# Automata and Grammars (BIE-AAG) 3. Operations on finite automata

#### Jan Holub

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague



© Jan Holub, 2020

### Relation between DFA and NFA

#### **Definition**

Finite automata  $M_1$  and  $M_2$  are called *equivalent* if they accept the same language, i.e.  $L(M_1) = L(M_2)$ .

#### **Theorem**

For every nondeterministic finite automaton M there exists an equivalent deterministic finite automaton M'.

**Algorithm** Determinization of NFA (subset construction)

Input: NFA  $M = (Q, \Sigma, \delta, q_0, F)$ .

**Output:** DFA M' such that L(M) = L(M').

- 1:  $Q' \leftarrow \{\{q_0\}\}$
- 2: for  $\forall q' \in Q'$  do
- 3:  $\delta'(q',a) \leftarrow \bigcup_{p \in q'} \delta(p,a), \forall a \in \Sigma$
- 4:  $Q' \leftarrow Q' \cup \{\delta'(q', a) : a \in \Sigma\}$
- 5: end for
- 6:  $q_0' \leftarrow \{q_0\}$
- 7:  $F' \leftarrow \{q' : q' \in Q', q' \cap F \neq \emptyset\}$
- 8:  $M' \leftarrow (Q', \Sigma, \delta', q_0', F')$
- 9: return M'

#### **E**xample

NFA M:

DFA M':

■ How big can the resulting automaton be?

#### **Example**

NFA  $M = (\{z, f\}, \{a, b\}, \delta, z, \{f\})$ , where  $\delta$ :

$$\begin{array}{c|ccccc} \delta & a & b \\ \hline \rightarrow & z & \{z, f\} & \emptyset \\ \leftarrow & f & \emptyset & \{f\} \end{array}$$

DFA  $M' = (\{\{z\}, \{z, f\}, \{f\}, \emptyset\}, \{a, b\}, \delta', \{z\}, \{\{z, f\}, \{f\}\})$ , where  $\delta'$ :





Homogeneous finite automaton

All 5th tes/That Nec eve and Definition (Set of target states)

**Definition** (Set of target states)

 $M=(Q,\Sigma,\delta,q_0,F)$ . For any  $a\in\Sigma$  we define the set  $Q(a)\subseteq Q$  of target states as:  $Q(a) = \{q : q \in \delta(p, a), p, q \in Q\}.$ 

**Definition** (Homogeneous finite automaton)

 $M=(Q,\Sigma,\delta,q_0,F)$  and Q(a) are the sets of target states  $\forall a\in\Sigma$ . If for all pairs of symbols  $a,b\in\Sigma$ ,  $a\neq b$  it holds that  $Q(a)\cap Q(b)=\emptyset$ , then the automaton M is called *homogeneous*.



$$Q(a) = \{q, r\}$$

$$Q(b) = \{s, t, u\}$$

#### **Theorem**

The set of states of a homogeneous automaton  $M=(Q,\Sigma,\delta,q_0,F)$  without unreachable states is partitioned as follows:

$$Q = \biguplus_{a \in \Sigma \cup \{\varepsilon\}} Q(a), \quad \text{where} \quad Q(\varepsilon) = \{q_0\} \setminus \bigcup_{a \in \Sigma} Q(a)$$

#### **Theorem**

Let  $M=(Q,\Sigma,\delta,q_0,F)$  be a homogeneous NFA. Then the number of states of the equivalent DFA  $M'=(Q',\Sigma,\delta',q'_0,F')$  gained by the standard determinization (subset construction) algorithm is bounded by the following equality:

$$|Q'| \le \sum_{a \in \Sigma} (2^{|Q(a)|}) - |\Sigma| + 1.$$

#### **Example**

Given homogeneous NFA  $M=(\{p,q,r,s,t,u\},\{a,b\},\delta,p,\{r,u\})$ , where  $\delta$ :

|               | a         | b            |
|---------------|-----------|--------------|
| p             | $\{q\}$   | $\{s\}$      |
| q             | $\{q,r\}$ | $ \{s,t\} $  |
| $\mid r \mid$ |           | $\{u\}$      |
| s             | $\{q\}$   | $\{u\}$      |
| t             | $\{r\}$   | $\{s\}$      |
| u             |           | { <i>t</i> } |



BIE-AAG (2020/2021) – J. Holub: 3. Operations on finite automata –  $10 \ / \ 32$ 

