INDUCTION ON N

Let Φ be a property of natural numbers. If all of the following conditions are met:

(NI2) For all $n \in \mathbb{N}$, if Φ holds of n then Φ holds of n + 1.

Then it follows that, for all natural numbers $n \in \mathbb{N}$, Φ holds of n.

1

INDUCTION METAPRINCIPLE

Suppose we have an inductive definition of a set S using rules R_1, \ldots, R_k . The induction principle for proving $\forall s \in S. \Phi(s)$, has k clauses, one for each of the rules.

If rule R_i has m premises and a side condition ψ :

$$\psi \frac{s_1 \in S \cdots s_m \in S}{s \in S} (R_i)$$

then the corresponding clause in the induction principle requires:

if
$$\Phi(s_1)$$
 and \cdots and $\Phi(s_m)$ and ψ then $\Phi(s)$

REMINDER: \rightarrow_{β}

$$\frac{M \to_{\beta} M'}{MN \to_{\beta} M'N} \text{ (AppL)} \qquad \frac{N \to_{\beta} N'}{MN \to_{\beta} MN'} \text{ (AppR)}$$

$$\frac{M \to_{\beta} M'}{MN \to_{\beta} MN'} \text{ (AppR)}$$

$$\frac{M \to_{\beta} N}{\lambda x. M \to_{\beta} \lambda x. N} \text{ (Abs)}$$