

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΚΑΙ ΥΛΙΚΩΝ

Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου

Δρ Σταύρος Κ. Κουρκουλής, Καθηγητής Πειραματικής Μηχανικής

Τηλέφωνα: +210 772 1313, +210 772 1263 (γραφείο)

+210 772 4025, +210 772 4235, +210 772 1317, +210 7721310 (εργαστήρια)

Τηλεομοιότυπο (Fax): +210 7721302

Διεύθυνση ηλεκτρονικού ταχυδρομείου (e-mail): stakkour@central.ntua.gr

MHXANIKH I (ΣΤΑΤΙΚΗ)

2^η σειρά ασκήσεων: Διανυσματική έκφραση της δύναμης στο χώρο

Άσκηση 1

Το παράθυρο του Σχ.1 μένει ανοιχτό με τη βοήθεια της αλυσίδας AB.

- 1. Υπολογίστε το μήκος της αλυσίδας.
- 2. Εκφράστε τη δύναμη F=50 N της αλυσίδας που ασκείται στο σημείο A ως καρτεσιανό διάνυσμα.

Σχήμα 2

Άσκηση 3

Στο ορθογώνιο παρελληλεπίπεδο του $\Sigma \chi.3$ δρουν τρεις δυνάμεις: H \mathbf{F}_1 μέτρου 6N κατά μήκος της διαγωνίου $B\Delta$, η \mathbf{F}_2 μέτρου 8N κατά μήκος της κυρίας διαγωνίου $A\Delta$ και η \mathbf{F}_3 μέτρου 6N κατά μήκος της OG (G το γεωμετρικό κέντρο του τριγώνου OBF). OG OG καρτεσιανά διανύσματα.

Άσκηση 2

Το παράθυρο του Σχ.2 μένει ανοιχτό με τη βοήθεια της αλυσίδας AB.

- 1. Υπολογίστε το μήκος της αλυσίδας.
- 2. Εκφράστε τη δύναμη F=30 N της αλυσίδας που ασκείται στο σημείο A ως καρτεσιανό διάνυσμα.

Άσκηση 4

Ο ιστός ΟD στηρίζεται στη θέση του με τη βοήθεια τριών καλωδίων, όπως φαίνεται στο Σχ. 4. Θεωρώντας x=20 m και y=15 m, υπολογίστε τη συνισταμένη δύναμη που ασκούν τα καλώδια στον ιστό.

600 N 400 N 800 N 24 m y Σχήμα 4

Άσκηση 5

- 1. Εκφράστε τις τρεις δυνάμεις του Σχ.5 ως καρτεσιανά διανύσματα.
- 2. Υπολογίστε τη συνισταμένη των δυνάμεων F_B και F_C που δρουν στο σημείο A.

Άσκηση 6

Η κατασκευή του Σχ.5 στηρίζεται μέσω τριών καλωδίων. Ένας σφιγκτήρας επιβάλλει στο καλώδιο CD εφελκυστική δύναμη T=1.2 kN.

- 1. Εκφράστε τη δύναμη Τ ως διάνυσμα χρησιμοποιώντας το σύστημα αναφοράς Oxyz.
- 2. Εκφράστε τη δύναμη Τ ως διάνυσμα χρησιμοποιώντας το σύστημα Cx'y'z'. Επηρεάζει το σύστημα αναφοράς το αποτέλεσμα;

Άσκηση 7

Τρεις συντρέχουσες δυνάμεις, F_1 , F_2 , F_3 , μέτρων 2 kN, 3 kN και 1kN αντιστοίχως, εφαρμόζονται στο σημείο K όπως φαίνεται στο Σχ.7. Να υπολογισθεί η τιμή της συντεταγμένης y_A σημείου A (επί του άξονος Oy) έτσι ώστε το μέτρο της συνισταμένης των τριών δυνάμεων να λάβει την μέγιστη δυνατή τιμή.

