1. SI unit: kg m s A K



3. Speed: 
$$v = \frac{s}{t} = \frac{\Delta s}{\Delta t}$$









Slope = acceleration Area = distance

- 5. Uniformly accelerated motion:  $\bar{v} = \frac{u+v}{2}$ ;  $s = \frac{u+v}{2}t$ ;  $u^2 v^2 = 2as$
- 6. Weight: W = mg
- 7. Resultant force: F = ma
- 8. Impulse:  $F\Delta t = mv mu = \Delta p$
- 9. Momentum: p = mv
- 10. Conservation of momentum:  $m_1 \overrightarrow{u}_1 + m_2 \overrightarrow{u}_2 = m_1 \overrightarrow{v}_1 + m_2 \overrightarrow{v}_2$
- 11. Moment:  $M = r \times F$
- 12. Principle of moment:  $M_{clockwise} = M_{anti-clockwise}$
- 13. Hooke's law: F = kx
- 14. Pressure(in general):  $p = \frac{F}{A}$ ; liquid pressure:  $p = \rho g h$
- 15. Gravitational potential energy(g.p.e):  $E_p = mgh$
- 16. Kinetic energy(k.e.):  $E_k = \frac{1}{2}mv^2$

17. Efficiency = 
$$\frac{useful\ energy/power\ output}{total\ energy/power\ input} = \frac{total\ energy-wasted\ energy}{total\ energy\ input}$$

18. Work done: 
$$W = Fd = \Delta E$$

19. Power : 
$$p = \frac{W}{t} = \frac{\Delta E}{t}$$

20. Boyle's law: 
$$P_1V_1=P_2V_2$$
 (at const T)

21. Kelvin temperature scale: 
$$T(K) = \theta(^{\circ}C) + 273$$

22. Specific heat capacity: 
$$c = \frac{\Delta E}{m\Delta\theta}$$

23. The law of refraction: 
$$\frac{\sin \theta_i}{\sin \theta_r} = \frac{n_2}{n_1}$$

24. Refractive index of a medium: 
$$n = \frac{c}{v}$$

25. Critical angle: 
$$\sin \theta_c = \frac{1}{n}$$

26. Wave speed: 
$$v = \lambda f$$
;  $f = \frac{1}{T}$ 

27. Current: 
$$I = \frac{Q}{t}$$

28. Voltage: 
$$V = \frac{W}{Q}$$

29. Resistance: 
$$R = \frac{V}{I}$$

30. Electrical energy: 
$$E = Pt = VIt = QV$$

