COMP9020 Week 2 Binary Relations

• Textbook (R & W) - Ch. 3., Sec. 3.1, 3.4; Ch. 11, Sec. 11.1

Applications in Computer Science

Many relations that appear in CS fall into two broad categories:

Equivalence relations (generalizing "equality"):

- Programs that exhibit the same behaviour
- Logically equivalent statements
- The .equals() method in Java

Partial orders (generalizing "less than or equal to"):

- Object inheritance
- Simulation
- Requirement specifications
- The .compareTo() method in Java

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Binary relations

A binary relation between S and T is a subset of $S \times T$: i.e. a set of ordered pairs.

Also: over S and T; from S to T; on S (if S = T).

```
Example (Special (Trivial) Relations)
```

```
Identity (diagonal, equality) E = \{ (x, x) : x \in S \}

Empty \emptyset
```

Universal $U = S \times S$

Defining binary relations: Set-based definitions

Defining a relation $R \subseteq S \times T$:

- Explicitly listing tuples: e.g. $\{(1,1),(2,3),(3,2)\}$
- Set comprehension: $\{(x,y) \in [1,3] \times [1,3] : 5|xy-1\}$
- Construction from other relations:

$$\{(1,1)\} \cup \{(2,3)\} \cup \{(2,3)\}^{\leftarrow}$$

Defining binary relations: Matrix representation

Defining a relation $R \subseteq S \times T$:

Rows enumerated by elements of S, columns by elements of T:

Examples

• The relation $\{(1,1),(2,3),(3,2)\}\subseteq [1,3]\times [1,3]$:

The relation

$$\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,2)\}\subseteq [1,3]\times [1,4]:$$

) Q (P

Defining binary relations: Graphical representation

Defining a relation $R \subseteq S \times T$:

Defining binary relations: Graphical representation

9

Defining binary relations: Graphical representation

Defining binary relations: Graph representation

If S = T we can define $R \subseteq S \times S$ as a **directed graph** (week 5).

- Nodes: Elements of S
- Edges: Elements of R

$$R = \{(1,1), (2,3), (3,2)\} \subseteq [1,3] \times [1,3]$$
:

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Properties of Binary Relations $R \subseteq S \times S$

Definition

(R)	reflexive	For all $x \in S$: $(x, x) \in R$
(AR)	antireflexive	For all $x \in S$: $(x,x) \notin R$
(S)	symmetric	For all $x, y \in S$: If $(x, y) \in R$
		then $(y,x) \in R$
(AS)	antisymmetric	For all $x, y \in S$: If (x, y) and $(y, x) \in R$
		then $x = y$
(T)	transitive	For all $x, y, z \in S$: If (x, y) and $(y, z) \in R$
		then $(x,z) \in R$

NB

- Properties have to hold for all elements
- (S), (AS), (T) are conditional statements they will hold if there is nothing which satisfies the 'if' part

Examples

(R) Reflexivity: $(x,x) \in R$ for all x

- (R) Reflexivity: $(x,x) \in R$ for all x
- **(AR)** Antireflexivity: $(x,x) \notin R$ for all x

- (R) Reflexivity: $(x, x) \in R$ for all x
- (AR) Antireflexivity: $(x,x) \notin R$ for all x
 - **(S)** Symmetry: If $(x, y) \in R$ then $(y, x) \in R$ for all x, y

- (R) Reflexivity: $(x, x) \in R$ for all x
- (AR) Antireflexivity: $(x,x) \notin R$ for all x
 - (S) Symmetry: If $(x, y) \in R$ then $(y, x) \in R$ for all x, y
- (AS) Antisymmetry: $(x, y) \in R$ and $(y, x) \in R$ implies x = y for all x, y

- (R) Reflexivity: $(x, x) \in R$ for all x
- (AR) Antireflexivity: $(x,x) \notin R$ for all x
 - (S) Symmetry: If $(x, y) \in R$ then $(y, x) \in R$ for all x, y
- (AS) Antisymmetry: $(x, y) \in R$ and $(y, x) \in R$ implies x = y for all x, y
 - (T) Transitivity: $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$ for all x, y, z.

