Индивидуальное задание #2

ФИО: Овчинников Павел Алексеевич Группа: R3141

Номер ИСУ: 368606 Поток: ЛИН АЛГ СУИР БИТ Б 1.5

Задание 1

Шаг 1. Матрица билинейной формы B(x,y)

Запишем билинейную форму в виде матрицы, где каждой i-й строке будет соответствовать коэффициент перед x_i , а каждому столбцу — коэффициент перед y_i . Тогда:

$$B = \begin{pmatrix} 2 & -1 & 2 \\ -5 & -5 & -1 \\ 3 & -1 & -1 \end{pmatrix}$$

Шаг 2. Квадратичная форма Q(x)

Для того, чтобы построить квадратичную форму на основе билинейной, необходимо заменить y_j на x с таким же индексом j. Тогда $Q(x) = 2x_1^2 - x_1x_2 + 2x_1x_3 - 5x_1x_2 - 5x_2^2 - x_2x_3 + 3x_1x_3 - x_2x_3 - x_3^2 = 2x_1^2 - 5x_2^2 - x_3^2 - 6x_1x_2 + 5x_1x_3 - 2x_2x_3$. В таком случае матрицу квадратичной формы можно найти по такому же принципу, что и матрицу билинейной формы лишь с тем исключением, что коэффициенты по обе стороны от побочных диагоналей делятся пополам.

$$Q = \begin{pmatrix} 2 & -3 & 2.5 \\ -3 & -5 & -1 \\ 2.5 & -1 & -1 \end{pmatrix}$$

Шаг 3. Полярная форма $B_p(x,y)$ к Q(x)

Полярная форма строится как $B_p(x,y) = 1/2(Q(x+y) - Q(x) - Q(y))$ В рамках этого выражения:

$$Q(x+y) = 2(x_1+y_1)^2 - 5(x_2+y_2)^2 - (x_3+y_3)^2 - 6(x_1+y_1)(x_2+y_2) + 5(x_1+y_1)(x_3+y_3) - 2(x_2+y_2)(x_3+y_3) = \\ = 2x_1^2 + 4x_1y_1 + 2y_1^2 - 5x_2^2 - 10x_2y_2 - 5y_2^2 - x_3^2 - 2x_3y_3 - y_3^2 - 6x_1x_2 - 6x_1y_2 - 6x_2y_1 - 6y_1y_2 + 5x_1x_3 + 5x_1y_3 + 5x_3y_1 + \\ + 5y_1y_3 - 2x_2x_3 - 2x_2y_3 - 2x_3y_2 - 2y_2y_3$$

Q(x) и Q(y) в рамках квадратичной формы очевидны. Вычислим Q(x+y) - Q(x) - Q(y):

$$2x_{1}^{2}+4x_{1}y_{1}+2y_{1}^{2}-5x_{2}^{2}-10x_{2}y_{2}-5y_{2}^{2}-x_{3}^{2}-2x_{3}y_{3}-y_{3}^{2}-6x_{1}x_{2}-6x_{1}y_{2}-6x_{2}y_{1}-6y_{1}y_{2}+5x_{1}x_{3}+5x_{1}y_{3}+5x_{3}y_{1}+\\+5y_{1}y_{3}-2x_{2}x_{3}-2x_{2}y_{3}-2x_{3}y_{2}-2y_{2}y_{3}-2x_{1}^{2}+5x_{2}^{2}+y_{3}^{2}+6x_{1}x_{2}-5x_{1}x_{3}+2x_{2}x_{3}-2y_{1}^{2}+5y_{2}^{2}+y_{3}^{2}+6y_{1}y_{2}-5y_{1}y_{3}+2y_{2}y_{3}=\\=4x_{1}y_{1}-10x_{2}y_{2}-2x_{3}y_{3}-6x_{1}y_{2}-6x_{2}y_{1}+5x_{1}y_{3}+5x_{3}y_{1}-2x_{2}y_{3}-2x_{3}y_{2}$$

В таком случае $B_p(x,y) = 1/2(Q(x+y) - Q(x) - Q(y))$ определяется как половина от вычисленного выше выражения:

$$B_p(x,y) = \frac{1}{2} \left(4x_1y_1 - 10x_2y_2 - 2x_3y_3 - 6x_1y_2 - 6x_2y_1 + 5x_1y_3 + 5x_3y_1 - 2x_2y_3 - 2x_3y_2 \right) = \left[2x_1y_1 - 5x_2y_2 - 1x_3y_3 - 3x_1y_2 - 3x_2y_1 + 2.5x_1y_3 + 2.5x_3y_1 - x_2y_3 - x_3y_2 \right]$$

Шаг 4. Матрица билинейной формы $B_p(x,y)$

Матрица формы, вычисленной на предыдущем шаге, находится так же, как и в ш.1 и ш.2, путём подстановки в компоненты матрицы соответствующих коэффициентов формы.

$$B_p = \begin{pmatrix} 2 & -3 & 2.5 \\ -3 & -5 & -1 \\ 2.5 & -1 & -1 \end{pmatrix}$$

Нетрудно заметить, что коэффициенты полярной формы совпадают с коэффициентами квадратичной формы, от которой она образована.

Шаг 5. Симметричная и антисимметричная формы

Так как любая билинейная форма представляется как сумма соответствующих симметричной и антисимметричной форм, то нетрудно вычислить отдельно симметричную S(x,y) и антисимметричную A(x,y) формы, используя основную. Формулы и вычисления ниже:

$$S(x,y) = \frac{1}{2}(B(x,y) + B(y,x)) = \frac{1}{2}(2x_1y_1 - x_1y_2 + 2x_1y_3 - 5x_2y_1 - 5x_2y_2 - x_2y_3 + 3x_3y_1 - x_3y_2 - x_3y_3 + 2x_1y_1 - x_2y_1 + 2x_3y_1 - 5x_1y_2 - 5x_2y_2 - x_3y_2 + 3x_1y_3 - x_2y_3 - x_3y_3) = \frac{1}{2}(4x_1y_1 - 6x_1y_2 + 5x_1y_3 - 6x_2y_1 - 10x_2y_2 - 2x_2y_3 + 5x_3y_1 - 2x_3y_2 - 2x_3y_3) = \frac{1}{2}(2x_1y_1 - 3x_1y_2 + 2.5x_1y_3 - 3x_2y_1 - 5x_2y_2 - x_2y_3 + 2.5x_3y_1 - x_3y_2 - x_3y_3)$$

$$A(x,y) = \frac{1}{2}(B(x,y) - B(y,x)) = \frac{1}{2}(2x_1y_1 - x_1y_2 + 2x_1y_3 - 5x_2y_1 - 5x_2y_2 - x_2y_3 + 3x_3y_1 - x_3y_2 - x_3y_3 - 2x_1y_1 + x_2y_1 - 2x_3y_1 + 5x_1y_2 + 5x_2y_2 + x_3y_2 - 3x_1y_3 + x_2y_3 + x_3y_3) = \frac{1}{2}(4x_1y_2 - x_1y_3 - 4x_2y_1 + x_3y_1) = \boxed{2x_1y_2 - 0.5x_1y_3 - 2x_2y_1 + 0.5x_3y_1 - x_3y_2 - x_3y_3 - 2x_2y_1 + 0.5x_3y_1}$$

