NASA Contractor Report 3676

The COREL and W12SC3 Computer Programs for Supersonic Wing Design and Analysis

William H. Mason and Bruce S. Rosen

LOAN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND AFB, N.M. 87117

CONTRACT NAS1-15357 DECEMBER 1983

NASA Contractor Report 3676

The COREL and W12SC3 Computer Programs for Supersonic Wing Design and Analysis

William H. Mason and Bruce S. Rosen Grumman Aerospace Corporation Bethpage, New York

Prepared for Langley Research Center under Contract NAS1-15357

Scientific and Technical Information Branch

	,

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
REVIEW OF THE AERODYNAMIC THEORY	3
COREL Program	3
W12SC3 Program	4
W12SC3 Program Options	5
TYPICAL APPLICATIONS OF THE PROGRAMS	12
SOME AREAS REQUIRING SPECIAL CARE	39
COMPUTER PROGRAM DESCRIPTIONS	41
COREL Program	42
W12SC3 Program Changes from USSAERO	50
COMPUTER REQUIREMENTS	55
Core Size	55
Execution Time	59
Sample JCL	62
INPUT DESCRIPTION	63
COREL Input Instructions	64
Craidon Geometry Definition	72
Wl2SC3 Input Instructions	79
W12SC3 Output Data	94
SAMPLE CASE	96
Input Data	96
Output (with Annotations)	100
CONCLUSIONS	182
REFERENCES	183

THE COREL AND W12SC3 COMPUTER PROGRAMS FOR SUPERSONIC WING DESIGN AND ANALYSIS

William H. Mason
Bruce S. Rosen
Grumman Aerospace Corporation

SUMMARY

This report contains a description of two computer codes useful in the aerodynamic design of wings for supersonic maneuvering. The codes are not restricted to the supersonic maneuvering case however, and should be valuable in a wide variety of applications. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent correction to the solution can be made in order to account for nonconical effects. The flowfield is assumed to be irrotational (Mach numbers normal to shock waves less than about 1.3), and the full potential equation is solved to obtain detailed information on the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes for the particular case of fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions, and a sample case.

INTRODUCTION

The "standard" computational methodology used for the aerodynamic design of efficient supersonic wings is based entirely on linear theory and is primarily intended for supersonic transport applications. A summary of that methodology has been given by Miller, et al, in Ref. 1. Typically, fighter aircraft design presents situations in which many of the assumptions of linear theory are no

longer valid. These include higher lift coefficients, lower wing sweeps, and round leading edges. A more thorough discussion of the problem is contained in Ref. 2. In particular, the two codes described in this report were developed as tools for the aerodynamic design of wings employing the Super Critical Conical Camber concept* (SC³). SC³ is a wing concept for supersonic maneuvering through which high supersonic lift coefficients are obtained. This is accomplished by controlling the crossflow development such that the expansion around the leading edge becomes supercritical without generating adverse pressure gradients of sufficient strength to separate the boundary layer. The concept is achieved primarily by a conical cambering of the wing surface and is described in more detail in Ref. 3.

The baseline codes for the computer programs described in this report were not written by the authors. However, extensive modifications to these codes were made by the authors and their co-workers at Grumman. In particular, the fully nonlinear conical flow "COREL" method, Ref. 4, was written in the Grumman Research Department by Bernard Grossman, and the linear nonconical "W12SC3" method is based on the so-called "Woodward II" code, Ref. 5. In addition, the COREL code makes use of the Craidon surface patch program, Ref. 6, as modified by Mike Siclari of the Grumman Research Department to obtain spanwise geometry directly. The details of this extension are described in Ref. 7. The W12SC3 program is a modification of the USSAERO program, Ref. 8, and has the capability to perform a number of calculations not available in that program. In addition to the standard complete analysis capability, W12SC3 can treat: full design and optimization; mixed design-analysis and design-optimization (including a conical panel capability); and a local correction to linear supersonic theory wing calculations, the Carlson Correction, Ref. 11. It also has the capability to calculate wingon-body effects using an interference shell placed around the body rather than on the body itself. Many of these options use methods similar to the original "Woodward-I" analysis and design code (Ref. 9). In addition to the work by the authors, important contributions to the W12SC3 code were also made by A. Cenko

^{*}Note that the linear theory code, W12SC3, retains all the "normal" options available in the baseline code.

and J. Malone. A key feature of the two methods is the use of the Craidon geometry program input, Ref. 12, to define geometry for both computer programs.

This report contains a brief review of the aerodynamic theory used by both codes, followed by a number of examples and some comments on the use of the methods in aerodynamic design. Subsequent sections provide a description of the computer programs, computer requirements for running the codes, detailed input descriptions, and a sample case.

REVIEW OF THE AERODYNAMIC THEORY

The details of the methods are contained in the references. However, a brief overview of the aerodynamic theory is presented here in order to summarize and emphasize the assumptions employed.

COREL Program

The important nonlinear and mixed subsonic/supersonic crossflow that develops on supersonic wings at high lift coefficients is computed using the COREL code developed by B. Grossman, Ref. 4. The method computes the flowfield about a given spanwise section by assuming that the geometry passing through the specified section is conical. The results obtained using this approximation can then be adjusted to account for the actual (nonconical) geometry. The flowfield is assumed to be represented by the potential flow equation, which is a good approximation as long as the Mach number normal to the shock waves is less than about 1.3.

Under the stated assumptions, the calculation becomes similar to the 2-D transonic problem - and most of the recent advances in transonic computational fluid dynamics are directly applicable. Therefore, COREL solves the problem by a finite-difference formulation in which the bow and crossflow shocks are captured as part of the solution. Other distinguishing characteristics are the use of a nonconservative form of the finite-difference equations and the sequence of mappings transforming the problem from the physical domain to the computational domain. In COREL a single Joukowski transformation is used for the wing, so that

the wing becomes an exact coordinate surface only for the case of uncambered circular or elliptic spanwise sections.

This particular version of the code includes improvements over the published description, Ref. 4. The most significant improvement is the use of an initial solution obtained on a crude grid to estimate the bow shock position, followed by a re-mapping using the computed bow shock location. This reduces the importance of the initial bow shock estimate and improves the convergence of the method. A second major refinement is the use of an analytic expression for the singular part of the mapping metric rather than the use of finite-difference formulas to find the metric gradients (which can be nearly singular). Finally, the program has been generalized to allow for relaxation sweeps to be made partly in the ring direction and partly in the column direction (see computer requirement for an explaination of terminology). This allows some cases to run which would not converge previously.

The spanwise section analyzed in COREL can either be specifically input or extracted from the Craidon geometry data set, Ref. 6. The Craidon geometry section comes from the Siclari program, Ref. 7, for wing analysis. This code is a modification of the Craidon program, Ref. 6, so that the section shape can be obtained at arbitrary locations and requires the solution of the surface patch equations by a Newton iteration. The surface patch program can also be used to obtain the difference between the true streamwise slope of the surface and the streamwise slope of a conical surface with the same spanwise section. This slope increment can then be used to make a correction to the pressure coefficient to approximate the pressures on the actual nonconical geometry.

W12SC3 Program

The panel method program used for calculating the linear theory estimate of the aerodynamics of the configuration is based on the Woodward codes (Ref. 5 and 9). Although the most useful elements of both codes have been combined together with a number of additional features, the baseline code for the development effort was the Woodward B-00 code obtained from the NASA Langley Research Center in November 1976. The W12SC3 code consists of a combination of source and vortex

panel singularity distributions. The vortex singularities are distributed in either a constant or a piecewise linear fashion streamwise and are piecewise-constant spanwise. The source singularities are constant on body panels and piecewise-linear streamwise on wing panels.

The W12SC3 code is a Grumman version of the Woodward II code developed for the SC^3 study and can be used to perform the following aerodynamic functions:

- Full Analysis
- Full Design
- Full Optimization
- Mixed Design-Analysis
- Mixed Design-Optimization.

The W12SC3 program applies linear theory panel methods to find the solutions for wing-body configurations. Wing-on-body effects are calculated on the arbitrary body model (as in Woodward II), or the user may specify that wing-on-body effects be calculated on an interference shell that approximates the actual body shape (as in Woodward I).

W12SC3 Program Options

Reference 5 gives a detailed discussion of the aerodynamics methodology contained in W12SC3 and should be considered a primary reference for the new program. Certain differences do exist, however, between the aerodynamic singularity distributions used in W12SC3 and those used in Woodward II. During the execution of several W12SC3 options, the linearly varying vortex panels used exclusively in Woodward II are replaced by constant-strength vortex panels. When this occurs, no extra singularities are used at supersonic trailing edges and control point locations are fixed at 95% panel chord (85% for subsonic Mach numbers). These changes are necessary for implementing the design and optimization options (see Ref. 10) and for cases where wing-on-body effects are calculated on an interference shell. In addition, constant-pressure panels improve analysis results for wings with supersonic leading edges. It should be emphasized, however, that the W12SC3 program can reproduce Woodward II pressure distributions when desired.

The final output of each of the new design and optimization options is a wing camber distribution. This camber distribution, together with wing thickness slopes, body shape, and aircraft angle-of-attack are used to calculate aero panel singularity strengths. The resulting vortex and source singularity distributions are then used to determine surface velocities and pressure coefficients.

The W12SC3 program can be used to calculate results for multiple Mach numbers. Each new Mach number is compared to the previous value to determine if a recalculation of the required aerodynamic influence matrices is necessary. Drag polar results can be obtained by utilizing the camber distribution from a previous cycle, requesting the previous Mach number but changing the aircraft angle-of-attack.

The five analysis, design, and optimization options available to the W12SC3 program user, as well as other features of the code, are briefly described below. For each of the following options, if a body is part of the configuration, body and wing-body interference effects are included in the calculations.

<u>Full Analysis</u>. - The program user specifies configuration geometry, Mach number, and aircraft angle-of-attack. The given camber distribution, thickness distributions, and aircraft attitude are used to determine surface velocities and pressures. A camber distribution generated during a previous design or optimization cycle can be used for this calculation.

Full Design. - The program user specifies configuration geometry, Mach number, and a lifting-pressure coefficient (C - C) distribution p_{LOWER} p_{UPPER} for all wing panels. The W12SC3 Program then calculates the wing camber distribution required to produce the input lifting-pressure coefficients.

<u>Full Optimization</u>. - The program user inputs configuration geometry, Mach number, and the type of loading constraint desired. The constraint can be either the wing lift coefficient $^{\rm C}_{\rm L}$ or the wing $^{\rm C}_{\rm L}$ and center of pressure, $^{\rm X}_{\rm CP}$. The program then determines the wing camber distribution for minimum wing drag subject to the given constraints.

Mixed Design-Analysis. - The program user specifies configuration geometry, Mach number, and a lifting-pressure coefficient or camber-slope value for each wing panel. For panels where cambers are input, the input slope is assumed to be specified at the 95% box chord (85% for subsonic Mach numbers). The program will then determine the camber slopes where pressures were given, and pressures where camber slopes were given.

An additional SC^3 option will perform a conical mixed design-analysis. For this case:

- 1. A conical ray dividing the wing planform into a supercritical panel (outboard of the dividing ray) and a subcritical panel (inboard of the dividing ray) is defined.
- 2. At control points on the supercritical panel, pressures are prescribed according to a conical lifting-pressure distribution, ΔC_p vs η . These pressures may have been calculated by COREL (combined COREL/W12SC3 run) or supplied by the user (W12SC3 alone run).
- 3. At control points on the subcritical panel, camber-slopes are prescribed to be those the code would have used for a full analysis cycle or camber slopes that have replaced these slopes during a previous design or optimization cycle.
- 4. The code then determines camber-slopes where pressures were given, and pressures where camber-slopes were given.

Mixed Design-Optimization (constrained Wing Optimization). - The program user inputs configuration geometry, Mach number, and the wing ${\rm C_L}$ (and ${\rm X_{CP}}$) constraint(s) desired. In addition, the lifting-pressure coefficients on an arbitrary number of wing panels are specified. The program then determines the wing camber-slopes required to minimize wing drag subject to the given constraints. The program user has the option of minimizing drag on either the total wing planform or on the portion of the wing where pressures have not been specified.

An additional SC^3 option will perform a conical mixed design-optimization. This option is similar to the conical mixed-design-analysis option: wing camber-slopes at control points on the subcritical panel are determined so as to

minimize wing drag subject to the wing lift and moment constraints, as well as producing the specified conical lifting-pressure distribution at control points on the supercritical panel.

Wing-on-Body Effects

Wing-body configurations may be modeled using one of two distinct methods:

- 1. Wing and body are paneled using source panels to account for the entire flow disturbance on the body (as in Woodward II), or
- 2. In addition to the wing and body source panel models, an interference shell that approximates the actual body shape is placed about the body (as in Woodward I). This constant cross-section shell model is comprised of planar vortex singularities similar to those on the wing. The wing-body interaction due to lift is then treated approximately by applying the boundary conditions on the interference shell rather than on the actual body surface. The interference shell is, in effect, another lifting surface and therefore the interference shell paneling can be also used to model additional nacelle, wing, or tail segments. However, the solution algorithm is structured such that these additional segments would be considered "body" parts, and thus their slopes are held constant during any design or optimization calculations. This additional flexibility could be quite useful for some cases.

Control Point Locations

For linearly varying vortex singularities (full analysis only) the control point location and number of singularities along each wing chord are computed automatically by the program. The locations selected are dependent on the flight Mach number and the wing-streamwise-strip leading and trailing edge sweep angles (see Ref. 5, pages 43-45). If constant-pressure panels are specified (Woodward I type panels), the control point location is fixed at 95% of the box chord.

For most options, the W12SC3 program automatically selects Woodward I type vortex panels. This occurs if:

- Any option except full analysis is chosen, or
- The user inputs wing control-point camber-slopes, or
- Wing control point camber slopes from a preceding design or optimization cycle are used, or
- Interference shells are used.

Determination of Singularity Strength

The original Woodward II Code utilizes iterative techniques to determine vortex and source singularity strengths. Four methods - blocked Jacobi, blocked Gauss-Seidel, blocked controlled successive overrelaxation, and blocked successive overrelaxation - are available for the full analysis case only. The W12SC3 program also provides a fifth solution technique which is based on inversion of the aerodynamic influence matrix (this is the only solution technique available for the full and mixed design and optimization options.) The blocked Jacobi and the matrix inversion methods are described in Ref. 5 and 9, respectively.

The matrix inversion technique would normally be used in analysis cases when the iterative methods fail to converge for a given set of boundary conditions. However, for drag polar calculations, the inversion technique can be more efficient than use of the iterative methods. This efficiency is, in part, a result of storing the required inverse aerodynamic matrix. For repeated Mach numbers, a new singularity distribution is obtained by a single matrix-multiplication step utilizing new boundary conditions.

Camber Distributions

Camber distributions can be obtained by three methods within the W12SC3 Program.

The first type is a user-supplied mean camber-line distribution, given along two or more airfoil chords and referenced to the leading edge Z-height at each chord, as in the standard Craidon-type input, Ref. 6. After the wing paneling has been calculated, the mean camber-line surface is curve-fit using spline interpolation and a slope value is assigned to the leading and trailing edges of each panel.

The second type of camber distribution is also supplied by the program user. This optional data input consists of camber slopes, given one per panel, evaluated at each panel control point location.

The third type of camber distribution is calculated by the program during execution of the full and mixed design and optimization options. The resulting camber slopes are given at each panel control point.

When camber slopes are obtained as part of the solution, wing camber-shapes are determined as in Woodward I by integrating camber slopes along each airfoil chord.

Pressure Distributions

Velocities and pressures are calculated at all wing, body, and interference shell control points. The Carlson Correction (a local correction to supersonic linear theory wing calculations) is applied at wing control points.

Panels are then assigned pressures. For linearly varying vortex panels, the pressures at 50% panel chord are found by interpolating between control points. For constant vortex panels, the control point pressures (pressures at 85% or 95% panel chord) are used.

The user may ask for wing spanwise pressure distributions at specified axial stations. These are found by streamwise interpolation between control points.

Force and Moment Coefficients

Panel pressure coefficients are used to calculate values of normal force, axial force, and pitching moment about a reference point for each aero panel in the configuration model. Total lift, drag, and moment coefficients are then obtained by summing the appropriate force and moment components with respect to the freestream direction and normalizing the results with a user-supplied reference area. The panel inclination angles used for these calculations depend on the wing thickness slopes, wing camber slopes, and type of panel singularity.

Wing thickness slopes are presently evaluated at panel centroids, as in the case of the Woodward II program. For linear vortex panels, camber slopes are also evaluated at each panel centroid. For constant strength vortex panels, however, camber slopes at the 75% chord are used rather than the centroidal location. This change was made to improve drag predictions. The rationale is discussed fully in Ref. 9, pages 95-97.

Total force and moment coefficients are found for the body, the wing, and the interference shell, as well as for the full configuration. Wing and full-configuration values based on the Carlson Correction pressures are also calculated.

For mixed design-analysis and mixed design-optimization options, exposed wing (panels where pressures are not specified) forces are also calculated.

