Dijkstra Algorithm

For single source shortest paths

소프트웨어학부 20170294 박해영

< 목 차 >

1.	목표						 3р
2.	Problem	& Input/	Output				 3p
3.	구현 Laı	nguage &	. 사용 Tod	ol			 3р
4.	교재의 역	입력 데이	터 테스트				 4р
5.	자작 입력	력 데이터	생성 & 일	알고리즘	과정 손	계산	 5р
6.	자작 입력	력 데이터	테스트				 7p

1. 목표

탐욕적인 방법(greedy algorithm)을 사용하여 단일출발점 최단경로 문제(single-source shortest paths problem)라고 부르는 문제를 푸는 알고리즘을 개발해보고자 한다. 이는 가중지포함 방향그래프에서 정점 V1에서 다른 모든 마디로 가는 최단경로를 구하는 방법으로 다익스트라 알고리즘(Dijstra Algorithm)이라고 불리운다. 이 알고리즘의 의사코드 (pseudo code)의 흐름을 파악하고 실제로 구현해 봄으로써 이해해보고자 한다.

2. Problem & Input / Output

* Problem : 가중치포함 방향그래프에서 v1에서 다른 모든 마디로 가는 최단경로를 구하시오.

* Input: 마디가 n개 있는 연결된 가중치포함 방향그래프 W, 행과 열의 인덱스는 W[1-n],

(W 배열에는 이음선상의 가중치가 입력된다.)

* Output: 최단경로 상에 놓여있는 이음선의 집합 F

3. 구현 Language & 사용 Tool

* 구현 언어 : C ++ language

* 사용 Tool : Visual Studio 2015

4. 교재의 입력 데이터 테스트

1) Ex4.8

5. 자작 입력 데이터 생성 & 알고리즘의 과정 손계산

자작되이터 생성.

智水=6, 01部水=8

 $(V1 \rightarrow V2): 1$, $(V1 \rightarrow V5): 2$ $(V2 \rightarrow V5): 4$, $(V3 \rightarrow V2): 7$, $(V2 \rightarrow V4): 6$ $(V3 \rightarrow V6): 5$, $(V5 \rightarrow V3): 3$, $(V5 \rightarrow V4): 4$

min= 00 5 // 初注 ①

length[i] >= 0 94 length[i] <= min

i min=1, vnear=2

집합F += {(V1→V2):1}

 $1 + W[2]C\overline{1} < \text{length}[\overline{1}]$ $\overline{1} = 4$; $1 + 6 < \infty \Rightarrow \text{true}$. $\overline{1} = 4$; 1 + 6 = 7.

touch [4] = 2. $\overline{1}=5.31+4 < 2.3$ false.

min = 00 ; // 3719+ (2) length [T] >= 0 && length [T] <= min.

; min = 2 , vnear = 5.

矿下 += {(11→15):2}

2+ W[5][7] < length[7]

Ī=3;2+3< Ø → true

length[3] = 2+3 = 5

touch[3] = 5

1=4 ; 2+4 < 1 > true

length [4] = 2+4 = 6

touch [4] = 5.

touch 1 5 5 1 1

length -1 5 6 -1 0

min = 03//37/3/3

length[i]>=0 && length[i] <= min

s min = 5, vnear = 3

衛下 += { (V5 -> V3):3}

5 + W[3][i] < length[i]

1=2 > 5+7 < -1 => False

1=6 5 5+5 < 00 > thue

length[6] = 5+5 = 10

touch[6] = 3.

touch 15513

length -1-16-110

min = 00 5 // 3/12/19

length[T]>=0 && length[T] <= min

min=6, Unear=4

ひ下 += { (V5→V4):4 }
b + W[4][i] < length[i]
→ 変型ない V4 인 の号だ X
touch 「1 5 5 1 3
length 「1 -1 -1 10

min = 00 5 //37/ELG)
length[i] >=0 928 length[i] <= min

sigma = 10 , vhear = 6

25 F += { (V3→V6); 5}

-1 + w[6][7] < length[7]

⇒ 출발점이 V6인 이유전 X

touch 1 5 5 1 3. length -1 -1 -1 -1 -1

repeat j きちむ. (N-1=5).

(Single-Source Shortest paths >

6. 자작 입력 데이터 테스트