Trabajo 3.6 Comparación de un algoritmo poblacional y uno de trayectoria (mochila)

Universidad Internacional Menéndez Pelayo Máster en Investigación en Inteligencia Artificial Resolución de problemas con metaheurísticas

> **Autor:** Christian Luna Escudero 100011517@alumnos.uimp.es 5 de mayo de 2024

1 Introducción

Introducción

- Punto de Partida
- Problema a Resolver
- 2 Antecedentes
- 3 Propuestas implementadas
- 4 Experimentación
- 6 Conclusiones y Futuras mejoras
- 6 Demostración código

Punto de Partida

• ssGA: Steady State GA o NEO Research Group

Figura: Metaheurísticas

Introducción

Mochila Multidimensional

Mochila Multidimensional

Sea n el número de objetos, m el número de dimensiones, x el vector solución a evaluar, p el vector de beneficios, w la matriz de pesos y c el vector de capacidades, se plantea:

$$\mathsf{Maximizar} \ \sum_{j=1}^n p(j) x(j) \tag{1}$$

Sujeto a
$$\sum_{j=1}^{n} w(i,j)x(j) \le c(i), \quad \forall i \in \{1,...,m\}$$
 (2)

$$x(j) \in \{0, 1\}, \quad \forall j \in \{1, ..., n\}$$
 (3)

Introducción

Mochila Multidimensional

Ejemplo ilustrativo - Fondo de inversión

- Mochila: Fondo de inversión.
- Objetos/Recursos: Proyectos potenciales para inversión.
- Generación de beneficios: Beneficio proyecto.
- Presupuesto establecido: Límite en el gasto total.
- Dimensiones: Inversión inicial, costo operativo, costo de riesgo, etc.
- Capacidades: Límites presupuestarios para cada tipo de costo.

Antecedentes 000

- 2 Antecedentes

- **5** Conclusiones y Futuras mejoras

Algoritmo genético

Figura: Esquema General

Figura: Efecto de la temperatura

Tsuzuki, M. S. G. (Ed.). (2012). Simulated Annealing: Advances, Applications and Hybridizations. BoD-Books on Demand.

- 1 Introducción
- 2 Antecedentes
- 3 Propuestas implementadas
- 4 Experimentación
- **5** Conclusiones y Futuras mejoras
- 6 Demostración código

Algoritmo Evolutivo

- Nuevo operadores:
 - Operador de Cruce Uniforme (UC).
 - Operador de Mutación por Intercambio

Enfriamiento Simulado

Temperatura Inicial.

$$T_0 = \frac{\sum_{i=1}^{n} (f(j) - f(i))}{n \times log(P)}$$

- Entorno de Vecindad.
- Recalentamiento.
- Lectura de ficheros con datos del problema.
- Argumentos por línea de comandos.
- Reproducción de experimentos mediante semillas.

- Introducción

- 4 Experimentación
 - Bases de Datos
 - Ajuste de parámetros
- **6** Conclusiones y Futuras mejoras

Bases de Datos

Multidimensional knapsack problem

- $mknap1.txt \rightarrow 7$ conjuntos de datos
- $mknapcb1.txt \rightarrow 8$ conjuntos de datos

Repetidas las pruebas 30 veces (semillas 0-29).

Algoritmo Evolutivo

Parámetros de estudio

- Tipo de Cruce (TP): {SPX (0), UC (1)}
- Tipo de Mutación (TM): {Base (0), Intercambio (1)}
- Probabilidad de Cruce (PC): {0.9, 0.75, 0.5}
- Probabilidad de Mutación (PM): {0.01, 0.1, 0.3}

