Ain Shams University

Faculty of Engineering

Mechatronics Engineering Department

Industrial Robotics (MCT344s)

2-DOF robotic arm project

<u>Name</u>	Ū
Alaa Elsayed Metwally Mohamed	1809361
Ahmed Yasser Ahmed Abdelhamid	1804679
Ali Abdelhakem Mahmod Hussin	1805347
Mohamed Emad Mohamed Hussien	1802245
Mohamed Emad Mohamed Moslem	1806770
Mohamed Abdulaziz Farrag Ahmed	1805858

List of contents:

1. Project description 3
2. Control analysis for equations 4
2.1. Forward position
2.2. Forward velocity 5
2.3. Inverse velocity 5
2.4. Forward acceleration 5
2.5. Inverse acceleration 6
3. The Control Block Diagram 6
4. MATLAB Simulation 7
4.1. Trajectory planning 7
4.2. Inverse Kinematics 7
4.3. Mechanical model multibody 8
4.4. Forward Kinematics 8
5. Overall real hardware system picture9
6. Components 10
7. Reference 11

1. Project description

- A 2-Degree-of-Freedom (DoF) Robot Arm simulation is developed to give us more freedom to determine the robot movement so that the trial and error cycle can be avoided. Furthermore, the results of the simulation can be applied to SCARA robot for practical implementation.
- For a servo plotter to work, each motor must resist the torque from the opposite motor.
- An ideal servo should hold its position if it experiences an external torque ... in practice there is a slight movement or "dead-band" until the servo resists.
- Inverse kinematics requires complex mathematical analysis, especially in the higher degree of freedom (DoF). Taking an example of 2-DoF forward kinematics analysis depicted with a kinematic trigonometric diagram on figure 1. The equation to calculate the end effector point are given in equation 1 through equation 4

$$x_1 = L_1 \cos \theta_1 \tag{1}$$

$$y_1 = L_1 \sin \theta_1 \tag{2}$$

$$x_2 = x_1 + L_2 \cos\left(\theta_1 + \theta_2\right) \tag{3}$$

$$y_2 = y_1 + L_2 \sin(\theta_1 + \theta_2) \tag{4}$$

2. Control analysis for equations

RR Robot

Feel Pos.

$$\mathcal{L}_{EE} = L_1 \cos \gamma_1 + L_2 \cos (\gamma_2 + \gamma_1)$$

$$\mathcal{L}_{EE} = L_1 \sin \gamma_1 + L_2 \sin (\gamma_2 + \gamma_1)$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial y}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial y}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial y}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial y}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial y}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial y}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial x}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} + \frac{\partial y}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma_2}$$

$$\mathcal{L}_{EE} = \frac{\partial x}{\partial \gamma_1} * \frac{\partial \gamma_1}{\partial \gamma_2} * \frac{\partial \gamma_2}{\partial \gamma$$

$$\begin{bmatrix}
\dot{x}_{EE} \\
\dot{y}_{EE}
\end{bmatrix} = \begin{bmatrix}
-l_1 & Sq_1 - l_2 & S(q_1 + q_2) & -l_2 & C(q_1 + q_3) \\
l_1 & Cq_1 + l_2 & C(q_1 + q_2) & l_2 & C(q_1 + q_3)
\end{bmatrix}
\begin{bmatrix}
\dot{q}_1 \\
\dot{q}_2
\end{bmatrix} = T^{-1} \begin{bmatrix}
\dot{x}_{EE}
\end{bmatrix}
\begin{bmatrix}
\dot{q}_1 \\
\dot{q}_3
\end{bmatrix} = T^{-1} \begin{bmatrix}
\dot{x}_{EE}
\end{bmatrix}
\begin{bmatrix}
\dot{q}_1 \\
\dot{q}_3
\end{bmatrix} = T^{-1} \begin{bmatrix}
\dot{x}_{EE}
\end{bmatrix}
\begin{bmatrix}
\dot{q}_1 \\
\dot{q}_3
\end{bmatrix} = T^{-1} \begin{bmatrix}
\dot{x}_{EE}
\end{bmatrix}
\begin{bmatrix}
\dot{q}_1 \\
\dot{q}_3
\end{bmatrix} = T^{-1} \begin{bmatrix}
\dot{q}_1 \\
\dot{q}_2
\end{bmatrix} = T^{-1} \begin{bmatrix}
\dot{q}_1 \\
\dot{q}_3
\end{bmatrix} + T^{-1} \begin{bmatrix}
\dot{q}_1 \\
\dot{q}_3
\end{bmatrix} + T^{-1} \begin{bmatrix}
\dot{q}_1 \\
\dot{q}_2
\end{bmatrix} + T^{-1} \begin{bmatrix}
\dot{q}_1 \\
\dot{q}_2$$

