સાદા સમીકરણ

4.1 મનવાંચન રમત ! (A Mind-reading Game !)

શિક્ષકે વર્ગમાં કહ્યું કે, તે આજે ગણિતનું નવું પ્રકરણ શરૂ કરે છે અને તે છે સરળ સમીકરણ. અપ્પુ, સરિતા અને અમીનાએ યાદ કર્યું કે ધોરણ-6ના બીજગણિતના પ્રકરણમાં તેઓ શું શીખ્યાં હતાં. તમે યાદ કર્યું ? આજે અપ્પુ, સરિતા અને અમીના ખૂબ જ ઉત્સાહી હતાં કારણ કે તેમણે તૈયાર કરેલ મનવાંચન રમત તેઓ આખા વર્ગમાં રજૂ કરવા માંગતાં હતાં.

શિક્ષકે તેમના ઉત્સાહને બિરદાવી તેઓને ૨મત ૨જૂ કરવા કહ્યું.

અમીનાએ શરૂ કર્યું. તેશે સારાને કોઈ સંખ્યા ધારવાનું કહ્યું. પછી તેને 4 વડે ગુણી મળેલ પરિશામમાં 5 ઉમેરવાનું કહ્યું. પછી સારાને શું પરિશામ આવ્યું તે પૂછ્યું. તેશે કહ્યું કે તે 65 છે. અમીનાએ તરત જ સારાએ વિચારેલ સંખ્યા 15 છે તેમ કહ્યું. સારાએ હા પાડી. સારા સહિત સમગ્ર વર્ગને આશ્ચર્ય થયું.

હવે અપ્પુનો વારો હતો. તેણે બાલુને સંખ્યા ધારવાનું કહ્યું. તેને 10 વડે ગુણી મળેલા પરિણામમાંથી 20 બાદ કરવાનું કહ્યું. પછી તેણે બાલુને પૂછ્યું શું પરિણામ આવ્યું ? બાલુએ તેને 50 કહ્યા. અપ્પુએ તરત જ બાલુએ મનમાં વિચારેલ સંખ્યા કહી કે તે 7 છે. બાલુએ તેની ખાતરી કરી.

દરેક વિદ્યાર્થી જાણવા ઇચ્છતા હતા કે અપ્પુ, સરિતા અને અમીના 'મનવાંચન' કેવી રીતે કરતાં હશે ? તમને થતું હશે કે તે કામ કેવી રીતે કરતાં હશે ? આ પ્રકરણ અને પ્રકરણ 12ના અભ્યાસ પછી તમે ખૂબ જ સારી રીતે જાણી શકશો કે મનવાંચન કેવી રીતે થતું હશે.

4.2 સમીકરણ (Equation)ની રચના

ચાલો, અમીનાનું ઉદાહરણ લઈએ. અમીનાએ સારાને સંખ્યા ધારવાનું કહ્યું કે જે સંખ્યા અમીના જાણતી નથી. તેના માટે તે સંખ્યા 1, 2, 3, ..., 11, ..., 100, ... માંની કોઈ પણ હોઈ શકે. ચાલો, આ અજ્ઞાત સંખ્યાને x કહીએ. તમે y અથવા t અથવા કોઈ પણ મૂળાક્ષર xની જગ્યાએ લઈ

શકો તેની સાથે કોઈ ફર્ક પડતો નથી. જ્યારે સારા ધારેલ સંખ્યાને 4 વડે ગુણે છે. તો તેને 4x મળે છે. મળેલા પરિણામમાં 5 ઉમેરતાં (4x+5) મળે છે. (4x+5)ની કિંમત એ x ની કિંમત પર આધાર રાખે છે. આમ જો x=1 હોય તો, $4x+5=4\times 1+5=9$, તેનો અર્થ એ થયો કે સારાએ 1 વિચાર્યો હોત તો પરિણામ 9 મળ્યું હોત તે જ રીતે તેણે 5 વિચાર્યા હોત તો ત્યારે x=5, માટે $4x+5=4\times 5+5=25$, આમ સારાએ 5 પસંદ કર્યા હોત તો પરિણામ 25 મળ્યું હોત.

78

સારાએ વિચારેલ નંબર શોધવા ચાલો આપણે તેના જવાબ 65 પર જઈએ. આપણે x શોધવો છે તેથી,

$$4x + 5 = 65 \tag{4.1}$$

આ સમીકરણનો ઉકેલ આપણને સારાએ મનમાં વિચારેલ સંખ્યા આપશે.

તે જ રીતે ચાલો આપણે અપ્પુનું ઉદાહરણ જોઈએ. ચાલો, બાલુએ ધારેલ સંખ્યાને y કહીએ અપ્પુએ બાલુને સંખ્યાને 10 વડે ગુણી મળેલા પરિણામમાંથી 20 બાદ કરવાનું કહ્યું તેથી બાલુ y ના ઉપયોગથી પહેલાં 10y અને તેના ઉપયોગથી (10y-20) મેળવશે. પરિણામ 50 દર્શાવે છે.

તેથી,
$$10y - 20 = 50$$
 (4.2) આ સમીકરણનો ઉકેલ આપણને બાલુએ ધારેલ સંખ્યા આપશે.

4.3 આપણે જાણીએ છીએ તેની સમીક્ષા

સમીકરણ (4.1) અને (4.2) જુઓ. ધોરણ-6 માં આપણે સમીકરણ વિશે શું શીખ્યાં હતાં તે યાદ કરીએ. સમીકરણ એ ચલ પરની શરત છે. સમીકરણ (4.1)માં ચલ x છે જ્યારે સમીકરણ (4.2) માં ચલ y છે.

ચલ શબ્દનો અર્થ થાય કે, જે બદલાય છે, એટલે કે ચલની જુદી જુદી કિંમતો હોઈ શકે છે. તેની કિંમત ચોક્કસ હોતી નથી. ચલને હંમેશાં અંગ્રેજી મૂળાક્ષરો જેવા કે x, y, z, l, m, p વગેરે વડે દર્શાવવામાં આવે છે. ચલના ઉપયોગથી આપણે પદાવિલની રચના કરી શકીએ છીએ. સરવાળો, બાદબાકી, ગુણાકાર અને ભાગાકાર જેવી ક્રિયાઓ ચલ પર કરી આપણે પદાવિલની રચના કરી શકીએ છીએ. x નો ઉપયોગ કરી આપણે (4x + 5) પદાવિલ રચીએ છીએ જેના માટે પહેલાં x ને 4 વડે ગુણી અને મળેલાં પરિણામમાં 5 ઉમેરવામાં આવે છે. તે જ રીતે yનો ઉપયોગ કરી પદાવિલ (10y - 20) રચીએ છીએ. તેના માટે yને 10 સાથે ગુણી મળેલા પરિણામમાંથી 20 બાદ કરવામાં આવે છે. આ બધાં જ ઉદાહરણો પદાવિલનાં છે.

પદાવિલની કિંમત તેની રચના કરતાં ચલની પસંદ કરેલી કિંમત પર આધાર રાખે છે. આપણે અગાઉ જોઈ ગયાં છીએ કે x=1 હોય ત્યારે 4x+5=9 જયારે x=5 ત્યારે 4x+5=25

તે જ રીતે

જ્યારે x = 15, $4x + 5 = 4 \times 15 + 5 = 65$

જ્યારે x = 0, $4x + 5 = 4 \times 0 + 5 = 5$ વગેરે.

