Fraktale Bilder

Konstruktion eines Bildes aus

- wenigen Grundbausteinen
- einem Kombinationsverfahren, das
 - Grundbausteine transformiert (dreht, spiegelt, verkleinert, projiziert) und
 - Teile der Grundbausteine durch Grundbausteine ersetzt
 - Grundbausteine zusammenfügt

Beispiel: Sierpinski-Dreieck

• Sierpinski-Dreieck 0-ter Ordnung: ein gleichseitiges Dreieck

Sierpinski-Dreieck 1-ter Ordnung

- Drei Kopien des Sierpinski-Dreiecks 0-ter Ordnung
- mit halber Höhe
 - die unteren beiden zentriert nebeneinander
 - das obere zentriert darüber

Sierpinski-Dreieck (n+1)-ter Ordnung

- Drei Kopien des Sierpinski-Dreiecks *n*-ter Ordnung
- mit halber Höhe
 - die unteren beiden zentriert nebeneinander
 - das obere zentriert darüber

Sierpinski-Dreieck 6-ter Ordnung

Programmierung des Sierpinski-Dreiecks *n*-ter Ordnung

Eigenschaften des Sierpinski-Dreiecks

- $\bullet\,$ Das Sierpinski-Dreieck ist der Grenzwert $n\to\infty$ der Dreiecke der Ordnung n
- Es ist nicht leer, aber seine Fläche ist 0.
- Seine Dimension ist $\log 3/\log 2 \approx 1.584962501$
- Beispiel für ein *Fraktal*.

Das Kastenfraktal

- Der Kasten der Ordnung 0 ist ein Quadrat.
- ullet Der Kasten der Ordnung n+1 besteht aus fünf Kopien des Kastens der Ordnung n mit jeweils 1/3 der Höhe angeordnet in Form eines Kreuzes.

Die Kochkurve

- Die Kochkurve der Ordnung 0 ist eine Strecke der Länge r in Richtung ϑ .
- ullet Die Kochkurve der Ordnung n+1 mit Länge r und Richtung ϑ besteht aus vier Kochkurven der Ordnung n und der Länge r/3 aneinandergesetzt in Richtung
 - 1. ϑ
 - $2. \vartheta + 60^{\circ}$
 - 3. $\vartheta 60^{\circ}$
 - **4**. *ϑ*
- \Rightarrow Die Länge der Kochkurve der Ordnung n+1 ist $\frac{4}{3}$ der Länge der Kochkurve der Ordnung n, d.h. $r(\frac{4}{3})^n$.

Quelle: Wikimedia Commons

Die Hilbertkurve

