Lineare Algebra und diskrete Mathematik

Timo Scholz

February 3, 2023

Contents

L	$\operatorname{Gr}\iota$	undlegende Begriffe und algebraische Strukturen	-
	1.1	Zahlen und Mengen	
		1.1.1 Naiver Mengen- und Zahlenbegriff	
		1.1.2 Mengenlehre	
		1.1.3 Tupel und kartesische Produkte	
	1.2	Aussagelogik und Funktionen	
		1.2.1 Logische Aussagen	
		1.2.2 Quantoren	
		1.2.3 Funktionen	
	1.3	Algebraische Strukturen	
2	Dis	krete Mathematik	
	2.1	Natürliche Zahlen und vollständige Induktion	

1 Grundlegende Begriffe und algebraische Strukturen

1.1 Zahlen und Mengen

1.1.1 Naiver Mengen- und Zahlenbegriff

- Eine Menge ist definiert durch das, "was drin ist" (naiver Mengenbegriff
- Sie enthält unterscheidbare Objekte ohne Vielfachheit
- Die Reihenfolge der Elemente ist egal

Wichtige Mengen:

- N: natürliche Zahlen {1, 2, 3, ...}
- \mathbb{N}_0 : natürliche Zahlen $\{1, 2, 3, ...\}$
- Z: ganze Zahlen {..., -2, -1, 0, 1, 2, ...}
- \mathbb{Q} : rationale Zahlen $\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\}$
- \bullet Unter Hinzunahme von Grenzwerten ergibt sich die Menge der reellen Zahlen $\mathbb R$

1.1.2 Mengenlehre

Umfangs definition: $M = \{2, 4, 6, 8\}$ Inhalts definition: $M = \{m : m \in \mathbb{N}, \text{ m ist gerade}, m \leq 8\}$ Sei M eine Menge

- $m \in M$: M ist Element von M
- $m \neq M$: M ist nicht Element von M
- $M := \emptyset$: M ist die leere Menge $\{\}$
- |M|: Anzahl der Elemente von M (unendliche Mengen: $|M| = \infty$)

Seien A, B Mengen

- $A \subseteq B$: A ist Teilmenge von B, d.h. alle Elemente von A sind auch in B
- A=B: A enthält genau die gleichen Elemente wie B, d.h. $A\subseteq B$ und $B\subseteq A$
- $A \subset B$: A ist echte Teilmenge von B, d.h. $A \subseteq B$ und $A \neq B$

Falls $|A| = |B| < \infty$ und $A \subseteq B$, dann ist A = B

• $A \cup B := \{a : a \in A \text{ oder } a \in B\}$ Vereinigung von A und B

- $A \cap B := \{a : a \in A \text{ und } a \in B\}$ Schnittmenge von A und B
- $A \setminus B := \{a, a \in A \text{ aber } a \notin B\}$ Differenzmenge von A und B

Für
$$|A| = |B| < \infty$$
 gilt:
 $|A \setminus B| = |A| - |A \cap B|$
 $|A \cup B| = |A| + |B| - |A \cap B|$

• A und B heißen disjunkt, falls $A \cap B = \emptyset$

Für A, B disjunkt, schreibe auch $A \dot{\cup} B$ statt $A \cup B$

- Falls klar ist, welches M gemeint ist: $A^c := M \setminus A$
- Transitivität: Gilt $A \subseteq B$ und $B \subseteq C$, dann gilt auch $A \subseteq C$
- Kommutativität: $A \cup B = B \cup A$
- Assoziativität: $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- Distributivität: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- De-morgansche Regeln: $(A \cap B)^c = A^c \cup B^c$ $(A \cup B)^c = A^c \cap B^c$

Sei A eine Menge

- $\mathcal{P}(A) := \{B : B \subseteq A\}$ z.B. $\mathcal{P}(\{1,2\}) = \{\{1\},\{2\},\{1,2\}\}$ \mathcal{P} nennt man Potenzmenge
- $|\mathcal{P}(A)| = 2^{|A|}$

1.1.3 Tupel und kartesische Produkte

Seien A und B Mengen

- Tupel: $(a,b): a \in A, b \in B$
- Kartesisches Produkt:= $A \times B\{(a, b) : a \in A, b \in B\}$
- Analog: $A_1 \times A_2 \times A_3 \dots \times A_n := \{(a_1, a_2, a_3 \dots a_n) : a_i \in A_i\}$

1.2 Aussagelogik und Funktionen

1.2.1 Logische Aussagen

Eine logische Aussage ist entweder wahr oder falsch. z.B. 4 ist durcch 2 teilbar.

