Scilab Textbook Companion for A Comprehensive Textbook Of Applied Physics by M. Kumar¹

Created by
Ashana Yamunashankar Shukla
Electrical
Electrical Engineering
Sardar Patel College of Engineering
College Teacher

Cross-Checked by Lavitha Pereira

May 27, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: A Comprehensive Textbook Of Applied Physics

Author: M. Kumar

Publisher: Abhishek Publication, Chandigarh

Edition: 1

Year: 2009

ISBN: 978-81-8247-226-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	ist of Scilab Codes	4
1	Waves and Vibrations	7
2	Application of Sound Waves	12
3	Principles of Optics	17
4	Electrostatics	23
5	Electricity	33

List of Scilab Codes

Exa 1.1	1	7
Exa 1.2	2	7
Exa 1.3	3	7
Exa 1.4	4	8
Exa 1.5	5	8
Exa 1.6	6	8
Exa 1.7	7	9
Exa 1.8	8	9
Exa 1.9	9	9
Exa 1.10	10	10
Exa 1.11	11	10
Exa 1.12	12	11
Exa 2.1	1	12
Exa 2.2	2	12
Exa 2.3	3	13
Exa 2.4	4	13
Exa 2.5	5	14
Exa 2.6	6	14
Exa 2.7	7	15
Exa 2.8	8	15
Exa 3.1	1	17
Exa 3.2	2	17
Exa 3.3	3	18
Exa 3.4	4	18
Exa 3.5	5	18
Exa 3.6	6	19
Exa 3.7	7	19
Exa 3.8	8	19

Exa 3.9	9	20
Exa 3.10	10	20
Exa 3.11	11	20
Exa 3.12	12	21
Exa 3.13	13	21
Exa 3.14	14	22
Exa 3.15	15	22
Exa 4.1	1	23
Exa 4.2	2	23
Exa 4.3	3	23
Exa 4.4	4	24
Exa 4.5	5	24
Exa 4.6	6	24
Exa 4.7	7	25
Exa 4.8	8	25
Exa 4.9	9	25
Exa 4.10	10	26
Exa 4.11	11	26
Exa 4.12	12	27
Exa 4.13	13	27
Exa 4.14	14	27
Exa 4.15	15	28
Exa 4.16	16	28
Exa 4.17	17	28
Exa 4.18	18	29
Exa 4.19	19	29
Exa 4.20	20	29
Exa 4.21	21	30
Exa 4.22	22	30
Exa 4.23	23	30
Exa 4.24	24	31
Exa 4.25	25	31
Exa 4.26	26	32
Exa 4.27	27	32
Exa 5.1	1	33
Exa 5.2	2	33
Exa 5.3	3	34
Exa. 5.4	4	34

Exa 5.5	5 .															34
Exa 5.6	6 .															35
Exa 5.7	7.															35
Exa 5.8	8.															35
Exa 5.9	9.															36
Exa 5.10	10															36
Exa 5.11	11															36
Exa 5.12	12															37
Exa 5.13	13															37
Exa 5.14	14															38
Exa 5.15	15															38
Exa 5.16	16															39
Exa 5.17	17															39
Exa 5.18	18															40
Exa 5.19	19															40
Exa 5.20	20															41
Exa 5.21	21															41
Exa 5.22	22															41
Exa 5.23	23															42
Exa. 5.24	24															42

Chapter 1

Waves and Vibrations

Scilab code Exa 1.1 1

```
1 clc;
2 n=512; //frequency in Hz
3 l=67; //wavelength in cm
4 v=n*1; //calculating velocity
5 disp(v,"Velocity in cm/sec = "); //displaying result
```

Scilab code Exa 1.2 2

```
1 clc;
2 v=340; //velocity in m/sec
3 l=0.68; //wavelength in m
4 n=v/l; //calculating frequency
5 disp(n,"Frequency in Hz = "); //displaying result
```

