THOC - Assignment-1 18 CS 10070 AKHIL any non trivial property on partial recursive ful & for partial recursive functions P(fu) = T and P(ko) o(x) such that Now, let's define fr(x) if P(o)=T 1 fu(21) fixed point to (20 = o (x0)) of is a total recursive function. **NOTES** T then $\sigma(x) = f(x) = 1$ which is a contradiction

(3): (a) let 7(a): P is not a monotone
: To is not re. by direct application of rice's 2nd theorem.
10 so T_p is $y(e) \Rightarrow (a)$.
(b) 11 7(b): A is a finite language in Sp and there's no finite subset of A in Sp
12 A
Assume & Lp was He.
· let M, accepts L
Now construct a reduction: (M, W) => M1 s.t
else accepts finite subset of L
Now, on input M, M' with input or will simute M on w for x moves and if it fails to accept w after x moves, M' accepts x.
accept w after n moves, m' accepts 2.
if Maccepts he say after k moves than we know L(M') = { n n EL & n (k3 CL
Agot sub me a hit here have a N sale
subset of L is not in Sp using 7(b)
NOTES: It Tp in he then membership problem is decidal
TP is not ne.

242-123 WK 35

(C) Finite languages in Sp can be represented
(C) Finite languages in Sp can be represented in binary encoding Now, as Tp is 4.e.
Let an enumerable machine N enumerate 7p, We will make M(1) to enumerate sinary encodings 1 of finite language (1) in Sp.
12 Then, we will enumerate the binary pairs (i,i) using k, i is a binary encoding of finite language Now, if N has printed M(i) in j steps, k prints 2 1i' followed by a delimiter symbol to differentiate from previous and next step encodings.
So, K enumerates all binary codes for finite set in Sp. Tp in re ⇒(c)
So, we come to conclude that (a), (b) and (c) imply Tp is r.e.
Marin dente for any part to the investment of the second o
NOTES

2018

WK 35 245 122 ZOTO HAMMAN
(4) 8 let A = { w, , wz wk}
$B = \{ \chi_1, \chi_2 - \ldots \chi_k \}$
"Now, A w; EA and + x; EB
12 \(\lambda \wi, \gamma; \in \in \text{\final} \)
1. Let C be a variant of PCP as PCP 5
$\frac{2}{3}$ $C = (A,B) \in PCP5 \iff \exists \text{ sequence } i_1i_k$ $Wi_1Wi_k = \chi i_1\chi i_k$
because all the strings are of length 5, so if a seguent of in in exists that satisfies PCP5, then win = xi, win = xi, => wine = xik
because all the corresponding strings need to match, it can be done in O(n+m)
Now, iterate from i = 1 to min (n, m) of check w;==
if it true atleast once, it can be said that
(A,B) E PCP5, otherwise not.
Itence, this problem is decidable.

5 : We know, deciding whether two grammers generate same languel or not, is undecidable.
i.e. S= { (G1, G12) G1=G12 } is undocidable
Now, reducing from Stop = {G L(G) = L(G) }
102 (G1, G2) of S, let's construct L(G1) 12 / N-1 L(G1) = \$ L(G1) U L(G1) \$ 80 L(G1) = L(G1) L(G1) = L(G2)
2 Hence this reduction is involid so P is undecidable.
so Pis undecidable.
3
We know if set accepted by M is finite then VALCOMPS t is also finite and be represented by a CFG is a CFL.
VALCOMPS t is also finite and be represented
by a CFG is a CFL.
Now, if Maccepts an infinite set, there exists a valid computation history
a valid computation history
W, # W ₁ # W ₃
02 SUNDAY
OZ GONDAT
as wis are IDS and Iwz is greater than
as wi's are IDS and Iwzl is greater than pumping lemma's constant, so we can mark
the symbols of we as distinguished.

Once this algo has Ao it

shows that

S M T W T F S 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2018 WK 36 247-118

WK 30 247-118 ZUTO	23 24 25 26 27 28 29 18
The state of the s	
Building machine A; , can be seper	rated in 2 cases.
"Case 1: Ae: since d; = y is	1 1-2012-
to compute zingle additions and are closed under union, intersection	regular languages
· -	M - 11 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
if of = - 7 2 x+1 dit! Ai opt	erates as Airi
but it non deterministically guesse such that Ai accepts the input (a,. ait exists such that Ait accepts	es the value of 9;+1 G;) it some Q1 9;+1
If $\phi_i = \forall \forall_{n+1} \phi_{i+1}$; it is $7 \neq \chi_{i+1}, 7 \neq i+1$ so, we complished automation that recognizes of A_{i+1} then apply the preceding the β quantifier and then accomplement again to obtain A_i .	equivalent to
complement again to Obtain A;	he collection of
so al la county input off their	s time
Ao accepts any input off to its of Ao accepts & & is true and otherwise rejects.	Ao accepts
NOTES Hence th + (M) is decidable.	and hitter along