

OpenPOWER Platform

Hardware Architecture, HPC Software Stack, Job Submission

Nicolas Tallet | IBM | nicolas.tallet@fr.ibm.com

OpenPOWER Technical Architecture

Hardware Features

Witherspoon

IBM OpenPOWER Accelerated Computing Roadmap

Mellanox ConnectX-4 ConnectX-5 ConnectX-4 Interconnect **EDR** Infiniband **HDR** Infiniband **EDR** Infiniband **Technology** Enhanced CAPI over PCIe Gen4 CAPI over PCIe Gen3 PCIe Gen3 Kepler Pascal Volta **NVIDIA GPUs** PCle Gen3 **NVLink Enhanced NVLink** SXM2 SXM2 POWER8 w/NVLink POWER8 POWER9 **Enhanced NVLink IBM CPUs NVLink** 2015 2016 2017 Server

Minsky

Firestone

System Architecture: Overview

- Two Single-Chip Modules (SCM)
- Memory Subsystem
 - L3 Cache
 - 8MB local region / core (FLR-L3)
 - Can also be accessed other L3 cache regions as shared L3 cache
 - L4 Cache
 - On Memory Riser card
 - 16MB buffer / card
 - 128 MB cache by using all cards
 - Main Memory
 - 2 Memory Controllers / SCM
 - 2 Memory Riser Cards / Controller
 - 4 RDIMM Slots / Riser Card
 - 32 DIMMs Max. = 1TB Max.
- GPU Subsystem
 - 4 GPU Sockets (300 W Max.)
- Buses
 - 3 PCIe Gen3 Slots
 - Dedicated PCI Bus:
 - Integrated SATA Controller
 - Integrated Ethernet
 - Integrated USB Port

System Architecture: Data Links

Simultaneous Multi-Threading (SMT)

- Allows a single physical processor core to dispatch simultaneously instructions from more than one hardware thread context
 - With SMT, each POWER8 core can present up to 8 hardware threads
 - Because there are multiple hardware threads per physical processor core, additional instructions can run at the same time
- SMT benefit highly depends on the workload
- Changing SMT mode does not require reboot

Mode	Logical Cores
Single Thread	20
SMT2	40
SMT4	80
SMT8	160

System Topology: CPU

	SMT=1 [Off] Socket #0 Socket #1																		
0	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152
	SMT=2																		
	Socket #0 Socket #1																		
			S	ock	et#	0			SM [*]	Γ=2	2		s	ock	et#	1			
0	8	16		ock 32			56					96	S				136	144	152

									SM ⁻	T=4									
			S	ock	et#	0						S	ock	et #	1				
0	0 8 16 24 32 40 48 56 64									80	88	96	104	112	120	128	136	144	152
1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129	137	145	153
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130	138	146	154
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139	147	155

								,	SM	Т—8	2								
			S	ock	et#	0		H	الاار	1 – 0			S	ock	et#	1			
0	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152
1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129	137	145	153
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130	138	146	154
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139	147	155
4	12	20	28	36	44	49	60	68	76	84	92	100	108	116	124	132	140	148	156
5	13	21	29	37	45	50	61	69	77	85	93	101	109	117	125	133	141	149	157
6	14	22	30	38	46	51	62	70	78	86	94	102	110	118	126	134	142	150	158
7	15	23	31	39	47	52	63	71	79	87	95	103	111	119	127	135	143	151	159