Scilab code Exa 1.3 3

```
1 clc;
2 v=3*10^8; //velocity in m/sec
3 n=500*10^3; //frequency in Hz
4 l=v/n; //calculating wavelength
5 disp(1,"Wavelength in m = "); //displaying result
```

Scilab code Exa 1.4 4

```
1 clc;
2 v=330; //velocity in m/sec
3 n=560; //frequency in Hz
4 l=v/n; //calculating wavelength
5 disp(1*30,"Distance travelled in 30 vibrations in m
= "); //displaying result
```

Scilab code Exa 1.5 5

```
1 clc;
2 s=90;  // distance in m
3 u=0;  // initial velocity in m/sec
4 t=sqrt(90/4.9);  // calculating time using
        kinematical equation
5 t1=4.56-t;  // calculating time taken by sound to
        travel
6 v=s/t1;  // calculating velocity
7 disp(v," Velocity in m/sec = ");  // displaying result
```

Scilab code Exa 1.6 6

```
1 clc;
```

```
2 11=1.5;  //wavelength in m
3 12=2;  //wavelength in m
4 v1=120;  //velocity in m/sec
5 n=v1/11;  //calculating frequency
6 v2=n*12;  //calculating velocity
7 disp(v2,"Velocity in m/sec = ");  //displaying result
```

Scilab code Exa 1.7 7

Scilab code Exa 1.8 8

Scilab code Exa 1.9 9

```
1 clc;
2 n=400;    //frequency in Hz
3 v=300;    //velocity in m/sec
4 l=v/n;    //calculating wavelength
5 disp(1,"Wavelength in m = ");  //displaying result
```

Scilab code Exa 1.10 10

```
1 clc;
2 a=20;    //amplitude in cm
3 n=6;    //frequency per second
4 w=2*(%pi)*n;    //omega in radians/sec
5 disp(w,"Omega in radians/sec = ");    //displaying result
```

Scilab code Exa 1.11 11

```
1 clc;
           //amplitude in cm
2 a=6;
3 n=9;
          //frequency in Hz.
4 vmax=2*(%pi)*n*6; //calculating velocity in cm/sec
5 acc=-((18*(\%pi))^2)*6; //calculating acc. in m/sec
     square
6 disp(vmax, "Maximum velocity in cm/sec = "); //
     displaying result
7 disp("Velocity at extreme position = 0");
     displaying result
8 disp("Accelaration at mean position = 0"); //
     displaying result
9 disp(acc, "Accelaration at extreme position in m/sec
     square = "); //displaying result
```

Scilab code Exa 1.12 12

```
1 clc;
2 g=9.8;  //gravitational constant
3 m=50;  //mass in kg
4 l=0.2;  //length in m
5 T=0.6;  //time period
6 k=(m*g)/l;  //calculating constant
7 m=2450*((T/(2*(%pi)))^2);  //calcualting mass using given time period
8 disp(m,"Mass of body in kg = ");  //displaying result
```

Chapter 2

Application of Sound Waves

Scilab code Exa 2.1 1

Scilab code Exa 2.2 2

```
4 t=1.5;  //time in second
.
5 s=25000;  //area in metre
    cube.
6 a=(0.16*v)/(t*s);  //using Sabine
    formula for calculating a
7 disp(a,"Average Absorbing Power of Surface = "); //
    Displaying Result.
```

Scilab code Exa 2.3 3

Scilab code Exa 2.4 4

```
//absorption due to glass
8 \text{ a3s3=0.06*50};
     work.
                             //absorption due to audience
9 a4s4=4.2*370;
      on spungy and wooden
10 // seats.
11 a5s5=2*230;
                              //absorption due to empty
      seats.
12 sum=a1s1+a2s2+a3s3+a4s4+a5s5; //total absorption of
      cinema hall.
13 T = (0.165 * v) / sum;
                              //calculating T using
      Sabine Formula.
14 disp(T, "Reverberation Time = "); // Displaying
      Result.
   Scilab code Exa 2.5 5
1 clc;
2 disp("Example 2.5");
                                    //length in
3 1 = 10;
      centimetres.
```

6 n=(1/(2*1))*sqrt(Y/R); //calculating frequency of

8 disp(n, "Frequency of vibration in Hz.");

//Young's Modulus in

//Density in gram/cc

Scilab code Exa 2.6 6

dyne/cm square.

vibration using

Displaying Result.

