Write your name here		
Surname	Other na	ames
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidi Unit 1: The Core Pr	ary	nistry
Thursday 13 January 201 Time: 1 hour 30 minute	•	Paper Reference 6CH01/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

- 1 The compound butane has
 - \square **A** the empirical formula C_4H_{10} and the molecular formula C_2H_5 .
 - \blacksquare **B** the empirical formula C_2H_5 and the molecular formula C_4H_{10} .
 - \square C the empirical formula C_2H_5 and the molecular formula C_nH_{2n+2} .
 - \square **D** the empirical formula C_nH_{2n+2} and the molecular formula C_4H_{10} .

(Total for Question 1 = 1 mark)

2 For the oxidation of ammonia

a NH₃ + b O₂
$$\rightarrow$$
 c NO + d H₂O

the values of the coefficients in the balanced equation are

$$\triangle$$
 A a = 2, b = 3, c = 2 and d = 3

$$\blacksquare$$
 B a = 4, b = 7, c = 4 and d = 4

$$\square$$
 C a = 4, b = 5, c = 4 and d = 6

$$\square$$
 D a = 6, b = 7, c = 6 and d = 9

(Total for Question 2 = 1 mark)

- 3 The Avogadro constant is $6.0 \times 10^{23} \text{ mol}^{-1}$. Therefore the number of **atoms** in 1 mol of carbon dioxide is
 - \triangle **A** 2.0 × 10²³
 - **B** 6.0×10^{23}
 - \bigcirc C 1.2 × 10²⁴
 - \square **D** 1.8 × 10²⁴

(Total for Question 3 = 1 mark)

4 The equation for the complete combustion of octane is

$$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$$

(a) The mass of 10 mol of octane is

(1)

- **■ A** 0.66 kg
- **B** 1.14 kg
- **☑ C** 2.10 kg
- **D** 2.28 kg
- (b) The volume of 1 mol of any gas (measured at room temperature and pressure) is 24 dm³. Hence the volume of oxygen (measured at room temperature and pressure) required for the complete combustion of 10 mol of octane is

(1)

- \triangle A 240 dm³
- \square **B** 300 dm³
- \square C 3000 dm³
- \square **D** 6000 dm³

(Total for Question 4 = 2 marks)

5 The enthalpy change for the reaction

$$CH_4(g) \rightarrow C(g) + 4H(g)$$

is +1648 kJ mol⁻¹. Hence the mean bond enthalpy for the C–H bond is

- **△ A** +329.6 kJ mol⁻¹
- **B** +412.0 kJ mol⁻¹
- **C** +1648 kJ mol⁻¹
- **□ D** +6592 kJ mol⁻¹

(Total for Question 5 = 1 mark)

The graph below represents the successive ionization energies of an element **X** plotted against the number of the electron removed. **X** is not the symbol for the element.

(a) From this graph it is possible to deduce the group in the Periodic Table to which ${\bf X}$ belongs. ${\bf X}$ is in

(1)

- A Group 1
- **B** Group 3
- C Group 5
- **D** Group 7
- (b) From the graph it is possible to deduce that the most stable ion of X will be

(1)

- \triangle **A** X^{3+}
- \square **B** X^+
- \square C X^-
- \square **D** X^{3-}

(Total for Question 6 = 2 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

	nt R is in Group 1 of the Periodic Table and element T is in Group 6. R and T the symbols for the elements.	
(a) Th	e compound of R and T will have the formula	(1)
\mathbf{X} A	RT	(1)
⊠ B	RT_6	
	RT_2	
⋈ D	R_2T	
(b) Th	e compound of R and T will have bonding which is predominantly	(1)
$\boxtimes A$	ionic.	
⊠ B	covalent.	
	dative covalent.	
⊠ D	metallic.	
(c) In	terms of its electrical conductivity, the compound of R and T will	(1)
	conduct when solid and liquid.	
\square B	conduct when solid but not when liquid.	
	conduct when liquid but not when solid.	
\square D	not conduct when solid or liquid.	
	(Total for Question 7 = 3 m	arks)
Use th	nis space for any rough working. Anything you write in this space will gain	no credit.

