

CÁLCULO DIFERENCIAL

Centro de Ciencia Básica Universidad Pontificia Bolivariana

Vigilada Mineducación

ENCUENTRO 11.1

Sección 3.3: Derivadas de funciones trigonométricas

Derivadas de las funciones trigonométricas

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

Nota: Identifique que los signos menos van con las derivadas de las "cofunciones", es decir coseno, cosecante y cotangente.

$$\frac{d}{dx}\left(\operatorname{sen}x\right) = \cos x$$

 $\operatorname{Si} f(x) = \operatorname{sen} x$, entonces

 $=\cos x$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h} \right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h} \right)$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \sin x \cdot 0 + \cos x \cdot 1$$

Fundada en 1936

sen (x + h) = sen x cos h + cos x sen h

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\cos x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x(\cos h - 1) - \sin x \sin h}{h}$$

$$= \lim_{h \to 0} \cos x \cdot \frac{\cos h - 1}{h} - \lim_{h \to 0} \sin x \cdot \frac{\sin h}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \cos x \cdot 0 - \sin x \cdot 1$$

$$= -\sin x.$$

 $\cos(x + h) = \cos x \cos h - \sin x \sin h$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx} (\tan x) = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right)$$

$$= \frac{\cos x \frac{d}{dx} (\sin x) - \sin x \frac{d}{dx} (\cos x)}{\cos^2 x}$$

$$= \frac{\cos x \cdot \cos x - \sin x (-\sin x)}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x} = \sec^2 x$$

Tarea: Encontrar la derivada de la función tangente utilizando la definición de la derivada

$$\frac{d}{dx}\left(\sec x\right) = \sec x \tan x$$

sec $x = 1/\cos x$. En consecuencia, es posible usar otra vez la regla del cociente para encontrar la derivada de la función secante:

$$\frac{d}{dx} \frac{1}{\cos x} = \frac{\cos x \frac{d}{dx} 1 - 1 \cdot \frac{d}{dx} \cos x}{(\cos x)^2}$$

$$= \frac{0 - (-\sin x)}{(\cos x)^2} = \frac{\sin x}{\cos^2 x}$$

$$\frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = \sec x \tan x$$

$$\frac{d}{dx} \frac{1}{\cos x} = \sec x \tan x$$

Tarea: Encontrar la derivada de la función secante utilizando la definición de la derivada

Tarea:

Demostrar que:

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

Fundada en 1936

$$\frac{d}{dx}\left(\cot x\right) = -\csc^2 x$$

Adicionalmente, encontrar ambas derivadas utilizando la definición de la derivada

EJEMPLO Regla del producto

Diferencie $y = x^2 \sin x$.

Solución La regla del producto junto con (4) da

$$\frac{dy}{dx} = x^2 \frac{d}{dx} \operatorname{sen} x + \operatorname{sen} x \frac{d}{dx} x^2$$
$$= x^2 \cos x + 2x \operatorname{sen} x.$$

Fundada en 1936

EJEMPLO

Regla del cociente

Diferencie
$$y = \frac{\sin x}{2 + \sec x}$$
.

Solución Por la regla del cociente, (4) y (9),

$$\frac{dy}{dx} = \frac{(2 + \sec x)\frac{d}{dx} \sec x - \sec x\frac{d}{dx}(2 + \sec x)}{(2 + \sec x)^2}$$

$$= \frac{(2 + \sec x)\cos x - \sec x(\sec x \tan x)}{(2 + \sec x)^2} \leftarrow \frac{\sec x \cos x = 1 \text{ y}}{\sec x(\sec x \tan x)} = \frac{1 + 2\cos x - \tan^2 x}{(2 + \sec x)^2}.$$

EJEMPLO

Segunda derivada

Encuentre la segunda derivada de $f(x) = \sec x$.

Solución la primera derivada es

$$f'(x) = \sec x \tan x$$
.

Para obtener la segunda derivada, ahora es necesario usar la regla del producto

$$f''(x) = \sec x \frac{d}{dx} \tan x + \tan x \frac{d}{dx} \sec x$$
$$= \sec x (\sec^2 x) + \tan x (\sec x \tan x)$$
$$= \sec^3 x + \sec x \tan^2 x.$$

Fundada en 1936

EJEMPLO 2 Derive $f(x) = \frac{\sec x}{1 + \tan x}$. ¿Para cuáles valores de x la gráfica de f tiene una recta tangente horizontal?

SOLUCIÓN Por la regla del cociente se tiene que

$$f'(x) = \frac{(1 + \tan x) \frac{d}{dx} (\sec x) - \sec x \frac{d}{dx} (1 + \tan x)}{(1 + \tan x)^2}$$

$$= \frac{(1 + \tan x) \sec x \tan x - \sec x \cdot \sec^2 x}{(1 + \tan x)^2}$$

$$= \frac{\sec x (\tan x + \tan^2 x - \sec^2 x)}{(1 + \tan x)^2}$$

$$= \frac{\sec x (\tan x - 1)}{(1 + \tan x)^2}$$

En la simplificación de la respuesta hemos utilizado la identidad $\tan^2 x + 1 = \sec^2 x$. Ya que sec x nunca es 0, f'(x) = 0 cuando $\tan x = 1$, y esto sucede cuando $x = n\pi + \pi/4$, donde n es un entero (véase la figura 4).

Fundada en 1936

FIGURA 4

Las rectas tangentes horizontales del ejemplo 2

SOLUCIÓN Las primeras derivadas de $f(x) = \cos x$ son como sigue:

$$f'(x) = -\sin x$$
$$f''(x) = -\cos x$$
$$f'''(x) = \sin x$$
$$f^{(4)}(x) = \cos x$$
$$f^{(5)}(x) = -\sin x$$

$$f^{(24)} = \cos x$$

y, derivando tres veces más, se tiene

$$f^{(27)} = \operatorname{sen} x$$

Fundada en 1936

V EJEMPLO 3 Un objeto que se encuentra en el extremo de un resorte vertical se desplaza hacia abajo 4 cm mas allá de su posición en reposo, para estirar el resorte, y se deja en libertad en el instante t = 0. (Véase la figura 5 y observe que la dirección hacia abajo es positiva.) Su posición en el instante t es

$$s = f(t) = 4\cos t$$

Encuentre la velocidad y la aceleración en el instante *t* y úselas para analizar el movimiento del objeto.

SOLUCIÓN La velocidad y la aceleración son

$$v = \frac{ds}{dt} = \frac{d}{dt} (4\cos t) = 4\frac{d}{dt} (\cos t) = -4\sin t$$

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(-4 \operatorname{sen} t \right) = -4 \frac{d}{dt} \left(\operatorname{sen} t \right) = -4 \cos t$$

El objeto oscila desde el punto más bajo ($s=4\,\mathrm{cm}$) hasta el punto más alto ($s=-4\,\mathrm{cm}$). El periodo de la oscilación es 2π , el periodo de cos t.

La rapidez es |v| = 4 | sen t |, la cual es máxima cuando | sen t | = 1; es decir, cuando cos t = 0. De modo que el objeto se mueve con la mayor rapidez cuando pasa por su posición de equilibrio (s = 0). Su rapidez es 0 cuando sen t = 0; esto es, en los puntos alto y bajo.

La aceleración $a = -4 \cos t = 0$ cuando s = 0. Alcanza la magnitud máxima en los puntos alto y bajo. Observe la gráfica en la figura 6.

FIGURA 5

FIGURA 6

Diferencie $y = \cos^2 x$.

Solución Una forma de diferenciar esta función es reconocerla como un producto: y = $(\cos x)(\cos x)$. Luego, por la regla del producto y (5),

Fundada en 1936

$$\frac{dy}{dx} = \cos x \frac{d}{dx} \cos x + \cos x \frac{d}{dx} \cos x$$
$$= \cos x (-\sin x) + (\cos x)(-\sin x)$$
$$= -2 \sin x \cos x.$$

En la siguiente sección veremos que hay un procedimiento alterno para diferenciar una potencia de una función.

Ejercicios

1–16 Derive cada una de las funciones siguientes:

1.
$$f(x) = x^2 \sin x$$

$$2. f(x) = x \cos x + 2 \tan x$$

$$3. f(x) = e^x \cos x$$

4.
$$y = 2 \sec x - \csc x$$

5.
$$q(t) = t^3 \cos t$$

6.
$$g(t) = 4 \sec t + \tan t$$

7.
$$h(\theta) = \csc \theta + e^{\theta} \cot \theta$$

$$8. y = e^u(\cos u + cu)$$

9.
$$y = \frac{x}{2 - \tan x}$$

10.
$$y = \sin \theta \cos \theta$$

11.
$$f(\theta) = \frac{\sin \theta}{1 + \cos \theta}$$

12.
$$y = \frac{\cos x}{1 - \sin x}$$

13.
$$y = \frac{t \text{ sen } t}{1 + t}$$

$$\mathbf{14.} \ \ y = \frac{\operatorname{sen} t}{1 + \tan t}$$

15.
$$f(\theta) = \theta \cos \theta \sin \theta$$

16.
$$f(t) = te^t \cot t$$

29. Si
$$H(\theta) = \theta$$
 sen θ , determine $H'(\theta)$ y $H''(\theta)$.

30. Si
$$f(t) = \sec t$$
, determine $f''(\pi/4)$.

Fundada en 1936

21–24 Encuentre la ecuación de la recta tangente a cada una de las curvas siguientes, en el punto dado.

21.
$$y = \sin x + \cos x$$
, (0, 1) **22.** $y = e^x \cos x$, (0, 1)

22.
$$y = e^x \cos x$$
, $(0, 1)$

23.
$$y = \cos x - \sin x$$
, $(\pi, -1)$ **24.** $y = x + \tan x$, (π, π)

24.
$$y = x + \tan x$$
, (π, π)

31. (a) Utilice la regla del cociente para derivar la función

$$f(x) = \frac{\tan x - 1}{\sec x}$$

- (b) Simplifique la expresión para f(x) expresándola en términos de sen x y cos x, y enseguida determine f'(x).
- (c) Demuestre que sus respuestas a los incisos (a) y (b) son equivalentes.

32. Suponga $f(\pi/3) = 4$ y $f'(\pi/3) = -2$, y sea g(x) = f(x)sen x y $h(x) = (\cos x)/f(x)$. Determine

(a) $g'(\pi/3)$ (b) $h'(\pi/3)$

Fundada en 1936

33–34 ¿Para qué valores de x la gráfica de f tiene una recta tangente horizontal?

33.
$$f(x) = x + 2 \sin x$$

34.
$$f(x) = e^x \cos x$$

51–52 Encuentre la derivada que se muestra, mediante la búsqueda de las primeras derivadas y observando el patrón que aparece.

51.
$$\frac{d^{99}}{dx^{99}}(\text{sen } x)$$

52.
$$\frac{d^{35}}{dx^{35}}(x \operatorname{sen} x)$$

53. Encuentre constantes A y B tales que la función $y = A \operatorname{sen} x + B \operatorname{cos} x$ satisface la ecuación diferencial $y'' + y' - 2y = \operatorname{sen} x$.

- **35.** Una masa en un resorte vibra horizontalmente sobre una superficie lisa y nivelada (véase la figura). Su ecuación de movimiento es x(t) = 8 sen t, donde t está en segundos y x en centímetros.
 - (a) Encuentre la velocidad y la aceleración en el instante t.
 - (b) Encuentre la posición, la velocidad y la aceleración de la masa en el instante $t=2\pi/3$. ¿En qué dirección se desplaza en ese instante?

REFERENCIA

Fundada en 1936

Stewart, J., Cálculo de una variable Trascendentes tempranas, Cengage Learning. Octava edición, 2018.

