Journal of Applied Ecology

Generalist predators function as pest specialists: examining diet composition of spiders and ladybeetles across rice crop stages

Journal:	Journal of Applied Ecology	
Manuscript ID	Draft	
Manuscript Type:	Research Article	
Key-words:	biocontrol, trophic interactions, generalist predators, rice paddy, organic and conventional farms, stable isotope analysis, Diet composition, Pest management	

SCHOLARONE™ Manuscripts

Submission type: Research ar	ticle
------------------------------	-------

Generalist predators function as pest specialists: examining diet composition

of spiders and ladybeetles across rice crop stages

6 Abstract

- 1. Biocontrol, using natural enemies for pest control, has a long history in agriculture. It has received a surge of interest in the recent Anthropocene because of its potential as a valuable tool for sustainable agriculture.
- 2. To solve a long-standing puzzle in biocontrol—how well the ubiquitous generalist arthropod predators (GAPs) function as biocontrol agents—this study aimed to 1) quantify the diet composition of GAPs (spiders and ladybeetles) at different crop stages using stable isotope analysis, 2) examine the consistency of GAPs in pest consumption over years, and 3) investigate how abiotic and biotic factors affect pest consumption by GAPs.
 - 3. Specifically, we sampled arthropod prey and GAPs in sub-tropical organic and conventional rice farms over crop stages (seedling, tillering, flowering, and ripening) in three consecutive years. Among our field-collected samples, 352 arthropod predator and 828 prey isotope samples were analyzed to infer predator-prey interactions.
 - 4. Our results show the following: a) The proportion of rice pests in GAPs' diets in both organic and conventional rice farms increased over the crop season, from 21-47% at the tillering stage to 80-97% at the ripening stage, across the three study years. The high percentage in pest consumption at late crop stages (flowering and ripening) suggests that

24		GAPs can function as specialists in pest management during the critical period of crop
25		production. Regarding individual predator groups, spiders and ladybeetles exhibited
26		distinct dietary patterns over crop stages. b) The high pest consumption by GAPs at late
27		crop stages was similar across years despite variable climatic conditions and prey
28		availability, suggesting a consistency in GAP feeding habits and biocontrol value. c) The
29		proportion of rice pests in GAPs' diets varied with farm type and crop stage (e.g., higher
30		in conventional farms and during flowering/ripening stages).
31	5.	By quantifying the diet composition of GAPs over crop stages, farm types, and years, this
32		study reveals that generalist predators have potential to produce a stable, predictable top-

down effect on pests in rice agro-ecosystems. As sustainable agriculture has become

increasingly important, incorporating the ubiquitous generalist predators into pest

36

37

38

35

33

34

Keywords: biocontrol, trophic interactions, generalist predators, rice paddy, organic and conventional farms, stable isotope analysis

management will likely open a promising avenue towards this goal.

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1. Introduction

Using natural arthropod enemies for pest control has a long history in agriculture. The earliest record of biocontrol was documented in the book Plants of the Southern Regions (ca. 304) A.D.): people sold ants and their nests in the markets to control citrus insect pests (Huang and Yang, 1987). While synthetic pesticides have become the main method for controlling pests in the past century, this comes at a cost, such as posing risks to people, reducing biodiversity and hampering ecosystem functions (Geiger et al., 2010; Kehoe et al., 2017). As agriculture has become the largest land use type worldwide and a major driver for the global biodiversity crisis in Anthropocene (Campbell et al., 2017), a shift from synthetic pesticides to environmentally friendly practices (e.g., biocontrol) is urgently needed to make agriculture more sustainable (Gomiero et al., 2011). For example, the European Commission has announced its plan to reduce the use of chemical pesticides in European Union agricultural systems by 50% by 2030 (European Commission, 2020). To achieve this ambitious sustainability goal, biocontrol by natural enemies has been considered a key approach and has regained importance in modern agriculture. Natural enemies used for pest control can be classified into two major groups based on their prey range: specialist and generalist predators. While specialist predators (e.g., parasitoid wasps) have been widely advocated in agriculture because they target specific pest species and produce less undesirable non-target effects (Stiling and Cornelissen, 2005), generalist predators (e.g., spiders) have been increasingly appreciated for their conspicuous existence and consistent biocontrol effect on pests (Symondson et al., 2002; Stiling and Cornelissen, 2005; Michalko et al., 2019; Hsu et al., 2021; Gajski et al., 2023). For example, generalist predators were commonly reported in various agro-ecosystems and significantly reduced pest abundance in

approximately 75% of cases in 181 field manipulative studies (Symondson *et al.*, 2002).

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

management programs.

- Moreover, a meta-analysis suggests that generalist predators may exert stronger biocontrol
- effects on pest populations over time compared to specialists (Stiling and Cornelissen, 2005).
 - While the value of generalist predators has been increasingly appreciated, a few fundamental knowledge gaps need to be filled to validate their biocontrol potential and the underlying mechanisms in agro-ecosystems. For example, while studies have qualitatively analyzed the diets of generalist predators (e.g., using molecular gut content analysis to identify prey species) (Eitzinger and Traugott, 2011; Ingrao et al., 2017; Albertini et al., 2018), very few have quantified their diet composition over a growth season in the field (knowledge gap 1) (Hsu et al., 2021; Otieno et al., 2023). Quantifying their diet composition will help address the concern that generalist predators may switch their diet from pests to alternative prey and thus reduce their pest control effectiveness (Michalko et al., 2019). For instance, if generalist predators still consume a high proportion of pests in their diet with the presence of alternative prey in the field, this result would help end a long debate on whether generalist predators serve well as biocontrol agents (Symondson et al., 2002; Krey et al., 2017; Michalko et al., 2019). Moreover, examining the consistency of generalist predators in pest consumption in the field over years is important to assess the reliability of these predators as biocontrol agents in agriculture, although this information is lacking (knowledge gap 2). Given that temporal dynamics in population density or species composition commonly occur in agro-ecosystems (Settle et al., 1996; Dominik et al., 2018), a consistently high pest consumption by generalist predators over years, if it occurs, will provide strong support for applying these predators in pest

To understand the underlying mechanisms for the biocontrol effect of generalist predators,
we also need to examine how various abiotic and biotic factors affect the diet composition of
generalist predators in agro-ecosystems (knowledge gap 3). First, arthropod community
composition (e.g., pest vs. alternative prey density) may vary with crop stages and affect
predator-prey trophic interactions (Roubinet et al., 2017). Therefore, we should examine how
crop stage affects the pest consumption by generalist predators within a growth season. Second,
we should examine whether farming practices (e.g., organic and conventional) influence the diet
composition of predators (e.g., pest consumption) (Birkhofer et al., 2011). This will demonstrate
whether generalist predators provide varying biocontrol values in specific farm types. Third, we
should investigate the relationship between the relative prey abundance and the diet composition
of their predators. This will clarify whether pest abundance or predator preference mainly
explains the pest consumption by predators (Wise et al., 2006; Kuusk and Ekbom, 2012;
Roubinet et al., 2017; Eitzinger et al., 2019). Lastly, we should examine how surrounding
vegetation (e.g., forest cover) affects the diet composition of generalist predators. While
surrounding vegetation reportedly affected arthropod diversity and predator-prey interactions in
agro-ecosystems (Altieri and Letourneau, 1982; Altieri, 1999; Barbosa and Castellanos, 2005;
Diehl et al., 2013; Lichtenberg et al., 2017), its effect on predators' diet composition is unclear.
Understanding this will provide insights for managing the agricultural landscape and promoting
biocontrol services by generalist predators.
To address these three knowledge gaps, this study aimed to 1) quantify the diet

To address these three knowledge gaps, this study aimed to 1) quantify the diet composition of generalist predators, 2) examine the consistency of predators in pest consumption over years, and 3) investigate how abiotic and biotic factors may affect the diet composition of these predators. Filling these gaps will provide insights for applying generalist predators in

biocontrol programs. Specifically, this study sampled arthropod prey and generalist arthropod predators (GAPs) in sub-tropical organic and conventional rice farms over the rice growth season (seedling, tillering, flowering, and ripening stages) in central Taiwan from 2017 to 2019, and quantified the diet composition of GAPs (ladybeetles and spiders) at each rice stage using stable isotope analysis (δ^{13} C and δ^{15} N). Although GAPs may consume various prey items, we expected that GAPs would consistently consume a high proportion of pests in their diet at late crop stages (with high pest densities) regardless of years. We also expected that the diet composition of GAPs would be affected by local abiotic and biotic factors (e.g., farm type, crop stage, percent forest cover, and the relative abundance of pests in the field). Stable isotope analysis has been widely applied in ecology to infer predator-prey trophic interactions and estimate the proportional contribution of different prey sources to predators' diets (Post, 2002; Boecklen *et al.*, 2011; Layman *et al.*, 2012). This quantification method reflects accumulated prey consumption in predators' diets, which may not be achieved by some "snap-shot" techniques (e.g., field observations and molecular gut content analysis) (Newton, 2016).

2. Materials and Methods

2.1. Study system and sample collection

We collected terrestrial arthropods in paired organic and conventional rice farms in subtropical Taiwan (120.656-120.721 °E; 24.364-24.489 °N) from 2017 to 2019 (three farm pairs in 2017 and seven farm pairs each in 2018 and 2019). While farms in the same pair were relatively close to each other (e.g., within a few hundred meters in distance), different farm pairs were at least 1 km apart from each other to reduce confounding effects. The study farms were 0.2 hectares on average and irrigated with surface water. The organic farms were managed with

organic fertilizers (manure; 2-3 applications/crop season) and natural pesticides (tea saponins; 1 application/crop season during the seedling or tillering stage). The conventional farms were managed with synthetic nitrogen fertilizers (2-3 applications/crop season) and organophosphate pesticides (1 application/crop season during the tillering or flowering stage). At each major rice crop stage (seedling, tillering, flowering, and ripening stages) during the growing season (April - July) in each study year, we collected arthropod samples by sweep-netting (36 cm in diameter with a mesh size of 0.2 × 0.2 mm) the crop canopy 30 times in each of two transects inside a rice field. Each transect (ca 30 m long) was parallel to but 1.5m away from a randomly selected farm ridge. Samples were sealed in bags without chemical preservatives, iced, and transferred to refrigerator (-20°C) in the laboratory. We identified and counted arthropods under a dissecting scope to the lowest possible taxonomic level (usually species, genus, or family). Main orders, families, and genera have been documented in Hsu et al. (Hsu et al., 2021).

2.2. Stable isotope analysis of arthropod samples

After identification, arthropod samples were prepared for stable isotope analysis. First, samples were oven dried (50°C) for one week, ground, and weighed into individual tin capsules (5 × 9 mm). If necessary, several conspecifics would be pooled into a capsule to meet the minimum weight required for stable isotope analysis (i.e., 2 mg in this study). The number of isotope capsules for each species generally mirrored the arthropod community composition in the field. Stable isotope analysis (352 arthropod predator and 828 prey isotope samples) was conducted at the UC Davis Stable Isotope Facility using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). The standards for carbon and nitrogen stable isotope ratios were Vienna PeeDee

Beleminte and atmospheric N_2 , respectively. The results of our samples were expressed in per mil (‰) relative to the international standards (δ^{13} C and δ^{15} N).

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

153

154

2.3. Arthropod trophic guild assignment

A trophic guild represents a group of species using similar resources and forms a basic component of food webs. The concept has been proved to be practical in current ecology because it condenses broad taxonomic information into distinct functional groups in communities (Blondel, 2003). In this study, we classified arthropod samples into four trophic guilds (one predator and three prey guilds): 1) "Predators" consisted of spiders and ladybeetles, which are the primary GAPs in rice farms. 2) "Rice herbivores" consisted of major rice pests, including planthoppers, leafhoppers, and stink bugs. 3) "Tourist herbivores" consisted of herbivorous species without direct trophic association with rice plants, including some grasshoppers and leaf beetles. 4) "Detritivores" consisted of arthropods that feed on decaying organic material or plankton, including various midge and fly species. The classification of prey guilds was based on a combination of literature surveys and k-means clustering of stable isotope signatures of arthropod samples (see Appendix A: Fig. S1 for a stable isotope biplot for the three prey sources). The arthropod families/genera in each trophic guild are detailed in Appendix A: Table S1. This study focused on the trophic interactions between generalist predators and their prey sources and therefore did not consider less abundant trophic guilds (e.g., parasitoids) in subsequent analyses.

173

172

174 2.4. Data analyses

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

To quantify the diet composition of predators, we constructed Bayesian stable isotope mixing models using the R MixSIAR package (Stock et al., 2018) to estimate the proportions of different prey sources (i.e., the three prey guilds including rice herbivores, tourist herbivores, and detritivores) in predators' diet. In the mixing models, individual farm-year combination and crop stage were included as fixed effects for predator isotope data; isotope data for the three prey guilds were pooled respectively to generate fixed source values because of their high mobility across farms (Mazzi and Dorn, 2012; Sun et al., 2015). Isotope data at the seedling stage for the three study years were omitted from the analysis due to insufficient sample sizes for model estimation. To improve our model estimates, carbon and nitrogen concentration dependencies as well as the residual/process errors were incorporated (Phillips and Koch, 2002; Stock and Semmens, 2016). Trophic discrimination factors (TDFs) were estimated from the diet-dependent discrimination equation proposed by Caut et al. (2009). We ran three Markov Chain Monte Carlo (MCMC) chains, each with 50,000 iterations and a burn-in number of 25,000, along with a non-informative Dirichlet prior. Chain convergence was assessed via Gelman-Rubin and Geweke diagnostics. Bayesian posterior median estimates of diet composition (for each yearfarm-stage combination) were extracted for further analyses. Bayesian posterior means, SDs, medians, and 95% credible intervals are provided in Appendix B. To examine how local abiotic and biotic factors may affect the pest consumption by GAPs, we fit weighted generalized linear mixed models (GLMMs) with a beta distribution and a logit link function using the R glmmTMB package (Brooks et al., 2017), with year, farm type, crop stage, percent forest cover, and the relative abundance of rice herbivores as fixed effects,

farm ID nested within pair ID as random effects, and the proportion of rice herbivores consumed

in predators' diet as the response (i.e., posterior medians from the Bayesian stable isotope mixing

models). Weights were computed based on the number of diet estimates in each year. Model parameters were estimated using maximum likelihood, and their significance was analyzed via Wald chi-square test using the "Anova" function in the R car package (Fox and Weisberg, 2018). Tukey's post-hoc tests ($\alpha = 0.05$) were performed for the significant factors using the "cld" function in the R emmeans package (Length, 2018). The percent forest cover around each study farm was estimated from Google Earth images by manually delimiting the forested areas within a 1-km radius circular buffer surrounding the farm and computing the fraction of these areas in the buffer zone. The 1-km radius was based on previous studies (Rusch et al., 2016; Karp *et al.*, 2018). Because spiders and ladybeetles may have different feeding behavior and preference, we also performed all the aforementioned analyses separately for each of the two predator groups. All analyses were conducted in R version 4.0.3 (R Core Team, 2021).

2.5. Replication statement

Scale of inference	Scale at which the factor of interest is applied	Number of replicates at the appropriate scale
Predator stable isotope analysis	Predator individuals collected at each rice stage in organic and conventional farms over three study years	352 stable isotope samples (capsules)
Prey stable isotope analysis	Rice herbivore, tourist herbivore, and detritivore individuals collected at each rice stage in organic and conventional farms over three study years	828 stable isotope samples (capsules)

2.6. Ethics statement

Ethical	approval	was not	required	for	this	study.

3. Results

3.1. Diet composition of predators in rice farms

Across organic and conventional rice farms during 2017-2019, the proportion of rice herbivores in predators' diet increased over the course of the crop season from 21-47% at the tillering stage to 80-97% at the ripening stage; the proportion of detritivores in predators' diet decreased from 35-61% at the tillering stage to <1% at the ripening stage; the proportion of tourist herbivores in predators' diet also decreased from 13-20% at the tillering stage to 3-18% at the ripening stage (Fig. 1a; Appendix A: Table S2, Fig. S2).

Regarding individual predator groups, spiders and ladybeetles showed a marked difference in their diet composition over crop stages during 2017-2019. Across organic and conventional farms, spiders consumed a higher proportion of detritivores (31-55%) in their diet in the beginning of crop season (tillering stage) and substantially increased the consumption on rice herbivores to 78-95% in late crop season (ripening stage) (Fig. 1b; Appendix A: Table S2, Fig. S2). In contrast, ladybeetles in both organic and conventional farms consumed a low proportion of detritivores (≤ 8%) and a steadily high proportion of rice herbivores (≥ 80%) in their diet throughout the crop season (Fig. 1c; Appendix A: Table S2, Fig. S2). Tourist herbivores generally did not constitute an important prey source and contributed less than 33% to the diet of spiders and ladybeetles (Fig. 1b, 1c; Appendix A: Table S2, Fig. S2).

