Алгебра I, листочек 6

1. Пусть А – кольцо. Докажите изоморфизмы А-модулей:

В общем случае на морфизмах между правами модулями нельзя естественно ввести структуру модуля. Так как пусть U,V – правые A-модули. На $\operatorname{Hom}_A(U,V)$ структуру левого модуля с поэлементным действием не вводится, а именно $f \in \operatorname{Hom}_A(U,V)$, $\lambda,\mu \in A, x \in U$ действие не с той стороны $(\lambda f)(x) = \lambda(f(x)) = ?$, перенести левое действие на правое не возможно, так как не выйдет модуль, а именно:

$$(\lambda f)(x) = f(x)\lambda$$
$$(\lambda \mu f)(x) = ((\lambda \mu)f)(x) = f(x)\lambda \mu$$
$$(\lambda (\mu f))(x) = (\mu f)(x)\lambda = f(x)\mu\lambda$$

где скаляры не обязаны коммутировать. Если попытаться ввести структуру правого модуля, то действовать поэлементно слева также бессмысленно, а с права мы получим

$$(f\lambda)(x) = f(x)\lambda$$

$$(f\lambda)(x\mu) = (f)(x\mu)\lambda = f(x)\mu\lambda$$

$$(f\lambda)(x\mu) = (f\lambda)(x)\mu = f(x)\lambda\mu$$

и мы теряем линейность.

(a) $\operatorname{Hom}_A(A, M) \cong M$.

Тем не менее если один из модулей – бимодуль, то эта проблема разрешима. Пусть M правый A-модуль. Мы будем использовать факт, что A - бимодуль, тогда введём на $\operatorname{Hom}_A(A,M)$ структуру правого A-модуля полагая

$$(\phi\lambda)(x) = \phi(\lambda x), \quad \phi \in \operatorname{Hom}_A(A, M), \ \lambda \in A, \ x \in A$$

 $(\phi + \psi)(x) = \phi(x) + \psi(x), \quad \phi, \psi \in \operatorname{Hom}_A(A, M), \ x \in A$

Аксиомы абелевой группы мы уже проверяли. Проверим линейность:

$$(f\lambda)(x+y\mu)=f(\lambda(x+y\mu))=f(\lambda x+\lambda y\mu)=f(\lambda x)+f(\lambda y)\mu=(f\lambda)(x)+(f\lambda)(y)\mu$$

Проверим аксиомы модуля

i.
$$(f(\lambda \mu))(x) = f(\lambda \mu x) = (f\lambda)(\mu x) = ((f\lambda)\mu)(x)$$

ii.
$$(f1)(x) = f(1x) = f(x)$$

iii.
$$((f+g)\lambda)(x) = (f+g)(\lambda x) = f(\lambda x) + g(\lambda x) = (f\lambda)(x) + (g\lambda)(x) = (f\lambda + g\lambda)(x)$$

iv.
$$(f(\lambda + \mu))(x) = f((\lambda + \mu)x) = f(\lambda x + \mu x) = f(\lambda x) + f(\mu x) = (f\lambda)(x) + (f\mu)(x) = (f\lambda + f\mu)(x)$$

Так что у нас получился правый модуль. Построим отображение $\varphi:f\mapsto f(1)$. Покажем, что оно линейное

$$\varphi(f+g\lambda) = (f+g\lambda)(1) = f(1) + g(\lambda) = f(1) + g(1)\lambda = \varphi(f) + \varphi(g)\lambda$$

Для каждого $m \in M$, можно построить отображение $f_m: k \in A \mapsto mk$. Оно линейно, так как

$$f_m(k+l\lambda) = m(k+l\lambda) = mk + (ml)\lambda = f_m(k) + f_m(l)\lambda$$

Тогда φ сюръективен. С другой стороны любой элемент из $\operatorname{Hom}_A(A,M)$ однозначно определяется образом 1, а значит отображение инъективно. Мы построили изоморфизм.

(b) $\operatorname{Hom}_A(M_1 \oplus M_2, N) \cong \operatorname{Hom}_A(M_1, N) \oplus \operatorname{Hom}_A(M_2, N)$

Мы уже видели как вводить структуру правого модуля, если область бимодуль. Можно также ввести структуру левого модуля, если кообласть является бимодулем. Пусть

 $f,g\in \mathrm{Hom}_A(U,V)$, где U – правый модуль-A,V – S-модуль-A и $\lambda\in A,k,l\in S$ и $x\in U$. Тогда положим

$$(kf)(x) = kf(x)$$

Проверим линейность

$$(kf)(x+y\lambda) = k(f(x+y\lambda)) = k(f(x)+f(y)\lambda) = k(f(x)) + k(f(y)\lambda)$$
$$= (kf)(x) + (kf(y))\lambda = (kf)(x) + (kf)(y)\lambda$$

Проверим аксиомы модуля

i.
$$((kl)f)(x) = (kl)f(x) = k(lf(x)) = k((lf)(x)) = (k(lf))(x)$$

ii.
$$(1f)(x) = 1(f(x)) = f(x)$$

iii.
$$(k(f+g))(x) = k(f+g)(x) = k(f(x)+g(x)) = kf(x) + kg(x) = (kf)(x) + (kg)(x) = (kf+kg)(x)$$

iv.
$$((k+l)f)(x) = (k+l)f(x) = kf(x) + lf(x) = (kf)(x) + (lf)(x) = (kf+lf)(x)$$

Значит мы ввели структуру левого S-модуля.

