BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE- PILANI, HYDERABAD CAMPUS SECOND SEMESTER 2021-22

Date: 04/01/2021

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE G552

Course Title : Advance Transport Phenomena

Instructor-in-Charge : Prof. Vikranth Kumar Surasani

Description: Viscosity, thermal conductivity and diffusivity, Shell momentum and energy balance, equations of change for isothermal and non-isothermal systems, Concentration distribution in solids and laminar flows, momentum, thermal and concentration boundary layers near walls, origin of turbulence, length scales in turbulent flows, Reynolds (RANS) equations, estimates of Reynolds stress (k-epsilon and k-omega type models), turbulent shear flow near a wall, turbulent flow in pipes and channels, turbulent heat transfer, Introduction to large eddy simulations models, rheology and material functions, non-Newtonian viscosity and generalized Newtonian models, Linear and non-linear viscoelasticity, radiation eat transfer, multi-component systems, Coupled heat and mass transfer, evaporation, boiling and condensation, chemical reactions, Special topics: Flow through porous media, compressible flows, multiphase flow, Transport phenomena in biochemical systems.

1. Scope & Objective

Transport phenomena is one of the basic subjects of chemical engineering and includes study of fluid dynamics, heat and mass transfer. The governing equations for the aforementioned transport processes are analogous in nature as the underlying molecular mechanisms are very closely related. The objective of this course is to cover advance topics in this area like the transport of momentum, heat and mass in turbulent flow, creeping flows, flow through porous media, flow over flat plates and curved surfaces, interphase transport, etc. A balanced overview and fundamental equations for transport processes would be provided along with illustrations regarding solving relevant problems. Further, some special cases which are frequently encountered would also be covered.

2. Text Books

- 1. Bird, Stewart and Lightfoot, 'Transport Phenomena', John Wiley & Sons, 2002, 2nd edition
- 2. Joel Plawsky, "Transport Phenomena Fundamentals", CRC Press, 2010, 2nd edition

3. Reference Books

- 1. L. Gary Leal, "Advanced Transport Phenomena", Cambridge University Press, 2007
- 2. Ronald G. Larson, "The structure and rheology of complex fluids", Oxford University Press, USA, (1999)
- 3. Michael Rubinstein and Ralph H. Colby, "Polymer Physics", Oxford University Press, Oxford, (2003)
- 4. William M. Deen, "Analysis of Transport Phenomena", Oxford University Press, Indian Edition, 2008
- 5. John C. Slattery, "Advanced Transport Phenomena", Cambridge University Press, 1999

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Reference Chap./ Sec. (Book)
		Shell Momentum Balances and	
	Review of Shell Momentum	Boundary Conditions	
1-2	balances, Equations	The Equations of Change in Terms	Ch. 1-3 (T1)
1-2	of change for isothermal	of the Substantial Derivative, Use	CII. 1-3 (11)
	systems	of the Equations of Change to Solve	

