Scanned by CamScanner

Governing equation

$$\frac{V_0}{V_1^2} = \frac{1 \times 10^8}{S^2 + 2 \times 10^4 S} + 1 \times 10^8$$
 $\frac{V_0}{V_1^2} = \frac{1 \times 10^8}{S^2 + 2 \times 10^4 S} + 1 \times 10^8$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0}{V_0} \right) - \left(2 \times \frac{V_0}{V_0} \right) V_0 - \left(1 \times \frac{V_0}{V_0} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0}{V_0} \right) - \left(2 \times \frac{V_0}{V_0} \right) V_0 - \left(1 \times \frac{V_0}{V_0} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0}{V_0} \right) - \left(2 \times \frac{V_0}{V_0} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0}{V_0} \right) - \left(2 \times \frac{V_0}{V_0} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \left(1 \times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0^2}{V_0^2} \left(\times \frac{V_0^2}{V_0^2} \right) V_0 - \frac{v}{v}$
 $\frac{V_0}{V_0} = \frac{V_0$

let called it SSI
$A = \begin{cases} 0 & 1 \\ -1x10^{8} & -20x10^{4} \end{cases}$ $B = \begin{cases} 0 & 1 \\ 1x10^{8} & 1x10^{8} \end{cases}$ $C = \begin{cases} 1 & 0 \end{cases}$ $D = \begin{cases} 0 \end{cases}$
where 1 output, 1 input, SISO, 2 states
lets suppose we have. SSQ.
$A = \begin{bmatrix} -2x & 0 \\ -2x & 0 \end{bmatrix} A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
$C = \begin{bmatrix} 0 & 1x & \delta \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$ $SS2 \rightarrow tf using C(SI-A)B+D$
$\frac{(S+2\times10^4+1\times10^8)}{(S-1)} = \frac{(S+2\times10^4+1\times10^8)}{(S+2\times10^4+1\times10^8)}$
-
$(S\overline{1}-A) = 1 \times S -1\times 10^{8}$
S2 + 2 x w S + 1 x w 1 S + 2 x w
$(S\overline{L}-A)_B = S $
52+2×12/5+1×28 (1)
$C(SI-A)B = 1 \times B$
$\frac{C(S1-A)B}{S^2+2\times10^4SA+1\times10^8}=H(S)$
$SS1 \rightarrow H(s)$
$\frac{1}{2} SS2 \rightarrow H(s)$
Thus proved state space are
Thus proved State Space are infinitely many but T. I is "UNIQUE"

