Sets

A set is an unordered collection of objects, called members or elements of the set.

 $x \in S$ represents the proposition "x is a member of S."

 $x \notin S \equiv \neg(x \in S)$ (x is not a member of S).

Sets can contain numbers, letters, people, strings, trees, birds, ... as members.

{1, 2, Jack, Jill, elm, sparrow, USA}

Can a set contain no members?

Sure, the *empty set* contains no members.

There is a unique empty set, denoted Φ

Is the proposition $\forall x \in \Phi : x = x$ true?

Is the proposition $\forall x \in \Phi : x \neq x$ true?

Is the proposition $\exists x \in \Phi : x = x$ true?

Yes

Yes!

No

Can a set contain sets as members?

Sure!

$$X=\{1, 2, \{Jack, Jill\}, \{elm, beech\}\}$$

$$Y = \{\Phi, 1, 2\}$$

Is $\{\Phi\}$ different from Φ ?

Yes, $\{\Phi\}$ contains one member (the set Φ), but Φ contains nothing!

How many members does $\{\{\Phi\}\}\$ contain?

One, its only member is the set $\{\Phi\}$.

The set $\{\Phi, \{\Phi\}, \{Jack, Jill\}, \{a, \{b,c\}\}\}\$ contains 4 elements.

Can a set contain itself as a member?

Let's see what happens if we allow that.

Now consider all the sets that don't contain themselves:

$$S = \{X : X \notin X\}$$

Is $S \in S$? Or is $S \notin S$?

$$(S \in S) \Leftrightarrow (S \notin S) !$$

Defining sets precisely is extremely tricky!

We'll just agree that sets cannot contain themselves.

If A contains B then B cannot contain A.

Subsets

 $A \subseteq B$ means that every member of A is also a member of B

or,
$$[x: (x \in A \Rightarrow x \in B)]$$

 $A \subset B$ means that every member of A is a member of B, and B has members that are not members of A

or,
$$(x \in A \Rightarrow x \in B) \land (x \in B \land x \notin A)$$

Set Notation

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} : sets of natural numbers, integers, rationals, real numbers

Sets can be represented by:

- Listing elements in the set {1, 2, 3}
- By a predicate that describes properties of elements (Set builder notation) $\{x: P(x)\}$

 $\{x \in \mathbb{N} : \mathbf{?} y \in \mathbb{N}, (y > 1 \land x > y) \rightarrow y \nmid x\}$

This is the set of prime numbers.

Operations on Sets

Set Union:
$$A \cup B = \{x: (x \in A) \lor (x \in B)\}$$

Intersection:
$$A \cap B = \{x: (x \in A) \land (x \in B)\}$$

Difference:
$$A - B = \{x: (x \in A) \land (x \notin B)\}$$

Complement (with respect to a universe ${\cal S}$ of elements):

$$\bar{A} = S - A = \{x: (x \in S) \land (x \notin A)\}$$

Cartesian Product:
$$A \times B = \{(a,b) : (a \in A) \land (b \in B)\}$$

Example:
$$\{1,2\} \times \{a,b,c\} = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$$

Note:
$$(1,a) \neq (a,1)!$$

Power Sets

The power set P(S) of a set S is defined as:

$$P(S) = \{X: X \subseteq S\}$$

"The set of all subsets of S"

$$P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\}$$

 $P(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$

If a finite set S has m elements, then P(S) has $2 \ {\widehat{}} m > m$ elements.

Proving set identities

Prove that
$$A \cup (A \cap B) = A$$

$$A \cup (A \cap B) = \{x: (x \in A) \lor (x \in A \cap B)\}$$

$$= \{x: (x \in A) \lor (x \in A \land x \in B)\}$$

$$= \{x: (x \in A)\}, \text{ because } (p \lor (p \land q)) = p$$

$$= A$$

Anything look familiar?

Table 3.5.1: Set identities.

Name	Identities	
Idempotent laws	A U A = A	$A \cap A = A$
Associative laws	(A U B) U C = A U (B U C)	$(A \cap B) \cap C = A \cap (B \cap C)$
Commutative laws	A u B = B u A	$A \cap B = B \cap A$
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws	A ∪ Ø = A	$A \cap U = A$
Domination laws	$A \cap \emptyset = \emptyset$	A U U = U
Double Complement law	$\overline{\overline{A}}=A$	
Complement laws	$A \cap \overline{A} = \emptyset$ $\overline{U} = \emptyset$	$A \cup \overline{A} = U$ $\overline{\emptyset} = U$
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorption laws	A ∪ (A ∩ B) = A	A ∩ (A ∪ B) = A

Table 1.5.1: Laws of propositional logic.

Idempotent laws:	$p \lor p \equiv p$	$p \wedge p \equiv p$
Associative laws:	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
Commutative laws:	$p \lor q \equiv q \lor p$	$p \wedge q \equiv q \wedge p$
Distributive laws:	$pee (q\wedge r)\equiv (pee q)\wedge (pee r)$	$p \wedge (q ee r) \equiv (p \wedge q) ee (p \wedge r)$
Identity laws:	$p \lor F \equiv p$	$p \wedge T \equiv p$
Domination laws:	$p \wedge F \equiv F$	$p \lor T \equiv T$
Double negation law:	$ eg p \equiv p$	
Complement laws:	$p \wedge \neg p \equiv F \ eg T \equiv F$	$p \lor \neg p \equiv T \ eg F \equiv T$
De Morgan's laws:	$\neg(p \lor q) \equiv \neg p \land \neg q$	$\neg(p \land q) \equiv \neg p \lor \neg q$
Absorption laws:	$pee (p\wedge q)\equiv p$	$p \wedge (p ee q) \equiv p$
Conditional identities:	$p o q \equiv \neg p ee q$	$p \leftrightarrow q \equiv (p ightarrow q) \wedge (q ightarrow p)$

The well-ordering principle

Every non-empty subset of $\mathbb N$ has a least element.

Theorem. $\forall n \in \mathbb{Z} \hat{1} + :n > 1$ and n is not prime \rightarrow n can be factored as a product of primes.