CH61014: Advanced Heat Transfer

Debasis Sarkar

Solution of Phase Change Problems: Integral Method

The integral method provides a relatively simple and straightforward approach for the solution of one-dimensional transient phase-change problems.

Consider the melting of a solid confined in a semi-infinite region. The solid is initially at the melting temperature T_m .

For times t > 0, the boundary surface at x = 0 is kept at a constant temperature T_0 , which is greater than the solid's melting temperature T_m .

The melting starts at the surface x = 0 and the solid–liquid interface moves in the positive x-direction. Solid phase remains at T_m . It is a Single phase problem.

Single-phase

$$\frac{\partial^2 T_l}{\partial x^2} = \frac{1}{\alpha_l} \frac{\partial T_l(x, t)}{\partial t} \qquad \text{in} \qquad 0 < x < s(t), \qquad t > 0$$

$$T_s = T_m \qquad \text{in} \qquad x > s(t), \qquad t > 0$$

Boundary condition: $T_l(x = 0, t) = T_0$

At the interface:
$$T_l(x=s,t)=T_m$$
 at $x=s(t)$
$$-k_l\left.\frac{\partial T_l}{\partial x}\right|_{x=s(t)}=\rho L\frac{ds(t)}{dt}$$
 at $x=s(t)$ $s(0)=0$

First, define a thermal layer thickness:

We choose the region $0 \le x \le s(t)$ as the thermal layer

Next, integrate the heat conduction equation from x = 0 to x = s(t),

$$\int_{x=0}^{s(t)} \frac{\partial^2 T}{\partial x^2} dx = \frac{1}{\alpha} \int_{x=0}^{s(t)} \frac{\partial T}{\partial t} dx$$

$$\int_{x=0}^{s(t)} \frac{\partial^2 T}{\partial x^2} dx = \frac{1}{\alpha} \int_{x=0}^{s(t)} \frac{\partial T}{\partial t} dx$$

LHS:
$$\int_{x=0}^{s(t)} \frac{\partial^2 T}{\partial x^2} dx = \frac{\partial T}{\partial x} \Big|_{0}^{s(t)}$$

RHS:
$$\frac{1}{\alpha} \int_{x=0}^{s(t)} \frac{\partial T}{\partial t} dx = \frac{1}{\alpha} \left[\frac{d}{dt} \left(\int_{x=0}^{s(t)} T dx \right) - \frac{ds(t)}{dt} T \Big|_{x=s(t)} \right]$$

$$\left. \frac{\partial T}{\partial x} \right|_{x=s(t)} - \left. \frac{\partial T}{\partial x} \right|_{x=0} = \frac{1}{\alpha} \left[\left. \frac{d}{dt} \left(\int_{x=0}^{s(t)} T \, dx \right) - \frac{ds(t)}{dt} T \right|_{x=s(t)} \right]$$

$$\left. \frac{\partial T}{\partial x} \right|_{x=s(t)} - \left. \frac{\partial T}{\partial x} \right|_{x=0} = \frac{1}{\alpha} \left[\left. \frac{d}{dt} \left(\int_{x=0}^{s(t)} T \, dx \right) - \frac{ds(t)}{dt} T \right|_{x=s(t)} \right]$$

$$-\frac{\rho L}{k} \frac{ds(t)}{dt} - \frac{\partial T}{\partial x} \Big|_{x=0} = \frac{1}{\alpha} \frac{d}{dt} \left[\theta - s(t) T_m \right]$$

$$\theta(x) \equiv \int_{x=0}^{s(t)} T(x, t) dx$$

This equation is the energy integral equation for this problem.

We choose a second-degree polynomial approximation for the temperature in the form

$$T(x, t) = a + b(x - s) + c(x - s)^2$$

$$T(x, t) = a + b(x - s) + c(x - s)^2$$

Three conditions are needed to determine these three coefficients.

$$T(x=0,t)=T_0$$
 First and Second $T(x=s(t),t)=T_m$ conditions

Derive Third Condition:

Use of Stefan Condition is inconvenient

Differentiate BC:
$$T_I(x = s, t) = T_m$$
 at $x = s(t)$

$$dT = \left[\frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial t} dt \right]_{x=s(t)} = 0 \qquad \Longrightarrow \qquad \frac{\partial T}{\partial x} \frac{ds(t)}{dt} + \frac{\partial T}{\partial t} = 0$$

Eliminate ds(t)/dt using Stefan Condition
$$\left(\frac{\partial T}{\partial x} \right)^2 = \frac{\rho L}{k} \frac{\partial T}{\partial t}$$
 at $x = s(t)$

Eliminate
$$\frac{\partial T}{\partial t}$$
 using Heat Eq. $\left(\frac{\partial T}{\partial x}\right)^2 = \frac{\alpha \rho L}{k} \frac{\partial^2 T}{\partial x^2}$ at $x = s(t)$

The resulting temperature profile becomes

$$T(x,t) = T_m + b(x-s) + c(x-s)^2$$

where

$$b = \frac{\alpha \rho L}{ks} [1 - (1 + \mu)^{1/2}]$$

$$c = \frac{bs + (T_0 - T_m)}{s^2}$$

$$\mu = \frac{2k}{\alpha \rho L} (T_0 - T_m) = \frac{2C(T_0 - T_m)}{L}$$

Substituting the temperature profile into the energy integral equation, we obtain the following ordinary differential equation for the determination of the location of the solid—liquid interface s(t), that is,

$$s\frac{ds}{dt} = 6\alpha \frac{1 - (1 + \mu)^{1/2} + \mu}{5 + (1 + \mu)^{1/2} + \mu} \qquad \text{with} \quad s(t = 0) = 0$$

The solution of the above ODE:

$$s(t) = 2\lambda\sqrt{\alpha t}$$
 where $\lambda \equiv \left[3\frac{1 - (1 + \mu)^{1/2} + \mu}{5 + (1 + \mu)^{1/2} + \mu}\right]^{1/2}$

Exact Solution (Similarity Solution) for the Same Problem:

$$s(t) = 2\lambda(\alpha_l t)^{1/2} \qquad \text{where } \lambda \\ \text{the root of} \qquad \lambda e^{\lambda^2} \mathrm{erf}(\lambda) = \frac{C(T_0 - T_m)}{L\sqrt{\pi}}$$

NOTE: The approximate solution for s(t) is of the same form as the exact solution of the same problem. However, definition of λ is different.

Comparison of exact and approximate solutions

Thank You