Verão IME-USP 2019 - Álgebra Linear - Prova 1

araujofpinto

2019/01/21

- 1. A soma e a multiplicação por escalar de vetores de $V \times W$ estão bem definidas, bastando demonstrar os axiomas de espaço vetorial:
 - (S1) (Soma associativa) $[(v_1, w_1) + (v_1, w_2)] + (v_3, w_3) = (v_1 + v_2, w_1 + w_2) + (v_3, w_3) = ([v_1 + v_2] + v_3, [w_1 + w_2] + w_3) = (v_1 + [v_2 + v_3], w_1 + [w_2 + w_3]) = (v_1, w_1) + (v_2 + v_3, w_2 + w_3) = (v_1, w_1) + [(v_2, w_2) + (v_3, w_3)]$
 - (S2) (Soma comutativa) $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) = (v_2 + v_1, w_2 + w_1) = (v_2, w_2) + (v_1, w_1)$
 - (S3) (Vetor nulo) $\vec{0} = (0_V, 0_W)$, pois $(v, w) + (0_V, 0_W) = (v + 0_V, w + 0_W) = (v, w)$
 - (S4) (Elemento oposto) -(v, w) = (-v, -w), pois $(v, w) + (-v, -w) = (v + [-v], w + [-w]) = (0_V, 0_W) = \vec{0}$
 - (M1) (Multiplicação associativa) $\lambda \cdot [\alpha \cdot (v, w)] = \lambda \cdot [(\alpha v, \alpha w)] = (\lambda [\alpha v], \lambda [\alpha w]) = ([\lambda \alpha]v, [\lambda \alpha]w) = [\lambda \alpha] \cdot (v, w)$
 - (M2) (Unidade multiplicativa) 1.(v, w) = (1.v, 1.w) = (v, w)
 - (**D1**) (Distributiva em V) λ .[$(v_1, w_1) + (v_2, w_2)$] = λ .[$(v_1 + v_2, w_1 + w_2)$] = $(\lambda [v_1 + v_2], \lambda [w_1 + w_2])$ = $(\lambda v_1 + \lambda v_2, \lambda w_1 + \lambda w_2)$ = $(\lambda v_1, \lambda w_1) + (\lambda v_2, \lambda w_2)$ = $\lambda v_1, w_1 + \lambda v_2, w_2$
 - (**D2**) (Distributiva em \mathbb{R}) $[\lambda + \alpha].(v, w) = ([\lambda + \alpha]v, [\lambda + \alpha]w) = (\lambda v + \alpha v, \lambda w + \alpha w) = (\lambda v, \lambda w) + (\alpha v, \alpha w) = \lambda.(v, w) + \alpha.(v, w)$

Logo, $V \times W$ é um espaço vetorial real com esta soma e esta multiplicação por escalar.

