Assignment - 2

UDIT PANT MT18049

Given:

$$n=200$$

 $X=16$; $v=2.9$
 95 %. CI for population
mean μ :

C.I. =
$$\hat{\chi} \pm \frac{1}{\sqrt{n}}$$
, $Z = 16 \pm \frac{2.9}{\sqrt{200}}$. (1.96)

$$2 \cdot \nabla = 4.6 \text{ min}$$

 $\Rightarrow a) \quad n = 220$
 $\Rightarrow \pi = 16.2 \text{ min}$
 $= 92\%. CI:$

$$\frac{\pi}{2} = 16.2 \text{ min}$$

$$\frac{927}{C.I!}$$

$$C.I. = 16.2 \pm 4.6$$

$$\sqrt{220}$$

$$= 16.2 \pm 0.542$$

$$\frac{\pi}{220}$$

b)
$$n = ?$$
 (Mudin of $= \sqrt{n}^{2}$)
$$\frac{10}{60} = \frac{4.6}{\sqrt{n}} . (1.75)$$

$$= > \sqrt{n} = 48.3$$

$$\boxed{n \simeq 2333}$$

3: Error = 0.02.
a)
$$\chi = 1 - C.I$$
,
= $1 - 0.8$ (80% = 0.0)
= 0.2
Rearranging the formula for n ,
 $n = \lceil \rho(1-\rho) \left(\frac{2}{2}\chi_{2} \mid E \right)^{2} \rceil$
Assume, $p = 0.5$
 $n = \lceil 0.5(1-0.5) \left(\frac{1.29}{0.02} \right)^{2} \rceil$
= 1040

(b)
$$n = 10000$$

 $happy = 400$
 $p = 400 = 0.04$
 10000

$$\frac{C.I.}{\rho^{\pm}} \stackrel{?}{=} \frac{\sqrt{2}}{\sqrt{\rho(1-p)/n}}$$

$$= 0.04 \pm 1.96 \sqrt{0.04(0.96)/10000}$$

$$= [0.0361, 0.0438]$$

$$\frac{dL'(\theta)}{d\theta} = \frac{4}{\theta} + \frac{6}{\theta}$$

$$\frac{-6}{1-\theta} - \frac{4}{1-\theta}$$

$$\frac{-10}{1-\theta} = \frac{10}{1-\theta}$$

$$\frac{-10}{1-\theta} = \frac{-10}{1-\theta}$$

$$\frac{-10}{1-$$

Uniform distribution's probability density function is given by: $f(x) = \int \frac{1}{b-a} for a \le x \le b$ lo for n < a or n > b Given interval (0,0), pdf becomes $f(n|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le n \le \theta \\ 0, & \text{else.} \end{cases}$ Then, likelihood L(B) can be expressed as, $L(\theta) = \begin{cases} \frac{1}{\theta n}, & 0 \leq x_i \leq \theta \end{cases}$ where i = 1, 2, ..., nSince θ must be smallest possible value > $\pm \chi$; for $L(\theta)$ to be maximum, We pick θ s.t. $\theta = \max(n_1, n_2 ... n_n)$. MLE $|L(\theta)| = \max(\eta_1, \eta_2 - \eta_n)$

9.
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$

Ant $|A - \lambda I| = \begin{bmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{bmatrix}$

$$= > (1 - \lambda) \left[(-5 - \lambda)(4 - \lambda) + 18 \right] + 3 \left[3 \cdot (4 - \lambda) - 18 \right]$$

$$+ 3 \left[-18 - 6 \cdot (-5 - \lambda) \right]$$

$$= > (1 - \lambda) \left[-20 + 5\lambda - 4\lambda + \lambda^2 + 18 \right] + 3 \left[12 - 3\lambda - 18 \right]$$

$$+ 3 \left[-18 + 30 + 6\lambda \right]$$

$$= > (1 - \lambda) \left(\lambda^2 + \lambda - 2 \right) + \left(-18 - 9\lambda \right) + \left(36 + 18\lambda \right)$$

$$= > (\lambda^2 + \lambda - 2 - \lambda^3 - \lambda^2 + 2\lambda) + \left(9\lambda + 19 \right)$$

