Statistical Literacy — MINT

Lecture 11: Linear Multivariate Regression (and some special cases), OLS assumptions

Rémi Viné

The Graduate Institute | Geneva

December 4th, 2023

Outline

Housekeeping

Multivariate regression

Slight refinements: binary and nominal variables

Assumptions

Housekeeping

- ▶ Problem set 11 (last one!) is now available
- The mock exam will be available today at 4pm

What for?

- ► A univariate analysis tends to be poor, *e.g.*, is education the *only* factor playing a role on wage?
 - Most likely not!
 - Experience, sector, country, size of company, share of blue collars, *etc*.

What for? The Simpson's paradox

Missing some explanatory variables can lead to opposite relationships because of *confounding factors*

New interpretation of estimators

- ► Multivariate regressions add explanatory variables (there are *k* explanatory variables)
 - $y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k + e$
 - Now, the interpretation of an estimated coefficient requires to fix all the other explanatory variables **ceteris paribus**
 - For a change of x_2 by one unit, the corresponding change of y is by b_2 , provided that x_1 , x_k and all other explanatory variables but x_2 are unchanged

New model fit: the adjusted R^2

- Incorporating variables can, randomly, capture some variance
- \blacktriangleright The R^2 can be artificially inflated just because of this
- lacktriangledown Hence, correct the $R^2=\frac{ExplainedVariance}{UnexplainedVariance}$ by the number of estimated coefficients (no need to remember the formula by heart):

Adjusted
$$R^2 = 1 - (1 - R^2) \frac{n-1}{n-k-1}$$

- $ightharpoonup R^2 \uparrow \Longrightarrow Adjusted R^2 \uparrow$
- \triangleright $n \uparrow \Longrightarrow Adjusted R^2 \uparrow$
- $\triangleright k \uparrow \Longrightarrow Adiusted R^2 \downarrow$

Selection of the best model

- ► What is best?
 - Include all possible variables?
 - Only include the variable(s) of interest?
- In practice, one can use backward selection or forward selection to keep only the most relevant variables (statistically-wise)
- ▶ **Beware**: a coefficient strongly significant statistically speaking may not be strong in magnitude
 - ▶ E.g., imagine a coefficient between monthly wage in CHF (Y) and education in years (X) of 0.003 and a p-value < 0.00
 - ► Then the statistical significance can be deemed as strong, but the link is weak in magnitude (to more education does correspond higher wages but only marginally higher)

Univariate & multivariate regressions: a few changes

	Univariate regression	Multivariate regression	
Regression equation	$y = b_0 + b_1 x_1 + e$	$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k + e$	
Interpretation b_0	y when $x_1=0$ (only meaningful if 0 is in the range of x_1)	y when $x_1 = = x_k = 0$ (virtually meaningless)	
Interpretation b_1	Δy when $\Delta x_1=1$	Δy when $\Delta x_1=1$ with all other x_j constant (change of y with one x , ceteris paribus)	
Inference on b coefficients $(Slope = 0?)$	$CV = t_{\alpha/2}^{n-2}$ $test - statistic = \frac{b_1 - 0}{\frac{b_1}{\sqrt{n}}}$	$CV = t_{\alpha/2}^{n-k-1}$ $test - statistic = \frac{b_k - 0}{\frac{2}{\sqrt{n}}}$	
R-squared	Baseline R-squared	Adjusted R-squared (needed to account for addition of new variables)	
F-test	Not very useful as close to inference on b_1	Very useful to select the best model	

Example of model selection

Backward elimination: drop one by one non-significant variables (for a given α , here 5%)

	Explained variable: Share of deaths by homicide, percent			
OLS models	Model 1	Model 2 (2)	Model 3 (3)	Model 4 (4)
	(1)			
Per capita annual CO2 emissions	0.0066	0.0128	0.0170	
	(0.0402)	(0.0389)	(0.0183)	
Corruption index	-0.0159**	-0.0133**	-0.0135**	-0.0112**
	(0.0072)	(0.0060)	(0.0058)	(0.0052)
Per capita annual GHG emissions	0.0050	0.0032		
	(0.0264)	(0.0262)		
Gini coefficient	8.3288***	8.1905***	8.2393***	8.1489***
	(1.3406)	(1.3202)	(1.2537)	(1.2493)
Mean daily income (\$)	0.0064			
	(0.0101)			
const	-1.6128***	-1.6023***	-1.6039***	-1.5837***
	(0.5859)	(0.5845)	(0.5825)	(0.5818)
Observations	156	156	156	156
R^2	0.2922	0.2903	0.2902	0.2862
Adjusted R^2	0.2686	0.2715	0.2762	0.2768
F Statistic	12.3835*** (df = 5.0; 150.0)	15.4389*** (df = 4.0; 151.0)	20.7145*** (df = 3.0; 152.0)	30.6669*** (df = 2.0; 153.0)

Note: *p<0.1; **p<0.05; ***p<0.01

Note 2: Standard errors in parentheses

- Do not forget the units (also to get a sense of magnitudes)!
 - Emissions in tons, income in USD, Gini is an indicator between zero (perfect equality) and 1 (perfect inequality), corruption index is an indicator between 0 (high perceived corruption) to 100 (no corruption perceived)

