

#6

SEQUENCE LISTING

<110> Chang, Sandra P
Christopher, David A
Vine, Benjamin
Su, Wei-Wen
Bugos, Robert

<120> PLASMODIUM FALCIPARUM MEROZOITE SURFACE PROTEIN-1 MALARIA PRODUCED
IN TRANSGENIC PLANTS

<130> A-71339/RFT/TAL/NBC

<140> US 10/098,514

<141> 2002-03-11

<150> US 09/500,376

<151> 2000-02-08

<150> US 60/274,599

<151> 2001-03-09

<160> 19

<170> PatentIn version 3.1

<210> 1

<211> 1149

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic

<220>

<221> sig_peptide

<222> (1)..(24)

<223>

<400> 1

gccgaattcg acaacatcct cagtgacaac atcctcagtg gcttcgagaa cgagtacgac 60

gtaatctacc taaagccct tgccgggtgc taccgttcat tgaagaaaaca gatagaaaaag 120

aatatttca cgttcaacct caacctaataat gacatcctca actcgcgcct caagaagcga 180

aaatacttcc tcgacgtgtt ggaatccgac cttatgcaat tcaagcacat tagctctaac 240

gagtacatca tagaggacag cttcaagctc ttgaattcag aacagaagaa caccctccta 300

aagtccctaca aatacattaa ggagtctgtt gagaacgaca tcaagttcgc ccaggaagga 360

attagctact atgagaaaagt cctggctaaa tacaaggacg acttggaaag cattaagaag 420

gtaatcaaag aagagaagga aaagttccg agctctccac ccacaactcc cccatgcct 480

gcaaagaccg acgagcagaa aaaagaaaagt aagttccttc cattcctcac caacatcgaa 540

actctatata acaacctgggt gaacaagatt gatgactact taatcaactt gaaggcgaaa 600

attaatgact gtaacgtcga aaaggatgaa gcccacgtt agatcaccaa gctttccgat 660
ctcaaagcca tcgacgataa gattgacctg ttaagaacc acaacgattt cgacgcaatc 720
aaaaagttga tcaacgacga tactaagaaa gacatgctt gaaaactgct gtcgacaggc 780
ttggtccaaa acttccgaa caccattata agcaagctga tcgaaggaaa gttcaggat 840
atgctgaaca tctctcagca tcaatgcgtg aagaagcaat gtcccgagaa ttcaggttgc 900
ttccgcccact tagacgaaag ggaggaatgt aaatgcctgc tgaattataa acaggaagga 960
gacaagtgcg tagagaatcc taacccaacc tgtaacgaaa ataacggtgg ctgcgatgct 1020
gacgctaagt gtaccgagga ggacagcggt tccaatggca agaaaataac ttgcgaatgc 1080
acgaagcccg atagttaccc tctcttcgac ggtatcttct gctccatga tgagctttaa 1140
gagctcacc 1149

<210> 2
<211> 383
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic

<220>
<221> MISC_FEATURE
<222> (380)..(380)
<223> "Xaa" at position 380 represents a stop codon

