Evaluation - Produits Dérivés de taux

Richard GUILLEMOT

1er Mars 2019

Question 1 : Supposons un taux linéaire $R^L=1\%$ (100 bps). On considère :

- le taux équivalent actuariel de fréquence semestrielle \mathbb{R}^A .
- le taux équivalent continu R^C .

Parmi les assertions suivantes laquelle est correcte :

- a) $R^A = 99.75 \text{ bps } R^C = 99.50 \text{ bps.}$
- b) $R^A = 99.50 \text{ bps } R^C = 99.75 \text{ bps.}$
- c) $R^A = 100.50$ bps $R^C = 100.75$ bps.
- d) $R^A = 100.75 \text{ bps } R^C = 100.50 \text{ bps.}$

Question 2 : Si on emprunte 240 000 euros pour une durée de 20 ans à un taux de 2%, quelle mensualité doit on payer pour rembourser le capital et payer les intérêts :

- a) 900 euros.
- b) 1000 euros.
- c) 1200 euros.
- d) 1400 euros.

Question 3 : Nous sommes aujourd'hui le vendredi 1er Mars 2019, le prêt sous-jacent à l'EURIBOR 6M, qui sera fixé aujourd'hui, démarre :

- a) Vendredi 1er Mars 2019.
- b) Samedi 2 Mars 2019.
- c) Lundi 4 Mars 2019.
- d) Mardi 5 Mars 2019.

 $\bf Question~4:$ Parmi les produits suivants lequel est insensible à un mouvement de taux d'intérêts :

- a) une obligation à taux fixe le jour de son émission et à ses dates de tombée de coupon.
- b) une obligation à taux variable le jour de son émission et à ses dates de tombée de coupon.
 - c) un FRA.
 - d) un Swap.

Question 5 : On veut calculer la fraction (FA) d'année du 1er Mars 2019 au 1er Mars 2020 suivant les conventions A360, A365. Choisir la bonne réponse :

- a) $FA^{A365} = 0.997$ et $FA^{A360} = 1$
- b) $FA^{A365} = 1$ et $FA^{A360} = 1.013$
- c) $FA^{A365} = 1$ et $FA^{A360} = 1$.
- d) FAA365 = 1.013 et $FA^{A360} = 1$.

Pour les questions Q4 et Q5, nous supposerons une courbe de taux constante égale à 2% (taux actuariel à composition annuelle).

Question 6 : On achète aujourd'hui un contrat Futur MARS 2019 (nominal 1 millions de dollars) à un prix de 99.75. Le Libor 3M vaut aujourd'hui 0.20%. A la date d'échéance du contrat le 18 Mars 2019. Le Libor 3M a augmenté de 10 bps. Quelle est la somme totale des appels de marge :

- a) on a payé 125 euros.
- b) on a reçu 250 euros.
- c) on a reçu 500 euros.
- d) on a payé 1000 euros.

 $\bf Question~7:$ Parmi les caractéristiques suivantes d'un swap, laquelle n'a pas d'influence sur le calcul du taux de swap :

- a) La maturité du swap.
- b) La fréquence de la jambe fixe.
- c) La convention de calcul de la fraction d'année de la jambe fixe.
- d) La fréquence de la jambe variable.

Pour les questions 8 et 9 nous supposerons que la courbe des taux a une valeur constante égale à 2% (taux actuariel de fréquence annuelle).

Question 8 : Soit un swap payeur de taux fixe de maturité 15 ans de nominal 200 millions d'euros. Quelle est sa sensibilité :

- a) 2 kEUR/bp
- b) -25 kEUR/bp.
- c) +256 kEUR/bp.
- d) -2569 kEUR/bp.

Question 9 : Soit un swap de nominal 100 millions d'euros dont la sensibilité est de -47 kEUR/bp. Parmi les assertions suivantes laquelle est correcte :

- a) le swap est receveur de taux fixe et de maturité 5 ans.
- b) le swap est payeur de taux fixe et de maturité 5 ans.
- c) le swap est receveur de taux fixe et de maturité 10 ans.
- d) le swap est payeur de taux fixe et de maturité 10 ans.

 $\bf Question~10:$ Considérons l'analyse de sensibilités et les ratios de couverture précédents. Ils correspondent à quel produit :

- a) un swap au pair payeur de taux fixe de maturité 5 ans.
- b) un swap au pair receveur de taux fixe de maturité 5 ans.
- c) un swap à démarrage forward 5 ans et de maturité 5 ans payeur de taux fixe.
- d) un swap à démarrage forward 5 ans et de maturité 5 ans receveur de taux fixe.

Question 11 : Quel est le nominal du swap de la question précédente :

- a) 10 millions d'euros.
- b) 20 millions d'euros.
- c) 100 millions d'euros.
- d) 200 millions d'euros.

