

Business Template

BANDCAMP (ONLINE MUSIC PLATFORM) SALES

Legal Notice:

This document contains privileged and/or confidential information and may not be disclosed, distributed or reproduced without the prior written permission of EPAM®.

CONTENTS

1.	BUSINESS DESCRIPTION	3
	1.1 Business background	3
	1.2 Problems because of poor data management	3
	1.3 Benefits from implementing a Data Warehouse	3
	1.4 Datasets description	3
2.	BUSINESS LAYER 3NF	9
3.	BUSINESS LAYER DIMENSIONAL MODEL	11
4.	LOGICAL SCHEME	12
5.	DATA FLOW	13
6.	FACT TABLE PARTITIONING STRATEGY	15

Business Template < CDAIT

1 BUSINESS DESCRIPTION

1.1 BUSINESS BACKGROUND

Bandcamp is an online music platform that allows independent artists and labels to sell their music directly to fans.

Artists can create their own pages on Bandcamp and upload their music for sale, and fans can purchase digital or physical copies of albums, as well as merchandise like t-shirts and posters. Bandcamp takes a percentage of each sale, but allows artists to set their own prices and keep a larger portion of the revenue than they would with most traditional music distribution models.

1.2 PROBLEMS BECAUSE OF POOR DATA MANAGEMENT

Due to the rapid growth of the business, the current OLTP (Online Transaction Processing) database is unable to provide the necessary speed and performance required for efficient analyses.

1.3 BENEFITS FROM IMPLEMENTING A DATA WAREHOUSE

Using of data warehouse can help you with the problems described above. Business can gain insights into customer behavior, sales trends, and marketing effectiveness, and use these insights to make more informed business decisions.

Implementing a data warehouse can answer you the following questions:

- Which artists have the highest prices?
- Which geographic regions generate the most sales revenue?
- What is the average time between a customer's first and second purchase?
- What is the average price range of merchandise sold on Bandcamp?

1.4 DATASETS DESCRIPTION

The first dataset contains the following information about sales of digital products on Bandcamp site:

Product Information:

Prod_id: unique product id

URL: the path to the item on Bandcamp.

item_description: description.

image_url: path to the item's art image.

album_title: Title of the album, if applicable.

item_type: denotes the type of object. a for digital albums, t for digital tracks, b for bundles.

item_price: price of the item in the seller's currency.

currency: the seller's currency.

Sales Information:

_id: unique identifier combining the sale's URL and UTC timestamp.

amount_paid: amount paid in the seller's currency.

Business Template < CPAIT

amount_paid_usd: amount paid converted to US Dollars.

Artist Information:

artist_name: Name of the artist.

Genre: main artists genre

Time information:

utc_date: the UTC timestamp of the sale datetime.

Geography information:

country_code: country code of the buyer.
country: full country code name of the buyer.
Region: the appropriate region for each country.

Customer Information:

Username: username. Name: full name.

Sex: M or F

Address: text address.

Posstcode Mail: email

Birthdate: date YYYU-MM-DD

Promotion information:

Promotion ID

Promotion name

Promotion description

The 2nd dataset contains the information about sales of physical items on Bandcamp site with similar data structure with next differences:

1. Item type:

Product Information:

Prod_id: uniqiue identifier

url: the path to the item on Bandcamp.

item_description: description.

art_url: path to the item's art image.

album_title: Title of the album, if applicable.

item_type: denotes the type of object. p for physical items.

item_price: price of the item in the seller's currency.

currency: the seller's currency.

2. Additional dimension:

Shipping information:

Shipment track number.

Shipment date.

Shipment received: date, when shipment was received.

The data on sources captured till milliseconds, because it is a part of key for uniqueness. But for grain I decided to choose a day as the level, cause daily data is easy to understand and interpret, it can be used to track trends and patterns over time, and compare performance across different time periods.

A business process: The seller sells a product to a customer the customer pays for it.

The grain is: each individual sale of a digital or merch product.

One row per sale of the certain product, made by the artist, at certain time, with eligible promotion or without it, with shipping if necessary, to the customer, who pays the amount of money for it.

The dimensions are: product, artist, time, promotion, shipping, customer, address, payments currency.

The facts are sale item price, amount in dollars, amount in sellers currency, platform fee percent, fee discount.

Dimension: DIM_PRODUCTS

Describes every item in the music online store.