- 8 Ethane reacts with chlorine when the substances are exposed to UV radiation.
 - (a) The equation for this reaction is

(1)

- \square A $C_2H_6 + Cl_2 \rightarrow C_2H_5Cl + HCl$
- \square **B** $C_2H_6 + Cl_2 \rightarrow C_2H_4Cl_2 + H_2$
- \square C $C_2H_6 + Cl_2 \rightarrow 2CH_3Cl$
- \square **D** $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$
- (b) The role of the UV radiation in the reaction is to

(1)

- A break the Cl—Cl bond forming Cl• free radicals.
- B break the Cl—Cl bond forming Cl⁺ and Cl⁻ ions.
- ☑ C break the C—C bond in ethane forming CH₃• free radicals.
- \square **D** break a C—H bond in ethane forming C_2H_5 free radicals.
- (c) The overall reaction between ethane and chlorine is best described as

(1)

- **A** addition.
- **B** homolytic fission.
- C heterolytic fission.
- **D** substitution.

(Total for Question 8 = 3 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

9 This question concerns the following compounds

Which of these compounds will show geometric (E–Z or cis/trans) isomerism?

- \mathbf{X} A
- \square B
- \boxtimes C
- \boxtimes **D**

(Total for Question 9 = 1 mark)

10 The correct name for the compound shown below is

- **■ A** 2-methylbut-3-ene
- **■ B** 3-methylbut-2-ene
- C 3-methylbut-3-ene
- **D** 2-methylbut-2-ene

(Total for Question 10 = 1 mark)

- 11 Most compounds of lead are insoluble, an exception being lead(II) nitrate. Therefore a good method of preparing lead(II) sulfate is
 - A adding dilute sulfuric acid to lead metal.
 - **B** adding concentrated sulfuric acid to lead metal.
 - C adding dilute sulfuric acid to lead(II) nitrate solution.
 - **D** adding dilute sulfuric acid to solid lead(II) oxide.

(Total for Question 11 = 1 mark)

s usually have high melting temperatures and boiling temperatures because there
strong attractions between the ions.
strong attractions between the delocalised electrons.
strong attractions between the ions and the delocalised electrons.
strong intermolecular forces.
(Total for Question 12 = 1 mark)
06, the concentration of carbon dioxide in the atmosphere was 382 ppm. This is alent to
0.00382%
0.0382%
0.382%
3.82%
(Total for Question 13 = 1 mark)
ard that is particularly associated with alkanes is that they are
corrosive.
flammable.
toxic by inhalation.
toxic by skin absorption.
(Total for Question 14 = 1 mark)

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

15 The relative atomic mass of an element is determined using a mass spectrometer.

(a)	Define	the	term	relative	atomic	mass.
-----	--------	-----	------	----------	--------	-------

(2)

(b) The mass spectrum of rubidium is shown below.

(i) Explain why there are two peaks in the spectrum.

(1)

(ii) Use the spectrum to calculate the relative atomic mass of rubidium.

(2)

(Total for Question 15 = 5 marks)

16 (a)	Coral reefs	are produced by living organisms and predominantly made up of calcium
	carbonate.	It has been suggested that coral reefs will be damaged by global warming
	because of	the increased acidity of the oceans due to higher concentrations of carbon
	dioxide.	

(i) Write a chemical equation to show how the presence of carbon dioxide in water results in the formation of carbonic acid. State symbols are **not** required.

(1)

(ii) Write the **ionic** equation to show how acids react with carbonates. State symbols are **not** required.

(2)

(b)	disse	method of determining the proportion of calcium carbonate in a coral is to olve a known mass of the coral in excess acid and measure the volume of on dioxide formed. uch an experiment, 1.13 g of coral was dissolved in 25 cm ³ of hydrochloric acid	
	(an	excess) in a conical flask. When the reaction was complete, 224 cm ³ of carbon cide had been collected over water using a 250 cm ³ measuring cylinder.	
	(i)	Draw a labelled diagram of the apparatus that could be used to carry out this experiment.	(2)
			(2)
	(ii)	Suggest how you would mix the acid and the coral to ensure that no carbon	
		dioxide escaped from the apparatus.	(1)
	(111)	Calculate the number of moles of carbon dioxide collected in the experiment. [The molar volume of any gas is 24 000 cm ³ mol ⁻¹ at room temperature and	
		pressure.]	(1)

