Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Solutions for Tutorial Sheet 7

- 1. (a) Consider the partition $P_{\epsilon} = \{0, 1 \epsilon, 1\}$. The upper and lower sum with this partition is $U(P_{\epsilon}, f) = 1(1 \epsilon) + 2\epsilon = 1 + \epsilon$ and $L(P_{\epsilon}, f) = 1(1 \epsilon) + 1\epsilon = 1$. Therefore, $\lim_{\epsilon \to 0} (U(P_{\epsilon}, f) L(P_{\epsilon}, f)) = 0$. Hence f is integrable.
 - 2nd Method: f is continuous on [0,1] except x=1. Therefore f is Riemann integrable.
 - (b) Consider the sequence of partitions $\{P_n\}$, where $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n}{n}\}$. Then $\|P_n\| \to 0$ as $n \to \infty$ and $U(P_n, f) = \sum_{i=1}^n (1 + \frac{i}{n}) \frac{1}{n} = \frac{1}{n} (n + \frac{n+1}{2})$, $L(P_n, f) = \sum_{i=1}^n (1 \frac{i}{n}) \frac{1}{n} = \frac{1}{n} (n \frac{n-1}{2})$. So $\lim_{n \to \infty} (U(P_n, f) L(P_n, f)) = 1$. Hence f is not integrable.
 - (c) Let $\epsilon > 0$. Choose N such that $\frac{1}{N} < \epsilon$ and $\frac{1}{N} < \frac{\pi}{4}$. Note that f has only finite discontinuities in $[\frac{1}{N}, 1]$. Hence integrable in $[\frac{1}{N}, 1]$. Now for any partition of $[0, \frac{1}{N}]$, $U(P, f) L(P, f) \leq \sum (M_i m_i) \Delta x_i \leq \sum \Delta x_i = \frac{1}{N} < \epsilon$. Thus f is integrable on $[0, \frac{1}{N}]$ also.

2nd Method: Note that f has finitely many discontinuities in $\left[\frac{\pi}{4},1\right]$. Hence integrable in $\left[\frac{\pi}{4},1\right]$. Now for other half, ξ_1,ξ_1,ξ_2,\cdots be the infinitely many discontinuities of f in $\left[0,\frac{\pi}{4}\right]$. Then $\xi_i=\frac{1}{N+i}$ for some N. Consider the partitions $P_{\epsilon}=\left\{\frac{\pi}{4},\xi_1-\frac{\epsilon}{2^{N+1}},\xi_1+\frac{\epsilon}{2^{N+1}},\cdots,\xi_r-\frac{\epsilon}{2^{N+r}},\xi_r+\frac{\epsilon}{2^{N+r}},\cdots,0\right\}$. Then

$$U(P_{\epsilon}, f) - L(P_{\epsilon}, f) = \sum_{i=1}^{\infty} (M_i - m_i) \triangle x_i \le \sum_{i=1}^{\infty} M_i \triangle x_i \le \sum_{i=1}^{\infty} \frac{\epsilon}{2^i} \le \epsilon C,$$

for some C > 0. Hence f is integrable.

3rd Method: f is continuous except $x = \frac{1}{n}$ such that $n \in \mathbb{N}$. Thus set of points of discontinuity has a limit point 0. Therefore f is Riemann integrable.

- (d) Note that f is discontinuous at x = 1, 2, 3, 4, 5, which are finite in number. Therefore f is Riemann integrable.
 - Or, f is continuous except x = 1, 2, 3, 4, 5. Therefore f is Riemann integrable.
- 2. (a) Hint 1: f is bounded and monotonic increasing on [0,1]. Hence f is integrable. Hint 2: f is continuous on [0,1], except at the set of points $0, \frac{1}{2}, \left(\frac{1}{2}\right)^2, \left(\frac{1}{2}\right)^3, \cdots$, which have only one limit point, say 0. Hence f is integrable.
 - (b) Let F(x) = f(x) g(x) = 0 except at a finite number of points of [a, b] so that F(x) has a finite number of points of discontinuity on [a, b]. Thus F is integrable. Hence F + g = f is integrable.

- (c) Let h=f-g. Then h is also continuous. Then by mean value theorem, there exists $\xi \in [a,b]$ such that $\int_a^b h(x)dx = h(\xi)(b-a)$. But as $\int_a^b f(x)dx = \int_a^b g(x)dx$. So $\int_a^b h(x)dx = 0$. Hence $h(\xi) = 0 \Rightarrow f(\xi) = g(\xi)$.
- 3. (a) Take $f(x) = \frac{1}{x+1}$ then f is integrable on [0,1] and $\int_0^1 f(x) dx = \ln 2$. Take $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n}{n}\}$. Then $S(P_n, f) = \sum_{i=1}^n f(\frac{i}{n}) \frac{1}{n} = \sum_{i=1}^n \frac{1}{i+n}$. Hence $\lim_{n \to \infty} S(P_n, f) = \ln 2$.
 - (b) Take $f(x) = \sin \pi x$. Then f is continuous on [0,1] and hence integrable on [0,1] and $\int_0^1 f(x) dx = \frac{2}{\pi}$. Take $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$. Then $S(P_n, f) = \sum_{i=1}^n f(\frac{i}{n}) \frac{1}{n} = \sum_{i=1}^n \sin(\frac{i\pi}{n}) \frac{1}{n}$. Hence $\lim_{n \to \infty} S(P_n, f) = \lim_{n \to \infty} \sum_{i=1}^n \sin(\frac{i\pi}{n}) \frac{1}{n} = \frac{2}{\pi}$.
- 4. The function $f(x) = \begin{cases} 2x \sin \frac{1}{x} \cos \frac{1}{x}, & 0 < x < 1 \\ 0, & x = 0 \end{cases}$ is not continuous on [0, 1], but it is bounded and continuous on [0, 1]. Therefore f is Riemann integrable.

The function $g(x) = \begin{cases} x^2 \sin \frac{1}{x}, & 0 < x < 1 \\ 0, & x = 0 \end{cases}$ is differentiable on [0, 1] and satisfies g'(x) = f(x) for all $x \in [0, 1]$. Thus $\int_0^1 \left(2x \sin \frac{1}{x} - \cos \frac{1}{x}\right) dx = g(1) - g(0) = \sin 1$.

- 5. (a) $f'(x) = 2x \cos\left(\frac{\pi}{x^2}\right) + \frac{2\pi}{x} \sin\left(\frac{\pi}{x^2}\right)$ if $0 < x \le 1$ and f'(0) = 0, which is not bounded. Therefore $\int_0^1 f'(x) dx$ is not integrable. Hence the given equation fails to hold.
 - (b) $f'(x) = \frac{1}{(x-1)^2}$, which is not bounded. Therefore $\int_0^2 f'(x)dx$ is not integrable.
 - (c) $f'(x) = \frac{1}{\sqrt{x}}$, which is not bounded. Therefore $\int_0^1 f'(x)dx$ is not integrable.