Permit Number 18897

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission	Rates
140. (1)		Name (3)	lbs/hour	TPY (4)
XF1011	No. 11 Boiler (8)	NO _X	13.73	60.13
		со	3.64	15.94
		РМ	0.77	3.39
		PM ₁₀	0.74	3.22
		PM _{2.5}	0.72	3.16
		voc	0.56	2.46
		SO ₂	3.06	4.96
		H ₂ S	0.03	0.05
XF1601	No. 6 Crude Unit Furnace 1 (8)	NOx	5.93	25.97
		со	5.93	25.97
		РМ	1.26	5.53
		PM ₁₀	1.20	5.25
		PM _{2.5}	1.17	5.14
		voc	0.91	4.00
		SO ₂	4.98	8.08
		H ₂ S	0.05	0.09

	T	1	1	1
XF1602	XF1602 No. 6 Crude Unit Furnace 2 (8)	NO _X	3.50	15.33
		со	3.00	13.14
		РМ	0.75	3.26
		PM ₁₀	0.71	3.10
		PM _{2.5}	0.69	3.04
		VOC	0.54	2.36
		SO ₂	2.94	4.77
		H ₂ S	0.03	0.05
XF3804	Plant 38 Feed Furnace (8)	NO _x	2.59	11.34
		со	0.92	4.05
		РМ	0.20	0.86
		PM ₁₀	0.19	0.82
		PM _{2.5}	0.18	0.80
		VOC	0.14	0.62
		SO ₂	0.78	1.26
		H ₂ S	0.01	0.01

VE0004	Diamet 00 Diamet Frances			
XF3901	Plant 39 Diesel Furnace (8)	NO _X	2.59	11.34
		СО	2.59	11.34
		РМ	0.55	2.42
		PM ₁₀	0.52	2.29
		PM _{2.5}	0.51	2.25
		VOC	0.40	1.75
		SO ₂	2.18	3.81
		H ₂ S	0.02	0.04
XF4131	Naphtha Hydrotreater Furnace No. 1 (8)	NO _X	3.68	16.10
	Turnade No. 1 (6)	со	1.31	5.75
		РМ	0.28	1.22
		PM ₁₀	0.27	1.16
		PM _{2.5}	0.26	1.14
		VOC	0.20	0.89
		SO ₂	1.10	1.79
		H ₂ S	0.01	0.02
XF4132	Naphtha Hydrotreater	NO _X	3.68	16.10
	Furnace No. 2 (8)	СО	1.31	5.75
		PM	0.28	1.22
		PM ₁₀	0.27	1.16
		PM _{2.5}	0.26	1.14
		VOC	0.20	0.89
		SO ₂	1.10	1.79
		H ₂ S	0.01	0.02
XF4150-60	Rheniformer Reactor Furnace (F-4150) (8)	NO _X	5.08	22.23
	. 3	СО	4.35	19.05

РМ	1.08	4.73
PM ₁₀	1.03	4.50
PM _{2.5}	1.00	4.40
voc	0.78	3.42
SO ₂	4.26	6.92
H₂S	0.05	0.07

XF4150-60	Rheniformer Reactor Furnace (F-4160) (8)	NO_X	5.29	23.15
	1 411400 (1 1200) (0)	СО	4.53	19.84
		PM	1.13	4.93
		PM ₁₀	1.07	4.68
		PM _{2.5}	1.05	4.58
		VOC	0.81	3.57
		SO ₂	4.44	7.20
		H₂S	0.05	0.08
XF4170-80	Rheniformer Reactor	NO _X	7.28	31.89
	Furnace (F-4170) (8)	СО	4.90	21.46
		PM	1.04	4.57
		PM ₁₀	0.99	4.34
		PM _{2.5}	0.97	4.25
		VOC	0.75	3.31
		SO ₂	4.12	6.68
		H₂S	0.04	0.07
XF4170-80	Rheniformer Reactor Furnace (F-4180) (8)	NO _X	2.24	9.79
	1 umace (1 -4100) (0)	СО	1.51	6.59
		PM	0.32	1.40
		PM_{10}	0.30	1.33
		PM _{2.5}	0.30	1.31
		VOC	0.23	1.02
		SO ₂	1.26	2.05
		H₂S	0.01	0.02
6	Boiler No. 1 (H-901) (8)	NO _X	21.46	94.00
		СО	6.41	28.05