3.2. Patterns of rice herbivore consumption by predators

We further analyzed rice herbivore consumption by GAPs since these herbivores are the main pests of concern. The patterns of rice herbivore consumption by both predators in organic

and conventional rice farms were generally similar across the three study years, suggesting consistency in GAPs' feeding habits (Fig. 2). Interestingly, spiders and ladybeetles exhibited distinct within-season patterns of rice herbivore consumption. For spiders in organic and conventional farms, the proportion of rice herbivores in their diet increased toward later crop season, ranging from 17-48% (tillering) to 78-95% (ripening) (Fig. 2b; Appendix A: Table S2, Fig. S2), whereas for ladybeetles in organic and conventional farms, the proportion of rice herbivores in their diet remained relatively stable throughout the season, ranging from 80-93% (tillering) to 97-98% (ripening) (Fig. 2c; Appendix A: Table S2, Fig. S2).

3.3. Factors associated with rice herbivore consumption by predators

The proportion of rice herbivores in GAPs' diet differed between organic and conventional farms for both predators ($\chi^2 = 7.92$, P = 0.01) and spiders ($\chi^2 = 4.93$, P = 0.03), but not ladybeetles ($\chi^2 = 0.47$, P = 0.49; Table 1). Specifically, both predators consumed a higher proportion of rice herbivores in their diet in conventional vs. organic farms (Table 2). The proportion of rice herbivores in GAPs' diet also differed among crop stages (both predators: $\chi^2 = 249.84$, P < 0.001; spiders: $\chi^2 = 119.01$, P < 0.001; ladybeetles: $\chi^2 = 184.32$, P < 0.001; Table 1). Specifically, GAPs consumed higher proportions of rice herbivores in their diet at the flowering and/or ripening stage vs. the tillering stage (Table 3).

The proportion of rice herbivores consumed in GAPs' diet was not associated with the percent forest cover within a 1-km radius buffer surrounding the study farms (both predators: $\chi^2 = 0.06$, P = 0.80; spiders: $\chi^2 = 0.12$, P = 0.73; ladybeetles: $\chi^2 = 0.34$, P = 0.56; Table 1).

259 Furthermore, the proportion of rice herbivores consumed was not associated with the relative

abundance of rice herbivores in the field (both predators: $\chi^2 = 0.56$, P = 0.46; spiders: $\chi^2 = 0.58$, P = 0.45; ladybeetles: $\chi^2 = 0.38$, P = 0.54; Table 1).

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

260

261

4. Discussion

Because the worldwide demand for environmentally friendly practices in agriculture has increased, we investigated the potential of GAPs (ubiquitous in nature) as biocontrol agents in rice agro-ecosystems. Specifically, we used stable isotopes to quantify the diet composition of GAPs in organic and conventional rice farms during the crop season in three consecutive years. Our main results include the following: 1) Across the three study years, the rice herbivore consumption by GAPs increased in both organic and conventional farms over the crop season, from 20-47% at the tillering stage to 80-97% at the ripening stage. The high percentage at the ripening stage indicates that GAPs could function as pest specialists during critical growth (late crop) stages. Notably, rice herbivore consumption by spiders increased gradually toward the later crop season, whereas the consumption by ladybeetles remained stable throughout the season. 2) Our results revealed similar among-year patterns in rice herbivore consumption by GAPs in organic and conventional rice farms, suggesting a consistency in GAPs' feeding habits and biocontrol value. 3) The proportion of rice herbivores in GAPs' diets varied with farm type and crop stage (e.g., higher in conventional farms and during flowering/ripening stages). However, contrary to results from previous studies, pest consumption by GAPs was not associated with percent forest cover or the relative abundance of rice herbivores in the field. We discuss in the following: 1) GAPs function as pest specialists at late crop stages, 2) GAPs exhibit consistent pest consumption patterns over years, 3) factors associated with pest consumption by GAPs, and

4) the potential caveats of this study (e.g., pest suppression and intraguild predation). We finish by highlighting the implications of our results for agricultural management.

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

282

283

4.1. Generalist predators function as pest specialists at late crop stages

While biocontrol, a farming practice with a long history, offers a promising solution for sustainable agriculture, the use of GAPs as biocontrol agents remains a concern because GAPs may switch diets between pests and alternative prey (Albajes and Alomar, 1999; Prasad and Snyder, 2006; Roubinet et al., 2018). This study addressed this concern and revealed a consistency in high pest consumption by GAPs at late crop stages over years. The results provide not only strong support for using GAPs in sustainable pest management, but also a novel aspect in biocontrol—generalist predators may function as guild-level specialist predators of pests during the late crop season. Specifically, across the three study years, GAPs in both organic and conventional farms consumed an increasing proportion of rice herbivores over the crop season, reaching 80-97% in predators' diet at the ripening stage, whereas the proportions of alternative prey (detritivores and tourist herbivores) in their diet gradually decreased below 18% at the ripening stage (Fig. 1; Appendix A: Table S2, Fig. S2). The increase in rice herbivore consumption over time suggests that the biocontrol potential of predators increases toward late crop stages and peaks at the critical stage of crop production. This could be because of a higher herbivore (pest) density at late crop stages, suggested by a correlation between rice herbivore consumption and crop stage (see Factors associated with pest consumption by predators). While GAPs consumed a high proportion of pests at late crop stages, the two major

substantially, but pest consumption by ladybeetles remained stable over the season (Fig. 2b vs. 2c). This may be because different foraging modes—sit-and-wait (spiders) or actively hunting (ladybeetles)—can lead to different prey capture and thus diet composition (Nyffeler, 1999; Klecka and Boukal, 2013). For example, long-jawed orb-weavers (*Tetragnatha*), the most abundant genus in our spider samples, are sit-and-wait predators. The diet composition of these predators generally reflects prey availability (Nyffeler, 1999). In contrast, ladybeetles are actively hunting predators and may preferentially feed on rice herbivores, resulting in stable pest consumption over time. Because predator foraging modes shape predator-prey-plant interactions (Schmitz, 2008), we encourage future studies to examine different assemblages of sit-and-wait vs. actively hunting predators in field conditions to reveal the most efficient biocontrol practice over the entire crop season.

4.2. Generalists exhibit consistent pest consumption patterns over years

Ideal biocontrol agents provide a consistent, predictable effect on pests under various environmental conditions. Accordingly, GAPs in this study showed consistent pest consumption across years, despite various abiotic and biotic environmental conditions. Specifically, regarding the abiotic factors, the daily mean temperature, particularly from April to June, varied substantially among years (Appendix A: Fig. S3). The daily precipitation also fluctuated over the three study years, with multiple high precipitation events in 2017, overall low precipitation in 2018, and relatively uniform precipitation in 2019 (Appendix A: Fig. S3). Regarding the biotic factors, the composition of rice herbivores at the flowering and ripening stages differed substantially among the three years, in particular the two most dominant groups: leafhoppers (Cicadellidae/*Nephotettix*) and planthoppers (Delphacidae/*Nilaparvata*) (Appendix A: Table S3).

Although both abiotic and biotic factors varied substantially over the years of our study, pest consumption by GAPs generally remained stable, suggesting that GAPs can be a predictable, valuable tool for pest control in sustainable agriculture (but see Eitzinger *et al.*, 2021).

4.3. Factors associated with pest consumption by predators

The proportion of rice pests in GAPs' diets differed between farm types and among crop stages but was not associated with the percent forest cover surrounding the farms or the relative abundance of rice herbivores in the field. Overall, GAPs in conventional farms consumed a higher proportion of rice pests in their diet compared to those in organic farms. There are two explanations for this: 1) Organic farming may promote arthropod diversity and therefore distract predators from feeding on target pests (Bengtsson *et al.*, 2005; Birkhofer *et al.*, 2008; Lichtenberg *et al.*, 2017). 2) Pest densities may be higher in conventional farms (Porcel *et al.*, 2018), leading to higher predator-prey encounter rates and thus pest consumption by GAPs. Regardless of the potential mechanisms, our results highlight the important but overlooked biocontrol value of GAPs in conventional farming systems.

Besides farming practices, crop stages also affected pest consumption. Overall, pest consumption by GAPs increased from early (tillering) to late (ripening) stages, consistent with previous studies where predators consumed more pests in the late crop season (Roubinet *et al.*, 2017; Hsu *et al.*, 2021). This may be because pest populations increased with rice development and eventually predominated, leading to high pest consumption by GAPs at the flowering and ripening stages. These findings indicate a higher biocontrol value of predators when the crop production is most vulnerable to pest damage. Therefore, farming practitioners may want to

avoid practices that harm predators (e.g., chemical applications) during this period to maintain healthy predator populations and associated ecosystem services.

Complex habitat structure (e.g., surrounding vegetation) has been suggested to promote predator abundance and diversity (Langellotto and Denno, 2004; Diehl *et al.*, 2013), but such higher complexity did not affect predators' diet composition in our study. This might be because the prey species in our study system were mostly associated with rice plants but not the surrounding vegetation, consistent with a meta-analysis where habitat complexity had no effect on crop herbivore densities (Langellotto and Denno, 2004). Furthermore, although the diet composition of generalist predators may correlate with prey availability in the field (Wise *et al.*, 2006; Hsu *et al.*, 2021), our beta regression models suggest no such correlation between rice herbivores and GAPs. An explanation is that the relative abundance of rice herbivores was highly correlated with crop stage, a significant factor likely associated with various covariates (e.g., rice plant height) and explaining most variations in pest consumption by GAPs. We encourage further experiments, both observational and manipulative, to clarify the link between prey availability and generalist predators' diet composition in the field.

4.4. Potential caveats of this study

Our study demonstrates high pest consumption by GAPs in rice fields over three years and examines the factors influencing GAPs' diet composition. While our study provides evidence for GAPs' biocontrol potential, some caveats may exist. First, high pest consumption in GAPs' diets does not necessarily imply a strong suppression of pest populations in the field, since pest population dynamics depend not only on the per capita effect of predators but also predator density and diversity (Letourneau *et al.*, 2009; Rusch *et al.*, 2016). To unveil the

connection between per capita pest consumption and overall pest dynamics, future work may require complementing stable isotope analysis with field observations of predator and pest populations. Furthermore, future work may examine crop damage and production to reveal the effect of GAPs on pest control and crop performance. Second, while intra-guild predation potentially influences the pest control by GAPs (Straub *et al.*, 2008; Michalko *et al.*, 2019), it was not quantified in our diet composition analysis due to the limitation of stable isotope mixing models (Hsu *et al.*, 2021). However, this may not be a major concern in our study because rice plants grow in dense clumps and form a complex structure that could substantially relax intraguild predation pressure (Finke and Denno, 2006; Janssen *et al.*, 2007). Regardless, we caution that our diet estimates of predators (without predator-predator interference) might not apply to systems where intra-guild predation prevails.

5. Conclusions

While biocontrol has been recognized as a valuable tool for sustainable agriculture, whether generalist predators can serve as effective biocontrol agents in pest management remains unclear. Our study helps solve this long-standing puzzle by using stable isotope analysis to quantify the diet composition of GAPs (spiders and ladybeetles) over the rice growth season and identifying the underlying mechanisms for enemy-pest interactions in rice farms over three consecutive years. The results show a high proportion of rice pests in GAPs' diets in both organic and conventional rice farms (e.g., 80-97% at the ripening stage), suggesting that these generalist predators function as "pest specialists" at late crop stages (when rice plants are fruiting and pests are abundant). The high pest consumption remained consistent across years regardless of abiotic and biotic conditions, demonstrating the potential that generalist predators may

- produce a stable, predictable top-down effect on pests. Overall, our study lends support to
- applying generalist predators as biocontrol agents in both organic and conventional rice farms.
- 398 As sustainable agriculture has become more important than ever in human history, incorporating
- 399 the ubiquitous generalist predators into pest management, such as maintaining healthy
- 400 populations of these predators, will likely open a promising avenue towards this goal.

402

403

Appendix A and B. Supporting information

- Supplementary information associated with this article can be found in the online version
- 404 at doi:xxx.

405

406

References

- Albajes, R., Alomar, O., 1999. Current and potential use of polyphagous predators. Integrated pest and disease management in greenhouse crops. Springer, pp. 265-275.
- 409 Albertini, A., Marchi, S., Ratti, C., Burgio, G., Petacchi, R., Magagnoli, S., 2018. Bactrocera 410 oleae pupae predation by Ocypus olens detected by molecular gut content analysis. 411 BioControl 63, 227-239.
- Altieri, M.A., 1999. The ecological role of biodiversity in agroecosystems. Invertebrate biodiversity as bioindicators of sustainable landscapes. Elsevier, pp. 19-31.
- Altieri, M.A., Letourneau, D.K., 1982. Vegetation management and biological control in agroecosystems. Crop protection 1, 405-430.
- Barbosa, P., Castellanos, I., 2005. Ecology of predator-prey interactions. Oxford University Press.
- Bengtsson, J., Ahnström, J., WEIBULL, A.C., 2005. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of applied ecology 42, 261-269.
- Birkhofer, K., Fließbach, A., Wise, D.H., Scheu, S., 2011. Arthropod food webs in organic and conventional wheat farming systems of an agricultural long-term experiment: a stable isotope approach. Agricultural and Forest Entomology 13, 197-204.
- Birkhofer, K., Wise, D.H., Scheu, S., 2008. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117, 494-500.
- Blondel, J., 2003. Guilds or functional groups: does it matter? Oikos 100, 223-231.
- Boecklen, W.J., Yarnes, C.T., Cook, B.A., James, A.C., 2011. On the use of stable isotopes in trophic ecology. Annual review of ecology, evolution, and systematics 42, 411-440.
- Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Machler, M., Bolker, B.M., 2017. glmmTMB balances speed and flexibility

- among packages for zero-inflated generalized linear mixed modeling. The R journal 9, 378-400.
- Campbell, B.M., Beare, D.J., Bennett, E.M., Hall-Spencer, J.M., Ingram, J.S., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J.A., Shindell, D., 2017. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society 22.
- Caut, S., Angulo, E., Courchamp, F., 2009. Variation in discrimination factors (Δ15N and Δ13C):
 the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46, 443-453.
- Diehl, E., Mader, V.L., Wolters, V., Birkhofer, K., 2013. Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia 173, 579-589.
- Dominik, C., Seppelt, R., Horgan, F.G., Settele, J., Václavík, T., 2018. Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. Journal of applied ecology 55, 2461-2472.

445

446

447

448

449

450

451 452

453

454

455

456

457

458

459

463

464

- Eitzinger, B., Abrego, N., Gravel, D., Huotari, T., Vesterinen, E.J., Roslin, T., 2019. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Molecular Ecology 28, 266-280.
- Eitzinger, B., Roslin, T., Vesterinen, E.J., Robinson, S.I., O'Gorman, E.J., 2021. Temperature affects both the Grinnellian and Eltonian dimensions of ecological niches—A tale of two Arctic wolf spiders. Basic and Applied Ecology 50, 132-143.
- Eitzinger, B., Traugott, M., 2011. Which prey sustains cold-adapted invertebrate generalist predators in arable land? Examining prey choices by molecular gut-content analysis. Journal of Applied Ecology 48, 591-599.
- European Commission, 2020. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: a farm to fork strategy for a fair, healthy and environmentally-friendly food system COM/2020/381 final.
- Finke, D.L., Denno, R.F., 2006. Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149, 265-275.
- Fox, J., Weisberg, S., 2018. An R companion to applied regression. Sage publications.
- Gajski, D., Mifková, T., Košulič, O., Michálek, O., Serbina, L.Š., Michalko, R., Pekár, S., 2023.
 Brace yourselves, winter is coming: the winter activity, natural diet, and prey preference of winter-active spiders on pear trees. J Pest Sci 1-14.
 - Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11, 97-105.
- Gomiero, T., Pimentel, D., Paoletti, M.G., 2011. Is there a need for a more sustainable agriculture? Critical reviews in plant sciences 30, 6-23.
- Hsu, G.-C., Ou, J.-A., Ho, C.-K., 2021. Pest consumption by generalist arthropod predators increases with crop stage in both organic and conventional farms. Ecosphere 12, e03625.
- Huang, H.T., Yang, P., 1987. The ancient cultured citrus ant. Bioscience 37, 665-671.
- Ingrao, A.J., Schmidt, J., Jubenville, J., Grode, A., Komondy, L., VanderZee, D., Szendrei, Z., 2017. Biocontrol on the edge: Field margin habitats in asparagus fields influence natural enemy-pest interactions. Agriculture, Ecosystems & Environment 243, 47-54.
- Janssen, A., Sabelis, M.W., Magalhães, S., Montserrat, M., Van der Hammen, T., 2007. Habitat structure affects intraguild predation. Ecology 88, 2713-2719.

