COURSE 2

2.2. Lagrange interpolation

Example 1 A census of the population of the United States is taken every 10 years. The following table lists the population, in thousands of people, from 1950 to 2000.

1950 1960 1970 1980 1990 2000 151326 179323 203302 226542 249633 281422

Question: these data could be used to provide a reasonable estimate of the population in 1975? Answer: population in 1975 is 215042.

Let $[a,b] \subset \mathbb{R}$, $x_i \in [a,b]$, i=0,1,...,m such that $x_i \neq x_j$ for $i \neq j$ and consider $f:[a,b] \to \mathbb{R}$.

The Lagrange interpolation problem (LIP) consists in determining the polynomial P of the smallest degree for which

$$P(x_i) = f(x_i), \ i = 0, 1, ..., m \tag{1}$$

i.e., the polynomial of the smallest degree which passes through the distinct points $(x_i, f(x_i))$, i = 0, 1, ..., m.

Definition 2 A solution of (LIP) is called **Lagrange interpolation polynomial**, denoted by $L_m f$.

Remark 3 We have $(L_m f)(x_i) = f(x_i), i = 0, 1, ..., m.$

 $L_m f \in \mathbb{P}_m$ (\mathbb{P}_m is the space of polynomials of at most m-th degree).

The Lagrange interpolation polynomial is given by

$$(L_m f)(x) = \sum_{i=0}^{m} \ell_i(x) f(x_i),$$
 (2)

where by $\ell_i(x)$ denote the Lagrange fundamental interpolation polynomials. We have

$$u(x) = \prod_{j=0}^{m} (x - x_j),$$

$$u_i(x) = \frac{u(x)}{x - x_i} = (x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_m) = \prod_{\substack{j=0\\j \neq i}}^{m} (x - x_j)$$

and

$$\ell_i(x) = \frac{u_i(x)}{u_i(x_i)} = \frac{(x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_m)}{(x_i - x_0)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_m)} = \prod_{\substack{j=0 \ j \neq i}}^m \frac{x - x_j}{x_i - x_j},$$
(3)

for i = 0, 1, ..., m.

Proposition 4 We also have

$$\ell_i(x) = \frac{u(x)}{(x - x_i)u'(x_i)}, \ i = 0, 1, ..., m.$$
(4)

Proof. We have $u_i(x) = \frac{u(x)}{x - x_i}$, so $u(x) = u_i(x)(x - x_i)$. We get $u'(x) = u_i(x) + (x - x_i)u'_i(x)$, whence it follows $u'(x_i) = u_i(x_i)$. So, as

$$\ell_i(x) = \frac{u_i(x)}{u_i(x_i)}$$

we get

$$\ell_i(x) = \frac{u_i(x)}{u'(x_i)} = \frac{u(x)}{(x - x_i)u'(x_i)}, \ i = 0, 1, ..., m.$$
 (5)

Example 5 a) Consider the nodes x_0, x_1 and a function f to be interpolated.

b) Find the Lagrange polynomial that interpolates the data in the following table and find the approximative value of f(-0.5).

Sol.

a) We have m=1,

$$u(x) = (x - x_0)(x - x_1)$$

$$u_0(x) = x - x_1$$

$$u_1(x) = x - x_0$$

$$(L_1 f)(x) = l_0(x) f(x_0) + l_1(x) f(x_1)$$

$$= \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1),$$

which is the line passing through the given points $(x_0, f(x_0))$ and $(x_1, f(x_1))$.

b) We have m=2. The Lagrange polynomial is

$$(L_2f)(x) = l_0(x)f(x_0) + l_1(x)f(x_1) + l_2(x)f(x_2).$$

u(x) = (x + 1)(x - 0)(x - 3) and it follows

$$l_0(x) = \frac{(x-0)(x-3)}{(-1-0)(-1-3)} = \frac{1}{4}x(x-3)$$

$$l_1(x) = \frac{(x+1)(x-3)}{(0+1)(0-3)} = -\frac{1}{3}(x+1)(x-3)$$

$$l_2(x) = \frac{(x+1)(x-0)}{(3+1)(3-0)} = \frac{1}{12}x(x+1),$$

The polynomial is

$$(L_2f)(x) = 2x(x-3) + \frac{2}{3}(x+1)(x-3) + \frac{1}{3}x(x+1).$$

and $(L_2f)(-0.5) = 2.25.$

Remark 6 Disadvantages of the form (2) of Lagrange polynomial: requires many computations and if we add or substract a point we have to start with a complete new set of computations.

