Moderné regulárne výrazy

Tatiana Tóthová školiteľ: RNDr. Michal Forišek PhD.

Fakulta matematiky, fyziky a informatiky Univerzita Komenského

22.apríla 2015

Motivácia:

 teoretický model regulárnych výrazov bol v praxi rozšírený o nové konštrukcie

Ciel':

 preskúmať z hľadiska formálnych jazykov – Chomského hierarchia, vlastnosti triedy jazykov, zložitosť

Definícia

Regex tvoria znaky a metaznaky

Základné operácie:

- $(e_1)(e_2)$ zreťazenie (bez znaku)
- $(e_1)|(e_2)$ alternácia
- (e₁)* Kleeneho uzáver

Navyše: ľubovoľný znak . , začiatok slova ^, koniec slova \$

Ďalšie operácie:

- ullet množiny znakov [abc], [a-z]
- komplementy množín znakov $[\hat{\ }abc]\,,[\hat{\ }a-z]$
- $\bullet \ \text{opakovania} \ ?, \{n\}, \{n,m\}, +$

Regex má konečnú dĺžku!

Zložitejšie konštrukcie (1)

Číslovanie zátvoriek zľava doprava, podľa otváracej zátvorky. Nečíslujú sa konštrukcie (?...)

Spätné referencie $\backslash k$ – odkazujú sa na k-te zátvorky α (β) γ $\backslash k$ δ

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{x_i \dots x_{j-1}}_{k} \underbrace{x_j \dots x_{l-1}}_{\gamma} \underbrace{x_l \dots x_{m-1}}_{k} \underbrace{x_m \dots x_n}_{\delta}$$

$$w_k = x_i \dots x_{j-1} = x_l \dots x_{m-1}$$

Zložitejšie konštrukcie (2)

Lookahead (?=...) – nazeranie dopredu: α (? = β) γ

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{x_i \dots x_j}_{\gamma} \underbrace{x_{j+1} \dots x_n}_{\gamma}$$

Lookbehind (?<=...) – nazeranie dozadu: α (? <= β) γ

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{x_i \dots x_j}_{\gamma} \underbrace{x_{j+1} \dots x_n}_{\gamma}$$

lch **negatívne formy** $(?!\ldots),(?<!\ldots)\to$ opačná akceptácia (slová, ktoré sa v danom jazyku nenachádzajú)

Triedy

```
Regex základné operácie a znaky . ^{^{^{\circ}}} ( = \mathcal{R})
Eregex + spätné referencie
LEregex + lookahead, lookbehind
nLEregex + negatívny lookahead, negatívny lookbehind
```

Triedy jazykov: $\mathcal{R}, \ \mathscr{L}_{ERE}, \ \mathscr{L}_{LERE}, \ \mathscr{L}_{nLERE}$

Hierarchia

Veta

Trieda nad Regex s pozitívnym a negatívnym lookaroundom je $\mathcal{R}.$

Hierarchia

 $\mathcal{R} \subsetneq \mathscr{L}_{ERE} \subsetneq \mathscr{L}_{LERE} \subseteq \mathscr{L}_{nLERE} \subsetneq \mathscr{L}_{CS}$

 \mathscr{L}_{LERE} a \mathscr{L}_{nLERE} sú neporovnateľné s \mathscr{L}_{CF}

Pumpovacia lema

Veta

Jazyk všetkých platných výpočtov Turingovho stroja patrí do $\mathcal{L}_{LERE}.$

Veta

Nech $\alpha \in LEregex$ nad unárnou abecedou $\Sigma = \{a\}$ taký, že neobsahuje lookahead s α ani lookbehind s α vnútri iterácie α 0. Existuje konštanta α 1 taká, že ak α 2 taká, že ak α 3 taká, že ak α 4 taká, že ak α 5 nasledujúcimi vlastnosťami:

- (i) $|y| \ge 1$
- (ii) $\exists k \in \mathbb{N}, \ k \neq 0; \ \forall j = 1, 2, \dots : xy^{kj} \in L(\alpha)$

Uzavretosť na zreťazenie

Veta

 \mathscr{L}_{LERE} je uzavretá na zreťazenie.

