Homework 1

Andey Nunes, MS
Jordan Hilton
additional team member name(s) here
January 16, 2019

Document Setup

The first step for this week is to set up the R Markdown document options. Be sure that prior to executing code in this document that the following R packages are installed and updated in your R session:

- knitr
- pander
- readxl
- tidyverse

Tidyverse is an ecosystem of packages that work nicely together for data science tools. When the tidyverse package is installed, all the packages and their dependencies are automatically loaded into the R session. The packages included in the tidyverse package are listed here.

broom, cli, crayon, dplyr, dbplyr, forcats, ggplot2, haven, hms, httr, jsonlite, lubridate, magrittr, modelr, purrr, readr, readxl (>=, reprex, rlang, rstudioapi, rvest, stringr, tibble, tidyr, xml2, tidyverse

Next step, load the data sets for the homework. Summaries are included in the appendix.

```
catalog <- read_excel("catalog.xls")</pre>
customers <- read_excel("customers.xls")</pre>
order_lines <- read_excel("order_lines.xlsx", skip = 2)</pre>
## New names:
## * `` -> `..2`
order_lines_sheet3 <- read_excel("order_lines.xlsx", sheet = 3)</pre>
# reading this file in still poses problems...
orders <- read_excel("orders.xls")</pre>
# inspect the head and tail of the data set
glimpse(order_lines)
## Observations: 1,356
## Variables: 2
## $ `Sum of Shipped Total` <chr> "Row Labels", "411", "Multi-Plier® 800...
## $ `..2`
                              <chr> "Total", "27507.100000000122", "27507.1...
tail(order_lines)
## # A tibble: 6 x 2
     `Sum of Shipped Total`
##
                                                                . . 2
##
     <chr>
                                                                <chr>
## 1 Lariatâ, ¢ 3.5
                                                                0
## 2 597
## 3 Weapons Cleaning Kit - Law Enforcement, Pistol/Sub-Gun 0
## 5 Hunter's Pruning Kit - Sport Saw & 1/2
                                                                1113312.1600000011
## 6 Grand Total
```

```
# notice that R has imported the first row as "Row Labels" and "Total"
# and the last row is the grand total at the end of the data set
# Lets move that first row into the names for order lines
names(order lines) <- as.character(order lines[1,]) %>%
 str_replace_all(" ","_") %>% str_replace_all("`","") %>% str_to_lower()
# now remove that row
order_lines <- order_lines[-1,]</pre>
# now lets pull out that grand total and save it as its own number
order_lines_grand_total <- order_lines[length(order_lines$row_labels),2]
# now lets remove that row as well, so that all of our rows are just our actual data observations
order_lines <- order_lines[-length(order_lines$row_labels),]</pre>
# check out the head and tail again
glimpse(order_lines)
## Observations: 1,354
## Variables: 2
## $ row labels <chr> "411", "Multi-Plier® 800 - Legend", "757", "LMFâ, ¢...
                <chr> "27507.100000000122", "27507.100000000122", "21591....
tail(order_lines)
## # A tibble: 6 x 2
##
    row_labels
                                                             total
##
     <chr>
                                                             <chr>
## 1 728
## 2 Lariatâ,¢ 3.5
                                                             0
## 3 597
## 4 Weapons Cleaning Kit - Law Enforcement, Pistol/Sub-Gun 0
## 5 548
## 6 Hunter's Pruning Kit - Sport Saw & 1/2
# when this .xlsx file is opened in Google Sheets there are 677 lines of data
# once the row labels and grand total lines are removed, glimpse shows
# 1354 observations, which is 2 lines for each observation
# I'm quessing there is a name behind each id number visible in the google sheet
# lets test this by creating 2 data frames from this table, one with the
# rows with only the id numbers the other with the id names
# then compare to check that their "Total" columns are the same
#id_numbers <- one_or_more(DGT) %R% optional(one_or_more(DGT))</pre>
#OL id numbers <- order lines %>%
# filter(str_length("row_labels") <= 4)</pre>
#OL_prod_name <- order_lines %>%
# filter(str_detect("row_labels", "//w"))
#test same totals <- OL id numbers == OL prod name</pre>
# now we can separate the "Row Labels"
```

