ABSTRACT

SEARCH FOR CHARGED HIGGS BOSONS IN THE $\tau + \ell$ FINAL STATE WITH $36.1~{\rm fb^{-1}OF~pp}$ COLLISION DATA AT $\sqrt{s} = 13$ WITH THE ATLAS EXPERIMENT

Elliot Wesley Parrish, Ph.D.

Department of Physics

Northern Illinois University, 2022

Dhiman Chakraborty and Jahred Adelman, Director

This dissertation uses 139 fb⁻¹of pp collision data collected at a center of mass energy of $\sqrt{s}=13$ by the ATLAS detector to search for charged Higgs bosons decaying to a tau lepton and a neutrino () in association with a leptonically decaying top quark. No significant excess was found, therefore limits are set at the 95% confidence level on the charged Higgs production cross section times the branching fraction into the $\tau^{\pm}\nu_{\tau}$ ranging from XX pb to XX fb. These limits are interpreted in the hMSSM benchmark scenario as an exclusion at 95% confidence on tan β as a function of . In this scenario, for tan $\beta=60$, the H^+ mass range up to XXXXGeV is excluded, with all values of tan β excluded for $\leq XXXGeV$

NORTHERN ILLINOIS UNIVERSITY DE KALB, ILLINOIS

DECEMBER 2022

SEARCH FOR CHARGED HIGGS BOSONS IN THE $\tau + \ell$ FINAL STATE WITH 36.1 fb⁻¹OF pp COLLISION DATA AT $\sqrt{s} = 13$ WITH THE ATLAS EXPERIMENT

BY

ELLIOT WESLEY PARRISH
© 2022 Elliot Wesley Parrish

A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

Dissertation Director:

Dhiman Chakraborty and Jahred Adelman

ACKNOWLEDGEMENTS

DEDICATION

To Dr. Dhiman Chakraborty. Thank you for everything.

TABLE OF CONTENTS

						Page
Li	st of	Tables		 	 	vii
Li	st of	Figures	5	 	 	viii
\mathbf{C}	hapte	r				
1	Intro	oductio	on	 	 	1
2	The	ory		 	 	2
	2.1	The S	Standard Model	 	 	2
		2.1.1	Particles	 	 	2
			2.1.1.1 Fermions	 	 	3
			2.1.1.2 Bosons	 	 	4
		2.1.2	Interactions	 	 	4
			2.1.2.1 Quantum Electrodynamics	 	 	5
			2.1.2.2 ElectroWeak Interaction	 	 	5
			2.1.2.3 Quantum Chromodynamics	 	 	6
		2.1.3	The Higgs Mechanism	 	 	7
	2.2	Supers	symmetry	 	 	9
		2.2.1	MSMM Particles	 	 	10
		2.2.2	2 Higgs Doublet Model	 	 	11
	2.3	Charg	ged Higgs Bosons	 	 	12
		231	Previous Result			13

Cl	napte	r			Page
3	The	LHC a	and ATLA	S Experiment	. 19
	3.1	The L	arge Had	ron Collider	. 19
	3.2	The A	TLAS De	etector	. 19
		3.2.1	Inner De	etector	. 19
			3.2.1.1	Pixel	. 19
			3.2.1.2	Semiconductor Tracker	. 20
			3.2.1.3	Transition Radiation Tracker	. 20
		3.2.2	Calorim	eters	. 20
			3.2.2.1	Liquid Argon Electromagnetic Calorimeter	. 20
			3.2.2.2	Tile Hadronic Calorimeter	. 20
		3.2.3	Muon S	ystem	. 20
			3.2.3.1	Monitored Drift Tubes	. 21
			3.2.3.2	Cathode Strip Chambers	. 21
			3.2.3.3	Resistive Plate Chambers	. 21
			3.2.3.4	Thin Gap Chambers	. 21
		3.2.4	Magnet	Systems	. 21
			3.2.4.1	Solenoid Magnet	. 21
			3.2.4.2	Toroid Magnet	. 22
4	Eve	nt Reco	nstruction	n	. 23
	4.1	Trigge	er		. 23
	4.2	Inner	Detector		. 23
	4.3	Calori	meters		. 23
	4.4	Muon			. 23
	4.5	e γ			. 23

