Лабораторная работа №4: Колебательный контур с источником тока

Постановка задачи

Источник с э. д. с. в и нулевым внутренним сопротивлением соединены последовательно с катушкой индуктивности (рис. начальный 1). конденсатором момент времени Найти зависимость конденсатор не заряжен. времени напряжения на конденсаторе после замыкания ключа К.

Рис. 1

Оборудование

- ПК (Использовался ноутбук с установленной ОС GNU/Linux)
- Табличный процессор (в ходе работы использовался LibreOffice Calc 7.0)

Задание 1: Построить график зависимости заряда конденсатора от времени

Математическая модель

$$q(t) = C\epsilon(1 - \cos(\omega_0 t))$$

Исходные данные

С, Ф	ω₀, Гц	ε, Β	α, рад
0,00005	120	180	0

Построенный график

График зависимости заряда конденсатора от времени

Задание 2: Построить график зависимости тока от времени

Исходные данные

С, Ф	ω₀, Гц	ε, Β	α, рад
0,00005	120	180	0

Математическая модель

$$I(t) = -Q_0 \omega_0 \sin(\omega_0 t + \alpha)$$

Построенный график

График зависимости тока от времени

Задание 3: Построить график зависимости напряжения от времени

Исходные данные

С, Ф	ω₀, Гц	ε, Β	α, рад
0,00005	120	180	0

Математическая модель

$$U(t) = q(t) / C$$

Построенный график

График зависимости напряжения от времени

Задание 4

Задача: За счет чего источник с э.д.с., равной є может зарядить конденсатор до напряжения, равного 2є?

Ответ: учитывая, что

$$U(t) = q / C = C\varepsilon(1 - \cos(\omega_0 t)) / C = \varepsilon(1 - \cos(\omega_0 t))$$

Составим уравнение:

$$\varepsilon(1 - \cos(\omega_0 t)) = 2\varepsilon$$

$$1 - \cos(\omega_0 t) = 2$$

$$\cos(\omega_0 t) = 1 - 2$$

$$\cos(\omega_0 t) = -1$$

$$\omega_0 t = \pi$$

Таким образом, для того, чтобы источник с э.д.с., равной є зарядил конденсатор до напряжения, равного 2ε , необходимо, чтобы выполнялось условие: $\omega_0 t = \pi$.

Анализ полученных данных

Сводная таблица результатов эксперимента

	min	max	Среднее	Δ
q(t)	0	0,01799683	0,00888136	0,01799683
I(t)	-1,07997923	1,07977633	-0,00166860	2,15975556
U(t)	0	359,93654207	177,62715625	359,93654207

Вывод

С помощью программных средств можно вычислить и визуализировать работу колебательного контура быстро и с высокой точностью. В ходе работы были построены два графика, отражающие зависимости заряда конденсатора, напряжения и силы тока от времени. Были также получены средние, минимальные и максимальные значения переменных для данной конфигурации контура, исследована зависимость различных показателей от времени.