Sage Quick Reference

William Stein (based on work of P. Jipsen) (mod. by nu) GNU Free Document License, extend for your own use

Notebook Sage Quickref Lat case on March 2, 2/3 e^2r + \frac{2}{8} Notebook Admin | Toggle | Home | Published | Log | Settings | Report a Problem | Help | Signout | Service | Save & quit | Obcard & qui

セルの評価: 〈shift-enter〉

セルを評価し新しいセルを作る: (alt-enter)

セルの分割: 〈control-;〉

セルの結合: 〈control-backspace〉

数式セルの挿入: セルの間の青い線をクリック

Text/HTML セルの挿入: セルの間の青い線を shift-click

セルの削除: 内容を削除したあとで backspace

Evaluate cell: (shift-enter)

Evaluate cell creating new cell: (alt-enter)

Split cell: (control-;)

Join cells: (control-backspace)

Insert math cell: click blue line between cells

Insert text/HTML cell: shift-click blue line between cells

Delete cell: delete content then backspace

コマンドライン Command line

com⟨tab⟩ で command を補完

bar? で "bar" を含むコマンド名をリストアップ

command?⟨tab⟩ でドキュメントを表示

command??⟨tab⟩ でソースコードを表示

 $a.\langle tab \rangle$ でオブジェクト a のメソッドを表示 (dir(a) も)

a._〈tab〉で a の hidden methods を表示

search_doc("string or regexp") ドキュメントの全文検索 search_src("string or regexp") ソースコードの検索

_ は直前の出力

com(tab) complete command

bar? list command names containing "bar"

 $command?\langle tab \rangle$ shows documentation

 $command??\langle tab \rangle$ shows source code

 $a._{\langle tab \rangle}$ shows hidden methods for object a

search_doc("string or regexp") fulltext search of docs
search_src("string or regexp") search source code

_ is previous output

数 Numbers

整数: Z = ZZ 例 -2 -1 0 1 10¹00

有理数: $\mathbb{Q} = \mathbb{Q}\mathbb{Q}$ 例 1/2 1/1000 314/100 -2/1

実数: ℝ≈ RR 例 .5 0.001 3.14 1.23e10000

```
複素数: \mathbb{C} \approx CC 例 CC(1,1) CC(2.5,-3)
倍精度 (Double): RDF and CDF 例 CDF(2.1,3)
多項式: R[x,y] 例 S.\langle x,y \rangle = QQ[] x+2*y^3
中級数: R[[t]] 例 S.<t>=QQ[[]] 1/2+2*t+0(t^2)
p 進整数: \mathbb{Z}_p \approx \mathbb{Z}_p, \mathbb{Q}_p \approx \mathbb{Q}_p 例 2+3*5+0(5^2)
代数閉包: \overline{\mathbb{Q}} = QQbar \ M \ QQbar(2^(1/5))
区間演算: RIF 例 RIF((1,1.00001))
数体: R.\langle x \rangle = QQ[]; K.\langle a \rangle = NumberField(x^3+x+1)
       Integers: \mathbb{Z} = ZZ e.g. -2 -1 0 1 10^100
       Rationals: \mathbb{Q} = QQ e.g. 1/2 1/1000 314/100 -2/1
       Reals: \mathbb{R} \approx RR e.g. .5 0.001 3.14 1.23e10000
       Complex: \mathbb{C} \approx CC e.g. CC(1,1) CC(2.5,-3)
       Double precision: RDF and CDF e.g. CDF(2.1,3)
       Mod n: \mathbb{Z}/n\mathbb{Z} = \text{Zmod} e.g. Mod(2,3) Zmod(3)(2)
       Finite fields: \mathbb{F}_q = GF e.g. GF(3)(2) GF(9, "a").0
       Polynomials: R[x, y] e.g. S.\langle x, y \rangle = QQ[] x+2*y^3
       Series: R[[t]] e.g. S.<t>=QQ[[]] 1/2+2*t+0(t^2)
       p-adic numbers: \mathbb{Z}_p \approx \mathbb{Z}p, \mathbb{Q}_p \approx \mathbb{Q}p e.g. 2+3*5+0(5^2)
       Algebraic closure: \overline{\mathbb{Q}} = QQbar e.g. QQbar(2^(1/5))
       Interval arithmetic: RIF e.g. RIF((1,1.00001))
       Number field: R.<x>=QQ[]; K.<a>=NumberField(x^3+x+1)
```

