Solutions Asymptotic Statistics Course

Data Analytics Lab

January 2020

Exercise 1

Prove Theorem 1.5

Theorem 1.5 Weak Law of Large Number

Suppose X_i are i.i.d. random variables with finite mean μ (i.e. $\mathbb{E}[X_i] = \mu$) and finite variance.

Let
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
, then $\bar{X}_n \xrightarrow{\mathcal{P}} \mu$

If we consider x_i i.i.d., $\mathbb{E}[X_i] = \mu$, $\operatorname{Var}(x_i) = \sigma^2 < \infty$

$$\bar{X}_n = \frac{1}{n} \sum x_i$$
 show that $\bar{X}_n \to \mu$

That is, $\forall \varepsilon > 0, \forall \delta > 0, \exists n^* > 0$ s.t. $\forall n \ge n^*$

$$\Pr\left(\left\|\bar{X}_n - \mu\right\| \geqslant \varepsilon\right) \leqslant \delta$$

Proof:

By linearity of the expectation $(\mathbb{E}(aX) = a\mathbb{E}(X))$ we have $\mathbb{E}\left[\bar{X}_n\right] = \mu$.

Indeed,
$$\mathbb{E}\left[\bar{X}\right] = \mathbb{E}\left[\frac{1}{n}\sum X_i\right] = \frac{1}{n}\sum \mathbb{E}\left[X_i\right] = \frac{1}{n}\sum \mu = \mu$$

Similarly, since we in presence of i.i.d. data, $\sum_{i=1}^{n} \text{Var}(X_i) = n \text{Var}(X_i) = n\sigma^2$.

Hence,
$$\operatorname{Var}\left(\bar{X}_{n}\right) = \frac{1}{n^{2}} \sum \operatorname{Var}\left(X_{i}\right) = \frac{1}{n^{2}} \sum \sigma^{2} = \frac{\sigma^{2}}{n}$$

Inequality of Chebyshev

$$\forall k > 0: \quad \Pr\left(\|\bar{X}_n - \mu\| \ge k \frac{\sigma}{\sqrt{n}}\right) \le \frac{1}{k^2}$$

We then define by variable change $\tilde{\varepsilon}$ and defining therefore $\tilde{\varepsilon} = k \frac{\sigma}{\sqrt{n}}, k^2 = \frac{\tilde{\varepsilon}^2 n}{\sigma^2}$ and $\frac{1}{k^2} = \frac{\sigma^2}{n\tilde{\varepsilon}^2}$

$$\Rightarrow \forall \tilde{\varepsilon} > 0: \quad \Pr\left(\|\bar{X}_n - \mu\| \ge \tilde{\varepsilon}\right) \le \frac{\sigma^2}{n\tilde{\varepsilon}^2} \tag{1}$$

Then, let's take $\varepsilon > 0$, $\delta > 0$ arbitrarily

Let's take $\tilde{\varepsilon} := \varepsilon$ and take $n^* > 0$ such that $\frac{\sigma^2}{n^* \varepsilon^2} < \delta$.

Therefore

$$\frac{\sigma^2}{n\tilde{\varepsilon}^2} \le \frac{\sigma^2}{n^*\tilde{\varepsilon}^2} \le \delta \tag{2}$$

Hence we have by (1) and (2), $\forall n \geq n^*$,

$$\Pr\left(\|\bar{X}_n - \mu\| \ge \tilde{\varepsilon}\right) \le \frac{\sigma^2}{n\tilde{\varepsilon}^2} \le \frac{\sigma^2}{n^*\tilde{\varepsilon}^2} \le \delta$$
(3)

$$\Pr\left(\|\bar{X}_n - \mu\| \ge \tilde{\varepsilon}\right)\right) \le \delta \tag{4}$$

Prove Corollary 1.4 for $k = \infty$

Corollary 1.4 Consistency equivalence

If $p < \infty$, then for all $k \in \mathbb{N}^* \cup \{\infty\}$

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_2 \ge \varepsilon \right) = 0$$

if and only if

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_k \ge \varepsilon \right) = 0$$

That is:

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_2 \ge \varepsilon \right) = 0 \Leftrightarrow \lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_k \ge \varepsilon \right) = 0$$

Definition 1.2 Consistency

The estimator $\hat{\theta}$ is said to be consistent if it converges in probability to θ_0 , i.e.

for all $\varepsilon > 0$

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_2 \ge \varepsilon \right) = 0$$

More precisely, by the definition of the limit, this means that the estimator $\hat{\theta}$ is consistent if $\forall \varepsilon > 0, \forall \delta > 0, \exists n^* \geq 0$ such that $\forall n \geq n^*$ we have

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_2 \ge \varepsilon\right) \le \delta$$

Norm of a vector definitions & Inequalities

Consider the vector $x \in \mathbb{R}^p$

Definition of the norm $||x||_k$:

$$||x||_k := \left(\sum_{i=1}^p |x_i|^k\right)^{1/k} = \left(|x_1|^k + |x_2|^k + |x_3|^k + \dots + |x_p|^k\right)^{1/k}$$

Definition of the infinite norm $||x||_{\infty}$:

$$||x||_{\infty} := \max_{i \in \{1, \dots, p\}} |x_i| \in \mathbb{R}_+$$

 L_2 and L_{∞} inequation :

We can show that

 $\|x\|_{\infty} \leq \|x\|_2 \leq \sqrt{p} \|x\|_{\infty}$

- For the left hand side: $||x||_{\infty} = \max_{i \in \{1,...,p\}} |x_i| \le \sqrt{\sum_{i=1}^p x_i^2} = ||x||_2$ Consider $j \in \{1,...,p\}$ and $\max_{i \in \{1,...,p\}} |x_i| = x_j$. Then, $||x||_{\infty} = ||x||_2$ i. f. f. $\forall i \ne j, x_i = 0$
- For the right hand side: $||x||_2 = \sqrt{\sum_{i=1}^p |x_i|^2} \le \sqrt{\sum_{i=1}^p \max_{i \in \{1,...,p\}} |x_i|^2} = \sqrt{p \max_{i \in \{1,...,p\}} |x_i|^2} = \sqrt{p \max_{i \in \{1,...,p\}} |x_i|} = \sqrt{p \max_{i \in \{1,...,p\}} |x_i|^2} = \sqrt{p \max_{i \in \{1,....,p\}} |x_i|^2} = \sqrt{p \max_{i \in \{1,...,p\}} |x_i|^2}} = \sqrt{p \max_{i \in \{1,...,p\}} |x_i|^2} = \sqrt{p \max_{i \in \{1,...,p\}} |x_i|^2}}$

Therefore,

 $||x||_2 \le \sqrt{p} \, ||x||_\infty$

Proof:

When proving equivalence statement, we want to prove that $A \Leftrightarrow B$, which implies that $A \Rightarrow B$ and $B \Rightarrow A$. Therefore, we generally structure the proof as such:

- Prove $A \Rightarrow B$
- Prove $B \Rightarrow B$

Here, the structure of the proof is a bit different. We will first prove $B \Rightarrow A$ and then prove $A \Rightarrow B$. Also,

$$A = \lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_2 \ge \varepsilon \right) = 0$$

and

$$B = \lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_{\infty} \ge \varepsilon \right) = 0$$

Prove $B \Rightarrow A$

Hypothesis: Let us consider that $\forall \varepsilon > 0, \forall \delta > 0, \quad \exists n^* > 0 \quad \text{ such that } \forall n \ge n^*,$

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_{\infty} \geqslant \varepsilon\right) \leqslant \delta$$

Let's take $\varepsilon > 0$, $\delta > 0$ arbitrarily and let's find $n^* > 0$ such that $\forall n \ge n^*$,

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_2 \geqslant \varepsilon\right) \leqslant \delta$$

We define $\tilde{\varepsilon} := \frac{\varepsilon}{\sqrt{p}}$ where p is the dimension of the vector θ_0 . By hypothesis, for $\tilde{\varepsilon} := \frac{\varepsilon}{\sqrt{p}} \ge 0$ and $\delta \ge 0$, we know that $\exists n_0^* > 0$ such that $\forall n \ge n_0^*$

