EEL7030 - Microprocessadores

Laboratório de Comunicações e Sistemas Embarcados

Prof. Raimes Moraes
EEL - UFSC

Estratégias para identificar a necessidade de executar tarefas demandadas por periféricos externos ou eventos esporádicos:

(Exemplos: Identificar caixa disponível em um banco para informar clientes na fila enquanto apresenta propaganda do estabelecimento. Disparar câmera de semáforo enquanto temporiza alternância de lâmpadas)

Polling;

Interrupção;

Polling

□ Processador testa sequencialmente todos os dispositivos/periféricos para tomar conhecimento se algum demanda execução de tarefa.

 Desvantagem: Devido à necessidade do processador testar, frequentemente, se algum periférico requer atenção, seu desempenho na execução de outras tarefas decai.

Interrupção

- □ Técnica para identificar ocorrência de eventos, tratar exceções e sincronizar transferência de dados entre microprocessador e periféricos. Exs:
 - Detector de presença

 Ligar celular;
 - Identificar divisão por zero; overflow e outros;
 - Buffer de recepção serial cheio;

Interrupções alteram fluxo de execução do programa

Fontes de interrupção e endereços do tratadores de interrupção do 8051

Fontes de Interrupção	Endereços dos Tratadores (Hexadecimal)
Externa 0	0003
Timer 0	000B
Externa 1	0013
Timer 1	001B
Serial	0023

Eventos Associados à Interrupção

Se ocorre interrupção habilitada, o processador:

- Finaliza leitura e execução da instrução sendo processada, atualizando o PC para apontar para a próxima instrução a ser executada no programa principal;
- 2. Salva endereço do atual valor do PC na pilha. Obs: Alguns processadores salvam contexto: flags e certos registradores.
- 3. Carrega o endereço do tratador de interrupção no PC;
- 4. Executa o tratador de interrupção;
- 5. Recupera da pilha, o endereço da instrução seguinte àquela sendo executada quando a interrupção foi solicitada e continua a execução do programa principal. Obs: Alguns processadores recuperam o contexto do programa principal (flags e registradores).

Descrição de Eventos Associados a /INT0

- 1 Salva na pilha o conteúdo do PC (endereço da instrução a ser executada após instrução em execução quando da solicitação da interrupção).
- 2 Sobrescreve PC atual com 0003h
- 3 Inibe outras interrupções de mesmo nível de prioridade
- **4** Executa o tratador
- 5 RETI

PILHA	END.	DADO
SP	07H	
SP+1	08H	PC LSB
SP+1	09H	PC MSB

Interrupções Mascaráveis

• Há certos momentos durante o programa em que o atendimento de interrupções pode prejudicar a execução de outra tarefa em andamento.

• Assim, existem mecanismos para inibir o atendimento de todas as interrupções, dada interrupção ou interrupções com níveis de prioridade mais baixos.

Fontes e Habilitação de Interrupções

Fontes de Interrupção	Endereços dos Tratadores (Hexadecimal)
Externa 0	0003
Timer 0	000B
Externa 1	0013
Timer 1	001B
Serial	0023

IE - Interrupt Enable Register - Bit Addressable

Habilitação das Interrupções

IE - Interrupt Enable Register - Bit Addressable

MOV IE,#10000101B; habilita INT0 E INT1

ou

SETB EX0
SETB EX1
SETB EA

Característica da Interrupção Externa 0

A interrupção externa 0 pode ser ativada por nível lógico baixo (mantido por 12 ciclos de instrução) ou transição para nível lógico baixo (borda de descida) no pino /INTO.

Depende do flip-flop **IT0** do registrador **TCON**. IT0='1' implica em solicitação da interrupção por borda.

O flip-flop **IE0** do registrador **TCON** é setado quando da solicitação da interrupção externa /**INT0**, informando a UC do 8051 sobre tal ocorrência.

Característica da Interrupção Externa 1

A interrupção externa 1 pode ser ativada por nível lógico baixo (mantido por 12 ciclos de clock) ou transição para nível lógico baixo (borda de descida) no pino /INT1.

Depende do flip-flop **IT1** do registrador **TCON**. IT1='1' implica em solicitação da interrupção por borda.

O flip-flop **IE1** do registrador **TCON** é setado quando da solicitação da interrupção externa /**INT1**, informando a UC do 8051 sobre tal ocorrência.

