Л4. Нормалізація відношень, нормальні форми

Перша нормальна форма

Важко дати визначення поняттю, яке зрозуміле усім. Така ситуація з визначенням відношення у *Першій Нормальній Формі* ($1H\Phi$). Але не говорити про це неможна, тому що на основі $1H\Phi$ будуються інші більш високі нормальні форми. Дати визначення $1H\Phi$ складно внаслідок його тривіальності.

Означення 4.1. Говорять, що відношення R знаходиться у $1H\Phi$, якщо воно задовольняє означенню 4.2.

Означення 4.2. Відношення R, яке визначено на множині доменів D1,...Dn, містить дві частини: заголовок і тіло.

Це, зрозуміло, тавтологія: дійсно, з означення 4.2 слідує, що інших відношень у РБД не існує. Іншими словами, означення 4.2 описує, що є відношенням, а що — ні. А це означає, що відношь, які не знаходяться у першій нормальній формі просто немає.

В іншій спосіб, можна навести характеристики, яким має відповідати відношення (таблиця) у 1НФ. Будемо вимагати, що повинні виконуватися такі умови:

- поля містять неділиму інформацію;
- у таблиці відсутні повтори полів (однотипові групи).

Прикладом відношення з повторами може служити таблиця з результатами здачі іспитів студентами факультету (див. мал.4.1).

Студент	Група	Диф.рівн.	Програм.	Мат.аналіз
Петренко I.C.	K-23	3	5	5
Шевчук Ю.Д.	K-20	4	4	5
Семенов В.В.	K-20	-	3	3

Мал. 4.1. Приклад таблиці з повторами

Таблиця має заголовок і тіло, але її структура неоптимізована за рахунок групи полів одно типового призначення. Така структура приводить до появи надлишковості та аномаліям (див. попередню лекцію).

Для перетворення таблиці з мал.4.1 достатньо реструктуризувати або розбити її на 2 відношення (краще, навіть, на 3: замінити поле Студент на зовнішній ключ з таблиці Студенти):

Студент	Група	Дисципліна	Оцінка
Петренко I.C.	K-23	Диф.рівн.	3
	••••		
Семенов В.В.	К-20	Мат.аналіз	3

Мал. 4.2.1. Реструктуризація таблиці

Студент	Група	Дисципліна	Оцінка
Петренко I.C.	K-23	1	3
• • •	•••		
Семенов В.В.	K-20	3	3

Дисципліна	Назва
1	Диф.рівн.
2	Програмування
3	Мат.аналіз

Мал. 4.2.2. Побудова додаткового відношення

Друга нормальна форма форма.

До 2НФ висуваються вимоги, які мають такий зміст:

- таблиця-відношення має бути у 1 НФ;
- будь-яке неключове поле повинно однозначно ідентифікуватися ключовими полями. У нашому відношенні поки відсутні ключі. Додамо ключове поле №запису.

Отримаємо новий вигляд відношення

№зап	Студент	Група	Дисципліна	Оцінка
1	Петренко I.C.	К-23	Диф.рівн.	3
	•••	•••	• • • •	
8	Семенов В.В.	К-20	Мат.аналіз	3

Мал. 4.3.1. На основі реструктуризації таблиці

№зап	Студент	Група	Дисципліна	Оцінка
1	Петренко I.C.	K-23	1	3
	•••	•••		
8	Семенов В.В.	К-20	3	3

Дисципліна	Назва
1	Диф.рівн.
2	Програмування
3	Мат.аналіз

Мал. 4.3.2. На основі двох відношень

Третя нормальна форма

Вимогами щодо 3НФ ϵ :

- таблиця-відношення має бути у 2 НФ;
- жодне з неключових полів не повинне однозначно ідентифікуватися значенням іншого не ключового поля (групи полів).

Наведення таблиці-відношення до $3H\Phi$ передбачає виділення в окремі таблиці тих полів, які не залежать від ключа:

№зап	Студент	Дисципліна	Оцінка
1	112	1	3
	•••	••••	
8	51	3	3

Дисципліна	Назва
1	Диф.рівн.
2	Програмування
3	Мат.аналіз

№студента	ПІБ	Група
112	Петренко I.C.	20
	•••	•••
51	Семенов В.В.	23

№групи	Група
20	К-20
• • •	•••
23	К-23

Наведений приклад ϵ також показовим з точки зору зв'язку багато-до-багатьох відношеннях між таблицями РБД.