Bargaining with Mechanisms and Two-Sided Incomplete Information

Marcin Pęski

University of Toronto

December 9, 2023

Outline

- Introduction
- 2 Mode
- 3 Preliminary observations
- 4 Random monopoly
- The Gap
- 6 Conclusions

- Business partners want to cease partnership. Their firm cannot be divided, and if partner keeps it, the other expects a compensation.
- Two countries negotiate a peace treaty, with land swaps and reparations (or economic aid) on the table.
- Coalition parties negotiate an agreement with a support for policy traded off against number of cabinet positions.

- Bargaining one of the longest-studied problems in economic theory (since [Nash 50]?, earlier "bilateral monopoly")
- No satisfactory solution for incomplete information:
 - cooperative solutions: (Harsanyi 72), (Myerson 84),
 - large literature on bargaining over prices:
 - ★ one-sided: reputational results
 - two-sided: anything goes (exception (De Clippel, Fanning, Rozen 22), but assumes verifiability of types)
- Goal here: show that a natural modification of a standard random-proposer bargaining has a "unique" outcome under
 - single good plus transfers environment,
 - private values (two types for each player).

- Bargaining with sophisticated offers in real world
 - menus.
 - menus of menus ("I divide, you choose"),
 - mediation, arbitration (example: "trial by gods"),
 - change in bargaining protocols,
 - deadlines or delays, etc.
- Informed principal with private values (Maskin Tirole, 90)
 - informed principal types get their monopoly payoff,
- One-sided incomplete information (Peski 22),
 - informed player types get at least random monopoly payoff,
 - ▶ => uninformed player maximizes her payoff st. the above constraint.

Results

- Theorem 0: Each (Michael) payoff correspondence is virtually and weakly implementable.
- Theorem 1: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: Suppose that $l_1 < l_2$. As $\delta \to 1$, ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

Outline

- Introduction
- 2 Model
 - Mechanisms and Implementation
 - Equilibrium
 - Commitment
- Preliminary observations
- Random monopoly
- The Gap
- 6 Conclusions

Environment

- Two players i = 1, 2, sometimes third player ("mediator").
- Single good and transfers
- Preferences: $q_i t_i \tau_i$,
 - ▶ t_i type (valuation) of player i,
 - ▶ q_i probability that pl. i gets the good,
 - $ightharpoonup au_i$ transfer from player i
 - feasibility: $q_1 + q_2 \le 1$, $q_i \ge 0$, $\tau_1 + \tau_2 \le 0$,

Bargaining game

Bargaining game

- lacktriangle multiple rounds until offer is accepted, discounting $\delta < 1$,
- ▶ random proposer: Player *i* is a proposer with probability β_i , where $\beta_1 + \beta_2 = 1$,
 - ★ includes single-proposer games $\beta_i \in \{0, 1\}$,
- ightharpoonup proposer proposes a mechanism (pprox game, where each outcome is a good allocation and transfer)
- once the offer is accepted, it is implemented (the mechanism game is played) and the bargaining game ends.
- Perfect Bayesian Equilibrium:
 - ▶ no updating beliefs about player i after -i's action.
 - public randomization plus cheap talk.

Mechanism and games

- No revelation principle.
- Games: actions and outcome function that maps actions to "good allocation and transfer".
- Real mechanisms: correspondences of equilibrium payoffs obtained in games.
- (Abstract) mechanisms: proper limits of such correspondences.

Feasible payoffs

• Payoff vector $u\left(.|q,\tau\right) \in R^{T_1 \cup T_2}$ in allocation $q_i\left(.\right), \tau\left(.\right)$:

$$u_{i}\left(t_{i}|q, au
ight)=\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_{i}q_{i}\left(t_{i},t_{-i}
ight)- au_{i}\left(t_{i},t_{-i}
ight)
ight)$$
 for each t_{i} .

• Allocation $q_i(.), \tau(.)$ is IC given beliefs p iff

$$u_{i}\left(t_{i}|q,\tau\right)\geq\sum_{t_{-i}}p\left(t_{-i}\right)\left(t_{i}q_{i}\left(s_{i},t_{-i}\right)-\tau_{i}\left(s_{i},t_{-i}\right)\right)\text{ for each }t_{i},s_{i}.$$

Correspondence of feasible and IC payoffs:

$$\mathcal{U}(p) = \{u(.|q,\tau) : (q,\tau) \text{ is IC given } p\} \subseteq R^{T_1 \cup T_2}.$$

 \bullet The geometry of the correspondence $\mathcal{U}\left(.\right)$ is the true "parameter" of the model.

Games

- Game G:
 - three players: 1, 2, and mediator (whose payoff is a non-negative transfer),
 - finite or compact actions,
 - continuous outcome function that maps actions to "good allocation and transfer",
 - public randomization.
- For each p, the set of equilibrium payoff vectors

$$m(p; G) \subseteq \mathcal{U}(p)$$
.

Equilibrium correspondence:

$$m(.; G) : \Delta T \Rightarrow R^{T_1 \cup T_2}, m_G \subseteq \mathcal{U},$$

u.h.c., non-empty and convex valued.

Mechanisms

- Real mechanism is a correspondence m for which there exists a game G such that m = m(.; G).
- (Abstract) mechanism: m is correspondence $m: \Delta T \rightrightarrows R^{T_1 \cup T_2}$ st.
 - ▶ m is u.h.c., non-empty valued, $m \subseteq \mathcal{U}$,
 - ▶ can be approximated by continuous functions $m_n : \Delta T \to R^{T_1 \cup T_2}$, $m_n \subseteq \mathcal{U}$ such that

$$\lim_{n\to\infty} \max_{p} \min_{v,q:v\in m(q)} \|m_n(p) - v\| = 0.$$

- Using Michael's Theorem: any real mechanism is an (abstract) mechanism.
- The space of mechanism is compact* under Hausdorff distance.

Implementation Theorem

Theorem

For any mechanism m_n there is a sequence of real mechanism m_n converge to m:

$$\lim_{n\to\infty}\max_{u,p:u\in m_n(p)}\min_{v,q:v\in m(q)}\|u-v\|=0.$$

- Proof:
 - mediator names the beliefs p,
 - \triangleright given p, use virtual implementation of (Abreu Matsushima 92).

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
 - each game is preceded by public randomization plus cheap-talk message.
- $MM_i(A)$ menu of mechanisms $a \in A$ for player i
- $IP_i(m)$ informed principal problem of player i with continuation mechanism (outside option) m,

$$IP_{i}(m) = MM_{i}(\{MM_{-i}(n, m) : n \text{ is a mechanism}\})$$

- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α ,
- δm discounted mechanism m.

Bargaining game

Bargaining game:

$$B = (IP_1 (\delta B))^{\beta_1} (IP_2 (\delta B))^{\beta_1}$$

the largest fixed point

Equilibrium

- Equilibrium in $MM_i(A)$:
 - modular (one-shot deviation principle),
 - extends to the existence in bargaining game.
- Existence:
 - space of mechanisms is compact,
 - each mechanism can be approximated by a payoff function,
 - the equilibrium can
- Weak solution concept:
 - relative to WPBE, a minor restriction on beliefs (no updating after the other player actions),
 - approximate equilibrium with real mechanisms.

Commitment

- Players are not committed to future offers.
- Players are committed to implementing a mechanism once offered and accepted:
 - hence, less commitment than, say in the limited commitment literature (V. Skreta and L. Doval).
- Comments:
 - many situations
 - ★ how to bargain about deadlines if we are not really committed to them),
 - what does it mean to allocate the good.
 - "lack of commitment" is a restriction on the space of mechanisms,
 - commitment is not necessarily helpful to the agent who can exercise it.

Outline

- Introduction
- 2 Model
- Preliminary observations
 - Complete information
 - One-sided incomplete information
 - Informed principal
 - Offers that cannot be refused
- Random monopoly
- 5 The Gap
- 6 Conclusions

Complete information bargaining

- Claim: Assume $t_1 < t_2$ are known. Then, in each equilibrium, player i gets $\beta_i t_2$.
- **Proof**: Suppose i = 1 (the other argument is analogous). Let

$$x^* = \min_{u \in B} \frac{u_1}{t_2}.$$

- •
- If $x^* < \beta_1$, player 1 has a profitable deviation:
 - wait until she is a proposer, and offer: player 2 gets the good and pays $(1 \delta(1 x^*)) t_2$ to player 1,
 - the offer will be accepted.
- Special features:
 - linearly transferable payoffs,
 - endogenous interdependent value

One-sided incomplete information

- p_i is degenerate for one of the players => one-sided incomplete Peski (22):
- The equilibrium payoffs are unique and implemented by random monopoly mechanism is offered:
 - with probability β_j , agent j gets the good:
 - if so, she make a single take-it-or-leave-it sell offer,
 - her expected payoff is

$$M(t_j; p_{-i}) = \max_{\tau} p_{-i} (t_i \leq \tau) t_j + (1 - p_{-i} (t_i \leq \tau)) \tau.$$

- regardless if the offer is accepted or not, the mechanism ends.
- Special features:
 - random monopoly mechanism is interim efficient.