		DM	1.26	F 07
		PM	1.36	5.97
		PM ₁₀	1.30	5.67
		PM _{2.5}	1.27	5.55
		VOC	0.99	4.32
		SO ₂	5.38	8.73
		H ₂ S	0.06	0.09
8	Boiler No. 3 (H-903) (8)	NOx	10.81	47.35
		со	6.10	26.73
		PM	1.30	5.69
		PM ₁₀	1.23	5.41
		PM _{2.5}	1.21	5.29
		VOC	0.94	4.12
		SO ₂	5.13	8.32
		H ₂ S	0.05	0.09
109	Vacuum Unit Heater (H- 1601) (8)	NO _x	19.68	68.96
		СО	5.74	25.14
		РМ	1.22	5.35
		PM ₁₀	1.16	5.08
		PM _{2.5}	1.14	4.98
		VOC	0.88	3.87
		SO ₂	4.82	7.82
		H ₂ S	0.05	0.08

125	Vacuum Preflash Heater (H-1101) (8)	NO_x	3.31	14.48
	111-110771111	CO	1.18	5.17
		PM	0.25	1.10
		PM ₁₀	0.24	1.04
		PM _{2.5}	0.23	1.02
		VOC	0.18	0.80
		SO ₂	0.99	1.61
		H ₂ S	0.01	0.02
K501-04	Relief Gas Compressors	NO _x	7.11	31.15
	701	СО	11.25	49.28
		PM	2.18	9.55
		PM ₁₀	2.07	9.07
		PM _{2.5}	2.03	8.88
		VOC	1.80	7.88
		SO ₂	0.01	0.04
97	Fire Water Pump (8)	NO _x	7.25	0.77
		CO	1.56	0.16
		PM	0.51	0.05
		PM ₁₀	0.51	0.05
		PM _{2.5}	0.51	0.05
		VOC	0.59	0.06
		SO ₂	0.48	0.05
XH-103	CPS Crude Heater	NO _x	5.95	26.06
		СО	3.40	14.89
		PM	1.27	5.55
		PM ₁₀	1.20	5.27
		PM _{2.5}	1.18	5.16
		VOC	0.92	4.02
		SO ₂	4.76	8.04
		H ₂ S	0.05	0.09

XF3902	Plant 39 Furnace (8)	NO _x	1.44	6.33
		СО	1.44	6.33
		PM	0.31	1.35
		PM ₁₀	0.29	1.28
		PM _{2.5}	0.29	1.25
		VOC	0.22	0.97
		SO ₂	1.21	2.13
		H ₂ S	0.01	0.02
111	FCCU (8)	NO _x	74.41	75.04
		СО	58.88	91.36
		PM	24.00	91.98
		PM ₁₀	24.00	91.98
		PM _{2.5}	24.00	91.98
		VOC	3.57	14.39
		SO ₂	33.65	52.21
		H ₂ SO ₄	3.96	15.18
		HCN	4.49	17.20
PK-853	North Wastewater	NO _x	0.88	3.87
		СО	0.54	2.38
		PM	0.05	0.22
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.05	0.22
		VOC	0.07	0.30
		SO ₂	0.07	0.31
		H ₂ S	0.04	0.16
		Benzene	0.02	0.11
T-24	TK-024 (8)	VOC	0.41	0.01
T-61	TK-061 (8)	VOC	0.92	2.39
		Benzene	0.01	0.03
T-94	TK-094 (8)	VOC	0.75	1.86

		Benzene	0.02	0.02
T-120	TK-120 (8)	VOC	1.43	2.12
		Benzene	0.01	0.01
T-135	TK-135 (8)	VOC	0.75	0.17
		Benzene	0.01	0.01
T-138	TK-138 (8)	VOC	1.76	4.18
		H2S	0.02	0.06
T3601	TK-3601 (8)	VOC	0.80	2.49
		Benzene	0.01	0.03
41	TK-4114 (8)	VOC	4.82	15.95
		Benzene	0.07	0.20
50	TK-4117 (8)	VOC	1.34	3.04
		Benzene	0.03	0.04
T4270	TK-4270 (8)	VOC	0.83	0.20
		Benzene	0.01	0.01
T4272	TK-4272 (8)	VOC	1.86	1.30
		Benzene	0.01	0.02
T4273	TK-4273 (8)	VOC	1.86	1.30
		Benzene	0.01	0.01
T-4274	TK-4274 (8)	VOC	0.68	0.03
T-4275	TK-4275 (8)	VOC	0.68	0.03
T4276	TK-4276 (8)	VOC	0.82	0.03
T4607	TK-4607 (8)	VOC	0.21	0.21
		Benzene	0.01	0.01
T-525	TK-525 (8)	VOC	0.09	0.05
T-803	TK-803 (8)	VOC	2.16	7.21
		Benzene	0.01	0.03
T-804	TK-804 (8)	VOC	1.92	6.41
		Benzene	0.01	0.03
DEATANK	DEATANK (8)	VOC	0.01	0.01
T-8402	DEA Tank (8)	VOC	0.01	0.01
D-4145	TK-4145 (8)	VOC	0.87	0.02

