Assignment 3 (CFG & PDA)

Instructions

- The assignment is submitted in groups of minimum 2 and maximum 4 students from the same lab or the same TA.
- The Deadline for submission is on saturday 11/5 at 11:59 pm.
- Submission will be on Google Classroom. No late submission, or through email submission is allowed.
- Please submit one compressed folder containing 4 files (PDF file for CFG rules, Java code for CFG, PDF file for PDA diagrams, Java code for PDA).
 The folder name should follow this structure:
 GROUP_ID1_ID2_ID3_ID4.zip.
- In case of Cheating, you will get a negative grade whether you give the code to someone, take the code from someone/internet, or even send it to someone for any reason.

Requirements

- Solve all of the PDA & CFG problems in **Java Language.**
- For each problem in CFG part, you should submit the CFG rules and Java code that solves it.
- For each problem in PDA part, you should submit the **drawn PDA** and **Java code** that solves it.
- The Java program will take ONE input text file containing the input values for each problem, the program must save the output of each problem
- in ONE output text file following the required format for each problem.
- No coding is required in the conversion from CFG to PDA.

CFG

- 1. Write a CFG for accepting an equal number of a's and b's.
- 2. Write a CFG for accepting a number of a's is twice the number of b's.
- 3. Write a CFG for accepting a palindrome $\Sigma = \{a,b\}$.
- 4. Write a CFG for accepting a language $\{a^{2n+3}b^n \mid n \ge 0\}$.

**Notes

- empty string is accepted for all previous CFGs.
- CFG rule's will be hardcoded in your program.
- Input & output structure should be like that:

Input:	output:	Input:	output:
1	True	2	True
ababab	True	aab	False
babaaabb	False	abb	False
bab	False	aabb	True
aaaabbb	raise	ababaa	Tiue
end		end	

PDA

1. Design a PDA for accepting a language $\{a^nb^n n \ge 0\}$

Input string: Output:

1	1
aabb	accepted
aaabbb	accepted
aab	not accepted
aabbb	not accepted
end	end

2. Design a PDA for accepting a language $\{a^{2n}b^{3n} n \ge 1\}$.

Input string:

Output:

2	2
aabbb	accepted
aaaabbbbbb	accepted
abbb	not accepted
aabb	not accepted
end	end

3. Design a PDA for accepting a language that consists of strings of balanced left and right brackets.

Input string:

Output:

3	3
{{}}	accepted
{} { {{} {{}}} }}	accepted
{}{{}	not accepted
{{}	not accepted
end	end

4. Design a PDA for accepting a language $\{a^{n+m}b^nc^m| n, m>=1\}$.

Input string: Output:

4	4
4	4
aabc	accepted
aaabbc	accepted
aabbbcc	not accepted
end	end

Convert the following CFG to PDA: (2 Marks bonus)

- 1. $S \rightarrow aS \mid aSbS \mid a$
- 2. $S \rightarrow XaaX$

$$X \,\to\, aX \mid bX \mid \lambda$$