Module - 2

Taplace Transform Basics

Laplace Isansform -> solving linear differential equations mainly used to solve the transment behaviour of electrical assents

 $L = \int_{0}^{\infty} f(t) = \int_{0}^{\infty} f(t) e^{-st} dt$

S= o + j w real imaginary Fourier Transform.

Every to signals having FT -> LT, but every signals having 1T don't have FT.

FT - sleady state signal only.

LT - steady state and also transcent

Unit - step function

u(t)=0, t < 0.

u(t)=1, t>0

 $\lambda(((t)) = \lambda[u(t)] = \int_{0}^{\infty} u(t) e^{-st} dt$

MATATA

$$= \frac{\left[e^{-st}\right]^{\infty}}{\left[e^{-st}\right]^{\infty}}$$

$$= \frac{\left[e^{-st}\right]^{\infty}}{\left[e^{-st}-e^{st}\right]}$$

$$= \frac{-1}{s} \left[e^{-st}-e^{st}\right]$$

$$= \frac{-1}{s} \left[o^{-1}\right]$$

$$= \int_{-\infty}^{\infty} -(s+a)t$$

$$= \frac{e^{-(s+a)t}}{e^{-(s+a)}}$$

$$=\frac{1}{s+a}$$

$$L(e^{-at}) = \frac{1}{s+a}$$

$$L(e^{at}) = \frac{1}{s-a}$$

smurodial function

$$smiwt = e^{jwt} - e^{-jwt}$$

$$2j$$

$$F(c) = L(sin \omega t) = \int_{0}^{\infty} \frac{e^{j\omega t} - e^{-j\omega t}}{2j} e^{-st} dt$$

$$= \frac{1}{2j} \int_{0}^{\infty} \left[e^{-(s-jw)t} - \frac{1}{(s+jw)t} \right] dt$$

$$= \frac{1}{2j} \left(-\frac{1}{(s-jw)t} \right) + \frac{1}{(s+jw)t} \left[e^{-(s+jw)t} \right]$$

$$= \frac{1}{2j} \begin{bmatrix} \frac{1}{6-jw} - \frac{1}{5+jw} \\ \frac{1}{5+jw} - \frac{1}{5+jw} \end{bmatrix}$$

$$= \frac{1}{2j} \frac{1}{5+jw} - \frac{1}{5+jw}$$

$$e^{i\theta} = los\theta + j sm\theta$$

$$= \frac{\omega}{s^2 + \omega^2}$$

$$U(\sin \omega t) = \frac{W}{s^2 + \omega^2}$$

function

u (t)

e-at

eat

smwt

coswt

L t2

tn

eat th

e-at mint

e-atroswt

Impulse function

At a parti - cular .
time, it

has very large.

Chypicholicism hust

cos hwt

Laplace

1/6 .

1 sta

1-

w 52+w2

 $\frac{s}{s^2+\omega^2}$

1 62

> 2 8³

 $\frac{n!}{s^{n+1}}$

(5+a) n+

 $\frac{w}{(s+a)^2+w^2}$

sta sta tw2

١

62-W2

S - w2

Find the haplace Iransform of square wave train.

$$4m! - \left(\frac{1}{5} \left[1 - 2e^{-15} \left[1 - e^{-7} s\right]\right] - e^{-27} s$$

Find the moverse haplace handom of

(i)
$$F(s) = \frac{7}{s} - \frac{31}{s+13}$$

an

$$1 LT(f(s)) = 1LT(\frac{7}{6}) - 1LT(\frac{31}{6+17})$$

$$= 7 u(t) - 31 e^{-17t} u(t)$$

$$= (7 - 31 e^{-17t}) u(t)$$

$$ILT\left(\frac{75+5}{5^2+6}\right) : ILT\left(\frac{76+5}{5^2+5}\right).$$

$$\frac{7s+5}{s(s+1)} = \frac{A}{s} + \frac{B}{s+1}$$

$$\frac{3s+5}{s(s+1)} = \frac{5}{6} + \frac{2}{s+1}$$

$$|\{I(\frac{+s+5}{s^2+s}) - III(\frac{5}{s}) + III(\frac{2}{s+1})\}|$$

$$= 45 u(t) + 2 e^{-t} (u(t))$$

$$= (5 + 2e^{-t}) u(t)$$

(iii) F(s) = 2 58+1252+365

$$\frac{2}{s^3+12s^2+36s} = \frac{2}{6(s^2+12s+36)}$$

12.

