Giotto-tda – A → python library for Topological Machine Learning

My <u>awesome</u> collaborators

Kathryn Hess

Guillaume Tauzin

Anibal Medina-Mardones

Alberto Dassatti

Julian Burella Pérez

Wojciech Reise

Lewis Tunstall

Matteo Caorsi

Sponsored by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

... and many **community** contributors!

Topology and the ML workflow

Our objective: Place topological learning algorithms firmly *alongside* established machine learning techniques

ML ethos: Select the best combinations of techniques in a **data-driven** way. The best ones may *include* a number of topological steps as part of a larger **ML pipeline**

Featurization: Produce "**features**" (scalars or vectors) which are amenable to processing by ML algorithms: **set functions**, **explicit vectorisations**, **learned representations**, ...

Hyperparameters: Typically, several are involved within each choice of featurization technique (example: pixel size for persistence images)

Large-scale cross-validation routines: Must involve all hyperparameters and model choices at once, topological or not.

giotto-tda: Pillars

Seamless integration with widely used ML frameworks: inherit their strengths and allow for creation of heterogeneous ML pipelines. Python + <u>scikit-learn</u>

Code modularity: "Lego blocks" approach. Topological algorithms as *scikit-learn transformers*

User-friendliness and **familiarity** to the broad data science community

Standardisation: Allow for integration of most available TDA techniques into a generic framework

Performance within the language constraints. Parallelism and state-of-the-art C++ code for intensive steps (*ripser**, *GUDHI*, *flagser*, *Hera*, ...)

Data structures: Support for point clouds, time series, graphs and images

Persistent Homology

Pipeline

Persistent homology

Topological features

Classification

```
clouds, labels = make point clouds(n samples per shape=100,
                                   n points=200,
                                   noise=0.2)
# Split between training set and test set
clouds train, clouds test, labels train, labels test = \
   train test split(clouds, labels)
# Define an end-to-end classification pipeline
persistence pipeline = make pipeline(
   VietorisRipsPersistence(),
   PersistenceEntropy(),
   RandomForestClassifier()
# Fit the whole pipeline on the training set
persistence pipeline.fit(clouds train, labels train)
# Evaluate the model on the test set
persistence pipeline.score(clouds test, labels test)
```

Sampled sphere

Sampled torus

Persistence diagrams

Mapper


```
# Filter function can be any sklearn Transformer
filter_func = Projection(columns=[0, 1])
# Define cover
cover = CubicalCover()
# Choose clustering algorithm
clusterer = DBSCAN()

# Initialise pipeline
pipe = make_mapper_pipeline(
    filter_func=filter_func,
    cover=cover,
    clusterer=clusterer
)

# Generate interactive plot (Jupyter required)
plot_interactive_mapper_graph(pipe, alien)
```

Point cloud/metric space

Topological summary

"Endless" possibilities

References

Our paper: G. Tauzin et al. *giotto-tda*: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration (<u>extended NeurIPS</u> <u>version</u>, <u>JMLR version</u>)

Source on GitHub: <u>github.com/giotto-ai/giotto-tda</u>

Docs: giotto-ai.github.io/gtda-docs

Tutorials & examples: giotto-ai.github.io/gtda-docs/0.5.0/notebooks

API reference: giotto-ai.github.io/gtda-docs/0.5.0/modules

What would you like to do with giotto-tda?

Your help is welcome on GitHub: https://github.com/giotto-ai/giotto-tda

We are always **looking to integrate:**

- New algorithmic developments
- More preprocessing techniques
- More kernel and vectorization methods
- ... And other important features!

Chat with us!

- Slack: https://slack.giotto.ai/
- GitHub discussions: https://github.com/giotto-ai/giotto-tda/discussions

Today's tutorials

Navigate to https://github.com/ulupo/giotto-tda_demo_POSTECH_MINDS and follow the installation instructions there

Interrupt us & ask questions!

Docs: giotto-ai.github.io/gtda-docs