

CSC380: Principles of Data Science

Probability 2

Xinchen Yu

Summary: calculating probabilities

If we know that all outcomes are equally likely, we can use

We will use combinatorics to do counting

$$P(E) = \frac{|E|}{|S|}$$
 Number of elements in event set Number of possible outcomes (e.g. 36)

- If |E| is hard to calculate directly, we can try
 - the rules of probability
 - the Law of Total Probability, using an appropriate partition of sample space S

Rules of probability

To recap and summarize:

Rules of Probability

- 1. Non-negativity: All probabilities are between 0 and 1 (inclusive)
- **2.** Unity of the sample space: P(S) = 1
- 3. Complement Rule: $P(E^C) = 1 P(E)$
- 4. Probability of Unions:
 - (a) In general, $P(E \cup F) = P(E) + P(F) P(E \cap F)$
 - (b) If E and F are disjoint, then $P(E \cup F) = P(E) + P(F)$

Overview

- Conditional probability
- Probabilistic reasoning
 - contingency table
 - probability trees
- Bayes rule
- Independence of events
- Probability and combinatorics

Conditional Probability

Example: Seat Belts

		Child		
		Buck.	Unbuck.	Marginal
Parent	Buck.	0.48	0.12	0.60
	Unbuck.	0.10	0.30	0.40
	Marginal	0.58	0.42	1.00

Table: Probability Estimates for Seat Belt Status

Suppose we pick a family from US at random:

- What is the probability of the event "Child is Buckled"?
- What should our new estimate be if we know that "Parent is Buckled"?

Example: blood types

		Antigen B		
		Absent	Present	Marginal
Antigen A	Absent	0.44	0.10	0.54
	Present	0.42	0.04	0.46
	Marginal	0.86	0.14	1.00

Table: Probability Estimates for U.S. Blood Types

- A: "presence of antigen A", and B: "presence of antigen B"
- Suppose someone of an unknown blood type gets a test that reveals the presence of antigen A.
 - What is the chance that event A happens to them now?
 - What is the chance that event B happens to them now?

Relative area

• A: antigen A present B: antigen B present

Given that A happens, what is the chance of B happening?

- Another way to think about this:
 - Restricted to people with antigen A present, what is the fraction of those people with antigen B?

Relative area

Let's zoom into people with antigen A present.

- It's just as if the sample space had shrunk to include only A
- Now, probabilities correspond to proportions of A
- What does the orange square represent in the original sample space?
 - $A \cap B$
- How would we find the probability of B given A?

Conditioning changes the sample space

 Before we knew anything, anything in sample space S could occur.

After we know A happened, we are only choosing from within A.
e.g., A: even numbers, B: get a 2

• The set A becomes our new sample space

Instead of asking "In what proportion of S is B true?", we now ask
 "In what proportion of A is B true?" e.g., 1/6 vs 1/3

Conditional Probability

• To find the conditional probability of B given A, consider the ways B can occur in the context of A (i.e., $A \cap B$), out of all the ways A can occur:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Every Probability is a Conditional Probability

We can consider the original probabilities to be conditioned on the event
 S: at first what we know is that "something in S" occurs. E.g.

$$P(B) = P(B|S)$$

$$P(B \cap C) = P(B \cap C|S)$$

- P(B|S) in words: what proportion of S does B happen?
- If we then learn that A occurs, A becomes our restricted sample space.
 P(B|A) in words: what proportion of A does B happen?

Joint Probability and Conditional Probability

• We can rearrange $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$ and derive:

The "Chain Rule" of Probability

For any events, A and B, the joint probability $P(A \cap B)$ can be computed as

$$P(A \cap B) = P(B|A) \times P(A)$$

Or, since $P(A \cap B) = P(B \cap A)$

$$P(A \cap B) = P(A \mid B) \times P(B)$$

Terminology

When we have two events A and B...

• Conditional probability: P(A|B), $P(A^c|B)$, P(B|A) etc.

• Joint probability: P(A,B) or $P(A^c,B)$ or ...

• Marginal probability: P(A) or $P(A^c)$

Example revisited: blood types

		Antigen B		
		Absent	Present	Marginal
Antigen A	Absent	0.44	0.10	0.54
	Present	0.42	0.04	0.46
	Marginal	0.86	0.14	1.00

Table: Probability Estimates for U.S. Blood Types

- Suppose someone of an unknown blood type gets a test that reveals the presence of antigen A.
 - What is $P(A \mid A)$?

$$P(A \mid A) = \frac{P(A \cap A)}{P(A)} = 1$$

What is P(B | A)?

