Einführung Cloud Computing

Fahrplan

- 1. Einführung
- 2. Bereitstellungsmodelle
- 3. Service Modelle
- 4. High Availability / Durability

1. Einführung

Server

- CPU
- RAM

Probleme mit diesem Ansatz

- Miete, Strom, Kühlung, Wartung, Austausch Hardware
- Überwachung Infrastruktur durch Personal
- Katastrophen ...

weiteres Problem

Skalierbarkeit

Cloud Computing

 Bereitstellung bedarfsgerechter Rechenleistung, Datenbankspeicher, Anwendungen und anderer IT-Ressourcen

Stichwort on-demand

Was heißt das?

Cloud Computing

pay-as-you-go

Zurück zur Cloud

Was bietet sie noch?

Eine Oberfläche, mit der man auf Server, Speicher, Datenbanken und mehr zugreifen kann

Verwaltung

AWS = **Amazon Web Services** besitzt + verwaltet die Hardware, die für Anwendungsdienste erforderlich ist

Aufgabe

Welche Cloud-Dienste nutzt ihr selbst?

Was bezahlt ihr davon?

Was wird euch dabei angeboten zu bezahlen?

2. Bereitstellungsmodelle

- Private Cloud
- Public Cloud
- Hybrid Cloud

Private Cloud

- unternehmensintern
- wird nur von einem Unternehmen genutzt
- komplette Kontrolle
- Erfüllung geschäftlicher Anforderungen

Public Cloud

- AWS, Google Cloud, Azure
- Cloud-Ressourcen im Besitz Anbieters
- von Besitzer betrieben
- über das Internet bereitsgestellt
- wir können Ressourcen anfordern + nutzen

Hybrid Cloud

- Mischung
- Ergänzung Rechenzentrum + public Cloud
- Ergänzung private Cloud + public Cloud
- einiges lokal halten + weitere Funktionen public Cloud nutzen

Aufgabe

Zuordnung von Situationen zu den möglichen Bereitstellungsmodellen

3. Service-Modelle

- Infrastructure-as-a-Service (laaS)
- Platform-as-a-Service (PaaS)
- Software-as-a-Service (SaaS)

Infrastructure-as-a-Service (laaS)

Bereitstellung von IT-Bausteinen:

- Virtuelle Maschinen
- Speicherplatz
- Netzwerkkomponenten (Router, Firewall ...)
- parallel nutzbar mit lokaler IT

Beispiel: Ein Unternehmen entscheidet sich, seine internen Server in die Cloud zu verlagern. Anstatt physische Server zu kaufen und zu verwalten, nutzen sie virtuelle Maschinen auf einer Cloud-Plattform.

Platform-as-a-Service (PaaS)

- Entwicklungsumgebungen
- Datenbanken
- keine Verwaltung der Infrastruktur
- Fokus Bereitstellung + Verwaltung Anwendungen

Beispiel: Ein Softwareentwicklerteam verwendet eine PaaS-Lösung wie Heroku, um eine neue Webanwendung zu entwickeln und bereitzustellen. Das Team kann sich auf die Entwicklung der Anwendung konzentrieren, während die PaaS-Plattform die zugrunde liegende Infrastruktur wie Server und Datenbanken verwalten.

Software-as-a-Service (SaaS)

- E-Mail-Dienste
- Büroanwendungen
- fertige Produkte, die vom Anbieter ausgeführt werden

Beispiel: Ein Unternehmen abonniert einen SaaS-E-Mail-Dienst wie Gmail oder Outlook 365, um E-Mail-Kommunikation für seine Mitarbeiter bereitzustellen. Die Mitarbeiter können auf ihre E-Mails über einen Webbrowser oder eine mobile App zugreifen, ohne dass das Unternehmen eine eigene E-Mail-Infrastruktur betreiben oder verwalten muss.

4. High Availability / Durability

High Availability = Hochverfügbarkeit

Was heißt das?

Definition

Hochverfügbarkeit bezeichnet die Fähigkeit eines Systems, kontinuierlich in Betrieb zu bleiben und Ausfallzeiten zu minimieren

Aufgabe

Was könnten Gründe sein, dass ein System Ausfallzeiten hat?

Eine Lösung

Systemredundanz

Was heißt das?

Beispiel: Banking-App

- Kontostand einsehen
- Überweisungen tätigen
- Geldeingänge

Was, wenn etwas scheitert?

Was passiert mit den Daten?

Fehlertoleranz

- große Bruder/Schwester von Hochverfügbarkeit
- Systemausfall = nutzende Menschen bemerken keine Unterschiede

Gedankenspiel

- ohne Cloud
 - = Hochverfügbarkeit teuer
 - = Fehlertoleranz außerordentlich teuer

Wieso?

- Hardware müsste bezahlt werden, ob wir sie brauchen oder nicht
- laufende Kosten (Betrieb, Miete...)

Durability = Haltbarkeit

Haltbarkeit der Daten

• wieviele Dateien gehen in einem Jahr verloren?

99% 1 von 100 Objekten weg 99,999% 1 von 100.000 Objekten weg

Gründe für Datenverlust

- Hardwarefehler (z.B. Festplattenausfall)
- Menschliche Fehler (z.B. versehentliches Löschen von Dateien)
- Softwarefehler (z.B. fehlerhafte Updates oder Systemabstürze)
- Datendiebstahl oder -beschädigung durch Cyberangriffe
- Naturkatastrophen oder externe Einflüsse (z.B. Feuer, Überschwemmungen)

Was kann man dagegen tun?

- Redundante Speicherung auf verschiedenen Medien oder Standorten
- Implementierung von Mechanismen zur Datenintegritätsprüfung
- regelmäßige Backups für Wiederherstellbarkeit
- Kontinuierliche Überwachung der Dateninfrastruktur