第三章 等压过程

2024.10.18 建档

章节概述 水要发生相变,可以通过很多方式。本章讲解通过等压过程的相态变化。

3.1 等压过程

3.1.1 基本概念

等压过程 大气中气压随高度逐渐降低,因此等压过程一般发生在水平面上。

且在小范围内,同一高度压强近似不变。

近地面典型现象: 露珠形成 (近地面层发生的相态变化)、

冬季无风夜晚成雾(空气冷,无风水汽集聚) 冬季清晨树枝成霜(直接凝华,由于 $e_i < e_s$)

干球温度T 气块不受太阳直接辐射所有的温度

 \mathbf{z} 点温度 \mathbf{r} 。 水汽含量不变,气块等压降温达到水面饱和的温度

 \mathbf{r} \mathbf{r}

湿球温度*T*_w 绝热条件与**等压条件**,通过向一个空气块蒸发水汽使其冷却,直到其相对于平水面饱和时所具有的温度。水缓慢蒸发为水汽,**水蒸发所需的潜热完全来自于湿空气**,降温到一定程度时,空气块饱和,此时的温度即为湿球温度。

测量:在温度表底部的玻璃球外面包裹一层**湿棉布**来测量

3.1.2 露点、霜点温度的计算 C-C 方程

目的 已知气块**初始温度和水汽**, 求 T_f 、 T_d

方法 $e_s = A \exp(-B/T)$ 饱和曲线与 T 相关。使用气块所有的e代入,即可解得 T_d

推导
$$\frac{de_S}{dT} \approx \frac{l_v(T)}{TV_U} = \frac{l_v(T)e_S(T)}{R_VT^2}$$
 $d \ln e_S = \frac{l_v}{R_VT^2} dT \Rightarrow \int_T^{T_d} d \ln e_S = \int_T^{T_d} \frac{l_v}{R_VT^2} dT \Rightarrow \ln e_S(T_d) - \ln e_S(T) = \frac{l_v}{R_V} \left(\frac{1}{T} - \frac{1}{T_d}\right)$

露点温度 $\ln \frac{e_s(T_d)}{e_s(T)} = \frac{l_v}{R_V} \left(\frac{1}{T} - \frac{1}{T_d} \right) \Rightarrow \frac{1}{T_d} = \frac{1}{T} - \frac{\ln f \cdot R_V}{l_v}$

霜点温度 $\ln \frac{e_i(T_f)}{e_i(T)} = \frac{l_s}{R_V} \left(\frac{1}{T} - \frac{1}{T_f} \right) \Rightarrow \frac{1}{T_f} = \frac{1}{T} - \frac{\ln f_i \cdot R_V}{l_v}$

3.1.3 湿球温度的计算

反方向: 当所有水汽全部凝结为水,即得到相当温度(饱和混合比为零时空气块的位温)

求解方法 找到斜线的表达式→找到某个等式(不变的量): 空气焓不变

推导 干空气 T_{ie} 干空气+水汽T 饱和湿空气+水汽: T_{iw}

已知: $dh = c_n dT$

$$\Delta H_{\bigcirc} = (m_d C_{pd} + m_t C_{w \not \otimes \mathcal{K} \mathcal{L} \not A \not \otimes})(T - T_0) \qquad \Delta H_{\bigcirc} = l_v(T)_{\textit{H} \not \otimes \textit{P} \not A} m_v \quad \Delta H = \Delta H_{\bigcirc} + \Delta H_{\bigcirc}$$

则**两端同除
$$m_d$$** $\Delta h = \frac{(m_d C_{pd} + m_t C_w)(T - T_0) + l_v(T)m_v}{m_d} \rightarrow \Delta h = (C_{pd} + w_t C_w)(T - T_0) + l_v w_v$

更换起始点 $\Delta h' = (C_{nd} + w_t C_w)(T' - T_0) + l_v w_v'$ 两式相同:

$$(C_{nd} + w_t C_w)(T - T') + l_v(w_v - w_v') = 0$$

$$T' = T + \frac{l_v(w_v - w_v')}{c_{pd} + w_t c_w}$$
 则 $T_{ie} = T + \frac{l_v w_v}{c_{pd} + w_t c_w}$ $(w_v = 0)$
$$T_{iw} = T + \frac{l_v (w_v' - w_s)}{c_{pd} + w_t c_w}$$
 $(w_s = \frac{\varepsilon e_v}{P})$ 为通过等焓过程达到饱和时的饱和混合比

直线斜率
$$T_{ie} = T_{iw} + \frac{l_v w_s}{C_{pd} + w_t C_w} = T + \frac{l_v w_v}{C_{pd} + w_t C_w} \approx T_{iw} + \frac{l_v w_v}{C_{pd}} = T + \frac{l_v w_v}{C_{pd}}$$

$$T_{iw} + \frac{l_v \frac{\varepsilon e_s}{P}(T_{iw})}{C_{pd}} = T + \frac{l_v \varepsilon e}{PC_{pd}}$$
则斜率为
$$\frac{e - e_s(T_{iw})}{T - T_{iw}} = -\frac{PC_{pd}}{l_v \varepsilon}$$

3.2 混合过程

① 混合成云(两个气块全部不饱和,混合后有可能饱和(一个很冷少水,一个高温水多),主要看气 产生影响 块温度差异)

- ② 混合蒸发→降温→下沉气流
- ③ 混合蒸发→云滴粒子变小→悬浮空中,延迟降水

3.2.1 无凝结的绝热等压混合过程

目的 已知初始气块质量与温度,欲求最终温度

方法 先水平等压混合,再等压绝热凝结
$$T_1, T_2 \to T_{m1} \xrightarrow{\mathcal{L} \pi \beta / p} T_{m2}$$
 最终温度

3.2.3 有凝结的绝热垂直混合过程

先**绝热上升(下降)**,再**水平等压混合**,最后**绝热凝结** $T_1 \to T_1'; T_2 \to T_2' \longrightarrow T_{m1} \longrightarrow T_{m2}$ 方法