Some calculations allow us to reduce the number of operations:

$$(L_m f)(x) = \frac{(L_m f)(x)}{1} = \frac{\sum_{i=0}^{m} l_i(x) f(x_i)}{\sum_{i=0}^{m} l_i(x)}.$$

Dividing the numerator and the denominator by

$$u(x) = \prod_{i=1}^{m} (x - x_i)$$

and denoting

$$A_i = \frac{1}{\prod_{j=0, j \neq i}^{m} (x_i - x_j)} = \frac{1}{u_i(x_i)}$$

one obtains

$$(L_m f)(x) = \frac{\sum_{i=0}^{m} \frac{A_i f(x_i)}{x - x_i}}{\sum_{i=0}^{m} \frac{A_i}{x - x_i}},$$
(6)

called the barycentric form of Lagrange interpolation polynomial.

Remark 7 Formula (6) needs half of the number of arithmetic operations needed for (2) and it is easier to add or substract a point.

The Lagrange polynomial generates the Lagrange interpolation formula

$$f = L_m f + R_m f,$$

where $R_m f$ denotes the remainder (the error).

Theorem 8 Let $\alpha = \min\{x, x_0, ..., x_m\}$ and $\beta = \max\{x, x_0, ..., x_m\}$. If $f \in C^m[\alpha, \beta]$ and $f^{(m)}$ is derivable on (α, β) then $\forall x \in (\alpha, \beta)$, there exists $\xi \in (\alpha, \beta)$ such that

$$(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi). \tag{7}$$

Proof. Consider

$$F(z) = \begin{vmatrix} u(z) & (R_m f)(z) \\ u(x) & (R_m f)(x) \end{vmatrix}.$$

From hypothesis it follows that $F \in C^m[\alpha, \beta]$ and there exists $F^{(m+1)}$ on (α, β) .

We have

$$F(x) = 0, F(x_i) = 0, i = 0, 1, ..., m,$$

as

$$u(x_i) = \prod_{j=0}^{m} (x_i - x_j) = 0$$

and

$$(R_m f)(x_i) = f(x_i) - (L_m f)(x_i) = f(x_i) - f(x_i) = 0,$$

so F has m+2 distinct zeros in (α,β) . Applying successively the Rolle theorem it follows that: F has m+2 zeros in $(\alpha,\beta) \Rightarrow F'$ has at least m+1 zeros in $(\alpha,\beta) \Rightarrow ... \Rightarrow F^{(m+1)}$ has at least one zero in (α,β)

So $F^{(m+1)}$ has at least one zero $\xi \in (\alpha, \beta), F^{(m+1)}(\xi) = 0.$

We have

$$F^{(m+1)}(z) = \begin{vmatrix} u^{(m+1)}(z) & (R_m f)^{(m+1)}(z) \\ u(x) & (R_m f)(x) \end{vmatrix},$$

with

$$u(z) = \prod_{i=0}^{m} (z - z_i) \Rightarrow u^{(m+1)}(z) = (m+1)!,$$

and

$$(R_m f)^{(m+1)}(z) = (f - (L_m f))^{(m+1)}(z)$$

= $f^{(m+1)}(z) - (L_m f)^{(m+1)}(z) = f^{(m+1)}(z)$

(as, $L_m f \in \mathbb{P}_m$).

