Electrical Engineering Technology

Series AC Circuits (continued)

Spring 2019 (2185)

Series AC Circuits (continued)

- Project #1, Week 1
 - □ Prelab (partial) discussion ZT for a series RL Circuit
 - Calculations
 - Simulation (interpretation of results)
- Series RC Circuit Frequency Response
 - □ ICP –In your teams
 - Check each other's work
 - Help each other with your calculators
 - □ Simulation Demo (Multisim)
 - Simulation set-up
 - AC magnitude vs Vpeak
 - Compare **Z**T results
 - Compare Vc results

Electrical Engineering Technology

Project #1 – Week 1 Prelab (Partial)

- 1. Calculate **ZT** and draw the impedance diagram (one RC series circuit, one RL series circuit)
- 2.Using Multisim, <u>determine</u> **Z**τ and draw the impedance diagram
- 3.In lab, build the circuit, <u>determine</u> **Z**T and draw the impedance diagram

1. Calculations – RL Circuit

Convert to the Phasor Domain (R,L,C -> impedance)

Calculate ZT

Draw the Impedance Diagram

Ŋ

Electrical Engineering Technology

2. Simulation – RL Circuit

Interpret to Determine **Z**T

$$\overline{Z}_{T} = \overline{E}_{L}$$

$$\overline{Z}_{T} = 5 \times 20^{\circ}$$

$$|\overline{Z}_{T}| = |\overline{VR}_{L}| = 2.21 \text{ pk}$$

$$= 3.25 \text{ mApk}$$

$\overline{Z_{r}} = \frac{5 k \chi_{0}^{\circ}}{3.25 m_{pk}^{2} \chi_{-63.7}^{\circ}}$ $\overline{Z_{r}} = 1,538 \sim \chi_{63.7}^{\circ}$

Draw the Impedance Diagram

Electrical Engineering Technology

Series R-C Circuit Analysis (ICP)

- 1. What is the source voltage, V1 in phasor form?
- 2. Write an equation for the capacitive reactance, Xc1
- 3. Write an $\underline{\textbf{equation}}$ for the total impedance magnitude $|Z_{T}|$
- 4. Write an **equation** for the total impedance phase ΘT
- 5. Draw the impedance diagram for the circuit at 1 kHz.
- 6. Write an **equation** for the series current I
- 7. Find the corner frequency, f1

- 8. Write an **equation** for **V**c
- 9. Using your results, check the values in the table below AND complete it:

Table 1: Calculated Values for the Series RC Circuit

Table 1. Calculated values for the belies ito circuit						
f(Hz)	$oldsymbol{X_C}(\Omega)$	$oldsymbol{Z_T}(\Omega)$		$V_C(V pk)$		
		$ Z_T $	θ_T °	$ V_C $	θ_C °	
10	$1.59 \cdot 10^6$	$1.59 \cdot 10^6$	-89.5	10	-0.54	
1000						
10,000						
20,000	795.8	15,021	-3.04	0.53	-87.0	

Series R-C Circuit Analysis (ZT)

+ HZ)	Xc(n)	Zr
10	1.592×106	1.592×10 2 4-89.5°
1,000	15,915	21,8702 4-46.7°
10,000	1,592	15,0842 \$ -6.06°
20,000	795.8	15,0211 4-3.04°

Multisim:

- 1) **Z**T magnitude and angle matches with calculations
- Simulation setup
- Include 100 points/decade or more

Electrical Engineering Technology

Series R-C Circuit Analysis (Vc)

1 HZ)	Xc(n)	Vc
10	1.592×106	10.0Vph \$-0.54°
1,000	15, 915	7.28 Vph 4-43.3'
10,000	1,592	1.06 Vpt 4-83.9°
20,000	795.8	0.530 Vph X-87.0°

Multisim:

- 1) **Vc** magnitude and angle matches with calculations
- Simulation setup
- Include 100 points/decade or more
- "AC Analysis Magnitude"

