

CMPS 460 – Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by. WittySparks.com | Image source: Pixabay.com.

4

Perceptron

Chapter 4

Roadmap ...

- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
 - convergence

- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning
 - Linear separability and margin of a dataset

Motivation

- In DTs: only a small number of features are used.
- In kNN: all features are used equally.
- What if we want to use most of the features, but use some more than others.

• Perceptron algorithm: learning weights for features

5

Biological Inspiration: A Neuron ...

https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function

CMPS 460: Machine Learning

Perceptron: One Neuron ...

Perceptron: Neural Model of Learning

CMPS 460: Machine Learning

Perceptron: Example

$$n = 3$$

 $x_1 = 1, x_2 = -1, x_3 = 3$
 $w_1 = -1, w_2 = 2, w_3 = 3, b = 0$
 $a = ? \hat{y} = ?$

$$a = -1 * 1 + 2 * -1 + 3 * 3 + 0 = 6$$

 $\hat{y} = 1$

if
$$b = -7$$
?

Parameters?

if $a > 0 \Rightarrow positive$

Perceptron Algorithm

Properties of Training Algorithm

Online

- look at one example at a time (and update the model as soon as we make an error).
- As opposed to batch algorithms that update parameters after seeing the entire training set.

Error-driven

We only update parameters/model if we make an error.

Perceptron Algorithm

Algorithm 5 PerceptronTrain(D, MaxIter)

```
w_d \leftarrow o, for all d = 1 \dots D
                                                                          // initialize weights
b \leftarrow 0
                                                                              // initialize bias
_{3:} for iter = 1 ... MaxIter do
      for all (x,y) \in D do
        a \leftarrow \sum_{d=1}^{D} w_d x_d + b
                                                     // compute activation for this example
        if ya \leq o then
            w_d \leftarrow w_d + yx_d, for all d = 1 \dots D
                                                                           // update weights
7:
            b \leftarrow b + y
                                                                                // update bias
8:
         end if
9:
      end for
11: end for
return w_0, w_1, ..., w_D, b
                                                             Hyper-parameters?
```

Algorithm 6 PerceptronTest($w_0, w_1, \ldots, w_D, b, \hat{x}$)

```
a \leftarrow \sum_{d=1}^{D} w_d \ \hat{x}_d + b // compute activation for the test example return sign(a)
```


Geometric Interpretation

Decision Boundary?

- Where the sign of the activation changes from -1 to +1.
- The set of points x that achieve zero activation.

$$\sum_{d} w_d x_d = 0$$

$$\vec{w}\vec{x}=0$$

• Two vectors have a zero dot product if and only if they are perpendicular.

Decision Boundary

• The decision boundary is simply the *hyperplane* perpendicular to w.

Training consists of finding a hyperplane w that separates +ve from -ve examples.

At <u>test</u> time, check what side of the hyperplane examples fall

Dot Product as a Projection

What happens with the bias *b*?

CMPS 460: Machine Learning

Perceptron Update

Update for a misclassified positive example:

Perceptron Update

Update for a misclassified negative example:

جامعة قطر QATAR UNIVERSITY

Function Approx. with Perceptron

Problem setting

- Set of possible instances X
 - Each instance $x \in X$ is a feature vector $x = [x_1, x_2, ..., xD]$
- Unknown target function $f^*:X \to Y$
 - Y is binary valued {-1; +1}
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a hyperplane in D-dimensional space

Input

• Training examples $\{(x^{(1)},y^{(1)}),...(x^{(N)},y^{(N)})\}$ of unknown target function f^*

Output

• Hypothesis $h \in H$ that best approximates target function f^*

Practical Considerations

Practical Considerations

- The order of training examples matters!
 - Random is better

- Early stopping
 - Good strategy to avoid overfitting

- Simple modifications dramatically change performance
 - voting or averaging

Voted Perceptron

Predict based on final + intermediate parameters

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \operatorname{sign}\left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

• Requires keeping track of previous weight vectors and their "survival times" $c^{(1)}, \ldots, c^{(K)}$

Why is that a problem?

Averaged Perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

can be rewritten as

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \boldsymbol{w}^{(k)}\right) \cdot \hat{\boldsymbol{x}} + \sum_{k=1}^{K} c^{(k)} b^{(k)}\right)$$

Does that solve the problem?

Convergence of Perceptron

- Does the perceptron converge?
- If so, what does it converge to?
- How long does it take?

Convergence?

- Can make an entire pass through the training data without making any more updates, i.e., correctly classified every training example.
- Geometrically: found a hyperplane correctly separating data into positive and negative examples

Can the perceptron always find a hyperplane to separate positive from negative examples?

For convergence, data has to be linearly separable!

- if data is linearly-separable, then it will converge to a weight vector that separates the data.
- If data is linearly inseparable, then the perceptron will never converge!
 - It could never possibly classify each point correctly.

How long does it take to converge?

Margin of a dataset D

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y) \in \mathbf{D}} y(w \cdot x + b) & \text{if } w \text{ separates } \mathbf{D} \\ -\infty & \text{otherwise} \end{cases}$$

Distance between the hyperplane (w, b) and the nearest point in **D**

 $margin(\mathbf{D}) = \sup_{w,b} margin(\mathbf{D}, w, b)$

Largest attainable margin on **D**

https://en.wikipedia.org/wiki/Margin (machine learning)

CMPS 460: Machine Learning

Perceptron Convergence Theorem (Rosenblatt, 1958)

Theorem 2 (Perceptron Convergence Theorem). Suppose the perceptron algorithm is run on a linearly separable data set **D** with margin $\gamma > 0$. Assume that $||x|| \le 1$ for all $x \in \mathbf{D}$. Then the algorithm will converge after at most $\frac{1}{\gamma^2}$ updates.

i.e., number of errors that the perceptron algorithm makes in this case is bounded by $1/\gamma^2$.

What does this mean?

- Perceptron converges quickly when margin is large, slowly when it is small.
- Bound does not depend on number of training examples nor on number of features.
- Proof guarantees that perceptron converges, but not necessarily to the max margin separator!

What if the data is not linearly separable due to noise?

Limitations?

Decision boundaries can only be linear!

Add feature combinations (feature mapping)?

CMPS 460: Machine Learning

Limitations?

- Two other approaches:
 - 1. combine multiple perceptrons (neural networks)
 - find computationally efficient ways of feature mapping (kernels)