Новое семейство ортогональных вейвлетов на основе атомарных функций $\mathrm{ch}_{a,n}$

Я.Ю. Коновалов 1 , В.Ф. Кравченко 1,2,3 , О.В. Кравченко 1,2,3 , Д.В. Чуриков 2,3,4

kon20002000@mail.ru, kvf-ok@mail.ru, olekravchenko@gmail.com, mpio_nice@mail.ru

Московский государственный технический университет им. Н.Э. Баумана 1 Научно-технологический центр уникального приборостроения РАН 2 Институт радиотехники и электроники им. В.А. Котельникова РАН 3 Московский физико-технический институт 4

21 сентября 2015

Содержание

- 1 Общая конструкция вейвлетов Кравченко
- 2 Новое семейство атомарных функций $\mathrm{ch}_{a,n}(x)$
- \bigcirc Построение $\chi(\omega)$
- Построение вейвлетов
- Б Константы неоределенности

Конструкция вейвлетов Кравченко, впервые изложенная в работах В.Ф. Кравченко, А.В. Юрин. Новый класс вейвлет-функций в цифровой обработке сигналов и изображений. Успехи современной радиоэлектроники. № 5, 2008. с. 3-64.

В.Ф. Кравченко, Д.В. Чуриков. Атомарные функции $h_a(x)$ и новые ортогональные вейвлеты на их основе. Успехи современной радиоэлектроники. № 6, 2008. с.67-85.

является обобщением конструкции вейвлетов Мейера и основана на теоремах кратномасштабного анализа.

Кратномасштабный анализ (КМА) — это система замкнутых вложенных подпространств $V_j \subset L^2(\mathbb{R})$ со следующими свойствами:

- $\bigcirc \bigcap_{j\in\mathbb{Z}} V_j = \{0\}$
- ullet масштабирующая функция $arphi(x)\in V_0$ сдвиги которой образуют в V_0 базис Рисса.

Теорема 1

Сдвиги функции $\{\varphi(x-n)\}$ образуют базис Рисса в подпространстве $V_0\subset L^2(\mathbb{R})$ тогда и только тогда, когда существуют положительные постоянные A и B такие что

$$A \leqslant \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi n)|^2 \leqslant B.$$

Теорема 2

Функции $\varphi_n(x)=\varphi(x-n)$ образуют ортонормированный базис подпространства $V_0\subset L^2(\mathbb{R})$ тогда и только тогда, когда

$$\sum_{n\in\mathbb{Z}} \left|\hat{\varphi}(\omega + 2\pi n)\right|^2 = 1$$

почти всюду.

Чтобы получить $\hat{\varphi}(\omega)$, удовлетворяющую условию *Теоремы 2* сначала построим функцию $\chi(\omega)=|\hat{\varphi}(\omega)|^2$ со следующими свойствами:

$$\sum_{n\in\mathbb{Z}}\chi(\omega+2\pi n)=1.$$

Вид графиков функций $\chi(\omega)$ и $\hat{\varphi}(\omega)$

Согласно *Теореме 2* $\hat{\varphi}(\omega) = \sqrt{\chi(\omega)}$ порождает КМА.

Масштабирующее уравнение

$$\hat{\varphi}(\omega) = H_0\left(\frac{\omega}{2}\right)\hat{\varphi}\left(\frac{\omega}{2}\right)$$

позволяет получить функцию сопряженного зеркального фильтра $H_0(\omega)$ в виде

$$H_0(\omega) = \frac{\hat{\varphi}(2\omega)}{\hat{\varphi}(\omega)} = \hat{\varphi}(2\omega)$$

последнее имеет место так как $\hat{arphi}(\omega)=1$ на всем носителе $\hat{arphi}(2\omega)$.

