GOP 과학화경계시스템 성능개량 사업 과제 제안서

모델명: 4ch_YOLOv8

제출원: 2조

제출일자: 2025. 06. 27

목 차

Ⅰ. 일반사항
1.1 개요 03
1.2 선행 연구 04
1.3 개발 내용 05
1.4 최종 목적 07
1.5 개발 일정 08
1.6 참고 문헌 08
II. 제안
2.1 기술성 09
2.2 개발 과정 10
2.3 주요 기술 사양·성능 ······ 11

I 일반사항

1.1 개요

- □ 개발 배경
 - 북한 접경 최전방 GOP 지역은'무결점 경계'필수
 - 현행 과학화 경계 감시시스템은
 - 주로 RGB 영상 기반 AI 탐지
 - 열화상 카메라는 이상 징후 시 보조 전환만 사용 혹은 야간에만 사용
 - 주·야 전환식 단선 운용으로 다채널 융합 미활용
 - 저조도·기상 악화 환경에서
 - 위장 상태 침투 객체의 오탐.미탐률 급증
 - 2018년까지 454회 이상 경보 미발생 사례(조선, 2020.11.20.)
 - "RGB 후 이상 시 열화상 전환"수준 지적(보안뉴스, 2023.04.05.)

□ 개발 개요

- O RGB 채널 + 열화상 채널 동시 융합 처리
- 열화상 이미지 생성을 위한 4채널 CycleGAN 모델 학습
- O YOLOv8 기반 4채널 딥러닝 객체 탐지 모델 설계·학습
- O 실시간 추론을 위한 FastAPI서빙 및 React/three.js 3D UI 연동

□ 필요성

- 단일 RGB기반 탐지의 구조적 한계 해소
- O 저조도·안개·강설 등 환경 악화 시 탐지 신뢰도 확보
- 위장은폐 침투 객체에 대한 고신뢰도 식별 기술 도입
- 계약 특수조건(제 57조 6항)에 따른 지속 지원·성능 개선

□ 목표

- 복합 환경에서 위장 상태 객체 [1.4 평가지표] 명시된 지표 달성
- 멀티스펙트럼 융합 모델의 실시간 처리 성능 보장
- 실시간 객체의 속도 및 이동방향 정보 제공

□ 기대효과

- 차세대 GOP과학화 경계 시스템의 안정적 운용 기반 강화
- 야간 악천후 환경에서도 고신뢰도 객체 탐지 구현
- O 경계 사각지대 해소 및 경보 누락 위험 최소화

1.2 선행 기술 현황

- □ 선행 연구
 - O "생성 이미지를 이용한 데이터 구축 및 YOLO 객체 탐지 모델을 통한 성능비교" 참고문헌[1])
 - 연구 목적
 - GAN 기반 생성 이미지와 일반 이미지 융합이 YOLO 탐지 성능에 미치는 영향 분석
 - 실험 내용
 - 기존 증식 방식 vs 생성 이미지 기반 데이터 구성 방식 비교
 - 주요 결과
 - 융합 테이터 셋 mAP@0.5 기준 평균 +3%p, 최대 +8.9%p 성능 향상
 - O "국방용 합성 이미지 데이터셋 생성을 위한 대립훈련 신경망 기술 적용 연구" 참고문헌[2])
 - 연구 목적
 - 군사 영상 데이터 접근 제한 수집 곤란 문제 해결을 위한 합성 이미지 생성 기술 제시
 - 적용 기술
 - CycleGAN 등 대립훈련 신경망 기반 합성 이미지 생성
 - 주요 결과
 - 군사 특화 데이터셋 생성의 유효성 및 활용 가능성 확인

