

රාජකීය විදහලය – කොළඹ **07** 12 **ලේ**ණිය

පුථම වාර පරිකෂණය – 2012 දෙසැම්බර් සංයුක්ත ගණිතය I

B කොටස

- පුශ්න 2 කට පිළිතුරු සපයන්න.
- (6) අ) සාධක පුමේයය පුකාශ කර සාධනය කරන්න.
 - අා) (x-a) යනු $2x^2+3px-2q$ සහ x^2+q බහු පද වලට පොදු සාධකයකි. මෙහි p,q හා a ශූනා නොවන තියන වෙයි. $9p^2+16$ q=0 බව පෙන්වන්න.
 - ඇ) $\frac{1}{(x-1)(x+1)}$ භින්න භාගවලට වෙන් කරන්න. $(x+2)^2$, (x-1) හි බහුපදයක් ලෙස පුකාශ කරන්න.

ඉහත පුතිඵල භාවිතයෙන්

$$\frac{(x+2)^2}{(x-1)^2(x+1)}$$
 භින්න භාගවලට වෙන් කරන්න.

(7) අ) $\cot \theta \equiv \csc 2\theta + \cot 2\theta$ බව සාධනය කරන්න.

. එනයින් $\cot 15^\circ$ = $\cdot 2 + \sqrt{3}$ බව අපෝහනය කරන්න.

ඒ ඇසුරෙන් $\cos c 15^\circ = \sqrt{6} + \sqrt{2}$ බව පෙන්වන්න.

$$\cot 7\frac{1}{2}^{0} = \sqrt{2} + \sqrt{6} + 2 + \sqrt{3}$$
 බව පෙන්වන්න.

ඉහත පුතිඵල උපයෝගී කරගතිමින් හෝ අන්කුමයකින්,

$$\cot 37\frac{1}{2}^{0} = 2 + \sqrt{6} - \sqrt{3} - \sqrt{2}$$
 බව පෙන්වන්න.

- අා) $\sin 2x + 2\cos^2 x = 0$ සමීකරණය තෘප්ත කරන $\left[-\frac{\pi}{2}, 2\pi\right]$ තුල වු විසඳුම් දෙන්න.
- අැ) $\cos \left[(n+2) \, \theta \right] = 2 \cos \theta \cos \left[(n+1) \, \theta \right] \cos n \theta$ බව සාධනය කරන්න. එනයින් $\cos 2\theta$ හා $\cos 3\theta$, $\cos \theta$ ඇස්රෙන් පුකාශ කරන්න.
- (8) අ) $y=4\sin x$ ශිුතයෙහි ආවර්තය හා පරාසය සඳහන් කරමින් එහි දල වකුය $[0,2\pi]$ තුළ අඳින්න. $y=4\sin x+2$ ශිුතයෙහි දල වකුය ද එම සටහනෙහිම නිරූපනය කරන්න.

එමගින් $\sin x = -\frac{1}{4}$ සමීකරණය තෘප්ත කරන $[\pi, 2\pi]$ තුළ විසඳුම් ගණන නිර්ණය කරන්න.

අා) සයින් සූතුය පුකාශ කර සාධනය කරන්න.

$$B-C-b-c$$

- (9) අ) $P(x_1, y_1), Q(x_2, y_2)$ ලක්ෂා අතර දුර සඳහා පුකාශනයක් ලබා ගන්න.
 - $O(0,\,0)$ A $(-1,\,1)$ සහ $B(\,\,rac{1}{\lambda},\,\,rac{1}{\lambda^2})$ මෙහි $\lambda > O$ වෙයි. OAB නිකෝණයේ වර්ගඵලය සොයන්න.

AB දිග λ ඇසුරෙන් සොයන්න.

O සිට AB ට ඇති උස $\frac{1}{\sqrt{2\lambda^2-2\lambda+1}}$ බව පෙන්වන්න.

O සිට AB ට ඇති උස උපරිම වන පරිදි වූ λ අගය සොයා උපරිම උස ලබා ගන්න.

