Chapter 7: Microarchitecture

Pipelined Performance

Pipelined Processor Performance Example

SPECINT2000 benchmark:

- 25% loads
- 10% stores
- 13% branches
- 52% R-type

Suppose:

- 40% of loads used by next instruction
- 50% of branches mispredicted
- What is the average CPI? (Ideally it's 1, but...)

Pipelined Processor Performance Example

Pipelined processor critical path:

```
T_{c\_pipelined} = \max \text{ of}
t_{pcq} + t_{mem} + t_{setup} \qquad \text{Fetch}
2(t_{RFread} + t_{setup}) \qquad \text{Decode}
t_{pcq} + 4t_{mux} + t_{ALU} + t_{AND-OR} + t_{setup} \qquad \text{Execute}
t_{pcq} + t_{mem} + t_{setup} \qquad \text{Memory}
2(t_{pcq} + t_{mux} + t_{RFwrite}) \qquad \text{Writeback}
```

- Decode and Writeback stages both use the register file in each cycle
- So each stage gets half of the cycle time $(T_c/2)$ to do their work
- Or, stated a different way, 2x of their work must fit in a cycle (T_c)

Pipelined Critical Path: Execute Stage

Pipelined Performance Example

Element	Parameter	Delay (ps)
Register clock-to-Q	t_{pcq_PC}	40
Register setup	$t_{ m setup}$	50
Multiplexer	$t_{ m mux}$	30
AND-OR gate	$t_{ m AND-OR}$	20
ALU	$t_{ m ALU}$	120
Decoder (Control Unit)	$t_{ m dec}$	25
Extend unit	$t_{ m dec}$	35
Memory read	$t_{ m mem}$	200
Register file read	$t_{RF\text{read}}$	100
Register file setup	t_{RF} setup	60

$$T_{c_pipelined} = t_{pcq} + 4t_{mux} + t_{ALU} + t_{AND-OR} + t_{setup}$$

Pipelined Performance Example

Program with 100 billion instructions

```
Execution Time = (# instructions) × CPI × T_c
= (100 \times 10^9)(1.23)(350 \times 10^{-12})
= 43 seconds
```

Processor Performance Comparison

Processor	Execution Time (seconds)	Speedup (single-cycle as baseline)
Single-cycle	75	1
Multicycle	155	0.5
Pipelined	43	1.7