Department of Mathematics & Statistics

MTH-102A Ordinary Differential Equations

Assignment V

1. \star Show that the substitution $x = e^t$ transforms the Euler's equation $ax^2y'' + bxy' + cy = 0$ for x > 0, in to constant coefficient differential equation.

Let $x = e^t$ and $Y(t) = y(x = e^t)$. Then

$$Y'(t) := \frac{dY}{dt} = \frac{dy}{dx}\frac{dx}{dt} = e^t y'(x) = xy'(x)$$

and

$$Y''(t) = \frac{d^2Y}{dt^2} = \frac{d}{dt} \left(e^t y'(x) \right) = e^t y'(x) + e^t \frac{d}{dt} (y'(x)) = e^t y'(x) + e^{2t} y''(x) = xy'(x) + x^2 y''(x).$$

Hence $x^2y''(x) = Y''(t) - xy'(x) = Y''(t) - Y'(t)$ and we substitute in the equation $ax^2y''(x) + bxy'(x) + cy(x) = 0$ to get

$$0 = ax^{2}y''(x) + bxy'(x) + cy(x)$$

= $a(Y''(t) - Y'(t)) + bY'(t) + cY(t)$
= $aY''(t) + (b - a)Y'(t) + cY(t)$.

- 2. \star Find the power series
 - (a) in x for the general solution of $(1 + 2x^2)y'' + 6xy' + 2y = 0$
 - (b) in x 1 for the general solution of $(2 + 4x 2x^2)y'' 12(x 1)y' 12y = 0$.

First problem done in the class.

We will now do the second one: $(2+4x-2x^2)y''-12(x-1)y'-12y=0$. This equation can be written as $(4-2(x-1)^2)y''-12(x-1)y'-12y=0$.

In the class we have shown that for the equation

$$(1 + \alpha(x - x_0)^2)y''(x) + \beta(x - x_0)y' + \gamma y = 0$$

the general solution is of the forem $y = \sum_{n=0}^{\infty} a_n (x-1)^n$ where

$$a_{n+2} = -\frac{p(n)}{(n+1)(n+2)}a_n$$
 for $n \ge 0$

and

$$p(n) := \alpha n(n-1) + \beta n + \gamma.$$

To apply this formula we write the equation as

$$(1 - \frac{(x-1)^2}{2})y''(x) - 3(x-1)y'(x) - 3y(x) = 0.$$

Hence $\alpha = -\frac{1}{2}$ and $\beta = -3 = \gamma$ and

$$p(n) = -\frac{1}{2}n(n-1) - 3n - 3 = -\frac{(n+2)(n+3)}{2}.$$

Now we leave it to show that

$$a_{2m} = \frac{2m+1}{2^m}a_0$$
, and $a_{2m+1} = \frac{m+1}{2^m}a_1$ for $m \ge 0$.

3. \star Find the power series in $x-x_0$ for the general solution of the differential equations

1

(a) y'' - y = 0, $x_0 = 3$.

(b)
$$(1-4x+2x^2)y'' + 10(x-1)y' + 6y = 0$$
, $x_0 = 1$.

Let $y = \sum_{n=0}^{\infty} a_n (x-3)^n$. Then

$$0 = \sum_{n=0}^{\infty} n(n-1)a_n(x-3)^{n-2} - \sum_{n=0}^{\infty} a_n(x-3)^n$$
$$= \sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}(x-3)^n - \sum_{n=0}^{\infty} a_n(x-3)^n$$
$$= \sum_{n=0}^{\infty} [(n+1)(n+2)a_{n+2} - a_n] (x-3)^n.$$

Thus we get

$$a_{n+2} = \frac{1}{(n+1)(n+2)}a_n.$$

For the second problem: Let t = x - 1. Then the equation can be written as

$$(1 - 2t^2)y'' - 10ty' - 6y = 0.$$

We solve this as in problem 2. If $y = \sum_{n=0}^{\infty} a_n t^n$ is the general solution of the equation, then

$$a_{n+2} = -\frac{p(n)}{(n+1)(n+2)}a_n$$

where p(n) = -2n(n-1) - 10n - 6 = -2(n+1)(n+3). Therefore $a_{n+2} = 2\frac{n+3}{n+2}a_n$. Using this we can show that

$$a_{2m} = \frac{1}{m!} \left[\prod_{j=1}^{m-1} (2j+3) \right] a_0 \qquad a_{2m+1} = 4^m \frac{(m+1)!}{\prod_{j=1}^{m-1} (2j+3)} a_1.$$

