MODELLING

Project: Analysis of different measures taken by different countries to control the spread of Covid-19 virus

Team Members

Nisha Ramrakhyani (Student Id: 801208678) Punit Mashruwala (Student Id: 801208416) Zalak Panchal (Student Id: 801196881)

Research Question: Building a model to forecast the number of Covid cases across the world

This basic Jupyter Notebook shows exploratory analysis of number of covid cases across the world, no. of deaths across the world and the predictive model for forecasting the number of covid cases across the world.

```
In [4]:  dataset = pd.read_excel('covid_19_data.xlsx')
# print(dataset.head())
print(dataset.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4143 entries, 0 to 4142
Data columns (total 19 columns):
```

Data	cordinis (cocar 19 cor	•			
#	Column	Non-Null Count	Dtype		
0	ID	4143 non-null	int64		
1	ISO	4143 non-null	object		
2	COUNTRY	4143 non-null	object		
3	REGION	4143 non-null	object		
4	LOG_TYPE	4143 non-null	object		
5	CATEGORY	4143 non-null	object		
6	MEASURE	4143 non-null	object		
7	TARGETED_POP_GROUP	1386 non-null	object		
8	COMMENTS	4137 non-null	object		
9	NON_COMPLIANCE	4095 non-null	object		
10	DATE_IMPLEMENTED	4117 non-null	datetime64[ns]		
11	SOURCE	4142 non-null	object		
12	SOURCE_TYPE	4142 non-null	object		
13	LINK	4141 non-null	object		
14	ENTRY_DATE	4143 non-null	datetime64[ns]		
15	covid_case_per_date	4112 non-null	float64		
16	Total_Covid_cases	4114 non-null	float64		
17	Total no. of tests	2857 non-null	object		
18	population	4143 non-null	int64		
<pre>dtypes: datetime64[ns](2), float64(2), int64(2), object(13)</pre>					
memory usage: 615.1+ KB					
None					

```
df = dataset[['COUNTRY','CATEGORY', 'MEASURE', 'COMMENTS', 'DATE_IMPLEMENTED
In [5]:
            print(df.head())
                 COUNTRY
                                                         CATEGORY
              Australia Governance and socio-economic measures
              Australia Governance and socio-economic measures
            2 Australia
                                           Movement restrictions
               Australia
                                           Public health measures
            3
              Australia
                                           Public health measures
                                                          MEASURE
               Emergency administrative structures activated ...
            0
                                                Economic measures
            1
            2
                                               Visa restrictions
                               Isolation and quarantine policies
            3
            4
                          Strengthening the public health system
                                                         COMMENTS DATE IMPLEMENTED
            0 Australian Health Sector Emergency Plan Activated
                                                                        2020-02-17
              Implementation of an economic response to the ...
                                                                        2020-03-01
            2 Citizens from China, Italy, South Korea, Iran,...
                                                                        2020-03-01
               14 days self-quarantine, for nationals arrivin...
                                                                        2020-03-01
            4
                                    Additional masks and funding
                                                                        2020-03-12
                                    population
               covid_case_per_date
            0
                              15.0
                                      25499884
            1
                              14.0
                                      25499884
            2
                              14.0
                                      25499884
            3
                              14.0
                                      25499884
```