7 //young's modulus.

 $4 \quad Y = 20 * 10^{11};$

5 R=8;

```
1 clc;
2 disp("Example 2.7");
```

Scilab code Exa 2.7 7

Scilab code Exa 2.8 8

Chapter 3

Principles of Optics

Scilab code Exa 3.1 1

Scilab code Exa 3.2 2

Scilab code Exa 3.3 3

```
1 clc;
2 P=2.5;  //Power in D
3 f=-(1/P);  //calculating f in m
4 disp(f, "Focal length in m = ");  //displaying result
```

Scilab code Exa 3.4 4

```
1 clc;
2 m=4;    //magnigication
3 f=20;    //focal length in cm
4 u=(20*3)/(4);    //on simplifying (1/f)=(1/v)-(1/u)
5 v=(4*u);    //calculating v in cm
6 disp(u,"Object distance in cm = ");    //displaying result
7 disp(v,"Image distance in cm = ");    //displaying result
```

Scilab code Exa 3.5 5

Scilab code Exa 3.6 6

```
1 clc;
2 fe=5; //focal length in cm
3 D=25; //distance od distinct vision in cm
4 m=1+(D/fe); //calculating magnifying power
5 disp(m,"magnifying Power = "); //displaying result
```

Scilab code Exa 3.7 7

```
1 clc;
2 fe=5; //focal length in cm
3 D=25; //distance od distinct vision in cm
4 mo=30/(1+(D/fe)); //calculating magnification of objective lens
5 disp(mo, "Magnification produced by objective lens = "); //displaying result
```

Scilab code Exa 3.8 8

```
1 clc;
2 u=-6;   //object distance in cm
3 fo=4;   //focal distance in cm
4 fe=6;   //focal length in cm
5 D=25;   //distance of distinct vision in cm
6 v=(12);   //using (1/f)=(1/v)-(1/u)
7 m=(v/u)*(1+(D/fe));   //calculating m
8 disp(v,"Image distance in cm = ");   //displaying result
```

```
9 disp(-m, "Magnifying Power = ");  //displaying
  result
```

Scilab code Exa 3.9 9

Scilab code Exa 3.10 10

```
1 clc;
2 fo=0.5;  //focal length of eye lens
3 D=25;  //distance of distinct vision
4 L=15;  //length in cm
5 m=375;  //magnification
6 fe=(-L*D)/(fo*((L/fo)-m));  //calculating fe
7 disp(fe, "Focal length of eye lens in cm = ");  // displaying result
```

Scilab code Exa 3.11 11

```
1 clc;
2 m=5;  //magnifying power
3 L=24;  //length in cm
4 fe=4;  //focal length in cm
5 fo=5*fe;  //calculating fo
6 disp(fo, "Focal length of lens in cm = ");  // displaying result
```

Scilab code Exa 3.12 12

Scilab code Exa 3.13 13

```
1 clc;
2 M=5;    //Magnifying power
3 fo=10;    //focal length of eye lens
4 fe=fo/M;    //calculating fe
5 disp(fe, "Focal length of eye lens in cm = ");    // displaying result
```

Scilab code Exa 3.14 14

```
1 clc;
2 fo=75;  //focal length of eye lens
3 D=25;  //distance of distinct vision
4 fe=5;  //focal of eye lens in cm
5 M=-(fo/fe)*(1+(fe/D));  //calculating M
6 disp(M,"Magnifying power = ");  //displaying result
```

