Material Didático de Apoio

INTRODUÇÃO AO ESTUDO DAS INTEGRAIS

1.1 INTRODUÇÃO

A partir do estudo de integrais será possível obter informações como: a variação total da produção em um intervalo a partir da taxa de variação da produção; a utilidade da integral definida na determinação do cálculo de áreas em gráficos econômicos.

Se f(x) é função derivada da função F(x), então F(x) é a função primitiva de f(x), isto é, F(x) é primitiva de f(x) se:

$$F'(x) = f(x)$$

Toma-se, como exemplo, a função $f(x) = 3x^2 - 2x + 5$. Uma primitiva de f(x) é a função $F(x) = x^3 - x^2 + 5x$, pois F'(x) = f(x).

A primitiva de uma função não é única. De fato, as funções:

$$x^3 - x^2 + 5x + 10 e$$

 $x^3 - x^2 + 5x - 200$

Também são primitivas de $f(x) = 3x^2 - 2x + 5$, pois suas derivadas são iguais a f(x).

É fácil perceber que a diferença entre as duas primitivas de uma mesma função é uma constante, pois apenas funções que diferem de uma constante podem ter derivadas iguais, uma vez que só as constantes têm derivadas nulas.

Pode-se, por essa razão, indicar genericamente a primitiva de f(x) por F(x) + c, onde c é uma constante qualquer.

A notação usada para exprimir que F(x) + c é a primitiva genérica de f(x) é:

$$\int f(x)dx = F(x) + c$$

Lê-se: a integral indefinida de f(x) é F(x) + c. A constante c é chamada constante arbitrária.

O exemplo fica, então, assim:

$$\int (3x^2 - 2x + 5)dx = x^3 - x^2 + 5x + c$$

Nem sempre é fácil determinar a primitiva de uma função, mas algumas vezes podem ser determinadas de forma imediata desde que se proceda seguindo o caminho inverso ao usado pra derivar uma função.

1.2 SIMBOLOGIA OU NOTAÇÃO

$$\int -integral$$

$$\iint -integral\ dupla$$

$$dx - diferencial\ de\ x$$

$$dy - diferencial\ de\ y$$

Obs.: quando integra a função o sinal $\int e \, dx$ some e aparece a constante arbitrária c.

A variável que acompanha o sinal de integração (Ex: dx) indica em relação a qual variável a função deve ser integrada.

1.3 REGRAS BÁSICAS DE INTEGRAIS INDEFINIDAS

Recebem esse nome de integrais indefinidas porque não há definição do intervalo de existência da área do gráfico das funções apresentadas.

A aplicação das regras e/ou métodos fornecerá uma função como resposta, a qual corresponde a uma das primitivas da função (derivada) solicitada¹. Por questões metodológicas, as regras serão apresentadas separadamente e os seus respectivos exemplos ilustrativos serão apresentados por monômios (exercícios pontuais específicos) por ser este uma fase de apresentação, aprendizado com um primeiro contato com o conteúdo. Em momentos posteriores contemplaremos a integração de funções polinomiais que irão requerer a aplicação de regras distintas para a sua resolução.

1.3.1 – REGRA DA CONSTANTE

A integral de uma constante k é a própria constante k multiplicada pelo x mais c.

$$\int kdx = kx + c$$

$$Ex: \int 5 dx = 5x + c$$

$$Ex: \int 7 dx = 7x + c$$

1.3.2 – REGRA DA POTÊNCIA

A integral de uma função exponencial cuja variável está elevada a um expoente diferente de 0 e diferente de -1 é obtida descendo o valor do expoente somado de uma

UFS – Curso de Economia Prof. Msc. Patrícia Pugliesi Carneiro Material Didático de Apoio[Digite texto]

¹ Neste material não há a dedução de fórmulas, mas apenas a apresentação das regras básicas de forma direta. Para dedução das fórmulas consultar as referências bibliográficas indicadas no final.

unidade para o denominador da função que fica multiplicado pela variável elevada ao mesmo expoente somado de uma unidade mais c.

$$\int n^n dx = \frac{1}{n+1} \cdot x^{n+1} + c$$

$$Ex: \int \sqrt{x^3} dx$$

Solução:
$$\frac{1}{\frac{3}{2}+1} \cdot x^{\frac{3}{2}+1} + c \qquad \frac{\frac{1}{3+2} \cdot x^{\frac{5}{2}} + c}{\frac{1}{5}/2} \cdot x^{\frac{5}{2}} + c$$
$$\frac{\frac{1}{5}}{5} \cdot x^{\frac{5}{2}} + c$$
$$\frac{\frac{2}{5} \cdot x^{\frac{5}{2}} + c}{5}$$

$$Ex: \int x^3 dx$$

$$Solução: \frac{1}{3+1} \cdot x^{3+1} + c$$

$$\frac{1}{4} \cdot x^4 + c$$

1.3.3 – REGRA DA EXPONECIAL e^x

A integral da função exponencial e^x é própria função e^x mais c.

$$\int e^x dx = e^x + c$$

$$e = 2,71828...$$

1.3.4 – **REGRA DO ln**

Constitui-se na exceção da regra da potência.

