- **Ex 1** Soit $E = \{a, b, c\}$ un ensemble.
 - $-a \in E$ signifie que a est élément de E, ce qui est vrai.
 - $a \subset E$ signifie que a est un sous ensemble de E, ce qui est faux!
 - $\{a\} \subset E$ signifie que le singleton $\{a\}$ est un sous ensemble de E, ce qui est vrai.
 - $-\varnothing \in E$ signifie que \varnothing est un élément de E, ce qui est faux!
 - $\varnothing \subset E$ signifie que \varnothing est un sous ensemble de E, ce qui est vrai.
 - $\{\emptyset\} \subset E$ signifie que le singleton $\{\emptyset\}$ est un sous ensemble de E, ce qui est faux.

Remarque: on peut écrire que $\varnothing \in \mathcal{P}(E)$ et $\{\varnothing\} \subset \mathcal{P}(E)$.

- Ex 2 Ecritures symboliques:
 - a) Ensemble E des couples d'entiers relatifs de somme $1: E = \{(n, p) \in \mathbb{Z}^2 \mid n+p=1\}$
 - b) Ensemble F des couples d'entiers naturels dont le second est multiple du premier :

$$F = \{(n, p) \in \mathbb{N}^2 / \exists k \in \mathbb{N} / p = kn\} = \{(n, kn), (n, k) \in \mathbb{N}^2\}$$

c) Ensemble G des triplets d'entiers naturels de somme paire :

$$G = \{(n, p, q) \in \mathbb{N}^3 \mid \exists k \in \mathbb{N} \mid n + p + q = 2k\}$$

d) Ensemble des images par la fonction $f: \mathbb{R} \to \mathbb{R}$ des éléments de [-1, 1]:

$$f([-1,1]) = \{f(x), x \in [-1,1]\} = \{y \in \mathbb{R} \mid \exists x \in [-1,1] \mid f(x) = y\}$$

e) Droite D passant par A(1,2) et de coefficient directeur 3:

$$D = \{(x,y) \in \mathbb{R}^2 \mid y-2 = 3(x-1)\} = \{(1+t, 2+3t), t \in \mathbb{R}\}\$$

- **Ex 3** Si $a \in \mathbb{N}$, On note $a\mathbb{N}$ l'ensemble des entiers naturels multiples de a.
 - a) Pour $a \in \mathbb{N}$, on a $a\mathbb{N} = \{an, n \in \mathbb{N}\} = \{p \in \mathbb{N} \mid \exists n \in \mathbb{N} \mid p = an\}.$
 - b) Montrons que $6\mathbb{N} \subset 2\mathbb{N}$:

Si $p \in 6n$, alors $\exists n \in \mathbb{N} \ / \ p = 6n$. Mais alors $p = 2 \ (3n) \underline{\in 2\mathbb{N}}$ puisque $3n \in \mathbb{N}$, CQFD.

- c) Montrons que $2\mathbb{N} \cap 3\mathbb{N} = 6\mathbb{N}$:
 - \bigcirc Montrons que $6\mathbb{N} \subset 2\mathbb{N} \cap 3\mathbb{N}$:

On a vu que $6\mathbb{N}\subset 2\mathbb{N}$, et on montre de même que $6\mathbb{N}\subset 3\mathbb{N}$, d'où $6\mathbb{N}\subset 2\mathbb{N}\cap 3\mathbb{N}$.

 \subset Montrons que $2\mathbb{N} \cap 3\mathbb{N} \subset 6\mathbb{N}$:

Soit $p \in 2\mathbb{N} \cap 3\mathbb{N}$: alors $\exists k \in \mathbb{N} / p = 2k$ et $\exists n \in \mathbb{N} / p = 3n$.

Mais alors $\underline{p}=3p-2p=6k-6n=6$ $(k-n)\underline{\in 6\mathbb{N}}$ puisque $k-n\in\mathbb{Z}$ et $p\geqslant 0$, CQFD.

Par double inclusion l'égalité demandée est démontrée.

Ex 4 Soient E un ensemble et A, B, C trois sous ensembles de E. Montrons que : $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$. On utilise les règles de calcul sur les ensembles :

$$A \setminus (B \cap C) = A \cap \overline{(B \cap C)} = A \cap (\overline{B} \cup \overline{C})$$
 (lois de Morgan)

Par distributivité:

$$A\backslash \left(B\cap C\right)=\left(A\cap \overline{B}\right)\cup \left(A\cap \overline{C}\right)=\left(A\backslash B\right)\cup \left(A\backslash C\right)\quad \text{cqfd.}$$

Ex 5 Soient E un ensemble et A, B, C trois sous ensembles de E.

