Latihan Soal Representasi Bilangan – Floating Point

- Sebuah representasi bilangan floating point menggunakan 5 bit, dengan pembagian 3 bit untuk eksponen dan 2 bit untuk fraction. Representasi ini tidak memiliki sign bit, sehingga hanya digunakan untuk merepresentasikan bilangan non negatif. Hitunglah representasi bilangan untuk bilangan berikut ini:
 - a. 9/32 001 00b. 3/16 000 11
 - c. 15/2 110 00
- 2. Jelaskan eksekusi kode C berikut (x adalah int, f adalah float, d adalah double):
 - a. x == (int)(float) x bisa berubah
 - b. x == (int)(double) x tetap
 - c. f == (float)(double) f tetap
 - d. d == (float) d bisa berubah
- 3. diberikan a dan b adalah int (32 bit), dengan representasi two complements (signed). MIN_INT adalah minimum integer, dan MAX_INT adalah maksimum integer. Pasangkanlah bagian sebelah kiri dengan pasangan yang sesuai di sebelah kanan pada tabel berikut:

1. Komplemen dari a	a. ~(~a (b^(MIN_INT+MAX_INT))) (3)	
2. a	b. ((a^b) &~b) (~(a^b) &b) (2)	
3. a & b	c. $1+(a<<3)+\sim a$ (4) $2^{3}a-a=7a$	
4. a * 7	d. $(a << 4) + (a << 2) + (a << 1)$	
5. a/4	e. $((a<0)?(a+3):a)>>2$ (6)	
6. (a<0) ? 1 : -1	f. a^(MIN_INT+MAX_INT)	
	g. ~((a (~a+1))>>31)&1	
	h. $\sim ((a >> 31) << 1)$ (6)	
	i. a>>2 ₍₅₎	

4. Diberikan representasi bilangan floating point dengan 8 bit, dengan pembagian: 1 bit sign, 3 bit exponent dan 4 bit fractions, menggunakan standar floating point IEEE. Lengkapilah tabel berikut:

Deskripsi	Biner	Nilai
Minus zero	1 000 0000	-0.0
Smallest denormalized	4.000.4444	
(negative)	1 000 1111	
Largest normalized	0 110 1111	
(positive)		
1	0 011 0000	
-		5.5
Positive infinity		