LECTURE 2A – UNIVARIATE DISCRETE DISTRIBUTIONS

Bernoulli, Binomial, Multinomial, Geometric, Negative Binomial, and Poisson Distributions

See Book Chapter 4

Types of random variables

- We can divide random variables broadly into two types:
 - Discrete random variables have probabilities defined for discrete numerical values of the random variable
 - Continuous random variables have probabilities defined on ranges of values of the random variable

• Examples:

- Gender can be made a (discrete) random variable by recasting it as: M = 0 and F = 1.
- Income is a continuous random variable, though probabilities are only defined for ranges of its values

Table 1

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
004	A dama lahu	26	N/L	LIC		20.000	CE 004	1 505
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

Probability Distribution Function

- A probability distribution <u>function</u> is a mathematical function that provides the probabilities, given values of the random variable.
- A discrete random variable is said to have a probability mass function (pmf) that supplies probabilities for each value of the random variable. The probabilities are non-negative and always sum up to 1 for the sample space (or for all values of the random variable).
 - pmf for X_1 (Gender): $P(X_1 = 0) = p$; $P(X_1 = 1) = (1-p)$
 - The pmf directly gives you the probabilities based on the values of the random variable. i.e., it is often expressed as a function of the random variable.
 - The *cumulative probability distribution* (cdf) specifies the probability for the random variable being *less than or equal* to a particular value.
- A continuous random variable is said to have a probability density function (pdf) that (when integrated) supplies probabilities for ranges of values of the random variable. The probabilities are non-negative and the probability is 1 when the probability density function is integrated over the entire range of the random variable.
 - Pdf for X₅ (Income): $1/\sqrt{2\pi\sigma^2} e^{-(x-\mu)^2/2\sigma^2}$
 - To find the Probability (X₅ <= 0.25), you will *integrate the pdf* from –infinity to 0.25. This is also its cumulative distribution function (cdf)

Known Discrete (Probability) Distribution Functions

- We will discuss the pmf and cdf of several types of discrete random variables where, knowing the value of the random variable we can calculate its probability.
 - Bernoulli
 - Binomial
 - Multinomial
 - Negative Binomial
 - Geometric
 - Hypergeometric
 - Poisson
- In each case we will also look at the underlying events and the applications
- We can calculate parameters such as mean, median, mode, variance etc., for these known distribution functions.

BINOMIAL DISTRIBUTION

Discrete Distributions

The Bernoulli Trial & the Binomial Distribution

- The simplest discrete distribution is the Bernoulli trial and corresponds to an experiment with a "success" of probability p, and a "failure" of probability (1 p)
- We can *convert the experiment's outcome to a random variable* X such that Success = 1 and Failure = 0.
 - Probability Mass Function: $f_{bernoulli} = p^x (1 p)^{1-x}$
 - Expected Value = p; Variance = p(1-p)
- The Bernoulli distribution (or trial) forms the basis of the binomial and geometric distributions

Binomial Distribution:

- Underlying experiment n independent Bernoulli trials
- Random variable X Number of successes in n trials; X ~ Binomial(n, p).
 Note: ~ indicates "distributed as"
- Probability Mass Function: $f_{binom} = \binom{n}{x} p^x (1-p)^{n-x}$
- Expected Value = np; Variance = np(1-p)
- When n = 1, we get the Bernoulli
- Because we have the probability mass function (pmf) for the random variable, we do not need a table showing probabilities for each value of the random variable; the probability can be obtained from the pmf once we know the value of the random variable.

Binomial Probability Mass Function (pmf)

Binomial Distribution:

- Random variable X Number of successes in n trials; X ~ Binomial(n, p).
 Note: ~ indicates "distributed as"
- Probability Mass Function: $f_{binom} = \binom{n}{x} p^x (1-p)^{n-x}$
- Expected Value = np; Variance = np(1-p)
- When n = 1, we get the Bernoulli

Example:

- Consider the Gender (X_2) random variable. Let us assume that the population proportion of male clients is .52 and female clients 0.48. Then, p = 0.52 (since male is our success state and X_2 = 1 for males and 0 for females).
- The probability that we have $X_2 = 5$ males in a data set of n=10 is given by:
- $f_{binom} = \binom{n}{x} p^x (1-p)^{n-x} = (10!/(5!5!))(0.52)^5 (0.48)^5 = 0.244$

Practice with calculator

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

Using the Calculator

- In our example n = 10, p=0.52
- pmf = $\binom{n}{x} p^x (1-p)^{n-x} = \binom{10}{x} 0.52^x (0.48)^{10-x}$
- A choice function $\binom{n}{x}$ means "the number of ways you can "choose from N things taking x at a time". Its value = $\frac{n!}{(x!)(n-x)!}$
 - n! or "n-factorial" = 1 x 2 x 3 x....x (n-1) x n. i.e., the product of all numbers up to and including n.
 - Example: (⁵₂) means number of ways of choosing say two different people out of 5.
 Let us say we have Abe, Beth, Carey, Dave and Ernie;
 - Then we have $\binom{5}{2} = \frac{5!}{(2!)(3)!} = \frac{1 \times 2 \times 3 \times 4 \times 5}{(1 \times 2)(1 \times 2 \times 3)} = 10$
 - i.e., we have 10 pairs of people {AB, AC, AD, AE, BC, BD, BE, CD, CE, DE}. Note that CD is the same as DC etc.
- You can usually get factorials and combination function values from calculators or software such as Excel or you can compute them using the factorials.
- TI-30 XIIS Binomial Probability: YouTube video https://www.youtube.com/watch?v=UYgsvTM9tBA

X=Males	Prob
0	0.000649
1	0.007034
2	0.034289
3	0.099056
4	0.187793
5	0.244131
6	0.220396
7	0.136436
8	0.055427
9	0.013344
10	0.001446
Sum	1

