A számításelmélet alapjai I.

2. előadás

előadó: Tichler Krisztián ktichler@inf.elte.hu

Grammatikák – Ismétlés

Definíció

Egy $G = \langle N, T, P, S \rangle$ rendezett négyest **grammatikának** nevezünk ha

- N és T diszjunkt véges ábécék (azaz N ∩ T = ∅). N elemeit nemterminális, T elemeit pedig terminális szimbólumoknak nevezzük.
- S ∈ N a grammatika kezdőszimbóluma.
- ► A P szabályrendszer $x \to y$ alakú szabályok véges halmaza, ahol $x \in (N \cup T)^*N(N \cup T)^*, y \in (N \cup T)^*$.

Grammatikák – Ismétlés

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika és legyen $u, v \in (N \cup T)^*$. A v szó közvetlenül vagy **egy lépésben** levezethető az u szóból G -ben, jelölése $u \Rightarrow_G v$, ha $u = u_1 x u_2$ és $v = u_1 y u_2$, ahol $u_1, u_2 \in (N \cup T)^*$ és $x \to y \in P$.

u-ból (több lépésben vagy közvetetten) **levezethető** v, ha u = v vagy van olyan $n \ge 1$ és $w_0, \ldots w_n \in (N \cup T)^*$, hogy $w_{i-1} \Rightarrow_G w_i$ $(1 \le i \le n)$ és $w_0 = u$ és $w_n = v$. Jelölés: $u \Rightarrow_G^* v$.

Mondatforma: A kezdőszimbólumból levezethető szó.

 \Rightarrow_G illetve \Rightarrow_G^* helyett gyakran röviden \Rightarrow -t illetve \Rightarrow^* -t írunk.

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges grammatika. A G által **generált nyelv** alatt az $L(G) := \{w \mid S \Rightarrow_G^* w, w \in T^*\}$ szavakból álló halmazt értjük.

Grammatikák Chomsky féle osztályozása

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika. A G grammatika i-típusú (i = 0, 1, 2, 3), ha P szabályhalmazára teljesülnek a következők:

- i = 0 eset: nincs korlátozás,
- \rightarrow i = 1 eset:
 - (1) P minden szabálya $u_1 A u_2 \rightarrow u_1 v u_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$, és $v \neq \varepsilon$,
 - (2) Egyetlen kivétel megengedünk: P tartalmazhatja az $S \to \varepsilon$ szabályt, de csak abban az esetben, ha S nem fordul elő P egyetlen szabályának jobb oldalán sem. ("Korlátozott ε szabály" vagy röviden "KES")
- ► i = 2 eset: P minden szabálya $A \rightarrow v$ alakú, ahol $A \in N$ és $v \in (N \cup T)^*$,
- ► i=3 eset: P minden szabálya vagy $A \rightarrow uB$ vagy $A \rightarrow u$, alakú, ahol $A, B \in N$ és $u \in T^*$.

Jelölje G_i az i-típusú grammatikák osztályát (i = 0, 1, 2, 3).

Grammatikaosztályba sorolás

Példa: Legyen $G = \langle N, T, P, S \rangle$, ahol $N = \{S, A, B\}, T = \{a, b\}$ és $P = \{S \to ASB, S \to \varepsilon, AB \to BA, BA \to AB, A \to a, B \to b\}$. Szabályról szabályra nézzük meg, hogy az adott szabály melyik típusba engedi sorolni a grammatikát.

$$S \rightarrow ASB$$
 0, 1°, 2
 $S \rightarrow \varepsilon$ 0, 1°, 2, 3
 $AB \rightarrow BA$ 0
 $BA \rightarrow AB$ 0
 $A \rightarrow a$ 0, 1, 2, 3

 $B \to b$ 0, 1, 2, 3

- •: Az 1. és 2. szabály **EGYÜTT** megsérti a KES-t. Ha együtt szerepelnek egy grammatikában, akkor az $\notin G_1$.
- A 3. és 4. szabály a 0-son kívül mindent kizár, így $G \in \mathcal{G}_0$ és $G \notin \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$.

Nyelvek Chomsky féle osztályozása

Noam Chomsky (1928 –) amerikai nyelvész, filozófus, politikai aktivista. A generatív nyelvtan elméletének megalkotója, kidolgozója a róla elnevezett Chomsky-hierarchiának. (Wikipédia)

 $\mathcal{L}_i := \{L \mid \exists G \in \mathcal{G}_i, \text{ hogy } L = L(G)\}$ jelöli az *i*-típusú nyelvek nyelvosztályát, elemeit *i*-típusú nyelveknek nevezzük (i = 0, 1, 2, 3).