Cł	naptei	ſ		Page
	4.6	Jets .		. 23
		4.6.1	Flavor Tagging	. 23
		4.6.2	au	. 23
	4.7	$E_{\mathrm{T}}^{\mathrm{miss}}$. 23
5	Sear	ch for (Charged Higgs Bosons	. 24
	5.1	Signat	ture and Event Selection	. 24
		5.1.1	Object Definitions	. 24
		5.1.2	Event Selections	. 24
	5.2	Datase	ets	. 24
		5.2.1	Signal Modeling	. 24
	5.3	Backg	round Modeling	. 25
	5.4	Analys	sis Strategy	. 25
		5.4.1	Multivariate Analysis Techniques	. 25
		5.4.2	Training	. 25
		5.4.3	Feature Selection	. 25
		5.4.4	Hyperparameter Optimization	. 25
	5.5	System	natic Uncertainties	. 26
	5.6	Result	SS	. 26
6	Con	clusion		27

LIST OF TABLES

Table		Page
2.1	Standard Model fermions and their properties [1]	3
2.2	Standard Model bosons and their properties [1]	4
2.3	Standard Model fermions and their ElectroWeak properties [1]	6
2.4	SM particles and their MSSM partners [1]	11
2.5	2HDM extended Higgs sector [6]	12

LIST OF FIGURES

Figure		Page
2.1	The Higgs potential defined in 2.2 with $\mu^2 < 0$ [4]	7
2.2	The distributions of the invariant mass of diphoton candidates after all selections for the combined 7 TeV and 8 TeV data sample. The inclusive sample is shown in (a) and a weighted version of the same sample in (c); the weights are explained in the text. The result of a fit to the data of the sum of a signal component fixed to $m_H = 126.5$ GeV and a background component described by a fourth-order Bernstein polynomial is superimposed. The residuals of the data and weighted data with respect to the respective fitted background component are displayed in (b) and (d)	14
2.3	Examples of leading-order Feynman diagrams contributing to the production of charged Higgs bosons in pp collisions: (a) non-resonant top-quark production, (b) single-resonant top-quark production that dominates at large H^{\pm} masses, (c) double-resonant top-quark production that dominates at low H^{\pm} masses. The interference between these three main diagrams becomes most relevant in the intermediate-mass region	15
2.4	Cross section of H^{\pm} at various $\tan \beta$ values	15
2.5	Branching ratios of H^{\pm} for (a) $\tan \beta = 10$ and (b) $\tan \beta = 50$ [7]	16
2.6	Limits on $\sigma(pp \to tbH^{\pm}xB(H^{\pm} \to \tau^{\pm}\nu))[pb]$. (a) is for the τ +jets subchannel (b) corresponds to the τ + ℓ subchannel and (c) is the combination of the two subchannels. [8]	17
2.7	Limits on $\tan \beta$ as a function of $m_{H^{\pm}}$. [8]	18

CHAPTER 1 INTRODUCTION

CHAPTER 2

THEORY

In this chapter, the theoretical motivation of a search for $H^{\pm} \to \tau^{\pm}\nu_{\tau}$ is described. Firstly, a review of the Standard Model of particle physics (SM) is laid out, then a brief overview of Supersymmetry focusing on the Minimal Supersymmetric Standard Model (MSSM). Finally, the Type II 2-Higgs Doublet Model's (2HDM) relation to the H^{\pm} production cross section and subsequent branching ratio into SM particles is described as motivation for the choice of studying $H^{\pm} \to \tau^{\pm}\nu_{\tau}$.

2.1 The Standard Model

The Standard Model of particle physics is a quantum field theory that describes all known matter and forces. The Standard Model is built upon a gauge group of type $SU(3)_C \times SU(2)_L \times U(1)_Y$. The $SU(3)_C$ term dictates the strong interaction while the $SU(2)_L \times U(1)_Y$ term describes the electroweak interaction. These interactions occur between fundamental particles called fermions that comprise the known matter of the universe. The interactions, or forces, are mediated by fundamental particles called bosons.

