Package 'hahmmr'

October 25, 2023
Title Haplotype-Aware Hidden Markov Model for RNA
Version 1.0.0
Description Haplotype-aware Hidden Markov Model for RNA (HaHMMR) is a method for detecting copy number variations (CNVs) from bulk RNA-seq data. Additional examples, documentations, and details on the method are available at https://github.com/kharchenkolab/hahmmr/ >.
Depends R (>= $4.1.0$)
biocViews
Imports data.table, dplyr, GenomicRanges, ggplot2, glue, IRanges, methods, patchwork, Rcpp, stringr, tibble, zoo
Suggests ggrastr, testthat
LinkingTo Rcpp, RcppArmadillo, roptim
NeedsCompilation yes
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
LazyData true
Author Teng Gao [aut, cre] (https://orcid.org/0000-0002-0196-689X), Evan Biederstedt [aut], Peter Kharchenko [aut]
Maintainer Teng Gao <tgaoteng@gmail.com></tgaoteng@gmail.com>
Repository CRAN
Date/Publication 2023-10-25 18:00:10 UTC
R topics documented:
acen_hg19

2 acen_hg19

X		22
	vcf_meta	
	segs_example	
	run_joint_hmm_s15	
	run_allele_hmm_s5	
	ref_hca_counts	
	ref_hca	
	pre_likelihood_hmm	
	plot_psbulk	
	plot_bulks	
	1_Inpois	
	1_bbinom	. 14
	logSumExp	. 14
	likelihood_allele	
	gtf_mm10	. 13
	gtf_hg38	. 12
	gtf_hg19	. 12
	get_bulk	. 11
	get_allele_bulk	. 10
	gene_counts_example	. 10
	gaps_hg38	. 10
	gaps_hg19	
	forward_back_allele	
	fit_lnpois_cpp	
	dpoilog	
	df_allele_example	
	dbbinom	
	chrom sizes hg38	
	chrom sizes hg19	
	bulk_example	. 5

acen_hg19

centromere regions (hg19)

Description

centromere regions (hg19)

Usage

acen_hg19

Format

An object of class tbl_df (inherits from tbl, data.frame) with 22 rows and 3 columns.

acen_hg38

acen_hg38

centromere regions (hg38)

Description

```
centromere regions (hg38)
```

Usage

acen_hg38

Format

An object of class tbl_df (inherits from tbl, data.frame) with 22 rows and 3 columns.

analyze_allele

Analyze allele profile

Description

Analyze allele profile

Usage

```
analyze_allele(
  bulk,
  t = 1e-05,
  theta_min = 0.08,
  gamma = 20,
  nu = 0.5,
  r = 0.015,
  hmm = "S5",
  fit_theta = FALSE,
  theta_start = 0.05,
  verbose = TRUE
)
```

Arguments

bulk dataframe Bulk allele profile
t numeric Transition probability
theta_min numeric Minimum allele fraction
gamma numeric Overdispersion parameter

4 analyze_joint

nu numeric Phase switch rate
r numeric Alternative allele count bias
hmm character HMM model to use (S3 or S5)
fit_theta logical Whether to fit theta_min
fit_gamma logical Whether to fit gamma
theta_start numeric Starting value for theta_min
verbose logical Whether to print progress

Value

dataframe Bulk allele profile with CNV states

Examples

```
bulk_example = analyze_allele(bulk_example, hmm = 'S5')
```

analyze_joint

Analyze allele and expression profile

Description

Analyze allele and expression profile

```
analyze_joint(
 bulk,
  t = 1e-05,
  gamma = 20,
  theta_min = 0.08,
  logphi_min = 0.25,
  hmm = "S15",
 nu = 1,
 min\_genes = 10,
  r = 0.015,
  theta_start = 0.05,
  exclude_neu = TRUE,
  fit_gamma = FALSE,
 fit_theta = FALSE,
  verbose = TRUE
)
```

bulk_example 5

Arguments

bulk dataframe Bulk allele and expression profile

t numeric Transition probability

gamma numeric Overdispersion parameter
theta_min numeric Minimum allele fraction
logphi_min numeric Minimum log2 fold change

hmm character HMM model to use (S7 or S15)

nu numeric Phase switch rate

min_genes integer Minimum number of genes per segment

r numeric Alternative allele count bias theta_start numeric Starting value for theta_min

exclude_neu logical Whether to exclude neutral segments in retest

fit_gamma logical Whether to fit gamma
fit_theta logical Whether to fit theta_min
verbose logical Whether to print progress

