Lecture 8: Quantum walk search and collision finding

Lecturer: Simon Apers (apers@irif.fr)

Assume that we are given an array of integers  $x_1, x_2, ..., x_N$ . A collision is a pair of distinct i, j such that  $x_i = x_j$ . How many elements do we have to query in order to find a collision (or decide that no collision exists)? Classically this essentially requires to query the full array, and so the classical query complexity is  $\Omega(N)$ . In contrast, using an algorithm based on quantum walk search we can find a collision with a sublinear number of queries.<sup>1</sup>

#### 1 Grover search

We first recall Grover search and its different costs. We are given a set V of n elements, and a subset  $M \subseteq V$  of m elements are marked. The algorithm is as follows:

- 1. Set up the uniform superposition  $|\pi\rangle = \frac{1}{\sqrt{n}} \sum_{x \in V} |x\rangle$ .
- 2. Do  $O(\sqrt{n/m})$  times:
  - (a) Reflect around the subspace of marked elements (i.e., apply  $2\Pi_M I = 2\sum_{x \in M} |x\rangle \langle x| I$ ).
  - (b) Reflect around the uniform superposition (i.e., apply  $2 |\pi\rangle \langle \pi| I$ ).
- 3. Measure the state.

The algorithm corresponds to a rotation in the 2-dimensional subspace spanned by the states

$$|\pi_M\rangle = \frac{1}{\sqrt{m}} \sum_{x \in M} |x\rangle$$
 and  $|\pi_U\rangle = \frac{1}{\sqrt{n-m}} \sum_{x \notin M} |x\rangle$ .

Note that the initial state  $|\pi\rangle = \sqrt{m/n} |\pi_M\rangle + \sqrt{1 - m/n} |\pi_U\rangle$ , and this is essentially  $|\pi_U\rangle$  if  $m \ll n$ . Grover's algorithm rotates this state closer to  $|\pi_M\rangle$ : after  $O(\sqrt{n/m})$  iterations the state has a constant overlap with the marked elements.

We wish to quantify the query complexity of Grover's algorithm. To this end, let the "setup cost" S denote the number of queries needed to create the initial state  $|\pi\rangle$  in step 1. I.e., it is the number of queries required to implement a unitary  $U_{\pi}$  such that  $U|0\rangle = |\pi\rangle$ . Now note that we can use  $U_{\pi}$  (and its adjoint  $U_{\pi}^{\dagger}$ ) to reflect around  $|\pi\rangle$  as well, using that

$$2|\pi\rangle\langle\pi| - I = U_{\pi}(2|0\rangle\langle0| - I)U_{\pi}^{\dagger}.$$
(1)

Hence, the query complexity of step 2.(b) is also essentially  $\mathcal{S}$ . Then, let the "checking cost"  $\mathcal{C}$  be the number of queries required to check whether an element is marked in step 2.(a). The query complexity of a single Grover iteration is then  $\mathcal{S} + \mathcal{C}$ , and the total query complexity of Grover's algorithm scales as  $\sqrt{\frac{n}{m}}(\mathcal{S} + \mathcal{C})$ .

<sup>&</sup>lt;sup>1</sup>While we focus on query complexity for ease of exposition, all algorithms can be implemented with a similar runtime.

### 2 Quantum walk search

Equation (1) in the previous section shows that the cost of reflecting around  $|\pi\rangle$  is bounded by the cost of preparing  $|\pi\rangle$ . However, reflecting around  $|\pi\rangle$  can be much cheaper than preparing  $|\pi\rangle$ . This is exploited in the quantum walk search algorithm, which generalizes Grover search to graphs.