2.1.1 Particles

The particles that make up the Standard Model are separated into two groups according to their intrinsic angular momentum charge, or spin. Fermions are those that carry half-integer spin, and thus obey Fermi-Dirac statistics, while Bosons carry full integer spin values and obey Bose-Einstein statistics.

2.1.1.1 Fermions

The matter we encounter in everyday life is comprised of fermions. Fermions are subdivided into two groups, quarks and leptons. The quarks participate in the strong interaction via their color charge. Quarks cannot exist as a singular particle and thus combine into hadrons in a process called hadronization; the bound states they form are colorless. Leptons carry no color charge and therefore do not participate in strong force interactions. The fermions in the standard model all participate in the electroweak interaction. However, the electromagnetic interaction is limited to those fermions that carry an electromagnetic charge.

Fermions can then be further divided into three generations, each lepton has an electrically neutral weak force partner in the form of a neutrino. Table 2.1 lists all the SM fermions and their properties.

Table 2.1: Standard Model fermions and their properties [1]

	$\frac{1^{st}}{\text{Generation}}$	$\frac{2^{nd}}{\text{Generation}}$	3^{rd} Generation	Spin	EM Charge	Color	Mass
Quarks	Up (u)	Charm (c)	Top (t)	$\frac{1}{2}$	$+\frac{2}{3}$	√	$m_u = 2.3^{+0.7}_{-0.5} \text{ MeV}$ $m_c = 1.275 \pm 0.025 \text{ M}$ $m_t = 173.2 \pm 0.7 \text{ Ge}$
	Down (d)	Strange (s)	Bottom (b)	$\frac{1}{2}$	$-\frac{1}{3}$	√	$m_d = 4.8^{+0.5}_{-0.3} \text{ MeV}$ $m_s = 95 \pm 5 \text{ MeV}$ $m_b = 4.18 \pm 0.03 \text{ Ge}$
Leptons	Electron (e^-)	Muon (μ^-)	Tau (τ^-)	$\frac{1}{2}$	-1	X	$m_{e^-} = 511 \text{ keV}$ $m_{\mu^-} = 105.7 \text{ MeV}$ $m_{\tau^-} = 1.8 \text{ GeV}$
	Electron Neutrino (ν_e)	$\begin{array}{c} \text{Muon} \\ \text{Neutrino} \end{array} (\nu_{\mu})$	Tau Neutrino (ν_{τ})	$\frac{1}{2}$	0	X	$m_{\nu_e} < 1.1 \text{ eV} \ m_{\nu_{\mu}} < 0.19 \text{ MeV} \ m_{\nu_{\tau}} < 18.2 \text{ MeV}$

Check these numbers with current PDG

2.1.1.2 Bosons

Bosons are colloquially referred to as force-carriers in that the fundamental forces act via an exchanging gauge bosons. This means that each force has an associated boson which is described by a field theory. The ElectroWeak quantum field theory (QFT) is more complicated, and is described in detail in section 2.1.2.2. Table 2.2 lists the SM bosons ¹, their associated field theory and properties.

Table 2.2: Standard Model bosons and their properties [1]

Field Theory	Boson	Spin	EM Charge	Color	Mass
Quantum Chromodynamics (QCD)	Gluon (g)	1	0	✓	0
Quantum Electrodynamics (QED)	Photon (γ)	1	0	X	$< 1 \times 10^{-18} \text{ eV}$
ElectroWeak Theory	W^{\pm}	1	±1	X	$80.377 \pm 0.012 \text{ GeV}$
Electioweak Theory	Z^0	1	0	X	$91.1876 \pm 0.0021 \text{ GeV}$

2.1.2 Interactions

At its core, the SM relies upon symmetries. From these symmetries, conservation laws follow. It is these laws of conservation, and the breaking of said symmetries, that dictate the allowed interactions of matter. The first, being a symmetry under charge conjugation, mirror reflection, and time reversal is known as CPT symmetry. The symmetry between charge conjugation and mirror reflection (CP) can be broken in certain circumstances, but holds in strong and electromagnetic interactions. This breaking of CP symmetry occurs in

 $^{^{1}}$ excluding the Higgs

the weak interaction and implies a non-symmetry between matter and antimatter. Since this symmetry holds for strong and electromagnetic interactions, baryon number $(B = \frac{1}{3}(n_q - n_{\bar{q}}))$ and lepton number are conserved in SM interactions. Lepton generation number 2 , electric charge, color charge, 4-momentum $(p = (E, \vec{p}))$, and angular momentum are all conserved in the SM.

