2. INTRODUCTION

The term Named Entity refers to "unique identifiers of entities". It is a real-world object that can be denoted with a proper name.NER is widely used in downstream applications of NLP and artificial intelligence such as machine translation, information retrieval, and question answering. Named Entity Recognition(NER) involves the identification of proper names in texts and the classification of these names into a set of predefined categories. Here we have 5 sets of categories: Diseases, Genes, Protein, Chemical, and Biomedical.

A well-studied solution for a neural network to take into account an effectively infinite amount of context is the BI-LSTM. CNN's have also been investigated for modeling character-level information, among other NLP tasks, and a combination of BI-LSTM, CNN, and CRF is very successful in the field of sequence labeling tasks in the past few years.

Most recent approaches to NER have focused on multi-task learning which jointly conducts other related NLP tasks like entity linking or chunking. Conditional random field (CRF) jointly models the label decision by capturing the dependencies across adjacent labels. [2]

Named entity recognition (BioNER) is one of the most fundamental tasks in biomedical text mining that aims to automatically recognize and classify biomedical entities. It is typically formulated as a sequence labeling problem whose goal is to assign a label to each word in a sentence. The BiLSTM (bidirectional long short-term memory) layer models the context information of each character. The hidden states of the BiLSTM layer are fed into the CRF layer to optimize sequence tagging with the help of adjacent tags. On POS, chunking, and NER data sets, the BI-LSTM-CRF model can deliver state-of-the-art (or close to) accuracy. [3][4]

CRF has shown to be very effective when combined with neural architectures for sequence labeling tasks. However, the models with unidirectional CRF (generally referred to as CRF) are capable of capturing the dependencies between labels in the forward direction only. [5]

3. PROBLEM STATEMENT

With the enormous volume of biological literature, an increasing growth phenomenon due to the high rate of new publications is one of the most common motivations for biomedical text mining. Biomedical text mining (BioNLP) refers to the methods and study of how text mining may be applied to texts and literature of the biomedical and molecular biology domains. Name Entity Recognition overcomes the primitive methods to manually identify and classify biological entities. Names and identifiers for biomolecules such as proteins and genes, chemical compounds and drugs, and disease names have all been used as entities. We studied different research publications that used the bi-LSTM model, powered by CRF. On scrutinizing further we finalized our project objective. [6] In this project, our main focus is to depict the state-of-the-art performance of BI-LSTM CRF by testing its performance on both Single task framework and multi-task framework. [7] [8]

NOTE: Tensorflow 1.13.1 and Keras 2.2.4 ARE SPECIFICALLY REQUIRED TO RUN THE CRF MODEL WITHOUT PATCH THE KERAS LIBRARY

Literature Survey

S. No	Author and Year (Reference)	Title (Study)	Concept/Theor etical model/ Framework	Methodology used	Dataset Details /Analysis	Relevant Finding	Limitations/ Future Research
1.	Jason P.C. Chiu, Eric Nichols Transactions of the Association for Computation al Linguistics, vol. 4, pp. 357–370, 2016 Submission batch: 11/2015; Revision batch: 3/2016; Published 7/2016. https://arxiv.o rg/abs/1511.0 8308	Named Entity Recognition with Bidirectional LSTM-CNN s	The aim of this paper is to develop a neural network model, which incorporates a bidirectional LSTM and a character-level CNN and which benefits from robust training through dropout, achieves state-of-the-art results in named entity recognition with little feature engineering. The authors also propose a novel method of encoding partial lexicon matches in neural networks and compare it to existing approaches.	The neural network is inspired by the work of Collobert et al. (2011b), where lookup tables transform discrete features such as words and characters into continuous vector representation s, which are then concatenated and fed into a neural network. Instead of a feed-forward network, we use the bi-directional long-short term memory (BLSTM) network. To induce character-leve I features, we use a convolutional neural network. The extracted features of each word are	The datasets used are the CoNLL-2003 NER shared task and the OntoNotes 5.0 datasets. The CoNLL-2003 dataset consists of newswire from the Reuters RCV1 corpus tagged with four types of named entities: location, organization, person, and miscellaneou s. The OntoNotes 5.0 Dataset is much larger than CoNLL-2003 and consists of text from a wide variety of sources, such as broadcast conversation, broadcast news, newswire, magazine,	The models have surpassed the previous highest reported F1 scores for both CoNLL-2003 and OntoNotes. The GloVe 50d model provides an ultimate F1 score of 91.41 (± 0.21) for the CoNLL-2003 and gives an efficient 86.24 (± 0.35) output on the OntoNotes. The F1 Score for the Skip-gram 50d are 90.76 (± 0.23) and 85.70 (± 0.29) for the CoNLL-2003 and OntoNotes respectively.	More effective construction and application of lexicons and word embeddings are areas that require more research. In the future, we would also like to extend our model to perform similar tasks such as extended tagset NER and entity linking

	fed into a forward LSTM network and a backward LSTM network. The output of each network at each time step is decoded by a linear layer and a log-softmax layer into log-probabilit ies for each tag category. These	telephone conversation, and Web text.	
	log-probabilit ies for each		
	simply added together to produce the final output.		

