ANAM - Contrôle continu 1- Corrigé

Exercice 1.

1) Soit

$$f: \left\{ \begin{array}{ccc} E & \to & \mathbb{R}^2 \\ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} & \to & \begin{pmatrix} x-y+z \\ t \end{pmatrix} \right.$$

L'application f est linéaire et $F_1 = \operatorname{Ker} f$ est bien un s.e.v de E. De plus, étant donné $\mathbf{v} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{R}^2$, on a

$$f\begin{pmatrix} \alpha \\ 0 \\ 0 \\ \beta \end{pmatrix} = \mathbf{v},$$

donc f est surjective. Par conséquent $\dim \operatorname{Im} f = 2$, et d'après le théorème du rang, puisque $\dim E = 4$, on a bien $\dim \operatorname{Ker} f = \dim F_1 = 2$.

Soit
$$\mathbf{u} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in E$$
. Alors on a

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ x+z \\ z \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = x \mathbf{a}_1 + y \mathbf{b}_1.$$

La famille $\{a_1, b_1\}$ est une famille génératrice de F_1 de dimension 2, comme elle est de cardinal 2, c'est bien une base de F_2 .

2) On vérifie d'abord que la famille $\{a_2, b_2\}$ est libre. L'équation $\lambda a_2 + \mu b_2 = 0$ s'écrit

$$\lambda \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

La première ligne donne $\mu=0$ et la troisième $\lambda=0$. Par conséquent, $\dim F_2=2$. Comme $\dim F_1+\dim F_2=4=\dim E$, pour montrer que $E=F_1\oplus F_2$, il suffit de montrer que $F_1\cap F_2=\{0\}$. Soit

$$\mathbf{u} = \alpha \mathbf{a}_1 + \beta \mathbf{b}_1 = \gamma \mathbf{a}_2 + \delta \mathbf{b}_2 = \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \gamma \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \delta \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}.$$

1

On raisonne ligne par ligne $L_4 \Rightarrow \delta = \gamma$, $L_3 \Rightarrow \beta = \gamma$, $L_1 \Rightarrow \alpha = \delta = \gamma$. Donc pour résumer $\alpha = \beta = \delta = \gamma$. Mais $L_2 \Rightarrow \alpha = -\beta$. Donc tous les coefficients sont nuls et donc $\mathbf{u} = 0$.

3) On a, en notant P la matrice de passage de \mathcal{B}_1 à \mathcal{B}_2 ,

$$P = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}, \quad [\mathbf{u}]_{\mathcal{B}_1} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}, \quad [\mathbf{u}]_{\mathcal{B}_2} = \begin{pmatrix} \alpha \\ \beta \\ \lambda \\ \gamma \end{pmatrix}, \quad [\mathbf{u}]_{\mathcal{B}_2} = P^{-1}[\mathbf{u}]_{\mathcal{B}_1}$$

Or on a

$$P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}.$$

On en déduit après calculs

$$\begin{pmatrix} \alpha \\ \beta \\ \lambda \\ \gamma \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x+y-z+t \\ -x+y+z-t \\ x-y+z+t \\ x-y+z-t \end{pmatrix}.$$

Par conséquent

$$\mathbf{u}_{1} = \frac{1}{2} \left((x + y - z + t) \, \mathbf{a}_{1} + (-x + y + z - t) \, \mathbf{b}_{1} \right) = \frac{1}{2} \begin{pmatrix} x + y - z + t \\ 2y \\ -x + y + z - t \end{pmatrix},$$

et de même

$$\mathbf{u}_{2} = \frac{1}{2} ((x - y + z + t) \mathbf{a}_{2} + (x - y + z - t) \mathbf{b}_{2}) = \frac{1}{2} \begin{pmatrix} x - y + z - t \\ 0 \\ x - y + z + t \\ 2t \end{pmatrix}.$$

Exercice 2.

