Chapter 1-2 Notes

Deterministic diagraphs require arrows from the accept state, whereas non-deterministic diagraphs stop at the accept state

Deterministic Graphs cannot have a two letters that lead to the same state (e.g. 0 and 1 go from q4 to q5 is not allowed).

Question 0: 010 would not be accepted

It would accept anything has 101 or 11 though

Question 2:

$$Q = \{q1, q2, q3, q4\}$$

Sigma =
$$\{0, 1\}$$

		0	1	arepsilon
	$\overline{q_1}$	$\{q_1\}$	$\{q_1, q_2\}$	Ø
	q_2	$\{q_3\}$	Ø	$\{q_3\}$
	q_3	Ø	$\{q_4\}$	Ø
=	q_4	$\{q_4\}$	$\{q_4\}$	Ø,

$$q0 = q1$$

$$F = \{q4\}$$

NFAs are equivalent to DFAs in terms of power, as they understand the same language. It's just more compact in NFA form I believe.

Question 3:

$$Q = \{1, 2, 3\}$$

 $Sigma = \{a, b\}$

δ	a	b	ϵ
1	Ø	$\{2\}$	{3}
2	{2,3} {1}	$\{3\}$	Ø
3	{1}	Ø	Ø

Delta =

$$Q_0 = 1$$

$$F = \{1\}$$

Question 4:

$$Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Question 5:

Sigma' =
$$\{\{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

Question 6:

$$q'_0 = \{1,3\}$$

Question 7:

$$F' = \{ \{1\}, \{1,2\}, \{1,3\}, \{1,2,3\} \}$$

Question 8:

δ'	а	b
Ø	Ø	Ø
{1}	Ø	{2}
{2}	{2,3}	{3}
{3}	{1,3}	Ø
{1,2}	{2,3}	{2,3}
{1,3}	{1,3}	{2}
{2,3}	{1,2,3}	{3}
{1,2,3}	{1,2,3}	{2,3}

Now that we know about NFA's, we can get back to unions, concatenations, and intersections.

Question 9:

$$Q=\{q_0\}\cup Q1\cup Q2$$