研究生现代工程数学 《数理统计》

主讲:李卫国

Mail: liwg@buaa.edu.cn

教材:数理统计(北航, 孙海燕等)

学时:48 课时

第一章 概论

- 1、什么是数理统计
- 2、数理统计的发展进程
- 3、数理统计的应用领域
- 4、数理统计的数学基础:概率论

第1节 数理统计学科简介

1、什么是数理统计

数理统计学 (Mathematical Statistics) 是数学的一个分支学科, 研究怎样有效地收集、整理和分析带有随机性的数据,以对所观察的问题作出推断或预测, 直至为采取一定的决策和行动提供依据与建议。

以概率论为基础, 对随机数据进行

收集

抽样理论方法、抽样调查

整理

描述性统计, 常规统计

分析

建立统计模型

推断

假设检验、预测预报

参数

估计

点估计

区间估计

参数检验

分布检验

主成分 因子分析

判别、聚类

多元回归

一元回归

2、数理统计的发展过程

- ➤ statistics 衍生于
 status国家, statista 政治家
- ➤ 萌芽于"国算学"
- ★ 概率论: 贝努利大数定律 奠定数理统计基础

➤ 20世纪初至二战结束:快速发展

K.Pearson,1857-1936 矩估计. 1900 提出拟合优度卡方统计量 F.Galton,1822-1911 回归分析 R.A.Fisher 1890-1962 抽样理论,方差分析 W.S.Gosset 1928 t分布 (里程碑) E.S.Pearson 1895-1980 假设检验基础

➤ 二战之后:规范深入

U.W.Wishart,1928 发现"维希特"分布 许宝禄 1940年代多元统计奠基工作 G.U.Yule,1925-1930开始了时间序列分析 A.wald,1950年代提出了统计决策理论 1950年代后,贝叶斯学派兴起

➢ 计算机发展的推动 统计学的广泛应用与普及

3、数理统计的应用

- ➤ 国民经济与企业管理
- ➤ 医药行业、医学统计
- > 生物统计、社会统计
- ➤ 科学与工程实验数据处理
- ➤ 数据挖掘与数据仓库
- ➤ 云计算与大数据

4、数学基础:概率论回顾

一、概率空间

- 概率论是研究随机现象统计规律的数学分支。
- 对随机现象观察: 随机试验
- 随机试验的结果: 随机事件(掷骰子)
- 随机事件运算: 交、并、余; 样本点
- 要求运算可以实施 —— 运算封闭性

一、概率空间

- 1、事件域(运算封闭性,规定什么是事件)
- 定义:

设 Ω 是样本空间,F是 Ω 的子集构成的集合类 若满足

一、概率空间

- 1、事件域(运算封闭性,规定什么是事件)
- 定义:
- 性质:可列交、并以及补的运算都封闭
- 可测空间 (Ω,F)
- 举例:

一、概率空间

- 2、概率
- 概率是随机事件发生可能性的度量
- P(A)表示 A 发生的可能性大小
- P(A) 是一个定义在事件域上的"集函数"
- P(A) 是对A的一种度量侧度: 概率侧度
- 规定了概率测度的空间: 概率空间
- •概率的数学定义:"非负、归一、可加"

二、随机变量与分布函数

- 1、随机变量
- 把随机事件与数或数的集合对应起来
- 把随机事件映射到实数的集合
- 比如:
- 在比如:
- 随机变量是从样本空间到实数空间的可测映射
- 保证 $\{w: X(w) \le x\}$ 是事件,对应事件 $\{X \le x\}$

2、分布函数

• 分布函数的定义

$$F(x)=P\{w:X(w)\leq x\}$$
,记为 $P\{X\leq x\}$

- F(x)的性质
 - (1)单调不减
 - (2) 归一化
 - (3)右连续
- 离散分布: 分布列(律)
- 连续分布: 密度函数

4、随机向量的联合分布

- •二维随机向量(X,Y)
- 联合分布 $F(x,y) = P\{X \le x, Y \le y\}$
- 边际分布 $F_X(x)$, $F_Y(y)$
- 协方差 Cov(X,Y) = E(X-EX)(Y-EY)
- 相关系数
- X与Y独立 $F(x,y) = F_X(x) F_Y(y)$ $f(x,y)=f_X(x) f_Y(y)$
- 推广到 n 维分布

三、常用分布(概率模型)

- 1、两点分布(0-1分布)
- 掷币是否正面, 射击是否命中, 考试是否通过
- A是否发生,成功-失败模型
- 贝努利模型

X	0	1
P	1- <i>p</i>	p

$$P{X = x} = p^{x}(1-p)^{1-x}, x = 0, 1$$

2、二项分布 B(n, p)

