This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- CÓLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Abstract for JP 63-21907

The direction applying voltage to liquid crystal is parallel to a panel surface, while conventionally the direction is vertical, so that a detrimental parasitic capacitor is reduced.

許 公 報(B2) 四特

昭63-21907

Mint Cl.4

識別記号

庁内整理番号

昭和63年(1988)5月10日 2000公告

9/30 G 09 F G 02 F 1/133 3 3 9 3 2 3

6866-5C 7370-2H

(全8頁) 発明の数 1

9発明の名称

液晶表示パネル

②特 賏 昭54-167542

吾

濆

開 昭56-91277 ❸公

昭54(1979)12月25日 ❷出 願

母昭56(1981)7月24日

者 富 樫 明 79発

人

埼玉県所沢市大字下富字武野840 シチズン時計株式会社

東京都新宿区西新宿2丁目1番1号

技術研究所内

シチズン時計株式会社 ①出 顋 人

> 弁理士 金山 敏彦

個代 理 男 忠 官 滠 原 審 査

2

1

砂特許請求の範囲

1 パネル基板の表面に配設され互いに直交する 多数の行電極および列電極と、これらの行電極お よび列電極の各交点に対応してマトリツクス状に 配設されたスイツチング素子と、このスイツチン グ素子を介して駆動電圧が印加される表示用電極 と、一対のパネル基板の間に挟持され前記表示用 電極と基準電極との間に印加される電圧により駆 動される液晶表示要素とを有するスイッチング素 子内蔵型の液晶表示パネルにおいて、前記表示用 10 方式である。 電極と基準電極とは相互に咬合するくし歯状電極 としていずれも前記一対のパネル基板の一方の基 板表面に配設されており、前記液晶表示要素は前 記パネル基板の表面に平行な成分を有する電界に ル。

2 行電極および列電極の一方が、基準電極を兼 ねることを特徴とする特許請求の範囲第1項に記 載の液晶表示パネル。

発明の詳細な説明

本発明はスイツチング素子をパネル上に設けた スイツチング素子内蔵型の液晶表示パネルの改良 にかかわり、詳しくは液晶への電圧印加法を工夫 する事により消費電力、スイツチング速度や製造 性を大巾に改善するものである。

液晶表示パネルは低電力、低電圧という他の表 示装置にない特徴を有し、電卓、時計等の携帯機 器を中心に広く用いられている。しかし表示特性

は電圧に対し鋭い閾値特性を持たない為、高分割 のマルチプレツクス駆動には適さない。そこで高 分割のマルチプレツクス駆動を可能とする為にス イツチング素子を各表示要素毎に配置する方式 5 (スイツチング素子内蔵方式)が提案されている (参照、B.J.Lechner etal、Proc.IEEE vol、59、 Nov.1971.P.1566~1579) スイツチング素子内蔵 方式は、いかなる高分割のマルチプレツクス駆動 でもクロストークが原理的には存在しない優れた

しかし現実的には幾つかの問題点が存在し、本 来の優れた特性を生かして実用化されるに至つて いない。従来のスイツチング素子内蔵方式の液晶 表示パネルの問題点としては、消費電力、相互配 より駆動されることを特徴とする液晶表示パネ 15 線、及び製造性等が挙げられる。本発明は液晶に 対する電圧印加方向を、従来のパネル平面に垂直 方向から平行方向の成分を含む方向とする事によ り、有害な寄生容量を低減し、従来の問題点を改 善したものである。

本発明の説明に先立ち、従来のスイッチング素 20 子内蔵方式の液晶表示パネルについて述べる。第 1 図は表示パネルの説明図である。 1, 2 は基板 であり、3は液晶層である。第1の基板1には基 準電極 Zが、第2の基板2には行電極、列電極及 25 ぴスイッチング素子、表示用電極等を含む層 5 が それぞれ形成されている。第2図は表示部の等価 回路である。X(X₁~X_n) は列電極、Y(Y₁~ Ym) は行電極であり、該行電極及び列電極の交