Scilab code Exa 3.15 15

```
1 clc;
2 M=7;    //magnifying power
3 L=40;    //length
4 fe=(40/8);    //focal length of eye lens in cm
5 fo=(7*fe);    //calculating focal length
6 disp(fo,"Focal Length of lens in cm =");    //displaying result
```

Chapter 4

Electrostatics

Scilab code Exa 4.1 1

```
1 clc;
2 q=1;    //no of coulomb
3 e=1.6*10^-19;    //charge on an electron
4 n=(q/e);    //calculating no of electrons
5 disp(n,"No of electrons = ");    //displaying result
```

Scilab code Exa 4.2 2

```
1 clc;
2 F=4.5*9.8;  //in Newton
3 q=sqrt(((0.03^2)*4.5*9.8)/(9*10^9));  //calculating
    q using F=(1/4*3.14*eo)*((q1*q2)/(r^2))
4 disp(q,"Charge in coulomb = ");  //displaying result
```

Scilab code Exa 4.3 3

```
1 clc;
2 q1=2*10^-7;    //charge in C
3 q2=3*10^-7;    //charge in C
4 r=30*10^-2;    //r in m
5 F=(9*10^9)*((q1*q2)/r^2);    //calculating F
6 disp(F, "Force in Newton = ");    //displaying result
```

Scilab code Exa 4.4 4

```
1 clc;
2 q1=1;    //charge in C
3 q2=1;    //charge in C
4 r=1;    //r in m
5 F=(9*10^9)*((q1*q2)/r^2);    //calculating F
6 disp(F, "Force in Newton = ");    //displaying result
```

Scilab code Exa 4.5 5

Scilab code Exa 4.6 6

```
1 clc;
2 q1=1.6*10^-19;  //charge in C
3 q2=-1.6*10^-19;  //charge in C
4 r=10^-9;  //r in m
5 F=(9*10^9)*((q1*q2)/r^2);  //calculating F
6 disp(F, "Force in Newton = ");  //displaying result
```

Scilab code Exa 4.7 7

```
1 clc;
2 Va=-10; //voltage in volts
3 W=100; //work in Joule
4 q=2; //charge in Coulomb
5 v=(Va)+(W/q); //calculating v
6 disp(v,"Voltage in Volts = "); //displaying result
```

Scilab code Exa 4.8 8

```
1 clc;
2 eo=(8.854*10^-12); //constant
3 E=2; //magnitude of electric field in N/C
4 r=0.5; //r in m
5 q=E*4*(%pi)*(eo)*(r^2); //calculating charge
6 disp(q,"Charge in Coulomb = "); //displaying result
```

Scilab code Exa 4.9 9

```
1 clc;
2 e=-1.6*10^-19; //charge on electron in Coulomb
3 q=20*10^-6; //charge in Coulomb
```

```
4 r1=0.1; //r1 in m
5 r2=0.05; //r2 in m
6 Va=9*10^9*(q/r1); //calculating voltage at A
7 Vb=9*10^9*(q/r2); //calculating voltage at B
8 V=Va-Vb; //potential difference
9 W=V*e; //calculating work done in joule
10 disp(W,"Work done to take the electron from A to B
    in Joule = "); //displaying result
```

Scilab code Exa 4.10 10

Scilab code Exa 4.11 11

```
1 clc;
2 eo=8.85*10^-12; //constant
3 q=2*10^-6; //charge in coulomb
4 l=9; //length in cm
5 fi=(q/eo); //calcualting flux in (N m square)/c
6 disp(fi,"Flux through the surface in (N m square)/c
= "); //displaying result
```

Scilab code Exa 4.12 12

```
1 clc;
2 eo=8.85*10^-12; //constant
3 r=1.2; //r in m
4 t=80*10^-6; //surface sharge density in c/m square
5 q=t*4*(%pi)*(r^2); //calculating charge
6 fi=q/eo; //calculating flux
7 disp(fi, "Flux in N m square/c = "); //displaying
    result
```

