MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 04	Andrés Montoya	405409
11. Mai 2021	_	Til Mohr	405959

E-Test

Aufgabe 2

(a) Falls φ_1 unerfüllbar ist, dann muss $\varphi_1 \Rightarrow \emptyset$ gültig sein.

$$(\rightarrow \Rightarrow) \frac{X \vee Y \Rightarrow X, Y}{(\Rightarrow \land)} \frac{(\vee \Rightarrow) \frac{X, Z \Rightarrow Y}{X \vee Y, Z \Rightarrow Y}}{(Y \vee \Rightarrow) \frac{X \vee Y, X \rightarrow Z \Rightarrow Y}{X \vee Y, X \rightarrow Z \Rightarrow Y}} (*) \frac{X \vee Y, X \rightarrow Z \Rightarrow Y}{(\Rightarrow \land)} \frac{X \vee Y, X \rightarrow Z \Rightarrow Y \wedge \neg Z}{(\neg \Rightarrow) \frac{X \vee Y, X \rightarrow Z \Rightarrow Y \wedge \neg Z}{\neg (Y \wedge \neg Z), X \vee Y, X \rightarrow Z \Rightarrow \emptyset}} (\land \Rightarrow) \frac{(\land \Rightarrow) \frac{(\land \Rightarrow) \frac{X \vee Y, X \rightarrow Z \Rightarrow Y \wedge \neg Z}{\neg (Y \wedge \neg Z), (X \vee Y) \wedge (X \rightarrow Z) \Rightarrow \emptyset}}{(\land \Rightarrow) \frac{(\land \Rightarrow) \frac{(\land \land \land) \wedge ((X \vee Y) \wedge (X \rightarrow Z)) \Rightarrow \emptyset}{\neg (Y \wedge \neg Z) \wedge ((X \vee Y) \wedge (X \rightarrow Z)) \Rightarrow \emptyset}}$$

- (*) liefert uns jedoch die falsifizierende Interpretation $\mathfrak{I}: X, Z \mapsto 1, Y \mapsto 0$, die also ein Modell für φ_1 ist.
- (b) Falls φ_2 eine Tautologie ist, muss $\emptyset \Rightarrow \varphi_2$ gültig sein.

$$(\vee \Rightarrow) \frac{C \Rightarrow C, A, B}{(\Rightarrow \vee)} \frac{B \Rightarrow C, A, B}{C \vee B \Rightarrow C, A \vee B}$$

$$(\Rightarrow \vee) \frac{C \vee B \Rightarrow C, A \vee B}{C \vee B \Rightarrow C, A \vee B} \qquad C \vee B, C \Rightarrow C$$

$$(\neg \Rightarrow) \frac{(A \vee B) \rightarrow C, C \vee B \Rightarrow C}{(A \vee B) \rightarrow C, C \vee B, \neg C \Rightarrow C}$$

$$(\Rightarrow \neg) \frac{(A \vee B) \rightarrow C, C \vee B \Rightarrow C, \neg \neg C}{(A \vee B) \rightarrow C, C \vee B \Rightarrow C, \neg \neg C}$$

$$(\Rightarrow \vee) \frac{(A \vee B) \rightarrow C, C \vee B \Rightarrow C \vee \neg \neg C}{(A \vee B) \rightarrow C, C \vee B \Rightarrow C \vee \neg \neg C}$$

$$(\Rightarrow \rightarrow) \frac{(A \vee B) \rightarrow C, C \vee B \Rightarrow C \vee \neg \neg C}{((A \vee B) \rightarrow C) \wedge (C \vee B) \Rightarrow C \vee \neg \neg C}$$

$$(\Rightarrow \rightarrow) \frac{(A \vee B) \rightarrow C, C \vee B \Rightarrow C \vee \neg \neg C}{(A \vee B) \rightarrow C, C \vee B) \Rightarrow C \vee \neg \neg C}$$

Da alle Blätter Axiome sind, ist die Sequenz bewiesen und φ_2 also eine Tautologie.

- (a)
- (b)

$$(\leftrightarrow \Rightarrow) \frac{\Gamma \Rightarrow \Delta, \varphi, \psi \qquad \Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \leftrightarrow \psi \Rightarrow \Delta}$$

$$(\Rightarrow \leftrightarrow) \frac{\Gamma, \varphi \Rightarrow \Delta, \psi \qquad \Gamma, \psi \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \varphi \leftrightarrow \psi}$$

(b) (i) Sei $\Gamma = \emptyset = \Delta, \psi = x, \vartheta = \neg x$. Die Prämisse $x, \neg x \Rightarrow \emptyset$ ist offensichtlich gültig, da die linke Seite unerfüllbar ist. Die Konklusion ist jedoch ungültig, da $x \vee \neg x$ erfüllbar ist.

Somit ist $(\lor \Rightarrow)'$ nicht korrekt.

(ii) Fall 1: Sei $\Gamma \Rightarrow \Delta$ gültig. Dann sind offensichtlich beide Prämissen und die Konklusion gültig.

Fall 2: Sei $\Gamma \Rightarrow \Delta$ nicht gültig. Damit die Prämissen gültig sind, muss $\Gamma \Rightarrow \psi$ und $\Gamma \Rightarrow \vartheta$ gelten. Dann ist ja auch $\Gamma \Rightarrow \psi \vee \vartheta$ gültig. Damit ist $(\Rightarrow \vee)'$ korrekt.

Das erweiterte Sequenzenkalkül ist jedoch nicht korrekt.

Sei $\Gamma = \{x\}, \Delta = \emptyset, \psi = x, \vartheta = \neg x$. Dann ist $\Gamma \Rightarrow \Delta, \psi \vee \vartheta$ nach dem unveränderten Sequenzenkalkül offensichtlich gültig:

$$(\Rightarrow \vee) \frac{x \Rightarrow x, \neg x}{x \Rightarrow x \vee \neg x}$$

Unter Verwendung von $(\Rightarrow \lor)'$ erhalten wir jedoch eine falsifizierende Interpretation \Im :

$$(\Rightarrow \lor)' \xrightarrow{x \Rightarrow x} (\Rightarrow \neg) \xrightarrow{x \Rightarrow \emptyset} \xrightarrow{x \Rightarrow \neg x}$$

 $\mathfrak{I}: x \mapsto 1$

Da wir nun aus einer gültigen Sequenz Ungültigkeit ableiten können, ist das erweiterte Sequenzenkalkül nicht korrekt.

(iii) Es ist plausibel, dass $\mathfrak{I}_1, \mathfrak{I}_2$ keine falsifizierende Interpretationen sind, da, wie gesagt, der erweiterte Sequenzenkalkül nicht korrekt ist. Es gibt also Sequenzen, die gültig sind, jedoch nicht als gültig abgeleitet werden.

Damit beide Interpretationen falsifizierend sind, müsste der erweiterte Sequenzenkalkül korrekt sein.