PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2023

MAT1207 – Introducción al Álgebra y Geometría

Solución Interrogación Recuperativa

1. Suponga que $z \in \mathbb{C}$ es tal que $z^5 = 1$. Determine todos los posibles valores de $z + z^2 + z^{-1} + z^{-2}$. Solución. Como $z^5 = 1$, es claro que

$$z + z^{2} + z^{-1} + z^{-2} = z + z^{2} + z^{4} + z^{3}$$
.

Si z=1, entonces $z^4+z^3+z^2+z=4$. De lo contrario, podemos calcular

$$\frac{z^5 - 1}{z - 1} = z^4 + z^3 + z^2 + z + 1$$

Como el lado izquierdo es 0 por hipótesis, tenemos $z^4 + z^3 + z^2 + z = -1$.

Puntaje: 2 puntos por el primer valor y 4 por el otro.

- 2. Sean $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3), \vec{c} = (c_1, c_2, c_3).$
 - (a) Use la identitad $\vec{d} \times (\vec{e} \times \vec{f}) = (\vec{d} \cdot \vec{f})\vec{e} (\vec{d} \cdot \vec{e})\vec{f}$ (donde \vec{d} , \vec{e} , \vec{f} son cualquier vectores) para demostrar

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}.$$

(b) Sea $\vec{a} \neq \vec{0}$. Verifique lo siguiente: Si $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ entonces \vec{a} y $\vec{b} - \vec{c}$ son paralelos. Si, adicionalemente, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ entonces $\vec{b} = \vec{c}$.

Solución.

(a) Usando la identitad dada y la regla $\vec{e} \cdot \vec{f} = \vec{f} \cdot \vec{e}$ para cualquier vectores \vec{e} , \vec{f} vemos que

$$\begin{split} \vec{a}\times(\vec{b}\times\vec{c}) + \vec{b}\times(\vec{c}\times\vec{a}) + \vec{c}\times(\vec{a}\times\vec{b}) &= (\vec{a}\cdot\vec{c})\vec{b} - (\vec{a}\cdot\vec{b})\vec{c} + (\vec{b}\cdot\vec{a})\vec{c} - (\vec{b}\cdot\vec{c})\vec{a} \\ &+ (\vec{c}\cdot\vec{b})\vec{a} - (\vec{c}\cdot\vec{a})\vec{b} \\ &= (\vec{a}\cdot\vec{c})\vec{b} - (\vec{c}\cdot\vec{a})\vec{b} + (\vec{b}\cdot\vec{a})\vec{c} - (\vec{a}\cdot\vec{b})\vec{c} \\ &+ (\vec{c}\cdot\vec{b})\vec{a} - (\vec{b}\cdot\vec{c})\vec{a} \\ &= 0. \end{split}$$

(b) Si $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ entonces $0 = \vec{a} \times \vec{b} - \vec{a} \times \vec{c} = \vec{a} \times (\vec{b} - \vec{c})$. Eso implica que \vec{a} y $\vec{b} - \vec{c}$ son paralelos, es decir, existe $\lambda \in \mathbb{R}$ tal que $\vec{b} - \vec{c} = \lambda \vec{a}$. Considerando el producto punto con \vec{a} nos da $0 = \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c} = \lambda \vec{a} \cdot \vec{a}$. Dado que $\vec{a} \neq \vec{0}$ concluimos que $\lambda = 0$, o sea, $\vec{b} = \vec{c}$.

Puntaje: 3 puntos por primera parte y 3 por la segunda parte (1 punto por $\vec{b} - \vec{c}$, \vec{a} paralelo, 2 por el resto).