(18) V Q vector space, dima(v)=n.

 $T \in End(V)$ s.t. $T^{-1} = T^2 + T$.

Prove that 3/n.

 $T^3 + T^2 - 1 = 0 \Rightarrow \rho(T) = 0 \text{ for } \rho(x) = \chi^3 + \chi^2 - 1.$

P is irreducible, so m=P

Invariant factors divide P, so all are equal to P.

N = E degrees of invariant factors => N= Z3 so 3/n.

A is similar to AT

Smith Normal forms of A and AT are the same.

$$\times I - A^{T} \xrightarrow{\downarrow} \begin{pmatrix} P_{1} & & \\ & \ddots & \\ & & P_{m} \end{pmatrix}^{T} = \begin{pmatrix} P_{1} & & \\ & \ddots & \\ & & P_{m} \end{pmatrix}$$

Smith of AT.

Jordan Normal Form of a transformation.

 $\begin{aligned} &\text{(his is so iff } C_{p}(x) = n. \text{ assume } m_{p}(x) = (x-\lambda_{i}) \cdots (x-\lambda_{k}) \\ &\text{(his is so iff } C_{p}(x) = (x-\lambda_{i})^{r_{i}} \cdots (x-\lambda_{k})^{r_{k}} \quad \text{s.t. } \sum r_{i} = n \text{).} \end{aligned}$

elementary divisors of φ are $(x-\lambda_1)^{d_1}$, $(x-\lambda_2)^{d_2}$, λ_i are not necessarily distinct

Comes ponding normal form of the matrix & is

Let $V_i = Subspace Cornesponding to it block.$

Let $\lambda = \lambda_i$, d = di, S.t. $V|_{V_i}$ has min. poly. $(X - \lambda)^d$.

Let $\Psi = \Psi|_{V_i} - \lambda I$. Then $m_{\psi}(x) = x^d$.

 \forall is called a nilpotent matery. $X \mapsto x - \lambda = y$ $F(x) \longmapsto F(y)$

If u is a cyclic vector in V_i , then our basis was $\{u_i, \psi(u), \psi^2(u), ..., \psi^{d_i}(u)\}$. $\psi: u_1 \mapsto u_2 \mapsto u_3 \mapsto \cdots \mapsto u_d \mapsto \psi^d(u) = 0$.

So matrix of 4 in this basis is (0.0) (companion of xx).

Put V1 = U1, V2 = U1, ,..., V1 = U1.

Then $\Psi: V_1 \longrightarrow O_1, V_2 \longrightarrow V_1, \dots, V_d \longmapsto V_{d-1}$

Matrix in this basis {v,,..,v,} is (%,0).

Notrix of $Y = \text{this} + \lambda I = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda \end{pmatrix}$ - Jordan Cell.

Jordon Normal form: if elemidivisors of y are $(X-\lambda_1)^{d_1}, \dots, (X-\lambda_k)^{d_k} \quad \text{then the jordon Normal form is}$

 λ_i are the roots of C_{ϕ} . These are eigenvalues of C_{ϕ} . for each i, \exists ueV s.t. $\varphi(u) = \lambda_i u$, u is an eigenvector care to λ_i . In this form it is a riched.

 $\det\left(\lambda_{i}-\varphi\right)=C_{\psi}(\lambda_{i})=0. \text{ So } \varphi_{-\lambda_{i}} \text{ is degenerate & } \ker(\varphi_{-\lambda_{i}})\neq0.$ $\forall \text{ up } \ker(\varphi_{-\lambda_{i}}), \quad \varphi(u)=\lambda_{i}u.$

Smith Normal form: XI-A ~~ (P. 0)

$$A_{nn}(V_1) = (x+1)^2$$
 $A_{nn}(V_2) = (x-1)(x^2+1)^2$
 $A_{nn}(V_3) = x^4-1$
 $A_{nn}(V_4) = (x+1)(x^2+1)$

Inv factors and elementary divisors of V.

Elem divisors ar
$$(x+1)^2$$
, $x-1$, $(x^2+1)^2$, $x-1$, $x+1$, x^2+1 , $(x+1)^2$, $x-1$,

$$(x^{2}+1)^{2}$$
, $x^{2}+1$, $x^{2}+1$, $x^{2}+1$, $x^{2}+1$, $x^{2}+1$