Análisis de Datos Multivariantes

2. COMPONENTES PRINCIPALES

2016/17

Contenido

- Introducción
 - Ejemplo
 - Objetivos
- 2 Componentes Principales Muestrales
 - Construcción
 - Propiedades
 - Elementos del análisis
- Caso tipificado
- 4 Aplicación

- Introducción
 - Ejemplo
 - Objetivos
- - Construcción
 - Propiedades

Introducción

• Notas de Exámenes con Libro Cerrado-Abierto (*)

	X_1	X_2	<i>X</i> ₃	X_4	X_5
1	77	82	67	67	81
2	63	78	80	70	81
:	:	:	:	:	:
87	05	26	15	20	20
88	00	40	21	09	14

Datos completos en opencl.txt.

 X_1 : Mecánica (C). X_3 : Álgebra (A).

 X_2 : Vectores (C). X_4 : Análisis (A).

 X_5 : Estadística (A). ([0, 100])

Introducción

Los objetivos del **Análisis de Componentes Principales** son:

- Resumir la variación total en una dimensión menor.
- Identificar fuentes de variación interpretables.
- Explorar características inesperadas de los datos.

Las Componentes Principales:

- Se usan frecuentemente como herramienta de procesado inicial de los datos, con el fin de un uso posterior.
- Están basadas en combinaciones lineales de los datos originales centrados $X - \overline{x}$.

- - Ejemplo
 - Objetivos
- Componentes Principales Muestrales
 - Construcción
 - Propiedades
 - Elementos del análisis

Construcción

Las componentes principales de X se construyen secuencialmente:

- $\mathbf{a}_1 = \arg \max_{\mathbf{a}^T \mathbf{a}_1 = 1} \mathbf{a}^T \mathbf{S} \mathbf{a}$.
- Dados $a_1, a_2, ..., a_{i-1}$:

$$\mathbf{a}_j = \operatorname{arg\,max}_{\mathbf{a}^T\mathbf{a} = 1} \mathbf{a}^T \mathbf{S} \mathbf{a}$$
 ,

con la **restricción** $\mathbf{a}^T \mathbf{S} \mathbf{a}_l = 0$, 1 < l < j - 1.

• Maximizar varianza de la combinación lineal $\mathbf{a}^T(\mathbf{X} - \overline{\mathbf{x}})$, $\mathbf{a}^T\mathbf{a} = 1$, sujeta a incorrelación con las componentes anteriores.

Componentes Principales Muestrales

Solución ACP

La transformación de componentes principales es

$$\mathbf{Y} = \mathbf{G}^T (\mathbf{X} - \overline{\mathbf{x}})$$
 ,

donde $G = (g_1, \dots, g_p)$ es la matrix de $p \times p$ de autovectores de S,

$$\mathbf{S}\mathbf{g}_j = l_j\mathbf{g}_j$$
 , $j = 1, \dots, p$,

correspondientes a los autovalores ordenados $l_1 > l_2 > ... > l_n$.

Componentes principales muestrales:

$$Y_j = \mathbf{g}_j^T(\mathbf{X} - \overline{\mathbf{x}}) = \sum_{i=1}^p g_{ij}(X_i - \overline{x}_i) , \quad j = 1, \dots, p.$$

Componentes Principales Muestrales

Teorema

Matriz de Componentes Principales:

$$\mathcal{Y} = (\mathcal{X} - \mathbf{1}_n \overline{\mathbf{x}}^T) \mathbf{G}$$
.

Vector de medias muestrales:

$$\overline{y} = 0$$
 .

Matriz de covarianzas muestrales:

$$\mathbf{S}_{\mathcal{V}} = \mathbf{G}^T \mathbf{S} \mathbf{G} = \mathbf{L} = \operatorname{diag}(I_1, \dots, I_p)$$
.

 Componentes incorreladas de media cero y explicación decreciente de variabilidad.

Componentes Principales Muestrales

Elementos del análisis

Variación Total:

$$VT = tr(\mathbf{S}) = tr(\mathbf{L}) = l_1 + l_2 + \cdots + l_p.$$

Proporciones de variación explicada:

$$p_j = rac{l_j}{\sqrt{\mathsf{T}}}$$
 , $q_j = p_1 + \cdots + p_j$, $j = 1, \ldots, p$.

