Real Analysis

Youming Zhao

Email: youming0.zhao@gmail.com

First draft: January 1, 2022 Last update: December 29, 2023

Contents

1	\mathbf{Seq}	uences	1
	1.1	Cauchy sequence	1
	1.2	Convergence and limit	1
	1.3	Upper bound and supremum	4
	1.4	Bolzano-Weirstrass Theorem	6
	1.5	The upper limit and lower limit	7

1 Sequences

A sequence of real numbers, denoted $(a_n)_{n\in\mathbb{N}}$, is a map from natural numbers \mathbb{N} to real numbers. Note that the starting index can be any nonnegative integers, so a more general notation for a sequence is $(a_n)_{n=m}^{\infty}$ where $m \geq 0, m \in \mathbb{Z}$.

1.1 Cauchy sequence

Definition 1 (Cauchy sequence of reals). A sequence $(a_n)_{n=m}^{\infty}$ of real numbers is a Cauchy sequence if, for every real $\epsilon > 0$, there exists an $N \ge m$ such that $|a_n - a_{n'}| \le \epsilon$ for all $n, n' \ge N$.

Definition 2 (bounded sequences). A sequence $(a_n)_{n=m}^{\infty}$ of real numbers is bounded by a real number M iff we have $|a_n| \leq M$ for all $n \geq m$.

Proposition 1 (Cauchy sequences are bounded). If a sequence (s_n) is Cauchy, then (s_n) is bounded.

Proof. Since (s_n) is Cauchy, there is an N such that for a given $\epsilon > 0$, $|s_n - s_m| \le \epsilon$ for all m, n > N. Hence, $|s_n| \le \epsilon + |s_m|$. Let $M := \max\{|s_1|, |s_2|, \dots, |s_N|, \epsilon + |s_m|\}$, then we have two cases.

- Case 1: when $n \leq N$, we have $|s_n| \leq \max\{|s_1|, |s_1|, \cdots, |s_N|\} \leq M$;
- Case 2: when $n \ge N + 1$, we have $|s_n| \le \epsilon + |s_m| \le M$.

Thus, (s_n) is bounded.

1.2 Convergence and limit

Definition 3 (Convergence of sequences). A sequence $(a_n)_{n=m}^{\infty}$ of real numbers is convergent if and only if, for a real number L and every real $\epsilon > 0$, there exists an $N \ge m$ such that $|a_n - L| \le \epsilon$ for all $n \ge N$.

See Exercise 6.1.2 in Tao's Analysis I.

Proposition 2 (Uniqueness of limits). Let $(a_n)_{n=m}^{\infty}$ be a real sequence starting at some integer index m, and let $L \neq L'$ be two distinct real numbers. Then it is not possible for $(a_n)_{n=m}^{\infty}$ to converge to L while also converging to L'.

Proof. Suppose for sake of contradiction that $(a_n)_{n=m}^{\infty}$ was converging to both L and L'. Let $\epsilon = |L - L'|/3$; note that ϵ is positive since $L \neq L'$. Since $(a_n)_{n=m}^{\infty}$ converges to L, there exists an $N \geq m$ such that $|a_n - L| \leq \epsilon$ for all $n \geq N$. Similarly, there is an $M \geq m$ such that $|a_n - L'| \leq \epsilon$ for all $n \geq M$. If we set $n := \max\{N, M\}$, then we have $|a_n - L| \leq \epsilon$ and $|a_n - L'| \leq \epsilon$. Hence, by the triangle inequality, $|L - L'| \leq |a_n - L| + |a_n - L'| \leq 2\epsilon = 2|L - L'|/3$, which contradicts the fact that |L - L'| > 0. Thus it is not possible to converge to both L and L'.

Definition 4 (Limits of sequences). If a sequence $(a_n)_{n=m}^{\infty}$ converges to some real number L, we say that $(a_n)_{n=m}^{\infty}$ is **convergent** and that its **limit** is L; we write

$$L = \lim_{n \to \infty} a_n$$

to denote this fact. If a sequence $(a_n)_{n=m}^{\infty}$ is not converging to any real number L, we say that the sequence $(a_n)_{n=m}^{\infty}$ is **divergent** and we leave $\lim_{n\to\infty} a_n$ undefined.

Remark 1. Note that, convergence means that all the terms are eventually close to **a fixed number**, whereas Cauchy means that all the terms are eventually close to **each other**.

Definition 5 (Subsequences). Let $(n_k)_{k\in\mathbb{N}}$ be a sequence of natural numbers that is strictly increasing, then $(a_{n_k})_{k\in\mathbb{N}}$ is called a subsequence of $(a_n)_{n\in\mathbb{N}}$.

