Steffen Haug

Øving 2
Diskret Matematikk

TMA4140

1 Oppgåver til seksjon 2.1

Oppgåve 5

a: $\{1,3,3,5,5,5,5,5\} = \{5,3,1\}$ **b:** $\{\{1\}\} \neq \{1,\{1\}\}\}$ **c:** $\varnothing \neq \{\varnothing\}$

Oppgåve 24

 \mathbf{a} : \emptyset er ikkje potensmengde til nokon mengd.

b: $\{\emptyset, \{a\}\}$ er potensmengde til $\{a\}$

c: $\{\emptyset, \{a\}, \{\emptyset, a\}\} = \{\emptyset, \{a\}\}\$ er potensmengde til $\{a\}$

d: $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ er potensmengde til $\{a, b\}$

2 Oppgåver til seksjon 2.2

2.1 Oppgåve 18

La A, B, C vera mengder. Skal vise at

c:
$$(A-B)-C\subseteq A-C$$

Er det same som:

$$\{x \in A : x \notin B, x \notin C\} \subseteq \{x \in A : x \notin C\}$$

Brukar definisjonen av delmengder:

$$\forall x(x \in A \land x \not\in B \land x \not\in C) \to (x \in A \land x \not\in C))$$

$$\forall x(x \in (A - B) - C \to x \in A - C)$$

$$\Longrightarrow (A - B) - C \subseteq A - C$$

d:
$$(A-C)\cap (C-B)=\emptyset$$

Er det same som:

Oppgåve 42

Skal sjekke om gitt mengder A,B,C,D, stemmer det at

$$(A \oplus B) \oplus (C \oplus D) = (A \oplus C) \oplus (B \oplus D)$$

 $(A \oplus B) \oplus (C \oplus D)$

 $A \oplus B$

 $(A \oplus C) \oplus (B \oplus D)$

Mengdene er like.

3 Oppgåver til seksjon 2.3

Oppgåve 12

Skal avgjere om funksjonane er "ein til ein"

a:
$$f(n) = n - 1$$

Sjekkar om $f(a) = f(b) \implies a = b$

$$a - 1 = b - 1$$

 $a=b \implies$ funksjonen er 1-1

b:
$$f(n) = n^2 + 1$$

$$a^2 + 1 = b^2 + 1$$

$$a^2 = b^2$$

 $a=\pm b \implies$ funksjonen er ikkje 1-1

c:
$$f(n) = n^3$$

$$a^3 = b^3$$

 $a = b \implies$ funksjonen er 1-1

$$\mathbf{d} \colon f(n) = \left\lceil \frac{n}{2} \right\rceil$$

Moteksempel: $f(1) = f(2) = 1 \implies$ funksjonen er ikkje 1-1

Oppgåve 38

Skal finne begrensingar for a,b,c,d slik at $f\circ g=g\circ f.$ Altso

$$f \circ g = g \circ f$$

$$a(cx+d) + b = c(ax+b) + d$$

$$acx + ad + b = acx + bc + d$$

$$ad + b = bc + d$$

$$d(a-1) = b(c-1)$$

Som er oppfyld når:

$$a, c = 1$$

eller

$$b, d = 0$$

eller

$$a = c$$

$$b = d$$

Oppgåve 42

Gitt $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$. Skal i prinsippet finne definisjonsmengdene (til f) som gjev dei oppgjevne verdimengdene.

a:
$$f^{-1}(\{1\}) = \{1\}$$

b:
$$f^{-1}(\{x : 0 < x < 1\}) = \{x : 0 < x < 1\}$$

c:
$$f^{-1}(\{x: x > 4\}) = \{x: x > 2\}$$

4 Oppgåver til seksjon 2.4

Oppgåve 12c

Skal undersøkje om $a_n = (-4)^n$ er løysing til $a_n = 8a_{n-1} - 16a_{n-2}$ $\forall n > 2$:

$$(-4)^n = 8(-4)^{n-1} - 16(-4)^{n-2}$$

$$= -2(-4)(-4)^{n-1} - (-4)^2(-4)^{n-2}$$

$$= -2(-4)^n - (-4)^n$$

$$\implies (-4)^n = -3(-4)^n \quad \text{motseiing}$$

 $a_n = (-4)^n$ er *ikkje* løysing.

Oppgåve 33d

Skal rekne ut summen

$$\sum_{i=1}^{2} \sum_{j=1}^{3} ij$$

$$= \sum_{i=1}^{2} i \sum_{j=1}^{3} j$$

$$= 3 \cdot 9 = 21$$

5 Oppgåver til seksjon 2.5

Oppgåve 16

Skal vise at ei delmengd av ei telleleg mengd (kall den S) sjølv er telleleg.

Bevis. At S er telleleg betyr at der eksisterar ein funksjon $f:S\to\mathbb{N},$ slik at f er injiktiv for alle verdiar i S.

For ei kvar delmengd av S, kall den S' kan ein definere ein funksjon $f|_{S'}: S' \to \mathbb{N}$. Sidan $f|_{S'}$ berre er ei begrensing av f til delar av si definisjonsmengd, er $f|_{S'}$ òg injiktiv.

Sidan $f|_{S'}$ injiktiv \iff S' telleleg, og $f|_{S'}$ eksisterer (og er injiktiv) for alle $S' \subseteq S$, er alle delmengder av S tellelege.