Math 241 Lecture Notes

Lance Remigio

August 17, 2025

Contents

1	Han	$\operatorname{idout} 1$
	1.1	Plan
	1.2	Learning Objectives
	1.3	Metric Spaces

1 Handout 1

1.1 Plan

1.2 Learning Objectives

- Basics of Metric Spaces
- Discuss topological aspects of metric spaces

1.3 Metric Spaces

On \mathbb{R} , we have the usual notion of distance between two real numbers x and y defined by the function d(x,y)=|x-y|. We learned that this function $d:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ enjoys certain properties:

- (i) d(x,y) = 0 if and only if x = y; (Nondegeneracy)
- (ii) d(x,y) = d(y,x) for all $x,y \in \mathbb{R}$; (Symmetricity)
- (iii) $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in \mathbb{R}$. (Triangle Inequality)

We would like to extend this idea and define a notion of distance in a general situation by using these properties.

Definition (Metric). Let X be a non-empty set. A metric d on X is a function $d: X \times X \to \mathbb{R}$ such that

- (i) d(x,y) = 0 if and only if x and y are equal;
- (ii) d(x,y) = d(y,x) for all $x, y \in X$;
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Example. Assume that d is a metric on X. Show that $d(x,y) \geq 0$ for all $x,y \in X$.

Example. Let $X = \{a, b\}$. Is it possible to define a metric on X? Yes with the discrete metric.

Definition (Metric Spaces). A metric space is a pair (X, d) where X is a non-empty set and d is a metric on X.

Example. (i) Let X be a non-empty set. Define $d: X \times X \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}.$$

Then d is a metric on X (called the **discrete metric**) and (X, d) is a metric space.

(ii)