Scilab code Exa 4.13 13

```
1 clc;
2 eo=8.85*10^-12; //constant
3 E=9*10^4; //Electric field in N/C
4 r=2*10^-2; //r in m
5 L=2*(%pi)*E*eo*r; //calculating linear charge density
6 disp(L,"Linear charge density per cm = "); // displaying result
```

Scilab code Exa 4.14 14

Scilab code Exa 4.15 15

```
1 clc;
2 r=0.05; // in m
3 eo=8.85*10^-12; //constant
4 q=10^-9; //charge at point P in Coulomb
5 E=q/(4*(%pi)*eo*(r^2)); //calculating electric field
6 disp(E,"Electric field in v/m = "); //displaying result
7 r1=0.2; //in m
8 V1=q/(4*(%pi)*eo*r1); //calculating potential difference
9 disp(V1," Potential difference between two points in Volt = "); //displaying result
```

Scilab code Exa 4.16 16

```
1 clc;
2 eo=8.85*10^-12; //constant
3 o=80*10^-6; //surface charge density in c/ square
4 r=1.2; //in m
5 q=o*(%pi)*(r^2); //calculating charge in Coulomb
6 fi=q/eo; //calculating electric flux
7 disp(q,"Charge in Coulomb = "); //displaying result
8 disp(fi,"Electric flux in N m square/c = "); // displaying result
```

Scilab code Exa 4.17 17

```
1 clc;
2 V=250; //potential difference in Volt
3 C=10^-11; //capacitance in farad
4 q=C*V; //calculating charge
5 disp(q, "Charge in Coulomb = "); //displaying result
  Scilab code Exa 4.18 18
1 clc;
2 r=6.4*10^6; //in m
3 \text{ C=r/(9*10^9)}; // \text{calculating charge}
4 disp(C, "Capacitance in Farad = "); //displaying
     result
  Scilab code Exa 4.19 19
1 clc;
2 C=2; //capacitance in Farad
3 d=0.5*10^{-2}; //distance in m
4 eo=8.85*10^-12; //constant
5 A=(C*d)/(eo); //calculating area
6 disp(A, "Area in m square = "); //displaying result
  Scilab code Exa 4.20 20
1 clc;
2 A=0.02; //area in m square
3 r=0.5; //r in m
4 d=(A/(4*(\%pi)*r)); //calculating distance
5 disp(d, "Distance between the plates in m = "); //
     displaying result
```

Scilab code Exa 4.21 21

```
1 clc;
2 eo=8.85*10^-12; //constant
3 A=1; //area in m square
4 d=2*10^-3; //r in m
5 K=4; //constant
6 C=(K*eo*A)/d; //calculating capacitance
7 disp(C, "Capacitance in Farad = = "); //displaying result
```

Scilab code Exa 4.22 22

```
1 clc;
2 cm=10*10^-6; //capacitance in Farad
3 K=2; //constant
4 co=cm/K; //calculating co
5 disp(co,"capacity of capacitor with air between the plates in Farad = "); //displaying result
```

Scilab code Exa 4.23 23

```
1 clc;
2 v=100;    //v in volt
3 c1=8*10^-6;    //capacitance in Farad
4 c2=12*10^-6;    //capacitance in Farad
5 c3=24*10^-6;    //capacitance in Farad
6 cs=4/(10^6);    //calculating series capacitance
7 cp=(c1+c2+c3);    //calculating parallel capacitance
```

```
8 disp(cs, "Equivalent Series capacitance in farad = ")
    ; //displaying result
9 disp(cp, "Equivalent parallel capacitance in farad =
        "); //displaying result
10 qs=cs*v; //calculating charge
11 disp(qs, "charge on plate in Coulomb = "); //
        displaying result
```

