Comparative Analysis of Green Vehicle Routing Problem

Submitted By:

Anushka S, 2019A7PS0208U Dhakshina Priya I, 2019A7PS0003U Asmi S, 2019A7PS0147U

Abstract:

The Transportation sector is a major contributor to the emission of Greenhouse Gases which can have devastating effects on the environment as well as accelerate global warming. With added global pressure and directives to enforce sustainable practices, environmental concerns form a crucial part of corporate social responsibility policies. It also aids as a competitive advantage. Therefore, there is a need for efficient models which can help reduce carbon emissions. This paper consists of a detailed literature review of the Green Vehicle Routing Problem (GVRP). The Vehicle Routing Problem (VRP) is an integer programming and combinatorial optimization problem. It is a generalization of the popular traveling salesman problem and comes under the domain of NP-Hard problems - problems whose solutions are easy to verify but hard to find an algorithmically efficient formula to. The classical VRP deals with the delivery of goods from a depot to a set of customers in various cities. Each vehicle route must start and end at the depot after visiting all the cities exactly once. The main objective of VRP is to minimize total distance or time travelled. There are many variations of VRP depending on the constraints imposed. One of the variants is GVRP which introduces the constraint of minimizing fuel consumption or carbon emissions. Another class of GVRP is Pollution Routing Problem (PRP) which also aims to find the vehicle path which would lead to the least amount of pollution. One main issue with GVRP is the uncertainty with respect to the parameters such as customer demand or travel time. As these parameters can vary based on usual daily events. The solutions to the GVRP problem must be both scalable and general enough to adapt as solutions to multi-objective variants of this problem. This paper constructs a thorough comparative analysis by reviewing the various algorithmic approaches to the problem, and their implementations. The proposed solutions are compared with existing solutions to compute the performance measure values and the advantages and disadvantages of said algorithms on varying use cases.

Problem definition:

With rising global pressures and constraints to enforce sustainability and reduce emissions in heavily polluting sectors like the transportation sector, a green solution is the need of the hour. The main objective is to find an optimum solution to the extended VRP, precisely the GVRP that aims to minimize carbon emissions while tackling the VRP. Thus, the requirement is a model that would aid in designing the transportation network which targets reducing vehicle fuel consumption while cutting down on operational costs and achieving performance indicators like customer satisfaction.

Objectives:

- 1. To understand the GVRP, its importance and the need to solve it.
- 2. To research the various proposed solutions for the GVRP in recent literature.
- 3. To determine the objectives, problem statement, methodology, dataset, algorithm, advantages, disadvantages, and performance measure for each reviewed GVRP solution.
- 4. To learn how solutions are formulated and implemented for real world problems and further, to gain an understanding of how to measure the effectiveness of one's approach.
- 5. To grasp how algorithms from different domains can be brought together to create more efficient techniques for solving issues with greater degrees of complexity.

Literature Table:

Reference	Objectives	Problem Statement	Methodology	Dataset	Algorithm	Advantage	Disadvantage	Performance
								Measure Value
[1]	To use RDP-SOC	Finding a heuristic	The DP based	The Pollution	Restricted	Proposed	The proposed	When
	Algorithm to	approach for GVRP	solution approach	Routing	Dynamic	algorithm can	algorithm assumes	compared to
	determine the	with the constraints	is unlike the other	Problem	Programming	accommodate	An average speed	SRDP the
	vehicle paths	of minimizing total	variants of DP	Instance	with	several key	of vehicles in	proposed
	where the vehicles	costs which	based algorithms	Library and	Simulation and	performance	separate delivery	algorithm
	stop by each	includes cost of fuel	since it can be	The Routing	Online Control	indicators.	routes which	achieves 1%
	customer's	consumption and	used to estimate	Problem	(RDP-SOC)		causes a 0.5 %	lower average
	location exactly	driver's cost.	amount of fuel	Library		Large sized	increase in the cost	cost. The
	once and whose		consumed based			routing	when	computation
	path should begin		on the distance			problems can be	heterogeneity in	time of the
	and end at the		travelled, speed of			solved in shorter	arcs is assumed.	proposed
	depot in such a		the vehicle and the			computation		algorithm is
	way that the total		features of the			time.	It also finds out	almost half of
	cost is reduced.		vehicle while				completely	the Restricted
			construction of the				different vehicle	Dynamic
			delivery plan.				paths for	Programming
							individual vehicles	Algorithm
			The RDP-SOC,				when the actual	(RDP).
			classical DP,				speed of vehicles	
			Restricted DP				is taken into	
			(RDP) and				account as	
			Simulation based				opposed to the	
			RDP (SRDP)				average speed.	
			algorithms are					
			compared with					
			each other with					
			respect to their					
			performance on					
			base case, two					

[2]	To use NSGA-II to minimize the distance travelled by the vehicles as well as minimize the amount of carbon emission while visiting all the customer's location exactly once.	To solve Green Mixed VRP with the intent to minimize the distance travelled and carbon emissions as well as considering the customer demand in each city to be a rough variable.	small-sized problems and a set of larger sized problems. The NSGA-II algorithm first randomly generates 100 chromosomes in accordance with the vehicle capacity. The population size used is 100. Next in the selection step the parents are selected. Then a cross over technique is used in order to produce partial offspring. Finally, mutation is introduced using swapping method.	VRP Library [3]-[5], Set P Dataset [6] and dataset for rough variable [7]	Non- Dominated Sorting Genetic Algorithm II (NSGA-II)	The proposed algorithm achieves better results due to selection of a good range of outputs and good convergence close to the non-dominated results. The work done in the paper also is more relevant to real-life situations.	The algorithm's performance on larger problems is not defined in the study.	VIKOR method is used to get results close to ideal solution. For multi-objective mixed G-VRP model the decision maker chose the P-n23-k8 instance which is 386.759003 km distance and 1995.332031 kg carbon dioxide emissions.
[8]	To study the impact of uncertainty in	To tackle the issue of uncertainty of input data to	The ALNS algorithm works on idea of	The Pollution- Routing Problem	Adaptive Large Neighbourhood Search (ALNS)	The proposed robust model helps to show	There are constraints on the capacity of the	Using the proposed approach, for
	RPRP by using ALNS algorithm which is adapted for hard worst case	achieve robust optimization model to deal with PRP. And to therefore	bettering the initial solution by using destroy and repair operators.	Instance Library [9]	Algorithm	the impact of uncertainty in large scale instances and	vehicles as well as the minimum speed levels that must be	each group of instances and different uncertainty

robust	reduce the cost for	In each iteration a		help decision	maintained the	levels its
optimization of the	fuel and driver of	removal operator		makers choose	vehicles.	impacts on cost
model.	vehicle.	which destroys		the models with		of solution,
		and an insertion		suitable		total distance of
		operator which		uncertainty		routes and
		repairs the		levels.		number of
		solution are				vehicles used
		chosen by a				have been
		roulette wheel				examined. The
		mechanism in				results show in
		accordance with				comparison
		past performance.				with
		The new solution				deterministic
		is approved if it				cost for 10-
		meets a certain				node instances
		criterion. Then the				there is a
		score associated				14.47%
		with the operators				increase in
		is updated and				solution cost of
		finally a speed				50%
		optimization				uncertainty
		procedure is				level. And this
		employed to				only further
		calculate optimal				increases to
		speed at each arc				31.45 % for
		which in turn				200 instance
		minimizes the cost				nodes. This
		of fuel				clearly shows
		consumption and				that the data
		driver wages.				uncertainty in
						PRP model
						leads to an