2.1.2.1 Quantum Electrodynamics

The electromagnetic force is governed by the QFT known as Quantum Electrodynamics (QED). This force is mediated by the photon, γ , a massless boson with EM charge 0. The EM force only affects, i.e. the photon only interacts with, charged particles; including all quarks and the e, μ , and τ leptons. Antiparticles are those that carry the opposite EM charge from their normal counterparts and differ in no other way.

2.1.2.2 ElectroWeak Interaction

The weak force is mediated by the W^{\pm} and Z^0 bosons. Due to the relatively large mass of these bosons, the weak force has a very limited range. The W^{pm} affects the third component of isospin (T_3) , thus only coupling to so called left-handed fermions. This "handedness", or chirality, is a property similar to color charge, in that an individual particle can have a number of different values. Table 2.3 contains the allowed values for isospin (T) and hypercharge (Y_W) .

The W^{\pm} bosons have a T_3 component of isospin and act as raising or lowering operators on the T_3 component of left handed fermions. The Z does not have a T_3 component, and

²Ignoring neutrino oscillations

	1^{st} Generation	$\frac{2^{nd}}{\text{Generation}}$	3^{rd} Generation	EM Charge	Y_W		r	Γ	7	3
					LH	RH	LH	RH	LH	RH
	Up (u)	Charm (c)	Top (t)	$+\frac{2}{3}$	$+\frac{1}{3}$	$+\frac{4}{3}$	$\frac{1}{2}$	0	$\pm \frac{1}{2}$	0
Quarks	Down (d)	Strange (s)	Bottom (b)	$-\frac{1}{3}$	$+\frac{1}{3}$	$-\frac{2}{3}$	$\frac{1}{2}$	0	$\pm \frac{1}{2}$	0
т ,	Electron (e^-)	Muon (μ^-)	Tau (τ^-)	-1	-1	0	$\frac{1}{2}$	0	$\pm \frac{1}{2}$	0
Leptons	Electron Neutrino (ν_e)	$\begin{array}{c} \text{Muon} \\ \text{Neutrino} \end{array} (\nu_{\mu})$	Tau Neutrino (ν_{τ})	0	-1	-2	$\frac{1}{2}$	0	$\pm \frac{1}{2}$	0

Table 2.3: Standard Model fermions and their ElectroWeak properties [1]

thus does not act on isospin of fermions. However, the Z boson instead transfers momentum, energy, and spin on all fermions irregardless of their chirality. At energies > 100 GeV the electromagnetic and weak forces combine into the electroweak force. In fact, isospin and hypercharge combine to give electromagnetic charge. $Q_{EM} = T_3 + \frac{1}{2}Y_W$

2.1.2.3 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the QFT that describes the strong force that holds together atomic nuclei and other objects called hadrons. The strong force interacts via the color charge ³ which can have values of either red, green, or blue. Particles that have a color charge cannot exist on their own, they must form colorless bound states called hadrons. Since the strong force grows with distance, if a quark is ejected out from a hadron, the stored energy is such that new particles with color charge will be spontaneously created from the vacuum, binding with the free quark in a process called hadronization. In a particle detector, the hadronization process cascades and creates showers of energy that are reconstructed as so called jets.

³This color does is not the visual color we are used to. Merely an convenient analogous naming scheme.

2.1.3 The Higgs Mechanism

The Higgs field was first theorized by Peter Higgs [2], François Englert, and Robert Brout [3] in 1964. The SM itself has four massless Goldstone bosons that do not correspond to the observed bosons. Instead, the Higgs mechanism couples to them via a complex scalar doublet.

