Math 19 Review Problems 12/8/14

(1) Evaluate
$$\int_{0}^{\pi/2} \sin^{3}x \cos^{2}x \, dx = \int_{0}^{\pi/2} \sin x \cdot (1 - \cos^{3}x) \cos^{3}x \, dx$$

 $u = \cos x \, du = -\sin x \, dx = \int_{0}^{\pi} (1 - u^{2}) \cdot u^{2} \cdot (-1) \, du = \int_{0}^{\pi} (u^{2} - u^{4}) \, du$
 $= \left[\frac{1}{3}u^{3} - \frac{1}{5}u^{5}\right]_{0}^{\pi} = \frac{1}{3} - \frac{1}{5} = \frac{2}{15}$

2 Evaluate
$$\int \frac{16-x^2}{16-x^2} dx$$
 $\int \frac{x=4\sin\theta}{16-x^2=4\cos\theta} dx = 4\cos\theta d\theta$
= $\int \frac{16\cos^2\theta}{d\theta} = \int \frac{8(1+\cos(2\theta))}{4\theta} d\theta = \frac{8\theta}{4} + \frac{4\sin(2\theta)}{4} + C$
= $\left(8\cdot\sin^2(\frac{x}{4}) + 4\cdot\sin(2\cdot\sin^2(\frac{x}{4})) + C\right)$.

3 Find the side lengths & angles of the triangle w/ vertices at:

$$LB = \cos^{2}\left(\frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{||AB|| \cdot ||AC||} = \cos^{2}\left(\frac{9}{\sqrt{130}}\right)$$

$$LB = \cos^{2}\left(\frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{||AB|| \cdot ||BC||}\right) = \cos^{2}\left(\frac{4}{\sqrt{55}}\right)$$

$$LC = \cos^{2}\left(\frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{||\overrightarrow{CA}|| \cdot ||\overrightarrow{CB}||}\right) = \cos^{2}\left(\frac{1}{\sqrt{50}}\right)$$

(4) A fly completes a circle of radius 3cm in Z seconds.

Find F(+). V(+), and ā(+) for this path.

Radius = 3
$$\vec{r}(t) = (3\cos(\pi t), 3\sin(\pi t), 0)$$

any. Marvelor. $\omega = \frac{2\pi}{2} = \pi$ $\vec{v}(t) = (-3\pi\sin(\pi t), 3\pi\cos(\pi t), 0)$
 $\vec{a}(t) = (-3\pi^2\cos(\pi t), -3\pi^2\sin(\pi t), 0)$.

5 Solve $Z^3 = 1$. Exposes the answers in both rectangular & polar forms.

70		
if Z=reid (r>0) & Z3=1	polar	rect.
then $Z^3 = r^3 e^{3i\theta} = 1$	€1	1
=> r=1 & 30 is a mull.	ezni/3	$-\frac{1}{2} + \frac{17}{2}i$
of 2m	e411/3	$-\frac{1}{2}-\frac{\sqrt{3}}{2}i$
=> 20 could be 0, 200 on 400	(three solutions)	

6 Find a 2rd order linear homog. diffEq which has
$$f(t) = 5e^{-t} - 6e^{-2t}$$

as a solution.

Chan polynomial must
nave noots -1, -2
=> it is
$$(\lambda+1)(\lambda+2)$$

= $\lambda^2+3\lambda+2$.

so diffEq. is

@ For which values of C do the solutions to

$$f''(t) + 8f'(t) + C \cdot f(t) = 0$$

chan. poly $\lambda^{2} + 8\lambda + C$

involve sines & cosiner?

this occurs when char. poly. has nonneal room.

The roots are $\lambda = \frac{-8 \pm 18^{2} 4C}{2}$; so this occurs when $8^{2}-4C<0$, ie. $C>8^{2}/4$, ie. C>16

1 Evaluate:

a)
$$\sum_{N=1}^{\infty} N \cdot \chi^{N} = \chi \cdot \sum_{N=1}^{\infty} N \cdot \chi^{N-1} = \chi \cdot \frac{1}{\sqrt{\chi}} \left(\sum_{N=1}^{\infty} \chi^{N} \right) = \chi \cdot \frac{1}{\sqrt{\chi}} \left(\frac{\chi}{1-\chi} \right) = \left[\frac{\chi}{(1-\chi)^{2}} \right]$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{n} x^n = \int_0^{\infty} \left(\sum_{n=1}^{\infty} t^{n-n} \right) dt = \int_0^{\infty} \frac{1}{1-t} dt$$
$$= \left[-\ln(1-x) \right] \quad \text{(on } \ln(\frac{1}{1-x}) \text{)}$$