System Topology: GPU

2 GPU Devices / Socket

- Socket #0
 - GPU0
 - GPU1
- Socket #1
 - GPU2
 - GPU3
- "Same Socket" Data Exchanges
 - Avoid going through SMP link between POWER8 CPUs

```
$ nvidia-smi topo --matrix
        GPU0
                GPU1
                        GPU2
                                GPU3
                                        mlx5 0 mlx5 1
                                                         CPU Affinity
GPU0
        X
                NV2
                        SOC
                                SOC
                                         SOC
                                                 SOC
                                                         0 - 79
GPU1
        NV2
                X
                        SOC
                                SOC
                                        SOC
                                                 SOC
                                                         0 - 79
                         X
                                                         80-159
GPU2
        SOC
                SOC
                                NV2
                                         SOC
                                                 SOC
GPU3
                SOC
                        NV2
                                        SOC
                                                         80-159
mlx5 0 SOC
                        SOC
mlx5 1 SOC
                SOC
                        SOC
                                SOC
                                        PIX
Legend:
 SOC = Connection traversing PCIe as well as the SMP link between CPU
sockets(e.g. QPI)
  PHB = Connection traversing PCIe as well as a PCIe Host Bridge
(typically the CPU)
 PXB = Connection traversing multiple PCIe switches (without traversing
the PCIe Host Bridge)
```

PIX = Connection traversing a single PCIe switch

NV# = Connection traversing a bonded set of # NVLinks

IBM Power System S822LC 'Minsky' (8335-GTB)

IBM Power System S822LC 'Minsky' (8335-GTB)

Sockets	2 x POWER8
Physical Cores	20
Hardware Threads (Logical Cores)	20 [SMT Off] 40 [SMT 2] 80 [SMT 4] 160 [SMT 8]
CPU Frequency	2.86 GHz [Nominal] 4.03 GHz [Turbo]
Memory Capacity	Up To 1 TB
Memory Bandwidth (Peak)	230 GB/s
DP Performance (Peak)	468 Gflops
GPUs	Up To 4 x NVIDIA Tesla P100
Link	NVLink
Link Bandwidth (Bidirectional)	40 GB/s
DP Performance (Peak)	4.9 TFlops

NVIDIA Tesla P100 Architecture Details

INTRODUCING TESLA P100

New GPU Architecture to Enable the World's Fastest Compute Node

HPC Software Stack

Software Components

Comprehensive HPC Software Stack

Operating System

•Red Hat Enterprise Linux 7.3 LE

Application Development

- •Advance Toolchain 9.0 [GCC 5.4], 10.0 [6.3], 11.0 [7.2]
- •CUDA Toolkit 8.0
- •GCC 4.8
- •IBM XL C/C++ 13.1.5 & 13.1.6 [Beta 13]
- •IBM XL Fortran 15.1.5 & 15.1.6 [Beta 13]
- •LLVM Clang & XLFlang [Beta]
- •PGI Accelerator 17.07 & 17.09

MPI Libraries

- •IBM XL C/C++, IBM XL Fortran:
 - •IBM Parallel Environment RTE 2.3 [Phase Out]
 - •IBM Spectrum MPI 10.1 [New]
- •PGI Accelerator:
 - •Open MPI 1.10

Scientific Libraries

- •IBM ESSL 5.5
- •IBM Parallel ESSL 5.3
- •IBM XL MASS

Performance Analysis

•IBM Parallel Performance Toolkit for POWER 2.3

Workload Management

•IBM Spectrum LSF 10.1

Data Management

•IBM Spectrum Scale 4.1

Network Management

Mellanox Unified Fabric Manager (UFM)

Acceleration Enabled Programing Models

Key Features:

- Gives direct access to the GPU instruction set
- Supports C, C++ and Fortran
- Generally achieves best leverage of GPUs for best application performance
- PGI/NVIDIA Compiler
- CUDA C/C++ for Power via XL NVCC

Key Features:

- Designed to simplify Programing of heterogeneous CPU/GPU systems
- Directive based parallelization for accelerator device
- PGI/NVIDIA Compiler
- OpenACC/qcc

Key Features:

- OpenMP 4.0 introduces offloading and support for heterogeneous CPU/GPU
- Leverage existing OpenMP high level directives support
- IBM XL Compiler
- Open Source LLVM OpenMP Compiler

