

Appendices

8.1 Appendix A: Summary of articles included from search 1 and 2

Ref.	Input	Feature extraction method	Machine learning model
[13]	Vibration signal.	ARMA model and J48 decision tree	Tests a set of (38) meta-, misc-, rule- and tree-based classifiers for fault de- tection in blades.
[34]	SCADA data.		Deep autoencoder made of Restricted Boltzman Machines (RBMs) to model normal behaviour of SCADA variables (gearbox and generator temperature). Uses E_e for anomaly detection, with adaptive threshold set using extreme function theory (EFT).
[51]	SCADA data.	Spatiotemporal pattern network	Unsupervised use of RBMs for anomaly detection.
[14]	SCADA data.	Time-frequency domain analysis, DWT and ARMA model	Uses fusion of several classifiers for fault detection in a wind turbine.
[6]	Ultrasonic testing.	Tests linear and non-linear PCA and ARMA models	Neighbourhood component analysis for feature selection. Tests 20 differ- ent supervised classifiers for detecting ice on blades.
[28]	Wind-Power curve.		Uses Gaussian Process regression with EFT to determine whether a particular power curve is an outlier.
[22]	Acustic emission.	FFT.	Uses Distinguishability Measure for feature selection, and logistic regression and SVC for binary blade fault classification.
[40]	Power signal, wind speed and ambient temperature.		Hierarchical Extreme Learning Machine (H-ELM) for detection of anomolous behaviour.
[29]	SCADA data.		Gaussian processes regression to esti- mate wind-power curve

[0=]	20151		
[27]	SCADA data.		Tests KNN, random forest, and SVR
			to estimate power curve. Detects
	1 =		anomalies by E_e .
[102]	Vibration signals.		Uses unsupervised dictionary learn-
			ing extracting features which are then
			used to determine fault in drivetrain
-			bearings.
[38]	Oil temperature,		Trains ANN to estimate vibration sig-
	wind speed, rotor		nal, uses E_e for anomaly detection.
	speed and active		
	power.		
[19]	SCADA data.	PCA.	Sets up baseline model using multiway
			PCA, then finds outliers by hypothesis
			testing whether multivariate distribu-
			tion is equal to baseline.
[16]	FAST wind tur-	Image texture analysis tools.	KNN, Linear Discriminant Model, de-
	bine simulator.		cision trees, bag-tree, linear SVC.
[39]	SCADA data.	K-means for outlier elimina-	Uses Auto-Associative Neural Net-
		tion.	works as an autoencoder, and the Ho-
			tel T2 statistic as a dynamic threshold
			for the R_e .
[30]	SCADA data.	Grey correlation algorithm	Use genetic algorithm for feature se-
		for eigenvector extraction.	lection, and SVR for estimating per-
			formance curves (active power, rotor
			speed and blade pitch angle).
[33]	SCADA data.		Uses three NN for normal behaviour
			modelling of rotor speed, gearbox tem-
			perature and generator temperature.
			E_e sendt to proportional hazard model
			which sets dynamic threshold.
[44]	SCADA data.		Uses Inductive Transfer Learning and
			five differen ML classifiers for ice de-
			tection on blades.
[46]	Vibration signals.	Variational mode decompo-	Uses multi-scale permutation entropy
[]		sition (VMD).	(MPE) used for feature selection, CO-
		. (/-	VAL for domain normalization and an
			SVC for binary fault classification.
[32]	SCADA data.		Uses bins and SVR to estimate blade
[92]	STIDII dava.		angle pitch curve.
[35]	SCADA data.		Tests different architectures of ANNs
امما	~ CILLII Gaudi.		to for estimating temperature of non-
			drive end bearing. Uses E_e for
			anomaly detection. Osci E_e for
[7]	Images taken by		Recurrent Convolutional Neural Net-
[י]	drones		work to classify structural damage in
	arones		blades.
[Q]	Uses images taken		Convolutional Neural Network, and
[8]	from ground level		
	nom ground level		YOLO-based small object detection
			approach (YSODA) for damage detec-
			tion in blades and hub.

[17]	Vibration signals, acustic emission and oil particle analysis	DWT.	Uses decision tree for feature selection, and SVC for assessing fault severity in gearbox
[41]	Uses images taken from ground level		Convolutional Neural Network to detect cracks & damage in blades.
[9]	Ultrasonic testing	PCA and ARMA models.	Neighbourhood Component analysis for feature selection and an ensamble of KNN, linear SVC, decision trees, LDA and subspace discriminant to estimate amount of dirt and mud on blades.
[47]	Uses pitch position, rotor speed and generator speed.		Detects faults with an SVC with parameters optimized by Cuckoo-swarm optimization.
[15]	Vibration signals	ARMA model.	Dominating features selected with J48 decision tree, fault classification done with Bayesian- and lazy classifiers.
[18]	Vibration signals, acustic emission and oil particle analysis	DWT and PCA.	Dominating features selected with decision tree, fault detection done with SVC.
[10]	Images taken from		Uses a deep neural network for binary
	imaging array		classification of blade defects.
[11]	imaging array Uses images taken by drone	Uses a CNN trained on an unrelated image dataset to extract general features.	classification of blade defects. Compress features with PCA, and pass them to a unsupervised one-class SVM.
[11]	Uses images taken	unrelated image dataset to	Compress features with PCA, and pass them to a unsupervised one-class
	Uses images taken by drone Uses the FAST wind turbine simulator to get	unrelated image dataset to extract general features.	Compress features with PCA, and pass them to a unsupervised one-class SVM. Uses XGBoost to train an ensamble of
[45]	Uses images taken by drone Uses the FAST wind turbine simulator to get SCADA data.	unrelated image dataset to extract general features.	Compress features with PCA, and pass them to a unsupervised one-class SVM. Uses XGBoost to train an ensamble of classifiers for specific faults. Uses several ANN to build a normal behaviour model of temperature in gearbox and high speed shaft, then uses E_e together with the age of the age of the turbine to predict

