Data Analysis of IBM Attrition

IBM 사조

공준택 김순영 김혜린 오희준 장인아

CONTENTS

01 INTRO

02 Variables

03 Visualization

Logistic Regression **05 Next Week**

01 INTRO

	Α	В	С	D	E	F	G	Н
1	Age	Attrition	BusinessTr	DailyRate	Departme	DistanceFr	Education	Education
2	41	Yes	Travel_Rar	1102	Sales	1	2	Life Science
3	49	No	Travel_Free	279	Research &	8	1	Life Science
4	37	Yes	Travel_Rar	1373	Research &	2	2	Other
5	33	No	Travel_Free	1392	Research &	3	4	Life Science
6	27	No	Travel_Rar	591	Research &	2	1	Medical
7	32	No	Travel_Free	1005	Research &	2	2	Life Science
8	59	No	Travel_Rar	1324	Research &	3	3	Medical
9	30	No	Travel_Rar	1358	Research &	24	1	Life Science
10	38	No	Travel_Free	216	Research &	23	3	Life Science
11	36	No	Travel_Rar	1299	Research &	27	3	Medical
12	35	No	Travel_Rar	809	Research &	16	3	Medical
13	29	No	Travel_Rar	153	Research &	15	2	Life Science
14	31	No	Travel_Rar	670	Research &	26	1	Life Science
15	34	No	Travel_Rar	1346	Research &	19	2	Medical
16	28	Yes	Travel_Rar	103	Research &	24	3	Life Science
17	29	No	Travel_Rar	1389	Research &	21	4	Life Science
18	32	No	Travel_Rar	334	Research &	5	2	Life Science
19	22	No	Non-Trave	1123	Research 8	16	2	Medical

Data set:

IBM 이직 데이터

왜 이직 데이터를 분석하는가?

♠〉뉴스

Tweet

G+1 1

출처: http://www.edaily.co.kr/news/NewsRead.edy?SCD=JC61&newsid=01872886615924656&DCD=A00306&OutLnkChk=Y

중소기업 조기 퇴사율 32.5%, 해결방안은?

입력시간 | 2017,05,01 11:08 | 정태선 기자 | windy@edaily,co,kr

How To / 리더십/조직관리 / 모바일 / 보안 / 부쟁(갈등 / 비즈니스)경제 / 소비자IT / 애플리케이션 / 이직/채용 / 인문한(교양

Andy Patrizio | CIO

©2017.05.02

'회사에서 가장 가치 있는 자산은 회사를 떠난다'는 격언이 있다. 그러나 최근 발표된 보안 조사 보고서에 따르면, 이 가장 가치 있는 자산을 따라 회사를 떠나 다시 돌아오지 않는 또다른 가치 있는 자산도 있다.

출처: http://www.ciokorea.com/news/34064

왜 이직 데이터를 분석하는가?

지나친 이직은 기업의 비효율을 초래

주제 :

IBM 직원들의 이직 결정 요인들을 분석하여 지나친 이직을 막기 위한 방법을 제시

02 VARIABLES

<반응 변수>

Attrition 이직 여부

<설명 변수>

- 모든 관측치에 대해 동일한 값을 가지는 변수 무시

Over18 StandardHours EmployeeCount

- 여러 카테고리로 나눔

- 현재 직장과 무관하게 정해지는 변수
- 입사 후 정해지는 변수 (만족도, 업무 등)
- 임금과 관련된 변수

1. 현재 직장과 무관하게 정해지는 변수

Age	나이	Gender	성별
TotalWorkingYears	경력	NumCompaniesWorked	일했던 직장 수
Education 1: Below College 2: College 3: Bachelor 4: Master 5: Doctor	교육수준	DistanceFromHome	집과의 거리
EducationField Human Resources Life Sciences / Marketing Medical / Other Technical Degree	전공	MaritalStatus Single/Married/Divorced	결혼 수준