						<u></u>		
	1	!						increase in the
	!	!						objective
	1	!						functions
	1	!						especially for
	!	!						large sized
								problems.
[10]	To extend the	The Hamiltonian	The heuristic uses	The MO-BF	Multi	In comparison to	In comparison to	Performance
	Branch and Fix	cycle problem	an algorithm that	was tested on	Objective	the Multi	the Multi	was measured
	algorithm, an	involves finding a	takes the	500 randomly	Branch and Fix	Objective	Objective Genetic	based on mean
	exact method, and	cycle in a given	adjacency matrix	generated	Algorithm	Genetic	algorithm, the	HV
	embed it in a	graph that touches	of a graph and the	graphs (having	(MO-BF)	algorithm, the	MO-BF algorithm	(Hypervolume)
	stochastic process	every vertex	associated weight	defined		MO-BF	performs worse for	over multiple
	to create a	exactly once or	matrices (for each	densities and		algorithm	dense graphs	runs of MO-BF
	heuristic approach	determining that	objective) as input	number of		performs very	where it is usually	(and compared
	that will compute	this is not possible.	and returns the	vertices that		well for sparse	easier to find	to mean HV
	a Pareto set of	In this paper [1], a	Pareto Set of	diversify the		graphs and	Hamiltonian	over the same
	solutions that	graph is considered	Hamiltonian	test set)		challenge set	cycles. This is	amount of runs
	solve the multi	along with a set of	cycles as output.	The first 10		graphs (i.e., it	probably due to the	of MO-GA) for
	objective	matrices. Each	A Markov	graphs from the		works well with	algorithm spending	all solved
	Hamiltonian cycle	matrix puts	Decision Process	FHCP		graphs having	more time in	instances. MO-
	problem (the most	different weights on	is established	challenge set		low density and	suboptimal	BF dominated
	elementary form	the edges of the	where branches			high number of	branches given a	MO-GA for
	of the GVRP) by	graph. Hence, the	take place at every			vertices)	larger number of	random graphs
	minimizing the	graph along with	node (the root				edges.	with density
	sum of the weights	these matrices form	being the starting			The MO-BF is		0.15 having 60,
	of the arcs for each	a multi objective	vertex) to generate			an anytime	The algorithm	70, 80, 90, 100
	objective	Hamiltonian cycle	options for the			algorithm, i.e., it	evolves the quality	vertices, for
		problem. The goal	next edge to be			can be stopped	of its solution set	random graphs
	To measure the	is to formulate an	added to form a			at any time	over time. This	with density
	efficiency of the	algorithm that can	cycle. At most			during its	means that longer	0.25 having 60
	proposed	find a set of	two linear			execution to	runtimes (which	vertices and for
	algorithm by	Hamiltonian cycles	programs are			retrieve the set	may not be	all 10 challenge

comparing it with	in the graph where	solved for every		of solutions it	practical) may be	graphs
a multi objective	the edges chosen	branching node to		has generated so	required for it to	considered. The
genetic algorithm	effectively to	check if the		far	generate better	literal values
in graphs of	minimize the	solutions being		ıuı	solutions.	are presented in
different number	weights imposed by	generated are		Since it solves	solutions.	[10, Tab. 2].
of vertices and	all the objectives	feasible and non-		the most		[10, 100. 2].
density	put together.	dominated by		elementary sub-		
density	put together.	solutions in other		problem of the		
		subtrees. Any		GVRP, the MO-		
		branches violating		BF can be easily		
		these conditions		generalized to		
		are pruned. A		form a solution		
		permutation-based		for it		
		approach is also		101 10		
		tested where the		The		
		vertices and their		permutation-		
		corresponding		based MO-BF		
		weights are		can consider		
		shuffled in the		more possible		
		input matrices		solutions for		
		before execution		smaller graphs		
		to allow the		and thus give		
		algorithm to begin		better results		
		from different				
		nodes. In this case				
		the algorithm is				
		run parallelly in				
		different threads				
		for every				
		permutation of				
		node ordering.				

	Τ		I		- · - ·	Ι -	I	
[11]	To propose a two-	The GVRP aims to	The solution is	The proposed	Path Based	In comparison to	The solution	Performance
	phase solution	route AFVs based	formulated by	exact approach	Approach for	eight other	quality of the Path	was measured
	approach for the	at a single depot, to	considering each	has been tested	the GVRP	previously	Based Approach	on the basis of
	GVRP that breaks	handle customers	route to be a	on the		proposed	degrades as graph	total distance
	down routes into a	while minimizing	combination of	benchmark		methods the	size increases, i.e.,	travelled and
	composition of	the total distance	paths. The method	instances (sets		Path Based	it does not scale	CPU time taken
	paths that are	travelled. Due to	involves two	S1, S2, S3 and		Approach has	very well	for each
	combined to create	limited fuel	phases:	S4) introduced		given better		solution by the
	feasible solutions	capacity, they may	All feasible and	in [19]. The		quality solutions		Path Based
	To test the	need to stop at	non-dominated	heuristic		in lesser		Approach. The
	proposed solution	AFSs during their	paths formed by	approach has		computation		same was noted
	on small to	trip. A feasible	node pairs are	been tested on		times for smaller		for solutions
	medium sized	solution to this	generated.	the larger set of		sized problems		generated by
	benchmark	problem is one that	Some paths are	instances AB				eight other
	instances and	generates a route	combined, using a	(AB1 and		Due to its		algorithms for
	verify whether it	for each available	Mixed Integer	AB2)		bottom up		performance
	outperforms	vehicle covering	Linear	introduced in		approach the		comparison.
	existing exact	the maximum	Programming	[20].		algorithm is able		PBA
	methods in terms	number of	formulation to put			to consider a		outperformed
	of solution	customers while	them into			wider range of		each of them
	optimality and	making minimal	sequence.			solution options		when tested on
	computational	refuel stops in the	The objective is to			compared to		instances S1,
	time.	shortest possible	minimize the total			other exact		S2, S3 and S4
		time. An algorithm	distance travelled.			methods		of [19]. The
	To convert this	must be proposed to	Feasibility,					literal values
	approach into a	generate various	dominance and					are presented in
	heuristic and test	such solutions	compatibility rules					[11, Tab. 5],
	its efficiency on	while having an	at each stage					[11, Tab. 8] and
	larger sized	inexpensive	ensure that					[11, Tab. 9].
	instances	computational	dominated paths					
		complexity	are removed and					
			optimal paths are					