Consider a regular graph G=(V,E) with n nodes, and let  $M\subseteq V$  denote a subset of marked nodes of size m. Rather than states  $|x\rangle$  (corresponding to vertices of the graph), we consider basis states described by star states  $|\psi_x\rangle$  of the graph. A state  $|\psi_x\rangle$  is marked iff x is a marked element. The algorithm then starts from  $|\pi\rangle=\frac{1}{\sqrt{n}}\sum_{x\in V}|\psi_x\rangle$  and iteratively applies  $O(\sqrt{n/m})$  times the operator

$$(2|\pi\rangle\langle\pi|-I)(2\Pi_M-I) = (2|\pi\rangle\langle\pi|-I)\left(2\sum_{x\in M}|\psi_x\rangle\langle\psi_x|-I\right).$$

Similarly to Grover search, the algorithm takes place in the 2-dimensional subspace spanned by  $|\pi_M\rangle = \frac{1}{\sqrt{m}} \sum_{x \in M} |\psi_x\rangle$  and  $|\psi_U\rangle = \frac{1}{\sqrt{n-m}} \sum_{x \notin M} |\psi_x\rangle$ .

Since the cost of reflecting around  $|\pi\rangle$  will be different than that of preparing  $|\pi\rangle$ , we denote it by a separate "reflection cost"  $\mathcal{R}$ . The total cost is then

$$S + \sqrt{\frac{n}{m}}(R + C).$$

#### 2.1 Phase estimation and quantum walk reflection

We now demonstrate how to use quantum walks to efficiently reflect around  $|\pi\rangle$ . This procedure crucially relies on (i)  $|\pi\rangle$  being a stationary state of the QW operator W, while (ii) its orthogonal complement  $|\pi^{\perp}\rangle$  (in the 2-dimensional subspace span $\{|\pi_U\rangle, |\pi_M\rangle\}$ ) being spanned by nonstationary eigenvectors of W (see last lecture). As a consequence, for any  $\alpha, \beta$  we have a decomposition

$$\alpha |\pi\rangle + \beta |\pi^{\perp}\rangle = \alpha |\pi\rangle + \sum_{j>0} \beta_j |\phi_j\rangle,$$

where  $W |\phi_j\rangle = e^{i\theta_j} |\phi_j\rangle$  for some  $\theta_j > 0$ . Moreover, recall that the QW operator W has a phase gap  $\Delta \in \Omega(\sqrt{\delta})$  with  $\delta$  the random walk spectral gap, and hence  $\theta_j \in \Omega(\sqrt{\delta})$ .

Reflecting around  $|\pi\rangle$  in this subspace amounts to transforming  $\alpha |\pi\rangle + \beta |\pi^{\perp}\rangle$  into  $\alpha |\pi\rangle - \beta |\pi^{\perp}\rangle$ . Equivalently, we want to put a minus sign before any non-stationary eigenvector of W. To this end we can use quantum phase estimation. This corresponds to a unitary  $U_P$  such that

$$U_{P}\left(\alpha\left|\pi\right\rangle\left|0\right\rangle+\sum_{j>0}\beta_{j}\left|\phi_{j}\right\rangle\left|0\right\rangle\right)=\alpha\left|\pi\right\rangle\left|0\right\rangle+\sum_{j>0}\beta_{j}\left|\phi_{j}\right\rangle\left|\tilde{\theta}_{j}\right\rangle,$$

where  $\tilde{\theta}_j$  is an estimate of the phase  $\theta_j$  to (additive) precision  $\varepsilon$ .<sup>2</sup> The cost of quantum phase estimation roughly corresponds to applying  $\tilde{O}(1/\varepsilon)$  times the QW operator W. If  $\Delta$  is the smallest nonzero phase  $\theta_j$ , then choosing  $\varepsilon < \Delta$  correctly differentiates a stationary eigenvector from a nonstationary one (see Fig. 1).

We can then apply a minus sign *conditioned* on the phase estimate being nonzero. Equivalently, we apply the reflection  $R_0 = 2\Pi_0 - I$  with projector  $\Pi_0 = I \otimes |0\rangle \langle 0|$ . Finally, we apply the inverse operation  $U_P^{\dagger}$  to "erase" the phase estimation registers.

<sup>&</sup>lt;sup>2</sup>In fact, phase estimation returns a *superposition* over different estimates, but we will ignore this technicality.



