Práctica 2: Ley de Amdahl y Paralelismo

Laura Itzel Rodríguez Dimayuga

Filtro	#Hilos	Tiempo de ejecucion	Aceleracion Teorica	Acelaracion obtenida	Lineas Totales	Lineas en paralelo	% Codigo en paralelo
F1. Promedio	1	0.4360714	1	1	34	10	0.294117647
F1. Promedio	2	0.3702314	1.172413793	1.177834727	34	10	0.294117647
F1. Promedio	27	0.3103698	1.395136778	1.405005899	34	10	0.294117647
F1. Promedio	100	0.3072555	1.410788382	1.419246848	34	10	0.294117647
F2. luma	1	0.5734877	1	1	35	11	0.314285714
F2. luma	2	0.5203351	1.186440678	1.10215071	35	11	0.314285714
F2. luma	27	0.4051217	1.433990895	1.415593635	35	11	0.314285714
F2. luma	100	0.3329877	1.451679801	1.7222489	35	11	0.314285714
F3.correctitud2	1	0.5540617	1	1	35	11	0.314285714
F3.correctitud3	2	0.5317469	1.186440678	1.041965078	35	11	0.314285714
F3.correctitud4	27	0.4226601	1.433990895	1.310891896	35	11	0.314285714
F3.correctitud5	100	0.3812306	1.451679801	1.453350544	35	11	0.314285714
F6.componentesRGB	1	0.351849	1	1	34	10	0.294117647
F6.componentesRGB	2	0.3255732	1.172413793	1.080706274	34	10	0.294117647
F6.componentesRGB	27	0.5057821	1.395136778	0.695653326	34	10	0.294117647
F6.componentesRGB	100	0.5307796	1.410788382	0.662890963	34	10	0.294117647
F7.altoContraste	1	0.3737367	1	1	33	9	0.272727273
F7.altoContraste	2	0.3199048	1.157894737	1.168274749	33	9	0.272727273
F7.altoContraste	27	0.3094453	1.356164384	1.207763375	33	9	0.272727273
F7.altoContraste	100	0.3513518	1.369863014	1.063710788	33	9	0.272727273
F8.blur1	1	0.3616217	1	1	27	3	0.111111111
F8.blur1	2	0.3456375	1.551401869	1.046245561	83	59	0.710843373
F8.blur1	27	0.3456375	3.169731259	1	83	59	0.710843373
F8.blur1	100	0.3558939	3.375355836	0.971181299	83	59	0.710843373
F9.blur2	1	0.5077926	1	1	45	21	0.46666667
F9.blur3	2	0.4148603	1.304347826	1.22400866	45	21	0.466666667
F9.blur4	27	0.3988042	1.816143498	1.273287994	45	21	0.466666667
F9.blur5	100	0.5069272	1.858736059	1.001707148	45	21	0.466666667

Cuestionario

1. ¿La ley de Amdahl siempre se cumple?

No siempre, en la primera ejecución que se ejecute se cumplió con un margen de error muy pequeño.

2. ¿En qué casos no se cumple?

En algunos casos, se tardaba más cuando ponía más hilos. Pienso que esto es porque el proceso de crear el hilo contribuye más en tiempo, lo que nos puede ayudar. Sobre todo porque convertir una imagen de 300x300.

3. ¿Por qué crees a qué se debe esto?

Investigando un poco me encontré esto;

The cost of thread creation is constant but large on most real systems. (Think approximately the same cost as doing 1000 function calls of a function that does nothing but return a small constant. On most systems it requires a call into the kernel, which is pretty expensive.)

https://cs.stackexchange.com/questions/25888/time-cost-of-thread-creation

4. ¿Cuál sería la mejora máxima? Es decir, la aceleración teórica máxima

Podemos obtener el límite de S (la fórmula), pero necesitamos saber cual es el número máximo de hilos que podemos crear.

En la práctica, no es buena idea tener muchos hilos.

Too many threads might have two negative effects. First, when a fixed quantity of work is divided among too many threads, each thread receives so little work that the overhead associated with initiating and stopping threads overwhelms the productive work. Second, running an excessive number of threads results in overhead due to the way they compete for limited hardware resources.

Limiting the number of runnable threads to the number of hardware threads is a smart solution. If cache contention is an issue, we might also want to limit it to the number of outer-level caches. Avoid hard-coding our software to a particular number of threads because target platforms differ in the number of hardware threads. Let the amount of threading in our software adjust to the hardware.

https://www.baeldung.com/cs/servers-threads-number#:~:text=The%20Case%20of%20Creating%20Too,the%20ideal%20number%20of%20threads.

5. Escribe tus conclusiones, además de lo que aprendiste en esta práctica, contratiempos y descubrimientos que hubo durante su realización.

Creo que el tiempo también varía por los otros procesos que están pasando en mi computadora. Sin embargo, intenté correrlo varias veces para intentar obtener un promedio.