点に対応する領域にスイッチング素子Sが配置さ れ、液晶表示要素LCはスイッチング素子Sと表 示用電極Aにより接続され、他の一端は基準電極 乙に接続される。

第4図は行電極Yjと列電極Xiの交点に対応す る一単位要素に於ける一方の基板2上の各素子の 配置例である。行電極Yj, Yı+ıと列電極Xi, Xi+iにより囲まれた領域が一単位要素に対応しス イッチング素子Sijは行電極Yj、列電極Xiと表示 用電極Aijに接続される。もう一方の基板上には 10 基準電極2が全面に形成されており、表示用電極 Aijと基準電極2との間に挾まれる第4図斜線部 に対応した液晶層が液晶表示要素LCijを構成す

第3図は表示パネルを含む表示装置全体のプロ 15 ツク図であり、6は行電極Yi~Ymに線順次式の 走査信号を供給する行電極駆動回路、7は表示情 報処理回路8より入力される表示情報に基づいて 列電極Xi~Xnに表示信号を印加する列電極駆動 回路、8は各回路に様々のクロック信号を、供給 20 するクロック回路である。行電極Yi~Ymは走査 信号により順次選択され、選択された行電極に接 続されたスイッチング素子が導通してその時の表 示信号が表示用電極Aを介して液晶表示要素に書 が非導通となり書き込まれた電圧を保持する。こ の様にスイッチング素子内蔵方式ではクロストー クが全く起らない表示が可能である。

以上の様な従来例に於ける最大の欠点の1つは 従来の表示パネル構造に起因する寄生容量であ 30 る。

第5図は従来の表示パネルの断面図である。従 来例では、一方の基板1上に基準電極2が形成さ れ表示用電極Aとで挟まれた領域の液晶表示要素 素子Sに接続され、それぞれ走査信号及び表示信 号を供給する行電極Y及び列電極Xも必然的に基 **準電極乙と対向してしまう点にあり、それぞれ寄** 生容量Cyz、Cxzを生じてしまう。スイツチング 素子を用いない液晶表示パネルでは液晶表示要素 40 の領域以外では両基板上の電極は対向しない様に する事が可能であつたが、スイッチング案子内蔵 方式では行電極及び列電極が一方の基板上に碁盤 の目状に配置され他の基板上には基準電極が全面

に形成されている為、Cxz、Cyzの様な寄生容量 は避け得なかつた。

Cxz、Cyzの様な寄生容量は消費電力に大きな 影響を及ぼす。表示パネル上の消費電力として は、まず液晶表示要素を駆動する為のエネルギー が必要である。電界効果型の液晶表示を例に取る と各表示要素LCは電気的には容量Clcと近似され る。よつてClcを充放電する為のエネルギーが表 示の為に必要な消費電力Wdispに対応する。しか し、従来の表示パネルを駆動する為の消費電力は Wdispの数十~数百倍にも昇つている。この原因 が寄生容量Cxz、Cyzである。今、行電極及び列 電極の巾をw、数をそれぞれn、表示部の面積を W×W液晶層厚d、液晶の誘電率 ε とする。各液

晶表示要素の容量Clcは $\varepsilon \left(\frac{W}{n} - w\right)^2 / d$ 程度と なる。又各列電極及び行電極一本当りの寄生容量 Cxz、CyzはをW・w/d程度となる。Clcを充放 電する為には列電極の寄生容量Cxzも充放電しな

くてはならない。 $Cxz/Clc \sim W \cdot w/(\frac{W}{P}w)^*$ は例えばW250mm、n2500、w220umとする と156程度、電極巾wを10μmとしても62程度と なり、この程度の寸法でもCxzにより消費される 込まれ、他の行の選択期間中はスイツチング素子 25 電力はClcにより消費される電力の156倍又は62倍 となる。行電極Yi~Ymの寄生容量Cyzによる効 果は、行電極に印加される走査信号のスイッチン グ回数が少ない為充放電回数も小さく、Cxz程は 大きくない。しかし行電極Yı~Ymはスイッチン グ素子のゲートに接続され、スイッチング素子が CdseやaーSiを用いた薄膜素子の場合では、ゲ ート電圧Vgは表示信号電圧よりかなり大きいか ら、消費電力∞Cxz V³gの効果も無視出来ない。 以上の如く寄生容量Cxz、Cyzの為に消費される LCに電圧を印加している。問題はスイツチング 35 電力は真に表示に必要な電力の数十~数百倍とな

