Лабораторная работа №3

Задать несколько точек произвольной плоской кривой. Написать функции, интерполирующие кривую по этим точкам с помощью:

- ломанной [26.],
- сплайна Ньютона **[4б.]**,
- сплайна Лагранжа **[4б.]**,
- кубического сплайнам [56.],
- сплайном Эрмита [5б.].

Изобразить на картинке исходную кривую, точки, которые выбраны для интерполяции и сплайны (для каждого сплайна создать отдельную картинку). Какой из сплайнов лучше аппроксимировал кривую? Изобразить кривую, точки и все сплайны в одной системе координат. Видна ли разница в интерполяции?

Теоретический материал см. Голованов «Геометрическое моделирование», стр. 81–88. Краткое изложение см. ниже.

Сплайны

Во многих практических задачах аналитическая форма линии не известна, но требуется, например, чтобы кривая проходила через заданные точки, имела определенную степень гладкости или в определенных точках имела заданные производные.

Довольно большой класс линий можно построить по совокупности точек. Такие линии можно назвать точечно-заданными. Это ломанная линия и различные *сплайны*. Рассмотрим кубический сплайн, сплайн в форме Лагранжа, в форме Ньютона и сплайны Эрмита.

Задача ставится следующим образом: имеется совокупность точек в пространстве, радиус-векторы которых равны $\mathbf{p}_i = (\mathbf{p}_1, \dots, \mathbf{p}_n)$, $i = 1, \dots, n$. Требуется построить линию, радиус-вектор которой при значениях параметра t_i был бы равен \mathbf{p}_i .

$$\mathbf{r}(t_1) = \mathbf{p}_1, \dots, \mathbf{r}(t_i) = \mathbf{p}_i, \dots, \mathbf{r}(t_n) = \mathbf{p}_n.$$

Точки \mathbf{p}_i — характеристические точки кривой, t_i — узловые точки.

Кроме самих точек, могут быть заданы производные первого $\mathbf{q}_i = \dot{\mathbf{r}}(t_i)$ и второго порядка $\mathbf{s}_i = \ddot{\mathbf{r}}(t_i)$.

Ломанная линия

Простейшая точечно-заданная линия называется *ломанной линией*. Она состоит из отрезков, последовательно соединяющих заданные точки. Значения параметра в каждой последующей точке $t_i < t_{i+1}$. Радиус вектор ломанной определяется равенством.

$$\mathbf{r}(t) = \mathbf{p}_i(1-w) + \mathbf{p}_{i+1}w, \ \ w = \frac{t-t_i}{t_{i+1}-t_i}, \ \ t_0 \le t \le t_n$$

Сплайн Эрмита

Построим составной сплайн Эрмита, проходящий через заданную последовательность точек и имеющий в точках заданные производные. Пусть радиусвекторы этих точек равны \mathbf{p}_i , векторы производных кривой в этих точках равны \mathbf{q}_i , а значения параметра в эих точках равны t_i , где $t_i < t_{i+1}$ и $i=1,2,\ldots,n$ — номера точек. На участке между точками \mathbf{p}_i и \mathbf{p}_{i+1} составной сплайн Эрмита является полиномом третей степени местного параметра w.

$$\mathbf{r}_{i}(w) = \mathbf{a}_{0} + \mathbf{a}_{1}w + \mathbf{a}_{2}w^{2} + \mathbf{a}_{3}w^{3}w = \frac{t - t_{i}}{t_{i+1} - t_{i}}$$

Местный параметр w изменяется от 0 до 1. Векторы \mathbf{a}_j , $j=0,1,2,3,\ldots$ найдем из условий на границе участка кривой

$$\mathbf{r}_{i}(0) = \mathbf{p}_{i}, \ \mathbf{r}_{i}(1) = \mathbf{p}_{i+1}, \ \mathbf{r}_{i}'(0) = \mathbf{q}_{i}, \ \mathbf{r}_{i}'(1) = \mathbf{q}_{i+1}.$$

После решения этой системы уравнений и подстановки искомых значений в формулу для полиному, получим зависимость сплайна Эрмита от опорных точек и производных в этих точках.

$$\mathbf{r}_{i}(w) = \alpha_{0}(w)\mathbf{p}_{i} + \alpha_{1}(w)\mathbf{p}_{i+1} + \beta_{0}(w)\mathbf{q}_{i} + \beta_{1}(w)\mathbf{q}_{i+1}, w = \frac{t - t_{i}}{t_{i+1} - t_{i}}, \ t_{0} \leq t \leq t_{n}.$$

$$\alpha_{0}(w) = 1 - 3w^{2} + 2w^{3},$$

$$\alpha_{1}(w) = 3w^{2} - 2w^{3},$$

$$\beta_{0}(w) = w - 2w^{2} + w^{3},$$

$$\beta_{1}(w) = -w^{2} + w^{3}.$$

Значения производных ${f q}_i$ можно аппроксимировать, но мы будем предполагать, что они даны нам изначально.

Кубический сплайн

Построим на заданной совокупности характеристических точек сплайн, который бы имел непрерывными первые и вторые производные радиус-вектора. На каждом участке между соседними характеристическими точками будем описывать радиус-вектор кривой кубическими полиномом типа

$$\mathbf{r}_i(w) = \mathbf{a}_0 + \mathbf{a}_1 w + \mathbf{a}_2 w^2 + \mathbf{a}_3 w^3 w = \frac{t - t_i}{t_{i+1} - t_i}$$

Вторая производная радиус-вектора на участке $t_i \leq t \leq t_{i+1}$ является оинейной функцией параметра t

$$\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2} = \mathbf{s}_i \frac{t_{i+1} - t}{t_{i+1} - t_i} + \mathbf{s}_{i+1} \frac{t - t_i}{t_{i+1} - t_i}.$$

После двукратного интегрирования получим:

$$\mathbf{r}(t) = \mathbf{s}_i \frac{(t_{i+1} - t)^3}{6(t_{i+1} - t_i)} + \mathbf{s}_{i+1} \frac{(t - t_i)^3}{6(t_{i+1} - t_i)} + c_1 t + c_2.$$

Постоянные интегрирования c_1 и c_2 определим из условия на концах участка $\mathbf{r}(t_i) = \mathbf{p}_i$ и $\mathbf{r}(t_{i+1}) = \mathbf{p}_{i+1}$. После вычисления получим:

$$\mathbf{r}(t) = \mathbf{s}_{i} \frac{(t_{i+1} - t)^{3}}{6(t_{i+1} - t_{i})} + \mathbf{s}_{i+1} \frac{(t - t_{i})^{3}}{6(t_{i+1} - t_{i})} + \left(\frac{\mathbf{p}_{i}}{t_{i+1} - t_{i}} - \mathbf{s}_{i} \frac{t_{i+1} - t_{i}}{6}\right) (t_{i+1} - t) + \left(\frac{\mathbf{p}_{i+1}}{t_{i+1} - t_{i}} - \mathbf{s}_{i+1} \frac{t_{i+1} - t_{i}}{6}\right) (t - t_{i}).$$

Значения \mathbf{s}_i можно аппроксимировать с помощью \mathbf{p} . Для этого следует решить систему линейных уравнений, главная матрица которой трехдиагональна, так что решение сильно упрощается.

Полагая, что \mathbf{s}_i известны, мы можем переписать полином в форме, которую принято называть *кубическим сплайном*:

$$\mathbf{r}(t) = (1 - w)\mathbf{p}_i + w\mathbf{p}_{i+1} + \left((-2w + 3w^2 - w^3)\mathbf{s}_i + (-w + w^3)\mathbf{s}_{i+1}\right)\frac{t_{i+1} - t_i}{6},$$

$$w = \frac{t - t_i}{t_{i+1} - t_i}, \quad t_i \le t \le t_{i+1}.$$