1) Soit $\mathbf{v} \in \text{Im}(f - \text{Id})$. Alors il existe $\mathbf{u} \in V$ tel que $\mathbf{v} = (f - \text{Id})(\mathbf{u}) = f(\mathbf{u}) - \mathbf{u}$. Par conséquent, comme f est linéaire,

$$f^2(\mathbf{v}) + f(\mathbf{v}) + \mathbf{v} = f^3(\mathbf{u}) - f^2(\mathbf{u}) + f^2(\mathbf{u}) - f(\mathbf{u}) + f(\mathbf{u}) - \mathbf{u} = f^3(\mathbf{u}) - \mathbf{u} = 0,$$
 où on a utilisé $f^3 = \mathrm{Id}$. Donc $\mathbf{v} \in \mathrm{Ker}(f^2 + f + \mathrm{Id})$, d'où $\mathrm{Im}(f - \mathrm{Id}) \subset \mathrm{Ker}(f^2 + f + \mathrm{Id})$.

2) On sait déjà d'après le théorème du rang que

$$\dim \operatorname{Im}(f - \operatorname{Id}) + \operatorname{Ker}(f - \operatorname{Id}) = \dim V = n.$$

Pour montrer que $V = \operatorname{Im}(f - \operatorname{Id}) \oplus \operatorname{Ker}(f - \operatorname{Id})$, Il suffit de montrer que

$$\operatorname{Im}(f - \operatorname{Id}) \cap \operatorname{Ker}(f - \operatorname{Id}) = \{0\}.$$

Donc soit $\mathbf{v} \in \operatorname{Im}(f - \operatorname{Id}) \cap \operatorname{Ker}(f - \operatorname{Id})$. On a alors $f(\mathbf{v}) = \mathbf{v}$. Mais d'après la question précédente, $\mathbf{v} \in \operatorname{Im}(f - \operatorname{Id}) \Rightarrow \mathbf{v} \in \operatorname{Ker}(f^2 + f + \operatorname{Id})$. Donc

$$f(\mathbf{v}) = \mathbf{v} \Rightarrow f^2(\mathbf{v}) + f(\mathbf{v}) + \mathbf{v} = 3\mathbf{v} = 0,$$

d'où la conclusion. Ce qui précède montre en particulier que ${\rm Ker}(f^2+f+{\rm Id})\cap {\rm Ker}(f-{\rm Id})=\{0\}$, donc

$$\dim \operatorname{Ker}(f^2 + f + \operatorname{Id}) + \dim \operatorname{Ker}(f - \operatorname{Id}) \le n.$$

Comme on a $\operatorname{Im}(f-\operatorname{Id})\subset\operatorname{Ker}(f^2+f+\operatorname{Id})$, alors

$$\dim \operatorname{Im}(f - \operatorname{Id}) = n - \dim \operatorname{Ker}(f - \operatorname{Id}) \le \dim \operatorname{Ker}(f^2 + f + \operatorname{Id}).$$

En combinant ces inégalités, on obtient nécessairement

$$\dim \operatorname{Ker}(f^2 + f + \operatorname{Id}) = \dim \operatorname{Im}(f - \operatorname{Id}) \Rightarrow \operatorname{Ker}(f^2 + f + \operatorname{Id}) = \operatorname{Im}(f - \operatorname{Id}),$$

ce qui conduit à

$$V = \operatorname{Ker}(f - \operatorname{Id}) \oplus \operatorname{Ker}(f^2 + f + \operatorname{Id}).$$

3) On suppose $f \neq Id$.

3.a) Supposons que $\operatorname{Ker}(f^2+f+\operatorname{Id})=\{0\}$. Dans ce cas, d'après la question 2) on aurait $V=\operatorname{Ker}(f-\operatorname{Id})$, d'où $\forall\, \mathbf{v}\in V,\, (f-\operatorname{Id})(\mathbf{v})=0$, soit encore $\forall\, \mathbf{v}\in V,\, f(\mathbf{v})=\mathbf{v}$, ce qui est contraire à l'hypothèse $f\neq\operatorname{Id}$. Donc $\operatorname{Ker}(f^2+f+\operatorname{Id})\neq\{0\}$.

