Classificação de Estrelas e Galáxias através de Redes Neurais Artificiais

Moésio Wenceslau da Silva Filho¹

¹Departamento de Computação – Universidade Federal Rural de Pernambuco (UFRPE) Recife – PE – Brazil

moesio.wenceslau@ufrpe.br

Resumo. Esse artigo apresenta os resultados da implementação do artigo [Premanand et al. 2023], realizando a mesma análise dos autores e incorporando outras arquiteturas de Redes Neurais Artificias nos experimentos. Em particular, foram treinados diferentes classificadores baseados em Redes Neurais Artificiais para identificar a classe de um dado objeto estelar (estrela ou galáxia) representado através de uma imagem de satélite. As arquiteturas de Rede Neural consideradas foram: (i) CNNs (pré-treinadas e treinadas from scratch); (ii) Redes Recorrentes (LSTM, GRU, e clássica); (iii) Multilayer Perceptrons sem recorrência e/ou convoluções.

1. Introdução

A Cosmologia observacional possui como um de seus pilares a análise de observações astronômicas [de Dios Rojas Olvera et al. 2022]. Tais observações podem ser de diferentes tipos, como imagens de satélites, ondas de rádio, ondas eletromagnéticas, medições astronômicas, dentre outros. Entretanto, com o grande aumento no volume de dados disponíveis as técnicas clássicas de análise se tornam insuficientes [Fluke and Jacobs 2019]. Assim, abordagens de Aprendizado de Máquina estão sendo cada vez mais adotados na literatura [Fluke and Jacobs 2019]. Em particular, Redes Neurais Artificiais (ANNs) vem recebendo maior atenção e obtendo resultados promissores [de Dios Rojas Olvera et al. 2022].

O presente projeto implementou e expandiu o trabalho "Performance Evaluation of Convolutional Neural Networks for Stellar Image Classification: A Comparative Study" [Premanand et al. 2023], onde um estudo experimental com 3 arquiteturas de CNNs (do inglês, Convolutional Neural Networks) é realizado para a classificação de objetos astronômicos. Em particular, os autores desenvolveram um dataset formado por imagens de satélites de estrelas e galáxias, e CNNs foram utilizadas para classificação de tais imagens.

Dessa forma, nesse projeto foi utilizado o mesmo dataset¹ para o treinamento e avaliação de 10 classificadores baseados em Redes Neurais Artificias com diferentes arquiteturas. Os resultados foram promissores, com alguns modelos obtendo performance superior ao melhor classificador em [Premanand et al. 2023].

¹https://www.kaggle.com/datasets/divyansh22/dummy-astronomy-data/
data

2. Arquiteturas de Redes Neurais Artificiais

Essa seção contém os conceitos básicos das arquiteturas selecionadas. De acordo com [Du and Swamy 2019], a arquitetura de uma Rede Neural Artificial é representada através da matriz dos pesos de conexão entre neurônios $\boldsymbol{W} = [w_{i,j}]$, onde $w_{i,j}$ representa o peso do neurônio i para o j. Ainda de acordo com os autores, podemos classificar as arquiteturas de ANNs em 2 grandes grupos: (i) Redes Feedforward; (ii) Redes Recorrentes.

2.1. Multilayer Perceptron (MLP)

Figura 1. Arquitetura geral de um MLP. [Du and Swamy 2019]

A arquitetura MLP é uma das mais comuns para redes *feedforward*. A Figura 1 contém uma esquematização geral dessa arquitetura. A característica geral dessa é a presença de uma ou mais *camadas escondidas* entre as entradas e saídas.

2.2. Recurrent Neural Network (RNN)

Figura 2. Célula recorrente clássica. [Yu et al. 2019]

Redes recorrentes possuem uma grande diferença das redes *feedforward*: a presença de uma conexão cíclica entre suas saídas e entradas. Essa característica

permite aprender relacionamentos em dados sequenciais (e.g., vídeo, áudio, textos) [Li et al. 2020]. A Figura 2 contém um exemplo de uma célula recorrente clássica.

Na literatura, são propostas diferentes células que implementam recorrência. As mais conhecidas são: (i) clássica (i.e., *sigma-cells*); (ii) Gated recurrent unit (GRU); e (iii) Long short-term memory (LSTM).

2.3. Convolutional Neural Network (CNN)

Figura 3. Operação de convolução 2D. [Li et al. 2020]

As redes convolucionais são uma escolha popular de redes *feedforward*, principalmente para aplicações de Visão Computacional e processamento de imagens. A Figura 3 demonstra o funcionamento básico da operação de convolução.

