VOLUME MINIMIZATION AND ESTIMATES FOR CERTAIN ISOTROPIC SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES

EDWARD GOLDSTEIN

ABSTRACT. In this note we show the following result using the integral-geometric formula of R. Howard: Consider the totally geodesic $\mathbb{R}P^{2m}$ in $\mathbb{C}P^n$. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in $\mathbb{C}P^n$ (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also the totally geodesic $\mathbb{R}P^{2m-1}$ minimizes volume in its Hamiltonian deformation class in $\mathbb{C}P^n$. As a corollary we'll give estimates for volumes of Lagrangian submanifolds in complete intersections in $\mathbb{C}P^n$.

1. Introduction

On a Kähler n-fold M there is a class of isotropic submanifolds. Those are submanifolds of M on which the Kähler form ω of M vanishes. The maximal dimension of such a submanifold is n (the middle dimension) in which case it is called Lagrangian.

In this papers we'll exhibit global volume-minimizing properties among isotropic competitors for certain submanifolds of the complex projective space. In general global volume-minimizing properties of minimal/Hamiltonian stationary Lagrangian/isotropic submanifolds in Kähler (particularly Kähler-Einstein) manifolds are still poorly understood. In dimesion 2 there is a result of Schoen-Wolfson [ScW] (extended to isotropic case by Qiu in [Qiu]) which shows existence of Lagrangian cycles minimizing area among Lagrangians in a given homology class. Still it is not clear whether a *given* minimal Lagrangian has any global volume-minimizing properties.

The only instance where we have a clear cut answer to global volume-minimizing problem is Special Lagrangian submanifolds which are homologically volume-minimizing in Calabi-Yau manifolds [HaL]. In Kähler-Einstein manifolds of negative scalar curvature, besides geodesics on Riemann surfaces of negative curvature, we have some examples [Lee] of minimal Lagrangian submanifolds which are homotopically volume-minimizing. The author has a program for studying homotopy volume-minimizing properties for Lagrangians in Kähler-Einstein manifolds of negative scalar curvature [Gold1], but so far there are no satisfactory results.

In positive curvature case there is a result of Givental-Kleiner-Oh which states that the canonical totally geodesic $\mathbb{R}P^n$ in $\mathbb{C}P^n$ minimizes volume in its Hamiltonian deformation class, [Giv]. The proof uses integral geometry and Floer homology to study intersections for Hamiltonian deformations of $\mathbb{R}P^n$. Those arguments can be generalized to products of Lagrangians in a product of symmetric Kähler manifolds, [IOS]. There is a related conjecture due to Oh that the Clifford torus minimizes volume in its Hamiltonian deformation class in $\mathbb{C}P^n$, [Oh]. Some progress towards

1

this was obtained in [Gold2]. Also general lower bounds for volumes of Lagrangians in a given Hamiltonian deformation class in \mathbb{C}^n were obtained in [Vit].

In this note we extend and improve the result of Givental-Kleiner-Oh to isotropic totally geodesic $\mathbb{R}P^k$ sitting canonically in $\mathbb{C}P^n$. Our main result is the following theorem:

Theorem 1. Consider the totally geodesic $\mathbb{R}P^{2m}$ in $\mathbb{C}P^n$. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in $\mathbb{C}P^n$ (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also consider the totally geodesic $\mathbb{R}P^{2m-1}$ in $\mathbb{C}P^n$. Then it minimizes volume in its Hamiltonian deformation class.

A corollary of this is:

Corollary 1. Let f_1, \ldots, f_k be real homogeneous polynomials of odd degree in n+1 variables with 2m+k=n. Let N be the zero locus of f_i in $\mathbb{C}P^n$ and L be their real locus. Then $vol(L) \leq \prod deg(f_i)vol(\mathbb{R}P^{2m})$ and if L' is a Lagrangian submanifold of N homologous mod 2 to L in N then $vol(L') \geq vol(\mathbb{R}P^{2m})$.

