弦上驻波实验

雷逸鸣

1 弦线的线密度测量

实验弦直径: $d_e = 1.091mm$ 样品线直径: $d_c = 1.058mm$

直径相近, $\frac{\Delta d}{d} = 3.1\%$.

可以使用样品弦的线密度参数近似认为是试验弦的参数。

样品弦长度: L = 775.0mm 样品弦质量: m = 4.57g

线密度: $\mu = \frac{m}{L} = 5.90 \times 10^{-3} kg \cdot m^{-1}$

2 f-N 关系

2.1 基本参数:

实验弦长度: L = 60.0cm

砝码质量: M = 1.00kg

重力加速度: $g = 9.801 m/s^2$

弦上张力: T = 3Mg = 29.4N

表 1 共振频率随驻波波腹个数变化关系数据

N	$f_c/{ m Hz}$	$f_{ m e}/{ m Hz}$	$\Delta f/f$	$v_c/(m/s)$	$v_e/(m/s)$	$\Delta v/v$
1	58.8	62.8	6.4%	70.6	75.36	6.3%
2	117.7	127.4	7.6%	70.6	76.44	7.6%
3	176.5	189.9	7.1%	70.6	75.96	7.1%
4	235.3	253.9	7.3%	70.6	76.17	7.3%
5	294.1	324.9	9.4%	70.6	78.0	9.4%

图 1 共振频率随驻波波腹个数变化关系

2.2 理论公式:

上述数据处理中, 共振频率理论公式:

$$f_c = \frac{N}{2L} \sqrt{\frac{T}{\mu}}$$

波速理论公式:

$$v_c = \sqrt{\frac{T}{\mu}}$$

实验波速公式:

$$v_{\rm e} = \frac{2L}{N} f_{\rm e}$$

2.3 实验现象:

在实验中,当调节 driver 输出频率使之逐渐接近共振频率时,可以观察到弦线振幅逐渐增大,到最大值时开始敲打 driver 和 detector。同时,我们会观测到弦线出现倍频的现象,即在一个驱动器为基频时,发现弦线出现两个波腹。

在实验中,我们观察到以不同的方向改变频率,测得的共振频率略有不同,对此现象,我们认为是由于在弦线达到受迫振动振幅极大值时,此时的弦线振幅不再满足小振幅条件,因而会因不同方向趋近共振频率时测得不同的频率值。

在找到共振频率所处的范围时,可以将信号源 电压峰峰值调小,进而更精细的测量共振频率。

根据所测数据, f与N满足线性关系。

3 f-T 关系

3.1 基本参数:

实验弦长度: L = 60.0cm

砝码质量: M = 1.00kg

重力加速度: $g = 9.801m/s^2$

弦上张力: $T = k \cdot Mg$ (k 为整数)

表 2 共振频率随弦上张力变化关系数据

T/N	$f_c/{ m Hz}$	$f_{\rm e}/{\rm Hz}$	$\Delta f/f$	$\ln f_{ m e}$	lnT
9.80	34.0	38.0	10%	3.637	2.282
19.6	48.0	52.5	8.5%	3.960	2.976
29.4	58.8	63.1	6.8%	4.145	3.381
39.2	67.9	74.8	9.2%	4.315	3.669
49.0	76.0	83.1	8.6%	4.420	3.892

图 2 共振频率随弦上张力变化关系

3.2 理论公式:

由:

$$f = \frac{N}{2L} \sqrt{\frac{T}{\mu}}$$

变换得:

$$\ln f = \frac{1}{2} \ln T + \ln \frac{N}{2L\sqrt{u}}$$

将两者关系的参数记为:

$$ln f = k ln T + b$$

理论值:

$$k_c = 0.5$$
$$b_c = 2.38$$

将图 2 拟合数据与上式比较可知:

$$k = 0.487 \pm 0.011$$
$$b = 2.526 \pm 0.037$$

斜率理论值近似处于置信区间之内,截距与理论值 差距较大,可能是弦线密度的测量误差较大导致的。

4 f-L 关系

4.1 基本参数:

波腹个数: N=1

砝码质量: M = 1.00kg

重力加速度: $g = 9.801m/s^2$ 弦上张力: T = 3Mg = 29.4N

表 3 共振频率随有效长度变化关系数据

L/cm	$f_c/{ m Hz}$	$f_{\rm e}/{\rm Hz}$	$\Delta f/f$	$\ln\!f_{ m e}$	ln <i>L</i>
40.0	88.2	95.7	7.8%	4.561	3.689
47.5	74.3	80.8	8.0%	4.392	3.861
55.0	64.2	69.5	7.6%	4.241	4.007
62.5	56.5	60.8	7.1%	4.108	4.135
70.0	50.4	54.8	8.0%	4.004	4.248

表 3 共振频率随有效长度变化关系

4.2 理论公式:

由:

$$f = \frac{N}{2L} \sqrt{\frac{T}{\mu}}$$

得到:

$$\ln f = -\ln L + \ln \frac{N\sqrt{T}}{2\sqrt{\mu}}$$

记:

$$\ln f = k \ln L + b$$

由理论计算:

$$k = -1$$
$$b = 8.27$$

由线性拟合得到:

$$k = -1.004 \pm 0.009$$

 $b = 8.268 \pm 0.039$

实验与理论吻合度较好。

5 分析与讨论

- 1. 观察实验结果,我们可以发现实验测得的共振频率普遍较大,这主要是由于弦线密度测量误差较大引起的。弦线由于长时间处于弯曲状态,测量得到的长度相较于实际值偏小。
- 2. 倍频现象: 我认为原因是磁性物质(driver)存在磁滞现象,在驱动磁性物质时,将其施力做傅里叶展开,倍频项系数与基频量级相近导致的。
- 3. 在实验过程中,共振区间对应的频率往往在一定的范之中时,在找到共振区间之后,可以将信号源电压峰峰值调小,进而更精细的测量共振频率。

姓名	雷黑鸣	学号	2300011454		星期 -	第5	组	页码 01	1
		实验	十二、 为上	公里 宝					-
· 30/4	Cià in 钱密	Tis .							
			- HE TE	9.1 mm.	1.091 mm				
	样的轨直	iz: de	= 105.8-	1.05 8 mm	m-457	4			
		3.1%							
	d	5.1 /5		Ju= m	= 5.90×1	0 kg.1			1
	L= 77	5,0 mm							1
2. 程上	- 統力	Fi =3mg	= 9.801	H. 29.4N					
		,, IE	1 = 408	m/s . 70.6 m	10		NIT		
		17 14	70.0	M/C . VIO		7 =	1 I		
		Lo = 6	0.0 cm						
		21		7-1-1) 00 m				
				1					-
		f = =	71 = 25.5	112 .44.	₹2 58.8	Hz	124		
		fe = 62.	6) H2						1
					199				
3.	N fo	/H2	fe/HZ	1 tce 1 1	% Vc	Ve	12019	6	
	1 18	. 83	62.77						
		7.7	127.4						
		6.5	189.9						
		5,3	253.9.						
									-
t	- 29	4.1	324.9 .						

100	姓名	学号		星期第二组	页码
	4. f-T.			(mt	(44
	TIN	fe/Hz	fe/Hz fee %	Ve luis Ve luis	
	9.801	33.96.			
	19.60	48.03	54.7 .52.47		
Ŧ	>9.40	58.83	\$ 63.12 .		
	39.20	67.93.	74.78		
	49.01	75.95	83.12 .		
1	5. f-L			1.4	
	L/Cm	· fe/Hz	feltz feel	% Vc/m = 1 V2/m	((av %)
	40.00	68.62	38.24 9.45 .		
	47.5.	22 13	4.31 	15. 2.0	
		.o 8 0.4 6	64.18 69.45		
			56.48 60.81		
			50.42. 5482 .	- E	1
	70.0 .	(94)	3772. 3702	anti	· A
				2m 24	. 2 4/
				101	791