Autor: Marcin Sitko

Sprawozdanie – NUM2

Macierz A1

	_「 2.34332898	-0.11253278	-0.01485349	0.33316649	ן 0.71319625
	-0.11253278	1.67773628	-0.32678856	-0.31118836	-0.43342631
$A_1 =$	-0.01485349	-0.32678856	2.66011353	0.85462464	0.16698798
	0.33316649	-0.31118836	0.85462464	1.54788582	0.32269197
	L 0.71319625	-0.43342631	0.16698798	0.32269197	3.27093538

Macierz A2

	г 2.34065520	-0.05353743	0.00237792	0.32944082	0.72776588 ๅ
	-0.05353743	0.37604149	-0.70698859	-0.22898376	-0.75489595
$A_2 =$	0.00237792	-0.70698859	2.54906441	0.87863502	0.07309288
	0.32944082	-0.22898376	0.87863502	1.54269444	0.34299341
	L 0.72776588	-0.75489595	0.07309288	0.34299341	3.19154447

Wektor b

$$b = \begin{bmatrix} 3.55652063354463 \\ -1.86337418741501 \\ 5.84125684808554 \\ -1.74587299057388 \\ 0.84299677124244 \end{bmatrix}$$

Obliczenie wektora b':

$$b' = b + (10^{-5}, 0, 0, 0, 0)^T$$

Wektor b'

$$b' = \begin{bmatrix} 3.55653063354463 \\ -1.86337418741501 \\ 5.84125684808554 \\ -1.74587299057388 \\ 0.84299677124244 \end{bmatrix}$$

Obliczanie Równań macierzowych

$$A_i x_i = b \text{ oraz } A_i x_i = b' \text{ dla } i = 1, 2$$

Do obliczenia niewiadomego wektora X_i używam biblioteki numpy oraz zawierającej się w niej funkcji $linalg.\ solve(par1,par2).$

Funkcja numpy. linalg. solve(par1, par2) służy do rozwiązywania równań macierzowych postaci Ax = b Gdzie parametry funkcji: par1 oraz par2 są to odpowiednio : macierz A oraz wektor b

Macierz A_1

$$A_i x_i = b$$

i = 1

Uzyskany wynik: X₁

$$X_1 = \begin{bmatrix} 2.03163246 \\ -1.03652186 \\ 3.22032664 \\ -3.52251753 \\ -0.1394951 \end{bmatrix}$$

$$A_i x_i = b'$$

i = 1

$$X_1' = \begin{bmatrix} 2.03163717 \\ -1.0365219 \\ 3.22032706 \\ -3.52251858 \\ -0.13949605 \end{bmatrix}$$

Z powyższych informacji wynika, że mała zmiana wprowadzona w wektorze wyrazów wolnych dla macierzy A_1 nie wpływa znacząco na końcowy wynik równania macierzowe Ax=b

Różnica wektorów $X_1 - X_1'$ wynosi:

$$X_1 - X_1' = \begin{bmatrix} -4.70704255e - 6\\ 4.36085246e - 8\\ -4.19696175e - 7\\ 1.05571402e - 6\\ 9.49379793e - 7 \end{bmatrix}$$

Widać ze dla macierzy A_1 po minimalnej zmianie wektora wyrazów wolnych, poszczególne składowe wektora X_1-X_1' są Rzędu e-6 i mniejsze, świadczy to o stosunkowo małych różnicach miedzy wynikami.

Pokazuję to , także że macierz A_1 może być dobrze uwarunkowana.

Postanowiłem sprawdzić współczynnik uwarunkowania macierzy $A_{\mathbf{1}}$ Posłużyłem się następującym wzorem:

$$\kappa = \frac{\max_{i} |\lambda_{i}|}{\min_{i} |\lambda_{i}|},$$

Ponieważ macierz A_1 Jest macierzą symetryczną rzeczywistą, można zastosować powyższy wzór.

