BIOELEMENTOS Y BIOMOLÉCULAS INORGÁNICAS

I. BIOELEMENTOS

A. Concepto

- Se denominan elementos biogénicos o bioelementos a aquellos elementos químicos que forman parte de los seres vivos
- B. Razones de la abundancia del C (20%), H (9.5%), O (62%) y N (2,5%) en los seres vivos
 - Son fácilmente incorporados desde la biosfera.
 - Forman entre ellos enlaces covalentes, compartiendo electrones
 - El carbono, nitrógeno y oxígeno, pueden compartir más de un par de electrones, formando enlaces dobles y triples, lo cual les dota de una gran versatilidad para el enlace químico
 - Son los elementos más ligeros con capacidad de formar enlace covalente, por lo que dichos enlaces son muy estables
 - Debido a la configuración tetraédrica de los enlaces del carbono, los diferentes tipos de moléculas orgánicas tienen estructuras tridimensionales diferentes. Esta conformación espacial es responsable de la actividad biológica.
 - Las combinaciones del carbono con otros elementos, como el oxígeno, el hidrógeno, el nitrógeno, etc. permiten la aparición de una gran variedad de grupos funcionales que dan lugar a las diferentes familias de sustancias orgánicas. Estos presentan características físicas y químicas diferentes, y dan a las moléculas orgánicas propiedades específicas, lo que aumenta las posibilidades de creación de nuevas moléculas orgánicas por reacción entre los diferentes grupos.

Grupos Funcionales Hidrófilos		Grupos Funcionales Hidrófobos	
Carboxilo	- COOH	Radical Alquílico	- CH ₂ - R
Hidroxilo o Alcohol	- OH	Radical etilénico	-CH = R
Carbonilo	> C = O	Radical fenilo	- C ₆ H ₅
Amino	- NH ₂	Los grupos funcionales polares son solubles en agua o hidrófilos.	
Imino	> NH		
Sulfihidrilo	- SH	Los no polares son insolubles o hidrófobos.	

- El Si, a pesar de compartir muchas características con el carbono, sólo aparece en los seres vivos en cantidades mínimas.

C. Clasificación

1. Elementos mayoritarios

- Presentes en porcentajes superiores al 0.1% y aparecen en todos los seres vivos.
- a. Bioelementos primarios (C, H, O, N)
 - Principales constituyentes de las biomoléculas. En conjunto 95% de la materia viva.
- b. Bioelementos secundarios (S, P, Na, K, Ca, Mg, Cl)
 - En conjunto 4,5% de la materia viva.

Azufre	Se encuentra en dos aminoácidos (cisteína y metionina) , presentes en todas las proteínas. También en algunas sustancias como el Coenzima A
Fósforo	Forma parte de los nucleótidos, compuestos que forman los ácidos nucleicos. Forman parte de coenzimas y otras moléculas como fosfolípidos, sustancias fundamentales de las membranas celulares. También forma parte de los fosfatos, sales minerales abundantes en los seres vivos.
Magne- sio	Forma parte de la molécula de clorofila, y en forma iónica actúa como catalizador, junto con las enzimas, en muchas reacciones químicas del organismo.
Calcio	Forma parte de los carbonatos de calcio de estructuras esqueléticas. En forma iónica interviene en la contracción muscular, coagulación sanguínea y transmisión del impulso nervioso.
Sodio	Catión abundante en el medio extracelular; necesario para la conducción nerviosa y la contracción muscular.
Potasio	Catión más abundante en el interior de las células; necesario para la conducción nerviosa y la contracción muscular.
Cloro	Anión más frecuente; necesario para mantener el balance de agua en la sangre y fluído intersticial.

2. Oligoelementos (Fe, Mn, I, F, Co, Si, Cr, Zn, Li, Mo)

- Presentes en porcentajes inferiores al 0,1%, no son los mismos en todos los seres vivos. Son indispensables para el desarrollo armónico del organismo.
- Se han aislado unos 60 oligoelementos en los seres vivos, pero solamente 14 de ellos pueden considerarse comunes para casi todos

Fundamental para la síntesis de clorofila, catalizador en reacciones químicas y formando parte Hierro de citocromos que intervienen en la respiración celular, y en la hemoglobina que interviene en el transporte de oxígeno.