Column name	Description	Data Type
PRODUCT_URL	The path to the item on site.	VARCHAR(255)
PRODUCT_DESCRIPTION	Description.	VARCHAR(255)
PRODUCT_IMAGE_URL	Path to the item's art image.	VARCHAR(100)
PRODUCT_ALBUM_TITLE	Title of the album, if applicable.	VARCHAR(255)
PRODUCT_PRICE	Price of the product in the purchased currency.	NUMERIC(10,2)
PRODUCT_TYPE	Type: 'a' for digital album, 't' for digital track, 'p' for physical items.	VARCHAR(1)

Example:

PRODUCT_URL	PRODUCT_DESCRIPTION	PRODUCT_IMAGE_URL	PRODUCT_ALBUM_TITLE	PRODUCT_ PRICE	PRODUCT_ TYPE
//girlbanddublin. bandcamp.com/al bum/live-at- vicar-street	Live at Vicar Street	https://f4.bcbits.com/img/a0 206405257_7.jpg	Live at Vicar Street	9,99	a

Dimension: DIM_CURRENCIES

Provides information about currencies in transactions.

Column name	Description	Data Type
CURRENCY_PAID_SYMB	Amount paid in the purchased currency, with currency symbol.	VARCHAR(13)
CURRENCY_CODE	The seller's(artists) currency code (USD, EUR etc).	VARCHAR(3)

Example:

CURRENCY_PAID_SYMB	CURRENCY_CODE
\$9.99	USD
£1	GBP

Dimension: DIM_ARTISTS

Provides information about artists - creators of the selling items.

Column name	Description	Data Type
ARTIST_NAME	Name of the artist.	VARCHAR(100)
ARTIST_GENRE	Current genre of music for the artist.	VARCHAR(30)

Example:

ARTIST_NAME	ARTIST_GENRE
Girl Band	Рор

Dimension: DIM_TIMES

Provides information about time periods. Attributes can be added according business requirements.

Business Template < CDam>

Column name	Description	Data Type
TIME_SRC_ID	The UTC timestamp of the sale	BIGINT
	datetime, natural key.	
TIME_YYYY	Year of the transaction.	INT
TIME_MM	Month of the transaction.	INT
TIME_DT	Date of the transaction.	DATE
TIME_WEEK_NUM	Week number of the transaction.	INT
TIME_MONTH_NAME	Months name.	VARACHAR(9)

Example:

TIME_SRC_ID	TIME_YYYY	TIME_MM	TIME_DT	TIME_WEEK_NUM	TIME_MONTH_NAME
1.599689e+09	2022	12	20.12.2022	51	December

Dimension: DIM ADRESSES

Provides information about the physical location of the customers.

Column name	Description	Data Type
ADDRESS_TEXT	Address of the customer.	VARCHAR(255)
ADDRESS_COUNTRY_CODE	Country code of the buyer	VARCHAR(2)
ADDRESS_COUNTRY	Full country name	VARCHAR(32)
ADDRESS_REGION	World's region name	VARCHAR(15)

Example:

ADDRESS_COUNTRY_CODE	ADDRESS_COUNTRY	ADDRESS_REGION
gb	United Kingdom	Europe

Dimension: DIM_CUSTOMERS

Provides information about customers.

Column name	Description	Data Type
CUSTOMER_NAME	Full name of the customer.	VARCHAR(100)
CUSTOMER_GENDER	Gender of the customer, M or F	VARCHAR(1)
CUSTOMER_EMAIL	Email of the customer, can be used as natural key	VARCHAR(50)
CUSTOMER_BIRTHDATE	Day of the transaction.	DATE

Example:

CUSTOMER_NAME	CUSTOMER_G	CUSTOMER_ADDRESS	CUSTOMER_EMAIL	CUSTOMER_BI
	ENDER			RTHDATE
Jessica Patel	F	97832 Palmer Inlet	christophermor	07.06.1972
		Apt. 593\nWest	gan@gmail.com	
		Kathleenboro		

Dimension: DIM_PROMOTIONS

Provides information about promotions.

Business Template < CPam>

Column name	Description	Data Type	
PROMOTION_SRC_ID	Promotion campaign source id.	VARCHAR(15)	
PROMOTION_NAME	Promotion campaign name.	VARCHAR(100)	
PROMOTION_DESC	Promotion description.	VARCHAR(255)	

Example:

PROMOTION_SRC_ID	PROMOTION_NAME	PROMOTION_DESC
1234	Free Shipping	Free shipping for merch

Dimension: DIM_SHIPMENTS

For physical items provides shipment details.

Column name	Description	Data Type	
SHIPMENT_TRACK_NUMBER_SRC_ID	Unique shipment source id.	VARCHAR(30)	
SHIPMENT_DT	Date of the shipment.	DATE	
SHIPMENT_RECEIVED_DT	Date, when shipment was received.	DATE	

Example:

SHIPMENT_TRACK_NUMBER_SRC_ID	SHIPMENT_DT	SHIPMENT_RECEIVED_DT
12138115	01.06.2023	09.06.2023

Fact table: FCT_SALES_DD

Provides information about sales amount in dollars.

References to dimension tables omitted (for better presentation).

