<u>Design Sessional Project Report</u> (CE39004)

Indian Institute of Technology Kharagpur-721302

Department Of Civil Engineering

GROUP NO:6

Project

G+B+17 RESIDENTIAL TOWER LOCATED AT GUWAHATI

Course Instructor		
Prof. Damodar Maity	Prof. Bishwanath Banerjee	Prof. Sushanta Chakraborty

GROUP MEMBERS	ROLL NO
Kshitij Bhaskar	21CE10033
Manne Chimyang	21CE10034
Mohit Kumar Meena	21CE10035
Monu Kumar	21CE10036
N Rachana Gupta	21CE10038
Deepak Kumar	21CE30014
Islavath Mohan Naik	21CE30016

CONTENTS

1) Design basis report
2) Plan of tower
3) Front and side elevation, Isometric View
4) Floor Plan
5) Beam Column Layout
6) Varieties of possible load combinations
7) Sample manual calculations for DL,LL,WL,EL to find the reaction forces
8) Manual design calculations of a sample beam, column, slab and foundation
9) Design and Detailing of foundation
10) Structural Detailing of beam-column junction
11) Plumbing and road network details
12) Appropriate structural drawings based on the design in software
13) IS codes used
14) Softwares Used

DESIGN BASIS REPORT

Problem Statement

- 1. The campus is located at Guwahati for even group numbers.
- 2. Each Residential Tower will be of (B+G+5+2*Group Number) storey
- 3. Each floor will have four apartments of approximate area as (140±10) m2 approximately each, with common facilities.
- 4. The bearing capacity of the soil for towers with is 20 ton/m2.
- 5. Clear height of the, basement and ground floor is 2.70 m
- 6. Height of each floor is 3.25 m.
- 7. Analysis and design of the Towers should comply with the latest Indian Codes of Practice.
- 8. For all RCC structural elements, M30 grade of concrete and Fe500 steel will be used. For steel members, Fe410 grade will be used.
- 9. The floor diaphragms are assumed to be rigid.
- 10. Centre-line dimensions will be followed for analysis.
- 11. Seismic loads will be considered acting in the horizontal direction and not along the vertical direction.
- 12. Any other parameter needed for the design can suitably be assumed with proper justification.

Materials Considered

- M25 grade concrete for all structural members.
- ❖ Fe500 for all the RCC reinforcements.
- Fe410 for all the steel members.
- The bearing capacity of the soil for towers with is 20 ton/m2.

Location

Guwahati (Seismic Zone V)

- Guwahati, the largest city in the Indian state of Assam, is situated in a seismically active region.
- The city falls within Seismic Zone V, a high-risk area for earthquakes, according to the seismic zoning map of India.

Geometry and Floor Area

H - shaped tower with 4 apartments per floor with floor area of 147.5 m² Of a single apartment.

Plan Of Tower

Apartment GAD

Each Apartment Consists of

1 Master BedRoom	1 Bed Room
1 Kitchen	2 Bathroom
1 GuestRoom	1 StoreRoom
1 Hall	2 Balcony

Apartment GAD with Dimensions

FRONT, SIDE AND ISOMETRIC VIEW

Front View

Isometric View

Floor Plan

Basement Plan

Basement Plans:

- One Entry/Exit Gate for Vehicles.
- One staircase to Ground Floor.

Ground Floor Plan

Ground Floor Plan:

- Two Entrance Gates
- Two Entry/Exit Gate for Vehicles .
- Two staircase and two elevators are there .
- One Guard Office.

Typical Floor Plan

Roof Plan

Typical 3D Floor Plan

Typical 3D Roof Plan

Beam Column Layout

Structure

Column Grouping

1) 800mm x 800mm

3) 600mm x 600mm

<u>Beams</u>

Size- 600mm x 400mm

<u>Slabs</u>

Thickness- 150mm

Shear Walls

Thickness- 200mm

Front View

Side View

Loads And Load Combinations

Dead Load and Dead Load Profile

Dead Load on a typical Floor

Live Load

LIVE LOAD	VALUE
Bedroom	2 KN/m ²
Toilet and Bathroom	2 KN/m ²
Kitchen	2 KN/m ²
Dinning Cum Living Room	3 KN/m ²
Staircase	3 KN/m ²
Common Spaces	3 KN/m ²
Balcony	3 KN/m ²

Live Load Profile

Dead Load on a typical Floor

Wind Load And Design Forces

Wind Data	Value	Reference
Wind Zone	Zone IV	Refer IS:875, pt 3, Sec 5.2
Basic Wind Speed	50 m/s	Refer IS:875, pt 3, Sec 5.2
Terrain Category	Category 4	Refer IS:875, pt 3, Sec 5.3.2.1

Design Factors	Value	Reference
		Refer IS:875, pt 3, Sec 5.3.1,
Risk Coefficient Factor, k1	1.00	Table 1
Terrain & Height Factor, k2	Varies with height	Refer IS:875, pt 3, Sec 5.3.2.2, Table 2
Topography Factor, k3	1.00	Refer IS:875, pt 3, Sec 5.3.3.1
Design Wind Speed Vz=Vb*k1*k2*k3	50*k2 m/s	Refer IS:875, pt 3, Sec 5.3
Pz=0.6(Vz)2	1500 *(k2) ² N/m2	Refer IS:875, pt 3, Sec 5.4

VARIATION OF Pz WITH HEIGHT

Height(m)	k2	Vz (m/s)	Pz (KN/m2)
10	0.80	40	0.96
20	0.80	40	0.96
30	0.97	48.5	1.411
40	1.035	51.75	1.606
50	1.11	55	1.815
60	1.12	56	1.881
65	1.13	56.5	1.915