Tehát az i-típusú nyelvek azok, amiket i-típusú grammatikával generálni lehet. (i = 0, 1, 2, 3)

A Chomsky féle grammatikaosztályok elnevezése

- A 0-típusú grammatikákat **mondatszerkezetű** (phrase-structure) grammatikáknak is nevezzük, ami nyelvészeti eredetükre utal.
- A 1-típusú grammatikák a **környezetfüggő** (context-sensitive) grammatikák, mert szabályai olyanok, hogy, egy *A* nemterminális valamely előfordulása egy *v* szóval csak *u*₁ és *u*₂ kontextus jelenlétében helyettesíthető.
- 2-típusú grammatikákat környezetfüggetlen (context-free) grammatikáknak mondjuk, mert szabályai olyanok, hogy az A nemterminális v-vel való helyettesítése bármely kontextusban megengedett.
- A 3-típusú grammatikákat **reguláris** (regular) vagy véges állapotú (finite state) grammatikáknak hívjuk, a véges állapotú automatákkal való kapcsolatuk miatt.

A 0,1,2,3-típusú nyelvek osztályait rendre **rekurzíven felsorolható**, **környezetfüggő**, **környezetfüggetlen**, valamint **reguláris** nyelvosztálynak is mondjuk.

Grammatikák a gyakorlatban

BNF (Backus-Naur Form) John Backus, Peter Naur ALGOL 60

A BNF egy széles körben használt metanyelv melynek segítségével szabályok alkothatók meg (például egy programozási nyelv szintaktikai szabályai). Építőkövei:

- \(\n\equiv \), fogalmak (vagy m\u00e1s n\u00e9ven nemtermin\u00e1lisok)
- ::=, a szabályok bal- és jobboldalának elválasztászára
- a sztringek alkotóelemei (terminálisok)

Egy szabály bal- és jobboldalból áll, köztük ::=, baloldalon pontosan 1 fogalom, jobboldalon terminálisok és fogalmak véges sorozata állhat.

A BNF megfelel a környezetfüggetlen grammatikának. Példa:

```
\label{eq:azonosito} $$ \azvesizes $$ \azv
```

A Chomsky-féle hierarchia

A grammatikák alakja alapján $G_3 \subseteq G_2 \subseteq G_0$ és $G_1 \subseteq G_0$. Ebből azonnal következik, hogy $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_0$ és $\mathcal{L}_1 \subseteq \mathcal{L}_0$.

Később meg fogjuk mutatni azt is hogy a következő tétel fennáll:

Chomsky nyelvhierarchia tétele

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0.$$

- (1) Itt az \mathcal{L}_2 és az \mathcal{L}_1 nyelvosztályok közötti tartalmazási reláció nem látható azonnal a megfelelő grammatikák definíciójából.
- (2) Nem világos a valódi tartalmazás sem.

(Gyengén) ekvivalens grammatikák és nyelvek

Minden grammatika generál egy nyelvet, de ugyanazt a nyelvet több különböző grammatika is generálhatja.

Két grammatika ekvivalens, ha ugyanazt a nyelvet generálják.

Két **nyelv gyengén ekvivalens**, ha legfeljebb az üres szóban különböznek.

Két grammatika gyengén ekvivalens, ha egymással gyengén ekvivalens nyelveket generálnak.

Ekvivalens grammatikák

Példa

A következő példákban $N \subseteq \{S, S', A, B\}, T = \{a, b\}$ és S a kezdőszimbólum. Csak a szabályrendszert adjuk meg. Ha $\alpha \to \beta$ és $\alpha \to \gamma$ két szabály, akkor tömören $\alpha \to \beta \mid \gamma$ -t írunk.

- a) $S \rightarrow ASB \mid \varepsilon$, $AB \rightarrow BA$, $BA \rightarrow AB$, $A \rightarrow a$, $B \rightarrow b$ 0. típusú
- b) $S \rightarrow ASB \mid \varepsilon, AB \rightarrow BA, A \rightarrow a, B \rightarrow b$ 0. típusú
- c) $S \to S' \mid \varepsilon, S' \to AS'B \mid AB, AB \xrightarrow{\square} BA, A \to a, B \to b$ 0. típusú
- d) $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$.
 - 2. típusú

 $L(G) = L_{EQ} := \{u \in \{a, b\}^* \mid u$ -ban ugyanannyi a van, mint $b\}$. (4x) Nem adható 3-as típusú grammatika a nyelvhez (biz. később).