[37] SCADA data.		Uses kolmogorov-smirnov test to com-
		pare different turbines at same mo-
		ment in time combined with the E_e of the gearbox bearing temperature of
		an ANN to detect anomalies.
[49] Vibration signals.	Approximates vibration dis-	Uses a HMM for statistical fault de-
[40] VIDIATION SIGNAIS.	tributions at different rotor	tection.
	speeds with Weibull distri-	teetion.
	bution.	
[42] SCADA data.		Compares linear models, ANNs and
		state-dependent parameter models for
		fault detection.
[21] SCADA data.	parallel factor analysis	uses K-means clustering after decom-
	(PARAFAC) as a decompo-	position for fault detection.
	sition method	
[20] Uses a wind tur-		Multiple PCA models are as a statis-
bine simulator for		tical reference reflecting the data vari-
SCADA data.		ability in local zones and used in par-
	T7	allel for online fault detection.
[23] Vibration signals.	Variational mode decompo-	Uses Fisher score and ReliefF algo-
	sition	rithm for feature selection. Feeds se-
		lected signals into a multi-class SVC
[43] SCADA data.		for bearing fault detection.
[43] SCADA data.		Uses deep neural networks for detection of icing on the blades.
[103] SCADA data.		Combines NN with alarms generated
		by SCADA system to reduce false
		alarm rate.
[4] SCADA data.		Uses K-means clustering to parti-
		tion turbines into different operating
		states, and a specific DBN of RBMs
		for each cluster to forecast the gear-
		box main bearing temperature. Uses
		E_e to detect anomalies, threshold set
		by Mahalanobis distance.
[104]		This is a literary review of vibration
		based condition monitoring and fault
		diagnosis of planetary gearboxes in
[*0]		wind turbines.
[50]		This is a literary review of machine
		learning methods used for condition
		monitoring of wind turbines.

Table 8.1: Summary of articles included from search one and two in table 2.1

8.2 Appendix B: Summary of articles included from search 3

Ref.	Representation	Similarity measure	Clustering Algorithms	Evaluation
[90]	Mixture Gaussian hidden Markov model (MGHMM).		Expectation- maximization.	Bayesian information criterion.
[94]	Variance ratio statistics.	Euclidean distance.	Hierarchical clustering mainly, and K-means.	Duda-Hart $Je(2)/Je(1)$ indices.
[91]	HMM. States correspond to concentration regimes.	Which state each HMM is in.	Cluster together time series with correspond- ing HMMs in the same state.	
[53]	This is a review of time series clustering.			
[57]	Raw time series and some extracted statistics: variance, covariance, spread and differences.		Growing hierarchical self-organizing map.	
[81]	Compares to methods: a model-based approach using a state space model and functional approach where time series are represented as linear combinations of spline functions.	Euclidean distance.	State space modelling, K-means and complete- linkage hierarchical clustering.	L-curve and gap statistic.
[82]	Empirical mode decomposition for filtering out stochastic components, then extract topological features.	Euclidean distance.	K-means.	Precision, recall, F1-score and Matthews correla- tion coefficient.

[96]	Construct network between time series using dissimilarity matrix. Use KNN, and ϵ -NN to create networks from matrix.	Test a multitude of different distance functions. DTW performs best.	Test many community detection algorithms to sort network into clusters.	Rand index.
[78]	SAX.	Approximate distance, Euclidean distance, and DTW.	Custom three step algorithm, with preclustering, sub-clustering, and merging to form final clusters.	Accuracy, precision, recall and F-measure.
[83]	GARCH model.	Tests different metrics based on squared Euclidean distance between unconditional volitility and time varying volitility.	Tests different variations of fuzzy C-medoids.	Xie-Beni index, and Fuzzy Rand index.
[73]	Bispectral Smoothed Localized Complex Exponential.	Aggragated quasidistance between smoothed bispectra across blocks.	Agglomorative hierarchical clustering with Ward's linkage.	Silhouette index as stopping criterion, and Rand Index, entropy and purity to evaluate cluster effectiveness.
[92]	HMMs.	Kulback-Leibler distance between the likelihood of a certain observation sequence given HMM.	K-medoids.	Silhouette index, Bavies-Bouldin index and Dunn index.
[95]	Copula-based model for time series.		Fuzzy C-medoids.	Fuzzy Silhouette index, adjusted Rand index, fuzzy Rand index.
[66]	DWT, SAX and AR model.	Minimum distance, Euclidean, Minkowski, Pearson correlation coefficient and DTW distance.	Agglomerative Hierarchical clustering with Ward linkage.	Uses the clusters produced to perform regional frequency analysis, and then evaluates model using bias, root mean square error (RMSE), relative RMSE and Nash criterion.
[64]	ICA.	Not specified.	Hierarchical clustering with complete linkage.	

[79]	SAX.	Approximate distance between symbolic representations of time series.	Extended version of K-modes.	SSE for stopping criteria, Rand index, Normalized Mutual Information, Purity, Jaccard, F-measure, Folks and Mallows and entropy.
[74]	Tranforms the covariance matrices of the time series into a tangent space.	Euclidean distance.	Hierarchical clustering with average linkage.	
[71]	Normalized spectral densities.	Total variation distence.	Agglomorative hierarchical clustering with complete and average linkage.	Dunn's index.
[84]	Self-exciting threshold au- toregressive model.	Primarily tests Euclidean distance, Haussdorf distance and DTW, but, tests 22 different ones.	Primary method is spectral clustering, but also tests K-medoids, and fuzzy C-means.	Measures accuracy of method on clustering simulated data, and uses Gap statistic as stopping criterion.
[85]	AR model.	A type of exponential Euclidean distance.	Fuzzy C-medoids.	Fuzzy Silhouette index.
[67]	Continus wavelet transform.	Multi-scale PCA similarity matric.	Fuzzy C-means.	Precision and recall of classification according to labels, and silhouette index.
[93]	Preprocessing using Hodrick- Prescott filter, primarily repre- sents time series with state space models.		SOM.	Silhouette index as stopping criterion.
[86]	ARIMA model.	Euclidean distance between AR weights.	Trimmed fuzzy C-medoids.	Decides number of clusters by looking at the rate of decrease, and second derivative of an objective function with regard to a trimming factor α .