WLX WLZ

WL-X WL-Z

Seismic Load

Seismic Parameter	Value	Reference
Seismic Zone	V	Refer IS 1893: table 2
Zone Factor	0.36	Refer IS 1893: table 2
Importance Factor	1	Refer IS 1893: table 2
Response Reduction Factor	5	Refer IS 1893: table 7
Soil Type	Medium	Refer IS 1893: table 7
Structure Type	RC Frame Building	Refer IS 1893: table 7

Load Combinations

```
11 GENERATED INDIAN CODE GENRAL STRUCTURES
       9 1.5 10 1.5
1508
     E LOAD COMB 12 GENERATED INDIAN CODE GENRAL STRUCTURES 2
1509
       9 1.2 10 1.2 5 1.2
1510
     FLOAD COMB 13 GENERATED INDIAN CODE GENRAL_STRUCTURES 3
       9 1.2 10 1.2 6 1.2
1513
       LOAD COMB 14 GENERATED INDIAN CODE GENRAL_STRUCTURES 4
1514
       9 1.2 10 1.2 7 1.2
1515 BLOAD COMB 15 GENERATED INDIAN CODE GENRAL STRUCTURES 5
       9 1.2 10 1.2 8 1.2
1516
      BLOAD COMB 16 GENERATED INDIAN CODE GENRAL_STRUCTURES 6
      9 1.2 10 1.2 5 -1.2
1518
1519
       LOAD COMB 17 GENERATED INDIAN CODE GENRAL_STRUCTURES 7
1520
       9 1.2 10 1.2 6 -1.2
     D LOAD COMB 18 GENERATED INDIAN CODE GENRAL STRUCTURES 8
1521
       9 1.2 10 1.2 7 -1.2
1523
     DIOAD COMB 19 GENERATED INDIAN CODE GENRAL_STRUCTURES 9
       9 1.2 10 1.2 8 -1.2
1525
       LOAD COMB 20 GENERATED INDIAN CODE GENRAL_STRUCTURES 10
1526
       9 1.2 10 1.2 1 1.2
     I LOAD COMB 21 GENERATED INDIAN CODE GENRAL STRUCTURES 11
1527
1528
       9 1.2 10 1.2 2 1.2
     B LOAD COMB 22 GENERATED INDIAN CODE GENRAL_STRUCTURES 12
1529
       9 1.2 10 1.2 3 1.2
       LOAD COMB 23 GENERATED INDIAN CODE GENRAL_STRUCTURES 13
1531
1532
       9 1.2 10 1.2 4 1.2
      ELOAD COMB 24 GENERATED INDIAN CODE GENRAL STRUCTURES 14
1533
```

```
1537
      DELOAD COMB 26 GENERATED INDIAN CODE GENRAL_STRUCTURES 16
1538
      9 1.2 10 1.2 3 -1.2
      LOAD COMB 27 GENERATED INDIAN CODE GENRAL STRUCTURES 17
1539
1540
      9 1.2 10 1.2 4 -1.2
      LOAD COMB 28 GENERATED INDIAN CODE GENRAL_STRUCTURES 18
1542
1543
      ELOAD COMB 29 GENERATED INDIAN CODE GENRAL_STRUCTURES 19
1544
      9 1.5 6 1.5
     E LOAD COMB 30 GENERATED INDIAN CODE GENRAL STRUCTURES 20
1545
1546
      9 1.5 7 1.5
     E LOAD COMB 31 GENERATED INDIAN CODE GENRAL_STRUCTURES 21
1549
      □ LOAD COMB 32 GENERATED INDIAN CODE GENRAL STRUCTURES 22
1550
      9155-15
     □ LOAD COMB 33 GENERATED INDIAN CODE GENRAL STRUCTURES 23
1551
1552
      9 1.5 6 -1.5
1553
     I LOAD COMB 34 GENERATED INDIAN CODE GENRAL_STRUCTURES 24
      9 1.5 7 -1.5
1555
      E LOAD COMB 35 GENERATED INDIAN CODE GENRAL_STRUCTURES 25
1556
       9 1.5 8 -1.5
      ■ LOAD COMB 36 GENERATED INDIAN CODE GENRAL STRUCTURES 26
1558
      9 1.5 1 1.5
      LOAD COMB 37 GENERATED INDIAN CODE GENRAL_STRUCTURES 27
1561
      LOAD COMB 38 GENERATED INDIAN CODE GENRAL_STRUCTURES 28
```

```
LOAD COMB 39 GENERATED INDIAN CODE GENRAL STRUCTURES 29
1563
      9 1.5 4 1.5
1565 □ LOAD COMB 40 GENERATED INDIAN CODE GENRAL STRUCTURES 30
1566
       9 1.5 1 -1.5
1567 PLOAD COMB 41 GENERATED INDIAN CODE GENRAL_STRUCTURES 31
1568
      9 1.5 2 -1.5
1569 PLOAD COMB 42 GENERATED INDIAN CODE GENRAL_STRUCTURES 32
1570
      9 1.5 3 -1.5
1571 PLOAD COMB 43 GENERATED INDIAN CODE GENRAL_STRUCTURES 33
1572
      9 1.5 4 -1.5
1573 PLOAD COMB 44 GENERATED INDIAN CODE GENRAL_STRUCTURES 34
      9 0.9 1 1.5
1574
1575 PLOAD COMB 45 GENERATED INDIAN CODE GENRAL_STRUCTURES 35
1576
      9 0.9 2 1.5
1577
     □ LOAD COMB 46 GENERATED INDIAN CODE GENRAL_STRUCTURES 36
1578
      9 0.9 3 1.5
1579
     ■ LOAD COMB 47 GENERATED INDIAN CODE GENRAL STRUCTURES 37
1580
       9 0.9 4 1.5
1581 PLOAD COMB 48 GENERATED INDIAN CODE GENRAL_STRUCTURES 38
1582
      9 0.9 1 -1.5
1583 □ LOAD COMB 49 GENERATED INDIAN CODE GENRAL_STRUCTURES 39
1584
      9 0.9 2 -1.5
1585 PLOAD COMB 50 GENERATED INDIAN CODE GENRAL_STRUCTURES 40
1586
      9 0.9 3 -1.5
1587 PLOAD COMB 51 GENERATED INDIAN CODE GENRAL_STRUCTURES 41
       9 0.9 4 -1.5
```

