

Für Reparaturinformation des Laufwerks siehe Service Dokumentation des Auto Cassettenlaufwerk CDS10HP

# Service Manual

12 V ⊝-||-





# **TECHNISCHE DATEN**

# **Aligemeines**

Versorgungsspannung Abmessungen (BxTxH) : 14,4 V

: 180x160x120 mm

Rundfunkempfangsteil

LW MW UKW

AM-ZF FM-ZF

Begrenzungspunkt a-3 dB 10 dB Uebersprechen Empfindlichkeit für 26 dB S/R

(315 Hz)

SK-Empfindlichkeit

154- 260 kHz (1950-1154 m)

513-1605 kHz ( 585- 187 m)

87,5- 108 MHz 468 kHz

10,7 MHz : 15 μV-19 μV 100 μV UKW ≤ 5 μV

 $MW \leq 200 \mu V$ LW ≤ 200 μV

: ≥ 20 μV

# Cassettenspieler

Bandgeschwindigkeit : 4,76 cm/s  $\pm$  4% Gleichlaufschwankungen : ≤ 0,35%

Uebersprechen (1 kHz) NF-Ausgangsspannung

: ≤ 28 dB : ≥ 300 mV

(315 Hz) Verstärker

Tiefen

Ausgangsleistung

Höhen

:  $4x20 \text{ W D} \leq 10\% (4 \Omega)$ 

: +/- 12 dB±2 dB bei 10 kHz : +/-- 12 dB±2 dB bei 100 Hz



VIEW FROM OUTSIDE SET



BU 1 VIEW FROM INSIDE SET ( SOLDERING SIDE )



| SERVICE TEST  X - SWITCH CLOSED  SWITCH OPEN | SK 1<br>RTA |   | SK 3<br>RQST | SK 4<br>RTS |
|----------------------------------------------|-------------|---|--------------|-------------|
| FM SEARCH                                    | -           | х | -            | -           |
| LW SEARCH                                    | -           | X | X            | -           |
| MW SEARCH                                    | х           | x | -            | -           |
| SELFCHECK MC                                 | -           | - | x            | X           |

Fig. 1

# **DEMOUNTING ORNAMENTAL PLATE**



**SEPARATION RADIO-AMPLIFIER PARTS** 



**DEMOUNTING CASS. PLAYER** 



# A. Unruhiger Empfang, Unempfindlichtkeit

Bei Beschwerden über unruhigen Empfang oder Unempfindlichkeit des Gerätes müssen folgende Funktionen geprüft werden:

- a. Begrenzungspunkt  $\alpha$ —3 dB
- b. SDS (gleitender Mono/Stereo-Uebergang)
- SDR (feldstärkeabhängige Klangblende)
- JAC-Störimpulsemfindlichkeit (IAC = Interference Absorption Circuit, eine Störaustastschaltung).

#### **DEMOUNTING FRONT PLATE**



**DEMOUNTING AF PANEL** 



# B. Farbcodierung von Keramikkondensatoren (Keramikresonatoren)

Die Keramikkondensatoren auf der UKW-Platine (1050 usw.) sind mit einer Farbcodierung versehen. Diese Farbe macht die Toleranz des Resonators erkennbar. Das heisst, dass wenn ein Resonator ausgewechselt wird, zu beachten ist, dass ein Resonator mit der gleichen Farbe an seine Stelle tritt.

Lagern keine Resonatoren mit dieser Farbe, sind alle Resonatoren gegen Resonatoren mit der gleichen Farbe auszuwechseln.

Die Frequenzen des Resonators sind wie folgt:

| Farbe                                     | Resonanzfrequenz                                             |             |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|-------------|--|--|--|--|--|
| schwarz<br>blau<br>rot<br>orange<br>weiss | 10,64 MHz<br>10,67 MHz<br>10,7 MHz<br>10,73 MHz<br>10,76 MHz | ± 0,025 MHz |  |  |  |  |  |

# C. EIN/AUS-Anzeige am Cassettenteil

Der Mikrocomputer bekommt von dem Laufwerk über die Stifte 13 und 4 des Steckers des Laufwerks die Anzeige, ob der Cassettenteil wohl oder nicht spielt. Wenn an Stift 13 eine Spannung von 5 V steht, wird das vom  $\mu$ C als eine Anzeige erkannt, dass das Laufwerk eingeschaltet ist, und der Rundfunkteil wird mittels des Stummabstimm-FETs 6514 abgeschaltet. Wenn das Laufwerk nicht mit dem Rundfunkteil verbunden ist,

muss Anschluss 13 des  $\mu$ Cs oder Stift 4 des Steckverbinders des Laufwerks mit Masse verbunden werden um den Rundfunkteil zu betreiben

#### D. Service-Testprogramm

Wenn der Rundfunkteil nicht mit dem Steuerkasten verbunden ist, lässt er sich nicht abstimmen. Es lässt sich dann nur mit Hilfe des Service-Prüfprogramms abstimmen

Indem bestimmte Stifte von BU1 mit Masse verbunden werden und der Rundfunkteil eingeschaltet wird, wird das Prüfprogramm aufgerufen. Dies kann erfolgen mit einem Service-konnektor oder mit Hilfe eines selbergemachten Schalterblocks oder Steckern mit Durchverbindungen.

Bild 1 zeigt, welche Stifte von BU1 mit Masse verbunden werden müssen, um den Rundfunkteil an den Unterschiedlichen Wellenbereichen in die Suchlauffunktion zu bekommen. Bei ausgeschaltetem Radio sind diese Stifte mit Masse zu verbinden und anschliessend ist das Radio einzuschalten. Diese Methode wird auch angewandt, um mit Hilfe des Flussdiagramms, wie in dieser Dokumentation dargestellt, im Wagen zu ermitteln, welcher Teil der Audiokette Schaden genommen hat. Im Reparaturfall empfehlen wir, auch den Steuerkasten auszubauen, da sich dann die Reparaturdauer in

manchen Fällen begrenzen lässt. Wenn wegen irgendeines Mangels nicht an einem Sender gestoppt wird, lässt sich eine Stoppinformation forcieren, indem die Anschlüsse C115, C116 der UKW-Platine kurzzeitig mit +5 V verbunden werden. Im Hinblick auf den FET-Eingang des  $\mu$ Cs darf diese +5 V nicht dauernd angeschlossen sein. Wenn die Stifte 4 und 5 von BU1 mit Masse verbunden werden, während das Gerät eingeschaltet wird, wird eine Selbstkontrolle des  $\mu$ C durchgeführt.

Der µC führt zuerst eine ROM-, RAM- und Timer-Prüfung durch, und wenn kein Mangel festgestellt worden ist, folgt eine E/A-Prüfung. Wenn ein Mangel in dem ROM, RAM oder Timer vorgefunden wird, verbleibt der µC dauernd in dieser Prüfbetriebsart und kann keine E/A-Prüfung durchgeführt werden. Die E/As lassen sich prüfen, dadurch dass den Eingängen gemäss nachstehender Tabelle ein 1 oder ein 0 angeboten wird, die dann an den gegebenen Ausgängen erscheinen.

| Eingang<br>33 = 0 | Zu prüfender Ausgang      | Ergebnis<br>0 |
|-------------------|---------------------------|---------------|
| 33 = 1            | 29, 8, 12, 3, 19, 37, 22  | 1             |
| 32 = 0            | 28, 9, 13, 4, 18, 36, 23  | 0             |
| 32 = 1            | 20, 9, 13, 4, 10, 30, 23  | 1             |
| 31 = 0            | 27 10 14 5 17 25 24       | 0             |
| 31 = 1            | 27, 10, 14, 5, 17, 35, 24 | 1             |
| 30 = 0            | 26, 11, 15, 6, 16, 34, 25 | 0             |
| 30 = 1            | 20, 11, 15, 0, 10, 34, 25 | 1             |

# E. EAROM 6505

Nach Auswechseln von IC6505 (EAROM) muss diese intergrierte Schaltung mit einigen Frequenzen geladen werden, da sonst die sonderbarste Information auf dem Display erscheinen kann. Wenn es keinen Steuerkasten ("control box") gibt, ist der Kunde darüber zu informieren.

Gerät in die Programmierstellung bringen, indem die "PROG"-Taste gedrückt wird, und dann die "MEMO"-Taste für alle MCC-Speicherplätze drücken. Die Frequenz ist von keiner Bedeutung.

#### F. Lautsprecheranschlüsse

Die Minusanschlusse der Lautsprecherausgänge dürfen nicht mit Masse verbunden werden, da es sich um schwebende Ausgänge handelt.

# G. Anschluss des Sprachsynthesizers

Am 3 fachen Konnektor befindet sich neben dem Plusanschluss ein Anschlussstift für Verbindung mit dem "speech synthesizer". Wenn dieser Punkt mit Masse verbunden wird, werden die Endverstärker stummgeschaltet, damit dem "speech synthesizer" die Gelegenheit geboten wird, seine Mitteilung zu machen.

#### H. TS6528

Transistor 6528 gibt über Anschluss 35 des  $\mu$ Cs eine Anzeige, ob das Gerät ein- oder ausgeschaltet ist. Bevor der Mikrocomputer ausgewechselt wird ist dieser Transistor zu prüfen.

