1

Signals and Systems - Gate2023-EE-Q46

EE23BTECH11014- Devarakonda Guna vaishnavi

Question Consider the state-space description of an LTI system with matrices

$$A = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C = \begin{pmatrix} 3 & -2 \end{pmatrix}, D = \begin{pmatrix} 1 \end{pmatrix}.$$

For the input, $\sin(\omega t)$, $\omega > 0$, the value of ω for which the steady-state output of the system will be zero, is ______ (Round off to the nearest integer). (GATE EE 2023)

Solution:

The state-space representation of the system is given by:

Parameter	Value
System Matrix, A	$\begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$
Input Matrix, B	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
Output Matrix, C	(3 -2)
Feedthrough Matrix, D	(1)
Input Signal, <i>u</i> (<i>t</i>)	$\sin(\omega t), \ \omega > 0$
TABLE 1	

INPUT PARAMETERS

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

$$y(t) = Cx(t) + Du(t) \tag{2}$$

Transfer function given by:

$$T.F = C(sI - A)^{-1}B + D \tag{3}$$

$$\begin{pmatrix} sI - A \end{pmatrix} = \begin{pmatrix} s & -1 \\ 1 & s + 2 \end{pmatrix} \tag{4}$$

$$(sI - A)^{-1} = \frac{1}{s(s+2)+1} \begin{pmatrix} s+2 & 1\\ -1 & s \end{pmatrix}$$
 (5)

Referencing from equation (5), equation (3) becomes

$$T.F = \left(\frac{3}{s^2 + 2s + 1} - \frac{-2}{s^2 + 2s + 1}\right) \begin{pmatrix} s + 2 & 1\\ -1 & s \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} + 1 \tag{6}$$

$$= \left(\frac{3}{s^2 + 2s + 1} - \frac{-2}{s^2 + 2s + 1}\right) \binom{1}{s} + 1 \tag{7}$$

$$=\frac{s^2+4}{s^2+2s+1}\tag{8}$$

$$H(s) = T.F (9)$$

$$H(s) = \frac{s^2 + 4}{s^2 + 2s + 1} \tag{10}$$

Substituting $s = j\omega$ in equation (10),

$$H(j\omega) = \frac{4 - (\omega)^2}{1 + 2j\omega - (\omega)^2}$$
(11)

Steady state output of system is zero:

$$4 - (\omega)^2 = 0 \tag{12}$$

$$\omega = 2 \text{ rad/sec}$$
 (13)