Paneling Rules

The following rules should be followed when modeling configurations:

- A total of 1653 panels may be used to model all surfaces
 - 551 wing, fin, and canard panels
 - 551 shell and additional nacelle, wing, and canard panels
 - 551 body panels
- A total of 19 streamwise strips is allowed for all wing, fin, and canard panels
- The maximum number of panels in the streamwise direction is 29 on each wing, fin, or canard surface
- A total of 29 panels in the streamwise direction is allowed for all body segements
- The maximum number of panels used to model the body cross-section is 19 on each body segment
- A total of 19 streamwise strips is allowed for all interference shell and additional nacelle, wing, and canard surfaces
- The maximum number of panels in the streamwise direction is 29 on each interference shell and each additional nacelle, wing, and canard surface

- If utilizing iterative solution techniques, the number of panels on circumferential fuselage strips should be an integer factor of 60. This is not a rigid rule, however, and can be relaxed if matrix inversion is used as a solution method or if the iteration techniques converge in a reasonable number of cycles
- For design-optimization problems, a uniform wing paneling distribution should produce smoother results in most cases (see Ref. 10)
- For calculation of leading edge thrust from the computed pressure distribution, a nonuniform streamwise spacing is necessary with leading edge boxes on the order of 10⁻² to 10⁻³ chord lengths. Spanwise cosine spacing will also improve results. A limited number of analyses indicate that constant-strength vortex panels (Woodward I panels) produce the most accurate results.

TYPICAL APPLICATIONS OF THE PROGRAMS

The two programs each contain numerous options, and together they can be used to handle most of the problems that arise during supersonic wing design. Some examples illustrating how these codes are used and how the results can be expected to agree with experimental data are presented in this section.

The COREL code computes the pressure distribution over a specified spanwise section and thus the design evolves through repetitive submissions of the code, with the user modifying the spanwise sections based on the previous analysis results. An example of a typical starting point for design is shown in figure 1, which illustrates the COREL predictions for a symmetric section. The predictions for the expansion around the leading edge to supercritical crossflow levels, followed by a strong crossflow shock wave, agree well with the experimental data. These results are taken from Ref. 13. The result for a case in which the spanwise section has been carefully shaped to obtain high lift and reduce the crossflow shock wave is shown in figure 2, also extracted from Ref. 13. In both cases the geometry is purely conical. Typical results for the more representative case of nonconical geometry are given in figure 3. The wing was primarily designed using the equivalent conical section correction in COREL, together with the more general (and expensive) NCOREL method (Ref. 14). The experimental data are from

Figure 1. - Comparison between experiment and COREL spanwise pressure distribution for a symmetric section at M = 1.70 (from ref. 13).

Figure 2. - Comparison between experiment and COREL spanwise pressure distribution for a cambered section at M = 1.62 (from ref. 13).

Figure 3. - Typical predictions of COREL and COREL + nonconical correction for the demonstration wing of ref. 15, and including NCOREL predictions, ref. 16.

Figure 3. - Continued.

Figure 3. - Concluded.

Ref. 15. The nonconical correction to the COREL results provide predictions that are almost as good as the solution of the complete equations and demonstrates the value of the COREL code in performing wing design.

Several options in the W12SC3 code require illustrative examples. Representative problems are the basic analysis with and without the interference shell, the effect of the Carlson correction, and the mixed design-optimization. Figure 4 shows the panel model for the sample case given in the original Woodward II report, Ref. 5. A pressure distribution near the wing root is shown in figure 5. Figure 5A reproduces the results for the original example case (M = 2.01, $\alpha = 5^{\circ}$). This is the case for which data are available and the figure shows the problem with "wiggles" that can arise, the elimination of the wiggles with the

Figure 4. - Singularity paneling for wing-body analysis.

R83-0961-007PP

Figure 5. - Wing-body analysis: effect of interference shell on W12SC3 wing pressures, and comparison with data.

Figure 5. - Concluded.

use of the interference shell, and the improved agreement with data that occurs when the Carlson correction is used. Figure 5B provides the same result for M = 1.72. This case shows the dramatic improvement in the wing-body interference results when the body source singularities are not required to account for the carry-over lift. Figure 6 shows typical results of the Carlson correction in a more severe case for which more exact analysis results are available, Ref. 16. Figure 7, taken from Ref. 17, provides the results for a typical case with a large body and canard.

An example of the use of the conical panel mixed-design-optimization for the planform given in figure 8 is presented in figure 9. In this case the mixed design option is used to study the sensitivity of the minimum drag to the level and extent of the prescribed pressure on the leading edge panel. This type of analysis is used to determine the target pressure distributions for the maneuver wing. Figure 10 shows the predicted optimum pressure distribution, while figure 11 provides a sample of the camber distribution. Notice that the optimization results in smooth pressure and camber distributions when the drag is minimized for the entire surface, even though the method does not explicitly require this. In some cases the results are not as smooth. Consider the cranked leading edge planform given in figure 12. In this case the minimum drag pressure and camber distributions, given in figures 13 and 14 respectively, show an irregular shape near the interface between the pressure-fixed and pressure-free boundary.

The experiment of Ref. 15 can be used to evaluate the drag predictions. The pressure predictions of W12SC3 corresponding to the case given in figure 3 are shown in figure 15. These results show generally good agreement except in the region near the leading edge where the crossflow is supercritical. In this case, the very good agreement with the drag data shown in figure 16 was obtained by taking the drag prediction of the W12SC3 code and replacing the predicted volumetric wave drag with the value obtained from the wave drag program of Ref. 18. These results are obtained despite the poor agreement with the pressure predictions near the leading edge. Other factors which are not accounted for in the analysis include the crossflow shock wave drag and the viscous interaction at the trailing edge. Also, note that the agreement with the lift and moment results is not as good as the drag polar (see figure 17).

R83-0961-009PP

Figure 6. - Comparison of W12SC3 with exact solution - effect of Carlson correction.

DELTA WING GEOMETRY FROM AIAA 79-0345

O W12SC3 - BASIC SOLUTION

-0.4

 $\Lambda = 71.6^{\circ}$

M = 1.97

R83-0961-010PP

Figure 6. - Continued.

DELTA WING GEOMETRY FROM AIAA 79-0345

Figure 6. - Concluded.

A. PANEL MODEL FOR WING-BODY-CANARD ANALYSIS

R83-0961-012PP

Figure 7. - Comparison of W12SC3 with conceptual wing-body-canard experimental data of ref. 15.

Figure 7. - Continued.

C. FLAT WING

Figure 7. - Concluded.

PURE TRAPEZOIDAL PLANFORM

Figure 8. - Geometry and panel model for SC^3 wing design example.

R83-0961-016PP

Figure 9. - Drag performance of SC wing design from linear theory using trapezoidal planform of Figure 8.

DRAG MINIMIZED ON ENTIRE SURFACE

DRAG MINIMIZED ON SURFACE INBOARD OF η OR (SUBCRITICAL PANEL)

R83-0961-017PP

Figure 10. - Minimum drag pressure distributions for the $\eta_{\rm DR}$ = 0.616 case shown in Figure 8.

R83-0961-018PP

Figure 11. - Minimum drag camber distributions for the $\eta_{\,\mathrm{DR}}$ = 0.616 case shown in Figure 8.

Figure 12. - SC^3 wing design model for cranked leading edge example.

Figure 13. - Effect of addition of L.E. "crank".

Figure 14. - Wing slopes for mixed design with straight and cranked leading edge.

Figure 15. - Pressure predictions from W12SC3 for demonstration wing of ref. 15.

Figure 15. - Continued.

Figure 15. - Concluded.

W12SC3 RESULTS FOR 19X20 PANELS

Figure 16. - SC^3 demo wing performance: basic leading edge, M = 1.62 (from ref. 15).

Figure 17. - SC^3 demo wing: lift and moment, basic leading edge, M = 1.62 (from ref. 15).

SOME AREAS REQUIRING SPECIAL CARE

To obtain good results using computational aerodynamics methods, the user must understand the basic ideas and underlying assumptions used. In addition, he must develop his skills using the code by running some model problems and carefully studying the results. In this section we point out some of the things to look for in studying the results to ensure that the desired solution is in fact being computed, and include some comments on limitations that still exist in some areas.

In using COREL, certain checks should be made by looking at the output from each run:

- 1. Check the iteration history to verify that the SLOR iteration is converging.
- 2. Check that JSHMAX and JSHMIN, the maximum and minimum locations of the bow shock in the computational grid, are "reasonable". The value of JSHMAX should be at least two or three mesh points in from the mesh edge, and JSHMIN should be at least halfway between the body and the mesh edge. Normally, JSHMAX and JSHMIN are nearly equal after the solution is remapped.
- 3. Check that no points violate diagonal dominance by making sure that NPVD is zero in the iteration history.

If COREL does not work, it is normally due to a geometry problem or an "extreme" Mach number. (An "extreme" Mach number can be quantified relative to the sonic leading edge Mach number. If the Mach number normal to the leading edge is much greater than about 1.1, it is an "extreme" case, and is one for which the initial guess for the bow shock location is likely to be poor. The first step in troubleshooting a failed COREL run is to plot the input geometry points and verify that they are correct. The next step is to check the mapped body and shock locations. These should be relatively smooth, and the shock must always be outside the body. The singularity location should be checked to ensure that it is inside the leading edge. The initial shock position can be controlled by the input parameter EPSHKI. A small value (~0.5) will move the shock "out" in

the computational mesh (away from the body), while a large value (~1.6) will move the shock "in" in the grid.

The solution algorithm is extremely insensitive to changes in geometry typical of design-point work so that, once the code appears to be performing properly, the design work can be accomplished without excessive concern for the reliability of the computed results.

For W12SC3 calculations, the iteration history should also be checked to ensure that convergence occurs when the iterative solution procedure is used. For cases where W12SC3 does not converge, the direct solution algorithm can be used, although for large numbers of panels this option could become prohibitively expensive. In some cases, small changes in Mach number or panel layout elimmate convergence problems. No precise rules for doing this have been developed.

In defining geometry for COREL, two additional items require consideration. When using the Craidon geometry to define the section for analysis, adequate definition for the spanwise section must be provided near the leading dege. A rule of thumb is that several (3) points should be specified between the leading edge and one leading-edge radius aft of the leading edge. In addition, the point spacing should not change abruptly. This definition accuracy is consistent with the airfoil definition used in specifying modern transonic airfoils. However, because supersonic sections are usually thinner than transonic sections, their adequate definition requires points much closer to the nose when based on the chord. A second problem area is the analysis of spanwise sections for which the spanwise cut intersects the trailing edge. COREL requires that a spanwise section be defined beginning at the centerline. When the trailing edge is cut, the spanwise section must be continued to the centerline. A very thin section (0.1% semi-span) can be used to do this. Because the cases of interest have supersonic trailing edges, the addition of this artificial section does not affect the solution on the wing. However, the additional section should be smoothly appended to the actual section, and it must intersect the centerline such that the origin is included inside the section.

Similarly, the W12SC3 code also requires some special attention in several areas. The main area requiring special care is the modeling of wings that are just slightly non-coplanar. For these cases, the influence coefficients can become erratic with resulting "wiggles" in the pressure distribution. In order to avoid this problem, the geometry should be modeled as several straight segments spanwise, with dihedral breaks of at least 10° instead of with a continuously varying spanwise dihedral (camber) with a break of 1° or 2° between each segment. A second situation in which "wiggles" can arise is use of the arbitary body source solution alone to account for the wing-body interference; when this occurs, the use of an "interference shell" will practically eliminate the wiggles in the pressure distribution on the wing. This approach is slightly more expensive, but appears to cure the wiggle problem reliably.

One area in which the Craidon geometry contains a severe restriction on the generality of the input is the specification of canard twist. In order to include canard twist, the canard can be input as a nacelle in the W12SC3 input section. Finally, care should always be taken to ensure that a total of 20 spanwise rows of wing panels is not exceeded. This restriction in the USSAERO code can be overcome by using nacelle panels to replace canard or tail wing panels.

A problem that was discovered in implementing the "Carlson correction" is the accuracy of the spanwise velocity. Although the spanwise velocity off the surface is given accurately, the spanwise velocity on the surface is incorrect. An approximate correction based on uncambered wing results is made to the spanwise velocity used in the Carlson correction. Attempts to correct the spanwise velocity by fundamental changes in the equations were unsuccessful.

COMPUTER PROGRAM DESCRIPTIONS

Both programs are designed to run on CDC computers with the NOS operating system. However, the codes are written to be essentially independent of the operating system and can, in fact, be converted for use on IBM computers without any particular difficulty. No general description of COREL exists, so that this report provides the overall description of the code. The actual COREL computer

code contains numerous comment cards describing the computations and allowing for code modifications. The W12SC3 code description is presented as changes from USSAERO, which has been described in detail in other reports.

One important distinction between the two codes is the coordinate system definition. In COREL, Z is aligned with the body axis and X is in the spanwise direction. W12SC3 uses the standard coordinate system in which X is in the body direction, while Y is the spanwise coordinate. These distinctions should be kept in mind while working with the codes.

COREL Program

The following description provides sufficient information to troubleshoot problems and make code modifications. Figure 18 provides a chart with the overlay breakdown and the names of the subroutines. Figure 19 provides a map of subroutine calls by groups, together with a brief description of each routine.

- 1. Start the calculation by reading the NAMELIST, which defines the options to be employed in the current execution. This is done in the main program and with the use of BLOCK DATA for default values in the NAMELIST. The default values provide a sample case of an elliptic cone at angle-of-attack, which serves as a check case.
- 2. Establish the spanwise geometry to be analyzed in COREL. This is done in Program GEOM (Overlay, 1,0). Three choices are available: the program can generate simple model geometries internally, read in a specific spanwise section, or extract a spanwise section from the Craidon Geometry Data Set. The numerical calculation requires a table of (r,θ) values which describe the section in polar coordinates, the number of values, and the location of the singularity for the mapping. The (r,θ) values are generated internally from the given (x,y) values. However, the origin of the (r,θ) coordinate system must be located inside the section; this is the reason that, at the centerline (x=0), the upper surface ordinate of the spanwise section must be positive and the lower surface ordinate must be negative. Some provision for translating the section to ensure that the

Figure 18. - COREL program overlay structure.

origin is inside the spanwise section is included in the input instructions. The location of the singularity for the mapping is internally generated with the exception of a possible override when the spanwise section is input. In the case of sections extracted from the Craidon geometry, additional information is generated and saved for nonconical corrections. An option exists wherein the spanwise section to be used can be locally modified after it is established. Additionally, the spanwise section ordinates can be punched out and saved for other uses at this point if desired.

3. With the geometry established, the solution sequence begins. This is controlled by Program MNSUB (Overlay 2,0). The first step is to transform the

spanwise section via a Joukowski transformation and spline-fit the coordinates for interpolation to the computational grid location. (Note that this single transformation does not entirely eliminate the dependence of the body coordinate ρ_B on its angular location, θ .) An initial guess is made for the bow shock location and it is also mapped with the Joukowski transformation and spline fit. The computational mesh is then generated using the shearing transformation and the body and shock locations in the transformed plane. The body and shock data are interpolated to the grid locations, and the shock boundary is then located in the computational mesh so that the predicted location of the bow shock occurs several mesh points in from the edge of the grid boundary. This work is controlled via subroutine INIT. The computational grid is shown in figure 20 along with the nomenclature used in the code for the grid indices.

Figure 19. - COREL subroutine map.

B. NUMERICAL SOLUTION CALCULATION - PAGE 1

R83-0961-029PP

Figure 19. - Continued.

C. NUMERICAL SOLUTION CALCULATION - PAGE 2

R83-0961-030PP

Figure 19. - Concluded.

Figure 20. - Computational plane for COREL calculations, and program index nomenclature.

- 4. With the grid established, subroutine STRECH is used to compute the values of the mapping metric and freestream velocity values at the grid points. The initial values of the boundary conditions are also set. Additional information required for output processing is also generated.
- The finite-difference equations are solved using the Successive Line Over Relaxation (SLOR) algorithm in subroutine RELAX. The program uses a split sweep, so that a part of the grid is swept around the body (column) and part of the sweep starts from outside the bow shock and moves in toward the body (ring). The main sweep is considered the ring relaxation. Column relaxation is used to avoid possible numerical instabilities. For the first 50 iterations (nominally), no special provision is made concerning the bow shock. After this initial set of iterations, the location of the bow shock is determined after each iteration, saved, and the potential (F) set to zero outside the bow shock. This is done to ensure that the bow shock is clearly defined. Thereafter the iteration sweep starts just outside the maximum location of the shock in the grid, rather than the outer edge, to save computer time. After 100 iterations in the first grid (nominally), the iteration is halted and the actual computed shock shape used to remap the computational domain. This is done so that the bow shock is located along a constant grid line in the computational mesh to improve both computational efficiency and accuracy. Once the maximum number of iterations is reached or the maximum change of the potential between any two iterations is less than the prescribed convergence tolerance, the iteration stops. A print plot of the convergence history is then provided. The iteration history is traced by printing out the maximum change of the potential and its location, the average change of the potential, the maximum residual, the number of supersonic points. the number of points violating diagonal dominance, and the values and locations of the maximum and minimum positions of the bow shock. This provides sufficient information to evaluate whether or not the solution has converged. Virtually all of the computation time for the entire job is expended in the SLOR iteration.
- 6. Once the potential F is found and the SLOR iteration is terminated, the flowfield results are computed in subroutine OUTP. The calculation is made to compute the pressure coefficient, cross flow Mach number, total Mach number, and

velocity components. Generally, these results are printed out only on the surface but, as an option, they can be output at each grid point in the field. This information is repeated with more details on the surface, where the velocities are output in a variety of coordinate systems. The next set of computed results provide information for computing the surface streamline location. The bow shock and sonic line locations are then computed and stored for use in the graphics routines. Lift and drag are computed next, both in the computational and physical planes. ΔC_p is computed and optionally output for use in the W12SC3 code. The spanload is computed, printed out, and Fast Fourier Transform analyzed to determine the span "e". Optionally, the modification of the pressures to account for nonconical effects is then carried out and printed. The final step is to call the graphics routine to plot the results.