Άσκηση 8

Ο ιστός ΑΒΗΕ του Σχ.8 ευρίσκεται εντός του κατακορύφου επιπέδου yAz και ο βραχίονας ΗΕ είναι παράλληλος στον άξονα Ay. Το βάρος του ιστού και το σύνολο των εξωτερικώς ασκουμένων δυνάμεων δημιουργούν στα σχοινιά ΒΓ και ΒΔ δυνάμεις με συνισταμένη μέτρου 4 kN. Να ευρεθεί η διανυσματική έκφραση εκάστης των δυνάμεων που ασκούν τα σχοινιά.

Άσκηση 9

Στην κορυφή του κώνου του $\Sigma \chi.9$ ασκούνται τρεις δυνάμεις F_1 , F_2 και F_3 με μέτρα 16, 2 και 10 kN, αντίστοιχα. Γνωρίζοντας ότι η ακτίνα βάσεως του κώνου είναι R=2 m καθώς και ότι OK=4 m, να ευρεθεί η συνισταμένη των δυνάμεων.

Wife = |F2 = CoxpelF1 = AH |F1 = 8,79.50 = 43,69 N

The same $\vec{F} = -14,91\hat{i} + y\hat{j} + 43,69\hat{k}$ Other $|\vec{F}| = 50$ on $\sqrt{(4,91)^2 + y^2 + (43,69)^2} = 50$ on $(14,91)^2 + y^2 + (43,69)^2 = 25$ on $(14,91)^2 + y^2 + (43,69)^2 = 25$ on $y^2 = 368,87$ on y = 19,2Apa $\vec{F} = -14,91\hat{i} + 19,2\hat{j} + 43,69\hat{k}$ $\frac{7}{202}$ Tesnos

Ξέρω 81: AO= 3,21m ΓO= 3,83m

Open Malevorras odornim odriserajtievom te april 20 0 mar son y sur sedes OT

A(3,83,8,3,21) = $\overline{AB} = -3,83\hat{i} + 3\hat{j} + 8,8\hat{i}$ B(0,5,12)

Apa (AB) = 5(3,81)2+9+(8,8)2 = 10,06m

F= $|\vec{F}|$. $|\vec{A}\vec{B}| = \frac{50}{10,06} \left(-3.83\hat{i} + 3\hat{j} + 8.8\hat{k}\right) = 4,97 \left(-3.83\hat{i} + 3\hat{j} + 8.8\hat{k}\right) = \frac{100}{1000}$

= -19,032 + 14,013 + 43,742

Apa
$$|\overrightarrow{AB}| = \sqrt{(21,65)^2 + 30^2 + (32,5)^2} = \sqrt{969,72 + 900 + 1036,25} = \sqrt{2424,97} = 49,24 \text{ cm}$$

$$|\overrightarrow{P}| = |\overrightarrow{F}| |\overrightarrow{AB}| = 30 (-21,65) - 30 + 32,5 = 0,61 (-21,65) - 30 + 32,5 = 0$$

$$|\overrightarrow{AB}| = 49,24$$

205 Tourds

To Eninedo BZA

Ozupi 2 127010 cos AZ Kálern ors Entreso OFA non AZ= AE+OH=12,5+20=32,5m
To Entreso BZA

Apo
$$E_{RW} \vec{F} = -x^2 \cdot (-18,3) + 19,8 \cdot 2$$
 $F_{2} = v_{1} v_{2} \cdot (\vec{F}_{1} = 30 \text{ cs}) \cdot x^2 + (8,3)^2 + (9,8)^2 = 30 \text{ cs} \cdot x^2 + (18,3)^2 + (19,8)^2 = 900$
 $F_{2} = v_{1} v_{2} \cdot (-18,3) + (19,8)^2 = 30 \cdot (-18,3)^2 + (19,8)^2 = 900 \cdot (-18,3) + (19,8)^2 = (17,0)^2 \cdot (-18,3)^2 + (19,8)^2 = (17,0)^2 \cdot (-18,0)^2 \cdot (-18,0)^2 = (17,0)^2 \cdot (-18,0)^2 = (17,0)^2 \cdot (-18,0)^2 = (17,0)^2 \cdot (-18,0)^2 \cdot (-18,0)^2 \cdot (-18,0)^2 \cdot (-18,0)^2 = (17,0)^2 \cdot (-18,0)^2 \cdot (-1$

