When E and F are finite dimensional with $\dim(E) = n$ and $\dim(F) = m$, if $m \ge n$, then f is an immersion iff the Jacobian matrix, J(f)(a), has full rank n for all $a \in E$ and if $n \ge m$, then f is a submersion iff the Jacobian matrix, J(f)(a), has full rank m for all $a \in E$.

Example 39.8. For example, $f: \mathbb{R} \to \mathbb{R}^2$ defined by $f(t) = (\cos(t), \sin(t))$ is an immersion since $J(f)(t) = \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix}$ has rank 1 for all t. On the other hand, $f: \mathbb{R} \to \mathbb{R}^2$ defined by $f(t) = (t^2, t^2)$ is not an immersion since $J(f)(t) = \begin{pmatrix} 2t \\ 2t \end{pmatrix}$ vanishes at t = 0. See Figure 39.6. An example of a submersion is given by the projection map $f: \mathbb{R}^2 \to \mathbb{R}$, where f(x, y) = x, since $J(f)(x, y) = \begin{pmatrix} 1 & 0 \end{pmatrix}$.

Figure 39.6: Figure (i.) is the immersion of \mathbb{R} into \mathbb{R}^2 given by $f(t) = (\cos(t), \sin(t))$. Figure (ii.), the parametric curve $f(t) = (t^2, t^2)$, is not an immersion since the tangent vanishes at the origin.

The following results can be shown.

Proposition 39.16. Let A be an open subset of \mathbb{R}^n , and let $f: A \to \mathbb{R}^m$ be a function. For every $a \in A$, $f: A \to \mathbb{R}^m$ is a submersion at a iff there exists an open subset U of A containing a, an open subset $W \subseteq \mathbb{R}^{n-m}$, and a diffeomorphism $\varphi: U \to f(U) \times W$, such that,

$$f = \pi_1 \circ \varphi$$
,