Introduction

- Routage inter AS
 - Utilisé pour router les informations entre les AS donc principalement routage « Internet » (ou inter domain routing), et nécessite de posséder un AS :
 - Opérateurs
 - Services spécifiques (multi homing) hebergeur de services.
 - 16bits puis 32bits

Introduction

Routage inter AS

Source: iana.org

BGP: Historique

- Historique :
 - ARPANET : Gateway to Gateway protocol (RFC 823)
 - 1984 : Exterior Gateway Protocol (RFC 904), structure en arbre.
 - 1989 : BGP v1 (RFC 1105)
 - 1990 : BGP v2 (RFC 1163)
 - 1991 : BGP v3 (RFC1267)
 - 1994 : BGP v4 (RFC1771) (update RFC4271)
 - Others for MP-BGP BGP for IPv6....

- Encapsulation et adressage :
 - BGP est un protocole utilisant la couche transport TCP (port 179)
 - Inhabituel, car la plupart des autres protocoles de routage utilisent IP ou UDP pour pouvoir utiliser une diffusion de groupe (broadcast ou multicast)
 - BGP n'en a pas besoin car il ne découvre pas ses voisins, ils doivent être renseignés dans la configuration du routeur.
 - Et profite des services offerts par TCP/IP (respect de l'ordre d'envoi, fragmentation, retransmission, etc..)
 - Attention : TCP permet le transport d'un flux de données, pas très adapté à une communication par messages.

- BGP est un protocole de routage de type PATH vector, le PATH est constitué des AS traversés pour rejoindre un subnet.
- Traffic engineering pour définir des politiques de routage :
 - Accord de type Peering/Traffic entre opérateurs
 - Eviter/favoriser certains AS
- BGP se compose de deux parties
 - eBGP (entre des routeurs d'AS différents)
 - iBGP (entre les routeurs d'un même AS)

• eBGP:

- Les routeurs doivent être directement connectés (sur le même réseau niveau 2)
- Uniquement entre des routeurs d'AS différents
- Ne doit pas y avoir d'IGP entre ces routeurs

• iBGP:

- Les routeurs NE doivent PAS FORCEMENT être directement connectés (l'IGP permet de les «relier»)
- Uniquement entre des routeurs d'un même AS
- Tous les routeurs iBGP doivent être reliés (full mesh)
 - Relayent les prefixs appris depuis l'exterieur de l'AS
 - Ne relayent pas les prefixs appris depuis un pair iBGP

BGP: Messages

 Format des messages (dans un flux de données TCP)

4 types de messages différents

- OPEN
- UPDATE
- NOTIFICATION
- KEEPALIVE

Un « entête » commun

- Marker
- Length
- Type

BGP: Message OPEN

- Message envoyé à l'ouverture de la connexion
- Version
- N° AS
- Hold time (temps max entre 2 keepalives)
- BGP Identifier (identifiant de routeur ex : @IP)

BGP: Message UPDATE

 Message envoyé pour échanger des informations de routage

BGP: Message UPDATE

- Permettent de supprimer plusieurs routes
- Permettent d'ajouter une route v(un prefix)
 - Contient des attributs de plusieurs TYPES
 - Well-known mandatory.
 - Well-known discretionary.
 - Optional transitive.
 - Optional non-transitive.
 - Permet de savoir comment traiter des attributs mêmes s'ils sont inconnus

- AS_PATH (Well-known, mandatory)
 - Séquence (ordonné) des AS qu'une route a traversés.
 - Evite les boucles (si mon AS dans liste des AS)

- NEXT_HOP (Well-known mandatory)
 - L'adresse IP du routeur qui devrait être utilisée pour la route
 - Différents usages selon eBGP ou iBGP (Cf RFC4271)

- ORIGIN (Well-known mandatory)
 - Attribut historique (transition EGP/BGP)
 - Identifie l'origine de la route :
 - EGP
 - IGP (issu d'un AS)
 - Incomplete (redistribuée depuis un autre protocole de routage)
 - Peut influencer le mécanisme de sélection du meilleur chemin.

LOCAL PREF (Well known)

 Permet d'indiquer dans l'AS quel est le chemin privilégié pour sortir de cet AS vers le réseau considéré.