25499884

28.0

4

```
In [6]:
            df['DATE IMPLEMENTED'] = pd.to datetime(df['DATE IMPLEMENTED'])
            print(df['DATE IMPLEMENTED'])
            0
                   2020-02-17
            1
                   2020-03-01
            2
                   2020-03-01
            3
                   2020-03-01
            4
                   2020-03-12
                      . . .
            4138
                   2020-11-02
            4139
                   2020-11-02
            4140
                   2020-11-02
            4141
                   2020-11-02
            4142
                   2020-11-02
            Name: DATE_IMPLEMENTED, Length: 4143, dtype: datetime64[ns]
            <ipython-input-6-4e7c7897de5b>:1: SettingWithCopyWarning:
            A value is trying to be set on a copy of a slice from a DataFrame.
            Try using .loc[row_indexer,col_indexer] = value instead
            See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
            s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://p
            andas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-vi
            ew-versus-a-copy)
              df['DATE_IMPLEMENTED'] = pd.to_datetime(df['DATE_IMPLEMENTED'])
In [7]:

    df.isnull().sum()

   Out[7]: COUNTRY
                                    0
            CATEGORY
                                    0
            MEASURE
                                    0
            COMMENTS
                                    6
            DATE IMPLEMENTED
                                   26
            covid case per date
                                   31
            population
                                    0
            dtype: int64
In [8]:
         df = df[df['covid case per date'].notna()]
            df.isnull().sum()
   Out[8]: COUNTRY
                                   0
            CATEGORY
                                   0
            MEASURE
                                   0
            COMMENTS
                                   5
            DATE IMPLEMENTED
                                   0
            covid_case_per_date
                                   0
            population
                                   0
            dtype: int64
```

```
In [9]:
             country array = df.COUNTRY.unique()
             country_array.sort()
             country_array
    Out[9]: array(['Australia', 'Belgium', 'Canada', 'France', 'Germany', 'India',
                     'Italy', 'Mexico', 'New Zealand', 'Norway', 'Singapore', 'Spain',
                    'Sri Lanka', 'Sweden', 'United Kingdom', 'United States'],
                   dtype=object)
In [11]:
             covid_data = pd.read_excel("new_covid.xlsx")
             covid_data
             print(covid_data.isnull().sum())
             iso_code
                                   0
             continent
                                   0
             location
                                   0
             date
                                   0
             total_cases
                                 196
             new_cases
                                  23
             total_deaths
                                 764
             new_deaths
                                  23
             new_tests
                                1866
             total tests
                                2075
             tests_per_case
                                1654
                                   0
             population
             dtype: int64
          M | constant imputer=SimpleImputer(strategy='constant', fill value=0)
In [12]:
             covid data.iloc[:]=constant imputer.fit transform(covid data)
             print(covid_data.isnull().sum())
             iso code
                                0
             continent
                                0
                                0
             location
             date
                                0
             total cases
                                0
             new cases
                                0
             total deaths
                                0
             new deaths
                                0
             new_tests
                                0
             total tests
                                0
             tests per case
                                0
             population
                                0
             dtype: int64
In [13]:
         dates = covid_data['date'].unique()
```

```
In [16]:
             # here selected countries are: 'Australia', 'Belgium', 'Canada', 'France', 'G
             confirmed_cases = []
             confirmed_deaths = []
             test conducted = []
             for i in dates:
                 dataaa = covid_data[covid_data['date'] == i]
                 confirmed_sum = dataaa['total_cases'].sum()
                 death_sum = dataaa['total_deaths'].sum()
                 test_sum = dataaa['total_tests'].sum()
                 confirmed_cases.append(confirmed_sum)
                 confirmed_deaths.append(death_sum)
                 test_conducted.append(test_sum)
             # Removing last data as in some of records they are not captured
             confirmed_cases = confirmed_cases[:320]
             confirmed deaths = confirmed deaths[:320]
             test_conducted = test_conducted[:320]
             # print(confirmed_cases)
             # print(confirmed deaths)
             # print(test conducted)
             print(len(confirmed_cases))
             print(len(confirmed deaths))
             print(len(test_conducted))
             320
             320
             320
In [17]:

  | def diff_function(data):

                 d = []
                 for i in range(len(data)):
                     if i == 0:
                          d.append(data[0])
                      else:
                          val = data[i]-data[i-1]
                          if val < 0:</pre>
                              d.append(0)
                          else:
                              d.append(val)
                 return d
```

```
In [22]:
            future_forecast_dates
   Out[22]: ['01/22/2020',
              '01/23/2020',
              '01/24/2020',
              '01/25/2020',
              '01/26/2020',
              '01/27/2020',
              '01/28/2020',
              '01/29/2020'
              '01/30/2020',
              '01/31/2020',
              '02/01/2020',
              '02/02/2020',
              '02/03/2020'
              '02/04/2020',
              '02/05/2020',
              '02/06/2020',
              '02/07/2020',
              '02/08/2020',
              '02/09/2020',
In [32]:
          plt.figure(figsize=(10, 5))
            plt.plot(adjusted_dates, confirmed_cases)
            plt.title('Number of Coronavirus Cases Over Time', size=30)
            plt.xlabel('Days Since 1/22/2020', size=30)
            plt.ylabel('Number of Cases', size=30)
            plt.xticks(size=20)
            plt.yticks(size=20)
            plt.show()
```



```
In [23]:
          ▶ from sklearn.model selection import train test split
             X_train_confirmed, X_test_confirmed, y_train_confirmed, y_test_confirmed = tr
             print(len(X train confirmed))
             print(len(X test confirmed))
             print(len(y train confirmed))
             print(len(y_test_confirmed))
             220
             100
             220
             100
In [24]:
             # Predicting using Polynomial Features
             poly = PolynomialFeatures(degree=3)
             poly X train confirmed = poly.fit transform(X train confirmed)
             poly_X_test_confirmed = poly.fit_transform(X_test_confirmed)
             poly_future_forecast = poly.fit_transform(future_forecast)
```

```
In [25]: # Linear regression
linear_model = LinearRegression(normalize=True, fit_intercept=False)
linear_model.fit(poly_X_train_confirmed, y_train_confirmed)
test_linear_pred = linear_model.predict(poly_X_test_confirmed)
linear_pred = linear_model.predict(poly_future_forecast)
print('MAE:', mean_absolute_error(test_linear_pred, y_test_confirmed))
print('MSE:',mean_squared_error(test_linear_pred, y_test_confirmed))
```

