Lecture 8 Single-Source Shortest Paths Problems Continued

- 1. Single-Source Shortest Paths in Directed Acyclic Graphs
- 2. Dijkstra's Algorithm
- 3. Difference constraints

Single-Source Shortest Paths in Directed Acyclic Graphs

```
DAG-SHORTEST-PATHS (G, w, s)
```

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE (G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 **do for** each vertex $v \in Adj[u]$
- $\mathbf{do} \ \mathbf{RELAX}(u, v, w)$

Time Complexity: O(V+E)

Correctness of the Algorithm

• Theorem 24.5

If a weighted, directed graph G = (V, E) has source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $d[v] = \delta(s, v)$ for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

Proof.

- We first show that $d[v] = \delta(s, v)$ for all vertices $v \in V$ at the termination.
- If *v* is not reachable from *s*, then $d[v] = \delta(s, v) = \infty$ by the no-path property.

Proof Continued

- Now, Suppose that there is a shortest path $P=\langle v_0,v_1,\ldots,v_k\rangle$, where $v_0=s$ and $v_k=v$. Since we process the vertices in topological order, the edges on P are relaxed in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$. The path relaxation property implies that $d[v_i]=\delta(s,v_i)$ for all i.
- By the predecessor-subgraph property, G_{π} is a shortest-paths tree.

Application: Determine Critical Path

• Pert Chart:

- edges represent jobs and weights represent the times required to perform particular jobs.
- If edge (u,v) enters v and edge (v,w) leaves v, then job (u,v) must be performed prior to job (v,w).
- A path through this dag represents a sequence of jobs that must be performed in a particular order.
- A critical path is a longest path through the dag.

Two method

- Negating the edge weight.
- Replace " ∞ " with "- ∞ " and ">" with "<".

Dijkstra's Algorithm

- Problem solved
- Correctness
- Time complexity
- Similarities to BFS and PRIM

Problem Solved by Dijkstra's

- Single-source shortest-paths problem
- Edge weight >=0

- Input: A graph G=(V, E) and a source s, and a nonnegative function $w: E \rightarrow \mathbb{R}^+$
- Output: For each vertex v, shortest path weight $\delta(s,v)$, and a shortest path if exists.

The Dijkstra Algorithm

```
DIJKSTRA(G,w,s)
            1. Initialize-Single-Source(G,s)
            2. s←∅
            3. Q←V[G]
            4. while Q≠∅
            5. do u \leftarrow EXTRACT-MIN(Q)
             6. S \leftarrow S \cup \{u\}
            7. for each v \in Adj[u]
                      do RELAX(u,v,w)
INITIALIZE-SINGLE-SOURCE (G, s)
                                       Relax(u, v, w)
   for each vertex v \in V[G]
                                         if d[v] > d[u] + w(u, v)
        do d[v] \leftarrow \infty
                                              then d[v] \leftarrow d[u] + w(u, v)
           \pi[v] \leftarrow \text{NIL}
                                       3
                                                    \pi[v] \leftarrow u
  d[s] \leftarrow 0
```

Dijkstra's Algorithm - example

Initial Graph

Distance to all nodes marked ∞

Initial Graph

Relax edges leaving source

 $S = \emptyset$

Relax v and a shorter path via y exists

S is now $\{s, x\}$

Sort vertices and choose closest

Update d[v]

S is now $\{s, x, y\}$

Sort vertices and choose closest, *u*

Correctness of Dijkstra's

Theorem 24.6

- Dijkstra's algorithm, run on a weighted, directed graph G=(V, E), with non-negative weight function w and source s, terminates with $d[u] = \delta(s,u)$ for all vertices $u \in V$.
- Proof (by contradiction)
 - Since S=V in the end, we only need to prove that for each vertex v added to S, there holds $d[v] = \delta(s, v)$ when v is added to S.
 - Suppose that u is the first vertex for which $d[u] \neq \delta(s, u)$ when it was added to S
 - Note
 - u is not s because $d[s] = 0 = \delta(s, s)$
 - There must be a path $s \rightarrow ... \rightarrow u$, since otherwise $d[u] = \delta(s, u) = \infty$.
 - Since there's a path, there must be a shortest path (note there is no negative cycle).

Dijkstra's Algorithm - Proof

- Let $s \rightarrow x \rightarrow y \rightarrow u$ be a shortest path from s to u, where at the moment u is chosen to S, x is in S and y is the first outside S
- When x was added to S, $d[x] = \delta(s, x)$
- Edge $x \rightarrow y$ was relaxed at that time, so at time u is chosen, $d[y] = \delta(s, y)$

Dijkstra's Algorithm - Proof

- So, $d[y] = \delta(s, y) \leq \delta(s, u) \leq d[u]$
- But, when we chose u, both u and y are in Q, so $d[u] \le d[y]$ (otherwise we would have chosen y)
- Thus the inequalities must be equalities

$$\therefore d[y] = \delta(s, y) = \delta(s, u) = d[u]$$

- 1.Why the red inequality holds? How about negative edges exist?
- 2. When u is added to S, a shortest path s → u in S is found.