496

497

498

504

505

506

- Karp, D.S., Chaplin-Kramer, R., Meehan, T.D., Martin, E.A., DeClerck, F., Grab, H., Gratton, C.,
 Hunt, L., Larsen, A.E., Martínez-Salinas, A., 2018. Crop pests and predators exhibit
 inconsistent responses to surrounding landscape composition. Proceedings of the National
 Academy of Sciences 115, E7863-E7870.
- Kehoe, L., Romero-Muñoz, A., Polaina, E., Estes, L., Kreft, H., Kuemmerle, T., 2017.
 Biodiversity at risk under future cropland expansion and intensification. Nature Ecology &
 Evolution 1, 1129-1135.
- Klecka, J., Boukal, D.S., 2013. Foraging and vulnerability traits modify predator–prey body mass allometry: freshwater macroinvertebrates as a case study. Journal of Animal Ecology 82, 1031-1041.
- Krey, K.L., Blubaugh, C.K., Chapman, E.G., Lynch, C.A., Snyder, G.B., Jensen, A.S., Fu, Z., Prischmann-Voldseth, D.A., Harwood, J.D., Snyder, W.E., 2017. Generalist predators consume spider mites despite the presence of alternative prey. Biological Control 115, 157-164.
- Kuusk, A.-K., Ekbom, B., 2012. Feeding habits of lycosid spiders in field habitats. Journal of Pest Science 85, 253-260.
- Langellotto, G.A., Denno, R.F., 2004. Responses of invertebrate natural enemies to complexstructured habitats: a meta-analytical synthesis. Oecologia 139, 1-10.
 - Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, C.M., Harrison, E., Jud, Z.R., Matich, P., Rosenblatt, A.E., Vaudo, J.J., Yeager, L.A., 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87, 545-562.
- Lenth, R. 2018. emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.0.
- Letourneau, D.K., Jedlicka, J.A., Bothwell, S.G., Moreno, C.R., 2009. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol S 40, 573-592.
 - Lichtenberg, E.M., Kennedy, C.M., Kremen, C., Batary, P., Berendse, F., Bommarco, R., Bosque-Pérez, N.A., Carvalheiro, L.G., Snyder, W.E., Williams, N.M., 2017. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global change biology 23, 4946-4957.
- Mazzi, D., Dorn, S., 2012. Movement of insect pests in agricultural landscapes. Annals of Applied Biology 160, 97-113.
- Michalko, R., Pekár, S., Entling, M.H., 2019. An updated perspective on spiders as generalist predators in biological control. Oecologia 189, 21-36.
- Newton, J., 2016. Stable isotopes as tools in ecological research. eLS, 1-8.
- Nyffeler, M., 1999. Prey selection of spiders in the field. Journal of Arachnology, 317-324.
- Otieno, N.E., Butler, M., Pryke, J.S., 2023. Fallow fields and hedgerows mediate enhanced
 arthropod predation and reduced herbivory on small scale intercropped maize farms-δ13C
 and δ15N stable isotope evidence. Agriculture, Ecosystems & Environment 349, 108448.
- Phillips, D.L., Koch, P.L., 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114-125.
- Porcel, M., Andersson, G.K., Pålsson, J., Tasin, M., 2018. Organic management in apple orchards: higher impacts on biological control than on pollination. Journal of Applied Ecology 55, 2779-2789.

- Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703-718.
- Prasad, R., Snyder, W., 2006. Polyphagy complicates conservation biological control that targets generalist predators. Journal of Applied Ecology 43, 343-352.
- R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Roubinet, E., Birkhofer, K., Malsher, G., Staudacher, K., Ekbom, B., Traugott, M., Jonsson, M., 2017. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol Appl 27, 1167-1177.
- Roubinet, E., Jonsson, T., Malsher, G., Staudacher, K., Traugott, M., Ekbom, B., Jonsson, M., 2018. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Scientific reports 8, 1-10.
- Rusch, A., Chaplin-Kramer, R., Gardiner, M.M., Hawro, V., Holland, J., Landis, D., Thies, C.,
 Tscharntke, T., Weisser, W.W., Winqvist, C., 2016. Agricultural landscape simplification
 reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems &
 Environment 221, 198-204.
- Schmitz, O.J., 2008. Effects of predator hunting mode on grassland ecosystem function. Science 319, 952-954.
 - Settle, W.H., Ariawan, H., Astuti, E.T., Cahyana, W., Hakim, A.L., Hindayana, D., Lestari, A.S., 1996. Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77, 1975-1988.
- 543 Stiling, P., Cornelissen, T., 2005. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biological control 34, 236-246.
 - Stock, B.C., Jackson, A.L., Ward, E.J., Parnell, A.C., Phillips, D.L., Semmens, B.X., 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096.
- Stock, B.C., Semmens, B.X., 2016. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562-2569.
- 550 Straub, C.S., Finke, D.L., Snyder, W.E., 2008. Are the conservation of natural enemy biodiversity and biological control compatible goals? Biological control 45, 225-237.
- Sun, J.-T., Wang, M.-M., Zhang, Y.-K., Chapuis, M.-P., Jiang, X.-Y., Hu, G., Yang, X.-M., Ge,
 C., Xue, X.-F., Hong, X.-Y., 2015. Evidence for high dispersal ability and mito-nuclear
 discordance in the small brown planthopper, Laodelphax striatellus. Scientific Reports 5,
 1-10.
- 556 Symondson, W., Sunderland, K., Greenstone, M., 2002. Can generalist predators be effective 557 biocontrol agents? Annual review of entomology 47, 561-594.
- Wise, D.H., Moldenhauer, D.M., Halaj, J., 2006. Using stable isotopes to reveal shifts in prey consumption by generalist predators. Ecol. Appl. 16, 865-876.

560

540

541

542

545

546

Tables with captions

563

564

565

562

Table 1. Statistical results from GLMM beta regression models for examining the effects of abiotic and biotic factors on pest consumption by spiders, ladybeetles, and both predators.

Model	Factor	d.f.	χ^2	P
Both predators	Year	2	8.00	0.02
	Farm type	1	7.29	0.01
	Crop stage	2	249.84	< 0.001
	Percent forest cover	1	0.06	0.80
	Relative abundance of rice herbivores	1	0.56	0.46
Spiders	Year	2	9.30	0.01
	Farm type	1	4.93	0.03
	Crop stage	2	119.01	< 0.001
	Percent forest cover	1	0.12	0.73
	Relative abundance of rice herbivores	1	0.58	0.45
Ladybeetles	Year	2	17.29	< 0.001
	Farm type	1	0.47	0.49
	Crop stage	2	184.32	< 0.001
	Percent forest cover	1	0.34	0.56
	Relative abundance of rice herbivores	1	0.38	0.54

Table 2. Tukey's post-hoc tests comparing the proportion of rice herbivores consumed in the diet of predators in organic and conventional rice farms. Different superscript letters indicate significant differences in the estimated marginal means (EMMs) of the posterior medians from Bayesian stable isotope mixing models ($\alpha = 0.05$).

Model	Farm type	EMMs (± SE)	Lower 2.5%	Upper 2.5%
Both predators	Organic	0.61a (±0.08)	0.45	0.76
	Conventional	0.81 ^b (±0.05)	0.69	0.90
Spiders	Organic	$0.55^{a} (\pm 0.10)$	0.35	0.73
	Conventional	$0.79^{b} (\pm 0.07)$	0.63	0.90
Ladybeetles	Organic	$0.95^{a} (\pm 0.01)$	0.93	0.96
	Conventional	0.95a (±0.01)	0.94	0.96

568

569

574

575

Table 3. Tukey's post-hoc tests comparing the proportion of rice herbivores consumed in the diet of predators at three crop stages (tillering, flowering, and ripening stages). Different superscript letters indicate significant differences in the estimated marginal means (EMMs) of the posterior medians from Bayesian stable isotope mixing models ($\alpha = 0.05$).

Model	Crop stage	EMMs (± SE)	Lower 2.5%	Upper 2.5%
Both predators	Tillering	0.24a (±0.06)	0.14	0.36
	Flowering	0.85 ^b (±0.04)	0.76	0.91
	Ripening	0.91° (±0.03)	0.85	0.95
Spiders	Tillering	$0.27^{a} (\pm 0.07)$	0.16	0.43
	Flowering	0.81 ^b (±0.05)	0.69	0.89
	Ripening	$0.86^{b} (\pm 0.04)$	0.75	0.93
Ladybeetles	Tillering	$0.92^{a} (\pm 0.01)$	0.89	0.93
	Flowering	$0.92^{a} (\pm 0.01)$	0.90	0.93
	Ripening	0.98 ^b (±0.01)	0.98	0.99

578	Figures
579	
580	Figure 1. The proportions (mean \pm SE) of prey sources (rice herbivores, tourist herbivores, and
581	detritivores) consumed in the diet of (a) both predators, (b) spiders, and (c) ladybeetles in organic
582	and conventional rice farms over crop stages. The proportions were computed from the
583	Bayesian posterior medians of diet estimates in replicate farms over the three study years.
584	
585	Figure 2. The proportion of rice herbivores consumed in the diet of (a) both predators, (b)
586	spiders, and (c) ladybeetles in organic and conventional rice farms over crop stages in the three
587	study years. The proportions were computed from the Bayesian posterior medians of diet
588	estimates in replicate farms.
589	
590	Figure 3. The relative abundance of prey sources in organic and conventional rice farms over
591	crop stages during the three study years. The relative abundance was determined from the
592	sweep-net samples pooled across replicate farms.
593	

594 **Figure 1.**

595

597 **Figure 2.**

598

599

603

Figure 3.

- Appendix A.
- 2 Generalist predators function as pest specialists: examining diet composition
- of spiders and ladybeetles across rice crop stages

- 4 **Table S1**. The taxonomic information and trophic guilds of the arthropod samples in the three
- 5 study years.
- 6 (a) Year 2017

Trophic guild	Order	Family/Genus
Predators	Araneae	Araneidae
	Araneae	Clubionidae
	Araneae	Oxyopidae
	Araneae	Tetragnathidae/Tetragnatha
	Araneae	Thomisidae
	Coleoptera	Carabidae
	Coleoptera	Coccinellidae
Rice herbivores	Hemiptera	Cicadellidae/Nephotettix
	Hemiptera	Delphacidae/Nilaparvata
	Hemiptera	Lygaeidae/Pachybrachius
	Hemiptera	Pentatomidae/Scotinophara
	Lepidoptera	Hesperiidae
	Lepidoptera	Pyralidae
	Lepidoptera	Nymphalidae
	Orthoptera	Pyrgomorphidae/Atractomorpha
Tourist herbivores	Coleoptera	Chrysomelidae
	Orthoptera	Acrididae
Detritivores	Diptera	Chironomidae
	Diptera	Chloropidae
	Diptera	Ephydridae
	Diptera	Muscidae
	Diptera	Sphaeroceridae
	Diptera	Stratiomyidae
	Diptera	Tephritidae

Orthoptera

Tetrigidae

7

8 (b) Year 2018

Trophic guild	Order	Family/Genus
Predators	Araneae	Araneidae
	Araneae	Clubionidae
	Araneae	Oxyopidae
	Araneae	Tetragnathidae/Tetragnatha
	Araneae	Thomisidae
	Coleoptera	Coccinellidae
Rice herbivores	Hemiptera	Alydidae/Leptocorisa
	Hemiptera	Cicadellidae/Nephotettix
	Hemiptera	Delphacidae/Nilaparvata
	Hemiptera	Lygaeidae/Pachybrachius
	Hemiptera	Pentatomidae/Scotinophara
	Lepidoptera	Hesperiidae
	Lepidoptera	Pyralidae
	Orthoptera	Pyrgomorphidae/Atractomorpha
Tourist herbivores	Coleoptera	Chrysomelidae
	Orthoptera	Acrididae
Detritivores	Diptera	Chironomidae
	Diptera	Chloropidae
	Diptera	Ephydridae
	Diptera	Muscidae
	Diptera	Sciomyzidae
	Diptera	Stratiomyidae
	Orthoptera	Tetrigidae

9

10 (c) Year 2019

Trophic guild	Order	Family/Genus	
Predators	Araneae	Araneidae	
	Araneae	Clubionidae	
	Araneae	Oxyopidae	
	Araneae	Tetragnathidae/Tetragnatha	
	Araneae	Thomisidae	
	Coleoptera	Coccinellidae	
Rice herbivores	Diptera	Agromyzidae	
	Hemiptera	Alydidae/Leptocorisa	
	Hemiptera	Cicadellidae/Nephotettix	
	Hemiptera	Coreidae	
	Hemiptera	Delphacidae/Nilaparvata	
	Hemiptera	Lygaeidae/Pachybrachius	
	Hemiptera	Miridae	
	Hemiptera	Pentatomidae/Scotinophara	
	Hemiptera	Ricaniidae	
	Lepidoptera	Hesperiidae	
	Lepidoptera	Nymphalidae	
	Lepidoptera	Pyralidae	
	Orthoptera	Pyrgomorphidae/Atractomorpha	
Tourist herbivores	Coleoptera	Chrysomelidae	
	Orthoptera	Acrididae	
Detritivores	Diptera	Calliphoridae	
	Diptera	Chironomidae	
	Diptera	Chloropidae	
	Diptera	Ephydridae	
	Diptera	Lauxaniidae	
	Diptera	Muscidae	

Diptera	Phoridae
Diptera	Platystomatidae
Diptera	Sarcophagidae
Diptera	Sciomyzidae
Diptera	Sphaeroceridae
Diptera	Stratiomyidae
Diptera	Tephritidae
Orthoptera	Tetrigidae
Orthoptera	Tridactylidae

Table S2. The proportions (mean \pm SE) of prey sources (rice herbivores, tourist herbivores, and detritivores) consumed in predators' diet in organic and conventional rice farms over crop stages in each study year. The mean proportions were computed from the Bayesian posterior medians of diet estimates in replicate farms; n represents the number of replicate farms. Note that the differences in n within the same study year were due to insufficient predator samples in some replicate farms.

Year	Farm type	Crop stage	Predator -	Prey source			
				Rice herbivore	Tourist herbivore	Detritivore	— <i>п</i>
2017	Organic	Tillering	Both	0.26 ± 0.08	0.15 ± 0.05	0.54 ± 0.13	3
			Spiders	0.21 ± 0.13	0.33 ± 0.17	0.44 ± 0.19	3
			Ladybeetles	0.80	0.02	0.08	1
		Flowering	Both	0.86 ± 0.03	0.09 ± 0.02	0.04 ± 0.02	3
			Spiders	0.70 ± 0.15	0.24 ± 0.16	0.04 ± 0.03	3
			Ladybeetles	0.84	0.03	0.07	1
		Ripening	Both	0.94 ± 0.01	0.04 ± 0.01	0.01 ± 0.01	3
			Spiders	0.79 ± 0.12	0.18 ± 0.12	0.02 ± 0.01	3
			Ladybeetles	0.97 ± 0.01	0.01 ± 0.00	0.01 ± 0.00	3
	Conventional	Tillering	Both	0.22 ± 0.02	0.15 ± 0.05	0.60 ± 0.05	3
		Spiders	0.24 ± 0.01	0.20 ± 0.07	0.55 ± 0.08	3	
			Ladybeetles	0.90	0.01	0.04	1
		Flowering	Both	0.85 ± 0.03	0.1 ± 0.03	0.03 ± 0.01	3
		Spiders	0.86 ± 0.02	0.1 ± 0.03	0.03 ± 0.01	3	
			Ladybeetles	0.93 ± 0.01	0.02 ± 0.00	0.03 ± 0.00	2
		Ripening	Both	0.94 ± 0.02	0.05 ± 0.02	0.01 ± 0.00	3
		Spiders	0.92 ± 0.02	0.06 ± 0.02	0.01 ± 0.00	3	
		Ladybeetles	0.98 ± 0.00	0.00 ± 0.00	0.01 ± 0.00	2	
2018	Organic	Tillering	Both	0.21 ± 0.04	0.20 ± 0.07	0.54 ± 0.07	7
		Spiders	0.17 ± 0.03	0.26 ± 0.08	0.54 ± 0.08	7	
			Ladybeetles	0.90 ± 0.02	0.01 ± 0.00	0.04 ± 0.01	6
		Flowering	Both	0.79 ± 0.04	0.14 ± 0.04	0.04 ± 0.01	6
		Spiders	0.74 ± 0.07	0.18 ± 0.07	0.04 ± 0.01	5	

