MATH5665: Algebraic Topology (2015,S1) Assignment 1 1

This assignment is due during the week 5 wednesday lecture.

- 1. Let $A = \{a, b, c, d\}$ be ordered in alphabetical order.
 - (a) Which of the following defines a simplicial complex:

$$K = \{a, b, c, d, ab, bc, bd\}$$
 or,
 $K' = \{a, b, c, d, ab, bc, abc\}$

- (b) For each of the simplicial complexes in part (a), draw a figure which is homeomorphic to the polytope of that simplicial complex.
- 2. Show that the following sequence of abelian groups is a chain complex and compute all of its homology groups.

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\phi} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\psi} \mathbb{Z} \longrightarrow 0$$

where $\phi(n) = (n, -2n), \psi(m, n) = 2m + n$.

3. Consider the triangulation $\theta: |K| \longrightarrow X$ of the Klein bottle given by the labelled surface diagram below.

Compute the homology groups $H_p(K)$. Hint: Follow the example of the torus in lecture 5.

4. Let s_{\bullet} be a chain homotopy between chain maps $f_{0 \bullet}, f_{1 \bullet} : C_{\bullet} \longrightarrow C'_{\bullet}$. Let $g_{\bullet} : C'_{\bullet} \longrightarrow C''_{\bullet}$ be another chain map. Prove that $g_{\bullet}f_{0 \bullet}, g_{\bullet}f_{1 \bullet}$ are also chain homotopic, i.e. there is a chain homotopy between them.

¹by Daniel Chan

5. Let $\theta: |K| \longrightarrow X$ be a triangulation of a topological space. Consider the quotient space $Y = (X \times I)/\sim$ where \sim is the equivalence relation generated by $(x,1) \sim (x',1)$ for all $x,x' \in X$. Find a triangulation for Y.