[80]	Permutation based coding of time series.	Use four distance metrics based on mutual information, entropy and Cramer's V association measure.	Hierarchical clustering with single, complete and average linkage.	
[54]	Mixture of autoregressions models.		Maximum pseudo- likelihood esitmation using Expectation- maximization algo- rithm.	
[65]	Use PCA and custom ICA algorithm for feature extraction.	Euclidean distance between extracted features.	Hierarchical clustering with average, single, complete and Ward linkage, and K-means.	CH, Friedman, C-index, Dunn's, SDbw and Silhou- ette index.
[58]	Extracts various signal statistics, and performs feature extraction using PCA.	Euclidean distance.	Hierarchical clustering with complete linkage.	
[68]	DWT with the Haar wavelet, and a globel sensitivity analysis.	Euclidean distance, to minimize variance.	K-means.	
[97]	Multi-relational network in topological domain, static (time-invariant), and dynamic (time-varying).		Multi-nonnegative matrix factorization. Compares their approach to three other community detection algorithms.	Rand index, adjusted Rand index and purity.
[75]	Uses SVD to represent the cluster centroids.	Pearson correlation coefficient.	Fuzzy C-means with particle swarm optimization.	Precision, and F-measure.
[61]	Multivariate time series are transformed into 3-order hysteresis tensors, then multilinear PCA is used to reduce dimensionality.	Tensor distance metric. Cluster centers initialized based on cycle feature variation.	Tensor K-means.	Rand index, Adjusted Rand index, Jaccard coefficient and Folks and Mallows index.

[105]	Compares ten model-based clustering methods. Gaussian mixture model and Markovswitching model perform best.		Expectation-maximization (EM).	Misclassification rates.
[69]	Vari-segmented DWT.	Euclidean distance.	K-means, hierarchical agglomerative clustering and SOM.	
[70]	DFT.	Euclidean distance.	Delaunay Triangulation method.	Purity and F-measure.
[76]	Piecewise SVD, and piece- wise aggregate approximation.	Euclidean Distance.	BIRCH.	
[59]	Extracts signal statistics, and uses PCA for feature selection.	Euclidean distance.	K-means.	Analyses the correlations of specific features with different clusters.
[72]	Fragmented periodogram.	Euclidean distance.	Spectral clustering.	
[60]	Extract statistical features of time series, then use a convolutional auto-encoder for further feature extraction.	Mainly Euclidean distance for the model-based approach.	Tests many clustering algorithms, but will only consider K-means, hierarchical clustering with Ward linkage, expectation-maximization, spectral clustering and BIRCH.	Adjusted Rand index.
[62]	Compares a feature-based approach using PCA, with a model-based approach using state-space models for the individual time series.	Inverse exponential Euclidean distance for feature based approach, and Euclidean distance for model-based approach.		Silhouette index as stopping criterion.
[87]	AR model.	Euclidean distance.	Fuzzy C-means.	
[88]	Flexible space- time AR mod- els.	Use Wald statistic to compare model parameters of univariate spacetime AR models, and p-value as a similarity metric.	Hierarchical agglomorative clustering.	Adjusted Rand index.

[63]	Common PCA.	Cluster centroids represented by common projection axis of all time series in a specific cluster, then reconstruction error of time series using cluster centroid used as similarity metric.	Custom algorithm, similar to K-means.	Precision.
[77]	Map the time series to multiple high-dimensional tensors using multiple kernals.	Matrix L^p -norms.	Self-developed multi kernal clustering algo- rithm.	Normalized Mutual Information and Rand Index.
[89]	Vector AR models.	Euclidean distance.	Test two self-developed algorithms based on performing statistical test of whether time series come from same data generating process.	Purity index.

Table 8.2: Summary of Summary of articles included from search three in table 2.1

8.3 Appendix C: Code

To produce all the relevant plots all the listings can be posted and run in the same file, to produce all the relevant plots used in this report. They are split up into separate listings such that it is easier to link each listing to each plot.

```
import pandas as pd
    from sklearn.decomposition import PCA
    from datetime import datetime
    import time
    import timeit
    import numpy as np
    import matplotlib.pyplot as plt
    import copy
10
    work_directory = 'Not relevant'
    data_sets_path = \
11
    'data_sets/big_turbine_data/'
12
    filename = 'big_turbine_data'
    path_pictures = work_directory + 'pictures/'
14
15
    completeDF = pd.read_csv(work_directory+data_sets_path+filename+'.csv',
16
                              delimiter=',',
17
                              skiprows=1)
18
    completeDF['Time'] = pd.to_datetime(completeDF['Time'], format='\%Y-\%m-\%dT\\H:\%M:\%S.\\fZ')
20
    completeDF.set_index('Time', inplace=True)
21
```

Listing 1: Module fetching and loading data

```
# Dropping max/min cols
           column_names = completeDF.columns
           for name in column_names:
                      if ('Max' in name) or ('Min' in name):
                                completeDF.drop(name, axis=1, inplace=True)
           # Renaming columns
           column_names = completeDF.columns
          new_col_names = []
           for name in column_names:
                      split_name = name.split('/')
11
                      turbine_num = split_name[2]
12
                      if split_name[-1] == 's)':
                                value_meas = split_name[-3]
14
                     else:
15
                                value_meas = split_name[-1]
                     new_name = turbine_num + '/' + value_meas
17
                      split_new = new_name.split('(Avg)')
18
                      new_col_names += [split_new[0] + split_new[1]]
           completeDF.columns = new_col_names
20
21
           # Create a dictionary of windturbine dataframes
22
23
           column_names = completeDF.columns
          dict_of_turbine_dfs = {}
24
           for i in range(1,14):
25
                      turbine_num = 'WTUR' + str(i) + '/'
26
                      tempDF = pd.DataFrame()
27
                      for name in column_names:
28
                                if turbine_num in name:
                                            tempDF[name] = completeDF[name]
30
                                dict_of_turbine_dfs[turbine_num[:-1]] = tempDF
31
32
           # Normalize values from each dataframe
33
          dict_norm_dfs = {}
34
           for turb_name in list(dict_of_turbine_dfs.keys()):
35
                                df = dict_of_turbine_dfs[turb_name]
36
                                \label{linear_def} \verb|dict_norm_dfs[turb_name]| = (df - np.min(df.values, axis=0)) / (np.max(df.values, axis=0)) - np.min(df.values, axis=0) - np.min(df.values, axis=0)) / (np.max(df.values, axis=0)) axis=
37
```