Scilab code Exa 4.24 24

```
1 clc;
2 C=9*10^-10; //capacitance in farad
3 V=100; //in volt
4 U=(1/2)*(C*(V^2)); //calculating energy stored
5 disp(U,"Energy stored in Joule = "); //displaying result
```

Scilab code Exa 4.25 25

```
1 clc;
2 eo=8.85*10^-12; //constant
3 A=90*10^-4; //area in m square
4 d=2.5*10^-3; //distance in m
5 V=400; //in volt
6 C=(eo*A)/d; //calculating capacitance
7 disp(C,"Capacitance in Farad = "); //displaying result
8 W=(1/2)*(C*(V^2)); //calculating electrical energy stored
9 disp(W,"Electrical Energy stored in capacitor in Joule = "); //displaying result
```

Scilab code Exa 4.26 26

Scilab code Exa 4.27 27

```
1 clc;
2 eo=8.85*10^-12; //constant
3 V=6; //v in volt
4 A=25*10^-4; //area in m square
5 d=10^-3; //distance in m
6 q=(eo*A*V)/d; //calculating charge
7 W=q*V; //calculating work done
8 disp(q,"Charge through battery in Coulomb = "); //displaying result
9 disp(W,"Work done by Battery in Joule = "); //displaying result
```

Chapter 5

Electricity

Scilab code Exa 5.1 1

```
1 clc;
2 n=10^6;  //no. of electrons
3 e=1.6*10^-19;  //charge on an electron in C
4 q=n*e;  //calculating total charge
5 t=10^-3;  //time in second
6 I=q/t;  //calculating current
7 disp(I,"Current flowing in Ampere = ");  //displaying result
```

Scilab code Exa 5.2 2

```
1 clc;
2 I=300*10^-3;  //current n Ampere
3 t=60;  //time in second
4 e=1.6*10^-19;  //chatge on electron in C
5 q=I*t;  //calculating charge
6 n=q/e;  //calculating no of electrons
7 disp(n,"No. of electrons = ");  //displaying result
```

Scilab code Exa 5.3 3

```
1 clc;
2 V=200; //voltage in volt
3 R=100; //resistance in Ohm
4 e=1.6*10^-19; //charge on an electron in C
5 I=V/R; //Ohm's law
6 t=1; //time in second
7 q=I*t; //calculating charge
8 n=q/e; //calculating no of electrons
9 disp(n,"No. of electrons = "); //displaying result
```

Scilab code Exa 5.4 4

```
1 clc;
2 l=15;  //length in m
3 A=6*10^-7;  //area in m square
4 R=5;  //resistance in Ohm
5 p=(A*R)/l;  //calculating resistivity
6 disp(p, "Resistivity in Ohm metre = ");  //displaying result
```

Scilab code Exa 5.5 5

```
1 clc;
2 l=0.1; //length in m
3 A=10^-4; //area in m square
4 R=0.01; //resistance in Ohm
5 p=(A*R)/l; //calculating resistivity
```

```
6 disp(p, "Resistivity in Ohm metre = "); //displaying
    result
```

Scilab code Exa 5.6 6

```
1 clc;
2 L=1; //length in m
3 r=0.2*10^-3; //radius in m
4 A=%pi*(r)^2; //calculating area
5 disp(A)
6 R=2; //resistance in Ohm
7 P=(R*A)/L; //calculating resistivity
8 disp(P, "Resistivity in Ohm. metre = "); // displaying result
```

Scilab code Exa 5.7 7

```
1 clc;
2 R1=5; //resisitance in Ohm
3 R2=9*5; //calculating using R2/A1=(12/A2)*(A1/l1)
4 disp(R2,"Resisitance in Ohm = "); //displaying result
```

Scilab code Exa 5.8 8

```
1 clc;
2 R1=5; //resisitance in Ohm
3 R2=4*5; //calculating using R2/A1=(12/A2)*(A1/l1)
4 disp(R2, "Resisitance in Ohm = "); //displaying
    result
```