Column name	Description	Data Type
SALE_SRC_ID	Unique identifier combining the sale's URL and UTC timestamp.	VARCHAR(100)
EVENT_DT	Date of the sale transaction.	DATE
SALE_AMOUNT_PAID_US D	Sale amount in dollars.	NUMERIC(10, 2)
SALE_AMOUNT_PAID	Sale amount in currency of the seller	NUMERIC(10, 2)
SALE_PRODUCT_PRICE	Sale amount in currency of the seller	NUMERIC(10, 2)
INSERT_DT	Date of fact row creation.	DATE
UPDATE_DT	Date of fact last time row modification.	DATE

Example:

SALE_SRC_ID	EVENT_DT	SALE_AMOUNT	SALE_AMO	SALE_PRO	INSERT_DT	UPDATE_DT
		_PAID_USD	UNT_PAID	DUCT_PRI		
				CE		
1599688803.5175&// girlbanddublin.	01.01.2023	9,99	9,99	9,99	15.07.20 23	18.07.202 3
bandcamp.com/						

2 BUSINESS LAYER 3NF

On the previous step, the key business entities were identified. Based on these entities and their relationships, the base tables were designed.

The settlement for the grain was established as follows: each individual sale of a digital or physical merchandise product. Therefore, the Sale table will serve as the central table, containing key metrics such as the sale amount in both USD and the seller's currency, as well as most of the relationships with other tables.

All other tables were created to represent a single dimensional entity with attributes (whose data types were also defined in the previous step), and with a primary key that uniquely identifies each record.

The next step was table normalization, which included splitting the tables to eliminate transitive dependencies. For example, the Addresses dimension was split, and foreign keys were added to parent tables.

On the next step, the table CE_SALES was created with foreign keys to many tables and with measure fields. The relations were displayed, and the UTC-timestamp was included in that table.

On the next step, source triplet fields were implemented in the tables.

The entity Artists have a Genre attribute that can be changed, but it is important to know the time period when the previous genre was active. Therefore, that table was tagged as an SCD2-type table (CE_ARTISTS_SCD), and necessary fields were added.

Next, fields INSERT_DT and UPDATE_DT were added to tables with SCD Type 1 design. As example, each customer is allowed to have only one address, but it is important to know how old it is. Therefore, the table CE_ADDRESSES was designed as an SCD Type1 table.

Business Template < CPAM

3 BUSINESS LAYER DIMENSIONAL MODEL

The fact table FCT_SALES_DD contains the following metrics from the sources data:

- **FCT_AMOUNT_PAID_CURRENCY**: The amount, paid by the customer paid for an item in the seller's currency.
- FCT_AMOUNT_PAID_USD: amount, paid by the customer for an item in US dollars.
- FCT_PRODUCT_PRICE_CURRENCY: The price of the item in the seller's currency.
- FCT_PRODUCT_TYPE_PLATFORM_FEE_PERCENT: The percentage of the sales amount that is intended for the platform; the percentage varies by product type.

• FCT_PROMOTION_FEE_DISCOUNT_PERCENT: The percentage by which the platform fee is reduced during promotional events for certain goods. The default value is 0.

In addition, the following calculated metrics have been added:

1. **FCT_PLATFORM_REVENUE_USD**: The amount of revenue in US dollars earned by the site, calculated using the following formula:

```
FCT_AMOUNT_PAID_USD *

FCT_PRODUCT_TYPE_PLATFORM_FEE_PERCENT/100 *

(1 - FCT_PROMOTION_FEE_DISCOUNT_PERCENT/100)
```

2. **FCT_ARTIST_REVENUE_USD**: The amount of revenue in US dollars earned by the artist, calculated using the following formula:

```
FCT_AMOUNT_PAID_USD *
(1 - FCT_PRODUCT_TYPE_PLATFORM_FEE_PERCENT/100 *
(1 - FCT_PROMOTION_FEE_DISCOUNT_PERCENT/100)
)
```

4 LOGICAL SCHEME

The process of loading the data to the Data Warehouse looks like this series of steps:

5 DATA FLOW

The next slides represent the data flow for the data warehouse loading process:

Business Template

6 FACT TABLE PARTITIONING STRATEGY

The fact table, **fct_sales_dd**, in the data warehouse on the BL_DM layer is designed with a partitioning strategy based on year and quarter. This means that the table is divided into multiple partitions, with each partition representing a specific combination of year and quarter.

In this particular strategy, there are four partitions created for each year, corresponding to the four quarters: Q1, Q2, Q3, and Q4. This allows for efficient data storage and retrieval by segregating the data based on its temporal characteristics.

Partitioning the fact table by year and quarter offers several benefits. It can enhance query performance by limiting the amount of data that needs to be scanned or accessed when retrieving information for a specific time period. It can also facilitate data maintenance operations such as loading, archiving, or purging data, as these operations can be targeted at specific partitions rather than the entire table.