Performance, Security, and Energy Efficiency

Neelam Singh

Performance Metrics and Scalability Analysis

Performance metrics are needed to measure various distributed systems.

Performance Metrics

We discussed CPU speed in MIPS and network bandwidth in Mbps in Section 1.3.1 to estimate pro-cessor and network performance. In a distributed system, performance is attributed to a large number of factors. System throughput is often measured in MIPS, Tflops (tera floating-point operations per second), or TPS (transactions per second).

Other measures include job response time and network latency. An interconnection network that has low latency and high bandwidth is preferred. System overhead is often attributed to OS boot time, compile time, I/O data rate, and the runtime support sys-tem used. Other performance-related metrics include the QoS for Internet and web services; system availability and dependability; and security resilience for system defense against network attacks.

Dimensions of Scalability

Users want to have a distributed system that can achieve scalable performance. Any resource upgrade in a system should be backward compatible with existing hardware and software resources. Overdesign may not be cost-effective. System scaling can increase or decrease resources depending on many practical factors. The following dimensions of scalability are characterized in parallel and distributed systems:

- Size scalability This refers to achieving higher performance or more functionality by increasing the machine size. The word "size" refers to adding processors, cache, memory, storage, or I/O channels. The most obvious way to determine size scalability is to simply count the number of processors installed
- Software scalability This refers to upgrades in the OS or compilers, adding mathematical and engineering libraries, porting new application software, and installing more user-friendly programming environments.
- Application scalability This refers to matching problem size scalability with machine size scalability. Problem size affects the size of the data set or the workload increase.
- Technology scalability This refers to a system that can adapt to changes in building technologies, such as the component and networking technologies

Energy Efficiency

Primary performance goals in conventional parallel and distributed computing systems are high performance and high throughput, considering some form of performance reliability (e.g., fault tol-erance and security). However, these systems recently encountered new challenging issues including energy efficiency, and workload and resource outsourcing. These emerging issues are crucial not only on their own, but also for the sustainability of large-scale computing systems in general.

Protection of data centers demands integrated solutions. Energy consumption in parallel and dis-tributed computing systems raises various monetary, environmental, and system performance issues.

Energy Consumption of Unused Servers

To run a server farm (data center) a company has to spend a huge amount of money for hardware, software, operational support, and energy every year. Therefore, companies should thoroughly identify whether their installed server farm (more specifically, the volume of provisioned resources) is at an appropriate level, particularly in terms of utilization.

It was estimated in the past that, on average, one-sixth (15 percent) of the full-time servers in a company are left powered on without being actively used (i.e., they are idling) on a daily basis. This indicates that with 44 million servers in the world, around 4.7 million servers are not doing any useful work.

The potential savings in turning off these servers are large—\$3.8 billion globally in energy costs alone, and \$24.7 billion in the total cost of running nonproductive servers, according to a study by 1E Company in partnership with the Alliance to Save Energy (ASE).

This amount of wasted energy is equal to 11.8 million tons of carbon dioxide per year, which is equivalent to the CO pollution of 2.1 million cars. In the United States, this equals 3.17 million tons of carbon dioxide, or 580,678 cars. Therefore, the first step in IT departments is to analyze their servers to find unused and/or underutilized servers.

Reducing Energy in Active Servers

In addition to identifying unused/underutilized servers for energy savings, it is also necessary to apply appropriate techniques to decrease energy consumption in active distributed systems with negligible influence on their performance.

Application Layer

Until now, most user applications in science, business, engineering, and financial areas tend to increase a system's speed or quality. By introducing energy-aware applications, the challenge is to design sophisticated multilevel and multi-domain energy management applications without hurting performance. The first step toward this end is to explore a relationship between performance and energy consumption. Indeed, an application's energy consumption depends strongly on the number of instructions needed to execute the application and the number of transactions with the storage unit (or memory). These two factors (compute and storage) are correlated and they affect completion time.

Middleware Layer

The middleware layer acts as a bridge between the application layer and the resource layer. This layer provides resource broker, communication service, task analyzer, task scheduler, security access, reliability control, and information service capabilities. It is also responsible for applying energy-efficient techniques, particularly in task scheduling. Until recently, scheduling was aimed at minimizing make span, that is, the execution time of a set of tasks. Distributed computing systems necessitate a new cost function covering both make span and energy consumption.

Resource Layer

The resource layer consists of a wide range of resources including computing nodes and storage units. This layer generally interacts with hardware devices and the operating system; therefore, it is responsible for controlling all distributed resources in distributed computing systems. In the recent past, several mechanisms have been developed for more efficient power management of hardware and operating systems. The majority of them are hardware approaches particularly for processors.

Network Layer

Routing and transferring packets and enabling network services to the resource layer are the main responsibility of the network layer in distributed computing systems. The major challenge to build energy-efficient networks is, again, determining how to measure, predict, and create a balance between energy consumption and performance. Two major challenges to designing energy-efficient networks are:

- The models should represent the networks comprehensively as they should give a full understanding of interactions among time, space, and energy.
- New, energy-efficient routing algorithms need to be developed. New, energy-efficient protocols should be developed against network attacks.

As information resources drive economic and social development, data centers become increasingly important in terms of where the information items are stored and processed, and where services are provided. Data centers become another core infrastructure, just like the power grid and transportation systems. Traditional data centers suffer from high construction and operational costs, complex resource management, poor usability, low security and reliability, and huge energy consumption. It is necessary to adopt new technologies in next-generation data-center designs