Skup \mathbb{R}

- Skup fundamentalnih nizova racionalnih brojeva $F_{\mathbb Q}$
- Relacija ~ na skupu $F_{\mathbb{Q}}$
- Relacija \sim je relacija ekvivalencije
- Elementi su klase ekvivalencije $[(a_n)_{n\in\mathbb{N}}]_{\sim}$
- Sabiranje i množenje realnih brojeva
- Lema: $(\mathbb{R}, +, \cdot)$ je polje
- Neutralni i inverzni elementi polja $(\mathbb{R}, +, \cdot)$
- Osobine \mathbb{R}^+
- Oduzimanje u \mathbb{R}
- Dijeljenje u \mathbb{R}
- Relacija < u \mathbb{R}
- $(\mathbb{R}, +, \cdot, <)$ je uređeno polje
- Zadatak: dokazati da $(\mathbb{R}, +, \cdot)$ sadrži podpolje izmorfno polju $(\mathbb{Q}, +, \cdot)$
- Teorem o osobinama polja $(\mathbb{R}, +, \cdot)$
- $\sqrt{2} \in R$ je klasa ekvivalencije svih fundamentalnih nizova racionalnih brojeva koji imaju granicu $\sqrt{2}$