Manganeso Interviene en la fotolisis del agua , durante el proceso de fotosíntesis en las plantas.

Yodo Necesario para la síntesis de la tiroxina, hormona que interviene en el metabolismo

Flúor Forma parte del esmalte dentario y de los huesos.

Cobalto Forma parte de la vitamina B12, necesaria para la síntesis de hemoglobina .

Silicio Proporciona resistencia al tejido conjuntivo, endurece tejidos vegetales como en las gramíneas.

Cromo Interviene junto a la insulina en la regulación de glucosa en sangre.

Zinc Actúa como catalizador en muchas reacciones del organismo.

Litio Actúa sobre neurotransmisores y la permeabilidad celular. En dosis adecuada puede prevenir

estados de depresiones.

Molibdeno Forma parte de las enzimas vegetales que actúan en la reducción de los nitratos por parte de las plantas.

II. BIOMOLÉCULAS

A. Concepto

- Denominadas también principios inmediatos, son aquellas moléculas que forman parte de los seres vivos.

B. Biomoléculas inorgánicas

1. El agua

- El agua - 60-90% de la materia viva. Su abundancia depende de la especie, la edad y la actividad fisiológica del tejido. Aparece en el interior de las células, en el líquido tisular y en los líquidos circulantes.

a. Estructura

- Dipolaridad, puentes de hidrógeno.

b. Propiedades y funciones biológicas

- Polaridad y alta constante dieléctrica. Buen disolvente de los compuesto iónicos y polares. Es el medio en el que se producen las reacciones metabólicas. Transporte.
- Líquida a temperatura ambiente.
- Elevado calor específico. Termorregulación.
- Elevado calor de vaporización. Termorregulación.
- Máxima densidad a 4°C.
- Elevado grado de cohesión y de adhesión: fenómenos de capilaridad. Transporte.
- Incompresibilidad. Amortiguador mecánico. Esqueleto hidrostático.
- Reactividad: fotosíntesis, hidrólisis y condensaciones.

c. Ionización del agua. Concepto de pH

- Producto iónico del agua a 25°C: [H₃O⁺][OH-]=1x10⁻¹⁴

2. Las sales minerales

a. Sales con función estructural

- Aparecen precipitadas formando estructuras esqueléticas, como el CaCO₃ o el Ca₃(PO₄)₂.

b. Sales con función reguladora

- Se encuentran ionizadas, disueltas en un medio acuoso.

✓ Fenómenos osmóticos

- Osmosis: difusión a través de una membrana semipermeable (solo permite el paso del disolvente).
- Medios hipertónico (el de mayor concentración), hipotónico (el de menor) o isotónico (cuando los dos medios separados por la membrana semipermeable tienen la misma concentración de solutos).
- A través de una membrana semipermeable el agua pasa siempre del medio hipotónico al hipertónico.
- Presión osmótica. Plasmólisis (pérdida de agua de una célula en un medio hipertónico) y turgencia (la célula se hincha en un medio hipotónico, pudiendo llegar a estallar (lisis; hemólisis si ocurre a glóbulos rojos) si carece de pared celular y la diferencia de concentraciones es grande).
- Diálisis: cuando la membrana deja pasar también a los solutos de bajo p.m.

✓ Regulación del pH

- Soluciones amortiguadoras, sistemas tampón o buffers.

- $H_2PO_4^{-2}$? HPO_4^{-2} + H^+ , principal tampón intracelular.
- CO₂ + H₂O ? H₂CO₃ ? HCO₃ + H⁺, principal tampón extracelular (sangre). ✓ Cationes que realizan acciones específicas
- - Na⁺ Impulso nervioso y equilibrio hídrico. Abundante en los medios extracelulares.
 K⁺ Transmisión del impulso nervioso. Contracción muscular.

 - Ca²⁺ Contracción muscular. Coagulación sanguínea. Sinapsis. Cofactor. Estructural. Mg²⁺ Cofactor. Contracción muscular.