COURSE 11

Hermite inverse interpolation

Let $f: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}$. Consider the equation

$$f(x) = 0, \quad x \in \Omega. \tag{1}$$

Assume that α is a solution of equation f(x)=0 and $V(\alpha)$ is a neighborhood of α . If $y_k=f(x_k)$, where $x_k\in V(\alpha),\ k=0,...,m$, are approximations of $\alpha,\ r_k\in\mathbb{N}$, then if there exist $g^{(j)}(y_k)=(f^{-1})^{(j)}(y_k), j=0,...,r_k$, one considers the Hermite type interpolation problem.

Theorem 1 Let α be a solution of equation f(x) = 0, $V(\alpha)$ a neighborhood of α and $x_0, x_1..., x_m \in V(\alpha)$. For $n = r_0 + ... + r_m + m$, where r_k represents the multiplicity order of the nodes x_k , k = 0,...,m, if

 $f \in C^{n+1}(V(\alpha))$ and $f'(x) \neq 0$ for $x \in V(\alpha)$, we have the following Hermite approximation method for α :

$$\alpha \approx F_n^H(x_0, ..., x_m) =$$

$$= (H_n g)(0) = \sum_{k=0}^m \sum_{j=0}^{r_k} \sum_{\nu=0}^{r_k-j} \frac{(-1)^{j+\nu}}{j!\nu!} f_k^{j+\nu} v_k(0) (\frac{1}{v_k(y)})_{y=f_k}^{(\nu)} g^{(j)}(f_k),$$
(2)

where $f_k = f(x_k), k = 0, ..., m, g = f^{-1}$, and

$$v_k(y) = (y - f_0)^{r_0+1} \dots (y - f_{k-1})^{r_{k-1}+1} (y - f_{k+1})^{r_{k+1}+1} \dots (y - f_m)^{r_m+1}.$$

For $g = f^{-1}$ the corresponding Hermite polynomial is

$$(H_n g)(y) = \sum_{k=0}^m \sum_{j=0}^{r_k} h_{kj}(y) g^{(j)}(y_k),$$

and it satisfies the conditions:

$$(H_n g)^{(j)}(y_k) = g^{(j)}(y_k), \quad j = 0, ..., r_k; \quad k = 0, ..., m,$$

where h_{kj} are the fundamental interpolating polynomials, i.e.,

$$h_{kj}^{(p)}(y_{\nu}) = 0, \ k \neq \nu, \ p = 0, ..., r_{\nu}$$

 $h_{kj}^{(p)}(y_k) = \delta_{pj}, \ p = 0, ..., r_k$

and the corresponding interpolation formula is

$$g = H_n g + R_n g,$$

where R_ng is the remainder term.

Taking into account that

$$\alpha = g(0) \approx (H_n g)(0),$$

defines a new approximation to α we have that

$$F_n^H(x_0, ..., x_m) = (H_n g)(0)$$

is an approximation method for α .

Regarding the order of Hermite-type inverse interpolation method F_n^H , we have two results, first for the case of equal information (the same

multiplicity order for all the nodes x_k , k = 0, ..., m) and then for different multiplicities.

Theorem 2 (Equal information) The order $ord(F_n^H)$ is the unique positive root of the equation:

$$t^{m+1} - (r+1) \sum_{j=0}^{m} t^j = 0,$$

where r is the multiplicity order of the points x_k , $\forall k = 0,...,m$.

Theorem 3 (Unequal information) The order of F_n^H is the unique positive and real root of the equation:

$$t^{m+1} - (r_m + 1)t^m - (r_{m-1} + 1)t^{m-1} - \dots - (r_1 + 1)t - (r_0 + 1) = 0,$$

where $r_0, ..., r_m$ are real numbers, permutation of the multiplicity orders of the nodes x_k , k = 0, ..., m satisfying the conditions:

$$r_0 + r_1 + \dots + r_m > 1 \tag{3}$$

and

$$r_m \ge r_{m-1} \ge \dots \ge r_1 \ge r_0.$$
 (4)

Remark 4 The order of the Taylor-type inverse interpolation method, can be expressed as the solution of equation

$$t - (r_0 + 1) = 0,$$

where r_0 is the multiplicity order of the node x_0 .

