жество близнецов. Наибольшей из известных пар-близнецов является пара (10000000009649, 10000000009651).

3. Коснёмся ещё одного вопроса, связанного с простыми числами. Возьмём отрезок ряда натуральных чисел от 1 до не которого п включительно. На этом отрезке имеется определённое количество простых чисел. Число их принято обозначать через $\pi(n)$ *). Чему равно $\pi(n)$ для отдельных значений n.

Для малых n это легко подсчитать. Например $\pi(1)=0,\pi(2)=1,\pi(3)=2,\pi(4)=2,\pi(5)=3,\pi(6)=3,\pi(7)=4,\pi(8)=4,\pi(9)=4,\pi(10)=4.$

Сразу замечаетсся нерегулярное изменение $\pi(n)$. Вообще, никакой простой формулы для $\pi(n)$ написать нельзя.

Тем не менее, увеличивая n, можно заметить, что «средняя плотность» простых чисел, то есть отношение $\pi(n):n$ становится все меньше и меньше. Это хорошо видно из следующей таблицы:

n	$\pi(n)$	$\pi(n):n$
10	4	0,4
100	25	0,4
1 000	168	0,17
10 000	1 229	0,12
100 000	9 592	0,096
1 000 000	78 498	0,078
10 000 00	664 579	0,066
100 000 000	5 761 455	0,057
1 000 000 000	50 847 478	0,051

Доказано, что с возрастанием n отношение $\pi(n)$: n приближается к нулю. Впервые этот факт доказал Леонард Эйлер — величайший математик XVIII века. В дальнейшем великий русский математик Пафнутий Львович Чебышев уточнил результат Эйлера, доказав более общую теорему (см. «Квант» №5 за 1971 год, стр 1-3), но об этом мы уже рассказывать не будем.

 $[\]pi^*$ — греческая буква «пи», n — латинская буква «эн», $\pi(n)$ — читается так: «пи от эн».