- අ) A(3,-1) හා B(-1,5) ලක්ෂායට P ලක්ෂායේ සිට ඇති දුර සමාන වන අතර P ලක්ෂාය X අක්ෂය මත පවතී.
 - i) P ලක්ෂායේ ඛණ්ඩාංක ලබා ගන්න.
 - ii) APBQ රොම්බසයක් නම් Q හි ඛණ්ඩාංක ලබා ගන්න.
- (10) අ) i) $f(x) \equiv \frac{3}{2x-1}$ ශිුතයේ ගමා වසම හා පරාසය සොයන්න.
 - ii) $f(x) \equiv \sqrt{\frac{x}{x^2 1}}$ ශිුතයේ ගමා වසම සොයන්න.
 - අා) $f: x \to \frac{2}{ax+b}$, $x \neq -b/a$ ලෙස ශිතයක් අර්ථ දක්වා ඇත. තවද f(0) = -2 සහ f(2) = 2 බව ද දී ඇත.
 - i) a හා b අගයන් සොයන්න.
 - ii) f(x) = x වන පරිදි වූ x අගය සොයන්න.
 - iii) $f(p) + f(-p) = 2f(p^2)$ බව පෙන්වන්න.

$$e_{7}$$
) $f: x \rightarrow \frac{x}{1+2x}, x \neq -\frac{1}{2}$

 $g: x o x^2 - 2$ ලෙස f හා g ශිත අර්ථ දක්වා ඇත.

- i) fg
- ii) f^{-1}
- iii) ff ශිුත අර්ථ දක්වන්න.

മ്പള	1	& 023(3)	:-	
	,	40mm	•-	***************************************

ලේණිය:

B- කොටස

- (6) සෘජු මාර්ගයක $u \ ms^{-1}$ නියත වේගයෙන් ගමන් කරන A මෝටර් රථයක් මුරපොලක් පසු කරන මොහොතෙහි එම මුරපොලේ සිට B රථයක්, A රථය ඇල්ලීම සඳහා නිශ්චලතාවයේ සිට $f \ ms^{-2}$ නියත ත්වරණයකින් වලිත වෙයි.
 - i) රථවල චලිත සඳහා සුදුසු පුවේග-කාල පුස්තාර එකම සටහනේ අඳින්න. එනයින්
 - ii) රථ දෙක අතර උපරිම දුර ඇති වන කාලය සොයන්න.
 - iii) දෙවැන්න පළමු රථය වෙත පැමිණීමට පෙර රථ දෙක අතර උපරිම දුර සොයන්න.
 - iv) රථ දෙක අතර උපරිම දුර පවතින කාලයක්, B රථයට A රථය ඇල්ලීම සඳහා ගතවන කාලයක් අතර අනුපාතය ලබා ගත්න.
 - \mathbf{v}) \mathbf{B} රථය, \mathbf{A} රථයට $\frac{\mathbf{u}^2}{6\mathbf{f}}$ දුරකින් පිටුපසින් සිටින කාලය සොයන්න.
 - vi) මෙම කාලයන් t_1 හා t_2 නම්, $t_1+\ t_2=rac{2u}{f}$ බව පෙන්වන්න.
- (7) අ) අවල සුමට වලල්ලකට අමුණන ලද w_1 හා w_2 බර P, Q සුමට මුදු දෙකක් එහි ඉහල කොටසේ සමතුලිතතාවයේ තඹා ඇත්තේ, එම මුදුවලට දෙකෙළවර සම්බන්ධ කරන ලද අවිතනා තන්තුවක ආධාරයෙනි. PQ වලල්ලේ Q කේන්දුයෙහි ආපාතනය කරන කෝණය Q වෙයි.
 - i) P හා Q එක් එක් මුදුවල සමතුලිතතාවය සඳහා බල තිකෝණයක් බැගින් අඳින්න.
 - ii) එනයින් OP යට අත් සිරස සමග සාදන කෝණය $tan^{-1} \left(\frac{w_2 sin \alpha}{w_1 + w_2 cos \alpha} \right)$ බව පෙන්වන්න. තවද බරින් වැඩි මුදුව බරින් අඩු මුදුවට වඩා උච්චතම ලක්ෂායට නුදුරින් ඇති බවද පෙන්වන්න.
 - අා) සිරස සමග 60° , 45° ආනතීන්ගෙන් වන අවිතනා තන්තු කොටස් දෙකක් මගින් P නම් බර අංශුවක් එල්ලා ඇත. තන්තු කොටස්වලට ගත හැකි උපරිම ආතතිය W වන විට P අංශුවට ගත හැකි උපරිම බර කොපමණ විය යුතු ද?

