D3F50 Firmware 설명서

[LXconn System]D3F50 Firmware 데이터 규격 설명 문서

Doc. ID. LXD178 V1

Release Date. 2019-09-30.

Abstract – LXconn System & Instrument Firmware 이다. 설정된 Instrument ID = LXI4000 이며, Device ID = LX0140 인 module Device 에 탑재된다. Stream Packet size 는 8 이고, packet 전송율은 256 packet/sec 이다. LX0140 module 에서 GREEN 광원을 활용한 1 채널 PPG 신호를 제공한다. GREEN 광원의 세기를 조절할 수 있으며, 현재 설정된 세기를 PCD[10]에서 확인할 수 있다. Run command 에 의해 PPG 측정이 진행되면, GREEN 광원이 켜지고, 동시에, RGB LED 의 green 과 blue 가 켜져 stream packet 전송중임이 표시된다. Stop command 로 계측이 중단되면, PPG 센서용 GREEN 광원과 상태 표시용 RGB LED 의 green 이 꺼져, 데이터 전송이 중단되었음을 표시한다.

[참조 문서]

[1]. LXD177: LX0140 Device 설명서

https://github.com/LXconn/Devices/raw/master/LXD177 datasheet LX0140.pdf

[2]. LXD181: LXI4000 Instrument 설명서

https://github.com/LXconn/Devices/raw/master/LXD181 datasheet LXI4000.pdf

목차

개요	3
주요특성	3
D3F50 FIRMWARE 에 설정된 기본 상수	4
동작	5
동작 모드	5
RGB 상태 LED 표시	6
기능	6
성능	6
호스트 COMMAND PACKET	8
STREAM DATA PACKET	10
실시간 스트림 패킷	10
데이터 항목별 상세설명	
Instrument ID ([o].IID_H, [1].IID_L)	
Packet byte size ([2]. PBS)Packet unit data ([3]. PUD)	
Packet Count ([4]. PC)	
Packet Count Data ([5]. PCD[PC])	11
Green PPG signal ([6]. Cho_H, [7]. Cho_L)	11
PCD[PC] 데이터	12
[부록-1] 통신용 데이터 패킷	13
통신 절차	13
기본 COMMAND 목록	14
Info command packet ルーコ Response Packet	14
RUN command packet	_
STOP command packet	
Reset command packet	
COMMAND PACKET	
RESPONSE PACKET	
STREAM PACKETPACKET PARSING GUIDE	
C code example	-
신호 표시용 Labview 소스 예시	
REVISION HISTORY	21

개요

D3F50 펌웨어는 Instrument ID = LXI4000 으로 설정된 Instrument Firmware 이다. 호스트(PC)와 직접 통신이 가능한 펌웨어로서, Device ID = LX0140 인 module device 에 적용되어, GREEN 광원에 의한 1 채널 PPG 신호를 제공한다. 호스트(PC)에 의한 Run command 로 PPG 계측이 진행되고, Stop command 에 의해 계측이 중단된다. PPG 계측이 진행될 때, PPG 센서의 GREEN 광원이 ON 되고, RGB 상태 LED는 green 과 blue 가 동시에 ON 되어 계측 중임을 표시한다. PPG 계측이 중단되면, PPG 용 GREEN 광원과 RGB LED의 green 이 함께 OFF 되어, PPG 계측이 중단되었음을 표시한다. 대상 Device 에 Firmware 를 이식하는 방법과 그절차는 참조 문서[1]의 Device Firmware Updata(DFU) 절의 내용을 따른다.

주요특성

- Instrument ID = LXI4000
- 적용 Device ID = LX0140
- 상기 device 에 적용되는 기본 펌웨어
- 호스트(PC)와 직접 통신
- 1 채널 GREEN PPG 신호 제공
- GREEN Intensity control: 0~55
- RGB LED: Measurement = green + blue, Stop = green

Doc. ID. LXD178 V1

D3F50 Firmware 에 설정된 기본 상수

동작, UART 통신 등을 위해 펌웨어에 설정된 기본 상수는 아래 표와 같다.

