Probability theory

Lecture 1: Probability space

Maksim Zhukovskii

MIPT

The probability of 'Head' and the probability of 'Tail' equals 1/2.

The probability of 'Head' and the probability of 'Tail' equals 1/2.

1. — H represents the event 'Head'
— T represents the event 'Tail'

The probability of 'Head' and the probability of 'Tail' equals 1/2.

1. — H represents the event '**H**ead' — T represents the event '**T**ail' P(H) = P(T) = 1/2

The probability of 'Head' and the probability of 'Tail' equals 1/2.

- 1. H represents the event '**H**ead' — T represents the event '**T**ail' P(H) = P(T) = 1/2
- 2. X tails in n independent coin tosses

The probability of 'Head' and the probability of 'Tail' equals 1/2.

- 1. H represents the event '**H**ead' — T represents the event '**T**ail' P(H) = P(T) = 1/2
- 2. X tails in n independent coin tosses $X/n \approx 1/2$

Informal definition:

sample space — the set of all possible outcomes of an experiment

Informal definition:

sample space — the set of all possible outcomes of an experiment

Formal definition:

Informal definition:

sample space — the set of all possible outcomes of an experiment

Formal definition:

 \bullet sample space Ω — abstract set

Informal definition:

sample space — the set of all possible outcomes of an experiment

Formal definition:

- ullet sample space Ω abstract set
- $\omega \in \Omega$ elementary event

Informal definition:

sample space — the set of all possible outcomes of an experiment

Formal definition:

- ullet sample space Ω abstract set
- ullet $\omega \in \Omega$ elementary event
- $A \subseteq \Omega$ an event

Examples

Tossing a coin:

$$\Omega = \{H, T\}$$

Examples

Tossing a coin:

$$\Omega = \{H, T\}$$

Tossing a dice:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Examples

Tossing a coin:

$$\Omega = \{H, T\}$$

Tossing a dice:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 $A = \{2, 4, 6\}$ — 'outcome is even'

Classical probability

Find the probability that a dice shows an even number.

Classical probability

Find the probability that a dice shows an even number.

Solution:
$$\frac{\text{the number of 'even positions'}}{\text{the number of all positions}} = \frac{3}{6} = \frac{1}{2}$$

Classical probability

Find the probability that a dice shows an even number.

Solution:
$$\frac{\text{the number of 'even positions'}}{\text{the number of all positions}} = \frac{3}{6} = \frac{1}{2}$$

There are 4 red and 5 blue balls in a box. 3 balls are chosen without repetition.

P(all these balls are blue) =?

There are 4 red and 5 blue balls in a box. 3 balls are chosen without repetition. P(all these balls are blue) =?

$$\Omega = \{(x_1, x_2, x_3) : x_i \in [9] \text{ distinct}\},\$$

There are 4 red and 5 blue balls in a box. 3 balls are chosen without repetition. P(all these balls are blue) =?

$$\Omega = \{(x_1, x_2, x_3) : x_i \in [9] \text{ distinct}\},\ A = \{(x_1, x_2, x_3) : x_i \in [9] \setminus [4]\} \subset \Omega.$$

There are 4 red and 5 blue balls in a box. 3 balls are chosen without repetition. P(all these balls are blue) =?

$$\Omega = \{(x_1, x_2, x_3) : x_i \in [9] \text{ distinct}\},\ A = \{(x_1, x_2, x_3) : x_i \in [9] \setminus [4]\} \subset \Omega.$$

Then
$$P(A) = |A|/|\Omega| = {5 \choose 3}/{9 \choose 3} = \frac{5}{42}$$
.

Throwing *n* coins independently, what is the probability of having exactly *k* tails?

Throwing n coins independently, what is the probability of having exactly k tails?

$$\Omega = \{0,1\}^n$$
,

Throwing n coins independently, what is the probability of having exactly k tails?

$$\Omega = \{0,1\}^n$$
,
 $A = \{(x_1,\ldots,x_n): \sum x_i = k\} \subset \Omega$.

Throwing n coins independently, what is the probability of having exactly k tails?

$$\Omega = \{0,1\}^n$$
,
 $A = \{(x_1,\ldots,x_n): \sum x_i = k\} \subset \Omega$.

Then
$$P(A) = |A|/|\Omega| = {n \choose k}/2^n$$
.