<400> 2

Ala Glu Phe Asp Asn Ile Leu Ser Asp Asn Ile Leu Ser Gly Phe Glu
1 5 10 15

Asn Glu Tyr Asp Val Ile Tyr Leu Lys Pro Leu Ala Gly Val Tyr Arg
20 25 30

Ser Leu Lys Lys Gln Ile Glu Lys Asn Ile Phe Thr Phe Asn Leu Asn
35 40 45

Leu Asn Asp Ile Leu Asn Ser Arg Leu Lys Lys Arg Lys Tyr Phe Leu
50 55 60

Asp Val Leu Glu Ser Asp Leu Met Gln Phe Lys His Ile Ser Ser Asn
65 70 75 80

Glu Tyr Ile Ile Glu Asp Ser Phe Lys Leu Leu Asn Ser Glu Gln Lys
85 90 95

Asn Thr Leu Leu Lys Ser Tyr Lys Tyr Ile Lys Glu Ser Val Glu Asn
100 105 110

Asp Ile Lys Phe Ala Gln Glu Gly Ile Ser Tyr Tyr Glu Lys Val Leu
115 120 125

Ala Lys Tyr Lys Asp Asp Leu Glu Ser Ile Lys Lys Val Ile Lys Glu
130 135 140

Glu Lys Glu Lys Phe Pro Ser Ser Pro Pro Thr Thr Pro Pro Ser Pro
145 150 155 160

Ala Lys Thr Asp Glu Gln Lys Lys Glu Ser Lys Phe Leu Pro Phe Leu
165 170 175

Thr Asn Ile Glu Thr Leu Tyr Asn Asn Leu Val Asn Lys Ile Asp Asp
180 185 190

Tyr Leu Ile Asn Leu Lys Ala Lys Ile Asn Asp Cys Asn Val Glu Lys
195 200 205

Asp Glu Ala His Val Lys Ile Thr Lys Leu Ser Asp Leu Lys Ala Ile
210 215 220

Asp Asp Lys Ile Asp Leu Phe Lys Asn His Asn Asp Phe Asp Ala Ile
225 230 235 240

Lys Lys Leu Ile Asn Asp Asp Thr Lys Lys Asp Met Leu Gly Lys Leu
245 250 255

Leu Ser Thr Gly Leu Val Gln Asn Phe Pro Asn Thr Ile Ile Ser Lys
260 265 270

Leu Ile Glu Gly Lys Phe Gln Asp Met Leu Asn Ile Ser Gln His Gln
275 280 285

Cys Val Lys Lys Gln Cys Pro Glu Asn Ser Gly Cys Phe Arg His Leu
290 295 300

Asp Glu Arg Glu Glu Cys Lys Cys Leu Leu Asn Tyr Lys Gln Glu Gly
305 310 315 320

Asp Lys Cys Val Glu Asn Pro Asn Pro Thr Cys Asn Glu Asn Asn Gly
325 330 335

Gly Cys Asp Ala Asp Ala Lys Cys Thr Glu Glu Asp Ser Gly Ser Asn

340

345

350

Gly Lys Lys Ile Thr Cys Glu Cys Thr Lys Pro Asp Ser Tyr Pro Leu
 355 360 365

Phe Asp Gly Ile Phe Cys Ser His Asp Glu Leu Xaa Glu Leu Thr
 370 375 380

```
<210> 3
<211> 1149
<212> DNA
<213> Artificial sequence
```

<220>
<223> synthetic

```
<220>
<221> sig_peptide
<222> (1)..(24)
<223>
```

<400> 3
cggatccaaag gagatataaac aatggacaaac atcctcagtg gcttcgagaa cgagtacgac 60
gtaatctacc taaagccccct tgccgggtgtc taccgttcat tgaagaaaaca gatagaaaag 120
aatattttca cgttcaacct caacctaataa gacatcctca actcgcgccct caagaagcga 180
aaatacttcc tcgacgtgtt ggaatccgac cttatgcaat tcaaggcacat tagctctaacc 240
gagtacatca tagaggacag cttcaagctc ttgaattcag aacagaagaa caccctccata 300
aagtccata aatacattaa ggagtctgtt gagaacgaca tcaagttcgc ccaggaagga 360
attagctact atgagaaaagt cctggctaaa tacaaggacg acttggaaag cattaagaag 420
gtaatcaaag aagagaagga aaagtttccg agctctccac ccacaactcc cccatcgccct 480
gcaaagaccg acgagcagaa aaaagaaaagt aagttcccttc cattcctcac caacatcgaa 540
actctatata acaaccttgtt gaacaagatt gatgactact taatcaactt gaaggcggaaa 600
attaatgact gtaacgtcga aaaggatgaa gcccacgtta agatcaccaa gctttccgat 660
ctcaaagcca tcgacgataa gattgacctg tttaagaacc acaacgattt cgacgcataatc 720
aaaaagttga tcaacgacga tactaagaaa gacatgcttg gaaaactgct gtcgacaggc 780
ttggtccaaa acttcccgaa caccattata agcaagctga tcgaaggaaa gtttcaggat 840
atgctgaaca tctctcagca tcaatgcgtg aagaagcaat gtcccgagaa ttcaggttgc 900
ttccggccact tagacgaaag ggaggaatgt aaatgcgtc tgaattataaa acaggaagga 960
gacaagtgcg tagagaatcc taacccaaacc tgtaacgaaa ataacggtgg ctgcgtatgc 1020
gacgctaagt gtaccgagga ggacagcggt tccaaatggca agaaaataac ttgcgaatgc 1080