Particular cases.

1) For nodes x_0 , x_1 ; with $r_0 = 0$, $r_1 = 1$, we have the following approximation method:

$$F_2^H(x_0, x_1) = x_1 - \left[\frac{f(x_1)}{f(x_0) - f(x_1)}\right]^2 (x_1 - x_0) - \frac{f(x_1)}{f(x_0) - f(x_1)} \frac{f(x_0)}{f'(x_1)}.$$

The *order* of this method is the solution of the equation:

$$t^2 - r_1 t - r_0 = 0$$
,

SO,

$$t^2 - 2t - 1 = 0,$$

and $p = 1 + \sqrt{2}$.

2) For nodes x_0 , x_1 , x_2 ; with $r_0 = r_1 = 0$; $r_2 = 1$, the method is:

$$F_4^L(x_0, x_1, x_2) =$$

$$= \frac{f(x_2)^2}{f(x_1) - f(x_0)} \left[\frac{x_0 f(x_1)}{[f(x_0) - f(x_2)]^2} - \frac{x_1 f(x_0)}{[f(x_1) - f(x_2)]^2} \right]$$

$$+ \frac{f(x_0) f(x_1)}{[f(x_2) - f(x_0)][f(x_2) - f(x_1)]} \left[1 + \frac{f(x_2)}{[f(x_2) - f(x_0)][f(x_2) - f(x_1)]} \right] \left[x_2 - \frac{f(x_2)}{f'(x_2)} \right]$$

The *order* of this method is the solution of the equation:

$$t^3 - 2t^2 - t - 1 = 0,$$

so p = 2.548.

Birkhoff inverse interpolation

Assume that α is a solution of equation f(x)=0 and $V(\alpha)$ is a neighborhood of α . If $y_k=f(x_k)$, where $x_k\in V(\alpha),\ k=0,...,m$, are approximations of $\alpha,\ r_k\in N$ and $I_k\subset\{0,...,r_k\}$, then if there exist $g^{(j)}(y_k)=(f^{-1})^{(j)}(y_k), j\in I_k$, one considers the Birkhoff type interpolation problem.

The Birkhoff polynomial

$$(B_n g)(y) = \sum_{k=0}^m \sum_{j \in I_k} b_{kj}(y) g^{(j)}(y_k),$$

satisfies the conditions:

$$(B_n g)^{(j)}(y_k) = g^{(j)}(y_k), \ j \in I_k, \ k = 0, ..., m,$$

where b_{kj} are the fundamental interpolating polynomials, i.e.,

$$b_{kj}^{(p)}(y_{\nu}) = 0, \ k \neq \nu, \ p \in I_{\nu}$$

 $b_{kj}^{(p)}(y_{k}) = \delta_{pj}, \ p \in I_{k}$

and the corresponding interpolation formula is

$$q = B_n q + R_n q,$$

where R_ng is the remainder term.

Taking into account that

$$\alpha = g(0) \approx (B_n g)(0),$$

defines a new approximation to α we have that

$$F_n^B(x_0,...,x_m) = (B_ng)(0)$$

is an approximation method for α .

Particular case.

1) Let $x_0, x_1 \in V(\alpha)$, $I_0 = \{0\}$, $I_1 = \{1\}$, so n = 1 and $y_0 = f(x_0)$, $y_1 = f(y_1)$.

Taking

$$F_1^B(x_0, x_1) = (B_1 g)(0),$$

we obtain the method defined by

$$F_1^B(x_0, x_1) = x_0 - \frac{f(x_0)}{f'(x_1)}.$$

9. Numerical methods for solving differential equations

We consider a Cauchy problem:

$$y' = f(x, y)$$

$$y(x_0) = y_0$$
(5)

with f defined on $D = \{(x, y) \in \mathbb{R}^2 \mid |x - x_0| \le a, |y - y_0| \le b\}, a, b \in \mathbb{R}_+,$ continuous and derivable.

