Econ 476: Industrial Organization

Game Theory - Normal form

J. Bradley Eustice

Brigham Young University

Lecture 03

Intro

"Game theory ... is a collection of tools for predicting outcomes for a group of interacting agents, where an action of a single agent directly affects the payoffs of other participating agents."

▶ IO perfect application

Intro

Let's play a game!

- "Guess two-thirds of the Average"
- ▶ Pick a whole number between 1-100.
- ▶ The winner is closest to 2/3 of the average guess.

Intro

- 2 types of games:
 - ▶ Normal form
 - agents(players) choose actions simultaneously
 - Extensive form
 - agents may choose actions in different time periods
- 2 types of actions: pure or mixed
- 2 types of information: perfect or imperfect

Definition

A normal form game is described by the following:

- 1. *N* players whose names are listed in the set $I \equiv \{1, 2, 3, ..., N\}$
- 2. Each player i, where $i \in I$, has an action set A^i , where $A^i = \{a_1^i, a_2^i, a_3^i, ..., a_k^i\}$
- 3. List of actions chosen by each player: $a \equiv (a^1, a^2, ..., a^N)$
- 4. Each player i has a payoff function $\pi^i \in \mathbb{R}$

Example - notation

Example - notation

		Russia				
		W	AR	PEACE		
FRANCE	WAR	1	1	3	0	
	PEACE	0	3	2	2	

Example - notation

- ► N = 2; $I = \{ FRANCE, RUSSIA \}$ ► $A^1 = \{ WAR, PEACE \}$; $A^2 = \{ WAR, PEACE \}$;
- ▶ 4 potential outcomes:
 - 1. a = (WAR, WAR)
 - 2. a = (WAR, PEACE)
 - 3. a = (PEACE, WAR)
 - 4. a = (PEACE, PEACE)
- ▶ Assume outcome a = (WAR, PEACE) is realized.
 - $\pi^{1}(a) = \pi^{1}(WAR, PEACE) = 3$
 - $\pi^2(a) = \pi^2(WAR, PEACE) = 0$

Game?

Is this a game (according to the definition)?

NEPHI

BUILD BOAT

NO BUILD

L & L BUILD BOAT NO BUILD

americas	americas	Δ♡	disfavored
shocked	irked	happy	sad

Notation, notation, notation!

▶ https://www.youtube.com/watch?v=3U02A2p-19A

- $ightharpoonup a^{\neg i} \equiv \left(a^1, ..., a^{i-1}, a^{i+1}, ... a^N\right)$
 - Outcome a can be expressed as $a = (a^i, a^{\neg i})$
- ► Why?
 - ▶ When solving these games it is helpful (i.e. necessary) to determine player *i*'s best response to each possible outcome.

Best response functions

▶ Definition: In an *N*-player game, the best response function of player i is the function $R^i\left(a^{\neg i}\right)$, that for a given actions $a^{\neg i}$ of players 1,2,...,i-1,i+1,...N, assigns an action $a^i=R^i\left(a^{\neg i}\right)$ that maximizes player i's payoff $\pi^i\left(a^i,a^{\neg i}\right)$.

Example - best response functions

		RACHEL				
		ор	era	football		
Јасов	opera	2	1	0	0	
	football	0	0	1	2	

What are the best response functions for JACOB and RACHEL?

►
$$R^{\text{JACOB}}\left(a^{\text{RACHEL}}\right) = \left\{ egin{array}{ll} \textit{opera} & \text{if } a^{\text{RACHEL}} = \textit{opera} \\ \textit{football} & \text{if } a^{\text{RACHEL}} = \textit{football} \end{array} \right.$$

► $R^{\text{RACHEL}}\left(a^{\text{JACOB}}\right) = \left\{ egin{array}{ll} \textit{opera} & \text{if } a^{\text{JACOB}} = \textit{opera} \\ \textit{football} & \text{if } a^{\text{JACOB}} = \textit{football} \end{array} \right.$

Dominant action

- ▶ Definition: A particular action $\tilde{a}^i \in A^i$ is said to be a *dominant* action for player i if, regardless of all other player's actions, \tilde{a}^i maximizes player i's payoff, π^i (\tilde{a}^i , a^{-i}).
 - ▶ Formally, $\pi^i\left(\tilde{a}^i, a^{\neg i}\right) \ge \pi^i\left(a^i, a^{\neg i}\right)$ for every $a^i \in A^i$

Example - dominant action

		Firm Dos			
		low	price	high	price
FIRM UNO	low price	5	5	9	1
	high price	1	9	7	7

▶ Does FIRM UNO have a dominant strategy?