3.b) Soit $\mathbf{v} \in \text{Ker}(f^2 + f + \text{Id})$, $\mathbf{v} \neq 0$. Alors, $f^2(\mathbf{v}) + f(\mathbf{v}) + \mathbf{v} = 0$. Comme f est linéaire, f(0) = 0, et comme $\forall k, p \in \mathbb{N}$, $f^k \circ f^p = f^p \circ f^k$, on a

$$\begin{split} f(f^2(\mathbf{v})+f(\mathbf{v})+\mathbf{v}) &= 0 = f(f^2(\mathbf{v})) + f(f(\mathbf{v})) + f(\mathbf{v}) = f^2(f(\mathbf{v})) + f(f(\mathbf{v})) + f(\mathbf{v}), \\ \text{d'où } f(\mathbf{v}) &\in \operatorname{Ker}(f^2+f+\operatorname{Id}). \end{split}$$

3.c) Pour montrer que la famille $\{\mathbf{v}, f(\mathbf{v})\}$ est libre, on étudie l'équation

$$\lambda \mathbf{v} + \mu f(\mathbf{v}) = 0.$$

Si $\mu=0$, alors $\lambda {\bf v}=0$ et comme ${\bf v}\neq 0$, on obtient $\lambda=0$. Supposons que $\mu\neq 0$, et soit $\alpha=-\frac{\lambda}{\mu}$. L'équation précédente devient

$$f(\mathbf{v}) = \alpha \mathbf{v}.$$

En composant par f, comme f est linéaire, on obtient $f^2(\mathbf{v}) = \alpha f(\mathbf{v}) = \alpha^2 \mathbf{v}$. Puis en recomposant encore par f, en utilisant $f^3 = \operatorname{Id}$,

$$\mathbf{v} = f^3(\mathbf{v}) = \alpha^2 f(\mathbf{v}) = \alpha^3 \mathbf{v}.$$

Il en résulte que $\alpha=1$, d'où $f(\mathbf{v})=\mathbf{v}$, en d'autres termes $\mathbf{v}\in \mathrm{Ker}(f-\mathrm{Id})$. Mais comme $\mathbf{v}\in \mathrm{Ker}(f^2+f+\mathrm{Id})$ et que $\mathrm{Ker}(f-\mathrm{Id})\cap \mathrm{Ker}(f^2+f+\mathrm{Id})=\{0\}$, on en déduit que $\mathbf{v}=0$, ce qui est contraire à l'hypothèse $\mathbf{v}\neq 0$. Donc $\mu=0$, puis $\lambda=0$, ce qui fait que la famille $\{\mathbf{v},f(\mathbf{v})\}$ est libre.

4) On suppose n=2, $f\neq \mathrm{Id}$. D'après la question 3.a), on sait que $\mathrm{Ker}(f^2+f+\mathrm{Id})\neq\{0\}$. Soit $\mathbf{v}\neq 0$, $\mathbf{v}\in \mathrm{Ker}(f^2+f+\mathrm{Id})$. D'après la question 3.c), la famille $\{\mathbf{v},f(\mathbf{v})\}$ est libre. Mais comme cette famille est constituée de 2 vecteurs en dimension 2, c'est une base de V. Comme $\mathbf{v}\in \mathrm{Ker}(f^2+f+\mathrm{Id})$,

$$f^2(\mathbf{v}) = f(f(\mathbf{v})) = -\mathbf{v} - f(\mathbf{v}).$$

Donc la matrice de f dans cette base est bien la matrice

$$A = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

5) On suppose que dim V = n = 3 et que $f \neq \text{Id}$. On a encore $\text{Ker}(f^2 + f + \text{Id}) \neq \{0\}$. Soit $\mathbf{v} \in \text{Ker}(f^2 + f + \text{Id})$, $\mathbf{v} \neq 0$, $H_{\mathbf{v}} = \text{Vect}\{\mathbf{v}, f(\mathbf{v})\}$.

