Unsupervised Machine Learning with Python

Section 4.1: Hierarchical Clustering Algorithm

Connectivity Based Clustering

- Based on assumption that a data point is more closely related to nearby data points than to far away data points
- Results depend on the distance measure used (use L2 in course)
- Bottom up approach called Agglomerative
- Top down approach called Divisive
- See UnsupervisedML_Resources.pdf for links to additional resources

Hierarchical (Agglomerative) Clustering

- Bottom up approach: each data point starts as its own cluster
- Nearby clusters are repeatedly combined until all points in single cluster
- Creates clusters "at all levels"
- Can be represented in a tree structure (dendogram)

Hierarchical Clustering - Algorithm

- Assume M data points and define each as a cluster
- (1) Loop until there is a single cluster
 - Compute pairwise distances between each of the clusters
 - Combine clusters with the shortest pairwise distance into one cluster

Distance between Clusters

- Define distance between clusters as distance between cluster means
- Alternative:
 - Distance between clusters is min distance between points in cluster A and cluster B

Hierarchical Clustering - Example

- Dataset: varied_blobs1 dataset with 200 data points in (2 dimensions)
- Animation shows clustering at all levels to 3 clusters

- Clusters of 1 data point are dark blue
- Change in colour when clusters of 2 points created
- When clusters are combined, take on colour of larger cluster

Hierarchical Clustering: Complexity

Assume M data points and d dimensions

- Number of operations for clustering for all levels is $O(M^3)$ as $M \to \infty$ (derive this in exercises)
- Can limit memory used to O(M) as $M \to \infty$ (to store feature matrix), as one can compute pairwise distances as needed and then discard
- ${f \cdot}$ Number of operations and memory required are both proportional to dimension d

Hierarchical Clustering: Notes

- Creates cluster of arbitrary shapes
- Clustering at all levels is unique if distances between clusters are unique
 - If dist(clusterA,clusterB) and dist(clusterC,clusterD) are smallest and same, then course code will combine first pair of clusters encountered with smallest distance
 - Can update code to combine clusters A and B and clusters C and D at same level
- Principal limitation: not feasible for large number of data points as number of operations is $O(M^3)$ as $M \to \infty$

Unsupervised Machine Learning with Python

Section 4.2: Hierarchical Clustering Code Design

General Clustering Code Design

- Create a base class that can be used for:
 - Hierarchical Clustering
 - DBSCAN
 - K Means
 - Gaussian Mixture Model
- Start with:
 - Principal Variables
 - Key Methods
- If you would like to design code yourself, then stop video

General Clustering Code Design

Clustering Codes have the following structure:

- (1) Initialization
 - Make initial cluster assignments for each data point
 - Initialize other relevant variables
- (2) Determine cluster assignments for each data point
 - Use iterative approach to make better guesses for cluster assignments
 - Stop when cluster assignments converge

clustering_base class: Principal Variables

Variable	Туре	Description
self.time_fit	float	Time for clustering
self.X	2d numpy array	Contains the dataset Number of rows = number of dimensions for data Number of cols = number of data points Example: 2 dimensions and 5 data points $\begin{bmatrix} 1 & 1.1 & 0.8 & 0.6 & 0.6 \\ 0.9 & 1.0 & 0.7 & 0.5 & 0.5 \end{bmatrix}$
self.clustersave	list of 1d numpy arrays	self.clustersave[i][j] is cluster assignment for iteration i, data point j Example: for 3 iterations: $[[-1 -1 -1 -1 -1], [0 0 0 1 1], [0 0 1 1]]$

clustering_base class — Key Methods

Method	Description	
init	Initialize class and input relevant details for algorithm	
initialize_algorithm	Initialize variables for the algorithm	
fit	Use iterative approach to determine cluster assignments at each iteration	
get_index	Input: nlevel (integer), cluster_number Return: indices of data points belong to cluster = cluster_number at iteration = nlevel	
plot_cluster	Input: nlevel (integer), title (string) ,xlabel (string),ylabel (string) Plot data points showing cluster assignments at a single iteration (nlevel) (clusters distinguished by color) See Examples/Section02/MatplotlibBasic.ipynb	
plot_cluster_animation	Input: nlevel (integer), interval (integer), title (string), xlabel (string), ylabel (string) Create animation showing data points and evolution of cluster assignments See Examples/Section02/MatplotlibAdvanced.ipynb	

