Trabajo Práctico 3

- 1. Dados $(V, +, \mathbb{R}, \cdot)$ espacios vectoriales y α y β bases de V:
 - a) Determine las coordenadas del vector $v \in V$ en la base α . Grafique v como combinación lineal de los elementos de α .
 - b) Determine las coordenadas del vector $v \in V$ en la base β . Grafique v como combinación lineal de los elementos de β .
 - i) $V = \mathbb{R}^2$, $\alpha = \{(0, -1), (1, 2)\}$ y $\beta = \{(1, 0), (0, 1)\}$, v = (-1, 2)
 - ii) $V = \mathbb{R}^3$, $\alpha = \{(-1, 1, 1), (0, 0, 1), (1, 1, 0)\}$ y $\beta = \{(-1, 1, 0), (2, 0, 1), (-1, -2, -1)\}$, v = (-1, 0, 3)
- 2. Determine una base y la dimensión de los siguientes espacios vectoriales:
- a) $(\mathbb{R}^{2\times3},+,\mathbb{R},.)$
- b) $(\mathbb{C}^2, +, \mathbb{R}, .)$
- c) $(\mathbb{C}^2, +, \mathbb{C}, .)$

- 3. Dados los espacios vectoriales del TP2:
 - a) ¿Cuál/es de los conjuntos generadores del espacio vectorial W del problema 2 son base de W? Justifica adecuadamente.
 - b) ¿Cuál/es de los conjuntos generadores del espacio vectorial V del problema 4b son base de V? Justifica adecuadamente.
- 4. Dados los espacios vectoriales del TP2:
 - a) ¿Cuál/es de los conjuntos l.i. del espacio vectorial V del problema 5b son base de V? Justifica adecuadamente.
 - b) ¿Cuál/es de los conjuntos l.i. del espacio vectorial V del problema 5d son base de V? Justifica adecuadamente.
- 5. En cada caso determine si el conjunto S es base del espacio vectorial $(V, +, \mathbb{R}, .)$:
 - $a) V = \mathbb{R}^2$
 - i) $S = \{(-1, 2), (2, -3)\}$ En caso afirmativo, calcula $[(-5, 8)]_S$.
 - ii) $S = \{(2,1), (-4,-2)\}$
 - iii) $S = \left\{ \left(1,1\right), \left(1,-1\right) \right\}$ En caso afirmativo, calcula $\left[\left(2,2\right)\right]_{S}.$
 - iv) $S = \{(-1, -1), (0, 1), (-1, 0)\}$
 - $b) \ V = \mathbb{R}^{2 \times 3}$
 - i) $S = \left\{ \begin{pmatrix} -1 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 3 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \end{pmatrix} \right\}$

$$S = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1$$

- 6. Determine en cada caso, si el conjunto $S = \{(1,1), (1,0), (0,i), (i,i)\}$ es base del espacio vectorial $(\mathbb{C}^2, +, \mathbb{K}, .)$. En caso afirmativo dé las coordenadas del vector (4+i, 2-2i):
- a) $\mathbb{K} = \mathbb{R}$

- b) $\mathbb{K} = \mathbb{C}$
- 7. Determine si el conjunto S es base del espacio vectorial $(W, +, \mathbb{R}, .)$:
 - a) $S = \{(1,0,5), (2,-1,3)\}$ y $W = \{(x,y,5x+7y) \in \mathbb{R}^3\}$. En caso afirmativo, determine la dimensión de W y dé otra base para el espacio vectorial.
 - b) $S = \left\{ \begin{pmatrix} -3 & -1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \right\}$ y $W = \left\{ \begin{pmatrix} y t & y \\ z & t \end{pmatrix} \in \mathbb{C}^{2 \times 2} \right\}$. En caso negativo determine una base y la dimensión de W.
 - c) $S = \{(-1, i), (i, 1)\}$ y $W = \{(z_1, z_2) \in \mathbb{C}^2 : z_1 = iz_2\}$
- 8. Determine si el conjunto S es base del espacio vectorial $(W, +, \mathbb{C}, .)$:
 - a) $S = \{(-1, i), (i, 1)\}$ y $W = \{(z_1, z_2) \in \mathbb{C}^2 : z_1 = iz_2\}.$
 - b) $S = \left\{ \begin{pmatrix} -3 & -1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$ y $W = \left\{ \begin{pmatrix} y t & y \\ z & t \end{pmatrix} \in \mathbb{C}^{2 \times 2} : z = 0 \right\}$. En caso afirmativo, diga cual es la dimensión de W y dé otra base para dicho espacio vectorial.
- 9. Determine $a, b \in \mathbb{R}$ para que el conjunto S sea base de V:
 - a) $S = \{(2, a, 3), (0, 1, 0), (2b, 0, 3b + 1)\}, V = \mathbb{R}^3$

b)
$$S = \left\{ \begin{pmatrix} a & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 3a \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}, V = \mathbb{R}^{2x^2}$$

c)
$$S = \left\{ \begin{pmatrix} a \\ b \\ -2 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix} \right\}, V = \left\{ X \in \mathbb{R}^{4 \times 1} : A \cdot X = \theta, A = \begin{pmatrix} 1 & -2 & 3 & 1 \\ -1 & 2 & -2 & 0 \end{pmatrix} \right\}$$