A4

DIGITAL SIGNAL PROCESSOR

Patent number:

JP2001297070

Publication date:

2001-10-26

Inventor:

OYAMA SHOICHI; OMICHI TAKAHIRO; HIROHATA

HITOSHI; KONISHI YOSUKE

Applicant:

SHARP CORP

Classification:

- international:

G06F15/177; G06F15/16; H04N1/00

- european:

Application number: JP20000109583 20000411

Priority number(s):

Abstract of JP2001297070

PROBLEM TO BE SOLVED: To perform efficient digital signal processing(DSP) by effectively allocating plural DSPs to plural requested processing signals without placing any load on a central processor and improving the use efficiency of the DSPs. SOLUTION: An external ROM 13 is stored with image processing programs used for respective jobs and the respective DSPs 21 to 24 are so constituted as to mutually manage their operation states. If plural processing requests temporally overlap with each other, at least one DSP performs signal processing for a newly generated processing request on condition that signal processing for a processing request which is already carried out is maintained without any problem, and the remaining DSPs carry on the signal processing for the leading processing request. For the purpose, the DSPs 21 to 24 download necessary programs from the external ROM 13 at the requests and autonomously switch the signal processing allocation.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-297070 (P2001-297070A)

(43)公開日 平成13年10月26日(2001.10.26)

(51) Int.Cl.'		識別記号	FΙ	FI		テーマコート*(参考)	
G06F	15/177	674	G06F	15/177	674C	5B045	
	15/16	610		15/16	610G	5 C O 6 2	
H04N	1/00		H04N	1/00	С		

審査請求 未請求 請求項の数3 OL (全 9 頁)

(21)出顧番号	特顧2000-109583(P2000-109583)	(71) 出願人	000005049
			シャープ株式会社
.(22)出顧日	平成12年4月11日(2000.4.11)		大阪府大阪市阿倍野区長池叮22番22号
		(72)発明者	
			大阪府大阪市阿倍野区長池町22番22号 シ
			ヤープ株式会社内
		(72) 発明者	大道 隆広
		(1-770774	-1-W-she I was have blome on an all standards
			大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
		(24) (D.D.)	
		(74)代理人	100080034
	· · · · · · · · · · · · · · · · · · ·		弁理士 原 謙三

最終頁に続く

(54) 【発明の名称】 デジタル信号処理装置

(57)【要約】

【課題】 中央処理器に負担をかけることなく、要求される複数の処理信号に対して複数のDSPを効果的に割り当て、DSPの使用効率を改善して効率的なデジタル信号処理を行う。

【解決手段】 外部ROM13に各ジョブに使用する画像処理プログラムが格納されると共に、各DSP21~24は、相互に各々の動作状態を管理し合う構成である。複数の処理要求が時間的に重なって発生した場合、先に行っていた処理要求の信号処理を問題なく維持できる範囲で、少なくとも1つのDSPが新たに発生した処理要求の信号処理を行う一方、残りのDSPが先に行っていた処理要求の信号処理を続行するように、各DSP21~24が、必要に応じて外部ROM13より必要なプログラムをダウンロードして、信号処理割り当てを自立的に切り替える。

1

【特許請求の範囲】

【請求項1】複数のデジタル信号処理器を備えたデジタ ル信号処理装置において、

各デジタル信号処理器は相互に動作状態を管理し合う構 成であり、複数の処理要求が時間的に重なって発生した 場合、先に行っていた処理要求の信号処理を問題なく維 持できる範囲で、少なくとも1つのデジタル信号処理器 が新たに発生した処理要求の信号処理を行う一方、残り のデジタル信号処理器が先に行っていた処理要求の信号 処理を続行するように、各デジタル信号処理器が、信号 10 処理の割り当てを自立的に切り替えることを特徴とする デジタル信号処理装置。

【請求項2】上記各デジタル信号処理器は、先に行って いた処理要求の信号処理を問題なく維持できる範囲を、 先に行っていた処理要求の入出力状態に基づいて判断す ることを特徴とする請求項1に記載のデジタル信号処理 装置。

