Amendments t the claims

1. (currently amended) A compound of Formula (I):

$$A^{2} \xrightarrow{N} A^{1} \xrightarrow{R^{1}} R^{2} \xrightarrow{N} W$$

or a stereoisomer, or pharmaceutically acceptable salt form $\frac{\partial F}{\partial r}$ thereof, wherein:

 A^1 is C_1-C_3 alkylene substituted by 0-2 C_1-C_4 alkyl;

$$A^{2} \text{ is } \frac{-C(=0)R^{9b}, \quad S(=0)R^{9b}, \quad S(=0)_{2}R^{9b}, \quad CONHR^{9b}, \quad S(=0)_{2}R^{9b}, \quad CONHR^{9b}, \quad S(=0)_{2}R^{9b}, \quad S(=0)_{2}R^{$$

W is selected from the group:

- $-B(OR^{26})(OR^{27})_{\tau}$
- -C(=0)C(=0)-Q,
- -C(=O)C(=O)NH-Q
- -C(=0)-C(-0)-0-Q,
- -C(=0)CF2C(=0)NH Q,
- -C(=0)CF3+
- -C(=0)CF2CF3-
- -C(=0)H, and
- $-C(=0)W^{1};$

Q is selected from the group:

$$-(cR^{10}R^{10c})_{m}-Q^{2}$$

C1-C4-alkyl substituted with Q1,

62-C4 alkenyl substituted with 017

C2-C4-alkynyl-substituted with 01,

an amino acid residue,

$$-A^7-A^8$$
, and

m is 1, 2, 3, or 4;

Q1 is selected from the group:

$$-\text{CO}_{2}\text{R}^{\frac{1}{1}}$$
, $\text{SO}_{2}\text{R}^{\frac{1}{1}}$, $\text{SO}_{3}\text{R}^{\frac{1}{1}}$, $\text{P(0)}_{2}\text{R}^{\frac{1}{1}}$, $\text{P(0)}_{3}\text{R}^{\frac{1}{1}}$.

aryl substituted with 0-4 Qla; and

- 5 6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4-Q^{1a};

$$Q^2$$
 is $X NR^{12} Z$, $NR^{12} Y Z$, or $X NR^{12} Y Z$;

$$\frac{X \text{ is } C(=0)}{-P(0)}$$
, $\frac{S(=0)}{2}$, $\frac{P(0)}{-P(0)}$, $\frac{P(0)}{2}$, or

$$Y = S(=0)$$
, $S(=0)$, $S(=0)$ 2, $P(0)$ 3, $P(0)$ 3.

3 is selected from the group:

C1-C4-haloalkyl;

C1-C4 alkyl-substituted with 0 3 Za;

C2-C4-alkenyl substituted with 0 3 Za;

C2 C4 alkynyl substituted with 0 3 Za;

C3-C10-cycloalkyl substituted with 0-5 Zb;

aryl substituted with 0-5-Zb;

5-10 membered heterocyclic group consisting of earbon atoms and 1-4 heteroatoms selected from the group: 0, 5, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4-2b;

an amino acid residue;

$$-A^7-A^8$$
 and

Za is selected from the group:

OR²⁰, SR²⁰, S(=0)R²⁰, SO₂R²⁰, SO₂NR²⁰R^{20a}, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy;

C₃-C₁₀-cycloalkyl substituted with 0 5 Z^b;

C₃-C₁₀-carbocyle substituted with 0 5 Z^b;

aryl-substituted with 0 5 Z^b; and

5-10 membered heterocyclic group consisting of earbon atoms and 1 4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said-5-10 membered heterocyclic group is substituted with 0 4 Z^b;

Z^b is selected from the group:

H, F, Cl, Br, I, NO2, CN, NCS, CF3, OCF3,
$$-CO_{2}R^{20}, \quad C(=0)NR^{20}R^{20a}, \quad NHC(=0)R^{20}, \quad NR^{20}R^{20a},$$

$$-OR^{20}, \quad SR^{20}, \quad S(=0)R^{20}, \quad SO_{2}R^{20}, \quad SO_{2}NR^{20}R^{20a}, \quad C_{1}-C_{4}-alkyl,$$

$$C_{1}-C_{4}-haloalkyl, \quad C_{1}-C_{4}-haloalkoxy;$$

$$C_{3}-C_{10}-cycloalkyl-substituted with 0-5-Z^{e};$$

$$C_{3}-C_{10}-carbocyle-substituted with 0-5-Z^{e};$$

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 Ze;

$$z^{e}$$
 is H, F, C1, Br, I, NO₂, CN, NCS, CF₃, OCF₃, $-CO_{2}R^{20}$, C(=0) NR²⁰R^{20a}, NHC(=0) R²⁰, NR²⁰R^{20a},

arvl-substituted-with 0-5 Ze; and

R¹ is selected from the group: H, F;

C1-C6 alkyl substituted with 0-3 R^{1a};

C2-C6 alkenyl substituted with 0-3 R^{1a};

C2-C6 alkynyl substituted with 0-3 R^{1a}; and

C3-C6 cycloalkyl substituted with 0-3 R^{1a};

R^{1a} is selected at each occurrence from the group:

C1, F, Br, I, CF3, CHF2, OH, =0, SH, CO2R1b, SO2R1b, SO2R1b, P(O)2R1b, P(O)3R1b, C(=O)NHR1b, NHC(=O)R1b, SO2NHR1b, OR1b, SR1b, C3-C6-cycloalkyl, C1-C6-alkyl);

C1-C4-alkyl substituted with 0-3-R1c;
aryl substituted with 0-5-R1c;
-O-(CH2)n-aryl substituted with 0-5-R1c;
-S-(CH2)n-aryl substituted with 0-5-R1c;
and
5-10 membered heterocyclic group consisting of carbon atoms

5 10 membered heterocyclic group consisting of earbon atoms and 1 4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{1e};

n is 0, 1 or 2;

R^{1b} is H;

E1-C4-alkyl-substituted with 0-3 R^{1e};
E2-C4-alkenyl-substituted with 0-3 R^{1e};
E2-C4-alkynyl-substituted with 0-3 R^{1e};
E3-C6-cycloalkyl-substituted with 0-5 R^{1e};
aryl-substituted with 0-5 R^{1e};
aryl-C1-C4-alkyl-substituted with 0-4 R^{1e}; or
5-6 membered heterocyclic-group consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N;
optionally saturated, partially unsaturated or unsaturated;
and said-5-10 membered heterocyclic group is substituted
with-0-4 R^{1e};

- R^{1d} is selected at each occurrence from the group: H, -C₁ -C₄ -alkyl, phenyl and benzyl;
- R^2 is selected from the group: H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_4 cycloalkyl, and C_3 - C_4 cycloalkyl(C_1 - C_4 alkyl)-;
- alternatively, R^1 and R^2 can be combined to form a 4-7 membered eyelic group consisting of earbon atoms; substituted with 0-2 R^{14} .

```
R^3 is selected from the group: R^4.
       -(CH<sub>2</sub>)<sub>p</sub>-NH-R<sup>4</sup>,
      -(CH_2)_{p}-NHC(=0)-R^4,
      -(CH_2)_{D}-C(=0)NH-R^4,
      -(CH_2)_{D}-C(=0)O-R^4,
      -(CH_2)_{p}-C(=0)C(=0)-R^4,
      -(CH_2)_{p}-C(=0)C(=0)NH-R^4,
      -(CH_2)_{p}-NHC(=0)NH-R^4,
      -(CH_2)_{D}-NHC(=0)NHC(=0)-R^4,
      -(CH_2)_{p}-NHS(=0)_{2}-R^4,
      -(CH_2)_{p}-S(=0)_{2NH-R^4}
      -(CH_2)_D-C(=0)-R^4,
      -(CH<sub>2</sub>)<sub>p</sub>-O-R<sup>4</sup>, and
      -(CH_2)_{D}-S-R^4;
p is 0, 1, or 2;
R^4 is selected from the group:
     C1-C6 alkyl substituted with 0-3 R4a;
      C2-C6 alkenyl substituted with 0-3 R4a;
      C2-C6 alkynyl substituted with 0-3 R4a;
     C3-C10 cycloalkyl substituted with 0-4 R4b;
     C3-C10 carbocycle substituted with 0-4 R4b;
      aryl substituted with 0-5 R4b; and
     aryl-C1-C4 alkyl substituted with 0-5 R^{4b}; and
```

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R4b;

```
R^{4a} is, at each occurrence, independently selected from:
      H, F, Cl, Br, I, NO2, CN, NCS, CF2, OCF2,
      -0, -0H, -C(-NH)NH_2, -C(-O)NR^{11}R^{11a},
      NHC(=0)R<sup>11</sup>, NR<sup>11</sup>R<sup>11a</sup>, OR<sup>11a</sup>, SR<sup>11a</sup>, C(=0)R<sup>11a</sup>,
      -S(-0) R<sup>11a</sup>, SO<sub>2</sub>R<sup>11</sup>, SO<sub>2</sub>NR<sup>11</sup>R<sup>11a</sup>, NHC(-NH) NHR<sup>11</sup>,
      -C(=NH)NHR<sup>11</sup>, =NOR<sup>11</sup>, NR<sup>11</sup>C(=0)OR<sup>11a</sup>,
      -NR<sup>11</sup>C(-0) NR<sup>11</sup>R<sup>11a</sup>, NR<sup>11</sup>SO<sub>2</sub>NR<sup>11</sup>R<sup>11a</sup>, NR<sup>11</sup>SO<sub>2</sub>R<sup>11a</sup>,
      -0P(0)(0R^{\frac{1}{2}})_{27}
      C1-C4 alkyl substituted with 0-3 R4b;
      C2-C4 alkenyl substituted with 0-3 R4b;
      C2-C4 alkynyl substituted with 0-3 R4b;
      C3-C7 cycloalkyl substituted with 0-4 R4C;
      C3-C10 carbocycle substituted with 0-4 R4c; and
      aryl substituted with 0-5 R4c; and
      5-10 membered heterocyclic group consisting of carbon atoms
             and 1-4 heteroatoms selected from the group: 0, S, and N;
             optionally saturated, partially unsaturated-or
             unsaturated; and said 5-10 membered heterocyclic group is
             substituted with 0 3 R4C;
```