Dijkstra's Algorithm - Time Complexity

- Like that of PRIM's
 - If using arrays
 - $O(V^2)$
 - Using special data structure
 - O(VlgV+E) or less

Compared to BFS

```
DIJKSTRA (G, w, s)

1. INITIALIZE-SINGLE-

SOURCE (G, s)

2. S←∅

3. Q←V[G]

4. while Q≠∅

do u←EXTRACT-MIN(Q)

s←S∪{u}

for each v ∈Adj[u]

do RELAX (u, v, w)

BFS(G,s)

1. For each vertex color[u]=W; d[u]

π[u]=NIL; colo

2. Q={s}.

3. while Q is non u=dequeue(Q)

for each v ∈ act if(color[v]=stolor[v])

color[v]

do RELAX (u, v, w)
```

Note: vertices in Q are in non-decreasing order of d, and there are only two values d, and d+1 in Q.

```
1. For each vertex u \in V,
   color[u]=W; d[u]=\infty;
    \pi[u]=NIL; color[s]=G; d[s]=0;
3. while Q is nonempty
    u=dequeue(Q)
    for each v \in adj[u],
         if(color[v]==W), do
             color[v]=G;
            d[v]=d[u]+1;
             \pi[v]=u;
             enqueue(Q,v);
         color[u]=B
```

Compared to PRIM

```
MST-PRIM(G, w, r)
DIJKSTRA(G,w,s)
1. for each u \in V[G]
                                                   for each u \in V[G]
2. do d[u] \leftarrow \infty
                                                        do key[u] \leftarrow \infty
             \pi[u] \leftarrow NIL
                                                           \pi[u] \leftarrow \text{NIL}
4. d[s] \leftarrow 0
                                                4 key[r] \leftarrow 0
5. s←Ø
6. Q←V[G]
                                                5 Q \leftarrow V[G]
7. while Q \neq \emptyset
                                                   while Q \neq \emptyset
8. do u \leftarrow EXTRACT-MIN(Q)
                                                        \mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)
9. S \leftarrow S \cup \{u\}
                                                            for each v \in Adj[u]
10.for each v \in Adj[u]
                                                                do if v \in Q and w(u, v) < key[v]
11.do if v \in Q and
                                               10
     d[u]+w(u,v)< d[v]
                                                                      then \pi[v] \leftarrow u
12. then \pi[\mathbf{v}] \leftarrow \mathbf{u}
                                               11
                                                                            key[v] \leftarrow w(u,v)
13. d[v] \leftarrow d[u] + w(u, v)
```

Linear Programming

- Linear programming problem:
 - Input: matrix A_{mn} , vector b_m , and vector c_n .
 - Output: vector x_n , such that maximize cx subject to $Ax \le b$.

Notes

- This problem has polynomial time solution.
- Many problems can be converted into LP.

An Instance

单位产品所需原料数 量(公斤)	产品 Q1	产品 Q2	产品 Q3	原料供用量 (公斤/日)
原料P1	2	3	0	1500
原料P2	0	2	4	800
原料P3	3	2	5	2000
单位产品的利润 (千元)	3	5	4	

LP

max
$$3x_1 + 5x_2 + 4x_3$$

s.t.
 $2x_1 + 3x_2 \le 1500$
 $2x_2 + 4x_3 \le 800$
 $3x_1 + 2x_2 + 5x_3 \le 2000$
 $x_1, x_2, x_3 \ge 0$

Feasibility problem of LP

- Feasible solution: x_n , subject to $Ax \le b$.
- Feasibility problem of LP:
 - Given Matrix A m×n, b m-vector
 - Output: either a feasible solution *x* if one exists, or a judgment that no feasible solution exists.

Systems of difference constraints

- Each row of A contains exactly one "1" and one "-1". All other elements are "0".
- Each row is a difference constraint:
 - $x_i x_i < = b_k, 1 < = k < = m.$
- An example

An example
$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \leq \begin{pmatrix} 0 \\ -1 \\ 1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \leq \begin{pmatrix} x_1 - x_2 < = 0 \\ x_1 - x_5 < = -1 \\ x_2 - x_5 < = 1 \\ x_3 - x_1 < = 5 \\ x_4 - x_1 < = 4 \\ -1 \\ -3 \\ x_5 - x_3 < = -3 \\ x_5 - x_4 < = -3$$
Solution $x = (-5, -3, 0, -1, -4); \ x' = (-5 + d, -3 + d, 0 + d, -1 + d, -4 + d)$

(0,2,5,4,1)

Relations between solutions to DC

• Lemma 24.8: Let $x=(x_1,x_2,...,x_n)$ be a solution to a system $Ax \le b$ of difference constraints, and let d be any constant. Then $x+d=(x_1+d,...,x_n+d)$ is a solution to $Ax \le b$ as well.

