价算机语言和程序设计

第一讲 Python概述 计算机和程序设计基本概念

张华

WHU

计算机和程序设计基本概念

■ 计算机基础

- * 计算机的硬件
- * 计算机的组成和工作原理
- * 计算机中信息的表示
- * 计算机的软件
- * 计算机程序和语言

■ 程序设计基本概念

- *程序的基本编写方法
- *程序的开发过程
- * 掌握计算机编程的价值
- * 怎样学习计算机编程

* 从算盘到电子计算机

500B.C. 1642 1673 1822 1946 1981

■ 计算机 (Computer)

- *在存储的指令(instructions)集(程序(programs))的控制下,接受输入,处理数据,存储数据,并产生输出的设备。
 - ▶计算机是根据指令操作数据的设备。
 - ▶可编程性:根据一系列指令自动地、可预测地、准确地完成操作者的意图。

■计算机的分类

- *按计算机的功能可分类:
 - ▶专用计算机
 - ▶通用计算机
- *按计算机的综合性能指标*(运算速度、存储容量、输入输出能力、* 规模大小、软件配置)分类:

巨型机

大型机

小型机

微型机 (PC)

手持智能设备

■ 计算机的特点

- *运算速度快
 - ▶巨型机已达到每秒千万亿次
- * 计算精度高
 - ▶一般的PC可以表示十几位或几十位有效数字,计算精度达到百万分之几
- *超强的记忆能力
 - ▶一般的PC配置4~32GB内存,320~1000GB外存(硬盘)
- *准确的逻辑判断能力
 - ▶借助逻辑运算模拟人类思维
- *自动控制能力
 - ▶自动执行所存储的程序

■ 计算机的应用

- *科学计算(数值计算)
- *数据处理(信息处理)
- *自动控制
- * 计算机辅助设计和辅助教学
- *人工智能方面的研究和应用
- * 计算机网络的应用
- * 多媒体技术的应用

计算机

■计算机的发展

- * 计算机的发展参照摩尔定律,表现为指数方式。
 - ▶摩尔定律 Moore's Law
 - 计算机发展历史上最重要的预测法则。
 - Intel公司创始人之一戈登·摩尔在1965年提出。
 - 单位面积集成电路上可容纳晶体管的数量约每两年翻一番。
 - CPU/GPU、内存、硬盘、电子产品价格等都遵循摩尔定律。
 - ▶计算机硬件所依赖的集成电路规模参照摩尔定律发展。
 - > 计算机运行速度因此也接近几何级数快速增长。
 - ▶ 计算机高效支撑的各类运算功能不断丰富发展。
- *当今世界,唯一长达50年有效且按照指数发展的技术领域。
- * 计算机深刻改变人类社会, 甚至可能改变人类本身。
- *可预见的未来30年,摩尔定律还将持续有效。

计算机系统

- ■计算机系统包括硬件和软件。
- 硬件 (Hardware)
 - * 组成计算机的各种物理部件
 - *键盘、鼠标、显示器、内存、硬盘、光驱等等
- 软件 (Software)
 - * 计算机中运行的程序和数据,保存在外存上的程序和数据

计算机的组成

- 计算机包括五大部件
- 输入单元 (Input unit)
 - *从输入设备(键盘、鼠标)获得数据
- ■输出单元 (Output unit)
 - *通过输出设备(显示器、打印机)显示或打印计算结果
- ■内存储器 (Memory unit)
 - * 临时存储正在处理的数据和运行的程序
 - * 可以高速地访问
 - * 容量不大

计算机的组成

- 中央处理单元 (Central processing unit, CPU)
 - ♣ 算术逻辑单元(Arithmetic and logic unit, ALU)
 - > 进行算术和逻辑运算
 - ☀ 控制器 (Control unit)
 - ▶管理和协调计算机的其它部件
- 辅助存储器 (Secondary storage unit)
 - *保存需长期存储的数据和非活动的程序
 - *访问速度慢
 - * 价格便宜、容量大
 - *例如硬盘、光盘、磁带

计算机的工作原理

■ 计算机的结构示意图

计算机的工作原理

计算机的工作原理

■ CPU负责执行程序

- * 从内存中读取一条指令
- *解析并执行该指令
- * 读取下一条指令,解析并执行
- *****
- *一个主频为1GHz的CPU可以在一秒钟内进行大约一亿次这样的操作
- CPU有自己的工作区:包括若干个寄存器 (Registers)
- CPU只能理解有限的指令(CPU的指令集)
 - * 指令能够完成的任务是具体的
 - *例如,把一个数从内存移动到某一个寄存器