R4b is, at each occurrence, independently selected from:

```
H, F, Cl, Br, I, NO2, CN, NCS, CF3, OCF3, -0, OH, CO2H,
-C(=NH)NH_2, -C(=O)NR^{11}R^{11a},
-NHC (=0) R<sup>11</sup>, NR<sup>11</sup>R<sup>11a</sup>, OR<sup>11a</sup>, SR<sup>11a</sup>, C(=0) R<sup>11a</sup>,
-S(-0) R<sup>11a</sup>, SO<sub>2</sub>R<sup>11</sup>, SO<sub>2</sub>NR<sup>11</sup>R<sup>11a</sup>, NHC(-NH) NHR<sup>11</sup>,
-C(-NH)NHR<sup>11</sup>, -NOR<sup>11</sup>, NR<sup>11</sup>C(-0)OR<sup>11a</sup>,
-OC(-O)NR11R11a, NR11C(-O)NR11R11a, NR11SO2NR11R11a,
NR^{11}SO_2R^{11a}, OP(0)(OR^{11})_2
C_1-C_4 alkyl substituted with 0-3 R^{4c};
C2-C4 alkenyl substituted with 0-3 R4C;
C_2-C_4 alkynyl substituted with 0-3 R^{4c};
C3-C6 cycloalkyl substituted with 0-4 R4d; and
aryl substituted with 0-5 R4d; and
5 10 membered heterocyclic group consisting of carbon atoms
      and 1-4 heteroatoms selected from the group: 0, S, and N;
      optionally saturated or unsaturated; and said 5 10
      membered heterocyclic group is substituted with 0 3 R4d,
```

R^{4C} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =0, OH, CO₂H,

-C(=NH)NH₂, CO₂R¹¹, C(=0)NR¹¹R^{11a},

-NHC(=0)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=0)R^{11a},

-S(=0)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a},

-C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy;

C₁-C₄ alkyl substituted with 0-3 R^{4d};

C₂-C₄ alkenyl substituted with 0-3 R^{4d};

C₂-C₄ alkynyl substituted with 0-3 R^{4d};

C₃-C₆ cycloalkyl substituted with 0-4 R^{4d}; and

aryl substituted with 0-5 R^{4d}; and

5-10 membered-heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: 0, S, and N;
optionally saturated or unsaturated; and said 5-10
membered heterocyclic group is substituted with 0-3 R^{4d};

 $\begin{array}{l} {\rm R}^{\rm 4d} \ \ {\rm is, \ at \ each \ occurrence, \ independently \ selected \ from:} \\ {\rm H, \ F, \ Cl, \ Br, \ I, \ -NO_2, \ -CN, \ -NCS, \ -CF_3, \ -OCF_3, \ =0, \ OH, \ -CO_2H_7, \\ {\rm -CO_2R^{11}, \quad C(=0)NR^{11}R^{11a}, \quad NHC(=0)R^{11}_7, \\ {\rm -NR^{11}R^{11a}, \quad OR^{11a}, \quad SR^{11a}, \quad C(=0)R^{11a}, \quad S(=0)R^{11a}, \\ {\rm -SO_2R^{11}, \quad SO_2NR^{11}R^{11a}, \quad C_1-C_4-alkyl, \quad C_1-C_4-alkoxy, \\ {\rm C_1-C_4-haloalkyl, \quad C_1-C_4-haloalkoxy, \ phenyl, \ and \ benzyl;} \end{array}$

R8 is H or C1-C4-alkyl;

R^{9a} is selected from the group: H, —S(=0)R^{9b},—S(=0)2R^{9b},

S(=0)2NHR^{9b},—C(=0)R^{9b}, —C(=0)OR^{9b}, —C(=0)NHR^{9b},

—C(=0)NHC(=0)R^{9b};

C1-C6 alkyl substituted with 0-3 R^{9c};

C2-C6 alkenyl substituted with 0-3 R^{9c};

C2-C6 alkynyl substituted with 0-3 R^{9c};

C3-C6 cycloalkyl substituted with 0-3 R^{9d},

C3-C14 carbocycle substituted with 0-4 R^{9d},

aryl substituted with 0-5 R^{9d}, and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated;

and said 5 10 membered heterocyclic group is substituted with 0 4 R9d.

R^{9b} is selected from the group: H;

C1-C6 alkyl substituted with 0-3 R^{9c};

C2-C6 alkenyl substituted with 0-3 R^{9c};

C2-C6 alkynyl substituted with 0-3 R^{9c};

C3-C6 cycloalkyl substituted with 0-3 R^{9d};

C3-C14 carbocycle substituted with 0-4 R^{9d}; and

aryl substituted with 0-5 R^{9d}; and

5 10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d};

R^{9c} is selected from the group: CF₃, OCF₃, Cl, F, Br, I, =0, OH, C(0)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂;

C1-C6 alkyl substituted with 0-3 R^{9d};

C2-C6 alkenyl substituted with 0-3 R^{9d};

C2-C6 alkynyl substituted with 0-3 R^{9d};

C3-C6 cycloalkyl substituted with 0-3 R^{9e};

C3-C14 carbocycle substituted with 0-4 R^{9e}; and aryl substituted with 0-5 R^{9e}; and 5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated;

and said 5-10 membered heterocyclic group is substituted with 0-4 R9e;

 R^{9d} is selected at each occurrence from the group:

CF3, OCF3, Cl, F, Br, I, ≈ 0 , OH, C(0) OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂;

C1-C4 alkyl substituted with 0-3 R9e;

C1-C4 alkoxy substituted with 0-3 R9e;

C3-C6 cycloalkyl substituted with 0-3 R9e; and

aryl substituted with 0-5 R9e; and

- 5-6 membered heterocyclic group-consisting of carbon atoms and 1-4 heteroatoms-selected from the group: 0, S, and N; optionally saturated, partially-unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4 R^{9e};
- R^{9e} is selected at each occurrence from the group: C_1 - C_4 alkyl, C_1 - C_4 alkoxy, CF_3 , OCF_3 , C1, F, Br, I, =0, OH, phenyl, $C(0)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, -CN, and NO_2 ;
- R^{10} is selected from the group: CO_2R^{11} , $NR^{11}R^{11a}$, and C_1 - C_6 -alkyl substituted with $0 1 R^{10a}$;
- R^{10a} is selected from the group: halo, NO2, CN, CF3, $-CO_2R^{11}, \quad NR^{11}R^{11a}, \quad OR^{11}, \quad SR^{11}, \quad C(=NH)NH_2, \quad and \quad ary1$ substituted with 0 1 R^{10b} ,

```
R<sup>10b</sup> is selected from the group: CO2H, NH2, OH, SH, and
       C(=NH)NH2+
R<sup>10c</sup>-is-H-or-C1-C4-alkyl;
alternatively, R<sup>10</sup> and R<sup>10c</sup> can be combined to form a C1-C6
      cycloalkyl-group substituted with 0 1 R10a,
{\tt R}^{11} and {\tt R}^{11a} are, at each occurrence, independently selected from
      the group: H;
      C1-C6 alkyl substituted with 0-3 R<sup>11b</sup>;
    C2-C6 alkenyl substituted with 0-3 R11b;
      C2-C6 alkynyl substituted with 0-3 R<sup>11b</sup>;
      C3-C7 cycloalkyl substituted with 0-3 R<sup>11b</sup>;
      aryl substituted with 0-3 R11b; and
      aryl(C1-C4 alkyl) - substituted with 0-3 R11b;
R^{11b} is OH, C1-C4 alkoxy, F, Cl, Br, I, NH2, or -NH(C1-C4 alkyl);
R<sup>12</sup> is H or C1-C4-alkyl;
R<sup>14</sup> is C<sub>1</sub> C<sub>4</sub> alkyl or C<sub>2</sub> C<sub>4</sub> alkenyl;
R<sup>19</sup> and R<sup>19a</sup> are independently selected from the group: H, C<sub>1</sub>-C<sub>4</sub>
      alkyl, C1-C4-haloalkyl, aryl, aryl(C1-C4-alkyl), C3-C6
      cycloalkyl, and C3-C6-cycloalkyl(C1-C4-alkyl);
```

alternatively, NR¹⁹R^{19a} may form a 5 6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: 0, S, and N;

- R^{20} and R^{20a} are independently selected from the group: H, C₁-C₄ alkyl, C₁-C₄-haloalkyl, aryl, aryl, aryl(C₁-C₄-alkyl)-,-C₃-C₆-cycloalkyl, and C₃-C₆-cycloalkyl(C₁-C₄-alkyl);
- alternatively, NR²⁰R^{20a} may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: 0, S, and N;
- OR^{26} and OR^{27} are independently selected from:
 - a) OH
 - b) -F,
 - c) NR²⁸R²⁹-
 - d) C1-C8 alkoxy, and
- when taken together, OR26 and OR27 form
 - e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or 0; and
 - f) a cyclic boronic amide where said boronic amide contains
 from 2 to 20 carbon atoms and, optionally, 1, 2, or 3
 heteroatoms which can be N, S, or 0; or
 - g) a cyclic boronic amide ester where said boronic amide ester contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

 R^{28} and R^{29} , are independently selected from: H, C₁-C₄-alkyl, aryl(C₁-C₄-alkyl) , and C₃-C₇-cycloalkyl;

- A^3 , A^4 , A^5 , A^6 , A^7 , A^8 , and A^9 are independently selected from an amino acid residue; and
- an amino acid residue, at each occurence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration. is valine.
- 2. (currently amended) A compound of Claim 1, or a stereoisomer, or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

 A^1 is $-CH_2--or-CH_2CH_2-$;

 A^{2} -is- $C(=0)R^{9b}$, $-S(=0)R^{9b}$, $-S(=0)_{2}R^{9b}$, $-C(=0)_{1}R^{9b}$, $-C(=0)_{2}R^{9b}$, $-C(=0)_{3}R^{9b}$, $-C(=0)_{4}R^{9b}$, $-C(=0)_{5}R^{9b}$, $-C(=0)_{6}R^{9b}$, -C

W is scleeted from the group:

- $-B(OR^{26})(OR^{27})$,
- -C(=0)C(=0)-Q
- -C(-0)C(-0)NHO,
- -C(=0)C(=0)-0-0

```
-C(=0)CF<sub>2</sub>C(=0)NH-Q,
-C(=0)CF<sub>3</sub>,
-C(=0)CF<sub>2</sub>CF<sub>3</sub>,
-C(=0)H, and
-C(=0)W<sup>1</sup>;
W<sup>1</sup> is OR<sup>8</sup> or NR<sup>11</sup>R<sup>11</sup>a;
```

Q is selected from the group: $-\frac{(\text{CR}^{10}\text{R}^{10c})_{\text{m}}}{(\text{CR}^{10}\text{R}^{10c})_{\text{m}}} = \mathbb{Q}^{1},$ $\text{C}_{1}\text{-C}_{4}\text{-alkyl-substituted with }\mathbb{Q}^{1},$ $\text{C}_{2}\text{-C}_{4}\text{-alkenyl-substituted with }\mathbb{Q}^{1},$ and

C2-C4-alkynyl-substituted with O1;

m - is - 1 - or - 2;

Q1 is selected from the group:

-CO2R11, SO2R11, SO3R11, P(O)2R11, P(O)3R11;

phenyl substituted with O 4 Q1a; and

5-6 membered heterocyclic group consisting of carbon atoms and

1-4 heteroatoms selected from the group: O, S, and N;

optionally saturated, partially unsaturated or unsaturated;

and said-5-6 membered heterocyclic group is substituted

with O 4 Q1a;

C1-C4-alkoxy, C1-C4-haloalkyl, or C1-C4-haloalkoxy;

R¹ is selected from the group: H, F;

C1-C6 alkyl-substituted with 0-3 R^{1a};

C2-C6 alkenyl-substituted with 0-3 R^{1a}; and

C2-C6 alkynyl-substituted with 0-3 R^{1a}; and

C3-C6-cycloalkyl substituted with 0-3 R^{1a};

R1a is selected at each occurrence from the group:

Cl. F. Br. I. CF3, CHF2, OH, =0. SH, CO2R1b, SO2R1b,

SO3R1b, P(0)2R1b, P(0)3R1b, C(=0)NHR1b,

NHC(=0)R1b, SO2NHR1b, OR1b, SR1b, C3 C6 cycloalkyl, C1 C6

alkoxy, S (C1 C6 alkyl);

C1 C4 alkyl substituted with 0 3 R1c;

aryl substituted with 0 5 R1c;

S (CH2)n aryl substituted with 0 5 R1c;

and 1 4 heteroatoms selected from the group: 0, S, and N;

optionally saturated, partially unsaturated or unsaturated;
and said 5 10 membered heterocyclic group is substituted

with 0 3 R1c;

n is-0, 1 or 2;

R^{1b}-is-H;

C1-C4-alkyl-substituted with 0-3 R^{1c}.

62-C4-alkenyl substituted with 0-3-R^{1e};
62-C4-alkynyl substituted with 0-3-R^{1e};
63-C6-eyeloalkyl substituted with 0-5-R^{1e};
aryl substituted with 0-5-R^{1e};
aryl-C1-C4-alkyl substituted with 0-4-R^{1e}; or
5-6-membered heterocyclic group consisting of carbon atoms and 1-4-heteroatoms selected from the group: 0, 5, and N;
optionally saturated, partially unsaturated or unsaturated;
and said 5-10-membered heterocyclic group is substituted
with 0-4-R^{1e};

- R^{1d} is-selected at each occurrence from the group: H, C₁-C₄ alkyl, phenyl and benzyl;
- R² is selected from the group: H, C₁ -C₄ -alkyl, C₂ -C₄ -alkenyl, C₂-C₄ -alkyl); and C₃ -C₄ -cycloalkyl, and C₃ -C₄ -cycloalkyl (C₁ -C₄ -alkyl);
- alternatively, R^1 and R^2 can be combined to form a 4-7 membered eyelic group consisting of carbon atoms; substituted with 0-2 R^{14} .
- \mathbb{R}^3 is selected from the group: \mathbb{R}^4

USSN 10/015.328

```
-(CH_2)_{p}-NH-R^4,
-(CH<sub>2</sub>)<sub>0</sub> - NHC(=0) R<sup>4</sup>,
-(CH<sub>2</sub>)<sub>0</sub>-C(=0)NH-R<sup>4</sup>
-(CH_2)_{0}-C(-0)_{0}-R^{4}_{-}
-(CH_2)_{p}-C(-0)C(-0)-R^4_7
-(CH_2)_p-C(-0)C(-0)NH-R^4,
-(CH_2)_{D}-NHC(=0)NH-R^4
-(CH_2)_{0}-NHC(=0)NHC(=0)-R<sup>4</sup>,
-(CH<sub>2</sub>)<sub>D</sub>-NHS(-0)<sub>2</sub>-R<sup>4</sup><sub>7</sub>
-(CH_2)_0 - S(-0)_2NH - R^4
-(CH_2)_{0}-C(-0)-R^4
-(CH<sub>2</sub>)<sub>p</sub>-O-R<sup>4</sup>, and
-(CH<sub>2</sub>)<sub>P</sub>-S-R<sup>4</sup>+
C_1-C_6 alkyl substituted with phenyl,
C_1-C_6 alkenyl substituted with phenyl,
-CH2CONHPh, and
(2-phenylquinolin-4-yl)methyl;
```

p is 0, 1, or 2;

