# Comparative Simulation Study on MoS<sub>2</sub> FET and CMOS Transistor

Ming Zhang, Po-Yen Chien, Jason C.S. Woo

Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, United States Email: woo@ee.ucla.edu

Abstract—MoS<sub>2</sub> FET and SOI/FinFET are simulated and compared to experimental results and the impact of gate scaling-down on the transistor performance is studied. Though MoS<sub>2</sub> FET shows better suppression of the short channel effect, its oncurrent is still lower than that of sSOI/FinFET down to 10nm physical channel length due to the low saturation velocity of MoS<sub>2</sub>. In addition, the improvement of mobility over 60cm<sup>2</sup>/Vs has little benefit for the on-current.

### Keywords—MoS2 FET; SOI; FinFET; On-current

#### I. Introduction

In recent technology nodes, much effort has been made to reach a higher on-current. Bulk structure is replaced by FinFET structure to maintain a high  $I_{ON}/I_{OFF}$  ratio, and thus a high  $I_{ON}$  per pitch[1][2]. High  $I_{ON}$  is achieved by such a structure at the price of an increased gate capacitance that suppresses the short channel effects, but lowers the cutoff frequency. A variety of the structural optimization is also adopted in SOI structures to achieve a better short channel performance, such as thinning-down of SOI body and buried oxide thickness[3][4]. These optimizations that lower the subthreshold swing(SS), and thus the threshold voltage, will in return improve the on-current.

Novel two-dimensional (2D) channel material, such as  $MoS_2$ , has attracted extensive interest due to its built-in advantages in suppressing the short channel effect[5][6]. In this paper,  $MoS_2$  FET is studied using drift-diffusion simulation. Though 2D material with bandgap like  $MoS_2$  demonstrates a better short channel behavior, it has been found that the oncurrent  $I_{ON}$  limited by its saturation velocity shows no improvement over sSOI(strained-SOI)/FinFET devices down to physical channel length of 10nm. In addition, increasing the mobility in such material has little improvement on the oncurrent, due to low saturation velocity [6].

# II. METHODS

# A. 2D simulation for MoS2 FET

Fig. 1(a) shows the FET structure using  $MoS_2$  as channel. Highly doped regions are assumed on both sides of the channel to ensure a low contact resistance. To avoid confusion, the physical gate length is defined as the distance between the edges of high-doped regions. The  $I_D$ - $V_G$  curves based on the 2D drift-diffusion simulation and experiments[5] are shown and compared in Fig.1(b). The high S/D resistances caused by the underlapped gate in experiments are estimated by the current under the high gate voltage[5]. The equivalent oxide thickness(EOT) of  $SiO_2$  for top gate is adopted to mimic the effect of the high-k material.

#### B. sSOI/FinFET simulation

Simulation using Synopsys Sentaurus is fitted to the current performance of sSOI/FinFET devices[1][2][3][9] and it is also adopted to estimate the performance under scaling-down. Fig.2

shows the comparison between the simulated and experimental  $I_D$ - $V_G$  curve in 14/22nm nodes with physical gate length of 20/26nm for FinFET and 20/25nm for sSOI.



the subthreshold slope may result from the interface/surface defects between the high-k material and MoS<sub>2</sub>.



Fig.2 sSOI/FinFET simulation vs experiment. [1][2][3][9] The left figure shows the

By shrinking down the Si body thickness and physical channel length while maintaining all the other parameters, a "brutal-force" scaling down is assumed to predict the degradation limit of sSOI/FinFET performance when the physical channel length scales to 10nm.

TABLE I. SIMULATION PARAMETERS

| MoS <sub>2</sub>         | Low-field<br>mobility μ <sub>n</sub>      | Relative permittivity $\varepsilon_r$                       | Saturation velocity v <sub>sat</sub> |
|--------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------|
|                          | 60cm <sup>2</sup> /V·s[7] <sup>a</sup>    | 4.0[8]                                                      | 0.28x10 <sup>7</sup> cm/s[6]         |
| MoS <sub>2</sub> FET     | Top gate EOT Tox                          | Back gate EOT T <sub>bax</sub>                              | S/D extension                        |
|                          | 1nm                                       | 15nm                                                        | 10nm                                 |
| 10nm <i>Lg</i><br>FinFET | Silicon body<br>thickness T <sub>Si</sub> | All other parameters remain the same as 14nm<br>FinFET node |                                      |
|                          | 5nm                                       |                                                             |                                      |
| 10nm Lg<br>sSOI          | Silicon body<br>thickness T <sub>Si</sub> | All other parameters remain the same as 14nm sSOI node      |                                      |
|                          | 3.4nm[13]                                 |                                                             |                                      |

<sup>&</sup>lt;sup>a.</sup> Except for the case when mobility is a variable

# III. RESULTS

The simulations of MoS<sub>2</sub> FET and FinFET structures are compared in the terms of their on-current, short channel behavior. The band diagram and electron concentration is plotted along the MoS<sub>2</sub> channel in Fig.3. Table 1 shows the parameters that are used in the simulation for MoS<sub>2</sub> FET and short channel sSOI/FinFET structure.



