T.D. III - Intégrale sur un segment

Exercice 1. Soit g la fonction définie pour tout $x \ge 1$ par $g(x) = \frac{e^x}{x^3}$.

- 1. Déterminer la dérivée g' de g.
- 2. En déduire le tableau de variations de q.
- **3.** En déduire l'encadrement : $0 \leqslant \int_{1}^{3} g(t) dt \leqslant 2 e$.

Exercice 2. Soit f la fonction définie pour tout $x \ge 1$ par f(x) = $\int_{1}^{x} \frac{\mathrm{e}^{t}}{t} \, \mathrm{d}t.$

- **1.** Minorer $\frac{1}{t}$ pour tout $t \in [1, x]$ et en déduire que $f(x) \geqslant \frac{e^x e}{x}$
- **2.** En déduire $\lim_{x\to+\infty} f(x)$.

Exercice 3. Montrer que $F(x) = \int_{2}^{x} (t^2 - 2t + 1) dt$ est croissante.

Exercice 4. Calculer $\int_0^1 2 e^x + 3x^2 dx$.

Exercice 5. Calculer

$$\mathbf{1.} \ \int_0^1 x \, \mathrm{e}^x \, \mathrm{d}x.$$

3.
$$\int_0^1 x \ln(x) dx$$
.

2.
$$\int_0^1 x^2 e^x dx$$
.

Exercice 6. Soit f la fonction définie pour tout $x \ge 1$ par f(x) = $\int_{1}^{x} \frac{e^{t}}{t} dt.$

- 1. Déterminer la dérivée f' de f.
- **2.** En déduire l'équation de la tangente à la courbe représentative de fau point d'abscisse 1.
- 3. Déterminer la dérivée seconde f'' de f.

I - Calcul de primitives

Exercice 7. (Fonctions polynomiales, 😂) Déterminer des primitives des fonctions suivantes

1.
$$x^2 + x + 1$$
.

3.
$$4x^3 + 2x^2 - 1$$
.

2.
$$2x^3 + 4x + 2$$

4.
$$x^{10} + \frac{1}{5}x^4 + \frac{1}{2}$$

Exercice 8. (Fonctions puissances, \$\omega_8^*)

1.
$$x^{3/2}$$
.

4.
$$\frac{4}{x^5}$$

2.
$$\frac{1}{\sqrt{x}}$$

5.
$$(2x+1)(x^2+x)$$

3.
$$\frac{1}{3r^2}$$

5.
$$(2x+1)(x^2+x)^5$$
.
6. $(x^2+1)(x^3+3x+4)$.

Exercice 9. (Logarithmes & Exponentielles, 🌣

1.
$$\frac{3}{\pi}$$

4.
$$\frac{1}{e^{12x}}$$

$$2. \ \frac{3x^2 + 4x}{x^3 + 2x^2 + 1}.$$

4.
$$\frac{1}{e^{12x}}$$
.
5. $(e^x + 1)(e^x + x)^{22}$.
6. $\frac{e^x + 1}{e^x + x}$.

3.
$$e^{2x}$$

6

6.
$$\frac{e^x + 1}{e^x + x}$$

Exercice 10. (Calculs d'intégrales, 🗱) Calculer les intégrales suivantes :

1.
$$\int_0^1 (x^2 + 3x + 1) dx$$
. **3.** $\int_1^{-1} e^3 dx$. **4.** $\int_2^1 \frac{1}{x} dx$.

3.
$$\int_{0}^{1} e^{3} dx$$

2.
$$\int_{-2}^{1} e^{3x} dx$$
.

4.
$$\int_{2}^{1} \frac{1}{x} dx$$
.

II - Propriétés de l'intégale

Exercice 11. (Loi uniforme) Soit f la fonction définie par f(x) = 0 si $x \notin [1,3]$ et $f(x) = \frac{1}{2}$ sinon.

- **1.** Représenter graphiquement la fonction f.
- 2. Déterminer les intégrales suivantes :

a)
$$\int_{-2}^{0} f(x) \, \mathrm{d}x$$
.

d)
$$\int_{-4}^{3} f(x) \, \mathrm{d}x$$
.

b)
$$\int_{-1}^{3/2} f(x) \, \mathrm{d}x$$
.

e)
$$\int_{-5}^{10} f(x) \, \mathrm{d}x$$
.

$$\mathbf{c)} \ \int_{-1}^{2} f(x) \, \mathrm{d}x.$$

3. Si
$$x \in [1, 3]$$
, déterminer $\int_1^x f(t) dt$.

Exercice 12. (Loi exponentielle) Soit f la fonction définie par f(x) = 0 si x < 0 et $f(x) = 2e^{-2x}$ sinon.

