Math 5050 – Special Topics: Manifolds– Spring 2025 w/Professor Berchenko-Kogan

Paul Carmody Presentation 1 – March 11, 2025

Section 3: 1, 2, 3, 7, 8, 9

3.1. Tensor Product of covectors

Let e_1, \ldots, e_n be a basis for a vector space V and let $\alpha^1, \ldots, \alpha^n$ be its dual basis in V^{\vee} . Suppose $g_{ij} \in \mathbb{R}^{n \times m}$ is an $n \times m$ matrix define a bilinear function $f: V \times V \to \mathbb{R}$ by

$$f(v,w) = \sum_{i \le i,j,n} g_{ij} v^i w^j$$

for $v = \sum v^j e_i$ and $w = \sum w^j e_j$ in V. Describe f in terms of the tensor products of α^i and $\alpha^j, 1 \leq i, j \leq n$.

$$\alpha^{i}(e_{j}) = \delta_{i}^{j}$$

$$\alpha^{i}(v) = \alpha^{i} \left(\sum_{j=1}^{n} v^{j} e_{j} \right)$$

$$= \sum_{j=1}^{n} \alpha^{i} (v^{j} e_{j})$$

$$= \sum_{j=1}^{n} v^{j} \alpha^{i} (e_{j})$$

$$= \sum_{j=1}^{n} v^{j} \delta_{j}^{i} = v^{i}$$

$$(\alpha^{i} \otimes \alpha^{j})(v, w) = \alpha^{i}(v) \alpha^{j}(w) = v^{i} w^{j}$$

$$\therefore \sum_{i \leq i, j, n} g_{ij} v^{i} w^{j} = \sum_{i \leq i, j, n} g_{ij} (\alpha^{i} \otimes \alpha^{j})(v, w)$$

$$(1)$$

3.2. Hyperplanes

(a) Let V be a vector space of dimension n and $f: V \to \mathbb{R}$ a nonzero linear functional. Show that dim ker f = n-1. A linear subspace of V of dimension n-1 is called a *hyperplane* in V.

$$\dim V = \dim \operatorname{range}(f) + \dim \ker(f)$$
$$\dim \ker(f) = \dim V - \dim \operatorname{range}(f)$$
$$= n - 1$$

(b) Show that a nonzero linear functional on a vector space V is determined up to a multiplicative constant by its kernel, a hyperplane in V. In other words, if f and $g:V\to\mathbb{R}$ are nonzero linear functionals and $\ker f=\ker g$, then g=cf for some constant $c\in\mathbb{R}$.

Let
$$v = (y + z) \in V$$
 and $f(y) \in \text{range}(f), z \in \text{ker}(f)$
 $u = (x + w) \in V$ and $g(x) \in \text{range}(g), z \in \text{ker}(g)$
 $\dim \text{ker}(f) = \dim \text{ker}(g) = n - 1$
 $\dim \text{range}(f) = \dim \text{range}(g) = 1$ a scalar function
 $\therefore g = cf$ for some constant c .

One dimension is a single vector and either g and f contract or expand that vector and being linear they do so by a constant.

3.3. A basis for k-tensors

Let V be a vector space of dimension n with basis e_i, \ldots, e_n . Let $\alpha^1, \ldots, \alpha^n$ be the dual basis in V^{\vee} Show that a basis for the space $L_k(V)$ of k-linear functions on V is $\{\alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k}\}$ for all multi-indices (i_1, \ldots, i_k) (not just the strictly ascending multi-indices as for $A_k(L)$). In particular, this show that $\dim L_k(V) = n^k$. (This problem generalizes Problem 3.1..)

Let $\Phi = \{\alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k}\}$ where $i_1, \dots, i_k = 1, \dots, n$. We want to show

• WTS Φ is a linearly independent set.

