Piecewise polynomials

Piecewise linear (affine) polynomials

Definition:

A piecewise linear function $s:[a,b]\to\mathbb{R}$ for a grid $a=x_0< x_1< \cdots < x_n=b$ has function values

$$s(x) = a_k x + b_k, \quad x \in [x_{k-1}, x_k], \quad k = 1, ..., n$$

where a_k, b_k are constants

- for a general choice of a_k , b_k the function s(x) is not continuous and has jumps at the grid points
- \triangleright in the following we consider *continuous functions* s(x)
- ▶ a grid is *equidistant* if

$$x_k = a + kh, \quad k = 0, \dots, n$$
 and $h = (b - a)/n.$

pw linear interpolant

Definition: Given (x_k, y_k) for k = 0, ..., n with $x_0 < x_1 < \cdots < x_n$ the *linear interpolant* is the continuous piecewise linear function s(x) satisfying the interpolation conditions

$$s(x_k) = y_k, \quad k = 0, \ldots, n.$$

▶ the coefficients a_k , b_k are obtained by solving an interpolation problem for every subinterval $[x_{k-1}, x_k]$ and one gets

$$\begin{bmatrix} 1 & x_{k-1} \\ 1 & x_k \end{bmatrix} \begin{bmatrix} a_k \\ b_k \end{bmatrix} = \begin{bmatrix} y_{k-1} \\ y_k \end{bmatrix}$$

and the coefficients are

$$b_k = \frac{y_k - y_{k-1}}{x_k - x_{k-1}}, \quad a_k = y_k - b_k x_k = \frac{-y_k x_{k-1} + y_{k-1} x_k}{x_k - x_{k-1}}$$

pw linear interpolant of sin(x)

xnew = np.linspace(0,2*np.pi,100)

```
x = np.linspace(0, 2*np.pi, (9)) equi distant
y = np.sin(x)
s = interpolate.InterpolatedUnivariateSpline(x, y, k=1)
           # k=1: pw linear, s is a function
                                        5(4)
```

```
plt.plot(xnew, s(xnew), x,y,'ro',xnew,np.sin(xnew));
plt.axis([-0.05, 6.33, -1.05, 1.05]);
  1.0
  0.5
  0.0
 -0.5
 -1.0
                             3
```

hat function

we will use the function

$$b(x) = (1-|x|)_+,$$

where

- \triangleright |x| is the absolute value of x
- $(x)_+$ is the *positive value* of x such that

•
$$(x)_+ = x \text{ if } x \ge 0$$

$$(x)_{+} = x$$
 if $x \le 0$
 $(x)_{+} = 0$ if $x < 0$

$$(4)_{+} = 4$$

$$x = (x)_{+} - (-x)_{+}$$

$$|x| = (x)_{+} + (-x)_{+}$$

graph of hat function

```
x = np.linspace(-2,2,257)
plt.plot(x,np.maximum(x,0),label='$y=(x)_+$')
plt.plot(x,np.maximum(1-abs(x),0),label='$y=h(x)$')
plt.legend(loc=4);plt.grid('on');plt.axis(ymin=-2);
```


7/17

representing the interpolant with hat functions

hat function b(x/h-k) satisfies

$$b(x_j/h-k)=(\delta_{jk})$$

for equidistant grid $x_k \equiv kh$ where h = 1/n and $k = 0, \dots, n$

• interpolating s(x) takes Lagrangian form:

$$S(x) = \sum_{k=0}^{n} y_k b \left(\frac{x}{h} - k\right)$$

support supp $b_k = \overline{[(k-1)h,(k+1)h]}$ thus y_k affects s only locally

hierarchical basis

- using hat functions, one defines a Newton-style interpolation formula
- introduce two indices for grid points $x_{i,l}$ where l is called level
- ▶ interval [0, 1]:

Therefore [0, 1].