$$\Rightarrow -\lambda^3 + 12\lambda + 16 = 0$$

$$\Rightarrow \lambda^3 - 12\lambda - 16 = 0$$

For
$$\lambda = 4$$
:
$$(A - 4I) \stackrel{?}{\nearrow} = 0$$

$$\begin{pmatrix} -3 & -3 & 3 & 0 & 0 \\ 3 & -6 & -1 & 3 & 0 & 0 \\ 6 & -6 & -1 & 3 & -6 & 0 \\ 6 & -6 & -6 & -6 & -6 & 1 \\ 6 & -6 & -6 & -6 & -6 & 1 \\ 6 & -6 & -6 & -6 & -6 & 1 \\ 6 & -6 & -6 & -6 & -6 & 1 \\ 7 & -12 & 6 & -6 & -7 & 2 & 0 \\ 8 & -12 & 6 & -7 & 2 & 0 & 0 \\ 8 & -12 & 6 & -7 & 2 & 0 & 0 \\ 8 & -12 & 6 & -7 & 2 & 0 & 0 \\ 8 & -12 & 6 & -7 & 2 & 0 & 0 \\ 8 & -12 & 6 & -7 & 2 & 0 & 0 \\ 8 & -7 & -7 & 2 & 0$$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= 6 - 9\lambda + 3\lambda^{2} - 2\lambda$ $+ 3\lambda^{2} - \lambda^{3} + 5\lambda - 6$ $\Rightarrow -\lambda^{3} + 6\lambda^{2} - 6\lambda = 0$ $\Rightarrow \lambda^{3} + 6\lambda^{2} + 6\lambda = 0$ $\Rightarrow \text{ Eigen values:}$ $0, 3 + \sqrt{3}, 3 - \sqrt{3}$ For singular values, we
For $\chi_3 = 1$, $ \overrightarrow{V}_3 = \begin{bmatrix} y_2 \\ y_2 \\ 1 \end{bmatrix} $ $ A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} $	take square root of eigenvalues.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Eigen values of AAT: $\begin{vmatrix} 3-\lambda & 1 & 2 \\ 1 & 1-\lambda & 0 \\ 2 & 0 & 2-\lambda \end{vmatrix} = 0$ $= (3-\lambda) \left[(1-\lambda)(2-\lambda) \right] - 1 \left[2-\lambda \right]$ $+ 2 \left[-2(1-\lambda) \right]$ $= (3-\lambda) \left[2-\lambda - 2\lambda + \lambda^{2} \right] + (\lambda-2)$	(-) + (-) + (-)
$= (3-\lambda) \begin{bmatrix} 2 & \lambda & 2\lambda & (\lambda) \\ + & (4\lambda) & -4 \end{pmatrix}$	$\Rightarrow \lambda^4 - 4\lambda^3 + 4\lambda^2 = 0$

For
$$\lambda = 0$$
, $0, 0, 2, 2$.

For $\lambda = 0$, $0, 0, 2, 2$.

For $\lambda = 0$, $0, 0, 0$, 0

ATA = $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

For eigen vectors: $(A^TA) \cdot \vec{X} = 0$
 $R_3 \leftarrow R_3 - R_1$
 $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
 $R_4 \leftarrow R_4 - R_2$
 $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
 $= \rangle \quad \chi_1 + \chi_3 = 0 \quad ; \quad \chi_1 = -\chi_3$
 $\chi_2 + \chi_4 = 0 \quad ; \quad \chi_2 = -\chi_4$
 $\vec{\chi} = \begin{bmatrix} -\chi_3 \\ -\chi_4 \\ \chi_3 \\ \chi_4 \end{bmatrix}$

Let $\chi_3 = 1, \chi_4 = 0$
 $V_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}; \quad \vec{\chi}_1 = \sqrt{12} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

Let $\chi_3 = 0, \chi_4 = 1$
 $\chi_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}; \quad \vec{\chi}_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}; \quad \vec{\chi}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Let $\chi_3 = 0, \chi_4 = 1$
 $\chi_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}; \quad \vec{\chi}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \quad \vec{\chi}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

=)
$$\chi_{1} - \chi_{3} = 0$$
; $\chi_{1} = \chi_{3}$
 $\chi_{2} - \chi_{4} = 0$; $\chi_{2} = \chi_{4}$
 $\chi_{3} = \chi_{4}$

$$\vec{X} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_1 \\ \chi_2 \end{bmatrix}$$

Let
$$\chi_1 = 1$$
, $\chi_2 = 0$

$$V_3 = \begin{cases} 1 \\ 0 \\ 1 \end{cases}$$
; $\hat{V}_3 = 1$

Let
$$x_1 = 0$$
, $x_2 = 1$

$$V_4 = \begin{cases} 0 \\ 1 \end{cases} ; x = 1 \end{cases} \begin{cases} 0 \\ 0 \end{cases}$$

$$V_{4} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \quad \hat{Y}_{4} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{array}{c|ccccc}
V & = 1 \\
\hline
\sqrt{2} & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1
\end{array}$$

$$\sum = \begin{bmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{bmatrix}$$

(Taking square root of eigen values & filling the principal diagonal)

We know,
$$AV = U\Sigma$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & 0 & -1/\sqrt{2} & 0 \\
0 & 1/\sqrt{2} & 0 & -1/\sqrt{2} \\
1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \\
1/\sqrt{2} & 0 & 1/\sqrt{2} & 0
\end{bmatrix}$$

$$2x4 = 0 + 1/\sqrt{2} = 0 + 1/$$

$$= \begin{bmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{bmatrix}$$

For RMS to be equal to LHS

$$V.\Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c|cccc}
 V. & \sqrt{52} & 0 & 0 & 0 \\
 \hline
 & 0 & \sqrt{2} & 0 & 0
 \end{array}
 \begin{array}{c|cccc}
 & \sqrt{2} & 0 & 0 & 0 \\
 \hline
 & 0 & \sqrt{2} & 0 & 0
 \end{array}
 \begin{array}{c|cccc}
 & \sqrt{2} & 0 & 0 & 0
 \end{array}$$

Then U must be identify matrix, i.e,

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$