Clase 2

Datos y métodos filogeneticos

Datos filogenéticos

1. Preparación de datos

- · Muestreo de grupos taxonómicos y regiones genómicas
- Alineamiento
- Filtración de datos

2. Inferencia filogenética

- · Selección de modelos
- Estimación de parametros (incluyendo el árbol)
- · Análisis e interpretación adicional

2

Datos filogenéticos

- · Seleccionar datos para optimisar señal:ruido
 - · Regiones que evolucionan lento para sistemas antiguas
 - Regiones que evolucionan rápido para sistemas recientes
- Homoplasia
 - Organismos comparten similitudes que no reflejan su evolución
- · Aprovechar los recursos disponibles

)

Típos de datos

- Secuencias
 - Nucleótidos
 - Amino ácidos
- Datos binarios (presencia/ausencia de características genomicas)
- Microsatelites (número de repeticiones)
- Polimorfismos de un solo nucleotido (Single Nucleotide Polimorphisms, SNPs)
- · Sequencias de representación reducida

Clase 2.2

Métodos filogenéticos

Máxima parsimonia

Máxima parsimonia

- Identifica la topología que expliquen los datos genéticos con el mínimo numero possible de cambios evolutivos
- · Frecuentemente usada para el análisis de datos morfológicos
- Hoy es usada rara vez para el analysis de datos moleculares
 - No permite estimar tasas moleculares o tiempos de divergencia
 - Tiene efectos indeseados cuando hay multiples sustituciones moleculares

Máxima verosimilitud

Verosimilitud filogenética

Probabilidad	Modelo
Árbol 1	0.1
Árbol 2	0.7
Árbol 3	0.15
Árbol 4	0.05
Suma	1

Verosimilitud filogenética

Probabilidad	Modelo
Árbol 1	0.1
Árbol 2	0.7
Árbol 3	0.15
Árbol 4	0.05
Suma	1

Una función matemática nos da la probabilidad de cáda árbol:

La función de verosimilitud filogenética

Verosimilitud filogenética

 Una sustitución molecular es un evento estocástico

17

Verosimilitud filogenética

- Una sustitución molecular es un evento estocástico
 - Nos interesa la probabilidad de transición

v =
Hipótesis de número

de cambios

18

Verosimilitud filogenética

- Una sustitución molecular es un evento estocástico
 - · Nos interesa la probabilidad de transición

V =
Hipótesis de número
de cambios

• La distribución poisson describe procesos estocasticos

Verosimilitud filogenética

- Una sustitución molecular es un evento estocástico
 - Nos interesa la probabilidad de transición

- La distribución poisson describe procesos estocasticos
 - La probabilidad de transición es dada por la ecuación equipale

Optimización de la verosimilitud

- Buscar en el espacio de posibles árboles y parametros
- · Calcular la verosimilitud de cada uno
- Encontrar el caso con la major verosimilitud
- · Optimización de multiples variables

25

Cómo encontrar el major árbol

 Para n organismos, el número de posibles árboles noenraizados (B_n) es:

$$B_n = 1 \times 3 \times 5 \times ... \times (2n - 5) = \prod_{i=3}^{n} (2i - 5)$$

- Por ejemplo:
 - 4 organismos → 3 árboles
 - 5 organismos → 15 árboles
 - 10 organismos → 2,027,025 árboles

Estimativos en máxima verosimilitud

Parametros para un modelo de sustitución

Un árbol filogenético con longitudes de ramas

33

¿Por qué la palabra verosimilitud?

Verosimilitudes son caracteristicas de modelos

Probabilidad	Modelo 1
Árbol 1	0.1
Árbol 2	0.7
Árbol 3	0.15
Árbol 4	0.05
Suma	1

34

¿Por qué la palabra verosimilitud?

Verosimilitudes son caracteristicas de modelos

Probabilidad	Modelo 1	Modelo 2	Modelo 3
Árbol 1	0.1	0.2	0.05
Árbol 2	0.7	0.29	0.35
Árbol 3	0.15	0.5	0.4
Árbol 4	0.05	0.01	0.2
Suma	1	1	1

35

¿Por qué la palabra verosimilitud?

Verosimilitudes son caracteristicas de modelos No suman a 1

Probabilidad	Modelo 1	Modelo 2	Modelo 3
Árbol 1	0.1	0.2	0.05
Árbol 2	0.7	0.29	0.35
Árbol 3	0.15	0.5	0.4
Árbol 4	0.05	0.01	0.2
Suma	1	1	1

P(D|H)

¿Por qué la palabra verosimilitud?

Verosimilitudes son caracteristicas de modelos No suman a 1

Probabilidad	Modelo 1	Modelo 2	Modelo 3
Árbol 1	0.1	0.2	0.05
Árbol 2	0.7	0.29	0.35
Árbol 3	0.15	0.5	0.4
Árbol 4	0.05	0.01	0.2
Suma	1	1	1

Probabilidad es una caracteristica de los datos Suma a 1

37

Fortalezas y debilidades

Fortalezas

- Es un método estadistico riguroso
- Corrige multiples sustituciones y atracción de ramas largas
- · Robusto a violaciones de sus asunciones

Debilidades

- Es difícil usar modelos con muchos parámetros
- Puede ser difícil cubrir el espacio de posibles árboles

38

Programas

RAxML

PAML

IQ-TREE

Máxima verosimilitud

· Rara vez usada para análisis molecular

· Máxima parsimonia

 Ampliamente utilizada, pero ahora parcialmente reemplazada por métodos Bayesianos

Métodos filogenéticos en la práctica

· Usada frequentemente para análisis de datos morfológicos