ANCOVA Comparison Simulations: Imbalanced Design

Kellie Ottoboni 2016-12-19

Normal data

We assume the following linear data-generating process:

$$Y_{ij1} = \beta_0 Y_{ij0} + \beta_j + \gamma_j Z_{ij} + \varepsilon_{ij}$$

for individuals $i = 1, ..., n_j$, j = 1, ..., J. β_0 is the coefficient for the standard normally-distributed baseline measurement Y_{i0} , β_j is the mean effect of being in stratum j, Z_{ij} is the treatment level, γ_j is the effect of treatment in stratum j, and ε_{ij} is an error term. We will assume that $\beta_0 = 1$. The observed $(Y_{ij0}, \varepsilon_{ij})$ are independent across i and j.

Suppose there are three strata with $\beta_1 = 1$, $\beta_2 = 1.5$, and $\beta_3 = 2$. Assume that there are 16 individuals per stratum and treatment assignment is **imbalanced**: 12 people receive each treatment 0 and 4 people receive treatment 1.

We use two designs:

- Design 1: $\gamma_1 = \gamma_2 = \gamma_3 = 1$. This is the standard assumption of a constant, additive treatment effect.
- Design 2: $\gamma_1 = \gamma > 0$, $\gamma_2 = \gamma_3 = 0$. This is a constant, additive treatment effect in stratum 1, but no treatment effect in stratums 2 and 3. This is a simplistic case of heterogeneous treatment effects.

With these two designs, we vary the distribution of ε . In the first case, we use $\varepsilon \sim N(0,1)$ to mimic the usual ANCOVA assumptions. In the second case, $\varepsilon \sim t(2)$ so the errors are heavy-tailed. Thus, there are four total simulation designs.

We compare five tests:

- ANCOVA: we fit a linear model of response Y_1 on baseline Y_0 , treatment Z, and a dummy for stratum.
- Stratified permutation: we permute treatment assignment within stratum, then take the difference in means between treated and control outcomes Y_1
- Differenced permutation: we do the same permutation procedure as the stratified permutation test, except we use the difference between outcome and baseline, $Y_1 Y_0$
- Linear model (LM) permutation: we use the same stratified permutation procedure as above, except use the t-statistic for the coefficient on treatment in the linear regression of Y_1 on Y_0 , Z, and stratum dummies
- Freedman-Lane test: see the other Rmd document for a full description of this procedure

Throughout our simulations, we first fix Y_0 and stratum ID. Treatment Z and the errors ε are randomly drawn according to their respective distributions. Then, Y_1 is constructed using the linear data-generating process above. We regenerate Z, ε , and Y_1 100 times for each design, then compute the empirical power of the five tests.