四則演算など Arithmetic

```
ab = a*b \frac{a}{b} = a/b a^b = a\hat{\ } \sqrt{x} = \operatorname{sqrt}(x) \sqrt[n]{x} = x\hat{\ }(1/n) |x| = abs(x) \log_b(x) = \log(x,b) 和: \sum_{i=k}^n f(i) = \operatorname{sum}(f(i) \text{ for } i \text{ in } (k..n)) 積: \prod_{i=k}^n f(i) = \operatorname{prod}(f(i) \text{ for } i \text{ in } (k..n)) ab = a*b \frac{a}{b} = a/b a^b = a\hat{\ } b \sqrt{x} = \operatorname{sqrt}(x) \sqrt[n]{x} = x\hat{\ }(1/n) |x| = abs(x) \log_b(x) = \log(x,b) Sums: \sum_{i=k}^n f(i) = \operatorname{sum}(f(i) \text{ for } i \text{ in } (k..n)) Products: \prod_{i=k}^n f(i) = \operatorname{prod}(f(i) \text{ for } i \text{ in } (k..n))
```

定数と函数 Constants and functions

```
定数: \pi = \text{pi} e = \text{e} i = \text{i} \infty = \text{oo} \phi = \text{golden\_ratio} \gamma = \text{euler\_gamma}
```

近似值: pi.n(digits=18) = 3.14159265358979324

函数: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp...

Python の関数: def f(x): return x^2

```
Constants: \pi = \text{pi} e = \text{e} i = \text{i} \infty = \text{oo} \phi = \text{golden\_ratio} \gamma = \text{euler\_gamma} Approximate: \text{pi.n(digits=18)} = 3.14159265358979324
```

```
Functions: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp...

Python function: def f(x): return x^2
```

```
インタラクティブな操作 Interactive functions
関数の前に@interact を置く(変数でcontrolsが決まる)
@interact
def f(n=[0..4], s=(1..5), c=Color("red")):
    var("x")
    show(plot(sin(n+x^s),-pi,pi,color=c))
```

show(plot(sin(n+x^s),-pi,pi,color=c))
Put @interact before function (vars determine controls)
 @interact
 def f(n=[0..4], s=(1..5), c=Color("red")):
 var("x")
 show(plot(sin(n+x^s),-pi,pi,color=c))

```
シンボリックな数式 Symbolic expressions 新しい不定元 (symbolic variables) を定義: var("t u v y z") シンボリックな函数 (Symbolic function): 例 f(x) = x^2 f(x)=x^2 g(x)=x^2 g(x)=x^2 g(x)=x^2 f(x)=x^2 g(x)=x^2 g(x)=x^2
```

```
Define new symbolic variables: \operatorname{var}("t\ u\ v\ y\ z") Symbolic function: e.g. f(x) = x^2\ f(x) = x^2 Relations: f = g\ f < g\ f > g Solve f = g: \operatorname{solve}(f(x) = g(x), x) \operatorname{solve}([f(x,y) = 0, g(x,y) = 0], x,y) factor(...) \operatorname{expand}(...) (...) \operatorname{simplify}... \operatorname{find.root}(f(x), a, b) find x \in [a,b] s.t. f(x) \approx 0
```

```
微分積分 Calculus \lim_{x \to a} f(x) = \operatorname{limit}(f(x), x=a) \frac{d}{dx}(f(x)) = \operatorname{diff}(f(x), x) \frac{\partial}{\partial x}(f(x,y)) = \operatorname{diff}(f(x,y), x) \operatorname{diff} = \operatorname{differentiate} = \operatorname{derivative} \int f(x)dx = \operatorname{integral}(f(x), x) \int_a^b f(x)dx = \operatorname{integral}(f(x), x, a, b) \int_a^b f(x)dx \approx \operatorname{numerical\_integral}(f(x), a, b) a に関する次数 n の Taylor 多頃式: taylor(f(x), x, a, n) \lim_{x \to a} f(x) = \operatorname{limit}(f(x), x=a) \frac{d}{dx}(f(x)) = \operatorname{diff}(f(x, y), x) \frac{\partial}{\partial x}(f(x, y)) = \operatorname{diff}(f(x, y), x)
```

diff = differentiate = derivative

 $\int f(x)dx = integral(f(x),x)$

 $\int_a^b f(x)dx = integral(f(x), x, a, b)$

```
 \int_a^b f(x) dx \approx \texttt{numerical\_integral(f(x),a,b)}  Taylor polynomial, deg n about a: \texttt{taylor(f(x),x,a,n)}
```

