ĐỂ 1 ĐỂ THI GIỮA KỲ MÔN GIẢI TÍCH I – Học kì 20191

Mã số MI111. Nhóm ngành 1/Lớp BK. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu I (1 điểm). Tìm α để hàm số liên tục :

$$f(x) = \begin{cases} (e^{2x^2} - 1)x^{-2}, & x \neq 0 \\ a & x = 0 \end{cases}.$$

Câu 2(1 diễm). Cho y = |x-1|. Xét tính khả vi tại x = 1.

Câu 3 (1 điểm). Tính
$$\lim_{x \to +\infty} \left(\sin \sqrt{x+2} - \sin \sqrt{x-2} \right)$$
.

Câu 4 (1 điểm). Tính
$$y^{(40)}(1)$$
, ở đó $y = (x^2 + 1)e^{(x-1)}$.

Câu 5 (1 điểm). Cho a-b+c=0. Chứng minh rằng phương trình $4ax^3 - 3bx^2 + c = 0$, luôn có nghiệm thuộc (0;1).

Câu 6 (1 điểm). Tìm cực trị của hàm số $y = x\sqrt[3]{(x-2)^2}$.

Câu 7 (1 điểm). Tính
$$\int \frac{x-2}{x^2-2x+2} dx$$
.

Câu 8(1 điểm). Tìm các tiệm cận của đồ thị hàm số

$$f(x) = x \ln(e + \frac{1}{x}).$$

Câu 9 ($1 di \tilde{e} m$). Tính gần đúng $e^{0.1}$ với sai số bé hơn 10^{-4} .

Câu 10 (1 điểm). Tính
$$\lim_{x\to 0} \frac{1-\sqrt{1+x^4}\cos(x^2)}{x^3\arctan(x^5)}$$
.

ĐỀ 2 ĐỂ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20191

Mã số MI111. Nhóm ngành 1/Lớp BK. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1 điểm). Tìm a để hàm số liên tục :

$$f(x) = \begin{cases} (e^{3x^2} - 1)x^{-2}, & x \neq 0 \\ a & x = 0 \end{cases}$$

Câu 2(1 điểm). Cho y = |x+1|. Xét tính khả vi tại x = -1.

Câu 3 (1 điểm). Tính
$$\lim_{x\to+\infty} \left(\sin\sqrt{x+3} - \sin\sqrt{x-3}\right)$$
.

Câu 4 (*1 điểm*). Tính
$$y^{(40)}(-1)$$
, ở đó $y = (x^2 + 1)e^{(x+1)}$.

Câu 5 (1 điểm). Cho a+b-c=0. Chứng minh rằng phương trình $4ax^3 + 3bx^2 - c = 0$, luôn có nghiệm thuộc (0;1).

Câu 6 (1 điểm). Tìm cực trị của hàm số $y = x\sqrt[3]{(x+2)^2}$.

Câu 7 (*1 điểm*). Tính
$$\int \frac{x+2}{x^2-2x+2} dx$$
.

Câu 8(1 điểm). Tìm các tiệm cận của đồ thị hàm số

$$f(x) = x \ln(e - \frac{1}{x}).$$

Câu 9 (1 di e m). Tính gần đúng $e^{0,1}$ với sai số bé hơn 10^{-4} .

Câu 10 (1 điểm). Tính
$$\lim_{x\to 0} \frac{1-\sqrt{1+x^4}\cos(x^2)}{x^3\arctan(x^5)}$$
.

ĐỂ 3 ĐỂ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20191 Mã số MI111. Nhóm ngành 1/Lớp BK. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu 1 (1 điểm). Tìm a để hàm số liên tục :

$$f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & x \neq 1 \\ a & x = 1 \end{cases}$$

Câu 2(1 điểm). Tìm tập xác định và tập giá trị của hàm số

$$y = \sin\frac{1}{x} + \cos\frac{1}{x}.$$

Câu 3 (1 điểm). Tính $\lim_{x\to 0^+} x^{\frac{\sqrt{x}}{\sqrt{x}}}$.

Câu 4 (1 điểm). Dùng vi phân tính gần đúng $\sqrt[3]{8,012}$.

Câu 5 (1 điểm). Khai triển hàm số $f(x) = x^4$ theo lũy thừa của x - 2.

Câu 6 (1 điểm). Tìm giá trị lớn nhất và bé nhất của hàm số

$$y = x + \cos(2x)$$
 trên đoạn $[0; \frac{\pi}{4}]$.

Câu 7 (1 điểm). Tính $\int \frac{\arcsin x}{\sqrt{1+x}} dx$.