			Ladybeetles	0.89 ± 0.01	0.02 ± 0.00	0.04 ± 0.01	3
		Ripening	Both	0.95 ± 0.01	0.03 ± 0.01	0.01 ± 0.00	5
			Spiders	0.87 ± 0.04	0.09 ± 0.02	0.02 ± 0.01	4
			Ladybeetles	0.98 ± 0.00	0.00 ± 0.00	0.01 ± 0.00	5
	Conventional	Tillering	Both	0.47 ± 0.08	0.12 ± 0.02	0.35 ± 0.05	7
			Spiders	0.48 ± 0.11	0.18 ± 0.03	0.31 ± 0.08	7
			Ladybeetles	0.91 ± 0.01	0.01 ± 0.00	0.04 ± 0.01	4
		Flowering	Both	0.93 ± 0.03	0.05 ± 0.02	0.01 ± 0.00	6
			Spiders	0.88 ± 0.05	0.09 ± 0.04	0.01 ± 0.01	6
			Ladybeetles	0.91 ± 0.03	0.02 ± 0.00	0.04 ± 0.01	2
		Ripening	Both	0.97 ± 0.01	0.03 ± 0.01	0.00 ± 0.00	7
			Spiders	0.94 ± 0.04	0.05 ± 0.04	0.00 ± 0.00	2
			Ladybeetles	0.98 ± 0.00	0.00 ± 0.00	0.01 ± 0.00	5
2019	Organic	Tillering	Both	0.23 ± 0.08	0.13 ± 0.06	0.61 ± 0.08	7
			Spiders	0.30 ± 0.10	0.14 ± 0.05	0.54 ± 0.09	7
			Ladybeetles	0.93 ± 0.03	0.01 ± 0.00	0.03 ± 0.01	3
		Flowering	Both	0.76 ± 0.12	0.17 ± 0.12	0.05 ± 0.01	7
			Spiders	0.78 ± 0.15	0.18 ± 0.14	0.04 ± 0.01	6
			Ladybeetles	0.93 ± 0.02	0.02 ± 0.00	0.03 ± 0.01	3
		Ripening	Both	0.80 ± 0.17	0.18 ± 0.16	0.01 ± 0.00	5
			Spiders	0.78 ± 0.17	0.19 ± 0.16	0.02 ± 0.01	5
			Ladybeetles	0.98 ± 0.00	0.00 ± 0.00	0.01 ± 0.00	5
	Conventional	Tillering	Both	0.37 ± 0.04	0.15 ± 0.05	0.46 ± 0.06	7
			Spiders	0.41 ± 0.06	0.16 ± 0.05	0.42 ± 0.08	7
			Ladybeetles	0.93 ± 0.00	0.01 ± 0.00	0.03 ± 0.00	2
		Flowering	Both	0.91 ± 0.02	0.06 ± 0.02	0.02 ± 0.00	7
			Spiders	0.92 ± 0.02	0.06 ± 0.02	0.02 ± 0.01	7
			Ladybeetles	0.94 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	6
		Ripening	Both	0.96 ± 0.01	0.04 ± 0.01	0.00 ± 0.00	5
			Spiders	0.95 ± 0.02	0.04 ± 0.02	0.01 ± 0.00	5
			Ladybeetles	0.98 ± 0.00	0.00 ± 0.00	0.01 ± 0.00	3

Table S3. The relative abundance of the major families/genera in rice herbivore guild at the
 flowering and ripening stages in the three study years. Samples were pooled across replicate

21 farms.

22 (a) Flowering stage

Family/Genus	Year 2017	Year 2018	Year 2019
Cicadellidae/Nephotettix	7.6%	22.5%	69.7%
Delphacidae/Nilaparvata	88.2%	71.9%	25.4%
Lygaeidae/Pachybrachius	NA	0.8%	1.3%
Pentatomidae/Scotinophara	0.8%	2.9%	0.8%
Others	3.4%	1.9%	2.8%
Total —	100%	100%	100%

23

24 (b) Ripening stage

Family/Genus	Year 2017	Year 2018	Year 2019
Cicadellidae/Nephotettix	69.4%	74.9%	83.5%
Delphacidae/Nilaparvata	28.9%	13.4%	6.2%
Lygaeidae/Pachybrachius	NA	0.2%	4.1%
Pentatomidae/Scotinophara	1.7%	10.4%	4.5%
Others	NA	1.1%	1.7%
	100%	100%	100%

27

28

Figure S1. Stable isotope biplot of the rice plant and three prey sources in this study. Error bars represent 95% confidence intervals.

Figure S2. The proportions (mean \pm SE) of prey sources (rice herbivores, tourist herbivores, detritivores) consumed in the diet of predators in organic and conventional rice farms over crop stages in each study year: (a), (d), and (g) indicate both predators (spiders and ladybeetles) as a whole feeding guild; (b), (e), and (h) indicate spiders; (c), (f), and (i) indicate ladybeetles. The proportions were computed from the Bayesian posterior medians of diet estimates in replicate farms.

Figure S3. Daily mean temperature and precipitation of the study sites during the rice growth season (April to July) of the three study years. Observation data from the closest local weather station (Yuanli station) to the study farms were retrieved from the Central Weather Bureau Observation Data Inquire System (https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp).

44

45

46

Page 43 of 65

Appendix B. Posterior means, SDs, medians, and 95% credible intervals for the proportion of prey sources in predators' diet based on Bayesian stable isotope mixing models.

	•	9							
Year	Predator	Farm_ID	Crop stage	Prey source	Mean	SD	Median	Lower 95% credible interval limit	Upper 95% credible interval limit
2017	Both	LC1	Tillering	Rice herbivore	0.263	0.068	0.258	0.149	0.418
2017	Both	LC1	Tillering	Tourist herbivore	0.172	0.104	0.145	0.038	0.406
2017	Both	LC1	Tillering	Detritivore	0.564	0.133	0.581	0.299	0.781
2017	Both	LC1	Flowering	Rice herbivore	0.871	0.057	0.879	0.736	0.956
2017	Both	LC1	Flowering	Tourist herbivore	0.097	0.055	0.084	0.026	0.229
2017	Both	LC1	Flowering	Detritivore	0.032	0.02	0.028	0.007	0.085
2017	Both	LC1	Ripening	Rice herbivore	0.945	0.028	0.95	0.879	0.984
2017	Both	LC1	Ripening	Tourist herbivore	0.045	0.025	0.039	0.012	0.109
2017	Both	LC1	Ripening	Detritivore	0.009	0.009	0.006	0.001	0.036
2017	Both	LO1	Tillering	Rice herbivore	0.408	0.166	0.397	0.123	0.758
2017	Both	LO1	Tillering	Tourist herbivore	0.196	0.136	0.174	0.012	0.494
2017	Both	LO1	Tillering	Detritivore	0.396	0.208	0.372	0.067	0.829
2017	Both	LO1	Flowering	Rice herbivore	0.9	0.065	0.913	0.745	0.985
2017	Both	LO1	Flowering	Tourist herbivore	0.081	0.062	0.065	0.006	0.227
2017	Both	LO1	Flowering	Detritivore	0.02	0.022	0.012	0.001	0.088
2017	Both	LO1	Ripening	Rice herbivore	0.956	0.033	0.964	0.87	0.996
2017	Both	LO1	Ripening	Tourist herbivore	0.038	0.032	0.03	0.003	0.122
2017	Both	LO1	Ripening	Detritivore	0.006	0.009	0.003	0	0.029
2017	Both	MC1	Tillering	Rice herbivore	0.221	0.128	0.199	0.036	0.513
2017	Both	MC1	Tillering	Tourist herbivore	0.253	0.155	0.238	0.018	0.598
2017	Both	MC1	Tillering	Detritivore	0.526	0.2	0.519	0.154	0.915
2017	Both	MC1	Flowering	Rice herbivore	0.771	0.127	0.786	0.478	0.962
2017	Both	MC1	Flowering	Tourist herbivore	0.18	0.117	0.162	0.017	0.467
2017	Both	MC1	Flowering	Detritivore	0.049	0.055	0.03	0.003	0.214
2017	Both	MC1	Ripening	Rice herbivore	0.883	0.086	0.905	0.671	0.988
2017	Both	MC1	Ripening	Tourist herbivore	0.1	0.08	0.08	0.008	0.304
2017	Both	MC1	Ripening	Detritivore	0.017 Confidential Review co	0.029	0.007	0	0.104
2017	Both	MO1	Tillering	Rice herbivore	0.281	0.173	0.258	0.035	0.652

2017	Both	MO1	Tillering	Tourist herbivore	Journal of Applied I 0.274	Ecology 0.209	0.22	0.016	Page 44 of 65 0.766
2017	Both	MO1	Tillering	Detritivore	0.445	0.194	0.442	0.094	0.824
2017	Both	MO1	Flowering	Rice herbivore	0.767	0.206	0.848	0.302	0.984
2017	Both	MO1	Flowering	Tourist herbivore	0.203	0.197	0.12	0.006	0.656
2017	Both	MO1	Flowering	Detritivore	0.03	0.033	0.019	0.002	0.119
2017	Both	MO1	Ripening	Rice herbivore	0.88	0.126	0.93	0.545	0.994
2017	Both	MO1	Ripening	Tourist herbivore	0.11	0.122	0.06	0.003	0.442
2017	Both	MO1	Ripening	Detritivore	0.01	0.015	0.005	0	0.051
2017	Both	SC1	Tillering	Rice herbivore	0.219	0.115	0.208	0.043	0.47
2017	Both	SC1	Tillering	Tourist herbivore	0.095	0.087	0.071	0.007	0.324
2017	Both	SC1	Tillering	Detritivore	0.685	0.146	0.694	0.37	0.933
2017	Both	SC1	Flowering	Rice herbivore	0.862	0.089	0.881	0.636	0.976
2017	Both	SC1	Flowering	Tourist herbivore	0.075	0.068	0.054	0.006	0.245
2017	Both	SC1	Flowering	Detritivore	0.063	0.056	0.046	0.008	0.216
2017	Both	SC1	Ripening	Rice herbivore	0.943	0.049	0.956	0.809	0.994
2017	Both	SC1	Ripening	Tourist herbivore	0.037	0.038	0.025	0.002	0.142
2017	Both	SC1	Ripening	Detritivore	0.02	0.029	0.01	0.001	0.102
2017	Both	SO1	Tillering	Rice herbivore	0.133	0.083	0.119	0.018	0.331
2017	Both	SO1	Tillering	Tourist herbivore	0.086	0.078	0.063	0.006	0.284
2017	Both	SO1	Tillering	Detritivore	0.781	0.12	0.795	0.522	0.962
2017	Both	SO1	Flowering	Rice herbivore	0.784	0.134	0.812	0.46	0.959
2017	Both	SO1	Flowering	Tourist herbivore	0.103	0.087	0.077	0.008	0.328
2017	Both	SO1	Flowering	Detritivore	0.114	0.1	0.083	0.014	0.404
2017	Both	SO1	Ripening	Rice herbivore	0.911	0.067	0.929	0.747	0.989
2017	Both	SO1	Ripening	Tourist herbivore	0.053	0.048	0.039	0.004	0.179
2017	Both	SO1	Ripening	Detritivore	0.036	0.043	0.02	0.002	0.159
2017	Spider	LC1	Tillering	Rice herbivore	0.248	0.05	0.245	0.163	0.356
2017	Spider	LC1	Tillering	Tourist herbivore	0.283	0.074	0.288	0.116	0.417
2017	Spider	LC1	Tillering	Detritivore	0.469	0.091	0.46	0.316	0.685
2017	Spider	LC1	Flowering	Rice herbivore	0.829	0.05	0.832	0.721	0.916
2017	Spider	LC1	Flowering	Tourist herbivore	0.145	0.047	0.142	0.066	0.247
2017	Spider	LC1	Flowering	Detritivore	Confidential Review	_{w copy} 0.018	0.022	0.005	0.071

Page 45 o 2017	of 65 Spider	LC1	Ripening	Rice herbivore	Journal of Applied 0.897	Ecology 0.039	0.902	0.806	0.961
2017	Spider	LC1	Ripening	Tourist herbivore	0.091	0.037	0.087	0.032	0.177
2017	Spider	LC1	Ripening	Detritivore	0.012	0.013	0.008	0.001	0.048
2017	Spider	LO1	Tillering	Rice herbivore	0.464	0.127	0.466	0.215	0.71
2017	Spider	LO1	Tillering	Tourist herbivore	0.28	0.107	0.283	0.055	0.486
2017	Spider	LO1	Tillering	Detritivore	0.256	0.157	0.223	0.046	0.662
2017	Spider	LO1	Flowering	Rice herbivore	0.905	0.04	0.909	0.816	0.969
2017	Spider	LO1	Flowering	Tourist herbivore	0.086	0.039	0.082	0.022	0.172
2017	Spider	LO1	Flowering	Detritivore	0.009	0.01	0.006	0.001	0.04
2017	Spider	LO1	Ripening	Rice herbivore	0.943	0.03	0.948	0.872	0.986
2017	Spider	LO1	Ripening	Tourist herbivore	0.052	0.029	0.048	0.01	0.122
2017	Spider	LO1	Ripening	Detritivore	0.004	0.007	0.002	0	0.023
2017	Spider	MC1	Tillering	Rice herbivore	0.271	0.106	0.265	0.09	0.494
2017	Spider	MC1	Tillering	Tourist herbivore	0.24	0.111	0.236	0.043	0.474
2017	Spider	MC1	Tillering	Detritivore	0.488	0.171	0.483	0.169	0.836
2017	Spider	MC1	Flowering	Rice herbivore	0.85	0.061	0.856	0.712	0.949
2017	Spider	MC1	Flowering	Tourist herbivore	0.119	0.055	0.112	0.032	0.244
2017	Spider	MC1	Flowering	Detritivore	0.031	0.031	0.022	0.003	0.115
2017	Spider	MC1	Ripening	Rice herbivore	0.91	0.047	0.918	0.802	0.977
2017	Spider	MC1	Ripening	Tourist herbivore	0.075	0.041	0.068	0.016	0.173
2017	Spider	MC1	Ripening	Detritivore	0.015	0.022	0.008	0	0.078
2017	Spider	MO1	Tillering	Rice herbivore	0.074	0.042	0.065	0.019	0.175
2017	Spider	MO1	Tillering	Tourist herbivore	0.618	0.179	0.642	0.23	0.892
2017	Spider	MO1	Tillering	Detritivore	0.308	0.189	0.274	0.039	0.732
2017	Spider	MO1	Flowering	Rice herbivore	0.412	0.107	0.412	0.204	0.622
2017	Spider	MO1	Flowering	Tourist herbivore	0.556	0.104	0.554	0.358	0.761
2017	Spider	MO1	Flowering	Detritivore	0.032	0.034	0.022	0.002	0.117
2017	Spider	MO1	Ripening	Rice herbivore	0.551	0.116	0.554	0.316	0.767
2017	Spider	MO1	Ripening	Tourist herbivore	0.43	0.114	0.425	0.22	0.663
2017	Spider	MO1	Ripening	Detritivore	0.019	0.024	0.01	0.001	0.089
2017	Spider	SC1	Tillering	Rice herbivore	0.221	0.109	0.216	0.042	0.446
2017	Spider	SC1	Tillering	Tourist herbivore	Confidential Revie	w copy 0.051	0.062	0.01	0.202

