Regulatory sequence analysis

Position-specific scoring matrices (PSSM)

Alignment of transcription factor binding sites

Binding sites for the yeast Pho4p transcription factor

(Source : Oshima et al. Gene 179, 1996; 171-177)

Gene	Site Name	Sequence	Affinity
PHO5	UASp2	aCtCaCA CACGTGGG ACTAGC-	high
PHO84	Site D	TTTCCA GCACGTGGG GCGGA	high
PHO81	UAS	TTATG GCACGTGCG AATAA	high
PHO8	Proximal	GTGATCGCT GCACGTGGC CCGA	high
group 1	consensus	gCACGTGgg	high
PHO5	UASp1	TAAATTA GCACGTTTT CGC	medium
PHO84	Site E	AATAC GCACGTTTT TAATCTA	medium
group 2	consensus	cgCACGTTtt	medium
Degenera	te consensus	GCACGTKKk	high-med
<u> </u>			
Non-bind	ing sites		
PHO5	UASp3	TAATTTG GCA<mark>T</mark>GTGCG ATCTC	No binding
PHO84	Site C	ACGTC CACGTGG AACTAT	No binding
PHO84	Site A	TTTA <u>T</u> CACGTG <u>A</u> CACTTTTT	No binding
PHO84	Site B	TTAC GCACGT<u>T</u>G GTGCTG	No binding
PHO8	Distal	TTACCC GCACG<mark>C</mark>TT AATAT	No binding

IUP	AC ambiguous	nucleotide code
Α	Α	A denine
С	С	Cytosine
G	G	Guanine
Т	T	T hy mine
R	A or G	pu R ine
Υ	C or T	p Y rimidine
W	A or T	Weak hy drogen bonding
S	G or C	Strong hy drogen bonding
M	A or C	aMino group at common position
K	G or T	Keto group at common position
Н	A, C or T	not G
В	G, C or T	not A
V	G, A, C	not T
D	G, A or T	not C
N	G, A, C or T	а N у

Regulatory sequence analysis

From alignments to weights

Jacques.van.Helden@ulb.ac.be

Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe) http://www.bigre.ulb.ac.be/

Sequence logo

Count matrix (TRANSFAC matrix F\$PHO4_01)

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	3	2	0	8	0	0	0	0	0	1	2
С	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
Т	4	1	0	0	0	0	0	8	3	2	2	2
Sum	8	8	8	8	8	8	8	8	8	8	8	8

Tom Schneider's sequence logo

(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)

Frequency matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.13	0.38	0.25	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.13	0.25
С	0.25	0.25	0.38	1.00	0.00	1.00	0.00	0.00	0.00	0.25	0.00	0.25
G	0.13	0.25	0.38	0.00	0.00	0.00	1.00	0.00	0.63	0.50	0.63	0.25
Т	0.50	0.13	0.00	0.00	0.00	0.00	0.00	1.00	0.38	0.25	0.25	0.25
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

$$f_{i,j} = \frac{n_{i,j}}{\sum_{i=1}^{A} n_{i,j}}$$

A alphabet size (=4) $n_{i,j,}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,i}$ relative frequency of residue i at position j

Reference: Hertz (1999). Bioinformatics 15:563-577.

Corrected frequency matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
C	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

1st option: identically distributed pseudo-weight

$$f'_{i,j} = \frac{n_{i,j} + k/A}{\sum_{i=1}^{A} n_{i,j} + k}$$

2nd option: pseudo-weight distributed according to residue priors

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

A alphabet size (=4) $n_{i,j,}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f'_{i,i}$ corrected frequency of residue i at position j

Reference: Hertz (1999). Bioinformatics 15:563-577.

Weight matrix (Bernoulli model)

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.325	A	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
0.175	C	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
0.175	G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
0.325	Т	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
1.000	Sum	-0.37	-0.02	-1.02	-4.94	-5.55	-4.94	-4.94	-5.55	-3.08	-1.13	-2.03	0.19

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{r=1}^{A} n_{r,j} + k}$$

 p_{i}

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

A alphabet size (=4)

occurrences of residue i at position j prior residue probability for residue i relative frequency of residue i at position j pseudo weight (arbitrary, 1 in this case)

 $f'_{i,j}$ corrected frequency of residue i at position j $W_{i,j}$ weight of residue i at position j

Reference: Hertz (1999). Bioinformatics 15:563-577.

