Beam-RICH Meeting

鈴木翔太

2023/2/22 (Wed.) $9:00 \sim 10:00$

@ J-PARC 実験準備棟 1F 会議室

目次

- ▶相談
 - > 光学実験台について
- ▶これからやること

お知らせ

作成中のコードなどは全て GitHub に Public で上げていきます。 https://github.com/shotaKU99/beamRICH

Geant4 は白鳥さん、後神さんのコードがあるので許可をもらってから GeoGebra はライセンスがよくわからないのでとりあえず GitHub には上げないでおきます

現在の進捗

検出位置→角度への変換

- > 幾何的な計算で実装完了
 - ▶詳しい計算は後で TeX 打ちする予定
 - ▶コードは GitHub にあげている
- ▶図と同じ状況で計算したチェレンコフ角は
 - $> \theta_{ch} = 0.20000000073639662$
 - ▶元の値は 0.2
 - **→** 一致
- ▶3次元の状況でも一致するのか確かめる

詳細な計算内容

- ➤ Input (計15)
 - ▶ 放出点 (ビーム上の点, 輻射体の中心?)
 - ▶輻射体後方の面の法線ベクトル
 - ▶輻射体の屈折率
 - ▶球面鏡中心
 - ▶球面鏡半径
 - ▶ 検出位置
- ▶変数
 - ▶輻射体後方の面上の点 (2変数)
- ▶反射光と検出位置の距離が最小となるような点を計算 ← Minimizer が 1Hit 毎に回る
- → ビームの方向ベクトルと内積をとり, Cherenkov角を計算

距離のプロット

- ▶エアロゲル後方の面上の点を変数として距離をプロット
 - ➤ Global Minimum は 1つ d=0 (反射光が検出点を通る)
 - ➤ Local Minimum はおそらく存在しない
 - ▶ Iteration は少なく済む?

distance map x=2.027, y=0 when d=0

Geant4 の解析

以前の計算では・・・

Aerogel – 空気間での屈折も考慮した Cherenkov 角

 $\triangleright \pi$: 206.7 mrad

> K: 198.9 mrad

> p: 174.8 mrad

シミュレーションから求めた Cherenkov 角

 $> \pi : 203.967 \text{ mrad}$

> K: 196.408 mrad

> p: 173.069 mrad

→ 角度が大きくなるほど差が大きくなる

今回作成した解析方法で修正できるか確認

相談

光学実験台について

- ▶光学実験台の譲渡の相談がありました
 - ▶第1教室ソフトマター物理学研究室の高西准教授
 - ▶ シグマ光機 HA-2212-200L 架台付光学実験台
 - ► https://jp.optosigma.com/html/ja/page_pdf/HA-L.pdf
 - ▶天板 2200 mm × 1200 mm
 - ▶ 全面タップ穴 M6 25×25mmマトリクス
 - ➤ 天板までの高さ 800 mm
 - ➤質量 345 kg
 - ▶もし引き取る場合, 2階から1階への移動費はこちら負担
 - ▶高西さんと折半の可能性も
 - ▶科研費の都合上、今週中(2/24) には方針を報告する
 - ▶処分は40万だそうですが、移動だけなら安いかも
 - ▶見積もりを取ってくださっています

光学実験台について

- ▶実際の beam-RICH でも利用したい
 - ▶テスト実験の時にも持っていけるとよいかも
 - ▶譲ってもらう(かもしれない)ものは大きいのでもし使うならもう少し小さいもの
 - ▶例えば駿河精機 https://jpn.surugaseiki.com/products/series/J15
 - ➤ 1200mm × 1000 mm で ¥376,000

これからやること

- ▶解析方法
 - ▶3次元でも計算が合うか確認
 - ➤ Geant4 のデータを解析してみる
 - ▶LHCb の分解能の評価方法を詳しく書いているものがないか探してみる
- ➤ Geant4
 - ▶量子効率の導入
 - ▶物体の色付け