【請求項3】上配各デジタル信号処理器には、処理モー ドを示す処理モード信号がそれぞれ入力されるよう構成 されており、各デジタル信号処理器は、複数の処理要求 20 が時間的に重なって発生したことを、上記処理モード信 号の入力により検知することを特徴とする請求項1又は 2 に記載のデジタル信号処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数のデジタル信 号処理器を備えたデジタル信号処理装置に関するもので あり、より詳細には、複数のデジタル信号処理器に複数 の信号処理を適宜分担させることで、各デジタル信号処 理器を効率的に使用可能なデジタル信号処理装置に関す るものである。

[0002]

【従来の技術】近年、デジタル信号処理技術の処理速度 等の進歩によりデジタル信号処理技術が各方面で広く利 用されている。

【0003】その一つとして、特開平11-29649 5号公報には、複数のデジタル信号処理器(以下、DS P: digital signal processor) と中央処理器とを、 所要部に配置した複数のゲート回路を介して接続し、前 記中央処理器が、同時に要求される複数の信号処理に対 40 号処理器は、先の信号処理を維持できないと判断する して必要な演算処理を複数のDSPに分担させるべく、 各処理要求を実現するために必要な数のDSPを適宜選 択して分担させる演算処理を行うためのプログラムを選 択した各DSPにダウンロードすると共に、信号が所望 の経路を流れるように所要部に配された複数のゲート回 路を制御する構成が記載されている。これによれば、要 求される信号処理毎にDSPの数を自在に変更すること ができ、DSPの使用効率を改善できる。

[0004]

報のように、中央処理器が各信号処理に必要なDSPの 数を決定する構成では、動作時にDSPに対する処理割 り当てを切り替える場合、中央処理器に負担がかかり、 中央処理器の処理能力が低下すると考えられる。中央処 理器の処理能力の低下は、DSPに係わる処理以外の処 理能力不足を招来する。

2

【0005】本発明は、上記課題に鑑みなされたもので あって、同時に複数の処理要求が発生するようなデジタ ル信号処理装置において、中央処理器に負担をかけるこ となく、要求される複数の処理信号に対して複数のデジ タル信号処理器を効果的に割り当て、デジタル信号処理 器の使用効率を改善して効率的なデジタル信号処理を行 えるデジタル信号処理装置の提供を目的としている。 [0006]

【課題を解決するための手段】本発明のデジタル信号処 理装置は、上記課題を解決するために、複数のデジタル 信号処理器を備えたデジタル信号処理装置において、各 デジタル信号処理器は相互に動作状態を管理し合う構成 であり、複数の処理要求が時間的に重なって発生した場 合、先に行っていた処理要求の信号処理を問題なく維持 できる範囲で、少なくとも1つのデジタル信号処理器が 新たに発生した処理要求の信号処理を行う一方、残りの デジタル信号処理器が先に行っていた処理要求の信号処 理を続行するように、各デジタル信号処理器が、信号処 理の割り当てを自立的に切り替えることを特徴としてい る。

【0007】これによれば、各デジタル信号処理器は相 互に動作状態を管理し合う構成であるため、処理中のあ る処理要求の信号処理を問題なく維持するために必要な デジタル信号処理器の数を、各デジタル信号処理器それ ぞれにおいて把握できる。したがって、新たに処理要求 が発生した場合、先に行っていた処理要求の信号処理を 問題なく維持可能な範囲で、例えば、最も速くある処理 単位の信号処理を終了したデジタル信号処理器が、新し い処理要求の信号処理に移行する等の取り決めをしてお くことで、新たな処理要求の信号処理に、余裕分のデジ タル信号処理器を割り当てることが可能となる。そして また、各デジタル信号処理器は相互に動作状態を管理し 合っているので、新たな信号処理に移行したデジタル信 と、元の信号処理へと戻る。