2. A FORMULA FROM INTEGRAL GEOMETRY

In this section we establish a formula from integral geometry for volumes of isotropic submanifolds of $\mathbb{C}P^n$ following the exposition in R. Howard [How]. In our case the group SU(n+1) acts on $\mathbb{C}P^n$ with a stabilizer $K\simeq U(n)$. Thus we view $\mathbb{C}P^n=SU(n+1)/K$ and the Fubini-Study metric is induced from the bi-invariant metric on SU(n+1). Let P^{2m} be an isotropic submanifold of $\mathbb{C}P^n$ of dimension 2m and let Q be a linear $\mathbb{C}P^{n-m}\subset \mathbb{C}P^n$. For a point $p\in P$ and $q\in Q$ we define an angle $\sigma(p,q)$ between the tangent planes T_pP and T_qQ as follows: First we choose some elements g and h in SU(n+1) which move p and q respectively to the same point $r\in \mathbb{C}P^n$. Now the tangent planes g_*T_pP and h_*T_qQ are in the same tangent space $T_r\mathbb{C}P^n$ and we can define an angle between them as follows: take an orthonormal basis $u_1\ldots u_{2m}$ for g_*T_pP and an orthonormal basis $v_1\ldots v_{2n-2m}$ for h_*T_qQ and define

$$\sigma(g_*T_pP, h_*T_qQ) = |u_1 \wedge \ldots \wedge v_{2n-2m}|$$

The later quantity $\sigma(g_*T_pP, h_*T_qQ)$ depends on the choices g and h we made. To mend this we'll need to average this out by the stabilizer group K of the point r. Thus we define:

$$\sigma(p,q) = \int_{K} \sigma(g_* T_p P, k_* h_* T_q Q) dk$$

Since SU(n+1) acts transitively on the Grassmanian of isotropic planes and the complex planes in $\mathbb{C}P^n$ we conclude that this angle is a constant depending just on m and n:

$$\sigma(p,q) = C_{m,n}$$

There is a following general formula due to R. Howard [How]:

$$\int_{SU(n+1)} \#(P \bigcap gQ) dg = \int_{P \times Q} \sigma(p,q) dp dq = C_{m,n} vol(P) vol(Q)$$

Here $\#(P \cap gQ)$ is the number of intersection points of P with gQ, which is finite for a generic $g \in SU(n+1)$. To use the formula we need to have some control over the intersection pattern of P and gQ. We have the following lemma:

Lemma 1. Let P be the totally geodesic $\mathbb{R}P^{2m} \subset \mathbb{C}P^n$, let $Q = \mathbb{C}P^{n-m} \subset \mathbb{C}P^n$. Let $g \in SU(n+1)$ s.t. P and gQ intersect transversally. Then $\#(P \cap gQ) = 1$. Also let f_1, \ldots, f_k be real homogeneous polynomials in n+1 variables with 2m+k=n and let P' be their real locus. If P' is transversal to gQ then $\#(P' \cap gQ) \leq \Pi deg(f_i)$.

Proof: For the first claim we have gQ is given by an (n-m+1)-plane $H \subset \mathbb{C}^{n+1}$ and hence it is a zero locus of m linear equations on \mathbb{C}^{n+1} . Hence $(P \cap gQ)$ is cut out by 2m linear equations in $\mathbb{R}P^{2m}$.

For the second claim we note that as before $gQ \cap \mathbb{R}P^n$ is the zero locus of 2m linear polymonials h_1, \ldots, h_{2m} on $\mathbb{R}P^n$. Moreover P' is a zero locus of f_1, \ldots, f_{n-2m} on $\mathbb{R}P^n$. For generic $g \in SU(n+1)$ we'll have that gQ and P' intersect transversally in $\mathbb{R}P^n$. By Bezout's theorem (see [GH], p. 670) the common zero locus of h_1, \ldots, h_{2m} and f_1, \ldots, f_{n-2m} is $\mathbb{C}P^n$ is $\Pi deg(f_i)$ points. Now $P' \cap gQ$ is a part of this locus, hence $\#(P' \cap gQ) \leq \Pi deg(f_i)$.

