Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

SOBILETELT (State per		
1.	$m_a = \frac{a+b}{2} = \frac{2021 - \sqrt{2} + 2021 + \sqrt{2}}{2} =$	3p
	$=\frac{2\cdot 2021}{2}=2021$	2p
2.	$f(1) = m \Leftrightarrow 1 - 3 + 1 = m$	3 p
	m = -1	2p
3.	$\log_3((\sqrt{x}+3)(\sqrt{x}-3)) = 2$, deci $(\sqrt{x})^2 - 9 = 3^2$	3 p
	x-9=9, deci $x=18$, care convine	2p
4.	O mulțime cu n elemente are 2^n submulțimi	3 p
	$2^n = 16$, deci $n = 4$	2 p
5.	MNQP este paralelogram, deci segmentele MQ și PN au același mijloc	3 p
	Coordonatele punctului Q sunt $x = 11$ și $y = 6$	2 p
6.	În $\triangle ABC$, $2\sin A \cdot \cos A \cdot \cos A = \sin A$, deci $\cos^2 A = \frac{1}{2}$	3p
	Cum unghiul A este ascuțit, obținem $\cos A = \frac{1}{\sqrt{2}}$, deci $A = \frac{\pi}{4}$	2p

SUBIECTUL al II-lea (30 de puncte)

~ ~ ~ ~ ~	(0 40 p.	
1.a)	$A(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = $ $= 1 + 0 + 0 - 0 - 0 - 0 = 1$	2p 3p
b)	$\det(A(a)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 1 + \log_2 a & 0 & 1 \end{vmatrix} = a, \text{ pentru orice } a \in (0, +\infty)$	3p
	$\det(A(a)) \neq 0$, pentru orice $a \in (0, +\infty)$, deci matricea $A(a)$ este inversabilă	2p
c)	$ (A(a))^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{a} & 0 \\ -1 - \log_2 a & 0 & 1 \end{pmatrix}, \text{ pentru orice } a \in (0, +\infty) $	2p
	$A(a) + (A(a))^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & a + \frac{1}{a} & 0 \\ 0 & 0 & 2 \end{pmatrix} \Rightarrow \det(A(a) + (A(a))^{-1}) = 4\left(a + \frac{1}{a}\right) \text{ si, cum } a + \frac{1}{a} \ge 2,$	3 p
	obținem că $\det\left(A(a)+\left(A(a)\right)^{-1}\right)\geq 8$, pentru orice $a\in(0,+\infty)$	

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

2.a)	Pentru $m = 1$, obținem $x \circ y = xy - (x + y) + 2$, deci $2 \circ 2 = 2 \cdot 2 - (2 + 2) + 2 =$	3 p
	=4-4+2=2	2p
b)	$2 \circ 1 = 5 \Leftrightarrow 2 \cdot 1 - m(2+1) + m(m+1) = 5 \Leftrightarrow m^2 - 2m - 3 = 0$ şi, cum $m \in (0, +\infty) \Rightarrow m = 3$	3p
	$2 \circ 5 = 2 \cdot 5 - 3(2+5) + 3 \cdot 4 = 10 - 21 + 12 = 1$	2p
c)	$-m^{2}x^{5} - m(mx^{3} - mx^{2}) + m^{2} + m = m \Leftrightarrow m^{2}(x^{5} + x^{3} - x^{2} - 1) = 0$	2p
	Cum $m \in (0,+\infty)$, obținem $x^3(x^2+1)-x^2-1=0 \Leftrightarrow (x^2+1)(x^3-1)=0$, deci $x=1$	3 p

SUBIECTUL al III-lea (30 de puncte)

_	` .	
1.a)	$f'(x) = 4x^3 - \frac{4}{x} = \frac{4x^4 - 4}{x} =$	3 p
	$= \frac{4(x^4 - 1)}{x} = \frac{4(x^2 + 1)(x + 1)(x - 1)}{x}, \ x \in (0, +\infty)$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1$	2p
	$f'(x) \le 0$, pentru orice $x \in (0,1]$, deci f este descrescătoare pe $(0,1]$ și $f'(x) \ge 0$, pentru	3 p
	orice $x \in [1, +\infty)$, deci f este crescătoare pe $[1, +\infty)$	
c)	$\lim_{x \to 0} f(x) = +\infty, \lim_{x \to +\infty} f(x) = +\infty$	2p
	Cum $f(1) = -1$, f este continuă, f este strict descrescătoare pe $(0,1)$ și f este strict	
	crescătoare pe $(1,+\infty)$, obținem că ecuația $f(x)=0$ are exact două soluții distincte în	3 p
	intervalul $(0,+\infty)$	
2.a)	$\int_{0}^{1} (x^{4} + 1) f(x) dx = \int_{0}^{1} (x^{4} + 1 + 2x) dx = \left(\frac{x^{5}}{5} + x + x^{2}\right) \Big _{0}^{1} =$	3 p
	$=\frac{1}{5}+1+1=\frac{11}{5}$	2p
b)	$\lim_{x \to +\infty} \frac{F(x)}{x} = \lim_{x \to +\infty} \frac{F'(x)}{x'} = \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 + \frac{2x}{x^4 + 1}\right) = 1$	3p
	Asimptota oblică spre +∞ la graficul funcției F are panta egală cu 1	2p
c)	$G(x) = \int_{0}^{x} f(t)dt = \int_{0}^{x} \left(1 + \frac{2t}{t^4 + 1}\right)dt = \left(t + \arctan\left(t^2\right)\right)\Big _{0}^{x} = x + \arctan\left(x^2\right), \ x \in \mathbb{R}$	2p
	$\int_{0}^{1} xG(x)dx = \int_{0}^{1} \left(x^{2} + x \operatorname{arctg}(x^{2})\right)dx = \frac{x^{3}}{3} \Big _{0}^{1} + \frac{1}{2} \int_{0}^{1} \left(x^{2}\right) \operatorname{arctg}(x^{2})dx = \frac{1}{3} + \frac{1}{2} x^{2} \operatorname{arctg}(x^{2}) \Big _{0}^{1} - \int_{0}^{1} \frac{x^{3}}{x^{4} + 1} dx = $ $= \frac{1}{3} + \frac{1}{2} \cdot \frac{\pi}{4} - \frac{1}{4} \ln\left(x^{4} + 1\right) \Big _{0}^{1} = \frac{1}{3} + \frac{\pi}{8} - \frac{1}{4} \ln 2$	3 p