VE203 Assignment 2

Liu Yihao 515370910207

Exercise 2.1

i) $n + (m+1) := \operatorname{succ}(n+m)$

ii) 2+2=succ(1)+succ(1)=succ(0)+1+succ(0)+1=1+1+1+1 4=succ(3)=succ(2)+1=succ(1)+1+1=succ(0)+1+1+1=1+1+1+1 So 2+2=4 is proved.

- iii) (I) for n = 1, m = 0, n + m = 1, m + n = 1, so it is true.
 - (II) for $n = 1, m = k \in N$, suppose 1 + k = k + 1. Then for n = 1, m = k + 1, m + n = k + 1 + 1 = 1 + k + 1 = n + m, so it is true.
 - (III) for $n=k\in N, m\in N$, suppose m+k=k+m. Then for $n=k+1, m\in N$, m+n=m+k+1=k+m+1=k+1+m=n+m, so it is true.
 - As (I) (III) are true, so the statement is proved.

Exercise 2.2

- (I) for $n = 1, 2, a_1 = 3 2 = 1, a_2 = 6 + 2 = 8$, so it is true.
- (II) for n > 2, suppose it is true

$$a_{n+1} = a_n + 2a_{n-1} = 3 \cdot (2^{n-1} + 2 \cdot 2^{n-2}) + 2(-1)^n + 2 \cdot 2(-1)^{n-1}$$
$$= 3 \cdot 2^n + 2(-1)^{n+1}$$

So it is true.

As (I) and (II) are true, so the statement is proved.

Exercise 2.3

Suppose the Well-Order-Principle is false, then there exist a non-empty set $S \subset N$ which doesn't have a least element.

(I) If the set have element 0, then 0 will be a least element. So 0 is not in the set.

(II) Suppose the set have element n, and doesn't have elements in [0, n), then n will be a least element and n is not in the set.

Further, we can find that n+1 is not in the set.

Therefore, all natural numbers are not in the set, which is contradicted with the condition that it is a non-empty set. So the Well-Order-Principle is true.

Exercise 2.4

Suppose $(1+x)^n \ge nx+1$

- (I) for n = 0, $(1 + x)^n = 1 \ge 1 = nx + 1$, so it is true.
- (II) for n > 0, suppose it is true,

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(nx+1) = nx^2 + nx + x + 1$$
$$(n+1)x + 1 = nx + x + 1$$

Since x > -1,

$$nx^2 + nx + x + 1 >= nx + x + 1$$

So it is true.

As (I) and (II) are true, so $(1+x)^n \ge nx + 1$ is proved. And we can simply find that $(1+x)^n \ge nx$ is true.

Exercise 2.5

- (I) for $n = 1, 1 = 2^0$, so it is true.
- (II) Suppose that for n = 1, 2, ..., n, the statement is true,

then for n+1, we should consider whether it is even or odd.

When it is even, $\frac{n+1}{2} \in [1, n] \cap N$, since $\frac{n+1}{2}$ can be written as distinct powers of 2, we can write n+1 by adding each of the power by 1.

When it is odd, $\frac{n}{2} \in [1, n] \cap N$, since $\frac{n}{2}$ can be written as distinct powers of 2, we can write n by adding each of the power by 1. Then we can write n + 1 by adding 2^0 . So it is true.

As (I) and (II) are true, so the statement is proved.

Exercise 2.6

Suppose $(a, b) \in S$ implies $5 \mid a + b$

- (I) for $(0,0) \in S$, $5 \mid 0+0$, so it is true.
- (II) for $(a, b) \in S$, suppose $5 \mid a + b$, and $(a, b) \in S$ implies $((a + 2, b + 3) \in S) \land ((a + 3, b + 2) \in S)$, which means for (a + 2, b + 3) and (a + 3, b + 2), a + 2 + b + 3 = a + 3 + b + 2 = a + b + 5. Since $5 \mid a + b$, it is clear that $5 \mid a + b + 5$. So it is true.
- As (I) and (II) are true, $(a, b) \in S$ implies $5 \mid a + b$ is proved.

Exercise 2.7

	reflexive	symmetric	transitive
$\overline{x+y=0}$	F	T	F
2 (x-y)	${ m T}$	${f T}$	${f T}$
xy = 0	\mathbf{F}	${ m T}$	\mathbf{F}
x = 1 or $y = 1$	\mathbf{F}	${f T}$	\mathbf{F}
$x = \pm y$	${ m T}$	${f T}$	${f T}$
x = 2y	\mathbf{F}	\mathbf{F}	\mathbf{F}
$xy \geqslant 0$	\mathbf{F}	${ m T}$	\mathbf{F}
x = 1	\mathbf{F}	\mathbf{F}	${ m T}$