Coeficientes de correlación:

$$\operatorname{corr}(X_i, Y_j) = \sqrt{\frac{l_j}{s_{ii}}} g_{ij}, \quad i, j = 1, \dots, p.$$

• Análisis equivalentes si **S** se sustituye por $S_c = [n/(n-1)]S$.

- Introducción
 - Ejemplo
 - Objetivos
- Componentes Principales Muestrales
 - Construcción
 - Propiedades
 - Elementos del análisis
- Caso tipificado
- 4 Aplicación

Caso tipificado

La matriz de covarianzas muestrales para las variables tipificadas

$$Z_i = (X_i - \overline{x}_i)/\sqrt{s_{ii}}$$
 , $i = 1, \ldots, p$,

es la matriz de correlación muestral R.

- Autovalores y autovectores: $Rh_i = k_i h_i$, j = 1, ..., p.
- Componentes principales muestrales [D = diag(S)]:

$$U_j = \mathbf{h}_j^T \mathbf{D}^{-1/2} (\mathbf{X} - \overline{\mathbf{x}}) = \sum_{i=1}^p \frac{h_{ij}}{\sqrt{s_{ii}}} (X_i - \overline{x}_i) , \quad j = 1, \dots, p .$$

Caso tipificado

• Matriz de Componentes Principales $[H = (h_1, ..., h_p)]$:

$$\mathcal{Z} = (\mathcal{X} - \mathbf{1}_n \overline{\mathbf{x}}^T) \mathbf{D}^{-1/2} \mathbf{H}$$

- Propiedades: $\bar{\mathbf{z}} = \mathbf{0}$. $\mathbf{S}_{\mathcal{Z}} = \mathbf{K} = \operatorname{diag}(k_1, \dots, k_p)$.
- Variación total: VT = p.
- **Proporciones** explicadas: $p_j = k_j/p$, j = 1, ..., p.
- Correlaciones: $corr(Z_i, U_i) = \sqrt{k_i} h_{ii}, i, j = 1, ..., p.$

- Introducción
 - Ejemplo
 - Objetivos
- Componentes Principales Muestrales
 - Construcción
 - Propiedades
 - Elementos del análisis
- Caso tipificado
- 4 Aplicación

Aplicación

Autovalores y autovectores muestrales:

	j = 1	j = 2	j = 3	j = 4	j = 5
Ij	679.183	199.814	102.568	83.669	31.788
	.5054	.7487	.2998	2962	.0794
g _j	.3683	.2074	4156	.7829	.1889
	.3457	0759	1453	.0032	9239
	.4511	3009	5966	5181	.2855
	.5347	5478	.6003	.1757	.1512

• Proporciones de variación total: VT = 1097.02.

p_j	0.62	0.18	0.09	0.08	0.03
q_j	0.62	0.80	0.89	0.97	1.00

• Reducción de la dimensión: q = 2

$$Y_1 = .51X_1 + .37X_2 + .35X_3 + .45X_4 + .53X_5 - 99.49$$

(nota media: $1/\sqrt{5} = 0.45$, $Y_1 \approx \sqrt{5} \overline{X} + c$)

$$Y_2 = .75X_1 + .21X_2 - .08X_3 - .30X_4 - .55X_5 - 1.40$$
 (Contraste entre exámenes c.12-a.123)

Correlaciones:

	X_1	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅
Y_1	0.758	0.734	0.853	0.797	0.812
Y_2	0.609	0.224	102	288	451

Aplicación

• Matriz de Componentes Principales:

$$\mathcal{Y} = (\mathcal{X} - \mathbf{1}_n \overline{\mathbf{x}}') \mathbf{G}$$

	Y_1	Y_2	<i>Y</i> ₃	Y_4	Y_5
St1	66.3208	6.4471	7.0736	9.6464	5.4558
St2	63.6181	-6.7544	0.8599	9.1491	7.5657
	X_1	X_2	<i>X</i> ₃	X_4	X_5
St1	77	82	67	67	81
St2	63	78	80	70	81

Matriz de Nubes de Puntos (I) (Exámenes con Libro Cerrado-Abierto)

Aplicación

Matriz de Nubes de Puntos (II) (Exámenes con Libro Cerrado-Abierto)

Resumen

- Introducción
- 2 Componentes Principales Muestrales
- 3 Caso tipificado
- 4 Aplicación

• Referencias: Johnson, R.A. y Wichern, D.W. (2007) [Cap. 8].