5.a) Soit $\mathbf{w} = \alpha \mathbf{v} + \beta f(\mathbf{v}) \in H_{\mathbf{v}}$. Alors comme f est linéaire, et que $f^2(\mathbf{v}) = -\mathbf{v} - f(\mathbf{v})$ car $\mathbf{v} \in \text{Ker}(f^2 + f + \text{Id})$,

$$f(\mathbf{w}) = \alpha f(\mathbf{v}) + \beta f^2(\mathbf{v}) = -\beta \mathbf{v} + (\alpha - \beta) f(\mathbf{v}) \in H_{\mathbf{v}}.$$

5.b.i) On applique f à la relation $f(\mathbf{u}) = \mathbf{w} + \alpha \mathbf{u}$, ce qui donne avec la linéarité de f

$$f^{2}(\mathbf{u}) = f(\mathbf{w}) + \alpha f(\mathbf{u}) = f(\mathbf{w}) + \alpha (\mathbf{w} + \alpha \mathbf{u}) = f(\mathbf{w}) + \alpha \mathbf{w} + \alpha^{2} \mathbf{u},$$

puis on recommence, en utilisant $f^3 = Id$,

$$\mathbf{u} = f^3(\mathbf{u}) = f^2(\mathbf{w}) + \alpha f(\mathbf{w}) + \alpha^2 f(\mathbf{u}) = f^2(\mathbf{w}) + \alpha f(\mathbf{w}) + \alpha^2 (\mathbf{w} + \alpha \mathbf{u}) = f^2(\mathbf{w}) + \alpha f(\mathbf{w}) + \alpha^2 \mathbf{w} + \alpha^3 \mathbf{u}.$$

Cette expression peut aussi s'écrire

$$[f^{2}(\mathbf{w}) + \alpha f(\mathbf{w}) + \alpha^{2}\mathbf{w}] = (1 - \alpha^{3})\mathbf{u}.$$

D'après 5.a), comme $\mathbf{w} \in H_{\mathbf{v}}$, $f^2(\mathbf{w}) + \alpha f(\mathbf{w}) + \alpha^2 \mathbf{w} \in H_{\mathbf{v}}$. Et comme $V = H_{\mathbf{v}} \oplus \mathrm{Vect}\{\mathbf{u}\}$, $H_{\mathbf{v}} \cap \mathrm{Vect}\{\mathbf{u}\} = \{0\}$. Donc comme $\mathbf{u} \neq 0$, dans l'égalité plus haut on a nécessairement $\alpha^3 - 1 = 0$, autrement dit $\alpha = 1$.

5.b.ii) On repart de l'égalité $f^2(\mathbf{u}) = f(\mathbf{w}) + \alpha f(\mathbf{u}) = f(\mathbf{w}) + \alpha (\mathbf{w} + \alpha \mathbf{u}) = f(\mathbf{w}) + \alpha \mathbf{w} + \alpha^2 \mathbf{u}$, qui devient, puisque $\alpha = 1$, et que $\mathbf{u} \in \text{Ker}(f^2 + f + \text{Id})$,

$$-\mathbf{u} - f(\mathbf{u}) = f^2(\mathbf{u}) = f(\mathbf{w}) + \mathbf{w} + \mathbf{u} \Rightarrow 2\mathbf{u} = -f(\mathbf{w}) - \mathbf{w} - f(\mathbf{u}) = -f(\mathbf{w}) - 2\mathbf{w} - \mathbf{u},$$

où on a utilisé le fait que $f(\mathbf{u}) = \mathbf{w} + \mathbf{u}$ car $\alpha = 1$. On déduit $3\mathbf{u} = -2\mathbf{w} - f(\mathbf{w})$.

