Teoria de Conjuntos

José Antônio O. Freitas

MAT-UnB

Denotaremos os conjuntos por letras maiúscula e os elementos de um dado conjunto por letras minúsculas.

Denotaremos os conjuntos por letras maiúscula e os elementos de um dado conjunto por letras minúsculas.

Seja A um conjunto, para indicar que x é um elemento de A ou que x pertence ao conjunto A,

Denotaremos os conjuntos por letras maiúscula e os elementos de um dado conjunto por letras minúsculas.

Seja A um conjunto, para indicar que x é um elemento de A ou que x **pertence** ao conjunto A, escrevemos:

$$x \in A$$

Denotaremos os conjuntos por letras maiúscula e os elementos de um dado conjunto por letras minúsculas.

Seja A um conjunto, para indicar que x é um elemento de A ou que x **pertence** ao conjunto A, escrevemos:

$$x \in A$$

Para dizer que um elemento x não pertence ao conjunto A, escrevemos:

$$x \notin A$$
.

Denotaremos os conjuntos por letras maiúscula e os elementos de um dado conjunto por letras minúsculas.

Seja A um conjunto, para indicar que x é um elemento de A ou que x **pertence** ao conjunto A, escrevemos:

$$x \in A$$

Para dizer que um elemento x não pertence ao conjunto A, escrevemos:

$$x \notin A$$
.

Dado um conjunto A e x um elemento, temos:

Dado um conjunto A e x um elemento, temos:

$$x \in A$$

Dado um conjunto A e x um elemento, temos:

$$x \in A$$
 ou $x \notin A$.

Dado um conjunto A e x um elemento, temos:

$$x \in A$$
 ou $x \notin A$.

Além disso, para dois elementos x, $y \in A$, sempre ocorre:

Dado um conjunto A e x um elemento, temos:

$$x \in A$$
 ou $x \notin A$.

Além disso, para dois elementos x, $y \in A$, sempre ocorre:

$$x = y$$

Dado um conjunto A e x um elemento, temos:

$$x \in A$$
 ou $x \notin A$.

Além disso, para dois elementos x, $y \in A$, sempre ocorre:

$$x = y$$
 ou $x \neq y$

$$A = \{1, bola, carro\}$$

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

Ou pela descrição das propriedades dos seus elementos, também entre chaves:

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

1) $\mathbb{N} = \{0,1,2,3,...\}$ o conjunto do números naturais.

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

- 1) $\mathbb{N} = \{0, 1, 2, 3, ...\}$ o conjunto do números naturais.
- 2) $\mathbb{Z}=\{...,-2,-1,0,1,2,...\}$ o conjunto dos números inteiros.

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

- 1) $\mathbb{N} = \{0, 1, 2, 3, ...\}$ o conjunto do números naturais.
- 2) $\mathbb{Z}=\{...,-2,-1,0,1,2,...\}$ o conjunto dos números inteiros.
- 3) $\mathbb{Q}=\left\{rac{p}{q}\mid p,q\in\mathbb{Z},q
 eq0
 ight\}$ o conjunto dos números racionais.

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

- 1) $\mathbb{N} = \{0, 1, 2, 3, ...\}$ o conjunto do números naturais.
- 2) $\mathbb{Z}=\{...,-2,-1,0,1,2,...\}$ o conjunto dos números inteiros.
- 3) $\mathbb{Q}=\left\{rac{p}{q}\mid p,q\in\mathbb{Z},q
 eq0
 ight\}$ o conjunto dos números racionais.
- 4) \mathbb{R} o conjunto dos números reais.

$$A = \{1, bola, carro\}$$

 $B = \{verdade, falso\}.$

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

- 1) $\mathbb{N} = \{0, 1, 2, 3, ...\}$ o conjunto do números naturais.
- 2) $\mathbb{Z}=\{...,-2,-1,0,1,2,...\}$ o conjunto dos números inteiros.
- 3) $\mathbb{Q}=\left\{rac{p}{q}\mid p,q\in\mathbb{Z},q
 eq0
 ight\}$ o conjunto dos números racionais.
- 4) \mathbb{R} o conjunto dos números reais.
- 5) $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, i^2 = -1\}$ o conjunto dos números complexos.

Dados dois conjuntos A e B,

Dados dois conjuntos A e B, dizemos que A e B são **iguais**

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos.

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$.

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais,

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$,

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam
$$A = \{1, 1, 2, 3, 4, 4\}, B = \{3, 2, 1, 4\},$$

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam
$$A = \{1, 1, 2, 3, 4, 4\}, B = \{3, 2, 1, 4\}, C = \{1, 2, 3\}$$

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam
$$A = \{1, 1, 2, 3, 4, 4\}, B = \{3, 2, 1, 4\}, C = \{1, 2, 3\} e D = \{2, 3\}.$$

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B.

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos,

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B.

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B. Ou seja, se para todo elemento $x \in A$,

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B. Ou seja, se para todo elemento $x \in A$, temos $x \in B$.

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B. Ou seja, se para todo elemento $x \in A$, temos $x \in B$. Nesse caso, escrevemos $A \subseteq B$ (ou $A \subseteq B$)

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B. Ou seja, se para todo elemento $x \in A$, temos $x \in B$. Nesse caso, escrevemos $A \subseteq B$ (ou $A \subseteq B$) ou $B \supseteq A$ (ou $B \supseteq A$).

Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ também vale que $x \in B$ e para todo $y \in B$ também vale que $y \in A$. Se A e B são iguais, escrevemos A = B.

Exemplo

Sejam $A = \{1, 1, 2, 3, 4, 4\}$, $B = \{3, 2, 1, 4\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3\}$. Então temos A = B. Agora como $1 \in C$ e $1 \notin D$ então $C \neq D$.

