An industrial oriented major project report

On

DETECTION OF FRAUDULENT TRANSACTIONS IN INDIAN E-COMMERCE USING DEEP LEARNING ALGORITHMS

Submitted by

YALAKAPALLY PAVANI

:21W91A6665

Under the Esteemed Guidance of

Mr.VENKATESWARLU.N

Assistant Professor

To Jawaharlal Nehru Technological University, Hyderabad

In partial fulfillment of the requirements for award of degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING(AIML)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AIML)

MALLA REDDY INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS)

(Sponsored by Malla Reddy Educational society)

(Affiliated to JNTU, Hyderabad)

Maisammaguda, Dhulapally post, Secunderabad-500014.

2024-2025

MALLA REDDY INSTITUTE OF ENGINEERING & TECHNOLOGY

(Sponsored by Malla Reddy Educational Society)
Approved by AICTE, New Delhi, Recognized Under 2(f) & 12(B)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AIML)

BONAFIDE CERTIFICATE

This is to certify that this is the Bonafide certificate of a major project titled "DETECTION OF FRAUDULENT TRANSACTIONS IN INDIAN E-COMMERCE USING DEEP LEARNING ALGORITHMS" is submitted by YALAKAPALLY PAVANI bearing Roll no of 21W91A6665 Student of B.Tech in the partial fulfillment of the requirements for the degree of Bachelor of Technology in Computer Science and Engineering(AIML), Malla Reddy Institute of Engineering and Technology.

Internal guide

Head of the Department

Mr.VENKATESWARLU.N

Dr. MD. ASHFAQUL HASAN

External Examiner

DECLARATION

I hereby declare that the Major Project entitled "DETECTION OF FRAUDULENT TRANSACTIONS IN INDIAN E-COMMERCE USING DEEP LEARNING ALGORITHMS" submitted to Malla Reddy Institute of Engineering and Technology (Autonomous), affiliated to Jawaharlal Nehru Technological University Hyderabad (JNTUH), for the award of the degree of Bachelor of Technology in Computer Science & Engineering(AIML) is a result of original industrial oriented Project done by us.

It is further declared that the Major Project or any part there of has not been Previously submitted to any University or Institute for the award of degree or diploma.

YALAKAPALLY PAVANI

21W91A6665

ACKNOWLEDGEMENT

First and foremost, I am grateful to the Principal **Dr. P. SRINIVAS**, for providing me with all the resources in the college to make my Major Project a success. I thankhim for his valuable suggestions at the time of Major Project which encouraged me to give my best in the Major Project.

I would like to express our gratitude to **Dr. MD. ASHFAQUL HASAN**, Head of the Department, Department of Computer Science and Engineering for his support and valuable suggestions during the Major Project report.

I offer my sincere gratitude to my Project – coordinator **Mr.VENKATESWARLU.N** and internal guide **Mr.VENKATESWARLU.N** Head of the Department of Computer Science and Engineering department who has supported me throughout this Major Project with their patience and valuable suggestions.

I would also like to thank all the **supporting staff** of the Dept. of CSE(AIML) and all other departments who have been helpful directly or indirectly in making the Major Project a success.

I am extremely grateful to my parents for their blessings and prayers for my completion of Major Project.

YALAKAPALLY PAVANI

21W91A6665

ABSTRACT

The rapid growth of e-commerce in India has led to an increase in online transactions, making fraud detection a critical concern for businesses and consumers. Traditional fraud detection methods often struggle to keep up with evolving fraudulent techniques. This project, "Detection of Fraudulent Transactions in Indian E-commerce Using Deep Learning Algorithms," leverages machine learning and deep learning models to enhance fraud detection accuracy. The system consists of User and Sign-Up modules, allowing users to interact with the model seamlessly. The core operations include running Decision Tree, Random Forest, and Convolutional Neural Networks (CNN) to analyze transaction patterns and classify them as fraudulent or legitimate. The predictive model is trained using real-world e-commerce transaction datasets, incorporating key features such as transaction amount, frequency, and user behavior patterns. By integrating deep learning techniques, this approach aims to improve detection efficiency, reduce false positives, and enhance overall security in the Indian e-commerce ecosystem.

CONTENTS

SNO	TOPICS	PAGE NO i	
	Abstract		
	List of contents	ii	
	List of figures	iv	
	List of abbreviations	v	
1	INTRODUCTION	1	
	1.1 Motivation	1	
	1.2 Problem statement	1	
	1.3 Objective	1	
2	LITERATURE SURVEY	3	
	2.1 Introduction	3	
	2.2 Existing System	3	
	2.3 Limitations of Existing System	4	
	2.4 Proposed System	4	
	2.5 Conclusion	5	
3	ANALYSIS	6	
	3.1 Introduction	6	
	3.1.1 Requirement Analysis	6	
	3.1.2 Functional Requirements	7	
	3.1.3 Non-Functional Requirements	8	
	3.2 Software Requirement Specification	9	
	3.2.1 Software Requirements	9	
	3.2.2 Hardware Requirements	10	
	3.3 Algorithms and Flowchart	10	
	3.3.1 Algorithms	10	
	3.3.2 Flowchart	12	
	3.4 Conclusion	12	
4	DESIGN	13	
	4.1 Introduction	13	
	4.2 System Architecture	13	
	4.3 UML Diagrams	14	
	4.3.1 Use case Diagram	15	

	4.3.2 Class Diagram	15
	4.3.3 Activity Diagram	16
	4.3.4 Sequence diagram	17
	4.4 Conclusion	17
5	SYSTEM STUDY	18
	5.1 Feasibility Study	18
	5.1.1 Economical Feasibility	18
	5.1.2 Operational Feasibility	18
	5.1.3 Technical Feasibility	19
	5.2 Conclusion	19
6	IMPLEMENTATION & RESULT	20
	6.1 Introduction	20
	6.2 Modules	20
	6.3 Source Code	21
	6.4 Output Screens	29
	6.5 Result Analysis	35
	6.6 Conclusion	37
7	TESTING & VALIDATION	39
	7.1 Introduction	39
	7.2 Types of Testing	39
8	CONCLUSION & FUTURE ENHANCEMENT	
	8.1 conclusion	42
	8.2 Future Enhancements	42
	REFERENCES	44

LIST OF FIGURES

S.NO	FIG NO	DESCRIPTION	PAGE NO
1	3.3.2	Flow Chart	12
2	4.2	System Architecture	13
3	4.3.1	Use Case Diagram for user and admin	15
4	4.3.2	Class Diagram	16
5	4.3.3	Activity Diagram	16
6	4.3.4	Sequence Diagram	17
7	6.4.1	User Interface	29
8	6.4.2	Registration Page	29
9	6.4.3	Login Page	30
10	6.4.4	User Home Page	30
11	6.4.5	Random Forest	31
12	6.4.6	Decision Tree	31
13	6.4.7	CNN Training	32
14	6.4.8	CNN model	32
15	6.4.9	Enter test data	33
16	6.4.10	Uploaded data	33
17	6.4.11	Uploaded data	34
18	6.4.12	Predicted as Non Fraudulent	34

LIST OF ABBREVIATIONS

CNN: Convolutional Neural Network

DT: Decision Tree

LSTM: Long Short-Term Memory

ML: Machine Learning

RF: Random Forest

RNN: Recurrent Neural Network

ROC: Receiver Operating Characteristic

SMOTE: Synthetic Minority Over-sampling Technique

SVM: Support Vector Machine