Extreme Classification with Large-scale Structured Learning

Yiming Yang, Carnegie Mellon University

Joint work with Siddharth Gopal

(NIPS 2012, KDD 2013, ICML 2014)

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Large-Scale Classification Challenges

- Modeling challenge Leveraging the dependency structures among categories in very large hierarchies and networks
- Computational challenge Making the joint optimization of all classifiers (hundreds of thousands) tractable
- Evaluation challenge International benchmark evaluations,
 e.g., the PASCAL Challenge for Large-Scale Hierarchical Text
 Categorization (LSHTC), 2010 present

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Benchmark Evaluation Data Sets (Examples)

Data Sets	Data Type	#Trn Classe:	#Leaf Classe	#Features	#TrnDocs	#TstDocs
NEWS20	news stories	20	20	53,975	11,260	7,505
CLEF	X-ray images	63	63	89	10,000	1,006
RCV1 (Topics)	news stories	137	101	48,734	23,149	784,446
IPC	patents	552	451	541,869	46,324	28,926
LSHTC-small	web pages	1,563	1,139	51,033	4,463	1,858
DMOZ 2010	web pages	15,358	12,294	381,580	128,710	34,880
DMOZ 2011	web pages	35,448	27,875	348,548	383,408	103,435
DMOZ 2012	web pages	13,347	11,947	594,158	394,756	104,263
SWIKI 2011	Wikipedia	50,312	36,504	346,299	456,886	81,262
LWIKI 2011	Wikipedia	478,020	325,056	1,617,899	2,365,436	452,167

The PASCAL LSHTC Challenge

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

3

Large Taxonomies → Large # of Parameters

- LWIKI, the largest dataset in the PASCAL LSHTC Challenge
 - 478,020 Wikipedia categories in a directed graph
 - 614,428 categories after adding "misc." nodes that pull out instances from internal nodes
 - 1,617,899 unique words in the vocabulary of web pages
- The number of parameters in joint optimization
 - 1,617,899 x 614,428 = 1 trillion (4 TB)

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Outline

- ✓ Motivation & Related Work
- Our Work
 - Bayesian Hierarchical Logistic Regression (BHLR) (S Gopal, NIPS 2012)
 - Recursively Regularized SVM and LR (S Gopal & Y Yang, KDD 2013)

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

7

Notation

- $\mathcal N$ is the set of all the nodes in a hierarchy or a graph;
- T is the set of leaf nodes (a subset of \mathcal{N});
- n is a specific node'
- $\pi(n)$ is the parent of node n;
- C(n) is the set of the children of node n;
- $D = \{(x_i, t_i)\}$ for i = 1 to N is a training set where instance x_i belongs to exactly one leaf-node category t_i in \mathcal{T} ;
- $y_{in} = 1$ or -1, denoting whether instance x_i is assigned to node n.

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Hierarchical Bayesian Logistic Regression (HBLR)

Birds

Mammals

Carnivore

Tigers

Herbivore

Lions

- Training a softmax classifier for every internal node
- Propagating model parameters from parents to children as

$$w_n \sim N(w_{\pi(n)} \Sigma_?)$$

- Jointly optimizing all w's and Σ 's over the hierarchy
- At each leaf node, predicting class labels as

$$p(t \mid x) = \frac{\exp(w_t^T x)}{\sum_{t \in T} \exp(w_t^T x)} \quad \text{where } \sum_{t' \in T} p(t \mid x) = 1$$

@Yiming Yang, Lecture on Web-scale Classification

HBLR Model 1 (M1)

M₁

7/29/2014

$$w_n \sim N(w_{\pi(n)}, \Sigma_{\pi(n)}) \quad \forall n$$

 $\Sigma_{\pi(n)} = \alpha_{\pi(n)}^{-1} I$
 $\alpha_n \sim \Gamma(a_n, b_n) \quad \forall n \notin \mathcal{T}$

- Siblings share a common covariance $\mathsf{matrix}\, \Sigma_{\pi(n)}.$
- $\Sigma_{\pi(n)}$ determines how close or far the siblings are from parent.
- Mammals in general are more varied than carnivores.

Root Birds Mammals Carnivore Whales Herbivore Lions Tigers

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

HBLR Model 2 (M2)

M₂

$$\begin{aligned} w_n &\sim N(w_{\pi(n)}, \frac{\boldsymbol{\Sigma}_{\pi(n)}}{\boldsymbol{\Sigma}_{\pi(n)}}) \quad \forall n \\ \boldsymbol{\Sigma}_{\pi(n)}^{-1} &= diag(\alpha_{\pi(n)}^{(1)}, \alpha_{\pi(n)}^{(2)}, \dots, \alpha_{\pi(n)}^{(d)}) \\ \alpha_n^{(i)} &\sim \Gamma(a_n^{(i)}, b_n^{(i)}) \quad i = 1..d, \ \forall n \notin \mathcal{T} \end{aligned}$$

- Feature-specific variance.
- Birds and Mammals are close in some dimension such as 'eyes', 'claw', but not in other dimensions such as 'feathers'

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

11

HBLR Model 3 (M3)

M3

$$\begin{split} w_n &\sim N(w_{\pi(n)}, \textcolor{red}{\Sigma_n}) \quad \forall n \\ \Sigma_n &= \alpha_n^{-1} I \\ \alpha_n &\sim \Gamma(a_n, b_n) \quad \forall n \end{split}$$

- Node-specific covariance matrix Σ_n .
- Each node individually determines how far/close it is to the parent.
- Whales is not a typical Mammal and is an 'outlier'.

