

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

ENGENHARIA INFORMÁTICA - INTELIGÊNCIA ARTIFICIAL

2020/2021 - 2º semestre

28.6.2021 PROVA ESCRITA 2 DURAÇÃO: 1h

Nota: A cotação de cada exercício (para 20 valores) é apresentada entre parênteses retos.

- 1. [4] Explique a diferença entre as versões *steepest-ascent* e *first-choice* do algoritmo Hill-Climbing que vimos nas aulas.
- 2. [8] Pretende-se aproximar a função lógica $f(x_1, x_2) = x_1 \forall x_2, x_1, x_2 \in \{0, 1\}$, usando uma rede neuronal com apenas um neurónio. Treine a rede durante duas épocas utilizando o algoritmo back-propagation. A função de ativação utilizada é a função sigmóide, $g(s) = \frac{1}{1 + e^{-s}}$, os pesos devem ser iniciados com os valores $w_1 = 0.3$, $w_2 = 0.2$ e b = 0.5 e o valor da velocidade de aprendizagem é 0.5.
- 3. [8] Utilizando o algoritmo ID3 e recorrendo ao cálculo do ganho de informação, construa uma árvore de decisão ótima que permita classificar corretamente os seguintes dados.

Exemplo	Α	В	С	Classe
1	1	0	1	Não
2	2	1	0	Sim
3	3	1	1	Sim
4	1	1	1	Não
5	3	0	1	Não
6	1	1	1	Não
7	2	1	0	Sim
8	3	0	0	Não

Tabela de logaritmos:				
log ₂ (1/3)=-1.58	$log_2(1/4)=-2.00$			
$log_2(1/5)=-2.32$	$log_2(1/6) = -2.58$			
$log_2(1/7)=-2.80$	$log_2(2/3) = -0.58$			
log ₂ (2/5)=-1.32	$log_2(2/7) = -1.79$			
$log_2(3/4) = -0.42$	$log_2(3/5) = -0.74$			
$log_2(3/7)=-1.22$	$log_2(4/5) = -0.32$			
$log_2(4/7) = -0.81$	$log_2(5/6) = -0.26$			
$log_2(5/7) = -0.49$	$log_2(6/7) = -0.22$			
$log_2(3/8) = -1.42$	$log_2(5/8) = -0.68$			