Data-generation, tests, and plotting functions

```
generate simulated data \leftarrow function(gamma, effect, errors, n = c(16,
    16, 16)) {
    # Input: gamma = the magnitude of the treatment effect effect
    # = 'same effect' or 'single stratum effect' - which strata
    # have a tr effect > 0? errors = 'normal' or 'heavy' n =
    # number of individuals at each stratum Returns: a dataframe
    # containing columns named Y1 (response), Y0 (baseline), Z
    # (treatment), gamma vec (treatment effect per individual),
    # stratumID (stratum), stratum_effect (beta coefficient per
    # individual), and epsilon (errors)
    stratumID \leftarrow rep(1:3, times = n)
    N \leftarrow sum(n)
    beta <- c(1, 1.5, 2)
    # What is the treatment effect?
    if (effect == "same effect") {
        gamma_vec <- rep(gamma, N)</pre>
    } else {
        gamma_vec \leftarrow rep(c(gamma, 0, 0), times = n)
    }
    # Generate errors
    if (errors == "normal") {
        epsilon <- rnorm(N)</pre>
    } else {
        epsilon \leftarrow rt(N, df = 2)
    # Generate covariates
    YO <- rnorm(N)
    Z <- do.call(c, lapply(n, function(x) rep(0:1, times = c(x *</pre>
        (3/4), x * (1/4)))))
    stratum_effect <- rep(beta, times = n)</pre>
    Y1 <- Y0 + gamma_vec * Z + stratum_effect + epsilon
    return(data.frame(Y1, Y0, Z, gamma_vec, stratumID, stratum_effect,
        epsilon))
}
generate_simulated_pvalues <- function(dataset, reps = 1000) {</pre>
    # Inputs: dataset = a dataframe containing columns named Y1
    # (response), YO (baseline), Z (treatment), and stratumID
    # (stratum) Returns: a vector of p-values first element is
    # the p-value from the ANCOVA second element is the p-value
    # from the stratified two-sample permutation test third
    # element is the p-value from the linear model test,
    # permuting treatment fourth element is the p-value from the
    # Freedman-Lane linear model test, permuting residuals
    # ANCOVA
    modelfit <- lm(Y1 ~ Y0 + Z + factor(stratumID), data = dataset)</pre>
    resanova <- summary(aov(modelfit))</pre>
    anova_pvalue <- resanova[[1]]["Z", "Pr(>F)"]
```

```
# Stratified permutation test of Y1
    observed_diff_means <- mean(dataset$Y1[dataset$Z == 1]) -</pre>
        mean(dataset$Y1[dataset$Z == 0])
    diff means distr <- stratified two sample(group = dataset$Z,
        response = dataset$Y1, stratum = dataset$stratumID, reps = reps)
    perm_pvalue <- t2p(observed_diff_means, diff_means_distr,</pre>
        alternative = "two-sided")
    # Diffed permutation test of Y1-Y0
    dataset$diff <- dataset$Y1 - dataset$Y0</pre>
    observed_diff_means2 <- mean(dataset$diff[dataset$Z == 1]) -
        mean(dataset$diff[dataset$Z == 0])
    diff_means_distr2 <- stratified_two_sample(group = dataset$Z,</pre>
        response = dataset$diff, stratum = dataset$stratumID,
        reps = reps)
    perm_pvalue2 <- t2p(observed_diff_means2, diff_means_distr2,</pre>
        alternative = "two-sided")
    # Permutation of treatment in linear model
    observed_t1 <- summary(modelfit)[["coefficients"]]["Z", "t value"]</pre>
    lm1 t distr <- replicate(reps, {</pre>
        dataset$Z_perm <- permute_within_groups(dataset$Z, dataset$stratumID)</pre>
        lm1_perm <- lm(Y1 ~ Y0 + Z_perm + factor(stratumID),</pre>
            data = dataset)
        summary(lm1_perm)[["coefficients"]]["Z_perm", "t value"]
    })
    lm_pvalue <- t2p(observed_t1, lm1_t_distr, alternative = "two-sided")</pre>
    # Freedman-Lane linear model residual permutation
    lm2_no_tr <- lm(Y1 ~ Y0 + factor(stratumID), data = dataset)</pre>
    lm2_resid <- residuals(lm2_no_tr)</pre>
    lm2_yhat <- fitted(lm2_no_tr)</pre>
    lm2_t_distr <- replicate(reps, {</pre>
        lm2_resid_perm <- permute_within_groups(lm2_resid, dataset$stratumID)</pre>
        dataset$response_f1 <- lm2_yhat + lm2_resid_perm</pre>
        lm2_perm <- lm(response_fl ~ Y0 + Z + factor(stratumID),</pre>
            data = dataset)
        summary(lm2 perm)[["coefficients"]]["Z", "t value"]
    fl_pvalue <- t2p(observed_t1, lm2_t_distr, alternative = "two-sided")</pre>
    return(c(ANCOVA = anova_pvalue, `Stratified Permutation` = perm_pvalue,
        `Differenced Permutation` = perm_pvalue2, `LM Permutation` = lm_pvalue,
        `Freedman-Lane` = fl_pvalue))
compute_power <- function(pvalues) {</pre>
    sapply((0:99)/100, function(p) mean(pvalues <= p, na.rm = TRUE))</pre>
plot_power_curves <- function(power_mat, title) {</pre>
    melt(power mat) %>% mutate(pvalue = Var1/100) %>% mutate(Method = Var2) %>%
        ggplot(aes_string(x = "pvalue", y = "value", color = "Method")) +
```