- 2. (a) S é subespaço vetorial de V, pois:
 - (i) 0_V é o polinômio nulo dado por $0_V(x) = 0$ para x em \mathbb{R} . Como $0_V(1) = 0$, segue que $0_V \in S$.
 - (ii) Dados p, q em S, temos que p(1) = 0 e q(1) = 0. Logo, $p+q \in V$ com (p+q)(1) = p(1)+q(1) = 0+0=0 e, portanto, $p+q \in S$.
 - (iii) Dados p em S e $\lambda \in \mathbb{R}$, temos que p(1) = 0. Logo, $\lambda . p \in V$ com $(\lambda p)(1) = \lambda p(1) = \lambda 0 = 0$ e, portanto, $\lambda . p \in S$.
 - (b) S é subespaço vetorial de V, pois:
 - (i) $0_V = (0,0,0,0) \in S$
 - (ii) Dados $v_1 = (x_1, y_1, z_1, t_1)$ e $v_2 = (x_2, y_2, z_2, t_2)$ em S, temos que $x_1 y_1 + z_1 + t_1 = 0$, $-x_1 + 2y_1 + z_1 t_1 = 0$, $x_2 y_2 + z_2 + t_2 = 0$ e $-x_2 + 2y_2 + z_2 t_2 = 0$. Logo, $v_1 + v_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2, t_1 + t_2) \in S$, pois $(x_1 + x_2) (y_1 + y_2) + (z_1 + z_2) + (t_1 + t_2) = 0 + 0 = 0$ e $-(x_1 + x_2) + 2(y_1 + y_2) + (z_1 + z_2) (t_1 + t_2) = 0 + 0 = 0$
 - (iii) Dados v = (x, y, z, t) em S e $\lambda \in \mathbb{R}$, temos que $\lambda . v = (\lambda x, \lambda y, \lambda z, \lambda t)$ com $(\lambda x) (\lambda y) + (\lambda z) + (\lambda t) = \lambda 0 = 0$ e $-(\lambda x) + 2(\lambda y) + (\lambda z) (\lambda t) = \lambda 0 = 0$ e, portanto, $\lambda . p \in S$.
 - (c) $U \cap W$ é subespaço vetorial de V, pois:
 - (i) $0_V \in U$ e $0_V \in W$, pois U e W são subespaços vetoriais de V. Logo, $0_V \in U \cap W$
 - (ii) Dados v_1, v_2 em $U \cap W$, temos que $v_1 + v_2 \in U$ e $v_1 + v_2 \in W$, pois U e W são subespaços vetoriais de V. Logo, $v_1 + v_2 \in U \cap W$
 - (iii) Dados $v \in U \cap W$ e $\lambda \in \mathbb{R}$, temos que $\lambda . v \in U$ e $\lambda . v \in W$, pois U e W são subespaços vetoriais de V. Logo, $\lambda . v \in U \cap W$
- 3. (a) Como V tem dimensão 2 e \mathcal{B}_0 tem 2 vetores, basta mostrarmos que \mathcal{B}_0 é linearmente independente para concluirmos que \mathcal{B}_0 é base de V.

$$\text{Mas } \alpha(2,1) + \beta(-1,2) = 0_{\mathbb{R}^2} = (0,0) \Rightarrow \begin{cases} 2\alpha - \beta = 0 \\ \alpha + 2\beta = 0 \end{cases} \rightarrow \begin{pmatrix} 2 & -1 & | & 0 \\ 1 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & | & 0 \\ 0 & \frac{5}{2} & | & 0 \end{pmatrix} \Rightarrow \beta = 0 \text{ e } \alpha = 0.$$

Como a solução trivial é a única, temos que \mathcal{B}_0 é linearmente independente e, portanto, \mathcal{B}_0 é base de V.

(b)
$$(3,-1)_{\mathcal{B}_0} = 3(2,1) - 1(-1,2) = (6,3) - (-1,2) = (7,1) = 7(1,0) + 1(0,1) = (7,1)_{\mathcal{C}}$$

(c)
$$(1,0) = (\alpha_1, \beta_1)_{\mathcal{B}_0} = \alpha_1(2,1) + \beta_1(-1,2) \Rightarrow \begin{cases} 2\alpha_1 - \beta_1 = 1 \\ \alpha_1 + 2\beta_1 = 0 \end{cases} \rightarrow \begin{pmatrix} 2 & -1 & | & 1 \\ 1 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & | & 0 \\ 0 & \frac{5}{2} & | & -\frac{1}{2} \end{pmatrix} \Rightarrow \beta_1 = -\frac{1}{5} e \alpha_1 = \frac{2}{5}.$$

Logo
$$(1,0) = (\alpha_1, \beta_1)_{\mathcal{B}_0} = (\frac{2}{5}, -\frac{1}{5})_{\mathcal{B}_0}$$
.

$$(0,1) = (\alpha_2, \beta_2)_{\mathcal{B}_0} = \alpha_2(2,1) + \beta_2(-1,2) \Rightarrow \begin{cases} 2\alpha_2 - \beta_2 = 0 \\ \alpha_2 + 2\beta_2 = 1 \end{cases} \rightarrow \begin{pmatrix} 2 & -1 & | & 0 \\ 1 & 2 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & | & 0 \\ 0 & \frac{5}{2} & | & 1 \end{pmatrix} \Rightarrow \beta_1 = \frac{2}{5} e \alpha_1 = \frac{1}{5}.$$

