Lehramt Mathe Vorlesung 5 Semester 1

Paul Wolf

November 26, 2019

Contents

1	Vorab	1
2	1.2.23 Folgerung	1
3	1.2.24 Definition	2
4	1.2.25 Bezeichnungen	3
5	1.2.26 Satz	3
6	1.2.27 Bemerkung	4
7	1.2.28 Satz	4
8	1.2.29 Satz (Bernoullische Ungleichung)	4
9	1.2.30 Definition	5
10	1.2.31 Bemerkung	5
11	1.2.32 Satz (Dreiecksgleichung)	5

1 Vorab

Wann immer x,y Elemente einses Körpers sind und $n\in\mathbb{N}_{\mathbb{O}}$ ist, gilt: $(x+y)^n=\sum_{k=0}^n\binom{n}{k}x^{ky^{n-k}}=\frac{n(n+1)}{2}$

2 1.2.23 Folgerung

Ist A eine n-elementige Menge, so hat ihre Potenzmenge 2^n Elemente kurz: $\mid 2^A \mid = 2^{|A|}$

Beweis

 $\begin{array}{l} \mid A \mid = \text{Anzahl der Elemente von A.} \\ \text{Mit } \alpha_k^n := \mid \{ M \subset A : \mid M \mid = k \} \mid \text{gilt nach 1.2.21} \\ \mid 2^A \mid = \sum\limits_{k=1}^n \alpha_k^n = \sum\limits_{k=1}^n \binom{n}{k} = \sum\limits_{k=0}^n \binom{n}{k} 1^k 1^{n-k} = (1+1)^n = 2^n = 2^{|A|} \end{array}$

Bemerkung

Es gilt für x,y Elemente eins Körpers

i

$$(x+y)^2 = \sum_{k=0}^{2} {2 \choose k} y^k x^{2-k}$$

= $y^0 x^2 + 2(xy) + y^2 x^0$
= $x^2 + 2xy + y^2$

ii

$$(x+y)^3 = \sum_{k=0}^{3} {3 \choose k} y^k x^{3-k}$$

= $x^3 + 3x^2y + 3xy^2 + y^3$

3. Binomische Formel ? Folgt aus 1.2.12. Besser 1.2.12 ist Verallgemeinerung der 3. Binomischen Formel.

Sind $n, m \in \mathbb{Z}$, so setzt man $n < m \iff m - n \in N$

3 1.2.24 Definition

Es sei K ein Körper. Eine Reaktion auf K heißt Ordnung (auf K) und K heißt dann geordneter Körper, falls gilt:

i

Für $x, y \in K$ gilt genau eine der folgendn drei Bezeichnungen (trichotomie)

x < y

x = y

y < x

ii

$$x < z$$
 (transitivität) =
$$\begin{cases} x < y \\ y < z \end{cases}$$

iii

$$x + z < y + z$$
 (Monotoni bzgl. +) =
$$\begin{cases} x < y \\ z \in K \end{cases}$$

iv

$$xz < yz$$
 (Monotoni bzgl. *) =
$$\begin{cases} x < y \\ 0 < z \end{cases}$$

4 1.2.25 Bezeichnungen

Es sei K ein geordneter Körper. Man setzt für $x, y \in K$

$$\begin{array}{l} y > x \stackrel{def}{\Longleftrightarrow} x < y \\ x \leq y \stackrel{def}{\Longleftrightarrow} x < y \text{ oder } x = y \\ y \geq x \stackrel{def}{\Longleftrightarrow} x \leq y (\iff y > x \text{ oder } x = y) \\ K^+ := \{x \in K : x > 0\} \\ K^+_0 := \{x \in K : x \geq 0\} \\ K^* := \{K \setminus \{0\} (?\text{definiert})\} \end{array}$$

Bemerkung

Unsere Hauptbeispiele für geordnete Körper werden \mathbb{Q} und \mathbb{R} die, endliche Körper (wie unser Körper F_≠) lassen sich nicht ordnen, genauso wenig wie der Körper C der komplexen Zahlen. Es sei wieder

 $\mathbb{Q} = \{\frac{p}{4} : p, q \in \mathbb{Z}, q = 0\}$ betrachtet.

 $\mathbb{Q} = \{\frac{r}{4}: p, q \in \mathbb{Z}, q = 0\} \text{ betrachtet.}$ $\text{Wegen } \frac{p}{q} = \frac{-p}{-q} \text{ k\"onnen wir anerkennen, dass } q \in \mathbb{N} \text{ gilt.}$ $\text{Wir erhalten } \mathbb{Q} = \{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\}$ $\text{Bedeutet } c_{\mathbb{Z}} \text{ die Ordnung auf } \mathbb{Z}, \text{ d.h. } n <_{\mathbb{Z}} m \iff m - n \in \mathbb{N}, \text{ so sei f\"ur}$ $\frac{p_1}{q_1}, \frac{p_2}{q_2} \in \mathbb{Q}, q_j \in \mathbb{N}, j = 1, 2 \text{ gesetzt}$ $\frac{p_1}{q_1} <_{\mathbb{Q}} \frac{p_2}{q_2} \iff p_1 q_2 <_{\mathbb{Z}} p_2 q_1 (\iff p_2 1_1) - p_1 q_2 \in \mathbb{N}$

5 1.2.26 Satz

 $<_{\mathbb{Q}}$ ist eine Ordnung auf \mathbb{Q} und \mathbb{Q} ist damit ein geordneter Körper.