Definição

Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B. Ou seja, se para todo elemento $x \in A$, temos $x \in B$. Nesse caso, escrevemos $A \subseteq B$ (ou $A \subseteq B$) ou $B \supseteq A$ (ou $B \supseteq A$).

Sejam
$$A = \{1, 2, 3, x, y, z\},$$

Sejam
$$A = \{1, 2, 3, x, y, z\}, B = \{x, y\}$$

Sejam
$$A = \{1, 2, 3, x, y, z\}$$
, $B = \{x, y\}$ e $C = \{x, y, z\}$.

Sejam
$$A = \{1, 2, 3, x, y, z\}$$
, $B = \{x, y\}$ e $C = \{x, y, z\}$.

Sejam $A = \{1, 2, 3, x, y, z\}$, $B = \{x, y\}$ e $C = \{x, y, z\}$.

1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.

Sejam
$$A = \{1, 2, 3, x, y, z\}, B = \{x, y\} e C = \{x, y, z\}.$$

- 1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.
- *2) B* ⊊ *A*

Sejam $A = \{1, 2, 3, x, y, z\}, B = \{x, y\} e C = \{x, y, z\}.$

- 1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.
- *2) B* ⊊ *A*
- *3) B* ⊆ *C*

Sejam
$$A = \{1, 2, 3, x, y, z\}, B = \{x, y\} e C = \{x, y, z\}.$$

- 1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.
- *2) B* ⊊ *A*
- *3) B* ⊆ *C*
- *4) C* ⊆ *A*

Sejam
$$A = \{1, 2, 3, x, y, z\}$$
, $B = \{x, y\}$ e $C = \{x, y, z\}$.

- 1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.
- *2) B* ⊊ *A*
- *3) B* ⊆ *C*
- 4) $C \subseteq A$

Observação:

Dados dois conjuntos A e B

Sejam
$$A = \{1, 2, 3, x, y, z\}, B = \{x, y\} e C = \{x, y, z\}.$$

- 1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.
- *2) B* ⊊ *A*
- *3) B* ⊆ *C*
- 4) $C \subseteq A$

Observação:

Dados dois conjuntos A e B para que A **não esteja contido em** B basta

Sejam
$$A = \{1, 2, 3, x, y, z\}, B = \{x, y\} e C = \{x, y, z\}.$$

- 1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.
- *2) B* ⊊ *A*
- *3) B* ⊆ *C*
- 4) $C \subseteq A$

Observação:

Dados dois conjuntos A e B para que A **não esteja contido em** B basta que exista $x \in A$ tal que $x \notin B$.

Sejam
$$A = \{1, 2, 3, x, y, z\}$$
, $B = \{x, y\}$ e $C = \{x, y, z\}$.

- 1) $A \nsubseteq B$ pois $1 \in A$ e $1 \notin B$.
- *2) B* ⊊ *A*
- *3) B* ⊆ *C*
- 4) $C \subseteq A$

Observação:

Dados dois conjuntos A e B para que A **não esteja contido em** B basta que exista $x \in A$ tal que $x \notin B$. Nesse caso escrevemos $A \nsubseteq B$.

Pela definição de continência de conjuntos, podemos reescrever a igualdade de conjuntos, da seguinte forma:

A = B se, e somente se,

$$A = B$$
 se, e somente se, $A \subseteq B$

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

Quando A e B não são iguais, escrevemos $A \neq B$.

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

Quando A e B não são iguais, escrevemos $A \neq B$.

Proposição

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

Quando A e B não são iguais, escrevemos $A \neq B$.

Proposição

i)
$$A \subseteq A$$
 (Reflexividade)

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

Quando A e B não são iguais, escrevemos $A \neq B$.

Proposição

- i) $A \subseteq A$ (Reflexividade)
- ii) Se $A \subseteq B$ e $B \subseteq A$, então A = B. (Antissimetria)

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

Quando A e B não são iguais, escrevemos $A \neq B$.

Proposição

- i) $A \subseteq A$ (Reflexividade)
- ii) Se $A \subseteq B$ e $B \subseteq A$, então A = B. (Antissimetria)
- iii) Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. (Transitividade)

$$A = B$$
 se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

Quando A e B não são iguais, escrevemos $A \neq B$.

Proposição

- i) $A \subseteq A$ (Reflexividade)
- ii) Se $A \subseteq B$ e $B \subseteq A$, então A = B. (Antissimetria)
- iii) Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. (Transitividade)

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, \ldots\}$$

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição

Seja A um conjunto. Então $\emptyset \subseteq A$.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição

Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \nsubseteq A$.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição

Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \not\subseteq A$. Logo existe $x \in \emptyset$ tal que $x \notin A$.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição

Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \nsubseteq A$. Logo existe $x \in \emptyset$ tal que $x \notin A$. Mas por definição, o conjunto vazio não contém elementos.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição

Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \nsubseteq A$. Logo existe $x \in \emptyset$ tal que $x \notin A$. Mas por definição, o conjunto vazio não contém elementos. Logo a existência de $x \in \emptyset$ é uma contradição.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição

Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \nsubseteq A$. Logo existe $x \in \emptyset$ tal que $x \notin A$. Mas por definição, o conjunto vazio não contém elementos. Logo a existência de $x \in \emptyset$ é uma contradição. Tal contradição surgiu por termos suposto que $\emptyset \nsubseteq A$.

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $A \nsubseteq B$ e $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição

Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \nsubseteq A$. Logo existe $x \in \emptyset$ tal que $x \notin A$. Mas por definição, o conjunto vazio não contém elementos. Logo a existência de $x \in \emptyset$ é uma contradição. Tal contradição surgiu por termos suposto que $\emptyset \nsubseteq A$. Portanto, $\emptyset \subseteq A$, como queríamos demonstrar.