

Titel der Arbeit, bei Bedarf auch zweizeilig

Untertitel der Arbeit, auch mehrzeilig oder ganz weglassen.

Name: Vorname Nachname

Matrikelnummer: 123 45678 Abgabedatum: 12.08.2021

Betreuer und Gutachter: Name des Betreuers und ersten Gutachters

Universität Rostock

Fakultät

Gutachter: Name des zweiten Gutachters

Universität Musterstadt

Fakultät

Masterarbeit am Institut für Mathematik Mathematisch-Naturwissenschaftliche Fakultät

;	Zusammenfassung	
Platz für eine kurze Zusammenfas		
	O	

Inhaltsverzeichnis

Αb	bildu	ingsverzeichnis	1111
Ta	belle	nverzeichnis	IV
Αl	gorith	nmenverzeichnis	IV
Lis	st of	Algorithms	V
Ve	rzeic	hnis der Listings	VI
Αb	kürz	ungsverzeichnis	VII
Sy	mbol	verzeichnis	VII
1.	Einle	eitung	1
2.	Grui	ndlagen	2
	3.1. 3.2. 3.3.	Das Perzeptron	3 3 4 7 8 9 12
4.	4.1.	bare neuronale Netze Die Faltungsoperation	14 14 16
5.	5.1. 5.2. 5.3. 5.4.	Bilder	18 18 19 19 19 19 20
	5.5.	TikZ	20 21 21

In halts verzeichn is

6.	Ein letztes Kapitel	22
	6.1. Weiteres Korollar	22
	6.2. Pseudocode	22
	6.3. Zitate	22
Lit	eratur	24
Α.	Anhang	i
	A.1. Listings	i
	A.2. Biber	i

Abbildungsverzeichnis

3.1.	Arbeitsweise eines Perzeptrons mit entsprechender Notation aus Definition 1	4
4.1.	Es wird die Merkmalskarte $S \in \mathbb{R}^{3\times 3}$ mit den Parametern $h, w = 5, k_h =$	
	$k_w = 3, s_h = s_w = 1 \text{ und } p_h = p_w = 1. \dots \dots \dots \dots \dots \dots \dots$	16
4.2.	Es wird die Merkmalskarte $S \in \mathbb{R}^{3\times 3}$ mit den Parametern $h, w = 5, k_h =$	
	$k_w = 3, s_h = s_w = 2$ und $p_h = p_w = 1$ berechnet	17
5.1.	Vektorgrafiken sind toll. Scrolle mal in mich rein!	20
5.2.	Vergleich verschiedener Schnecken	20
5.3.	Beispiel eines mit TikZ erzeugten Bildes	21
5.4	Datenreihen mittels Tik7 visualisiert	21

Tabellenverzeichnis

5.1.	Einfache Tabelle	19
5.2.	Nicht mehr ganz so einfache Tabelle	19

List of Algorithms

1.	Vorwärtsrechnung	7
2.	Mini-Batch-Verfahren, vgl. [gruening]	12
3.	An algorithm with caption	22

Verzeichnis der Listings

A.1.	C Code - direkt eingefügt	i
A.2.	Java Code - über externe Datei eingefügt	i

Abkürzungsverzeichnis

RNN	Rekurrentes Neuronales Netz											18	3

Symbolverzeichnis

	\mathcal{C}	Confidence Matrix																														1	8
--	---------------	-------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

1. Einleitung

Es mag euch wundern, dass die Einleitung in einem separaten File abgelegt ist. Dies muss natürlich nicht so sein. Es könnte aber bei einer langen Abschlussarbeit durchaus die Übersichtlichkeit erhöhen, wenn ihr für verschiedene Kapitel einzelne Dateien anlegt und diese mittels

```
\input{<DateiName>}
  oder

\include{<DateiName>}
einfügt.

Verwendet keine Umlaute oder Leerzeichen in Dateinamen.
```

input fügt den Text direkt an die Stelle des input-Befehls ein. include fügt den Text auf einer neuen Seite ein.

2. Grundlagen

Mathe/ ML Learning

Problemstellung (Einleitung)
Training, Aufgabe Leistung
supervisies, unsupervised erklären
Klassifikationsproblem
Merkmalsextraktion (1FFT 2FFT, IFFT NFFT)
(Faltung)
(FFT Regeln insb convolution/coprrelation theorem mit FFT)
Trennbarkeit linear/nichtlinear Entscheidungsgrenzen Hyperebene
Perzeptron Theorem
numerische Minimierung, kurz Abstiegsverfahren in einfacher Version
falls nötig adaptive Verfahren
warum NN?
warum später CNN?

SQL

Relationen, Tensoren Marizen/Vektoren als Relationen Basisoperationen

3. Grundlagen neuronaler Netze

In diesem Kapitel werden Künstliche Neuronale Netze[5], kurz KNN, als Forschungsgegenstand der Informatik eingeführt und deren mathematische Grundlagen präzisiert. Sie stellen informationsverarbeitende Systeme nach dem Vorbild von tierischen beziehungsweise menschlichen Gehirnen dar und bestehen aus Neuronen in gewissen Zuständen und Schichten, die über gewichtete Verbindungen miteinander gekoppelt sind. Jene Gewichte sind als freie Parameter des neuronalen Netzes zu verstehen und können während des Trainingsprozesses so angepasst werden, um eine entsprechende Aufgabe zu lösen. Gelingt dies, so können neuronale Netze genutzt werden, um bestimmte Muster in Daten, typischerweise in Bildern, Audio oder Stromdaten, effizient zu erkennen[18, 19, 30]. Sie eignen sich daher für viele typische Aufgaben des maschinellen Lernens, beispielsweise für die Klassifikation digitalisierter Objekte.

Im ersten Abschnitt wird das Perzeptron[22] als Grundeinheit eines neuronalen Netzes eingeführt. Im folgenden Abschnitt wird das Konzept der Multi-Layer-Perzeptronen[31] durch die Kopplung mehrerer Perzeptronen mit bestimmten Übertragungs- und Aktivierungsfunktion in einem Netz erläutert. Diese Repräsentierung eines KNN wird im weiteren Verlauf dieser Arbeit genutzt. Weiter wird das Training neuronaler Netze hinsichtlich der Klassifikationsaufgabe im Abschnitt 3.3 erläutert und schließlich eine kurze Zusammenfassung 3.4 gegeben.

3.1. Das Perzeptron

Zunächst wird das *Perzeptron* ähnlich wie in Minsky [16] als fundamentaler Baustein eines neuronalen Netzes eingeführt. Das Perzeptron wird oft als Basis moderner KNN angeführt und kann mithilfe des Perzeptron-Lernalgorithmus[22] trainiert werden, um das Problem der linearen Trennbarkeit ??von Punktmengen zu lösen.

Definition 1 (Perzeptron). Für eine gegebene Funktion $\psi : \mathbb{R} \to \mathbb{R}$, einen Vektor $w \in \mathbb{R}^n$ und ein Skalar $\theta \in \mathbb{R}$ wird die Funktion

$$\Psi: \mathbb{R}^n \to \mathbb{R}, \quad x \mapsto \psi(w^T x + \theta) =: y,$$

Perzeptron genannt. Mit $x \in \mathbb{R}^n$ wird die vektorwertige Eingabe und mit $y \in \mathbb{R}$ die skalare Ausgabe des Perzeptrons bezeichnet. Dabei ist mit $w^T x = \sum_{i=1}^n w_i x_i$ das Standardskalarprodukt im euklidischen Vektorraum \mathbb{R}^n gemeint. Die Komponenten von w werden Gewichte und der Skalar θ Schwellwert oder auch Bias genannt.

