Electronic Circuits Homework 5

- 1. Determine the voltage across each diode in Figure.
 - (a) 8-5 = 3 V (b) 0 (c) 0 (d) 10 V (by Superposition)

- 2. Consider the circuit in Figure.
 - (a) What type of circuit is this? center-tapped full-wave rectifier
 - (b) What is the total peak secondary voltage? $80/0.707/4 \approx 28 \text{ V}$
 - (c) Find the peak voltage across each half of the secondary. ≈ 14 V
 - (d) Draw the voltage waveform across R_L.

- (e) What is the peak current through each diode? ≈ 14/1000 A = 14 mA
- (f) What is the PIV for each diode? ≈ 28 V
- 3. Determine the peak voltage across R_L in Figure.

 $120/2 - 0.7 \approx 60V$

4. Refer to Figure and draw the waveforms V_A and V_B with relation to the input waveform. (15-30)

5. Find I_B, I_E, and I_C in Figure given that $\alpha_{DC} = 0.98$ and $\beta_{DC} = 49$.

 $I_E = (2 - 0.7) / 1 = 1.3 \text{ mA}$

 $I_C = 1.3 \times 0.98 = 1.274 \text{ mA}$

 $I_B = 1.274 / 49 = 0.026 \text{ mA} = 26 \mu\text{A}$

6. For the circuit in Figure, find V_B, V_E, I_E, I_C, and V_C.

 $V_B \approx 12 \times (10 / (10 + 22)) = 3.75 \text{ V}$

 $V_E \approx 3.75 - 0.7 = 3.05 \text{ V}$ $I_E \approx 3.05 / 0.68 \approx 4.485 \text{ mA}$

 $I_C \approx 4.485 \text{ mA}$

 $V_C \approx 12 - 4.485 \times 1.2 = 6.618 \text{ V}$

- 13. Determine the output level (maximum positive or maximum negative) for each comparator in Figure.
 - (a) maximum negative (b) maximum positive (c) maximum negative

14. Draw the output voltage waveform for each circuit in Figure with respect to the input.

(18-3)

Show voltage levels.

- 15. Determine the output voltage for each circuit in Figure.
 - (a) 1 + 1.5 = 2.5 V (b) $(-0.1 + 1 + 0.5) \times 22 / 10 = 3.08 \text{ V}$

(18-4)

16. Determine the rate of change of the output voltage in response to the step input to the ideal integrator in Figure.

(18-9)

 $-(5/56000/0.000000022) \approx -4058 \text{ V/s}$

- 17. A triangular waveform is applied to the input of the ideal differentiator in Figure as shown. Determine what the output should be, and draw its waveform in relation to the input.
 - $-(5/(0.00001/2) \times 10000 \times 0.000000001) = -10 \text{ V}$