항목	내용
Instrument ID	LXI4000
Device ID	LX0140. D3F50 펌웨어는 이 고유 번호를 갖는 Device 에만 적용된다.
Stream Packet size	8 byte
Stream Packet 전송율	256 packet/sec
UART baud rate	115200 bps
UART data bit	8 bit
UART stop bit	1bit
UART parity	none
UART flow control	none

표[1]. D3F50 firmware 에 설정된 기본 상수.

동작

펌웨어가 탑재된 Instrument 에 전원이 인가되면, 그림[1]의 동작 모드에 따라 Instrument 가 동작한다. Instrument 는 호스트(PC) command 에 따라 측정, 대기 모드로 구동된다. 필요할 경우, 호스트(PC)에서 리셋 command 를 인가하여 Instrument 를 초기 상태로 설정할 수 있다.

동작 모드

D3F50 펌웨어는 LX0140 Device 에 적용된다. 이 펌웨어에 따른 instrument 의 동작 모드 구성은 그림[1]과 같다. 전원이 인가되면, Instrument 는 기본적으로 리셋 상태를 경유하여 대기 모드에 놓인다. 이 모드에서 호스트(PC) command 에 따라 동작이 달라진다. Run command 를 수신하면, Instrument 는 측정 모드로 동작하면서 측정 데이터를 Stream Packet 에 할당하여 호스트(PC)에 전달한다. 대기 모드에서 Reset command 를 수신하면, Instrument 는 리셋된 후 다시 대기 모드로 재 진입한다. 측정 모드에서 호스트(PC)로부터 Stop command 를 수신하면, 측정을 종료하고, 대기 모드로 변경된다. 측정 모드에서도 reset command 를 수신할 수 있으며, 이 command 를 수신하면, Instrument 는 리셋 상태를 거쳐 다시 대기 모드로 진입하게 된다.

그림[1]. D $_3$ F $_5$ O 펌웨어에 따른 Instrument 동작 상태 변화도. Instrument 는 측정 모드에서 실제 동작하며, 이는 호스트(PC)로부터 Run command 를 수신해야 진행될 수 있다.

RGB 상태 LED 표시

펌웨어에 따른 Instrument 동작 상태를 RBG 상태 LED로 표시한다. 그림[1]에서 동작 모드는 크게 두 가지다. 하나는 측정 모드이고, 다른 하나는 대기 모드이다. 호스트(PC) command 에 의해 측정 모드에서는 PPG 신호 계측이 진행되고, 상태 LED 는 녹색과 파란색으로 표시된다. PPG 측정이 중단된 대기 모드에서는 파란색 LED 만 켜진다(Device 에 구비된 빨간색 LED 는 Device 가 DFU 모드일 경우에만 켜짐).

동작 모드	상태 LED 내용
전원인가(대기 모드)	파란색 켜짐
측정 모드	녹색과 파란색 켜짐
DFU	빨간색 켜짐

표[2]. Instrument 구동 상태와 RGB LED 표시.

기능

LX0140 Device 에 적용되는 펌웨어, D3F50 의 기능은 아래 표[3]과 같다. LX0140 Device 자체의 기능은 참조문서[1]의 표[1]에서 확인할 수 있다.

순번	항목	내용
1	1 채널 GREEN PPG 신호 계측	LX0140 device 에 구비된 3 PPG 광원 중에서 GREEN 을
		사용하여 1 채널 PPG 신호를 제공함
2	GREEN light Intensity Control	PPG 신호 계측용 GREEN Light 세기를 제어할 수 있으며, 설정
		값은 Instrument 에 저장된다. 현재 Instrument 에 설정된 값은
		PCD[10]에 할당되어 있어, Stream Packet 으로 확인할 수 있다.
3	Reset	필요할 경우, Instrument 를 초기화 한다.