Tang. Xiaolong Wang, Jun Van2 and Qingcai Chen Entity recognition in Chinese clinical text using attention-bas ed CNN-LSTM Firity recognition in Chinese clinical text using attention-bas ed CNN-LSTM CRF BMC Med Inform Decis Mak 19, 74 (2019). BMC Med Inform Decis Mak 19, 74 (2019). ttps://doi.or g/10.1186/s1 2911-019-07 87-y BTA-y The Performances of all systems are measured by micro-averaged precision, recall and F1-score under two criteria: "strict" and "relaxed", where the The Performances of all systems are measured by micro-averaged precision, recall and F1-score under two criteria: "strict" and "relaxed", where the The Performances of all systems are measured by micro-averaged precision, recall and F1-score under two criteria: "strict" and "relaxed", where the Time anthors a DNN, called the authors a DNN, called as a traction-base da DNN, called the authorio-base databetes the finder the attention-base clinical text. CNN-LSTM-CRF by chieve CKS2017, CNER and CREA CNEC, CNES, 2017, C	Tang, Xiaolong Wang, Jun Yan2 and Qingcai Chen Wan5 and Chinese clinical text using attention-base clinical text using attention-base clinical text using attention-base clinical text using attention-base and end of CNN-LSTM-CRF is infroducing a context using attention-base and an attention layer is used to capture local context using attention-base and an attention layer is used to capture local context using attention-base and tention layer is used to capture local context using attention-base and tention layer is used to capture local context using attention-base and tention layer is used to capture local context using attention-base and tention layer is used to capture local context using attention-base and tention layer is used to capture local context using attention-base characters of information of the Chinese characters of interest, and the attention layer is used to capture local context information of the Chinese characters of interest, and the attention-base and tention layer is used to capture local context information of the Chinese characters of interest, and the attention-base and tention layer is context information of the Chinese characters of interest and attention layer is context information of the CRF layer after the effectiveness of interest and the attention and the attention and the attention layer is context information of the CRF layer after the same remainder layer after the same interest and an attention in a tention in the authors of CKS2017, and alternation-base and the attention-base individual and the attention of the CRE layer after the same interest and an attention in the authors of CRS 2017, and alternation-base and the attention-base individual and the attention and the attention layer is context information of the CRE layer after the same remainder layer after the context information of the CRE layer after the same licxt. An attention-base indicates in the authors of CNN and attention and the attention and the attention and the authors of CRS 2017, and alternation and the a								
Strict criterion is a strict criterion is a strict criterion in the strict criterion is a strict criterion in the strict criterion is a strict criterion in the strict criterion in the strict criterion is a strict criterion in the strict criterion in the strict criterion is a strict criterion in the strict criterion in the strict criterion is a strict criterion in the strict criterion in the strict criterion is a strict criterion in the strict criterion in the strict criterion is a strict criterion in the strict criterion in the strict criterion is a strict criterion in the strict criterion in the strict criterion in the strict criterion in the strict criterion is a strict criterion in the stri	checks whether are treated as indicate that with them	2.	Tang, Xiaolong Wang, Jun Yan2 and Qingcai Chen Entity recognition in Chinese clinical text using attention-bas ed CNN-LSTM- CRF BMC Med Inform Decis Mak 19, 74 (2019). https://doi.or g/10.1186/s1 2911-019-07	recognition in Chinese clinical text using attention-bas ed CNN-LSTM	The authors propose a deep neural network for entity recognition in Chinese clinical text, which extends LSTM-CRF by introducing a CNN layer and an attention layer. The CNN layer is used to capture local context information of the Chinese character of interest, and the attention layer is used to determine the relativity strength of other Chinese characters to the Chinese character of interest. The effectiveness of their method is shown by a comparison with two benchmark datasets. The performances of all systems are measured by micro-averaged precision, recall and F1-score under two criteria: "strict" and "relaxed", where the	a DNN, called attention-base d CNN-LSTM-CRF, is proposed to recognize entities in Chinese clinical text. Attention-bas ed CNN-LSTM-CRF is an extension of LSTM-CRF by introducing a CNN (convolutiona I neural network) layer after the input layer to capture local context information of words of interest and an attention layer before the CRF layer to select relevant words in the same	the authors have used namely two datasets: CCKS2017_CNER and ICRC_CNE R. CCKS2017_CNER contains 400 Chinese clinical records with five categories of clinical entities, 300 records are treated as a training set and the remainder 100 records are treated as a test set. In this dataset, all clinical entities are contiguous, and the a total number of them is 39,359. ICRC_CNE R contains 1176 Chinese clinical records with the other five categories of clinical entities, 600 records are treated as a training set, 176 records	achieves the highest "strict" F1-scores of 90.61% on CCKS2017_C NER and 83.32% on ICRC_CNER, outperforming CRF and LSTM-CRF by 0.44 and 0.32% respectively. When the CNN layer is removed from our method, the F-score slightly increases on CCKS2017, but slightly decreases on ICRC_CNER. When the attention layer is removed, the F-scores on both two datasets decrease slightly. When both CNN and attention layers are removed, the F-scores on both two datasets decrease greatly. The experimental results	shows better overall performance than CRF and LSTM-CRF, it does not always achieve highest "strict" F1-score on all categories of clinical entities. The limitations of this study are: 1) the proposed method is also applicable to entity recognition in English text, but we do not compare it on English datasets. The experiments will be conducted in the future. 2) there are also some other extensions of LSTM-CRF on tasks in other domains, and the study is not compared to those tasks. Comparing

3.	Renzo M. Rivera Zavala1, Paloma Mart'inez1, Isabel Segura-Bedm ar1 1Computer Science Department, University Carlos III of Madrid A Hybrid Bi-LSTM-C RF model for Knowledge Recognition from eHealth documents TASS 2018: Workshop on Semantic Analysis at SEPLN, septiembre 2018, págs. 65-70 http://ceur-ws .org/Vol-2172 /p6_hybrid_b i_lstm_tass20 18.pdf	A Hybrid Bi-LSTM-C RF model for Knowledge Recognition from eHealth documents	In this paper, the authors propose a hybrid Bi-LSTM and CRF model adding sense-disambigu ation embedding and an extended tag encoding format to detect discontinuous entities, as well as overlapping or nested entities. To do this, they adapt the NeuroNER model have extended NeuroNER by adding context information, Partof-Speech (PoS) tags and information about overlapping or nested entities. use two pre-trained word embedding models: i) a word2vec model ii) a sense-disambigu ation embedding model.	Pre-processin g All texts were preprocessed in four steps. a)First, sentences were split by using Spacy b) sentences and their annotated entities were transformed to the BRAT format c) sentences were tokenized. d) each token in a sentence was annotated using the BMEWO-V extended tag encoding The Words Embeddings are implemented by Spanish Billion Words(Cardel lino, 2016), which is a pretrained model of word embeddings Post-processi ng Once tokens have been annotated	The dataset used for evaluation is the the TASS-2018-Task 3 eHealth Knowledge Discovery. The training set is made up of 5 documents with 3276 entities annotations. The development set consists of 1 text document with 1958 entities annotations. The test set consists of 1 text document. There are two types of of entities: concepts and actions. For this reason, tokens can be annotated with different labels following the BMEWO-V encoding format.	Compared to NeuroNER, extended Neuro NER provides better Precision, Recall and Hence the F1 score. In the substask A (identification of key phrases), our system obtained the top micro F1 (0.872). It significantly outperform the rest of participating systems. When contrasted with the established systems such as plubeda, upf-upc, VSP, Marcelo; the extended NeuoNER model outperforms all of them with an incredible F1 score of 87%	The future goals aim to try the other embeddings models such as the FastText model, which contains morphologica I information. Moreover, the authors will extend the encoding format to capture distinct types of overlapping or nested entities.