Теорема 3

Если сдвиги $\varphi_n(x) = \varphi(x-n)$ масштабирующей функции $\varphi(x)$ образуют ортонормированный базис пространства $V_0 \subset L^2(\mathbb{R})$ то частотная функция $H_0(\omega)$ обладает свойством:

$$|H_0(\omega)|^2 + |H_0(\omega + \pi)|^2 = 1.$$

Периодически продолжим $H_0(\omega)$ с периодом 2π

$$H_0(\omega) = \sum_{n \in \mathbb{Z}} \hat{\varphi}(2(\omega + 2\pi n)).$$

Преобразование Фурье вейвлета может быть найдено по формуле

$$\hat{\psi}(\omega) = e^{\frac{i\omega}{2}} \overline{H_0\left(\frac{\omega}{2} + \pi\right)} \hat{\varphi}\left(\frac{\omega}{2}\right) = e^{\frac{i\omega}{2}} \left(\hat{\varphi}(\omega - 2\pi) + \hat{\varphi}(\omega + 2\pi)\right) \hat{\varphi}\left(\frac{\omega}{2}\right).$$

$$--|\hat{\psi}(\omega)|$$
 $-- \operatorname{Re}\hat{\psi}(\omega)$ $-- \operatorname{Im}\hat{\psi}(\omega)$ $-- \hat{\varphi}\left(\frac{\omega}{2}\right)$ $-- H_0\left(\frac{\omega}{2}+\pi\right)$

Описанная методика позволяет строить разные вейвлеты в зависимости от выбора $\chi(\omega)$ и, соответственно $\hat{\varphi}(\omega)$.

Для построения вейвлетов Мейера используются конструкции на базе тригонометрических полиномов специального вида.

Для построения вейвлетов Кравченко в качестве $\chi(\omega)$ рассматривались суммы сдвигов $\mathbf{A}\Phi$ $\mathrm{up}(x)$, $\mathrm{fup}_n(x)$, $\mathrm{h}_a(x)$, $\Xi_n(x)$, $\mathrm{up}_m(x)$, $\pi_m(x)$.

В данной работе в качестве $\chi(\omega)$ рассматриваются суммы сдвигов $\mathbf{A} \mathbf{\Phi} \operatorname{ch}_{s,n}$.

Новое семейство атомарных функций $\mathrm{ch}_{\mathsf{a},\mathsf{n}}$

Определение

 $\mathbf{A}\mathbf{\Phi}$ $\mathrm{ch}_{a,n}$ – это финитное решение уравнения

$$y^{(n)} = a^{n+1}2^{-n} \sum_{k=0}^{n} C_n^k (-1)^k y(ax + n - 2k)$$

имеющее носитель $\left[-\frac{n}{a-1},\frac{n}{a-1}\right]$ и охватывающее единичную площадь.

Перечислим некоторые свойства $\mathbf{A}\mathbf{\Phi}$ $\mathrm{ch}_{a,n}$.

f O ${f A}f O$ ${
m ch}_{a,n}$ является сверткой n экземпляров ${f A}f O$ ${
m h}_a$, а ее спектр есть спектр ${f A}f O$ ${
m h}_a$ возведенный в степень n

$$\widehat{\operatorname{ch}_{a,n}}(t) = \prod_{k=1}^{\infty} \operatorname{sinc}^n\left(\frac{t}{a^k}\right) = \left(\prod_{k=1}^{\infty} \operatorname{sinc}\left(\frac{t}{a^k}\right)\right)^n = \left(\widehat{\operatorname{h}_a}(t)\right)^n.$$

Новое семейство атомарных функций $\mathrm{ch}_{a,n}$

Новое семейство атомарных функций $\mathrm{ch}_{\mathsf{a},\mathsf{n}}$

 $f A \Phi \ {
m ch}_{a,n}$ является обобщением известных $f A \Phi .$ Частные случаи ${
m ch}_{a,n} = \underbrace{{
m h}_a * \cdots * {
m h}_a}$:

• $\operatorname{ch}_{2,1}(x) = \operatorname{up}(x)$,

 $\bullet \ \operatorname{ch}_{a,1}(x) = \operatorname{h}_a(x),$

• $ch_{2,2}(x) = cup(x)$,

- $oldsymbol{0}$ Для вычисления $oldsymbol{\mathsf{A}}oldsymbol{\Phi}$ $\mathrm{ch}_{\mathsf{a},\mathsf{n}}$ можно использовать ряд Фурье :

$$\operatorname{ch}_{a,n}(x) = \frac{a-1}{n} \left(\frac{1}{2} + \sum_{k=1}^{\infty} \widehat{\operatorname{ch}_{a,n}} \left(\frac{a-1}{n} \pi k \right) \cos \left(\frac{a-1}{n} \pi k x \right) \right).$$

Новое семейство атомарных функций $\mathrm{ch}_{\mathsf{a},\mathsf{n}}$

4 Φ $\mathrm{ch}_{a,n}$ обеспечивает разложение единицы:

$$\sum_{k\in\mathbb{Z}}\operatorname{ch}_{a,n}\left(x+\frac{2}{a}k\right)\equiv\frac{a}{2}.$$

 $oldsymbol{lack} oldsymbol{\mathsf{A}}oldsymbol{\Phi} \operatorname{ch}_{oldsymbol{a},oldsymbol{n}}$ точно представляет многочлены степени не выше $oldsymbol{n}$:

$$\sum_{k \in \mathbb{Z}} c_k \operatorname{ch}_{a,n}\left(x + \frac{2}{a}k\right) \equiv P_m(x), \qquad m < n$$

вместе с их производными

$$\sum_{k\in\mathbb{Z}}c_k\operatorname{ch}_{a,n}^{(I)}\left(x+\frac{2}{a}k\right)\equiv P_m^{(I)}(x),\qquad I< n.$$

Новое семейство атомарных функций $\ch_{a,n}$

Новое семейство атомарных функций $\mathrm{ch}_{a,n}$

Будем строить $\chi(\omega)$ в виде суммы нескольких последовательных сдвигов $\mathrm{ch}_{a,n}(x)$, используя свойство разложения единицы. Для построения функции сначала подберем а такое, чтобы носитель суммы сдвигов был вдвое длиннее отрезка, на котором она равна 1. Длина носителя суммы n+r сдвигов есть сумма длин носителя $ch_{a,n}(x)$ $\frac{2n}{a-1}$ и n+r-1 сдвигов на $\frac{2}{3}$. Длина плоской площадки будет равна rсдвигам на $\frac{2}{3}$ плюс разность между длиной сдвига $\frac{2}{3}$ и носителя слагаемого в правой части уравнения $\frac{2n}{a(a-1)}$. Эта разность положительна для функций, у которых носители слагаемых не пересекаются (как у h_a при a>2), отрицательна если есть пересечение носителей и равна нулю для $\Xi_n(x)$.

Требуем длину плоской площадки вдвое меньше длины носителя

$$\frac{2n}{a-1} + \frac{2}{a}(n+r-1) = 2\left(\frac{2a-2-2n}{a(a-1)} + \frac{2r}{a}\right).$$

$$\frac{2n}{a-1} + \frac{2}{a}(n+r-1) = 2\left(\frac{2a-2-2n}{a(a-1)} + \frac{2r}{a}\right).$$

Раскрыв скобки, получим a в зависимости от r и n

$$a=\frac{r+3+n}{r+3-2n}.$$

Отметим, что a>0 существует только при r>2n-3. Чтобы привести полученную функцию к требуемым носителю и максимуму, сделаем линейное преобразование аргумента.

$$\chi(\omega) = \frac{2}{a} \cdot \sum_{k=0}^{n+r-1} \operatorname{ch}_{a,n} \left(\frac{3}{4\pi} \left(\frac{n}{a-1} + \frac{n+r-1}{a} \right) \omega + \frac{n+r-1-2k}{a} \right).$$

При n=1 получим вейвлеты, основанные на $\mathbf{A} \mathbf{\Phi} \ \mathrm{h}_a(x)$. При r=2n получим a=n+1 и вейвлеты, основанные на $\mathbf{A} \mathbf{\Phi} \ \Xi_n(x)$. В остальных случаях получаются новые вейвлеты.

