9.3 - Alternating Current (ac)

PJ Gibson - Peace Corps Tanzania May 2020

- (1999) What is a resonant frequency of an oscillator?
- (1999) An inductance of 4 mH is connected in series with a resistance of 20Ω together with a battery:
 - Determine how the current will vary with time in this circuit.
 - Sketch the current of above against time
 - Calculate the inductive time constant
- (2000) What is meant by the terms electrical resistivity and ohmic conductor.
- (2000) A 4 m long resistance wire has a cross-sectional area of 0.8 mm? and has a resistance of 2.80Ω . Determine:
 - The resistivity of the wire.
 - The length of a similar wire which when joined in parallel will give a total resistance of 2.0Ω .
- (2000) Two cells of emf 1.5 V and 2.0 V and internal resistances of 1Ω and 2.0Ω respectively are connected in parallel and across them an external resistance of 5.0 Q. Calculate the currents in each of the three branches of the network.
- (2000) What is a rectifier?
- (2007) An a.c. generator consists of a coil of 50 turns and an area of 2.5 $\rm m^2$, rotates at an angular speed of 60 rad/s in a uniform magnetic field of 0.30 T between two fixed pole pieces. The resistance of the circuit including that of the coil is 500Ω .
 - What is the maximum current that can be drawn from the generator?
 - What is the magnetic flux through the coil if the current is maximum?
- (2013) A 20 k Ω resistor is to be connected across a potential difference of 300 V Calculate the required power rating.
- (2013) Derive an expression for impedance of a series R-C circuit.
- (2013) Write down two advantages of digital circuits over the analogue circuits.
- (2014) What is meant by the following terms:

- Alternating current (a.c.)
- Effective value of A.C.
- (2014) A 60 V, 10 W lamp is to be run on 100 V, 60 Hz A.C mains.
 - Calculate the inductance of a choke coil required.
 - If a resistor is used in above instead of choke, what will be value of its resistance.
- (2014) An LCR circuit with $R = 70\Omega$ in series with a parallel combination of L = 1.5 H and
 - $-C = 30 \mu F$ is driven by a 230 V supply with angular frequency of 300 rad/s.
 - (1) Find the power in put to the circuit.
 - At the frequency $\omega_o = 1/(\sqrt{LC})$, how does the circuit respond?
- (2015) Explain the statement that, a sinusoidal current, of peak value 5 A passed through an a.c. ammeter reads $5/\sqrt{2}$ A.
- (2015) Show that the average power transferred to an a.c. circuit is, in general, given by EIR/Z, where R is the resistance in the circuit defined to be the real part of complex impedance and Z is its impedance.
- (2015) A coil which has an inductance of 0.2 H and negligible resistance is in series in a resistor, whose resistance is 60Ω . The pair is connected across a 50 V supply alternating at $100/\pi$ Hz. Calculate the toal impedance of the circuit and its power factor.
- (2016) An a.c. circuit consists of a pure resistance of 10Ω is connected across an a.c. supply of 230 V , 50 Hz. Calculate the;
 - Current flowing in the circuit.
 - Power dissipated
- \bullet (2016) An X-ray tube, operated at a d.c. potential difference of 60 kV , produces heat at the target at the rate of 840 W . Assuming 0.65% of the energy of the incident electrons is converted into X-radiation, calculate:
 - The number of electrons per second striking the target.
 - The velocity of the incident electrons.
 - The energy of incident electrons
- (2018) Calculate the current flowing in the circuit when three similar cells each of emf 1.5 V and internal resistance 0.3Ω are connected in parallel across a 2Ω resistor.
- (2018) Why choke coil is preferred over resistance to control alternating current?
- (2018) Explain what could be done to light a 30 V bulb from a 220 volt A.C. supply?
- (2019) A current of 3.0 mA flows in a Television resistor R when a potential difference of 6.0 V is connected across its terminals. Determine the value of conductance.