# Data Analysis - Sales (Walmart - USA)

By:-Ratan Kr.Sharma (Analyst)

## Objective

- 1)-What is the overall sales trend?
- 2)-Which are the Top 10 products by sales?
- 3)-Which are the Most Selling Products?
- 4)-Which is the most preferred Ship Mode?
- 5)-Which are the Most Profitable Category and Sub-Category?

## IMPORTING REQUIRED LIBRARIES

```
In [2]: # Data Manipulation
   import pandas as pd

# Data Visualisation
   import matplotlib.pyplot as plt
   %matplotlib inline

import seaborn as sns
```

#### IMPORTING THE DATASET

```
In [12]: # Importing os directory
import os
os.getcwd()

Out[12]: 'C:\\Users\\HP'

In [16]: # Importing dataset- Dueto Larhe file it can take time to Load )
    df = pd.read_excel('superstore_sales.xlsx')
```

### **DATA AUDIT**

```
In [17]:
           # First five rows of the dataset
           df.head()
Out[17]:
             order_id order_date ship_mode customer_name
                                                                      segment
                                                                                    state
                                                                                          country
                 AG-
                       2011-01-
                                  2011-01-
                                             Standard
          0
               2011-
                                                      Toby Braunhardt Consumer Constantine
                                                                                            Algeria
                             01
                                       06
                                                Class
                2040
```

|   | order_id              | order_date     | ship_date      | ship_mode         | customer_name | segment        | state              | country   | ma |
|---|-----------------------|----------------|----------------|-------------------|---------------|----------------|--------------------|-----------|----|
| 1 | IN-<br>2011-<br>47883 | 2011-01-<br>01 | 2011-01-<br>08 | Standard<br>Class | Joseph Holt   | Consumer       | New South<br>Wales | Australia | ,  |
| 2 | HU-<br>2011-<br>1220  | 2011-01-<br>01 | 2011-01-<br>05 | Second<br>Class   | Annie Thurman | Consumer       | Budapest           | Hungary   | E  |
| 3 | IT-2011-<br>3647632   | 2011-01-<br>01 | 2011-01-<br>05 | Second<br>Class   | Eugene Moren  | Home<br>Office | Stockholm          | Sweden    |    |
| 4 | IN-<br>2011-<br>47883 | 2011-01-<br>01 | 2011-01-<br>08 | Standard<br>Class | Joseph Holt   | Consumer       | New South<br>Wales | Australia | ,  |

5 rows × 21 columns

In [18]: # Last five rows of the dataset df.tail()

| Out[18]: |       | order_id               | order_date     | ship_date      | ship_mode         | customer_name       | segment   | state                    | country          |
|----------|-------|------------------------|----------------|----------------|-------------------|---------------------|-----------|--------------------------|------------------|
|          | 51285 | CA-<br>2014-<br>115427 | 2014-12-<br>31 | 2015-01-<br>04 | Standard<br>Class | Erica Bern          | Corporate | California               | Unitec<br>States |
|          | 51286 | MO-<br>2014-<br>2560   | 2014-12-<br>31 | 2015-01-<br>05 | Standard<br>Class | Liz Preis           | Consumer  | Souss-<br>Massa-<br>Draâ | Moroccc          |
|          | 51287 | MX-<br>2014-<br>110527 | 2014-12-<br>31 | 2015-01-<br>02 | Second<br>Class   | Charlotte<br>Melton | Consumer  | Managua                  | Nicaragua        |
|          | 51288 | MX-<br>2014-<br>114783 | 2014-12-<br>31 | 2015-01-<br>06 | Standard<br>Class | Tamara Dahlen       | Consumer  | Chihuahua                | Mexicc           |
|          | 51289 | CA-<br>2014-<br>156720 | 2014-12-<br>31 | 2015-01-<br>04 | Standard<br>Class | Jill Matthias       | Consumer  | Colorado                 | Unitec<br>States |

