Chapter 9: Traversable functors

Sergei Winitzki

Academy by the Bay

2018-09-03

Motivation for the traverse operation

- Consider data of type List^A and processing $f: A \Rightarrow \text{Future}^B$
- Typically, we want to wait until the entire data set is processed
- What we need is $List^A \Rightarrow (A \Rightarrow Future^B) \Rightarrow Future^{List^B}$
- Generalize: $L^A \Rightarrow (A \Rightarrow F^B) \Rightarrow F^{L^B}$ for some type constructors F, L
- This operation is called traverse
 - ▶ How to implement it: for example, a 3-element list is $A \times A \times A$
 - ▶ Consider $L^A \equiv A \times A \times A$, apply map f and get $F^B \times F^B \times F^B$
 - ▶ We will get $F^{L^B} \equiv F^{B \times B \times B}$ if we can apply zip as $F^B \times F^B \Rightarrow F^{B \times B}$
- So we need to assume that F is applicative
- ullet In Scala, we have Future.traverse() that assumes L to be a sequence
 - ▶ This is the easy-to-remember example that fixes the requirements
- Questions:
 - Which functors L can have this operation?
 - ► Can we express traverse through a simpler operation?
 - ▶ What are the required laws for traverse?
 - What about contrafunctors or profunctors?

Deriving the sequence operation

- The type signature of traverse is a complicated "lifting"
 - ▶ A "lifting" is often equivalent to a simpler natural transformation
- To derive it, ask: what is missing from fmap to do the job of traverse?

$$\mathsf{fmap}_L: (A \Rightarrow F^B) \Rightarrow L^A \Rightarrow L^{F^B}$$

- We need F^{L^B} , but the traverse operation gives us L^{F^B} instead
 - ▶ What's missing is a natural transformation sequence : $L^{F^B} \Rightarrow F^{L^B}$
- The functions traverse and sequence are computationally equivalent:

$$\operatorname{trav} f^{\underline{A} \Rightarrow F^{\underline{B}}} = \operatorname{fmap}_{L} f \circ \operatorname{seq}$$

Here F is an arbitrary applicative functor

- ightharpoonup Keep in mind the example Future.sequence : List Future ightharpoonup ightharpoonup Future
- ▶ Examples: $L^A \equiv A \times A \times A$; $L^A = \text{List}^A$; finite trees
- Non-traversable: $L^A \equiv R \Rightarrow A$; lazy list ("infinite product")
 - ★ Note: We cannot have the opposite transformation $F^{L^B} \Rightarrow L^{F^B}$

Polynomial functors are traversable

- Generalize from the example $L^A \equiv A \times A \times A$ to other polynomials
- Polynomial functors have the form

$$L^{A} \equiv Z \times A \times ... \times A + Y \times A \times ... \times A + ... + Q \times A + P$$

- To implement seq : $L^{F^B} \Rightarrow F^{L^B}$, consider monomial $L^A \equiv Z \times A \times ... \times A$
- We have $L^{F^B} = Z \times F^B \times ... \times F^B$; apply zip and get $Z \times F^{B \times ... \times B}$
- Lift Z into the functor F using $Z \Rightarrow F^A \Rightarrow F^{Z \times A}$ (or with F.pure)
- The result is $F^{Z \times B \times ... \times B} \equiv F^{L^B}$
 - ▶ For a polynomial L^A , do this to each monomial, then lift to F^{L^B}
 - ▶ Note that we could apply zip in various different orders
- The traversal order is arbitrary, may be application-specific
- Non-polynomial functors are not traversable (see Bird et al., 2013)
 - ► Example: $L^A \equiv E \Rightarrow A$; $F^A \equiv 1 + A$; can't have seq : $L^{F^B} \Rightarrow F^{L^B}$
- All polynomial functors are traversable, and usually in several ways
 - ▶ It is still useful to have a type class for traversable functors

Motivation for the laws of the traverse operation

- The "law of traversals" paper (2012) argues that traverse should "visit each element" of the container L^A exactly once, and evaluate each corresponding "effect" F^B exactly once; then they formulate the laws
- To derive the laws, use the "lifting" intuition for traverse,

trav :
$$(A \Rightarrow F^B) \Rightarrow L^A \Rightarrow F^{L^B}$$

Look for "identity" and "composition" laws:

- "Identity" as pure : $A \Rightarrow F^A$ must be lifted to pure : $L^A \Rightarrow F^{L^A}$
- ② "Identity" as $id^{\underline{A}\Rightarrow\underline{A}}$ with $F^A\equiv A$ (identity functor) lifted to $id^{\underline{L}^A\Rightarrow\underline{L}^A}$
- **3** "Compose" $f: A \Rightarrow F^B$ and $g: B \Rightarrow G^C$ to get $h: A \Rightarrow F^{G^C}$, where F, G are applicative; a traversal with h maps L^A to $F^{G^{L^C}}$ and must be equal to the composition of traversals with f and then with $g^{F\uparrow}$

Questions:

- Are the laws for the sequence operation simpler?
- Are all these laws independent?
- What functors L satisfy these laws for all applicative functors F?