Seien A, B Aussagen

- $\bullet \neg A$: Negation von A, ist genau dann wahr, wenn A falsch ist
- $A \wedge B$: Konjunktion, ist genau dann wahr, wenn A und B beide wahr sind
- $A \lor B$: Disjunktion, ist genau dann wahr, wenn A oder B oder beide wahr sind
- $A \Rightarrow B$: Implikation, aus A folgt B
- $A \Leftrightarrow B$: Äquivalenz, aus A folgt B und aus B folgt A

Für $A \Rightarrow B$ schreibt man auch

- A ist hinreichend für B
- B ist notwendig für A
- B gilt, wenn A gilt

Für $A \Leftrightarrow B$ schreibt man auch

- \bullet A = B
- A ist notwendig und hinreichend für B
- B ist notwendig und hinreichend für A
- B gilt genau dann, wenn A gilt
- A gilt genau dann, wenn B gilt

Seien A, B, C Aussagen

• Transitivität: Aus $A \Rightarrow B$ und $B \Rightarrow C$ folgt $A \Rightarrow C$ Aus $A \Leftrightarrow B$ und $B \Leftrightarrow C$ folgt $A \Leftrightarrow C$

 $A \lor B = B \lor A$

- Kommutativität: $A \wedge B = B \wedge A$
- Assoziativität: $(A \wedge B) \wedge C = A \wedge (B \wedge C)$
- Assoziativität: $(A \land B) \land C = A \land (B \land C)$ $(A \lor B) \lor C = A \lor (B \lor C)$
- Distributivität: $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ $A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$
- Doppelte Negation: $\neg(\neg A) = A$
- De-morgansche Regeln:

$$\neg (A \lor B) = (\neg A) \land (\neg B)$$

$$\neg (A \land B) = (\neg A) \lor (\neg B)$$

• Komposition: $(A \Rightarrow B) = (\neg B \Rightarrow \neg A)$

Beweistechniken

- direkter Beweis: $V \Rightarrow A$
- indirekter Beweis: $\neg A \Rightarrow \neg V$
- \bullet indirekter Beweis mit Widerspruch: Zeige $V \wedge (\neg A) \Rightarrow B$ und B ist falsch
- Zwischenschritte: $V \Rightarrow Z_1, Z_1 \Rightarrow Z_2, ..., Z_n 1 \Rightarrow Z_n, Z_n \Rightarrow A$
- Fallunterscheidung: $V \Rightarrow F_1 \land F_2, F_1 \Rightarrow A, F_2 \Rightarrow A$

1.2.2 Quantoren

Sei X eine Menge

- Allquantoren: $\forall x \in X : A(x)$ Für alle $x \in X$ gilt A(x)
- Existenz quantoren: $\exists x \in X : A(x)$ Es existiert ein $x \in X$ für das A(x) wahr ist
 - $\exists ! x \in X : A(x) \qquad \text{Es existiert genau ein } x \in X$ für das A(x) wahr ist
- Negation von Quantoren: $\neg (\forall x \in X : A(x)) \Leftrightarrow \exists x \in X : \neg A(x) \\ \neg (\exists x \in X : A(x)) \Leftrightarrow \forall x \in X : \neg A(x)$
- Vertauschung (Kombination) von Allquantoren: $\forall x \in X : \forall y \in Y : A(x,y) \Leftrightarrow \forall y \in Y : \forall x \in X : A(x,y)$
- Vertauschung (Kombination) von Existenzquantoren:

$$\exists x \in X : \exists y \in Y : A(x,y) \Leftrightarrow \exists y \in Y : \exists x \in X : A(x,y)$$
$$\exists x | inX : \forall y \in Y : A(x,y) \Rightarrow \forall y \in Y : \exists x \in X : A(x,y)$$