2. 입사 후 정해지는 변수 - 1

Relationship Satisfaction 1: Low 2: Medium 3: High 4: Very High	관계 만족도	YearsAtCompany	직장 내 연차	
TotalWorkingYears	총 근무 기간(년)	YearsInCurrentRole	직무 연차	
TrainingTimesLastYear	작년 직업 훈련시간	YearsSince LastPromotion	승진 후 경과 년 수	
WorkLifeBalance 1: Bad 2: Good 3: Better 4: Best	일과 생활의 균형	YearsWithCurrManager	현재 상사와의 함께한 년 수	

2. 입사 후 정해지는 변수 - 2

BusinessTravel Non-Travel / Travel_Frequently Travel_Rarely	출장	JobLevel	직급
Department Human Resources Research & Development / Sales	부서	JobRole	직업 역할
EnvironmentSatisfaction 1: Low 2: Medium 3: High 4: Very High	환경만족도	JobSatisfaction 1: Low 2: Medium 3: High 4: Very High	직업 만족도
Jobinvolvement 1: Low 2: Medium 3: High 4: Very High	직장 소속감	OverTime	초과근무 여부
PerformanceRating 1: Low 2: Good 3: Excellent 4: Outstanding	업무평가		

3. 임금과 관련된 변수

HourlyRate	시급	DailyIncome	일급
MonthlyIncome	월 소득	MonthlyRate	월급
PercentSalaryHike	임금 상승률	StockOption StockOption	스톡옵션

03 VISUALIZATION

Factor 처리 되지 않은 변수들

(시각화의 편의를 위해)

```
dat$Education<-factor(dat$Education,ordered=T)</pre>
dat$EnvironmentSatisfaction<-factor(dat$EnvironmentSatisfaction,ordered=T)</pre>
dat$JobInvolvement<-factor(dat$JobInvolvement.ordered=T)</pre>
dat$JobSatisfaction<-factor(dat$JobSatisfaction,ordered=T)</pre>
dat$RelationshipSatisfaction<-factor(dat$RelationshipSatisfaction,ordered=T)</pre>
dat$WorkLifeBalance<-factor(dat$WorkLifeBalance,ordered=T)</pre>
dat$PerformanceRating<-factor(dat$PerformanceRating,ordered=T)</pre>
dat$JobLevel<-factor(dat$JobLevel,ordered=T)</pre>
dat$StockOptionLevel<-factor(dat$StockOptionLevel,ordered=T)</pre>
```

순서형 변수 처리

1. 현재 직장과 무관하게 정해지는 변수

2. 입사 후에 정해지는 변수

2. 입사 후에 정해지는 변수 - 업무

Marketing을 전공한 영업직의 직원들이 이직을 많이 하는 것은 아닐까?

2. 입사 후에 정해지는 변수 - 업무

2. 입사 후에 정해지는 변수 - 만족도

2. 입사 후에 정해지는 변수 - 만족도

3. 임금과 관련된 변수

대체적으로 월수입이 높은 사람보다 낮은 사람이 이직한 비율이 높음

04 LOGISTIC REGRESSION

step0 Over18 변수 factor 해제

Factor의 level이 하나인 경우는 Logistic Regression이 실행되지 않음

step1 단계적 알고리즘을 사용해 AIC를 기준으로 모델 선택

```
null<-glm(Attrition~1,data=dat,family="binomial")
full<-glm(Attrition~.,data=dat,family="binomial")
step(null,scope = list(lower=null,upper=full),direction = "both")</pre>
```

```
Call: glm(formula = Attrition ~ OverTime + JobRole + MaritalStatus +
    EnvironmentSatisfaction + JobSatisfaction + JobInvolvement +
    BusinessTravel + YearsInCurrentRole + YearsSinceLastPromotion +
    DistanceFromHome + NumCompaniesWorked + Age + WorkLifeBalance +
    RelationshipSatisfaction + TrainingTimesLastYear + YearsWithCurrManager +
    Gender + EducationField + TotalWorkingYears + YearsAtCompany +
    StockOptionLevel, family = "binomial", data = dat)
```

⇒ 선택된 변수가 너무 많음

step2 BIC를 기준으로 한 번 더 단계적 변수 선택

```
step(null,scope = list(lower=null,upper=aic.fit),direction = "both",k=log(nrow(dat)))

Penalty가 더 강한 BIC로 stepwise
```