Column Design From Staad

For Column No 2919

As per Staad Pro,

For Column 2919 with dimensions 800mm x 800mm

- ❖ Pu= 11474 KN
- ❖ Mz= 54.63 KN
- **❖** My= 756.75 Kn
- **❖** As(%)= 2.35%

Column Manual Calculation

Column Number: 2919

$$P_u = 11474 \ kN$$
 $L = 2.7 \ m$ $M_z = 54.63 \ kNm$ $B = 800 \ mm$ $M_y = 756.75 \ kNm$ $D = 800 \ mm$

$$e_{min. z-z} = max \left(\left(\frac{L}{500} + \frac{D}{30} \right), 30 \ mm \right) = 32.06 \ mm$$

 $e_{min. y-y} = max \left(\left(\frac{L}{500} + \frac{B}{30} \right), 30 \ mm \right) = 32.06 \ mm$

$$M_{u\;min.\;z-z} = 11474\;kN \times \frac{32.06}{1000}\;m = 367.856\;kNm$$

$$M_{u\;min.\;y-y} = 11474\;kN \times \frac{32.06}{1000}\;m = 367.856\;kNm$$

Here,
$$M_y > M_{u \min. y-y} \& M_z < M_{u \min. z-z}$$

Hence, the column is subjected to axial load and uniaxial bending moment. Taking $\phi=36~mm$ and clear cover 20~mm

$$d' = \frac{\phi}{2} + clear cover$$

$$\implies d' = \frac{36}{2} + 20 = 38 mm$$

$$\frac{d'}{D} = \frac{38}{800} \approx 0.05$$

$$\frac{P_u}{f_{ck}BD} = \frac{11474 \times 10^3}{30 \times 800 \times 800} = 0.6$$

$$\frac{M_u}{f_{ck}BD^2} = \frac{756.75 \times 10^6}{30 \times 800 \times 800^2} = 0.05$$

From graph,

$$\frac{\% P}{f_{ck}} = 0.06 \Longrightarrow \% P = 1.8$$

$$A_s = \frac{0.06 \times 30 \times 800 \times 800}{100} \Longrightarrow A_s = 11520 \text{ mm}^2$$

$$n \times \frac{\pi}{4} \times 36^2 = 11520 \Longrightarrow n \simeq 12$$

Size of Tie bars

$$\phi \not< max \left(\frac{\phi_{main}}{4}, 6 mm \right)$$

 $\phi \not< max (9 mm, 6 mm)$

Take
$$\phi = 10 \ mm$$

Spacing $\Rightarrow max(LLD, 16 \ \phi_{main}, 300 \ mm) = 300 \ mm$

Column Detailing in Auto Cad

Beam Design From Staad

For Beam No 39

As per Staad Pro,

For Beam 39 with dimensions 600mm x 400mm

❖ Fu= 147.534 KN

❖ Mu= 165.659 KN

Beam Manual Calculation

Beam Number: 39

$$L = 4.5 m$$
 $F = 147.534 kN$ $d = D - 50 = 50$

$$B = 400 \, mm$$
 $M = 165.659 \, kNm$

D = 600 mm

$$M_{inpo} = Q f_{ck} Bd^2$$

= 0.133 × 30 × 400 × 500²
= 482.8 kNm

$$M_u < M_{uu}$$

$$\mathsf{P_t} = 50 \frac{f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 M_u}{f_{ck} B d^2}} \right] = 50 \times \frac{30}{500} \left[1 - \sqrt{1 - \frac{4.6 \times 147.534 \times 10^6}{30 \times 400 \times 550^2}} \right] = 0.29 \,\%$$

Provide - 16 mm bars

$$\frac{0.3}{100} \times 400 \times 550 = n \times \frac{\pi}{4} \times 16^{2}$$

$$\implies n \approx 4$$

... Provide 4 - 16 mm bars

$$\tau_v = \frac{V_u}{Bd} = 147.534 \times 10^3 = 0.67$$

$$\tau_{c_{max}} = 0.63\sqrt{30} = 3.45$$

$$f_{ck} = 30 \ N / mm^3, \ P_t = 0.3 \%$$

$$So, \ \tau_c = 0.246$$

$$\tau_v > \tau_c$$

$$\implies V_u = V_{cc} + V_{us} = 147.534 \times 10^3 - 0.246 \times 300 \times 550$$

$$\implies V_{us} = 106.944 \ kN$$

Assume 2-legged 10mm diameter bars

$$\begin{split} A_{sv} &= 2 \times \frac{\pi}{4} \times 10^2 = 157.08 mm^2 \text{ (Assumed)} \\ S_v &= \frac{0.87 f_y A_{sv} d}{V_{vs}} = \frac{0.87 \times 500 \times 157.08 \times 550}{106.944 \times 10^3} = 351.411 \ mm \end{split}$$

Maximum $S_v = min(0.75 d, 300 mm) = 300 mm$ So, provide 300 mm spacing.