Informed principal

- $\beta_i=1$ or $\delta=0=>$ (Random) informed principal with private values :
 - ▶ If player i is a proposer, she offers the monopoly price to -i,
 - the offered (single-price mechanism) is accepted and the game ends.
- Special features:
 - private information of the principal does not matter due to private values.

- In bargaining, making offers that are refused is inefficient due to surplus-burning delay.
- Solution: make an offer that cannot be refused.
- Two problems:
 - signaling: (possibly, off-path) offers lead to belief updating $p_i o p_i'$,
 - ightharpoonup player -i may have reasons to refuse the offer after updating.

- m is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

- m is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

- m is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

- *m* is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

- *m* is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

- m is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

- m is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

- m is a continuation mechanism.
- Design offer a that is never refused by -i (and actually happens).

Offers that cannot be refused

Definition

Mechanism a is an offer that player -i cannot refuse given mechanism m, if

for each p_i , p_{-i} , q_{-i} , each $u \in a(p_i, p_{-i})$, each $v \in m(p_i, q_{-i})$, there is a q_{-i} -positive prob. type t_{-i} such that $u_{-i}(t_{-i}) \ge v_{-i}(t_{-i})$.

- offers $u \in a(p_i, p_{-i})$ are "undominated" by offers $v \in m(p_i, q_{-i})$
- Compare with
 - ▶ SUPO allocations in (Maskin Tirole 90) and
 - strong neologism proof allocations in (Mylovanow Troger 14).

Offers that cannot be refused

Lemma

Suppose that a is an offer that player i strictly cannot refuse given mechanism m such that

- a is a payoff function,
- $I_i(a) = a$. Then,

$$MM_i \{m, a\} \subseteq a$$
.

straightforward proof.

Offers that cannot be refused: Existence

- Existence of offers cannot be refused is not an issue.
- For any two mechanisms m and a, there exists continuous $w:\Delta \mathcal{T} \to \mathbb{R}$ such that

$$(a+_{i}w)_{j}(p) = \begin{cases} a_{i}(p) + w(p) & j = i \\ a_{i}(p) - w(p) & j = -i \end{cases}$$

cannot be refused given continuation m.

Offers that cannot be refused: Informed principal

- Consider informed principal problem with continuation m.
- Suppose that $MM_{-i}\{m,a\}\subseteq a$.
- Informally, the principal should get at least a.
- But, belief updating =>
- If $u \in IP_i(m)(p_i, p_{-i})$, then there must be q_i and $v \in a(q_i, p_{-i})$ st. $u_i \ge v_i$.

Offers that cannot be refused: Informed principal

- ullet Suppose that a, b are offers that cannot be refused given m
 - ightharpoonup payoff functions st. I_i

Outline

- Introduction
- 2 Mode
- 3 Preliminary observations
- Random monopoly
 - Random monopoly bound
 - Proof
- The Gap
- 6 Conclusions

- From now on, assume two types for each player $T_i = \{l_i, h_i\}$ and $l_1 < l_2$.
- Focus on

$$0 \le l_1 \le l_2 < h_1 \le h_2,$$

but the results hold for all other cases as well.

• p_i - probability of type h_i

Theorem

For each $\delta < 1$, each $u \in B(p)$, each player i, each t_i , $u_i(t_i) \ge \beta_i M_i(t_i; p_{-i})$.

• Each player gets at least their random monopoly payoff.

- Each player gets at least their random monopoly payoff.
- In many cases, Theorem 4 is enough to characterize payoffs and equilibrium behavior, as there is unique interim efficient allocation that satisfies the random monopoly condition:
 - ▶ $\beta_i \in \{0,1\}$,
 - ▶ $p_i \in \{0,1\}$ for one of the players,
 - $l_1 = l_2$ or $l_2 = h_1$ or $h_1 = h_2$.
- In general, there is a gap between random monopoly payoffs and efficiency.

