NATURAL LANGUAGE PROCESSING PROJECT

Group 4

Stefani Guevara

Mariko McDougall

Arathi Nair

CONTENTS

- Glue Benchmark Tasks
- ELECTRA
- XLNet
- DeBERTa
- Ensemble Model
- Experiment Results
- Conclusion

Single Sentence Tasks

Cola - Grammatical Correctness

SST-2 - Sentiment Analysis

G L U E B E N C H M A R K

Similarity & Paraphrase Tasks

MRPC - Paraphrase detection of two sentences

QQP - Paraphrase detection of two questions

STS-B - Sentence similarity

Inference Tasks

MNLI - Sentences match/mismatch

QNLI - Question & Answer pairing

RTE - Sentences match/mismatch

WNLI - Sentences match/mismatch with pronoun substitution

ELECTRA

- Introduced a unique pre-training approach called "replaced token detection"
- Predicts all the input token unlike its predecessors that relied on MLM pre-training and predicts only 15% of the tokens
- Uses significantly less compute resources
- Results match or exceed downstream performance of a pre trained MLM
- More efficient pre-training compared to MLM
- Produces an improved comprehension of context

Model Architecture

- 1. MLM selects a random set of positions to mask out $m = [m_1, ..., m_k]$
- 2. Generator predicts original words of the [MASK] tokens
- 3. Discriminator distinguishes tokens replaced by the generator
- **4**. Model is trained to distinguish "real" input tokens vs "fake" input tokens

GENERATOR

Output probability for a token x_t with softmax layer

$$p_G(x_t|\boldsymbol{x}) = \exp\left(e(x_t)^T h_G(\boldsymbol{x})_t\right) / \sum_{x'} \exp\left(e(x')^T h_G(\boldsymbol{x})_t\right)$$

x = sequence on input tokens

h(x) = contextualized vector representations

e = token embeddings

Loss function:

$$\mathcal{L}_{ ext{MLM}}(oldsymbol{x}, heta_G) = \mathbb{E}\left(\sum_{i \in oldsymbol{m}} -\log p_G(x_i | oldsymbol{x}^{ ext{masked}})
ight)$$

DISCRIMINATOR

Predicts if token x_t is "real", with a sigmoid output layer

$$D(\boldsymbol{x},t) = \operatorname{sigmoid}(w^T h_D(\boldsymbol{x})_t)$$

t = position of the token

 h_D = hidden layers, embedding layers, attention heads

 $\mathbf{w}^{\mathsf{T}} = \mathbf{predicted}$ output

Loss function:

$$\mathcal{L}_{\text{Disc}}(\boldsymbol{x}, \theta_D) = \mathbb{E}\left(\sum_{t=1}^n -\mathbb{1}(x_t^{\text{corrupt}} = x_t) \log D(\boldsymbol{x}^{\text{corrupt}}, t) - \mathbb{1}(x_t^{\text{corrupt}} \neq x_t) \log(1 - D(\boldsymbol{x}^{\text{corrupt}}, t))\right)$$

Combined Loss:

$$\min_{ heta_G, heta_D} \sum_{m{x} \in \mathcal{X}} \mathcal{L}_{ ext{MLM}}(m{x}, heta_G) + \lambda \mathcal{L}_{ ext{Disc}}(m{x}, heta_D)$$

General Autoregressive Model

Bidirectional with permutation operation by maxing joint probability

Peter's cat likes yarn

Peter's cat likes yarn yarn Peter's cat likes
Peter's cat yarn likes yarn Peter's likes cat
Peter's likes cat yarn yarn cat Peter's likes

 $\mathcal{J}_{BERT} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city}),$

 $\mathcal{J}_{\text{XLNet}} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{New}, \text{is a city}).$

General Autoregressive Model

Bidirectional with permutation operation by maxing joint probability

Transformer-XL (SOTA LM) Integration

• Long-term dependencies via cache and reuse of previous hidden states

Google Al blog, Transformer-XL: Unleashing the Potential of Attention Models

General Autoregressive Model

Bidirectional with permutation operation by maxing joint probability

Transformer-XL (SOTA LM) Integration

 Long-term dependencies via cache and reuse of previous segment hidden states

Two-Stream Attention Mechanism

- Query: Keep positional encoding, blind to target
- Content: Gather context information (permutation)

$$g(z_t, \mathbf{x}_{\mathbf{z}_{< t}}) = \operatorname{Attn}_{\theta} \left(\underbrace{\mathbf{Q} = \operatorname{Enc}(\mathbf{z}_t)}_{\text{Stand at } \mathbf{z}_t}, \underbrace{\operatorname{KV} = \mathbf{h}(\mathbf{x}_{\mathbf{z}_{< t}})}_{\text{Gather info. from } \mathbf{x}_{\mathbf{z}_{< t}}} \right)$$

Decoding-**E**nhanced **BERT** with disentangled **A**ttention

Decoding-Enhanced BERT with disentangled **A**ttention

Disentangled Attention

"I love deep learning." vs "We are learning about modeling techniques and deep neural nets."

BERT: vector(position embedding + word embedding) -> Attention Mask

DeBERTa: position vector, word vector-> Attention Mask

Effect: Attention weights of words modulated by their relative positions

Decoding-Enhanced BERT with disentangled Attention

Disentangled Attention

"I love deep learning." vs "We are learning about modeling techniques and deep neural nets."

BERT: vector(position embedding + word embedding) -> Attention Mask

DeBERTa: position vector, word vector-> Attention Mask

Effect: Attention weights of words modulated by their relative positions

Enhanced Decoding Mask

"A new **store** opened beside the new **mall**."