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \tag{2.1}$$

The scalar potential that gives rise to this phenomena can be written as

$$V(\phi) = \mu^2 |\phi^{\dagger}\phi| + \lambda(|\phi^{\dagger}\phi|)^2 \tag{2.2}$$

When $\mu^2 > 0$ and $\lambda > 0$ the minimum of the potential $V(\phi)$ is 0. However, when $\mu^2 < 0$,

Figure 2.1: The Higgs potential defined in 2.2 with $\mu^2 < 0$ [4]

the scalar potential $V(\phi)$ takes the shape shown in figure 2.1 It follows that the vacuum expectation value (VEV) of ϕ is then

$$\langle \phi \rangle = \sqrt{\frac{-\mu^2}{2\lambda}} = \frac{\nu}{\sqrt{2}} \tag{2.3}$$

From here, convention states that we choose an arbitrary direction of the fluctuation as

$$\phi^0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu \end{pmatrix} \tag{2.4}$$

By choosing these values, SU(2) and $U(1)_Y$ symmetries are broken, the Goldstone bosons are "eaten" and we are left with the remaining degree of freedom being the real scalar field h(x)

$$\phi(x) = \phi^0 + h(x) \tag{2.5}$$

Substituting in our definition of ϕ^0 , we get

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \nu + h(x) \end{pmatrix} \tag{2.6}$$

and our coupling becomes

$$\left(\frac{1}{2}g\vec{\sigma}\cdot\vec{W} + \frac{1}{2}g'B\right)\phi^0\tag{2.7}$$

, where $\vec{\sigma}$ are the Pauli matrices, \vec{W} are $W_{1,2,3}$, g is the weak coupling constant, and g' is the hypercharge coupling constant. From this coupling, we get the four eigenstates that correspond to the observed bosons

$$W^{\pm} = \frac{1}{\sqrt{2}} (W_{\mu}^{1} \mp iW_{\mu}^{2})$$

$$Z^{\mu} = \frac{-g'B_{\mu} + gW_{\mu}^{3}}{\sqrt{g^{2} + g'^{2}}}$$

$$A^{\mu} = \frac{gB_{\mu} + g'W_{\mu}^{3}}{\sqrt{g^{2} + g'^{2}}}$$
(2.8)

These eigenstates have corresponding mass values of

$$M_W^2 = \frac{1}{4}g^2\nu^2$$

$$M_Z^2 = \frac{1}{4}(g^2 + g\prime^2)\nu$$
 (2.9)
$$M_A^2 = 0$$

The eigenstate labeled here as A is the photon. The Higgs field is the mass generator of the SM. The Higgs boson was discovered in 2012 by the ATLAS and CMS collaborations at CERN with a mass of 125 GeV [5]. The scalar boson that was found appears to be the SM Higgs Boson.

2.2 Supersymmetry

While the Standard Model is describes a wide range of physics to a high degree of accuracy, it is not without issues. To name a few, gravity, dark matter, and the observed matter-antimatter asymmetry of the universe are not defined by the SM. In addition, the SM

defines the mass of neutrinos to be 0. However, because neutrino mixing is observed, where $\nu_e \to \nu_\mu$ is seen, neutrinos must have mass.

One promising model that offers solutions to many of these issues is Supersymmetry (SUSY). As discussed previously, the SM is built upon symmetries, and the breaking of these symmetries gives us electroweak unification. SUSY proposes another symmetry, this time between fermions and bosons.

$$Q|Fermion\rangle = |Boson\rangle,$$

 $Q|Boson\rangle = |Fermion\rangle$ (2.10)

Equation 2.10 shows how the SUSY operator Q acts on particles. SUSY naturally offers solutions to the "hierarchy problem" with the SM.

The hierarchy problem arises from the difference in electroweak ($M_W \sim 100 \text{ GeV}$) and Planck ($M_P \sim 2.4 \times 10^{18} \text{ GeV}$) mass scales. For the Higgs mass to be on the scale of $M_H \sim 125$ GeV incredibly large and small mass terms must cancel perfectly, leading to a feeling of "unnaturalness". SUSY brings many new particles into the picture, theorized to occupy the intermediate mass range leading to a more natural theory.

