Interpretable Machine Learning

Regional Effects REPID

Learning goals

- Difference between feature effects and feature interactions
- REPID

WHY REGIONAL EXPLANATIONS?

Problem: PD & ICE plots can be confounded by feature interactions. **Solution:** Group homogeneous ICE curves in such a way that reduces the presence of individual interaction effects within a group
→ Regional effect plots (REPs).

Global Effect

Regional Effect (1)

Regional Effect (2)

- Splitting by the "workingday" revealed 2 different patterns that we're clashed together in the initial plot
- $\bigcup_i (regional_explanation_i) = global_explanation$
- Fidelity(regional_explanation;) > Fidelity(global_explanation)

ICE CURVE: LOCAL FEATURE EFFECTS

Question: How do feature changes affect the prediction for **one obs.? Idea:** Split $\mathbf{x} = (x_j, \mathbf{x}_{-j})$ into x_j (feat of interest) and \mathbf{x}_{-j} (remaining feats)

- ullet Replace observed values x_j with grid values \tilde{x}_j while keeping \mathbf{x}_{-j} fixed
- Visualize function $\hat{f}(\tilde{\mathbf{x}}_j, \mathbf{x}_{-j})$ for varying $\tilde{\mathbf{x}}_j$ (ICE)

ICE CURVE: LOCAL FEATURE EFFECTS

Question: How do feature changes affect the prediction for **one obs.**? **Idea:** Split $\mathbf{x} = (x_j, \mathbf{x}_{-j})$ into x_j (feat of interest) and \mathbf{x}_{-j} (remaining feats)

- ullet Replace observed values x_j with grid values \tilde{x}_j while keeping \mathbf{x}_{-j} fixed
- Visualize function $\hat{f}(\tilde{\mathbf{x}}_j, \mathbf{x}_{-j})$ for varying $\tilde{\mathbf{x}}_j$ (ICE)

Example: SVM prediction surface (left), select obs. and visualize changes in prediction for varying x_2 while keeping x_1 fixed \Rightarrow **local interpretation**

PD PLOT - GLOBAL FEATURE EFFECTS

Question: How do changes of feat values affect model prediction on avg.?

• **PD function**: Integrate out effect of X_{-i} to obtain marginal effect of x_i

$$f_j^{PD}(\tilde{x}_j) = \mathbb{E}_{X_{-j}}[\hat{f}(\tilde{x}_j, X_{-j})] = \int \hat{f}(\tilde{x}_j, X_{-j}) d\mathbb{P}(X_{-j})$$

ullet Estimate (MC integration): Avgerage ICE curves at grid points $ilde{x}_j$

$$\hat{f}_j^{PD}(\tilde{x}_j) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\tilde{x}_j, \mathbf{x}_{-j}^{(i)})$$

FEATURE INTERACTIONS

Hooker (2004, 2007): Functional ANOVA decomp. of a function

$$\hat{f}(\mathbf{x}) = g_0 + \underbrace{\sum_{j=1}^{p} g_j(x_j)}_{\text{main effect}} + \underbrace{\sum_{j \neq k} g_{j,k}(x_j, x_k)}_{\text{two-way interaction effect}} + \cdots + \underbrace{g_{1,2,\dots,p}(\mathbf{x})}_{\text{p-way interaction effect}}$$

Friedman and Popescu (2008):

- \Rightarrow If x_j and \mathbf{x}_{-j} don't interact, we can decomp. $f(\mathbf{x}) = g_j(x_j) + g_{-j}(\mathbf{x}_{-j})$
- \Rightarrow If x_j and x_k don't interact, decomposition: $f(\mathbf{x}) = g_{-j}(\mathbf{x}_{-j}) + g_{-k}(\mathbf{x}_{-k})$

Example: Not additively separable:

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \text{ (not separable)}$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \text{ (not separable)}$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_2 + x_1 \cdot x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_2 + x_2 \neq g(x_1)$$

$$f(\mathbf{X}) = x_1 + x_2 + x_2 + x_2 \neq g(x_1)$$

$$f(\mathbf{X}) =$$

FEATURE INTERACTIONS

Hooker (2004, 2007): Functional ANOVA decomp. of a function

$$\hat{\textit{f}}(\mathbf{x}) = \textit{g}_0 + \underbrace{\sum_{j=1}^{p} \textit{g}_j(\textit{x}_j)}_{\text{main effect}} + \underbrace{\sum_{j \neq k} \textit{g}_{j,k}(\textit{x}_j, \textit{x}_k)}_{\text{two-way interaction effect}} + \cdots + \underbrace{\textit{g}_{1,2,\dots,p}(\mathbf{x})}_{\text{p-way interaction effect}}$$

Friedman and Popescu (2008):

- \Rightarrow If x_j and \mathbf{x}_{-j} don't interact, we can decomp. $f(\mathbf{x}) = g_j(x_j) + g_{-j}(\mathbf{x}_{-j})$
- \Rightarrow If x_j and x_k don't interact, decomposition: $f(\mathbf{x}) = g_{-j}(\mathbf{x}_{-j}) + g_{-k}(\mathbf{x}_{-k})$

Example: Separable:

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1 \cdot x_2) = (x_1 + \log(x_1)) + (x_2 + \log(x_2)) = g_1(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + x_1x_2 \text{ (not separable)}$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_2)$$

$$f(\mathbf{x}) = x_1 + \log(x_1)$$

$$f(\mathbf{x})$$

REPID: REGIONAL EFFECT PLOTS • "Herbinger et al." 2022

Recall: Different shapes of ICE curves ⇒ interactions (ignore vertical shifts)

⇒ Focus on shape differences of mean-centered ICE curves.