acgaaagcccg atagttaccc tctcttcgac ggtatcttct gctcccatga tgagcttaa 1140
gagctcacc 1149

<210> 4
<211> 383
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic

<220>
<221> MISC_FEATURE
<222> (380)..(380)
<223> "Xaa" at position 380 represents a stop codon

<400> 4

Arg Ile Gln Gly Asp Ile Thr Met Asp Asn Ile Leu Ser Gly Phe Glu
1 5 10 15

Asn Glu Tyr Asp Val Ile Tyr Leu Lys Pro Leu Ala Gly Val Tyr Arg
20 25 30

Ser Leu Lys Lys Gln Ile Glu Lys Asn Ile Phe Thr Phe Asn Leu Asn
35 40 45

Leu Asn Asp Ile Leu Asn Ser Arg Leu Lys Lys Arg Lys Tyr Phe Leu
50 55 60

Asp Val Leu Glu Ser Asp Leu Met Gln Phe Lys His Ile Ser Ser Asn
65 70 75 80

Glu Tyr Ile Ile Glu Asp Ser Phe Lys Leu Leu Asn Ser Glu Gln Lys
85 90 95

Asn Thr Leu Leu Lys Ser Tyr Lys Tyr Ile Lys Glu Ser Val Glu Asn
100 105 110

Asp Ile Lys Phe Ala Gln Glu Gly Ile Ser Tyr Tyr Glu Lys Val Leu
115 120 125

Ala Lys Tyr Lys Asp Asp Leu Glu Ser Ile Lys Lys Val Ile Lys Glu
130 135 140

Glu Lys Glu Lys Phe Pro Ser Ser Pro Pro Thr Thr Pro Pro Ser Pro
145 150 155 160

Ala Lys Thr Asp Glu Gln Lys Lys Glu Ser Lys Phe Leu Pro Phe Leu		
165	170	175
Thr Asn Ile Glu Thr Leu Tyr Asn Asn Leu Val Asn Lys Ile Asp Asp		
180	185	190
Tyr Leu Ile Asn Leu Lys Ala Lys Ile Asn Asp Cys Asn Val Glu Lys		
195	200	205
Asp Glu Ala His Val Lys Ile Thr Lys Leu Ser Asp Leu Lys Ala Ile		
210	215	220
Asp Asp Lys Ile Asp Leu Phe Lys Asn His Asn Asp Phe Asp Ala Ile		
225	230	240
Lys Lys Leu Ile Asn Asp Asp Thr Lys Lys Asp Met Leu Gly Lys Leu		
245	250	255
Leu Ser Thr Gly Leu Val Gln Asn Phe Pro Asn Thr Ile Ile Ser Lys		
260	265	270
Leu Ile Glu Gly Lys Phe Gln Asp Met Leu Asn Ile Ser Gln His Gln		
275	280	285
Cys Val Lys Lys Gln Cys Pro Glu Asn Ser Gly Cys Phe Arg His Leu		
290	295	300
Asp Glu Arg Glu Glu Cys Lys Cys Leu Leu Asn Tyr Lys Gln Glu Gly		
305	310	320
Asp Lys Cys Val Glu Asn Pro Asn Pro Thr Cys Asn Glu Asn Asn Gly		
325	330	335
Gly Cys Asp Ala Asp Ala Lys Cys Thr Glu Glu Asp Ser Gly Ser Asn		
340	345	350
Gly Lys Ile Thr Cys Glu Cys Thr Lys Pro Asp Ser Tyr Pro Leu		
355	360	365
Phe Asp Gly Ile Phe Cys Ser His Asp Glu Leu Xaa Glu Leu Thr		
370	375	380