Definition 6 (Limit points, accumulation points). x is a limit point (an accumulation point) of $(a_n)_{n=m}^{\infty}$ if, for every ϵ and every $N \geq m$, there exists an $n \geq N$ such that $|a_n - x| \leq \epsilon$.

Proposition 3. $a \in \mathbf{R}$ is an accumulation point of $(a_n)_{n \in \mathbb{N}}$ if and only if for all $\epsilon > 0$, the ϵ -neighborhood of a contains infinitely many sequence members of $(a_n)_{n \in \mathbb{N}}$.

Proposition 4 (Convergent sequences are Cauchy). If (s_n) converges to s, (s_n) is Cauchy.

Proof. For a given $\epsilon > 0$, there exists an N such that $|s_n - s| \le \epsilon/2$ for all $n \ge N$. Also, we have $|s_m - s| \le \epsilon/2$ for all $m \ge N$. By the triangle inequality, $|s_n - s_m| = |s_n - s + s - s_m| \le |s_n - s| + |s - s_m| \le \epsilon$. Thus, (s_n) is Cauchy.

Corollary 1 (Convergent sequences are bounded.). Every convergent sequence of real numbers is bounded.

Proof. By Proposition 4, convergent sequences are Cauchy. By Proposition 1, Cauchy sequences are bounded. Thus, convergent sequences are bounded. \Box

Theorem 1 (Completeness of the reals). A sequence $(a_n)_{n=1}^{\infty}$ of real numbers is a Cauchy sequence if and only if it is convergent.

The following proof is largely taken from Terence Tao's Analysis I.

Proof. Proposition 4 has shown that every convergent sequence is Cauchy, so it suffices to prove that every Cauchy sequence is convergent.

Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence. We know from Proposition 1 that the sequence $(a_n)_{n=1}^{\infty}$ is bounded, which implies that $L^- := \liminf_{n \to \infty} a_n$ and $L^+ := \limsup_{n \to \infty} a_n$ of the sequence are both finite. To show that the sequence converges, it will suffice to show that $L^- = L^+$.

Now let $\epsilon > 0$ be any real number. Since $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence, there exists an $N \ge 1$ such that $a_N - \epsilon \le a_n \le a_N + \epsilon$ for all $n \ge N$. This implies that

$$a_N - \epsilon \le \inf(a_n)_{n=N}^{\infty} \le \sup(a_n)_{n=N}^{\infty} \le a_N + \epsilon \tag{1}$$

and hence by the definition of L^- and L^+

$$a_N - \epsilon \le L^- \le L^+ \le a_N + \epsilon. \tag{2}$$

Thus we get

$$0 \le L^+ - L^- \le 2\epsilon \tag{3}$$

which is true for all $\epsilon > 0$. Since L^- and L^+ do not depend on ϵ , then we must have $L^+ = L^-$. Thus, $(a_n)_{n=1}^{\infty}$ is convergent.

Remark 2. Theorem 1 tells us Cauchy sequences and convergent sequences are equivalent. More straightforwardly,

Cauchy sequences
$$\iff$$
 convergent sequences. (4)

Theorem 2 (Limit Laws). Let $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ be convergent sequences of real numbers, and let x, y be the real numbers $x := \lim_{n \to \infty} a_n$ and $y := \lim_{n \to \infty} b_n$.

(a) The sequence $(a_n + b_n)_{n=m}^{\infty}$ converges to x + y; in other words,

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n. \tag{5}$$

(b) The sequence $(a_n b_n)_{n=m}^{\infty}$ converges to xy; in other words,

$$\lim_{n \to \infty} (a_n b_n) = (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} b_n). \tag{6}$$

(c) For any real number c, the sequence $(ca_n)_{n=m}^{\infty}$ converges to cx; in other words,

$$\lim_{n \to \infty} (ca_n) = c \lim_{n \to \infty} a_n. \tag{7}$$

(d) The sequence $(a_n - b_n)_{n=m}^{\infty}$ converges to x - y; in other words,

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n.$$
 (8)

(e) Suppose that $y \neq 0$, and that $b_n \neq 0$ for all $n \geq m$. Then the sequence $(b_n^{-1})_{n=m}^{\infty}$ converges to y^{-1} ; in other words,

$$\lim_{n \to \infty} b_n^{-1} = (\lim_{n \to \infty} b_n)^{-1}.$$
 (9)