- Fall 1: x kann nicht von y abhängen
- Fall 2: x kann von z abhängen

Beispiel

$$\forall n \in \mathbb{N} : \exists m \in \mathbb{N} : m \geq n$$
 Stimmt, wähle z.B. $m = n + 1$

$$\exists m \in \mathbb{N} : n \in \mathbb{N} : m \ge n$$
 Stimmt nicht

1.2.3 Funktionen

Seien X und Y Mengen

Eine Funktion ordnet jedem x|inXgenau ein $y\in Y$ zu

$$f: X \to Y, x \mapsto y: f(x)$$

X ist die Definitionsmenge, Y die Zielmenge

Statt Funktion sagt man auch Abbildung, Operator, Funktionale $f:X\to Y$ ist:

- injektiv, falls $\forall x, x^1 \in X : x \neq x^1 \Rightarrow f(x) \neq f(x^1)$ $\Leftrightarrow \forall x, x^1 \in X : f(x) = f(x^1) \Rightarrow x = x^1$
- surjektiv, falls $\forall y \in Y : \exists x \in X : f(x) = y$
- bijektiv, falls f injektiv und surjektiv $\forall y \in Y: \exists ! x \in X: f(x) = y$

Für bijektive Funktionen können wir die Umkehrfunktion definieren: $f^{-1}:Y\to X:f^{-1}(y):=x$, wo $x\in X$ erfüllt f(x)=y

Seien $f: X \to Y, g: Y \to Z$ zwei Funktionen zwischen Mengen X, Y, Z $g \circ f = X \to Z, x \mapsto g \circ f(x) := g(f(x))$

Sind f,g bijektiv, dann gilt $g\circ f \text{ bijektiv und } (g\circ f)^{-1}=f^{-1}\circ g^{-1}$

Sei $X' \subseteq X$ definiere $f(X') = \{f(x) : x \in X'\}$

Beispiel

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

 $f([1,3]) = [1,9]$

Für $Y' \subseteq Y$ definiere

$$f^{-1}(Y'):=\{x\in X:f(x)\in Y\}$$
 (auch dann, wenn f
 nicht bijektiv ist, also $f^{-1}:Y\to X$ nicht existiert)

Beispiel

$$\begin{split} f: \mathbb{R} \to \mathbb{R}, & f(x) = x^2 \\ f^{-1}([1,9]) = [1,3] \cup [-3,-1] \end{split}$$

Falls f bijektiv ist und $y \in Y$

$$x = f^{-1}(y) \text{ mit } f(x) = y$$

 $\{x\} = f^{-1}(\{y\})$

Für $f: X \to Y$ gilt immer $|f(X)| \le |X|$

Falls f injektiv $\Rightarrow |f(X)| = |X|$

Ist $|X| = |Y| < \infty$ dann gilt f injektiv $\Leftrightarrow |f(X)| = |X|$

Falls f surjektiv $\Rightarrow f(x) = y \Rightarrow |f(x)| = |Y|$

Falls $Y < \infty$, dann gilt f surjektiv $\Leftrightarrow |f(X)| = |Y|$

Ist $|X| = |Y| < \infty$, dann gilt f injektiv $\Leftrightarrow f$ surjektiv $\Leftrightarrow f$ bijektiv

1.3 Algebraische Strukturen

Sei A eine Menge

• Eine Verknüpfung ist eine Funktion $\circ: A \times A \to A$ Für $\circ(a,b)$ schreibe $a \circ b$ mit $a,b \in A$

Beispiel

 \mathbb{N} mit +

 \mathbb{Z} mit *

{falsch, wahr} mit AND

Aber nicht $\mathbb N$ mit —, da das Ergebnis außerhalb von $\mathbb N$ liegen kann

Eine Gruppe (G, \circ) ist eine Menge $G \neq \emptyset$ zusammen mit einer Verknüpfung $\circ : G \times G \to G$, für die gilt:

- (G1) Assoziativität: $(a \circ b) \circ c = a \circ (b \circ c), \forall a, b, c \in G$
- (G2) Existenz des neutralen Elements $\exists e \in G : a \circ e = e \circ a = a, \forall a \in G$
- G(3) Existenz inverser Elemente $\forall a \in G : \exists a' \in G : a \circ a' = a' \circ a = e$

(G1) - G(3) heißen auch Gruppenaxiome

Beispiele

 \mathbb{Z} mit + ist eine Gruppe

 \mathbb{Q} mit * ist keine Gruppe, da 0 kein inverses Element hat, aber

 $\mathbb{Q} \setminus \{0\}$ ist eine Gruppe

Eine Gruppe heißt kommutativ (auch abelsch), wenn zusätzlich gilt:

• (G4) Kommutativität: $a \circ b = b \circ a, \forall a, b \in G$

Eine Menge $G \neq \emptyset$ mit Verknüpfung o heißt Halbgruppe, wenn (G1) erfüllt ist (G, \circ) heißt kommutative Halbgruppe, falls (G1) und (G4) erfüllt sind

Ein Ring (R, +, *) ist eine Menge $R \neq \emptyset$ zusammen mit zwei Verknüpfungen $+: R \times R \rightarrow R$ und $*: R \times R \rightarrow R$, für die gilt:

- (R1) (R, +) ist eine kommutative Gruppe
- (R2) (R, *) ist eine Halbgruppe
- (R3) Es gelten Distributivgesetze: $\forall a, b, c \in R$ gilt

$$a*(b+c) = a*b + a*c$$

 $(a+b)*c = a*c + b*c$

(R, +, *) heißt kommutativer Ring, falls * kommutativ(R, +, *) heißt Ring mit 1, falls neutrales Element bezüglich * existiert

Sei X Menge, R Ring

$$F := \{ f : X \to R \}$$
+ : $F \times F \to F$, $(f+g)(x) = f(x) + g(x)$
* : $F \times F \to F$, $(f*g)(x) = f(x) * g(x)$

Dann ist (F, +, *) ein Ring. Ist R kommutativ, dann auch F. Besitzt R eine Eins, dann auch F

Ein Körper (engl. field) $(K,+,\ast)$ ist eine Menge K
 mit Verknüpfungen $+,\ast),$ für die gilt:

- (K1) (K, +) ist eine kommutative Gruppe
- (K2) $(K \setminus \{0\}, *)$ ist eine kommutative Gruppe
- (K3) Es gelten die Distributivgesetze: $a*(b+c) = a*b+a*c \\ (a+b)*c = a*c+b*c$

Beispiel

 $(\mathbb{Q}, +, *)$ ist ein Körper

Rechenregeln im Körper: Für $x, y, z \in K$

- Kommutativgesetz x + y = y + xx * y = y * x
- Assoziativgesetz (x+y) + z = x + (y+z)(x*y)*z = x*(y*z)
- Distributivgesetz x * (y + z) = x * y + x * z
- Neutrale Elemente x + 0 = xx * 1 = x
- Inverse Elemente $\begin{aligned} x + (-x) &= 0 \\ x * x^{-1} &= 1, \text{ für } x \neq 0 \end{aligned}$

2 Diskrete Mathematik

Die diskrete Mathematik beschäftigt sich mit endlichen Mengen $\mathbb N$ oder $\mathbb Z$

2.1 Natürliche Zahlen und vollständige Induktion

 $\mathbb{N} = \{1, 2, 3, \ldots\}$

 $\mathbb N$ ist die Menge, die die 1 enthält und zu jeder Zahl $n\in\mathbb N$ auch n+1 enthält

Satz 2.1 Vollständige Induktion

Gilt eine Aussage A(n) für n=1 und gilt außerdem $A(n) \Rightarrow A(n+1)$, dann gilt $A(n), \forall n \in \mathbb{N}$

Beweis: Die Menge der n, für die A(n) gilt, enthält 1 und für jede enthaltene Zahl ist auch +1 enthalten. Dies ist also $\mathbb N$