The UML for the Simulation of COVID-19

陳昱銓、謝富伍、卓彥霖| June 25, 2021

Person **SIRSimulation** Attributes: Attributes: + n_cities: Integer = 6 + time: Float = 0 - city_pop: Integer = 100 - last_step_change: Integer = -1 + travel rate: Float = 0.3 - velocity: ndarray = np.zeros(2) + trigger case: Integer = 30 + point: ndarray - percentage_of_no_symptom: Float = 0.2 + status: String = "S" + quarantine_mode: Boolean = False + repulsion_points[0..10]: List - probability_of_quarantine: Float = 0.7 + num infected: Integer = 0 - boxes[1..*]:List + getting_infected_time: Float - num of total infected case: Integer + infection_radius: Float = 0.5 + probability_of_infection: Float = 0.5 Methods: + incubation_period: Float = 1.04 - add_box(): List, List + infection duration: Float = 4.0- add_people() - dl_bound: List = [0, 0] - update_statuses() - ur bound: List = [10, 10] - get_status_count(): ndarray[1..4] - wander_step_size: Integer = 1 - wander_step_duration: Float = 1 - gravity_well: ndarray - gravity_strength: Integer = 1 - socail_distance_factor: Float = 0.2 - percentage_of_social_distancing: Float = 0.7 RunSimpleSimulation - n_repulsion_points: Integer = 10 - wall_buffer: Integer = 1 Attributes: - max speed: Float = 1.0 - last_update_time: Float - dt: Float = 0.01- effect_reproduction_num: Float - particles: Dictionary Methods: Methods: + set_point():ndarray - setup(): - update status(in status:String) - run_until_zero_infection() - update_position(in dt:Float) (operation in one box) - update_R_label() - show() - update infection ring(in infection radius:Float, in dt:Float) + update time(in dt:Float) Matplotlib matplotlib.animation.FuncAnimation