Теперь если M_1, M_2 – S-модули-A и N – модуль-A. Тогда на $\operatorname{Hom}_A(M_1 \oplus M_2, N)$ и на $\operatorname{Hom}_A(M_1, N) \oplus \operatorname{Hom}_A(M_2, N)$ есть структуры правых модулей-S. Построим гомоморфизм

$$\varphi : \operatorname{Hom}_A(M_1, N) \oplus \operatorname{Hom}_A(M_2, N) \longrightarrow \operatorname{Hom}_A(M_1 \oplus M_2, N)$$

 $(f, g) \mapsto f + g$

Где (f+g)(x,y)=f(x)+g(y) для $x\in M_1$ и $y\in M_2$. Покажем теперь, что φ корректно определен, а именно, что f+g линейны

$$(f+g)((x,y) + (x',y')\lambda) = (f+g)(x+x'\lambda,y+y'\lambda) = f(x+x'\lambda) + g(y+y'\lambda) = f(x) + f(x')\lambda + g(y) + g(y')\lambda = (f(x) + g(y)) + (f(x') + g(y'))\lambda = (f+g)(x,y) + (f+g)(x',y')\lambda$$

Пусть теперь $h \in \operatorname{Hom}_A(M_1 \oplus M_2, N)$, тогда можно найти его прообраз при φ , а именно положим $f = h \circ i_1$ и $g = h \circ i_2$, где $i_1 : x \mapsto (x,0)$ и $i_2 : y \mapsto (0,y)$ – морфизмы, а значит f и g тоже морфизмы, как композиция морфизмов. Но также h(x,y) = h((x,0)+(0,y)) = h(x,0) + h(0,y) = f(x) + g(y) = (f+g)(x,y). Так что отображение φ сюръекьтвно. С другой стороны мы имеем, что если f(x) + g(y) = f'(x) + g'(y), то

$$f(x) = f(x) + g(0) = f'(x) + g'(0) = f'(x)$$

$$g(y) = f(0) + g(y) = f'(0) + g'(y) = g'(y)$$

А значит прообразы совпадают и отображение инъективно.

Проверим ленейность ϕ

$$\varphi((f,g) + (f',g')k)(x,y) = \varphi(f + f'k,g + g'k)(x,y) = (f + f'k)(x) + (g + g'k)(y) = f(x) + g(y) + f'k(x) + g'k(y) = \varphi(f,g)(x,y) + f'(kx) + g'(ky) = \varphi(f,g)(x,y) + \varphi(f',g')(kx,ky) = \varphi(f,g) + \varphi(f',g')(k(x,y)) = \varphi(f,g) + (\varphi(f',g')k)(x,y) = (\varphi(f,g) + \varphi(f',g')k)(x,y)$$

Тогда изоморфизм построен.

Во втором случае M_1 , M_2 — модули-A и N S-модуль-A, тогда на $\operatorname{Hom}_A(M_1 \oplus M_2, N)$ и на $\operatorname{Hom}_A(M_1, N) \oplus \operatorname{Hom}_A(M_2, N)$ есть структуры левых модулей-S. Построим гомоморфизм

$$\varphi : \operatorname{Hom}_A(M_1, N) \oplus \operatorname{Hom}_A(M_2, N) \longrightarrow \operatorname{Hom}_A(M_1 \oplus M_2, N)$$

$$(f, g) \mapsto f + g$$

Он инъективен, сюръективен и бъёт в морфизмы ровно по тем же соображениям. Осталось проверить, что он гомоморфизм

$$\varphi((f,g) + k(f',g'))(x,y) = \varphi(f+kf',g+kg')(x,y) = (f+kf')(x) + (g+kg')(y) = f(x) + kf'(x) + g(y) + kg'(y) = (f+g)(x,y) + k(f'+g')(x,y) = (\varphi(f,g) + k\varphi(f',g'))(x,y)$$

(c) $\operatorname{Hom}_A(M,N_1\oplus N_2)\cong \operatorname{Hom}_A(M,N_1)\oplus \operatorname{Hom}_A(M,N_2)$ Пусть M – S-модуль-A и N_1,N_2 – модули-A. Тогда $\operatorname{Hom}_A(M,N_1\oplus N_2)$ и $\operatorname{Hom}_A(M,N_1)\oplus \operatorname{Hom}_A(M,N_2)$ несут структуры правых модулей-S. Зададим отображение

$$\varphi: \operatorname{Hom}_A(M, N_1) \oplus \operatorname{Hom}_A(M, N_2) \longrightarrow \operatorname{Hom}_A(M, N_1 \oplus N_2)$$
$$(f, g) \mapsto f \oplus g$$

Где $(f \oplus g)(x) = (f(x), g(x))$. Проверим корректность

$$(f \oplus g)(x + yk) = (f(x + yk), g(x + yk)) = (f(x) + f(y)k, g(x) + g(y)k) = (f(x), g(x)) + (f(y), g(y))k = (f \oplus g)(x) + (f \oplus g)(y)k$$

Пусть $h \in \operatorname{Hom}_A(M, N_1 \oplus N_2)$, тогда положим $f = \pi_1 \circ h$ и $g = \pi_2 \circ h$, где $\pi_1 : (x, y) \mapsto x$ и $\pi_2 : (x, y) \mapsto y$. f, g будут гомоморфизмами, так как они композиции гомоморфизмов. Тогда $(f \oplus g)(x) = (f(x), g(x)) = h(x)$, мы нашли прообраз, а значит отображение φ сюрективно. Если $f \oplus g = f' \oplus g'$, то для всех x

$$(f(x), g(x)) = (f'(x), g'(x)) \Leftrightarrow f(x) = f'(x) \& g(x) = g'(x)$$

А значит отображение инъективно, проверим линейность ϕ

$$\varphi((f,g) + (f',g')k)(x) = \varphi(f + f'k,g + g'k)(x) = ((f + f'k)(x),(g + g'k)(x)) = (f(x) + f'(kx),g(x) + g'(kx)) = (f(x),g(x)) + (f'(kx),g'(kx)) = \varphi(f,g)(x) + \varphi(f',g')k(x) = \varphi(f,g)(x) + \varphi(f',g')k(x)$$

Тогда изоморфизм построен.