Dôkaz. Nech $\alpha, \beta \in LEregex$. Regex pre $L(\alpha)L(\beta)$ je

$$(?= (\alpha) (\beta) (k+2) (?<= ^1 1 \beta')$$

Nový formalizmus

- konfigurácia: $(r_1 \ldots \lceil r_i \ldots r_n, w_1 \ldots \lceil w_j \ldots w_m)$
- indexovateľné zátvorky
- krok výpočtu

$$(r_1 \ldots (\ldots)_k \lceil * \ldots r_n, w_1 \ldots w_a \ldots w_b \ldots \lceil w_j \ldots w_m)$$

$$(1) \vdash (r_1 \dots (\dots) * \lceil \dots r_n, w_1 \dots w_a \dots w_b \dots \lceil w_j \dots w_m)$$

$$(2) \vdash (r_1 \dots (\lceil \dots \rceil * \dots r_n, w_1 \dots w_a \dots w_b \dots \lceil w_j^k \dots w_m)$$

- akceptačný výpočet $(\lceil r, \lceil w) \vdash^* (r \lceil, w \lceil)$
- jazyk

Dĺžka akceptačného výpočtu

Lema

Nech $\alpha \in Eregex$ a $w \in L(\alpha)$. Potom existuje akceptačný výpočet, ktorý má najviac $5 \cdot |\alpha| \cdot |w|$ konfigurácií.

Počet všetkých možných konfigurácií $\alpha \in LEregex$ je

$$O(|\alpha| \cdot |w|^{|\alpha|+2})$$

Kvôli vlastnostiam lookaroundu lepší odhad nemáme.

Priestorová zložitosť

Veta.

$$\mathcal{L}_{LERE} \subseteq NSPACE(\log n)$$

Dôkaz. Na páske si pamätáme informáciu z poschodových symbolov – vo forme adries

Zo Savitchovej vety vyplýva: $\mathscr{L}_{LERE} \subseteq DSPACE(\log^2 n)$

Veta

$$\mathcal{L}_{nLERE} \subseteq DSPACE(\log^2 n)$$

Dôkaz. Idea Savitchovej vety, ale s konfiguráciami z formalizmu. Pre každý negatívny lookaround spúšťame nový Turingov stroj s opačnou akceptáciou.

Regex aj jazyk na vstupe

$$r = |regex|, \ w = |word|$$

Veta

 $L(regex\#word) \in NSPACE(r\log w)$, $regex \in LEregex$

Dôkaz. Vyplýva z $\mathcal{L}_{LERE} \subseteq NSPACE(\log n)$, dĺžka regexu už viac nie je konštanta.

Veta

Nech počet konfigurácií v akceptačnom výpočte je polynomiálny od r a w, potom $L(regex\#word) \in DSPACE(r\log^2 w)$, $regex \in LEregex$

Dôkaz. Idea Savitchovej vety, ale s konfiguráciami z formalizmu.

Na záver

Ďakujem za pozornosť!

Problém s lemou 2

Lema 2

Nech $\alpha\in\mathscr{L}_{LERE},\ s\in L(\alpha),\ r=|\alpha|$ a w=|s|. Potom existuje akceptačný výpočet, ktorý má nanajvýš $O(r^2w^3)$ konfigurácií.

Pripomeňme lemu 1

Lema 1

Nech $\alpha \in \mathscr{L}_{ERE}$ a $w \in L(\alpha)$. Potom existuje akceptačný výpočet, ktorý má najviac $5 \cdot |\alpha| \cdot |w|$ konfigurácií.

Doplnenie na \mathcal{L}_{LERE} ? Funguje len pre regexy s konštantnou hĺbkou vnorenia lookaroundov.

Počet všetkých možných konfigurácií je $O(|\alpha| \cdot |w|^{|\alpha|+2})$

Komplikovanosť lookaheadu s \$ a lookbehindu s ^ vnútri *

Napríklad regex

$$((?=\underbrace{(?=(a^m)*\$)}_{a^{km},\ k\in\mathbb{N}}\underbrace{(a^{m+1})*a\{1,m-1\}\$\mid a^m\$)}_{\text{vie }a*\text{ okrem }a^{m+1},\ a^{m(m+1)l},\ l\in\mathbb{N}})a^m) + \underbrace{a^{km},\ k\in\mathbb{N}}_{a^{km}\text{ tak\'e},\ \check{\mathbf{z}}\text{e nevie }a^{m(m+1)l},\ l\in\mathbb{N}}$$

generuje konečný jazyk obsahujúci slová

- a^m
- \bullet a^{2m}
- . . .
- $a^{(m-1)(m+1)}$

Hlavný lookahead je spúšťaný každú iteráciu, teda pre slovo a^{zm} musí matchovať všetky a^{im} pre $i\in\{1,\ldots,z\}$.