Listing 2: Data formatting and normalization

```
dict_of_turbine_dfs['WTUR4'].plot(figsize=(12,8),subplots=True, layout=(2,2))
plt.legend(fontsize=10)
name = path_pictures + 'one_turbine_all_vals.png'
plt.savefig(fname=name)
```

Listing 3: Code used to produce plot in figure 5.1

```
# PCA Finding portions of explained variance
    cumulative_explained_variance = {}
    for turb in list(dict_norm_dfs.keys()):
        X = dict_norm_dfs[turb].values
4
        pca = PCA().fit(X) # project from 64 to 2 dimensions
5
        cumulative_explained_variance[turb] = np.cumsum(pca.explained_variance_ratio_)
    plt.figure(figsize=(10,8))
    for turb in list(cumulative_explained_variance.keys()):
        plt.plot(cumulative_explained_variance[turb], label=turb)
10
11
    plt.xlabel('Number of components', fontsize=14)
12
    plt.ylabel('Cumulative explained variance',fontsize=14);
13
    plt.legend(fontsize=10)
14
15
    name = path_pictures + 'cumulative_explained_variance.png'
    plt.savefig(fname=name)
17
```

Listing 4: Code used to calculate cumulative explained variance, and produce plot in figure 5.2

```
mse = {}
    for turb in list(dict_norm_dfs.keys()):
2
        Xstd = dict_norm_dfs[turb].values
        pca = PCA(n_components=2)
4
        pca.fit(Xstd)
5
        P=pca.components_
6
        T = Xstd.dot(P.T)
        Xhat = np.dot(T[:,0].reshape(-1,1),P[0,:].reshape(-1,1).T)
        mse[turb] = (np.square(Xstd - Xhat)).sum(axis=1)
10
    plt.figure(figsize=(12,8))
11
    for turb in list(mse.keys()):
12
        plt.plot(mse[turb], label=turb)
13
14
    plt.xlabel('Time', fontsize=14)
15
    plt.ylabel('Mean square reconstruction error',fontsize=14);
    plt.legend(fontsize=10)
17
    name = path_pictures + 'reconstruction_error.png'
18
    plt.savefig(fname=name)
```

Listing 5: Code used to calculate reconstruction error, and produce plot in figure 5.3

```
dict_perturbed_norm_dfs = copy.deepcopy(dict_norm_dfs)
    dict_perturbed_norm_dfs['WTUR12'].columns
    for idx in range(9000,11000):
        dict_perturbed_norm_dfs['WTUR12'].iat[idx,0] = 1
        dict_perturbed_norm_dfs['WTUR12'].iat[idx,2] = 0
5
6
    df_to_plot = pd.DataFrame()
    df_to_plot['Power perturbed'] = dict_perturbed_norm_dfs['WTUR12']['WTUR12/ActivePower (kW)']
   df_to_plot['Speed perturbed'] = dict_perturbed_norm_dfs['WTUR12']['WTUR12/WindSpeed1']
   df_to_plot['Power'] = dict_norm_dfs['WTUR12']['WTUR12/ActivePower (kW)']
10
   df_to_plot['Speed'] = dict_norm_dfs['WTUR12']['WTUR12/WindSpeed1']
   df_to_plot.plot(figsize=(12,8))
12
   plt.xlabel('Time', fontsize=14)
13
    plt.ylabel('Amplitude',fontsize=14);
14
15
   plt.legend(fontsize=10)
   name = path_pictures + 'perturbed_vs_unperturbed.png'
16
    plt.savefig(fname=name)
```

Listing 6: Code used to produce plot in figure 5.4

```
cumulative_explained_variance = {}
    for turb in list(dict_perturbed_norm_dfs.keys()):
        X = dict_perturbed_norm_dfs[turb].values
3
        pca = PCA().fit(X)
        cumulative_explained_variance[turb] = np.cumsum(pca.explained_variance_ratio_)
    plt.figure(figsize=(12,8))
    for turb in list(cumulative_explained_variance.keys()):
        plt.plot(cumulative_explained_variance[turb], label=turb)
9
10
    plt.xlabel('Number of components', fontsize=14)
11
    plt.ylabel('Cumulative explained variance',fontsize=14);
12
   plt.legend(fontsize=10)
13
    name = path_pictures + 'explained_variance_perturbed.png'
14
    plt.savefig(fname=name)
15
```

Listing 7: Code used to calculate cumulative explained variance of perturbed data, and produce plot in figure 5.5

```
mse_pert = {}
    for turb in list(dict_perturbed_norm_dfs.keys()):
        Xstd = dict_perturbed_norm_dfs[turb].values
        pca = PCA(n_components=2)
        pca.fit(Xstd)
5
        P=pca.components_
        T = Xstd.dot(P.T)
        Xhat = np.dot(T[:,0].reshape(-1,1),P[0,:].reshape(-1,1).T)
        mse_pert[turb] = (np.square(Xstd - Xhat)).sum(axis=1)
10
    plt.figure(figsize=(12,8))
11
    for turb in list(mse_pert.keys()):
12
        plt.plot(mse_pert[turb], label=turb)
13
14
   plt.xlabel('Time', fontsize=14)
15
16
    plt.ylabel('Mean square reconstruction error',fontsize=14);
    plt.legend(fontsize=10)
^{17}
   name = path_pictures + 'reconstruction_error_perturbed.png'
18
    plt.savefig(fname=name)
```

Listing 8: Code used to calculate reconstruction error using perturbed data, and produce plot in figure 5.3

```
plt.figure(figsize=(12,8))
plt.plot(mse['WTUR12'], label='Original reconstruction error')
plt.plot(mse_pert['WTUR12'], label='Perturbed reconstruction error')

plt.xlabel('Time', fontsize=14)
plt.ylabel('Mean square reconstruction error',fontsize=14);
plt.legend(fontsize=10)
name = path_pictures + 'pert_vs_unpert_reconstruction_error.png'
plt.savefig(fname=name)
```