Let
$$x = \alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k}$$
, for some set $\{i_k\}$, $i_k \in [1, n]$ and $y = \alpha^{j_1} \otimes \cdots \otimes \alpha^{j_k}$, for some set $\{j_k\}$, $j_k \in [1, n]$ where $\{i_k\} \neq \{j_k\}$

then for any non-zero vectors $v_1, \ldots, v_n \in V$ where $v_i = (v_i^1, \ldots, v_i^n)$ and any $A, B \in \mathbb{R}$ where Ax + By = 0

$$(Ax + By)(v_1, \dots, v_k) = A\left(\left(\alpha^{i_1} \otimes \dots \otimes \alpha^{i_k}\right)(v_1, \dots, v_k)\right) + B\left(\left(\alpha^{j_1} \otimes \dots \otimes \alpha^{j_k}(v_1, \dots, v_k)\right)\right)$$

$$= A\left(\prod_{m=1}^k \alpha^{i_m}(v_m)\right) + B\left(\prod_{p=1}^k \alpha^{j_p}(v_p)\right)$$

$$= A\left(\prod_{m=1}^k v_m^{i_m}\right) + B\left(\prod_{p=1}^k (v_p)^{j_p}\right)$$

$$\neq 0$$

thus A = B = 0 and the elements of Φ are linearly independent.

• WTS Φ is surjective over $L_k(V)$. Given any $f \in L_k(v)$ we can factor out k 1-covectors whose tensor product is f.

Step One: Given an element of $L_2(V)$ show that it can be factored into two elements of $L_1(V)$ Let $f \in L_2(V)$ and $v = \sum_{i=1}^n v^i e_i, w = \sum_{i=1}^n w^i e_i \in V$ then

$$f(v,w) = f\left(\sum_{i=1}^{n} v^{i} e_{i}, w\right)$$

$$= \sum_{i=1}^{n} v^{i} f(e_{i}, w)$$

$$= \sum_{i=1}^{n} \alpha^{i}(v) f(e_{i}, w)$$

$$= \sum_{i=1}^{n} \alpha^{i}(v) f\left(e_{i}, \sum_{n=1}^{n} w^{j} e_{j}\right)$$

$$= \sum_{i=1}^{n} \alpha^{i}(v) \sum_{j=1}^{n} w^{j} f(e_{i}, e_{j})$$

$$= \sum_{i=1}^{n} \alpha^{i}(v) \sum_{j=1}^{n} \alpha^{j}(w) f(e_{i}, e_{j})$$

Let $g, h \in L_1(V)$ such that

Let
$$g(v) = \sum_{i=1}^{n} g^{i} \alpha^{i}(v)$$
, for commpents g^{i} and $h(v) = \sum_{i=1}^{n} h^{j} \alpha^{j}(v)$, $h^{j} = \frac{f(e_{i}, e_{j})}{g^{i}}$

Claim: $h^j = \frac{f(e_i, e_j)}{g^i}$ has the same value regardless of e_i . (Note: we can choose g^i to counter the sign of $f(e_i, e_j)$ making h^j positive.)

Proof: let $f_{ij} = f(e_i, e_j)$ this can be represented as a matrix $\{f_{ij}\}$ which we will build using $g \otimes h$.

$$\begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nn} \end{pmatrix} = \begin{pmatrix} g^1 \\ g^2 \\ \vdots \\ g^n \end{pmatrix} \begin{pmatrix} h^1 & h^2 & \cdots & h^n \end{pmatrix}$$
$$= \begin{pmatrix} g^1 h^1 & g^1 h^2 & \cdots & g^1 h^n \\ g^2 h^1 & g^2 h^2 & \cdots & g^2 h^n \\ \vdots & \vdots & \ddots & \vdots \\ g^n h^1 & g^n h^2 & \cdots & g^n h^n \end{pmatrix}$$

Notice that $h^1 = \frac{f_{11}}{g^1} = \frac{f_{21}}{g^2} = \dots = \frac{f_{n1}}{g^n}$

which is also true for h^2, \ldots, h^n . end of proof.