On suppose que $\begin{cases} A \cup B \subset A \cup C \\ A \cap B \subset A \cap C \end{cases}$. Montrons que $B \subset C$: Soit $x \in B$. Alors $x \in A \cup B$, et par hypothèse à $A \cup C$.

- Si $x \notin A$, alors $x \in C$.
- Si $x \in A$, alors $x \in A \cap B$, donc par hypothèse $x \in A \cap C$, donc $x \in C$.

PCSI 1 Thiers 2019/2020

Dans les deux cas, $x \in C$, CQFD.

Ex 6 Soient E un ensemble et A, B deux sous ensembles de E. Montrons que $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$.

- \implies On suppose $A \subset B$. Montrons que $\mathcal{P}(A) \subset \mathcal{P}(B)$: Si $X \in \mathcal{P}(A)$ alors par définition $X \subset A$, d'où $X \subset B$ puisque $A \subset B$. Ainsi $X \in \mathcal{P}(B)$ CQFD.
- On suppose $\mathcal{P}\left(A\right)\subset\mathcal{P}\left(B\right)$. Montrons que $A\subset B$:

 Première méthode: si $x\in A$ alors $\{x\}\in\mathcal{P}\left(A\right)$ donc $\{x\}\in\mathcal{P}\left(B\right)$ i.e. $\{x\}\in\mathcal{P}\left(B\right)$ ou $x\in B$ CQFD.

 Deuxième méthode: $A\in\mathcal{P}\left(A\right)$ donc $A\in\mathcal{P}\left(B\right)$, i.e. $A\subset B$ CQFD.

 Par double implication, l'équivalence est établie.
- Ex 7 Soient E un ensemble et A, B deux sous ensembles de E.

On appelle **différence symétrique** de A et B l'ensemble : $A \triangle B = (A \backslash B) \cup (B \backslash A)$.

a) On montre que : $A \triangle B = (A \cup B) \setminus (A \cap B)$ à l'aide des règles de calcul sur les ensembles :

$$A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A})$$

$$= (A \cup (B \cap \overline{A})) \cap (\overline{B} \cup (B \cap \overline{A}))$$

$$= ((A \cup B) \cap (A \cup \overline{A})) \cap ((\overline{B} \cup B) \cap (\overline{B} \cup \overline{A})) \quad \text{#distributivit\'e}$$

$$= ((A \cup B) \cap (A \cup \overline{A})) \cap ((\overline{B} \cup B) \cap (\overline{B} \cup \overline{A})) \quad \text{#distributivit\'e}$$

$$= ((A \cup B) \cap E) \cap (E \cap (\overline{B} \cup \overline{A}))$$

$$= (A \cup B) \cap (\overline{B} \cup \overline{A})$$

$$= (A \cup B) \cap (\overline{A} \cap B) \quad \text{#lois de Morgan}$$

$$= (A \cup B) \setminus (A \cap B)$$

Remarque : $x \in A \triangle B$ signifie $x \in A$ ou exclusif $x \in B$. En particulier $A \triangle B \subset A \cup B$

- b) Soit $(A, B) \in \mathcal{P}(E)^2$.
 - * La définition de $A \triangle B$ montre clairement que $A \triangle B = B \triangle A$
 - $* \quad \text{On a}: A \bigtriangleup \varnothing = (A \cup \varnothing) \cap \overline{(A \cap \varnothing)} = A \cap \overline{\varnothing} = A \cap E = \boxed{A}$
 - * De plus : $A \triangle A = (A \setminus A) \cup (A \setminus A) = \emptyset \cup \emptyset = \boxed{\emptyset}$.
 - $* \quad \operatorname{Enfin}\left[\overline{A} \bigtriangleup \overline{B}\right] = \left(\overline{A} \cup \overline{B}\right) \cap \overline{\left(\overline{A} \cap \overline{B}\right)} \stackrel{\operatorname{Morgan}}{=} \overline{\left(A \cap B\right)} \cap \left(A \cup B\right) = \overline{A \bigtriangleup B}$
- c) Soit $C \in \mathcal{P}(E)$. Montrons que $A \triangle C = B \triangle C \iff A = B$.
 - \implies On suppose $A \triangle C = B \triangle C$. Montrons que A = B: Soit $x \in A$. Alors:
 - · Si $x \notin C$, alors $x \in A \triangle C$, d'où par hypothèse : $x \in B \triangle C$. En particulier $x \in B \cup C$, mais puisque $x \notin C$, il vient $x \in B$.
 - · Si $x \in C$, alors $x \in A \cap C$, donc $x \notin A \triangle C = B \triangle C = (B \cup C) \setminus (B \cap C)$ Or $x \in B \cup C$, on peut donc en déduire que $x \in B \cap C$, donc $\underline{x \in B}$.