Listing 9: Code used to produce plot in figure 5.6

Bibliography

- [1] Espen Waaga. "Machine Learning for Automatic Classification of Wind Turbines". English. Master thesis. NTNU, 2019.
- [2] Ml Hossain, A Abu-Siada, and SM Muyeen. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review". English. In: *Energies* 11.5 (2018). ISSN: 1996-1073.
- [3] Henrique Dias Machado de Azevedo, Alex Maurício Araújo, and Nadège Bouchonneau. "A review of wind turbine bearing condition monitoring: State of the art and challenges". English. In: *Renewable and Sustainable Energy Reviews* 56 (2016), pp. 368–379. ISSN: 1364-0321.
- [4] H. Wang et al. "Early fault detection of wind turbines based on operational condition clustering and optimized deep belief network modeling". In: *Energies* 12.6 (2019). ISSN: 19961073.
- [5] P. Qian et al. "A novel condition monitoring method of wind turbines based on long short-term memory neural network". English. In: *Energies* 12.18 (2019). ISSN: 19961073.
- [6] Alfredo Arcos Jiménez et al. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis". English. In: Renewable Energy 132 (2019), pp. 1034–1048. ISSN: 0960-1481.
- [7] ASM Shihavuddin et al. "Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis". English. In: *Energies* 12.4 (2019), p. 676. ISSN: 1996-1073.
- [8] Zifeng Qiu et al. "Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach". English. In: *Journal of Electronic Imaging* 28.4 (2019), pp. 043023–043023. ISSN: 1017-9909.
- [9] Alfredo Arcos Jiménez, Carlos Quiterio Gómez Muñoz, and Fausto Pedro García Márquez. "Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers". English. In: *Reliability Engineering and System Safety* 184 (2019), pp. 2–12. ISSN: 0951-8320.
- [10] Ningning Zhang, Chengzhi Lu, and Anmin Wang. "Study on wind turbine blade defect detection system based on imaging array". English. In: E3S Web of Conferences 118 (2019). ISSN: 25550403. URL: http://search.proquest.com/docview/2301959230/.
- [11] Yinan Wang et al. "Unsupervised anomaly detection with compact deep features for wind turbine blade images taken by a drone". English. In: *IPSJ Transactions on Computer Vision and Applications* 11.1 (2019), pp. 1–7. ISSN: 1882-6695.
- [12] Pierre Tchakoua et al. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges". English. In: *Energies* 7.4 (2014), pp. 2595–2630. ISSN: 19961073. URL: http://search.proquest.com/docview/1537086932/.

- [13] A. Joshuva; V. Sugumaran. "A machine learning approach for condition monitoring of wind turbine blade using autoregressive moving average (ARMA) features through vibration signals: a comparative study". English. In: *Progress in Industrial Ecology, An Int. J.* 12.1/2 (2018). ISSN: 1476-8917. URL: http://www.inderscience.com/link.php?id=95867.
- [14] Vahid Pashazadeh, Farzad R Salmasi, and Babak N Araabi. "Data driven sensor and actuator fault detection and isolation in wind turbine using classifier fusion". English. In: *Renewable Energy* 116.PB (2018), pp. 99–106. ISSN: 0960-1481.
- [15] A. Joshuva and V. Sugumaran. "Improvement in wind energy production through condition monitoring of wind turbine blades using vibration signatures and ARMA features: a data-driven approach". English. In: Progress in Industrial Ecology 13.3 (2019), p. 207. ISSN: 1476-8917.
- [16] Magda Ruiz et al. "Wind turbine fault detection and classification by means of image texture analysis". English. In: *Mechanical Systems and Signal Processing* 107.C (2018), pp. 149–167. ISSN: 0888-3270.
- [17] Inturi Vamsi, G.R Sabareesh, and P.K Penumakala. "Comparison of condition monitoring techniques in assessing fault severity for a wind turbine gearbox under non-stationary loading". English. In: *Mechanical Systems and Signal Processing* 124 (2019), pp. 1–20. ISSN: 0888-3270.
- [18] Vamsi Inturi et al. "Integrated condition monitoring scheme for bearing fault diagnosis of a wind turbine gearbox". English. In: *Journal of Vibration and Control* 25.12 (2019), pp. 1852–1865. ISSN: 1077-5463.
- [19] Francesc Pozo, Yolanda Vidal, and Oscar Salgado. "Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference". English. In: Energies 11.4 (2018), p. 749. ISSN: 19961073. URL: http://search.proquest.com/docview/2041094406/.
- [20] Azzeddine Bakdi, Abdelmalek Kouadri, and Saad Mekhilef. "A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones". English. In: Renewable and Sustainable Energy Reviews 103 (2019), pp. 546–555. ISSN: 1364-0321.
- [21] Wenna Zhang and Xiandong Ma. "Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines". English. In: *Energies* 9.4 (2016), p. 280. ISSN: 19961073. URL: http://search.proquest.com/docview/1780819136/.
- [22] T. Regan, C. Beale, and M. Inalpolat. "Wind Turbine Blade Damage Detection Using Supervised Machine Learning Algorithms". In: Journal of Vibration and Acoustics, Transactions of the ASME 139.6 (2017). ISSN: 10489002.
- [23] L. Fu et al. "Condition monitoring for the roller bearings of wind turbines under variable working conditions based on the Fisher score and permutation entropy." In: *Energies* 12.16 (2019). ISSN: 19961073.
- [24] Wikipedia contributors. Support-vector machine. English. Dec. 1, 2019. URL: https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=928737848.
- [25] Wikipedia contributors. Restricted Boltzmann machine. English. Dec. 12, 2019. URL: https://en.wikipedia.org/w/index.php?title=Restricted_Boltzmann_machine&oldid=916416667.
- [26] Carl Edward Rasmussen. Gaussian processes for machine learning. eng. Cambridge, Mass., 2006.

