Segmentation des clients d'un site de e-commerce

Contexte générale

Contexte:

L'e-commerce brésilien **Olist** souhaite fournir à ses équipes marketing une **segmentation des clients** qu'elles pourront utiliser au quotidien pour leurs campagnes de communication.

Mission:

- Réaliser une segmentation afin de comprendre les différents types d'utilisateurs grâce à leur comportement et données personnelles.
- Décrire les différents groupes de clients obtenus
- Proposer un contrat de maintenance basé sur la stabilité des segments au cours du temps.

Données:

Export de la base de données Olist de 2016 à 2018

Sommaire

- I) Présentation des données et analyse exploratoire
- II) Comparaison des méthodes de Clustering sur un échantillon
- III) Clustering sur les données totales par le meilleur modèle
- IV) Détermination d'une période de maintenance

Partie I : Présentation des données et analyse exploratoire

- A) Présentation des données
 - B) Répartition empirique
- C) Analyse et prédiction des valeurs manquantes
 - D) Transformation de variables
 - E) Analyse de la relation entre les variables

A) Présentation des données et des variables d'intérêts

Nombre de commandes : 98 000

Nombre de clients totaux : 94 990

3% des clients ont + d'une commande

15 sept 2016 -> 03 sept 2018

Variables d'intérêts	Nom des variables (données)	
R- Récence = Date de la dernière commande	recency	
F- Fréquence des commande (nb de commande)	nb_order	
M- Montant total dépensé	total_expanse	
Note moyenne	mean_review_score	
Temps de livraison moyen	mean_delivery_time	
Montant du panier moyen	mean_price_cart	
Nombre d'article moyen par commande	mean_nb_item	
Ancienneté	seniority	

B) Répartition empirique des variables d'intérêts

C) Gestion des valeurs manquantes

Variables	Nb de valeurs manquantes	% de valeurs manquantes	
mean_delivery_time	1653	1,74%	
mean_review_score	685	0,70%	
mean_price_cart	7	< 0,1%	
first_order	17	< 0,1%	
total_expanse	0	0	
last_order	17	< 0,1%	
seniority	17	< 0,1%	
recency	17	< 0,1%	
nb_order	0	0	
mean_nb_item	0	0	
last_order_price	7	< 0,1%	

> Remplacement des valeurs manquantes par la médiane (SimpleImputer)

D) Transformation des variables

- Certaines distributions s'approchent d'une loi normal après transformation (log+1)
- Les données seront par la suite Standardisées avant le Clustering

E) Brève analyse de la relation entre les variables

Partie II: Comparaison des méthodes de Clustering

- A) Démarche de modélisation
 - B) Algorithme des kmeans
- C) Classification Ascendante hiérarchique
 - D) DBSCAN
 - E) Analyse de stabilité des clusters

A) Présentation de la démarche de modélisation

Etapes de la modélisation :

- A) Détermination des meilleurs hyper-paramètres
- B) Entrainement des modèles et prédictions des clusters
- C) Comparaison de la **stabilité** des clusters entre les différents algorithmes **au cours du temps**. (26 dernières semaines)

Echantillonnage des données

Propriétés:

- Chaque client doit être présent du début à la fin de l'expérience de modélisation (premier achat > 26 semaines)
- Le jeu de donnée doit évoluer (nb commande final > 1)

B) Modèle 1 : Algorithme des kmeans

Principe: Déterminer k groupes homogènes et compacts en minimisant l'inertie intra-classe.

- 1) Placement de *k* centroïdes au hasard (ou observation)
- 2) Attribution d'un groupe aux observations les plus proches des centroïdes
- 3) Calculer le centre de gravité du groupe
- 4) Y Déplacer le centroïde > Etape 2

B) Modèle 1 : Algorithme des kmeans

Hyper paramètre : k > Le nombre de clusters

Méthode du coude : Repérer le nombre de clusters où la variance intra-classe ne diminue plus significativement

Score de Calinski Harabasz ($\frac{variance\ inter-groupe}{variance\ intra-groupe}$)

- Score entre 0 et +∞
- Plus le score est haut, plus les clusters sont denses et bien séparés.

C) Modèle 2 : Classification Ascendante Hiérarchique

Principe: Rassembler les observations deux à deux selon un critère de distance

- 1) Attribution d'un groupe à chaque observation
- 2) Calcule de la distance entre chaque groupe.
- Agrégation des deux groupes les plus proches (méthode de Ward) > Etape 2.

C) Modèle 2 : Classification Ascendante Hiérarchique

> Le modèle de Classification Ascendante Hierarchique distingue 5 clusters dans nos données

D) Modèle 3 : Density Based Spatial Clustering of Applications with Noise (DBSCAN)

Principe: Déterminer des espaces à haute densité de points (clusters) séparés par des espaces à faible densité.

- 1) Calcul du nombre de voisins dans le rayon de voisinage (Epsilon) d'un premier point.
- Si nombre de voisins dans le rayon > seuil (minPts) : le point est un 'core' point.
 - Si le point est dans le voisinage d'un core point : point de « border »
 - Sinon, le point est considéré comme un 'noise' point
- 3) Même analyse sur le point suivant.