【0008】とのように、各デジタル信号処理器が互い を管理し合うととで、処理要求が時間的に重なって発生 した場合、先に行っていた処理要求に対する信号処理を 問題なく維持できる範囲で、各デジタル信号処理器の処 理割り当てを自立的に切り替えるため、従来公報の構成 のような中央処理器が必要なくなり、中央処理器の処理 能力を低下させることもない。

【0009】その結果、複数の処理要求が時間的に重な 【発明が解決しようとする課題】しかしながら、上記公 50 って発生しても、中央処理器に負担をかけることなく、

要求される複数の処理信号に対して複数のデジタル信号 処理器を効果的に割り当て、デジタル信号処理器の使用 効率を改善して効率的なデジタル信号処理が可能とな

【0010】また、上記デジタル信号処理装置において は、各デジタル信号処理器が、先に行っていた処理要求 の信号処理を問題なく維持できる範囲を、入出力の処理 状態により構成することが可能であり、例えば、記憶手 段に格納されている、先に行っていた処理要求の信号処 理の処理済みデータ量を基に判断する構成とすることも 10 できる。

【0011】記憶手段に格納されている先に行っていた 処理要求の信号処理の処理済みデータ量を、例えば、先 に行っていた処理要求のパフォーマンスを保つためのあ る閾値と比較することで、先に行っていた信号処理を担 うデジタル信号処理器の数に余裕があるか否かを判断で きる。上記処理済みデータ量が、上記閾値を超えておれ ば、余裕があると判断して、複数のデジタル信号処理器 のうちの少なくとも1つを、新たに発生した処理要求の 信号処理に割り当てることができる。

【0012】したがって、先に行っていた処理要求の信 号処理を問題なく維持できる範囲を、記憶手段に格納さ れている、先に行っていた処理要求の信号処理の処理済 みデータ量を基に判断することにより、中央処理器を必 要とすることなく、各デジタル信号処理器による自立的 な処理割り当てが可能となる。

【0013】また、上記デジタル信号処理装置において は、各デジタル信号処理器に、処理モードを示す処理モ ード信号がそれぞれ入力されるよう構成されており、各 デジタル信号処理器は、複数の処理要求が時間的に重な って発生したことを、上記処理モード信号の入力により 検知する構成とすることもできる。

【0014】各デジタル信号処理器に処理モード信号が 入力されることで、各デジタル信号処理器はそれぞれ、 新しい処理要求の発生を検知できるので、中央処理器を 必要とすることなく、各デジタル信号処理器による自立 的な処理割り当てが可能となる。

[0015]

【発明の実施の形態】本発明のデジタル信号処理装置に 係る実施の一形態について、図1~図6を用いて、以下 40

【0016】図2に、本発明のデジタル信号処理装置の 構成が画像処理部8に適用された、発明の実施の一形態 である複合画像形成装置1のシステム構成を示す。

【0017】複合画像形成装置1は、コピー機能に加え て、ファクシミリ機能、プリンタ機能を備えたデジタル 複合機であり、主に、システム制御部2、スキャナ部 3、プリンタインタフェース部4、ファクシミリ (FA X)送受信部5、操作部6、画像パッファメモリ部7、

相互に接続するバス11から構成されている。

【0018】システム制御部2は、複合画像形成装置1 の動作を制御するものであり、特に図示してはいない が、論理演算部(CPU: Central Processing Unit

)、制御プログラムを格納するROM(Read Only Mem ory)、制御パラメータを格納するRAM(Random Acce ss Memory) 等により構成される。

【0019】スキャナ部3は、コピー原稿やファクシミ リ原稿の画像の読み取りに使用されるもので、原稿をラ イン順次に走査して原稿の画像を読み取り、電気信号に 変換して出力するものである。プリンタインタフェース 部4は、外部のバーソナルコンピュータ等の情報処理装 置10に接続し、プリンタとしての印刷情報を入力する ものである。