1.3.1 Flowchart

1.3.2 개발 내용

- □ 요구사항 수집 및 분석
 - "프로젝트 목표 정의 : 위장 상태의 객체를 야간, 안개, 강설 등 열악한 환경에서도 정밀 하게 검출할 수 있는 모델 개발
 - 시스템 제약 및 성능 지표 설정
 - 정량 지표 : 검출 정확도
 - 성능 지표 : 5.1[성능지표] 이하 동일
- □ 데이터 수집
 - O RGB 이미지 확보
 - 민간인, 군인 (복장·거리 다양화), 야생동물 이미지 수집
 - 열화상 이미지 직접 확보 불가
 - CycleGAN 기반 열화상 변환 모델 학습을 통해 열화상 이미지 생성
- □ 환경 구축 & 열화상 생성 모델 모델링
 - O 개발 환경 구축
 - PyTorch 기반 CycleGAN 구현
 - CUDA 가속을 위한 GPU 환경 세팅
 - O CycleGAN 모델 설계 및 학습
 - 모델 성능 개선을 위해 입력 구조 변형
- □ 데이터 전처리
 - 열화상 및 RGB 이미지 동기화
 - CycleGAN 생성 열화상 이미지와 원본 RGB 이미지 일대일 대응 매핑
 - 이미지 전처리
 - 비율 유지 리사이징 : 원본 이미지 비율은 유지한 상태에서, 640x640 해상도에 맞도록 리사이징
 - 패딩 : 리사이징 후 남는 공간은 중립색으로 패딩을 추가하여 정사각형 형태 유지
 - 정규화 : 이미지 픽셀 값 0~255 범위에서 0~1 사이로 정규화
 - O 채널 정규화
 - 비율 유지 리사이징 : 입력 이미지 비율은 유지한 상태에서, 지정 크기에 맞도록 리사이징
 - 패딩 : 리사이징 후 남는 공간은 중립색으로 패딩을 추가하여 정사각형 형태 유지
 - 채널별 정규화 : 이미지의 각 채널(R,G,B,열화상) [0~255] 범위에서 실수형으로 타입 변환 후 [0~1] 범위로 정규화
 - 텐서 변환 및 배치 구성 : 최종적으로 (C,H,W) 형태의 텐서로 변환

- O 객체 탐지 모델 모델링
 - YOLOv8 모델 구조 확장
 - 입력 채널 : 기존 3채널(RGB) -> 4채널(RGB+열화상)
 - 멀티스펙트럼 특징 추출 및 융합 학습 가능 구조 설계
- O 학습 및 평가
 - 사전학습(pre-trained) 모델 파인튜닝
 - 교차검증 및 테스트셋 평가를 통한 mAP, Precision/Recall 분석
- O UI 구현
 - 웹 기반 감시 시스템과 연동 가능한 Inference API 서버 구축

1.4 최종 목적

- □ 최종 목적
 - 모듈 통합·운용
 - 딥러닝 기반 RGB+열화상 융합 객체탐지 모듈을 GOP 과학화 경계 시스템에 성공 적으로 통합 운용
 - 실시간 탐지 안정성 확보
 - 위장 상태의 군인 및 동물에 대한 실시간 탐지 안정성 확보
 - 복합 환경 성능 유지
 - 야간·안개·강설 등의 악천후 환경에서도 높은 탐지 성능 유지
- □ 평가 지표
 - O loU (Intersection over Union)
 - 예측된 바운딩 박스와 실제 객체 박스가 얼마나 겹치는지 나타내는 척도
 - 프로젝트 적용 기준
 - IoU Threshold : 0.50 (실전 응용에서 탐지 성능 평가의 기본 기준값으로 널리 사용)
 - O mAP@0.5
 - IoU ≥ 0.50 조건에서 클래스별 정밀도(AP)를 계산해 평균한 값
 - 프로젝트 적용 기준
 - 목표값 : ≥ 0.75
 - O Precision / Recall
 - Precision (정밀도): 예측한 객체 중 실제 정답인 비율 -> 오탐(FP)에 민감
 - Recall (재현율) : 실제 객체 중 탐지에 성공한 비율 -> 미탐(FN)에 민감
 - 위장 상태 객체에 대한 탐지 신뢰성 확보를 위한 필수 조건
 - 목표값 : Precision ≥ 95%, Recall ≥ 95%

- O (True Positive Rate, 사람 클래스 기준)
 - 실제 군인(사람)이 존재할 때 정확히 탐지된 비율
 - 군인 대상 탐지 실패 최소화, 위협 탐지 누락 방지를 위한 핵심 지표
 - 프로젝트 적용 기준
 - 목표값 : Precision ≥ 95%, Recall ≥ 95%