0,5 V = Gerät eingeschaltet, 5 V = Gerät ausgeschaltet.

# I. MOS-ICs

Da im allgemeinen MOS-ICs gegenüber Ueberlastung und zu hoher Spannung äusserst empfindlich sind, muss bei Messungen sorgfältig verfahren werden. Im Beipackzettel der Verpackung der ICs sind weitere Anweisungen enthalten.

#### J. Torxschrauben

Dieses Gerät ist mit Torxschrauben voll ausgestattet, für die man eigens dafür konstruierte Torxschraubenzieher braucht. Mit Code-Nr. 4822 395 50145 liefert Audio Service einen Satz Torxschraubenzieher.

# K. Einstellung der "DK"-Lautstärke

Während der Fertigung wurde die Lautstärke während einer Verkehrsdurchsage (System der Autofaher-Rundfunk-Information) auf 70 mW (53 mV/4  $\Omega$ ) eingestellt (Information eingeschaltet, Lautstärkeregler auf Mindeststärke).

Für Service kann dies während einer Durchsage erfolgen mittels der Einstellung von Potentiometer 3572, das durch ein Loch in der rechten Seite des Gerätes zugänglich ist.

#### .. Info

Wenn "info" eingeschaltet ist und kein "info"-Sender empfangen wird, wird das Gerät suchen gehen, und solange nichts gefunden wird, gibt es alle 7 Sekunden einen Pfeifton ab. "info"-Taste drücken, damit das Gerät die "info"-Position verlässt, und dann eine Stoppinformation forcieren oder das Gerät aus- und anschliessend einschalten.





^

1505 G07 2500 D09 2501 C02 2502 D03 2503 E02 2504 E02 2505 E01 2506 F03 2508 D03 2511 G03 2511 G03 2512 B05 2513 B07 2514 G04 2517 A03 2519 H01 2520 H01 2521 101 2522 I01 2523 G10 2530 G10 2531 F10 2534 F07 2534 F07 2535 F07 2536 H06 2537 H06 2537 H06 2537 H06 2538 H06 2538 H06 2539 H06 2531 H

CS 94 144

7



# CHECKS

| Check              | sĸ           | <b>⊛</b> →                                           | $\Diamond$            |                 | Setting of controls | 0 0                             |       |
|--------------------|--------------|------------------------------------------------------|-----------------------|-----------------|---------------------|---------------------------------|-------|
| α-3 dB             | FM           | 96 MHz : 1 mV<br>1000 Hz, ∆f=22,5 kHz                | <b>^</b>              |                 |                     | ① 0 dB (≡ 775 mV)               |       |
|                    |              | 96 MHz : 15-19 μV<br>1000 Hz, Δf=22,5 kHz            | <b>*</b>              |                 | 95,249              | <b>(1)</b> −3 dB                |       |
| SDS                | FM<br>stereo | 96 MHz : 1 mV<br>stereo signal                       |                       |                 | 4 -                 | ·                               |       |
|                    |              |                                                      | <b>A</b>              |                 |                     | 1 L: 0 dB                       |       |
|                    | •            | 96 MHz : 100 μV<br>stereo —R                         |                       |                 |                     | <b>()</b> L − <b>()</b> R=10 dB |       |
| Crosstalk          | FM<br>stereo | 96 MHz : 1 mV<br>stereo signal                       |                       |                 | <b>—</b> + <b>—</b> | 1 R: 0 dB                       |       |
|                    | 010100       |                                                      | <b>A</b>              |                 | No.                 | 1 L: 0 dB                       |       |
|                    |              | 96 MHz : 1 mV<br>stereo —R                           | <b>V</b>              |                 |                     | (1) L— (1) R: ≥18 dB            |       |
| SDR                | FM           | 96 MHz : 1 mV<br>10 kHz, ∆f=22,5 kHz                 |                       |                 |                     | 1 : 0 dB                        |       |
|                    |              | 96 MHz : 20 μV<br>10 kHz, Δf=22,5 kHz                | <b>\( \rightarrow</b> |                 |                     | <b>҈</b> : −10 dB               |       |
| Search             | FM           | 96 MHz: 80-120 μV                                    | <b>A</b>              | Press           | 48-5                | display                         |       |
| level FM           |              |                                                      |                       | search          |                     | 96 MHz                          |       |
| IAC                | FM           | $\tau = 10 \ \mu s$ $T = 300 \ \mu s$ $Vp = 50 \ mV$ | <b>⊗</b>              |                 |                     |                                 | ②<br> |
| 26 dB S/N          | FM           | 96 MHz : ≤5 μV<br>1 kHz, ∆f=22,5 kHz                 |                       |                 |                     | <b>(1)</b> 2 V~ (= 0 dB)        |       |
|                    |              | 96 MHz : ≤5 μV<br>without modulation                 | <b>A</b>              |                 |                     | <b>1</b> −26 dB                 |       |
|                    | MW           | 600 kHz : ≤200 μV<br>1 kHz, AM = 30%                 | _                     |                 |                     | <b>(1)</b> 2 V∼ (=0 dB)         |       |
|                    |              | 600 kHz : ≤200 μV without modulation                 | ©                     | ·               |                     | <b>(</b> 1) −26 dB              |       |
|                    | LW           | 160 kHz : ≤200 μV<br>1 kHz, AM=30%                   |                       |                 |                     | <b>(1)</b> 2 V∼ (=0 dB)         |       |
|                    |              | 160 kHz : ≤200 μV<br>Without modulation              | ©                     |                 |                     | <b>(</b> 1 <b>)</b> −26 dB      |       |
| AM<br>search level | MW           | 1 MHz : 145-205 μV                                   | ¢                     | Press<br>search |                     | display                         |       |
| search level       |              |                                                      | 🔻                     | Scaron          |                     | 1000 kHz                        |       |
| SDK<br>sensitivity | FM<br>info   | 96 MHz : 20 μV<br>1 kHz, Δf=22,5 kHz                 | <b>A</b>              |                 | → min               | Info led lights                 | -     |
|                    |              | +SK+BK+DK                                            | <u> </u>              |                 |                     | 1 DK signal                     |       |
| DC-DC              | FM           | No signal  B  ●                                      |                       |                 |                     | ₫ <b>3</b> —25—31 V             |       |
| 4 MHz              | FM           | No signal                                            |                       |                 |                     | (6) 4 MHz                       |       |
| Synth.             |              |                                                      |                       |                 |                     | ±10 kHz                         |       |

# ADJUSTMENTS

| ADJUSTMENT                | <del></del>    |              |                                                  |            |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|---------------------------|----------------|--------------|--------------------------------------------------|------------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Adjustment                |                | sĸ           | €-                                               | $\Diamond$ |           | $\emptyset$  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
|                           |                |              |                                                  |            | 522 kHz   | 5210         | ③ 0,5 V <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| MW oscillator             |                | MW           | no signal                                        |            | 1603 kHz  | 2240         | ③ 7,75 V <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |
| AM-IF                     |                | MW           | 522 kHz<br>1 kHz, AM=30%                         | <b>\$</b>  |           | 5213         | ⊕ max,~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
| MW-RF                     |                | MW           | 650 kHz<br>1 kHz, AM=30%                         | ©          |           | 5207         | ⊕ max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
| •                         |                |              | 1500 kHz<br>1 kHz, AM=30%                        | <u> </u>   |           | 2226         | W max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |
| LW oscillator             | LW oscillator  |              | no signal                                        |            | 264 kHz   | 2239         | ③ 6,75 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
|                           |                |              |                                                  |            | 154 kHz   |              | check ③ 1,0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
| LW-RF                     |                | LW           | 175 kHz<br>1 kHz, AM=30%                         | ¢>         |           | 5206         | ♠ max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
|                           |                |              | 250 kHz<br>1 kHz, AM=30%                         |            |           | 2235         | no constitution of the con |                                                |
| AM search level           |                | MW           | 1 MHz, 170 μV                                    | ©          |           | 3500         | 6 5v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| FM oscillator             |                | FM           | no signal                                        |            | 100.0 MHz | 5054         | <b>⑤</b> 4,65 V <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
| FM-IF+detecto             | FM-IF+detector |              | FM 93 MHz wobbel<br>50 Hz, ∆f=300 kHz            |            |           | 5057<br>5060 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4</b>                                       |
|                           |                |              | ₩0                                               | <b>(A)</b> |           | 5061<br>3077 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ♦ • ▼•                                         |
| FM-RF                     |                | FM           | 88 MHz<br>1 kHz, ∆f=22,5 kHz                     | <b>A</b>   |           | 5051<br>5052 | < <b>҈</b> max.∼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
|                           |                |              | 100 MHz<br>I kHź, ∆f=22,5 kHz                    |            | LL3       | 2052<br>2058 | ₩ max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                              |
| FM search level           |                | FM           | 96 MHz, 100 μV                                   | <b>A</b>   | - Inglish | 3120         | € 5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| α —3 dB                   |                | FM           | 96 MHz, 17 μV<br>1 kHz, Δ <del>[=</del> 22,5 kHz | <b>Â</b> > |           | 3065         | <b>҈</b> −3 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - part to 1 - 1000 from                        |
| VCO stereo de             | coder          | FM           | no signal                                        |            |           | 3557         | 8 76 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,        |
| SDS (10 dB crosstalk)     |                | FM<br>stereo | 96 MHz, 100 μV<br>stereo —R                      | <b>(A)</b> |           | 3070         | $     \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
| Crosstalk<br>Large signal |                | FM           | 96 MHz, 1 mV<br>stereo —R                        | •          |           | 3551         | ↑ L-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 631 3 842 7                                    |
|                           | sĸ             | FM           | HF+SK+BK                                         |            |           | 5800         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er ben der |
| SDK decoder               | DK             | info         | HF+SK+BK+DK                                      | <b>③</b>   |           | 3843         | <b>҈</b> max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| DK<br>vol.                |                |              | HF+SK+BK+DK                                      |            |           | 3572         | <b>҈</b> 530 mV~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| dolby                     |                | cass.        | SBC420                                           |            |           | 3760         | <b>҈</b> 430 mV∼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control organisms to                           |
|                           |                | play         | 315 Hz-0 dB                                      |            |           | 3751         | <b>⋘</b> 430 mV~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| DC-DC                     |                | FM           | No signal                                        |            |           | 5505         | <b>♦ 4555 kHz</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Comments                                     |
| 4 MHz<br>μc               |                | FM           | No signal                                        |            |           | 5503         | (15) 3,8 MHz<br>± 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Straight                                     |