D-3106	TK-3106 (8)	VOC	3.01	0.25
WAXCLD	DHT Wax Cloud Tank	VOC	0.01	0.01
F-38	Plant 38 Piping Fugitives	VOC	2.52	11.03
	(5) (8)	H ₂ S	0.01	0.01
F-39	Plant 39 Fugitives (5) (8)	VOC	4.60	20.14
		H ₂ S	0.02	0.08
		Benzene	0.01	0.01
F-16N	No. 6 Crude Unit Piping	VOC	9.30	40.71
	I Halfilloc /L1 /U1	H ₂ S	0.01	0.01
		Benzene	0.05	0.20
F-71-72	North 84 Plant Amine 1	VOC	1.00	4.37
		H ₂ S	0.01	0.01
F-10N	North Plant Utilities	VOC	3.42	14.97
	TWATER CAMERA.	H ₂ S	0.02	0.02
WWCTS	North API Separator	VOC	1.82	7.93
	TACHTE ACTION AND AND AND AND AND AND AND AND AND AN	Benzene	0.02	0.02
		H ₂ S	<0.01	<0.01
		NH ₃	0.01	0.05
F-20N	North Isom Pining	VOC	2.41	10.53
LE-FUG	L FR Unit Fugitives (5)	VOC	5.75	25.18
	1118 (710) 1 (810) (82.3) 1.77	Benzene	0.26	1.12
		H ₂ S	0.01	0.02
F-41	Rheniformer/NHT/LSR	VOC	5.08	22.27
	- Harris Harris (A. 1711)	Benzene	0.12	0.54
		H ₂ S	0.01	0.02
TNK-FUG	Tank Field Piping	VOC	1.65	7.24
	Fugitives (5) (8)	Benzene	0.02	0.09
		H ₂ S	<0.01	<0.01
F-8	South Poly Plant	VOC	3.20	14.00
		Benzene	0.15	0.62
		H ₂ S	0.01	0.01
F-9	Jet Fuel Treating Fugitives (5) (8)	VOC	1.04	4.54

F-5	Alkylation Fugitives (5)	VOC	9.62	42.13
F-20S	Alky II Fugitives (5) (8)	VOC	3.90	17.07
W-2	South API Separator	VOC	0.75	3.27
	Lugitivas (L.) (U)	Benzene	0.01	0.01
F-23	South Utilities	VOC	2.79	12.18
	I Halfiyas /E1/91	H ₂ S	0.01	0.01
F-19	Butamer Fugitives (5) (8)	VOC	3.21	14.06
F-11	FCCU Fugitives (5) (8)	VOC	8.69	38.04
		H ₂ S	0.01	0.02
		Benzene	0.10	0.41
F-1/2	CPS/DCU Fugitives (5)	VOC	5.86	25.66
		H ₂ S	0.05	0.23
		Benzene	0.03	0.13
F-22	Merox III Fugitives (5) (8)	VOC	0.89	3.87
		Benzene	0.01	0.05
F-10 SP	Naphtha Merox Fugitives	VOC	1.33	5.81
F-18	Vacuum Distillation Fugitives (5) (8)	VOC	5.10	22.33
F-16S	Receiving, Pumping, and Shipping	VOC	2.24	9.82
	Fugitives (5) (8)	Benzene	0.02	0.08
		H ₂ S	<0.01	<0.01
FUG	Terminal Fugitives (5)	VOC	<0.01	<0.01
		Benzene	<0.01	<0.01
		H ₂ S	<0.01	<0.01
F-84	Amine Unit 1 and 2 Fugitives (5) (8)	VOC	0.96	4.19
		H ₂ S	0.02	0.06
F-14-5-6	5-6 Cooling Tower (5) (8)	VOC	0.78	3.41
		PM	1.11	4.88
		PM ₁₀	0.31	1.37
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01