位、字节和字

■内存储器的组织

计算机中的存储容量单位

■ 常见的存储容量单位

- **★1Kilo字节(1KB)** =1024B(2¹⁰字节)(约10³字节)
- **★1Mega字节(1MB)=1024KB(2²⁰字节)(约10⁶字节)**
- **★1Giga字节(1GB)** =1024MB(2³⁰字节)(约10⁹字节)
- **★1Tera字节(1TB)** =1024GB(2⁴⁰字节)(约10¹²字节)
- ♣ 1Peta字节(1PB) =1024TB(2⁵⁰字节)(约10¹⁵字节)
- ♣ 1Exa字节(1EB) =1024PB(2⁶⁰字节)(约10¹⁸字节)
- **★1Zetta字节(1ZB)** =1024EB(2⁷⁰字节)(约10²¹字节)
- ₩ ...
- * 举例: 百度每天处理的数据量将近100PB。
 - ▶ 相当于5000个国家图书馆的信息量总和。
 - ▶中国国家图书馆,预估藏书3510万册以上,世界排名第10位。

计算机中信息的表示

■ 存储在计算机中的一切内容都是二进制的数字形式

- *数据:数、字符、图片、声音、动画等等
- * 指令
- ■常用数制
 - *二、十、八、十六进制
 - * 不同进制数之间的转换
- 计算机内信息的表示
 - *数的表示
 - * 字符的表示
 - * 汉字的表示
 - ₩ ...

计算机程序和语言

■ 计算机程序

*确切告诉计算机如何完成某项任务的指令序列。

■软件

- * 用来完成某种特定任务的一个或多个计算机程序以及附加的文件。
- * 至少包含一个让用户运行的可执行文件。

软件的分类

■ 系统软件

- *帮助计算机完成基本操作功能的软件。
- *包括操作系统、设备驱动程序、语言处理程序等。

■应用软件

- *帮助人们使用计算机完成各种任务的软件。
- *例如文档制作、电子表格、数据管理、图形处理程序等等。

操作系统

- 操作系统 (Operating System, OS)
 - * 最基本,最重要的系统软件,是系统软件的核心。
 - 负责管理计算机系统的全部软件资源和硬件资源,合理地组织计算机各部分协调工作,为用户提供操作和编程界面。

■常用的操作系统

- *** Windows**
- # Unix/Linux
- Mac OS

计算机语言

■ 计算机语言

- * 亦称为程序设计语言、编程语言
- *用来编写程序
- *用于人和计算机之间进行交互
- ***** 发展
 - ▶机器语言
 - ▶汇编语言
 - ▶高级语言

```
#include <stdio.h>
#include <math.h>
void main()
{
   float a,b,c,p,disc,q,x1,x2;
   scanf("%f%f%f",&a,&b,&c);
   p=-b/(2*a);
   disc=b*b-4*a*c;
   q=sqrt(disc)/(2*a);
   x1=p+q; x2=p-q;
   printf("x1=%f,x2=%f",x1,x2);
```

机器语言

■ 数字形式的指令码就是机器语言 (Machine language)

- *用机器语言编写的程序能够被计算机直接理解和执行
- * 但是,编写程序非常费力
- *例如,编写程序完成两个数相加的任务需要以下几步
 - ▶把地址为20的内存单元中的数复制到寄存器1;
 - ▶把地址为24的内存单元中的数复制到寄存器2;
 - ▶把寄存器2中的数与寄存器1中的数相加,结果保留在寄存器1中:
 - ▶把寄存器1中的数复制到地址为28的内存单元中。

对应的机器语言程序(部分)

 指令的结构

指令码 操作数

汇编语言

■ 符号化的指令码就是汇编语言 (Assembly language)

*例如,完成两个数相加的汇编语言程序(部分)

Idreg n1, r1
Idreg n2, r2
add r1, r2
store r1, sum

把变量n1的值复制到寄存器1(r1); 把变量n2的值复制到寄存器2(r2); 把r2中的数与r1中的数相加,结果保留在r1中; 把r1中的数复制到变量sum。

- ☀ 汇编语言程序必须被翻译成机器语言程序才能被执行▶ 汇编程序(Assembler)充当"翻译"
- *用汇编语言编写程序还是比较费力

高级语言

- 高级语言 (High-level language) 使用数学符号和类似英语的单词
 - *例如,完成两个数相加的C语言程序(部分)

```
sum = n1 + n2;
```

