

Chapitre I – Les suites

Bacomathiques -- https://bacomathiqu.es

TABLE	DES MATIÈRES					
I - Qı	u'est-ce qu'une suite?	1				
1.	Définition	1				
2.	Suites arithmétiques	1				
3.	Suites géométriques	2				
II - Ét	ude des suites	4				
1.	Sens de variation	4				
2.	Limites	4				
3.	Opérations sur les limites	5				
4.	Majoration, minoration et bornes	7				
5.	Encadrement	7				
III - Raisonnement par récurrence						

I - Qu'est-ce qu'une suite?

1. Définition

On appelle **suite** une fonction (et plus précisément application) de $\mathbb N$ dans $\mathbb R$: cette fonction va prendre des éléments d'un ensemble de départ $\mathbb N$ et va les amener dans un ensemble d'arrivée $\mathbb R$.

Il y a plusieurs manières de définir une suite :

À RETENIR 9

- Par récurrence : On donne le premier terme de la suite ainsi que le terme au rang n+1.
- Par son terme général : On donne le *n*-ième terme de la suite en fonction de n.

À LIRE 00

Exemple : Pour tout $n \in \mathbb{N}$, on définit les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ ainsi :

$$u_n = n$$

$$(v_n)_{n\in\mathbb{N}} = \begin{cases} v_0 = 0 \\ v_{n+1} = v_n + 1 \end{cases}$$
.

On remarque que bien que définies différemment, $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont égales.

2. Suites arithmétiques

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **arithmétique** si elle est de la forme :

$u_{n+1} = u_n + r$ avec $r \in \mathbb{R}$.

Le réel r est la **raison** de la suite (si r > 0, $(u_n)_{n \in \mathbb{N}}$ est strictement croissante, si r < 0, $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante et si r = 0, $(u_n)_{n \in \mathbb{N}}$ est constante). Il est possible de trouver le terme général d'une suite arithmétique :

À RETENIR 🦞

On note p le rang initial de la suite (celui à partir duquel la suite est définie) :

$$u_n = u_p + (n-p) \times r$$

Et si $(u_n)_{n\in\mathbb{N}}$ est définie à partir du rang 0 (on a p=0) :

$$u_n = u_0 + (n-0) \times r = u_0 + n \times r$$

La somme des n premiers termes d'une suite arithmétique est donnée par la formule suivante (on note S_n cette somme):

À RETENIR 💡

$$S_n = \frac{\text{(Premier terme + Dernier terme)} \times \text{(Nombre de termes)}}{2}$$

À LIRE 👀

Astuce: Pour trouver le nombre de termes, on prend le rang jusqu'auquel on souhaite calculer cette somme, on y soustrait l'indice du premier terme et on y ajoute 1.

Exemple : Soit une suite
$$(u_n)_{n\geq 1}$$
 définie par $(u_n)_{n\geq 1}:$ $\begin{cases} u_1=10\\ u_{n+1}=u_n+5 \end{cases}$ pour $n\in\mathbb{N}$ et $n\geq 1$.

La raison r est égale à 5. Le premier terme est $u_1 = 10$ d'indice p = 1. Le terme général de cette suite est donc $u_n = u_1 + (n-1) \times r$.

Par conséquent, on a : $u_n = 10 + (n-1) \times 5$. On souhaite calculer la somme des termes de cette suite jusqu'au rang n.

Par l'astuce précédente, il y a n-1+p=n termes. On peut calculer la somme S_n : $S_n = \frac{(u_1 + u_n) \times (n)}{2} = \frac{(20 + (n-1) \times 5)(n)}{2} = \frac{5n^2 + 15n}{2}.$

3. Suites géométriques

Une suite $(v_n)_{n\in\mathbb{N}}$ est dite **géométrique** si elle est de la forme :

$$v_{n+1} = v_n imes q$$
 avec $q \in \mathbb{R}$.

Le réel q est la **raison** de la suite (si q > 1, $(v_n)_{n \in \mathbb{N}}$ est strictement croissante, si 0 < q < 1, $(v_n)_{n\in\mathbb{N}}$ est strictement décroissante et si q=1 ou 0, $(v_n)_{n\in\mathbb{N}}$ est constante). Il est possible de trouver le terme général d'une suite géométrique :

On note p le rang initial de la suite (celui à partir duquel la suite est définie) :

$$v_n = v_p \times q^{n-p}$$

 $v_n=v_p imes q^{n-p}$ Et si $(v_n)_{n\in\mathbb{N}}$ est définie à partir du rang 0 (on a p=0) :

$$v_n = v_0 \times q^{n-0} = v_0 \times q^n$$

La somme des n premiers termes d'une suite géométrique est donnée par la formule suivante (on note S_n cette somme) :

À RETENIR 💡

$$S_n = ext{(Premier terme)} imes rac{1 - q^{ ext{Nombre de termes}}}{1 - q}$$

À LIRE 👀

Astuce : Pour trouver le nombre de termes, on prend le rang jusqu'auquel on souhaite calculer cette somme.

On y soustrait l'indice du premier terme et on y ajoute 1.

Exemple : Soit une suite $(v_n)_{n\geq 2}$ définie par $(v_n)_{n\geq 2}$: $\begin{cases} v_2=1\\ v_{n+1}=v_n\times 2 \end{cases}$ pour $n\in\mathbb{N}$ et $n\geq 2$.

La raison q est égale à 2. Le premier terme est $v_2=1$ d'indice p=2. Le terme général de cette suite est donc $v_n=v_2\times q^{n-2}$.

Par conséquent, on a : $v_n = 2^{n-2}$. On souhaite calculer la somme des termes de cette suite jusqu'au rang n.

Par l'astuce précédente, il y a n-1+p=n+1 termes. On peut calculer la somme S_n :

$$S_n = v_2 \times \frac{1 - q^{n-1}}{1 - q} = -(1 - 2^{n-1}) = 2^{n-1} - 1.$$

II - Étude des suites

1. Sens de variation

Une suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** si on a :

À RETENIR 💡

$$u_{n+1} \ge u_n \text{ ou } u_{n+1} - u_n \ge 0.$$

À l'inverse, une suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si on a :

À RETENIR 💡

$$u_{n+1} \le u_n \text{ ou } u_{n+1} - u_n \le 0.$$

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **constante** si on a pour $c\in\mathbb{R}$:

À RETENIR 💡

$$u_n=u_{n+1}=c.$$

Si une suite est croissante ou décroissante et ne change pas de variation, alors elle est dite **monotone**.

2. Limites

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie I si pour tout $\epsilon>0$, on a $|u_n-I|<\epsilon$. Cette définition est un peu technique mais elle signifie qu'il existe une infinité de réels entre $(u_n)_{n\in\mathbb{N}}$ et I. On dit que $(u_n)_{n\in\mathbb{N}}$ est convergente et on note alors :

À RETENIR 🖁

$$\lim_{n\to+\infty}u_n=I$$

Attention! On dit que $(u_n)_{n\in\mathbb{N}}$ converge vers I mais **jamais** $(u_n)_{n\in\mathbb{N}}$ n'atteindra I quand n tend vers $+\infty$.

La suite $(u_n)_{n\in\mathbb{N}}$ peut également diverger vers une limite infinie. On dit à ce moment là que $(u_n)_{n\in\mathbb{N}}$ est **divergente**. On note ainsi :

À RETENIR 💡

$$\lim_{n\to+\infty}u_n=\pm\infty$$

À LIRE 👀

Il est possible d'écrire une définition semblable à celle de la convergence.

Ainsi, si $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ quand n tend vers $+\infty$, cela signifie que pour tout réel h et à partir d'un certain rang M, on aura $u_M > h$.

Et si $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$ quand n tend vers $+\infty$, cela signifie que pour tout réel h et à partir d'un certain rang m, on aura $u_m < h$.

Limite d'une suite géométrique							
Si on a pour $q \in \mathbb{R}$	-1 < q < 1	1 < q	$q \leq -1$	q = 1			
La suite q^n a pour limite	0	$+\infty$	Pas de limite	1			

À savoir que si une suite a une limite, alors cette limite est unique.

3. Opérations sur les limites

Dans tout ce qui suit, $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites. Ces tableaux sont à connaître et sont requis pour pouvoir travailler sur les limites.

Limite d'une somme						
Si la limite de $(u_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$		1	1	1.00	$-\infty$	±∞
est	,	,	,	$-\infty$	$-\infty$	$+\infty$
Et la limite de $(v_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$	1'	~	$-\infty$	~	_~	_~
est	,	l				
Alors la limite de $(u_n + v_n)_{n \in \mathbb{N}}$ quand n tend vers $+\infty$ est	1 _ 1'		_~	~	_~	7
vers $+\infty$ est	1 7 1	$ +\infty $	$-\infty$	$ +\infty $	$ ^{-\infty}$	•

Limite d'un produit									
Si la limite de									
$(u_n)_{n\in\mathbb{N}}$ quand n	1	1 > 0	1 > 0	1 < 0	1 < 0	$+\infty$	$+\infty$	$-\infty$	0
tend vers $+\infty$ est									
Et la limite de									
$(v_n)_{n\in\mathbb{N}}$ quand n	<i>l</i> ′	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
tend vers $+\infty$ est									
Alors la limite de									
$(u_n \times v_n)_{n \in \mathbb{N}}$ quand n	$I \times I'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$?
tend vers $+\infty$ est									

Limite d'un quotient									
Si la limite de									
$(u_n)_{n\in\mathbb{N}}$ quand n	1	1	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$	1	0
tend vers $+\infty$ est									
Et la limite de									
$(v_n)_{n\in\mathbb{N}}$ quand n	$I' \neq 0$	$\pm \infty$	I' > 0	<i>I'</i> < 0	l' > 0	I' < 0	$\pm \infty$	0_{-}^{+}	0
tend vers $+\infty$ est									
Alors la limite de	1								
$\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ quand n	1//	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$?	$\pm \infty$?
tend vers $+\infty$ est	1.								

À LIRE 99

À noter que l'on n'étudie les limites des **suites** qu'en $+\infty$ et qu'il n'existe que 4 formes indéterminées : " $+\infty-\infty$ ", " $0\times\pm\infty$ ", " $\frac{\pm\infty}{\pm\infty}$ " et " $\frac{0}{0}$ ".

4. Majoration, minoration et bornes

Soient une suite $(u_n)_{n\in\mathbb{N}}$ et deux réels m et M :

À RETENIR 💡

- On dit que que m est un **minorant** de $(u_n)_{n\in\mathbb{N}}$ si pour tout $n:u_n>m$.
- On dit que que M est un **majorant** de $(u_n)_{n \in \mathbb{N}}$ si pour tout $n : u_n < M$.
- On dit que que $(u_n)_{n\in\mathbb{N}}$ est **bornée** si elle est à la fois majorée et minorée.
- Si $(u_n)_{n\in\mathbb{N}}$ est croissante et est majorée, alors elle est convergente. Si elle n'est pas majorée, $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.
- Si $(u_n)_{n\in\mathbb{N}}$ est décroissante et est minorée, alors elle est convergente. Si elle n'est pas minorée, $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$.

Toute suite convergente est également bornée.

5. Encadrement

Soient deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $u_n < v_n$ à partir d'un certain rang. On a :

- Si
$$\lim_{n \to +\infty} u_n = +\infty$$
, alors $\lim_{n \to +\infty} v_n = +\infty$.

- Si $\lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.

- Si $\lim_{n \to +\infty} u_n = l$ et $\lim_{n \to +\infty} v_n = l'$ alors $l < l'$.

Soient trois suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que $u_n < v_n < w_n$ à partir d'un certain rang et que $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers le réel I. Alors :

```
\lim_{n \to +\infty} v_n = I
```

Ce théorème est appelé théorème des gendarmes.

III - Raisonnement par récurrence

Si on souhaite montrer qu'une propriété est vraie pour tout $n \in \mathbb{N}$ à partir d'un certain rang p:

À RETENIR 💡

Initialisation : On teste la propriété au rang *p*. Si elle est vérifiée, on passe à l'étape suivante.

Hérédité: On suppose la propriété vraie à un rang $n \ge p$. Puis on montre qu'elle reste vraie au rang n + 1.

Conclusion : On explique que l'on vient de démontrer la propriété au rang n+1 et que comme celle-ci est initialisée et héréditaire, alors elle est vraie à partir du rang p.

À LIRE 99

Exemple : Soit une suite $(u_n)_{n\in\mathbb{N}}$ définie par $(u_n)_{n\in\mathbb{N}}$: $\begin{cases} u_0=4\\ u_{n+1}=\frac{4u_n+17}{u_n+4} \end{cases}$. On souhaite montrer que pour tout $n\in\mathbb{N}$, on a $4\leq u_n\leq 5$.

On note \mathcal{P}_n la propriété définie pour tout $n \in \mathbb{N}$ par \mathcal{P}_n : $4 \le u_n \le 5$.

On constate également que $u_{n+1} = \frac{4u_n + 17}{u_n + 4} = \frac{4(u_n + 4) + 1}{u_n + 4} = 4 + \frac{1}{u_n + 4}$

Initialisation : On teste la propriété au rang 0 :

 $\mathcal{P}_0: 4 \leq u_0 \leq 5 \iff 4 \leq 4 \leq 5$. C'est vrai.

La propriété est vraie au rang 0, on souhaite vérifier que la propriété est vraie au rang n+1.

Hérédité:

D'après \mathcal{P}_n : $4 \le u_n \le 5$. Donc on a :

$$\iff$$
 4 $\leq u_n \leq 5$

$$\iff$$
 4 + 4 $\leq u_n$ + 4 \leq 5 + 4

 \iff $\frac{1}{9} \leq \frac{1}{u_n+4} \leq \frac{1}{8}$ (la fonction inverse est décroissante sur \mathbb{R}^+ donc on change l'inégalité)

$$\iff 4 + \frac{1}{9} \le 4 + \frac{1}{u_0 + 4} \le 4 + \frac{1}{8}$$

Or $4+\frac{1}{9}\approx 4.111>4$ et $4+\frac{1}{8}=4.125<5.$ On a donc bien :

$$4 \leq u_{n+1} \leq 5$$

Conclusion:

La propriété est initialisée au rang 0 et est héréditaire. Ainsi, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

Le raisonnement par récurrence est très utilisé en mathématiques et ne se limite pas qu'à l'étude des suites.