Machine learning primer

JOANNA BYSZUK & JEREMI OCHAB

DHSI 2024, "DIY COMPUTATIONAL TEXT ANALYSIS WITH R"

Task examples: classification

Task examples: regression

Terms and definitions

Example: item, instance of the data used.

Features: attributes associated to an item, often represented as a vector (e.g., word counts).

Labels: category (classification) or real value (regression) associated to an item.

Data:

- training data (typically labeled).
- test data (labeled but labels not seen).
- validation data (labeled, for tuning parameters).

J. Watt, R. Borhani, A.K. Katsaggelos. *Machine Learning Refined*. © Cambridge University Press 2020

Najłatwiej na przykładzie dopasowania krzywej regresji:

- F(x) a true (but unknown) function with continuous valued output with noise
- D set of n training samples generated by $F(\mathbf{x})$
- g(x; D) the estimated regressions function F (depends on the set D!)
- Estimator effectiveness: average (over all sets D of size n) mean-square deviation:

- bias the difference between the true (but unknown) value and our expectations [=estimation accuracy]
- variance the instability of the estimate due to the variability of the training set

$$= \underbrace{\left(\mathcal{E}_{\mathcal{D}}[g(\mathbf{x};\,\mathcal{D}) - F(\mathbf{x})]^{2}\right)}_{bias^{2}} + \underbrace{\left(\mathcal{E}_{\mathcal{D}}[g(\mathbf{x};\,\mathcal{D}) - F(\mathbf{x})])^{2}\right)}_{variance}$$

E – mean squared error

p – probability that we will randomly get *D* with the error E

Duda, Hart, Stork. *Pattern Classification, 2nd ed.* Wiley (2000).

	Underfitting	Just right	Overfitting
Regression			

	Underfitting	Just right	Overfitting
Symptoms	 High training error Training error close to test error High bias 	 Training error slightly lower than test error 	 Low training error Training error much lower than test error High variance
Regression			

	Underfitting	W sam raz	Overfitting
Symptoms	 High training error Training error close to test error High bias 	 Training error slightly lower than test error 	 Low training error Training error much lower than test error High variance
Regression			
Classificatio n			
Deep learning	Validation Training Epochs	Validation Training Epochs	Error Validation Training Epochs
Remedies?	complexify modelAdd more features		RegulariseGet more data

Generalisation

OBSERVATIONS

- the best hypothesis on the sample may not be the best overall.
- *generalization is not memorization.
- complex rules (very complex separation surfaces) can be poor predictors.
- trade-off: complexity of hypothesis set vs sample size (underfitting/overfitting).

LEAVE-ONE-OUT CROSS-VALIDATION [JACK-KNIFE]

LEAVE-ONE-OUT CROSS-VALIDATION [JACK-KNIFE]

K-FOLD CROSS-VALIDATION

K-FOLD CROSS-VALIDATION

FIGURE 5.8. Test error (brown), training error (blue), and 10-fold CV error (black) on the two-dimensional classification data displayed in Figure 5.7. Left: Logistic regression using polynomial functions of the predictors. The order of the polynomials used is displayed on the x-axis. Right: The KNN classifier with different values of K, the number of neighbors used in the KNN classifier.

MORE TYPES

Stratified CV stratified

Group CV

https://scikitlearn.org/stable/modules/cross validation.ht ml#k-fold