RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION **** EXAMEN DU BACCALAURÉAT	Épreuve : MATHÉMATIQUES Section : Mathématiques	
	SESSION 2016	Session de contrôle

Le sujet comporte six pages numérotées de 1/6 à 6/6 Les pages 5/6et 6/6 sont à rendre avec la copie.

Exercice 1 (5 points)

Le plan est orienté.

Dans la figure ci-contre ABCD est un rectangle direct de centre O

AOID et OCID sont deux losanges. Le point J est le milieu du segment [CD] et le point L est le milieu du segment [BC].

- 1) Soit R la rotation de centre I et d'angle $\frac{\pi}{3}$.
- a) Déterminer R(O) et R(D).
- b) Montrer que R(A) = B.

2) Soit
$$g = S_{(OL)} \circ S_{(OI)} \circ S_{(AD)}$$
.

- a) Vérifier que g(A) = C et g(D) = B.
- b) Donner la nature et les éléments caractéristiques de g.
- 3) Soit h l'homothétie de centre le point C et de rapport $\frac{1}{2}$ et on pose $\varphi = R$ o h o g^{-1} .
 - a) Montrer que ϕ est une similitude indirecte de centre C.
 - b) Soit K le milieu du segment [IC]. Montrer que $\varphi(B) = K$.
 - c) Montrer que $\varphi = h \circ S_{(AC)}$.
- 4) Déterminer l'image par φdu rectangle ABCD.

Exercice 2 (4 points)

Dans le plan muni d'un repère orthonormé direct, on désigne par (E) l'ellipse d'équation : $x^2 + 9y^2 = 9$.

Dans la figure 1 de l'annexe 1 jointe, (C_1) est le cercle de centre O et de rayon 1, (C_2) est le cercle de centre O et de rayon 3, N est le point de coordonnées $(\cos\theta,\sin\theta)$. P est le point de coordonnées $(3\cos\theta,3\sin\theta)$, où θ est un réel appartenant à $\left[0,\frac{\pi}{2}\right[$.

- 1) Soit M le point de coordonnées $(3\cos\theta, \sin\theta)$.
 - a) Vérifier que M est un point de l'ellipse (E).
 - b) Placer le point M.
 - c) Justifier qu'une équation de la tangente T à (E) en M est $x \cos\theta + 3y \sin\theta = 3$.
- 2) La tangente T à (E) en M coupe l'axe des abscisses et l'axe des ordonnées respectivement en Het K.
 - a) Déterminer les coordonnées des points H et K.
 - b) Montrer que $HK^2 = \frac{9}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}$.
- 3) Soit f la fonction définie sur $\left]0, \frac{\pi}{2}\right[$ par $f(\theta) = HK^2$.
 - a) Montrer que pour tout $\theta \in \left]0, \frac{\pi}{2}\right[, \ f'(\theta) = 2\left(4\sin^2\theta 1\right) \frac{\cos^2\theta + 3\sin^2\theta}{\cos^3\theta \, \sin^3\theta}.$
 - b) En déduire que la distance HK est minimale si et seulement si $\theta = \frac{\pi}{6}$.
 - c) On désigne par D le point de l'ellipse (E) correspondant à $\theta = \frac{\pi}{6}$.

Construire le point D ainsi que la tangente en ce point à l'ellipse (E).

Exercice 3 (4 points)

Soit a un entier naturel non nul et premier avec 5.

- 1) En utilisant les restes possibles de la division euclidienne de a par 5, montrer que $a^4 \equiv 1 \pmod{5}$.
- 2) Soit p et q deux entiers naturels non nuls tels que $p \le q$ et $q \equiv p \pmod{4}$.
 - a) Montrer que $a^q \equiv a^p \pmod{5}$.
 - b) Montrer que $a^q \equiv a^p \pmod{2}$.
 - c) En déduire que $a^q \equiv a^p \pmod{10}$.

- 3) Soit dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : 25 x 21 y = 4.
- a) Vérifier que (1,1) est une solution de (E).
- b) Résoudre dans Z x Z l'équation (E).
- c) En déduire l'ensemble A des solutions de l'équation (E) dans N x N.
- d) Soit(α, β) un élément de A. Montrer que, pour tout entier naturel non nul n et premier avec 5, n^{α} et n^{β} ont le même chiffre d'unité.

Exercice 4 (7 points)

Soit f la fonction définie sur
$$\left[e^{-\sqrt{2}}, e^{\sqrt{2}}\right]$$
 par $f(x) = \frac{\sqrt{2 - \ln^2 x}}{x}$.

On note C_f sa courbe représentative dans un repère orthonormé direct (O, \vec{i}, \vec{j}) .

1) a) Montrer que
$$\lim_{x\to e^{\sqrt{2}}} \left(\frac{\ln x - \sqrt{2}}{x - e^{\sqrt{2}}} \right) = e^{-\sqrt{2}}$$
.

b) En écrivant
$$\frac{f(x)}{x-e^{\sqrt{2}}} = \frac{-\left(\ln x + \sqrt{2}\right)}{x\sqrt{2-\ln^2 x}} \cdot \frac{\ln x - \sqrt{2}}{x-e^{\sqrt{2}}}, \text{ montrer que } \lim_{x \to (e^{\sqrt{2}})^-} \left(\frac{f(x)}{x-e^{\sqrt{2}}}\right) = -\infty.$$

Interpréter graphiquement le résultat.

- c) Montrer que f n'est pas dérivable à droite en $e^{-\sqrt{2}}$.
- 2) On donne, ci-dessous, le tableau donnant le signe de f (x), le signe de f (x) et les variations de la fonction f.

Justifier que les points C et D, de coordonnées respectives $(\alpha, f(\alpha))$ et $(\beta, f(\beta))$, sont deux points d'inflexion de C_f .

- 3) Dans la figure 2 de l'annexe 2 jointe, (O, i, j) est un repère orthonormé direct;
 A et B sont les points de coordonnées respectives (√2, 0) et (-√2, 0);
 C et D sont les points de coordonnées respectives (α, f(α)) et (β, f(β));
 Γ est la courbe représentative de la fonction exponentielle.
- a) Construire les points de C_f d'abscisses $e^{-\sqrt{2}}$, e^{-1} et $e^{\sqrt{2}}$.
- b) Tracer la courbe C_f dans le repère (O, \vec{i}, \vec{j}) .
- 4) Soit g la fonction définie sur $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ par $g(x) = \sin x$.
- a) Montrer que la fonction g réalise une bijection de $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ sur $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$.

On note h sa fonction réciproque.

- b) Montrer que la fonction h est dérivable sur $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$ et que h $(x) = \frac{1}{\sqrt{1-x^2}}$.
- c) Soit u la fonction définie sur $\left[e^{-1}, e\right]$ par $u(x) = h\left(\frac{\ln x}{\sqrt{2}}\right)$.

Montrer que pour tout $x \in [e^{-1}, e]$, $u'(x) = \frac{1}{x\sqrt{2-\ln^2 x}}$.

- d) En déduire que $\int_{e^{-1}}^{e} \frac{dx}{x\sqrt{2 \ln^2 x}} = \frac{\pi}{2}.$
- 5) Soit \mathcal{A} l'aire de la partie du plan limitée par C_f , l'axe des abscisses et les droites d'équations $x = e^{-1}$ et x = e.

a) Montrer que
$$\mathcal{A}=2+\int_{e^{-1}}^{e}\left(\frac{\ln^2 x}{x\sqrt{2-\ln^2 x}}\right)dx$$
.

- b) Vérifier que pour tout $x \in \left[e^{-1}, e\right], \quad \frac{\ln^2 x}{x\sqrt{2-\ln^2 x}} = \frac{2}{x\sqrt{2-\ln^2 x}} f(x).$
- c) En déduire la valeur de \mathcal{A} .

Annexe 1 (à rendre avec la copie)

Figure 1

Annexe 2 (à rendre avec la copie)

Figure 2