- 掷n个币正面出现次数
- n次射击命中次数
- n次重复试验中A发生的次数
- n重贝努利模型
- n个两点分布的独立和

$$P{X = k} = C_n^k p^k (1-p)^{n-k},$$

 $k = 0, 1, [], n$

3、离散均匀分布

- 等可能模型
- 掷骰子模型

$$P{X = k} = \frac{1}{n}, k = 1, 2, [], n$$

4、Poisson分布

- 随机点计数模型
- 灾害次数, 顾客流

$$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \ k=1,2,\square$$

5、几何分布

• "首中"模型

$$P{X = k} = p(1-p)^{k-1}, k = 1, 2, \square$$

6、多项分布

• n次足球比赛中"胜平负"次数

$$P\{X_{1} = k_{1} \square , X_{r} = k_{r}\} = \frac{n!}{k_{1}! \square k_{r}!} p_{1}^{k_{1}} \square p_{r}^{k_{r}},$$

$$k_{1} + \square + k_{r} = n$$

- 7、连续均匀分布 U(a,b)
- 区间[a,b]上的等可能模型

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \Box \ \Box \end{cases}$$

- 8、指数分布 E(λ)
- 寿命分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \square \end{cases}$$

- 9、正态分布 N(μ,σ²)
- 最常用的分布函数
- 最自然的分布形态
- 标准正态分布 N(0,1)

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$$

正态分布 $N(\mu,\sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

10、对数正态分布 $N(\mu,\sigma^2)$

- In X 是正态分布
- 寿命分布

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}, \quad x > 0$$

11、伽玛分布 Γ(α,λ)

- 指数分布的推广
- 寿命分布

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha -} e^{-\lambda x}, \quad x > 0$$

12、贝塔分布 Βe(α,β)

$$f(x) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 < x < 1$$

13、Weibull (韦伯, 威布尔) 分布 W(m,λ,γ)

- 伽玛分布的推广
- 寿命分布, 适应性强
- 三参数分布,形状、尺度、位置参数

$$f(x) = \lambda m(x - \gamma)^{m-1} \exp \left\{-\lambda (x - \gamma)^m\right\}, \quad x > \lambda$$

14、统计三大分布 t 分布、卡方分布、F分布

四、极限与极限定理

- 1、随机变量序列的几种极限
- 以概率1收敛:

$$P\{\lim_{n\to\infty} X_n = X\} = 1 \qquad X_n \xrightarrow{a.s} X$$

• 依概率收敛: $X_n \xrightarrow{P} X$ $\lim_{n \to \infty} P\{|X_n - X| \ge \varepsilon\} = 0 \quad \left| \quad \lim_{n \to \infty} P\{|X_n - X| < \varepsilon\} = 1 \right|$

• r 阶收敛:

$$\lim_{n\to\infty} E |X_n - X|^r = 0 \quad X_n \xrightarrow{r} X$$

• 均方收敛: $\lim_{n\to\infty} E|X_n - X|^2 = 0$

• 依分布收敛:

$$F_n(x) \xrightarrow{W} F(x)$$

$$\square$$
 \square X_n \square \square \square \square \square \square \square \square \square

$$X_n \xrightarrow{L} X$$

• 各种收敛性的相互关系

$$X_n \xrightarrow{a.s} X \longrightarrow X_n \xrightarrow{P} X \longrightarrow X_n \xrightarrow{P} X$$

2、大数定律

• 伯努利大数定律:

$$\lim_{n\to\infty} P\{\left|\frac{1}{n}\sum_{k=1}^n X_k - p\right| < \varepsilon\} = 1 \qquad \mu_n \xrightarrow{P} p$$

•辛钦大数定律:

$$\square X_n \square \square \square \square \square \square \square \square \square EX_n = \mu, \square$$

$$\lim_{n\to\infty} P\{\left|\frac{1}{n}\sum_{k=1}^n X_k - \mu\right| < \varepsilon\} = 1 \qquad \overline{X}_n \xrightarrow{P} \mu$$

3、中心极限定理

• 德莫佛-拉普拉斯:

• 林德贝格-勒维:

$$\square X_n \square \square \square \square \square \square \square \square \square EX_n = \mu, Var(x) = \sigma^2 > 0$$

$$\prod_{n \to \infty} P \left\{ \frac{\sum_{k=1}^{n} X_k - \sum_{k=1}^{n} EX_k}{\sqrt{Var\left(\sum_{k=1}^{n} X_k\right)}} \le x \right\} = \Phi(x)$$