$12n_{0169} \ (K12n_{0169})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{31} + u^{30} + \dots + b + 2u, \ u^{31} - u^{30} + \dots + a - 5u, \ u^{32} - 2u^{31} + \dots + 5u - 1 \rangle$$

$$I_2^u = \langle b + u, \ u^2 + a + 2, \ u^3 + 2u - 1 \rangle$$

$$I_3^u = \langle -u^2 + b - u, \ u^3 + u^2 + a + 2u + 1, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 39 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{31} + u^{30} + \dots + b + 2u, \ u^{31} - u^{30} + \dots + a - 5u, \ u^{32} - 2u^{31} + \dots + 5u - 1 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{31} + u^{30} + \dots - 7u^{2} + 5u \\ u^{31} - u^{30} + \dots + 3u^{2} - 2u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{13} + 6u^{11} + 13u^{9} + 12u^{7} + 6u^{5} + 4u^{3} + u \\ -u^{13} - 5u^{11} - 7u^{9} + 2u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - 2u \\ -u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{25} + 12u^{23} + \dots - 4u^{2} + 3u \\ u^{27} - u^{26} + \dots + 3u^{2} - 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{11} + 6u^{9} + 12u^{7} + 8u^{5} + u^{3} + 2u \\ u^{13} + 5u^{11} + 7u^{9} - 2u^{5} + 3u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{31} - u^{30} + \dots + u + 1 \\ -u^{31} + u^{30} + \dots + u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ u^{9} + 3u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{31} + 8u^{30} - 69u^{29} + 118u^{28} - 516u^{27} + 760u^{26} - 2191u^{25} + 2774u^{24} - 5768u^{23} + 6188u^{22} - 9542u^{21} + 8335u^{20} - 9334u^{19} + 5857u^{18} - 4125u^{17} + 549u^{16} + 634u^{15} - 1814u^{14} + 878u^{13} - 598u^{12} - 232u^{11} - 15u^{10} + 140u^{9} - 465u^{8} + 354u^{7} - 156u^{6} - 44u^{5} + 113u^{4} - 54u^{3} - 27u^{2} + 31u - 23$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{32} + 44u^{31} + \dots + 48u + 1$
c_2, c_4	$u^{32} - 8u^{31} + \dots + 24u^2 - 1$
c_3, c_7	$u^{32} - u^{31} + \dots + 192u + 128$
c_5, c_6, c_{10}	$u^{32} + 2u^{31} + \dots - 5u - 1$
c_8	$u^{32} + 2u^{31} + \dots - 3u - 1$
c_9,c_{12}	$u^{32} - 6u^{31} + \dots - 39u + 19$
c_{11}	$u^{32} - 2u^{31} + \dots - 40u - 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{32} - 104y^{31} + \dots - 1812y + 1$
c_2, c_4	$y^{32} - 44y^{31} + \dots - 48y + 1$
c_3, c_7	$y^{32} - 45y^{31} + \dots - 12288y + 16384$
c_5, c_6, c_{10}	$y^{32} + 30y^{31} + \dots - 9y + 1$
<i>C</i> ₈	$y^{32} - 66y^{31} + \dots - 9y + 1$
c_9,c_{12}	$y^{32} + 18y^{31} + \dots - 1673y + 361$
c_{11}	$y^{32} + 6y^{31} + \dots + 368y + 64$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.066411 + 1.151990I		
a = 1.410670 + 0.024945I	-0.138725 + 1.342600I	-14.3827 - 1.1828I
b = -2.76292 - 0.86053I		
u = -0.066411 - 1.151990I		
a = 1.410670 - 0.024945I	-0.138725 - 1.342600I	-14.3827 + 1.1828I
b = -2.76292 + 0.86053I		
u = 0.513081 + 0.643079I		
a = -0.646531 + 0.515194I	-9.52014 + 3.30104I	-13.33638 + 0.19936I
b = 1.64282 - 0.89836I		
u = 0.513081 - 0.643079I		
a = -0.646531 - 0.515194I	-9.52014 - 3.30104I	-13.33638 - 0.19936I
b = 1.64282 + 0.89836I		
u = 0.737634 + 0.348273I		
a = 2.23105 - 1.72413I	-10.57590 - 7.60354I	-15.1269 + 5.2212I
b = -0.0831051 - 0.0958486I		
u = 0.737634 - 0.348273I		
