Enunciat - A

1.1 Integració numèrica: fórmules compostes

Doneu una aproximació de l'àrea de la regió acotada per la corba

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x/\sigma)^2/2}$$

A l'interval $[-3\sigma, 3\sigma]$:

(a) Previ al càlcul numèric feu el canvi de variables $t=\frac{x}{\sigma}$ a la integral que defineix l'àrea a calcular.

Fent el canvi de variable $t = \frac{x}{\sigma}$, tenim $dt = \frac{1}{\sigma} dx \implies dx = \sigma dt$.

Tanmateix, l'interval queda definit per [-3, 3] ja que $3\sigma = x \Rightarrow t = \frac{3\sigma}{\sigma} \Rightarrow t = 3$ (el mateix pel valor inferior del interval).

Així que l'interval queda definida de la següent manera:

$$\int_{-3}^{3} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

(b) Useu la regla composta dels trapezis per N = 2,4,8,16,32,64,....

Per fer aquest apartat, he utilitzat la regla composta dels trapezis quan la partició és equiespaida sense tenir en compte l'error de truncament. Té la següent expressió:

$$\int_{a}^{b} f(t)dt \approx \frac{h}{2} \left[f(t_{o}) + 2f(t_{1}) + \dots + 2f(t_{N-1}) + f(t_{N}) \right]$$

On
$$h = \frac{b-a}{N}$$
.

taula_resultats =

tauia_	resultats –	
N	Trapezi	
2	1.21012238644011	
4	0.993613980217731	
8	0.996122616094574	
16	0.99699295584903	
32	0.997222573997465	
64	0.997280745154286	
128	0.997295336032441	ex1b.m
256	0.997298986760083	

(c) Useu el mètode de Romberg per millorar l'aproximació obtinguda.

El mètode de Romberg consisteix en calcular:

$$T(h), T\left(\frac{h}{2}\right), T\left(\frac{h}{4}\right), ..., T\left(\frac{h}{2^N}\right)$$

Per h = (b-a)/n, $x_k = a+kh$, i k = 0 : n.

Després s'usa l'esquema d'extrapolació de Richardson per L ≥ 1:

$$T_{L+1}(h) = T_L(h) + \frac{T_L(h) - T_L(2h)}{4^L - 1}$$

 $T_1(h) = T(h)$

$T_1(h)$	$T_2(h)$	$T_3(h)$	$T_4(h)$
1.21012238644011	0	0	0
0.993613980217731	0.921444511476938	0	0
0.996122616094574	0.996958828053521	1.00199311582529	0
0.99699295584903	0.997283069100516	0.997304685170316	0.99723026563611
0.997222573997465	0.997299113380276	0.997300182998927	0.997300111535889
0.997280745154286	0.997300135539894	0.997300203683868	0.9973002040122
0.997295336032441	0.997300199658492	0.997300203933066	0.997300203937021
0.997298986760083	0.997300203669297	0.997300203936684	0.997300203936741

$T_5(h)$	(h) $T_6(h)$		$T_8(h)$	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0.997300385441378	0	0	0	
0.997300204374853	0.997300204197857	0	0	
0.997300203936726	7300203936726 0.997300203936298		0	
0.99730020393674	0.99730020393674	0.99730020393674	0.99730020393674	

ex1c.m

(d) Calculeu el valor exacte PRO donat per Matlab

El que s'ha fet en aquest apartat, ha sigut utilitzar normcdf en l'interval (-3, 3) que retorna en valor de la probabilitat que una observació d'una distribució normal estàndard caigui en l'interval [-3, 3].

El valor obtingut és 0.99730020393674.

ex1d.m

(e) Presenteu en taules els resultats i els errors absoluts obtinguts. Quants decimals correctes s'obtenen? Comenteu els resultats obtinguts.

Mètode	Resultats	Error absolut	Decimals
			correctes
Trapezi	1.21012238644011	0.212822467808574	0
	0.993613980217731	0.0036859384138066	2
	0.996122616094574	0.00117730253696435	2
	0.99699295584903	0.000306962782507414	3
	0.997222573997465	7.734463407294e-05	5
	0.997280745154286	1.9173477251444e-05	6
	0.997295336032441	4.58259909708048e-06	7
	0.997298986760083	9.31871455112088e-07	7
Romberg	0.99730020393674	2.85305202241126e-07	8
Normcdf	0.99730020393674	2.85305201908059e-07	8

Romberg i normcdf són més eficients que el mètode del trapezi. S'observa que el mètode del trapezi és més eficient com més gran és N.

ex1e.m

1.2 Diferenciació numèrica: comportament de l'error

Hom pot pensar que les millors aproximacions numèriques de les derivades s'obtenen prenent passos de derivació molt petits. L'aparició en moltes de les fórmules de diferències de quantitats ... molt properes, amb la corresponent cancel lació de termes, fa que això no sigui en general cert.