સમીકરણ (4.1) એ ચલ x પર શરત આધારિત છે. તે દર્શાવે છે કે પદાવલિ (4x+5) ની કિંમત 65 છે. જો x=15 લેવામાં આવે તો, આ શરત સંતોષાય છે. જે સમીકરણ 4x+5=65 નો ઉકેલ છે. જયારે x=5 લેવામાં આવે ત્યારે 4x+5=25 થશે, 65 નહિ. આમ, x=5 એ આપેલા સમીકરણનો ઉકેલ થશે નહિ. તે જ રીતે x=0 એ સમીકરણનો ઉકેલ નથી. x ની 15 સિવાયની કોઈ પણ કિંમત 4x+5=65 શરતને સંતોષતી નથી.

પ્રયત્<u>ન કરો</u>

પદાવિલ (10y - 20)ની કિંમત તેના ચલ y પર આધાર રાખે છે. yની જુદી જુદી 5 કિંમત લઈ દરેક કિંમત માટે (10y - 20)ની કિંમત શોધો. ચકાસો કે આપણને (10y - 20)ની જુદી જુદી કિંમતો મળે છે. 10y - 20 = 50 નો ઉકેલ તમને મળે છે ? જો તેનો ઉકેલ મળતો ન હોય, તો yની વધુ કિંમતો લઈ 10y - 20 = 50 શરત સંતોષાય ત્યાં સુધી પ્રયત્ન કરો.

4.4 સમીકરણ શું છે ? (What Equation Is ?)

સમીકરણમાં હંમેશાં સમાનતાનું ચિહ્ન હોય છે. સમાનતાનું ચિહ્ન દર્શાવે છે કે પદાવલિમાં ચિહ્નની ડાબી બાજુ (ડાબા હાથની બાજુ અથવા LHS)ની કિંમત અને ચિહ્નની જમણી બાજુ (જમણા હાથની બાજુ અથવા RHS)ની કિંમત સરખી થાય છે. સમીકરણ (4.1) માં ડાબી બાજુ (4x+5) અને જમણી બાજુ 65 છે. સમીકરણ (4.2) માં ડાબી બાજુ (10y-20) અને જમણી બાજુ 50 છે.

જો LHS અને RHS વચ્ચે સમાનતા સિવાયની કોઈ પણ બીજી નિશાની હોય તો તે સમીકરણ હોતું નથી. આમ, 4x + 5 > 65 એ સમીકરણ નથી, તે દર્શાવે છે કે (4x + 5)ની કિંમત 65 કરતાં વધુ છે. તે જ રીતે 4x + 5 < 65 એ સમીકરણ નથી, તે દર્શાવે છે કે (4x + 5)ની કિંમત 65 થી ઓછી છે.

સમીકરણમાં મોટે ભાગે આપણે જોયું છે કે જમણી બાજુ સંખ્યા હોય છે. સમીકરણ (4.1)માં 65 અને સમીકરણ (4.2)માં 50 છે, પરંતુ હંમેશાં તે હોવું જરૂરી નથી. સમીકરણની જમણી બાજુ કોઈ ચલ સહિતની પદાવલિ પણ હોઈ શકે. ઉદાહરણ તરીકે, સમીકરણ

$$4x + 5 = 6x - 25$$
 $+ i$

સમાનતાની નિશાનીની ડાબી બાજુ પદાવલિ (4x + 5) અને જમણી બાજુ પદાવલિ (6x - 25) છે. ટૂંકમાં, સમીકરણ એ ચલ પરની શરત છે. શરત એટલી જ છે કે બંને પદાવલિની કિંમત

સરખી હોવી જ જોઈએ. નોંધો કે બંને પદાવલિઓમાંથી કોઈ પણ એક પદાવલિમાં ચલ હોવો જ જોઈએ.

આપણે સમીકરણનો એક સાદો અને ઉપયોગી ગુણધર્મ નોંધીશું. 4x + 5 = 65 અને 65 = 4x + 5 એ એક જ સમીકરણ છે. તે જ રીતે, 6x - 25 = 4x + 5 અને 4x + 5 = 6x - 25 એક જ સમીકરણ છે. જો સમીકરણમાં ડાબીબાજુ અને જમણી બાજુની પદાવલિઓની અદલાબદલી કરવામાં આવે તો પણ સમીકરણ તે જ રહે છે. આ ગુણધર્મ આપણને સમીકરણનો ઉકેલ શોધવામાં વારંવાર ઉપયોગી થશે.

ઉદાહરણ 1 નીચેનાં વિધાનોને સમીકરણ સ્વરૂપે લખો :

- (i) xના ત્રણ ગણા અને 11નો સરવાળો 32 છે.
- (ii) એક સંખ્યાના 6 ગણામાંથી 5 બાદ કરતાં 7 મળે.
- (iii) *m*નો ચોથો ભાગ એ 7 કરતાં 3 વધારે છે. (*m*નો ચોથો ભાગ અને 7 નો તફાવત 3 મળે.)
- (iv) એક સંખ્યાના ત્રીજા ભાગમાં 5 ઉમેરતાં 8 મળે.

ઉકેલ

- (i) xના ત્રણ ગણા 3x છે. 3x અને 11નો સરવાળો 3x + 11 થાય, જે સરવાળો 32 છે. તેથી સમીકરણ 3x + 11 = 32.
- (ii) તે સંખ્યા ધારો કે z છે. z + 6 = 6 = 6 ગુણતાં 6z = 6 થાય. 6z + 6 = 6 માંથી 5 = 6 બાદ કરતાં 6z 5 = 7 થાય. 6z + 6 = 6 આમ, સમીકરણ 6z 5 = 7 થાય.

ગણિત 80

(iii) mનો ચોથો ભાગ $\frac{m}{4}$ છે. તે 7 કરતાં 3 વધુ છે. તેનો અર્થ કે તેમનો તફાવત $(\frac{m}{4} - 7)$ એ 3 છે.

આમ, સમીકરણ $\frac{m}{4} - 7 = 3$.

(iv) તે સંખ્યા ધારો કે n છે. nનો ત્રીજો ભાગ $\frac{n}{3}$ છે.

તેમાં 5 ઉમેરતાં $\frac{n}{3}$ + 5 મળે. આ પરિશામ 8 છે.

આમ, સમીકરણ $\frac{n}{3} + 5 = 8$.

(i)
$$x - 5 = 9$$

(ii)
$$5p = 20$$

(iii)
$$3n + 7 = 1$$

(iii)
$$3n+7=1$$
 (iv) $\frac{m}{5}-2=6$

- (ii) *p*ના 5 ગણા એ 20 છે.
- (iii) nના 3 ગણામાં 7 ઉમેરતાં 1 મળે.
- (iv) *m*ના એક પંચમાંશ ભાગમાંથી 2 બાદ કરતાં 6 મળે.

અહીં અગત્યની બાબત એ છે કે આપેલ સમીકરણ માટે એક જ નહિ પણ ઘણાં બધાં વિધાનો લખી શકાય. ઉદાહરણ તરીકે ઉપરના સમી (i) ને તમે કહી શકો કે :

પ્રયત્ન કરો

સમીકરણ (ii), (iii) અને (iv)ને એકથી વધુ રીતે લખો. x માંથી 5 બાદ કરતાં 9 મળે.

અથવા કોઈ સંખ્યા x એ 9 કરતાં 5 વધુ છે.

અથવા કોઈ સંખ્યા *x* એ 9 કરતાં 5 જેટલી મોટી છે.

અથવા x અને 5નો તફાવત 9 છે. વગેરે...

ઉદાહરણ 3 નીચેની પરિસ્થિતિ જુઓ :

રાજુના પિતાની ઉંમર રાજુની ઉંમરના ત્રણ ગણાથી 5 વધુ છે. રાજુના પિતા 44 વર્ષના છે. રાજુની ઉંમર શોધવા માટેનું સમીકરણ બનાવો.