	-	1	1			i	1
				with their corresponding labels in the BMEWO-V encoding format, the entity mentions must be transformed to the BRAT format. V tags, which identify nested or overlapping entities, are generated as new annotations			
4.	Donghyeon Kim; Jinhyuk Lee; Chan Ho So; Hwisang Jeon; Minbyul Jeong; Yonghwa Choi; Wonjin Yoon; Mujeen Sung; Jaewoo Kang Date of Publication: 04 June 2019 https://doi.or g/10.1109/A CCESS.2019. 2920708	A Neural Named Entity Recognition and Multi-Type Normalizatio n Tool for Biomedical Text Mining	They propose a neural biomedical named entity recognition and multi-type normalization tool called BERN. The BERN uses high-performanc e BioBERT named entity recognition models which recognize known entities and discover new entities. Also, probability-base d decision rules are developed to identify the types of overlapping entities. Furthermore, various named	The RESTful Web service of BERN was implemented using Python and Node.js. BERN run BioBERT NER models which are pre-trained with TensorFlow3 , on their server to recognize incoming biomedical text such as PubMed articles and raw text.Four BioBERT NER models for genes/protein s, diseases, drugs/chemic als, and	There are many use cases where BERN can be used. Discovery of new named entities: BioBERT NER models can be used to discover new entities from the latest biomedical literature. Information retrieval: BERN can serve as a fundamental NER+NEN model for various text mining tools.	Their proposed tool BERN recognizes known entities and discovers new entities using BioBERT NER models. The BioBERT models outperform NER models of existing Web-based text mining tools in terms of F1-score on genes/proteins , diseases, drugs/chemica ls, and species. After reviewing a vast number of cases of overlapping entities, they	For future work, they plan to use a multi-task NER model for higher NER performance. Also, they will develop a novel entity type decision model that uses transfer learning to consider not only the entity types and probabilities of overlapping entities but also the deeper contextual meaning of a text.

entity normalization models are integrated into BERN for assigning a distinct identifier to each recognized entity. The BERN provides a Web service for tagging entities in PubMed articles or raw text. Researchers can use the BERN Web service for their text mining tasks, such as new named entity discovery, information retrieval, auestion answering, and relation extraction.

species, use 2.4 GB $(4\times0.6 \text{ GB}) \text{ of}$ **GPU** memory. They use 8 **NVIDIA** V100 GPUs for pre-training BioBERT, and they use a **NVIDIA** Titan X GPU for making predictions. And, they use the following training datasets to fine-tune each **BioBERT** NER model: BC2GM for genes, NCBI disease for diseases. **BC4CHEMD** for drugs/chemic als, and **LINNAEUS** for species. **GNormPlus** uses 8 to 16 GB, and tmVar 2.0 uses 4 to 8 GB of memory. And, the load time of the **GNormPlus** gene dictionary is about 5 seconds and the load time of the tmVar

2.0 part-of-speec

extraction: BERN can generate rich datasets for downstream biomedical text mining tasks such as relation extraction.• A useful text mining tool: Using APIs, researchers can obtain **NER+NEN** results for texts from highly accessible Web services

developed and used the decision rules on identifying the entity types of overlapping entities which occur frequently in multi-type NER results. For assigning a specific ID to each recognized entity, multiple normalization models are combined and integrated into BERN. The RESTful Web service of BERN is freely available and can be used for various types of input. Researchers can use BERN for text mining tasks such as new named entity discovery, information retrieval. question answering, and relation extraction.

5. R. Ramachandra no procognition no hose control is proposed to bio-medical Arutchelvan literature documents and comments approach Accepted: 2 March 2021 November 2020/ Accepted: 2 March 2021 November 2020/ Accepted: 2 March 2021 the Received: 22 Interest approach Accepted: 2 March 2021 the medical bio-medical hose of the hose of the new dictionary has been built for route of administration, dosage forms and symptoms to amnotate the entities in the medical documents. The annotated the entities in the medical documents. The annotated the entities in the medical documents. The annotated the entities in the medical documents in the annotated the entities in the medical documents. The annotated the entities in the medical documents in the annotated the entities are trained by the blank Spacy machine learning model. The trained with the existing model in validated with the dictionary and human (optional)to calculate the confusion motifies it is able with the three confusion of the method and manan (optional)to calculate the confusion motifies science and provide the annotated the method and the annotated the sentences are mitted. The trained work and the first active documents when the suggestions and the proposed to five NERs of the N	5. R. Ramachandra n, structured documents new hybrid based approach accepted: 2 March 2021 November 2020 / Accepted: 2 March 2021 March 2021 Solvent Seen built for g/10.1007/s1 2652-021-03 078-z March 2021		Ī	1	<u> </u>	I			
Ramachandra n, K. Arutchelvan	Ramachandra n, on bio-medical Arutchelvan literature documents Received: 22 November 2020 / Accepted: 2 March 2021					about 1 second. To reduce their load time, they run GNormPlus and tmVar 2.0 processes in the background			
I matrix. It is able Symptoms, presence of model and	The trained model provide a decent accuracy when compared with the existing model. The hybrid model is validated with annotated the dictionary and human (optional)to calculate the model with the existing and human calculate the model. The the dictionary calculate the model is training a matcher is transfer transfer used to learning shows the matcher is transfer annotate the shows the increase of around 15% around 15% around 15% around 15% around 15% the entities. The when compared to the baseline method.	5.	Ramachandra n, K. Arutchelvan Received: 22 November 2020 / Accepted: 2 March 2021 https://doi.or g/10.1007/s1 2652-021-03	recognition on bio-medical literature documents using hybrid based	new hybrid based approach is proposed to identify named entity from the medical literature documents. New dictionary has been built for route of administration, dosage forms and symptoms to annotate the entities in the medical documents. The annotated entities are trained by the blank Spacy machine learning model. The trained model provide a decent accuracy when compared with the existing model. The hybrid model is validated with the dictionary and human (optional)to calculate the confusion	is the heart of the proposed architecture which cleaned the raw data and provide the annotated sentence with entities. This step involves in the formation of unstructured data into meaningful format. JSON format has been used for this work. The raw data are tokenized by annotating the sentences with the entity. For training a model annotated sentences are essential. A custom annotated dataset was developed internally for the three entities:	documents around 100 numbers are downloaded by using a python API which has been developed using the python beautiful soup library. The downloaded documents were in PDF format. The retrieved data are converted into raw text. The documents are split into sentences. Spacy phrase matcher is used to annotate the start and end position of the entities. The sentences are further filtered based on the	work presented the detailed study of the NER on life science domain. It also highlighted the role of transfer learning to enhance the machine learning model. The proposed hybrid approach identified named entity and outperformed well than the existing baseline method. The transfer learning shows the increase of around 15% accuracy when compared to the baseline method. Baseline	they plan to boost the quantity of entities. Enriching the dictionaries by adding more object will give more accuracy. The work will be extended to update the dictionary from the suggestions of domain expert and retrain the model

			1
to iden	tify more Route of	the entities.	proposed
	s than the Administratio		hNER model
prev	vailing n and Dosage		was trained
	lel. The Forms.		with 80% of
	rage F1		annotated
	for five After data		sentences and
	es of the preprocessing		tested with
	ed hybrid step, cleaned		20% of
	approach data is passed		annotated
	.79%. in to		sentence. The
	Bio-NER		F1 score of
	model. This		the
	phase train		experimented
	the model		model has
	with the		shown a
	annotated		progressive
	sentences.		improvement.
	The model is		As an add-on,
	built based on		the validation
	the		tool is more
	Convolutional		useful to fnd
	Neural		the accuracy
	Network		by domain
	(CNN) and		expert.
	Long-Short		
	Term		
	Memory		
	(LSTM). The		
	model is		
	retrained by		
	the dataset		
	generated		
	from the		
	dictionary		
	based		
	approach.		

	Ī			Γ	ı	Ī	
6.	Zhiheng	Bidirectional	In this paper,	All models	They test	For POS data	In this paper,
	Huang,	LSTM-CRF	they propose a	used in this	LSTM,	set, they	thye
	Wei Xu and	Models for	variety of Long	paper share a	BI-LSTM,	achieved state	systematicall
	Kai Yu	Sequence	Short-Term	generic SGD	CRF,	of the art	y compared
		Tagging	Memory	forward and	LSTM-CRF,	tagging	the
	https://arxiv.o		(LSTM) based	backward	and	accuracy with	performance
	rg/pdf/1508.0		models for	training	BI-LSTM-C	or without the	of LSTM
	1991.pdf		sequence	procedure.	RF models	use of extra	networks
			tagging. These	They choose	on three NLP	data	based models
			models include	the most	tagging	resource.Their	for se-quence
			LSTM	complicated	tasks: Penn	test accuracy	tagging. They
			networks,	model,	TreeBank	is 97.55%	presented the
			bidirectional	BI-LSTMCR	(PTB) POS	which is	first work of
			LSTM	F, to illustrate	tagging,	significantly	applying a
			(BI-LSTM)	the training	CoNLL 2000	better than	BI-LSTM-C
			networks,	algorithm.	chunking,	others in the	RF model to
			LSTM with a	In each	and CoNLL	confidence	NLP
			Conditional	epoch, they	2003 named	level of 95%.	benchmark
			Random Field	divide the	entity	Their model	sequence
			(CRF) layer	whole	tagging.	can achieve	tagging data.
			(LSTM-CRF)	training data		the best F1	Their model
			and bidirectional	into batches	They extract	score of 90.10	can produce
			LSTM with a	and process	the same	with both	state of the
			CRF layer	one batch at a	types of	Senna	art (or close
			(BI-LSTM-CRF	time. Each	features for	embedding	to) accuracy
). Their work is	batch contains	three data	and gazetteer	on POS,
			the first to apply	a list of	sets. The	features. With	chunking and
			a bidirectional	sentences	features can	the same	NER data
			LSTM CRF	which is	be grouped	Senna	sets. It can
			(denoted as	determined by	as spelling	embedding,	achieve
			BI-LSTM-CRF)	the parameter	features and	BI-LSTM-CR	accurate
			model to NLP	of batch size.	context	F slightly	tagging
			benchmark	In their	features. As a	outperforms	accuracy
			sequence	experiments,	result, they	Conv-CRF	without
			tagging data	they use batch	have 401K,	(90.10% vs.	resorting to
			sets. They show	size of 100	76K, and	89.59%).	word
			that the	which means	341K	However,	embedding.
			BILSTM-CRF	to include	features	BI-LSTM-CR	
			model can	sentences	extracted for	F significantly	
			efficiently use	whose total	POS,	outperforms	
			both past and	length is no	chunking and	Conv-CRF	
			future input	greater than	NER data	(84.26% vs.	
			features thanks	100. For each	sets	81.47%) if	
			to a	batch, they	respectively.	random	
			bidirectional	first run		embedding is	
			LSTM	bidirectional		used.	
			component. It	LSTM-CRF			
			can also use	model			
			sentence level	forward pass			
			tag information	which			
			thanks to a CRF	includes the			

			layer. The BI-LSTMCRF model can produce state of the art (or close to) accuracy on POS, chunking and NER data sets. In addition, it is robust and has less dependence on word embedding as compared to previous observations.	forward pass for both forward state and backward state of LSTM.			
7.	G. Yang and H. Xu Date of Publication: 21 December 2020 doi: 10.1109/ACC ESS.2020.30 46253	A Residual BiLSTM Model for Named Entity Recognition	To produce word or character vectors, they have used both word2vec and BERT. Furthermore, we do tests to assess the performance of NER utilising different residual block architectures. The results of the experiments show that our model can effectively improve the performance of both Chinese and English NER without requiring any external knowledge.	A 3-layer residual BiLSTM model as an example to illustrate The residual structure is used.	CoNLL2003, MSRA, Weibo, OntoNotes 4.0, and OntoNotes 5.0 are the four most extensively- used datasets for evaluating our model on English and Chinese NER tasks, respectiv-ely.	For NER challenges, we developed a new residual BiLSTM model. Based on BiLSTMs, we present a new sort of residual block. We make attempts to innovate on the structure of residual networks based on BiLSTMs, in contrast to most other state-of-the-ar t models that include external knowledge or multi-task learning.	For the future they can combine the model with an attention mechanism. Also the model can be applied to other NLP tasks

8.	Víctor Suárez-Pania gua, Renzo M. Rivera Zavala, Isabel Segura-Bedm ar, Paloma Martínez Journal of Biomedical Informatics, Volume 99, 2019, 103285 https://doi.or g/10.1016/j.j bi.2019.1032 85	A two-stage deep learning approach for extracting entities and relationships from medical texts	A two-stage deep learning method for Named Entity Recognition (NER) and Relation Extraction (RE) from medical texts is presented in this paper. Many natural language understanding applications in the biomedical realm rely on these tasks.	Deep Learning approaches for NER may discover patterns automatically from corpora, collecting essential syntactic and semantic information. Also, the method of Biomedical Relation Extraction.	eHealth-KD dataset is used here. The dataset was divided into three sections: training (559 sentences), validation (285 sentences), and test (285 sentences) (300 sentences). The test set comprises three separate subsets for testing performance in each scenario at the same time.	A two-stage IE system based on medical literature is presented in this research. Our system is responsible for three tasks: entity detection, entity categorization, and relation extraction.	More syntactic information of the sentence, such as Part-of-Speec h tags, Chunk labels, dependency types, through the embeddings can be added.
9.	Cho, H., Lee, H. Published 27 December 2019 https://doi.or g/10.1186/s1 2859-019-33 21-4	Biomedical named entity recognition using deep neural networks with contextual information	Traditional NER approaches use extra conditional random fields (CRF) to capture crucial correlations between surrounding labels; they don't always include all of the contextual information from text in the deep learning layers.	All methods in terms of precision, recall, and F-score are compared. They have performed strict matching at the IOB token level and strict and partial matching at the level of mention to compute these values.	All Datasets were extracted from - http://gcancer .org/clstmdat a	An NER system for biological items has been developed here that incorporates n-grams with bi-directional long short-term memory (BiLSTM) and CRF; this system is referred to as contextual long short-term memory networks with CRF (CLSTM).	The Contextual Information that is received from the CRF model, can be further made more accurate, and we can use the Standard LSTMs which can only use prior contexts and cannot predict the future.

	I		<u> </u>	Γ	Ι		
10.	Pir Dino	Bio-NER:	The purpose of	This work	The National	Single sets of	To check the
	Soomro,	Biomedical	extracting	proposes	Center for	a classifier	effectiveness
	Sanotsh	Named	Bio-Medical	different	Biotechnolog	which	of our
	Kumar,	Entity	Entities is to	approaches	y	examined, it	proposed
	Banbhrani,	Recognition	recognize the	and methods,	Information	states that	method for
	Arsalan Ali	using	particular	i.e. Machine	(NCBI)	87.4% of	Drug Name
	Shaikh, Hans	Rule-Based	entities, whether	Learning	ailment	F-score	Recognition.
	Raj	and	word or phrases,	Hybrid	corpus which	accomplished	The authors
		Statistical	from the	Classification,	is	by Naive	plan to apply
	2017	Learners	unstructured	Rule Based	unreservedly	Bayesian	and check the
		200111015	data contained	Non-tested	accessible by	Decision	effectiveness
			in the text. This	Generalized	NCBI on	Table on	of our
	10.14569/IJA		research paper is	Exemplars	which this	characteristics	proposed
	CSA.2017.08		aimed at	and Partial	test or	, for example,	method for
	1220		Bio-Medical	Decision Tree	experiment is	affixes,	Drug Name
	1220		Named Entity	(PART)	based.	contextual,	Recognition.
			by proposing the	Learners for	The corpus	orthographic	
			approach of	Bio-Medical	incorporates	and N-grams.	
			Hybrid Machine	Named Entity	793 synopses	fusion of	
			Learning. The	Recognition.	compositions	Naive	
			performances of	For NER	which	Bayesian+Bay	
			different	challenges,	comprise of	esian,	
			approaches viz.,	they	2783	Network+Non	
			Machine	developed a	sentences	-Nested,	
			learners like,	new residual	and an	Generalized	
			Naïve Bayesian,	BiLSTM	aggregate of	Exemplars	
			Rule Based	model. Based	6900 malady	accomplished	
			Learners i.e.	on BiLSTMs,	names	the 88.5% of	
			PART, DTNB	we present a		F-scoreOveral	
			and NNGE, and	new sort of		1 accuracy was	
			Bayesian	residual		89.0 percent	
			Network, are	block. They		on the	
			compared.	have made		Training	
			Investigation	attempts to		dataset, 84.0	
			and exploration	innovate on		percent on the	
			of the data	the structure		Development	
			discovers that	of residual		dataset, and	
			execution close	networks		86.0 percent	
			to the best in	based on		on the Testing	
			class can be	BiLSTMs, in		dataset,	
			accomplished	contrast to		respectively.	
			via a blend of	most other		The execution	
			Statistical	state-of-the-ar		of sets of	
			Machine	t models that		classifiers	
			Learning and	include		using vote	
			Rule Based	external		WEKA Data	
			Techniques	knowledge or		Mining Tool	
			utilizing	multi-task		was	
			straightforward	learning.		investigated	
			characteristics.			using this	
						Classifiers	

	ı					<u> </u>	
						blending of two, three, four, and five.	
11.	Rrubaa Panchendrara jan Aravindh Amaresan 2018 https://www.r esearchgate.n et/publication /333384813_ Bidirectional _LSTM-CRF _for_Named_ Entity_Recog nition	Bidirectional LSTM-CRF for Named Entity Recognition	Named Entity Recognition (NER) is a challenging sequence labeling task which requires a deep understanding of the orthographic and distributional representation of words. This model includes bidirectional LSTM (BI-LSTM) with a bidirectional Conditional Random Field (BI-CRF) layer. It is truly an end-to-end model not relying on any other additional labeled data.	BI-LSTM was successfully used to a voice recognition problem. CNNs have also been studied for modelling character-leve l information, as well as a mix of BI-LSTM, CNN, and CRF for various NLP tasks.	Our system is competitive on the CoNLL-2003 dataset for English. The dataset contains four different types of named entities: Person (PER), Organization (ORG), Location (LOC) and Miscellaneou s (MISC). Sentences in the dataset are represented in the IOB format.	The obtained model is competitive and outperforms the majority of existing techniques that do not use externally labelled data. Furthermore, with a short quantity of training material, backward CRF is more capable of detecting complicated labels such as words existing inside a named entity and names of Miscellaneous things, according to the assessments.	There are several potential directions for future work. First, the performance of the model can be further enhanced by converting the dataset from IOB to IOBES tagging scheme. Moreover, it can be explored in multi-task learning approaches to combine more useful and correlated information among different NLP tasks.
12.	Muhammad Raza Khan Morteza Ziyadi Mohamed AbdelHady 2020 https://arxiv.o rg/abs/2001.0 8904	MT-BioNER : Multi-task Learning for Biomedical Named Entity Recognition using Deep Bidirectional Transformers	Healthcare industry is going through a technological transformation especially through the increasing adoption of conversational agents including voice assistants (such as Cortana, Alexa, Google Assistant, and	Slot tagging and Named Entity Recognition (NER) extract semantic elements by filling in specified slots in a semantic frame with the words of an input sentence/utter ance.	We evaluate the performance of the proposed approach on four benchmark datasets.The datasets are BC2GM,BC 5CDR, NCBI-Diseas e, JNLPBA.	They defined the training of a slot tagger as a multi-task learning problem including many data sets encompassing various slot kinds. They also reported training and scoring times and compared them to	Exploring the impact of overlap between the datasets on the overall model performance. We will like to explore ways to tackle overlap between entities that can degrade

Siri) and the		previous	the model
medical		improvements	performance.
chatbots.			We will also
In this paper, we			like to
presented a			perform
multi-task			comparative
transformer			analysis of
based neural			different
architecture for			models on
slot tagging that			same input
overcomes the			sentences to
problems like			highlight the
limited-memory			plus points of
devices which			our model
require some			over other
model			models. We
compression,			also want to
training a large			analyze the
amount of			performance
labelled data.			of our NER
We formulated			model on
the training of a			general
slot tagger using			domain
multiple data			conversationa
sets covering			1 systems in
different slot			future work
types as a			as well.
multi-task			
learning			
problem.			