21

 $\frac{2}{s(c^2+12s+36)}$ $\frac{A_2}{s}$ + $\frac{A_2}{s}$ + $\frac{A_3}{s}$ (2+6) $\frac{A_2}{s}$ + $\frac{A_3}{s}$ + $\frac{$

$$F(s) = \frac{2}{s(s+6)}$$

$$\frac{2}{s(s+6)^2} = \frac{A}{s} + \frac{B}{s+6} + \frac{C}{(s+6)^2}$$

$$2 = A(S+6)^2 + B s(S+6) + C S$$

$$36A = 2$$
$$A = 1$$

$$C = -\frac{2}{4} = -\frac{1}{3}$$

$$\frac{2}{s(s+c)^{2}} = -\frac{1}{18} + \frac{1}{18} +$$

$$IKT(F(s)) = \frac{1}{18}u(t) - \frac{1}{18}e^{-6t}u(t) - \frac{1}{3}te^{-6t}(t)$$

$$f(t) = \left(\frac{1}{18} - \frac{1}{18} e^{-6t} - \frac{1}{3} t e^{-6t}\right) u(t)$$

hower cycle

Upper cycle

$$\frac{1}{s} - \frac{-\epsilon T}{s} + \frac{-2sT}{s} - \frac{-2sT}{s} - \frac{-4sT}{s} - \frac{-5sT}{s}$$

Lower cycle

+
$$u(t-T)$$
 = $\frac{e^{-8T}}{5} - \frac{e^{-4ST}}{5} + \frac{e^{-3ST}}{5} + \frac{e^{-5ST}}{5} - \frac{e^{-4ST}}{5}$

Upper L

Solution and the second sec

$$\frac{1}{s} \left[1 - 2e^{-sT} + 2e^{-2sT} - 2e^{-3sT} + 2e^{-4sT} - 2e^{-5sT} \right]$$

$$= \frac{1}{s} \left[1 - 2e^{-sT} \right] - e^{-sT} + e^{-4sT} - e^{-5sT} + e^{-5sT} e$$

7/1/2022 s- domain Time domain constant voltage 10c-V V [Vu(t)] V(c) Junie dependent source PORTES) ->1(0+) V(c) = L [sI(s) - i(o+)] if the initial current is o then, V(s) = L s I(s) v(t)= L<u>oli</u> 1 1(0+) \$0 (V(s)) V(c) = L(sI(s) - 1(0+)) 4 54 - (co+) = 51, I(s) - Li(o+) V(s) -V(s) = L (\$ I (s) + i(o+)) V(6) = SLJ(s) +1i(0+) 2-v(t)t Sr -v (s) -v consider a de crient find the current 9n) at t=0, sis closed. at t=0, 1=0 t=0 +, i(0+)=0 since, the current through inductor can't change instanteneously

E=iR + 1 di'
dt

converting do s-domain

$$\frac{E}{s} = J(s)R + L(sI(s) - o)$$

$$\frac{E}{s} = RI(s) + LsI(s)$$

$$\frac{E}{s} = I(c) [R + Ls]$$

$$I(s) = \frac{E}{s(R + s)}$$

$$I(s) = \frac{E}{s(R + s)}$$

$$I(s) = \frac{E}{s(R + s)}$$

$$I(s) = \frac{E}{s(S + R)}$$

$$\frac{E/L}{s(s + R)} = \frac{A}{s} + \frac{B}{s + \frac{E}{L}}$$

$$\frac{E}{L} = \frac{E}{L}$$

$$A = \frac{E}{R}$$

$$\frac{E/L}{s(s + R/L)} = \frac{E}{sR}$$

$$\frac{E/L}{s(s + R/L)} = \frac{E}{R}$$

$$\frac{E/L}{s(s$$

Transient state response

After applying an input, the output takes section lime to reach steady state. . The response of the system during transienst state is known as bransienst state is known as bransienst state response

steady state response

The part of the time response that remains even after the transient response has become zero is known as the steady state response.