(f) Suppose that $y \neq 0$, and that $b_n \neq 0$ for all $n \geq m$. Then the sequence $(a_n/b_n)_{n=m}^{\infty}$ converges to x/y; in other words,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$
 (10)

(g) The sequence $(\max(a_n, b_n))_{n=m}^{\infty}$ converges to $\max(x, y)$; in other words,

$$\lim_{n \to \infty} \max(a_n, b_n) = \max(\lim_{n \to \infty} a_n, \lim_{n \to \infty} b_n). \tag{11}$$

(h) The sequence $(\min(a_n, b_n))_{n=m}^{\infty}$ converges to $\min(x, y)$; in other words,

$$\lim_{n \to \infty} \min(a_n, b_n) = \min(\lim_{n \to \infty} a_n, \lim_{n \to \infty} b_n). \tag{12}$$

Proof. (a) Since $(a_n)_{n=m}^{\infty}$ converges to x, then for all $\epsilon > 0$, there exists a positive integer $N_1 > m$ such that for any $n > N_1$, $|a_n - x| \le \frac{\epsilon}{2}$. Similarly, for all $\epsilon > 0$, there exists a positive integer $N_2 > m$ such that for any $n > N_2$, $|b_n - y| \le \frac{\epsilon}{2}$. Then for any $n > \max(N_1, N_2)$, we have

$$|a_n + b_n - x - y| = |a_n - x + b_n - y| \le |a_n - x| + |b_n - y| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (13)

which implies $(a_n + b_n)_{n=m}^{\infty}$ converges to x + y, as desired.

(b) Since $(a_n)_{n=m}^{\infty}$ converges to x, then for all $\epsilon > 0$, there exists a positive integer $N_1 > m$ such that for any $n > N_1$, $|a_n - x| \le \epsilon$. Also, by Corollary 1, $|a_n| \le M \in \mathbf{R}$ for all $n \ge m$. Similarly, for all $\epsilon > 0$, there exists a positive integer $N_2 > m$ such that for any $n > N_2$, $|b_n - y| \le \epsilon$. Then for any $n > \max(N_1, N_2)$, we have

$$|a_n b_n - xy| = |a_n b_n - y a_n + y a_n - xy| \tag{14}$$

$$= |a_n(b_n - y) + y(a_n - x)| \tag{15}$$

$$\leq |a_n(b_n - y)| + |y(a_n - x)|$$
 (16)

$$\leq (M + |y|)\epsilon \tag{17}$$

which implies $(a_n b_n)_{n=m}^{\infty}$ converges to xy since M and y are constants.

- (c) This is the special case when $b_n = c$ for all $n \ge m$.
- (d) It follows from (a) and c due to the fact $a_n b_n = a_n + (-1) \cdot b_n$.

Theorem 3 (squeeze test, sandwich theorem). Let $(a_n)_{n=m}^{\infty}$, $(b_n)_{n=m}^{\infty}$, and $(c_n)_{n=m}^{\infty}$ be sequences of real numbers such that $a_n \leq b_n \leq c_n$ for all $n \geq m$. Suppose also that $(a_n)_{n=m}^{\infty}$ and $(a_n)_{n=m}^{\infty}$ both converge to the same limit L. Then $(b_n)_{n=m}^{\infty}$ is also convergent to L.

Proof. Let $(d_n)_{n=m}^{\infty}$ be a sequence with $d_n = b_n - a_n$, then $0 \le d_n \le c_n - a_n$. Since both $(a_n)_{n=m}^{\infty}$ and $(c_n)_{n=m}^{\infty}$ converge to L, according to the limit laws, $\lim_{n\to\infty}(c_n-a_n)=L-L=0$. Therefore, for all $\epsilon>0$, there exists a positive integer N>m such that for all n>N, $|d_n|=|d_n-0|\le |c_n|\le \epsilon$. This indicates that $(d_n)_{n=m}^{\infty}$ is convergent with $\lim_{n\to\infty}d_n=0$. Furthermore,

$$\lim_{n \to \infty} (d_n + a_n) = \lim_{n \to \infty} d_n + \lim_{n \to \infty} a_n = 0 + L = L.$$

$$\tag{18}$$

Since $b_n = d_n + a_n$, then $\lim_{n \to \infty} b_n = L$ as desired.

1.3 Upper bound and supremum

Definition 7 (Upper bound). Let E be a subset of \mathbf{R} , and let M be a real number. We say that M is an **upper bound** for E, iff we have $x \leq M$ for every element x in E.

Definition 8 (Least upper bound). Let E be a subset of \mathbf{R} , and let M be a real number. We say that M is a **least upper bound** for E, iff (a) M is an upper bound for E, and also (b) any other upper bound M' for E must be larger than or equal to M.

