Computational Analysis of Physical Systems (Lecture 7)

Python (NumPy)

as a

MATLAB-like computation tool

Arithmetic operators

MAT LAB/Oct ave	Python	Description
a=1; b=2;	a=1; b=1	Assignment; defining a number
a + b	a + b Or add(a,b)	Addition
a - b	a - b Or subtract(a,b)	Subtraction
a * b	a * b Or multiply(a,b)	Multiplication
a / b	a / b Or divide(a,b)	Division
a .^ b	a ** b	Power, \$a^b\$
	power(a,b)	
	pow(a,b)	
rem(a,b)	a % b	Remainder
	remainder(a,b)	
	fmod(a,b)	
a+=1	a+=b Of add(a,b,a)	In place operation to save array creation overhead
factorial(a)		Factorial, \$n!\$

Relational operators

MATLAB/Oct ave	Python	Description
a == b	a == b Or equal(a,b)	Equal
a < b	a < b Or less(a,b)	Less than
a > b	a > b Or greater(a,b)	Greater than
a <= b	a <= b Or less_equal(a,b)	Less than or equal
a >= b	a >= b Or greater_equal(a,b)	Greater than or equal
a ~= b	a != b Or not_equal(a,b)	Not Equal

Logical operators

MAT LAB/Oct ave	Python	Description
a && b	a and b	Short-circuit logical AND
a b	a or b	Short-circuit logical OR
a & b Of and (a,b)	logical_and(a,b) Or a and b	Element-wise logical AND
a b <i>Of</i> or(a,b)	logical_or(a,b) <i>Of</i> a or b	Element-wise logical OR
xor(a, b)	logical_xor(a,b)	Logical EXCLUSIVE OR
~a O T not(a)	logical_not(a) Or not a	Logical NOT
~a O !a		
any(a)		True if any element is nonzero
all(a)		True if all elements are nonzero

root and logarithm

MATLAB/Oct ave	Python	Description
sqrt(a)	math.sqrt(a)	Square root
log(a)	math.log(a)	Logarithm, base \$e\$ (natural)
log10(a)	math.log10(a)	Logarithm, base 10
log2(a)	math.log(a, 2)	Logarithm, base 2 (binary)
exp(a)	math.exp(a)	Exponential function

Round off

MATLAB/Oct ave	Python	Description
round(a)	around(a) Or math.round(a)	Round
ceil(a)	ceil(a)	Round up
floor(a)	floor(a)	Round down
fix(a)	fix(a)	Round towards zero

Mathematical constants

MAT LAB/Oct ave	Python	Description
pi	math.pi	\$\pi=3.141592\$
exp(1)	math.e Or math.exp(1)	\$e=2.718281\$

Missing values; IEEE-754 floating point status flags

MAT LAB/Oct ave	Python	Description
NaN	nan	Not a Number
Inf	inf	Infinity, \$\infty\$
	plus_inf	Infinity, \$+\infty\$
	minus_inf	Infinity, \$-\infty\$
	plus_zero	Plus zero, \$+0\$
	minus_zero	Minus zero, \$-0\$

Complex numbers

MAT LAB/Oct ave	Python	Description
i	z = 1j	lmaginary unit
z = 3+4i	$z = 3+4j \ Or \ z = complex(3,4)$	A complex number, \$3+4i\$
abs(z)	abs(3+4j)	Absolute value (modulus)
real(z)	z.real	Real part
imag(z)	z.imag	lmaginary part
arg(z)		Argument
conj(z)	<pre>z.conj(); z.conjugate()</pre>	Complex conjugate

Trigonometry

MATLAB/Oct ave	Python	Description
atan(a,b)	atan2(b,a)	Arctangent, \$\arctan(b/a)\$
	hypot(x,y)	Hypotenus; Euclidean distance

Generate random numbers

MAT LAB/Oct ave	Python	Description
rand(1,10)	random.random((10,))	Uniform distribution
	<pre>random.uniform((10,))</pre>	
2+5*rand(1,10)	random.uniform(2,7,(10,))	Uniform: Numbers between 2 and 7
rand(6)	random.uniform(0,1,(6,6))	Uniform: 6,6 array
randn(1,10)	random.standard_normal((10,))	Normal distribution

Vectors

MAT LAB/Oct ave	Python	Description
a=[2 3 4 5];	a=array([2,3,4,5])	Row vector, \$1 \times n\\$-matrix
adash=[2 3 4 5]';	array([2,3,4,5])[:,NewAxis] array([2,3,4,5]).reshape(-1,1)	Column vector, \$m \times 1\$-matrix

