A brief guide to multiple testing and FDR

Zohar Yakhini, Leon Anavy, Ben Galili – RUNI Herzliya

Breast Cancer BRCA1/BRCA2 data

False Discovery Rate (FDR)

What fraction of the observed discoveries (e.g DE) is explained by what is expected at random (under a null-model)?

Observed: # of tests for which p-val $\leq p$

More events

What if two colors were linked at 0.05? Three?

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05).

PINK JELLY

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05)

BLUE JELLY

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05)

WE FOUND NO

LINK BETWEEN

YELLOW JELLY

(P>0.05).

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05)

MAUVE JELLY

BEANS AND ACNE

TEAL JELLY

FDR at any i

$$FDR(p) = \frac{pN}{O(p)}$$

$$FDR(i) = \frac{p(i)N}{i}$$

More events

$$FDR(2) = ?$$

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05).

LILAC JELLY

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05).

BLUE JELLY

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05).

TEAL JELLY

Distribution of p-values under the null model

50 _

45

40

35

30

- Generating data using a coin with p = 0.3
- under a null model of p = 0.3

50 repeats of p=0.3 tossed 100 times

FDR

- Generating data using a coin with p = 0.3
- under a null model of p = 0.4

$$FDR(i) = p(i) \cdot N / i$$

Zohar Yakhini

A more adequate correction

RobFDR(i) =
$$\min_{j \ge i} \left(\frac{p(j) \cdot N}{j} \right)$$

WRS FDR: A \sim N(0,1) and B \sim N(0,1), n= 20,20

WRS FDR: A \sim N(0,1) and B \sim N(0.25,1), n= 20,20

WRS FDR: A \sim N(0,1) and B \sim N(?,1), n= 20,20

WRS FDR: A \sim N(0,1) and B \sim N(1,1), n= 20,20

Zohar Yakhini

FDR – the procedure

Yoav Benjamini and Yosef Hochberg 1995

- Assume that we performed N measurements (comparisons, observations etc)
- Rank the computed significance of the findings: $p(1) \le p(2) \le p(3) \le p(4) \le \le p(N-1) \le p(N)$
- Under the null model, the expected number of observations with p-value better than p(i) is p(i)·N
- The false discovery rate at i is therefore:

RobFDR(i) =
$$\min_{j \ge i} \left(\frac{p(j) \cdot N}{j} \right)$$

 A corrected hypothesis testing in this case would be to find the max i that satisfies FDR(i) ≤ τ, where τ (e.g 0.05) is the required false discovery rate.

In the context of DGE ...

We observed (say) 200 genes at FDR=0.05, using a WRS test

Multiple testing and FDR

- Greater data volumes require more careful inferential statistics approaches.
- Approaches to addressing multiple testing:
 - Bonferroni correction
 - Report FDR results
 - Simulations under a null