The time constant of an RL wiciit

The time constant of a circuit is the time required for the response to decay to a factor of 1/2 ps [36.8%] of the initial value or ruse to 63.2% of the final value.

$$\frac{1}{R} = \frac{E}{R} \left(1 - e^{-\frac{t}{R}R} \right)$$

$$\frac{E}{R} \left(1 - e^{-\frac{t}{R}R} \right) = 0.632 \frac{E}{R}$$

$$1 - e^{-\frac{t}{R}L} = 0.632$$

$$e^{-\frac{t}{R}L} = 0.368$$

$$t = \frac{L}{R}$$

The time constant of an RI wicuit is L

$$C = \frac{L}{R}$$
 when $L = 1H$.
 $R = 1\Lambda$.

$$C = \frac{L}{R} = 1 \text{ sec}$$

The transienst response time is 42.

If the time constant 21, it takes more Time to reach steady state.

Jaking Laplace Transform $\frac{3}{5} = 2 \left[SI(S) - i(0+) \right] + 4 S(S) I(S)$

$$L(s)(2s+4) = \frac{3}{5} + 10$$

Linewest on in white makes
$$S(2S+4)$$

$$I(c) = \frac{3+10}{5(25+4)} + \frac{105}{5(25+4)}$$

$$I(s) = \frac{3}{2s(s+2)} + \frac{5}{s+2}$$

$$\frac{2\sqrt{1.5}}{s(s+2)} = \frac{A}{s} + \frac{B}{s+2}$$

doubledly south a spen

$$6=0$$
 $6=-2$
 $2A = 1.5$ $-2B = 1.5$
 $A = 3$ $B = -3$

$$I(s) = \frac{3}{46} - \frac{3}{4(s+2)} + \frac{5}{s+2}$$

Inverse Raplace Hamiform

2 - (0) [3] 6

switch S.

$$2i(t) = \frac{3}{4}u(t) - \frac{3}{4}e^{-2t} + 5e^{-2t}$$

$$= \frac{3}{4}u(t) + 4 \cdot 25e^{-2t}$$
Heady transfer

2) 10V + 1-1/2 2/2 3 1H

The tattuy rollage is applied for a steady state period. A obtain the complete expression for the current after closing the

Initially switch is opened.

Note: -

An inductor - soon

at t=0.

at t = 0, short runton or at steady state unless there is no transvent

at $t=0^-$ Instally switch a open then when it.

mentich single

$$\frac{1}{1+2} = \frac{10}{1+2} = 3.83A - 1(0)$$

whon surtch & is closed, a trancient occur.

when switch is closed 22 is shorted

$$10 = 1 \times 1 + 1 \frac{di}{dt}$$

shough state when the north

$$A = I(s) + 5I(s) - 3.33$$

$$I(s) = \frac{10}{s(i+s)} + \frac{3 \cdot 2 \cdot 3}{s+1}$$

$$\frac{10}{s(s+1)} = \frac{A}{s} + \frac{B}{s+1}$$

Am its fault

at
$$s = -1$$
 Al $s = 0$

$$((a) - (a) + a) + a - b = 10 + a - b - a$$

$$I(s) = \frac{10}{6} - \frac{10}{5+1} + \frac{3.33}{5+1}$$

$$f_{\text{nvesse}}$$
 $i(t) = 10 - 10e^{-t} + 3.33e^{-t}$

Qn(2) Obtain the expression for the current i (t) when the switch is moved from position (1) to position (2) at t = 0. Her assume the cucuit is at steady state. when the switch is at position (1)

