高等数学(下)知识点

主要公式总结

空间解析几何与向量代数

1、 二次曲面

1) MBHE :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

2) Mixim:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 旋转椭球面: $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$

3) 单叶双曲面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 双叶双曲面: $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

$$\text{双叶双曲面}: \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

4) 椭圆抛物面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$$

$$\chi = \chi^2 - \frac{y^2}{b^2} = z$$

5) 椭圆柱面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$_{\text{双曲柱面}}: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

6) 抛物柱面:
$$x^2 = ay$$

(二) 平面及其方程

1、 点法式方程:
$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

法向量:
$$n = (A, B, C)$$
 , 过点 (x_0, y_0, z_0)

2、 一般式方程:
$$Ax + By + Cz + D = 0$$

截距式方程:
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

3、 两平面的夹角:
$$n_1 = (A_1, B_1, C_1)$$
 , $n_2 = (A_2, B_2, C_2)$,

$$\cos\theta = \frac{\left|A_{1}A_{2} + B_{1}B_{2} + C_{1}C_{2}\right|}{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}} \cdot \sqrt{A_{2}^{2} + B_{2}^{2} + C_{2}^{2}}}$$

$$\Pi_1 \perp \Pi_2 \Leftrightarrow A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$$
; $\Pi_1 / / \Pi_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

(三) 空间直线及其方程

1、 一般式方程:
$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

2、 对称式 (点向式) 方程:
$$\frac{X-X_0}{m} = \frac{y-y_0}{n} = \frac{Z-Z_0}{p}$$

方向向量:
$$s = (m, n, p)$$
 , 过点 (x_0, y_0, z_0)

3、 两直线的夹角:
$$\vec{s_1} = (m_1, n_1, p_1)$$
, $\vec{s_2} = (m_2, n_2, p_2)$,

$$\cos \Phi = \frac{\left| m_1 m_2 + n_1 n_2 + p_1 p_2 \right|}{\sqrt{m_1^2 + n_1^2 + p_1^2} \sqrt{m_2^2 + n_2^2 + p_2^2}}$$

$$L_1 \perp L_2 \Leftrightarrow m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$$
; $L_1 // L_2 \Leftrightarrow \frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$

4、 直线与平面的夹角:直线与它在平面上的投影的夹角,

$$\sin \Phi = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + p^2}}$$

$$L // \Pi \Leftrightarrow Am + Bn + Cp = 0$$
 ; $L \perp \Pi \Leftrightarrow \frac{A}{m} = \frac{B}{n} = \frac{C}{p}$

第九章 多元函数微分法及其应用

1、 连续:
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

2、 偏导数:

$$f_{x}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0} + \Delta x, y_{0}) - f(x_{0}, y_{0})}{\Delta x} ; f_{y}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

3、 方向导数:

$$\frac{\partial f}{\partial I} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta \quad \text{if } \beta \quad \text{in } \beta \in \mathbb{R}.$$

4、 梯度:
$$z = f(x, y)$$
 ,则 $gradf(x_0, y_0) = f_x(x_0, y_0)i + f_y(x_0, y_0)j$ 。

5、 全微分:设 Z = f(x,y),则 dz =
$$\frac{\partial z}{\partial x}$$
dx + $\frac{\partial z}{\partial v}$ dy

(一) 性质

1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:

- 2、 微分法
- 1) 复合函数求导:链式法则

者
$$z = f(u,v), u = u(x, y), v = v(x, y)$$
,则

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} , \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

(二) 应用

$$f_x = 0$$
 1) 求函数 $z = f(x,y)$ 的极值 解方程组
$$f_y = 0$$

$$A = f_{xx}(x_0, y_0)$$
 , $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$,

若
$$AC - B^2 > 0$$
 , $A > 0$, 函数有极小值 , 若 $AC - B^2 > 0$, $A < 0$, 函数有极大值 ;

若
$$AC - B^2 < 0$$
,函数没有极值;

若
$$AC - B^2 = 0$$
,不定。

- 2、 几何应用
- 1) 曲线的切线与法平面

$$x = x(t)$$
 曲线 Γ : $\begin{cases} y = y(t) \ , 则 \ \Gamma \ \bot - \' = M \left(x_0, y_0, Z_0 \right) \ (对应参数为 \ t_0 \)$ 处的 $z = z(t)$

