

Prof. Seungchul Lee Industrial AI Lab.

- An important tool in
 - 1) Engineering problem solving and
 - 2) Decision science

Optimization

- 3 key components
 - 1) Objective function
 - 2) Decision variable or unknown
 - 3) Constraints

Procedures

- 1) The process of identifying objective, variables, and constraints for a given problem (known as "modeling")
- 2) Once the model has been formulated, optimization algorithm can be used to find its solutions

Optimization: Mathematical Model

• In mathematical expression

$$\min_{x} f(x)$$

subject to $g_i(x) \le 0$, $i = 1, \dots, m$

$$-x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \text{ is the decision variable}$$

- $-f:\mathbb{R}^n\to\mathbb{R}$ is objective function
- Feasible region: $C = \{x: g_i(x) \le 0, i = 1, \dots, m\}$
- $-x^* \in \mathbb{R}^n$ is an optimal solution if $x^* \in C$ and $f(x^*) \leq f(x)$, $\forall x \in C$

Optimization: Mathematical Model

In mathematical expression

$$\min_{x} f(x)$$

subject to $g_i(x) \le 0$, $i = 1, \dots, m$

• Remarks: equivalent

$$\min_{x} f(x) \quad \leftrightarrow \quad \max_{x} -f(x)$$

$$g_{i}(x) \leq 0 \quad \leftrightarrow \quad -g_{i}(x) \geq 0$$

$$h(x) = 0 \quad \leftrightarrow \quad \begin{cases} h(x) \leq 0 & \text{and} \\ h(x) \geq 0 \end{cases}$$

Unconstrained vs. Constrained

Convex Optimization

Convex Optimization

• An extremely powerful subset of all optimization problems

$$\begin{array}{ll}
\text{minimize} & f(x) \\
\text{subject to} & x \in \mathcal{C}
\end{array}$$

- $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function and
- Feasible region *C* is a convex set

- Key property of convex optimization:
 - all local solutions are global solutions

Linear Interpolation between Two Points

• $\vec{z} = \theta \vec{x} + (1 - \theta) \vec{y}$ and $\theta \in [0,1]$

$$ec{z} = ec{y} + heta(ec{x} - ec{y}) = heta ec{x} + (1 - heta)ec{y}, \qquad 0 \leq heta \leq 1$$

$$ext{or} \quad ec{z} = lpha ec{x} + eta ec{y}, \qquad lpha + eta = 1 \ ext{ and } 0 \leq lpha, eta$$

Convex Function and Convex Set

convex function

for any $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$ $f(\theta x+(1-\theta)y)\leq\theta f(x)+(1-\theta)f(y)$

convex set

for a
$$x,y\in\mathcal{C}$$
 and $\theta\in[0,1]$,
$$\theta x+(1-\theta)y\in\mathcal{C}$$

Solving Optimization Problems

Solving Optimization Problems

• Starting with the unconstrained, one dimensional case

- To find minimum point x^* , we can look at the derivative of the function f'(x)
- Any location where f'(x) = 0 will be a "flat" point in the function
- For convex problems, this is guaranteed to be a global minimum

Solving Optimization Problems

- Generalization for multivariate function $f: \mathbb{R}^n \to \mathbb{R}$
 - the gradient of f must be zero

$$\nabla_x f(x) = 0$$

• For defined as above, *gradient* is a *n*-dimensional vector containing partial derivatives with respect to each dimension

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

ullet For continuously differentiable f and unconstrained optimization, optimal point must have

$$\nabla_{x}f(x^{*})=0$$

How do we Find $\nabla_x f(x) = 0$

- Direct solution
 - In some cases, it is possible to analytically compute x^* such that $\nabla_x f(x^*) = 0$

$$f(x) = 2x_1^2 + x_2^2 + x_1x_2 - 6x_1 - 5x_2$$

$$\implies \nabla_x f(x) = \begin{bmatrix} 4x_1 + x_2 - 6 \\ 2x_2 + x_1 - 5 \end{bmatrix}$$

$$\implies x^* = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$q(x_1,\cdots,x_n)=\sum_{i=1}^n\sum_{j=1}^n h_{ij}x_ix_j=x^THx_i$$

Gradients

Matrix derivatives

у	$\frac{\partial y}{\partial x}$
Ax	A^T
$x^T A$	\boldsymbol{A}
$x^T x$	2 <i>x</i>
$x^T A x$	$Ax + A^Tx$

How to Find $\nabla_x f(x) = 0$

Direct solution

– In some cases, it is possible to analytically compute x^* such that $\nabla_x f(x^*) = 0$

