Concordia University

Department of Computer Science and Software

Engineering

SOEN 331 - S and U Introduction to Formal Methods for Software Engineering

Assignment 3 - Solutions

Extended Finite State Machines

Team 19 - Section U

Samuel Boaknin Ryan Leyland Saleha Tariq

40009692 40015165 40006997

Meng Susana Ung

40099729

Due Date: April 9, 2021

1 Washing Machine formal specification

The EFSM of the washing machine is the tuple $S = (Q, \Sigma_1, \Sigma_2, q_0, \Lambda)$, where

$$Q = \{ \text{off, on} \}$$

$$\Sigma_1 = \{ \text{turn on, turn off} \}$$

$$\Sigma_2 = \{\text{beep, turn light off}\}\$$

 q_0 : off

 Λ : Transition specifications

- $1. \rightarrow off$
- 2. $off \xrightarrow{\text{turn on}} on$
- 3. on $\xrightarrow{\text{turn off / (beep; turn light off)}} off$

As on is a composite state, it is defined as the tuple $S = (Q, \Sigma_1, \Sigma_2, q_0, \Lambda)$, where

$$Q = \{ \text{operating, servicing} \}$$

$$\Sigma_1 = \{ \text{after (10 s)}, \text{ service signal [idle]}, \text{ machine fixed} \}$$

$$\Sigma_2 = \{\text{blinking, long beep}\}$$

 q_0 : operating

 Λ : Transition specifications

- 1. $\xrightarrow{\text{after (10 s) / (blinking; long beep)}} operating$
- 2. operating $\xrightarrow{\text{service signal [idle]}} service$
- 3. $service \xrightarrow{\text{machine fixed}} operating$

As operating is a composite state, it is defined as the tuple $S = (Q, \Sigma_1, \Sigma_2, q_0, \Lambda)$, where

 $Q = \{\text{idle, standby, active}\}$

 $\Sigma_1 = \{ \text{light on, start signal or finish button, power off, power on, completion, cancel, cancel [setting]} \}$

 $\Sigma_2 = \{ \text{turn light on, clear settings, unlock door} \}$

 q_0 : idle

 Λ : Transition specifications

- 1. $\xrightarrow{\text{light on / turn light on}} idle$
- 2. $idle \xrightarrow{\text{start signal or finish button}} active$
- 3. $active \xrightarrow{cancel} idle$
- 4. $active \xrightarrow{\text{completion / unlock door}} idle$
- 5. $active \xrightarrow{\text{cancel [setting] / clear settings}} idle$
- 6. $active \xrightarrow{power off} standby$
- 7. $standby \xrightarrow{power on} active$

The UML state diagram is shown in Figure 1.

As active is a composite state, it is defined as the tuple $S = (Q, \Sigma_1, \Sigma_2, q_0, V, \Lambda)$, where

```
Q = \{\text{setting, washing, rinse, spin}\}
\Sigma_1 = \{ \text{start-finish, after (3 min), after (2 min)} \}
\Sigma_2 = \{ lock door \}
q_0: setting
V: door = \{open, closed\}
\Lambda: Transition specifications
     1. \rightarrow setting
    2. setting \xrightarrow{[\text{door is closed}] \text{ start-finish / lock door}} washing
     3. washing \rightarrow rinse
    4. rinse \xrightarrow{\text{after (3 min)}} spin
    5. spin \xrightarrow{after (2 min)}
The EFSM of the washing state is the tuple S = (Q, \Sigma_1 q_0, V, \Lambda), where
Q = \{\text{heating, longwash, shortwash}\}
\Sigma_1 = \{ \text{after (2 min), after (30 min), after (10 min)} \}
q_0: heating
V: \text{currentTemp, desiredTemperature: } \mathbb{R}, \text{ mode} = \{\text{short, long}\}
\Lambda: Transition specifications
     1. \rightarrow heating
```

5. $longwash \xrightarrow{after (30 \text{ min})}$ 5. $shortwash \xrightarrow{after (10 \text{ min})}$

The UML state diagram is shown in Figure 2.

2. $heating \xrightarrow{\text{[ct < desiredTemp] after (2 min)}} heating$

3. $heating \xrightarrow{\text{[ct } \ge \text{ desiredTemp] [mode is long] after (2 min)}} longwash$

4. $heating \xrightarrow{[\text{ct} \ge \text{desiredTemp}] \text{[mode is short] after (2 min)}} shortwash$

2 UML state diagrams

Figure 1: Washing Machine

Figure 2: Washing Machine (Active state)