Custom functions

This section is for building some custom functions that will come in handy later

```
# count the number of missing data entries
countNA <- function(x) {sum(is.na(x)) }</pre>
# get the range of a numeric vector by taking the difference
# between the high and low values from the range output
# if the vector is not numeric, then provide NA
get_range <- function(x) {ifelse(is.numeric(x), diff(range(x)), NA)}</pre>
# This function creates the generic structure for the tables in Part B.
# The variable_class use of map_chr() will throw an error on the data-time
# object because that class has multiple assignments
# value_type is temporarily NA, reassign one of: "question", "answer", "link"
make_partBtable <- function(x){</pre>
   df <- tibble(variable_name = names(x),</pre>
                variable_type = NA,
                variable_class = map_chr(x, class),
                count_missing = map_int(x, countNA),
                count_unique = map_dbl(x, ~length(unique(.x)) ),
                variable_range = map_dbl(x, get_range))
   return(df)
```

Homework Questions

Part A: General Questions

1. Key business questions

- What is the company's revenue?
- What is the company's profit?
- How profitable is each product?
- How many orders are there for each product?
- How many active customers are there?

2. How does each table relate to answering those questions?

- The catalog table lists each product along with information about that product (such as price, manufacturer, and name).
- The customers table lists each of the company's customers, along with information about that customer (such as location and name).
- The orders table has one record for every order a customer made, with the total cost of that order and information about the number of items in the order and its shipping weight.
- The order_lines table has one record for each different item that was purchased in a single order, along with links to the order.

3. How do I have to link the tables in order to be able to answer those questions?

Part B: Specific Questions

For each data set, we include a table that gives the field (variable) names, whether they are a *link*, answer or question field, the data class, how many missing observations, and if numeric a range is given.

Catalog

This data set has 761 observations on 7 variables with details as follows:

Table 1: Catalog Data Table Details

variable_name	variable_type	variable_class	count_missing	count_unique	variable_range
id	link	numeric	0	761	818
$product_code$	link	character	1	761	NA
$catalog_price$	answer	numeric	0	134	654
category1	question	character	645	10	NA
$manufact_id$	question	numeric	0	5	8
$vendor_id$	question	numeric	0	5	8
name	answer	character	1	756	NA

Customers

Many of these fields are character string fields or identification fields. While the range values are given, they are not applicable to this data table.

This data set has 22070 observations on 10 variables with details as follows:

```
customers_table <- make_partBtable(customers)

customers_table$variable_type <- c("link", "link", rep("question", 6), "question or answer", "link")
# id variables and customer code are "links"
# names and bt_* are questions of who and where

#pander(customers_table, caption = "Customers Data Table Details")
kable(customers_table, caption = "Customers Data Table Details")</pre>
```

Table 2: Customers Data Table Details

variable_name	$variable_type$	$variable_class$	count_missing	$count_unique$	variable_range
cust_id	link	numeric	0	22070	22482
$merchant_id$	link	numeric	0	2	1
firstName	question	character	12070	502	NA
lastName	question	character	12070	1001	NA
bt_city	question	character	1	9032	NA
bt_state	question	character	137	67	NA
bt country	question	character	0	79	NA

variable_name	variable_type	variable_class	count_missing	count_unique	variable_range
bt_zip	question	character	0	12434	NA
cc_type	question or answer	character	0	4	NA
custcode	link	character	0	22069	NA

Order_lines

str(order_lines)

There is still an issue with this table where the row labels are getting mangled.

