Microeconomia con Python Introducción

Edinson Tolentino MSc Economics

email: edinson.tolentino@gmail.pe

Twitter: @edutoleraymondi

18 de marzo de 2023

Contenido

Objetivo

Python Nucleus

Temas

Preferencias Función utilidad Curva de Indiferencia Problema del consumidor Bibliografía

Objetivos

Objetivo de la sesión: entender el entorno python (comandos basicos y mas usados) sobre aplicaciones de ejercicios de teoria del consumidor.

Objetivos secundarios: cambio de eneseñanza en la forma de llevar un curso teórico-práctico

Python Nucleus

Inscripcion de Python Nucleus (activar una cuenta)

Your home for data science and Python. Power up your data science workflows, innovate and collaborate, and find the perfect Python package.

Python

Python Nucleus

Las preferencias

- ▶ ¿Qué es el Cash for clunkers? :
- Crisis financieros y los ajustes en el comportamiento del consumidor (cambios notables en el sector automotriz)
- Programa de ayuda para realizar el comercio de autos antiguos , politica de venta de vehiculos
 - Oferta sobre los consumidores de un valor de \$ 4,500 sobre sus autos antiguos por un modelo más eficiente en el consumo de combustible
- Elección o decisión del consumidor sobre el programa
 - Elecciones de consumo en el hogar
 - Elección de renta (alquiler) del hogar, entre otras deciciones

Función de utilidad

- La función de utilidad es la representación matemática de las preferencias
- ▶ Partimos de la idea: $U(x, y) = \sqrt{xy}$ de la figura anterior.
- ► El concento de utilidad marginal (*UMg_i*) se define como: es la tasas con la cual cambia la utilidad total ante el consumo de uno de los bienes, entonces:

$$UMg_X = \frac{\partial U}{\partial x}$$

$$UMg_y = \frac{\partial U}{\partial y}$$

Pude identificar el valor de la utilidad marginal en la canasta A, B y C de la figura 2.

Curva de Indiferencia

- ► La Curva de Indiferencia:
 - Curva que conecta un conjunto de canastas de consumo que retorna el mismo nivel de satisfacción para el consumidor
- La función de utilidad esta representada:

$$U = \sqrt{xy}$$

- ► La curva de indiferencia posee las siguientes propiedades
 - Cuando el consumidor le gusta ambos bienes , toda curva de indiferencia posee una pendiente negativa
 - Las curvas de indiferencia no se pueden intersectar
 - Cada canasta de consumo se encuentra en una y solo una curva de indiferencia.

Curva de Indiferencia

- La Tasa marginal de sustitución (TMS):
 - Indica la disposición que posee el consumidor para intercambiar un bien por otro manteniendo su mismo nivel de utilidad
- Demostración (derivada total), dado dU = 0 (movimientos a lo largo de la curva):

$$dU = \frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy$$

$$\frac{dy}{dx} = -\frac{UMg_x}{UMg_y}$$

 Tambien conocido como la pendiente de la curva de indiferencia, denotano como:

$$TMS_{x,y} = \frac{UMg_x}{UMg_y}$$

x, hamburgers per week

Curva de Indiferencia

Ejemplo

► Analisis en Python sobre las caracteristicas de la función de utilidad

$$U = \sqrt{xy}$$

Responda las siguientes preguntas:

- 1. Determine la utilidad marginal del bien x
- 2. Determine la utilidad marginal del bien y
- 3. Determine la tasa marginal de sustitución

Genera un código que permita generar una función para medir la tasa marginal de una función de utilidad.

Curva de Indiferencia

Ejemplo

► Aplicación: En el 2008, un joven consumidor (14 a 24 años) compra 24 unidades de pistas de musica ,q1, por trimestre, ademas asiste (consume) a 18 eventos de musica ,q2, por trimestre. Su estimado de función de utilidad puede ser representado a trvés de la Cobb-Douglas:

$$U=q_1^{0.4}q_2^{0.6}$$

 realice el calculo de la tasa marginal de sustitución del presente problema en python. Dado la MRS (tasa marginal de sustitución) del ejercicio anterior, y donde q₁ = 24, q₂ = 18 y a = 0.4, entonces:

$$MRS = -\frac{U_1}{U_2} = -\frac{a}{1-a}\frac{q_2}{q_1} = -\frac{0.4}{0.6}\frac{18}{24} = -0.5$$

Problema del consumidor

Maximización de utilidad

La notación del problema del consumidor sera:

s.a
$$P.x \leq y$$

Si x^* es una solución entonces: $U(x^*) \geq U(x)$ para todo $x \in B$. Es aqui donde se obtiene las funciones de demandas ordinarias o marshelianas, para otros libros este parte esocnocida como la eleccion óptima.

Problema del consumidor

Figura 2: Elección óptima de la maximización de la utilidad con restricción

Problema del consumidor

Ejemplo

- ▶ Eric compra comida (medida por x) y ropa (medida por y) y tiene una función de utilidad U(x,y)=xy. Ademas se tiene que el precio de la comida es $P_x=20$ y el precio de vestido es $P_y=40$, ademas de posee solo un ingreso de 800 (replique el ejercicio en Python)
 - 1. Establesca la notación del problema del consumidor
 - Se le pide encontrar la solución del consumidor (demananda marshaliana) o la elección óptima

Problema del consumidor

Bosquejamos el problema del consumidor:

$$U(x, y) = xy$$

sujeto a:
$$20x + 40y = 800$$

Lagrange

$$L \equiv xy + \lambda \left(800 - 20x - 40y \right)$$

 La tasa marginal de sustitución (MRS)

$$MRS = \frac{y}{x}$$

$$MRS = \frac{P_x}{P_y} \rightarrow \frac{y}{x} = \frac{1}{2}$$

Entonces las dos ecuaciones:

$$20x + 40y = 800 \tag{1}$$

$$y=\frac{x}{2} \tag{2}$$

Las dos ecuaciones resueltas , encuentran: y = 10 , x = 20

Bibliografía

Bibliografía

Bibliografía

