Title

D. Zack Garza

Contents

1 Mo		onday, November 09		
	1.1	Strong Linkage	2	
		Extensions		
	1.3	The Steinberg Modules	5	

1 | Monday, November 09

1.1 Strong Linkage

We have two categories:

- G_rT , with a notion of strong linkage, and
- G_r , which instead only has *linkage*.

We'll restate a few theorems.

```
Theorem 1.1.1(?). Let \lambda, \mu \in X(T).
```

- 1. If $[\hat{Z}_r(\lambda):\hat{L}_r(\mu)]_{G_rT}\neq 0$, then $\mu\uparrow\lambda$ are strongly linked.
- 2. If $[Z_r(\lambda): L_r(\mu)]_{G_r} \neq 0$, then $\mu \in W_p \cdot \lambda + p^r X(T)$.

Example 1.1.1 (?): In the case of $\Phi = A_2$, we'll consider the two different categories.

We have the following picture for \hat{Z} :

Contents 2

Figure 1: Image

Considering $X_1(T)$ and $[\widehat{Z}_1(\lambda):\widehat{L}_1(\mu)] \neq 0$, and $\widehat{Z}_1(\lambda)$ has 6 composition factors as G_1T -modules. On the other hand, for Z, we have the following:

1.1 Strong Linkage 3

Figure 2: Image

This again has 6 composition factors, obtained by ??

What's the main difference?

1.2 Extensions

Let $\lambda, \mu \in X(T)$. We can use the Chevalley anti-automorphism (essentially the transpose) to obtain a form of duality for extensions:

$$\operatorname{Ext}_{G_r T}^j \left(\widehat{L}_r(\lambda), \widehat{L}_r(\mu) \right) = \operatorname{Ext}_{G_r}^j \left(\widehat{L}_r(\mu), \widehat{L}_r(\lambda) \right) \quad \text{for } j \ge 0.$$

We have a form of a weight space decomposition

$$\operatorname{Ext}_{G_r}^{j}(L_r(\lambda), L_r(\mu)) = \bigoplus_{\gamma \in X(T)} \operatorname{Ext}_{G_r}^{j}(L_r(\lambda), L_r(\mu))_{\gamma}$$

where we are taking the fixed points under the torus T action on the first factor (for which T_r acts

1.2 Extensions 4

trivially). We can write this as

$$\cdots = \bigoplus_{\gamma \in X(T)} \operatorname{Ext}_{G_r}^j (L_r(\lambda), L_r(\mu) \otimes \gamma)
= \bigoplus_{\gamma \in X(T)} \operatorname{Ext}_{G_r T}^j (L_r(\lambda), L_r(\mu) \otimes p^r v)
= \bigoplus_{v \in X(T)} \operatorname{Ext}_{G_r T}^j (\widehat{L}_r(\lambda), \widehat{L}_r(\mu + p^r v)).$$

So if we know extensions in the G_r category, we know them in the G_rT category.

There is an isomorphism

$$\operatorname{Ext}_{G_rT}^1\left(\widehat{L}_r(\lambda), \widehat{L}_r(\mu)\right) \cong \operatorname{Hom}_{G_RT}\left(\operatorname{rad}_{G_rT}\widehat{Z}_r(\lambda), \widehat{L}_r(\mu)\right).$$

Finally, for $\lambda, \mu \in X(T)$, if the above Ext^1 vanishes, then $\lambda \in W_p \cdot \mu$ (i.e. λ and μ are linked).

1.3 The Steinberg Modules

Example 1.3.1 (Steinberg): Consider A_2 :

Figure 3: Image

Taking the representation corresponding to (p-1,p-1) yields the "first Steinberg module"

$$L(p-1, p-1) = L((p-1)\rho) := St_1.$$

In this case, we have an equality of many modules:

$$H^0((p-1)\rho) = L((p-1)\rho) = V((p-1)\rho) = T((p-1)\rho).$$

Definition 1.3.1 (Steinberg Modules). The rth **Steinberg module** is defined to be $L((p^r - 1)\rho)$.

Remark 1.3.1: In general, we have

$$L((p^r - 1)\rho) = H^0((p^r - 1)\rho) = V((p^r - 1)\rho).$$

We also have

$$\widehat{Z}_r((p^r-1)\rho) \cong L((p^r-1)\rho) \downarrow_{G_rT}$$
.

Theorem 1.3.1(?).

The Steinberg module is both injective and projective as both a G_r -module and a G_r T-module.

Proof(?).

It suffices to prove that St_r is projective over G_rT , then by a previous theorem, it will also be projective over G_r . Let $\widehat{L}_r(\mu)$ be a simple G_rT -module, and consider

$$\operatorname{Ext}_{G_{r},T}^{1}(\operatorname{St}_{r},\widehat{L}_{r}(\mu)) = \operatorname{Ext}_{G_{r},T}^{1}(\widehat{L}_{r}((p^{r}-1)\rho),\widehat{L}_{r}(\mu)).$$

If we show this is zero for every simple module, the result will follow.

Suppose $(p^r - 1)\rho \not< \mu$. In this case, the RHS above is zero.

Missed why: something to do with radical of the first term?

Otherwise, we have

$$\operatorname{Ext}_{G_r,T}^1(\widehat{L}_r(\mu),\operatorname{St}_r) = \operatorname{Hom}_{G_r,T}(\operatorname{rad}(\widehat{Z}_r(\mu)),\operatorname{St}_r).$$

Suppose that the RHS is nonzero. Then $\operatorname{rad}(\widehat{Z}_r(\mu)) \twoheadrightarrow \operatorname{St}_r$, and thus

$$\dim \operatorname{rad}(\widehat{Z}_r(\mu)) \ge \dim \operatorname{St}_r = p^{r|\Phi^+|}$$

But we know that

$$\dim \operatorname{rad}(\widehat{Z}_r(\mu)) < \dim \widehat{Z}_r(\mu) = p^{r|\Phi^+|},$$

so we've reached a contradiction and the hom must be zero.

Proposition 1.3.1 (Open Conjecture, Donkin, MSRI 1990: 'DFilt Conjecture'). Let G be a reductive group and M a finite-dimensional G-module. Then M has a good (p, r)-filtration iff $\operatorname{St}_r \otimes M$ has a good filtration.

Remark 1.3.2: See NK (Nakano-Kildetoft, 2015) and BNPS (Bendel-Nakano-Pillen-Subaje, 2018-).

Remark 1.3.3 (Important! What we've been working toward stating): The forward direction is equivalent to the statement that $\operatorname{St}_r \otimes L(\lambda)$ has a good filtration for $\lambda \in X_r(T)$.

Proposition 1.3.2 (Conjecture).

The Dfilt conjecture in the forward direction holds for all p.

Remark 1.3.4: This is known for $p \ge 2h - 4$? BNPS has shown that this holds for all rank 2 groups, which is strong evidence. The reverse implication is **not** true: BNPS-Crelle 2020 shows that for

1.3 The Steinberg Modules

 $\Phi = G_2, p = 2$, there exists an $H^0(\lambda)$ that does not have a good (p, r)-filtration. There is a similar conjecture for tilting modules ("DTilt").

Main difference to category \mathcal{O} : infinitely many highest weight representations?

Upcoming:

- Viewing the G_rT category as "almost" a highest weight category
- Defining standard and costandard modules $\Delta(\lambda)$ and $\nabla(\lambda)$.
- Injective G_rT -modules
- Results of Verma and Humphreys on the Lifting Conjecture: does every G_rT -module come from a G-module?
- Donkin's Tilting Module Conjecture (DTilt)