

Al Assistants

From Click-Deploy to Production

Platinum Sponsor

Technical Sponsor

What are Al Assistants?

Al-driven tools that engage with users via natural language to provide intelligent, adaptive support

How Assistants Work

Retrieval Augmented Generation (RAG) A combination of an information system

retrieval with LLM skills to create contextually grounded responses

Why Al Assistants?

- Domain Expertise
- 24/7 Available
- Consistent and Adaptable
- Boost efficiency
- Scalable

How does RAG work?

1. Retrieval

The solution queries a vast database to retrieve the most relevant documents to user input.

2. Augmentation

This content is served to the generative model to generate accurate, context-aware responses.

Why RAG over Fine-Tuning?

Always Up-to-Date

Replies are always up-to-date

Adapts to changes in your data, making it flexible for evolving business needs.

Cost-Effective & Scalable

No need for retraining

Scales efficiently, adapting to user needs.

Trustworthy & Transparent

Verifiable response

Tracing answers back to the original content for deep-dive.

Azure OpenAl Services

Azure OpenAl Service integrates
OpenAl's generative Al models with
Azure's enterprise-grade cloud, offering
secure, scalable access via REST APIs.

Chat with your data enables the Assistant to craft system prompts and integrate the LLM with your data.

Azure Al Search is as the RAG **retrieval system**, indexing data with relevance tuning, security, and global reach.

Azure Al Search Retrieval Methods

Vector Search

Vector **embedded space**

Measures similarity between queries and documents

Identifies conceptually related content

Keyword Search

Match exact terms

Traditional search needs

Combines with Vector Search to form Hybrid Search

Semantic Search

Understand the **query intent** ranking results by contextual relevance and meaning.

Human-like understanding and deeper insights

Azure Al Search Core Components

The Assistant's **knowledge base** storing processed content and associated metadata. It is **highly customizable**, allowing the configuration of metadata attributes like titles, paths, and vectors for retrieval, filtering, or sorting

Defines **cognitive skills** for preparing and enriching data, including chunking, embedding, field mapping, and custom enrichments for Al processing.

Handles **connecting**, **populating**, and **updating** the index with data from the source based on skillset instructions

Connects to original data sources, storing raw data before enrichment and indexing

DEMO

PoC Architecture

Identify Relevant Data Sources

An effective Al Assistant strictly depends on high-quality data source identification.

Inputs

- The relevance of data sources depends on the Assistant's scope
- Early collaboration with end users accelerates behavior shaping and offers insights into key information's location, format, and accessibility

Knowledge Sources

- Internal Sources: Confluence, GitHub (specs, guidelines), Teams threads, and training materials (video transcriptions, diagrams)
- **External Sources:** Public content (blogs, websites) and secure third-party partner documentation

Data Collection & Management

Knowledge Mining

To ensure Azure Al Search works **effectively**, data must be optimized for indexing and retrieval.

Data Preparation

Python pipelines to collect, clean, and manipulate data

PDFs

Format for easy indexing

Diagrams

Use Mermaid syntax for better usability

LLM-Assisted Transformations

Convert informal content (chats, transcripts) into structured, informative documents

CHAT SUPPORT TO DOCs = """

You are a sophisticated processing tool tasked with analysing and structuring technical support dialogues.

Your main objectives include:

- Identifying the main issue from the dialogue's title.
- Summarizing the core problem from the main text.
- Extracting and listing solutions and steps from the responses.

Operating guidelines:

- Output should be organized in a predefined format, focusing on clarity and relevance.
- Strictly use the data provided in the structured input without adding assumptions.
- Maintain professionalism and ensure privacy by omitting personal details.

11 11 11

Evaluation & Feedback

Monitoring is the **compass for identifying improvement areas**.

Human Feedback

- In-Interface Thumbs Up/Down
- Dedicated surveys assessing the impact of the Assistant.

Guidelines and best practices to maximize the Assistant's effectiveness

LLM-as-a-Judge

Context Relevance

Checks if the response correctly answers the query and stays aligned with the **prior conversation**

What are popular attractions in Paris?

- ©: The Eiffel Tower and Notre-Dame Cathedral.
- ⊗: The Eiffel Tower is amazing. Do you like French food?

Answer Relevance

Assess if the Assistant's response is **relevant and exhaustive**.

