# Natural Language Processing with Classification and Vector Spaces

Week1:

#### **Supervised ML & Sentiment Analysis**



1. In supervised learning, we have input X and output Y. We try to fit a function f(X) = Y, such that predicted value of function f(X) = Y. We change our parameters at each iteration to minimize cost.

#### **Vocabulary & Feature Extraction**

Let's consider a Tweet

Tweet1: I am happy because I am learning NLP.

Tweet2: I Hated the movie

To represent these tweets in vector form we need to follow the following steps:

- 1. List all the unique words from all the available tweets.
- 2. Assign value =1 if that word appears in dictionary else 0.

#### I am happy because I am learning NLP

A lot of Zeros! That's a sparse Representation

### **Problem With Sparse Representation**

- 1. Most of the values are zeros if my tweet is small.
- 2. Logistic Regression will require a V number of parameters to train for each word in the vocabulary.
- 3. It will take more training time since vector size is very big
- 4. Prediction will also be slower.

#### Problems with sparse representations



## **Negative and Positive Frequencies**

Corpus: a collection of written texts

Consider having a corpus of tweets as given below:

#### Corpus

I am happy because I am learning NLP
I am happy
I am sad, I am not learning NLP
I am sad

To count the number of positive and negative frequencies, we will make a table as given below:

# Positive and negative counts

| Positive tweets                             |
|---------------------------------------------|
| I am <u>happy</u> because I am learning NLP |
| I am <u>happy</u>                           |

| Vocabulary | PosFreq (1) |
|------------|-------------|
| 1          | 3           |
| am         | 3           |
| happy      | 2           |
| because    | 1           |
| learning   | 1           |
| NLP        | 1           |
| sad        | 0           |
| not        | 0           |

Similarly for negative class, we can count the frequencies.

# Word frequency in classes

| Vocabulary | PosFreq (1) | NegFreq (0) |                                  |
|------------|-------------|-------------|----------------------------------|
| 1          | 3           | 3           | -                                |
| am         | 3           | 3           | fregs: dictionary mapping from   |
| happy      | 2           | 0           | (word, class) to frequency       |
| because    | 1           | 0           | (11010, 0, 0,000, 00 11 0400110) |
| learning   | 1           | 1           |                                  |
| NLP        | 1           | 1           |                                  |
| sad        | 0           | 1           |                                  |
| not        | 0           | 1           |                                  |
|            |             |             | -                                |

## **Feature Extraction with Frequencies**

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$
 Features of tweet m Bias Sum Pos. Frequencies Frequencies

#### Feature extraction

| Vocabulary | PosFreq (1) | I am sad, I am not learning NLP                 |
|------------|-------------|-------------------------------------------------|
| I          | <u>3</u>    |                                                 |
| am         | <u>3</u>    |                                                 |
| happy      | 2           | $X_m = [1, \sum freqs(w, 1), \sum freqs(w, 0)]$ |
| because    | 1           | $\boldsymbol{w}$ $w$                            |
| learning   | 1           | 1                                               |
| NLP        | 1           |                                                 |
| sad        | 0           | 8                                               |
| not        | 0           |                                                 |
|            |             |                                                 |

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$
$$\downarrow X_m = [1, 8, 11]$$

## **Preprocessing**

Preprocess Tweet:

@Ymourri @AndrewNg are tuning a GREAT ai Model at <a href="https://deeplearning.ai">https://deeplearning.ai</a>

1. We need to remove stop words and punctuation mark which does not contribute any meaning in the task of sentiment analysis

After removing StopWords and punctuation from the tweet.

# Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai

| Stop words | Punctuation |
|------------|-------------|
| and        | ,           |
| is         |             |
| а          | :           |
| at         | <u>!</u>    |
| has        | п           |
| for        |             |
| of         |             |

tweets having handles and URLs also does not contribute anything to Sentiment Analysis. We will remove them too.

- 2. We need to perform Stemming(Transforming any word to its base term). SO the word **tune, tuned or tuning** have the same base word, so after stemming it will become **tun.**
- **3.** lower case all the words. GREAT, Great, great will reduced to great. since it does not change the sentiment of the sentence.

Preprocessed tweet: [tun, great, ai, model]