Time Series

DATA SCIENCE BOOTCAMP

Previously, on Linear Regression...

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$\beta_0 = 94.68$$
 million $\beta_1 = 0.1$

We expect box office returns for a movie to be \$95 Million

+ 10% of its budget

+ luck factor

(what we can't predict)

(roll the Gaussian dice for about +- \$100 Million)

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$\beta_0 = 94.68$$
 million $\beta_1 = 0.1$

or something like...

We expect box office returns for a movie to be \$20 Million + 25% of its budget +\$60 Million if it is an action movie in summer +\$8Million per 10% rottentomatoes score over 60% -\$80 Million if directed by Uwe Boll + luck factor (roll the dice for +- \$70 Million)

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \varepsilon$$

What we know (features)

What we predict (target)

Budget
Action in Summer?
RottenTomatoes Score - 60
Director Uwe Boll?

What we know (features)

What we predict (target)

Budget
Action in Summer?
RottenTomatoes Score - 60
Director Uwe Boll?

+ luck factor means this is a stochastic process

What if we wanted to predict weekly returns?

Mad Max: Fury Road

Domestic Total Gross: \$153,636,354
Domestic Lifetime Gross: \$154,058,340

Distributor: Warner
Bros.

Genre: Sci-Fi Action

MPAA Rating: R

Production Budget: \$150
million

Summary	Daily	Weekend	Weekly	Releases	Foreign	Similar Movies
---------	-------	---------	--------	----------	---------	----------------

2015

Date (click to view chart)	Rank	Weekly Gross	% Change	Theaters / Cha	ange	Avg.	Gross-to-Date	Week #
May 15-21	2	\$63,440,279	-	3,702	-	\$17,137	\$63,440,279	1
May 22–28	3	\$38,849,255	-38.8%	3,722	+20	\$10,438	\$102,299,534	2
May 29-Jun 4	3	\$20,544,731	-47.1%	3,255	-467	\$6,312	\$122,834,265	3
Jun 5-11	5	\$11,643,562	-43.3%	2,720	-535	\$4,281	\$134,477,827	4
Jun 12–18	6	\$6,309,002	-45.8%	2,234	-486	\$2,824	\$140,786,829	5
Jun 19–25	8	\$4,555,993	-27.8%	1,424	-810	\$3,199	\$145,342,822	6
Jun 26-Jul 2	11	\$2,648,047	-41.9%	561	-863	\$4,720	\$147,990,879	7
		14.645.460		=44		10.000	1110 606 000	_

What if we wanted to predict weekly returns?

In the previous case, each point is independent.

Each point is an independent 'firing' of the stochastic process.

How much Avatar makes does not limit or influence by itself how much Chocolat makes

In a time series, points are **not** independent.

Points carry information about other points

Clearly, if the movie has made \$600K on week 10, and \$470K on week 11, you know that the movie will not make \$2M on week 12.

But the approach does not need to be different from any other regression

What we know (features) What we predict (target)

Values that carry information about the target

Model

Target Value

But the approach does not need to be different from any other regression

What we know (features) What we predict (target)

Gross of Week 10

What we predict (target)

Gross of Week 11

Since past points carry information about the future points, use these past points as features

	weekly_gross	one_prev_weeks_gross
0	63440279	NaN
1	38849255	63440279
2	20544731	38849255
3	11643562	20544731
4	6309002	11643562
5	4555993	6309002
6	2648047	4555993
7	1645168	2648047
8	966275	1645168
9	601794	966275
10	663222	601794

Auto-Regressive Models

Regression, where one or more previously observed target values is used as (a) feature(s)

	weekly_gross	one_prev_weeks_gross
0	63440279	NaN
1	38849255	63440279
2	20544731	38849255
3	11643562	20544731
4	6309002	11643562
5	4555993	6309002
6	2648047	4555993
7	1645168	2648047
8	966275	1645168
9	601794	966275
10	663222	601794

AutoRegressive model with lag 1

Just one previous point is among the features

What we know (features) What we predict (target)