Figure 1: Quantum phase estimation to precision  $\varepsilon$ . We can differentiate the stationary state  $|\pi\rangle$  from the non-stationary states  $|\phi_i\rangle$  by choosing  $\varepsilon$  smaller than the phase gap  $\Delta$ .

**Exercise 1.** Verify that  $U_P^{\dagger} R_0 U_P$  implements a reflection around  $|\pi\rangle$  in the relevant subspace. I.e.,

$$U_P^{\dagger} R_0 U_P \left( \alpha | \pi \rangle + \beta | \pi^{\perp} \rangle \right) | 0 \rangle = \left( \alpha | \pi \rangle - \beta | \pi^{\perp} \rangle \right) | 0 \rangle.$$

Finally, since the quantum walk operator W has a phase gap  $\Delta \in \Omega(\sqrt{\delta})$  it suffices to run phase estimation to precision  $\varepsilon \in O(\sqrt{\delta})$ . This requires  $O(\frac{1}{\sqrt{\delta}})$  calls to the QW operator. If we let  $\mathcal{U}$  denote the cost of implementing the QW operator, then this bounds the reflection cost  $\mathcal{R}$  by roughly  $\frac{1}{\sqrt{\delta}}\mathcal{U}$ .

#### 2.2 Quantum walk search

The quantum walk search algorithm now runs in parallel to Grover's algorithm, except that we use quantum walks and phase estimation to implement the reflection around  $|\pi\rangle$ . Recalling that the total cost of the search algorithm is  $S + \sqrt{\frac{n}{m}}(R + C)$ , we can bound the cost of quantum walk search by

$$S + \sqrt{\frac{n}{m}} \left( \frac{1}{\sqrt{\delta}} \mathcal{U} + \mathcal{C} \right).$$

Hence, if we are given the state  $|\pi\rangle$  we can find a marked element with only  $O(\frac{1}{\sqrt{\delta}}\sqrt{\frac{n}{m}})$  steps of a quantum walk.

We can compare this with the cost of using a random walk to find a marked element. In the last lecture we saw that a random walk, starting from the stationary distribution  $\pi$ , hits a marked element after an expected number of steps given by  $HT(M) \in O(\frac{1}{\delta} \frac{n}{m})$ . Quantum walk search quadratically improves the number of steps as compared to this upper bound.

# 3 Collision finding with quantum walk search

Ambainis [Amb07] used quantum walk search to describe an algorithm for collision finding that is essentially optimal. The algorithm runs quantum walk search over elements or "words"  $\mathcal{Y} = (Y, x_Y)$ , consisting of (i) a size-k subset  $Y \subseteq [N]$ , and (ii) the list  $x_Y$  of integers  $x_j$  with index  $j \in Y$ . We call an element  $\mathcal{Y}$  marked if Y contains both indices of a collision (equivalently,  $x_Y$  must contain a collision).

**Exercise 2.** Let  $n = \binom{N}{k}$  denote the number of elements and m the number of marked elements. Show that  $m/n \in \Omega(k^2/N^2)$ .

To use quantum walk search, we consider a graph G with vertex set V indexed by the elements  $\mathcal{Y}$ . There is an edge between  $\mathcal{Y}=(Y,x_Y)$  and  $\mathcal{Y}'=(Y',x_{Y'})$  if the subsets Y and Y' differ in exactly one element (i.e., we can obtain Y' from Y by replacing one index). The resulting graph G has  $n=\binom{N}{k}$  vertices and is k(n-k)-regular. It corresponds to a so-called *Johnson graph*, and one can show that its spectral gap is  $\delta \in \Omega(1/k)$  when  $k \ll n$ .