표[3]. LX0140 Device 에 적용된 D3F50 펌웨어의 기능 항목. 펌웨어의 기능은 기본적으로 적용되는 Device 의하드웨어 구성에 크게 의존한다.

성능

LX0140 Device 에 탑재된 D3F50 펌웨어의 성능을 아래 표[4]에 나타낸다. LX0140 Device 의 하드웨어 자체의 성능은 참조문서[1]의 표[2]에서 확인할 수 있다. 구성된 하드웨어 성능은 실제 적용되는 펌웨어 특성에 의존한다. D3F50 펌웨어는 PPG 센서의 3 광원 중 GREEN 광원 하나만 사용하며, 가속도 센서는 아예 활용하지 않는다. PPG 센서로부터 확보한 원시 신호를 신호처리하여 최종 1 채널 PPG 신호를 출력한다. 이때 신호에 관한 정량적 특성을 아래 표에 명시한다.

순번	항목	내용
1	PPG 광원	GREEN: 525nm
2	PPG ADC data size	3 byte. 원시 PPG 센서 출력 데이터 크기.
3	PPG sampling frequency	256Hz.
4	PPG_HPF	Fc = 0.5Hz $Order = 1st$
		Filter type : IIR, Butterworth
5	PPG_LPF	Fc = 10Hz Order = 4 th Filter type : IIR, Butterworth
6	PPG Output Data Range	2 byte. Stream packet 으로 전송되는 PPG signal 크기.
7	MCU Clock	19MHz

표[4]. LX0140 Device 에 탑재되는 D3F50 펌웨어에 따른 PPG 신호 성능 항목. 3byte 크기로 제공되는 PPG 원시 신호를 신호 처리하여 2 byte 크기로 출력한다.

호스트 command Packet

펌웨어에 구비된 호스트 command 항목은 기본 command 와 Instrument command 로 구분된다. 기본 command 는 [부록-1]에 언급되어 있으며, Instrument command 는 아래 표[5]와 같다. 기본 command 에 따른 Module Device 의 동작 상태를 상태 LED 와 PPG 센서 LED 로 확인할 수 있다. Module Device 에 전원이 인가되면, 상태 LED 는 Blue 로 켜진다(표[2] 참조). 그리고, PPG 센서 LED 는 꺼진 상태를 유지한다.

(센서면)

(상태 LED 면: BLUE ON)

그림[2]. PPG module 에 전원이 인가된 후, PPG 센서의 LED 는 꺼진 상태.

기본 command, RUN(표[A4] 참조) command 가 적용되면, PPG sensor 는 그 LED 를 동작 시킨다. 이에 따라, PPG 센서는 GREEN 빛을 켜고, 상태 LED 는 Green 과 Blue 가 켜지게 된다(그림[3]).

(센서면)

(상태 LED 면: BLUE + GREEN ON)

그림[3]. RUN command 에 따른 PPG sensor Module 의 동작 상태.

PPG 센서 LED 가 켜지면, 센서를 손가락에 착용하여 PPG 신호 계측을 진행한다.

그림[4]. RUN command 에 의한 PPG 센서 LED 가 켜지고, PPG module 을 손가락에 착용한 상태에서 PPG 신호를 얻는다. 상태 LED 는 Green 과 Blue 가 켜진 상태가 된다.

8 / 21

한편, Instrument command 는 이 Instrument 에만 유효하다. 이 command 에 따른 응답 packet 을 호스트로 전달하여 해당 command 가 올바로 수신되었는지 알려준다.