Шаг 6. Свойства симметричной и антисимметричной форм

Сложим симметричную и антисимметричную формы, чтобы получить исходную билинейную форму, из которой вычислялись вышеупомянутые формы:

$$S(x,y) + A(x,y) = 2x_1y_1 - 3x_1y_2 + 2.5x_1y_3 - 3x_2y_1 - 5x_2y_2 - x_2y_3 + 2.5x_3y_1 - x_3y_2 - x_3y_3 + 2x_1y_2 - 0.5x_1y_3 - 2x_2y_1 + 0.5x_3y_1 = 2x_1y_1 - x_1y_2 + 2x_1y_3 - 5x_2y_1 - 5x_2y_2 - x_2y_3 + 3x_3y_1 - x_3y_2 - x_3y_3 = B(x,y) \Rightarrow$$

$$\Rightarrow \boxed{\text{сумма симметричной и антисимметричной форм равна исходной билинейной форме.}}$$

Шаг 7. Переход из одного базиса в другой

Построим матрицу перехода T исходя из преобразования базиса:

$$T = \begin{pmatrix} 0 & -2 & 1 \\ -1 & -1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \Rightarrow T^T = \begin{pmatrix} 0 & -1 & 1 \\ -2 & -1 & 2 \\ 1 & 0 & 3 \end{pmatrix}$$

Вычислим матрицу билинейной формы в новом базисе — это \tilde{B} . Матрица B билинейной формы была найдена в ш.1.

$$\tilde{B} = T^T B T = \begin{pmatrix} 0 & -1 & 1 \\ -2 & -1 & 2 \\ 1 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & -1 & 2 \\ -5 & -5 & -1 \\ 3 & -1 & -1 \end{pmatrix} \times \begin{pmatrix} 0 & -2 & 1 \\ -1 & -1 & 0 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 8 & 4 & 0 \\ 7 & 5 & -5 \\ 11 & -4 & -1 \end{pmatrix} \times \begin{pmatrix} 0 & -2 & 1 \\ -1 & -1 & 0 \\ 1 & 2 & 3 \end{pmatrix} = \begin{bmatrix} -4 & -20 & 8 \\ -10 & -29 & -8 \\ 3 & -20 & 8 \end{bmatrix}$$

$$\tilde{B}(x,y) = \boxed{-4x_1y_1 - 20x_1y_2 + 8x_1y_3 - 10x_2y_1 - 29x_2y_2 - 8x_2y_3 + 3x_3y_1 - 20x_3y_2 + 8x_3y_3}$$

Задание 2

Шаг 1. Произведение тензоров

Т.к. $A_k^i \otimes B_l^j = C_{kl}^{ij}$, то пробежимся по каждой из четвёрки индексов i, j, k, l от 1 до 3 и получим каждый из компонентов результирующего тензора.

$$C_{11}^{11} = A_1^1 \cdot B_1^1 = -1 \quad C_{11}^{21} = A_1^2 \cdot B_1^1 = 3 \quad C_{11}^{31} = A_1^3 \cdot B_1^1 = 1 \quad C_{11}^{12} = -3 \quad C_{11}^{22} = 9 \quad C_{11}^{32} = 3 \quad C_{11}^{13} = -1 \quad C_{11}^{23} = 3 \quad C_{11}^{33} = -1 \quad C_{11}^{23} = 3 \quad C_{11}^{33} = -1 \quad C_{11}^{23} = 3 \quad C_{11}^{23} = -1 \quad C_{11}^{23} = -2 \quad C_{11}^{21} = -3 \quad C_{21}^{22} = -3 \quad C_{21}^{22} = -3 \quad C_{21}^{23} = -3 \quad C_{21}^{23} = -1 \quad C_{21}^{33} = -2 \quad C_{11}^{31} = 0 \quad C_{21}^{21} = -3 \quad C_{21}^{31} = -2 \quad C_{11}^{32} = -6 \quad C_{31}^{31} = -6 \quad C_{31}^{31} = -6 \quad C_{31}^{31} = -2 \quad C_{31}^{32} = -2 \quad C_{31}^{$$

Таким образом результирующий тензор принимает вид:

$C^{ij}_{kl} =$		$ \begin{array}{r} 3 \\ 9 \\ 3 \\ -3 \\ -3 \\ 6 \end{array} $	3 1 -1 -1	3	$ \begin{array}{r} -3 \\ -1 \\ \hline 1 \\ 1 \end{array} $	$ \begin{array}{r} -2 \\ -6 \\ -2 \\ \hline 2 \\ -4 \end{array} $	0 0 0 0	2 2	$ \begin{array}{c} -6 \\ -2 \end{array} $
	_	_	_						_
	-2	6	2	-6	-2	-4	0	-4	-4
	-1	3	1	-3	-1	-2	0	-2	-2
	0	0	0	0	0	0	0	0	0
	1	-3	-1	3	1	2	0	2	2

Для тензора $D^{ji}_{lk}=B^j_l\otimes A^i_k$ опробуем другой подход, связанный с пониманием работы индексов и того, как они раскладываются в результирующем тензоре.

- Индекс j (элементы в строках тензора B) обозначает элементы в строках в результирующем тензоре все элементы в строках остаются на своих местах.
- Индекс i (элементы в строках тензора A) обозначают строки в результирующем тензоре таким образом каждая строка результирующего тензора домножается на элементы тензора A.
- Индекс l (строки в тензоре B) обозначают вертикальный слой в результирующем тензоре каждая строка тензора B раскладывается в одну строку через вертикальные слои.
- Индекс k (строки в тензоре A) обозначает горизонтальный слой в результирующем тензоре так каждая строка тензора A раскладывается в столбец.

Таким образом результирующий тензор принимает вид:

$$D_{lk}^{ji} = \begin{bmatrix} -1 & -3 & -1 & 1 & 1 & -2 & -1 & 0 & 1 \\ 3 & 9 & 3 & -3 & -3 & 6 & 3 & 0 & -3 \\ 1 & 3 & 1 & -1 & -1 & 2 & 1 & 0 & -1 \\ -3 & -9 & -3 & 3 & 3 & -6 & -3 & 0 & 3 \\ -1 & -3 & -1 & 1 & 1 & -2 & -1 & 0 & 1 \\ -2 & -6 & -2 & 2 & 2 & -4 & -2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -2 & -6 & -2 & 2 & 2 & -4 & -2 & 0 & 2 \\ -2 & -6 & -2 & 2 & 2 & -4 & -2 & 0 & 2 \end{bmatrix}$$

Шаг 2. Свёртки по парам индексов

Свернём по парам индексов последовательно с i, j, k и l, получив таким образом тензор без слоёв только со строками и столбцами.

