Evaluating Large Language Model Performance in Taboo Word Games MSc Advanced Computer Science

Zhenliang Cai

University of Leeds

July 14, 2025

Outline

- Introduction & Background
- 2 Methodology
- Preliminary Results
- 4 Key Findings
- Discussion & Analysis
- 6 Limitations & Future Work
- Conclusion

Introduction & Background: Introduction

Large Language Models & Evaluation Challenges

- LLMs demonstrate remarkable capabilities in natural language understanding
- Current evaluation methods often lack comprehensive behavioral analysis
- Need for novel evaluation paradigms that test linguistic creativity and constraint adherence

Research Motivation

- Taboo games require description without using forbidden words
- Tests multiple cognitive abilities: creativity, linguistic flexibility, constraint satisfaction
- Provides rich data for multi-dimensional analysis

Key Innovation

Understanding how LLMs perform in constrained communication tasks reveals insights into their linguistic capabilities and limitations.

Introduction & Background: Related Work

LLM Evaluation Methods

- Traditional benchmarks (GLUE, SuperGLUE) focus on classification tasks
- Recent work explores creative and constrained generation tasks
- Limited studies on multi-dimensional behavioral analysis

Game-Based AI Evaluation

- Chess, Go, and poker as strategic intelligence tests
- Word games for linguistic competence assessment
- Taboo games: underexplored in AI evaluation literature

Research Gaps

- Lack of systematic multi-model comparison in word games
- Limited understanding of domain-specific performance variations
- Missing frameworks for creativity assessment in Al

Introduction & Background: Project Objectives

Primary Research Questions

- How do different LLMs perform in Taboo word games across various domains?
- What linguistic and cognitive factors influence performance in constrained communication?
- 4 How do models handle creative description under lexical constraints?
- What patterns emerge in model errors and failure modes?

Specific Objectives

- Obevelop comprehensive evaluation framework for Taboo game performance
- Compare 4 state-of-the-art LLMs across 5 knowledge domains
- Analyze multi-dimensional factors: frequency, concreteness, domain specificity
- Identify optimal strategies for constrained language generation
- Provide insights for improving AI communication systems

Methodology: Experimental Design Overview

Experimental Parameters

- Models: Claude Sonnet 4, GPT-4o. Gemini 2.5 Pro, DeepSeek Chat V3
- Dataset: 300 target words across 5 domains
- Game Structure: 4 turns per game, 4,800 total games
- Constraints: No forbidden words. maintain semantic accuracy

Key Innovation

 First systematic Taboo game evaluation for LLMs

Multi-dimensional performance assessment

Figure: Experimental Overview

Methodology: Dataset Construction

WordNet 3.1 Based Selection

- Systematic sampling from WordNet 3.1 lexical database
- Balanced representation across knowledge domains
- Controlled for word frequency and concreteness
- Validation through expert review

Domain Distribution

Domain	Words	Percentage
General	60	20%
Computer Science	60	20%
Biology	60	20%
Literature	60	20%
Medical	60	20%

Methodology: Evaluation Framework

Multi-Dimensional Analysis

- Performance Metrics: Success rate, turn efficiency, constraint adherence
- Linguistic Factors: Word frequency, concreteness, semantic similarity
- Domain Analysis: Cross-domain performance comparison
- Error Classification: Systematic categorization of failure modes

Evaluation Methodology

- Human evaluation for constraint adherence
- Automated metrics for efficiency and success
- Statistical analysis for significance testing
- Multi-dimensional correlation analysis

Key Innovation

Preliminary Results: Overall Performance Results

Model Performance Summary

Model	Success Rate	Avg Tu
Gemini 2.5 Pro	96.7%	2.1
Claude Sonnet 4	95.9%	2.2
DeepSeek Chat V3	89.4%	2.8
GPT-4o	80.5%	3.1

Key Findings

- Gemini 2.5 Pro achieved highest success rate (96.7%)
- Claude Sonnet 4 demonstrated consistent performance
- GPT-4o showed highest constraint

Figure: Performance Overview

Preliminary Results: Turn-by-Turn Efficiency Analysis

Cumulative	Success	Rates	by	Turn
------------	---------	-------	----	------

Turn	Gemini 2.5 Pro	Claude Sonnet 4
Turn 1	52.3%	48.7%
Turn 2	78.9%	75.1%
Turn 3	89.4%	87.2%
Turn 4	96.7%	95.9%

Efficiency Insights

- Gemini and Claude show strong first-turn performance
- DeepSeek demonstrates steady improvement across turns
- GPT-4o requires more attempts for

Figure: Turn-by-Turn Efficiency Analysis

Preliminary Results: Word Frequency Effect Discovery

Frequency Impact Analysis

Frequency Band	Success Rate	Avg Turns
High Freq	94.2%	2.1
Med-High	91.7%	2.3
Med-Low	86.3%	2.7
Low Freq	78.9%	3.2

