Question 1

Given

$$X(\omega) = \omega, \qquad Y(\omega) = (-1)^{\omega}, \qquad P(\{\omega\}) = 2^{-\omega}.$$

Since $E[X \mid Y]$ is a function of the random variable Y, we can write

$$E[X \mid Y](\omega) = g(Y(\omega))$$

for some function $g: \{-1,1\} \to \mathbb{R}$. That is, all ω with $Y(\omega) = -1$ (odd ω) will map to the same value g(-1), and all ω with $Y(\omega) = 1$ (even ω) will map to the same value g(1).

Next, we compute $g(-1) = E[X \mid Y = -1]$ using the formula

$$E[X \mid Y = -1] = \frac{\sum_{\omega \text{ odd}} \omega P(\{\omega\})}{P(Y = -1)}.$$

The probability of odd ω is

$$P(Y = -1) = \sum_{j=0}^{\infty} 2^{-(2j+1)} = \frac{2}{3},$$

and the numerator is

$$\sum_{j=0}^{\infty} (2j+1)2^{-(2j+1)} = \frac{10}{9}.$$

Thus,

$$g(-1) = \frac{10/9}{2/3} = \frac{5}{3}.$$

Similarly, we compute $g(1) = E[X \mid Y = 1]$ as

$$E[X \mid Y=1] = \frac{\sum_{\omega \text{ even }} \omega P(\{\omega\})}{P(Y=1)}.$$

Here,

$$P(Y=1) = \sum_{j=1}^{\infty} 2^{-2j} = \frac{1}{3}, \qquad \sum_{j=1}^{\infty} (2j)2^{-2j} = \frac{8}{9}.$$

Hence,

$$g(1) = \frac{8/9}{1/3} = \frac{8}{3}.$$

Therefore, the conditional expectation as a function of ω is

$$E[X \mid Y](\omega) = g(Y(\omega)) = \begin{cases} \frac{5}{3}, & Y(\omega) = -1 \text{ } (\omega \text{ odd}), \\ \frac{8}{3}, & Y(\omega) = 1 \text{ } (\omega \text{ even}). \end{cases}$$

Question 2

Part (a):
$$\mathbb{E}[X|X] = X$$

We are asked to show that the conditional expectation of a random variable X given itself is equal to the variable itself.

Proof. By definition, the conditional expectation $\mathbb{E}[X|X=x]$ is the expected value of X with respect to its conditional distribution, given that X=x.

Given that we know the value of the random variable X is exactly x, the conditional probability distribution of X is a point mass at x. That is, P(X = x|X = x) = 1.

Therefore, the expected value is simply the value itself:

$$\mathbb{E}[X|X=x] = \sum_k k \cdot P(X=k|X=x) = x \cdot P(X=x|X=x) = x \cdot 1 = x$$

Since this holds for any specific value x, we can write this in terms of the random variable:

$$\mathbb{E}[X|X] = X$$

Part (b):
$$\mathbb{E}[Xg(Y)|Y] = g(Y)\mathbb{E}[X|Y]$$
 and $\mathbb{E}[g(Y)|Y] = g(Y)$
Proof of $\mathbb{E}[Xg(Y)|Y] = g(Y)\mathbb{E}[X|Y]$

We aim to prove that if g(Y) is a function of the conditioning variable Y, it can be treated as a constant and pulled out of the conditional expectation.

Proof. We will use the definition of conditional expectation for discrete random variables.

$$\mathbb{E}[Xg(Y)|Y=y] = \sum_{x} xg(y)P(X=x|Y=y)$$

Since we are conditioning on Y = y, the value g(y) is a fixed constant with respect to the summation over x. We can therefore pull it out:

$$= g(y) \sum_{x} x P(X = x | Y = y)$$

By the definition of conditional expectation, the summation term is exactly $\mathbb{E}[X|Y=y]$.

$$=g(y)\mathbb{E}[X|Y=y]$$

Since this equality holds for any possible value y, we can replace y with the random variable Y to get the desired result:

$$\mathbb{E}[Xg(Y)|Y] = g(Y)\mathbb{E}[X|Y]$$

Deduction of $\mathbb{E}[g(Y)|Y] = g(Y)$

We can deduce the second part of the question by using the result from the first part.

