PMAT 319 Winter 2016. Chapter 4: Reflections.

Definition: Let m be a line in \mathbb{R}^2 . The reflection in the line m is the function $\sigma_m : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\sigma_m(P) = \begin{cases} P & \text{if } P \in m, \\ Q & \text{if } P \notin m \text{ and } Q \text{ is the point so that } m \text{ is the perpendicular bisector of } \overline{PQ}. \end{cases}$$

We note that:

- (i) σ_m is a non-identity involution; that is, $\sigma_m \in G$, $\sigma_m \neq i$ and $\sigma_m^2 = i$.
- (ii) σ_m fixes exactly the points on m; that is, $\sigma_m(P) = P \iff P \in m$.
- (iii) For any line l, $\sigma_m(l) = l \iff l = m$ or $l \perp m$.
- (iv) If the line m has the equation ax + by + c = 0 then

$$\sigma_m(x,y) = \left(x - \frac{2a(ax+by+c)}{a^2+b^2}, x - \frac{2b(ax+by+c)}{a^2+b^2}\right)$$

 $\sigma_m(x,y) = \left(x - \frac{2a(ax+by+c)}{a^2+b^2}, x - \frac{2b(ax+by+c)}{a^2+b^2}\right).$ **Definition:** An *isometry* of \mathbb{R}^2 is a transformation α of \mathbb{R}^2 which preserves distance; that is,

$$\alpha(P) \alpha(Q) = PQ$$
 for all $P, Q \in \mathbb{R}^2$.

It can be shown that isometries preserve collinearity, betweeness, midpoints, angle measure, perpendicularity.

Theorem: The set \mathcal{I} of all isometries of \mathbb{R}^2 is a group.

Proof:

Definition: Let S be a subset of \mathbb{R}^2 .

A point of symmetry of S is a point P so that $\sigma_P(S) = S$.

A line of symmetry of S is a line m so that $\sigma_m(S) = S$.

If P is a point of symmetry of S, we say that S is symmetrical about the point P.

If m is a line of symmetry of S, we say that S is symmetrical about the line m.

A symmetry of S is an isometry α so that $\alpha(S) = S$.

The set \mathcal{I}_S of all symmetries of S is a group, which is called the symmetry group of S.