3. Proof of the volume minimization

Now we can prove the result stated in the Introduction:

Theorem 1. Consider the totally geodesic $\mathbb{R}P^{2m}$ in $\mathbb{C}P^n$. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in $\mathbb{C}P^n$ (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also consider the totally geodesic $\mathbb{R}P^{2m-1}$ in $\mathbb{C}P^n$. Then it minimizes volume in its Hamiltonian deformation class.

Proof: Let P be an isotropic submanifold homologous to $\mathbb{R}P^{2m}$ mod 2 and let $Q = \mathbb{C}P^{n-m}$. By Lemma 1 the intersection number mod 2 of P and gQ is 1. Hence the formula in the previous section tells that

$$C_{m,n}vol(P)vol(Q) = \int_{SU(n+1)} \#(P\bigcap gQ)dg \ge vol(SU(n+1))$$

and

$$C_{m,n}vol(\mathbb{R}P^{2m})vol(Q) = \int_{SU(n+1)} \#(\mathbb{R}P^{2m}\bigcap gQ)dg = vol(SU(n+1))$$

and this proves the first part. We also note that that $\mathbb{C}P^1$ is homologous to $\mathbb{R}P^2$ mod 2 in $\mathbb{C}P^n$ but

$$vol(\mathbb{C}P^1) < vol(\mathbb{R}P^2)$$

The second assertion will follow from the first one. Consider \mathbb{C}^{n+1} and a unit sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$. We have a natural circle action on S^{2n+1} (multiplication by unit complex numbers). Let the vector field u be the generator of this action. We have a 1-form α on S^{2n+1} ,

$$\alpha(v) = u \cdot v$$

Also $d\alpha = 2\omega$ where ω is the Kähler form of \mathbb{C}^{n+1} . The kernel of α is the horizontal distribution. We have a Hopf map $\rho: S^{2n+1} \mapsto \mathbb{C}P^n$. We have $\mathbb{R}P^{2m-1} \subset \mathbb{C}P^n$ and $S^{2m-1} \subset S^{2n+1}$ which is a horizontal double cover of $\mathbb{R}P^{2m-1}$.

Let f be a (time-dependent) Hamiltonian function on $\mathbb{C}P^n$. Then we can lift it to a Hamiltonian function on \mathbb{C}^{n+1} – (0) and its Hamiltonian vector field H_f is horizontal on S^{2n+1} . Consider now the vector field

$$w = -2f \cdot u + H_f$$

The vector field w is S^1 -invariant. We also have:

Proposition 1. The Lie derivative $L_w \alpha = 0$

Proof: We have

$$L_w\alpha = d(i_w\alpha) + i_w d\alpha = -2df + 2df$$

Let now Φ_t be the time t flow of w on S^{2n+1} and let Ξ_t be the Hamiltonian flow of f on $\mathbb{C}P^n$. Then $\Phi_t(S^{2m-1})$ is horizontal and isotropic and it is a double cover of $\Xi_t(\mathbb{R}P^{2m-1})$. Hence

$$vol(\Phi_t(S^{2m-1})) = 2vol(\Xi_t(\mathbb{R}P^{2m-1}))$$

Let $S_t = \Phi_t(S^{2m-1})$. We build a suspension ΣS_t of S_t in $S^{2n+3} \subset \mathbb{C}^{n+2}$,

$$\Sigma S_t = ((\sin \theta \cdot x, \cos \theta) \in \mathbb{C}^{n+2} = \mathbb{C}^{n+1} \oplus \mathbb{C} | 0 \le \theta \le \pi, \ x \in S_t)$$

One immediately verifies that ΣS_t is horizontal and it is a double cover of an isotropic submanifold L_t (with a conical singularity) of $\mathbb{C}P^{n+1}$ with $L_0 = \mathbb{R}P^{2m}$. Also one readily checks that

$$vol(\Sigma S_t) = vol(S_t) \cdot \int_{\theta=0}^{\pi} \sin^{2m-1} \theta \ d\theta$$

Hence

$$2vol(L_t) = vol(\Sigma S_t) = 2vol(\Xi_t(\mathbb{R}P^{2m-1})) \cdot \int_{\theta=0}^{\pi} \sin^{2m-1}\theta \ d\theta$$

Now the first part of our theorem implies that $vol(L_t) \ge vol(L_0)$. Hence we conclude that $vol(\Xi_t(\mathbb{R}P^{2m-1})) \ge vol(\mathbb{R}P^{2m-1})$. Q.E.D.