Fig. 3 Band diagram and electron concentration in the channel. The plot shows the band diagram and electron concentration in the MoS<sub>2</sub> channel under a bias of  $V_D$ =0.7V and  $V_G$ =0.5V,where the flat band voltage is assumed as  $V_{FB}$ =- $E_g$ /2q.



Fig. 4 On-current vs. gate length scaling. All the markers with  $V_{DD}$  on the side note the on-current for experiments, while all the lines show the simulated results. The dashed/dash-dotted/dotted line plot the on-current of MoS<sub>2</sub> FET using different supplied voltage  $V_{DD} = 1/0.7/0.5V$  ( $I_{OFF} = 10^{-7}$  A/µm). The black/blue solid line illustrates the on-currents  $I_{ON}$  for FinFET/sSOI with physical gate length  $L_G = 26$ nm/20nm/10nm and  $L_G = 25$ nm/20nm/10nm under  $V_{DD} = 0.7$ V ( $I_{OFF} = 10^{-8}$  A/µm for FinFET and  $10^{-7}$ A/µm for sSOI). For  $L_G = 10$ nm, the "brutal-force" scale down is assumed (as in Table 1). [1][2][3][4][5][9][10][11][12]

# A. On-Current Comparison

By defining the off-current same as CMOS for high performance application in ITRS[13] ( $100\text{nA}/\mu\text{m}$ ), the oncurrent  $I_{ON}$  can be found under different supply voltage  $V_{DD}$ . Fig. 4 demonstrates the trend for the on-current of MoS<sub>2</sub> FET while scaling down the channel length, compared with those of sSOI and FinFET. It can be easily observed in Fig.4 that the on-currents for MoS<sub>2</sub> FET are more than 50% lower than the one for sSOI/FinFET at  $V_{DD}$ =0.7V. The on-current for MoS<sub>2</sub> FET does not scale up as the channel length shrinks when  $L_G$  is less than 50nm since the low saturation velocity of MoS<sub>2</sub> limits the increase of the on-current.

# B. Short Channel Effects

The drain-induced barrier lowering (DIBL) and subthreshold swing (SS) for  $L_G$  less than 50nm are shown in Fig.5 based on MoS<sub>2</sub> FET and sSOI/FinFET simulation, as well as the ones for industry sSOI and FinFET results. Compared with sSOI/FinFET simulation, MoS<sub>2</sub> FET demonstrates better short channel behavior as physical gate length scales down.



Fig. 5 DIBL/SS vs. gate length scaling. All the markers shows the experiment results for sSOI/FinFET, while blue/black solid line shows the SS and DIBL for simulated sSOI/FinFET and dashed line plots the ones for simulated MoS<sub>2</sub> device.

### C. Mobility Improvement

The quality of the film has been a great concern for most 2D materials because the mobility may be compromised by the growth condition or defects. However, increasing mobility over  $60 \text{cm}^2/\text{Vs}$  in MoS<sub>2</sub> has little improvement on the on-current as shown in Fig.6.



Fig. 6 On-current vs. mobility under different supply voltages  $V_{DD}$ . Less than 10% of the current increase is observed when the mobility varies from  $60 \text{cm}^2/\text{Vs}$  to  $130 \text{ cm}^2/\text{Vs}$ .

# IV. CONCLUSION

MoS<sub>2</sub> FET, sSOI and FinFET are simulated and compared with experimental results and the impact of gate scaling-down on the transistor performance is studied. Though MoS<sub>2</sub> FET suppresses the short channel effect, its on-current is still lower than that of sSOI/FinFET down to 10nm physical channel length due to the low saturation velocity of MoS<sub>2</sub>. In addition, the improvement of mobility over 60cm<sup>2</sup>/Vs has little benefit for the on-current for MoS<sub>2</sub> FET.

#### REFERENCES

[1]S. Natarajan, et.al., IEDM, pp. 71, 2014. [2] C. Auth, et. al., VLSI Symp., pp. 132, 2012.[3] Q. Liu, et.al., IEDM, pp.219, 2014. [4] Q. Liu, et.al., IEDM, pp.228, 2013. [5] B. Radisavljevic, et.al., Nat. Tech., vol.6, pp. 147, 2011. [6] Gianluca Fiori, et.al., Appl. Phys. Lett., 103, 233509, 2013.[7] N. Ma, et.al., Phys. Rev. X, vol. 4, 011043, 2014. [8] E. Santos, et.al., ACS Nano, pp. 10741, 2013. [9]S. Narasimha, et.al., IEDM, pp.52, 2012. [10]B. Greene, et.al., VLSI Symp., pp.140, 2009.[11] M.Chudzik, et.al., VLSI Symp., pp.194, 2007. [12]H. S. Yang, et.al., IEDM, pp.1075, 2004. [13] ITRS 2013 update http://www.itrs.net/