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 1354 obs. of 2 variables:
## $ row_labels: chr "411" "Multi-Plier® 800 - Legend" "757" "LMFâ, tII Infantry - Black" ...
## $ total : chr "27507.100000000122" "27507.100000000122" "21591.6499999999999
order_lines_table <- make_partBtable(order_lines)

#pander(order_lines_table, caption = "Order_lines Data Table Details")</pre>
```

Orders

This data set has 23256 observations on 18 variables with details as follows:

```
orders_table <- tibble(variable_name = names(orders),</pre>
                    variable_type = c(rep("link",2),
                                       "question", #when
                                       rep("link",2),
                                       rep("question", 2),# which
                                       rep("answer", 7),# how much /total
                                       rep("question",4)), # when
                    # assign one of: "question", "answer", "link"
                    variable_class = c("numeric", "numeric",
                                        "date-time", "character",
                                        "numeric", "character",
                                        "character", "numeric",
                                        "character", rep("numeric", 5),
                                        "date-time", "numeric",
                                        "logical", "logical"),
                    count_missing = map_int(orders, countNA),
                    variable_range = map_dbl(orders, get_range))
#pander(orders_table, caption = "Orders Data Table Details")
kable(orders_table, caption = "Orders Data Table Details")
```

Table 3: Orders Data Table Details

variable_name	$variable_type$	$variable_class$	count_missing	variable_range
order_id	link	numeric	0	23575
$merchant_id$	link	numeric	0	1
$order_date$	question	date-time	0	NA
po_number	link	character	22742	NA
cust_id	link	numeric	0	32482
order status	question	character	0	NA

variable_name	variable_type	variable_class	count_missing	variable_range
ship_method	question	character	186	NA
items_amount	answer	numeric	0	9590
$amt_bracket$	answer	character	0	NA
total_weight	answer	numeric	0	483
total_ship	answer	numeric	0	631
$total_hand$	answer	numeric	0	0
$total_tax$	answer	numeric	0	0
$total_amount$	answer	numeric	0	9584
$order_status_date$	question	date-time	0	NA
$send_inv_to_bill$	question	numeric	0	1
coupon_code	question	logical	23256	NA
$spec_instr$	question	logical	23256	NA

Part C. Filter/Select Operations

For all these answers indicate clearly what fields you used, and why you chose those particular fields. If there were other fields you could have considered, indicate why you did not choose those.

4. Top 10 states for orders by dollar volume

We need the "state" field from the customers table, along with summed order totals from the order table, so we'll need to join those two tables and group by state.

State	Order Volume
CA	174920
INTL	165965
TX	128754
FL	89137
NY	84202
VA	72133
APO	61721
NC	56886
WA	56838
OR	55147

5. Top 10 countries for orders by dollar volume

- 6. Top 10 selling products by units; then by dollar volume
- 7. For each of the top two US states and each of the top two countries (excluding the US) in questions 1 and 2, what are the 5 top selling products by units? By dollar volume? (5%)
- 8. Provide the customer ID's, order dates, and order amounts for all customers who have ordered more than once. (5%)

Part D. Sales increasing strategies

References

Appendix

Summary tables

```
# this whole code chunk can be updated to be "include = FALSE"
# the use of head() is redundant since glimpse() shows more of the same information
# but also tells you how many observations are in the data set
# and doesn't truncate the list of variables

pander(summary(catalog), caption = "catalog summary table")
```

Table 5: catalog summary table (continued below)

id	$product_code$	catalog_price	category1
Min.: 307	Length:761	Min. : 0	Length:761
1st Qu.: 525	Class :character	1st Qu.: 18	Class :character
Median: 728	Mode :character	Median: 34	Mode :character
Mean: 725	NA	Mean: 49	NA
3rd Qu.: 930	NA	3rd Qu.: 57	NA
Max. :1125	NA	Max. :654	NA

$manufact_id$	vendor_id	name
Min. :0.0	Min. :0.0	Length:761
1st Qu.:1.0	1st Qu.:1.0	Class :character
Median : 1.0	Median : 1.0	Mode :character
Mean $:1.2$	Mean: 1.2	NA
3rd Qu.:1.0	3rd Qu.:1.0	NA
Max. :8.0	Max. :8.0	NA

head(catalog)

```
## # A tibble: 6 x 7
        id product_code catalog_price category1 manufact_id vendor_id name
##
##
     <dbl> <chr>
                                <dbl> <chr>
                                                        <dbl>
                                                                  <dbl> <chr>
## 1
       446 G79761
                                 9.95 accessori~
                                                            1
                                                                      1 Exchan~
       455 plastic
                                 0
                                       <NA>
                                                            1
## 2
                                                                      1 Plasti~
```