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{0.04}{0.46} = 0.087$$

Example revisited: Seat Belts

A: parent is buckled

C: child is buckled

		C		
		Buck.	Unbuck.	Marginal
Parent	Buck.	0.48	0.12	0.60
	Unbuck.	0.10	0.30	0.40
Marginal		0.58	0.42	1.00

Table: Probability Estimates for Seat Belt Status

Suppose we pick a family from US at random:

- What is the probability of the event "Child is Buckled"? P(C)
- What should our new estimate be if we know that ("given that") Parent is Buckled? $P(C \mid A)$

Example revisited: Seat Belts

A: parent is buckled

C: child is buckled

		C		
		Buck.	Unbuck.	Marginal
Parent	Buck.	0.48	0.12	0.60
	Unbuck.	0.10	0.30	0.40
Marginal		0.58	0.42	1.00

Table: Probability Estimates for Seat Belt Status

Suppose we pick a family from the US at random:

•
$$P(C) = 0.58$$

$$P(C \mid A) = \frac{P(C \cap A)}{P(A)} = \frac{0.48}{0.60} = 0.8$$

Larger than P(C)

 Suppose we see a buckled parent, it is much more likely that we see their child buckled

Law of Total Probability, revisited

Law of Total Probability Suppose $B_1, ..., B_n$ form a partition of the sample space S. Then,

$$P(A) = P(A, B_1) + \dots + P(A, B_n)$$

Law of Total Probability, revisited

Expanding each $P(A, B_i) = P(A \mid B_i)P(B_i)$, we have:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

A: student in CS major

 B_i : student in class year i

 $P(A \mid B_i)$ The fraction of CS major in class year i

Law of Total Probability, revisited

Example Suppose UA has an equal number of students in the 4 class years, and the fraction of CS major in these 4 class years are 10%, 10%, 20%, 80% respectively. What is fraction of CS majors?

•
$$P(B_1) = P(B_2) = P(B_3) = P(B_4) = 0.25$$

•
$$P(C \mid B_1) = 0.1, ..., P(C \mid B_4) = 0.8$$

• Calculate P(C) by:

$$P(C) = \sum_{i=1}^{4} P(C \mid B_i) P(B_i) = 30\%$$

Probabilistic reasoning

Probabilistic reasoning

- We have some prior belief of an event A happening
 - P(A), prior probability
 - e.g. me infected by COVID
- We see some new evidence B
 - e.g. I test COVID positive

- How does seeing B affect our belief about A?
 - $P(A \mid B)$, posterior probability

Another example: detector

A store owner discovers that some of her employees have taken cash. She decides to use a detector to discover who they are.

- Suppose that 10% of employees stole.
- The detector buzzes 80% of the time that someone stole, and 20% of the time that someone not stole
- Is the detector reliable? In other words, if the detector buzzes, what's the probability that the person did stole?

H: employee not stole

B: lie detector buzzes

Another example: detector

Suppose that 10% of employees stole.

H: employee did not stole P(H) = 0.9

• The lie detector buzzes 80% of the time that someone stoles, and 20% of the time that someone not stole.

B: lie detector buzzes

$$P(B \mid H^C) = 0.8$$

 $P(B \mid H) = 0.2$

If the detector buzzes, what's the probability that the person stole?

$$P(H^C \mid B)$$

		Detector result		
		Pass	Buzz (B)	Marginal
Employee	Not stole (H)			
	Stole			
	Marginal			

$$P(H) = 0.9$$

 $P(B \mid H^{C}) = 0.8$
 $P(B \mid H) = 0.2$

$$P(H,B) = P(H) \cdot P(B \mid H) = 0.9 \times 0.2 = 0.18$$

		Detecto		
		Pass (B ^C)	Buzz (B)	Marginal
Employee	Not stole (H)		0.18	0.9
	Stole (H ^C)			0.1
	Marginal			

$$P(H) = 0.9$$

$$P(B \mid H^C) = 0.8$$

$$P(B \mid H) = 0.2$$

$$P(H) = P(H,B) + P(H,B^c) = 0.9$$

		Detector result		
		Pass (B ^C)	Buzz (B)	Marginal
Employee	Not stole (H)	0.72	0.18	0.9
	Stole (H ^C)			0.1
	Marginal			

$$P(H) = 0.9$$

$$P(B \mid H^C) = 0.8$$

$$P(B \mid H) = 0.2$$

		Detecto		
		Pass (B ^C)	Buzz (B)	Marginal
Employee	Not stole (H)	0.72	0.18	0.9
	Stole (H ^C)	0.02	0.08	0.1
	Marginal	0.74	0.26	1

$$P(H) = 0.9$$

 $P(B \mid H^{C}) = 0.8$
 $P(B \mid H) = 0.2$

		Detecto		
		Pass (B ^C)	Buzz (B)	Marginal
Employee	Not stole (H)	0.72	0.18	0.9
	Stole (H ^C)	0.02	0.08	0.1
	Marginal	0.74	0.26	1

• We have the full probability table. Can we calculate $P(H^C \mid B)$? Yes!

$$P(H^C \mid B) = \frac{P(H^C,B)}{P(B)}$$
 $\frac{0.08}{0.26} = 0.307$

It seems like the detector is not very reliable...