Promo-code activation:)

You have two options!

You can try to solve all the proposed problems and submit your solutions as a pdf file. In this case I will honestly grade them.

You can write a promo-code #arma_dillo. In this case I will ignore your solutions and grade your exam as 4/10.

Problems

- 1. Consider a stationary solution of the equation $y_t = 2 + 0.7y_{t-1} + u_t 0.5u_{t-1}$, where u_t is a white noise process.
 - (a) Calculate $E(y_t)$, first two values of autocorrelation and partial autocorrelation functions.
 - (b) Assuming normality and independence of u_t , $u_t \sim \mathcal{N}(0; 9)$, $u_{100} = -1$, $y_{100} = 5$, calculate short-term 95% predictive interval for y_{101} and long-term 95% predictive interval for y_{100+h} where $h \to \infty$.
- 2. Consider a stationary solution of the equation $y_t = 2 + 0.7y_{t-1} 0.12y_{t-2} + u_t$, where u_t is a white noise process.

James Bond assumes the wrong model $y_t = \beta_1 + \beta_2 y_{t-1} + u_t$ and estimate the regression $\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 y_{t-1}$ by OLS.

- (a) Find the probability limit of $\hat{\beta}_1$ and $\hat{\beta}_2$.
- (b) Using $\hat{\beta}_1$, $\hat{\beta}_2$ and his wrong assumption James Bond tries to estimate $\mu = \mathrm{E}(y_t)$. Find the probability limit of this estimator $\hat{\mu}$. Will it be consistent?
- 3. Consider a ETS(AAA) model for monthly data described by the system

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + s_{t-12} + \varepsilon_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t = b_{t-1} + \beta \varepsilon_t \\ s_t = s_{t-12} + \gamma \varepsilon_t \end{cases}$$

Represent it as ARIMA model. Find all the coefficients of this ARIMA representation.

4. Consider two independent MA(1) process with zero expected value and unit variance, A_t and B_t . The first values of autocorrelation function are $\rho_1^A = 0.5$ and $\rho_1^B = 0.5$.

The process S_t is just the sum of these two, $S_t = A_t + B_t$.

- (a) Classify S_t as ARIMA(p, d, q) process. Find p, d and q.
- (b) Calculate the autocorrelation function for S_t .
- 5. Consider the process $y_t = u_1 \sin t + u_2 \cos t$, where u_t is a white noise.
 - (a) Is y_t stationary?
 - (b) Can y_t be represented as ARIMA(p, d, q) process? Find p, d, q if possible.

Hint: $\cos(a+b) = \cos a \cos b - \sin a \sin b$, $\sin(a+b) = \sin a \cos b + \sin b \cos a$.

- 6. Variables (x_t) are independent and are equal to 0 or 1 with equal probability, u_t are independent $\mathcal{N}(0;1)$. Consider the process $z_t = x_t(1 x_{t-1})u_t$.
 - (a) Is z_t a stationary process? Find its autocorrelation function if it is stationary.
 - (b) You know that $z_{100} = 2.3$. Find one and two step ahead point and interval forecasts. What is special about interval forecasts in this case?