CMSC733: Computer Processing of Pictorial Information

Homework 1: AutoCalib!

Chahat Deep Singh Robotics Graduate Student University of Maryland Email: chahat@umd.edu

Abstract—The following work is focused on easily calibrating a camera using Zhang's technique. The input required for the algorithm to work is only a few observation (at least two) of a planar pattern such as a checkerboard without even knowing the relative motion of the camera-pattern environment.

I. Introduction

The following is the pipeline from Zhang's paper. [1]

II. THE ALGORITHM

A. Estimating Homography between the Plane and its Image

$$s\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = A\begin{bmatrix} r_1 & r_2 & r_3 & t \end{bmatrix}\begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = A\begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix}\begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

where r_1 , r_2 and r_3 form the rotational matrix R, t is the translation matrix, m is the 2D point denoted by $m = \begin{bmatrix} u & v \end{bmatrix}^T$ and X, Y and Z determines the position of the object in 3D space. In above equation, we assume the model plane on Z = 0 (Without any loss of generality).

Therefore, the homography H can be estimated by: $s\widetilde{m} = H\widetilde{M}$ where $H = A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix}$

For other common notations, refer to [1]. Use the above equations and estimate $K,\ R$ and t

B. Maximum-Likelihood Estimation

In this, we try to minimize the non-linear geometric error:

$$\Sigma^n \Sigma^m ||m_{ij} - \hat{m}(A, R_i, t_i, M_j)||^2$$

III. CONCLUSION

Got the reprojection error/ measurement of 0.529763 pixels.

REFERENCES

[1] Zhengyou Zhang. A flexible new technique for camera calibration. *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLI-GENCE, VOL. 22, NO. 11, NOV 2000.*

Fig. 1. Camera Posititon and direction with 3D points

			First-Order		Norm of	
teration	Func-count	Residual	optimality	Lambda	step	
0	99	5707.27	1.83e+05	0.01		
1	198	373.98	3.67e+03	0.001	13.213	
2	297	363.497	5.72e+03	0.0001	7.64743	
1 2 3 4	397	361.916	986	0.001	1.54595	
4	496	361.894	181	0.0001	0.447037	
5 6 7	596	361.893	70.3	0.001	0.244208	
6	695	361.893	8.56	0.0001	0.23929	
7	795	361.893	1.03	0.001	0.236687	
8 9	894	361.893	0.152	0.0001	0.141395	
	995	361.893	0.00802	0.01	0.0187782	
10	1095	361.893	0.00105	0.1	0.00200958	
11	1195	361.893	0.00017	1	0.00021198	
12	1297	361.893	0.000274	1000	1.96695e-07	
13	1396	361.893	0.000154	100	2.45921e-07	
14	1504	361.893	0.000145	le+11	3.72756e-15	
15	1605	361.893	0.000145	le+13	3.67101e-17	
projecti	on error per	measurement:	0.529763 pixel(s)			

Fig. 2. Reprojection Error