切线方程为:
$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}$$

法平面方程为:
$$x'(t_0)(x-x_0) + y'(t_0)(y-y_0) + z'(t_0)(z-z_0) = 0$$

2) 曲面的切平面与法线

曲面 Σ : F(x, y, z) = 0 ,则 Σ 上一点 $M(x_0, y_0, z_0)$ 处的切平面方程为:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

法线方程为:
$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$$

第十章 重积分

(一) 二重积分 :几何意义:曲顶柱体的体积

1、 定义:
$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta \sigma_{k}$$

- 2、 计算:
- 1) 直角坐标

$$D = \left\{ (x,y) \middle| \begin{matrix} \phi_1(x) \le y \le \phi_2(x) \\ a \le x \le b \end{matrix} \right\}, \qquad \iint\limits_{D} f(x,y) dx dy = \int_a^b dx \int_{\phi(x)}^{\phi(x)} f(x,y) dy$$

$$D = \left\{ (x, y) \middle| \begin{matrix} \Phi_1(y) \le x \le \Phi_2(y) \\ c \le y \le d \end{matrix} \right\}, \quad \iint\limits_{D} f(x, y) dx dy = \int_{c}^{d} dy \int_{\Phi_1(y)}^{\Phi_2(y)} f(x, y) dx dy$$

2) 极坐标

$$D = \left\{ (P, \theta) \middle| \begin{array}{c} P_1(\theta) \le P \le P_2(\theta) \\ \alpha \le \theta \le \beta \end{array} \right\} \quad , \quad \iint\limits_{D} f(x, y) dx dy = \int\limits_{\alpha}^{\beta} d\theta \int\limits_{P(\theta)}^{Q(\theta)} f(P \cos\theta, P \sin\theta) P dP$$

(二) 三重积分

1、 定义:
$$\iiint_{\mathbf{\Omega}} f(x, y, z) dv = \lim_{k \to \infty} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}, \zeta_{k}) \Delta v_{k}$$

- 2、 计算:
- 1) 直角坐标

$$\iiint_{\Omega} f(x, y, z) dv = \iint_{D} dx dy \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) dz \qquad \text{"} £-== "$$

2) 柱面坐标

$$\begin{cases} x = P \cos \theta \\ y = P \sin \theta , \iiint_{\Omega} f(x, y, z) d v = \iiint_{\Omega} f(P \cos \theta, P \sin \theta, z) P dP d\theta dz \\ z = z \end{cases}$$

3) 球面坐标

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \end{cases}$$

 $\iiint_{\Omega} f(x, y, z) dv = \iiint_{\Omega} f(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi) r^{2} \sin \phi dr d\phi d\theta$

(三) 应用

曲面 S: z = f(x, y), (x, y) ∈ D的面积:

$$A = \iint_{D} \sqrt{1 + \left(\frac{\partial Z}{\partial x}\right)^{2} + \left(\frac{\partial Z}{\partial y}\right)^{2}} dxdy$$

第十一章 曲线积分与曲面积分

(一) 对弧长的曲线积分

2、 计算:

设
$$f(x,y)$$
 在曲线弧 L 上有定义且连续, L 的参数方程为
$$\begin{cases} x = ^{\varphi}(t), \\ (\alpha \leq t \leq ^{\beta}), \text{ 其中 } ^{\varphi}(t), \end{cases}$$
 $(x = ^{\varphi}(t), \text{ (} \alpha \leq t \leq ^{\beta}), \text{ 其中 } ^{\varphi}(t), \text{ (} \alpha \in ^{\beta})$

上具有一阶连续导数,且 $\Phi'^2(t) + \Psi'^2(t) \neq 0$,则

$$\int_{L} f(x, y) ds = \int_{\alpha}^{\beta} f[\phi(t), \psi(t)] \sqrt{\phi'^{2}(t) + \psi'^{2}(t)} dt , \quad (\alpha < \beta)$$

(二) 对坐标的曲线积分

1、 定义:设 L 为 XOY 面内从 A 到 B 的一条有向光滑弧,函数 $P\left(x,y\right)$, $Q\left(x,y\right)$ 在 L 上有界,定义

$$[P(x, y)dx = \lim_{k \to 0} \sum_{k \to 0}^{n} P(\xi_k, \eta_k) \Delta x_k, \quad [Q(x, y)dy = \lim_{k \to 0} \sum_{k \to 0}^{n} Q(\xi_k, \eta_k) \Delta y_k].$$