```
12.0 fishing
## 4
     444 G75328
                           11.0 fillet
                                                 1
                                                          1 Silver~
                                                          1 "Gator~
## 5
     443 G75231
                           13.0 fillet
                                                 1
## 6
     442 G75230
                           12.0 fillet
                                                          1 "Gator~
glimpse(catalog)
## Observations: 761
## Variables: 7
                <dbl> 446, 455, 445, 444, 443, 442, 438, 439, 440, 441...
## $ id
## $ product_code <chr> "G79761", "plastic", "G75329", "G75328", "G75231...
## $ catalog_price <dbl> 9.9, 0.0, 11.9, 10.9, 12.9, 11.9, 9.5, 6.0, 6.0,...
## $ category1
                <chr> "accessories", NA, "fishing", "fillet", "fillet"...
## $ manufact_id
                ## $ vendor_id
                ## $ name
                <chr> "Exchange-A-Blade Sheath for 7 inch saw", "Plast...
pander(summary(customers), caption = "customers summary table")
```

1 Silver~

Table 7: customers summary table (continued below)

cust_id	merchant_id	firstName	lastName
Min. :10000	Min. :1.00	Length:22070	Length:22070
1st Qu.:15930	1st Qu.:1.00	Class :character	Class :character
Median :21448	Median : 1.00	Mode :character	Mode :character
Mean $:21408$	Mean $:1.05$	NA	NA
3rd Qu.:26965	3rd Qu.:1.00	NA	NA
Max. :32482	Max. $:2.00$	NA	NA

Table 8: Table continues below

bt_city	bt_state	$bt_country$	bt_zip
Length:22070	Length:22070	Length:22070	Length:22070
Class :character	Class :character	Class :character	Class :character
Mode :character	Mode :character	Mode :character	Mode :character
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	NA

cc_type	custcode	
Length:22070	Length:22070	
Class :character	Class :character	
Mode :character	Mode :character	
NA	NA	
NA	NA	
NA	NA	

head(customers)

3

445 G75329

```
## # A tibble: 6 x 10
```

^{##} cust_id merchant_id firstName lastName bt_city bt_state bt_country bt_zip

```
##
      <dbl>
                 <dbl> <chr>
                                 <chr>
                                         <chr>
                                                 <chr>
                                                         <chr>
                                                                    <chr>
## 1
                     2 Kristina Chung
      20696
                                                         United St~ 73078
                                         Piedmo~ OK
## 2
      15465
                     1 Paige
                                Chen
                                         Cincin~ OH
                                                         United St~ 45227
                                         Shelby~ TN
## 3
      19830
                     2 Sherri
                                 Melton
                                                         United St~ 37160
                                         North ~ AZ
## 4
      25532
                     1 Gretchen Hill
                                                         United St~ 86052
## 5
                                 Puckett Petawa~ ON
      16044
                     1 Karen
                                                         Canada
                                                                    K8H 2~
                                                         United St~ 97495
      32394
                     1 Patrick
                                 Song
                                         Winche~ OR
## # ... with 2 more variables: cc_type <chr>, custcode <chr>
glimpse(customers)
## Observations: 22,070
## Variables: 10
## $ cust_id
                <dbl> 20696, 15465, 19830, 25532, 16044, 32394, 29572, 3...
<chr> "Kristina", "Paige", "Sherri", "Gretchen", "Karen"...
## $ firstName
## $ lastName
                <chr> "Chung", "Chen", "Melton", "Hill", "Puckett", "Son...
## $ bt_city
                <chr> "Piedmont", "Cincinnati", "Shelbyville", "North ri...
                <chr> "OK", "OH", "TN", "AZ", "ON", "OR", "GA", "VA", "K...
## $ bt_state
## $ bt_country <chr> "United States", "United States", "United States",...
                <chr> "73078", "45227", "37160", "86052", "K8H 2X3", "97...
## $ bt_zip
                <chr> "Visa", "Visa", "Mastercard", "Visa", "Visa", "Mas...
## $ cc_type
## $ custcode
                <chr> "P20696", "G15465", "P19830", "G25532", "G16044", ...
pander(summary(order_lines), caption = "order_lines summary table")
```

Table 10: order_lines summary table

row_labels	total	
Length:1354	Length:1354	
Class :character	Class :character	
Mode :character	Mode :character	

head(order_lines)