二次元グラフィックス 2D graphics


```
line([(x_1,y_1),\ldots,(x_n,y_n)], options)
polygon([(x_1,y_1),...,(x_n,y_n)],options)
circle((x,y),r,options)
text("txt",(x,y),options)
options は plot.options にあるものを使用、
   例 thickness=pixel, rgbcolor=(r, q, b), hue=h
   ただし 0 \le r, b, g, h \le 1
show(graphic, options)
   サイズの調整には figsize=[w,h] を使う
   縦横比を調整するには aspect_ratio=number を使う
plot(f(x),(x,x_{min},x_{max}),options)
parametric_plot((f(t),g(t)),(t,t_{\min},t_{\max}),options)
polar_plot(f(t),(t,t_{min},t_{max}),options)
結合: circle((1,1),1)+line([(0,0),(2,2)])
animate(list of graphics, options).show(delay=20)
     line([(x_1,y_1),\ldots,(x_n,y_n)],options)
     polygon([(x_1,y_1),...,(x_n,y_n)],options)
     circle((x,y),r,options)
     text("txt",(x,y),options)
     options as in plot.options.
        e.g. thickness=pixel, rgbcolor=(r, g, b), hue=h
        where 0 < r, b, q, h < 1
     show(graphic, options)
        use figsize=[w,h] to adjust size
        use aspect_ratio=number to adjust aspect ratio
     plot(f(x),(x,x_{\min},x_{\max}),options)
     parametric_plot((f(t),g(t)),(t,t_{\min},t_{\max}), options)
     polar_plot(f(t), (t, t_{min}, t_{max}), options)
     combine: circle((1,1),1)+line([(0,0),(2,2)])
```

animate(list of graphics, options).show(delay=20)

三次元グラフィックス 3D graphics

line3d($[(x_1,y_1,z_1),...,(x_n,y_n,z_n)]$, options) sphere((x,y,z),r, options)

```
text3d("txt", (x,y,z), options)
tetrahedron((x,y,z), size, options)
cube((x,y,z), size, options)
octahedron((x,y,z), size, options)
dodecahedron((x,y,z), size, options)
icosahedron((x,y,z), size, options)
plot3d(f(x,y),(x,x_b,x_e),(y,y_b,y_e),options)
parametric_plot3d((f,g,h),(t,t_{\rm b},t_{\rm e}), options)
parametric_plot3d((f(u, v), g(u, v), h(u, v)),
                                   (u, u_{\rm b}, u_{\rm e}), (v, v_{\rm b}, v_{\rm e}), options)
options: aspect_ratio=[1,1,1], color="red",
   opacity=0.5, figsize=6, viewer="tachyon"
      line3d([(x_1, y_1, z_1), ..., (x_n, y_n, z_n)], options)
      sphere((x,y,z),r,options)
      text3d("txt", (x,y,z), options)
      tetrahedron((x,y,z), size, options)
      cube((x,y,z),size,options)
      octahedron((x,y,z), size, options)
      dodecahedron((x,y,z), size, options)
      icosahedron((x,y,z), size, options)
      plot3d(f(x,y),(x,x_b,x_e),(y,y_b,y_e),options)
      parametric_plot3d((f,g,h),(t,t_b,t_e),options)
      parametric_plot3d((f(u, v), g(u, v), h(u, v)),
                                       (u, u_{\rm b}, u_{\rm e}), (v, v_{\rm b}, v_{\rm e}), options)
      options: aspect_ratio=[1,1,1], color="red",
         opacity=0.5, figsize=6, viewer="tachyon"
```

離散数学 Discrete math

```
|x| = floor(x) [x] = ceil(x)
n を k で割った余り = n%k k|n iff n%k==0
                           \binom{x}{m} = \text{binomial}(x, m)
n! = factorial(n)
\phi(n) = \text{euler\_phi}(n)
文字列 (String): 例 s = "Hello" = "He"+'llo'
   s[0]="H" s[-1]="o"
                                s[1:3]="el"
                                                  s[3:]="lo"
リスト (List): 例 [1, "Hello", x] = [] + [1, "Hello"] + [x]
タプル (Tuple): 例 (1, "Hello", x) (immutable)
集合 (Set): 例 \{1,2,1,a\} = Set([1,2,1,"a"]) (= \{1,2,a\})
集合の内包的記法 ≈ リストの内包表記、例
   \{f(x)|x\in X,x>0\}=\operatorname{Set}([f(x) \text{ for } x \text{ in } X \text{ if } x>0])
      |x| = floor(x) \lceil x \rceil = ceil(x)
      Remainder of n divided by k = n k k k n iff n = 0
      n! = factorial(n)
                            \binom{x}{m} = \text{binomial}(x,m)
      \phi(n) = euler_phi(n)
      Strings: e.g. s = "Hello" = "He"+'llo'
         s[0]="H" s[-1]="o" s[1:3]="el" s[3:]="lo"
      Lists: e.g. [1, "Hello", x] = []+[1, "Hello"]+[x]
      Tuples: e.g. (1, "Hello", x) (immutable)
      Sets: e.g. \{1, 2, 1, a\} = Set([1, 2, 1, "a"]) (= \{1, 2, a\})
      List comprehension \approx set builder notation, e.g.
         \{f(x)|x \in X, x > 0\} = Set([f(x) \text{ for x in X if x>0}])
```

