Applied Machine Learning

- Structure of autoencoders
- deconvolutional layers
- unpooling layers
- sigmoid layers
- cost function for training autoencoders

Encoders and Decoders

- Encoder
 - Input: high-dimensional data item
 - Output: low-dimensional representation of data item that preserves relevant information
 - CNNs layers as encoders
 - Map pixels to classes
- Decoder
 - Input: low-dimensional representation of data item
 - Output: original high-dimensional data item
 - NN layers as decoders
 - learn reverse mapping to predict original item

- Pair of encoder and decoder that are trained together
 - Encoder: $\mathscr E$
 - maps item \mathbf{x}_i into code \mathbf{z}
 - $\mathbf{z} = \mathscr{E}(\mathbf{x}_i)$
 - Decoder: 20
 - reconstructs item \mathbf{x}_o from from code \mathbf{z}
 - $\mathbf{x}_o = \mathcal{D}(\mathbf{z})$
 - Training goal: output similar to input
 - $\mathbf{x}_o \approx \mathbf{x}_i$

Encoder: ℰ

$$\mathbf{z} = \mathscr{E}(\mathbf{x}_i)$$

• Decoder: 2

$$\mathbf{x}_o = \mathcal{D}(\mathbf{z})$$

• Training goal:

$$\mathbf{x}_o \approx \mathbf{x}_i$$

- Some Applications:
 - Unsupervised feature learning
 - \mathbf{z} : feature set, \mathbf{x}_o : validation
 - Clustering
 - **z**: cluster distribution, **x**_o: validation
 - Image Generation
 - \mathbf{z} : image distributions, \mathbf{x}_o : reconstructed images

Autoencoder for Images

- Input: Image I_i with dimensions $i_u \times i_v \times 1$
- Encoder layers
 - convolutional + pooling layers
 - stride length s > 1
 - parameters: θ_e
 - Output code: Feature map $Z_i = \mathscr{E}(I_i, \theta_e)$
 - Dimensions $z_u \times z_v \times l$
 - Usually smaller than input $z_u \times z_v \ll i_u \times i_v$
- Decoder layers mirror structure of the encoder layers
 - deconvolutional layer mirrors convolutional layer
 - unpooling layer mirrors pooling layer

Deconvolutional Layer

- Deconvolutional or transposed convolutional layer
 - Complementary to convolutional layer
 - Increases spatial dimensionality of input
 - input dimensions: $u \times v \times 1$
- Output feature map
 - Stride length: s
 - dimensions:

$$[u + u * (s - 1)] \times [v + v * (s - 1)] \times 1$$

• Kernel dimensions: $[2*k+1] \times [2*k+1]$

Unpooling Layer

- Unpooling Layer
 - Complementary to function applied at the pooling layer
 - same patch size p as in the mirrored pooling layer
- Output feature map with one patch per input pixel initialized with 0s
 - average unpooling
 - copy input pixel value to all pixels in the output patch
 - maximum pooling:
 - Modification to mirrored pooling layer
 - max-pooling map
 - map with location of source max pixel
 - copy input pixel value to output patch at the same location of max pixel at mirrored pooling layer

2	2	0.5	0.5
2	2	0.5	0.5
1.5	1.5	0	0
1.5	1.5	0	0

Sigmoid Layer

- Output decoder layer
 - Image
 - non-linear
 - sigmoid: $s(x) = \frac{1}{1 + e^{-x}}$

- output range: [0-1]
- can be mapped to [0-255]
- if needed, preprocess inputs to the encoder to be in range [0-1]

Training Autoencoder

Input: image

 I_i

- Encoder
 - parameters θ_e
 - Output: Feature map $Z_i = \mathscr{E}(I_i, \theta_e)$
- Decoder
 - parameters θ_d
 - Output: image

 $\mathcal{D}(Z_i, \theta_d)$

• Cost function:

$$\|\mathscr{D}(Z_i,\theta_d) - I_i\|^2$$

• susceptible to small changes in images in training set

- Structure of autoencoders
- deconvolutional layers
- unpooling layers
- sigmoid layers
- cost function for training autoencoders

Applied Machine Learning