#### **Example (continued)**

$$\begin{split} &Q(a) = \{q,r\}, \ \ Q(b) = \{s,t,u\}, \ \ Q(\varepsilon) = \{p\} \\ &Q(a) \cap Q(b) = \emptyset, \ \text{therefore DFA for } M \ \text{is } M' = (Q',\Sigma,\delta',q_0,F'), \ \text{where} \\ &|Q'| \leq 2^{|Q(a)|} + 2^{|Q(b)|} - |\Sigma| + 1 = 2^2 + 2^3 - 2 + 1 = 4 + 8 - 2 + 1 = 11 \\ &\text{Equivalent DFA is } M' = (\{p,q,qr,s,t,st,stu,u,su,t,tu\}, \\ &\{a,b\},\delta,p,\{r,qr,u,su,tu,stu\}), \ \text{where } \delta : \end{split}$$

|     | a  | b                   |
|-----|----|---------------------|
| p   | q  | s                   |
| q   | qr | st                  |
| s   | q  | u                   |
| qr  | qr | stu                 |
| st  | qr | su                  |
| u   |    | $\lfloor t \rfloor$ |
| stu | qr | stu                 |
| su  | q  | $\mid tu \mid$      |
| t   | r  | s                   |
| tu  | r  | st                  |
| r   |    | $\lfloor u \rfloor$ |



**Algorithm** NFA for a union of languages –  $\varepsilon$ -transitions

Input: NFA 
$$M_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$$
,  $M_2=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ ,  $Q_1\cap Q_2=\emptyset$ .

**Output:** NFA M,  $L(M) = L(M_1) \cup L(M_2)$ .

1: 
$$Q \leftarrow Q_1 \cup Q_2 \cup \{q_0\}, \ q_0 \notin Q_1 \cup Q_2$$

2: 
$$\delta(q_0, \varepsilon) \leftarrow \{q_{01}, q_{02}\}$$

3: 
$$\delta(q,a) \leftarrow \delta_1(q,a)$$
,  $\forall q \in Q_1$ ,  $\forall a \in \Sigma$ 

4: 
$$\delta(q,a) \leftarrow \delta_2(q,a)$$
,  $\forall q \in Q_2$ ,  $\forall a \in \Sigma$ 

5: 
$$F \leftarrow F_1 \cup F_2$$

6: 
$$M \leftarrow (Q, \Sigma, \delta, q_0, F)$$

7: return M

#### **Example**

$$M_1 = (\{1, 2, \emptyset\}, \{a, b\}, \delta_1, 1, \{2\}), L(M_1) = \{a\}^+$$
  
 $M_2 = (\{1', 2', \emptyset'\}, \{a, b\}, \delta_2, 1', \{2'\}), L(M_2) = \{b\}^+$ 

$$\begin{array}{c|cccc}
\delta_1 & a & b \\
 & 1 & \{2\} & \{\emptyset\} \\
 & \leftarrow & 2 & \{2\} & \{\emptyset\} \\
 & \emptyset & \{\emptyset\} & \{\emptyset\}
\end{array}$$

$$\begin{array}{c|ccccc}
\delta_2 & a & b \\
\hline
1' & \{\emptyset'\} & \{2'\} \\
\leftarrow & 2' & \{\emptyset'\} & \{2'\} \\
\emptyset' & \{\emptyset'\} & \{\emptyset'\}
\end{array}$$



BIE-AAG (2020/2021) – J. Holub: 3. Operations on finite automata – 13 / 32

**Definition** (Total NFA)

NFA  $M=(Q,\Sigma,\delta,q_0,F)$  is called *total* if the mapping  $\delta(q,a)\neq\emptyset, \forall q\in Q, a\in\Sigma.$ 

Algorithm NFA for a union of languages – parallel run

**Input:** Total NFAs  $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$  and  $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ .

**Output:** NFA M accepting  $L(M) = L(M_1) \cup L(M_2)$ .

1: 
$$M \leftarrow (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), (F_1 \times Q_2) \cup (Q_1 \times F_2))$$
, where  $\delta((q_1, q_2), a) \leftarrow \{(q_1', q_2') : q_1' \in \delta_1(q_1, a), q_2' \in \delta_2(q_2, a)\}, \forall (q_1, q_2) \in Q_1 \times Q_2, \forall a \in \Sigma$ 