- (8) අ) ABCDEF සවිධි ෂඩසුයක \overrightarrow{BA} , \overrightarrow{AD} , \overrightarrow{EA} හා \overrightarrow{AF} ඔස්සේ A ලක්ෂායේ දී කිියා කරන C පිළිවෙලින් නිව්ටන් P, Q, $12\sqrt{3}F$ හා 4F වෙයි. බල පද්ධතිය සමතුලිකතාවයේ පවතියි නම් P හ Q බල සොයන්න.
 - ආ) පාදයක දිග a වූ ABCDEF සමාකාර ෂඩසුයක AB, AC, AD, EA, AF හා DE පාද ඔස්සේ පිළිවෙලින් $4\sqrt{3}$, $2\sqrt{3}$, 18, $10\sqrt{3}$, $8\sqrt{3}$ හා X විශාලත්වයෙන් යුත් බල කිුිිියා කරයි. පද්ධතියේ සම්පුයුක්තය AB සමග සුළු කෝණයක් සාදන $15~\rm N$ වූ බලයකි
 - i) සම්පුයුක්ත බලයේ දිශාව සොයන්න.
 - ii) X බලයේ විශාලත්වය සොයන්න.
 - m iii) සම්පුයුක්ත බලය m AB පාදය ඡේදනය කරන ස්ථානයට m A සිට ඇති දුර සොයන්න.
- (9) අ) $\overline{AB} = k\overline{BC}$ වන විට A, B, C ලක්ෂාායන් එකම රේඛාවක පැවතිය යුතු බව තහවුරු කරන්න. O මූලයට අනුබද්ධව A, B, C ලක්ෂාාවල පිහිටුම් දෙශික පිළිවෙලින් $2\underline{p}-2\underline{q}$, $3\underline{p}+\lambda\underline{q}$ සහ $(2+\lambda)$ $\underline{p}+6\underline{q}$ වෙයි. මෙහි \underline{p} හා \underline{q} නිශ්ශුනා අසමාන්තර දෙශික වෙයි.
 - \overrightarrow{AB} හා \overrightarrow{BC} , λ , p හා q ඇසුරින් ඉදන්න.
 - ii) A, B හා C එකම රේඛාවේ පවතින්නේ යැයි දී ඇති විට λ ට ගත හැකි අගය සොයන්න.
 - අා) ලෙදශික දෙකක් අතර අදීශ ගුණිතය අර්ථ දක්වන්න. $\underline{p} = 5\,\underline{i} \,+\, 3\,\underline{j}$ හා $\underline{q} = 2\,\underline{i} \,+\, t\,\underline{j}$ පරිදි වෙයි. පහත එක් එක් අවශානා සපුරාලන විට අදාළ t හි අගය සොයන්න.
 - i) p+q හා p-q සමාන්තර වෙයි.
 - \ddot{i} i) $\dot{p} 2\dot{q}$ හා $\dot{p} + 2\dot{q}$ ලම්බක වෙයි.
 - iii) $|\underline{p} \underline{q}| = |\underline{q}|$
 - (iii) අවස්ථාවට අනුරූප t සඳහා $ar{p}$ හා $ar{q}$ අතර කෝණය ගණනය කරන්න.
- (10) OABC සෘජුකෝණාසුයේ OA = a ද OC = b ද වෙයි පිළිවෙලින් OA හා OC පාද ඔස්සේ වූ ඒකක දෙශික \underline{i} හා \underline{j} වෙයි. D යනු $\frac{CD}{DB} = \frac{3}{2}$ වන පරිදි වූ CB මත වූ ලක්ෂායකි. OD හා CA, E හිද සේදනය වෙයි. දික් කළ BE, F හි දී OC හමුවෙයි.
 - i) OCD තිුකෝණයට තිුකෝණ නියමය යෙදීමෙන් \overrightarrow{OD} , \underline{i} හා \underline{j} ඇසුරෙන් පුකාශ කරන්න.
 - ii) එමගින් \overrightarrow{OE} පුකාශ කරන්න.
 - iii) \overrightarrow{CA} , \underline{i} හා \underline{j} ඇසුරින් පුකාශ කරන්න.
 - iv) එනයින් CE පුකාශ කර OCE තිුකෝණයට තිුකෝණ නියමය යෙදීමෙන් OE පුකාශ කරන්න.
 - v) (ii) හා (iv) පුතිඵල භාවිතයෙන්, $\dfrac{OE}{ED}$ හා $\dfrac{CE}{EA}$ ලබා ගන්න.
 - vi) ඒ ඇසුරින් $\frac{CF}{CO} = \frac{3}{5}$ බව පෙන්වන්න.