(iv) Complete the equation below for the reaction between hydrochloric acid by inserting the missing state symbols.	
$CaCO_3() + 2HCl() \rightarrow CaCl_2()$	
(v) Calculate the mass of 1 mol of calcium carbonate.	
[Assume relative atomic masses: $Ca = 40$, $C = 12$, O	= 16.]
(vi) Use your data and the equation in (iv) to calculate the in the sample and the percentage by mass of calcium Give your final answer to three significant figures.	
(vii) When this experiment is repeated, the results are incomposed for this other than errors in the procedure, measurem	
(Total	for Question 16 = 12 marks)

	nestion is about the element chlorine (atomic number = 17). In the electronic structure of chlorine.	(1)
1s ² 2s ²		
(b) Chlo	orine forms compounds with magnesium and with carbon.	
(i)	Draw a dot and cross diagram to show the electronic structure of the compound magnesium chloride (only the outer electrons need be shown). Include the charges present.	(2)
(ii)	Draw a dot and cross diagram to show the electronic structure of the compound tetrachloromethane (only the outer electrons need be shown).	(2)

	o ionic.	(3)
		(-)
or with hydrochloric acid. Compare these two preparations		
or with hydrochloric acid. Compare these two preparations		(2)
Magnesium chloride may be prepared from magnesium by re or with hydrochloric acid. Compare these two preparations economies of the reactions. No calculation is required.		(2)
or with hydrochloric acid. Compare these two preparations		(2)
or with hydrochloric acid. Compare these two preparations		(2)
or with hydrochloric acid. Compare these two preparations		(2)
or with hydrochloric acid. Compare these two preparations		(2)
or with hydrochloric acid. Compare these two preparations		(2)
or with hydrochloric acid. Compare these two preparations		(2)
or with hydrochloric acid. Compare these two preparations		(2)
or with hydrochloric acid. Compare these two preparations economies of the reactions. No calculation is required.		

BLANK PAGE

18	Alkenes are unsaturated hydrocarbons which, because of their reactivity, are important industrial starting materials. Alkenes for industrial use are obtained by cracking alkanes	s.
	(a) Write the equation for the cracking of decane $(C_{10}H_{22})$ to form 1 molecule of propen as the only alkene.	e
	as the only airche.	(1)
	(b) The carbon–carbon double bond in alkenes consists of a σ and a π bond.	
	(i) Explain, using diagrams, the difference between the σ and the π bond in the carbon–carbon double bond of an alkene.	
		(4)
Dia	agrams	
Ex	planation	
LA		
	(ii) State the time and machinism involved in the time of the control of the	
	(ii) State the type and mechanism involved in the typical reaction of alkenes.	(1)

When propene reacts with hydrogen bromide, there are two pos	_
(i) Draw a displayed formula of each of these products and la	bel the major product.
(ii) Give the mechanism for the reaction of propene with hydroforms the major product.	ogen bromide which
forms the major product.	(3)

(iii	Explain, by referring to the mechanism, why the major product is formed.	(2)
(d) Th	e polymer poly(propene) is manufactured from propene.	
(i)	Write an equation for the polymerization, drawing the displayed formula of the	
	repeat unit of poly(propene).	(3)
		(-)
(ii)	UV radiation causes poly(propene) to degrade. Suggest one advantage and one disadvantage of this.	
	disadvantage of this.	(2)
lvantag	÷	
1 ,		
sagvant	age	
	(Total for Question 18 = 20 mar	

BLANK PAGE

19 The enthalpy change of combustion of ethanol was determined using the apparatus shown in the diagram below. In the experiment, the temperature increase of the water in the beaker is measured when a known mass of the ethanol is burned.

(a) The results of the experiment are summarised in the table below.

Mass of water in the beaker	250.00 g
Mass of spirit burner + contents (initial)	63.21 g
Mass of spirit burner + contents (final)	62.47 g
Temperature of water (initial)	21.0 °C
Temperature of water (final)	31.5 °C

(i) Calculate the heat energy produced by the combustion of the alcohol using the equation

heat energy produced (J) = mass of water \times 4.18 \times temperature change

(1)

(ii)	Calculate the number of moles of ethanol burned in this experiment (the formula
	of ethanol is C_2H_5OH).

(3)

(iii) Use the equation below to calculate the enthalpy change of combustion of ethanol in kJ mol⁻¹. Give the value an appropriate sign.

 ΔH = heat energy produced \div number of moles

(2)

- (b) The data book value for the enthalpy change of combustion of ethanol is $-1370~{\rm kJ~mol^{-1}}$.
 - (i) Calculate the percentage error in the value calculated in (a)(iii) in comparison with the data book value.