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Inference

The main inference problem in Bayesian methods,

$$P(\mathbf{W}, \boldsymbol{\alpha} | \mathcal{D}, \mathbf{a}, \mathbf{b}) \propto \underbrace{P(\mathcal{D} | \mathbf{W}, \boldsymbol{\alpha})}^{likelihood} \underbrace{P(\boldsymbol{\alpha}, \mathbf{W} \mid \mathbf{a}, \mathbf{b})}^{prior}$$

$$\mathbf{W} = \{ \mathbf{w}_{n} : n \text{ in } \mathcal{N} \}$$

For M2

$$\propto \overbrace{\prod_{(x,t) \in D} \frac{\exp(w_t^\top x)}{\sum\limits_{t' \in \mathcal{T}} \exp(w_{t'}^\top x)}}^{\textit{likelihood}} \overbrace{\prod_{n \notin \mathcal{T}} \prod_{i=1}^{d} \Gamma(\alpha_n^{(i)} | a_n^{(i)}, b_n^{(i)})}^{\textit{prior}} \prod_{n \in \mathcal{N}} N(w_n | w_{\pi(n)}, \Sigma_{\pi(n)})$$

No analytical solution. Resort to numerical methods.

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

13

Hierarchical Variational Inference

- MCMC (existing solution) is too slow when the number of model parameters is very large (e.g., a trillion)
- Variational inference is a better alternative (our algorithm is the first one for hierarchical LR models)
- Find the posterior Q that approximates the true posterior P as

$$\min_{\mu,\tau,v,\Psi} \textit{KL}(\overbrace{\textit{Q}(\textbf{W},\alpha|\mu,\tau,v,\Psi)}^{\textit{approx posterior}} | || \overbrace{\textit{P}(\textbf{W},\alpha|\mathcal{D},a,b)}^{\textit{true posterior}})$$

Iteratively optimize until convergence (to a local maxima)

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Outline

- ✓ Motivation & Related Work
- ✓ Our Work
 - ✓ Bayesian Hierarchical Logistic Regression (BHLR) (S Gopal, NIPS 2012)
 - Recursively Regularized SVM and LR (S Gopal & Y Yang, KDD 2013)

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

15

Joint Regularization of All Models ("Recursive Regularization")

• We minimize the expected risk by finding

$$\hat{\mathbf{W}} = \arg\min_{\mathbf{w}} \lambda(\mathbf{w}) + C \times R_{emp}(\mathbf{w}, D_{train})$$
Regularization term Empirical risk

• Incorporate a hierarchy (H) into regularization

$$\lambda_{H}(\mathbf{W}) = \sum_{n \in \mathbb{N}} ||w_{n} - w_{\pi(n)}||^{2}$$
 where N is fullset of nodes

• Incorporate a graph (G) into regularization

$$\lambda_G(\mathbf{W}) = \sum_{(i,j) \in \mathbf{E}} ||\mathbf{w}_i - \mathbf{w}_j||^2 \quad \text{where } \mathbf{E} = \{(i,j) : i, j \in N\}$$

10/7/2014

@Yiming Yang, MLD faculty lunch

Parallel Divide-&-Conquer Strategies

- Hierarchies
 - Optimize odd and even levels alternately
- Graphs: First find a graph vertex coloring, and then

- Pick a color
- In parallel, optimize all nodes with that color
- Repeat with a different color

10/7/2014

@Yiming Yang, MLD faculty lunch

17

Evaluation: HBLR vs. Baseline Methods (8) + 3 New Methods (Ours)

- Hierarchical methods
 - CorrMNL: [Shahbaba and Neal, 2007] Another Bayesian method but using MCMC sampling.
 - HSVM: [Tsochantaridis et al., 2006] A Large-margin method with path dependent discriminant function.
 - OT: [Zhou et al., 2011] A Large-margin method with orthogonality constraints.
 - TD: [Yang et al., 2003] Top-down SVM with pachinko machine.
- Flat methods
 - BSVM Binary SVM, MSVM Multiclass SVM, BLR Binary logistic Regression MLR - Multiclass logistic Regression.

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Comparison with Correlated Multinomial Logit

CorrMNL [Shahbaba and Neal, 2007]: A Bayesian version of correlated Multinomial Logit with MCMC Sampling for inference.

Dataset	Metric-type	Metric	CorrMNL	HBLR
CLEF	Effectiveness			
		$Macro-F_1$	55.59	59.65
		$Micro-F_1$	81.10	81.41
	Efficiency			
		Time (mins)	2270	3

Improvement in $Macro-F_1: 7.3\%$

Improvement in scalability: 750x

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Comparison with Hierarchical SVM

HSVM [Tsochantaridis et al., 2006] : A Large-margin discriminative method based on structured SVM.

Dataset	Metric-type	Metric	HSVM	HBLR
CLEF	Effectiveness			
		$Macro-F_1$	57.23	59.65
		$Micro-F_1$	79.92	81.41
	Efficiency			
		Time (mins)	3.19	3
LSHTC-small	Effectiveness			
		$Macro-F_1$	21.95	30.81
		$Micro-F_1$	39.66	46.03
	Efficiency			
		Time (mins)	289.60	5.2

Improvement in $Macro-F_1: 22.5\%$

Improvement in scalability: 30x

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification

Concluding Remarks

- Large-scale classification is an important part of machine learning in the big-data era.
- Large hierarchies and graphs of categories present significant challenges & opportunities for structured learning.
- We presented novel methods & scalable algorithms for joint optimization of, e.g., 600+ thousands of classifiers with one trillion of model parameters (4 TB) in 37 hours.
- HBLR, RR-SVM and RR-LR obtained the best results on the largest data sets in benchmark evaluations (PASCAL/LSHTC).
- None of the other joint optimization methods have scaled to the largest problems in the PASCAL Challenges.

7/29/2014

@Yiming Yang, Lecture on Web-scale Classification