Proof:

- The idea is to reproduce the complete info argument. Fix player i.
- The smallest equilibrium random monopoly share:

$$x^* = \min_{u \in B} \min_{t_i} \frac{u_i}{M_i(t_i; p_{-i})}.$$

• The set of all feasible and IC payoffs that give player *i* at least *x* share of her monopoly payoffs:

$$A_{x}\left(p\right)=\left\{ u\in\mathcal{U}\left(p\right):u_{i}\geq xM_{i}\left(.;p_{-i}\right)\right\} .$$

Then,

$$B \subseteq A_{x^*}$$
.

Proof:

Easy to check that

$$\delta B \subseteq \delta A_{x^*} \subseteq A_{1-\delta(1-x^*)}.$$

- Instead of delaying payoffs, we can give them today with prob. δ and with prob. $1-\delta$, give player i his monopoly payoff,
- but we can do better as well.
- Goal: find $a \subseteq A_{1-\delta(1-x^*)}$ st.
 - ▶ a cannot be refused given $A_{1-\delta(1-x^*)}$ and
 - ▶ $a \subseteq A_{1-\delta(1-x^*)}$, i.e, each type t_i receives payoff at least

$$\geq (1 - \delta (1 - x^*)) M_i(t_i; p_{-i}).$$

• If $x^* < \beta_i$, complete information argument shows that player i has a profitable deviation.

Offers that cannot be refused

Lemma

For each x, there exists mechanism $a^{i}(x)$ such that

- $a^{i}(x) \subseteq A_{x}$,
- $a^{i}(x)$ is (mostly) payoff function such that $I_{-i}(a^{i}(x)) = a^{i}(x)$.
- https://bwm-payoffs.streamlit.app/

Offers that cannot be refused

- The question of existence in general seems related to the existence of
 - SUPO allocations in (Maskin Tirole 90):
 - ightharpoonup outcome of competitive equilibrium economy, where types t_{-i} trading slacks in IC and IR constraints on types of player i
- No natural way of extending this argument.
 - ▶ the IR constraint $u_i(t_i) \ge xM(t_i|p_{-i})$ is type- and belief-dependent.

Outline

- Introduction
- 2 Mode
- 3 Preliminary observations
- Random monopoly
- The Gap
 - The Gap
 - Proof: mixing and matching
- 6 Conclusions

 In general, there is a gap between the largest ex ante (expected) payoffs and random monopoly payoffs:

$$\mathsf{Gap}\left(p\right) = \max_{u \in \mathcal{U}\left(p\right) \text{ st. } \forall_{i,t_{i}} u_{i}\left(t\right) \geq \beta_{i} M_{i}\left(t_{i} \mid p\right)} p_{1} \cdot \left(u_{1} - \beta_{1} M_{1}\left(. \mid p\right)\right) \tag{1}$$

• The gap is not larger than

$$\operatorname{\mathsf{Gap}}(p) \leq 6.25\%$$
 of h_2 for all p .

Theorem

For each p,

$$\lim_{\delta \leftarrow 1} \sup_{u \in B(p)} \left| p_1 \cdot u_1 - \left[p_1 \cdot \beta_1 M_1 \left(. | p \right) + \textit{Gap} \left(p \right) \right] \right| = 0.$$

- As $\delta \to 1$, player 1 equilibrium *ex ante* payoffs converge to maximum possible subject to feasibility, IC, and random monopoly constraint.
 - player 1's payoffs are determined uniquely in ex ante sense,
 - player 2's payoffs are determined uniquely in the interim sense.

- Player 1 (i.e., $l_1 < l_2$) gets the entire Gap!
 - $ightharpoonup a^2$ is an example of mechanism attaining such payoffs,
- Why?

- Player 1 (i.e., $I_1 < I_2$) gets the entire Gap!
 - $ightharpoonup a^2$ is an example of mechanism attaining such payoffs.
- Why?
 - linearly transferable payoffs at p₁*,
 - mixing and matching mechanisms that cannot be refused
 - convexity of mechanism a^2 .
- https://bwm-payoffs.streamlit.app/

Proof: Mixing and Matching

- Player 1 has (among many) two offers that cannot be refused by player 2 given equilibrium:
 - $a^1 = a^1(\beta)$,
 - $a^2 \mathsf{Gap}(., p_2^*)$

Outline

- Introduction
- 2 Model
- Preliminary observations
- Random monopoly
- The Gap
- 6 Conclusions

Conclusions

- A natural modification of a standard random-proposer bargaining has a "unique" outcome under
 - single good plus transfers environment,
 - private values (two types for each player).
- A proof of concept better results and a general theory would be nice.