| DJUSTMENT                 | 3     |              |                                     |               |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|-------|--------------|-------------------------------------|---------------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjustment                |       | sĸ           | €-                                  | $\Diamond$    |           | $\emptyset$  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [A]<br>:··                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           |       |              |                                     |               | 522 kHz   | 5210         | ③ 0,5 V <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW oscillator             |       | MW           | no signal                           | ÷             | 1603 kHz  | 2240         | ③ 7,75 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AM-IF M                   |       | MW           | 522 kHz<br>1 kHz, AM=30%            | <b>©</b>      |           | 5213         | √ ∱ máx,~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-RF                     |       | MW           | 650 kHz<br>1 kHz, AM=30%            |               |           | 5207         | max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |       |              | 1500 kHz<br>1 kHz, AM=30%           | <b>\oint </b> |           | 2226         | √ max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LW oscillator             |       | LW           | no signal                           |               | 264 kHz   | 2239         | ③ 6,75 V <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |       |              |                                     |               | 154 kHz   |              | check ③ 1,0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LW-RF                     |       | LW           | 175 kHz<br>1 kHz, AM=30%            |               |           | 5206         | <b>(1)</b> max.∼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |       |              | 250 kHz<br>1 kHz, AM=30%            | ©             |           | 2235         | √r max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AM search leve            | el    | MW           | 1 MHz, 170 μV                       | <b>©</b>      |           | 3500         | €ov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FM oscillator             |       | FM           | no signal                           |               | 100.0 MHz | 5054         | <b>⑤</b> 4,65 V →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FM-IF+detector            |       | FM           | 93 MHz wobbel<br>50 Hz, ∆f=300 kHz  |               |           | 5057<br>5060 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           |       |              |                                     | <b>A</b>      |           | 5061<br>3077 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ♦ • ▼•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           |       |              |                                     |               |           | *            | The second secon | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FM-RF                     |       | FM           | 88 MHz<br>1 kHz, ∆f=22,5 kHz        | <b>A</b>      |           | 5051<br>5052 | ♠ max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |       |              | 100 MHz<br>1 kHz, ∆f=22,5 kHz       |               |           | 2052<br>2058 | V mux.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FM search level           |       | FM           | 96 MHz, 100 μV                      | ♦             |           | 3120         | €ov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |       |              |                                     |               |           |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α —3 dB                   |       | FM           | 96 MHz, 17 μV<br>1 kHz, Δf=22,5 kHz | <b>(A)</b>    |           | 3065         | <b>҈</b> −3 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dipute 14 Open O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VCO stereo de             | coder | FM           | no signal                           |               |           | 3557         | ♦ 76 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SDS (10 dB crosstalk)     |       | FM<br>stereo | 96 MHz, 100 μV<br>stereo —R         | •             |           | 3070         | $     \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crosstalk<br>Large signal |       | FM           | 96 MHz, 1 mV<br>stereo —R           | •             |           | 3551         | ♦ L- ♦ R = min, ≈                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | sĸ    | FM           | HF+SK+BK                            |               |           | 5800         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SDK decoder DK DK vol.    |       | info         | HF+SK+BK+DK                         | <b>\Pi</b>    |           | 3843         | <b>⊕</b> max.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |       |              | HF+SK+BK+DK                         |               |           | 3572         | <b>҈</b> 530 mV~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dolby                     |       | cass.        | SBC420                              |               |           | 3760         | <b>♦</b> 430 mV~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N. on a physical state of the s |
|                           |       | play         | 315 Hz-0 dB                         |               |           | 3751         | <b>ॐ</b> 430 mV~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DC-DC                     |       | FM           | No signal                           |               |           | 5505         | <b>1</b> 4555 kHz <b>8</b> ○                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 MHz<br>μc               |       | FM           | No signal                           |               |           | 5503         | (5) 3,8 MHz<br>± 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# HANDLING CHIP COMPONENTS



CS 94 143













32 302 A,



\*a = 2,5 V b = 4VCeramic plate c = 6,3 VCarbon film 2% Tuning ≤ 120 pF NP.0 d = 10 V0.2 W --20/+80% e = 16 V f = 25 V Carbon film 10% Polyester flat foil ---g = 40 V h = 63 V 70°C 5% 0.33 W j = 100 V l = 125 V Metal film Metalized polyester 10% --0.33 W 70°C 5% flat film m = 150 Vn = 160 Vq = 200 V10% Polyester flat foil Carbon film • r = 250 V5% 0.5 W 70°C small size (Mylar) s = 300 Vt = 350 V 1% Carbon film Polysterene film/foil u = 400 V70° C 0.67 W v = 500 V w = 630 VTubular ceramic x = 1000 VCarbon film 70°C 5% A = 1.6 V1.15 W B = 6 VC = 12 VD = 15 VMiniature single E = 20 VF = 35 V G = 50 V°°\* Subminiature  $\pm$  20% H = 75 V(C) Chip component tantalum V'' = 80

27 037A/C

CS 94 145











# EQUALIZER PANEL



34 512 A7



FM PANEL FILTER A CO3 CO3 BO1 CO3 BO1 CO2 CO2 BO2 DO2 F02 F01 F02 G01 G02 3084 G01 3085 G01 3086 G02 3087 G02 3089 G02 DO 2 EO 2 EO 1 EO 2 BO 2 3101 E03 3103 E03 3104 F03 3106 G03 3107 F03 3108 E03 3113 F03 3115 G03 3118 H02 3120 F01 2094 G02 2095 F02 2096 E03 2097 G03 2103 E03 3122 H01 3123 H02 3126 H03 3127 G03 3133 D03 5050 B03 5051 B02 5052 C03 5053 C03 5054 C01 5057 5060 5061 6050 6051 C02 E02 F02 C02 E01 3050 A02 3051 A02 3052 B03 3053 C02 3054 C03 6052 6055 6056 6057 6060 G01 D01 E03 D03 F03 6061 6065 6066 6067 6070 6071 6072 6073 6076 6077 DO 2 CO 2 CO 2 DO 2 DO 1 6072.6073

33 373C12

















32 219 D23





32 426 C12

Um bei einer komplett eingebauten Audiokette in einem Wagen feststellen zu können, ob eine Kundenreklamation wohl oder nicht ein "nuisance call" ist und welche Aktion vorzunehmen ist, kann der Ablaufplan benutzt werden.

Dieser Ablaufplan enthält folgende Teile:

- Reklamationsfeststellung: um "nuisance calls" zu vermeiden
- Prüfung des Radios und des Steuerkastens; ohne Ausbau der Geräte
- 3. Prüfung der Verbindungen; Ausbau des Radios und/oder Steuerkastens ist notwendig

#### **Ablaufplan**

- A. Anhand der Bedienungsanleitung ist ein "nuisance call" festzusetzen.
- B. Mit Hilfe der Ziffern auf der Sichtanzeige die Uhr kontrollieren und versuchen, mit Hilfe der Knöpfe am Steuerkasten die Uhr einzustellen.
- C. Die "+" und "—" Verbindungen und Sicherungen kontrollieren.
- D. Durch Abspielen einer Audiocassette den Audioteil kontrollieren. Lautstärke-knöpfe +/— des Radios und gleichzeitig Ueberblendregler ("fader"), Balance und Tonblenden kontrollieren. Ggf. den Wiedergabekopf reinigen.
   E. Die "+" und "—" Verbindungen, die
- E. Die "+" und "—" Verbindungen, die Lautsprecheranschlüsse und die Sicherungen kontrollieren.