Proof. Let's set X=1 in the previous result, $\mathbb{E}[Xg(Y)|Y]=g(Y)\mathbb{E}[X|Y]$. Note that X=1 is a constant, and can be considered a valid (albeit trivial) random variable.

$$\mathbb{E}[1 \cdot g(Y)|Y] = g(Y)\mathbb{E}[1|Y]$$

The conditional expectation of a constant is the constant itself. Therefore, $\mathbb{E}[1|Y] = 1$.

$$\mathbb{E}[g(Y)|Y] = g(Y) \cdot 1$$
$$\mathbb{E}[g(Y)|Y] = g(Y)$$

Part (c): $\mathbb{E}[\mathbb{E}[X|Y,Z]|Y] = \mathbb{E}[X|Y]$

Proof. By the definition of conditional expectation, for discrete random variables, the left-hand side is:

$$\mathbb{E}[\mathbb{E}[X|Y,Z]|Y=y] = \sum_{z} \mathbb{E}[X|Y=y,Z=z]P(Z=z|Y=y)$$

Now, let's substitute the definition of the inner conditional expectation:

$$\mathbb{E}[X|Y=y,Z=z] = \sum_x x P(X=x|Y=y,Z=z)$$

So, the full expression becomes:

$$\mathbb{E}[\mathbb{E}[X|Y,Z]|Y=y] = \sum_{z} \left(\sum_{x} x P(X=x|Y=y,Z=z) \right) P(Z=z|Y=y)$$

We can rewrite the conditional probabilities using the product rule: $P(A|B) = \frac{P(A,B)}{P(B)}$

$$=\sum_{z}\left(\sum_{x}x\frac{P(X=x,Y=y,Z=z)}{P(Y=y,Z=z)}\right)\frac{P(Y=y,Z=z)}{P(Y=y)}$$

The terms P(Y = y, Z = z) cancel out:

$$=\sum_{z}\sum_{x}x\frac{P(X=x,Y=y,Z=z)}{P(Y=y)}$$

We can switch the order of summation:

$$= \frac{1}{P(Y = y)} \sum_{x} x \sum_{z} P(X = x, Y = y, Z = z)$$

The inner summation over z is the marginal probability of the joint event (X = x, Y = y):

$$\sum_{z} P(X = x, Y = y, Z = z) = P(X = x, Y = y)$$

Substituting this back, we get:

$$= \sum_{x} x \frac{P(X=x, Y=y)}{P(Y=y)}$$

The expression inside the summation is the definition of conditional probability P(X = x | Y = y).

$$= \sum_{x} x P(X = x | Y = y)$$

This is the definition of the conditional expectation of X given Y = y.

$$= \mathbb{E}[X|Y=y]$$

Since this holds for any value of y, we can write this in terms of the random variable:

$$\mathbb{E}[\mathbb{E}[X|Y,Z]|Y] = \mathbb{E}[X|Y]$$

Solution Key for Q3

Problem data:

 \bullet Y is integer–valued with CDF

$$F_Y(y) = 1 - \frac{2}{(y+1)(y+2)}, \qquad y = 0, 1, 2, \dots$$

• Conditional on Y = y, the random variable $Z \mid Y = y$ is uniform on $\{1, 2, \dots, y^2\}$:

$$P(Z = z \mid Y = y) = \frac{1}{y^2}, \qquad z = 1, 2, \dots, y^2.$$

• Goal: compute $\mathbb{E}[Z]$.

Step 1: PMF of Y

For integers $y \ge 1$,

$$P(Y = y) = F_Y(y) - F_Y(y - 1)$$

$$= \left(1 - \frac{2}{(y+1)(y+2)}\right) - \left(1 - \frac{2}{y(y+1)}\right)$$

$$= \frac{4}{y(y+1)(y+2)}.$$

Step 2: Conditional mean of Z

Given Y = y, Z is uniform on $\{1, 2, \dots, y^2\}$. Therefore,

$$\mathbb{E}[Z \mid Y = y] = \frac{1}{y^2} \sum_{r=1}^{y^2} z = \frac{1}{y^2} \cdot \frac{y^2(y^2 + 1)}{2} = \frac{y^2 + 1}{2}.$$

Step 3: Law of total expectation

$$\mathbb{E}[Z] = \sum_{y=1}^{\infty} \mathbb{E}[Z \mid Y = y] \ P(Y = y)$$
$$= \sum_{y=1}^{\infty} \frac{y^2 + 1}{2} \cdot \frac{4}{y(y+1)(y+2)}$$
$$= 2 \sum_{y=1}^{\infty} \frac{y^2 + 1}{y(y+1)(y+2)}.$$