Sequences

MATLAB/Oct ave	Python	Description
1:10	<pre>arange(1,11, dtype=Float) range(1,11)</pre>	1,2,3, ,10
0:9	arange(10.)	0.0,1.0,2.0, ,9.0
1:3:10	arange(1,11,3)	1,4,7,10
10:-1:1	arange(10,0,-1)	10,9,8, ,1
10:-3:1	arange(10,0,-3)	10,7,4,1
linspace(1,10,7)	linspace(1,10,7)	Linearly spaced vector of n=7 points
reverse(a)	a[::-1] <i>Or</i>	Reverse
a(:) = 3	a.fill(3), a[:] = 3	Set all values to same scalar value

Concatenation (vectors)

MAT LAB/Oct ave	Python	Description
[a a]	concatenate((a,a))	Concatenate two vectors

Repeating

MAT LAB/Oct ave	Python	Description
[a a]	concatenate((a,a))	1 2 3, 1 2 3
	a.repeat(3) <i>Or</i>	1 1 1, 2 2 2, 3 3 3
	a.repeat(a) <i>Or</i>	1, 2 2, 3 3 3

Miss those elements out

MAT LAB/Oct ave	Python	Description
a(2:end)	a[1:]	miss the first element
a([1:9])		miss the tenth element
a (end)	a[-1]	last element
a(end-1:end)	a[-2:]	last two elements

Maximum and minimum

MATLAB/Oct ave	Python	Description
max(a,b)	maximum(a,b)	pairwise max
max([a b])	<pre>concatenate((a,b)).max()</pre>	max of all values in two vectors
[v,i] = max(a)	v,i = a.max(0),a.argmax(0)	

Vector multiplication

MATLAB/Oct ave	Python	Description
a.*a	a*a	Multiply two vectors
dot(u,v)	dot(u,v)	Vector dot product, \$u \cdot v\$

Matrices

MATLAB/Oct ave	Python	Description
a = [2 3;4 5]	a = array([[2,3],[4,5]])	Define a matrix

Array creation

MAT LAB/Oct ave	Python	Description
zeros(3,5)	zeros((3,5),Float)	0 filled array
	zeros((3,5))	0 filled array of integers
ones(3,5)	ones((3,5),Float)	1 filled array
ones(3,5)*9		Any number filled array
eye(3)	identity(3)	Identity matrix
diag([4 5 6])	diag((4,5,6))	Diagonal
magic(3)		Magic squares; Lo Shu
	a = empty((3,3))	Empty array

Reshape and flatten matrices

MATLAB/Oct ave	Python	Description
reshape(1:6,3,2)';	<pre>arange(1,7).reshape(2,-1) a.setshape(2,3)</pre>	Reshaping (rows first)
reshape(1:6,2,3);	arange(1,7).reshape(-1,2).transpose(Reshaping (columns first)
a'(:)	a.flatten() Or	Flatten to vector (by rows, like comics)
a(:)	a.flatten(1)	Flatten to vector (by columns)
vech(a)		Flatten upper triangle (by columns)

Shared data (slicing)

MATLAB/Oct ave	Python	Description
b = a	b = a.copy()	Copy of a

Indexing and accessing elements (Python: slicing)

MATLAB/Oct ave	Python	Description
a = [11 12 13 14	a = array([[11, 12, 13, 14],	Input is a 3,4 array
21 22 23 24	[21, 22, 23, 24],	
31 32 33 34]	[31, 32, 33, 34]])	
a(2,3)	a[1,2]	Element 2,3 (row,col)
a(1,:)	a[0,]	First row
a(:,1)	a[:,0]	First column
a([1 3],[1 4]);	a.take([0,2]).take([0,3], axis=1)	Array as indices
a(2:end,:)	a[1:,]	All, except first row
a(end-1:end,:)	a[-2:,]	Last two rows
a(1:2:end,:)	a[::2,:]	Strides: Every other row
	a[,2]	Third in last dimension (axis)
a(:,[1 3 4])	a.take([0,2,3],axis=1)	Remove one column
	a.diagonal(offset=0)	Diagonal

Transpose and inverse

MATLAB/Oct ave	Python	Description
a'	a.conj().transpose()	Transpose
a.' <i>Of</i> transpose(a)	a.transpose()	Non-conjugate transpose
det(a)	linalg.det(a) Or	Determinant
inv(a)	linalg.inv(a) <i>Or</i>	Inverse
pinv(a)	linalg.pinv(a)	Pseudo-inverse
norm(a)	norm(a)	Norms
eig(a)	linalg.eig(a)[0]	Eigenvalues
svd(a)	linalg.svd(a)	Singular values
chol(a)	linalg.cholesky(a)	Cholesky factorization
[v,l] = eig(a)	linalg.eig(a)[1]	Eigenvectors
rank(a)	rank(a)	Rank

