Chapter Three Part-2

Interrupts

- Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing
- Program
 - o e.g. overflow, division by zero
- Timer
 - Generated by internal processor timer
 - Used in pre-emptive multi-tasking
- I/O
 - o from I/O controller
- Hardware failure
 - o e.g. memory parity error

Program Flow Control

Interrupt Cycle

- Added to instruction cycle
- Processor checks for interrupt
 - Indicated by an interrupt signal
- If no interrupt, fetch next instruction
- If interrupt pending:
 - Suspend execution of current program
 - Save context
 - Set PC to start address of interrupt handler routine
 - Process interrupt
 - Restore context and continue interrupted program

Transfer of Control via Interrupts

Instruction Cycle with Interrupts

Program Flow Control

Program Timing Short I/O Wait

Program Flow Control

Program Timing Long I/O Wait

(a) Without interrupts

Instruction Cycle (with Interrupts) - State Diagram

Multiple Interrupts

Disable interrupts

- Processor will ignore further interrupts whilst processing one interrupt
- Interrupts remain pending and are checked after first interrupt has been processed
- Interrupts handled in sequence as they occur

Define priorities

- Low priority interrupts can be interrupted by higher priority interrupts
- When higher priority interrupt has been processed, processor returns to previous interrupt

Multiple Interrupts - Sequential

Multiple Interrupts – Nested

Time Sequence of Multiple Interrupts

Connecting

- All the units must be connected
- Different type of connection for different type of unit
 - Memory
 - o Input/Output
 - o CPU

PCI Express bus card slots (from top to bottom: x4, x16, x1 and x16), compared to a traditional 32-bit PCI bus card slot (bottom). (PCI = Peripheral Component Interconnect)

Computer Modules

Memory Connection

- Receives and sends data
- Receives addresses (of locations)
- Receives control signals
 - Read
 - O Write
 - Timing

Computer Modules

Input/Output Connection(1)

- Similar to memory from computer's viewpoint
- Output
 - Receive data from computer
 - Send data to peripheral
- Input
 - Receive data from peripheral
 - Send data to computer

Input/Output Connection(2)

- Receive control signals from computer
- Send control signals to peripherals
 - o e.g. spin disk
- Receive addresses from computer
 - o e.g. port number to identify peripheral
- Send interrupt signals (control)

Computer Modules

CPU Connection

- Reads instruction and data
- Writes out data (after processing)
- Sends control signals to other units
- Receives (& acts on) interrupts

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)
- e.g. Unibus (DEC-PDP)

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - A number of channels in one bus
 - o e.g. 32 bit data bus is 32 separate single bit channels
- Power lines may not be shown

Bus Interconnection Scheme

Data Bus

- Carries data
 - Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - o 8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - o e.g. 8080 has 16 bit address bus giving 64k address space

Control Bus

- Control and timing information
 - Memory read/write signal
 - Interrupt request
 - Clock signals

Bus Interconnection Scheme

Big and Yellow?

- What do buses look like?
 - Parallel lines on circuit boards
 - Ribbon cables
 - Strip connectors on mother boards
 - × e.g. PCI
 - Sets of wires

Bus

Physical Realization of Bus Architecture

Single Bus Problems

- Lots of devices on one bus leads to:
 - Propagation delays
 - ➤ Long data paths mean that co-ordination of bus use can adversely affect performance
- Most systems use multiple buses to overcome these problems

High Performance Bus

Bus Types

- Dedicated
 - Separate data & address lines
- Multiplexed
 - Shared lines
 - Address valid or data valid control line
 - Advantage fewer lines
 - Disadvantages
 - More complex control
 - ▼ Ultimate performance

Reading Assignment

Bus Arbitration

Quiz

 Define A system Bus and discuss types of Buses? (10%)

Timing

- Co-ordination of events on bus
- Synchronous
 - Events determined by clock signals
 - Control Bus includes clock line
 - A single 1-0 is a bus cycle
 - o All devices can read clock line
 - Usually sync on leading edge
 - Usually a single cycle for an event

Synchronous Timing Diagram

Asynchronous Timing – Read Diagram

Asynchronous Timing – Write Diagram

NEXT LECTURE

Chapter Four: Cache Memory