2017	Spider	SC1	Tillering	Detritivore	Journal of Applied E 0.705	Cology 0 125	0.707	0.457	Page 46 of 65 0.924
2017	Spider	SC1	Flowering	Rice herbivore	0.885	0.077	0.905	0.687	0.975
2017	Spider	SC1	Flowering	Tourist herbivore	0.054	0.044	0.042	0.006	0.165
2017	Spider	SC1	Flowering	Detritivore	0.062	0.055	0.044	0.007	0.217
2017	Spider	SC1	Ripening	Rice herbivore	0.932	0.065	0.953	0.743	0.992
2017	Spider	SC1	Ripening	Tourist herbivore	0.034	0.033	0.025	0.003	0.123
2017	Spider	SC1	Ripening	Detritivore	0.033	0.05	0.016	0.001	0.181
2017	Spider	SO1	Tillering	Rice herbivore	0.105	0.066	0.091	0.018	0.27
2017	Spider	SO1	Tillering	Tourist herbivore	0.086	0.056	0.075	0.01	0.224
2017	Spider	SO1	Tillering	Detritivore	0.809	0.096	0.822	0.6	0.958
2017	Spider	SO1	Flowering	Rice herbivore	0.759	0.128	0.779	0.463	0.946
2017	Spider	SO1	Flowering	Tourist herbivore	0.112	0.074	0.096	0.015	0.286
2017	Spider	SO1	Flowering	Detritivore	0.13	0.103	0.099	0.015	0.408
2017	Spider	SO1	Ripening	Rice herbivore	0.86	0.09	0.878	0.645	0.977
2017	Spider	SO1	Ripening	Tourist herbivore	0.075	0.055	0.062	0.009	0.214
2017	Spider	SO1	Ripening	Detritivore	0.066	0.07	0.04	0.003	0.259
2017	Ladybeetle	LC1	Flowering	Rice herbivore	0.902	0.131	0.934	0.456	0.991
2017	Ladybeetle	LC1	Flowering	Tourist herbivore	0.054	0.124	0.02	0	0.498
2017	Ladybeetle	LC1	Flowering	Detritivore	0.045	0.041	0.033	0.001	0.151
2017	Ladybeetle	LC1	Ripening	Rice herbivore	0.955	0.137	0.984	0.498	0.998
2017	Ladybeetle	LC1	Ripening	Tourist herbivore	0.033	0.135	0.005	0	0.472
2017	Ladybeetle	LC1	Ripening	Detritivore	0.012	0.014	0.007	0	0.049
2017	Ladybeetle	LO1	Ripening	Rice herbivore	0.944	0.143	0.984	0.474	0.999
2017	Ladybeetle	LO1	Ripening	Tourist herbivore	0.038	0.138	0.004	0	0.518
2017	Ladybeetle	LO1	Ripening	Detritivore	0.018	0.032	0.006	0	0.11
2017	Ladybeetle	MC1	Tillering	Rice herbivore	0.803	0.228	0.895	0.139	0.998
2017	Ladybeetle	MC1	Tillering	Tourist herbivore	0.08	0.165	0.014	0	0.657
2017	Ladybeetle	MC1	Tillering	Detritivore	0.118	0.165	0.042	0	0.605
2017	Ladybeetle	MO1	Tillering	Rice herbivore	0.74	0.239	0.804	0.153	0.998
2017	Ladybeetle	MO1	Tillering	Tourist herbivore	0.086	0.162	0.019	0	0.622
2017	Ladybeetle	MO1	Tillering	Detritivore	0.173	0.198	0.083	0	0.656
2017	Ladybeetle	MO1	Flowering	Rice herbivore	Confidential Reviev		0.839	0.311	0.996
	-		-		Commental neviev				

Page 47 2017	of 65 Ladybeetle	MO1	Flowering	Tourist herbivore	Journal of Applied I 0.085	Ecology 0.141	0.028	0	0.53
2017	Ladybeetle	MO1	Flowering	Detritivore	0.123	0.138	0.068	0.001	0.484
2017	Ladybeetle	MO1	Ripening	Rice herbivore	0.914	0.141	0.959	0.515	0.999
2017	Ladybeetle	MO1	Ripening	Tourist herbivore	0.046	0.128	0.008	0	0.442
2017	Ladybeetle	MO1	Ripening	Detritivore	0.04	0.059	0.015	0	0.222
2017	Ladybeetle	SC1	Flowering	Rice herbivore	0.863	0.16	0.919	0.407	0.997
2017	Ladybeetle	SC1	Flowering	Tourist herbivore	0.069	0.133	0.019	0	0.5
2017	Ladybeetle	SC1	Flowering	Detritivore	0.068	0.091	0.032	0.001	0.324
2017	Ladybeetle	SC1	Ripening	Rice herbivore	0.94	0.138	0.98	0.565	0.999
2017	Ladybeetle	SC1	Ripening	Tourist herbivore	0.039	0.131	0.005	0	0.394
2017	Ladybeetle	SC1	Ripening	Detritivore	0.022	0.039	0.007	0	0.136
2017	Ladybeetle	SO1	Ripening	Rice herbivore	0.938	0.143	0.981	0.521	0.999
2017	Ladybeetle	SO1	Ripening	Tourist herbivore	0.039	0.134	0.005	0	0.477
2017	Ladybeetle	SO1	Ripening	Detritivore	0.023	0.044	0.007	0	0.165
2018	Both	LC1	Tillering	Rice herbivore	0.389	0.194	0.383	0.053	0.773
2018	Both	LC1	Tillering	Tourist herbivore	0.178	0.168	0.117	0.008	0.594
2018	Both	LC1	Tillering	Detritivore	0.432	0.225	0.398	0.077	0.911
2018	Both	LC1	Flowering	Rice herbivore	0.883	0.114	0.923	0.559	0.991
2018	Both	LC1	Flowering	Tourist herbivore	0.087	0.1	0.049	0.004	0.38
2018	Both	LC1	Flowering	Detritivore	0.03	0.053	0.013	0.001	0.183
2018	Both	LC1	Ripening	Rice herbivore	0.952	0.049	0.969	0.826	0.997
2018	Both	LC1	Ripening	Tourist herbivore	0.04	0.046	0.024	0.002	0.161
2018	Both	LC1	Ripening	Detritivore	0.008	0.013	0.003	0	0.045
2018	Both	LC2	Tillering	Rice herbivore	0.309	0.174	0.288	0.045	0.694
2018	Both	LC2	Tillering	Tourist herbivore	0.174	0.144	0.139	0.009	0.544
2018	Both	LC2	Tillering	Detritivore	0.517	0.213	0.524	0.107	0.902
2018	Both	LC2	Ripening	Rice herbivore	0.932	0.073	0.956	0.732	0.995
2018	Both	LC2	Ripening	Tourist herbivore	0.056	0.067	0.033	0.002	0.244
2018	Both	LC2	Ripening	Detritivore	0.012	0.021	0.005	0	0.071
2018	Both	LC3	Tillering	Rice herbivore	0.669	0.108	0.671	0.445	0.876
2018	Both	LC3	Tillering	Tourist herbivore	0.09	0.075	0.069	0.007	0.281
2018	Both	LC3	Tillering	Detritivore	Confidential Review	_{w copy} 0.11	0.234	0.057	0.475
4									

2018	Both	LC3	Flowering	Rice herbivore	Journal of Applied I 0.969	Ecology 0.028	0.977	0.901	Page 48 of 65 0.995
2018	Both	LC3	Flowering	Tourist herbivore	0.025	0.027	0.016	0.002	0.092
2018	Both	LC3	Flowering	Detritivore	0.006	0.006	0.005	0.001	0.022
2018	Both	LC3	Ripening	Rice herbivore	0.987	0.012	0.991	0.955	0.999
2018	Both	LC3	Ripening	Tourist herbivore	0.011	0.012	0.007	0.001	0.042
2018	Both	LC3	Ripening	Detritivore	0.002	0.002	0.001	0	0.008
2018	Both	LO1	Tillering	Rice herbivore	0.315	0.136	0.31	0.058	0.59
2018	Both	LO1	Tillering	Tourist herbivore	0.283	0.152	0.277	0.023	0.593
2018	Both	LO1	Tillering	Detritivore	0.402	0.172	0.387	0.106	0.79
2018	Both	LO1	Flowering	Rice herbivore	0.817	0.139	0.851	0.431	0.976
2018	Both	LO1	Flowering	Tourist herbivore	0.159	0.132	0.126	0.012	0.527
2018	Both	LO1	Flowering	Detritivore	0.024	0.029	0.015	0.002	0.104
2018	Both	LO1	Ripening	Rice herbivore	0.905	0.103	0.936	0.584	0.991
2018	Both	LO1	Ripening	Tourist herbivore	0.088	0.1	0.057	0.005	0.399
2018	Both	LO1	Ripening	Detritivore	0.007	0.011	0.004	0	0.037
2018	Both	LO2	Tillering	Rice herbivore	0.295	0.143	0.288	0.058	0.606
2018	Both	LO2	Tillering	Tourist herbivore	0.139	0.13	0.097	0.007	0.489
2018	Both	LO2	Tillering	Detritivore	0.565	0.187	0.567	0.184	0.896
2018	Both	LO2	Flowering	Rice herbivore	0.877	0.096	0.906	0.611	0.982
2018	Both	LO2	Flowering	Tourist herbivore	0.082	0.083	0.055	0.005	0.31
2018	Both	LO2	Flowering	Detritivore	0.04	0.045	0.026	0.004	0.169
2018	Both	LO2	Ripening	Rice herbivore	0.949	0.047	0.964	0.817	0.995
2018	Both	LO2	Ripening	Tourist herbivore	0.039	0.042	0.025	0.002	0.159
2018	Both	LO2	Ripening	Detritivore	0.012	0.017	0.006	0	0.058
2018	Both	LO3	Tillering	Rice herbivore	0.364	0.174	0.365	0.06	0.706
2018	Both	LO3	Tillering	Tourist herbivore	0.101	0.145	0.046	0.005	0.568
2018	Both	LO3	Tillering	Detritivore	0.536	0.198	0.527	0.143	0.906
2018	Both	LO3	Ripening	Rice herbivore	0.966	0.043	0.981	0.838	0.998
2018	Both	LO3	Ripening	Tourist herbivore	0.025	0.04	0.011	0.001	0.144
2018	Both	LO3	Ripening	Detritivore	0.01	0.015	0.005	0	0.049
2018	Both	MC1	Tillering	Rice herbivore	0.691	0.168	0.722	0.276	0.926
2018	Both	MC1	Tillering	Tourist herbivore	Confidential Review	_{w copy} 0.073	0.056	0.006	0.255

Page 49 o 2018	f 65 Both	MC1	Tillering	Detritivore	Journal of Applied I 0.234	Ecology 0.171	0.188	0.027	0.659
2018	Both	MC1	Flowering	Rice herbivore	0.971	0.034	0.98	0.897	0.997
2018	Both	MC1	Flowering	Tourist herbivore	0.022	0.031	0.013	0.001	0.087
2018	Both	MC1	Flowering	Detritivore	0.007	0.011	0.004	0	0.033
2018	Both	MC1	Ripening	Rice herbivore	0.988	0.02	0.992	0.956	0.999
2018	Both	MC1	Ripening	Tourist herbivore	0.01	0.018	0.006	0.001	0.04
2018	Both	MC1	Ripening	Detritivore	0.002	0.005	0.001	0	0.011
2018	Both	MC2	Tillering	Rice herbivore	0.599	0.217	0.646	0.108	0.908
2018	Both	MC2	Tillering	Tourist herbivore	0.114	0.107	0.083	0.007	0.408
2018	Both	MC2	Tillering	Detritivore	0.287	0.219	0.221	0.033	0.829
2018	Both	MC2	Flowering	Rice herbivore	0.944	0.072	0.966	0.752	0.996
2018	Both	MC2	Flowering	Tourist herbivore	0.042	0.062	0.024	0.002	0.199
2018	Both	MC2	Flowering	Detritivore	0.014	0.029	0.005	0	0.087
2018	Both	MC2	Ripening	Rice herbivore	0.976	0.039	0.987	0.874	0.999
2018	Both	MC2	Ripening	Tourist herbivore	0.02	0.033	0.01	0.001	0.108
2018	Both	MC2	Ripening	Detritivore	0.004	0.014	0.001	0	0.026
2018	Both	MC3	Tillering	Rice herbivore	0.233	0.139	0.214	0.031	0.547
2018	Both	MC3	Tillering	Tourist herbivore	0.248	0.159	0.235	0.014	0.591
2018	Both	MC3	Tillering	Detritivore	0.518	0.206	0.509	0.138	0.915
2018	Both	MC3	Flowering	Rice herbivore	0.773	0.15	0.807	0.417	0.971
2018	Both	MC3	Flowering	Tourist herbivore	0.178	0.134	0.148	0.011	0.506
2018	Both	MC3	Flowering	Detritivore	0.049	0.066	0.027	0.003	0.239
2018	Both	MC3	Ripening	Rice herbivore	0.886	0.099	0.915	0.625	0.99
2018	Both	MC3	Ripening	Tourist herbivore	0.098	0.09	0.07	0.006	0.334
2018	Both	MC3	Ripening	Detritivore	0.016	0.03	0.007	0	0.097
2018	Both	MO1	Tillering	Rice herbivore	0.225	0.207	0.165	0.007	0.72
2018	Both	MO1	Tillering	Tourist herbivore	0.172	0.177	0.109	0.005	0.659
2018	Both	MO1	Tillering	Detritivore	0.602	0.278	0.618	0.097	0.984
2018	Both	MO1	Flowering	Rice herbivore	0.719	0.226	0.788	0.246	0.985
2018	Both	MO1	Flowering	Tourist herbivore	0.148	0.145	0.101	0.006	0.554
2018	Both	MO1	Flowering	Detritivore	0.133	0.183	0.036	0.002	0.619
2018	Both	MO1	Ripening	Rice herbivore	Confidential Review	_{w copy} 0.119	0.913	0.573	0.994

2018	Both	MO1	Ripening	Tourist herbivore	Journal of Applied E 0.087	Ecology 0.094	0.055	0.003	Page 50 of 65 0.352
2018	Both	MO1	Ripening	Detritivore	0.041	0.066	0.011	0.000	0.237
2018	Both	MO2	Tillering	Rice herbivore	0.161	0.115	0.135	0.023	0.431
2018	Both	MO2	Tillering	Tourist herbivore	0.452	0.241	0.507	0.007	0.831
2018	Both	MO2	Tillering	Detritivore	0.387	0.271	0.306	0.051	0.955
2018	Both	MO2	Flowering	Rice herbivore	0.629	0.188	0.656	0.215	0.921
2018	Both	MO2	Flowering	Tourist herbivore	0.322	0.201	0.296	0.019	0.754
2018	Both	MO2	Flowering	Detritivore	0.049	0.08	0.019	0.002	0.303
2018	Both	MO3	Tillering	Rice herbivore	0.157	0.112	0.132	0.02	0.429
2018	Both	MO3	Tillering	Tourist herbivore	0.324	0.199	0.324	0.012	0.726
2018	Both	MO3	Tillering	Detritivore	0.519	0.236	0.5	0.102	0.946
2018	Both	MO3	Flowering	Rice herbivore	0.661	0.181	0.68	0.247	0.939
2018	Both	MO3	Flowering	Tourist herbivore	0.272	0.175	0.247	0.022	0.691
2018	Both	MO3	Flowering	Detritivore	0.066	0.085	0.033	0.003	0.336
2018	Both	SC1	Tillering	Rice herbivore	0.385	0.162	0.384	0.091	0.709
2018	Both	SC1	Tillering	Tourist herbivore	0.191	0.129	0.17	0.013	0.486
2018	Both	SC1	Tillering	Detritivore	0.424	0.198	0.404	0.094	0.831
2018	Both	SC1	Flowering	Rice herbivore	0.884	0.088	0.907	0.651	0.986
2018	Both	SC1	Flowering	Tourist herbivore	0.091	0.078	0.07	0.006	0.298
2018	Both	SC1	Flowering	Detritivore	0.025	0.037	0.014	0.002	0.116
2018	Both	SC1	Ripening	Rice herbivore	0.948	0.046	0.963	0.819	0.996
2018	Both	SC1	Ripening	Tourist herbivore	0.045	0.043	0.031	0.003	0.168
2018	Both	SC1	Ripening	Detritivore	0.007	0.014	0.003	0	0.039
2018	Both	SO1	Tillering	Rice herbivore	0.121	0.069	0.108	0.027	0.287
2018	Both	SO1	Tillering	Tourist herbivore	0.041	0.035	0.032	0.004	0.132
2018	Both	SO1	Tillering	Detritivore	0.838	0.082	0.85	0.651	0.96
2018	Both	SO1	Flowering	Rice herbivore	0.822	0.097	0.84	0.586	0.957
2018	Both	SO1	Flowering	Tourist herbivore	0.058	0.052	0.042	0.005	0.189
2018	Both	SO1	Flowering	Detritivore	0.12	0.08	0.101	0.021	0.325
2018	Both	SO1	Ripening	Rice herbivore	0.932	0.054	0.947	0.793	0.991
2018	Both	SO1	Ripening	Tourist herbivore	0.03	0.03	0.02	0.002	0.111
2018	Both	SO1	Ripening	Detritivore	Confidential Review		0.024	0.002	0.157
					commental neviev				

