BUSINESS CASE STUDY SQL

 $\hbox{Made by } \textbf{Suryansh}$

LinkedIn

E-mail - suryansh_ce21b18_67@dtu.ac.in

Context:

Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

Dataset:

https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCnb

Data is available in 8 csv files:

- 1. Customers.csv
- 2. geolocation.csv
- 3. order_items.csv
- 4. payments.csv
- 5. reviews.csv
- 6. orders.csv
- 7. products.csv
- 8. sellers.csv

Each feature or columns of different CSV files are described below:

Q1) Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset :

- Data type of columns in a table
- Time period for which the data is given
- · Cities and States of customers ordered during the given period

Customers Table:

SELECT * FROM `business-case-study-sql.Target_dataset.customers` LIMIT 1000;

GeoLocation Table:

SELECT * FROM 'business-case-study-sql.Target dataset.geolocation' LIMIT 1000;

Order Items Table:

SELECT * FROM `business-case-study-sql.Target_dataset.order_items` LIMIT 1000

OrdersTable:

SELECT * FROM `business-case-study-sql.Target dataset.orders` LIMIT1000

Payments:

SELECT * FROM `business-case-study-sql.Target_dataset.payments` LIMIT1000

Products:

SELECT * FROM `business-case-study-sql.Target_dataset.products` LIMIT 1000

Sellers:

SELECT * FROM `business-case-study-sql.Target dataset.sellers` LIMIT 1000

Q2) Time period for which the data is given:

SELECT

MIN(order_purchase_timestamp) AS start_date, MAX(order_purchase_timestamp) AS end_date FROM `business-case-study-sql.Target_dataset.orders`

Insights:

- Start date = 04-09-2016
- End date = 17-10-2018

Time period = 2 years, 7 months, 14 days including the end date.

Q3) Cities and States of customers ordered during the given period :

SELECT DISTINCT customer_city, customer_state
FROM `business-case-study-sql.Target_dataset.customers` AS c
JOIN `business-case-study-sql.Target_dataset.orders` AS o
ON c.customer_id = o.customer_id

Insights:

- There are a total of 4311 rows.
- Count of unique cities = 4119
- Count of unique states = 27

SELECT DISTINCT geolocation_city, geolocation_state FROM `business-case-study-sql.Target_dataset.geolocation`

SELECT DISTINCT customer_city, customer_state FROM `business-case-study-sql.Target dataset.customers`

Insights:

There are a total of 8464 rows. Count of unique cities = 4119 Count of unique states = 27

Q4) In-depth Exploration:

- Is there a growing trend of e-commerce in Brazil?
- How can we describe a complete scenario?
- Can we see some seasonality with peaks at specific months?

SELECT

EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year, COUNT(DISTINCT order_id) AS order_count, SUM(DISTINCT(order_id)) AS total_sales FROM `business-case-study-sql.Target_dataset.orders` GROUP BY order_month, order_year ORDER BY order_year, order_month

RESULTS JSON
2016 4 2016 324
2016 324
2016 1
2017 800
2017 1780
2017 2682
2017 2404
2017 3700
2017 3245
2017 4026

Insights:

- We can clearly see that there is a growing trend on e-commerce in Brazil from 2016 to 2018.
- Nov 2017 is the month when most of the orders were placed.
- Outlier data points: (09 &12)in 2016 and (09 & 10) in 2018. Here, the number of order_count is very less than the median data. It seems the data was not captured correctly and looks corrupted. If these data points are not corrected then it may negatively impact the analysis of the entire dataset

SELECT

EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year, COUNT(DISTINCT c.order_id) AS order_count, SUM(p.payment_value) AS total_sales FROM `business-case-study-sql.Target_dataset.orders` AS c JOIN `business-case-study-sql.Target_dataset.payments` AS p ON c.order_id = p.order_id GROUP BY order_month, order_year ORDER BY order year, order month

Que	ry results				å SAVE RESULTS ▼
JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	order_month	order_year	order_count	total_sales	
1	9	2016	3	252.24	
2	10	2016	324	59090.4800	
3	12	2016	1	19.62	
4	1	2017	800	138488.039	
5	2	2017	1780	291908.009	
6	3	2017	2682	449863.600	
7	4	2017	2404	417788.030	
8	5	2017	3700	592918.820	
9	6	2017	3245	511276.380	
10	7	2017	4026	592382.920	

Insights:

- Seasonality chart (Month wise date added from Sept 2016 to Oct 2018)
- August has the highest number of orders. (Maybe there is Big Sale Offer/Stock Clearance offer)
- September has the lowest number of orders.

• The average number of orders for the first 8 months is higher than the last 4 months.

Q5) What time do Brazilian customers tend to buy? (Dawn - 12am-6am, Morning 6am-12pm, Afternoon - 12 noon to 6pm,or Night 6-pm - 12am)?

