TATSUYA KAWAKAMI Application No.: 10/711,611

Page 2

AMENDMENTS TO THE SPECIFICATION

Please replace paragraphs [0028] - [0030] with the following amended paragraph:

[0028] As shown in Fig. 5, biasing mechanism 200 comprises a cylindrical spring support sleeve 204 that is integrally formed with base plate 22, a pawl bias spring 208 in the form of a coil spring fitted within spring support sleeve 204, and a bias interface member 212 attached to or otherwise supported by pawl bias spring 208 for pressing against positioning pawl 41. When winding lever 28 is in the nonoperating position shown in Fig. 5, bias interface member 212 contacts positioning pawl 41 at a bias location X (an example of a first biasing location) positioned between mounting axle 118 and the location where pawl tooth 146 of positioning pawl 41 engages ratchet 34, and the biasing force applied to positioning ratchet 34 by pawl tooth 146 is determined by the spring force of pawl bias spring 208 and the distance between mounting axle 118 of positioning pawl 41 and the bias location X. More specifically, as shown in Fig. 6A, if the biasing force applied to positioning ratchet 34 by pawl tooth 146 in this situation is designated F_{BX} , the spring force of pawl bias spring 208 is designated F_{S} , the distance between mounting axle 118 and pawl tooth 146 is designated R_{PT} , and the distance between mounting axle 118 and the bias location X is designated R_{X} , then $F_{BX} \times R_{PT} = F_{S} \times R_{X}$, or $F_{BX} = F_{S} \times (R_{X}/R_{PT})$.

[0029] When winding lever 28 is rotated in the counterclockwise direction A, takeup element 30 begins winding inner cable 102, and mounting axle 118 moves from the right end of opening 114 shown in Fig. 5 to the left end of opening 114 before pawl tooth 146 begins to move relative to a positioning tooth 134B in the same manner discussed previously. Since positioning pawl 41 moves together with mounting axle 118, positioning pawl 41 moves relative to bias interface member 212 until bias interface member 212 contacts positioning pawl 41 at a bias location Y (an example of a second biasing location) positioned between mounting axle 118 and the location where pawl tooth 146 of positioning pawl 41 engages ratchet 34. At this time, the force of pawl bias spring 208 and the distance between mounting axle 118 of positioning pawl 41 and the bias location Y determine the biasing force applied to positioning ratchet 34 by pawl tooth 146. More specifically, as shown in Fig. 6B, if the biasing force applied to positioning ratchet 34 by pawl tooth 146 in this situation is

TATSUYA KAWAKAMI

Application No.: 10/711,611

Page 3

designated F_{BY} , and if the distance between mounting axle 118 and the bias location Y is designated R_Y , then F_{BY} x $R_{PT} = F_S$ x R_Y , or $F_{BY} = F_S$ x (R_Y/R_{PT}) . Since $F_S = F_{BX}$ x (R_{PT}/R_X) , then $F_{BY} = F_{BX}$ x (R_Y/R_X) . Since R_Y is less than R_X , then F_{BY} is correspondingly less than F_{BX} . Thus, when pawl tooth 146 slides over the inclined portion of positioning tooth 134C, the frictional force between pawl tooth 146 and positioning tooth 134C is less than the frictional force that would have been produced if bias interface member 212 continued pressing against positioning pawl 41 at bias location X, and the force needed to rotate winding lever 28 is correspondingly reduced.

[0030] Further rotation of winding lever 28 causes pawl tooth 146 to pass over positioning tooth 134C and engage the clockwise side of positioning tooth 134C. When the rider removes the rotational force from winding lever 28, axle 118 of positioning pawl 41 moves back to the right end of opening 114 as noted previously. As a result, bias interface member 212 again contacts positioning pawl 41 at a bias location X, and positioning tooth 146 provides the correspondingly increased biasing force to ratchet member 34. Because of the cooperation between axle (118) of pawl (41) and slot (114) in base plate (22) in this embodiment, the movement of pawl (41) is limited such that the biasing force provided by pawl bias spring (208) and bias interface member (212) is always applied to pawl (41), e.g., between bias locations (X) and (Y), inclusive, as ratchet (34) moves through the entire range of operating movement of ratchet (34) in the first and second directions. Furthermore, in this embodiment, biasing force that biases pawl (41) towards ratchet (34) is the only biasing force applied to pawl (41).