						T		
			designed. This solution is also reformulated as a heuristic by reducing the					
			number of solutions					
			generated in the					
			first phase to					
			handle larger					
			sized problems.					
[12]	To reformulate the	The GVRP is	The GVRP is first	Two sets of	Multi Start	The algorithm is	The algorithm	The
[12]	GVRP as a multi	composed of	reformulated as a	benchmark	Local Search	able to	trades off CPU	performance of
	graph problem and	customers,	multigraph. Then,	instances were	Heuristic	consistently find	time for solution	the algorithm is
	define a three	refuelling stations,	a multi start local	considered:		solutions of very	quality. It takes a	measured on
	phase multi start	and AFVs from a	search heuristic is			high quality	longer time to	the basis of the
	local search	central depot. The	applied to it. The	The first set		across instances	execute even for	best-known
	algorithm to solve	objective is to plan	solution set	was proposed		of various types	instances of	solution cost
	it	routes such that each customer is	obtained from this phase is improved	in [19]. It has		and sizes	smaller sizes.	generated by it (in comparison
	To test the	visited exactly	upon through the	larger instances containing			Compared to other proposed	to the best costs
	proposed	once, and the total	local search phase.	111–500			methods/heuristics,	found by the
	algorithm on	distance travelled	Intensification and	customers and			this solution	authors of the
	benchmark	by the AFVs is	diversification	21–28			requires a far	datasets used
	instances to assess	minimal. The	phases are then	refuelling			higher number of	for testing) and
	its competitiveness	vehicles have	introduced to	stations. The			global iterations to	computation
		restricted driving	further modify the	proposed			reach an answer	time. It
		range and thus must	solution set.	algorithm was				outperforms the
		stop at refuelling	Finally, a set	tested on these				original
		stations, which	partitioning	larger				findings for a
		incurs a delay.	heuristic works on	instances.				majority of the

		Finally, each vehicle's trip has a maximum duration constraint. A metaheuristic model must be developed to solve the GVRP as described.	improving solution quality. Various operators tailored to multigraph operations (such as Clarke and Wright savings, 2-OPT*, 3-OPT*, sequence relocate, cyclic exchange, intra-route 2-OPT, and intra-route relocate operators) are used throughout all these phases to form optimal solution paths.	The algorithm was also tested on the AB set of instances [20].				instances discussed. The literal values are presented in [12, Tab. 5], [12, Tab. 6] and [12, Tab. 7].
[13]	To propose a Memetic Algorithm with Competition (MAC) to solve the Capacitated GVRP To test the impact of each component of the algorithm on its efficiency	In the CGVRP customers are serviced by several AFVs that start and end their route at the depot and have the same loading capacity. The total demand for one vehicle cannot exceed its capacity. The vehicles cannot	MAC uses k- nearest neighbour (kNN) heuristic for population initialization. The next phase is intensification for which variable neighbourhood search (VNS) and simulated annealing (SA)	The algorithm was tested on two groups of CGVRP instances: For the group with small instances, the number of customers ranges from 15 to 24, and the	Memetic Algorithm with Competition	The MAC algorithm uses a decoding method which allows many factors (i.e., modifications to the original problem statement) to be adjusted and hence it can	Since Alternative Fuel Stations (AFSs) can be visited more than once in a graph by different vehicles, the algorithm generates a set of dummy AFS vertices for the route of each vehicle that visits	The performance of the MAC algorithm was measured in terms of CPU time consumed and distance from the optimal solution for each instance

	travel for long	are used. Through	number of	provide good	that AFS, i.e., the	on which it was
To determine	distances which is	competitive search	AFSs is 2.	solutions for any	original order of	tested. The
suitable values for	why they must stop	the traveling	These instances	problem that can	the graph is	same values for
algorithm	at AFSs. Thus, to	salesman problem	are labelled as	be generalized	increased before it	the same
parameters	solve the CGVRP,	(TSP) is further	S series.	to the CGVRP	is operated upon	instances were
	an algorithm needs	improved upon	For the group			noted for the
To perform	to consider many	with local	with large	It uses a		Ant Colony
extensive	factors like the	intensification.	instances, the	competitive		Optimization
comparative	number of AFVs,	Customer	number of	strategy that		algorithm
analysis of the	the allocation, and	adjustment and	customers is set	balances		(ACO), the
proposed	tank capacities.	AFS adjustment	as 25, 50, 75,	exploration and		Discrete Firefly
algorithm to	Exact algorithms	operators are also	100 and 150,	exploitation in		Algorithm
estimate its	cannot easily solve	applied. Finally,	and the number	the graphs,		(DFA) and the
effectiveness in	the large-sized	crossover	of AFSs is 2, 4,	acting as a well-		exact method
relation to existing	strong-constraint	operation	6 and 8. The	rounded		by Gurobi. Not
methods for	problems, and	generates the	large instances	heuristic for the		only did the
solving the	heuristic algorithms	fittest solutions.	are labelled as	CGVRP		MAC algorithm
CGVRP	do not guarantee	Since multiple	B series.			outperform all
	the optimality of	operators are		The MAC		other methods
	their solutions. So,	implemented for		algorithm		in both instance
	meta-heuristic	solutions having		produced		sets, but it also
	algorithms need to	different qualities,		optimal		produced the
	be developed to	MAC is able to		solutions for		optimal
	solve the problem.	solve CGVRP		every CGVRP		solution for its
		effectively.		instance it was		best run on
				operated on in		every instance
				very small		considered in
				computation		the paper. The
				times		literal values
						are presented in
						[13, Tab. 4] and
						[13, Tab. 5].