```
## # A tibble: 6 x 2
##
     row_labels
                                        total
##
     <chr>>
                                        <chr>>
                                        27507.100000000122
## 1 411
## 2 Multi-Plier® 800 - Legend
                                        27507.100000000122
## 3 757
                                        21591.649999999994
## 4 LMFâ, ¢ II Infantry - Black
                                        21591.649999999994
## 5 395
                                        20355.900000000009
## 6 Multi-Plier® 600 Series - D.E.T. 20355.90000000009
glimpse(order_lines)
## Observations: 1,354
## Variables: 2
## $ row labels <chr> "411", "Multi-Plier® 800 - Legend", "757", "LMFâ, ¢...
                <chr> "27507.100000000122", "27507.100000000122", "21591....
pander(summary(orders), caption = "orders summary table")
```

Table 11: orders summary table (continued below)

order_id	merchant_id	order_date	po_number
Min. :14000	Min. :1.00	Min. :2003-10-10 00:00:00	Length:23256
1st Qu.:20134	1st Qu.:1.00	1st Qu.:2006-04-28 00:00:00	Class:character
Median $:25948$	Median $:1.00$	Median :2007-07-02 00:00:00	Mode :character
Mean $:25918$	Mean $:1.05$	Mean :2007-08-11 16:51:42	NA
3rd Qu.:31761	3rd Qu.:1.00	3rd Qu.:2008-12-19 00:00:00	NA
Max. $:37575$	Max. $:2.00$	Max. :2011-01-21 00:00:00	NA

Table 12: Table continues below

cust_id	$order_status$	$ship_method$	$items_amount$
Min.: 0	Length:23256	Length:23256	Min.: 0
1st Qu.:15778	Class :character	Class :character	1st Qu.: 28
Median $:21302$	Mode :character	Mode :character	Median: 48
Mean $:21295$	NA	NA	Mean:73
3rd Qu.:26849	NA	NA	3rd Qu.: 80
Max. :32482	NA	NA	Max. :9590

Table 13: Table continues below

$amt_bracket$	$total_weight$	$total_ship$	$total_hand$	$total_tax$
Length:23256	Min.: 0	Min. : 0	Min. :0	Min. :0
Class :character	1st Qu.: 1	1st Qu.: 7	1st Qu.:0	1st Qu.:0
Mode :character	Median: 2	Median: 8	Median:0	Median:0
NA	Mean: 3	Mean: 11	Mean:0	Mean $:0$
NA	3rd Qu.: 3	3rd Qu.: 10	3rd Qu.:0	3rd Qu.:0
NA	Max. :483	Max. :631	Max. :0	Max. :0

Table 14: Table continues below

$total_amount$	$order_status_date$	$send_inv_to_bill$	$coupon_code$
Min. : 6	Min. :2003-10-10 00:00:00	Min. :0.00	Mode:logical
1st Qu.: 36	1st Qu.:2006-05-30 18:00:00	1st Qu.:0.00	NA's:23256
Median: 57	Median :2007-07-12 00:00:00	Median $:0.00$	NA
Mean: 84	Mean :2007-08-21 21:51:27	Mean $:0.05$	NA
3rd Qu.: 94	3rd Qu.:2008-12-26 00:00:00	3rd Qu.:0.00	NA
Max. :9590	Max. :2011-01-21 00:00:00	Max. :1.00	NA

spec	c_instr
Mod	e:logical
NA'	s:23256
	NA
	NA
	NA
	NA

