Hypothesis Testing – Accuracy Check

Null Hypothesis: There is no relation ship between X and Y.

$$\theta_1 = 0 \Rightarrow Y = \theta_0$$

Alternative Hypothesis: There is some relation ship between X and Y.

$$\theta_1 \neq 0 \Rightarrow Y = \theta_0 + \theta_1 * X$$

- \rightarrow To test null hypothesis, we need to determine whether Θ_1 is sufficiently far from zero.
- \rightarrow The Θ_1 0 will give us the distance from zero, but it would be better if we can find probability of Θ_1 being close to zero. If this probability (p-value) is less than 5%, we can reject null hypothesis.
- → To find the probability, we have to calculate t-statistic. The formula is as below

$$t = \frac{\mathbf{\Theta}_1 - 0}{\mathrm{SE}(\mathbf{\Theta}_1)}$$

 \rightarrow The probability of observing any value equal to |t| is 0 or larger, assuming Θ_1 = 0 (null hypothesis) . We call this probability the p-value.

Mean of the target variable y (sample) $\rightarrow \hat{\mu} = \bar{y}$, where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Standard Error - mean of the target variable (from CLT) $\rightarrow Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{2}$

$$SE(\Theta_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right], \quad SE(\Theta_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

95% Confidence Interval
$$\left[\boldsymbol{\Theta}_1 - 2 \cdot \operatorname{SE}(\boldsymbol{\Theta}_1), \; \boldsymbol{\Theta}_1 + 2 \cdot \operatorname{SE}(\boldsymbol{\Theta}_1) \right]$$

Assessing the Accuracy of the Model

Residual Standard Error: The RSE is an estimate of the standard of the error (epsilon).

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$

The RSE is considered a measure of the lack of fit of the model to the data. If the predictions obtained using the model are very close to the true outcome values—that is, if $\hat{y}_i \approx y_i$ i for $i = 1, \ldots, n$ —then will be small, and we can conclude that the model fits the data very well. On the other hand, if \hat{y}_i is very far from y_i for one or more observations, then the RSE may be quite large, indicating that the model doesn't fit the data well.

$$\mathbf{TSS} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 $RSS = \sum_{i=1}^{n} (y_i - f(x_i))^2$

To calculate R^2 , we use the formula

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)},$$

→ Adjusted R - Squared

$$R_a^2 = 1 - \left[\left(\frac{n-1}{n-k-1} \right) \times (1-R^2) \right]$$

where:

= number of observations

k = number of independent variables

 $R_a^2 = adjusted R^2$

 \rightarrow To find probability we need to find standard error of Θ_1

Residual Standard Error (RSE) $\sum_{i=1}^{n} (\hat{y} - y_i)^2 / (n-2)$

$$\sum_{i=1}^{n} (\hat{y} - y_i)^2 / (n-2)$$

 \rightarrow Then calculate t-statistic (measure of standardization that Θ_1 is away form zero)

t-statistic =
$$(\theta_1 - 0)/RSE$$

 \rightarrow Now we can find the probability of Θ_1 being close to zero by looking into t-Distribution table

$$SE(\hat{\boldsymbol{\theta}}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right], \quad SE(\hat{\boldsymbol{\theta}}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Regression Analysis – Multiple regression

Regression Analysis: The goal of regression analysis is to describe the relationship between one set of variables, called the dependent variables, and another set of variables, called independent or explanatory variables.

If the relationship between the dependent and explanatory variable is linear, that's linear regression. For example, if the dependent variable is y and the explanatory variables are x_1 , x_2 , we would write the following linear regression model:

$$y = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + \epsilon$$

 θ_1 is associated with x_1 , θ_2 is associated with x_2 , ϵ is the error due to random variation or other factor.