Beam Detailing in Auto Cad

Slab Design From Staad

Loads on this Slab are

- ❖ Live Load = 3 KN/m2
- Floor Finishing = 1 KN/m2

Slab Manual Calculation

Raw dimensions of slab = $5 m \times 4 m$ Factored Load, $w = 1.5 \times (1 + 3) = 6 kN$

$$\frac{span}{depth} = 40 \text{ (as per IS 456-2000)}$$

Depth of slab $D = 150 \ mm$

Assuming a 10 mm diameter bar and 15 mm clear cover

Effective depth
$$d = 150 - 15 - \frac{10}{2} = 130 \ mm$$

Support thickness = 250 mm

$$\frac{L_y}{L_x} = \frac{5}{4} = 1.25$$

Hence, it is a two way slab.

Effective span for,

 $l_x = min(clear \, span + depth, \, clear \, span + c/c \, support) = 4130 \, mm$ $l_y = min(clear \, span + depth, \, clear \, span + c/c \, support) = 5130 \, mm$

Moment calculation

From table 26 of 15456-2000

$$\alpha_x = 0.088$$
 $\alpha_y = 0.036$
 $M_x = \alpha_x \cdot w \cdot l_x^2 = 0.088 \times 6 \times 4.13^2 = 9.006 \text{ kNm}$
 $M_y = \alpha_y \cdot w \cdot l_y^2 = 0.036 \times 6 \times 4.13^2 = 3.684 \text{ kNm}$

Limiting Moment =
$$0.138 f_{ck} b d^2 = 0.138 \times 30 \times 1000 \times d^2$$

 $\implies d = 46.64 \ mm \ (required) < 150 \ mm \ (provided)$

Along Lx,

$$\begin{split} P_t &= 50 \frac{f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 M_u}{f_{ck} B d^2}} \right] = 50 \times \frac{30}{500} \left[1 - \sqrt{1 - \frac{4.6 \times 9.006 \times 10^6}{30 \times 1000 \times 150^2}} \right] = 0.093 \,\% \simeq 0.09 \,\% \\ A_{st} &= \frac{P_t}{100} \cdot bd = \frac{0.09}{100} \times 1000 \times 150 = 139.5 \,mm^2 \end{split}$$

For $10 \ mm$ bars $A_{st} = 78.53 \ mm^2$

Spacing =
$$\frac{78.53}{139.5} \times 1000 = 562$$

Provide 500 mm spacing.

Along L_v,

$$P_t = 50 \frac{f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6M_u}{f_{ck}Bd^2}} \right] = 50 \times \frac{30}{500} \left[1 - \sqrt{1 - \frac{4.6 \times 3.684 \times 10^6}{30 \times 1000 \times 150^2}} \right] = 0.038 \% \approx 0.04 \%$$

$$A_{st} = \frac{P_t}{100} \cdot bd = \frac{0.04}{100} \times 1000 \times 150 = 60 \ mm^2$$

For 6 mm bars $A_{st} = 28.27 mm^2$

Spacing =
$$\frac{28.27}{60} \times 1000 = 471$$

Provide 450 mm spacing.

Slab Detailing in Auto Cad

Development Length Manual Calculation

$$V_u = F_y = 147.534 \, kN$$

$$\tau_{bd} = \frac{V_u}{n\pi\phi \cdot LA} \quad \{LA = d \cdot j\} \quad j = 0.8$$

$$\Longrightarrow \tau_{bd} = \frac{147.534 \times 10^3}{4 \times \pi \times 16 \times 550 \times 0.8}$$

$$\Longrightarrow \tau_{bd} = 1.67 \, MPa$$

$$\tau_{bd}$$
 (permissible) = 1.6 × 1.5 = 2.4 MPa
 $\therefore \tau_{bd} < \tau_{bd}$ (permissible)

$$\begin{split} L_d &= \frac{0.87 f_y \phi}{4 \tau_{bd}} = \frac{0.87 \times 500 \times 16}{4 \times 1.67} \\ &\Longrightarrow L_d = Development \ length \simeq 1042 \ mm \end{split}$$

Beam Column Junction in Auto Cad

Pile Foundation Design in Staad

PILE CAP DESIGN

Design For PileCap P1185

PILE ARRANGEMENT

Column Dimensions

Column Shape: Rectangular

Column Length - X (PI): 0.800 m Column Width - Z (Pw): 0.800 m

Pedestal

Include Pedestal? No

Pedestal Shape: N/A

Pedestal Height (Ph): N/A

Pedestal Length - X (PI): N/A

Pedestal Width - Z (Pw): N/A

Pile Cap Geometrical Data

Pile Cap Length Pcl = 4.600 m

Pile Cap Width Pcw = 4.198 m

Initial Pile Cap Thickness t_I = 0.300 m

Pile Geometrical Data

Pile spacing P = 1.500 m

Pile Edge distance e = 0.050 m

Pile Diameter $d_p = 0.500 \text{ m}$

Pile Capacities

Axial Capacity Pp = 500.000 kN

Lateral Capacity P_L = 100.000 kN

Uplift Capacity Pu = 300.000 kN

Material Properties

Concrete **f'**_c = 30000.005 kN/m^2

Reinforcement $\mathbf{f_y} = 415000.070 \text{ kN/m}^2$

Concrete Cover

Bottom Clear Cover CC_B = 0.050 m

Side Clear Cover CC_S = 0.050 m

Pile in Pile Cap $PC_p = 0.075 \text{ m}$

Loading applied at top of cap

Load Case	F _x (kN)	F _y (kN)	F _z (kN)	M _x (kNm)	M _y (kNm)	M _z (kNm)
101	16.902	-6532.309	253.648	223.982	0.000	-15.563
102	13.522	-5225.847	202.919	179.185	0.000	-12.451
201	25.353	-9798.464	380.473	335.973	0.000	-23.345
202	16.226	-6271.017	243.503	215.022	0.000	-14.941
203	20.282	-7838.771	304.378	268.778	0.000	-18.676
204	15.212	-5879.079	228.284	201.584	0.000	-14.007