최종 선택된 모형 (총 12개의 변수 선택)

```
Call: glm(formula = Attrition ~ OverTime + TotalWorkingYears + MaritalStatus +
    EnvironmentSatisfaction + JobSatisfaction + JobInvolvement +
    BusinessTravel + NumCompaniesWorked + DistanceFromHome +
    YearsSinceLastPromotion + YearsInCurrentRole + RelationshipSatisfaction,
    family = "binomial", data = dat)
```

: 초과 근무, 총 근무 년 수, 결혼 상태, 환경만족도, 직업만족도, 직업소속감, 출장, 일한 회사의 개수, 집과의 거리, 지난 승진부터 지난 년 수, 직무 연차, 관계 만족도

Coefficients:						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	0.509338	0.609768	0.835	0.403550		
OverTimeYes	1.755423	0.175447	10.005	< 2e-16	***	
TotalWorkingYears	-0.111046	0.017428	-6.372	1.87e-10	***	
MaritalStatusMarried	0.323972	0.243162	1.332	0.182753		
MaritalStatusSingle	1.299079	0.243304	5.339	9.33e-08	***	
EnvironmentSatisfaction	-0.393657	0.076620	-5.138	2.78e-07	***	
JobSatisfaction	-0.382299	0.075345	-5.074	3.90e-07	***	대부분 유의한 변수 선택
JobInvolvement	-0.588540	0.115341	-5.103	3.35e-07	***	1172 11-12 27 24
BusinessTravelTravel_Frequently	1.862590	0.394330	4.723	2.32e-06	***	
BusinessTravelTravel_Rarely	1.070638	0.367880	2.910	0.003611	**	
NumCompaniesWorked	0.152567	0.034432	4.431	9.38e-06	***	
DistanceFromHome	0.039182	0.009934	3.944	8.00e-05	***	
YearsSinceLastPromotion	0.177097	0.035831	4.943	7.71e-07	***	
YearsInCurrentRole	-0.134431	0.035535	-3.783	0.000155	***	
RelationshipSatisfaction	-0.246547	0.076561	-3.220	0.001281	**	

step3 Likelihood Test (모형 적합성 검정)

null model 과 fit model 비교해서 모델의 적합도 검정

- ⇒ p-value가 매우 작다.
- ⇒ fit model이 유의하다.

Logistic Reg. Next week

step4 Durbin-Watson 검정 (독립성 검정)

> dwtest(bic.fit)

Durbin-Watson test

data: bic.fit

DW = 1.9212, p-value = 0.06553

alternative hypothesis: true autocorrelation is greater than 0

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

$$u_t = \alpha u_{t-1} + \omega_t$$

$$u_t = \omega_t + \alpha \omega_{t-1} + \alpha u_{t-2}$$

$$u_t = \omega_t + \alpha \omega_{t-1} + \alpha^2 \omega_{t-2} + \alpha^2 u_{t-3}$$

$$u_t = \omega_t + \alpha \omega_{t-1} + \alpha^2 \omega_{t-2} + \alpha^3 \omega_{t-3} + \dots$$

OLS method에서 Autocorrelation (자기상관성) 없다는 가정 필요

$$H_0$$
: $a = 0$ \Leftrightarrow 가정 만족 p-value 0.064 \Leftrightarrow 가정 약하

OverTime (초과 근무)

MaritalStatus (결혼 상태)

BusinessTravel (출장)

NumCompaniesWorked (일했던 직장 수)

DistanceFromHome (집과의 거리)

YearsSinceLastPromotion (승진 후 경과 시간)

당장 IBM을 떠날 거야!

TotalWorkingYears (총 근무 기간)
EnvironmentSatisfaction (환경 만족도)
JobInvolvement (직업 소속감)
JobSatisfaction (직업 만족도)
YearsInCurrentRole (직무 연차)
RelationshipSatisfaction (관계 만족도)

IBM에 계속 있어야지!

1. 어떤 변수가 이직에 중요한 영향을 주는지 알아볼 수 없을까? (Tree 모형)

2. IBM 직원들의 지나친 이직을 막을 수 있는 방법 제안