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_{\infty} \ge \tilde{\varepsilon}\right) \le \delta \tag{5}$$

Therefore, rewriting (5) we obtain

$$\Pr(\|\hat{\theta} - \theta_0\|_{\infty} \ge \frac{\varepsilon}{\sqrt{p}}) \le \delta$$

$$\Pr(\|\hat{\theta} - \theta_0\|_{\infty} \sqrt{p} \ge \varepsilon) \le \delta$$

Since $\|\hat{\theta} - \theta_0\|_2 \le \sqrt{p} \|\hat{\theta} - \theta_0\|_{\infty}$ and setting $n^* = n_0^*$, we have $\forall n \ge n^*$,

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_{\infty} \geq \varepsilon\right) \leq \delta \Rightarrow \Pr(\left\|\hat{\theta} - \theta_0\right\|_2 \geq \varepsilon) \leq \delta$$

Which therefore implies that $\|\cdot\|_{\infty}$ -consistant $\Rightarrow \|\cdot\|_2$ -consistant

Prove $A \Rightarrow B$

Hypothesis: Let us consider that $\forall \varepsilon > 0, \forall \delta > 0, \exists n^* > 0$ such that $\forall n \ge n^*$,

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_2 \geqslant \varepsilon\right) \leqslant \delta$$

Let's take $\varepsilon > 0$, $\delta > 0$ arbitrarily and let's find $n^* > 0$ such that $\forall n \ge n^*$,

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_{\infty} \geqslant \varepsilon\right) \leqslant \delta$$

By hypothesis, $\exists n^* > 0$ such that $\forall n \ge n^* \Pr\left(\left\|\hat{\theta} - \theta_0\right\|_2 \ge \varepsilon\right) \le \delta$. Since $\left\|\hat{\theta} - \theta_0\right\|_{\infty} \le \left\|\hat{\theta} - \theta_0\right\|_2$

 $\forall n \geq n^* \Pr\left(\left\|\hat{\theta} - \theta_0\right\|_2 \geq \varepsilon\right) \leq \delta \Rightarrow \Pr\left(\left\|\hat{\theta} - \theta_0\right\|_{\infty} \geq \varepsilon\right) \leq \delta$

Which therefore implies that $\lVert \cdot \rVert_2\text{-consistant} \Rightarrow \lVert \cdot \rVert_{\infty}\text{-consistant}$

In \mathbb{R}^{∞} , are the $\|\cdot\|_{\infty}$ -consistency and the $\|\cdot\|_2$ -consistency equivalent?

Answer:

No! for example because we can have $\|X_n\|_{\infty} \to 0$ while $\|X_n\|_2 \to \infty$

Prove Theorem 1.6 using Definition 1.2

Theorem 1.6 Continuous Mapping Theorem

Suppose $Y_n \xrightarrow{p} \mu$ then $g(Y_n) \xrightarrow{p} g(\mu)$ if $g(\cdot)$ is a *continuous function*.

Reminder

Let $f : \mathbb{R} \to \mathbb{R}$, and $x_o \in \mathbb{R}$

f is *continuous* in x_0 if $\forall \varepsilon > 0, \exists \delta_{\varepsilon, x_0} > 0$ such that $\forall x \in \mathbb{R}$

$$\|x-x_0\| \leq \delta_{\varepsilon,x_0} \implies \|f(x)-f(x_0)\| \leq \varepsilon$$

Definition 1.2 Consistency

The estimator $\hat{\theta}$ is said to be consistent if it converges in probability to θ_0 , i.e.

for all $\varepsilon > 0$

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_2 \ge \varepsilon \right) = 0$$

More precisely, by the definition of the limit, this means that the estimator $\hat{\theta}$ is consistent if $\forall \varepsilon > 0, \forall \delta > 0, \exists n^* \geq 0$ such that $\forall n \geq n^*$ we have

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_2 \ge \varepsilon\right) \le \delta$$

Proof:

Here we want to prove $A \Rightarrow B$ where

$$A = Y_n \xrightarrow{p} \mu$$

and

$$B = g(Y_n) \xrightarrow{p} g(\mu)$$
 where g is a continuous function $(\mathbb{R} \to \mathbb{R})$

