Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №1 з дисципліни "Схемотехніка аналогової радіоелектронної апаратури - 1"

Виконав: студент групи ДК-62 Гордієнко Я.О..

Перевірив: доц. Короткий \in В.

1) Дослідження суматора напруги на резисторі

Було створено суматор напруг згідно з схемою, яка наведена в методичних рекомендаціях до лабораторної роботи.

Резистори R₁, R₂ було взято з номіналом 64.9 кОм.

Для перевірки роботи суматора, було подано 2 постійні напруги на кожен резистор по 1В.

Розрахувавши за теоретичною формулою $U_{out} = (U_1 + U_2) / 2$

Отриманий результат має напругу в 1 вольт

Результати симуляції повністю збігаються з теоретичним розрахунком, адже в симуляторі не враховується багато недоліків елементів.

Далі на суматор було подано два сигнали:

- а) Імпульсивний з амплітудою 1В, частотою 1кГц та коефіцієнтом заповнення 50%;
- b) Синусоїдальний з амплітудою 1В, частотою 5кГц.

До виходу суматора було під'єднанно один зі входів осцилографу. Результат та значення вхідних сигналів зазначено нижче:

Далі було в Proteus виконано дану симуляцію, а джерела налаштовані аналогічно до налаштувань генератору під час лабораторного дослідження:

3)Дослідження RC-кола

Під час виконання даної лабораторної роботи було складено RC-ланцюжок використовуючи такі номінали:

C = 101.9 nF

R = 0.986 kOm

Тривалість заряду/розряду до 99% складає:

 $t=5\tau$;

 $\tau = 5*R*C;$

 $\tau = 101.9 \cdot 10^{-9} \cdot 0.986 \cdot 10^{3} = 502 \text{ MKC}$

Далі слід подати імпульсивний сигнал, період якого в 5 раз більше, а саме 2510мкс, або частоту 398Гц.

Було проведено симуляцію схеми в Proteus, результати якого співпадають з дослідженням на лабораторній роботі.

3 симуляції можемо побачити, що за даною частотою, конденсатор встигає набрати повну енергію, що майже дорівнює вхідній.

3) Дослідження RC-фільтру низької частоти

В даній схемі, використанні такі ж самі номінали компонентів як у попередньому колі. Частота зразу даного фільтра дорівнює:

$$f_{\text{3pi3y}} = 1/(2\pi \star \text{R} \star \text{C})$$
;

 $f_{3pi3y} = 1/(2*3.14*0.986*10^3*101.9*10^{-9} \approx 1,584 \text{ kOm}$

Для такого фільтру було проведено дослідження амплітудно-частотної характеристики, для цього був використаний відповідний пакет Network Analyzer у ПЗ нашої Analog Discovery 2.

В теорії на частоті зрізу відбувається зниження коефіцієнта на 3 дБ. Що і було підтверджено на практиці.

Зробивши моделювання в LTSpice, переконалися що також підтверджується дане твердження:

Таблиця значень K_u :

			Ku	
Nº	f, кГц	Ки теор.	експ.	Похибка %
1	0	1	1	-
2	0,4	0,969595	0,964	0,58039238
3	0,8	0,892714	0,893	0,03198253
4	1,2	0,797249	0,7984	0,14419216
5	1,5824	0,707654	0,7059	0,24853878
6	1,8	0,707654	0,6967	1,57233175
7	2	0,660829	0,6583	0,38410293
8	2,2	0,621069	0,6104	1,747903
9	2,4	0,584512	0,5717	2,24105933
10	2,6	0,551049	0,5523	0,22650291

Висновок: виконавши дану лабораторну роботу я дослідив 2 схеми: суматор напруг (на резисторах) та фільтр низьких частот. Нашим завданням було вимірювання вихідної напруги на суматорі при різних вхідних сигналах.

Ми практично побачили теоретичні значення напруг на виході:

- 1) середнє арифметичне від напруг на вході
- 2) накладання сигналів при змінних джерелах напруги

Фільтр низьких частот — дуже поширена схема, що не пропускає сигнали вищі за частоту зрізу, що знаходиться за значеннями данних елементів (конденсатору та резистору)

Виконавши симуляцію ми пересвідчились в правильності отриманих данних та коректність виконання практичної частини