The SLOR solution is carried out on a sequence of grids, usually two, in order to reduce computing time. The grid spacing is divided by two at each successive grid refinement. The standard grid sequence is nominally 30 \times 30 and 60 \times 60. In the standard version of the code, 60 \times 60 is the maximum grid size.

7. The final COREL step in a combined COREL/W12SC3 run is to save the spanwise pressure distribution ΔC_p vs η (with or without the non-conical correction, at the user's option) for use in the conical mixed-design-analysis and mixed-design-optimization options of W12SC3.

I/O Units and Large Core Arrays Used by COREL

COREL uses the following units for I/O and Storage:

UNIT	USE
5	Input
6	Output
7	X, C output for plots
8	Spanwise section punched output
10	Craidon geometry data
14	Craidon patch cut data

20	Equivalent conical section data
32	Data set for W12SC3
99	Graphics

There are six large arrays which primarily control the amount of core required by COREL:

Common Block	Array	Contents
BLK2	F	The potential function
		•
	H	The non-singular portion of the metric of the
		mapping
BLK3	UI	The freestream velocity components at the
	VI	grid points
	WI	
\mathbf{FF}	FFS	An analytically determined value of the
		singular part of the metric of the mapping.

These arrays are normally defined to be 60×60 .

The Craidon surface patch program (Ref. 6) uses bicubic splines to provide a smooth definition of the surface. The coefficients of the spline equations used in the program are stored in core. Because the patch information is generated and used in an overlay separate from the flowfield solution, these large arrays do not control the maximum program size. The arrays required for the geometry information are:

Common Block	<u>Array</u>	Contents
PATBLK	PATXY (4,600,2)	Wing panel corner points; 4 corners,
		600 panels, 2 surfaces
XPAT	PATCHX(14,400)	Bicubic surface patch matrix; $4 \times 4 \times 3$ for 150 patches on 2 surfaces ($S_i = MB_iM^T$,
		i=X,Y,Z; see Ref. 7)

Common Block

Array

Contents

XPAT

PATCOR(4,150,2)

Panel corner points on local spanwise row of panels; 4 corners, 600 panels, 2 surfaces.

These arrays can be redimensioned if more patches are required. The arrays eliminate most of the file searches and drastically reduce execution time.

W12SC3 Program: Changes From USSAERO

Major modifications have been made to the USSAERO "B" code to produce the W12SC3 code. Some modifications were made to correct, revise, and improve the code's basic geometric and aerodynamic capabilities. Others were made to allow solutions to be found by direct matrix inversion techniques. Still more were made to implement the various design and optimization options, including a constant-strength vortex panel capability. For the SC³ effort in particular, modifications were needed to implement the conical design and optimization options, as well as the Carlson Correction. Finally, modifications were made to provide an interference shell capability for improved wing-body calculations.

The net result of all of these code modifications is that the W12SC3 program is substantially different from the USSAERO "B" program. For brevity, only major differences between the two will be discussed. As a guide, W12SC3 program overlay structure and flow charts are presented as figures 21, 22, and 23.

Direct Matrix Inversion Techniques

As an alternative to the available iterative solution methods, code additions were made to allow use of direct matrix inversion techniques. Subroutines TRPOSE, TRIXY, SOSCAP, RNRW, FUTSOL, QUAS, and INV were added and provide elementary matrix operations (transpose, multiplication, and inversion). Overlay OLAY50 was added and is used to form "higher order" matrices from the matrices of aerodynamic influence coefficients. These matrices are common to all the analysis, design, and optimization solutions (e.g., $A_{WW}^{-}A_{WB}^{-}A_{BB}^{-1}A_{BW}^{-}$). For full

analysis cases, the specific solution for a given set of boundary conditions is calculated in subroutine DIRECT.

Figure 21. - W12SC3 program overlay structure.

Figure 22. - W12SC3 program: Overlay Flowchart.

Figure 23. - W12SC3 programs: flowchart for Overlay Solve.

Design and Optimization Options

Solutions for these cases make use of the matrices formed in overlay OLAY50. For full design or mixed design-analysis cases, the specific solution for a given set of boundary conditions is calculated in subroutine MIXED. This function is performed in subroutine DRAG for full optimization cases and in subroutines DRAG and PCONST for mixed design-optimization cases.

These options require the use of constant-strength vortex panels. The influence coefficients for such panels were already being calculated in the process of forming linearly varying vortex panel influence coefficients, and hence were easily extracted from subroutine VORVEL.

Conical Design and Optimization Options

These options required small modifications to subroutines MIXED and PCONST.

Carlson Correction

Subroutines CARLSN, SHEXRE, MACH, and PMA handle the calculation of this nonlinear correction to supersonic wing calculations. Modifications to subroutine FORMOM were required in order to obtain forces and moments with and without the Carlson Correction.

Interference Shell

Overlay NACSHL was added and is used to calculate shell (and additional wing) panel geometry. Existing wing routines were modified and are used for all further shell calculations. This procedure was simplified with the addition of subroutine WINGS - wing and shell geometric and aerodynamic information is stored on out-of-core files, and one call to WINGS loads or unloads the required information depending upon whether wing or shell calculations are being made.

Other major code changes to accommodate the interference shell capability were required. Overlays VELCMP and SOLVE and subroutines PRESS, FORMOM, MIXED,

and DRAG were modified to properly handle both wing/body and wing/body/shell influence coefficient calculations, boundary condition specifications, and analysis, design, or optimization solutions, as well as velocity, pressure, and force and moment calculations.

In summary, the W12SC3 program differs from the USSAERO "B" program in the following respects:

- Problem solving capability
 - Full analysis, design, or optimization
 - Mixed or conical design-analysis
 - Mixed or conical design-optimization
- Solution Method
 - Iterative (full analysis only), or
 - Direct matrix inversion
- Carlson Correction for wing pressures
- Optional interference shell capability.

COMPUTER REQUIREMENTS

Core Size

COREL requires 164K₈ bytes of core storage on the CDC CYBER 175. The size of the core is controlled by the six 60 x 60 arrays used in obtaining the flow-field. If a denser mesh is desired, storage will increase in direct proportion to the increase in storage required for these large arrays. Meshes as large as 113 x 113 have been used to check the dependence of the solution on the mesh density, and the study showed a slight dependence on the grid density around the crossflow recompression location on the upper surface. However, the 60 x 60 grid is appropriate for engineering work as shown in figure 24.

The W12SC3 code requires $265K_8$ bytes with core storage on the CDC CYBER 175. The size of the code is considerably larger than the original USSAERO code due to the numerous options added. The primary increase in core size occurs due to the additional code included in the main overlay, which is now $224K_8$, and overlay (3,0), program SOLVE. Overlay (3,0) adds an additional $28K_8$ to the core require-

Figure 24. - Effect of mesh density on COREL solution.

Figure 24. - Continued.

Figure 24. - Concluded.

ment. The addition of some overlays in SOLVE could reduce the storage by at least $10K_8$ to $15K_8$ bytes. In addition, some additional plotting was added which adds to the core requirements.

Execution Time

The COREL execution time is based on the time per grid point per iteration. The solution is obtained by an iteration which converges only slowly to the correct answer. It is difficult to determine exactly how many iterations are "enough" for a particular case. Figure 25 provides an example of the change of solution with iterations. Three hundred crude grid (29×29) ; known as 30×30 and seventy-five fine (57×57) ; known as 60×60 grid iterations should be enough for most cases. Typical running times are:

		CPU Time, sec		
Crude Grid	Fine Grid	CYBER		
<u>Iterations</u>	<u>Iterations</u>	<u>740</u>	$\overline{\mathtt{c}^{\Gamma}}$	$\overline{\mathrm{c}^{\mathrm{D}}}$
300	50	90.7	0.4549	0.06847
300	100	117.8	0.4546	0.06852
300	150	143.2	0.4544	0.06852
300	200	164.1	0.4542	0.06852
300	250	192.3	0.4542	0.06852
200	100	103.7	0.4539	0.06814
400	100	131.5	0.4549	0.06858

The times can vary for different cases due to changing location of the bow shock. Although a 60 x 60 grid is specified, however, after the first 50 iterations the solution iteration stops when the bow shock is reached. This means that the effective grid is actually 60×40 for most cases.

The WI2SC3 code execution time depends on the number of panels used and the type of solution requested. The iterative solution is usually faster for a single angle-of-attack, but is repeated for each angle-of-attack. The inverse of the AIC matrix is saved after the initial angle-of-attack solution when the direct solution option is used, reducing the cost of additional angles-of-attack

Figure 25. - Effect of number of iterations on COREL solution.

results. Surprisingly, the calculation of the influence coefficients is one of the most time-consuming steps in the calculation, being directly proportional to N^2 . For an isolated wing, modeled with 380 wing panels, the execution time is divided as follows:

		Grumman	NASA LaRC
Case A)	CYBER 740	CYBER 175
1.	Influence Coefficients	430	234
2.	Iterative Analysis	110	60
3.	Direct Analysis	480	220
4.	Conical Panel Mixed	110	60
	Design-Analysis		
5.	Conical Panel Mixed	190	92
	Design-Optimization		
	Total CPU seconds:	1320	666
		Grumman	
Case B)	CYBER 740	
1.	Influence Coefficients	430	
2.	Full Optimization	660	
3.	Direct Analysis	480	
4.	Direct Analysis	90	
5.	Direct Analysis	90	
6.	Direct Analysis	90	
	Total CPU seconds:	1840	

For a wing-body calculation, the following case provides typical execution times using 140 wing panels, 232 body panels, and 168 panels for the interference shell:

	Grumman C	YBER 740
Case A)	No Shell	Shell
Influence Coefficient	250	350
Direct Analysis	200	230
Direct Analysis	40	70
Total CPU seconds:	490	650

	NASA LaRC	CYBER 175
Case B)	No Shell	Shell
Influence Coefficient	136	194
Iterative Analysis	22	42
Iterative Analysis	_22	42
Total CPU seconds:	180	278

The codes have also been run on a number of different CDC computers, and the differences in CPU times are useful in comparing quoted execution times on different machines. For these two codes the results are given in the following chart:

ana		me, sec ode
CDC Computer	COREL	W12SC3
172	1345	1421
174	1077	1087
740	235	308
750	162	219
760	111	150

Sample JCL

The COREL and W12SC3 codes can be run "back to back" or separately depending on the information desired. The sample JCL given below is from a NASA Langley execution, and the link between the codes is the data set passed on unit 32. As shown, the binary forms of the codes are used. The source code is stored at Langley in the UPDATE format, which is convenient for batch-type code modification and is a common utility available on all CDC type machines.

If W12SC3 is being executed in a standalone mode, then INPUT should be copied to TAPE5.

The following sample JCL for the NASA Langley CYBER 175, NOS System illustrates the extremely simple JCL required for execution.

GACSMW,T2770,CM265000.
USER,5660782.
CHARGE,XXXXXXX,LRC.
GET(LGD=CRLBIN)
LOAD,LGO.
EXECUTE.
RETURN,LGO.
REWIND,TAPE32.
GET(LGO=W12BIN)
COPY,TAPE32,TAPE5.
REWIND,TAPE5.
LOAD,LGO.
EXECUTE.

INPUT DESCRIPTION

The input data is structured to allow the user the maximum flexibility. The information required to run the programs is divided into three parts. In order to run the two codes together, or each independently, the input information required is collected as follows (and in the order given):

Combined COREL/W12SC3	COREL Alone	W12SC3 Alone
1. COREL Input	1. COREL Input	1. Craidon Geometry
2. Craidon Geometry	2. Craidon Geometry	2. W12SC3 Input
3. W12SC3 Input	(optionally)	

During a combined code execution COREL appends conical panel pressure data to the W12SC3 input. However, the user has to provide the other information contained in that section.

The main control for using the various COREL geometry options is best explained before describing the input in detail. The NAMELIST for COREL includes the following control:

- A. If IRPTS = 1 A spanwise section is read from the input
 - = 0 No spanwise section is read in.

- B. If IEQV = 1 The Craidon geometry section is read from input and the spanwise section data is extracted and used to make an adjustment to the conical flow solution to account for the nonconical geometry
 - = 0 The Craidon geometry is not read in.
- C. If IEQV3 = 0 Do <u>not</u> use spanwise section extracted from Craidon geometry for analysis, but only for the nonconical correction
 - = 1 Use the spanwise section extracted from Craidon geometry for the COREL analysis as well as for the nonconical correction.

This allows the user to employ the Craidon geometry for either the entire analysis or just for the non-conical correction.

In addition, when W12SC3 is executed as part of a combined COREL/W12SC3 run, the first card in the W12SC3 input must contain the word AERO in the first four spaces, and the AEROIN NAMELIST must contain the word END in spaces 3-5. These keywords are used in the COREL subroutines START and GEOMIN to copy the Craidon and W12SC3 input data sets to Unit 32. The W12SC3 data set is then completed in subroutine OUTP.

The combined code execution allows for only a single design point analysis (one spanwise section at one angle-of-attack). However, the W12SC3 code can run a series of cases when executed in a standalone mode. A new AEROIN NAMELIST is required for each new case.

COREL Input Instructions*

- 1. 2 CARD TITLE for CASE
- 2. NAMELIST:

INPUT

Namelist:** the control of the COREL portion of the program is handled via a Namelist with the name INPUT. The default values reflect a "baseline" computation that has been found through experience to be generally satisfactory. Only

^{*,**}See footnotes, next page.

those parameters that are to be changed from the default values need to be read in. The Namelist variables, with default values, are listed below:

<u>Variable</u>	Default	Remarks
Combined Code Contr	ol Clue	
KCCC	0	<pre>= 0 - Complete solution = 1 - COREL solution only</pre>
Flow Conditions		
EMINF	1.60	Freestream Mach number
ALP GAMMA	5 ⁰ 1.4	Angle-of-attack Ratio of specific heats
Geometry		
ETADR	0.0	Dividing ray for split between super- critical conical panel and rest of planform (specified as a fraction of the spanwise section)
TEWSP	0.0	Trailing edge sweep for COREL alone calculation of lift (gives the arrow wing lift)
IRPTS	0	=0, spanwise section is <u>not</u> input explicitly. Section is either generated internally using options described below or

^{*} Note that COREL uses a nonstandard coordinate system, so that X is the spanwise variable. This is consistent with the coding for COREL. For those variables associated with the actual planform geometry, standard airplane coordinate system nomenclature is used. Thus XSTN, XORIGC, YORIGC, XROOT, and YWNGRT refer to the normal aircraft coordinate system (consistent with the Craidon geometry code). Variables used for the spanwise section definition and modification refer to the COREL coordinate system. While appearing confusing, the use of the code with this system is straightforward in practice.

^{**} Input data using NAMELIST must satisfy the following rules:

^{1.} The first column on each card must be blank.

^{2.} The first item must be the NAMELIST NAME preceded by a \$; i.e, \$INPUT followed by a blank.

^{3.} Data is input in the form <u>variable</u> = <u>constant</u>, each item being separated by commas; i.e., IC = 30, AZ = 33.0, ...

^{4.} The last item must be \$END.

^{5.} The \$ above is for CDC; on IBM, the character is &.