Ekvivalens grammatikák

Példa

A (d)-t bizonyítjuk:

G szabályai: $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$.

 $L(G) \subseteq L_{EQ}$

Vegyünk egy n hosszú levezetést. n-re vonatkozó teljes indukcióval belátjuk, hogy minden levezetett $w \in \{a, b, S\}^*$ mondatformában ugyanannyi a van mint b. Az n = 0 eset nyilvánvaló. Tegyük fel, hogy minden n-nél rövidebb levezetésre igaz az állítás.

Legyen w' az a mondatforma a levezetésben, amiből w-t közvetlenül levezettük. Ekkor w'-re igaz az állítás, és G szabályai alapján ez w-re is teljesülni fog.

Ekvivalens grammatikák

Példa

G szabályai: $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$.

$$L(G) \supseteq L_{EQ}$$

Legyen most $w \in L_{EQ}$, ahol |w| = n. n-re vonatkozó indukcióval bizonyítjuk, hogy $w \in L(G)$.

- n=0-ra az állítás nyilvánvaló. Tegyük fel hogy az állítás minden n-nél rövidebb szóra igaz. $n\geq 1$ esetén 3 eset van.
- **1. eset**: w = aw'b, valamely $w' \in L_{EQ}$. Ekkor az indukciós feltevés szerint $S \Rightarrow^* w'$. Így $S \Rightarrow aSb \Rightarrow^* aw'b = w$.
- **2.** eset: w = bw'a, ez az eset az előzőhöz hasonlatos.
- **3. eset**: w = aw'a vagy w = bw'b. Ekkor léteznek olyan $u, v \in \{a, b\}^+$ szavak , melyre w = uv és $u, v \in L_{EQ}$. Világos, hiszen w 1 és az n-1 hosszú prefixében különböző előjelű az a-k száma minusz a b-k száma mennyiség. Ekkor az indukciós feltevés szerint $S \Rightarrow^* u$ és $S \Rightarrow^* v$. Így $S \Rightarrow SS \Rightarrow^* uS \Rightarrow^* uv = w$.

A grammatikák egy normálformája

Tétel (álterminálisok bevezetése):

Minden $G = \langle N, T, P, S \rangle$ grammatikához van vele ekvivalens és azonos típusú $G' = \langle N', T, P', S \rangle$ grammatika, melyre $x \in (N')^+$ minden $x \to y \in P'$ -re.

Bizonyítás: i = 2, 3-ra a grammatika eleve ilyen alakú.

i=0,1-re legyen $\bar{T}=\{\bar{a}\,|\,a\in T\}$, Feltehető, hogy $N\cap\bar{T}=\emptyset$. $N':=N\cup\bar{T}$. Helyettesítsünk P-ben minden $a\in T$ -t \bar{a} -val (a jobboldalakon is!), legyen az így módosított szabályrendszer P_1 . Legyen $\bar{P}=\{\bar{a}\to a\,|\,a\in T\}$ és $P':=P_1\cup\bar{P}$. Látható, hogy nem fordul elő terminális szabály baloldalán.

Ez a grammatika az eredetivel ekvivalens, azaz L(G) = L(G').

 $L(G) \subseteq L(G')$: Ha $u = t_1 \cdots t_n \in L(G)$, $t_i \in T(1 \le i \le n)$, akkor nyilván $S \Rightarrow_{G'}^* \bar{t_1} \cdots \bar{t_n}$ és ebből \bar{P} szabályainak alkalmazásával $S \Rightarrow_{G'}^* u$, azaz $u \in L(G')$ adódik.

A grammatikák egy normálformája

$$L(G) \supseteq L(G')$$
:

Definiáljuk a $h: (N' \cup T)^* \to (N \cup T)^*$ homomorfizmust úgy, hogy h(x) := x minden $x \in (N \cup T)$ és $h(\bar{a}) := a$ minden $\bar{a} \in \bar{T}$ esetén.