Proof. Easy(Book236)

Constraints graph

- Given a system Ax<=b of difference constraints
- The constraint graph is a weighted, directed graph G=(V, E;w), where:
 - $V=\{v_0,v_1,...,v_n\}$ // v_0 is an extra vertex
 - E={ $(v_i,v_j):x_j-x_i \le b_k$ is a constraint} $\cup \{(v_0,v_1),(v_0,v_2),...,(v_0,v_n)\}$. //each vertex is reachable from v_0
 - $w(v_i,v_j)=b_k$, if $x_i-x_i \le b_k$ is a constraint;
 - $w(v_0, v_i) = 0$.

Constraint graph of example

Figure 24.8 The constraint graph corresponding to the system (24.3)–(24.10) of difference constraints. The value of $\delta(v_0, v_i)$ is shown in each vertex v_i . A feasible solution to the system is x = (-5, -3, 0, -1, -4).

Solve Difference Constraints by SSSP in constraint graph

- Thoerem24.9: Given a system Ax<=b of difference constraints, let G=(V, E) be the corresponding constraint graph.
 - If G contains no negative-weight cycles, then

$$x = (\delta(v_0, v_1), \delta(v_0, v_2), ..., \delta(v_0, v_n))$$

is a feasible solution for the system.

• If G contains a negative-weight cycle, then there is no feasible solution for the system.

Correctness of Theorem 24.9

 Proof. (⇒)If G does not contain negative-weight cycles. Then shortest path is well defined. And since there is an edge from v_0 to each vertex, all shortest paths from v_0 is finite. Consider any edge (v_i,v_i)(any constraint). By the triangle inequality, $\delta(v_0, v_i) \le \delta(v_0, v_i) + w(v_i, v_i)$ or, equivalently, $\delta(v_0, v_i)$ - $\delta(v_0, v_i) \le w(v_i, v_i)$. Thus, letting $x_i = \delta(v_0, v_i)$ and $x_i = \delta(v_0, v_i)$ satisfies the difference constraint x_i - $x_i \le b_k$ = $w(v_i,v_i)$ that corresponds to edge (v_i, v_i) .

Proof continued

• If G contains a negative-weight cycle $C = \langle v_1, v_2, \dots, v_k \rangle$, where $v_1 = v_k$. We will show that there is no feasible solution. Cycle C corresponds to the following difference constraints: x_2 - $X_1 \le W(V_1, V_2); X_2 - X_2 \le W(V_2, V_2); ..., X_k - X_{k-1} \le W(V_1, V_2); ..., X_k - X_{k-1} \le W(V_1, V_2); X_1 - X_{k-1} \le W(V_2, V_2); ..., X_k - X_k$ $w(v_{k-1},v_k)$, $x_1-x_k \le w(v_k,v_1)$. If there is a feasible solution x, it will satisfy all these k inequalities. It also satisfies the summation of the inequalities, i.e., $0 \le w(C)$, a contradiction to C is negativeweighted.

Property of DC

- Observation(According to Theorem24.9):
 - A difference constraints system has a solution \Leftrightarrow constraint graph contains no negative cycle, and $\mathbf{x} = (\delta(\mathbf{v}_0, \mathbf{v}_1), \delta(\mathbf{v}_0, \mathbf{v}_2), ..., \delta(\mathbf{v}_0, \mathbf{v}_n))$ is a solution.
 - A difference constraints system has no solution ⇔ constraint graph contains negative cycles.

Bellman-Ford solution to DC

Algorithm:

- Compute constraint graph G;
- Run Bellman-Ford on constraint graph G;
- If Bellman-Ford returns True, then $x=(\delta(v_0,v_1), \ldots, \delta(v_0,v_n))$ is a solution to DC; if Bellman-Ford returns false, DC has no solution.

Conclusion

- Relaxation and its properties
- Bellman-Ford algorithm
- Single-source shortest paths in DAG
- Dijkstra's algorithm
- Difference constraints

Homework

- 24.3-2
- 24.3-3

Next Class

All-pairs shortest paths problem

实验五

- 给定一个有向加权完全图,每条边的权重为 正,求最小的TSP圈。
 - TSP圈: 经过所有点,且每个点仅经过一次的圈。
 - 方法自选, 动态规划、分支定界、枚举都可以。