5.b.iii) En supposant que $V = H_{\mathbf{v}} \oplus \operatorname{Vect}\{\mathbf{u}\}$, on aurait $H_{\mathbf{v}} \cap \operatorname{Vect}\{\mathbf{u}\} = \{0\}$. Or d'après la question 5.a), on sait que comme $\mathbf{w} \in H_{\mathbf{v}}$, $-2\mathbf{w} - f(\mathbf{w}) \in H_{\mathbf{v}}$, et donc la relation $3\mathbf{u} = -2\mathbf{w} - f(\mathbf{w})$ entraîne que $\mathbf{u} \in H_{\mathbf{v}} \cap \operatorname{Vect}\{\mathbf{u}\}$, donc $\mathbf{u} = 0$, ce qui est contraire à l'hypothèse $\mathbf{u} \neq 0$.

5.c.i) On sait d'après la question 3.a) que comme $f \neq \mathrm{Id}$, $\mathrm{Ker}(f^2 + f + \mathrm{Id}) \neq \{0\}$, et de 3.b) que $\dim \mathrm{Ker}(f^2 + f + \mathrm{Id}) \geq 2$. On sait aussi par la question 2) que

$$V = \operatorname{Ker}(f^2 + f + \operatorname{Id}) \oplus \operatorname{Ker}(f - \operatorname{Id}).$$

Supposons que $\mathrm{Ker}(f-\mathrm{Id})=\{0\}$. Dans ce cas, on aurait $V=\mathrm{Ker}(f^2+f+\mathrm{Id})$. Soit $\mathbf{v}\neq 0$, et on complète la famille $\{\mathbf{v},f(\mathbf{v})\}$ en $\{\mathbf{v},f(\mathbf{v}),\mathbf{u}\}$ pour obtenir une base de V. Mais si $V=\mathrm{Ker}(f^2+f+\mathrm{Id})$, alors $\mathbf{u}\in V=\mathrm{Ker}(f^2+f+\mathrm{Id})$, et on aurait alors $V=H_{\mathbf{v}}\oplus\mathrm{Vect}\{\mathbf{u}\}$, ce qui n'est pas possible d'après la question b.iii). C'est donc que $\mathrm{Ker}(f-\mathrm{Id})\neq\{0\}$.

5.c.ii) La question précédente conduit à $\dim \operatorname{Ker}(f-\operatorname{Id}) \geq 1$. On déduit de la question 3.a) combiné à la question 3.c) que $\dim \operatorname{Ker}(f^2+f+\operatorname{Id}) \geq 2$. Par ailleurs, comme $V = \operatorname{Ker}(f^2+f+\operatorname{Id}) \oplus \operatorname{Ker}(f-\operatorname{Id})$, on a

$$\dim \operatorname{Ker}(f^2 + f + \operatorname{Id}) + \dim \operatorname{Ker}(f - \operatorname{Id}) = \dim V = 3,$$

d'où il résulte que

$$\dim \operatorname{Ker}(f^2 + f + \operatorname{Id}) = 2, \quad \dim \operatorname{Ker}(f - \operatorname{Id}) = 1.$$

Toujours car $V = \operatorname{Ker}(f^2 + f + \operatorname{Id}) \oplus \operatorname{Ker}(f - \operatorname{Id})$ et la question 3.c), il existe une base de V de la forme $\{\mathbf{v}, f(\mathbf{v}), \mathbf{u}\}$ où $\mathbf{v} \in \operatorname{Ker}(f^2 + f + \operatorname{Id})$, et $\mathbf{u} \in \operatorname{Ker}(f - \operatorname{Id})$, en particulier $f(\mathbf{u}) = \mathbf{u}$. Dans cette base, la matrice de f est de la forme

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$