第六周作业反馈

张俸铭

April 2020

作业答案 1

练习 16

1. 设 x 不在 q 中自由出现, 求证:

 $1^{\circ} \vdash (\exists x \ p \to q) \to \forall x(p \to q).$

由于 x 不在 $(\neg \forall x \neg p \rightarrow q)$ 中自由出现 (题设 x 不在 q 中自由出现), 故由演绎定理得:

(9),Gen

$$\vdash (\exists x \ p \to q) \to \forall x \ (p \to q)$$

$$2^{\circ}$$
 $\vdash \exists x \ (p \to q) \to (\forall x \ p \to q).$
证明: 即证 $\vdash \neg \forall x \neg \ (p \to q) \to (\forall x \ p \to q)$
以下从 $\{\neg \forall x \neg (p \to q), \forall x \ p, \neg q\}$ 可证

$$(1)\forall x p$$
 假定

$$(2)p$$
 K4

$$(4) \neg q \rightarrow \neg (p \rightarrow q)$$
 $(2),(3),MP$

$$(6)\neg (p \to q)$$
 (4),(5),MP

$$(7)\forall x \neg (p \rightarrow q)$$
 (6),Gen

$$(8)$$
¬ $\forall x$ ¬ $(p \to q)$ 假定

由于 x 不在 q 中自由出现,使用反证律得: $\{\neg \forall x \ \neg (p \to q), \forall x \ p\} \vdash q$ 由于 x 不在 $\neg \forall x \ \neg (p \to q), \forall x \ p$ 中自由出现,使用两次演绎定理得:

$$\vdash \neg \forall x \ \neg (p \to q) \to (\forall x \ p \to q)$$

2. 设 p是定理 2 中定义的 p 的对偶公式, 求证: $\vdash (p^*)^* \leftrightarrow p$.

证明:

$$(1)p^* \leftrightarrow \neg p$$
 对偶律

$$(2)(p^*)^* \leftrightarrow (\neg p)^*$$
 子公式等价可替换性

$$(3)(\neg p)^* \leftrightarrow \neg \neg p$$
 对偶律

$$(4)(p^*)^* \leftrightarrow \neg \neg p \tag{2}, (3), HS$$

$$(5)$$
¬¬ $p \leftrightarrow p$ 双否律,第二双否律

$$(6)(p^*)^* \leftrightarrow p \tag{4}, (5), HS$$

3. 找出与所给公式等价的前束范式

3°
$$\forall x_1 \ (R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (\exists x_2 \ R_1^1(x_2) \to \exists x_3 \ R_1^2(x_2, x_3))$$

对约束变元更名:

$$q_1 = \forall x_1(R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (\exists x_4 R_1^1(x_4) \to \exists x_3 R_1^2(x_2, x_3))$$

从 q1 出发可得等价公式:

$$q_2 = \forall x_1(R_1^1(x_1) \to R_1^2(x_1, x_2)) \to \exists x_3(\exists x_4 R_1^1(x_4) \to R_1^2(x_2, x_3))$$

$$\begin{split} q_3 &= \forall x_1(R_1^1(x_1) \to R_1^2(x_1, x_2)) \to \exists x_3 \forall x_4(R_1^1(x_4) \to R_1^2(x_2, x_3)) \\ q_4 &= \exists x_3(\forall x_1(R_1^1(x_1) \to R_1^2(x_1, x_2)) \to \forall x_4(R_1^1(x_4) \to R_1^2(x_2, x_3))) \\ q_5 &= \exists x_3 \forall x_4(\forall x_1(R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (R_1^1(x_4) \to R_1^2(x_2, x_3))) \\ q_6 &= \exists x_3 \forall x_4 \exists x_1((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (R_1^1(x_4) \to R_1^2(x_2, x_3))) \\ \text{根据使用 2.1.4 节命题 2.2° 的顺序不同, 其它可能出现的正确答案:} \\ q_7 &= \exists x_3 \exists x_1 \forall x_4((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (R_1^1(x_4) \to R_1^2(x_2, x_3))) \\ q_8 &= \exists x_1 \exists x_3 \forall x_4((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (R_1^1(x_4) \to R_1^2(x_2, x_3))) \end{split}$$

练习 17

1. 试把命题甲、乙分别按照以下要求用 K 中的公式表示出来

命题甲: "若数集 E_1 中某数比零大,则数集 E_2 中所有数都比零大." 命题乙: "并非 E_1 中的数都小于或等于 E_2 中的每个数."

(1) 出现全称量词

(2) 不出现全称量词

(3) 写成前束范式

3. 设 $t \in T, \varphi, \varphi' \in \Phi_w, \varphi'$ 是 φ 的 x 变通,且 $\varphi'(x) = \varphi(t)$,用项 t 代换 项 u(x) 中 x 所得的项记为 u(t)。求证: $\varphi'(u(x)) = \varphi(u(t))$.

证明: 对 u(x) 在 T 中的层数 k 归纳:

k=0 时,考虑三种情况:

$$(1) \ u(x) = c_i, u(t) = c_i, \varphi'(u(x)) = \varphi'(c_i) = \varphi(c_i) = \varphi(u(t))$$

(2)
$$u(x)=y$$
 且 $u(x)\neq x$, 则 $u(t)=y$. 由于 φ' 是 φ 的变通,则 $\varphi'(u(x))=\varphi'(y)=\varphi(y)=\varphi(u(t))$

(3)
$$u(x)=x, u(t)=t, \ \mathbb{H} \ \varphi'(x)=\varphi(t), \varphi'(u(x))=\varphi'(x)=\varphi(t)=\varphi(u(t))$$

下面考虑 k > 0 的情况:

记 $u(x) = f_i^n(t_1(x), ..., t_n(x))$, 其中 $t_1(x), t_2(x), ..., t_n(x)$ 为低层次的项,故:

$$\varphi'(u(x)) = \varphi'(f_i^n(t_1(x), ..., t_n(x)))$$

$$= \overline{f_i^n}(\varphi'(t_1(x)), ..., \varphi'(t_n(x)))$$

$$= \overline{f_i^n}(\varphi(t_1(t)), ..., \varphi(t_n(t)))$$

$$= \varphi(f_i^n(t_1(t), ..., t_n(t)))$$

$$= \varphi(u(t))$$

综上所述,对含任意层数项的u(x),有

$$\varphi'(u(x)) = \varphi(u(t))$$

2 问题总结

2.1 关于前束范式

约束变量更名

在求等价前束范式时,由于公式中可能存在重名的约束变元,因此需要 对重名的不同变元先更名再做变换.

前束范式中的量词顺序

在前束范式中量词有严格的前后顺序,即全称量词与存在量词不可随意交换顺序 (在一般的公式中当然更是如此)。因为 $\exists x \leftrightarrow \neg \forall x \neg$,改变量词顺序可能会导致否定词的范围改变.

2.2 关于 K 中证明的条件

详见第五周作业反馈,部分同学在这次证明过程中仍未注意演绎定理等的适用范围说明,请在今后多加注意.