5 rows × 21 columns

```
In [19]: # Shape of the dataset
df.shape

Out[19]: (51290, 21)

In [20]: # Columns present in the dataset
df.columns

Out[20]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
```

```
'segment', 'state', 'country', 'market', 'region', 'product_id',
               'category', 'sub_category', 'product_name', 'sales', 'quantity',
               'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
              dtype='object')
In [21]:
         # A concise summary of the dataset
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 51290 entries, 0 to 51289
        Data columns (total 21 columns):
             Column
                          Non-Null Count Dtype
             -----
                           -----
         ---
             order_id
                           51290 non-null object
         0
                            51290 non-null datetime64[ns]
             order_date
         1
         2
             ship_date
                           51290 non-null datetime64[ns]
         3
             ship mode
                           51290 non-null object
             customer_name 51290 non-null object
                           51290 non-null object
         5
             segment
                           51290 non-null object
         6
             state
         7
             country
                           51290 non-null object
         8
             market
                           51290 non-null object
             region
         9
                           51290 non-null object
         10 product_id
                           51290 non-null object
                           51290 non-null object
         11 category
         12 sub_category 51290 non-null object
         13 product_name 51290 non-null object
         14 sales
                           51290 non-null float64
         15 quantity
                           51290 non-null int64
         16 discount
                           51290 non-null float64
                           51290 non-null float64
         17 profit
         18 shipping_cost 51290 non-null float64
         19 order_priority 51290 non-null object
                            51290 non-null int64
         dtypes: datetime64[ns](2), float64(4), int64(2), object(13)
        memory usage: 8.2+ MB
In [22]:
         # Checking missing values
         df.isna().sum()
        order id
Out[22]:
        order_date
                         0
         ship_date
         ship mode
         customer name
         segment
         state
        country
        market
        region
        product_id
                         0
        category
         sub category
        product name
                         0
         sales
        quantity
        discount
        profit
        shipping_cost
                         0
        order_priority
                         0
        year
        dtype: int64
```

Out[23]:

|       | sales   | quantity | discount | profit  | shipping_cost | year    |
|-------|---------|----------|----------|---------|---------------|---------|
| count | 51290.0 | 51290.0  | 51290.0  | 51290.0 | 51290.0       | 51290.0 |
| mean  | 246.0   | 3.0      | 0.0      | 29.0    | 26.0          | 2013.0  |
| std   | 488.0   | 2.0      | 0.0      | 174.0   | 57.0          | 1.0     |
| min   | 0.0     | 1.0      | 0.0      | -6600.0 | 0.0           | 2011.0  |
| 25%   | 31.0    | 2.0      | 0.0      | 0.0     | 3.0           | 2012.0  |
| 50%   | 85.0    | 3.0      | 0.0      | 9.0     | 8.0           | 2013.0  |
| 75%   | 251.0   | 5.0      | 0.0      | 37.0    | 24.0          | 2014.0  |
| max   | 22638.0 | 14.0     | 1.0      | 8400.0  | 934.0         | 2014.0  |

## **EXPLORATORY DATA ANALYSIS - (EDA)**

#### QUE 1)- WHAT IS THE OVERALL SALES TREND?

```
In [24]:
                                                     # Getting month year from order_date
                                                     df['month_year'] = df['order_date'].apply(lambda x: x.strftime('%Y-%m'))
In [25]:
                                                     # grouping month_year by sales
                                                     df_temp = df.groupby('month_year').sum()['sales'].reset_index()
In [26]:
                                                     # Setting the figure size
                                                     plt.figure(figsize=(16, 5))
                                                     plt.plot(df_temp['month_year'], df_temp['sales'], color='#b80045')
                                                     plt.xticks(rotation='vertical', size=8)
                                                     plt.show()
                                                 500000
                                                 400000
                                                  300000
                                                  200000
                                                100000
                                                                                                    011-03
011-04
011-05
011-06
011-06
011-06
011-07
011-08
011-07
011-08
011-07
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
011-08
01
```

#### QUE 2)-WHICH ARE THE TOP 10 PRODUCTS BY SALES?

```
# Grouping products by sales
prod_sales = pd.DataFrame(df.groupby('product_name').sum()['sales'])
# Sorting the dataframe in descending order
prod_sales.sort_values(by=['sales'], inplace=True, ascending=False)
```

```
# Top 10 products by sales
prod_sales[:10]
```

