

UNIVERSITY OF GHANA

(All rights reserved)

SCHOOL OF ENGINEERING SCIENCES

FIRST SEMESTER EXAMINATIONS: 2016/2017

FAEN 101: ALGEBRA (4 credits)

INSTRUCTION:

ANSWER QUESTION ONE(1) AND ANY OTHER FOUR(4) OUT OF THE FOLLOWING SEVEN(7) QUESTIONS

EACH QUESTION CARRIES 40 MARKS

TIME ALLOWED:

THREE HOURS (3 hours)

- (i) Find $\underline{a} \cdot \underline{b}$. (ii) Hence, find $|\underline{a}| = 5$ and $|\underline{b}| = 8\sqrt{2}$.
- (b) If $\underline{a} = -3\underline{i} + 2\underline{j} + 2\underline{k}$ and $\underline{b} = 6\underline{i} + 3\underline{j} + \underline{k}$, find $\underline{a} \times \underline{b}$ and hence or otherwise give two unit vectors which are perpendicular to both \underline{a} and \underline{b} .
- (c) Show that the vectors $\underline{u} = 2\underline{i} + 3\underline{j} 6\underline{k}$, $\underline{v} = 6\underline{i} + 2\underline{j} + 3\underline{k}$ and $\underline{w} = 3\underline{i} 6\underline{j} 2\underline{k}$ are mutually perpendicular and find the direction cosines of the vector \underline{u} .
- Solve for the values of x and y, if $\log_2(xy^2) = 0$ and $\log_2(x^2y) = 6$.
- Write as a quadratic in e^x and solve for all values of x, if $\frac{e^x + 5e^{-x}}{2} = 3$.
- Let $f(x) = \frac{x+3}{x+2}$, $x \neq -2$, by choosing a suitable range for f, show that f is bijective and hence find the inverse of f.
- (a) Express $f(x) = \frac{x^2 + 2}{x(x+2)^2}$ as a partial fraction.
- (b) Find all values of x which satisfy $\left|\frac{3x-2}{2x-3}\right| \leq 2$, solve for x.
- (c) Find the range of values of x for which $\frac{x-1}{x(x+2)} > \frac{1}{x+2}$.

Let
$$f(x) = \frac{3x(x-1)}{x^2 - x - 2}$$
.

- ω Find the domain of f.
- (ii) Find the intercepts of f, if they exist:

- (iii) Find the horizontal and vertical asymptotes if it exists.
- (iv) Find the range and turning points of f, if they exist
- (v) Sketch the graph of f.
- 5. (a) Write the following complex numbers in the form a + ib, where $a, b \in \mathbb{R}$.
 - (i) $\frac{(3-i)}{1+i}$
- (ii) $(1+i)^5$ [Hint: Change into polar form and use De Moivre's theorem].
- (b) If the complex number $z = \left[\cos\frac{\pi}{24} + i\sin\frac{\pi}{24}\right]^6$, find the conjugate of z and hence or otherwise find the modulus of z.
- (c) Find the fourth root of z = (1 + i).
- 6. (a) Find the value of r if the coefficients of x^r and x^{r+1} are equal in the binomial expansion of $(1+2x)^5$.
 - (p)
- (i) Write out the first 5 terms of the expansion of $(1+2x)^{-2}$.
- (ii) Use the above expansion to evaluate $\frac{1}{(1.22)^2}$, leave your answer in 4 decimal places.
- (c) If p is a real number and the term corresponding to p^4 is 1120, find the value of p in the expansion of $\left(\frac{p}{2}+2\right)^8$.
- 7. (a) The points A, B and C have position vectors $\underline{a} = -\underline{i} + 2\underline{j} + 3\underline{k}$, $\underline{b} = 8\underline{i} + 7\underline{j} 9\underline{k}$ and $\underline{c} = 2\underline{i} 3\underline{j} \underline{k}$ respectively. Show that angle ACB is $\frac{\pi}{2}$ and find the area of the triangle ABC.
 - (b) Using the Pythagorean identity, prove each of the following identities
 - (i) $\frac{\csc x}{\sin x} \frac{\cot x}{\tan x} = 1$
- (ii) $\frac{\cos x}{1 \sin x} \tan x = \sec x$
- (c) Solve for the value(s) of x in the interval $0 \le x < 2\pi$, for the following equations
 - (i) $\sin^2 x \cos x = 4 \cos x$
- (ii) $(1 \sin x) = \sqrt{3} \cos x$ [Hint: Square each side.]