Пусть теперь M – модуль-A и N_1,N_2 – S-модули-A, тогда на хомах будут структуры левых S-модулей. Опять рассмотрим отображение φ , оно корректно и биективно, проверим его линейность

$$\varphi((f,g) + k(f',g'))(x) = \varphi(f + kf',g + kg')(x) = ((f + kf')(x),(g + kg')(x)) = (f(x) + kf'(x),g(x) + kg'(x) = (f(x),g(x)) + (kf'(x),kg'(x)) = \varphi(f,g)(x) + k(f'(x),g'(x))(x) = \varphi(f,g)(x) + k\varphi(f',g')(x)$$

Модули над коммутативными кольцами легко превращаются в бимодули, и для них умножение справа и слева совпадают, поэтому часто две рассмотренные конструкции модулей на хомах не различают.

2. Какие из следующих модулей являются свободными? Конечно порожденными?

(a) $A = \mathbb{Z}$, $M = \mathbb{Z}$

Очевидно, что $M\cong Z^{\oplus 1}$, так что M свободен. Он порождается 1, а значит конечно порожден.

(b) $A = \mathbb{Q}, M = \mathbb{R}$

Так как \mathbb{R} векторное пространство над \mathbb{Q} , то как мы видели на лекции в \mathbb{R} есть базис, а значит \mathbb{R} свободен (на самом деле любое векторное пространство – свободный модуль). \mathbb{R} не может быть прямой суммой конечного числа \mathbb{Q} , так как \mathbb{R} несчетен, а \mathbb{Q} счетен.

(c) $A = \mathbb{R}, M = \mathbb{C}$

 \mathbb{C} – \mathbb{R} -векторное пространство и порождается $\{1,i\}$, а значит оно конечно порожденный свободный модуль.

(d) $A = \mathcal{M}at_{n \times n}(\mathbb{k}), M = \mathcal{M}at_{n \times m}(\mathbb{k})$ Заметим, что M конечно порожден матричными единицами $e_{i,j}$, так как $A \in M$ всегда раскладывается в сумму матричных единиц, умноженных на $a_{i,j}I_n$. Предположим, что M свободен, тогда есть изоморфизм φ между $M \cong A^{\oplus I}$. Заметим, что в A вкладывается поле, а именно $k \in \mathbb{K} \mapsto kI_n$ причем тогда φ можно рассматривать как изоморфизм \mathbb{K} -векторных пространств. Нетрудно заметить, что размерность A^{\oplus} равна $(n^2 \# I)$, а размерность M равна nm, тогда у нас должно быть равенство размерностей, а значит m = n# I. Тогда # I конечно и мы получим равенство в целых числах m = nk это необходимое условие. Теперь пусть это верно и мы построим изоморфизм. $\varphi : (M_i) \in \mathcal{M}at_{n \times n}(\mathbb{k})^{\oplus k} \mapsto \bigvee_i M_i$, где под \vee мы подразумеваем конкатенацию матриц в линию. Например:

Это отображение очевидно пропускает сложение, так как в двух случаях оно происходит по индексно. Оно биективно, а также пропускает умножение на матрицы, так матрица действуют по отдельности на каждый столбец, значение индекса после операции зависит только от значений в столбцах, а они при φ не изменяются. Так что $\mathcal{M}at_{n\times m}(\Bbbk)$ свободен над $\mathcal{M}at_{n\times m}(\Bbbk) \Leftrightarrow n$ делит m.

3. Сформулируйте и докажите теорему о гомоморфизме для модулей.

Пусть $f:U\to V$ — морфизм модулей-A, тогда верно, что $V/\mathrm{Ker}(f)\cong \mathrm{Im}(f)$. Для этого построим отображение $\phi:[x]\mapsto f(x)$, как мы видели, это изоморфизм групп, проверим, что он пропускает умножение на скаляры $\phi([x]k)=\phi([xk])=f(xk)=f(x)k=\phi([x])k$, а значит это изоморфизм модулей.

4. Пусть A – коммутативное кольцо. Назовем A-модуль H если любая возрастающая (соотв., убывающая) цепочка подмодулей в нем стабилизируется. Пусть дана точная последовательность A-модулей

$$0 \longrightarrow M_1 \stackrel{\phi}{\longrightarrow} M_2 \stackrel{\psi}{\longrightarrow} M_3 \longrightarrow 0$$

Докажите, что M_2 нетерово (соотв., артиново) тогда и только тогда, когда M_1 и M_3 нетерово (соотв., артиновы).

Пусть M_2 нётеров или артинов. Тогда возьмём цепочку из M_1 , она стабилизируется, так как она вкладывается в M_2 и является цепочкой в нётеровом или артиновом модуле. Возьмём цепочку из M_3 , ей соответствует однозначно некая цепочка в M_2 подмодулей, содержащих ядро, она стабилизируется, а значит стабилизируется и изначальная из M_3 .

Пусть теперь M_1 и M_3 нётеровы артиновы. Пусть (A_i) цепочка из M_2 , тогда $A_i \cong (\mathrm{Ker}(\psi) \cap A_i) \oplus \psi[A_i]$ по теореме о гомеоморфизме для $\psi|_{A_i}$. К тому же через ϕ , так как последовательность точна, модулю $\mathrm{Ker}(\psi) \cap A_i$ однозначно соответствует прообраз B_i . Причем свойство цепочки без проблем переносится на прямые слагаемые, а значит (B_i) и $(\psi[A_i])$ цепочки в M_1 и M_3 и они обе стабильны после некоторого шага, а значит и их прямая сумма тоже, а тогда и изначальная цепочка.