- * 从多方面提高了编程效率
 - ▶不必考虑CPU的指令集
 - ▶不必考虑CPU实现特定任务的精确步骤
 - > 采用接近人类思考问题的方式去书写程序
- * 高级语言程序必须被翻译成机器语言程序才能被执行
 - ▶由两种专门的程序来完成:编译器程序和解释器程序

编译器和编译执行

■编译器 (Compiler)

- 用编译器把用高级语言写好的程序翻译成机器语言程序, 生成可执行文件,该文件可以独立运行。
- * 这种运行程序的方式被称为编译执行。
 - > C/C++, C#, Java

解释器和解释执行

■解释器 (Interpreter)

- 一旦用高级语言写好程序后就可以运行,由解释器逐条翻译程序中的语句。
- * 称为解释执行方式。
 - ➤ Python, Visual Basic (VB)

静态语言和脚本语言

■ 根据执行方式不同,编程语言分为两类

- *静态语言:使用编译执行的编程语言
 - ➤ C/C++语言、 Java语言
 - >编译器一次性生成目标代码,优化更充分。
 - ▶程序运行速度更快。
- ☀ 脚本语言: 使用解释执行的编程语言
 - ▶ Python语言、 JavaScript语言、 PHP语言
 - ▶执行程序时需要源代码,维护更灵活。
 - >源代码维护灵活、跨多个操作系统平台。

主流的编程语言

■ 编程语言的流行趋势

* https://www.tiobe.com/tiobe-index

TIOBE Programming Community Index

Source: www.tiobe.com

计算机程序设计

■ 程序设计是计算机可编程性的体现

- *程序设计,亦称编程,是深度应用计算机的主要手段。
- *程序设计已经成为当今社会需求量最大的职业技能之一。
- * 很多岗位都将被计算机程序接管,程序设计将是生存技能。

■ 计算机只能解决计算问题,即问题的计算部分

- *问题的计算部分是一个待解决问题中可以用程序辅助完成的部分。
 - ▶可计算问题的一种解释:可用有限步骤计算出来的数学问题,即有明确解的数学问题。(感兴趣的同学可以课外阅读可计算理论)
- *一个问题可能有多种角度的理解,产生不同的计算部分。
- *问题的计算部分一般都有输入、处理和输出过程。

程序的基本编写方法

IPO

- *Input:输入,程序的输入
 - ▶文件输入、网络输入、控制台输入、交互界面输入、内部参数输入等。
 - > 输入是一个程序的开始。
- * Process: 处理,程序的主要逻辑
 - ▶处理是程序对输入数据进行计算产生输出结果的过程。
 - > 处理方法统称为算法,它是程序最重要的部分。
 - > 算法是一个程序的灵魂。
- *Output:输出,程序的输出
 - ▶控制台输出、图形输出、文件输出、网络输出、操作系统内部变量输出等。
 - ▶输出是程序展示计算/处理结果的方式。

求解计算问题的精简步骤

■ 编程的三个步骤

- *确定IPO:明确计算部分及功能边界
- *编写程序:将计算求解的设计变成现实
- *调试程序:确保程序按照正确逻辑能够正确运行

程序的开发过程

- 复杂软件的开发是一项工程(软件工程),一般至少 包括六个步骤
 - *需求分析,定义程序目标(想清楚,规划IPO)
 - *设计程序(关注算法,以及程序结构)
 - *编写代码
 - *构建程序(对编译执行的语言)
 - *运行、测试和调试程序
 - *维护和升级(适应问题的升级维护,更新完善程序)

程序的开发过程

■ 需求分析,定义程序目标

- 在开始解决问题之前,程序的开发人员必须彻底了解问题 是什么,对即将要创建的程序要做的事情有个清晰的认识。
- * 这需要仔细考虑以下问题
 - ▶程序需要什么信息
 - ▶程序需要执行哪些计算和操作
 - ▶程序应该报告什么信息
- *例如,计算任意一个圆环的面积
 - >提出问题,明确目标
 - >圆环是什么?如何计算面积?需要什么数据?计算精度?
- *例如,为某航空公司开发一个机票订购系统
 - ▶试试站在航空公司的角度提需求