```
head(orders)
## # A tibble: 6 x 18
    order_id merchant_id order_date
                                     po_number cust_id order_status
                <dbl> <dttm>
##
      <dbl>
                                     <chr>
                                               <dbl> <chr>
## 1
      14035
                   1 2003-10-17 00:00:00 <NA>
                                               10034 S
## 2
      14034
                   1 2003-10-16 00:00:00 <NA>
                                               10033 S
## 3
      14033
                   1 2003-10-16 00:00:00 <NA>
                                               10032 S
## 4
      14032
                   1 2003-10-16 00:00:00 <NA>
                                               10031 S
## 5
      14031
                   1 2003-10-16 00:00:00 <NA>
                                               10030 S
## 6
      14030
                   1 2003-10-16 00:00:00 <NA>
                                               10029 S
## # ... with 12 more variables: ship_method <chr>, items_amount <dbl>,
     amt bracket <chr>, total weight <dbl>, total ship <dbl>,
## #
     total_hand <dbl>, total_tax <dbl>, total_amount <dbl>,
     order_status_date <dttm>, send_inv_to_bill <dbl>, coupon_code <lgl>,
## #
## #
     spec_instr <lgl>
glimpse(orders)
## Observations: 23,256
## Variables: 18
## $ order_id
                  <dbl> 14035, 14034, 14033, 14032, 14031, 14030, 14...
## $ merchant_id
                  <dttm> 2003-10-17, 2003-10-16, 2003-10-16, 2003-10...
## $ order_date
## $ po number
                  ## $ cust_id
                  <dbl> 10034, 10033, 10032, 10031, 10030, 10029, 10...
                  ## $ order status
                  <chr> "GND", "3DS", "GND", "GND", "3DS", "1DA", "G...
## $ ship_method
## $ items_amount
                  <dbl> 58.9, 8.9, 50.0, 11.9, 9.9, 109.9, 23.9, 40....
                  <chr> "C", "A", "B", "B", "A", "D", "B", "B", "A",...
## $ amt_bracket
## $ total weight
                  <dbl> 2.3, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.0,...
                  <dbl> 5.5, 9.0, 5.2, 5.4, 9.0, 27.3, 5.3, 6.1, 5.4...
## $ total ship
## $ total hand
                  ## $ total tax
                  ## $ total_amount
                  <dbl> 64, 18, 55, 17, 19, 137, 29, 46, 15, 23, 29,...
## $ order_status_date <dttm> 2003-10-17, 2003-10-17, 2003-10-17, 2003-10...
## $ send_inv_to_bill
                  ## $ coupon_code
                  ## $ spec_instr
                  unique_cat <- map_dbl(catalog, ~length(unique(.x)))</pre>
kable(unique_cat, caption = "Catalog Data: unique entry counts by data field")
```

Table 16: Catalog Data: unique entry counts by data field

	X
id	761
$product_code$	761
catalog_price	134
category1	10
$manufact_id$	5
vendor_id	5
name	756

```
unique_cust <- map_dbl(customers, ~length(unique(.x)))
kable(unique_cust, caption = "Customers Data: unique entry counts by data field")</pre>
```

Table 17: Customers Data: unique entry counts by data field

X
22070
2
502
1001
9032
67
79
12434
4
22069

```
unique_OL <- map_dbl(order_lines_sheet3, ~length(unique(.x)))
kable(unique_OL, caption = "Order Lines Data: unique entry counts by data field")</pre>
```

Table 18: Order Lines Data: unique entry counts by data field

	X
order_id	23266
order_line	22
line_status	5
$line_status_date$	1843
$order_qty$	43
shipped_qty	35
bo_exp_date	186
internal_note	1
spec_proc_note	1
$\operatorname{spec_proc_id}$	1
$order_line_id$	31232
list_price	272
gift_note	1
distrib_id	1
$product_id$	678
Shipped Total	757
Ordered Total	912
$format_id$	7
options	1

```
unique_orders <- map_dbl(orders, ~length(unique(.x)))
kable(unique_orders, caption = "Orders Data Table: unique entry counts by data field")</pre>
```

Table 19: Orders Data Table: unique entry counts by data field

	X
order_id	23256

	X
merchant_id	2
$order_date$	2641
po_number	442
$\operatorname{cust_id}$	22034
$order_status$	4
ship_method	16
$items_amount$	2105
$amt_bracket$	4
total_weight	444
total_ship	2298
total_hand	1
$total_tax$	1
$total_amount$	10444
$order_status_date$	1801
$send_inv_to_bill$	2
coupon_code	1
$spec_instr$	1