Die Funktionsweise eines Perzeptrons ist in Abbildung 3.1 dargestellt. Bei der Wahl

Abbildung 3.1.: Arbeitsweise eines Perzeptrons mit entsprechender Notation aus Definition 1.

der Funktion ψ gibt es mehrere Möglichkeiten. Wird wie in Minsky[16] die Heavyside-Funktion

$$\psi : \mathbb{R} \to \mathbb{R}, \quad \psi(x) = \begin{cases} 1, & x \ge 0 \\ 0, & \text{sonst} \end{cases}$$

genutzt, kann das Perzeptron als binärer Klassifikator wie in ?? interpretiert werden. Dabei dient $w^T x + \theta = 0$ als trennende Hyperebene. Ist $w^T x + \theta < 0$, so ist $\psi(x) = 0$ und x wird der Klasse K_{-1} zugeordnet. Gilt jedoch $w^T x + \theta \ge 0$ und damit $\psi(x) = 1$, so ist der Vektor x der Klasse K_1 zugehörig.

Für ein Klassifikationsproblem, bei dem die Klassen nicht linear trennbar sind, scheitern diese einfachen Perzeptronen. Hier wird oft das zweidimensionale XOR-Problem angeführt, bei denen die Punktmengen $P_{-1} = \{(0,0),(1,1)\}$ und $P_1 = \{(1,0),(0,1)\}$ getrennt werden sollen. Um solche Aufgaben zu lösen, ist es notwendig, mehrere Perzeptronen geschickt zu verknüpfen, um komplexe Entscheidungsgrenzen zu erhalten.

3.2. Multi-Layer-Perzeptron

In dieser Arbeit wird ein Künstliches Neuronales Netz als eine Menge von Perzeptronen, die in gewissen Schichten partitioniert und miteinander verbunden sind, notiert. Diese sogenannten *Multi-Layer-Perzeptronen*, kurz MLP, gelten als erste tiefe neuronale Netze und sind seit den späten 1980er-Jahren Gegenstand der Forschung[4, 3, 24]. Zunächst sind einige Definition notwendig, um eine lesbare Notation des MLPs zu geben.

Definition 2 (Übertragungsfunktion). Für eine gegebene Matrix $W \in \mathbb{R}^{n \times m}$ und einen Vektor $b \in \mathbb{R}^m$ ist

$$\Psi^{W,b}: \mathbb{R}^n \to \mathbb{R}^m, \quad x \mapsto W^T x + b$$

als Übertragungsfunktion definiert. Der Vektor $y = \Psi^{W,b}(x) \in \mathbb{R}^m$ wird als Netzeingabe bezeichnet.

Hierbei ist W eine Gewichtsmatrix und b ein Biasvektor, welche als freie Parameter fungieren und die Netzeingabe eines Eingabevektors $x \in \mathbb{R}^n$ auf lineare Art und Weise beeinflussen. Um auch nichtlineare Zusammenhänge darzustellen, werden Aktivierungsfunktionen benutzt.

Definition 3 (Aktivierungsfunktion). Eine stetige, monoton steigende und nicht notwendigerweise lineare Funktion $\psi: \mathbb{R} \to \mathbb{R}$ wird als Aktivierungsfunktion bezeichnet.

Es sei erwähnt, dass auch nicht monotone Aktivierungsfunktionen genutzt werden können, beispielsweise radiale Basisfunktionen [20], welche jedoch in dieser Arbeit nicht weiter von Interesse sind. Typische Aktivierungsfunktionen, weche heutzutage verwendet werden, sind die:

Identität: $\psi(x) = x$,

Logistische Funktion : $\psi(x) = \frac{1}{1 + e^{-x}}$, Tangens Hyperbolicus : $\psi(x) = \tanh(x)$,

ReLU (rectified linear unit): $\psi(x) = \max\{0, x\}$.

Bemerkung 1. Ist ψ eine Aktivierungsfunktion, so wird für $x \in \mathbb{R}^n$ mit

$$\psi(x) := (\psi(x_1), \dots, \psi(x_n))^T \in \mathbb{R}^n$$

der Vektor bezeichnet, welcher sich durch die elementweise Auswertung der Aktivierungsfunktion ψ an den Stellen x_1, \ldots, x_n ergibt.

Bei Klassifikationsproblemen wird oft die Softmax-Funktion[6] genutzt, welche die gesamte Eingabe berücksichtigt. Im Abschnitt?? wird erläutert, warum sich in diesem Fall die Softmax-Funktion eignet.

Definition 4 (Softmax). Für $x \in \mathbb{R}^n$ wird die Funktion $\psi : \mathbb{R}^n \to (0,1]^n$ mit

$$\psi(x) := \left(\frac{e^{x_1}}{\sum_{i=1}^n e^{x_i}}, \dots, \frac{e^{x_n}}{\sum_{i=1}^n e^{x_i}}\right)^T$$

als Softmax-Funktion definiert. Die Einträge des Vektors $\psi(x)$ summieren sich zu Eins.

Für den späteren Trainingsprozess ist es nützlich, die Ableitung der verwendeten Aktivierungsfunktion, sofern sie existiert, zur Verfügung zu haben. Zudem ist es möglich, für bestimmte Aktivierungsfunktionen die Ableitung nur mithilfe der verwendeten Funktion zu berechnen.

Lemma 1. (i) Für die $ReLU \psi(x) = \max\{0, x\}$ gilt

$$\psi'(x) = \begin{cases} 0 & , x < 0 \\ 1 & , x > 0 \end{cases}.$$

An der Stelle 0 ist die Ableitung nicht definiert und wird oft mit $\psi'(0) = \frac{1}{2}$ festgelegt.

(ii) Für die logistische Funktion $\psi(x) = \frac{1}{1+e^{-x}}$ gilt

$$\psi'(x) = \psi(x)(1 - \psi(x))$$

 $f\ddot{u}r \ alle \ x \in \mathbb{R}.$

(iii) Für den Tangens Hyperbolicus $\psi(x) = \tanh(x)$ gilt

$$\psi'(x) = 1 - \psi^2(x)$$

 $f\ddot{u}r \ alle \ x \in \mathbb{R}.$

Beweis. Einfaches Differenzieren liefert für (i) und (ii) die Resultate. Bei (iii) wird die Darstellung $\tanh(x) = \frac{2}{e^{2x}+1}$ genutzt und das Differenzieren mittels Quotientenregel liefert die Aussage.

Ähnlich der Definition des Perzeptrons 1 wird nun eine Schicht als Verknüpfung von Übertragungsfunktion und Aktivierungsfunktion definiert.

Definition 5 (Neuronenschicht). Ist $\Psi^{W,b}$ eine Übertragungsfunktion mit den Parametern $W \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^m$ und ψ eine Aktivierungsfunktion, so wird das Paar $(\Psi^{W,b}, \psi)$ als Schicht S bezeichnet. Für eine Eingabe $x \in \mathbb{R}^n$ ist die Ausgabe $y \in \mathbb{R}^m$ der Schicht S durch

$$y = \psi \circ \Psi^{W,b}(x) = \psi \left(\Psi^{W,b}(x) \right)$$

gegeben. Die Komponenten y_i werden für $1 \leq i \leq m$ Neuronen der Schicht S genannt und gleichen jeweils der Ausgabe eines einfachen Perzeptrons wie in Definition 1. Eine Schicht besteht aus m Perzeptronen $\tilde{\Psi}_i$ mit $y_i = \tilde{\Psi}(x_i) = \psi(W_{i,:}^T x + b_i)$ für $1 \leq i \leq m$.

Im Hinblick auf MLPs werden nun mehrere Schichten so verbunden, dass die Ausgabe einer Schicht \mathcal{S}_k als Eingabe einer darüberliegenden Schicht \mathcal{S}_{k+1} für ein $k \in \mathbb{N}$ dient. Die Anzahl der Neuronen kann dabei von Schicht zu Schicht variieren. Dementsprechend werden die Dimensionen der beteiligten Gewichtsmatrizen $W^{(k)}$ und Biasvektoren $b^{(k)}$ passend gewählt. Um die Notation übersichtlich zu halten, bezeichne $\Psi^{W^{(k)},b^{(k)},\psi_k}$ die Schicht \mathcal{S}_k mit $\Psi^{W^{(k)},b^{(k)},\psi_k}(x) := \psi_k \left(\Psi^{W^{(k)},b^{(k)}}(x) \right)$.

