ODE Lesson 4: Peano's Existence Theorem

ODE 1 - Prof. Adi Ditkowski

1 The Fundamental Existence Question

Core Question: When can we guarantee that a solution exists to our IVP?

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

2 Peano's Existence Theorem

Theorem 1 (Peano's Existence Theorem). Consider the IVP: $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ If f(x, y) is **continuous** in a rectangle

$$R = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\}$$

Then there exists at least one solution y(x) defined on the interval $|x-x_0| \leq h$, where:

$$h = \min\left(a, \frac{b}{M}\right), \quad M = \max_{(x,y)\in R} |f(x,y)|$$

2.1 Geometric Interpretation

Rectangle R where f is continuous

2.2 Understanding the Bound h

Why $h = \min(a, b/M)$?

- a: How far we can go horizontally staying in R
- \bullet b/M: Time to reach vertical boundary at maximum slope M
- \bullet We take the minimum to ensure we stay inside R

3 Key Properties of Peano's Theorem

What Peano Gives Us:

- 1. \checkmark Existence of at least one solution
- 2. ✓ Solution exists in some neighborhood
- $3. \times NO$ uniqueness guarantee
- 4. × NO global existence guarantee

4 Examples Where Peano Applies

Example 1 (Continuous but Not Unique). Consider: $\frac{dy}{dx} = \sqrt{|y|}$ with y(0) = 0 Check Peano:

- $f(x,y) = \sqrt{|y|}$ is continuous everywhere
- Peano guarantees at least one solution exists

Solutions: Actually infinitely many!

- y(x) = 0 for all x
- $y(x) = \begin{cases} 0 & x \le c \\ \frac{(x-c)^2}{4} & x > c \end{cases}$ for any $c \ge 0$

Example 2 (Where Peano Succeeds). Consider: $\frac{dy}{dx} = x^2 + y^2$ with y(0) = 1 Analysis:

- $f(x,y) = x^2 + y^2$ is continuous everywhere
- In rectangle $|x| \le 1, |y-1| \le 1$: $M = \max(x^2 + y^2) = 1 + 4 = 5$

2

• Peano guarantees solution for $|x| \le h = \min(1, 1/5) = 0.2$

5 Examples Where Peano Fails

Peano Fails When f is Discontinuous at Initial Point!

Example 3 (Discontinuity at Initial Point). Consider: $\frac{dy}{dx} = \frac{2y}{x}$ with y(0) = 1 **Problem:** $f(x,y) = \frac{2y}{x}$ is undefined at x = 0!

- Cannot find rectangle around (0,1) where f is continuous
- Peano doesn't apply
- Indeed, NO solution exists through (0,1)

6 Practical Algorithm for Checking Peano

Step-by-Step Peano Check:

- 1. Identify f(x,y) from your equation y' = f(x,y)
- 2. Find all discontinuities of f:
 - Division by zero
 - Square roots of negatives
 - Logarithms of non-positives
 - Undefined expressions
- 3. Check if (x_0, y_0) avoids all discontinuities
- 4. If yes \Rightarrow Peano applies \Rightarrow Solution exists (locally)
- 5. If no \Rightarrow Peano doesn't apply \Rightarrow Check other methods

7 Common Discontinuity Patterns

0 1	Discontinuous When	Example
$\frac{g(x,y)}{h(x,y)}$	h(x,y) = 0	$f = \frac{y}{x-1}$ at $x = 1$
$\sqrt{g(x,y)}$	g(x,y) < 0	$f = \sqrt{1 - y^2} \text{ for } y > 1$
$\ln(g(x,y))$	$g(x,y) \le 0$	$f = \ln(x+y)$ when $x+y \le 0$
$\tan(g(x,y))$	$g = \frac{\pi}{2} + n\pi$	$f = \tan(y)$ at odd multiples of $\pi/2$

8 Local vs Global Existence

Critical Distinction:

- Local: Solution exists for $|x x_0| < h$ (some small h)
- Global: Solution exists for all $x \in \mathbb{R}$ or $x \in [a, b]$

Peano only guarantees LOCAL existence!

Example 4 (Local but Not Global). $\frac{dy}{dx} = y^2$ with y(0) = 1

Peano: $f = y^2$ continuous \Rightarrow Local solution exists

Actual solution: $y = \frac{1}{1-x}$

Problem: Blows up at x = 1! Only exists for x < 1.

9 Extensions and Refinements

9.1 Maximal Interval of Existence

Theorem 2 (Extension Principle). If f is continuous on an open set $D \subseteq \mathbb{R}^2$, then every solution can be extended until it either:

- 1. Reaches the boundary of D
- 2. Goes to infinity (blow-up)
- 3. Extends to $x = \pm \infty$

10 Relationship to Other Theorems

11 Memory Device

PEANO = "Please Ensure All Neighborhoods are OK"

- Please: Polite theorem (only asks for continuity)
- Ensure: Ensures existence
- All: At least one solution

- Neighborhoods: Local, not global
- OK: Continuity check

12 Exam Tips

Prof. Ditkowski's Favorite Peano Questions:

- 1. "Does Peano guarantee existence?" \Rightarrow Just check continuity!
- 2. "Give an example where Peano applies but solution is not unique" \Rightarrow Use $y' = \sqrt{|y|}$
- 3. "Find the interval of existence guaranteed by Peano" \Rightarrow Calculate $h = \min(a, b/M)$
- 4. "Why doesn't Peano apply?" \Rightarrow Find the discontinuity