5. Пусть A – артиново коммутативное кольцо. Пусть M – конечно порожденный модуль-A. Докажите, что M артинов.

Пусть $\{x_1,\dots,x_n\}$ порождает M. Рассмотрим свободный модуль над $\{x_1,\dots,x_n\}$ $M'=A^{\{x_1,\dots,x_n\}}$. Покажем, что свободные модули артиновы. Очевидно — артиновый модуль. Покажем, что если $A^{\oplus n}$ артинов, то и $A^{\oplus n+1}$ тоже для этого построим точную последовательность

$$0 \to A \to A^{\bigoplus n+1} \to A^{\bigoplus n} \to 0$$

где вторая стрелка отправляет скаляр в последнюю координату, а вторая отправляет тождественно всё кроме последней координаты. A и $A^{\oplus n}$ артиновы, тогда $A^{\oplus n+1}$ тоже. По индукции заключаем, что модули с конечным базисом над артиновом кольцом артиновы. Теперь вернёмся к M' и M, как мы видели M' артинов, а из M' в M есть каноническая проекция, а в задаче 4 мы видели, что при проекции артиновость переносится вдоль стрелки. Тогда M тоже артинов.

6. Пусть A – кольцо. Пусть дана последовательность правых модулей-A

$$M_1 \xrightarrow{\phi} M_2 \xrightarrow{\psi} M_3 \longrightarrow 0$$

Докажите, что индуцированная последовательность

$$0 \longrightarrow \operatorname{Hom}(M_3, N) \xrightarrow{\widetilde{\psi}} \operatorname{Hom}(M_2, N) \xrightarrow{\widetilde{\phi}} \operatorname{Hom}(M_1, N)$$

точна для любого S-модуля-A N тогда и только тогда, когда точна первая. Докажите аналогичное утверждение, заменив $\operatorname{Hom}(-,N)$ на $\operatorname{Hom}(N,-)$.

Определим $(h)\widetilde{\phi}=h\circ\phi$, аналогично определим $\widetilde{\psi}$. На Нот положим структуры левых S-модулей. Покажем, что $\widetilde{\phi}$ – гомоморфизм

$$(kg+h)\widetilde{\phi}(x) = kg(\phi(x)) + h(\phi(x)) = ((kg)\widetilde{\phi} + h\widetilde{\phi}(x).$$

Для точности последовательности необходимо, чтобы $\widetilde{\psi}$ было инъективным. Из первой последовательности следует, что ψ сюръективен, а значит он эпиморфизм и его можно сокращать справа, тогда $h \circ \psi = (h)\widetilde{\psi} = (h')\widetilde{\psi} = h' \circ \psi$ мы сокращаем ψ и получаем h = h', а тогда $\widetilde{\psi}$ и вправду инъективен. На $\widetilde{\varphi}$ наложено условие, что его ядро – в точности образ $\widetilde{\psi}$, но мы знаем, что $\mathrm{Im}(\phi) = \mathrm{Ker}(\psi)$. Пусть $\mathrm{Im}(\widetilde{\psi}) \ni h = h' \circ \psi$, тогда $(h)\widetilde{\phi}(x) = h' \circ \psi \circ \phi(x) = 0$, а значит $\mathrm{Im}(\widetilde{\psi}) \subseteq \mathrm{Ker}(\widetilde{\phi})$. Теперь пусть $h \in \mathrm{Ker}(\widetilde{\phi})$, мы хотим найти h', что бы следующая диаграмма коммутировала, потому как тогда $h = (h')\widetilde{\psi}$:

$$M_1 \xrightarrow{\phi} M_2 \xrightarrow{\psi} M_3 \longrightarrow 0$$

$$\downarrow h \qquad \downarrow h' \\ \downarrow h' \\ N$$

Так как $h \in \text{Ker}(\widetilde{\phi})$, то $\text{Im}(\phi) \subseteq \text{Ker}(h)$. Тогда диаграмму можно профакторизовать и получить фактор отображения \overline{h} и $\overline{\psi}$, что $\overline{h}([a]) = h(a)$ и точно также для ψ , так как $\text{Im}(\phi) = \text{Ker}(\psi)$. И более того $\overline{\psi}$ будет биекцией. Тогда будет иметь место следующая диаграмма:

$$M_2/\operatorname{Im}(\phi) \xrightarrow{\overline{\psi}} M_3$$
 $\downarrow h'$
 $\downarrow h'$
 N

И можно положить $h' = \overline{h} \circ \overline{\psi}^{-1}$.

Тогда мы показали, что $\widetilde{\psi}$ – инъекция и $\mathrm{Im}(\widetilde{\psi})=\mathrm{Ker}(\widetilde{\phi})$, а значит вторая последовательность тоже точна

Рассмотрим аналогичное утверждение для левых $\operatorname{Hom}(N, -)$. Оно в отличии от прошлого ковариантно, так что нужно будет кое-что поменять. Пусть мы наблюдаем следующую точную последовательность

$$0 \longrightarrow M_1 \stackrel{\phi}{\longrightarrow} M_2 \stackrel{\psi}{\longrightarrow} M_3$$

Тогда индуцированная последовательность тоже точна:

$$0 \longrightarrow \operatorname{Hom}(N, M_1) \xrightarrow{\widetilde{\phi}} \operatorname{Hom}(N, M_2) \xrightarrow{\widetilde{\psi}} \operatorname{Hom}(N, M_3)$$

где $\widetilde{\phi}(h) = \phi \circ h$, аналогично определяется $\widetilde{\psi}$. Проверим инъективность $\widetilde{\phi}$, пусть $\psi \circ h = \widetilde{\psi}(h) = \widetilde{\psi}(h') = \psi \circ h'$, но так как из точности первой последовательности видно, что ψ – инъкция, а значит мономорфизм, то его можно сокращать слева, а тогда h = h' и $\widetilde{\psi}$ инъективно.

