- → A resistor is an electric element that converts (transforms) electric energy into heat (thermal) energy.
- → The resistance of a resistor measures the opposition to the flow of electric charges.
- \rightarrow S.I unit of resistance is ohms (Ω).
- → The resistance is measured by an ohm-meter.
- → The poles of the resistor are identical.
- → It doesn't matter how you connect the resistor to the circuit, in other words, polarity is not important.

Ohm's law of a resistor:

 $U_{AB} = R \times I_{AB}$

Where:

- ✓ U_{AB}: Voltagein volts (V)
- \checkmark R: Resistance in ohms (Ω)
- \checkmark I_{AR}: current in amperes (A)

 \star 1 kilo-watt (Kw) $\times 10^2$ watt (w)

 \star 1 Mega-watt (Mw) \times 10⁶ watt (w)

 \uparrow 1 milli-watt (mw) $x 10^{-3}$ watt (w)

REMARK!!!

- $\rightarrow U_{AB} = U_A U_B$
- \Rightarrow From A \rightarrow B: along direction of current.

$$\rightarrow U_{BA} = U_B - U_A$$

- \Rightarrow From B \rightarrow A: popposite to th direction of current.
- \rightarrow As R increases (1), I decreases(1).

$$\rightarrow \text{ If } R_1 > R_2$$
$$\Rightarrow I_1 < I_2$$

$$\rightarrow \operatorname{lf} R_2 > R_1$$

$$\Rightarrow I_2 < I_1$$

2. Characteristics curve of a resistor:

Straight line passing through the origin.

$$\begin{cases} U = R \times I \\ Y = a \times x \end{cases} \Rightarrow R = a = \frac{Y_A - Y_B}{X_A - X_B} : A \text{ and } B \text{ are 2 points}$$
 on the curve.

3. The resistance of very long conducting wire:

$$R = \frac{\delta \times L}{S}$$

Where:

 \checkmark δ : length of the wire (m)

✓ S: cross-sectional area (m^2)

 \checkmark R: resistance of the very long conducting wire (Ω)

REMARK!!!

- → The resistivity of metal increases with temperature.
- → Electric energy transferred in to a resistor is totally converted into heat.

4. Grouping of resistors:

Equivalent Resistance:

Used to replace grouping of resistors between 2 terminals.

→ Resistors connected in series:

 $R_{\text{equivilant}} = R_1 + R_2 + R_3 \dots$

→ Resistors grouped in parallel:

1st method:

$$\frac{1}{R_{equivilant}} = \frac{1}{R_1} + \frac{1}{R_2}$$

 \star $R_{equivilant}$ is smaller than the smallest resistor

2nd method:

$$R_{equivilant} = \frac{R_1 \times R_2}{R_1 + R_2}$$

Only valid if you have 2 resistors in parallel

5. Power and Energy:

- → Energy: ability to do work.
- → Electric power: rate of transfer of electric energy.
- \rightarrow P = U x T

Where:

- ✓ P: power in watts
- ✓ U: Voltage in volts
- ✓ I: current in amperes

$$\rightarrow P=U \times I$$
$$= (R \times I) \times I$$

$$= R \times I^{2}$$

$$\xrightarrow{Or}$$

$$\rightarrow P = U \times I$$

$$= U \times \frac{U}{R}$$

$$= \frac{U^{2}}{R}$$

$$\star$$
 1 kilo-watt (Kw) $\times 10^2$ watt (w)

$$\star$$
 1 Mega-watt (Mw) $\times 10^6$ watt (w)

$$\star$$
 1 milli-watt (mw) $\times 10^{-3}$ watt (w)

✓ E: energy in joules(J)

✓ P: power in watts(W)

√ t: time in seconds(sec)

REMARK!!!

 \rightarrow E(J) = P(w) x t(sec)

 \rightarrow E(Kw-hr) = P(w) x t(hr)

 \rightarrow E(w-hr) = P(w) x t(hr)

 $\rightarrow P_{dry cell} = P_1 + P_2 + P_3 \dots$

6. Joule's Effect:

When electricity flows through an electrical device, part of it is converted into heat.

REMARK!!!

- \rightarrow (P_{max}, V_{max})or (P_{max}, I_{max}): limits of functioning of a resistor.
- → Rheostat: resistor with variable resistance that allows the variation in current and the voltage in the circuit.

→ The I-V characteristic curve for a lamp is not a straight line due to the variation of the resistance of the lamp with temperature.