- [27] Elena Gonzalez et al. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study". English. In: *Renewable Energy* 131 (2019), pp. 841–853. ISSN: 0960-1481.
- [28] Evangelos Papatheou et al. "Performance monitoring of a wind turbine using extreme function theory". English. In: *Renewable Energy* 113.C (2017), pp. 1490–1502. ISSN: 0960-1481.
- [29] Ravi Pandit and David Infield. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring". English. In: *Energies* 11.7 (2018), p. 1631. ISSN: 19961073. URL: http://search.proquest.com/docview/2108516073/.
- [30] Liang Tao et al. "Abnormal Detection of Wind Turbine Based on SCADA Data Mining". In: *Mathematical Problems in Engineering* 2019 (2019). ISSN: 1024-123X.
- [31] Majid Morshedizadeh et al. "Improved power curve monitoring of wind turbines". In: Wind Engineering 41.4 (2017), pp. 260–271. ISSN: 0309-524X.
- [32] Ravi Pandit and David Infield. "Comparative assessments of binned and support vector regression-based blade pitch curve of a wind turbine for the purpose of condition monitoring". English. In: *International Journal of Energy and Environmental Engineering* 10.2 (2019), pp. 181–188. ISSN: 2008-9163.
- [33] Peyman Mazidi et al. "A health condition model for wind turbine monitoring through neural networks and proportional hazard models". English. In: *Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability* 231.5 (2017), pp. 481–494. ISSN: 1748-006X.
- [34] Hongshan Zhao et al. "Anomaly detection and fault analysis of wind turbine components based on deep learning network". English. In: *Renewable Energy* 127 (2018), pp. 825–834. ISSN: 0960-1481.
- [35] MA Rodriguez-Lopez et al. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data". English. In: *Energies* 11.4 (2018). ISSN: 1996-1073.
- [36] P Bangalore and M Patriksson. "Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines". English. In: *Renewable Energy* 115 (2018), pp. 521–532. ISSN: 0960-1481.
- [37] P. Guo, J. Fu, and X. Yang. "Condition monitoring and fault diagnosis of wind turbines gearbox bearing temperature based on kolmogorov-smirnov test and convolutional neural network model". In: *Energies* 11.9 (2018). ISSN: 19961073.
- [38] Marcin Straczkiewicz and Tomasz Barszcz. "Application of Artificial Neural Network for Damage Detection in Planetary Gearbox of Wind Turbine". In: *Shock and Vibration* 2016 (2016). ISSN: 1070-9622.
- [39] Hsu-Hao Yang, Mei-Ling Huang, and Shih-Wei Yang. "Integrating Auto-Associative Neural Networks with Hotelling T2 Control Charts for Wind Turbine Fault Detection". English. In: *Energies* 8.10 (2015), pp. 12100–12115. ISSN: 19961073. URL: http://search.proquest.com/docview/1732948122/.
- [40] Peng Qian et al. "A novel wind turbine condition monitoring method based on cloud computing". English. In: Renewable Energy 135 (2019), pp. 390–398. ISSN: 0960-1481.
- [41] Abhishek Reddy et al. "Detection of Cracks and damage in wind turbine blades using artificial intelligence-based image analytics". English. In: *Measurement* 147 (2019), p. 106823. ISSN: 0263-2241.

- [42] Philip Cross and Xiandong Ma. "Model-based and fuzzy logic approaches to condition monitoring of operational wind turbines". English. In: *International Journal of Automation and Computing* 12.1 (2015), pp. 25–34. ISSN: 1476-8186.
- [43] Longting Chen et al. "Learning deep representation of imbalanced SCADA data for fault detection of wind turbines". English. In: *Measurement* 139 (2019), pp. 370–379. ISSN: 0263-2241.
- [44] Hongguang Yun et al. "An Adaptive Approach for Ice Detection in Wind Turbine With Inductive Transfer Learning". English. In: *IEEE Access* 7.99 (2019), pp. 122205–122213. ISSN: 2169-3536.
- [45] Dahai Zhang et al. "A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost". English. In: *IEEE Access* 6 (2018), pp. 21020–21031. ISSN: 2169-3536.
- [46] H. Ren et al. "A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning". In: *Measurement: Journal of the International Measurement Confederation* 148 (2019). ISSN: 02632241.
- [47] A. Agasthian, Rajendra Pamula, and L. Kumaraswamidhas. "Fault classification and detection in wind turbine using Cuckoo-optimized support vector machine". English. In: Neural Computing and Applications 31.5 (2019), pp. 1503–1511. ISSN: 0941-0643.
- [48] D Yu et al. "A radically data-driven method for fault detection and diagnosis in wind turbines". English. In: *International Journal of Electrical Power and Energy Systems* 99 (2018), pp. 577–584. ISSN: 0142-0615.
- [49] Sangryul Kim and Seo Yun-Ho. "Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model". English. In: Sensors 18.6 (2018), p. 1790. ISSN: 14248220. URL: http://search.proquest.com/docview/2108718625/.
- [50] Adrian Stetco et al. "Machine learning methods for wind turbine condition monitoring: A review". English. In: Renewable Energy 133 (2019), pp. 620–635. ISSN: 0960-1481.
- [51] Wenguang Yang, Chao Liu, and Dongxiang Jiang. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring". English. In: Renewable Energy 127 (2018), pp. 230–241. ISSN: 0960-1481.
- [52] Peter J. Brockwell and Richard A. Davis. *Time Series: Theory and Methods Second Edition*. Springer-Verlag New York, Inc., 1991.
- [53] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. "Time-series clustering A decade review". eng. In: *Information Systems* 53 (2015), p. 16. ISSN: 0306-4379.
- [54] Hien Nguyen et al. "Maximum Pseudolikelihood Estimation for Model-Based Clustering of Time Series Data". eng. In: *Neural Computation* (2017), p. 990. ISSN: 08997667. URL: http://search.proquest.com/docview/1884823978/.
- [55] Peter J. Brockwell and Richard A. Davis. *Introduction to Time Series and Forecasting Third Edition*. Springer International Publishing Switzerland, 2016.
- [56] Sheldon M. Ross. Introduction to Probability Models 11th Edition. Academic Press Elsevier Inc., 2014.
- [57] Yu-Chia Hsu and An-Pin Chen. "A clustering time series model for the optimal hedge ratio decision making". eng. In: *Neurocomputing* 138.C (2014), pp. 358–370. ISSN: 0925-2312.
- [58] B Hulsegge and K.H de Greef. "A time-series approach for clustering farms based on slaughterhouse health aberration data". eng. In: *Preventive Veterinary Medicine* 153 (2018), pp. 64–70. ISSN: 0167-5877.