Friedman test: p - value = 0.73674

Figura: Test de Nemenyi con un $\alpha=0.05$

Enfriamiento Simulado

Parámetros de estudio

Factor de enfriamiento (annealingFactor): {0.5, 0.75, 0.9 y 0.99}

Friedman test:
$$p - value = 1{,}11515 \times 10^{-6}$$

Figura: Test de Nemenyi con un $\alpha = 0.05$

Comparativa de algoritmos

Problema	Optimo	GA	SA	Tiempo GA (segundos)	Tiempo SA (segundos)
problem_mknap1	3800	3800.0000 ± 0.0000	3800.0000 ± 0.0000	40.2000 +- 6.3594	44.1000 +- 7.5263
problem_mknap2	8706.1	8387.3633 +- 184.6547	8706.1000 ± 0.0000	218.4000 +- 59.6586	72.7000 +- 17.8483
problem_mknap3	4015	4000.0000 +- 29.3316	4015.0000 ± 0.0000	173.5000 +- 104.2579	118.0000 +- 33.6216
problem_mknap4	6120	5781.1667 +- 455.8900	6099.6667 ± 19.9107	262.3000 +- 41.6199	228.5333 +- 38.0524
problem_mknap5	12400	11791.1667 +- 721.1912	12276.5000 ± 114.5843	286.4333 +- 19.9390	277.1000 +- 46.8338
problem_mknap6	10618	10347.2333 +- 248.0582	10488.6000 ± 68.0657	282.2667 +- 13.8886	278.0333 +- 17.6937
problem_mknap7	16537	16007.0333 +- 517.0312	16172.8667 ± 176.4250	313.9333 +- 16.4420	306.8667 +- 29.6575
problem_mknap8	?	22921.4667 +- 338.8957	21228.7333 ± 367.9183	387.5333 +- 22.7425	397.4333 +- 28.7986
problem_mknap9	?	22891.4667 +- 435.1268	21011.6333 ± 403.8887	383.7000 +- 22.9289	386.8000 +- 29.8657
problem_mknap10	?	22413.9667 +- 388.4578	20132.4333 ± 290.8252	383.6000 +- 29.3453	372.0333 +- 27.4144
problem_mknap11	?	22441.8333 +- 276.2221	20796.5000 ± 213.1111	390.1333 +- 30.9502	400.0667 +- 21.5101
problem_mknap12	?	22773.3333 +- 434.5767	21031.6667 ± 454.5438	382.8667 +- 23.6450	377.2333 +- 24.5127
problem_mknap13	?	23158.4667 +- 454.8408	21326.1667 ± 265.1401	388.6000 +- 38.3024	382.2000 +- 31.1453
problem_mknap14	?	23927.4333 +- 412.3731	22183.8333 ± 374.7711	333.8333 +- 21.9609	376.6000 +- 29.7664
problem_mknap15	?	22180.2000 +- 381.8350	20367.3000 ± 290.3934	379.6000 +- 41.6782	336.5667 +- 50.0301

Tabla: Comparativa algoritmo poblacional vs basado en trayectorias

Métrica	Estadístico	p-valor	Resultado
Fitness	21		Se rechaza H0 con $\alpha=0.05$
Tiempo	32		No se rechaza H0 con $\alpha=0.05$

Comparativa de algoritmos

Figura: Fitness en el "problem_mknap12" (semilla 12) para las primeras 50000

Comparativa de algoritmos

Figura: Fitness en el "problem_mknap12" (semilla 12) para las primeras 10000

- 1 Introducción
- 2 Antecedentes
- 3 Propuestas implementadas
- 4 Experimentación
- 5 Conclusiones y Futuras mejoras
- 6 Demostración código

Conclusiones

- Mejora en la comprensión de Algoritmos Metaheurísticos.
- Ausencia de diferencias significativas con 50,000 evaluaciones para el tiempo.
- Convergencia Prematura en el Algoritmo Genético.
- Facilidad de uso.

Futuras mejoras

- Para el Algoritmo Genético:
 - Métodos de Reemplazo Generacional Alternativos.
 - Reinicios para Fomentar Diversidad.
 - Ajuste adaptativo para las probabilidades de mutación y cruce.
- Para el Enfriamiento Simulado:
 - Estudiar otras funciones para el enfriamiento.
 - Estudiar la posibilidad de otros operadores de vecindario.
- Estudiar otras metaheurísticas poblacionales y de trayectorias.

- **5** Conclusiones y Futuras mejoras
- 6 Demostración código

Trabajo 3.6 Comparación de un algoritmo poblacional y uno de trayectoria (mochila)

Universidad Internacional Menéndez Pelayo *Máster en Investigación en Inteligencia Artificial Resolución de problemas con metaheurísticas*

Christian Luna Escudero

c.luna@uco.es

