Introduction to eYFi-Mega Board Getting started with Input-Output Ports

e-Yantra Team

Embedded Real-Time Systems (ERTS) Lab Indian Institute of Technology, Bombay

> IIT Bombay January 29, 2020

Overview of eYFi-Mega Board

Overview of eYFi-Mega Board

Features of eYFi-Mega Board

Features of eYFi-Mega Board

- Dual Micro-controller Board:
 - 8-bit ATmega 2560
 - 32-bit ESP32
- High Output Power: 12.5 W (5V, 2.5A)
- Wi-Fi:
 - Protocol: 802.11 b/g/n (802.11n up to 150 Mbps)
 - Frequency Range: 2.4 GHz ∼ 2.5 GHz
- Bluetooth Low Energy:
 - Protocol: Bluetooth v4.2 BR / EDR and BLE specification
- On-board File Storage: 700 KB SPI-Flash File System (expandable up to 3 MB)

www.e-yantra.org

- **Compatible with FreeRTOS:** Both micro-controllers are capable of running FreeRTOS
- Arduino Programming Language: Both micro-controllers can be programmed using Arduino AP

Block Diagram (AVR):

Block Diagram (AVR):

eYFi-Mega IoT Platform

Block Diagram (ESP):

Block Diagram (ESP):

Getting started with ATmega 2560 Overview of Ports Accessing Ports Examples

Getting started with ATmega 2560

Getting started with ATmega 2560

- AVR architecture based Microcontroller.
- Manufactured by Atmel.
- Uses 8-bit RISC architecture.
- Consists of 100 pins.
- Combines 256KB ISP flash memory, 8KB SRAM, 4KB EEPROM.
- Consists of 6 timers/counters, PWM, 4 UARTs, 16-channel 10 bit A/D converter and much more.

Getting started with ATmega 2560 Overview of Ports Accessing Ports Examples

What are Ports?

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.
 - 1 ATmega 2560 has ten 8-bit Ports

Port x;
$$x = A$$
 to F and H, J, K, L

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.
 - ATmega 2560 has ten 8-bit Ports

Port x;
$$x = A$$
 to F and H, J, K, L

2 ATmega 2560 has one 6-bit Port

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.
 - ATmega 2560 has ten 8-bit Ports

Port x;
$$x = A$$
 to F and H, J, K, L

ATmega 2560 has one 6-bit Port

Port G;

• All Port pins can be individually configured as Input/Output.

Getting started with ATmega 2560 Overview of Ports Accessing Ports Examples

Accessing Ports

Getting started with ATmega 2560 Overview of Ports Accessing Ports Examples

Accessing Ports

Each Ports has three associated registers with it:

2 PORTx x = A to H and J, K, L

Accessing Ports

Each Ports has three associated registers with it:

DDRx

- x = A to H and J, K, L
- PORTx
- x = A to H and J, K, L

PINx

x = A to H and J, K, L

Getting started with ATmega 2560 Overview of Ports Accessing Ports Examples

Getting started with ATmega 256 Overview of Ports Accessing Ports Examples

Registers in detail

• DDRx: To define Port pin as Input or Output.

- DDRx: To define Port pin as Input or Output.
 - **1** DDRx bit = $1 \rightarrow \text{Portx pin is defined as Output.}$

- DDRx: To define Port pin as Input or Output.
 - $\textbf{0} \quad \mathsf{DDRx} \; \mathsf{bit} = 1 \to \mathsf{Portx} \; \mathsf{pin} \; \mathsf{is} \; \mathsf{defined} \; \mathsf{as} \; \mathsf{Output}.$
 - **b** DDRx bit = $0 \rightarrow Portx pin is defined as Input.$

- DDRx: To define Port pin as Input or Output.
 - $\textbf{0} \quad \mathsf{DDRx} \; \mathsf{bit} = 1 \to \mathsf{Portx} \; \mathsf{pin} \; \mathsf{is} \; \mathsf{defined} \; \mathsf{as} \; \mathsf{Output}.$
 - **1** DDRx bit = $0 \rightarrow Portx pin is defined as Input.$
- **PINx**: To read data present on Port x pins.

- DDRx: To define Port pin as Input or Output.
 - $\textbf{0} \quad \mathsf{DDRx} \; \mathsf{bit} = 1 \to \mathsf{Portx} \; \mathsf{pin} \; \mathsf{is} \; \mathsf{defined} \; \mathsf{as} \; \mathsf{Output}.$
 - **1** DDRx bit = $0 \rightarrow \text{Portx pin is defined as Input.}$
- PINx: To read data present on Port x pins.
- PORTx: There are two cases:
 - Case 1: When Port is defines as Output: Send data on Port x pins.
 - Case 2: When Port is defined as Input: Activate/deactivate Pull-up resistor.

- DDRx: To define Port pin as Input or Output.
 - $\textbf{0} \quad \mathsf{DDRx} \; \mathsf{bit} = 1 \to \mathsf{Portx} \; \mathsf{pin} \; \mathsf{is} \; \mathsf{defined} \; \mathsf{as} \; \mathsf{Output}.$
 - **1** DDRx bit = $0 \rightarrow \text{Portx pin is defined as Input.}$
- PINx: To read data present on Port x pins.
- PORTx: There are two cases:
 - Case 1: When Port is defines as Output: Send data on Port x pins.
 - Case 2: When Port is defined as Input: Activate/deactivate Pull-up resistor.
 - **1** PORTx bit = $1 \rightarrow \text{Pull up is activated on Portx pin.}$

- DDRx: To define Port pin as Input or Output.
 - $\textbf{0} \quad \mathsf{DDRx} \; \mathsf{bit} = 1 \to \mathsf{Portx} \; \mathsf{pin} \; \mathsf{is} \; \mathsf{defined} \; \mathsf{as} \; \mathsf{Output}.$
 - **1** DDRx bit = $0 \rightarrow \text{Portx pin is defined as Input.}$
- PINx: To read data present on Port x pins.
- PORTx: There are two cases:
 - ullet Case 1: When Port is defines as Output: Send data on Port x pins.
 - Case 2: When Port is defined as Input: Activate/deactivate Pull-up resistor.
 - **1** PORTx bit = $1 \rightarrow \text{Pull up is activated on Portx pin.}$
 - **b** PORTx bit = $0 \rightarrow Pull$ up is deactivated on Portx pin.

Getting started with ATmega 2560 Overview of Ports Accessing Ports Examples

Examples

Thank You!

Post your queries on: helpdesk@e-yantra.org

