2009.5.26 (担当:佐藤)

注意.

- 三平法の定理に馴染みのない者は問題1から解くこと.
- 問題 2, 3, 5, 6, 7 は全員が必ず解くこと (この順番で優先的に).
- 問題 4,8 は上の問題が解き終わった後、じっくり考えてみよ.

三平方の定理(ピタゴラスの定理)・

直角三角形の斜辺の長さがc, 他の2辺の長さがa,bのとき, a,b,cは以下の関係を満たす;

$$c^2 = a^2 + b^2$$

問題 1. 次の図中のxを三平方の定理を用いて求めよ.

(1) 正三角形

(3)

(4)

弧度法

角度を単位円(半径が 1 の円)の弧の長さで表す方法。単位はラジアン。 360° が 2π ラジアン。 x° は $\frac{x\pi}{180}$ ラジアン。

問題 2. 教科書 p.73 の問題 4.1 (3)(18)(21)(29)(33)(44) に答えなさい.

- 三角関数 -

半径 1 の円周上の点 P に対し、x 軸の正の部分と のなす角が θ (ただし θ は一般角) であるとき, 点 P の x 座標の値を $\cos \theta$, y 座標の値を $\sin \theta$ と定 義する; $P = (\cos \theta, \sin \theta)$,

 $\sin \theta$: θ の正弦

 $\cos\theta$: θ の余弦

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$: θ の正接

問題 3. 次の三角関数の値を求めよ. (関連問題 教科書 p.77 問題 4.2)

- (1) $\sin \frac{\pi}{3}$ (2) $\sin \left(-\frac{\pi}{6}\right)$ (3) $\sin \frac{5\pi}{4}$ (4) $\sin \frac{\pi}{2}$ (5) $\sin 0$

- (6) $\cos \frac{\pi}{3}$ (7) $\cos \left(-\frac{\pi}{6}\right)$ (8) $\cos \frac{5\pi}{4}$ (9) $\cos \frac{\pi}{2}$ (10) $\cos 0$

- (11) $\tan \frac{\pi}{3}$ (12) $\tan \left(-\frac{\pi}{6}\right)$ (13) $\tan \frac{5\pi}{4}$ (14) $\tan \frac{\pi}{2}$ (15) $\tan 0$

問題 4. 与えられた θ に対して、 $\sin\theta$, $\cos\theta$, $\tan\theta$ の符号(正、負)がどうなるか考えて、 下表の空欄に「正」または「負」を書きなさい。

	$0 < \theta < \frac{\pi}{2}$	$\frac{\pi}{2} < \theta < \pi$	$\pi < \theta < \frac{3\pi}{2}$	$\frac{3\pi}{2} < \theta < 2\pi$
$\sin \theta$				
$\cos \theta$				
$\tan \theta$				

正接の幾何学的意味 -

正接: $\tan \theta = \frac{\sin \theta}{\cos \theta}$

正接の定義から、 $\tan\theta$ は直線 OP と直線 x=1 との交点の y 座標と解釈できる.

問題 5. 「正接の幾何学的意味」で述べたことが正しいことを説明(証明) せよ.

三角関数の性質

- (1) $\sin^2 + \cos^2 \theta = 1$ (ただし, $\sin^2 \theta = (\sin \theta)^2$ を意味する).
- (2) 整数 n に対して、 $\sin(2n\pi + \theta) = \sin \theta$
- (3) 整数 n に対して, $\cos(2n\pi + \theta) = \cos \theta$
- (4) $\sin(-\theta) = -\sin\theta$
- (5) $\cos(-\theta) = \cos\theta$
- (6) $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$
- (7) $\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$

問題 **6.** 「三角関数の性質」が正しいことを説明せよ((1) は定義から明らかである。(2) ~(7) については単位円(半径が 1 の円)を描いて主張が正しいことを確かめよ)。

問題 7. $\sin \theta = -\frac{5}{13}$ とする(ただし, $\frac{3\pi}{2} < \theta < 2\pi$).

- $(1)\cos\theta$ の値を求めよ.
- (2) $\tan \theta$ の値を求めよ.

·加法定理·

- (β -1) $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$
- ($\hbar \Omega$ -2) $\sin(\alpha \beta) =$
- (加-3) $\cos(\alpha + \beta) =$
- ($\Delta \Omega$ -4) $\cos(\alpha \beta) =$

問題 8. 加法定理を用いて、 $\sin\frac{\pi}{12}$, $\cos\frac{\pi}{12}$ の値を求めたい。 (関連問題 教科書 p.85 問題 4.4)

- (1) $\frac{\pi}{12}$ を $\frac{\pi}{3}$ と $\frac{\pi}{4}$ を用いて表せ.
- (2) 加法定理を用いて $\sin \frac{\pi}{12}$ を計算せよ.
- (3) 加法定理を用いて $\cos \frac{\pi}{12}$ を計算せよ.

問題 9. (m-1) 式と三角関数の性質 $(4)\sim(7)$ を用いて、加法定理の残りの公式 (m-2)、(m-3)、(m-4) を導きだせ、(教科書 p.85 参照)