Churn Dataset Analysis

- Well balanced dataset with equal distribution of classification no need to perform sampling
- No null values present
- No Duplicated data
- Datatypes are appropriate for all features
- No correlation between features and target variable
- Data is widely distributed has to perform normalization or standardisation for Gradient descent algorithm to reach global minima gradually.
- No linear relation among features
- No outliers present Boxplot
- Categorical Data Label Encoder used for 'Location' and 'Gender' features
- 'Name' and 'CustomerID' columns has no effect on target prediction so removing both features
- Training and Testing dataset split 70:30
- Data distribution is not normal or gaussian, so all features are normalised -MinMaxScaler()
- Models tested
 - o Decision Tree
 - Random Forest
 - o Logistic Regression
 - KNN
 - Naive Bayes
 - o SVC
 - o ANN
- Cross Validation Stratifiedkfold
- Hypertunning RandomizedSearchCV
- Feature Importance

Model Results

1					
] Report for lo					
	precision	recall	T1-score	support	
α.	A E1	0 60	A E0	15000	
0	0.51 0.51	0.69			
1	0.51	0.33	0.40	14912	
			0.51	20000	
accuracy	0.51	0.51	0.51		
macro avg	0.51	0.51			
weighted avg	0.51	0.51	0.49	30000	
Report for KNN classifier					
Kepoit for Kill	precision		f1 score	cupport	
	brecizion	recarr	11-20016	20bbot c	
0	0.50	0.66	0.57	15088	
1	0.50				
1	0.50	0.54	0.41	14312	
accuracy			0.50	30000	
macro avg	0.50	0.50		30000	
weighted avg					
weighted avg	0.50	0.50	0.43	30000	
Report for Decision Tree					
Kepore for bea	precision	recall	f1-score	support	
	Precession	100011	1 30010	John	
0	0.50	0.50	0.50	15088	
1	0.49	0.50			
-	0.15	0.20	0.20	2.522	
accuracy			0.50	30000	
macro avg	0.50	0.50			
weighted avg		0.50			
Report for Ran	ndom Forest				
	precision	recall	f1-score	support	
0	0.50	0.54	0.52	15088	
1	0.50	0.46	0.48	14912	
accuracy			0.50	30000	
macro avg	0.50	0.50	0.50	30000	
weighted avg	0.50	0.50	0.50	30000	
Report for Naive Bayes					
	precision	recall	f1-score	support	
0	0.51	0.69			
1	0.51	0.33	0.40	14912	
accuracy			0.51		
macro avg	0.51	0.51			
weighted avg	0.51	0.51	0.49	30000	
Report for SVM					
	precision	recall	f1-score	support	
0	0.50	0.60	0.55		
1	0.50	0.40	0.44	14912	
accuracy			0.50		
macro avg	0.50	0.50	0.50	30000	

```
Epoch 1/10
7000/7000 [=
                          ========] - 16s 2ms/step - loss: 0.6932 - accuracy: 0.4997
Epoch 2/10
7000/7000 [=
                          ========] - 16s 2ms/step - loss: 0.6932 - accuracy: 0.4977
Epoch 3/10
7000/7000 [:
Epoch 4/10
7000/7000 [=
                          ========] - 14s 2ms/step - loss: 0.6932 - accuracy: 0.5010
Epoch 5/10
7000/7000 [=
                                 ====] - 14s 2ms/step - loss: 0.6932 - accuracy: 0.5009
7000/7000 [:
                                      - 14s 2ms/step - loss: 0.6932 - accuracy: 0.4998
7000/7000 [
                                         14s 2ms/step - loss: 0.6932 - accuracy: 0.4999
Epoch 8/10
7000/7000 [=
Epoch 9/10
7000/7000 [=
                              ======] - 14s 2ms/step - loss: 0.6932 - accuracy: 0.4976
Epoch 10/10
7000/7000 [======
                    y_pred = classifier.predict(xtest)
y_pred = (y_pred>0.5)
plt.plot(ann_model.history['loss'])
938/938 [========= ] - 3s 3ms/step
[<matplotlib.lines.Line2D at 0x7e1e30d547f0>]
     1e-5+6.931e-1
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
                         2
        0
                                           4
                                                            6
                                                                             8
```

Hypertuning for Logistic and Random Forest

```
Parameters: {'solver': 'newton-cg', 'penalty': 'l2', 'C': 0.01}
Best score is 0.5005428571428572
Parameters: {'criterion': 'gini', 'max_depth': 3, 'max_features': 2, 'min_samples_leaf': 1}
Best score is 0.5032285714285715
```

0