Na literatura, foram propostas diversas de arquiteturas de CNNs. Algumas consideradas clássicas para problemas de classificação [Li et al. 2020] são:

- 1. Redes VGG (2014)
- 2. ResNet (2015)
- 3. Inception v2 (2016)
- 4. Inception v4 (2017)
- 5. DenseNet (2017)
- 6. ResNetX (2017)
- 7. MobileNet v2 (2018)
- 8. MobileNet v3 (2019)

3. Metodologia e Materiais

Essa seção apresenta o dataset, arquiteturas implementadas e o método de avaliação selecionado. Cabe ressaltar que todas as escolhas se basearem no trabalho de [Premanand et al. 2023].

3.1. Dataset

O dataset considerado em [Premanand et al. 2023] possui um total de 3986 imagens classificadas em Star e Galaxy. Todas as imagens possuem resolução 64×64 e são carregadas considerando o espaço RGB. A Figura 4 contém a distribuição das classes, onde é possível perceber que esse conjunto de dados é extremamente desbalanceado.

A Figura 5 contém exemplos de algumas instâncias do dataset. Uma característica geral das imagens é a presença de *ruído*. Técnicas de processamento de imagens podem

Figura 4. Distribuição das classes no dataset completo.

Figura 5. Exemplos das imagens presentes no dataset.

ser aplicadas para reduzir o ruído e mensurar o impacto na tarefa de classificação, todavia essa análise foge do escopo do presente projeto.

Para permitir uma comparação justa entre os diferentes classificadores, foram definidos splits de treinamento (70%, 2790 instâncias) e testes (30%, 1196 instâncias). A distribuição das classes é similar entre os splits, mais detalhes podem ser encontrados no código disponibilizado no GitHub.

3.2. ANNs para Classificação de Imagens

Para os experimentos, foram consideradas 11 variações de ANNs com diferentes arquiteturas. A Tabela 1 contém uma breve descrição para cada uma dessas variações. Mais detalhes de arquitetura se encontram disponíveis no código disponibilizado no GitHub.

Todas as redes foram treinadas utilizando *Backpropagation* ou *Backpropagation* through time (BPTT) no caso das RNNs. O mesmo algoritmo de otimização foi utilizado para todas elas: AdamWA com taxa de aprendizado 0.001. O batch size também foi o mesmo: 32 instâncias. No caso das redes pré-treindas, o fine-tuning foi realizado na rede completa e com adição/modificação da cabeça de classificação.

Para utilizar as MLPs para classificação das imagens, foi-se utilizada uma es-

Rede	Descrição							
CNN_1	CNN simples, 4 camadas, pesos aleatórios, Max pooling.	25						
$\overline{\text{CNN}_2}$	CNN simples, 4 camadas, pesos aleatórios, Max pooling.	15						
DenseNet-121	7.9 milhões de parâmetros, pré-treinado no ImageNet-1K.	10						
ResNet-18	11.4 milhões de parâmetros, pré-treinado no ImageNet-1K.	10						
VGG-16	138 milhões de parâmetros, pré-treinado no ImageNet-1K.	10						
ConvNeXt $_{base}$	659 milhões de parâmetros, pré-treinado no ImageNet-1K.	15						
RNN	RNN clássica, 4 camadas, estado escondido com 64 dimensões.	25						
GRU	GRU, 4 camadas, estado escondido com 64 dimensões.	25						
LSTM	LSTM, 4 camadas, estado escondido com 64 dimensões.	25						
MLP ₁	MLP simples, 3 camadas, pesos aleatórios.	25						
MLP ₂	MLP simples, 3 camadas, pesos aleatórios.	25						

Tabela 1. Arquitetura das ANNs experimentadas.

tratégia de *flatten*. Ou seja, dada uma imagem 64×64 com 3 canais, a MLP recebe como entrada um vetor com $64 \times 64 \times 3 = 12288$ dimensões.

Já para as RNNs, uma estratégia similar foi adotada, entretanto não é necessário realizar o *flatten* de todas as dimensões da imagem. Em especial, as RNNs recebem como entrada um sequência de $64 \times 3 = 192$ vetores com tamanho 64 cada. Uma explicação intuitiva é que as RNNs recebem cada *linha* da imagem para cada um dos canais. Essa estratégia foi adotada de forma empírica e outras estratégias podem ser comparadas em trabalhos futuros.

3.3. Método de Avaliação

Para avaliar os diferentes classificadores, as métricas clássicas de classificação serão adotadas: F_1 -score, precisão e recall. Em particular, as métricas serão calculadas para cada uma das classes bem como suas médias (macro, micro e ponderado). Nesse contexto, o objetivo dos classificadores é obter boas métricas para ambas as classes. Além disso, os valores para métrica acurácia são disponibilizados no código do GitHub.

4. Resultados e Discussão

A Tabela 2 contém as métricas de avaliação para cada classe e suas respectivas médias. As siglas M e W se referem às médias macro e weighted (ponderado) respectivamente.

