Michael Ehrig
micha.ehrig@outlook.com
michael.ehrig@bit.edu.cn

Assignment 2

We use the notations and conventions from the course, e,g. a map refers to a continuous map, a space refers to a topological space, S^1 denotes the unit circle, and D^2 the unit disc.

Exercise 1. Let $B = S^1$, $C = D^2$ and denote by $\partial C = S^1$ the circle contained in C. For a fixed integer $k \geq 1$ we define the map $\phi_k : \partial C \to B$ via $\phi_k(e^{2\pi i s}) = e^{2\pi i k s}$. We then define the following space

$$X_k = (B \prod C)/_{\sim},$$

where $z \sim \varphi_k(z)$ for $z \in \partial C$.

- (a) Show that the space X_k is path-connected.
- (b) Use the van Kampen theorem to determine $\pi_1(X_k)$.

Hint: The calculation is easier with the choice of a basepoint in $C \setminus \partial C$.

Exercise 2. Let X be a space with $X = U \cup V$ for U, V, and $U \cap V$ all open, non-empty and path-connected.

- (a) Show that X is path-connected.
- (b) Assume that $V \cap U$ is simply-connected and show that $\pi(X) \cong \pi_1(U) * \pi_1(V)$.

Exercise 3.

- (a) Let $[v_0, v_1, v_2, v_3]$ be a 3-simplex. Define $X = [v_0, v_1, v_2, v_3]/_{\sim}$ with the equivalence relation given by $v_0 \sim v_1 \sim v_2 \sim v_3$. Compute the simplicial homology of X.
- (b) Let $[v_0, v_1, \ldots, v_n]$ be an *n*-simplex. For $1 \le k \le n$ and $\underline{i} = (0 \le i_1 < i_2 < \ldots < i_k \le n)$ denote by $\varphi_{\underline{i}} : \Delta^k \to [v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ the canonical homeomorphism from the standard *k*-simplex to $[v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ (as defined in the course).

Now define $X = [v_0, v_1, \ldots, v_n]/_{\sim}$ where for any $\underline{i} = (0 \le i_1 < i_2 < \ldots < i_k \le n)$, $\underline{j} = (0 \le j_1 < j_2 < \ldots < j_k \le n)$, and $x \in [v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ we set $x \sim \varphi_{\underline{j}} \circ \varphi_{\underline{i}}^{-1}(x)$, i.e. we identify all k-simplices contained as iterative faces in $[v_0, v_1, \ldots, v_n]$ via the canonical homeomorphisms. Compute the simplicial homology of X.

Exercise 4. Let $r: X \to A$ be a retraction of a space X to a subspace A and $i: A \to X$ the inclusion. Show that $i_*: H_n(A) \to H_n(X)$ is injective and $r_*: H_n(X) \to H_n(A)$ is surjective for all $n \ge 0$.