$$x_{0,0} = 0$$
 $x_{1,0} = 1$
 $x_{0,1} = 0.5$
 $x_{0,2} = 0.25$
 $x_{1,2} = 0.75$
 $x_{0,3} = 0.125$
 $x_{1,3} = 0.375$
 $x_{2,3} = 0.625$
 $x_{2,3} = 0.875$

basis functions:

graphs of $b_{j,l}(x)$

coefficients of interpolants

$$s(x) = c_{0,0}b_{0,0}(x) + c_{1,0}b_{1,0}(x) + \sum_{l=1}^{m} \sum_{j=0}^{2^{l-1}-1} c_{j,l}b_{j,l}(x)$$
 where

$$c_{0,0} = y_{0,0} \qquad c_{1,0} = y_{1,0} - y_{0,0}$$

$$c_{0,2} = y_{0,1} - 0.5(y_{0,0} + y_{1,0})$$

$$c_{0,2} = y_{0,2} - 0.5(y_{0,0} + y_{0,1})$$

$$c_{1,2} = y_{1,2} - 0.5(y_{0,1} + y_{1,0})$$

minimisation property of piecewise linear function

Proposition

Let s(x) be the piecewise linear interpolant of the points (x_k, y_k) , k = 0, ..., n and g(x) be any continuous function with $g(x_k) = y_k$ which is continuously differentiable in each subintervall (x_{k-1}, x_k) then

$$\int_{x_0}^{x_n} s'(x)^2 dx \le \int_{x_0}^{x_n} g'(x)^2 dx.$$

Proof. Calculus of variation, show this is true for C^2 functions, then take the limit.

▶ thus *s* minimises the average squared change of the function.

Cubic splines

Proposition

Consider the class V of functions which are continuous and C^2 on each interval $[x_{k-1}, x_k]$. Then there exists a function s(x) in that class which interpolates $s(x_k) = y_k$, for k = 0, ..., n which satisfies

$$\int_{x_0}^{x_n} s''(x)^2 dx \le \int_{x_0}^{x_n} g''(x)^2 dx.$$

for all $g \in V$ which interpolate $g(x_k) = y_k$ for k = 0, ..., n. This function s is called the cubic spline interpolant, it is continuously differentiable and is a piecewise cubic polynomial. *Proof.* similar as for piecewise linear interpolant.

- ► the cubic spline minimises the average squared second derivative which is a substitute for the curvature
- ▶ this cubic spline has zero second derivative at the boundary, an alternative is to impose values of the first or second derivative on the boundary

Scipy cubic spline interpolant

cannot see the difference between the interpolant and the exact function in the plot!

```
# Cubic spline (Lagrange) interpolation from Scipy
from scipy import interpolate
from scipy.interpolate import CubicSpline

x = np.linspace(0, 2*np.pi, 9)
y = np.sin(x)
s = CubicSpline(x, y, bc_type="natural") # natural boundar
xnew = np.linspace(0, 2*np.pi, 100)
```

```
plt.plot(xnew, s(xnew), x,y,'.',xnew,np.sin(xnew));
plt.axis([-0.05, 6.33, -1.05, 1.05]);
```


Hermite Interpolation with Piecewise Cubic Functions

- ▶ Hermite interpolant H(x) of a function f(x) satisfies:
 - ightharpoonup interpolation condition for function value at x_k
 - interpolation condition for derivative at x_k
- ▶ This gives for conditions per interval $[x_{i-1}, x_i]$:

$$H(x_i) = f(x_i) = y_i,$$
 $H'(x_i) = f'(x_i) = y'_i$
 $H(x_{i+1}) = f(x_{i+1}) = y_{i+1},$ $H'(x_{i+1}) = f'(x_{i+1}) = y'_{i+1}$

► These conditions uniquely determine the polynomials of degree three in the intervals

Parametrisation

$$H_i(x) = a_i + b_i(x - x_i) + (x - x_i)^2 [c_i + d_i(x - x_{i+1})]$$

▶ With $h_i = x_{i+1} - x_i$ the four interpolation conditions give

$$a_i = y_i,$$
 $b_i = y'_i,$ $c_i = \frac{y_{i+1} - y_i}{h_i^2} - \frac{y'_i}{h_i},$ $d_i = \frac{y'_{i+1} + y'_i}{h_i^2} - \frac{2(y_{i+1} - y_i)}{h_i^3}$

Approximation often similar to the B-spline interpolant