```
[9]:
       ## Importing packages
      # This R environment comes with all of CRAN and many other helpful package
      # You can see which packages are installed by checking out the kaggle/rst
      # https://github.com/kaggle/docker-rstats
      library(tidyverse) # metapackage with lots of helpful functions
      ## Running code
      # In a notebook, you can run a single code cell by clicking in the cell &
      # the blue arrow to the left, or by clicking in the cell and pressing Shi
      # you can run code by highlighting the code you want to run and then clid
      # at the bottom of this window.
      ## Reading in files
      # You can access files from datasets you've added to this kernel in the
      # You can see the files added to this kernel by running the code below.
      list.files(path = "../input")
      ## Saving data
      # If you save any files or images, these will be put in the "output" dire
      # can see the output directory by committing and running your kernel (usi
      # Commit & Run button) and then checking out the compiled version of your
```

[10]:

```
# # https://stats.stackexchange.com/questions/223446/variance-of-the-mean-of
# To demonstrate the concept in An Introduction to Statistical Learning,
# p183-184 :
# Since the mean of many highly correlated quantities has higher variance
# does the mean of many quantities that are not as highly correlated,
# the test error estimate resulting from LOOCV tends to have higher variate
# than does the test error estimate resulting from k-fold CV.
#
version=20190204
```

```
[11]:
        \# n = 2 : 2 dimensional, x1 and x2
        # rho : correlation
        \# n.sim : number of (x1, x2) pairs
        n <- 2
        rho1 <- 0.45
        rho2 <- 0.99
        n.sim <- 5e3
        # Create a data structure for making correlated variables.
        Sigma1 <- outer(1:n, 1:n, function(i,j) rho1^abs(i-j))</pre>
        Sigma2 <- outer(1:n, 1:n, function(i,j) rho2^abs(i-j))</pre>
        S1 <- svd(Sigma1)
        S2 <- svd(Sigma2)
        Q1 <- S1$v %*% diag(sqrt(S1$d))
        Q2 <- S2$v %*% diag(sqrt(S2$d))
        # Generate two sets of sample means, one uncorrelated (x) and the other of
        Z0 <- matrix(rnorm(n*n.sim), nrow=n)</pre>
        Z1<- Q1 %*% Z0
        Z2<- Q2 %*% Z0
        meanZ0 <- colMeans(Z0)</pre>
        meanZ1 <- colMeans(Z1)</pre>
        meanZ2 <- colMeans(Z2)</pre>
        var0 <- var(meanZ0)</pre>
        var1 <- var(meanZ1)</pre>
        var2 <- var(meanZ2)</pre>
        Z0[1:2,1:8]
        Z1[1:2,1:8]
        Z2[1:2,1:8]
        par(mfrow=c(2,3))
        # Show scatterplots of the samples.
```

```
# t() : transpose
plot(t(Z0)[, 1:2], main=paste("Uncorrelated (Z0)"),
     pch=19, col="#00000010", xlab="x.1", ylab="x.2", asp=1)
plot(t(Z1)[, 1:2], main=paste("Correlated (Z1), \n rho=", rho1),
     pch=19, col="#00000010", xlab="x.1", ylab="x.2", asp=1)
plot(t(Z2)[, 1:2], main=paste("Correlated (Z2), \n rho=", rho2),
     pch=19, col="#00000010", xlab="x.1", ylab="x.2", asp=1)
# Display the histograms of both.
h.mean1 <- hist(meanZ1, breaks=30, plot=FALSE)</pre>
h.mean2 <- hist(meanZ2, breaks=30, plot=FALSE)</pre>
#h.yo <- hist(x, breaks=h.y1$breaks, plot=FALSE)</pre>
h.mean0 <- hist(meanZ0, breaks=30, plot=FALSE)</pre>
ylim \leftarrow c(0, max(h.mean0\$density))
#ylim<-c(0,10)
hist(meanZ0, xlab = "mean0", main=paste("Histogram, \n var=", var0),
     freq=FALSE, breaks=h.mean0$breaks, ylim=ylim)
hist(meanZ1, xlab = "mean1", main=paste("Histogram, \n var=", var1),
     freq=FALSE, breaks=h.mean1$breaks, ylim=ylim)
hist(meanZ2, xlab = "mean2", main=paste("Histogram, \n var=", var2),
     freq=FALSE, breaks=h.mean2$breaks, ylim=ylim)
#?t
```

0.3361367	-1.0180470	-0.1944533	-1.102179	-0.1482573	0.8452272	0.1562605	0.04992798
0.7720881	0.8459182	-1.0289131	-1.061520	-0.9390530	1.3170451	-0.6587195	-1.48435782

-0.6910965	0.4232325	0.7051376	1.4951376	0.6186801	-1.41034929	0.2123844	0.7358917
0.1186763	1.3104390	-0.3739956	0.3818062	-0.3662070	-0.02902068	-0.4784864	-0.8209159

-0.3898902 0.9556832 0.2667217 1.174481 0.21428729 -0.9362406 -0.1092908 0.05515695	-0.3898902	0.9556832	0.2667217	1.174481	0.21428729	-0.9362406	-0.1092908	0.05515695
---	------------	-----------	-----------	----------	------------	------------	------------	------------

2/4/2019 __notebook_source_

-0 2807005	1 07531/1	0.121211/	1 02/360	0 081/8515	-0 7/100223	-0 2024478	-0.15476295	
0.2007003	1.07 33 1 7 1	0.1212117	1.02-000	0.00170313	-0.7 1 33020	0.2024470	-0.13+70233	

Z0 = (x1,x2) where x1 and x2 are uncorrelated

Z1 = (x1,x2) where x1 and x2 are correlated, degree of correlation = 0.45

Z2 = (x1,x2) where x1 and x2 are correlated, degree of correlation = 0.99

Z0, Z1 and Z2 have 5000 pairs of (x1,x2)

dimension:

2/4/2019 __notebook_source_

Z0[1:2,1:5000]

Z1[1:2,1:5000]

Z2[1:2,1:5000]

meanZ0[1:5000] = mean of Z0

meanZ1[1:5000] = mean of Z1

meanZ2[1:5000] = mean of Z2

Mean of highly correlated data pair Z2 has highest variation.