Remark: One notes from the proof that for $\mathbb{R}P^{2m-1}$ it would be suffient to use exact deformations by isotropic immersions of $\mathbb{R}P^{2m-1}$. A family L_t of isotropic immersions of $\mathbb{R}P^{2m-1}$ is called *exact* if the 1-form $i_v\omega$ is exact when restricted to each element of the family. Here v is the deformation vector field and ω is the symplectic form. Thus embeddedness is not important for the conclusion of the theorem.

The theorem has the following corollary:

Corollary 1. Let f_1, \ldots, f_k be real homogeneous polynomials of odd degree in n+1 variables with 2m+k=n. Let N be the zero locus of f_i in $\mathbb{C}P^n$ and L be their real locus. Then $vol(L) \leq \prod deg(f_i)vol(\mathbb{R}P^{2m})$ and if L' is a Lagrangian submanifold of N homologous mod 2 to L in N then $vol(L') \geq vol(\mathbb{R}P^{2m})$.

Proof: We note that N is a complex 2m-fold and L is its Lagrangian submanifold. Since the degrees of f_i are odd, we have by adjunction formula that L and $\mathbb{R}P^{2m}$ represent the same homology class in $H_{2m}(\mathbb{R}P^n, \mathbb{Z}/2)$. Let Q be a linear $\mathbb{C}P^{n-m}$ in $\mathbb{C}P^n$ and $g \in SU(n+1)$. The intersection mumber mod 2 of gQ with L' is 1. We have that

$$C_{m,n}vol(\mathbb{R}P^{2m})vol(Q) = \int_{SU(n+1)} 1dg$$

$$C_{m,n}vol(L')vol(Q) = \int_{SU(n+1)} \#(L' \bigcap gQ)dg$$

Also using Lemma 1:

$$C_{m,n}vol(L)vol(Q) = \int_{SU(n+1)} \#(L\bigcap gQ)dg \leq \Pi deg(f_i)vol(SU(n+1))$$

and our claims follow. Q.E.D.

References

- [Giv] A. Givental: The Nonlinear Maslov index, London Mathematical Society Lecture Note Series 15 (1990), 35-43
- [Gold1] Edward Goldstein: Strict volume-minimizing properties for Lagrangian submanifolds in complex manifolds with positive canonical bundle, math.DG/0301191
- [Gold2] Edward Goldstein: Some estimates related to Oh's conjecture for the Clifford tori in $\mathbb{C}P^n$, math.DG/0311460
- [GH] P. Griffiths, J. Harris, "Principles of Algebraic geometry," Wiley and Sons, 1978.
- [HaL] R. Harvey and H. B. Lawson: Calibrated Geometries, Acta Math. 148, 47-157 (1982).
- [How] Howard, Ralph: The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc. 106 (1993), no. 509, vi+69 pp.
- [IOS] Hiroshi Iriyeh, Hajime Ono, Takashi Sakai: Integral Geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in $S^2 \times S^2$, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 10, 167-170
- [Lee] Y.-I. Lee: Lagrangian minimal surfaces in Kähler-Einstein surfaces of negative scalar curvature. Comm. Anal. Geom. 2 (1994), no. 4, 579–592.
- [Oh] Y.-G. Oh: Mean curvature vector and symplectic topology of Lagrangian submanifolds in Einstein-Kähler manifolds, Math. Z. 216, 471-482 (1994).
- [Qiu] Qiu, Weiyang: Interior regularity of solutions to the isotropically constrained Plateau problem. Comm. Anal. Geom. 11 (2003), no. 5, 945–986
- [ScW] Schoen, R.; Wolfson, J.: Minimizing area among Lagrangian surfaces: the mapping problem. J. Differential Geom. 58 (2001), no. 1, 1–86.
- [Vit] C. Viterbo: Metric and isoperimetric problems in symplectic geometry. J. Amer. Math. Soc. 13 (2000), no. 2, 411-431
 - egold@ias.edu