<mark>ઉકેલ</mark> આપણે રાજુની ઉંમર જાણતાં નથી. ચાલો, આપણે તેને *y* વર્ષ લઈએ. રાજુની ઉંમરના ત્રણ ગણા 3y વર્ષ થશે. રાજુના પિતાની ઉંમર 3y કરતાં 5 વધુ થશે. તેથી રાજુના પિતા (3y + 5) વર્ષના થશે. પરંતુ રાજુના પિતાની ઉંમર 44 વર્ષ આપેલ છે.

તેથી,
$$3y + 5 = 44$$
 (4.3)

આ y ચલનું સમીકરણ છે. જો તેને ઉકેલવામાં આવે તો તે રાજુની ઉંમર આવશે.

<mark>ઉદાહરણ 4</mark> એક દુકાનદાર બે પ્રકારની પેટીઓમાં કેરીઓ વેચે છે. એક નાની અને બીજી મોટી છે. મોટી પેટીમાં 8 નાની પેટી જેટલી અને બીજી ચાર છૂટક કેરી સમાવી શકાય છે. દરેક નાની પેટીમાં આપેલી કેરીની સંખ્યા જાણવા સમીકરણ રચો. મોટી પેટીમાં આપેલી કેરીઓની સંખ્યા 100 છે.

6કેલ નાની પેટીમાં m કેરીઓ સમાવી શકાય છે. મોટી પેટીમાં mના 8 ગણાથી 4 વધુ સમાવી શકાય છે. આમ તે 8m + 4 કેરીઓ છે, પરંતુ કુલ 100 કેરીઓ આપેલ છે. આમ,

$$8m + 4 = 100 \tag{4.4}$$

સમીકરણ ઉકેલીને નાની પેટીમાં રહેલી કેરી તમે શોધી શકશો.

સ્વાધ્યાય 4.1

1. આપેલા કોષ્ટકનું છેલ્લુ ખાનું પૂર્ણ કરો.

અનુક્રમ	સમીકરણ	કિંમત	કહો કે સમીકરણનું સમાધાન થાય છે. (હા/ના)
(i)	x + 3 = 0	x = 3	સમાયાય થાય છે. (હા/યા)
(ii)	x + 3 = 0	x = 0	
(iii)	x + 3 = 0	x = -3	
(iv)	x - 7 = 1	<i>x</i> = 7	
(v)	x - 7 = 1	<i>x</i> = 8	
(vi)	5x = 25	x = 0	
(vii)	5x = 25	x = 5	
(viii)	5x = 25	x = -5	
(ix)	$\frac{m}{3}=2$	m = -6	
(x)	$\frac{m}{3}=2$	m=0	
(xi)	$\frac{m}{3}=2$	<i>m</i> = 6	

2. કૌંસમાં આપેલી કિંમતો આપેલાં સમીકરણનો ઉકેલ છે કે નહીં તે તપાસો.

- (a) n+5=19 (n=1) (b) 7n+5=19 (n=-2) (c) 7n+5=19 (n=2)

- (d) 4p-3=13 (p=1) (e) 4p-3=13 (p=-4) (f) 4p-3=13 (p=0)

3. નીચેનાં સમીકરણો ચલની જુદી જુદી કિંમત મૂકી ઉકેલો. (પ્રયત્ન અને ભૂલની રીતે)

- (i) 5p + 2 = 17 (ii) 3m 14 = 4
- 4. નીચે આપેલાં વિધાનોને સમીકરણ સ્વરૂપે લખો :

 - (i) $x \rightarrow 4 + 1 + 10 = 100 = 70 \text{ (ii)}$ $y \rightarrow 4 + 10 = 100 = 70 \text{ (iv)}$ $x \rightarrow 4 + 2 = 10 = 100 = 70 \text{ (iv)}$
 - (iii) a ના 10 ગણા 70 છે.
- (iv) એક સંખ્યા *b*ને 5 વડે ભાગતાં 6 મળે.
- (iv) t નો $\frac{3}{4}$ ભાગ એ 15 છે.
- (iv) *m*ના 7 ગણામાં 7 ઉમેરતાં 77 મળે.
- (vii) કોઈ સંખ્યા xના એક ચતુર્થાશ માંથી 4 બાદ કરતાં 4 મળે.
- (viii) yના 6 ગણામાંથી 6 બાદ કરતાં 60 મળે છે.
- (ix) જો તમે *z*ના ત્રીજા ભાગમાં 3 ઉમેરો તો તમને 30 મળે છે.
- 5. નીચે આપેલાં સમીકરણોને વિધાનના સ્વરૂપે લખો :
 - (i) p + 4 = 15
- (ii) m-7=3
- (iii) 2m = 7 (iv) $\frac{m}{5} = 3$

- (v) $\frac{3m}{5} = 6$

- (vi) 3p + 4 = 25 (vii) 4p 2 = 18 (viii) $\frac{p}{2} + 2 = 8$

ગણિત

82

- 6. નીચેની સ્થિતિ દર્શાવતાં સમીકરણ બનાવો :
 - (i) ઇરફાને કહ્યું કે તેની પાસે પરમિત પાસેની લખોટીના 5 ગણા કરતાં 7 લખોટી વધુ છે. ઇરફાન પાસે 37 લખોટી છે. (પરમિત પાસેની લખોટીની સંખ્યા માટે *m* ધારો.)
 - (ii) લક્ષ્મીના પિતા 49 વર્ષના છે. તે લક્ષ્મીની ઉંમરના ત્રણ ગણાથી 4 વર્ષ મોટા છે. (લક્ષ્મીની ઉંમર માટે *y* ધારો.)
 - (iii) શિક્ષકે વર્ગમાં કહ્યું કે સૌથી વધારે ગુણ મેળવનાર વિદ્યાર્થીના ગુણ વર્ગના સૌથી ઓછા ગુણ મેળવનાર વિદ્યાર્થીના ગુણના બે ગણાથી 7 વધારે છે. સૌથી વધારે ગુણ 87 છે. (સૌથી ઓછા ગુણ માટે *l* ધારો.)
 - (iv) એક સમદ્ધિબાજુ ત્રિકોણમાં શિરોબિંદુકોણ એ આધારકોણ કરતાં બે ગણો છે. (આધારકોણનું માપ b ધારો. યાદ રાખો કે ત્રિકોણના ત્રણેય ખુણાઓનો સરવાળો 180 અંશ છે.)

4.4.1 સમીકરણ ઉકેલવા (Solving an Equation)

સમાનતાની ચકાસણી કરો. 8-3=4+1 (4.5) સમીકરણ (4.5) માં સમાનતા જળવાઈ છે. કારણ કે અહીં બંને બાજુઓ સમાન છે. (જે 5 છે.)

- ચાલો આપણે મળેલા પરિણામમાંથી બંને બાજુએથી 2 બાદ કરીએ, ડાબી બાજુ = 8 - 3 - 2 = 5 - 2 = 3 જમણી બાજુ = 4 + 1 - 2 = 5 - 2 = 3 ફરીથી સમાનતા જળવાય છે.
 - આમ, જો આપણે સમાનતાની બંને બાજુમાંથી સરખી સંખ્યા બાદ કરીએ તો સમાનતા જળવાઈ રહે છે.
- તે જ રીતે, સમાનતાની બંને બાજુ સરખી સંખ્યા વડે ગુણીએ અથવા શૂન્ય સિવાયની સરખી સંખ્યા વડે ભાગીએ તો, પણ સમાનતા જળવાઈ રહે છે.

ઉદાહરણ તરીકે, ચાલો આપણે સમાનતાની બંને બાજુને 3 વડે ગુણીએ,

આપણને ડાબી બાજુ = $3 \times (8-3) = 3 \times 5 = 15$, જમણી બાજુ = $3 \times (4+1) = 3 \times 5 = 15$ મળશે.

