

2022/06/01

20171693 조병화

보조 교재 6.5절을 읽고 다음의 OpenGL의 기본 조명 공식에 대하여 자신이 이해한 바를 A4 용지 두 장에 요약하여 제출하라. (제출 내용 중에는 이 공식의 각 변수가 의미하는 바가 분명히 기술되어야 함)

$$\mathbf{c} = \mathbf{e}_{cm} + \mathbf{a}_{cm} * \mathbf{a}_{cs} + \sum_{i=0}^{n-1} (att_i)(spot_i) [\mathbf{a}_{cm} * \mathbf{a}_{cli} + (\mathbf{n} \odot \overrightarrow{\mathbf{VP}}_{pli}) \mathbf{d}_{cm} * \mathbf{d}_{cli} + (f_i)(\mathbf{n} \odot \hat{\mathbf{h}}_i)^{s_{rm}} \mathbf{s}_{cm} * \mathbf{s}_{cli}]$$

OpenGL 시스템에서 사용되는 조명 공식은, 기본적으로 퐁의 조명 모델을 기본으로 하여 구상되었다. 퐁의 조명 모델에서 빛의 반사는 3가지의 반사 형태(ambient reflection, diffuse reflection, specular reflection) 으로 나누어지는데, 위 공식을 이 3가지의 반사 형태로 분류하여 설명해 보고자 한다.

e_{cm}: 물질의 방사 색

atti: i번째 광원과 물체 간 거리에 따른 빛의 밝기 조절, 감쇠 효과.(attenuation effect)

spot; : I 번째 광원이 spot 광원일 경우를 처리해 준다.

$$spot_{i} = \begin{cases} (\overrightarrow{\mathbf{P}_{pli}} \overrightarrow{\mathbf{V}} \odot \hat{\mathbf{s}}_{dli})^{s_{rli}}, & c_{rli} \neq 180.0 \& \overrightarrow{\mathbf{P}_{pli}} \overrightarrow{\mathbf{V}} \odot \hat{\mathbf{s}}_{dli} \geq \cos c_{rli}, \\ \\ 0.0, & c_{rli} \neq 180.0 \& \overrightarrow{\mathbf{P}_{pli}} \overrightarrow{\mathbf{V}} \odot \hat{\mathbf{s}}_{dli} < \cos c_{rli}, \\ \\ 1.0, & c_{rli} = 180.0 \end{cases}$$

Spot 광원 절단 각도가 180도와 180도가 아닌 경우로 나누어서 생각을 해보자. 180도인 경우 점 광원을 사용한다는 것을 의미하고, 180도가 아닐 경우에는 spot 광원을 사용한다. 이 때 바라보는 눈의 각도가 절단 각도 범위 내 일 때 주변으로 갈수록 어두운 효과를 내기 위해 spot 광원지수를 이용해 spot 조명 효과를 나타낸다.

1. Ambient Reflection

우선 ambient 빛이란 계산상의 편의를 위하여 사방에 고르게 퍼져 있다고 가정하는 빛을 의미한다. Ambient reflection 은 이러한 빛이 물체에 도달하였을 때 물체가 어떤 반응을 할 것인가에 대한 반사를 다룬다.

이러한 ambient reflection은 광원들이 물체에 끼치는 종합적인 전역 ambient reflection, , 각 광원이 물체에 직접적으로 영향을 주는 지역 ambient reflection 두 가지로 분류된다.

$$\mathbf{c} = \mathbf{e}_{cm} + \mathbf{a}_{cm} * \mathbf{a}_{cs} + \sum_{i=0}^{n-1} (att_i)(spot_i) [\mathbf{a}_{cm} * \mathbf{a}_{cli} + (\mathbf{n} \odot \overrightarrow{\mathbf{VP}}_{pli}) \mathbf{d}_{cm} * \mathbf{d}_{cli} + (f_i)(\mathbf{n} \odot \hat{\mathbf{h}}_i)^{s_{rm}} \mathbf{s}_{cm} * \mathbf{s}_{cli}]$$

전역 ambient reflection은 위의 공식에서 $a_{cm}*a_{cs}$ 로 나타내어 진다. 이 때 a_{cs} 전역 ambient reflection 색을 나타내고, a_{cm} 은 물질의 기본 성질로, ambient 색깔을 의미한다.

지역 ambient reflection 은 공식에서 $a_{cm} * a_{cli}$ 로 나타난다. a_{cm} 은 아까와 같이 물질의 기본 성질 ambient 색이고, 이것에 a_{cli} , I 번 광원의 ambient 색깔이 곱해서 합(sigma)쳐진다.

