COMPUTER SCIENCE & MATHEMATICS Integral Tentu

Fakultas Ilmu Komputer, Universitas Indonesia

TABLE OF CONTENTS

01 Notasi Sigma

04

Teorema Nilai Rata-Rata Dan Nilai Rata-Rata Fungsi

02 Integral Tentu

03

Teorema Dasar Kalkulus

Notasi Sigma

dapat diformulasikan sebagai: $\sum_{i=1}^n a_i$

Penentuan Luas Daerah Bidang Datar

- Aproksimasikan daerah R oleh n segiempat dengan n segiempat yang diambil bersama-sama mengandung R, menghasilkan polygon luar, atau terkandung di dalam R, menghasilkan poligon dalam.
- 2. Tentukan luas daerah masing-masing segiempat.
- 3. Jumlahkan semua luas daerah n segiempat, dengan menggunakan **notasi sigma**.
- 4. Tentukan nilai limitnya pada saat $n \to \infty$.
- 5. Jika hasil nilai limit luas daerah poligon dalam dan poligon luarnya sama, maka hasil limit tersebut merupakan luas daerah R.

Kelinearan Notasi Sigma

1.
$$\sum_{i=1}^n ca_i = c\sum_{i=1}^n a_i$$

2.
$$\sum_{i=1}^n (a_i \pm b_i) = \sum_{i=1}^n a_i \pm \sum_{i=1}^n b_i$$

Contoh Soal

1. Misal
$$\sum_{i=1}^{100}a_i=70; \sum_{i=1}^{100}b_i=20$$
 . Hitunglah $\sum_{i=1}^{100}(5a_i+3b_i-4)$

2. Tunjukkan bahwa
$$\sum_{i=1}^n \left(i+1\right)^2 - i^2 = (n+1)^2 - 1$$

Bentuk Khusus Notasi Sigma

1.
$$\sum_{i=1}^n i = 1+2+\ldots+n = rac{n(n+1)}{2}$$

2.
$$\sum_{i=1}^n i^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\sum_{i=1}^n i^3 = 1^3 + 2^3 + \ldots + n^3 = \left[rac{n(n+1)}{2}
ight]^2$$

4.
$$\sum_{i=1}^n i^4 = 1^4 + 2^4 + \ldots + n^4 = rac{n(n+1)(2n+1)ig(3n^2 + 3n - 1ig)}{30}$$

Penggunaan Lainnya Konsep Notasi Sigma

Penggunaan Lainnya Konsep Notasi Sigma

Jumlahan Riemann

dapat dinotasikan menjadi:

$$R_p \, = \sum_{i=1}^n f(ar{x}_i) \Delta x_i$$

untuk f fungsi pada [a,b], dengan partisi P membagi interval tersebut menjadi n subinterval, di mana a = $\mathbf{x}_1 < \mathbf{x}_2 < \mathbf{x}_3 < \cdots < \mathbf{x}_{n-1} < \mathbf{x}_n = \mathbf{b}$ dan $\Delta \mathbf{x}_i = \mathbf{x}_i - \mathbf{x}_{i-1}$ dan dipilih titik sampel \bar{x}_i pada tiap subinterval [\mathbf{x}_{i-1} , \mathbf{x}_i]

Jumlah Riemann – Hitunglah jumlah Riemann untuk:

1. Misal kita memiliki fungsi f(x) = x^2 + 1 pada interval [-1,2] dengan menggunakan titik partisi berjarak sama -1 < -0,5 < 0 < 0,5 < 1 < 1,5 < 2, dengan titik sampel $\bar{x_i}$ berupa titik tengah dari interval bagian ke-i.

2. Misal kita memiliki fungsi f(x) = (x+1)(x-2)(x-4) = x^3 -5 x^2 +2x+8 pada interval [0,5] dengan menggunakan titik partisi 0 < 1,1 < 2 < 3.2 < 4 < 5 dan titik sampel yang berpadanan yaitu: $\bar{x}_1=0.5; \ \bar{x}_2=1.5; \ \bar{x}_3=2.5; \ \bar{x}_4=3.6; \ \bar{x}_5=5$

Definisi Integral Tentu

• Misalkan f adalah sebuah fungsi yang didefinisikan pada interval tertutup [a, b]. Jika

$$\lim_{\|P\| o 0}\sum_{i=1}^n f(ar{x}_i)\Delta x_i.$$

ada, maka kita katakan f terintegralkan pada [a, b].

Integral tentu (integral Riemann) didefinisikan sebagai:

$$\int_a^b f(x) dx = \lim_{\|P\| o 0} \sum_{i=1}^n f(ar{x}_i) \Delta x_i.$$

dengan $\|P\|$ adalah panjang P (subinterval partisi yang terpanjang).

