요도를 갖게 맞추기 위해서이다.
- 최소-최대 스케일링 (min-max scaling)
 - 예를 들어 모든 시험은 100점 만점으로 환산해야 동일한 비중으로 취급되며, 어떤 과목은 50점 만점, 어떤 과목은 80점 만점이면 동일한 조건으로 특성이 반영되지 않는다.
 - 주어진 값의 최소값을 0으로 최대값을 1로 재조정하는 것
 - 파이선에서는 MinMaxScaler() 함수를 사용
 - zi = (xi min) / (max min)
- 표준 스케일링 (standard scaling)
 - 데이터 분포를 평균은 0, 표준 편차는 1이 되도록 정규화 하는 방법
 - 파이선에서 StandardScaler() 함수 사용
 - zi= (xi mean) / sigma
- Robust Scaler
 - IQR(inter-Quartile Range) 에 대하여 스케일링 (Outliers 에 robust)
 - 파이썬에서는 RobustScaler() 함수 사용
 - zi = (xi median) / IQR

스케일링 비교

표준 스케일링 (표준 정규화)

• Who is better?

학생	과목 A	과목 B	평균
갑	90	80	85
을	80	90	85

표준 정규화

- 표준정규분포(Standard normalization, mean=0, sigma=1) 로 변환
- Z-변환(Z-score Transform) 사용

$$z = \frac{x - u}{\sigma}$$

	학생	과목 A	과목 B	평균
변환 전	갑	90	80	85
	일	80	90	85
변환 후	갑	(90 - 60) / 20 = 1.5	(80 - 60) / 5 = 4	2.75
	으	(80 - 60) / 20 = 1	(90 - 60) / 5 = 6	3.50

정규 분포(Normal Distribution)

로그 변환

- 로그의 도입
 - 체감형 수치를 선형적으로 표현할 때 사용 사람이 자연적으로 느끼는 느낌의 양을 수학적 모델로 설명할 때 사용
 - 돈, 소리, 빛, 압력, 냄새 등 생물학적인 자극을 주는 경우
- 같은 자극을 느끼려면 현재 보유한 양이 많을수록 이에 비례 한 더 강한 자극이 필요하다는 것
- 이를 수학적으로 표현하면 로그 함수가 됨
- 현재 보유한 양이 x이고 이의 변화량, 즉 미분값이 1/x이 되려면 로그 함수를 얻음
- 로그를 취한 이후의 값에 대해서 사람들이 변화량을 느끼는 것이 선형적이라는 특성

로그 함수

■ Log(x)의 기울기(미분): 1/x

로그 스케일

■ 로그 스케일 입력에 대해 선형 특성을 갖는 경우

로그-노멀 분포

• (ex) 도시의 인구, 재산분포

역수 변환

- 역수를 사용하면 선형적인 특성을 가져 분석의 정확도가 높 아지는 경우
- 자동차 마일리지(연료 1L로 가는 거리 Km)와 연비(100km 주행하는데 필요한 연료 L)는 모두 자동차의 성능을 나타내지만 서로 역수의 관계
- 측정 목적:
 - 같은 비용을 얼마나 멀리 갈 수 있는가?
 - 같은 거리를 여행하는데 비용이 얼마가 드는가?

데이터 변환

■ 선택을 적절히 해야 한다

구분	내용
범주형으로 변환	• 수치 데이터가 아닌 것을 명시
Min-Max Scaler	• 수치 데이터의 범위가 다를 때
Standard Scaler (z-score 정규화)	• 일반 정규화에 표준 편차를 고려한 변환
Robust scaler	• 이상치에 강함
로그 변환	• 로그를 취하면 선형 특성을 가질 때 (또는 로그 정규 분포를 가질 때)
역수 변환	• 역수를 사용하면 선형적인 특성을 가질 때

정규화(Scaling)

표준정규화(Standard Scaler)

정규화(Scaling)