【0020】ファクシミリ送受信部5は、公衆通信回線 に接続し、ファクシミリ画像の送受信動作を行うもので ある。操作部6は、ユーザーが本装置に動作の指示を与 える際に使用するもので、特に図示してはいないが、指 示を入力するのに用いる指示入力手段と、本装置の状態 20 を表示する表示手段とから構成されている。

【0021】画像パッファメモリ部7は、ファクシミリ 送受信画像や、複数部数コピーを行う場合に、入力され た画像データを一時格納するものであって、かつ、該入 力画像データが読み出され、画像処理部8にて画像処理 が施されたデータを再度格納するものである。

【0022】プリンタエンジン9は、前記スキャナ部3 で読み取った画像、前記プリンタインタフェース部4か ら入力した印刷情報、そして前記ファクシミリ送受信部 5 が受信したファクシミリ受信画像を記録用紙に印刷す るものである。

【0023】画像処理部8は、前記画像バッファメモリ 部7 に格納されている、前記スキャナ部3 で読み取られ た画像、前記プリンタインタフェース部4から入力した 印刷情報、そして前記ファクシミリ送受信部5が受信し たファクシミリ受信画像に対し、誤差拡散やガンマ補 正、拡大縮小等の画像処理を施すものである。前述した ように、この画像処理部8に本発明のデジタル信号処理 装置に係る構成が適用されている。

【0024】図3に、上記画像処理部8のシステム構成 を示す。画像処理部8は、外部ROM13と、複数のデ ジタル信号処理器(以下、DSP)と、これらを相互に 接続するパス11とから構成されており、ここでは、第 1~第4の4つのDSP21~24を備えている。 【0025】外部ROM13は、ファクシミリやコピ

ー、プリント等の各処理要求(以下、ジョブと称する) で使用する各画像処理プログラム(信号処理プログラ ム)を格納するものである。第1~第4のDSP21~ 24はそれぞれ、DSPの動作を制御するプロセッサ と、ダウンロードプログラム等のDSPを起動させるブ 画像処理部8、プリンタエンジン9、及びとれら各部を 50 ートプログラムを格納した内部ROMと、DSPで各処 理を行うためのプログラムを外部ROM13よりダウンロードする内部RAMを備えており、外部ROM13から各DSPの内部RAMに画像処理プログラムがダウンロードされることで、各DSPは各画像処理(信号処理)を行うようになっている。

【0026】図4に、画像処理部8における第1~第4のDSP21~24間をつなぐ、パス11を示す。

【0027】第1~第4のDSP21~24は、DSP間のコントロールバス11cを介して互いに接続されると共に、プログラム・ロードバス11bを介して上記外 10部ROM13と接続され、かつ、データバス11aを介して、画像バッファメモリ部7における入力バッファ7a及び出力バッファ7bに接続されている。

【0028】第1~第4のDSP21~24は、上記DSP間のコントロールバス11cを介して、互いの動作状態を連絡し合い互いに管理し合う構成となっている。DSP間のコントロールバス11cには、互いの動作を管理し合うコントロール信号以外に、コピーやファクシミリ送信或いは受信、その他、プリント等の各ジョブが発生したことを知らせる処理モード信号も入力されるよ20分になっている。処理モード信号は各ジョブが発生した時点で各DSP21~24は、これにて新しいジョブの発生を検知することとなる。

【0029】各DSP21~24は、処理モード信号が入力されることで、何の処理動作も行っていない場合は、処理モード信号に該当するジョブに応じた画像処理のプログラムを外部ROM13よりプログラム・ロードバス11bを介して読み込む。これにて、4つのDSP21~24で、処理モード信号に該当するジョブに応じ30た画像処理が可能となり、各DSP21~24は、入力バッファ7aに格納された画像データをデータバス11aを介して読み出し、所定の画像処理を施した後、再び出力バッファ7bへと格納して行く。

