

Asad Casis - A01424665

Planteamiento

Es una **empresa** que se dedica a la **producción de piezas automotrices** a base de Polipropileno.

El problema es que el experto en el proceso de extrusión se fue y el **porcentaje de defectos** está por los cielos.

El **objetivo** de la situación problema es **determinar las variables importantes** para el proceso de extrusión de Polipropileno en una máquina de tornillo sencillo para **mejorar la producción** (reducir el porcentaje de defectos).

Métrica:

Porcentaje de productos defectuoso (cociente entre los defectuosos y el total producido)

Conocer las variables

Distribución normal

Conocer las variables

Alta

Media

Aceptable

1 par de variables

1 par de variables

8 pares de variables

Conocer las variables

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
P_bomba	0	1	36.98	23.22	16.00	20.00	22.00	67.00	75.00	
T_plastic3	0	1	221.66	21.12	167.00	205.00	226.50	237.00	256.00	
T_plastic4	0	1	214.53	20.12	184.00	199.00	207.00	235.00	252.00	
T_tornillo	0	1	220.34	22.72	186.00	200.75	212.50	243.00	264.00	
RPM_tornillo	0	1	98.51	19.42	74.00	81.00	87.50	118.00	129.00	
T_barril	0	1	146.66	28.34	108.00	120.00	144.50	175.00	189.00	
V_extrusión	0	1	1.98	1.45	0.24	0.70	1.64	2.79	5.61	=
T_enfriadores	0	1	85.29	22.36	45.00	67.00	84.00	105.00	125.00	
Tipo_matPrima	0	1	2.04	0.94	1.00	1.00	2.00	3.00	3.00	
PCT_defectos	0	1	42.29	12.51	15.71	34.22	41.65	49.34	72.46	_==

Variable dependiente(y)

Proceso De Solución

Regresion Lineal Múltiple

Para sacar el mejor modelo.

02

Series de Tiempo

Observar como se ha comportado durante los meses

03

Predicciones

Predecir el número de defectos, si se sigue así.

01

Regresión Lineal Múltiple

Resumen del modelo

```
Call:
lm(formula = Y \sim A + B + C + D + E + F)
Residuals:
     Min
                    Median
               1Q
                                  30
                                           Max
-14.3359 -5.5536
                              4.3718 15.1781
                    0.0095
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                        11.47582 14.871 < 2e-16 *** ✓
(Intercept) 170.65959
                          0.02943 -2.772 0.00672 **
A (Presión bomba) -0.08159
                         0.03259 -7.979 3.75e-12 *** ♥
B (Temp plástico 3) -0.26003
                          0.03277 -8.770 8.18e-14 *** ✓
C (Temp plástico 4) -0.28736
                                  5.738 1.19e-07 *** √
D (Temp tornillo) 0.17226
                          0.03002
                          0.03411 -6.348 7.87e-09 *** √
E (RPM tornillo) -0.21654
                         0.02326 -6.654 1.95e-09 *** √
F (Temp barril) -0.15475
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.509 on 93 degrees of freedom
```

Multiple R-squared: 0.7457, Adjusted R-squared: 0.7293 ✓

F-statistic: 45.46 on 6 and 93 DF, p-value: < 2.2e-16

Tabla ANOVA

Analysis of Variance Table

```
Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

A 1 357.6 357.6 8.4399 0.004586 ** ✓

B 1 2433.2 2433.2 57.4286 2.553e-11 *** ✓

C 1 3961.3 3961.3 93.4968 1.024e-15 *** ✓

D 1 1251.2 1251.2 29.5324 4.394e-07 *** ✓

E 1 1676.8 1676.8 39.5756 1.020e-08 *** ✓

F 1 1875.7 1875.7 44.2704 1.951e-09 *** ✓

Residuals 93 3940.3 42.4

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Velocidad extrusión
- Temperatura enfriadores
- Tipo materia prima

 $\alpha = 0.05$

Validación de residuos

studentized Breusch-Pagan test

modeloRM2 data: BP = 8.9278, df = 6, p-value = 0.1777

Lilliefors (Kolmogorov-Smirnov) normality test

data: modeloRM2\$residuals D = 0.069563, p-value = 0.2745

Durbin-Watson test

modeloRM2 data:

DW = 2.233, p-value = 0.8844

alternative hypothesis: true autocorrelation is greater than 0

02 Series de Tiempo

Defectos

	Producto A			
Mac	Piezas	Piezas		
Mes	Producidas	defectuosas		
1	300000	157800		
2	300000	57400		
3	300000	85800		
4	300000	12400		
5	300000	45600		
6	300000	22100		
7	300000	163700		
8	300000	166300		
9	300000	94100		
10	300000	192800		
11	300000	135300		
12	300000	62800		
13	300000	25100		
14	300000	6400		
15	300000	166800		
16	300000	19800		
17	300000	20300		
18	300000	69100		
19	300000	151900		
20	300000	108100		
21	300000	111600		
22	300000	11300		
23	300000	154200		
24	300000	141700		

Producto B			
Piezas	Piezas		
Producidas	defectuosas		
40000	1100		
40000	2100		
40000	1200		
40000	2200		
40000	1900		
40000	4000		
40000	2700		
40000	3800		
40000	2700		
40000	4800		
40000	3700		
40000	6000		
40000	4500		
40000	4800		
40000	5500		
40000	4300		
40000	5900		
40000	10400		
40000	8500		
40000	13900		
40000	11900		
40000	13700		
40000	15900		
40000	14000		

Producto C				
Piezas	Piezas			
Producidas	defectuosas			
200000	78050			
200000	63350			
200000	74900			
200000	72450			
200000	87150			
200000	96250			
200000	91000			
200000	85400			
200000	65800			
200000	65450			
200000	67900			
200000	38850			
200000	68950			
200000	61600			
200000	71400			
200000	85400			
200000	84700			
200000	102200			
200000	88900			
200000	77350			
200000	61950			
200000	68600			
200000	58100			
200000	52850			

A: 300,000 Prod.- 48,000 Def. max

B: 40,000 Prod. - 6,400 Def. max

C: 200,000 Prod. - 32,000 Def. max

Producto A

Defectuosos Decomposition of additive time series

Desestacionalizado

Estabilización de la varianza

pA\$random

Autocorrelación

Series yA

Ruido

Producto B

Defectuosos

Decomposition of additive time series

Desestacionalizado

Registros defectuosos del producto B

Estabilización de la varianza

Autocorrelación

Series yB

Ruido

Producto C

Defectuosos

Decomposition of additive time series

Desestacionalizado

Registros defectuosos del producto C

Estabilización de la varianza

Autocorrelación

Ruido

Predicciones

Producto A

03 Predicciones

Producto B

03 Predicciones

Producto C

CONCLUSIONES

- Es importante monitorear constantemente las variables con las que se está trabajando, su relación y comportamiento
- Realizamos distintos modelos para encontrar el mejor
- De acuerdo con los pronósticos, el porcentaje de defectos va en aumento o, por lo menos, tiende a mantener un registro alto por los próximos 4 periodos

```
Estimate St
(Intercept) 170.65959
A (Presión bomba) -0.08159
B (Temp plástico 3) -0.26003
C (Temp plástico 4) -0.28736
D (Temp tornillo) 0.17226
E (RPM tornillo) -0.21654
F (Temp barril) -0.15475
```

ECUACIÓN

```
y = 170.66 - 0.08A - 0.26B - 0.29C
(11.48) (0.03) (0.03) (0.03)
```

+ 0.17D - 0.22E - 0.15F (0.17) (0.03) (0.02)

RECOMENDACIONES

Temperatura

Controlar el nivel de la temperatura de la máquina, ya que muchas de las variables que se utilizaron están relacionadas a ella

Monitoreo

Tener al menos a dos expertos en cada área Diseñar una interfaz que presente la interacción en tiempo real entre las variables

