数据整理过程

一、数据收集

主要采取三种方法收集:

1. 收集手头文件

定义 WeRateDogs 的推特档案转换后的 dataframe 文件为 df_t.

2. 从互联网下载文件

定义神经网络预测狗品种的文件为 response. 新建 tsv 文件 prediction. tsv,并在其中写入 response 内容。定义神经网络预测狗品种的数据转换后的 dataframe 文件为 df p.

3. API 下载文件

因为手机账号问题,无法使用推特 API,使用项目提供的文件,并定义 API 下载转换后的 dataframe 文件为 df_a.

二、数据评估

1. 方法一: 目测评估

将 df_p 转换为 csv 文件以便目测评估,命名为 prediction. csv,将 df_a 转换为 csv 文件以便目测评估,命名为 tweet_json. csv。

2. 方法二: 编程评估

采用 info, .describe, .value_counts, .sort_values 等方法进行。并通过循环, 定义函数等方法检查狗的'地位'和评分是否与推文中的数据一致。

3. 结果一: 质量问题

(1) WeRateDogs 的推特档案 df t

前两行数据是 2017 年 8 月 1 号以后的,因为图像预测权限,无法使用。

有 181 行转推内容。

有78行回复内容。

rating_numerator 列有异常值, rating_denominator 列有异常值。 部分狗的"地位"与 tweet 内容里的不一致。

timestamp 列数据类型为 str。

rating_denominator 列最小值为 0. (可以与这两列异常值问题一并处理)

- (2) 图像预测数据 df p
- p1 列值有大写有小写。
 - (3) Tweepy 下载数据 df_a.

前两行数据是2017年8月1号以后的,因为图像预测权限,无法使用。

id 列数据类型为浮点,与其他两个数据集 id 列类型为整型不一致。created_at 列与 df_t 中 timestamp 列重复。

favorite_count 和 retweet_count 列数据类型为浮点

4. 结果二:整洁度问题

tweet_id, in_reply_to_status_id, in_reply_to_user_id, source 这四列同时出现在 df_t 和 df_a 中, 一个观察单元同时出现在两个表格中。

WeRateDogs 的推特档案 df_t 中, 狗"地位"(即 doggo、floofer、pupper 和 puppo)4列的列名是值,不是变量名。

三、数据清理

- 1.删除 df_t_clean 和 df_a_clean 的前两行数据。
- 2.删除 df_t 中 181 行转推内容及数据集的 retweeted_status_id, retweeted_status_user_id, retweeted_status_timestamp 列。

- 3. 删除 df_t 中 78 行回复内容及数据集的 in_reply_to_status_id, in_reply_to_user_id 列。
- 4.删除 rating_numerator 值大于等于 20 和等于 0 的行, 删除 rating_denominator 值不等于 10 的行。
- 5. 在 df_t_clean 新建 stage 列, 值是推文里提取的狗狗地位数据, 然后修改该列数据为 category 类型并删除 doggo, floofer, pupper, puppo 列。
 - 6.将 df_t_clean 中 timestamp 列数据类型改为 datetime.
 - 7. 将 df_a_clean 中 created_at 列删除。
 - 8.将 df_a_clean 的 id 列数据类型改为整型。
- 9. 将 df_a_clean 中的 favorite_count 和 retweet_count 列数据类型改为整型。
- 10. 清除 df_a_clean 的 source 列,保留三个数据集中的 tweet_id 和 id 列,用以合并数据集。
 - 11 . 将 df_p_clean 的 p1 列全部改为小写。
 - 12. 合并三个数据集并分别导出至 csv 文件。
 - 13.根据不同分析目标合并相关的两个数据集。