- F. Lautsprecherdrähte kontrollieren.
- G. Funktion der Voreinstellungen mit Hilfe der Sichtanzeige und des Tonsignals kontrollieren. Ebenso kontrollieren, ob sich die Voreinstellungen programmieren lassen.
- H. Nach Wechsel oder Reparatur der Antenne, des oder der Lautsprecher(s) oder Satelliten ist die Anlage anhand der Bedienungsanleitung zu kontrollieren.
- K. Ergibt sich gleichzeitig folgende Lage?
  - Lautstärke nicht zu betätigen, weder am Radio noch am Steuerkasten
  - Voreinstellungen sind nicht in Ordnung
  - Keine Frequenz auf der Sichtanzeige
- L. Zwischen 87,5 und 108 MHz auf UKW, zwischen 154 und 260 kHz auf LW und zwischen 513 und 1605 kHz auf MW soll die Frequenz liegen.
- M. Falls die Entscheidung bei Punkt K "ja" ist, ist der Steuerkasten auszubauen und das Gerät mit Hilfe des Service-Steckverbinders zu kontrollieren.
- N. Alle Wellenbereiche müssen mit Hilfe des Service-Steckverbinders kontrolliert werden.
- P. Sprachprozessor-Anschluss ("speech processor") kontrollieren.
- Q. Wenn der Draht vom Sprachprozessor an Masse gelegt wird, müssen die Endverstärker ausschalten.

| 51<br>52 | 4822 214 50332<br>4822 404 20496 |
|----------|----------------------------------|
| 53       | 4822 410 23166                   |
| 54       | 4822 255 10183                   |
| 55       | 4822 102 50041                   |
| 56       | 4822 134 40531                   |
| 57       | 4822 410 23171                   |
| 58<br>59 | 4822 410 23164<br>4822 410 23167 |
|          | 4822 411 60991                   |
| •        | 4822 460 10606                   |
|          | 4822 105 10547                   |
| 64       | 4822 404 20495                   |
| 65       | 4822 404 20498                   |
| 66       | 4822 404 20499                   |
| • .      | 4822 105 10522                   |
|          | 4822 410 23165                   |
|          | 4822 105 10523<br>4822 404 20494 |
| 70<br>71 | 4822 276 11235                   |
| •        | 4822 276 11177                   |
| 73       | 4822 276 20323                   |
| 74       | 4822 460 20497                   |
| • •      | 4822 256 90536                   |
| . •      | 4822 443 61166                   |
|          | 4822 410 23169                   |
|          | 4822 410 23168                   |
| 82<br>83 | 5322 268 14107<br>4822 492 62935 |
| 84       | 4822 156 21194                   |
| 86       | 4822 265 40234                   |
| 88       | 4822 276 20318                   |
| 89       | 4822 462 40616                   |
|          | 4822 265 30271                   |
|          | 4822 264 50119                   |
|          | 5322 267 64031                   |
|          | 4822 532 11092<br>4822 404 20497 |
| 97       | 5322 267 44008                   |
| 98       | 4822 492 62935                   |
|          |                                  |



CS 94 150



|                                                     |                                                          |                                                                                        | 1                                              |                                                                                          |                                                                                        |
|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                     |                                                          |                                                                                        |                                                |                                                                                          |                                                                                        |
| 6050<br>6051<br>6052<br>6200<br>6500                | TDA1062S<br>TEA5560-N3<br>MC3302N<br>TDA1072<br>TDA1005A | 4822 209 81337<br>4822 209 81018<br>4822 209 80634<br>4822 209 80754<br>4822 209 80514 | 5050<br>5051<br>5052<br>5053<br>5054           |                                                                                          | 4822 153 10296<br>4822 156 10664<br>4822 156 10666<br>4822 157 51504<br>4822 157 50896 |
| 6501<br>6502<br>6503<br>6504<br>6505                | LM258N<br>SAA1300<br>SAA1057<br>MK3872/S2<br>ER1400      | 4822 209 80866<br>4822 209 81338<br>4822 209 81002<br>4822 209 10567<br>4822 209 10238 | 5057<br>5060<br>5061<br>5200<br>5201           |                                                                                          | 4822 156 10665<br>4822 153 50108<br>4822 153 50102<br>4822 157 51391<br>4822 157 50963 |
| 6510<br>7100<br>7101-7300<br>7301<br>73507353       | HEF4094BP<br>MN3207<br>MC34004P<br>TDA1515               | 5322 209 14485<br>4822 209 81872<br>4822 209 10566<br>4822 209 81746                   | 5202<br>5203<br>5204-5205<br>5206<br>5207      |                                                                                          | 4822 157 51509<br>4822 157 51216<br>4822 157 51508<br>4822 157 51507<br>4822 157 51505 |
| 7750-7751<br>7800<br>7807<br>7838<br>7900           | NE646BN<br>TDA1524<br>μA78M05CU<br>TDA1579<br>LF353N     | 4822 209 81045<br>4822 209 81564<br>5322 209 84841<br>4822 209 81764<br>5322 209 81395 | 5210<br>5213<br>5300-5301<br>5302-5303<br>5304 |                                                                                          | 4822 157 51506<br>4822 156 10663<br>4822 157 51153<br>4822 157 51154<br>4822 157 51711 |
| 2xAA119                                             |                                                          | 4822 130 30312                                                                         | 5500-5501<br>5502<br>5503<br>5505              |                                                                                          | 4822 157 51503<br>4822 157 50965<br>4822 157 51546<br>4822 157 51545<br>4822 158 10107 |
| BA317<br>BA423<br>BA479                             |                                                          | 4822 130 30847<br>4822 130 41646<br>4822 130 41909                                     | 5800<br>5800 (SK-DK)                           |                                                                                          | 4822 156 40738                                                                         |
| BAV20<br>BB204B<br>BB204G                           |                                                          | 4822 130 34189<br>4822 130 34449<br>5322 130 34825                                     | 3065-3070                                      | Trimpotm. 4k7                                                                            | 4822 100 10619                                                                         |
| BB212<br>BYV28-50<br>BZX79/C5V1<br>BZX79/C5V6       |                                                          | 4822 130 31129<br>4822 130 32213<br>4822 130 34233<br>4822 130 34173                   | 3072<br>3077<br>3200<br>3201                   | NTC 22k<br>Trimpotm. 1k<br>Potm. 20k<br>Potm. 2x50k                                      | 4822 116 30226<br>4822 100 10493<br>4822 105 10547<br>4822 102 50041                   |
| BZX79/C7V5<br>BZX79/B9V1<br>CQY97A/111<br>7978-7979 |                                                          | 4822 130 30861<br>4822 130 30862<br>4822 130 32139<br>4822 130 32137                   | 3382<br>3500<br>3551<br>3557<br>3751-3760      | PTC<br>Trimpotm. 33k<br>Trimpotm. 2k2<br>Trimpotm. 10k<br>Trimpotm. 22k                  | 4822 116 40059<br>4822 105 10482<br>4822 100 10027<br>4822 100 10035<br>5322 101 44041 |
| BC338                                               |                                                          | 4822 130 44121                                                                         | 3843<br>3952<br>3953                           | Trimpotm. 220 $\Omega$<br>Potm. 100k lin<br>Potm. 100k tandem                            | 4822 100 10359<br>4822 105 10523<br>4822 105 10522                                     |
| BC546B<br>BC548<br>BC548B                           |                                                          | 4822 130 44461<br>4822 130 40938<br>4822 130 40937                                     | - <b>I</b> I-                                  |                                                                                          |                                                                                        |
| BC548C<br>BC549B<br>BC549C<br>BC550C<br>BC558B      |                                                          | 4822 130 44196<br>4822 130 40936<br>4822 130 44246<br>4822 130 41096<br>4822 130 44197 | 2052-2058<br>2073<br>2226-2240<br>2235-2239    | Trimmer 10 pF<br>330 nF 10%<br>Trimmer 20 pF<br>Trimmer 40 pF                            | 4822 125 50215<br>5322 121 44347<br>4822 125 50201<br>4822 125 50092                   |
| BD433<br>BD434<br>BF240                             |                                                          | 4822 130 40982<br>4822 130 40995<br>4822 130 40902                                     | Miscellaneous                                  |                                                                                          | · .                                                                                    |
| BF245A<br>BF410B<br>BF410D<br>BF495C                |                                                          | 5322 130 44499<br>4822 130 41908<br>4822 130 41697<br>4822 130 41499                   | 1050-1051<br>1200<br>1505<br>1508              | CER Filter 10,7 MHz<br>CER Filter 468 kHz<br>Quarts crystel 4 MHz<br>IAC thick film unit | 4822 242 70665<br>4822 242 70611<br>4822 242 70345<br>4822 214 50305                   |
|                                                     | ·                                                        |                                                                                        | 1300-1301<br>7951-7962<br>7972-7977            | Lamp 14 V 65 m A                                                                         | 4822 134 40531                                                                         |

