

Lancaster 233

Low-cost Portable Molecular Diagnostic Platform for Rapid Detection of Select Poultry Pathogens (LMDP) in the Philippines

Abstract

It is recognized by experts within the Philippines that although the use of molecular methods for detection, identification, and characterization of infectious agents in poultry is gaining importance abroad, diagnosis using molecular techniques is still at its infancy in the country. The use of rapid field based molecular testing has the potential to greatly reduce diagnosis times and consequently reduce disease spread and may facilitate appropriate selection and more efficient management and treatment protocols. Hence, technologies that will be enable the rapid and accurate diagnosis of poultry diseases would ensure that money is not wasted on disease mortalities, culling and cost of treatment. Early diagnosis will also aid in the prevention of disease outbreaks and the spill-over of pathogens from broilers to other poultry sectors and avian species and vice-versa.

The multidisciplinary consortium from the UK and Philippines aims to develop and translate to the Philippines a rapid easy to use point of need molecular diagnostic test and complementary surveillance software that can be used at the site of infection and test for the key viral and bacterial pathogens which are of current concern.

Preliminary Results

2019-2021 Field Sampling

Total Number of Poultry Flocks Investigated: 314 flocks

Approximate Population (Flock Level): 7, 702,800.00 birds

Approximate Population (Farm Level): 25,676,000 birds

VIRAL PATHOGEN	IDENTIFIED GENOTYPES/ SEROTYPE IN THIS STUDY	GENOTYPES FROM OTHER STUDIES
NDV	Genotype VIIa, VIIh, VIIi, VIc and II	Genotype VIId
IBV	G1-1 Mass (CK/CH/LHB/130573-like)	QX
	G1-1 Mass (CK/CH/LJL/111054-like)	Malaysian variant
	G1-7 TW-like	TW-1
	G1-15 Korean group I-like	TW-2
IBD	Genogroup 3 (VVIBD)	NI
	Genogroup 2 (Antigenic variant)	No available
	Variant E	reports

BACTERIAL PATHOGEN	IDENTIFIED GENOTYPES/ SEROTYPE IN THIS STUDY	GENOTYPES FROM OTHER STUDIES
APEC	Ongoing	None
Mycoplasma gallisepticum	Ongoing	None
Salmonella enterica	Ongoing	None

Lancaster 253

Low-cost Portable Molecular Diagnostic Platform for Rapid Detection of Select Poultry Pathogens (LMDP) in the Philippines

FIELD VALIDATION OF SYSTEM IN THE PHILIPPINES AND TECHNOLOGY TRANSFER

LMDP Device

A portable, battery-powered, stand-alone, molecular diagnostic prototype devices with associated control software

LAMP Assay

Colorimetric Loop-Mediated Isothermal Amplification (LAMP) assays that can be used on the LMDP device to achieve detection within 30 minutes

References

Mase, M., Imai, K., Sanada, Y., Sanada, N., Yuasa, N., Imada, T., ... & Yamaguchi, S. (2002). Phylogenetic analysis of Newcastle disease virus genotypes isolated in Japan. Journal of Clinical Microbiology, 40(10), 3826-3830.

Mase M, Tsukamoto K, Imai K and Yamaguchi S. 2004. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan. Archives of Virology. 149(1): 2069-2078.

Jackwood MW. 2012. Review of infectious bronchitis virus around the world. Avian Diseases. 56(4): 634-641 Tharmakulasingam, M., Chaudhry, N. S., Fernando, A., Branavan, M., Balachandran, W., Poirier, A. C., ... & La Ragione, R. M. (2021). An artificial intelligence-assisted portable low-cost device for the rapid detection of SARS-CoV-2. *Electronics*, 10(17), 2065.

Yamaguchi, T., Kasanga, C. J., Terasaki, K., Maw, M. T., Ohya, K., & Fukushi, H. (2007). Nucleotide sequence analysis of VP2 hypervariable domain of infectious bursal disease virus detected in Japan from 1993 to 2004. Journal of Veterinary Medical Science, 69(7), 733-738.

Research Consortium

Research Professor, Electronic

and Computer Engineering

Dr Anil Fernando

Dr Muhammad Muni

Lecturer in Molecular Virology

Post Doctoral Research

Senior Lecturer in Electronic

and Computer Engineering

ecturer in Mechanical

Professor of Veterinary Pathology

Veterinary Microbiology

Dave Bryan Pada-on University Research Associate

Dr Ma. Cynthia Dela Cruz

Yves Roy Tibayan

University Research Associate Asst. Professor of Veterinary

Molecular Epidemiology

Post Doctoral Research

Fellow, LMDP

Engineering

Engineering Technician, LMDP

PCC-Director

Veterinary

Engr. John Paolo Ramoso

Erika Joyce Arellano, RMT

University Research Associate

Gianne May Gagan University Researcher Department of Electrical

Principal Investigator

Dr. Balachandran Wamadeva Brunel University London Tel (Mobile) 44 (0)7775914064 Email emstwwb@brunel.ac.uk

Dr. Dennis V. Umali University of the Philippines Los Banos Tel (Mobile) +63 917 596 3785 Email dvumali@up.edu.ph