Adding Categorical Predictors

Math 430, Winter 2017

The data

UN11.csv contains national health, welfare, and education statistics for 210 places, mostly UN members, but also other areas like Hong Kong that are not independent countries.

Variable	Description
region	region of the world
group	oecd, africa, Or other
fertility	number of children per woman
ppgdp	per capita gross domestic product (US\$)
lifeExpF	female life expectancy (years)
pctUrban	% urban

The data

```
UN11 <- read.csv("https://github.com/math430-lu/data/raw/master/UN11.csv")
head(UN11)</pre>
```

```
##
       region group fertility ppgdp lifeExpF pctUrban
## 1
        Asia other
                       5.968 499.0
                                      49.49
                                                 23
## 2
      Europe other
                       1.525 3677.2
                                     80.40
                                                 53
     Africa africa
## 3
                      2.142 4473.0
                                    75.00
                                                 67
     Africa africa
                    5.135 4321.9
                                     53.17
                                                 59
## 4
## 5 Caribbean other
                    2.000 13750.1
                                    81.10
                                                100
## 6 Latin Amer other
                       2.172 9162.1
                                     79.89
                                                 93
```

Problem overview

Primary research question

 How does the expected life span of women (lifeExpF) differ between the three groups of countries?

Analysis

- What is the response variable?
- What should we use for the predictor?

Life expectancy by group

```
UN11$group <- factor(UN11$group, levels = c("oecd", "other", "africa"))
ggplot(data = UN11, aes(x = group, y = lifeExpF)) +
   geom_boxplot()</pre>
```


Categorical predictors

• We use **dummy variables** (i.e. indicator variables) to put categories in a mathematical formula

· General idea:

Coding group into dummy variables

Fitting the no-intercept model in R

Model formula:

```
lexp grp <- lm(lifeExpF ~ group - 1, data = UN11)</pre>
summary(lexp grp)
##
## Call:
## lm(formula = lifeExpF ~ group - 1, data = UN11)
##
## Residuals:
       Min
                 10 Median
                                  30
                                          Max
## -25.8367 -3.3045 0.3635 2.7183 18.2277
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## groupoecd
             82.4465
                         1.1279 73.09 <2e-16 ***
## groupother 75.3267 0.5856 128.63 <2e-16 ***
## groupafrica 59.7723
                       0.8626 69.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.28 on 196 degrees of freedom
## Multiple R-squared: 0.9927, Adjusted R-squared: 0.9926
## F-statistic: 8896 on 3 and 196 DF, p-value: < 2.2e-16
```

plot(Effect("group", mod = lexp grp))

group effect plot

Fitting the model with an intercept in R

```
lexp grp <- lm(lifeExpF ~ group, data = UN11)</pre>
summary(lexp grp)
##
## Call:
## lm(formula = lifeExpF ~ group, data = UN11)
##
## Residuals:
       Min
            1Q Median
                                  30
                                         Max
## -25.8367 -3.3045 0.3635 2.7183 18.2277
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 82.446 1.128 73.095 < 2e-16 ***
## groupother -7.120 1.271 -5.602 7.1e-08 ***
## groupafrica -22.674 1.420 -15.968 < 2e-16 ***
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.28 on 196 degrees of freedom
## Multiple R-squared: 0.6191, Adjusted R-squared: 0.6152
## F-statistic: 159.3 on 2 and 196 DF, p-value: < 2.2e-16
```

Comparing level means

Comparing level means

```
## (Intercept) groupother groupafrica
## (Intercept) 1.272249 -1.272249
## groupother -1.272249 1.615204 1.272249
## groupafrica -1.272249 1.272249
```

Adding a continuous predictor

Research question

· Can we find a model that better explains expected life span by incorporating other predictors?

Analysis

MLR model with group and other predictors

Adding a continuous predictor

```
ggplot(data = UN11, aes(x = log(ppgdp), y = lifeExpF, color = group, shape = group)) +
  geom_point() +
  scale_color_colorblind()
```


How can we build this model?

Parallel lines model

$$Y = \beta_0 + \beta_1 I_{other} + \beta_2 I_{africa} + \beta_3 x + e$$

Fitting the model in R

```
parallel mod <- lm(lifeExpF ~ group + log(ppgdp), data = UN11)</pre>
summary(parallel mod)
##
## Call:
## lm(formula = lifeExpF ~ group + log(ppgdp), data = UN11)
##
## Residuals:
       Min
            1Q Median
                                  3Q
                                         Max
## -18.6348 -2.1741 0.2441 2.3537 14.6539
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 49.529 3.400 14.569 < 2e-16 ***
## groupother -1.535 1.174 -1.308
                                           0.193
## groupafrica -12.170 1.557 -7.814 3.35e-13 ***
## log(ppgdp) 3.177
                       0.316 10.056 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.109 on 195 degrees of freedom
## Multiple R-squared: 0.7492, Adjusted R-squared: 0.7453
## F-statistic: 194.1 on 3 and 195 DF, p-value: < 2.2e-16
```


Unrelated lines model

$$Y = \beta_0 + \beta_1 I_{other} + \beta_2 I_{africa} + \beta_3 x + \beta_4 I_{other} x + \beta_5 I_{africa} x + e$$

Fitting the model in R

```
unrelated mod <- lm(lifeExpF ~ group * log(ppgdp), data = UN11)
summary(unrelated mod)
##
## Call:
## lm(formula = lifeExpF ~ group * log(ppgdp), data = UN11)
##
## Residuals:
       Min
                10 Median
                                30
                                       Max
## -18.634 -2.089 0.301 2.255 14.489
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                     15.2203 3.890 0.000138 ***
                         59.2137
## groupother
                        -11.1731 15.5948 -0.716 0.474572
## groupafrica -22.9848 15.7838 -1.456 0.146954
## log(ppgdp)
                          2.2425 1.4664 1.529 0.127844
## groupother:log(ppgdp) 0.9294 1.5177 0.612 0.540986
## groupafrica:log(ppgdp) 1.0950 1.5785 0.694 0.488703
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.129 on 193 degrees of freedom
## Multiple R-squared: 0.7498, Adjusted R-squared: 0.7433
## F-statistic: 115.7 on 5 and 193 DF, p-value: < 2.2e-16
```

plot(Effect(c("group", "ppgdp"), unrelated_mod, default.levels=100),
 rug=FALSE, grid=TRUE, multiline=TRUE)

Comparing models

How can we determine which model we should prefer?

Partial F-tests

Partial F-tests in R

```
anova(parallel_mod, unrelated_mod)

## Analysis of Variance Table

##

## Model 1: lifeExpF ~ group + log(ppgdp)

## Model 2: lifeExpF ~ group * log(ppgdp)

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 195 5090.4

## 2 193 5077.7 2 12.675 0.2409 0.7862
```