Dans les deux cas $\underline{x \in B}$, ce qui prouve l'inclusion $A \subset B$.

Par symétrie des rôles, on a aussi $B \subset A$, ce qui finalement nous assure de l'égalité $\underline{A} = \underline{B}$.

= Inversement, si A = B, alors il est évident que $A \triangle C = B \triangle C$

Par double implication, l'équivalence est établie.

Ex 8 a) Soit $I = \bigcup_{n \in \mathbb{N}^*} \left[0, 1 - \frac{1}{n}\right]$. On pressent que $I = [0, 1[\dots$

- * Comme $\forall n \in \mathbb{N}^*, \ \left[0, 1 \frac{1}{n}\right] \subset \left[0, 1\right[, \text{ on a par réunion } I \subset \left[0, 1\right[.$
- * Inversement, montrons que $[0,1]\subset I$: Soit $x\in [0,1[$: alors $\exists n\in \mathbb{N}^*\ /\ x\leqslant 1-\frac{1}{n}$: en effet,

$$x \leqslant 1 - \frac{1}{n} \Longleftrightarrow \frac{1}{n} \leqslant 1 - x \Longleftrightarrow n \geqslant \frac{1}{1 - x}$$
 puisque $1 - x > 0$

L'entier non nul $n=\left\lceil \frac{1}{1-x} \right\rceil$ convient donc. Par conséquent $x \in \left[0,1-\frac{1}{n}\right]$ et donc $\underline{x \in I}$ CQFD.

Par double inclusion, on a bien I = [0, 1[

- b) Soit $J = \bigcap_{n \in \mathbb{N}^*} \left] \frac{1}{n} \frac{1}{n} \right[$. On pressent que $I = \{0\} \dots$
 - * On a pour tout $n \in \mathbb{N}^*$, $\{0\} \subset \left] -\frac{1}{n} \frac{1}{n} \right[$, donc $\{0\} \subset J$
 - * Inversement, montrons que $J \subset \{0\}$:

Soit $x \in J$: par l'absurde, supposons $x \neq 0$. alors $\exists n \in \mathbb{N}^* / x \geqslant \frac{1}{n}$: en effet,

$$x\geqslant \frac{1}{n}\Longleftrightarrow n\geqslant \frac{1}{x}$$
 puisque $x>0$

L'entier non nul $n = \left\lceil \frac{1}{x} \right\rceil$ convient donc. Mais alors $x \notin \left] - \frac{1}{n} \frac{1}{n} \right[$ contradiction. Il s'ensuit que x = 0, CQFD.

Par double inclusion, on a bien $J = \{0\}$

Ex 9 Soient $(A_i)_{i\in I}$ et $(B_i)_{i\in I}$ deux familles de $\mathcal{P}(E)$ telles que : $\forall i\in I,\ A_i\cup B_i=E$.

Montrons que :
$$\bigcup_{i \in I} A_i \cup \bigcap_{i \in I} B_i = E$$
.

- <u>Première méthode</u> : l'inclusion $\bigcup_{i\in I}A_i\cup\bigcap_{i\in I}B_i\subset E$ est une banalité.

Il nous faut prouver que $E \subset \bigcup_{i \in I} A_i \cup \bigcap_{i \in I} B_i$: soit $x \in E$.

- * Si $x \in \bigcap_{i \in I} B_i$ alors $x \in \bigcup_{i \in I} A_i \cup \bigcap_{i \in I} B_i$
- * Sinon, $\exists i \in I \ / \ x \notin B_i$. Mais si i est un tel indice, par hypothèse $A_i \cup B_i = E$, d'où $x \in A_i$. On a alors $x \in \bigcup_{i \in I} A_i$, et a fortiori $x \in \bigcup_{i \in I} A_i \cup \bigcap_{i \in I} B_i$.

Dans les deux cas, $x\in\bigcup_{i\in I}A_i\cup\bigcap_{i\in I}B_i$ ce qui démontre notre inclusion, CQFD.