- [59] Jiechen Wang et al. "Relationship Between Urban Road Traffic Characteristics and Road Grade Based on a Time Series Clustering Model: A Case Study in Nanjing, China". eng. In: Chinese Geographical Science 28.6 (2018), pp. 1048–1060. ISSN: 1002-0063.
- [60] Gerrit Bode et al. "A time series clustering approach for Building Automation and Control Systems". eng. In: Applied Energy 238 (2019), pp. 1337–1345. ISSN: 0306-2619.
- [61] H. He and Y. Tan. "Pattern Clustering of Hysteresis Time Series with Multivalued Mapping Using Tensor Decomposition". In: *IEEE Transactions on Systems, Man, and Cybernetics: Systems* 48.6 (2018), pp. 993–1004. ISSN: 21682216.
- [62] Omid Motlagh, Adam Berry, and Lachlan O'Neil. "Clustering of residential electricity customers using load time series". eng. In: *Applied Energy* 237 (2019), pp. 11–24. ISSN: 0306-2619.
- [63] Hailin Li. "Multivariate time series clustering based on common principal component analysis". eng. In: *Neurocomputing* 349 (2019), pp. 239–247. ISSN: 0925-2312.
- [64] Thelma Safadi. "Using independent component for clustering of time series data". eng. In: Applied Mathematics and Computation 243.C (2014), pp. 522–527. ISSN: 0096-3003.
- [65] Jafar Rahmanishamsi, Ali Dolati, and Masoudreza Aghabozorgi. "A Copula Based ICA Algorithm and Its Application to Time Series Clustering". eng. In: *Journal of Classifi*cation 35.2 (2018), pp. 230–249. ISSN: 0176-4268.
- [66] H Zaifoglu, B Akintug, and A. M Yanmaz. "Regional Frequency Analysis of Precipitation Using Time Series Clustering Approaches". eng. In: Journal of Hydrologic Engineering 23.6 (2018). ISSN: 1084-0699.
- [67] Joao Francisco Barragan, Cristiano Hora Fontes, and Marcelo Embirucu. "A wavelet-based clustering of multivariate time series using a Multiscale SPCA approach". eng. In: Computers and Industrial Engineering 95 (2016), pp. 144–155. ISSN: 0360-8352.
- [68] Yongkyu Lee, Jonggeol Na, and Won Bo Lee. "Robust design of ambient-air vaporizer based on time-series clustering". eng. In: Computers and Chemical Engineering 118 (2018), pp. 236–247. ISSN: 0098-1354.
- [69] D. Muruga Radha Devi and P. Thambidurai. "Similarity measurement in recent biased time series databases using different clustering methods". In: *Indian Journal of Science* and Technology 7.2 (2014), pp. 189–198. ISSN: 09746846.
- [70] Narges Shafieian. "A Novel Method for Transforming XML Documents to Time Series and Clustering Them Based on Delaunay Triangulation". eng. In: *Applied Mathematics* 6.6 (2015), pp. 1076–1076. ISSN: 2152-7385. URL: http://search.proquest.com/docview/1718957579/.
- [71] Pedro C. Alvarez-Esteban, Carolina Euan, and Joaquin Ortega. "Time series clustering using the total variation distance with applications in oceanography". In: *Environmetrics* 27.6 (2016), pp. 355–369. ISSN: 1180-4009.
- [72] Jorge Caiado, Nuno Crato, and Pilar Poncela. "A fragmented-periodogram approach for clustering big data time series". eng. In: Advances in Data Analysis and Classification (2019), pp. 1–30. ISSN: 18625347. URL: http://search.proquest.com/docview/2239964127/.
- [73] Jane Harvill, Priya Kohli, and Nalini Ravishanker. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX". eng. In: *Methodology and Computing in Applied Probability* 19.3 (2017), pp. 935–955. ISSN: 1387-5841.
- [74] Jiancheng Sun. "Clustering multivariate time series based on Riemannian manifold". eng. In: *Electronics Letters* 52.19 (2016), pp. 1607–1609. ISSN: 0013-5194. URL: http://search.proquest.com/docview/1845816549/.