What is the best time to visit Paris?

- ©: April to June or October for mild weather.
- 😊: Paris is a major European city.

Groundedness

Measurement of **knowledge base usage**, and the answer **faithfulness**.

How many people visit the Eiffel Tower each year?

- ©: About 7 million annually.
- ②: Around 20 million people annually (incorrect data).

Evaluation & Feedback

Answer Relevance

ANSWER_RELEVANCE_TRULENS = """You are a RELEVANCE grader; providing the relevance of the given RESPONSE to the given PROMPT. Respond only as a number from 0 to 10 where 0 is the least relevant and 10 is the most relevant.

A few additional scoring guidelines:

- Long RESPONSES should score equally well as short RESPONSES.
- Answers that purposely do not answer the question, such as 'I don't know' and model refusals, should also be counted as RELEVANT.
- RESPONSE must be relevant to the entire PROMPT to get a score of 10.
- RELEVANCE score should increase as the RESPONSE provides RELEVANT context to more parts of the PROMPT.
- RESPONSE that is RELEVANT to none of the PROMPT should get a score of 0.
- RESPONSE that is RELEVANT to some of the PROMPT should get a score of 2, 3, or 4.
- RESPONSE that is RELEVANT to most of the PROMPT should get a score between a 5, 6, 7 or 8.
- RESPONSE that is RELEVANT to the entire PROMPT should get a score of 9 or 10.
- RESPONSE that is RELEVANT and answers the entire PROMPT completely should get a score of 10.
- RESPONSE that confidently FALSE should get a score of 0.
- RESPONSE that is only seemingly RELEVANT should get a score of 0.
- Never elaborate.

Please answer with this template:

TEMPLATE:

Criteria: <Provide the criteria for this evaluation>

Supporting Evidence: <Provide your reasons for scoring based on the listed criteria step by step. Tie it back to the evaluation being completed.>

Score: <The score 0-10 based on the given criteria>"""

Recognized Challenges

Front End	Back End	Optimization
Customization Demands	Automating Data Flow	Feedback Loop
Chat History	Security Enhancements	Monitoring and Optimization
Navigable Links and Schema	Scalability	System Integration

PoC Architecture Recap

High-Level Overview

Customization Needs

All-in-1
Assistants

Enterprise Guidelines

Cloud Agnostic

Styling & Localization

Extended References

Monitoring & Optimization

Enhanced Feedback

Production Architecture

https://github.com/microsoft/chat-copilot/

React, Typescript
ASP.NET Core, .NET 8, C#
Semantic Kernel + Kernel Memory

https://github.com/microsoft/sample-app-aoai-chatGPT

React, Typescript
Python
Azure OpenAl API (UYD)

LLMs, Chats, Tools

Semantic Kernel

A lightweight, **open-source** development kit

Enterprise-ready

Flexible, secure, modular, and observable

Orchestration & Plans

Combines Al models, embeddings, prompts with APIs & tools to perform actions & business automation

Modular and Extensible

Many out-of-the-box connectors
Support for integrating *existing* code as **plugin**

Cross-Platform

.NET, Python, and Java

Memory, Data, Workflows

Kernel Memory

A multi-modal, open-source Al Service for efficient datasets indexing

Data Pipelines & Workflow Orchestration

Supports Data Retrieval, Custom Pipelines, and Semantic Memory processing

RAG Support

Advanced querying via embeddings and LLMs, over multiple knowledge bases

Built-in Data Formats & Transformations + Custom

Supports various data types, including PDFs, documents, web pages, and images

Out-of-the-Box Connectors + Custom

Support a wide range of data stores (Vector DBs, RDBMS, File System, etc.) Integrates with external tools like Azure OpenAI, ChatGPT and Microsoft Copilot

