Übung Automatentheorie, Aufgabenblatt 5

Abgabe bis: Dienstag, 18. November 2014, 10.15 Uhr

H 5-1: Konstruieren Sie den minimalen Automaten zu der Sprache, die von dem folgendem (N, +)-Automaten akzeptiert wird:

Beachten Sie, dass die obligatorischen Schleifen für 0 an jedem Zustand sowie die Transition $(q_1, 2, q_5)$ (ändert die erkannte Sprache nicht, wäre aber nach Definition verpflichtend vorhanden) der Übersichtlichkeit halber weggelassen sind.

- **H 5-2:** Sei M ein Monoid. Zeigen Sie, dass für L, L_1 und L_2 aus Rec(M) auch die Sprachen $L_1 \cap L_2$, $L_1 \cup L_2$ und L^c in Rec(M) liegen! Verwenden Sie Automatenkonstruktionen, die eine alternative Beweismethode zu der von Korollar 2.15 im Vorlesungsskript darstellen!
- **H 5-3:** Eine rationale Sprache heißt *sternfrei*, wenn Sie durch einen rationalen Ausdruck beschrieben wird, der den Kleene-Stern nicht verwendet, dafür aber das Komplement benutzen kann. Geben Sie sternfreie Ausdrücke für folgende Sprachen über dem Alphabet $\{a,b,c\}$ an:
 - (a) a^+c^+ ,
 - (b) $(abc)^*$,
 - (c) $\{w : w \text{ enthält höchstens } 3 a\},$
 - (d) $\{w : w \text{ hat } aba \text{ genau zweimal als Teilwort}\}.$

Die Antworten zu folgenden Fragen müssen nicht schriftlich abgegeben werden, sollten jedoch mündlich vorbereitet werden:

- **S 5-1:** Sei M das syntaktische Monoid der Sprache $\{a^nb^n\mid n\geq 1\}$ über dem Alphabet $\{a,b\}$. Beweisen Sie, dass die Sprachen [a] und [b] in M erkennbar sind, deren Produkt jedoch nicht!
- **S 5-2:** Wir betrachten die Sprache $L = \{(a^nb^n, c^n) : n = 0, 1, ...\}$ über dem Monoid $\{a, b\}^* \times c^*$ mit komponentenweiser Konkatenation. Stellen Sie diese Sprache als den Durchschnitt rationaler Sprachen dar!

Beweisen Sie, dass das Komplement von L rational ist, L selbst jedoch nicht rational! Dies zeigt, dass die Aussage über erkennbare Sprachen aus Aufgabe H 5-2 nicht für rationale Sprachen gilt.

Die Korrektheit sämtlicher Antworten muss bewiesen werden.