Capítulo 6

Redes IP e o Transporte de Dados Multimidia

Roberto Willrich INE-CTC-UFSC

Redes IP e o Tráfego Multimídia

- Conteúdo do capítulo
 - Protocolo IP e a Multimídia
 - Requisitos de Protocolos de Transporte
 - Protocolo TCP
 - Protocolo UDP

Protocolo IP e a Multimídia

- Versões do Protocolo IP
 - IPv4
 - Versão amplamente usada nas redes IP atuais
 - Endereços de rede de 32 bits
 - IPv4 Multicast
 - Extensão do IPv4 provendo comunicação multicast
 - IPv6
 - Endereços de rede de 128 bits
 - Novas características

IPv4 e a Multimídia

- Oferece um serviço do tipo "Melhor Esforço"
 - Não garante vazão, atraso, variação de atraso e taxa de perdas de pacotes
 - Não garante a qualidade de apresentação de áudio e vídeo
 - No caso de sobrecarga a rede pode descartar pacotes
 - geralmente a perda de pacotes ocorre nas filas dos roteadores IP.

Uma versão do protocolo Internet IP

- IETF decidiu em 1992 desenvolver uma nova versão do IP pois o espaço de endereçamento disponível do IPv4 está se esgotando no início do século 21
- Projetado para ser um passo evolucionário do IPv4
 - aumento do espaço de endereçamento, autenticação e criptografia
 - extensões para fluxos de dados multimídia

Características

- IPv6 é baseado nos principais paradigmas do IPv4
 - sem conexão, sem controle de erro e de fluxo na camada de rede
 - oferece serviço melhor esforço

Formato do cabeçalho IPv6

•	Version	Único campo	idêntico ac	IPv4.	Código é 6	em IPv6
---	---------	-------------	-------------	-------	------------	---------

- **Traffic Class** Facilita manipulação do tráfego tempo real
- **Flow Label** Distingue pacotes requerendo o mesmo tratamento
- Payload Length Substitui campo length do IPv4. Dá o tamanho do dado seguindo o cabeçalho IPv6
- **Next Header** Substitui campo *protocol* do IPv4. Cabeçalhos de extensão pode ser usado.
- **Hop Limit** Substitui campo *TTL* do IPv4. Limite de hop reflete melhor o uso.
- **Src Address** 128 bits no IPv6 vs 32 bits no IPv4.
- **Dst Address** 128 bits no IPv6 vs 32 bits no IPv4.

Características

- Suporte a bilhões de hosts, através da expansão do espaço de endereçamento e mais níveis na hierarquia
 - espaço de endereçamento de 128 bits (IPv4 é 32 bits)
- Permissão de multicasting
 - campo scope no endereçamento limita o seu domínio de validade
- Redução da tabela de roteamento e melhorias no roteamento (incluindo hosts móveis)
 - Recursos para mobilidade em redes IP
- Protocolo passível de expansão, através do uso de cabeçalhos de extensão;

Novas Características

- Campo flow label no cabeçalho permite a identificação de todos os pacotes de um mesmo fluxo de dados
 - fluxo é uma sequência de pacotes enviados por um host para um endereço unicast ou multicast
 - todos os roteadores no caminho podem identificar os pacotes de um fluxo e tratar eles de um modo específico ao fluxo
 - Por exemplo, eles podem escalonar pacotes de um fluxo de áudio com uma mais alta prioridade que aqueles pertencente a um fluxo de transferência de arquivo

Novas Características

- Simplificação do cabeçalho do protocolo
 - diminui tempo de processamento na análise dos cabeçalhos
 - Mas sobrecarga do cabeçalho aumentou (20 bytes no IPv4 para 40 bytes no IPv6)
- Garantia de mais segurança
 - autenticação e criptografia
- Um novo tipo de endereço chamado anycast
 - identifica um conjunto de nós
 - pacote enviado para um endereço anycast será entregue a um destes nós

IPv6 e a Multimídia

Problemas

- Oferece o mesmo servi
 ço do IPv4: "melhor esfor
 ço"
 - Não garantindo a qualidade de apresentação da mídia devido a falta de garantias de taxa, atraso, jitter e taxa de perda
- Aumenta a sobrecarga do protocolo (cabeçalho de 20 Bytes do IPv4 para 40 Bytes no IPv6

Vantagens

- Multicast nativo no protocolo IPv6
- Melhorias em sistemas móveis, possibilitando o funcionamento de aplicações multimídia móveis
- Melhoria na segurança do tráfego multimídia

Requisitos para Protocolos de Transporte Multimídia

- Aplicações utilizam a rede via protocolos de transporte
 - fornece funções e serviços necessários às aplicações
 - usando protocolos de níveis mais baixo e a rede física
- Requisitos:
 - alta vazão
 - suporte multicast

