Language Recognition & First Sentence Prediction

Data: 22,000 paragraphs of 22 languages from Wikipedia

Goal 1

Predict the language of a text.

Goal 2

Predict whether a sentence is the first in its paragraph.

Language Recognition: My Approach

Create four different models

Step 1: Vectorize the text data using CountVectorizer and Tf-idf.

Step 2: Train Logistic Regression and Naive Bayes models on the data.

Step 3: Test predictive ability of each model using a paragraph of text from the Internet in the 22 languages.

Language Recognition: Findings

Based on the accuracy, CountVectorizer with Naive

Bayes was the		
	Training Data Accuracy	Test Data Ad
Alebo or Usada		

Naive Bayes

		Iraining Data Accuracy	lest Data Accuracy
Count Vectorizer	Logistic Regression	0.993750	0.933636
Count vectorizer	Naive Bayes	0.991818	0.955682

Count Vectorizer	Logistic Regression	0.993750	0.93363
	Naive Bayes	0.991818	0.95568
	1!-#- B	0.071100	0.0545

Count Vectorizer			
Oddit Vectorizer	Naive Bayes	0.991818	0.955682
Tf-idf	Logistic Regression	0.974489	0.954545
i i-iui			

t Vectorizer	Logistic Regression	0.993750	0.93363
t vectorizer	Naive Bayes	0.991818	0.95568
Tf-idf	Logistic Regression	0.974489	0.95454

0.983239

0.943409

Chinese (1) and Japanese (8) had lower F1 scores for CountVectorized models.

	precision	recall	f1-score		precision	recall	f1-score
0	0.99	0.94	0.97	0	1.00	0.99	1.00
1	0.77	0.53	0.63	1	0.95	0.54	0.69
2	1.00	0.99	1.00	2	0.99	1.00	0.99
3	0.91	0.96	0.93	3	0.75	1.00	0.86
4	0.98	0.93	0.95	4	1.00	0.96	0.98
5	0.99	0.99	0.99	5	0.98	1.00	0.99
6	1.00	0.96	0.98	6	1.00	0.99	0.99
7	1.00	0.96	0.98	7	0.99	0.97	0.98
8	0.51	0.94	0.66	8	0.67	0.92	0.78
9	1.00	0.91	0.95	9	1.00	0.97	0.99
10	0.94	0.95	0.95	10	0.99	0.93	0.96
11	1.00	0.98	0.99	11	1.00	0.99	1.00
12	0.98	0.94	0.96	12	1.00	0.94	0.97
13	1.00	0.97	0.99	13	1.00	0.98	0.99
14	0.99	0.97	0.98	14	1.00	0.98	0.99
15	0.98	0.93	0.95	15	0.98	1.00	0.99
16	1.00	0.98	0.99	16	1.00	0.99	1.00

Chinese (1) and Japanese (8) had lower F1 scores for TF-idf models.

	precision	recall	f1-score	support		precision	recall	f1-score	support
					0	1.00	0.99	1.00	194
0	1.00	0.98	0.99	194	1	7,7,1-1,1,7-1,1,1			
1	0.50	0.98	0.66	188		0.93	0.54	0.68	188
2	1.00	0.97	0.99	195	2	0.98	0.98	0.98	195
3	0.78	0.97	0.86	197	3	0.66	0.99	0.80	197
4	0.99	0.98	0.99	199	4	0.99	0.98	0.98	199
5	0.96	0.99	0.98	222	5	0.94	0.99	0.97	222
6	1.00	0.97	0.99	207	6	1.00	0.97	0.98	207
7	1.00	0.98	0.99	209	7	0.98	0.98	0.98	209
8	1.00	0.39	0.56	213	8	0.99	0.57	0.72	213
9	1.00	0.96	0.98	191	9	1.00	0.97	0.98	191
10	0.98	0.90	0.94	204	10	0.98	0.91	0.94	204
11	1.00	0.98	0.99	199	11	1.00	1.00	1.00	199
12	0.98	0.93	0.95	199	12	0.98	0.94	0.96	199
13	1.00	0.94	0.97	196	13	1.00	0.95	0.98	196
14	0.99	0.99	0.99	170	14	0.59	0.99	0.74	170
15	1.00	0.96	0.98	210	15	1.00	0.98	0.99	210
16	1.00	0.96	0.98	198	16	0.97	0.98	0.98	198
17	1.00	0.99	0.99	216	17	0.99	1.00	0.99	216
18	1.00	0.98	0.99	190	18	1.00	0.99	0.99	190
19	1.00	0.98	0.99	194	19	0.99	0.98	0.99	194
20	1.00	0.97	0.99	207	20	0.99	0.99	0.99	207
21	1.00	0.98	0.99	202	21	1.00	0.99	0.99	202

Predictive ability of models

20 of the languages were predicted correctly by each model. However, all four models failed to predict Japanese and Chinese texts correctly. This makes sense since the F1 scores were lower for these languages.

The cause of the lower F1 scores is due to these languages not being properly tokenized since there are no spaces between words in these languages.

Language Recognition: Ideas for Further Research

Use packages like Jieba and Nagisa to properly tokenize Chinese and Japanese.

Try using a language dictionary instead of machine learning to solve the problem.

Expand the language corpus to include more languages.

Language Recognition: Recommendations

Incorporate the model into a translation app so that the app would know which language it should translate.

First Sentence Prediction: My Approach

Part 1: Create a new, self-supervised dataset containing the sentences and their labels for one language (Chinese).

Step 1: Split the data into training and test sets so as not to split apart paragraphs later.

Step 2: Create a function that takes a spaCy document object, splits the paragraphs into sentences, and labels each sentence as first in its paragraph or not.

Step 3: Use the function on the training and test data to create training and test dataframes.

Part 2: Random over sampling

Step 1: Because the data is highly imbalanced, use random over sampling on the minority class (first sentences).

Step 2: Do this for both training and test data.

Part 3: Latent Semantic Analysis

Step 1: Transform sentences into document term matrices using CountVectorizer and Tf-idf.

Step 2: Use Truncated SVD with 75 components to turn the document term matrices into latent semantic analyses.

Step 3: Do this for training and test data.

Part 4: Fit a Logistic Regression model to the data

Step 1: Fit the training data to the model.

Step 2: Make predictions and evaluate the results.

Part 5: Optimize the best model (Tf-idf with Logistic Regression) for F1 score

Step 1: Create a grid search with different values of C and the scoring parameter set to 'f1.'

Step 2: Fit the training data to the model.

Step 3: Make predictions and evaluate the results.

First Sentence Prediction: Findings

CountVectorizer and Tf-idf LSA model results

Tf-idf LSA is the better model.

		Training Data	Test Data
Count Vectorizer	Accuracy	0.673437	0.533291
	F1 Score	0.645661	0.443936
Tf-idf	Accuracy	0.695176	0.592190
	F1 Score	0.684098	0.547264

Tf-idf LSA un-optimized and optimized model results

Optimizing C for F1 score actually makes the model worse.

		Training Data	Test Data
Un-optimized	Accuracy	0.695176	0.592190
	F1 Score	0.684098	0.547264
Optimized	Accuracy	0.696604	0.580026
	F1 Score	0.688193	0.528058

Conclusion

Considering random guessing would yield about a 20% accuracy, I think this model is pretty good for a first attempt.

First Sentence Prediction: Ideas for Further Research

Build a function that can take sentences of Chinese text and predict whether they are a first sentence in a paragraph. I could do this on Wikipedia articles.

Follow the same approach but do it using English text scraped from Wikipedia.

First Sentence Prediction: Recommendations

Build a list of most common first sentences and then analyze them to find similarities.