Nonlinear Equations

Vasily Arzhanov

Reactor Physics, KTH

Overview

- Scalar/Vector NLE
- Multiplicity
- Bracket
- Sensitivity/conditioning
- Bracketing vs. Open domain Methods
- Bisection, Secant, Newton's, Muller's
- Fixed Point Iterations, FPI
- Practical Considerations

Nonlinear Equations

$$f(x) = b$$

$$f(x) \in C^1[c,d]$$

$$\mathbf{f}(\mathbf{x}) = \mathbf{b} \qquad \longleftrightarrow \qquad \begin{cases} f_1(x_1, \dots, x_n) = b_1 \\ \vdots \\ f_n(x_1, \dots, x_n) = b_n \end{cases}$$

Polynomial Equations

$$p_n(x) = a_n x^n + ... + a_1 x + a_0 = 0$$
 $a_n \neq 0$

$$p_1(x) = a_1 x + a_0 = 0 \longrightarrow x = -a_0 / a_1$$

$$p_2(x) = a_2 x^2 + a_1 x + a_0 = 0 \longrightarrow x_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2 a_0}}{2a_2}$$

Cubic Equation

$$p_3(x) = ax^3 + bx^2 + cx + d = 0$$

$$x = t - \frac{b}{3a} \longrightarrow t^3 + pt + q = 0$$

$$p = \frac{3ac - b^2}{3a^2} \qquad q = \frac{2b^3 - 9abc + 27a^2d}{27a^3}$$

$$t = u + v$$
 $u^3 = -\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$ $v^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$

Four-Bar Linkage

$$10\cos\alpha - 15\cos\phi + 11 - 6\cos(\alpha - \phi) = 0$$

Types of Solutions

Multiplicity

$$f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = 0$$
 $f^{(m)}(\alpha) \neq 0$

$$f(\alpha) = 0$$
 $f'(\alpha) \neq 0 \longrightarrow m = 1$

$$x^2 - 2x + 1 = 0$$

8

Intermediate Value Theorem

Continuous function

$$\lim_{x \to c} f(x) = f(c)$$

Let f(x) be a continuos function on [a,b] then f realises every value between f(a) and f(b). More precisely, if y is a number between a and b, then there exists a number c, $a \le c \le b$, such that y = f(c).

Sign Function

$$\operatorname{sgn}(x) = \operatorname{sign}(x) \equiv \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ +1 & x > 0 \end{cases}$$

Intermediate Value Theorem

If f(x) is continuous and $sign[f(a)] \neq sign[f(b)]$ then there exists $a < x^* < b$ such that $f(x^*) = 0$.

An interval [a,b] is said to be a bracket for f(x) if $sign[f(a)] \neq sign[f(b)]$.

There is no simple analogue for *n* dimensions.

Sensitivity

$$f(x) = b$$

$$f(x + \delta x) = b + \delta b = f(x) + f'(x)\delta x + O(\delta x^{2})$$

$$\delta b \approx f'(x)\delta x \longrightarrow \left|\delta x\right| \approx \frac{\left|\delta b\right|}{\left|f'(x)\right|} \longrightarrow \kappa_{abs}(x) \equiv \sup_{\delta \mathbf{b}} \frac{\left|\delta x\right|}{\left|\delta b\right|} \simeq \frac{1}{\left|f'(x)\right|}$$

$$\kappa_{abs}(\mathbf{x}) \equiv \sup_{\delta \mathbf{b}} \frac{\|\delta \mathbf{x}\|}{\|\delta \mathbf{b}\|} \simeq \|\mathbf{J}_{\mathbf{f}}^{-1}(\mathbf{x})\|; \quad \kappa(\mathbf{x}) \equiv \sup_{\delta \mathbf{b}} \frac{\|\delta \mathbf{x}\|/\|\mathbf{x}\|}{\|\delta \mathbf{b}\|/\|\mathbf{b}\|} \cong \|\mathbf{J}_{\mathbf{f}}^{-1}(\mathbf{x})\| \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|};$$