2.2.1 MSMM Particles

SUSY is a large group of theories, including many additional superpartner particles. The Minimal Supersymmetric Standard Model (MSSM) is the smallest extension of the SM that introduces SUSY. In the MSSM, each SM particle is part of a supermultiplet with it's superpartner where both particles have the same quantum numbers, except spin. If this supersymmetry is unbroken, then the superpartner and the SM particle would have the same

mass as well. However, SUSY has not been observed, so the supersymmetry must be broken putting the mass scale on the TeV scale.

Table 2.4: SM particles and their MSSM partners [1]

Name	SM	MSSM
Spin- $\frac{1}{2}$ quarks and	spin-0 squ	arks
(s)up	u	\tilde{u}
(s)down	d	$ ilde{d}$
(s)charm	c	$ ilde{c}$
(s)strange	s	$ ilde{s}$
(s)top	t	$ ilde{t}$
(s)bottom	b	$ ilde{b}$
Spin- $\frac{1}{2}$ leptons and	spin-0 slep	otons
(s)electron	е	$ ilde{e}$
(s)electron (s)neutrino	ν_e	$egin{array}{c} \widetilde{ u}_e \\ \widetilde{\mu} \\ \widetilde{ u}_{\widetilde{\mu}} \\ \widetilde{\tau} \end{array}$
(s)muon	μ	$ ilde{\mu}$
(s)muon (s)neutrino	$ u_{\mu}$	$\widetilde{ u_{\mu}}$
(s)tau	au	
(s)tau (s)neutrino	$ u_{ au}$	$\widetilde{ u_{ au}}$
Spin-0 Higgs and s	$spin-\frac{1}{2} Higgs$	sinos
Higgs(ino)	Н	$ ilde{H}$
gluon (gluino)	g	\widetilde{g}
W (Wino)	W^{\pm}, W^0	$\widetilde{W^{\pm}},\widetilde{W^0}$
B (Bino)	B^0	$\widetilde{B^0}$

Table 2.4 lists the MSSM supermultiplets and the associated naming conventions.

2.2.2 2 Higgs Doublet Model

Having only one Higgs chiral supermultiplet with hypercharge $Y_W = \pm \frac{1}{2}$ leads to a gauge anomaly. This can be resolved by introducing two Higgs doublets with hypercharge $Y_W = \frac{1}{2}$ and $Y_W = -\frac{1}{2}$. Such is the case with the MSSM which requires two complex doublet scalar

fields where one couples to the up-type quarks and the other couples to down-type quarks and charged leptons. At this point, the MSSM has 8 degrees of freedom. Following the same type of symmetry breaking described in subsection 2.1.3 Three of these degrees of freedom give the observed W^{\pm} and Z^0 bosons. This leaves us with the extended Higgs sector shown

Table 2.5: 2HDM extended Higgs sector [6]

light neutral scalar	h^0
heavy neutral scalar	H^0
neutral pseudoscalar	A^0
two charged scalars	H^{\pm}

in table 2.5, where the h^0 is the SM-like Higgs that was discovered by ATLAS and CMS in 2012. When referring to the charged Higgs bosons, we often refer to them using one symbol H^{\pm} . In the 2HDM we have two free parameters⁴, the masses of the H^{\pm} and the ratio of their vacuum expectation values which is defined as $\tan \beta$.

2.3 Charged Higgs Bosons

Since the H^{\pm} couplings are proportional to the fermion masses, the main production modes at the LHC are through $t\bar{t}$ and Wt diagrams where the W is replaced by a H^{\pm} . The production diagrams considered in this dissertation can be seen in figure 2.3. The cross section at various $\tan \beta$ values can be seen as a function of $m_{H^{\pm}}$ in figure 2.4. As $\tan \beta$ goes to smaller values the H^{\pm} cross section become smaller and at very small values the top Yukawa couplings become non-perturbative, meaning they are highly unlikely to occur. In this dissertation the decay channel considered is $H^{\pm} \to \tau^{\pm} \nu_{\tau}$. As can be seen in figure 2.5, the $H^{\pm} \to \tau^{\pm} \nu_{\tau}$ decay channel is especially relevant at low $m_{H^{\pm}}$ and high $\tan \beta$. The

⁴Only regarding the charged Higgs bosons

search described in this dissertation consists of two sub-channels, τ +jets and τ + ℓ , where the associated top decays either hadronically or leptonically respectively.