Target Compilation Environments & Associated Programming Models

Compiler	MPI Library	Programming Models
IBM XL C/C++ IBM XL Fortran	IBM Spectrum MPI	CUDA, OpenMP
PGI Accelerator	IBM Spectrum MPI (Open MPI)	CUDA, OpenACC
GCC	IBM Spectrum MPI	It's Complicated ☺
LLVM	IBM Spectrum MPI	CUDA, OpenMP

Ouessant Platform

Scientific Collaboration Prototype

Platform Architecture

Job Submission & Execution Environment

Execution Environment

Setting	Purpose
Task Placement	Define target compute node among all allocated hosts for each application process
Processor Affinity	Define allowed CPU cores for each application process
GPU Resource Requirement	Define GPU resource requirement for the whole job
GPU Affinity	Define associated GPU for each application process

Task Placement

- Default Policy: "Group Round Robin"
 - 'ptile' MPI tasks per allocated compute node
 - One allocated compute node after the other until all MPI tasks have been placed
- Alternative Policy
 - Specified through environment variable 'LSB_TASK_GEOMETRY'
 - Example:
 - export LSB TASK GEOMETRY="{(0,3)(1,4)(2,5)}«
 - Tasks #0 & #3 placed on node #1
 - Tasks #1 & #4 placed on node #2
 - Tasks #2 & #5 placed on node #3

Processor Affinity: Principles

Purpose

- Avoid as much as possible resource sharing
- Avoid Linux Scheduler to move processes / threads between CPU cores

Management

- Manual: Through LSF Affinity String (Resource Requirement)
- Automated: Through LSF Application (esub)

Tips'n Tricks

- Checking Required!
 - ALWAYS check applied processor affinity

Processor Affinity: Spectrum LSF Support

- LSF Application [Semi-Automated = Easy Way]
 - Syntax
 - #BSUB -a p8aff(num_threads_per_task, SMT, cpus_per_core, distribution_policy)
 - cpus_per_core: # logical CPUs used per physical core
 - distribution_policy = { pack | balance }
 - Reference
 - https://goo.gl/VMTtNq
- LSF Affinity String [Manual = Hard Way]
 - Syntax
 - #BSUB -R affinity[affinity_string]
 - {core|thread}(n):cpubind={core|thread}:distribute={balance|pack}
 - Reference
 - https://goo.gl/5v6Qmu

Processor Affinity: CPU - A Few Useful Examples 1/2

p8aff(10,8,1,balance)

CPUs/Cores	Core #01	Core #02	Core #03	Core #04	Core #05	Core #06	Core #07	Core #08	Core #09	Core #10	Core #11	Core #12	Core #13	Core #14	Core #15	Core #16	Core #17	Core #18	Core #19	Core #20
CPU #0	P00.t00	P00.t01	P00.t02	P00.t03	P00.t04	P00.t05	P00.t06	P00.t07	P00.t08	P00.t09	P01.t00	P01.t01	P01.t02	P01.t03	P01.t04	P01.t05	P01.t06	P01.t07	P01.t08	P01.t09
CPU #1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
CPU #4	-	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
CPU #5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

p8aff(1,8,1,balance)

CPUs/Cores	Core #01	Core #02	Core #03	Core #04	Core #05	Core #06	Core #07	Core #08	Core #09	Core #10	Core #11	Core #12	Core #13	Core #14	Core #15	Core #16	Core #17	Core #18	Core #19	Core #20
CPU #0	P00	P01	P02	P03	P04	-	-	-	-	-	P05	P06	P07	P08	P09	-	-	-	-	-
CPU #1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

p8aff(1,8,1,pack)

CPUs/Cores	Core #01	Core #02	Core #03	Core #04	Core #05	Core #06	Core #07	Core #08	Core #09	Core #10	Core #11	Core #12	Core #13	Core #14	Core #15	Core #16	Core #17	Core #18	Core #19	Core #20
CPU #0	P00	P01	P02	P03	P04	P05	P06	P07	P08	P09	-	-	-	-	-	-	-	-	-	-
CPU#1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #7	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	100