Logo
$$(0,1) = (\alpha_2, \beta_2)_{\mathcal{B}_0} = (\frac{1}{5}, \frac{2}{5})_{\mathcal{B}_0}$$
.

$$\begin{aligned} \textbf{(d)} \ \ &(x,y) = (\alpha,\beta)_{\mathcal{B}_0} = \alpha(2,1) + \beta(-1,2) \Rightarrow \begin{cases} 2\alpha_2 - \beta_2 = x \\ \alpha_2 + 2\beta_2 = y \end{cases} \\ \Rightarrow \beta = -\frac{x}{5} + 2\frac{y}{5} \text{ e } \alpha = 2\frac{x}{5} + \frac{y}{5}. \end{aligned} \\ \Rightarrow \beta = -\frac{x}{5} + 2\frac{y}{5} \text{ e } \alpha = 2\frac{x}{5} + \frac{y}{5}.$$

Logo
$$(x,y) = (\alpha,\beta)_{\mathcal{B}_0} = (2\frac{x}{5} + \frac{y}{5}, -\frac{x}{5} + 2\frac{y}{5})_{\mathcal{B}_0}.$$

(e) Como V tem dimensão 2 e \mathcal{B} tem 2 vetores, basta mostrarmos que \mathcal{B} é linearmente independente para concluirmos que \mathcal{B} é base de V.

$$\begin{aligned} &\operatorname{Mas}\ \alpha(a,b) + \beta(-b,a) = 0_V = (0,0) \Rightarrow \begin{cases} a\alpha - b\beta = 0 \\ b\alpha + a\beta = 0 \end{cases} & \rightarrow \begin{pmatrix} a & -b & | & 0 \\ b & a & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} a & -b & | & 0 \\ 0 & a + \frac{b^2}{a} & | & 0 \end{pmatrix} \rightarrow \\ & \rightarrow \begin{pmatrix} a & -b & | & 0 \\ 0 & \frac{a^2 + b^2}{a} & | & 0 \end{pmatrix} \Rightarrow \beta = 0 \text{ e } \alpha = 0, \text{ pois } \frac{a^2 + b^2}{a} \neq 0. \end{aligned}$$

Como a solução trivial é a única, temos que \mathcal{B} é linearmente independente e, portanto, \mathcal{B} é base de V.

4. (a) A equação cartesiana de π é da forma ax + by + cz = d. Substituindo os vetores dados na equação, obtemos

o sistema linear
$$3 \times 4:$$

$$\begin{cases} a+0b+0c=d\\ 0a+b+0c=d\\ 0a+0b+c=d \end{cases}$$
 que é um sistema linear homogêneo possível e indeterminado

com 1 grau de liberdade, pois para qualquer valor de d em \mathbb{R} , temos uma solução para o sistema com c=d, b=d e a=d. Portanto, uma possível equação cartesiana de π é x+y+z=1.

Para obter a equação vetorial de π , note que qualquer $v=(x,y,z)\in\pi$ pode ser escrito como v=(x,y,1-x-y)=(0,0,1)+(x,0,-x)+(0,y,-y)=(0,0,1)+x.(1,0,-1)+y.(0,1,-1), logo uma possível equação vetorial de π é dada por $(x,y,z)=(0,0,1)+\alpha.(1,0,-1)+\beta.(0,1,-1),\alpha,\beta$ em $\mathbb R$; e uma possível equação paramétrica é dada por $(x,y,z)=(\alpha,\beta,1-\alpha-\beta),\alpha,\beta$ em $\mathbb R$.

