

ВОЗМОЖНОСТИ ОЦЕНКИ И ПРОГНОЗИРОВАНИЯ СОСТОЯНИЯ МЕТАЛЛОПОЛИМЕРНЫХ ТРУБОПРОВОДОВ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ НА ОСНОВЕ ДАННЫХ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ

Ю.М.Петров

ООО «МЕПОС»

В.В.Сухоруков, В.Ю.Волоховский, А.Н.Воронцов, К.В.Мякушев ООО «ИНТРОН ПЛЮС»

> «ПРОМЫСЛОВЫЕ ТРУБОПРОВОДЫ—2017» 18-21 апреля 2017, Москва

МЕТАЛЛОПОЛИМЕРНАЯ ТРУБА

МПТ – полимерная труба, армированная жестким решетчатым каркасом, сваренным из стальной проволоки. Стальной каркас защищен слоем полимера со всех сторон и формирует внутреннюю и внешнюю поверхности МПТ.

ОСНОВНЫЕ СВОЙСТВА МПТ

МПТ объединяет свойства стальной и полимерной труб:

- Прочность сопоставима с прочностью стали выдерживает большие давления, чем обычные полимерные трубы
- Стойкость к химически агрессивным жидкостям длительный срок службы при транспортировке агрессивных сред
- Стойкость к коррозии отсутствует необходимость антикоррозионной обработки, катодной и ингибиторной защиты
- Возможность применения различных полимеров расширяет возможные области применения

ИСПОЛЬЗОВАНИЕ МЕТАЛЛОПОЛИМЕРНЫХ ТРУБ В ООО «ЛУКОЙЛ-ПЕРМНЕФТЬ»

Использование металлополимерных труб в компании ООО "ЛУКОЙЛ-ПЕРМНЕФТЬ" началось с 1996 г.

Первые трубопроводы и настоящее время находятся в технически исправном состоянии. Сейчас в ООО «ЛУКОЙЛ-ПЕРМНЕФТЬ» эксплуатируется 236,7 км трубопроводов МПТ:

- выкидные линии (Ду95) 83,2 км;
- нефтесборные трубопроводы (Ду140) 48,5 км;
- нефтесборные трубопроводы (Ду200) 97,8 км;
- нефтесборные трубопроводы (Ду275) 7,2 км;

ОБЛАСТИ ПРИМЕНЕНИЯ

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ МПТ:

- 🍘 Добыча и транспортировка нефти, газа, подтоварной воды
- 🖒 Транспортировка кислот, щелочей, рассолов
- 🔼 Подземное и кучное выщелачивание цветных и редкоземельных металлов
- **Пранспортировка агрессивных пульп**
- 🖀 ЖКХ трубопроводы горячего и холодного водоснабжения, напорная канализация, газовые сети
- Артезианские скважины в качестве обсадных и подъемных труб
- **(** Транспортировка соленой воды, морская инфраструктура, подводные трубопроводы, укрепление береговой линии

Отрасли применения:

■ Нефтяная пром. ■ Химическая пром. ■ Вода и ЖКХ ■ Газовые сети ■ Другие 3% 3% 31% 3%

Применяемый полимер:

ТЕХНОЛОГИЯ

Технология МЕПОС имеет три основные особенности:

- **О** Непрерывный производственный процесс с одним экструдером, работающим в автоматическом режиме
- © Система двустороннего охлаждения, предотвращающая образование грубой кристаллической структуры на макромолекулярном уровне
- Система калибровки трубы по внутреннему диаметру, образующая глянцевую внутреннюю поверхность с минимальной шероховатостью

Возможные изменения в технологии:

Возможность изменять размер проволоки и ее сечения

2 мм 5,5 мм Лента

Возможность изменять размеры ячеек каркаса

Возможность применения других полимеров

Геометрия сварного соединения труб

Тип МПТ	Внутренний диаметр, мм	Диаметр проволоки, мм	Толщина стенки, мм	Толщина законцовки, мм	Длина законцовки, мм	Толщина сварочной стенки, мм
Расчет	225	3	12.5	22,5	70	15.5
Факт	225	3	12,5	27,5	100	12,5

СВАРНОЕ СОЕДИНЕНИЕ

Поведение полимера и металлического каркаса в точке сварки двух труб при повышении внутреннего давления до 9,5 МПа.

Испытание МПТ 225 в ГУП «Черноморнефтегаз»

АНАЛИЗ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МПТ

РАСЧЕТНЫЕ ОЦЕНКИ ВЛИЯНИЯ ДЕФЕКТОВ КАРКАСА НА ПРОЧНОСТЬ МПТ

Труба МПТ 115 (6x8.5), p = 4 МПа. Дефекты - обрывы кольцевых проволок каркаса

Деформация трубы - радиальные перемещения (мм)

Напряжения в каркасе трубы с обрывом окружной проволоки

Растяжение-сжатие

Изгиб

Максимальное эквивалентное напряжение 177,3 МПа

Предел прочности материала проволок 350 – 400 МПа

Напряжения в каркасе трубы с обрывами трех окружных проволок

Растяжение-сжатие

Изгиб

Максимальное эквивалентное напряжение 379,5 МПа

Предел прочности материала проволок 350 – 400 МПа

Диагностический фактор I — расхождение концов кольцевых проволок

1 обрыв - 0,013 мм

3 обрыва - 0,054 мм

Диагностический фактор II — потеря сечения проволок

Растяжение-сжатие

В кольцевой проволоке:

Эквивалентные напряжения 90,8 Мпа. Потеря прочности каркаса 21,3%.

