MINI PROJECT ON

SECURED DATA COMMUNICATION USING HOMOMORPHIC ENCRYPTION

Outline

- Introduction
- Objectives
- Block Diagrams
- Mathematical models RSA, Pallier and BCP Algorithms
- Simulation Results
- References

Introduction

- Cryptography enables users to communicate in a secured manner over unsecured channel
- Homomorphic encryption special class of cryptography wherein the data is processed in the encrypted domain itself
- Degree of security and authenticity are assured
- Highly useful for privacy preserving applications voting, rating, healthcare etc.

Objectives

- To develop a mathematical model for Homomorphic encryption using RSA, Paillier and BCP algorithms
- To compare the performance based on the time required to encrypt and decrypt the data
- To implement and validate a Homomorphic Encryption system to perform data processing in encrypted domain

Block Diagram

RSA Algorithm

- Proposed by Rivest, Shamir & Adleman of MIT in 1977
- Best known & widely used public-key scheme
- Based on exponentiation over Galois Field using large numbers
- Security is due to the cost of factoring large numbers

• Key Generation:

- Select *p* and *q*
- Calculate $n = p \times q$
- Calculate $\emptyset(n) = (p-1)(q-1)$
- Select integer e
- Calculate d
- Public Key
- Private Key

p and q both are prime, $p \neq q$

$$gcd(\emptyset(n), e) = 1; 1 < e < \emptyset(n)$$

$$d \equiv e^{-1}$$

$$PU = \{e, n\}$$

$$PR = \{d, n\}$$

• Encryption:

• Plain Text

M < n

• Cipher Text

 $C = M^e mod n$

• Decryption:

• Cipher Text

C

• Plain Text

 $M = C^d \mod n$

Pallier Algorithm – Mathematical Model

• Key Generation:

• Select *p* and *q*

p and q both are prime, $p \neq q$

- Calculate $N = p \times q$
- Calculate $\lambda = LCM((p-1), (q-1))$
- Select $g \in Z_N$
- Select r
- Public Key
- Private Key

$$\gcd\left[\left(\frac{g^{\lambda} \bmod N^{2}-1}{N}\right), N\right] = 1$$

$$r \ni |\gcd(r, N) = 1$$

$$PU = \{N, g\}$$

$$PR = {\lambda}$$

Pallier Algorithm – Mathematical Model

• Encryption:

• Plain text

• Cipher text

$$C = g^M r^N \bmod N^2$$

• Decryption:

• Cipher Text

C

• Plain Text

$$m = \frac{L(C^{\lambda} \bmod N^{2})}{L(g^{\lambda} \bmod N^{2})} \bmod N$$

$$L(u) = \frac{u-1}{N}$$

• Key Generation:

• Select *p* and *q*

p and q both are prime, $p \neq q$

• Calculate $N = p \times q$

• Calculate $\lambda = LCM((p-1)(q-1))$

• Select random α

 $\alpha \epsilon Z_{N^2}^*$

• Select random a

 $a \in [1, ord(g)]$

• Select g in $Z_{N^2}^*$

$$g = \alpha^2 \mod N^2 \ni | \gcd(g, N^2) = 1$$

• Select random r

$$r \in \mathbb{Z}_{N^2}^*$$

• Key Generation:

- Calculate h
- Public Key
- Private Key

$$h = g^a \mod N^2$$

$$PU = \{N, g, h\}$$

$$PR = \{a\}$$

• Encryption:

• Plain text

m

• Cipher text

$$A = g^r \bmod N^2$$

$$B = h^r (1 + mn) \, mod N^2$$

• Decryption – 1:

• Cipher Text

A, B

• Plain Text

$$m = \frac{\left(\frac{B}{A^a} - 1\right) \mod N^2}{N}$$
MINI PROJECT

• Decryption -2:

- Cipher Text
- Plain Text

$$m = \frac{(D-1) \mod N^2}{N} \pi \mod N$$

$$D = \left(\frac{B}{g^{\gamma}}\right)^{\lambda(N)}$$

 $\gamma = ar \ mod \ N$

$$\pi = \lambda^{-1} \mod N$$

Type of Homomorphism

Table 1: Type of Homomorphism

Туре	RSA	Pallier	ВСР
Additive	*	✓	✓
Multiplicative	✓	*	×

Simulation Result – RSA Algorithm

Table 2: Computation time of RSA Algorithm

Key Size (bits)	Key Generation (s)	Encryption Time(s)	Decryption Time (s)
1024	0.48868393898010254	0.001001119613647461	0.025989294052124023
2048	11.12609577178955	0.0010037422180175781	0.1738135814666748
4096	203.83345890045166	0.0010001659393310547	1.2043821811676025

Simulation Result – RSA Algorithm

SIMULATION RESULT - RSA ALGORITHM

Figure -2: Simulation Results of RSA Algorithm for different key sizes

Simulation Result – Pallier Algorithm

Table 3: Computation time of Pallier Algorithm

Key Size (bits)	Key Generation (s)	Encryption Time(s)	Decryption Time (s)
1024	0.3499119281768799	0.22691941261291504	0.11163926124572754
2048	32.09730863571167	3.613178253173828	1.7914764881134033
4096	307.2839524745941	10.992461919784546	5.7242114543914795

Simulation Result – Pallier Algorithm

SIMULATION RESULT – PALLIER ALGORITHM

Figure – 3: Simulation Results of Pallier Algorithm for different key sizes

Simulation Result – BCP Algorithm

Table 4: Computation time of BCP Algorithm

Key Size (bits)	Key Generation (s)	Encryption Time(s)	Decryption Time (s)
1024	2.8257832527160645	0.755664587020874	0.7897679805755615
2048	33.3765070438385	4.686594486236572	4.754042863845825
4096	324.53938579559326	13.682634830474854	9.430419206619263

Simulation Result – BCP Algorithm

SIMULATION RESULT - BCPALGORITHM

Figure – 4: Simulation Results of BCP Algorithm for different key sizes

References

References

THANK YOU