- [75] Z. Izakian and M. Mesgari. "Fuzzy clustering of time series data: A particle swarm optimization approach". eng. In: *Journal of Artificial Intelligence and Data Mining* 3.1 (2015), pp. 39–46. ISSN: 2322-5211.
- [76] Ibgtc Bowala and Mgnas Fernando. "A novel model for Time-Series Data Clustering Based on piecewise SVD and BIRCH for Stock Data Analysis on Hadoop Platform". eng. In: *Advances in Science, Technology and Engineering Systems* 2.3 (2017), pp. 855–864. ISSN: 2415-6698.
- [77] Yongqiang Tang et al. "Tensor Multi-Elastic Kernel Self-Paced Learning for Time Series Clustering". eng. In: *IEEE Transactions on Knowledge and Data Engineering* (2019), pp. 1–1. ISSN: 1041-4347.
- [78] Saeed Aghabozorgi and Teh Wah. "Clustering of large time series datasets". eng. In: Intelligent Data Analysis 18.5 (2014), pp. 793-817. ISSN: 1088-467X. URL: http://search.proquest.com/docview/1620092812/.
- [79] Saeed Aghabozorgi and Teh Wah. "Approximate Clustering of Time-Series Datasets using k-Modes Partitioning". eng. In: Journal of Information Science and Engineering 31.1 (2015), pp. 207–228. ISSN: 1016-2364. URL: http://search.proquest.com/docview/1686443066/.
- [80] Maria Ruiz-Abellon, Antonio Gabaldon, and Antonio Guillamon. "Dependency-Aware Clustering of Time Series and Its Application on Energy Markets". eng. In: *Energies* 9.10 (2016), p. 809. ISSN: 19961073. URL: http://search.proquest.com/docview/1831861660/.
- [81] Francesco Finazzi et al. "A comparison of clustering approaches for the study of the temporal coherence of multiple time series". eng. In: Stochastic Environmental Research and Risk Assessment 29.2 (2015), pp. 463–475. ISSN: 1436-3240.
- [82] Cassio M.M Pereira and Rodrigo F de Mello. "Persistent homology for time series and spatial data clustering". eng. In: *Expert Systems With Applications* 42.15-16 (2015), pp. 6026–6038. ISSN: 0957-4174.
- [83] Pierpaolo D'Urso, Livia De Giovanni, and Riccardo Massari. "GARCH-based robust clustering of time series". eng. In: Fuzzy Sets and Systems 305 (2016), pp. 1–28. ISSN: 0165-0114.
- [84] Sipan Aslan, Ceylan Yozgatligil, and Cem Iyigun. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices". eng. In: *Annals of Operations Research* 260.1-2 (2018), pp. 51–77. ISSN: 0254-5330.
- [85] Pierpaolo D'Urso, Livia De Giovanni, and Riccardo Massari. "Time series clustering by a robust autoregressive metric with application to air pollution". eng. In: *Chemometrics and Intelligent Laboratory Systems* 141 (2015), pp. 107–124. ISSN: 0169-7439.
- [86] Pierpaolo D'Urso et al. "Autoregressive metric-based trimmed fuzzy clustering with an application to PM10 time series". eng. In: *Chemometrics and Intelligent Laboratory Systems* 161 (2017), pp. 15–26. ISSN: 0169-7439.
- [87] Yongping Zeng et al. "Fuzzy clustering of time-series model to damage identification of structures". eng. In: *Advances in Structural Engineering* 22.4 (2019), pp. 868–881. ISSN: 1369-4332.
- [88] Edoardo Otranto and Massimo Mucciardi. "Clustering space-time series: FSTAR as a flexible STAR approach". eng. In: *Advances in Data Analysis and Classification* 13.1 (), pp. 175–199. ISSN: 1862-5347.
- [89] S. Deb. "VAR Model Based Clustering Method for Multivariate Time Series Data". eng. In: Journal of Mathematical Sciences 237.6 (2019), pp. 754–765. ISSN: 1072-3374.

- [90] Jose Dias, Jeroen Vermunt, and Sofia Ramos. "Clustering financial time series: New insights from an extended hidden Markov model". eng. In: European Journal of Operational Research (2015), p. 852. ISSN: 03772217. URL: http://search.proquest.com/ docview/1664477966/.
- [91] Alvaro Gomez-Losada, Jose Carlos M Pires, and Rafael Pino-Mejias. "Time series clustering for estimating particulate matter contributions and its use in quantifying impacts from deserts". eng. In: *Atmospheric Environment* 117.C (2015), pp. 271–281. ISSN: 1352-2310.
- [92] Shima Ghassempour, Federico Girosi, and Anthony Maeder. "Clustering multivariate time series using Hidden Markov Models". eng. In: *International journal of environmental research and public health* 11.3 (2014), pp. 2741–2763. ISSN: 1660-4601. URL: http://search.proquest.com/docview/1510403562/.
- [93] Binoy B Nair et al. "Clustering stock price time series data to generate stock trading recommendations: An empirical study". eng. In: Expert Systems With Applications 70 (2017), pp. 20–36. ISSN: 0957-4174.
- [94] Joao A Bastos and Jorge Caiado. "Clustering financial time series with variance ratio statistics". eng. In: *Quantitative Finance* 14.12 (2014), pp. 2121–2133. ISSN: 1469-7688. URL: http://www.tandfonline.com/doi/abs/10.1080/14697688.2012.726736.
- [95] Marta Disegna, Pierpaolo D'urso, and Fabrizio Durante. "Copula-based fuzzy clustering of spatial time series". eng. In: *Spatial Statistics* 21 (2017), pp. 209–225. ISSN: 2211-6753.
- [96] Leonardo N Ferreira and Liang Zhao. "Time series clustering via community detection in networks". eng. In: *Information Sciences* 326.C (2016), pp. 227–242. ISSN: 0020-0255.
- [97] Lihua Zhou et al. "Clustering Multivariate Time Series Data via Multi-Nonnegative Matrix Factorization in Multi-Relational Networks". eng. In: *IEEE Access* 6 (2018), pp. 74747–74761. ISSN: 2169-3536.
- [98] Wikipedia contributors. Expectation—maximization algorithm. English. Dec. 16, 2019. URL: https://en.wikipedia.org/w/index.php?title=Expectation%E2%80%93maximization_algorithm&oldid=931028421.
- [99] Wikipedia contributors. Self-organizing map. English. Dec. 18, 2019. URL: https://en.wikipedia.org/w/index.php?title=Self-organizing_map&oldid=931381798.
- [100] Wikipedia contributors. Spectral clustering. English. Dec. 2, 2019. URL: https://en.wikipedia.org/w/index.php?title=Spectral_clustering&oldid=928954314.
- [101] Wikipedia contributors. BIRCH. English. Oct. 15, 2019. URL: https://en.wikipedia.org/w/index.php?title=BIRCH&oldid=921417349.
- [102] Sergio Martin-del-Campo, Fredrik Sandin, and Daniel Strömbergsson. "Dictionary learning approach to monitoring of wind turbine drivetrain bearings". In: (2019).
- [103] Alberto Pliego Marugan, Ana Maria Peco Chacon, and Fausto Pedro Garcia Marquez. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines". English. In: *Reliability Engineering and System Safety* 191 (2019), p. 106574. ISSN: 0951-8320.
- [104] Tianyang Wang et al. "Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review". English. In: *Mechanical Systems and Signal Processing* 126 (2019), pp. 662–685. ISSN: 0888-3270.
- [105] Karen Kazor and Amanda Hering. "Assessing the Performance of Model-Based Clustering Methods in Multivariate Time Series with Application to Identifying Regional Wind Regimes". eng. In: *Journal of Agricultural, Biological, and Environmental Statistics* 20.2 (2015), pp. 192–217. ISSN: 1085-7117.