1.5 개발 일정

단계	주요 업무	기간	산출물
1단계	요구 사항 분석	1주차	
2단계	데이터 수집 및 전처리	1주차	정제된 데이터셋
3단계	열화상 생성 모델 모델링	2~3주차	생성 모델, 열화상 이미지
4단계	YOLOv8 구조 커스터마이징	3~4주차	수정된 YOLOv8 모델
5단계	모델 학습 및 튜닝	5주차	학습 완료된 탐지 모델
6단계	성능 평가	5주차	평가 리포트
7단계	UI 구현	6~7주차	감시용 UI 시연 화면

7 참고 문헌

연번	종류	제목	저자	발행년도	발행자
1	논문	생성 이미지를 이용한 데이터 구축 및 YOLO 객체 탐지 모델을 통한 성능 비교	김진성, 권성수, 이종혁, 배지훈	2023	대구가톨릭 대학교
2	논문	국방용 합성이미지 데이터셋 생성을 위한 대립훈련신경망 기술 적용 연구	양훈민	2019	국방과학연구소 국방고등기술원

1 기술성

	1			
모델명	4ch-YOLOv8			
제품설명	RGB 및 열화상 데이터를 병합한 4채널 입력 구조를 기반으로, 주·야간 및 악천후 등 다양한 환경에서 위장 물체를 정밀하게 탐지하는 전천후 객체 탐지 모델			
핵심기술	YOLOv8 입력 레이어의 4채널 확장 및 멀티스펙트럼(가시광 + 열화상) 융합 처리 기술			
기술분야	■AI/지능화 □초연결 □Cloud □가상증강현실 □개인전투체계/웨어러블 □CPS/정밀제어 □첨단바이오 □첨단사이버/블록체인 □미래형 방호 □빅데이터 □자율·무인화/로보틱스 □드론 □첨단추진/에너지 □첨단 소재/센서/가공			
	구 분	핵심 :		
기술적	기술 설명 Y	GB(3채널)와 열화상(1채널)을 OLOv8 구조를 확장, 다양한 <u>-</u> 당으로써 은폐·위장 물체에 대한	스펙트럼 정보를 동시에 분석 난 탐지 성능 향상	
혁신성	기술별 특장점 저	기존 단일 채널(RGB 또는 열화상 단독) 탐지 대비, 저조도· 점 저대비·위장 환경에서의 객체 식별력 크게 향상. 단일 모델 로 주·야간 및 악천후 조건에 모두 대응 가능		
	입력 단계에서부터 멀티스펙트럼 융합을 실현한 4채널 동시 기술적 혁신성 처리 기반 구조로, 복잡한 환경에서도 강인한 성능을 유지 하는 군 특화형 AI 모델 구현 가능			
	구 분	4ch-YOLOv8	기존 YOLOv8 모델	
	입력 채널 수	4채널 (RGB + Thermal)	3채널 (RGB)	
-1 스 고l	환경 강건성	주·야간, 악천후 탐지 가 능	주간 및 양호 환경에 국한	
기술적 우월성	탐지 성능 (mAP@0.5 기준)	0.9707		
	파라미터 수 (Params)	68,155,254	- YOLOv8n : 3,157,200 - YOLOv8s : 11,166,560 - YOLOv8m : 25,902,640 - YOLOv8l : 43,691,520 - YOLOv8x : 68,229,648	
		 델과 기존 YOLOv8 모델은 동 이터셋으로 평가했습니다.	일한 학습 데이터셋으로 학습하	

1. 요구사항 분석 및 설계

- 객체 탐지 요구사항
- ① 탐지 대상: 사람, 동물
- ② 운용 환경 : GOP 철책 외곽 감시구 역
- ③ 목표 : 주·야간 및 악천후 상황에서 도 높은 정확도로 은폐·위장 객체를 안 정적으로 탐지
- CCTV 기능
- ① 객체 이동 속도(m/s) 및 이동 방향 실시간 표시
- ② 객체 탐지 시 즉시 경보 발생 및 해당 시점 영상 자동 저장
- ③ 영상 관리 기능 : 시점별 되감기 기능

