

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 282 242 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 05.02.2003 Bulletin 2003/06

(51) Int CI.7: H04B 7/06

(21) Application number: 02250933.5

(22) Date of filing: 12.02.2002

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 30.07.2001 US 918086

(71) Applicant: LUCENT TECHNOLOGIES INC. Murray Hill, New Jersey 07974-0636 (US)

(72) Inventors:

Benning, Roger David
 Long Valley, New Jersey 07853 (US)

Buehrer, R. Michael
 Morristown, New Jersey 07960 (US)

 Polakos, Paul Anthony Marlboro, New Jersey 07746 (US)

 Soni, Robert Atmaram Morris Plains, New Jersey 07950 (US)

(74) Representative:

Watts, Christopher Malcolm Kelway, Dr. Lucent Technologies NS UK Limited, 5 Mornington Road Woodford Green Essex, IG8 0TU (GB)

(54) Split shift phase sweep transmit diversity

(57) Disclosed is a method and apparatus of transmit diversity that is backward compatible and does not degrade performance using a transmission architecture that incorporates a form of phase sweep transmit diversity (PSTD) referred to herein as split shift PSTD. Split shift PSTD involves transmitting at least two phase

swept versions of a signal over diversity antennas, wherein the two phase swept versions of the signal have a different phase. The phase sweep frequency signals may have a fixed or varying phase shifting rate, may have an identical or different phase shifting rate, may be offset from each other and/or may be phase shifting in the same or opposite direction.

EP 1 282 242 A1

Description

10

15

20

25

35

40

45

50

Background of the Related Art

[0001] Performance of wireless communication systems is directly related to signal strength statistics of received signals. Third generation wireless communication systems utilize transmit diversity techniques for downlink transmissions (i.e., communication link from a base station to a mobile-station) in order to improve received signal strength statistics and, thus, performance. Two such transmit diversity techniques are space time spreading (STS) and phase sweep transmit diversity (PSTD).

[0002] FIG. 1 depicts a wireless communication system 10 employing STS. Wireless communication system 10 comprises at least one base station 12 having two antenna elements 14-1 and 14-2, wherein antenna elements 14-1 and 14-2 are spaced far apart for achieving transmit diversity. Base station 12 receives a signal S for transmitting to mobile-station 16. Signal S is alternately divided into signals s_{θ} and s_{ϕ} , wherein signal s_{θ} comprises even data bits and signal s_{ϕ} comprises odd data bits. Signals s_{θ} and s_{ϕ} are processed to produce signals s_{θ}^{14-1} and s_{ϕ}^{14-2} . Specifically, s_{θ}^{14-1} is multiplied with Walsh code s_{ϕ}^{14-1} and s_{ϕ}^{14-1} and s_{ϕ}^{14-1} and s_{ϕ}^{14-1} and s_{ϕ}^{14-1} signal s_{ϕ}^{14-1} signal s_{ϕ}^{14-1} signal s_{ϕ}^{14-1} signal s_{ϕ}^{14-1} signal s_{ϕ}^{14-1} and s_{ϕ}^{14-1} conjugate of signal s_{ϕ}^{14-1} and a conjugate of signal s_{ϕ}^{14-1} is added to signal s_{ϕ}^{14-1} and a conjugate of signal s_{ϕ}^{14-1} (i.e., s_{ϕ}^{14-1} is s_{ϕ}^{14-1} and s_{ϕ}^{14-1} and s_{ϕ}^{14-1} is subtracted from signal s_{ϕ}^{14-1} to produce signal s_{ϕ}^{14-1} (i.e., s_{ϕ}^{14-1} and s_{ϕ}^{14-1} are transmitted at substantially equal or identical power levels over antenna elements 14-1 and 14-2, respectively. For purposes of this application, power levels are "substantially equal" or "identical" when the power levels are within 1% of each other.

[0003] Mobile-station 16 receives signal R comprising $\gamma_1(S^{14-2})+\gamma_2(S^{14-2})$, wherein γ_1 and γ_2 are distortion factor coefficients associated with the transmission of signals S^{14-1} and S^{14-2} from antenna elements 14-1 and 14-2 to mobile-station 16, respectively. Distortion factor coefficients γ_1 and γ_2 can be estimated using pilot signals, as is well-known in the art. Mobile-station 16 decodes signal R with Walsh codes w_1 and w_2 to respectively produce outputs:

$$W_1 = \gamma_1 s_\theta + \gamma_2 s_o$$
 equation 1

 $W_2=\gamma_1s_a^*-\gamma_2s_a^*$ equation 1a

Using the following equations, estimates of signals s_e and s_o , i.e., S_e and S_o , may be obtained:

$$\hat{S}_{\theta} = \gamma_1 W_1 - \gamma_2 W_2 = S_{\theta} (|\gamma_1|^2 + |\gamma_2|^2) + noise$$
 equation 2

$$\hat{S}_0 = \hat{\gamma}_2 W_1 + \gamma_1 W_2 = s_0 (|\gamma_1|^2 + |\gamma_2|^2) + noise^1$$
 equation 2a