આમ, સમાનતા જળવાઈ રહે છે.

ચાલો, આપણે સમાનતાની બંને બાજુને 2 વડે ભાગીએ.

ડાબી બાલુ =
$$(8-3) \div 2 = 5 \div 2 = \frac{5}{2}$$
 જમણી બાલુ = $(4+1) \div 2 = 5 \div 2 = \frac{5}{2}$

ફરીથી સમાનતા જળવાય છે.

જો આપણે બીજી કોઈ પણ સમાનતા લઈશું તો આપણે આ જ પ્રકારનો નિષ્કર્ષ શોધી શકીશું.

આપણે ખાસ કરીને એ નિયમને પણ ધ્યાનમાં રાખવો જોઈએ કે જ્યારે સમાનતાની બંને બાજુ જુદી જુદી સંખ્યા ઉમેરવામાં આવે તો તે કિસ્સામાં સમાનતા જળવાઈ રહેતી નથી (એટલે કે બંને બાજુ સરખી રહેતી નથી).

આ ઉદાહરણ માટે આપણે ફરીથી સમાનતા (4.5) લઈએ.

$$8 - 3 = 4 + 1$$

ડાબી બાજુ 2 અને જમણી બાજુ 3 ઉમેરો. નવી ડાબી બાજુ 8-3+2=5+2=7 અને નવી જમણી બાજુ 4+1+3=5+3=8 થશે. અહીં સમાનતા જળવાઈ રહેતી નથી કારણ કે નવી ડાબી બાજુ અને નવી જમણી બાજુ સરખી નથી.

આપણે સમાનતાની બંને બાજુ કોઈ ગાણિતિક પ્રક્રિયા એક જ સંખ્યા વડે ન કરીએ તો સમાનતા જળવાતી નથી.

સમીકરણ એ ચલ ધરાવતી સમાનતા છે.

આ નિષ્કર્ષ સમીકરણ માટે પણ સાચો છે. દરેક સમીકરણમાં ચલ એ માત્ર સંખ્યાનું પ્રતિનિધિત્વ કરે છે.

સમીકરણને વારંવાર વજન સંતુલન જેવું કહેવામાં આવે છે.

સમીકરણ પરની ગાણિતિક ક્રિયાઓ એ ત્રાજવાના પલ્લામાં વજન ઉમેરતાં અને વજન બહાર કાઢવા જેવી ક્રિયા છે. સમીકરણ એ એવું ત્રાજવું છે કે જેનાં બંને પલ્લાંમાં એકસરખું વજન હોય છે. કયા કિસ્સામાં ત્રાજવાની દાંડી એકદમ આડી રહે છે ? જો આપણે ત્રાજવાંના બંને પલ્લાંમાં સરખું વજન ઉમેરીશું તો દાંડી આડી રહેશે. તે જ રીતે જો આપણે બંને પલ્લામાંથી સરખું વજન દૂર કરીશું તો દાંડી આડી રહેશે. બીજી બાજુ આપણે પલ્લાઓમાં જુદું જુદું વજન ઉમેરીશું કે પલ્લાંઓમાંથી જુદું જુદું વજન દૂર કરીશુ તો ત્રાજવું કોઈ એક તરફથી ઊંચું થઈ જશે. એટલે કે ત્રાજવાની દાંડી આડી રહેશે નહીં.

આ નિયમનો ઉપયોગ આપણે સમીકરણના ઉકેલ માટે કરીશું.

અલબત્ત, અહીં ત્રાજવું કાલ્પનિક છે અને વજન તરીકે ઉપયોગમાં લેવામાં આવતી સંખ્યાઓ પ્રત્યક્ષ રીતે એકબીજા સામે સંતુલન માટે વાપરી શકાય. આનો મુખ્ય હેતુ નિયમને રજૂ કરવા માટેનો છે. આપણે કેટલાંક ઉદાહરણો લઈએ.

• સમીકરણ વિચારો : x + 3 = 8 (4.6) આપણે સમીકરણની બંને બાજુથી 3 બાદ કરીશું. તેથી નવી ડાબી બાજુ x + 3 - 3 = x થશે અને નવી જમણી બાજુ 8 - 3 = 5 થશે.

શા માટે આપશે 3 બાદ કરીએ છીએ ? બીજી કોઈ સંખ્યા કેમ નહિ ? 3 ઉમેરવા પ્રયત્ન કરો. શું તે ઉપયોગી થશે ? શા માટે નહીં ? કારણ કે 3ની બાદબાકીથી ડાબી બાજુના x રહે છે.

અહીં સમાનતા બદલાતી નથી. તેથી આપણને મળે છે, નવી ડાબી બાજુ = નવી જમણી બાજુ અથવા x = 5 જે આપણને જોઈતો સમીકરણ (4.6) નો ઉકેલ છે.

આપણે સાચા છીએ તે ચકાસીએ. આપણે મૂળ સમીકરણમાં x = 5 મૂકીશું તો આપણને ડાબી બાજુ = x + 3 = 5 + 3 = 8 મળશે કે, જે જમણી બાજુ જેટલી છે.

સમીકરણની બંને બાજુ સાચી ગાણિતિક પ્રક્રિયાઓ (એટલે કે 3 બાદ કરવા) કરીનેઆપણે સમીકરણના ઉકેલ સુધી પહોંચી શક્યા.

• ચાલો, બીજું એક સમીકરણ જોઈએ. x-3=10 (4.7) અહીં આપણે શું કરીશું ? આપણે બંને બાજુ 3 ઉમેરીશું. આમ, કરવાથી આપણે સમાનતા જાળવી શકીશું અને ડાબી બાજએ માત્ર x રહશે.

નવી ડાબી બાજુ = x - 3 + 3 = xનવી જમણી બાજુ = 10 + 3 = 13આમ x = 13, કે જે માગેલો ઉકેલ છે.

∴ મૂળ સમીકરણ (4.7) માં x=13 મૂકતાં આપણે ખાતરી કરી શકીશું કે ઉકેલ સાચો છે.

મૂળ સમીકરણની ડાબી બાજુ = x - 3 = 13 - 3 = 10

જે આપેલ જમણી બાજુ જેટલી જ છે.

તે જ રીતે ચાલો બીજાં સમીકરણો જોઈએ.

$$5y = 35$$
 (4.8)

$$\frac{m}{2} = 5 \tag{4.9}$$

પહેલા કિસ્સામાં, આપણે બંને બાજુને 5 વડે ભાગીશું જે આપણને ડાબી બાજુએ y આપશે.

નવી ડાબી બાજુ = $\frac{5y}{5} = \frac{5 \times y}{5} = y$ નવી જમણી બાજુ = $\frac{35}{5} = \frac{5 \times 7}{5} = 7$ તેથી, આ માંગેલો ઉકેલ છે. આપણે સમીકરણ(4.8)માં yની જગ્યાએ 7 મૂકી તપાસીશું કે તે સમીકરણ સંતોષે છે.

બીજા કિસ્સામાં, આપણે બંને બાજુને 2 વડે ગુણીશું જે આપણને ડાબી બાજુએ m આપશે.

નવી ડાબી બાજુ = $\frac{m}{2} \times 2 = m$. નવી જમણી બાજુ = $5 \times 2 = 10$

તેથી, m = 10 (તે માંગેલો ઉકેલ છે. તમે ચકાસો કે ઉકેલ સાચો છે.)

ઉપરનાં ઉદાહરણોમાંથી આપણે એક જોયું કે કઈ ક્રિયાની પસંદગી કરવી તે સમીકરણ પર આધાર રાખે છે. આપણો પ્રયત્ન એ જ રહેવો જોઈએ કે સમીકરણમાંથી ચલને અલગ કરવો. કેટલીક વખતે આ કરવા માટે આપણને એક કરતાં વધુ ગાણિતિક પ્રક્રિયાની જરૂર પડશે. આ બાબત ધ્યાનમાં રાખી આપણે કેટલાંક વધુ સમીકરણો ઉકેલીએ.