Fix Fin By

tanw= Br = 4 = 0,5 => 0 W = 26,570

|F2x1=51nw |F2n1=0,45,6,64=2,97N |F2y1=cosw |F2n1=0,83.6,64=5,94N

'Aea F2=-2,972+5,943+4,4612

Enions $\xi \times 0$: B(4,8,0) C(0,8,0) O(0,4,0,0) O(0,4,0,0) O(0,4,0,0) O(0,4,0,0) O(0,4,0,0) O(0,4,0,0) O(0,4,0,0)

=3 G(4+0+2), 4+8+6, 6+6+6 =(2,6,67,2)

Apa OG = 2ît 6,67jt 2î => log 1= J4+4+6,672 = J8+49,49 = 7,24 m

1 Apa F3 = F3 . 3 = 6 (2î+ 6,67g +2û) = 0,83 (2î+6,67g+2û) = 1,66î+5,54g+1,66è.

$$\overrightarrow{DC} = 160 \ \overrightarrow{0} \ \overrightarrow{0} \ \overrightarrow{0} \ \overrightarrow{0} = 240 \ |\overrightarrow{DC}| = 16^{2} + 16^{2} + 24^{2} = \sqrt{1136} = 34 \text{ m}$$

$$\overrightarrow{DB} = -60 + 4 \ \overrightarrow{0} - 240 \ |\overrightarrow{DB}| = 62 + 12 + 24^{2} = \sqrt{628} = 25.06 \text{ m}$$

$$\overrightarrow{DA} = \times 0 + 4 \ \overrightarrow{0} - 240 \ \overrightarrow{0} = 200 + 15 \ \overrightarrow{0} - 240 \ |\overrightarrow{DA}| = \sqrt{20^{2} + 15^{2} + 24^{2}} = \sqrt{721} = 34.66 \text{ m}$$

$$\overrightarrow{F} = \overrightarrow{F} = \overrightarrow{F} = 1 \ \overrightarrow{DA} = 400 \ (200 + 15 \ \overrightarrow{0} - 240) = 11.54 \ (200 + 15 \ \overrightarrow{0} - 240) = 2300 + 173.1 \ \overrightarrow{0} - 276.56$$

$$\overrightarrow{F} = \overrightarrow{F} = 1 \ \overrightarrow{DB} = 900 \ \overrightarrow{DB} = 31.92 \ (-60 + 41 \ - 240) = 491.52 \ 0 + 127.68 \ \overrightarrow{0} - 766.08 \ 0$$

$$\overrightarrow{F} = 171 \ \overrightarrow{DB} = 900 \ \overrightarrow{DB} = 31.92 \ (-60 + 41 \ - 240) = 491.52 \ 0 + 127.68 \ 0 - 766.08 \ 0$$

$$\overrightarrow{F_{3}} = |F_{3}| \overrightarrow{DC} = \frac{600}{34} \overrightarrow{DC} = 17,65 (16 \cdot \cancel{18} \cdot \cancel{18} \cdot \cancel{18} \cdot \cancel{1} - 282,4 \cdot \cancel{13} \cdot \cancel{1$$

FE = |FE| DE = 350 DE = 36,95 (-2i+oj+3h) = -193,9i toj +290,85h

H owionation law FB, Fc : Ra = 649,4 2 to 3 + 389,64 2 10-1400 1 37,4 31-1-1-1-1-1-487 - 194,8 1232,26

$$|P| = \sqrt{1,82^{2} + 44} - 662)^{2} \cdot (4,24 + 4)^{2} = \sqrt{1,82^{2} + 44} - 662)^{2} \cdot (4,24 + 4)^{2} = \sqrt{1,82^{2} + 16} + 9,38 - 1,2494 + 18 + 16 + 33,92 = \sqrt{1,82^{2} + 16}$$

$$= \sqrt{27,69 + 33,92 - 1,2994} - \sqrt{1,2494} + 18 + 16 + 33,92 + 16 = \sqrt{1,2494} + 16 = \sqrt{1,2$$

Apa y == 0,58

 $\overline{R0} = 0.740 - 40 = 100 = 1$

 $\frac{1}{120} = \frac{16}{4.47} = \frac$