ICE/IEEE ITMC International Conference on Engineering, Technology and Innovation

Sustainable Management of roadside: towards a research agenda

BAUTISTA Sandra

CAMARGO Mauricio

MOREL Laure

BACHMANN Christophe

Summary

- 1. Context
- 2. Research aim and search strategy
- 3. Results
- 4. Towards a research agenda

1. Context

What is the importance of roadside (RS)?

The RS are a social

interface between:

- ✓ forests,
- ✓ wildlife,
- ✓ agricultural farms,
- ✓ rural communities,
- ✓ vehicles,
- ✓ communication networks,
- ✓ landscape, and many other aspects.

On a global scale, it is expected that

authorities in charge of its

maintenance.

1. Context

Waste on the road

Reduction of Road Safety

What happens if the roadside is not managed?

Increased Risk of Fire

Flood

Accident

Context - Issues

Economic

- Valorization of biomass (methanization, composting, animal food)
- Promoting of energy transition
- Rural development and job creation

Ecology

- Biodiversity preservation
- Improvement of water, air and soil quality
- Reduction of carbon footprint

How to conciliate the different objectives of the stakeholders involved in roadside management?

Technology

- Vehicular network
- Roadside maintenance (frequency, intensity, tools)

Social and safety

- Road safety
- Flood and fire prevention
- Creation of local value, attractiveness of the territory (landscape)

https://www.sciencedirect.com/science/article/pii/S10 26309811002252

_5

2. Research objective and search strategy

Research objective

Define the research trends about the relationship between sustainable management and roadside.

Search strategy

Steps	Description
keywords and Boolean expression	(Title-Abs-Key ("roadside") Or Title-Abs- Key ("road verge") Or Title-Abs-Key ("road edge"))
Sources of information	Scopus
Period of information	Pub year > 1999

Specification	Condition
Number of total scientific documents:	10 112
keywords:	20 351
Minimum number of occurrences of a	20
keyword:	
Meet the threshold keywords:	163

Graphical representation of bibliometric maps

3. Results Network visualization

3. Results Temporal evolution

Node 1 Contamination

Node 2 -Ecology

Economic quantification of positive effects of roadside management:

Node 3- Safety

- Ecosystem services, wildlife and biodiversity preservation,
- Soil and air quality, noise reduction, invasive vegetation control,

Pollutant emission mitigation and its connection with human health.

Node 4 Technology

The management of traffic to:

- Reduction of route times, road measurements through roadside units and
- Integration of information in vehicular networks
- Intelligent transportation systems, traffic flow and wireless sensors

Economic

- Creation of local value
- Attractiveness of the territory
- Bioeconomy
- Job creation

Future research

- Energy efficiency
- Roadside infrastructure,
- Biomass to bioenergy

Proposition of hierarchical sustainability management framework

Example

Conslusions

The Sustainable Management of roadside might be addressed in a transdisciplinary way.

The ecosystem services promotion and valuation to support decisions about sustainable management of roadside.

Development of an integrated information management system to support decision-making that promotes value creation around Innovative and Sustainable Management of Road Dependencies in "circular economy mode".

Technology

ICE/IEEE ITMC International Conference on Engineering, Technology and Innovation

Thank you for your attention