Question 12 : Soit une courbe de taux construite à partir des swaps de marché de maturité 1Y,2Y,3Y,4Y,5Y,7Y,10Y.

On calcule la couverture de produits dérivés de taux à partir d'une analyse de sensibilité au taux de marché.

Quels sont les produits sensibles au moins à 2 plots de la courbe :

- a) le swap de marché 5Y.
- b) le swap de marché 6Y.
- c) le swap de marché 7Y.
- d) le swap à démarrage forward 5 ans et de maturité 5 ans.

Plusieurs réponses sont possibles.

Question 13 : Soit un swap qui aujourd'hui a une sensibilité de $100~\rm kEUR/bp$ et une convexité de $100~\rm euro/bp/bp$. Si demain les taux augmentent de $1~\rm bp$, la sensibilité du swap sera de :

- a) 100 kEUR/bp.
- b) 100.1 kEUR/bp.
- c) 101 kEUR/bp.
- d) 200 kEUR/bp.

Question 14 : Le taux Libor forward $L(t,T_1,T_2)$ est martingale sous quelle probabilité :

- a) la probabilité risque neutre : Q.
- b) la probabilité forward neutre : $T_1 Q^{T1}$.
- c) la probabilité forward neutre : T_2 Q^{T2} .
- d) la probabilité Level à une période allant de T_1 à $T_2:Q^{LVL}$.

Plusieurs réponses sont possibles.

Question 15 : Le swap forward $S(t,T_0,T_n)$ est martingale sous quelle probabilité :

- a) la probabilité risque neutre : Q.
- b) la probabilité forward neutre : $T_0 Q^{T0}$.
- c) la probabilité forward neutre : $T_0 Q^{Tn}$.
- d) la probabilité Level à une période allant de : T_0 à T_n Q^{LVL} .

Question 16 : Quel est la loi de probabilité compatible avec des taux d'intérêts négatifs :

- a) la loi uniforme continue définie sur un intervalle [0,1].
- b) la loi lognormale.
- c) la loi normale.
- d) la loi du chi-deux.

Question 17 : Soit un taux d'intérêts R=2% et sa volatilité normale égale à 1%. La volatilité lognormale est égale à :

- a) 20%.
- b) 30%.
- c) 40%.
- d) 50%.

 $\bf Question~18:$ L'a chat d'une swaption receveuse de taux fixe protège son détenteur d' :

- a) une hausse de taux d'intérêts
- b) une baisse de taux d'intérêts
- c) un mouvement quelconque de taux
- d) la hausse du prix d'une obligation à taux fixe de même maturité.

Plusieurs réponses sont possibles.

$$\begin{split} \text{LVL}(t,T_0,T_n) &= \sum_{i=1}^n \delta_i \; B(t,T_i) \\ S(t,T_0,T_n) &= \frac{B(t,T_0) - B(t,T_n)}{\text{LVL}(t,T_0,T_n)} \\ \begin{cases} \mathbf{BS_{\text{call}}}(\tau,K,F,\sigma) &= F\mathcal{N}(d_1) - K\mathcal{N}(d_2) \\ \mathbf{BS_{\text{put}}}(\tau,K,F,\sigma) &= K\mathcal{N}(-d_2) - F\mathcal{N}(-d_1) \\ \mathcal{N} : \text{fonction de répartition de la loi normale centrée réduite} \\ d_1 &= \frac{\ln\left(\frac{F}{K}\right) + \frac{1}{2}\sigma^2\tau}{\sigma\sqrt{\tau}} \\ d_2 &= d_1 - \sigma\sqrt{\tau} \end{split}$$

Question 19 : Parmi les formules suivantes laquelle correspond à la valeur d'une swaption receveuse de taux fixe K, associée à l'échéancier, avec une hypothèse de taux lognormal :

- a) $B(t,T_n)$ $\mathbf{BS}_{put}(T_f-t,K,S(t,T_0,T_n),\sigma)$
- b) LVL (t, T_0, T_n) BS_{put} $(T_f t, K, S(t, T_0, T_n), \sigma)$
- c) LVL (t, T_0, T_n) BS_{call} $(T_n T_0, K, S(t, T_0, T_n), \sigma)$
- d) LVL (t, T_0, T_n) BS_{call} $(T_f t, K, S(t, T_0, T_n), \sigma)$

Les solutions font référence aux formules définies ci-dessus.

Question 20 : Supposons la valeur actuelle d'un taux d'intérêts R=1% et sa volatilité normale de $\sigma=1\%$. Quelle prime doit payer l'acheteur d'une swaption receveuse à la monnaie de taux fixe de maturité 1 an et de tenor 5 ans (le swap soujacent paiera ses derniers flux dans 6 ans), de nominal 100 millions d'euros :

- a) 500 000 euros.
- b) 1 000 000 euros.
- c) 1 500 000 euros.
- d) 2 000 000 euros.

Donner la valeur la plus proche de la valeur exacte.