- <u>Deuxième méthode</u>: posons $A = \bigcup_{i \in I} A_i$. Alors par distributivité:

$$\bigcup_{i \in I} A_i \cup \bigcap_{i \in I} B_i = A \cup \bigcap_{i \in I} B_i = \bigcap_{i \in I} (A \cup B_i)$$

Ainsi (attention à la confusion d'indices)

$$\bigcup_{i \in I} A_i \cup \bigcap_{i \in I} B_i = \bigcap_{i \in I} \left(\bigcup_{j \in I} A_j \cup B_i \right)$$

Or si $i \in I$, on a

$$\bigcup_{j \in I} A_j \cup B_i = \Big(\bigcup_{j \in I \setminus \{i\}} A_j\Big) \cup (A_i \cup B_i) \stackrel{\mathsf{hypothèse}}{=} \Big(\bigcup_{j \in I \setminus \{i\}} A_j\Big) \cup E = E$$

Il vient

$$\bigcup_{i\in I}A_i\cup\bigcap_{i\in I}B_i=\bigcap_{i\in I}E=E\quad \text{CQFD}.$$

Ex 10 Soient E un ensemble, n un entier non nul, et A_0, \ldots, A_n des sous ensembles de E vérifiant

$$\emptyset = A_0 \subsetneq \cdots \subsetneq A_n = E$$

On pose pour tout $k \in [1, n]$, $B_k = A_k \setminus A_{k-1}$. Montrons que B_1, \dots, B_n est une partition de E:

Remarquons que $\forall k \in [[1, n]], B_k \neq \emptyset$:

En effet $A_{k-1} \subsetneq A_k$ donc il existe un élément x de A_k qui n'est pas dans A_{k-1} , soit $x \in B_k$.

- <u>Première méthode</u>: il faut montrer que pour tout élément x de E, il existe un unique $i \in [\![1,n]\!]$ tel que $x \in B_i$. Soit donc $x \in E = A_n$. on considère le plus petit indice $i \in [\![1,n]\!]$ tel que $x \in A_i$.

Comme $(A_k)_{k\in \llbracket 0,n\rrbracket}$ est strictement croissante pour l'inclusion, on a

$$\left\{ \begin{array}{l} \forall k \in \llbracket 0, i-1 \rrbracket \,, \; x \not \in A_k \\ \forall k \in \llbracket i, n \rrbracket \,, \; x \in A_k \end{array} \right.$$

On peut alors affirmer que $x \in B_i$ ($x \in A_i$ mais $x \notin A_{i-1}$). De plus :

- * Si $k \in [0, i-1]$ alors $x \notin B_k$ puisque $x \notin A_k$,
- * Si $k \in [[i+1, n]]$, alors $x \notin B_k$ puisque $x \in A_k$ mais $x \in A_{k-1}$.

Finalement, i est l'unique indice pour lequel on a $x \in A_i$, CQFD.

- <u>Deuxième méthode</u>:
 - * On montre d'abord que $\forall (i,j) \in [[1,n]], i \neq j \Rightarrow B_i \cap B_j = \varnothing$: Supposons par exemple que i < j (par symétrie des rôles). Alors

$$\begin{array}{lcl} B_i \cap B_j & = & A_i \cap \overline{A_{i-1}} \cap A_j \cap \overline{A_{j-1}} \\ & = & (A_i \cap A_j) \cap \overline{(A_{i-1} \cup A_{j-1})} & \text{\#lois de Morgan} \\ & = & A_i \cap \overline{A_{j-1}} & (\operatorname{car} A_i \subset A_j \text{ et } A_{i-1} \subset A_{j-1}) \end{array}$$

Or $A_i \subset A_{j-1} \Rightarrow \overline{A_{j-1}} \subset \overline{A_i}$, ce qui entraine $A_i \cap \overline{A_{j-1}} \subset A_i \cap \overline{A_i} = \emptyset$. Il vient donc $B_i \cap B_j = \emptyset$

* On montre que $E = \bigcup_{i=1}^{n} B_i$.

On pressent une sorte de "télescopage : $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i \backslash A_{i-1} = A_n \backslash A_0 = A_n$ "

Montrons par récurrence que $\forall k \in [[1, n]], \bigcup_{i=1}^k B_i = A_k$.

- (i) $\bigcup_{i=1}^{1} B_i = A_1$ s'écrit $B_1 = A_1$ qui est vrai.
- (ii) Soit $k\in [\![1,n-1]\!]$. Supposons $\bigcup\limits_{i=1}^k B_i=A_k$ et montrons que $\bigcup\limits_{i=1}^{k+1} B_i=A_k$:

$$\bigcup_{i=1}^{k+1} B_i = \bigcup_{i=1}^k B_i \cup B_{k+1} \stackrel{\operatorname{HdR}}{=} A_k \cup B_{k+1} = A_k \cup \left(A_{k+1} \cap \overline{A_k} \right)$$

Par distributivité, et en utilisant $A_k \cup A_{k+1} = A_{k+1}$ (puisque $A_k \subset A_{k+1}$) :

$$\bigcup_{i=1}^{k+1} B_i = (A_k \cup A_{k+1}) \cap (A_k \cup \overline{A_k}) = A_{k+1} \cap E = A_{k+1}$$

La récurrence est établie, et en particulier $\bigcup_{i=1}^n B_i = A_n = E$, CQFD.