

# **Normal Distribution**

Prof. Uma D

Department of Computer Science and Engineering



# **Normal Distribution**

Prof. Uma D

# Topics to be covered...

- Problems
- Linear Function of a Normal Random Variable
- Linear Function of a Independent Normal Random Variable
- •Two independent Normally distributed random variables



### **Standardizing Normally Distributed Random Variables**



We can convert a Random Variable X having a Normal distribution with any mean and Standard deviation in to the Random variable that has a Standard Normal Distribution.

$$X \sim N(\mu, \sigma^2)$$

**Standardizing X:** using a basic linear transformation:

$$z = (x - \mu) / \sigma$$

# **Example**



# **Reading Z Table to Find Area**

Find area under the normal curve:

- a) To the left of z = -0.49
- b) To the left of z = 0.49
- c) To the right of z = 0.49
- d) Between z = 0.40 and z = 1.30
- e) Between z = -1.50 and z = 0.90

# **Example**

Let  $Z \sim N(0, 1)$ . Find a constant c for which a)  $P(Z \ge c) = 0.1587$ 



b) 
$$P(c \le Z \le 0) = 0.4772$$

c) 
$$P(-c \le Z \le c) = 0.8664$$

#### **Solution**



a) 
$$P(Z \ge c) = 0.1587$$
  
=> Area to left of  $c = 1 - 0.1587 = 0.8413$   
=>  $c = 1.00$ 

b) 
$$P(c \le Z \le 0) = 0.4772$$
  
Area to left of  $0 = 0.5$   
=>Area to left of  $c = 0.5 - 0.4772 = 0.0228$   
=>  $c = -2.00$ 

c) P(-c 
$$\leq$$
 Z  $\leq$  c) = 0.8664  
P(0  $\leq$  Z  $\leq$  c) = 0.8664/2 = 0.4332

Area to right of c = 0.5 - 0.4332 = 0.0668 => Area to left of <math>-c = 0.0668 => c = -1.50

Area to left of c = 1 - 0.0668 = 0.9332 => c = 1.50

### **Solution**



### **Problems**

X has a normal distribution with mean 5 and standard deviation 2. Find P(x>7).

# **Example**



If  $X \sim N(2, 9)$ , compute:

- a)  $P(X \ge 2)$
- b)  $P(1 \le X < 7)$
- c) Find the median of X.
- d) Find 75<sup>th</sup> percentile of X.

# **Solution**

b) 
$$P(1 \le X < 7)$$



### **Solution**

c) Find the median of X.



d) Find 75<sup>th</sup> percentile of X.

# **Linear Function of a Normal Random Variable**



### **Linear Function**

**Linear Function of a Independent Normal Random Variable** 



Two independent normally distributed random variables

Sum/ Difference of two independent normally distributed random variables is normal.



### **Example**

PES UNIVERSITY ONLINE

Let  $X_1$  be a normal random variable with mean 2 and variance 3, and let  $X_2$  be a normal random variable with mean 1 and variance 4.

Assume that  $X_1$  and  $X_2$  are independent.

What is the distribution of the linear combination  $Y = 2X_1 + 3X_2$ ?

# **Example**



A light fixture holds two light bulbs. Bulb A is a type whose lifetime is normally distibuted with mean 800 hours and standard deviation 100 hours. Bulb B has a lifetime that is normally distibuted with mean 900 hours and standard deviation 150 hours. Assume the lifetimes of the bulbs are independent.

- 1) What is the probability Bulb B lasts longer than bulb A?
- 2) What is the probability Bulb B lasts 200 hours more than bulb A?
- 3)Another light fixture holds only one bulb. A bulb of type A is installed, and when it burns out, a bulb of type B is installed.

What is the probability that the total lifetime of the two bulbs is more than 2000 hours?

### Example



A light fixture holds two light bulbs. Bulb A is a type whose lifetime is normally distibuted with mean 800 hours and standard deviation 100 hours. Bulb B has a lifetime that is normally distibuted with mean 900 hours and standard deviation 150 hours. Assume the lifetimes of the bulbs are independent.

# **Example**

1)What is the probability Bulb B lasts longer than bulb A?



# **Example**

2) What is the probability Bulb B lasts 200 hours more than bulb A?



### **Example**

3)Another light fixture holds only one bulb. A bulb of type A is installed, and when it burns out, a bulb of type B is installed.



What is the probability that the total lifetime of the two bulbs is more than 2000 hours?

# **Example**



#### Do It Yourself!!!

The lifetime of a battery is in a certain application is normally distributed with mean 16 hours, standard deviation 2 hours.

- a) What is the probability that a battery will last more than 19 hours?
- b) Find the 10<sup>th</sup> percentile of the lifetimes.
- c) A particular battery lasts 14.5 hours. What percentile is its lifetime on?



# **THANK YOU**

Prof. Uma D

Department of Computer Science and Engineering