Portanto,
$$\pi = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$$
 ou $\pi = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = (0, 0, 1) + \alpha.(1, 0, -1) + \beta.(0, 1, -1), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$ ou $\pi = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = (\alpha, \beta, 1 - \alpha - \beta), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}.$

(b) R1: Pela equação cartesiana, vemos que π é o conjunto solução do sistema linear 1×3 dado por $\{x + y + z = 1 \text{ e, portanto, } \pi$ é um espaço afim de \mathbb{R}^3 .

R2: Pela equação vetorial, vemos que $\pi = \{(0,0,1)\} + H$, onde $H = \{(x,y,z) \in \mathbb{R}^3 : (x,y,z) = \alpha(1,0,-1) + \beta(0,1,-1), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$ é o conjunto solução do sistema linear homogêneo 1×3 dado por $\{x+y+z=0\}$ que é um subespaço vetorial de \mathbb{R}^3 de dimensão 2 e, como π é o transladado de um subespaço vetorial, temos que π é um espaço afim de \mathbb{R}^3 .

R3: Sejam $P_1 = (x_1, y_1, z_1)$, $P_2 = (x_2, y_2, z_2)$ em π e $t \in \mathbb{R}$. Então, $P_t = tP_1 + (1 - t)P_2 = (tx_1 + (1 - t)x_2, ty_1 + (1 - t)y_2, tz_1 + (1 - t)z_2)$ pertence a π , pois $tx_1 + (1 - t)x_2 + ty_1 + (1 - t)y_2 + tz_1 + (1 - t)z_2 = (tx_1 + t)x_2 + (tx_1 + t)x_3 + (tx_1 + t)x_4 + (tx_1 + t)x_4$

 $x_2 + y_2 + z_2 + t[x_1 - x_2 + y_1 - y_2 + z_1 - z_2] = 1 + t[1 - 1] = 1 + t.0 = 1 + 0 = 1$. Logo, π é um espaço afim de \mathbb{R}^3 .

- (c) A dimensão de $H = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = \alpha(1, 0, -1) + \beta(0, 1, -1), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$ é 2 e $\mathcal{B} = \{(1, 0, -1), (0, 1, -1)\}$ é base de H.
- (d) Seja $v=(1,1,1)\notin H$. Logo, w=[(1,1,1)] é um subespaço vetorial de \mathbb{R}^3 de dimensão 1 tal que $H\cap W=\{(0,0,0)\}.$

Logo, $dim(H+W)=dim(H)+dim(W)-dim(H\cap W)=2+1-0=3$ e, portanto, H+W é um subespaço vetorial de dimensão 3 dentro do \mathbb{R}^3 , que também tem dimensão 3. Portanto, $H+W=\mathbb{R}^3$ e, como $H\cap W=\{(0,0,0)\}$, temos $H\oplus W=\mathbb{R}^3$.

5. (a) A equação $a(0,1,0)+b(0,0,1)+c(0,2,-5)+d(1,2,3)=0_V=(0,0,0)$ gera o sistema linear homogêneo $3\times 4: \begin{cases} 0a+0b+0c+d=0\\ a+0b+2c+2d=0\\ 0a+b-5c+3d=0 \end{cases} \rightarrow \begin{pmatrix} 0 & 0 & 1 & | & 0\\ 1 & 0 & 2 & 2 & | & 0\\ 0 & 1 & -5 & 3 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 2 & | & 0\\ 0 & 1 & -5 & 3 & | & 0\\ 0 & 0 & 0 & 1 & | & 0 \end{pmatrix}$ que é um sistema

Como o sistema (já escalonado) tem 3 linhas não-nulas (ou 3 colunas com pivôs), temos que o subespaço S = spanU tem dimensão 3 e, como $S \subseteq \mathbb{R}^3$, temos $S = \mathbb{R}^3$.

Logo, uma possível base de $S \in \{(1,0,0),(0,1,0),(0,0,1)\}$ $\{(0,1,0),(0,2,-5),(1,2,3)\}$ $\{(0,1,0),(0,2,-5),(1,2,3)\}$ $\{(0,1,0),(0,2,-5),(1,2,3)\}$ $\{(0,1,0),(0,0,1),(1,2,3)\}$.

possível e indeterminado com 1 grau de liberdade e, portanto, U é linearmente dependente.