> 寄生容量Cxz、Cyz等は周辺回路が必要とする 応答速度にも大きな影響を及ぼす。スイッチング 素子を介して容量Cを充放電する場合、充放電時 間Tはスイツチング素子のオン抵抗RonとCの積 の逆数 (Ron C)-1程度必要である。前述の如く Cxz/Clc2100であったから寄生容量Cxzの存在 しない場合と比べ、同じ充放電時間で駆動するに はRonが1/100程度でなくてはならない。もし周

辺回路をLSIで構成する場合、Ronを1/100にす る為には面積が100倍程度大きなトランジスタが 必要であり、回路面積或いは消費電力の点から言 つても問題がある。

一方、スイツチング素子内蔵方式では、行電極 及び列電極の数は数百本の事が多く、この様な場 合表示パネルと周辺回路との相互接続の困難さを 防ぐ為に周辺回路部の一部を表示パネルに形成し て相互配線の数を減少させる事がある。この様な 一本の相互配線で入力しシリアル・パラレル変換 により各列電極分配する方法がとられ相互配線を 1/aに減らすには1/a短い時間に応答する回 路が必要となる。W=50mm、n=500、w=20mm、 =10とすると、Clc20.0SpF、Cxz2Cyz28pF、 必要なスイツチング時間は約4 msecとなり、寄 生容量Cxzがない場合でもRon<8×10⁷Ω、寄 生容量がある為Ron < 5 × 10⁵ Ω が必要であり、 ばならない。表示パネル上のスイッチング素子と してCdSe、 a -Si、Poly-Si等の薄膜素子を用 いる場合、薄膜半導体のキヤリア移動度が低い為 Ronを小さくする事は極めて難しくRonが10⁷Ω の様に寄生容量が存在する為に、周辺回路を表示 パネル上に形成する事が極めて困難となつてい る。

本発明は、従来方式の様に液晶層を挟んで配置 される電極(基準電極と表示用電極)を通じて液 30 晶表示要素にパネル平面に垂直な電圧を印加する のではなく、スイッチング素子が構成してある方 の基板上に共に配置された少なくとも2種の電極 に電圧を印加する事により、該電極の配置された 成分を含む電圧を印加するものである。第8図は 従来例の第5図に対応する本発明の説明図であ る。従来例ではスイツチング素子Sと接続した表 示用電極Aはスイツチング素子と同一基板2上に 電圧を印加する役割を持つ基準電艦2はもう一方 の基板 2 上にあり、液晶表示要素LCに印加され る電圧は図中破線の如くパネル平面に垂直であつ た。第6図の本発明では基準用電極の役割を果た

す電極2*もスイツチング素子と同一の基板上に 形成され、表示用電極Aと電極Z*との間に印加 される電圧は図中破線の如くパネル平面に平行な 成分を有する様になる。尚、電極2*は基準電極 Zの事もあるが、行電極Yや列電極Xが役割を兼 用する事もある(後述)この様に、本発明では基 板1には電極を設ける必要がなく、従来のスイツ チング素子内蔵方式で問題となつた寄生容量 Cxz、Cyzを大巾に低減可能で消費電力、スイツ 周辺回路では複数の列電極に供給する表示信号を 10 チング速度等の問題が非常に改善される。本発明 は又表示パネル製造の上でも上下基板間の電気的 接続や位置合せが不要な点から有利である。以下 実施例に基づき説明する。