Proposition 5 (Uniqueness of least upper bound). Let E be a subset of \mathbf{R} . Then E can have at most one least upper bound.

Proof. Let M_1 and M_2 be two least upper bounds. Since M_1 is a least upper bound and M_2 is an upper bound, then by definition of least upper bound we have $M_2 \geq M_1$. Since M_2 is a least upper bound and M_1 is an upper bound, we similarly have $M_1 \geq M_2$. Thus $M_1 = M_2$. Thus there is at most one least upper bound.

Now we come to an important property of the real numbers:

Theorem 4 (Existence of least upper bound). Let E be a nonempty subset of \mathbf{R} . If E has an upper bound, (i.e., E has some upper bound M), then it must have exactly one least upper bound.

Proof. This theorem will take quite a bit of effort to prove, see Page 118 of Terence Tao's "Analysis 1, 3rd Edition". \Box

Definition 9 (Supremum). Let E be a subset of the real numbers. If E is non-empty and has some upper bound, we define $\sup(E)$ to be the least upper bound of E. If E is non-empty and has no upper bound, we set $\sup(E) := +\infty$; if E is empty, we set $\sup(E) := -\infty$. We refer to $\sup(E)$ as the supremum of E, and also denote it by $\sup E$.

Similarly, we can define greatest lower bound and infimum.

Remark 3. We can think of Theorem 4 as saying "sup(E) always exists". Because either E is bounded above (in which case sup(E) exists), or E is unbounded(in which case sup(E) = ∞). This is a fundamental theorem of analysis. Also, by Proposition 5, sup(E) or inf(E) is unique.

Important fact: $\inf(S) = -\sup(-S)$.

Theorem 5. Let E be a subset of \mathbb{R}^* . Then the following statements are true.

- 1. For every $x \in E$ we have $x < \sup(E)$ and $x \in \inf(E)$.
- 2. Suppose that $M \in \mathbf{R}^*$ is an upper bound for E, i.e., $x \leq M$ for all $x \in E$. Then we have $\sup(E) \leq M$.
- 3. Suppose that $M \in \mathbf{R}^*$ is a lower bound for E, i.e., $x \geq M$ for all $x \in E$. Then we have $\inf(E) \geq M$.

Proposition 6 (least upper bound property). Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers, and let x be the extended real number $x := \sup(a_n)_{n=m}^{\infty}$. Then we have $a_n \leq x$ for all $n \geq m$. Also, whenever $M \in \mathbf{R}^*$ is an upper bound for a_n (i.e., $a_n \leq M$ for all $n \geq m$), we have $x \leq M$. Finally, for every extended real number y for which y < x, there exists at least one $n \geq m$ for which $y < a_n \leq x$.

Proposition 7 (Monotone bounded sequences converge). Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers which has some finite upper bound $M \in \mathbf{R}$, and which is also increasing (i.e., $a_{n+1} \geq a_n$ for all $n \leq m$). Then $(a_n)_{n=m}^{\infty}$ is convergent, and in fact

$$\lim_{n \to \infty} a_n = \sup(a_n)_{n=m}^{\infty} \le M.$$

Example: The sequence $(a_n)_{n=1}^{\infty}$ given by $a_n = (1 + \frac{1}{n})^n$ is convergent.

Proof. First, we show that $(a_n)_{n=1}^{\infty}$ is an increasing sequence. In order to do this, we employ GM-Am inequality to get

$$a_n = \left(1 + \frac{1}{n}\right)^n \cdot 1 \le \left(\frac{n(1 + \frac{1}{n}) + 1}{n+1}\right)^{n+1} = \left(\frac{n+1+1}{n+1}\right)^{n+1} = a_{n+1} \tag{19}$$

which indicates $(a_n)_{n=1}^{\infty}$ is an increasing sequence. Now we show that $(a_n)_{n=1}^{\infty}$ is bounded from above as follows.