A probability space (Ω, \mathcal{F}, P) :

A probability space (Ω, \mathcal{F}, P) :

 $\triangleright \Omega$ — a sample space (an arbitrary set);

A probability space (Ω, \mathcal{F}, P) :

- $ightharpoonup \Omega$ a sample space (an arbitrary set);
- $\mathfrak{F} \subset 2^{\Omega}$ a set of events;

A probability space (Ω, \mathcal{F}, P) :

$$ightharpoonup \Omega$$
 — a sample space (an arbitrary set);

- $\mathfrak{F} \subset 2^{\Omega}$ a set of events;
- $\mathsf{P}: \mathcal{F} \to [0,1]$ a probability measure (or, simply, probability).

 \mathcal{F} — σ -algebra:

$$\mathcal{F}$$
 — σ -algebra:

$$ightharpoonup \Omega \in \mathcal{F}$$
,

$$\mathcal{F}$$
 — σ -algebra:

$$ightharpoonup \Omega \in \mathcal{F}$$
,

$$A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F},$$

$$\mathcal{F}$$
 — σ -algebra:

- $ightharpoonup \Omega \in \mathcal{F}$,
 - c 5,
- ► $A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$, ► $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}$.

$$\mathcal{F}$$
 — σ -algebra:

- $\mathbf{L} \Omega \in \mathcal{F}$,
- $A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F},$
- $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}.$

A is an event if $A \in \mathcal{F}$

Probability space: probability measure

 $P: \mathcal{F} \rightarrow [0,1]$ is a probability measure, if

Probability space: probability measure

 $P: \mathcal{F} \rightarrow [0,1]$ is a probability measure, if

$$P(\Omega) = 1,$$

Probability space: probability measure

 $P: \mathcal{F} \to [0,1]$ is a probability measure, if

$$ightharpoonup \mathsf{P}(\Omega) = 1$$
,

▶
$$A_1, A_2, ... \in \mathcal{F}$$
 are disjoint \Rightarrow
 $P(A_1 \sqcup A_2 \sqcup ...) = \sum_{i=1}^{\infty} P(A_i).$

$$\mathfrak{F}_0 = \{\varnothing, \Omega\}$$
,

$$\mathfrak{F}_0 = \{\varnothing, \Omega\}, \ \mathfrak{F} = 2^{\Omega}$$

$$\mathfrak{F}_0=\{\varnothing,\Omega\}$$
, $\mathfrak{F}=2^\Omega$

► There are two trivial σ -algebras: $\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F} = 2^{\Omega}$

▶ Let
$$A \subset \Omega$$

 $\mathcal{F}_A := \{\emptyset, \Omega, A, \overline{A}\}$

$$\Sigma \subset 2^\Omega$$

$$\Sigma \subset 2^{\Omega}$$
 $\sigma(\Sigma)$ — inclusion-minimum σ -algebra containing all sets from Σ

Examples

$$\sigma(\{A\}) = \mathcal{F}_A = \{\varnothing, \Omega, A, \overline{A}\}.$$

$$\Sigma \subset 2^{\Omega}$$
 $\sigma(\Sigma)$ — inclusion-minimum σ -algebra containing all sets from Σ

Examples

$$ho$$
 $\Omega = A_1 \sqcup A_2 \sqcup \ldots$

$$\Sigma \subset 2^{\Omega}$$
 $\sigma(\Sigma)$ — inclusion-minimum σ -algebra containing all sets from Σ

Examples

$$\bullet \Omega = A_1 \sqcup A_2 \sqcup \ldots,
\sigma(\{A_1, A_2, \ldots\}) = \{ \bigsqcup_{i \in \mathcal{J}} A_i, \ \mathcal{J} \subseteq \mathbb{N} \}.$$

Examples

▶ The Borel σ -algebra on \mathbb{R} :

$$\sigma(\{A\}) = \mathcal{F}_A = \{\varnothing, \Omega, A, \overline{A}\}.$$

$$\Omega = A_1 \sqcup A_2 \sqcup \ldots,$$

$$\sigma(\{A_1, A_2, \ldots\}) = \{\bigsqcup_{i \in \mathcal{I}} A_i, \mathcal{J} \subseteq \mathbb{N}\}.$$

 $\mathcal{B}(\mathbb{R}) = \sigma(\{(a,b), -\infty \le a < b \le \infty\}).$

Proof.

Proof.

1. Existence of a σ -algebra:

Proof.

