Rick Sullivan Professor Tran Algorithms-COEN 179 15 May 2013

Homework #4

1. Vertex 0: (0,9) Vertex 1: (1,6) Vertex 2: (2,5) Vertex 3: (3,4) Vertex 4: (7,8)

2. TC with Warshall's Algorithm

k = 0							
		0	1	2	3	4	
	0	1	1	0	0	1	
	1	0	1	1	1	0	
	2	0	0	1	1	0	
	3	0	1	0	1	0	
	4	0	0	0	1	1	

k = 1						
		0	1	2	3	4
0		1	1	1	1	1
1		0	1	1	1	0
$\overline{2}$		0	0	1	1	0
3		0	1	1	1	0
4		0	0	0	1	1

k = 2						
	0	1	2	3	4	
0	1	1	1	1	1	
1	0	1	1	1	0	
2	0	0	1	1	0	
3	0	1	1	1	0	
4	0	0	0	1	1	

k = 3						
	0	1	2	3	4	
0	1	1	1	1	1	
1	0	1	1	1	0	
2	0	1	1	1	0	
3	0	1	1	1	0	
4	0	1	1	1	1	

k = 4

Final transitive closure: $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 \end{vmatrix}$

	U	I	2	3	4
0	1	1	1	1	1
1	0	1	1	1	0
2	0	1	1	1	0
3	0	1	1	1	0
4	0	1	1	1	1

3. Maximum number of topological sorts occurs when we have no restrictions (no edges). A topological sort consists of a list of vertices.

Therefore we have n=5 spots, with 5 choices for the first spot, 4 for the second, etc. So we have 5*4*3*2*1 choices = **120 sort orders**.