<210> 5
<211> 38
<212> DNA
<213> Artificial sequence

```

<220>
<223> synthetic

<400> 5
cgggatccca aggagatacc atggcagtaa ctccttcc 38

<210> 6
<211> 42
<212> DNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 6
ctgcgagctc ttattaaagc tcatcatgct gcagaaaata cc 42

<210> 7
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 7
ctgcgagctc ttattaatga tgatgatg 28

<210> 8
<211> 42
<212> DNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 8
ggtgagctct taaagctcat catgggagca gaagataccg tc 42

<210> 9
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 9
gccgaattcg acaacatcct cagt 24

<210> 10
<211> 42
<212> DNA
<213> Artificial sequence

```

```

<220>
<223> synthetic

<400> 10
ggtagctct taaagctcat catgggagca gaagataaccg tc          42

<210> 11
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 11
agagctaatt tgcttgaatt gcataaggc          30

<210> 12
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 12
gaccttatgc aattcaagca cattagctct          30

<210> 13
<211> 1235
<212> DNA
<213> Artificial sequence

<220>
<223> synthetic

<400> 13
attggatcca ctaaaatgtg gtcttggaaag tgtcttttat tctggctgt cttggtgacc      60
gccactctt gcacagcagc gatotctgtt actatggaca acatcctcg tggcttcgag      120
aacgagtacg acgtaatcta cctaaagccc cttgccggtg tctaccgttc attgaagaaa      180
cagatagaaa agaatattt cacgttcaac ctcaacctaa atgacatcct caactcgcc      240
ctcaagaagc gaaaatactt cctcgacgtg ttggaatccg accttatgca atttaagcac      300
attagctcta acgagtacat catagaggac agcttcaagc tcttgaattc agaacagaag      360
aacaccctcc taaagtccata caaatacatt aaggagtctg ttgagaacga catcaagttc      420
gcccaggaaag gaatttagcta ctatgagaaa gtcctggcta aatacaagga cgacttggaa      480
agcattaaga aggtaatcaa agaagagaag gaaaagttc cgagctctcc acccacaact      540
cccccatcgc ctgcaaagac cgacgagcag aaaaaagaaa gtaagttcct tccattcctc      600
accaacatcg aaactctata taacaacctg gtgaacaaga ttgatgacta cttaatcaac      660

```

ttgaaggcga aaattaatga ctgtaacgtc gaaaaggatg aagcccacgt taagatcacc	720
aagcttccg atctcaaagc catcgacgt aagattgacc tgtttaagaa ccacaacgt	780
ttcgacgcaa tcaaaaagtt gatcaacgac gatactaaga aagacatgct tgaaaaactg	840
ctgtcgacag gcttggtcca aaacttcccg aacaccatta taagcaagct gatcgaagga	900
aagtttcagg atatgctgaa catctctcag catcaatgcg tgaagaagca atgtcccgag	960
aattcagggt gcttccgcca cttagacgaa agggaggaat gttaaatgcct gctgaattat	1020
aaacaggaag gagacaagtg cgtagagaat cctaacccaa cctgtaacga aaataacggt	1080
ggctgcgatg ctgacgctaa gtgtaccgag gaggacagcg gttccaatgg caagaaaata	1140
acttgcgaat gcacgaagcc cgatagttac cctctttcg acggtatctt ctgctccccca	1200
cctcatcatc atcatcatca ttaataaggt accta	1235