(b) Sejam $f, g, h \in U$ dadas por f(x) = 1, $g(x) = \sin x$ e $h(x) = \cos x$. A equação $af + bg + ch = 0_V$, onde 0_V é a função nula de V dada por $0_V(x) = 0$ para $x \in \mathbb{R}$, nos gera infinitas equações $af(x) + bg(x) + ch(x) = a + b\sin x + c\cos x = 0$ para cada x em \mathbb{R} .

Escolhendo 3 valores para x em \mathbb{R} , como $x=0,\ x=\frac{\pi}{2}$ e $x=\pi$; obtemos o sistema linear homogêneo

 $3\times 3\begin{cases} 1a+0b+1c=0\\ 1a+1b+0c=0\\ 1a+0b-c=0 \end{cases}$ que é um sistema possível e determinado com solução $a=0,\,b=0$ e c=0.

Como a solução trivial é a única, temos que U é linearmente independente.

6. Sabemos que $dim(U+W)=dim(U)+dim(W)-dim(U\cap W)=3+3-dim(U\cap W)=6-dim(U\cap W).$

Como $dim(U+W) \leq dim(\mathbb{R}^4) = 4$ e $dim(U\cap W) \leq dim(U) = 3$, temos que $U\cap W$ tem dimensão 2 ou 3: Se $dim(U\cap W) = 3$, então $U\cap W = U = W$ e, portanto, U+W = U = W; se $dim(U\cap W) = 2$, então dim(U+W) = 4 e, portanto, $U+W = \mathbb{R}^4$.

Para descobrirmos a dimensão de $U \cap W$, vamos verificar quantos vetores (2 ou 3) linearmente independentes existem no conjunto gerador de $U \cap W$ dado por $\{(1,2,1,0),(2,1,0,-1),(1,5,3,1)\}$.

Se
$$\alpha_1(1,2,1,0) + \alpha_2(2,1,0,-1) + \alpha_3(1,5,3,1) = (0,0,0,0)$$
, temos o sistema
$$\begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = 0 \\ 2\alpha_1 + \alpha_2 + 5\alpha_3 = 0 \\ \alpha_1 + 3\alpha_3 = 0 \\ -\alpha_2 + \alpha_3 = 0 \end{cases} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 0 \\ 2 & 1 & 5 & | & 0 \\ 1 & 0 & 3 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -2 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Como o sistema escalonado tem 2 colunas com pivôs (ou 2 linhas não-nulas), segue que $dim(U \cap W) = 2$ e, portanto, dim(U + W) = 4, ou seja, $U + W = \mathbb{R}^4$.

7. (a) Como \mathbb{R}^3 tem dimensão 3 e \mathcal{B}_a tem 3 vetores, para provarmos que \mathcal{B}_a é base de \mathbb{R}^3 , basta mostrarmos que \mathcal{B}_a é gerador de \mathbb{R}^3 ou que \mathcal{B}_a é linearmente independente.

3

Para verificarmos se \mathcal{B}_a é linearmente independente, vamos analisar a equação $\alpha(a,1,0)+\beta(1,a,0)+\gamma(0,1,a)=0_V=(0,0,0)$ em função do parâmetro a. Esta equação gera o sistema linear homogêneo $3\times 3\begin{cases} a\alpha+\beta+0\gamma=0\\ \alpha+a\beta+\gamma=0\\ 0\alpha+0\beta+a\gamma=0 \end{cases}$, que tem a última linha nula quando a=0 e, portanto, \mathcal{B} não é base de \mathbb{R}^3 se a=0

Se $a \neq 0$, o sistema pode ser escalonado como $\begin{pmatrix} a & 1 & 0 & | & 0 \\ 1 & a & 1 & | & 0 \\ 0 & 0 & a & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} a & 1 & 0 & | & 0 \\ 0 & a - \frac{1}{a} & 1 & | & 0 \\ 0 & 0 & a & | & 0 \end{pmatrix}$ e, portanto, \mathcal{B} será linearmente independente se os pivôs na diagonal forem não-nulos, ou seja $a \neq 0$ e $a - \frac{1}{a} \neq 0$, ou ainda,

a $\neq 0$, $a \neq 1$ e $a \neq -1$.