නම	/	අංකය	:-	

ශ්ලේණිය:

B- කොටස

- (6) සෘජු මාර්ගයක $u \ ms^{-1}$ නියත වේගයෙන් ගමන් කරන A මෝටර් රථයක් මුරපොලක් පසු කරන ෙ මොහොතෙහි එම මුරපොලේ සිට B රථයක්, A රථය ඇල්ලීම සඳහා නිශ්වලතාවයේ සිට $f \ ms^{-2}$ නියත ත්වරණයකින් චලිත වෙයි.
 - i) රථවල චලිත සඳහා සුදුසු පුවේග-කාල පුස්තාර එකම සටහනේ අඳින්න. එනයින්
 - ii) රථ දෙක අතර උපරිම දුර ඇති වන කාලය සොයන්න.
 - iii) දෙවැන්න පළමු රථය වෙත පැමිණීමට පෙර රථ දෙක අතර උපරිම දුර සොයන්න.
 - iv) රථ දෙක අතර උපරිම දුර පවතින කාලයන්, B රථයට A රථය ඇල්ලීම සඳහා ගතවන කාලයන් අතර අනුපාතය ලබා ගන්න.
 - v) B රථය, A රථයට $\dfrac{\mathfrak{u}^2}{6f}$ දුරකින් පිටුපසින් සිටින කාලය සොයන්න.
 - vi) මෙම කාලයන් t_1 හා t_2 නම්, $t_1+\ t_2=rac{2u}{f}$ බව පෙන්වන්න.
 - අ) අචල සුමට වලල්ලකට අමුණන ලද w_1 හා w_2 බර $P,\ Q$ සුමට මුදු දෙකක් එහි ඉහල කොටසේ සමතුලිතතාවයේ තබා ඇත්තේ, එම මුදුවලට දෙකෙළවර සම්බන්ධ කරන ලද අවිතනා තන්තුවක අාධාරයෙනි. PQ වලල්ලේ O කේන්දුයෙහි ආපාතනය කරන කෝණය lpha වෙයි.
 - i) P හා Q එක් එක් මුදුවල සමතුලිතතාවය සඳහා බල තිුකෝණයක් බැගින් අඳින්න.
 - ii) එනයින් OP යටි අත් සිරස සමග සාදන කෝණය $tan^{-1} \Biggl(\dfrac{w_2 sin \alpha}{w_1 + w_2 cos \alpha} \Biggr)$ බව පෙන්වන්න. තවද බරින් වැඩි මුදුව බරින් අඩු මුදුවට වඩා උච්චතම ලක්ෂායට නුදුරින් ඇති බවද පෙන්වන්න.
 - අා) සිරස සමග 60° , 45° ආනතීන්ගෙන් වන අවිතනා තන්තු කොටස් දෙකක් මගින් P නම් බර අංශුවක් එල්ලා ඇත. තන්තු කොටස්වලට ගත හැකි උපරිම ආතතිය W වන විට P අංශුවට ගත හැකි උපරිම බර කොපමණ විය යුතු ද?

