Chimie analytique quantitative et fiabilité

Élément imposé : Dosage conductimétrique par étalonnage

Matthieu CORNILLAULT

Bibliographie:

- <u>Terminale enseignement de spécialité physique-chimie</u>, édition Belin éducation, 2020 (dosage du sérum physiologique)
- <u>Épreuves orales de chimie CAPES/Agrégation</u>, F. PORTEU-DE-BUCHÈRE, Dunod, 2019 (pour les incertitudes, les idées de manipulations et la comparaison des deux dosages)
- Des expériences de la famille Réd-Ox, 2e édition, De Bœck, 2011 (dosage de la vitamine C)

<u>Chimie analytique :</u>

- analyse des produits d'une réaction
- identification et caractérisation d'une espèce
 - → quantité d'une espèce dans un constituant

Techniques utilisées pour de nombreux objets :

- contrôle de la qualité de produits
- problèmes d'environnement
- diagnostic médical
- connaissance d'un produit de base
- expertise légal
- recherche en laboratoire

Échelle de concentration obtenue à partir d'une solution mère de $Na^+_{(aq)}$, $Cl^-_{(aq)}$ de concentration $C_{mère} = 40,0$ mmol/L

Solutions filles V _{fille} = 100mL	S1	S2	S3	S4	S 5	S 6
Volume de la solution mère V _{mère} (mL)	2,5	5,0	10,0	15,0	20,0	25,0
Concentration de la solution fille C _{fille} (en mmol/L)	1,0	2,0	4,00	6,00	8,00	10,0

Cas d'une mesure unique (incertitude de type B) :

La valeur estimée de x est la valeur mesurée. Ensuite, on estime l'incertitude-type u(x): - pour une indication de tolérance ou de précision $\pm a$:

$$u(x) = a / sqrt(3),$$

- pour une lecture sur un appareil avec une graduation = 2a :

$$u(x) = 1$$
 graduation / $sqrt(12) = a / sqrt(3)$,

- pour une lecture sur un appareil numérique dont la résolution est q = 2a:

$$u(x) = q / (2*sqrt(3)) = a / sqrt(3).$$

L'incertitude de mesure U(x) est alors

$$U(x) = k u(x)$$

où k est un facteur d'élargissement associé à un niveau de confiance. Pour un niveau de confiance à 95%, on prend généralement k = 2.

Propagation des incertitudes :

- si A = bB + cC, avec b et c des constantes,

$$u(A) = sqrt(b^2u(B)^2 + c^2u(C)^2)$$

- si A = bBC/D, avec b une constante,

$$u(A) / A = sqrt((u(B) / B)^2 + (u(C) / C)^2 + (u(D) / D)^2)$$

Cas d'une mesure répétée un grand nombre de fois (incertitude de type A) :

Soit une grandeur x dont on fait N mesures x_i dans des conditions de répétabilité. La *valeur estimée de x* est la *moyenne arithmétique* des mesures :

$$x_{mes} = 1 / N sum_{i=1}^N x_{i}$$
.

L'écart type expérimental est

$$\sigma_{N-1} = sqrt (1/(N-1) sum_{i=1}^N (x_i - x_{mes})).$$

L'incertitude-type est

$$u(x) = \sigma_{N-1} / sqrt(N) .$$

Types de dosage	Dosage par étalonnage	Dosage par titrage		
Grandeurs physiques utilisées	Potentiel, conductivité ou absorbance	Potentiel (ou pH), conductivité ou couleur		
Besoins	Relation simple (linéaire) entre une grandeur physique mesurable et la concentration de l'espèce à doser Substance de référence pour effectuer la courbe d'étalonnage Concentration de la solution inconnue dans la gamme de l'étalon (dilution) Rester dans le domaine de validité de la relation	Réaction de support de titrage quantitative, rapide et unique (pour les 3 types : direct, indirect et en retour) Variation brusque de la grandeur physique utilisée au moment de l'équivalence		
Espèce dosée après le dosage	Non détruite	Détruite		