R⁴ is selected from the group:

C1 C6 alkyl substituted with 0 3 R^{4a};

C2 C6 alkenyl substituted with 0 3 R^{4a};

C2 C6 alkynyl substituted with 0 3 R^{4a};

C3 C10 cycloalkyl substituted with 0 4 R^{4b};

C3 C10 carbocycle substituted with 0 4 R^{4b};

aryl substituted with 0 5 R^{4b};

aryl-C1-C4 alkyl substituted with 0-5 R^{4b}; and

5-10-membered-heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: 0, S, and N;
optionally saturated, partially unsaturated or
unsaturated; and said-5-10 membered-heterocyclic group is
substituted with 0-3 R^{4b};

R4a is, at each occurrence, independently selected from: H, F, Cl, Br, I, NO2, CN, NCS, CF2, OCF2, =0, OH, CO_2H , $C(=NH)NH_2$, CO_2R^{11} , $C(=O)NR^{11}R^{11a}$, NHC(=0) R¹¹, NR¹¹R^{11a}, OR^{11a}, CR^{11a}, C(=0) R^{11a} $-S(-0)R^{11a}$, $SO_{2}R^{11}$, $SO_{2}NR^{11}R^{11a}$, $NHC(-NH)NHR^{11}$, $-C(-NH)NHR^{11}$, $-NOR^{11}$, $NR^{11}C(-O)OR^{11a}$, -NR¹¹C(-0)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a}, NR¹¹SO₂R^{11a}, $-0P(0)(0R^{11})2+$ C1-C4-alkyl substituted with 0 3 R4b, C2-C4 alkenyl substituted with 0 3 R4b; C2 C4 alkynyl substituted with 0 3 R4b; 63-67-cycloalkyl substituted with 0-4 R4c; 63-C10-carbocycle substituted with 0-4 R4c; aryl-substituted with 0-5 R4c; and 5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0 3 R4c+

R4b is, at each occurrence, independently selected from:

```
H, F, C1, Br, I, NO2, CN, NCS, CF2, OCF2, =0, OH, CO2H,
-C(=NH)NH2, -CO2R^{11}, -C(=O)NR^{11}R^{113}
NHC(=0)R<sup>11</sup>, NR<sup>11</sup>R<sup>11a</sup>, OR<sup>11a</sup>, SR<sup>11a</sup>, C(=0)R<sup>11a</sup>
-S(-0)R<sup>11a</sup>, SO2R<sup>11</sup>, SO2NR<sup>11</sup>R<sup>11a</sup>, NHC(-NH)NHR<sup>11</sup>,
-C(=NH)NHR^{11} = NOR^{11} NR^{11}C(=0)OR^{11}a
-OC (-O) NR<sup>11</sup>R<sup>11a</sup>, NR<sup>11</sup>C (-O) NR<sup>11</sup>R<sup>11a</sup>, NR<sup>11</sup>SO<sub>2</sub>NR<sup>11</sup>R<sup>11a</sup>,
NR<sup>11</sup>SO<sub>2</sub>R<sup>11a</sup>, OP(O)(OR<sup>11</sup>)2+
C1-C4-alkyl substituted with 0-3 R4c;
C2-C4-alkenyl substituted with 0-3 R4c;
62-C4-alkynyl substituted with 0-3-R4c;
63-C6-cycloalkyl substituted with 0-4-R4d;
aryl substituted with 0-5 R4d; and
5 10 membered heterocyclic group consisting of carbon atoms
      and 1-4 heteroatoms selected from the group: 0, S, and N;
      optionally saturated or unsaturated; and said-5 10
      membered heterocyclic group is substituted with 0-3 R4d;
```

R^{4e} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =0, OH, CO₂H,

-C(=NH)NH₂, CO₂R¹¹, C(=0)NR¹¹R^{11a},

-NHC(=0)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=0)R^{11a},

-S(=0)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a},

-C1 - C4 - haloalkyl, -C1 - C4 - haloalkoxy;

-C1 - C4 - alkyl - substituted with 0 - 3 R^{4d};

-C2 - C4 - alkynyl - substituted with 0 - 3 R^{4d};

-C3 - C6 - cycloalkyl - substituted with 0 - 4 R^{4d};

aryl substituted with 0 5 R^{4d}; and
5 10 membered heterocyclic group consisting of carbon atoms
and 1 4 heteroatoms selected from the group: 0, S, and N;
optionally saturated or unsaturated; and said 5 10
membered heterocyclic group is substituted with 0 3 R^{4d};

R⁸ is H or C1 C4 alkyl;

R^{9a} is selected from the group: H, S(=0)R^{9b}, S(=0)₂R^{9b},

-S(=0)₂NHR^{9b}, -C(=0)R^{9b}, C(=0)OR^{9b}, C(=0)NHR^{9b},

-C(=0)NHC(=0)R^{9b};

C1-C6 alkyl substituted with 0-3 R^{9c};

C2-C6-alkenyl substituted with 0-3 R^{9c};

C3-C6-cycloalkyl substituted with 0-3 R^{9c};

C3-C6-cycloalkyl substituted with 0-3 R^{9d};

aryl-substituted with 0-4 R^{9d};

aryl-substituted with 0-5 R^{9d}; and

5-10 membered heterocyclic group-consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated;

and said 5 10 membered heterocyclic group is substituted with 0 4 R9d;

R^{9b} is selected from the-group: H;

C1 C6 alkyl substituted with 0 3 R^{9c};

C2 C6 alkenyl substituted with 0 3 R^{9c};

C3 C6 alkynyl substituted with 0 3 R^{9c};

C3 C6 eycloalkyl substituted with 0 3 R^{9d};

C3 C14 carbocycle substituted with 0 4 R^{9d};

aryl substituted with 0 5 R^{9d}; and

5 10 membered heterocyclic group consisting of carbon atoms and 1 4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5 10 membered heterocyclic group is substituted

R^{9G} is selected from the group: CF₃, OCF₃, Cl, F, Br, I, =0, OH, C(0)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂+ C₁ C₆ alkyl-substituted with 0 3 R^{9d}, C₂ C₆ alkenyl substituted with 0 3 R^{9d}, C₂ C₆ alkynyl substituted with 0 3 R^{9d}, C₃ C₆ cycloalkyl substituted with 0 3 R^{9e}, C₃ C₁ carbocycle substituted with 0 4 R^{9e}, aryl substituted with 0 5 R^{9e}, and 5 10 membered heterocyclic group consisting of carbon atoms and 1 4 heteroatoms selected from the group: O, S, and N;

optionally saturated, partially unsaturated or unsaturated;

with 0-4 R9d.

and said 5-10 membered heterocyclic group is substituted with 0-4 R9e;

R^{9d} is selected at each occurrence from the group:

 CF_3 , OCF_3 , Cl, F, Br, I, =0, OH, $C(O)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, CN, NO_2 +

C1-C4-alkyl-substituted with 0-3-R9C+

C1-C4-alkoxy substituted with 0-3-R9e;

C3-C6-cycloalkyl substituted with 0-3 R9C;

aryl substituted with 0 5 R9e; and

- 5 6 membered heterocyclic group consisting of carbon atoms and 1 4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5 6 membered heterocyclic group is substituted with 0 4 R^{9e};
- R^{10} is-selected from the group: CO_2R^{11} , $NR^{11}R^{11a}$, and C_1 C_6 alkyl substituted with 0 1 R^{10a} ,
- R^{10a} is selected-from the group: halo, NO₂, CN, CF₃, $-CO_2R^{11}$, $NR^{11}R^{11a}$, OR^{11} , SR^{11} , $C(=NH)NH_2$, and aryl substituted with $O-1-R^{10b}$,

```
R^{10b} is selected from the group: -CO<sub>2</sub>H, NH<sub>2</sub>, -OH, SH, and C(=NH)NH<sub>2</sub>;
```

R^{10c} is H-or C₁-C₄-alkyl;

alternatively, R¹⁰ and R^{10c} can be combined to form a C₃-C₆

cycloalkyl group substituted with 0 1 R^{10a}?

R¹¹ and R^{11a} are, at each occurrence, independently selected from the group: H;

C1-C6-alkyl-substituted with 0 3 R^{11b};
C2-C6-alkenyl substituted with 0-3 R^{11b};
C2-C6-alkynyl substituted with 0-3 R^{11b};
C3-C7-cycloalkyl substituted with 0-3 R^{11b};
aryl substituted with 0-3 R^{11b}; and

aryl (C1-C4-alkyl) substituted with 0-3 R11b;

R^{11b} is OH, C₁-C₄-alkoxy, F, Cl, Br, I, NH₂, or NH(C₁-C₄-alkyl);

R¹² is H or C₁-C₄ alkyl;

R¹⁴-is-C₁-C₄-alkyl-or-C₂-C₄-alkenyl;

 R^{19} and R^{19a} are independently selected from the group: H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, aryl, aryl(C₁-C₄-alkyl), C₃-C₆ cycloalkyl, and C₃-C₆-cycloalkyl(C₁-C₄-alkyl);

alternatively, NR¹⁹R^{19a}-may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: 0, 5, and N:

and

 OR^{26} and OR^{27} are independently selected from:

a) OH,

b)-F,

e)-NR²⁸R²⁹-

d)-C1-C8-alkoxy, and

when taken together, OR^{26} and OR^{27} form:

- e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or 0 pinanediol.
- R^{28} and R^{29} , are independently selected from: H, C₁-C₄ alkyl, aryl(C₁-C₄-alkyl), and C₃-C₇-cycloalkyl;
- A^3 , A^4 , A^5 , and A^6 , are independently selected from an amino acid residue; and
- an amino acid residue, at each occurence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either-D or L configuration.
- 3. (canceled)
- 4. (canceled)