向量形式:
$$\int_{L} \vec{F} \cdot d\vec{r} = \int_{L} P(x, y) dx + Q(x, y) dy$$

2、 计算:

设 P(x,y), Q(x,y) 在有向光滑弧 $\ \ \ \ \$ 上有定义且连续 , $\ \ \ \ \ \$ 的参数方程为

$$\begin{cases} x = \Phi(t), \\ y = \Psi(t), \end{cases}$$
 $(t : \alpha \rightarrow \beta)$, 其中 $\Phi(t)$, $\Psi(t)$ 在 $[\alpha, \beta]$ 上具有一阶连续导数,且 $\Phi'^2(t) + \Psi'^2(t) \neq 0$,则

$$\int_{L} P(x, y) dx + Q(x, y) dy = \int_{\alpha}^{\beta} \{ P[\phi(t), \psi(t)] \phi'(t) + Q[\phi(t), \psi(t)] \psi'(t) \} dt$$

3、 两类曲线积分之间的关系:

设平面有向曲线弧为 $L: \begin{cases} x = \Psi(t) \\ y = \Psi(t) \end{cases}$, $L: \{ x, y \}$ 处的切向量的方向角为: $\{ x, y \}$ 人 $\{ y, y \}$ 化

$$\cos \alpha = \frac{\Phi'(t)}{\sqrt{\Phi^{2}(t) + \Psi^{2}(t)}}, \cos \beta = \frac{\Psi'(t)}{\sqrt{\Phi^{2}(t) + \Psi^{2}(t)}},$$

则
$$\int_{\mathbb{R}} Pdx + Qdy = \int_{\mathbb{R}} (P\cos\alpha + Q\cos\beta)ds$$
.

(三) 格林公式

1、 格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数 P(x,y),Q(x,y) 在 D 上具有连续一阶偏导数 ,

则有
$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy = \int_{L} Pdx + Qdy$$

2、G 为一个单连通区域,函数 P(x,y),Q(x,y) 在G 上具有连续一阶偏导数,

则
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 \Leftrightarrow 曲线积分 $\int Pdx + Qdy$ 在 G 内与路径无关

(四) 对面积的曲面积分

1、 定义:

设 Σ 为光滑曲面,函数 f(X, Y, Z) 是定义在 Σ 上的一个有界函数,

定义
$$\iint_{\Sigma} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{i=4}^{n} f(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta S_{i}$$

2、 计算:——"一单二投三代入"

$$\Sigma$$
: z = z(x,y) , (x,y) ∈ D_{xv} , 则

$$\iint_{\Sigma} f(x, y, z) dS = \iint_{D_{xy}} f[x, y, z(x, y)] \sqrt{1 + z_{x}^{2}(x, y) + z_{y}^{2}(x, y)} dxdy$$

(五) 对坐标的曲面积分

1、 定义:

设 Σ 为 有 向 光 滑 曲 面 , 函 数 P(x,y,z),Q(x,y,z),R(x,y,z) 是 定 义 在 Σ 上 的 有 界 函 数 , 定 义

$$\iint_{\Sigma} R(x, y, z) dx dy = \lim_{\lambda \to 0} \sum_{i=1}^{n} R(\xi_{i}, \eta_{i}, \xi_{i}) (\Delta S_{i})_{xy} = \mathbb{R}^{2},$$

$$\iint_{\Sigma} P(x, y, z) dy dz = \lim_{\lambda \to 0} \sum_{i=1}^{n} P(\xi_{i}, \eta_{i}, \zeta_{i}) (\Delta S_{i})_{yz} ; \iint_{\Sigma} Q(x, y, z) dz dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} R(\xi_{i}, \eta_{i}, \zeta_{i}) (\Delta S_{i})_{zx}$$

2、 性质:

1)
$$\overline{\Sigma} = \overline{\Sigma}_1 + \overline{\Sigma}_2$$
, \mathbb{M}

 $\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy$

=
$$\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy + \iint_{\Sigma} Pdydz + Qdzdx + Rdxdy$$

计算:——"一投二代三定号"

 Σ : Z = Z(x,y) , $(x,y) \in D_{xy}$, Z = Z(x,y) 在 D_{xy} 上 具 有 一 阶 连 续 偏 导 数 , R(x,y,z) 在 Σ 上 连 续 , 则 $\iint_{\Sigma} R(x,y,z) dx dy = \pm \iint_{D_{xy}} R[x,y,z(x,y)] dx dy, \overline{\Sigma} \text{ 为上侧取 " + ", } \overline{\Sigma} \text{ 为下侧取 " - ".}$

3、 两类曲面积分之间的关系:

$$\iint_{\Sigma} Pd ydz + Qdzdx + Rdxdy = \iint_{\Sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma) dS$$

其中 α , β , γ 为有向曲面 Σ 在点 (x, y, z) 处的法向量的方向角。

(六) 高斯公式

1、 高斯公式:设空间闭区域 Ω 由分片光滑的闭曲面 Σ 所围成, Σ 的方向取外侧 , 函数 P ,Q ,R 在 Ω 上有连续的一阶偏导数则有

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iiint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

或
$$\iint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iint_{\Sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma) dS$$

2、 通量与散度

通量:向量场 A = (P, Q, R) 通过曲面 Σ 指定侧的通量为: $\Phi = \iint_{\Sigma} Pdydz + Qdzdx + Rdxdy$

散度:
$$\operatorname{div} A = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

(七) 斯托克斯公式

1、 斯托克斯公式:设光滑曲面 Σ 的边界 Γ 是分段光滑曲线, Σ 的侧与 Γ 的正向符合右手法则,P(x,y,z),Q(x,y,z),R(x,y,z)在包含 Σ 在内的一个空间域内具有连续一阶偏导数 ,则有

$$\iint\limits_{\Sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint\limits_{\Gamma} P dx + Q dy + R dz$$

为便于记忆 ,斯托克斯公式还可写作 :

$$\iint_{\Sigma} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} = \iint_{\Gamma} P dx + Q dy + R dz$$
P Q R

2、 环流量与旋度

环流量:向量场 A = (P,Q,R) 沿着有向闭曲线 Γ 的环流量为 $\P_{\Gamma}Pdx + Qdy + Rdz$

旋度: rot
$$\vec{A} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

第十二章 无穷级数

(一) 常数项级数

1、 定义:

1) 无穷级数:
$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + \cdots + u_n + \cdots$$

部分和:
$$S_n = \sum_{k=1}^n u_k = u_1 + u_2 + u_3 + \cdots + u_n$$
 ,

正项级数:
$$\sum_{n=1}^{\infty} u_n , u_n \ge 0$$

交错级数:
$$\sum_{n=1}^{\infty} (-1)^n u_n$$
 , $u_n \ge 0$

2)级数收敛:若
$$\lim_{n\to\infty} S_n = S$$
 存在,则称级数 $\sum_{n=1}^{\infty} u_n$ 收敛,否则称级数 $\sum_{n=1}^{\infty} u_n$ 发散

2) 级数
$$\sum_{n=1}^{\infty} a_n$$
 , $\sum_{n=1}^{\infty} b_n$ 收敛 , 则 $\sum_{n=1}^{\infty} (a_n \pm b_n)$ 收敛 ;

4) 必要条件:级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛 \Rightarrow $\lim_{n\to\infty} u_n = 0$. (注意:不是充分条件!)

正项级数:
$$\sum_{n=1}^{\infty} u_n$$
 , $u_n \ge 0$

1) 定义:
$$\lim_{n\to\infty} S_n = S_{\overline{P}}$$
 存在;

3) 比较审敛法:
$$\sum_{n=1}^{\infty} u_n$$
 , $\sum_{n=1}^{\infty} v_n$ 为正项级数 , 且 $u_n \leq v_n$ (n = 1,2,3,\dots)

敛;若存在正整数
$$\mathbf{m}$$
 ,当 \mathbf{n} > \mathbf{m} 时, \mathbf{u}_{n} ≥ $\mathbf{k}\mathbf{v}_{\mathsf{n}}$,而 $\mathbf{\Sigma}$ \mathbf{v}_{n} 发散,则 $\mathbf{\Sigma}$ \mathbf{u}_{n} 发散 .