Câu 8(1 điểm). Tìm các tiệm cận của đồ thị hàm số

$$f(x) = \sqrt[3]{1 - x^3}.$$

Câu 9 (*Iđiểm*). Tính $\lim_{n\to\infty} \left(\frac{n^2-1}{n^2+1}\right)^{n^2}$.

Câu 10 (1 điểm). Chứng minh rằng:

6 $\arctan x + 5 \arctan(x+2) < 11 \arctan(x+1), \forall x > 0.$

ĐỂ 4 ĐÈ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20191

Mã số MI111. Nhóm ngành 1/Lớp BK. Thời gian: 60 phút Chú ý: Thí sinh không được sử dung tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu 1 (1 điểm). Tìm a để hàm số liên tục:

$$f(x) = \begin{cases} (x+1)\sin\frac{1}{x+1}, & x \neq -1\\ a & x = -1 \end{cases}.$$

Câu 2(1 điểm). Tìm tập xác định và tập giá trị của hàm số

$$y = \sin \frac{1}{x} - \cos \frac{1}{x}.$$
Câu 3 (1 điểm). Tính $\lim_{x \to \infty} x^{\frac{\sqrt{x}}{\sqrt{x}}}$.

Câu 4 (1 điểm). Dùng vi phân tính gần đúng $\sqrt[3]{8,024}$.

Câu 5 (1 điểm). Khai triển hàm số $f(x) = x^4$ theo lũy thừa của x + 2.

Câu 6 (1 điểm). Tìm giá trị lớn nhất và bé nhất của hàm số

$$y = x - \cos(2x)$$
 trên đoạn $[-\frac{\pi}{4}; 0]$.

Câu 7 (1 điểm). Tính
$$\int \frac{\arcsin x}{\sqrt{1-x}} dx$$
.

Câu 8(1 điểm). Tìm các tiệm cận của đồ thị hàm số

$$f(x) = \sqrt[3]{1 + x^3}.$$

Câu 9 (*lđiểm*). Tính
$$\lim_{n\to\infty} \left(\frac{n^2-1}{n^2+1}\right)^{n^2}$$
.

Câu 10 (1 điểm). Chứng minh rằng: $6\arctan x + 5\arctan(x+2) < 11\arctan(x+1), \ \forall x > 0.$

ĐỂ 5 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20191

Nhóm 2: Mã học phần MI1112 Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu 1: [1d] Cho hàm số f(x) và g(x) với các giá trị được cho trong bảng sau:

x	11	2	3	4	5	6	7	8	9
f(x)	5	8	4	6	3	2	1	7	9
g(x)	9	2	5	4	3	1	7	8	6

Tính $g \circ f^{-1}(5)$.

Câu 2: Tính giới hạn:

a)
$$[1d]$$
 $\lim_{x \to +\infty} \left(\frac{x+1}{x+2} \right)^x$

b) [1đ]
$$\lim_{x\to 0} (\cosh x)^{\frac{1}{\arctan^2(2x)}}$$
.

Câu 3:[1đ] Tìm hàm ngược của hàm số $f(x) = \ln\left(x + \sqrt{x^2 + 1}\right), x \in \mathbb{R}$.

Câu 4: [1d] x = 0 là điểm gián đoạn loại gì của hàm số $y(x) = \frac{\sin x}{|x|}$?

Câu 5: Cho hàm số $f(x) = \begin{cases} e^{-1/x^2} & \text{khi } x \neq 0 \\ 0 & \text{khi } x = 0 \end{cases}$

- a) [1d] Xét tính liên tục của hàm số tại x = 0.
- b) [1d] Xét tính khả vi của hàm số tại x=0.

Câu 6: [1đ] Cho hàm số $f(x) = x^2 \sinh x$. Tính $f^{(2019)}(0)$

Câu 7: [1đ] Xác định giá trị c khi áp dụng Định lý Lagrange vào hàm số $f(x) = \sin x$ trên đoạn $[0,\pi/2]$.

Câu 8: [1đ] Tìm khai triển Maclaurin của hàm số $f(x)=e^{\sin x}$ đến số hạng x^4 .

ĐỂ 6 ĐỂ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20191

Nhóm 2: Mã học phần MI1112 Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thị

Câu 1: [1đ] Cho hàm số f(x) và g(x) với các giá trị được cho trong bảng sau:

x	1	2	3	4	5	6	7	8	9
f(x)	2	4	6	8	- 1	3	5	7	9
g(x)	1	3	5	7	9	2	4	6	Q

Tính $g \circ f^{-1}(7)$.

Câu 2: Tính giới hạn:

a) [1đ]
$$\lim_{x \to +\infty} \left(\frac{x-1}{x+3} \right)^x$$

b)
$$[1d] \lim_{x\to 0} (\cosh x)^{\frac{1}{\arcsin^2(3x)}}$$
.