Ha $u \Rightarrow_{G'} v$, valamely P'-beli szabály alkalmazásával, akkor

- $ightharpoonup ar{P}$ -beli szabály alkalmazása esetén h(u) = h(v).
- ▶ P_1 -beli szabály alkalmazása esetén $h(u) \Rightarrow_G h(v)$

Tehát $u \Rightarrow_{G'} v$ implikálja $h(u) \Rightarrow_{G}^{*} h(v)$. (valójában 0 vagy 1 lépésben)

Ebből indukcióval könnyen meggondolható, hogy fennáll:

$$u \Rightarrow_{G'}^* v$$
 implikálja $h(u) \Rightarrow_{G}^* h(v)$.

Azaz, ha $S \Rightarrow_{G'}^* w$, ahol $w \in T^*$, akkor $S = h(S) \Rightarrow_G^* h(w) = w$.

1. típus esetén a szabályok megfelelő alakúak.

Megjegyzés: A 0. típusú átalakítás a 2. típusra is alkalmazható, így a 0,1,2 típusok esetén feltehető, hogy terminális, csak $A \rightarrow a$ alakban fordul elő ($a \in T, A \in N$).

Definíció

Az unió, konkatenáció és iteratív lezárás műveleteket reguláris műveleteknek nevezzük.

Egy \mathcal{L} nyelvcsalád **zárt** a φ : $(L_1, \ldots, L_n) \mapsto \varphi(L_1, \ldots, L_n)$ n-változós nyelvműveletre nézve, ha minden $L_1, \ldots, L_n \in \mathcal{L}$ esetén $\varphi(L_1, \ldots, L_n) \in \mathcal{L}$.

Tétel

 \mathcal{L}_i zárt a reguláris műveletekre nézve (i = 0, 1, 2, 3).

Bizonyítás: *i*-típusú nyelv azt jelenti, hogy *i*-típusú grammatika generálja. A feladat az, hogy ezekből a grammatikákból konstruáljunk egy olyan grammatikát, mely

- (1) a nyelvek unióját, konkatenáltját illetve lezártját generálja
- (2) az új grammatika tartsa meg az eredeti grammatiká(k) típusát.

Tehát a bizonyítás 3x4=12 konstrukcióból áll (de lesz köztük közös).

Az előző tétel alapján feltehető, hogy a szabályok baloldalán nem fordul elő terminális. (Valójában erre csak a 0. típus konkatenáció valamint a 0,1 típusú lezárás műveleteknél lesz szükségünk.)

Feltehető továbbá, hogy az eredeti grammatikák minden nemterminális és terminális ábécéje páronként diszjunkt.

Unió:

Legyen $L_k \in \mathcal{L}_i$ és $G_k = \langle N_k, T_k, P_k, S_k \rangle \in \mathcal{G}_i$ olyan, hogy $L(G_k) = L_k \ (k = 1, 2)$.

i = 0, 2, 3 eset:

Legyen $S_0 \notin N_1 \cup N_2$.

$$G_{\cup} := \langle N_1 \cup N_2 \cup \{S_0\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S_0 \to S_1 \mid S_2\}, S_0 \rangle.$$

Ekkor G_{\cup} *i*-típusú és $L(G_{\cup}) = L_1 \cup L_2$.

Unió:

i = 1 eset:

Az előző konstrukcióval az a baj, hogy ha valamelyik grammmatikának volt korlátozott ε -szabálya, az most már nem a kezdőszimbólumból van.

Legyen most
$$G_k = \langle N_k, T_k, P_k, S_k \rangle \in \mathcal{G}_1$$
 olyan, hogy $L(G_k) = L_k - \{\varepsilon\}$ $(k = 1, 2)$.

Ilyen grammatikák vannak, hiszen L_1 , L_2 -t generáló 1-típusú grammatikák a tétel feltételéből következően vannak. Ha van $S \to \varepsilon$ szabályuk, akkor azt törölve ilyen grammatikát kapunk.

Készítsük el az előbbi G_{\cup} grammatikát. Amennyiben $\varepsilon \in L_1$ vagy $\varepsilon \in L_2$ akkor adjuk hozzá a szabályrendszerhez az $S \to S_0 \mid \varepsilon$ szabályokat és S legyen az új kezdőszimbólum.

Konkatenáció:

Legyen $L_k \in \mathcal{L}_i$ és $G_k = \langle N_k, T_k, P_k, S_k \rangle \in \mathcal{G}_i$ olyan, hogy $L(G_k) = L_k \ (k = 1, 2)$.

i = 0, 2 eset:

Legyen $S_0 \notin N_1 \cup N_2$.

$$G_c := \langle N_1 \cup N_2 \cup \{S_0\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S_0 \to S_1 S_2\}, S_0 \rangle.$$

Nyilván $L(G_1)L(G_2) \subseteq L(G_c)$.

