Data Communication Network DAY – 2

Mrs.Akshita.S.Chanchlani akshita.chanchlani@sunbeaminfo.com

Addressing

Addressing

Physical Address/ Link Address

• For example, Ethernet uses a 6-byte (48-bit) physical address that is imprinted on the network interface card (NIC).

Logical Address

• logical address in the Internet is currently a 32-bit address that can uniquely define a host connected to the Internet.

Port Address

• computer A can communicate with computer C by using TELNET. At the same time, computer A communicates with computer B by using the File Transfer Protocol (FTP).

Specific Addresses

• Examples include the e-mail address and any Universal Resource Locator (URL)

MAC Address / Physical Address/ Ethernet Address

- used on data link layer
- used to identify every NIC uniquely
- is burnt into the ROM part of NIC once written the MAC address can not be changed
- also known as read only address
- to find the MAC address of NIC
 - windows: ipconfig /all
 - linux/macOS: ifconfig
- e.g. 78:41f:43:510:113:d0
- size: 6 bytes = $8 \times 6 = 48$ bits
- Group of first three bytes(78:4f:43) represent's manufacturer ID and last 3 bytes (90:13:d0) represents NIC's unique address.
- to find the manufacturer, please visit https://hwaddress.com/

IP Address / Logical Address

- IP address to mean a logical address in the network layer of the TCP/IP protocol suite.
- Identify a machine / device uniquely.
- Size = 4 bytes = 32 bits
- to find the IP address of Machine
 - windows: ipconfig
 - linux/macOS: ifconfig
- IP Versions:
 - IPV4 (32 bits address length)
 - IPV6 (128 bits address length)
- IP addresses are made up of four sets of numbers called "Octets".
- Types
 - Private: used to identify a machine on the LAN and can not be used to connect to internet
 - Public: used to connect to the internet
- e.g.
 - decimal: 192.168.1.6
 - binary: 11000000.10101000.0000001.00000110

IP Addressing Types

- Classful: IP Address is split into 5 classes
- Classless
 - IPv4 uses 32-bit addresses, which means that the address space is 2³² or4,294,967,296 (more than 4 billion)
 - There are two prevalent notations to show an IPv4 address:
 - binary notation
 - dotted decimal notation

Example

• Find the error, if any, in the following IPv4 addresses.

- a. 111.56.045.78
- **b.** 221.34.7.8.20
- c. 75.45.301.14
- d. 11100010.23.14.67

Example

• Find the error, if any, in the following IPv4 addresses.

- a. 111.56.045.78
- **b.** 221.34.7.8.20
- c. 75.45.301.14
- d. 11100010.23.14.67

Solution

- a. There must be no leading zero (045).
- b. There can be no more than four numbers.
- c. Each number needs to be less than or equal to 255.
- d. A mixture of binary notation and dotted-decimal notation is not allowed.

Classful Addressing

- IP is 32 bit means 2³² IP Addresses. (more than 4 billion, so many IP Addresses)
- We need to distribute those that's why we have classes.
- In classful addressing, the address space is divided into five classes: A, B, C, D, and E.

b. Dotted-decimal notation

How range of IP Address is defined

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰		
128	64	32	16	8	4	2	1		Range
0	х	х	Х	Х	х	х	х	Class A	0-127
1	0	х	х	Х	х	х	х	Class B	128-191
1	1	0	х	Х	х	х	х	Class C	192-223
1	1	1	0	х	Х	х	х	Class D	224-239
1	1	1	1	х	х	x	x	Class E	240-255

IP Classful Addressing

0 0000000.000000000.00000000.00000000 0.0.0.0 Class A 127.255.255.255 0 1111111.11111111.11111111.11111111 10 000000.000000000.00000000.00000000 128.0.0.0 Class B 191.255.255.255 10 111111.11111111.11111111.11111111 110 00000.000000000.00000000.00000000 192.0.0.0 Class C 223.255.255.255 110 11111.11111111.11111111.11111111 1110 0000.00000000.00000000.00000000 224.0.0.0 Class D 239.255.255.255 1110 1111.11111111.11111111.11111111 1111 0000.00000000.00000000.00000000 240.0.0.0 Class E 255.255.255.255 11111111.111111111.11111111.11111111

- IP addresses starting with 0 - 0.0.0.0 - 127.255.255.255

- IP addresses starting with 10
- 128.0.0.0 - 191.255.255.255

- IP addresses starting with 110192.0.0.0 223.255.255.255
- IP addresses starting with 1110
 224.0.0.0 239.255.255.255

IP addresses starting with 1111240.0.0.0 - 255.255.255.255

Example

- Find the class of each address.
 - 1. 00000001 00001011 00001011 11101111
- 2. 11000001 10000011 00011011 11111111
- 3. 14.23.120.8
- 4. 252.5.15.111

Example

- Find the class of each address.
- 1. 00000001 00001011 00001011 11101111
- 2. 11000001 10000011 00011011 11111111
- 3. 14.23.120.8
- 4. 252.5.15.111

Solution

- 1. The first bit is O. This is a class A address.
- 2. The first 2 bits are 1; the third bit is O. This is a class C address.
- 3. The first byte is 14 (between 0 and 127); the class is A.
- 4. The first byte is 252 (between 240 and 255); the class is E.

Points to be noted

- Any IP Address start with 127, That is: 127.x.x.x means its a loop back series that is used for self testing.
- E.g. Ping 127.0.0.1 (ping to yourself)
- That is 127.0.0.1 is **Universal IP**,
- We can not configure universal IP. Its by default configured.
- PING (Packet Internet Groper) is a tool used to troubleshoot networking issues.

IANA(Inter Associated Number Association) manages private IP's.

Regular Private IP Addresses

Address Class	Reserved Private IP Addresses
Class A	10.0.0.0 - 10.255.255.255
Class B	172.16.0.0 - 172.31.255.255
Class C	192.168.0.0 - 192.168.255.255

Private network will have private IP's means devices that we connect to our router will get private IP addresses provided by IANA.

Netid and hostid of A, B, and C Classes

Reserved for future use

Class	Network bits	Networks	Host bits	Hosts Per Network	Suitable for
Class A	8	28=256	24	2 ²⁴ - 2* =16,777,214 maximum hosts	For large organizations like Apple/Google/MS/Amazon
Class B	16	2 ¹⁶ =65536	16	2 ¹⁶ - 2* = 65,534 maximum hosts	for medium scaled organizations like Sunbeam
Class C	24	2 ²⁴ =16million	8	2 ⁸ - 2 [*] = 254 maximum hosts	for small organizations/home network

^{*} Subtracting the network and broadcast address

Class E

Example: What is the type of the given IP address

- 1. 11.34.56.66
- 2. 10.46.34.67
- 3. 156.46.36.46
- 4. 172.20.34.56
- 5. 172.45.66.77
- 6. 192.168.2.5
- 7. 192.169.34.6

Example (Solution): What is the type of the given IP address

- 1. 11.34.56.66 : public
- 2. 10.46.34.67 : private
- 3. 156.46.36.46 : public
- 4. 172.20.34.56 : private
- 5. 172.45.66.77 : public
- 6. 192.168.2.5 : private
- 7. 192.169.34.6 : public

Example: which class needs to be used for following number of Devices?

- 1. 200 devices
- 2. 3000 devices
- 3. 50000 devices
- 4. 200000 devices

Example (Solution): which class needs to be used for following number of Devices?

1. 200 devices : class C

2. 3000 devices : class B

3. 50000 devices : class B

4. 200000 devices : class A

Blocks in Class A

- Only 1 byte in class A defines the netid
- The leftmost bit should be '0' (out of 8 bits one bit leftmost is 0(zero) so remaining bits are 7)
- Class A is divided into 2⁷ = 128 blocks
- Each block in class A contains $2^{24-2}=16,777,214$ addresses

Blocks in Class B

- 2 bytes in class B define the net id
- The two leftmost bits should be '10' (out of 16bits two leftmost bits are 1 and 0 so remaining bits are 14)
- Class B is divided into $2^{14} = 16,384$ blocks
- Each block in class B contains 2¹⁶= 65,536 addresses

Blocks in Class C

- 3 bytes in class C define the net id.
- The three leftmost bits should be '110' (out of 24 bits three leftmost bits are 110 so remaining bits are 21)
- Class C is divided into $2^{21} = 2,097,152$ blocks
- Each block in class C contains 28 = 256 addresses

The Single Block in Class D and E

Class D

Class D is designed for multicasting
Used to define one group of hosts on the Internet

Class D 224.0.0.0 ••• 239.255.255.255

Class E

Reserved for future purposes

Class E 240.0.0.0 ••• 255.255.255

Information Extraction in Classful Addressing

Information Extraction in Classful Addressing

- The number of addresses
- The first address
- The last address

Example

An address in a block is given as 73.22.17.25. Find the number of addresses in the block, the first address, and the last address

If we observe the given address it is of Class A (class A : n=8)

The number of addresses in this block is

$$N = 2^{32-n} = 2^{24} = 16,777,216$$

- 2. To find the **first address**, we keep the left most 8 bits and set the rightmost 24 bits all to 0s. The first address is 73.0.0.0/8 in which 8 is the value of n.
- 3. To find the **last address**, we keep the leftmost 8 bits and set the rightmost 24 bits all to 1s. The last address is 73.255.255.255

Netid 73: common in all addresses

Finding Network Address

Finding Network Address: Network Mask/ Default Mask/ Subnet Mask

- IP Address never comes alone, it comes with subnet mask.
- Mask:
 - 32-bit number of contiguous 1's followed by contiguous 0's.
 - Mask Distinguishes which portion of the address identifies the network and which portion of the address identifies the node(host).
- Network Mask is used to extract the network address from the destination address of a packet Called a default mask

Example : Find Network Address

A router receives a packet with the destination address 132.24.67.32. Show how the router finds the network address of the packet.

