Lecture 3 – Deterministic Finite Automata (DFA) COSE215: Theory of Computation

Jihyeok Park

2024 Spring

- Mathematical Preliminaries
 - Mathematical Notations
 - Inductive Proofs
 - Notations in Languages
- 2 Basic Introduction of Scala
 - Basic Features
 - Object-Oriented Programming (OOP)
 - Functional Programming (FP)
 - Immutable Collections (Data Structures)

Contents

1. Deterministic Finite Automata (DFA)

Definition

Transition Diagram and Transition Table

Extended Transition Function

Acceptance of a Word

Language of DFA (Regular Language)

Definition (Deterministic Finite Automata (DFA))

A deterministic finite automaton (DFA) is a 5-tuple:

$$D = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states
- Σ is a finite set of **symbols**
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the **initial state**
- $F \subseteq Q$ is the set of **final states**

Definition (Deterministic Finite Automata (DFA))

A **deterministic finite automaton** (DFA) is a 5-tuple:

$$D = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states
- Σ is a finite set of **symbols**
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the **initial state**
- $F \subseteq Q$ is the set of **final states**

$$D_1 = (\{q_0, q_1, q_2\}, \{\mathtt{a}, \mathtt{b}\}, \delta, q_0, \{q_2\})$$
 $\delta(q_0, \mathtt{a}) = q_1 \qquad \delta(q_1, \mathtt{a}) = q_2 \qquad \delta(q_2, \mathtt{a}) = q_2$ $\delta(q_0, \mathtt{b}) = q_0 \qquad \delta(q_1, \mathtt{b}) = q_0 \qquad \delta(q_2, \mathtt{b}) = q_0$


```
// The type definitions of states and symbols
type State = Int
type Symbol = Char
// The definition of DFA
case class DFA(
    states: Set[State],
    symbols: Set[Symbol],
    trans: Map[(State, Symbol), State],
    initState: State,
    finalStates: Set[State],
)
```



```
// The type definitions of states and symbols
type State = Int
type Symbol = Char
// The definition of DFA
case class DFA(
    states: Set[State],
    symbols: Set[Symbol],
    trans: Map[(State, Symbol), State],
    initState: State,
    finalStates: Set[State],
)
```

Transition Diagram and Transition Table

$$D_1 = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0, \mathbf{a}) = q_1$$
 $\delta(q_1, \mathbf{a}) = q_2$ $\delta(q_2, \mathbf{a}) = q_2$

$$\delta(q_1, \mathtt{a}) = q_2$$

$$\delta(q_2,\mathtt{a})=q_2$$

$$\delta(q_0, b) = q_0$$
 $\delta(q_1, b) = q_0$ $\delta(q_2, b) = q_0$

$$\delta(q_2,b)=q_0$$

Transition Diagram

Transition Table

q	a	Ъ
$ ightarrow q_0$	q_1	q_0
q_1	q 2	q_0
* q 2	q_2	q_0

Definition (Extended Transition Function)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, the **extended transition function** $\delta^*:Q\times\Sigma^*\to Q$ is defined as follows:

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$

Definition (Extended Transition Function)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, the **extended transition function** $\delta^*:Q\times\Sigma^*\to Q$ is defined as follows:

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$

Definition (Extended Transition Function)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, the **extended transition function** $\delta^*:Q\times\Sigma^*\to Q$ is defined as follows:

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$

Definition (Extended Transition Function)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, the **extended transition function** $\delta^*:Q\times\Sigma^*\to Q$ is defined as follows:

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$

Definition (Extended Transition Function)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, the **extended transition function** $\delta^*:Q\times\Sigma^*\to Q$ is defined as follows:

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$

Definition (Extended Transition Function)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, the **extended transition function** $\delta^*:Q\times\Sigma^*\to Q$ is defined as follows:

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$

Definition (Extended Transition Function)

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$ where $x \in \Sigma$, $w \in \Sigma^*$

Definition (Extended Transition Function)

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$ where $x \in \Sigma$, $w \in \Sigma^*$

