

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A method of preferentially forming single walled carbon nanotubes having a particular diameter, comprising:

providing a catalyst comprising:

Co and Mo disposed on a support material wherein the majority of the Mo

occurs as dispersed Mo oxide clusters and the majority of the Co

occurs ~~in a CoMoO₄-like phase as CoMoO₄~~ with the Co therein primarily in an octahedral configuration, and wherein the ~~CoMoO₄-like phase~~ CoMoO₄ occurs substantially disposed upon the dispersed

Mo oxide clusters; and

exposing the catalyst in a reactor to a carbon-containing gas at a

temperature between about 700°C and about 800°C and

maintaining a CO₂ concentration in the reactor below a threshold

CO₂ concentration above which the conversion of ionic Co to

metallic Co is inhibited, wherein the majority of the single walled

carbon nanotubes thus formed have a diameter between about .7

nm to about .9 nm.

2. (Previously Presented) The method of claim 1 wherein in the step of providing a catalyst, the support material is silica.
3. (Previously Presented) The method of claim 1 wherein in the step of exposing the catalyst to a carbon-containing gas, the reactor has a pressure therein between about 1 atm and 7 atm.
4. (Previously Presented) The method of claim 1 wherein in the step of exposing the catalyst to a carbon-containing gas, the threshold CO₂ concentration in the reactor is 1%.
5. (Previously Presented) The method of claim 1 wherein in the step of exposing the catalyst to a carbon-containing gas, the carbon-containing gas is CO.
6. (Previously Presented) The method of claim 1 comprising the additional step of reducing the catalyst by exposing the catalyst to a heated hydrogen gas.
7. (Previously Presented) A carbon nanotube product comprising a catalyst and single-walled carbon nanotubes associated therewith, the carbon nanotube product produced by the method of claim 1.

8. (Currently Amended) A method of preferentially forming single walled carbon nanotubes having a particular diameter, comprising:

providing a catalyst comprising:

Co and Mo disposed on a support material wherein the majority of the Mo occurs as dispersed Mo oxide clusters and the majority of the Co occurs ~~in a CoMoO₄-like phase as CoMoO₄~~ primarily in an octahedral configuration, and wherein the ~~CoMoO₄-like phase CoMoO₄~~ occurs substantially disposed upon the dispersed Mo oxide clusters; and

exposing the catalyst in a reactor to a carbon-containing gas at a temperature between about 800°C and about 900°C and maintaining a CO₂ concentration in the reactor below a threshold CO₂ concentration above which the conversion of ionic Co to metallic Co is inhibited, wherein the majority of the single walled carbon nanotubes thus formed have a diameter between about .9 nm to about 1.2 nm.

9. (Previously Presented) The method of claim 8 wherein in the step of providing a catalyst, the support material is silica.

10. (Previously Presented) The method of claim 8 wherein in the step of exposing the catalyst to a carbon-containing gas, the reactor has a pressure therein between about 1 atm and 7 atm.

11. (Previously Presented) The method of claim 8 wherein in the step of exposing the catalyst to a carbon-containing gas, the threshold CO₂ concentration in the reactor is 1%.

12. (Previously Presented) The method of claim 8 wherein in the step of exposing the catalyst to a carbon-containing gas, the carbon containing gas is CO.

13. (Previously Presented) The method of claim 8 comprising the additional step of reducing the catalyst by exposing the catalyst to a heated hydrogen gas.

14. (Previously Presented) A carbon nanotube product comprising a catalyst and single-walled carbon nanotubes associated therewith, the carbon nanotube product produced by the method of claim 8.

15. (Currently Amended) A method of preferentially forming single walled carbon nanotubes having a particular diameter, comprising:

providing a catalyst comprising:

Co and Mo disposed on a support material wherein the majority of the Mo occurs as dispersed Mo oxide clusters and the majority of the Co occurs ~~in a CoMoO_4 -like phase as CoMoO_4~~ primarily in an octahedral configuration, and wherein the ~~CoMoO_4 -like phase CoMoO_4~~ occurs substantially disposed upon the dispersed Mo oxide clusters; and

exposing the catalyst in a reactor to a carbon-containing gas at a temperature between about 900°C and about 1,000°C and maintaining a CO_2 concentration in the reactor below a threshold CO_2 concentration above which the conversion of ionic Co to metallic Co is inhibited, wherein the majority of the single walled carbon nanotubes thus formed have a diameter between about 1.3 nm to about 1.7 nm.

16. (Previously Presented) The method of claim 15 wherein in the step of providing a catalyst, the support material is silica.

17. (Previously Presented) The method of claim 15 wherein in the step of exposing the catalyst to a carbon-containing gas, the reactor has a pressure therein between about 1 atm and 7 atm.

18. (Previously Presented) The method of claim 15 wherein in the step of exposing the catalyst to a carbon-containing gas, the threshold CO₂ concentration in the reactor is 1%.

19. (Previously Presented) The method of claim 15 wherein in the step of exposing the catalyst to a carbon-containing gas, the carbon-containing gas is CO.

20. (Previously Presented) The method of claim 15 comprising the additional step of reducing the catalyst by exposing the catalyst to a heated hydrogen gas.

21. (Previously Presented) A carbon nanotube product comprising a catalyst and single-walled carbon nanotubes associated therewith, the carbon nanotube product produced by the method of claim 15.

22. (Previously Presented) The method of claim 1 wherein in the step of providing the catalyst, the Mo oxide clusters comprise Mo oxide clusters having a domain size between that of MoO₃ and heptamolybdate.

23. (Previously Presented) The method of claim 1 wherein in the step of providing the catalyst, the catalyst has a molar ratio of Co:Mo of less than 3:4.

24. (Previously Presented) The method of claim 8 wherein in the step of providing the catalyst, the Mo oxide clusters comprise Mo oxide clusters having a domain size between that of MoO_3 and heptamolybdate.

25. (Previously Presented) The method of claim 8 wherein in the step of providing the catalyst, the catalyst has a molar ratio of Co:Mo of less than 3:4.

26. (Previously Presented) The method of claim 15 wherein in the step of providing the catalyst, the Mo oxide clusters comprise Mo oxide clusters having a domain size between that of MoO_3 and heptamolybdate.

27. (Previously Presented) The method of claim 15 wherein in the step of providing the catalyst, the catalyst has a molar ratio of Co:Mo of less than 3:4.