a = 2.23105 + 1.72413I	-10.57590 + 7.60354I	-15.1269 - 5.2212I
b = -0.0831051 + 0.0958486I		
u = -0.298547 + 1.193750I		
a = -1.40936 - 1.46969I	-11.30460 + 3.80890I	-14.0876 - 3.1596I
b = 2.94438 + 2.80689I		
u = -0.298547 - 1.193750I		
a = -1.40936 + 1.46969I	-11.30460 - 3.80890I	-14.0876 + 3.1596I
b = 2.94438 - 2.80689I		
u = -0.748139		
a = 3.59916	-14.9662	-18.4420
b = -0.104790		
u = -0.606144 + 0.421198I		
a = 0.546855 + 0.039840I	2.64609 + 1.95373I	-5.09513 - 3.50992I
b = 0.102884 + 0.314041I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.606144 - 0.421198I		
a = 0.546855 - 0.039840I	2.64609 - 1.95373I	-5.09513 + 3.50992I
b = 0.102884 - 0.314041I		
u = 0.087660 + 1.285000I		
a = -0.478992 + 0.327569I	3.25069 - 1.60094I	-6.41790 + 3.90851I
b = 1.049280 - 0.185331I		
u = 0.087660 - 1.285000I		
a = -0.478992 - 0.327569I	3.25069 + 1.60094I	-6.41790 - 3.90851I
b = 1.049280 + 0.185331I		
u = 0.636337 + 0.293336I		
a = -1.79875 + 1.45255I	-1.49855 - 3.68796I	-14.9081 + 6.2088I
b = 0.098008 - 0.391373I		
u = 0.636337 - 0.293336I		
a = -1.79875 - 1.45255I	-1.49855 + 3.68796I	-14.9081 - 6.2088I
b = 0.098008 + 0.391373I		
u = -0.570243 + 0.210892I		
a = -2.18842 - 0.55206I	-2.65931 + 1.04311I	-15.7710 - 5.3018I
b = -0.306041 - 0.510133I		
u = -0.570243 - 0.210892I		
a = -2.18842 + 0.55206I	-2.65931 - 1.04311I	-15.7710 + 5.3018I
b = -0.306041 + 0.510133I		
u = -0.223261 + 1.390520I		
a = 1.39534 + 1.47490I	2.48306 + 3.95929I	-10.08448 - 4.02414I
b = -2.07768 - 2.46657I		
u = -0.223261 - 1.390520I		
a = 1.39534 - 1.47490I	2.48306 - 3.95929I	-10.08448 + 4.02414I
b = -2.07768 + 2.46657I		
u = 0.17860 + 1.41277I		
a = -0.040682 + 0.405502I	4.99294 - 1.76578I	-7.97967 + 0.I
b = 0.92757 - 1.07299I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.17860 - 1.41277I		
a = -0.040682 - 0.405502I	4.99294 + 1.76578I	-7.97967 + 0.I
b = 0.92757 + 1.07299I		
u = 0.24778 + 1.41576I		
a = 0.414031 - 1.342460I	3.97101 - 6.92815I	-10.07608 + 5.79570I
b = -1.22414 + 3.01107I		
u = 0.24778 - 1.41576I		
a = 0.414031 + 1.342460I	3.97101 + 6.92815I	-10.07608 - 5.79570I
b = -1.22414 - 3.01107I		
u = 0.362402 + 0.388238I		
a = 1.219120 - 0.628084I	-0.624317 + 0.441347I	-12.18762 + 0.45370I
b = -0.742946 + 0.324636I		
u = 0.362402 - 0.388238I		
a = 1.219120 + 0.628084I	-0.624317 - 0.441347I	-12.18762 - 0.45370I
b = -0.742946 - 0.324636I		
u = 0.28464 + 1.44733I		
a = -0.48786 + 2.28909I	-4.81611 - 11.32490I	-11.18818 + 5.52166I
b = 0.97778 - 4.42043I		
u = 0.28464 - 1.44733I		
a = -0.48786 - 2.28909I	-4.81611 + 11.32490I	-11.18818 - 5.52166I
b = 0.97778 + 4.42043I		
u = -0.22536 + 1.45912I		
a = -0.502797 - 0.538242I	8.69537 + 5.01097I	0 2.91597I
b = 0.712769 + 0.835870I		
u = -0.22536 - 1.45912I		
a = -0.502797 + 0.538242I	8.69537 - 5.01097I	0. + 2.91597I
b = 0.712769 - 0.835870I		
u = 0.13561 + 1.49035I		
a = -0.978732 + 0.012239I	-2.61419 + 1.12722I	-9.88189 + 0.I
b = 0.422885 - 0.072441I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.13561 - 1.49035I		
a = -0.978732 - 0.012239I	-2.61419 - 1.12722I	-9.88189 + 0.I
b = 0.422885 + 0.072441I		
u = 0.360560		
a = 1.03093	-0.601323	-16.4090
b = -0.258292		

II.
