This Week

Monday

Decision Making with Uncertainty

Wednesday

Lab Exercise: Health Insurance Comparison

Topics

- Decision Making with Well-Defined Outcomes
- Dealing with Not-So-Well-Defined Outcomes
 - > Continuous Outcomes
 - > Unknown Outcome Probabilities

A Problem Solving Framework

- 1. Define the Problem
- 2. Collect and Organize Data
- 3. Characterize Uncertainty and Data Relationships
- 4. Build an Evaluation Model
- 5. Formulate a Solution Approach
- 6. Evaluate Potential Solutions
 - 7. Recommend a Course of Action

Decision Making With Well-Defined Outcomes

Given:

- The set of decision alternatives
- The possible outcomes of the sources of uncertainty
- The associated probabilities of each outcome

We need to determine:

- What are the consequences for each possible combination of decision alternative and outcome?
- How should we measure the decision alternatives?
- What is the <u>best</u> decision alternative?

Health Insurance Decision Problem

Four different health insurance policies to consider:

	Health Insurance Plans					
	Plan1	Plan2	Plan3	Plan4		
Annual Premium:	\$600	\$900	\$1,500	\$0		
Deductible:	\$200	\$100	\$0	\$0		
Co-insurance:	20%	10%	0%	100%		
Out-of-Pocket Limit**:	\$2,500	\$1,500	\$0			

^{**} Exclusive of annual premium

Health Insurance Decision Problem

Four different health insurance policies to consider:

	Health Insurance Plans					
	Plan1	Plan2	Plan3	Plan4		
Annual Premium:	\$600	\$900	\$1,500	\$0		
Deductible:	\$200	\$100	\$0	\$0		
Co-insurance:	20%	10%	0%	100%		
t-of-Pocket Limit**:	\$2,500	\$1,500	\$0			

^{**} Exclusive of annual premium

Out-of-Pocket Limit*

Enumerating the Consequences

A payoff table lists the consequences (usually \$) for each possible combination of decision alternative and outcome.

		Total Annual Cost to Individual Under Each Plan			
_	Possible Values for Annual Health Care Expenses	Plan1	Plan2	Plan3	Plan4
	\$0	\$600	\$900	\$1,500	\$0
	\$200	\$800	\$1,010	\$1,500	\$200
	\$600	\$880	\$1,050	\$1,500	\$600
All Possible Outcomes	\$1,000	\$960	\$1,090	\$1,500	\$1,000
	\$2,000	\$1,160	\$1,190	\$1,500	\$2,000
	\$5,000	\$1,760	\$1,490	\$1,500	\$5,000
	\$10,000	\$2,760	\$1,990	\$1,500	\$10,000
	\$15,000	\$3,100	\$2,400	\$1,500	\$15,000
	\$25,000	\$3,100	\$2,400	\$1,500	\$25,000
	\$50,000	\$3,100	\$2,400	\$1,500	\$50,000
	· ·	1	,	·	1

Consequences for Plan1 Consequences for Plan4

Assessing Risk

 The risk profile for a decision alternative describes the probability distribution of its consequences (i.e., the likelihoods that the payoff table entries will be realized).

	1
Likelihood of Each Expense Level	Possible Values for Annual Health Care Expenses
20.00%	\$0
30.00%	\$200
30.00%	\$600
10.00%	\$1,000
5.00%	\$2,000
2.00%	\$5,000
1.00%	\$10,000
1.00%	\$15,000
0.50%	\$25,000
0.50%	\$50,000

One Possible Decision Rule

The **expected monetary value** (**EMV**) of a decision alternative is the **expected payoff of the alternative**.

