Inteligentne Systemy Wspomagania Decyzji (ISWD) Prowadzący: mgr inż. Krzysztof Martyn Temat Laboratorium: Utworzenie rankingu scenariuszy zarządzania odpadami radioaktywnymi Autorzy: Alex Terentowicz [145419], Daniel Zdancewicz [145317]

1 Wstęp

Celem projektu było uporządkowanie wariantów zarządzania odpadami radioaktywnymi wytwarzanymi przez elektrownię jądrową od najlepszego do najgorszego. Ranking powstał przy użyciu odpornej regresji porządkowej, uwzględniając preferencje wynikające z prognóz wskazanych przez grupy specjalistów. Parametry charakteryzujące poszczególne warianty:

- C_1 Finansowe koszty całkowite (The total financial cost)
- C_2 Koszty finansowe przez aktualnego konsumenta (The financial cost incurred by the current consumer)
- C_3 Koszty wspierane przez przyszłego konsumenta (The financial cost supported by the future consumer)
- \bullet C_4 Ryzyko kosztów finansowych (Financial risk due to overcosts)

2 Informacja preferencyjna

W naszej konfiguracji grupy zakładały ograniczenie ryzyka inwestycyjnego oraz wzrost wydajności produkcji elektrycznej w przyszłości. Na podstawie tych założeń wyszczególniliśmy dwa kryteria jako te z największym wpływem na finalny ranking. Najważniejszy z nich to C4 odzwierciedlający niepewność inwestycji. Inne kryterium któremu również poświęciliśmy większą uwagę to C2, a więc aktualnie ponoszone koszty. Przyszłe koszty wyrażone przez kryterium C3 nie są aż tak szkodliwe, ponieważ wydajniejsza elektrownia będzie ich produkować mniej. W rezultacie hierarchia modelowanych ważności kryteriów to $C_4 \geq C_1 \sim C_2 \geq C_3$. Idąc za tą hierarchią, przy ocenianiu par wariantów przede wszystkim minimalizujemy ryzyko kosztów finansowych, aby zaspokoić potrzeby ostrożnego inwestora. Następnie koszty całkowite traktujemy równoważne z drugim kryterium, czyli kosztami ponoszonymi przez obecnych konsumentów. Najmniej istotne są koszty wspierane przez przyszłych konsumentów.

Przedstawione niżej 5 par wariantów wchodzące do porównań zostały wybrane na podstawie informacji preferencyjnej (5,12,33) oraz przypisane według indeksów autorów (24,25).

Nr pary	Nr Wariantu	C_1	C_2	C_3	C_4
24	6	0.78	0.27	0.71	0.50
24	8	0.64	0.44	0.54	0.54
25	7	0.40	0.90	0.00	0.82
	21	0.83	0.25	0.80	0.65
5	15	0.87	0.03	1.00	0.61
	26	0.71	0.25	0.88	0.67
12	1	0.60	0.93	0.00	0.73
	5	0.62	0.40	0.56	0.50
33	3	1.00	0.45	0.57	0.50
	27	0.80	0.06	1.00	0.67

Tabela 1: Pary uwzględnione w rankingu referencyjnym

Po przeanalizowaniu kryteriów, warianty 5, 8, 6 i 3 zostały wybrane jako najkorzystniejsze, z uwzględnieniem niższych kosztów finansowych w przypadku indeksu 8 w porównaniu do indeksów 6 i 3. Kolejno, preferowane są indeksy 6, a następnie 3, 15 i 21. Warianty o indeksach 27 i 26 wykazują zbliżone do siebie charakterystyki, za to na końcu rankingu umieszczono indeksy 1 oraz 7. Wyodrębnienie takiego układu hierarchii preferencyjnej opiera się głównie na dążeniu do minimalizacji ryzyka oraz ograniczenia kosztów finansowych bez silnego uwzględniania kosztów przyszłych.

Ostateczny ranking preferencyjny:

$$5 > 8 > 6 > 3 > 15 > 21 \sim 27 \sim 26 > 1 > 7$$

3 Zadanie 1 - Funkcja użyteczności i rankign

Do odnalezienia rankingu został zdefiniowany problem programowania matematycznego polegający na rozwiązaniu problemu regresji porządkowej. Problem regresji porządkowej poszukuje takiej funkcji, która umożliwia na odczytanie wartości całkowitej, dla każdego z wariantów. Sformułowanie problemu matematycznego uwzględnia trzy typy ograniczeń:

- Odtworzenie rankingu referencyjnego, poprzez przemianowanie na sumę użyteczności cząstkowych odpowiadającym wariantom.
- Monotoniczność wartości wszystkie kryteria są kosztem, więc są to funkcje nierosnąca
- Normalizacja wartości do przedziału [0, 1].