#### **Example**

$$M_1 = (\{1, 2, \emptyset\}, \{a, b\}, \delta_1, 1, \{2\}), L(M_1) = \{a\}^+$$
  
 $M_2 = (\{1', 2', \emptyset'\}, \{a, b\}, \delta_2, 1', \{2'\}), L(M_2) = \{b\}^+$ 

$$\begin{array}{c|cccc}
\delta_1 & a & b \\
 & 1 & \{2\} & \{\emptyset\} \\
 & \leftarrow & 2 & \{2\} & \{\emptyset\} \\
 & \emptyset & \{\emptyset\} & \{\emptyset\}
\end{array}$$

$$\begin{array}{c|ccccc}
\delta_2 & a & b \\
\hline
 & 1' & \{\emptyset'\} & \{2'\} \\
\leftarrow & 2' & \{\emptyset'\} & \{2'\} \\
\hline
 & \emptyset' & \{\emptyset'\} & \{\emptyset'\}
\end{array}$$

$$L(M) = \{a\}^+ \cup \{b\}^+$$
  

$$M = (\{(1, 1'), (2, \emptyset'), (\emptyset, 2'), (\emptyset, \emptyset')\}, \{a, b\}, \delta, (1, 1'), \{(2, \emptyset'), (\emptyset, 2')\})$$

### **Example (continued)**



**Algorithm** NFA for the intersection of languages – parallel run

Input: NFA  $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2).$ 

**Output:** NFA M accepting  $L(M) = L(M_1) \cap L(M_2)$ 

1:  $M \leftarrow (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F_1 \times F_2)$ , where  $\delta((q_1, q_2), a) \leftarrow \{(q'_1, q'_2) : q'_1 \in \delta_1(q_1, a), q'_2 \in \delta_2(q_2, a)\}, \forall (q_1, q_2) \in Q_1 \times Q_2, \forall a \in \Sigma \}$ 

#### **Example**

M:  $L(M) = \{w : w \in \{a,b\}^*, aba \text{ is a prefix of } w, bab \text{ is a suffix of } w\}.$ 

 $M_1$  accepts strings that begin with prefix aba,

$$M_1 = (\{1, 2, 3, 4, \emptyset\}, \{a, b\}, \delta_1, 1, \{4\})$$

 $M_2$  accepts strings that end with suffix bab,

$$M_2 = (\{1', 2', 3', 4'\}, \{a, b\}, \delta_2, 1', \{4'\})$$

|               | $\delta_1$ | a               | b               |
|---------------|------------|-----------------|-----------------|
| $\rightarrow$ | 1          | {2}             | $\{\emptyset\}$ |
|               | 2          | $\{\emptyset\}$ | {3}             |
|               | 3          | $\{4\}$         | $\{\emptyset\}$ |
| $\leftarrow$  | 4          | $\{4\}$         | $\{4\}$         |
|               | Ø          | $\{\emptyset\}$ | $\{\emptyset\}$ |

#### **Example** (continued)

$$M = (\{(1,1'),(2,1'),(3,2'),(4,1'),(4,2'),(4,3'),(4,4'),(\emptyset,1'),(\emptyset,2'),(\emptyset,3'),(\emptyset,4')\},\{a,b\},\delta,(1,1'),\{(4,4')\})$$

|               | δ                 | a                    | b                    |
|---------------|-------------------|----------------------|----------------------|
| $\rightarrow$ | (1,1')            | $\{(2,1')\}$         | $\{(\emptyset,2')\}$ |
|               | (2,1')            | $\{(\emptyset,1')\}$ | $\{(3,2')\}$         |
|               | $(\emptyset,1')$  | $\{(\emptyset,1')\}$ | $\{(\emptyset,2')\}$ |
|               | $(\emptyset, 2')$ | $\{(\emptyset,3')\}$ | $\{(\emptyset,2')\}$ |
|               | $(\emptyset, 3')$ | $\{(\emptyset,1')\}$ | $\{(\emptyset,4')\}$ |
|               | $(\emptyset,4')$  | $\{(\emptyset,3')\}$ | $\{(\emptyset,2')\}$ |
|               | (3, 2')           | $\{(4,3')\}$         | $\{(\emptyset,2')\}$ |
|               | (4, 3')           | $\{(4,1')\}$         | $\{(4,4')\}$         |
|               | (4,1')            | $\{(4,1')\}$         | $\{(4,2')\}$         |
|               | (4,2')            | $\{(4,3')\}$         | $\{(4,2')\}$         |
| $\leftarrow$  | (4,4')            | $\{(4,3')\}$         | $\{(4,2')\}$         |
|               | •                 | :                    | :                    |

**Algorithm** NFA for intersection of languages – accessible states only

**Input:** NFA  $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ ,  $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ .

**Output:** NFA M,  $L(M) = L(M_1) \cap L(M_2)$ .

- 1:  $Q \leftarrow \{(q_{01}, q_{02})\}$
- 2: for  $\forall q = (q_1, q_2) \in Q$  do
- 3:  $\delta((q_1, q_2), a) \leftarrow \{(q'_1, q'_2) : q'_1 \in \delta_1(q_1, a), q'_2 \in \delta_2(q_2, a)\}, \forall a \in \Sigma$
- 4:  $Q \leftarrow Q \cup \delta((q_1, q_2), a), \forall a \in \Sigma$
- 5: end for
- 6:  $q_0 \leftarrow (q_{01}, q_{02})$
- 7:  $F \leftarrow Q \cap (F_1 \times F_2)$
- 8:  $M \leftarrow (Q, \Sigma, \delta, q_0, F)$
- 9: return M

# FA and complement of language

Algorithm DFA for complement of language

**Input:** Total DFA  $M = (Q, \Sigma, \delta, q_0, F)$ .

**Output:** DFA M',  $L(M') = \Sigma^* \setminus L(M)$ .

1:  $M' \leftarrow (Q, \Sigma, \delta, q_0, Q \setminus F)$ 

2: return M

CINAL to Non-Cinal
CINAL to Non-Cinal
and Vicelasa
and Vicelasa

#### **Example**

DFA M that accepts all strings of the form  $a(ba)^*$ .



**Algorithm** NFA for the product of languages –  $\varepsilon$ -transitions

Input: NFA 
$$M_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$$
,  $M_2=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ ,  $Q_1\cap Q_2=\emptyset$ .

Output: NFA M,  $L(M) = L(M_1).L(M_2)$ .

- 1:  $Q \leftarrow Q_1 \cup Q_2$
- 2:  $\delta(q, a) \leftarrow \delta_1(q, a), \forall q \in Q_1, \forall a \in \Sigma$
- 3:  $\delta(q,a) \leftarrow \delta_2(q,a)$ ,  $\forall q \in Q_2, \forall a \in \Sigma$
- 4:  $\delta(q,\varepsilon) \leftarrow \{q_{02}\}, \ \forall q \in F_1$
- 5:  $M \leftarrow (Q, \Sigma, \delta, q_{01}, F_2)$
- 6: return M

#### **Example**

We construct a finite automaton for the product of languages  $a^+$  and  $b^+$ .



$$M = (\{1, 2, 1', 2'\}, \{a, b\}, \delta, 1, \{2'\})$$



**Algorithm** NFA for a product of languages – without  $\varepsilon$ -transitions

**Input:** NFA  $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ ,  $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ .

**Output:** NFA automaton M,  $L(M) = L(M_1).L(M_2)$ .

- 1:  $q_0 \leftarrow q_{01}$ , if  $q_{01} \notin F_1$  $q_0 \leftarrow [q_{01}, q_{02}]$ , if  $q_{01} \in F_1$
- 2:  $\delta(q, a) \leftarrow \delta_1(q, a)$ ,  $\forall a \in \Sigma, \forall q \in Q_1$ , if  $\delta_1(q, a) \cap F_1 = \emptyset$ ,  $\delta(q, a) \leftarrow \delta_1(q, a) \cup \{q_{02}\}$ ,  $\forall a \in \Sigma, \forall q \in Q_1$ , if  $\delta_1(q, a) \cap F_1 \neq \emptyset$
- 3:  $\delta(q,a) \leftarrow \delta_2(q,a)$ ,  $\forall a \in \Sigma, \forall q \in Q_2$
- 4:  $\delta(q_0, a) \leftarrow \delta_1(q_{01}, a) \cup \delta_2(q_{02}, a)$ ,  $\forall a \in \Sigma$ , if  $q_0 = [q_{01}, q_{02}]$
- 5:  $F \leftarrow F_2 \cup \{[q_{01}, q_{02}]\}$ , if  $q_{01} \in F_1 \land q_{02} \in F_2$  $F \leftarrow F_2$ , otherwise
- 6:  $M \leftarrow (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma, \delta, q_0, F)$
- 7: return M

#### **Example**

We construct a finite automaton for the product of languages  $a^+$  and  $b^+$ .



$$M = (\{1, 2, 1', 2'\}, \{a, b\}, \delta, 1, \{2'\})$$



**Algorithm** NFA for an iteration of a language – with  $\varepsilon$ -transitions

**Input:** NFA  $M = (Q, \Sigma, \delta, q_0, F)$  accepting L.

**Output:** NFA  $M^*$  accepting  $L^*$ .

1: 
$$\delta'(q, a) \leftarrow \delta(q, a)$$
,  $\forall q \in Q$ ,  $\forall a \in \Sigma$ 

2: 
$$\delta'(q,\varepsilon) \leftarrow \{q_0\}, \ \forall q \in F$$

3: 
$$\delta'(q_0', \varepsilon) \leftarrow \{q_0\}$$

4: 
$$M^* \leftarrow (Q \cup \{q_0'\}, \Sigma, \delta', q_0', F \cup \{q_0'\})$$

5: return M

#### **Example**

We create NFA  $M^*$  accepting iteration of language  $ab^*a$ . An NFA M accepting all strings of the form  $ab^*a$  is given.



