Formulario 1 - Propiedades y Técnicas para el Cálculo de Límites

N°	Nombre	Fórmula / Técnica	Restricciones	Ejemplo
1	Propiedad de la suma	$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$	Los límites individuales deben existir.	$\lim_{x \to 2} (x^2 + 3x) = 4 + 6 = 10$
2	Propiedad del producto	$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$	Los límites individuales deben existir y ser finitos.	$\lim_{x\to 3} (x \cdot (x-1)) = 3 \cdot 2 = 6$
3	Cociente de funciones	$ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} $	$\lim g(x) \neq 0$	$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0 $ usar factorización
4	Límites laterales	$\lim_{x \to a^{-}} f(x) \le \lim_{x \to a^{+}} f(x)$	Pueden diferir, si son iguales, existe el límite.	$\lim_{x\to 0^-} x = 0$, $\lim_{x\to 0^+} x = 0$
5	Límites infinitos	$\lim_{x \to a} f(x) = \infty$	Crecimiento sin límite.	$\lim_{x \to 0^+} \frac{1}{x} = +\infty$
6	Técnica de factorización	Factorizar numerador y denominador para cancelar términos.	Forma $\frac{0}{0}$.	$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = 4$
7	Racionalización	Multiplicar por el conjugado para eliminar raíces.	Formas $\frac{0}{0}$ o $\frac{\infty}{\infty}$.	$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} + 2} = \frac{1}{4}$
8	Límite notable 1	$\lim_{x \to 0} \frac{\sin x}{x} = 1$	x en radianes.	$\lim_{x \to 0} \frac{\sin 3x}{x} = 3$
9	Límite notable 2	$\lim_{x \to 0} \frac{\sin x}{x} = 1$ $\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^x = e^k$	$x \to \infty$.	$\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x = e^2$
10	Regla de L'Hôpital	Si $\frac{f(a)}{g(a)}$ es $\frac{0}{0}$ o $\frac{\infty}{\infty}$, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$	Derivadas deben existir cerca de a .	$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$

Cuadro 1: Tabla de Propiedades, Técnicas y Fórmulas para Cálculo de Límites, elaboración propia.

Prof. Iván Ladislao Condori Tinta