International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 1

molecules
Country: THA

ตรวจจับโมเลกุล

ปีเตอร์ทำงานให้บริษัทที่ผลิตเครื่องตรวจจับโมเลกุล แต่ละโมเลกุลมีน้ำหนักเป็นจำนวนเต็มบวก โดยเครื่องดังกล่าวมี ระยะตรวจจับ [l, u], โดยที่ l และ u เป็นจำนวนเต็มบวก เครื่องสามารถ ตรวจจับเซ็ตของโมเลกุลได้ก็ต่อเมื่อเซ็ตนี้มีสับเซ็ตที่มีผลรวมน้ำหนักโมเลกุลอยุ่ภายในระยะตรวจจับ ของเครื่อง

กล่าวคือ: เมื่อพิจารณาโมเลกุล n โมเลกุล ซึ่งมีน้ำหนัก $w_0,\,...,\,w_{n-1}$ การตรวจจับจะประสบผล สำเร็จถ้ามีเซ็ตของตัวเลขดัชนี $I=\{i_1,\,...,\,i_m\}$ โดยที่ $l\leq w_{i_1}+...+w_{i_m}\leq u$

เนื่องด้วยลักษณะเฉพาะของเครื่อง เราสามารถรับประกันได้ว่าส่วนต่างระหว่าง l และ u จะต้อง มากกว่าหรือเท่ากับส่วนต่างน้ำหนักระหว่างโมเลกุลที่หนักที่สุดกับโมเลกุลที่เบาที่สุด กล่าวคือ: $u-l \geq w_{max}-w_{min}$, โดยที่ $w_{max}=\max{(w_0,...,w_{n-1})}$ และ $w_{min}=\min{(w_0,...,w_{n-1})}$

ภารกิจของคุณคือ จงเขียนโปรแกรมเพื่อค้นหาสับเซ็ตของโมเลกุลซึ่งมีผลรวมน้ำหนักอยุ้ภายในระยะ ตรวจจับ หรือตัดสินว่าสับเซ็ตดังกล่าวไม่มีอยุ้จริง

รายละเอียดการเขียนโปรแกรม

จงเขียนฟังก์ชัน:

- o int[] solve(int I, int u, int[] w)
 - I และ u: ตัวเลขที่ระบุระยะตรวจจับ
 - พ: น้ำหนักของโมเลกล
 - หากสับเซ็ตที่ต้องการมีอยู่จริง ฟังก์ชันควรคืนค่าอาเรย์ของดัชนีโมเลกุลซึ่งรวมตัวกันเป็น สับเซ็ตดังกล่าว หากมีคำตอบที่ถูกต้องหลายคำตอบให้คืนค่าคำตอบใดก็ได้
 - หากสับเซ็ตที่ต้องการไม่มีอยู่จริง ฟังก์ชันควรคืนค่าอาเรย์ว่างเปล่า

สำหรับภาษา C หัวฟังก์ชันมีความแตกต่างเล็กน้อย:

- o int solve(int l, int u, int[] w, int n, int[] result)
 - on: จำนวนสมาชิกใน w (นั่นคือ: จำนวนโมเลกุล)
 - พารามิเตอร์อื่น เหมือนกับที่กล่าวไว้ด้านบน
 - แทนที่จะต้องคืนค่าเป็นอาเรย์ของดัชนี m ตัว (แบบด้านบน), ฟังก์ชันนี้ควรเขียนค่าดัชนี
 ลงไปยัง m ช่องแรกของอาเรย์ result แล้วค่อยคืนค่า m
 - หากสับเซ็ตที่ต้องการไม่มีอยู่จริง ฟังก์ชันนี้ไม่ควรเขียนอะไรลงในอาเรย์ result และคืน ค่า 0

โปรแกรมของคุณจะเขียนดัชนีในลำดับใดก็ได้ลงในอาเรย์ที่คืนค่า (หรือลงในอาเรย์ result ใน ภาษา C)