<u>Variable</u>	Default	Remarks
		extracted from Craidon geometry input =1, spanwise section input as X/X_{LE} , Y/X_{LE} pairs
NG	199	Number of points defining the internally generated spanwise section (should be odd, NG=199 max)
AZ	33	Included angle of leading edge of conical shape being analyzed (wing or fuselage)
		$AZ = 90^{\circ} - \Lambda_{LE}$, in degrees
BZ	1.5	For internally generated spanwise sections, BZ sets the section thickness by specifying the half-angle of the centerline section (in degrees)
LC	0	Camber line clue for internally generated sections = 0, No camber = 1, Circular arc = 2, Elliptical arc = 3, Circular cap = 4, Simple flap
CC (dimensioned variable)	0.0	Camber line control (see internal geometry generation input section)
LT	1	Thickness envelope clue for internally generated sections = 0, Circular = 1, Ellipse = 2, Super Ellipse
CT (dimensioned variable)	0.0	Thickness envelope control (see internal geometry generation input section)
LM	0	Not used
CM (dimensioned variable)	0.0	Not used
IEQV	0	= 0 Do not read Craidon Data Set= 1 Read Craidon Data Set and performequivalent conical section analysis

<u>Variable</u>	<u>Default</u>	Remarks
IEQV3	0	= 0 Use spanwise section extracted from Craidon data set for nonconical correction calculation only. Spanwise section for COREL analysis is explicitly read in or internally generated
		= 1 Use spanwise section extracted from Craidon Data Set for COREL analysis also.
XSTN	1.0	X station at which the section is extracted from the Craidon geometry data and the COREL analysis and equivalent conical section analysis are performed
XORIGC	0.0	X origin of conicity for section extracted from Craidon data set
YORIGC	0.0	Y origin of conicity for section extracted from Craidon data set
XROOT	1.0 x 10 ⁶	The maximum value of the root chord (to prevent the use of Craidon data off the planform)
ZROOT	0.0	The elevation of the origin of the conical calculation
YWNGRT	-1.0	The trailing edge location for the calculation of non-conical correction when XSTN is greater than XROOT
IMOD	0	Clue for the addition of a local "cubic" bump on spanwise section (actually 6th order). = 0 No local section modification = 1 Upper surface modification = 2 Lower surface modification = 3 Both upper and lower surface modification
XU1	0.0	Inboard end of section modification on upper surface (as a fraction of spanwise section)
XU2	0.0	Location of maximum thickness position of position of modification on upper surface (as a fraction of spanwise section)

<u>Variable</u>	Default	Remarks
XU3	0.0	Outboard end of modification on upper surface (as a fraction of spanwise section)
DTCU	0.0	Magnitude of upper surface bump in percent of semi-span
XL1	0.0	Inboard end of section modification on lower surface (as a fraction of spanwise section)
XL2	0.0	Location of maximum thickness position of modification on lower surface (as a fraction of spanwise section)
XL3	0.0	Outboard end of modification on lower surface (as a fraction of spanwise section)
DTCL	0.0	Magnitude of lower surface bump in percent of semi-span. A positive value reduces the thickness on the lower surface.
Output Options		
IOUT	1	<pre>= 0 Full output everywhere in flowfield. = 1 Output on surface only</pre>
IOUT2	0	<pre>= 0 No further abbreviation of output = 2 Very brief "terminal" output suitable for online running</pre>
IPUNCH	0	= 0 Generated section not punched = 1 Generated section is punched (Unit 8) = 3 The solution data is punched. Data includes Mach, alpha, XSTN, C _N ,
		C_{N} -nonconical, and spanwise section and pressures, as X/X_{LE} , Y/X_{LE} , C_{p} , C_{p}
		(nonconical correction) (All output is in F10 format on Unit 7)
IPLOT	1	<pre>= 0 Don't plot results = 1 Call graphics routine (dummy in Langley version). = 2 Plot output is punched, in the forms X, Y, C p</pre>

<u>Variable</u>	Default	Remarks
Numerical Solution		
IC	30	Initial grid in θ direction (around body ring)
JC	30	<pre>Initial grid in r direction (away from body column)</pre>
KREF	2	Number of grids (presently a max of 2)
KMAX (dimensioned variable)	300 150	Maximum number of iterations for each successive grid
W(3)	1.0 1.5	Overrelaxation factor, successive grids
DMIN (dimensioned variable)	1.E-6 1.E-6	Convergence criteria on each successive grid
EST	-6.0	Coefficient of ϕ_{st} , damping term
NSHKR	10	Approximate number of mesh points between shock position and grid boundary
KSHKR	8	Number of smoothings of refined shock location
JDRLX	6	Ring and column relaxation split
EPSHKI	1.2	EP in SHOCKI, parameter for initial estimate of bow shock location. EPSHKI is a multiple of the Mach angle
Available Unused Item	<u>s</u>	
IDESIN, KDESMX, WDES		Intended for use with any design package, dummy in present code

END OF NAMELIST

Spanwise Section Input Block

Card No.	Format	Field	Name	Remarks
A1	Literal		TITLE	80 characters describing spanwise section definition
A2	7F10.0	1	ZSYM	Section symmetry clue, if ZSYM = 1.0 section is symmetric; read upper surface only. = 0, section is asymmetrical, both upper and lower surface read in
		2	тніск	Section thickness. YU, YL ordinates multiplied by THICK. If = 0, THICK is reset to 1.0, and input section inputs are unchanged
		3	FNU	Number of ordinate pairs defining upper surface
		4	FNL	Number of ordinate pairs defining lower surface
		5	XKSMTH	Dummy variable, intended to be the number of section smoothings if smoothing is incorporated
		6	XSING	X location of singularity for mapping
		7	YSING	Y location of singularity for mapping

NOTE: The X, Y location of the mapping singularity should be specified at the midpoint of a line drawn between the center of the leading edge radius and the leading edge. If XSING=0, the program estimates this position internally.

Card No.	Format	Field	Name	Remarks
A3	Literal		TITL	80 character describes upper surface of sections
A4	7F10.0	1 2	XU YU	Upper surface X coordinate Upper surface Y coordinate

The ordinates are multiplied by tan AZ internally to convert from normalized to physical values.

NOTE: Repeat card A4 FNU times.

Card No.	Format	Field	Name	Remarks
cara no.	rormat	rrera	Name	Kemarks

The section is input starting at the leading edge, $X/X_{LE}=1$, and proceeds to the root, $X/X_{TF}=0$.

A5 Literal TITL 80 characters describing the lower surface

If FSYM = 1, skip card A6

A6 7F10.0 1 XL Lower surface X coordinate YL Lower surface Y coordinate

NOTE: Repeat card A6 FNL times.

The leading edge point should be the same for both the upper surface and the lower surface.

Description of Internal Geometry Generation Parameters Used In Namelist

1. CAMBER

NOTE: CC(4), CC(5) not operational, but available.

2. THICKNESS

e.g., the super ellipse is given by

$$\left(\frac{X}{A}\right)^{2+CT(3)} + \left(\frac{Y}{B}\right)^{2+CT(2)} = 1$$

CT(2) = CT(3) = 1 for "pure" super ellipse.

Craidon Geometry Definition

The Craidon geometry definition section is required for COREL alone runs when IEQV = 1 (see COREL input description), as well as for combined COREL/W12SC3 and W12SC3 alone runs. When required for COREL alone and and combined COREL/W12SC3 runs, the Craidon geometry follows the COREL data inputs. When W12SC3 is executed alone, the Craidon geometry definition is the first section of the input data.

The input to the W12SC3 program consists of two parts: the numerical description of the initial configuration geometry (Craidon); and the W12SC3 input data which specifies the singularity paneling scheme, program options, Mach number, angle-of-attack, and any additional input data required for particular program options.

The configuration is defined to be symmetrical about the x-z plane; therefore only one side (the positive y side) of the configuration need be described. The coordinate system notation is shown in figure 26.

Columns 1-80	<u>Variable</u> TITLE1	<u>Value</u>	<pre>Description This card contains any desired idenifying information.</pre>
		Control I	ntegers
1-3	JO	0 1	No reference area Reference area to be read
4-6	J1	0 1 -1	No wing data Cambered wing data to be read Uncambered wing data to be read

Figure 26. - Coordinate system for craidon geometry (from NASA CR 3228, 1980).

Columns	<u>Variable</u>	<u>Value</u>	Description
7-9	J2	0 1 -1	No fuselage data. Data for arbitrarily shaped fuselage to be read. Data for circular fuselage to be read. (With J6 = 0, fuselage will be cambered. With J6 = -1, fuselage will be symmetrical with respect to the xy-plane. With J6 = 1, entire configuration will be symmetrical with respect to the xy-plane.)
10-12	J3	0 1	No Pod data. Pod data to be read.*
13-15	Ј4	0	No fin (vertical tail) data. Fin data to be read.
16-18	J5	0 1	No canard (horizontal tail) data Canard data to be read.
19-21	J6	0 1 -1	A cambered circular or arbitrary fuselage if J2 is non-zero. Complete configuration is symmetrical with respect to the xy-plane, which implies an uncambered circular fuselage, if there is one. Uncambered circular fuselage with J2 non-zero.
22-24	NWAF	2-20	Number of airfoil sections used to describe the wing.
25-27	NWAFOR	3-30	Number of ordinates used to define each wing airfoil section. If the value of

 $\label{eq:NWAFOR} \textbf{NWAFOR is input with a negative sign, the program will expect to read lower surface ordinates also; otherwise, the airfoil is assumed to be symmetrical.}$

28-30	NUFUS	1-4	Number of fuselage segments.
31-33	NRADX(1)	3-20	Number of points used to represent half-section of first fuselage segment. If fuselage is circular, the program computes the indicated number of Y- and Z-coordinates.
34-36	NFORX(1)	2~30	Number of stations for first fuselage segment.

^{*} W12SC3 will read input data for pods, but will not use them in the panel model.

Columns	<u>Variable</u>	Value	Description
37-39	NRADX(2)	3-20	Same as NRADX(1), but for the second fuselage segment.
40-42	NFORX(2)	2-30	Same as NFORX(1), but for the second fuselage segment.
43-45	NRADX(3)	3-20	Same as NRADX(1), but for the third fuselage segment.
46-48	NFORX(3)	2-30	Same as NFORX(1), but for the third fuselage segment.
49-51	NRADX(4)	3-20	Same as NRADX(1), but for the fourth fuselage segment.
52-54	NFORX(4)	2-30	Same as NFORX(1), but for the fourth fuselage segment.
55 - 57	NP	0-9	Number of Pods.*
58-60	NPODOR	4-30	Number of stations at which pod radii are to be specified.*
61-63	NF	0-6	Number of fins (vertical tails) to be described.
64-66	NFINOR	3-10	Number of ordinates used to describe each fin airfoil section.
67-69	NCAN	0-6	Number of canards (horizontal tails) to be described.
70-72	NCANOR	3-10	Number of ordinates used to define each canard airfoil section. If the value of NCANOR is negative, the program will expect to read lower surface ordinates also; otherwise, the airfoil is assumed to be symmetrical.
		Ref	erence Area
1-7	REFA		Reference Area Card. This is the planform 1/2 area in W12SC3.

 * W12SC3 will read input data for pods, but will not use them in the panel model.

Columns	<u>Variable</u>	<u>Value</u>	Description
		Win	8
1-7	XAF		Cards, each containing up to 10 values of percent chord, at which ordinates of airfoils are to be specified. Total of NWAFOR values. Each card may be identified in columns 73-80 by XAFJ, where J denotes the last location specified on that card.
1-7 8-14 15-21 22-28	WAFORG		NWAF cards, each containing values of: X-coordinate of wing airfoil leading edge, Y-coordinate of wing airfoil leading edge, Z-coordinate of wing airfoil leading edge, Wing airfoil streamwise chord length. Each card may be identified in columns 73-80 by WAFORGJ, where J denotes the airfoil number, starting from the most inboard airfoil.
1-7	TZORD		NWAF cards, each containing up to 10 values of DELTAZ (mean 8-14 camber line). A total of NWAFOR values will be read per airfoil. Each card may be identified in denotes the last location on that card. These values will be input only if J1 = 1.
1-7 8-14 etc	WAFORD	Body (Fu	Cards, each containing up to 10 values of wing half-thickness, (each specified as percent of the chord) specified for each wing airfoil. If NWAFOR < 0, the same number of values will be read for the lower surface.
1-7 8-14 etc	XFUS		Cards, each containing up to 10 values of X-coordinates of body axial stations specified for each body segment. Total number of values per segment is specified by NFORX. Each card may be identified in columns 73-80 by XFUSJ, where J denotes the last location on that card.
1-7 8-14 etc	ZFUS		Cards, each containing up to 10 values of Z-ordinates of fuselage camber line, specified at each body axial station. Total number of values per segment is specified by NFORX. Each card may be identified in columns 73-80 by ZFUSJ, where

Columns	<u>Variable</u>	Value	Description
			J denotes the last location on that card. Input only if cambered circular fuselage.
1-7 8-14 etc	SFUS		Cards, each containing up to 10 values of Y-ordinates of half-cross-section points. A total of NRADX values are input. The cards containing NRADX values of Y-coordinates are followed by cards containing the Z-coordinates of the same points. These sets of cards are repeated for each fuselage segment. Input only if fuselage of arbitrary shape.
1-7 8-14 etc	FUSARD		Cards, each containing up to 10 values values of fuselage cross-sectional areas. Total of NFORX values will be read per fuselage segment. Each card may be identified in columns 73-80 by FUSARDJ, where J denotes last station specified on that card. Input only if circular fuselage.
		<u>Fi</u>	<u>n</u>
1-7 8-14 15-21 22-28 29-35 36-42 43-49 50-56	FINORG		X-ordinate on inboard airfoil leading edge, Y-ordinate on inboard airfoil leading edge, Z-ordinate on inboard airfoil leading edge, Chord length of inboard airfoil, X-ordinate on outboard airfoil leading edge, Y-ordinate of outboard airfoil leading edge, Z-ordinate of outboard airfoil leading edge, Chord length of outboard airfoil. This card may be identified in columns 73-80 by FINORGJ, where J denotes the fin number.
1-7 8-14 etc	XFIN		Cards, each containing up to 10 values of fin airfoil percent chord. Each card can be identified in columns 73-80 by XFINJ, where J denotes the fin number.
1-7	FINORD		Cards, each containing up to 10 values of fin airfoil half-thickness, expressed in percent chord. Since the fin airfoil must

Columns	<u>Variable</u>	Value	Description
			be symmetrical, only the ordinates on the positive Y-side of the fin chord plane are required. Each card may be identified in columns 73-80 by FINORDJ, where J denotes the fin number.

NOTE: FINORG, XFIN and FINORD are input for each fin.

	CANORG	Canard
1-7	CANORG	X-ordinate of inboard airfoil leading edge,
8-14		Y-ordinate of inboard airfoil leading edge
15-21		Z-ordinate of inboard airfoil leading edge,
22-28		Chord length of inboard airfoil.
29-35		X-ordinate of outboard airfoil leading edge,
36-42		Y-ordinate of outboard airfoil leading edge,
43-49		Z-ordinate of outboard airfoil leading edge,
50-56		Chord length of outboard. This card may be identified in columns 73-80 by CANORGJ, where J denotes canard number.
1-7 8-14 etc	XCAN	Cards, each containing up to 10 values of canard airfoil percent chord. Each card may be identified in columns 73-80 by XCANJ, where J denotes canard number. Total number of values is NCANOR/airfoil.
1-7 8-14 etc	CANORD	Cards, each containing up to 10 values of canard airfoil half-thickness, expressed in percent chord. If canard airfoil is not symmetrical, the lower ordinates are presented on a second CANORD set of cards. The program expect both upper and lower ordinates to be punched as positive values in percent chord.

NOTE: CANORG, XCAN, and CANORD are input for each canard.

W12SC3 Input Instructions

The W12SC3 input data is required for combined COREL/W12SC3 and W12SC3 alone runs, and follows the Craidon Geometry Definition. These inputs consist of (1) Title Card, (2) Options Card, (3) Control Integer Card, (4) Ref. Lengths Card, (5) Wing Data Cards, (6) Body Data Cards, (7) Fin Data Cards, (8) Canard Data Cards, (9) Nacelle/Shell Data Cards, (10) Mach Number and Angle-of-Attack Card, and (11) additional input data cards required for particular program options.

Singularity Paneling Geometry

Columns	<u>Variable</u>	<u>Value</u>	Description
1-80	TITLE2		This card contains identifying information. Columns 1-4 should contain the word AERO for combined COREL/W12SC3 runs.
		Opt	ions
1-3	LINBC	0	Non-planar boundary condition (Subsonic analysis only).
		1	Planar boundary condition.
4-6	THICK	0	Do not calculate wing thickness matrix.
		1	Calculate wing thickness matrix if LINBC = 1.
7-8	PRINT	0	Print option flag. Print the pressures, the forces and the moments.
		1	Print option 0 and print the spanwise loads on the wing, fin and canard.
		2	Print option 1 and print the velocity components, source and vortex strengths.
		3	Print option 2 and print the steps in the iterative solution.
		4	Print option 3 and print the axial and normal velocity matrices. If PRINT<0, the panel geometry will be included in the printout.
9-12	LCPA	blank	Not used.
13-15	LCPB	blank	Not used.

Columns	Variable	Value	Description
16-18	ITMETH	0,2	Iterative solution method selection flag. Blocked GAUSS-SEIDEL iterative
		1	solution procedure. Blocked JACOBI iterative solution procedure.
		3	Blocked controlled successive overrelaxation iterative solution
		4	<pre>procedure. Blocked successive overrelax- ation iterative solution procedure.</pre>
19-21	ITMAX	0	Maximum number of iterations set at 50.
		integer	Maximum number of iterations specified.
22-24	CCTEST	0	Convergence criterion set at 0.001.
		real	Convergence criterion specified.
29-35	DCTEST	0	Divergence criterion set at 1000.
		real	Divergence criterion specified.
36-41	ALF1		Relaxation factor>1
43-49	ALF2		Relaxation factor<1
		Control Ir	ntegers
1-3	КО	0 1	Reference length flag. No reference length to be read. Reference length to be read.
4-6	K1	0 1 1	Wing definition flag. (K1 must be > 0 if wing is to be included in analyses.) No wing data to be read. Wing data follows. Wing has sharp leading edge.
		3	Wing data follows. Wing has round leading edge
7-9	K2	0 1	Body (fuselage) definition flag. No fuselage data to be read. Fuselage data to be read.
10-12	К3		Pod definition flag (not used).