【0030】一方、第1~第4の4つのDSP21~24が、あるジョブに対する画像処理を行っているときに、処理モード信号が入力され、別のジョブが発生したことを検知する、つまり、複数のジョブが重なって発生したことを検知すると、各DSP21~24は、可能な限り複数のジョブに対する画像処理を並列して処理できるように、各DSP21~24の処理割り当てを自立的に切り替えるようになっている。

【0031】以下、図5、図6のフローチャート、及び図1の動作説明図を参照して、このような画像処理部8における処理割り当ての切り替えについて説明する。

【0032】何のジョブも発生していない状態で、ユーザーがスキャナ部3にコピー原稿をセットし、操作部6よりコピー動作を指示すると、まずは、DSP間のコントロールバス11cに対して、コピージョブの発生を伝える処理モード信号が入力され(S1)、これにより、

画像処理部8における第1~第4のDSP21~24がそれぞれ、外部ROM13からコピージョブに応じた画像処理プログラムを読み込む(S2)。

6

【0033】各DSP21~24におけるプログラムの 読み込みが完了すると、コピー動作が開始され(S 3)、スキャナ部3にてコピー原稿の画像が読み取られ、読み取られた画像データが、画像バッファメモリ部 7における入力バッファ7aに格納される。

【0034】入力バッファ7aに画像データが格納されると、各DSP21~24はそれぞれ、入力バッファ7aより予め定めるN画素分の画像データを読み出し(S4)、コピージョブにあった画像処理(以下、コピー処理と称する)をN画素単位に実行し、処理済みの画像データを画像バッファメモリ部7における出力バッファ7bに格納する(S5)。例えば、各DSP21~24がそれぞれ1ライン毎に画像処理を実施する構成であれば、S5の処理にて、合計4ラインの画像データにコピー処理が施されることとなる。出力バッファ7bに格納された画像データは、出力側のブリンタエンジン9の処理速度に合わせて順次出力されていく。

【0035】各DSP21~24は、N画素分の画像データに対するコピー処理が終了すると、コピージョブ以外のジョブが発生していないかどうかを確認し(S6)、他のジョブは発生していないと判断した場合は、S4に戻る。つまり、各DSP21~24はそれぞれ、N画素分の画像データに対するコピー処理を行う毎に、他のジョブの発生の有無を確認し、他のジョブの発生を確認しない限りは、4つのDSP21~24で、コピー処理を繰り返す。

0 【0036】図1(a)に、4つのDSPにて、コピー 処理のみを行っている画像処理部8の動作状態を示す。 入力のは、ここではスキャナ部3にあたり、4つのメモリのは、画像バッファメモリ部7の入力バッファ7a、4つのメモリのは、画像バッファメモリ部7の出力バッファ7bである。4つのDSPは、全て、コピー処理を行っている。

【0037】一方、コピージョブを実施中に、ユーザー にてその他のジョブ、例えばファクシミリメモリ送信ジョブが指示され、当該ジョブが発生すると、DSP間の 40 コントロールバス11cに対して処理モード信号が入力される。その結果、各DSP21~24はそれぞれ、図5のフローチャートにおけるS6において、別のジョブの発生を確認する。

【0038】別のジョブの発生を確認すると、各DSP21~24はそれぞれ、出力バッファ7bの格納サイズを計算する(S7)。格納サイズは、以下の式で求めるととができる。

【0039】格納サイズ = 1個のDSPの出力サイズ × DSPの個数 - (プリンタエンジン9の処理 50 速度×処理クロック数) ※各DSP21~24は互いに動作状態を連絡し合って いるので、当該処理に何個のDSPが関わっているかを 認識している。

【0040】次に、S7で求めた格納サイズが閾値以上 か否かを判断し(S8)、ここで閾値以上ではないと判 断すると、新たに発生したファクシミリメモリ送信ジョ ブ用の画像処理(以下、メモリ送信処理と称する)を待 機状態とし(S9)、S4に戻り、4つのDSP21~ 24を全て用いて、コピー処理を続ける。87で格納サ イズが関値未満となるのは、即ち、現在行っている4つ 10 のDSP21~24を用いた処理で初めてブリンタエン ジン9の読み出し速度に対応している、 余裕のない状態 である。