Conditioning

$$y = f(x) - b$$

Multiple Roots

$$b = f(x)$$

$$b + \delta b = f(x + \delta x) = f(x) + \frac{f^{(m)}(x)}{m!} (\delta x)^m + O((\delta x)^{m+1})$$

$$\delta b \approx \frac{f^{(m)}(x)}{m!} (\delta x)^m \longrightarrow \delta x \approx \frac{(\delta b)^{1/m}}{\left[f^{(m)}(x)/m! \right]^{1/m}}$$

$$\kappa_{abs}(x) \equiv \frac{1}{\left[f^{(m)}(x)/m!\right]^{1/m}}$$

Iteration Sequence

$$\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)} \xrightarrow[k \to \infty]{} \mathbf{x}$$

$$\mathbf{e}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x} \xrightarrow[k \to \infty]{} \mathbf{0}$$

- 1) Bounding the solution
 - Graphing
 - Incremental search
 - Past experience
 - Simplified model
 - Previous solution

- 2) Refining the solution
 - Closed domain (bracketing)
 - Open domain

Iteration Methods

- 1) Closed domain (bracketing)
 - Interval halving (bisection)
 - False position (Regula falsi)
- 2) Open domain
 - Fixed point
 - Newton's method
 - Secant method
 - Brent's method

Rate of Convergence

$$\lim_{k \to \infty} \frac{\left\| \mathbf{e}^{(k+1)} \right\|}{\left\| \mathbf{e}^{(k)} \right\|^p} = C \neq 0$$

•
$$p = 1$$
 Linear (C < 1)

•
$$p > 1$$
 Superlinear

•
$$p = 2$$
 Quadratic

•
$$p = 3$$
 Cubic

Digits gained per iteration

Constant

Increasing

Doubles

Triples

Bisection Method

Given a and b: $f(a) \cdot f(b) \le 0$

```
while b - a > tol
    m = a + (b - a)/2;
    if sign(f(a)) == sign(f(m))
        a = m;
    else
        b = m;
    end
end
```

Convergence of BM

- BM makes no use of function, only signs
- BM is certain to converge but not very fast
- Interval is halved, p = 1, C = 0.5
- One bit of accuracy is gained
- After k iterations, $(b-a)/2^k$, irrespective f

$$\frac{b-a}{2^k} < \varepsilon \longrightarrow k = \left\lceil \log_2 \frac{b-a}{\varepsilon} \right\rceil$$

Many Roots

Singularity

Cubic Equation

$$f(x) = x^3 + x - 1 = 0$$

[0,1]

$$f(0) = -1;$$
 $f(1) = +1.$

Scipione del Ferro (1465 – 1526)

Nicolo Tartaglia (1499/1500 – 1557)

Gerolamo Cardano, 1501 – 1576; cubic - 1545

$$x^3 + mx = n$$

$$x = \sqrt[3]{\frac{n}{2} + \sqrt{\left(\frac{n}{2}\right)^2 + \left(\frac{m}{3}\right)^3}} - \sqrt[3]{-\frac{n}{2} + \sqrt{\left(\frac{n}{2}\right)^2 + \left(\frac{m}{3}\right)^3}}$$

x = 0.6823278038280194

Example

$$f(x) = x^3 + x - 1 = 0$$
 [0,1]

\boldsymbol{k}	a_k	$f(a_k)$	$c_{\scriptscriptstyle k}$	$f(c_k)$	\boldsymbol{b}_{k}	$f(a_k)$
0	0.0000	-/	0.5000	_	1.0000	+
1	0.5000	_	0.7500	+	1.0000	+
2	0.5000	_	0.6250	_	0.7500	+
3	0.6250	_	0.6875	+	0.7500	+
4	0.6250	_	0.6562	_	0.6875	+
5	0.6562	_	0.6719	_	0.6875	+
6	0.6719	_	0.6797	_	0.6875	+
7	0.6797	_	0.6836	+	0.6875	+
8	0.6797	_	0.6816	_	0.6836	+
9	0.6816	_	0.6826	+	0.6836	+
$x_c = 0.6821$						

$$f(0) = -1;$$
 $f(1) = +1.$

$$x = 0.6821 \pm 0.0005$$

$$x = 0.6823278038280194$$

Efficiency

$$\left|x-x_{c}\right|<\frac{b-a}{2^{k+1}}$$

One function evaluation at each step cutting the uncertainty by 2.

A solution is **correct within** p **decimal places** if the error is less than 0.5×10^{-p} .

$$x = 0.6821 \pm 0.0005 = 0.6821 \pm 0.5 \times 10^{-3}$$

Improving Bisection Method

Mean Value Theorem

Iterative Scheme

$$f(\alpha) = 0 \longrightarrow f(\alpha) - f(x) = f'(\xi)(\alpha - x)$$

$$\alpha = x - \frac{f(x)}{f'(\xi)}$$

$$\tilde{\alpha} = x - \frac{f(x)}{q} \longrightarrow x_{k+1} = x_k - \frac{f(x_k)}{q_k}$$

Chord Method

$$x_{k+1} = x_k - \frac{f(x_k)}{q_k}$$

$$q_k = \frac{f(b) - f(a)}{b - a}$$

Secant Method

$$x_{k+1} = x_k - \frac{f(x_k)}{q_k}$$

$$q_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Algorithm

Given a and b: $f(a) \cdot f(b) \le 0$

```
while b - a > tol
\frac{m - a + (b - a)/2;}{if sign(f(a)) == sign(f(m))} m = \frac{af(b) - bf(a)}{f(b) - f(a)}
a = m;
else
b = m;
end
end
```

False Position vs. Secant

FP: Slow Convergence

More Realistic Example

$$f(x) = x^3 - 2x^2 + \frac{3}{2}x = 0$$

Secant

False Position

Convergence Theorem for SM

Secant method may produce iterates outside [a,b] whereas BM and FPM always generates approximations inside [a,b]. BM and FPM are regarded as globally convergent.

Theorem. Let f(x) be twice differentiable and $f''(\alpha) \neq 0$. Then if a and b are chosen sufficiently close to root then the secant methods converges to the solution with the order $p = (1+\sqrt{5})/2 \approx 1.63$

Newton's Method

$$x_{k+1} = x_k - \frac{f(x_k)}{q_k}$$

$$q_k = f'(x_k)$$

- 1) Open domain
- 2) Convergence order, p = 2

Numerical Example

$$f(x) = \cos^2(2x) - x^2 = 0$$
 $x \in [0, 3/2]$

Divergence of Newton's

Multiple Roots in Newton's

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Simple Multiple
$$p = 2$$
 $p = 1$ $C = 1 - 1/m$

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$$

Simple Multiple
$$p = 2$$
 $p = 2$

Modifications of Newton's

$$f(x) = (x - \alpha)^m h(x) \longrightarrow u(x) \equiv \frac{f(x)}{f'(x)} = \frac{(x - \alpha)h(x)}{mh(x) + (x - \alpha)h'(x)}$$

$$x_{k+1} = x_k - \frac{u(x_k)}{u'(x_k)}$$

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f''(x_k)}$$

Error Analysis

$$0 = f(\alpha) = f(x_k) + f'(x_k) (\alpha - x_k) + \frac{1}{2!} f''(\xi_k) (\alpha - x_k)^2$$

$$\underbrace{x_{k} - \frac{f(x_{k})}{f'(x_{k})}}_{x_{k+1}} - \alpha = \frac{1}{2!} \frac{f''(\xi_{k})}{f'(x_{k})} (x_{k} - \alpha)^{2}$$

$$e_{k+1} = \frac{1}{2!} \frac{f''(\xi_k)}{f'(x_k)} [e_k]^2 \approx \frac{1}{2!} \frac{f''(x_k)}{f'(x_k)} [e_k]^2$$

Convergence Theorem

There exists an interval, $I = [\alpha - r, \alpha + r]$ such that

$$f'(x) \neq 0 \quad \forall x \in I$$

$$|f''(x)| \le C \quad \forall x \in I$$

 x_0 is sufficiently close to α .

Failure Analysis

Bad starting point

- 1) Not close enough
- 2) Iteration point is stationary, $f(x) = 1 - x^2$
- 3) Iteration enters a cycle

Derivative issues

- 1) No derivative at root
- 2) Discontinuous derivative
- 3) Zero derivative at root
- 4) No second derivative

Infinite Cycle

$$f(x) = x^3 - 2x + 2 = 0$$

No Derivative

$$f(x) = \sqrt[3]{x}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{(x_k)^{1/3}}{1/3(x_k)^{-2/3}} = -2x_k$$

$$f(x) = |x|^{\gamma} \qquad 0 < \gamma \le 1/2$$

Discontinuous Derivative

$$f(x) = \begin{cases} 0 & x = 0 \\ x + x^2 \sin \frac{2}{x} & x \neq 0 \end{cases}$$
1) $f(x)$ is differential everywhere
2) $f(x)$ is infinitely differentiable, $x \neq 0$

$$f'(x) = \begin{cases} 1 & x = 0 \\ 1 + 2x \sin \frac{2}{x} - 2\cos \frac{2}{x} & x \neq 0 \end{cases}$$
However, Newton's method is divergent in any neighbourhood of the root!!

- 1) f(x) is differentiable
- differentiable, $x \neq 0$
- 3) $f'(0) \neq 0$
- 4) Derivative is bounded

neighbourhood of the root!!

Inverse Quadratic Interpolation

Muller, Dekker, Brent

1) Muller, 1956: Inverse Quadratic Interpolation;

2) Dekker, 1969: Bisection + Secant;

3) Brent, 1973: Bisection + Secant + Quadratic

	Bisection	Secant	Muller's	Newton's
Order	p = 1	p = 1.63	p = 1.84	p = 2

$$p = (1 + \sqrt{5})/2 \approx 1.63$$
 $x^3 - x^2 - x - 1 = 0$

Fixed Point Iterations

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \equiv \phi(x_k)$$

$$x_{k+1} = \phi(x_k) \longrightarrow x = \phi(x)$$

Newton's method:

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

$$0 = f(x) \longrightarrow x = x + f(x)$$

Convergence Theorem for FPI

1)
$$\phi: [a,b] \rightarrow [a,b]$$

1)
$$\exists^1 \ \alpha : \alpha = \phi(\alpha)$$

$$2) \phi \in C^1[a,b]$$

2)
$$x_k \xrightarrow[k \to \infty]{} \alpha$$

$$3) |\phi'(x)| \le K < 1$$

3)
$$\lim_{k\to\infty}\frac{x_{k+1}-\alpha}{x_k-\alpha}=\phi'(\alpha)$$

Example 1

$$f(x) = 1 + 2/x = x$$

$$f(x) = \frac{x^2 + 2}{2x - 1} = x$$

Example 2

$$f(x) = x^2 - 2 = x$$

$$f(x) = \sqrt{x+2} = x$$

Example 3

$$\cos x = \sin x$$

$$x + \cos x - \sin x = x$$

$$g(x) \equiv x + \cos x - \sin x$$

$$r = \pi/4 \approx 0.785398$$

$$\left|g'(r)\right| = \left|1 - \sqrt{2}\right| \approx 0.414$$

i	x_i	$g(x_i)$	$e_i = x_i - r $	e_i/e_{i-1}
0	0.0000000	1.0000000	0.7853982	0.000
1	1.0000000	0.6988313	0.2146018	0.273
2	0.6988313	0.8211025	0.0865669	0.403
3	0.8211025	0.7706197	0.0357043	0.412
4	0.7706197	0.7915189	0.0147785	0.414
5	0.7915189	0.7828629	0.0061207	0.414
6	0.7828629	0.7864483	0.0025353	0.414
7	0.7864483	0.7849632	0.0010501	0.414
8	0.7849632	0.7855783	0.0004350	0.414
9	0.7855783	0.7853235	0.0001801	0.414
10	0.7853235	0.7854291	0.0000747	0.415
11	0.7854291	0.7853854	0.0000309	0.414
12	0.7853854	0.7854035	0.0000128	0.414
13	0.7854035	0.7853960	0.0000053	0.414
14	0.7853960	0.7853991	0.0000022	0.415
15	0.7853991	0.7853978	0.0000009	0.409
16	0.7853978	0.7853983	0.0000004	0.444
17	0.7853983	0.7853981	0.0000001	0.250
18	0.7853981	0.7853982	0.0000001	1.000
19	0.7853982	0.7853982	0.0000000	

Concluding Remarks on FPI

$$|\phi'(\alpha)| < 1$$

• Locally convergent

• Divergent when

$$|\phi'(\alpha)| > 1$$

• It holds in vicinity of α

$$|x_{k+1} - \alpha| \approx |\phi'(\alpha)| |x_k - \alpha|$$

Quadratic convergence when

$$\phi'(\alpha) = 0$$

Babylonian Algorithm

Tablet YBC7289 Around 1750 BC

$$a = 1$$
 $b = 2/a = 2$

$$\sqrt{2} \approx \frac{1}{2} (a+b) = 1.5$$

$$x_0 = 1$$
 $x_{k+1} = \frac{1}{2} \left(x_k + \frac{2}{x_k} \right)$

$$\sqrt{2} \approx x_2 = 1.41\overline{6}$$

$$x_{k+1} = \phi(x_k)$$

$$x_{k+1} = \phi(x_k)$$
 $\phi(x) \equiv \frac{1}{2} \left(x + \frac{2}{x} \right)$

$$\phi'(\sqrt{2}) = 0$$

Linear Convergence Control

$$x_{k+1} - \alpha \approx C\left(x_k - \alpha\right) \qquad \text{Iterate until} \quad x_{k+1} - x_k \approx C\left(x_k - x_{k-1}\right)$$

$$x_k - \alpha \approx C\left(x_{k-1} - \alpha\right) \qquad \text{Evaluate} \qquad C \approx \left(x_{k+1} - x_k\right) / \left(x_k - x_{k-1}\right)$$

$$x_{k+1} - x_k \approx C\left(x_k - x_{k-1}\right) \qquad \text{Check:} \qquad -1 < C < 1$$

$$(1-C)(x_{k+1} - \alpha) \approx C(x_k - \alpha) = C(x_k - x_{k+1} + x_{k+1} - \alpha)$$

$$(1-C)(x_{k+1} - \alpha) \approx C(x_k - x_{k+1})$$

$$(x_{k+1} - \alpha) \approx \frac{C}{1-C}(x_k - x_{k+1})$$

Stopping Criterion

$$(x_{k+1} - \alpha) \approx \frac{C}{1 - C} (x_k - x_{k+1})$$

Set
$$SF$$
 such that $C' = \frac{|C|}{1 - C} SF \le 1$

Iterate until
$$C'|x_{k+1} - x_k| \le \varepsilon_{abs}$$

$$\left| \frac{\alpha - x_{k+1}}{\alpha} \right| \approx \left| \frac{\alpha - x_{k+1}}{x_{k+1}} \right| \approx \frac{|C|}{1 - C} \cdot \left| \frac{x_{k+1} - x_k}{x_{k+1}} \right|$$

Quadratic Conv. In Practice

- It is characterized by $|x_{k+1} \alpha| \approx C |x_k \alpha|^2$
- Rule of thumb 1:
 Number of correct digits doubles
- Use $x_k x_{k-1}$ as convergence indicator
- Displacement is $|x_k x_{k-1}| \approx |x_{k-1} \alpha|$
- Rule of thumb 2: Number of leading zeros doubles in $|x_k x_{k-1}|$

Important

- Scalar/Vector NLE
- Multiplicity
- Bracket
- Sensitivity/conditioning
- Bracketing vs. Open domain Methods
- Bisection, Secant, Newton's, Muller's
- Fixed Point Iterations, FPI