The resulting NFA is of the form  $M^* = (\{0', 0, 1, 2\}, \{a, b\}, \delta, 0, \{0', 2\})$ :



**Algorithm** NFA for an iteration of a language – without  $\varepsilon$ -transitions

**Input:** NFA  $M = (Q, \Sigma, \delta, q_0, F)$  accepting L.

**Output:** NFA  $M^*$  accepting  $L^*$ .

1: 
$$\delta'(q_0', a) \leftarrow \delta(q_0, a)$$
,  $\forall a \in \Sigma$ , if  $\delta(q_0, a) \cap F = \emptyset$ 

2: 
$$\delta'(q'_0, a) \leftarrow \delta(q_0, a) \cup \{q_0\}, \forall a \in \Sigma, \text{ if } \delta(q_0, a) \cap F \neq \emptyset$$

3: 
$$\delta'(q,a) \leftarrow \delta(q,a)$$
,  $\forall q \in Q$ ,  $\forall a \in \Sigma$ , if  $\delta(q,a) \cap F = \emptyset$ 

4: 
$$\delta'(q,a) \leftarrow \delta(q,a) \cup \{q_0\}$$
,  $\forall q \in Q$ ,  $\forall a \in \Sigma$ , if  $\delta(q,a) \cap F \neq \emptyset$ 

5: 
$$M^* \leftarrow (Q \cup \{q_0'\}, \Sigma, \delta', q_0', F \cup \{q_0'\})$$

6: return M

#### **Example**

We have NFA M that accepts all strings of the form  $ab^*a$ .



NFA accepting the iteration of language  $ab^*a$ , i.e. language  $(ab^*a)^*$ :



### Minimal DFA

#### **Definition** (Minimal DFA)

Let  $M=(Q,\Sigma,\delta,q_0,F)$  be a DFA. M is called *(state) minimal DFA*, if  $\not\exists M'=(Q',\Sigma,\delta',q_0',F')$  such that L(M)=L(M') and |Q|>|Q'|.

### Minimization of DFA

#### **Algorithm** Minimization of DFA

**Input:** DFA  $M = (Q, \Sigma, \delta, q_0, F)$  without unreachable and redundant states.

**Output:** Minimal DFA  $M' = (Q_m, \Sigma, \delta_m, q_{0m}, F_m)$ , L(M) = L(M').

1: Divide set Q into two subsets  $Q_{\rm I} \leftarrow Q \setminus F$ ,  $Q_{\rm II} \leftarrow F$ .

2: repeat

- 3: Create a table  $\delta'$ , where for each state  $q \in Q$  there is a row  $\delta'(Q_i, a) = Q_j$ ,  $q \in Q_i$ ,  $\delta(q, a) \in Q_j$ ,  $\forall a \in \Sigma$ . (In the table, replace each state by the identificator of the subset it belongs to.)
- 4: If  $\exists$  subset  $Q_i$  where all its rows are not identical, divide  $Q_i$  so that every new subset has its all rows identical.
- 5: **until** The subsets keep splitting
- 6:  $Q_m \leftarrow$  the set of all resulting subsets
- 7:  $\delta_m(Q_i, a) \leftarrow Q_j, \forall Q_i \in Q_m, \forall a \in \Sigma, \exists q \in Q_i, \delta(q, a) \in Q_j$
- 8:  $q_{0m}$  is the subset containing  $q_0$
- 9:  $F_m$  are all the subsets of F
- 10: return M'

At the end of the algorithm it must hold that

$$\delta_m(Q_i, a) = Q_j \Leftrightarrow \forall q \in Q_i, \delta(q, a) \in Q_j.$$

### Minimization of DFA

#### **Example**

Minimize the following DFA.

|                                     | state | input symbol |       |
|-------------------------------------|-------|--------------|-------|
|                                     | δ     | a            | b     |
| $\overset{\rightarrow}{\leftarrow}$ | $q_0$ | $q_5$        | $q_1$ |
|                                     | $q_1$ | $q_4$        | $q_3$ |
|                                     | $q_2$ | $q_2$        | $q_5$ |
|                                     | $q_3$ | $q_3$        | $q_0$ |
|                                     | $q_4$ | $q_1$        | $q_2$ |
| $\leftarrow$                        | $q_5$ | $q_0$        | $q_4$ |