Solution

Since the class of the address is B (128 to 191), we assume that the router applies the default mask for class B, 255.255.0.0 to find the network address.

Destination address ->	132	24	67	32
Default mask ->	255	255	0	0
Network address ->	132	24	0	0

Example: Find Network Address

If IP is given as 192.168.1.10, Find:

- 1) Class of IP
- 2) Subnet Mask
- 3) Network Address
- 4) Maximum Last Address

Example: Find Network Address Solution

Class C						
IP	192	168	1	10		
IP in binary	1100 0000	1010 1000	0000 0001	0000 1010		
Subnet Mask	255	255	255	0		
Subnet Mask in binary	1111 1111	1111 1111	1111 1111	0000 0000		
Network Address	192	168	1	0		
Maximum (Last Address)	192	168	1	255		

Some Special Addresses

- In classful addressing some addresses were reserved for special purposes.
- Special block
 - All-Zero Address (0.0.0.0)
 - When a host needs to send an IPv4 packet but it does not know its own address
 - All-One Address (255.255.255.255)
 - A host that wants to send a message to every other host can use
 - Loopback Address(127.x.y.z)
 - Used to test the software on a machine
 - Private Address
 - Used either in isolation or in connection with network address translation technique
- Special address in each block
 - Network Address
 - Direct broadcast address

Classless Address

Classless Address & CIDR

- In classless addressing, the last address in the block does not necessarily end in 255.
- Also known as variable length subnet mask (vlsm)
- It uses scheme as CIDR (Classless Inter Domain Routing) notation, the block granted is defined by the first address and the prefix length.

Prefix and Suffix

- Prefix : play the same role as the netid
- Suffix: play the same role as the hostid
- The prefix length in classless addressing can be 1 to 32

Slash Notation

- Notation of address including length of prefix
- In classless addressing, we need to know one of the addresses in the block and the prefix length to define the block

e.g.

e.g.

/29 : 111111111.11111111111111111111000 -> 255.255.255.248

Subnetting / Sub-Networks

Subnetworks

- To create a subnet address, a network administrator borrows bits from the original host portion and designates them as the subnet field.
- A **subnetwork** or **subnet** is a logical subdivision of an IP network.
- Logical division of an IP address into two fields: the *network number* or *routing prefix* and the *rest field* or *host identifier*.
- When an organization is granted a block of addresses, it can create subnets to meet its needs.
- The <u>prefix length increases</u> to define the subnet prefix length.

In fixed-length subnetting, the number of subnets is a power of 2.

Subnetting

Subnets

- Number of Subnets = 2ⁿ
 - n indicates number of bits
- Number of Hosts=2ⁿ -2 (these number of bits are left for host side)
 - n indicates number of bits
 - -2 means ,2 addresses reserved, one is network id and other is broadcast id
- Consider the scenario :

• How many bits will be borrowed from host side, If we want to create 6 subnets in a single network as shown in the diagram:

2⁰=1 Subnet 2¹=2 Subnets 2²=4 Subnets 2³=8 Subnets

It means 3 bits will be borrowed from host side to create 6 sub networks.

Decimal Equivalents of 8-Bit Patterns

Value of an Octet of a Subnet Mask	Binary Equivalent	Number of Binary 1s	Number of Binary 0s	
О	00000000	0	8	
128	10000000	1	7	
192	11000000	2	6	
224	11100000	3	5	
240	11110000	4	4	
248	11111000	5	3	
252	11111100	6	2	
254	11111110	7	1	
255	11111111	8	0	

What subnet mask can be used in scenario?

- 1. 100 devices
- 2. 50 devices
- 3. 1000 devices
- 4. 2000 devices

What subnet mask can be used in scenario? (Solution)

- 1. 100 devices
 - 2⁴=16
 - 2^5:32
 - 2^6:64
 - 2^7:128
 - 1111 1111. 1111 1111 . 1111 1111. 1000 0000
 - 255 .255. 255. 128
- 2. 50 devices : 255.255.255.192
 - 2⁴=16
 - 2^5:32
 - 2^6:64
 - 1111 1111. 1111 1111 . 1111 1111. 1100 0000
 - 255 .255. 255. 192

- 3. 1000 devices
 - $2^7 = 128$
 - $2^8 = 256$
 - $2^9 = 512$
 - $2^10 = 1024$
 - 1111111111111111111111100.00000000
 - 255.255.252.0
- 4. 2000 devices :
 - $2^11 = 2048$
 - 11111111111111111111000.00000000
 - 255.255.248.0

Thank You

