Recommendation System

Introduction

RECOMMENDATION MODEL

- $\neg X = SET OF CUSTOMERS$
- \square **S** = SET OF **ITEMS**

□ Utility function $u: X \times S \rightarrow R$

- R = set of ratings
- R is a totally ordered set
- e.g., 0-5 stars, real number in [0,1]

注:x和s分别是用户和推荐项目,他们共同组成下面的 utility matrix,其中是用户对项目的评分。

	AVATAR	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

TYPES OF RECOMMENDATION

关键问题: utility matrix U 是稀疏的

- 大多数人没有对大多数项目进行评级
- 冷启动 (cold start): 新项目没有评级,新用户没有历史记录

推荐系统的方法:

- Content-based
- Collaborative

CONTENT-BASED RECOMMENDATION

主要思想:向客户X推荐的项目,类似于之前被X高度评价的项目。就是根据历史推送相似内容。

MATRIX FACTORIZATION

MATRIX FACTORIZATION

• User vectors:

$$(W_{u*})^T \in \mathbb{R}^r$$

· Item vectors:

$$H_{*i} \in \mathbb{R}^r$$

• Rating prediction:

$$V_{ui} = W_{u*}H_{*i}$$
$$= [WH]_{ui}$$

Figures from Koren et al. (2009)

• User vectors:

$$\mathbf{w}_u \in \mathbb{R}^r$$

• Item vectors:

$$\mathbf{h}_i \in \mathbb{R}^r$$

• Rating prediction:

$$v_{ui} = \mathbf{w}_u^T \mathbf{h}_i$$

注:我们有一个用户的评分矩阵 V,可以将 V 分解成用户向量 U 和项目向量 W,再根据这两个预测。

COLLABORATIVE FILTERING

对于用户X,找到N个评分与X的评分"相似"的其他用户。根据N中用户的评分估算X的评分。

FIND "SIMILAR" USERS

设 R_X 是用户X的评分矩阵。

JACCARD SIMILARITY MEASURE

- Jaccard distance = $1 \frac{|v_1 \cap v_2|}{|v_1 \cup v_2|}$
- Problem: Ignores the value of the rating

$$J(A,B) = 1 - rac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

注: 要计算 Jaccard distance, 会给定两个向量 A 和 B, 它们由 O 和 1 组成 (也可能由其他数组成)。其中 M_{01} 代表 A 是 O 但 B 是 1 (或 A 没评分 B 有评分) 的位置的个数; M_{10} 代表 A 是 1 但 B 是 O (或 A 有评分 B 没评分) 的位置的个数; M_{11} 代表 A 是 1 B 也是 1 (或 A 有评分 B 也有评分) 的位置的个数。

Cosine similarity measure

- sim (\mathbf{x}, \mathbf{y}) = arccos (\mathbf{r}, \mathbf{r}) = $\frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$
- Problem: Treats missing ratings as "negative"

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

Example

- Calculate the following distance measures between the two users with the different ratings, r1 = [0, 1, 1, 0, 0, 0, . 1], and r2 = [1, 0, 1, 0, 1, 0, 0].
- (a) What is the Jaccard distance between two users?
 (b) What is the Cosine distance between two user? (You can use arccos(x) to present the answer).
- (a), Jaccard distance = 1 1/5 = 4/5
- (b), Cosine distance = 1/3

Other example:

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
$\frac{B}{C}$	5	5	4				
C				2	4	5	
D		3					3

- □ Intuitively we want: sim(A, B) > sim(A, C)
- □ Jaccard similarity: 1/5 < 2/4
- □ Cosine similarity: 0.386 > 0.322

ITEM-ITEM COLLABORATIVE FILTERING

之前我们介绍的实际上是 user-user collaborative filtering,即使用用户之间的相似性。 而现在的 item-item,是使用项目之间的相似性。

- 对于项目 i, 查找其他类似项目
- 根据类似项目的评级估算项目 i 的评级
- 可以使用与 user-user 模型中相同的相似度量和预测函数

$$r_{xi} = rac{1}{k} \sum_{y \in N} r_{yi}$$

注:上式是一个预测评分的方法,即对相似的 N 个项目的评分求均值。

Example

对于下面这些数据,我们要估计出用户 5 对电影 1 的评分,即红色区域的值,这里 N=2,即选择两个最相似的项目进行预测。

	OSENS												
		1	2	3	4	5	6	7	8	9	10	11	12
·	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movie s	3	2	4		1	2		3		4	3	5	
Eν	4		2	4		5			4			2	
	5			4	თ	4	2					2	5
	6	1		3		3			2			4	

USERS

第一步, 计算项目之间的相似性。比如我们现在要求的是项目 1, 现在就有计算所有项目和它的相似性, 即求每一行和第一行的余弦距离。

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movie	<u>3</u>	2	4		1	2		3		4	3	5		0.41
Ē	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		0.59

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

1. Compute cosine similarities between rows

现在我们知道了项目 3 和 6 与 1 比较相似。我们就可以根据用户 5 对项目 3 和 6 的评分估计出 他对项目 1 的评分。

USERS													
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
movie s	<u>3</u>	2	4		1	2		3		4	თ	5	
Ε ν	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5}$$
 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

EVALUATION

可以将数据的一部分作为测试集。

Question

 Consider a dataset containing information about movies: genre, director and release decade. We also have information about which users have seen each movie. The rating for a user on a movie is either 0 or 1.

Movie	Release decade	Genre	Director	Total number of ratings
A	1970s	Humor	D_1	40
B	2010s	Humor	D_1	500
C	2000s	Action	D_2	300
D	1990s	Action	D_2	25
E	2010s	Humor	D_3	1

- Consider user U1=[2000s, D2, Humor]. We have some existing recommender system R that recommended the movie B to user U1.
- (a) Given the above dataset, which one(s) do you think R could be?
 - User-user collaborative filtering.
 - Item-item collaborative filtering
 - Content-based recommender system.
- (b) If some user U2 wants to watch a movie, under what conditions can our recommender system R recommend U2 a movie?
- (c) If R recommends a movie, how to do it? If R cannot recommend a movie, please explain why it cannot be recommended.
- (d) State any additional information R might want from U2 for predicting a movie for this user, if required.
- (a), User-user CF 和 item-item CF 都可以。