Porters algorithm

Innhold

- Stemming generelt
- Beskrivelse av Porters algorithm
- Funn og resultater

Stemming

- Normalisering
- Termer til baseform
- Motivasjon
 - Bøyde ord skal tolkes likt
 - "Jeg spiser mat", "Jens spiste salat"
 - Bedre recall (kan gi verre presisjon)

Hvordan?

- Finnes flere former
 - Lookup table, regelbasert
- Porters er regelbasert
 - Suffix stripping (prefix finnes og)
- Performance
 - vs Lemmatization
- Språk avhengig
 - o spansk, tysk, finsk

Eksempel

- Mål:
 - car, cars, car's, cars' → car
 - \circ box, boxes \rightarrow box
- Regler kan være:
 - Fjerne "s "
 - Fjerne "`s"
 - o Fjerne "s\"
 - o Fjerne "es"
- Kan gi feil:
 - cares → car
 - Lemmatization vil ikke gjøre samme feilen

Porters algoritme

- Stemming
- Engelsk-spesifik
- Deler opp termer i vokaler og konsonanter
- 5 steg

Regler for konsonanter

- Deler opp ord i vokaler(v) og konsonanter(c)
- Regner konsonanter som alle bokstaver utenom vokalene A, E, I, O, U, og utenom Y etter en konsonant.
- Vokaler:
 - o A, E, I, O, U
 - o F.eks. STORY O, Y
- Konsonanter:
 - o TOY T, Y
- En bokstav som ikke regnes som en konsonant, regnes som en vokal

Regler for konsonanter

- Alle ord kan noteres på formen [C](VC)*[V]
- C(C)* -> C
- V(V)* > V
- Teller antallet (VC) forekomster -> measure(m)

Regler for stemming

- Reglene for å bytte ut en suffix er på formen (betingelse) S1 -> S2
 - Hvis betingelsen oppnås, og termen har suffixen S1, så vil suffixen endres til S2.
- (betingelse) kan være:
 - \circ (m >/=/< x) antallet measures
 - *S slutter på S (Fungerer likt for andre bokstaver)
 - *v* inneholder en vokal
 - *d slutter med dobbel-konsonant
 - o *o slutter med cvc, der den andre c-en ikke er W, X, eller Y
 - uttrykk med and, or og not

Stegene i algoritmen

- Ordet går gjennom 5 steg i algoritmen med ulike stemming-regler, der noen vil treffe, og andre ikke.
 - 1: Flertall og partisipp
 - 2 4: Fjerner ulike stemminger
 - 5: Opprydding

Step 1a

 $\begin{array}{cccc} \text{1. SSES} & \rightarrow & \text{SS} \\ \text{2. IES} & \rightarrow & \text{I} \\ \text{3. SS} & \rightarrow & \text{SS} \\ \text{4. S} & \rightarrow & \end{array}$

Step 1b

```
1. (m>0) EED \rightarrow EE
2. (*v*) ED \rightarrow
3. (*v*) ING \rightarrow
```

If the second or third of the rules in Step 1b is successful, the following is performed.

Step 1c

1. (*v*) Y →

Step 2

1. (m>0) ATIONAL	\rightarrow	ATE	
2. (m>0) TIONAL	\rightarrow	TION	
3. (m>0) ENCI	\rightarrow	ENCE	
4. (m>0) ANCI	\rightarrow	ANCE	
5. (m>0) IZER	\rightarrow	IZE	
6. (m>0) ABLI	\rightarrow	ABLE	
7. (m>0) ALLI	\rightarrow	AL	
8. (m>0) ENTLI	\rightarrow	ENT	
9. (m>0) ELI	\rightarrow	E	
10. (m>0) OUSLI	\rightarrow	OUS	
11. (m>0) IZATION	\rightarrow	IZE	
12. (m>0) ATION	\rightarrow	ATE	
13. (m>0) ATOR	\rightarrow	ATE	
14. (m>0) ALISM	\rightarrow	AL	
15. (m>0) IVENESS	\rightarrow	IVE	
16. (m>0) FULNESS	\rightarrow	FUL	
17. (m>0) OUSNESS	\rightarrow	OUS	
18. (m>0) ALITI	\rightarrow	AL	
19. (m>0) IVITI	\rightarrow	IVE	
20. (m>0) BILITI	\rightarrow	BLE	

Step 3

1. (m>0) ICATE	\rightarrow	IC
2. (m>0) ATIVE	\rightarrow	
3. (m>0) ALIZE	\rightarrow	AL
4. (m>0) ICITI	\rightarrow	IC
5. (m>0) ICAL	\rightarrow	IC
6. (m>0) FUL	\rightarrow	
7. (m>0) NESS	\rightarrow	

Step 4

1. (m>1) AL	\rightarrow	
2. (m>1) ANCE	\rightarrow	
3. (m>1) ENCE	\rightarrow	
4. (m>1) ER	\rightarrow	
5. (m>1) IC	\rightarrow	
6. (m>1) ABLE	\rightarrow	
7. (m>1) IBLE	\rightarrow	
8. (m>1) ANT	\rightarrow	
9. (m>1) EMENT	\rightarrow	
10. (m>1) MENT	\rightarrow	
11. (m>1) ENT	\rightarrow	
12. (m>1 and (*S or *T)) IO	N	\rightarrow
13. (m>1) OU	\rightarrow	
14. (m>1) ISM	\rightarrow	
15. (m>1) ATE	\rightarrow	
16. (m>1) ITI	\rightarrow	
17. (m>1) OUS	\rightarrow	
18. (m>1) IVE	\rightarrow	
19. (m>1) IZE	\rightarrow	

Step 5a

- 1. (m>1) E
- 2. (m=1 and not *o) E

Step 5b

1. $(m > 1 \text{ and *d and *L}) \rightarrow \text{single letter}$

Kvantitativ analyse

- Utvide Normalizer klassen med PortersNormalizer.
- Porters algoritme er hentet fra github-repoet til <u>jedijulia</u>.

```
class PortersNormalizer(Normalizer):
    def __init__(self) → None:
        self.porter = PorterStemmer()

    def canonicalize(self, buffer: str) → str:
        return buffer

def normalize(self, token: str) → str:
        return self.porter.stem(token.lower())
```

PortersNormalizer VS. BraindeadNormalizer corpus: "en.txt"

Størrelse på vokabular

- Størrelse = Antall unike termer i vokabularet
- Forskjellen mellom Porters og Braindead øker med størrelsen på corpsus
- Vi tror avstanden mellom de 2 kurvene vil flate ut når n blir veldig stor.

Størrelse på invertert indeks

- størrelse = sum(lengden av alle inverter indekser)
- Forskjellen er avhengig av størrelsen på dokumenter

Kvalitativ analyse av recall

QUERY: "wage increase"

Braindead normalizer

 "How would you address critics who say Wal-Mart should go beyond the wage increase it announced?"

Porters Normalizer

- "Voters in November 2014 approved increasing the minimum wage from \$7.75 an hour."
- "Q. How would you address critics who say Wal-Mart should go beyond the wage increase it announced?"
- "Is increasing the minimum wage a good idea?'"
- "Corporate America is blaming its poor profits on minimum wage increases."