Processor Affinity: CPU - A Few Useful Examples - 2/2

p8aff(2,8,2,balance)

CPUs/Cores	Core #01	Core #02	Core #03	Core #04	Core #05	Core #06	Core #07	Core #08	Core #09	Core #10	Core #11	Core #12	Core #13	Core #14	Core #15	Core #16	Core #17	Core #18	Core #19	Core #20
CPU #0	P00.t00	P01.t00	P02.t00	P03.t00	P04.t00	-	-	-	-	-	P05.t00	P06.t00	P07.t00	P08.t00	P09.t00	-	-	-	-	-
CPU #1	P00.t01	P01.t01	P02.t01	P03.t01	P04.t01	-	-	-	-	-	P05.t01	P06.t01	P07.t01	P08.t01	P09.t01	-	-	-	-	-
CPU #2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100

p8aff(2,8,2,balance)

p8aff(1,8,1,balance)

CPUs/Cores	Core #01	Core #02	Core #03	Core #04	Core #05	Core #06	Core #07	Core #08	Core #09	Core #10	Core #11	Core #12	Core #13	Core #14	Core #15	Core #16	Core #17	Core #18	Core #19	Core #20
CPU #0	P00	P02	P04	P06	P08	P10	P12	P14	P16	P18	P20	P22	P24	P26	P28	P30	P32	P34	P36	P38
CPU #1	P01	P03	P05	P07	P09	P11	P13	P15	P17	P19	P21	P23	P25	P27	P29	P31	P33	P35	P37	P39
CPU #2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CPU #7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100

GPU Resource Requirement: GPU Compute Mode

Available Compute Modes

- DEFAULT
 - Equivalent to: Shared
- EXCLUSIVE_PROCESS
 - Only one process allowed to run
- EXCLUSIVE_THREAD
 - Only one thread allowed to run
- PROHIBITED
 - Run not allowed

GPU-Specific

 GPUs can have different Compute Modes

```
$ nvidia-smi --query --display=COMPUTE
=========NVSMI LOG==========
Timestamp
                                     : Tue Nov 1
19:59:57 2016
Driver Version
                                    : 361.93.02
Attached GPUs
                                    : 4
GPU 0002:01:00.0
    Compute Mode
                                     : Default
GPU 0003:01:00.0
    Compute Mode
                                     : Default
GPU 0006:01:00.0
    Compute Mode
                                     : Default
GPU 0007:01:00.0
    Compute Mode
                                     : Default
```


GPU Resource Requirement: Multi-Process Service (MPS)

- MPS Benefits
 - GPU Utilization
 - w/o MPS: Single process may underutilize the compute and memory-bandwidth capacity
 - w/MPS: kernel and memcopy operations from different processes can overlap on the GPU, achieving higher utilization and shorter running times
 - Reduced On-GPU Context Storage
 - w/o MPS: each CUDA process using a GPU allocates separate storage and scheduling resources on the GPU
 - w/MPS: server allocates one copy of GPU storage and scheduling resources shared by all of its clients
 - Reduced GPU Context Switching
 - w/o MPS: when processes share the GPU their scheduling resources must be swapped on and off the GPU
 - w/MPS: server shares one set of scheduling resources between all of its clients, eliminating the overhead of swapping when the GPU is scheduling between those clients

GPU Resource Requirement: Spectrum LSF Support

Syntax

- #BSUB -gpu "num=<num_gpus>:mode=
 {exclusive_process|shared*}:mps={no*|yes}:j_exclusive={no|yes*}"
 - j_exclusive: Is GPU resource exclusive to user job or shared between multiple jobs?