Using R-language

- In this course we will the R-language to do many of the tasks required.
- R is open-source.
- R-platforms such as R-Studio are freely available
- You can install R-Studio (and R-language) on your personal computers to do the assignments.
- RStudio is free for download at: https://www.rstudio.com/products/rstudio/download/#download along with the R-Language download.
 - This is the preferred approach. It is easy to save and re-open files in the R-program from your own PC or laptop,
- The Data and Program Files will be available in Canvas under the Module R-files.
- R-Studio is also available through the Spears Lab Virtual Machine
 - Go to http://desktop.okstate.edu and download VMWare Horizon Client. Then use your Okey Id and password to log into the server SSB MSIS Lab. Look for R-Studio under Start.
 - Your R-programs can be saved on One Drive available in the virtual machine or on memory sticks

Download ClassData.csv and Binomial.R from Canvas

1

ClassData.csv

Download ClassData.csv (578 Bytes)

Clicking here will download the file to your browser's Downloads folder. Copy from there into a folder "MyRFiles" on the Desktop.

Do the Same for "Binomial R" Age Gender Education CreditScore Income NetWorth Sales 1 Adams, Jol 36 M HS 350 38900 65924 15

1 Adams, Jol	36 M	HS	350	38900	65924	1535
2 Ramesh, J	23 F	Bachelors	600	172000	178154	2196
3 Mendez, Ni	67 M	Bachelors	700	218000	265209	1287
4 Mendez, Jc	38 F	PhD	550	182000	85277	2143
5 Ritter, Jake	24 M	Masters	625	434000	193760	707
6 Rao, Eric	61 M	PhD	770	82000	314953	2170
7 Blake, Ann	26 F	HS	490	112000	192946	1229
8 Bishop, Ma	44 F	Masters	540	242000	339705	520
9 Ahmed, Mc	31 M	Masters	680	111000	185767	2326
10 Shultz, Dar	44 M	Bachelors	280	66000	97778	588

Binomial.R File opened from "MyRFiles" on Desktop

Open up Binomial.R by double-clicking on it or by opening R-Studio, suing File...Open File...and pointing to this file on your computer.

Make sure that the working directory in the setwd command is:

setwd("C:\\Users\\<yourid>\\Desktop\\MyRFiles")

Basic Commands for pmf, cdf and quantiles of Binomial in R

- In R,
 - dbinom(x, n, p, log = FALSE) gives the probability from the **pmf** P(X = x)
 - pbinom(x, n, p, log = FALSE) gives the cumulative probability (**cdf**) $P(X \le x)$
 - qbinom(percentile, n, p, lower.tail = TRUE, log = FALSE) gives x for $P(X \le x) = percentile$
- Working directly from R Console
 - You can enter the command directly into the R console (without using the Binomial.R script)
 - Type in the first command for dbinom(x, n, p,): **dbinom(0, 10, 0.52)**
 - Thereafter, use the Up Arrow key in your keyboard to recall the previous commands to modify the value for X and reissue the command.

Console	Terminal ×	Jobs ×	
C:/Users/	/sarathy/Deskt	op/MyRFile	s/ 🖈
	om(0, 10,		
	0006492506		
	om(1, 10,	0.52)	
	007033548	0 523	
	om(2, 10, 03428855	0.52)	
	om(3, 10,	0.52)	
	09905581	0.32)	
	om(4, 10,	0.52)	
[1] 0.1	L877933		
	om(5, 10,	0.52)	
	2441313		
	om(6, 10,	0.52)	
	2203963 om(7, 10,	0 52)	
	L364358	0.32)	
	om(8, 10,	0.52)	
	05542705	0.52)	
	om(9, 10,	0.52)	
	01334355		
	om(10, 10,	0.52)	
[1] 0.0	001445551		

X=Males	Prob
0	0.000649
1	0.007034
2	0.034289
3	0.099056
4	0.187793
5	0.244131
6	0.220396
7	0.136436
8	0.055427
9	0.013344
10	0.001446
Sum	1

Working Directly on the RStudio Console – cdf values and quantiles/percentiles

- Use pbinom(x, n, p,) to get the
 cdf values P(X ≤ x)
- Note: You can use "Cntrl L" to clear the Console.

```
Console Terminal × Jobs ×

C:/Users/sarathy/Desktop/MyRFiles/ 
> print("The 10th percetile is:")

[1] "The 10th percetile is:"
> qbinom(0.10,10,0.52, lower.tail = TRUE)

[1] 3
> print("The 50th percetile is or Median is:")

[1] "The 50th percetile is or Median is:"
> qbinom(0.50,10,0.52, lower.tail = TRUE)

[1] 5
```

Use *qbinom*(percentile, n, p, lower.tail = TRUE) to get the percentile values X such that P(X ≤ x) = percentile.

Binomial.R File

```
# Clear the Environment
rm(list=ls())
# Read csv file as a DataFrame
setwd("C:\\Users\\sarathy\\Desktop\\R-Code Examples")
df <- read.table('ClassData.csv',</pre>
                header = TRUE, sep = ',')
#Assign variable names to DataFrame Column objects
id <- df$ID
name <- df$Name
age <- df$Age
gender <-df$Gender
education <- df$Education
crediscore <-df$CreditScore
income <- df$Income
networth <-df$NetWorth
sales <-df$Sales
# The number of trials is the number of records in the file
nsize <- length(income)</pre>
# Getting binomial probabilities; x is number of success 0,1,...,number of records.
# p = prob and x is number of successes
#log = FALSE says that probabilities are not logarithm of probabilities
prob = 0.52
x = 5
# dbinom gives pmf value - probability of x successes
print(paste("Probability of ",x," successes in ",nsize, " trials is:",
            round(dbinom(x, nsize, prob, log = FALSE),4) ))
# pbinom gives cdf value - probability of <= x successes
print(paste("Probability of <= ",x," successes in ",nsize, " trials is:",
            round(pbinom(x, nsize, prob, log = FALSE),4) ))
# qbinom gives the quantile value of x for the specified quantile.
print(paste("The value of x for the 35th quantile i.e., P(X \le x) = 0.35 is ",
            abinom(0.35, nsize, prob, lower.tail = TRUE, log = FALSE)))
```