Построение вейвлетов

Построим вейвлеты на основе полученной $\chi(\omega)$.

Найдем преобразование Фурье масштабирующей функции $\hat{\varphi}(\omega)=\sqrt{\chi(\omega)}.$

Найдем масштабирующую функцию при помощи обратного преобразования Фурье

$$\varphi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\varphi}(\omega) e^{i\omega x} d\omega = \frac{1}{\pi} \int_{0}^{\frac{4\pi}{3}} \hat{\varphi}(\omega) \cos(\omega x) d\omega.$$

Получим $H_0(\omega) = \sum\limits_{n \in \mathbb{Z}} \hat{arphi}(2(\omega + 2\pi n))$ и

$$\hat{\psi}(\omega) = e^{\frac{i\omega}{2}} \overline{H_0\left(\frac{\omega}{2} + \pi\right)} \hat{\varphi}\left(\frac{\omega}{2}\right) = e^{\frac{i\omega}{2}} \left(\hat{\varphi}(\omega - 2\pi) + \hat{\varphi}(\omega + 2\pi)\right) \hat{\varphi}\left(\frac{\omega}{2}\right).$$

Построение вейвлетов

Масштабирубщая функция и вейвлет $n=3, \quad r=8, \quad a=2,8$

Построение вейвлетов

Интеграл Фурье для вейвлета можно значительно упростить

$$\psi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\frac{i\omega}{2}} \left(\hat{\varphi}(\omega - 2\pi) + \hat{\varphi}(\omega + 2\pi) \right) \hat{\varphi}\left(\frac{\omega}{2}\right) e^{i\omega x} d\omega.$$

Перемножая экспоненты и учитывая носители сомножителей получим

$$\psi(x) = \frac{1}{\pi} \int_{\frac{2\pi}{3}}^{\frac{8\pi}{3}} \hat{\varphi}(\omega - 2\pi) \hat{\varphi}\left(\frac{\omega}{2}\right) \cos \omega \left(x + \frac{1}{2}\right) d\omega.$$

Заметим, что $\hat{\varphi}(\frac{\omega}{2})=1$ на отрезке $[-\frac{4\pi}{3};\frac{4\pi}{3}],~\hat{\varphi}(\omega-2\pi)=1$ на $[\frac{4\pi}{3};\frac{8\pi}{3}].$

$$\psi(x) = \frac{1}{\pi} \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} \hat{\varphi}(\omega - 2\pi) \cos \omega \left(x + \frac{1}{2} \right) d\omega + \frac{1}{\pi} \int_{\frac{4\pi}{3}}^{\frac{8\pi}{3}} \hat{\varphi}\left(\frac{\omega}{2} \right) \cos \omega \left(x + \frac{1}{2} \right) d\omega.$$

Константы неопределенности

Константы неопределенности широко используются для оценки качества вейвлетов так как они инвариантны относительно сдвига и сжатия функции.

$$\Delta_f = rac{1}{\|f(t)\|} \sqrt{\int\limits_{-\infty}^{\infty} \left(t - t_f^*
ight)^2 |f(t)|^2 dt}, \quad t_f^* = rac{1}{\|f(t)\|^2} \int\limits_{-\infty}^{\infty} t |f(t)|^2 dt.$$

Относительно вычисления констант неопределенности заметим следующее

$$\|\hat{\varphi}(\omega)\|^2 = \int\limits_{-\infty}^{\infty} \chi(\omega) d\omega = 2\pi$$

так как $\chi(\omega)$ обладает свойством разложения единицы.

Константы неопределенности

Из равенства Парсеваля $\|\hat{\varphi}(\omega)\|^2 = 2\pi \Rightarrow \|\varphi(x)\| = 1$.

Аналогично $\|\hat{\psi}(\omega)\|^2=2\pi$ и $\|\psi(x)\|=1$.

Центры четных функций $\hat{arphi}(\omega)$ и arphi(x) находятся в 0.