		Total Annual Cost to Individual Under Each Plan			
Likelihood of Each Expense Level	Possible Values for Annual Health Care Expenses	Plan1	Plan2	Plan3	Plan4
20.00%	\$0	\$600	\$900	\$1,500	\$0
30.00%	\$200	\$800	\$1,010	\$1,500	\$200
30.00%	\$600	\$880	\$1,050	\$1,500	\$600
10.00%	\$1,000	\$960	\$1,090	\$1,500	\$1,000
5.00%	\$2,000	\$1,160	\$1,190	\$1,500	\$2,000
2.00%	\$5,000	\$1,760	\$1,490	\$1,500	\$5,000
1.00%	\$10,000	\$2,760	\$1,990	\$1,500	\$10,000
1.00%	\$15,000	\$3,100	\$2,400	\$1,500	\$15,000
0.50%	\$25,000	\$3,100	\$2,400	\$1,500	\$25,000
0.50%	\$50,000	\$3,100	\$2,400	\$1,500	\$50,000

Expected Annual Cost of Plan: \$902.80 \$1,064.20 \$1,500.00 \$1,165.00

Questions to Consider

Which plan would you choose, and why?

- Is Plan1 the "best" plan?
- Under what circumstances would choosing each plan make sense?
- In any given year, what is the probability that Plan1 will be the lowest cost plan? Plan2? Plan 3?
- In any given year, what is the probability that your total cost will exceed \$1000 under each plan?

Comparing Decision Alternatives

Here are some commonly used decision rules when risk profile information is available (i.e., when consequence probabilities are *known* for each alternative):

- Highest (Lowest) EMV
- Highest (Lowest) EMV subject to other constraints
 - e.g., P(Total Cost > \$2500) = 0%
- Lowest (Highest) probability of monetary consequences exceeding a certain value
 - e.g., Choose alternative with lowest P(Total Cost > \$1,500)
- Highest Expected Utility
 - Utility values incorporate attitudes toward risk and are used in place of monetary consequences for evaluation.

Not-So-Well Defined Outcomes

Continuous Outcomes

Unknown Outcome Probabilities

Evaluating Continuous Outcomes

- When a source of uncertainty is a continuous random variable, it is impossible to list all possible outcomes for evaluation purposes.
- A common practice is to use a discrete approximation to the continuous distribution.
- Approximation using midpoints of fixed-length value ranges:

 P(Y = 30) = P(25 < X < 35)</p>

Evaluating Continuous Outcomes

Approximation using midpoint percentiles:

Unknown Outcome Probabilities

What can we do if the outcome probabilities are *unknown*?

		Total Annual Cost to Individual Under Each Plan			
Likelihood of Each Expense Level	Possible Values for Annual Health Care Expenses	Plan1	Plan2	Plan3	Plan4
?	\$0	\$600	\$900	\$1,500	\$0
?	\$200	\$800	\$1,010	\$1,500	\$200
?	\$600	\$880	\$1,050	\$1,500	\$600
?	\$1,000	\$960	\$1,090	\$1,500	\$1,000
?	\$2,000	\$1,160	\$1,190	\$1,500	\$2,000
?	\$5,000	\$1,760	\$1,490	\$1,500	\$5,000
?	\$10,000	\$2,760	\$1,990	\$1,500	\$10,000
?	\$15,000	\$3,100	\$2,400	\$1,500	\$15,000
?	\$25,000	\$3,100	\$2,400	\$1,500	\$25,000
?	\$50,000	\$3,100	\$2,400	\$1,500	\$50,000

Comparing Decision Alternatives

Here are some commonly used decision rules when consequence probabilities are *unknown**:

- Laplace Rule: Assume that all outcomes are equally likely and select the alternative with the highest EMV.
- Maximin Rule (minimax for costs): Select the alternative with the highest "worst" payoff value (over all possible outcomes).
- Maximax Rule (minimin for costs): Select the alternative with the highest "best" payoff value (over all possible outcomes).
- Minimax Regret Rule: Select the alternative such that the
 maximum "regret" over all possible outcomes is minimized.
 The regret of an alternative for a particular outcome is the
 difference between the alternative payoff and the best payoff for
 that outcome.

^{*}from Engineering Economy, Ninth Edition, Thuesen & Fabrycky, 2001.