Ex 1 Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire les affirmations suivantes?

$$a \in E, \varnothing \in E, a \subset E, \varnothing \subset E, \{a\} \subset E, \{\varnothing\} \subset E, \{a\} \in \mathcal{P}(E), \varnothing \in \mathcal{P}(E)$$

- Ex 2 Ecrire symboliquement les ensembles suivants :
 - a) Ensemble des couples d'entiers relatifs de somme 1.
 - b) Ensemble des couples d'entiers naturels dont le second est multiple du premier.
 - c) Ensemble E des triplets d'entiers naturels de somme paire.
 - d) Ensemble des images par la fonction $f: \mathbb{R} \to \mathbb{R}$ des éléments de [-1, 1].
 - e) Droite D passant par A(1,2) et de coefficient directeur 3.

Pour les deux derniers, utiliser l'écriture en compréhension, puis paramétrée.

- **Ex 3** Si $a \in \mathbb{N}$, On note $a\mathbb{N}$ l'ensemble des entiers naturels multiples de a.
 - a) Pour $a \in \mathbb{N}$, écrire l'ensemble $a\mathbb{N}$ en langage symbolique, de deux manières différentes.
 - b) Montrer que $6\mathbb{N} \subset 2\mathbb{N}$.
 - c) Montrer que $2\mathbb{N} \cap 3\mathbb{N} = 6\mathbb{N}$.
- **Ex 4** Soient E un ensemble et A, B, C trois sous ensembles de E. Montrer que : $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- **Ex 5** Soient E un ensemble et A,B,C trois sous ensembles de E. Montrer que $\left\{ \begin{array}{l} A \cup B \subset A \cup C \\ A \cap B \subset A \cap C \end{array} \right. \Rightarrow B \subset C.$
- **Ex 6** Soient E un ensemble et A, B deux sous ensembles de E. Montrer que $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$.
- Ex 7 Soient E un ensemble et A, B deux sous ensembles de E.

On appelle **différence symétrique** de A et B l'ensemble : $A \triangle B = (A \backslash B) \cup (B \backslash A)$.

- a) Montrer que : $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- b) Montrer que : $\forall (A, B) \in \mathcal{P}(E)^2$, $A \triangle B = B \triangle A$ et $A \triangle B = \overline{A} \triangle \overline{B}$
- c) Calculer $A \triangle \varnothing$, $A \triangle E$ et $A \triangle A$.
- d) Soit $C \in \mathcal{P}(E)$. Montrer que : $A \triangle C = B \triangle C \iff A = B$.
- **Ex 8** Déterminer les ensembles $I=\bigcup_{n\in\mathbb{N}^*}\left[0,1-\frac{1}{n}\right]$ et $J=\bigcap_{n\in\mathbb{N}^*}\left]-\frac{1}{n}\frac{1}{n}\right[$
- **Ex 9** Soient $(A_i)_{i\in I}$ et $(B_i)_{i\in I}$ deux familles de $\mathcal{P}(E)$ telles que : $\forall i\in I,\ A_i\cup B_i=E$.

$$\text{Montrer que}: \bigcup_{i \in I} A_i \cup \bigcap_{i \in I} B_i = E.$$

Ex 10 Soient E un ensemble, n un entier non nul, et A_1, \ldots, A_n des sous ensembles de E vérifiant

$$\emptyset = A_1 \subsetneq \cdots \subsetneq A_n = E$$

On pose pour tout $k \in [1, n]$, $B_k = A_k \setminus A_{k-1}$. Montrer que B_1, \dots, B_n est une partition de E.

PCSI 1 Thiers 2019/2020