ИЗПИТ

по Математически анализ, специалност "Приложна математика" 26 август 2011г.

Име: Фак.номер:

- 1. Нека A е подмножество на n-мерното евклидово пространство \mathbb{R}^n . Дайте дефиниция на ∂A (контур на A). Докажете, че $\partial (A \cup B) \subset \partial A \cup \partial B$, където A и B са произволни подмножества на \mathbb{R}^n .
- 2. Формулирайте теоремата на Лебег. Докажете с нейна помощ, че ако функциите $f,g:\Delta\longrightarrow\mathbb{R}$, където Δ е паралелотоп в \mathbb{R}^n , са интегруеми по Риман, то функцията произведение $f.g:\Delta\longrightarrow\mathbb{R}$ също е интегруема по Риман.
- 3. Формулирайте теоремата на Фубини. Докажете, че фигурите, които се представят като цилиндрично тяло, са измерими по Пеано-Жордан. Обосновете свеждането на троен интеграл върху цилиндрично тяло от непрекъсната функция към повторен (двоен външен интеграл и еднократен вътрешен). Намерете координатите на центъра на тежестта на хомогенното тяло

$$K = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2 \le 1\}$$
.

- 4. Разгледайте функцията $f(x) = \langle x, a \rangle$.arctg ||x||, където $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ и a е векторът (5, 6, -1). Пресметнете **grad** f. Каква е стойността на **rot** (**grad** f) и защо?
- 5. Нека $\Delta = (a,b) \times (c,d)$ е отворен правоъгълник в \mathbb{R}^2 и нека $F = (F_1,F_2)$ е гладко векторно поле в Δ , което удовлетворява необходимото условие за потенциалност. Напишете явна формула за потенциал на F в Δ (като, разбира се, проверите, че функцията, зададена с така написаната формула, наистина е потенциал за F).
- 6. Пресметнете повърхни
ия интеграл от първи род $\int \int_S z \mathrm{d}s$, където S е параметрично зададената хелико
идна повърхнина

$$\varphi(u,v) = \begin{pmatrix} u \cos v \\ u \sin v \\ v \end{pmatrix}, (u,v) \in [0,a] \times [0,2\pi].$$

7. Пресметнете интеграла на Гаус

$$\int \int_{S} \left\langle \frac{x - x_0}{\|x - x_0\|^3}, \mathbf{n} \right\rangle$$

където S е частично гладка повърхнина, контур на областта $G \subset \mathbb{R}^3$, S е ориентирана с външната нормала \mathbf{n} за G и $x_0 \in G$.