Binomial.R File (continued)

Table of Probabilities, Empirical Mean, Variance and Standard Deviation

```
43 # Table of probabilities
45 # Setting vectors to hold intermediate results
47 # Because x=0,1,2,...number of records, we need the vectors to have size 1 greater
48 # than number of records
49 #
50 result <- vector("numeric", nsize+1)
51 cum_result <- vector("numeric", nsize+1)
52 xPx <- vector("numeric", nsize+1)
                                                                                         [1] "X = 0 probability = 6e-04 cumumlative probability = 6e-04"
53 x2Px <- vector("numeric", nsize+1)
                                                                                             "X = 1 probability = 0.007 cumumlative probability = 0.0077"
54 rv_binom <-vector("numeric", 5)
                                                                                              "X = 2 probability = 0.0343 cumumlative probability = 0.042"
56 # Each vector's index goes from 1 to 11. For example result[1] will hold probability x = 0
                                                                                             "X = 3 probability = 0.0991 cumumlative probability = 0.141"
57 # and result[11] will hold probability x = 10
                                                                                              "X = 4 probability = 0.1878 cumumlative probability = 0.3288"
                                                                                             "X = 5 probability = 0.2441 cumumlative probability = 0.573"
59 - for (i in 0:nsize) [
60 result[i+1] <- dbinom(i, nsize, prob, log = FALSE)</p>
                                                                                             "X = 6 probability = 0.2204 cumumlative probability = 0.7933"
61 cum_result[i+1] <- pbinom(i, nsize, prob, log = FALSE)</p>
                                                                                             "X = 7 probability = 0.1364 cumumlative probability = 0.9298"
    print(paste("X = ",i, "probability = ",round(result[i+1],4),
                                                                                             "X = 8 probability = 0.0554 cumumlative probability = 0.9852"
63
                "cumumlative probability = ", round(cum_result[i+1].4), sep = " "))
64
                                                                                         [1] "X = 9 probability = 0.0133 cumumlative probability = 0.9986"
65
                                                                                         [1] "X = 10 probability = 0.0014 cumumlative probability = 1"
66 # Checking the Empirical mean vs Theoretical mean = np and
67 # Checking the Empirical variance vs Theoretical variance = np(1-p)
68 # Checking the Empirical standard deviation vs Theoretical standard deviation = sqrt(np(1-p))
69 for (i in 0:nsize) {
70 xPx[i+1] <- i*result[i+1]
71 x2Px[i+1] <- i*xPx[i+1]
72 1
73
                                                                                    > # Mean = sum of xPx
                                                                                    > Exp val = sum(xPx)
74 # Mean = sum of xPx
                                                                                    > print(paste("The Expected Value (empirical mean) is", round(Exp_val, 4), sep = " "))
75 \text{ Exp\_val} = \text{sum}(xPx)
                                                                                    [1] "The Expected Value (empirical mean) is 5.2"
76 print(paste("The Expected Value (empirical mean) is", round(Exp_val, 4), sep = " "))
                                                                                    > # Var = sum of X2Px - (sum(xPx)^{\wedge}2)
78 # Var = sum of x2Px - (sum(xPx) \wedge 2)
                                                                                    > varian = sum(x2Px) - Exp_val*Exp_val
79 varian = sum(x2Px) - Exp_val*Exp_val
                                                                                    > print(paste("The Empirical Variance is", round(varian, 4), sep = " "))
80 print(paste("The Empirical Variance is", round(varian, 4), sep = " "))
                                                                                    [1] "The Empirical Variance is 2.496"
81 print(paste("The Empirical standard deviation is", round(sqrt(varian), 4), sep =
                                                                                    > print(paste("The Empirical standard deviation Variance is", round(sqrt(varian), 4), sep = " "))
                                                                                    [1] "The Empirical standard deviation Variance is 1.5799"
```


Binomial Distribution – Expected Value, Variance and Standard Deviation

- We will calculate the expected value and variance both ways – from formula and from data
- From Formula:
- Expected Value = np = 10*(0.52) = 5.2;
- Variance = np(1-p) = 5.2*0.48 = 2.496

From Data (see Lecture 1):

Expected Value (or **Mean**) $E(X) = \sum_{x=1 \text{ to } 10} xP(X=x)$;

Variance =
$$V(X) = \sum_{x=1 \text{ to } 10} (x - E(X))^2 P(X = x)$$

Standard Deviation = sqrt(2.496) = 1.58

X	Prob	E(X) = xP(x)	(x - E(X))^2	(x - E(X))^2 P(x)
0	0.000649	0	27.04	0.017555737
1	0.007034	0.00703355	17.64	0.124071794
2	0.034289	0.0685771	10.24	0.351114736
3	0.099056	0.29716742	4.84	0.479430104
4	0.187793	0.7511732	1.44	0.270422352
5	0.244131	1.22065645	0.04	0.009765252
6	0.220396	1.32237782	0.64	0.141053634
7	0.136436	0.95505065	3.24	0.442052014
8	0.055427	0.44341637	7.84	0.434548045
9	0.013344	0.12009193	14.44	0.192680837
10	0.001446	0.01445551	23.04	0.033305496
Sum	1	5.2		2.496