Теперь проверим второе условие на точность, а именно, что $\operatorname{Im}(\widetilde{\phi})=\operatorname{Ker}(\widetilde{\psi})$. Мы знаем, что $\operatorname{Im}(\phi)=\operatorname{Ker}(\psi)$. Пусть $\operatorname{Im}(\phi)\ni h=\phi\circ h'$, тогда $\widetilde{\psi}(h)(x)=\psi\circ \phi(h(x))=0$, а значит $\operatorname{Im}(\widetilde{\phi})\subseteq\operatorname{Ker}(\widetilde{\psi})$. Проверим в другую сторону, пусть $h\in\operatorname{Ker}(\widetilde{\psi})$, тогда будет искать $h':N\to M_1$, чтобы следующая диаграмма коммутировала

$$\begin{array}{ccc}
N & \xrightarrow{h} & M_2 & \xrightarrow{\psi} & M_1 \\
& & & \downarrow & \uparrow \\
& & & M_1
\end{array}$$

Так как $\psi \circ h = 0$, то $\mathrm{Im}(h) \subseteq \mathrm{Ker}(\psi)$, а тогда можно сузить кообласить до $\mathrm{Ker}(\psi) = \mathrm{Im}(\psi)$, обозначим за $\overline{h}, \overline{\phi}$ отображения со суженой областью, то есть такие отображение, что их графики совпадают с изначальными графиками, но кообласть меньше, тогда так как ϕ инъективно, то после сужения он привратится в изоморфизм и будет иметь место следующая диаграмма:

$$N \xrightarrow{\overline{h}} \operatorname{Im}(\phi)$$

$$\downarrow \overline{\phi} \uparrow$$

$$M_1$$

Тогда можно положить $h' = \overline{\phi}^{-1} \circ \overline{h}$. А значит вторая цепочка тоже точна.

Заметим, что нам на самом деле не обязательно иметь структуру S-модуля, по тому как она всегда автоматически появляется, когда один из модулей – бимодуль, а гомоморфизмы абелевых групп переходят в гомоморфизмы S-модулей, так что можно рассматривать всё тоже самое просто на абелевых группах.

7. Чему изоморфен \mathbb{Z} -модуль $\operatorname{Hom}(\mathbb{Q}, \mathbb{Z}/n\mathbb{Z})$?

Пусть $f \in \text{Hom}(\mathbb{Q}, \mathbb{Z}/n\mathbb{Z} \text{ и } q \in \mathbb{Q}, \text{ если } n \neq 0$, то имеет место следующее равенство f(q) = nf(q/n) = 0, а значит $\text{Hom}(\mathbb{Q}, \mathbb{Z}/n\mathbb{Z} \text{ и } q \in \mathbb{Q} = 0$. Если мы имеем n = 0, то для любого $k \in \mathbb{Z}_{>0}$ мы имеем f(q) = kf(q/k), а значит для k > f(q) будет f(q/k) = 0, а значит f(q) = 0 и $\text{Hom}(\mathbb{Q}, \mathbb{Z}) = 0$ тоже.

8. Пусть A – кольцо. Пусть дана точная последовательность правых модулей-A

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

Верно ли, что следующая последовательность

$$0 \to \operatorname{Hom}(M_3, N) \to \operatorname{Hom}(M_2, N) \to \operatorname{Hom}(M_1, N) \to 0$$

для бимодуля N точна? А если заменить Hom(-, N) на Hom(N, -)?

Ответ на два вопроса отрицателен. В первом случае не верна часть цепи, где

$$0 \longrightarrow M_1 \stackrel{\phi}{\longrightarrow} M_2$$

не влечет точность

$$\operatorname{Hom}(M_2, N) \xrightarrow{\widetilde{\phi}} \operatorname{Hom}(M_1, N) \longrightarrow 0$$

Приведем контр пример, пусть $M_1=M_2=N=\mathbb{Z}$ и $\phi:x\mapsto 2x$ – инъекция. Тогда очевидно, $\widetilde{\phi}$ не будет сюръекцией, так как для любого $f\in \mathrm{Hom}(\mathbb{Z},\mathbb{Z})$ $(f)\widetilde{\phi}\neq \mathrm{id}$. Так как $f(\phi(x))=f(x2)=f(x)2$ – четно, а нечетные числа получить мы не сможем.

Приведем контр пример для двойственной ситуации, то есть покажем, что если точна

$$M_1 \xrightarrow{\phi} M_2 \longrightarrow 0$$

То точность индуцированной последовательности не гарантирована

$$\operatorname{Hom}(N, M_1) \xrightarrow{\widetilde{\phi}} \operatorname{Hom}(N, M_2) \longrightarrow 0$$

Так как имеет место следующая диаграмма

Где $\operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z})=0$, а $\operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z}_4)=\mathbb{Z}_2$ и соответственно

$$0 \to \mathbb{Z}_2 \to 0$$

не может быть точна.