- (8) අ) ABCDEF සවිධි ෂඩපුයක \overrightarrow{BA} , \overrightarrow{AD} , \overrightarrow{EA} හා \overrightarrow{AF} ඔස්සේ A ලක්ෂායේ දී කිුිිිියා කරන බැ පිළිවෙලින් නිව්වන් P, Q, $12\sqrt{3}F$ හා 4F වෙයි. බල පද්ධතිය සමතුලිතතාවයේ පවතියි නම් P හා Q බල සොයන්න.
 - අා) පාදයක දිග a වූ ABCDEF සමාකාර ෂඩසුයක AB, AC, AD, EA, AF හා DE පාද ඔස්සේ පිළිවෙලින් $4\sqrt{3}$, $2\sqrt{3}$, 18, $10\sqrt{3}$, $8\sqrt{3}$ හා X විශාලත්වයෙන් යුත් බල කිුයා කරයි. පද්ධතියේ සම්පුයුක්තය AB සමග සුළු කෝණයක් සාදන 15 N වූ බලයකි
 - i) සම්පුයුක්ත බලයේ දිශාව සොයන්න.
 - ii) X බලයේ විශාලත්වය සොයන්න.
 - m iii) සම්පුයුක්ත බලය m AB පාදය ඡේදනය කරන ස්ථානයට m A සිට ඇති දුර සොයන්න.
- (9) $\sqrt{AB} = k\overline{BC}$ වන විට A, B, C ලක්ෂායන් එකම රේඛාවක පැවතිය යුතු බව තහවුරු කරන්න. O මූලයට අනුබද්ධව A, B, C ලක්ෂාවල පිහිටුම් දෙශික පිළිවෙලින් $2\underline{p} 2\underline{q}$, $3\underline{p} + \lambda\underline{q}$ අත $(2+\lambda)$ $\underline{p} + 6\underline{q}$ වෙයි. මෙහි \underline{p} හා \underline{q} නිශ්ශුනා අසමාන්තර දෙශික වෙයි.
 - i) \overrightarrow{AB} හා \overrightarrow{BC} , λ , p හා q ඇසුරින් දෙන්න.
 - ii) A, B හා C එකම රේඛාවේ පවතින්නේ යැයි දී ඇති විට λ ට ගත හැකි අගය සොයන්න.
 - අා) ලෛශික දෙකක් අතර අදීශ ගුණිතය අර්ථ දක්වන්න. $\underline{p}=5\,\underline{i}\,+\,3\,\underline{j}\,$ හා $\underline{q}=2\,\underline{i}\,+\,t\,\underline{j}\,$ පරිදි වෙයි. පහත එක් එක් අවශාතා සපුරාලන විට අදාළ t හි අගය සොයන්න.
 - i) p+q හා p-q සමාන්තර වෙයි.

 - iii) $|\underline{p} \underline{q}| = |\underline{q}|$
 - (iii) අවස්ථාවට අනුරූප t සඳහා p හා q අතර කෝණය ගණනය කරන්න.
- (10) OABC සෘජුකෝණාසුයේ OA = a ද OC = b ද වෙයි පිළිවෙලින් OA හා OC පාද ඔස්සේ වූ ඒකක දෙශික \underline{i} හා \underline{j} වෙයි. D යනු $\frac{CD}{DB} = \frac{3}{2}$ වන පරිදි වූ CB මන වූ ලක්ෂායකි. OD හා CA, E හිදී ඡේදනය වෙයි. දික් කළ BE, F හි දී OC හමුවෙයි.
 - i) OCD තිකෝණයට තිකෝණ නියමය යෙදීමෙන් \overrightarrow{OD} , \underline{i} හා \underline{j} ඇසුරෙන් පුකාශ කරන්න.
 - \overrightarrow{ii}) එමගින් \overrightarrow{OE} පුකාශ කරන්න.
 - iii) CA, i හා j ඇසුරින් පුකාශ කරන්න.
 - $\overrightarrow{\text{iv}}$) එනයින් $\overrightarrow{\text{CE}}$ පුකාශ කර $\overrightarrow{\text{OCE}}$ තිුකෝණයට තිුකෝණ නියමය යෙදීමෙන් $\overrightarrow{\text{OE}}$ පුකාශකරන්න.
 - v) (ii) හා (iv) පුතිඵල භාවිතයෙන්,
 - $rac{OE}{ED}$ හා $rac{CE}{EA}$ ලබා ගන්න.
 - vi) ඒ ඇසුරින් $\frac{CF}{CO} = \frac{3}{5}$ බව පෙන්වන්න.

BUYPAST PAPERS 071 777 4440

Buy Online - www.LOL.lk

Protect Yourself From Coronavirus

YOU STAY AT HOME

WE DELIVER!

ORDER NOW

075 699 9990 WWW.LOL.LK

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500

More than 1000+ Papers For all major Subjects and mediums

ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

☐ GCE O/L Exam

GCE O/L EXAM, SCIENCE

O/L Science Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, MUSIC

O/L Music Past Paper Book

රු **350.00**

O/L Mathematics Past Paper Book

රු 350.00

GCE O/L EXAM, MATHEMATICS

පසගිය

විතාග

2010 **2019**

GCE O/L EXAM, INFORMATION & COMMUNICATION TECHNOL...

O/L Information & Communication Tec... O/L History Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, HISTORY

රු 350.00

LOL.II

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P...

ძდ 350.00