Since
$$f(v, w) = \sum_{i=1}^{n} \alpha^{i}(v) \sum_{j=1}^{n} \alpha^{j}(w) f(e_{i}, e_{j})$$

$$= \sum_{i=1}^{n} g^{i} \alpha^{i}(v) \sum_{j=1}^{n} \alpha^{j}(w) \frac{f(e_{i}, e_{j})}{g^{i}}$$

$$= \sum_{i=1}^{n} g^{i} \alpha^{i}(v) \sum_{j=1}^{n} h^{j} \alpha^{j}(w)$$

$$= g(v)h(w)$$

$$\therefore f(v, w) = (g \otimes h)(v, w)$$

Since g, h are both 1-covectors, that is, they are linear combinations of $\{\alpha^i\}$ thus

$$(g \otimes h)(v, w) = \left(\sum_{i=1}^{n} g^{i} \alpha^{i} \otimes \sum_{j=1}^{n} h^{j} \alpha^{j}\right) (v, w)$$

thus any $f \in L_2(V)$ can be written as a linear combination of Φ for k=2.

Step Two: extend this to elements of $L_3(V)$, 3-covectors. The difficulty here is replacing the 1-covector, h, from Step One with a 2-covector and realizing the same proof. Let $f \in L_3(V)$. As above, follow the same steps to expand the first element revealing

$$f(v, w, u) = \sum_{i=1}^{n} \alpha^{i}(v) \sum_{j=1}^{n} \alpha^{j}(w) f(e_i, e_j, u)$$

Let $g \in L_1(V)$ and $h \in L_2(v)$ and g be defined as above and h defined by the h^l 1-covectors for $l = 1, \ldots, n$

$$h(w,u) = \sum_{l=1}^{n} h^{l}(u)\alpha^{l}(w)$$
, where $h^{l}(u) = \frac{f(e_{i}, e_{j}, u)}{g^{i}}$

In precisely the same manner as the Claim from above, where the elements of f were an $n \times n$ matrix, the elements of f are now the $n \times n \times n$ structure each containing a g^i which can be factored out. These are independent of the value of e_j . Thus,

$$f(v, w, u) = \sum_{i=1}^{n} \alpha^{i}(v) \sum_{j=1}^{n} \alpha^{j}(w) f(e_{i}, e_{j}, u)$$

$$= \sum_{i=1}^{n} g^{i} \alpha^{i}(v) \sum_{j=1}^{n} \alpha^{j}(w) \frac{f(e_{i}, e_{j}, u)}{g^{i}}$$

$$= g(v)h(w, u)$$

$$= (g \otimes h)(u, w, u)$$

Step Three: extend this to k-covectors Let $f \in L_k(V)$ and $v = \sum_{i=1}^n v^i e_i, w = \sum_{i=1}^n w^i e_i \in V$ then, similar

to above, expand the first and second vectors

$$f(v, w, v_3, \dots, v_k) = f\left(\sum_{i=1}^n v^i e_i, w, v_3, \dots, v_k\right)$$

$$= \sum_{i=1}^n v^i f(e_i, w, v_3, \dots, v_k)$$

$$= \sum_{i=1}^n \alpha^i(v) f(e_i, w, v_3, \dots, v_k)$$

$$= \sum_{i=1}^n \alpha^i(v) f\left(e_i, \sum_{n=1}^n w^j e_j, v_3, \dots, v_k\right)$$

$$= \sum_{i=1}^n \alpha^i(v) \sum_{j=1}^n w^j f(e_i, e_j, v_3, \dots, v_k)$$

$$= \sum_{i=1}^n \alpha^i(v) \sum_{j=1}^n \alpha^j(w) f(e_i, e_j, v_3, \dots, v_k)$$

once again, let $g \in L_1(V)$ and $g(v) = \sum_{i=1}^n g^i \alpha^i(v)$ and this time $h \in L_{k-1}(V)$ and