у	$\frac{\partial y}{\partial x}$
Ax	A^T
$x^T A$	Α
x^Tx	2 <i>x</i>
$x^T A x$	$Ax + A^Tx$

$$f(x) = 2x_1^2 + x_2^2 + x_1x_2 - 6x_1 - 5x_2$$

$$\implies \nabla_x f(x) = \begin{bmatrix} 4x_1 + x_2 - 6 \\ 2x_2 + x_1 - 5 \end{bmatrix}$$

$$\implies x^* = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Examples

• affine function $g(x) = a^T x + b$

$$\nabla g(x) = a, \qquad \nabla^2 g(x) = 0$$

$$\nabla g(x) = 2Px + q, \qquad \nabla^2 g(x) = 2P$$

•
$$g(x) = ||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$$

$$\nabla g(x) = 2A^T A x - 2A^T b, \qquad \nabla^2 g(x) = 2A^T A$$

у	$\frac{\partial y}{\partial x}$
Ax	A^T
$x^T A$	Α
$x^T x$	2 <i>x</i>
$x^T A x$	$Ax + A^Tx$

Revisit: Least-Square Solution

• Scalar Objective: $J = ||Ax - y||^2$

$$J(x) = (Ax - y)^{T} (Ax - y)$$

$$= (x^{T}A^{T} - y^{T}) (Ax - y)$$

$$= x^{T}A^{T}Ax - x^{T}A^{T}y - y^{T}Ax + y^{T}y$$

$$\frac{\partial J}{\partial x} = A^{T}Ax + (A^{T}A)^{T}x - A^{T}y - (y^{T}A)^{T}$$

$$= 2A^{T}Ax - 2A^{T}y = 0$$

$$\implies (A^{T}A) x = A^{T}y$$

$$\therefore x^{*} = (A^{T}A)^{-1}A^{T}y$$

у	$\frac{\partial y}{\partial x}$
Ax	A^T
$x^T A$	Α
x^Tx	2 <i>x</i>
$x^T A x$	$Ax + A^Tx$

$$egin{aligned} \min_{X} \left\| E
ight\|^2 &= \min_{X} \left\| AX - B
ight\|^2 \ X^* &= \left(A^T A
ight)^{-1} A^T B \ B^* &= AX^* &= A ig(A^T A ig)^{-1} A^T B \end{aligned}$$

How do we Find $\nabla_x f(x) = 0$

- Iterative methods
 - More commonly the condition that the gradient equal zero will not have an analytical solution, require iterative methods

- The gradient points in the direction of "steepest ascent" for function f

Descent Direction (1D)

• It motivates the *gradient descent* algorithm, which repeatedly takes steps in the direction of the negative gradient

$$x \leftarrow x - \alpha \nabla_x f(x)$$

for some step size $\alpha > 0$

Gradient Descent

Repeat: $x \leftarrow x - \alpha \nabla_x f(x)$ for some step size $\alpha > 0$

Gradient Descent in High Dimension

Repeat:
$$x \leftarrow x - \alpha \nabla_x f(x)$$
 for some step size $\alpha > 0$

Global cost minimum $J_{\min}(\omega)$

Gradient Descent in High Dimension

Repeat: $x \leftarrow x - \alpha \nabla_x f(x)$ for some step size $\alpha > 0$

Choosing Step Size lpha

• Learning rate

very slowly

Too big: overshoot and even diverge

Reduce size over time

Where will We Converge?

Any local minimum is a global minimum

Multiple local minima may exist

- Random initialization
- Multiple trials

Gradient Descent

$$egin{aligned} &\min & (x_1-3)^2 + (x_2-3)^2 \ &= \min & rac{1}{2}[\,x_1 \quad x_2] \left[egin{aligned} 2 & 0 \ 0 & 2 \end{matrix}
ight] \left[egin{aligned} x_1 \ x_2 \end{matrix}
ight] - \left[\,6 \quad 6\,
ight] \left[egin{aligned} x_1 \ x_2 \end{matrix}
ight] + 18 \end{aligned}$$

• Update rule: $X_{i+1} = X_i - \alpha_i \nabla f(X_i)$

```
H = np.matrix([[2, 0],[0, 2]])
g = -np.matrix([[6],[6]])

x = np.zeros((2,1))
alpha = 0.2

for i in range(25):
    df = H*x + g
    x = x - alpha*df

print(x)
```

$f = rac{1}{2} X^T H X + g^T X$
abla f = HX + g

у	$\frac{\partial y}{\partial x}$
Ax	A^T
$x^T A$	Α
$x^T x$	2 <i>x</i>
$x^T A x$	$Ax + A^Tx$

Practically Solving Optimization Problems

- The good news: for many classes of optimization problems, people have already done all the "hard work" of developing numerical algorithms
 - A wide range of tools that can take optimization problems in "natural" forms and compute a solution
- We will use CVX (or CVXPY) as an optimization solver
 - Only for convex problems
 - Download: https://www.cvxpy.org/
- Gradient descent
 - Neural networks/deep learning
 - TensorFlow