9. Пусть A – кольцо. Рассмотрим коммутативную диаграмму модулей-A с точными строками:

$$0 \longrightarrow M_1 \xrightarrow{\phi_1} M_2 \xrightarrow{\phi_2} M_3 \longrightarrow 0$$

$$\downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$0 \longrightarrow N_1 \xrightarrow{\psi_1} N_2 \xrightarrow{\psi_2} N_3 \longrightarrow 0$$

Докажите, что имеется индуцированная точная последовательность модулей-А

$$0 \to \operatorname{Ker}(f_1) \to \operatorname{Ker}(f_2) \to \operatorname{Ker}(f_3) \to \operatorname{Coker}(f_1) \to \operatorname{Coker}(f_2) \to \operatorname{Coker}(f_3) \to 0$$

Начнём с первой стрелки $\widetilde{\phi}_1: \mathrm{Ker}(f_1) \to \mathrm{Ker}(f_2)$ она получается ограничением области и кообласти из ϕ_1 и если корректно определена, то очевидно сохраняет инъективность, так что проверим корректность, то есть убедимся в том, что $\phi_1[\mathrm{Ker}(f_1)] \subseteq \mathrm{Ker}(f_2)$. Пусть $x \in \mathrm{Ker}(f_1)$,

6

тогда из коммутативности диаграммы мы получим $f_2(\phi_1(x)) = 0$, а значит $\phi_1(x) \in \mathrm{Ker}(f_2)$ и мы доказали то, то что хотели.

Вторая стрелка определяется аналогично и также корректна $\widetilde{\phi}_2: \operatorname{Ker}(f_2) \to \operatorname{Ker}(f_3)$. Проверим, что она точна слева в этой диаграмме, то есть, что $\operatorname{Im}(\widetilde{\phi}_1) = \operatorname{Ker}(\widetilde{\phi}_2)$. Так как в изначальной диаграмме $\phi_2 \circ \phi_1 = 0$, то и в индуцированной $\widetilde{\phi}_2 \circ \widetilde{\phi}_1 = 0$ тоже, так как ограничение не изменяет свойства занулять, а занчит $\operatorname{Im}(\widetilde{\phi}_1) \subseteq \operatorname{Ker}(\widetilde{\phi}_2)$. Пусть $x \in \operatorname{Ker}(\widetilde{\phi}_2)$, тогда $x \in \operatorname{Im}(\phi_1) = \operatorname{Ker}(\phi_2)$, а значит есть $y \in M_1$, что $\phi_1(y) = x$, убедимся, что $y \in \operatorname{Ker}(f_1)$. Это верно, так как $\psi_1 \circ f_1(y) = f_2 \circ \phi_1(y) = 0$ и так как ψ инъекция, то $y \in \operatorname{Ker}(f_1)$, а тогда $x \in \operatorname{Im}(\widetilde{\phi}_1)$ и мы получили второе включение.

Посмотрим на третью стрелку, для $x \in \text{Ker}(f_3) \ \phi_2^{-1}(x) = x' + \text{Ker}(\phi_2) = x' + \text{Im}(\phi_1)$ так как ϕ_2 сюръективен, дальше пройдемся вдоль f_2 и $f_2[x' + \text{Im}(\phi_1)] = f_2(x') + \text{Im}(f_2 \circ \phi_1) = f_2(x') + \text{Im}(\psi_1 \circ f_1)$, причем так как $\phi_2 \circ f_3(x') = 0$, то $f_2(x') \in \text{Ker}(\psi_2) = \text{Im}(\psi_1)$, а значит $\psi_1^{-1}[f_2(x') + \text{Im}(\psi_1 \circ f_1)] = x'' + \text{Im}f_1$, поэтому у нас есть естественное отображение δ : $\text{Ker}(f_3) \to \text{Coker}(f_1) : x \mapsto x'' + \text{Im}(f_1)$ и оно корректно, так как мы работали со множествами, а не представителями. Проверим, что это гомоморфизм модулей:

$$\phi_2^{-1}(x + y\lambda) = x' + y'\lambda + \text{Ker}(\phi_2)$$

$$f_2[x' + y'\lambda + \text{Ker}(\phi_2)] = f_2(x') + f_2(y')\lambda + \text{Im}(\phi_1 \circ f_2)$$

$$\psi_1^{-1}[f_2(x') + f_2(y')\lambda + \text{Im}(f_1 \circ \phi_2)] = x'' + y''\lambda + \text{Im}(f_1)$$

Убедимся в точности слева, то есть что $\operatorname{Im}(\widetilde{\phi}_2) = \operatorname{Ker}(\delta)$. Пусть $x \in \operatorname{Ker}(f_2)$, тогда $\widetilde{\phi}_2(x) \in \operatorname{Im}(\widetilde{\phi}_2)$, посчитаем образ после δ , тогда

$$\psi_1^{-1}[f_2[\phi_2^{-1}(\widetilde{\phi}_2(x))]] = \psi_1^{-1}[f_2[x + \text{Ker}(\phi_2)]] = \psi_1^{-1}[0 + \text{Im}(\psi_1 \circ f_1)] = 0 + \text{Im}(f_1)$$

А значит $\operatorname{Im}(\widetilde{\phi}_2)\subseteq \operatorname{Ker}(\delta)$. Теперь попробуем включение в другую сторону, пусть $x\in \operatorname{Ker}(\delta)\subseteq \operatorname{Ker}(f_3)$. Тогда $\psi_1^{-1}[f_2(x')+\operatorname{Im}(\psi_1\circ f_1)]=\operatorname{Im}(f_1)$, а тогда по инъективности ψ_1 верно, что $f_2(x')\in \operatorname{Im}(\psi_1\circ f_1)=\operatorname{Im}(f_2\circ \phi_1)$. Тогда $x'\in \operatorname{Im}(\phi_1)+\operatorname{Ker}(f_2)=\operatorname{Ker}(\phi_2)+\operatorname{Ker}(f_2)$, но так как мы можем выбрать разные x' с точностью по модулю $\operatorname{Ker}(\phi_2)$, то можно положить $x'\in \operatorname{Ker}(f_2)$, а тогда $x=\widetilde{\phi}_2(x')\in \operatorname{Im}(\widetilde{\phi}_2)$ и мы доказали второе включение.