Binomial.R File (continued) – Histogram of pmf and cdf

```
# Plot the pmf
len_result <- length(result)</pre>
indx = len_result - 1
plot((0:indx),result[1:len_result],
                                                    #--x-axis, y-axis
     type = "h",
                                                    #--type is histogram
     main = "Binomial Probability Plot 10 trials", #--Main title
    sub = "Probability of Success p = 0.52",
                                                    #--sub-title
    xlab = "# Success".
                                                    #--X-Label
    vlab = "Probability Mass",
                                                    #--Y-label
    col = "blue",
                                                    #--color of pillars
     col.lab ="red".
                                                    #-- color of X and Y labels
                                                    #--width of pillars
     1wd=10)
text((0:indx), result[1:len_result],
                                                    #-- adding text legend to pillars; x-axis; y-axis
                                                    #-- value shown in pillars
     round(result[1:len_result], 4),
                                                    #-- size expansion for text font
     cex=0.6.
                                                    #-- 4 indicates show to right of pillar (choose 1,2,3,4)
     pos=4.
     col="red")
                                                    #-- color of text
# Plot the cdf
len_result <- length(result)</pre>
indx = len_result - 1
plot((0:indx),cum_result[1:len_result],
    tvpe = "h".
    main = "Binomial Cumulative Probability Plot 10 trials".
    sub = "Cumulative Probability of Success p = 0.52",
    xlab = "# Success", vlab = "Probability Mass".
    col = "blue".
     col.lab ="red".
     lwd=10)
text((0:indx), cum_result[1:len_result], round(cum_result[1:len_result], 4), cex=0.6, pos=4, col="red")
```


Binomial Cumulative Distribution Function (cdf)

- The probability that we have at least 3 *males* in our data set $P(X \ge 3)$
 - $= 1 P(X \le 2) = 1 0.042 = 0.958$ = print(1 - pbinom(2, 10, 0.52, log = FALSE))
- The probability that we have no more than 4 females in our data set
 - $= P(X \ge 6) = 1 P(X \le 5) = 1 0.573 = 0.4271$ = print(1 - pbinom(5, 10, 0.52, log = FALSE))
- The probability that we have between 8 and 9 females in our data set
 - = P(X = 1) or P(X = 2) = 0.007 + 0.0343 = 0.0413= print(dbinom(1, 10, 0.52, log=FALSE) + dbinom(2, 10, 0.52, log=FALSE))
- The probability that all the people in our data set are *female* = P(X = 0) = 0.0006
 - = print(dbinom(0, 10, 0.52, log=FALSE))


```
[1] "X = 0 probability = 6e-04 cumumlative probability = 6e-04"
[1] "X = 1 probability = 0.007 cumumlative probability = 0.0077"
[1] "X = 2 probability = 0.0343 cumumlative probability = 0.042"
[1] "X = 3 probability = 0.0991 cumumlative probability = 0.141"
[1] "X = 4 probability = 0.1878 cumumlative probability = 0.3288"
[1] "X = 5 probability = 0.2441 cumumlative probability = 0.573"
[1] "X = 6 probability = 0.2204 cumumlative probability = 0.7933"
[1] "X = 7 probability = 0.1364 cumumlative probability = 0.9298"
[1] "X = 8 probability = 0.0554 cumumlative probability = 0.9852"
[1] "X = 9 probability = 0.0133 cumumlative probability = 0.9986"
[1] "X = 10 probability = 0.0014 cumumlative probability = 1"
```


Book Problem 4.98 – Page 291

- Approximately 8% of students at a local high school participate in after-school sports all four years of high school. A group of 60 seniors is randomly chosen. Of interest is the number that participated in after-school sports all four years of high school.
 - In words, define the random variable X. X is "the number that participated in after-school sports all four years of high school."
 - List the values that X may take on. $X = \{0,1,2,...,60\}$
 - Give the distribution of X including parameters, if any. i.e., X ~ Binomial (60, 0.08) where "success" is a student participating in sports all 4 years and p=0.08 is the probability of success.
 - How many seniors are expected to have participated in after-school sports all four years of high school? Expected value = np = 60*0.08 = 4.8 seniors.
 - Based on numerical values, would you be surprised if none of the seniors participated in after-school sports all four years of high school? Justify your answer numerically.

```
We look at P(X=0) from this binomial print(dbinom(0, 60, 0.08, log = FALSE)) = 0.0068. Since this is a low probability, yes, we would be surprised.
```

Based on numerical values, is it more likely that four or that five of the seniors participated in after-school sports all
four years of high school? Justify your answer numerically. 4 Seniors – see below.

```
> print(dbinom(4, 60, 0.08, log = FALSE))
[1] 0.1873153
> print(dbinom(5, 60, 0.08, log = FALSE))
[1] 0.1824288
```


Problems

- A school newspaper reporter decides to randomly survey 12 students to see if they will attend Tet (Vietnamese New Year) festivities this year. Based on past years, she knows that 18% of students attend Tet festivities. We are interested in the number of students who will attend the festivities.
 - In words, define the random variable X. The random variable X is: "the number of students who will attend Tet festivities".
 - List the values that X may take on. X = {0,1,2,...,12}
 - Give the distribution of X including parameters, if any. i.e., X ~ Binomial(12, 0.18) where "success" is if a student attends Tet.
 - How many of the 12 students do we expect to attend the festivities? The expected value is np = 12*0.18 = 2.16 students.
 - Find the probability that at most four students will attend. $P(X \le 4) = print(pbinom(4, 12, 0.18, log = FALSE))$ [1] 0.9510694
 - Find the probability that at least three students will attend. $P(X \ge 3) = 1 P(X \le 2) = \frac{1 pbinom(2, 12, 0.18, log=FALSE)}{[1] 0.3702131}$
 - 50% of the time, up to how many students attend the festivities?

```
> qbinom(0.5, 12, 0.18, log=FALSE)
[1] 2
```

Accessing R-Studio from SSB MSIS Lab Virtual Machine

Accessing R-Studio from SSB MSIS Lab Virtual Machine

MULTINOMIAL DISTRIBUTION

Discrete Distributions

The Multinomial Distribution

• Multinomial Distribution:

- Underlying experiment n independent trials of k-sided die
- Random variables (in this case k = 6 sides) {X_i: i=1,...,k}
- X_i Number of times side i shows up in n trials; X ~ Multinomial (k, n, p_k)
- Probability Mass Function: $f_{\text{multinom}} = \frac{n!}{x_1!x_2!,...,x_k!} p_1^{x_1} p_2^{x_2},..., p_k^{x_k}$
- Mean = Expected Value E(X_i)= np_i;
- Variance = $np_i (1-p_i)$;
- Covariance $(X_i, X_j) = -np_ip_j$, $i \neq j$.