3.1 Cząstkowe funkcje użyteczności

Rysunek 1: Cząstkowe funkcje użyteczności otrzymane z rozwiązania problemu programowania matematycznego

3.2 Ranking uzyskany metodą UTA

Index	C_1	C_2	C_3	C_4	u_1	u_2	u_3	u_4	U
5	0.62	0.40	0.56	0.50	0	0.333	0.222	0.444	0.999
8	0.64	0.44	0.54	0.54	0	0.222	0.222	0.444	0.888
6	0.78	0.27	0.71	0.50	0	0.333	0.000	0.444	0.777
12	0.74	0.25	0.80	0.49	0	0.333	0.000	0.444	0.777
11	0.61	0.54	0.38	0.49	0	0.000	0.222	0.444	0.666
3	1.00	0.45	0.57	0.50	0	0.000	0.222	0.444	0.666
2	0.66	0.55	0.45	0.49	0	0.000	0.222	0.444	0.666
9	0.65	0.30	0.71	0.55	0	0.333	0.000	0.222	0.555
15	0.87	0.03	1.00	0.61	0	0.333	0.000	0.222	0.555
17	0.68	0.40	0.65	0.60	0	0.333	0.000	0.222	0.555
18	0.76	0.06	1.00	0.60	0	0.333	0.000	0.222	0.555
23	0.59	0.24	0.70	0.63	0	0.333	0.000	0.111	0.444
21	0.83	0.25	0.80	0.65	0	0.333	0.000	0.111	0.444
24	0.73	0.03	1.00	0.63	0	0.333	0.000	0.111	0.444
26	0.71	0.25	0.88	0.67	0	0.333	0.000	0.111	0.444
20	0.64	0.22	0.81	0.65	0	0.333	0.000	0.111	0.444
14	0.69	0.49	0.56	0.61	0	0.000	0.222	0.222	0.444
27	0.80	0.06	1.00	0.67	0	0.333	0.000	0.111	0.444
10	0.45	0.86	0.00	0.73	0	0.000	0.222	0.111	0.333
1	0.60	0.93	0.00	0.73	0	0.000	0.222	0.111	0.333
19	0.35	0.91	0.00	0.98	0	0.000	0.222	0.000	0.222
16	0.44	0.95	0.00	0.90	0	0.000	0.222	0.000	0.222
13	0.48	0.97	0.00	0.91	0	0.000	0.222	0.000	0.222
22	0.32	0.83	0.00	0.94	0	0.000	0.222	0.000	0.222
7	0.40	0.90	0.00	0.82	0	0.000	0.222	0.000	0.222
4	0.48	0.87	0.00	0.75	0	0.000	0.222	0.000	0.222
25	0.34	1.00	1.00	1.00	0	0.000	0.000	0.000	0.000

Tabela 2: Ranking uzyskany metoda UTA

Ranking preferencyjny został prawie w pełni odwzorowany. Jedynym błędem jest pojawienie się wariantu 26 przed wariantem 27. Wszystkie wartości funkcji użyteczności znajdują się w założonym przedziale [0,1]. Najlepszy wariant ma wartości kryterium ryzyka oraz totalnego kosztu bliskie najniższym wartościom, oraz Koszty przyszłe wyższe od aktualnych. Wariant najgorszy uzyskał wagi (0,0,0,0), a jego kryteria ryzyka, kosztów przyszłych, oraz teraźniejszych mają maksymalne wartości.

4 Zadanie 2 - Relacje i diagram Hasse'go

Rysunek 2: Diagram Hasse'go relacji w metodzie UTA^{GMS}

Na diagramie zauważyć można bezpośrednią hierarchię dominacji w obrębie długiego szeregu wariantów, lecz nie uzyskaliśmy porzadku zupełnego tak jak w metodzie UTA. Widzimy 9 wariantów niezdominowanych przez inne, co utrudnia znalezienie najlepszego rozwiązania. Warto zauważyć iż warianty 26, 27 oraz 21 znajdują się na jednakowym poziomie w hierarchii, który odcina górną i dolną część szeregu, oraz dodatkowo jest dominowany przez kilka niezdominowanych wariantów, będących poza szeregiem.