Registrador TCON - Timer Control

MSB
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88H

ITx - Interrupt control bit. 1 => borda de descida0 => nível lógico baixo

IEx - External Interrupt flag.
Setado pelo hardware quando interrupção é detectada.
Resetado pelo hardware ao desviar o fluxo de execução do código para o tratador de interrupção

Registrador TCON - Timer Control

MSB

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88H

SETB ITO; INTO solicitada por borda de descida

SETB IT1; INT1 solicitada por borda de descida

Exercício

Faça um programa que aceite /INT0 (acionada por borda). Quando a /INT0 for solicitada, escrever na porta P1, caractere por caractere, a cadeia de 16 caracteres: 'Microcontrolador'.

Características a serem observadas no tratador de interrupção

- Endereço do tratador (observar onde o mesmo deve ser alocado na memória de programa);
- ❖ Não alterar registradores (ao retornar do tratador para o programa principal, os registradores de propósito geral devem ter valores iguais àqueles que possuíam antes de executar o tratador; caso contrário, o programa principal pode deixar de funcionar como esperado);
- ❖ Não alterar a ponteiro de pilha: SP (ao executar RETI, SP deve ter valor igual àquele com o qual iniciou a execução do tratador);
- ❖ Código de rápida execução.

Solução do Exercício

```
equ 00h
reset
         equ 03h; local tratador
Itint0
state
        equ 20h
        reset ;PC=0 depois de reset
  org
  jmp
        inicio
         Itint0
  org
         state,#1h
  mov
  reti
inicio:
        ie,#10000001b
                         : habilita int0
  mov
        it0
  setb
                         ; borda
        state,#0h;inicialização
  mov
        r0,#state
  mov
        dptr,#tabela
  mov
        r1,#0
  mov
```

```
cjne
                 @r0,#1,volta
volta:
                 state,#0h
        mov
                a,r1
        mov
                 a,@a+dptr
        movc
                 p1,a
        mov
                 r1
        inc
        cjne
                 r1,#16,volta
                 $
        jmp
```

tabela: db 'Microcontrolador' end

Prioridade das Interrupções do 8051

O registrador *Interrupt Priority* é inicializado com 0. Assim, todas as interrupções tem um mesmo nível de prioridade ('0').

Se todas as interrupções ocorrerem simultaneamente, o 8051 prioriza o atendimento,

entre as mesmas, de acordo com a tabela ao lado:

Fonte de Interrupção	Trigger	Nível de Prioridade
Externa 0	IE0	Mais Alto
Timer 0	TF0	
Externa 1	IE1	
Timer 1	TF1	
Serial	TI e/ou RI	Mais Baixo

Interrupções com mesmo nível de prioridade não interrompem a execução uma das outras.

Alterando nível de prioridade das interrupções do 8051

Se a prioridade pré-estabelecida na tabela anterior for inadequada para algum projeto, pode-se alterar a mesma.

IP - Interrupt Priority Register - Bit Addressable

Exemplo de aumento da prioridade da Interrupção Externa 1:

SETB PX1; prioridade /INT1 superior às demais

A partir da execução desta instrução, a interrupção externa 1 passa ter nível de prioridade '1', podendo interromper a execução dos tratadores das interrupções com nível de prioridade '0'.

Alterando nível de prioridade das interrupções do 8051

Exemplo de aumento da prioridade da Interrupção Externa 1:

SETB PX1; prioridade INT1 superior às demais

Se todas as interrupções ocorrerem simultaneamente, o 8051 atende primeiro as interrupções com nível de prioridade '1' e depois as demais, sempre de acordo com a ordem de prioridade da tabela abaixo:

Fonte de Interrupção	Prioridade 0	Prioridade 1	Nível de Prioridade
Externa 0	IE0		Mais Alto
Timer 0	TF0		
Externa 1		IE1	
Timer 1	TF1		
Serial	TI e/ou RI		Mais Baixo

Alterando nível de prioridade das interrupções do 8051

Exemplo de aumento da prioridade das interrupções Externa 1 e Timer1:

;prioridade /INT1 e Timer1 superior às demais SETB PT1; SETB PX1;

Neste caso, se todas as interrupções ocorrerem simultaneamente, o 8051 atende primeiro as interrupções com nível de prioridade '1' (Externa 1 e, depois, Timer 1) e então, as demais, sempre de acordo com a ordem de prioridade da tabela abaixo:

Fonte de Interrupção	Prioridade 0	Prioridade 1	Nível de Prioridade
Externa 0	IE0		Mais Alto
Timer 0	TF0		
Externa 1		IE1	
Timer 1		TF1	
Serial	TI e/ou RI		Mais Baixo