| 3,9 pF 5% 4822 1 4,7 pF 5% 4822 1 3,3 pF 5% 4822 1 1,8 pF 5% 4822 1 8,2 pF 5% 4822 1 10 pF 5% 4822 1 18 pF 5% 4822 1 22 pF 10% 4822 1 27 pF 5% 4822 1 33 pF 5% 4822 1 39 pF 5% 4822 1 47 pF 5% 4822 1 56 pF 5% 4822 1                                  | ©-[ 22 31792                                                                                                                                                                                                                                                       |                                                                                         | jumper<br>10%<br>10%<br>5%<br>5%<br>5%<br>5%<br>5%                    | 4822 111 90163<br>4822 111 90184<br>4822 111 90387<br>4822 111 90447<br>4822 116 60159<br>4822 111 90245<br>4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361<br>4822 111 90217 | 5.1 kΩ<br>5,6 kΩ<br>6,8 kΩ<br>7,5 kΩ<br>8,2 kΩ<br>10 kΩ<br>12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ<br>22 kΩ | 10%<br>5%<br>5%<br>5%<br>5%<br>2%<br>5%<br>5% | 5322 111 90268<br>5322 111 90114<br>5322 111 90117<br>4822 111 90276<br>5322 111 90118<br>4822 111 90249<br>4822 111 90253<br>4822 111 90196<br>4822 111 90346<br>4822 111 90238 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,5 pF 5% 4822 1 3,9 pF 5% 4822 1 4,7 pF 5% 4822 1 3,3 pF 5% 4822 1 1,8 pF 5% 4822 1 8,2 pF 5% 4822 1 10 pF 5% 4822 1 18 pF 5% 4822 1 22 pF 10% 4822 1 27 pF 5% 4822 1 33 pF 5% 4822 1 33 pF 5% 4822 1 39 pF 5% 4822 1 47 pF 5% 4822 1 56 pF 5% 4822 1 | 22 31792 0<br>22 32081 1<br>22 32082 3<br>22 32079 3,3<br>22 32087 4.7<br>22 32083 6.8<br>22 31971 10<br>22 31769 22<br>22 31837 27<br>22 31966 39<br>22 31756 47<br>22 31972 51<br>22 31772 56                                                                    |                                                                                         | jumper<br>10%<br>10%<br>10%<br>5%<br>5%<br>5%<br>5%<br>5%<br>5%<br>5% | 4822 111 90184<br>4822 111 90387<br>4822 111 90447<br>4822 116 60159<br>4822 111 90245<br>4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361                                     | 5,6 kΩ<br>6,8 kΩ<br>7,5 kΩ<br>8,2 kΩ<br>10 kΩ<br>12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ                    | 5%<br>5%<br>5%<br>2%<br>2%<br>5%<br>5%        | 5322 111 90114<br>5322 111 90117<br>4822 111 90276<br>5322 111 90118<br>4822 111 90249<br>4822 111 90253<br>4822 111 90196<br>4822 111 90346                                     |
| 3,9 pF 5% 4822 1 4,7 pF 5% 4822 1 3,3 pF 5% 4822 1 1,8 pF 5% 4822 1 8,2 pF 5% 4822 1 10 pF 5% 4822 1 18 pF 5% 4822 1 22 pF 10% 4822 1 27 pF 5% 4822 1 33 pF 5% 4822 1 39 pF 5% 4822 1 47 pF 5% 4822 1 56 pF 5% 4822 1                                  | 22 32081     1       22 32082     3       32 32079     3,3       22 32087     4,7       22 32083     6,8       22 31971     10       22 31769     22       22 31837     27       22 31966     39       22 31756     47       22 31972     51       22 31772     56 |                                                                                         | 10%<br>10%<br>10%<br>5%<br>5%<br>5%<br>5%<br>5%<br>5%                 | 4822 111 90184<br>4822 111 90387<br>4822 111 90447<br>4822 116 60159<br>4822 111 90245<br>4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361                                     | 5,6 kΩ<br>6,8 kΩ<br>7,5 kΩ<br>8,2 kΩ<br>10 kΩ<br>12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ                    | 5%<br>5%<br>5%<br>2%<br>2%<br>5%<br>5%        | 5322 111 90114<br>5322 111 90117<br>4822 111 90276<br>5322 111 90118<br>4822 111 90249<br>4822 111 90253<br>4822 111 90196<br>4822 111 90346                                     |
| 3,9 pF 5% 4822 1 4,7 pF 5% 4822 1 3,3 pF 5% 4822 1 1,8 pF 5% 4822 1 8,2 pF 5% 4822 1 10 pF 5% 4822 1 18 pF 5% 4822 1 22 pF 10% 4822 1 27 pF 5% 4822 1 33 pF 5% 4822 1 39 pF 5% 4822 1 47 pF 5% 4822 1 56 pF 5% 4822 1                                  | 22 32082 3<br>22 32079 3,3<br>22 32087 4.7<br>22 32083 6.8<br>22 31971 10<br>22 31769 22<br>22 31837 27<br>22 31966 39<br>22 31756 47<br>22 31972 51<br>22 31772 56                                                                                                |                                                                                         | 10%<br>10%<br>5%<br>5%<br>5%<br>5%<br>5%<br>5%<br>5%                  | 4822 111 90387<br>4822 111 90447<br>4822 116 60159<br>4822 111 90245<br>4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361                                                       | 6,8 kΩ<br>7,5 kΩ<br>8,2 kΩ<br>10 kΩ<br>12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ                              | 5%<br>5%<br>2%<br>2%<br>5%<br>5%              | 5322 111 90117<br>4822 111 90276<br>5322 111 90118<br>4822 111 90249<br>4822 111 90253<br>4822 111 90196<br>4822 111 90346                                                       |
| 4,7 pF 5% 4822 1 3,3 pF 5% 4822 1 1,8 pF 5% 4822 1 8,2 pF 5% 4822 1 10 pF 5% 4822 1 18 pF 5% 4822 1 22 pF 10% 4822 1 27 pF 5% 4822 1 33 pF 5% 4822 1 39 pF 5% 4822 1 47 pF 5% 4822 1 56 pF 5% 4822 1                                                   | 22 32079 3,3<br>22 32087 4.7<br>22 32083 6.8<br>22 31971 10<br>22 31769 22<br>22 31837 27<br>22 31966 39<br>22 31756 47<br>22 31972 51<br>22 31772 56                                                                                                              |                                                                                         | 10%<br>5%<br>5%<br>5%<br>5%<br>5%<br>5%<br>5%                         | 4822 111 90447<br>4822 116 60159<br>4822 111 90245<br>4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361                                                                         | 7,5 kΩ<br>8,2 kΩ<br>10 kΩ<br>12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ                                        | 5%<br>5%<br>2%<br>5%<br>5%<br>5%              | 4822 111 90276<br>5322 111 90118<br>4822 111 90249<br>4822 111 90253<br>4822 111 90196<br>4822 111 90346                                                                         |
| 3,3 pF 5% 4822 1 1,8 pF 5% 4822 1 8,2 pF 5% 4822 1 10 pF 5% 4822 1 18 pF 5% 4822 1 22 pF 10% 4822 1 27 pF 5% 4822 1 33 pF 5% 4822 1 39 pF 5% 4822 1 47 pF 5% 4822 1 56 pF 5% 4822 1                                                                    | 22 32087     4.7       22 32083     6.8       22 31971     10       22 31769     22       22 31837     27       22 31966     39       22 31756     47       22 31972     51       22 31772     56                                                                  | $\Omega$ $\Omega$ $\Omega$ $\Omega$ $\Omega$ $\Omega$                                   | 5%<br>5%<br>5%<br>5%<br>5%<br>5%                                      | 4822 116 60159<br>4822 111 90245<br>4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361                                                                                           | 8,2 kΩ<br>10 kΩ<br>12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ                                                  | 5%<br>2%<br>2%<br>5%<br>5%                    | 5322 111 90118<br>4822 111 90249<br>4822 111 90253<br>4822 111 90196<br>4822 111 90346                                                                                           |
| 1,8 pF 5% 4822 1<br>8,2 pF 5% 4822 1<br>10 pF 5% 4822 1<br>18 pF 5% 4822 1<br>22 pF 10% 4822 1<br>27 pF 5% 4822 1<br>33 pF 5% 4822 1<br>39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                          | 22 32083     6.8       22 31971     10       22 31769     22       22 31837     27       22 31966     39       22 31756     47       22 31972     51       22 31772     56                                                                                         | $\begin{array}{c} \Omega \\ \Omega \\ \Omega \\ \Omega \\ \Omega \\ \Omega \end{array}$ | 5%<br>5%<br>5%<br>5%<br>5%<br>5%                                      | 4822 111 90245<br>4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361                                                                                                             | 10 kΩ<br>12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ                                                            | 2%<br>2%<br>5%<br>5%<br>5%                    | 4822 111 90249<br>4822 111 90253<br>4822 111 90196<br>4822 111 90346                                                                                                             |
| 8,2 pF 5% 4822 1<br>10 pF 5% 4822 1<br>18 pF 5% 4822 1<br>22 pF 10% 4822 1<br>27 pF 5% 4822 1<br>33 pF 5% 4822 1<br>39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                              | 22 32083     6.8       22 31971     10       22 31769     22       22 31837     27       22 31966     39       22 31756     47       22 31972     51       22 31772     56                                                                                         | $\Omega$ $\Omega$ $\Omega$ $\Omega$                                                     | 5%<br>5%<br>5%<br>5%<br>5%                                            | 4822 116 60163<br>4822 111 90186<br>4822 116 60186<br>4822 111 90361                                                                                                                               | 12 kΩ<br>15 kΩ<br>16 kΩ<br>18 kΩ                                                                     | 2%<br>5%<br>5%<br>5%                          | 4822 111 90253<br>4822 111 90196<br>4822 111 90346                                                                                                                               |
| 10 pF 5% 4822 1<br>18 pF 5% 4822 1<br>22 pF 10% 4822 1<br>27 pF 5% 4822 1<br>33 pF 5% 4822 1<br>39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                                                  | 22 31971                                                                                                                                                                                                                                                           | $\Omega$ $\Omega$ $\Omega$                                                              | 5%<br>5%<br>5%                                                        | 4822 111 90186<br>4822 116 60186<br>4822 111 90361                                                                                                                                                 | 15 kΩ<br>16 kΩ<br>18 kΩ                                                                              | 5%<br>5%<br>5%                                | 4822 111 90196<br>4822 111 90346                                                                                                                                                 |
| 18 pF 5% 4822 1<br>22 pF 10% 4822 1<br>27 pF 5% 4822 1<br>33 pF 5% 4822 1<br>39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                                                                     | 22 31837 27<br>22 31966 39<br>22 31756 47<br>22 31972 51<br>22 31772 56                                                                                                                                                                                            | $\Omega$ $\Omega$                                                                       | 5%<br>5%<br>5%                                                        | 4822 116 60186<br>4822 111 90361                                                                                                                                                                   | 16 kΩ<br>18 kΩ                                                                                       | 5%<br>5%                                      | 4822 111 90346                                                                                                                                                                   |
| 22 pF 10% 4822 1<br>27 pF 5% 4822 1<br>33 pF 5% 4822 1<br>39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                                                                                        | 22 31966   39   47   22 31972   51   22 31772   56                                                                                                                                                                                                                 | $\Omega$                                                                                | 5%<br>5%                                                              | 4822 111 90361                                                                                                                                                                                     | 18 kΩ                                                                                                | 5%                                            | 4822 111 90346                                                                                                                                                                   |
| 27 pF 5% 4822 1<br>33 pF 5% 4822 1<br>39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                                                                                                            | 22 31966   39   47   22 31972   51   22 31772   56                                                                                                                                                                                                                 | $\Omega$                                                                                | 5%<br>5%                                                              | 4822 111 90361                                                                                                                                                                                     |                                                                                                      |                                               |                                                                                                                                                                                  |
| 33 pF 5% 4822 1<br>39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                                                                                                                               | 122 31756 47<br>122 31972 51<br>122 31772 56                                                                                                                                                                                                                       | $\Omega$                                                                                |                                                                       | 4822 111 90217                                                                                                                                                                                     | 22 60                                                                                                |                                               | 4022 111 30230                                                                                                                                                                   |
| 39 pF 5% 4822 1<br>47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                                                                                                                                                  | 22 31972 51<br>22 31772 56                                                                                                                                                                                                                                         |                                                                                         |                                                                       |                                                                                                                                                                                                    | 1 55 K77                                                                                             | 2%                                            | 4822 111 90251                                                                                                                                                                   |
| 47 pF 5% 4822 1<br>56 pF 5% 4822 1                                                                                                                                                                                                                     | 22 31772 56                                                                                                                                                                                                                                                        | Ω                                                                                       | 5%                                                                    | 4822 111 90365                                                                                                                                                                                     | 27 kΩ                                                                                                | 5%                                            | 4822 111 90155                                                                                                                                                                   |