Pile Cap size (in investigated direction) $\mathbf{H} = 4.600 \text{ m}$

Pile Cap size (in investigated perpendicular direction) ${\bf B}=$ 4.198 m

PILE CAP DESIGN CALCULATION

Pile Reactions

Total pile number N = 14

	Arra	angement		Reaction	100
Pile No.	(m)	(m)	Axial (kN)	Lateral (kN)	Uplift (kN)
1	-2.250	-0.750	-696.654	27.237	0.000
2	-2.250	0.750	-719.395	27.237	0.000
3	-1.500	-2.049	-677.697	27.237	0.000
4	-1.500	2.049	-739.825	27.237	0.000
5	-0.750	-0.750	-698.128	27.237	0.000
6	-0.750	0.750	-720.868	27.237	0.000
7	0.000	-2.049	-679.171	27.237	0.000
8	0.000	2.049	-741.299	27.237	0.000
9	0.750	-0.750	-699.602	27.237	0.000
10	0.750	0.750	-722.342	27.237	0.000
11	1.500	-2.049	-680.645	27.237	0.000
12	1.500	2.049	-742.773	27.237	0.000
13	2.250	-0.750	-701.075	27.237	0.000
14	2.250	0.750	-723.816	27.237	0.000

Reinforcement Calculation

Maximum bar size allowed along length # 40

Maximum bar size allowed along width # 40

Bending Moment At Critical Section = -4699.403 kNm (Along Length)

Bending Moment At Critical Section = -4677.367 kNm (Along Width)

Pile Cap Thickness t = 1.607 m

Selected bar size along length # 16

Selected bar size along width # 16

Selected bar spacing along length = 88.74 mm

Selected bar spacing along width = 97.48 mm

Pile Cap Thickness Check

Calculated Thickness (t) = 1.607 m

Check for Moment (Along Length)

Critical load case for thickness is reported only when required thickness is more than the given minimum thickness

Critical Load Case: 201

Pile No.	Moment along	Moment along
	$x_1-x_1(kNm)$	x ₂ -x ₂ (kNm)
1	-1288.786	0.000
2	-1330.856	0.000
3	-745.453	0.000
4	- 813.793	0.000
5	-244.340	0.000
6	-252.299	0.000
7	0.000	0.000
8	0.000	0.000
9	0.000	-244.856
10	0.000	-252.815
11	0.000	-748.696
12	0.000	-817.035
13	0.000	-1296.966
14	0.000	-1339.035

$$\text{Effective Depth}(d_{e\!f}) = \qquad \qquad h_{cap} - \left(p_{id} + cc + 0.5 \times d_b\right) \qquad = 1.476 \qquad m$$
 Depth of neutral axis for balanced section(x_u)
$$\frac{700 \times d_{eff}}{1100 + 0.87 \times f_y} \qquad = 0.707 \qquad m$$
 As Per IS 456 2000 ANNEX G,G-1.1 C
$$\text{Ultimate moment of resistance}(M_{ulim}) = \qquad 0.36 \times f_c \times b \times X_u \times \left(d_{e\!f\!f} - 0.416 \times X_u\right) = 37890.391 \qquad \text{kNm}$$
 We observed M_u <= M_{ulim} hence
$$\text{singly reinforced and under reinforced section can be used}$$

Check for Moment (Along Width)

Critical load case for thickness is reported only when required thickness is more than the given minimum thickness

Critical Load Case: 201

Pile No.	Moment along	Moment along
File No.	$y_1-y_1(kNm)$	y ₂ -y ₂ (kNm)
1	-243.824	0.000
2	0.000	-251.783
3	-1117.502	0.000
4	0.000	-1219.949
5	-244.340	0.000
6	0.000	-252.299
7	-1119.933	0.000
8	0.000	-1222.379
9	-244.856	0.000
10	0.000	-252.815
11	-1122.363	0.000
12	0.000	-1224.810
13	-245.372	0.000
14	0.000	-253.331

Governing moment (M _u)		= -4677.367	kNm
We assume singly reinforced and under	reinforcement section		
Effective Depth(d _{ef}) =	$h_{cap} - (p_{id} + cc + 0.5 \times d_b)$	= 1.476	m
Depth of neutral axis for balanced section(x_u)	$\frac{700 \times d_{eff}}{1100 + 0.87 \times f_{y}}$	= 0.707	m
As Per IS 456 2000 ANNEX G,G-1.1 C			
Ultimate moment of resistance(M _{ulim}) =	$0.36 \times f_c \times b \times X_u \times \left(\text{d}_{eff} - 0.416 \times X_u \right)$	= 41518.770	kNm
We observed M _u <= M _{ulim} hence	singly reinforced and under reinforced s	section can be used	

Check for One Way Shear (Along Length)

Dile No	Shear Force	Shear Force
Pile No.	x ₁ -x ₁ (kN)	x ₂ -x ₂ (kN)
1	-422.130	0.000
2	-435.775	0.000
3	0.000	0.000
4	0.000	0.000
5	0.000	0.000
6	0.000	0.000
7	0.000	0.000
8	0.000	0.000
9	0.000	0.000
10	0.000	0.000
11	0.000	0.000
12	0.000	0.000
13	0.000	-424.783
14	0.000	-438.428
TOTAL	-857.905	-863.211