Formulation of the laws for traverse

• Identity law: For any applicative functor *F*,

$$trav(pure) = pure$$

$$L^{A} \xrightarrow{\text{pure}^{L^{A} \Rightarrow F^{L^{A}}}} F^{L^{A}}$$

$$\text{trav}\left(\text{pure}^{A \Rightarrow F^{A}}\right)$$

- Second identity law: trav^{Id}(id^A) = id^{L^A} is a consequence with F = Id
 So, we need only one identity law
- Composition law: For any $f^{\underline{A}\Rightarrow F^B}$ and $g^{\underline{B}\Rightarrow G^C}$, & applicative F and G,

$$\operatorname{trav} f \circ (\operatorname{trav} g)^{F\uparrow} = \operatorname{trav} (f \circ g^{F\uparrow})$$

$$L^{A} \xrightarrow{\operatorname{trav}^{F} f^{A \Rightarrow F^{B}}} F^{L^{B}} \xrightarrow{\operatorname{fmap}_{F} \left(\operatorname{trav}^{G} g\right)^{L^{B} \Rightarrow G^{L^{C}}}} F^{G^{L^{C}}}$$

where $h^{A\Rightarrow F^{G^C}}\equiv f\circ g^{F\uparrow}$. (Note: $H^A\equiv F^{G^A}$ is applicative!)

Derivation of the laws for sequence

Express trav $f = f^{L\uparrow} \circ \text{seq}$ and substitute into the laws for trav:

• Identity law: trav (pure) = pure $^{L\uparrow} \circ \text{seq} = \text{pure}$

Naturality law: $\operatorname{seq} \circ g^{F\uparrow L\uparrow} = g^{L\uparrow F\uparrow} \circ \operatorname{seq}$ with $g^{\underline{A}\Rightarrow \underline{B}}$, mapping $L^{F^A} \Rightarrow F^{L^B}$

Composition law:

$$\begin{aligned} \operatorname{trav} f \circ (\operatorname{trav} g)^{F \uparrow} &= f^{L \uparrow} \circ \operatorname{seq} \circ \left(g^{L \uparrow} \circ \operatorname{seq} \right)^{F \uparrow} \\ &= f^{L \uparrow} \circ \operatorname{seq} \circ g^{L \uparrow F \uparrow} \circ \operatorname{seq}^{F \uparrow} = f^{L \uparrow} \circ g^{F \uparrow L \uparrow} \circ \operatorname{seq} \circ \operatorname{seq}^{F \uparrow} \\ \operatorname{trav} \left(f \circ g^{F \uparrow} \right) &= \left(f \circ g^{F \uparrow} \right)^{L \uparrow} \circ \operatorname{seq} = f^{L \uparrow} \circ g^{F \uparrow L \uparrow} \circ \operatorname{seq} \end{aligned}$$

Now omit the common prefix f = seq and obtain: $seq \circ seq^{F\uparrow} = seq$

Constructions of traversable and bitraversable functors

Constructions of traversable functors:

- $L^A \equiv Z$ (constant functor) and $L^A \equiv A$ (identity functor)
- $L^A \equiv G^A \times H^A$ for any traversable G^A and H^A
- L^A ≡ S^{A,L^A} (recursive) for a bitraversable bifunctor S^{A,B}
 If L^A is infinite, laws will appear to hold but seq will not terminate
 - A bifunctor $S^{A,B}$ is **bitraversable** if **bisequence** exists such that

biseq :
$$S^{F^A,F^B} \Rightarrow F^{S^{A,B}}$$

for any applicative functor F; the analogous laws must hold Constructions of bitraversable bifunctors:

- 2 $S^{A,B} \equiv G^{A,B} \times H^{A,B}$ for any bitraversable G and H
- $S^{A,B} \equiv G^{A,B} + H^{A,B}$ for any bitraversable G and H
- All polynomial bifunctors are bitraversable
- All polynomial functors, including recursive functors, are traversable