5 Zadanie 3 - Reprezentatywna funkcja użyteczności

5.1 Cząstkowe funkcje użyteczności

Rysunek 3: Cząstkowe funkcje użyteczności składające się na reprezentatywną funkcję użyteczności

W kontekście analizy porównawczej pomiędzy funkcją początkową UTA i reprezentatywną funkcją użyteczności, zauważalna jest różnica w kryterium 4, charakteryzująca się większym stopieniem schodkowatości. Dodatkowo znika kryterium C1 i pojawia się kryterium C3.

5.2 Ranking uzyskany przez reprezentatywną funkcję użyteczności

Index	C_1	C_2	C_3	C_4	u_1	u_2	u_3	u_4	U
5	0.62	0.40	0.56	0.50	0.182	0.182	0	0.636	0.818
6	0.78	0.27	0.71	0.50	0.000	0.182	0	0.636	0.818
8	0.64	0.44	0.54	0.54	0.091	0.182	0	0.636	0.818
12	0.74	0.25	0.80	0.49	0.000	0.182	0	0.636	0.818
11	0.61	0.54	0.38	0.49	0.182	0.091	0	0.636	0.727
3	1.00	0.45	0.57	0.50	0.000	0.091	0	0.636	0.727
2	0.66	0.55	0.45	0.49	0.000	0.091	0	0.636	0.727
9	0.65	0.30	0.71	0.55	0.000	0.182	0	0.455	0.637
15	0.87	0.03	1.00	0.61	0.000	0.182	0	0.455	0.637
17	0.68	0.40	0.65	0.60	0.000	0.182	0	0.455	0.637
23	0.59	0.24	0.70	0.63	0.182	0.182	0	0.455	0.637
18	0.76	0.06	1.00	0.60	0.000	0.182	0	0.455	0.637
24	0.73	0.03	1.00	0.63	0.000	0.182	0	0.455	0.637
21	0.83	0.25	0.80	0.65	0.000	0.182	0	0.364	0.546
26	0.71	0.25	0.88	0.67	0.000	0.182	0	0.364	0.546
20	0.64	0.22	0.81	0.65	0.091	0.182	0	0.364	0.546
14	0.69	0.49	0.56	0.61	0.000	0.091	0	0.455	0.546
27	0.80	0.06	1.00	0.67	0.000	0.182	0	0.364	0.546
10	0.45	0.86	0.00	0.73	0.182	0.091	0	0.273	0.364
1	0.60	0.93	0.00	0.73	0.182	0.000	0	0.273	0.273
7	0.40	0.90	0.00	0.82	0.182	0.000	0	0.182	0.182
4	0.48	0.87	0.00	0.75	0.182	0.000	0	0.182	0.182
16	0.44	0.95	0.00	0.90	0.182	0.000	0	0.091	0.091
22	0.32	0.83	0.00	0.94	0.182	0.091	0	0.000	0.091
19	0.35	0.91	0.00	0.98	0.182	0.000	0	0.000	0.000
13	0.48	0.97	0.00	0.91	0.182	0.000	0	0.000	0.000
25	0.34	1.00	1.00	1.00	0.182	0.000	0	0.000	0.000

Tabela 3: Ranking uzyskany reprezentatywną funkcją użyteczności

Porównując rankingi, zauważono podobieństwa, jednak różnią się one tym, że wiele elementów zajmuje pierwsze miejsca w porównaniu z poprzednim rozwiązaniem. Konkretnie, w przypadku obecnego rozwiązania, elementy 5, 6, 8 oraz 12 znajdują się na pierwszym miejscu, podczas gdy w poprzednim rozwiązaniu tylko element 5 był na pierwszym miejscu. Z tego wynika, że podejście to jest mniej skłonne do nadmiernego dopasowania się do referencyjnego rankingu.

6 Wnioski

Scenariusz finansowania F_3 kończył nisko w rankingu, a w metodzie UTA^{GMS} znacznie częściej był dominowany niż dominował, więc uznajemy go za najgorszy. Warianty znajdujące się w konfiguracji scenariusza czasowego S_3 i lokalizacji R_3 są mocno dominowane zarówno w UTA jak i UTA^{GMS} , co może sugerować iż to połączenie scenariuszy jest jednym z najgorszych przy wybranych założeniach. Wszystkie te warianty znalazły się też w drugiej połowie rankingu wykonanego metodą UTA, więc jest to spójne.