Definisi Integral Tentu

Perhatikan bahwa berdasarkan konsep jumlah Riemann:

$$\int_a^b f(x) dx = A_{atas} - A_{bawah}$$

Sifat-Sifat Integral Tentu

1.
$$\int_a^a f(x)dx=0$$
 3. $\int_a^c f(x)dx=\int_a^b f(x)dx+\int_b^c f(x)dx$

2.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx, \ a > b$$

Contoh Soal

1.
$$\int_{A}^{4} x^{3} dx =$$

$$2. \qquad \int_6^1 x^3 dx =$$

3.
$$\int_{2}^{5} (x^2 - 3x - 6) dx =$$

Contoh Soal II

1. Tentukan
$$\int_0^2 x^2 dx =$$
 dengan $ar{x}_i = rac{2i}{n}$

Fungsi Apa yang Dapat Diintegrasikan?

- Teorema Keintegralan

Untuk f terbatas pada [a, b]:

Jika f kontinu maka f dapat diintegralkan pada [a,b].

$$y = f(x) = \begin{cases} 1/x^2, & x \neq \\ 1, & x = 0 \end{cases}$$

Kecepatan

Misal kita punya mobil yang berjalan dengan kecepatannya dapat kita gambarkan dalam kurva, maka kecepatannya dapat kita formulasikan menjadi:

$$v = f(t)$$

dan dengan v yang ada, maka jarak s dengan waktu t = [0, 3]:

$$s=\int_0^3 f(t)dt = \lim_{n o\infty} \sum_{i=1}^n f(t_i) \Delta t$$
Bagaimana kalau kita sudah punya jarak, tapi mau hitung

kecepatan?

$$v=rac{d}{dx}s(x)=rac{d}{dx}\int_{0}^{3}f(t)dt$$

Area Function

Bagaimana jika batas atasnya bukanlah suatu angka fix, melainkan variabel x? *Butuh accumulation function* A(x).

$$A(x) = \int_a^x f(t)dt$$

dengan a = batas bawah dalam angka fix dan x=batas atas dalam bentuk variabel.

Fig. 8

Contoh Soal

Perhatikan daerah yang dibatasi oleh kurva f(t) = 2t+3 dan sumbu axis t dari t = 2 ke t = x yang membentuk trapesium, jika accumulation function (fungsi luas) mendefinisikan luas trapesium untuk $x \ge 2$:

- a. evaluasi A(5)
- b. carilah fungsi A(x), untuk x≥ 2
- c. bandingkan turunan A(x) dengan fungsi f(t)

Fig. 8

Teorema Dasar Kalkulus Pertama

Misalkan f adalah sebuah fungsi yang didefinisikan pada interval tertutup [a, b] dan kontinu pada interval tersebut, dan misalkan x = variabel titik pada (a, b), maka:

$$rac{d}{dx}\int_{a}^{x}f(t)dt=f(x)$$

Teorema B: Sifat Perbandingan

Jika f dan g terintegrasikan pada [a,b] dan jika $f(x) \le g(x)$ untuk semua x dalam [a,b], maka

$$\int_a^b f(x)dx \leq \int_a^b g(x)dx$$

Teorema C: Sifat Keterbatasan

Jika f terintegralkan pada [a,b] dan jika $m \le f(x) \le M$ untuk semua x dalam [a,b], maka

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

Integral Tentu Sebagai Operator Linier

Jika f dan g terintegrasikan pada [a,b] dan k = konstanta, maka kf serta f dan g terintegrasikan, dan:

1.
$$\int_a^b kf(x)dx=k\int_a^b f(x)dx$$

2.
$$\int_a^b [f(x)\pm g(x)]dx=\int_a^b f(x)dx\pm \int_a^b g(x)dx$$

Teorema Dasar Kalkulus Kedua

Misalkan f kontinu (karenanya terintegrasikan) pada [a,b] dan misalkan F sebarang antiderivatif dari f pada [a,b]. Maka:

$$\int_a^b f(x) dx = F(b) - F(a)$$

4. Teorema Nilai Rata-Rata

Teorema

Misalkan f kontinu (karenanya terintegrasikan) pada [a,b], maka dapat ditemukan bilangan c diantara a dan b sedemikian rupa sehingga

$$\int_a^b f(x) dx = f(c)(b-a)$$

4. Teorema Nilai Rata-Rata

Latihan Soal

Tentukan c yang memenuhi:

1.
$$\int_a^b ig(x^2+5ig) dx = f(c)(b-a); \ a = 0, \ b = 1$$

