	61 HWZ 1/23/20	23
1.	for every a,b,c $\in \mathbb{Z}$, prove that if alb and alc, then al(b+c)	
	suppose alb and alc	
	then $\exists x,y \in \mathbb{Z}$ st $a \cdot x = b$ and $a \cdot y = c$	
	then $b+c = (a \cdot x) + (a \cdot y) = a(x+y)$, and a 1 (b+c) since $(x+y) \in \mathbb{Z}$	
2.	7.1 ex 11	
	prove that V m,n E Z, if model and n even, mn is even	
	suppose m odd and n even	
	then $\exists x,y \in \mathbb{Z}$ st $m=2x+1$ and $n=2y$	
	mn = (2x+1)(2y) = 4xy + 2y = 2(2xy + y)	
	since 3 l E Z st mn = 21, mn is even	
3	2.2 ex 15	
J .	$x,y \in \mathbb{R}$. Prove that if $x \in y + \epsilon \ \forall \ \epsilon \in \mathbb{R}_{>0}$, then $x \in y$	
	proof by contradiction:	
	assume $x>y \rightarrow x-y>0$	
	for $\varepsilon = \frac{x-y}{2} > 0$, $x \le y + \frac{x-y}{2}$	
	$\leq \frac{x + y}{2}$	
	2x ≤ X+y	
	$x \leq y$ which contradicts $x > y$	
	x = y if x = y + & Y & & TR>0	
ч.	2.7 ex 2	
	converse of ex 1 (\forall x \in \mathbb{R} , if x^2 is irrational, x is irrational):	
	\rightarrow \forall \times \in IR, if \times is irrational, then x^2 is irrational	
	this is false: for $x = \sqrt{2}$, $x^2 = 2$, which is rational	
>.	$\forall x \in \mathbb{Z}$, if x^3 -1 is even, then x is odd	
	proof by contrapositive:	
	suppose x is even st $\exists a \in \mathbb{Z} \text{ and } x = 2a$	
	Hen $x^3 - 1 = (7a)^3 - 1 = 8a^3 - 1$	
	$\exists \ l \in \mathbb{Z} \ st \ x^3 - l = 2(4a^3) - l \ eg. \ l = 4a^3$	
	this means x^3-1 is odd $\rightarrow :: x^3-1$ is even means x is odd	