 		T	T		Τ	T	
To find a solution to the VRP with the added constraint of minimization of fuel consumption and in turn CO2 emissions.	To use Particle Swarm Optimization algorithm to optimize Vehicle Routing Plan. The objective function has been extended to consider fuel consumption minimization.	The data set is obtained by taking data from a particular day from a bottled drinking water company namely, Narmada Awet Muda, the largest distributor in Lombok Island, Indonesia. The data was taken for total product demand for each customer from Mataram city.	There are 3 major steps in the implementation of the method. Total fuel consumption: Calculating the total fuel consumption depending on the distance between the node, transportation speed, and the loading weight. Routing division: to create subroutes based on requests from customers along with added constraints that contribute to forming the	Particle Swarm Optimization Algorithm	It is a fitting algorithm to use where the variables are real numbers It has lesser calculations when compared to other heuristic optimization methods and mathematical techniques. It is suitable for solving VRP with complex combinatorial optimization problems. It has a relatively short computational time. It has the robustness to	This paper considers the algorithm only for a network with a single depot. All the customers cannot be assigned to a single subroute due to time and load constraints.	The proposed route was compared with the initial route that was currently in use by the company. Upon multiple iterations of the PSO algorithm, we can observe a drop in fuel consumption which implies reduced fuel consumption. Hence, for fixed population parameters with population size N = 50, and fixed number of iterations = 200, we can obtain the best fitness function. it is seen that
!			forming the sub-route.		control parameters. The		fuel consumption on

Depending on	use of time-	the proposed
the loading	varying	route is
weight and	acceleration	equivalent to
maximum	coefficients has	13% less than
travel time	led to increasing	the fuel
constraint, the	global search at	consumption of
customer is	the earliest time.	the initial route
added to the		within the
current sub-		limited capacity
route else, the		and travel time.
customer is		
assigned to the		
next sub route.		
Particle Swarm		
Optimization		
Algorithm:		
PSO is an		
optimization		
technique		
that mimics		
the behaviour		
of fish		
schooling. It		
contains a set		
of particles,		
and all particles		
move towards		
the optimal		
point.		
Împlementation		
of the PSO		

				Algorithm with				
				modification of				
				the coefficient				
				parameters				
				according to				
				Ratnaweera				
				[15] who				
				introduced				
				time-varying				
				acceleration				
				coefficients to				
				balance				
				exploration and				
				exploitation.				
[16]	To find a solution	Implementation of	The dataset has	There are 3	Genetic	The algorithm	This paper	Analysis
	to the VRP with a	a tuned Genetic	been taken from	major steps in	Algorithm	selects the	assumes only a	concludes that
	focus on reducing	Algorithm to find	benchmarked	the		shortest route	homogenous fleet	the optimum
	carbon emissions	an appropriate	instances in the	implementation		with the	of vehicles.	route with
	and minimization	solution to the	CVRP library	of the method.		mentioned		minimum cost
	of operational	GVRP.	(available online).			constraints for	This paper does	was obtained
	costs.			Conduct		the given	not include factors	when the
				Literature		parameters with	such as road	tournament size
				Review: To		the help of the	gradient into its	was equal to 5,
				understand the		fitness function	calculations.	the generation
				current status		which helps		size equal to
				of research		select the fittest		1000, with a
				conducted in		population for		mutation rate of
				the domain.		reproduction.		0.0025. The
								average
				Mathematical		The algorithm		percentage
				Model:		improves over		reduction in
				Implemented		time providing		

the mathematical mathematical model proposed by [17] with added modifications to include both the drivers' cost and maintenance cost into the overall cost obtained was 58.3%.	
model proposed by [17] with added modifications to include both the drivers' cost and maintenance cost into the	
proposed by [17] with added modifications to include both the drivers' cost and maintenance cost into the	
[17] with added modifications to include both the drivers' cost and maintenance cost into the	
modifications to include both the drivers' cost and maintenance cost into the	
to include both the drivers' cost and maintenance cost into the	
the drivers' cost and maintenance cost into the	
cost and maintenance cost into the	
maintenance cost into the	
cost into the	
overall	
operational	
costs while	
maintaining	
emission,	
capacity and	
route	
continuity	
constraints for	
a network with	
a single depot.	
Implementation	
and Parameter	
tuning of the	
GA: GAs are	
search-based search-based	
algorithms	
inspired by	
natural	
selection.	

	I	I	I	1				1
				The values for				
				the size of				
				population,				
				replication, and				
				generation are				
				chosen along				
				with mutation				
				rates. The				
				fitness function				
				evaluates the				
				percentage				
				reduction in				
				costs.				
[18]	To propose a	Implementation of	Data for parcel	There are 2	Genetic	The local	This paper does	The proposed
	method to find an	the Genetic	deliveries in the	major steps in	Algorithm	search-based	not describe	solution
	optimum solution	Algorithm while	Bristol area (UK)	the		mutations	implementation	resulted in a
	to the GVRP	incorporating	are used to create	implementation		provide a faster	pertaining to the	17.91%
	problem that aims	elements of local	the real-world test	of the method.		convergence of	use of asymmetric	reduction in
	to reduce	and population	instances.			the GA	matrices to cater to	distance and a
	greenhouse gas	search heuristics to		Create a model			the gradient	15.22%
	emissions per	minimize CO2		for emissions:		Very high	method but rather	reduction in
	route.	emissions per route		A		elitism leading	considers a	carbon
		on a set of light-		mathematical		to only better	symmetric cost	emissions when
		duty diesel delivery		function		combinations or	matrix of distance	compared with
		vehicles.		created to		solutions	and speed models.	the original
				calculate CO2		forming a new	1	mTSP solution.
				emissions over		population	Varying	It also
				distance, speed,			parameters affect	performed
				road gradient,			runtime and best	better than the
				load, emissions			solutions	recorded route
				factor, and			differently.	solution in both
				ĺ				measures of

	constant	distance and
	coefficients.	emissions.
	Formulate and	
	implement the	
	GA: The	
	emissions	
	model is used	
	as the fitness	
	function and	
	some of the	
	initial	
	population is	
	generated using	
	heuristics while	
	the rest is	
	generated	
	randomly. The	
	population is	
	kept small and	
	methods like	
	crossover are	
	implemented	
	using an	
	ordered	
	crossover	
	approach while	
	mutations are	
	performed as a	
	local search	
	operator.	

Detailed Analysis of the Chosen Problem and its Corresponding Algorithm

In this paper, the Mixed Integer Linear Programming approach is implemented to find the optimum solution for the Green Vehicle Routing Problem. It was one of the many algorithms that were analyzed in the Literature Review section.

The approach used comes under the Linear Programming domain of algorithms. Linear Programming is a method used for finding the optimum solution out of the available feasible solutions for a particular problem. This is done by either maximizing or minimizing the objective function depending on the use case and applying constraints to find the best solution. A linear programming problem is made up of two parts. The First part is the objective function which is a mathematical formulation of the primary objective of the problem. The second part is a system of linear equations which represents the constraints under which the optimum solution must be calculated.