Page 51 o 2018	of 65 Spider	LC1	Tillering	Rice herbivore	Journal of Applied I 0.12	Ecology 0.104	0.088	0.007	0.373
2018	Spider	LC1	Tillering	Tourist herbivore	0.262	0.152	0.247	0.027	0.607
2018	Spider	LC1	Tillering	Detritivore	0.618	0.194	0.617	0.227	0.953
2018	Spider	LC1	Flowering	Rice herbivore	0.606	0.222	0.642	0.163	0.927
2018	Spider	LC1	Flowering	Tourist herbivore	0.282	0.173	0.249	0.04	0.684
2018	Spider	LC1	Flowering	Detritivore	0.112	0.139	0.053	0.006	0.521
2018	Spider	LC2	Tillering	Rice herbivore	0.297	0.162	0.285	0.034	0.65
2018	Spider	LC2	Tillering	Tourist herbivore	0.205	0.134	0.182	0.025	0.541
2018	Spider	LC2	Tillering	Detritivore	0.498	0.207	0.499	0.111	0.884
2018	Spider	LC3	Tillering	Rice herbivore	0.717	0.101	0.72	0.516	0.907
2018	Spider	LC3	Tillering	Tourist herbivore	0.094	0.062	0.081	0.014	0.243
2018	Spider	LC3	Tillering	Detritivore	0.189	0.101	0.178	0.031	0.413
2018	Spider	LC3	Flowering	Rice herbivore	0.975	0.017	0.978	0.935	0.996
2018	Spider	LC3	Flowering	Tourist herbivore	0.02	0.016	0.016	0.002	0.06
2018	Spider	LC3	Flowering	Detritivore	0.004	0.005	0.003	0	0.016
2018	Spider	LO1	Tillering	Rice herbivore	0.191	0.107	0.173	0.039	0.443
2018	Spider	LO1	Tillering	Tourist herbivore	0.38	0.14	0.372	0.119	0.677
2018	Spider	LO1	Tillering	Detritivore	0.429	0.177	0.424	0.103	0.787
2018	Spider	LO1	Flowering	Rice herbivore	0.708	0.14	0.729	0.38	0.915
2018	Spider	LO1	Flowering	Tourist herbivore	0.256	0.127	0.236	0.07	0.551
2018	Spider	LO1	Flowering	Detritivore	0.036	0.043	0.024	0.002	0.144
2018	Spider	LO1	Ripening	Rice herbivore	0.806	0.116	0.83	0.522	0.956
2018	Spider	LO1	Ripening	Tourist herbivore	0.175	0.106	0.153	0.037	0.432
2018	Spider	LO1	Ripening	Detritivore	0.019	0.033	0.009	0	0.088
2018	Spider	LO2	Tillering	Rice herbivore	0.332	0.115	0.328	0.115	0.568
2018	Spider	LO2	Tillering	Tourist herbivore	0.204	0.096	0.199	0.034	0.411
2018	Spider	LO2	Tillering	Detritivore	0.464	0.16	0.455	0.174	0.8
2018	Spider	LO2	Flowering	Rice herbivore	0.887	0.055	0.896	0.755	0.968
2018	Spider	LO2	Flowering	Tourist herbivore	0.088	0.047	80.0	0.018	0.195
2018	Spider	LO2	Flowering	Detritivore	0.025	0.026	0.017	0.002	0.097
2018	Spider	LO2	Ripening	Rice herbivore	0.934	0.038	0.941	0.842	0.985
2018	Spider	LO2	Ripening	Tourist herbivore	Confidential Revie	w copy 0.033	0.048	0.009	0.137

2018	Spider	LO2	Ripening	Detritivore	Journal of Applied E 0.012	cology 0.016	0.006	0	Page 52 c 0.055	of 65
2018	Spider	LO3	Tillering	Rice herbivore	0.215	0.112	0.201	0.04	0.458	
2018	Spider	LO3	Tillering	Tourist herbivore	0.171	0.105	0.156	0.018	0.416	
2018	Spider	LO3	Tillering	Detritivore	0.614	0.169	0.624	0.273	0.914	
2018	Spider	LO3	Ripening	Rice herbivore	0.9	0.07	0.917	0.71	0.982	
2018	Spider	LO3	Ripening	Tourist herbivore	0.072	0.051	0.06	0.01	0.2	
2018	Spider	LO3	Ripening	Detritivore	0.029	0.043	0.013	0.001	0.159	
2018	Spider	MC1	Tillering	Rice herbivore	0.757	0.099	0.764	0.549	0.929	
2018	Spider	MC1	Tillering	Tourist herbivore	0.12	0.08	0.104	0.015	0.307	
2018	Spider	MC1	Tillering	Detritivore	0.123	0.077	0.107	0.021	0.316	
2018	Spider	MC1	Flowering	Rice herbivore	0.972	0.022	0.977	0.915	0.996	
2018	Spider	MC1	Flowering	Tourist herbivore	0.025	0.022	0.02	0.003	0.081	
2018	Spider	MC1	Flowering	Detritivore	0.003	0.003	0.002	0	0.011	
2018	Spider	MC1	Ripening	Rice herbivore	0.984	0.015	0.988	0.946	0.998	
2018	Spider	MC1	Ripening	Tourist herbivore	0.015	0.015	0.011	0.001	0.052	
2018	Spider	MC1	Ripening	Detritivore	0.001	0.002	0.001	0	0.007	
2018	Spider	MC2	Tillering	Rice herbivore	0.773	0.104	0.787	0.54	0.936	
2018	Spider	MC2	Tillering	Tourist herbivore	0.111	0.075	0.096	0.014	0.288	
2018	Spider	MC2	Tillering	Detritivore	0.116	0.088	0.095	0.018	0.347	
2018	Spider	MC2	Flowering	Rice herbivore	0.974	0.021	0.98	0.92	0.996	
2018	Spider	MC2	Flowering	Tourist herbivore	0.023	0.021	0.018	0.002	0.075	
2018	Spider	MC2	Flowering	Detritivore	0.003	0.004	0.002	0	0.012	
2018	Spider	MC3	Tillering	Rice herbivore	0.251	0.119	0.241	0.056	0.515	
2018	Spider	MC3	Tillering	Tourist herbivore	0.283	0.123	0.279	0.057	0.541	
2018	Spider	MC3	Tillering	Detritivore	0.465	0.181	0.457	0.137	0.839	
2018	Spider	MC3	Flowering	Rice herbivore	0.808	0.098	0.824	0.564	0.947	
2018	Spider	MC3	Flowering	Tourist herbivore	0.158	0.084	0.144	0.035	0.358	
2018	Spider	MC3	Flowering	Detritivore	0.035	0.042	0.022	0.002	0.153	
2018	Spider	MC3	Ripening	Rice herbivore	0.881	0.073	0.899	0.695	0.975	
2018	Spider	MC3	Ripening	Tourist herbivore	0.102	0.065	0.088	0.018	0.257	
2018	Spider	MC3	Ripening	Detritivore	0.017	0.028	0.008	0	0.096	
2018	Spider	MO1	Tillering	Rice herbivore	Confidential Review	_{v copy} 0.194	0.072	0.004	0.655	

Page 53 2018	of 65 Spider	MO1	Tillering	Tourist herbivore	Journal of Applied I 0.181	Ecology 0.185	0.109	0.006	0.658
2018	Spider	MO1	Tillering	Detritivore	0.652	0.306	0.754	0.086	0.987
2018	Spider	MO1	Flowering	Rice herbivore	0.607	0.26	0.61	0.188	0.974
2018	Spider	MO1	Flowering	Tourist herbivore	0.166	0.126	0.138	0.016	0.501
2018	Spider	MO1	Flowering	Detritivore	0.227	0.246	0.074	0.001	0.709
2018	Spider	MO1	Ripening	Rice herbivore	0.746	0.2	0.787	0.272	0.985
2018	Spider	MO1	Ripening	Tourist herbivore	0.129	0.106	0.103	0.009	0.388
2018	Spider	MO1	Ripening	Detritivore	0.125	0.175	0.033	0	0.612
2018	Spider	MO2	Tillering	Rice herbivore	0.147	0.078	0.135	0.03	0.33
2018	Spider	MO2	Tillering	Tourist herbivore	0.649	0.119	0.649	0.424	0.877
2018	Spider	MO2	Tillering	Detritivore	0.204	0.115	0.19	0.032	0.455
2018	Spider	MO2	Flowering	Rice herbivore	0.558	0.156	0.576	0.203	0.81
2018	' Spider	MO2	Flowering	Tourist herbivore	0.427	0.153	0.409	0.182	0.767
2018	' Spider	MO2	Flowering	Detritivore	0.016	0.018	0.01	0.001	0.06
2018	' Spider	MO3	Tillering	Rice herbivore	0.165	0.107	0.147	0.019	0.419
2018	' Spider	MO3	Tillering	Tourist herbivore	0.327	0.153	0.316	0.052	0.663
2018	Spider	MO3	Tillering	Detritivore	0.509	0.189	0.506	0.152	0.877
2018	Spider	SC1	Tillering	Rice herbivore	0.439	0.155	0.453	0.102	0.715
2018	Spider	SC1	Tillering	Tourist herbivore	0.287	0.125	0.281	0.066	0.554
2018	Spider	SC1	Tillering	Detritivore	0.274	0.19	0.222	0.041	0.773
2018	Spider	SC1	Flowering	Rice herbivore	0.883	0.08	0.905	0.67	0.973
2018	Spider	SC1	Flowering	Tourist herbivore	0.103	0.071	0.085	0.02	0.281
2018	Spider	SC1	Flowering	Detritivore	0.014	0.03	0.006	0.001	0.089
2018	Spider	SO1	Tillering	Rice herbivore	0.162	0.077	0.15	0.046	0.337
2018	Spider	SO1	Tillering	Tourist herbivore	0.056	0.039	0.047	0.007	0.152
2018	Spider	SO1	Tillering	Detritivore	0.782	0.091	0.793	0.581	0.931
2018	Spider	SO1	Flowering	Rice herbivore	0.869	0.069	0.882	0.707	0.966
2018	Spider	SO1	Flowering	Tourist herbivore	0.051	0.037	0.042	0.007	0.144
2018	Spider	SO1	Flowering	Detritivore	0.079	0.055	0.065	0.013	0.215
2018	Ladybeetle	LC1	Tillering	Rice herbivore	0.859	0.191	0.931	0.189	0.998
2018	Ladybeetle	LC1	Tillering	Tourist herbivore	0.067	0.159	0.012	0	0.671
2018	Ladybeetle	LC1	Tillering	Detritivore	Confidential Review	_{w copy} 0.109	0.03	0	0.389
						. ,			

2018	Ladybeetle	LC1	Ripening	Rice herbivore	Journal of Applied E 0.95	cology 0.138	0.986	0.51	Page 54 of 65 0.999
2018	Ladybeetle	LC1	Ripening	Tourist herbivore	0.036	0.135	0.004	0	0.476
2018	Ladybeetle	LC1	Ripening	Detritivore	0.014	0.024	0.005	0	0.083
2018	Ladybeetle	LC2	Ripening	Rice herbivore	0.936	0.147	0.982	0.457	0.999
2018	Ladybeetle	LC2	Ripening	Tourist herbivore	0.042	0.139	0.005	0	0.501
2018	Ladybeetle	LC2	Ripening	Detritivore	0.023	0.045	0.006	0	0.152
2018	Ladybeetle	LC3	Tillering	Rice herbivore	0.854	0.187	0.924	0.197	0.998
2018	Ladybeetle	LC3	Tillering	Tourist herbivore	0.066	0.152	0.013	0	0.604
2018	Ladybeetle	LC3	Tillering	Detritivore	0.081	0.112	0.032	0	0.405
2018	Ladybeetle	LC3	Flowering	Rice herbivore	0.888	0.148	0.935	0.421	0.997
2018	Ladybeetle	LC3	Flowering	Tourist herbivore	0.06	0.129	0.016	0	0.51
2018	Ladybeetle	LC3	Flowering	Detritivore	0.052	0.069	0.026	0.001	0.253
2018	Ladybeetle	LC3	Ripening	Rice herbivore	0.948	0.14	0.985	0.388	0.999
2018	Ladybeetle	LC3	Ripening	Tourist herbivore	0.037	0.136	0.004	0	0.588
2018	Ladybeetle	LC3	Ripening	Detritivore	0.015	0.026	0.006	0	0.087
2018	Ladybeetle	LO1	Tillering	Rice herbivore	0.77	0.216	0.825	0.21	0.998
2018	Ladybeetle	LO1	Tillering	Tourist herbivore	0.094	0.162	0.021	0	0.589
2018	Ladybeetle	LO1	Tillering	Detritivore	0.135	0.159	0.07	0	0.543
2018	Ladybeetle	LO1	Flowering	Rice herbivore	0.816	0.18	0.869	0.322	0.995
2018	Ladybeetle	LO1	Flowering	Tourist herbivore	0.091	0.149	0.029	0	0.578
2018	Ladybeetle	LO1	Flowering	Detritivore	0.093	0.111	0.053	0.001	0.411
2018	Ladybeetle	LO1	Ripening	Rice herbivore	0.92	0.153	0.968	0.347	0.999
2018	Ladybeetle	LO1	Ripening	Tourist herbivore	0.052	0.145	0.008	0	0.611
2018	Ladybeetle	LO1	Ripening	Detritivore	0.028	0.046	0.012	0	0.154
2018	Ladybeetle	LO2	Tillering	Rice herbivore	0.827	0.228	0.925	0.11	0.998
2018	Ladybeetle	LO2	Tillering	Tourist herbivore	0.07	0.17	0.013	0	0.782
2018	Ladybeetle	LO2	Tillering	Detritivore	0.103	0.163	0.031	0	0.591
2018	Ladybeetle	LO2	Ripening	Rice herbivore	0.94	0.144	0.983	0.497	0.999
2018	Ladybeetle	LO2	Ripening	Tourist herbivore	0.039	0.137	0.004	0	0.461
2018	Ladybeetle	LO2	Ripening	Detritivore	0.021	0.041	0.006	0	0.136
2018	Ladybeetle	LO3	Tillering	Rice herbivore	0.831	0.212	0.915	0.115	0.998
2018	Ladybeetle	LO3	Tillering	Tourist herbivore	Confidential Reviev	_{v copy} 0.159	0.012	0	0.681
						1. 5			

Page 55 2018	of 65 Ladybeetle	LO3	Tillering	Detritivore	Journal of Applied I 0.106	Ecology 0.148	0.038	0	0.524
2018	Ladybeetle	LO3	Ripening	Rice herbivore	0.944	0.144	0.983	0.437	0.999
2018	Ladybeetle	LO3	Ripening	Tourist herbivore	0.036	0.138	0.004	0	0.533
2018	Ladybeetle	LO3	Ripening	Detritivore	0.02	0.034	0.007	0	0.116
2018	Ladybeetle	MC1	Tillering	Rice herbivore	0.829	0.223	0.921	0.127	0.998
2018	Ladybeetle	MC1	Tillering	Tourist herbivore	0.068	0.166	0.012	0	0.767
2018	Ladybeetle	MC1	Tillering	Detritivore	0.102	0.157	0.034	0	0.596
2018	Ladybeetle	MC2	Ripening	Rice herbivore	0.932	0.147	0.981	0.474	0.999
2018	Ladybeetle	MC2	Ripening	Tourist herbivore	0.043	0.134	0.005	0	0.465
2018	Ladybeetle	MC2	Ripening	Detritivore	0.025	0.054	0.007	0	0.169
2018	Ladybeetle	MO1	Ripening	Rice herbivore	0.935	0.145	0.981	0.465	0.999
2018	Ladybeetle	MO1	Ripening	Tourist herbivore	0.042	0.136	0.005	0	0.486
2018	Ladybeetle	MO1	Ripening	Detritivore	0.023	0.046	0.007	0	0.163
2018	Ladybeetle	MO2	Tillering	Rice herbivore	0.806	0.231	0.903	0.1	0.998
2018	Ladybeetle	MO2	Tillering	Tourist herbivore	0.084	0.176	0.015	0	0.719
2018	Ladybeetle	MO2	Tillering	Detritivore	0.11	0.161	0.041	0	0.609
2018	Ladybeetle	MO2	Flowering	Rice herbivore	0.847	0.185	0.914	0.262	0.997
2018	Ladybeetle	MO2	Flowering	Tourist herbivore	0.077	0.155	0.02	0	0.598
2018	Ladybeetle	MO2	Flowering	Detritivore	0.076	0.105	0.033	0.001	0.389
2018	Ladybeetle	MO3	Tillering	Rice herbivore	0.767	0.255	0.871	0.083	0.998
2018	Ladybeetle	MO3	Tillering	Tourist herbivore	0.1	0.188	0.017	0	0.75
2018	Ladybeetle	MO3	Tillering	Detritivore	0.133	0.188	0.051	0	0.697
2018	Ladybeetle	MO3	Flowering	Rice herbivore	0.806	0.209	0.885	0.209	0.996
2018	Ladybeetle	MO3	Flowering	Tourist herbivore	0.096	0.164	0.025	0	0.617
2018	Ladybeetle	MO3	Flowering	Detritivore	0.098	0.135	0.042	0.001	0.506
2018	Ladybeetle	SC1	Tillering	Rice herbivore	0.788	0.222	0.869	0.191	0.998
2018	Ladybeetle	SC1	Tillering	Tourist herbivore	0.08	0.156	0.017	0	0.614
2018	Ladybeetle	SC1	Tillering	Detritivore	0.131	0.17	0.052	0	0.613
2018	Ladybeetle	SC1	Flowering	Rice herbivore	0.834	0.168	0.885	0.384	0.996
2018	Ladybeetle	SC1	Flowering	Tourist herbivore	0.075	0.127	0.024	0	0.473
2018	Ladybeetle	SC1	Flowering	Detritivore	0.091	0.112	0.045	0.001	0.396
2018	Ladybeetle	SC1	Ripening	Rice herbivore	Confidential Review	_{w copy} 0.136	0.974	0.523	0.999