Columns	<u>Variable</u>	<u>Value</u>	Description
13-15	K4	0 1 3	Fin definition flag. No fin data to be read. Fin data follows. Fin has sharp leading edge. Fin data to be read. Fin has round leading edge.
16-18	K5	0 1 3	Canard (horizontal tail) definition flag. No canard data to be read. Canard data to follow. Canard has sharp leading edge. Canard data follows. Canard has round leading edge.
19~21	К6	0 1	No nacelle/shell data to be read Nacelle/shell data to be read.
22-24	KWAF	0, 2-20	Number of wing sections used to define the inboard and outboard outboard panel edges. If KWAF=0, the panel edges are defined by NWAF in geometry input.
24-27	KWAFOR	0, 3-30	Number of ordinates used to define the leading and trailing edges of the wing panels. If KWAFOR=0, the panel edges are defined by NWAFOR in the input geometry.
28-30	KFUS		Number of fuselage segments. The program sets KFUS=NFUS.
31-33	KRADX(1)	0, 3-20	Number of meridian lines used to define panel edges of first body segment. There are 3 options for defining the panel edges. If KRADX(1)=0, the meridian lines are define by NRADX(1) in geometry input. If KRADX(1) is positive, the meridian lines are calculated at equally spaced PHIK's. If KRADX(1) is negative, the meridian lines are calculated at specified values of PHIK.
34-36	KFORX(1)	0, 2-30	Number of axial stations used to define leading and trailing edges of panels on first body segment. If KFORX(1)=0, the panel edges are defined by NFORX(1) in the geometry input.

Columns	Variable	<u>Value</u>	Description
37-39	KRADX(2)	0, 3-20	Same as KRADX(1), but for second body segment.
40-42	KFORX(2)	0, 2-30	Same as KFORX(1), but for second body segment.
43-45	KRADX(3)	0, 3-20	Same as KRADX(1), but for third body segment.
46-48	KFORX(3)	0, 2-30	Same as KFORX(1), but for third body segment.
49-51	KRADX(4)	0, 3-20	Same as KRADX(1), but for fourth body segment.
52-54	KFORX(4)	0, 2-30	Same as KFORX(1), but for fourth body segment.
Additiona	l Revised Con	figuration Pane	ling Description Control Integers
1-3	KF(1)	0, 2-20	Number of fin sections used to define the inboard and outboard panel edges on the first fin. If KF(1)=0, the root and tip chords define the panel edges.
4-6	KFINOR(1)	0, 3-30	Number of ordinates used to the leading and trailing edges of the fin panels on the first fin. If KFINOR(1)=0, the panel edges are defined by NFINOR.
7-9	KF(2)	0, 2-20	Same as for KF(1), but for second fin.
10-12	KFINOR(2)	0, 3-30	Same as for KFINOR(1), but for second fin.
13-15	KF(3)	0, 2-20	Same as for KF(1), but for third fin.
16-18	KFINOR(3)	0, 3-30	Same as for KFINOR(1), but for third fin.
19-21	KF(4)	0, 2-20	Same as for KF(1), but for fourth fin.
22-24	KFINOR(4)	0, 3-30	Same as for KFINOR(1), but for fourth fin.

Columns	<u>Variable</u>	<u>Value</u>	Description
25-27	KF(5)	0, 2-20	Same as for KF(1), but for fifth fin.
28-30	KFINOR(5)	0, 3-30	Same as for KFINOR(1), but for fifth fin.
31-33	KF(6)	0, 2-20	Same as for KF(1), but for sixth fin.
34-36	KFINOR(6)	0, 3-30	Same as for KFINOR(1), but for sixth fin.
37-39	KCAN(1)	0, 2-20	Number of canard sections used to define edges on the first canard. If KCAN(1)=0, the root and tip chords define the panel edges. If KCAN(1) negative, no vortex sheets carry through the body and concentrated vortices are shed from the inboard edge of the canard or tail surface.
40-42	KCANOR(1)	0, 3-30	Number of ordinates used to define the leading and trailing edges of the first canard. If KCANOR(1)=0, the panel edges are defined by NCANOR.
43-45	KCAN(2)	0, 2-20	Same as for KCAN(1), but for second canard.
46-48	KCANOR(2)	0, 3-30	Same as for KCANOR(1), but for second canard.
49-51	KCAN(3)	0, 2-20	Same as for KCAN(1), but for third canard.
52-54	KCANOR(3)	0, 3-30	Same as for KCANOR(1), but for third canard.
55-57	KCAN(4)	0, 2-20	Same as for KCAN(1), but for fourth canard.
58-60	KCANOR(4)	0, 3-30	Same as for KCANOR(1), but for fourth canard.
61-63	KCAN(5)	0, 2-20	Same as for KCAN(1), but for fifth canard.
64-66	KCANOR(5)	0, 3-30	Same as for KCANOR(1), but for fifth canard.

Columns	Variable	Value	Description
67-69	KCAN(6)	0, 2-20	Same as for KCAN(1), but for sixth canard.
70-72	KCAN(6)	0, 3-30	Same as for KCANOR(1), but for sixth canard.
REFERENCE LENG	THS:		oe identified with REFL in and contains the following:
1-7	REFAR		Half-wing reference area. If REFAR = 0, the value of the reference area is defined as the value of REFA in the geometry input.
8-14	REFB		Wing semi-span. If REFB = 0, a value of 1.0 is used for the reference semi-span.
15-21	REFC		Wing reference chord. If REFC = 0, a value of 1.0 is used for the reference chord.
22-28	REFD		Body reference diameter. If REFD = 0, a value of 1.0 is used for the reference diameter.
29-35	REFL		Body reference length. If REFL = 0, a value of 1.0 is used for the reference length.
36-42	REFX		X-coordinate of moment center.
43-49	REFZ		Z-coordinate of moment center.
		Wing	
1-7 8-14 etc	RHO		Cards containing NWAF values of wing leading edge radius expressed in percent of the chord. Required only if K1 = 3. It may be identified in columns 73-80 by RHOJ, where J denotes the number of the last radius given on that card. This card contains NWAF values RHO.
1-7 8-14 etc	XAFK		Cards containing KWAFOR values of wing panel leading edge locations, expressed in percent chord. This card may be identified in columns 73-80 as XAFKJ, where J denotes the

Columns	<u>Variable</u>	<u>Value</u>	Description
			last location given on that card. Omit if $KWAFOR = 0$.
1-7 8-4 etc	YK		Card containing KWAF values of Y-coordinate of wing panel inboard and outboard edges. This card may be identified in columns 73-80 by YKJ, where J denotes last Y-coordinate on that card.
		Body (Fuse	elage)
1-7 8-14 etc	РНІ		Cards containing KRADX(j) values of the body meridian angles expressed in degrees, and may be identified in columns 73-80 by PHIKJ, where J denotes the body segment number. Convention used is that PHIK = 0 at the bottom of the body and PHIK = 180 at the top of the body. Omit, unless KRADX(j) is negative. Repeat same cards for each fuselage segment.
1-7 8-14 etc	ХJ		Array containing KFORX(j) values of X-coordinates of body axial stations. This card may be identified in columns 73-80 by XFUSKJ, where J denotes the body segment number. Omit if KFORX(j) = 0. Repeat this card for each fuselage segment.
		<u>Fin</u>	
1-7 8-14 etc	RHO		Array containing NF fin leading edge RADII. This array is required only if K4 = 3. This card is identified in columns 73-80 by RHOFIN.
1-7 8-14 etc	XAFK		Array containing KFINOR(j) values of fin panel leading edge locations. This card is required only if K4 = 1. It may be identified in columns 73-80 by KFINKJ, where J denotes the fin number. Repeat this card for each fin.
1-7 8-14 etc	YK		This array contains KF(j) values of the Z-coordinates of the fin panel inboard edges. This card is identified in columns 73-80 as ZFINKJ,

Columns	<u>Variable</u>	<u>Value</u>	Description
			where J denotes the fin number. These values start with the most inboard values.
		Canard	
1-7 8-14 etc	RHO		Cards containing NCAN values of canard leading edge RADII, one value for each canard. This card can be identified in columns 73-80 as RHOCAN. This array is input only if K5 = 3.
1-7 8-14 etc	XCAN		Card containing KCANOR(j) values of canard panel leading edge X-coordinates expressed in percent chord. The cards may be identified in columns 73-80 by XCANKJ, where J denotes the canard number. Repeat this card for each canard.
1-7 8-14 etc	ΥΚ		Card containing KCAN(j) values 8-14 of Y-coordinates of panel etc inboard edges. This card may be identified in columns 73-80 by YCANKJ, where J denotes canard number. Repeat this card for each canard.

NACELLE/Shell Data Cards

The nacelle is modeled as a "ring wing." As such, nacelle inputs may be used to model additional wing, tail, and canard segments. The wing-body interference shell is also modeled as a "ring wing," but with modified boundary conditions so as to properly account for interference.

All segments input in this section will have constant-pressure panels with fixed camber slopes - nacelle and additional wing, tail and canard panels, and shell panels cannot be designed or optimized. Shell panel camber slopes do not enter into shell panel boundary conditions, but are used for shell force and moment calculations.

Panel thickness slopes may be input for all nacelle, wing, tail, canard, or shell segments, but these are ignored for shell segments.

To input nacelles and/or shells, the user should set K6, Card 2.1, equal to some non-zero value. If K6 equals zero, the nacelle/shell data inputs should be omitted. For K6 non-zero, the following cards should be inserted before the first set of "AEROIN" namelist and Mach Number cards:

Columns	<u>Variable</u>	Value	Description
	Nace	lle/Shell Segme	nt Card
1-3	NŇAC	≥0	Number of nacelle and additional wing, tail, and canard segments to be input.
4-6	NSHL	≥0	Number of shell segments to be input.

The following set of cards should be input for each nacelle and additional wing, tail, and canard segment, followed by a set for each shell segment:

1-80	TITLE		Any identifying title.
1-3	NAXI	2-30	Number of chordwise stations defining panel leading and trailing edges. NAXI > 0 implies uncambered nacelle, wing, tail canard or shell panels. NAXI < 0 implies camber slopes to be input.
4-6	NRAD	2-20	Number of spanwise stations defining panel inboard and outboard edges. NRAD> 0 implies zero thickness nacelle, wing, tail, canard or shell panels. NAXI 0 implies thickness slopes to be input. (Total number of spanwise stations for all nacelle, additional wing, tail and canard, and shell segments may not exceed 20).
1-7 8-14 etc	XOC		NAXI values of nacelle, wing, tail, canard, or shell panel leading and trailing edge locations, expressed in present chord.

Columns	<u>Variable</u>	<u>Value</u>	Description
1-6	X		X-coordinate of chord leading edge.
8-14	Y		Y-coordinate of chord leading edge.
15-21	Z		Z-coordinate of chord leading edge.
22-28	C		Chord length.

This card is repeated NRAD times, with input order determining upper and lower surfaces, e.g.:

1-7 8-14 etc	DZCDX	NRAD-1 sets of cards, one set for each streamwise column of the segment, each containing NAXI values of camber slopes (input only if NAXI<0).
1-7 8-14 etc	DZTDX	NRAD-1 sets of cards, one set for each streamwise column of the segment, each containing NAXI values of thickness slopes (input only if NRAD<0).

NOTE: Camber and thickness slope values apply at panel leading and trailing edges along chord through panel centroids.

AEROIN Namelist

The following variables are input using standard Fortran namelist format: the namelist name is "AEROIN."

<u>Variable</u>	Default		Remarks
NOPT(1)	1	=1 =2	Analysis or design case. Optimization case.
If NOPT(1)=1	, the following values of	NOPT(2) are used:
NOPT(2)	0	=0 =1 =2 =3 =4	Cambers used from geometry input. Cambers used from previous cycle. Mixed design-analysis case. Full design case. Conical panel mixed design-analysis case.
If NOPT(1)=2	, the following values of	NOPT(2) are used:
NOPT(2)	0	=-1	Mixed design-optimization case with C_{I} constraint only.
		=-2	Mixed design-optimization case with $C_{I_{c}}$ and X_{CP} constraints.
		=-3	Conical panel mixed designoptimization case with $^{ m C}_{ m L}$
		=-4	constraint only. Conical panel mixed designoptimization case with ${ m C}_{ m L}$ and ${ m X}_{ m CP}$
		=1	constraints. Full optimization, $C_{\hat{\mathbf{L}}}$ constraint
		=2	only Full optimization, $\mathtt{C}_{\mathbf{L}}$ and $\mathtt{X}_{\mathbf{CP}}$.
			constraints.
NOPT(3)	0	=0	Iterative technique specified by variable 'ITMETH' is used to determine singularity strengths (analysis case only).
		=1	Inverse of AIC matrix is used to determine singularity strengths (should be used only if iterative solutions fail to converge or for drag polar calculations).

<u>Variable</u>	<u>Default</u>		Remarks
NOPT(4)	0	=0	Panels with linearly varying vorticity are used. Program automatically assigns C.P. location and trailing edge singularities.
		=2	Panels with constant vorticity and C.P.'s at 95% panel chord are used. No trailing edge singularities are assigned (C.P.'s at 85% chord for subsonic Mach numbers).
NOPT(5)	0	=0	For mixed design-optimization cycles, drag is minimized on portion of wing where pressures are <u>not</u> specified.
		=1	For mixed design-optimization cycles drag is minimized on total wing surface.
NOPT(6)	0	=0 =1	Normal camber input. Camber slopes are input by user at control points of each panel. (These cambers replace any cambers generated during a previous cycle - use only if NOPT(1) = 1).
NSTNS	0	span	per of wing stations at which the awise pressure distribution is tred (maximum of 20).
XSTN(1) XSTN(2) XSTN(3)	0	pres	cations at which the spanwise sure distribution is desired. STNS values).
XLAMDA	57.0		ne of leading edge sweep in rees. (Required for each case)
XAPEX YAPEX	0 0		gin for center of conicity for es where the origin is not zero.

NOTE: XLAMDA is used in the calculation of the spanwise velocity correction "VFIX."

XLAMDA, XAPEX, and YAPEX are used to determine the spanwise location of points output for the wing spanwise pressure distribution. These points are at the specified X locations and lie along the chords through wing panel centroids.

Mach Number and Angle-of-Attack

Columns	<u>Variable</u>	Remarks
1-7	XMACH	The free stream subsonic or super- sonic Mach number for which a solution is desired.
8-14	ALPHA	The angle of attack in degrees for which a solution is desired.
15-21	CLBAR	Design lift coefficient (optimization options only).
22-28	ХСР	Center of pressure (x-coordinate) constraint (optimization options only).

Several of the Options require additional information:

Mixed Design-Analysis (NOPT(1) = 1, NOPT(2) = 2)

Card No.	Format	Field	Name	Remarks
MA1	15	1	NFIX	Number of panels for which prescribed pressures will be input.
MA2*	1015	1-10	IFIX(i), i=1,NFIX	Panel ID numbers in ascending order for which prescribed pressures are input.
MA3*	7F10.2	1-7	PRESS(i), i=1,NFIX	Prescribed lifting pressure coefficients corresponding to panel ID's on MA2.
MA4*	7F10.2	1-7	SLOPES(i), i=1,NUM	Wing camber slopes at panel control points for all panels where pressures have not been specified. (NUM = total number wing panels - NFIX).
	<u>Full</u>	Design (NO	PT(1) = 1, NOPT	f(2) = 3)
F11*	7F10.2	1-7	PRESS(i), i=1,NWING	Prescribed lifting pressure coefficients for all wing panels.
	Camber Slope	Input (Fu	ll Analysis Onl	y) (NOPT(6) = 1)
CS1*	7F10.2	1-7	SLOPES(i), i=1,NWING	Wing camber slopes at panel control points for all panels.

^{*} Repeat card until all values are entered.

Card No.	Format	<u>Field</u>	Name	Remarks			
Mix	ked Design-C	Optimizatio	on $(NOPT(1) = 2$	NOPT(2) = -1, -2)			
General	Design						
MD1	15	1	NFIX	Number of panels for which prescribed pressures will be input.			
MD2*	1015	1-10	IFIX(i), i=1,NFIX	Panel ID numbers in ascending order for which prescribed pressures are input.			
MD3*	7F10.2	1-7	PRESS(i), i=1,NFIX	Prescribed lifting pressure coefficients corresponding to panel ID's given on MD2.			
Conical Par	Conical Panel Mixed Design-Analysis (NOPT(1), NOPT(2)=4)						

and

Conical Panel Mixed Design-Optimization (NOPT(1) = 2, NOPT(2) = -3, -4)

Both of these options require the following additional inputs, which include specification of a conical planform via XLAMLE, XORIGC, and YORIGC, a ray dividing this planform into a supercritical panel (outboard of dividing ray) and subcritical panel (inboard of dividing ray) via ETADR, and a conical liftingpressure distribution, $\Delta \mathtt{C}_{\mathtt{p}}$ versus η , via ETAC and DCPC.