2.3.1 Previous Result

To add context to this dissertation, it is important to reference the results of the previous iteration of the search discussed in this dissertation. The ATLAS collaboration published a paper in 2018 covering the data taking years of 2015 and 2016 [8], whereas this dissertation covers the full Run-2 (2015-2018) dataset. Figure 2.6 shows the limits on the cross section and figure 2.7 shows the limits on $\tan \beta$ as a function of $m_{H^{\pm}}$.

The previous iteration of this analysis used boosted decision trees (BDT) binned in $m_{H^{\pm}}$, giving them five separate classifiers to cover the mass range of 90 – 2000 GeV. The mass bins can be seen as the blue dotted lines in Figure 2.6c. It is important to note the inclusion of the mass range 90 – 200 GeV, as [8] was the first search to include this mass region below the top quark mass of 175 GeV.

Figure 2.2: The distributions of the invariant mass of diphoton candidates after all selections for the combined 7 TeV and 8 TeV data sample. The inclusive sample is shown in (a) and a weighted version of the same sample in (c); the weights are explained in the text. The result of a fit to the data of the sum of a signal component fixed to $m_H = 126.5$ GeV and a background component described by a fourth-order Bernstein polynomial is superimposed. The residuals of the data and weighted data with respect to the respective fitted background component are displayed in (b) and (d).

Figure 2.3: Examples of leading-order Feynman diagrams contributing to the production of charged Higgs bosons in pp collisions: (a) non-resonant top-quark production, (b) single-resonant top-quark production that dominates at large H^{\pm} masses, (c) double-resonant top-quark production that dominates at low H^{\pm} masses. The interference between these three main diagrams becomes most relevant in the intermediate-mass region.

Figure 2.4: Cross section of H^{\pm} at various tan β values.

Figure 2.5: Branching ratios of H^{\pm} for (a) $\tan\beta=10$ and (b) $\tan\beta=50$ [7]

Figure 2.6: Limits on $\sigma(pp \to tbH^{\pm}xB(H^{\pm} \to \tau^{\pm}\nu))[pb]$. (a) is for the τ +jets subchannel (b) corresponds to the τ + ℓ subchannel and (c) is the combination of the two subchannels. [8]

Figure 2.7: Limits on tan β as a function of $m_{H^{\pm}}$. [8]

CHAPTER 3

THE LHC AND ATLAS EXPERIMENT

3.1 The Large Hadron Collider

In order to study the Standard Model, the Higgs boson, and hints of new physics, the Large Hadron Collider (LHC) was built outside of Geneva, Switzerland. At 27 km in circumference with a center of mass energy of 13.6 TeV, the LHC is the largest and highest energy particle accelerator ever built. It consists of NUM SECTORS magnet sectors split between dipole and quadrupole magnets.

3.2 The ATLAS Detector

NEEDS TO BE DONE [9]