Let

$$S := \sum_{y=1}^{\infty} \frac{y^2 + 1}{y(y+1)(y+2)}.$$

Step 4: Partial fraction expansion

We decompose:

$$\frac{y^2+1}{y(y+1)(y+2)} = \frac{1}{2y} - \frac{2}{y+1} + \frac{5}{2(y+2)}.$$

$$\frac{y^2+1}{y(y+1)(y+2)} = \frac{A}{y} + \frac{B}{y+1} + \frac{C}{y+2}.$$

$$y^2+1 = A(y+1)(y+2) + By(y+2) + Cy(y+1).$$

$$= A(y^2+3y+2) + B(y^2+2y) + C(y^2+y).$$

$$= (A+B+C)y^2 + (3A+2B+C)y+2A.$$

$$\begin{cases} A+B+C=1, \\ 3A+2B+C=0, \\ 2A=1. \end{cases}$$

$$A = \frac{1}{2}, \quad B = -2, \quad C = \frac{5}{2}.$$

$$\therefore \frac{y^2+1}{y(y+1)(y+2)} = \frac{1}{2y} - \frac{2}{y+1} + \frac{5}{2(y+2)}.$$

Why the sum diverges:

We consider

$$\sum_{y=1}^{\infty} \left(\frac{1}{2y} - \frac{2}{y+1} + \frac{5}{2(y+2)} \right).$$

The first term is

$$\frac{1}{2y}$$
.

If we only summed this, we would get

$$\sum_{y=1}^{\infty} \frac{1}{2y} = \frac{1}{2} \sum_{y=1}^{\infty} \frac{1}{y},$$

which already diverges.

For large y,

$$-\frac{2}{y+1} \approx -\frac{2}{y}, \qquad \frac{5}{2(y+2)} \approx \frac{2.5}{y}.$$

$$-2/y + 2.5/y = 0.5/y.$$

Thus the whole expression is approximately

$$\frac{1}{2y} + \frac{0.5}{y} = \frac{1}{y}.$$

Therefore the infinite sum behaves like

$$\sum_{y=1}^{\infty} \frac{1}{y},$$

which is the harmonic series and diverges.

Hence, the series diverges to infinity.

Final Answer

$$\mathbb{E}[Z] = \infty$$

The expectation does not exist as a finite number.

Given:
$$\mathbb{E}[X] = \mathbb{E}[Y] = 0$$
, $\operatorname{Var}(X) = \operatorname{Var}(Y) = 1$, $\operatorname{Cov}(X,Y) = \rho$

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \implies \mathbb{E}[X^2] = 1$$
Similarly, $\mathbb{E}[Y^2] = 1$

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] = \rho$$
 (as the means are 0).

Now, using the identity:

$$\begin{aligned} \max\{x^2, y^2\} &= \frac{x^2 + y^2}{2} + \frac{|x^2 - y^2|}{2} \\ \Rightarrow \mathbb{E}[\max\{X^2, Y^2\}] &= \frac{1}{2}\mathbb{E}[X^2 + Y^2] + \frac{1}{2}\mathbb{E}[|X^2 - Y^2|] \\ &= \frac{1}{2}(\mathbb{E}[X^2] + \mathbb{E}[Y^2]) + \frac{1}{2}\mathbb{E}[|X^2 - Y^2|] \\ &= 1 + \frac{1}{2}\mathbb{E}[|X^2 - Y^2|]. \end{aligned}$$

Using Cauchy-Schwarz inequality:

$$\mathbb{E}[|X^2 - Y^2|] \le \sqrt{\mathbb{E}[(X - Y)^2] \mathbb{E}[(X + Y)^2]}.$$

$$\mathbb{E}[(X-Y)^2] = \mathbb{E}[X^2] + \mathbb{E}[Y^2] - 2\mathbb{E}[XY] = 1 + 1 - 2\rho = 2(1-\rho)$$

$$\mathbb{E}[(X+Y)^2] = \mathbb{E}[X^2] + \mathbb{E}[Y^2] + 2\mathbb{E}[XY] = 1 + 1 + 2\rho = 2(1+\rho)$$
$$\Rightarrow \mathbb{E}[|X^2 - Y^2|] \le \sqrt{2(1-\rho) \cdot 2(1+\rho)} = 2\sqrt{1-\rho^2}.$$

 $\therefore \mathbb{E}[\max\{X^2, Y^2\}] = 1 + \frac{1}{2}\mathbb{E}[|X^2 - Y^2|] \le 1 + \sqrt{1 - \rho^2}.$

Additional note- For $\rho = 0$:

$$\mathbb{E}[\max\{X^2, Y^2\}] \le 1 + 1 = 2,$$

eg- if X and Y are independent (like symmetric bernoulli). For $\rho=1$:

$$X=Y \quad \Rightarrow \quad \max\{X^2,Y^2\}=X^2, \quad \mathbb{E}[X^2]=1.$$

Similarly for $\rho = -1$.