A star state  $|\psi_{\mathcal{Y}}\rangle$  centered on a vertex  $\mathcal{Y}$  of G is given by the state

$$|\psi_{\mathcal{Y}}\rangle = \frac{1}{\sqrt{k(n-k)}} \sum_{\mathcal{Y}' \sim \mathcal{Y}} |\mathcal{Y}, \mathcal{Y}'\rangle,$$

where the sum runs over neighboring elements  $\mathcal{Y}'$  of  $\mathcal{Y}$ . The quantum walk search algorithm then starts from the uniform superposition

$$|\pi\rangle = \frac{1}{\sqrt{n}} \sum_{\mathcal{V}} |\psi_{\mathcal{V}}\rangle,$$

and the algorithm has cost

$$S + \frac{N}{k}(\sqrt{k}\,\mathcal{U} + \mathcal{C}),$$

where  $\mathcal{U}$  is the *update cost* or cost of implementing a single quantum walk step on the Johnson graph G. We now bound the different costs.

For the checking cost  $\mathcal{C}$ , note that we can check whether a given state  $|\psi_{\mathcal{Y}}\rangle$  is marked simply by checking whether the list  $x_Y$  contains a collision. Since this list is given explicitly in the description of  $|\psi_{\mathcal{Y}}\rangle$ , this requires no queries and so  $\mathcal{C}=0$ .

The setup cost S amounts to creating the state  $|\pi\rangle = \frac{1}{\sqrt{n}} \sum_{\mathcal{Y}} |\psi_{\mathcal{Y}}\rangle$ . We do this in a few steps. First, we prepare the state  $\frac{1}{\sqrt{n}} \sum_{\mathcal{Y}} |\mathcal{Y}\rangle |0\rangle$ . This takes k queries. Then, we construct the mapping  $U_{\psi}$  defined by  $U_{\psi} |\mathcal{Y}\rangle |0\rangle = |\psi_{\mathcal{Y}}\rangle$ . We do this in two steps:

$$|\mathcal{Y}\rangle |0\rangle = |Y, x_Y\rangle |0\rangle \stackrel{\text{(i)}}{\mapsto} \frac{1}{\sqrt{k(n-k)}} \sum_{\mathcal{Y}' \sim \mathcal{Y}} |Y, x_Y\rangle |Y', 0\rangle$$

$$\stackrel{\text{(ii)}}{\mapsto} \frac{1}{\sqrt{k(n-k)}} \sum_{\mathcal{Y}' \sim \mathcal{Y}} |Y, x_Y\rangle |Y', x_{Y'}\rangle = |\psi_{\mathcal{Y}}\rangle.$$

Step (i) requires no queries. Step (ii) amounts to gathering the elements  $x_{Y'}$  with index in Y'. Since  $x_{Y'}$  contains exactly one element not in  $x_Y$ , this requires exactly one query. The setup cost S is hence roughly k.

Finally, we bound the cost  $\mathcal{U}$  of a single call to the quantum walk operator W. Recall from last lecture that  $W = S \cdot C$  where S is a simple swap (i.e.,  $S | \mathcal{Y}, \mathcal{Y}' \rangle = | \mathcal{Y}', \mathcal{Y} \rangle$ ), requiring no queries, and  $C = 2 \left( \sum_{\mathcal{Y}} | \psi_{\mathcal{Y}} \rangle \langle \psi_{\mathcal{Y}} | \right) - I$  is a reflection around the star subspace. Using a similar trick as before, we can implement the reflection C by making two calls to the preparation operator  $U_{\psi}$ , which requires a single query. This proves that the update cost  $\mathcal{U}$  is O(1).

Exercise 3. Verify that  $C = U_{\psi} R_0 U_{\psi}^{\dagger}$ .

Combining these different arguments, we can bound the total cost by

$$S + \sqrt{\frac{n}{m}} \left( \frac{1}{\sqrt{\delta}} \mathcal{U} + \mathcal{C} \right) \approx k + \frac{N}{\sqrt{k}}.$$

If we set  $k = N^{2/3}$  then this yields a quantum algorithm for collision finding with complexity  $\widetilde{O}(N^{2/3})$ . This is essentially optimal by the  $\Omega(N^{2/3})$  lower bound of Aaronson and Shi [AS04].

## References

- [Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing, 37(1):210-239, 2007.
- [AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness problems. *Journal of the ACM (JACM)*, 51(4):595–605, 2004.