DM4

Exercice 1. Résoudre dans $\mathbb C$ l'équation d'inconnue z :

$$\left(\frac{z-2i}{z+2i}\right)^3 + \left(\frac{z-2i}{z+2i}\right)^2 + \left(\frac{z-2i}{z+2i}\right) + 1 = 0$$

Exercice 2. Soit $n \in \mathbb{N}$. On définit la somme pour tout $x \in]0, 2\pi[$:

$$Z(x) = \sum_{k=0}^{n} e^{ikx}.$$

1. Montrer par récurrence que $Z(x)=\frac{1-e^{(n+1)ix}}{1-e^{ix}}$. On suppose que $n\geq 2,$ on pose :

$$S_n = \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right).$$

- 2. Justifier que $S_n = \sum_{k=0}^n \sin\left(\frac{k\pi}{n}\right)$.
- 3. Prouver que : $S_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)}$.
- 4. En déduire la valeur de $\tan\left(\frac{\pi}{8}\right)$.
- 5. Déterminer $\lim_{n\to\infty} \frac{S_n}{n}$.