when circuit is at steady state when the north is in ste position -1

4 transport occurs

$$\frac{100}{s(s0+s)} = \frac{A}{s} + \frac{B}{50+s}$$

$$100 = A(50+s) + Bs$$

$$s = 0$$

$$s = -50$$

$$50A = 100$$

$$A = 2$$

$$B = -2$$

$$I(s) = \frac{2}{6} - \frac{2}{50+s} + \frac{1}{50+s}.$$

$$I(s) = \frac{2}{s} - \frac{1}{50+s}.$$

$$i = 2u(t) - e^{-50t}u(t)$$

On) Using LT, find $i_2(t)$ at $t=0^+$ following switching at t=0. dissume the network de-energized $(\lambda',(o^-)=0,\iota'_2(\bar{o})=0)$

$$\begin{array}{c} {\longleftarrow} & {\text{SL}} \\ {\text{R}} \rightarrow {\text{R}} \\ {\text{V}} \rightarrow {\text{V}} \\ {\text{S}} \end{array}$$

$$\frac{10}{5} - 5I_1 - 6I_1 - (I_1 - I_2) \times 1 = 0$$

$$5I_1 + 8I_1 + I_1 - I_2 = \frac{10}{5}$$

$$(6+6) I_1 - I_2 = \frac{10}{5} - 0$$

$$-(I_2 - I_1) \times I - SI_2 - SI_2 = 0$$

$$-I_1 + (C + S) I_2 = 0$$

using comes & rule

$$\begin{bmatrix} 6+s & -1 \\ -1 & 6+s \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 10/s \\ 0 \end{bmatrix}$$

$$I_{2} = \begin{vmatrix} c+s & 10/s \\ -1 & 0 \end{vmatrix}$$

$$\begin{vmatrix} c+s & -1 \\ -1 & 6+s \end{vmatrix}$$

$$I_{2} = 0 - \left(-1 \times \frac{10}{s}\right) = \frac{10}{s}$$

$$(6+s)(6+s) - (-1 \times -1) \qquad (8+4)^{2} - 1$$

$$\frac{I_2}{s(s+a)(s+b)} = \frac{A}{c} + \frac{B}{s+a} + \frac{C}{s+b}$$

$$\frac{19}{10} = A(s+7)(s+5) + Bs(s+5)$$

$$+ Cs(s+7)$$

$$S = 0$$
 $S = -7$ $S = -5$
 $35 A = 10$ $14 B = 10$ $-10 C = 10$
 $A = \frac{2}{7}$ $B = \frac{5}{7}$ $C = -1$

$$I_2 = \frac{2}{7s} + \frac{5}{7(s+7)} - \frac{1}{s+5}$$

$$i_2(t) = 2u(t) + 5e^{-7t}u(t) - e^{-5t}u(t)$$
.

steady

thate

the transmit state

Determine the current i, if the south k is closed at t = 0 $i_2(\bar{0}) = 0$

$$I = \frac{5 \times 10^{4}}{(0.018+5)(500^{2}+5^{2})}$$

$$a^{2}+b^{2}=(a+jb)$$
 m $(a-jb)$

$$g^2 + 500^2 = (s + j 500) (s - j 500)$$

$$I = \frac{5 \times 10^4}{(s+500)(s^2+500^2)}$$

$$I = \frac{5 \times 10^{6}}{(s+500)(s+j500)}$$

$$= \frac{A}{\text{Str}_1 500} + \frac{B}{\text{s-j}500} + \frac{C}{\text{S+500}}$$

On source
$$A = 5(-1+j)$$
, $B = 5(-1-j)$, $C = 10$

$$I = 5 \frac{(-1+j)}{s+j500} + 5 \frac{(-1-j)}{s-j500} + \frac{10}{s+500}$$

$$J = \frac{-5}{5+j500} - \frac{5}{5+j500} - \frac{5}{5-j500} - \frac{5}{5+500}$$

$$= -\frac{5}{2} \left[e^{\frac{-jsoot}{2}} \times 2 + 5 \left[e^{\frac{-jsoot}{2}} \right] \times 2 + 5 \left[e^{\frac{-jsoot}{2}} \right$$

90)

IKAS

IMF the went is in steady

state of the switch k is

closed at t = 0, find

the current through

capacitos

It steady state

$$V_c(o^-) = \frac{1 \times 2}{3} = 4 V$$
.