สำหรับรายละเอียดการเขียนโปรแกรมในภาษาของคุณ โปรดดูไฟล์ต้นแบบที่ได้เตรียมไว้ให้

ตัวอย่าง

ตัวอย่างที่ 1

solve(15, 17, [6, 8, 8, 7])

ในตัวอย่างนี้เรามีโมเลกุลสี่โมเลกุลที่มีน้ำหนัก 6, 8, 8 และ 7 เครื่องสามารถตรวจจับสับเซตของ โมเลกุลที่มีน้ำหนักรวมตั้งแต่ 15 ถึง 17 (รวมหัวท้าย) สังเกตว่า $17-15 \ge 8-6$ น้ำหนักรวมของ โมเลกุลที่ 1 และ 3 คือ $w_1+w_3=8+7=15$ ดังนั้นฟังก์ชันสามารถคืนค่า [1, 3] เป็นคำตอบ คำตอบอื่นที่ถูกต้องเช่นกันได้แก่ [1, 2] ($w_1+w_2=8+8=16$) และ [2, 3] ($w_2+w_3=8+7=15$)

ตัวอย่างที่ 2

solve(14, 15, [5, 5, 6, 6])

ในตัวอย่างนี้เรามีโมเลกุลสี่โมเลกุลที่มีน้ำหนัก 5, 5, 6 และ 6 และเราต้องการหาส[ั]บเซตที่มีน้ำหนัก รวมตั้งแต่ **14** ถึง **15** (รวมหัวท้าย) โปรดสังเกตอีกครั้งว่า 15 − 14 ≥ 6 − 5 แต่ไม่มีสับเซตใดที่มี ผลรวมน้ำหนักโมเลกุลตั้งแต่ 14 ถึง 15 เลย ฟังก์ชันนี้จึงควรคืนค่าอาเรย์ว่างเปล่า

ตัวอย่างที่ 3

solve(10, 20, [15, 17, 16, 18])

ในตัวอย่างนี้เรามีโมเลกุลสี่โมเลกุลที่มีน้ำหนัก 15, 17, 16 และ 18 และเราต้องการหาส[ั]บเซตที่มี น้ำหนักรวมตั้งแต่ 10 ถึง 20 (รวมหัวท้าย) โปรดสังเกตอีกครั้งว่า $20 - 10 \ge 18 - 15$ สับเซ็ตใดก็ตาม ที่มีสมาชิกเพียงหนึ่งตัวย่อมมีผลรวมน้ำหนักตั้งแต่ 10 ถึง 20 ดังนั้นคำตอบที่ถูกต้องได้แก่: [0], [1], [2] และ [3]

ปัญหาย่อย

- 1. (9 คะแนน): $1 \le n \le 100$, $1 \le w_i \le 100$, $1 \le u$, $l \le 1000$, และ w_i ทุกตัวมีค่าเท่ากัน.
- 2. (10 คะแนน): $1 \le n \le 100$, $1 \le w_i$, u, $l \le 1000$ และ $\max(w_0, ..., w_{n-1}) \min(w_0, ..., w_{n-1}) \le 1$.
- 3. (12 คะแนน): $1 \le n \le 100$ และ $1 \le w_i$, $u, l \le 1000$.
- 4. (15 คะแนน): $1 \le n \le 10\,000$ และ $1 \le w_i$, u, $l \le 10\,000$.
- 5. (23 คะแนน): $1 \le n \le 10\,000$ และ $1 \le w_i$, u, $l \le 500\,000$.
- 6. (31 คะแนน): $1 \le n \le 200\,000$ และ $1 \le w_i$, u, $l < 2^{31}$.

เกรดเดอร์ตัวอย่าง

เกรดเดอร์ตัวอย่างอ่านข้อมูลน้ำเข้าในรูปแบบต่อไปนี้:

- บรรทัดที่ 1: จำนวนเต็ม n, l, u
- \circ บรรทัดที่ 2: จำนวนเต็ม n จำนวน: $w_0, ..., w_{n-1}$