Vu Design Shear Force for One-Way Action = -863.211 kN As Per IS 456 2000 ANNEX B,B-5.1 and Clause No 34.2.4.2 Design Shear Stress (T_v) = = -139.312 kN/m^2 $\frac{0.85 \times \sqrt{0.8 \times f_c}}{6 \times \beta} \times \left(\sqrt{1 + 5 \times \beta} - 1\right)$ = 275.645 Allowable Shear Stress (T_c) = kN/m^2 $\max\left(\frac{0.8 \times f_c}{6.89 \times .pt}, 1\right)$ Where Beta = = 26.661 $\frac{A_{st}}{B \times d} \times 100$ and percentage of steel required (pt) = = 0.131Here $T_v \le T_c$ Hence safe

Check for One Way Shear (Along Width)

WICE THE WAY	Shear Force	Shear Force
Pile No.	$y_1-y_1(kN)$	y ₂ -y ₂ (kN)
1	0.000	0.000
2	0.000	0.000
3	-347.500	0.000
4	0.000	-379.036
5	0.000	0.000
6	0.000	0.000
7	-348.248	0.000
8	0.000	-379.784
9	0.000	0.000
10	0.000	0.000
11	-348.996	0.000
12	0.000	-380.532
13	0.000	0.000
14	0.000	0.000
TOTAL	-1044.743	-1139.351

Design Shear force (
$$V_U$$
) = -1139.351 kN As Per IS 456 2000 ANNEX B,B-5.1 and Clause No 34.2.4.2 Design Shear Stress (T_V) = $\frac{V_U}{B \times d}$ = -183.878 kN/m^2 Allowable Shear Stress (T_C) = $\frac{0.85 \times \sqrt{0.8 \times f_C}}{6 \times \beta} \times (\sqrt{1 + 5 \times \beta} - 1)$ = 275.645 kN/m^2 Where Beta = $\max \left(\frac{0.8 \times f_C}{6.89 \times pt}, 1 \right)$ = 26.661 and percentage of steel required (p_t) = $\frac{A_{st}}{B \times d} \times 100$ = 0.131 Here $T_V <= T_C$ Hence safe

Check for Two Way Shear (Along Length)

Pile No.	Two-way Shear at column face	
	(kN)	
1	-422.130	
2	-435.775	
3	-410.756	
4	-448.033	
5	0.000	
6	0.000	
7	-411.641	
8	-448.917	
9	0.000	
10	0.000	
11	-412.525	
12	-449.801	
13	-424.783	
14	-438.428	
TOTAL	-4302.789	

Design Two-Way Shear force
$$= -4302.789 \quad kN$$
 As Per IS 456 2000 Clause 31.6.2.1
$$Two \ Way \ Shear \ Stress(T_v) = \frac{v_t}{b_o \times d_{eff}} \qquad = -320.207 \quad kN/m^2$$

$$Where, perimeter \ of \ critical \ section(b_0) = 2 \times (b+h+2 \times d) \qquad = 9.104 \quad m$$
 As Per IS 456 2000 Clause 31.6.3.1
$$Allowable \ shear \ stress = K_s \times \tau_c \qquad = 1369.307 \quad kN/m^2$$

$$Where, k_s = \min[(0.5+\beta),1] \qquad = 1.000$$

$$Ratio \ of \ shorter \ to \ longer \ dimension(B_c) \qquad = 1.000$$

$$and, T_c = 0.25 \times \sqrt{f_c} \times b \times d \qquad = 1369.307 \quad kN/m^2$$

$$T_v < K_s T_c \quad hence \ Safe$$

Calculation of Maximum Bar Size

Along Length

 $\label{eq:Selected maximum bar size} Selected \ maximum \ bar \ size (d_b) = 40.000 \qquad mm$ Bar diameter corresponding to max bar $size(d_b) = 40.000$

As Per IS 456 2000 Clause No 26.2.1

Development Length(
$$I_d$$
) =
$$\frac{0.87 \times d_b \times f_y}{4 \times T_{bd}}$$
 = 1.471 m Allowable Length(I_{db}) =
$$0.5 \times (B - b) - C_s$$
 = 1.850 m hence, safe

Along Width

Bar diameter corresponding to max bar size(d_b) =40.000 mm

As Per IS 456 2000 Clause No 26.2.1

Development Length(
$$I_d$$
) =
$$\frac{0.87 \times d_b \times f_y}{4 \times T_{bd}}$$
 = 1.471 m Allowable Length(I_{db}) =
$$0.5 \times (H - h) - Cs$$
 = 1.649 m

Selection of Bottom and Top Reinforcement

Top reinforcement is provided same as bottom reinforcement

Along Length

Critical Load Case: 201

As Per IS 456 2000 Clause 26.5.2.1

Minimum Area of Steel (
$$A_{stmin}$$
) = $0.12\% \times B \times h_{cap}$ = 7898.957 mm2

As Per IS 456 2000 ANNEX G,G-1.1 b

Area of steel required (A_{sq}) =
$$0.5 \times \left(\frac{f_c}{f_y}\right) \times \left(1 - \sqrt{1 - \frac{4.5977 \times M_u}{f_c \times b \times d \times d}}\right) \times b \times d = 9349.410$$
 mm2
Area of steel provided (A_{st}) = = 9349.410 mm2
A_{stmin} <= A_{st} Steel area is accepted

Minimum spacing allowed
$$(S_{min}) = 40 + d_b$$
 = 56 mm
Selected spacing (S) = 88.74 mm

 $S_{min} \leftarrow S \leftarrow 450$ mm and selected bar size < selected maximum bar size... The reinforcement is accepted.