It bransunt

V_c(σ) = V_c(o+) = 4

 $\frac{6}{5} - \frac{9}{1} \times 1000 - 1000 (\frac{9}{1} - \frac{9}{2}) = 0$

$$-2000 I_{1} + 1000 I_{2} + \frac{6}{6} = 0$$

$$\frac{6}{5} = 2000 I_{1} - 1000 I_{2}$$

$$-CI_{2}-I_{1})1000 - \frac{10^{6}}{5} \times J_{2} - \frac{4}{5} = 0$$

$$\frac{4}{5} = + 1000 I_{1} - I_{2}(1000 - \frac{10^{6}}{5}) - 2$$

$$\begin{bmatrix} 2000 & -1000 \\ 1000 & -\sqrt{1000} + \frac{10^{6}}{5} \end{bmatrix} \begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} 6/5 \\ 4/5 \end{bmatrix}$$

$$J_{2} = \begin{bmatrix} 2000 & 6/5 \\ 1000 & +4/6 \end{bmatrix}$$

$$\begin{bmatrix} 2000 & -1000 \\ 1000 & -1000 + \frac{10^{6}}{5} \end{bmatrix}$$

$$I_{2} = \frac{-2 \times 10^{3}}{10^{6} (c+2000)}$$

$$I_{2} = \frac{-2 \times 10^{-3}}{s + 2000}$$

$$\frac{1}{2}$$
 $\frac{1}{2} = -2 \times 10^{-3} e^{-2000t}$ A

TOOHF through the capacitor c at t=0+, following intching at t=0. Assume the zapacitor in

At
$$t = 0$$

$$\frac{10}{5} = \frac{1}{10^{-4}} = \frac{10^{4}}{5}.$$

$$\frac{10}{5} = 2 I + \frac{10^{4} I}{5}.$$

$$\frac{10}{5} = J \left(2 + \frac{10^{4}}{5}\right).$$

$$I = \frac{10}{5} \times \frac{S}{25 + 10^{4}}$$

$$I = \frac{10}{25 + 10^{4}}$$

J = 105 S+5600

$$\frac{1(t)}{1(t)} = i(t) = \frac{5e^{-5000t}A}{1}$$

Imi constant of this cried: $\frac{1}{c} = \frac{V}{R} e^{-t/Rc}$. V=10 R=2

When current reduces to 1/e of the inteal value (time constant)

Here time constant

After 4T werent ml become o.

After 4 x 200×10-6s = 800 ps, i will be 3650

ofter 800 \mus, einent will be in steady state.

For R-L ment

Z= L/R

Find i(t) following sinching at t=0. Assume initial charge on capacitor 250 pc as shown in fig

$$\frac{10}{\varsigma} + \frac{50}{\varsigma} = I + \frac{I}{5 \times 10^5} c_S$$

$$\frac{60}{8} = I \left[1 + \frac{16}{58} \right]$$

$$\frac{60}{5} = I \left[\frac{58 + 10}{58} \right]$$

9n)

$$\frac{7(s)}{s} = \frac{10}{s} \times \frac{5s}{s}$$

$$J(s) = \frac{60 \times 5}{5s + 10} \epsilon$$

$$J(s) = \frac{60}{5 + 2 \times 10^5}$$

After 20 µs, the init mill be in steady state

In the series R-L-C exact

i'L (0-) = 0 v_c (0-) = 0, souther

in closed at t = 0.

Determine the resulting current i.

$$\frac{50}{5} - 2J - 5I - \frac{2}{5}I = 0$$

$$I = \underbrace{\frac{50}{s}}_{28+6+\frac{2}{s}}$$

$$I = \underbrace{50}_{S_{+}^{2}2S+2}$$

$$=\frac{50}{(S+1)^2+1^2}$$

$$|LTCI\rangle = 50 |LT \left(\frac{1}{(s+1)^2+1^2}\right)$$

AA.

x multiplying

Mari

Eseponentially decaying sine ware