First Name: _____ Last Name: _____ Student ID: _____

Applications of Vectors (1)

- **1.** Calculate the dot product, $\vec{u} \cdot \vec{v}$, to one decimal place accuracy, given that
- a. $|\vec{u}| = 10, |\vec{v}| = 2$, and the angle between \vec{u} and \vec{v} is 40°
- b. $\vec{u} = 3\hat{i} \hat{j} + 4\hat{k}$ and $\vec{v} = -\hat{i} + 2\hat{j} + 5\hat{k}$

2. If the vectors $\overrightarrow{2a} + \overrightarrow{b}$ and $\frac{1}{2}\overrightarrow{a} - \overrightarrow{b}$ are perpendicular to each other and $2 | \overrightarrow{b} | = 3 | \overrightarrow{a} |$ find the angle $\theta = \angle (\overrightarrow{a}, \overrightarrow{b})$.

3. Find the angle between each pair of vectors:

$$\vec{a}$$
. $\vec{u} = 3\hat{\imath} - \hat{\jmath}$ and $\vec{v} = -\hat{\imath} + 2\hat{\jmath}$

- **4.** For each of the following pairs of vectors, find the value of a which makes u orthogonal to v:
 - a. $\vec{u} = (3,-4)$ and $\vec{v} = (a,6)$
 - b. $\vec{u} = 2\hat{\imath} + \hat{\jmath} + 3\hat{k}$ and $\vec{v} = a\hat{\imath} + 2\hat{\jmath} \hat{k}$
 - c. $\vec{u} = (3, \alpha, -2)$ and $\vec{v} = (1-\alpha, -3, 4)$

- **5.** Use the dot product to determine if $\triangle ABC$ is right-angled, given the coordinates of its vertices. If it is, state which angle measured 90 \circ .
- a. A (3,-1), B (0,-2), C (2,0)

b. A (1,-1,4), B (-2,5,3), C (3,0,4)

- **6.** The parallelogram *PQRS* has vertices *P* (7,12),*R* (20,5), and *S* (4,3).
 - a. Find the coordinates of Q.
 - b. Find the measure of $\angle PSR$
 - c. Calculate the area of the parallelogram.

Calculus Class 11 Homework

7. If \vec{u} has magnitude 11, \vec{v} has magnitude 5, and the angle between \vec{u} and \vec{v} is 140°, what is the magnitude of $\vec{u} \times \vec{v}$ to one decimal place accuracy?

8. Find the cross product $\vec{u} \times \vec{v}$ given that

$$\vec{a}$$
. $\vec{u} = 3\hat{\imath} - \hat{\jmath} + 4\hat{k}$ and $\vec{v} = -\hat{\imath} + 2\hat{\jmath} + 5\hat{k}$

b.
$$\vec{u} = (1,2,3)$$
 and $\vec{v} = (4,-1,5)$

- **9.** Given the vectors $\vec{u} = (-2,1,-1)$ and $\vec{v} = (-1,2,-1)$
- a. Find a unit vector perpendicular to both \vec{u} and \vec{v} .
- b. Find two vectors of magnitude 11 which are perpendicular to both \vec{u} and \vec{v} .

10. For each pair of vectors \vec{u} and \vec{v} , find the vector projection of \vec{u} on \vec{v} .

a.
$$\vec{u} = (-2,1,-1)$$
 and $\vec{v} = (2,1,3)$

b.
$$\vec{u} = (-2,1,-1)$$
 and $\vec{v} = (4,-2,2)$

11. For each pair of vectors \vec{u} and \vec{v} in Question 11, find the scalar projection of \vec{u} on \vec{v} .

12. Determine if the vectors (1, 3, 2), (5,0,-1), and (-4,3,3) are coplanar.

13. Find the volume of the parallelepiped defined by the vectors \vec{a} = (0, 1, -3), \vec{b} = (1, 2, 3) and \vec{c} = (-1,0,1).

14. Find all unit vectors perpendicular to (1, 2, 3) that make equal angles with the unit vectors \hat{i} and \hat{j} .