Центр $\hat{\psi}(\omega)$ также равен 0, так как $|e^{\frac{i\omega}{2}}|^2=1$.

Центр вейвлета $\psi(x)$ расположен в $-\frac{1}{2}$, что явно следует из окончательного вида интеграла Фурье.

Коэффициенты фильтров для вычисления ДВП находятся по формуле

$$h_k = rac{\sqrt{2}}{2\pi} \int\limits_{-\pi}^{\pi} H_0(\omega) e^{in\omega} d\omega.$$

Физические характеристики полученных вейвлетов

п	n=2					n=3				
r	2	3	5	6		4	5	7	8	
а	7	4	2,5	2, 2		10	5, 5	3,25	2, 8	
k	Коэффициенты фильтра h _k									
0	0,769858	0,76141	0,75177	0,74863		0,760922	0,755517	0,748429	0,74592	
1	0,432329	0,436911	0,44122	0,442425		0,43723	0,439681	0,4425	0,443392	
2	-0,056945	-0,050251	-0,042171	-0,039452		-0,049594	-0,045242	-0,039245	-0,037055	
3	-0, 101215	-0,113156	-0,124724	-0,128017		-0,114256	-0,120661	-0,128248	-0,130692	
4	0,041736	0,039411	0,035341	0,033732		0,038387	0,036676	0,03351	0,032169	
5	0,022234	0,037008	0,05234	0,056874		0,039195	0,047177	0,057272	0,060657	
6	-0,022677	-0,025162	-0,025886	-0,025675		-0,023897	-0,025157	-0,025446	-0,025194	
7	0,007749	-0,004789	-0,019691	-0,024399		-0,008239	-0,015119	-0,024969	-0,028516	
8	0,006016	0,011533	0,015985	0,016994		0,010444	0,013683	0,016778	0,017511	
9	-0,014214	-0,007264	0,003906	0,007863		-0,002768	0,001212	0,008594	0,011605	
10	0,004046	-0,001636	-0,007574	-0,009276		-0,001202	-0,004724	-0,009102	-0,010445	
11	0,0094	0,008514	0,002457	-0,000227		0,003623	0,002826	-0,001087	-0,003139	
12	-0,006784	-0,003317	0,001804	0,003566		-0,002846	-0,000529	0,003464	0,004934	
13	-0,002014	-0,005179	-0,003637	-0,00227		-0,000773	-0,002102	-0,001336	-0,000317	
14	0,004497	0,004053	0,001145	-0,000183		0,002811	0,0023	-0,000171	-0,001361	
15	-0,002815	0,001408	0,002564	0,002189		-0,001772	0,000078	0,001245	0,001049	
16	-0,000702	-0,002451	-0,00188	-0,001192		-0,000897	-0,001794	-0,001115	-0,000418	
Константы неопределенности										
$\Delta_{\varphi}\Delta_{\hat{\varphi}}$	0,849832	0,865094	0,924162	0,953627		0.852302	0,889345	0,954349	0,983001	
$\Delta_{\psi}\Delta_{\hat{\psi}}$	2,754477	2,804059	2,995344	3,090787		2.762587	2,88256	3,093122	3,185939	
Для вейвлета Мейера $\Delta_{arphi}\Delta_{\hat{arphi}}=1,01148$; $\Delta_{\psi}\Delta_{\hat{arphi}}=3,27802$										

