厦门大学本科课程教学大纲

课程名称	嵌入式系统			
英文名称	Embedded System			
课程编号	SENG 3155.02	学分/周学时	2/2+1	
课程类型	学科或专业方向性课			
先修课程	C语言程序设计、汇编语言、计算机组成原理、操作系统			
选用教材	《嵌入式系统原理与设计(第2版)》,陈文智、王总辉 主编,清华大学 出版社,2017年3月第2版(ISBN: 9787302460787)			
主要参考书	1、《嵌入式Linux编程与实践编,科学出版社,2021年11月2、《嵌入式Linux系统开发—华大学出版社,2017年11月,3、《嵌入式系统原理及应用帮出版社,2017年3月, ISBN:4、《嵌入式系统接口设计与I空航天大学出版社,2006年5月版)5、《嵌入式系统设计与应用大学出版社,2006年2月,ISI	,ISBN: 97870307030 —基于ARM处理器通序 ISBN: 978730248219 效程(第2版)》,孟祥 9787302459392 Linux驱动程序开发》, 月, ISBN: 97878107 开发》,郑灵翔 等	95 用平台》,冯新宇,清 2 连莲 主编,清华大学 刘淼 编著,北京航 78617(FTP上有电子	

一、课程性质、目的与任务

《嵌入式系统》是软件工程专业的一门专业方向课程。本课程比较全面地介绍了嵌入式系统的概论与其组成部分,并从软件工程的角度出发阐述了嵌入式系统的开发流程和开发方法;着重讲述了嵌入式处理器、外围接口和嵌入式操作系统。通过本课程的学习,可以使学生掌握嵌入式系统软件与通用软件设计的差异,具备硬件和软件两个方面设计与实现能力。

二、教学基本要求

要求学生掌握嵌入式系统的基本概念,掌握嵌入式系统各个组成部分的工作原理、 逻辑实现和设计方法,培养学生具备设计与实现嵌入式系统及其组成部分的能力。

三、主要内容及学时安排

章(或节) 主要内容 学时安排

第一章 嵌入式系统 概述	嵌入式系统简介、嵌入式处理器、嵌入式操作系统、 嵌入式系统设计	2学时讲课
第二章 ARM处理器 和指令集	ARM处理器简介、ARM指令集简介、ARM指令的寻址方式、ARM指令简介、Thumb指令简介 实验1: 建立Linux开发环境 + 基础实验(Hello World、多线程应用、简单的嵌入式Web服务器)	2学时讲课 2学时实验
第三章 嵌入式Linux 操作系统	嵌入式Linux简介、内存管理、进程管理、文件系统	2学时讲课
嵌入式软件		2学时讲课 2学时实验
第五章 开发环境和 调试技术	交叉开发模式概述、宿主机环境、目标板环境、交 叉编译工具链、gdb调试器	2学时讲课
第六章 Boot Loader	Boot Loader基本概念、Boot Loader典型结构、U Boot简介、vivi简介 实验3:接口实验(小键盘、LED灯、LCD显示、LED 点阵、步进电机、七段数码管)	2学时讲课 2学时实验
ARM Linux内	ARM Linux内核简介、ARM Linux内存管理、ARM Linux 进程管理和调度、ARM Linux模块机制、ARM Linux 系统启动和初始化	
第八章	嵌入式文件系统简介、嵌入式Linux文件系统框架、 JFFS2嵌入式文件系统、根文件系统 实验4:接口综合实验(红外传感器、蜂鸣器、NFC 模块、4G模块、电子钟、小键盘控制的电子钟、一 卡通食堂POS机)	2学时讲课 2学时实验
第九章 设备驱动程 序设计基础	Linux设备驱动程序简介、设备驱动程序结构、Linux 内核设备模型、内存映射和管理	2学时讲课

第十章 字符设备和 驱动程序设 计	字符设备驱动框架、字符设备驱动开发、GPIO驱动概述、串行总线概述、字符设备驱动程序示例 实验5: STM32实验(MDK安装及LED灯、查询方式按键、中断方式按键、串口通信、伺服电机、直流电机、码盘测速、D/A转换、A/D转换、OLED显示) 块设备驱动程序设计概要、Linux块设备驱动相关数	2学时讲课 2学时实验
块设备和驱	据结构与函数、块设备的注册与注销、块设备初始 化与卸载、块设备操作、请求处理、MMC卡驱动	
网络设备纵	以太网基础知识、嵌入式网络设备驱动开发概述、 网络设备驱动基本数据结构、网络设备初始化、打 开和关闭接口、数据接收与发送、查看状态与参数 设置、AT91SAM9G45网卡驱动	2学时讲课
第十三章 Android 操作 系统	Android 操作系统介绍、Android 软件架构介绍、Android 内核、Android 子系统介绍、Android 应用程序开发过程、Android 源码目录结构 实验6 Android Studio安装 + Android基本实验(Android Studio安装和Hello World、界面布局、基本控件、Activity 切换、对话框、文件操作、数据库开发、网络通信、音频播放、拍照、短信发送)+Android NDK实验(Android NDK环境搭建和HelloJni、Android LED控制、Android 串口通信)	4学时讲课 2学时实验
第十四章 华为昇腾AI处 理器及应用	AI基础、昇腾AI处理器、Atlas 200 DK开发板、Mind Studio开发工具、ModelArts开发平台、编程指南、应用案例实践 实验7: Atlas 200 DK开发环境的建立:包括合设环境SD卡的制作、MobaXterm环境下Atlas 200 DK与电脑的连接、Atlas 200 DK上网功能的实现等;基于Atlas 200 DK的AI应用样例:包括人脸检测、人脸识别、图像检测、图像识别、视频识别、手写汉字识别、语音转文字、黑白照片上色、黑白视频上色、摄像头拍照/拍视频、麦克风录音、串口UART等。	4学时讲课 4学时实验

实验8: ModelArts开发平台的使用:包括OBS服务、 使用自动学习训练模型、使用预置算法训练模型、				
使用 MXNet 训练模型、使用 Notebook 训练模型、				
使用PyCharm ToolKit 训练模型等,云(ModelArts)				
端(Atlas 200DK)协同实验:包括云端协同猫狗识				
别实验、云端协同垃圾分类实验等。				
 合计	32学时讲课			
П И	16学时实验			
四、考核方式:考试				
五、开课专业: 软件工程				
六、大纲制定者: 曾文华 大纲审定者:				
七、大纲制定时间: 2023年9月				