Example; Consider the Education random variable (X_3) that has a multinomial distribution.

Assume for k = 1,...,4 we have PhD is k = 1, Masters is k = 2, Bachelors is k = 3 and HS is k = 4.

Assume the probabilities in the population are: $p_1 = 0.1$, $p_2 = 0.2$, $p_3 = 0.3$ and $p_4 = 0.4$.

http://stattrek.com/online-calculator/multinomial.aspx is an online multinomial calculator.

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

Multinomial.R

- Let us use **R** to find the probability that in 10 records we have 2 PhDs, 2 Masters, 2 Bachelors and 4 HS
- In R, *dmultinom*(x_vec, n_size, prob_x, log = FALSE) gives the probability from the pmf P(X = x)
- In our example of 2 PhDs, 2 Masters, 2 Bachelors and 4 HS

```
x_{\text{vec}} < -c(2, 2, 2, 4)

n_{\text{size}} = 10

prob_{\text{x}} < -c(0.1, 0.2, 0.3, 0.4);
```

The answer is: 0.01742

```
#Multinomial Probability of 2 PhDs, 2 Masters, 2 Bachelors and 4 HS
x_vec <- c(2,2,2,4)
n_size = 10
prob_x <- c(0.1, 0.2, 0.3, 0.4)
m_result <- dmultinom(x_vec, n_size, prob_x, log = FALSE)
print[paste("The Multinomial Probability of 2 PhDs, 2 Masters, 2 Bachelors and 4 HS is ",m_result,sep=" "))
[1] "The Multinomial Probability of 2 PhDs, 2 Masters, 2 Bachelors and 4 HS is 0.0174182400000001"

#If we select 5 customers, what is the probability that there will be 2 Masters and 3 HS?
x_vec <- c(0, 2, 0, 3)
n_size = 5
prob_x <- c(0.1, 0.2, 0.3, 0.4)
m_result <- dmultinom(x_vec, n_size, prob_x, log = FALSE)
print(paste("The Multinomial Probability of 0 PhDs, 2 Masters, 0 Bachelors and 3 HS is ",m_result,sep=" "))
[1] "The Multinomial Probability of 0 PhDs, 2 Masters, 0 Bachelors and 3 HS is 0.0256"</pre>
```

The Multinomial Distribution

- **Note:** In this case, **we cannot** show the table of probabilities for all the values for X_3 since there could be 10 (PhD) x10 (Masters) x10 (Bachelors) x10 (HS) = 10^4 or 10,000 possible values.
- But we can certainly calculate the probabilities for each one set of values for the random variable.
- The mean (expected value) of Bachelor degree customers is np₃ = 10 * 0.3 = 3
- The variance of HS degree customers is $np_4(1-p_4) = 10 * 0.4 * 0.6 = 2.4$. The standard deviation = sqrt (2.4)
- The covariance (we will see later what covariance is) between PhD and Masters = $-np_1p_2 = -10*0.1*0.2 = -0.2$

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

The Multinomial Distribution

- The multinomial distribution (as well as the binomial distribution) can be used in sampling problems, where each trial can be considered a draw from a sample.
- The type of sampling modeled is sampling with replacement because it does not affect the probability of success in the population (p)
- This will be in contrast to the *hypergeometric distribution* (we shall see later), where we consider probabilities of values in a sample, where the probability of success changes with each item sampled. This is **sampling without replacement**.

Problem

- Suppose we have a bowl with 10 marbles 2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl, with replacement.
 - In words, define the random variable X. X is the number of marbles of each color in the sample of 4.
 - List some of the values the values that X may take on. {0 red, 0 green, 4 blue}, {0 red, 1 green, 3 blue},...etc.
 - Give the distribution of X including parameters, if any. i.e., $X \sim Multinomial(k, n, p_k)$ where $k = 3, n = 4, p_1 = 0.2, p_2 = 0.3, p_3 = 0.5$
 - What is the probability of selecting 2 green marbles and 2 blue marbles?

```
x_vec <- c(0, 2, 2)
n_size = 4
prob_x <- c(0.2, 0.3, 0.5)
m_result <- round[dmultinom(x_vec, n_size, prob_x, log = FALSE), 4)|
print(paste("The Multinomial probability of selecting 2 green marbles and 2 blue marbles is",m_result,sep=" "))</pre>
```

[1] "The Multinomial probability of selecting 2 green marbles and 2 blue marbles is 0.135"

HYPERGEOMETRIC DISTRIBUTION

Discrete Distributions

The Hypergeometric Distribution

- Contrasted with the Binomial (and multinomial) distribution, the **hypergeometric distribution** represents **sampling without replacement** i.e., each draw affects the probability of success (and failure), because the population is not assumed infinite like the binomial.
- The hypergeometric distribution pmf is given by:

• P (X = x) =
$$f_{hypgeo} = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$$
 where:

- N is the population size,
- K is the number of "successes" in the population,
- n is our sample size, and
- x is the number of "successes" in the sample.
- The Expected value E(X) of the HyperGeometric Distribution is n(K/N) and variance is:

$$n\frac{K}{N}\frac{(N-K)}{N}\frac{N-n}{N-1}$$

The Hypergeometric Distribution

- Suppose our data set with 10 records below represents a random sample of our customers and we are interested in the probability of obtaining the 4 Females ("successes") given that we have 100 customers, 60 of whom are Females. The hypergeometric distribution gives such a probability.
- The probability from hypergeometric distribution pmf P (X = x) = $f_{hypgeo} = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{k}} = \frac{\binom{60}{4}\binom{40}{6}}{\binom{100}{6}} = 0.1081$
 - N = 100.
 - K is the number of "successes" or Females in the population = 60,
 - n is our sample size = 10
 - and k is the number of "successes" or Females in the sample (4)
- The Expected value of the HyperGeometric Distribution is n(K/N) = 6
- The variance is = 2.1818

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	М	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

Practice with calculator

HyperGeom.R

```
# Hypergeometric Distribution
 \#dhyper(x, m, n, k, log = FALSE) where
 # x = number of successes in sample (k in our notes)
 # m = number of successes in population (K in our notes)
 # n = number of failures in population (N - K) in our notes
 # k = sample size (n in our notes)
 # probability of obtaining the x=4 Females ("successes"), m=60 of whom are Females, n=40 Males ("failures").
 print(paste("probability of obtaining the x=4 Females, m=60 of whom are Females, n=40 Males",
             round(dhyper(4, 60, 40, 10, log = FALSE),4)))
                                                      [1] "probability of obtaining the x=4 Females, m=60 of whom are Females, n=40 Males 0.1081"
 #table of probabilities
 nsize <- length(income)</pre>
 result <- vector("numeric", 11)
 cum_result <- vector("numeric", 11)</pre>
 xPx <- vector("numeric", 11)</pre>
 x2Px <- vector("numeric", 11)</pre>
for (i in 0:nsize) {
   result[i+1] <- dhyper(i, 60, 40, 10, log = FALSE)
   xPx[i+1] <- i*result[i+1]</pre>
                                                                 > round(result[1:11], 4)
   x2Px[i+1] \leftarrow i*xPx[i+1]
                                                                  [1] 0.0000 0.0009 0.0079 0.0369 0.1081 0.2076 0.2643 0.2204 0.1153 0.0342 0.0044
   cum_result[i+1] \leftarrow phyper(i, 60, 40, 10, log = FALSE)
                                                                 > round(cum_result[1:11], 4)
                                                                  [1] 0.0000 0.0010 0.0089 0.0457 0.1538 0.3614 0.6258 0.8462 0.9615 0.9956 1.0000
 round(result[1:11], 4)
                                                                 > #
 round(cum_result[1:11], 4)
                                                                 > # Mean = sum of xPx
                                                                 > Exp_val = sum(xPx)
 \# Mean = sum of xPx
                                                                 > print(paste("The Expected Value is",Exp_val, sep = " "))
 Exp_val = sum(xPx)
                                                                 [1] "The Expected Value is 6"
 print(paste("The Expected Value is",Exp_val, sep = " "))
                                                                 > # Var = sum of X2Px - (sum(xPx)^2)
 # Var = sum of X2Px - (sum(xPx)^2)
                                                                 > varian = sum(x2Px) - Exp_val*Exp_val
 varian = sum(x2Px) - Exp_val*Exp_val
                                                                 > print(paste("The Variance is", varian, sep = " "))
 print(paste("The Variance is", varian, sep = " "))
                                                                                                                                       32
                                                                 [1] "The variance is 2.18181818181817"
```


Book Problem 114 – Page 294

- Suppose that a technology task force is being formed to study technology awareness among instructors. Assume that 10 people will be randomly chosen to be on the committee from a group of 28 volunteers, 20 who are technically proficient and eight who are not. We are interested in the number on the committee who are not technically proficient.
 - In words, define the random variable X. X is the number on the committee who are **not** technically proficient.
 - List the values that X may take on. X = {0,1,...,8}
 - Give the distribution of X including parameters, if any. i.e., X ~ Hypergeometric(N=28, K=8, n=10, k=x); Note: that "success" here is not being technically proficient.
 - How many instructors do you expect on the committee who are not technically proficient? Expected value is n(K/N) = 10(8/28) = 2.857.
 - Find the probability that at least five on the committee are not technically proficient. $P(X \ge 5) = 1 P(X \le 4) = 1$

NEGATIVE BINOMIAL & GEOMETRIC DISTRIBUTIONS

Discrete Distributions

The Bernoulli Trial & the Negative Binomial Distribution

- The negative binomial distribution gives the probability of n failures before the **rth** "success" (or rth failure) in a sequence of Bernoulli trials. The number of Bernoulli trials is n+r.
- X is called a negative binomial random variable because, in contrast to the binomial random variable, the number of successes (or failures) is fixed and the number of Bernoulli trials (x+r) is a random variable because x is a random variable.
- There are many flavors of the negative binomial depending on what is defined as success, therefore what is p, and what the other parameters are.
- We will use the version implemented in R-language.
- If x is the number of failures before r successes is reached (so total number of trials is n = x + r), p is the probability of success in any trial, then $X \sim \text{NegBin}(n, r, p)$ where n = r + x.
- Thus, $f_{\text{negbin}} = {x + r 1 \choose r 1} (1-p)^x p^r = \frac{(x+r-1)!}{x!(r-1)!} (1-p)^x p^r$
- The Expected value = $r^*(1-p)/p$ i.e., the expected number of failures before r successes
- Variance = $r^*(1-p)/p^2$.

The Bernoulli Trial & the Negative Binomial Distribution

- As we look at new customers, what is the probability that we will see 3 males before we see the second female customer in that group?
 - We define Female customer as success (and Male as "failure"), given p=probability of a Female in any trial (record) is 0.48?