[0004] However, STS is a transmit diversity technique that is not backward compatible from the perspective of the mobile-station. That is, mobile-station 16 is required to have the necessary hardware and/or software to decode signal R. Mobile-stations without such hardware and/or software, such as pre-third generation mobile-stations, would be incapable of decoding signal R.

[0005] By contrast, phase sweep transmit diversity (PSTD) is backward compatible from the perspective of the mobile-station. FIG. 2 depicts a wireless communication system 20 employing PSTD. Wireless communication system 20 comprises at least one base station 22 having two antenna elements 24-1 and 24-2, wherein antenna elements 24-1 and 24-2 are spaced far apart for achieving transmit diversity. Base station 22 receives a signal S for transmitting to mobile-station 26. Signal S is evenly power split into signals s_1 and s_2 and processed to produce signals s_2^{24-1} and s_2^{24-2} , where $s_1 = s_2$. Specifically, signal s_1 is multiplied by Walsh code w_k to produce $s_2^{24-1} = s_1 w_k$, where k represents a particular user or mobile-station. Signal s_2 is multiplied by Walsh code w_k and a phase sweep frequency signal

$$e^{j2\pi f_i t}$$

to produce S24-2, i.e.,

$$S^{24-2} = s_1 w_k e^{j2\pi f_i t} = s_1 w_k e^{j2\pi f_i t} = S^{24-1} e^{j2\pi f_i t}$$

where f_s is a phase sweep frequency and t is time. Signals S^{24-1} and S^{24-2} are transmitted at substantially equal power levels over antenna elements 24-1 and 24-2, respectively. Note that the phase sweep signal

012# f.1

is being represented in complex baseband notation, i.e.,

$$e^{j2\pi f_{r}t} = \cos(2\pi$$

15

5

10

$$f(t)+j\sin(2\pi f(t))$$
.

It should be understood that the phase sweep signal may also be applied at an intermediate frequency or a radio frequency:

[0006] Mobile-station 26 receives signal R comprising $\gamma_1 S^{24-1} + \gamma_2 S^{24-2}$. Simplifying the equation for R results in

$$R = \gamma_1 S^{24-1} + \gamma_2 S^{24-1} e^{j2\pi f_1 t}$$
 equation 3

25

20

$$R = S^{24-1} \left\{ \gamma_1 + \gamma_2 e^{j2\pi f_1 t} \right\}$$
 equation 3a

30

35

40

$$R = S^{24-1} \gamma_{eq}$$
 equation 3b

where γ_{eq} is an equivalent channel seen by mobile-station 26. Distortion factor coefficient γ_{eq} can be estimated using pilot signals and used. along with equation 3b, to obtain estimates of signal s_1 and/or s_2 .

[0007] In slow fading channel conditions, PSTD improves performance (relative to when no transmit diversity technique is used) by making the received signal strength statistics associated with a slow fading channel at the receiver look like those associated with a fast fading channel. However, PSTD causes the energy of the transmitted signals to be concentrated at some frequency between the carrier frequency and the phase sweep frequency. If the frequency at which the transmitted signals are concentrated is not within some frequency tolerance of a mobile-station or receiver to which the signals are intended, the mobile-station or receiver may not be able to or may have difficulty receiving or processing the signals which, in turn, may degrade performance. Accordingly, there exists a need for a transmit diversity technique that is backward compatible without degrading performance.

Summary of the Invention

45

50

[0008] The present invention is a method and apparatus of transmit diversity that is backward compatible and does not degrade performance using a transmission architecture that incorporates a form of phase sweep transmit diversity (PSTD) referred to herein as split shift PSTD. Split shift PSTD involves transmitting at least two phase swept versions of a signal over diversity antennas, wherein the two phase swept versions of the signal have a different frequency or phase sweep rate. In one embodiment, a signal is split into a first and a second signal. The first and second signal are phase swept in equal and opposite directions using different phase sweep frequency signals, which would allow energies associated with the transmitted signals to be concentrated near a carrier frequency. In other embodiments, the phase sweep frequency signals may have a fixed or varying phase shifting rate, may have an identical or different phase shifting rate, may be offset from each other and/or may be phase shifting in the same or opposite direction.