For W12SC3 alone runs, the user must supply the following inputs. For combined COREL/W12SC3 runs with KCCC = 0 (see COREL inputs) these parameters are automatically appended to the data set during COREL execution, and should not be input by the user.

C1	Literal		TITLE	80 characters describing conical pressure distribution
C2	5F10.0	1	FCCC	Number of η , ΔCp pairs defining the conical panel pressures
		2	XLAMLE	The leading edge sweep angle for these pressures

^{*} Repeat card until all values are entered.

Card No.	Format	Field	Name	Remarks
		3	ETADR	The dividing ray (pressures are specified outboard of this ray)
		4	XORIGC	X origin of conical panel for this calculation
		5	YORIGC	Y origin of conical panel for this calculation
C3	2F10.0	1	ETAC	η location of ΔC_p
		2	DCPC	ΔC at this η value

NOTE: Card C3 is repeated FCCC times. The values are input starting with $\eta=0$ (the centerline) and proceeding to $\eta=1$ (the leading edge).

To Start A New Case - Simply repeat the AEROIN namelist, Mach Number and Angle of Attack Card, and any required additional information.

To Signal End of Execution - Execution stops when the end of the data set is encountered.

<u>Paneling Rules</u> - The following rules should be followed when modeling configurations:

- A total of 1653 panels may be used to model all surfaces
 - 551 wing, fin, and canard panels
 - 551 shell and additional nacelle, wing, and canard panels
 - 551 body panels
- A total of 19 streamwise strips is allowed for all wing, fin, and canard panels
- The maximum number of panels in the streamwise direction is 29 on each wing, fin, or canard surface
- A total of 29 panels in the streamwise direction is allowed for all body segments
- The maximum number of panels used to model the body cross-section is 19 on each body segment

- A total of 19 streamwise strips is allowed for all interference shell and additional nacelle, wing, and canard surfaces
- The maximum number of panels in the streamwise direction is 29 on each interference shell and each additional nacelle, wing, and canard surface
- If utilizing iterative solution techniques, the number of panels on circumferential fuselage strips should be an integer factor of 60. This is not a rigid rule, however, and can be relaxed if matrix inversion is used as a solution method, or if the iteration techniques converge in a reasonable number of cycles
- For design-optimization problems, a uniform wing paneling distribution should produce smoother results in most cases (see ref. 5)
- For calculation of leading edge thrust from the computed pressure distribution, a nonuniform streamwise spacing is necessary, with leading edge boxes of the order 10⁻² to 10⁻³ chord lengths. Spanwise cosine spacing will also improve results. A limited number of analyses indicate that constant strength vortex panels (Woodward I panels) produce the most accurate results.

W12SC3: Output Data

The W12SC3 program output consists of two parts:

- A complete listing of the input data cards
- Program execution output.

The quantity and type of execution output depends upon the PRINT option selected, the number of panels used, and/or the number of components of the configuration.

The program execution output options are described below:

PRINT = 0 The program prints the case description, Mach number and angle-of-attack, followed by a table listing the panel number, control point coordinates (both dimensional and nondimensional), pressure coefficient, normal force, axial force, and pitching moment. Separate tables are printed for the body, wing, and shell panels. If the planar boundary condition option has been selected, the results

for the wing or shell upper surface are given in one table, followed by a separate table giving results for the wing or shell lower surface. Additional tables giving the total coefficients on the body, the wing, the shell, and the complete configuration follow the pressure coefficient tables. These include the reference area, reference span and reference chord, normal force, axial force, pitching moment, lift and drag coefficients, and center of pressure of the component.

- PRINT = 1 In addition to the output described for PRINT = 0, the program prints out additional tables giving the normal force, axial force, pitching moment, lift and drag coefficients, and the center of pressure of each column of panels on the wing and tail surfaces.
- PRINT = 2 In addition to the output described for PRINT = 1, the program prints out tables listing the panel number, the source or the vortex strength of that panel, and the axial velocity u, lateral velocity v, and vertical velocity w at the panel control point. The normal velocity is also calculated for body panels. Separate tables are printed for the body, wing, and shell panels. If the planar boundary condition option has been selected, separate tables are given for the wing and shell upper and lower surfaces.
- PRINT = 3 In addition to the output described for PRINT = 2, the program program prints out the iteration number, and the source and vortex strength arrays obtained at each step of the iterative solution procedure.
- PRINT = 4 In addition to the output described for PRINT = 3, the program prints out tables of the axial and normal velocity components which make up the elements of the aerodynamic matrices. The program prints out the matrix row number, and gives the number of elements in that row. A maximum of nine matrix partitions will be printed if this option is selected, each of which is identified by a number and its influence description prior to printing the velocity component tables.

If a negative value of PRINT is selected, the program prints all the information described above for the positive values, together with the complete panel geometry description of the configuration following the list of input cards. This consists of tables giving the wing, body, fin, tail, and shell panel corner points, control points, inclination angles, areas, and chords.

SAMPLE CASE

The following case illustrates the use of the programs and provides a check case for verification. The wing alone mixed design-optimization calculation provides an example of most of the features of the two codes. This case was run on both the Grumman CDC CYBER 740 and NASA LaRC CYBER 175, with identical results.

Input Data

The following data set is used for the sample case:

```
LOWER SURFACE
1.000000 -0.021157
0.999657 -0.022682
0.998630 -0.023870
0.996917 -0.024727
0.994525 -0.025540
0.991445 -0.025540
0.991445 -0.0255448
0.983255 -0.025130
0.978148 -0.024568
0.972370 -0.023790
0.958820 -0.021690
0.951057 -0.020426
0.958820 -0.0161644
0.9135545 -0.014655
0.902585 -0.013181
0.8913545 -0.014655
0.902585 -0.013181
0.891007 -0.011714
0.878817 -0.013181
0.8878817 -0.006881
0.8826410 -0.006881
0.8826410 -0.006881
0.882640 -0.006881
0.8826410 -0.003240
0.809017 -0.003240
0.809017 -0.003240
0.809017 -0.005254
0.777146 0.002958
                                                                                                                                         0.688355
                                                                                                                                                                                            0.015338
                                                                                                                                       0.66493440
0.6649377866
0.6608774039
0.6586446490
0.554204909
0.554224909
0.4433537868775
0.443363888115
0.44336388488442
0.2233791
                                                                                                                                                                                            0.018012
0.020667
                                                                                                                                                                                           0.023256
0.025744
0.028093
0.030261
                                                                                                                                                                                            0.032207
                                                                                                                                                                                            0.033888
                                                                                                                                                                                           0.033884
0.03529437
0.03369747
0.0336971768
0.0336884
0.03348869
0.03328269
0.0232957
0.019157
0.019157
                                                                                                                                                                                            0.014702
                                                                                                                                                                                            0.010039
                                                                                                                                         0.182236
                                                                                                                                        0.156434
0.130526
                                                                                                                                                                                            0.005278
                                                                                                                                                                                            0.000519
                                                                                                                                         0.104528
                                                                                                                                                                                       -0.004157
                                                                                                                                         0.078459
                                                                                                                                                                                     -0.008700
          0.760406 0.005254
0.743145 0.007645
0.725374 0.010134
0.707107 0.012704
                                                                                                                                         0.052336 -0.013106
                                                                                                                                                                                    -0.017430
-0.021799
                                                                                                                                         0.026177
                                                                                                                                         0.0
0.707107 0.012704
SC3 DEMO WING ALONE FOR COMBINED ANALYSIS DESIGN-CRAIDON GEOMETRY
0 1 0 0 0 0 20 30
0.0 0.147 0.586 1.317 2.338 3.645 5.235 7.102 9.242 11.649
14.314 17.231 20.391 23.784 27.400 31.230 35.261 39.483 43.881 48.445
53.159 58.011 62.986 68.070 73.247 78.503 83.822 89.188 94.586100.000
-0.0000 0.0 0.0 23.8401
1.6587 0.7735-0.165622.3368
3.3171 1.5471-0.272320.8338
4.9747 2.3206-0.334119.3317
6.6296 3.0941-0.361617.8324
8.2770 3.8676-0.363716.3413
9.9051 4.6412-0.348414.8714
11.4905 5.4147-0.323313.4495
13.0004 6.1882-0.295512.1174
11.4905 5.4147-0.323313.4495
13.0004 6.1882-0.295512.1174
14.4103 6.9617-0.278110.9170
15.7249 7.7353-0.2864 9.8687
16.9739 8.5088-0.2616 8.9614
18.1883 9.2823-0.2386 8.1602
19.387910.0558-0.2230 7.4225
20.581910.8294-0.2179 6.7156
21.773911.6029-0.2164 6.0212
22.965312.3764-0.2192 5.3313
24.156613.1499-0.2286 4.6430
25.357313.9235-0.2459 3.9456
27.500014.6970-0.1566 2.3063
0.0 0.0000 0.0
    0.0
                                                                                                                                                                                                                                                                                                                                          0.0
                                                                                                                                                                                                                                                                                                                                     0.0000
0.2500
0.2994
0.2986
   0.723

0.0 0.0055

0.3684 0.4235

0.8262 0.8516

0.0 0.0047

0.3415 0.3959

0.3415 0.3959
```

0.0041 0.0160 0.0355 0.0618 0.0939 0.1308 0.1715 0.2155 0.2622 0.3633 0.4172 0.4729 0.5300 0.5877 0.6453 0.7019 0.7564 0.8080 0.8996 0.9390 0.9740 1.0053 1.0337 1.0590 1.0807 1.0992 1.1149 0.0035 0.0140 0.0310 0.0542 0.0829 0.1162 0.1535 0.1940 0.2373 0.3317 0.3826 0.4357 0.4907 0.5470 0.6038 0.6603 0.7156 0.7689 0.8665 0.9101 0.9505 0.9881 1.0230 1.0352 1.0848 1.1119 1.1367 0.0031 0.0123 0.0275 0.0482 0.0739 0.1041 0.1382 0.1755 0.2155 0.3029 0.3500 0.3992 0.4502 0.5026 0.5557 0.6090 0.6618 0.7134 0.0 0.0467 0.0551 0.0640 0.0734 0.0833 0.0936 0.1043 0.1154 0.1267 0.1444 0.1533 0.1624 0.1715 0.1806 0.1878 0.1990 0.2082 0.2173 0.1866 0.3670 0.5412 0.7088 0.88696 1.0230 1.1685 1.3057 1.4337 1.6588 1.7539 1.8357 1.9029 1.9538 1.9867 1.9998 1.9912 1.9587 1.6588 1.7539 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2168 0.4199 0.6094 0.7856 0.9490 1.1001 1.2393 1.3674 1.4845 1.6873 1.7727 1.88466 1.9081 1.9955 1.9870 1.97998 1.9912 1.9587 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2432 0.4660 0.6689 0.8527 1.0184 1.1674 1.3012 1.4212 1.5290 1.7122 1.7891 1.8561 1.9126 1.9571 1.9872 1.9998 1.9912 1.9587 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2657 0.5054 0.7197 0.9099 1.0776 1.2249 1.3540 1.4672 1.5669 1.7335 1.8031 1.8642 1.9165 1.9584 1.9874 1.99998 1.9912 1.9587 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2657 0.5054 0.7197 0.9099 1.0776 1.2249 1.3540 1.4672 1.5669 1.7335 1.8031 1.8642 1.9165 1.9584 1.9874 1.99998 1.9912 1.9587 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2844 0.5381 0.7619 0.9574 1.1268 1.2726 1.3978 1.5054 1.5984 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2844 0.5381 0.7619 0.9574 1.1268 1.2726 1.3978 1.5054 1.5984 1.5984 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2844 0.5381 0.5689 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2844 0.5381 0.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2844 0.5381 0.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2844 0.5833 0.8600 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.2841 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.3103 0.5833 0.8202 1.0231 1.1947 1.3385 1.4588 1.9912 1.9587 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.3174 0.5958 0.8363 1.0412 1.2135 1.3568 1.4751 1.5727 1.65387 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.3174 0.5958 0.8363 1.0412 1.2135 1.3568 1.4751 1.5727 1.65387 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.3174 0. 0.0 1.9002 0.0 1.5912 1.9002 0.0 1.6257 1.9002 0.0 1.9002 0.0 1.9002 0.0 1.6989 1.9002 0.0 .9002 0.0 1.7226 1.9002 0.0 1.7269 1.9002

```
1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.9563 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.9261 1.712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.9261 1.712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.9261 1.712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.0 0.3210 0.6020 0.8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.0 0.0 0.3210 0.6020 0.8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 0.9333 0.6649 0.3668 0.0400 0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0

    1
    3
    0
    0
    0
    0
    11
    11

    171.05
    14.697
    14.747
    0.0
    0.0
    16.701
    0.0

    0.1224
    0.1705
    0.2189
    0.2650
    0.3066
    0.3418
    0.3691
    0.3874
    0.3967
    0.3967

    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
    0.3967
                        100.00
                                                                                          1.4697 2.9394 4.4091 5.8788 7.3485 8.818210.287911.757613.2273
                        0.0
                      14.697
$AERDIN XLAMDA=57.0,NOPT(1)=2,NOPT(2)=-3,NOPT(4)=2,NOPT(5)=1,
NXSTNS=3,XSTN(1)=15.5,XSTN(2)=19.9,XSTN(3)=24.4,XAPEX=3.907,
                        $END
                                                                                                         12.0
                        1.62
```

SYSTEM DEPENDENT JOB IDENTIFICATION

JOBN (FUNCTION LGYRTM)

COREL 2 (VERSION OF SEPT.29,1978)

GRUMMAN AEROSPACE CORPORATION BETHPAGE N.Y.

CONICAL RELAXATION SOLUTION

BY B. GROSSMAN, PRESENTLY PROFESSOR OF AERONAUTICS - VIRGINIA POLYTECHNIC INSTITUTE, BLACKSBURG, VA. (703) 961-6740

AERODYNAMIC APPLICATIONS ADAPTATION BY W. MASON

GRUMMAN AEROSPACE CORPORATION , BETHPAGE, N.Y. (516) 575-6092

MINF=1.620 ALP=12.000

IC= 30 JC= 30 KMAX1= 350 KMAX2= 250 KMAX3= 150 KREF=2 IPLOT= 1 GAMMA=1.40 WW1=1.000 WW3=1.500 WW2=1.500 .10E-05 EST=-6.00 DMIN1= DMIN2= .10E-05 DMIN3= .10E-05

DEMONSTRATION WING FOR SC3 WING CONCEPT M=1.62, ALPHA=12.0 , AZ=33.00 XSTN=19.90

AZ=33.000 BZ= 1.500 NG=199 NS= 4 LC= 0 LT= 1 LM= 0 CC(1) = 0.000CC(2) = 0.000CT(1) = 0.000CT(2)= 0.000 CC(3) = 0.000CT(3) = 0.008CM(1) = 0.000CM(2) = 0.000IOUT= 1 KDESMX= 0 ETADR= .750 IDESIN= 0 IRPTS= 1 IOUT2=0 IPUNCH=3 NSHKR=10 KSHKR= 8 JDRLX= 6 WDES=0.000 EPSHKI=1.200 TESWP= 0.00 KCCC= 0 XORIGC= 3.9070 YORIGC= 0.0000 IMOD= 0 IEQV= 1 XU1= 0.000 XU2= 0.000 XU3= 0.000 DCTU= 0.000 XL1= 0.000 XL2= 0.000 XL3= 0.000 DTCL= 0.000 XSTN= .19.980 IEQV3= 0 XROOT=***** ZROOT= 0.00000 YWNGRT= -1.00000

SPANWISE SECTION AT XSTN=19.9 FOR COREL ANALYSIS

ZSYM=0.0 THICK= 1.000000 FNU= 61.0 FNL= 61.0 XKSMTH= 0.0 XSING= 0.000000 YSING= 0.000000

UPPER SURFACE

I	X	Y
1 12345 678 90 101 112 1134 115 1167 118	X 1.00000 .999657 .998630 .994522 .991445 .987645 .983255 .978148 .972376 .965820 .951057 .942641 .933580 .923880 .913588	Y0211570194350176600158343011998007927005801003618001380 .005908 .005908
19 20	.891007 .878817	.017486 .019914

21	944025	022424
5.T	.000023	.022720
22	.832640	. 025024
23	.838671	.02//12
24	.824126	.030490
25	.809017	.033360
26	.793353	.036317
26 27	.777146	.039358
28	.760406	.042475
29	.743145	.045656
3ó	725374	048895
31	707107	052177
32	688355	055486
33	440171	059400
33	.007131	.00000
34	.049440	.002001
35	.629320	.065222
36	.608/61	.068248
37	.58//85	.0/1099
38 39	.566406	.073732
39	.544639	.076104
40	.522499	.078171
41	.500000	.079890
42	. 477159	.081221
43	.453990	.082126
44	.430511	.082573
45	.406737	.082533
46	.382683	.081941
47	. 358368	.080660
48	.333807	.078690
49	309017	.076057
50	284015	072813
51	258810	060020
52	233665	044794
J2 E 7	207012	040212
53 54	100712	.000212
24	.102236	. 055373
55	.126434	. 050449
56 57 58	.130526	.045482
57	.104528	.040574
58	.078459	.035776
59	.052336	.031096
60	.026177	. 026479
61	.866025 .852640 .83826127 .809017 .7937366 .760406 .743145 .72573707 .68837707 .6887785 .669131 .629761 .566406 .544639 .55070159 .4306733 .566406 .544639 .52490 .4305117 .38583607 .309015 .22379236 .1562688 .33538017 .22588415 .22588415 .2262236 .106268 .1078236 .1078236 .108236 .108236 .10900000000000000000000000000000000000	.021799