ઉદાહરણ
$$5$$
 ઉકેલો : (a) $3n+7=25$ (4.10)

(b)
$$2p-1=23$$
 (4.11)

ઉકેલ

(a) આપણે ક્રમિક પગલાં પર જઈ ડાબી બાજુમાંથી nને અલગ કરીશું. ડાબી બાજુ 3n+7 છે. તેમાંથી પહેલાં આપણે 7 બાદ કરીને 3n મેળવીશું. બીજા પગલામાં આપણે મળેલ પરિણામને 3 વડે ભાગી n મેળવીશં.

યાદ રાખો કે સમીકરણની બંને બાજુ એકસરખી પ્રક્રિયા કરીશું તેથી, બંને બાજુથી 7 બાદ કરીએ, તો

$$3n+7-7=25-7$$
 (પગલું 1)

અથવા 3n = 18

હવે, બંને બાજુને 3 વડે ભાગીશું.

$$\frac{3n}{3} = \frac{18}{3} \tag{49e} 2$$

અથવા n=6 કે જે ઉકેલ છે.

(b) અહીં આપણે શું કરીશું ? પહેલાં આપણે બંને બાજુ 1 ઉમેરીશું.

$$2p-1+1=23+1$$
 (unej 1)

અથવા 2p = 24

હવે, બંને બાજુને 2 વડે ભાગીશું.

$$\frac{2p}{2} = \frac{24}{2} \tag{49e}$$

અથવા p = 12 કે જે ઉકેલ છે.

આપણે મેળવેલા ઉકેલને ચકાસવાની એક સારી આદત કેળવવી જોઈએ.

જોકે તે આપણે અગાઉના સમીકરણ (a) માટે કર્યું નથી. ચાલો, આપણે આ ઉદાહરણ માટે તે કરીએ. મેળવેલ ઉકેલ p=12 સમીકરણની અંદર મૂકતાં.

ડા.બા =
$$2p - 1 = 2 \times 12 - 1 = 24 - 1$$

= $23 =$ %.બા

આમ, ઉકેલની ખરાઈ આ રીતે તપાસી શકાશે.

શા માટે તમે (a)ના ઉકેલને પણ ન ચકાસો ?

હવે, આપણે પાછા જઈ અપ્પુ, સરિતા અને અમીનાએ રજૂ કરેલી મનવાંચન રમતનો જવાબ તેમણે કેવી રીતે મેળવ્યો તે જોઈએ. આ માટે સમીકરણ (4.1) અને (4.2) જુઓ કે જે ક્રમશઃ અમીના અને અપ્પુના ઉદાહરણને સંગત છે.

• પહેલાં સમીકરણ
$$4x + 5 = 65$$
 લેતાં,
બંને બાજુ 5 બાદ કરતાં, $4x + 5 - 5 = 65 - 5$ (4.1)

એટલે કે 4x = 60

બંને બાજુને 4 વડે ભાગતાં આપણને x અલગ મળશે. $\frac{4x}{4} = \frac{60}{4}$

x = 15 કે જે ઉકેલ છે. (ચકાસો કે તે સાચો છે)

•
$$4\hat{q}, 10y - 20 = 50 \hat{q} \hat{q},$$
 (4.2)

સમીકરણની બંને બાજુ 20 ઉમેરતાં, 10y - 20 + 20 = 50 + 20 એટલે કે, 10y = 70

બંને બાજુને 10 વડે ભાગતાં, $\frac{10y}{10} = \frac{70}{10}$ મળશે.

y = 7 કે જે ઉકેલ છે. (ચકાસો કે તે સાચો છે.)

હવે, તમને ખાતરી થશે કે અપ્પુ, સરિતા અને અમીનાએ આપેલો જવાબ ખરેખર આ જ હતો. તેઓ સમીકરણની રચના અને તેનો ઉકેલ મેળવવાનું શીખ્યાં હતાં. તેથી જ તો તેઓ મનવાંચન રમત રચી શક્યા અને સમગ્ર વર્ગ પર પ્રભાવ પાડી શક્યા. ફરીથી આપણે આ ક્રિયા 4.7 માં જોઈશું.

સ્વાધ્યાય 4.2

1. ચલને અલગ કરવા માટેનું પ્રથમ પગલું કહો અને પછી ઉકેલ શોધો.

(a)
$$x - 1 = 0$$

(b)
$$x + 1 = 0$$

(b)
$$x + 1 = 0$$
 (c) $x - 1 = 5$ (d) $x + 6 = 2$

(e)
$$v - 4 = -7$$

f)
$$y - 4 = 4$$

(g)
$$v + 4 = 4$$

(e)
$$y-4=-7$$
 (f) $y-4=4$ (g) $y+4=4$ (h) $y+4=-4$

2. ચલને અલગ કરવા માટેનું પ્રથમ પગલું કહો અને પછી ઉકેલ શોધો.

(a)
$$3l = 42$$

(b)
$$\frac{b}{2} = 6$$

(c)
$$\frac{p}{7} = 4$$

(b)
$$\frac{b}{2} = 6$$
 (c) $\frac{p}{7} = 4$ (d) $4x = 25$

(e)
$$8y = 36$$

(f)
$$\frac{z}{3} = \frac{5}{4}$$

(g)
$$\frac{a}{5} = \frac{7}{15}$$

(e)
$$8y = 36$$
 (f) $\frac{z}{3} = \frac{5}{4}$ (g) $\frac{a}{5} = \frac{7}{15}$ (h) $20t = -10$

3. ચલને અલગ કરવાનાં પગલાં કહો અને પછી ઉકેલ શોધો.

(a)
$$3n - 2 = 46$$

(a)
$$3n-2=46$$
 (b) $5m+7=17$ (c) $\frac{20p}{3}=40$ (d) $\frac{3p}{10}=6$

(c)
$$\frac{20p}{3} = 4$$

(d)
$$\frac{3p}{10} = 6$$

4. નીચેનાં સમીકરણ ઉકેલો.

(a)
$$10p = 100$$

(a)
$$10p = 100$$
 (b) $10p + 10 = 100$ (c) $\frac{p}{4} = 5$ (d) $\frac{-p}{3} = 5$

(c)
$$\frac{p}{4} = 5$$

(d)
$$\frac{-p}{3} = 5$$

(e)
$$\frac{3p}{4} = 6$$
 (f) $3s = -9$

(f)
$$3s = -9$$

(g)
$$3s + 12 = 0$$

(h)
$$3s = 0$$

(i)
$$2q = 6$$

(j)
$$2q - 6 = 0$$

(k)
$$2q + 6 = 0$$

(i)
$$2q = 6$$
 (j) $2q - 6 = 0$ (k) $2q + 6 = 0$ (l) $2q + 6 = 12$

4.5 વધારે સમીકરણ (More Equations)

ચાલો વધુ મહાવરા માટે વધુ સમીકરણ ઉકેલીએ. જ્યારે સમીકરણને ઉકેલીશું ત્યારે આપણે સંખ્યાના સ્થાનાંતર વિશે શીખીશું એટલે કે સંખ્યાને એક બાજુથી બીજી બાજુ ખસેડવી. સમીકરણમાં બંને બાજુ સંખ્યાને ઉમેરવા અને બાદ કરવાની જગ્યાએ આપણે સંખ્યાનું સ્થાનાંતર કરીશું.

