Lista 4: Cálculo I

A. Ramos *

April 8, 2018

Abstract

Lista em constante atualização.

1. Derivadas, regras de cálculo, regra da cadeia, derivada implícita.

1 Exercícios

Faça do livro texto, os exercícios correspondentes aos temas desenvolvidos em aula.

2 Exercícios adicionais

2.1 Cálculo de derivadas

Calcule os seguintes limites.

- 1. Calcule $\lim_{x\to 1} \frac{x^{1000000}-1}{x-1}$.
- 2. Mostre que se $f(x) = a^x$, a > 0, $a \ne 1$. Então, $f'(x) = a^x \ln(a)$.
- 3. Se

$$f(x) = \frac{\sin(x) - \cos(x)}{\sin(x) + \cos(x)}.$$

Calcule a função derivada. Rpta: $f'(x) = \frac{2}{(\sin(x) + \cos(x))^2}$.

4. Se

$$f(x) = \begin{cases} 2x^2 - 3, & \text{se } x \le 2\\ 8x - 11, & \text{se } x > 2 \end{cases}$$

Mostre que a existe a derivada f'(x) em x=2 e calcule dita derivada. Rpta: 8.

5. Se

$$f(x) = \frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt{x+1} + \sqrt{x-1}}.$$

Calcule a função derivada. Rpta: $f'(x) = 1 - \frac{x}{\sqrt{x^2 - 1}}$.

6. Considere $a \in \mathbb{R}$ e defina

$$f(x) := \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\ln\left(x + \sqrt{x^2 + a^2}\right).$$

Calcule a função derivada. Rpta: $f'(x) = \sqrt{x^2 + a^2}$.

- 7. Se $f(x^2+1) = \sqrt{x^2+1} + \sqrt[6]{16(x^2+1)}$ e $f(x^2-1) = g(x^2+1)$. Calcule g'(5). Rpta: g'(5) = 4/3. Dica: Antes de calcular a derivada, escreva explicitamente a função g usando mudança de variável.
- 8. Se

$$f(x) = \begin{cases} x^{\frac{5}{2}} \sin(\frac{1}{x}) + 3e^x, & \text{se } x \neq 0 \\ 3, & \text{se } x = 0 \end{cases}$$

Calcule f'(0). Rpta: f'(0) = 3.

9. Sejam a e b números reais. Considere a função

$$f(x) = \begin{cases} ax^2 + b & \text{, se } x \le 1\\ x^{-1} & \text{, se } x > 1 \end{cases}$$

Para quais valores de a e b, a função f é derivável em x = 1. Rpta: a = -1/3, b = 4/3. Dica: Para f ser derivável em x = 1, a derivada deve existir e f deve ser continua em x = 1.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

10. Para quais valores de a e b, a função f é derivável em x=2, onde

$$f(x) = \begin{cases} ax + b & \text{, se } x < 2\\ 2x^2 - 1 & \text{, se } x \ge 2 \end{cases}$$

Rpta: a = 8 e b = -9.

- 11. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que $|f(x)| \le x^2 + x^4$, para todo $x \in \mathbb{R}$. Mostre que f é derivável em $x_0 = 0$ e calcule a derivada. Rpta: f'(0) = 0.
- 12. Seja f(x) = x|x| + x. Mostre que f é diferenciável em x = 0 e f'(0) = 1. Dica: Considere g(x) = f(x) x.
- 13. Encontre o domínio de f, onde f(x) = |x+1| + |x+2| |x-3|. Rpta: dom $(f') = \mathbb{R} \setminus \{-2, -1, 3\}$.
- 14. Sejam f e g duas funções deriváveis em um intervalo aberto I, e seja $a \in I$. Defina:

$$F(x) = \begin{cases} f(x) & \text{, se } x < a \\ g(x) & \text{, se } x \ge a \end{cases}$$

Mostre que F(x) é derivável em x = a se, e somente se, f(a) = g(a) e f'(a) = g'(a).

15. Encontre a função derivada f'(x) (explicitando seu domínio), se f(x) = [x+1] + [1-x]. Rpta: f'(x) = 0 e dom $(f') = \mathbb{Z}$.