인덱스	데이터	설명.
0	0x40	표[1]에서 제시된 Instrument ID(IID)의 상위 1 바이트(IID_H).
1	0x00	표[1]에서 제시된 Instrument ID(IID)의 하위 1 바이트(IID_L).
2	0x08	Packet Byte Size.
3	0x02	이 command data 를 Instrument 에 기록한다.
4	oxo6	PPG 신호 관련 데이터.
5	0x01	PPG 센서 빛 세기
6	0x00	-
7	PPG Light Intensity	실제 LED 세기. 0~55 범위의 값. 기본 값 = 15.
		이 값이 Instrument 에 전달되고, 저장된다.
		설정된 값은 PCD[10]에 할당된다.

표[5]. PPG 센서용 및 세기를 제어하는 호스트 command packet. 이 command 에 따른 응답 packet 을 호스트로 반송한다(표[6]).

인덱스	데이터	설명.
0	0X40	IID_H
1	0x00	IID_L
2	0x09	Packet Byte Size.
3	0x00	이 packet 은 Response Packet 이다.
4	0x06	PPG 신호 관련 데이터.
5	0x01	PPG 센서 빛 세기
6	0x00	-
7	oxoo	Response code
	or 0x01	0 = 정상 적용
		1 = command 미적용
8	0~55	Instrument 에 적용된 값.

표[6]. PPG Light Intensity Control Command Packet 에 따른 Instrument 의 Response Packet. 호스트에서 이 패킷은 굳이 처리하지 않아도 된다. Stream Packet 수신 시 PCD[10]에 해당 데이터가 할당되므로 그 값의 반영 여부를 확인할 수 있다.

Stream Data Packet

그림[1]에서 보듯이, Run command 에 의해 Instrument 가 측정 모드로 동작하면, 호스트(PC)로 Stream data packet 이 전송된다. 이 패킷으로부터 호스트(PC)는 1 채널 PPG 신호를 실시간으로 확보할 수 있다.

실시간 스트림 패킷

호스트로 전송되는 실시간 스트림 패킷의 원형은 [부록-1]에 제시되어 있다. 측정 모드에서 Instrument 가호스트로 전달하는 실시간 스트림 데이터 패킷이다. Stop command 에 의해 스트림 전송이 중단될 수 있으며, 전송 등 오류로 전송이 중단될 경우, Reset command 로 Instrument 를 초기화 할 수 있다. 만약, Reset command 도 적용되지 않는 상태라면, 전원을 해제한 후 다시 연결할 것을 권한다.

패킷 항목	데이터	설명
[o].IID_H [1]. IID_L	0x40	Instrument ID. 2 바이트 고유 번호.
[1]. IID_L	Ox00	표[1]에 명시되어 있음.
		패킷 파싱에 활용됨.
[2]. PBS	oxo8	Byte 단위의 패킷 크기.
		패킷 파싱에 활용됨.
[3]. PUD	ox8o	PUD.bit7 = 1 : 패킷 파싱에 활용됨.
		PUD.bit6~bito =oxoo : 데이터 할당 없음.
[4]. PC	0~31	Packet Count. o~31 범위의 연속 가변.
		이 데이터의 연속성이 만족되지 않으면, 수신 패킷에 누락이 발생했음을
		의미.
[5]. PCD[PC]	PCD[PC]	표[8] 참조
[6]. Cho_H	Green_PPG_H	2 바이트 Green PPG 신호.
[7]. Cho_L	Green_PPG_L	

표[7]. 측정 모드에서 호스트로 전송되는 실시간 스트림 데이터 패킷. 256 packet/sec 빠르기로 패킷이 전송된다. 1 채널 Green_PPG 신호는 이 패킷에서 2 바이트 데이터를 추출함으로써 확보할 수 있다.

데이터 항목별 상세설명.

표[10]의 각 패킷의 데이터 항목에 대한 설명은 아래와 같다.

Instrument ID ([0].IID_H, [1].IID_L)

D3F50 펌웨어에 따른 표[1]의 Instrument ID 값.

10 / 21 Doc. ID. LXD178 V1

Packet byte size ([2]. PBS)

스트림 데이터 패킷 전체 크기. 패킷 크기가 8 바이트임.

