Numerical Linear Algebra Problem Answer

Tao Hu EECS in Peking University taohu@pku.edu.cn

Notice: this is the answer based on my own understanding, which is for your reference only.

1 Fundamentals

1.1 Matrix-Vector Multiplication

(1.1)

- **1.1.** Let B be a 4×4 matrix to which we apply the following operations:
 - 1. double column 1,
 - 2. halve row 3,
 - 3. add row 3 to row 1,
 - 4. interchange columns 1 and 4,
 - 5. subtract row 2 from each of the other rows,
 - 6. replace column 4 by column 3,
 - 7. delete column 1 (so that the column dimension is reduced by 1).
- (a) Write the result as a product of eight matrices.
- (b) Write it again as a product ABC (same B) of three matrices.

Ans: (a). 1.

$$B\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2.

$$B\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3.

$$B \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

4.

$$B \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

5.

$$B \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

6.

$$B \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

7.

$$B \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b). TODO (1.2) TODO (1.3) (1.4) **1.3.** Generalizing Example 1.3, we say that a square or rectangular matrix R with entries r_{ij} is upper-triangular if $r_{ij} = 0$ for i > j. By considering what space is spanned by the first n columns of R and using (1.8), show that if R is a nonsingular $m \times m$ upper-triangular matrix, then R^{-1} is also upper-triangular. (The analogous result also holds for lower-triangular matrices.)

1.4. Let f_1, \ldots, f_8 be a set of functions defined on the interval [1,8] with the property that for any numbers d_1, \ldots, d_8 , there exists a set of coefficients c_1, \ldots, c_8 such that

$$\sum_{j=1}^{8} c_j f_j(i) = d_i, \qquad i = 1, \dots, 8.$$

- (a) Show by appealing to the theorems of this lecture that d_1, \ldots, d_8 determine c_1, \ldots, c_8 uniquely.
- (b) Let A be the 8×8 matrix representing the linear mapping from data d_1, \ldots, d_8 to coefficients c_1, \ldots, c_8 . What is the i, j entry of A^{-1} ?