2040		004	Dinanina	Tarreiat bankirrana	Journal of Applied E	Ecology	0.000	0	Page 56 of 65
2018	Ladybeetle	SC1	Ripening	Tourist herbivore	0.042	0.126	0.006	0	0.413
2018	Ladybeetle	SC1	Ripening	Detritivore	0.028	0.043	0.01	0 064	0.16
2018	Ladybeetle	SO1	Tillering	Rice herbivore	0.865	0.235	0.955	0.064	0.998
2018	Ladybeetle	SO1	Tillering	Tourist herbivore	0.056	0.167	0.009	0	0.836
2018	Ladybeetle	SO1	Tillering	Detritivore	0.079	0.172	0.02	0	0.724
2018	Ladybeetle	SO1	Ripening	Rice herbivore	0.948	0.148	0.989	0.395	1
2018	Ladybeetle	SO1	Ripening	Tourist herbivore	0.035	0.14	0.003	0	0.483
2018	Ladybeetle	SO1	Ripening	Detritivore	0.017	0.044	0.004	0	0.148
2019	Both	LC1	Tillering	Rice herbivore	0.443	0.108	0.447	0.225	0.654
2019	Both	LC1	Tillering	Tourist herbivore	0.273	0.105	0.274	0.061	0.475
2019	Both	LC1	Tillering	Detritivore	0.284	0.136	0.267	0.076	0.61
2019	Both	LC1	Flowering	Rice herbivore	0.882	0.068	0.894	0.724	0.975
2019	Both	LC1	Flowering	Tourist herbivore	0.107	0.067	0.094	0.017	0.26
2019	Both	LC1	Flowering	Detritivore	0.011	0.013	0.008	0.001	0.045
2019	Both	LC1	Ripening	Rice herbivore	0.946	0.037	0.955	0.852	0.99
2019	Both	LC1	Ripening	Tourist herbivore	0.051	0.036	0.043	0.008	0.143
2019	Both	LC1	Ripening	Detritivore	0.003	0.004	0.002	0	0.014
2019	Both	LC2	Tillering	Rice herbivore	0.384	0.124	0.386	0.132	0.62
2019	Both	LC2	Tillering	Tourist herbivore	0.104	0.09	0.082	0.008	0.349
2019	Both	LC2	Tillering	Detritivore	0.511	0.142	0.511	0.226	0.801
2019	Both	LC2	Flowering	Rice herbivore	0.925	0.061	0.943	0.765	0.987
2019	Both	LC2	Flowering	Tourist herbivore	0.05	0.054	0.033	0.003	0.194
2019	Both	LC2	Flowering	Detritivore	0.025	0.023	0.019	0.004	0.089
2019	Both	LC3	Tillering	Rice herbivore	0.281	0.102	0.28	0.087	0.483
2019	Both	LC3	Tillering	Tourist herbivore	0.074	0.058	0.059	0.007	0.219
2019	Both	LC3	Tillering	Detritivore	0.645	0.116	0.645	0.42	0.878
2019	Both	LC3	Flowering	Rice herbivore	0.91	0.06	0.925	0.757	0.98
2019	Both	LC3	Flowering	Tourist herbivore	0.047	0.044	0.034	0.004	0.166
2019	Both	LC3	Flowering	Detritivore	0.042	0.036	0.032	0.007	0.139
2019	Both	LC3	Ripening	Rice herbivore	0.966	0.028	0.974	0.885	0.995
2019	Both	LC3	Ripening	Tourist herbivore	0.022	0.022	0.015	0.002	0.083
2019	Both	LC3	Ripening	Detritivore	Confidential Reviev		0.007	0.001	0.051
					Commenda neviev	W СОРУ			

Page 57 o 2019	f 65 Both	LO1	Tillering	Rice herbivore	Journal of Applied I 0.629	Ecology 0.135	0.64	0.33	0.867
2019	Both	LO1	Tillering	Tourist herbivore	0.134	0.102	0.113	0.01	0.382
2019	Both	LO1	Tillering	Detritivore	0.237	0.133	0.216	0.042	0.545
2019	Both	LO1	Flowering	Rice herbivore	0.951	0.045	0.964	0.83	0.995
2019	Both	LO1	Flowering	Tourist herbivore	0.041	0.043	0.029	0.002	0.159
2019	Both	LO1	Flowering	Detritivore	0.007	0.01	0.004	0.001	0.03
2019	Both	LO1	Ripening	Rice herbivore	0.98	0.02	0.986	0.925	0.998
2019	Both	LO1	Ripening	Tourist herbivore	0.018	0.019	0.013	0.001	0.072
2019	Both	LO1	Ripening	Detritivore	0.002	0.003	0.001	0	0.009
2019	Both	LO2	Tillering	Rice herbivore	0.28	0.114	0.278	0.073	0.507
2019	Both	LO2	Tillering	Tourist herbivore	0.096	0.077	0.078	0.007	0.287
2019	Both	LO2	Tillering	Detritivore	0.623	0.131	0.621	0.37	0.875
2019	Both	LO2	Flowering	Rice herbivore	0.894	0.082	0.915	0.679	0.98
2019	Both	LO2	Flowering	Tourist herbivore	0.064	0.068	0.044	0.005	0.238
2019	Both	LO2	Flowering	Detritivore	0.042	0.038	0.031	0.007	0.147
2019	Both	LO3	Tillering	Rice herbivore	0.368	0.272	0.268	0.067	0.944
2019	Both	LO3	Tillering	Tourist herbivore	0.039	0.034	0.029	0.004	0.128
2019	Both	LO3	Tillering	Detritivore	0.593	0.278	0.69	0.026	0.911
2019	Both	LO3	Flowering	Rice herbivore	0.93	0.059	0.944	0.773	0.997
2019	Both	LO3	Flowering	Tourist herbivore	0.026	0.03	0.017	0.001	0.111
2019	Both	LO3	Flowering	Detritivore	0.044	0.044	0.033	0	0.16
2019	Both	LO3	Ripening	Rice herbivore	0.976	0.023	0.983	0.915	0.999
2019	Both	LO3	Ripening	Tourist herbivore	0.012	0.015	0.007	0.001	0.05
2019	Both	LO3	Ripening	Detritivore	0.011	0.014	0.007	0	0.05
2019	Both	MC1	Tillering	Rice herbivore	0.554	0.163	0.564	0.207	0.841
2019	Both	MC1	Tillering	Tourist herbivore	0.134	0.109	0.104	0.01	0.408
2019	Both	MC1	Tillering	Detritivore	0.311	0.169	0.283	0.055	0.707
2019	Both	MC1	Flowering	Rice herbivore	0.943	0.048	0.958	0.819	0.993
2019	Both	MC1	Flowering	Tourist herbivore	0.046	0.045	0.031	0.003	0.164
2019	Both	MC1	Flowering	Detritivore	0.011	0.014	0.007	0.001	0.05
2019	Both	MC1	Ripening	Rice herbivore	0.975	0.025	0.983	0.908	0.998
2019	Both	MC1	Ripening	Tourist herbivore	Confidential Review	w copy 0.023	0.014	0.001	0.086

2019	Both	MC1	Ripening	Detritivore	Journal of Applied I 0.003	Ecology 0.005	0.002	0	Page 58 of 65 0.018
2019	Both	MC2	Tillering	Rice herbivore	0.379	0.136	0.366	0.149	0.684
2019	Both	MC2	Tillering	Tourist herbivore	0.084	0.074	0.063	0.007	0.273
2019	Both	MC2	Tillering	Detritivore	0.537	0.156	0.548	0.189	0.805
2019	Both	MC2	Flowering	Rice herbivore	0.938	0.036	0.945	0.852	0.986
2019	Both	MC2	Flowering	Tourist herbivore	0.036	0.03	0.028	0.003	0.115
2019	Both	MC2	Flowering	Detritivore	0.026	0.019	0.021	0.004	0.077
2019	Both	MC3	Tillering	Rice herbivore	0.298	0.115	0.293	0.095	0.538
2019	Both	MC3	Tillering	Tourist herbivore	0.374	0.131	0.38	0.093	0.622
2019	Both	MC3	Tillering	Detritivore	0.328	0.161	0.305	0.077	0.707
2019	Both	MC3	Flowering	Rice herbivore	0.782	0.119	0.803	0.503	0.958
2019	Both	MC3	Flowering	Tourist herbivore	0.2	0.116	0.18	0.029	0.473
2019	Both	MC3	Flowering	Detritivore	0.018	0.02	0.012	0.002	0.077
2019	Both	MC3	Ripening	Rice herbivore	0.893	0.065	0.906	0.735	0.979
2019	Both	MC3	Ripening	Tourist herbivore	0.101	0.064	0.089	0.017	0.256
2019	Both	MC3	Ripening	Detritivore	0.005	0.008	0.003	0	0.026
2019	Both	MO1	Tillering	Rice herbivore	0.2	0.121	0.185	0.027	0.478
2019	Both	MO1	Tillering	Tourist herbivore	0.141	0.115	0.113	0.008	0.42
2019	Both	MO1	Tillering	Detritivore	0.659	0.177	0.674	0.245	0.949
2019	Both	MO1	Flowering	Rice herbivore	0.812	0.117	0.833	0.539	0.968
2019	Both	MO1	Flowering	Tourist herbivore	0.115	0.09	0.092	0.008	0.337
2019	Both	MO1	Flowering	Detritivore	0.072	0.081	0.046	0.006	0.303
2019	Both	MO1	Ripening	Rice herbivore	0.914	0.075	0.936	0.713	0.991
2019	Both	MO1	Ripening	Tourist herbivore	0.059	0.053	0.045	0.004	0.203
2019	Both	MO1	Ripening	Detritivore	0.027	0.049	0.01	0.001	0.175
2019	Both	MO2	Tillering	Rice herbivore	0.066	0.044	0.055	0.013	0.182
2019	Both	MO2	Tillering	Tourist herbivore	0.296	0.378	0.021	0.002	0.931
2019	Both	MO2	Tillering	Detritivore	0.639	0.387	0.901	0.025	0.974
2019	Both	MO2	Flowering	Rice herbivore	0.625	0.242	0.717	0.086	0.904
2019	Both	MO2	Flowering	Tourist herbivore	0.243	0.305	0.06	0.006	0.901
2019	Both	MO2	Flowering	Detritivore	0.132	0.113	0.122	0.002	0.371
2019	Both	MO3	Tillering	Rice herbivore	Confidential Review	_{w copy} 0.006	0.006	0.001	0.023

Page 59 o 2019	f 65 Both	MO3	Tillering	Tourist herbivore	Journal of Applied I 0.534	Ecology 0.195	0.502	0.227	0.961
2019	Both	MO3	Tillering	Detritivore	0.458	0.195	0.492	0.033	0.766
2019	Both	MO3	Flowering	Rice herbivore	0.072	0.044	0.062	0.015	0.182
2019	Both	MO3	Flowering	Tourist herbivore	0.856	0.067	0.864	0.71	0.962
2019	Both	MO3	Flowering	Detritivore	0.072	0.048	0.063	0.006	0.19
2019	Both	MO3	Ripening	Rice herbivore	0.146	0.063	0.139	0.043	0.285
2019	Both	MO3	Ripening	Tourist herbivore	0.816	0.069	0.82	0.669	0.936
2019	Both	MO3	Ripening	Detritivore	0.038	0.036	0.028	0.002	0.135
2019	Both	SC1	Tillering	Rice herbivore	0.26	0.099	0.258	0.079	0.458
2019	Both	SC1	Tillering	Tourist herbivore	0.113	0.084	0.095	0.008	0.31
2019	Both	SC1	Tillering	Detritivore	0.627	0.124	0.626	0.384	0.865
2019	Both	SC1	Flowering	Rice herbivore	0.883	0.076	0.902	0.676	0.975
2019	Both	SC1	Flowering	Tourist herbivore	0.074	0.065	0.055	0.006	0.256
2019	Both	SC1	Flowering	Detritivore	0.043	0.034	0.032	0.007	0.136
2019	Both	SC1	Ripening	Rice herbivore	0.949	0.047	0.963	0.82	0.994
2019	Both	SC1	Ripening	Tourist herbivore	0.038	0.041	0.025	0.003	0.157
2019	Both	SC1	Ripening	Detritivore	0.013	0.018	0.007	0.001	0.06
2019	Both	SO1	Tillering	Rice herbivore	0.232	0.129	0.211	0.051	0.536
2019	Both	SO1	Tillering	Tourist herbivore	0.1	0.096	0.072	0.006	0.364
2019	Both	SO1	Tillering	Detritivore	0.667	0.165	0.687	0.301	0.921
2019	Both	SO1	Flowering	Rice herbivore	0.869	0.088	0.888	0.654	0.978
2019	Both	SO1	Flowering	Tourist herbivore	0.073	0.067	0.053	0.005	0.252
2019	Both	SO1	Flowering	Detritivore	0.059	0.053	0.043	0.006	0.198
2019	Both	SO1	Ripening	Rice herbivore	0.946	0.047	0.959	0.827	0.994
2019	Both	SO1	Ripening	Tourist herbivore	0.036	0.038	0.025	0.002	0.141
2019	Both	SO1	Ripening	Detritivore	0.018	0.025	0.009	0.001	0.085
2019	Spider	LC1	Tillering	Rice herbivore	0.502	0.084	0.505	0.33	0.655
2019	Spider	LC1	Tillering	Tourist herbivore	0.294	0.073	0.293	0.154	0.44
2019	Spider	LC1	Tillering	Detritivore	0.203	0.1	0.19	0.047	0.448
2019	Spider	LC1	Flowering	Rice herbivore	0.908	0.038	0.915	0.816	0.965
2019	Spider	LC1	Flowering	Tourist herbivore	0.085	0.037	0.079	0.031	0.173
2019	Spider	LC1	Flowering	Detritivore	Confidential Review	_{w copy} 0.007	0.005	0.001	0.024

2019	Spider	LC1	Ripening	Rice herbivore	Journal of Applied E 0.945	cology 0.027	0.951	0.878	Page 60 of 65 0.982	
2019	Spider	LC1	Ripening	Tourist herbivore	0.051	0.026	0.047	0.016	0.116	
2019	Spider	LC1	Ripening	Detritivore	0.003	0.004	0.002	0	0.014	
2019	Spider	LC2	Tillering	Rice herbivore	0.457	0.101	0.46	0.251	0.657	
2019	Spider	LC2	Tillering	Tourist herbivore	0.127	0.068	0.117	0.024	0.284	
2019	Spider	LC2	Tillering	Detritivore	0.416	0.122	0.411	0.191	0.67	
2019	Spider	LC2	Flowering	Rice herbivore	0.942	0.032	0.948	0.865	0.985	
2019	Spider	LC2	Flowering	Tourist herbivore	0.042	0.027	0.036	0.007	0.111	
2019	Spider	LC2	Flowering	Detritivore	0.016	0.015	0.011	0.002	0.054	
2019	Spider	LC3	Tillering	Rice herbivore	0.307	0.092	0.311	0.114	0.482	
2019	Spider	LC3	Tillering	Tourist herbivore	0.05	0.031	0.044	0.008	0.126	
2019	Spider	LC3	Tillering	Detritivore	0.643	0.099	0.638	0.452	0.848	
2019	Spider	LC3	Flowering	Rice herbivore	0.939	0.038	0.947	0.838	0.984	
2019	Spider	LC3	Flowering	Tourist herbivore	0.025	0.019	0.02	0.004	0.076	
2019	Spider	LC3	Flowering	Detritivore	0.036	0.029	0.028	0.006	0.112	
2019	Spider	LC3	Ripening	Rice herbivore	0.968	0.025	0.975	0.9	0.995	
2019	Spider	LC3	Ripening	Tourist herbivore	0.015	0.013	0.012	0.002	0.048	
2019	Spider	LC3	Ripening	Detritivore	0.016	0.019	0.01	0.001	0.072	
2019	Spider	LO1	Tillering	Rice herbivore	0.74	0.089	0.744	0.556	0.9	
2019	Spider	LO1	Tillering	Tourist herbivore	0.115	0.065	0.105	0.021	0.265	
2019	Spider	LO1	Tillering	Detritivore	0.146	0.085	0.132	0.028	0.351	
2019	Spider	LO1	Flowering	Rice herbivore	0.973	0.018	0.976	0.928	0.995	
2019	Spider	LO1	Flowering	Tourist herbivore	0.024	0.017	0.02	0.003	0.068	
2019	Spider	LO1	Flowering	Detritivore	0.003	0.003	0.002	0	0.012	
2019	Spider	LO1	Ripening	Rice herbivore	0.984	0.011	0.987	0.955	0.998	
2019	Spider	LO1	Ripening	Tourist herbivore	0.014	0.011	0.011	0.002	0.043	
2019	Spider	LO1	Ripening	Detritivore	0.002	0.002	0.001	0	0.007	
2019	Spider	LO2	Tillering	Rice herbivore	0.311	0.097	0.312	0.118	0.497	
2019	Spider	LO2	Tillering	Tourist herbivore	0.066	0.041	0.059	0.011	0.166	
2019	Spider	LO2	Tillering	Detritivore	0.623	0.11	0.621	0.413	0.843	
2019	Spider	LO2	Flowering	Rice herbivore	0.932	0.04	0.942	0.825	0.982	
2019	Spider	LO2	Flowering	Tourist herbivore	Confidential Review	_{v copy} 0.024	0.027	0.005	0.092	