La derivada de la funció f(x) = arctan(x) en x = $\sqrt{2}$ pren el valor $f'(\sqrt{2})$ = 1/3. Considereu les dues fórmules d'aproximació de la derivada primera següents:

$$F1: f'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}, \qquad F2: f'(x_0) \approx \frac{f(x_0+h)-f(x_0-h)}{2h}.$$

I.- Aproximeu f'(V2) fent ús de la fórmula F1

- (a) Per $h_k = 10^{-k}$ per a k = 1,2,3...15.
- (b) Calculeu l'error absolut per cada una de les aproximacions obtingudes.
- (c) Presenteu els resultats dels dos apartats en una mateixa taula (T1).
 T1 =

k	$f'ig(\sqrt{2}ig)$	ea
1	0.318219785804463	0.01511354752887
2	0.331768140319333	0.00156519301400038
3	0.333176260204016	0.000157073129317675
4	0.333317620466733	1.57128666000705e-05
5	0.333331761992461	1.57134087180877e-06
6	0.333333176172346	1.57160987557248e-07
7	0.333333317614759	1.57185742200028e-08
8	0.333333327606766	5.72656699837637e-09
9	0.333333360913457	2.75801237403783e-08
10	0.333333360913457	2.75801237403783e-08
11	0.333333360913457	2.75801236848672e-08
12	0.333399974294935	6.66409616012498e-05
13	0.333066907387547	0.000266425945786297
14	0.333066907387547	0.000266425945786297
15	0.333066907387547	0.000266425945786297

ex2l.m

II.- Aproximeu $f'(\sqrt{2})$ fent ús de la fórmula F2

(a) Per $h_k = 10^{-k}$ per a k = 1,2,3...15.

15

- (b) Calculeu l'error absolut per cada una de les aproximacions obtingudes.
- (c) Presenteu els resultats dels dos apartats previs en una mateixa taula (T2).

T2 = $f'(\sqrt{2})$ K ea 1 0.333950696774319 0.000617363440986174 2 0.333339506181068 6.17284773518634e-06 3 0.333333395061697 6.17283635317989e-08 4 0.333333333950581 6.17247364331774e-10 5 0.33333333341068 7.7349793237147e-12 6 0.33333333324415 8.91842155681388e-12 7 0.333333333157881 1.75451875250587e-10 8 0.333333327606766 5.72656699837637e-09 9 0.333333360913457 2.75801237403783e-08 10 0.333333360913457 2.75801237403783e-08 11 0.333333360913457 2.75801236848672e-08 12 6.66409616012498e-05 0.333399974294935 13 0.333066907387547 0.000266425945786297 ex2II.m 14 0.333066907387547 0.000266425945786297

0.000266425945786297

III.- Representeu els dos errors en una gràfica, amb $k = 1,2,3\cdots 15$ a l'eix d'abscisses i $\log(error)$ a l'eix d'ordenades.

0.333066907387547

ex2III.m

S'observa que a partir de k=8, els errors relatius dels resultats obtinguts per ambdues formes coincideixen.

IV.- Per totes dues fórmules de derivació hi ha un pas òptim a partir del qual, si prenem valors de h més petits, els errors comencen a créixer. Quin és aquest pas per F1? i per F2?

Aquest pas òptim és k=9, és a dir quan es pren h com 10⁻⁹. A partir de k=9, per totes dues fórmules de derivació els errors absoluts comencen a créixer.

1.3 Sistemes Lineals: mètodes iteratius

Sigui A la matriu i b el vector definits per:

$$A = \begin{pmatrix} -4 & 2 & 0 & . & . & . & 0 \\ 2 & -4 & 2 & 0 & . & . & 0 \\ 0 & 2 & -4 & 2 & 0 & . & 0 \\ 0 & 0 & . & . & . & 0 & 0 \\ 0 & . & 0 & . & . & . & 0 \\ 0 & . & . & 0 & 2 & -4 & 2 \\ 0 & . & . & . & 0 & 2 & -4 \end{pmatrix}, \qquad b = \begin{pmatrix} -2 \\ 0 \\ . \\ . \\ 0 \\ -2 \end{pmatrix}.$$

Per a tots els ordres N tals que $3 \le N \le 20$ es demana:

(a) Calculeu el determinant i el nombre de condició de les matrius A.