The use of a weight matrix relies on Bernoulli assumption

If we assume, for the background model, an independent succession of nucleotides (Bernoulli model), the weight W_S of a sequence segment S is simply the sum of weights of the nucleotides at successive positions of the matrix $(W_{i,j})$.

In this case, it is convenient to convert the PSSM into a weight matrix, which can then be used to assign a score to each position of a given sequence.

Properties of the weight function

$$W_{i,j} = \ln\left(\frac{f'_{i,j}}{p_i}\right) \left| f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k} \right| \qquad \sum_{i=1}^{A} f'_{i,j} = 1$$

The weight is

- positive when $f'_{i,j} > p_i$ (favourable positions for the binding of the transcription factor)
- negative when $f'_{i,j} < p_i$ (unfavourable positions)

Regulatory sequence analysis

Information content

Jacques.van.Helden@ulb.ac.be

Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe) http://www.bigre.ulb.ac.be/

Shannon uncertainty

- Shannon uncertainty
 - $H_s(j)$: uncertainty of a column of a PSSM
 - \Box Hg: uncertainty of the background (e.g. a genome)
- Special cases of uncertainty (for a 4 letter alphabet)
 - \square min(H)=0
 - No uncertainty at all: the nucleotide is completely specified (e.g. p={1,0,0,0})
 - □ H=1
 - Uncertainty between two letters (e.g. p={0.5,0,0,0.5})
 - max(H) = 2 (Complete uncertainty)
 - One bit of information is required to specify the choice between each alternative (e.g. p={0.25,0.25,0.25,0.25}).
 - Two bits are required to specify a letter in a 4letter alphabet.
- \blacksquare R_{seq}
 - Schneider (1986) defines an information content based on Shannon's uncertainty.
- \blacksquare R^*_{seq}
 - For skewed genomes (i.e. unequal residue probabilities), Schneider recommends an alternative formula for the information content
 This is the formula that is nowadays used.

$$H_{s}(j) = -\sum_{i=1}^{A} f_{i,j} \log_{2}(f_{i,j})$$

$$H_{g} = -\sum_{i=1}^{A} p_{i} \log_{2}(p_{i})$$

$$R_{seq}(j) = H_{g} - H_{s}(j) \qquad R_{seq} = \sum_{j=1}^{W} R_{seq}(j)$$

$$R_{seq}^{*}(j) = \sum_{i=1}^{A} f_{i,j} \log_{2}\left(\frac{f_{i,j}}{p_{i}}\right) \qquad R_{seq}^{*} = \sum_{i=1}^{W} R_{seq}^{*}(j)$$

Schneider logos

$$H_s(j) = -\sum_{i=1}^{A} f_{ij} \log_2(f_{ij})$$

$$R_{seq}(j) = 2 - H_s(j) + e(n)$$

$$h_{ij} = f_{ij}R_{seq}(j)$$

- Schneider (1990) proposes a graphical representation based on his previous entropy (H) for representing the importance of each residue at each position of an alignment. He provides a new formula for R_{sea}
 - $\Box H_s(j)$ uncertainty of column j
 - $R_{sea}(j)$ "information content" of column j (beware, this definition differs from Hertz' information content)
 - \circ e(n) correction for small samples (pseudo-weight)

Remarks

- \Box This information content does not include any correction for the prior residue probabilities (p_i)
- This information content is expressed in bits.

