Application No.: 10/774,853 Inventor: CHEN, et al. Docket No.: SIL-001 OIPE METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC **BUDGETING** JUL 2 7.2004 1/17 -10 LANGUAGE OR **NETLIST** 21 **CONSTRAINTS** SYNTHESIS COMPONENT -16 OR LIBRARY **MAPPING POWER** -23 14 CONSTRAINTS (ACTIVITY) TECHNOLOGY **MAPPED** INFORMATION **NETLIST** 20 CONNECTION **PARASITIC** LENGTH/PARASITIC BUDGETING STEPPING **ENGINE ENGINE** -28 26 CONNECTION **IMPROVED** LENGTH/PARASITIC **NETLIST BUDGETS** 30 **PLACEMENT LAYOUT ENGINE ~32** PLACED AND **IMPROVED** LAYOUT

PARASITIC BUDGETING FLOW FIG. 1

BUDGETING

2/17

PARASITIC BUDGETING FLOW

FIG. 2A

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC BUDGETING

2/17

PARASITIC BUDGETING FLOW

FIG. 2A

PROCESS FLOW FOR ONE ITERATION OF THE ITERATIVE PARASITIC BUDGET OPTIMIZATION PROCESS

FIG. 2B

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC

BUDGETING

ALTERNATE IMPLEMENTATION FLOW FOR EACH PATH INSIDE EACH PARASITIC LEVEL ITERATION.

FIG. 2C

BUDGETING

ALTERNATE IMPLEMENTATION FLOW POWER OPTIMIZATION OF PARASITIC BUDGET

Title:

BUDGETING

6/17

CRITICAL PATH STAGE ELEMENT

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC BUDGETING

7/17

CRITICAL PATH REGISTER STRUCTURE

FIG. 4

BUDGETING

8/17

DELAY AS FUNCTION OF FANOUT AND CONNECTION LENGTH

BUDGETING

9/17

PARASITIC ELEMENTS CONTRIBUTING TO CELL DELAY (NAND2 WITH FANOUT=2)

FIG. 6A

DELAY OF A NAND2 COMPONENT AS A FUNCTION OF Cin MULTIPLIES

FIG. 6B

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC

BUDGETING

10/17

TECHNOLOGY NODE	Cin (pf)	LENGTH (um)		
	AVERAGE	Cwire=Cin		
CMOS 90nm	0.0025	6.02		
CMOS 0.13um	0.0052	23.99		
CMOS 0.18um	0.0079	40.63		
CMOS 0.25um	0.0154	104.84		

CONNECTION LENGTH WHERE Cwire MATCHES Cin AS FUNCTION OF PROCESS

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC

BUDGETING

11 / 17

DISTRIBUTION OF CONNECTION LENGTHS BY FANOUT IN A TYPICAL CIRCUIT

FIG. 8

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC BUDGETING

12/17

SYMBOLIC REPRESENTATION OF CRITICAL PATHS THAT CAN HAVE DIFFERENT CONNECTION LENGTHS AND MEET TIMING

FIG. 9

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC

BUDGETING

13/17

TYPICAL STANDARD CELL ROW LAYOUT WITH SHORT AND LONG CONNECTIONS

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC BUDGETING

14/17

TYPICAL FIELD PROGRAMMABLE GATE ARRAY CONNECTIONS WITH SPECIAL SHORT AND LONG CONNECTIONS

FIG. 11

BUDGETING

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC

15 / 17

		,										
PHYSICAL	WEIGHT		06	80	72	44	22	10	16	80	4	2
HIERARCHY	CLASS		0.1 SIMPLE	0.4 SIMPLE	1.0 SIMPLE	1.7 SIMPLE	4.0 SIMPLE	4.0 COMPLEX	10.6 SIMPLE	33.4 SIMPLE	57.1 SIMPLE	57.1 COMPLEX
Cin	MULTIPLE		0.1	0.4	1.0	1.7	4.0	4.0	10.6	33.4	1.73	57.1
PARASITIC	(SIMPLE CAP)		0.0007	0.0021	0.0050	0.0086	0.0200	0.0200	0.0529	0.1668	0.2857	0.2857
CONNECTION LENGTH	(UM)		2.00	00.9	14.00	24.00	26.00	26.00	148.00	467.00	800.00	800.00

CONNECTION LENGTH FROM A PARASITIC BUDGET TRANSLATION TO WEIGHTS FOR PLACEMENT AND PARTITIONING

16/17

CONNECTION LENGTH CLUSTERING AROUND A PLACEMENT OR PARTITIONING CUTLINE

FIG. 13

Title: METHOD OF OPTIMIZING IC LOGIC PERFORMANCE BY STATIC TIMING BASED PARASITIC

BUDGETING

17/17

PLACEMENT CLUSTERING BASED ON CONNECTION LENGTH FROM A PARASITIC BUDGET

FIG. 14