DengAI: Specification

Feature / Specification	Value
Model Type	Bi-LSTM (Bidirectional Long Short-Term Memory)
Hyperparameter Tuning Method	Bayesian Optimization
Trials	3
Learning Rate	0.001
Number of Epochs	500
Batch Size	16
Patience for Early Stopping	30
Reduce Learning Rate Factor	0.8
Patience for Reducing LR	5
Minimum LR	1e-6
LSTM Units (First Layer)	Randomly sampled from [50, 100, 150, 200]
Dropout Rate (First Layer)	Randomly sampled from [0.2, 0.3, 0.4, 0.5]
LSTM Units (Second Layer)	Randomly sampled from [50, 100, 150, 200]
Dropout Rate (Second Layer)	Randomly sampled from [0.2, 0.3, 0.4, 0.5]
Initial Validation Loss	3387.3547
Initial Validation MAE	26.1888
Final Validation Loss	94.1017
Final Validation MAE	4.0697
Validation R-squared	0.9727
Accuracy within ±16.3	97.26%

Each Portion in Little Details:

• Model Type: Bi-LSTM (Bidirectional Long Short-Term Memory)

- **Description**: Bi-LSTM is an extension of LSTM (Long Short-Term Memory) networks, which are a type of recurrent neural network (RNN). Bi-LSTM processes data in both forward and backward directions, capturing information from both past and future states in the sequence.
- **Purpose**: To improve the model's ability to learn temporal dependencies in sequential data, which is useful for time series prediction tasks like dengue case forecasting.

• Hyperparameter Tuning Method: Bayesian Optimization

- **Description**: Bayesian Optimization is a method for optimizing hyperparameters that uses a probabilistic model to explore the hyperparameter space efficiently.
- **Purpose**: To find the best combination of hyperparameters for the model to achieve the lowest validation loss.

• Trials: 3

- **Description**: The number of different hyperparameter configurations the tuner will try.
- **Purpose**: To explore different hyperparameter settings and identify the best configuration within the specified number of trials.

• Learning Rate: 0.001

- **Description**: The step size used by the optimizer to update the model parameters.
- **Purpose**: Controls how quickly the model learns; a smaller learning rate can lead to more stable training but might require more epochs.

• Number of Epochs: 500

- **Description**: The number of complete passes through the training dataset.
- **Purpose**: To provide enough iterations for the model to learn the data patterns effectively.

• Batch Size: 16

- **Description**: The number of samples processed before the model's internal parameters are updated.
- **Purpose**: Balances the trade-off between training speed and the stability of the optimization process.

• Patience for Early Stopping: 30

- **Description**: The number of epochs with no improvement in validation loss after which training will be stopped.
- **Purpose**: To prevent overfitting by stopping training when the model's performance on the validation set stops improving.

• Reduce Learning Rate Factor: 0.8

- **Description**: The factor by which the learning rate will be reduced when the performance plateaus.
- **Purpose**: To fine-tune the learning process and help the model converge to a better minimum by reducing the learning rate when progress stalls.

• Patience for Reducing LR: 5

- **Description**: The number of epochs with no improvement after which the learning rate will be reduced.
- **Purpose**: To dynamically adjust the learning rate to improve the model's convergence.

• Minimum LR: 1e-6

• **Description**: The lowest learning rate value to which the learning rate can be reduced.

• **Purpose**: To prevent the learning rate from becoming too small, which would hinder the training process.

• LSTM Units (First Layer): Randomly sampled from [50, 100, 150, 200]

- **Description**: The number of LSTM units in the first layer of the model.
- **Purpose**: To determine the capacity of the model in capturing the data patterns.

• Dropout Rate (First Layer): Randomly sampled from [0.2, 0.3, 0.4, 0.5]

- **Description**: The fraction of input units to drop during training to prevent overfitting.
- **Purpose**: To regularize the model and improve its generalization ability.

• LSTM Units (Second Layer): Randomly sampled from [50, 100, 150, 200]

- **Description**: The number of LSTM units in the second layer of the model.
- **Purpose**: To add more depth to the model and capture more complex patterns in the data.

• Dropout Rate (Second Layer): Randomly sampled from [0.2, 0.3, 0.4, 0.5]

- **Description**: The fraction of input units to drop during training to prevent overfitting in the second layer.
- **Purpose**: To regularize the model and improve its generalization ability.

• Initial Validation Loss: 3387.3547

- **Description**: The validation loss at the beginning of the training process.
- **Purpose**: To provide a baseline for evaluating the model's improvement during training.

• Initial Validation MAE: 26.1888

- **Description**: The mean absolute error on the validation set at the beginning of training.
- **Purpose**: To provide a baseline for evaluating the model's performance improvement.

• Final Validation Loss: 94.1017

- **Description**: The validation loss after training is complete.
- **Purpose**: To measure the model's final performance on the validation set.

• Final Validation MAE: 4.0697

- **Description**: The mean absolute error on the validation set after training is complete.
- **Purpose**: To measure the model's accuracy in predicting the target variable.

• Validation R-squared: 0.9727

- **Description**: The R-squared value indicating how well the model's predictions match the actual values on the validation set.
- **Purpose**: To provide a measure of the goodness of fit of the model.

• Accuracy within ±16.3: 97.26%

- **Description**: The percentage of predictions that are within ± 16.3 units of the actual values.
- **Purpose**: To evaluate the model's accuracy within a specified tolerance range.