FÍSICA

1ª SÉRIE

MOMENTUM E CONSERVAÇÃO

AULA 21

QUANTIDADE DE MOVIMENTO

O início do movimento é gerado pela interação entre dois corpos (aplicação de uma força). Agora, vamos estudar uma grandeza chamada de **quantidade de movimento** (Q), também conhecida como *momentum* ou **momento linear**, adquirida após o início do

movimento.

Imagine que dois fragmentos de rocha rolaram de um penhasco com uma mesma velocidade. Qual deles seria mais difícil de ser parado?

QUANTIDADE DE MOVIMENTO

No exemplo dos fragmentos de rocha, aquele com maior massa adquire maior quantidade de movimento. Por isso, o maior fragmento seria mais difícil de parar. Caso tivessem a mesma massa, mas velocidades diferentes, o fragmento mais rápido, ou seja, com maior velocidade, seria necessário mais força para freá-lo.

QUANTIDADE DE MOVIMENTO

A quantidade de movimento é uma grandeza vetorial definida como o produto da massa de um corpo (m) pela sua velocidade (v). Ela é representada matematicamente como:

Em cada uma das cenas, a moto e o caminhão de Indiana Jones estavam à mesma velocidade. Nessa condição, o momentum da moto é maior, menor ou igual em relação a um caminhão? Justifique.

É menor, em relação ao caminhão. Embora tenha a mesma velocidade do caminhão, a moto possui menor massa.

O momentum, ou então, a quantidade de movimento, é uma grandeza composta pela velocidade e, também, pela massa de um corpo.

PRATICANDO 3

Em mais uma aventura, Jones cavalga em seu cavalo com velocidade de 5 m/s. Considerando que juntos totalizam uma massa de 180 kg, qual a quantidade de movimento nessa situação?

Com os dados da questão, podemos aplicar a expressão:

$$\vec{Q} = m \cdot \vec{v}$$

$$\vec{Q} = 180 \cdot 5$$

$$\vec{Q} = 900 \ kg \cdot m/s$$

MOMENTUM E O PRINCÍPIO DE CONSERVAÇÃO

Para entender como se dá essa conservação do movimento, partiremos das interações (entre o taco e a bola e entre uma bola e outra) no jogo de sinuca. Como o atrito é muito baixo, o desprezamos (força resultante zero), para idealizar a mesa um **sistema isolado.**

Um sistema é considerado isolado quando não recebe forças externas (ou resultante delas é zero) e, assim, o momentum se conserva, ou seja, assume valores iguais antes e depois de uma colisão: $\vec{Q}_{antes} = \vec{Q}_{depois}$

Temos aqui, um dos mais importantes princípios da Física, que chamamos de **Princípio de Conservação da Quantidade de Movimento.**

PRATICANDO 4

MOMENTUM E O PRINCÍPIO DE CONSERVAÇÃO

Em um jogo de sinuca, uma bola branca, com massa 0,5 kg e velocidade de 2 m/s, choca-se com uma bola vermelha de mesma massa. Na colisão, a bola branca parou, todavia, a bola vermelha inicia o movimento até uma das bocas da mesa. Qual a velocidade da bola vermelha?

Como o sistema pode ser considerado isolado, o momentum se conserva, antes e depois da colisão. Portanto:

$$\vec{Q}_{vermelha} = \vec{Q}_{branca}$$

$$\vec{Q}_{vermelha} = m \cdot v$$

$$\vec{Q}_{vermelha} = 0.5 \cdot 2$$

Exercícios de colisões

FAG - Questão 23 - Medicina 2022:

Dois carros de mesma massa sofrem uma colisão frontal. Imediatamente, antes da colisão, o primeiro carro viajava a 72 km/h no sentido norte de uma estrada retilínea, enquanto o segundo carro viajava na contramão da mesma estrada com velocidade igual a 36 km/h, no sentido sul. Considere que a colisão foi perfeitamente inelástica. Qual é a velocidade final dos carros imediatamente após essa colisão?

Exercícios de colisões – Resolução

Vamos adotar o sentido norte como sendo positivo.

Convertendo as velocidade, obtemos

72 km/h = 20 m/s = 36 km/h = 10 m/s.

Conservação da quantidade de movimento (Q):

$$\begin{split} \vec{Q}_{\rm antes} &= \vec{Q}_{\rm depois} \\ m \cdot 20 + m(-10) &= (m+m) \cdot v_f \\ 20m - 10m &= 2mv_f \\ 10m &= 2mv_f \\ v_f &= \frac{10}{2} = 5\,\mathrm{m/s} \quad \text{Como v > 0, o sentido} \\ &\quad \text{\'e norte.} \end{split}$$