Geometría Moderna II 2019-2

Guía de ejercicios para al Evaluación Parcial 02

EXAMEN PARCIAL 02 VIERNES 29-MARZO-2019 De 19:00 a 21:00 HORAS - Salón P-108

Inversión

- 1. Sean $\zeta(A,\alpha)$ y $P \neq A$. Demostrar que si $I_{\zeta(A,\alpha)}(P) = P'$ y $\zeta(A,\alpha) \cap \overline{PP'} = \{R,S\}$ entonces $\overline{PP'}\{P,P';R,S\} = -1$.
- 2. Demostrar que si $\{A,B,C,D,E\}\subseteq l$ (conjunto de puntos distintos) tales que $l\{A,B;C,D\}=-1$ entonces para cualquier $\eta\in\mathbb{R}^+$ se tiene que $l\{I_{\zeta(E,\eta)}(A),I_{\zeta(E,\eta)}(B);I_{\zeta(E,\eta)}(C),I_{\zeta(E,\eta)}(D)\}=-1$.
- 3. Demostrar que si Γ es una familia de circunferencias coaxiales que tiene un par de puntos límite $\{L, L'\}$ entonces para cualquier $\zeta(P, \rho) \in \Gamma$ se tiene que $I_{\zeta(P, \rho)}(L) = L'$.
- 4. Sea $\{A,P,Q\}$ un conjunto de puntos en posición general. Demostrar que si $I_{\zeta(A,\alpha)}(P)=P'$ y $I_{\zeta(A,\alpha)}(Q)=Q'$ entonces $\{P,P',Q,Q'\}$ es un conjunto concíclico de puntos y la circunferencia que los contiene es ortogonal a $\zeta(A,\alpha)$.
- 5. Si una circunferencia es invertida en una circunferencia, ¿el centro de la primera es invertido en la segunda?
- 6. Sea Γ la familia de circunferencias coaxiales a las que pertenece $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ con $A \neq B$. Demostrar que si $I_{\zeta(P,\rho)}[\zeta(A,\alpha)] = \zeta(B,\beta)$ entonces $\zeta(P,\rho) \in \Gamma$.
- 7. Sean $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ con $A \neq B$. Construir $\zeta(P,\rho)$ tal que

$$I_{\zeta(P,\rho)}[\zeta(A,\alpha)] = \zeta(C,\gamma)$$
 ; $I_{\zeta(P,\rho)}[\zeta(B,\beta)] = \zeta(D,\gamma)$

- 8. Sean $\zeta(A,\alpha)$ y $X \neq A$. Demostrar que para cualquier $\zeta(P,\rho)$ si $I_{\zeta(P,\rho)}[\zeta(A,\alpha)] = \zeta(B,\beta)$ entonces $I_{\zeta(B,\beta)}(I_{\zeta(P,\rho)}(X)) = I_{\zeta(P,\rho)}(I_{\zeta(A,\alpha)}(X))$.
- 9. Demostrar que si $\zeta(A, \alpha)$ y $\zeta(B, \beta)$ con $A \neq B$ se intersecan en dos puntos entonces sus circunferencias de antisimilitud son ortogonales.
- 10. Sea $\zeta(A,\alpha)$ y $P \neq A$. Demostrar que si $I_{\zeta(A,\alpha)}(P) = P'$ entonces para cualquier $X \in \zeta(A,\alpha)$ se tiene que $\frac{XP}{XP'} = k$ para alguna $k \in \mathbb{R}$.

Tarea 02 Marzo 2019