Sorting in Linear Time

Heejin Park

Hanyang University

Contents

- Lower bounds for sorting
- Counting sort
- Radix sort

Lower bounds for sorting

Comparison sorts

- Sorting algorithms using only comparisons to determine *the* sorted order of the input elements.
- Use tests such as $a_i < a_j$, $a_i \le a_j$, $a_i = a_j$, $a_i \ge a_j$, or $a_i > a_j$.
- Heapsort, Mergesort, Insertion sort, Selection sort, Quicksort

Lower bounds for (comparison) sorting

• Any comparison sort must make $\Omega(n \lg n)$ comparisons in the worst case to sort n elements.

Lower bounds for sorting

Comparison sort

- we assume without loss of generality that all of the input elements are distinct.
 - The comparisons $a_i \le a_j$, $a_i \ge a_j$, $a_i > a_j$, and $a_i < a_j$ are all equivalent.
 - We assume that all comparisions have the form $a_i \le a_i$

- Comparison sorts can be viewed in terms of decision trees.
 - A full binary tree.
 - Each leaf is a permutation of input elements.
 - Each internal node *i*:*j* indicates a comparison $a_i \le a_j$.

A decision tree for insertion sort

- The left subtree of the node i:j includes all permutations for $a_i \le a_j$.
- The right subtree includes all permutations for $a_i > a_j$.

A decision tree for insertion sort

• The execution of the sorting algorithm corresponds to tracing a path from the root of the decision tree to a leaf.

A decision tree for insertion sort

• the worst-case number of comparisons = the height of its decision tree.

A decision tree for insertion sort

• Theorem 8.1: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

• Proof:

- Height: h, Number of element: n
- The number of leaves: *n*!
 - Each permutations for *n* input elements should appear as leaves.
- $n! \le 2^h$
- $\lg(n!) \leq h$
- $\Omega(n \lg n)$ (by equation (3.18) : $\lg(n!) = \Theta(n \lg n)$).

Self-study

- Exercise 8.1-1
 - The smallest depth of a leaf in a decision tree
- Exercise 8.1-3
 - Decision tree existence
- Exercise 8.1-4
 - Lower bound of a decision tree

Counting sort

A sorting algorithm using counting.

• Each input element x should be located in the ith place after sorting if the number of elements less than x is i-1.

B 0 0 2 2 3 3 5

Counting sort

- Stable
 - Same values in the input array appear in the same order in the output array.

COUNTING-SORT(A, B, k)

$$\Theta(k) \begin{bmatrix} 1 \text{ for } i = 0 \text{ to } k \\ 2 & C[i] = 0 \end{bmatrix}$$

$$\Theta(n) \begin{bmatrix} 3 \text{ for } j = 1 \text{ to } A.length \\ 4 & C[A[j]] = C[A[j]] + 1 \end{bmatrix}$$

$$5 \triangleright C[i] \text{ contains the number of elements equal to } i.$$

$$\Theta(k) \begin{bmatrix} 6 \text{ for } i = 1 \text{ to } k \\ 7 & C[i] = C[i] + C[i - 1] \end{bmatrix}$$

$$8 \triangleright C[i] \text{ contains the number of elements less than or equal to } i.$$

$$\Theta(n) \begin{bmatrix} 9 \text{ for } j = A.length \text{ downto } 1 \\ 10 & B[C[A[j]]] = A[j] \\ 11 & C[A[j]] = C[A[j]] - 1 \end{bmatrix}$$

• The overall time is $\Theta(k+n)$ where k is the range of input integers.

• If k = O(n), the running time is $\Theta(n)$.

Self-study

- Exercise 8.2-1
 - A counting-sort example
- Exercise 8.2-3
 - Counting-sort stability
- Exercise 8.2-4
 - A counting-sort application

• Radix sort (MSD → LSD)

326	3 26	326	326
453	4 53	435	435
608	435	453	453
835	6 08	608	608
751	6 90	690	690
435	7 51	704	704
704	7 04	751	751
690	835	835	835

• Radix sort (MSD ← LSD)

	V		
326	69 <mark>0</mark>	704	326
453	75 <mark>1</mark>	608	435
608	453	326	453
835	704	835	608
751	835	435	690
435	435	751	704
704	326	453	751
690	608	690	835

RADIX-SORT(A, d) 1 for i = 1 to d

2 use a *stable sort* to sort array A on digit *i*

- RADIXSORT sorts in $\Theta(d(n+k))$ time when n d-digit numbers are given and each digit can take on up to k possible values.
- When d is constant and k = O(n), radix sort runs in linear time.

\circ Changing d and k

d = ?

k = ?

d = ? k = ?

• Lemma 8.4 (Self-study)

Given n b-bit numbers and any positive integer $r \le b$, RADIX-SORT correctly sorts these numbers in $\Theta((b/r)(n+2^r))$ time.

		b		TO '			
1	0	1	1	0	1	1	
0	1	· ·	1	0	0	1	v
				:	:	:	$\rangle n$
0	1		0	1	0	0	
1	0	0	1	0	0	1	
	r	r			\widetilde{r}		٧

- Computing optimal r minimizing $(b/r)(n+2^r)$.
 - 1. $b < \lfloor \lg n \rfloor$

for any value of r, $(n + 2^r) = \Theta(n)$ because $r \le b$.

So choosing r = b yields a running time : $(b/b)(n + 2^b) = \Theta(n)$,

which is asymptotically optimal.

- Computing optimal r minimizing $(b/r)(n+2^r)$.
 - 2. $b \ge \lfloor \lg n \rfloor$ choosing $r = \lfloor \lg n \rfloor$ gives the best time to within a constant factor, $(b/\lg n)(n+2^{\lg n}) = (b/\lg n)(2n) = \Theta(bn/\lg n)$.
 - As we increase r above $\lfloor \lg n \rfloor$, the 2^r in the numerator increases faster than the r in the dominator.
 - As we decrease r below $[\lg n]$, then the b/r term increases and the $n + 2^r$ term remains at $\Theta(n)$.

Compare radix sort with other sorting algorithms.

• If $b = O(\lg n)$, we choose $r \approx \lg n$.

Radix sort: $\Theta(n)$

Quicksort: $\Theta(n \lg n)$

- The constant factors hidden in the Θ -notation differ.
 - 1. Radix sort may make fewer passes than quicksort over the *n* keys, each pass of radix sort may take significantly longer.
 - 2. Radix sort does not sort in place.

Self-study

- Exercise 8.3-1
 - Radix sort example
- Exercise 8.3-2
 - Stability
- Exercise 8.3-4
 - Radix sort application