Einfürung in die Funktionentheorie Hausaufgaben Blatt Nr. 5

Jun Wei Tan* and Lucas Wollman *Julius-Maximilians-Universität Würzburg*(Dated: May 26, 2024)

Aufgabe 1. Beweisen oder widerlegen Sie:

(a) Es sei $U \subseteq \mathbb{C}$ offen, $f \in \mathcal{H}(U)$ und Δ ein Dreieck mit $\partial \Delta \subseteq U$. Dann gilt

$$\int_{\partial \Lambda} f(z) \, \mathrm{d}z = 0.$$

(b) Die Funktion

$$f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \qquad f(z) = \frac{e^z - 1}{z}$$

besitzt eine holomorphe Stammfunktion auf C.

- *Beweis.* (a) Falsch. Sei $U=\mathbb{C}\setminus\{0\}$, $f:z\mapsto \frac{1}{z}$, was holomorph auf U ist. Wir betrachten ein Dreieck, der die Ursprung entschließt. Alle Voraussetzungen sind dann erfüllt, jedoch ist das Integral ungleich Null.
 - (b) Falsch. Wir integrieren über das Rand von $K_1(0)$, also der Weg $z=e^{it}$, $t\in[0,2\pi]$. Weil e^z-1 holomorph ist, ist $\int_{K_1(0)}f(z)\,\mathrm{d}z\neq 0$, also die Funktion besitzt keine Stammfunktion auf $\mathbb C$.

Aufgabe 2. Es seien $a_2, a_3, \ldots, \in \mathbb{C}$ und es gelte

$$\sum_{n=2}^{\infty} n|a_n| < 1.$$

Wir betrachten die Funktion

$$f: \mathbb{D} \to \mathbb{C}, \qquad f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

Beweisen Sie, dass f injektiv auf \mathbb{D} ist.

Hinweis: Versuchen Sie ein geeignetes Wegintegral zu betrachten

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Beweis. Die Potenzreihe konvergiert offensichtlich. Damit ist f glatt. Deren Ableitung kann durch eine Potenzreihe dargestellt werden

$$f'(z) = 1 + \sum_{n=2}^{\infty} n a_n z^{n-1}.$$

f' besitzt eine holomorphe Stammfunktion f. Wir nehmen an, dass f nicht injektiv ist. Das heißt: Es gibt $a,b\in\mathbb{D}$, sodass f(a)=f(b). Wir verbinden a und b mit einer Gerade $\gamma:[t_1,t_2]\to\mathbb{D}$ und betrachten das Integral

$$\int_{\gamma} f'(z) \, \mathrm{d}z = f(b) - f(a) = 0.$$

Das Integral ist auch

$$\int_{\gamma} f'(z) dz = \int_{\gamma} \left(1 + \sum_{n=2}^{\infty} n a_n z^{n-1} \right) dz$$

Wir schätzen jetzt die Summe. Da γ eine Gerade zwischen a und b ist, ist $|z| \le \min(|a|,|b|) =: r < 1$. Das heißt

$$\left| \sum_{n=2}^{\infty} n a_n z^{n-1} \right| \le \sum_{n=2}^{\infty} \left| n a_n z^{n-1} \right|$$

$$\le \sum_{n=2}^{\infty} n |a_n| r^{n-1}$$

$$\le \sum_{n=2}^{\infty} n |a_n| r$$

$$< r$$

Es gilt also

$$\operatorname{Re} f' > 1 - r$$

und

$$|\operatorname{Im} f'| < r.$$

Weil γ eine Gerade ist, ist $\gamma'(x) = \frac{b-a}{t_2-t_1}$, also konstant. Wir rechnen dann

$$\int_{\gamma} f'(z) dz = \int_{t_1}^{t_2} (\operatorname{Re} f + i \operatorname{Im} f) (\operatorname{Re} \gamma' + i \operatorname{Im} \gamma') dt$$

$$= \int_{t_1}^{t_2} (\operatorname{Re} f) (\operatorname{Re} \gamma') - (\operatorname{Im} f) (\operatorname{Im} \gamma')$$

$$+ i \left[(\operatorname{Re} f) (\operatorname{Im} \gamma') + (\operatorname{Im} f) (\operatorname{Re} \gamma') \right] dt$$

Falls

$$\int_{t_1}^{t_2} (\operatorname{Re} f) (\operatorname{Re} \gamma') - (\operatorname{Im} f) (\operatorname{Im} \gamma') \, \mathrm{d}t \neq 0,$$

gibt es sofort ein Widerspruch, da $\int_{\gamma} f'(z) \, \mathrm{d}z \neq 0$. Wir nehmen an, dass dies nicht der Fall ist. Insbesondere ist Im $\gamma' \neq 0$, da sonst Re $\gamma' \neq 0$, und

$$\left|\operatorname{Re} \gamma'\right| \left| \int_{t_1}^{t_2} \operatorname{Re} f \, \mathrm{d}t \right| > |\operatorname{Re} \gamma'|(1-r)(t_2-t_1) > 0,$$

ein Widerspruch. Es gilt also $|\operatorname{Re} \gamma'| \neq |\operatorname{Im} \gamma'|$, da dann gälte

$$|\operatorname{Re} \gamma'| \left| \int_{t_1}^{t_2} \operatorname{Re} f \, \mathrm{d}t \right| > |\operatorname{Re} \gamma'| (1 - r)(t_2 - t_1)$$

und

$$|\operatorname{Im} \gamma'| \left| \int_{t_1}^{t_2} \operatorname{Im} f \, dt \right| = |\operatorname{Re} \gamma'| \left| \int_{t_1}^{t_2} \operatorname{Im} f \, dt \right|$$

$$\leq |\operatorname{Re} \gamma'| r(t_2 - t_1)$$

und

$$(\operatorname{Re} \gamma') \int_{t_1}^{t_2} \operatorname{Re} f \, dt > (\operatorname{Im} \gamma') \int_{t_1}^{t_2} \operatorname{Im} f \, dt$$

ein Widerspruch. Das heißt:

$$(\operatorname{Re} \gamma') \int_{t_1}^{t_2} (\operatorname{Re} f) \, \mathrm{d}t = \operatorname{Im} \gamma' \int_{t_1}^{t_2} \operatorname{Im} f \, \mathrm{d}t.$$

Dann betrachten wir das andere Integral

$$\int_{t_1}^{t_2} (\operatorname{Re} f) (\operatorname{Im} \gamma') + (\operatorname{Im} f) (\operatorname{Re} \gamma') dt$$

$$= (\operatorname{Im} \gamma') \int_{t_1}^{t_2} (\operatorname{Re} f) dt + (\operatorname{Re} \gamma') \int_{t_1}^{t_2} (\operatorname{Im} f) dt$$

$$= (\operatorname{Im} \gamma') \int_{t_1}^{t_2} \operatorname{Re} f dt + \frac{(\operatorname{Re} \gamma')^2}{\operatorname{Im} \gamma'} \int_{t_1}^{t_2} \operatorname{Re} f dt$$

$$= \frac{(\operatorname{Im} \gamma')^2 - (\operatorname{Re} \gamma')^2}{\operatorname{Im} \gamma'} \int_{t_1}^{t_2} \operatorname{Re} f dt$$

Wir wissen aber, dass $|\operatorname{Im} \gamma'| \neq |\operatorname{Re} \gamma'|$. Das Integral ist $> (1-r)(t_2-t_1)$, also ungleich Null, also wir haben wieder einen Widerspruch.