Structure of pHs RLC

Antoine $Falaize^1$ and John Doe^2

¹Project-team S3*, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France ²Project team S3[†], STMS, IRCAM CNRS UPMC (UMR 9912), 1 Place

 $^2 \rm Project\text{-}team~S3^{\dagger},$, STMS, IRCAM-CNRS-UPMC (UMR 9912),
, 1 Place Igor-Stravinsky, 75004 Paris, France

June 10, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
ℓ_1	IN	electronics.source	('A', 'ref')	'type': 'voltage'
ℓ_2	R1	electronics.resistor	('A', 'B')	'R': ('R1', 1000.0)
ℓ_3	R2	electronics.resistor	('B', 'C')	'R': ('R2', 1000.0)
ℓ_4	L	electronics.inductor	('B', 'C')	'L': ('L', 0.05)
ℓ_5	С	electronics.capacitor	('C', 'ref')	'C': ('C', 2e-06)

 $\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;$ $\dim(\mathbf{w}) = n_{\mathbf{w}} = 2;$ $\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;$ $\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$

^{*}http://s3.ircam.fr

[†]http://s3.ircam.fr

Figure 1: Graph of system RLC.

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\mathrm{L}} \\ x_{\mathrm{C}} \end{pmatrix}$$
;
Dissipation variable $\mathbf{w} = \begin{pmatrix} w_{\mathrm{R1}} \\ w_{\mathrm{R2}} \end{pmatrix}$;
Input $\mathbf{u} = \begin{pmatrix} u_{\mathrm{IN}} \end{pmatrix}$;
Output $\mathbf{y} = \begin{pmatrix} y_{\mathrm{IN}} \end{pmatrix}$;

3 Constitutive relations

$$\begin{split} & \text{Hamiltonian } \, \mathtt{H}(\mathbf{x}) = \frac{0.5}{L} \cdot x_{\mathrm{L}}^2 + \frac{0.5}{C} \cdot x_{\mathrm{C}}^2; \\ & \text{Hamiltonian gradient } \, \nabla \mathtt{H}(\mathbf{x}) = \left(\begin{array}{c} \frac{1.0}{L} \cdot x_{\mathrm{L}} \\ \frac{1.0}{C} \cdot x_{\mathrm{C}} \end{array} \right); \end{split}$$

Dissipation function $\mathbf{z}(\mathbf{w}) = \begin{pmatrix} \frac{w_{\mathrm{R1}}}{\mathrm{R1}} \\ \mathrm{R2} \cdot w_{\mathrm{R2}} \end{pmatrix};$ Jacobian of dissipation function $\mathcal{J}_{\mathbf{z}}(\mathbf{w}) = \begin{pmatrix} \frac{1}{\mathrm{R1}} & 0 \\ 0 & \mathrm{R2} \end{pmatrix};$

4 System parameters

4.1 Constant

parameter	value (SI)
С	2e-06
R1	1000.0
R2	1000.0
L	0.05

$$\mathbf{J} = \begin{pmatrix} 0 & 0 & 0 & 1.0 & 0 \\ 0 & 0 & 1.0 & 0 & 0 \\ 0 & -1.0 & 0 & -1.0 & 1.0 \\ -1.0 & 0 & 1.0 & 0 & 0 \\ 0 & 0 & -1.0 & 0 & 0 \end{pmatrix};$$