D) Modèle 3 : Density Based Spatial Clustering of Applications with Noise (DBSCAN)

Calibrage des hypers paramètres :

- minPts = Nb de dimensions + 1
- epsilon: Distances des voisins les plus proches / le nombre de cluster souhaitées / le nombre d'outliers (noise points)

E) Analyse de stabilité des clusters : Méthode

1) Echantillonnage des Données

Propriétés:

- Chaque client doit être présent du début à la fin de l'expérience (premier achat > 26 semaines)
- Le jeu de donnée doit évoluer (nb commande final > 1)

3) Stabilité

Comparaison de la stabilité des clusters entre tn et tn+1 jusqu'à t26

Adjusted Rand Index (ARI):

Mesure de similarité entre deux segmentations par comparaison des assignations de groupe au niveau individuel.

ARI = 0 > les groupes sont aléatoires ARI = 1 > Les deux groupes sont identiques

E) Analyse de stabilité des clusters : Résultats

Algorithme	ARI moyen	
Kmeans	0.87	
САН	0.5	
DBSCAN	0.96	

- Objectif: Segmenter les clients en groupes compacts sans outlier (noise):
 DBSCAN > + stable et + approprié (/!\ impossible de prédire de nouvelles données sans ré-entrainer le modèle)
- Si l'objectif est de classifier tous les clients :
 Kmeans est le plus approprié (+ Stable et + rapide)

Partie III : Clustering par kmeans des données totales

- A) Choix du nombre de clusters
 - B) Analyse de stabilité
 - C) Répartition des effectifs
 - D) Descriptions des clusters

A) Choix du nombre de clusters

> 6 Clusters semblent être la valeur optimale sur les données totales

B) Stabilité des clusters des données totales

> Les clusters issus du kmeans sont stables dans le temps. (ARI moyen : 0,95)

C) Description des clusters : Répartition des effectifs

- Cluster 1 et 5 : Représentent 60% des clients
- > Cluster 3 et 4 : Représentent 5% des clients

D) Description des clusters : Valeur moyenne des différents indicateurs par cluster

Cluster 0 : Achats récents et livraisons rapides

Cluster 1 : Achats anciens, dépenses moyennes, clients satisfaits

Cluster 2 : Clients mécontents, probablement lié au temps de livraison élevé

Cluster 3 : Clients fidèles (plus d'une commande)

Cluster 4 : Achats de nombreux produits, dépense totale élevée

Cluster 5 : Achats très ancien, très faible dépense.

Partie IV : Contrat de maintenance

A) Méthode de détermination de la période de maintenance

B) Résultats

A) Détermination de la periode de maintenance : Méthode

1) Echantillonnage des Données Propriétés : Chaque client doit être présent du début à la fin de l'expérience (premier achat > 26 semaines) Le jeu de donnée doit évoluer (nb commande final > 1) Dt_0 +1 semaine Dt_1 +1 semaine Dt_2 26 semaines Dt_{26} Date Date de la de la première dernière commande commande

3) Stabilité

Comparaison de la stabilité des clusters entre t0 et tn jusqu'à t26

Adjusted Rand Index (ARI):

Mesure de similarité entre deux segmentations par comparaison des assignations de groupe au niveau individuel.

ARI = 0 > les groupes sont aléatoires ARI = 1 > Les deux groupes sont identiques

B) Détermination de la periode de maintenance : Résultats

Maintenance:

- Diminution les 6
 premières semaines
 (ARI = 0,77)
- Stabilisation au dessus d'un ARI de 0,7.

Conclusions

- Le jeu de données permet une segmentation des clients par différentes méthodes
- > La méthode des kmeans + rapide et efficace
- Clusters stables dans le temps
- Les meilleurs clients appartiennent aux clusters
 3 (clients fidèles) et 4 (forte dépense)
- > Top clients : ~5% des clients
- Le modèle doit être ré-entrainé toutes les 6 semaines (contrat de maintenance).
- Utilisation du code par Olist : code formaté en PEP8 par le plugin autopep8

Analyse du nombre de clients total et par jour

3 pics d'activités:

- 24-25 Novembre 2017
- 24 avril 2018
- 05 Juillet 2018

- Le nb de commandes
- Le nb de clients
- Le chiffre d'affaires

Même dynamique

Répartition du CA en fonction des clients

L'indice de Gini : varie de 0 (répartition égale) à 1 (répartition inégale).

- Indice de Gini: 0,52
- 10% des clients partagent 40% du chiffre d'affaires totale

Visualisation par Analyse en Composantes Principales

Principe: Résumer l'information qui est contenue dans de nombreuses variables en un certain nombre d'axes synthétiques (Composantes principales) en gardant le plus d'information possible.

Détermination du nombre d'axes d'intérêts :

Critère de Kayser : on ne garde que les composantes > (100/p)% où p est le nombre de variables.

(100/p)% = 12,5 % > Axe 1 à 3

Méthode du coude : méthode visuelle ➤ Axe 1 à 6

Nous analyserons les **3 premières dimensions**, expliquant 61% de la variance totale.

Visualisation par Analyse en Composantes Principales

Visualisation par t-SNE

