Exercise (Weak knowledge-extractor for Schnorr protocol). Let \mathbb{G} be a discrete logarithm group with a prime number q elements. Show that the following knowledge-extractor constructor

$$\mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi)$$

$$\begin{bmatrix} \omega \leftarrow \Omega \\ \alpha \leftarrow \mathcal{P}_*(\phi, \omega) \\ \beta_1 \leftarrow \mathbb{Z}_q \\ \gamma_1 \leftarrow \mathcal{P}_*(\beta_1) \\ \alpha \leftarrow \mathcal{P}_*(\phi, \omega) \\ \beta_2 \leftarrow \mathbb{Z}_q \\ \gamma_2 \leftarrow \mathcal{P}_*(\beta_2) \\ \hat{x} \leftarrow \frac{\gamma_2 - \gamma_1}{\beta_2 - \beta_1} \\ return \hat{x} \end{bmatrix}$$

that restarts the prover with the same input and randomness only once is suitable for the Schnorr protocol

and satisfies the following weak knowledge-extraction guarantee:

$$\forall \phi \in \{0,1\}^* \ \forall x \in \mathbb{Z}_q : \quad \Pr\left[\mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi) = 1\right] \ge \Pr\left[\mathcal{V}^{\mathcal{P}_*(\phi)}(g^x) = 1\right]^2 - \frac{1}{q} \ .$$

Estimate the running time of the knowledge extractor and show that Schnorr identification protocol is secure if the underlying group is (t, ε) -secure Diffie-Hellman group.

Solution. For the proof let us first establish the weak knowledge-extraction bound and then use this bound for estimating the probability that a malicious prover without the explicit knowledge of x will succeed in the Schnorr identification protocol on average over all possible values of x.

Weak knowledge-extraction. Let $\varepsilon(\phi, x)$ denote the probability of successful deception for fixed ϕ and x, i.e., the function $\varepsilon(\phi, x)$ is defined as follows

$$\varepsilon(\phi,x) = \Pr\left[\mathcal{V}^{\mathcal{P}_*(\phi)}(g^x) = 1\right] = \Pr\left[\alpha \leftarrow \mathcal{P}_*(\phi), \beta \leftarrow \mathbb{Z}_q, \gamma \leftarrow \mathcal{P}_*(\beta) : g^{\gamma} = \alpha y^{\beta}\right] .$$

Now lets look what has to happen for the knowledge extractor to succeed. The extraction succeeds only if both transcripts produced by \mathcal{K} are valid and $\beta_1 \neq \beta_2$. If one of those conditions is not met, the extraction might succeed due to share luck but we cannot count on it. See the event tree depicted below.

$$\mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi) \longrightarrow \gamma_1 \leftarrow \mathcal{P}_*(\beta_1) \xrightarrow{g^{\gamma_1} = \alpha y^{\beta_1}} \gamma_2 \leftarrow \mathcal{P}_*(\beta_2) \xrightarrow{g^{\gamma_2} = \alpha y^{\beta_2}} \bigcirc \xrightarrow{\beta_1 \neq \beta_2} \text{Success}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

As \mathcal{K} executes two independent protocol runs between honest verifier and malicious prover \mathcal{P}_*

$$\Pr\left[g^{\gamma_1} = \alpha y^{\beta_1}\right] = \varepsilon(\phi, x) = \Pr\left[g^{\gamma_2} = \alpha y^{\beta_2}\right]$$

It is important to note that the event $[\beta_1 \neq \beta_2]$ is not independent of the event $[g^{\gamma_1} = \alpha y^{\beta_1}] \wedge [g^{\gamma_2} = \alpha y^{\beta_2}]$. For instance, the prover might succeed only if $\beta_i = 0$ then obviously $\beta_1 \neq \beta_2$ can be never met when the event $[g^{\gamma_1} = \alpha y^{\beta_1}] \wedge [g^{\gamma_2} = \alpha y^{\beta_2}]$ occurs while the event $\beta_1 \neq \beta_2$ is quite probable without restrictions:

$$\Pr\left[\beta_1 \neq \beta_2 | g^{\gamma_1} = \alpha y^{\beta_1} \land g^{\gamma_2} = \alpha y^{\beta_2}\right] \neq \Pr\left[\beta_1 \neq \beta_2\right]$$

Consequently, we cannot use the standard decomposition for estimating the success:

$$\Pr[\text{Success}] = \varepsilon(\phi, x)\varepsilon(\phi, x)\Pr\left[\beta_1 \neq \beta_2|g^{\gamma_1} = \alpha y^{\beta_1} \land g^{\gamma_2} = \alpha y^{\beta_2}\right]$$

since we have no idea how to lower bound the last conditional probability. Thus, we have to rely on much cruder formula

$$\Pr[\text{Success}] = \Pr\left[g^{\gamma_1} = \alpha y^{\beta_1}\right] \Pr\left[g^{\gamma_2} = \alpha y^{\beta_2} \land \beta_1 \neq \beta_2 | g^{\gamma_1} = \alpha y^{\beta_1}\right] .$$