По индексу і

По индексу j

$$C_{jl}^{ij} \rightarrow C_{l}^{i} \qquad \qquad C_{kj}^{ij} \rightarrow C_{k}^{i} \qquad \qquad C_{l}^{1} = C_{11}^{11} + C_{21}^{12} + C_{31}^{13} = -1 - 9 = -10 \qquad \qquad C_{1}^{1} = C_{11}^{11} + C_{12}^{12} + C_{13}^{13} = -1 + 1 + 1 = 1 \qquad C_{1}^{2} = C_{11}^{21} + C_{22}^{22} + C_{33}^{23} = 3 - 3 - 2 = -2 \qquad \qquad C_{1}^{2} = C_{11}^{21} + C_{12}^{22} + C_{13}^{23} = 3 - 3 - 3 = -3 \qquad \qquad C_{1}^{3} = C_{11}^{31} + C_{12}^{32} + C_{33}^{33} = 1 - 6 - 2 = -7 \qquad \qquad C_{1}^{2} = C_{11}^{31} + C_{12}^{32} + C_{33}^{33} = 1 + 3 = 4 \qquad \qquad C_{1}^{2} = C_{11}^{21} + C_{12}^{22} + C_{13}^{23} = -3 + 1 - 4 = -6 \qquad \qquad C_{2}^{2} = C_{11}^{21} + C_{22}^{22} + C_{23}^{23} = -3 + 1 - 4 = -6 \qquad \qquad C_{2}^{2} = C_{21}^{21} + C_{22}^{22} + C_{23}^{23} = -1 + 1 + 1 = 1 \qquad C_{2}^{3} = C_{13}^{31} + C_{22}^{32} + C_{33}^{33} = -1 \qquad \qquad C_{2}^{3} = C_{21}^{31} + C_{22}^{32} + C_{23}^{33} = -1 + 1 + 1 = 1 \qquad C_{2}^{3} = C_{11}^{31} + C_{12}^{32} + C_{33}^{33} = -1 \qquad \qquad C_{2}^{3} = C_{21}^{31} + C_{22}^{32} + C_{23}^{33} = -2 + 2 + 2 = 2 \qquad C_{3}^{3} = C_{13}^{31} + C_{23}^{32} + C_{33}^{33} = 3 + 2 = 5 \qquad \qquad C_{3}^{3} = C_{11}^{31} + C_{12}^{32} + C_{13}^{33} = 0 \qquad \qquad C_{2}^{3} = C_{21}^{31} + C_{22}^{32} + C_{23}^{33} = -2 + 2 + 2 = 2 \qquad C_{3}^{3} = C_{13}^{31} + C_{32}^{32} + C_{33}^{33} = -2 + 2 + 2 = 2 \qquad C_{3}^{3} = C_{13}^{31} + C_{32}^{32} + C_{33}^{33} = -2 + 2 + 2 = 2 \qquad C_{3}^{3} = C_{13}^{31} + C_{32}^{32} + C_{33}^{33} = -2 + 2 + 2 = 2 \qquad C_{3}^{2} = C_{11}^{22} + C_{22}^{22} + C_{23}^{23} = -2 + 2 + 2 = 2 \qquad C_{21}^{2} + C_{22}^{22} + C_{23}^{23} = -2 + 2 + 2 = 2 \qquad C_{3}^{2} = C_{11}^{22} + C_{22}^{22} + C_{23}^{23} = -2 + 2 + 2 = 2 \qquad C_{21}^{2} + C_{22}^{22} + C_{23}^{23} = -2 + 2 + 2 = 2 \qquad C_{3}^{2} = C_{11}^{22} + C_{22}^{22} + C_{23}^{23} = -2 + 2 + 2 = 2 \qquad C_{21}^{2} + C_{22}^{22} + C_{23}^{23} = -2 + 2 + 2 = 2 \qquad C_{22}^{2} + C_{22}^{22} + C_{22}^{22}$$

По индексу k

$$C_{kl}^{kj} o C_l^j$$
 $C_{kl}^{ik} o C_l^j$

Вычислено ранее для свёртки C_{il}^{ij} .

$$C_l^j = \begin{vmatrix} -4 & -12 & -4 \\ 4 & 4 & -8 \\ -4 & 0 & 4 \end{vmatrix}$$

$$C_l^i = \begin{vmatrix} -10 & -2 & -7 \\ 4 & -6 & -3 \\ -1 & 5 & 3 \end{vmatrix}$$

Вычислено ранее для свёртки C_{il}^{ij} .

По индексу l

$$C^{lj}_{kl} o C^{j}_{k}$$
 $C^{il}_{kl} o C^{i}_{k}$

Вычислено ранее для свёртки C^{ij}_{ki} . Вычислено ранее для свёртки C^{ij}_{kj}

$$C_k^j = \begin{vmatrix} -3 & -6 & 4 \\ -4 & -8 & -3 \\ 0 & 2 & -2 \end{vmatrix}$$

$$C_k^i = \begin{vmatrix} 1 & -3 & -1 \\ 3 & 1 & 2 \\ 0 & 2 & 2 \end{vmatrix}$$

Все возможные свёртки по парам индексов вычислены, причём некоторые из них совпадают.

Шаг 3. Полные свёртки до скаляра

На предыдущем шаге обнаружили, что некоторые из свёрток по парам индексов совпали. Получается, перед нами имеются 4 тензора: C_k^i , C_l^i , C_k^j и C_l^j — их и будем сворачивать до скаляра. Ввиду равенства сворачивания T_p^p и T_q^q (так или иначе получаем $\sum_1^n T_i^i$ в пространстве S, где dim S=n) для тензора вида T_q^p , свёртка будет проводиться всегда по верхним индексам (однако это не имеет значения и выбор может быть любым).

Полные свёртки вычислены. В результате получено два значения: $\boxed{4$ и -13.

Шаг 4. Количество различных полных свёрток

В результате расчёта полных свёрток на предыдущем шаге мы получили 2 разных значения: 4 и -13. Такое количество значений связано с валентностями исходного тензора и их взаимосвязью с числом полных свёрток. Для тензора T с валентностью (p, p) количество полных свёрток равно p!.

В моём случае тензор C^{ij}_{kl} валентности $(2,\,2)$ — тогда количество полных свёрток равно $2!=1\cdot 2=2$, т.е. это означает, что всевозможные расчёты полных свёрток всегда приводят к 2 различным значениям.

Задание 3

Шаг 1. Преобразование базиса для тензоров А и В

Построим матрицу перехода из текущего базиса в новый по заданному преобразованию базиса и сразу же выведем обратную матрицу перехода:

$$T = \begin{pmatrix} 0 & 2 & 1 \\ -1 & -1 & 1 \\ -1 & -2 & 0 \end{pmatrix} \Rightarrow S = T^{-1} = \begin{bmatrix} \begin{pmatrix} 0 & 2 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 1 & 0 \\ -1 & -2 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & 0 & -1 & 0 \\ 0 & 1 & 0.5 & 0.5 & 0 & 0 \\ 0 & -1 & -1 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & -0.5 & 0.5 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & -1 & 0 & -1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -2 & 2 & -3 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 2 & -2 \end{pmatrix} = \begin{pmatrix} -2 & 2 & -3 \\ 1 & -1 & 1 \\ -1 & 2 & -2 \end{pmatrix}$$

Матрица перехода T будет использоваться для ковариантных индексов (т.е. для преобразования тензора B), а обратная матрица перехода S — для контравариантных (соответственно для преобразования тензора A).

Преобразование тензоров в общем виде будет выглядеть так:

$$\tilde{A}^{ij} = \sum_{n=1}^{3} \sum_{m=1}^{3} A^{nm} S_n^i S_m^j$$
$$\tilde{B}_k = \sum_{l=1}^{3} B_l T_k^l$$

Вычислим \tilde{A}^{ij} :

$$\tilde{A}^{11} = A^{11}S_1^1S_1^1 + A^{12}S_1^1S_2^1 + A^{13}S_1^1S_3^1 + A^{21}S_2^1S_1^1 + A^{22}S_2^1S_2^1 + A^{23}S_2^1S_3^1 + A^{31}S_3^1S_1^1 + A^{32}S_3^1S_2^1 + A^{33}S_3^1S_3^1 = \\ = 4 + 8 - 12 + 12 - 6 + 18 - 18 = 6 \\ \tilde{A}^{12} = -2 - 4 + 6 - 4 + 3 - 9 + 6 = -4 \quad \tilde{A}^{13} = 2 + 8 - 6 + 8 - 3 + 18 - 12 = 15 \\ \tilde{A}^{21} = -2 - 4 + 6 - 6 + 2 - 6 + 6 = -4 \quad \tilde{A}^{22} = 1 + 2 - 3 + 2 - 1 + 3 - 2 = 2 \quad \tilde{A}^{23} = -1 - 4 + 3 - 4 + 1 - 6 + 4 = -7 \\ \tilde{A}^{31} = 2 + 4 - 12 + 12 - 4 + 12 - 12 = 2 \quad \tilde{A}^{32} = -1 - 2 + 6 - 4 + 2 - 6 + 4 = -1 \quad \tilde{A}^{33} = 1 + 4 - 6 + 8 - 2 + 12 - 8 = 9$$