3.1 ARCHITECTURE DIAGRAM -

Long short-term memory neural network is a specific type of recurrent neural network that models dependencies between elements in a sequence through recurrent connections.

The repeating module in an LSTM containing four interacting layers

Building blocks of LSTM and its internal operations

The network takes three inputs. X_t is the input of the current time step. h_{t-1} is the output from the previous LSTM unit and C_{t-1} is the "memory" of the previous unit. As for outputs, h_t is the output of the current network. C_t is the memory of the current unit. Therefore, this single unit makes a decision by considering the current input, previous output, and previous memory. And it generates a new output and alters its memory.

A single LSTM Cell showing its details

Bidirectional long-short term memory (bi-LSTM) is the process of making any neural network have the sequence information in both directions backward (future to past) or forward(past to future).

In bidirectional, our input flows in two directions, making a bi - LSTM different from the regular LSTM. With the regular LSTM, we can make input flow in one direction, either backward or forward. However, in bi-directional, we can make the input flow in both directions to preserve the future and the past information.

A Bi-LSTM Network Model

The architecture of a single-task neural network. The input is a sentence from biomedical literature. Rectangles denote character and word embeddings; empty round rectangles denote the first character-level BiLSTM; shaded round rectangles denote the second word-level BiLSTM; pentagons denote the concatenation units. The tags on the top, e.g. 'O', 'S-GENE', are the output of the final CRF layer, which are the entity labels we get for each word in the sentence. [9] [10]

Architecture of a single-task neural network

3.2 FLOW DIAGRAM -

3.3 PSEUDOCODE -

```
Input the data from the .tsv file into the data frame
      data = pd.read csv("bc2gm train.tsv", sep='\t', quoting=3,
error bad lines=False)
Append the Sentence column to the dataframe
for index,row in data.iterrows():
  row['Sentence #']="Sentence: "+str(count)
  if (row['Word'] == "."):
    count=count+1
Define SentenceGetter class for Preprocessing
class SentenceGetter(object):
Define init and get self function inside the SentenceGetter
def init (self, data):
         self.n sent = 1
```

```
self.data = data
        self.empty = False
        agg func = lambda s: [(w,t) for w,t in zip(s["Word"].values.tolist(),
s["Tag"].values.tolist())]
        self.grouped = self.data.groupby("Sentence #").apply(agg func)
        self.sentences = [s for s in self.grouped]
    def get next(self):
        try:
            s = self.grouped["Sentence: {}".format(self.n sent)]
            self.n sent += 1
            return s
        except:
            return None
```

Tokenize the sentences by mapping the sentences to a sequence of numbers and then pad the sequence to feed the data to the Bi-LSTM-CRF model

```
y = pad sequences(maxlen=max len, sequences=y, padding="post",
value=tag2idx["O"])
```

Split the training and testing dataset

```
X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.1)
```

Implement the model definition and print the model summary after the compilation of model

```
input = Input(shape=(max len,))
model = Embedding(input dim=n words + 1, output dim=20,
                   input length=max len, mask zero=True) (input)
model = Bidirectional(LSTM(units=50,
return sequences=True, recurrent dropout=0.1)) (model)
model = TimeDistributed(Dense(50, activation="relu"))(model)
model.compile(optimizer="rmsprop", loss=crf.loss function,
metrics=[crf.accuracy])
model.summary()
Train the model on the entire training corpus
history = model.fit(X tr, np.array(y tr), batch size=32, epochs=5,
                     validation split=0.1, verbose=1)
Evaluate the model by applying it to testing data
test pred = model.predict(X te, verbose=1)
Depict the performance of the model using metrics like precision, recall, and f1-score
print("F1-score: {:.1%}".format(f1 score(test labels, pred labels)))
print(classification_report(test_labels, pred_labels))
[11] [12] [13]
```

4. EXPERIMENT AND RESULTS -

4.1 DATASET

	Word	Tag	Sentence #
0	DPP6	0	Sentence: 1
1	as	0	Sentence: 1
2	а	0	Sentence: 1
3	candidate	0	Sentence: 1
4	gene	0	Sentence: 1
5	for	0	Sentence: 1
6	neuroleptic	0	Sentence: 1
7	-	0	Sentence: 1
8	induced	0	Sentence: 1
9	tardive	0	Sentence: 1
10	dyskinesia	0	Sentence: 1
11		0	Sentence: 1
12	We	0	Sentence: 2
13	implemented	0	Sentence: 2
14	а	0	Sentence: 2
15	two	0	Sentence: 2
16	-	0	Sentence: 2
17	step	0	Sentence: 2
18	approach	0	Sentence: 2
19	to	0	Sentence: 2
20	detect	0	Sentence: 2
21	potential	0	Sentence: 2
22	predictor	0	Sentence: 2
23	gene	0	Sentence: 2
24	variants	0	Sentence: 2
25	for	0	Sentence: 2

26	neuroleptic	0	Sentence: 2
27	-	0	Sentence: 2
28	induced	0	Sentence: 2
29	tardive	0	Sentence: 2
30	dyskinesia	0	Sentence: 2
31	(0	Sentence: 2
32	TD	0	Sentence: 2
33)	0	Sentence: 2
34	in	0	Sentence: 2
35	schizophrenic	0	Sentence: 2
36	subjects	0	Sentence: 2
37		0	Sentence: 2
38	First	0	Sentence: 3
39	,	0	Sentence: 3
40	we	0	Sentence: 3
41	screened	0	Sentence: 3
42	associations	0	Sentence: 3
43	by	0	Sentence: 3
44	using	0	Sentence: 3
45	а	0	Sentence: 3
46	genome	0	Sentence: 3
47	-	О	Sentence: 3
48	wide	0	Sentence: 3
49	(0	Sentence: 3

DATASET DESCRIPTION

The complete BioNER database can be found https://www.kaggle.com/adityaanup/biobert-named-entity-recognition-datasets

The dataset consists of 4 columns:

Index

Word

Tag

Sentence Number

Tags of entities are encoded in an IOBES-annotation scheme. Each entity is labeled with a B or an I to detect multi-word entities, where B denotes the beginning of an entity and I denote the inside of an entity, while E denotes the End of the entity. BIE is a scheme used to represent a complete entity. S is used to represent a singly tokenized entity

O denotes all other words which are not named entities.