Definition (Extended Transition Function)

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$ where $x \in \Sigma$, $w \in \Sigma^*$

Definition (Extended Transition Function)

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$ where $x \in \Sigma$, $w \in \Sigma^*$

Definition (Extended Transition Function)

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, xw) = \delta^*(\delta(q, x), w)$ where $x \in \Sigma$, $w \in \Sigma^*$


```
// The type definition of words
type Word = String
case class DFA(...):
  // The extended transition function of DFA
 def extTrans(q: State, w: Word): State = w match
   case "" => q
    case x <| w => extTrans(trans(q, x), w)
// An example transition for a word "baa"
dfa1.extTrans(0, "baa") // 2
// An example transition for a word "aba"
dfa1.extTrans(0, "aba") // 1
```

where <| is a helper function to extract the first symbol and the rest of the word but you do not need to understand the details of how it works.

```
// A helper function to extract first symbol and rest of word
object `<|` { def unapply(w: Word) = w.headOption.map((_, w.drop(1))) }</pre>
```

Acceptance of a Word

Definition (Acceptance of a Word)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, we say that D accepts a word $w \in \Sigma^*$ if and only if $\delta^*(q_0, w) \in F$

Acceptance of a Word

Definition (Acceptance of a Word)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, we say that D accepts a word $w \in \Sigma^*$ if and only if $\delta^*(q_0, w) \in F$

$$\delta^*(q_0, \mathtt{baa}) = q_2 \in F$$

It means that D_1 accepts baa.

Acceptance of a Word

Definition (Acceptance of a Word)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, we say that D accepts a word $w\in\Sigma^*$ if and only if $\delta^*(q_0,w)\in F$

$$\delta^*(q_0,\mathtt{baa})=q_2\in F$$

It means that D_1 accepts baa.

$$\delta^*(q_0,\mathtt{aba})=q_1
ot\in F$$

It means that D_1 does **not accept** aba.


```
case class DFA(...):
    ...
    // The acceptance of a word by DFA
    def accept(w: Word): Boolean =
        finalStates.contains(extTrans(initState, w))

// An example acceptance of a word "baa"
dfa1.accept("baa") // true

// An example non-acceptance of a word "aba"
dfa1.accept("aba") // false
```


Definition (Language of DFA)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, the **language** of D is defined as:

$$L(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$$

Language of DFA (Regular Language)

Definition (Language of DFA)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, the **language** of D is defined as:

$$L(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$$

Definition (Regular Language)

A language L is **regular** if and only if there exists a DFA D such that L(D) = L

$$\delta^*(q_0,\mathtt{baa})=q_2\in {\mathcal F}$$

$$\delta^*(q_0, ext{baa}) = q_2 \in F$$

 $\Rightarrow \quad D_1 ext{ accepts baa}$
 $\Rightarrow \quad ext{baa} \in L(D_1)$

 $\epsilon, \mathtt{a}, \mathtt{b}, \mathtt{ab}, \mathtt{ba}, \mathtt{bb}, \mathtt{aab}, \mathtt{aba}, \mathtt{abb}, \mathtt{bab}, \dots \not\in \mathit{L}(\mathit{D}_1)$

 ϵ , a, b, ab, ba, bb, aab, aba, abb, bab, $\cdots \not\in L(D_1)$ aa, aaa, baa, aaaa, abaa, baaa, bbaa, $\cdots \in L(D_1)$

 $\epsilon,$ a, b, ab, ba, bb, aab, aba, abb, bab, $\cdots \not\in L(D_1)$ aa, aaa, baa, aaaa, abaa, baaa, bbaa, $\cdots \in L(D_1)$

$$\mathit{L}(\mathit{D}_1) = \{\mathit{w}\mathtt{a}\mathtt{a} \mid \mathit{w} \in \{\mathtt{a},\mathtt{b}\}^*\}$$

