

BF Robot – Data-Generate + A-Classify

- Boundary Following Robot (BFR) in a Grid World
 - Around any object on the left (왼 쪽에 끼고 이동한다/돈다)
 - Or just go to the North in an empty space (no objects around)
 - There is no end/stop move forever...
 - There is no narrow gap/path that is 1-cell wide
- Design a navigation control for a BFR
 - Stimulus-Response Agent (SR Agent) type
 - Design a classifier select an action
 - Generate training data

Grid World

```
BD = [ ...
  0
      0
          0
              0
                          0
                                                  1
                                                      1
      0
              0
  0
                 0
                      0
                          0
                              0
                                  0
                                      0
                                          0
                                              1
                                                      1
      0
          0
             0 0
                          0
                              0
                                  0
                                      0
  0
                      0
                                          0
                                             1
                                                  1
                                                      1
              0 0
                              0
                                  0
  0
      0
          0
                      0
                          0
                                     0
                                                  1
                                          0
                                             1
                                                      1
                                  0
                                     0
                                                  0
  0
      0
          1
              1
                          1
                              1
                                          0
                                              0
                                                      0
                 1
                      1
  0
      0
          1
              1
                 0
                      0
                              1
                                  0
                                     0
                                          0
                                              0
                                                  0
                                                      0
                          1
  0
          1
              1
                  0
                          1
                              1
                                  0
                                     0
                                                      0
                                  0
                                                      1
              0
                          0
                                  0
  0
          0
              0
                  0
                          0
                              0
                                      0
                                                      1
              0
                  0
                                  0
                                      0
                                                  1
  0
          0
                          1
                              1
                                          0
                                              1
                                                      1
  0
              0
                  0
                                  0
                                      0
          0
                                              1
                                                      1];
[H W] = size(BD); % [11 14]
% size(BW) - - - [13 16]
bot = [3 4]; % = (x, y)
```

Percept X

• Percept:

Ex.
$$S = \{0, 1, 2, ..., N\}, N = 1$$
 $A = \{\mathbf{e}, \mathbf{s}, \mathbf{w}, \mathbf{n}\}$
 $\mathbf{x} \in S^{p}$
e.g., $\begin{bmatrix} 0 & 0 & 0, & 0, & 1 & 1 & 1, & 0 \end{bmatrix} \rightarrow \mathbf{e}$
 $\begin{bmatrix} 1 & 0 & 0, & 0, & 0 & 0 & 1, & 1 \end{bmatrix} \rightarrow \mathbf{s}$
 $\begin{bmatrix} 1 & 1 & 1, & 0, & 0 & 0 & 0, & 0 \end{bmatrix} \rightarrow \mathbf{w}$
 $\begin{bmatrix} 0 & 0 & 1, & 1, & 1 & 0 & 0, & 0 \end{bmatrix} \rightarrow \mathbf{n}$
 \vdots

Map: Percept-to-Action

8 sensory elements, so $s_i \in S -> 2^8 \text{ different configurations}$ is *mapped* to one of 4 different actions

37

X2A Mapping

Model Choice

- Perceptron network
 - Input x = [s1, s2, ..., s8]
 - Output units: $4 = \{E, S, W, N\}$
- 2 Layer Perceptron (MLP)
 - Input x = [s1, s2, ..., s8]
 - Hidden layer nodes: H units
 - Output units: $4 = \{E, S, W, N\}$

41

Homework #2

- Solve Problem I
- Solve Problem II
- Due: 12.1(목)

Problem I. Create a Training Data Set

• As many as possible, say, more than 40 instances:

43

Problem II. Train a Neural Network

• Perceptron network or Multilayer Perceptron