Example - dominant action

Yes!

Solution

- $ightharpoonup \pi^{\text{UNO}}$ (low price, high price) = 9 > 7 = π^{UNO} (high price, high price)
- ullet $\pi^{
 m UNO}$ (low price, low price) $=5>1=\pi^{
 m UNO}$ (high price, low price)
- ► Low price is the dominant strategy for both firms (by symmetry)
- ► High price is a strictly dominated strategy
- ▶ This is an example of an equilibrium in dominant actions
 - each player plays a dominant action
 - the outcome is $\tilde{a} = (\tilde{a}^{\mathrm{UNO}}, \tilde{a}^{\mathrm{DOS}})$

Nash equilibrium

- ▶ Definition: An outcome $\hat{a} = (\hat{a}^1, \hat{a}^2, ..., \hat{a}^i, ..., \hat{a}^N)$ (where $\hat{a}^i \in A^i$ for every i = 1, 2, ..., N) is said to be a Nash equilibrium (NE) if no player would find it beneficial to deviate provided that all other players do not deviate from their strategies played at the Nash outcome.
 - ▶ Formally, $\pi^i\left(\hat{a}^i,\hat{a}^{\neg i}\right) \geq \pi^i\left(a^i,\hat{a}^{\neg i}\right)$ for every $a^i \in A^i$
- Related to dominant action
 - ► An equilibrium in dominant actions outcome is also a NE. However, a NE outcome is not always an equilibrium in dominant actions.
 - ► equilibrium in dominant actions ⇒ NE, but NE ⇒ equilibrium in dominant actions
- ▶ Solve for NE using best response functions

Example - NE

COLLEGE CAR

Jack in the Box
In-N-Out

 Jack in the Box
 In-n-Out

 7
 6
 3
 3

 2
 2
 8
 10

FANCY CAR

► Solve for the NE

Example - NE

$$R^{\text{College}}\left(a^{\text{Fancy}}\right) = \left\{ \begin{array}{ll} \textit{In} - \textit{N} - \textit{Out} & \text{if } a^{\text{Fancy}} = \textit{In} - \textit{N} - \textit{Out} \\ \textit{Jack in the Box} & \text{if } a^{\text{Fancy}} = \textit{Jack in the Box} \end{array} \right.$$

$$R^{\text{Fancy}}\left(a^{\text{College}}\right) = \left\{ \begin{array}{ll} \textit{In} - \textit{N} - \textit{Out} & \text{if } a^{\text{College}} = \textit{In} - \textit{N} - \textit{Out} \\ \textit{Jack in the Box} & \text{if } a^{\text{College}} = \textit{Jack in the Box} \end{array} \right.$$

- π^{College} (JintheB, JintheB) = $7 > 2 = \pi^{\text{College}}$ (InNOut, JintheB)
- $\pi^{\text{College}}(InNOut, InNOut) = 8 > 3 = \pi^{\text{College}}(JintheB, InNOut)$
- π^{FANCY} (JintheB, JintheB) = 6 > 3 = π^{FANCY} (InNOut, JintheB)
- ullet $\pi^{\mathrm{FANCY}}(\mathit{InNOut}, \mathit{InNOut}) = 10 > 2 = \pi^{\mathrm{FANCY}}(\mathit{JintheB}, \mathit{InNOut})$

$$\text{NE are } \hat{\textbf{a}} = \left\{ \begin{array}{l} \left(\textit{Jack in the Box}, \textit{Jack in the Box} \right) \\ \left(\textit{In} - \textit{N} - \textit{Out}, \textit{In} - \textit{N} - \textit{Out} \right) \end{array} \right.$$

Exercise - rock paper scissors

Find all (pure strategy) Nash equilibria.

Backstreet Boys

		R		Р		S	
	R	0	0	-1	1	1	-1
N'sync	Р	1	-1	0	0	-1	1
	S	-1	1	1	-1	0	0

Mixed strategy

- ▶ There are no *pure strategy* Nash equilibria in the previous game.
- ▶ A mixed strategy assigns a probability to each action in the action set
- ▶ John Nash proved that each finite game has at least one mixed strategy Nash equilibrium.
 - mixed strategy NE is $\hat{a} = ((\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}))$
 - ▶ any deviation (especially in the long run) would result in lower payoffs

Note: this concept is only introduced for completeness. We will not apply mixed strategies in this course.