Beweis

Wir zeigen exemplarisch (Satz iii) aus 1.2.24 . Es sei $x=\frac{p_1}{q_1},y,\frac{p_2}{q_2},z=\frac{r}{s}\in\mathbb{Q}$ mit $\frac{p_1}{q_1}<_{\mathbb{Q}}$ $\frac{p_2}{q_2}$ z.z. $\frac{p_1}{q_1}+\frac{r}{s}<_{\mathbb{Q}}\frac{p_2}{q_2}+\frac{r}{s}$. Ohne Einschränkung sind $q_1,q_2,s\in\mathbb{N}$ Nach Vorraussetzung ist $p_1q_2<_{\mathbb{Z}}p_2q_1$ Dann gilt auch (in \mathbb{Z} !) $p_1q_2ss+rq_1q_2s<_{\mathbb{Z}}p_2q_1ss+rq_1q_2s$ Ausklammern: $\begin{array}{l} (p_1s + rq_1)q_2s <_{\mathbb{Z}} (p_2 + rq_2)q, \text{salso (nach Def} <_{\mathbb{Q}}) \\ \frac{p_1}{q_1} + \frac{r}{s} = \frac{p_1s + rq_1}{q_1s} <_{\mathbb{Q}} \frac{p_2s + rq_2}{q_2s} = \frac{p_2}{q_2} + \frac{r}{s} \end{array}$

6 1.2.27 Bemerkung

O Wir haben ja via $c: \mathbb{Z} \longmapsto \mathbb{Q}, n \longmapsto \frac{n}{1} \mathbb{Z}$ als Teilmenge von \mathbb{Q} betrachtet. Es gilt c() Weiter gilt für $n, m \in \mathbb{Z}$ Wir schreiben also <anstelle von< \mathbb{Q} bzw.< \mathbb{Q}

7 1.2.28 Satz

Es sei k ein geordneter Körper und es seien $x, y \in K$. Dann gilt

$$\mathbf{i} \ x > 0 \iff -x < 0$$

ii
$$x, y < 0 \iff x, y > 0$$

iii
$$x' > 0 \iff x \neq 0$$

iv 1 > 0

v Aus
$$0 < x < y$$
 folgt $-y < -x < 0$ mit $x^{-1} > y^{-1} > 0$

Beweis: Übung

8 1.2.29 Satz (Bernoullische Ungleichung)

Es sei x ein Element eines geordneten Körpers mit $x \ge -1$ Dann gilt für jedes $n \in \mathbb{N}_{\mathbb{O}}$, dass $(1+x)^n \ge 1 + nx$.

Beweis (vollständige Induktion)

1

$$n = 0: (1+x)^0 = 1 = 1 + 0x$$

2

$$n \longmapsto n+1$$
:

Wir dürfen $(1+x)^n \ge 1 + nx(\text{für } x \ge -1)$

verwenden und müssen $(1+x)^n+1\geq 1+(n+1)x(\text{für }x\geq -1)$ zeigen.

Es gilt für $x \ge -1(1+x)^n + 1 = (1+x)(1+x)^n \ge (1+x)(1+nx)$ (monotonie von * Induktionsannahme)

=
$$1 + nx + x + nx^2$$

= $1 + (n+1)x + nx^2$
 $\ge 1 + (n+1)x$. (Monotonie von +)

9 1.2.30 Definition

Es sei K eine geordneter Körper. Ist $x \in K$, so heißt

$$\mid X \mid = := \{ \begin{array}{c} x: x > 0 \\ -x: x < 0 \end{array}$$

 $|*|: K \to K, x \to |x|$, heißt Betragsfunktion.

10 1.2.31 Bemerkung

Sind x,y Elemente eines geordneten Körpers K, so gilt:

i

$$\mid x\mid =\mid -x\mid \geq 0,\, x, -x \leq \mid x\mid, \mid xy\mid =\mid x\mid \mid y\mid$$

ii

Ist
$$y > 0$$
so ist $\mid x \mid < y \iff -y < x < y$

11 1.2.32 Satz (Dreiecksgleichung)

Sind x,y Elemente eines georneten Körpers, so gilt | $x+y \le |x| + |y|$

Beweis

Fall1: $x + y \ge 0$

$$\Rightarrow \mid x + y \mid = x + y \leq \mid x \mid + y \leq \mid x \mid + \mid y \mid$$

Fall2: x + y < 0

$$\Rightarrow \mid x + y \mid = -(x + y) = (-x) + (-y) \le \mid -x \mid +(-y) \le \mid -x \mid + \mid -y \mid = \mid x \mid + \mid y \mid$$