

SCC.460 Data Science Fundamentals

Big Data Technologies

Big Data

- 4 v's
 - Volume (sheer scale)
 - Variety (of forms and formats)
 - Velocity (relentless streams)
 - Veracity (uncertainty)
- Take away point: data are produced at increasingly rapid rates.
 - Challenges raised? How to deal with them? Opportunities?

Big Data

- Big data would not have been big without accompanying technologies.
- Main enabler...
 - Cloud computing
- Other key technologies
 - e.g. Visualization (more on this in Lecture 5)
 - Immersive VR
 - Patrick Millais, et al. 2018. Exploring Data in Virtual Reality: Comparisons with 2D Data
 Visualizations. In CHI 2018. DOI:https://doi.org/10.1145/3170427.3188537
 - Physical visualisation approaches
 - Taher, et al. 2015. Exploring Interactions with Physically Dynamic Bar Charts". In CHI 2015.
 DOI: https://doi.org/10.1145/2702123.2702604

Enablers of Big Data

- Data science has always been there.
- What's new: technological advances to work with data in better ways.
 - Collect:
 - Extremely wide participation radius (web)
 - Multimodal data sources (smartphones, IoT)
 - Rich graph dynamics (online social networks)
 - Analyse:
 - Elastic computation, PAYG resources (cloud computing)
 - Solutions to do the heavy lifting
 - e.g. streaming frameworks that can deal with the velocity of data
 - » such as Apache Storm

Streaming Frameworks

- Apache Storm
 - Version 2.2.0 released June 2020:
 - Capitalises on cheap RAM memory (Low latency)
 - Enabling real-time analytics
 - Creating insights in extremely short time (milliseconds)
 - http://storm.apache.org/talksAndVideos.html
 - Constrast with Map Reduce that utilises multiple distributed (potentially cheap) machines with slow writing to disk
 - More on this (and the Hadoop Distributed File System) in SCC.411

Data Value

- Data has the greatest value as it enters the pipeline.
- Realtime analytics can power business decisions.
 - customer engagement
 - fraud prevention
 - resource utilisation optimization

What is cloud computing?

"Cloud computing is a model for enabling **convenient**, **on-demand** network access to a shared pool of **configurable** computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with **minimal management** effort or service provider interaction."

Mell and Grance. "The NIST Definition of Cloud Computing". NIST Special Publication 800-14. September 2011. National Institute of Standards and Technology, U.S. Department of Commerce.

- Other definitions exist!
- Typical example: Online Greeting Cards Retailer.

Cloud Computing

- There has been a lot of change in application platforms over the years.
 - Mainframes
 - Stand alone (PC)
 - Client-Server
 - Super computers
 - Distributed (P2P, grid)
- Cloud computing is yet another step on the quest for computing holy grail.
 - "If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility... The computer utility could become the basis of a new and important industry."
 - -- John McCarthy, speaking at the MIT Centennial in 1961

Every cloud...

- Clouds come in different forms:
 - Provisioning level
 - Deployment model
- Different costs attached to each.

Provisioning Levels

	What is Provided	Usage	Example
SaaS	Turn-key Application	Application transactions: run jobs, manipulate data, etc.	Microsoft Office Live, Google Docs, YouTube
PaaS	Runtime environment: software packages and storage support	Develop code/applications	Google AppEngine, Microsoft Azure
laaS	Barebones hardware resources (CPU, memory, disk, networking) + OS	Customise runtime environments	Amazon EC2, Google Compute Engine

Provisioning Levels

- How do I decide?
 - Identify your skillset; real core competency.
 - How much want to / can you spend (₾/\$£) on each layer?
 - How much flexibility can I live with (or without)?
 - Other questions: e.g. legal + privacy concerns.
- Applies to both individuals and organisations.

Deployment Models

- Public clouds
 - Third party service providers offer services to the general public.
- Private clouds
 - Organizations (or possibly third parties) set up and maintain cloud services for their own internal use.
- Hybrid clouds
 - A mix of both strategies.

Public Deployments

Example Public Deployments

Provider	SaaS	PaaS	laaS
Google	Google Apps	App Engine	Compute Engine
Amazon	Prime Video	S3	EC2

• Others also from Microsoft, IBM, etc.

What deployment model?