Packet unit data ([3]. PUD)

PUD.bit7=1 은 스트림 패킷의 기본 설정 값. 그 외 데이터 요소에는 데이터 할당 없음.

Packet Count ([4]. PC)

패킷이 1 회 전송될 때마다 1 씩 증가한다. 최대 값은 31.0~31 범위에서 반복되는 수이다. 이 범위 이내에서 수신 값이 불연속적이면, 해당 패킷이 누락되었음을 의미한다. 데이터 복원에 오류가 있거나, 통신에 오류가 있는 경우이다. 실시간 스트림 데이터 전송에서 패킷이 누락되면, 원래 데이터를 복원할 수 없다.

Packet Count Data ([5]. PCD[PC])

PC 에 대응하는 데이터가 할당된다. 할당된 데이터는 표[8]에 수록되어 있다.

Green PPG signal ([6]. Ch0_H, [7]. Ch0_L)

2 바이트 Green PPG 신호. 각 패킷 항목(a=[6].Cho_H, b=[7].Cho_L)으로부터 2 바이트 신호는 다음과 같이 얻는다.

수식 [1]. Green_PPG(num) = a*256 + b.

측정 신호의 단위는 없으며, 중심 값은 32768 이다. 정수 형태의 데이터 표현은 다음 식으로 얻는다.

수식[2]. Green_PPG(integer) = a*256 + b - 32768.

그림[5]. 수식[1]로 얻은 Green_PPG 신호(8 초 동안의 PPG 신호).

PCD[PC] 데이터

PC 에 따른 데이터 할당은 아래 표와 같다.

PCD[]	데이터 항목	설명
PCD[0]~PCD[9]	reserved	-
PCD[10]	PPG Light Intensity	Instrument 에 설정된 PPG Light Intensity 값.
		0~55.
PCD[11]~[31]	0	데이터 할당 없음

표[8]. PCD[PC] 데이터 할당. 현재 장치에 설정된 PPG Light Intensity 값. 표[5]의 command 로 설정 값을 변경할 수 있다. 그 변경에 따른 값이 올바로 설정되었는지 이 데이터로 확인할 수 있다.

[부록-1] 통신용 데이터 패킷

LXconn System 에서 사용되는 통신 데이터 패킷을 소개한다. 통신은 Instrument 와 Host 사이에서 수행된다. Host 가 command packet 을 Instrument 에 전달하면, Instrument 는 대응하는 Response Packet 을 반송한다. 그리고 Instrument 에서 Host 쪽으로 일방적으로 전송하는 Stream Packet 이 있다. 이 통신 경로를 그림[A1]에서 보여주고 있다.

그림[A1]. Instrument 와 Host 사이의 통신 패킷. Host 에서 Instrument 로 전달되는 통신 패킷은 command packet 으로 오직 하나만 존재한다. 반면, Instrument 에서 Host 로 전달되는 통신 패킷은 command packet 에 따른 Response packet 과 host 로 일방적으로 제공하는 Stream packet, 두 가지가 있다.

Host 는 Instrument 에서 제공되는 두 가지의 통신 패킷을 구분하여 해당 패킷을 복원할 수 있어야 한다. 그림[A1]에 제시한 것과 같이 index=3 에서, 그 데이터의 크기로 Response Packet 과 Stream Packet 을 구분할 수 있다. 호스트에서 패킷 파싱 작업 시 이를 고려하여 두 가지의 통신 패킷을 구분하는 작업이 필요하다.

통신 절차

Instrument 는 초기 전원 인가 시 대기모드에 진입한다. Host 가 해당 Instrument 와 통신하기 위한 절차는 아래 그림과 같다. 먼저 Info. Command 로 해당 Instrument 의 정보를 얻는다. 그리고 정보, 특히, Instrument ID를 바탕으로 RUN command를 통해 Instrument를 구동한다. Stop command는 Instrument를 다시 대기모드로 지정한다.

그림[A2]. Instrument 통신 절차. 먼저, Info. Command 로 Instrument 정보를 얻는다.

13 / 21

Doc. ID. LXD178 V1

LAXTHA Inc. http://www.laxtha.com Advanced Scientific Instruments. H/W & S/W. Form ID. LXS-F-226_V1

기본 Command 목록

LXconn System 에서 Instrument 제어를 위한 기본적인 command 항목들이 있다. 그 기본 항목들은 다음과 같다.

command	내용	적용 모드
Info	Instrument Information 를 얻기 위한 command.	대기 모드. Stream packet 이 생성되지
		않는 동작 모드
RUN	Instrument 를 구동하여, 측정 데이터를 Stream	대기 모드.
	Packet 으로 반송하도록 하는 command.	
STOP	측정 모드를 중단하고, 대기모드로 전환하는	측정 모드. Stream Packet 이 호스트로
	command.	제공되는 동작 모드.
Reset	Instrument 를 대기 모드로 초기화하는 command.	대기 모드, 측정 모드.

표[A1]. Instrument 제어를 위한 기본 Command Packet 목록.

이들 Command 항목의 실제 Packet 은 아래와 같다.

Info command packet 과 ☐ Response Packet

대기 모드에서 적용되는 Instrument 기본 정보를 얻기 위한 command.

Packet Index	데이터	내용
0	0x00	모든 Instrument 에 공통으로 적용됨을 나타냄
1	0x00	
2	oxo8	이 packet 의 크기
3	0x03	Instrument 로부터 데이터를 읽는다.
4	oxFF	Instrument Information 요청.
5	0x01	Device ID(DID), Instrument ID(IID), Firmware ID, Stream Packet Size, Device Serial Number
6	0x00	Instrument 를 지칭하는 데이터.
7	0x15	대응하는 Response Packet Size

표[A2]. Instrument Info Command Packet. 이 command 는 대기 모드에서 실행한다. Instrument 의 응답 Packet 을 수신하여 해당 Instrument 관련 정보를 얻는다. 대응하는 Response Packet 은 표[A3]과 같으며, Command Packet 의 원형은 표[A7]과 같다.

Release Date. 2019-09-30

14 / 21

Packet Index	데이터	내용
0	0x00	모든 Instrument 에 공통으로 적용됨을 나타냄
1	0x00	
2	0x15	이 packet 의 크기
3	0x00	Info command packet 의 response packet 이다.
4	oxFF	Instrument Information 요청.
5	0x01	Device ID(DID), Instrument ID(IID), Firmware ID, Stream Packet Size, Device Serial Number
6	0x00	Instrument 를 지칭하는 데이터.
7	0x00 or 0x01	o: no error
		1 : 요청 사항을 수행하지 못함.
8	DID_H	Device ID. 2 바이트 데이터=256*DID_H + DID_L
9	DID_L	16 진수로 표현.
10	IID_H	Instrument ID. 2 바이트 데이터=256*IID_H + IID_L
11	IID_L	16 진수로 표현.
12	FW_D	Firmware ID ≌ D
13	FW_F_H	Firmware ID 의 F. 2 바이트 데이터=256*FW F H + FW F L
14	FW_F_L	
15	FW_R	Firmware ID ♀ R
16	SPS	Stream Packet Size
17	SN_H	Device Serial Number. 4 바이트 데이터.
18	SN_M1	SN_H<24 + SN_M1<16 + SN_M2<8 + SN_L
19	SN_M2	16 진수로 표현.
20	SN_L	10 인구노 표연•

표[A3]. Info Command Packet 에 대한 Instrument 의 Response Packet. 이 패킷으로부터 Instrument 정보를 얻는다.

RUN command packet

Instrument 로 하여금 측정 모드에서 구동되게 하는 command packet.

