

PL2 le 14 avril 2016 Interro 2B Maths pour l'Info

Exercice 1

Voici un automate fini non déterministe :

voici un automate inii non deterministe.						
	Etat	a	b			
	0	0, 3, 4	2			
E/S	1	4	0,1			
S	2	-	2			
	3	-	0, 3, 4			
Е	4	-	1, 3			

a) Obtenir l'automate fini déterministe complet minimal équivalent à cet automate **Solution:**

Il faut déterminiser et compléter d'abord

	1						
		a	b				
E/S	14	4	013				
	4	Р	13				
S	013	034	01234				
S	13	4	0134				
	034	034	01234				
S	01234	034	01234				
S	0134	034	01234				
	Р	Р	Р				

Pas besoin de dessiner cet automate car on cherche l'AM. Minimisation:

 $\Theta_0 = \{T,NT\}, NT = \{4,034,P\}, T = \{14,013,13,01234,0134\}$

	• • • • • • • • • • • • • • • • • • • •				
				sous Θ_0	
		a	b	a	b
	14	4	013	NT	Т
	013	034	01234	NT	Т
Т	13	4	0134	NT	Т
	01234	034	01234	NT	Т
	0134	034	01234	NT	Т
	4	Р	13	NT	Т
NT	Р	Р	Р	NT	NT
	034	034	01234	NT	Т

 $\Theta_1 = \{T,A,(P)\} \text{ où } A = \{4,034\}$

Un automate déterministe n'a qu'UNE entrée. C'est l'état composé qui est l'ensemble des entrées de l'automate qu'on déterminise.

La partition initiale consiste en DEUX groupes. Le fait d'être une entrée n'influence aucunement l'appartenance de l'état au groupe T ou NT. Si l'automate possède une poubelle, elle appartient au groupe NT.

ÉCOLES D'INGÉNIEUR généralistes du numérique

Interro 2B Maths pour l'Info PL2 le 14 avril 2016

				sou	s Θ_1
				а	b
	14	4	013	Α	Т
	013	034	01234	Α	T
Т	13	4	0134	Α	Т
	01234	034	01234	Α	T
	0134	034	01234	Α	Т
Α	4	Р	13	Р	Т
А	034	034	01234	Α	Т

 $\Theta_2 = \{T,(4),(034),(P)\}$

				sous Θ_2	
		a	b	a	b
	14	4	013	4	Т
	013	034	01234	034	Т
Т	13	4	0134	4	Т
	01234	034	01234	034	Т
	0134	034	01234	034	Т

 $\Theta_3 = \{B,C,(4),(034),(P)\}$ où B= $\{14,13\}$, C= $\{013,01234,0134\}$

- 3	- 5 () - 1 () - 1 () - 1 - 1 - 1							
				sous Θ_3				
		a	b	a	b			
	14	4	013	4	С	aucune		
В	13	4	0134	4	С	séparation		
	01234	034	01234	034	С			
С	0134	034	01234	034	С	aucune séparation		
	013	034	01234	034	С	Separation		

Donc Θ_4 = Θ_3 = $\Theta_{\rm fin}$, et l'AM consiste en 5 états. L'entrée est en B car il contient 14. Les sorties sont tous B et C car ils descendent du groupe T. La table des transitions :

	a	b			а	b	
14	4	013		В	4	С	
4	Р	13		4	Р	В	
013	034	01234		C	034	C	
13	4	0134	devient	В	4	C	déjà pris en compte
034	034	01234		034	034	С	
01234	034	01234		С	034	С	dáià pric an compta
0134	034	01234		С	034	С	déjà pris en compte
Р	Р	Р		Р	Р	Р	

ÉCOLES D'INGÉNIEUR généralistes du numérique

Interro 2B Maths pour l'Info PL2 le 14 avril 2016

Il est absolument obligatoire de fournir l'AM de façon explicite, soit comme une table de transition **avec les E/S marquées**, soit comme dessin, soit les deux. Si cela n'est pas fait, tout ce que vous avez fait, c'est de trouver le contenu de l'AM en états.

b) Obtenir l'automate fini déterministe complet minimal reconnaissant le langage complémentaire à celui que reconnait l'automate initial.

Solution

Exercice 2.

 a) construire, suivant les règles données en cours, un automate asynchrone reconnaissant le langage qu'on peut exprimer par l'expression rationnelle suivante : L=a + a(ab)*b.

b) Déterminiser cet automate asynchrone.

Les ε-clôtures :

 $0'=(0\ 1\ 3),$

2'=(2 10) (terminal)

4'=(4 5 8)

6'=6

7'=(578)

9'=(9 10) (terminal)

		a	b
Е	0'	2'4'	Р
S	2'4'	6'	9'
	6'	Р	7'
S	9'	Р	Р
	7'	6'	9'
	Р	Р	Р

2B

Interro 2B

ÉCOLES D'INGÉNIEUR généralistes du numérique

Maths pour l'Info

PL2 le 14 avril 2016