グラフ理論 Graph theory


```
グラフ: G = Graph(\{0:[1,2,3], 2:[4]\})
有向グラフ: DiGraph(dictionary)
グラフの族: graphs.(tab)
不变量: G.chromatic_polynomial(), G.is_planar()
パス: G.shortest_path()
可視化: G.plot(), G.plot3d()
自己同型: G.automorphism_group(),
  G1.is_isomorphic(G2), G1.is_subgraph(G2)
     Graph: G = Graph(\{0:[1,2,3], 2:[4]\})
     Directed Graph: DiGraph(dictionary)
     Graph families: graphs. (tab)
     Invariants: G.chromatic_polynomial(), G.is_planar()
     Paths: G.shortest_path()
     Visualize: G.plot(), G.plot3d()
     Automorphisms: G.automorphism_group(),
        G1.is_isomorphic(G2), G1.is_subgraph(G2)
```

組合せ論 Combinatorics


```
整数列: sloane_find(list), sloane. \(\lambda\)
分割: P=Partitions(n) P.count()
組合せ (部分リスト): C=Combinations(list) C.list()
直積: CartesianProduct(P,C)
ヤング盤 (Tableau([[1,2,3],[4,5]])
ワード: W=Words("abc"); W("aabca")
半順序集合 (poset): Poset([[1,2],[4],[3],[4],[]])
ルート系: RootSystem(["A",3])
クリスタル: CrystalOfTableaux(["A",3], shape=[3,2])
格子多面体: A=random_matrix(ZZ,3,6,x=7)
L=LatticePolytope(A) L.npoints() L.plot3d()
     Integer sequences: sloame_find(list), sloame. \langle tab\rangle
     Partitions: P=Partitions(n) P.count()
     Combinations: C=Combinations(list) C.list()
     Cartesian product: CartesianProduct(P,C)
     Tableau: Tableau([[1,2,3],[4,5]])
     Words: W=Words("abc"); W("aabca")
     Posets: Poset([[1,2],[4],[3],[4],[]])
```

Root systems: RootSystem(["A",3])

```
行列代数 Matrix algebra
      = vector([1,2])
 \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = matrix(QQ,[[1,2],[3,4]], sparse=False)
\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \text{matrix}(QQ, 2, 3, [1, 2, 3, 4, 5, 6])
\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det(\max(QQ,[[1,2],[3,4]]))
Av = A*v A^{-1} = A^{-1} A^{t} = A.transpose()
Ax = v を解く: A\v or A.solve_right(v)
xA = v を解く: A.solve_left(v)
被約行階段行列: A.echelon_form()
階数と退化: A.rank() A.nullitv()
Hessenberg型: A.hessenberg_form()
特性多項式: A.charpoly()
固有值: A.eigenvalues()
固有ベクトル: A.eigenvectors_right() (also left)
Gram-Schmidt: A.gram_schmidt()
可視化: A.plot()
LLL reduction: matrix(ZZ,...).LLL()
Hermite 形式: matrix(ZZ,...).hermite_form()
       \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = matrix(QQ,[[1,2],[3,4]], sparse=False)
       \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \text{matrix}(QQ,2,3,[1,2,3,4,5,6])
      \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det(\max(QQ,[[1,2],[3,4]]))
      Av = A*v A^{-1} = A^{-1} A^t = A.transpose()
      Solve Ax = v: A\v or A.solve_right(v)
      Solve xA = v: A.solve_left(v)
      Reduced row echelon form: A.echelon_form()
      Rank and nullity: A.rank() A.nullity()
      Hessenberg form: A.hessenberg_form()
      Characteristic polynomial: A.charpoly()
      Eigenvalues: A.eigenvalues()
      Eigenvectors: A.eigenvectors_right() (also left)
      Gram-Schmidt: A.gram_schmidt()
      Visualize: A.plot()
      LLL reduction: matrix(ZZ,...).LLL()
      Hermite form: matrix(ZZ,...).hermite_form()
```