Packet Index	Command packet Data	Response Packet Data
0	0x40	0x40
1	0x00	0x00
2	0x07	oxo8
3	0x01	0x00
4	0x01	0x01
5	0x02	0x02
6	0x00	0x00
7	-	oxoo (no error)/ oxo1(error) ; Resp_code

표[A4]. RUN command packet 과 대응하는 Response Packet.

STOP command packet

Instrument 로 하여금 측정을 종료하고, 대기 모드에서 구동되게 하는 command packet.

Packet Index	Command packet Data	Response Packet Data
0	0x40	0x40
1	0x00	0x00
2	0x07	oxo8
3	0x01	0x00
4	0x01	0x01
5	0x03	0x03
6	0x00	0x00
7	-	oxoo (no error)/ oxo1(error); Resp_code

표[A5]. STOP command packet 과 대응하는 Response Packet.

Reset command packet

Instrument 를 초기화 하는 command packet. 이 command 는 Response packet 이 없음.

Packet Index	데이터	내용	
0	0x00	모든 Instrument 에 적용됨	
1	0x00		
2	0x07	Packet size	
3	0x01	-	
4	oxFF	-	
5	0x02	-	
6	0x00	-	

표[A6]. Reset command packet. 이 command 를 수신한 Instrument 는 초기화된다.

Command Packet

LXconn System 에서 활용되는 Command Packet 원형은 표[A7]과 같다. 그림[A1]을 참조하면, 이 패킷은 호스트에서 Instrument 로 전달되는 통신 패킷이다.

Packet Index	항목	내용	
0	IID_H 적용되는 Instrument 의 고유번호. 2 바이트 데이터.		
1	IID_L	모든 Instrument 에 공통으로 적용되는 command 일 경우에는 이 값은	
		0x00, 0x00 이다.	
2	PBS	Packet Byte Size	
		[3].command = 1(control)이면, 7	
		[3].command = 2(write)이면, PBS	
		[3].command = 3(read)이면, 8	
3	Command	1=control : 장치 제어 신호.	
		2=write : 장치에 데이터 기록.	
		3=read : 장치에서 데이터 읽기.	
4	Type	해당 command 에 대한 command type	
5	Items	Command type 에 대한, 세부 항목	
6	0	Instrument 를 지칭하는 데이터.	
7	Datao	Command = 3 일 경우, Datao = RPS (Response Packet Size).	
8	Data1	Command 세부 데이터 1	
9	Data2	Command 세부 데이터 2	
PBS-1	DataN	Command 세부 데이터 N	

표[A7]. Command Packet 원형.

Response Packet

Command Packet 에 따른 Instrument 의 응답 패킷 원형. 그림[A1]을 참조하면, 이 패킷은 Instrument 에서 호스트로 전달되는 통신 패킷이다.

Packet Index	항목	내용
1	IID_H IID_L	적용되는 Instrument 의 고유번호. 2 바이트 데이터. 모든 Instrument 에 공통으로 적용되는 command 일 경우에는 이 값은
		oxoo, oxoo 이다.
2	PBS	Packet Byte Size [3].command = 1(control)이면, 8
		[3].command = 2(write)이면, PBS [3].command = 3(read)이면, RPS

17 / 21

3	0x00	Response Packet
4	Type	Command Packet 의 Type 데이터.
5	Items	Command Packet 의 Item 데이터.
6	0x00	Instrument 를 지칭하는 데이터.
7	0x00 or 0x01	Resp_code; o = no error, 1=command 적용되지 않음.
8	Datao	Command 세부 데이터 o
9	Data1	Command 세부 데이터 1
•••		
PBS-1	DataN	Command 세부 데이터 N

표[A8]. Command Packet 에 따른 Response Packet 원형.

