

Faculty of Engineering Design and Mathematics

Academic Year: 16/17 Examination Period: January

Module Leader: Sanja Dogramadzi Module Code: UFMF4X-15-M

Module Title: Robotic Fundamentals

Work Item Code: Exam

Duration: 3 Hours

Standard materials required for this examination:

Examination Answer Booklet		Yes
Multiple Choice Answer Sheet		No
Graph Paper	Type of paper e.g. G3, G14	N/A
	Number of sheets per student	0

Additional materials required for this examination:

Details of additional material <u>supplied by UWE</u> :	
To be collected with Answer Booklet (please delete as appropriate) N/A	
Details of approved material supplied by Student :	
To be collected with Answer Booklet (please delete as appropriate) N/A	
University approved Calculator	Yes
Candidates are permitted to keep Examination Question Paper	No

Candidates are NOT permitted to turn the page over until the exam starts

UFMF4X-15-M Page 1 of 6

Instructions to Candidates:

Candidates must answer all FOUR questions.

Question 1

- a) Describe the different types of workspaces for a manipulator. [5]
- b) For the two frames in the figure below (Fig. 1) do the following:
 - i. Determine the position and orientation of {C} with respect to {A} as a 4x4 [4] homogeneous transformation matrix.
 - ii. If a point G has coordinates (1,2,3) in $\{C\}$, what are its coordinates in $\{A\}$? [4]

Figure 1

[12]

c) For the manipulator below (Fig. 2) place the frames and provide the respective table of DH parameters.

Figure 2

UFMF4X-15-M Page 2 of 6

Question 2

- a) What are singularities for a manipulator? [5]
- b) For the **Planar** mechanism shown below (Fig. 3) do the following:
 - i. Calculate the Forward Kinematic equations (<u>position only</u>) for the End [4] Effector {3} (you can do this geometrically if you prefer).
 - ii. Calculate the *2x2* Jacobian of the Manipulator and give its singularities (if any)

Figure 3

c) Give the inverse kinematics equations of the manipulator below (Fig. 4), if the end-effector's position and orientation are known.

Figure 4

Question 3

- a) Parallel Robots are used for various applications due to their characteristics. [4]
 Give their Pros and Cons compared to Serial mechanisms.
- b) For the parallel manipulator given below (Fig. 5) do the following:
 - i. Calculate its mobility (explain each parameter of the equation) [3]
 - ii. Give the loop-closure equation for the point {C} if the world reference is at point {O}.

UFMF4X-15-M Page 3 of 6

- c) For calculating the trajectory of a joint we can use polynomial of different orders. What orders are commonly used and why? What is the alternative?
- d) A revolute joint is at time moment t=0 at $\theta(0)=10^o$ and stationary (no velocity). If the joint must move in 5 sec to 45^o and maintain an acceleration of 30 deg/sec², select the appropriate polynomial function to achieve this trajectory and calculate its coefficients.

[5]

Question 4

- a) Describe the two methods to calculate manipulator dynamics. What are their differences and when is best to use each?
- b) Give the state-space equation for the dynamics of a manipulator and explain [6] each term.
- c) Using the Recursive Newton-Euler approach calculate the torques required by joints 1 and 2 of the manipulator below (Fig. 6) if gravity is 9.81 m/sec², the external force is 2N and the external torque is 5Nm.

Figure 6

The parameters for each link of the manipulator, and external forces are given in the table:

Parameter	Link 1	Link 2
Joint Length	0.7m	0.6m
Centroid Location	0.5m	0.3m
Mass	2.5kg	1.5kg
Joint position	0 rad	0 rad
Joint velocity	2 rad/s	-4 rad/s
Joint acceleration	10 rad/s²	-5 rad /s²
Inertia about centroid	0.05 kg/m ²	0.02 kg/m ²

END OF QUESTION PAPER

UFMF4X-15-M Page 4 of 6

Formulae Sheet

Transformation matrices

$$Rotx(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Roty (
$$\theta$$
) =
$$\begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotz (
$$\theta$$
) =
$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Trans (a,b,c) =
$$\begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DH parameters (standard DH)

ai is the distance between z_{i-1} and z_i w.r.t. x_i

 α_i is the angle between z_{i-1} and z_i w.r.t. clockwise rotation around x_i di is the distance between x_{i-1} and x_i w.r.t. z_{i-1}

 θ_i is the angle between x_{i-1} and x_i w.r.t. clockwise rotation around z_{i-1}

Distal

$$_{i}^{i-1}T = \begin{pmatrix} \cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\sin\theta_{i} & a_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\cos\theta_{i} & a_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

UFMF4X-15-M

DH parameters (modified DH)

 a_i is the distance between z_i and z_{i+1} w.r.t. x_i

 α_i is the angle between z_i and z_{i+1} w.r.t. clockwise rotation around x_i

d_i is the distance between x_{i-1} and xi w.r.t. z_i

 θ_i is the angle between x_{i-1} and x_i w.r.t. clockwise rotation around z_i

Proximal

$$\frac{i-1}{i}T = \begin{pmatrix}
\cos \theta_i & -\sin \theta_i & 0 & a_{i-1} \\
\sin \theta_i \cos \alpha_{i-1} & \cos \theta_i \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -\sin \alpha_{i-1} d_i \\
\sin \theta_i \sin \alpha_{i-1} & \cos \theta_i \sin \alpha_{i-1} & \cos \alpha_{i-1} & \cos \alpha_{i-1} d_i \\
0 & 0 & 1
\end{pmatrix}$$

Euler Angles

ZYZ Euler angles

$$\beta = A \tan 2(\sqrt{r_{31}^2 + r_{32}^2}, r_{33})$$

$$\alpha = A \tan 2(\frac{r_{23}}{s\beta}, \frac{r_{13}}{s\beta})$$

$$\gamma = A \tan 2(\frac{r_{32}}{s\beta}, -\frac{r_{31}}{s\beta})$$

RPY Euler angles

$$\beta = A \tan 2(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2})$$

$$\alpha = A \tan 2(\frac{r_{21}}{c\beta}, \frac{r_{11}}{c\beta})$$

$$\gamma = A \tan 2(\frac{r_{32}}{c\beta}, \frac{r_{33}}{c\beta})$$

Chain mobility formulae extended version

$$M = d(n - g - 1) + \sum_{i=1}^{g} f_i + R_c - R_M$$

d – 3 for planar/6 for spatial manipulators, n – number of moving links, g – number of joints, f_i - degrees of freedom

UFMF4X-15-M Page 6 of 6