Hierarchical Clustering Code Design

Two additional design considerations:

- (1) Design obviously accounts for Hierarchical Clustering Algorithm
- (2) Design takes into account visual representation of clustering algorithm

Hierarchical Clustering Code Design

Use cluster assignment to define colours in plots and animations

• Initially, all points are in their own clusters – assign label -1, so all data points coloured the same

 Cluster assignment changes from -1 when a cluster of 2 data points is created. Leads to change in colour of data points in visual representation

• When combining clusters, smaller cluster is "added" to larger cluster

Hierarchical Clustering: Additional Variables

- list_cluster is a list of indices for each cluster
 - Example list_cluster= [[0], [1], [2,4], [3], []]
 - Data point 0 is a cluster
 - Data point 1 is a cluster
 - Data points 2,4 are in a cluster
 - Data point 3 is in a cluster

- list_clustermean is a list of current cluster means
 - list_clustermean has similar structure to list_cluster
 - list_clustermean[i] is mean of data points in list_cluster[i]

Hierarchical Clustering: Example

Clusters	Description	
3 2	Level 0: list_cluster: each data point is its own cluster clustersave[0]: set all labels to -1	list_cluster = [[0], [1], [2], [3], [4]] clustersave[0] = [-1,-1,-1,-1]
3 2	Level 1: Clusters [2] and [4] are closest so combine Assign label 2 to points 2 and 4 (smallest index value)	list_cluster = [[0], [1], [2,4], [3], []] clustersave[1] = [-1,-1,2,-1,2]
1 2	Level 2: Clusters [0] and [1] are closest so combine Assign label 0 to points 0 and 1 (smallest index value)	list_cluster = [[0,1], [], [2,4], [3], []] clustersave[2] = [0,0,2,-1,2]
1 2	Level 3: Clusters [0,1], [3] are closest so append [3] to [0,1] (append cluster with smaller number of points to one with larger number of points) Assign label of larger cluster to new point(s)	list_cluster = [[0,1,3],[],[2,4],[],[]] clustersave[3] = [0,0,2,0,2]
1 2	Level 4: Combine final 2 clusters into single cluster (append cluster with smaller number of points to one with larger number of points) Assign label of larger cluster to new point(s)	list_cluster = [[0,1,3,2,4],[],[],[]] clustersave[4] = [0,0,0,0,0]

hierarchical class – Key Methods

Method	Input	Description
initialize_algorithm		Initialize variables self.clustersave, self.list_cluster, self.list_clustermean Return: nothing
fit	X (2d numpy array)	Performs hierarchical clustering algorithm Return: nothing
combine_closest_clusters		Combine closest clusters and update self.list_cluster Return: nothing
update_cluster_assignment	idx1 (list)	Update cluster assignments in self.clustersave to account for creation of new cluster with points in idx1

Additional Functions

Method	Input	Description
create_data_cluster	n_sample (integer) case (string)	Use sklearn functionality to create 2d dataset for clustering with n_sample data points and for case equals one of "blobs", "varied_blobs1", "varied_blobs2", "aniso", "noisy_moons", "noisy_circles" Return: dataset X See UnsupervisedML/Examples/Section02/SklearnDatasets.ipynb

Unsupervised Machine Learning with Python

Section 4.3: Hierarchical Clustering Code Walkthrough

4.3 Hierarchical Clustering Code Walkthrough

Code located at:

UnsupervisedML/Code/Programs

Files to Review	Description	
create_data_clustering_sklearn.py	Create test 2d datasets for clustering	
clustering_base.py	Base class for clustering codes	
hierarchical.py	Class for hierarchical clustering derived from clustering_base	
driver_hierarchical.py	Driver for hierarchical clustering	

Course Resources at:

- https://github.com/satishchandrareddy/UnsupervisedML/
- Stop video if you want to do coding yourself