2. 데이터 수집 및 전처리

- 데이터 수집
- ① 군인 이미지
- ② 민간인 이미지
- ③ 야생동물 이미지 (주로 GOP 감시 대상인 멧돼지, 고라니 등)
- ④ 열화상 이미지(CycleGAN 모델 학습용)
- 전처리
- · 객체별 바운딩 박스 및 세그멘테이션 라벨링

3. 4ch-cycleGAN 모델링

- 목적 : RGB 이미지를 기반으로 대응되는 가상 열화상 이미지 생성

- 구조 커스터마이징

· 입력 : RGB+객체 마스크 (4채널)

· 출력 : 열화상(1채널)

· 위장 객체 강조 학습을 위한

segmentation 채널 병합

4. 4ch-YOLOv8 모델링

- 목적 : 주·야간, 악천후, 위장 환경에서 고정밀 탐지 수행
- 구조 확장
- · 기본 YOLOv8 구조의 입력 채널을 4 채널(RGB+열화상)으로 확장

5. UI 및 시스템 구현

- -CCTV 기반 사용자 인터페이스
- · 다중 카메라 화면 (4분할)
- -기능 구현
- ※요구사항에 명시

6. 평가 및 검증

-모델 정확도 평가 항

목

- · mAP@0.5
- · mAP@[.50:.95]
- · Precision / Recall
- · TPR

- 시스템 평가 항목
- ① UI 편의성
- ② 실용성

< 참 고 >

※ 본 프로젝트에서는 RGB 이미지와 동일한 열화상 이미지 얻을 수 없기 때문에 CycleGAN모 델 변형하여 열화상 이미지 생성하였습니다.

[3.1] 전체 시스템 구성도

구 분	기능별 구성 요소	비고
	• 영상 획득 모듈 - RGB 일반 감시 카메라 - 열화상 카메라	- 본 프로젝트에서는 구조 변형한 CycleGAN 모델로 열화상 이미지를 생성하였습니다.
	• 데이터 융합 및 전처리 모듈 - 실시간 4채널 영상 통합 처리 : RGB 3채널 영상과 열화상 1채널 영상을 프레임 단위로 동기화·병합하여 4채널 입력 생성 - 입력 전처리 자동화 : 해상도 정규화, 채널 정규화 등 YOLO 모델 최적화를 위한 실시간 전처리 수행	
시스템 주요 구성 모듈	• 인공지능 객체 탐지 모듈 - 4채널 입력 YOLOv8 커스터마이징 모델	
	• 실시간 모니터링 및 경보 모듈 - 객체 탐지 시 이동 방향·속도(m/s) 실시간 표시 및 자동 경보 : 실시간 추적 기반 벡터 시각화, 탐지 조건 충족 시 자동 경고 발생 - 탐지 결과 이력 관리 및 분석 대시보드 제공 : 탐지 시간, 위치 로그 저장 및 재생 기능 포함	- 본 프로젝트에서는 객체 속도 계산을 위한 화각 값을 실제 촬영에 사용된 드론의 화각 값을 기준으로 거리 환산을 수행하였습니다.

[3.2] 성능

구 분 성 능

· IoU

box_loss가 0.5 근처로 충분히 낮아졌기 때문에, loU가 높은 예측 비율이 많아졌을 것으로 예측할 수 있습니다.

탐지 정확도

· TPR

- 사람에 대해 약 96.3%
- · 동물에 대해 약 97.4%
- -> 사람에 대한 TPR≥95%의 프로젝트 목표 달성

구 분	성 능		
	· Mac의 MPS(GPU 가속) 환경에서 측정한 결과		
	모델	추론 속도	
	4ch-YOLOv8	0.1812 seconds	
	YOLOv8n	0.0224 seconds	
	YOLOv8s	0.0388 seconds	
추론 속도	YOLOv8m	0.0737 seconds	
구는 국도	YOLOv8I	0.1196 seconds	
	YOLOv8x	0.1888 seconds	
	본 커스터마이징된 4채널 YOLOv8 최적화 모델은 RGB와 열화상 정보를 동시에 활용할 수 있도록 구조를 변경하였음에도 불구하고, YOLOv8x와 유사한 수준의속도 성능을 유지합니다. ※ 모든 모델은 동일한 추론 조건(640x640 해상도, 배치 1, MPS 디바이스, 전처리·후처리 제외)에서 측정되었습니다.		