2. Diffuse Reflection

Ambient 반사와 달리 어느 광원을 통해 물체로 직접 들어오는 빛은 난반사와 정반사의 두 종류의 반사를한다. 이 중 난반사(diffuse reflection)은 입사 광선을 사방으로 고르게 동일한 밝기로 반사하는 형태의 반사이다. 아래 그림에서 빨간 선으로 표현된 반사가 난반사이다. 표면이 반짝이지 않는 물체를 렌더링할 때 주로 사용되며, 어느 시점에서 보아도 비교적 보이는 색이 변하지 않는다. 순수히 난반사만 하는 물체가 있다면 그 물체는 램버트의 코사인 법칙을 따른다. 이 공식은 물체에 입사하는 광원 L과 그 광원이 반사되는 법선벡터 N 사이의 각 θ 라고 할 때 반사되는 빛의 양이 cosθ에 비례한다는 것이다. 이 정보를 통해 공식을보면,

$$\mathbf{c} = \mathbf{e}_{cm} + \mathbf{a}_{cm} * \mathbf{a}_{cs} + \sum_{i=0}^{n-1} (att_i)(spot_i) [\mathbf{a}_{cm} * \mathbf{a}_{cli} + (\mathbf{n} \odot \overrightarrow{\mathbf{VP}}_{pli}) \mathbf{d}_{cm} * \mathbf{d}_{cli} + (f_i)(\mathbf{n} \odot \hat{\mathbf{h}}_i)^{s_{rm}} \mathbf{s}_{cm} * \mathbf{s}_{cli}]$$

n 이 물체의 법선벡터이고, VP 벡터는 물체에 입사하는 광원의 방향에 반대되는 벡터의 단위벡터를 나타낸다. 즉, N (내적) L 의 의미와 같고, 이곳에서 렘버트의 코사인 법칙이 적용이 된다. 두 벡터 사이 각이 클수록 난반사의 효과는 감쇄하고, 사잇각이 작을수록 난반사의 효과는 커진다.

dcm 은 물질의 난반사 색, dcli 는 i번째 광원의 난반사 색을 나타낸다.

3. Specular Reflection

Specular reflection은 난반사와 달리 특정 방향을 중심으로 들어온 빛을 집중적으로 반사한다.

OpenGL에서는 특정 방향을 나타낼 때 halfway vector를 정의한다. Halfway 벡터는 광원에 대한 방향과 관찰자 방향의 중간 방향으로의 단위 벡터이다.

$$(\frac{L+V}{|L+V|}) \qquad h_l = \begin{cases} \frac{VP_{pll}}{+} + VP_e, & v_{bz} = TRUE \\ \hline VP_{gll} + (0010)^t, & v_{bz} = FALSE \end{cases}$$

이때 V_{bs} 는 boolean 변수로 지역 관찰자의 유무를 나타낸다. 유무에 따라 halfway vector가 다르게 정의 된다.

Specular reflection 색을 계산할 때 halfway 벡터를 사용하는 것은 계산 속도를 빠르게 하기 위함이다. 기존의 L과 N 벡터, 그에 대해 대칭한 R을 이용하면 매순간 연산의 양이 많다. 하지만 초기에 halfway Vector를 1번 계산해 놓으면 매번 계산할 필요가 없다.

$$\mathbf{c} = \mathbf{e}_{cm} + \mathbf{a}_{cm} * \mathbf{a}_{cs} + \sum_{i=0}^{n-1} (att_i)(spot_i) [\mathbf{a}_{cm} * \mathbf{a}_{cli} + (\mathbf{n} \odot \overrightarrow{\mathbf{VP}}_{pli}) \mathbf{d}_{cm} * \mathbf{d}_{cli} + (\mathbf{f}_i) (\mathbf{n} \odot \hat{\mathbf{h}}_i)^{s_{rm}} \mathbf{s}_{cm} * \mathbf{s}_{cli}]$$

공식에서 $(\mathbf{n} \odot \hat{\mathbf{h}}_i)^{s_{rm}}\mathbf{s}_{cm}$ 부분은 h 방향으로 반사된 빛이 집중되는 걸 나타낸다. S_{cm} 은 물질의 정반사 색을 나타내고, S_{ci} 는 i번째 광원의 정반사 색을 나타낸다. 따라서, $(\mathbf{n} \odot \hat{\mathbf{h}}_i)^{s_{rm}}\mathbf{s}_{cm}$ 와 S_{cm} 과 S_{ci} 를 곱해 최종 정반사 색을 정한다.

 f_i 의 경우 0 또는 1의 값을 갖는 변수로 물체의 뒤에서 들어오는 빛의 경우에는 무시해준다는 것을 의미한 다.