Algoritmos para o problema de Satisfatibilidade (SAT solvers)

[Cap 1.6 - M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems.]

Integrantes:

Francisco Etcheverria - 341816 Guilherme Pinheiro - 342346 Henrique Trein - 00341853 Luiz Fernando de Oliveira - 00337514

Professor: André Grahl Pereira INF05508 – Lógica para Computação 2022/2

Introdução:

- Objeto de estudo desde 1960
- Satisfatibilidade
- NP Completo (Cook e Levin)
- DPLL (Davis-Putnam-Logemann-Loveland)
 CDCL (Conflict-Driven Clause Learning)

NP - Completo:

Classe de problema que não possui soluções de tempo polinomial, pelo menos até os dias atuais (intratáveis). Todavia, dado um certificado de solução, pode-se verificar se está correto em tempo polinomial. São aplicáveis apenas a problemas de decisão (os quais têm como resposta "Sim/Não" "1/0" "T/F"). Entretanto, algumas vezes, podem ser relacionados a problemas de optimização.

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	$2,0\times10^{-11}{ m seg}$	$4,0 \times 10^{-11} \text{seg}$	$6,0 \times 10^{-11} \text{seg}$	$8,0 \times 10^{-11} \text{seg}$	$1,0 \times 10^{-10} \text{seg}$
n^2	$4,0 \times 10^{-10} \text{seg}$	$1,6 \times 10^{-9} \text{seg}$	$3,6 \times 10^{-9} \text{seg}$	$6,4 \times 10^{-9} \text{seg}$	$1,0 \times 10^{-8} \text{seg}$
n^3	$8,0 \times 10^{-9} \text{seg}$	$6,4 \times 10^{-8} \text{seg}$	$2,2 \times 10^{-7} \text{seg}$	$5,1\times10^{-7}{ m seg}$	$1,0 \times 10^{-6} \text{seg}$
n^5	$2,2 \times 10^{-6} \text{seg}$	$1,0 \times 10^{-4} \text{seg}$	$7.8 \times 10^{-4} \text{seg}$	$3,3 \times 10^{-3} \text{seg}$	$1,0 \times 10^{-2} \text{seg}$
2 ⁿ	$1,0 \times 10^{-6} \text{seg}$	1,0seg	13,3 dias	$1,3\times10^5$ séc	$1,4 \times 10^{11} \text{séc}$
3 ⁿ	$3,4 \times 10^{-3} \text{seg}$	140,7dias	$1,3\times10^7$ séc	$1,7\times10^{19}$ séc	$5,9\times10^{28}$ séc

Definição de NP-Completo: tradução livre do livro "Introduction to Algorithms" de Thomas H. Cormen.

Tabela de dados: F. K. Miyazawa. Instituto de Computação/Unicamp, 2021.

OS SOLUCIONADORES DE SATISFATIBILIDADE A SEREM DESCRITOS, SÃO DOCUMENTADOS NO LIVRO DE M. HUTH E M. RYAN "Logic in Computer Science: Modelling and reasoning about systems".

Linear Solver:

- Baseado em propagação de marcas
- Eficiente mas incompleto
- Objetivo: determinar restrições para que a fbf seja verdadeira.
- Marcas: para que a fbf faça sentido, uma dada subfórmula precisa ter valor lógico X. Logo, é feita uma marcação.
- DAGs

1 .Transformação da fbf em uma fbf com apenas conjunções e negações:

$$T(p) = p$$

$$T(\phi_1 \land \phi_2) = T(\phi_1) \land T(\phi_2)$$

$$T(\phi_1 \to \phi_2) = \neg (T(\phi_1) \land \neg T(\phi_2))$$

$$T(\neg \phi) = \neg T(\phi)$$

$$T(\phi_1 \lor \phi_2) = \neg (\neg T(\phi_1) \land \neg T(\phi_2))$$

- 2. Criação da árvore sintática:
- 3. Criação do DAG:
- 4. Propagação de marcas (T/F) com enumeração da lógica:
 - seguir as regras do slide 5