Value

dataframe Bulk allele and expression profile with CNV states

Examples

```
bulk_example = analyze_joint(bulk_example, hmm = 'S15')
```

bulk_example example pseudobulk dataframe

Description

example pseudobulk dataframe

Usage

bulk_example

Format

An object of class tbl_df (inherits from tbl, data.frame) with 10321 rows and 58 columns.

6 dbbinom

chrom_sizes_hg19

chromosome sizes (hg19)

Description

chromosome sizes (hg19)

Usage

chrom_sizes_hg19

Format

An object of class data.table (inherits from data.frame) with 22 rows and 2 columns.

chrom_sizes_hg38

chromosome sizes (hg38)

Description

chromosome sizes (hg38)

Usage

chrom_sizes_hg38

Format

An object of class data. table (inherits from data. frame) with 22 rows and 2 columns.

dbbinom

Beta-binomial distribution density function A distribution is betabinomial if p, the probability of success, in a binomial distribution has a beta distribution with shape parameters alpha > 0 and beta > 0For more details, see extraDistr::dbbinom

Description

Beta-binomial distribution density function A distribution is beta-binomial if p, the probability of success, in a binomial distribution has a beta distribution with shape parameters alpha > 0 and beta > 0 For more details, see extraDistr::dbbinom

```
dbbinom(x, size, alpha = 1, beta = 1, log = FALSE)
```

df_allele_example 7

Arguments

quantiles
(

size number of trials (zero or more)

alpha numeric (default=1)
beta numeric (default=1)
log beeleen (default=EA

log boolean (default=FALSE)

Value

numeric Probability density values

Examples

```
dbbinom(1, 1, 1, 1)
```

df_allele_example

example allele count dataframe

Description

example allele count dataframe

Usage

```
df_allele_example
```

Format

An object of class data.table (inherits from data.frame) with 9957 rows and 11 columns.

dpoilog

Returns the density for the Poisson lognormal distribution with parameters mu and sig

Description

Returns the density for the Poisson lognormal distribution with parameters mu and sig

```
dpoilog(x, mu, sig, log = FALSE)
```

8 fit_lnpois_cpp

Arguments

X	vector of integers, the observations
mu	mean of lognormal distribution
sig	standard deviation of lognormal distribution
log	boolean Return the log density if TRUE (default=FALSE)

Value

numeric Probability density values

Examples

```
p = dpoilog(1, 1, 1)
```

fit_lnpois_cpp

Fit MLE of log-normal Poisson model

Description

Fit MLE of log-normal Poisson model

Usage

```
fit_lnpois_cpp(Y_obs, lambda_ref, d)
```

Arguments

Y_obs Vector of observed counts
lambda_ref Vector of reference rates
d integer Total depth

Value

NumericVector MLE estimates of mu and sigma

forward_back_allele 9

forward_back_allele

Forward-backward algorithm for allele HMM

Description

Forward-backward algorithm for allele HMM

Usage

```
forward_back_allele(hmm)
```

Arguments

hmm

HMM object; expect variables x (allele depth), d (total depth), logPi (log transition prob matrix), delta (prior for each state), alpha (alpha for each state), beta (beta for each state), states (states), p_s (phase switch probs)

Value

numeric matrix; posterior probabilities

Examples

```
forward_back_allele(pre_likelihood_hmm)
```

gaps_hg19

genome gap regions (hg19)

Description

```
genome gap regions (hg19)
```

Usage

gaps_hg19

Format

An object of class data.table (inherits from data.frame) with 28 rows and 3 columns.