A integral de uma função exponencial cuja variável x está elevada a -1 é igual a $\ln x$ mais c.

$$\int \frac{1}{x} dx = \ln x + c$$
Ou
$$\int x^{-1} dx = \ln x + c$$

$$Ex: \int \frac{3}{x} dx = 3 \int \frac{1}{x} dx = 3 \ln x + c$$

1.3.5 – REGRA DA SOMA OU DIFERENÇA

A integral da soma ou da diferença de funções é obtida pela soma ou diferença da integral de cada função.

$$\int [(f(x)) \pm (g(x))] = \int f(x) dx \pm \int g(x) dx$$

$$Ex: \int (x^3 + x + 1) dx$$

$$Solução: \int x^3 dx + \int \frac{x^2}{2} dx + \int 1 dx + c$$

$$\left(\frac{x^4}{4}\right) + \left(\frac{x^2}{2}\right) + x + c$$

1.3.6 - REGRA DA CONSTANTE MULTIPLICATIVA

A integral de uma função f(x) multiplicada pela constante k é igual a constante k multiplicada pela integral da função f(x).

$$\int kf(x)dx = k \int f(x)dx$$

Ex:
$$\int 5x^9 dx = 5 \int x^9 dx = 5 \frac{1}{10}x^{10} + c = \frac{1}{2}x^{10} + c$$

1.4 REGRAS COMPLEMENTARES DE INTEGRAIS

A seguir são apresentadas algumas regras complementares às anteriores, porém menos usuais, em termos dos exercícios para uma graduação em Economia, quando compradas às anteriores.

1.4.1 – REGRA DA FUNÇÃO EXPONENCIAL a^x

A integral de uma função exponencial a^x , onde a é maior que 0 e diferente de 1, é obtida dividindo 1 por ln a e multiplicando pela função a^x mais c.

 $f(x) = a^x$

$$\int a^x dx = \frac{1}{\ln a} \cdot a^x + c$$

$$Ex: \int 2^x dx = \frac{1}{\ln 2} 2^x + c$$

$$Ex: \int 10^x dx = \frac{1}{\ln 10} 10 + c$$

$$Ex: \int 10000.1,05^x dx = 10000 \frac{1}{\ln 1,05} 1,05^x + c$$

1.4.2 – REGRA DA FRAÇÃO COM RELAÇÃO DE DIFERENCIAÇÃO

A integral de uma função cujo numerador é a derivada da função f(x) e o denominador é a função f(x) é obtido como ln da função f(x).

$$\int \frac{f'(x)}{f(x)} dx = \ln x + c$$

$$Ex: \int \frac{e^x}{1+e^x} dx = \ln(1+e^x) + c$$

1.4.3 – REGRA DO LOGARITMO NEPERIANO COM BASE NA INTEGRAL POR PARTES

$$\int \ln x \, dx = x \ln x - x + c$$

$$Ex: \int 3 \ln x \, dx = 3x \ln x - 3x + c$$

1.5 REGRAS TRIGONOMÉTRICAS DE INTEGRAIS

Em virtude de um gradativo processo de matematização das abordagens econômicas e a utilização cada vez maior do conhecimento do cálculo em suas análises, são apresentadas a seguir as regras básicas de funções trigonométricas.