$$h(w, v_3, \dots, v_k) = \sum_{j=1}^n h^j \alpha^j(w) f(e_i, e_j, v_3, \dots, v_k)$$
$$h^j = \frac{f(e_i, e_j, v_3, \dots, v_k)}{g^i}$$

then

$$f(v, w, v_3, \dots, v_k) = g(v)h(w, v_3, \dots, v_k)$$

= $(g \otimes h)(v, w, v_3, \dots, v_k)$

Step Four: Steps One, Two and Three demonstrate that we can factor out a 1-covector and k-1-covector from any k-covector f into a tensor product from the first parameter. By repeating this process in sequence, that is with identity permutation $\sigma = \{1, 2, ..., k\}$, we can see that any k-covector can be factored into the tensor product of k 1-covectors.

This proves that Φ is surjective over $L_k(V)$.

• WTS: Show independence of order. CLAIM: Replace σ with a different permutation of k and it will have the same effect. That is, we can still factor out the σ_{1st} parameter into a 1-covector, γ^1 , as defined by g above, on the left of the tensor product and a k-1-covector on the right, $h^1 \in L_{k-1}(V)$. Keep in mind that the components of these γ^i 1-covectors are chosen to make h^i positive. Define h^1 as

$$h^{1}(v_{1}, v_{2}, \dots, \underbrace{w}_{\sigma_{2} \text{nd}}, \dots, v_{k}) = \sum_{j=1}^{n} h^{1}_{j}(v_{1}, v_{2}, \dots, w, \dots, v_{k})$$
 $\sigma_{2} \text{nd}$ parameter is used
$$h^{1}_{j}(v_{1}, v_{2}, \dots, w, \dots, v_{k}) = \sum_{i=1}^{n} \alpha^{i} w f(v_{1}, v_{2}, \dots, e_{\sigma_{1}}, \dots, e_{\sigma_{2}}, \dots, v_{k})$$
 and
$$f(v_{1}, \dots, v_{\sigma_{1}}, \dots, v_{k}) = (\gamma^{1} \otimes h^{1})(v_{\sigma_{1}}, v_{1}, \dots, v_{\sigma_{1}-1}, v_{\sigma_{1}+1}, \dots, v_{k})$$

repeating the process reducing each h^1, \ldots, h^{k-1} (each one lower level covector than previous one) with a progression of left hand operands, $\gamma^1, \gamma^2, \ldots, \gamma^{k-1}$, to the product tensor following the sequence in σ . Thus,

$$f(v_1,\ldots,v_k)=(\gamma^1\otimes\gamma^2\otimes\cdots\otimes\gamma^{k-1}\otimes h^{k-1})(v_{\sigma_1},v_{\sigma_2},\cdots,v_{\sigma_k})$$

Therefore, any k-covector $f \in L_k(V)$ is the tensor product of k 1-covectors in any order, each of which is a linear combination of elements from Φ .

¹We use γ here because using g^i for covectors would confuse the g^i used in Step One

3.7. Transformation rule for a wedge product of covectors

Suppose two set so of covectors on a vector space V. β^1, \ldots, β^k and $\gamma^i, \ldots, \gamma^k$, are related by

$$\beta^{i} = \sum_{j=1}^{k} a_{j}^{i} \gamma^{i}, i = 1, \dots, k$$

for a $k \times k$ matrix $A = [a_i^i]$. Show that

$$\beta^1 \wedge \cdots \wedge \beta^k = (\det A)\gamma^1 \wedge \cdots \wedge \gamma^k.$$