2.2 Derivadas de funções trigonométricas

- 1. Calcule f'(x) se $f(x) = \cot(e^x + \ln x)$. Rpta: $f'(x) = -(e^x + \frac{1}{x})\operatorname{cossec}^2(e^x + \ln x)$.
- 2. Verifique que a derivada de $f(x) = \arctan(\sqrt{4x^2-1})$ é $\frac{1}{x\sqrt{4x^2-1}}$.
- 3. Se $f(x) = \left(\sin(\frac{x}{2}) \cos(\frac{x}{2})\right)^2$. Mostre que $f'(x) = -\cos(x)$.
- 4. Se $f(x) = \arctan(\frac{\sin x + \cos x}{\sin x \cos x})$. Então f'(x) = -1.

2.3 Derivação Implícita

Calcule $\frac{dy}{dx}$, se

- 1. $e^y = x + y$, $Rpta: \frac{dy}{dx} = \frac{1}{e^y 1}$.
- 2. $ay = y \ln y + x$, onde $a \in \mathbb{R}$. Rpta: $\frac{dy}{dx} = \frac{y}{x-y}$.
- 3. $y \sin x = \cos(x y)$. Rpta: $\frac{dy}{dx} = \frac{y \cos x + \sin(x y)}{\sin(x y) \sin x}$.
- 4. $\arctan y = y x$. $Rpta: \frac{dy}{dx} = \frac{y^2 + 1}{y^2}$.

2.4 Equação da reta tangente usando derivadas

- 1. Encontre a equação da reta tangente à curva $x x^2y = 1$ cujp ângulo de inclinação é $\pi/4$. Rpta: r: y = x + 1.
- 2. Encontre as equações das retas tangentes à curva $x^3 3x^2 + 6x + 4 3y = 0$ que são paralelas a y = 2x + 3. Rpta: $r_1: 6x - 3y = -4$ e $r_2: y = 2x$.
- 3. 12 area constante
- 4. Ache as retas tangentes à hipérbole $\mathcal{H}: \frac{x^2}{2} \frac{y^2}{7} = 1$ que são perpendiculares à reta 4y = 3 2x. $Rpta: r_1: y = 2x + 1$ e $r_2: y = 2x - 1$.
- 5. Mostre que qualquer par de retas tangentes à parábola $y = ax^2$, com $a \neq 0$, tem como interseção um ponto que está numa reta vertical que passa pelo ponto médio do segmento que une os pontos de tangência destas retas
- 6. Encontre as retas tangentes e normal da curva $2y^3 9xy + 2x^3 = 0$ no ponto P = (2,1). Rpta: reta tangente: 4y = sx 6, reta normal: 5y = 13 4x
- 7. Qual a reta normal da curva $y=x\ln x$ que é paralela à reta 2y=2x+3? Rpta: reta normal: $y=x-3e^{-2}$.

2.5 Taxas de variação

- 1. (*Expansão Adiabática*) Quando certo gás composto sofre uma expansão adiabática, a sua pressão p e seu volume V satisfazem à equação $pV^{1.3}=k$, onde k é uma constante. Mostre que $-V\frac{dp}{dt}=1.3p\frac{dV}{dt}$
- 2. Uma lâmpada está no solo a 15 m de um prédio. Um homem de 1.8 m de altura anda a partir da luz em direção ao prédio a 1.2 m/s.
 - (a) Determine a velocidade com que o comprimento de sua sombra sobre o prédio diminui quando ele está a 12m do prédio. $Rpta: 3.6 \ m/s$
- 3. (*Escada deslizante*) Uma escada de 25 cm está encostada na parede de uma casa e sua base está sendo empurrada no sentido contrário ao da parede. Num certo instante, a base da escada se encontra a 7 cm da parede e está sendo empurrada a uma taxa de 2 cm por segundo.
 - (a) Qual a velocidade com a qual o topo da escada se move para baixo nesse instante? Rpta: (7/12) cm/s;
 - (b) Considere o triângulo formado pela parede da casa, a escada e o chão. Calcule a taxa de variação da área deste triângulo no instante em que a base da escada se encontra a 7 cm da parede. Rpta: (527/24) cm^2/s ;
 - (c) Calcule a taxa de variação do ângulo formado pela parede da casa e a escada, quando a base da escada estiver a 7 cm da parede. Rpta: $1/12 \ rad/s$.
- 4. Uma tina de água tem 10 metros de comprimento e uma seção transversal com a forma de um trapézio isósceles com 30 cm de comprimento na base, 80 cm de extensão no topo e 50 cm de altura. Suponha que a tina for preenchida com água a uma taxa de $0.2~m^3/min$. Quão rápido estará subindo o nível da água quando ela estiver a 30 cm de profundidade? Rpta: (10/3)~cm/min