Таким образом тензор A в новом базисе будет выглядеть так:

$$\tilde{A}^{ij} = \begin{vmatrix} \tilde{A}^{11} & \tilde{A}^{12} & \tilde{A}^{13} \\ \tilde{A}^{21} & \tilde{A}^{22} & \tilde{A}^{23} \\ \tilde{A}^{31} & \tilde{A}^{32} & \tilde{A}^{33} \end{vmatrix} = \boxed{\begin{vmatrix} 6 & -4 & 15 \\ -4 & 2 & -7 \\ 2 & -1 & 9 \end{vmatrix}}$$

Вычислим таким же образом \tilde{B}_k :

$$\tilde{B}_1 = B_1 T_1^1 + B_2 T_1^2 + B_3 T_1^3 = -1 + 2 = 1$$
 $\tilde{B}_2 = 6 - 1 + 4 = 9$ $\tilde{B}_3 = 3 + 1 = 4$

Таким образом тензор B в новом базисе будет выглядеть так:

$$\tilde{B}_k = \|\tilde{B}_1 \quad \tilde{B}_2 \quad \tilde{B}_3\| = \|1 \quad 9 \quad 4\|$$

Шаг 2. Произведение тензоров

Проведём рассуждения, схожие с теми, что были в задании 2 пункте 1. Итак, $A^{ij}\otimes B_k=C_k^{ij}$. Взглянем на индексы результирующего тензора:

- Индексы i и j результирующего тензора совпадают по своей сути с индексами тензора $A^{ij} \Rightarrow$ строки и столбцы внутри каждого слоя по горизонтали будут совпадать с исходным тензором.
- Индекс k результирующего тензора означает номер слоя по горизонтали \Rightarrow фиксирует элемент тензора B_k на весь слой

Таким образом результирующий тензор можно представить так:

Шаг 3. Преобразование базиса тензора С

В общем виде тензор C в новом базисе будет выглядеть так: $\tilde{C}_k^{ij} = \sum\limits_{l=1}^3 \sum\limits_{m=1}^3 \sum\limits_{n=1}^3 C_l^{mn} T_k^l S_m^i S_n^j$.

Проведём расчёты компонентов тензора в новом базисе:

$$\tilde{C}_{2}^{11} = 24 - 4 + 16 + 48 - 8 + 32 - 72 + 12 - 48 + 72 - 12 + 48 - 36 + 6 - 24 + 108 - 18 + 72 - 108 + 18 - 72 = 54$$

$$\tilde{C}_{2}^{12} = -12 + 2 - 8 - 24 + 4 - 16 + 36 - 6 + 24 - 36 + 6 - 24 + 12 - 2 + 8 - 36 + 6 - 24 + 36 - 6 + 24 = -36$$

$$\tilde{C}_{2}^{13} = 12 - 2 + 8 - 36 + 6 - 24 - 18 + 3 - 12 + 48 - 8 + 32 + 108 - 18 + 72 + 48 - 8 + 32 - 72 + 12 - 48 = 135$$

$$\tilde{C}_{2}^{21} = -12 + 2 - 8 - 24 + 4 - 16 + 36 - 6 + 24 - 24 + 4 - 16 + 18 - 3 + 12 - 54 + 9 - 36 + 36 - 6 + 24 = -36$$

$$\tilde{C}_{2}^{22} = 6 - 1 + 4 + 12 - 2 + 8 - 18 + 3 - 12 + 12 - 2 + 8 - 6 + 1 - 4 + 18 - 3 + 12 - 12 + 2 - 8 = 18$$

$$\tilde{C}_{2}^{23} = -6 + 1 - 4 + 18 - 3 + 12 + 6 - 1 + 4 - 24 + 4 - 16 - 36 + 6 - 24 - 24 + 4 - 16 + 24 - 4 + 16 = -63$$

$$\tilde{C}_{2}^{31} = 12 - 2 + 8 - 72 + 12 - 48 - 24 + 4 - 16 + 24 - 4 + 16 + 72 - 12 + 48 + 72 - 12 + 48 - 72 + 12 - 48 = 18$$

$$\tilde{C}_{2}^{32} = -6 + 1 - 4 + 36 - 6 + 24 + 12 - 2 + 8 - 12 + 2 - 8 - 36 + 6 - 24 - 24 + 4 - 16 + 24 - 4 + 16 = -9$$

$$\tilde{C}_{2}^{33} = 6 - 1 + 4 + 24 - 4 + 16 - 36 + 6 - 24 + 48 - 8 + 32 - 12 + 2 - 8 + 72 - 12 + 48 - 48 + 8 - 32 = 81$$

$$\tilde{C}_{3}^{11} = 12 + 4 + 24 + 8 - 36 - 12 + 36 + 12 - 18 - 6 + 54 + 18 - 54 - 18 = 24$$

$$\tilde{C}_{3}^{12} = -6 - 2 - 12 - 4 + 18 + 6 - 18 - 6 + 6 + 2 - 18 - 6 + 18 + 6 = -16$$

$$\tilde{C}_{3}^{13} = 6 + 2 - 18 - 6 - 9 - 3 + 24 + 8 + 54 + 18 + 24 + 8 - 36 - 12 = 60 \quad \tilde{C}_{3}^{21} = -6 - 2 - 12 - 4 + 18 + 6 - 12 - 4 + 9 + 3 - 27 - 9 + 18 + 6 = -16$$

$$\tilde{C}_{3}^{22} = 3 + 1 + 6 + 2 - 9 - 3 + 6 + 2 - 3 - 1 + 9 + 3 - 6 - 2 = 8 \quad \tilde{C}_{3}^{23} = -3 - 1 + 9 + 3 + 3 + 1 - 12 - 4 - 18 - 6 - 12 - 4 + 12 + 4 = -28$$

$$\tilde{C}_{3}^{31} = 6 + 2 - 36 - 12 - 12 - 4 + 12 + 4 + 36 + 12 + 36 + 12 - 36 - 12 = 8 \quad \tilde{C}_{3}^{32} = -3 - 1 + 18 + 6 + 6 + 2 - 6 - 2 - 18 - 6 - 12 - 4 + 12 + 4 = -4$$

$$\tilde{C}_{3}^{33} = 3 + 1 + 12 + 4 - 18 - 6 + 24 + 8 - 6 - 2 + 36 + 12 - 24 - 8 = 36$$

В результате получаем тензор C в новом базисе со следующими компонентами, вычисленными выше:

$$\tilde{C}_k^{ij} = \left| \begin{array}{c|ccc|c} 6 & -4 & 15 & 54 & -36 & 135 & 24 & -16 & 60 \\ -4 & 2 & -7 & -36 & 18 & -63 & -16 & 8 & -28 \\ 2 & -1 & 9 & 18 & -9 & 81 & 8 & -4 & 36 \end{array} \right|$$

Шаг 4. Тензор С через преобразование базиса тензоров А и В

Попробуем вычислить тензор \tilde{C} , пользуясь ранее вычисленными на шаге 1 тензорами \tilde{A} и \tilde{B} . Продублирую эти тензоры здесь ещё раз.

$$\tilde{A}^{ij} = \begin{vmatrix} 6 & -4 & 15 \\ -4 & 2 & -7 \\ 2 & -1 & 9 \end{vmatrix} \qquad \tilde{B}_k = \begin{vmatrix} 1 & 9 & 4 \end{vmatrix}$$

Так как $C = A \otimes B$, то после преобразования базиса заданное произведение должно выполняться $\Rightarrow \tilde{C} = \tilde{A} \otimes \tilde{B}$. Вычислим произведение не покомпонентно, а применяя рассуждения, выведенные в пунктах на шаге 2:

Убеждаемся в том, что если произведение двух тензоров задано в одном базисе, то получить его в другом базисе можно как переводом результирующего тензора в новый базис, так и произведением этих двух тензоров, но уже переведённых в новый базис.