9.1. Taylor interpolation method

Let $f \in C^p(D)$ and y be a solution of the problem (5). We attach Taylor interpolation formula to y, with respect to x_0 :

$$y = T_p y + R_p y,$$

where

$$(T_p y)(x) = y(x_0) + \frac{x - x_0}{1!} y'(x_0) + \dots + \frac{(x - x_0)^p}{p!} y^{(p)}(x_0),$$

and the remainder term:

$$(R_p y)(x) = \frac{(x - x_0)^{p+1}}{(p+1)!} y^{(p+1)}(\xi), \quad \xi \text{ between } x_0 \text{ and } x.$$
 (6)

We know only $y(x_0) = y_0$ and $y'(x_0) = f(x_0, y_0)$ in this polynomial, so we have to compute $y^{(k)}(x_0)$, k = 2, ..., p. Using equation (5) we get

$$y'' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}y', \dots$$

and so on. Taking the values of these derivatives in x_0 , the approximation of y is completely determined.

Denoting $y^{(k)} = f^{(k-1)}$, Taylor polynomial can be written as

$$(T_p y)(x) = y(x_0) + \frac{(x - x_0)}{1!} f(x_0, y(x_0)) + \frac{(x - x_0)^2}{2!} f'(x_0, y(x_0))$$
 (7)

$$+ \dots + \frac{(x - x_0)^p}{p!} f^{(p-1)}(x_0, y(x_0)).$$

If $|y^{(p+1)}(x)| \leq M_{p+1}$, we get the error delimitation:

$$y(x) - (T_p y)(x) \le \frac{|x - x_0|^{p+1}}{(p+1)!} M_{p+1}, \ x \in I.$$
 (8)

So, we've proved the following theorem:

Theorem 5 If $f \in C^p(D)$ then the solution y of the Cauchy problem (5) can be approximated by Taylor polynomial (7) with delimitation of the error given in (8).

Remark 6 Disadvantage: for large values of p, the derivatives $f^{(k)}$, k=1,...,p, are more and more complicated to compute. In practical applications, it is used for small values of p.

For the equidistant points $x_i = x_0 + ih$, with $y_i = y(x_i)$, i = 0, ..., N; $N \in \mathbb{N}$; $h = \frac{b-a}{N}$, Taylor interpolation method of order n can be written as

$$y_{i+1} = y_i + hT_n(x_i, y_i), (9)$$

with

$$T_n(x_i, y_i) = f(x_i, y_i) + \frac{h}{2!}f'(x_i, y_i) + \dots + \frac{h^{n-1}}{n!}f^{(n-1)}(x_i, y_i).$$
 (10)

9.2. Euler's method

Consider the equation (5) and an equidistant partition of the interval [a,b]: $x_i = x_0 + ih$, $h = \frac{b-a}{N}$; i = 0,1,...,N; $N \in \mathbb{N}^*$.

Remark 7 The method (9), for n = 1, i.e.,

$$y_{i+1} = y_i + hf(x_i, y_i), i = 0, 1, ..., N$$

is called Euler's method.

Geometrical interpretation: by Euler's method, the graph of the solution y is approximated by the polygonal line with vertices (x_k,y_k) , k=0,1,...,N, hence this method is also called *the method of polygonal lines*.

Solution. We have $h = \frac{1}{10}$, f(x, y) = 2x - y and we get

$$y(0.1) \approx y_1 = y_0 + 0.1 f(0, -1) = -0.9$$

 $y(0.2) \approx y_2 = y_1 + 0.1 f(0.1, -0.9) = -0.79$

 $y_{10} = 0.348678.$

Algorithm for Euler's method:

$$h \leftarrow \frac{b-a}{N}$$

$$\alpha \leftarrow y_0$$

for
$$i = 0, 1, ..., N - 1$$

$$y_{i+1} \leftarrow y_i + hf(x_i, y_i)$$

end

Example 8 Approximate the solution of the Cauchy problem:

$$y'(x) = 2x - y$$
$$y(0) = -1$$

on the equidistant nodes $x_i = a + ih$, i = 0, ..., N; $h = \frac{b-a}{N}$, with a = 0, b = 1, N = 10, using Euler's method.