Физические характеристики полученных вейвлетов

n	n=4					n=5				
r	6	7	9	10		8	9	11	12	
а	13	7	4	3,4		16	8, 5	4,75	4	
k	Коэффициенты фильтра h_k									
0	0,754485	0,750757	0,745417	0,743409		0.749770	0.747032	0.742866	0.741229	
1	0,440116	0,441619	0,44356	0,444225		0.441984	0.442990	0.444394	0.444904	
2	-0,044258	-0,041173	-0,036584	-0,034815		-0.040268	-0.037946	-0.034312	-0.032854	
3	-0,121929	-0,125911	-0,131175	-0,133008		-0.126947	-0.129649	-0.133489	-0.134903	
4	0,035858	0,034409	0,031789	0,030655		0.033743	0.032494	0.030265	0.029289	
5	0,04914	0,054266	0,061393	0,063963		0.055800	0.059388	0.064686	0.066691	
6	-0,02466	-0,025116	-0,024951	-0,024647		-0.024809	-0.024857	-0.024419	-0.024082	
7	-0,017506	-0,022231	-0,029415	-0,03216		-0.023999	-0.027503	-0.033023	-0.035211	
8	0,013658	0,015506	0,017428	0,017898		0.015608	0.016692	0.017853	0.018130	
9	0,003625	0,006834	0,01256	0,014966		0.008529	0.011193	0.015855	0.017839	
10	-0,005228	-0,007496	-0,01052	-0,011503		-0.007963	-0.009504	-0.011627	-0.012340	
11	0,000838	-0,000543	-0,004044	-0,005781		-0.001888	-0.003404	-0.006590	-0.008107	
12	0,000401	0,002161	0,00514	0,006284		0.002850	0.004243	0.006534	0.007426	
13	-0,000904	-0,000911	0,00045	0,00143		-0.000087	0.000431	0.002081	0.003037	
14	0,001206	0,00043	-0,001655	-0,002641		-0.000280	-0.001142	-0.002958	-0.003784	
15	-0,000189	0,000396	0,000478	0,000131		0.000110	0.000168	-0.000322	-0.000778	
16	-0,000861	-0,000977	-0,000089	0,000551		-0.000440	-0.000166	0.000871	0.001469	
Константы неопределенности										
$\Delta_{\varphi}\Delta_{\hat{\varphi}}$	0,894133	0,929076	0,989027	1,015345		0.939412	0.969869	1.023381	1.047252	
$\Delta_{\psi}\Delta_{\hat{\psi}}$	2,898062	3,011252	3,205461	3, 290718		3.044732	3.143397	3.316754	3.394089	
	Для вейвлета Мейера $\Delta_{arphi}\Delta_{\hat{arphi}}=1,01148$; $\Delta_{\psi}\Delta_{\hat{w}}=3,27802$									

Литература

- Новиков И.Я., Протасов В.Ю., Скопина М.А. Теория всплесков. М.: Физматлит, 2006.
- Кравченко В.Ф., Коновалов Я.Ю., Пустовойт В.И. Семейства атомарных функций $\mathrm{ch}_{a,n}(x)$ и $\mathrm{fup}_n(x)$ в цифровой обработке сигналов// Доклады
 - Академии наук. 2015. Т. 462. №1. С. 35–40. Кравченко В.Ф., Юрин А.В. Новый класс вейвлет-функций в цифровой обработке сигналов и изображений// Успехи современной радиоэлектроники. №5. 2008. с. 3-64.
- Кравченко В.Ф., Чуриков Д.В. Атомарные функции h_a(x) и новые ортогональные вейвлеты на их основе// Успехи современной радиоэлектроники. №6, 2008. с.67-85.
- Кравченко В.Ф., Лабунько О.С., Лерер А.М., Синявский Г.П. Вычислительные методы в современной радиофизике. Под. ред. В.Ф. Кравченко. М.: Физматлит. 2009.
 - № Кравченко В.Ф., Рвачев В.Л. Алгебра логики, атомарные функции и вейвлеты в физических приложениях. М.: Физматлит, 2006.
- Кравченко В.Ф., Пустовойт В.И. и др. Применение семейств атомарных, WA-систем и R-функций в современных проблемах радиофизики// Радиотехника и электроника. Часть I: 2014. Т.59. №10. с.949-978; Часть II: 2015. Т.60. №2. с.109-148; Часть III: 2015. Т.60. №7. с. 663-694; Часть IV: 2015. Т.60. №11. с.1113-1152.

Исследование выполнено при поддержке гранта РФФИ 13-02-12065-офи_м «Фундаментальные задачи микроволнового дистанционного зондирования Земли из космоса»