Fundamental Theorem of Calculus - A Proof by Definition

Derivative

$$\frac{\Delta f(x)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{(x+\Delta x) - x}$$

$$\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} = \frac{df(x)}{dx}$$

Integral

$$\sum_{i=a}^{b} f(x_i) \Delta x$$

$$\sum_{i=a}^{b} f(x_i) \Delta x$$

$$\lim_{\Delta x \to 0} \sum_{i=a}^{b} f(x_i) \Delta x = \int_{a}^{b} f(x) dx$$

The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, b] and F is an anti-derivative of f on the continuous interval [a, b], then $\int_a^b f(x)dx = F(b) - F(a)$

Approach - take the integral of a derivative of a function f(x)

Given that integration and differentiation are inverse operations taking the integral of the derivative should return the function itself f(x) in other words: $\int \frac{df(x)}{dx} dx = f(x)$

Intuition:
$$i\sum \frac{\Delta f(x)}{\Delta x} \Delta x = \sum \frac{\Delta f(x)}{\Delta x} \Delta x = \sum \Delta f(x) = f(x) ?$$

$$\therefore i\int \frac{df(x)}{dx} dx = \int df(x) = df(x_1) + df(x_2) + df(x_3) + ...df(x_n) = f(x) + c ?$$

The fundamental theorem of calculus can be rewritten using the approach

$$\int_{a}^{b} \frac{dF(x)}{dx} dx = \int_{a}^{b} dF(x)$$

 $\int_{a}^{b} \frac{dF(x)}{dx} dx = F(b) - F(a) \qquad | \text{ This can be proven as follows:}$ $\int_{a}^{b} \frac{dF(x)}{dx} dx = \int_{a}^{b} dF(x)$ Given $\Delta f(x) = f(x + \Delta x) - f(x)$ \therefore df(x) = f(x + dx) - f(x)| The Integral can be written as an alternating series

 $\int_{a}^{b} dF(x) = F(a+dx) - F(a) + F((a+dx) + dx) - F(a+dx) + F(((a+dx) + dx) + dx) - F((a+dx) + dx) + F((a+dx) + f(a+dx) + F((a+dx) + dx) + F((a+dx) + f(a+dx) + F((a+dx) + dx) + F((a+dx) + dx) + F((a+dx) + dx) + F((a+dx) + f(a+dx) + F((a+dx)$ $\dots + F(a + ndx) - f(a + (n-1)dx)$ | Every positive term can be canceled by subsequent negative term except for the negative term in the first sum and the positive term in the last sum

$$\int_{a}^{b} dF(x) = F(a+dx) - F(a) + F((a+dx)+dx) - F(a+dx) + F(((a+dx)+dx)+dx) - F((a+dx)+dx) + F((a+dx)+dx) +$$

$$\int_{a}^{b} dF(x) = F(a + ndx) - F(a) \qquad |b = a + n\Delta x \quad \therefore \quad a + ndx$$

$$\int_{a}^{b} dF(x) = F(b) - F(a) \qquad \Box$$

Indefinite Integral

 $\int \frac{dF(x)}{dx} dx = \int \frac{dF(x)}{dx} dx = \int dF(x) = F(x) + C$ | This can be proven as follows: $\int dF(x) = \int_{x_0}^x dF(t)$ | The indefinite integral can be rewritten using the change of variable technique as the definite integral $\int_{x_0}^x dF$ from an initial point x_0 to the variable x

Given $\Delta f(x) = f(x + \Delta x) - f(x)$ \therefore df(x) = f(x + dx) - f(x)The Integral can be written as an alternating series: $F(x_0 + dt) - F(x_0) + F((x_0 + dt) + dt) - F(x_0 + dt) + F(((x_0 + dt) + dt) + dt) - F((x_0 + dt) + dt) + dt$ $dt) + dt) + \dots + F(a + ndt) - f(a + (n-1)dt) \qquad | \text{ The alternating terms cancel out except two terms}$ $\int_{x_0}^x dF(t) = F(x_0 + ndx) - F(x_0) \qquad | x_0 + ndx \to x$ $\int_{x_0}^x dF(t) = F(x) - F(x_0) \qquad | x_0 \text{ is a point } F(x_0) \to C$

$$\int_{x_0}^x dF(t) = F(x_0 + nax) - F(x_0) \qquad |x_0 + nax| \to x
\int_{x_0}^x dF(t) = F(x) - F(x_0) \qquad |x_0 \text{ is a point } F(x_0) \to C$$

$$\int_{x_0}^{\infty} dF'(t) = F'(x) - F'(x_0) \qquad | x_0 \text{ is a point } F'(x_0) \to C$$

$$\int dF(x) = F(x) + C \qquad \square$$