Foldable functors: traversing with respect to a monoid

- Take $F^A \equiv Z$ where Z is a monoid
 - ightharpoonup The zip operation is the monoid operation \oplus
- The type signature of traverse becomes $(A \Rightarrow Z) \Rightarrow L^A \Rightarrow Z$
 - ► This method is called foldMap
- The type signature of seq becomes $L^Z \Rightarrow Z$
 - ▶ This is called mconcat combines all values in L^Z with Z's \oplus
- It is convenient to define the Foldable type class
 - But it has no laws any more
 - ▶ All traversable functors are also foldable
- The foldLeft method can be defined via foldMap with $Z \equiv (B \Rightarrow B)$:

foldl :
$$(A \Rightarrow B \Rightarrow B) \Rightarrow L^A \Rightarrow B \Rightarrow B$$

Traversable contrafunctors and profunctors are not useful

Traversing profunctors with respect to functors F: effects of F are ignored

• All contrafunctors C^A are traversable w.r.t. applicative profunctors F^A ,

$$\operatorname{seq}: C^{F^A} \Rightarrow F^{C^A} \equiv \operatorname{pure}^{C\downarrow} \circ \operatorname{pure}^{C}$$

$$C^{F^A} \xrightarrow{\operatorname{cmap}_{C} \operatorname{pure}_{F}^{A}} C^A \xrightarrow{\operatorname{pure}_{F}^{C^A}} F^{C^A}$$

- But not profunctors that are neither functors not contrafunctors
- Counterexample: $P^A \equiv A \Rightarrow A$; need seq : $(F^A \Rightarrow F^A) \Rightarrow F^{A \Rightarrow A}$; we can't get an $A \Rightarrow A$, so the only implementation is to return pure_F (id), which ignores its argument and so will fail the identity law

Traversing profunctors L with respect to profunctors F: effects are ignored

- Counterexample 1: contrafunctor $L^A \equiv A \Rightarrow R$ and contrafunctor $F^A \equiv A \Rightarrow S$, a seq of type $L^{F^A} \Rightarrow F^{L^A}$ must return 1 + 0
- Counterexample 2: contrafunctor $F^A \equiv (R \Rightarrow A) \Rightarrow S$ and functor $L^A \equiv 1 + A$; seq must return 1 + 0
- So, the result is trivial and probably not useful
 - ▶ Laws of traversables allow ignoring the effects of *F*

Examples of usage

- Convert foldable data structures to list
- 2 Fold a tree to aggregate data
- Oecorate a tree with Depth-First traversal order labels
- Implement scan on a list, as traverse with a state monad
- 5 Use "reverse state monad" to change traversal direction

Naturality with respect to applicative functor as parameter

• The traverse method must be "generic in the functor F":

$$\mathsf{trav}^{F,A,B}: (A \Rightarrow F^B) \Rightarrow L^A \Rightarrow F^{L^B}$$

Which means: The code of traverse can only use pure and zip from F

- A functor F^A is "generic in A": have fmap : $(A \Rightarrow B) \Rightarrow F^A \Rightarrow F^B$
- "Generic in F" means mapping $(F \Rightarrow G) \Rightarrow \operatorname{trav}^F \Rightarrow \operatorname{trav}^G$ in some way

Mathematical formulation:

- For any natural transformation $F^A \Rightarrow G^A$ between applicative functors F and G such that F.pure and F.zip are mapped into G.pure and G.zip, the result of transforming trav F is trav F
 - Such a natural transformation is a morphism of applicative functors
 - ▶ Category theory can describe $(F \Rightarrow G) \Rightarrow \text{trav}^F \Rightarrow \text{trav}^G$ as a "lifting"
 - Use a more general definition of category than what we had so far

Exercises

 $oldsymbol{0}$ Show that any traversable functor L admits a method

consume :
$$(L^A \Rightarrow B) \Rightarrow L^{F^A} \Rightarrow F^B$$

for any applicative functor F. Show that traverse and consume are equivalent.

- ② Show that seq : $L^{F^A} \Rightarrow F^{L^A} = \text{id}$ if we choose $F^A \equiv A$ as the identity functor.
- **3** Show that the identity law is not satisfied by an implementation of seq: $L^{F^A} \Rightarrow F^{L^A}$ for $F^A \equiv 1 + A$ when seq always returns an empty option.
- ① Define a traversable instance for the tree-like type defined as $T^A \equiv 1 + A \times T^A \times T^A$.
- For a tree type of your choice, use traverse to decorate the tree with labels according to level. The resulting labels must look like
- * Can we implement breadth-first traversal order for a tree type?
- **3** Show that all the bitraversable laws hold for the bifunctor $S^{A,B} \equiv A \times B$.