Under Linear Programming depending on the value taken on by the decision variables it can be classified into different types of problems. In general decision variables are fractional to adopt a more realistic approach to the problem at hand. But depending on the problem sometimes fractional values are not suitable. This kind of problem is known as the Integer-programming problem. If some decision variables are allowed to take integer values and others fractional values that is if it comprises a mix of values this problem is known as the Mixed Integer Programming problem. And if the decision variables are restricted to only integer values it is known as the Pure Integer problem [11].

The main objective of the Vehicle Routing problem is to minimize the distance travelled by the vehicle and as well as cover each capital or node exactly once. Keeping the essence of the problem constant the objective of VRP was modified to suit the GVRP which is to minimize the emission rate of the vehicle. In this implementation, multiple vehicles (K) are considered wherein the start capital would be visited K times while all the other capitals would be visited exactly once by one of the vehicles.

The decision variables for this problem are:

- **x** which is a binary variable and takes on the value of 1 if a path exists between node i to node j otherwise it is set as 0.
- **u** which gives the order in which the nodes are visited

The constraint is that for every node excluding the start node the no of incoming edges or outgoing edges should be 1 whereas for the start node the number of incoming and outgoing edges should be equal to K.

Using these parameters and constraints the code was implemented for the GVRP problem [21].

Time Complexity of the implemented Algorithm

import(libraries)	# O(1)
load(siteData)	# O(1)
load(positionData)	# O(1)
load(timeData)	# O(1)
load(distanceData)	# O(1)
speedData <- distanceData/timeData	# O(n^2)
emissionFactor <- f(speedData)	# O(n^2)
emissionData <- emissionFactor * distanceData	# O(n^2)
positions <- dictionary(positionDa ta)	# O(n^2)
<pre>emissionDict <- dictionary(emissionDa ta[node1][node2])</pre>	# O(n^2)
K <- k	# O(1)
startNode <- selected	# O(1)

starting node	
problem <- creating the LP problem	# O(1) since it returns only name, and type of LP problem
x <- LP_Variable(emissionD ict)	# $O(n^2)$ since number of variables created under $x = number$ of entries in emissionDict
u <- LP_Variable(siteData)	# O(n^2) since number of variables created under u = number of nodes (i.e. entries in siteData)
<pre># creating the objective function cost <- LPSum(x*emissionDict)</pre>	# O(n^2) since we are creating an objective function equation summing the product of emissions with the corresponding node pair variable in x. Since there exist n^2 pairs, time complexity to access is O(n^2)
problem <- problem + cost	# O(1) adding the objective to the problem definition
# constraint definition	
<pre>for s in siteData: if s <> startNode:</pre>	# O(n)
capacity <- 1	# O(1)
else: capcity <- K	# O(1)
<pre># adding inbound and outbound connection constraints to problem definition</pre>	# O(1)

<pre>problem <- problem + eqn(LPSum(x[Nodel, s]) == capacity) problem <- problem + eqn(LPSum(x[s, Nodel]) == capacity)</pre>	<pre># O(n) # O(n) # O(n) # O(n) since there are n sites or n nodes in total and only (n-1) variables that can connect to one selected node # The whole for loop - O(n)*[3*O(1) + 2*O(n)] => O(n^2)</pre>
N <- numberOfNodes/K	# 0(1)
<pre># subroute elimination, adding subroute linear constraints to problem for i in siteData: for j in siteData: if i <> j and (i <> startNode and j <> startNode) and (i,j) in x: problem <- problem + eqn(u[i] - u[j] <= N*(1-x[i,j]) - 1)</pre>	<pre># O(n) # O(n) # O(1) # O(1) # O(1) # The whole block of nested for loops - O(n) * O(n) * 2*O(1) => O(n^2)</pre>
<pre># solving the fomrulated problem</pre>	# O(n^4)

Solve(problem)

. . .

Explanation: The function implements CBC open source code library that makes use of a branch and cut algorithm to solve the mixed integer linear programming equation.

Assuming branch and cut for the following algorithm, we can visualize the problem as a tree.

At each level, K nodes get pruned due to branch and cut method, therefore at each level there exist (n-1-(x-1)*K) nodes to choose from for each K where x is the current level of tree. Height of the tree h = average number of nodes visited by each salesman => n/K.

Additionally, we have n^2 constraints to be solved to obtain the value of every variable (which tells us which next node to be picked creating an edge/branch).

Adding all together, we get the equation of time complexity to be:

$$n^{2} [(n-1) + \sum_{x=1}^{h} K * [(n-1) - x * K]]$$

Upon solving and substituting for h as n/K, we get the time complexity:

$O(n^4 + K^*n^3)$; 1 <= K < n

As proven later in the results, the value of K has a big impact on the computation time. This

	is because K is the coefficient of the next largest term in the complexity and thus this term cannot be ignored due to its heavy influence on computational time.
print Problem status: to know if optimal or not	# 0(1)
non_zero_edges <- solutionEdges(x)	<pre>#O(n^2) since there are n^2 edges in x dictionary (all pairs of nodes)</pre>
<pre>tours <- get_next_site(startNode)</pre>	# O(e) where e is the number of solution edges (time complexity from function definition)
<pre>tours <- list([e] for e in tours)</pre>	#O(K) since it selects only K pairs (first pair from each list in tours) which denote the first node to visit by each of K salesman from startNode
for t in tours:	# O(K) since tours has only K pairs
<pre>while nextNode <> startNode:</pre>	<pre># O(n) since there are (n-1) other nodes possible to be appended to t (depending on get_next site)</pre>
<pre>t.append((get_next_site (nextNode))[lastEle])</pre>	<pre># O(e) # The whole nested loop block takes O(K)*O(n)*O(e) => O(K*n*e)</pre>
for t in tours: print the firstNode for every node pair in t	<pre># O(K) # O(n/K) since on average, t is a list of n/K elements # The whole block is of time complexity : O(K)*O(n/K) => O(n)</pre>

totalTime <- 0	# 0(1)
for t in tours:	# O(K)
time <- 0	# 0(1)
<pre>for i:0 to noOfElements(t):</pre>	
<pre>time <- time + timeData[t[i][0], t[i][1]]</pre>	# O(n/K) since on average, t is a list of n/1 elements
<pre>if time > totalTime:</pre>	# O(1) to access element by index
totalTime <-	
print the totalTime	# 0(1)
	# O(1)
	# O(1)
	# The whole block is of time complexity : $O(K)*[O(n/K) + 3*O(1)] \Rightarrow O(n)$
''' Auxiliary function to get next edge: '''	
<pre>def get_next_site(parent):</pre>	
edges = list(non_zero_edges	# O(e) since there are e edges in non_zero_edges list

```
the pair is the parent
node)

for e in edges:
    # O(K) since there are K selected first nodes
from startNode

non_zero_edges.remove(e
)

return edges

# O(1)

# O(1)

# U(1)

# The whole function definition => O(e) +
O(K)*O(1) => O(e) since K < e</pre>
```

Implementation

As seen in Figure 1. The first step is to import/install the necessary libraries required to run the program. The libraries are:

- **NumPy** used to perform calculations with arrays.
- **Pandas** used for data frame manipulation.
- **Matplotlib** used for plotting graphs.
- **Seaborn** used for data visualization.
- **PuLP** used for solving optimization problems.