Mean-centered ICE curve for obs. **x** evaluated at *m* grid points $\tilde{x}_i^{(1)}, \dots, \tilde{x}_i^{(m)}$ is:

$$\hat{t}^{c}(\tilde{x}_{j}, \mathbf{x}_{-j}) = \hat{t}(\tilde{x}_{j}, \mathbf{x}_{-j}) - \frac{1}{m} \sum_{k=1}^{m} \hat{t}(\tilde{x}_{j}^{(k)}, \mathbf{x}_{-j})$$

REGIONAL EFFECTS - SYNTHETIC EXAMPLE

Example: $X_1, X_2, X_6 \sim \mathcal{U}(-1, 1), X_3, X_4, X_5 \sim \mathcal{B}(n, 0.5)$ (all iid)

 $ightharpoonup ext{Ground truth: } f(X) = 0.2X_1 - 8X_2 + 8X_2 \cancel{\Vdash}_{(X_1 > 0)} + 16X_2 \cancel{\Vdash}_{(X_3 = 0)} + \epsilon$

 $\rightsquigarrow \text{Model: Random forest}$

Problem:

- PD curve of X₂ is misleading due to interactions → ICE
- ICE curves do not identify the interacting features

REGIONAL EFFECTS - SYNTHETIC EXAMPLE

Example: $X_1, X_2, X_6 \sim \mathcal{U}(-1, 1), X_3, X_4, X_5 \sim \mathcal{B}(n, 0.5)$ (all iid)

 $ightharpoonup ext{Ground truth: } f(X) = 0.2X_1 - 8X_2 + 8X_2 \mathbb{1}_{(X_1 > 0)} + 16X_2 \mathbb{1}_{(X_3 = 0)} + \epsilon$

→ Model: Random forest

Problem:

- PD curve of X₂ is misleading due to interactions → ICE
- ICE curves do not identify the interacting features

Idea: Find regions with similar ICE curves and aggregate them to regional effects

REGIONAL EFFECTS - SYNTHETIC EXAMPLE

Example: $X_1, X_2, X_6 \sim \mathcal{U}(-1, 1), X_3, X_4, X_5 \sim \mathcal{B}(n, 0.5)$ (all iid)

$$ightharpoonup ext{Ground truth: } f(X) = 0.2X_1 - 8X_2 + 8X_2 \cancel{\Vdash}_{(X_1 > 0)} + 16X_2 \cancel{\Vdash}_{(X_3 = 0)} + \epsilon$$

→ Model: Random forest

Problem:

- PD curve of X₂ is misleading due to interactions → ICE
- ICE curves do not identify the interacting features

Idea: Find regions with similar ICE curves and aggregate them to regional effects

Regional effect (blue curves) $\hat{=}$ Estimate PD curve in each region

⇒ Additive decomposition of global feat effect

REGIONAL EFFECTS - DETAILS

Question: How to split curves into regions? Define risk as L2 loss of mean-centered ICE curves:

$$\mathcal{R}_{j}(\mathcal{N}) = \sum_{\mathbf{x} \in \mathcal{N}} \sum_{k=1}^{m} (\hat{f}^{c}(\tilde{\mathbf{x}}_{j}^{(k)}, \mathbf{x}_{-j}) - \hat{f}^{PD, c}_{j|\mathcal{N}}(\tilde{\mathbf{x}}_{j}^{(k)}))^{2}$$

with the avg. feature effect in region $\mathcal{N} \subseteq \mathcal{X}$:

$$\hat{f}_{j|\mathcal{N}}^{PD,c}(\tilde{x}_j) = \frac{1}{|\mathcal{N}|} \sum_{\mathbf{x} \in \mathcal{N}} \hat{f}^c(\tilde{x}_j, \mathbf{x}_{-j})$$

- ightharpoonup Measures interaction-related heterogeneity (variance) of ICE curves in ${\cal N}$
- → Recursive partitioning (CART): Find best feat-split combo that solves

$$arg min_{z,t} \mathcal{R}_{j}(\mathcal{N}_{left}) + \mathcal{R}_{j}(\mathcal{N}_{right})$$

- $\mathcal{N}_{left} = \{ \mathbf{x} \in \mathcal{N} | x_z < t \}$
- $\mathcal{N}_{right} = \{\mathbf{x} \in \mathcal{N} | x_z > t\}$
- Split point *t* for feature $x_z, z \in -i$

Intuition: Is another feature x_z responsible for the heterogeneity (measured by \mathcal{R}_i)?

REGIONAL EFFECT PLOTS - REAL EXAMPLE

- Identify feature with highly heterogeneous local effects
 → hour: Most important; highly heterogeneous feat (highest variance)
- Find regions in feature space where this heterogeneity is minimal
 - → Partition feature space using CART to minimize variance of mean-centered ICE curves within each region

REGIONAL EFFECT PLOTS - REAL EXAMPLE