Definition 6 (Multi-Layer-Perzeptron, vgl. gruening). Für eine gegebene Anzahl $l \in \mathbb{N}$, l > 1 von Schichten $\Psi^{W^{(1)},b^{(1)},\psi_1},\ldots,\Psi^{W^{(l)},b^{(l)},\psi_l}$ bezeichne $s_l \in \mathbb{N}$ die Anzahl der Neuronen in Schicht l. Für eine Eingabe $x \in \mathbb{R}^{s_0}$ lässt sich die Ausgabe $y \in \mathbb{R}^{s_l}$ eines Multi-Layer-Perzeptron $\Lambda_l : \mathbb{R}^{s_0} \to \mathbb{R}^{s_l}$, $x \mapsto y$ mit l Schichten durch

$$y = \Psi^{W^{(l)}, b^{(l)}, \psi_l} \circ \dots \circ \Psi^{W^{(1)}, b^{(1)}, \psi_1}(x)$$

berechnen. Dabei gelten für die Gewichtsmatrizen die Dimensionsbedingungen

$$_{1}W^{(1)} = s_{0}, \ _{2}W^{(l)} = s_{l}, \ \forall i \in [l-1]: \ _{2}W^{(i)} = {}_{1}W^{(i+1)}.$$

Die Eingabeschicht S_0 besitzt keine Parameter W und b und besteht nur aus dem Eingabevektor $x \in \mathbb{R}^{s_0}$. Die letzte Schicht $\Psi^{W^{(l)},b^{(l)},\psi_l}$ wird als Ausgabeschicht bezeichnet. Weiter werden die Schichten S_1,\ldots,S_{l-1} als verdeckte Schichten definiert. Das MLP wird auch Feed-Forward-Netz (FFN) genannt und die Funktionsauswertung $\Lambda_l(x)$ für eine Eingabe x wird mit Vorwärtsrechnung, engl. forward propagation, bezeichnet.

Algorithm 1 Vorwärtsrechnung

```
Require: MLP \Lambda_l, Eingabe x_0 \in \mathbb{R}^n

Ensure: y = \Lambda_l(x) \in \mathbb{R}^m

x = x_0

for i = 1, \dots l do

u = W^{(i)T}x + b^{(i)}

x = \psi_i(u)

end for

y = x
```

Das MLP-Modell wird im weiteren Verlauf dieser Arbeit repräsentativ als Künstliches Neuronales Netz bezeichnet. Die Funktionsauswertung eines FNN wird im Algorithmus Vorwärtsrechnung 1 festgehalten. Das zuvor angesprochene XOR-Problem kann nun beispielsweise mithilfe eines KNN bestehend aus zwei Schichten gelöst werden[10]. Es lassen sich zwischen Modell- und Hyperparameter von KNN unterscheiden.

Definition 7 (Hyper- und Modellparameter). Sei für $l \in \mathbb{N}$ ein KNN Λ_l gegeben. Dann werden die Eingabe- und Ausgabedimension s_0, s_l , die Anzahl l der (verdeckten) Schichten sowie die verwendeten Aktivierungsfunktion ψ_l Hyperparameter des neuronalen Netzes genannt. Die Gewichtsmatrizen und Biasvektoren mit den entsprechend passenden Abmessungen stellen die Modellparameter $\mathcal{W} := \{(W^{(i)}, b^{(i)}) : i = 1, \ldots, l\}$ des neuronales Netzes dar.

Die Hyperparameter werden oft anwendungsspezifisch für das jeweilige Problem gewählt, während die Modellparameter dynamisch in einem Trainingsprozes angepasst werden, sodass die gegebene Aufgabe zufriedenstellend gelöst wird. Wie dies geschieht, wird im folgenden Abschnitt ?? erläutert.

3.3. Training neuronaler Netze

In den folgenden Abschnitten wird das Klassifikationsproblem als $task\ T$ im Mittelpunkt stehen. Weiter werden KNNs als Modellschätzer aus der Wahrscheinlichkeitstheorie interpretiert und fundamentale Aussagen wie das Universal-Approximation-Theroem[13] gegeben. Schließlich wird bezüglich der Klassifikationsaufgabe das Training neuronaler Netze erläutert.

3.3.1. Neuronale Netze als universelle Schätzer

Beim Klassifikationsproblem müssen bestimmte bedingte Wahrscheinlichkeiten, die in diesem Abschnitt erklärt werden, ermittelt werden. Oft wird dazu die Ausgabeschicht eines KNN als Wahrscheinlichkeit interpretiert und daher KNN als Schätzer der bedingten Wahrscheinlichkeiten eingesetzt. Zunächst werden Klassifikationsfunktion und -problem definiert.

Definition 8. Seien die Mengen $D \subset \mathbb{R}^n$ und $C = \{c_1, \ldots, c_m\}$ gegeben. Eine Funktion $f: D \to C$, welche ein Element aus D einer Klasse $c_i \in C$ zuordnet, wird Klassifikationsfunktion genannt. Hier gibt es $m \in \mathbb{N}$ verschiedene Klassenlabels.

Das Ziel beim Klassifikationsproblem ist die Approximation einer nicht bekannten Klassifikationsfunktion $f:D\to\mathcal{C}$ durch ein Modell $\tilde{f}:D\to\mathcal{C}$. In dieser Arbeit werden dafür KNNs genutzt, welche als probabilistische Modelle auf folgende Weise genutzt werden. Auf der Ergebnismenge $\Omega=D\times\mathcal{C}$ sei die nicht bekannte gemeinsame (Wahrscheinlichkeits-) Verteilung $p_{Daten}(x,c)$, genannt Datenverteilung, gegeben. Ein Modell soll nun konstruiert werden, welches die a posterior-Verteilung $p_{Daten}(\cdot \mid x)$ der Klassen schätzt.

In dieser Arbeit werden KNN so benutzt, dass die Klassenzugehörigkeit direkt anhand der Eingabe $x \in D$ geschätzt wird. Die Funktion $P_{Daten}: D \to [0, 1]^m$ mit

$$P_{Daten}(x) := (p_{Daten}(c_1 \mid x), \dots, p_{Daten}(c_m \mid x))^T \in \mathbb{R}^m$$
(3.1)

soll für alle $x \in D$ approximiert werden. Dazu wird die Funktion $P_{Modell}: D \to [0,1]^m$ mit

$$P_{Modell}(x; \mathcal{W}) := (p_{Modell}(c_1 \mid x; \mathcal{W}), \dots, p_{Modell}(c_m \mid x; \mathcal{W}))^T \in \mathbb{R}^m$$
 (3.2)

für alle $x \in D$ genutzt, welche von den Modellparametern \mathcal{W} abhängig ist. Die Klassifikationsfunktion des Modells ergibt sich als

$$f_{Modell}(x) := \underset{c \in \mathcal{C}}{\operatorname{argmax}} \ p_{Modell}(c \mid x).$$
 (3.3)

Es stellt sich die Frage, inwiefern das MLP als Modell genutzt werden kann, um beliebige Datenverteilungen P_{Daten} zu approximieren. Folgende Resultate liefern die Antwort.

