PARUL UNIVERSITY - FACULTY OF ENGINEERING & TECHNOLOGY

Department of Computer Science & Engineering

Proposed SYLLABUS for 4th Semester

B.Tech PROGRAMME W.E.F. A.Y. 2021-

22

Analysis of Algorithms Laboratory (203124252)

Teaching and Examination Scheme:

Teaching (Hrs.	g Scheme /Week)	•		Examination Scheme					
L	т	Р	Credit	External		Internal			Total
				Theory E	Practical	Theory	*C.E	Practical	
					V	M		P.A	
0	0	2	1	-	30			20	50

List of Practical:

- 1. Implementation and Time analysis of Bubble, Selection and Insertion sorting algorithms for best case, average case & worst case.
- 2. Implementation and Time analysis of Max-Heap sort algorithm.
- 3. Implementation and Time analysis of Merge Sort algorithms for Best case, Average case & Worst case using Divide and Conquer.
- 4. Implementation and Time analysis of Quick-Sort algorithms for Best case, Average case & Worst case using Divide and Conquer.
- 5. The Inversion Problem Program: Given sequence of numbers, which are all distinct, define an inversion pair (i,j) where, i< j such that value of ith index is greater than jth. Let's call a pair a significant inversion i < j and >. Give a conventional approach and solve it then apply divide and conquer algorithm to count the number of significant inversions between two orderings.
- 6. Write a program to solve fractional knapsack problem.
- 7. Implementation and Time analysis of Krushkal's Minimum spanning Tree algorithms.
- 8. Implementation and Time analysis of Prim's Minimum spanning Tree algorithms.
- 9. Write a program to solve 0-1 knapsack problem.
- 10. Implementation and Time analysis of Depth First Search (DFS) Graph Traversal and Breadth First Traversal (BFS) Graph Traversal.