МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О. СУХОГО

Машиностроительный факультет Кафедра «Информатика»

Отчет по лабораторной работе №6 по дисциплине «**Информатика**»

на тему: «Анализ переходных процессов при исследовании динамических моделей технических систем»

Выполнил студент гр. ТМ-21

Акунец Е.Г.

Принял: преподаватель

Трохова Т.А.

Цель работы: получить навыки выполнения анализа переходных процессов в динамических моделях с графической интерпретацией полученных результатов.

Ход выполнения лабораторной работы

Порядок выполнения работы

- 1. Рассчитать значение функции перемещения динамической системы с учетом ступенчатого воздействия. Построить график этой функции. Техническую систему взять из индивидуального задания к лабораторной работе №2.
- 2. Для функции перемещения п.1 рассчитать следующие параметры переходного процесса:
- коридор стабилизации установившегося состояния;
- время переходного процесса;
- коэффициент динамичности;
- декремент колебаний;
- колебательность.

Выполнить графическую интерпретацию первых двух результатов.

Задача 1 Исследование динамической колебательной системы с одной степенью свободы

Исходными данными для задачи являются:

m – масса системы;

k – коэффициент жесткости пружины;

с – коэффициент демпфирования демпфера;

w - круговая частота возмущающей силы;

 F_0 – амплитуда возмущающей силы;

Т – период времени для исследования системы.

N	m	С	k	T	
2	5	0.3	5	150	k

Описание математической модели

Рисунок 1

Движение динамической колебательной системы (рисунок 1) описывается дифференциальным уравнением вида

$$m\frac{d^2y(t)}{dt^2} + c\frac{dy(t)}{dt} + ky(t) = F(t)$$
 (1.1)

где

- y(t) функция перемещения массы m системы в зависимости от времени;
 - y'(t) функция скорости;
 - y''(t) функция ускорения.
 - $F(t) = 2\sin(5t) возмущающая сила, действующая на систему.$

```
laba6.sce 💥
1 clear
1 function ur2=vid3(t,y)
2 ur2=zeros(2,1)
3 m=5
4 c=0.3
5 k=5
6 F=0
7 if t>20 then F=5
8 end
9 ur2(1)=y(2)
10 ur2 (2) = (-c*y(2) - k*y(1) + F)/m
11 endfunction
13 y0=[0;0]
14 t=0:0.01:150
15 Y=ode (y0,0,t, vid3)
16 figure (1)
17 plot (t, Y(1,:))
18 xgrid
19 PP=Y(1,:)
20 n=length (PP)
21 ust=PP(n)
22 vz=ust+0.05*ust
```

```
23 nz=ust-0.05*ust
24 figure (2)
25 plot(t, Y(1,:), [0,150], [vz, vz], [0,150], [nz, nz])
26 i=n
27 while (PP(i) < vz&PP(i) > nz)
28 i=i-1
29 end
30 Vrem=t(i+1)
31 Zn=PP(i+1)
32 plot (Vrem, Zn, '*')
33 VremPP=Vrem-20
34 disp ("время · переходного · процесса")
35 disp(VremPP)
36 Max=max (PP)
37 Amax=Max-ust
38 kd=1+Amax/ust
39 disp ("коэффициент - динамичности")
      43 disp([Max, NMax])
      44 disp("A1")
```

```
43 disp([Max,NMax])
44 disp("A1")
45 disp(Amax)
46 Min=min(PP(NMax:n))
47 Amin=ust-Min
48 D=Amax/Amin
49 disp("A2")
50 disp(Amin)
51 disp("ДЫекремент колебаний")
52 disp(D)
```

--> exec('D:\laba6.sce', -1)

"время переходного процесса"

101.15

"коэффициент динамичности"

1.8928400

"Max, NMax"

1.9100145 2315.

"A1"

0.9009411

"A2"

0.8372008

"Декремент колебаний"

1.0761351

Название	Значение	Тип	Видимо	Memory
Amax	0.901	Число дв	local	216 E
Amin	0.837	Число дв	local	216 E
D	1.08	Число дв	local	216 E
Max	1.91	Число дв	local	216 E
Min	0.172	Число дв	local	216 E
NMax	2.32e+03	Число дв	local	216 E
PP	1x15001	Число дв	local	120,2 kE
Vrem	121	Число дв	local	216 E
VremPP	101	Число дв	local	216 E
Υ	2x15001	Число дв	local	240,2 kE
Zn	0.959	Число дв	local	216 E
ans	1x1	Дескрип	local	216 E
i	1.21e+04	Число дв	local	216 E
kd	1.89	Число дв	local	216 E
n	1.5e+04	Число дв	local	216 E
nz	0.959	Число дв	local	216 E
t	1x15001	Число дв	local	120,2 kE
ust	1.01	Число дв	local	216 E
VZ	1.06	Число дв	local	216 E
y0	[0; 0]	Число дв	local	224 E

<u>Вывод:</u> получила навыки выполнения анализа переходных процессов в динамических моделях с графической интерпретацией полученных результатов.