AUTOMATED POULTRY FARM MANAGEMENT SYSTEM

INTERIM PROJECT REPORT

Submitted In partial fulfillment of the requirement of B.Tech Degree course in Electronics

And Communication Engineering of APJ Abdul Kalam Technological University

BY

ASWATHI M (JCE19EC005)

SANJANA C(JCE19EC012)

SHAHANA V S(JCE19EC013)

VEENA SANTHOSH(JCE19EC018)

GUIDED BY

Mrs. REMYA K P

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

LAKKIDI, OTTAPALAM, PALAKKAD, KERALA

DECEMBER 2022

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

Jawahar Gardens, Mangalam P.O, Lakkidi, Ottapalam, Palakkad-679301

CERTIFICATE

This is to certify that the interim project report on "AUTOMATED POULTRY FARM MANAGEMENT SYSTEM" is a bonafide report of the work done by,

ASWATHI M	JCE19EC005
SANJANA C	JCE19EC012
SHAHANA V S	JCE19EC013
VEENA SANTHOSH	JCE19EC018

in partial fulfillment of the requirement of B. Tech degree course in Electronics and Communication from Jawaharlal College of Engineering And Technology, during the academic year 2022-2023.

Guide:	HOD:
Mrs. REMYA K P	Dr UMESHA K
Assistant Professor	Professor and HOD
Department of ECE	Department of ECE

ACKNOWLEDGEMENT

On the very outset of this report, we would like to extend our sincere and heartfelt obligation towards all the personages who have helped us in this endeavor. Without their active guidance, co-operation, help and encouragement, we would not have made headway in the project.

We are indebted to God Almighty for blessing us with his grace and taking our endeavor to a successful culmination.

We express our sincere thanks to the Principal **Dr N Gunasekaran** for providing us with an opportunity to undertake this project.

We would like to extend our heartfelt thanks with a deep sense of gratitude and respect to the Head of the Department of Electronics and Communication Engineering, **Dr Umesha K** for his unfailing cooperation and constant encouragement throughout the course of our work.

We are ineffably indebted to our guide Mrs. Remya K P for her conscientious guidance and encouragement to accomplish this assignment.

We also express sincere gratitude to our project coordinator Mr. Vysak Valsan, Assistant Professor, for his guidance and support.

We also acknowledge with a deep sense of reverence the gratitude towards our parents, members of our families, who have always supported us morally and economically.

At last, not the least, gratitude goes to all the staff of our Department, friends and all our well-wishers who directly and indirectly supported us during the course of our project work.

ABSTRACT

With the essence of state of art technologies, the modern era has emerged with new directions to human life where the sole purpose is to make human life more comfortable and convenient. Smart control over poultry farming is getting accepted by the masses and this sector is flourishing due to its eminent necessity in mass scale. According to research there are an estimated 850 million poultry birds in India and the number of farmers involved in the business is estimated at 30 million. This clearly means that the poultry farm is one of the most important and healthy sources of income in India. But it does require a lot of effort to run a poultry farm, as it requires general bird control, health monitoring, Food, water, and local hygiene. The actual process of all of this is more challenging and more difficult. Therefore in order to acquire the owners of the poultry farm Proposed Automated Poultry Management System using IoT. Automated poultry farm in one where different features are incorporated such as food and water distribution, egg collection etc. All these actions are done automatically, thus making the poultry farm more efficient and profitable. This paper intends to introduce an idea where an automated poultry farm incorporating necessity features such as food supply, water supply, and egg collection etc. has been the main concern. The paper also demonstrates a prototype that explains each feature of the aforementioned work and from the prototype, it has been realized that the responses of individual components were highly satisfactory.

TABLE OF CONTENTS

ACKNOWLEDGEMENT ABSTRACT TABLE OF CONTENTS		iii iv v				
			LIST OF FIGURES vii			
			CHAPTER	TITLE	PAGE NO	
1	INTRODUCTION	1				
1.1	Overview	1				
1.2	Problem definition	2				
1.3	Objectives	3				
1.4	Motivation	3				
1.5	Chapter organization	5				
2	LITERATURE REVIEW	6				
2.1	Design and implementation of automated poultry	6				
	farm with distinguish features					
2.2	IoT based smart poultry farm	6				
2.3	IoT based real time poultry monitoring and health	7				
	status identification					
2.4	An effective automated monitoring and controlling	7				
	of poultry farm using IoT					
2.5	Smart poultry farm incorporating GSM and IoT	8				
2.6	A poultry farming control system using a ZigBee	8				
	based wireless sensor network					
2.7	Wireless sensor network; a complete solution for	9				
	poultry farming					
2.8	Automated control system for poultry farm based	10				
	on embedded system					
2.9	Summary	10				
3	PROJECT PLANNING	11				

	Reference	30
6.1	Future scope	29
6	CONCLUSION	29
5.5	Summary	28
	5.4.4 Economic feasibility	28
	5.4.3 Schedule feasibility	28
	5.4.2 Technical feasibility	28
	5.4.1 Operational feasibility	27
5.4	Feasibility study	27
5.3	Result	27
5.2	Working principle	26
5.1	Introduction	26
5	PRELIMINARY ANALYSIS	26
4.2	Block diagram	23
4.1	Formulation of design & methodology	22
4	DESIGN & METHODOLOGY	22
3.2	Allocation of work & budget	20
	3.1.12 NodeMcu	19
	3.1.11 LCD display	19
	3.1.10 Motor driver L293D	18
	3.1.9 Dc fan	17
	3.1.8 Servo motor	17
	3.1.7 Water pump	16
	3.1.6 Heater relay	16
	3.1.5 LDR	15
	3.1.4 Water level sensor	14
	3.1.3 IR level sensor	13
	3.1.2 DHT 11	12
5.1	3.1.1 Arduino Uno	12
3.1	Scheduling & resource identification	11

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO:		NO:
3.1	Arduino Uno	12
3.2	DHT 11	13
3.3	IR Level Sensor	14
3.4	Water Level Sensor	15
3.5	LDR	15
3.6	Heater Relay	16
3.7	Water pump	16
3.8	Servo Motor	17
3.9	DC Fan	18
3.10	Motor Driver L293D	18
3.11	LCD Display	19
3.12	Node MCU	20
4.1	Block Diagram	24