We have $F^{(m+1)}(\xi) = 0$, for $\xi \in (\alpha, \beta)$, so

$$F^{(m+1)}(\xi) = \begin{vmatrix} (m+1)! & f^{(m+1)}(\xi) \\ u(x) & (R_m f)(x) \end{vmatrix} = 0,$$

i.e.,
$$(m+1)!(R_m f)(x) = u(x)f^{(m+1)}(\xi)$$
,

whence
$$(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi)$$
.

Corrolary 9 If $f \in C^{m+1}[a,b]$ then

$$|(R_m f)(x)| \le \frac{|u(x)|}{(m+1)!} ||f^{(m+1)}||_{\infty}, \quad x \in [a,b]$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm, and $\|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|$.

Example 10 If we know that $\lg 2 = 0.301$, $\lg 3 = 0.477$, $\lg 5 = 0.699$, find $\lg 76$. Study the approximation error.

Example 11 Which is the limit of the error for computing $\sqrt{115}$ using Lagrange interpolation formula for the nodes $x_0 = 100$, $x_1 = 121$ and $x_2 = 144$? Find the approximative value of $\sqrt{115}$.

The Aitken's algorithm

Let $[a,b] \subset \mathbb{R}$, $x_i \in [a,b]$, i=0,1,...,m such that $x_i \neq x_j$ for $i \neq j$ and consider $f:[a,b] \to \mathbb{R}$.

Usually, for a practical approximation problem, for a given function $f:[a,b]\to\mathbb{R}$ we have to find the approximation of $f(\alpha)$, $\alpha\in[a,b]$ with an error not greater than a given $\varepsilon>0$.

If we have enough information about f and its derivatives, we use the inequality $|(R_m f)(x)| \le \varepsilon$ to find m such that $(L_m f)(\alpha)$ approximates $f(\alpha)$ with the given precision.

We may use the condition $\frac{|u(x)|}{(m+1)!} \|f^{(m+1)}\|_{\infty} \leq \varepsilon$, but it should be known $\|f^{(m+1)}\|_{\infty}$ or a majorant of it.

A practical method for computing the Lagrange polynomial is **the Aitken's algorithm.** This consists in generating the table:

where

$$f_{i0} = f(x_i), \quad i = 0, 1, ..., m,$$

and

$$f_{i,j+1} = \frac{1}{x_i - x_j} \begin{vmatrix} f_{jj} & x_j - x \\ f_{ij} & x_i - x \end{vmatrix}, \quad i = 0, 1, ..., m; j = 0, ..., i - 1.$$

For example,

$$f_{11} = \frac{1}{x_1 - x_0} \begin{vmatrix} f_{00} & x_0 - x \\ f_{10} & x_1 - x \end{vmatrix}$$

$$= \frac{1}{x_1 - x_0} [f_{00}(x_1 - x) - f_{10}(x_0 - x)]$$

$$= \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1) = (L_1 f)(x),$$

so f_{11} is the value in x of Lagrange polynomial for the nodes x_0, x_1 . We have

$$f_{ii} = (L_i f)(x),$$

 $L_i f$ being Lagrange polynomial for the nodes $x_0, x_1, ..., x_i$.

So $f_{11}, f_{22}, ..., f_{ii}, ..., f_{mm}$ is a sequence of approximations of f(x).

If the interpolation procedure is convergent then the sequence is also convergent, i.e., $\lim_{m\to\infty}f_{mm}=f(x)$. By Cauchy convergence criterion it follows

$$\lim_{i \to \infty} |f_{ii} - f_{i-1,i-1}| = 0.$$

This could be used as a stopping criterion, i.e.,

$$|f_{ii} - f_{i-1,i-1}| \le \varepsilon$$
, for a given precision $\varepsilon > 0$.

Recommendation is to sort the nodes $x_0, x_1, ..., x_m$ with respect to the distance to x, such that

$$|x_i - x| \le |x_j - x|$$
 if $i < j$, $i, j = 1, ..., m$.

Example 12 Approximate $\sqrt{115}$ with precision $\varepsilon = 10^{-3}$, using Aitken's algorithm.