

An RC Oscillator With Comparator Offset Cancellation and Current Consumption Reduction Technique

Yu-Min Han, Yu-Tzu Liu, Tun-Hsien Chien

Research Project under Electronics Research IC Lab Advisor: Prof. Tsung-Hsien Lin

I. Abstract

This project presents a low-power RC oscillator featuring offset cancellation[1] and enhanced energy efficiency. A level shifter is introduced as a logic-control switch for the comparator, significantly reducing current consumption during idle periods[2]. The oscillator operates at 1 V with an oscillation frequency of 18.37 kHz and a power consumption of just 72.02 nW. Simulated using a 180 nm TSMC CMOS process, the design demonstrates a temperature accuracy of $\pm 0.52\%$ over -50 °C to 120 °C. Across a supply voltage range of 0.95 to 1.05 V, the frequency exhibits a line sensitivity of 0.66%/V. The oscillator achieves a fast startup, with frequency settling within 4 cycles.

II. Proposed Architecture

- (a) RC core circuit charges and discharges capacitors C to create an oscillation. The total period is: $t_{period} = 2RC + t_{delay}$.
- (b) 4-point probe reducing sensitivity to mismatch-induced voltage errors and frequency variation.
- (c) Using minimal transistors and an EN signal allowed us to achieve ultra-low delays while cutting idle power.
- (d) Generates an enable signal only when the comparator is required. LS input tracks the RC charging voltage. Output goes high near $I \cdot R$ and resets low when input drops to 0.
- (e) A 4T Schmitt trigger prevents potential glitching by separating its output switching thresholds.

(a) Nominal performance waveform, (b) Temperature variation result, (c) Supply voltage variation result, (d) Period variation vs Vos under α , $\beta = 2.5\%$, (e) Setup behavior, (f) Phase noise versus frequency offset

IV. Comparison Table

Spec	Reference Paper [1]	Proposed Circuit
Technology	65 nm	180 nm
Frequency	18.5 kHz	18.5 kHz
Power	130 nW	72.02 nW
Temp. Accuracy (%)	$\pm 0.18 \sim \pm 0.55$ $(-40 {}^{\circ}C \sim 90 {}^{\circ}C)$	± 0.52 $(-50^{\circ}C \sim 120^{\circ}C)$
Voltage Accuracy (0. 95 <i>V</i> ∼1. 05 <i>V</i>)	< 5 %/ <i>V</i>	0.66 %/V
Start up cycles	4	4

V. Reference

- [1] A. Paidimarri, B. H. Calhoun, and A. P. Chandrakasan, "An RC Oscillator With Comparator Offset Cancellation," *IEEE Journal of Solid-State Circuits*, vol. 51, no. 8, pp. 1866–1876, 2016. DOI:10.1109/JSSC.2016.2569484.
- [2] H. Zhang and Y. Wang, "A 5.27nw/khz Low Power Relaxation Oscillator with Current Consumption Reduction Technique," in 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 7, 2024, pp. 1336–1339.
- [3] S. Kabirpour and M. Jalali, "A Power-Delay and Area Efficient Voltage Level Shifter Based on a Reflected-Output Wilson Current Mirror Level Shifter," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 67, no. 2, pp. 250–254, Feb. 2020. DOI: 10.1109/TCSII.2019.2927431.
- [4] J. P. Kulkarni, K. Kim, and K. Roy, "A 160 mv Robust Schmitt Trigger Based Subthreshold SRAM," *IEEE Journal of Solid-State Circuits*, vol. 42, no. 10, pp. 2303–2313, Oct. 2007. DOI: 10.1109/JSSC.2007.897148.