1. Existence of a σ -algebra:

$$2^\Omega\supset \Sigma$$

Existence of
$$\sigma(\Sigma)$$

Proof.

1. Existence of a σ -algebra:

$$2^\Omega\supset \Sigma$$

2. Construction of the minimum σ -algebra:

Proof.

1. Existence of a σ -algebra:

$$2^\Omega\supset \Sigma$$

2. Construction of the minimum σ -algebra:

$$\mathcal{F}_* := igcap_{\mathcal{F} \supset \Sigma \, - \, \sigma ext{-algebra}}$$

3. \mathcal{F}_* is σ -algebra:

• $\Omega \in \mathcal{F}$ for every \mathcal{F}

3. \mathcal{F}_* is σ -algebra:

• $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$;

- $\bullet \ \Omega \in \mathfrak{F} \ \text{for every} \ \mathfrak{F} \Rightarrow \Omega \in \mathfrak{F}_*;$
- $\bullet \ A \in \mathfrak{F}_*$

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$;
- $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every \mathcal{F}

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$;
- $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$ the same is true for \overline{A}

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$;
- $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$ the same is true for $\overline{A} \Rightarrow \overline{A} \in \mathcal{F}_*$

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$;
 - $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$ the same is true for $\overline{A} \Rightarrow \overline{A} \in \mathcal{F}_*$
 - $\bullet A_1, A_2, \ldots \in \mathfrak{F}_*$

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$:
 - $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$ the same is true for $\overline{A} \Rightarrow \overline{A} \in \mathcal{F}_*$
 - $A_1, A_2, \ldots \in \mathcal{F}_* \Rightarrow A_1, A_2, \ldots \in \mathcal{F}$ for every \mathcal{F}

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$:
 - $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$
 - the same is true for $\overline{A} \Rightarrow \overline{A} \in \mathcal{F}_*$
 - $A_1, A_2, \ldots \in \mathcal{F}_* \Rightarrow A_1, A_2, \ldots \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}$ for every \mathcal{F}

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$:
 - $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$
 - the same is true for $\overline{A} \Rightarrow \overline{A} \in \mathcal{F}_{\bullet}$
 - $A_1, A_2, \ldots \in \mathcal{F}_* \Rightarrow A_1, A_2, \ldots \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}_*$

3. \mathcal{F}_* is σ -algebra:

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$;
 - $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$ the same is true for $\overline{A} \Rightarrow \overline{A} \in \mathcal{F}_*$
 - $A_1, A_2, \ldots \in \mathcal{F}_* \Rightarrow A_1, A_2, \ldots \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}_*$

4. \mathcal{F}_* is minimum:

3. \mathcal{F}_* is σ -algebra:

- $\Omega \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow \Omega \in \mathcal{F}_*$;
 - $A \in \mathcal{F}_* \Rightarrow A \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow$ the same is true for $\overline{A} \Rightarrow \overline{A} \in \mathcal{F}_*$
 - $A_1, A_2, \ldots \in \mathcal{F}_* \Rightarrow A_1, A_2, \ldots \in \mathcal{F}$ for every $\mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}_*$ for every $\mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}_*$

4. \mathcal{F}_* is minimum:

If $\mathcal{F} \supseteq \Sigma$ — σ -algebra, then $\mathcal{F}_* \subseteq \mathcal{F}$.

Special probability measures on finite Ω

Classical probability:

$$\Omega = \{\omega_1, \ldots, \omega_n\}, \ \mathcal{F} = 2^{\Omega}, \ \mathsf{P}(A) = \frac{|A|}{n}$$

Special probability measures on finite Ω

Classical probability:

$$\Omega = \{\omega_1, \ldots, \omega_n\}, \ \mathcal{F} = 2^{\Omega}, \ \mathsf{P}(A) = rac{|A|}{n}$$

In finite cases, it is sufficient to define P on unit sets

Special probability measures on finite Ω

Classical probability:

$$\Omega = \{\omega_1, \dots, \omega_n\}, \ \mathcal{F} = 2^{\Omega}, \ \mathsf{P}(A) = \frac{|A|}{n}$$
In finite cases, it is sufficient to define P

Bernoulli scheme:

$$\Omega = \{0,1\}^n, \ \mathcal{F} = 2^{\Omega}, \ \mathsf{P}(\{(x_1,\ldots,x_n)\}) = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