程序的开发过程

■ 设计程序

- * 决定程序如何去解决问题。
- *需要考虑
 - > 如何给程序提供必要的数据
 - >程序中如何表示数据
 - ▶用什么方法来处理数据
 - >程序如何组织
 - ▶程序怎样报告结果
 - ▶完成这个程序需要多长时间
- *用一般的概念考虑设计中的问题,而不必考虑具体的语言和代码。

程序的开发过程

■ 编写代码

- *编写代码来实现前面的设计,即用某一门语言来表示程序设计。
- *需要开发人员熟练掌握该语言的知识。
- 可以在草稿纸上勾画自己的想法或书写代码,但最终必须 将代码输入计算机。
- *输入代码所采用的机制则取决于具体的编程环境。
 - ➤一般来说,需要使用文本编辑器(例如Windows的记事本程序) 来创建一种文件,称为源文件
 - >源文件包含程序设计的计算机语言表示形式(称为源程序或源代码)

程序的开发过程

■ 构建程序

- * 把源程序转换成机器语言表示的程序。
 - ▶这种程序可以直接被计算机理解和执行,所以称之为可执行程序, 放在可执行文件中。
 - ▶构建的具体细节取决于使用的编程环境。
- **☀ C/C++**语言分两步完成这一工作:编译和链接。
 - ▶编译器将源代码转换为目标代码,并存在目标文件中。
 - > 链接器将目标代码与其他代码结合起来生成可执行文件。
 - ▶这种把编译和链接分开来做的方法便于程序的模块化。
 - 可以分别编译程序的各个模块,然后用链接器把编译过的模块结合起来。
 - 这样,如果需要改变一个模块,则不需要重新编译所有其他模块。

程序的开发过程

■ 运行、测试和调试程序

- *运行包含可执行程序的文件,观察运行的结果。
 - ▶在不同的系统中运行程序的方式可能不同。
 - ▶例如, Windows的控制台和资源管理器。
- 应该对程序进行仔细的检查,看程序是否在做该做的事, 结果是否正确或满足要求。
 - > 比较好的做法是为验证程序的正确性设计一个测试计划。
 - ▶越早做越好,因为它有助于理清程序员的思路。
- *程序中的错误被称为bug,调试(Debug)就是要发现并修正错误。

掌握计算机编程的价值

■ 编程能够训练思维

- *编程体现了一种抽象交互关系、自动化执行的思维模式。
- * 计算思维: 区别逻辑思维和实证思维的第三种思维模式。
 - ▶ 计算思维(Computational Thinking)是运用计算机科学的基础概念进行问题求解、系统设计、以及人类行为理解等涵盖计算机科学之广度的一系列思维活动,由周以真于2006年3月首次提出。
 - ▶课外查阅相关资料。
- **能够促进人类思考,增进观察力和深化对交互关系的理解。

掌握计算机编程的价值

■ 编程能够增进认识

- * 编程不单纯是求解计算问题。
- * 不仅要思考解决方法,还要思考用户体验、执行效率等。
- * 能够帮助程序员加深用户行为以及社会和文化认识。

■ 编程能够提高效率

- * 能够更好地利用计算机解决问题。
- * 显著提高工作、生活和学习效率。
- * 为个人理想实现提供一种借助计算机的高效手段。

掌握计算机编程的价值

■ 编程带来就业机会

- *程序员是信息时代最重要的工作岗位之一。
- * 国内外对程序员岗位的缺口都在百万以上规模。
- * 计算机已经渗透于各个行业, 就业前景非常广阔。

■ 编程能够带来乐趣

- * 编程能够提供展示自身思想和能力的舞台。
- * 让世界增加新的颜色、让自己变得更酷、 提升心理满足感。
- * 在信息空间里思考创新、将创新变为现实。

怎样学习计算机编程

■ 合适的方法

- * 首先,掌握编程语言的语法,熟悉基本概念和逻辑。
- * 其次,结合计算问题思考程序结构,会使用编程套路。
- *最后,参照案例多练习多实践,学会举一反三。

小结

- 计算机是根据指令操作数据的设备,具有可编程性。
- 计算机语言是人和计算机交互的人造语言,有编译执行和解释执行两种方式。
- 计算机只能解决计算问题,问题的计算部分由程序来完成,一般包括输入、处理和输出(IPO)。
- ■完整的程序开发过程包括六个步骤。
- 掌握计算机编程具有很高的价值,要采取合适的学习方法。