<210> 14
 <211> 402
 <212> PRT
 <213> Artificial sequence

<220>
 <223> synthetic

<400> 14

Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala	
1	5
10	15

Thr Leu Cys Thr Ala Ala Ile Ser Val Thr Met Asp Asn Ile Leu Ser	
20	25
30	

Gly Phe Glu Asn Glu Tyr Asp Val Ile Tyr Leu Lys Pro Leu Ala Gly	
35	40
45	

Val Tyr Arg Ser Leu Lys Lys Gln Ile Glu Lys Asn Ile Phe Thr Phe	
50	55
60	

Asn Leu Asn Leu Asn Asp Ile Leu Asn Ser Arg Leu Lys Lys Arg Lys	
65	70
75	80

Tyr Phe Leu Asp Val Leu Glu Ser Asp Leu Met Gln Phe Lys His Ile	
85	90
95	

Ser Ser Asn Glu Tyr Ile Ile Glu Asp Ser Phe Lys Leu Leu Asn Ser	
100	105
110	

Glu Gln Lys Asn Thr Leu Leu Lys Ser Tyr Lys Tyr Ile Lys Glu Ser

115

120

125

Val Glu Asn Asp Ile Lys Phe Ala Gln Glu Gly Ile Ser Tyr Tyr Glu
130 135 140

Lys Val Leu Ala Lys Tyr Lys Asp Asp Leu Glu Ser Ile Lys Lys Val
145 150 155 160

Ile Lys Glu Glu Lys Glu Lys Phe Pro Ser Ser Pro Pro Thr Thr Pro
165 170 175

Pro Ser Pro Ala Lys Thr Asp Glu Gln Lys Lys Glu Ser Lys Phe Leu
180 185 190

Pro Phe Leu Thr Asn Ile Glu Thr Leu Tyr Asn Asn Leu Val Asn Lys
195 200 205

Ile Asp Asp Tyr Leu Ile Asn Leu Lys Ala Lys Ile Asn Asp Cys Asn
210 215 220

Val Glu Lys Asp Glu Ala His Val Lys Ile Thr Lys Leu Ser Asp Leu
225 230 235 240

Lys Ala Ile Asp Asp Lys Ile Asp Leu Phe Lys Asn His Asn Asp Phe
245 250 255

Asp Ala Ile Lys Lys Leu Ile Asn Asp Asp Thr Lys Lys Asp Met Leu
260 265 270

Gly Lys Leu Leu Ser Thr Gly Leu Val Gln Asn Phe Pro Asn Thr Ile
275 280 285

Ile Ser Lys Leu Ile Glu Gly Lys Phe Gln Asp Met Leu Asn Ile Ser
290 295 300

Gln His Gln Cys Val Lys Lys Gln Cys Pro Glu Asn Ser Gly Cys Phe
305 310 315 320

Arg His Leu Asp Glu Arg Glu Glu Cys Lys Cys Leu Leu Asn Tyr Lys
325 330 335

Gln Glu Gly Asp Lys Cys Val Glu Asn Pro Asn Pro Thr Cys Asn Glu
340 345 350

Asn Asn Gly Gly Cys Asp Ala Asp Ala Lys Cys Thr Glu Glu Asp Ser
355 360 365

Gly Ser Asn Gly Lys Lys Ile Thr Cys Glu Cys Thr Lys Pro Asp Ser
370 375 380

Tyr Pro Leu Phe Asp Gly Ile Phe Cys Ser Pro Pro His His His His
385 390 395 400

His His

<210> 15

<211> 150

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic

<400> 15

aaaatgatat taaatttgc a caggaaggta taagttatta tgaaaaggtt aacattgaga 60
ccttatacaa taacttagtt aataaaattg acgattactt tccagaaaat tctggatgtt 120
tcagacattt agatgaaaga gaagaatgtt 150

<210> 16

<211> 142

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic

<400> 16

aatttcaaaa tgtttttagaa tcagattaa ttccatataa agatttaaca tcaagtaatt 60
atgttgtcaa agatccatat aaatttctta ataaagaaaa aagagataaa ttcttaagca 120
gttataatta tattaaggat tc 142

<210> 17

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> linker consensus sequence

<400> 17

Gly Ser Gly Gly Ser

1 5

<210> 18

<211> 4
<212> DNA
<213> Artificial sequence

<220>
<223> linker consensus sequence

<400> 18
gggs

4

<210> 19
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> endoplasmic reticulum retention signal

<400> 19

His Asp Glu Leu
1