Tutorial 2

name

student number

1. Evaluate the following integrals:

a.

$$\int_0^\infty \exp(-x) \, dx$$

b.

$$\int_0^\infty \exp(-2x) \, dx$$

C.

$$\int_0^\infty \int_0^\infty \exp(-x - y) \, dx dy$$

d.

$$\int_0^\infty \int_0^\infty xy \exp(-x-y) \, dx \, dy.$$

2. Suppose that

$$\langle \psi_1 | \psi_1 \rangle = 1,$$

$$\langle \psi_2 | \psi_2 \rangle = 1,$$

$$\langle \psi_1 | \psi_2 \rangle = 0$$

and

$$\psi(x) = \frac{1}{\sqrt{2}}\psi_1(x) + \frac{i}{\sqrt{2}}\psi_2(x)$$

Evaluate the following inner products:

a.

$$|\langle \psi_1 | \psi \rangle|^2$$

b.

$$|\langle \psi_2 | \psi \rangle|^2$$

C.

$$|\langle \psi | \psi \rangle|^2$$

d. Suppose that $\psi_1(x)$ and $\psi_2(x)$ are eigenfunctions of operator \hat{A} , associated with eigenvalues, a_1 and a_2 , respectively. If a quantum system is in state, $\psi(x)$ (see above), then what is the probability of a measurement of \mathcal{A} (the observable represented by \hat{A}) yielding the