U and V are unitary matrixs : $U^HU = I, UU^H = I, V^HV = I, VV^H = I$ $\therefore (UV)^H UV = V^H U^H UV = V^H IV = I$ $UV(UV)^H = UVV^HU^H = U^HIU = I$ UV is unitary matrix

5.5 - 38

A + iB is Hermitian matrix Both A and B are real matrixs

$$\therefore A + iB = (A + iB)^H$$

Both A and B are m by n matrix

$$\begin{aligned} A+iB &= A^H - B^H i \stackrel{\circ}{=} A^T - B^T i \\ A &= A^T, \ B &= -B^T \end{aligned}$$

$$A = A^T, B = -B^T$$

A and B are square matrixs, so m = n.

$$\begin{bmatrix} A & -B \\ B & A \end{bmatrix} = C \text{ is 2n by 2n matrix}$$

That B are square matrixs, so
$$m = h$$
.
$$\begin{bmatrix} A & -B \\ B & A \end{bmatrix} = C \text{ is 2n by 2n matrix}$$

$$C^{T} = \begin{bmatrix} A & -B \\ B & A \end{bmatrix}^{T} = \begin{bmatrix} A^{T} & B^{T} \\ -B^{T} & A^{T} \end{bmatrix} = \begin{bmatrix} A & -B \\ B & A \end{bmatrix} = C$$

(a)

 $\therefore B$ is similar to A, C is similar to B

$$\therefore B \sim A, C \sim B$$

$$B = M^{-1}AM, C = N^{-1}BN$$

$$C = N^{-1}BN = N^{-1}M^{-1}AMN = (MN)^{-1}AMN$$

C is similar to A

(b)

Let S is similar to I

It exists invertable matrix P such that $P^{-1}SP = I$

$$S = PIP^{-1} = I$$
, so $S = I$

only I is similar to I

(a)

$$det(A - \lambda I) = 0$$

$$(\lambda - 2)(\lambda - 1) = 0$$

 e_1 is eigenvector when $\lambda = 2$

 e_2 is eigenvector when $\lambda = 1$

$$e_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$e_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

 U_1 is unitary matrix

The first column of U_1 is unit eigenvector $\begin{vmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{vmatrix}$ (when $\lambda = 2$)

$$AU_1 = U_1T_1 = U_1 \left[\begin{array}{cc} 2 & \star \\ 0 & \star \end{array} \right]$$

$$AU_1 = U_1 T_1 = U_1 \begin{bmatrix} 2 & \star \\ 0 & \star \end{bmatrix}$$
 we restrict U_1 as symmetric and orthogonal matrix
$$\therefore U_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & b \end{bmatrix}$$
, $b = -\frac{1}{\sqrt{2}}$
$$U_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

 $U_1^{-1}AU_1 = T_1 = \begin{bmatrix} 2 & 7 \\ 0 & 1 \end{bmatrix}$ The unitary matrix is U_1

The triangular matrix is T_1

$$\det(A - \lambda I) = 0 - \lambda^3 = 0$$

e is unit eigenvector when $\lambda = 0$

$$e = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$AU_{1} = U_{1}N \begin{bmatrix} 0 & \star & \star \\ 0 & \star & \star \\ 0 & \star & \star \end{bmatrix}$$
we restrict U_{1} as symmetric and orthonoronal matrix

The first column of U_1 is the unit eigenvector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ when $\lambda = 0(A)$

$$U_1 = \left[\begin{array}{ccc} 0 & a & e \\ 0 & b & f \\ 1 & c & g \end{array} \right]$$

Let
$$\begin{bmatrix} 1 & c & g \\ By \text{ the restriction:} \\ a=0, \text{ e=1, b=1 or -1, c=0, f=0, g=0} \end{bmatrix}$$

$$U_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$U_1^{-1}AU_1 = N = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$M_1 = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \text{ is 2 by 2 submatrix of } N$$

 M_1 have eigenvalues 0 and 0, where corresponding unit eigenvector is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Find unitary matrix U_2 such that $NU_2 = U_2T = U_2 \begin{bmatrix} 0 & \star & \star \\ 0 & 0 & \star \\ 0 & 0 & \star \end{bmatrix}$

$$U_2$$
 have this format
$$\left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & a & c \\ 0 & b & d \end{array} \right]$$

$$M_2 = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right]$$
 is the 2 by 2 submatrix of U_2

The first column of M_2 is unit eigenvector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ of M_1 we restrict M_2 as symmetric and orthogonal matrix, so c=1 d=0 $\therefore U_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

$$\therefore U_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

$$U_2^{-1}NU_2 = U_2^{-1}U_1^{-1}AU_1U_2 = T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The unitary matrix is
$$U_1U_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
The triangular matrix is $T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

5.5-26 Let
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} B = M^{-1}AM$$

$$MB = AM, ad - bc \neq 0$$
(a)
$$MB = \begin{bmatrix} 0 & a+b \\ 0 & c+d \end{bmatrix}, AM = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

$$M = \begin{bmatrix} 0 & b \\ c & b - c \end{bmatrix}, bc \neq 0$$

$$MB = \begin{bmatrix} a-b & b-a \\ c-d & d-c \end{bmatrix}, AM = \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix}$$

$$M = \begin{bmatrix} a & -c \\ c & -a \end{bmatrix}, a^2 \neq c^2$$

(c)
$$MB = \begin{bmatrix} 4a + 2b & 3a + b \\ 4c + 2d & 3c + d \end{bmatrix}, AM = \begin{bmatrix} a + 2c & b + 2d \\ 3a + 4c & 3b + 4d \end{bmatrix}$$
$$M = \begin{bmatrix} \frac{2}{3}d & c - d \\ c & d \end{bmatrix}, \frac{2}{3}d^2 \neq c(c - d)$$