Portanto, \mathcal{B}_a é base de \mathbb{R}^3 se, e somente se, $a \notin \{-1, 0, 1\}$.

(b) Sejam p_a, q_a, r_a em $\mathcal{P}_2(\mathbb{R})$ definidos por $p_a(x) = 1, q_a(x) = x - a$ e $r_a(x) = (x - a)^2 = x^2 - 2ax + a^2$.

Como $\mathcal{P}_2(\mathbb{R})$ tem dimensão 3 e \mathcal{B}_a tem 3 vetores, para provarmos que \mathcal{B}_a é base de $\mathcal{P}_2(\mathbb{R})$, basta mostrarmos que \mathcal{B}_a é gerador de $\mathcal{P}_2(\mathbb{R})$ ou que \mathcal{B}_a é linearmente independente.

Para verificarmos se \mathcal{B}_a é linearmente independente, vamos analisar a equação $\alpha p_a + \beta q_a + \gamma r_a = 0_V = 0.1 + 0.x + 0.x^2$ em função do parâmetro a.

Esta equação gera o sistema linear homogêne
o $3\times 3\begin{cases} \alpha-a\beta+a^2\gamma=0\\ 0\alpha+\beta-2a\gamma=0\\ 0\alpha+0\beta+\gamma=0 \end{cases}$, que já está escalonado e tem

todas as linhas não nulas (ou tem os pivôs na diagonal não-nulos) para qualquer a em \mathbb{R} .

Portanto, \mathcal{B}_a é base de $\mathcal{P}_2(\mathbb{R})$ para todo a em \mathbb{R} .

8. (a) \mathcal{B}_U é gerador de U, pois $A \in U \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \Rightarrow A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix} \Rightarrow A = aA_1 + bA_2 + cA_3.$

 \mathcal{B}_U é linearmente independente, pois a equação $\alpha A_1 + \beta A_2 + \gamma A_3 = 0_V = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ gera o sistema linear

homogêne
o $4\times 3 \begin{cases} \alpha+0\beta+0\gamma=0\\ 0\alpha+\beta+0\gamma=0\\ 0\alpha+\beta+0\gamma=0\\ 0\alpha+0\beta+\gamma=0 \end{cases}$, que tem como única solução $\alpha=\beta=\gamma=0.$

Logo, $\mathcal{B}_U = \{A_1, A_2, A_3\}$ é base de U e, portanto, dim(U) = 3.

(b) \mathcal{B}_W é gerador de W, pois $A \in U \Rightarrow A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix} \Rightarrow A = d\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow A = dA_4.$

 \mathcal{B}_W é linearmente independente, pois a equação $\alpha A_4 = 0_V = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ gera o sistema linear homogêneo

$$4\times1\begin{cases}0\alpha=0\\\alpha=0\\\alpha=0\\0\alpha=0\end{cases}, \text{ que tem como única solução }\alpha=0.$$

Logo, $\mathcal{B}_W = \{A_4\}$ é base de W e, portanto, dim(W) = 1.

- (c) Note que $A_4 \notin U$, logo $\mathcal{B} = \{A_1, A_2, A_3, A_4\}$ é linearmente independente e, portanto, $U + W = span\mathcal{B}$ é um subespaço vetorial de dimensão 4 dentro de $\mathbb{M}_2(\mathbb{R})$, que também tem dimensão 4 e, portanto, $\mathbb{M}_2(\mathbb{R}) = U + W$.
- (d) Como dim(U+W)=4, obtemos que $dim(U\cap W)=0$, de onde a soma é direta, ou seja $\mathbb{M}_2(\mathbb{R})=U\oplus W$.