Exercice 1: (5 points)

- 1. Calculer la dérivée f'(x) de la fonction $f(x) = x^3 + \frac{9}{2}x^2 + 6x + 4$
- 2. Décomposer f'(x) en un produit de facteurs de degré 1 et étudier son signe.
- 3. Montrer que la suite (u_n) définie pour tout entier naturel par $u_n = n^3 + \frac{9}{2}n^2 + 6n + 4$ est strictement croissante.

Correction

- 1. $f'(x) = 3x^2 + 9x + 6$ (1 pt)
- 2. f'(x) = 3(x+1)(x+2), en effet, $\Delta = 9$, $x_1 = \frac{-9-3}{6} = -2$, $x_2 = \frac{-9+3}{6} = -1$. (2 pts) f'(x) > 0 sur $]-\infty; -2[\cup]-1; +\infty[$, f'(x) < 0 sur]-2-1[.(1 pt)
- **3.** La fonction f est strictement croissante sur l'intervalle $[0; +\infty[$ donc la suite $(u_n = f(n))$ est strictement croissante. (1 pt)

Exercice 2: (8 points)

- 1. Soit (u_n) une suite arithmétique de raison 3 avec $u_0 = 4$. Calculer la somme S des 26 premiers termes de la suite (u_n) .
- 2. Démontrer que la suite (w_n) définie pour tout entier n par $w_n = 3(5)^n$ est géométrique et donner sa raison et son premier terme.
- 3. Démontrer que la suite (x_n) défine pour tout entier n par $x_n = n^2$ n'est ni arithmétique ni géométrique.
- 4. Calculer la somme des 10 premiers termes de la suite géométrique de premier terme $v_0 = 3$ et de raison 2.

Correction

- 1. $2S = (u_0 + u_{25}) \times 26 = (4 + (4 + 3 * 25)) \times 26 = 83 \times 26 = 2158$ d'où S = 1079. (2 pts)
- 2. $w_{n+1} = 3(5)^{n+1} = 3(5)^n \times 5 = w_n \times 5$. (1 pt) La suite est bien géométrique de raison 5 et de premier terme $w_0 = 3$. (1 pt)
- 3. $x_1 = 1$, $x_2 = 4 = x_1 + 3 = x_1 \times 4$. $x_3 = 9 \neq 7 = x_2 + 3$ et $x_3 \neq 16 = x_2 \times 4$. Ainsi, (u_n) n'est ni arithmétique ni géométrique. (2 pts)
- **4.** $v_0 + ... + v_9 = v_0(2^0 + ... + 2^9) = v_0 \frac{1 2^{10}}{1 2} = 3 \frac{2^{10} 1}{2 1} = 3 \times 1023 = 3069.$ (2 pts)

Exercice 3: (4 points)

Réaliser un algorithme permettant de calculer et afficher les inverses des 40 premières entiers (de $\frac{1}{1}$ à $\frac{1}{40}$). Correction

Pour n allant de 1 à 40 faire

x prend la valeur $\frac{1}{n}$

Afficher x

fin pour

Exercice 4: (3 points)

Soit (u_n) la suite définie par récurrence par $u_0 = 2$ et pour tout entier n par $u_{n+1} = 2u_n + 1$. On admet que pour tout entier naturel n, $u_n > 0$.

1. Démontrer que le suite (u_n) est strictement croissante.

- 2. Trouver une forme explicite pour la suite (u_n) . On pourra introduire la suite auxiliaire $v_n = u_n + 1$.
- 1. $u_{n+1} u_n = u_n + 1 > 0$ pour tout entier naturel. (u_n) est donc strictement croissante. (1 pt)
- 2. $v_{n+1} = u_{n+1} + 1 = 2u_n + 1 + 1 = 2u_n + 2 = 2(u_n + 1) = 2v_n$. La suite (v_n) est géométrique de raison 2 et de premier terme $v_0 = u_0 + 1 = 3$. D'où $v_n = 3 \times 2^n$ et $u_n = 3 \times 2^n 1$. (2 pts)