The complete list of datasets that will be used in the project are

Dataset	Size	Entity types and counts
BC2GM	20,000 sentences	Gene/Protein (24,583)
BC4CHEMD	10,000 abstracts	Chemical (84,310)
BC5CDR	1,500 articles	Chemical (15,935), Disease (12,852)
NCBI-Disease	793 abstracts	Disease (6,881)
		Gene/Protein (35,336),
JNLPBA	2,404 abstracts	Cell Line (4,330), DNA (10,589),
		Cell Type (8,649), RNA (1,069)

For **Review-2**, we have trained the model only on the **BC4CHEMD**, which is an annotated database only for chemicals. [14] [15]

Methodology - How to run the Code:

- 1. Open the colab notebook provided in the drive link.
- 2. Install TensorFlow version =1.13.1 and Keras veras 2.2.0 using the following commands:

```
pip install tensorflow==1.13.1
pip install keras==2.2.0
```

- 3. Restart the Runtime using the option provided under the Runtime sub-menu or ctrl+M
- 4. After the Runtime is allotted, switch to GPU using the Change Runtime Type under the Runtime sub-menu.
- 5. Now upload the dataset of your choice to the colab notebook.
- 6. Change the name of the training file to that of the uploaded dataset in cell 3.
- 7. Now to execute the entire notebook, use Ctrl+F9 and the code would start running.

4.2 OUTPUT (5 Different set of outputs for 5 Datasets)

OUTPUT FOR BC4CHEMD DATASET

After Pre-processing, we define the model definition and after the establishment of the 3 layers (Lstm, BI-Lstm, CRF), the model summary is printed using the input and output from CRF

model.summary()

Layer (type)	Output	Shap	pe	Param #
input_1 (InputLayer)	(None,	75)		0
embedding_1 (Embedding)	(None,	75,	20)	810560
bidirectional_1 (Bidirection	(None,	75,	100)	28400
time_distributed_1 (TimeDist	(None,	75,	50)	5050
crf_1 (CRF)	(None,	75 ,	5)	290
Total params: 844,300				

Trainable params: 844,300
Non-trainable params: 0

After creating the model, the model is trained for 5 epochs on the entire training corpus on about 30000 samples. The model achieved a significant validation accuracy of 96.71%

While evaluating, we consider performance metrics such as precision, recall, and F1 score as accuracy cannot be considered as the best metric for measuring the performance of the model. The average F1 score we obtain is 82%.

```
print("F1-score: {:.1%}".format(f1_score(test_labels, pred_labels)))
F1-score: 82.0%
print(classification_report(test_labels, pred_labels))
               precision
                            recall f1-score
                                                support
    Chemical
                    0.83
                              0.81
                                         0.82
                                                   2998
                                         0.82
   micro avg
                    0.83
                              0.81
                                                   2998
   macro avg
                    0.83
                              0.81
                                         0.82
                                                   2998
weighted avg
                    0.83
                              0.81
                                         0.82
                                                   2998
```

In the observations above, we see the performance metrics. Here the average performance comes out to be the same because **Chemical** is the only entity used while training and testing the model.

The Red line refers to Training and the blue line refers to testing.

OUTPUT FOR BC5CDR DATASET

PERFORMANCE PLOT (x-axis: Epoch & y-axis: Accuracy)

The Red line refers to Training and the blue line refers to testing.

print(classification_report(test_labels, pred_labels))

	precision	recall	f1-score	support
Chemical	0.65	0.83	0.73	479
Disease	0.27	0.65	0.38	406
micro avg	0.42	0.75	0.53	885
macro avg	0.46	0.74	0.55	885
weighted avg	0.47	0.75	0.57	885

OUTPUT FOR JNLPBA DATASET

PERFORMANCE PLOT (x-axis: Epoch & y-axis: Accuracy)

The Red line refers to Training and the blue line refers to testing.

	precision	recall	f1-score	support
DNA	0.66	0.65	0.66	848
RNA	0.76	0.59	0.67	76
cell_line	0.00	0.54	0.00	317
cell_type	0.76	0.70	0.73	675
protein	0.76	0.82	0.79	2677
micro avg	0.04	0.75	0.08	4593
macro avg	0.59	0.66	0.57	4593
weighted avg	0.69	0.75	0.70	4593

OUTPUT FOR NCBI_DISEASE DATASET

PERFORMANCE PLOT (x-axis: Epoch & y-axis: Accuracy)

The Red line refers to Training and the blue line refers to testing.

print(classification report(test labels, pred labels)) precision recall f1-score support Disease 0.32 0.74 0.45 487 micro avg 0.32 0.74 0.45 487 macro avg 0.32 0.74 0.45 487 weighted avg 0.74 0.45

OUTPUT FOR BC2GM DATASET

0.32

```
Train on 12204 samples, validate on 1357 samples
Epoch 1/5
Epoch 2/5
12204/12204 [
      Epoch 3/5
Epoch 4/5
Epoch 5/5
12204/12204 [============] - 675 5ms/step - loss: 8.1999 - crf_viterbi_accuracy: 0.9570 - val_loss: 7.9101 - val_crf_viterbi_accuracy: 0.9456
```

487

PERFORMANCE PLOT (x-axis: Epoch & y-axis: Accuracy)

The Red line refers to Training and the blue line refers to testing.

print(classification_report(test_labels, pred_labels))

support	f1-score	recall	precision	
1569	0.02	0.51	0.01	GENE
1569	0.02	0.51	0.01	micro avg
1569	0.02	0.51	0.01	macro avg
1569	0.02	0.51	0.01	weighted avg

PREDICTION AND TESTING RESULTS (For BC4CHEMD Dataset)

The table below shows 2 sentences from the testing data. The true output is the one annotated by the creators of the database and the predicted output is the one predicted by our model. We have chosen these examples specifically to depict that our model can not only successfully predict single token entities but also the multi-word entity accurately. But as the model isn't 100% accurate, it predicts co as 'S-Chemical' instead of 'O'.