N	Determinant	Nombre de condició
3	-32	5.82842712474619
4	80	9.47213595499958
5	-192	13.9282032302755
6	448	19.1956693580892
7	-1024	25.2741423690882
8	2304	32.1634374775263
9	-5120	39.8634581890614
10	11264	48.3741500787082
11	-24576	57.695480540981
12	53248	67.8274290696037
13	-114688	78.7699822409711
14	245760	90.5231309677742
15	-524288	103.086868919817
16	1114112	116.461191577488
17	-2359296	130.64609564386
18	4980736	145.641578668097
19	-10485760	161.447638797589
20	22020096	178.06427461086

ex3a.m

Com major és N, el sistema Ax=b està pitjor condicionat, ja que el nombre de condició de A augmenta a la vegada que N.

(b) Demostreu que $X = (1,1,...,1)^t$ és solució exacte per a qualsevol N.

 $X = (1,1,...,1)^t$ serà solució exacte per a qualsevol N si el seu residu és 0:

$$r(X) = b - AX$$

$$||r(X)||_2 = 0$$

N	$ r(X) _2$
3	0
4	0
5	0
6	0
6 7	0
8	0
9	0
10	0
11	0
12	0
13	0
14	0
15	0
16	0
17	0
18	0
19	0
20	0

El residu és 0 per a tots els ordres N tals que $3 \le N \le 20$, per tant, es confirma que $X = (1,1,...,1)^t$ és solució exacte.

ex3b.m

(c) Estudieu la convergència dels mètodes de Jacobí i Gauss-Seidel per a la resolució del sistema d'equacions lineals. Abans de calcular res, feu un gràfic d'evolució del radi espectral de la matriu d'iteració de cadascun dels mètodes estudiats en funció de N.

El mètode Jacobi convergeix si A és diagonal dominant estricte, és a dir, si $\max\left(\sum_{\substack{j=1\\j\neq i}}^{N}\left|\frac{a_{ij}}{a_{ii}}\right|\right)<1.$

El mètode Gauss-Seidel convergeix si A és diagonal dominant estricte i si A és simètrica definida positiva.

A^t = A per tot N, per tant, apunta a que el mètode Gauss-Seidel sí convergirà.

taula_resultats =

N	Radi espectral					
	Jacobi	Gauss-Seidel				
3	0.707106781186548	0.5				
4	0.809016994374948	0.654508497187474				
5	0.866025403784439	0.75				
6	0.90096886790242	0.811744900929367				
7	0.923879532511287	0.853553390593273				
8	0.939692620785908	0.883022221559489				
9	0.951056516295154	0.904508497187475				
10	0.959492973614497	0.92062676641559				
11	0.965925826289068	0.933012701892219				
12	0.970941817426052	0.942728012826607				
13	0.974927912181824	0.950484433951209				

14	0.978147600733806	0.9567727288213
15	0.98078528040323	0.961939766255645
16	0.982973099683902	0.966236114702177
17	0.984807753012208	0.969846310392954
18	0.986361303402723	0.972908620850315
19	0.987688340595138	0.975528258147576
20	0.988830826225129	0.977786402893073

ex3c.m

Tant en el gràfic com a la taula de resultats s'observa que el radi espectral d'ambdós mètodes és inferior a 1 per tot N. Per tant, els dos mètodes convergeixen.

(d) Trobeu la solució X del sistema Ax = b per ambdós mètodes amb com a mínim 8 decimals correctes. Quantes iteracions calen en cada pas? Expliqueu els avantatges i inconvenients dels mètodes per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.