55

Brief Description of the Drawings

[0009] The features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where

FIG. 1 depicts a wireless communication system employing space time spreading techniques in accordance with the prior art;

FIG. 2 depicts a wireless communication system employing phase sweep transmit diversity in accordance with the prior art; and

FIG. 3 depicts a base station employing split shift phase sweep transmit diversity (PSTD) and code division multiple access (CDMA) in accordance with the present invention.

Detailed Description

5

10

15

20

25

35

45

[0010] FIG. 3 depicts a base station 30 employing split shift phase sweep transmit diversity (PSTD) and code division multiple access (CDMA) in accordance with the present invention. Split shift PSTD involves transmitting at least two phase swept versions of a signal over diversity antennas, wherein the two phase swept versions of the signal have a different phase. In one embodiment, a signal is split into a first and a second signal. The first and second signal are phase swept in equal and opposite directions using different phase sweep frequency signals, which would allow energies associated with the transmitted signals to be concentrated near a carrier frequency. In other embodiments, the phase sweep frequency signals may have a fixed or varying phase shifting rate, may have an identical or different phase shifting rate, and/or may be phase shifting in the same or opposite direction. Advantageously, split shift PSTD is backwards compatible from the perspective of mobile-stations. CDMA is well-known in the art.

[0011] Base station 30 provides wireless communication services to mobile-stations. not shown, in its associated geographical coverage area or cell, wherein the cell is divided into three sectors α , β , γ . Base station 30 includes a transmission architecture that split shift PSTD, as will be described herein.

[0012] Base station 30 comprises a processor 32, a splitter 34, multipliers 36, 38, 40, 42, amplifiers 44, 46, and a pair of diversity antennas 48, 50. Note that base station 30 also includes configurations of splitters, multipliers, amplifiers and antennas for sectors β , γ that are identical to those for sector α . For simplicity sake, the configurations for sectors β , γ are not shown. Additionally, for discussion purposes, it is assumed that signals S_k are intended for mobile-stations k located in sector α and, thus, the present invention will be described with reference to signals S_k being processed for transmission over sector α .

[0013] Processor 32 includes software for processing signals S_k in accordance with well-known CDMA techniques to produce an output signal S_{k-1} . Note that, in another embodiment, processor 32 is operable to process signals S_k in accordance with a multiple access technique other than CDMA, such as time or frequency division multiple access.

[0014] Signal $S_{k\cdot 1}$ is split by splitter 34 into signals $S_{k\cdot 1}(a)$, $S_{k\cdot 1}(b)$ and processed along paths A and B, respectively, by multipliers 36, 38, 40, 42, and amplifiers 44, 46 in accordance with split shift PSTD techniques, wherein signal $S_{k\cdot 1}(a)$ is identical to signal $S_{k\cdot 1}(b)$ in terms of data. In one embodiment, signal $S_{k\cdot 1}(a)$ is unevenly power split by splitter 34 such that the power level of signal $S_{k\cdot 1}(a)$ is higher than the power level of signal $S_{k\cdot 1}(b)$. For example, signal $S_{k\cdot 1}(a)$ is power split such that signal $S_{k\cdot 1}(a)$ gets 5/8 of signal $S_{k\cdot 1}(a)$ spower and signal $S_{k\cdot 1}(a)$ gets 3/8 of signal $S_{k\cdot 1}(a)$ spower split such that signal $S_{k\cdot 1}(a)$ gets 2/3 of signal $S_{k\cdot 1}(a)$ spower and signal $S_{k\cdot 1}(a)$ gets 2/3 of signal $S_{k\cdot 1}(a)$ spower and signal $S_{k\cdot 1}(a)$ gets 2/3 of signal $S_{k\cdot 1}(a)$ spower and signal $S_{k\cdot 1}(a)$ gets 2/3 of signal $S_{k\cdot 1}(a)$ spower and signal $S_{k\cdot 1}(a)$ spower split by splitter 34 such that the power level of signal $S_{k\cdot 1}(a)$ is higher than the power level of signal $S_{k\cdot 1}(a)$, or signal $S_{k\cdot 1}(a)$ is evenly power split into signals $S_{k\cdot 1}(a)$, $S_{k\cdot 1}(a)$.