Посмотрим на следующую стрелку индуцированную с ψ_1 , назовём её $\widetilde{\psi}_1: a+\operatorname{Im}(f_1) \mapsto \psi_1(a)+\operatorname{Im}(f_2)$. Проверим, что она корректно определена, для этого достаточно проверить, что $\psi_1[\operatorname{Im}(f_1)] \subseteq \operatorname{Im}(f_2)$, ну а это так, потому что $\psi_1[\operatorname{Im}(f_1)] = \operatorname{Im}(f_2 \circ \phi_1)$. Теперь будем проверять точность, а именно, что $\operatorname{Im}(\delta) = \operatorname{Ker}(\widetilde{\psi}_1)$. Пусть $x \in \operatorname{Ker}(f_3)$, $\phi_2^{-1}(x) = x' + \operatorname{Ker}(\phi_2)$. Тогда

$$f_2[x' + \text{Ker}(\phi_2)] = f_2(x') + f_2[\text{Ker}(\phi_2)] = f_2(x') + f_2[\text{Im}(\phi_1)] \subseteq \text{Im}(f_2)$$

По определению $\delta(x) = \psi_1^{-1}[f_2[x' + \operatorname{Ker}(\phi_2)]]$. Заметим, что также $\widetilde{\psi}_1(a) = \psi_1[a] + \operatorname{Im}(f_2)$, но так как ψ_1 инъективна, то $\psi_1[\psi_1^{-1}[A]] \subseteq A$, а тогда в частности $\psi_1[\psi_1^{-1}[f_2[x' + \operatorname{Ker}(\phi_2)]] \subseteq f_2[x' + \operatorname{Ker}(\phi_2)] \subseteq \operatorname{Im}(f_2)$, а тогда $\widetilde{\psi}_1(\delta(x)) = \operatorname{Im}(f_2)$. А значит мы доказали, что $\operatorname{Im}(\delta) \subseteq \operatorname{Ker}(\widetilde{\psi}_1)$. Проверим утверждение в обратную сторону, пусть $x \in N_1$ такой, что $\widetilde{\psi}_1(x) = \operatorname{Im}(f_2)$. Это означает, что $\psi_1(x) \in \operatorname{Im}(f_2)$, тогда мы найдем $x' \in M_2$, что $f_2(x') = \psi_1(x)$. Тогда по построению δ мы имеем $\delta(\phi_2(x')) = x + \operatorname{Im}(f_1)$, и мы получили включение в другую сторону, а значит верно и равенство $\operatorname{Im}(\delta) = \operatorname{Ker}(\widetilde{\psi}_1)$.

Строим дальше, стрелка $\widetilde{\psi}_2$ определяется аналогично, и поэтому тоже корректна, проверим, что она точна. Пусть $x \in N_1$, тогда

$$\widetilde{\psi}_2(\widetilde{\psi}_1(x + \operatorname{Im}(f_1))) = \widetilde{\psi}_2(\psi_1(x) + \operatorname{Im}(f_2)) = \psi_2 \circ \psi_1(x) + \operatorname{Im}(f_3) = \operatorname{Im}(f_3)$$

А значит $\operatorname{Im}(\widetilde{\psi}_1)\subseteq \operatorname{Ker}(\widetilde{\psi}_2)$. Теперь пусть $y\in N_2$ такой, что $\widetilde{\phi}_2(y+\operatorname{Im}(f_2))=\operatorname{Im}(f_3)$ это означает, что $\psi_2(y)\in \operatorname{Im}(f_3)$. Пусть $y'\in M_3$ таков, что $f_3(y')=\psi_2(y)$. Дальше по сюръективности ϕ_2 мы найдем $y''\in M_2$, что $\phi_2(y'')=y'$. Посмотрим на $y-f_2(y'')$, увидим, что из-за коммутативности диаграммы $\psi_2(y-f_2(y''))=0$, а тогда по точности нижней линии будет $y-f_2(y'')=c\in \operatorname{Im}(\psi_1)$, а тогда $y+\operatorname{Im}(f_2)=c+\operatorname{Im}(f_2)\subseteq \operatorname{Im}(\psi_1)$, а значит мы доказали включение в обратную сторону, а значит эта часть последовательности точна, но также очевидно, что $\widetilde{\psi}_2$ инъективна, так как она индуцирована с инъективного отображения. Последовательность построена, а её точность доказана.

10. Пусть А – коммутативное кольцо.

(a) Пусть M – нётеров A-модуль. Докажите, что если гомоморфизм $\phi: M \to M$ сюръективен, то ϕ – изоморфизм.

Заметим, что мы найдем возрастающую последовательность

$$M \subseteq \operatorname{Ker}(\phi) \subseteq \operatorname{Ker}(\phi^2) \subseteq \dots$$

По нётеровости она стабилизируется на некотором шаге n, то есть мы получим $\mathrm{Ker}(\phi^n) = \mathrm{Ker}(\phi^{n+1})$. Из этого вытекает, что $\mathrm{Im}(\phi^n) \cap \mathrm{Ker}(\phi) = \{0\}$, но так как по сюръективности $\mathrm{Im}(\phi^n) = M$, то ядро ϕ нулевой, а значит что ϕ так же инъективен, а тогда и биективен.

(b) Пусть M – артинов A-модуль. Докажите, что если гомоморфизм $\phi: M \to M$ инъективен, то ϕ – изоморфизм.