Multivariate analysis: Interpret and infer

	Explained variable: Share of deaths by homicide, percent			
OLS models	Model 1 (1)	Model 2 (2)	Model 3 (3)	Model 4 (4)
	(0.0402)	(0.0389)	(0.0183)	
Corruption index	-0.0159**	-0.0133**	-0.0135**	-0.0112**
	(0.0072)	(0.0060)	(0.0058)	(0.0052)
Per capita annual GHG emissions	0.0050	0.0032		
	(0.0264)	(0.0262)		
Gini coefficient	8.3288***	8.1905***	8.2393***	8.1489***
	(1.3406)	(1.3202)	(1.2537)	(1.2493)
Mean daily income (\$)	0.0064			
	(0.0101)			
const	-1.6128***	-1.6023***	-1.6039***	-1.5837***
	(0.5859)	(0.5845)	(0.5825)	(0.5818)
Observations	156	156	156	156
R^2	0.2922	0.2903	0.2902	0.2862
Adjusted R ²	0.2686	0.2715	0.2762	0.2768
F Statistic	12.3835*** (df = 5.0; 150.0)	15.4389*** (df = 4.0; 151.0)	20.7145*** (df = 3.0; 152.0)	30.6669*** (df = 2.0; 153.0

Note: *p<0.1; **p<0.05; ***p<0.01
Note 2: Standard errors in parentheses

- In model 1, when the corruption index increases by 1 unit, all other explanatory variable equal, the corresponding change is a decrease in the share of death due to homicide by 0.0159 percentage points
- ▶ This predictor is statistically significant for $\alpha=5\%$ but not for $\alpha=1\%$

Multivariate analysis: Predict

OLS models	Explained variable: Share of deaths by homicide, percent			
	Model 1 (1)	Model 2 (2)	Model 3 (3)	Model 4 (4)
	(0.0402)	(0.0389)	(0.0183)	
Corruption index	-0.0159**	-0.0133**	-0.0135**	-0.0112**
	(0.0072)	(0.0060)	(0.0058)	(0.0052)
Per capita annual GHG emissions	0.0050	0.0032		
	(0.0264)	(0.0262)		
Gini coefficient	8.3288***	8.1905***	8.2393***	8.1489***
	(1.3406)	(1.3202)	(1.2537)	(1.2493)
Mean daily income (\$)	0.0064			
	(0.0101)			
const	-1.6128***	-1.6023***	-1.6039***	-1.5837***
	(0.5859)	(0.5845)	(0.5825)	(0.5818)
Observations	156	156	156	156
R^2	0.2922	0.2903	0.2902	0.2862
Adjusted R ²	0.2686	0.2715	0.2762	0.2768
F Statistic	12.3835*** (df = 5.0; 150.0)	15.4389*** (df = 4.0; 151.0)	20.7145*** (df = 3.0; 152.0)	30.6669*** (df = 2.0; 153.0

Note: p<0.1; p<0.05; p<0.01Note 2: Standard errors in parentheses

- In model 4, for a Gini coefficient =0.49 and a corruption index =35 (the case of Brazil), the predicted share of deaths due to homicides is
 - $\hat{y} = -1.5827 0.0112 \times 35 + 8.1489 \times 0.49 \approx 2.02\%$
 - \blacktriangleright The observed share of deaths by homicide is 4.67% so the model underestimates the deaths by homicide in Brazil

Binary (or dichotomous) variables

- Assume the following model is run: $Wage = b_0 + b_1 YearsEducation + b_2 WhiteCollar + e$
 - ► Wage and YearsEducation are numerical variables
 - ► WhiteCollar, is a binary variable: it is 0 if the individual is a blue collar and 1 if the individual is a white collar
 - \blacktriangleright b_2 captures the predicting role of being a white collar as compared to blue collar in the wage of the individual
 - Here, the interpretation of the intercept becomes more intuitive: b_0 is the predicted wage when the individual has no education and is a blue collar $(y = b_0 + b_1 \times 0 + b_2 \times 0 + e)$
 - For uneducated white collars (= 1), the predicted wage is $b_0 + b_2$
- \Rightarrow Binary variables are very frequently used and allow to study the heterogeneity of a relationship (e.g., \rightarrow treated versus non-treated)

Nominal variables

- ► The heterogeneity of the relationship might relate to more than two categories (sector worked, type of job, *etc.*)
- Trick: create as many binary variables as categories and include all but one in the OLS
 - Do you see why all categories but one?
- Say, there are 4 sectors (A, B, C, D) in the economy, then the regression equation could be:

$$Wage = b_0 + b_1 YearsEducation + b_2 B + b_3 C + b_4 D + e$$

Example of a multivariate regression with a categorical variable

Explained variable: Share of deaths by homicide, perce		
	(1)	
Corruption index	-0.0161***	
	(0.0049)	
Gini coefficient	4.6777***	
	(1.3346)	
Asia	0.0895	
	(0.2271)	
Europe	0.2061	
	(0.2758)	
North America	2.3088***	
	(0.2891)	
Oceania	0.1253	
	(0.4996)	
South America	1.7068***	
	(0.3315)	
const	-0.4691	
	(0.5993)	
Observations	156	
R^2	0.5375	
Adjusted R^2	0.5156	
Residual Std. Error	0.9421(df = 148)	
F Statistic	24.5695*** (df = 7.0; 148.0)	