Шаг 5. Законы преобразования в матричном виде

Для частных случаев имеются готовые формулы в матричном виде для перехода из одного базиса в другой. К примеру, тензоры с валентностью (0,2) преобразуются по базису в матричном виде как $\tilde{M}=SMS^T$. А тензоры с валентностью (1,0) преобразуются как $\tilde{M}=MT$. Попробуем применить эти формулы для тензоров A и B, чтобы получить те же самые \tilde{A} и \tilde{B} .

$$SAS^{T} = \begin{pmatrix} -2 & 2 & -3 \\ 1 & -1 & 1 \\ -1 & 2 & -2 \end{pmatrix} \begin{vmatrix} 1 & -2 & 0 \\ 3 & 0 & -2 \\ -1 & -3 & -2 \end{vmatrix} \begin{pmatrix} -2 & 1 & -1 \\ 2 & -1 & 2 \\ -3 & 1 & -2 \end{pmatrix} = \begin{vmatrix} 7 & 13 & 2 \\ -3 & -5 & 0 \\ 7 & 8 & 0 \end{vmatrix} \begin{pmatrix} -2 & 1 & -1 \\ 2 & -1 & 2 \\ -3 & 1 & -2 \end{pmatrix} = \begin{vmatrix} 6 & -4 & 15 \\ -4 & 2 & -7 \\ 2 & -1 & 9 \end{vmatrix} = \tilde{A}$$

$$BT = \begin{vmatrix} 3 & 1 & 2 \end{vmatrix} \begin{pmatrix} 0 & 2 & 1 \\ -1 & -1 & 1 \\ -1 & -2 & 0 \end{pmatrix} = \begin{vmatrix} 1 & 9 & 4 \end{vmatrix} = \tilde{B}$$

Мы получили исходные тензоры, пользуясь законами преобразования в матричном виде, что доказывает правильность выполненных ранее вычислений.

Задание 4

Шаг 1. Симметрирование тензора

По правилу симметрирования: $S_{ijk} = T_{(ijk)} = 1/3! (T_{ijk} + T_{ikj} + T_{jik} + T_{jki} + T_{kij} + T_{kji})$. Вычислим каждый элемент S_{ijk} через T_{ijk} .

$$S_{111} = T_{111} = 1 \quad S_{222} = T_{222} = 3 \quad S_{333} = T_{333} = 2$$

$$S_{112} = S_{121} = S_{211} = \frac{1}{6} \left(2T_{112} + 2T_{121} + 2T_{211} \right) = \frac{1}{3} \left(T_{112} + T_{121} + T_{211} \right) = \frac{1}{3} (3 + 1 - 1) = 1$$

$$S_{113} = S_{131} = S_{311} = \frac{1}{6} \left(2T_{113} + 2T_{131} + 2T_{311} \right) = \frac{1}{3} \left(T_{113} + T_{131} + T_{311} \right) = \frac{1}{3} \left(-2 - 2 - 2 \right) = -2$$

$$S_{122} = S_{212} = S_{221} = \frac{1}{6} \left(2T_{122} + 2T_{212} + 2T_{221} \right) = \frac{1}{3} \left(T_{122} + T_{212} + T_{221} \right) = \frac{1}{3} \left(-3 \right) = -1$$

$$S_{133} = S_{313} = S_{331} = \frac{1}{6} \left(2T_{133} + 2T_{313} + 2T_{331} \right) = \frac{1}{3} \left(T_{133} + T_{313} + T_{331} \right) = \frac{1}{3} \left(-1 - 2 - 1 \right) = \frac{-4}{3}$$

$$S_{223} = S_{232} = S_{322} = \frac{1}{6} \left(2T_{223} + 2T_{232} + 2T_{322} \right) = \frac{1}{3} \left(T_{223} + T_{232} + T_{322} \right) = \frac{1}{3} \left(-1 + 1 - 3 \right) = -1$$

$$S_{233} = S_{323} = S_{332} = \frac{1}{6} \left(2T_{233} + 2T_{323} + 2T_{332} \right) = \frac{1}{3} \left(T_{233} + T_{323} + T_{332} \right) = \frac{1}{3} \left(-1 + 1 + 2 \right) = \frac{2}{3}$$

$$S_{123} = S_{132} = S_{213} = S_{213} = S_{312} = S_{321} = \frac{1}{6} \left(T_{123} + T_{132} + T_{213} + T_{231} + T_{312} + T_{321} \right) = \frac{1}{6} \left(-3 - 1 + 3 - 2 + 1 + 2 \right) = 0$$

$$S_{ijk} = \begin{bmatrix} 1 & 1 & -2 & 1 & -1 & 0 & -2 & 0 & -\frac{4}{3} \\ 1 & -1 & 0 & -1 & \frac{2}{3} & -\frac{4}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

Шаг 2. Альтернирование (антисимметрирование) тензора

По правилу альтернирования: $A_{ijk} = T_{[ijk]} = \frac{1}{3!}(T_{ijk} - T_{ikj} + T_{kij} - T_{kji} + T_{jki} - T_{jik})$. Вычислим каждый элемент S_{ijk} через T_{ijk} .

$$A_{111} = A_{121} = A_{112} = A_{211} = A_{131} = A_{113} = A_{311} = A_{212} = A_{221} = A_{122} = A_{222} = A_{232} = A_{232} = A_{313} = A_{331} = A_{331} = A_{133} = A_{323} = A_{332} = A_{332} = A_{333} = 0$$

$$A_{123} = \frac{1}{6} \left(T_{123} - T_{132} + T_{312} - T_{321} + T_{231} - T_{213} \right) = \frac{1}{6} \left(-3 + 1 + 1 - 2 - 2 - 3 \right) = \frac{-4}{3}$$

$$A_{123} = -A_{132} = A_{312} = -A_{321} = A_{231} = -A_{213}$$

$$A_{ijk} = \begin{bmatrix} 0 & 0 & 0 & 0 & 4/3 & 0 & -4/3 & 0 \\ 0 & 0 & -4/3 & 0 & 0 & 4/3 & 0 & 0 \\ 0 & 4/3 & 0 & -4/3 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Задание 5

Общая формула для всех этапов (p и q — полные валентности тензоров T_1 и T_2): $T_1 \wedge T_2 = \frac{(p+q)!}{p! \, q!} \operatorname{Asym}(T_1 \otimes T_2)$. Также будет полезна формула коммутативности: $T_2 \wedge T_1 = (-1)^{p \cdot q} (T_1 \wedge T_2)$.