Scilab code Exa 5.9 9

```
1 clc;
2 R1=2;  //resisitance in Ohm
3 R2=4;  //resistance in Ohm
4 R3=5;  //resistance in Ohm
5 R=(R1^-1)+(R2^-1)+(R3^-1);  //calculating parallel resistance
6 Rp=(1/R);
7 disp(Rp, "Resisitance in Ohm = ");  //displaying result
```

Scilab code Exa 5.10 10

```
1 clc;
2 Rs=40; //resisitance in Ohm
3 disp("R2=8 when R1=32, R2=32 when R1=8 Resisitance in Ohm"); //displaying result using (1/Rp)=(1/R1)+(1/R2)
```

Scilab code Exa 5.11 11

```
1 clc;
2 V=2;  //in volts
3 R1=30;  //resisitance in Ohm
4 R2=60;  //resistance in Ohm
5 Rp=(30*60)/(30+60);  //calculating parallel resistance
```

```
6 disp(Rp, "Resisitance in Ohm = "); //displaying
    result
7 I=V/Rp; //Ohm's law
8 disp(I, "Current in Ampere = "); //displaying result
```

Scilab code Exa 5.12 12

```
1 clc;
2 R1=2; //resisitance in Ohm
3 R2=3; //resistance in Ohm
4 R3=1; //resistance in Ohm
5 Rp=(R1*R2)/(R1+R2); //calculating parallel
       resistance
              //1 Ohm in series
6 R = Rp + 1;
7 disp(R,"(1)) Equivalent Resisitance in Ohm = "); //
       displaying result
8 Rs=(R1+R2+R3); //series resistances
9 \operatorname{disp}(\operatorname{Rs},"(2)\operatorname{All} \operatorname{resistances} \operatorname{in} \operatorname{series} \operatorname{in} \operatorname{Ohm} =");
       //displaying result
10 Rp = (1/R1) + (1/R2) + (1/R3); //calculating parallel
       resistance
11 \operatorname{disp}((1/\operatorname{Rp}), "(3) \operatorname{All} \text{ in Parallel in Ohm} = "); //
       displaying result
```

Scilab code Exa 5.13 13

```
1 clc;
2 V=20;  //voltage in Volts
3 R1=2;  //resisitance in Ohm
4 R2=4;  //resistance in Ohm
5 R3=5;  //resistance in Ohm
6 Rp=(1/R1)+(1/R2)+(1/R3);  //calculating parallel resistance
```

```
7 R=1/Rp; //Parallel
8 disp(R,"(a) Equivalent Resisitance in Ohm = "); //
     displaying result
9 I1=V/R1; //calculating current through R1
           //calculating current through R2
10 I2=V/R2;
11 I3=V/R3; //calculating current through R3
12 I=V/R; //calculating total current
13 disp(I1, "Current through R1 in Ampere = ");
     displaying result
14 disp(I2, "Current through R2 in Ampere = ");
     displaying result
15 disp(I3, "Current through R3 in Ampere = ");
     displaying result
16 disp(I, "Total current in Ampere = "); //displaying
     result
```

Scilab code Exa 5.14 14

```
1 clc;
2 disp("Rp = 6/n"); //resistance in parallel
3 disp("R=7"); //total resistance
4 disp("From 1 and 2 we get n=3"); //displaying result
```

Scilab code Exa 5.15 15

```
1 clc;
2 R1=2; //resistance in Ohm
3 R2=6; //resistance in Ohm
4 R3=3; //resistance in Ohm
5 V=24; //voltage in volts
6 R=8; //resistance in Ohm
7 I=V/R; //Ohm's Law
```

```
8 disp(I,"Current in Ampere = "); //displaying result
9 V1=I*R1; //Ohm's Law
10 disp(V1,"Voltage drop across R1 in Volts = "); //
        displaying result
11 V2=I*R2; //Ohm's Law
12 disp(V2,"Voltage drop across R2 in Volts = "); //
        displaying result
13 V3=I*R3; //Ohm's Law
14 disp(V3,"Voltage drop across R3 in Volts = "); //
        displaying result
```