[0015] Signal S_{k-1}(a) and phase sweep frequency signal

 $e^{j\Theta_{r}(t)}$

are provided as inputs into multiplier 36 where signal $S_{k-1}(a)$ is phase swept with phase sweep frequency signal

 $e^{i\Theta,(i)}$

55 to produce signal

 $S_{36}=S_{k-1}(a)e^{j\Theta_{k}(i)}$,

wherein $\Theta_s = 2\pi f_s t$,

5

10

35

40

45

55

$$e^{j\Theta_{\tau}(t)} = \cos(2\pi$$

 $f_s t$)+ $j \sin(2\pi f_s t)$,

 f_s represents a phase sweep frequency and trepresents time. Signal $S_{k-1}(b)$ and phase sweep frequency signal

 $e^{-j\Theta_{s}(t)}$

are provided as inputs into multiplier 38 where signal $S_{k-1}(b)$ is frequency phase swept with signal

 $e^{-j\Theta_{s}(t)}$

20 to produce signal

$$S_{38} = S_{k-1}(b)e^{-j\Theta_{k}(t)}$$

25 In another embodiment, phase sweep frequency signal

 $e^{j\Theta_i(t)}$

30 is used to phase sweep signal $S_{k-1}(a)$, and phase sweep frequency signal

 $e^{j\Theta_{s}(t)}$

is used to phase sweep signal $S_{k-1}(b)$.

[0016] Note that phase sweep frequency signals

$$e^{j\Theta,(i)}, e^{-j\Theta,(i)}$$

phase sweeps signals $S_{k-1}(a)$, $S_{k-1}(b)$ an equal amount but in opposite directions. Advantageously, this choice of phase sweep frequency signals

$$e^{j\Theta_{i}(t)}, e^{-j\Theta_{i}(t)}$$

results in the energy of the transmitted signals at mobile-stations to be concentrated at or near a carrier frequency f_c . In other embodiments, the phase sweep frequency signals used to phase sweep $S_{k\cdot 1}(a)$, $S_{k\cdot 1}(b)$ may have a fixed or varying phase shifting rate, may have an identical or different phase shifting rate, may be offset from each other and/or may be phase shifting in the same or opposite direction.

[0017] Signal S_{36} and carrier signal $e^{2\pi t_0 t}$ are provided as inputs into multiplier 40 to produce signal S_{40} , where

$$S_{40} = S_{k-1}(a)e^{j\Theta_{r}(t)} e^{j2\pi f_{r}t}, e^{j2\pi f_{r}t} = \cos(2\pi f_{r}t) + j\sin(2\pi f_{r}t).$$

Similarly, signal S_{38} and carrier signal $e^{2\pi l_c t}$ are provided as inputs into multiplier 42 to produce signal S_{42} , where

$$S_{42} = S_{k-1}(b)e^{-j\Theta_1(t)} e^{j2\pi f_e t}$$
.

[0018] Signals S₄₀, S₄₂ are amplified by amplifiers 44, 46 to produce signals S₄₄ and S₄₆ for transmission over antennas 48, 50, respectively, where signal

$$S_{44}=A_{44}S_{k-1}(a)e^{j\Theta_{*}(i)}e^{j2\pi f_{c}i}, S_{46}=A_{46}S_{k-1}(b)e^{-j\Theta_{*}(i)}e^{j2\pi f_{c}i},$$

10 A₄₄ represents the amount of gain associated with amplifier 44 and A₄₆ represents the amount of gain associated with amplifier 46.

[0019] In one embodiment, the amounts of gain A_{44} , A_{46} are equal. In this embodiment, signal $S_{k\cdot 1}$ may be split by splitter 34 such that the power level of signal $S_{k\cdot 1}(a)$ is higher than the power level of signal $S_{k\cdot 1}(b)$, or vice-versa, so that differences in power level between signals S_{44} and S_{46} are not as large compared to an even power split of signal $S_{k\cdot 1}$. Alternately, signal $S_{k\cdot 1}$ may be equally split by splitter 34.

[0020] In another embodiment, the amounts of gain A_{44} , A_{46} are different and related to how splitter 34 power splits signal S_{k-1} . For example, the amount of gain A_{44} , A_{46} applied to signals S_{36} , S_{38} may be an amount that would cause the power levels of signals S_{44} and S_{46} to be approximately equal. For purposes of this application, power levels are "approximately equal" when the power levels are within 10% of each other. In another example, the signal, e.g., S_{36} or S_{38} associated with a greater power level is amplified more than the other signal.

[0021] Although the present invention has been described in considerable detail with reference to certain embodiments, other versions are possible. Therefore, the scope of the present invention should not be limited to the description of the embodiments contained herein.