LOWER SURFACE

I	×	Y
1	1.000000	02115
2	. 999657	02268
3	.998630	02387
4	.996917	02472
5	.994522	02526
6	.991445	02550
7	.987688	02544
8	.983255	02513
9	.978148	02456
1 Ó	.972370	02379
îĭ	.965926	02282
12	.958820	02169
13	.951057	02042
14	.942641	01906
7.4	. 772041	01700

15	.933580	017623
16	.923880	016144
17	.913545	01465
18	.902585	_ 017101
19	.891007	011714
20	.878817	- 010181
		- ' 0 T 0 T 0 I
21	.866025	008570
22	.852640	- 00499
25		00000
23	.838671	005106
24	.824126	013181 011714 010181 008571 005106 003241
C.7		.003270
25	.809017	001275
26	.793353	.000793
	.,,,,,,	
27	.777146	.002968
28	.760406	.005254
	767165	.00363
29	.743145	.007643
30	.725374	.010134
31		01070
	.707107	.012704
32	.688355	.015338
33	.669131	
		.018012
34	.649448	.020667
35	.629320	
33		.023256
36	.608761	.025744
37	.587785	.028093
	.307763	.02009.
38	.566406	.030263
39	566630	.032207
	.544639 .522499	.03220
40	.522499	.033888
41	.500000	.03526
	. 300000	.03520
42	.477159	.036295
43	.453990	.036943
;;	. 133770	.03077
44	.430511	.037177
45	.406737	.036968
46	700/07	
	.382683	.036250
47	. 358368	.034884
48	777907	0700//
	.33360/	.032869
49	.333807 .309017 .284015	.032869
50	284015	.027015 .023295 .019157 .014702
	.204013	.05/81:
51	.258819	.023295
52	. 233445	01015
	.233443	. 017157
53	.207912	.014702
54	.182236	.010039
55	.156434	.005278
56	.130526	.000519
	. 100560	
57	.104528	004157
58	.078459	008700
59	.052336	013106
60	.026177	017430
61		
DΙ	0 .000000	021799

PROGRAM 03400 (SPADE) - SURFACE PATCH DEFINITION EQUATIONS

FROM THE CRAIDON PROGRAM - SUBROUTINE START IN COREL

AIRCRAFT CONFIGURATION DESCRIPTION

SC3 DEMO WING ALONE FOR COMBINED ANALYSIS DESIGN-CRAIDON GEOMETRY

```
.147
                .586 1.317 2.338 3.645 5.235 7.102 9.242 11.649
14.314 17.231 20.391 23.784 27.400 31.230 35.261 39.483 43.881 48.445
53.159 58.011 62.986 68.070 73.247 78.503 83.822 89.188 94.586100.000
0.000 0.000 0.000 23.840
1.659
         .774
               -.166 22.337
               -.272 20.834
3.317 1.547
 4.975 2.321
               -.334 19.332
6.630 3.094
               -.36217.832
8.277 3.868
               -.364 16.341
9.905 4.641
               -.348 14.871
11.491 5.415
               -.323 13.450
13.000 6.188
               -.296 12.117
14.410 6.962
               -.278.10.917
15.725 7.735
               -.286 9.869
16.974 8.509
               -.262 8.961
18.188 9.282
               ~.239
                      8.160
19.388 10.056
               -.223
                      7.423
20.582 10.829
               -.218
                      6.716
21.774 11.603
               ~.216
                      6.021
22.965 12.376
               -.219
                      5.331
24.157 13.150
               -.229
                      4.643
25.357 13.924
               -.246
                      3.946
27,500 14,697
               ~.157
                      2.306
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
              .0310
                            .0962
0.0000 .0085
                      .0615
                                   .1328
                                                 .2006
                                                        . 2279
                                          .1684
                                                               .2500
                            .2942
                                          .2977
 .2665
       .2780
               .2857
                      .2908
                                    .2963
                                                  .2986
                                                         .2991
                                                               .2994
 .2995 .2995
               .2995
                      .2993
                             .2992
                                    .2990
                                           .2989
                                                  .2987
                                                         .2986
                                                                .2986
0.0000
               .0281
       .0073
                      .0593
                             .0972
                                    .1396.
                                           .1851
                                                         .2793
                                                  .2323
                                                                .3245
 .3662
       .4037
                      .4647
                             .4880
                                           .5200
               .4365
                                    .5061
                                                  .5302
                                                         .5377
                                                                .5428
               .5488
                             .5482
                                    .5473
                                                  .5451
                                                         .5442
 .5461
       .5480
                      .5488
                                           .5462
                                                                .5433
0.0000
        .0063
               .0247
                      .0533
                             .0898
                                    .1317
                                           .1777
                                                         .2784
                                                  .2269
                                                                .3310
 . 3834
       . 4344
               .4827
                      .5276
                             .5685
                                    .6054
                                           .6381
                                                         .6909
                                                                .7101
                                                  .6669
 .7250
        .7360
               .7436
                      .7484
                             .7511
                                    .7521
                                           .7521
                                                  .7517
                                                         .7509
                                                                .7500
0.0000
        .0055
               .0214
                      .0469
                             .0802
                                    .1196
                                           .1634
                                                  .2109
                                                         .2613
                                                                .3140
                                           .6788
                                                                .7953
 .3684
        .4235
               .4784
                      .5321
                             .5838
                                    .6329
                                                  .7214
                                                         .7603
 .8262
       .8516
               .8715
                      .8865
                             .8974
                                    .9050_
                                          .9104
                                                  .9142
                                                         .9167
                                                                .9181
0.0000
        .0047
               .0185
                      .0409
                             .0706
                                    .1064
                                          .1470
                                                  .1913
                                                         .2388
                                                                .2889
                                                         .7757
 .3415
        .3959
               .4516
                      .5081
                             .5645
                                    .6202
                                           .6744
                                                  .7265
                                                                .8212
 .8625
        .8993
               .9315
                      .9589
                             .9810
                                    .9989 1.0135 1.0251 1.0344 1.0416
                                                  .1715
0.0000
        .0041
               .0160
                      .0355
                             .0618
                                    .0939
                                          .1308
                                                         .2155
                                                                .2622
 .3115
       .3633
               .4172
                      .4729
                             .5300
                                    .5877
                                          .6453
                                                 .7019
                                                         .7564
                                                               .8080
 .8559
               .9390
                      .9740
        .8996
                           1.0053 1.0337 1.0590 1.0807 1.0992 1.1149
0.0000
        .0035
               .0140
                      .0310
                            .0542
                                   .0829
                                          .1162
                                                 .1535
                                                        .1940
                                                               .2373
 .2832
        .3317
               .3826
                      .4357
                             .4907
                                    .5470
                                          .6038
                                                  .6603
                                                         .7156
                                                               .7689
 .8193
        .8665
               .9101
                      .9505
                             .9881 1.0230 1.0552 1.0848 1.1119 1.1367
                      .0275
                                    .0739 .1041
                                                               .2155
0.0000
       .0031
               .0123
                             .0482
                                                 .1382
                                                         .1755
.2580
       .3029
               .3500
                      .3992
                             .4502
                                    .5026 .5557
                                                 .6090
                                                        .6618
                                                               .7134
 .7633
        .8109
               .8565
                      .9003
                            .9421
                                   .9816 1.0189 1.0539 1.0866 1.1170
```

104		000/	03.05							
4	0.0000	.0026	.0105	.0235	.0413	.0636	.0902	.1235	.1613	.2015
	.2423 .7037	.2832 .7505	.3260 .7966	.3704 .8417	.4163 .8855	.4635 .9277	.5116 .9683	.5601 1.0070	.6086 1.0438	.6566
	0.0000	.0031	.0123	.0276	.0487	.0750	.1057	.1396	.1758	1.0786
	.2507	.2876	.3257	.3650	.4056	.4472	.4897	.5327	.5760	.6199
	.6644	.7093	.7541	.7987	.8425	.8855	.9274	.9679	1.0069	1.0444
	0.0000	.0829	.0114	.0253	.0443	.0677	.0950	. 1253	.1578	.1916
	. 2257	.2593	.2926	.3270	.3622	. 3983	.4351	.4731	.5125	.5529
	.5942	.6361	.6785	.7209	.7632	.8051	.8463	.8868	. 9262	. 9644
	0.0000	.0025	.0099 .2590	.0220	.0386	.0590	.0830	.1096	.1384	.1685
	.5294	.5678	.6068	.6462	.3193 .6857	.3514 .7253	.3847 .7645	.4192 .8034	.4549	.4917
	0.0000	.0021	.0085	.0188	.0330	.0506	.0712	.0942	.8416 .1193	.8790 .1458
	.1734	.2015	.2294	.2568	.2848	.3139	.3441	.3753	.4074	.4405
	. 4744	.5090	.5443	.5800	.6161	.6523	.6886	.7247	.7605	.7958
	0.0000	.0018	.0073	.0163	.0287	.0442	.0624	.0832	.1060	.1304
	.1561	.1824	.2089	.2351	.2608	.2871	. 3142	.3420	.3707	.4001
	.4302	.4610	.4923	.5241	. 5563	. 5887	.6213	.6538	.6863	.7185
	0.0000	.0016	.0064	.0144	.0253	.0390	.0552	.0738	.0942	.1163
	.1396	.1638	.1885	.2132	.2375	.2613	.2854	.3101	. 3354	.3612
	.3876 0.0000	.4145 .0014	.4419 .0056	.4696 .0124	.4977 .0219	.5260 .0338	.5545	.5831	.6117	.6401
	.1226	.1444	.1667	.1894	.2120	.2344	.0480 .2561	.0642 .2777	.0822 .2997	.1018 .3221
	. 3449	.3681	.3916	.4154	.4394	.4636	.4879	.5124	.5368	.5612
	0.0000	.0012	.0847	.0105	.0185	.0287	.0408	.0547	.0702	.0871
	.1052	.1243	.1441	.1643	.1847	.2051	.2252	.2449	.2639	.2831
	.3025	.3221	.3420	.3620	.3821	.4824	.4227	.4431	.4634	.4837
	0.0000	.0010	.0038	.0085	.0151	.0233	.0332	.0446	.0574	.0714
	. 0864	.1024	.1192	.1365	.1543	.1723	.1905	.2085	.2262	.2434
	.2597	.2760	.2924	.3088	.3253	.3419	. 3584	.3749	.3914	-4078
	0.0000 .0389	.0004 .0467	.0016 .0551	.0036	.0064	.0100	.0144	.0195	.0253	.0318
	.1355	.1444	.1533	.0640 .1624	.0734 .1715	.0833 .1806	.0936 .1898	.1043 .1990	.1154 .2082	.1267
	0.0000	.1866	.3670	.5412	.7088	.8696	1.0230	1.1685	1.3057	.2173 1.4337
	1.5517	1.6588	1.7539	1.8357	1.9029	1.9538	1.9867	1.9998	1.9912	1.9587
	1.9002	1.8141	1.6990	1.5539	1.9029 1.3781	1.1712	.9333	.6649	.3668	.0400
	0.0000	.2168	.4199	.6094	.7856	.9490	.9333 1.1001	1.2393	1.3674	1.4845
	1.5912	1.6873	1.7727	1.8466	1.9081	1.9555	1.9870	1.9998	1.9912	1.9587
	1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	. 9333	.6649	. 3668	.0400
	0.0000	.2432	.4660	.6689	.8527	1.0184	1.1674	1.3012	1.4212	1.5290
	1.6257 1.9002	1.7122	1.7891	1.8561	1.9126	1.9571	1.9872	1.9998	1.9912	1.9587
	0.0000	.2657	.5054	1.5539	.9099	1.1712 1.0776	.9333 1.2249	.6649 1.3540	.3668	.0400
	1.6551	1.7335	1.8031	1 8642	1.9165	1.9584	1.9874	1.9998	1.4672	1.5669
	1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	.9333	.6649	.3668	.0480
	0.0000	.2844		.7619	.9574	1.1268	1.2726	1.3978	1.5054	1.5984
	1.6795	1.7511	1.8147	1.8710	1.9198	1.9596	1.9876	1.9998	1.9912	1.9587
	1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	. 9333	.6649	. 3668	.0400
	0.0000	.2993	.5640	.7954	.9951	1.1658	1.3104	1.4325	1.5357	1.6234
	1.6989	1.7651	1.8239	1.8763	1.9223	1.9604	1.9878	1.9998	1.9912	1.9587
	1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	.9333 1.3385	.6649	.3668	.0400
	0.0000 1.7133	.3103	.5833 1.8307	.8202	1.0231	1.1947	1.3385	1.4583	1.5581	1.6419
	1.7133	1.7755	1.6998	1.8803	1.9242	1.9611	1.9879	1.9998	1.9912	1.9587
	0.0000	.3174	.5958	.8363	1.0412	1.2135	.9333 1.3568	.6649 1.4751	.3668 1.5727	.0400
	1.7226	1.7822	1.8351	1.8829	1.9255	1.9615	1 9879	1.9998	1.9912	1.6539 1.9587
	1.9002	1.8141	1.6990	1.8829 1.5539	1.9255 1.3781	1.9615 1.1712	. 9333	.6649	.3668	.0400
	0.0000	.3207	.6016	.8438	1.0496	1.2222	1.3652	1.4828	1.5795	1.6595
	1.7269	1.7853	1.8372	1.8841	1.9260	1 9617	1.9880	1.9998	1.9912	1.9587
	1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	.9333	.6649	. 3668	.0400

```
0.0000 .3210 .6020 .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
         .3210
                                               . 9333
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712
                                                       .6649
                                                              . 3668 . 0400
 0.0000 .3210
                .6020
                        .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 1,7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 .9333 .6649 .3668 .0400 0.0000 .3210 .6020 .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 .9333
                                                       .6649
                                                              .3668 .0400
                        .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 0.0000 .3210
                .6020
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712
                                               . 9333
                                                       .6649
                                                              . 3668
                         .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 0.0000 .3210
                 .6020
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 .9333
                                                       .6649
 0.0000 .3210
                        .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
                .6020
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 .9333 .6649 .3668 .0400 0.0000 .3210 .6020 .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 .9333 .6649
                                                              .3668 .0400
                        .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 0.0000 .3210
                .6020
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712
                         .5539 1.3781 1.1712 .9333 .6649 .3668 .0400
.8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 0.0000 .3210
                 .6020
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 .9333 .6649
                        .8443 1.0503 1.2229 1.3658 1.4834 1.5800 1.6599
 0.0000 .3210
                 .6020
 1.7273 1.7855 1.8373 1.8841 1.9261 1.9617 1.9880 1.9998 1.9912 1.9587
 1.9002 1.8141 1.6990 1.5539 1.3781 1.1712 .9333
                                                       .6649 .3668 .0400
 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         *** END OF AIRFOIL DATA ***
         *** END OF FUSELAGE DATA ***
         *** INPUT DATA FOR AIRCRAFT HAS BEEN COMPLETED ***
*** SPLINE AND SURFACE PATCHES HAS BEEN COMPLETED ***
         NOBJ=
WING
         NSURF=
         NUMBER OF PATCHES= 551
         NUMBER OF PATCHES= 551
         *** CORNER POINTS OF PATCHES HAVE BEEN COMPUTED AND STORED AS COMMON PATBLK ***
      LEADING EDGE PANEL DETECTED AT NXLE= 33 ON SURFACE
                                           - 1 ***
      39 PATCHES FOR XCUT ON SURFACE
×××
     39 PATCHES FOR XCUT ON SURFACE 2 ***
XTIP= 19.90000 YTIP= 10.38742 ZTIP= -.21985
```

