$$\sigma_T^2 = \pi^2 \frac{I}{M^3 g l} \sigma_M^2 + \pi^2 \frac{I}{M g l^3} \sigma_l^2$$

$$\bar{T} = \frac{\sum_{i=1}^n T_i}{n}$$

$$\sigma_T^2 = \frac{\sum_{i=1}^n (T_i - \bar{T})^2}{n-1}$$

$$\sigma_{\bar{T}} = \frac{\sigma_T}{\sqrt{n}}$$

K	Intervallo	$ar{T}_K$	h_K	$F_K = \frac{h_K}{n}$	f_K
1	1,188-1,218	1,195	4	0,04	3,92
2	1,218-1,248	1,224	9	0,09	8,82
3	1,248-1,278	1,26	16	0,16	15,67
4	1,278-1,408	1,291	19	0,19	18,63
5	1,308-1,338	1,322	19	0,19	18,63
6	1,338-1,368	1,347	17	0,17	16,67
7	1,368-1,398	1,376	16	0,16	15,67
8	1,398-1,428	1,41	2	0,02	1,96

$$\chi^{2} = \sum_{k=1}^{8} \frac{(h_{K} - p_{K} \cdot n)}{p_{K} \cdot n} = 8,94$$

$$\tilde{\chi}^{2} = \frac{\chi^{2}}{d} = 1,79$$

$$p(\tilde{\chi}^{2} \ge \tilde{\chi}_{o}^{2}) = 13,5\% > 5\%$$

$$\sigma_{g} = \frac{4\pi^{2}}{B^{2}} \sigma_{B} = 0,2$$

$$\Delta = n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}$$

$$A = \frac{\sum_{i} x_{i}^{2} \cdot \sum_{i} y_{i} - \sum_{i} x_{i} \cdot \sum_{i} x_{i} y_{i}}{\Delta}$$

$$B = \frac{n \sum_{i} x_{i} y_{i} - \sum_{i} x_{i} \cdot \sum_{i} y_{i}}{\Delta}$$