

7. April 2016

Aufgabenblatt 1 zu Funktionale Programmierung

Aufgabe 1.1 (Übung)

Definieren Sie eine Funktion uncurry, die zu einer Funktion $f:a\to b\to c$ in Curry-Form die entsprechende Funktion mit Tupel-Argument liefert. Geben Sie den Typ von uncurry an und überprüfen Sie ihn, indem Sie aus der definierenden Gleichung den Typ herleiten.

Aufgabe 1.2 (Übung)

Geben Sie für folgende Funktionen geeignete polymorphe Typen an, sofern dies möglich ist.

flip
$$f x y = f y x$$

strange $f g = g (f g)$
stranger $f = f f$

Aufgabe 1.3 (Übung)

Es seien f und g Funktionen mit folgenden Typen:

```
f :: c -> d
g :: a -> (b -> c)
```

Die Funktion h sei durch folgende Regel definiert:

$$h x y = f (g x y)$$

Welche der folgenden Aussagen ist korrekt?

$$h = f \cdot g$$

$$h x = f \cdot (g x)$$

$$h x y = (f \cdot g) x y$$

Aufgabe 1.4 (Praktikum)

1. Definieren Sie eine Funktion sum1 in Curry-Form, die für eine Funktion f und zwei natürliche Zahlen a und b den Wert des folgenden Ausdrucks berechnet:

$$\sum_{i=a}^{b} f i$$

2. Definieren Sie nun eine Funktion sum2, die für eine Funktion f mit zwei Argumenten und natürliche Zahlen n und m den Wert des folgendes Ausdrucks berechnet:

$$\sum_{i=0}^{n} \sum_{j=0}^{m} f i j$$

f sei hierbei in Curry-Form gegeben. Wenn Sie sich zur Definition von sum2 auf sum1 abstützen, kommen Sie ohne Rekursion aus.

Aufgabe 1.5 (Praktikum)

Die Folge der Fibonacci-Zahlen f_0, f_1, \ldots ist durch die Gleichungen $f_0 = 0, f_1 = 1$ und $f_{n+2} = f_n + f_{n+1}$ für alle $n \ge 0$ definiert.

Definieren Sie eine Funktion fib, die zu einem Argument n den Wert f_n liefert.