Найдём убывающую цепочку

$$M \supseteq \operatorname{Im}(\phi) \supseteq \operatorname{Im}(\phi^2) \supseteq \dots$$

В этой цепочке вложенность обеспечена действием ϕ . Заметим, что по артиновости она стабилизируется после некоторого шаг и пусть n такого, что $\text{Im}(\phi^n) = \text{Im}(\phi^{n+1})$. Ещё точнее можно сказать, что ϕ индуцирует взаимно однозначное отображение между $\text{Im}(\phi^n)$ и $\text{Im}(\phi^{n+1})$. Тогда посмотрим на индуцированное $\phi': \text{Im}(\phi^{n-1}) \to \text{Im}(\phi^n)$. Для него верно, что подмножество $\text{Im}(\phi^n)$ всё переходит в $\text{Im}(\phi^n)$ под ϕ , а тогда по инъективности ϕ мы заключаем, что $\text{Im}(\phi^{n-1}) \setminus \text{Im}(\phi^n) = \emptyset$, а тогда $\text{Im}(\phi^{n-1}) = \text{Im}(\phi^n)$ и если спуститься в начало, мы получим $M = \text{Im}(\phi)$, а значит ϕ – биекция.

11. Пусть А - коммутативное кольцо.

Введем тензорное произведение двух A-модулей. Пусть M, N — модули. Возьмём прямую сумму по их декартовому произведению $F=\bigoplus_{(m,n)\in M\times n}A_{(m,n)}$, где $A_{(m,n)}=e_{m,n}A$ — формальные произведения. Мы получим свободный модуль с базисом $\{e_{m,n}\}_{(m,n)\in M\times N}$. Возьмём его подмодуль $F'=\langle e_{a+b\lambda,n+m\mu}-e_{a,n}-e_{a,m}\mu-e_{b,n}\lambda-e_{b,m}\lambda\mu\rangle_{a,b\in M,m,n\in M,\lambda,\mu\in A}$. Тогда $M\otimes_A N=F/F'$, пусть $\pi:F\mapsto F/F'$ — каноническая проекция, тогда введем обозначение $m\otimes n=\pi(e_{m,n})$.

(а) **Предположим, что** $A^{\oplus n} \cong A^{\oplus m}$ для некоторых $n,m \geq 1$. Докажите, что n=m. Давайте возьмём и тензорно это умножим на поле F=A/I, где I – некий максимальный идеал. Тогда если выделить в $A^{\oplus n}$ канонический базис $\{e_i\}_{i\in [0,n]}$, то нетрудно заметить, что $(e_i\otimes 1_F)_{i\in [0,n]}$ порождает $A^{\oplus n}\otimes F$, но также очевидно, что умножение на скаляры происходит с точностью до добавления элемента идеала I, так как $(e_i\otimes 1)\cdot (a+b)=e_i\otimes [a+b]_I=e_i\otimes [a]$, если $b\in I$, а тогда можно факторизовать скаляры до A/I и получить $(A/I)^{\oplus n}$ с каноническим базисом над A/I $\{u_i\}_{i\in [0,n]}$ и хочется сказать, что f пройдя по тем же преобразованиям станет изоморфизмом векторных пространств F^n и F^m , а значит n=m. Теперь обозначим некоторые сопутствующие морфизмы и проверим корректность рассуждений.

$$f: A^{\oplus m} \to A^{\oplus n}$$

$$\phi_m: A^{\oplus m} \to A^{\oplus m} \otimes A/I = a \mapsto a \otimes 1$$

$$\psi_m: A^{\oplus m} \otimes (A/I) \to (A/I)^{\oplus m} = e_i \otimes [a] \mapsto u_i[a]$$

где f – изоморфизм модулей. Корректность и и линейность ϕ_n тривиальна.

Покажем, что по ϕ_n и ϕ_m можно индуцировать изоморфизм f', то есть следующую диаграмму можно дополнить до коммутативной

$$A^{\oplus m} \xrightarrow{f} A^{\oplus n}$$

$$\downarrow^{\phi_m} \qquad \downarrow^{\phi_n}$$

$$A^{\oplus m} \otimes A/I - - \xrightarrow{f'} - \Rightarrow A^{\oplus n} \otimes A/I$$

$$\uparrow^{m} \qquad \uparrow^{n} \qquad \uparrow^{n}$$

$$\oplus_{i \in A^{\oplus m} \times A/I} A_i - \xrightarrow{f''} \rightarrow \oplus_{i \in A^{\oplus n} \times A/I} A_i$$

для этого построим сначала $f'' = e_{a,k} \mapsto e_{f(a),k}$, морфизм естественно продолжается единственным образом из свободного модуля если заданы образы для элементов базиса. Более того f'' однозначно сопоставляет элементы базисов двух свободных модулей, а значит f'' – изоморфизм.

Теперь спроецируем f'' в стрелку между тензорными пространствами. Для этого необходимом и достаточно, чтобы $f[\mathrm{Ker}(\pi_m)] \subseteq \mathrm{Ker}(\pi_n)$. Это достаточно проверить только для порождающих элементов из $\mathrm{Ker}(\pi_m)$

$$f''(e_{a+b\lambda,n+m\mu} - e_{a,n} - e_{a,m}\mu - e_{b,n}\lambda - e_{b,m}\lambda\mu) = e_{f(a)+f(b)\lambda,n+m\mu} - e_{f(a),n} - e_{f(a),m}\mu - e_{f(b),n}\lambda - e_{f(b),m}\lambda\mu \in \text{Ker}(\pi_n)$$

Тогда мы получаем корректно определенную проекцию $f'=a\otimes k\mapsto f(a)\otimes k$ и это ровно то, что мы хотели и оно корректно. Проверим, что полученная стрелка обратима. Это очевидно, так как по тем же соображениям можно построить обратную стрелку $f'^{-1}=a\otimes k\mapsto f^{-1}(a)\otimes k$ так как f – изоморфизм.