Boundaries

- \square *min(Rseq)=0* equiprobable residues
- \square max(Rseq)=2 perfect conservation of 1 residue with a pseudo-weight of 0,
- Sequence logos can be generated from aligned sequences on the Weblogo server
 - http://weblogo.berkeley.edu/

Sequence logo

A ATGTATGG Rap1 GGTGGCAAA Rpn4 AAA TGA STCA Gcn4 GAA TTC AGAA HSE zG_GGGGA_GC Mig1 AAT TCACGTG Cbf1

Information content

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.325	A	-0.12	0.05	-0.06	-0.08	0.97	-0.08	-0.08	-0.08	-0.08	-0.08	-0.12	-0.06
0.175	C	0.08	0.08	0.25	1.50	-0.04	1.50	-0.04	-0.04	-0.04	0.08	-0.04	0.08
0.175	G	-0.04	0.08	0.25	-0.04	-0.04	-0.04	1.50	-0.04	0.68	0.45	0.68	0.08
0.325	Т	0.19	-0.12	-0.08	-0.08	-0.08	-0.08	-0.08	0.97	0.05	-0.06	-0.06	-0.06
1.000	Sum	0.11	0.09	0.36	1.29	0.80	1.29	1.29	0.80	0.61	0.39	0.47	0.04

$$f_{i,j}^{'} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

$$I_{i,j} = f'_{i,j} \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

$$I_j = \sum_{i=1}^A I_{i,j}$$

$$I_{matrix} = \sum_{i=1}^{w} \sum_{i=1}^{A} I_{i,j}$$

A alphabet size (=4) $n_{i,j}$ occurrences of residue i at position j w matrix width (=12) p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f'_{i,j}$ corrected frequency of residue i at position j $W_{i,j}$ weight of residue i at position j $I_{i,j}$ information of residue i at position j

Reference: Hertz (1999).

Bioinformatics 15:563-577_{1.3}

Information content I_{ij} of a cell of the matrix

- For a given cell of the matrix
 - □ I_{ij} is positive when $f'_{ij} > p_i$ (i.e. when residue i is more frequent at position j than expected by chance)
 - \Box I_{ij} is negative when $f_{ij}^* < p_i$
 - I_{ij} tends towards 0 when $f_{ij}^* \rightarrow 0$ (because $limit_{x\to 0} x*ln(x) = 0$)

Information content of a column of the matrix

- For a given column i of the matrix
 - The information of the column (I_j) is the sum of information of its cells.
 - \Box I_i is always positive
 - \Box I_i is always positive
 - □ I_j is 0 when the frequency of all residues equal their prior probability $(f_{ij}=p_i)$
 - \Box I_i is maximal when
 - the residue i_m with the lowest prior probability has a frequency of 1
 (all other residues have a frequency of 0)
 - and the pseudo-weight is 0

$$I_{j} = \sum_{i=1}^{A} I_{i,j} = \sum_{i=1}^{A} f_{i,j}^{'} \ln \left(\frac{f_{i,j}^{'}}{p_{i}} \right)$$

$$i_m = \operatorname{argmin}_i(p_i) \qquad k = 0$$

$$\max(I_j) = 1 * \ln(\frac{1}{p_i}) = -\ln(p_i)$$

Information content of the matrix

- The total information content represents the capability of the matrix to make the distinction between a binding site (represented by the matrix) and the background model.
- The information content also allows to estimate an upper limit for the expected frequency of the binding sites in random sequences.
- The pattern discovery program consensus (developed by Jerry Hertz) optimises the information content in order to detect over-represented motifs.
- Note that this is not the case of all pattern discovery programs: the gibbs sampler algorithm optimizes a log-likelihood.

$$I_{matrix} = \sum_{j=1}^{w} \sum_{i=1}^{A} I_{i,j}$$

$$P(site) \le e^{-I_{matrix}}$$

Reference: Hertz (1999). Bioinformatics 15:563-577.

Information content: effect of prior probabilities

- The upper bound of I_i increases when p_i decreases
- The information content, as defined by Gerald Hertz, has thus no upper bound.

References - PSSM information content

- Papers by Tom Schneider
 - Schneider, T.D., G.D. Stormo, L. Gold, and A. Ehrenfeucht. 1986.
 Information content of binding sites on nucleotide sequences. J Mol Biol 188: 415-431.
 - Schneider, T.D. and R.M. Stephens. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18: 6097-6100.
 - Tom Schneider's publications online
 - http://www.lecb.ncifcrf.gov/~toms/paper/index.html
- Papers by Gerald Hertz
 - Hertz, G.Z. and G.D. Stormo. 1999. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15: 563-577.