제 1 과목

1~15번

컴 퓨 터 구 조

2017학년도 2 학기 3 학년

- 1. 다음 중 TOS ← M[X]의 기능을 수행하는 컴퓨터 명령어는? 여기서 M은 Memory, TOS은 Top of Stack을 의미한다.
 - ① PUSH X

② POP X

3 STORE X

- 4 LOAD X
- ※ (2~3) 다음 프로그램을 보고 물음에 답하시오.

MOVE	A, R1	;	()	(a)
ADD	B, R1	;	$R1 \leftarrow R1 + M[B]$	(b)
MUL	C, R1	;	$R1 \leftarrow R1 \times M[C]$	(c)
MOVE	R1, X	;	()	(d)

- 2. 위의 프로그램은 다음 중 어느 수식을 계산하는 것인가?
 - ① $X = A + B \times C$

② X = A + B + C

 $\mathfrak{J} X = (A+B) \times C$

- 3. 위에서 (a)의 괄호 안에 들어갈 식으로 적절한 것은?
 - ① $R1 \leftarrow AC + M[A]$

 $\mathfrak{J} M[A] \leftarrow R1 + A$

- ※ (4~5) 아래 그림은 어느 순간의 기억장치와 PC, 레지스터를 나타내고 있다. PC의 현재 내용이 300이므로 이제 곧 300번지에 있는 컴퓨터 명령어를 수행하게 될 것이다. 컴퓨터 명령어의 연산코드 내용이 해당 피연산자를 AC에 적재하라는 것이고 주소 필드의 값은 500일 때, 다음 물음에 답하라. 단, 주소지정방식이 레지스터를 사용할 경우는 레지스터 R1을 사용하는 것으로 가정한다.

기억장치									
300	연산코드	주소방식							
301	ADRS, 1	NBR=500							
302	다음 명령								
400	742								
500	692								
692	96	50							
742	61	16							
802	74	18							

- 4. 직접 주소지정방식과 레지스터 주소지정방식을 이용한다면 각각 어떤 값이 AC에 적재될 것인가?
 - 1 500, 400
- 2 692, 400
- 3 692, 742
- 4 960, 742
- 5. 상대 주소지정방식과 레지스터 간접 주소지정방식을 이용한다면 각각의 유효주소는?
 - 1 500, 400
- **2** 616, 742
- 3 748, 742
- 4 802, 400
- 6. 다음 마이크로 연산에 관한 설명으로 적절한 것은?

 $\frac{Y T_1: R0 \leftarrow R0 \lor R1}{\overline{Y} T_1: R0 \leftarrow \overline{R1} + 1}$

- ① Y=0, T₁=0일 때, R0와 R1의 OR 연산 후 R0에 적재한다.
- ② Y=1, T₁=0일 때, R1에 1을 더한 후 결과를 R0에 적재한다.
- ③ Y=0, T₁=1일 때, R1의 2의 보수를 계산 후 R0에 적재한다.
- ④ Y=0, T₁=1일 때, R1에 1을 더한 후 결과를 R0에 적재한다.
- 7. 다음 중 마이크로프로그램에 의한 제어 방식의 설명으로 <u>잘못된</u> 것은?
 - ① 다양한 주소지정방식을 갖는다.
 - ② 명령어 집합을 변경하기 쉽다.
 - ③ 비교적 복잡한 명령어 집합 컴퓨터에 적합하다.
 - ④ 하드웨어에 의한 방식에 비해 컴퓨터의 처리속도가 향상된다.

- 8. 산술논리연산장치의 가/감산 결과 최상위 비트에서 자리올림이 나 자리내림이 발생했을 경우 세트(set)되는 상태 레지스터의 플래그(flag)는?
 - ① sign bit
- 2 overflow bit

출제위원 : 방송대 김형근

- 3 carry bit
- 4 zero bit
- ※ (9~10) 다음 그림은 제어단어의 각 필드를 나타내고 있다. 물음 에 답하라.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Α			В			D			F			Н			

- 9. 각 필드에 관한 설명 중에서 적절한 것은?
 - ① A와 D는 도착 레지스터를 선택하는 필드이다.
 - ② B는 출발 레지스터를 선택하는 필드이다.
 - ③ F는 상태 레지스터의 상태 값을 선택하는 필드이다.
 - ④ H는 ALU에서 수행되는 연산의 하나를 선택하는 필드이다.
- 10. 처리장치에 30개의 레지스터가 있다면, A, B, D 필드는 각각 몇 비트가 되겠는가?
 - ① 5, 4, 4
- 2 4, 5, 6
- 3 5, 5, 5
- 4 6, 5, 4
- ※ (11~12) 아래 그림은 처리장치의 블록도이다. 다음 물음에 답 하시오.

- 11. 그림의 ⓒ에 관한 설명으로 올바른 것은?
 - ① 상태비트를 보관하는데 필요하다.
 - ② 도착 레지스터를 결정하는데 필요하다.
 - ③ 출발 레지스터의 내용을 ALU로 보내는데 필요하다.
 - ④ ALU의 결과를 비트 단위의 이동을 위해 필요하다.
- 12. 그림의 H에 관한 설명으로 올바른 것은?
 - ① 상태비트를 보관하는데 필요하다.
 - ② 도착 레지스터를 결정하는데 필요하다.
 - ③ 출발 레지스터의 내용을 ALU로 보내는데 필요하다.
 - ④ ALU의 결과를 비트 단위의 이동을 위해 필요하다.
- ※ (13~15) 다음 그림은 마이크로프로그램 제어기이다. 그림을 보고 물음에 답하라.

- 13. 그림에서 ④에 들어갈 내용으로 올바른 것은?
 - ① 64 × 26
- ② 128 × 26
- ③ 64 × 27
- 4128×27
- 14. 그림에서 ②와 ③에 들어갈 내용으로 가장 적절한 것은?
 - ① ඓ 제어단어
- ☞ 상태비트
- ② ඓ 처리장치
- ③ e 다음 주소 생성기 ④ e 처리장치
- ☞ 제어 장치
- 15. 그림에서 만일 MUX 1에서 ②로 입력되는 데이터가 6비트이고, 다른 것은 변동이 없다면 ④는 어떻게 변경되어야 하는가?
 - ① 64×26
- \bigcirc 64 \times 28
- ③ 128 × 226
- $4 256 \times 28$