Figure 1. Importing/Installing Libraries

The next step is to load all the datasets as shown in Figure 2. The first file is "position.csv" which consists of the coordinates i.e., the longitude and latitude of each city. The next file "flight_time.csv" consists of a matrix of time taken from one node/city to every pair of nodes/cities. And finally, "distance.csv" contains a matrix of the distance from one node/city to every pair of nodes/cities. The 24 cities are given in the list **sites** and all these files are stored in variables **position**, **flighttime**, and **distance** using the pd.read_csv() function used to read comma-separated value files into the data frame using the pandas library.

Figure 2. Loading of Dataset

Next, the emissions matrix is calculated by first calculating the speed matrix which is done by dividing **distance/flighttime** and stored in variable **speed.** Then the null values are filled with zeroes in the speed matrix. The formula found in [22] is used to calculate the emissions as shown in Fig 3. This is then stored in the variable **emissions** which is a matrix that shows emissions of vehicles from one node/city to every pair of nodes/cities.

```
▼ Forming Emissions Matrix

We calculate the cost of every edge as the amount of emissions output by travelling it:
    emissions = EF * d

where EF = 429.51 - 7.8227 x speed + 0.0617 x (speed^2)

[9] #Calculating speed matrix speed = distance/flighttime speed = speed.fillna(0)

[10] EF = 429.51 - 7.8227*speed + 0.0617*(speed**2) emissions = EF.mul(distance)
```

Figure 3. Calculation of Speed and Emission Matrix

The code for plotting the nodes is shown in Figure 4. The nodes are plotted by storing the coordinates for every city in **sites** with respect to all the other cities as key-value pairs in a dictionary called **positions.**

```
Plotting the Nodes

[12] positions = dict( ( city, (position.loc[city, 'longitude'], position.loc[city, 'latitude']) ) for city in sites)

for s in positions:
    p = positions[s]
    plt.plot(p[0],p[1],'o')
    plt.text(p[0]+.01,p[1],s,horizontalalignment='left',verticalalignment='center')

plt.gca().axis('off');
```

Figure 4. Plotting of Cities/Nodes

For the formulation of the problem section as shown in Figure 5 first, the emissions between two cities are stored in a dictionary called **distances** as key-value pairs. Next, the number of vehicles or the number of routes to be formed from the start node/city **K** is set as 3. The starting node is set as "Berlin" and the problem is formulated using the **LpProblem** class from the PuLP library. An instance of **LpProblem** is created and stored in **prob** and 2 parameters are passed to it. The first parameter is the name of the problem which in this case is 'vehicle' and the second parameter is used to define whether the problem is a maximization or minimization problem. This is a minimization problem since the emissions need to be reduced. Therefore, **LpMinimize** is passed.

The next cell is used to create the decision variables using **LpVariable** function. Wherein the first parameter "name" takes the name of the variable, the second parameter "indexes" takes a list of strings of the keys to the dictionary of LP variables, and the main part of the variable name itself, the third parameter "lowbound" takes the lower bound, fourth parameter "upBound" takes the upper bound and the last parameter "cat" takes the type of variable. Since this is a Mixed Integer programming problem the decision variables take on a mix of values.

```
The problem is to minimise the emissions output for all routes formed. The number of routes to be formed is denoted by K.

[] #Get the distance between cities
    distances = dict( ((s1,s2), emissions.loc[s1, s2] ) for s1 in positions for s2 in positions if s1!-s2)

[] #Setting the number of routes to be formed
    K = 3

[] #Setting the starting point
    starting_node = 'Berlin'

[] #Create the problem
    prob = LpProblem("vehicle", LpMinimize)

[] #Variable to indicate if site i is connected to site j in the tour
    x = LpVariable.dicts('x', distances, 0, 1, LpBinary)
    #Dummy variables to eliminate subtours
    u = LpVariable.dicts('u', sites, 0, len(sites)-1, LpInteger)
```

Figure 5. Formulation of the Problem using PuLP Library

The objective function is formulated by using the **LpSum** function from the PuLP library which allows the passing of a vector and calculates the sum of the list of linear expressions.

The vector passed here is the product of emissions multiplied with \mathbf{x}_{ij} which is the decision variable used to indicate if a path is present from node \mathbf{i} to node \mathbf{j} for every \mathbf{i}, \mathbf{j} present in distances. This is stored in a variable called **cost** which is then added to the variable **prob**.

As shown in Figure 6 the constraints are added by again using the **LpSum** function. Here if **k** in **sites** is not equal to starting node which in this case is "Berlin" then **cap** is set to 1 otherwise it is set to **K** which is the no of times the starting node will be visited whereas all the other nodes will be visited exactly once. For all **i** in **sites** if a path is present from **i** to **k** then is added to prob and vice versa is also added to **prob**.

The sub tour elimination is done by first calculating N which is the total no of sites/ no of vehicles. For i and j in sites, if i is not equal to j and both i and j are not equal to starting node which is "Berlin" then for every i, j in x u_i to $u_j + N^*$ (1- x_{ij}) <=(N-1) is formulated as constraints and added to **prob**.

Figure 6. Addition of Constraints

As shown in Figure 7 the problem is solved by calling a function **solve** which modifies the problem so that it is suitable for calculation and then the status of the solver is printed using the **LpStatus** function. During this process, every entry in the **x** dictionary is set to 1 if an edge exists between the corresponding pair of cities in the solution else it is set to 0.

```
➤ Solving the Problem
The 'x' dictionary is updated during problem solving. Entry 1 for node pair (i, j) indicates that the edge between i and j exists in the solution. Entry 0 indicates exclusion of the edge from the solution.
[23] **Xtime prob.solve() print(LpStatus[prob.status])
CPU times: user 1.18 s, sys: 145 ms, total: 1.33 s
Wall time: 4min 33s
Optimal
for i in x: print(value(x[i]))
0.0
0.0
0.0
0.0
0.0
```