【0041】一方、S8において、格納サイズが閾値以 上であると判断すると、第1~第4のDSP21~24 は、S10に移行してコピー処理を続行するものと、図 6のフローチャートにおけるS21に移行して新たに発 生したメモリ送信処理を行うものとに分かれ、コピー処 理とメモリ送信処理とを並列処理する。

【0042】メモリ送信処理を担うのは、4つのDSP 21~24のうちの、最初にN画素単位のコピー処理を 終了したDSPである。最初にN画素単位の処理を終了 したDSPは、コピー処理を終了して(S21)、外部 ROM13からメモリ送信処理時の画像処理プログラム を読み込み、かつ、他のDSPに、処理を切り替えるこ とを伝える(S22)。とこでは、説明を分かり易くす るために、第1のDSP21が、最初にN画素分のコピ 一処理を終了したものとして以下説明する。

【0043】第1のDSP21におけるメモリ送信処理 時の画像処理プログラムの読み込みが完了すると、ファ クシミリメモリ送信動作が開始され(S23)、上記D SPは、画像バッファメモリ部7における入力バッファ 7 a に格納されていたメモリ送信用の画像データをN画 素単位に読み出し(S24)、メモリ送信処理を実施 し、処理済みの画像データを画像パッファメモリ部7に おける出力パッファ7bに格納する(S25)。

【0044】第1のDSP21は、N画素分の画像デー タに対するメモリ送信処理が終了すると、出力バッファ 7 b のコピー処理の格納サイズを計算し(S26)、格 納サイズが閾値以下か否かを判断する(S27)。格納 40 サイズは、前述と同じ式で求めることができる。前述の S7では、合計4つのDSP21~24でコピー処理を 行っていたが、S26の場合は、第1のDSP21が別 の処理を行っており、3つのDSP22~24でコピー 処理を行っているため、格納サイズは変化している。

【0045】S27で、格納サイズが閾値以下でなけれ ば、S24に戻り、第1のDSP21は、メモリ送信処 理を続ける。一方、S27において、格納サイズが閾値 以下であると判断すると、第1のDSP21は、処理単 送信処理を終了して、外部ROM13から再度、コピー 処理時の画像処理プログラムを読み込み、かつ、他のD SP22~24に、再びコピー処理を行うことを伝え (S29)、S4に戻る。上記S27で格納サイズが閩 値以下となるのは、即ち、3つのDSP21~24を用 いた処理では、プリンタエンジン9の読み出し速度に対 応できない場合である。

【0046】図1(b)に、3つのDSPにてコピー処 理を行い、1つのDSPにてメモリ送信処理を行ってい る画像処理部8の動作状態を示す。入力②もスキャナ部 3にあたるが、メモリ送信であるので、入力のと入力の とが同時に使用されるものではない。コピー処理用のメ モリのは3つになり、メモリのも3つになる。メモリの は、入力パッファ7aのメモリ送信処理用のメモリであ り、メモリのは、出力バッファ7bのメモリ送信処理用 のメモリである。該メモリのに格納された画像データ は、随時、ファクシミリ送受信部5より通信路に送出さ れる。図6のフローチャートにおけるS27において、 格納サイズが閾値以下と判断された場合は、図1(b) 20 の動作状態から、図1 (a)の動作状態へと戻ることと なる。

