# Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»



# Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему

«Обработка признаков»

Выполнил: студент группы ИУ5-23М Дин Но

# Цель лабораторной работы:

Изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

## Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
  - о устранение пропусков в данных;
  - о кодирование категориальных признаков;
  - о нормализацию числовых признаков.

# Ход выполнения работы

# 1. Обработка пропусков в данных

Данные, которые я выбираю, - это то, как каждая страна в мире ежедневно вакцинируется против нового коронавируса.

```
In [1]: import numpy as np
       import pandas as pd
       import seaborn as sns
       import sklearn.impute
       import sklearn.preprocessing
       pd.set option("display.width",70)
       data=pd.read_csv("covid19.csv")
       data.head
Out[1]: <bound method NDFrame.head of
                                         country iso_code
                                                                date total_vaccinations
            Albania ALB 2021-01-10
                        ALB 2021-01-11
       1
            Albania
                                                       NaN
            Albania
                       ALB 2021-01-12
                                                     128.0
            Albania
       3
                       ALB 2021-01-13
                                                     188.0
                        ALB 2021-01-14
                                                     266.0
            Albania
                         ...
                     NaN 2021-02-11
       3307
              Wales
                                                 719954.0
             Wales NaN 2021-02-12
                                                 753669.0
       3308
              Wales
Wales
                        NaN 2021-02-13
NaN 2021-02-14
       3309
                                                   776224.0
       3310
                                                  790211.0
              Wales NaN 2021-02-15
       3311
                                                  803178.0
             people_vaccinated people_fully_vaccinated \
       0
                          0.0
       1
                          NaN
                                                  NaN
                        128.0
                                                  NaN
       3
                        188.0
                                                  NaN
                        266.0
```

#### data.dtypes

```
object
country
iso_code
                                          object
                                          object
date
total vaccinations
                                         float64
people vaccinated
                                         float64
people_fully_vaccinated
                                         float64
daily_vaccinations_raw
                                         float64
daily vaccinations
                                         float64
total vaccinations per hundred
                                         float64
people vaccinated per hundred
                                         float64
people fully vaccinated per hundred
                                         float64
daily_vaccinations_per_million
                                         float64
vaccines
                                          object
                                          object
source name
source_website
                                          object
dtype: object
```

Найдем все пропуски в данных:

| data.isnull().sum()    | #Обработка і | пропусков в | данных |
|------------------------|--------------|-------------|--------|
| country                | 0            |             |        |
| iso_code               | 260          |             |        |
| date                   | 0            |             |        |
| total_vaccinations     | 1167         |             |        |
| people_vaccinated      | 1538         |             |        |
| people_fully_vaccinate | 2175         |             |        |
| daily_vaccinations_rav | 1528         |             |        |
| daily_vaccinations     | 126          |             |        |
| total_vaccinations_per | 1167         |             |        |
| people_vaccinated_per_ | 1538         |             |        |
| people_fully_vaccinate | ed 2175      |             |        |
| daily_vaccinations_per | 126          |             |        |
| vaccines               | 0            |             |        |
| source_name            | 0            |             |        |
| source_website         | 0            |             |        |
| dtype: int64           |              |             |        |

Очевидно, что мы будем работать с колонкой 'people\_fully\_va ccinated' или 'people\_fully\_vaccinated\_per\_hundred'. Я выбрал 'people\_fully\_vaccinated\_per\_hundred'

Самый простой вариант — заполнить пропуски нулями:

```
sns.distplot(data['people_fully_vaccinated_per_hundred'].fillna(0));
/Users/ding/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributeprecated function and will be removed in a future version. Please adaplevel function with similar flexibility) or `histplot` (an axes-level swarnings.warn(msg, FutureWarning)
```



Видно, что в данной ситуации это приводит к выбросам. Логичнее было бы приложениям без данных присваивать средний:

```
mean_imp = sklearn.impute.SimpleImputer(strategy="mean")
mean_rat = mean_imp.fit_transform(data[["people_fully_vaccinated_per_hundred"]])
sns.distplot(mean_rat);
```

/Users/ding/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:25! eprecated function and will be removed in a future version. Please adapt your code level function with similar flexibility) or `histplot` (an axes-level function for warnings.warn(msg, FutureWarning)