Figure 7. Solving the Problem

The next section consists of converting the solution into a proper format. As shown in Figure 8 first, the non-zero edges are stored in variable **non_zero_edges**. The function **get_next_site** takes in an argument parent which is the start node in this case "Berlin". And the routes which start from Berlin are stored in **edges** from the set of edges in **non_zero_edges**. Then for **e** in **edges** that is the **edges** present in **non_zero_edges** are removed and finally **edges** is returned and stored in a variable called **tours**. Then the following cells contain code that helps to create 3 paths since K=3 from the start node and corresponding routes from these three paths are stored in tours as a list of three lists.

```
[29] #Printing the generated routes
     for t in tours:
        print(' -> '.join([a for a,b in t]+[starting_node]))
    Berlin -> Brussels -> Paris -> London -> Dublin -> Madrid -> Barcelona -> Milan -> Munich -> Berlin
    Berlin -> Rome -> Sofia -> Istanbul -> Bucharest -> Belgrade -> Budapest -> Vienna -> Prague -> Berlin
    Berlin -> Warsaw -> Kiev -> Moscow -> Saint Petersburg -> Stockholm -> Copenhagen -> Hamburg -> Berlin
    #Calculating total time needed to traverse all routes parallely
    totalTime = 0:
     for t in tours:
        time = 0
        for i in range(0, len(t)):
            time += flighttime.loc[t[i][0], t[i][1]]
         if time > totalTime:
            totalTime = time
     print(totalTime)
     2546
```

Figure 8. Translating the Solution

Figure 9 shows the 3 routes generated and the next cell is code corresponding to the calculation of the total time taken in minutes to visit all the nodes by the 3 vehicles simultaneously.

```
    Translating the Solution

The solution is currently just a dictionary filled with 0s and 1s. This data needs to be translated into human readable routes.

[25] non_zero_edges = [ e for e in x if value(x[e]) != 0 ]

    def get_next_site(parent):
        #Helper function to get the next edge
        edges = [e for e in non_zero_edges if e[0] == parent]
        for e in edges:
            non_zero_edges.remove(e)
        return edges

[26] tours = get_next_site(starting_node)

[27] tours = [[e] for e in tours]

[28] for t in tours:
        while t[-1][1] != starting_node:
            t.append(get_next_site(t[-1][1])[-1])
```

Figure 9. Printing Routes and Calculation of Total Time

The final solution of the routes is then represented by plotting the three routes. Figure 10 shows the code for plotting the graph. And the output of the code is shown in Figure 11.

```
Final Solution

Final Solution

[31] #Plotting the tours
    colors = [np.random.rand(3) for i in range(len(tours))]
    for t,c in zip(tours,colors):
        for a,b in t:
            p1,p2 = positions[a], positions[b]
            plt.plot([p1[0],p2[0]],[p1[1],p2[1]], color=c)

for s in positions:
    p = positions[s]
    plt.plot(p[0],p[1],'o')
    plt.text(p[0]+.01,p[1],s,horizontalalignment='left',verticalalignment='center')

plt.title('%d '%K + 'people' if K > 1 else 'person')
    plt.xlabel('latitude')
    plt.ylabel('longitude')
    plt.show()
```

Figure 10. Code for plotting Final Solution

Figure 11. Plot of 3 Optimum Routes

In Figure 12 the time taken to traverse all the cities in minutes and the total emission during the traversal in kilograms are printed.

```
print('Longest time spent in route traversal:', totalTime, '(min)')
print('Total emissions during traversal:', value(prob.objective)/1000, '(kg)')

Longest time spent in route traversal: 2546 (min)
Total emissions during traversal: 5815.184188561756 (kg)
```

Figure 12. Printing of Time Taken for Traversal and Total Emissions

Architecture Diagram

Results and Discussion:

For the chosen dataset the positions of the nodes (relative to each other, based on their latitude and longitude) are shown in Figure 13:

Figure 13. Positions of nodes in Dataset

1. Relation between the position of starting point and time taken to generate solution:

For a given set of n nodes, we found that more time was needed to generate routes if the starting node was closer to the edge of the map than to the centre of it.

Example:

Let K = 2

With Prague (closer to the centre of the map) as the starting point, the routes were generated in 6.36 s as shown in Figure 14.

Figure 14. Prague as Starting Point

But with Budapest (farther from the center of the map) as the starting point, the routes were generated in 32.8 s as shown in Figure 15.

Figure 15. Budapest as Starting Point

2. Relation between the number of routes to be created and the time taken to generate the solution:

As proven while finding the time complexity of the algorithm, an increase in the number of routes to be created (K) leads to a significant increase in computation time.

Example:

Computation time with Berlin as starting node for K = 1, Time taken = 9.27 s as shown in Figure 16.

Figure 16. Berlin as Starting Point and K=1

K = 2 and Time taken = 22.24 s as shown in Figure 17.

Figure 17. Berlin as Starting Point and K=2

K = 3 and Time taken = 4 min 57 s as shown in Figure 18.

Figure 17. Berlin as Starting Point and K=3

3. Relation between the number of nodes and the time taken to generate the solution: If 12 of the 24 nodes from the original dataset are removed, then the plot is as shown in Figure 18.

Figure 18. No of Nodes is 12

As seen previously, the time taken to generate K = 2 routes with Berlin as the starting point is 22.24 s. With the new plot, having half the original number of nodes, the time taken to do the same is 2.17 s as shown in Figure 19.

Figure 19. No of Nodes is 12, Starting Point is Berlin and K=2

Thus, computation time decreases with a decrease in the number of nodes (as proven in the time complexity analysis).

The paper begins by identifying and defining the Green Vehicle Routing (G-VRP) problem which aims at solving the VRP with environmental considerations to reduce emissions. We have focused on the Pollution Routing Problem (PRP), a subcategory of G-VRP. Phase-1 reviewed different proposed solutions and algorithms such as Dynamic Programming, Genetic Algorithm, Large Neighbourhood Search, Branch and fix algorithm, Particle Swarm Optimization, and path-based Mixed Integer Linear Programming (MILP) approach to solve the G-VRP. In Phase-2, we analyzed and implemented an algorithm that would provide an optimal and fitting solution. For the implementation part of the program, we selected the pathbased MILP approach which aimed at reducing the NP-Hard problem (which generally takes at least exponential time) into a problem that can be readily solved in polynomial time by defining a minimizing linear equation. We adapted the general VRP problem that uses the branch and cut algorithm to solve the problem and modified it to take in emission considerations to fit the problem definition chosen. The scope of the implementation made use of a speed model to calculate the emissions factor per unit distance (according to MEET EU_2020 REPORT) [18] and used this model to identify the most efficient paths while minimizing CO2 emissions.

With the above results in mind, it can be confidently said that linear programming works well for generating optimal solutions for GVRP. However, it is a time-consuming approach. Thus, linear programming is an efficient approach for small GVRP instances having greater clustering of nodes.

