Nombre Carrera Comisión

sión Z+ enunciado!

ANÁLISIS NUMÉRICO I - Examen Final N°3 - 6 de Agosto de 2010 Exámen a libro y notas cerrados pero a calculadora prendida

Alumnos regulares: Hacer los ejercicios 3-4-5 y 6.

Alumnos libres: Realizar todos los ejercicios del 1 al 6.

- 1. (a) Construir el polinomio de Taylor de orden 2 de $f(x) = 2x\cos(x) (x-2)^2$ alrededor de x = 0. (10 puntos)
 - (b) Usar el polinomio obtenido en (a) para aproximar f(0.4). (5 puntos)
 - (c) Dar una estimación del error cometido en (b), usando la fórmula del resto. (10 puntos)
- 2. Considerar la función $f(x) = x \exp(-x)$. Dados los siguientes pares de valores de la misma:

	x	0.0	0.6	1.0		
1	f(x)	0.00	0.33	0.37		

- (a) Calcular el polinomio interpolante de orden dos en la forma de Newton. (10 puntos)
- (b) Utilizar el polinomio para aproximar f(x) en x = 0.8. (5 puntos)
- (c) Estimar el error cometido en (b), en términos de la derivada de orden 3, independiente de ξ . (10 puntos)
- 3. (a) Construir una regla de cuadratura de la forma

$$\int_{-1}^{1} x f(x) dx \approx A_0 f(-1) + A_1 f(0) + A_2 f(1),$$

que sea exacta para polinomios de grado menor o igual que 2. (15 puntos)

- (b) Utilizar dicha regla para aproximar $\int_{-1}^{1} x^2 \exp(-x^2/2) dx$. (10 puntos)
- 4. Dada $f(x) = 2\sin(x) + 1 x$,
 - (a) Mostrar que f(x) = 0 tiene una única raíz positiva y determinar graficamente un intervalo que la contenga. (10 puntos)
 - (b) Realizar tres iteraciones del método de bisección para calcular la raíz del item (a). (15 puntos)
- 5. Según la ley de Hooke, la fuerza necesaria para extender un resorte una longitud x es proporcional al desplazamiento respecto a su longitud natural l_0 , es decir $F = k(x-l_0)$. Se realizan mediciones de elongación para distintas fuerzas y se obtiene la siguiente tabla

x[m]	0.12	0.14	0.16	0.19
F[N]	2.3	4.8	7.4	9.8

Determinar, mediante un ajuste de cuadrados mínimos, la constante elástica k y la longitud natural l_0 del resorte. (25 puntos)

6. Enunciar y demostrar el "Teorema de la aplicación contractiva", que garantiza la existencia y unicidad del punto fijo de una dada f. (25 puntos)

1a	1b	1c	2a	2b	2c	3a	3b	4a	4b	5	6	TOTAL
/,	/			/	//	15	10	10	15	25	25	100

CETMAF

CENTRO DE ESTUDIANTES