SELECT

CASE

WHEN EXTRACT(hour FROM timestamp(order_purchase_timestamp))

BETWEEN 0 AND 6

THEN 'dawn'

WHEN EXTRACT(hour FROM timestamp(order_purchase_timestamp))

BETWEEN 7 AND 12

THEN 'morning'

WHEN

EXTRACT(hour FROM timestamp(order_purchase_timestamp)) BETWEEN 13

AND 18

THEN 'afternoon'

WHEN

EXTRACT(hour FROM timestamp(order_purchase_timestamp)) BETWEEN 19

AND 23

THEN 'night'

END AS time_of_day,

COUNT(DISTINCT order id) AS counter

FROM 'business-case-study-sql.Target dataset.orders'

GROUP BY 1

ORDER BY 2 DESC:

Insights:

• Here the time slots are: Dawn:- 12am-6am, Morning:- 7am-12pm, Afternoon:- 1pm to 6pm, Night:- 7pm - 11pm.

SELECT

CASE

WHEN TIME(order_purchase_timestamp) BETWEEN '00:00:00' AND '06:59:59' THEN 'Dawn'

WHEN TIME(order_purchase_timestamp) BETWEEN '07:00:00' AND '12:59:59' THEN 'Morning'

WHEN TIME(order_purchase_timestamp) BETWEEN '13:00:00' AND '18:59:59' THEN 'Afternoon'

ELSE 'Night'

END AS TIME_OF_PURCHASE,

COUNT(DISTINCT order_id) AS num_orders

FROM 'business-case-study-sql.Target dataset.orders'

GROUP BY TIME OF PURCHASE

order by num orders

Oue	ry results			SAVE RESULTS ▼	≦ EXPLORE DATA ▼	٥		
	-						IIII EN ESTE SATA	Ť
JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW			
Row	TIME_OF_PURCHASE		num_orders					
1	Dawn		5242					
2	Morning		27733					
3	Night		28331					
4	Afternoon		38135					

Insights:

- During the afternoon time (12pm-6pm), most of the customers place orders. Reason: People are awake during this time period. So, most advertisements can be shown during this time period.
- During morning and night, almost equal amounts of orders are placed.
- During dawn timing (12am-6am), very few people order.Reason: People are mostly asleep during this time.

Q6) Evolution of E-commerce orders in the Brazil region:

Get month on month orders by states

SELECT

EXTRACT(month FROM timestamp(order_purchase_timestamp)) AS month, g.geolocation state,

COUNT(1) AS num orders

FROM 'business-case-study-sql.Target dataset.orders' o

INNER JOIN 'business-case-study-sql.Target_dataset.customers' c

ON o.customer_id = c.customer_id INNER JOIN `business-case-study-sql.Target_dataset.geolocation` g ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix GROUP BY g.geolocation_state, month ORDER BY geolocation_state DESC, month ASC

Quer	y results			å SAVE RESULTS ▼	ORE DATA *
JOB IN	FORMATION	RESULTS JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW	
Row	month	geolocation_state	num_orders		
1	1	TO	1544		
2	2	TO	1287		
3	3	TO	1626		
4	4	TO	2379		
5	5	то	2691		
6	6	то	1577		
7	7	TO	743		
8	8	то	1603		
9	9	TO	1236		
10	10	TO	1010		

Distribution of customers across the states in Brazil

SELECT g.geolocation_state, COUNT(DISTINCT (c.customer_unique_id)) AS num_customers
FROM `business-case-study-sql.Target_dataset.customers` c
INNER JOIN `business-case-study-sql.Target_dataset.geolocation` g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
GROUP BY g.geolocation_state
ORDER BY num_customers DESC;

Q7) Payment type analysis:

Month over Month count of orders for different payment types

```
WITH
cte_table AS
(
SELECT
EXTRACT(month FROM timestamp(o.order_purchase_timestamp)) AS month,
EXTRACT(year FROM timestamp(o.order_purchase_timestamp)) AS year,
(sum(price) / COUNT( distinct o.order_id)) AS price_per_order,
(sum(freight_value) / COUNT(distinct o.order_id)) AS freight_per_order
FROM `business-case-study-sql.Target_dataset.orders` o
```

```
INNER JOIN `business-case-study-sql.Target_dataset.order_items` i
ON o.order_id = i.order_id
GROUP BY year, month
)
SELECT (price_per_order), (freight_per_order), month, year
FROM cte_table
order by payment_type, year asc, month asc;
```

Quer	y results					å SAVE RESULTS ▼	ATA *
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DE	TAILS EX	TION GRAPH PREVIEW	
ow /	payment_type	,	count_of_orders	month	year		
1	UPI		58	10	2016		
2	UPI		193	1	2017		
3	UPI		385	2	2017		
4	UPI		584	3	2017		
5	UPI		491	4	2017		
6	UPI		761	5	2017		
7	UPI		703	6	2017		
8	UPI		833	7	2017		
9	UPI		928	8	2017		
10	UPI		888	9	2017		

Insights:

- We observe that most of the payments are done using Credit Cards.
- The second most popular method of payment is UPI.
- Then vouchers are used for payments & Debit cards are used the least for payments.
- Credit card companies can add some offers/coupons for purchasing anything to boost the usage and sales.

• Count of orders based on the no. of payment installments

SELECT
payment_installments,
COUNT(DISTINCT order_id) AS count_of_orders
FROM
`business-case-study-sql.Target_dataset.payments`
GROUP BY
Payment installments;

Insights:

- We observe that most of the payments are done at once.
- Then 2 to 10 installments are used for payments.
- And 11-24 installments are very less used for payments.

THANKYOU

Made by **Suryansh** LinkedIn

E-mail - suryansh_ce21b18_67@dtu.ac.in