【0047】一方、図5のフローチャートにおけるS1 0に移行して、コピー処理を続行する3つのDSP22 ~24は、S10~S14において、上記S4~S8と 同じ処理を行う。但し、S13で計算される格納サイズ は、3つのDSPを使用した場合の値である。S12に おいて、別のジョブの発生を確認し、かつ、S14で、 格納サイズが閾値以上で余裕があると判断すると、再 度、前述のS8にてYESと判断した場合と同様に、3 つのうちの最も速くN画素分の処理を終了したDSPが コピー処理を終了し、新たなジョブ、即ち、ととでは、 メモリ送信ジョブに応じた処理を行うように、処理を切 り替え、コピー処理を続行する残りの2つのDSPと、 最初にメモリ送信処理に処理を切り替えた第1のDSP 21とに、処理を切り替えたことを連絡し、2つのDS Pでコピー処理を続行し、2つのDSPでメモリ送信処 理を行う。尚、これ移行も、可能な限り複数のジョブに 対する処理を並列して行えるように、同様のことを繰り 返す。

【0048】図1 (c)に、2つのDSPにてコピー処 理を行い、2つのDSPにてメモリ送信処理を行ってい る画像処理部8の動作状態を示す。コピー処理用のメモ リ①は2つになり、メモリ②も2つになる。メモリ送信 処理を行っている2つのDSPは、ここでも一定間隔、 即ち、N画素分のデータを処理する毎に、コピー処理の メモリ③の記憶容量、ことでは、格納サイズを演算し、 格納サイズが閾値以下となると、メモリ送信処理を行っ ている2つのDSPのうち、最初にN画素分の処理を終 了したDSPが、メモリ送信処理を終了して、再度コピ 位でメモリ送信処理を待機状態とし(S28)、メモリ 50 一処理時の画像処理プログラムをダウンロードし、合計

3つのDSPでコピー処理を行う、図1 (b) の動作状態に戻る。

【0049】以上のように、本実施の形態の複合画像形成装置1に備えられた画像処理部8では、各DSP21~24がDSP間のコントロールバス11cを介して相互に動作状態を管理し合い、複数のジョブが時間的に重なって発生した場合、先に行っていたジョブの画像処理(ここでは、コピー処理)を問題なく維持できる範囲で、各DSP21~24が画像処理の割り当てを自立的に切り替え、余裕分のDSPにて新たに発生したジョブの画像処理(ここでは、メモリ送信処理)を行い、残りのDSPで先に行っていたジョブの画像処理を続行するようになっている。

【0050】したがって、複数の処理要求が時間的に重なって発生しても、中央処理器に負担をかけることなく、要求される複数の画像処理に対して4つのDSP21~24を効果的に割り当てることができ、各DSP21~24の使用効率を改善して効率的なデジタル信号処理が可能となる。

【0051】また、上記画像処理部8においては、コピ 20 ー処理のパフォーマンスを維持できる範囲を、出力バッファ7bの格納サイズを計算し、これを閾値と比較して決める構成としているが、要は、コピー処理の処理済みデータ量を基に、パフォーマンスを維持できるか否かを判断すれば良い。したがって、出力バッファ7bに格納されているコピー処理の処理済みデータ量が、コピー処理のパフォーマンスを維持できる量を閾値とし、これ以上であれば、新たなジョブに対応する処理にDSPを割り当て、これ未満となった時点で新たなジョブに対応する処理に関り当てたDSPを元のコピー処理に戻すとい 30った構成でもよい。

【0052】尚、上記説明においては、コピー処理とメモリ送信処理とを並列して行う場合を例示しているが、並列する処理はこの限りではなく、かつ、処理の分割数についても2分割以上対応可能である。即ち、コピー処理を4つのDSP21~24で行っていた状態で、上記したメモリ送信処理とプリント処理とを実施する必要が生じた場合は、コピー処理のパフォーマンスを維持できる範囲で、例えば、コピー処理を2つのDSPで行い、残りの2つのDSPで、メモリ送信処理とプリント処理 40とをそれぞれ行うといったように割り付けることも可能である。

【0053】DSPの処理切り替えについても、ととでは、処理済みデータ量により判定を行っているが、入力データ量、入出力データ完了フラグ等の入出力状態を示す条件を用いることも可能である。