Po Wykonaniu obliczeń otrzymałem:

$$K_1 = 4.000000025064922$$

Jest to bardzo niski współczynnik uwarunkowania macierzy

Sprawdziłem także poprawność moich obliczeń stosując wbudowaną funkcje biblioteki numpy służącą właśnie do obliczania współczynnika uwarunkowania macierzy numpy.linalg.cond(a) gdzie parametr a jest to macierz. Porównanie wyników można ujrzeć wybierając opcje 3) Dodatkowe z menu, programu zamieszczonego wraz z zadaniem

Macierz A_2

$$A_i x_i = b$$

i = 2

Uzyskany wynik: X₂

$$X_2 = \begin{bmatrix} 1.99998045 \\ -0.33814056 \\ 3.42431038 \\ -3.56662167 \\ 0.0329788 \end{bmatrix}$$

$$A_i x_i = b'$$

i = 2

Uzyskany wynik X_2'

$$X_2' = \begin{bmatrix} 3.42873475 \\ -31.86258864 \\ -5.78337449 \\ -1.57579144 \\ -7.7523748 \end{bmatrix}$$

Z powyższych informacji wynika, że mała zmiana wprowadzona w wektorze wyrazów wolnych dla macierzy A_2 ma diametralny wpływ na wynik równania macierzowego Ax=b

Różnica wektorów $X_2 - X_2'$ wynosi:

$$X_2 - X_2' = \begin{bmatrix} -1.4287543 \\ 31.52444808 \\ 9.20768487 \\ -1.99083023 \\ 7.78535361 \end{bmatrix}$$

Oznaczać to może ,że macierz A_2 jest źle uwarunkowana, współczynnik uwarunkowania macierzy A_2 powinien być znacznie większy od współczynnika uwarunkowania macierzy A_1 .

Po dokonaniu obliczeń otrzymałem:

$$K_2 = 320612866.41194546$$

Słownie w zaokrągleniu do części ułamkowych: 320 milionów 612 tysięcy 866

Można zauważyć, że współczynnik uwarunkowania macierzy A_2 jest ok. 80 Milionów razy większy od współczynnika uwarunkowania macierzy A_1 , Pokrywa się to z naszymi wynikami, po wprowadzeniu minimalnej zmiany w wektorze wyrazów wolnych.

Norma Euklidesowa Różnicy rozwiązań równań wektorowych

$$\Delta_1 = ||x_1 - x_1'||_2 = 4.934587135822541e - 06$$

$$\Delta_2 = ||x_2 - x_2'||_2 = 33.84063773584277$$

Różnica wartości norm
$$\Delta_2$$
 $oraz$ Δ_1 $\Delta_1 - \Delta_2 = -33.84063280125563$

Normę Wektora można interpretować jako funkcje mierzącą długość tego wektora tak więc:

 $\Delta_2~oraz~\Delta_1$ pokazują nam jak małe zaburzenie wektora wyrazów wolnych wpływa na "odległość" miedzy wynikami można to także interpretować jako "błąd" miedzy dwoma wektorami . widać ze Δ_2 jest znacznie większa co oznacza ze dla macierzy A_2 wprowadzenie małej zmiany w wektorze wyrazów wolnych powoduje znaczny wzrost "Błędu" miedzy $x_2~oraz~x_2'$ a to z kolei oznacza, znaczącą różnice wartości składowych wektorów $x_2~oraz~x_2'$

Ogólna różnica $\Delta_1-\Delta_2$ pokazuje jak bardzo błędy po zaburzeniu wektora wyrazów wolnych wpływają na wynik równania macierzowego Ax=b macierze A_1 oraz A_2 różnią się od siebie, gdyby obydwie macierze były dobrze uwarunkowane tak jest to w przypadku macierzy A_1 , to $\Delta_1-\Delta_2$ była bardzo mała natomiast widać ,że A_2 Bardzo zaburzyła wynik I dlatego różnica $\Delta_1-\Delta_2$ wyszła dosyć duża w porównaniu do normy Δ_1