 $L(G_1)L(G_2) \supseteq L(G_c)$ pedig azért teljesül, mert $N_1 \cap N_2 = \emptyset$ és a szabály-baloldalak terminálismentessége miatt nem történhet a két szó határán átnyúló szabályalkalmazás.

Valóban, a levezetés hosszára vonatkozó teljes indukcióval bizonyítható, hogy G_c mondatformái w_1w_2 alakúak, ahol $S_k \Rightarrow_{G_k}^* w_k \ (k=1,2)$. A levezetés első lépése után ez nyilván teljesül. Tegyük fel, hogy n levezetési lépés után a G_c -beli mondatformák ilyenek. Mivel $P_1 \cup P_2$ minden szabályának baloldala $N_1^+ \cup N_2^+$ -beli ezért ez az n+1. lépés után is állni fog.

Konkatenáció:

i=3 eset: Az előző konstrukcióval az a baj, hogy $S_0 \to S_1 S_2$ nem 3-as típusú szabály.

$$P_1^+ := \{A \to uS_2 \mid A \to u \in P_1, A \in N_1, u \in T_1^*\} \cup \{A \to uB \mid A \to uB \in P_1, A, B \in N, u \in T_1^*\},$$

$$G_c := \langle N_1 \cup N_2, T_1 \cup T_2, P_1^+ \cup P_2, S_1 \rangle.$$

Azaz vegyük a P_1 szabályrendszer azon szabályait, amelyekkel befejezhető egy G_1 -beli levezetés, ezen szabályok végére írjuk oda a G_2 grammatika kezdőszimbólumát, így egy $L(G_1)$ -beli szó levezetése után jobbról konkatenálva elkezdhető egy $L(G_2)$ -beli szó levezetése.

Másrészt legyen vS_2 az $u \in L(G_c)$ terminális szó levezetése során először S_2 -t tartalmazó mondatforma, ekkor u = vw és $N_1 \cap N_2 = \emptyset$ miatt $S_1 \Rightarrow_{G_1}^* v$ valamint $S_2 \Rightarrow_{G_2}^* w$.

Tehát
$$L(G_c) = L(G_1)L(G_2)$$
.

Konkatenáció:

i = 1 eset:

A 0-ás és 2-es eset konstrukciójával az a baj, hogy ha valamelyik grammmatikának volt korlátozott ε -szabálya, az most már nem a kezdőszimbólumból van.

Legyen $L'_k = L_k - \{\varepsilon\}$ (k = 1, 2). és készítsük al a 0,2 eset G_c konstrukcióját L'_1, L'_2 -höz. Tehát $L'_1 L'_2 \in \mathcal{L}_1$.

Ekkor

$$\varepsilon \notin L_{2} \qquad \varepsilon \in L_{2}$$

$$L_{1}L_{2} = \qquad \varepsilon \notin L_{1} \qquad L'_{1}L'_{2} \qquad L'_{1}L'_{2} \cup L'_{1}$$

$$\varepsilon \in L_{1} \qquad L'_{1}L'_{2} \cup L'_{2} \qquad L'_{1}L'_{2} \cup L'_{1} \cup L'_{2} \cup \{\varepsilon\}$$

 $L_1L_2 \in \mathcal{L}_1$, mivel $L_1'L_2'$, L_1' , L_2' , $\{\varepsilon\} \in \mathcal{L}_1$ és előbb láttuk, hogy \mathcal{L}_1 zárt az unióra.

Lezárás:

Legyen $L \in \mathcal{L}_i$ és $G = \langle N, T, P, S \rangle \in \mathcal{G}_i$ olyan, hogy L(G) = L.

i = 2 eset:

Legyen $S_0 \notin N$ új nemterminális.

$$G_* := \langle N \cup \{S_0\}, T, P \cup \{S_0 \rightarrow SS_0 \mid \varepsilon\}, S_0 \rangle L^*$$
-ot generálja.

i = 3 eset:

Az előző konstrukcióval az a baj, hogy $S_0 \to SS_0$ nem 3-as típusú szabály.

$$P_* := \{A \rightarrow uS \mid A \rightarrow u \in P, u \in T^*\},$$

azaz vegyük a *P* szabályrendszer összes befejező szabályát, és ezen szabályok végére írjuk oda a *G* grammatika kezdőszimbólumát.

