Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2

"Синтез помехоустойчивого кода" Вариант №73

> Выполнил: Студент группы Р3118 Зыков Дмитрий Андреевич Преподаватель: Рыбаков Степан Дмитриевич

г. Санкт-Петербург

СОДЕРЖАНИЕ

		Стр).
1	Задания		3
2	Основные этапы вычисления	. 4	4
3	Вывод	. (9
\mathbf{C}	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	. 1()

1 Задания

Проверить двоичный код на ошибочность, если есть ошибки – исправить:

```
№ 55: 1110011 (классический код Хэмминга (7,4))
№ 92: 1000110 (классический код Хэмминга (7,4))
№ 17: 0010001 (классический код Хэмминга (7,4))
№ 74: 0011101(классический код Хэмминга (7,4))
№ 72: 0011100100001 (классический код Хэмминга (15,11))
```

Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

2 Основные этапы вычисления

№55

	1	2	3	4	5	6	7	
Полученное	1	1	1	0	0	1	1	
Полученное сообщение								
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i ₁	r 3	\mathbf{i}_2	i 3	i 4	S
1	X		X		X		X	S ₁
2		X	X			X	X	s ₂
4				X	X	X	X	S ₃

Рисунок 2.1 — схема декодирования кода Хэмминга (7,4)

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$
 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$

Так как первый синдром показал ошибку, следовательно ошибка в бите с номером 1

№92

	1	2	3	4	5	6	7	
Полученное	1	0	0	0	1	1	0	
Полученное сообщение								
2x	\mathbf{r}_1	\mathbf{r}_2	i ₁	r ₃	i ₂	i 3	i 4	S
1	X		X		X		X	s ₁
2		X	X			X	X	s ₂
4				X	X	X	X	S3

Рисунок 2.2 — схема декодирования кода Хэмминга (7,4)

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$
 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

Так как второй синдром показал ошибку, следовательно ошибка в бите с номером 2

№17

	1	2	3	4	5	6	7	
Полученное	0	0	1	0	0	0	1	
Полученное сообщение								
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i ₁	r ₃	\mathbf{i}_2	i 3	i 4	S
1	X		X		X		X	s ₁
2		X	X			X	X	s ₂
4				X	X	X	X	S ₃

Рисунок 2.3 — схема декодирования кода Хэмминга (7,4)

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$
 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$

Так как третий синдром показал ошибку, то ошибка в бите с номером 4

№74

	1	2	3	4	5	6	7	
Полученное	0	0	1	1	1	0	1	
сообщение								
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i ₁	r 3	\mathbf{i}_2	i 3	i 4	S
1	X		X		X		X	s ₁
2		X	X			X	X	s_2
4				X	X	X	X	S ₃

Рисунок 2.4 — схема декодирования кода Хэмминга (7,4)

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$
 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

Так как первый и третий синдром показал ошибку, то ошибка в бите с номером 1+4=5.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Полученное	0	0	1	1	1	0	0	1	0	0	0	0	1	0	0	
сообщение																
2 ^x	\mathbf{r}_1	r ₂	i ₁	r 3	\mathbf{i}_2	i 3	i 4	r 4	i 5	i ₆	i 7	i ₈	i 9	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	s_1
2		X	X			X	X			X	X			X	X	s_2
4				X	X	X	X					X	X	X	X	S3
8								X	X	X	X	X	X	X	X	S4

Рисунок 2.5 — схема декодирования кода Хэмминга (15,11)

Так как первый, второй и третий синдромы показали ошибку, то ошибка в бите с номером 1+2+4=7.

Сумма номеров всех 5 вариантов заданий равна 55+92+17+74+72=310 А сумма, умноженная на 4, равна 1240 По формуле определения минимального числа контрольных разрядов $2r \geq r+i+1$, где r-1 минимальное кол-во проверочных битов, i-1 кол-во информационных битов, мы получим, что $2r-r \geq 1240+1$ Из этого следует, что минимальное кол-во проверочных битов r-10 информации равняется r-11, то есть коэффициент избыточности равен r-11 из r-12 r-13 голов r-14 в r-14 голов информации равняется r-15 голов r-16 информации равняется r-16 есть коэффициент избыточности равен r-16 голов информации равняется r-16 голов r-17 голов r-17

```
def ff(x):
print('Введите набор из 7 цифр "0" и "1" ')
s = input()
if (s.count("1")+s.count("0"))!=7 or (s.count("1")+s.count("0"))!=len(s) :
    print('Вы ввели неправильный набор')
   nb=0
   r1=s[0]
   r2=s[1]
    r3=s[3]
   sind1 = (r1+s[2]+s[4]+s[6])
    sind2 = (r2+s[2]+s[5]+s[6])
    sind3 = (r3+s[4]+s[5]+s[6])
    if sind1.count("1")%2!=0:
    if sind2.count("1")%2!=0:
    if sind3.count("1")%2!=0:
    t=(s[:k-1]+ff(s[k-1])+s[k:])
    print(t[2]+t[4]+t[5]+t[6])
       print('Ошибка не обнаружена')
       print('Ошибка в бите № '+ str(k))
```

Рисунок 2.6 — Программа для проверки кода Хэмминга в Python: https://clck.ru/32GBEx

Рисунок 2.7 — схема декодирования кода Хэмминга (7,4)

Рисунок 2.8 — схема декодирования кода Хэмминга (15,11)

3 Вывод

В ходе выполнения данной лабораторной работы я познакомился с понятием помехоустойчивых кодов, наиболее подробно изучил код Хэмминга. То есть научился находить ошибки при передачи в подобных кодах, а также декодировать их. Подобные алгоритмы имеют множество применений, они значительно повышают надежность хранения информации, что и является их основным применением.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки - 1976 год [Электронный ресурс]. – URL:

https://clck.ru/32Edig

2. Презентация «Код Хэмминга» Балакшин П.В — 2021-2022 год [Электронный ресурс]. — URL:

https://clck.ru/32EdYJ