10 get_allele_bulk

gaps_hg38

genome gap regions (hg38)

Description

```
genome gap regions (hg38)
```

Usage

```
gaps_hg38
```

Format

An object of class data.table (inherits from data.frame) with 30 rows and 3 columns.

gene_counts_example

example gene expression counts matrix

Description

example gene expression counts matrix

Usage

```
gene_counts_example
```

Format

An object of class matrix (inherits from array) with 1758 rows and 1 columns.

get_allele_bulk

Aggregate into pseudobulk alelle profile

Description

Aggregate into pseudobulk alelle profile

```
get_allele_bulk(df_allele, gtf, genetic_map = NULL, nu = 0.5, min_depth = 0)
```

get_bulk 11

Arguments

```
df_allele dataframe Single-cell allele counts
gtf dataframe Transcript gtf
genetic_map dataframe Genetic map
nu numeric Phase switch rate
min_depth integer Minimum coverage to filter SNPs
```

Value

dataframe Pseudobulk allele profile

Examples

```
bulk_example = get_allele_bulk(
    df_allele = df_allele_example,
    gtf = gtf_hg38)
```

get_bulk

Produce combined bulk expression and allele profile

Description

Produce combined bulk expression and allele profile

Usage

```
get_bulk(
  count_mat,
  lambdas_ref,
  df_allele,
  gtf,
  genetic_map = NULL,
  min_depth = 0,
  nu = 1,
  verbose = TRUE
)
```

Arguments

```
matrix Gene expression counts
count_mat
lambdas_ref
                  matrix Reference expression profiles
df_allele
                  dataframe Allele counts
gtf
                  dataframe Transcript gtf
genetic_map
                  dataframe Genetic map
min_depth
                  integer Minimum coverage to filter SNPs
nu
                  numeric Phase switch rate
verbose
                  logical Whether to print progress
```

12 gtf_hg38

Value

dataframe Pseudobulk gene expression and allele profile

Examples

```
bulk_example = get_bulk(
    count_mat = gene_counts_example,
    lambdas_ref = ref_hca,
    df_allele = df_allele_example,
    gtf = gtf_hg38)
```

gtf_hg19

gene model (hg19)

Description

```
gene model (hg19)
```

Usage

```
gtf_hg19
```

Format

An object of class data.table (inherits from data.frame) with 26841 rows and 5 columns.

gtf_hg38

gene model (hg38)

Description

```
gene model (hg38)
```

Usage

```
gtf_hg38
```

Format

An object of class data.table (inherits from data.frame) with 26807 rows and 5 columns.

gtf_mm10 13

gtf_mm10

gene model (mm10)

Description

gene model (mm10)

Usage

gtf_mm10

Format

An object of class data.table (inherits from data.frame) with 30336 rows and 5 columns.

likelihood_allele

Only compute total log likelihood from an allele HMM

Description

Only compute total log likelihood from an allele HMM

Usage

likelihood_allele(hmm)

Arguments

hmm

HMM object; expect variables x (allele depth), d (total depth), logPi (log transition prob matrix), delta (prior for each state), alpha (alpha for each state), beta (beta for each state), states (states), p_s (phase switch probs)

Value

numeric; total log likelihood

Examples

likelihood_allele(pre_likelihood_hmm)

14 l_bbinom

logSumExp

logSumExp function

Description

logSumExp function

Usage

logSumExp(x)

Arguments

Χ

NumericVector

Value

double logSumExp of x

1_bbinom

calculate joint likelihood of allele data

Description

calculate joint likelihood of allele data

Usage

```
l_bbinom(AD, DP, alpha, beta)
```

Arguments

AD numeric vector Variant allele depth
DP numeric vector Total allele depth

alpha numeric Alpha parameter of Beta-Binomial distribution beta numeric Beta parameter of Beta-Binomial distribution

