Построение доверительных интервалов*

Общий вид закона распр. ген. сов. X	Параметры	Центральная статистика и ее закон распределения
	μ – неизв., σ – изв. Оценить μ .	$\frac{\mu - \overline{X}}{\sigma} \sqrt{n} \sim N(0,1)$
$N(\mu, \sigma^2)$	μ – неизв., σ – неизв. Оценить μ .	$\frac{\mu - \overline{X}}{S(\overline{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$
	μ – неизв., σ – неизв. Оценить σ .	$\frac{S^2(\vec{X}_n)}{\sigma^2}(n-1) \sim \chi^2(n-1)$
$\operatorname{Exp}(\lambda)$	λ – неизв. Оценить λ .	$2\lambda n\overline{X} \sim \chi^2(2n)$

Проверка статистических гипотез*

для нормально распределенной генеральной совокупности $X \sim N(\mu, \sigma^2)$

	Основная гипотеза H_0	Конкур. гипотеза H_1	Статистика T и ее закон распределения при H_0	Условие, определяющее критическую область W
I. о изв.	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$	$T(\vec{X}) = \frac{\mu_0 - \overline{X}}{\sigma} \sqrt{n} \sim N(0,1)$	$T(\vec{X}) \geqslant u_{1-\alpha}$ $T(\vec{X}) \leqslant -u_{1-\alpha}$
о неизв.	μ μ_0	$\mu \neq \mu_0$ $\mu < \mu_0$ $\mu > \mu_0$	$T(\vec{X}) = \frac{\mu_0 - \overline{X}}{S(\vec{X})} \sqrt{n} \sim \text{St}(n-1)$ $T(\vec{X}_{n_i}, \vec{Y}_{n_i}) =$	$\begin{aligned} \left T(\vec{X}) \right \geqslant u_{1-\alpha/2} \\ T(\vec{X}) \geqslant t_{1-\alpha} \\ T(\vec{X}) \leqslant -t_{1-\alpha} \end{aligned}$
o2 II. c		$\mu \neq \mu_0$		$\left T(\vec{X})\right \geqslant t_{1-\alpha/2}$
III. о1 и о изв.	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$ $\mu_1 \neq \mu_2$	$= \frac{\overline{X}_{n_1} - \overline{Y}_{n_2}}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0,1)$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant u_{1-\alpha}$ $\left T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \right \geqslant u_{1-\alpha/2}$
IV. σ1=σ2 и неизв.	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\overline{X}_{n_1} - \overline{Y}_{n_2}}{\sqrt{1/n_1 + 1/n_2}} \times$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant t_{1-lpha}$
		$\mu_1 \neq \mu_2$	$\times \frac{\sqrt{n_1 + n_2 - 2}}{\sqrt{(n_1 - 1)S^2(\vec{X}_{n_1}) + (n_2 - 1)S^2(\vec{Y}_{n_2})}}$ $\sim \operatorname{St}(n_1 + n_2 - 2)$	$\left T(\vec{X}_{n_1}, \vec{Y}_{n_2})\right \geqslant t_{1-\alpha/2}$
V.	$\sigma = \sigma_0$	$\sigma > \sigma_0$	$T(\vec{X}) = \frac{S^{2}(\vec{X})}{\sigma_{0}^{2}}(n-1) \sim \chi^{2}(n-1)$	$T(\vec{X}) \geqslant h_{1-\alpha}$
		$\sigma < \sigma_0$ $\sigma \neq \sigma_0$		$T(\vec{X}) \leqslant h_{\alpha}$ $\boxed{\left[T(\vec{X}) \leqslant h_{\alpha/2}\right] \lor \left[T(\vec{X}) \geqslant h_{1-\alpha/2}\right]}$
VI	$\sigma_1 = \sigma_2$	$\sigma_1 > \sigma_2$ $\sigma_1 < \sigma_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = S^2(\vec{Y}_{n_1})$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant F_{1-\alpha}(n_1 - 1, n_2 - 1)$
		$\sigma_1 \neq \sigma_2$	$= \frac{S^{2}(X_{n_{1}})}{S^{2}(\vec{Y}_{n_{2}})} \sim F(n_{1}-1, n_{2}-1)$	$[T \geqslant F_{1-\alpha/2}(n_1 - 1, n_2 - 1)] \lor \lor [T \leqslant 1 / F_{1-\alpha/2}(n_2 - 1, n_1 - 1)]$

^{*} \overline{X} – выборочное среднее, S^2 — исправленная выборочная дисперсия, α — уровень значимости критерия, u_q , t_q , h_q , F_q — квантили уровня q соответствующих распределений.