

Mathématiques

Classe: 4ème Mathématiques

Magazine: N°23

Intégrales

Nom du prof : BenMbarek Mahmoud

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

MATHS

Exercice 1

15 min

2 pts

Soit (a_n) la suite définie sur $\mathbb N$ par $a_n = (n+1)^2$.

Pour $n \in \mathbb{N}^*$, on considère le polynôme P_n définie par $P_n(x) = \sum_{k=0}^n \alpha_k x^k$.

- Calculer, en fonction de n, $\int_0^1 P_n(x) dx$.

Exercice 2

Q 25 min

4 pts

On donne le tableau de variation d'une fonction f définie et dérivable sur \mathbb{R} telle que f(0) = 0.

Soit F la fonction définie sur \mathbb{R} par $F(x) = \int_0^x f(t) dt$

	x	$-\infty$		-1		1	$+\infty$
,	f' (x)		_	0	+	0	_
	f(x)	0		^ −1 −		2	1

- 1 Déterminer le sens de variation F.
- Montrer que $1 \le F(2) \le 4$.
- (3) (a) Montrer que pour tout réel $x \ge 1$, $F(x) \ge x 1$.
 - **b** En déduire $\lim_{x \to +\infty} F(x)$.
- Soit g la fonction définie sur $[0; +\infty[$ par $g(x) = \int_0^{x^2} f(t) dt$.
 - **a** Dresser le tableau de variation de g.
 - **b** Déterminer la nature de la branche infinie de la courbe de g.

Exercice 3

4 pts

 $\text{Soit }(U_n) \text{ et } (V_n) \text{ les suites définies sur } \mathbb{N}^* \text{ par } U_n = \sum_{p=1}^n \frac{1}{\sqrt{p}} \text{ et } V_n = \frac{U_n}{\sqrt{n}}.$

- **a** 1 Montrer que pour tout entier $p \ge 1$, on a : $\int_{p}^{p+1} \frac{dx}{\sqrt{x}} \le \frac{1}{\sqrt{p}}.$
 - Montrer que pour tout entier $p \ge 2$, on a : $\int_{p-1}^{p} \frac{dx}{\sqrt{x}} \ge \frac{1}{\sqrt{p}}$.
 - Solution En déduire que pour tout entier $n \ge 1$, on a : $-2 + 2\sqrt{n+1} \le U_n \le -1 + 2\sqrt{n}$.

MATHS

b Déterminer les limites éventuelles des suites (U_n) et (V_n) .

Exercice 4

Q 35 min

5.5 pts

Dans le graphique ci-contre, on a tracé dans un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ les courbes \mathscr{C}_f et \mathscr{C}_g des fonctions f et g définies sur $[0\,;2]$ par $f(x)=\sqrt{2x-x^2}$ et $g(x)=x\,\sqrt{2x-x^2}$

- Montrer que la droite $\Delta : x = 1$ est un axe de symétrie de la courbe \mathcal{C}_f .
- 2 Calculer, en unité d'aire, l'aire \(\mathre{A} \) de la partie hachrée sur le graphique.
- Soit F la primitive de f sur [0;2] qui s'annule en 0 et G la fonction définie sur $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ par $G(x) = F(1+\sin x)$.
 - **a** Montrer que G est dérivable sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ puis calculer G'(x).
 - **b** Calculer $G\left(-\frac{\pi}{2}\right)$. En déduire que pour tout $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, on a : $G(x) = \frac{1}{2}x + \frac{1}{4}\sin(2x) + \frac{\pi}{4}$.
 - f c Déduire l'aire, en unité d'aire, de la partie du plan limitée par \mathscr{C}_f et l'axe des abscisses.
 - **d** Evaluer $\int_0^1 g(x) dx$.
- - a Etudier la monotonie de la suite U.
 - **b** Montrer que pour tout $n \in \mathbb{N}^*$, on a : $0 < U_n \le \frac{1}{n+1}$.
 - f c Déduire que la suite f U est convergente vers une limite que l'on précisera.

Exercice 5

Q 25 min

4.5 pts

On considères les réels suivants : $A = \int_0^1 \sqrt{1-x^2} \ dx$, $B = \int_0^1 x \sqrt{1-x^2} \ dx$ et $C = \int_0^1 x^2 \sqrt{1-x^2} \ dx$.

- A l'aide d'une intégration par parties, montrer que $C = \frac{1}{4} \times A$.

MATHS

- - **a** Montrer que F est dérivable sur $\left[0; \frac{\pi}{2}\right]$ et que $F'(x) = \cos^2 x$.
 - **b** Expliciter alors F(x).
 - c En déduire la valeur de A et celle de C.

Carte mentale

Calculer une intégrale à l'aide d'une intégration par parties

Soient u et v deux fonctions dérivables sur un intervalle I telles que u' et v' soient continues sur I et soient a et b deux réels appartenant à I.

$$\int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt$$

Calculer une intégrale à l'aide d'une primitive

Soient f une fonction continue sur I et a et b deux réels appartenant à I:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

où F est une primitive de f sur I.

Calculer une intégrale à l'aide de propriétés

Soient f une fonction continue sur I; a, b et c trois réels appartenant à I et λ un réel.

$$\int_{a}^{a} f(x) dx = 0$$

Relation de Chasles

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Linéarité :

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

Positivité :

si
$$f \ge 0$$
 sur $[a; b]$, alors $\int_a^b f(x) dx \ge 0$.

Ordre

si
$$f \leq g$$
 sur $[a;b]$, alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

• Si f est paire, alors $\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(x) dx.$

• Si f est impaire, alors $\int_{-a}^{0} f(x) dx = -\int_{0}^{a} f(x) dx.$

Calcul intégral

Calculer des aires

f continue et positive sur [a; b].

L'aire du domaine délimité par la courbe représentative de f, l'axe des abscisses et les droites

d'équations x = a et x = b est égale à $\int_{a}^{b} f(x) dx$.

f continue et négative [a; b].

L'aire du domaine délimité par la courbe représentative de f, l'axe des abscisses et les droites d'équation x=a et x=b est égale

$$\hat{\mathbf{a}} \int_{a}^{b} (-f(x)) \, \mathrm{d}x.$$

• $g \ge f$ sur [a; b].

L'aire du domaine délimité par les courbes \mathscr{C}_f et \mathscr{C}_g et les droites d'équations x=a et x=b est égale à :

$$\int_{a}^{b} (g(x) - f(x)) \, \mathrm{d}x.$$

Calculer la valeur moyenne d'une fonction

Soit f une fonction continue sur l'intervalle [a;b] (a < b).

On appelle valeur moyenne de la fonction f sur l'intervalle [a;b]le nombre réel :

$$\mu = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x.$$

Si $f \ge 0$, l'aire du rectangle bleu est égale à $\mu(b-a) = \int_a^b f(x) dx$.