Overview of the Related Concepts

Lecture notes based on "Elements of the theory of computation" by H.R. Lewis and C. H. Papadimitriou.

Finite and Infinite Sets

Set: collection of objects

Equinumerous: Sets A and B are equinumerous if there exists a bijection $f: A \to B$ (one-to-one and onto)

Finite: A set is finite if it is equinumerous with $\{1, \ldots, n\}$ for some natural number n.

Infinite: A set is infinite if it is not finite. E.g. natural numbers, the set of integers, set of real numbers, etc.

Countably infinite: A set is countably infinite if it is equinumerous with \mathbb{N} .

Uncountable: A set is uncountable, if it is not countable.

To show that a set A is countably infinite, define a bijection between A and N. Enumerate set $A = \{a_0, a_1, \ldots, \}, f : \mathbb{N} \to A, f(i) = a_i$.

Example 1 Show that the following sets are countable.

- Union two countably infinite sets.
- Union of countably infinite collection of countably infinite sets.

See Problems 1.41, 1.42 (and the rest).

Three Fundamental Proof Techniques

- The principle of mathematical induction.
- The pigeon hole principle.
- The diagonalization principle.

The principle of mathematical induction: Let A be a set of natural numbers such that

- 1. $0 \in A$.
- 2. For each $n \in \mathbb{N}$, if $\{0, 1, \dots, n\} \subseteq A$, then $n + 1 \in A$.

Then $A = \mathbb{N}$. (Prove it by contradiction.)

The goal is to prove that "For all natural numbers $n \in \mathbb{N}$, property P is true". The MI principle is applied to the set $A = \{n \mid P \text{ is true for } n\}$.

- 1. Basis step: Show that P is true for 0. $(0 \in A)$
- 2. **Induction hypothesis:** For an arbitrary $n \in \mathbb{N}$, assume that P holds for each $\{0, \ldots, n\}$. $(\{0, 1, \ldots, n\} \subseteq A)$
- 3. **Induction:** Show that P is true for n + 1. $(n + 1 \in A)$

Then, by induction principle, $A = \mathbb{N}$, thus, P is true for any $n \in \mathbb{N}$.

Example 2 Show by induction that $3^n - 1$ is divisible by 2 for any $n \ge 1$.

The pigeonhole principle: If A and B are finite sets with |A| > |B|, then there is no one-to-one function from A to B.

Proof by MI on n = |B|.

Recap: $A \neq \emptyset$, $R \subseteq A \times A$ is a binary relation on A. A path of length $n \geq 1$ in the relation is a finite sequence (a_1, \ldots, a_n) such that $(a_i, a_{i+1}) \in R$ for $i = 1, \ldots, n-1$. (a_1, \ldots, a_n) is a cycle if all a_i are distinct and $(a_n, a_1) \in R$.

Theorem 1 Let R be a binary relation on a finite set A. If there is a path from a to b in R, then there is a path of length at most |A|.

Proof by contradiction and Pigeonhole principle.

The diagonalization principle: Let R be a binary relation on a set A, and let the diagonal set D for R be defined as $D = \{a \mid a \in A \text{ and } (a, a) \notin R\}$. For each $a \in A$, let $R_a = \{b \mid b \in A \text{ and } (a, b) \in R\}$. Then D is distinct from each R_a .

The diagonalization principle is used to prove that a set is uncountable. *The idea:* for any enumeration, there exists an element that was not in the list.

Theorem 2 The set $2^{\mathbb{N}}$ is uncountable.

Proof by diagonalization principle.

Example 3 Let A, B, C be countably infinite sets and X, Y, Z be uncountable sets. For each of the following state whether it is countable or uncountable: $A \cup B \cup C, X \cup Y, A \cup X, A \times B, A \times X, X \times Y, 2^A$

Theorem 3 For any non-empty finite set A, the set A^* of all finite sequences formed out of A is countably infinite.

Proof: Show that there exists an enumeration.

See problems 1.5.2, 1.5.3, 1.5.7, 1.5.8, 1.5.11 (and the rest).

Closures and Algorithms

Definition 1 Let R be a binary relation on A. R^* is called the reflexive, transitive closure of R if

- $R \subseteq R^{\star}$
- R^* is reflexive and transitive
- R^* is the smallest set with these properties.

Definition 2 Let R be a binary relation on A. The reflexive transitive closure of R is the relation:

$$R^* = \{(a, b) \in A \times A \mid \text{ there is a path from a to b in } R\}$$

```
Initially R^* = \{\}
for i = 1, ..., |A|
for each (b_1, ..., b_i) \in A^i do
if b_1, ..., b_i is a path in R, then add (b_1, b_i) to R^*
```

Definition 3 Let D be a set, let $n \ge 0$, and let $R \subseteq D^{n+1}$ be a (n+1)-ary relation on D. Then a subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever

- $b_1, \ldots, b_n \in B$ and
- $(b_1, \ldots, b_n, b_{n+1}) \in R$

Any property of the form "the set B is closed under relations R_1, \ldots, R_m " is called a closure property of B.

Example 4 Is summation (ternary relation) a closure property of \mathbb{N} , what about division?

For a set A, the set S satisfies the **inclusion property associated with** A if $A \subseteq S$. Any inclusion property is a closure property by taking R to be unary relation $\{(a) \mid a \in A\}$.

Relations are sets, so we can state one relation is closed under another.

Transitivity is a closure property: Let D be a set. $R \subseteq D \times D$ be a binary relation. TP: if $(a,b),(b,c) \in R$, then $(a,c) \in R$. $Q = \{((a,b),(b,c),(a,c)) \mid a,b,c \in D\}$. R is closed under Q iff R is transitive.

Reflexivity is a closure property: Let $D \neq \emptyset$. $Q' = \{(a, a) \mid a \in D\}$. R is closed under Q' iff R is reflexive.

Theorem 4 Let P be a closure property defined by relations R_1, \ldots, R_m on a set D. Let $A \subseteq D$. Then there exists a unique set B such that $A \subseteq B$ and B has property P.

 \mathbb{N} is the closure under addition of the set $\{0,1\}$. \mathbb{N} is closed under addition and multiplication, but not subtraction.

Prove that R^* from Def. 2 is a reflexive transitive closure. See problems 1.6.1-1.6.5 (and the rest)