

WHAT IS CLAIMED IS

- 1 1. A complex single sideband zero IF down-converter frequency demodulator or
 2 frequency discriminator/comparator, comprising:
 3 means for receiving and splitting a local oscillator (LO) signal of frequency ω_0 to two
 4 components: the in-phase component and the quadrature component;
 5 means for receiving and splitting an input signal of carrier frequency ω_c to two
 6 components: the in-phase component and the quadrature component;
 7 means for multiplying each one of the said in-phase and quadrature LO signal
 8 components with each one of the said in-phase and quadrature input signal
 9 components, for generating a total of four different converted input signals;
 10 means for combining (adding or subtracting) in two pairs the said four converted
 11 signals, producing two lower single sideband signals: the in-phase signal
 12 $I^-(t)$ and the quadrature signal $Q^-(t)$;
 13 means for delaying each of the said in-phase $I^-(t)$ and quadrature $Q^-(t)$ signals by
 14 substantially same time delay τ , providing respective delayed baseband
 15 signals $I^-(t-\tau)$ and $Q^-(t-\tau)$;
 16 means for multiplying the said delayed signals with the said un-delayed signals, to
 17 generate two multiplication products $I^-(t-\tau)Q^-(t)$ and $I^-(t)Q^-(t-\tau)$;
 18 means for combining (subtracting) the said two multiplication products, providing the
 19 demodulated baseband signal $BB(t)$;
 20 means for outputting the said demodulated baseband signal;
 21 means for generating a local oscillator signal of frequency ω_0 , which is related to
 22 frequency ω_c and time delay τ by equation $(\omega_c - \omega_0)\tau \cong n\pi$, where
 23 $n = 0, \pm 1, \pm 2, \dots$.
- 1 2. The frequency demodulator of Claim 1, wherein the input signal is frequency
 2 modulated by transmitted information, having the average frequency equal to ω_c and the
 3 instantaneous frequency deviation proportional to the transmitted information.

1 3 The frequency discriminator/comparator of Claim 1, wherein the input signal

2 is a signal derived from a signal source having a dominant frequency ω_c , which is being

3 compared with the LO frequency ω_0 .

1 4. The frequency demodulator or discriminator/comparator of Claim 1, wherein

2 the multiplication operation is replaced with exclusive OR (XOR) logic function, and related

3 signals are bi-level (digital) signals.

1 5. The frequency demodulator or discriminator/comparator of Claim 1, wherein

2 the input signal and/or the LO signal is first scaled in frequency by division with an integer

3 number in a frequency divider.

1 6. A complex single sideband zero IF down-converter frequency

2 discriminator/comparator, comprising:

3 means for receiving and splitting a local oscillator (LO) signal of frequency ω_0 to two

4 components: the in-phase component and the quadrature component;

5 means for receiving and splitting an input signal having a dominant frequency ω_c to

6 two components: the in-phase component and the quadrature component;

7 means for multiplying each one of the said in-phase and quadrature LO signal

8 components with each one of the said in-phase and quadrature input signal

9 components, for generating a total of four different converted input signals;

10 means for combining (adding or subtracting) in two pairs the said four converted

11 signals, producing two lower single sideband signals: the in-phase signal

12 $I^-(t)$ and the quadrature signal $Q^-(t)$;

13 means for delaying only one of the two said signals by time delay τ , providing one

14 delayed base band signal, $I^-(t-\tau)$ or $Q^-(t-\tau)$;

15 means for multiplying the said delayed signal with one of the said un-delayed signals,

16 to generate one multiplication product, $I^-(t-\tau)Q^-(t)$ or $I^-(t)Q^-(t-\tau)$,

17 providing the baseband signal $BB(t)$;

18 means for outputting the said demodulated baseband signal;

19 means for generating a local oscillator signal of frequency ω_0 , which is substantially
20 equal to frequency ω_c .

1 7. The frequency discriminator/comparator of Claim 6, wherein the
2 multiplication operation is replaced with exclusive OR (XOR) logic function, and related
3 signals are bi-level (digital) signals.

1 8. The frequency discriminator/comparator of Claim 6, wherein the input signal
2 and/or the LO signal is first scaled in frequency by division with an integer number in a
3 frequency divider.

1 9. The frequency discriminator/comparator of Claim 1, wherein the said
2 frequency discriminator (FD) is switched to a phase detector (PD).

1 10. The frequency discriminator/comparator of Claim 6, wherein the said FD is
2 switched to a PD.