3.2.1 Inner Detector

NEEDS TO BE DONE

3.2.1.1 Pixel

3.2.1.2 Semiconductor Tracker

NEEDS TO BE DONE

3.2.1.3 Transition Radiation Tracker

NEEDS TO BE DONE

3.2.2 Calorimeters

NEEDS TO BE DONE

3.2.2.1 Liquid Argon Electromagnetic Calorimeter

NEEDS TO BE DONE

3.2.2.2 Tile Hadronic Calorimeter

NEEDS TO BE DONE

3.2.3 Muon System

3.2.3.1 Monitored Drift Tubes

NEEDS TO BE DONE

3.2.3.2 Cathode Strip Chambers

NEEDS TO BE DONE

3.2.3.3 Resistive Plate Chambers

NEEDS TO BE DONE

3.2.3.4 Thin Gap Chambers

NEEDS TO BE DONE

3.2.4 Magnet Systems

NEEDS TO BE DONE

3.2.4.1 Solenoid Magnet

3.2.4.2 Toroid Magnet

CHAPTER 4 EVENT RECONSTRUCTION

- 4.1 Trigger
- 4.2 Inner Detector
 - 4.3 Calorimeters
 - 4.4 Muon
 - 4.5 e γ
 - **4.6** Jets
- 4.6.1 Flavor Tagging
 - 4.6.2 $\underline{\tau}$
 - 4.7 $E_{\mathbf{T}}^{\mathbf{miss}}$

${\it CHAPTER~5}$ SEARCH FOR CHARGED HIGGS BOSONS

5.1 Signature and Event Selection

NEEDS TO BE DONE

5.1.1 Object Definitions

NEEDS TO BE DONE

5.1.2 Event Selections

NEEDS TO BE DONE

5.2 Datasets

NEEDS TO BE DONE

5.2.1 Signal Modeling

5.3 Background Modeling

NEEDS TO BE DONE

5.4 Analysis Strategy

NEEDS TO BE DONE

5.4.1 Multivariate Analysis Techniques

NEEDS TO BE DONE

5.4.2 Training

NEEDS TO BE DONE

5.4.3 Feature Selection

NEEDS TO BE DONE

5.4.4 Hyperparameter Optimization

5.5 Systematic Uncertainties

NEEDS TO BE DONE

5.6 Results

CHAPTER 6 CONCLUSION

Appendices

- R. L. Workman et al. "Review of Particle Physics". PTEP 2022 (2022), p. 083C01.
 DOI: 10.1093/ptep/ptac097.
- [2] P. W. Higgs. "Broken Symmetries and the Masses of Gauge Bosons". Phys. Rev. Lett. 13 (16 Oct. 1964), pp. 508-509. DOI: 10.1103/PhysRevLett.13.508. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.508.
- [3] F. Englert and R. Brout. "Broken Symmetry and the Mass of Gauge Vector Mesons".

 Phys. Rev. Lett. 13 (9 Aug. 1964), pp. 321–323. DOI: 10.1103/PhysRevLett.13.321.

 URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.321.
- [4] J. Ellis. "Higgs Physics" (Dec. 2013). 52 pages, 45 figures, Lectures presented at the ESHEP 2013 School of High-Energy Physics, to appear as part of the proceedings in a CERN Yellow Report, 117–168. 52 p. DOI: 10.5170/CERN-2015-004.117. arXiv: 1312.5672. URL: https://cds.cern.ch/record/1638469.
- [5] G. A. et al. "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC". *Physics Letters B* 716.1 (2012), pp. 1–29.
- [6] G. Branco et al. "Theory and phenomenology of two-Higgs-doublet models". Physics Reports 516.1-2 (July 2012), pp. 1-102. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2012.02.002. URL: http://dx.doi.org/10.1016/j.physrep.2012.02.002.
- [7] J. R. Andersen et al. "Handbook of LHC Higgs Cross Sections: 3. Higgs Properties" (2013). Ed. by S. Heinemeyer et al. DOI: 10.5170/CERN-2013-004. arXiv: 1307.1347 [hep-ph].
- [8] M. Aaboud et al. "Search for charged Higgs bosons decaying via $H^{\pm} \to \tau^{\pm} \nu_{\tau}$ in the τ +jets and τ +lepton final states with 36 fb⁻¹ of pp collision data recorded at $\sqrt{s} = 13$

TeV with the ATLAS experiment". JHEP 09 (2018), p. 139.

DOI: 10.1007/JHEP09(2018)139. arXiv: 1807.07915 [hep-ex].

[9] The ATLAS Collaboration.

"The ATLAS Experiment at the CERN Large Hadron Collider".

Journal of Instrumentation 3.08 (Aug. 2008), S08003–S08003.

DOI: 10.1088/1748-0221/3/08/s08003.

URL: https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003.