Шаг 1. Попарные внешние произведения

Представлю полный список попарных внешних произведений:

$$A_i \wedge B_j \\ B_j \wedge A_i \\ A_i \wedge C_k$$

$$C_k \wedge A_i \\ A_i \wedge D_l \\ D_l \wedge A_i$$

$$B_j \wedge C_k \\ C_k \wedge B_j \\ B_j \wedge D_l$$

$$C_k \wedge D_l$$

$$D_l \wedge C_k$$

Вычислим поочерёдно каждое.

$$A_i \wedge B_j = \frac{2!}{1! \, 1!} \operatorname{Asym}(A_i \otimes B_j) = 2 \operatorname{Asym}(A_i \otimes B_j)$$

Вычислим $A_i \otimes B_i$:

$$A_i \otimes B_j = E_{ij} = \begin{vmatrix} A_1 \cdot B \\ A_2 \cdot B \\ A_3 \cdot B \end{vmatrix} = \begin{vmatrix} 6 & -3 & -3 \\ -6 & 3 & 3 \\ 6 & -3 & -3 \end{vmatrix}$$

Теперь найдём $Asym(A_i \otimes B_i)$:

$$\operatorname{Asym}(A_i \otimes B_j) = \operatorname{Asym}(E_{ij}) = \begin{vmatrix} 0 & (E_{12} - E_{21})/2 & (E_{13} - E_{31})/2 \\ (E_{21} - E_{12})/2 & 0 & (E_{23} - E_{32})/2 \\ (E_{31} - E_{13})/2 & (E_{32} - E_{23})/2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 3/2 & -9/2 \\ -3/2 & 0 & 3 \\ 9/2 & -3 & 0 \end{vmatrix}$$

Тогда
$$A_i \wedge B_j = 2 \operatorname{Asym}(E_{ij}) = \boxed{ \begin{vmatrix} 0 & 3 & -9 \\ -3 & 0 & 6 \\ 9 & -6 & 0 \end{vmatrix} }$$

$$B_j \wedge A_i = (-1)^{p \cdot q} (A_i \wedge B_j) = - \begin{vmatrix} 0 & 3 & -9 \\ -3 & 0 & 6 \\ 9 & -6 & 0 \end{vmatrix} = \boxed{\begin{vmatrix} 0 & -3 & 9 \\ 3 & 0 & -6 \\ -9 & 6 & 0 \end{vmatrix}}$$

$$A_i \wedge C_k = \frac{2!}{1! \, 1!} \operatorname{Asym}(A_i \otimes C_k) = 2 \operatorname{Asym}(A_i \otimes C_k)$$

Вычислим $A_i \otimes C_k$:

$$A_i \otimes C_k = F_{ik} = \begin{vmatrix} A_1 \cdot C \\ A_2 \cdot C \\ A_3 \cdot C \end{vmatrix} = \begin{vmatrix} -6 & 9 & -9 \\ 6 & -9 & 9 \\ -6 & 9 & -9 \end{vmatrix}$$

Теперь найдём $Asym(A_i \otimes C_k)$:

$$\operatorname{Asym}(A_i \otimes C_k) = \operatorname{Asym}(F_{ik}) = \begin{vmatrix} 0 & (F_{12} - F_{21})/2 & (F_{13} - F_{31})/2 \\ (F_{21} - F_{12})/2 & 0 & (F_{23} - F_{32})/2 \\ (F_{31} - F_{13})/2 & (F_{32} - F_{23})/2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 3/2 & -3/2 \\ -3/2 & 0 & 0 \\ 3/2 & 0 & 0 \end{vmatrix}$$

Тогда
$$A_i \wedge C_k = 2 \operatorname{Asym}(F_{ik}) = \boxed{ egin{bmatrix} 0 & 3 & -3 \\ -3 & 0 & 0 \\ 3 & 0 & 0 \\ \end{bmatrix} }$$

$$C_k \wedge A_i = (-1)^{p \cdot q} (A_i \wedge C_k) = - \begin{vmatrix} 0 & 3 & -3 \\ -3 & 0 & 0 \\ 3 & 0 & 0 \end{vmatrix} = \boxed{\begin{vmatrix} 0 & -3 & 3 \\ 3 & 0 & 0 \\ -3 & 0 & 0 \end{vmatrix}}$$

$$A_i \wedge D_l = \frac{2!}{1! \, 1!} \operatorname{Asym}(A_i \otimes D_l) = 2 \operatorname{Asym}(A_i \otimes D_l)$$

Вычислим $A_i \otimes D_l$:

$$A_i \otimes D_l = G_{il} = \begin{vmatrix} A_1 \cdot D \\ A_2 \cdot D \\ A_3 \cdot D \end{vmatrix} = \begin{vmatrix} 6 & 0 & 3 \\ -6 & 0 & -3 \\ 6 & 0 & 3 \end{vmatrix}$$

Теперь найдём $Asym(A_i \otimes D_l)$:

$$\operatorname{Asym}(A_i \otimes D_l) = \operatorname{Asym}(G_{il}) = \begin{vmatrix} 0 & (G_{12} - G_{21})/2 & (G_{13} - G_{31})/2 \\ (G_{21} - G_{12})/2 & 0 & (G_{23} - G_{32})/2 \\ (G_{31} - G_{13})/2 & (G_{32} - G_{23})/2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -3/2 \\ -3 & 0 & -3/2 \\ 3/2 & 3/2 & 0 \end{vmatrix}$$

Тогда
$$A_i \wedge D_l = 2 \operatorname{Asym}(G_{il}) = \boxed{ \begin{vmatrix} 0 & 6 & -3 \\ -6 & 0 & -3 \\ 3 & 3 & 0 \end{vmatrix} }$$

$$D_l \wedge A_i = (-1)^{p \cdot q} (A_i \wedge D_l) = - \begin{vmatrix} 0 & 6 & -3 \\ -6 & 0 & -3 \\ 3 & 3 & 0 \end{vmatrix} = \boxed{\begin{vmatrix} 0 & -6 & 3 \\ 6 & 0 & 3 \\ -3 & -3 & 0 \end{vmatrix}}$$

$$B_j \wedge C_k = \frac{2!}{1! \, 1!} \operatorname{Asym}(B_j \otimes C_k) = 2 \operatorname{Asym}(B_j \otimes C_k)$$

Вычислим $B_j \otimes C_k$:

$$B_j \otimes C_k = H_{jk} = \begin{vmatrix} B_1 \cdot C \\ B_2 \cdot C \\ B_3 \cdot C \end{vmatrix} = \begin{vmatrix} -4 & 6 & -6 \\ 2 & -3 & 3 \\ 2 & -3 & 3 \end{vmatrix}$$

Теперь найдём $Asym(B_i \otimes C_k)$:

$$\operatorname{Asym}(B_j \otimes C_k) = \operatorname{Asym}(H_{jk}) = \begin{vmatrix} 0 & (H_{12} - H_{21})/2 & (H_{13} - H_{31})/2 \\ (H_{21} - H_{12})/2 & 0 & (H_{23} - H_{32})/2 \\ (H_{31} - H_{13})/2 & (H_{32} - H_{23})/2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 2 & -4 \\ -2 & 0 & 3 \\ 4 & -3 & 0 \end{vmatrix}$$

Тогда
$$B_j \wedge C_k = 2 \operatorname{Asym}(H_{jk}) = \boxed{ \begin{vmatrix} 0 & 4 & -8 \\ -4 & 0 & 6 \\ 8 & -6 & 0 \end{vmatrix} }$$

$$C_k \wedge B_j = (-1)^{p \cdot q} (B_j \wedge C_k) = - \begin{vmatrix} 0 & 4 & -8 \\ -4 & 0 & 6 \\ 8 & -6 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -4 & 8 \\ 4 & 0 & -6 \\ -8 & 6 & 0 \end{vmatrix}$$

$$B_j \wedge D_l = \frac{2!}{1! \, 1!} \operatorname{Asym}(B_j \otimes D_l) = 2 \operatorname{Asym}(B_j \otimes D_l)$$

Вычислим $B_j \otimes D_l$:

$$B_j \otimes D_l = M_{jl} = \begin{vmatrix} B_1 \cdot D \\ B_2 \cdot D \\ B_3 \cdot D \end{vmatrix} = \begin{vmatrix} 4 & 0 & 2 \\ -2 & 0 & -1 \\ -2 & 0 & -1 \end{vmatrix}$$