(le plus grand)

AS500 et AS 800 annoncent 172.3.2.0/24 avec - Exemple: des AS PATH différents AS 500 **AS 800**

C préfère A pour sortir vers 172.3.2.0/24

AS 300

A set local pref à 200

B set local pref à 100

- MULTI_EXT_DESCRIPTOR (Optionnal, non transitive)
 - Attribut envoyé à un AS (mais pas propagé)
 - Permet d'influencer un AS voisin pour le choix (le plus petit)

- COMMUNITY (Optional) RFC 1997
 - Attribut (transitif) permettant de regrouper des réseaux destinations dans une même communauté et d'appliquer des décisions de routage en fonction de cette communauté.
 - Exemple :
 - Des communautés connues universellement :
 - no-export (Do not advertise to EBGP peers)
 - no-advertise (Do not advertise this route to any peer)

- Algorithme de sélection de la route :
 - Critères de choix (dans l'ordre)
 - LOCAL_PREFERENCE le plus élevé.
 - Le plus court AS_PATH
 - MED le plus petit
 - Autres critères de sélection :
 - Le coût le plus faible vers le NEXT_HOP (comme indiqué par l'IGP)
 - Route annoncée par le voisin eBGP ayant le plus petit BGPid
 - Route annoncée par le voisin iBGP ayant le plus petit BGPid

- En pratique, les constructeurs ajoutent de nouveaux critères, par exemple Cisco :
 - Ne pas considérer une route si le next_hop est injoignable.
 - Ne pas considérer les routes issues de l'iBGP si non joignable via IGP.
 - Avant de considérer LOCAL_PREFERENCE, utilisation du poids des routes
 - Avant de considérer MED, considérer l'origine des routes (privilégier les routes externes aux routes internes),
 - Etc...

Exemple simpl(ist)e :

router bgp 1234 bgp router-id 193.16.1.253 neighbor 193.16.1.254 remote-as 222

- Exemple partage de charge sur le même ISP :
 - Lien 1 privilégié, lien 2 de backup.

Set local pref to 90 (default 100) pour trafic sortant Pour trafic entrant set MED to 20 (default 0) car les 2 liens sont vers le même AS

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec :
 - neighbor peer distribute-list name/id [in|out]
 - access-list simple 1-99 --> ne filtre que sur la partie reseau de l'annonce ex:
 - access-list 1 permit 172.4.1.0 0.0.0.255
 - R1 recoit :
 - network 172.4.1.0/24
 - network 172.4.1.0/25

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec :
 - neighbor peer distribute-list name/id [in|out]
 - access-list extended 100-199
 - access-list 100 permit ip 172.4.1.0 0.0.0.255 255.255.255.128 0.0.0.127
 - R1 recoit :
 - network 172.4.1.0/25

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec :
 - neighbor peer distribute-list name/id [in|out]
 - access-list toto permit 172.4.1.0/24
 - R1 recoit:
 - Network 172.4.1.0/24
 - Network 172.4.1.0/25

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec :
 - neighbor peer distribute-list name/id [in|out]
 - access-list toto permit 172.4.1.0/24
 - R1 recoit:
 - Network 172.4.1.0/24
 - Network 172.4.1.0/25

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec :
 - neighbor peer distribute-list name/id [in|out]
 - access-list toto permit 172.4.1.0/24 exact-match
 - R1 recoit:
 - Network 172.4.1.0/24

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec : (forme plus simple)
 - neighbor peer prefix-list name [in|out]
 - ip prefix-list titi seq 10 permit 172.4.1.0/24 le 25
 - R1 recoit:
 - Network 172.4.1.0/24
 - Network 172.4.1.0/25

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec : (sur les attributs)
 - neighbor peer filter-list name [in|out]
 - filter-list s'applique pas sur les NLRI mais sur l'attribut AS_PATH
 - exemple:
 - ip as-path access-list toto permit ^20\$

- Le filtrage dans BGP (syntaxe quagga pour le TP)
 - R2 annonce les réseaux
 - network 172.4.1.0/24
 - Network 172.4.1.0/25
 - R1 filtre le voisin avec : (sur les attributs)
 - neighbor peer route-map name [in|out]
 - route-map permet de faire des autorisation et d'associer des actions en fonction des matchs

•