Along Width

Critical Load Case: 201

As Per IS 456 2000 Clause 26.5.2.1

Minimum Area of Steel (
$$A_{stmin}$$
) $0.12\% \times B \times h_{cap}$ = 8655.360 mm²

As Per IS 456 2000 ANNEX G,G-1.1 b

Area of steel required (A_{sq})=
$$0.5 \times \left(\frac{f_c}{f_y}\right) \times \left(1 - \sqrt{1 - \frac{4.5977 \times M_u}{f_c \times b \times d \times d}}\right) \times b \times d = 9286.344$$
 mm2

Area of steel provided (A_{st}) = = 9286.344 mm2

 $A_{stmin} \le A_{st}$ Steel area is accepted

Minimum spacing allowed (S_{min}) = 40 + d_b = 56.00 mm

Selected spacing (S) = 97.48 mm

 $S_{min} <= S <= 450$ mm and selected bar size < selected maximum bar size... The reinforcement is accepted.

Pile Detailing in Auto Cad

Plumbing Details

Water Supply design for FTA:

Water demand = 135 LPCD

For total apartment:

There are 4 houses in each floor, **Total population**= 68*6=408 (Considering the average family size as 6)

Total water demand = 408 * 135 = 55,080 liters/day

Assuming that water supply is available in the street main all through 24 hours,

Average rate of supply = 55,080 liters /day, i.e,

Assuming 8 hours pumping into the overhead storage tank, **Rate of** pumping = 55,080/8=6,885 liters/hr

Assuming that the pattern of pumping is from 6 to 10 am and 2 to 6 pm Let a be the hourly demand (a =55,080/24 =2295 lit/hr)

According to SP 35:

Hours	Hourly demand	Supply
0-4	0.2a	459
4-5	0.4a	918
5-6	0.8a	1836
6-10	2.25a	5163.75
10-12	а	2295
12-13	0.6a	1377
13-14	2.25a	5163.75

14-17	0.7a	1606.5
17-18	2.25a	5163.75
18-20	0.9a	2065.5
20-22	0.7a	1606.5
22-23	0.4a	918
23-24	0.2a	459

Required water is supplied by pumping in 8 hours.

Rate of pumping = 55080/8 ≈ 6900 lit/hr (considering losses in pipes)
Capacity of overhead tank:

Based on a and the pattern of pumping, i.e, for 4 hours from 6 to 10 am and for 4 hours from 2 to 6 pm, the capacity of the ground level storage tank is calculated as in the table below

		TA	BLE 15 CAPACI	(Clause 5.4.2.3)	AGE RESERVO	IR	
From h	To h	HOURLY DEMAND	CUMULATIVE DEMAND	Average RATE OF PUMPING PER HOUR $= \frac{k}{16} \frac{24 \times a}{16}$	CUMULATIVE PUMPING	Cumulative Deficit or Surplus Surplus + ve Deficit - ve	STORAGE IN RESERVOIR AT THE END OF PERIOD
0	4	0.2 a	0.8 a	1.5 a	6.0 a	+ 5.2 a	7.6 a
4	5	0.4 a	1.2 a	1.5 a	7.5 a	+6.3 a	8.7 a
5	6	0.8 a	2.0 a	1.5 a	9.0 a	+7.0 a	9.4 a
6	10	2.25 a	11.0 a	-	9.0 a	-2.0a	0.4 a
10	12	a	13.0 a	1.5 a	12.0 a	-1.0 a	1.4 a
12	13.	0.6 a	13.6 a	1.5 a	13.5 a	-0.1 a	2.3 a
13	14	2.25 a	15.85 a	1.5 a	15.0 a	-0.85 a	1.55 a
14	17	0.7 a	17.95 a	1.5 a	19.5 a	+1.55 a	3.95 a
17	18	2.25 a	20.20 a	1.5 a	21.0 a	+0.8 a	3.2 a
18	20	0.9 a	22.0 a	_	21.0 a	-1.0 a	1.4 a
20	22	0.7 a	23.4 a	-	21.0 a	-2.4 a	0
22	23	0.4 a	23.8 a	1.5 a	22.5 a	+ 1.3 a	1.1 a
23	24	0.2 a	24.0 a	1.5 a	24.0 a	0	2.4 a
Reservo	ir will be im storage	empty at 2200	maximum deficit frours and will to i, 9.4 hours of ave	be full at 0600	hours when the	pumping stops.	percent of daily

Capacity of overhead tank:

Based on a and the pattern of pumping, i.e, for 4 hours from 6 to 10 am and for 4 hours from 2 to 6 pm, the capacity of the ground level storage tank is calculated as in the table below

Time	Hourly demand	Cumulative demand	Average rate of pumping (per hr)	Cumulative pumping	Cumulative deficit or surplus (surplus +ve, deficit -ve)	Storage
0-4	459	1836	3442.5	13770	11934	17442
4-5	918	2754	3442.5	17212.5	14458.5	19966.5
5-6	1836	4590	3442.5	20655	16065	21573
6-10	5163.75	25245	NONE	20655	-4590	918
10-12	2295	29835	3442.5	27540	-2295	3213
12-13	1377	31212	3442.5	30982.5	-229.5	5278.5
13-14	5163.75	36375.75	3442.5	34425	-1950.75	3557.25
14-17	1606.5	41195.25	3442.5	44752.5	3557.25	9065.25
17-18	5163.75	46359	3442.5	48195	1836	7344
18-20	2065.5	50490	NONE	48195	-2295	3213
20-22	1606.5	53703	NONE	48195	-5508	0
22-23	918	54621	3442.5	51637.5	2983.5	2524.5
23-24	459	55080	3442.5	55080	0	5508

Storage of Overhead tank

Storage = Max deficit + Max surplus

- = 2.4a + 7.0a
- = 9.4a lit = 21,573 Lit

The storage capacity as per the norms given in Table 16 of 'SP 35: Water Supply and Drainage' based on the population in the residential building

- = No. of population X 70 lit
- = 6*68*70
- = 28560 lit

Storage needed for flushing water closets as given in Table 17 of SP 35: Water Supply and Drainage

- = 68*270 + 68*180
- = 30,600 liters

Minimum storage as given in clause 5.4.2.3 of SP35: Water Supply and Drainage

- =½ * (Day's supply)
- = ½ * 55,080= 27,540 lit

Storage of overhead tank

- = Max (21573, 28560, 30600, 27540)
- = **30600** lit

Capacity=30600 liters

Using concrete tank of dimension of 4m*2m*1m

No. of tanks required=30.6/8 = 3.825

No. of tanks provided =4

There are two set water pipe lines, one for pumping water from ground to overhead tank. In this pipe line one direct pipe connection i.e without going to the over-head tank directly to the apartment is provided. Another pipeline is to supply water from overhead tanks to each apartment's utilities.