Test level: simulation under the null

Before testing for different kinds of effects, we begin checking that the tests have the correct level. We follow the procedure described above, using an effect size of $\gamma=0$ at all strata and using standard normal errors. To have the correct level means that the test rate of rejection at level α is $\alpha 100\%$. In other words, the p-values are uniformly distributed and the power curve should coincide with the line with slope 1 through the origin. Figure ?? demonstrates that this is the case. If anything, the differenced stratified permutation test has fewer than $\alpha 100\%$ false positives when using level α .

plot_pvalue_hist(designO_pvalues, "No Effect, Normal Errors")

set.seed(760682460) # Generated from random.org Timestamp: 2016-11-14 10:21:12 UTC

tmp <- generate_simulated_data(gamma = 0, effect = "same effect",</pre>

```
errors = "heavy")
design00_pvalues <- replicate(1000, {
    tmp$epsilon <- rt(nrow(tmp), df = 2)
    tmp$Z <- permute_within_groups(tmp$Z, tmp$stratumID)
    tmp$Y1 <- tmp$Y0 + tmp$stratum_effect + tmp$epsilon
    generate_simulated_pvalues(tmp)
})
design00_pvalues <- t(design00_pvalues)
colnames(design00_pvalues) <- c("ANCOVA", "Stratified Permutation",
    "Differenced Permutation", "LM Permutation", "Freedman-Lane")
design00_power <- apply(design00_pvalues, 2, compute_power)</pre>
```

plot_power_curves(design00_power, "No Effect, Heavy-tailed Errors")

plot_pvalue_hist(design00_pvalues, "No Effect, Heavy-tailed Errors")

Design 1: Constant additive effect, normal errors

There is no discernable difference in power between the ANCOVA, the differenced stratified permutation test, the LM permutations, or the Freedman-Lane test. However, the simple stratified permutation test of Y_1 has substantially less power than the other four. Without controlling for the baseline values, the variance in Y_1 masks the treatment effect.

plot_power_curves(design1_power, "Constant Additive Effect of 1, Normal Errors")

plot_pvalue_hist(design1_pvalues, "Constant Additive Effect of 1, Normal Errors")

Design 2: Single stratum effect, normal errors

A similar pattern emerges: the simple stratified permutation test has low power, while the other four power curves roughly coincide. The Freedman-Lane test may have the highest power for small p-values, but this could also just be noise. All five power curves are closer to the line passing through the origin: since the effect is only present at one stratum, it is more difficult to detect.

```
set.seed(760682460) # Generated from random.org Timestamp: 2016-11-14 10:21:12 UTC

tmp <- generate_simulated_data(gamma = 1, effect = "single stratum effect",
    errors = "normal")

design2_pvalues <- replicate(100, {
    tmp$epsilon <- rnorm(nrow(tmp))
    tmp$Z <- permute_within_groups(tmp$Z, tmp$stratumID)
    tmp$Y1 <- tmp$Y0 + tmp$stratum_effect + tmp$gamma_vec * tmp$Z +
        tmp$epsilon
    generate_simulated_pvalues(tmp)
})
design2_pvalues <- t(design2_pvalues)
colnames(design2_pvalues) <- c("ANCOVA", "Stratified Permutation",
    "Differenced Permutation", "LM Permutation", "Freedman-Lane")
design2_power <- apply(design2_pvalues, 2, compute_power)</pre>
```

plot_power_curves(design2_power, "Effect of 1 at a Single stratum, Normal Errors")

plot_pvalue_hist(design2_pvalues, "Effect of 1, Normal Errors")

Design 3: Constant additive effect, heavy-tailed errors

Again, we find that the four power curves coincide while the curve for the stratified permutation test is below the others. Here, the difference between the curves is not large. Controlling for baseline Y_0 does not substantially help reduce variance.

plot_pvalue_hist(design3_pvalues, "Constant Additive Effect of 1, Heavy-tailed Errors")

