

Coherent One Way (COW) QKD Protocol

João António, Daniel Pereira, Armando N. Pinto

Department of Electronic lecommunications and Informatics,
University of Aveiro, Aveiro, Portugal
Instituto de Telecomunicações, Aveiro, Portugal

©2005, it - instituto de telecomunicações

Inovacă

Step 1 Alice produces:

$$|0\rangle = |lpha
angle |0
angle$$

$$|1\rangle = |0\rangle |\alpha\rangle$$

$$|d\rangle = |\alpha\rangle |\alpha\rangle$$

where $|0\rangle$ is the vacuum state and $|\alpha\rangle$ is a coherent state of light with intensity $\mu=|\alpha|^2$.

Alice produces $|d\rangle$ with probability f and the quantum signal cannot be divided bitwise (coherence of the laser).

$$|...0d10...\rangle = |...:0\alpha:\alpha\alpha:\alpha0:0\alpha...\rangle$$

Step 2 Alice uses an attenuator to around 0.1 photons per pulse and then transmits through a quantum channel.

Step 3 Bob uses a 90:10 beamsplitter making 90% of the photons into the SPD₁ to arrival time measurements, the remaining 10% are used to measure phase coherence.

In the UMZI (Unbalanced Mach-Zehnder Interferometer) the delayed half of each pulse is recombined in the non-delayed half the next pulse.

Image based on the article 2017 - Roberts - Modulator-free coherent-one-way quantum key distribution

Step 4 Alice informs Bob when she sent a decoy pulse.

Step 5 They calculate the visibility (V) and the QBER (Q) of the key.

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

where the I_{max} and I_{min} are the average pulse intensities for constructive and destructive interference respectively.

They also share a small part of the key in a public channel, to see if there are errors in the message.

A loss of coherence and therefore a reduction of the visibility reveal the presence of an eavesdropper, in which case the key is simply discarded

COW - Protocol - Attacks

- Beam-splitting attack Eve removes a small part from the intensity of the original message and send the rest to bob in a no-losses channel (symbolized by a red line). Eve introduces additional errors in order to make her information equal to the Bob information.
- Active beam-splitting attack Eve removes smaller intensities of the message and can make individual measurements and block some of it.

COW - Protocol - Attacks

 Unambiguous state discrimination (USD) - Alice and Bob only check for coherence in two successive pulses. d So if Eve attacks while they don't check the coherence, she can do an unnoticed attack. But if systematically, they notice that no decoy is detected.

Name Discriminating

USD3 $|0\rangle |\alpha\rangle |0\rangle$

USD4a $|0\rangle |\alpha\rangle : |\alpha\rangle |0\rangle$

USD4b $|0\rangle : |\alpha\rangle |\alpha\rangle : |0\rangle$