N	J	acobi	Gauss-Seidel		Residu Jacobi > Residu Gauss-Seidel
	Iteracions	Residu solució	Iteracions	Residu solució	- Gauss-Seidei
3	52	4.2147e-08	26	4.998e-08	No
4	82	4.2154e-08	42	3.9948e-08	Sí
5	121	4.5101e-08	60	4.855e-08	No
6	161	4.7389e-08	82	4.2913e-08	Sí
7	214	4.7432e-08	106	4.6566e-08	Sí
8	264	4.7617e-08	133	4.8271e-08	No
9	331	4.7793e-08	163	4.8694e-08	No
10	389	4.9656e-08	196	4.8294e-08	Sí
11	471	4.8419e-08	232	4.7373e-08	Sí
12	537	4.9811e-08	270	4.8939e-08	Sí
13	633	4.9773e-08	311	4.9496e-08	Sí
14	707	4.9925e-08	355	4.9326e-08	Sí
15	818	4.9974e-08	402	4.8647e-08	Sí
16	899	4.9717e-08	451	4.9287e-08	Sí
17	1026	4.9399e-08	503	4.9303e-08	Sí
18	1112	4.9851e-08	558	4.8852e-08	Sí
19	1255	4.9535e-08	615	4.9268e-08	Sí
20	1347	4.9443e-08	675	4.9194e-08	Sí

En aqueta taula s'observa que el mètode de Gauss-Seidel necessita menys iteracions per resoldre el sistema Ax = b. A més, el residu de la solució pel mètode de Jacobi és més gran en gairebé tots els casos (segons N). Per tant, Gauss-Seidel és clarament més eficient que Jacobi per resoldre aquest cas concret.

ex3d.m

1.4 Sistemes lineals: mínims quadrats

Els processos termodinàmics adiabàtics de sistemes físics estan caracteritzats per la pressió P, el volum V i la temperatura T (els gasos, per exemple) segueixen una llei del tipus $PV^{\gamma} = C$, on C és constant al llarg del procés (i depèn de la temperatura, que es manté constant).

Volem ajustar els valors de C i de γ en un procés adiabàtic segons la taula de mesures experimentals següent:

<i>P</i> (atm.)	1.62	1.00	0.75	0.62	0.52	0.46
V (litres)	0.5	1.0	1.5	2.0	2.5	3.0

Es demana:

(a) Plantegeu el problema de determinar els valors de C i de γ com un sistema lineal Ax
 = b, i.e. definiu les components del vector d'incògnites x, expresseu A i b en funció de P_i i V_i.

$$PV^{\gamma} = C$$

In P +
$$\gamma$$
 InV = C

$$InV = -1/y InP + C/y$$

Per tant, tenim un sitema lineal Ax = b, on:

A = (lnP, 1)
$$x = \begin{pmatrix} c/\gamma \\ -1/\gamma \end{pmatrix}$$
 b = (ln V)

(b) Resoleu el problema fent ús de les equacions normals. Doneu la solució obtinguda i calculeu el vector residu.

La solució es troba de la manera següent:

$$A'Ax = A'b \Rightarrow x=(A'A)\setminus(A'b)$$

La solució és:

$$x^* = \begin{pmatrix} -1.42226521373134 \\ -0.00283909794047243 \end{pmatrix} = \begin{pmatrix} c/\gamma \\ -1/\gamma \end{pmatrix}$$

Per tant,

 $\gamma = 352.22455194117$

c = -500.956727648034

ex4b.m

El vector residu és:
$$r(x^*) = \begin{pmatrix} -0.00417015235495055 \\ 0.00283909794047243 \\ -0.000855998213670717 \\ 0.0160925879009889 \\ -0.0109270371160927 \\ -0.00297849815674822 \end{pmatrix}$$

(c) Resoleu el problema lineal Ax = b fent ús de la factorització A = QR. Doneu la solució obtinguda i calculeu el vector residu.

La solució es troba de la manera següent:

$$Rx = Q' \cdot b \implies x=(R)\setminus(Q'b)$$

La solució és:

$$x^* = \begin{pmatrix} -1.42226521373134 \\ -0.00283909794047232 \end{pmatrix} = \begin{pmatrix} c/\gamma \\ -1/\gamma \end{pmatrix}$$

Per tant,

 γ = 352.224551941184

c = -500.956727648054

El vector residu és:
$$r(x^*) = \begin{pmatrix} -0.00417015235495088 \\ 0.00283909794047232 \\ -0.000855998213670717 \\ 0.016092587900989 \\ -0.0109270371160926 \\ -0.002978498156748 \end{pmatrix}$$

ex4c.m

(d) Comenteu les diferències entre les solucions trobades, compareu els residus dels apartats (b) i (c). Doneu l'equació de la llei resultant ($PV^{\nu} = C$).

r1 = 0.0203328885670034

r2 = 0.0203328885670034

El residu fent ús de les equacions normals i el residu fent ús de factorització QR pren el mateix valor.

L'equació de la llei resultant $(PV^{\gamma} = C)$ és aproximadament:

$$PV^{352.224551941184} = -500.956727648054$$