Answer:

- To have x=3 failures (Males) before r=2 successes (Females) (n = 3+2), we have $\binom{4}{1}(.52)^3(0.48)^2 = 0.1296$
- To have x=0 failures (Males) before r=2 successes (Females) (n = 0+2), we have (0.48*0.48) = 0.2304
- Expected value = r(1-p)/p = 2*0.48/0.52 = 1.846; we expect to have about two males before we see two females and therefore 4 customers before we see two females.
- Variance = $r^*(1-p)/p^2 = 1.846/0.52 = 3.551$ and standard deviation is sqrt(3.551) = 1.884
- Note that it is not possible to enumerate the values that X can take, because theoretically X can take infinite values starting from 0, though after a while the probabilities for large X can become 0 depending on p.
- In the previous problem, using Chebchev's theorem we can see that by about 10 standard deviations from the mean (x = 20, n =22), the probabilities for X will become less than 0.01, if not sooner.

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	5,20
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

NegBinomial-Geometric.R

```
#Negative binomial - number of males we will see before the rth Female,
# assuming that p=Probabilty of seeing a female = 0.48
x \leftarrow c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
r = 2
p_female=0.48
nsize = 16
result <- vector("numeric", 16)
cum_result <- vector("numeric", 16)</pre>
for (i in 0:15) {
  result[i+1] <- dnbinom(i, r, p_female, log = FALSE)</pre>
  cum_result[i+1] <- pnbinom(i, r, p_female, log = FALSE)</pre>
print("Number of failures before 2 successes")
print("Probabilities")
round(result[1:nsize], 4)
print("Cumulative Probabilities")
round(cum_result[1:nsize], 4)
 [1] "Number of failures before 2 successes"
 [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[1] 0.2304 0.2396 0.1869 0.1296 0.0842 0.0526 0.0319 0.0189 0.0111 0.0064 0.0037 0.0021 0.0012 0.0007 0.0004 0.0002
[1] "Cumulative Probabilities"
> round(cum_result[1:nsize], 4)
 [1] 0.2304 0.4700 0.6569 0.7865 0.8707 0.9233 0.9552 0.9741 0.9852 0.9916 0.9953 0.9974 0.9985 0.9992 0.9995 0.9998
```

NegBinomial-Geometric.R

The Bernoulli Trial & the Geometric Distribution

- The Geometric distribution, is a specialization of the negative binomial, for r=1. It gives the probability of n Bernoulli trials before the first "success"
 - That is, we have (n-1) failures and 1 success
- $X \sim \text{Geom}(n, p)$ with the understanding r=1 and x + 1 = n.
- P is the probability of "success", (1-p) the probability of failure.
- Thus, $f_{geom} = (1-p)^x p$; The Expected value = (1-p)/p. Variance = $(1-p)/p^2$.
- What is the probability that the next 5 customers are Male (the sixth customer is a Female)?
- $(.52)^5(.48) = 0.0182$

Practice with calculator

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

The Bernoulli Trial & the Geometric Distribution

- The Geometric distribution, is a specialization of the negative binomial, for **r=1**. It gives the probability of x failures before the first "success"
 - That is, we have x failures and 1 success and n = x+1 trials
- X ~ Geom(n, p); Thus, $f_{geom} = (1-p)^x p$; The Expected value = (1-p)/p. Variance = $(1-p)/p^2$.
- What is the probability that the next 5 customers are Male (the sixth customer is a Female)?

[1] "The probability that the next 5 customers are Male (the sixth customer is a Female) is 0.0182"

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

Book Problem 104 – Page 292

- A consumer looking to buy a used red Miata car will call dealerships until she finds a dealership that carries the car. She estimates the probability that any independent dealership will have the car will be 28%. We are interested in the number of dealerships she must call.
 - In words, define the random variable X. X is the number of dealerships she called that don't carry a red Miata. If the first dealership she calls has the car, then X = 0.
 - List the values that X may take on. X = {0, 1, 2,3,}
 - Give the distribution of X including parameters, if any. i.e., $X \sim \text{Geometric}(n, p)$ where x + 1 = n.
 - On average, how many dealerships without cars does she call before she finds one with a car?
 Expected value of Geometric Distribution is (1-p)/p and since p = 0.28, it is 2.57.
 - Find the probability that she must call at most five dealerships. This means that the fifth dealership had a red Miata. Since we are modeling number of dealerships without the car (failures) we are looking at "at most" 4 dealerships.

```
We need P(X \le 4) = 0.8065
> print(paste("probability that she must call at most five dealerships",
+ round(pnbinom(4, 1, 0.28, log = FALSE), 4)))
[1] "probability that she must call at most five dealerships 0.8065"
```

Find the probability that she must call four or five dealerships before she finds a car. This means we are looking at the probability of 3 failures or 4 failures.

POISSON DISTRIBUTION

Discrete Distributions

Poisson Distribution

- The Poisson distribution gives the probability of a specified number of events occurring in a fixed interval of time and/or space.
 - Example: Suppose that a customer purchases 12 times a month on average, what is the probability that they will make 180 purchases over the next 12 months?
 - Example: Suppose a book has 3 errors per page on average. What is the probability of finding 10 pages with no errors?
- The Poisson distribution is actually a limiting case of a Binomial distribution when the number of trials, n, gets very large and p, the probability of success, is small.
- The probability of each event is independent of its previous occurrence just like in the Binomial where the probability of success in any trial is independent of the trial.
- The Poisson random variable X = the number of occurrences in the interval of interest. $X \sim Poisson(\lambda)$
- Pmf $f_{pois} = P(X = k) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 1,2,3,...$
 - \bullet λ = average number of occurrences per time period, k is number of occurrences
 - $E(X) = Var(X) = \lambda$
- CDF $F_{pois} = P(X \le x) = e^{-\lambda} \sum_{0}^{k} \frac{\lambda^{x}}{x!}, x = 1,2,3,...$

Poisson Distribution

- Suppose that a customer purchases 12 times a month on average, what is the probability that they will make 180 purchases over the next 12 months?
 - Pmf $f_{pois} = P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, k = 1,2,3,...$
 - For our example, $\lambda = 12$ per month and x = 15 per month.