| 56 pF 5% 4822 1                                                                                                                                                                                                                                        | 22 31967 68                                                                                                                                                                                                                                                        | W =                                                                                     | 5%                                                                    | 4822 116 60187                                                                                                                                                                                     | 30 kΩ                                                                                                | 2%                                            | 4822 111 90216                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    | $\Omega$                                                                                | 5%                                                                    | 4822 111 90203                                                                                                                                                                                     | 33 kΩ                                                                                                | 5%                                            | 4822 111 90219                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31961 82                                                                                                                                                                                                                                                        | $\Omega$                                                                                | 5%                                                                    | 4822 116 60158                                                                                                                                                                                     | 39 kΩ                                                                                                | 5%                                            | 5322 111 90108                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31839 100                                                                                                                                                                                                                                                       | $\Omega$                                                                                | 5%                                                                    | 5322 111 90091                                                                                                                                                                                     | 47 kΩ                                                                                                | 5%                                            | 5322 111 90112                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31765 130                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 116 60164                                                                                                                                                                                     | 56 kΩ                                                                                                | 5%                                            | 5322 111 90115                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31766 150                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 5322 111 90098                                                                                                                                                                                     | 68 kΩ                                                                                                | 5%                                            | 4822 111 90202                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31767 220                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 111 90178                                                                                                                                                                                     | 75 kΩ                                                                                                | 5%                                            | 4822 111 90204                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31794 270                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 111 90154                                                                                                                                                                                     | 82 kΩ                                                                                                | 5%                                            | 4822 116 60185                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31965 330                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 5322 111 90106                                                                                                                                                                                     | 100 kΩ                                                                                               | 2%                                            | 4822 111 90214                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31642 390                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 5322 111 90138                                                                                                                                                                                     | 120 kΩ                                                                                               | 5%                                            | 4822 111 90149                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31771 430                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 111 90221                                                                                                                                                                                     | 150 kΩ                                                                                               | 5%                                            | 5322 111 90099                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31727 470                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 111 90217                                                                                                                                                                                     | 200 kΩ                                                                                               | 5%                                            | 4822 111 90351                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31773 510                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 111 90245                                                                                                                                                                                     | 220 kΩ                                                                                               | 5%                                            | 4822 111 90197                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31775 560                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 5322 111 90113                                                                                                                                                                                     | 240 kΩ                                                                                               | 5%                                            | 4822 111 90215                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31974 680                                                                                                                                                                                                                                                       | $\Omega$                                                                                | 5%                                                                    | 4822 111 90162                                                                                                                                                                                     | 270 kΩ                                                                                               | 5%                                            | 4822 111 90302                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31647 750                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 111 90438                                                                                                                                                                                     | 330 kΩ                                                                                               | 5%                                            | 4822 116 60174                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31807 820                                                                                                                                                                                                                                                       | Ω                                                                                       | 5%                                                                    | 4822 111 90171                                                                                                                                                                                     | 390 kΩ                                                                                               | 5%                                            | 4822 111 90182                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    | kΩ                                                                                      | 5%                                                                    | 5322 111 90092                                                                                                                                                                                     | 470 kΩ                                                                                               | 10%                                           | 4822 111 90161                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31644 1,1 1                                                                                                                                                                                                                                                     | kΩ                                                                                      | 5%                                                                    | 4822 111 90294                                                                                                                                                                                     | 560 kΩ                                                                                               | 5%                                            | 4822 111 90169                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31783 1,2 1                                                                                                                                                                                                                                                     | kΩ                                                                                      | 5%                                                                    | 5322 111 90096                                                                                                                                                                                     | 620 kΩ                                                                                               | 2%                                            | 4822 111 90213                                                                                                                                                                   |
| 3,3 nF 10% 4822 1                                                                                                                                                                                                                                      | 22 31969 1,3 1                                                                                                                                                                                                                                                     | $k\Omega$                                                                               | 5%                                                                    | 4822 111 90244                                                                                                                                                                                     | 680 kΩ                                                                                               | 10%                                           | 4822 111 90368                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31784 1,5 1                                                                                                                                                                                                                                                     |                                                                                         | 5%                                                                    | 4822 111 90151                                                                                                                                                                                     | 820 kΩ                                                                                               | 5%                                            | 4822 111 90205                                                                                                                                                                   |
| ,                                                                                                                                                                                                                                                      | 22 31976 1,8 1                                                                                                                                                                                                                                                     |                                                                                         | 5%                                                                    | 5322 111 90101                                                                                                                                                                                     | 1 MΩ                                                                                                 | 2%                                            | 4822 111 90252                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    | kΩ                                                                                      | 5%                                                                    | 4822 111 90165                                                                                                                                                                                     | 2,2 ΜΩ                                                                                               | 10%                                           | 4822 111 90185                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31648 2,2 1                                                                                                                                                                                                                                                     |                                                                                         | 5%                                                                    | 5322 111 90102                                                                                                                                                                                     | 3,3 MΩ                                                                                               | 10%                                           | 4822 111 90191                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31782 2,7 1                                                                                                                                                                                                                                                     | $k\Omega$                                                                               | 5%                                                                    | 4822 111 90179                                                                                                                                                                                     | 6,8 MΩ                                                                                               | 10%                                           | 4822 111 90328                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    | kΩ                                                                                      | 5%                                                                    | 4822 111 90198                                                                                                                                                                                     | 8,2 MΩ                                                                                               | 10%                                           | 4822 111 90329                                                                                                                                                                   |
|                                                                                                                                                                                                                                                        | 22 31797 3,3 1                                                                                                                                                                                                                                                     | kΩ                                                                                      | 5%                                                                    | 4822 111 90157                                                                                                                                                                                     |                                                                                                      |                                               |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                        | 22 31981 3,9 1                                                                                                                                                                                                                                                     |                                                                                         | 5%                                                                    | 4822 116 60156                                                                                                                                                                                     |                                                                                                      |                                               |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                        | 22 31947 4,7 1                                                                                                                                                                                                                                                     |                                                                                         | 5%                                                                    | 5322 111 90111                                                                                                                                                                                     |                                                                                                      |                                               |                                                                                                                                                                                  |