Sum

MAT LAB/Oct ave	Python	Description
sum(a)	a.sum(axis=0)	Sum of each column
sum(a')	a.sum(axis=1)	Sum of each row
sum(sum(a))	a.sum()	Sum of all elements
	a.trace(offset=0)	Sum along diagonal
cumsum(a)	a.cumsum(axis=0)	Cumulative sum (columns)

Sorting

MAT LAB/Oct ave	Python	Description
a = [4 3 2 ; 2 8 6 ; 1 4 7]	a = array([[4,3,2],[2,8,6],[1,4,7]])	Example data
sort(a(:))	a.ravel().sort() <i>Of</i>	Flat and sorted
sort(a)	a.sort(axis=0) Or msort(a)	Sort each column
sort(a')'	a.sort(axis=1)	Sort each row
sortrows(a,1)	a[a[:,0].argsort(),]	Sort rows (by first row)
	a.ravel().argsort()	Sort, return indices
	a.argsort(axis=0)	Sort each column, return indices
	a.argsort(axis=1)	Sort each row, return indices

Maximum and minimum

MATLAB/Oct ave	Python	Description
max(a)	a.max(0) <i>Of</i> amax(a [,axis=0])	max in each column
max(a')	a.max(1) <i>Or</i> amax(a, axis=1)	max in each row
max(max(a))	a.max() <i>Or</i>	max in array
[v i] = max(a)		return indices, i
max(b,c)	maximum(b,c)	pairwise max
cummax(a)		
	a.ptp(); a.ptp(0)	max-to-min range

Equivalents to "size"

MATLAB/Oct ave	Python	Description
size(a)	a.shape Of a.getshape()	Matrix dimensions
size(a,2) Of length(a)	a.shape[1] Or size(a, axis=1)	Number of columns
<pre>length(a(:))</pre>	a.size Or size(a[, axis=None])	Number of elements
ndims(a)	a.ndim	Number of dimensions
	a.nbytes	Number of bytes used in memory

Matrix- and elementwise- multiplication

MAT LAB/Oct ave	Python	Description
a .* b	a * b Or multiply(a,b)	Elementwise operations
a * b	matrixmultiply(a,b)	Matrix product (dot product)
	inner(a,b) Or	Inner matrix vector multiplication \$a\cdot b'\$
	outer(a,b) Or	Outer product
kron(a,b)	kron(a,b)	Kronecker product
a / b		Matrix division, \$b{\cdot}a^{-1}\$
a \ b	linalg.solve(a,b)	Left matrix division, \$b^{-1}{\cdot}a\$ \newline (solve linear equations)
	vdot(a,b)	Vector dot product
	cross(a,b)	Cross product

File input and output

MAT LAB/Oct ave	Python	Description
<pre>f = load('data.txt')</pre>	<pre>f = fromfile("data.txt")</pre>	Reading from a file (2d)
	<pre>f = load("data.txt")</pre>	
<pre>f = load('data.txt')</pre>	<pre>f = load("data.txt")</pre>	Reading from a file (2d)
x = dlmread('data.csv', ';')	<pre>f = load('data.csv', delimiter=';')</pre>	Reading fram a CSV file (2d)
save -ascii data.txt f	<pre>save('data.csv', f, fmt='%.6f',</pre>	Writing to a file (2d)
	<pre>delimiter=';')</pre>	
	f.tofile(file='data.csv',	Writing to a file (1d)
	format='%.6f', sep=';')	
	<pre>f = fromfile(file='data.csv',</pre>	Reading from a file (1d)
	sep=';')	

Plotting

Basic x-y plots

MAT LAB/Oct ave	Python	Description
plot(a)	plot(a)	1d line plot
plot(x(:,1),x(:,2),'o')	plot(x[:,0],x[:,1],'o')	2d scatter plot
plot(x1,y1, x2,y2)	plot(x1,y1,'bo', x2,y2,'go')	Two graphs in one plot
plot(x1,y1)	plot(x1,y1,'o')	Overplotting: Add new plots to
hold on	plot(x2,y2,'o')	current
plot(x2,y2)	show() # as normal	
subplot(211)	subplot(211)	subplots
plot(x,y,'ro-')	plot(x,y,'ro-')	Plotting symbols and color

Axes and titles

MATLAB/Oct ave	Python	Description
grid on	grid()	Turn on grid lines
<pre>axis equal axis('equal') replot</pre>	figure(figsize=(6,6))	1:1 aspect ratio
axis([0 10 0 5])	axis([0, 10, 0, 5])	Set axes manually
<pre>title('title') xlabel('x-axis') ylabel('y-axis')</pre>		Axis labels and titles
	text(2,25,'hello')	Insert text