ઉદાહરણ 6 ઉકેલો 12*p* – 5 = 25

(4.12)

<mark>ઉકેલ</mark> ● સમીકરણની બંને બાજુએ 5 ઉમેરતાં,

12p-5+5=25+5 તેથી, 12p=30

• બંને બાજુ 12 વડે ભાગતાં $\frac{12p}{12} = \frac{30}{12}$ તેથી $p = \frac{5}{2}$

ચકાસણી સમી. 4.12 ની ડાબી બાજુમાં $p = \frac{5}{2}$ મૂકતાં,

ડાબા. =
$$12 \times \frac{5}{2} - 5 = 6 \times 5 - 5$$

= $30 - 5 = 25 =$ %બા.

નોંધ : બંને બાજુ 5 ઉમેરવા એટલે (–5) નું સ્થાનાંતર કરવું

$$12p - 5 = 25$$

$$12p = 25 + 5$$

બાજુ બદલવી એટલે સ્થાનાંતર કરવું જ્યારે સંખ્યાનું સ્થાનાંતર કરીએ છીએ ત્યારે તેની નિશાની બદલીએ છીએ.

આપણે જોયું કે જ્યારે સમીકરણ ઉકેલવાનું હોય ત્યારે સમીકરણની બંને બાજુ સરખી સંખ્યા ઉમેરવાની અથવા બાદબાકી કરવાની પ્રક્રિયાનો સામાન્ય રીતે ઉપયોગ કરીએ છીએ. સંખ્યાનું સ્થાનાંતર (એટલે કે સંખ્યાની બાજુ બદલવી) એ બંને બાજુ સંખ્યાના સરવાળા અથવા બાદબાકી કરવા જેવી જ ક્રિયા છે. આમ કરવાથી સંખ્યાનું ચિહ્ન બદલાઈ જાય છે. આ સંખ્યા અને પદાવલિ બંનેને લાગુ પડે છે. ચાલો આપણે સ્થાનાંતરની પદ્ધતિનાં વધુ બે ઉદાહરણ લઈએ.

ંબને બાજુ સરવાળો અથવા બાદબાકી

(i)
$$3p-10=5$$

બંને બાજુ 10 ઉમેરતાં $3p-10+10=5+10$
તેથી $3p=15$

(ii)
$$5x + 12 = 27$$

બંને બાજુએથી 12 બાદ કરતાં $5x + 12 - 12 = 27 - 12$
તેથી $5x = 15$

સ્થાનાંતર

(i)
$$3p-10=5$$

(-10) નું ડાબેથી જમણે સ્થાનાંતર કરતાં,
(સ્થાનાંતરમાં (-10) નું + 10 બને છે)
 $3p=5+10$ અથવા $3p=15$

(ii)
$$5x + 12 = 27$$

 $+12 - i$ સ્થાનાંતર કરતાં, (સ્થાનાંતરમાં
 $+12 - i$ -12 બને છે.)
 $5x = 27 - 12$
 અથવા $5x = 15$

હવે આપણે વધુ બે સમીકરણ ઉકેલીશું. તમે જોઈ શકશો કે જો તે કૌંસમાં આપેલ હોય તો પ્રક્રિયા કરતાં પહેલાં તેમને હલ કરવાની (ઉકેલવાની) જરૂર છે.

ઉદાહરણ 7 ઉકેલો

(a)
$$4(m+3) = 18$$
 (b) $-2(x+3) = 8$

(a)
$$4(m+3) = 18$$

ચાલો, બંને બાજુને 4 વડે ભાગીએ. ડાબી બાજુનો કૌંસ દૂર કરતાં,

$$m+3=\frac{18}{4}$$
 અથવા $m+3=\frac{9}{2}$

તેથી,
$$m = \frac{9}{2} - 3$$
 (3ને જમણી બાજુ ખસેડતાં)

તેથી,
$$m = \frac{3}{2}$$
 (માંગેલો ઉકેલ) $\left(\text{અહી } \frac{9}{2} - 3 = \frac{9}{2} - \frac{6}{2} = \frac{3}{2}\right)$

ચકાસો : ડાબી બાજુ =
$$4\left[\frac{3}{2} + 3\right] = 4 \times \frac{3}{2} + 4 \times 3 = 2 \times 3 + 4 \times 3$$
 $\left[m = \frac{3}{2} \text{ મૂકતાં}\right]$ = $6 + 12 = 18 =$ જમણીબાજુ

આપણે બંને બાજુને (-2) વડે ભાગી, ડાબી બાજુના કૌંસને દૂર કરતાં,

$$x+3=-\frac{8}{2}$$
 અથવા $x+3=-4$

એટલે કે,
$$x = -4 - 3$$
; (3ને જમણી બાજુ ખસેડતાં) અથવા $x = -7$ (માંગેલો ઉકેલ)

88

4.6 ઉકેલથી સમીકરણ સુધી (From Solution to Equation)

અતુલ હંમેશાં જુદું જ વિચારતો હોય છે. સમીકરણ ઉકેલવા કોઈએ લીધેલાં ક્રમિક પગલાં તેણે જોયાં તેને

જિજ્ઞાસા થઈ કે શા માટે ઊલટાં પગલાં ન લઈ શકાય.

સમીકરણ ightarrow ઉકેલ (સામાન્ય પથ)

ઉકેલ ightarrow સમીકરણ (ઊલટો પથ)

પ્રયત્ન કરો

x = 5 લઈ આરંભ કરો અને બે જુદાં સમીકરણ બનાવો. તમારા સહાધ્યાયીને આ સમીકરણ ઉકેલવા કહો. ચકાસો કે તેણે મેળવેલ ઉકેલ x = 5 છે. તે નીચે આપેલા પથને અનુસરે છે :

આરંભ x=5 બંને બાજુને 4 વડે ગુણો 4x=20 બંને બાજુને 4 વડે ભાગો. બંને બાજુમાંથી 3 બાદ કરો 4x-3=17 બંને બાજુ 3 ઉમેરો.

પરિણામે સમીકરણ મળ્યું. આપણે જમણી બાજુ દર્શાવ્યા પ્રમાણે ઊલટા માર્ગે ક્રમિક પગલાં પ્રમાણે જઈએ તો સમીકરણનો ઉકેલ મેળવી શકીએ છીએ.

હેતલને રસ પડ્યો. તેણે આરંભનું પદ સમાન લઈ બીજાં સમીકરણ રચવાની શરૂઆત કરી.

$$x = 5$$

બંને બાજુને 3 વડે ગુણતાં, 3x = 15

બંને બાજુ 4 ઉમેર્યા 3x + 4 = 19

y=4 લઈ બે જુદાં જુદાં સમીકરણ બનાવો. તમારા ત્રણ મિત્રોને આમ કરવાનું કહો. શું તેમનાં સમીકરણો તમારાથી ભિન્ન છે ?

શું એ સારું ના કહેવાય કે ? તમે માત્ર સમીકરશનો ઉકેલ નથી શોધતાં પરંતુ તમે સમીકરશ પશ બનાવી શકો છો ? વધુમાં તમે જોયું હશે કે આપેલા સમીકરશનો માત્ર તમે એક જ ઉકેલ શોધી શકો છો, પરંતુ ઉકેલ આપ્યો હોય તો તમે ઘણાં સમીકરશ બનાવી શકો.

હવે, સારા ઇચ્છે છે કે પોતે શું વિચારે છે તે વર્ગ જાશે. તેશે કહ્યું, હેતલનું સમીકરશ લઈ અને તેને વિધાન સ્વરૂપમાં મૂકી એક કોયડો બનાવું છું. ઉદાહરશ તરીકે કોઈ એક સંખ્યા ધારો. તેને ત્રણ વડે ગુણી મળેલા પરિશામમાં 4 ઉમેરો. કેટલો સરવાળો આવ્યો તે તમે મને કહો.