F-14-7	7 Cooling Tower (5) (8)	VOC	0.34	1.47
		PM	4.81	21.05
		PM ₁₀	1.35	5.90
		PM _{2.5}	<0.01	0.04
		Benzene	0.01	0.01
F-14-8	8 Cooling Tower (5) (8)	VOC	1.09	4.76
		PM	15.54	68.06
		PM ₁₀	4.35	19.07
		PM _{2.5}	0.03	0.12
		Benzene	0.01	0.01
F-14-9	9 Cooling Tower (5) (8)	VOC	0.48	2.11
		PM	0.69	3.01
		PM ₁₀	0.19	0.84
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
F-21	Alky Cooling Tower (5)	VOC	0.79	3.44
	AA	PM	1.12	4.93
		PM ₁₀	0.32	1.38
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
F-7	Main Cooling Tower (5)	VOC	0.96	4.21
	701	PM	13.73	60.16
		PM ₁₀	3.85	16.86
		PM _{2.5}	0.02	0.10
		Benzene	0.01	0.01
	North Wastewater Collection and Treatment System Carbon Canister (8)	VOC	0.13	0.57
		H ₂ S	0.01	0.01
		NH ₃	0.01	0.04
		Benzene	<0.01	0.01
98	South API Oil Water	VOC	0.01	0.03

		H ₂ S	0.16	0.68
		NH ₃	0.01	0.06
		Benzene	<0.01	0.01
RHENSCRUB	Rheniformer Catalyst	HCI	0.09	0.02
PK-855	Regeneration New North WWCTS	VOC	0.25	1.10
		Benzene	<0.01	0.01
		H ₂ S	0.01	0.04
		NH ₃	0.03	0.14
Compliance	NOx	173.42	446.82	
	PM	32.80	96.79	
	PM ₁₀	32.48	96.53	
	PM _{2.5}	32.22	95.69	
	VOC	106.55	480.61	
	Benzene	0.89	1.85	
Individual				
		VOC	9.86	-
		NO _x	18.48	-
		СО	46.20	-
		SO ₂	72.90	-
		H ₂ S	0.77	-
R-2911	Rheniformer Flare (6)	VOC	7.46	-
		NO _x	18.72	-
		СО	48.78	-
		SO ₂	0.01	-
		H ₂ S	0.77	-

D-2914/R-2911	North Main Flare/	VOC	-	0.40
	Dhonitormor Lloro (6)	NO _x	-	3.51
		СО	-	16.24
		SO ₂	-	0.47
		H ₂ S	-	0.01
112	Plant Emerganov/AAC/Main	VOC	0.43	1.90
		NO_x	0.05	0.23
		CO	0.24	1.03
		SO ₂	0.01	0.01
XF8801/2	Steam Reformer Heater	VOC	0.70	2.61
		NO_x	4.52	16.96
		CO	4.52	16.96
		PM	0.96	3.61
		PM ₁₀	0.91	3.43
		PM _{2.5}	0.89	3.36
		SO ₂	3.81	1.92
		H_2S	0.04	0.02
H2FUG	Hydrogen Plant	CO	0.01	0.06
		VOC	0.04	0.18
		H ₂ S	0.01	0.01
XF4301	Reformate Splitter	VOC	0.24	0.99
		NO_x	1.58	6.44
		CO	1.58	6.44
		PM	0.34	1.37
		PM ₁₀	0.32	1.30
		PM _{2.5}	0.31	1.27
		SO ₂	1.21	1.97
		H ₂ S	0.01	0.02
Planned				
MSS CAP	Sitewide MSS Sources	VOC	137.13	10.00
		NO _x	2.38	9.98
		CO	208.65	11.00