# Auto cassette deck CDS 10HP







For electrical functioning of tape deck refer to Service Documentation of the relevant car radio.

# service Manua

12 V (—)—||-



# **TECHNICAL DATA**

Tape speed

: 4,76 cm/sec

Wow & flutter

: < 0.35%

Operating voltage

: 10 V ~ 16 V

Fast winding time

: < 80 secs (C-60)

Fast rewind time

: < 80 secs (C-60)



# **TECHNISCHE GEGEVENS**

Bandsnelheid

: 4,76 cm/sec, +3%, -2%

Wow & flutter

: < 0,35%

Werkingsspanning

: 10 V ~ 16 V

Tijd snel opspoelen

: < 80 sec (C-60)

Tijd snel terugspoelen

: < 80 sec (C-60)



# **CARACTERISTIQUES TECHNIQUES**

Vitesse de défilement

: 4,76 cm/sec, +3%, -2%

Pleurage et scintillement

: < 0,35%

Tension de fonctionnement : 10 V ~ 16 V

Durée de bobinage rapide

: < 80 sec (C-60)

: < 80 sec (C-60) Durée de rebobinage rapide

D

# **TECHNISCHE DATEN**

Bandgeschwindigkeit:

: 4,76 cm/s, +3%, -2%

Gleichlaufschwankungen

: < 0,35%

Betriebsspannung

: 10 V ~ 16 V

SVL-Dauer

: < 80 s (mit C60-Cassette)

SRL-Dauer

: < 80 s (mit C60-Cassette)



#### **DATI TECNICI**

Velocità di trascinamento

: 4,76 cm/sec. +3%, -2%

Wow e flutter

: < 0,35%

Tensione di lavoro

: 10 V ~ 16 V

Tempo di avvolgimento

: < 80 sec (C-60)

Tempo di riavvolgimento

: < 80 sec (C-60)

DocumentationTechnique Service Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Servicio



**DEMOUNTING FLYWHEELS** 



Fig. 3

Fig. 2



# INSTELLINGEN

Benodigde meetinstrumenten:

- universele testcassette SBC133

4822 397 30039

AC millivoltmeter

#### Azimuth

De azimuth instelling dient te geschieden met de autoradio kompleet en wel als volgt:

- sluit millivoltmeter aan op de luidsprekeruitgangen
- breng de testcassette SBC133 in en geef het 8 kHz signaal weer.
- stel met behulp van de azimuthschroef (zie Fig. 7) de uitgangsspanning zo in dat deze voor zowel het linker- als het rechterkanaal gelijk en maximaal is.
- lak azimuthschroef af.

#### **CONTROLES**

Benodigde meetinstrumenten:

veerdrukmeter 50 - 500 g
 frictie testcassette (811/CTM)
 universele testcassette SBC133
 4822 395 80028
 4822 395 30054
 4822 397 30039

- wow & flutter meter

# 1. Drukrolkracht

De drukrolkracht tegen de toonas moet liggen tussen 250 en 350 gram (zie Fig. 8). Deze wordt als volgt gemeten:

- breng cassettedeck in stand weergave
- druk de drukrol met de veerdrukmeter in het aangegeven punt terug (Fig. 8).
- op het moment dat de drukrol los komt van de toonas moet de meteraanwijzing worden afgelezen.

Indien de drukrolkracht niet juist is moet drukrol 126 worden vervangen.

# 2. Frictle 116

- breng de frictie-testcassette (811/CTM) in
- de afspeelfrictie moet 40 70 g/cm zijn
- de snelspoelfrictie moet groter zijn dan 60 g/cm

Indien de afspeelfrictie afwijkt van de bovengenoemde waarde dan dient frictiekoppeling 116 te worden vervangen.

#### 3. Wow & flutter/bandsnelheid

De controle dient te geschieden met de autoradio compleet en wel als volgt:

- sluit wow & flutter meter aan op de luidsprekeruitgang
- breng de testcassette SBC133 in en geef het 3150 Hz signaal weer
- de jengelwaarde moet < 0,35% zijn</li>
- de bandsnelheid moet zijn 4,76 cm/sec
   +3%, -2%, de snelheid kan niet worden ingesteld.

Bij een buitensporige jengelwaarde dienen de volgende onderdelen op hun juiste werking te worden gecontroleerd.

- motor
- drukrol
- aandrijfas (bij vervanging de vliegwielpoelie schoonmaken)
- frictiekoppeling 116
- vliegwiel



# REGLAGES

Instruments requis:

 cassette d'essai universelle SBC133 4822 397 30039

# - millivoltmètre en alternatif

#### L'azimuth

Le réglage de l'azimuth doit se faire lorsque l'autoradio est au complet; on procèdera alors comme suit:

- brancher le millivoltmètre sur les sorties de hautparleur
- insérer la cassette d'essai SBC133 et reproduire le signal de 8 kHz
- à l'aide de la vis réglant l'azimuth (voir Fig. 7) régler la tension de sortie de façon qu'elle soit égale et au maximum pour le canal de gauche tout comme celui de droite
- fixer la vis de l'azimuth à la laque.

#### CONTRÔLES

Instruments de mesure requis:

dynamomètre 50 - 500 g
cassette d'essai de la friction

(811/CTM) 4822 395 30054 — cassette d'essai universelle 4822 397 30039 SBC133

instrument du pleurage et scintillement

# 1. Force du galet presseur

La force du galet presseur contre le cabestan doit se situer entre les 250 et 350 g. (voir Fig. 8). Mesurer comme suit:

- positionner la mécanique sur reproduction
- retirer le galet presseur à l'aide du dynamomètre sur le point indiqué (Fig. 8)
- au moment où le galet presseur se détache du cabestan on lira l'affichage sur l'instrument

Si la force de pression n'est exacte, remplacer le galet presseur 126.

# 2. Friction 116

- introduire la cassette d'essai de friction (811/CTM)
- la friction au défilement doit se situer entre 40 et 70 g./cm
- la friction au bobinage rapide ne doit pas être supérieure à 60 g./cm

Si la friction d'enroulement s'écarte de la valeur donée ci-dessus, on procèdera au remplacement du couple de friction 116.

#### 3. Pleurage et scintillement/vitesse de défilement

Le contrôle doit se faire lorsque l'auto-radio est au complet, on y alors procèdera de la manière suivante:

- brancher l'instrument du pleurage sur la sortie de haut-parleur
- introduire la cassette d'essai SBC133 et reproduire le signal de 3150 Hz
- la valeur de pleurage doit être < 0.35%</li>
- la vitesse de défilement doit être 4,76 sec.
   +3%, -2%, la vitesse n'est pas réglable.

Si le taux de pleurage s'écarte de la valeur type, il faudra vérifier le fonctionnement des composants suivants:

- moteur
- galet presseur
- courroie d'entraînement (en cas de remplacement, nettoyer la poulie du volant)
- couple de friction 116
- volant



# EINSTELLUNGEN

Benötigte Messgeräte:

Universal-Testcassette SBC133

4822 397 30039



Fig. 7



27 845 A12

GB

# ADJUSTMENT

Equipment required:

- Universal test cassette SBC133

4822-397 30039

- AC millivoltmeter

#### Azimuth

Azimuth alignment should be carried out on a complete car radio; proceed as follows:

- connect the millivoltmeter to the loudspeaker outputs
- insert test cassette SBC133 and play back the 8 kHz signal
- turn the azimuth adjusting screw (refer to Fig. 7) for equal and maximum output voltage reading for both the LH and RH channel
- lockpaint the azimuth adjusting screw

#### **CHECKS**

Equipment required:

- spring scale 50-500 g
   friction test cassette (811/CTM)
   universal test cassette SBC133
   4822 395 80028
   4822 395 30054
   4822 397 30039
- wow & flutter meter

# 1. Pressure roller pressure

The pressure exerted by the pressure roller on the capstan should be in the 250-350 g range (refer to Fig. 8).

This pressure is measured as follows:

- select Play mode
- push the pressure roller back at the given point in Fig. 8 by means of the spring scale
- at the point where pressure roller and capstan just disengage the spring scale should be read

If the pressure roller pressure is not correct, replace pressure roller 126.

# Fig. 8

#### 2. Friction clutch 116

- insert friction test cassette (811/CTM)
- play take-up torque should be between 40 and 70 g/cm
- fast wind torque should exceed 60 g/cm

If the play take-up torque deviates from the aforementioned value, friction clutch 116 should be replaced.

# 3. Wow & flutter/tape speed

This check is carried out on a complete car radio; proceed as follows:

- connect the wow & flutter meter to the loudspeaker output
- insert test cassette SBC133 and play back the 3150 Hz signal.
- the wow & flutter value should be < 0.35%</li>
- tape speed should be 4.76 cm/sec (+3%, -2%);
   no speed adjustment facility has been provided.

In the event of an excessive wow & flutter value, the following parts should be checked as to correct functioning:

- motor
- pressure roller
- drive belt (in case of replacement, clean flywheel pulley)
- friction clutch 116
- flywheel

# **DEMOUNTING REVERSE SWITCH**



Fig. 4





Fig. 5

Fig. 6

# - Wechselspannungs-Millivoltmeter

#### **Azimut**

Die Azimuteinstellung soll mit dem Kompletten Autoradio stattfinden, und zwar wie folgt:

- Millivoltmeter an die Lautsprecherausgänge schalten.
- Testcassette SBC133 einlegen und das 8-kHz-Signal wiedergeben.
- Mit der Azimut-Einstellschraube (siehe Bild 7) die Ausgangsspannung so einstellen, dass sie für sowohl den linken als auch den rechten Kanal gleich ist und den Höchstwert aufweist.
- Azimut-Einstellschraube lacksichern.

