يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۵

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

تعریف فرمال محاسبه (پذیرش) NFA

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over the alphabet Σ . Then we say that N accepts w if we can write w as $w = y_1 y_2 \cdots y_m$, where each y_i is a member of Σ_{ε} and a sequence of states r_0, r_1, \ldots, r_m exists in Q with three conditions:

- 1. $r_0 = q_0$,
- **2.** $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and
- **3.** $r_m \in F$.

زبان یک NFA

ورت تعریف NFA کنید N یک NFA است. زبانی را که توسط N تشخیص داده می شود به این صورت تعریف می کنیم:

$$L(N) = \{ w \in \Sigma^* \mid w \text{ is accepted by } N \}$$

مثال

زبان NFA زیر چیست؟

- A. $\{0^k \mid k \text{ is a multiple of 2}\}.$
- B. $\{0^k \mid k \text{ is a multiple of } 3\}$.
- C. $\{0^k \mid k \text{ is a multiple of 6}\}.$
- D. $\{0^k \mid k \text{ is a multiple of 2 or 3}\}.$
- E. None.

مثال

$$\begin{array}{c|c}
\varepsilon \\
\hline
q_2 \\
\hline
a, b, c
\end{array}$$

$$\begin{array}{c}
a \\
\hline
q_{ba}
\end{array}$$

$$L = \{w \in \{a,b,c\}^* \mid$$
 با ab شروع شود یا به ba ختم شود $W \in \{a,b,c\}^*$

رابطه بین DFA و NFA

○ هر DFA، یک NFA است؛ بنابراین قدرت NFAها دست کم به اندازه قدرت DFAهاست.

○ اما آیا برعکس نیز صادق است؟ آیا زبانی وجود دارد که زبان یک NFA باشد اما زبان یک DFA نباشد؟

THEOREM 1.39 -----

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

○ ماشین M1 هم ارز ماشین M2 است اگر (M2)=(M1)

COROLLARY 1.40 ------

A language is regular if and only if some nondeterministic finite automaton recognizes it.

- اثبات (قضیه ۳۹): اثبات از طریق ساختن
- . اشد. NFA باشد $N=(Q,\Sigma,\delta,q_0,F)$ باشد.
- . هدف: ساخت یک DFA به صورت $M=(Q',\Sigma,\delta',q_0',F')$ که زبان $M=(Q',\Sigma,\delta',q_0',F')$ و تشخیص دهد.

ایده:

- شبیهسازی NFA با یک DFA
- تحت یک ورودی، همه شاخههای محتمل NFA در نظر گرفته شود.
- در NFA، هر حالت میتواند چندین حالت بعدی داشته باشد که باید در DFA متناظر این حالتها در یک حالت نشان داده شود.
- در DFA معادل، همه حالتهای محتمل متناظر در NFA در نظر گرفته شود.
 - اگر NFA دارای k حالت است آنگاه 2^k زیرمجموعه محتمل دارد.
- ✓ هر زیرمجموعه یکی از موارد محتمل است که DFA باید بخاطر بسپارد.
 - در نتیجه DFA میتواند دارای \checkmark حالت باشد.

○ مثال (ناقص):

Subset construction

- اثبات (قضیه ۳۹):
- . باشد. NFA غرض کنید $N=(Q,\Sigma,\delta,q_0,F)$ باشد.
- . هدف: ساخت یک DFA به صورت $M=(Q',\Sigma,\delta',q_0',F')$ که زبان $M=(Q',\Sigma,\delta',q_0',F')$ و تشخیص دهد.

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$N = (Q, \Sigma, \delta, q_0, F) \qquad M = (Q', \Sigma, \delta', q_0', F')$$

DFA NFA

$$N = (Q, \Sigma, \delta, q_0, F) \qquad M = (Q', \Sigma, \delta', q_0', F')$$

$$\circ$$
 Q' = \mathcal{P} (Q)

$$\mathbf{Q'} = \mathbf{P}(\mathbf{Q}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

 $\bigcirc\emptyset$

$$\boxed{\boxed{\{1,3\}}}$$

 $\mathbf{Q'} = \mathbf{\mathcal{P}} \ (\mathbf{Q}) = \big\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \big\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$O$$
 $Q' = \mathcal{P}(Q)$

نداریم: ϵ نداریم: ϵ نداریم: ϵ

○ مثال (ناقص):

$$\delta'(R_1, 1) = \bigcup_{r \in R_1} \delta(r, 1) = \{\delta(2, 1), \delta(3, 1)\} = \{1, 2, 3\} = R_2$$

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$N = (Q, \Sigma, \delta, q_0, F) \qquad \longrightarrow \qquad M = (Q', \Sigma, \delta', q_0', F')$$

$$O$$
 $Q' = P(Q)$

برای سادگی، ابتدا فرض کنیم ϵ نداریم: \circ

$$ο δ'(R, a) = ∪_{r∈R} δ(r, a)$$

$$R \in Q'$$

$$a \in \Sigma$$

{3}

 $\{2\}$

ϵ-Closure

رای یک حالت مفروض $q \in Q$ ، از E(q) برای نمایش مجموعه حالتهایی استفاده می کنیم که از حالت ϵ جالت ϵ با کمک ϵ -transition در ϵ قابل رسیدن هستند.

ϵ-Closure

$$E(q_0) = \{q_0, q_1, q_2, q_3, q_4\}$$

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$N = (Q, \Sigma, \delta, q_0, F) \qquad \longrightarrow \qquad M = (Q', \Sigma, \delta', q_0', F')$$

$$\circ$$
 $Q' = \mathcal{P}(Q)$

اکنون ϵ داریم: \circ

ο δ' (R, a) =
$$\cup_{r \in R}$$
 E(δ (r, a))

$$R \in Q'$$

$$a \in \Sigma$$

 $E(q) = \{q' \in Q : q' \text{ reachable from } q \text{ by traveling } \}$ along 0 or more ε-transition}

$$M = (Q', \Sigma, \delta', q_0', F')$$

$$O$$
 $Q' = \mathcal{P}(Q)$

ο δ' (R, a) =
$$\cup_{r \in R}$$
 E(δ (r, a))

$$o q_0' = E(\{q_0\})$$

$$M = (Q', \Sigma, \delta', q_0', F')$$

$$O$$
 $Q' = P(Q)$

$$ο δ'(R, a) = ∪_{r∈R} E(δ(r, a))$$

$$o q_0' = E(\{q_0\})$$

F' = {R ∈ Q' : R contains at least an accept state of N)

مثال

EXAMPLE 1.41

1.41 **EXAMPLE**

مثال

EXAMPLE **1.41**

تبدیل NFA به DFA (زبان NFA؟):

 $\{(ab)^n \mid n \geq 1\}$

مثال

تبدیل NFA به DFA (زبان NFA؟): (الفبای (a})

 $\{\epsilon,\mathtt{a}\}$