Gross of Model

Gross of this week

We expect a week's gross for a movie to be \$10 Thousand

+ 60% of what it made last week + luck factor (roll the dice for +- \$110 Thousand)

$$x_{t} = \beta_{0} + \beta_{1}x_{t-1} + \varepsilon$$

$$\beta_0 = 0.01 million$$

 $\beta_1 = 0.598$

Looking at the order of magnitude (log) of the gross instead to be able to see differences in later weeks

Previously, we were drawing target versus feature

Here is the AR1 model from the same angle: Drawing target vs an input feature

What we know (features)

What we predict (target)

Gross of previous week Gross of two weeks ago

Gross of this week

Target Feature 1 Feature 2

NaN 63440279 38849255 20544731	NaN NaN 63440279 38849255
38849255	63440279
20544731	38849255
	000 10200
11643562	20544731
6309002	11643562
4555993	6309002
2648047	4555993
1645168	2648047
966275	1645168
601794	966275
	6309002 4555993 2648047 1645168 966275

AR-2

AutoRegressive model with lag 2

Two previous points as features

AR-3 and so on and so forth...

What we know
(features)

What we predict
(target)

Gross of previous week
Gross of two weeks ago
Gross of three weeks ago

Model

Gross of three weeks ago

You can do the lag processing yourself, or just use AR models in statsmodels to do it for you

```
import statsmodels.api as sm

AR1 = sm.tsa.AR(weekly_flu_numbers, freq="W").fit(maxlag=1)

AR2 = sm.tsa.AR(weekly_flu_numbers, freq="W").fit(maxlag=2)

AR2 = sm.tsa.AR(weekly_flu_numbers, freq="W").fit(maxlag=3)
```

Google can predict flu volume google searches!

by analyzing

Google can predict flu volume searches!

by analyzing Google searches!

Majorly Accurate Flu Model from Google!

By looking at how many people google for flu related

Google can predict flu volume google searches!

by analyzing Google searches!

Majorly Accurate Flu Model from Google!

United States: Influenza-like illness (ILI) data provided publicly by the U.S. Centers for Disease Control.

Neat!

OMG AMAZANNGG!
OMG AMAZANNGG!
the future!
It's, like, the

Historical estimates

United States

United States Flu Activity

🖜 Google Flu Trends estimate 🔴 United States data

United States: Influenza-like illness (ILI) data provided publicly by the U.S. Centers for Disease Control.

Google Flu Model

What we know
(features)

Search volume
for flu related
terms this week

What we predict
(target)

Number of
flu cases
this week

The bubble burst when we realized that an autoregressive model can produce the same accuracy

And actually adding google search data as a new feature gives only a tiny improvement in performance

What we know
(features)

Search volume for
flu related terms
this week
Number of flu

cases last week

What we predict
(target)

Number of
flu cases
this week

AR can be powerful

What we know

(features)

Number of
flu cases
last week

What we predict
(target)

Number of
flu cases
this week

This has been available even before the Internet

Think of lagged-features just as another potential source of usable information in a standard regression problem.

You can combine them with other features as well.

AR models can be quite powerful for short term forecasting (next time point), but their efficiency goes down when you try to forecast long term (as errors propagate from each next point you predict)

How do we do the train/test split?

As with any regression problem, it is important to measure performance on a separate test set.

(evaluate)

In previous cases, we could just randomly pick some points and set them aside as a test set

66% Training set 33% Test set

In previous cases, we could just randomly pick some points and set them aside as a test set

66% Training set 33% Test set

What about time series?

These points aren't independent

Depends on your use case!

Test set should simulate exactly what type of points you will make predictions on with the model

Case 1: We model a with past observations to make predictions on how it will continue.

Case 1: We model a with past observations to make predictions on how it will continue.

Mad Max has been running for 18 weeks.

Each week, I want to ask the model to forecast next week's gross, to decide if it's worth keeping it on one more week

Case 1: We model a with past observations to make predictions on how it will continue.

Case 1: We model a with past observations to make predictions on how it will continue.

Case 1: We model a with past observations to make predictions on how it will continue.

Your training/test split should simulate building a model on past values and testing them on newer values!