第7図は本発明の一実施例に於ける一単位要素 arepsilon=10arepsilon、 $\mathbf{d}=10\mu m$ 、フレイム周波数50Hz、 a 15 の素子配置の説明図であり、従来例では第4図に 対応する。従来例では表示用電極Aijは液晶表示 要素部全面に形成されていた。本実施例では図の 様にくし歯状にパタン化されている。*一*方従来例 では、もう一方の基板に形成されていた基準電極 製造上のパラツキを考えれば更に余裕を見なけれ 20 Zは、本発明では表示用電極Aijと同一基板上に 形成されしかも本例ではAijと組み合つたくし歯 状にパタン化されている。本例の様にくし歯状に パタン化する事により電圧を効果的に液晶表示要 素に印加する事が可能である。第8図は本例の表 程度のものなら何とかなるが $10^5\Omega$ は難しい。こ 25 示パネルを用いた表示装置のブロック図である。 第3図の従来例との相異は基準電極 Z が基板 2 上 に形成されている点にある。本例の配置では寄生 容量Cxz、Cyzが極めて小さく消費電力、スイツ チング速度が大巾に改善される。

> 第9図は第7図の実施例の変形であり基準電極 Zの両側に表示要素を配置している点に特徴があ る。本例では電極パタンが簡略化される。

第7,9図の実施例では基準電極乙を列電極X に平行に配置したが、第10,11図の実施例で 領域の液晶表示要素にパネル平面に平行方向の、35 は行電極Yに平行に配置している。第7図の例で は列電極Xと基準用電極Zが隣接するから従来例 よりは大巾に少ないが、ある程度のCxzが存在 し、Cyzは少ない。一方第10図の例では逆に Cyzが存在し、Cxzは少ない。スイッチング回数 あつたが、表示用電極と共に液晶表示要素LCに 40 は走査信号の方が表示信号よりも大巾に少ないか ら、Cxzが少ない方が有利である。第10図の配 置が優れている。

> 第11図は第10図の実施例の変形であり基準 電極2の両側に表示要素を配置している点に特徴

がある。本例では電極パタンが簡略化される。

第7~11図の実施例では基準用電極2を用い たが、本発明では基準電極Zを用いず、行電極Y 又は列電極义に基準電極の役割を兼用させる事が 可能である。第12図はその一例であり、液晶表 示要素に印加される電圧は表示用電極Aijと一本 隣りの行電極Y1+1とにより供給されている。 行電 極に印加される走査信号の選択電位をVon、非選 択電位をVoffとする。行電極Yjが選択されスイ ッチング素子Sijが導通している時に、表示信号 10 としてVoff+Vの電位を列電極に供給すれば、 表示用電極の電位もVoff+Vとなる。この時行 電極Yutuは非選択であり電位Voffが印加されて いるから、液晶表示要素LCの容量Clcには(Voff +V)-Voff=Vの電圧が印加され、Clc.V=Qlc 15 果型のツイステッド・ネマチック(TN)モー の電荷が表示用電極Aijに蓄積される。次に行電 極Y」+、が選択されY」+、にVonが印加される時、ス イッチング素子Sijは非導通であるからQlcは不変 であり、Aijの電位は、Von+VとなりAijとY」+1 の間の電圧Vは保持される。YjもYj+jも非選択 20 行な電圧によつて表示を行う事が可能である。 の期間ではYı+ıはVoffの電位、AijはVoff+Vの 電位をとり、電圧Vは保持される。以上の如くス イッチング素子の特性がVon+V程度の電圧でも 良好であれば、本例の如く行電極Yに従来の基準 電極乙の役割を兼ねさせる事が可能である。本例 25 では電極配置が極めて簡素化され表示面積の利用 効率が高く製造性や消費電力、駆動回路構成の点 でも優れている。

尚、第12図では隣の行電極Y」+。に基準電極の 役割を兼ねさせたが、Yjにその役割を持たして 30

第13図は列電極X1+1に基準電極の役割を兼ね させた一例である。この場合には走査信号によつ てXiとXi+1に印加された表示信号の差電圧が液 晶表示要素LCijに印加、保持される。本例では表 35 晶層中に二色性染料を添加して一枚の偏光板と柤 示信号の処理がやや煩雑となるが表示パネル上の 構成は簡略化される。

第12, 13図の如く行列電極Y, Xと表示用 電極Aにより液晶表示要素に電圧を印加する方式 の表示パネルを用いた表示装置のプロツク図は第 40 8図で基準電極 Z 及びその駆動部を除いたものに 対応する。