Log plots

MAT LAB/Oct ave	Python	Description
semilogy(a)	semilogy(a)	logarithmic y-axis
semilogx(a)	semilogx(a)	logarithmic x-axis
loglog(a)	loglog(a)	logarithmic x and y axes

Perspective plots of surfaces over the x-y plane

MATLAB/Oct ave	Python	Description
n=-2:.1:2;	n=arrayrange(-2,2,.1)	
[x,y] = meshgrid(n,n);	[x,y] = meshgrid(n,n)	
$z=x.*exp(-x.^2-y.^2);$	z = x*power(math.e, -x**2-y**2)	
mesh(z)		Mesh plot
surf(x,y,z) Of $surfl(x,y,z)$		Surface plot
% no surfl()		

Scatter (cloud) plots

MAT LAB/Oct ave	Python	Description
plot3(x,y,z,'k+')		3d scatter plot

Save plot to a graphics file

MATLAB/Oct ave	Python	Description
plot(1:10)	<pre>savefig('foo.eps')</pre>	PostScript
print -depsc2 foo.eps		
gset output "foo.eps"		
gset terminal postscript eps		
plot(1:10)		
	<pre>savefig('foo.pdf')</pre>	PDF
	savefig('foo.svg')	SVG (vector graphics for www)
print -dpng foo.png	<pre>savefig('foo.png')</pre>	PNG (raster graphics)

Set membership operators

MAT LAB/Oct ave	Python	Description
a = [1 2 2 5 2]; b = [2 3 4];	<pre>a = array([1,2,2,5,2]) b = array([2,3,4]) a = set([1,2,2,5,2]) b = set([2,3,4])</pre>	Create sets
unique(a)	unique1d(a) unique(a) set(a)	Set unique
union(a,b)	union1d(a,b) a.union(b)	Set union
intersect(a,b)	<pre>intersect1d(a) a.intersection(b)</pre>	Set intersection
setdiff(a,b)	<pre>setdiff1d(a,b) a.difference(b)</pre>	Set difference
setxor(a,b)	<pre>setxor1d(a,b) a.symmetric_difference(b)</pre>	Set exclusion
ismember(2,a)	<pre>2 in a setmember1d(2,a) contains(a,2)</pre>	True for set member

Statistics

MAT LAB/Oct ave	Python	Description
mean(a)	a.mean(axis=0)	Average
	mean(a [,axis=0])	
median(a)	<pre>median(a) Of median(a [,axis=0])</pre>	Median
std(a)	a.std(axis=0) Or std(a [,axis=0])	Standard deviation
var(a)	a.var(axis=0) Or var(a)	Variance

Interpolation and regression

MAT LAB/Oct ave	Python	Description
<pre>z = polyval(polyfit(x,y,1),x)</pre>	(a,b) = polyfit(x,y,1)	Straight line fit
plot(x,y,'o', x,z ,'-')	plot(x,y,'o', x,a*x+b,'-')	
a = x y	linalg.lstsq(x,y)	Linear least squares \$y = ax + b\$
polyfit(x,y,3)	polyfit(x,y,3)	Polynomial fit

Polynomials, root finding

MAT LAB/Oct ave	Python	Description
	poly()	Polynomial
roots([1 -1 -1])	roots()	Find zeros of polynomial
f = inline('1/x - (x-1)')		Find a zero near \$x = 1\$
fzero(f,1)		
solve('1/x = x-1')		Solve symbolic equations
polyval([1 2 1 2],1:10)	polyval(array([1,2,1,2]),arange(1,11)	Evaluate polynomial

Differential equations

MAT LAB/Oct ave	Python	Description
diff(a)	diff(x, n=1, axis=0)	Discrete difference function and approximate derivative
		Only a differential amount in a

Fourier analysis

MATLAB/Oct ave	Python	Description
fft(a)	fft(a) <i>Or</i>	Fast fourier transform
ifft(a)	ifft(a) <i>Or</i>	Inverse fourier transform

Loops

MATLAB/Oct ave	Python	Description
for i=1:5; disp(i); end	for i in range(1,6): print(i)	for-statement
for i=1:5	for i in range(1,6):	Multiline for statements
disp(i)	<pre>print(i)</pre>	
disp(i*2)	print(i*2)	
end		

Conditionals

MAT LAB/Oct ave	Python	Description
if 1>0 a=100; end	if 1>0: a=100	if-statement
if 1>0 a=100; else a=0; end		if-else-statement

Working directory and OS

MAT LAB/Oct ave	Python	Description
dir Or ls	os.listdir(".")	List files in directory
what	grep.grep("*.py")	List script files in directory
pwd	os.getcwd()	Displays the current working directory
cd foo	os.chdir('foo')	Change working directory
!notepad	os.system('notepad')	Invoke a System Command
<pre>system("notepad")</pre>	os.popen('notepad')	