Case 1: We model a with past observations to make predictions on how it will continue.

You can even try it on different windows (kind of similar to cross-validation, but not quite)

Case 1: We model a with past observations to make predictions on how it will continue.

You can even try it on different windows (kind of similar to cross-validation, but not quite)

Case 1: We model a with past observations to make predictions on how it will continue.

You can even try it on different windows (kind of similar to cross-validation, but not quite)

Case 2: We model gross decay over time in movies in the past to predict how it'll go in new movies.

We just opened The Force Awakens. We need a model that can study all past movies and predict what gross to expect each week.

Case 2: We model gross decay over time in movies in the past to predict how it'll go in new movies.

?

We just opened The Force Awakens. We need a model that can study all past movies and predict what gross to expect each week.

Predict new movie

Case 2: We model gross decay over time in movies in the past to predict how it'll go in new movies.

Test

Randomly assign movies into training and test sets, fit AR model to the points from the movies in the training set, evaluate performance on test set movies

Depending on your use case, set aside a test set that simulates the way in which you will ask for predictions

How to choose the order of AR

AR1? AR2? AR3? Which do I use?

Previous point's value, two-previous point's value, etc. are different features.

Just like in any other regression, you will try different feature sets and choose the model with the test performance.

Using more lag-features can improve performance, too many can lead to overfitting. Depends on the specific problem.

How to choose the order of AR

AR1? AR2? AR3? Which do I use?

Note:

You can also look at the autocorrelation function to inform your process of choosing AR order, but in the end, a hypothesis-driven trial-and-error process with performance evaluation on separate test sets will be the ultimate best way of determining order.

We will touch upon autocorrelation functions later in the bootcamp, when we revisit Time Series.

Another input to understand the time series better and help choose the order of the AR model

Imagine a simple regression model. No time series. We need to predict total movie gross, and we have several features we can use. We are trying to understand the system and choose features.

A good approach is to plot each feature by itself versus the target, and look at their correlation. This way we can see how much information each feature carries.

A good approach is to plot each feature by itself versus the target, and look at their correlation. This way we can see how much information each feature carries.

Of course, this by itself cannot be the sole determining information in selecting the feature set, but it helps us understand the contribution of information!

Now imagine our weekly gross problem again. Basically, trying to figure out what order AR to use is the same as trying to figure out which features to use.

Gross from last week?
Gross from 2 weeks ago?
Gross from 3 weeks ago?
Gross from 4 weeks ago?

AR

This week's gross

It is still a good idea to understand the correlations between each of these features and the target.

It is still a good idea to understand the correlations between each of these features and the target.

The autocorrelation function basically condenses this information into a single plot

Correlation:

0.69

Correlation:

0.31

Correlation:

0.48

Correlation:

0.10

The autocorrelation function basically condenses this information into a single plot

The autocorrelation function basically condenses this information into a single plot


```
import statsmodels as sm
sm.tsa.stattools.acf(timeseries)
```

creates the autocorrelation function for you.

Preprocessing: Moving Average

specific to time-series

Preprocessing: Moving Average

specific to time-series

On a day to day basis, weight fluctuates up and down.
On a month to month basis, it is going down.

On a day to day basis, weight fluctuates up and down.
On a month to month basis, it is going down.

If we can make solid assumptions about what is noise and what is a trend, we can make the modeling problem easier

What that really means that we don't aim to build a model that can predict such daily changes. We want to model longer-time-scale trends.

Important: We are not making a claim about what we think is "really" happening underneath.

We are declaring what we choose to model.

As long as you don't forget these decisions when you use the model for predictions, and stay tru to them, they are fine.

Exponential Moving Average

Instead of weighing each point in the window the same amount, average all past points, but decrease the weight exponentially as we go further back.

Preprocessing: Moving Average

Preprocessing can help avoid overfitting to noise. Always be mindful of the assumptions you made.

Warning! Moving Average Smoothing is not Moving Average Models (MA)

What we covered is a preprocessing technique in modeling time series.

Moving Average Models are (just like AR models) a framework to model time series.

They are inaccurately named (they don't involve averages). We will cover them briefly in the future.