MTL783: Theory of Computation

1st Semester, 2025-2026

Lecture 1 - 24/07/2025

Lecturer: Prof Minati De Scribe: Team 1

Scribed by:

1. Keshav Rai (2022MT61968)

2. Siddharth Saini (2022MT11283)

3. Parth Bhardwaj (2022MT11257)

4. Tushar Goyal (2022MT11266)

5. Ryan Azim Shaikh (2022MT11923)

1 Foundational Definitions

Definition 1.1 (Alphabet). An alphabet Σ is any finite, non-empty set of symbols.

Definition 1.2 (String). A string over Σ is a finite sequence $w = a_1 a_2 \dots a_n$ with each $a_i \in \Sigma$. Its length is |w| = n. The unique string of length zero is called the empty string and denoted by λ .

Definition 1.3 (Concatenation). If u and v are strings over Σ , their concatenation uv is the string formed by appending v after u. One has |uv| = |u| + |v|.

Definition 1.4 (Language). A language over Σ is any subset $L \subseteq \Sigma^*$.

Definition 1.5 (Iteration). For a string $w \in \Sigma^*$ and integer $k \geq 0$, define

$$w^0 = \lambda, \qquad w^k = \underbrace{w \, w \cdots w}_{k \, times}.$$

Then $w^* = \{ w^k \mid k \ge 0 \}$ and $w^+ = w^* \setminus \{\lambda\}.$

Examples

- Alphabets: $\Sigma_1 = \{a, b, c\}, \ \Sigma_2 = \{0, 1\}, \ \Sigma_3 = \{a, b, c, \dots, z\}.$
- Strings over $\{a, b\}$: u = ab, w = abab, λ (empty string).
- The set of all strings over Σ is Σ^* .
- Any language L satisfies $L \subseteq \Sigma^*$.

2 Classes of Abstract Machines

Finite Automata (FA)

Machines with finite control only; recognise exactly the regular languages.

Push-Down Automata (PDA)

FA equipped with a stack; recognise exactly the *context-free languages*.

Linear Bounded Automata (LBA)

Turing machines whose tape usage is linearly bounded by the input; recognise exactly the context-sensitive languages.

Turing Machines (TM)

Unbounded-tape machines; capture the full power of algorithmic (recursively enumerable) computation.

3 Automata-Grammar Correspondence

Chomsky Type	Grammar	Equivalent Automaton
Type-3	Right-linear (regular)	FA
Type-2	Context-free	PDA
Type-1	Context-sensitive	LBA
Type-0	Unrestricted	TM

4 Further Reading

- 1. M. Sipser, Introduction to the Theory of Computation, 3rd ed.
- 2. D. C. Kozen, Automata and Computability.
- 3. P. Linz, An Introduction to Formal Languages and Automata.
- 4. M. Smid and A. Maheshwari, Intro to Theory of Computation (notes).