Interaction of Properties

A relation can be both symmetric and antisymmetric. Namely, when R consists only of some pairs $(x,x), x \in S$. A relation cannot be simultaneously reflexive and antireflexive

A relation *cannot* be simultaneously reflexive and antireflexive (unless $S = \emptyset$).

NB

 $\begin{array}{c} \textit{nonreflexive} \\ \textit{nonsymmetric} \end{array} \} \hspace{0.1in} \textit{is not the same as} \hspace{0.1in} \left\{ \begin{array}{c} \textit{antireflexive/irreflexive} \\ \textit{antisymmetric} \end{array} \right.$

Exercises

3.1.1 The following relations are on $S = \{1, 2, 3\}$. Which of the properties (R), (AR), (S), (AS), (T) does each satisfy?

(a)
$$(m, n) \in R$$
 if $m + n = 3$?

(e)
$$(m, n) \in R$$
 if $\max\{m, n\} = 3$?

$$3.1.2(b) (m, n) \in R \text{ if } m < n?$$

Exercises

3.1.1 The following relations are on $S = \{1, 2, 3\}$. Which of the properties (R), (AR), (S), (AS), (T) does each satisfy?

(a)
$$(m, n) \in R$$
 if $m + n = 3$? (AR) and (S)

(e)
$$(m, n) \in R$$
 if $\max\{m, n\} = 3$? (S)

3.1.2(b)
$$(m, n) \in R \text{ if } m < n?$$
 (AR), (AS), (T)

Exercises

Exercises

Exercises

Exercises

Exercises

Exercises

Exercises

	(R)	(AR)	(5)	(<i>AS</i>)	(<i>T</i>)
=	√		√	✓	\checkmark
\leq	\checkmark			\checkmark	\checkmark
<		\checkmark		\checkmark	\checkmark
Ø		\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{U}=\mathbb{Z} imes\mathbb{Z}$	✓		\checkmark		\checkmark
	√			\checkmark	\checkmark
$= \pmod{3}$					

Exercises

	(R)	(AR)	(5)	(AS)	(<i>T</i>)
=	√		√	\checkmark	√
\leq	✓			\checkmark	\checkmark
<		\checkmark		\checkmark	\checkmark
Ø		\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{U} = \mathbb{Z} \times \mathbb{Z}$	✓		\checkmark		\checkmark
	✓			\checkmark	\checkmark
$= \pmod{3}$	✓		\checkmark		\checkmark

Exercises

3.1.10(a) Give examples of relations with specified properties. (AS), (T), not (R).

Exercises

3.1.10(a) Give examples of relations with specified properties. (AS), (T), not (R).

Some examples over \mathbb{N} , Pow(\mathbb{N}):

- strict order of numbers x < y
- simple (weak) order, but with some pairs (x,x)
 removed from R
- being a prime divisor $(p, n) \in R$ iff p is prime and p|n
 - not reflexive: $(1,1) \notin R, (4,4) \notin R, (6,6) \notin R$
 - transitivity is meaningful only for the pairs (p, p), (p, n), p|n for p prime

Exercises

(S), not (R), not (T).

Exercises

3.1.10(b) Give examples of relations with specified properties.

(S), not (R), not (T).

Simplest example - inequality

Exercises

3.6.10 (supp)

R is a relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of $\mathbb{N}^2 \times \mathbb{N}^2$ (m, n) R(p, q) if $m = p \pmod{3}$ or $n = q \pmod{5}$. (a) Is R reflexive?

- (b) Is R symmetric?
- (c) Is R transitive?

Exercises

3.6.10 (supp)

R is a relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of $\mathbb{N}^2 \times \mathbb{N}^2$ (m,n) R(p,q) if $m=p \pmod 3$ or $n=q \pmod 5$.

(a) Is R reflexive?