9.3. Runge-Kutta methods

One way of finding these methods is based on Taylor interpolation. There are determined the values a_1 , α_1 and β_1 such that $a_1f(x + \alpha_1, y + \alpha_1, y + \alpha_2)$ to approximate Taylor polynomial of second order, given by (10):

$$T_2(x,y) = f(x,y) + \frac{h}{2}f'(x,y), \quad h = \frac{b-a}{N}, N$$
-given.

We have

$$f'(x,y) = \frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \cdot y'(x)$$

SO

$$T_2(x,y) = f(x,y) + \frac{h}{2} \frac{\partial f}{\partial x}(x,y) + \frac{h}{2} \frac{\partial f}{\partial y}(x,y)y'(x).$$

Expanding $f(x + \alpha_1, y + \beta_1)$ using Taylor series we get

$$a_1 f(x + \alpha_1, y + \beta_1) = a_1 f(x, y) + a_1 \alpha_1 \frac{\partial f}{\partial x}(x, y) + a_1 \beta_1 \frac{\partial f}{\partial y}(x, y) + a_1 (R_1 f) (x + \alpha_1, y + \beta_1).$$

Indentifying the coefficients of the terms f(x,y), $\frac{\partial f}{\partial x}(x,y)$ and $\frac{\partial f}{\partial y}(x,y)$, we obtain

$$a_1 = 1$$

$$\alpha_1 = \frac{h}{2}$$

$$\beta_1 = \frac{h}{2}y'(x) = \frac{h}{2}f(x, y).$$

In (9), for n = 2 we have

$$y_{i+1} = y_i + hT_2(x_i, y_i), \tag{11}$$

and replacing T_2 by $a_1 f(x + \alpha_1, y + \beta_1)$, it is obtained "the midpoint method":

$$y_0 = \alpha$$

 $y_{i+1} = y_i + hf\left(x_i + \frac{h}{2}, y + \frac{h}{2}f(x_i, y_i)\right), i = 0, ..., N - 1$

Runge-Kutta method of fourth order (one of the most used in practice):

$$y_{0} = \alpha$$

$$k_{1} = hf(x_{i}, y_{i})$$

$$k_{2} = hf\left(x_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}k_{1}\right)$$

$$k_{3} = hf\left(x_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}k_{2}\right)$$

$$k_{4} = hf\left(x_{i+1}, y_{i} + k_{3}\right)$$

$$y_{i+1} = y_{i} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}), \quad i = 0, ..., N - 1.$$

Runge-Kutta methods of second order:

Consider $y_0 = \alpha$.

1) Midpoint method

$$y_{i+1} = y_i + hf\left(x_i + \frac{h}{2}, y + \frac{h}{2}f(x_i, y_i)\right), i = 0, ..., N - 1$$

2) Modified Euler method:

$$y_{i+1} = y_i + \frac{h}{2} \left[f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i)) \right], \quad i = 0, ..., N-1$$

3) Heun method:

$$y_{i+1} = y_i + \frac{h}{4} \left[f(x_i, y_i) + 3f\left(x_i + \frac{2}{3}h, y_i + \frac{2}{3}hf(x_i, y_i)\right) \right], \quad i = 0, ..., N-1.$$

Algorithm for Runge-Kutta method of 4-th order:

$$h \leftarrow \frac{b-a}{N}$$
; $y_0 \leftarrow \alpha$

for
$$i = 0, ..., N$$

$$k_{1} = hf(x_{i}, y_{i})$$

$$k_{2} = hf\left(x_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}k_{1}\right)$$

$$k_{3} = hf\left(x_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}k_{2}\right)$$

$$k_{4} = hf\left(x_{i+1}, y_{i} + k_{3}\right)$$

$$y_{i+1} = y_{i} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

end

For the data from Example 8 we have the following graph. (The exact solution is $y(x)=e^{-x}+2x-2$.)