$$I_2^u = \langle b+u, \ u^2+a+2, \ u^3+2u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} - 2\\-u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\-u^{2} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1\\-u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} - 3\\u^{2} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - 1\\u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} - 2\\-u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u\\u^{2} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 3u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_7	u^3
C_4	$(u+1)^3$
c_5, c_6, c_9	$u^3 + 2u - 1$
c_8, c_{10}, c_{12}	$u^3 + 2u + 1$
c_{11}	$u^3 + 3u^2 + 5u + 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_7	y^3
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{12}$	$y^3 + 4y^2 + 4y - 1$
c_{11}	$y^3 + y^2 + 13y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = 0.102785 + 0.665457I	7.79580 + 5.13794I	-11.21712 - 3.73768I
b = 0.22670 - 1.46771I		
u = -0.22670 - 1.46771I		
a = 0.102785 - 0.665457I	7.79580 - 5.13794I	-11.21712 + 3.73768I
b = 0.22670 + 1.46771I		
u = 0.453398		
a = -2.20557	-2.43213	-15.5660
b = -0.453398		

III. $I_3^u = \langle -u^2 + b - u, \ u^3 + u^2 + a + 2u + 1, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u^{2} - 2u - 1\\u^{2} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - 2u\\-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1\\-u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - 2u^{2} - 2u - 2\\2u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - 1\\u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - u^{2} - 2u - 1\\u^{2} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{3} + u^{2} + 3u + 3\\-u^{3} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5u^3 2u^2 6u 17$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_7	u^4
C ₄	$(u+1)^4$
c_5, c_6, c_9	$u^4 + u^3 + 2u^2 + 2u + 1$
c_8, c_{10}, c_{12}	$u^4 - u^3 + 2u^2 - 2u + 1$
c_{11}	$(u^2 - u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$
c_{11}	$(y^2+y+1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = -0.070696 - 0.758745I	1.64493 + 2.02988I	-14.2631 - 3.6750I
b = -0.429304 - 0.107280I		
u = -0.621744 - 0.440597I		
a = -0.070696 + 0.758745I	1.64493 - 2.02988I	-14.2631 + 3.6750I
b = -0.429304 + 0.107280I		
u = 0.121744 + 1.306620I		
a = 1.070700 - 0.758745I	1.64493 - 2.02988I	-11.23686 + 2.38721I
b = -1.57070 + 1.62477I		
u = 0.121744 - 1.306620I		
a = 1.070700 + 0.758745I	1.64493 + 2.02988I	-11.23686 - 2.38721I
b = -1.57070 - 1.62477I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^{32} + 44u^{31} + \dots + 48u + 1)$
c_2	$((u-1)^7)(u^{32} - 8u^{31} + \dots + 24u^2 - 1)$
c_3, c_7	$u^7(u^{32} - u^{31} + \dots + 192u + 128)$
<i>c</i> ₄	$((u+1)^7)(u^{32} - 8u^{31} + \dots + 24u^2 - 1)$
c_5, c_6	$(u^{3} + 2u - 1)(u^{4} + u^{3} + 2u^{2} + 2u + 1)(u^{32} + 2u^{31} + \dots - 5u - 1)$
<i>c</i> ₈	$ (u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{32} + 2u^{31} + \dots - 3u - 1) $
<i>c</i> ₉	$(u^{3} + 2u - 1)(u^{4} + u^{3} + 2u^{2} + 2u + 1)(u^{32} - 6u^{31} + \dots - 39u + 19)$
c_{10}	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{32} + 2u^{31} + \dots - 5u - 1)$
c_{11}	$((u^2 - u + 1)^2)(u^3 + 3u^2 + 5u + 2)(u^{32} - 2u^{31} + \dots - 40u - 8)$
c_{12}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{32} - 6u^{31} + \dots - 39u + 19)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^{32} - 104y^{31} + \dots - 1812y + 1)$
c_2, c_4	$((y-1)^7)(y^{32} - 44y^{31} + \dots - 48y + 1)$
c_3, c_7	$y^7(y^{32} - 45y^{31} + \dots - 12288y + 16384)$
c_5, c_6, c_{10}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{32} + 30y^{31} + \dots - 9y + 1)$
c ₈	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{32} - 66y^{31} + \dots - 9y + 1)$
c_9, c_{12}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{32} + 18y^{31} + \dots - 1673y + 361)$
c_{11}	$((y^2+y+1)^2)(y^3+y^2+13y-4)(y^{32}+6y^{31}+\cdots+368y+64)$