From lattice points to faces:
Theorem (Eler clation)
If P is a d-polytope with fix k-faces,
fo-fitfi-fi-t(-1)dfa=1
Pf. (For Plathie) Note P= O F°, so Ffore [Perler] A Not every combin type of politype is certificable with a coordinates! (Perler)
Lp(t)= $\sum_{\text{Fface}} L_{\text{Fo}}(t) = \sum_{\text{FcP}} (-t)^{\text{dim}F} L_{\text{F}}(-t)$
Recall [to] Lp(1) =1 (weff of to) so
1 = I (1) dim f (1) = I (-1) fr. 3
In 3-D, f-uctors of polytopes au classified.
In dim d, this seems hopeless. The "cd-index" (which
emoder flags, not just faul seems take than the frector.
But for simple/simplicial polytopes, not hope less!
9 linear Relations:
Let the hucker of P be
hu = fre-1 - (d-kn) fre-2 + (d-4+2) fre-3 ··· + (-1) u (du)
Stanley's trick:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
h= 1 3 3 1 8 h= 1 9 9 1

Theorem (Dehn-Somerville Relations) Fact (Vice) There gue all the If P is a simplicial depolytope, linea els between hk=hd-k 05k5d the fire Pf This francisks to

I(1) Ki (d-i) fin = I (1) du-i (di) fin which, after some manipulation, is equive to (Ex.) fr = 2 (-1) d-1 (i) fi $f_{(an)-(an)} = \sum_{i=1}^{a} (-1)^{a} \binom{i}{n} f_{(an)-(an)}$

Note: For each face,

(x) $f_a^{\Delta} = \sum_{k=0}^{a} (-1)^k (\frac{d-b}{d-a}) f_b^{\Delta}$ for the f-uctor of P^{Δ} (simple). So lets prove (x) for a simple polylope Q.

reach fore, $L_{F}(t) = \sum_{G \leq F} L_{G}(t) = \sum_{G \leq F} (-1)^{d_{1}m_{G}} L_{G}(-t)$ $L(P)_{d}$ So I LF(H) = I I C (H) I G LG(H) dimF=a = I (-1) dim G LG (-t) [7]
F7G
LG (-t) [7] = Interpolation = Interpolatio

Now just take coeffs of [to] as above B Non-linear Conditions: The "g-theoren" of Billen-lee-Stonley completely darrifier the frector of simplicial polytoper.

(43)