Exemplo: Solucionador Linear

$$\neg(P \land \neg Q) \land \neg Q)$$

Fórmula satisfazível

forcing laws for negation

true conjunction forces true conjuncts

true conjunctions force true conjunction

false conjuncts force false conjunction

false conjunction and true conjunct force false conjunction

EXERCÍCIOS:

b)
$$(P \land \neg (P \land \neg Q)) \land \neg Q$$

c)
$$(P \rightarrow Q) \land (P \rightarrow \neg Q) \land (P \lor R)$$

PROBLEMA!

$$T(p) = p$$

$$T(\phi_1 \land \phi_2) = T(\phi_1) \land T(\phi_2)$$

$$T(\phi_1 \to \phi_2) = \neg (T(\phi_1) \land \neg T(\phi_2))$$

$$T(\neg \phi) = \neg T(\phi)$$

$$T(\phi_1 \lor \phi_2) = \neg (\neg T(\phi_1) \land \neg T(\phi_2))$$

Cubic Solver:

- Utilizado quando todas as marcas são consistentes, mas nem todos os nodos foram marcados.
- Continua sendo eficiente mas incompleto.

Após ser aplicado o solucionador linear e ainda existirem nodos não marcados, escolha um nó n.

- Determine marcas temporárias forçadas quando n = T.
- Determine marcas temporárias forçadas quando n = F.

Se em ambos testes houverem contradições, o algoritmo para.

Caso contrário, todos os nodos que receberam a **mesma** valoração em ambos os testes passam a ter aquela valoração **permanentemente**.

O processo se repete até que:

- Existem marcas permanentes contraditórias, informando que nossa fórmula é insatisfazível.
- Todos os nodos foram marcados e não existem contradições, logo nossa fórmula é satisfazível.
- 3. Todos os nodos não marcados permanentemente foram testados, mas não há valorações iguais para ambos testes de um nodo. Neste caso, terminamos a análise de modo **inconclusivo**.

Q	Р
٧	F
F	F

EXERCÍCIOS:

- a) $(P \rightarrow Q) \land (P \rightarrow \neg Q) \land (P \lor R)$
- b) $\neg(((\neg P \land \neg(P \land Q)) \land \neg(\neg(P \land Q) \land R)) \land (\neg(\neg(P \land Q) \land R)) \land \neg(\neg(P \land Q) \land R))$

forcing laws for negation

true conjunction forces true conjuncts

true conjunctions force true conjunction

false conjuncts force false conjunction

false conjunction and true conjunct force false conjunction

OTIMIZAÇÃO:

Considere o estado de um DAG logo após explorarmos as consequências de uma marca temporária em um nó de teste.

- Se esse estado marcas permanentes mais temporárias contiver restrições contraditórias, podemos apagar todas as marcas temporárias e marcar permanentemente o nó de teste com a marca dual do seu teste. Ou seja, se marcar o nó n com v resultou em uma contradição, ele receberá uma marca permanente v̄, onde T = F e ∀ = T; caso contrário,
- Se esse estado conseguir marcar todos os nós com restrições consistentes, relatamos essas marcações como uma prova de satisfatibilidade e encerramos o algoritmo.

$$T(p) = p$$

$$T(\phi_1 \land \phi_2) = T(\phi_1) \land T(\phi_2)$$

$$T(\phi_1 \to \phi_2) = \neg (T(\phi_1) \land \neg T(\phi_2))$$

$$T(\neg \phi) = \neg T(\phi)$$

$$T(\phi_1 \lor \phi_2) = \neg(\neg T(\phi_1) \land \neg T(\phi_2))$$

Aplicações:

BIBLIOGRAFIA:

M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press, 2004.

Licenciatura em Engenharia Informática e de Computadores (LEIC), Técnico Lisboa. "Algoritmos de SAT". Resumos LEIC-A.

S. Prince. SAT Solvers I: Introduction and applications. Borealis AI, 2020.

M. Finger. SAT Solvers, A Brief Introduction. Instituto de Matemática e Estatística - USP

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. "Introduction to Algorithms" - Third Edition.

F. K. Miyazawa. Instituto de Computação/Unicamp, 2021.