Hypothesis:

We first pose our starting hypothesis, the convergence in probability of y_n to μ .

$$\forall \varepsilon > 0, \forall \delta > 0, \exists n_{\varepsilon,\delta}^* \text{ such that } \forall n \geq n_{\varepsilon,\delta}^*$$

$$\Pr(\|y_n - \mu\| \ge \varepsilon) \le \delta$$

Let's take $\varepsilon > 0$, $\delta > 0$ arbitrary and find n*>0 such that $\forall n \geqslant n^*$

$$\Pr(\|g(Y_n) - g(\mu)\| \ge \varepsilon) \le \delta$$

We now define subsets of \mathbb{R} where y_n satisfies two conditions.

$$\forall \delta' > 0$$
, define $B_{\delta'} := \{ y \in \mathbb{R} | \exists x, ||x - y|| < \delta' \text{ and } ||g(x) - g(y)|| \ge \varepsilon \}$

Let's now consider that one of these conditions is fullfilled for some n.

Indeed, suppose that $||g(y_n) - g(\mu)|| \ge \varepsilon$ for some n,

Then, either $\mu \in B_{\delta'}$ or $\mu \notin B_{\delta'}$, and if so, then $||x - y|| \ge \delta'$

$$\Rightarrow \{\mu \in B_{\delta'}\} \text{ or } \{\|y_n - \mu\| \geqslant \delta'\}$$

Recall that if *A* and *B* are event and if $A \subset B$ then $Pr(A) \leq Pr(B)$

Therefore, $\Pr(\|g(y_n) - g(\mu)\| \ge \varepsilon) \le \Pr(\{\mu \in B_{\delta'}\} \sqcup \{\|y_n - \mu\| \ge \delta'\}) = \Pr(\{\mu \in B_{\delta'}\}) + \Pr(\{\|y_n - \mu\| \ge \delta'\})$

That is
$$\Pr(\|g(y_n) - g(\mu)\| \ge \varepsilon) \le \Pr(\mu \in B_{\delta'}) + \Pr(\|y_n - \mu\| \ge \delta')$$

Now, since the function g is continuous in μ , $\exists \delta_{\varepsilon,\mu} > 0$ such that $\left[\|y - \mu\| < \delta_{\varepsilon,\mu} \Rightarrow \|g(y) - g(\mu)\| < \varepsilon \right]$

Therefore since one of the condition of the set $B_{\delta'}$ is $\|g(x) - g(y)\| \ge \varepsilon$,

$$\Rightarrow \Pr\left(\mu \in B_{\delta_{\varepsilon,\mu}}\right) = 0$$

and

$$\Rightarrow \Pr(\|g(y_n) - g(\mu)\| \ge \varepsilon) \le 0 + \Pr(\|y_n - \mu\| \ge \delta_{\varepsilon,\mu})$$

Therefore, since we have by hypothesis that $\exists n^*_{\delta_{\varepsilon,\mu},\delta} \geq 0$ such that $\forall n \geq n^*_{\delta_{\varepsilon,\mu},\delta}$

$$\Pr(\|y_n - \mu\| \ge \delta_{\varepsilon,\mu}) \le \delta$$

We have that for $n_{\delta_{\varepsilon,\mu},\delta}^* \ge 0$ and $\forall n \ge n_{\delta_{\varepsilon,\mu},\delta}^*$

$$\Pr(\|g(y_n) - g(\mu)\| \ge \varepsilon) \le \Pr(\|y_n - \mu\| \ge \delta_{\varepsilon,\mu}) \le \delta$$

Note that this proof can be generalized to any function $g: \mathbb{X} \to \mathbb{Y}$

Prove Theorem 1.8 using Theorem 1.7

Theorem 1.8 Consistency of Z-estimators

Let $\hat{\theta}:= \operatorname{argzero}_{\theta \in \Theta} \hat{\mathbf{g}}_n(\theta)$. If there exists a function $\mathbf{g}_0(\theta)$ such that:

- (C.1) $g_0(\theta)$ has a unique root in Θ at θ_0^a
- (C.2) Θ is compact
- (C.3) $g_0(\theta)$ is continuous in θ
- (C.4) $\hat{\mathbf{g}}_n(\theta)$ converges uniformly in probability to $\mathbf{g}_0(\theta)$

$$\sup_{\boldsymbol{\theta}\in\Theta} \|\hat{\mathbf{g}}_n(\boldsymbol{\theta}) - \mathbf{g}_0(\boldsymbol{\theta})\| \stackrel{\mathcal{P}}{\longrightarrow} 0$$

then we have $\hat{\theta} \stackrel{\mathcal{P}}{\longrightarrow} \theta$

^athis means that $\mathbf{g}_0(\boldsymbol{\theta}) = 0$ if and only if $\boldsymbol{\theta} = \boldsymbol{\theta}_0$

Proof:

Set $\hat{Q}_n(\theta) = -\|\hat{g}_n(\theta)\|$ and $Q_0(\theta) := -\|g_0(\theta)\|$

We only need to check C4 of Theorem 1,7

Theorem 1.7 Consistency of Extremum estimators

If there is a function $Q_0(\theta)$ such that:

- (C.1) $Q_0(\theta)$ is uniquely maximized in θ_0
- (C.2) Θ is compact ^a
- (C.3) $Q_0(\theta)$ is continuous in θ
- (C.4) $\widehat{Q}_n(\theta)$ converges uniformly in probability to $Q_0(\theta)^b$

then we have $\hat{\theta} \stackrel{\mathcal{P}}{\longrightarrow} \theta$

^aCompact, in finite dimension, means that Θ is both closed (i.e. containing all its limit points) and bounded (i.e. all its points are contained in a ball). ${}^b\widehat{Q}_n(\theta)$ is said to converges uniformly in probability to $Q_0(\theta)$ if $\sup_{\theta \in \Theta} |Q_n(\theta) - Q_0(\theta)| \xrightarrow{\mathcal{P}} 0$

$$\left|\widehat{Q}_n(\theta) - Q_0(\theta)\right| = \left|-\|\widehat{g}_n(\theta)\| + \|g_0(\theta)\|\right|$$

 Δ ineq

$$\leq \|g_0(\theta) - \hat{g}_n(\theta)\|$$

Done by C,4 of Theroem 1.8

Consider the following estimator:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} - \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}(\boldsymbol{\theta})\|_{\mathbf{W}}^{2}$$

where $\|\mathbf{x}\|_{\mathbf{A}}^2 = \mathbf{x}^T \mathbf{A} \mathbf{x}$, and where $\hat{\mu} \in \mathbb{R}^p$, $\mu(\theta) \in \mathbb{R}^p$, $W \in \mathbb{R}^{p \times p}$ and $\theta \in \Theta \subset \mathbb{R}^p$. Note that the \mathbf{W} may be random and/or depend on θ but we assume that W > 0.

Is it possible to show that

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argzero}} \quad \hat{\boldsymbol{\mu}} - \boldsymbol{\mu}(\boldsymbol{\theta})$$
?

If so, do we need any additional conditions?

Simplify the conditions of Theorem 1.7 (or 1.8) for this estimator.

Proof:

Yes if
$$\frac{\partial}{\partial \theta^{\top}} \|\hat{\mu} - \mu(\theta)\|_{\mathbf{W}}^2$$
 and if $\hat{\theta} \in \text{Int}(\mathbb{B})$

Assume
$$\hat{\mu} := \hat{\mu}(\theta_0, n)$$

$$\mu(\theta) := \lim_{n \to \infty} \hat{\mu}(\theta, n)$$

Def
$$\hat{g}_n(\theta) := \hat{\mu}(\theta_0, n) - \mu(\theta)$$

$$g_0(\theta) = \mu(\theta_0) - \mu(\theta)$$

Then
$$\hat{g}_n(\theta) - g(\theta) = \hat{\mu}(\theta_0, n) - \mu(\theta_0) \xrightarrow[n \to \infty]{} 0$$

So C4 is not necessary but I don't know if we assumed too much