Homework Assignment 1

Due via canvas Feb 9th

SDS 384-11 Theoretical Statistics

Please do not add your name to the HW submission.

Also do not add collaborators here or in the comments section of Canvas.

- 1. (2 pt) Given densities f_n and g_n with respect to some measure μ , let X be distributed according to the distribution with density f_n . Define the likelihood ratio $L_n(X)$ as $L_n(X) = g_n(X)/f_n(X)$ for $f_n(X) > 0$, and $L_n(X) = 1$, if $f_n(X) = g_n(X) = 0$ and $L_n(X) = \infty$ otherwise. Show that the likelihood ratio is a uniformly tight sequence. First note that $EL_n(X) = 1$, and hence by Markov's inequality, for any ϵ , $P(L_n(X) > 1/\epsilon) \le \epsilon$. This establishes tightness.
- 2. (1+2+3) We will do some examples of convergence in distribution and convergence in probability here.
 - (a) Let $X_n \sim N(0,n)$. Prove that $X_n = O_p(\sqrt{n})$ and $o_P(n)$. Since $X_n/\sqrt{n} \stackrel{d}{\to} N(0,1)$, we see that $X_n/\sqrt{n} = O_P(1)$ and hence $X_n = O_P(\sqrt{n})$. As for the last part, $P(X_n/n \ge t) \le 1/nt^2$ and hence $X_n/n = o_P(1)$.
 - (b) Let $\{X_n\}$ be independent r.v's such that $P(X_n = n^{\alpha}) = 1/n$ and $P(X_n = 0) = 1 1/n$ for $n \ge 1$, where $\alpha \in (-\infty, \infty)$ is a constant. For what values of α , will you have $X_n \stackrel{q.m}{\to} 0$? For what values will you have $X_n \stackrel{p}{\to} 0$?

Convergence in quadratic mean:

$$E[|X_n|^2] = \frac{n^{2\alpha}}{n}$$

The above will converge to zero if $2\alpha < 1$, or $\alpha < \frac{1}{2}$.

Convergence in Probability:

For $\epsilon \geq n^{\alpha}$ we have $\Pr(|X_n| > \epsilon) = 0$. For $\epsilon < n^{\alpha}$ we have $\Pr(|X_n| > \epsilon) = \frac{1}{n}$. This probability converges to zero for all values of α .

- (c) Consider the average of n i.i.d random variables X_1, \ldots, X_n with $E[X_1] = \mu$ and $E[|X_1|] < \infty$. Write true or false.
 - i. $\bar{X}_n = o_P(1)$ We know that \bar{X}_n converges to μ in probability. If $\mu \neq 0$, $\bar{X}_n = o_P(1)$ is false.
 - ii. $\exp(\bar{X}_n \mu) = o_P(1)$ Solution. We know that $\bar{X}_n - \mu$ converges to 0 in probability. By continuous mapping, If $\exp(\bar{X}_n - \mu) \stackrel{P}{\to} 1$. So false.
 - iii. $(\bar{X}_n \mu)^2 = O_P(1/n)$ Fix $\epsilon > 0$. Now $P((\bar{X}_n - \mu)^2 \ge \underbrace{\frac{\sigma^2}{\epsilon}}_{M}) \le \epsilon$. So, its true.

3. (2+4+1) Consider random variables X_1, \ldots, X_n be IID r.v's with mean μ and variance $\sigma^2 := \text{var}(X_i)$. We will use the following statistic to estimate $\theta = \mu^2$.

$$\hat{\theta} = \frac{1}{\binom{n}{2}} \sum_{i < j} X_i X_j$$

(a) Find constants C_1, C_2 where

$$\hat{\theta} - \mu^2 = \frac{C_1}{\binom{n}{2}} \sum_{i < j} (X_i - \mu)(X_j - \mu) + \frac{C_2 \mu}{n} \sum_i (X_i - \mu)$$

We have,

$$\frac{1}{\binom{n}{2}} \sum_{i < j} X_i X_j - \mu^2 = \frac{1}{n(n-1)} \sum_{i \neq j} X_i X_j - \mu^2$$

$$= \frac{1}{n(n-1)} \sum_{i \neq j} ((X_i - \mu)(X_j - \mu) + \mu(X_i - \mu) + \mu(X_j - \mu))$$

$$= \underbrace{\frac{1}{n(n-1)} \sum_{i \neq j} (X_i - \mu)(X_j - \mu)}_{T_1} + \underbrace{\frac{2}{n} \mu \sum_{i} (X_i - \mu)}_{T_2}$$

Thus, $C_1 = 1, C_2 = 2$.

(b) Show that the first term is $O_P(1/n)$ and the second term is $O_P(1/\sqrt{n})$. Observe that,

$$var(T_1) = \frac{1}{n^2(n-1)^2} \left(\sum_{i \neq j, k \neq \ell} E(X_i - \mu)(X_j - \mu)(X_k - \mu)(X_\ell - \mu) \right)$$

But in the above sum, all tuples with $i \neq j \neq k \neq \ell$ are zero. All tuples with $i \neq j = k \neq \ell$ are also zero. The only nonzero terms arise from $i = k \neq j = \ell$ or $i = \ell \neq j = k$. And there are $O(n^2)$ such terms all with expectation σ^4 . Thus the variance of T_1 is $O(1/n^2)$. We also see that

$$var(T_2) = O(1/n)$$

Now note that for any sequence of mean zero random variables X_n , $Y_n = X_n/\sqrt{\operatorname{var}(X_n)} = O_P(1)$. This is because,

$$\sup_{n} P(|Y_n| \ge 1/\sqrt{\epsilon}) \le \epsilon$$

Therefore, $T_1 = O_P(1/n)$ and $T_2 = O_P(1/\sqrt{n})$.

- (c) Argue that $\hat{\theta} \stackrel{P}{\to} \mu^2$. Since $\hat{\theta} - \mu^2 = o_P(1)$, this is proved.
- 4. (3+2+2+3) If $X_n \stackrel{d}{\to} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \to E[g(X)]$? Prove your answer when you believe the answer is true. When you believe it is "not necessarily true", provide a counter-example.

(a) $g(x) = 1(x \in (0, 10))$

This is not necessarily true since g(x) is not continuous at x = 0. Consider the sequence of random variables

$$X_n = X + \frac{1}{n}$$

Clearly, $X_n \xrightarrow{p} X$ (and consequently $X_n \xrightarrow{d} X$). However, since $X \sim \mathcal{P}(\lambda)$, therefore $X \geq 0$. Therefore, $\forall n \geq 1, X_n > 0$. Therefore,

$$g(X_n) = \begin{cases} 1 \text{ for } X < 10 - \frac{1}{n} \\ 0 \text{ otherwise} \end{cases}$$

and

$$g(X) = \begin{cases} 1 \text{ for } X < 10 \text{ and } X \ge 1\\ 0 \text{ otherwise} \end{cases}$$

Therefore,

$$Eg(X_n) = P(X < 10 - \frac{1}{n}) \to P(X < 10)$$

but

$$Eg(X) = P(X < 10) - P(X = 0) = P(X < 10) - e^{-\lambda}$$

(b) $g(x) = e^{-x^2}$

True by Portmanteau thm.

(c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.]

Also true by Portmanteau thm, since g(x) is bounded and the discontinuity points are all at odd multiples of $\pi/2$, which are not intergers, and hence the limiting random variable has zero probability mass on this set.

(d) g(x) = x

Not necessarily true since g(x) is not bounded. Consider a counter example:

$$X_n = \begin{cases} X & \text{with probability } 1 - 1/n \\ n & \text{with probability } 1/n \end{cases}$$

But
$$EX_n = EX(1 - 1/n) + 1 \to EX + 1$$
.

- 5. (1+4) Consider X_n Uniform on $\{1/n, 2/n, \ldots, 1\}$. Let $X \sim \text{Uniform}([0, 1])$. For the questions below, either give a proof or a counter-example.
 - (a) Does $X_n \stackrel{d}{\to} X$? Yes. If $t \le 1$, $P(X_n \le t) = \frac{\lfloor \min(tn,n) \rfloor}{n} \to t$.

(b) Does $X_n \stackrel{P}{\to} X$?

No, first, we need to define X_n and X on the same probability space to even start thinking about convergence in probability. But we will show with a counter example that even with such a construction we can couple X_n and X such that $X_n \stackrel{d}{\to} X$ but X_n does not converge in probability to X.

First define $Y_n = \lceil nX \rceil/n$. Note that Y_n is a discrete Uniform. Now define $X_n = 1 + 1/n - Y_n$. Clearly, this is also a discrete uniform, and hence converges in distribution to X, but what about convergence in probability?

$$P(X_n - X \ge 1/2) = P(1 + 1/n - Y_n - X \ge 1/2)$$

= $P(Y_n + X \le 1/2 + 1/n) = P(\lceil nX \rceil + nX \le n/2 + 1) \ge P(X \le 1/4)$

which does not converge to zero.