Violence Detection

These violent delights have violent ends...

- W.S.

Team Bittah Ninja Jen, Lance, Alex, Ahsen

Disclaimer: Viewers might see images or videos that contain violence

What Are We Doing?

- Classifying human behavior as violent or non-violent in real-time on edge enabled CCTV devices using action recognition models
- Shorten the time between violent action and deployment of de-escalation measures
- POC model detects violent or non-violent punches

Why Are We Doing It?

- Security professionals, judged on response times, spend hours with eyes glued to camera feed
- Responders need "who, what, when, where" ASAP for de-escalation efforts
- Delays in identification or notification can result in increased victim count/injury

Why Punch Detection?

- Build confidence with customer (security personnel) that our recognition model is fast and accurate for a single use case
 - Open doors for buy-in on models for other actions (e.g. firearm detection)
 - Build business case for gaining access to security team's footage to expand dataset
- POC deployment in locations where weapons have been screened
- Potential to act as evidence in assault situations

Violent Punch

No Punch

Data Engineering

- Datasets for pretraining: UCF101 and Kinetics datasets
- Custom dataset for fine-tuning: YouTube videos, Violent Flows, and Kaggle
 - o 5400 clips of street fights, crowd riots, dancing, sports events, training, etc.
- Slice videos into 5 sec (151 frames) maximum segments using ffmpeg
- Scale frames to 224x224 pixels prior to training
- Videos hand-labeled by the bittah-ninja team into 5 classes as well as an exclusion class
 - o 0 No punch, 1 Violent punch, contact, 2 Violent punch, no contact, 3 Non-violent punch, contact, 4 Non-violent punch, no contact (shadowboxing)

• Exclusion rules

- Video does not contain human subjects
- Poor video quality

Data Engineering

- Extract and store raw frames for spatial stream in TSN model
- Calculate x and y-axis optical flows on raw frames for temporal stream in TSN model
 - o gradient of pixel intensity wrt time

CNN For Naive Baseline

TSN Models Long Range Dependencies

Input Data for Two Stream Action Recognition

RGB Frames - Spatial

Optical Flows - Temporal

Flows on x-axis

Flows on y-axis

TSN Evenly Segments Videos

Snippets Sampled From Segments

Snippets Passed Through Deep Neural Nets

Consensus Reached For Each Modality

Final Class Predicted

Model Evaluation

- Baseline CNN accuracy 73%
 - (Applied to 1 single frame sampled at random per clip)
 - Barely outperforms guessing common (no-punch) class of 72%
- TSN accuracy 84.7%

Confusion Matrix

- 74% precision for violent-punch-with-contact predictions
- 66% recall for this class, so we're missing 1/3rd of violent-punches-with-contact

Correct: True negative

Correct: True positive

Wrong: False positive

Wrong: False negative

Mock-Up of the Punch Detection Web App

<<u>demo prototype</u>>

Key Challenges

- Being frugal
 - Video data is expensive to work with
- Data engineering
 - How to manipulate video data?
- Model development
 - Which model?
- Website development
 - Minimalist but expressive

Retro

- Crowd source labeling (e.g., Mechanical Turks)
- Additional features for data
 - Video quality
 - Audio
- Fixed video inputs (e.g., surveillance camera versus phone camera)
- Optimize video clip length and resolution

Next Steps

- Generalize classes and enrich dataset (kicks, shoves, etc.)
- Team up with a security company to get more data
- Scalable implementation lightweight model for edge (TSM), heavy duty for decision support (TSN or others?)

Thank You

References

- https://github.com/open-mmlab/mmaction
- https://github.com/qijiezhao/py-denseflow
- Khurram Soomro, et al. "UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild." (2012), https://arxiv.org/abs/1212.0402
- Joao Carreira, et al. "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset." (2017), https://arxiv.org/abs/1705.07750
- Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang: "Temporal Segment Networks: Towards Good Practices for Deep Action Recognition", (2016), http://arxiv.org/abs/1608.00859
- Ji Lin, Chuang Gan: "TSM: Temporal Shift Module for Efficient Video Understanding", (2018), http://arxiv.org/abs/1811.08383

BACKUP

Preliminary Results Using UCF-101 Promising

Subset of UCF-101 Classes:

- Punch
- Baseball Pitch
- Bench Press
- Breaststroke
- Tai Chi
- etc.

Top 1 Accuracy = 94%

Top 5 Accuracy = 100%

Infrastructure/Deployment

Technologies

- AWS
- NodeJS
- React
- IBMCloud
- Jupyter Notebook
- Docker

Models Used for Action Recognition

Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of neighboring frames of the video.

Model - Backbone

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112		11112	7×7, 64, stride 2		
				3×3 max pool, stride	2	
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	1×1, 64 3×3, 64 1×1, 256	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 6 \]	1×1, 256 3×3, 256 1×1, 1024 ×23	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 36 \]
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3 \]	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3 \]	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
	1×1	a erage pool, 1000-d fc, softmax				
FLOPs		1.8×10^{9}	3.6×10 ⁹	3.8×10 ⁹	7.6×10 ⁹	11.3×10^{9}

Optical Flows - Calculation

$$I(x, y, t)$$

$$(x, y)$$

$$displacement = (dx, dy)$$

$$time = t$$

$$I(x + dx, y + dy, t + dt)$$

$$(x + dx, y + dy)$$

$$time = t + dt$$

Optical Flows - Calculations Continued..

Taylor Series Approximation

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t + \dots$$

$$\Rightarrow \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = 0$$

Dividing by Change in Time Gives Two Components (movement in the x and y direction)

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$