Through literature review and hands-on execution of the above algorithm, we can conclude that linear programming can work efficiently (with respect to computation time) on larger and sparser GVRP instances if used in conjunction with other programming approaches such as local search or metaheuristic algorithms. Given that it works very well for smaller instances,

linear programming could perhaps be used as a subproblem solver to generate solutions for larger instances (in a divide and conquer approach) in future works.

Further research needs to be conducted to modify the following optimal algorithm to include factors such as load, road gradient, type and efficiency of a vehicle, and other factors to make the emissions model more accurate. Additionally, the future scope includes considering other constraints under the G-VRP such as multiple pick-ups and drop-offs, multi-depot considerations, time windows, etc. to create an optimal and robust algorithm to suit various needs and situations efficiently, and accurately.

Conclusions

Upon summing the Big O for every operation in the above code, we can conclude that the largest factor that affects the time complexity (Big O) of the code is the function that finds the solution to the Linear programming problem and takes $O(n^4)$ time. Also, we have managed to reduce the complexity of the GVRP problem from exponential to polynomial time complexity.

References:

- [1] M. Soysal, M. Çimen, Ç. Sel, and S. Belbağ, "A heuristic approach for green vehicle routing," RAIRO Operations Research, vol. 55, pp. S2543–S2560, 2021, doi: 10.1051/ro/2020109.
- [2] J. Dutta et al., "MULTI-OBJECTIVE GREEN MIXED VEHICLE ROUTING PROBLEM UNDER ROUGH ENVIRONMENT," Transport, vol. 0, no. 0, pp. 1–13, Feb. 2021, doi: 10.3846/transport.2021.14464.
- [3] NEO, "Capacitated VRP Instances," Networking and Emerging Optimization (NEO), 2013. https://neo.lcc.uma.es/vrp/vrp-instances/capacitatedvrp-instances (accessed Feb. 22, 2022).
- [4] T. Ralphs, "Vehicle Routing Data Sets," Oct. 03, 2003. https://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index. htm.old (accessed Feb. 22, 2022).
- [5] VRP-REP, "Datasets," Vehicle Routing Problem Repository (VRP-REP), 2018. http://www.vrp-rep.org/datasets.html (accessed Feb. 22, 2022).
- [6] P. Augerat, D. Naddef, J. M. Belenguer, E. Benavent, A. Corberan, and G. Rinaldi, "Computational results with a branch and cut code for the capacitated vehicle routing problem," www.osti.gov, Sep. 1995, Accessed: Feb. 22, 2022. [Online]. Available: https://www.osti.gov/etdeweb/biblio/289002.
- [7] P. Barma, "ZIP Archive: Rough Data," 2018. https://drive.google.com/file/d/1W8pJvibW3v3mXrpz_ 9u0qjmvd_yLWecQ/view (accessed Feb. 22, 2022).
- [8] R. Eshtehadi, M. Fathian, S. Pishvaee, and E. Demir, "A hybrid metaheuristic algorithm for the robust pollution-routing problem." Accessed: Feb. 27, 2022. [Online]. Available: http://www.jise.ir/article_53645_309bf1167d1cc0e2366fcb527f6b06ca.pdf.
- [9] "The Pollution-Routing Problem Instance Library." http://www.apollo.management.soton.ac.uk/prplib.htm (accessed Feb. 27, 2022).
- [10] M. Murua, D. Galar, and R. Santana, "Solving the multi-objective Hamiltonian cycle problem using a Branch-and-Fix based algorithm," Journal of Computational Science, vol. 60, p. 101578, Apr. 2022, doi: 10.1016/j.jocs.2022.101578.
- [11] M. Bruglieri, S. Mancini, F. Pezzella, and O. Pisacane, "A path-based solution approach for the Green Vehicle Routing Problem," Computers & Operations Research, vol. 103, pp. 109–122, Mar. 2019, doi: 10.1016/j.cor.2018.10.019.
- [12] J. Andelmin and E. Bartolini, "A multi-start local search heuristic for the Green Vehicle Routing Problem based on a multigraph reformulation," Computers & Operations Research, vol. 109, pp. 43–63, Sep. 2019, doi: 10.1016/j.cor.2019.04.018.
- [13] L. Wang and J. Lu, "A memetic algorithm with competition for the capacitated green vehicle routing problem," IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 2, pp. 516–526, Mar. 2019, doi: 10.1109/jas.2019.1911405.

- [14] B. N. I. F. Ramadhani and A. K. Garside, "Particle Swarm Optimization Algorithm to Solve Vehicle Routing Problem with Fuel Consumption Minimization," Jurnal Optimasi Sistem Industri, vol. 20, no. 1, pp. 1–10, May 2021, doi: 10.25077/josi.v20.n1.p1-10.2021.
- [15] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, "Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," IEEE Transactions on evolutionary computation, vol. 8, no. 3, pp. 240-255, 2004. doi: 10.1109/TEVC.2004.826071
- [16] E. Waidyathilaka, V. Tharaka, and R. Wickramarachchi, "Multi-objective Green Vehicle Routing Optimization," 2020. Accessed: Feb. 27, 2022. [Online]. Available: http://www.ieomsociety.org/ieom2020/papers/152.pdf.
- [17] E., J., Panickera, V. V. & Sridharan, R., 2015. Multi-objective optimization model for a green vehicle routing problem. Procedia Social and Behavioral Sciences, Volume 189, pp. 33-39.
- [18] P. R. de Oliveira da Costa, S. Mauceri, P. Carroll, and F. Pallonetto, "A Genetic Algorithm for a Green Vehicle Routing Problem," Electronic Notes in Discrete Mathematics, vol. 64, pp. 65–74, Feb. 2018, doi: 10.1016/j.endm.2018.01.008.
- [19] S. Erdoğan and E. Miller-Hooks, "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, vol. 48, no. 1, pp. 100–114, Jan. 2012, doi: 10.1016/j.tre.2011.08.001.
- [20] J. Andelmin and E. Bartolini, "An Exact Algorithm for the Green Vehicle Routing Problem," Transportation Science, vol. 51, no. 4, pp. 1288–1303, Nov. 2017, doi: 10.1287/trsc.2016.0734.
- [21] S. Anbuudayasankar, K. Ganesh, and K. Mohandas, "Mixed-Integer Linear Programming for Vehicle Routing Problem with Simultaneous Delivery and Pick- Up with Maximum Route-Length," The International Journal of Applied Management and Technology, vol. 6, no. 1, [Online]. Available: https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=1020&context=ijamt
- [22] P. R. de Oliveira da Costa, S. Mauceri, P. Carroll, and F. Pallonetto, "A Genetic Algorithm for a Green Vehicle Routing Problem," Electronic Notes in Discrete Mathematics, vol. 64, pp. 65–74, Feb. 2018, doi: 10.1016/j.endm.2018.01.008.