• Exactly 15 purchases/month =
$$\frac{e^{-12}12^{15}}{(15)!}$$
 = 0.072

- At least 15 purchases/month = $e^{-12} \sum_{0}^{15} \frac{12^{15}}{15!} = 0.844$
- Expected Value = Variance = 12/month

Pract	tice v	with	cal	CH	ator
ГІАС	いしせ V	/VILII	Cai	Cui	aw

ID	Name	Age	Gender	Education	Credit Score	Income	Net Worth	Sales
001	Adams, John	36	M	HS	350	38,900	65,924	1,535
002	Ramesh, Jyoti	23	F	Bachelors	600	172,000	178,154	2,196
003	Mendez, Nick	67	M	Bachelors	700	218,000	265,209	1,287
004	Mendez, Joan	38	F	PhD	550	182,000	85,277	2,143
005	Ritter, Jake	24	M	Masters	625	434,000	193,760	707
006	Rao, Eric	61	M	PhD	770	82,000	314,953	2,170
007	Blake, Ann	26	F	HS	490	112,000	192,946	1,229
800	Bishop, Marge	44	F	Masters	540	242,000	339,705	520
009	Ahmed, Mo	31	M	Masters	680	111,000	185,767	2,326
010	Shultz, Dante	44	M	Bachelors	280	66,000	97,778	588

Poisson. R

```
#Poisson Distribution
\#dpois(x, lambda, log = FALSE) where
# x = number of occurrences in a given time/space interval
# lamdda is mean number of occurrences in a given time/spce interval
#Example:
# Suppose that a customer purchases 12 (i.e., lamda = 12) times a month on average,
#what is the probability that they will make 180 purchases over the next 12 months? (i.e., x = 15/month)
print(paste("probability that they will make 180 purchases over the next 12 months or 15 per month?",
            round(dpois(15, 12, log = FALSE(4)))
                                                         [1] "probability that they will make 180 purchases over the next 12 months or 15 per month? 0.0724"
print(paste("probability that they will make at least 180 purchases over the next 12 months or 15 per month?",
            1 - \text{round}(\text{ppois}(14, 12, \log = \text{FALSE}), 4)))
                                       [1] "probability that they will make at least 180 purchases over the next 12 months or 15 per month? 0.228"
#table of probabilities
nsize = 25
result <- vector("numeric", nsize+1)
cum_result <- vector("numeric", nsize+1)</pre>
xPx <- vector("numeric", nsize+1)</pre>
x2Px <- vector("numeric", nsize+1)</pre>
for (i in 0:nsize) {
  result[i+1] \leftarrow dpois(i, 12, log = FALSE)
  xPx[i+1] \leftarrow i*result[i+1]
  x2Px[i+1] \leftarrow i*xPx[i+1]
  cum_result[i+1] <- ppois(i, 12, log = FALSE)</pre>
round(result[1:nsize+1], 4)
round(cum_result[1:nsize+1], 4)
# Mean = sum of xPx
Exp_val = sum(xPx)
print(paste("The Empirical (mean) Expected Value is", round(Exp_val, 4), sep = " "))
# Var = sum of X2Px - (sum(xPx)^2)
                                                                            [1] "The Empirical (mean) Expected Value is 11.9918"
varian = sum(x2Px) - Exp_val*Exp_val
                                                                           [1] "The Empirical Variance is 11.9771"
print(paste("The Empirical Variance is".round(varian.4). sep = " "))
                                                                                                                                          45
```

Poisson. R

Book Problem 121 – Page 295

- **Problem:** The average number of children a Spanish woman has *in her lifetime* is 1.47. Suppose that one Spanish woman is randomly chosen.
 - a. In words, define the Random Variable X. X = the number of children for a Spanish woman in her lifetime
 - b. List the values that X may take on. $X = \{0, 1, 2, 3,...\}$
 - c. Give the distribution of X. $X \sim Poisson(1.47)$ assuming that the birth of each child is independent of the previous child.
 - Find the probability that she has no children in her lifetime.

```
> print(paste("probability that she has no children in her lifetime",
+ round(dpois(0, 1.47, log = FALSE),4)))
[1] "probability that she has no children in her lifetime 0.2299"
```

e. Find the probability that she has fewer children than the Spanish average.

f. Find the probability that she has more children than the Spanish average.

g. Find the probability that she will have 2 more children, given that she already has 7 children =P(X=9|X=7)=P(X=9|X=7)/P(X=7)/P(X=7); But given that each child birth is independent of the previous, P(X=9|X=7)=P(X=9)*P(X=7)/P(X=7)=P(X=9)=0.

Book Problem 119 – Page 295

- A manufacturer of Christmas tree light bulbs knows that 3% of its bulbs are defective. Find the probability that a string of 100 lights contains at most four defective bulbs using both the binomial and Poisson distributions.
- Solution;
 - As a binomial, "success" is a defective bulb, p=0.03, n =100 and we need P(X <= 4)</p>

```
> print(pbinom(4, 100, 0.03, lower.tail = TRUE, log = FALSE))
[1] 0.8178548
```

■ As a Poisson, lambda = 3 (because we are looking at a 100 bulbs and we expect 3 to be defective, which is lambda) and we need P(X <= 4)</p>

```
> print(ppois(4, 3, log = FALSE),4)
[1] 0.8153
```