Application No.: 10/733,608

AMENDMENTS TO THE SPECIFICATION:

Please replace paragraph [0006] with the following amended paragraph:

[0006] Consider for example the function shown in Figure 1, denoted Lcomp1. This function can be described as follows. We first define a function f(L_{in}):

$$f(L_{in}) = L_{max} * (1 - (1 - L_{in}/L_{max})^{\gamma})$$
(1)

where $\gamma \ge 1$ is a selectable parameter. Function f(), shown as the <u>partially</u> dashed <u>and partially solid</u> curved line in Figure 1, is the inverse-gamma-inverse (IGI) function, and has been used successfully in previous work for luminance compression. Assuming that the reproducible lightness range of the output device is from L_{black} to L_{max} , a hard-clipping function is then applied:

Lcomp1 is shown as the dark solid line in Figure 1. For reference, the identity function is shown as a dashed straight line. Note that the overall effect of Lcomp1 is to compress the range $[0-L_{max}]$ to the range $[L_{black}-L_{max}]$. Also, Lcomp1 will generally preserve or enhance the image contrast. However, all L* variations in the range from $0-L_{black}$ in the input image will be destroyed, since these are all mapped to the same output, L_{black} . Thus shadow detail is likely to be diminished or destroyed with Lcomp1.

Please replace paragraph [0023] with the following amended paragraph:

[0023] Referring to equation ($\stackrel{>}{=}$), note that in shadow regions, L_f is small, α is close to zero, and the soft compression function Lcomp2 predominates. In all other regions (i.e., mid-tones, highlights, and regions of high local contrast), L_f increases as does α (L_f), and the clipping function Lcomp1 begins to predominate. Thus the luminance compression is adapted to suit the local spatial characteristics of the image.

Application No.: 10/733,608

Please replace paragraph [0027] with the following amended paragraph:

[0027] In accordance with another embodiment of the system and method of the invention, C_1 and C_2 are applied to low pass filter module 20 for distinguishing shadow regions in the image and for outputting a filtered chrominance component C_{1f} and C_{2f} . In this case, the blending function $\alpha(t)$ is a function of chrominance as well as luminance, i.e., $\alpha(L_f, C_{1f}, C_{2f})$. This blending function may be substituted in equation ($\frac{2}{3}$) for calculating L_{out} .