		Flow Problems	
	Review of Shell Energy	Shell Energy Balances and	
		boundary conditions, Free and	
3-4	balances, Equations of	forced convection, Use of the	Ch-9-11 (T1)
	change for non-isothermal systems	Equations of Change to Solve	
	systems	Steady-State Problems	
		Shell mass balances, Boundary	
	Review of Concentration	conditions, Diffusion through a	
5-6	Distributions in Solids and	stagnant gas film, with a chemical	Ch-18 (T1)
	in Laminar Flow	reaction, Diffusion and chemical	
		reaction inside a porous catalyst	
	Convective Transport on a	Laminar hydrodynamic, thermal	
7-9	flat plate, Convective	and mass transfer boundary layers,	Ch 12-14 (T2)
	Transport over systems with curvature	flow over cylinders, spheres, turbulent boundary layers	
	Creeping Flow – Two-	Nondimensionalization and the	
	Dimensional and	Creeping-Flow Equations, Two-	
10-12	Axisymmetric Problems,	Dimensional Creeping Flows,	Ch 5.7 (D4)
10-12	Thin gap approximation-	Axisymmetric Creeping Flows,	Ch 5-7 (R4)
	lubrication problem	Basic Equations of Lubrication	
	ruorieuron problem	Theory	
	Velocity Distributions in Turbulent Flow	Time-Smoothed Equations of	
		Change for Incompressible Fluids,	
13-15		The Time-Smoothed Velocity	Ch 5 (T1)
		Profile near a Wall, Empirical Expressions for the Turbulent	Ch. 5 (T1) Ch 13 (R4)
		Momentum Flux, Turbulent flow in	Cli 13 (K4)
		pipes and channels, Eddy	
		diffusivity models	
		Time-Smoothed Equations of	
		Change for Incompressible	
		Nonisothermal Flow, The Time-	
15-17	Temperature distributions in	Smoothed Temperature Profile near	Ch-13 (T1)
	Turbulent flow	a Wall, Empirical Expressions for	, ,
		the Turbulent Heat Flux,	
		Temperature Distribution for Turbulent Flow in Tubes and jets	
		Multicomponent equations of	
10.00	Equations of Change for	change, multicomponent fluxes, use	Ch 19 (T1)
18-20	Multicomponent Systems	of the equations of change for	Ch 11 (R4)
		mixtures	
		Time-smoothing of the equation	
		of continuity, Enhancement of	
21-23	Concentration Distributions	mass transfer by a first-order	Ch 21 (T1)
	in Turbulent Flow	reaction in turbulent flow,	
		Turbulent mixing and turbulent	
		flow with second-order reaction	
	Rheology of complex fluids,	Fundamentals of rheology, types	Ch 1 2 (D2)
24-26	Linear and non-linear	of complex fluids, origins of	Ch 1, 3 (R2)
	viscoelasticity	Non-Newtonian behavior	Ch (R4)
	1	Non-Newtonian viscosity and	
		generalized Newtonian models,	
27-29	Behavior of polymeric melts	elasticity and linear viscoelastic	Ch 8 (T1)
_, _,	John Tor or poryment ments		Ch 8-9 (R3)

		models, unentangled and entangled polymer melts	
30-31	Coupled heat and mass transfer	Coupled diffusion and reaction, coupled heat and momentum transport	Ch 5 (T2)
32-35	Interphase transport in non- isothermal systems and mixtures	Heat Transfer Coefficients for Forced Convection, Free and Mixed Convection, Heat Transfer Coefficients for Condensation of	Ch 14, 22 (T1)
		Pure Vapors on Solid Surfaces, Definition of transfer coefficients in two phases, Effects of interfacial forces on heat and mass transfer	
36-38	Energy transport by radiation	Absorption and emission at solid surfaces, Planck's distribution law, Wien's displacement law, and the Stefan-Boltzmann law, Radiation between non-black bodies at different temperatures	Ch 16 (T1) Ch 15 (T2)
39-41	Special topics: Flow through porous media, multiphase flow, Hydrodynamic Stability	Heat and mass transfer using extended surfaces, diffusion and reaction in catalyst pellets Multidimensional effects, potential functions and fields	Ch 8-9 (T2) Ch 12 (R1)

5. Evaluation Scheme:

EC No.	Component	Duration	Weightage	Date and Time	Remarks
1.	Midterm	90 mins	30%	As per Timetable	СВ
3.	Assignments /Surprise quiz		40%	To be announced by Instructor-In-Charge	ОВ
4.	Comprehensive Exam	2 hrs	30%	As per Timetable	10(CB) +20(OB)

- **6. Chamber Consultation Hour:** To be announced in the class.
- 7. Notices: All notices concerning this course will be uploaded on Moodle.
- **8. Make-up Policy:** Make-up is granted only for genuine cases with valid justification and prior permission of Instructor-in-charge.

	Instructor-in- CHE G552	charg€

9. Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained