AD-A035 141

NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATL--ETC F/6 17/7

EVALUATION OF A RED-SILICONE-COATED VISUAL APPROACH SLOPE INDIC--ETC(U)

JAN 77 R E JOHNSTON

FAA-NA-76-31

FAA/RD-76/201

NL

END
DATE
FILMED
8.7-77
NTIS

# U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A035 141

EVALUATION OF A RED-SILICONE-COATED VISUAL APPROACH SLOPE INDICATOR (VASI) LENS

NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATLANTIC CITY, NEW JERSEY

JANUARY 1977



# EVALUATION OF A RED-SILICONE-COATED VISUAL APPROACH SLOPE INDICATOR (VASI) LENS

Raymond E. Johnston



January 1977

FINAL REPORT



Document is available to the public through the National Technical Information Service Springfield, Virginia 22151

Prepared for INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
U.S. DEPARTMENT OF COMMERCE

U. S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service Washington, D.C. 20590

# NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

#### **Technical Report Documentation Page**

| 1. Report No.                                  | 2. Government Accession No. | 3. Recipient's Catalog No.            |  |  |  |
|------------------------------------------------|-----------------------------|---------------------------------------|--|--|--|
| FAA-RD-76-201                                  |                             |                                       |  |  |  |
| 4. Title and Subtitle EVALUATION OF A RED-SILI | 5. Report Date January 1977 |                                       |  |  |  |
| SLOPE INDICA                                   | TOR (VASI) LENS             | 6. Performing Organization Code       |  |  |  |
| 7. Author(s)                                   |                             | 8. Performing Organization Report No. |  |  |  |
| Raymond                                        | E. Johnston                 | FAA-NA-76-31                          |  |  |  |
| 9. Performing Organization Name and            | Address                     | 10. Wark Unit No. (TRAIS)             |  |  |  |
| Federal Aviation Adminis                       | tration                     |                                       |  |  |  |
| National Aviation Facili                       | ties Experimental Center    | 11. Contract or Grant No.             |  |  |  |
| Atlantic City, New Jerse                       | y 08405                     | 071-312-070                           |  |  |  |
|                                                |                             | 13. Type of Report and Period Covered |  |  |  |
| 12. Sponsoring Agency Name and Addr            | ess                         | Final                                 |  |  |  |
| U.S. Department of Trans                       | September 1975 - July 1976  |                                       |  |  |  |
| Federal Aviation Adminis                       |                             |                                       |  |  |  |
| Systems Research and Dev                       | 14. Sponsoring Agency Code  |                                       |  |  |  |
| Washington, D.C. 20590                         |                             |                                       |  |  |  |
| 15. Supplementary Notes                        |                             |                                       |  |  |  |

16 Abstract

The subject effort was to test and evaluate the results of a new method of producing the red/white color-coded signal used in a Visual Approach Slope Indicator (VASI) system. The present system utilizes a split lens assembly to produce the color coding, which consists of a clear lens segment and a red lens segment, the clear being somewhat smaller than the red, to construct one single VASI lens assembly. A new method of providing the signal was developed by coating the upper part of a circular clear lens with a heat-resistant red-silicone-pigment paint, leaving the lower part clear to transmit the white signal. Laboratory and field tests conducted on the coated lens resulted in no appreciable deterioration of the red signal; therefore, it was determined that this method of providing the signal was comparable to the split lens assembly. The results of the tests indicate that this method of producing the signal would be suitable for present and future VASI systems.

| 17. Key Words Visual Approach Slope Indic Landing Guidance Airport Visual Aids Approach Indicators Navigational Aid | ators            | 18. Distribution Statem<br>Document is ava<br>the National Te<br>Springfield, V | ailable to the pechnical Informa |          |
|---------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|----------------------------------|----------|
| 19. Security Classif. (of this report) Unclassified                                                                 | 20. Security Cla | issif. (of this page)<br>Led                                                    | 21. No. of Pages                 | 350/3.00 |

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

# METRIC CONVERSION FACTORS

|                                              | 1                     | £.1                                   | =           | R e            | 1                 |       | 24                       | • }                | É                  |                                   |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2              |                 |        | 8              | L              | 5             | 12                     | *            |            |                     |              | *                   | 1                                       |                                                            |
|----------------------------------------------|-----------------------|---------------------------------------|-------------|----------------|-------------------|-------|--------------------------|--------------------|--------------------|-----------------------------------|-------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--------|----------------|----------------|---------------|------------------------|--------------|------------|---------------------|--------------|---------------------|-----------------------------------------|------------------------------------------------------------|
| Massaces                                     | 1                     | a de                                  | feet        | Spark          |                   |       | anness inches            | square vards       | souere miles       | scree                             |                               |                    | Ounces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | short tons     |                 |        | fluid ounces   | pints          | quarts        | gallons<br>Cubic feet  | cubic yarda  |            |                     |              | Fahrenheit          |                                         | 081                                                        |
| jens frem Metric                             | Mattiply by<br>LENGTH | 90.04                                 | 3.3         | 1.1            | 3                 | AREA  | ***                      | 1.7                | 0.4                | 2.5                               |                               | MASS (weight)      | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77             |                 | VOLUME | 0.03           | 2.1            | 1.06          | 20.26                  | 1.3          |            | TEMPERATURE (exect) |              | 9/5 (then           | -                                       | 08 120                                                     |
| Approximate Conversions from Metric Mossures | When You Know         | millimeters                           | Centimeters | metors         | A. 11075707.5     |       | Southern Countilineships | SOLUTE CHAINERS    | squere kilometers  | hectares (10,000 m <sup>2</sup> ) |                               | 2                  | grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kilograms      | (Au oppi) sauco | 1      | milliliters    | liters         | liters        | liters<br>Cubic maters | cubic meters |            | TEMP                |              | Celsius             | a continue and continue to              | 32                                                         |
|                                              | 1                     | £                                     | 5 €         | E              |                   |       | 200                      | 5 °E               | 2 5                | 2                                 |                               |                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.             |                 |        | ĮĒ.            | -              | _             | _7                     | "E           |            |                     |              | ၁                   |                                         | # o T                                                      |
|                                              |                       |                                       |             |                |                   |       | T                        |                    |                    |                                   |                               |                    | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11             | 10              | 1 16   | •              | 8              |               | 4                      | 1            | 9          | 15                  |              | •                   | 3                                       | 18 11                                                      |
| ez                                           | EE   12               | 08 6                                  |             | in i           |                   |       |                          | 31                 |                    | 100                               | 1100                          | 13                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1111           | HILLER          | السال  | HILL           | 1111           | 1111          |                        |              |            |                     |              |                     | 111111111111111111111111111111111111111 |                                                            |
| .1.1.1                                       |                       | - - - - - - - - - - - - - - - - - - - | 1.1.        | 7              |                   | .1.1. |                          | 1'                 | .1.                | 1'1                               | -1-1                          | ']']'<br>s         | 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111            |                 |        | .1.1.<br>.1.1. | 1'             | ' '<br>3      | 1.1.                   |              | 1.1        |                     |              | 111                 | <br> <br> <br>                          |                                                            |
| .1.1.1                                       |                       | 1,1,1,1,1                             | 1111        | 7              |                   |       |                          |                    |                    |                                   |                               | ')' ' <br> <br>  5 | 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ' '            | " "             | 1.1.1  |                | E E            | ' '<br>3      | ]"                     |              |            | è                   |              | ****                | ,                                       | 1 1                                                        |
|                                              | To Find Symbol .      | 1.1.1.1                               |             |                | hildmeters an him |       |                          |                    |                    |                                   | Square kilometers km²         | ')' ' <br> <br>  5 | 11.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kilograms kg   |                 |        |                | milliliters ml |               | lies .                 | liters       |            |                     | E            |                     | ,                                       | temperature                                                |
|                                              | 1                     | LENGTH CO.                            |             | Centimeters    |                   |       |                          |                    | Square meters      | square meters                     |                               | )                  | Other Control of the | 45 kilograms   |                 | VOLUME |                | milliliters    |               |                        | 0.00 lilers  | liters     | ີຣີ                 | CEDIC Meters | ENATURE (exact)     | Celsius                                 | temperature                                                |
| 9                                            | ļ                     |                                       |             | 30 centimaters | meters            | 7384  |                          | square centimetars | 0.09 square meters | 0.8 square meters                 | square kilometers<br>hectares | MASS (weight)      | Other Control of the | 0.45 kilograms | tonnes          | VOLUME | mollishters    | 15 milliliters | 30 millitters | 0.24                   |              | 3,8 liters | 0,03 cubic meters m | CEDIC Meters | IEMPERATURE (exact) | Celsius .                               | terroperature  terroperature  terroperature  terroperature |

# TABLE OF CONTENTS

|                          | Page |
|--------------------------|------|
| INTRODUCTION             | 1    |
| Purpose                  | 1    |
| Background               | 1    |
| Description of Equipment | 1    |
| TEST PROCEDURES          | 2    |
| Laboratory Tests         | 2    |
| Field Tests              | 2    |
| TEST RESULTS             | 2    |
| SUMMARY OF RESULTS       | 5    |
| CONCLUSION               | 5    |

APPENDIX - Photometric Characteristics of Red-Silicone-Coated VASI Lenses before and after a 6-Month Field Test and a 31-Day Laboratory Test Period





# LIST OF ILLUSTRATIONS

| Figure |                                                                         | Page |
|--------|-------------------------------------------------------------------------|------|
| 1      | Comparison Between Split Lens Assembly and Red-Silicone-<br>Coated Lens | 3    |
| A-1    | Vertical Distribution Curve at Zero Degrees Azimuth for                 | A-4  |

# LIST OF TABLES

| Table |                                                                                                                                                   | Page |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Transmittance (T) of Red Sectors of Silicone-Coated  VASI Filters and CIE Chromaticity Coordinates x and y for the Initial and Final Test Periods | 4    |
| A-1   | Red-Silicone-Coated Lens, Initial Measurements of Intensity<br>in Candela Versus Azimuth and Elevation Angles in Degrees                          | A-2  |
| A-2   | Red-Silicone-Coated Lens, Final Measurements of Intensity<br>in Candela Versus Azimuth and Elevation Angles in Degrees                            | A-3  |

#### INTRODUCTION

#### PURPOSE.

The purpose of this activity was to evaluate the results of a new method of producing the red/white color-coded signal used in a Visual Approach Slope Indicator (VASI) system by use of a red-silicone-pigment coating applied to the upper portion of a circular clear lens.

### BACKGROUND.

The VASI is a navigational aid that provides a visual glide slope indication for a pilot during his approach to the runway touchdown zone under visual flight rules (VFR) weather conditions.

This signal is provided to the pilot by the transmission of a pair of red/white color-coded signals located approximately 15 meters off the edge of the runway, having a longitudinal separation between light signals of approximately 150 meters. The light signals are aligned so as to present to the pilot on approach a white/red signal when on the proper glide slope, a white/white signal when above the glide slope, and a red/red signal when below the proper glide slope.

The system is a valuable aid as a method of defining a safe visual approach slope clearance over obstructions that cannot themselves be obstruction lighted. It further provides aiming-point information, thus alleviating the possibility of over-shoots and undershoots. The number of light units or boxes that make up a VASI system varies between 2 and 16 boxes at airports where straight-in approaches could be made.

#### DESCRIPTION OF EQUIPMENT.

This effort is concerned with the evaluation of a silcone-coated lens assembly. The present lens assembly utilizes a split lens system, with the upper portion red and the lower portion clear. The manufacture of this type of lens assembly is time consuming and costly, in part, because the red portion is larger in area than the clear; therefore, that part of the red lens which is not used is wasted.

A new method of providing the red signal has been developed by coating the upper portion of a circular clear lens with a heat-resistant red-silicone-pigment paint. Several of these lenses were delivered to NAFEC for photometric and environmental testing to determine if the lens will meet the color requirements for a VASI system.

Figure 1 is a photograph exhibiting both the split lens assembly shown on the left and the coated lens shown on the right. It can be seen in the photograph that the red segment is somewhat larger than the clear. When installed in the

system, the red segment is positioned above the clear so that when both the upwind box, the one furthest from the threshold, and the downwind box, the one near the threshold, are properly aligned, the VASI will transmit the proper signal for a fly-up, on glide slope, or a fly-down indication.

#### TEST PROCEDURES

#### LABORATORY TESTS.

Silicone-coated lenses were delivered to the Metrology Laboratory at the National Aviation Facilities Experimental Center (NAFEC) for optical testing. The tests consisted of chromaticity measurements and light distribution measurements of the red portion of the lens. The tests were conducted using three 200-watt PAR 64, 6.6-ampere General Electric Quartzline lamps at maximum rated output. The lamps and lenses were installed in a standard three-lamp VASI unit. The optical tests were conducted before and after a 31-day life test period and a 6-month field test period to determine if the red-silicone-pigment coating remained within the CIE color coordinate boundries, x=0.680/0.695 y=0.296/0.316, with a transmittance net loss less than 10 percent after the lens stabilized at normal operating temperature.

The light distribution measurements were conducted to determine if there was any appreciable change in output of the red signal between the initial and final tests which would indicate a degradation of the silicone paint.

#### FIELD TESTS.

The field tests were conducted primarily to determine what effect actual weather conditions would have on the pigment coating of the lens, such as blistering or peeling, due to natural environmental conditions. The three lenses were installed in a VASI unit located adjacent to runway 13 at NAFEC. The tests were run for a period of 6 months. At the end of the test period, the lenses were returned to the Metrology Laboratory to conduct the final optical tests.

#### TEST RESULTS

Table 1 show the results of the chromaticity measurements for the initial and final tests. It can be seen that the transmittance (T) remained unchanged for the tests.

The table indicates a slight change in the x and y coordinates for each of the three lenses tested. When removed from the field it was noted that the lenses had experienced minor scratches or abrasions that were apparently caused by small field creatures entering the VASI unit or possibly dirt and sand blown into the VASI unit by jet aircraft.







COMPARISON BETWEEN SPLIT LENS ASSEMBLY AND RED-SILICONE-COATED LENS FIGURE 1.

76-31-1

TABLE 1. TRANSMITTANCE (T) OF RED SECTORS OF SILICONE-COATED VASI FILTERS AND CIE CHROMATICITY COORDINATES x AND y FOR THE INITIAL AND FINAL TEST PERIODS

| Filter | Initi | al Measu | Final | Measur | urements |       |
|--------|-------|----------|-------|--------|----------|-------|
| No.    | T     | х        | У     | T      | ж        | У     |
| 1      | 0.15  | 0.684    | 0.310 | 0.15   | 0.683    | 0.311 |
| 2      | .17   | .679     | .313  | .17    | .677     | .314  |
| 3      | .17   | .680     | .312  | .17    | .680     | .313  |

NOTE: x coordinate minimums should be 0.680. Two lenses above are within the 0.680 minimums, and one lens below minimum.

During the initial chromaticity measurements, one of the lenses did not quite meet the color specifications as required. This was evidently due to an insufficient amount of coating applied to the lens during the processing.

The curves plotted on the graph in the appendix, figure A-1, were derived from the tables A-1 and A-2, the initial and final distribution measurements. The output in candelas versus the vertical distribution in degrees was taken at the midpoint or zero azmuth as shown in the tables. There was a slight degradation of the coating, as can be seen in figure A-1.

Because there was no appreciable change in color, as evidenced by the laboratory and field tests, it was decided that flight tests of the system were unwarranted. However, during several flight tests of other activities at NAFEC observers requested to look at the VASI on runway 13. Their opinions were that there was no difference between the red signal of the standard VASI and that of the coated VASI.

#### SUMMARY OF RESULTS

As evidenced from the results of the laboratory tests and the field tests, the coated lens experienced negligible degradation. There was no peeling or blistering of the paint due to exposure to changes in atmospheric conditions when installed in the field. The minor scratches or abrasions of the coating were determined negligible and not contributable to any change in color. Visual observations of the system showed that there was no detectable difference in signal output.

#### CONCLUSION

It was concluded from the results of the laboratory and field tests performed on the silicone-coated VASI lens that this method of providing a red signal for a standard VASI was found satisfactory and may be used in lieu of the standard split lens assembly.

# APPENDIX A

PHOTOMETRIC CHARACTERISTICS OF RED-SILICONE-COATED VASI LENSES BEFORE AND AFTER A 6-MONTH FIELD TEST AND A 31-DAY LABORATORY TEST PERIOD

Comparison between initial and final vertical distribution curves plotted from the tabular data of tables A-1 and A-2 is made. Curves are taken through zero azimuth for figure A-1.

TABLE A-1. RED-SILICONE-COATED LENS, INITIAL MEASUREMENTS OF INTENSITY IN CANDELA VERSUS AZIMUTH AND ELEVATION ANGLES IN DEGREES

#### ELEVATION

| AZIMUTH | -5.0 | -4.0 | -3.0 | -2.0 | -1.0 | .0   |
|---------|------|------|------|------|------|------|
| -13.0   |      | 2.0  | 103  | 185  | 309  | 309  |
| -12.0   |      | 20   | 103  | 206  | 391  | 350  |
| -11.0   |      | 41   | 123  | 267  | 494  | 453  |
| -10.0   | 20   | 41   | 144  | 391  | 700  | 576  |
| -9.0    |      | 61   | 226  | 679  | 1091 | 824  |
| -8.0    | 20   | 82   | 453  | 1339 | 1833 | 1174 |
| -7.0    |      | 123  | 927  | 2451 | 2822 | 1689 |
| -6.0    |      | 185  | 1627 | 4017 | 4037 | 2224 |
| -5.0    |      | 226  | 2286 | 5644 | 5232 | 2801 |
| -4.0    |      | 267  | 2863 | 6859 | 6262 | 3337 |
| -3.0    | 20   | 288  | 3172 | 7725 | 7107 | 3708 |
| -2.0    | 20   | 309  | 3275 | 8178 | 7642 | 3975 |
| -1.0    |      | 329  | 3296 | 8363 | 7092 | 4161 |
| . 0     | 20   | 320  | 3337 | 8425 | 8157 | 4284 |
| 1.0     |      | 309  | 3378 | 8466 | 8198 | 4305 |
| 2.0     |      | 329  | 3296 | 8404 | 8116 | 4264 |
| 3.0     |      | 309  | 3213 | 8240 | 7992 | 4161 |
| 4.0     |      | 309  | 3110 | 7951 | 7704 | 3975 |
| 5.0     |      | 288  | 2945 | 7416 | 7107 | 3708 |
| 6.0     |      | 267  | 2575 | 6489 | 6200 | 3254 |
| 7.0     |      | 206  | 2018 | 5047 | 5026 | 2698 |
| 8.0     |      | 164  | 1380 | 3646 | 3790 | 2121 |
| 9.0     |      | 103  | 782  | 2245 | 2678 | 1586 |
| 10.0    |      | 82   | 370  | 1236 | 1812 | 1194 |
| 11.0    |      | 61   | 226  | 638  | 1153 | 865  |
| 12.0    | 20   | 61   | 164  | 350  | 741  | £38  |
| 13.0    |      | 41   | 123  | 247  | 494  | 453  |
| 14.0    |      | 41   | 123  | 206  | 370  | 350  |

<sup>(-)</sup> Sign on azimuth reads degrees that lens is turned right of photometer. No sign on azimuth indicates zero turn through  $14^\circ$  to the left of photometer.

<sup>(-)</sup> Sign on elevation indicates a depression of the lens below the horizontal.

TABLE A-2. RED-SILICONE-COATED LENS, FINAL MEASUREMENTS OF INTENSITY IN CANDELA VERSUS AZIMUTH AND ELEVATION ANGLES IN DEGREES

#### **ELEVATION**

| AZIMUTH | -5.0 | -4.0 | -3.0 | -2.0 | -1.0 | .0   |
|---------|------|------|------|------|------|------|
| -13.0   | 20   | 41   | 92   | 175  | 319  | 298  |
| -12.0   | *    | 41   | 113  | 216  | 381  | 360  |
| -11.0   |      | 61   | 123  | 278  | 525  | 463  |
| -10.0   |      | 51   | 154  | 401  | 731  | 597  |
| -9.0    | 10   | 72   | 236  | 731  | 1122 | 834  |
| -8.0    | 10   | 82   | 463  | 1369 | 1977 | 1225 |
| -7.0    | 10   | 123  | 1019 | 2678 | 3059 | 1709 |
| -6.0    | 10   | 185  | 1689 | 4315 | 4253 | 2276 |
| -5.0    | 10   | 288  | 2441 | 6077 | 5397 | 2884 |
| -4.0    | 10   | 278  | 3028 | 7251 | 6550 | 3440 |
| -3.0    | 10   | 379  | 3316 | 8064 | 7498 | 3831 |
| -2.0    | 20   | 319  | 3419 | 8538 | 8003 | 4120 |
| -1.0    | 20   | 350  | 3471 | 8724 | 8301 | 4326 |
| .0      |      | 339  | 3532 | 8785 | 8476 | 4439 |
| 1.0     | 10   | 350  | 3574 | 8837 | 8476 | 4470 |
| 2.0     | 20   | 339  | 3522 | 8755 | 8425 | 4439 |
| 3.0     | 10   | 339  | 3460 | 8579 | 8281 | 4315 |
| 4.0     | 20   | 319  | 3388 | 8332 | 7941 | 4150 |
| 5.0     |      | 309  | 3223 | 7838 | 7323 | 3852 |
| 6.0     | 10   | 298  | 2873 | 6870 | 6406 | 3429 |
| 7.0     |      | 236  | 2338 | 5489 | 5253 | 2945 |
| 8.0     | 10   | 175  | 1658 | 3893 | 3965 | 2235 |
| 9.0     | 30   | 133  | 916  | 2317 | 2822 | 1730 |
| 10.0    | 10   | 92   | 453  | 1256 | 1998 | 1277 |
| 11.0    |      | 61   | 236  | 628  | 1225 | 937  |
| 12.0    | 10   | 61   | 164  | 381  | 762  | 679  |
| 13.0    | 10   | 51   | 144  | 267  | 535  | 494  |
| 14.0    | 10   | 51   | 113  | 216  | 391  | 339  |
|         |      |      |      |      |      |      |

<sup>(-)</sup> Sign on azimuth reads degrees that lens is turned right of photometer. No sign on azimuth indicates zero turn through 14° to the left of photometer.

<sup>(-)</sup> Sign on elevation indicates a depression of the lens below the horizontal.

VERTICAL DISTRIBUTION CURVE AT ZERO DEGREES AZIMUTH FOR INITIAL AND FINAL TESTS FIGURE A-1.