Out[27]: sales

| product_name                                             |            |
|----------------------------------------------------------|------------|
| Apple Smart Phone, Full Size                             | 86935.7786 |
| Cisco Smart Phone, Full Size                             | 76441.5306 |
| Motorola Smart Phone, Full Size                          | 73156.3030 |
| Nokia Smart Phone, Full Size                             | 71904.5555 |
| Canon imageCLASS 2200 Advanced Copier                    | 61599.8240 |
| Hon Executive Leather Armchair, Adjustable               | 58193.4841 |
| Office Star Executive Leather Armchair, Adjustable       | 50661.6840 |
| Harbour Creations Executive Leather Armchair, Adjustable | 50121.5160 |
| Samsung Smart Phone, Cordless                            | 48653.4600 |
| Nokia Smart Phone, with Caller ID                        | 47877.7857 |

## QUE 3)-WHICH ARE THE MOST SELLING PRODUCTS?

```
# Grouping products by Quantity
best_selling_prods = pd.DataFrame(df.groupby('product_name').sum()['quantity'])

# Sorting the dataframe in descending order
best_selling_prods.sort_values(by=['quantity'], inplace=True, ascending=False)

# Most selling_products
best_selling_prods[:10]
```

Out[28]: quantity

| product_name                          |     |
|---------------------------------------|-----|
| Staples                               | 876 |
| Cardinal Index Tab, Clear             | 337 |
| Eldon File Cart, Single Width         | 321 |
| Rogers File Cart, Single Width        | 262 |
| Sanford Pencil Sharpener, Water Color | 259 |
| Stockwell Paper Clips, Assorted Sizes | 253 |
| Avery Index Tab, Clear                | 252 |
| Ibico Index Tab, Clear                | 251 |
| Smead File Cart, Single Width         | 250 |
| Stanley Pencil Sharpener, Water Color | 242 |
|                                       |     |

## QUE 4)-WHAT IS THE MOST PREFERRED SHIP MODE?

```
In [29]: # Setting the figure size
   plt.figure(figsize=(10, 8))

# countplot: Show the counts of observations in each categorical bin using bars
   sns.countplot(x='ship_mode', data=df)

# Display the figure
   plt.show()
```



### QUE 5)-WHICH ARE THE MOST PROFITABLE CATEGORY AND SUB-CATEGORY?

```
In [30]: # Grouping products by Category and Sub-Category
   cat_subcat = pd.DataFrame(df.groupby(['category', 'sub_category']).sum()['profit'])
# Sorting the values
   cat_subcat.sort_values(['category','profit'], ascending=False)
```

Out[30]: profit

| category        | sub_category |              |
|-----------------|--------------|--------------|
| Technology      | Copiers      | 258567.54818 |
|                 | Phones       | 216717.00580 |
|                 | Accessories  | 129626.30620 |
|                 | Machines     | 58867.87300  |
| Office Supplies | Appliances   | 141680.58940 |
|                 | Storage      | 108461.48980 |
|                 | Binders      | 72449.84600  |

#### profit

| categor  | y sub_category |              |
|----------|----------------|--------------|
|          | Paper          | 59207.68270  |
|          | Art            | 57953.91090  |
|          | Envelopes      | 29601.11630  |
|          | Supplies       | 22583.26310  |
|          | Labels         | 15010.51200  |
|          | Fasteners      | 11525.42410  |
| Furnitur | e Bookcases    | 161924.41950 |
|          | Chairs         | 141973.79750 |
|          | Furnishings    | 46967.42550  |
|          | Tables         | -64083.38870 |

## **Answer We found**

Q1-What is the overall sales trend? ----> Ans -It is increasing every Quarter

Q2-Which are the Top 10 products by sales? ----> Ans-Apple Smart Phone , Cisco Smart Phone , Motorola Smart Phone---so on

Q3-Which are the Most Selling Products?----> Ans-Staples, - Cardinal Index Tab , Eldon File Cart, Single ---so on

Q4-Which is the most preferred Ship Mode?----> Ans - Standard , Second , First , Same Day

Q5-Which are the Most Profitable Category and Sub-Category?---> Ans - Technology , office supplies , furtiture

## **Output & Conclusion**

As market is increasing as we see in last quarters it is increasing it means there is demand and we have to focus on FG stock of the top selling product which consist majority %age of the sale value . and as there is demand in Technology sector we have to focus on that and there assecories . and we need to prefer stand shipment .

thanks..