

IC - Redes Neurais

- · Reconhecimento de padrões
- Extração de características
- Classificação
- · Categorização (Clustering)
- Métricas
- Problemas
- · Redes Neurais MLP
- · Estimativa de desempenho

🌃 Reconhecimento de Padrões

Anderson Canêdo de Oliveira – acanedo@ufrj.br

- · Reconhecimento de Padrões:
- Categorização (Clustering)
 - Classificação
- Reconhecimento
- Otimização
- Aproximação de funções
- Estimativa, Previsão

Reconhecimento de Padrões

- · Essencial para a sobrevivência dos seres vivos
- Separação de padrões de entrada em grupos ou classes
- Maioria das aplicações de RNAs são de reconhecimento de padrões:
 - Reconhecimento da face humana
 - Reconhecimento de caracteres manuscritos
 - Reconhecimento de voz e locutor
 - Identificação de impressões digitais
 - Previsão de compra ou venda na Bolsa de Valores

Extração de Características

- · Vetor de características é o conjunto fixo de características dos padrões a serem classificados $X = vetor \ de \ características \ (Ex: x_1 = CR, x_2 = Nota \ IC, ...)$
 - d = nº de características
- · Problemas:
 - Dados podem conter informações que atrapalham a classificação
 - Variáveis são geralmente correlacionadas
 - Características a serem extraídas dependem do problema (natureza dos padrões)
 - Quais as características que melhor discriminam ou explicam os padrões?

Extração de Características

- Vetores de características deveriam ser iguais para os padrões de uma mesma classe
- Vetores diferentes para padrões de classes diferentes
- Devem conter informações necessárias para distinguir padrões de classes diferentes
- Padrões ou objetos podem ser representados abstratamente como pontos no espaço de características

Classificação

- · Classifica o vetor de características em uma das classes iá conhecidas
- · Aprendizado supervisionado
- Ex: Reconhecimento de dígitos 10 Classes (1, 2, ..., 0)
- · Possíveis classificações:
 - Classificação correta
 - Classificação incorreta
 - Reieição

ics Agrupamento (Clustering)

- · Explora semelhanças entre padrões e agrupa os padrões parecidos em categorias ou grupos
- · Aprendizado não supervisionado
- · Padrões semelhantes ou similares são representados por vetores de características próximos

Agrupamento

- · Dependendo do problema fica difícil rotular as categorias
- Se a classe dos padrões de treinamento for conhecida, os grupos podem ser rotulados

Agrupamento

- · Métodos mais conhecidos:
 - K-means
 - KNN (K- vizinhos mais próximos)
 - C-means (k-means fuzzy)
- · Redes Neurais
 - Rede SOM (Mapas Auto-Organizáveis)
 - ART (Teoria de Ressonância Adaptativa)

Métricas

- Classificadores de menor distância definem fronteiras de decisão no espaço de padrões
 - Distância de X para P $d=\|X-P_i\|$
- Existe mais de uma maneira de definir $oldsymbol{d}$
- Métricas calculam similaridade entre padrões no espaço geométrico
- Métricas mais comuns:
 - Distância de Hamming
 - Distância Euclidiana
 - Distância Manhattan
 - Distância quadrática
 - Distância de Mahalanobis

Problemas

 Problemas linearmente separáveis são aqueles que podem ser satisfeitos utilizando uma reta ou hiperplano como fronteira de decisão.

Problemas

- · Classificação perfeita nem sempre é possível
- Nem todos os problemas são linearmente separáveis
- Difícil validar qual o melhor número de categorias para um determinado problema
- Grande sobreposição de classes (???)
- · Causas freqüentes de erros:
 - Padrões não podem ser linearmente separados
 - Características podem ser inadequadas para distinguir as diferentes classes
 - Características podem ser muito correlacionadas
 - Podem haver subclasses distintas nos dados

Redes Neurais - MLP

- Redes de uma camada resolvem apenas problemas linearmente separáveis.
- Solução
 - Usar redes com mais de uma camada.
- Problema
 - Como treinar uma rede com mais de uma camada

