#### **DATAWARE HOUSE ASSESMENT-1**

### 1:For the given Dimensional Modelling, please identify the following



### • How many dimensions and facts are present?

In the above given dimensional modelling we have one(1) fact table that is "sales fact" and we have six(6) dimensions table that is (Year,Month,Time,Products,customer,Store) are present in the above dimensional model.

### • Please identify the cardinality between each table?

| Dimension Tables        | Cardinality Between each Table                                   |
|-------------------------|------------------------------------------------------------------|
| Year-to-Month           | Cardinality between Year-to-Month is One-to-Many                 |
| Month-to-Time           | Cardinality between Month-to-Time is One-to-Many                 |
| Time-to-Sales Facts     | Cardinality between Time-to-Sales Facts is One-to-Many           |
| Products-to-Sales Facts | Cardinality between Products-to-Sales Facts is One-to-Many       |
| Customer-to-Sale Facts  | Cardinality between<br>Customer-to-Sales Facts is<br>One-to-Many |
| Store-to-Sale Facts     | Cardinality between Store-to-Sales<br>Facts is One-to-Many       |

# • How to create a Sales\_Aggr fact using the following structure(SQL Statement):

Year\_ID
Customer\_Key
Store\_key
Product\_key
Dollars

Sales\_Aggr year key CREATE TABLE as (select as "year id",customerKey "customer\_key",StoreKey as as "Store Key", ProductKey "Product Key" as from year, Products, Customer, Store);

ALTER TABLE Sales\_Aggr ADD Dollars double(40);

• Can you please Modify the above snowflake schema to star schema and draw the dimension model, showing all the cardinality?



#### **DATAWARE HOUSE ASSESMENT-1**

| Dimension Tables        | Cardinality Between each Table                             |
|-------------------------|------------------------------------------------------------|
| Date-to-Sales Facts     | Cardinality between Date-to-Sales<br>Facts is One-to-Many  |
| Products-to-Sales Facts | Cardinality between Products-to-Sales Facts is One-to-Many |
| Customer-to-Sale Facts  | Cardinality between Customer-to-Sales Facts is One-to-Many |
| Store-to-Sale Facts     | Cardinality between Store-to-Sales<br>Facts is One-to-Many |

# 2:For the following dimension Model can you please give an example of Circular Join and how to avoid it:



#### DATAWARE HOUSE ASSESMENT-1

#### **DATE**

| Date       | Month | MonthNumber |
|------------|-------|-------------|
| 05-02-2019 | FEB   | 02          |
| 14-08-2019 | AUG   | 08          |
| 23-04-2019 | APR   | 04          |

#### **SALES**

| OrderDate  | ShippingDate | SalesAmount |
|------------|--------------|-------------|
| 15-02-2019 | 20-02-2019   | 2000        |
| 24-08-2019 | 30-08-2019   | 4000        |
| 10-04-2019 | 18-04-2019   | 6000        |

### In the above table following Query will Create the circular Join

SELECT SAL.OrderDate,SAL.ShippingDate FROM DATE DA,SALES SAL WHERE DA.DATE=SAL.OrderDate AND DA.DATE =SAL.ShippingDate;

# In the above table we can remove circular join by using alias to the attributes

SELECT SAL.SalesAmount,SAL.OrderDate,SAL.ShippingDate FROM Date AS "OrderDate",Date as "ShippingDate", SALES SAL,DATE DAT WHERE OrderDate.DATE=SAL.OrderDate AND

ShippingDate.DATE=SAL.ShippingDate;

3:For the given Dimension Model, can you please generate a sql to get the total divergence between Quantity sold and Quantity Forecast for the current month for all the stores:



SELECT Sum(QUANTITY\_SOLD)
Sum(QUANTITY\_FORECAST) as "DIVERGENCE" FROM
DAILY\_SALES,DAILY\_FORECAST,PERIOD PER
WHERE
Month(PER.Month)-Month(Current\_Date)
GROUP BY STORE\_KEY;

4:For the above-mentioned dimension model, please identify the conformed and non- conformed dimensions. Additionally, identify the measure types?



In the above diagram shows that

#### **CONFORMED DIMENSIONS:**

- ✓ STORE
- ✓ PERIOD
- ✓ PRODUCT

## **NON-CONFORMED DIMENSIONS:**

- ✓ PROMOTION
- ✓ CUSTOMER

#### **MEASURES**

- ♦ ADDITIVE:
- ✓ QUANTITY\_SOLD
- ✓ QUANTITY\_FORECAST
- ♦ SEMI-ADDITIVE:
  - ✓ EXTENDED PRICE
  - ✓ EXTENDED\_COST
  - ✓ EXTENDED PRICE FORECAST
  - ✓ EXTENDED\_COST\_FORECAST
- ♦ NON-ADDITIVE:
  - ✓ In this model there is no Non-Additive Measures because it does not consist of any percentages or ratios are not calculated

5:Make a list of differences between DW and OLTP based on Size, Usage, Processing and Data Models.

|                   | DATA<br>WAREHOUSE   | ONLINE<br>TRANSCATION |
|-------------------|---------------------|-----------------------|
|                   |                     | PROCESSING            |
|                   | Size of Data        | Size of Online        |
| SIZE              | Warehouse           | Transaction           |
|                   | is 10MB-100GB       | Processing is         |
|                   |                     | 100GB-2TB             |
|                   | Data Warehouse uses | Online Transaction    |
| USAGE             | repetitive usage    | Processing uses       |
|                   |                     | ad-hoc usage          |
|                   | Data Warehouse uses | Online Transaction    |
| <b>PROCESSING</b> | Query Processing    | uses                  |
|                   |                     | Transaction           |
|                   |                     | Processing            |
|                   | Data Warehouse uses | Online Transaction    |
| DATA MODELS       | E-R Modeling        | Processing uses       |
|                   |                     | Dimensional           |
|                   |                     | Modeling              |