Osmá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Osmá přednáška

Program

- tablo metoda v predikátové logice
- jazyky s rovností
- korektnost a úplnost, kanonický model

Materiály

Zápisky z přednášky, Sekce 7.1-7.4 z Kapitoly 7

Kapitola 7: Tablo metoda v predikátové logice

7.1 Neformální úvod

Úvodní příklady: dva tablo důkazy

Tablo metoda v predikátové logice

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:
 - typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
 - typ "všichni": položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$
- kvantifikátor nelze odstranit, $\varphi(x)$ by typicky nebyla sentence
- místo toho za x substituujeme konstantní term t: $\varphi(x/t)$
- jaký? podle typu položky ("svědek" vs. "všichni")

Redukce položek s kvantifikátorem

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- **typ** "svědek": dosadíme nový $c \in C$ (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'
- **typ** "všichni": substituujeme libovolný konstantní *L_C*-term
 - pro $T(\forall x)\varphi(x)$ tedy máme $T\varphi(x/t)$
 - bezesporná větev je dokončená jen pokud dosadíme všechny t
 ('použijeme vše, co víme')
- konvence: kořeny atomických tabel nekreslíme kromě položek typu "všichni" (po jednom dosazení ještě nejsme hotovi!)
- typický postup: nejprve zredukujeme položky typu "svědek", poté zjistíme, co 'o svědcích říkají' položky typu "všichni"

7.2 Formální definice

Jazyk, položky, atomická tabla

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$
- ullet mějme nějakou L-teorii T a L-sentenci arphi
- položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je L_C -sentence
- položky tvaru $\mathrm{T}(\exists x)\varphi(x)$ a $\mathrm{F}(\forall x)\varphi(x)$ jsou typu "svědek"
- položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$ jsou typu "všichni"
- atomická tabla jsou násl. položkami označkované stromy:

Atomická tabla pro kvantifikátory

 φ je libovolná L_C -sentence, x proměnná, t_i konstantní L_C -term, $c_i \in C$ je nový pomocný konstantní symbol (při konstrukci tabla nesměl dosud být na dané větvi)

Atomická tabla pro logické spojky

 φ a ψ jsou libovolné $L_{\mathcal{C}}$ -sentence

	_ ¬	_ ^	\ \ \	\rightarrow	\leftrightarrow
True	$\begin{array}{ c c c c }\hline & T \neg \varphi & & & \\ & \downarrow & & & \\ & F \varphi & & & \end{array}$	$ \begin{array}{c c} & T\varphi \wedge \psi \\ & T\varphi \\ & \downarrow \\ & T\psi \end{array} $	$ \begin{array}{c c} T\varphi \lor \psi \\ / & \\ T\varphi & T\psi \end{array} $	$ \begin{array}{ccc} T\varphi \to \psi \\ $	$ \begin{array}{c cc} & T\varphi \leftrightarrow \psi \\ & / & \\ & T\varphi & F\varphi \\ & & \\ & T\psi & F\psi \end{array} $
False		$\begin{array}{c c} F\varphi \wedge \psi \\ / & \\ F\varphi & F\psi \end{array}$	$\begin{array}{c c} F\varphi \lor \psi \\ & \\ F\varphi \\ & \\ F\psi \end{array}$	$F\varphi \to \psi$ $ $ $T\varphi$ $ $ $F\psi$	$ \begin{array}{c cc} F\varphi \leftrightarrow \psi \\ / & \\ T\varphi & F\varphi \\ & \\ F\psi & T\psi \end{array} $

Formální definice tabla

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen c_i ∈ C, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C-term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i \geq 0} \tau_i$, kde:
 - τ_i jsou konečná tabla z T
 - au_0 je jednoprvkové tablo
 - τ_{i+1} vzniklo z τ_i v jednom kroku
- tablo pro položku P je tablo, které má položku P v kořeni

konvence: kořen atom. tabla nezapisujeme není-li P typu "všichni"

Dokončené a sporné tablo

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in \mathcal{T}.$
- Položka P je redukovaná na větvi V procházející P, pokud
 - je tvaru $\mathrm{T}\psi$ resp. $\mathrm{F}\psi$ pro atomickou sentenci, nebo
 - není typu "všichni" a vyskytuje se na V jako kořen atomického tabla (tj., typicky, již došlo k jejímu rozvoji na V), nebo
 - je typu "všichni" a všechny její výskyty na větvi V jsou na V redukované.

Kdy je výskyt položky typu "všichni" redukovaný?

Výskyt položky P typu "všichni" na V je i-tý, má-li právě i-1 předků označených P, a i-tý výskyt je redukovaný na V, pokud

- P má (i+1)-ní výskyt na V, a zároveň
- na V je položka $\mathbf{T}\varphi(x/t_i)$ (je-li $P=\mathbf{T}(\forall x)\varphi(x)$) resp. $\mathbf{F}\varphi(x/t_i)$ (je-li $P=\mathbf{F}(\exists x)\varphi(x)$), kde t_i je i-tý konstantní L_C -term (tj., typicky, už jsme za x substituovali t_i)

 ${f NB:}$ je-li položka typu "všichni" na V redukovaná, má na V nekonečně výskytů, a dosadili jsme všechny konstantní L_C -termy

Tablo důkaz a tablo zamítnutí

- tablo důkaz sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni
- pokud existuje, je φ (tablo) dokazatelný z T, píšeme $T \vdash \varphi$
- podobně, tablo zamítnutí je sporné tablo s $T \varphi$ v kořeni
- existuje-li, je φ (tablo) zamítnutelný z T, tj. platí $T \models \neg \varphi$

Příklad: tablo důkaz (v logice)

Ještě příklad (φ, ψ jsou formule s jedinou volnou proměnnou x)

Systematické tablo

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T = \{\alpha_0, \alpha_1, \alpha_2, \dots\}$ pro položku R je $\tau = \bigcup_{i \geq 0} \tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i \geq 0$:

- buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P (resp. je-li typu "všichni", její výskyt není redukovaný)
- nejprve definujeme τ_i' vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P, kde je-li P typu "všichni" a má-li ve vrcholu k-tý výskyt, dosadíme k-tý L_C -term t_k , je-li typu "svědek", substituujeme $c_i \in C$ s nejmenším i, které na větvi zatím není
- pokud taková položka P neexistuje, potom $\tau_i' = \tau_i$
- τ_{i+1} vznikne z τ'_i připojením $T\alpha_{i+1}$ na vš. bezesporné větve (pokud už jsme použili všechny axiomy, definujeme $\tau_{i+1} = \tau'_i$)

Konečnost a systematičnost důkazů

Lemma: Systematické tablo je dokončené.

Důkaz: k-tý výskyt položky typu "všichni" redukujeme když na něj narazíme: připojíme (k+1)-ní výskyt a dosadíme k-tý L_C -term t_k . Zbytek důkazu jako ve výrokové logice.

Neprodlužujeme-li sporné větve (což nemusíme), je sporné tablo vždy konečné. Důkaz stejný jako ve výrokové logice:

Důsledek (Konečnost důkazů): Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ z T.

Stejně jako ve výrokové logice z důkazu plyne:

Důsledek (Systematičnost důkazů): Pokud $T \models \varphi$, potom systematické tablo je (konečným) tablo důkazem φ z T.

7.3 Jazyky s rovností

7.4 Korektnost a úplnost