- 5. (canceled)
- (canceled)
- 7. (currently amended) A compound of Claim 1, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, selected from: the group consisting of

```
(4S)-N-\{[(1R)-1-[(3\alpha S,4S,6S,7\alpha R)-hexahydro-3\alpha,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaboro1-2-y1]propyl\}-3-\{(2S)-3-methyl-2-[(phenylacetyl)-amino]-butanoyl\}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;
```

```
tert-butyl (1S)-N-\{[(1R)-1-[(3\alpha S,4S,6S,7\alpha R)-hexahydro-3\alpha,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}amino)carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;
```

```
(4S)-N-\{[(1R)-1-[(3\alpha S,4S,6S,7\alpha R)-hexahydro-3\alpha,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl\}-3-\{(2S)-2-[(anilinocarbonyl)amino]-3-methylbutanoyl\}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;
```

```
(4S)-N-\{[(1R)-1-[(3\alpha S,4S,6S,7\alpha R)-hexahydro-3\alpha,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl\}-3-\{(2S)-2-[(9H-fluoren-1-ylcarbonyl)amino]-3-methylbutanoyl\}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;
```

```
(4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 4, 6 - methano - 1, 3, 2 - benzodioxaborol - 2 - yl]propyl \} - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - 3 - ((2S) - 2 - \{[(4 - 1) - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - ((2S) - 2 - \{[(4 - 1) - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - ((2S) - 2 - \{[(4 - 1) - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - ((3C) - (3C) - (3C
```

```
methoxyphenyl)acetyl]amino}-3-methylbutanoyl)-2-oxo-1-(3-
     phenylpropyl) -4-imidazolidinecarboxamide;
      (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (1R) - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (1R) - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hex
     4,6-methano-1,3,2-benzodioxaborol-2-y1]-3-buteny1}-3-{(2S)-2-}
     [(9H-fluoren-1-ylcarbonyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-
   phenylpropyl) -4-imidazolidinecarboxamide;
    9H-fluoren-9-ylmethyl (1S)-N-{[[(1R)-1-[(3\alphaS, 4S, 6S, 7\alphaR)-
   hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
   yl]propyl}amino)carbonyl]-2-oxo-3-(3-
   phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;
   (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - hexahydro - 3\alpha, 5, 5 - trimethyl - hexahydro - he
   4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-((2S)-3-methyl-
   2-{[3-(trifluoromethyl)benzyl]amino}
  butanoy1)-2-oxo-1-(3-phenylpropy1)-4-imidazolidinecarboxamide;
   (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - 1 - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - 1 - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethyl - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha R) - hexahydro - (1\alpha S, 4S, 6S, 7\alpha 
  4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2S)-2-}
   [([1,1'-biphenyl]-4-ylmethyl)amino]-3-methylbutanoyl}-2-oxo-1-
   (3-phenylpropyl)-4-imidazolidinecarboxamide;
 9H-fluoren-9-ylmethyl (1S)-1-({(5S)}-5-[({(1R)}-1-
  [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro-3\alpha, 5, 5 - trimethyl-4, 6 - methano-1, 3, 2 -
benzodioxaborol-2-y1]propyl}amino)carbonyl]-2-oxo-3-[(2-phenyl-
 4-quinolinyl)methyl]imidazolidinyl)carbonyl)-2-
methylpropylcarbamate;
```

```
N-((1S)-1-\{(5S)-5-\{((1R)-1-((3\alpha S, 4S, 6S, 7\alpha R)-hexahydro-3\alpha, 5, 5-1\}\}
   trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-
   amino) carbony1]-2-oxo-3-(3-
   phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropyl)-2-
   chloronicotinamide;
   (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - hexahydro - 3\alpha, 5 - trimethy] - hexahydro - 3
   4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2S)-2-[(4-
  butylbenzoyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-
   4-imidazolidinecarboxamide:
  isobutyl (1S)-1-\{(5S)-5-\{((1R)-1-((3\alpha S, 4S, 6S, 7\alpha R)-hexahydro-
  3\alpha, 5, 5-trimethy1-4, 6-methano-1, 3, 2-benzodioxaborol-2-
  yl]propyl}amino)carbonyl]-2-oxo-3-(3-
  phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;
  (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - (4S) - \{ (3\alpha S, 7\alpha R) - hexahydro - 3\alpha, 5 - trimethy] - 
  4,6-methano-1,3,2-benzodioxaborol-2-y1]propy1}-3-((2s)-2-
  {[(benzoylamino)carbony1]amino}-3-methylbutanoy1)-2-oxo-1-(3-
phenylpropyl)-4-imidazolidinecarboxamide;
  (4S) - N - \{ [(1R) - 1 - (3\alpha S, 4S, 6S, 7\alpha R) - \text{hexahydro} - 3\alpha, 5, 5 - \text{trimethyl} - \text{hexahydro} \} \}
4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-[(2S)-3-methyl-
2-(1-naphthoylamino)butanoy1]-2-oxo-1-(3-phenylpropy1)-4-
imidazolidinecarboxamide;
  (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - trimethy] - (4S) - \{ [(1R) - [(1R) -
4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-[(2s)-2-
  (acetylamino) -3-methylbutanoy1] -2-oxo-1-(3-phenylpropy1) -4-
imidazolidinecarboxamide;
```

Rule 1.126 PA 2123103 % (currently amended) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt form or prodrug thereof.

```
9 %. (canceled)

10 %. (canceled)

11 10. (canceled)

12 11. (canceled)

13 12. (canceled)
```

- 15. (canceled)

 16. (previously canceled)

 16. (previously canceled)

 17. (previously canceled)

 18. (previously canceled)
- 18. (previously canceled)
 - 20
 29. (previously canceled)
 21
 30. (previously canceled)
 - 21. (previously canceled)