EXERCICE 3 Eml 2017

On considère une urne contenant initialement une boule bleue et deux boules rouges. On effectue, dans cette urne, des tirages successifs de la façon suivante : on pioche une boule au hasard, on note sa couleur, puis on la replace dans l'urne en ajoutant une boule de la même couleur que celle qui vient d'être obtenue.

```
Pour tout k de \mathbb{N}^*, on note : B_k l'événement : "on obtient une boule bleue au k-ième tirage" R_k l'événement : "on obtient une boule rouge au k-ième tirage"
```

Partie I: Simulation informatique

1. Recopier et compléter la fonction suivante afin qu'elle simule l'expérience étudiée et renvoie le nombre de boules rouges obtenues lors des n premiers tirages, l'entier n étant entré en argument.

2. On exécute le programme suivant :

```
n=10
m=0
for i in range(1000):
    m+=EML(n)
print(m/1000)
```

On obtient 6.657. Comment interpréter ce résultat?

Partie II : Rang d'apparition de la première boule bleue et rang d'apparition de la première boule rouge

On définit la variable aléatoire Y égale au rang d'apparition de la première boule bleue et la variable aléatoire Z égale au rang d'apparition de la première boule rouge.

```
3. (a) Montrer: \forall n \in \mathbf{N}^*, \mathbb{P}([Y = n]) = \frac{2}{(n+1)(n+2)}.
```

(b) La variable aléatoire Y admet-elle une espérance? une variance?

Partie III : Nombre de boules rouges obtenues au cours de n tirages

On définit, pour tout k de \mathbb{N}^* , la variable aléatoire X_k égale à 1 si on obtient une boule rouge au k-ième tirage et égale à 0 sinon.

On définit, pour tout n de \mathbb{N}^* , la variable aléatoire S_n égale au nombre de boules rouges au cours des n premiers tirages.

- 4. Donner, pour tout n de \mathbb{N}^* , une relation entre S_n et certaines variables aléatoires X_k pour $k \in \mathbb{N}^*$.
- 5. Déterminer la loi de X_1 , son espérance et sa variance.
- 6. (a) Déterminer la loi du couple (X_1, X_2) .
 - (b) En déduire la loi de X_2 .
 - (c) Les variables aléatoires X_1 et X_2 sont-elles indépendantes?
- 7. Soit $n \in \mathbf{N}^*$ et $k \in [0; n]$.
 - (a) Calculer $\mathbb{P}(R_1 \cap \ldots \cap R_k \cap B_{k+1} \cap \ldots \cap B_n)$.
 - (b) Justifier : $\mathbb{P}([S_n = k]) = \binom{n}{k} \mathbb{P}(R_1 \cap \ldots \cap R_k \cap B_{k+1} \cap \ldots \cap B_n)$, puis en déduire : $\mathbb{P}([S_n = k]) = \frac{2(k+1)}{(n+1)(n+2)}$
- 8. Montrer que, pour tout n de \mathbb{N}^* , S_n admet une espérance et : $\mathbb{E}[(]S_n) = \frac{2n}{3}$.
- 9. Soit $n \in \mathbf{N}^*$.
 - (a) Montrer: $\forall k \in [0; n], \quad \mathbb{P}_{[S_n = k]}([X_{n+1} = 1]) = \frac{k+2}{n+3}.$
 - (b) En déduire : $\mathbb{P}\left(\left[X_{n+1}=1\right]\right) = \frac{\mathbf{E}\left[\left(\left|S_{n}\right|+2\right]\right)}{n+3}$.
 - (c) Déterminer alors la loi de la variable aléatoire X_{n+1} . Que remarque-t-on?

Problème HEC 2019

Dans ce problème, on définit et on étudie les fonctions génératrices des moments et les fonctions génératrices des cumulants de variables aléatoires discrètes ou à densité.

Dans tout le problème :

- on note $(\Omega, \mathcal{A}, \mathbf{P})$ un espace probabilisé et toutes les variables aléatoires introduites dans l'énoncé sont des variables aléatoires réelles définies sur (Ω, \mathcal{A}) ;
- sous réserve d'existence, l'espérance et la variance d'une variable aléatoire X sont respectivement notées $\mathbf{E}[X]$ et $\mathbf{V}(X)$;
- pour toute variable aléatoire X et pour tout réel t pour lesquels la variable aléatoire e^{tX} admet une espérance, on pose :

$$M_X(t) = \mathbf{E}\left[e^{tX}\right]$$
 et $K_X(t) = \ln(M_X(t))$;

(les fonctions M_X et K_X sont respectivement appelées la fonction génératrice des moments et la fonction génératrice des cumulants de X)

— lorsque, pour un entier $p \in \mathbf{N}^*$, la fonction K_X est de classe \mathcal{C}^p sur un intervalle ouvert contenant l'origine, on appelle *cumulant d'ordre* p de X, noté $Q_p(X)$, la valeur de la dérivée p-ème de K_X en 0:

$$Q_p(X) = K_X^{(p)}(0).$$

Partie I. Fonction génératrice des moments de variables aléatoires discrètes

Dans toute cette partie:

- on note n un entier supérieur ou égal à 2;
- toutes les variables aléatoires considérées sont discrètes et à valeurs entières;
- on note S une variable aléatoire à valeurs dans $\{-1,1\}$ dont la loi est donnée par :

$$P(S = -1) = P(S = 1) = \frac{1}{2}.$$

- 1. Soit X une variable aléatoire à valeurs dans [[-n, n]].
 - (a) Pour tout $t \in \mathbf{R}$, écrire $M_X(t)$ sous la forme d'une somme et en déduire que la fonction M_X est de classe \mathcal{C}^{∞} sur \mathbf{R} .
 - (b) Justifier pour tout $p \in \mathbf{N}^*$, l'égalité : $M_X^{(p)}(0) = \mathbf{E}[X^p]$.
 - (c) Soit Y une variable aléatoire à valeurs dans [[-n, n]] dont la fonction génératrice des moments M_Y est la même que celle de X.

On note G_X et G_Y les deux polynômes définis par :

$$\forall x \in \mathbf{R}, \quad \begin{cases} G_X(x) &= \sum_{k=0}^{2n} \mathbf{P}(X = k - n) x^k \\ G_Y(x) &= \sum_{k=0}^{2n} \mathbf{P}(Y = k - n) x^k. \end{cases}$$

- i. Vérifier pour tout $t \in \mathbf{R}$, l'égalité $G_X(e^t) = e^{nt} M_X(t)$.
- ii. Justifier la relation : $\forall t \in \mathbf{R}, G_X(e^t) = G_Y(e^t).$
- iii. En déduire que la variable aléatoire Y suit la même loi que X.
- 2. Dans cette question, on note X_2 une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(2,\frac{1}{2}\right)$.

On suppose que les variables aléatoire X_2 et S sont indépendantes et on pose $Y_2 = SX_2$.

- (a) i. Préciser l'ensemble des valeurs possibles de la variable aléatoire Y_2 .
 - ii. Calculer les probabilités $\mathbf{P}(Y_2 = y)$ attachées au diverses valeurs possibles y de Y_2 .
- (b) Vérifier que la variable aléatoire $X_2 (S+1)$ suit la même loi que Y_2 .
- 3. Dans cette question, on note X_n une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(n,\frac{1}{2}\right)$.

On suppose que les variables aléatoires X_n et S sont indépendantes et on pose $Y_n = SX_n$.

- (a) Justifier que la fonction M_{X_n} est définie sur \mathbf{R} et calculer $M_{X_n}(t)$ pour tout $t \in \mathbf{R}$.
- (b) Montrer que la fonction M_{Y_n} est donnée par : $\forall t \in \mathbf{R}$,

$$M_{Y_n}(t) = \frac{1}{2^{n+1}} \left((1+e^t)^n + (1+e^{-t})^n \right).$$

(c) En utilisant l'égalité $(1 + e^{-t})^n = e^{-nt}(1 + e^t)^n$, montrer que Y_n suit la même loi que la différence $X_n - H_n$, où H_n est une variable aléatoire indépendante de X_n dont on précisera la loi.

Partie II. Propriétés générales des fonctions génératrices des cumulants et quelques exemples

- 1. Soit X une variable aléatoire et \mathcal{D}_X le domaine de définition de la fonction K_X .
 - (a) Donner la valeur de $K_X(0)$.
 - (b) Soit $(a, b) \in \mathbf{R}^2$ et Y = aX + b. Justifier pour tout réel t pour lequel at appartient à \mathcal{D}_X , l'égalité :

$$K_Y(t) = bt + K_X(at).$$

- (c) On suppose ici que les variables aléatoires X et -X suivent la même loi. Que peut-on dire dans ce cas des cumulants d'ordre impair de la variable aléatoire X?
- 2. Soit X et Y deux variables aléatoires indépendantes et \mathcal{D}_X et \mathcal{D}_Y les domaines de définition respectifs des fonctions K_X et K_Y .
 - (a) Montrer que pour tout réel t appartenant à la fois à \mathcal{D}_X et \mathcal{D}_Y , on a : $K_{X+Y}(t) = K_X(t) + K_Y(t)$.
 - (b) En déduire une relation entre les cumulants des variables aléatoires X, Y et X + Y.
- 3. Soit un réel $\lambda > 0$ et soit T une variable aléatoire qui suit la loi de Poisson de paramètre λ .
 - (a) Déterminer les fonctions M_T et K_T .
 - (b) En déduire tous les cumulants de T.
- 4. Soit $(T_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires telles que, pour tout $n \in \mathbb{N}^*$, la variable aléatoire T_n suit la loi de Poisson de paramètre n. Pour tout $n \in \mathbb{N}^*$, on pose $W_n = \frac{T_n n}{\sqrt{n}}$.
 - (a) Justifier la convergence en loi de la suite de variables aléatoires $(W_n)_{n \in \mathbb{N}^*}$ vers une variable aléatoire W.
 - (b) Déterminer la fonction K_{W_n} .
 - (c) Montrer que pour tout $t \in \mathbf{R}$, on a : $\lim_{n \to +\infty} K_{W_n}(t) = K_W(t)$.