Value

numeric Joint log likelihood

Examples

```
l_binom(c(1, 2), c(1, 2), 1, 1)
```

1_Inpois

-	-		٠	
- 1	۱n	og	1	C
	T11	νν	_	J

calculate joint likelihood of a PLN model

Description

calculate joint likelihood of a PLN model

Usage

```
l_lnpois(Y_obs, lambda_ref, d, mu, sig, phi = 1)
```

Arguments

Y_obs	numeric vector Gene expression counts
lambda_ref	numeric vector Reference expression levels

d numeric Total library size

mu numeric Global mean expression

sig numeric Global standard deviation of expression

phi numeric Fold change of expression

Value

numeric Joint log likelihood

Examples

```
l_lnpois(c(1, 2), c(1, 2), 1, 1, 1)
```

plot_bulks

Plot a group of pseudobulk HMM profiles

Description

Plot a group of pseudobulk HMM profiles

Usage

```
plot_bulks(bulks, ..., ncol = 1, title = TRUE, title_size = 8)
```

Arguments

bulks dataframe Pseudobulk profiles a	annotated with "sample" co	olumn
---------------------------------------	----------------------------	-------

... additional parameters passed to plot_psbulk()

ncol integer Number of columns

title logical Whether to add titles to individual plots

title_size numeric Size of titles

plot_psbulk

Value

```
a ggplot object
```

Examples

```
p = plot_bulks(bulk_example)
```

plot_psbulk

Plot a pseudobulk HMM profile

Description

Plot a pseudobulk HMM profile

Usage

```
plot_psbulk(
  bulk,
  use_pos = TRUE,
  allele_only = FALSE,
 min_{LLR} = 5,
 min_depth = 8,
 exp_limit = 2,
  phi_mle = TRUE,
  theta_roll = FALSE,
  dot_size = 0.8,
  dot_alpha = 0.5,
  legend = TRUE,
  exclude_gap = TRUE,
  genome = "hg38",
  text_size = 10,
  raster = FALSE
)
```

Arguments

bulk	dataframe Pseudobulk profile
use_pos	logical Use marker position instead of index as x coordinate
allele_only	logical Only plot alleles
min_LLR	numeric LLR threshold for event filtering
min_depth	numeric Minimum coverage depth for a SNP to be plotted
exp_limit	numeric Expression logFC axis limit
phi_mle	logical Whether to plot estimates of segmental expression fold change
theta_roll	logical Whether to plot rolling estimates of allele imbalance

pre_likelihood_hmm 17

dot_size numeric Size of marker dots

dot_alpha numeric Transparency of the marker dots

legend logical Whether to show legend

exclude_gap logical Whether to mark gap regions and centromeres genome character Genome build, either 'hg38' or 'hg19'

text_size numeric Size of text in the plot raster logical Whether to raster images

Value

ggplot Plot of pseudobulk HMM profile

Examples

```
p = plot_psbulk(bulk_example)
```

pre_likelihood_hmm

HMM object for unit tests

Description

HMM object for unit tests

Usage

```
pre_likelihood_hmm
```

Format

An object of class list of length 10.

ref_hca

reference expression magnitudes from HCA

Description

reference expression magnitudes from HCA

Usage

ref_hca

Format

An object of class matrix (inherits from array) with 24756 rows and 12 columns.

run_allele_hmm_s5

ref_hca_counts

reference expression counts from HCA

Description

reference expression counts from HCA

Usage

```
ref_hca_counts
```

Format

An object of class matrix (inherits from array) with 24857 rows and 12 columns.

run_allele_hmm_s5

Run a 5-state allele-only HMM - two theta levels

Description

Run a 5-state allele-only HMM - two theta levels

Usage

```
run_allele_hmm_s5(
    pAD,
    DP,
    p_s,
    t = 1e-05,
    theta_min = 0.08,
    gamma = 20,
    prior = NULL,
    ...
)
```

Arguments

pAD	integer vector Paternal allele counts
DP	integer vector Total alelle counts
p_s	numeric vector Phase switch probabilities
t	numeric Transition probability between copy number states
theta_min	numeric Minimum haplotype frequency deviation threshold
gamma	numeric Overdispersion in the allele-specific expression
prior	numeric vector Prior probabilities for each state
	Additional parameters

run_joint_hmm_s15

Value

character vector Decoded states

Examples

```
with(bulk_example, {
    run_allele_hmm_s5(pAD = pAD, DP = DP, R = R, p_s = p_s, theta_min = 0.08, gamma = 30)
})
```