Stream Packet

그림[A1]을 참조하면, Stream Packet 은 Instrument 에서 Host 로 전송하는 연속 데이터 패킷이다. Instrument 가 측정 모드로 구동하면서 계측한 데이터를 Host 에 실시간으로 전송할 때, 사용하는 통신 패킷이다. 그 데이터 패킷의 원형을 π [A9]에 나타낸다.

Packet Index	항목	내용
0	IID_H	적용되는 Instrument 의 고유번호. 2 바이트 데이터.
1	IID_L	
2	PBS	Packet Byte Size.
3	PUD	PUD.bit7=1; PUD.bit6~bito : 데이터 할당
4	PC	Packet Count : 0~31
		패킷 전송 때마다 1 씩 증가. 상기 범위를 반복함. 이 범위 이내에서 수신
		값이 불연속적이면, 해당 패킷이 누락되었음을 의미한다.
5	PCD[PC]	각 PC 에 대응하는 특정 데이터. 데이터 할당 값은 표[A10] 참조.
6	Cho_H	Stream channel o = 256*Cho_H + cho_L
7	Cho_L	
8	Ch1_H	Stream channel 1 = 256*Ch1_H + ch1_L
9	Ch1_L	
•••	•••	
••		
PBS-2	ChN_H	Stream channel N = 256*ChN_H + chN_L
PBS-1	ChN_L	

표[A9]. Stream Packet 원형. 실시간 연속 전송 패킷. 패킷 전송율에 따라 연속 전송.

PCD[]	데이터 항목	설명
PCD[0]~PCD[9]	reserved	-
PCD[10]~[31]	Instrument data	Instrument 특성 데이터 할당.

표[A10]. PCD[PC]에 데이터 할당.

Packet Parsing Guide

Packet parsing 을 위한 C code 예시와 파형 표시 Labview 예시 소스를 제공한다.

C code example

```
Host 에서 Response Packet 이나, Stream Packet 을 추출하는 C 코드 예시를 아래에 나타낸다.
```

```
void parsingUART_RX(uint8_t input, bool *rxcomplete, uint8_t rxPacket[]) {
          bool flag_rx = false;
          static uint8_t index = o;
          static uint8_t packetSize = 255;
          rxPacket[index] = input;
          switch(index) {
          case o:
                     if((input == 0) || (input == (uint8_t)(INSTRUMENTID>>8))) {
                                index = 1;
                     break;
          case 1:
                     if((input == 0) || (input == (uint8_t)INSTRUMENTID)) {
                                index = 2;
                     else{
                                if(input == (uint8_t)(INSTRUMENTID>>8)) {
                                           rxPacket[o] = input;
                                           index = 1;
                                else{
                                           index = 0;
                     break;
          case 2:
                     if((input \ge 8)||(input = PBS)) {
                                packetSize = input;
                                index = 3
                     else{
                                index = 0;
                     break;
          case 3:
                     if((input == 0) || (input >= 128)) {
                                index = 4;
                     else{
                                index = 0;
                     break;
          default:
                     index++;
                     break;
          if(index==packetSize){
                     flag rx = true;
                     index = 0;
          *rxcomplete = flag rx;
```

신호 표시용 Labview 소스 예시

호스트가 수신호는 Stream Packet, Response Packet 으로부터 원하는 데이터를 추출하여 각 개별 패킷을 완성하고, 그 패킷 데이터로부터 측정 신호를 표시하는 Labview 소스를 제공한다. Packet Parsing 방식은 상기 C code example 내용과 동일한 것이다. Labview 소스 생성 환경은 아래와 같다.

Version: LabVIEW 2010, SP1

Bit: 32bit

소스 파일 위치: https://github.com/LXconn/Softwares/raw/master/Signal View Exam.zip

예시 프로그램의 실행 화면은 아래 그림이다.

그림[A3]. 파형 표시용 Labview 소스 실행 화면.

그림[A4]. Labview 소스 diagram.

20 / 21

Revision History

Release Date	Doc. ID	Description of Change
2019-9-30	LXD178 V1	초판 발행.