MAE: 760076.3281707081 MSE: 1467099793394.4988

Out[26]: <matplotlib.legend.Legend at 0x1e79dbb48b0>

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:72:
DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

return f(**kwargs)

MAE: 20024573.832694203 MSE: 586909261681649.8

In [37]: ▶ plot_predictions(adjusted_dates, confirmed_cases, linear_pred, 'Polynomial Re

In [39]: ► tes, confirmed_cases, svm_pred, 'SVM Predictions', 'black', 'dashed', 'Number

Out[41]:

	Date	Predicted number of Confirmed Cases	
0	01/05/2021	42945960.0	
1	01/06/2021	43296904.0	
2	01/07/2021	43649815.0	
3	01/08/2021	44004697.0	
4	01/09/2021	44361556.0	
5	01/10/2021	44720399.0	
6	01/11/2021	45081230.0	
7	01/12/2021	45444056.0	
8	01/13/2021	45808882.0	
9	01/14/2021	46175713.0	
10	01/15/2021	46544557.0	
11	01/16/2021	46915418.0	
12	01/17/2021	47288302.0	
13	01/18/2021	47663215.0	
14	01/19/2021	48040163.0	
15	01/20/2021	48419151.0	
16	01/21/2021	48800184.0	
17	01/22/2021	49183270.0	
18	01/23/2021	49568413.0	
19	01/24/2021	49955619.0	

In [42]: # Future predictions using SVM
svm_df = pd.DataFrame({'Date': future_forecast_dates[-20:], 'SVM Predicted #
svm_df

Out[42]:

	Date	SVM Predicted # of Confirmed Cases
0	01/05/2021	134261972.0
1	01/06/2021	136174565.0
2	01/07/2021	138109141.0
3	01/08/2021	140065890.0
4	01/09/2021	142045001.0
5	01/10/2021	144046665.0
6	01/11/2021	146071076.0
7	01/12/2021	148118426.0
8	01/13/2021	150188910.0
9	01/14/2021	152282723.0
10	01/15/2021	154400061.0
11	01/16/2021	156541123.0
12	01/17/2021	158706107.0
13	01/18/2021	160895213.0
14	01/19/2021	163108642.0
15	01/20/2021	165346597.0
16	01/21/2021	167609280.0
17	01/22/2021	169896896.0
18	01/23/2021	172209650.0
19	01/24/2021	174547749.0

```
In [43]: It plt.figure(figsize=(16, 9))
    plt.plot(adjusted_dates, confirmed_deaths, color='r')
    plt.plot(adjusted_dates, test_conducted, color='green')
    plt.legend(['death', 'test_conducted'], loc='best', fontsize=20)
    plt.title('Covid Analysis', size=30)
    plt.xlabel('Days Since 1/22/2020', size=30)
    plt.ylabel('Number of Cases', size=30)
    plt.xticks(size=20)
    plt.yticks(size=20)
    plt.show()
```