Scilab code Exa 5.16 16

```
1 clc;
2 R=15; //resistance in Ohm
3 disp("KVL: 16I1+15I2=6 (1)"); //KVL equation
4 I1=-1.66; //from(1)
5 I2=2.17; //from (1)
6 disp(I1); //current in Ampere
7 disp(I2)
8 V=(I1+I2)*R; //calculating potential difference
9 disp(V,"Potential difference in Volt = "); // displaying result
```

Scilab code Exa 5.17 17

```
1 clc;
2 disp("3I1-I2-1=0 (1)"); //KVL equation
3 disp("3I1-I2+2I=2 (2)"); //KVL equation
4 disp("3I1-I1+2I=2 (3)"); //KVL equation
5 I1=0.2352; //from (1)(2)(3)through AB
6 I2=-0.11764; //from (1)(2)(3)through BD
7 I=0.58823; //from (1)(2)(3)through main circuit
```

Scilab code Exa 5.18 18

```
1 clc;
2 P=10; //Ohm
3 Q=3; //Ohm
4 R=12; //Ohm
5 S=6; //Ohm
6 G=20; //Ohm
7 disp("-12I+22I1+IgG=0 (1)"); //KVL
8 disp("6I-9I1+29Ig=0 (2)"); //KVL
9 disp("13I1-3Ig=2 (3)"); //KVL
10 Ig=7.797*10^-3; //from (1)(2)(3)
11 disp(Ig,"Current through Galvanometer in Ampere = "); //displaying result
```

Scilab code Exa 5.19 19

```
1 clc;
2 P=500; //power in Watts
3 V=200; //voltage in Volts
4 R=(V^2)/P; //using P=V^2*R
5 disp(R, "Resistance in Ohm = "); //displaying result
```

```
6 V1=160; //voltage in Volts
7 P1=(V1^2)/R; //calculating power
8 Dp=500-P1; //drop in heat
9 D=(Dp*100)/500; //percentage drop
10 disp(D,"% Drop in heat production = "); // displaying result
```

Scilab code Exa 5.20 20

```
1 clc;
2 P1=100; //power in Watts
3 P2=500; //power in Watts
4 P=P2/P1; //ratio
5 disp("P>0 Therefore I2>I1"); //displaying result
```

Scilab code Exa 5.21 21

```
1 clc;
2 t=1200; //time in second
3 P=100; //power in Watts
4 V=230; //voltage in Volts
5 R=(V^2)/P; //calculating resistance
6 V1=115; //supply voltage in Volts
7 E=((V1^2)*t)/R; //calculating energy
8 disp(E,"Energy dissipated by bulb in Joule = "); // displaying result
```

Scilab code Exa 5.22 22

```
1 clc;
```

```
2 P=10^4; //power in Watts
3 V=250; //voltage in Volts
4 R=0.2; //resistance in ohm
5 P1=((P/V)*(P/V))*R; //calculating power loss
6 disp(P1)
7 E=P/(P1+P); //calculating efficiency
8 disp(E*100, "Percent Efficiency = "); //displaying result
```

Scilab code Exa 5.23 23

```
1 clc;
2 P=100; //power in Watts
3 V=220; //voltage in Volts
4 I=P/V; //Current in Ampere
5 R=V/I; //resistance
6 disp(I,"Current in Ampere = "); //displaying result
7 disp(R,"Resistance in Ohm = "); //displaying result
```

Scilab code Exa 5.24 24

```
1 clc;
2 V=50; //voltage in Volts
3 I=12; //Current in Ampere
4 P=V*I; //power
5 Pd=P*0.7; //power dissipated
6 R=(420/(12)^2);
7 disp(R,"Resistance in Ohm = "); //displaying result
```