Build Your Own RISC-V®

- Reduced Instruction Set Computer
- Open instruction architecture
- Modular design
- Your job
 - 32-bit RISC-V with a subset of instructions
- What you're given:
 - The 5-stage pipeline in VHDL (and SystemVerilog) with a few basic instructions
 - » https://github.com/masoud-ata/PH-RISC-V
 - » https://github.com/masoud-ata/riscv_sv
 - Assembler (and simulator) in Python
 - » https://github.com/masoud-ata/Masimulator

Modular ISA

RV32IMAC

All-FPGA Track

- What is expected:
 - Grade 3: Implement & verify on FPGA
 - Some of RV32I + some of RV32C
 - The necessary assembler modifications
 - Hazard detection (adds pipeline bubble)
 - Serial interface (to send program to the FPGA and read from it)
 - Grade 4: Implement & verify on FPGA
 - Most of RV32I + some of RV32M
 - The necessary assembler modifications
 - Grade 5: Implement & verify on FPGA
 - Some of RV32F
 - The necessary assembler modifications

FPGA + ASIC Track

- What is expected:
 - Grade 3: Implement & verify on FPGA
 - Some of RV32I + some of RV32C
 - The necessary assembler modifications
 - Hazard detection (adds pipeline bubble)
 - Serial interface (to send program to the FPGA and read from it)
 - Grade 4: Implement & verify on FPGA
 - Most of RV32I + some of RV32M
 - The necessary assembler modifications
 - Grade 5: Implement & verify for ASIC
 - Synthesis & PNR
 - Power analysis
 - Testbench with serial interface support

