Design a Single Ended Two Stage Miller Compensated OTA meets the Specs (Use IREF = 10u)

Spec.	
DC Gain	≥ 63 dB
Unity Gain Frequency	≥ 10 MHz
Power Consumption	≤ 0.8 mW
Cap Load	2 pF

- Assume $C_C = 0.5 C_L = 1 pF$
- Assume CMIR from $0.2 \rightarrow 0.6 \, \text{V} \rightarrow \text{use PMOS}$ input transistors
- Assign higher gain for the first stage $A_V=A_{V1}, A_{V2}=45*32$

$$I_{Consmax} = \frac{P_{cons}}{V_{DD}} \rightarrow I_{Dmax} \le 666 \text{ uA}$$

$$UGF = \frac{g_{m1,2}}{2\pi C_C} \ge 10 \text{ MHz} \rightarrow g_{m1,2} \ge 63 \text{ uS} \rightarrow g_{m1,2} = 90 \text{ uS}$$

Assume M
$$_{1,2}$$
 in MI $\left(\frac{g_{m1,2}}{I_D}=12\right) \rightarrow I_{D1,2}=7.5~\text{uA} \rightarrow I_{B1}=15~\text{uA}$

$$A_{V1} = \frac{g_{m1,2} r_{o2,4}}{2} (\text{Assume } r_{o2} = r_{o4}) \geq 45 \rightarrow r_{o2,4} = 1 \ \text{M}\Omega \rightarrow (g_m r_o)_{1,2} = 90$$

$L_{1,2} = 1.2 \text{ um}$, $V_{GS1,2} = 421.3 \text{ mV}$, $W_{1,2} = 7.632 \text{ um}$

15 GM/ID

Choose
$$\omega_{p2} = 4\omega_u \to PM > 70^o \to g_{m7} = 8~g_{m1,2} = 720~uS \to I_{B2} = 4I_{B1} = 60~uA$$

$$A_{V1} = \frac{g_{m7}r_{o6,7}}{2} (Assume~r_{o6} = r_{o7}) \ge 32 \to r_{o2,4} = 89~k\Omega \to (g_mr_o)_7 = 64$$

$L_7 = 560 \; \text{nm}$, $V_{\text{GS7}} = 434 \; \text{mV}$, $W_7 = 8.335 \; \text{um}$

 $set V_{GS3,4} = V_{GS7} (Cancels offset)$

$$L_{3,4} = 2.6 \text{ um}$$
, $W_{3,4} = 4.09 \text{ um}$, $\left(\frac{g_{m3,4}}{I_D}\right) = 11.33$

$$\text{CMIR}_{\text{H}} = -\text{V}_{\text{SG1,2}} - \text{V}_{\text{5}}^* + \text{V}_{\text{DD}} = 0.6 \rightarrow \text{V}_{\text{5}}^* \leq 0.1787 \; \text{V} \rightarrow \text{V}_{\text{5}}^* = 0.16 \; \text{V} \rightarrow \left(\frac{g_{\text{m5}}}{\text{I}_{\text{D}}}\right) = 12.5$$

$$L_{CM} = L_5 = L_6 = 480 \ \text{um, } \\ W_{CM} = 4.256 \ \text{um, } \\ W_5 = \ 6.384 \ \text{um, } \\ W_6 = 25.53 \ \text{um}$$

** After Running DC Analysis W3,4 needed to be increased to 4.82u **

Sizing Summary

	M1	M2	M3	M4	M5	M6	M7	MCM
${ m L}$	1.2u	1.2u	2.6u	2.6u	480n	480n	560n	480n
W	7.632u	7.632u	4.82u	4.82u	6.256u	25.53u	$8.335\mathrm{u}$	4.256u

Simulations Results

- DC Operating Points

- AC Analysis

- CMIR Results

- STB Analysis