પ્રયત્ન કરો

એકનો ઉકેલ 11 અને બીજાનો ઉકેલ 100 હોય તેવા બે કોયડાઓ બનાવો. જો સરવાળો 19 હોય તો હેતલે મેળવેલ સમીકરણથી આપેલ કોયડાનો ઉકેલ આપણને આપશે. ટૂંકમાં આપણે જાણીએ છીએ કે તે 5 છે. કારણ કે હેતલે શરૂઆત તેનાથી કરી હતી.

તેણે અપ્પુ, અમીના અને સરિતા તરફ ફરીને પૂછ્યું કે તેમણે કોયડો આ રીતે બનાવ્યો હતો ? ત્રણે જણાએ કહ્યું, 'હા' !

આંકડાકીય કોયડા અને બીજા તેવા ઉખાણાં આપણે કેવી રીતે બનાવી શકીએ તે હવે જાણીએ છીએ.

89

સ્વાધ્યાય 4.3

(b)
$$5t + 28 = 10$$

(c)
$$\frac{a}{5} + 3 = 2$$

(d)
$$\frac{q}{4} + 7 = 5$$

(f)
$$\frac{5}{2}x = \frac{25}{4}$$

(e)
$$\frac{5}{2}x = -10$$
 (f) $\frac{5}{2}x = \frac{25}{4}$ (g) $7m + \frac{19}{2} = 13$ (h) $6z + 10 = -2$

(h)
$$6z + 10 = -2$$

(i)
$$\frac{3l}{2} = \frac{2}{3}$$

(i)
$$\frac{3l}{2} = \frac{2}{3}$$
 (j) $\frac{2b}{3} - 5 = 3$

2. નીચેનાં સમીકરણો ઉકેલો :

(a)
$$2(x+4) = 12$$

(b)
$$3(n-5) = 21$$

(a)
$$2(x+4) = 12$$
 (b) $3(n-5) = 21$ (c) $3(n-5) = -21$

(d)
$$-4(2+x) = 8$$
 (e) $4(2-x) = 8$

(e)
$$4(2-x) = 8$$

3. નીચેનાં સમીકરણો ઉકેલો :

(a)
$$4 = 5(p-2)$$

(b)
$$-4 = 5 (p-2)$$

(b)
$$-4 = 5 (p-2)$$
 (c) $16 = 4 + 3(t+2)$

(d)
$$4 + 5(p-1) = 34$$

(e)
$$0 = 16 + 4(m-6)$$

4. (a) x = 2 થી શરૂ કરીને 3 સમીકરણ બનાવો.

(b) x = -2 થી શરૂ કરીને 3 સમીકરણ બનાવો.

4.7 વ્યવહારુ પરિસ્થિતિમાં સરળ સમીકરણની ઉપયોગિતા

આપણે ઘણાં ઉદાહરણો જોયાં કે જેમાં આપણાં રોજિંદા જીવનની ભાષાનાં વિધાનોને લઈને તેમને સરળ સમીકરણના સ્વરૂપમાં ફેરવ્યાં. આપણે એ પણ શીખ્યાં કે સરળ સમીકરણનો ઉકેલ કેવી રીતે શોધી શકાય. આમ આપણે વ્યવહારુ પરિસ્થિતિના કોયડા અને સમસ્યાને ઉકેલવા માટે તૈયાર છીએ. પદ્ધતિ એ છે કે પહેલાં આપેલ સમસ્યાને અનુરૂપ સમીકરણની રચના કરવામાં આવે અને પછી તે સમીકરણને ઉકેલવામાં આવે છે, જે કોયડો કે સમસ્યાનો ઉકેલ દર્શાવે છે. આપણે જે જોઈ ગયા ત્યાંથી શરૂઆત કરીએ. (ઉદાહરણ 1 (i) અને (iii) વિભાગ 4.2)

<mark>ઉદાહરણ 8</mark> કોઈ સંખ્યાના ત્રણ ગણા અને 11નો સરવાળો 32 છે. તો તે સંખ્યા શોધો. ઉકેલ

ullet જે સંખ્યા આપણે જાણતાં નથી તેને x કહીએ. આમ તેના ત્રણ ગણા 3x થશે. 3x અને 11નો સરવાળો 32 છે. તેથી, 3x + 11 = 32.

 આ સમીકરણ ઉકેલવા માટે આપણે 11ને જમણી બાજુ ખસેડીશું. તેથી, 3x = 32 - 11 અથવા 3x = 21હવે બંને બાજુને 3 વડે ભાગીશું.

વિભાગ 4.2ના દાખલા 1માં આ સમીકરણ અગાઉ આપણે મેળવ્યું હતું.

તેથી,
$$x = \frac{21}{3} = 7$$

આમ, ઉકેલ 7 છે. આપણે તે ચકાસી શકીએ કે 7ને 3 વખત લઈ તેમાં 11 ઉમેરતાં 32 મળે છે. ઉદાહરણ 9 એવી સંખ્યા શોધો કે જેનો એક ચતુર્થાંશ ભાગ, 7 કરતાં 3 વધુ છે. ઉકેલ

- ચાલો આ અજ્ઞાત સંખ્યાને y લઈએ, y નો ચોથો ભાગ $\frac{y}{4}$ થશે.
- આ સંખ્યા $\left(\frac{y}{4}\right)$ એ 7 કરતાં 3 જેટલી વધુ છે

તેથી આપણને તેનું સમીકરણ $\frac{y}{4} - 7 = 3$ મળશે.

પ્રયત્ન કરો

- (i) તમે કોઈ સંખ્યાને 6 વડે ગુજ્ઞી મેળવેલ પરિજ્ઞામમાંથી 5 બાદ કરો તો 7 મેળવો છો. તમે કહી શકશો કે તે કઈ સંખ્યા છે?
- (ii) એવી કઈ સંખ્યા છે કે જેના ત્રીજા ભાગમાં 5 ઉમેરતાં 8 મળે ?
- આ સમીકરણને ઉકેલવા પ્રથમ 7ને જમણી બાજુ ખસેડીશું.

$$\frac{y}{4} = 3 + 7 = 10$$

પછી આપણે સમીકરણની બંને બાજુને 4 વડે ગુણીશું.

$$\frac{y}{4} \times 4 = 10 \times 4$$
 અથવા $y = 40$ (માંગેલી સંખ્યા)

મળેલા સમીકરણને ચાલો ચકાસીએ. સમીકરણમાં yની કિંમત મૂકતાં,

ડાબી બાજુ =
$$\frac{40}{4}$$
 - 7 = 10 - 7 = 3 = જમણી બાજુ, જે માંગેલું છે.

ઉદાહરણ 10 રાજુના પિતાની ઉંમર રાજુની ઉંમરના ત્રણ ગણાથી 5 વર્ષ વધારે છે. જો તેના પિતા 44 વર્ષના હોય, તો રાજુની ઉંમર શોધો.

ઉકેલ

• અગાઉ ઉદાહરણ 3 માં દર્શાવ્યા મુજબ, રાજુની ઉંમર શોધી આપતું સમીકરણ,

$$3y + 5 = 44$$

• તેને ઉકેલવા પહેલાં 5ને ખસેડતાં,

$$3y = 44 - 5 = 39$$
 મળશે.

• બંને બાજુને 3 વડે ભાગતાં,

$$y = 13$$
 મળશે.

તેથી રાજુની ઉંમર 13 વર્ષ છે. (તમે જવાબ ચકાસો.)

