Navegação e Prevenção de Colisões de um Robô de Rodas Diferencial utilizando Q-learning

Hugo Tallys

Instituto de Computação Universidade Federal de Alagoas

COMP268 Inteligência Artifical 2 2021.2

- Introdução
- 2 Modelagem do problema de AR
- 3 O algoritmo
- 4 Resultados

- Introdução
- 2 Modelagem do problema de AR
- O algoritmo
- 4 Resultados

Definindo o problema

- Controlar um robô de rodas diferencial
- Navegação (objetivo) e prevenção de colisões (obstáculos)

Definindo o problema

- Controlar um robô de rodas diferencial
- Navegação (objetivo) e prevenção de colisões (obstáculos)
- Sensores e atuadores

- Introdução
- 2 Modelagem do problema de AR
- 3 O algoritmo
- 4 Resultados

Modelagem I

Estado do agente

Estado do agente no instante t:

$$s_t = (L_1, L_2, L_3, L_4, d, \theta)$$

Onde:

- L_i = leitura do sensor lidar i
- d = distância ao objetivo
- θ = ângulo ao objetivo (coordenada polar)

Modelagem II

Ações do agente

As ações são definidas da seguinte maneira:

$$a_i\ ,\ i\in 0,1,2$$

Onde:

- $a_0 \to (v, \omega) = (0.05, 0)$
- $a_1 \to (v, \omega) = (0, pi/2)$
- $a_2 \to (v, \omega) = (0, -pi/2)$

Obs.: $\Delta t = 1s$ (intervalo de atraso) onde o controlador ficara ocioso sem tomar nenhuma ação.

Modelagem III

Recompensas

As recompensas dadas ao agente são definidas da seguinte maneira: Onde:

- $r_t = +5.000$ se o agente chega ao objetivo
- $r_t = -5.000$ se o agente colide com algum obstaculo
- $r_t = cos(\phi)$ caso contrario

Obs.: ϕ e o angulo entre a direção do objetivo e a direção que o robô avança.

Modelagem III

- Introdução
- 2 Modelagem do problema de AR
- 3 O algoritmo
- Resultados

Modelagem III

- Tile coding (CMAC) (64, 128 Tilings 2x2x..., 5x5x..., 10x10x...)
- Politica ϵ -greedy com taxa de exploração decaindo exponencialmente $\epsilon(k) = 0.9(0.996)^k$.

- Introdução
- 2 Modelagem do problema de AR
- O algoritmo
- 4 Resultados

