Лекция 5 Нейронные сети

Бручес Елена

15.07.2025

Основные методы в NLP

- Правила/эвристики;
- Статистические методы;
- Методы машинного обучения

Машинное обучение

Машинное обучение — это область компьютерные наук, которая изучает алгоритмы, которые анализируют данные и делают предсказания, основываясь на этих данных.

Приложения машинного обучения:

- NLP;
- Computer Vision;
- Optical Character Recognition (OCR);
- Business analytics;
- etc

Machine Learning

Machine Learning tasks:

- Supervised learning: The computer is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs;
- **Unsupervised learning**: No labels are given to the learning algorithm, leaving it on its own to find structure in its input;
- Reinforcement learning: A computer program interacts with a dynamic environment in which it must perform a certain goal. The program is provided feedback in terms of rewards and punishments as it navigates its problem space.

Machine Learning

Machine learning tasks:

- In classification, inputs are divided into two or more classes, and the learner must produce a model that assigns unseen inputs to one or more (multi-label classification) of these classes;
- In **regression**, also a supervised problem, the outputs are continuous rather than discrete;
- In clustering, a set of inputs is to be divided into groups. Unlike in classification, the groups are not known beforehand, making this typically an unsupervised task;
- Density estimation finds the distribution of inputs in some space;
- Dimensionality reduction simplifies inputs by mapping them into a lower-dimensional space.

Classification

In classification, inputs are divided into two or more classes, and the learner must produce a model that assigns unseen inputs to one or more (multi-label classification) of these classes

Regression

In **regression**, also a supervised problem, the outputs are continuous rather than discrete

Clustering

In **clustering**, a set of inputs is to be divided into groups. Unlike in classification, the groups are not known beforehand, making this typically an unsupervised task

(Feature, Label) - Sample

(Feature, Label) - Sample

. . . .

(Feature, Label) - Sample

Данные

Терминология ML

Label (метка) - это то, что мы предсказываем. Это может быть цена дома, тип животного на картинке, часть речи слова - в общем, почти всё что угодно.

Feature (признак) - это входная переменная. Самая простая модель может использовать один единственный признак; более сложные модели могут использовать миллионы признаков.

Например, в задаче определения спам/не спам признаками могут быть:

- слова в тексте письма;
- адрес отправителя;
- время дня, в которое было отправлено письмо;
- наличие в письме фразы "Ваш адрес был выбран победителем";
- и др.

Терминология ML

Sample - это конкретный пример данных. Samples бывают двух видов:

- 1. labeled (размеченные);
- 2. unlabeled (неразмеченные).

Размеченный sample включает и признак, и label:

labeled examples: {features, label}: (x, y)

Неразмеченный sample содержит только признак:

unlabeled examples: {features, ?}: (x, ?)

Итак, предположим, что Вы хотите разработать модель, которая будет предсказывать, является ли письмо спамом или нет. В качестве данных у нас есть набор писем, которые были помечены пользователями как "спам" или "не спам". Какие утверждения верны?

- 1. Слова в теме письма будут хорошими labels.
- 2. Вы будете использовать неразмеченные данные, чтобы обучить модель.
- 3. Те письма, которые не помечены "спам" или "не спам", неразмеченные примеры.
- 4. Не все labels, которыми помечены письма, могут быть надёжными.

Итак, предположим, что Вы хотите разработать модель, которая будет предсказывать, является ли письмо спамом или нет. В качестве данных у нас есть набор писем, которые были помечены пользователями как "спам" или "не спам". Какие утверждения верны?

- 1. Слова в теме письма будут хорошими labels.
- 2. Вы будете использовать неразмеченные данные, чтобы обучить модель.
- 3. Те письма, которые не помечены "спам" или "не спам", неразмеченные примеры.
- 4. Не все labels, которыми помечены письма, могут быть надёжными.

Теперь представим, что обувной он-лайн магазин хочет создать модель, которая будет рекомендовать пользователям обувь. То есть, модель будет рекомендовать определённые пары обуви Кейт и совершенно другие - Джону. Какие утверждения верны?

- 1. "Пользователь кликнул на описание обуви" хороший label.
- 2. "Размер обуви" полезный признак.
- 3. "Красота обуви" полезный признак.
- 4. "Обувь, которую обожает пользователь" хороший label.

Теперь представим, что обувной он-лайн магазин хочет создать модель, которая будет рекомендовать пользователям обувь. То есть, модель будет рекомендовать определённые пары обуви Кейт и совершенно другие - Джону. Какие утверждения верны?

- 1. "Пользователь кликнул на описание обуви" хороший label.
- 2. "Размер обуви" полезный признак.
- 3. "Красота обуви" полезный признак.
- 4. "Обувь, которую обожает пользователь" хороший label.

K-Nearest Neighbours

Линейный классификатор

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Обучение модели

+	-+	+
Input	Actual output	Desired output
0	0	0
1	3	2
2	6	4
3	9	6
4	12	8

Обучение модели

Input	actual	Desired	Absolute Error	Square Error
0	0	0	0	0
1	3	2	1	1
2	6	4	2	4
3	9	6	3	9
4	12	8	4	16
Total:	_	<u> </u>	10	30

Обучение модели

Input	Output	W=3	rmse(3)	W=3.0001	rmse
0	0	0	0	0	(
1	2	3	1	3.0001	1.0002
2	4	6	4	6.0002	4.0008
3	6	9	9	9.0003	9.0018
4	8	12	16	12.0004	16.0032
Total:	-	- 1	30	-	30.000

Стохастический градиентный спуск

Back-propagate error

Neural Networks

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural Networks

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs. **Right:** A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both cases there are connections (synapses) between neurons across layers, but not within a layer.

input layer (784 neurons)

Overfitting

Overfitting

Overfitting

Train/val/test splitting

Cross-validation

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5

Training data

Test data

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

from keras import *

What I actually do

Neural Networks: demo

- ConvNetJS https://cs.stanford.edu/people/karpathy/convnetjs/
- A Neural Network Playground https://playground.tensorflow.org/