- 1. Représenter graphiquement la fonction f.
- 2. Déterminer les intégrales suivantes :

a)
$$\int_{-2}^{0} f(x) \, \mathrm{d}x$$
.

d)
$$\int_{-4}^{3} f(x) \, \mathrm{d}x$$
.

b)
$$\int_{-1}^{3/2} f(x) \, \mathrm{d}x.$$

e)
$$\int_{5}^{10} f(x) dx$$
.

c)
$$\int_{-1}^{2} f(x) \, \mathrm{d}x$$
.

3. Si
$$x \ge 0$$
, déterminer $\int_0^x f(t) dt$ et en déduire $\lim_{x \to +\infty} \int_0^x f(t) dt$.

Exercice 13. Calculer $\int_{-1}^{5} |x-2| dx$.

- **1.** Calculer I.
- **2.** Calculer I + J.
- **3.** En déduire la valeur de J.

Exercice 15. (\clubsuit) Soit $I = \int_0^1 \frac{x}{1+x^2} dx$ et $J = \int_0^1 \frac{x^3}{1+x^2} dx$.

- **1.** Calculer I.
- **2.** Calculer I + J.

3. En déduire la valeur de J.

Exercice 16. (**) Pour tout n entier naturel, on pose $u_n = \int_0^{1/2} \frac{x^n}{1-x^2} dx$.

- 1. Montrer que la suite (u_n) est décroissante.
- **2.** Montrer que (u_n) est minorée par 0.
- **3.** En minorant $1-x^2$, montrer que $u_n \leqslant \frac{4}{3(n+1)} \left(\frac{1}{2}\right)^{n+1}$.
- **4.** En déduire la limite de la suite (u_n) .

Exercice 17. (**) Pour tout n entier naturel non nul, on pose $I_n = \int_0^1 \ln(1+x^n) \, \mathrm{d}x$.

- **1.** Montrer que, pour tout n entier naturel non nul, $0 \le I_n \le \ln(2)$.
- **2.** Étudier les variations de la suite (I_n) .
- **3.** En déduire que la suite (I_n) converge.

T.D. III - Intégrale sur un segment ECT 2

III - Intégrations par parties

Exercice 18. (4) À l'aide d'une intégration par parties, calculer les intégrales suivantes :

$$\mathbf{1.} \ \int_0^1 x \, \mathrm{e}^x \, \mathrm{d}x.$$

4.
$$\int_{1}^{2} x^{2} \ln(x) dx$$
.
5. $\int_{1}^{e} (\ln(t))^{2} dt$.
6. $\int_{1}^{e} t^{2} e^{t} dt$.

2.
$$\int_{1}^{2} x e^{2x} dx$$
.

5.
$$\int_{1}^{e} (\ln(t))^2 dt$$
.

3.
$$\int_{1}^{e} x \ln(x) dx.$$

6.
$$\int_{1}^{e} t^2 e^t dt$$

Exercice 19. (\mathscr{D}) Pour tout n entier naturel, on pose $u_n = \int_0^1 (1-t)^n e^t dt.$

- **1.** Calculer u_0 .
- 2. Montrer que $f(t) = (2-t)e^t$ est une primitive de la fonction $q(t) = (1 - t) e^{t}$.
- **3.** Déterminer la valeur de u_1 .
- **4.** À l'aide d'une intégration par parties, montrer que, pour tout n entier naturel, $u_{n+1} = (n+1)u_n - 1$.
- 5. Montrer que la suite (u_n) converge et déterminer sa limite.
- **6.** Déterminer la limite de (nu_n) .

Exercice 20. (\mathfrak{D}) Pour tout n entier naturel non nul, on pose $u_n = \int_1^{\infty} t(\ln(t))^n dt$.

- **1.** Calculer u_0 .
- **2. a)** Montrer que, pour tout $t \in [1, e]$, $0 \le \ln(t) \le 1$.
 - **b)** En déduire que la suite (u_n) est décroissante.
- 3. En utilisant une intégration par parties, montrer que pour tout nentier naturel, $u_{n+1} = \frac{e^2}{2} - \frac{n+1}{2}u_n$.
- **4.** En déduire u_1 , u_2 et u_3 .