Let
$$\beta, \gamma \in \mathcal{M}_{n \times n}(V^{\vee})$$

$$\beta = \begin{bmatrix} \beta^i \end{bmatrix} \text{ and } \beta(v_1, \dots, v_k) = \begin{bmatrix} \beta^i \end{bmatrix} (v_1, \dots, v_n) = \begin{bmatrix} \beta^i(v_j) \end{bmatrix}$$

$$\gamma = \begin{bmatrix} \gamma^i \end{bmatrix} \text{ and } \gamma(v_1, \dots, v_k) = \begin{bmatrix} \gamma^i \end{bmatrix} (v_1, \dots, v_n) = \begin{bmatrix} \gamma^i(v_j) \end{bmatrix}$$

$$A = [a_j^i]$$

$$(\beta^1 \wedge \dots \wedge \beta^k)(v_1, \dots, v_k) = \det[\beta^i(v_j)] = \det \beta(v_1, \dots, v_k)$$

$$(\gamma^1 \wedge \dots \wedge \gamma^k)(v_1, \dots, v_k) = \det[\gamma^i(v_j)] = \det \gamma(v_1, \dots, v_k)$$

we can see that

$$\beta^{i} = \sum_{j=1}^{k} a_{j}^{i} \gamma^{i} \implies \beta = A \cdot \gamma \text{ and } \beta(v_{1}, \dots, v_{k}) = A \cdot \gamma(v_{1}, \dots, v_{k})$$

$$\det \beta = \det(A \cdot \gamma) = \det A \cdot \det \gamma$$

$$\det \beta(v_{1}, \dots, v_{k}) = \det A \cdot \det \gamma(v_{1}, \dots, v_{k})$$

$$(\beta^{1} \wedge \dots \wedge \beta^{k})(v_{1}, \dots, v_{k}) = \det A(\gamma^{1} \wedge \dots \wedge \gamma^{k})(v_{1}, \dots, v_{k})$$

$$\beta^{1} \wedge \dots \wedge \beta^{k} = \det A(\gamma^{1} \wedge \dots \wedge \gamma^{k})$$

3.8. Transformation rule for k-covectors

Let f be a k-covector on a vector space V. Suppose two sets of vectors u_1, \ldots, u_k and v_1, \ldots, v_k in V are related by

$$u_j = \sum_{i=1}^k a_j^i v_i, j = 1, \dots, k,$$

for $k \times k$ matrix $A = [a_i^i]$. Show that

$$f(u_1,\ldots,u_k)=(\det A)f(v_1,\ldots,v_k).$$

$$f(u_1, \dots, u_k) = f\left(\sum_{i_1=1}^k a_1^{i_1} v_{i_1}, \sum_{i_2=1}^k a_2^{i_2} v_{i_2}, \dots, \sum_{i_k=1}^k a_k^{i_k} v_{i_k}\right)$$

$$= \sum_{i_1=1}^k a_1^{i_1} \sum_{i_2=1}^k a_2^{i_2} \cdots \sum_{i_k=1}^k a_k^{i_k} f(v_{i_1}, v_{i_2}, \dots, v_{i_k})$$

$$= \sum_{\sigma \in S_k} a_1^{\sigma_1} \cdots a_k^{\sigma_k} f(v_{i_1}, v_{i_2}, \dots, v_{i_k})$$

$$= (\det A) f(v_{i_1}, v_{i_2}, \dots, v_{i_k})$$

3.9. Vanishing of a covector of top degree

Let V be a vector space of dimension n. Prove that if an n-covector ω vanishes on a basis e_1, \ldots, e_n for V. then ω is the zero covector on V.

$$0 = \omega(v_1, \dots, v_n)$$

$$\exists \omega_i \in L_1(V), i = 1, \dots, n$$
such that $\omega(v_1, \dots, v_n) = \left(\bigotimes_{i=1}^n \omega_i\right)(v_1, \dots, v_n)$

$$= \prod_{i=1}^n \omega_i(v_i)$$

which means that there exists an element j such that $\omega_j(v_j) = 0$ and

$$\omega_j(v_j) = \sum_{i=1}^n c^i \alpha^i(v_j) = 0$$

the α^i are linearly independent thus either the components of v_j must be zero or the components c^i of ω_j must be zero. Since v_j is arbitrary, all of the $c^i=0$ and $\omega_j=0$. Since, this is true for all v_j then $\omega=0$ always.