Blockchain Algorithms with Random Committee Selection

2025/2/4

Institute of Science Tokyo, Défago Lab. Yusuke ICHIKI (市来優典)

Background

Problem

Byzantine Fault Tolerance[12,3]

- Unpredictable & malicious behavior
- Consensus even with faulty nodes

Problem

Byzantine Fault Tolerance[12,3]

- Unpredictable & malicious behavior
- Consensus even with faulty nodes

In larger systems, degrade

- Network overhead
- Resource consumption
- Latency

By selecting a committee,

- Reduce communication overhead
- Decrease computational cost
- Improve latency

There are risks such as

- Majority of malicious nodes
- Target for attacks
- Selecting bias

Committee selection

Committee selection

Committee selection

Related Work

Committee selection mechanisms for blockchain

Committee selection	Predictability	Committee members	Message complexity
Round robin ^[3]	Deterministic and highly predictable	Fixed size and unanimous	Computed locally
Probabilistic selection ^[4]	Unpredictable	Cannot be fixed	Depends on BFT algorithms
This work: Random beacon ^[7]	Unpredictable before beacon generated	Fixed size and unanimous	Depends on BFT algorithms

Research Questions

RQ1: How to apply random, unanimous, and unpredictable committee selection?

- RQ1.1: Delegate selection for verification
- RQ1.2: " for block proposal

RQ2: How to improve scalability and performance?

- RQ2.1: Large systems by using committee selection
- RQ2.2: Processing speed of transactions

Combine Random Beacon

What is random beacon^[13]?

- Mechanism for generating unbiased and random numbers
- Verifiable with signatures

Collect signatures **Output** (random number) σ_r

Properties for $B_r \& \sigma_r$

Unpredictedblibity

- Consistency
- Robustnesss
- Uniquemesss
 Single unique σ_r for each B_r

Signature Scheme

How to secure randomness and unpredictability?

Utilize a threshold signature scheme^[7]

Committee Selection

Select committees from random beacon's output

• Use **uniformly random** numbers: $c_k = H(r, \sigma_{r-1}, k)$

Existing committee selection^[3,4]

[3] M. Castro+. ACM Trans. Comput. Syst., 2002. [4] J. Chen+. TCS, 2019.

Existing committee selection^[3,4]

Approach

Approach

Research Questions

RQ1: How to apply random, unanimous, and unpredictable committee selection?

- **™**Combine **random beacon** with BFT algorithms
 - Only do committees enter consensus process, i.e., less messages.

RQ2: How to improve scalability and performance?

Evaluate performance of committee selection in a large system

Evaluation

BFT algorithms used in simulation

PBFT^[3]: $O(n^2)$ messages

HotStuff- $2^{[14]}$: O(n) messages

[3] M. Castro+. *ACM Trans. Comput. Syst.*, 2002. [14] D. Malkhi+. *Cryptology ePrint Archive*, 2023.

Evaluation

Simulation settings: microgrid system^[1]

- Parameters
 - 1000 smart meters: record trades and send information
 - 10% are faulty
 - Transaction size: 512 bytes
 - ∘ **Block size:** 64 KB ~ 16 MB
- Metrics
 - Throughput:
 Rate at which the system commits transactions
 - Latency:
 Delay between block proposal and finalization

Simulation on OMNeT++[16]

Results

Verifying committee selection

- Less messages, but...
- Committee does not impact on speed due to faulty proposers.
- What about multiple proposers?

Results

Proposing committee selection

- Improve on both throughput & latency
- Less timeouts
- Performance differs when block size >4 MB.
- Network overhead for proposals?

Results

Under poor network condition

- Impact of block size gets bigger as num. of proposers is bigger.
- Network overhead makes verification difficult
- Maximum size for consensus depends on **compexity** of BFT algorithms.

Conclusion

- **RQ1:** How to apply random, unanimous, and unpredictable committee selection?
- **™**Combine **random beacon** with BFT algorithms
 - Only do committees enter consensus process, i.e., less messages.
- **RQ2:** How to improve scalability and performance?
- **✓**Scalability improves with **verifying committee selection**.
- △Performance improves with multiple proposers with a good network condition.

Open Question

• Overhead for reorganizing a round from timeout is heavy. How to reduce it?

Appendix

Approach

Combine random beacon with BFT algorithms Select committees from random beacon's output

- $\circ H(\cdot)$: Hash function
- P_r : proposing committee, n_P : size of P_r
- $V_{r,1}, V_{r,2}$: verifying committees, n_V : size of $V_{r,1}, V_{r,2}$

$$\begin{cases} P_r = \{c_0 \bmod n, \dots, (c_0 + n_P - 1) \bmod n\} \\ V_{r,1} = \{c_1 \bmod n, \dots, (c_1 + n_V - 1) \bmod n\} \ \left(c_k = H(r, \sigma_{r-1}, k)\right) \\ V_{r,2} = \{c_2 \bmod n, \dots, (c_2 + n_V - 1) \bmod n\} \end{cases}$$

Evaluation

Committee size

- When n = 1000 and f = 100,
- Size for two verifying committees with one in a million chances of corruption in the same round, is ≥ 22 .
- Size for either of the committees with one in a million chances of corruption, is ≥ 51 .