BERT: -> Softmax layer to decode masked words

DeBERTa: Absolute position embeddings -> Softmax layer

Effect: Absolute position of words are taken into account

Decoding-Enhanced BERT with disentangled **A**ttention

Full Size Deberta V3

24 layers, hidden size of 1024

304M backbone parameters

Vocabulary of 128K tokens = 131M parameters

Deberta V3-Small

6 layers, hidden size of 768

44M backbone parameters

Vocabulary of 128K tokens = 98M parameters

Ensemble learning

Meta approach to modeling Leverages the power of multiple predictive models

• Ensemble learning

Meta approach to modeling Leverages the power of multiple predictive models

Random Forests

Build all trees simultaneously and independently

Gradient Boosting

Builds trees sequentially, with each tree being built in a chain.

Random Forest Model

Gradient Boosting Model

Ensemble learning

Meta approach to modeling Leverages the power of multiple predictive models

Random Forests

Build all trees simultaneously and independently (horizontally)

Gradient Boosting

Builds trees sequentially, with each tree being built in a chain.

• Classifier and Regressor Models

STS-B has a continuous variable which measures the similarity of the two sentences. All other tasks are binary or class based

Experiment Results

- Ensembles were competitive against each other
- Gradient Boosting outperformed, except on MRPC and RTE
- XLNet's long-term dependencies strong suite may have helped

		Transformers		Ensemble Methods				
Corpus	Metric	Electra	XLNet	Deberta	Random Forest	Grad Boost		
Single-Sentence Tasks								
CoLA	Matthew's correlation	0.607	0.400	0.621	0.688	0.657		
SST-2	Accuracy	0.917	0.940	0.935	0.958	0.954		
Similarity and Paraphrase Tasks								
MRPC	Accuracy and F1	0.882 f1:0.915	0.892 f1:0.923	0.865 f1:0.903	0.878 f1:0.912	0.854 f1:0.893		
QQP	Accuracy and F1	0.900 f1:0.866	0.874 f1:0.833	0.906 f1:0.875	0.909 f1:0.878	0.910 f1:0.879		
STS-B	Pearson and Spearman	P:0.873 S:0.872	P:0.893 S:0.889	P:0.868 S:0.868	P:0.894 S:0.889 *Note: Regressor	P:0.897 S:0.892 *Note: Regressor		
Inference Tasks								
MNLI	Accuracy	0.817	0.857	0.875	0.877	0.877		
MNLI-MM	Accuracy	0.821	0.858	0.872	0.875	0.877		
QNLI	Accuracy	0.889	0.878	0.915	0.916	0.924		
RTE	Accuracy	0.682	0.740	0.668	0.726	0.702		
WNLI	Accuracy	0.465	0.563	0.437	0.500	0.636		

Conclusions

Results + Analysis

- Ensembling works!
- Head-to-head: DeBERTa and XLNet
- Gradient-Booster Ensemble was our winner

Limitations & Future Work

- 12-Hour VPN limit
- Employing TPUs for handling computationally expensive models
- Add different models such as T5 or LUKE to Ensemble

References

GLUE Explained: Understanding BERT Through Benchmarks

Dataset description sheet

GLUE: A MULTI-TASK BENCHMARK AND ANALYSIS PLATFORM FOR NATURAL LANGUAGE UNDERSTANDING

DeBERTa Original Paper

Hugging Face Transformers Examples

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

Paper Reading #2: XLNet Explained

XLNet: Generalized Autoregressive Pretraining for Language Understanding

Guide to XLNet for Language Understanding

Data Science Central

XLNet Explained

XLNet: Generalized Autoregressive Pre-training for Language Understanding

ELECTRA SMALL

Built with 12 layers, 256 hidden size and 14M parameters

```
(electra): ElectraModel(
 (embeddings): ElectraEmbeddings(
  (word_embeddings): Embedding(30522, 128, padding_idx=0)
  (position_embeddings): Embedding(512, 128)
  (token_type_embeddings): Embedding(2, 128)
  (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
  (dropout): Dropout(p=0.1, inplace=False)
 (embeddings_project): Linear(in_features=128, out_features=256, bias=True)
 (encoder): ElectraEncoder(
  (layer): ModuleList(
    (0): ElectraLayer(
      (attention): ElectraAttention(
         (self): ElectraSelfAttention(
          (query): Linear(in_features=256, out_features=256, bias=True)
          (key): Linear(in_features=256, out_features=256, bias=True)
          (value): Linear(in_features=256, out_features=256, bias=True)
           (dropout): Dropout(p=0.1, inplace=False)
         (output): ElectraSelfOutput(
          (dense): Linear(in_features=256, out_features=256, bias=True)
          (LayerNorm): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
       (intermediate): ElectraIntermediate(
         (dense): Linear(in_features=256, out_features=1024, bias=True)
       (output): ElectraOutput(
         (dense): Linear(in_features=1024, out_features=256, bias=True)
         (LayerNorm): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
         (dropout): Dropout(p=0.1, inplace=False)
```

```
( vocab_size = 30522, embedding_size = 128, hidden_size = 256,
num_hidden_layers = 12, num_attention_heads = 4, intermediate_size =
1024, hidden_act = 'gelu', hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1, max_position_embeddings = 512,
type_vocab_size = 2, initializer_range = 0.02, layer_norm_eps = 1e-
12, summary_type = 'first', summary_use_proj = True,
summary_activation = 'gelu', summary_last_dropout = 0.1, pad_token_id
= 0, position_embedding_type = 'absolute', use_cache = True,
classifier_dropout = None, **kwargs )
```

```
(classifier): ElectraClassificationHead(
   (dense): Linear(in_features=256, out_features=256, bias=True)
   (dropout): Dropout(p=0.1, inplace=False)
   (out_proj): Linear(in_features=256, out_features=2, bias=True)
)
```