$$a_n = \left(1 + \frac{1}{n}\right)^n \tag{20}$$

$$=\sum_{k=0}^{n} \binom{n}{k} \cdot 1^{n-k} \cdot (\frac{1}{n})^k \tag{21}$$

$$= \binom{n}{0} \cdot 1^n \cdot (\frac{1}{n})^0 + \binom{n}{1} \cdot 1^{n-1} \cdot (\frac{1}{n})^1 + \sum_{k=2}^n \binom{n}{k} \cdot 1^{n-k} \cdot (\frac{1}{n})^k \tag{22}$$

$$=1+1+\sum_{k=2}^{n} \binom{n}{k} \cdot \frac{1}{n^k}$$
 (23)

$$=2+\sum_{k=2}^{n}\frac{n(n-1)(n-2)\cdots(n-k+1)}{n\cdot n\cdot n\cdot \dots \cdot n}\cdot \frac{1}{k!}$$
(24)

$$\leq 2 + \sum_{k=2}^{n} \frac{1}{k!} \leq 2 + \sum_{k=2}^{n} \frac{1}{k(k-1)}$$
 (25)

$$=2+1-\frac{1}{n}<3. (26)$$

Hence, $(a_n)_{n=1}^{\infty}$ is increasing and bounded above. By Proposition 7, it converges.

Remark 4. By convention we use e to denote the limit of the above sequence, namely

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e = 2.718281828459 \dots$$
 (27)

which is an irrational number.

1.4 Bolzano-Weirstrass Theorem

Theorem 6 (Bolzano-Weierstrass theorem: every bounded sequence has a convergent subsequence). Let $(a_n)_{n=0}^{\infty}$ be a bounded sequence (i.e., there exists a real number M > 0 such that $|a_n| \leq M$ for all $n \in \mathbb{N}$). Then there is at least one subsequence of $(a_n)_{n=0}^{\infty}$ which converges.

Proof. Since $(a_n)_{n=0}^{\infty}$ is a bounded sequence, we can find an interval $[c_0, d_0] \subset [-M, M]$ such that every member of $(a_n)_{n=0}^{\infty}$ resides in $[c_0, d_0]$. Now we bisect $[c_0, d_0]$ at $(c_0 + d_0)/2$. If the left half contains infinitely many members of $(a_n)_{n=0}^{\infty}$, let $c_1 := c_0$ and $d_1 := (c_0 + d_0)/2$, otherwise let $c_1 := (c_0 + d_0)/2$ and $d_1 := d_0$. In this way, we can construct the following nested intervals.

$$[c_0, d_0] \supset [c_1, d_1] \supset \cdots \supset [c_n, d_n] \supset \cdots$$
(28)

which yields two monotone bounded sequences $(c_n)_{n=0}^{\infty}$ and $(d_n)_{n=0}^{\infty}$. Specifically, $(c_n)_{n=0}^{\infty}$ is increasing and bounded above, and $(d_n)_{n=0}^{\infty}$ is decreasing and bounded below. Therefore, by Proposition 7, $(c_n)_{n=0}^{\infty}$ and $(d_n)_{n=0}^{\infty}$ are both convergent. Since $d_n - c_n = \frac{1}{2^n}(d_0 - c_0)$,

$$\lim_{n \to \infty} (d_n - c_n) = \lim_{n \to \infty} \frac{1}{2^n} (d_0 - c_0) = 0,$$
(29)

which implies $\lim_{n\to\infty} d_n = \lim_{n\to\infty} c_n = 0$. For each interval $[c_n, d_n]$, we choose a point b_n which is a member of $(a_n)_{n=0}^{\infty}$. Thus, we get a subsequence $(b_n)_{n=0}^{\infty}$ where $c_n \leq b_n \leq d_n$. By the sandwich theorem, $(b_n)_{n=0}^{\infty}$ is a convergent subsequence which converges to $\lim_{n\to\infty} d_n$.

The upper limit and lower limit 1.5

Let E denote the set of limit points,

$$E = \{\xi | \xi \text{ is a limit point of } \{x_n\}\}.$$

 $H = \max E$ is called the upper limit of the sequence $\{x_n\}$, denoted as

$$H = \overline{\lim}_{n \to \infty} x_n;$$

 $H = \min E$ is called the lower limit of the sequence $\{x_n\}$, denoted as

$$H = \underline{\lim}_{n \to \infty} x_n.$$

Note that the upper limit and lower limit are called the limit superior and the limit inferior, respectively, which are defined as follows:

$$\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{k \ge n} x_n = \inf_{n} \sup_{k \ge n} x_k;$$

$$\underline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{k \ge n} x_n = \sup_{n} \inf_{k \ge n} x_k.$$
(30)

$$\underline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{k > n} x_n = \sup_{n} \inf_{k > n} x_k. \tag{31}$$

Proposition 8 (Limits are limit points). Let $(a_n)_{n=m}^{\infty}$ be a sequence which converges to a real number c. Then c is a limit point of $(a_n)_{n=m}^{\infty}$, and in fact it is the only limit point of $(a_n)_{n=m}^{\infty}$.

References