Câu 3:[1đ] Tìm hàm ngược của hàm số $f(x) = \ln\left(\sqrt{x^2+1}-x\right), x \in \mathbb{R}$.

Câu 4: [1đ] x=0 là điểm gián đoạn loại gì của hàm số $y(x)=\frac{\tan x}{|x|}$?

Câu 5: Cho hàm số $f(x) = \begin{cases} e^{-1/|x|} & \text{khi } x \neq 0 \\ 0 & \text{khi } x = 0 \end{cases}$.

- a) [1d] Xét tính liên tục của hàm số tại x = 0.
- b) [1đ] Xét tính khả vi của hàm số tại x=0.

Câu 6: [1đ] Cho hàm số $f(x) = x^2 \cosh x$. Tính $f^{(2019)}(0)$.

Câu 7: [1đ] Xác định giá trị c khi áp dụng Định lý Lagrange vào hàm số $f(x) = \cos x$ trên đoạn $[0,\pi/2]$.

Câu 8: [1đ] Tìm khai triển Maclaurin của hàm số $f(x) = e^{\cos x - 1}$ đến số hạng x^4 .

Đề 7 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH I - Học kỳ 20191 Nhóm 3. Mã HP: MI1113. Thời gian: 60 phút.

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thị

Câu 1 (1đ). So sánh các vô cùng bé sau khi $x \to 0$:

$$\alpha(x) = \tan(x^2 + 2x^3); \beta(x) = \ln(1 + 2x).$$

Câu 2 (1đ). Tìm và phân loại điểm gián đoạn của hàm số:

$$y = \frac{\sin x}{1 - 3^x}.$$

Câu 3 (1đ). Khảo sát tính đơn điệu của hàm số $y=2\arctan x-x$. Từ đó tìm giá trị nhỏ nhất của hàm số trên đoạn $\left[-\sqrt{3},0\right]$.

Câu 4 (1d). Tìm tập xác định và tập giá trị của hàm số:

$$y = \ln(2 \arcsin x)$$
.

Câu 5 (1đ). Sử dụng vi phân cấp một, tính gần đúng $\sqrt[7]{0,888}$.

Câu 6 (1đ). Viết phương trình tiếp tuyến tại điểm (1;3) của đường cong cho ở dạng tham số $x(t) = e^{2t} + 3t^2$, $y = 3e^t - t^2$.

Câu 7 (2đ). Tính các tích phân sau:

a)
$$\int \frac{dx}{x(\ln^2 x + 4\ln x + 7)}$$
 b)
$$\int \frac{x-1}{\sqrt{x^2 + 4x}} dx.$$

Câu 8 (1d). Tính giới hạn

$$\lim_{x \to 0} \frac{e^{2x^2} \cos 2x - 1}{x^4}.$$

Câu 9 (1đ). Cho hàm số $y = (2x + 1)\sin(3x^2)$. Tính đạo hàm $y^{(11)}(0)$.

Đề 8 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH I - Học kỳ 20191 Nhóm 3. Mã HP: MI1113. Thời gian: 60 phút.

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). So sánh các vô cùng bé sau khi $x \to 0$:

$$\alpha(x) = \arctan(2x^3 - x^2); \beta(x) = \sqrt[3]{x} + x^2.$$

Câu 2 (1đ). Tìm và phân loại điểm gián đoạn của hàm số:

$$y = \frac{\sin 2x}{1 - 4^x}.$$

Câu 3 (1đ). Khảo sát tính đơn điệu của hàm số $y = 2 \arctan x - x$.

Từ đó tìm giá trị lớn nhất của hàm số trên đoạn $[0, \sqrt{3}]$.

Câu 4 (1đ). Tìm tập xác định và tập giá trị của hàm số:

$$y = \ln(\arcsin 2x)$$
.

Câu 5 (1đ). Sử dụng vi phân cấp một, tính gần đúng $\sqrt[7]{1,112}$.

Câu 6 (1đ). Viết phương trình tiếp tuyến tại điểm (2; 1) của đường cong cho ở dạng tham số $x(t) = 2e^{-2t} + t^2$, $y = e^{-t} - 3t^2$.

Câu 7 (2đ). Tính các tích phân sau:

a)
$$\int \frac{dx}{x(\ln^2 x - 2\ln x + 3)}$$
 b)
$$\int \frac{3 - x}{\sqrt{4x - x^2}} dx$$
.

Câu 8 (1đ). Tính giới hạn

$$\lim_{x \to 0} \frac{\ln(1+x^2)\cos x - x^2 + x^4}{x^6}.$$

Câu 9 (1đ). Cho hàm số $y = (x+3)\cos(2x^3)$. Tính đạo hàm $y^{(12)}(0)$.