Execution Configuration	Resource Requirement
4 GPUs, Shared Mode	#BSUB -gpu "num=4:mode=shared:mps=no:j_exclusive=yes]"
4 GPUs, Exclusive Mode, w/o MPS	#BSUB -gpu "num=4:mode=exclusive_process:mps=no:j_exclusive=yes]"
4 GPUs, Exclusive Mode, w/MPS	#BSUB -gpu "num=4:mode=exclusive_process:mps=yes:j_exclusive=yes]"

GPU Affinity: Principles

Purpose

- Avoid as much as possible resource sharing (favor exclusive GPU access)
- Prefer GPU direct access (Avoid going through SMP link)

Management

- Manual Specification
 - Initialize CUDA_VISIBLE_DEVICES value based on MPI rank
 - Actual logic might depend on execution configuration (# MPI Tasks, Processor Affinity)
- Automated Specification
 - Forthcoming... hopefully!
 - Intersection between Workload Scheduler and MPI Library

Classical Issue

- Null value for CUDA_VISIBLE_DEVICES triggers error message at first offloaded code section
 - Current region was compiled for: NVIDIA Tesla GPU sm30 sm35 Available accelerators: device[1]: Native X86 (CURRENT DEVICE) The accelerator does not match the profile for which this program was compiled

GPU Affinity: Manual Management

Objective

- Set CUDA_VISIBLE_DEVICES environment variable with proper value
 - Default value set by Spectrum LSF must be overriden
- Variable should have distinct values for each MPI task
 - At least for exclusive GPU access.

Suggested Solution

- Initialize CUDA_VISIBLE_DEVICES value based on MPI rank
- Actual logic might depend on execution configuration
 - # MPI Tasks, Processor Affinity

Warning

- CUDA VISIBLE DEVICES=" (null value)
 - Means no GPU assigned to the task
 - Triggers error message at first GPU access

Helper Script (For Easier Execution Environment Management)

Ideal Situation

- Workload Scheduler as unique orchestrator
 - Comprehensive management of SMT Mode, Compute Mode, Affinity...

Current Situation

- Some very good progress
- Still a bit of manually-defined user control

Helper Scripts Collection

- /pwrlocal/ibmccmpl/bin/task_prolog.sh
 - Visible GPU Devices Selection
 - Additional Features (for free!)
 - Perf Profiling Startup
 - nvprof Profiling Startup

#!/bin/bash

Typical Submission Script

```
#BSUB -a p8aff(5,8,1,balance)
#BSUB -cwd ~/hpl
#BSUB -e hpl.%J.log
#BSUB -gpu "num=4:mode=exclusive process:mps=no:j exclusive=yes"
#BSUB -J HPL
#BSUB -n 4
#BSUB -o hpl.%J.log
#BSUB -R "span[ptile=4]"
#BSUB -W 01:00
mpirun -prot -report-bindings /pwrlocal/ibmccmpl/bin/task prolog.sh -
devices auto ~/hpl/xhpl.exe
```


End Of Presentation

Reference

Spectrum LSF Directives

Option	Value	Purpose
-cwd	<path></path>	Execution Directory
-e	<file></file>	stderr File
-gpu	"num= <num>:mode={exclusive_process shared}:mps={no yes}:j_ex</num>	
-J	<job name=""></job>	Job Name
-n	<# MPI Tasks>	Total Number of MPI Tasks
-O	<file></file>	stdout File
-R	"span[ptile= <ppn>]"</ppn>	Resource Specification: Number of Tasks per Node
-W	HH:MM	Run Limit
-X		Travail exclusif

Spectrum LSF User Commands

Command	Argument	Purpose
bjobs		List active jobs (waiting, in progress)
	-u { <user id=""> all }</user>	Restrict to specified user
	-X	List associated resources
bkill	<job id=""></job>	Kill job
bpeek	<job id=""></job>	Display job stdout/stderr
	-f	Refresh display in real time
bqueues		List existing queues
bstatus	<job id=""></job>	Display job status
bsub	< <submission script=""></submission>	Submit job into queue