CONTINUITY

CONTINUITY AT A POINT

DEFINITION

A function $f:(a,b) o \mathbb{R}$ is continuous at the point $x_0\in(a,b)$ if

$$\lim_{x o x_0}f(x)=f(x_0).$$

CONTINUITY AT ENDPOINTS

DEFINITION

A function $f:[a,b] o \mathbb{R}$ is continuous at the left endpoint a if

$$\lim_{x o a^+}f(x)=f(a).$$

It is continuous at the right end-point b if

$$\lim_{x o b^-}f(x)=f(b).$$

CONTINUOUS FUNCTIONS

DEFINITION

A function defined on an interval is continuous if it is continuous at every point of the interval.

EXAMPLE

The function

$$f(x)=x^2+2$$
 for $x\in[3,7]$

is continuous.

EXAMPLE

Show the function,

$$f(x) = \frac{x-2}{x+1}$$

is continuous for every $x_0 \neq -1$.

CONTINUITY LAWS

CONTINUITY LAWS

THEOREM

Sums, products and quotients (at points where the denominator is non-zero) of continuous functions are continuous.

EXAMPLE

Show that the function

$$f(x) = 2x + x^3 \frac{x-2}{x+1}$$

is continuous for every x.

COMPOSITION

THEOREM

If f and g are continuous functions, then the composition $f\circ g$ is continuous wherever it is defined.

EXAMPLE

$$h(x) = rac{1}{x^2+2}$$
 is continuous.

CONTINUITY OF STANDARD FUNCTIONS

STANDARD FUNCTIONS

THEOREM

The following functions are continuous

EXAMPLE

Any polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is continuous.

EXAMPLE

The function $\sin(x)$ is continuous at every $x_0 \in \mathbb{R}$.