- 4. \star Find a_0, \ldots, a_n for at least 7 in the power series $y = \sum_{n=0}^{\infty} a_n (x x_0)^n$ for the solution of the initial value problems
 - (a) y'' + (x-3)y' + 3y = 0, y(3) = -2, y'(3) = 3.
 - (b) $(4x^2 24x + 37)y'' + y = 0$, y(3) = 4, y'(3) = -6.

For the first problem p(n) = n + 3. Hence

$$a_{n+2} = -\frac{n+3}{(n+1)(n+2)}a_n.$$

Now we use the relation $a_0 = y(3) = -2$ and $a_1 = y'(3) = 3$ to compute the coefficients a_n 's for $n \ge 2$.

For the second problem, we let t = x - 3 and write the equation as $(1 + 4t^2)y'' + y = 0$. In this case $p(n) = 4n(n-1) + 1 = (2n-1)^2$. Thereferore

$$a_{n+2} = -\frac{(2n-1)^2}{(n+1)(n+2)}a_n$$

and we use this relation to determine the other coefficients.

5. \star Find a fundamental set of Frobenius solutions of

$$x^{2}(3+x)y'' + 5x(x+1)y' - (1-4x)y = 0.$$

Let $y = \sum_{n=0}^{\infty} a_n x^{n+r}$ be a Frobenius solution of the differential equation $x^2(3+x)y'' + 5x(x+1)y' - (1-4x)y = 0$.

The indicial polynomial for this equation is F(r)=3r(r-1)+5r-1=(3r-1)(r+1) and the zeros of the indicial polynomial are $r_1=\frac{1}{3}$ and $r_2=-1$. In this case $r_1-r_2=\frac{4}{3}$ and hence we have two linearly independent Frobenius solutions which can be written as

$$y_1 = x^{\frac{1}{3}} \sum_{n=0}^{\infty} a_n (\frac{1}{3}) x^n$$
 and $y_2 = x^{-1} \sum_{n=0}^{\infty} a_n (-1) x^n$

form a fundamental set of Frobenius solutions. Using the relation between the coefficients, we can show that

$$a_n(r) = -\frac{n+r+1}{3n+3r-1}a_{n-1}(r)$$
 for $n \ge 1$.

First notice that $a_0(r) = 1$. For $r = \frac{1}{3}$, it follows that

$$a_n(\frac{1}{3}) = -\frac{3n+4}{9n}a_{n-1}(\frac{1}{3})$$
$$= (-1)^n \frac{\prod_{j=1}^n (3j+4)}{9^n n!} \text{ for } n \ge 0.$$

Thus $y_1 = x^{\frac{1}{3}} \sum_{n=0}^{\infty} (-1)^n \frac{\prod_{j=1}^n (3j+4)}{9^n n!} x^n$. Now setting r=-1, yields

$$a_n(-1) = -\frac{n}{3n-4}a_{n-1}(-1), \quad \text{for } n \ge 1.$$

So

$$a_n(-1) = (-1)^n \frac{n!}{\prod_{j=1}^{n-1} (3j-4)}$$

and

$$y_2(x) = x^{-1} \sum_{n=0}^{\infty} (-1)^n \frac{n!}{\prod_{j=1}^{n-1} (3j-4)} x^n.$$

- 6. Find a fundamental set of Frobenius solutions of
 - (a) $4x^2y'' + x(7+2x+4x^2)y' (1-4x-2x^2)y = 0$.
 - (b) $x^2(5+x+10x^2)y'' + x(4+3x+8x^2)y' + (x+36x^2)y = 0$,
 - (c) $2x^2y'' + x(3+2x)y' (1-x)y = 0$, and
 - (d) $x^2(8+x)y'' + x(2+3x)y' + (1+x)y = 0$.