1.5.1 – REGRA DO SENO

A integral da função trigonométrica sen u é igual a $-\cos u$ mais c.²

$$\int sen u du = -cos u + c$$

$$Ex: \int sen x \, dx = -cos x + c$$

$$Ex: \int sen \frac{x}{2} \, dx = -2 cos \frac{x}{2} + c$$

1.5.2 – REGRA DO COSENO

A integral da função trigonométrica $\cos u$ é igual a sen u mais c.

$$\int \cos u \, du = \sin u + c$$

² Em algumas situações será necessário usar o MIS (Método de Integração por Substituição).

$$Ex: \int \cos x \, dx = \sin x + c$$

$$Ex: \int \cos 3x = \frac{1}{3} \sin 3x + c$$

$$Obs.: u = 3x \rightarrow \frac{du}{dx} = 3 \rightarrow du = 3dx \rightarrow \frac{du}{3} = dx$$

1.5.3 - REGRA DA TANGENTE

A integral da função trigonométrica tg u é igual $a - \ln|\cos u|$ mais c.

$$\int tg \, u \, du = -\ln|\cos u| + c$$

$$Ex: \int tg \ x \ dx = -\ln|\cos x| + c$$

$$Ex: \int tg \ 2x \ dx = -\frac{1}{2}\ln|\cos 2x| + c$$

1.5.4 – REGRA DA SECANTE

A integral da função trigonométrica sec x é igual a $\ln|\sec x + tg x|$ mais c.

$$\int \sec x \, dx = \ln|\sec x + tg \, x| + c$$

Ex:
$$\int \sec 5x \, dx = \frac{1}{5} \ln|\sec 5x + tg \, 5x| + c$$

1.5.5 - REGRA DA COSSECANTE

A integral da função trigonométrica de cosec x é igual a ln|cosec x - cotg x| mais c.

$$\int \csc x \, dx = \ln|\csc x - \cot g \, x| + c$$

$$Ex: \int cosec (x-1) dx = \ln|cosec (x-1) - cotg (x-1)| + c$$

1.5.6 – REGRA DA COTANGENTE

A integral da função trigonométrica cot g x é igual a $\ln |sen x|$ mais c.

$$\int \cot g \, x \, dx = \ln|\sin x| + c$$

Ex:
$$\int \cot g (5x - 7) dx = \frac{1}{5} \ln|\sin (5x - 7)| + c$$

1.6 MÉTODOS DE INTEGRAÇÃO

Os métodos de integração têm por objetivo transformar funções de maior complexidade em funções mais simples visando a aplicabilidade direta das regras básicas, já previamente apresentadas.

1.6.1 – Integração por Substituição:

Chama-se "por substituição" porque substitui parte da função por outra variável.

$$\int f(u) \frac{du}{dx} \cdot dx \Rightarrow \int f(x) du = F(u) + c$$

Chama parte da função por outra variável (u).

O objetivo é usar um artifício matemático para simplificar a função e transformá-la em outra mais fácil e de aplicação direta as regras básicas de integração.

Casos típicos:

- Raiz de polinômios;
- Polinômio elevado a um expoente alto;
- $e^{f(x)}$:
- Fração com polinômios;
- Reescreve-se a função em termos de u. para esse artificio usamos o conhecimento de derivadas³.

$$Ex: \int 2x(x^2+1)dx \to \int 2x \cdot u \cdot dx$$

$$u = (x^{2} + 1)$$

$$\frac{du}{dx} = 2x$$

$$dx = \frac{du}{2x}$$

$$\int 2x \cdot u \cdot \frac{du}{2x}$$

$$\int u du = \frac{1}{2} \cdot u^{2} + c \rightarrow \frac{1}{2} (x^{2} + 1)^{2} + c$$

_

³ Em diversos exemplos e exercícios trabalhamos o resultado obtido da derivação (du/dx) de forma a isolarmos dx e descobrirmos o seu significado para reescrevermos a função em termos de u.

$$Ex: \int 6x^{2}(x^{3}+2)^{9} dx$$

$$Solução: \int 6x^{2}(x^{3}+2)^{9} dx \to \int 6x^{2} \cdot (u)^{9} \cdot \frac{du}{3x^{2}}$$

$$u = (x^3 + 2)$$

$$\frac{du}{dx} = 3x^2$$

$$\int 2u^9 \cdot du$$

$$2\int u^9 du$$

$$dx = \frac{du}{3x^2}$$

$$2 \cdot \frac{1}{10}u^{10} + c \rightarrow \frac{1}{5}(x^3 + 2)^{10} + c$$

1.6.2 – Integração por Partes

Chama-se "por partes" porque parte se integra e parte se deriva.

Primeiro precisa-se definir quem é u e quem é dv na função. Para visualizar melhor antes de aplicar a fórmula, metodologicamente torna-se necessário que se derive u, obtendo du. Logo em seguida, que se integre dv, obtendo v. A partir de então, com todas as informações que se precisa: u, v, du e dv é só substituir na fórmula abaixo:

$$\int u dv = uv - \int v du$$

Onde:

u e v = funções primitivasdu e dv = funções derivadas

$$Ex: \int 3xe^{x} dx$$

$$Solução:$$

$$u = 3x$$

$$\frac{du}{dx} = 3$$

$$du = 3dx$$

$$\int udv = uv - \int vdu$$

$$\int 3xe^{x} dx = (3x)(e^{x}) - \int e^{x} 3dx$$

$$= 3xe^{x} - 3e^{x} + c$$

$$= 3e^{x}(x-1) + c$$

Ex:
$$\int (x+2)(x+3)^3 dx$$
Solução:
Deriva
$$u = (x+2)$$

$$\frac{du}{dx} = 1$$

$$du = dx$$
Integra
$$v = \int (x+3)^3 dx$$

$$v = \int (x+3)^3 dx$$
Usa o método de integração por Substituição (M.I.S)
$$u = x+3 \rightarrow \frac{du}{dx} = 1 \rightarrow du = dx$$

$$v = \int u^3 du = \frac{1}{4}u^4 + c \qquad \qquad = \frac{1}{4}(x+3)^4 + c$$

Atente-se que $\int (x+2)(x+3)^3 dx = \int u dv$ então, já temos todas as informações que precisamos para usarmos a fórmula.

$$\int u dv = uv - \int v du$$

$$\int (x+2)(x+3)^3 dx = (x+2) \cdot \frac{1}{4}(x+3)^4 - \int \frac{1}{4}(x+3)^4 dx$$

$$= \frac{1}{4} \cdot (x+2)(x+3)^4 - \frac{1}{4} \cdot \int (x+3)^4 - \frac{1}{4} \cdot \frac{1}{5}(x+3)^5 + c$$

$$= \frac{1}{4} \cdot (x+2)(x+3)^4 - \frac{1}{20}(x+3)^5 + c$$

$$\int (x+3)^4$$

$$u = x+3 \rightarrow \frac{du}{dx} = 1 \rightarrow du = dx$$

$$\int u^4 = \frac{1}{5}u^5 + c = \frac{1}{5}(x+3)^5 + c$$

1.7 INTEGRAL DEFINIDA

Calcular uma integral definida é achar a área em um gráfico. Essa área está delimitada por um intervalo [a,b] que são os valores constantes na parte superior e inferior do símbolo de integração.

Seja f contínua em [a,b], então f é integral em [a,b], ou seja, a integral definida $\int_a^b f(x) dx$ existe.

Se f é não negativa e contínua em [a,b], então $\int_a^b f(x) dx$ é igual à área da região sob o gráfico de f em [a,b].

Onde
$$S = \int_a^b f(x) dx$$

Interpretação geométrica

Se f(x) é contínua em [a,b], então $\int_a^b f(x) dx$ é igual à área da região acima de [a,b] menos a área da região abaixo de [a,b].

$$\int_{a}^{b} f(x) dx = \text{área de } A - \text{área de } A_{1} - \text{área de } A_{2}$$

É relevante ressaltar que um resultado negativo, em Economia, para uma integral definida significa que a área calculada localiza-se nos quadrantes inferiores, sobretudo no IV quadrante. O sinal negativo (-) simboliza que a trajetória da função no gráfico se estendeu pelo quadrante inferior (IV).

Teorema Fundamental do Cálculo

Seja f contínua em [a,b], então:

$$\int_{a}^{b} f(x)dx \Rightarrow F(b) - F(a)$$

Onde F é uma antiderivada qualquer de f; isto é F'(x) = f(x). Obs.: uso da notação para o Teorema Fundamental do Cálculo:

$$\int_a^b f(x)dx = F(x) \mid_a^b = F(b) - F(a)$$

Propriedades da Integral Definida

I.
$$\int_a^a f(x) \, dx$$

A integral definida terá valor zero quando os limites de integração forem iguais.

$$Ex: \int_{2}^{2} 3x \, dx = 3 \int_{2}^{2} x \, dx = 3 \frac{1}{2} x^{2} + c$$
$$\frac{3}{2} x^{2} |_{2}^{2} F(2) - F(2)$$
$$\frac{3}{2} (2)^{2} - \frac{3}{2} (2)^{2} = \frac{12}{2} - \frac{12}{2} = 0$$

II.
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

III.

A alteração de limites de integração muda o sinal da integral definida.

$$Ex: \int_{4}^{3} 5x \, dx = -\int_{3}^{4} 5x \, dx = -5 \int_{3}^{4} x \, dx = -5 \frac{1}{2} x^{2} + c$$

$$-\frac{5}{2} x^{2} |_{3}^{4} F(4) - F(3)$$

$$-\frac{5}{2} (4)^{2} - \left[-\frac{5}{2} (3)^{2} \right] = -\frac{80}{2} - \left(-\frac{45}{2} \right) = -\frac{80}{2} + \frac{45}{2} = -\frac{35}{2}$$

$$\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx$$

A integral definida de uma função f(x) multiplicada pela constante k é igual a constante k multiplicada pela integral definida da função f(x).

$$Ex: \int_{1}^{2} 4x dx = 4 \int_{1}^{2} x dx$$

$$Ex: \int_{6}^{2} 4x dx$$
Solução:
$$= 4 \int_{6}^{2} x dx$$

$$= 4 \cdot \frac{1}{2} x^{2} + c$$

$$= 2 \cdot x^{2} + c$$

$$F(2) = 2 \cdot (2)^{2} = 2 \cdot 4 = 8$$

$$F(6) = 2 \cdot (6)^{2} = 72$$

$$F(2) - F(6) = 8 - 72 = -64$$

IV.
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

A integral definida da soma ou da diferença de funções é obtida pela soma ou diferença da integral definida de cada função.

$$Ex: \int_{2}^{4} 3x^{2} + 2x \, dx = \int_{2}^{4} 3x^{2} dx + \int_{2}^{4} 2x dx$$

$$Ex: \int_0^2 (x+6) dx$$

Solução:

$$= \int_0^2 x dx + \int_0^2 6 dx$$

$$= (\frac{1}{2}x^2 + c) + (6x + c)$$

$$= (6x + \frac{1}{2}x^2 + c) + (6x + c)$$

$$F(0) = 6 \cdot (0) + \frac{1}{2}(0)^2 = 0$$

$$F(0) = 6x + \frac{1}{2}x^2 + c$$

$$F(0) = 6x + \frac{1}{2}(0)^2 = 0$$

V.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (a < c < b)

Se **c** for um número entre **a** e **b** de forma que divida o intervalo [a,b] nos intervalos [a,c] e [c,b], então a integral de f no intervalo [a,b] pode ser expressa como a soma da integral de f no intervalo [a,c] com a integral de f no intervalo [c,b].

O método de substituição para integrais definidas

Faz uso do artifício u.

$$Ex: \int_0^4 x\sqrt{9+x^2} \, dx = \int_0^4 \sqrt{9+x^2} \, x dx$$

Chamando $u = 9 + x^2$

$$\frac{du}{dx} = 2x : du = 2xdx : \frac{du}{2} = xdx$$

Achando os novos limites para u

$$x = 4 \rightarrow u = 9 + (4)^2 = 9 + 16 = 25$$
$$x = 0 \rightarrow u = 9 + (0)^2 = 9$$

Então, reescrevendo tudo em função de u

$$\int_{9}^{25} \sqrt{u} \frac{1}{2} du = \frac{1}{2} \int_{9}^{25} \sqrt{u} du = \frac{1}{2} \int_{9}^{25} u^{\frac{1}{2}} = \frac{1}{2} \frac{1}{\frac{1}{2} + 1} u^{\frac{1}{2} + 1} + c = \frac{1}{2} \frac{1}{\frac{3}{2}} u^{\frac{3}{2}} + c = \frac{1}{3} u^{\frac{3}{2}} + c = \frac{1}{3} \sqrt{25^{3}} - \frac{1}{3} \sqrt{9^{3}} = \frac{1}{3} (125 - 27) = \frac{1}{3} 98 = 32,67$$

1.8 INTEGRAL IMPRÓPRIA

Ocorre em situações que f(x) não esta definida, ou não é contínua em todos os pontos do intervalo [a,b] considerado ou quando o intervalo estende-se para o infinito. Está relacionada ao cálculo de áreas de regiões infinitas.

É a área de uma região no gráfico que se estende infinitivamente para a direita ou para a esquerda.

Definição

Seja a um número fixo e suponha que f(x) seja uma função não negativa para $x \ge a$. Se $\lim_{b\to\infty} \int_a^b f(x)dx = L$, então:

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx = L$$

Obs.: Lembrar-se de limites no infinito:

$$\lim_{x \to \infty} \frac{1}{x^n} = 0 \ e \ \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

Classificação

I. Convergente: resultado final é finito.

Valor algébrico ou numérico para a área da função.

Obs.: se o limite existir, a integral imprópria é convergente.

II. Divergente: resultado final é infinito.

Valor infinito para a área correspondente a função.

Obs.: se o limite não existir.

1.9 INTEGRAL DUPLA

Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. São utilizadas para analisar diversas situações envolvendo cálculo de áreas e volumes, determinação de grandezas físicas e outros.

Propriedades

Múltiplo constante:

$$\int_{a}^{b} \int_{g(x)}^{h(x)} k. f(x, y) dx dy = k \int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) dx dy$$

Soma e diferença:

$$\int_{a}^{b} \int_{g(x)}^{h(x)} [f(x,y) + g(x,y)] dx \, dy = \int_{a}^{b} \int_{g(x)}^{h(x)} f(x,y) dx \, dy + \int_{a}^{b} \int_{g(x)}^{h(x)} g(x,y) dx \, dy$$

Resolução

$$Ex.: \int_a^b \int_{a(x)}^{h(x)} f(x, y) dx dy$$

Inicialmente será feita integração com respeito ao primeiro diferencial:

Logo, a primeira resolução será de:
$$\int_{g(x)}^{h(x)} f(x,y) dx$$

Após aplicar a integral e encontrar o resultado, esse resultado deverá ser integrado com respeito ao segundo diferencial:

Logo, a segunda resolução será: $\int_a^b Resultado da primeira integração$

$$\int_{a}^{b} \int_{g(x)}^{h(x)} f(x; y) dy dx$$

$$Ex: \int_0^1 \int_0^2 (x+2) dy dx$$

Solução:

$$\int_{0}^{2} (x+2)dy = F(2) = x(2) + 2(2) = 2x + 4$$

$$F(0) = x(0) + 2(0) = 0$$

$$F(2) - F(0) = 2x + 4 - 0 = 2x + 4$$

$$xy + 2y + c$$

$$\int_{0}^{1} (2x+4)dx =$$

$$\int_{0}^{1} 2xdx + \int_{0}^{1} 4dy =$$

$$2 \cdot \frac{1}{2}x^{2} + 4x + c =$$

$$F(1) = (1)^{2} + 4(1) = 1 + 4 = 5$$

$$F(0) = (0)^{2} + 4(0) = 0$$

$$F(1) - F(0) = 5 - 0 = 0$$

1.10 APLICAÇÃO PRÁTICA EM ECONOMIA [A. P. E]

Esta parte do material visa proporcionar ao aluno uma visão da aplicação do conteúdo "puro" de integrais de forma aplicada. São questões que utilizam o instrumental do conteúdo de integrais para sua resolução.

Trata-se de uma abordagem aplicada a Economia que objetiva relacionar o conteúdo matemático trabalhado a sua utilização na resolução de questões de outras disciplinas da graduação de Economia.

Integração de Funções marginais

A integral indefinida permite que se determine uma função total quando se conhece a função marginal correspondente. Sempre será necessária alguma informação a mais para que a constante de integração fique determinada. Essa informação, em certos casos, pode ser implícita ao problema que esta sendo focalizado.

Ex: Suponha-se, que se tem a função $Rmg = -3q^2 + 40q$, Cmg = 16q e Cf = 200, respectivamente, Receita Marginal, Custo Marginal e Custo Fixo para determinado produto. A partir dessas funções, podem-se, através da integral indefinida, determinar as funções, podem-se, através da integral indefinida, determinar as funções Recita e Custo para esse mesmo produto:

$$R = \int Rmg \Rightarrow \int (-3q^2 + 40q)dq = -q^3 + 20q^2 + k_1$$

A constante de integração k_1 pode ser determinada se for lembrado que sempre se deve ter R(0)=0, isto é:

$$-0^3 + 20 \cdot 0^2 + k_1 \Longrightarrow k_1 = 0 eR = -q^3 + 20q$$

De forma semelhante, pode ser determinada a função Custo Total:

$$C = \int Cmg \Rightarrow \int 16q \cdot dq = 8q^2 + k_2$$

Desta vez, a constante de integração k_2 pode ser determinada fazendo $C(0)=C_f$, uma fez que o Custo Fixo foi dado como informação adicional: $8\cdot 0^2+k_2=200 \Longrightarrow k_2=200$

Ex.: Integral Definida: Seja p = 2q + 10 a função Oferta para uma mercadoria cujo preço atual é 50. O Excedente do Produtor será calculado da seguinte forma:

$$p = 50 \Rightarrow 50 = 2q + 10 \Rightarrow 2q = 40 \Rightarrow q = 20$$

$$EP = \int_0^{20} (50 - (2q + 10)) dq = \int_0^{20} (40 - 2q) dq =$$

$$= \left[40q - q^2 \right]_0^{20} = 400 - 0 = 400$$

Custos

$$C=Q^3+3Q^2+2Q+5 \rightarrow CT=Custo\ Total$$

$$CMg=3Q^2+6Q+2=C'=\frac{dC}{dQ}\rightarrow CMg=Custo\ Marginal$$

Para encontrar o Custo Total através do Custo Marginal, basta integrar o Custo Marginal.

Receitas

$$R=-0.4q^2+400q \rightarrow RT=Receita\ Total$$

$$RMG=-0.8q+400 \rightarrow RMg=R'=\frac{dR}{dq}=Receita\ Marginal$$

Para encontrar a Receita Total através da Receita Marginal, basta integrar a Receita Marginal.

Ex.: Na comercialização, em reais, de certo produto, a receita marginal é dada por R'(q) = -20q + 200 e o custo marginal é dado por C'(q) = 20q. Considere o intervalo $1 \le q \le 5$ e calcule:

- a. A variação total da receita (ΔRT)
- b. A variação total do custo (ΔCT)
- c. A variação total do lucro (ΔLT)
- d. A interpretação gráfica da ΔLt (item anterior).

Resolução

a.
$$\int_{1}^{5} (-20q + 200) dq = \int_{1}^{5} -20q \, dq + \int_{1}^{5} 200 \, dq = -20 \int_{1}^{5} q \, dq + 15200 \, dq$$

$$-20\frac{1}{2}q^2 + 200q + c = -10q^2 + 200q + c$$

Aplicando o Teorema Fundamental do Cálculo

$$F(5) - F(1)$$

$$[-10(5)^{2} + 200(5)] - [-10(1)^{2} + 200(1)]$$

$$[-10(25) + 1000] - [-10 + 200]$$

$$[-250 + 1000] - [190] = 750 - 190 = 560$$

$$\Delta R = 560$$

b.
$$\int_{1}^{5} 20q \, dq = 20 \int_{1}^{5} q \, dq = 20 \frac{1}{2} q^{2} + c = 10 q^{2} + c$$

$$F(5) - F(1)$$

$$10(5)^{2} - 10(1)^{2} = 10(25) - 10 = 250 - 10 = 240$$

$$\Delta C = 240$$

c.
$$RT - CT = LT$$

 $560 - 240 = 320$

$$\int_{1}^{5} L \, dq = \int_{1}^{5} R \, dq - \int_{1}^{5} C \, dq$$
$$\int_{1}^{5} L \, dq = \int_{1}^{5} (-20q + 200 - 20q) \, dq = \int_{1}^{5} (-40q + 200) dq$$

$$= -40\frac{1}{2}q^2 + 200q = -20q^2 + 200q$$

$$= F(5) - F(1)$$

$$= [-20(5)^2 + 200(5)] - [-20(1)^2 + 200(1)]$$

$$= [-20(25) + 1000] + 20 - 200 = -500 + 1000 + 20 - 200 = 320$$

$$\Delta L = 320$$

d.
$$Cmg = 20q$$
 (coef. Angular > 0)
 $RMg = -20q + 200$ (coef. Angular < 0)

Se cruzam:

$$CMg = RMg$$

$$20q = -20q + 200$$

$$20q + 20q = 200$$

$$40q = 200$$

$$q = 5$$

$$RMg = 0$$

$$-20q + 200 = 0$$

$$20q = 200$$

$$q = 10$$

$\Delta L = 320 = \text{Área do gráfico no intervalo [1,5]}$

Excedente do Consumidor

Excedente do consumidor é o valor que os consumidores estão dispostos a gastar menos o valor real gasto pelos consumidores.

Excedente do consumidor = Área = $\int_0^{q*} p(q)dq - q*p*$ ou $\int_0^{q*} D dq - q*p*$

Ex.: Considerando que uma pessoa está disposta a comprar calças e a quantidade a ser comprada dependerá do preço unitário das calças. Pela lei da demanda, quanto menor o preço das calças maior a quantidade a ser comprada.

Lembrando que: o preço de mercado é interior ao preço que o consumidor está disposto a pagar para algumas quantidades de calças a serem compradas.

Note que: a quantidade efetivamente gasta pelo consumidor será dada pela multiplicação do preço de mercado pelo número de calças compradas, ou seja:

Preço de mercado X Quantidade comprada

Ex.: na compra de calças, a função demanda é dada por p(q) = 100 - 10q ou D = 100 - 10q, pede-se:

a. Achar a área equivalente ao excedente do consumidor, considerando que o preço de mercado da calça é R\$60,00.

$$100 - 10q = 60$$

$$100 - 60 = 10q$$

$$40 = 10q$$

$$q = 4$$

Excedente

$$\int_{0}^{4} (100 - 10q)dq - p^{*}q^{*}$$

$$\int_{0}^{4} (100 - 10q)dq = 100q - 10\frac{1}{2}q^{2} = 100q - 5q^{2} + c$$

$$F(4) - F(0) = 100(4) + 5(4)^{2} = 400 - 80 = 320$$

$$Valor\ do\ excedente: 320 - pq = 320 - (60)(4) = 320 - 240 = 80$$

Excedente do Produtor

Excedente do Produtor é a diferença entre o valor real obtido pelos produtores na oferta (venda) de um produto e o valor mínimo que os produtores estão dispostos a receber na oferta (venda) de um produto.

Excedente do produtor = $q^*p^* - \int_0^{q^*} p(q)dq$

Ex.: Na venda de calças, a função oferta é dada por p(q) = 2q + 40, pede-se: a. Achar a área equivalente ao excedente do produtor, considerando que o preço de mercado da calça é R\$ 50,00.

$$p(q) = 2q + 40$$

$$2q + 40 = 50$$

$$2q = 50 - 40$$

$$2q = 10$$

$$q = 5$$

Excedente

$$p^*q^* - \int_0^5 (2q + 40)dq$$

$$\int_0^5 (2q + 40)dq = 2\frac{1}{2}q^2 + 40q + c = q^2 + 40q + c$$

$$F(5) - F(0) = (5)^2 + 40(5) = 25 + 200 = 225$$

$$Valor\ do\ excedente: pq - 225 = (5)(50) - 225 = 250 - 225 = 25$$

Referências Bibliográficas

- BIANCHINI, Edwaldo; PACCOLA, Herval. **Matemática**. São Paulo: Moderna, 1989.
- BRAGA, Márcio B.; KANNEBLEY Jr., Sérgio; ORELLANO, Verônica I. F. **Matemática para Economistas**. São Paulo: Atlas, 2003.
- CHIANG, Alpha C.; WAINWRIGHT, Kelvin. Matemática para Economistas. Rio de Janeiro: Elsevier, 2006.
- CHIANG, Alpha. **Matemática para Economistas**. São Paulo: McGraw-Hill, 1982.
- CRUM, W. L.; SCHUMPETER, Joseph A. Elementos de Matemática para Economistas e Estatísticos. Rio de Janeiro: Editora Fundo de Cultura, 1969.
 - FIGUEIREDO, Djairo Guedes. Análise I. Rio de Janeiro: LTC, 2008.
- GOLDSTEIN, Larry J.; LAY, David C.; SCHNEIDER, David I. **Matemática Aplicada: economia, administração e contabilidade**. Porto Alegre: Bookman, 2000.
- MEDEIROS DA SILVA, Sebastião. **Matemática para os Cursos de Economia, Administração e Ciências Contábei**s. 6. ed. Vol. 1. São Paulo: Atlas, 2010.
- MEDEIROS DA SILVA, Sebastião. **Matemática para os Cursos de Economia, Administração e Ciências Contábei**s. 5. ed. Vol. 2. São Paulo: Atlas, 2008.
- MUROLO, Afrânio Carlos; BONETTO, Giácomo. **Matemática Aplicada a Administração, Economia e Contabilidade**. 2. ed. rev. e ampl. São Paulo: Cengage Learning, 2012.
- SILVA, Luiza Maria Oliveira; MACHADO, Maria Augusta Soares. **Matemática Aplicada à Administração, Economia e Contabilidade**. São Paulo: Cengage Learning, 2010.
- TAN, S. T. **Matemática Aplicada a Administração e Economia**. 2. ed. São Paulo: Cengage Learning, 2008.
 - VERAS, Lília L. Matemática Aplicada à Economia. São Paulo: Atlas, 2011.
 - WAGNER, Eduardo. Matemática. Rio de Janeiro: Editora FGV, 2011.
- ZIL, Dennis G. **Equações Diferenciais**. Vol. 1. 3. ed. São Paulo: Pearson Markron Books, 2001.

ZIL, Dennis G. Markron Books, 2001.	Equações	Diferenciais.	Vol.	2.	3.	ed.	São	Paulo:	Pearson