# **KONTROLLEN**

Benötigte Messgeräte:

Federwaage 50 - 500 p
 Friktionstestcassette (811/CTM)
 4822 395 80028
 4822 395 30054

Universal-Testcassette SBC133 4822 397 30039

 Gerät zum Messen der Tonhöhenschwankungen (wow & flutter")

# 1. Andruckrollendruck

Der Andruckrollendruck an der Tonwelle soll zwischen 250 und 350 p liegen (siehe Bild 8). Er wird wie folgt gemessen:

- Cassettendeck in Wiedergabestellung bringen.

 Die Andruckrolle mit der Fderwaage an der gekennzeichneten Stelle zurückdrücken (Abb. 8).

 Im Augenblick als sich die Andruckrolle von der Tonwelle löst, soll die Anzeige an der Federwaage abgelesen werden.

Falls der Andruckrollendruck nicht richtig ist, muss Andruckrolle 126 ausgewechselt werden.

### 2. Reibkupplung 116

- Friktionstestcassette (811/CTM) einlegen.
- Die VL-Friktion soll 40 70 p/cm betragen.
- Die SVL-Friktion soll grösser als 60 p/cm sein.

Wenn die VL-Friktion vom vorgenannten Wert abweicht, muss Friktionskupplung 116 ausgewechselt werden.

# 3. Tonhöhenschwankungen/Bandgeschwindigkeit

Die Kontrolle soll mit Kompletten Autoradio wie folgt vorgenommen werden:

- Gerät zum Messen der Tonhöhenschwankungen an den Lautsprecherausgang schalten
- Testcassette SBC133 einlegen und das 3150-Hz-Signal wiedergeben
- Der Jaulwert soll < 0,35% sein.</li>
- Die Bandgeschwindigkeit soll 4,76 s (+3%, -2%) sein; die Geschwindigkeit lässt sich nicht einstellen.

Bei einem übermässigen Jaulwert sollen folgende Bauteile auf ihr richtiges Funktionieren geprüft werden:

- Motor
- Andruckrolle
- Antriebspese (beim Auswechseln die Schwungradseilrolle reinigen)
- Reibkupplung 116
- Schwungrad

# 

# **REGOLAZIONI**

Strumenti richiesti:

- Cassetta campione universale SBC133
- Millivoltmetro AC

#### **Azimuth**

La regolazione dell'azimuth deve essere effettuata sul riproduttore collegato all'autoradio procedendo nel seguente modo:

- Collegare un millivoltmetro all'uscita per altoparlante
- Inserire una cassetta campione SBC133 e riprodurre il segnale a 8 kHz
- Ruotare la vite per la regolazione dell'azimuth (vedere Figura 7) finchè la tensione letta per entrambi i canali sia la più elevata
- Fissare con lacca la vite di regolazione per l'azimuth

# CONTROLLI

Strumenti richiesti:

Dinamometro 50 - 500 gr
 Cassetta campione per la frizione (811/CTM)
 4822 395 80028
 4822 395 30054

Cassetta campione universale 4822 397 30039
 SBC133

- Strumento wow e flutter

# 1. Pressione del rullo preminastro

La pressione esercitata dal rullo pressore sul capstan deve essere compresa tra 250 - 350 gr (vedere Fig. 8). Questa pressione deve essere misurata nel seguente modo:

Mettere l'apparecchio in Play

 Spingere il rullo pressore indietro al punto dato in Figura 8 per mezzo del dinamometro

 Nel punto dove il rullo pressore e il capstan sono liberi la scala del dinamometro darà una certa indicazione

Se<sup>\*</sup>la pressione del rullo preminastro non è corretta sostituire il rullo pressore 126.

# 2. Forza della frizione 116

- Inserire la casetta per il controllo della frizione (811/CTM)
- Riprodurre e leggere l'indicazione sul piattello di trascinamento; deve essere compresa tra 40 ÷ 70 gr/cm
- L'indicazione in avvolgimento veloce deve eccedere i 60 gr/cm

Se in posizione play l'indicazione del piattello di trasciamento non è compresa deve essere sostituita la frizione 116.

#### 3. Wow e Flutter/velocità dei nastro

Questo controllo deve essere effettuato sul riproduttore collegato all'autoradio procedendo nel seguente modo:

- Collegare un misuratore di Wow e Flutter all'uscita per altoparlante
- Inserire la cassetta campione SBC133 e riprodurre il segnale a 3150 Hz
- II valore di Wow e Flutter deve essere < 0,35%</li>
- La velocità deve essere 4,76 cm/sec (+3%, -2%); non è prevista una regolazione semplice.

Nel caso ci sia un valore eccessivo di Wow e Flutter, bisogna controllare le seguenti parti se funzionano in modo corretto:

- Motor
- Rullo pressore
- Cinghia di trascinamento (nel caso di sostituzione, pulire la puleggia del volano)
- Frizione 116
- Volano

4822 397 30039



Fig. 1

| 100 ak  | 4822 532 10929 | 110     | 4822 492 32109 | 120     | 4822 249 30083 | 130     | 4822 492 32105 |
|---------|----------------|---------|----------------|---------|----------------|---------|----------------|
| 101     | 4822 492 32328 | 111     | 4822 492 32107 | 121     | 4822 403 51958 | 131     | 4822 492 62538 |
| 102 a-b | 4822 256 90384 | 112     | 4822 278 90461 | 122 a-b | 4822 520 20334 | 132-127 | 4822 528 60167 |
| 103     | 4822 361 20393 | 113     | 4822 492 62539 | 123     | 4822 492 32103 | 133     | 4822 358 30334 |
| 104     | 4822 522 20231 | 114     | 4822 522 20228 | 124 ac  | 4822 403 51676 | 134     | 4822 522 31429 |
| 105 af  | 4822 403 30366 | 115     | 4822 492 32268 | 125     | 4822 522 20229 | 135 a,d | 4822 277 30704 |
| 106     | 4822 522 20232 | 116 ah  | 4822 528 90443 | 126 ad  | 4822 403 40142 | 136     | 4822 492 32108 |
| 107     | 4822 358 30333 | 117     | 4822 522 31431 | 127-132 | 4822 528 6P167 | 137     | 4822 492 32111 |
| 108 aj  | 4822 403 51959 | 118 a-b | 4822 403 10212 | 128     | 4822 492 32104 | 138     | 4822 492 51602 |
| 109     | 4822 492 32106 | 119     | 4822 256 90507 | 129     | 4822 492 62541 |         |                |



# MAINTENANCE

The cassette mechanism requires periodic cleaning, as well as periodic lubrication of the principal points.

#### 1. Cleaning with alcohol or spirit

- playback head
- capstan
- pressure roller
- belts and pulleys

To clean head, pressure roller and capstan it is also possible to use a drop-in cassette (SBC114 - 4822 389 20015).

#### 2. Lubrication instructions

Refer to exploded view in Figure 1.



#### MAINTENANCE

Le mécanisme de cassette doit être nettoyé régulièrement et graissé à ses points cardinaux.

# 1. Nettoyage à l'alcool ou à l'alcool éthylique

- tête de reproduction
- cabestan
- galet presseur
- courroies et poulies

Pour ce qui est du nettoyage de la tête, du galet presseur et du cabestan on pourra également utiliser la cassette "drop in" (SBC114 - 4822 389 20015).

# 2. Lubrification

Voir le dessin de l'éclaté mécanique en fig. 1.



#### ONDERHOUD

Het cassette mechanisme dient periodiek schoongemaakt en op de belangrijkste punten gesmeerd te worden.

# 1. Schoonmaken met alcohol of spiritus

- weergeefkop
- toonas
- drukrol
- snaren en poelies

Voor het reinigen van kop, drukrol en toonas kan ook de "drop-in" cassette (SBC114 - 4822 389 20015) worden gebruikt.

### 2. Smeervoorschrift

Zie "exploded view" tekening figuur 1.



#### WARTUNG

Der Cassettenteil soll in regelmässigen Zeitabständen gereinigt und an den wichtigsten Stellen geschmiert werden.

# 1. Reinigen mit Alkohol oder Spiritus

- Wiedergabekopf
- Tonwelle
- Andruckrolle
- Pesen und Seilrollen

Zum Reinigen von Kopf, Andruckrolle und Tonwelle kann auch die "drop-in"-Cassette (SBC 114, Code nr. 4822 389 20015) benutzt werden.

# 2. Schmiervorschrift

Siehe Explosionszeichnung in Bild 1.



# **MANUTENZIONE**

La meccanica del registratore richiede pulizie periodiche, come pure periodiche lubrificazioni dei punti principali.

# 1. Pulizia con alcool o spirito

- Testina di riproduzione
- Capstan
- Rullo pressore
- Cinghie e puleggie

Per la pulizia della testina, del rullo pressore e del capstan si può usare la cassetta SBC114 4822 389 20015.

# 2. Istruzioni per la lubrificazione

Fare riferimento all'esploso fig. 1.