Enterprise-proof

Flexible, modular, observable, and secure

https://microsoft.github.io/kernel-memory/

Data Pipelines

https://github.com/microsoft/kernel-memory/tree/main/examples

Data Pipelines


```
memory.Orchestrator.AddHandler<TextExtractionHandler>("extract text");
memory.Orchestrator.AddHandler<TextPartitioningHandler>("split text in partitions");
memory.Orchestrator.AddHandler<GenerateEmbeddingsHandler>("generate_embeddings");
memory.Orchestrator.AddHandler<SummarizationHandler>("summarize");
memory.Orchestrator.AddHandler<SaveRecordsHandler>("save memory records");
* Import files using custom handlers
 // Use the custom handlers with the memory object
await memory.ImportDocumentAsync(
   new Document("inProcessTest")
       .AddFile("file1-Wikipedia-Carbon.txt")
       .AddFile("file2-Wikipedia-Moon.txt")
       .AddFile("file3-lorem-ipsum.docx")
       .AddFile("file4-KM-Readme.pdf")
       .AddFile("file5-NASA-news.pdf")
       .AddTag("testName", "example3"),
   index: "user-id-1",
   steps:
       "extract text",
       "split text in partitions",
       "generate embeddings",
       "save memory records"
   ]);
```

https://github.com/microsoft/kernel-memory

https://github.com/microsoft/kernel-memory/tree/main/examples

DEMO

Lessons Learned (part 1)

Data is King

High-quality, well-prepared data is essential for success and contextually relevant responses.

Cross-Functional Collaboration

Collaboration between Al teams, developers, and end-users is key to ensuring all needs are met.

Master Retrieval Techniques

Efficient indexing, data enrichment, and retrieval methods ensure fast, relevant results.

Iterative Approach

Continuously test, refine, and optimize. Constant feedback loops are vital for improving accuracy and performance over time.

Lessons Learned (part 2)

LLM-as-a-Judge

Use both human feedback and automated evaluation to measure the overall Assistant's impact.

Continuous Improvement

RAG-based solutions evolve rapidly. Stay updated with new methods and technologies.

Scalability and Flexibility

Security & Access Management

Implement robust security measures and ensure compliance to protect sensitive information.

New Retrieval Approaches

- Knowledge graphs (GraphRAG) to enhance semantic understanding
- Advanced Retrieval to reduce hallucinations and improve contextualization

Architectural Enhancements & Solutions

- Semantic Cache to improve efficiency by reusing cached context.
- New Frameworks: Evolving architectural solutions in the RAG landscape

Evaluation and CI Empowerment

- Synthetic Ground Truth to strengthening LLM-as-a-Judge evaluation
- Advanced Monitoring Tools in production like Azure Prompt Flow, Nebuly, and Langfuse

3

A Assistants

Vote our session

Al Assistants

Additional References

- https://learn.microsoft.com/en-us/azure/ai-services/openai/overview
- https://learn.microsoft.com/en-us/azure/search/
- https://learn.microsoft.com/en-us/azure/ai-services/openai/use-your-data-quickstart
- https://www.trulens.org/
- https://github.com/microsoft/chat-copilot/
- https://github.com/microsoft/sample-app-aoai-chatGPT
- https://learn.microsoft.com/en-us/semantic-kernel/overview/
- https://github.com/microsoft/kernel-memory
- https://github.com/microsoft/kernel-memory/tree/main/examples
- https://github.com/Andrew-Jang/RAGHub

About Us

Ing. Morgana LALLI

R&D Data Scientist @ deltatre

DeltatreInnovation
Lab

- Biomedical Engineering, focused on sports data analysis.
- Al, Machine Learning, Deep Learning on multimedia content
- Skilled in exploratory data analysis techniques, handling diverse and complex data types.
- Currently working on RAG-based solutions to advance NLP capabilities
- LinkedIn: https://www.linkedin.com/in/morgana-lalli-b5ab0a172/

About Us

Microsoft Microsoft

Programming in C# Programming in HTML5

AZURE AI ENGINEER

CERTIFIED

Windows Store Apps Using C#

Solutions Developer

Ing. Gianni ROSA GALLINA

R&D Technical Lead @ deltatre

Deltatre Innovation Loh

- Al, Machine Learning, Deep Learning on multimedia content
- Virtual/Augmented/Mixed Reality
- Immersive video streaming & 3D graphics for sport events
- Cloud solutions, web backends, serverless, video workflows
- Mobile apps dev (Windows / Android / .NET MAUI / Avalonia)
- End-to-end solutions with Microsoft Azure
- Blog: https://gianni.rosagallina.com/en/
- LinkedIn: https://www.linkedin.com/in/gianni-rosa-gallina-b206a821/

Platinum Sponsor

Technical Sponsor

