

TEXAS PROOF OF CONCEPT AWARD FULL APPLICATION

HOME-BASED NON-INVASIVE LUNG COMPLIANCE MONITORING DEVICE

Enable non-invasive measuring of lung compliance to monitor and characterize diseases that alter lungs' mechanical properties.

EDWARD CASTILLO

Associate Professor, Department of Biomedical Engineering, Cockrell School of Engineering, UT Austin

PhD Candidate, Department of Biomedical Engineering, Cockrell School of Engineering, UT Austin

S PROBLEM STATEMENT

- Over 16 million U.S. adults have lung diseases affecting the pulmonary parenchyma, costing over \$52 billion annually 1,2,3
- Lung compliance (LC) measures lung's ability to expand at a given pressure, serving as a key indicator of disorders that alter lung's mechanical properties.

	Common pulmonary parenchymal disorders				
	COPD (Chronic Obstructive Pulmonary Disease) ^{2, 4}	ILD (Interstitial Lung Disease) ^{3,5}	RP (Radiation pneumonitis) ⁶		
Prevalence/ Incidence	16M (diagnosed) 24M (undiagnosed)	200K	15-40% of thoracic radiotherapy patients		
Cost (USD annually)	50B	2B	10M		
5-year survival rate (%)	40-70%	56% (Overall) 41% (IPF) ⁵	-		
ER visits (in the US annually)	1.5M	13.7%-19.4% of cases	-		

CURRENT SOLUTION OR ALTERNATIVES

- Current lung compliance measuring tools are either invasive or involve radiation exposure from CT imaging.
- Clinical Unmet Need: No non-invasive, home-based solution for regular lung disease monitoring is currently available on the market.

Current LC measuring tools:	Non-invasive?	Precise, consistent pressure control	Frequent monitoring	One-time setup cost	Cost per exam
Mechanical ventilation ^{1, 2}		✓		\$2.5K – 5K	\$1,522
Pleural manometry ^{2, 3}				N/A	\$1,038-1,189 (Thoracentesi s)
Esophageal manometry ⁴				N/A	\$924-1,391
4DCT imaging ^{5,6}	✓			\$300K -3M	\$6,773
Our Solution	✓	✓	√	\$700*	\$ 0.75

^{*} USD 700 covers the cost of the device and the mouthpiece

EXAS HIGH-LEVEL SOLUTION

- Solution: A non-invasive system that calculates lung compliance (LC), an important metric in overall lung health, in an easy-to-use, at-home package that can be set up and used in minutes.
- Current developmental statue: Prototyping
 - Prototype physical design
 - Fine-tune algorithms for pressure regulation and measurement

TEXAS DETAILED SOLUTION

- $LC = \frac{\Delta V}{\Delta P} = \frac{Lung\ volume\ change}{Pressure\ change} \leftarrow \frac{Calculated\ using\ our\ numerical\ pipeline}{P_{control}\ across\ different\ time\ points}$ Numerical pipeline to estimate airflow rate at all points in the breath cycle

Calculate ΔV

PID control to regulate pressure during normal breathing cycles

Numerical pipeline

Lung

compliance

MARKET OPPORTUNITY

- "Non-Invasive Respiratory
 Monitoring Market size was over
 USD 9.09 billion in 2024 and is
 projected to reach USD 19.87
 billion by 2037, witnessing
 around 6.2% CAGR during the
 forecast period." LINK
- The entry points for our device will be the "Home care" and "Spirometer" segments of the overall market.

CUSTOMER/MARKET VALIDATION

- The increasing prevalence of respiratory diseases, including COPD, asthma, and ILD, is a significant driver for market demand¹.
 - Global COPD prevalence is projected to reach 600 million cases by 2050, marking a 23% increase from 2020².
- Sanjay Dogra, Director of Respiratory Care at Corewell Health William Beaumont University Hospital, said "An at-home, user-friendly device for monitoring lung compliance would be valuable for both clinicians and patients...This technology has broad potential applications across a range of lung diseases affecting millions of people worldwide."

APPENDIX A: ADDITIONAL SCIENTIFIC/TECHNICAL SUPPORT

- Our team has demonstrated significant difference in 4DCTderived lung compliance (LC) in healthy and IPF patients¹.
- We observed significant decrease in 4DCT-derived lung compliance over 6 months.