(1)

	(ii)	List three ways in which the design of the experiment causes the results to be so different from the data book value. (You should be specific but detailed explanations are not required.)	(3)
1			
2			
3			
	(iii)	Use the data book values for enthalpy changes of combustion given in the table below to calculate the enthalpy change of formation of ethanol.	(3)

Substance	Enthalpy change of combustion / kJ mol ⁻¹					
C(s, graphite)	-394					
$H_2(g)$	-286					
C ₂ H ₅ OH(l)	-1370					

(Total for Question 19 = 13 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

S
۲
<u></u>
$\underline{\varphi}$
eme
Φ
$\vec{\Box}$
of
able
゙
₹
Ta
٠, ،
.≃
ğ
g
g
g
riod
Period
Period
g
he Period

0 (8)	(18) 4.0 He helium 2	20.2 Ne	10	39.9		83.8	궃	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		rted	
7	(17)	19.0 F fluorine	6	35.5	chlorine 17	6'62	Ŗ	bromine 35	126.9	_	iodine 53	[210]	Αt	astatine 85		oeen repo	
9	(16)	16.0 O oxygen	8	32.1 S	_	0.62	Se	selenium 34	127.6	<u>a</u>	tellurium 52	[506]	8	polonium 84		116 have I	nticated
2	(15)	14.0 N	7	31.0	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		nbers 112-	but not fully authenticated
4	(14)	12.0 C carbon	9	28.1 C:	silicon 14	72.6	ge	germanium 32	118.7	Sn	ž 20 ti	207.2	Ъ	lead 82		atomic nur	but not fi
ю	(13)	10.8 B boron	5	27.0	Al aluminium 13	2.69		gallium 31	114.8	<u>_</u>	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported	
	'				(12)	65.4	Zu	zinc 30	112.4	8	cadmium 48	200.6	Ę	mercury 80		Elem	
					(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	oentgenium 111
					(10)	58.7	Έ	nickel 28	106.4	Pd	palladium 46	195.1	₹	platinum 78	[271]	Mt Ds Rg	armstadtium r 110
					(6)	58.9	ပိ	cobalt 27	102.9	윤	rhodium 45	192.2	<u>_</u>	iridium 77	[368]	¥	neitnerium d
	1.0 H hydrogen				(8)	55.8	ā	iron 26	101.1	Ru	ruthenium 44	190.2	os	osmium 76	[277]		hassium r
					(2)	54.9	۸	manganese 25	[86]	ը	technetium 43	186.2	Re	rhenium 75	[564]	뮵	bohrium 107
		nass ool	ımber		(9)	52.0	ъ	chromium r	95.9	Wo	molybdenum technetium 42 43	183.8	>	tungsten 74	[397]	Sg	seaborgium 106
	Key	relative atomic mass atomic symbol	atomic (proton) number		(5)	50.9	>	vanadium 23	92.9		niobium 41	180.9		tantalum 73	l_		dubnium s
		relativ ato i	atomic		(4)	47.9		titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	₽ F	rutherfordium 104
					(3)	45.0	S	scandium 21	88.9		yttrium 39	138.9	La*	lanthanum 57	[227]		_
7	(2)	9.0 Be beryllium	4	24.3	MS magnesium 12	40.1		calcium 20	97.8	Sr	strontium 38	137.3		barium l	[526]		radium 88
-	(1)	6.9 Li lithium	8		sodium 11	39.1	¥	potassium 19	85.5		rubidium 37	132.9	ర	caesium 55	[223]	ቴ	francium 87

175	2	lutetium	71	[257]	۲	lawrencium	103
173	ХÞ	ytterbium	70	[254]	۶ ۷	nobelium	102
169	Ħ	thulium	69	[256]	ÞW	mendelevium	101
167	ដ	erbium	89	[253]	F	fermium	100
165	운	holmium	29	[254]	ß	einsteinium	66
163	۵	dysprosium	99	[251]	ರ	californium	98
159	<u>P</u>	terbium	65	[245]	쓢	berkelium	46
157	В	gadolinium	64	[247]			96
152	Eu	europium	63	[243]	Am	americium	95
150	Sm	samarium	62	[242]	Pu	plutonium	94
[147]	Pm	promethium	61	[237]	å	neptunium	93
1 4	PZ	neodymium	09	238	-	uranium	92
141	P	praseodymium	59	[231]	Pa	protactinium	91
140	S	cerinm	58	232	ᆮ	thorium	90

* Lanthanide series * Actinide series