Redes Neurais - MLP

- · MLP Multilayer Perceptrons
 - Redes com duas ou mais camadas de neurônios do tipo do Perceptron.
 - Algoritmo de treinamento "Back-propagation error"
 - Proposto por Rumelhart (1986)
 - Fornece um método computacional eficiente para o treinamento de perceptrons de múltiplas camadas
 - Treinamento supervisionado
 - Regra de aprendizagem por correção de erro
 - Generalização do algoritmo LMS (Regra Delta)
 - · Baseado no Gradiente Descendente
 - Substituição da função degrau pela função sigmóide
 - Retro-propagação do erro

Redes Neurais - MLP

- · 1ª camada intermediária
 - Traça retas no espaço dos padrões de treinamento
- · 2ª camada intermediária
 - Combina as retas traçadas na camada anterior formando regiões convexas
- · Camada de saída
 - Cada neurônio forma regiões que são combinações das regiões convexas definidas na camada anterior

- 1 camada intermediária implementa qualquer função contínua
- 2 camadas intermediárias permitem a aproximação de qualquer função

A regra de aprendizado

Medida de performance $E(k) = \frac{1}{2} \sum_{j} (y_{d} - \hat{y})^{2}$

Ativação = net =
$$\sum w_i x_i = WX$$

Propagação = $sig(x) = \frac{1}{1 + e^{-x}}$

$$\begin{cases} f(net) = sig(net) = \left(\frac{1}{1 + e^{-WX}}\right) \\ f'(net) = f(net) \cdot (1 - f(net)) \end{cases}$$

Aprendizado
$$\Delta W(k+1) = -I \cdot \frac{\partial E(k)}{\partial W(k)}$$

 $\frac{\partial E}{\partial W} = \frac{\partial E}{\partial e} \cdot \frac{\partial e}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial net} \cdot \frac{\partial net}{\partial W}$

$$\frac{\partial E}{\partial e} = e$$
 $\frac{\partial e}{\partial \hat{y}} = -1$ $\frac{\partial \hat{y}}{\partial net} = f'(net)$

 $\frac{\partial net}{\partial W} = X$ ou \hat{y}_i saída da camada anterior

Gradiente local
$$d_{j} = \frac{\partial E}{\partial net} = \frac{\partial E}{\partial e} \cdot \frac{\partial e}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial net} = -e \cdot f'(net)$$

A regra de Aprendizado

Gradiente local
$$d_{j} = \frac{\partial E}{\partial net} = \frac{\partial E}{\partial e} \cdot \frac{\partial e}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial net} = -e \cdot f'(net)$$

O gradiente local depende de se o neurônio j é um nó de saída ou se é um nó oculto.

- Se neurônio j é um nó de saída $d_i = e_i \cdot f'(net)$
- -Se neurônio j é um nó oculto $d_j = f'(net) \cdot \sum_k d_k W_{kj}$

Redes Neurais - MLP

- Função sigmóide
 - Contínua e derivável
 - W₀ determina a posição da sigmóide no eixo das ordenadas
 - Inclinação é determinada pela norma do vetor de pesos $\|W\|$
- Número de neurônios por camada?
 - Depende do conjunto de treinamento, quantidade de ruído, complexidade da função a ser aprendida.
 - Definido empiricamente
 - Em função das entradas e saídas
 - Nº de conexões 10 vezes menor que o número de exemplos

nº de parâmetros livres = grau de liberdade

Redes Neurais - MLP

- Atualização dos pesos
 - Por padrão (online) pesos são atualizados após apresentação de cada padrão.
 - Estável se λ pequeno
 - Geralmente mais rápido
 - Por ciclo (batch) apresenta todos os padrões de treinamento depois atualiza os pesos.
 - Mais estável
 - Lento se conjunto de treinamento grande e redundante
 - Requer mais memória
 - Estimativa do gradiente mais precisa.

Redes Neurais - MLP

- Problemas
 - Multimodal topologias diferentes de Redes Neurais podem resolver os mesmo problema.
 - Deceptivo topologias semelhantes de 2 redes Neurais podem apresentar comportamentos completamente diferentes.
 - Sem garantia de convergência
 - Pode convergir para mínimos locais
 - · Lentidão na convergência
 - Cálculo do erro é preciso apenas para a camada de saída. As camadas intermediárias recebem apenas uma estimativa do erro.