Critical Discovery

65.9% of apparent "domain effects" are actually word frequency effects (r $=0.225,\,p<0.001)$

Figure: Word Frequency Effect Analysis

Preliminary Results: Domain Performance Analysis

Cross-Domain Performance

Domain	Average	Std Dev
General	93.5%	5.8%
Computer Science	89.6%	8.2%
Biology	91.3%	6.4%
Literature	89.6%	6.8%
Medical	89.2%	8.4%

Domain-Specific Insights

- General domain shows highest performance across all models
- Specialized domains show more variation between models

Figure: Domain Performance Analysis

Preliminary Results: Critical Discovery - Domain vs Frequency Effects

Major Finding

Statistical analysis reveals that 65.9% of apparent domain effects are actually explained by word frequency differences (r = 0.225, p < 0.001)

Detailed Analysis

- Frequency-controlled domain analysis shows minimal true domain effects
- High-frequency words perform consistently well across all domains
- Low-frequency technical terms drive apparent domain differences

Preliminary Results: Additional Factors Analysis

Concreteness Effect

- Concrete words: 92.4% success rate
- Abstract words: 84.7% success rate
- Difference: 7.7 percentage points (p < 0.01)

Polysemy Impact

- Monosemous words: 91.2% success rate
- Polysemous words: 86.8% success rate
- Multiple meanings increase difficulty consistently

Error Pattern Analysis

Key Findings: Theoretical Implications

Major Theoretical Contributions

- Frequency Over Domain: Word frequency is more predictive than domain knowledge
- Constraint Adherence: Models show systematic patterns in constraint violations
- Creative Adaptation: LLMs demonstrate varying degrees of linguistic creativity

Implications for Cognitive Science

- Models exhibit human-like frequency effects in language processing
- Constrained generation reveals limits of semantic representation

Key Findings: Methodological Contributions

Novel Evaluation Framework

- First systematic Taboo game evaluation for LLMs
- Multi-dimensional analysis combining linguistic and performance metrics
- Reproducible methodology for comparative model assessment

Empirical Insights

- Established performance hierarchy across 4 major LLMs
- Identified key linguistic factors affecting performance
- Revealed frequency-domain interaction effects

Future Research Directions

Framework can be extended to other constrained generation tasks and language models

Discussion & Analysis: Theoretical Implications

Linguistic Processing Insights

- Models demonstrate frequency-based processing similar to humans
- Constraint adherence requires explicit instruction following
- Creative generation emerges from semantic flexibility

Model Architecture Implications

- Transformer attention mechanisms affect constraint tracking
- Training data distribution impacts domain performance
- Model size correlates with constraint adherence quality

Broader Al Implications

Understanding constraint-following capabilities is crucial for reliable AI deployment

Limitations & Future Work: Current Limitations

Methodological Limitations

- Limited to English language evaluation
- Focus on single-turn constraint following
- Subjective elements in human evaluation
- Limited domain coverage (5 domains)

Technical Limitations

- Evaluation limited to 4 models
- No fine-tuning experiments conducted
- Limited analysis of failure mode patterns
- Constraint complexity not systematically varied

Scope Limitations

18 / 22

Limitations & Future Work: Future Research Directions

Immediate Extensions

- Expand to multilingual evaluation
- Include more recent LLMs in comparison
- Develop automated evaluation metrics
- Systematic prompt engineering studies

Long-term Research Goals

- Develop specialized training methods for constraint adherence
- Create comprehensive benchmark suite for constrained generation
- Investigate neural mechanisms underlying constraint following
- Explore applications in interactive AI systems

Broader Impact

Conclusion: Summary of Contributions

Key Empirical Findings

- Established clear performance hierarchy: Gemini 2.5 Pro ¿ Claude Sonnet 4 ¿ DeepSeek Chat V3 ¿ GPT-40
- Demonstrated that 65.9% of apparent domain effects are word frequency effects
- Identified linguistic factors affecting constrained generation performance

Methodological Innovations

- First comprehensive LLM evaluation using Taboo games
- Novel multi-dimensional analysis framework
- Reproducible evaluation methodology for constraint-following tasks

Theoretical Contributions

- Revealed frequency-domain interaction effects in LLM performance
- Demonstrated systematic patterns in constraint violation behaviors

Conclusion: Key Takeaways

For AI Researchers

- Word frequency is more predictive than domain knowledge
- Constraint adherence varies significantly across models
- Multi-dimensional evaluation reveals nuanced performance patterns

For Practitioners

- Choose models based on constraint-following requirements
- Consider frequency effects when designing evaluation datasets
- Implement systematic evaluation for constrained generation tasks

Future Impact

This work establishes foundation for more reliable and controllable AI systems

Thank You!

Questions & Discussion

Contact: your.email@university.edu

Repository: github.com/username/taboo-llm-eval