Feedback — VIII. Neural Networks: Representation

You submitted this quiz on **Sun 13 Apr 2014 10:55 PM PDT**. You got a score of **5.00** out of **5.00**.

Question 1

Consider the following neural network which takes two binary-valued inputs $x_1, x_2 \in \{0, 1\}$ and outputs $h_{\Theta}(x)$. Which of the following logical functions does it (approximately) compute?

Your Answer	Score	Explanation
AND		
NAND (meaning "NOT AND")		
OR	✓ 1.00	This network will output approximately 1 when either input is 1.
OXOR (exclusive OR)		
Total	1.00 / 1.00	

Question 2

Consider the neural network given below. Which of the following equations correctly computes the activation $a_1^{(3)}$? Note: g(z) is the sigmoid activation function.

Help

Your Answer	Score	Explanation
$a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(2)} + \Theta_{1,1}^{(1)}a_1^{(2)} + \Theta_{1,2}^{(1)}a_2^{(2)})$		
$a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(2)} + \Theta_{1,1}^{(2)}a_1^{(2)} + \Theta_{1,2}^{(2)}a_2^{(2)})$	1.00	This correctly uses the first row of $\Theta^{(2)}$ and includes the "+1" term of $a_0^{(2)}$.
$a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(1)} + \Theta_{1,1}^{(2)}a_1^{(1)} + \Theta_{1,2}^{(2)}a_2^{(1)})$		
$a_1^{(3)} = g(\Theta_{2,0}^{(2)}a_0^{(2)} + \Theta_{2,1}^{(2)}a_1^{(2)} + \Theta_{2,2}^{(2)}a_2^{(2)})$		
Total	1.00 / 1.00	

Question 3

You have the following neural network:

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the following Octave code:

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))

a2 = zeros (3, 1);
for i = 1:3
    for j = 1:3
        a2(i) = a2(i) + x(j) * Theta1(i, j);
    end
    a2(i) = sigmoid (a2(i));
end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

Your Answer		Score	Explanation
a2 = sigmoid (T heta2 * x);	~	0.25	$\Theta^{(2)}$ specifies the parameters from the second to third layers not first to second.
a2 = sigmoid (T heta1 * x);	~	0.25	In the lecture's notation, $a^{(2)}=g(\Theta^{(1)}x)$, so this version computes it directly, as the sigmoid function will act elementwise.
z = sigmoid(x); a2 = Theta1 * z ;	~	0.25	You should apply the sigmoid function after multiplying with $\boldsymbol{\Theta}^{(1)},$ not before.

a2 = sigmoid (x * Theta1);	~	0.25	The order of the multiplication is important, this will not work as x is a vector of size 3×1 while Theta1 is a matrix of size $3x3$.
Total		1.00 / 1.00	

Question 4

You are using the neural network pictured below and have learned the parameters

$$\Theta^{(1)} = \begin{bmatrix} 1 & 2.1 & 1.3 \\ 1 & 0.6 & -1.2 \end{bmatrix} \text{ (used to compute } a^{(2)} \text{) and } \Theta^{(2)} = \begin{bmatrix} 1 & 4.5 & 3.1 \end{bmatrix} \text{ (used to compute } a^{(3)} \text{) as a function of } a^{(2)} \text{). Suppose you swap the parameters for the first hidden layer between its two units so } \Theta^{(1)} = \begin{bmatrix} 1 & 0.6 & -1.2 \\ 1 & 2.1 & 1.3 \end{bmatrix} \text{ and also swap the output layer so } \Theta^{(2)} = \begin{bmatrix} 1 & 3.1 & 4.5 \end{bmatrix}. \text{ How will this change the value of the output } h_{\Theta}(x)$$
?

Your Answer		Score	Explanation
 Insufficient information to tell: it may increase or decrease. 			
It will stay the same.	~	1.00	Swapping $\Theta^{(1)}$ swaps the hidden layers output a $^{(2)}$. But the swap of $\Theta^{(2)}$ cancels out the change, so the output will remain unchanged.
It will increase.			
It will decrease			

Total 1.00 / 1.00

Question 5

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
If a neural network is overfitting the data, one solution would be to increase the regularization parameter λ .	~	0.25	A larger value of λ will shrink the magnitude of the parameters Θ , thereby reducing the chance of overfitting the data.
Suppose you have a multiclass classification problem with three classes, trained with a 3 layer network. Let $a_1^{(3)} = (h_\Theta(x))_1 \text{ be the activation of the first output unit, and similarly } a_2^{(3)} = (h_\Theta(x))_2 \text{ and } a_3^{(3)} = (h_\Theta(x))_3 \cdot \text{Then for any input } x \text{, it must be the case that } a_1^{(3)} + a_2^{(3)} + a_3^{(3)} = 1 \cdot$	~	0.25	The outputs of a neural network are not probabilities, so their sum need not be 1.
If a neural network is overfitting the data, one solution would be to decrease the regularization parameter λ .	~	0.25	A smaller value of λ allows the model to more closely fit the training data, thereby increasing the chances of overfitting.
The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).	~	0.25	The activation function $g(z)=rac{1}{1+exp(-z)}$ has a range of (0, 1).
Total		1.00 / 1.00	