Andoni's Algorithm

• Max stability
$$\Longrightarrow \max(\mathbf{e}_1^{-1/p} | x_1 |, ..., \mathbf{e}_n^{-1/p} | x_n |) \equiv \mathbf{e}^{-1/p} F_p(x)^{1/p}$$

\boldsymbol{E}

$e_1^{-1/p}$				x_1
	•••			
		•••		
			$\mathbf{e}_n^{-1/p}$	\mathcal{X}_n

$$\|Ex\|_{\infty} \approx F_p(x)^{1/p}$$

If
$$m = \Theta(n^{1-2/p} \log n)$$
, then $||SEx||_{\infty} \approx F_p(x)^{1/p}$

Andoni's Algorithm

• Max stability $\Longrightarrow \max(\mathbf{e}_1^{-1/p} | x_1 |, ..., \mathbf{e}_n^{-1/p} | x_n |) \equiv \mathbf{e}^{-1/p} F_p(x)^{1/p}$

$$||Ex||_{\infty} \approx F_p(x)^{1/p}$$

If
$$m = \Theta(n^{1-2/p} \log n)$$
, then $||SEx||_{\infty} \approx F_p(x)^{1/p}$

Implementing in a Stream