Теперь найдём $Asym(B_i \otimes D_l)$:

$$\operatorname{Asym}(B_j \otimes D_l) = \operatorname{Asym}(M_{jl}) = \begin{vmatrix} 0 & (M_{12} - M_{21})/2 & (M_{13} - M_{31})/2 \\ (M_{21} - M_{12})/2 & 0 & (M_{23} - M_{32})/2 \\ (M_{31} - M_{13})/2 & (M_{32} - M_{23})/2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -1/2 \\ -2 & 1/2 & 0 \end{vmatrix}$$

Тогда
$$B_j \wedge D_l = 2 \operatorname{Asym}(M_{jl}) = \left| \begin{array}{ccc} 0 & 2 & 4 \\ -2 & 0 & -1 \\ -4 & 1 & 0 \end{array} \right|$$

$$D_l \wedge B_j = (-1)^{p \cdot q} (B_j \wedge D_l) = - \begin{vmatrix} 0 & 2 & 4 \\ -2 & 0 & -1 \\ -4 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -2 & -4 \\ 2 & 0 & 1 \\ 4 & -1 & 0 \end{vmatrix}$$

$$C_k \wedge D_l = \frac{2!}{1! \cdot 1!} \operatorname{Asym}(C_k \otimes D_l) = 2 \operatorname{Asym}(C_k \otimes D_l)$$

Вычислим $C_k \otimes D_l$:

$$C_k \otimes D_l = N_{kl} = \begin{vmatrix} C_1 \cdot D \\ C_2 \cdot D \\ C_3 \cdot D \end{vmatrix} = \begin{vmatrix} -4 & 0 & -2 \\ 6 & 0 & 3 \\ -6 & 0 & -3 \end{vmatrix}$$

Теперь найдём $Asym(C_k \otimes D_l)$:

$$\operatorname{Asym}(C_k \otimes D_l) = \operatorname{Asym}(N_{kl}) = \begin{vmatrix} 0 & (N_{12} - N_{21})/2 & (N_{13} - N_{31})/2 \\ (N_{21} - N_{12})/2 & 0 & (N_{23} - N_{32})/2 \\ (N_{31} - N_{13})/2 & (N_{32} - N_{23})/2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -3 & 2 \\ 3 & 0 & 3/2 \\ -2 & -3/2 & 0 \end{vmatrix}$$

Тогда
$$C_k \wedge D_l = 2 \operatorname{Asym}(N_{kl}) = \begin{bmatrix} 0 & -6 & 4 \\ 6 & 0 & 3 \\ -4 & -3 & 0 \end{bmatrix}$$

$$D_l \wedge C_k = (-1)^{p \cdot q} (C_k \wedge D_l) = - \begin{vmatrix} 0 & -6 & 4 \\ 6 & 0 & 3 \\ -4 & -3 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 6 & -4 \\ -6 & 0 & -3 \\ 4 & 3 & 0 \end{vmatrix}$$

Шаг 2. Тройные внешние произведения

Представлю полный список тройных внешних произведений:

Вычислим поочерёдно каждое.

$$A_i \wedge B_j \wedge C_k = E_{ij} \wedge C_k = \frac{3!}{1! \, 2!} \operatorname{Asym}(E_{ij} \otimes C_k) = 3 \operatorname{Asym}(E_{ij} \otimes C_k)$$

Вычислим $E_{ij} \otimes C_k$:

$$E_{ij} \otimes C_k = O_{ijk} = \parallel E_{ij} \cdot C_1 \mid E_{ij} \cdot C_2 \mid E_{ij} \cdot C_3 \parallel = \parallel 0 & 6 & -18 \mid 0 & -9 & 27 \mid 0 & 9 & -27 \mid 6 & 0 & -12 \mid 9 & 0 & -18 \mid -9 & 0 & 18 \mid 18 & -12 & 0 & -27 & 18 & 0 & 27 & -18 & 0 \parallel$$

Теперь найдём $Asym(O_{ijk})$:

$$a = \frac{1}{6}(O_{123} - O_{132} + O_{312} - O_{321} + O_{231} - O_{213}) = \frac{1}{6}(9 - 27 - 27 + 12 - 12 + 9) = -6$$

$$\operatorname{Asym}(O_{ijk}) = \left\| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 0 & -a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 & 0 & -a & 0 & 0 \\ 0 & -a & 0 & a & 0 & 0 & 0 & 0 \end{array} \right\| = \left\| \begin{array}{ccc|c} 0 & 0 & 0 & 6 & 0 & -6 & 0 \\ 0 & 0 & -6 & 0 & 0 & 6 & 0 \\ 0 & 6 & 0 & -6 & 0 & 0 & 0 \end{array} \right\|$$

$$\operatorname{Tor}_{Ai} A_i \wedge B_j \wedge C_k = 3 \operatorname{Asym}(O_{ijk}) = \left[\left\| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 18 & 0 & -18 & 0 \\ 0 & 0 & -18 & 0 & 0 & 0 & 18 & 0 & 0 \\ 0 & 18 & 0 & -18 & 0 & 0 & 0 & 0 \end{array} \right]$$

Тогда
$$A_i \wedge B_j \wedge C_k = 3 \operatorname{Asym}(O_{ijk}) = \left| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 18 & 0 & -18 & 0 \\ 0 & 0 & -18 & 0 & 0 & 0 & 18 & 0 & 0 \\ 0 & 18 & 0 & -18 & 0 & 0 & 0 & 0 & 0 \end{array} \right|$$

Остальные комбинации внешних произведений вычислить не так трудно, пользуясь свойством коммутативности внешнего произведения $T_2 \wedge T_1 = (-1)^{p \cdot q} (T_1 \wedge T_2).$

$$A_i \wedge C_k \wedge B_j = -C_k \wedge A_i \wedge B_j = \left| \begin{array}{ccc|ccc|ccc|ccc} 0 & 0 & 0 & 0 & -18 & 0 & 18 & 0 \\ 0 & 0 & 18 & 0 & 0 & 0 & -18 & 0 & 0 \\ 0 & -18 & 0 & 18 & 0 & 0 & 0 & 0 & 0 \end{array} \right|$$

$$A_i \wedge B_j \wedge D_l = E_{ij} \wedge D_l = \frac{3!}{1! \, 2!} \operatorname{Asym}(E_{ij} \otimes D_l) = 3 \operatorname{Asym}(E_{ij} \otimes D_l)$$

Вычислим $E_{ij} \otimes D_l$:

$$E_{ij} \otimes D_l = P_{ijl} = \parallel E_{ij} \cdot D_1 \mid E_{ij} \cdot D_2 \mid E_{ij} \cdot D_3 \parallel = \parallel \begin{array}{ccc|c} 0 & -6 & 18 & 0 & 0 & 0 & 0 & -3 & 9 \\ 6 & 0 & -12 & 0 & 0 & 0 & 3 & 0 & -6 \\ -18 & 12 & 0 & 0 & 0 & 0 & -9 & 6 & 0 \end{array} \parallel$$