5) 比较法的极限形式:
$$\sum_{n=1}^{\infty} u_n$$
 , $\sum_{n=1}^{\infty} v_n$ 为正项级数,若 $\lim_{n\to\infty} \frac{u_n}{v_n} = I$ $\left(0 \le I < +\infty\right)$, 而 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛;若

6) 比值法:
$$\sum_{n=1}^{\infty} u_n$$
 为正项级数, 设 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = I$,则当 $I < 1$ 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;则当 $I > 1$ 时,级数 $\sum_{n=1}^{\infty} u_n$ 发散;当 $I = 1$

7) 根值法:
$$\sum_{n=1}^{\infty} u_n$$
 为正项级数,设 $\lim_{n\to\infty} \sqrt[n]{u_n} = I$,则当 $I < 1$ 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;则当 $I > 1$ 时,级数 $\sum_{n=1}^{\infty} u_n$ 发散;当 $I = 1$

时,级数
$$\sum_{n=1}^{\infty} U_n$$
 可能收敛也可能发散 .

8) 极限审敛法:
$$\sum_{n=1}^{\infty} u_n$$
 为正项级数,若 $\lim_{n\to\infty} n\cdot u_n > 0$ 或 $\lim_{n\to\infty} n\cdot u_n = +\infty$,则级数 $\sum_{n=1}^{\infty} u_n$ 发散;若存在 $p>1$,使得

$$\lim_{n\to\infty} \mathbf{n}^p \ \mathbf{u}_n = \mathbf{I} \ (0 \le \mathbf{I} < +\infty)$$
 , 则级数 $\sum_{n=1}^{\infty} \mathbf{u}_n$ 收敛 .

交错级数:

莱布尼茨审敛法:交错级数:
$$\sum_{n=1}^{\infty} (-1)^n u_n$$
 , $u_n \ge 0$ 满足: $u_{n+1} \le u_n$ ($n = 1, 2, 3, \cdots$) ,且 $\lim_{n \to \infty} u_n = 0$,则级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 收敛。

任意项级数:

(二) 函数项级数

1、 定义:函数项级数
$$\sum_{u_n(x)}^{\infty}$$
 , 收敛域, 收敛半径, 和函数;

$$3$$
、 收敛半径的求法: $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho$,则收敛半径 $R = \begin{cases} 0, & \rho = +\infty \\ +\infty, & \rho = 0 \end{cases}$

4、 泰勒级数

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \iff \lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} = 0$$

展开步骤:(直接展开法)

1) 求出
$$f^{(n)}(x)$$
, $n = 1,2,3,\cdots$;

2) 求出
$$f^{(n)}(x_0)$$
, $n = 0,1,2,\cdots$;

3) 写出
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
;

4) 验证
$$\lim_{n\to\infty} R_n(x) = \lim_{n\to\infty} \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x-x_0)^{n+1} = 0$$
是否成立。

间接展开法: (利用已知函数的展开式)

1)
$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}, \quad x \in (-\infty, +\infty)$$
;

2)
$$\sin x = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{(2n+1)!} x^{2n+1}, \quad x \in (-\infty, +\infty)$$
;

3)
$$\cos x = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{(2n)!} x^{2n}, \quad x \in (-\infty, +\infty)$$
;

4)
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad x \in (-1, 1)$$
;

5)
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, x \in (-1, 1)$$

6)
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}, x \in (-1, 1]$$

7)
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, x \in (-1, 1)$$

8)
$$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n, x \in (-1, 1)$$

- 5、 傅里叶级数
- 1) 定义:

正交系: $1, \sin x, \cos x, \sin 2x, \cos 2x,$, $\sin nx, \cos nx$ 函数系中任何不同的两个函数的乘积在区间 $[-\pi, \pi]$ 上积分为

零。

傅里叶级数:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos_{nx} + b_n \sin_{nx})$$

系数:
$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx & (n = 0, 1, 2, \dots) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx & (n = 1, 2, 3, \dots) \end{cases}$$

- 2) 收敛定理: (展开定理)
- 设 f(x) 是周期为 2π 的周期函数 ,并满足狄利克雷 (Dirichlet) 条件:
- 1) 在一个周期内连续或只有有限个第一类间断点
- 2) 在一个周期内只有有限个极值点
- 则 f (x) 的傅里叶级数收敛 , 且有

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \begin{cases} f(x), & x 为连续点 \\ f(x^+) + f(x^-) \\ 2 \end{cases}, x 为间断点$$

3) 傅里叶展开:

求出系数:
$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx & (n = 0, 1, 2, \cdots) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx & (n = 1, 2, 3, \cdots) \end{cases}$$

写出傅里叶级数
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos_{nx} + b_n \sin_{nx})$$
;

根据收敛定理判定收敛性。