Word	I	True	Pred	Word		True	Pred
Co	:	0	S-Chemical	Fourier	:	 0	0
-	:	O	0	transform	:	0	0
immunoprecipit	at:	ion: O	0		•		
and	:	O	0	infrared	:	0	0
pull	:	O	0	spectroscopy	:	O	0
-	:	O	0	is	:	O	O
down	:	0	0	employed	:	0	0
studies	:	0	0	to	:	0	0
showed	:	0	0	analyze		0	0
that	:	0	0	the	:		0
only Ca		_	mical B-Chemical		:	0	
(a	:		mical B-Chemical	conformational	:	0	O
2	:		mical I-Chemical	changes	:	O	O
+	:		mical I-Chemical	of	:	O	0
)	:		mical E-Chemical	TGF	:	O	O
-	:	0	0	_	:	0	0
bound	:	O	0	beta	:	0	0
calmodulin	:	O	0	1		0	0
was	:	O	0	_	:		
able	:	O	0	on	:	0	0
to	:	O	0	the	:	0	0
bind	:	O	0	surface	:	0	O
DdCAD	:	O	0	of	:	0	O
-	:	O	0	AuNPs	:	0	0
1	:	0	0		:	0	0
•	:	0	0	•	•	U	U

Performance Analysis

Here we showed the analysis of the performance of our model vs the benchmark score for the 8 entities. The graph shows that our model is not even close to perfect. For entities like DNA, RNA, and GENE the obtained score is much lower than the benchmark score. That shows the model needs to be more flexible and fitted using better training parameters with the use of better-annotated datasets. On the other hand, entities such as Chemical, Disease, and Protein show up to the mark of Benchmark datasets.

5. CONCLUSION

The performance of the model is excellent as per the metrics and the testing data proves it too. Having a CRF layer on the bidirectional layer provides an additional boost to the accuracy of the result showing the power of the Keras library. [16] It is shown that our embedding layer can improve the performance slightly, even though it still can not beat the performance of using pre-trained word representation, such as Benchmark Level and. It can also be observed that the performance of the LSTM-CRF model will not improve, with larger annotated datasets. As shown in the results, our output can be significantly improved with the use of better and bigger datasets while using higher GPUs to reduce the training time.

GLOSSARY

Precision: Precision talks about how precise/accurate your model is out of those predicted positive, how many of them are positive. It's calculated as:

= True Positive / Total Predicted Positive

Recall: Recall calculates how many of the Actual Positives our model capture through labeling it as Positive (True Positive). It is calculated as:

= True Positive / Total Actual Positive

F1 score: F1 Score might be a better measure to use if we need to seek a balance between Precision and Recall and there is an uneven class distribution. It is calculated as:

= 2* (Precision * Recall) / (Precision + Recall)

6. REFERENCES

- [1.] Bolucu, Necva, et al. "Bidirectional LSTM-CNNs with Extended Features for Named Entity Recognition." 2019 Scientific Meeting on Electrical-Electronics & Engineering and Computer Science (EBBT), 2019, doi:10.1109/ebbt.2019.8741631.
- [2.] Duan, Jianyong, et al. "Chinese Spelling Check via Bidirectional LSTM-CRF." 2019

 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference

 (ITAIC), 2019, doi:10.1109/itaic.2019.8785520.
- [3.] Huang, Zhiheng, et al. "Bidirectional LSTM-CRF Models for Sequence Tagging." *ArXiv.org*, 9 Aug. 2015, arxiv.org/abs/1508.01991.
- [4.] Kim, Seon-Wu, and Sung-Pil Choi. "Research on Joint Models for Korean Word Spacing and POS (Part-Of-Speech) Tagging Based on Bidirectional LSTM-CRF." *Journal of KIISE*, vol. 45, no. 8, 2018, pp. 792–800., doi:10.5626/jok.2018.45.8.792.
- [5.] Jeong, Yewon, and Jong-Hyeok Lee. "Extending Word Representations with Predicted Affix Features for Bidirectional LSTM-CRF-Based Korean Named Entity Recognition." *KIISE Transactions on Computing Practices*, vol. 26, no. 9, 2020, pp. 408–413., doi:10.5626/ktcp.2020.26.9.408.
- [6.] Liu, Yupeng, et al. "Semi-Markov CRF Model Based on Stacked Neural Bi-LSTM for Sequence Labeling." 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), 2020, doi:10.1109/iicspi51290.2020.9332321.
- [7.] Misawa, Shotaro, et al. "Character-Based Bidirectional LSTM-CRF with Words and Characters For Japanese Named Entity Recognition." *Proceedings of the First Workshop on Subword and Character Level Models in NLP*, 2017, doi:10.18653/v1/w17-4114.
- [8.] Qin, Ying, and Yingfei Zeng. "Research of Clinical Named Entity Recognition Based on Bi-LSTM-CRF." *Journal of Shanghai Jiaotong University (Science)*, vol. 23, no. 3, 2018, pp.

- 392–397., doi:10.1007/s12204-018-1954-5.
- [9.] Sterbak, Tobias. "Sequence Tagging with LSTM-CRFs." *Depends on the Definition*, 20 Apr. 2020, www.depends-on-the-definition.com/sequence-tagging-lstm-crf/.
- [10.] Utkarsh, Kumar. "Named Entity Recognition Using Bidirectional LSTM-CRF." *Medium*, Medium, 15 Mar. 2020,
- utkarsh-kumar2407.medium.com/named-entity-recognition-using-bidirectional-lstm-crf-9f49 42746b3c.
- [11.] Wang, Xuan, et al. "Cross-Type Biomedical Named Entity Recognition with Deep Multi-Task Learning." *Bioinformatics*, vol. 35, no. 10, 2018, pp. 1745–1752., doi:10.1093/bioinformatics/bty869.
- [12.] Wang, Yan, et al. "Biomedical Event Trigger Detection Based on Bidirectional LSTM and CRF." 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2017, doi:10.1109/bibm.2017.8217689.
- [13.] Yang, Li, et al. "Post Text Processing of Chinese Speech Recognition Based on Bidirectional LSTM Networks and CRF." *Electronics*, vol. 8, no. 11, 2019, p. 1248., doi:10.3390/electronics8111248.
- [14.] Yang, Xuemin, et al. "Bidirectional LSTM-CRF for Biomedical Named Entity Recognition." 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2018, doi:10.1109/fskd.2018.8687117.
- [15.] Yuzhimanhua. "Yuzhimanhua/Multi-BioNER: Cross-Type Biomedical Named Entity Recognition with Deep Multi-Task Learning (Bioinformatics'19)." *GitHub*, github.com/yuzhimanhua/Multi-BioNER.
- [16.] Zeyer, Albert, et al. "Towards Online-Recognition with Deep Bidirectional LSTM Acoustic Models." *Interspeech 2016*, 2016, doi:10.21437/interspeech.2016-759.