Redes Neurais - MLP

- Problemas
 - Backpropagation é muito lento em superfícies
 - Superfície plana (flat spot) quando a derivada da sigmóide de um neurônio se aproxima de zero durante o treinamento, o neurônio pode não ter seus pesos ajustados ou ajustados com um valor muito
 - Overfitting memoriza padrões de treinamento incluindo suas peculiaridades. Piora a generalização.
 - Underfitting
 - Saturação inicialização dos pesos devem ser uniformemente distribuídos dentro de um intervalo

Redes Neurais - MLP

- Avaliação dos Resultados
 - Saída binária x Saída contínua
 - Saída binária com indecisão (sim, não sei, não)
 - Estratégia "the winner take all"
 - Várias simulações
 - Análise da matriz de confusão
 - Análise estatística dos resultados
 - Média
 - Desvio padrão
 - Validação cruzada
 - Distribuição equilibrada dos padrões no conjunto de treinamento

Redes Neurais - MLP

Vantagens

- Solução de problemas não linearmente separáveis
- Aprendizado baseado na experiência (por correção de erro)
- Generalização
- Aplicações:
- Classificação
- Aproximação de funções
- Paralelismo e robustez

Desvantagens

- · Dificuldade na definição da arquitetura (nº de camadas, números de neurônios)
- · Inicialização dos pesos (sorte/azar)
- · Convergência lenta e incerta
- · Paralisia do aprendizado (mínimos locais, regiões planas)
- Dificuldade na definição dos parâmetros de treinamento

ic Dificuldades de Aprendizado

- · Mínimos Locais
 - Solução estável, porém não é a melhor solução
 - Estratégias para minorar este problema
 - Taxa de aprendizado decrescente (adaptativa)
 - Adicionar nós intermediários
 - · Inclusão do termo momentum
 - Adicionar ruídos aos dados de treinamento.
- Lentidão no treinamento
 - Utilizar métodos de 2ª ordem
 - · Levenberg Maquardt
 - Quase-Newton
 - Gradiente Conjugado Delta-Barra-Delta

ic Dificuldades de Aprendizado

- Overfitting
 - A rede "decora" os dados de treinamento. Depois de um certo ponto do treinamento a rede piora ao invés de melhorar.
 - Piora a generalização / Memoriza padrões
 - Estratégia para se evitar Overfitting:
 - Encerrar treinamento mais cedo (early stop)

ic Estimativa de Desempenho

- Função sigmóide tangente hiperbólica geralmente proporciona um aprendizado mais rápido.
- Pre-processamento dos dados
 - · Balanceamento dos dados
 - · Normalizar dados (campos individualmente)
- Medida de Desempenho (Taxa de Acerto)
 - · Aparente Medida com os dados de treinamento
 - · Verdadeira Medida com os dados de teste

Taxa de acerto = $\frac{n^{\circ}}{}$ de acertos nº de padrões

ic Estimativa de Desempenho

- · Hold-out (Split-sample)
 - Técnica mais simples
 - Utiliza uma única partição da amostra
 - Treinamento (1/3)
 Teste (1/3)
 - Grande quantidade de dados (> 1000)
 - Aumentar proporção de exemplos de treinamento
 - Pequena quantidade de dados

 - Aproximação pessimistaResultados podem ser imprecisos
 - Utilizar resampling

ic Estimativa de Desempenho

- Resampling
 - Várias partições para os conjuntos de treinamento e
- Random Subsampling
 - Diferentes partições treinamento/teste/validação escolhidas de forma aleatória
 - Não pode haver interseção entre os conjuntos
 - Performance é calculada para cada partição
 - Performance estimada é a média dos erros para as diferentes partições
 - Permite a obtenção de uma estimativa mais precisa para o desempenho de um modelo.

ic Estimativa de Desempenho

- · Cross-validation
 - Classe de métodos para estimativa de desempenho verdadeiro
 - K-fold cross-validation
 - Divide o conjunto de dados em K partições mutuamente
 - A cada iteração, uma das K partições é usada para testar o modelo. As outras K-1 para treinar
 - Taxa de acerto é a média dos erros das K partições
 - Leaving-one-out
 - N iterações são utilizadas para uma amostra de N.
 - N-fold cross-validation