# Попробуем также медианный и самые частые данные:

```
med_imp = sklearn.impute.SimpleImputer(strategy="median")
med_rat = med_imp.fit_transform(data[["people_fully_vaccinated_per_hundred"]])
sns.distplot(med_rat);

/Users/ding/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2!
eprecated function and will be removed in a future version. Please adapt your cod
level function with similar flexibility) or `histplot` (an axes-level function for
warnings.warn(msg, FutureWarning)
```



```
freq_imp = sklearn.impute.SimpleImputer(strategy="most_frequent")
freq_rat = freq_imp.fit_transform(data[["people_fully_vaccinated_per_hundred"]])
sns.distplot(freq_rat);
```

/Users/ding/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:255 eprecated function and will be removed in a future version. Please adapt your code level function with similar flexibility) or `histplot` (an axes-level function for warnings.warn(msg, FutureWarning)



Видно, что самый близкий к нормальному распределению график дало обычное среднее значение. Остановимся на нём:

```
data["people_fully_vaccinated_per_hundred"] = mean_rat
```

# 2. Кодирование категориальных признаков

Рассмотрим колонку 'vaccines':

```
data["people fully vaccinated per hundred"] = mean rat
vaccines1 = data["vaccines"].dropna().astype(str) #Кодирование категориальных признаков
vaccines1.value_counts()
Moderna, Oxford/AstraZeneca, Pfizer/BioNTech
                                                                                        970
Pfizer/BioNTech
                                                                                        771
Oxford/AstraZeneca, Pfizer/BioNTech
                                                                                        521
Moderna, Pfizer/BioNTech
                                                                                        327
Sputnik V
                                                                                        127
Oxford/AstraZeneca
                                                                                         99
Sinovac
                                                                                         71
Pfizer/BioNTech, Sinovac
                                                                                         64
Sinopharm/Beijing, Sinopharm/Wuhan, Sinovac
                                                                                         57
Pfizer/BioNTech, Sinopharm/Beijing
                                                                                         56
Oxford/AstraZeneca, Sinopharm/Beijing
                                                                                         56
Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing, Sinopharm/Wuhan, Sputnik V
Pfizer/BioNTech, Sinopharm/Beijing, Sputnik V
Covaxin, Oxford/AstraZeneca
                                                                                         33
Oxford/AstraZeneca, Sinovac
Oxford/AstraZeneca, Sputnik V
                                                                                         21
Sinopharm/Beijing
                                                                                         17
Oxford/AstraZeneca, Sinopharm/Beijing, Sputnik V
Name: vaccines, dtype: int64
```

### Выполним кодирование категорий целочисленными значениями:

```
le = sklearn.preprocessing.LabelEncoder()
vaccines1 le = le.fit transform(vaccines1)
print(np.unique(vaccines1_le))
le.inverse_transform(np.unique(vaccines1_le))
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
array(['Covaxin, Oxford/AstraZeneca',
       'Moderna, Oxford/AstraZeneca, Pfizer/BioNTech',
       'Moderna, Pfizer/BioNTech', 'Oxford/AstraZeneca',
       'Oxford/AstraZeneca, Pfizer/BioNTech',
       'Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing, Sinopharm/Wuhan, Sputnik V',
       'Oxford/AstraZeneca, Sinopharm/Beijing',
       'Oxford/AstraZeneca, Sinopharm/Beijing, Sputnik V',
       'Oxford/AstraZeneca, Sinovac', 'Oxford/AstraZeneca, Sputnik V',
       'Pfizer/BioNTech', 'Pfizer/BioNTech, Sinopharm/Beijing',
       'Pfizer/BioNTech, Sinopharm/Beijing, Sputnik V',
       'Pfizer/BioNTech, Sinovac', 'Sinopharm/Beijing',
       'Sinopharm/Beijing, Sinopharm/Wuhan, Sinovac', 'Sinovac',
       'Sputnik V'], dtype=object)
```

