Detection and matching

Exercise Sheet 1

2020

Segmentation and Edge detection

Exercice 1 Convolution with a Gaussian kernel

On considère deux fonctions $f, g : \mathbb{R}^2 \to \mathbb{R}$ où $g(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$, et $f_{\sigma} = f * g$.

1. Montrer que:

$$\frac{\partial g_{\sigma}}{\partial \sigma} = \sigma \Delta g_{\sigma}, \quad g_{\sigma_1} * g_{\sigma_2} = g_{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

$$\frac{\partial}{\partial x} (f * g_{\sigma})(x, y) = \left(\frac{\partial f}{\partial x} * g_{\sigma}\right)(x, y) = \left(f * \frac{\partial g_{\sigma}}{\partial x}\right)(x, y)$$

2. Montrer la dernière propriété pour n'importe quelle fonction g.

Exercice 2 Filtres de dérivation

Montrer que le filtre suivant réalise un lissage suivi d'une dérivation.

1	0	-1
2	0	-2
1	0	-1

Exercice 3 Détection des contours

Soit une image 7×7 :

3	3	1	3	3	3	4
0	3	3	3	3	3	3
3	3	3	2	3	3	12
12	3	3	3	3	12	12
10	12	2	3	3	12	12
12	14	12	12	12	12	11
11	12	12	12	10	12	12

- 1. Utiliser le filtre de Prewitt pour calculer le gradient de cette image.
- 2. Déterminer les contours de cette images comme pixels dont le gradient est supérieur à un seuil T = 22 (Ne traiter pas les pixels du bdord).

Exercice 4 Filtres de Sobel et LoG

Déterminer l'image filtrée et les contours de l'image obtenu par application d'un filtre LoG

 5×5 , avec $\sigma = 1$. Le seuil est 0.75 fois la moyenne de l'image filtrée. Les bords sont dupliqués.

	147	163	179	186	191	194	197	157
	160	175	182	184	184	186	162	50
	141	163	170	175	174	133	38	3
I =	91	127	135	124	85	16	0	7
1 —	113	126	121	117	18	0	1	10
	136	135	125	151	99	54	8	9
	148	150	159	161	149	106	89	20
	142	164	178	181	168	113	120	91

Répondre aux mêmes questions pour un filtre de Sobel 3×3 et un seuil de 1.2.

Exercice 5 Méthode de moyenne

En utilisant la méthode de moyennage, déterminer le seuil de l'image 8-bit I. La valeur initiale est la moyenne de I. On s'arrête lorsque la différence entre deux seuils successifs est inférieure à 0.5.

$$I = \begin{array}{|c|c|c|c|c|c|c|c|}\hline 184 & 188 & 72 & 2\\ 188 & 163 & 22 & 5\\ \hline 191 & 102 & 1 & 7\\ \hline 182 & 45 & 2 & 6\\ \hline \end{array}$$

Exercice 6 Division-Fusion

En utilisant la 8-connectivité avec l'algorithme de division-fusion, segmenter l'image I tel que la variance au sein de chaque région est inférieure à 20.

$$I = \begin{bmatrix} 184 & 188 & 72 & 2\\ 188 & 163 & 22 & 5\\ 191 & 102 & 1 & 7\\ 182 & 45 & 2 & 6 \end{bmatrix}$$

Exercice 7 Méthode d'Otsu

Appliquer la méthode d'Otsu à l'image suivante :

2	7	6	6
5	6	5	5
6	5	5	6
7	6	4	5

Exercice 8 Approximation de la distance

Calculer une approximation de la transformation de distance en utilisant les masques suivants :

$$h_f = \begin{bmatrix} \infty & 1 & \infty \\ 1 & 0 & \infty \\ \infty & \infty & \infty \end{bmatrix} \text{ et } h_b = \begin{bmatrix} \infty & \infty & \infty \\ \infty & 0 & 1 \\ \infty & 1 & \infty \end{bmatrix}$$

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0
	0	0 0 0 0 1 0 1 1 1 1 1 1	0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0	0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0

Fitting and alignment

Exercice 9 Least squares

— Compute a QR factorization of the matrices

$$A = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

using the Gram-Schmidt procedure. Check the propriety of Q.

- Solve the system
$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ -1 \\ 2 \end{pmatrix}.$$

Exercice 10 Fitting

Many problems in computer vision are based on solving an optimization problem of the form:

$$\min_{\mathbf{c} \in \mathbb{R}^n} E(\mathbf{c}) , / E(\mathbf{c}) = ||A\mathbf{c} - \mathbf{b}||^2,$$

where A is a matrix and $b \in \mathbb{R}^n$.

- 1. Give sufficient conditions to the existence and uniqueness of the solution.
- 2. Deduce the normal equation.
- 3. Explain how matrix decomposition techniques (shown in the course) are used to solve this optimization problem.

Exercice 11 SVD

Find the singular values and SDV decomposition of the matrices

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Key-points detection, description, and matching

Exercice 12 Feature points detection

Consider the following image:

	175	150	114	86	79
	156	119	112	80	70
I =	148	106	108	96	80
	96	85	87	5	70
	87	82	90	88	81

1. Compute the response for Harris detector R (3 × 3 window) and the detected corners.

3

2. Compute the image and histogram of orientations.

Exercice 13 SIFT

Dans cet exercice, on s'intéresse au filtre LoG (Laplacian of Gaussian) de paramètre $\sigma > 0$, que l'on note $f_1(x)$ et $f_2(x,y)$ en 1D et 2D respectivement. On note g la fonction indicatrice de la boule de centre (0,0) et de rayon R > 0.

- 1. Donner l'expression analytique de f_1 et f_2 . Tracer le graphe de f_1 .
- 2. Calculer $h(R) = -f_2 * g(0,0)$.
- 3. Déterminer R_0 qui maximise h.
- 4. Donner une interprétation en traitement d'images.
- 5. Quelle est l'approximation rapide du filtre LoG utilisée SIFT? Donner sa formule.
- 6. Comment est utilisé le filtre LoG dans la méthode SIFT?

Motion estimation

Exercice 14 Fourier-based alignment

Let I_0 and I_1 two images to be aligned with a Fourier-based method.

1. Show that

$$\mathcal{F}\{I_1(x+u)\} = \mathcal{F}\{I_1(x)\}e^{-ju.\omega} = \mathcal{I}_1(\omega)e^{-ju.\omega}$$
$$F\{E_{CC}(u) = \mathcal{F}\left\{\sum_i I_0(x_i)I_1(x_i+u)\right\} = \mathcal{I}_0(\omega)\mathcal{I}_1^*(\omega),$$

where $\mathcal{I}_1^*(\omega)$ is the complex conjugate of $\mathcal{I}_1(\omega)$.

2. Compute the Fourier transform of the SSD.