BRSU

Neural Networks Assignment 5

Bastian Lang

November 14, 2015

This report contains the summary, ex3.1 and ex3.2 without any programming/plotting.

1 OUTLINE

- Introduction
 - Three distinct characteristics of MLP:
 - * Model of each neuron includes nonlinear activation function that is differentiable everywhere
 - * One or more layers of hidden units
 - * High degree of connectivity
 - Organization of the chapter
- Some Preliminaries
 - Signals in an MLP:
 - * Function Signals: Propagating forward through the network
 - * Error Signals: Propagating backwards through the network
 - Computations for each neuron:
 - * Function signal
 - * Gradient vector of error surface
 - Notation
- Back-Propagation Algorithm
 - Error signal at output neuron: $e_j(n) = d_j(n) y_j(n)$
 - Instantaneous value of total error energy: $\xi(n) = 0.5 \sum_{j \in C} e_j^2(n)$
 - Induced Local Field $v_j(n) = \sum_{i=0}^{m} w_{ji}(n) y_i(n)$
 - Function signal $y_i(n) = \phi_j(v_j(n))$
 - Derivation of delta rule
 - Local gradient for output neuron: $\delta_j(n) = e_j(n)\phi'_j(v_j(n))$
 - Local gradient for hidden neuron: $\delta_j(n) = \phi_j'(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$
 - Weight correction: $\Delta w_{ii}(n) = \eta * \delta_i(n) * y_i(n)$
 - Two passes of Computation
 - * Forward pass: Compute net output
 - * Backward pass: Adjust weights according to error
 - Activation Function
 - * Logistic Function
 - * Hyperbolic tangent function

- Rate of Learning
 - * Including momentum term for stability
- Sequential and Batch Modes of Training
 - * Epoch: Complete presentation of training set
 - * Sequential Mode of back-propagation learning: Update weights directly
 - * Batch Mode of back-propagation learning: Update weights only after an epoch
- Summary of the Back-Propagation Algorithm
 - * Cycle for sequential updating:
 - · Initialization
 - · Presentations of Training Examples
 - · Forward Computation
 - · Backward Computation
 - · Iteration
- Summary of the back-propagation algorithm
- · XOR problem
 - Special case of classifying points in the unit hypercube
 - Elemental perceptron cannot solve XOR
 - Example model using McCulloch-Pits neurons
- Heuristics for making the back-propagation algorithm perform better
 - Methods to improve back-prop
 - * Sequential versus batch update
 - * Maximizing information content
 - · Use of example that results in largest training error
 - · Use of example that is radically different than previous ones
 - * Activation Function
 - · Better antisymmetric than non-symmetric
 - * Target values
 - · Offset of target values to lie within function range
 - * Normalizing the inputs
 - * Initialization
 - * Learning from hints
 - * Learning rates