Page 61 o 2019	of 65 Spider	LO2	Flowering	Detritivore	Journal of Applied 0.035	Ecology 0.03	0.026	0.005	0.118
2019	Spider	LO3	Tillering	Rice herbivore	0.555	0.097	0.556	0.36	0.746
2019	Spider	LO3	Tillering	Tourist herbivore	0.126	0.07	0.117	0.02	0.288
2019	Spider	LO3	Tillering	Detritivore	0.319	0.116	0.316	0.102	0.56
2019	Spider	LO3	Flowering	Rice herbivore	0.956	0.024	0.961	0.896	0.988
2019	Spider	LO3	Flowering	Tourist herbivore	0.034	0.024	0.03	0.005	0.994
2019	Spider	LO3	Flowering	Detritivore	0.009	0.008	0.007	0.003	0.034
2019	Spider	LO3	Ripening	Rice herbivore	0.975	0.016	0.979	0.934	0.995
2019	Spider	LO3	Ripening	Tourist herbivore	0.02	0.015	0.017	0.003	0.058
2019	Spider	LO3	Ripening	Detritivore	0.004	0.005	0.003	0	0.02
2019	Spider	MC1	Tillering	Rice herbivore	0.704	0.109	0.707	0.474	0.899
2019	Spider	MC1	Tillering	Tourist herbivore	0.098	0.066	0.084	0.014	0.26
2019	Spider	MC1	Tillering	Detritivore	0.199	0.11	0.183	0.034	0.454
2019	Spider	MC1	Flowering	Rice herbivore	0.974	0.017	0.978	0.931	0.995
2019	Spider	MC1	Flowering	Tourist herbivore	0.021	0.017	0.017	0.003	0.064
2019	Spider	MC1	Flowering	Detritivore	0.005	0.005	0.003	0	0.018
2019	Spider	MC1	Ripening	Rice herbivore	0.985	0.011	0.988	0.956	0.998
2019	Spider	MC1	Ripening	Tourist herbivore	0.013	0.011	0.01	0.001	0.04
2019	Spider	MC1	Ripening	Detritivore	0.002	0.003	0.001	0	0.011
2019	Spider	MC2	Tillering	Rice herbivore	0.323	0.114	0.315	0.128	0.565
2019	Spider	MC2	Tillering	Tourist herbivore	0.101	0.063	0.089	0.016	0.251
2019	Spider	MC2	Tillering	Detritivore	0.576	0.136	0.58	0.297	0.824
2019	Spider	MC2	Flowering	Rice herbivore	0.924	0.039	0.93	0.832	0.979
2019	Spider	MC2	Flowering	Tourist herbivore	0.047	0.031	0.04	0.007	0.125
2019	Spider	MC2	Flowering	Detritivore	0.03	0.023	0.024	0.004	0.089
2019	Spider	MC3	Tillering	Rice herbivore	0.333	0.095	0.336	0.152	0.516
2019	Spider	MC3	Tillering	Tourist herbivore	0.415	0.088	0.41	0.252	0.609
2019	Spider	MC3	Tillering	Detritivore	0.252	0.117	0.237	0.064	0.518
2019	Spider	MC3	Flowering	Rice herbivore	0.82	0.074	0.832	0.646	0.93
2019	Spider	MC3	Flowering	Tourist herbivore	0.169	0.07	0.157	0.064	0.334
2019	Spider	MC3	Flowering	Detritivore	0.012	0.013	0.008	0.001	0.044
2019	Spider	MC3	Ripening	Rice herbivore	Confidential Revie		0.899	0.758	0.963
_5.0		00			Connocinal Revie	w copy 5.30 i	0.000	3 33	0.000

2019	Spider	MC3	Ripening	Tourist herbivore	Journal of Applied E 0.106	Ecology 0.052	0.096	0.034	Page 62 of 65 0.234
2019	Spider	MC3	Ripening	Detritivore	0.006	0.008	0.003	0	0.026
2019	Spider	MO1	Tillering	Rice herbivore	0.217	0.114	0.199	0.055	0.498
2019	Spider	MO1	Tillering	Tourist herbivore	0.123	0.085	0.107	0.014	0.333
2019	Spider	MO1	Tillering	Detritivore	0.66	0.169	0.685	0.236	0.912
2019	Spider	MO1	Flowering	Rice herbivore	0.865	0.066	0.875	0.711	0.964
2019	Spider	MO1	Flowering	Tourist herbivore	0.078	0.046	0.071	0.014	0.189
2019	Spider	MO1	Flowering	Detritivore	0.057	0.052	0.042	0.004	0.192
2019	Spider	MO1	Ripening	Rice herbivore	0.923	0.047	0.935	0.8	0.984
2019	Spider	MO1	Ripening	Tourist herbivore	0.048	0.031	0.042	0.007	0.125
2019	Spider	MO1	Ripening	Detritivore	0.029	0.037	0.014	0.001	0.142
2019	Spider	MO2	Tillering	Rice herbivore	0.139	0.064	0.132	0.04	0.283
2019	Spider	MO2	Tillering	Tourist herbivore	0.053	0.038	0.044	0.006	0.149
2019	Spider	MO2	Tillering	Detritivore	0.808	0.081	0.814	0.629	0.939
2019	Spider	MO2	Flowering	Rice herbivore	0.854	0.072	0.866	0.687	0.959
2019	Spider	MO2	Flowering	Tourist herbivore	0.053	0.037	0.044	0.009	0.15
2019	Spider	MO2	Flowering	Detritivore	0.092	0.062	0.078	0.014	0.246
2019	Spider	MO3	Tillering	Rice herbivore	0.005	0.003	0.004	0.001	0.013
2019	Spider	MO3	Tillering	Tourist herbivore	0.497	0.186	0.464	0.218	0.947
2019	Spider	MO3	Tillering	Detritivore	0.498	0.186	0.531	0.048	0.779
2019	Spider	MO3	Flowering	Rice herbivore	0.054	0.03	0.048	0.014	0.126
2019	Spider	MO3	Flowering	Tourist herbivore	0.857	0.059	0.861	0.729	0.957
2019	Spider	MO3	Flowering	Detritivore	0.089	0.052	0.081	0.009	0.21
2019	Spider	MO3	Ripening	Rice herbivore	0.092	0.044	0.086	0.026	0.193
2019	Spider	MO3	Ripening	Tourist herbivore	0.842	0.068	0.851	0.683	0.951
2019	Spider	MO3	Ripening	Detritivore	0.066	0.058	0.049	0.003	0.214
2019	Spider	SC1	Tillering	Rice herbivore	0.229	0.093	0.229	0.057	0.412
2019	Spider	SC1	Tillering	Tourist herbivore	0.1	0.059	0.092	0.016	0.237
2019	Spider	SC1	Tillering	Detritivore	0.671	0.117	0.667	0.443	0.896
2019	Spider	SC1	Flowering	Rice herbivore	0.882	0.071	0.899	0.703	0.97
2019	Spider	SC1	Flowering	Tourist herbivore	0.066	0.046	0.054	0.011	0.186
2019	Spider	SC1	Flowering	Detritivore	Confidential Review	_{w copy} 0.048	0.038	0.007	0.181

Page 63 2019	of 65	SC1	Ripening	Rice herbivore	Journal of Applied I 0.933	Ecology 0.051	0.947	0.798	0.989
2019	Spider Spider	SC1	Ripening	Tourist herbivore	0.041	0.031	0.947	0.798	0.969
2019	Spider	SC1	Ripening	Detritivore	0.025	0.032	0.033	0.003	0.120
	•	SO1		Rice herbivore	0.202	0.034	0.185	0.036	0.121
2019	Spider		Tillering						
2019	Spider	SO1	Tillering	Tourist herbivore	0.101	0.074	0.085	0.012	0.286
2019	Spider	SO1	Tillering	Detritivore	0.698	0.145	0.71	0.391	0.929
2019	Spider	SO1	Ripening	Rice herbivore	0.917	0.066	0.936	0.747	0.988
2019	Spider	SO1	Ripening	Tourist herbivore	0.05	0.047	0.037	0.005	0.172
2019	Spider	SO1	Ripening	Detritivore	0.032	0.041	0.018	0.001	0.157
2019	Ladybeetle	LC1	Tillering	Rice herbivore	0.849	0.204	0.93	0.171	0.998
2019	Ladybeetle	LC1	Tillering	Tourist herbivore	0.071	0.164	0.012	0	0.716
2019	Ladybeetle	LC1	Tillering	Detritivore	0.08	0.126	0.028	0	0.472
2019	Ladybeetle	LC1	Flowering	Rice herbivore	0.884	0.16	0.94	0.406	0.997
2019	Ladybeetle	LC1	Flowering	Tourist herbivore	0.064	0.142	0.016	0	0.502
2019	Ladybeetle	LC1	Flowering	Detritivore	0.052	0.074	0.024	0	0.264
2019	Ladybeetle	LC1	Ripening	Rice herbivore	0.948	0.144	0.985	0.378	0.999
2019	Ladybeetle	LC1	Ripening	Tourist herbivore	0.037	0.141	0.004	0	0.611
2019	Ladybeetle	LC1	Ripening	Detritivore	0.014	0.025	0.006	0	0.083
2019	Ladybeetle	LC2	Tillering	Rice herbivore	0.831	0.225	0.925	0.112	0.999
2019	Ladybeetle	LC2	Tillering	Tourist herbivore	0.067	0.167	0.012	0	0.814
2019	Ladybeetle	LC2	Tillering	Detritivore	0.102	0.157	0.032	0	0.575
2019	Ladybeetle	LC2	Flowering	Rice herbivore	0.872	0.171	0.935	0.3	0.997
2019	Ladybeetle	LC2	Flowering	Tourist herbivore	0.063	0.142	0.016	0	0.588
2019	Ladybeetle	LC2	Flowering	Detritivore	0.065	0.096	0.027	0	0.346
2019	Ladybeetle	LC3	Flowering	Rice herbivore	0.88	0.16	0.935	0.344	0.997
2019	Ladybeetle	LC3	Flowering	Tourist herbivore	0.064	0.139	0.016	0	0.577
2019	Ladybeetle	LC3	Flowering	Detritivore	0.057	0.078	0.026	0	0.286
2019	Ladybeetle	LC3	Ripening	Rice herbivore	0.946	0.143	0.984	0.471	0.999
2019	Ladybeetle	LC3	Ripening	Tourist herbivore	0.038	0.139	0.004	0	0.473
2019	Ladybeetle	LC3	Ripening	Detritivore	0.017	0.028	0.006	0	0.099
2019	Ladybeetle	LO1	Ripening	Rice herbivore	0.94	0.138	0.981	0.46	0.999
2019	Ladybeetle	LO1	Ripening	Tourist herbivore	Confidential Review	w copy 0.131	0.005	0	0.5

					Journal of Applied E	<u>-</u> cology			Page 64 of 65
2019	Ladybeetle	LO1	Ripening	Detritivore	0.02	0.035	0.007	0	0.122
2019	Ladybeetle	LO3	Tillering	Rice herbivore	0.901	0.215	0.969	0.049	0.999
2019	Ladybeetle	LO3	Tillering	Tourist herbivore	0.054	0.179	0.007	0	0.891
2019	Ladybeetle	LO3	Tillering	Detritivore	0.045	0.121	0.015	0	0.493
2019	Ladybeetle	LO3	Ripening	Rice herbivore	0.958	0.154	0.993	0.242	1
2019	Ladybeetle	LO3	Ripening	Tourist herbivore	0.034	0.152	0.002	0	0.74
2019	Ladybeetle	LO3	Ripening	Detritivore	0.008	0.018	0.003	0	0.049
2019	Ladybeetle	MC2	Flowering	Rice herbivore	0.92	0.152	0.961	0.222	0.997
2019	Ladybeetle	MC2	Flowering	Tourist herbivore	0.05	0.146	0.011	0	0.708
2019	Ladybeetle	MC2	Flowering	Detritivore	0.03	0.037	0.017	0	0.137
2019	Ladybeetle	MC3	Flowering	Rice herbivore	0.872	0.163	0.93	0.352	0.997
2019	Ladybeetle	MC3	Flowering	Tourist herbivore	0.073	0.147	0.019	0	0.581
2019	Ladybeetle	MC3	Flowering	Detritivore	0.055	0.071	0.027	0	0.265
2019	Ladybeetle	MC3	Ripening	Rice herbivore	0.943	0.143	0.983	0.504	0.999
2019	Ladybeetle	MC3	Ripening	Tourist herbivore	0.04	0.139	0.005	0	0.466
2019	Ladybeetle	MC3	Ripening	Detritivore	0.017	0.029	0.006	0	0.1
2019	Ladybeetle	MO1	Ripening	Rice herbivore	0.92	0.165	0.98	0.346	0.999
2019	Ladybeetle	MO1	Ripening	Tourist herbivore	0.044	0.139	0.005	0	0.488
2019	Ladybeetle	MO1	Ripening	Detritivore	0.036	0.084	0.007	0	0.307
2019	Ladybeetle	MO2	Tillering	Rice herbivore	0.88	0.229	0.96	0.044	0.998
2019	Ladybeetle	MO2	Tillering	Tourist herbivore	0.081	0.219	0.008	0	0.917
2019	Ladybeetle	MO2	Tillering	Detritivore	0.039	0.068	0.018	0	0.185
2019	Ladybeetle	MO2	Flowering	Rice herbivore	0.901	0.185	0.964	0.142	0.998
2019	Ladybeetle	MO2	Flowering	Tourist herbivore	0.069	0.178	0.01	0	0.82
2019	Ladybeetle	MO2	Flowering	Detritivore	0.03	0.048	0.014	0	0.149
2019	Ladybeetle	MO3	Tillering	Rice herbivore	0.781	0.236	0.871	0.13	0.998
2019	Ladybeetle	MO3	Tillering	Tourist herbivore	0.092	0.179	0.018	0	0.736
2019	Ladybeetle	MO3	Tillering	Detritivore	0.126	0.172	0.049	0	0.625
2019	Ladybeetle	MO3	Flowering	Rice herbivore	0.826	0.185	0.886	0.271	0.996
2019	Ladybeetle	MO3	Flowering	Tourist herbivore	0.088	0.156	0.024	0	0.639
2019	Ladybeetle	MO3	Flowering	Detritivore	0.085	0.109	0.042	0	0.406
2019	Ladybeetle	MO3	Ripening	Rice herbivore	Confidential Reviev	_{w copy} 0.157	0.973	0.258	0.999
						.,			

Page 65 of 65 Journal of Applied						cology			
2Ŏ19	Ladybeetle	MO3	Ripening	Tourist herbivore	0.05	0.151	0.007	0	0.665
2019	Ladybeetle	MO3	Ripening	Detritivore	0.024	0.037	0.01	0	0.129
2019	Ladybeetle	SC1	Flowering	Rice herbivore	0.892	0.161	0.947	0.297	0.997
2019	Ladybeetle	SC1	Flowering	Tourist herbivore	0.061	0.145	0.014	0	0.648
2019	Ladybeetle	SC1	Flowering	Detritivore	0.047	0.068	0.02	0	0.238
2019	Ladybeetle	SO1	Flowering	Rice herbivore	0.875	0.155	0.929	0.432	0.997
2019	Ladybeetle	SO1	Flowering	Tourist herbivore	0.065	0.133	0.018	0	0.475
2019	Ladybeetle	SO1	Flowering	Detritivore	0.06	0.079	0.028	0	0.287
2019	Ladybeetle	SO1	Ripening	Rice herbivore	0.943	0.139	0.982	0.546	0.999
2019	Ladybeetle	SO1	Ripening	Tourist herbivore	0.038	0.132	0.004	0	0.433
2019	Ladybeetle	SO1	Ripening	Detritivore	0.019	0.035	0.006	0	0.12