

Snow scooter driving on ice

Cruises on research vessels

Continuous molecular structure

- Triple point 3 phases are in equilibrium: T = 273.16 K, p = 611.7 kPa
- H₂O expands on freezing
- Other examples: Silicone, germanium
- The crystals reveal the hexagonal symmetry of the crystal lattice of ice (0°C< Ih <- 80°C)
- Basal plane with hexagonal symmetry and c-axis

Initial discs, size ≈1 mm

Stellar ice crystals

Ice growth: definition

New ice Recently formed ice:

Frazil iceGrease iceSlushShuga

Nilas > Dark nilas < 5 cm thick.

➤ Light nilas > 5 cm thick.

Pancake ice Circular pieces of ice 0.3-3 m in diameter, up to about 10 cm in thickness.

Young ice Ice in the transition stage between nilas and first-year ice, 10-30 cm thick.

➤ Grey ice➤ Grey-white ice10-15 cm thick.15-30 cm thick.

First-year ice Developing from young ice, thickness 0.3 m - 2 m.

➤ Thin FY ice: 0.3-0.7 m thick
➤ Medium FY ice: 0.7-1.2 m thick.
➤ Thick FY ice: over 1.2 m thick.

Old ice ▶Second year ice: < 2.5 m thick.

➤ Multi-year ice: up to 3 m or more thick

Ice growth: Stefan's law

I – latent heat of fusion (333.4 kJ/kg)

 ρ – density of ice (917 kg/m³)

k – thermal conductivity (2.2 W/m $^{\circ}$ C)

- No snow
- No radiation
- No heat transfer from the ocean, $q_{ocean} = 0$
- A linear temperature profile through the ice sheet
- $q_{ice} = -k\Delta T/\Delta z$
- $q_{latent} = q_{ice} = q_{surface}$

$$-k\frac{\Delta T}{h} = \rho l \frac{dh}{dt}$$

$$h^{2}(t) - h_{0}^{2} = \frac{2k}{\rho l} \int_{0}^{t} (T_{s} - T_{f})dt$$

Freezing Degree Days [°Cdays]

$$FDD = \int_{0}^{t} (T_a - T_f)dt$$

Ice growth: Stefan's law

$$h^{2}(t) - h_{0}^{2} = \frac{2k}{\rho l} \int_{0}^{t} (T_{s} - T_{f})dt$$

/ – latent heat of fusion (333.4 kJ/kg)

 ρ – density of ice (917 kg/m³)

k – thermal conductivity (2.2 W/m $^{\circ}$ C)

 $H \sim \sqrt{t}$

C. E. Bøggild (2007)

Structure of sea year sea ice

Chemical composition of sea ice & Freezing point

1000 g of sea water contains:

23.5 g NaCl

4.5 g MgCl₂

3.9 g Na₂SO₄

1.1 g CaCl₂

+ rest

34.5 g of salt

Sea ice language: 34.5 psu or ppt

Freezing point vs salinity:

$$T_f(^{\circ}C) = -0.0539 \cdot S(psu)$$

$$T_f = -1.86$$
°C

C - shape

Scales in sea ice research

• microscale 10⁻⁴ - 10⁻¹ m *physics*

• local scale 10⁻¹ - 10¹ m engineering

• floe scale 10² - 10³ m

geophysics

Ice features

Landfast ice, Franz Josef Land

Ice floes - drift ice

Ice Ridge, NW Barents Sea – drift ice

Iceberg, Franz Josef Land – drift ice

FY ice ridge

Ice blocks, Ridge Sail

Ice rubble-blocks, Ridge Keel

Description of drift ice

Ice cover zones of different dynamic character:

- Landfast ice
- Shear zone
- Marginal ice zone (MIZ)
- Central pack

Ice floes in MIZ zone

Drift ice divided as:

Sea ice extent around Svalbard

April

DNMI data (IDAP report, 1994)USSR Atlas of the Oceans, 1980

September

August,
September

(USSR Atlas of the Oceans, 1980)

Sea ice extent around Svalbard in 2004

Sea ice maps for Svalbard and Fram Strait

Norwegian Meteorology Institute

- http://met.no/kyst_og_hav/iskart.html (ice maps)

 Also on:
 - → W:\COURSE MTR & DATA StudentsReadOnly\Common Data
 - → Library
 - → UNIS entrance
- http://polarview.met.no/cgi-bin/highres_arkiv.pl (ice maps archive)
- http://conman.met.no/sathav-is/svalbard_forecast.html (ice forecast)

University of Bremen

- http://www.seaice.de
- http://iup.physik.uni-bremen.de:8084/amsr/amsre.html

ESA financed program

- http://www.polarview.org
- http://www.seaice.dk/test.N