Note: *p<0.1; **p<0.05; ***p<0.01
Note 2: Standard errors in parentheses

- "Africa" is the reference region
- Compared to Africa, the share of death by homicide is higher (give the specific value in percentage points) in the Americas
- Compare this model, and model (4)
 - Adjusted R^2 and F-statistic

OLS Assumptions

➤ So far, we have avoided a crucial point: what are the underlying assumptions of OLS, and why do they matter?

OLS is BLUE

Best Linear Unbiased Estimator (BLUE)

- If the 4 assumptions are met, then OLS is the BLUE
 - → This is called the Gauss-Markov theorem
 - Unbiased means that the predicted estimator is, in expected value, to be the population parameter, here: $E[\hat{eta}_1] = eta_1$

The assumptions are:

- 1. There is a linear relationship between the explanatory variable(s) and the explained variable
- 2. The errors and the explanatory variables are not correlated
- 3. The explanatory variables are not *too* linearly linked (correlated) with each other
- 4. The errors look random

1. OLS Assumption and diagnostics

Linearity: only a visual verification (not a statistical test!)

by Dauglas Higinbotham in Python inspired by https://xkcd.com/2048

1. OLS Assumption and diagnostics

Linearity

- There is a relationship between the two variables, but mostly a non-linear relationship
- In such case, $y = b_0 + b_1 x + e$ is not a suitable model
- ▶ BUT, a **transformed model** $y = b_0 + b_1 x^2 + b_2 x + e$ would be linear

- In practice, transforming a model is very common to approach linearity
- The most common transformation is the logarithm transformation

1. A log transformation (real data example from WDI)

- Beware of the change in the axis of the transformed variable(s)
 - ightharpoonup X, Y can be transformed separately, or together, depending on where the linearity is best
- Note that, here, linearity is not fully satisfactory
 - ▶ Do you see why? (Hence the need for initial descriptive statistics)

2. Errors and explanatory variables are not correlated

- ► This assumption is not *testable*, but remains extremely important as estimates are **biased** if not verified
- If verified, there is exogeneity; if not, endogeneity
- ▶ Formally, it writes (no need to remember): $E[\varepsilon|x_1,...,x_k]=0$
 - ightarrow Conditional on the explanatory variables, the expected error is zero
 - ▶ Using the example: $Wage = b_0 + b_1 \times education + e$, exogeneity is (totally) unrealistic:
 - **Omitted variable bias:** Many other factors might play a role: type of diploma, country, experience, *etc*. → $E[\varepsilon|x_1,...,x_k] \neq 0$
 - ▶ Measurement errors of "education" might lead part of education variance in the error $\rightarrow E[\varepsilon|x_1,...,x_k] \neq 0$
 - ► Reverse causality: With vocational training, the direction of the relationship is not obvious

2. Errors and explanatory variable not correlated

- In practice, ensuring the absence of endogeneity is challenging
- ► Takeaways (for this class):
 - Never conclude on a causal effect based on regressions (and correlations)
 - Remain aware of the risk of inaccurate estimations (biases)
 - ► In fact, in some extreme cases even the sign of the relationship can be wrong(!)
 - Stick to the simple interpretation (non-causal) provided in this class

3. Explanatory variables not too linked: no multicollinearity

- A regression can have many explanatory variables: $y = b_0 + b_1x_1 + b_2x_2 + ... + b_kx_k + e$
- ▶ **Linear correlation** across explanatory variables (r_{x_i,x_j}) should not be too high (it is ok is not linearly linked).
 - ▶ If more than 90% of the variance of one explanatory variable can be captured by the other explanatory variables, then we consider that there is multicollinearity
- ► The risk of multicollinearity is serious, because the OLS model cannot be computed at all
- Examples of perfect collinearity:
 - Include both: x_1 "distance to work in km", and x_2 "distance to work in m"
 - Include both: x_1 "person aged more than 20 yo", and x_2 "person aged less than or equal to 20 yo"

3. Explanatory variables not too linked: no multicollinearity

A good practice: prepare a correlation table of the explanatory variables

ightharpoonup Go beyond (not included in exam): you might want to compute the *VIF* (*Variance Inflation Factor*) and verify what variable(s) should be dropped from the model (if > 10)

4. Randomness of errors: Homoskedasticity

No autocorrelation is another criterion, but not covered in this class - needed for time series

Important takeaways on diagnostics

- ► If these assumptions are not met, OLS is not the **BLUE**, and may even provide estimates very far from the true parameters
- ▶ **Beware:** A visual check is by no means a statistical test
- It is just a help to suspect or not some potential issues

Next session

Next session is a wrap-up session, we can discuss lectures 10 and 11 contents if needed (feel free to ask), discussing the exam, giving general feedback on assignments.