 ϵ , a, b, ab, ba, bb, aab, aba, abb, bab, $\cdots \not\in L(D_1)$ aa, aaa, baa, aaaa, abaa, baaa, bbaa, $\cdots \in L(D_1)$

$$L(D_1) = \{ waa \mid w \in \{a, b\}^* \}$$

- q_0 represents ϵ or any word ending with b
- q₁ represents any word ending with exactly one a
- q₂ represents any word ending with at least two a's

 $\epsilon,$ a, aa, ba, bb, aaa, aba, abb, baa, bab, bba, $\cdots \not\in \mathit{L}(\mathit{D}_2)$

 ϵ , a, aa, ba, bb, aaa, aba, abb, baa, bab, bba, $\cdots \not\in L(D_2)$ b, ab, aab, aaab, aaaab, aaaaab, aaaaab, $\cdots \in L(D_2)$

 ϵ , a, aa, ba, bb, aaa, aba, abb, baa, bab, bba, $\cdots \not\in L(D_2)$ b, ab, aab, aaab, aaaab, aaaaab, aaaaab, $\cdots \in L(D_2)$

$$L(D_2) = \{a^n b \mid n \ge 0\}$$

 ϵ , a, aa, ba, bb, aaa, aba, abb, baa, bab, bba, $\cdots \not\in L(D_2)$ b, ab, aab, aaab, aaaab, aaaaab, aaaaab, $\cdots \in L(D_2)$

$$L(D_2) = \{a^nb \mid n \ge 0\}$$

- q₀ represents zero or more a's
- q₁ represents zero or more a's followed by b
- q₂ represents any other words

Theorem

The language $L = \{w \in \{0, 1\}^* \mid d(w) \equiv 0 \pmod{3}\}$ is regular (d(w)) is the natural number represented by w in binary).

Proof)

Theorem

The language $L = \{w \in \{0, 1\}^* \mid d(w) \equiv 0 \pmod{3}\}$ is regular (d(w)) is the natural number represented by w in binary).

Proof) You need to construct a DFA D_2 such that $L(D_2) = L$.

Theorem

The language $L = \{w \in \{0, 1\}^* \mid d(w) \equiv 0 \pmod{3}\}$ is regular (d(w)) is the natural number represented by w in binary).

Proof) You need to construct a DFA D_2 such that $L(D_2) = L$. Consider the following DFA D_2 :

Theorem

The language $L = \{w \in \{0, 1\}^* \mid d(w) \equiv 0 \pmod{3}\}$ is regular (d(w)) is the natural number represented by w in binary).

Proof) You need to construct a DFA D_2 such that $L(D_2) = L$. Consider the following DFA D_2 :

- q_0 represents binary format of an integer n s.t. $n \equiv 0 \pmod{3}$
- q_1 represents binary format of an integer n s.t. $n \equiv 1 \pmod{3}$
- q_2 represents binary format of an integer n s.t. $n \equiv 2 \pmod{3}$

Theorem

The language $L = \{a^n b^n \mid n \ge 0\}$ is regular.

You need to construct a DFA D such that L(D) = L.

Theorem

The language $L = \{a^n b^n \mid n \ge 0\}$ is regular.

You need to construct a DFA D such that L(D) = L. However, it is impossible because L is actually not regular.

Theorem

The language $L = \{a^n b^n \mid n \ge 0\}$ is regular.

You need to construct a DFA D such that L(D) = L. However, it is impossible because L is actually not regular.

Then, is it possible to prove that L is not regular?

Theorem

The language $L = \{a^n b^n \mid n \ge 0\}$ is regular.

You need to construct a DFA D such that L(D) = L. However, it is impossible because L is actually not regular.

Then, is it possible to prove that L is not regular?

Yes, it is possible BUT you will learn how to prove it (using Pumping Lemma) later in this course.

Summary

1. Deterministic Finite Automata (DFA)

Definition

Transition Diagram and Transition Table

Extended Transition Function

Acceptance of a Word

Language of DFA (Regular Language)

Examples

Next Lecture

• Nondeterministic Finite Automata (NFA)

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr