What do numerical simulations tell us about solar/stellar dynamos?

Laurène Jouve IRAP-Toulouse-France

Cool Stars 2016-Uppsala

Rotation and convection in cool MS stars

Magnetic fields in cool MS stars

Observations of magnetic cycles?

Noyes et al. 1984

Chromospheric activity (Mount Wilson data, Ca II HK lines):

$$P_{cvc} = (1/Ro)^{1.28+/-0.48}$$

where the Rossby number $Ro=P_{rot}/\tau$

Donati et al 2008, Fares et al 2009, Mengel et al 2016: τ boo: 2 years

Petit et al 2009, Morgenthaler et al 2011: HD 190771 (complex variability)

Garcia et al 2010: HD 49933: 120 days?

Boro-Saika et al 2016: HD 201091: 14 years

Main physical ingredients to the generation and transport of magnetic fields

Dynamo mechanism: process through which motions of a conducting fluid can permanently regenerate and maintain a magnetic field against its ohmic dissipation

It consists of the regeneration of both poloidal and toroidal fields

Sources of magnetic field

Transport of magnetic field

✓ Large-scale flows (meridional circulation)

- ✓ Downward pumping by penetrative convection
- ✓ Transport from the base of the convection zone to the surface (magnetic buoyancy)

Schematic theoretical view of the magnetic cycle in solar-like stars

1: magnetic field generation, self-induction

2: pumping of mag. field

or

2': transport by meridional flow

3: stretching of field lines through Ω -effect

4: Parker instability

5: emergence+rotation

6: recycling through α -effect or

7: emergence of twisted bipolar

structures at the surface

Solar-like stars: role of the the tachocline?

☐ From these concentrations of toroidal field, buoyant loops can emerge

☐ They do not rise to the surface to create well defined spots yet, this has to be modeled independently

Solar-like stars: buoyant loops rise

☐ Toroidal flux tube introduced at the base of the convection zone

☐ Influence of the Coriolis force and convection introduce asymetries and modulation in longitude

Jouve et al. 2013

☐ Bipolar magnetic regions emerge, with properties close to the observed ones

Solar-like stars: magnetic cycles, 2D models

- Mean-field induction equation only
- Babcock-Leighton dynamo model

t=0.119

$$\frac{\partial A_{\phi}}{\partial t} = \frac{\eta}{\eta_{\rm t}} (\nabla^2 - \frac{1}{\varpi^2}) A_{\phi} - R_{\rm e} \frac{\mathbf{u}_{\rm p}}{\varpi} \cdot \nabla(\varpi A_{\phi}) + C_{\phi} B_{\phi} + C_{\rm s} S(r, \theta, B_{\phi})$$

$$\frac{\partial B_{\phi}}{\partial t} = \frac{\eta}{\eta_{t}} (\nabla^{2} - \frac{1}{\varpi^{2}}) B_{\phi} + \frac{1}{\varpi} \frac{\partial (\varpi B_{\phi})}{\partial r} \frac{\partial (\eta/\eta_{t})}{\partial r} - R_{e} \varpi \mathbf{u}_{p} \cdot \nabla (\frac{B_{\phi}}{\varpi}) - R_{e} B_{\phi} \nabla \cdot \mathbf{u}_{p} + C_{\Omega} \varpi (\nabla \times (\varpi A_{\phi} \hat{\mathbf{e}}_{\phi})) \cdot \nabla \Omega$$

t=0.122

Standard model: single-celled meridional circulation

t=0.120

Is this solar model applicable for rapidly-rotating solar-like stars?

Solar-like stars: prescriptions from 3D models

 Ω/Ω_0

 $\Lambda\Omega$ increases with Ω

Solar-like stars: applying solar models to other stars

Jouve, Brown, Brun 2010

Solar-like stars: applying solar models to other stars

Can we reconcile this model with stellar data using a more complex MC?

Jouve, Brown, Brun 2010

5 Ω sol, Pcyc = 5.2 yr, better agreement

Models of fully convective stars

☐ More strongly stratified (Browning 2008)

☐ Systematic study (Gastine et al. 2012)

Aspect ratio, density contrast and influence of rotation (Rossby number) varied ☐ Most recent (Yadav et al. 2015)

Fully convective stars: Rossby and bistability

☐ Change in Rossby (also seen in planetary dynamos)

Christensen & Aubert (2006)

- Ordering role of Coriolis=dipolar
- Inertia becomes dominant=multipolar
- ☐ Two regimes for low Rossby numbers (also seen in planetary dynamos)

 Schrinner et al. (2012)
 - Strong initial field=no shear (no role of shear in dynamo)
 - Weak initial field=shear(shear plays a role: Parker waves?)
- ☐ Strong stratification leads to multipolar fields

Fully convective stars: comparison to observations

Gastine et al. (2013)

- ☐ Dipolarity lost for Ro > 0.1
- ☐ Bistability for low Ro
- ☐ Variability for very low Ro: compatible with Parker waves?

Yadav et al. (2015)

- ☐ ZDI reconstruction:
- Field geometry recovered (large-scale only)
- Field strength underestimated

Conclusions

- ☐ Dynamo models of solar-like stars:
 - Role of the tachocline: building organised field
 - Is a tachocline necessary for buoyant loops generation?
 - What is missing in 3D models to actually produce spots?
 - Models commonly applied to the Sun are challenged by other stars

- Dynamo models of fully convective stars:
 - Change of geometry with Rossby number (or with internal structure?)
 - Bistable regime for late M
 - Temporal variability for multipolar fields?
 - Can dipoles (and thus bistability) resist strong stratifications?