પ્રયત્ન કરો

કેરીઓ ભરેલી બે પ્રકારની પેટીઓ છે. મોટી પેટીમાં કેરીઓની સંખ્યા 8 નાની પેટીઓમાં ભરેલી કેરીઓની સંખ્યા કરતાં 4 વધારે છે. દરેક મોટી પેટીમાં 100 કેરીઓ ભરેલી છે. તો નાની પેટીમાં ભરેલી કેરીઓની સંખ્યા શોધો.

સ્વાધ્યાય 4.4

- 1. આપેલી પરિસ્થિતિ મુજબ સમીકરણ રચી તેને ઉકેલો અને અજ્ઞાત સંખ્યા શોધો :
 - (a) સંખ્યાના 8 ગણામાં 4 ઉમેરતાં તમને 60 મળે છે.
 - (b) સંખ્યાના એક પંચમાંશ ભાગમાંથી 4 બાદ કરતાં 3 મળે.
 - (c) જો હું કોઈ સંખ્યાનો ત્રણ ચતુર્થાંશ ભાગ લઈ તેમાં 3 ઉમેરું છું, તો મને 21 મળે છે.
 - (d) જ્યારે મેં સંખ્યાના બે ગણામાંથી 11 બાદ કર્યા તો તે પરિણામ 15 હતું.
 - (e) મુન્નાએ તેની પાસે રહેલી નોટબુકના ત્રણ ગણા 50માંથી બાદ કર્યા અને તેને પરિણામ 8 મળ્યું.
 - (f) ઈલાએ એક સંખ્યા ધારી. જો તે તેમાં 19 ઉમેરે છે અને મળેલા સરવાળાને 5 વડે ભાગે છે તો તેને 8 મળશે.
 - (g) અનવર એક સંખ્યા ધારે છે. તે સંખ્યાના $\frac{5}{2}$ ભાગમાંથી તે 7 બાદ કરે છે અને પરિણામ 23 મળે છે.

2. નીચેનાં સમીકરણો ઉકેલો :

- (a) શિક્ષકે વર્ગમાં વિદ્યાર્થીઓને કહ્યું કે સૌથી વધારે ગુણ મેળવનાર વિદ્યાર્થીના ગુણ સૌથી ઓછા ગુણ મેળવનાર વિદ્યાર્થીના ગુણના બે ગણાથી 7 વધારે છે. જો સૌથી વધુ ગુણ 87 હોય, તો સૌથી ઓછા ગુણ કેટલા હશે ?
- (b) એક સમદ્ધિબાજુ ત્રિકોણમાં બે આધારખૂણાના માપ સરખાં છે. શિરઃકોણનું માપ 40° છે, તો ત્રિકોણના આધારખૂણાનું માપ શું હશે ? (યાદ કરો : ત્રિકોણના ત્રણેય ખૂણાનાં માપનો સરવાળો 180° હોય છે.)
- (c) એક મૅચમાં સચિનના ૨ન રાહુલના ૨ન કરતાં બે ગણા છે. જો તેમના ૨ન ભેગા કરવામાં આવે તો તેમના ૨ન બે સદી કરતાં 2 જેટલા ઓછા છે, તો તે મૅચમાં બંનેએ કેટલા ૨ન કર્યા હશે ?

3. નીચેનાને ઉકેલો :

- ઇરફાને કહ્યું કે તેની પાસે પરિમત પાસેની લખોટીના 5 ગણા કરતાં 7 વધારે લખોટી છે. ઇરફાનની પાસે 37 લખોટી છે. તો પરિમત પાસે કેટલી લખોટી હશે ?
- (ii) લક્ષ્મીના પિતા 49 વર્ષના છે. તે લક્ષ્મીની ઉંમરના ત્રણ ગણાથી 4 વર્ષ મોટા છે. તો લક્ષ્મીની ઉંમર કેટલી હશે ?
- (iii) સુંદરગ્રામના લોકોએ પોતાના ગામના બગીચામાં વૃક્ષારોપણ કર્યું. તેમાંના કેટલાક છોડ ફળના છોડ હતા. ફળોના ન હોય તેવા છોડની સંખ્યા ફળોના છોડની સંખ્યાના ત્રણ ગણા કરતાં બે વધારે હતી. જો ફળોના ન હોય તેવા છોડની સંખ્યા 77 હોય તો ફળોના છોડની સંખ્યા કેટલી હશે ?
- આ કોયડો ઉકેલો : હું એક સંખ્યા છું.
 મારી ઓળખ જણાવો!
 - મારા સાત ગણા લો.

તેમાં પચાસ ઉમેરો.

ત્રેવડી સદી સુધી પહોંચવા માટે

તમારે હજુ ચાલીસ જોઈએ છે.

આપણે શું ચર્ચા કરી

- 1. સમીકરણ એ એવી શરત છે કે જેમાં બંને પદાવલિની કિંમત ચલ માટે સરખી હોય છે.
- 2. સમીકરણનું સમાધાન કરતી ચલની કિંમતને સમીકરણનો ઉકેલ કહે છે.
- જો સમીકરણની ડાબી બાજુ અને જમણી બાજુની અદલાબદલી કરવામાં આવે તો સમીકરણ તેનું તે જ રહે છે.
- 4. સંતુલિત સમીકરણના કિસ્સામાં, જો આપણે (i) બંને બાજુ સરખી સંખ્યા ઉમેરીએ અથવા (ii) બંને બાજુમાંથી સરખી સંખ્યા બાદ કરીએ અથવા (iii) બંને બાજુને સરખી સંખ્યા વડે ગુણીએ અથવા (iv) શૂન્ય રહિત સંખ્યા વડે બંને બાજુ ભાગવામાં આવે તો કોઈ પણ વિક્ષેપ વગર સમીકરણ સંતુલિત રહેશે, એટલે કે, ડાબી બાજુની કિંમત અને જમણી બાજુની કિંમત સરખી રહેશે.
- 5. ઉપરના ગુણધર્મો આપણને સમીકરણ ઉકેલવાની પદ્ધતિસરની રીત આપે છે. સમીકરણની એક બાજુ ચલ મેળવવા માટે સમીકરણની બંને બાજુ આપણે સમાન ગાણિતિક પ્રક્રિયાઓનો અમલ કરીએ છીએ. છેલ્લું પગલું એ સમીકરણનો ઉકેલ છે.
- 6. સ્થાનાંતરનો અર્થ થાય છે કે બીજી બાજુ ખસેડવું. સ્થાનાંતર કરેલી સંખ્યાની અસર એ સમીકરણની બંને બાજુ સરખી સંખ્યા ઉમેરવામાં આવે (અથવા સરખી સંખ્યા તેમાંથી બાદ કરવામાં આવે) એટલી જ હોય છે. સંખ્યાને જ્યારે એક બાજુથી બીજી બાજુ ખસેડીએ ત્યારે તેની નિશાની બદલાય છે. ઉદાહરણ તરીકે, +3ને ડાબી બાજુથી જમણી બાજુ ખસેડવામાં આવે તો સમીકરણ x+3=8 એ x=8-3 (=5) થાય. આપણે આંકડાના સ્થાનાંતર જેમ જ પદાવલિનું સ્થાનાંતર કરી શકીએ છીએ.
- વાસ્તિવિક પરિસ્થિતિને અનુરૂપ બીજગણિતીય પદાવલિ કેવી રીતે રચી શકાય તે આપણે શીખી ગયાં.
- ઉકેલની બંને બાજુ સરખી ગાણિતિક પ્રક્રિયાનો ઉપયોગ કરીને ઉકેલથી સમીકરણની રચના આપણે શીખ્યાં. વધુમાં આપણે એ પણ શીખ્યાં કે આપેલ સમીકરણને બંધ બેસતી વાસ્તવિક પરિસ્થિતિ સાથે સાંકળીને વ્યવહારું પ્રશ્ન કે કોયડો બનાવી શકીએ છીએ.