Теперь найдём $Asym(P_{ijl})$:

$$a = \frac{1}{6}(P_{123} - P_{132} + P_{312} - P_{321} + P_{231} - P_{213}) = \frac{1}{6}(-3 - 12 - 12 - 3) = -5$$

$$Asym(P_{ijl}) = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & -a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 & -a & 0 & -a & 0 \\ 0 & -a & 0 & a & 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 5 & 0 & -5 & 0 \\ 0 & 0 & -5 & 0 & 0 & 5 & 0 & 0 \\ 0 & 5 & 0 & -5 & 0 & 0 & 0 & 0 \end{vmatrix}$$

$$\operatorname{Asym}(P_{ijl}) = \left\| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 0 & -a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 & 0 & -a & 0 & 0 \\ 0 & -a & 0 & a & 0 & 0 & 0 & 0 & 0 \end{array} \right\| = \left\| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 5 & 0 & -5 & 0 \\ 0 & 0 & -5 & 0 & 0 & 5 & 0 & 5 & 0 & 0 \\ 0 & 5 & 0 & -5 & 0 & 0 & 0 & 5 & 0 & 0 \end{array} \right\|$$
 Тогда $A_i \wedge B_j \wedge D_l = 3 \operatorname{Asym}(P_{ijl}) = \left[\left\| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 0 & 15 & 0 & -15 & 0 \\ 0 & 0 & -15 & 0 & 0 & 15 & 0 & -15 & 0 & 0 \\ 0 & 15 & 0 & -15 & 0 & 0 & 0 & 0 \end{array} \right] = B_j \wedge D_l \wedge A_i = D_l \wedge A_i \wedge B_j$

$$A_i \wedge D_l \wedge B_j = B_j \wedge A_i \wedge D_l = D_l \wedge B_j \wedge A_i = -A_i \wedge B_j \wedge D_l = \left| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 0 & -15 & 0 & 15 & 0 \\ 0 & 0 & 15 & 0 & 0 & 0 & -15 & 0 & 0 \\ 0 & -15 & 0 & 15 & 0 & 0 & 0 & 0 & 0 \end{array} \right|$$

$$A_i \wedge C_k \wedge D_l = F_{ik} \wedge D_l = \frac{3!}{1! \, 2!} \operatorname{Asym}(F_{ik} \otimes D_l) = 3 \operatorname{Asym}(F_{ik} \otimes D_l)$$

Вычислим $F_{ik} \otimes D_l$:

$$F_{ik} \otimes D_l = Q_{ikl} = \left\| \begin{array}{c|cccc} F_{ik} \cdot D_1 & E_{ij} \cdot D_2 & E_{ij} \cdot D_3 \end{array} \right\| = \left\| \begin{array}{c|cccc} 0 & -6 & 6 & 0 & 0 & 0 & 0 & 0 & -3 & 3 \\ 6 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\ -6 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 \end{array} \right\|$$

Теперь найдём $Asym(Q_{ikl})$:

$$a = \frac{1}{6}(Q_{123} - Q_{132} + Q_{312} - Q_{321} + Q_{231} - Q_{213}) = \frac{1}{6}(-3 - 3) = -1$$

$$\operatorname{Asym}(Q_{ikl}) = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & -a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 & -a & 0 & 0 \\ 0 & -a & 0 & a & 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \end{vmatrix}$$

Тогда
$$A_i \wedge C_k \wedge D_l = 3 \operatorname{Asym}(Q_{ikl}) = \begin{bmatrix} \begin{vmatrix} 0 & 0 & 0 & \begin{vmatrix} 0 & 0 & 3 & 0 & -3 & 0 \\ 0 & 0 & -3 & \begin{vmatrix} 0 & 0 & 3 & 0 & -3 & 0 \\ 0 & 3 & 0 & -3 & 0 & 0 & 0 & 0 \end{vmatrix} = C_k \wedge D_l \wedge A_i = D_l \wedge A_i \wedge C_k$$

$$A_i \wedge D_l \wedge C_k = C_k \wedge A_i \wedge D_l = D_l \wedge C_k \wedge A_i = -A_i \wedge C_k \wedge D_l = \left| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 0 & -3 & 0 & 3 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & -3 & 0 & 0 \\ 0 & -3 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \end{array} \right|$$

$$D_l \wedge B_j \wedge C_k = M_{lj} \wedge C_k = \frac{3!}{1! \, 2!} \operatorname{Asym}(M_{lj} \otimes C_k) = 3 \operatorname{Asym}(M_{lj} \otimes C_k)$$

Вычислим $M_{lj} \otimes C_k$:

$$M_{lj} \otimes C_k = R_{ljk} = \left\| \begin{array}{cc|c} M_{lj} \cdot C_1 & M_{lj} \cdot C_2 & M_{lj} \cdot C_3 \end{array} \right\| = \left\| \begin{array}{cc|c} 0 & -4 & -8 & 0 & 6 & 12 & 0 & -6 & -12 \\ 4 & 0 & 2 & -6 & 0 & -3 & 6 & 0 & 3 \\ 8 & -2 & 0 & -12 & 3 & 0 & 12 & -3 & 0 \end{array} \right\|$$

Теперь найдём $Asym(R_{lik})$:

$$a = \frac{1}{6}(R_{123} - R_{132} + R_{312} - R_{321} + R_{231} - R_{213}) = \frac{1}{6}(-6 - 12 - 12 + 2 + 2 - 6) = \frac{-16}{3}$$

$$\operatorname{Asym}(R_{ljk}) = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 & -a & 0 & 0 \\ 0 & -a & 0 & a & 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 16/3 & 0 & -16/3 & 0 \\ 0 & 0 & -16/3 & 0 & 0 & 16/3 & 0 & 0 & 16/3 & 0 \\ 0 & 16/3 & 0 & 0 & 0 & 0 & 0 & 0 \end{vmatrix}$$

$$\operatorname{Asym}(R_{ljk}) = \left\| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 0 & -a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 & 0 & -a & 0 & 0 \\ 0 & -a & 0 & a & 0 & 0 & 0 & 0 & 0 \end{array} \right\| = \left\| \begin{array}{ccc|c} 0 & 0 & 0 & 0 & 16/3 & 0 & -16/3 & 0 \\ 0 & 0 & -16/3 & 0 & 0 & 16/3 & 0 & 0 \\ 0 & 16/3 & 0 & -16/3 & 0 & 0 & 0 \end{array} \right\|$$
 Тогда $D_l \wedge B_j \wedge C_k = 3 \operatorname{Asym}(R_{ljk}) = \left[\left\| \begin{array}{ccc|c} 0 & 0 & 0 & 16 & 0 & -16 & 0 \\ 0 & 0 & -16 & 0 & 0 & 16 & 0 & 0 \\ 0 & 16 & 0 & -16 & 0 & 0 & 0 \end{array} \right] = C_k \wedge D_l \wedge B_j = B_j \wedge C_k \wedge D_l$

$$B_j \wedge D_l \wedge C_k = C_k \wedge B_j \wedge D_l = D_l \wedge C_k \wedge B_j = -D_l \wedge B_j \wedge C_k = \begin{bmatrix} & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 3 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & -3 & 0 & 0 \\ 0 & -3 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Шаг 3. $A \wedge B \wedge C \wedge D$

Представим $A \wedge B \wedge C \wedge D$ как $(A \wedge B \wedge C) \wedge D$, где $A \wedge B \wedge C$ было вычислено на предыдущем шаге.

$$A_i \wedge B_j \wedge C_k \wedge D_l = O_{ijk} \wedge D_l = \frac{4!}{1! \, 3!} \operatorname{Asym}(O_{ijk} \otimes D_l) = 4 \operatorname{Asym}(O_{ijk} \otimes D_l)$$

Вычислим $O_{ijk} \otimes D_l$:

Теперь найдём $Asym(U_{ijkl})$:

При антисимметризации ненулевыми сохранятся только те элементы, у которых $i \neq j \neq k \neq l$. Такое возможно, только если $i=1,\ j=2,\ k=3,\ l=4,$ что невозможно в линейном пространстве $\mathbb{R}^3 \Rightarrow$ всегда найдётся элемент, у которого хотя бы пара индексов совпадает \Rightarrow весь антисимметрированный тензор — нулевой.