Name :

Continuous Assessment Test I - August 2022

		Semester	FS 2022-23	4
Programme	B.Tech (ECE/ECM)	Code	BECE206L	4
Course	Analog Circuits	Class Nbr	CH2022231001122	4
		Slot	: C2	4
Faculty	Dr.V. R Balaji	Max. Marks	: 50	
Time	- 90 Minutes	1		

Answer ALL the questions

Q.No. Sub.

2.

Questions

Mark

Draw the load line and mark the Q point for the voltage divider bias circuit given below. Let R_1 =50 k Ω , R_2 = 10 k Ω , R_C =2 k Ω , R_E =0.4 k Ω , V_{CC} =12 V, $V_{BE}(on)$ = 0.7 V and β =100.

10

Figure.1

Consider the Equivalent circuit shown in Figure 2 and answer the following;

10

Figure.2

- (i)Derive the miller capacitance for the circuit (5 Marks)
- (ii)Derive the cut-off frequency fr of a MOSFET (5 Marks)

Figure 3 shows a common source amplifier, consider the parameters given and answer the following;

Figure 3

a (i)Draw the small signal equivalent for the circuit. (3 marks)
(ii)Derive the expression of voltage gain A_v using small signal equivalent parameters.
(7marks)

For the given circuit with

3.

 $V_{DD}=4\,V$; $R_D=11\,k\Omega$; $R_1=150\,k\Omega$; $R_2=50\,k\Omega$; $R_{Sl}=3\,k\Omega$; $V_{TN}=0.4\,V$; $k_n=0.5\,mA/V^2$; $\lambda=0$; Find the following:

- i. Input resistance of the amplifier circuit. (1 mark)
 - ii. Output resistance of the amplifier circuit (1 mark)
 - iii. Transconductance (1 mark)
 - iv. Small signal voltage gain (2 marks)

 Describe the operation of an MOSFET class-B amplifier and derive the power conversion efficiency.

15

15

Total 50