Pipe Type	Diameter
Main	33mm
Subsidiary	22mm
Distribution	15mm

Sewerage System

Design of Sewerage pipe system:

A Two-pipe system will be provided in the residential blocks for disposal of sewage where soil pipes are connected to the building drain directly and the waste pipes are connected to the building-drain using a trapped gully.

A Main ventilation pipe (MVP) is provided for the main waste pipes (MWP) and the main soil pipe (MSP).

Waste Appliances (Internal diameters) (Table 54 of SP 35)

Waste Appliance	Internal Diameter
Wash Basin	30mm
Bathroom	40mm
Water Closet	50mm
Urinal	40mm

The load on soil pipes is 13 units and the load on waste pipes is 50 units in each floor. So, from table 52 of SP 35 the following pipe diameters can be obtained

Horizontal branches for each floor_(Diameters) (Table 52 of SP 35)

FLOOR	BLOCKS		
	MWP	MSP	
All Floors	100 mm	75mm	

MWP and MSP columns indicate the diameter of the horizontal branches joining MWP and MSP respectively.

MWP and MSP (Table 53 of SP 35)

Diameter provided for all the MWP and MSP is 100 mm.

MVP (Main ventilation pipe) (Clause 6.7.5.3 of SP 35)

The diameter provided for the MVP is 50 mm.

<u>Main sewer pipe</u> Slope of the main sewer pipe is 1/1000. n (Manning's coefficient) = 0.012.

Specification for sewer pipes:

The sewer should be designed for the wastewater flow of 135 Lpcd.

80% of total consumption may be expected to reach the sewer.

The flow in the sewer or the ratio of maximum flows to average flows, depends upon the contributory population.

	If the	population	is less	than	20,000	then	peak	factor	should	be
taken	as 3.									

A self-cleansing velocity of 1.0 m/s provided for minimum flow to avoid deposition in the line. Maximum velocity in the sewer is 3 m/s.

Diameter of main pipe is 150 mm and that of secondary pipe is 100 mm

A sewer runs at 80% full at ultimate peak flow. Pipes are laid at a depth of 1 m.

where vehicular loading is present, a concrete encasement is provided for the sewer.

Calculation of diameter for sewer:

Total consumption = 135 Lpcd. Design population = 408 Peak factor = 3
Peak consumption

- = 3*(408*135)
- = 165240 L/d Or 1.9125L/s.

& As per CPHEEO Manual, only 80% of total consumption is expected to reach the sewer.

Therefore, sewer flow

= 0.8*1.9125

= 1.53 L/s.

Peak discharge, Q=91.8 lpm

Using Manning's formula,

$$Q = \frac{1}{n} \cdot A \cdot R^{\frac{2}{3}} \cdot S^{\frac{1}{3}}$$

where:

Q is the discharge,

n is the Manning's roughness coefficient=0.012,

A is the cross-sectional area of flow= $\pi d^2/4$,

R is the hydraulic radius =d/(4 π), and

S is the slope of the energy line (head loss per length of pipe) = 1/1000.

91.8/ (1000x60) = 1/0.012 x πd^2 /4 x (d/(4 π))^{2/3} x (1/1000)^{1/2}

 $% d = 126.065 \approx 126 \text{ mm}$

So, The diameter provided for the main sewer pipe is 150 mm.

Minimum pipe diameter recommended in CPHEEO manual is 150 mm except that in hilly areas, where extreme slopes are prevalent, 100 mm can be used

Plumbing Layout

- 1. Blue coloured pipes are the inlet pipes.
- 2. Red and green colored pipes are the outlet pipes. They represent septic and sewage respectively.
- 3. Blue colored circle is the inlet from the tank and the green colored circle goes to the ground outlet.

Plumbing Layout (roof)

This shows the plumbing layout on the roof. The blue pipes are the inlet pipes from the water tank.

Road Network Details

Road Network For Basement Entry

Road Network For Ground Floor

COST ESTIMATION

-Steel Bar Cost:

-Concrete Cost:

Rs 6500 * 3533.2 cubic meter = Rs 22965800/-

-Brick Cost:

Rs 9000000/-

IS CODES USED

- ❖ For RCC Design − IS: 456 − 2000
- ❖ For Steel Structures IS: 800 2007
- ❖ For Dead Load calculations IS: 875 (Part 1) 1987
- ❖ For Live Load calculations IS: 875 (Part 2) 1987
- ❖ For Wind Load calculations IS: 875 (Part 3) 1987
- ❖ IS: 875 (Part 5) 1987
- ❖ For Seismic Design − IS :1893 − 2002
- ❖ SP 16:1980 for concrete design
- ❖ As per IS 1172:1993, Clause 4.1 for water tank design

SOFTWARES USED

Sno.	Name	Used for
1.	AutoCAD	To draw the plans
2.	Revit	For creating 3D rendered view of the building
3.	Lumion	To create the walkthrough
4.	StaadPro	For structural analysis
5.	MS pptx	For presentation
6.	MSword	For report