Dos resultados, conseguimos perceber que as abordagens CNN_1 e CNN_2 obtiveram os melhores resultados. Em particular, a CNN_2 alcançou as melhores métricas em 8 das 12 métricas calculadas, podendo ser considerada a melhor rede dentre as experimentadas.

De qualquer forma, é possível notar que as redes, no geral, tiveram dificuldade em lidar com o desbalanceamento do dataset. Em alguns casos, algumas redes não foram capazes de reconhecer nenhuma das instâncias da classe Galaxy (e.g., VGG-16, LSTM).

	Precisão				Recall				F_1 -score			
	Star	Galax	$_{ m Y}$ M	W	Star	Galax	y M	W	Star	Galax	y M	W
\mathtt{CNN}_1	0.897	0.840	0.869	0.883	0.959	0.662	0.869	0.886	0.927	0.740	0.834	0.881
\mathbf{CNN}_2	0.927	0.777	0.852	0.890	0.928	0.775	0.851	0.890	0.928	0.776	0.852	0.890
DenseNet-121	0.917	0.754	0.836	0.877	0.921	0.744	0.833	0.878	0.919	0.749	0.834	0.878
ResNet-18	0.901	0.744	0.823	0.862	0.924	0.686	0.805	0.865	0.912	0.714	0.813	0.863
VGG-16	0.755	0.000	0.378	0.570	1.000	0.000	0.500	0.755	0.860	0.000	0.430	0.650
${\tt ConvNeXt}_{base}$	0.839	0.833	0.836	0.838	0.972	0.427	0.699	0.839	0.901	0.564	0.733	0.819
RNN	0.751	0.225	0.488	0.671	0.844	0.140	0.492	0.671	0.795	0.173	0.484	0.643
GRU	0.889	0.727	0.808	0.849	0.921	0.645	0.783	0.854	0.905	0.684	0.794	0.851
LSTM	0.755	0.000	0.378	0.570	1.000	0.000	0.500	0.755	0.860	0.000	0.430	0.650
\mathtt{MLP}_1	0.780	0.444	0.612	0.697	0.918	0.201	0.560	0.742	0.843	0.277	0.560	0.705
\mathtt{MLP}_2	0.797	0.404	0.601	0.701	0.835	0.345	0.590	0.715	0.816	0.372	0.594	0.707

Tabela 2. Resultados das diferentes arquiteturas no conjunto de testes. M significa a média macro e W a ponderada.

No geral, é possível perceber que as abordagens baseadas em CNN alcançaram resultados mais promissores. Isso é esperado, visto que tais arquiteturas costumam obter os melhores resultados para problemas relacionados com o processamento de imagens.

Ademais, os resultados indicam que considerar apenas a acurácia média como feito em [Premanand et al. 2023] não é uma opção viável, já que tal valor não reflete o desempenho do classificador na classe minoritária. O melhor modelo obtido neste projeto (i.e., CNN_2) obteve uma acurácia macro de 85.138% e ponderada de 89.047%, superando os melhores resultados reportados no artigo supracitado.

Todavia, é importante ressaltar que o projeto atual ainda possui limitações. Uma delas é o uso de estratégias de processamento de imagens para lidar com os ruídos inerentes das observações. Outro seria considerar técnicas para lidar com o desbalanceamento do dataset (e.g., peso na função de perda, nova função de perda), buscando mitigar a dificuldade observada no treinamento dos modelos. Além disso, também fazem-se necessários novos experimentos para compreender o impacto do pesos pré-inicializados no ImageNet-1K, já que tal dataset não possui classes relacionadas com observações astronômicas.

Referências

- de Dios Rojas Olvera, J., Gómez-Vargas, I., and Vázquez, J. A. (2022). Observational cosmology with artificial neural networks. *Universe*, 8(2):120.
- Du, K.-L. and Swamy, M. N. S. (2019). Neural Networks and Statistical Learning. Springer London.
- Fluke, C. J. and Jacobs, C. (2019). Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. WIRES Data Mining and Knowledge Discovery, 10(2).
- Li, Z., Yang, W., Peng, S., and Liu, F. (2020). A survey of convolutional neural networks: Analysis, applications, and prospects.
- Premanand, N., VG, T., Pawar, S., DN, J., Utsav, S, D., J, J., and M, V. (2023). Performance evaluation of convolutional neural networks for stellar image classification: A comparative study. In 2023 International Conference on Data Science and Network Security (ICDSNS). IEEE.
- Yu, Y., Si, X., Hu, C., and Zhang, J. (2019). A review of recurrent neural networks: Lstm cells and network architectures. *Neural Computation*, 31(7):1235–1270.