Hence, the bound is sharp.

Solution (Indicator variables)

Let π be a permutation chosen uniformly at random from all permutations of [1:n]. For each $i \in \{1,\ldots,n\}$ define the indicator random variable

$$I_i = \mathbf{1}\{\pi(i) = i\},\,$$

that is, $I_i=1$ if i is a fixed point of π and $I_i=0$ otherwise. The number of fixed points is

$$X = \sum_{i=1}^{n} I_i.$$

Expectation

By linearity of expectation,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[I_i].$$

For each i, since all permutations are equally likely,

$$\mathbb{P}(\pi(i) = i) = \frac{(n-1)!}{n!} = \frac{1}{n},$$

so $\mathbb{E}[I_i] = \frac{1}{n}$. Hence

$$\mathbb{E}[X] = n \cdot \frac{1}{n} = 1.$$

Variance

We use

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

Now,

$$X^{2} = \left(\sum_{i=1}^{n} I_{i}\right)^{2} = \sum_{i=1}^{n} I_{i}^{2} + 2 \sum_{1 \le i < j \le n} I_{i}I_{j}.$$

Since $I_i^2 = I_i$,

$$\mathbb{E}[X^2] = \sum_{i=1}^n \mathbb{E}[I_i] + 2 \sum_{1 \le i < j \le n} \mathbb{E}[I_i I_j].$$

We already know $\mathbb{E}[I_i] = 1/n$, so

$$\sum_{i=1}^{n} \mathbb{E}[I_i] = 1.$$

For $i \neq j$, we need $\mathbb{E}[I_iI_j] = \mathbb{P}(\pi(i) = i, \pi(j) = j)$. Fixing both i and j reduces the permutation count to (n-2)!, so

$$\mathbb{E}[I_i I_j] = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}.$$

Thus,

$$2\sum_{1\leq i< j\leq n} \mathbb{E}[I_i I_j] = 2 \cdot \binom{n}{2} \cdot \frac{1}{n(n-1)} = 1.$$

Therefore,

$$\mathbb{E}[X^2] = 1 + 1 = 2.$$

Finally,

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 2 - 1^2 = 1.$$

Conclusion

$$\mathbb{E}[X] = 1, \quad \operatorname{Var}(X) = 1.$$

Problem 6. Let X_1, X_2, \ldots, X_n be independent discrete random variables and let $X = X_1 + X_2 + \cdots + X_n$. Suppose that each X_i is a geometric random variable with parameter p_i , and that p_1, p_2, \ldots, p_n are chosen so that the mean of X is a given $\mu > 0$. Show that the variance of X is minimized if the p_i values are chosen to be all equal to $\frac{n}{\mu}$.

Solution: For a geometric random variable with parameter p_i , we have:

$$E[X_i] = \frac{1}{p_i}, \quad Var(X_i) = \frac{1 - p_i}{p_i^2} = \frac{1}{p_i^2} - \frac{1}{p_i}$$
 (1)

Since $X = X_1 + X_2 + \cdots + X_n$ and the X_i are independent, linearity of variance applies:

$$E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{p_i} = \mu$$
 (2)

$$Var(X) = \sum_{i=1}^{n} Var(X_i) = \sum_{i=1}^{n} \left(\frac{1}{p_i^2} - \frac{1}{p_i}\right) = \sum_{i=1}^{n} \frac{1}{p_i^2} - \mu$$
 (3)

To minimize the variance, we need to minimize $\sum_{i=1}^n \frac{1}{p_i^2}$ subject to $\sum_{i=1}^n \frac{1}{p_i} = \mu$.

We use the Cauchy-Schwarz Inequality: for any real numbers a_1, \ldots, a_n and b_1, \ldots, b_n ,

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

Let $a_i = \frac{1}{p_i}$ and $b_i = 1$ for all i. Then:

$$\left(\sum_{i=1}^{n} \frac{1}{p_i}\right)^2 \le \left(\sum_{i=1}^{n} \frac{1}{p_i^2}\right) \cdot n$$

Using $\sum_{i=1}^{n} \frac{1}{p_i} = \mu$, we get:

$$\mu^2 \le n \sum_{i=1}^n \frac{1}{p_i^2} \quad \Rightarrow \quad \sum_{i=1}^n \frac{1}{p_i^2} \ge \frac{\mu^2}{n}$$

Equality in Cauchy-Schwarz holds if and only if the vectors are proportional, i.e., $\frac{a_i}{b_i} = \frac{1/p_i}{1} = \frac{1}{p_i}$ is constant for all i. This means $p_1 = p_2 = \cdots = p_n = p$ for some constant p.

From the constraint $\sum_{i=1}^{n} \frac{1}{p_i} = \mu$, we have $n \cdot \frac{1}{p} = \mu$, so $p = \frac{n}{\mu}$.

Therefore, the minimum value of $\sum_{i=1}^n \frac{1}{p_i^2}$ is $\frac{\mu^2}{n}$, achieved when $p_i = \frac{n}{\mu}$ for all i.

Problem 7. Let X_1, X_2, X_3 be independent random variables taking values in the positive integers and having PMFs

$$P_{X_i}(k) = (1 - p_i)p_i^{k-1}, \qquad k = 1, 2, \dots, i = 1, 2, 3.$$

Compute $P(X_1 < X_2 < X_3)$ and $P(X_1 \le X_2 \le X_3)$.

Solution. Each X_i is a geometric random variable with parameter $1 - p_i$.

1. Computing $P(X_1 \le X_2 \le X_3)$ **:**

Condition on $X_2 = m$. Then

$$P(X_1 \le X_2 \le X_3) = \sum_{m=1}^{\infty} P(X_2 = m) P(X_1 \le m) P(X_3 \ge m).$$

Now,

$$P(X_2 = m) = (1 - p_2)p_2^{m-1}, \qquad P(X_1 \le m) = 1 - p_1^m, \qquad P(X_3 \ge m) = p_3^{m-1}.$$

Thus,

$$P(X_1 \le X_2 \le X_3) = \sum_{m=1}^{\infty} (1 - p_2) p_2^{m-1} (1 - p_1^m) p_3^{m-1}.$$

Let $b = p_2p_3$ and $c = p_1p_2p_3$. Then

$$P(X_1 \le X_2 \le X_3) = (1 - p_2) \left(\sum_{m=1}^{\infty} b^{m-1} - \sum_{m=1}^{\infty} p_1^m b^{m-1} \right).$$

The series are geometric:

$$\sum_{m=1}^{\infty} b^{m-1} = \frac{1}{1-b}, \qquad \sum_{m=1}^{\infty} p_1^m b^{m-1} = \frac{p_1}{1-c}.$$

Hence,

$$P(X_1 \le X_2 \le X_3) = (1 - p_2) \left(\frac{1}{1 - b} - \frac{p_1}{1 - c} \right).$$

Since $c = p_1 b$, simplifying yields

$$P(X_1 \le X_2 \le X_3) = \frac{(1 - p_1)(1 - p_2)}{(1 - p_2 p_3)(1 - p_1 p_2 p_3)}.$$

2. Computing $P(X_1 < X_2 < X_3)$:

Again, condition on $X_2 = m$:

$$P(X_1 < X_2 < X_3) = \sum_{m=1}^{\infty} P(X_2 = m) P(X_1 \le m - 1) P(X_3 \ge m + 1).$$

We have

$$P(X_1 \le m-1) = 1 - p_1^{m-1}, \qquad P(X_3 \ge m+1) = p_3^m.$$

Thus,

$$P(X_1 < X_2 < X_3) = \sum_{m=1}^{\infty} (1 - p_2) p_2^{m-1} (1 - p_1^{m-1}) p_3^m.$$

This equals

$$(1-p_2)\left(p_3\sum_{m=1}^{\infty}b^{m-1}-p_3\sum_{m=1}^{\infty}c^{m-1}\right).$$

So,

$$P(X_1 < X_2 < X_3) = (1 - p_2)p_3 \left(\frac{1}{1 - b} - \frac{1}{1 - c}\right).$$

Simplifying,

$$P(X_1 < X_2 < X_3) = \frac{(1 - p_1)(1 - p_2) p_2 p_3^2}{(1 - p_2 p_3)(1 - p_1 p_2 p_3)}.$$

$$P(X_1 < X_2 < X_3) = \frac{(1 - p_1)(1 - p_2) p_2 p_3^2}{(1 - p_2 p_3)(1 - p_1 p_2 p_3)}$$

Final Results:

$$P(X_1 \le X_2 \le X_3) = \frac{(1 - p_1)(1 - p_2)}{(1 - p_2 p_3)(1 - p_1 p_2 p_3)}, \qquad P(X_1 < X_2 < X_3) = \frac{(1 - p_1)(1 - p_2) p_2 p_3^2}{(1 - p_2 p_3)(1 - p_1 p_2 p_3)}.$$