Satz 1 (Universal-Approximation-Theroem[gruen]). Sei ψ_1 eine nichtkonstante, beschränkkte Aktivierungsfunktion und id: $\mathbb{R} \to \mathbb{R}$ die Identität sowie $D \subset \mathbb{R}^n$ kompakt. Dann existieren für alle $\varepsilon > 0$ und stetigen Funktionen $f: D \to \mathbb{R}$ Parameter

 $N \in \mathbb{N}, W^{(1)} \in \mathbb{R}^{n \times N}, b^{(1)} \in \mathbb{R}^{N} \text{ sowie } W^{(2)} \in \mathbb{R}^{N \times 1}, \text{ sodass}$

$$|f(x) - \Psi^{W^{(2)},0,id} \circ \Psi^{W^{(1)},b^{(1)},\psi_1}(x)| < \varepsilon, \quad \forall x \in D$$
 (3.4)

gilt.

Beweis. Ein Beweis kann in Hornik[12] nachgelesen werden. \Box

Das Universal-Approximation-Theroem kann ebenfalls auf unbeschränkte und nichtkonstante Funktion $f: D \to \mathbb{R}^m$ erweitert werden. Heutzutage wird oft die ReLU-Funktion als Aktivierungsfunktion verwendet[26, 15].

Korollar 1. Mit den gleichen Vorraussetzungen wie in Satz 1 gilt die Abschätzung 3.4 für $\psi_1(x) = \max\{0, x\}.$

Beweis. Siehe Sonoda et. al. [27].
$$\Box$$

Hinsichtlich der Approximation von beliebigen Funktionen P_{Daten} mithilfe eines neuronalen Netzes mit der Softmax-Funktion als Aktivierungsfunktion liefert Strauß[strauss] folgendes Resultat.

Korollar 2. Ein MLP mit zwei Schichten, wobei ψ_2 die Softmax-Funktion ist, kann genutzt werden, um stetige Funktionen $f: K \to [0,1]^m$, welche von einem Kompaktum $K \subset \mathbb{R}^n$ in eine (Wahrscheinlichkeits)-Verteilung über die Klassen \mathcal{C} abbilden, beliebig genau zu approximieren.

Beweis. Siehe [strauss].
$$\Box$$

Die Aussage kann auf das MLP mit beliebig vielen Schichten erweitert werden. In dieser Arbeit umfasst die Menge D aus Definition 8 digitalisierte Objekte als Vektoren $x \in \mathbb{R}^n$ und ist endlich und damit kompakt. Daher kann wegen Korollar 2 das MLP als Modell genutzt werden, um stetige Funktionen P_{Daten} sinnvoll zu approximieren.

3.3.2. Optimale Parameterwahl bei neuronalen Netzen

Wird ein künstliches neuronales Netz als probabilistisches Modell genutzt und sind die Hyperparameter festgelegt, müssen die Modellparameter \mathcal{W} gewählt werden. Um die Approximationsgüte, also die perfomance P, bezüglich des Klassifikationsproblems messbar zu machen, werden Fehlerfunktionen eingeführt. Mit Trainingsdaten als experience E und dem Gradientenverfahren[17] sollen optimale Parameter \mathcal{W} gefunden werden, sodass die gewählte Fehlerfunktion minimiert wird. Im folgenden steht ein MLP $\Lambda(\cdot;\mathcal{W}):D\to[0,1]^m$ mit der Softmax-Funktion als Aktivierungsfunktion im Mittlepunkt, welches als parametrisiertes Modell f_{Modell} wie in 3.3 genutzt wird. Die Trainingsdaten werden in Trainingsmengen und Testmengen aufgeteilt.

Definition 9 (Trainingsmenge, Testmenge). Sei p_{daten} eine Datenverteilung auf der Ergebnismenge $\Omega = D \times C$. Dann heißen für n_{train} , $n_{test} \in \mathbb{N}$ die Mengen

$$\mathcal{T} := \left\{ (x^{(i)}, c^{(i)}) \mid i \in [n_{train}] \right\} \subset \Omega$$
$$\mathcal{T}' := \left\{ (x^{(i)}, c^{(i)}) \mid i \in [n_{test}] \right\} \subset \Omega$$

Traingsmenge \mathcal{T} und Testmenge \mathcal{T}' , jeweils bestehend aus Datenpaaren, welche unabhängig durch p_{Daten} generiert wurde. Oft werden die Mengen disjunkt gewählt. Die Menge \mathcal{T} wird zum Trainieren und die Menge \mathcal{T}' zur Validierung des Modells P_{Modell} bezüglich P_{Daten} wie in 3.1 genutzt.

Die Approximationsgüte des Modells f_{Modell} wird als Likelihood gegeben einer Trainingsmenge \mathcal{T} gemessen und lässt sich als

$$L(\mathcal{T}, \mathcal{W}) := \prod_{(x,c)\in\mathcal{T}} p_{Modell}(c \mid x; \mathcal{W})$$
(3.5)

wie in Bishop[1] berechnen. Für eine Trainingsmenge \mathcal{T} soll das Produkt über alle Wahrscheinlichkeiten der korrekten Klassenzugehörigkeiten c gegeben der Eingaben x maximiert werden. Dieser Ansatz wird $Maximum\ Likelihood-Methode$ [25] genannt und eine Parameterwahl ist durch eine Lösung des Optimierungsproblems

$$\prod_{(x,c)\in\mathcal{T}} p_{Modell}(c \mid x; \mathcal{W}) \to \max$$
(3.6)

gegeben. Dabei sei bemerkt, dass die Optimierung unabhängig von den Hyperparametern vorgenommen wird.

Für ein Trainingspaar $(x, c) \in \mathcal{T}$ bezeichne $t(x, c) \in \mathbb{R}^m$ den Zielvektor der Klasse c mit sogenannter (1 aus m)-Kodierung. Die Komponenten des Zielvektors sind

$$t_k(x,c) := \begin{cases} 1 & \text{, wenn } k = c \\ 0 & \text{, sonst} \end{cases}, \ \forall k \in [m].$$

Mit dieser Bezeichnung lässt sich das Optimierungsproblem 3.6 als Minimierungproblem mithilfe der negative log likelihood schreiben.

Definition 10 (negative log likelihood). Seien die Mengen D und $C = \{c_1, \ldots, c_m\}$ mit einer dazugehörigen Trainingsmenge T sowie entsprechende Zielvektoren gegeben. Weiter seien die a posterior Wahrscheinlichkeiten $p_{Modell}(c \mid x; W)$ wie in Gleichung 3.2 gegeben. Die negative log likelihood ist als Funktion

$$L_{NNL}(\mathcal{T}, \mathcal{W}) := -\sum_{(x,c)\in\mathcal{T}} \sum_{i=1}^{m} t_i(x,c) \log \left(p_{Modell}(c_i \mid x; \mathcal{W}) \right)$$
(3.7)

definiert.

Das Minimieren der negative log likelihood ist äquivalent zur Maximierung der Like-

lihood aus 3.5, denn es gilt

$$\log \left(\prod_{(x,c) \in \mathcal{T}} p_{Modell}(c \mid x; \mathcal{W}) \right) = \sum_{(x,c) \in \mathcal{T}} \log \left(p_{Modell}(c \mid x; \mathcal{W}) \right)$$

und der natürliche Logarithmus ist monoton steigend. Wird zusätzlich angenommen, dass die a posterior Verteilung $p_{Daten}(c \mid x)$ einer Normalverteilung mit konstanter Varianz entspricht, so ist das Maximieren von 3.5 äquivalent zur Minimierung der mittleren quadratischen Abweichung

$$L_{MSE}(\mathcal{T}, \mathcal{W}) := \frac{1}{2} \sum_{(x,c) \in \mathcal{T}} ||\hat{c} - t(x,c)||_2^2,$$

wobei $\hat{c} = f_{Modell}(x)$ und t(x, c) der Zielvektor des Datenpaars (x, c) ist, siehe Goodfellow[10]. Das Problem 3.6 wird nun allgmemein mit Fehlerfunktionen definiert.