Geometric probability

 μ — the Lebesgue measure on \mathbb{R}^n

Geometric probability

$$\mu$$
 — the Lebesgue measure on \mathbb{R}^n

$$\mathcal{B}(\mathbb{R}^n) := \sigma(B_1 \times \ldots \times B_n, B_i \in \mathcal{B}(\mathbb{R}))$$

Geometric probability

$$\mu$$
 — the Lebesgue measure on \mathbb{R}^n

$$\mathcal{B}(\mathbb{R}^n) := \sigma(B_1 \times \ldots \times B_n, \ B_i \in \mathcal{B}(\mathbb{R}))$$

$$\Omega \in \mathcal{B}(\mathbb{R}^n)$$
 such that $\mu(\Omega) < \infty$

Geometric probability

$$\mu$$
 — the Lebesgue measure on \mathbb{R}^n

$$\mathfrak{B}(\mathbb{R}^n) := \sigma(B_1 \times \ldots \times B_n, \ B_i \in \mathfrak{B}(\mathbb{R}))$$

$$\Omega \in \mathcal{B}(\mathbb{R}^n)$$
 such that $\mu(\Omega) < \infty$

$${\mathfrak F}={\mathfrak B}({\mathbb R}^n)\cap \Omega$$

Geometric probability

$$\mu$$
 — the Lebesgue measure on \mathbb{R}^n

$$\mathcal{B}(\mathbb{R}^n) := \sigma(B_1 \times \ldots \times B_n, B_i \in \mathcal{B}(\mathbb{R}))$$

$$\Omega\in {\mathbb B}({\mathbb R}^n)$$
 such that $\mu(\Omega)<\infty$

$${\mathfrak F}={\mathfrak B}({\mathbb R}^n)\cap\Omega$$

$$\mathsf{P}(\mathsf{A}) = \frac{\mu(\mathsf{A})}{\mu(\Omega)}$$

Chance of meeting in a bar

Alice and Bob decided to meet in a bar on a given day.

Each one has to come in the bar at a random time between 12:00 and 13:00 and wait for another one for 15 minutes.

What is the probability that they will meet?

Chance of meeting in a bar

Solution:

$$\Omega = [0,1]^2 \subset \mathbb{R}^2$$
,

A is colored black,

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{1 - 2 \cdot \frac{9}{32}}{1} = \frac{7}{16}.$$

Consider the vertex set $V = \{1, ..., n\}$

Consider the vertex set $V = \{1, ..., n\}$

Binomial random graph

— Ω — the set of all undirected graphs without loops and multiple edges on V,

Consider the vertex set $V = \{1, ..., n\}$

Binomial random graph

—
$$\Omega$$
 — the set of all undirected graphs without loops and multiple edges on V ,

—
$$\mathcal{F}=2^{\Omega}$$
,

Consider the vertex set $V = \{1, ..., n\}$

Binomial random graph

—
$$\Omega$$
 — the set of all undirected graphs without loops and multiple edges on V ,

-
$$P(\{G=(V,E)\}) = p^{|E|}(1-p)^{\binom{n}{2}-|E|}$$
.

Consider the vertex set $V = \{1, ..., n\}$

Binomial random graph

—
$$\Omega$$
 — the set of all undirected graphs without loops and multiple edges on V ,

$$-\mathfrak{F}=2^{\Omega},$$
 $-\mathrm{P}(\{G=(V,E)\})=p^{|E|}(1-p)^{\binom{n}{2}-|E|}.$

Every edge appears *independently* with probability *p*

Consider the vertex set $V = \{1, ..., n\}$

Consider the vertex set $V = \{1, ..., n\}$

Uniform random graph:

— Ω — the set of all undirected graphs without loops and multiple edges on V with exactly m edges,

Consider the vertex set $V = \{1, ..., n\}$

Uniform random graph:

— Ω — the set of all undirected graphs without loops and multiple edges on V with exactly m edges,

$$-\mathcal{F}=2^{\Omega},$$

Consider the vertex set $V = \{1, ..., n\}$

Uniform random graph:

— Ω — the set of all undirected graphs without loops and multiple edges on V with exactly m edges,

—
$$\mathcal{F}=2^{\Omega}$$
 ,

$$- P(G) = 1/\binom{\binom{n}{2}}{m}.$$

Consider the vertex set $V = \{1, \dots, n\}$

Uniform random graph:

—
$$\Omega$$
 — the set of all undirected graphs without loops and multiple edges on V with exactly m edges,

—
$$\mathcal{F}=2^{\Omega}$$
 ,

$$-- P(G) = 1/\binom{\binom{n}{2}}{m}.$$

Classical probability

1.
$$P(\emptyset) = 0$$

1.
$$P(\emptyset) = 0$$

Proof.
$$\emptyset = \emptyset \sqcup \emptyset$$

1.
$$P(\emptyset) = 0$$

Proof.

$$\emptyset = \emptyset \sqcup \emptyset \Rightarrow$$

 $P(\emptyset) = P(\emptyset) + P(\emptyset)$

1.
$$P(\emptyset) = 0$$

$$Proof.$$
 $\emptyset = \emptyset \sqcup \emptyset \Rightarrow$
 $P(\emptyset) = P(\emptyset) + P(\emptyset) \Rightarrow$
 $P(\emptyset) = 0 \quad \Box$

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$A \cup B = (A \setminus B) \sqcup B$$

Proof.

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Proof.

$$A \cup B = (A \setminus B) \sqcup B \Rightarrow$$

 $P(A \cup B) = P(A \setminus B) + P(B);$

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A \cup B) = P(A \setminus B) + P(B);$

 $(A \setminus B) \sqcup (A \cap B) = A$

$$A \cup B = (A \setminus B) \sqcup B \Rightarrow$$

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$A \cup B = (A \setminus B) \sqcup B \Rightarrow$$

 $P(A \cup B) = P(A \setminus B) + P(B);$

$$(A \setminus B) \sqcup (A \cap B) = A \Rightarrow$$

$$(A \setminus B) \sqcup (A \cap B) = A \Rightarrow$$

 $P(A \setminus B) = P(A) - P(A \cap B) \square$

3. $B \subset A \Rightarrow P(B) \leq P(A)$

3.
$$B \subset A \Rightarrow P(B) \leq P(A)$$

$$A = (A \setminus B) \sqcup B$$

Proof.

3.
$$B \subset A \Rightarrow P(B) \leq P(A)$$

Proof.

$$A = (A \setminus B) \sqcup B \Rightarrow$$

 $P(A) = P(A \setminus B) + P(B) \ge P(B)$

4.
$$P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$$

4.
$$P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$$

$$B_i = A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \subseteq A_i$$

4.
$$P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$$

$$B_i = A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \subseteq A_i$$

$$\mathsf{P}(A_1 \cup A_2 \cup \ldots) = \mathsf{P}(B_1 \cup B_2 \cup \ldots) =$$

4.
$$P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$$

$$B_i = A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \subseteq A_i$$

 $P(B_1) + P(B_2) + ... <$

$$P(A_1 \cup A_2 \cup \ldots) = P(B_1 \cup B_2 \cup \ldots) =$$

4.
$$P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$$

$$B_i = A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \subseteq A_i$$

 $P(A_1 \cup A_2 \cup \ldots) = P(B_1 \cup B_2 \cup \ldots)$

$$P(A_1 \cup A_2 \cup ...) = P(B_1 \cup B_2 \cup ...) = P(B_1) + P(B_2) + ... \le P(A_1) + P(A_2) + ... \square$$

Let \mathcal{F} be a σ -algebra of subsets of Ω , $P: \mathcal{F} \to [0,1]$ be such that

- $ightharpoonup P(\Omega) = 1$,
- ▶ $P(A \sqcup B) = P(A) + P(B)$ whenever $A, B \in \mathcal{F}$ are disjoint.

The following four properties are equivalent:

The following four properties are equivalent:

1. P — probability;

The following four properties are equivalent:

- 1. P probability;
 - **2.** for every sequence $A_n \in \mathcal{F}$ such that

$$A_n \uparrow A \ (A_n \subseteq A_{n+1}, \ A = \cup A_n),$$

 $P(A) = \lim_{n \to \infty} P(A_n);$

The following four properties are equivalent:

- 1. P probability:
- **2.** for every sequence $A_n \in \mathcal{F}$ such that

$$A_n \uparrow A \ (A_n \subseteq A_{n+1}, \ A = \cup A_n),$$

 $P(A) = \lim_{n \to \infty} P(A_n);$

- **3.** for every sequence $A_n \in \mathcal{F}$ such that
- $A_n \downarrow A \ (A_n \supset A_{n+1}, \ A = \cap A_n),$ $P(A) = \lim_{n \to \infty} P(A_n)$:

The following four properties are equivalent:

- P probability;
- **2.** for every sequence $A_n \in \mathcal{F}$ such that $A_n \uparrow A$ $(A_n \subseteq A_{n+1}, A = \bigcup A_n)$,

$$P(A) = \lim_{n \to \infty} P(A_n);$$

3. for every sequence $A_n \in \mathcal{F}$ such that $A_n \downarrow A$ $(A_n \supseteq A_{n+1}, A = \cap A_n)$,

4. for every sequence
$$A_n \in \mathcal{F}$$
 such that $A_n \downarrow \emptyset$, $\lim_{n \to \infty} P(A_n) = 0$.

 $P(A) = \lim_{n \to \infty} P(A_n)$:

1)⇒2)

$$B_n = A_n \setminus A_{n-1}, A_0 = \varnothing.$$

1)⇒2)

$$B_n = A_n \setminus A_{n-1}$$
, $A_0 = \emptyset$.
 $B_n \in \mathcal{F}$ are disjoint and $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$

 $B_n = A_n \setminus A_{n-1}, A_0 = \emptyset.$

 $B_n \in \mathcal{F}$ are disjoint and $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$

 $\mathsf{P}(A) = \sum_{i=1}^\infty \mathsf{P}(B_i) = \sum_{i=1}^\infty \mathsf{P}(A_i - A_{i-1}) = 0$

 $\lim_{n\to\infty}\sum_{i=1}(\mathsf{P}(A_i)-\mathsf{P}(A_{i-1}))=\lim_{n\to\infty}\mathsf{P}(A_n).$

The proof

 $P\left(\bigcap_{n=1}^{\infty}A_{n}\right)=P\left(\bigcap_{n=1}^{\infty}\overline{A}_{n}\right)=1-P\left(\bigcup_{n=1}^{\infty}\overline{A}_{n}\right);$

2)⇒3)

 $P\left(\bigcap_{n=1}^{\infty}A_{n}\right)=P\left(\bigcap_{n=1}^{\infty}\overline{A}_{n}\right)=1-P\left(\bigcup_{n=1}^{\infty}\overline{A}_{n}\right);$

 $\mathsf{P}\left(igcup_{n=1}^{\infty}\overline{A}_{n}
ight)=\lim_{n o\infty}\mathsf{P}(\overline{A}_{n})=$

 $\lim_{n\to\infty}(1-\mathsf{P}(A_n))=1-\lim_{n\to\infty}\mathsf{P}(A_n).$

 $3)\Rightarrow 4)$ because 4) is special case of 3).

4)⇒1)

$$A_1, A_2, \ldots \in \mathfrak{F}, \bigsqcup_{i=1}^{\infty} A_i = A,$$

4)⇒**1**)

$$A_1, A_2, \ldots \in \mathcal{F}, \bigsqcup_{i=1}^{\infty} A_i = A, \quad B_n = \bigcup_{i=n}^{\infty} A_i$$

$$A_1, A_2, \ldots \in \mathcal{F}, \bigsqcup_{i=1}^{\infty} A_i = A, \quad B_n = \bigcup_{i=n}^{\infty} A_i$$

 $\blacktriangleright B_n = A \setminus (A_1 \cup \ldots \cup A_{n-1}) \in \mathfrak{F},$

▶ $B_n \supseteq B_{n+1}$, $\bigcap_{i=1}^{\infty} B_i = \emptyset$.

4)⇒1)

$$\Rightarrow$$
1

$$A_1, A_2, \ldots \in \mathfrak{F}, \bigsqcup_{i=1}^{\infty} A_i = A, \quad B_n = \bigcup_{i=n}^{\infty} A_i$$

 $0 = \lim_{n \to \infty} \mathsf{P}(B_n) = \lim_{n \to \infty} \left(\mathsf{P}(A) - \mathsf{P}\left(\bigcup_{i=1}^{n-1} A_i\right) \right)$

 $= P(A) - \sum P(A_i).$

$$B_n = A \setminus (A_1 \cup \ldots \cup A_{n-1}) \in \mathcal{F},$$

 $B_n \supseteq B_{n+1}, \bigcap_{i=1}^{\infty} B_i = \varnothing.$