Claims

5

15

20

25

30

35

45

55

- 1. A method of signal transmission comprising the steps of:
- splitting a signal s_1 into signals $s_1(a)$ and $s_1(b)$, wherein the signal s_1 is split unevenly such that the signal $s_1(a)$ has an associated power level greater than a power level associated with the signal $s_1(b)$;
 - phase sweeping the signal s₁(a) using a first phase sweep frequency signal to produce a phase swept signal s₄(a); and
 - phase sweeping the signal $s_1(b)$ using a second phase sweep frequency signal to produce a phase swept signal $s_1(b)$, wherein the phase swept signal $s_1(a)$ has a different phase from the phase swept signal $s_1(b)$.
- The method of claim 1, wherein the first phase sweep frequency signal phase sweeps the signal s₁(a) in a direction opposite to a direction the second phase sweep frequency signal phase sweeps the signal s₁(b).
- 3. The method of claim 2, wherein a first phase sweep frequency associated with the first phase sweep frequency signal is identical to a second phase sweep frequency associated with the second phase sweep frequency signal.
 - 4. The method of claim 2, wherein a first phase sweep frequency associated with the first phase sweep frequency signal is not identical to a second phase sweep frequency associated with the second phase sweep frequency signal.
 - 5. The method of claim 2, wherein a first phase sweep frequency associated with the first phase sweep frequency signal is a fixed phase shifting rate.
- 50 6. The method of claim 2, wherein a first phase sweep frequency associated with the first phase sweep frequency signal is a variable phase shifting rate.
 - 7. The method of claim 2, wherein a second phase sweep frequency associated with the second phase sweep frequency signal is a fixed phase shifting rate.
 - 8. The method of claim 2, wherein a second phase sweep frequency associated with the second phase sweep frequency signal is a variable phase shifting rate.

	9.	The method of claim 1, wherein the first and second phase sweep frequency signals phase sweep the signals $s_1(b)$ in a same direction.				
5	10.	The method of claim 9, wherein a first phase sweep frequency associated with the first phase sweep frequency signal is identical to a second phase sweep frequency associated with the second phase sweep frequency signal.				
10						
15						
20						
25						
30						
35						
40						
45						
50						

EUROPEAN SEARCH REPORT

Application Number EP 02 25 0933

Category	Citation of document with of relevant pas	indication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
A	GUTIERREZ A ET AL. PSTD FOR IS-95 AND WIRELESS COMMUNICAT CONFERENCE, 1999. N	"AN INTRODUCTION TO CDMA2000" TIONS AND NETWORKING NCNC. 1999, (1999-09-21), pages	1	H04B7/06
A	diversity in mobile VEHICULAR TECHNOLOGY F MOBILE TECHNOLOGY F IEEE 46TH ATLANTA, 1996, NEW YORK, NY, 28 April 1996 (1991) 131-135, XPO1016236 ISBN: 0-7803-3157-5 * page 131, left-ha	BY CONFERENCE, 1996. FOR THE HUMAN RACE., GA, USA 28 APRIL-1 MAY USA,IEEE, US, 16-04-28), pages	1	
A	CHHEDA A: "ON THE OF A CDMA2000-1X SY DIVERSITY" VTC 2000-FALL. IEEE TECHNOLOGY CONFEREN 24 - 28, 2000, IEEE CONFERENCE, NEW YOR VOl. 2 OF 6. CONF. 24 September 2000 (618-623, XP00101732 ISBN: 0-7803-6508-9	VTS 52ND. VEHICULAR ICE. BOSTON, MA, SEPT. VEHICULAR TECHNOLGY ICK, NY: IEEE, US, 52, 2000-09-24), pages ICC. ICC. ICC. ICC. ICC. ICC. ICC. ICC		TECHNICAL FIELDS SEARCHED (Int.CI.7) H04B
	The present search report has			
	Place of search MUNICH	Date of completion of the search	D	Examiner
	TEGORY OF CITED DOCUMENTS	18 July 2002		ghardt, G
X : partic Y : partic docum A : techn O : non-	TIEGORY OF CITED DOCUMENTS cularly relevant if cahen alone cularly relevant if combined with anot ment of the same category nological background written disclosure mediato document	E : earlier patent doc after the filling date her 0 : document cited in L : document cited for	ument, but publis the application rother reasons	shed on, or

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

Application Number EP 02 25 0933

Category	Citation of document with indication of relevant passages	on, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
A	of relevant passages	INED EFFECTS OF TER DIVERSITY AND			
	The present search report has been dr	Cate of completion of the search 18 July 2002		Examiner Jhardt, G	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document clied in the application L: document clied or other reasons &: member of the same patent family, corresponding document			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.