run_joint_hmm_s15

Run 15-state joint HMM on a pseudobulk profile

Description

Run 15-state joint HMM on a pseudobulk profile

```
run_joint_hmm_s15(
  pAD,
 DP,
 p_s,
 Y_{obs} = 0,
 lambda_ref = 0,
 d_{total} = 0,
  theta_min = 0.08,
  theta_neu = 0,
 bal_cnv = TRUE,
 phi_del = 2^{-0.25},
 phi_amp = 2^{(0.25)},
 phi_bamp = phi_amp,
 phi_bdel = phi_del,
 mu = 0,
 sig = 1,
  r = 0.015,
  t = 1e-05,
  gamma = 18,
 prior = NULL,
 exp_only = FALSE,
 allele_only = FALSE,
  classify_allele = FALSE,
 debug = FALSE,
)
```

run_joint_hmm_s15

Arguments

20

pAD	integer vector Paternal allele counts
DP	integer vector Total alelle counts
p_s	numeric vector Phase switch probabilities

Y_obs numeric vector Observed gene counts
lambda_ref numeric vector Reference expression rates
d_total integer Total library size for expression counts

theta_min numeric Minimum haplotype imbalance threshold

theta_neu numeric Haplotype imbalance threshold for neutral state

bal_cnv logical Whether to include balanced CNV states
phi_del numeric Expected fold change for deletion

phi_amp numeric Expected fold change for amplification

phi_bamp numeric Expected fold change for balanced amplification
phi_bdel numeric Expected fold change for balanced deletion

mu numeric Global expression bias sig numeric Global expression variance r numeric Variant mapping bias

t numeric Transition probability between copy number states gamma numeric Overdispersion in the allele-specific expression

prior numeric vector Prior probabilities for each state
exp_only logical Whether to only use expression data
allele_only logical Whether to only use allele data

classify_allele

logical Whether to classify allele states

debug logical Whether to print debug messages

... Additional parameters

Value

character vector Decoded states

Examples

```
with(bulk_example, {
    run_joint_hmm_s15(pAD = pAD, DP = DP, p_s = p_s, Y_obs = Y_obs, lambda_ref = lambda_ref,
    d_total = na.omit(unique(d_obs)), mu = mu, sig = sig, t = 1e-5, gamma = 30, theta_min = 0.08)
})
```

segs_example 21

segs_example

example CNV segments dataframe

Description

example CNV segments dataframe

Usage

segs_example

Format

An object of class data. table (inherits from data.frame) with 27 rows and 30 columns.

vcf_meta

example VCF header

Description

example VCF header

Usage

vcf_meta

Format

An object of class character of length 65.

Index

* datasets acen_hg19, 2 acen_hg38, 3	gtf_hg19, 12 gtf_hg38, 12 gtf_mm10, 13
bulk_example, 5 chrom_sizes_hg19, 6 chrom_sizes_hg38, 6 df_allele_example, 7 gaps_hg19, 9	l_bbinom, 14 l_lnpois, 15 likelihood_allele, 13 logSumExp, 14
gaps_ng19,9 gaps_hg38,10 gene_counts_example,10 gtf_hg19,12 gtf_hg38,12	plot_bulks, 15 plot_psbulk, 16 pre_likelihood_hmm, 17
<pre>gtf_mm10, 13 pre_likelihood_hmm, 17 ref_hca, 17 ref_hca_counts, 18 segs_example, 21</pre>	<pre>ref_hca, 17 ref_hca_counts, 18 run_allele_hmm_s5, 18 run_joint_hmm_s15, 19</pre>
vcf_meta, 21	segs_example, 21
acen_hg19,2 acen_hg38,3 analyze_allele,3 analyze_joint,4	vcf_meta, 21
bulk_example,5	
chrom_sizes_hg19,6 chrom_sizes_hg38,6	
dbbinom, 6 df_allele_example, 7 dpoilog, 7	
fit_lnpois_cpp,8 forward_back_allele,9	
gaps_hg19,9 gaps_hg38,10 gene_counts_example,10 get_allele_bulk,10 get_bulk,11	