Inv
$$Acc$$

$$\overset{\sim}{\Sigma}_{EF} = J\ddot{\gamma} + \dot{\gamma}\dot{\gamma}$$

$$\Longrightarrow \ddot{\gamma} = J^{-1} \left[\overset{\sim}{\Sigma}_{EE} - \dot{\gamma}\dot{\gamma} \right]$$

$$\begin{bmatrix} \ddot{\gamma}_{i} \\ \ddot{\gamma}_{i} \end{bmatrix} = \frac{1}{|\mathcal{T}|} \int_{-l_{1}}^{l_{2}} C(\theta_{i} + \theta_{i}) \quad l_{1} \leq \theta_{i} + l_{2} \leq \theta_{i} + \theta_{i} \\
 \ddot{\gamma}_{EF} \end{bmatrix} - \dot{\gamma} \begin{bmatrix} \dot{\gamma}_{i} \\ \dot{\gamma}_{i} \end{bmatrix}$$

$$\begin{bmatrix} \overset{\sim}{\Sigma}_{EF} \\ \overset{\sim}{\Sigma}_{EF} \end{bmatrix} - \dot{\gamma} \begin{bmatrix} \dot{\gamma}_{i} \\ \dot{\gamma}_{i} \end{bmatrix}$$

3. The Control Block Diagram:

4. MATLAB Simulation

4.1 Trajectory planning

4.2 Inverse Kinematics

```
hold.m × getLine.m × plotRobot.m × idsimulation.m × axis.m × RR_Multibody Emad × Inverse Kinematics × +
     ☐ function [Theta1, Theta2] = InverseKinematics(Xd, Yd)
 2
 3 -
      11 = 1;
      12 = 1;
 4 -
 5
      Theta2 = acos((Xd^2 + Yd^2 - 11^2 - 12^2)/(2*11*12));
 6 -
 7
 8 -
       s_Theta2 = sin(Theta2);
 9 -
      c Theta2 = cos(Theta2);
10
11 -
      Theta1 = atan2(Yd, Xd) - atan2(12*s_Theta2,(11+12*c_Theta2));
12
13
Command Window
```

4.3 Mechanical model in multibody

4.4 Forward Kinematics

```
Editor - Forward kinematics

    ★ Mechanics Explorers - Mechanics Explorer-Final_RR_Multibody

   +5 plotRobot.m × idsimulation.m × axis.m × RR_Multibody Emad × Inverse Kinematics × Forward kinematics × +
        ☐ function [X,Y] = Forwardkinematics (Theta1, Theta2)
   3 -
          11 = 1; %Chieu dai cua link 1 l1 = 1(m)
   4 -
          12 = 1;
   5
          T10 = [\cos(Theta1), -\sin(Theta1), 0, 11*\cos(Theta1);
   6 -
                  sin(Theta1), cos(Theta1), 0, 11*sin(Theta1);
   7
   8
                  0,
                              0,
                                              1,
                               0,
                                              0,
   9
                  0,
                                                        1];
  10
  11 -
          T21 = [\cos(Theta2), -\sin(Theta2), 0, 12*\cos(Theta2);
                  sin(Theta2), cos(Theta2), 0, 12*sin(Theta2);
  12
  13
                  0,
                              0,
                                              1,
                                                      0;
  14
                              0,
                                              0,
                                                       1];
  15
  16 -
          T20 = T10*T21;
  17
  18 -
          X = T20(1,4);
         Y = T20(2,4);
  19 -
  20
  21
  22
  23
  24
  Command Window
```

5. Overall real hardware system picture

6. Components

Name & Its Function	Picture
1 .Arduino uno: is able to read inputs and turn it into an output	SESTIMATE OF THE PROPERTY OF T
2. Servo motors: it transmits the rotation movement by angle	
3. Breadboard : allows for easy and quick creation of temporary electronic circuits or to carry out experiments with circuit design.	
4. Links: Two 100-mm links used to transmit the rotation movement of motors into writing commands by connecting between them	
5. Wires: used to create the circuit of the system and connect the components with each other	

Reference ps://www.instructables.com/Servo-Plotter/	
ps://www.instructables.com/Servo-Plotter/	