【0054】また、ととでは、本発明のデジタル信号処理装置の構成が画像形成装置における画像処理部に適用された形態を例示したが、本発明のデジタル信号処理装置の適用範囲を何ら限定するものではない。

[0055]

【発明の効果】本発明のデジタル信号処理装置は、以上のように、複数のデジタル信号処理器を備えたデジタル信号処理装置において、各デジタル信号処理器は相互に動作状態を管理し合う構成であり、複数の処理要求が時間的に重なって発生した場合、先に行っていた処理要求の信号処理を問題なく維持できる範囲で、少なくとも1つのデジタル信号処理器が新たに発生した処理要求の信号処理を行う一方、残りのデジタル信号処理器が先に行っていた処理要求の信号処理を続行するように、各デジタル信号処理器は、信号処理の割り当てを自立的に切り替える構成である。

10

【0056】したがって、各デジタル信号処理器が互いを管理し合うことで、処理要求が時間的に重なって発生した場合、先に行っていた処理要求に対する信号処理を問題なく維持できる範囲で、各デジタル信号処理器の処理割り当てを自立的に切り替えるため、従来公報の構成のような中央処理器が必要なくなり、中央処理器の処理能力を低下させることもない。

20 【0057】その結果、複数の処理要求が時間的に重なって発生しても、中央処理器に負担をかけることなく、要求される複数の処理信号に対して複数のデジタル信号処理器を効果的に割り当て、デジタル信号処理器の使用効率を改善して効率的なデジタル信号処理が可能となるという効果を奏する。

【0058】また、上記デジタル信号処理装置においては、各デジタル信号処理器が、先に行っていた処理要求の信号処理を問題なく維持できる範囲を、入出力状態を示す条件を基に判断する構成とすることもできる。

0 【0059】とれにより、中央処理器を必要とすることなく、各デジタル信号処理器による自立的な処理割り当てが可能となり、上記した本発明のデジタル信号処理装置を、容易に実現できるという効果を奏する。

【0060】また、上記デジタル信号処理装置においては、各デジタル信号処理器に、処理モードを示す処理モード信号がそれぞれ入力されるよう構成されており、各デジタル信号処理器は、複数の処理要求が時間的に重なって発生したことを、上記処理モード信号の入力により検知する構成とすることもできる。

0 【0061】これにより、中央処理器を必要とすることなく、各デジタル信号処理器による自立的な処理割り当てが可能となり、上記した本発明のデジタル信号処理装置を、容易に実現できるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施の一形態を示すもので、複合画像 形成装置における画像処理部の動作状態を示す説明図で ある。

【図2】上記複合画像形成装置のシステム構成を示すブロック図である。

50 【図3】上記複合画像形成装置に備えられた画像処理部

12

11

のシステム構成を示すブロック図である。

【図4】上記複合画像形成装置に備えられた画像処理部の信号の流れを示すブロック図である。

(図5)上記複合画像形成装置に備えられた画像処理部 における各デジタル信号処理器が、処理を自立的に切り 替える動作の手順を示すフローチャートである。

【図6】上記複合画像形成装置に備えられた画像処理部 における各デジタル信号処理器が、処理を自立的に切り 替える動作の手順を示すフローチャートであって、図5 の続きのフローチャートである。

【符号の説明】

- 1 複合画像形成装置
- 2 システム制御部

*3 スキャナ部

- 4 プリンタインタフェース
- 5 ファクシミリ送受信部
- 6 操作部
- 7 画像バッファメモリ部
- 8 画像処理部 (デジタル信号処理装置)
- 9 プリンタエンジン
- 11 パス
- 13 外部ROM
- 10 21 デジタル信号処理器
 - 22 デジタル信号処理器
 - 23 デジタル信号処理器
- * 24 デジタル信号処理器

【図1】

【図5】

フロントページの続き

(72)発明者 廣畑 仁志

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

(72)発明者 小西 陽介

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

Fターム(参考) 5B045 AA04 CC03 CC05 5C062 AA02 AA05 AB41 AB42 BA04