ベクトル空間 $K^n = K^n$ 例 QQ^3 RR^2 CC^4 部分空間: span(vectors, field) 例 span([[1,2,3], [2,3,5]], QQ) Kernel: A.right_kernel() (left_ も) 和と共通部分: V + W と V.intersection(W) 基底: V.basis() 基底行列: V.basis_matrix() 行列を部分空間への制限: A.restrict(V) 基底を使ったベクトルの表示: V.coordinates(vector) Vector space $K^n = K^n \text{ e.g. } QQ^3 \text{ RR}^2 \text{ CC}^4$ Subspace: span(vectors, field) E.g., span([[1,2,3], [2,3,5]], QQ) Kernel: A.right_kernel() (also left) Sum and intersection: V + W and V.intersection(W) Basis: V.basis() Basis matrix: V.basis_matrix() Restrict matrix to subspace: A.restrict(V) Vector in terms of basis: V.coordinates(vector)

数値計算 Numerical mathematics
パッケージ: import numpy, scipy, cvxopt
最小化: var("x y z")
minimize(x^2+x*y^3+(1-z)^2-1, [1,1,1])
Packages: import numpy, scipy, cvxopt
Minimization: var("x y z")
minimize(x^2+x*y^3+(1-z)^2-1, [1,1,1])

整数論 Number theory 素数: prime_range(n,m), is_prime, next_prime 素因数分解: factor(n), qsieve(n), ecm.factor(n) Kronecker symbol: $\left(\frac{a}{b}\right) = \text{kronecker_symbol}(a,b)$ 連分数: continued_fraction(x) Bernoulli 数: bernoulli(n), bernoulli_mod_p(p) 精円曲線: EllipticCurve($[a_1, a_2, a_3, a_4, a_6]$) Dirichlet characters: DirichletGroup(N) Modular forms: ModularForms(level, weight) Modular symbols: ModularSymbols(level, weight) Brandt modules: BrandtModule(level, weight) Modular abelian varieties: J0(N), J1(N)

Primes: prime_range(n,m), is_prime, next_prime Factor: factor(n), qsieve(n), ecm.factor(n) Kronecker symbol: $\left(\frac{a}{b}\right) = \text{kronecker_symbol}(a,b)$

Continued fractions: continued fraction(x)

Bernoulli numbers: bernoulli(n), bernoulli mod_p(p) Elliptic curves: EllipticCurve([a_1, a_2, a_3, a_4, a_6]) Dirichlet characters: DirichletGroup(N) Modular forms: ModularForms(level, weight) Modular symbols: ModularSymbols(level, weight, sign) Brandt modules: BrandtModule(level, weight) Modular abelian varieties: JO(N), J1(N)

群論 Group theory
G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
SymmetricGroup(n), AlternatingGroup(n)
アーベル群: AbelianGroup([3,15])
行列群: GL, SL, Sp, SU, GU, SO, GO
関数: G.sylow_subgroup(p), G.character_table(),
G.normal_subgroups(), G.cayley_graph()
G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
SymmetricGroup(n), AlternatingGroup(n)
Abelian groups: AbelianGroup([3,15])
Matrix groups: GL, SL, Sp, SU, GU, SO, GO
Functions: G.sylow_subgroup(p), G.character_table(),
G.normal_subgroups(), G.cayley_graph()

非可換環 Noncommutative rings 四元数: Q.<i,j,k> = QuaternionAlgebra(a,b) 自由代数: R.<a,b,c> = FreeAlgebra(QQ, 3) Quaternions: Q.<i,j,k> = QuaternionAlgebra(a,b) Free algebra: R.<a,b,c> = FreeAlgebra(QQ, 3)

Pythonのモジュール Python modules import module_name module_name. ⟨tab⟩ and help(module_name) import module_name module_name. ⟨tab⟩ and help(module_name)

解析とデバッグ Profiling and debugging
time command: timing information の表示
timeit("command"): accurately time command
t = cputime(); cputime(t): 経過した CPU time
t = walltime(); walltime(t): 経過した wall time
%pdb: interactive debugger を開始 (command line only)
%prun command: profile command (command line only)
time command: show timing information
timeit("command"): accurately time command
t = cputime(); cputime(t): elapsed CPU time
t = walltime(); walltime(t): elapsed wall time
%pdb: turn on interactive debugger (command line only)
%prun command: profile command (command line only)