Module 12: DC circuits

Keywords: resistor, in series, parallel, current, voltage, circuit Formulas:

• $I = \frac{V}{R}$ (Ohm's law); $I = \frac{\Delta Q}{\Delta +}$ (flow of charges)

• $P = IV = I^2R = \frac{V^2}{R}$ (power)

Key points:

Formal definition: series circuit has one complete conducting pathway.

 $V_b = \sum V_i$; $I_b = \overline{I}_i$; $R_{ror} = \sum R_i$

Parallel circuit has more than one complete conducting pathway. $V_b = V_i$; $I_b = \Xi I_i$; $\frac{1}{R_{TOT}} = \Xi \frac{1}{R_i}$

General approach:

- · Identify what type of circuit it is. If it consists of several different parts, clearly mark them.
- · If two resistors are connected directly to each other only from one side they are in series.
- · If two resistors are connected to each other from both sides they are in parallel.
- · Try to reduce the system of resistors by replacing two nearby resistors with one with relevant resistance depending on conection type.

Tip: series circuits are easier to deal with rather than parallel, so try to get rid of all resistors connected in parallel first.

. Finally, apply Ohm's low.

Nazar Budaieu 2019