Definition 11 (Fehlerfunktion). Seien \mathcal{T} eine Trainingsmenge und \mathcal{W} Modellparameter eines KNN. Mithilfe des Gradientenverfahrens soll das Problem

$$\mathcal{E}(\mathcal{T}, \mathcal{W}) \to \min$$
 (3.8)

gelöst werden. Dabei wird \mathcal{E} Fehlerfunktion gennant.

In dieser Arbeit wird \mathcal{E} immer als stückweise stetig differenzierbare Funktion gewählt, damit das Gradientenverfahren angewendet werden kann. Sowohl die negative log likelihood L_{NNL} als auch die mittlere quadratische Abweichung L_{MSE} sind als Fehlerfunktion geeignet. Die Optimierung der Parameter geschieht iterativ und besteht jeweils aus zwei Schritten. Zuerst wird eine Abstiegsrichtung

$$\Delta_n := \nabla_{\mathcal{W}} \mathcal{E}(\mathcal{T}, \mathcal{W}) \tag{3.9}$$

berechnet und dann die Parameter

$$\mathcal{W}_{n+1} := \mathcal{W}_n - \lambda \Delta_n \tag{3.10}$$

aktualisiert. Es werden also Gradienten der Fehlerfunktion bezüglich der Gewichtsmatrizen und Biasvektoren ermittelt und anschließend werden jene Parameter mit einer wählbaren Lernrate $\lambda \in \mathbb{R}$ angepasst. In 3.9 wird der Gradient über alle Trainingspaare berechnet. Diese Variante nennt sich Offline-Version des Gradientenverfahrens und ist besonders für große Trainingsmengen ineffizient. Die Online-Version berechnet den Gradienten lediglich für ein Trainingspaar und passt die Parameter direkt an. In dieser Arbeit wird ein Kompromiss aus beiden Verfahren verwendet und zwar das Mini-Batch-Verfahren, siehe Algorithmus 2, bei dem die Gradienten über kleine Teilmengen $\mathbb{T} \subset \mathcal{T}$ der Trainingsmenge berechnet werden.

Als Abbruchbedingung im Mini-Batch-Verfahren kann eine fest gewählte Anzahl von Updateoperationen der Parameter gewählt werden. Andere Abbruchbedingungen können mit der Norm der Abstiegsrichtungen[1] oder abhängig vom Traingsfehler formuliert

Algorithm 2 Mini-Batch-Verfahren, vgl. [gruening]

```
Require: Trainingsmenge \mathcal{T}, Modellparameter \mathcal{W}_0, Fehlerfunktion \mathcal{E}, Batch-Größe n

Ensure: optimierte Modellparamter \mathcal{W}

\mathcal{W} = \mathcal{W}_0

\mathbb{T} = \mathcal{T}

Setze Lernrate \lambda

while Abbruchbedingung nicht erfüllt \mathbf{do}

if |\mathbb{T}| < n then

\mathbb{T} = \mathcal{T}

end if

\mathbb{T}_n = \text{zufällig gewählte } n Datenpaare von \mathbb{T}

\mathcal{W} = \mathcal{W} - \lambda \nabla_{\mathcal{W}} \mathcal{E}(\mathbb{T}_n, \mathcal{W})

\mathbb{T} = \mathbb{T} \setminus \mathbb{T}_n

end while
```

werden. Bei der Wahl der Lernrate werden heutzutage werden oft adaptive Verfahren genutzt, welche vorangegangene Gradienten berücksichtigen und die Lernrate so anpassen. Bekannte Verfahren sind Nesterov accelerated gradient[28], AdaGrad[7], RMSProp[29] sowie Adam[14]. So sollen Probleme wie des vanishing gradients oder des exploding gradients vermieden werden[11]. Für eine tiefere Analyse des Gradientenverfahrens und dessen Varianten sei auf die jeweilgen Arbeiten beziehungsweise Ruder[23] verwiesen. Darüber hinaus gibt es andere Techniken wie die Regularisierung, um Probleme wie overfitting zu entgegnen. Für die Problemstellung in dieser Arbeit genügt es, das Mini-Batch-Verfahren mit konstanter Lernrate zu nutzen.

Die Abstiegsrichtungen werden werden mithilfe der mehrdimensionalen Kettenregel in einer Backpropagationsphase, etabliert von Rumelhart et. al. [24], berechnet.

Satz 2 (Mehrdimensionale Kettenregel). Ist $f = f(x_1(y_1, \ldots, y_m), \ldots, x_n(y_1, \ldots, y_m))$ und sind alle beteiligten Funktionen stetig differenzierbar, so ergeben sich die partielle Ableitungen mittels Kettenregel zu

$$\frac{\partial f}{\partial y_i} = \sum_{j=1}^n \frac{\partial f}{\partial x_i} \frac{\partial x_j}{\partial y_i}.$$

Beweis. siehe [9] \Box

Im Bereich des tiefen Lernens zählt die effiziente Berechnung dieser Gradienten zu den schwersten Aufgaben. Eine ausführliche Erklärung der Backpropagationsphase für klassische FFN ist beispielsweise in Rojas[21] zu finden.

3.4. Zusammenfassung

In diesem Kapitel wurden KNN als Feed-Forward-Netze eingeführt. Es stellt sich heraus, dass diese Netze als probabilistische Modelle genutzt werden können, um Klassifikationsaufgaben hinreichend gut zu lösen. Dabei ist es wichtig die Hyper- und Mo-

dellparameter je nach Anwendung und Leistungsmaß optimal zu wählen. Dazu werden Trainingsdaten genutzt, um während eines Lernprozesses eine Fehlerfunktion zu Minimieren. Eine Lösung von 3.8 kann wegen der Komplexität der Fehlerfuntion $\mathcal E$ bzw. der großen Menge von Parametern $\mathcal W$ selten direkt angegeben werden[2]. Daher wird das Mini-Batch-Verfahren als iterativer Ansatz zur numerischen Mnimierung der Fehlerfunktion genutzt. Dabei sind partielle Ableitungen der Fehlerfunktion bezüglich der Parameter nötig, welche in der Backpropagationsphase mithilfe der mehrdimensionalen Kettenregel berechnet werden können.

Bei der Analyse von Zeitreihen oder Bildern eignen sich abgewandelte Architekturen wie faltbare neuronale Netze (CNN), engl. convolutional neural networks, welche im folgenden Kapitel 4 näher erläutert werden.

4. Faltbare neuronale Netze

In diesem Kapitel wird erläutert, wie die Faltung (engl. convolution) bei CNNs zu verstehen ist und wie diese Operation bei diesen neuronalen Netzen motiviert wird. In diesem Zusammenhang werden Begriffe wie Merkmalskarten (engl. feature maps) und Filter (engl. kernels) eingeführt. Des Weiteren wird die Arithmetik der Faltungsoperation für zweidimensionale Eingaben, repräsentiert durch Matrizen, erklärt und das Verfahren padding beziehungsweise das Nutzen von strides erläutert. Das gesamte Kapitel wird mit konkreten Beispielen begleitet, um die verschiedenen Effekte der Faltungsoperation zu beleuchten.

4.1. Die Faltungsoperation

In der Analysis ist die Faltung ein mathematischer Operator und liefert für zwei Funktionen f und g die Funktion f * g, wobei mit dem Sternchen die Faltungsoperation gemeint ist.

Definition 12 (Faltung). Für zwei Funktionen $f, g : \mathbb{R}^n \to \mathbb{C}$ ist die Faltung als

$$(f * g)(x) := \int_{\mathbb{R}^n} f(\tau)g(x - \tau)d\tau$$

definiert, wobei gefordert wird, dass das Integral für fast alle x wohldefiniert ist.

Bei klassischen neuronalen Netzen, siehe Kapitel ?? werden Eingabedaten durch eine Verkettung von affinen Transformationen verarbeitet. Typischerweise wird die Eingabe als Vektor dargestellt und mit einer Matrix multipliziert, gegebenenfalls mit einem Biasvektor manipuliert und schließlich so die Ausgabe generiert. Bilder-, Audio- oder Videoaufnahmen besitzen jedoch mehrere Merkmale in unterschiedlichen Achsen. Oft sind solche Eingabedaten im Bereich des Machine-Learnings als mehrdimensionale Arrays abgelegt, welche eine oder mehrere Achsen repräsentieren, wobei die Ordnung dieser eine Rolle spielt. Bei digitalisierten Bildern sind das bespielsweise die Höhe und Breite des Bildes, bei Audioaufnahmen gibt es nur eine Achse, und zwar die Zeitachse. Hinzu kommen Kanalachsen als weitere Verfeinerung der Daten, zum Beispiel besitzen RGB-Farbbilder drei Kanäle der Farben rot, grün und blau.

Diese speziellen Eigenschaften können bei affinen Transformationen nicht berücksichtigt werden. Alle Merkmale sowie Achsen werden gewissermaßen gleich behandelt und die wesentliche topologische Struktur kann so nicht zum Vorteil ausgenutzt werden. Hier soll nun die sogenannte diskrete Faltung Abhilfe schaffen.

Definition 13 (Diskrete Faltung). Für zwei Funktionen $f, g : D \to \mathbb{C}$ mit einem diskreten Definitionsbereich $D \subseteq \mathbb{Z}^n$ ist die diskrete Faltung als

$$(f * g)(n) := \sum_{k \in D} f(k)g(x - k)$$

definiert. Hier wird über dem gesamten Definitionsbereich D summiert. Ist D beschränkt, werden f beziehungsweise g durch Nullen fortgesetzt.

Besonders bei der Bildverarbeitung wird oft die diskrete Faltung als lineare Operation verwendet.

Definition 14 (Matrixfaltung, vgl. [gruening]). Für gegebene Matrizen $X \in \mathbb{R}^{h \times w}$ und $K \in \mathbb{R}^{k_h \times k_w}$ seien

$$h_l = \begin{cases} \lfloor k_h/2 \rfloor & , k_h \ ungerade \\ k_h/2 - 1 & , sonst \end{cases}, \quad w_l = \begin{cases} \lfloor k_w/2 \rfloor & , k_w \ ungerade \\ k_w/2 - 1 & , sonst \end{cases}.$$

Die Matrixfaltung $K * X \in \mathbb{R}^{h \times w}$ ist als

$$(K * X)_{i,j} := \sum_{l=-h_l}^{\lfloor k_h/2 \rfloor} \sum_{m=-w_l}^{\lfloor k_w/2 \rfloor} K_{l+h_l+1,m+w_l+1} X_{i+l,j+m} \quad \forall i \in [h], j \in [w]$$
 (4.1)

 $mit \ X_{i,j} = 0 \ f\"{u}r \ i \notin [h] \ und \ j \notin [w] \ definiert.$

Bemerkung 2. Die Matrixfaltung kann durch viele weitere Parameter genauer spezifiziert werden. Sogannte strides bestimmen die Reduktion bei der Faltung von X in der Höhe h beziehungsweise Breite w. Für strides $s_h, s_w \in \mathbb{N}$ ist die Matrixfaltung als

$$(K*X)_{i,j} := \sum_{l=-h_l}^{\lfloor k_h/2 \rfloor} \sum_{m=-w_l}^{\lfloor k_w/2 \rfloor} K_{l+h_l+1,m+w_l+1} X_{i \cdot s_h+l,j \cdot s_w+m} \ \forall i \in [h], j \in [w].$$

Für $s_h = s_w = 1$ ergibt sich die Standardvariante wie in 4.1.

Im Folgenden werden konkrete Beispiele für verschiedene zweidimensionale Faltungen, welche in dieser Arbeit im Fokus stehen, gegeben. Dabei sind die Eingabe $X \in \mathbb{R}^{h \times w}$ und der Filter $K \in \mathbb{R}^{k_h \times k_w}$ immer als Matrizen zu verstehen. Das Ergebnis der Faltung S = X * K wird als Merkmalskarte bezeichnet. Es sei angemerkt, dass oft $k_h = k_w$ sowie k_h ungerade gewählt wird, z.B. $k_h = 3$ oder $k_h = 5$. Die Größe der Merkmalskarte wird durch die Parameter

- h, w: Die Höhe und Breite der Eingabe,
- k_h, k_w : Die Abmessungen des Filters,
- s_h, s_w : Die Wahl der strides,
- p_h, p_w : Die Größe des zero paddings

beeinflusst. Mit zero padding ist gemeint, dass künstliche Nullen um Randpixel der Eingabe X eingefügt werden, damit die Berechnung mit dem Filter um jene Pixel gelingt. Ein Beispiel für das Verwenden von zero padding wird in Abbildung 4.2 gezeigt. In Abbildung 4.1 ist die Berechnung einer einfachen zweidimensionalen Matrixfaltung dargestellt. Ein vorher festgelegter Filter (grau) bewegt sich über die Eingabe (blau) und berechnet jeweils die Einträge der Ausgabe(grün).

Abbildung 4.1.: Es wird die Merkmalskarte $S\in\mathbb{R}^{3\times 3}$ mit den Parametern $h,w=5,k_h=k_w=3,s_h=s_w=1$ und $p_h=p_w=1.$

4.2. Motivation der Faltung

.. Sie nutzt wichtige Konzepte zur Optimierung von Machine-Learning-Verfahren wie spärliche Konnektivität (engl. sparse connectivity), Parameter Sharing und äquivariante Repräsentation, vgl. [goodfellow]. Spärlicher Konnektivität bedeutet, dass die Ausgabeeinheit auf einer bestimmten Schicht nur durch wenige Eingabeeinheiten beeinflusst wird. Dies ist bei CNNs typisch, da meist die verwendeten Filter viel kleiner als die Eingabe ist. Noch mehr erklären + Abbildung

Mit Parameter Sharing ist die Nutzung von gleichen Parametern für mehrere Funktionen im neuronalen Netz gemeint. In herkömmlichen Feed-Forward-Netzen wird jedes Element der Gewichtsmatrizen für die Berechnung der Aktivierungen der jeweiligen Schichten verwendet. Anschließend werden diese Gewichte dann nicht mehr gebraucht.

Abbildung 4.2.: Es wird die Merkmalskarte $S \in \mathbb{R}^{3\times 3}$ mit den Parametern $h,w=5,k_h=k_w=3,s_h=s_w=2$ und $p_h=p_w=1$ berechnet.

Im Zusammenhang von CNNs bedeutet Parameter Sharing während der Faltungsoperation, dass nur eine bestimmte Menge von Parametern erlernt werden müssen Noch mehr erklären + Abbildung

5. Weiteres Kapitel

Hier wird dies und das vorgestellt. Unter anderem Fußnoten.¹

5.1. Umgebungen und Formeln

Definition 15. ... heißt Rekurrentes Neuronales Netz (RNN).

Bemerkung 3. Bei jeder weiteren Verwendung der Abkürzung wird nur die Kurzform angezeigt: RNN.

Bemerkung 4. Die Verwendung des Symbolverzeichnisses ist analog der des Abkürzungsverzeichnisses, siehe Confidence Matrix (\mathcal{C}) .

Annahme 1. Eine kluge Annahme . . .

Hilfssatz 1. Ein kluger Hilfssatz . . .

Satz 3. Ein kluger Satz . . .

Korollar 3. Ein kluges Korollar . . .

Proposition 1. Eine kluge Proposition . . .

Problem 1. Ein schweres Problem ...

Beispiel 1. Ein anschauliches Beispiel ...

Definition 16. Seien $a, b \in \mathbb{C}$ definiere

$$a+b (5.1)$$

 $als \dots$

Auf Formeln kann nun verwiesen werden (siehe (5.1)). Formeln können natürlich auch im normalen Text $a^2 + b^2 = c^2$ auftauchen.

$$a^{2} + b^{2} = c^{2}$$

$$f = b - a$$
 ohne Sinn (5.2)
$$(5.3)$$

¹Dies ist eine Fußnote.

5.2. Aufzählung und Nummerierung

Für Literaturvereichnisse siehe Kapitel 6.3, eine einfache Aufzählung geht so:

- Eins
- Zwei
- Viele

5.3. Tabellen

... gibt es viele verschiedene, z.B. Tab. 5.1 und Tab. 5.2.

Tabelle 5.1.: Einfache Tabelle

Column 1	Column 2	Column 3	Column 4
Nein	Softmax	85.0%	87.0%
Nein	Linear	88.8%	85.9%
Ja	Softmax	80.0%	89.1%
Ja	Linear	84.6%	89.8%

Tabelle 5.2.: Nicht mehr ganz so einfache Tabelle

	source prior	abs		prior		da	
	source posterior	path	ctc	path	ctc	path	ctc
gAP	normed unnormed	94.81 94.77	94.89	95.36 91.73	95.42 91.87	94.99 92.58	95.04
mAP	normed unnormed	89.71 89.42	89.90	89.58 88.59	89.76 88.89	89.63 89.13	89.82
gNDCG	normed unnormed	96.72 96.69	96.78	96.78 96.34	96.83 96.41	96.73 96.46	96.77
mNDCG	normed unnormed	90.77 90.61	90.97	90.66 89.96	90.85 90.25	90.70 90.36	90.89

5.4. Bilder

5.4.1. Einzelnes Bild

Das ist Text. Das ist Text. Das ist Text über Abb. 5.1. Das ist Text.²

²Dieser Textteil ist von wesentlicher Bedeutung

Abbildung 5.1.: Vektorgrafiken sind toll. Scrolle mal in mich rein!

5.4.2. Mehrere Bilder

Abbildung 5.2.: Vergleich verschiedener Schnecken

Die Schnecke aus Abb. 5.2a ist hübscher anzusehen als die aus Abb. 5.2b.

5.5. TikZ

TikZ bietet ein mächtiges Werkzeug Grafiken selber zu erzeugen.

5.5.1. Einfache Grafiken

Es gibt viele, viele Tutorials und Beispiele die leicht im Internet zu finden sind. Aber ein Beispiel sei an dieser Stelle trotzdem eingefügt, siehe Abb. 5.3.

Abbildung 5.3.: Beispiel eines mit TikZ erzeugten Bildes

5.5.2. Graphen und ähnliches

Wer keine Lust hat z.B. Achsenbeschriftungen eines Matlab-Plots auf Font etc. des LATEX-Dokuments anzupassen, kann Datenreihen auch einfach mittels TikZ darstellen, siehe dazu Abb. 5.4. Es ist natürlich auch möglich aus z.B. Matlab oder Gnuplot Tikz Grafiken zu exportieren!

Abbildung 5.4.: Datenreihen mittels TikZ visualisiert

6. Ein letztes Kapitel

Korollar 4. Wird für die Festlegung ...

6.1. Weiteres Korollar

```
In diesem Abschnitt ...

Korollar 5. Wird für die Festlegung ...

Bemerkung 5. Eine vollständige ...
```

6.2. Pseudocode

In vielen Fällen ist es notwendig, Programmteile als Pseudocode darzustellen. Algorithmus ?? stellt ein einfaches Beispiel dar. Es gibt weitere Pakete zur Darstellung von Pseudocode, algorithm + algpseudocode sei an dieser Stelle erwähnt.

```
Algorithm 3 An algorithm with caption
```

```
Require: n \ge 0
Ensure: y = x^n
y \leftarrow 1
X \leftarrow x
N \leftarrow n
while N \ne 0 do
if N is even then
X \leftarrow X \times X
N \leftarrow \frac{N}{2}
\text{else if } N \text{ is odd then}
y \leftarrow y \times X
N \leftarrow N - 1
end if
end while
```

6.3. Zitate

Umfangreichen Quellenangaben sollte man in einer Literaturdatenbank pflegen. Um diese in LATEX zu verwenden bietet sich das Paket biblatex mit dem Sortierprogramm

Biber an, da es gewisse Vorteile gegenüber dem klassischen BibTEX besitzt. Die Verweise liegen in einer separaten Datei (hier: literatur.bib) und werden mit

\addbibresource{<nameDerDatei>}

eingefügt. Zitiert wird dann mittels

\cite{key}

was in unserem Beispiel dann so aussieht [8].

ACHTUNG: Beim ändern der .bib-Datei und/oder der Zitate muss mehrfach compiliert werden, damit die änderungen auch wirksam werden. Sicher geht man, wenn man die folgende Reihenfolge beachtet:

- 1. L⁴T_EX
- 2. Biber
- 3. LATEX
- 4. LATEX

Eine genauere Beschreibung findet Ihr im Anhang A.2.

Literatur

- [1] Christopher M Bishop und Nasser M Nasrabadi. Pattern recognition and machine learning. Bd. 4. 4. Springer, 2006.
- [2] Avrim L Blum und Ronald L Rivest. "Training a 3-node neural network is NP-complete". In: *Neural Networks* 5.1 (1992), S. 117–127.
- [3] David G Bounds u. a. "A multilayer perceptron network for the diagnosis of low back pain." In: *ICNN*. Bd. 2. 1988, S. 481–489.
- [4] Herve Bourlard und Christian J Wellekens. "Links between Markov models and multilayer perceptrons". In: *IEEE Transactions on pattern analysis and machine intelligence* 12.12 (1990), S. 1167–1178.
- [5] Judith E Dayhoff. Neural network architectures: an introduction. Van Nostrand Reinhold Co., 1990.
- [6] John Denker und Yann LeCun. "Transforming neural-net output levels to probability distributions". In: Advances in neural information processing systems 3 (1990).
- [7] John Duchi, Elad Hazan und Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization." In: *Journal of machine learning research* 12.7 (2011).
- [8] Otto Forster. "Analysis 1". In: Vieweg, Braunschweig (1983).
- [9] Otto Forster. Analysis 2: Differentialrechnung im IRn, gewöhnliche Differentialgleichungen. Springer-Verlag, 2017.
- [10] Ian Goodfellow, Yoshua Bengio und Aaron Courville. *Deep Learning*. http://www.deeplearningbook.org. MIT Press, 2016.
- [11] Boris Hanin. "Which neural net architectures give rise to exploding and vanishing gradients?" In: Advances in neural information processing systems 31 (2018).
- [12] Kurt Hornik. "Approximation capabilities of multilayer feedforward networks". In: *Neural networks* 4.2 (1991), S. 251–257.
- [13] Kurt Hornik, Maxwell Stinchcombe und Halbert White. "Multilayer feedforward networks are universal approximators". In: *Neural Networks* 2.5 (1989), S. 359–366. DOI: https://doi.org/10.1016/0893-6080(89)90020-8.
- [14] Diederik P. Kingma und Jimmy Ba. "Adam: A Method for Stochastic Optimization". In: *CoRR* abs/1412.6980 (2015).
- [15] Yuanzhi Li und Yang Yuan. "Convergence analysis of two-layer neural networks with relu activation". In: Advances in neural information processing systems 30 (2017).

- [16] Marvin Minsky und Seymour A Papert. Perceptrons, Reissue of the 1988 Expanded Edition with a new foreword by Léon Bottou: An Introduction to Computational Geometry. MIT press, 2017.
- [17] Jorge Nocedal und Stephen J Wright. Numerical optimization. Springer, 1999.
- [18] Abhijit S Pandya und Robert B Macy. Pattern recognition with neural networks in C++. CRC press, 1995.
- [19] Yohhan Pao. "Adaptive pattern recognition and neural networks". In: (1989).
- [20] J. Park und I. W. Sandberg. "Universal Approximation Using Radial-Basis-Function Networks". In: *Neural Computation* 3.2 (1991), S. 246–257. DOI: 10.1162/neco. 1991.3.2.246.
- [21] Raul Rojas. Neural Networks A Systematic Introduction. Springer-Verlag, 1996.
- [22] Frank Rosenblatt. "The perceptron: a probabilistic model for information storage and organization in the brain." In: *Psychological review* 65.6 (1958), S. 386.
- [23] Sebastian Ruder. "An overview of gradient descent optimization algorithms". In: arXiv preprint arXiv:1609.04747 (2016).
- [24] Rumelhart u. a. Parallel distributed processing: explorations in the microstructure of cognition. Volume 1. Foundations. Jan. 1986.
- [25] Ludger Rüschendorf. Mathematische Statistik. Bd. 62. Springer, 2014.
- [26] Johannes Schmidt-Hieber. "Nonparametric regression using deep neural networks with ReLU activation function". In: *The Annals of Statistics* 48.4 (2020), S. 1875–1897.
- [27] Sho Sonoda und Noboru Murata. "Neural network with unbounded activation functions is universal approximator". In: *Applied and Computational Harmonic Analysis* 43.2 (2017), S. 233–268.
- [28] Ilya Sutskever u. a. "On the importance of initialization and momentum in deep learning". In: *International conference on machine learning*. PMLR. 2013, S. 1139–1147.
- [29] Tijmen Tieleman, Geoffrey Hinton u. a. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude". In: COURSERA: Neural networks for machine learning 4.2 (2012), S. 26–31.
- [30] Ilona Urbaniak und Marcin Wolter. "Quality assessment of compressed and resized medical images based on pattern recognition using a convolutional neural network". In: Communications in Nonlinear Science and Numerical Simulation 95 (2021), S. 105582.
- [31] Paul J Werbos. "Generalization of backpropagation with application to a recurrent gas market model". In: *Neural networks* 1.4 (1988), S. 339–356.

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe. Dazu habe ich keine außer den von mir angegebenen Hilfsmitteln und Quellen verwendet und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen habe ich als solche kenntlich gemacht.

Rostock, den 12.08.2021

Vorname Nachname

A. Anhang

A.1. Listings

Listing A.1: C Code - direkt eingefügt

```
#include <stdio.h>
    #define N 10
    /* Block
    * comment */
    int main()
        int i;
       // Line comment.
10
       puts("Hello world!");
11
        for (i = 0; i < N; i++)
13
14
            puts("LaTeX is also great for programmers!");
15
16
17
       return 0;
18
19
```

Listing A.2: Java Code - über externe Datei eingefügt

```
public class HelloWorld {
  public String SayHello() {
    return "Hello World!";
}
}
```

A.2. Biber

BibLETEX mit Biber

BibLEX

- Formatierungen von Zitaten und Literaturverzeichnis mit LATEX-Befehlen
- biblatex unterstützt:
 - unterteilte Bibliographien (nach Kapitel, Überschrift, Typ, Schlüsselwort)
 - mehrere Bibliographien in einem Dokument
 - stellt mehrere Zitierstile zur Auswahl bereit
 - ersetzt folgende Einzelpakete: babelbib, bibtopic, bibunits, chapterbib, cite, inlinebib, mlbib, multibib, splitbib
- Kompatibilitätsmodus zu natbib und mcite/mciteplus
- FAQ zu biblatex
 - http://projekte.dante.de/DanteFAQ/LiteraturverzeichnisMitBiblatex

Biber

- biber ist ein backend bibliography processor für biblatex
- biber ist bibtex-Ersatz speziell für biblatex
- Vorteile:
 - löst alle bibtex-Probleme (richtige Sortierung da Unicodeunterstützung, Speicherbedarf, Kodierungen etc.)
 - http://www.ctan.org/pkg/translation-biblatex-de, S.47

Einbinden von Biber in Editoren

- TexWorks in aktueller Version bereits enthalten
- TeXnicCenter

über Ausgabe\Ausgabeprofile definieren... im genutzten Profil, z.B. Latex -> PDF
C:\Program Files\MiKTeX 2.9\miktex\bin\x64\bibtex.exe durch
C:\Program Files\MiKTeX 2.9\miktex\bin\x64\biber.exe ersetzen

Ablauf

- 1. pdflatex foo.tex
- 2. biber foo.bcf
- 3. pdflatex foo.tex
- 4. pdflatex foo.tex

In **TexWorks** nacheinander ausführen (evtl. Anzeige per Hand aktualisieren). In **TeXnicCenter** werden 1. und 2. zusammen ausgeführt. Dann sind noch zwei Durchläufe (3. und 4. erforderlich).

Erläuterungen zum Ablauf

- in foo.tex muss biblatex mit backend=biber geladen sein, damit foo.bcf geschrieben wird
- *.bcf steht für biber control file und enthält Anweisungen (welche bib-Datei, welche Sortierung usw.)

Literaturverwaltungsprogramm Citavi

Die Universität Rostock hat eine Campuslizenz Citavi erworben. Mit Citavi verwalten Sie Ihre Literatur, recherchieren in Fachdatenbanken und Bibliothekskatalogen, arbeiten Literatur inhaltlich auf, sammeln Zitate, organisieren Wissen, konzipieren Texte, planen Aufgaben und erstellen automatisch Literaturverzeichnisse in unterschiedlichen Zitationsstilen.

Durch die Campuslizenz haben alle Studierenden und Lehrenden unserer Hochschule die Möglichkeit, dieses leistungsfähige Programm kostenlos zu nutzen.

Weitere Details findet man unter:

https://www.itmz.uni-rostock.de/anwendungen/software/rahmenvertraege/citavi/

Erzeugung einer *.bib-Datei mit Citavi:

- Datei / Exportieren
- auswählen was exportiert werden soll
- beim ersten Mal Exportfilter hinzufügen: BibLatex (auswählen)
- Dateinamen angeben und Exportvorlage bei Bedarf speichern
- fertig

Beispiel einer *.tex-Datei mit Nutzung der Literaturdatenbank test1.bib

```
\label{local-document} $$\documentclass[parskip=half]{scrartcl}$
\usepackage[utf8]{inputenc} %select encoding \usepackage[T1]{fontenc} % T1 Schrift Encoding
\usepackage{Imodern} % Schriftfamilie Imodern
\usepackage[ngerman]{babel}% dt. Sprache
\usepackage[babel, german=quotes]{csquotes} % einfache Handhabung von quotations
\usepackage[backend=biber]{biblatex} %biblatex mit biber laden
\ExecuteBibliographyOptions{
        sorting=nyt, %Sortierung Autor, Titel, Jahr
        bibwarn=true, %Probleme mit den Daten, die Backend betreffen anzeigen
        isbn=false, %keine isbn anzeigen
        url=false %keine url anzeigen
\addbibresource{test1.bib} %Bibliographiedateien laden
\begin{document}
TEXT mit Beispielen, s.~\cite{Mittelbach.2013}
\verb|\printbibliography| \% hier Bibliographie ausgeben lassen |
\end{document}
```

Beispiel einer Literaturdatenbank test1.bib

```
% This file was created with Citavi 6.3.0.0  
@book{Mittelbach.2013,  
author = {Mittelbach, Frank and Goossens, Michel and Braams, Johannes},  
year = {2013},  
title = {The LATEX companion},  
edition = {2. ed., 12. print},  
publisher = {Addison—Wesley},  
isbn = {978—0201362992},  
language = {eng},  
location = {Boston, Mass.},  
series = {Addison—Wesley series on tools and techniques for computer typesetting},  
abstract = {},  
pagetotal = {1090}}
```