		SO ₂	21.17	0.93
		PM	52.21	4.20
		PM ₁₀	52.21	4.20
		PM _{2.5}	52.21	4.20
		H ₂ S	0.31	0.01
D-2914/R-2911	North Flares [Including	VOC	92.90	0.90
	North Poliof Con Floro	NO _x	41.24	9.81
		СО	164.24	30.55
		SO ₂	587.61	5.66
		H ₂ S	6.24	0.06
112	South Main Flare (MSS)	VOC	579.60	10.16
		NO _x	48.38	3.25
		СО	271.50	12.96
		SO ₂	1,471.87	23.27
		H ₂ S	15.64	0.25
XF4301	Heater Start-Up	VOC	0.24	1.00
		NO _x	2.75	0.13
		СО	15.87	0.76
		РМ	0.34	1.38
		PM ₁₀	0.34	1.38
		PM _{2.5}	0.34	1.38
		SO ₂	1.21	1.97
		H ₂ S	0.01	0.02
F-90	MSAT Plant Fugitives	VOC	8.50	37.24
		Benzene	0.35	1.52
F-90MSS	Planned Routine MSS	VOC	351.75	3.67
		PM	0.02	0.02
		PM ₁₀	0.02	0.02
		PM _{2.5}	0.02	0.02
D-2914/R-2911	North Main Flare/	VOC	70.67	0.57
	The state of the s	NO _x	6.99	0.10
		СО	50.48	0.72

		SO ₂	0.01	0.01
XF1013	Boiler F-1013	H ₂ S	0.01	0.01
XF1013	Pollei L-1012	VOC	1.21	5.28
		NO _x	2.87	12.57
		СО	10.04	43.99
		PM	2.45	8.13
		PM ₁₀	2.37	7.80
7.67			PM _{2.5}	2.34
1.07			SO ₂	7.58
0.14			H ₂ S	0.08
			H ₂ SO ₄	0.70
1 10			TRS	0.30
0 E0			NH ₃	1.29
NO _x 34.43 1.65	Boiler F-	1013 MSS		
		СО	200.86	9.64
	Boiler F-1012	VOC	0.49	2.13
		NO _x	0.90	3.94
		СО	3.15	13.80
		РМ	0.67	2.94
		PM ₁₀	0.64	2.79
		PM _{2.5}	0.62	2.73
		SO ₂	0.05	0.23
		H ₂ S	<0.01	<0.01
		NH ₃	0.41	1.77
F-25_SPB	South Cat Gas	VOC	0.01	0.04
	Hydrotreater Fugitives	H ₂ S	<0.01	<0.01
		Benzene	<0.01	<0.01

Í	I			1
	No. 6 Crude Unit	VOC	0.72	3.15
		PM	0.06	0.26
		PM ₁₀	0.02	0.07
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
	Marketing Terminal	VOC	0.14	0.59
		PM	0.01	0.05
		PM ₁₀	<0.01	0.01
	North Crude Expansion Units MSS – ALKY Aux Alky Cooling Tower	PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
		VOC	1.10	0.01
		VOC	0.12	<0.01
		VOC	0.69	<0.01
		VOC	0.13	<0.01
NCMSSALKY		VOC	15.78	0.08
		VOC	0.15	0.66
		PM	0.05	0.24
		PM ₁₀	0.02	0.07
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01

F-26	Aux Alky Cooling Tower	VOC	0.15	0.66
(1) Emission point	identification - either specifi	c equipment designati	ውት % emission point num	16 <mark>21</mark> rom plot plan.
(2) Specific point s(3) VOC	ource name. For fugitive so - volatile organic compou	urces, use area name Inds as defined in Title	or fugitive source name. 30 Texas Administrative	2.87e
NO _x	§ 101.1 - total oxides of nitrogen	PM _{2.5}	<0.01	<0.01
SO ₂ PM	- sulfur dioxide - total particulate matter, represented	saspended in the atm	ospilere, including PM ₁₀	and 1 M _{2.5} , as
PM ₁₀	- total particulate matter equal to or less than 10 microns in diameter, including PM _{2.5} , as			
VOC 0.15 _{M2.5} 0.66 0.66Cl	represented - particulate matter equa - carbon monoxide - hydrochloric acid	,		
H ₂ S	- hydrogen sulfide	PM	0.05	0.24
H ₂ SO ₄ NH ₃	- sulfuric acid - ammonia	PM ₁₀	0.02	0.07
HCN	- hydrogen cyanide	PM _{2.5}	<0.01	<0.01

(4) Compliance with annual emission limits (tons parky far) is based on த 12-month rolling per od 01 (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s)

- (6) Planned MSS activities described in Special Condition 50 and pilot emissions are authorized.
- (7) Only pilot emissions are authorized for these combustion sources.
- (8) Total emission rates from these emission points shall comply with compliance caps contained in this MAERT.
- (9) Represents emissions associated with flared releases from the Mobile Source Air Toxics (MSAT) Unit.

Date:	December 20	2019
Date.	DCCCIIIDCI Z	J, ZUIJ

⁽⁵⁾ Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.