Datum 19. 2. 2020	SPŠ CHOMUTOV	Třída A4-2
Číslo úlohy	Měření A/Č převodníku logickým	Jméno
16	analyzátorem	PETŘÍK

Zadání

Změřte CDP, VDP a DPD při různých frekvencích signálu S.

Schéma zapojení

Tabulka použitých přístrojů

Zařízení	Značka	Údaje	Evidenční číslo
Zdroj	U	AUL 310	LE2 1029
Multimetr	V	Agilent 34401A	LE 5003
Generátor	G	Agilent 33210A	LE 5059
Logický analyzátor	-	Tektronix 1230	LE2 5002
ADC	-		LE2 2336
Aripot	P1		

Parametry převodníku C570D

Napájecí napětí: kladné 0-7 V; záporné -16,5-0 V Rozsahy vstupního napětí: 0-10 V; -5V až 5V

Vstupní odpor: 5KΩ

Doba ustálen: 15 – 40 μs *Rozlišitelnost:* 8 bitů

Výstupní číselný kód: binární přímý

Chyba linearity: ±1/2 LSB

Diferenciální nelinearita: ± 1 LSB

Analogová a číslicová zem musí být propojeny.

Váha nejnižšího bitu pro rozsah vstupního napětí 0 až 10 V.

$$\frac{10}{2^8} = 39 \, mV$$

Doplňte kódy do tabulky

UX [V]	VÝSTUPNÍ KÓD	
10,000	11111111	
7,500	11000000	
5,000	10000000	
2,500	01000000	
0,039	0000001	
0,000	00000000	

Tabulka a grafy

F (KHZ)	CDP (µS)	VDP (μS)	DPD (μS)
6	111,8	25,8	60,2
8	90,6	28,6	35,2
10	79,2	27,6	24
12	69,8	28,6	14,4
14	53,6	28,2	9,6
16	59,4	28,2	4,6

Definice hran

Doba převodu celková

CDP – vzestupná hrana S až do sestupná hrana ST

Vlastní doba převodu

VDP - sestupná hrana S až do sestupná hrana ST

Doba platnosti dat

DPD - sestupná hrana ST až do vzestupná hrana S

Integrální a diferenciální nelinearita pro tři nejnižší výstupní kódy

kód	U (mV)	INL	DNL
0000001	37,170	17,670	± 17,670
0000010	72,787	14,287	-3,383
0000011	108,405	10,905	-3,382
00000100	146,000	9,500	-1,405

Maximální frekvence impulsů aby DPD bylo 10 μs

$$VDP + DPD = T - T_a$$

$$S = \frac{T_a}{T}$$

$$\frac{VDP + DPD}{T} = 1 - s$$

$$f = \frac{1 - s}{VDP + DPD} = \frac{1 - 0.5}{(27.6 + 10).10^{-9}} = 13089 \text{ Hz}$$

Při této frekvenci byla doba platných dat (DPD) 10,4 μs

Závěr
Měření proběhlo v pořádku. Převodník splňuje výrobcem udané parametry. Jak jsme ověřili, doba vlastního převodu se s frekvencí nemění. Na převodníku považuji za důležitý signál <i>ST</i> . Při užití převodníku s mikrokontroléry je vhodné připojit signál ST na externí interrupt.