Изгиб

ДИАГНОСТИЧЕСКОЕ ОБОРУДОВАНИЕ ПРОИЗВОДСТВА ООО «ИНТРОН ПЛЮС» ДЛЯ ВНУТРИТРУБНОГО КОНТРОЛЯ СТАЛЬНЫХ ПРОМЫСЛОВЫХ ТРУБОПРОВОДОВ

Ультразвуковой контроль: внутритрубный ультразвуковой инспекционный прибор УЗВИП

Магнитный контроль: внутритрубный индикатор EasyPigTM дефектов первоочередного ремонта промысловых трубопроводов (ВИД 114, 159, 219)

Диагностируемые трубопроводы

- > Промысловые трубопроводы систем нефтесбора и ППД
- **Продуктопроводы**
- > Промысловые и распределительные газопроводы
- ▶ Внутритрубная диагностика с использованием EasyPig[™] осуществляется при проведении плановых периодических работ по очистке трубопровода.

ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СОСТОЯНИЯ МЕТАЛЛИЧЕСКОГО КАРКАСА МПТ

1. Входной контроль проволоки каркаса при изготовлении МПТ: Контроль проволоки на наличие локальных дефектов (продольные и поперечные трещины, механические повреждения и т.п.) и распределенных дефектов (потеря сечения из-за коррозионных или фрикционных повреждений).

2. Контроль состояния каркаса МПТ при эксплуатации:

<u>Магнитный метод</u> — обнаружение распределенных дефектов, а также обрывов проволок (с расхождением концов порядка диаметра проволоки). Возможна оценка потери сечения металла каракаса.

<u>Электромагнитный (вихретоковый) метод</u> обнаружение обрывов проволок с минимальным расхождением концов, а также непроваров в узлах сетки (с потерей электрического контакта).

РАСЧЕТНЫЕ ПРИМЕРЫ СИГНАЛОВ ПРИ КОНТРОЛЕ КАРКАСА МПТ МАГНИТНЫМ МЕТОДОМ

Каркас с дефектом - обрыв продольной проволоки

На рисунке 1 проиллюстрировано распределение магнитной индукции в проволоках каркаса.

На рисунке 2 показан сигнал (измерение осевой компоненты поля) от обрыва одной продольной проволоки при сканировании со стороны внутренней поверхности матрицы.

РАСЧЕТНЫЕ ПРИМЕРЫ СИГНАЛОВ ПРИ КОНТРОЛЕ КАРКАСА МПТ МАГНИТНЫМ МЕТОДОМ

Каркас с дефектом - обрыв окружной проволоки

Рисунок 3 иллюстрирует сигнал от обрыва окружной проволоки при сканировании со стороны внутренней поверхности матрицы. Соответствует измерению осевой компоненты поля. Неуверенный сигнал на фоне спиральных проволок.

Рисунок 4 соответствует тому же дефекту, но при измерении азимутальной компоненты. Спиральная структура окружных проволок способствует возникновению азимутальной компоненты поля в зоне контроля.

ПРОГНОЗ РЕСУРСА ПО СОВОКУПНОСТИ ФАКТОРОВ

Коэффициент запаса прочности МПТ

выводы и заключение

- 1. Анализ показывает, что наибольшее влияние на изменение прочности каркаса МПТ оказывают обрывы окружных проволок.
- 2. Даже ощутимая потеря сечения проволок (до 20-30%) не приводит к заметному ослаблению каркаса. Однако, в области потери сечения наиболее вероятны обрывы проволок, что является критическим фактором для целостности трубы.
- 3. Дефектоскопию МПТ следует ориентировать на обнаружение локальных дефектов (обрывы) проволок каркаса и оценку потери сечения.
- 4. На основе магнитной дефектоскопии МПТ в процессе эксплуатации возможно создать методики прогнозирования остаточного ресурса трубопроводов.

СПАСИБО ЗА ВНИМАНИЕ

ООО «МЕПОС»

Екатеринбург, 620024, ул. Бисертская, д.1

Тел.: +7 (343) 295-75-02,

Тел./Факс: +7(343) 256-94-56

Москва, ул. Угрешская, д.2, стр. 11 АБ

Тел.: +7 (916) 506-28-84

ООО «ИНТРОН ПЛЮС»

НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ И ТЕХНИЧЕСКАЯ ДИАГНОСТИКА

Москва, 111524 Электродная ул., 11, стр. 1,

Тел./Факс: (495) 229-37-47, 510-17-69

info@intron.ru www.intron.ru