Step-1

Consider the matrix equation AB = C

The objective is to find a formula for A^{-1} .

Step-2

Multiplying AB = C with A^{-1} both sides on left side gives,

$$A^{-1}AB = A^{-1}C$$

$$A^{-1}AB = A^{-1}C$$

$$IB = A^{-1}C$$

$$B = A^{-1}C$$
(Since $IB = B$)

Again, multiplying with C^{-1} on right sides gives

$$BC^{-1} = A^{-1}CC^{-1}$$

 $BC^{-1} = A^{-1}(I)$ (Since $CC^{-1} = I$)
 $BC^{-1} = A^{-1}$

Hence the formula for A^{-1} is $A^{-1} = BC^{-1}$

Step-3

Consider the matrix equation PA = LU

The objective is to find a formula for A^{-1} .

Step-4

Multiplying right side of PA = LU with A^{-1} on both sides obtain,

$$PAA^{-1} = LUA^{-1}$$

 $PI = LUA^{-1}$ Since $AA^{-1} = I$
 $P = LUA^{-1}$

Multiplying left side of $P = LUA^{-1}$ with $U^{-1}L^{-1}$ on both sides obtain,

$$U^{-1}L^{-1}P = U^{-1}L^{-1}LUA^{-1}$$

$$U^{-1}L^{-1}P = U^{-1}(L^{-1}L)UA^{-1}$$

$$U^{-1}L^{-1}P = U^{-1}IUA^{-1}$$
Since $L^{-1}L = I$

$$U^{-1}L^{-1}P = U^{-1}UA^{-1}$$
Since $IU = U$

$$U^{-1}L^{-1}P = IA^{-1}$$
Since $U^{-1}U = I$

$$U^{-1}L^{-1}P = A^{-1}$$

$$A^{-1} = U^{-1}L^{-1}P$$

Hence, the formula for A^{-1} is $A^{-1} = U^{-1}L^{-1}P$.