Design 4: single stratum effect, heavy-tailed errors

The noise from the heavy-tailed errors masks the treatment effect so much that controlling for baseline measures makes no difference. There is almost no power to detect an effect using any of the five tests.

```
set.seed(760682460) # Generated from random.org Timestamp: 2016-11-14 10:21:12 UTC

tmp <- generate_simulated_data(gamma = 1, effect = "single stratum effect",
    errors = "heavy")

design4_pvalues <- replicate(100, {
    tmp$epsilon <- rt(nrow(tmp), df = 2)
    tmp$Z <- permute_within_groups(tmp$Z, tmp$stratumID)
    tmp$Y1 <- tmp$Y0 + tmp$stratum_effect + tmp$gamma_vec * tmp$Z +
        tmp$epsilon
    generate_simulated_pvalues(tmp)
})

design4_pvalues <- t(design4_pvalues)
    colnames(design4_pvalues) <- c("ANCOVA", "Stratified Permutation",
        "Differenced Permutation", "LM Permutation", "Freedman-Lane")
design4_power <- apply(design4_pvalues, 2, compute_power)</pre>
```

plot_power_curves(design4_power, "Effect of 1 at a Single stratum, Heavy-tailed Errors")

plot_pvalue_hist(design4_pvalues, "Effect of 1, Heavy-tailed Errors")

Effect of 1, Heavy-tailed Errors


```
powers <- list(design1_power %>% as.data.frame() %% mutate(Treatment = rep("Constant Additive Effect",
    nrow(design1_power)), Errors = rep("Gaussian", nrow(design1_power))),
    design2_power %>% as.data.frame() %>% mutate(Treatment = rep("Single Stratum Effect",
        nrow(design2_power)), Errors = rep("Gaussian", nrow(design2_power))),
   design3_power %>% as.data.frame() %>% mutate(Treatment = rep("Constant Additive Effect",
       nrow(design3_power)), Errors = rep("Heavy-tailed", nrow(design3_power))),
   design4_power %>% as.data.frame() %% mutate(Treatment = rep("Single Stratum Effect",
        nrow(design4_power)), Errors = rep("Heavy-tailed", nrow(design4_power))),
    design0_power %>% as.data.frame() %>% mutate(Treatment = rep("No Effect",
       nrow(design0_power)), Errors = rep("Gaussian", nrow(design0_power))),
    design00_power %>% as.data.frame() %>% mutate(Treatment = rep("No Effect",
       nrow(design00 power)), Errors = rep("Heavy-tailed", nrow(design00 power))))
all_power_curves <- do.call(rbind, powers)</pre>
twobytwo <- all_power_curves %>% filter(Treatment != "No Effect") %>%
    melt(id.vars = c("Treatment", "Errors")) %>% mutate(pvalue = rep((1:100)/100,
    5 * 4)) %>% mutate(Method = variable) %>% ggplot(aes_string(x = "pvalue",
    y = "value", color = "Method")) + geom_line() + geom_abline(intercept = 0,
    slope = 1, linetype = "dashed") + xlab("P-value") + ylab("Power") +
    facet_wrap(Treatment ~ Errors) + ggtitle("Gaussian Data, Imbalanced Treatment Groups") +
    theme(axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12),
        axis.title = element_text(size = 16), title = element_text(size = 16),
        legend.title = element_text(size = 12), legend.text = element_text(size = 12),
        strip.text.x = element_text(size = 12), legend.position = "bottom") +
    guides(color = guide_legend(nrow = 2, byrow = TRUE))
twobytwo
```

Gaussian Data, Imbalanced Treatment Groups


```
pdf(file = "../ms/fig/imbalanced_simulation_power.pdf", width = 8)
twobytwo
dev.off()
```

```
## pdf
## 2
```

Treatment	Errors	ANCOVA	Stratified	Differenced	LM Permuta-	Freedman-
			Permutation	Permutation	tion	Lane
No Effect	Gaussian	0.046	0.031	0.028	0.042	0.045
Constant	Gaussian	0.840	0.490	0.810	0.870	0.860
Additive						
Effect						
Single Stra-	Gaussian	0.120	0.050	0.090	0.100	0.120
tum Effect						
No Effect	Heavy-	0.034	0.054	0.055	0.047	0.042
	tailed					
Constant	Heavy-	0.230	0.200	0.270	0.260	0.270
Additive	tailed					
Effect						
Single Stra-	Heavy-	0.070	0.080	0.090	0.090	0.080
tum Effect	tailed					

Table 1: Empirical power at level 0.05 for Gaussian simulated data with imbalanced treatment groups