以上の第7~13図で説明した各実施例に於い て表示用電極A及び基準電極の役割をする電極 2*(基準電極 Z、行電極 Y、列電極 X) は金属等 の不透明電極でも、In.O.: Sn、SnO.等の透明電 極でも良い。くし歯が組み合つた部分が表示部に 対応するから、少なくともこの部分は透明電極の 方が好ましいが、金属膜の微細エッチング技術を 用いて電極巾を十分、小さくすれば金属電極でも 十分である。この部分は若干の断線は目立たなけ れば許容されるから電極巾が1um程度の極細パ タンも可能である。くし歯状電極形成プロセスは

他の電極(行電極Y、列電極X、基準電極Zや表

示用電極Aの配線部等)と同一工程で作つても良

いし、別工程で作つてもよい。各電極の接続はス

ルーホール等を利用しても良い。

8

本発明に用いる液晶表示の動作モードは電圧効 ド、ゲスト・ホスト (GH) モード、電界制御復 屈折(ECB)モード等でもよく又、電流効果型 の動的散乱(DS)モード等でも良い。いずれの モードでもくし歯状電極等によるパネル平面に平

すなわち、くし歯状電極を配設したパネル基板 表面に、くし歯と平行な方向に配向処理を施し、 正の誘電異方性をしめすネマチック液晶を接触さ せると、液晶分子はくし歯と平行な方向に配向す るが、互いに咬合するくし歯電極の間に電圧を印 加すると、くし歯と直交する電界により液晶分子 は電界の方向に向きを変える。このようにして、 パネル基板の表面内で液晶分子を90°回転するこ とができる。

したがつてホモジュニアス配向のネマチック液 晶層を90°ツイスト配向に転換することが可能と なり、またその逆も可能である。

このような液晶パネルを一対の偏光板の間に配 置すれば、TNモードの表示パネルが得られ、液 み合わせればGHモードの表示パネルとなる。

また、一対のパネル基板の表面にいずれも垂直 配向処理を施して電圧無印加状態でホメオトロピ ツク配向の液晶層を構成し、これにくし歯状電極 を介して電圧を印加すると、電極の近傍の液晶分 子はパネル基板の表面と平行に配列し、平行に配 列する液晶層の厚さは電圧の大きさにより変えら れる。したがつて復屈折の大きさを電圧により制 御することが可能であり、偏光板と組合せれば

1.

ECBモードの表示パネルが得られる。

さらに、液晶層中にイオン性物質を添加して電 圧を印加すれば、電流効果型の動的散乱 (DS) モードで使用できることは明らかである。

スタを用いて説明したがダイオードやパリスタ等 他のスイツチング素子でも良い。又、スイツチン グ素子は薄膜素子でもパルク素子でも良い。

以上述べた如く、本発明では寄生容量を大巾に 低減する事が可能であり、消費電力、スイツチン 10 グ速度等が改善され製造性にも優れたスイッチン グ素子内蔵方式の表示パネルが実現可能となる。 本発明は表示密度が高く低消費電力が必要な電子 時計用の表示パネル等として特に有効である。

図面の簡単な説明

第1図は従来のスイッチング素子内蔵型の液晶

表示パネルの説明図、第2図は表示パネルの等価 回路図、第3図は表示パネルを含む表示装置のブ ロック図、第4図は表示パネル上の一単位要素の 素子配置の説明図、第5図及び第8図は従来例及 又実施例ではスイッチング寮子としてトランジ 5 び本発明の説明の為の表示パネル断面図、第7, 9~13図は本発明の各実施例に於ける表示パネ ル上の一単位要素の素子配置の説明図、第8図は 本発明の表示パネルを用いた表示装置のブロック 図。

> 1, 2……パネル基板、3……液晶層、6…… 行電極駆動回路、7 ······列電極駆動回路、X, X₁~Xi~Xn······列電極、Y, Y₁~Yi~Ym······ 行電極、S, Sij······スイッチング素子、A, Aij ······表示用電極、L, Lij······液晶表示要素、Z 15 ……基準電極。