Yes: $m = m \pmod{3}$ (and $n = n \pmod{5}$) so (m, n)R(m, n).

- (b) Is *R* symmetric?
- (c) Is R transitive?

Exercises

3.6.10 (supp)

R is a relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of $\mathbb{N}^2 \times \mathbb{N}^2$ (m, n) R(p, q) if $m = p \pmod{3}$ or $n = q \pmod{5}$.

(a) Is R reflexive?

Yes: $m = m \pmod{3}$ (and $n = n \pmod{5}$) so (m, n)R(m, n).

(b) Is *R* symmetric?

Yes: by symmetry of $. = . \pmod{n}$.

(c) Is R transitive?

Exercises

3.6.10 (supp)

R is a relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of $\mathbb{N}^2 \times \mathbb{N}^2$ (m,n) R(p,q) if $m=p \pmod 3$ or $n=q \pmod 5$.

(a) Is R reflexive?

Yes: $m = m \pmod{3}$ (and $n = n \pmod{5}$) so (m, n)R(m, n).

(b) Is R symmetric?

Yes: by symmetry of $. = . \pmod{n}$.

(c) Is R transitive? No: Consider (1,1), (1,4) and (2,4).

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Equivalence relations

Equivalence relations capture a general notion of "equality". They are relations which are:

- Reflexive (R): Every object should be "equal" to itself
- Symmetric (S): If x is "equal" to y, then y should be "equal" to x
- Transitive (T): If x is "equal" to y and y is "equal" to z, then x should be "equal" to z.

Equivalence relations

Equivalence relations capture a general notion of "equality". They are relations which are:

- Reflexive (R): Every object should be "equal" to itself
- Symmetric (S): If x is "equal" to y, then y should be "equal" to x
- Transitive (T): If x is "equal" to y and y is "equal" to z, then x should be "equal" to z.

Definition

A binary relation $R \subseteq S \times S$ is equivalence relation if it satisfies (R), (S), (T).

Example

Partition of $\mathbb Z$ into classes of numbers with the same remainder on division by p; it is particularly important for p prime

$$\mathbb{Z}(p) = \mathbb{Z}_p = \{0, 1, \dots, p-1\}$$

One can define all four arithmetic operations (with the usual properties) on \mathbb{Z}_p for a prime p; division has to be restricted when p is not prime.

NB

 $(\mathbb{Z}_p, +, \cdot, 0, 1)$ are fundamental algebraic structures known as **rings**. These structures are very important in coding theory and cryptography.

Equivalence Classes and Partitions

Suppose $R \subseteq S \times S$ is an equivalence relation The **equivalence class** [s] (w.r.t. R) of an element $s \in S$ is

$$[s] = \{t : t \in S \text{ and } sRt\}$$

Fact

s R t if and only if [s] = [t].

Equivalence classes: Proof example

Proof

Suppose [s] = [t]. Recall $[s] = \{x \in S : (s, x) \in R\}$. We will show that $(s, t) \in R$.

Because R is reflexive, $(t, t) \in R$.

Therefore $t \in [t]$.

Because [t] = [s], it follows that $t \in [s]$.

But then $(s, t) \in R$ by the definition of [s].

Equivalence classes: Proof example

Proof

Now suppose $(s, t) \in R$. We will show [s] = [t] by showing $[s] \subseteq [t]$ and $[t] \subseteq [s]$.

Take any $x \in [s]$.

By the definition of [s], $(s,x) \in R$.

Since R is symmetric $(x, s) \in R$.

Since R is transitive and $(s, t) \in R$ we have that $(x, t) \in R$.

Since R is symmetric $(t, x) \in R$.

Therefore, $x \in [t]$.

Therefore $[s] \subseteq [t]$.

Equivalence classes: Proof example

Proof

Now suppose $(s, t) \in R$. We will show [s] = [t] by showing $[s] \subseteq [t]$ and $[t] \subseteq [s]$.

Take any $x \in [t]$.

By the definition of [t], $(t,x) \in R$.

Since R is transitive and $(s, t) \in R$ we have that $(s, x) \in R$.

Therefore $x \in [s]$.

Therefore $[t] \subseteq [s]$.

Partitions

Definition

A **partition** of a set S is a collection of sets S_1, \ldots, S_k such that

- S_i and S_j are disjoint (for $i \neq j$)
- $S = S_1 \cup S_2 \cup \cdots \cup S_k = \bigcup_{i=1}^k S_i$

The collection of all equivalence classes $\{[s]: s \in S\}$ forms a partition of S

In the opposite direction, a partition of a set defines the equivalence relation on that set. If $S = S_1 \cup \cdots \cup S_k$, then we can define $\sim \subseteq S \times S$ as:

 $s \sim t$ exactly when s and t belong to the same S_i .

Exercises

3.6.6 (supp) Show that $m \sim n$ iff $m^2 = n^2 \pmod{5}$ is an equivalence on $S = \{1, ..., 7\}$. Find all the equivalence classes.

Exercises

3.6.6 (supp) Show that $m \sim n$ iff $m^2 = n^2 \pmod{5}$ is an equivalence on $S = \{1, ..., 7\}$. Find all the equivalence classes.

- (a) It just means that $m = n \pmod{5}$ or $m = -n \pmod{5}$, e.g. $1 = -4 \pmod{5}$. This satisfies (R), (S), (T).
- (b) We have
- $[1] = \{1, 4, 6\}$
- $[2] = \{2, 3, 7\}$
- $[5] = \{5\}$

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Partial Order

A partial order \leq on S satisfies (R), (AS), (T). We call (S, \leq) a poset — partially ordered set

Examples

Posets:

- (\mathbb{Z}, \leq)
- $(Pow(X), \subseteq)$ for some set X
- (N, |)

Not posets:

- \bullet $(\mathbb{Z},<)$
- (ℤ, |)

Hasse diagram

Every finite poset (S, \leq) can be represented with a **Hasse** diagram:

- Nodes are elements of S
- An edge is drawn *upward* from x to y if $x \prec y$ and there is no z such that $x \prec z \prec y$

Example

Hasse diagram for positive divisors of 24 ordered by |:

Ordering Concepts

Definition

Let (S, \preceq) be a poset.

- **Minimal** element: x such that there is no y with $y \leq x$
- **Maximal** element: x such that there is no y with $x \leq y$
- Minimum (least) element: x such that $x \leq y$ for all $y \in S$
- Maximum (greatest) element: x such that $y \leq x$ for all $y \in S$

NB

- There may be multiple minimal/maximal elements.
- Minimum/maximum elements are the unique minimal/maximal elements if they exist.
- Minimal/maximal elements always exist in finite posets, but not necessarily in infinite posets.

Examples

Examples

- Pow($\{a, b, c\}$) with the order \subseteq \emptyset is minimum; $\{a, b, c\}$ is maximum
- Pow($\{a, b, c\}$) \ $\{\{a, b, c\}\}$ (proper subsets of $\{a, b, c\}$) Each two-element subset $\{a, b\}, \{a, c\}, \{b, c\}$ is maximal.
 - But there is no maximum

Ordering Concepts

Definition

Let (S, \preceq) be a poset.

- x is an **upper bound** for A if $a \leq x$ for all $a \in A$
- x is a **lower bound** for A if $x \leq a$ for all $a \in A$
- The **set of upper bounds** for A is defined as $ub(A) = \{x : a \leq x \text{ for all } a \in A\}$
- The **set of lower bounds** for A is defined as $lb(A) = \{x : x \leq a \text{ for all } a \in A\}$
- The least upper bound of A, lub(A), is the minimum of ub(A) (if it exists)
- The greatest lower bound of A, glb(A) is the maximum of lb(A) (if it exists)

glb and lub

To show x is glb(A) you need to show:

- x is a lower bound: $x \leq a$ for all $a \in A$.
- x is the greatest of all lower bounds: If $y \leq a$ for all $a \in A$ then $y \leq x$.

Example

Pow(X) ordered by \subseteq .

- $glb(A, B) = A \cap B$
- $lub(A, B) = A \cup B$

Ordering Concepts

Definition

Let (S, \preceq) be a poset.

- (S, \preceq) is a **lattice** if lub(x, y) and glb(x, y) exist for every pair of elements $x, y \in S$.
- (S, \leq) is a **complete lattice** if lub(A) and glb(A) exist for every subset $A \subseteq S$.

NB

A finite lattice is always a complete lattice.

Examples

Examples

- $\bullet~\{1,2,3,4,6,8,12,24\}$ partially ordered by divisibility is a lattice
 - e.g. $lub({4,6}) = 12$; $glb({4,6}) = 2$
- $\{1,2,3\}$ partially ordered by divisibility is not a lattice
 - {2,3} has no lub
- {2,3,6} partially ordered by divisibility
 - {2,3} has no glb
- \bullet $\{1, 2, 3, 12, 18, 36\}$ partially ordered by divisibility
 - {2,3} has no lub (12,18 are minimal upper bounds)

NB

An infinite lattice need not have a lub (or no glb) for an arbitrary infinite subset of its elements, in particular no such bound may exist for all its elements.

Examples

- (\mathbb{Z}, \leq) : neither $lub(\mathbb{Z})$ nor $glb(\mathbb{Z})$ exist
- $(\mathcal{F}(\mathbb{N}), \subseteq)$ [all finite subsets of \mathbb{N}]: lub exists for pairs of elements but not generally for (infinite) sets of elements. glb exists for any set of elements: intersection of a set of finite sets is finite.
- $(\mathcal{I}(\mathbb{N}),\subseteq)$ [all infinite subsets of \mathbb{N}]: glb does not exist for some pairs of elements (e.g. odds and evens). lub exists for any set of elements: union of a set of infinite sets is always infinite.

Exercises

11.1.5 Consider poset (\mathbb{R}, \leq)

- Is this a lattice?
- lacktriangle Give an example of a non-empty subset of $\mathbb R$ that has no upper bound.

- **(a)** Find lub($\{x: x^2 < 73\}$)
- ① Find glb($\{x: x^2 < 73\}$)

Exercises

11.1.5 Consider poset (\mathbb{R}, \leq)

- Is this a lattice? Yes
- Give an example of a non-empty subset of $\mathbb R$ that has no upper bound. $\mathbb R_{>0}=\{\ r\in\mathbb R:r>0\ \}$
- **⑤** Find lub({ $x ∈ \mathbb{R} : x < 73$ }) 73
- ① Find lub($\{x \in \mathbb{R} : x \leq 73\}$) 73
- **a** Find lub($\{x: x^2 < 73\}$) $\sqrt{73}$
- ① Find glb($\{x: x^2 < 73\}$) $-\sqrt{73}$

Total orders

Definition

A total order is a partial order that also satisfies:

(L) *Linearity* (any two elements are comparable):

For all x, y either: $x \le y$ or $y \le x$ (or both if x = y)

NB

On a finite set all total orders are "isomorphic" On an infinite set there is quite a variety of possibilities.

Examples

Examples

- ℤ with ≤: (no minimum/maximum element)
- \mathbb{Z} with $\{(x,y): x < 0 \le y \text{ or } |x| \le |y|\}$: (no maximum element, minimum element is -1)
- \mathbb{Z} with $\{(x,y): x < 0 \le y \text{ or } x \ge y\}$: (minimum element -1, maximum element 0)

Ordering of a Poset — Topological Sort

Definition

For a poset (S, \preceq) any total order \leq that is consistent with \preceq (if $a \preceq b$ then $a \leq b$) is called a **topological sort**.

Example

Consider

The following all are topological sorts:

$$a \le b \le e \le c \le f \le d$$

 $a < e < b < f < c < d$

$$a \le e \le f \le b \le c \le d$$

Well-Ordered Sets

Definition

A *well-ordered set* is a poset where every subset has a least element.

NB

The greatest element is not required.

Examples

- $\mathbb{N} = \{0, 1, \ldots\}$
- $\mathbb{N}_1 \dot{\cup} \mathbb{N}_2 \dot{\cup} \mathbb{N}_3 \dot{\cup} \dots$, where each $\mathbb{N}_i \simeq \mathbb{N}$ and $\mathbb{N}_1 < \mathbb{N}_2 < \mathbb{N}_3 \dots$

NB

Well-ordered sets are an important mathematical tool to prove termination of programs.

Combining Orders

Product order — can combine any partial orders. In general, it is only a *partial order*, even if combining total orders. For $s, s' \in S$ and $t, t' \in T$ define

$$(s,t) \leq (s',t')$$
 if $s \leq s'$ and $t \leq t'$

Practical Orderings

They are, effectively, total orders on the product of ordered sets.

- Lexicographic order defined on all of Σ^* . It extends a total order already assumed to exist on Σ .
- Lenlex the order on (potentially) the entire Σ^* , where the elements are ordered first by length.
 - $\Sigma^{(1)} \prec \Sigma^{(2)} \prec \Sigma^{(3)} \prec \cdots$, then lexicographically within each $\Sigma^{(k)}$. In practice it is applied only to the finite subsets of Σ^* .
- Filing order lexicographic order confined to the strings of the same length.
 - It defines total orders on Σ^i , separately for each i.

Example

Example

 $\boxed{11.2.5 }$ Let $\mathbb{B}=\{0,1\}$ with the usual order 0<1. List the elements 101,010,11,000,10,0010,1000 of \mathbb{B}^* in the (a) Lexicographic order

(b) Lenlex order

11.2.8 When are the lexicographic order and *lenlex* on Σ^* the same?

Example

Example

 $\lfloor 11.2.5 \rfloor$ Let $\mathbb{B}=\{0,1\}$ with the usual order 0<1. List the elements 101,010,11,000,10,0010,1000 of \mathbb{B}^* in the

- (a) Lexicographic order 000, 0010, 010, 10, 1000, 101, 11
- (b) Lenlex order 10, 11, 000, 010, 101, 0010, 1000

11.2.8 When are the lexicographic order and *lenlex* on Σ^* the same?

Only when $|\Sigma| = 1$.

Exercises

- 11.6.6 True or false?
- If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* also must be totally ordered.
- Every finite partially ordered set has a Hasse diagram.

Exercises

- If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* also must be totally ordered.
- Servery finite partially ordered set has a Hasse diagram.

Exercises

- If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered. True
- If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* also must be totally ordered. True
- Every finite partially ordered set has a Hasse diagram.

Exercises

- If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered. True
- If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* also must be totally ordered. True
- Every finite partially ordered set has a Hasse diagram. True

Exercises

- 11.6.6 True or false?
- Every finite partially ordered set has a topological sorting.
- Every finite partially ordered set has a minimum element.
- Every finite totally ordered set has a maximum element.
- An infinite partially ordered set cannot have a maximum element.

Exercises

- Every finite partially ordered set has a topological sorting. True
- Every finite partially ordered set has a minimum element.
- Every finite totally ordered set has a maximum element.
- An infinite partially ordered set cannot have a maximum element.

Exercises

- Every finite partially ordered set has a topological sorting. True
- Every finite partially ordered set has a minimum element.
 False
- Every finite totally ordered set has a maximum element.
- An infinite partially ordered set cannot have a maximum element.

Exercises

- Every finite partially ordered set has a topological sorting. True
- Every finite partially ordered set has a minimum element.
 False
- Every finite totally ordered set has a maximum element.
 True
- An infinite partially ordered set cannot have a maximum element.

Exercises

11.6.6 True or false?

- Every finite partially ordered set has a topological sorting. True
- Every finite partially ordered set has a minimum element.
 False
- Every finite totally ordered set has a maximum element.
 True
- An infinite partially ordered set cannot have a maximum element.

False