Выполним кодирование категорий наборами бинарных значений:

vaccines\_oh = pd.get\_dummies(vaccines1)
vaccines\_oh.head()

| i/AstraZeneca,<br>izer/BioNTech,<br>pharm/Beijing,<br>pharm/Wuhan,<br>Sputnik V | Oxford/AstraZeneca,<br>Sinopharm/Beijing | Oxford/AstraZeneca,<br>Sinopharm/Beijing,<br>Sputnik V | Oxford/AstraZeneca,<br>Sinovac | Oxford/AstraZeneca,<br>Sputnik V | Pfizer/BioNTech | Pfizer/BioNTech,<br>Sinopharm/Beijing | Pfizer/BioNTech,<br>Sinopharm/Beijing,<br>Sputnik V | P |
|---------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|--------------------------------|----------------------------------|-----------------|---------------------------------------|-----------------------------------------------------|---|
| 0                                                                               | 0                                        | 0                                                      | 0                              | 0                                | 1               | 0                                     | 0                                                   |   |
| 0                                                                               | 0                                        | 0                                                      | 0                              | 0                                | 1               | 0                                     | 0                                                   |   |
| 0                                                                               | 0                                        | 0                                                      | 0                              | 0                                | 1               | 0                                     | 0                                                   |   |
| 0                                                                               | 0                                        | 0                                                      | 0                              | 0                                | 1               | 0                                     | 0                                                   |   |
| 0                                                                               | 0                                        | 0                                                      | 0                              | 0                                | 1               | 0                                     | 0                                                   |   |
|                                                                                 |                                          |                                                        |                                |                                  |                 |                                       |                                                     |   |

vaccines\_oh[vaccines\_oh["Sputnik V"] == 1].head()

| aZeneca,<br>Sinovac | Oxford/AstraZeneca,<br>Sputnik V | Pfizer/BioNTech | Pfizer/BioNTech,<br>Sinopharm/Beijing | Pfizer/BioNTech,<br>Sinopharm/Beijing,<br>Sputnik V |   | Sinopharm/Beijing | Sinopharm/Beijing,<br>Sinopharm/Wuhan,<br>Sinovac | Sinovac | Sputnik<br>V |
|---------------------|----------------------------------|-----------------|---------------------------------------|-----------------------------------------------------|---|-------------------|---------------------------------------------------|---------|--------------|
| 0                   | 0                                | 0               | 0                                     | 0                                                   | 0 | 0                 | 0                                                 | 0       | 1            |
| 0                   | 0                                | 0               | 0                                     | 0                                                   | 0 | 0                 | 0                                                 | 0       | 1            |
| 0                   | 0                                | 0               | 0                                     | 0                                                   | 0 | 0                 | 0                                                 | 0       | 1            |
| 0                   | 0                                | 0               | 0                                     | 0                                                   | 0 | 0                 | 0                                                 | 0       | 1            |
| 0                   | 0                                | 0               | 0                                     | 0                                                   | 0 | 0                 | 0                                                 | 0       | 1            |
|                     |                                  |                 |                                       |                                                     |   |                   |                                                   |         |              |

# 3. Масштабирование данных

Для начала попробуем обычное MinMax-масштабирование:

```
mm = sklearn.preprocessing.MinMaxScaler() # Масштабирование данных sns.distplot(mm.fit_transform(data[["people_fully_vaccinated_per_hundred"]]));
```

/Users/ding/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:20 eprecated function and will be removed in a future version. Please adapt your conclevel function with similar flexibility) or `histplot` (an axes-level function for warnings.warn(msg, FutureWarning)



Результат вполне ожидаемый и вполне приемлемый. Но попробуем и другие варианты, например, масштабирование на основе Z-оценки:

```
ss = sklearn.preprocessing.StandardScaler()
sns.distplot(ss.fit_transform(data[["people_fully_vaccinated_per_hundred"]]));

/Users/ding/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:
eprecated function and will be removed in a future version. Please adapt your collevel function with similar flexibility) or `histplot` (an axes-level function warnings.warn(msg, FutureWarning)
```



Также результат ожидаемый, но его применимость зависит от дальнейшего использования.

# Список литературы

- [1] Гапанюк Ю. Е. Лабораторная работа «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных» [Электронный ресурс] // GitHub. 2019. Режим доступа: https://github.com/ugapanyuk/ml\_course/wiki/LAB\_MISSING (дата обращения: 05.04.2019).
- [2] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource]//Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 20.02.2019).
- [3] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/ (online; accessed: 20.02.2019).

- [4] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).
  [5] Gupta L. Google Play Store Apps [Electronic resource] // Kaggle. 2019. Access mode: https://www.kaggle.com/lava18/google-play-store-apps (online; accessed:05.04.2019).