Alta Vazão

- Dados multimídia necessitam grande largura de banda
 - Vídeo de qualidade compactado necessita cerca de 1.4 a 8 Mbps (ou mais)
- Do ponto de vista da aplicação
 - Todos os dados passam pela pilha de transporte
 - protocolo de transporte deve ser rápido suficiente para suportar requisito de grande largura de banda
 - Aplicações podem envolver vários fluxos de dado
 - velocidade do protocolo de transporte deve ser maior que a largura de banda agregada destes fluxos

Alta Vazão

- Dados multimídia necessitam grande largura de banda
 - Vídeo de qualidade compactado necessita cerca de 1.4 a 8 Mbps (ou mais)
- Do ponto de vista do sistema de comunicação
 - vazão de um protocolo de transporte deve ser maior ou próxima a velocidade de acesso a rede
 - senão a largura de banda fornecida pelos pontos de acesso a rede não poderiam ser inteiramente usados
 - protocolo de transporte seria o gargalo no sistema de comunicação

Capacidades Multicast

- Muitas aplicações multimídia exigem multicast
 - necessitam de capacidades multicast do sistema de transporte
- Multicast é implementado na camada de rede
 - muitos sistemas de transporte multimídia usam o algoritmo IP multicast ou assumem a existência de certos algoritmos de roteamento multicast

Arquitetura TCP/IP

- Projetado para comunicação de dados confiável em redes de baixa largura de banda e altas taxas de erro
 - não otimizados para operações de alta velocidade
 - não fornecem suporte a multicast
 - não atende todos os requisitos para comunicações de vários tipos de aplicações multimídia

Aspectos indesejáveis para multimídia

- controle de erro
- controle de fluxo e de congestionamento
- Não suporte a multicast

- Controle de erro
 - Cabeçalho TCP:

Controle de Erro

- Quando uma entidade TCP transmite um segmento
 - Ela coloca uma cópia do segmento em uma fila de retransmissão e dispara um temporizador
 - Caso o reconhecimento do segmento é recebido
 - o segmento é retirado desta fila
 - Caso o reconhecimento n\u00e3o ocorra antes do temporizador expirar
 - Segmento é retransmitido

TCP: Cenários de retransmissão

TCP: Cenários de retransmissão

- Exemplo no cenário de VoIP
 - Um pacote de voz a cada 20ms
 - Atraso de ida e volta de 60ms

Protocolos de Transporte TCP

- Controle de Erro e a Multimídia
 - Retransmissão não é ideal para várias aplicações multimídia
 - implementação de estratégias de retransmissão necessitam temporizadores e buffers grandes
 - tornam o protocolo complicado e lento
 - dados multimídia toleram algum erro ou perda
 - retransmissão causa atrasos para dados subseqüentes
 - resulta em mais dados sem utilidade no receptor
 - Aplicável apenas para aplicações baseadas em servidor
 - Para aumentar a qualidade
 - Requer tempos de bufferização maiores

Protocolos de Transporte TCP

- Controle de Erro e a Multimídia
 - Para várias aplicações multimídia
 - somente a detecção de erros deve ser fornecida
 - na detecção de um erro, a aplicação deveria ser notificada e é ela que deveria decidir a providência necessária
 - Uma alternativa para melhorar a qualidade da mídia é a codificação Forward Error Correction (FEC)
 - informações extras são enviadas para permitir correções de erro no receptor sem necessidade de retransmissão
 - problema desta solução é o consumo adicional de largura de banda

Recuperação de Perdas de Pacote

- Mixar fluxos de alta e baixa qualidade
 - Na perda de um pacote, a informação de mais baixa qualidade é apresentada

Recuperação de Perdas de Pacote

- Mixar fluxos de alta e baixa qualidade
 - Ocorre um aumento da taxa de bits
 - Perdas em rajada não são muito bem tratadas
 - Requer aumento do tempo de buferização

Recuperação de Perdas de Pacote

Entrelaçamento

- Não tem redundância, mas pode causar um atraso na apresentação
- Divide 20ms de áudio em unidades de 5ms cada e entrelaçadas
- Reduz a perda em rajada

Controle de Fluxo

- TCP provê mecanismo para que o transmissor possa determinar o volume de dados que o receptor pode acolher
 - Baseia-se no envio, junto com o reconhecimento, do número de octetos que o receptor tem condições de enviar contados a partir do último octeto da cadeia de dados recebido com sucesso
 - O tamanho da janela de recepção (RcvWindow)

- Controle de fluxo
 - Cabeçalho TCP:

Controle de Fluxo

- TCP provê mecanismo para que o receptor possa determinar o volume de dados que o transmissor pode lhe enviar
 - Baseia-se no envio, junto com o reconhecimento, do número de octetos que o receptor tem condições de receber contados a partir do último octeto da cadeia de dados recebido com sucesso
 - O tamanho da janela de recepção (RcvWindow)

- Controle de Fluxo
 - Tamanho típico da janela é de 64 KB
 - Muito grande para redes lentas
 - rede de 64 Kbps leva 8s para transmitir 64kbytes
 - atraso de ida-e-volta normal é muito menor que 8s
 - transmissor receberá um reconhecimento antes de acabar o envio dos bits de uma janela
 - Controle de fluxo não terá efeito

Controle de Fluxo

- Tamanho típico da janela é de 64 KB
- Muito pequeno para redes de alta velocidade
 - transmissor aguardará muito para receber a permissão de transmissão
 - largura de banda não é inteiramente utilizada
 - transmissor enviará 64 Kbytes em 50 ms na velocidade de 10 Mbps
 - em WAN o atraso ida-e-volta é normalmente muito maior que 50 ms

- Controle de Congestionamento
 - Informalmente: "Excessivo número de fontes enviando grande quantidade de dados mais rápido que a rede possa manipular"
 - Manifestações:
 - Pacotes perdidos (overflow dos buffers nos roteadores)
 - Grandes atrasos (enfileiramento nos buffers dos roteadores)
 - Um grande problema de rede!

Controle de Congestionamento TCP

Fase Partida lenta

-Algoritmo Partida lenta -

inicializa: Congwin = 1
Para (cada segm com ack)
Congwin++
Até (evento de perda OU
CongWin > threshold)

- Incremento exponencial no tamanho da janela (não muito lenta!)
- Evento de perda: timeout e/ou três ACKs duplicados

Controle de Congestionamento TCP

- Fase de prevenção do congestionamento
 - Inicia quando o tamanho da janela excede o valor do threshold
 - Uma vez que a janela de congestionamento é maior que o valor atual do threshold, a janela de congestionamento cresce linearmente (e não mais exponencialmente)

Controle de Congestionamento TCP

- Na ocorrência de um timeout
 - Valor do threshold é setado como a metade do valor da janela de congestionamento atual
 - janela de congestionamento atual = número de segmentos permitidos para transmitir quando ocorreu a perda
 - Partida lenta é reiniciada

Protocolo TCP e a Multimídia

Controle de erro

- Ineficiente para aplicações conversacionais de áudio e vídeo:
 - gera retransmissões de dados que são descartados no receptor

Controle de Congestionamento e de fluxo

- Requer que a aplicação se adapte a situação da rede
- Não interessante para várias aplicações multimídia
 - Requer que a rede suporte a taxa de apresentação (+ sobrecargas de protocolos)

Multicasting

não dispõem

Protocolo UDP

- Não oferece meios que permitam uma transferência confiável de dados
 - A rede não controla a taxa com que as informações fluem entre as máquinas. É a aplicação fonte que define a taxa de saída
 - não implementa mecanismos de reconhecimento, de seqüencialização nem de controle de fluxo das mensagens de dados trocadas entre os dois sistemas
 - datagramas podem ser perdidos, duplicados, ou entregues fora de ordem ao sistema de destino
 - aplicação assume toda a responsabilidade pelo controle de erros
 - serve para transportar uma mensagem de uma estação para outra, utilizando o IP para enviar e receber estes datagramas

Protocolo UDP

- É um protocolo simples
 - Latência menor
- Usa mais eficientemente a banda da rede
 - Cabeçalho por segmento é menor (cabeçalho de 8 bytes, e TCP tem 20 bytes)
 - Sem controle de congestionamento e de fluxo: permite usar a banda de maneira mais eficiente
 - Mas pode provocar taxa de perdas altas
- Muito usado para aplicações multimídia de streaming
 - Tolerantes a perda
 - Sensíveis a taxa
- Transferência confiável sobre UDP: adicionar confiabilidade na camada de aplicação
 - Recobrimento de erro específico de aplicação

UDP e a Multimídia

- Protocolo UDP
 - Serviço orientado datagrama simples sem confiabilidade
 - melhor para aplicações multimídia
 - mas para nem todas
- Aplicações podem rodar no topo do UDP com funções adicionais integradas nas aplicações
 - Delegando-se às estações o recobrimento das dificuldades que a rede tem quanto a garantias de serviço
 - Técnicas de bufferização
 - Protocolos de transporte melhores adaptados (RTP) que são implementados no nível aplicativo