Legyen $S_0 \notin N$ új nemterminális.

$$G_c := \langle N \cup \{S_0\}, T, P \cup P_* \cup \{S_0 \to S \mid \varepsilon\}, S_0 \rangle.$$

 P_* szabályaival új L-beli szó generálásába kezdhetünk, de meg kell hagyni, az eredeti befejező szabályokat is.

Lezárás:

i = 0, 1 eset:

A 2-es típus konstrukciójával az a gond, hogy mivel lehetnek a grammatikának olyan szabályai, ahol a baloldal nem egyetlen nemterminális az *L*-beli szavak iteráltján kívül esetleg más szavak is keletkezhetnek. Az 1-es típusnál ezen felül alaki probléma is van, hiszen a KES sérül.

 $\varepsilon \notin L$ **eset:** Legyen $S_0, S_1 \notin N$.

$$G_*:=\langle N\cup\{S_0,S_1\},T,P\cup P'\cup P''\cup P''',S_0
angle$$
, ahol $P'=\{S_0\to\varepsilon\,|\,S\,|\,S_1S\},$ // 0, 1 vagy több iteráció? $P'''=\{S_1a\to S_1Sa\,|\,a\in T\},$ // közbülső iterációk $P''''=\{S_1a\to Sa\,|\,a\in T\}.$ // utolsó iteráció

Állítás: G_{*} mondatformái éppen az

- (a) $S_1 u_1 \cdots u_n \ (n \ge 1, S \Rightarrow_G u_k, 1 \le k \le n)$ és az
- (b) $u_1 \cdots u_n \ (n \geq 0, S \Rightarrow_G u_k, 1 \leq k \leq n)$,

alakú szavak, ahol u_k első betűje T-beli ($2 \le k \le n$).

Az állításból rögtön következik, hogy $L(G_*) = L(G)^*$.

- (1) n-re vonatkozó teljes indukcióval bizonyítjuk, hogy az (a) és (b) típusú szavak levezethetők. (a) n=1-re és (b) n=0, 1-re ez könnyen ellenőrizhető.
- (a) Az indukciós feltevés szerint $S_0 \Rightarrow^* S_1 u_2 \cdots u_n$. Ha u_2 terminálissal kezdődik $S_0 \Rightarrow^* S_1 S u_2 \cdots u_n$. Mivel $S \Rightarrow_G^* u_1$, ezért $S_0 \Rightarrow^* S_1 u_1 u_2 \cdots u_n$.
- (b) Ha $n \ge 2$, akkor az indukciós feltevés szerint $S_0 \Rightarrow^* S_1 u_2 \cdots u_n$. Ha u_2 terminálissal kezdődik $S_0 \Rightarrow^* Su_2 \cdots u_n$. Mivel $S \Rightarrow_G^* u_1$, ezért $S_0 \Rightarrow^* u_1 u_2 \cdots u_n$.
- (2) Az (a) vagy (b) típusú azavakból $P' \cup P'' \cup P'''$ -beli szabályokkal (a) vagy (b) típusú lesz.

P-beli szabály esetén a szabály baloldala valamelyik u_k -nak részszava (1 $\leq k \leq n$) kell legyen, mivel minden szabály baloldala N^+ -beli viszont az iterált szavak határán átnyúló részszavak tartalmaznának terminálist. Így az eredmény (a) vagy (b) típusú.

i=1 esetén G_* szintén 1-es, ezzel az $\varepsilon \notin L$ esettel kész vagyunk.

 $\varepsilon \in L$ **eset:** Vegyük észre, hogy minden L-re $(L - \{\varepsilon\})^* = L^*$, így elég egy tetszőleges 0-ás vagy 1-es G grammatikához egy $L(G) - \{\varepsilon\}$ -t generáló grammatikát megadni (1-es esetben figyelve a típusra).

i=1 esetén hagyjuk el az $S \to \varepsilon$ szabályt (ha van).

i=0 esetén legyen $P_{\varepsilon}=\{p\in P\,|\,p=\alpha\to\varepsilon,\alpha\in(N\cup T^*)\}$ a grammatika ε jobboldalú szabályai.

$$P_1 := (P - P_{\varepsilon}) \cup P'$$
, ahol
 $P' = \{uX \to X, Xu \to X \mid X \in (N \cup T), u \to \varepsilon \in P\}.$

Ekkor
$$L(P_1) = L(G) - \{\varepsilon\}.$$