Due to the basic property of probabilities

$$\Pr\left[A \wedge B\right] \geq \Pr\left[A\right] - \Pr\left[\neg B\right]$$

we can lower bound the second term

$$\Pr\left[g^{\gamma_2} = \alpha y^{\beta_2} \wedge \beta_1 \neq \beta_2 | g^{\gamma_1} = \alpha y^{\beta_1}\right] \geq \Pr\left[g^{\gamma_2} = \alpha y^{\beta_2} | g^{\gamma_1} = \alpha y^{\beta_1}\right] - \Pr\left[\beta_1 = \beta_2 | g^{\gamma_1} = \alpha y^{\beta_1}\right].$$

The latter allows us to proceed as by the construction the event $[g^{\gamma_2} = \alpha y^{\beta_2}]$ is independent of $[g^{\gamma_1} = \alpha y^{\beta_1}]$. Similarly the event $[\beta_1 = \beta_2]$ is independent of $[g^{\gamma_1} = \alpha y^{\beta_1}]$. Consequently, we get

$$\Pr\left[g^{\gamma_2} = \alpha y^{\beta_2} \wedge \beta_1 \neq \beta_2 | g^{\gamma_1} = \alpha y^{\beta_1}\right] \geq \Pr\left[g^{\gamma_2} = \alpha y^{\beta_2}\right] - \Pr\left[\beta_1 = \beta_2\right] \geq \varepsilon(\phi, x) - \frac{1}{a}$$

and

$$\Pr\left[\mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi) = 1\right] \ge \Pr\left[\text{SUCCESS}\right] \ge \varepsilon(\phi, x) \left(\varepsilon(\phi, x) - \frac{1}{q}\right) \ge \varepsilon(\phi, x)^2 - \frac{1}{q}.$$

As a result, we have proved the desired claim

$$\forall \phi \in \{0,1\}^* \ \forall x \in \mathbb{Z}_q: \quad \Pr\left[\mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi) = 1\right] \ge \varepsilon(\phi,x)^2 - \frac{1}{q} = \Pr\left[\mathcal{V}^{\mathcal{P}_*(\phi)}(g^x) = 1\right]^2 - \frac{1}{q}.$$

SECURITY. Let $\varepsilon(\phi)$ denote the average success rate of a malicious prover \mathcal{P}_* that does not have access to the uniformly chosen exponent x. Then the weak knowledge extractor succeeds with the average probability

$$\Pr\left[x \leftarrow \mathbb{Z}_q : \mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi, x) = 1\right] = \sum_{x \in \mathbb{Z}_q} \frac{1}{q} \cdot \Pr\left[\mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi, x) = 1\right]$$

$$\geq \sum_{x \in \mathbb{Z}_q} \frac{1}{q} \cdot \left(\Pr\left[\mathcal{V}^{\mathcal{P}_*(\phi)}(g^x) = 1\right]^2 - \frac{1}{q}\right)$$

$$\geq \sum_{x \in \mathbb{Z}_q} \frac{1}{q} \cdot \Pr\left[\mathcal{V}^{\mathcal{P}_*(\phi)}(g^x) = 1\right]^2 - \frac{1}{q}.$$

As squaring is convex-cup function, we can apply Jensen's inequality

$$\Pr\left[x \leftarrow \mathbb{Z}_q : \mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi) = 1\right] \ge \left(\sum_{x \in \mathbb{Z}_q} \frac{1}{q} \cdot \Pr\left[\mathcal{V}^{\mathcal{P}_*(\phi)}(g^x) = 1\right]\right)^2 - \frac{1}{q} \ge \varepsilon(\phi)^2 - \frac{1}{q} .$$

The latter gives us handle to limit the average success $\varepsilon(\phi)$. Recall that the security of discrete logarithm problem is defined through the following game:

If the weak knowledge extractor has reasonable success peobability, we can use it as an adversary against discrete logarithm problem:

$$\mathcal{B}(g, g^x)$$

$$\begin{bmatrix} \phi \leftarrow (g, g^x) \\ \mathbf{return} \ \mathcal{K}^{\mathcal{P}_*(\cdot)}(\phi) \end{bmatrix}$$

By the construction, the running time of \mathcal{B} is $2t_{\mathcal{P}} + O(1)$, where $t_{\mathcal{P}}$ is the running time of malicious prover \mathcal{P}_* and the advantage against discrete logarithm is

$$\mathsf{Adv}^{\mathsf{dI}}_{\mathbb{G}}(\mathcal{B}) \ge \Pr\left[x \leftarrow \mathbb{Z}_q : \mathcal{V}^{\mathcal{P}_*(\phi)}(g^x) = 1\right]^2 - \frac{1}{q}$$
.

By imitting constant terms, we obtain the following security claim. If the underlying DL group is (t, ε) -secure then Schnorr identification protocol is $(\frac{t}{2}, \sqrt{\varepsilon + \frac{1}{q}})$ -secure.

COMMENT ON THE SECURITY PROOF. The presented reduction is not unique, as we could to ℓ rewindings instead of two in the weak knowledge extractor. Each choice of ℓ provides a different security guarantee. However, these are not directly comparable as the bounds on running times are different. Still, one could utilise all of them if instead of single security assumption (t, ε) we look hypothetical success profile:

$$\varepsilon(t) = \max_{\mathcal{B} \text{ is } t\text{-time}} \mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{B}) .$$

The result would be several competing upper bounds $\varepsilon_{\ell}^*(t)$ on the maximal average success against the Schnorr protocol on average. By combining them all we get a better bound.