						IF ZAVG IS NOT ZEF	RO, THE SECTION IS	TRANSLATED TO	KEEP
SPANWI	SE SECTION GEO	METRY	FROM CRAI	DON GEOMETRY PACKA	GE	THE SPANWISE SECT	TION AT THE COOR	DINATE SYSTEM	
XSTN=	19.90000	ZAVG=	.00000	DALP=00 DEG		ORIGIN, AND THE A	THE TRANSLATION.	,	ALF
			T	- CENTERLINE AVERA	AGE VALUE				
I	YHARL		Z	DNY	DNZ	XND	XSTN	YD	ZD
1	.00000		01416	16186	. 98572	04639	19.90000	.00000	22643
Ž	. 03457		00843	16555	. 98517	04517	19.90000	.55284	13489
3	.06904		00248	17481	. 98366	04317	19.90000	1.10412	03968
4	.10331		.00374	18137	. 98256	04112	19.90000	1.65226	.05985
5	.13729		.00995	17513	.98371	04051	19.90000	2.19572	.15910
6	.17988		.01556	15178	.98750	04241	19.90000	2.73296	.24881
7	.20399		.02001	11303	. 99242	04817	19.90000	3.26245	.32003
8	. 23652		.02290	06366	.99631	05764	19.90000	3.78269	.36631
9	.26838		.02409	01386	. 99758	06807	19.90000	4.29221	.38530
10	.29948		.02389	.02505	.99670	07722	19.90000	4.78956	.38215
11	. 32973		.02263	.05865	.99461	08549	19.90000	5.27334	.36185
12	. 35904		.02046	.08752	.99186	09251	19.90000	5.74217	.3272 9
13	. 38734		.01764	.10948	.98919	09752	19.90000	6.19472	.28207
14	.41454		.01435	.12688	. 98675	10116	19.90000	6.62971	.22954
15	.44056		.01088	.13583	.98542	10245	19.90000	7.04591	.17394
16	.46534		.00740	.13927	. 98495	10233	19.90000	7.44214	.11837
17	.48879		.00411	.13653	. 98558	09991	19.90000	7.81727	.06579
18	.51086		.00109	.13255	.98642	09703	19.90000	8.17024	.01748
19	.53149		00162	.12704	.98743	09399	19.90000	8.50005	02584
20	.55060		00407	.12616	.98761	09336	19.90000	8.80577	06504
21	. 56816		00629	.12393	.98800	09220	19.90000	9.08653	10066
22	.58410		00829	.12614	. 98755	09398	19.90000	9.34153	13252
23	. 59839		01024	.14477	. 98388	10502	19.90000	9.57005	16378
24 25	.61098		01220	.15778	.98099	11301	19.90000	9.77145	19505
25	.62184		01395	.15811	.98092	11315	19.90000	9.94514	22313
26	.63094		01536	.14154	. 98470	10168	19.90000	10.09065	24568
27	.63825		01628	.09579	. 99286	07106	19.90000	10.20755 10.29552	26033
28	.64375		01657	00729	.99997	00311	19.90000	10.29552	26506
29	.64743		01607	30488	. 93290	.19167	19.90000	10.35430	25708
30	. 64927		01466	79785	.31255	.51552	19.90000	10.38374	23450
31	.64950		01375	82437	.18948	. 53339	19.90000	10.38742	21985
32	.64927		01271	.81048	. 25748	52614	19.90000	10.38374	20328
33	.64743		01023	.60934	.68689	39609	19.90000	10.35430	16362
34	. 64375		00767	.46671	.83104	30258	19.90000	10.29552	12271
35	.63825		00498	.38733	.88739	25002	19.90000	10.20755	07960
36	.63094		00213	.32688	. 92156	20947	19.90000	10.09065	03403
37	.62184		.00086	.28694	. 94047	18217	19.90000	9.94514	.01371
38	.61098		.00396	. 25664	. 95303		19.90000	9.77145	.06332
39	. 59839		.00714	.22681	. 96378	14032	19.90000	9.57005	.11414
40	.58410		.01027	.19953	. 97224		19.90000	9.34153	.16421
41	.56816		.01344	.19152	. 97469		19.90000	9.08653	.21494
42 43	.55060		.01687	.18882	. 97566	11156	19.90000	8.80577	. 26 97 5
43	.53149		.02052	.18464	.97701		19.90000	8.50005	.32821
44	.51086		.02441	.18386	. 97762		19.90000	8.17024	.39035
45	. 48879		.02853	.18059	. 97885		19.90000	7.81727	.45623
46	.46534		.03281	.17690	.98016	08937	19.9000 0	7.44214	. 52469
47	.44056		.03717	.16811	. 98245	08076	19.90000	7.04591	.59452
48	.41454		.04145	. 15459	. 98542		19.90000	6.62971	.66289
49	. 38734		.04544	.13286	. 98935		19.90000	6.19472	.72671
50	.35904		.04888	.10686	.99316		19.90000	5.74217	.78167
51	.32973		.05154	.07366	. 99673		19.90000	5.27334	.82423
52	. 29948	3	.05319	.03574	.99919	01851	19.90000	4.78956	.85073

53 554 555 56 57 58 59 60 61	.26838 .23652 .20399 .17088 .13729 .10331 .06904 .03457	.05366 .05263 .04978 .04527 .63952 .03309 .02658 .02028	00716 06077 11328 15463 18027 18844 18357 17590 17357	.9997 .99808 .99323 .98735 .98279 .98115 .98202 .98338 .98373	00368 .01185 .02561 .03514 .04040 .04296 .04495 .04494	19.90000 19.90000 19.90000 19.90000 19.90000 19.90000 19.90000 19.90000	4.29221 3.78269 3.26245 2.73296 2.19572 1.65226 1.10412 .55284	.85817 .84164 .79608 .72402 .63203 .52927 .42514 .32433
1	YHARL	z	DNY	DNZ	DNX	XSTN	YD	ZD

YHARL IS TAKEN TO BE A 61 POINT COSINE SPACING CHOSEN TO CONCENTRATE POINTS AT THE L.E. OF THE SPANWISE SECTION.

INTERNALLY GENERATED SINGULARITY LOCATION FOR MAPPING

GENERATED FROM PARM: X(IN), Y(IN): THE POINT ON THE SECTION WITH THE SMALLEST RADIUS OF CURVATURE. XC. YC: THE ORIGIN OF THE L.E. RADIUS

OF THE SPANWISE SECTION

X(IN)= =(NI)Y -.01473 IN= 60 .64918 XC= .64732 YC= -.01379 YSING= XSING= -.01426 .64825 -.02196 XAREA= XSING= .99822 YSING= .016988 NORMALIZED BY XI F **CROSS SECTIONAL AREA** NM= 58 xo= .64825 Y0= -.014260 Y1= .014260

X(IN) Y(IN) XSING

YSING

Xc, Yc

MAPPED BODY (B) AND SHOCK (C) LOCATIONS - WITH 1ST (PR) AND 2ND (SEC) DERIVATIVES

BPR

B < C ALWAYS

ASSUMED BOW SHOCK LOCATION BSEC C CPR

.13554E+01 .57343E-01 -.70057E-01 .13557E+01 -.71327E-03 .13552E+01 -.69877E-02 -.41788E-01 .13542E+01 -.10481E-01 -.20488E-01 .13529E+01 -.10162E-01 .26188E-01 .13519E+01 -.40285E-02 .83138E-01 .13908E+00 .13520E+01 .84379E-02 .13538E+01 .27389E-01 .19872E+00 **XSING, YSING IS THE** MIDPOINT OF THE LINE CONNECTING THE CEN-TER OF THE CIRCLE AND THE TANGENT POINT OF THE CIRCLE TO THE SPANWISE SECTION.

BODY LOCATION Х BPR CSEC В I 2 -.15708E+01 .33265E+00 -.10047E+01 O. -.14586E+01 .32632E+00 -.59303E-01 -.52367E-01 -.13464E+01 .31934E+00 -.58877E-01 .59949E-01 -.12342E+01 .31311E+00 -.43504E-01 .21409E+00 .21596E+00 -.11220E+01 -.19378E-01 .30958E+00 -.10098E+01 .30876E+00 .15004E-02 .15620E+00 -.89760E+00 .30992E+00 .16013E-01 .10249E+00 -.78540E+00 .31236E+00 .23252E-01 .26552E-01 .23597E-01 .13581E+01 .25533E+00 10 -.67320E+00 .31513E+00 -.20397E-01 .52861E-01 11 -.56100E+00 .31765E+00 .21913E-01 -.96187E-02 .13656E+01 .84885E-01 .31550E+00 12 13 14 15 .88847E-01 .13771E+01 .12317E+00 .26358E-01 .36691E+00 -.44880E+00 .32005E+00 -.33660E+00 .19015E+00 .13933E+01 .32357E+00 .42010E-01 .16713E+00 .41680E+00 .61776E-01 -.22440E+00 .32948E+00 .16219E+00 .14147E+01 .21600E+00 .45418E+00 -.11220E+00 .63611E-01 -.12948E+00 .14417E+01 .26927E+00 .49551E+00 .33743E+00 16 17 18 19 20 22 22 22 26 27 -.71054E-14 .34375E+00 .51667E-01 -.83429E-01 .14751E+01 .32324E+00 .46655E+00 .11220E+00 .34902E+00 .30698E-01 -.29035E+00 .15143E+01 .37466E+00 .44988E+00 .15592E+01 .22440E+00 .35064E+00 .12845E-01 -.27893E-01 .41834E+00 .32874E+00 .33660E+00 .35191E+00 .90962E-02 -.38926E-01 .16082E+01 .44975E+00 .23122E+00 .44880E+00 .35268E+00 .97841E-02 .51188E-01 .16601E+01 .46834E+00 .10017E+00 .60647E-01 .17133E+01 .47294E+00 .56100E+00 .35410E+00 .16058E-01 -.18230E-01 .67320E+00 .35629E+00 .21011E-01 .27643E-01 .17662E+01 .46342E+00 -.15147E+00 .78540E+00 .35882E+00 .20238E-01 -.41415E-01 .18172E+01 .43878E+00 -.28763E+00 .89760E+00 .10853E-01 .36083E+00 -.12589E+00 .18647E+01 .40146E+00 -.37775E+00 .10098E+01 .36125E+00 -.67568E-02 -.18801E+00 .19073E+01 .35583E+00 -.43554E+00 .11220E+01 .35931E+00 -.31540E-01 -.25377E+00 .19445E+01 .30382E+00 -.49163E+00 .35417E+00 -.57190E-01 .19755E+01 .12342E+01 -.20345E+00 .24442E+00 -.56707E+00 28 .34648E+00 .19994E+01 .17532E+00 .13464E+01 -.69707E-01 -.19685E-01 -,66475E+00 .82267E-01 29 .14586E+01 .33853E+00 -.66197E-01 .20148E+01 .96017E-01 -.74880E+00 .15708E+01 .33162E+00 .10977E+01 .20209E+01 -.96274E+00

BSEC

MAPPING METRIC AND FREESTREAM VELOCITIES AT GRID POINTS

I

X

NOTE: THE JOUKOWSKI MAPPING LEADS TO A NEAR CIRCLE, SO THAT B IS NOT A CONSTANT IN THE MAPPED SPACE.

CSEC

CPR

		MAPPED PLANE	i.	PHYSICAL P	LANE	MAPPING METRIC			
I	J	RHO	THE	PSI	OMEG	н	υI	VI	WI
2345678901123451111111111111111111111111111111111	22222222222222222222222222222	.33265E+00 .3263E+00 .31931E+00 .31931E+00 .30876E+00 .30876E+00 .30926E+00 .31765E+00 .31765E+00 .32357E+00 .32948E+00 .32948E+00 .343745E+00 .3548E+00 .355191E+00 .355191E+00 .355191E+00 .355191E+00 .35682E+00 .35682E+00 .35682E+00 .35682E+00 .35682E+00 .35682E+00 .35682E+00 .35682E+00 .35682E+00 .35682E+00 .35931E+00 .35931E+00 .35931E+00 .35931E+00 .35931E+00 .35931E+00 .35931E+00 .35931E+00 .35931E+00 .35931E+00	15708E+0114586E+0113664E+0112342E+0111220E+0111098E+0189760E+0078540E+0056100E+0033660E+0022440E+0011220E+004880E+0011220E+0044880E+0056100E+0044880E+0056100E+0078540E+0078540E+0078540E+0011220E+0111220E+0112342E+0112342E+0113464E+0113464E+0115708E+01	.14155E-01 .67881E-01 .13508E+00 .20070E+00 .20070E+00 .32034E+00 .37299E+00 .46172E+00 .52627E+00 .52627E+00 .54862E+00 .56433E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .57183E+00 .4579E+00 .45785E+00 .13455E+00 .13455E+00 .13455E+01 .14155E-01	15708E+0139586E-01 .71027E-01 .97679E-01 .89595E-01 .68000E-01 .4405E-01 .58178E-0213566E-01294708E-0124708E-0124708E-0124708E-0111807E-0111807E-0111807E-0111807E-0116665E-02 .99505E-02 .22866E-01 .39078E-01 .39078E-01 .20627E-0112627E-01	.18209E+01 .18428E+01 .18428E+01 .18407E+01 .18059E+01 .17269E+01 .16068E+01 .14559E+01 .12840E+01 .11011E+01 .91293E+00 .72156E+00 .52693E+00 .33308E+00 .15624E+00 .99749E-01 .24009E+00 .55922E+00 .71587E+00 .86535E+00 .10045E+01 .11315E+01 .12469E+01 .13524E+01 .14501E+01 .15431E+01 .16297E+01 .16995E+01 .17444E+01	.12312E-1467280E-0113445E+0019996E+0026184E+0031854E+0036915E+0041308E+00451034E+00451034E+0050529E+0051507E+005163E+00 .56409E+00 .56409E+00 .55990E+00 .51478E+00 .40918E+00 .40918E+00 .36323E+00 .3174E+00 .25520E+00 .19437E+00 .19637E+00 .19637E+00	22174E+0021022E+0019659E+0018304E+0018304E+0016837E+0016856E+0016856E+0017418E+0017418E+0017478E+001797E+0023699E+0042600E+0086176E-01 .22197E-01 .68589E-01 .95098E-01 .19769E+00 .12646E+00	97511E+00 97534E+00 97534E+00 97534E+00 96256E+00 96256E+00 93283E+00 914946E+00 859496E+00 85917E+00 85917E+00 83244E+00 823273E+00 818776E+00 82121E+00 82827E+00 82827E+00 92308E+00 995664E+00 995664E+00 995777E+00 99579E+00
					£	*			
		20)		CROSS-SECTION	ON			
			MAPPED PLANE	2	Ψ	.AN VIEW			

NOTE THAT THE PROGRAM OPERATES AT A UNIT DISTANCE FROM THE ORIGIN, Z=1.

SURFACE ARC	LENGTH	(5)	SLOPE	(THETA)	AND	CURVATURE	(PSI)

ı	X/Z	Y/Z	5	THETA	PSI	(X/Z)/XMAX	(Y/Z)/XMAX	DYBP/DZP
` 1	00000	01416	0.00000	9.19264	.31414	00000	02180	22360
2	.06793	00269	.06889	9.95043	.03245	.10461	00414	22405
3	.13556	.00964	.13764	9.45096	46571	.20876	.01485	22236
4	.20247	.01984	.20533	5.60673	-1.08595	.31179	.03055	~.20948
5	.26791	.02407	.27093	1.10677	-1.11797	.41257	.03706	19055
6	.33100	.02254	. 33406	-2.73573	-1.02233	.50972	.03471	17108
7	.39088	.01723	.39418	-6.13507	71223	.60192	.02654	÷.15019
8	.44668	.01001	.45045	-7.67253	15398	.68786	.01541	13926
9	.49758	.00289	.50184	-7.72597	.06862	.76623	.00446	13904
10	.54263	00306	.54728	-7.34760	01984	.83561	00471	14253
11	.58080	00788	.58575	-7.69958	30916	.89438	01213	13880
12	.61108	01221	.61634	-8.61171	.73202	.94102	01879	12910
13	.63281	01564	.63835	-5.02490	8.90770	.97448	02408	16944
14	.64574	01642	.65166	28.32868	77.08674	.99439	02529	57398
15	.64938	01340	.65653	64.90918	136.75686	1.00000	02063	-1.60970
16	.64351	00760		144.55220	39.59667	.99096	01170	.24109
ĪŽ	.62773	00105		160.42027	6.38028	.96665	00161	.01279
18	.60303	.00600		165.88655	1.95459	.92862	.00924	05182
19	.57017	.01304	.74231	168.45740	.62664	.87801	.02008	07996
2Ó	.53029	.02073		169.23119	.23402	.81660	.03193	08785
21	.48442	.02932	.82959	169.65527	.23377	.74597	.04514	09170
22	.43347	.03837		170.72479	.52468	.66751	.05908	10028
23	.37824	.04662		173.18175	. 93847	.58246	.07179	11760
24	.31946	.05222	.99624	177.31196	1.21130	.49194	.08041	14222
25	.25792	.05349	1.05782	181.55226	1.24687	.39717	.08237	16294
26	.19443	.04862		186.30045	1.11588	.29940	.07488	18228
27	.12988	.03815	1.18691	189.95137	.46051	.20001	.05875	19408
28	. 06496	.02581	1.25299	190.46088	01128	.10004	.03974	19562
29	.00000	.01416	1.31900	189.86743	26637	.00000	.02180	-,19528
I	X/Z	Y/Z	\$	THETA	PSI	(X/Z)/XMAX	(Y/Z)/XMAX	DYBP/DZP
			ARC LENGTH FROM			4		•
			BOTTOM OF SECTION	SURFACE SLOPE	CURVATURE		THETA	STREAMWISE SLOPE
SMAX=	1.31900	XMAX=	.64938	SMAX/XMAX=	2.03115		5	_ _
einp eni	HTTON ITEDAT	ION BEGINS ON	MECH 1				• \	
JEUR JUL	OLION TICKAL	TOU BEGIUS OU		INITE MICH ATIN	C DIACONAL DOM	NANCE		

					NO. OF POINTS	SVIO	LATI	IG DIAGONAL DO	MINANCE	-	۸سید	AX SHOC	ر K	MIN SHOCK
ITER	DELMX	I	J	DELAVG	RESMX	I	J	RESAVG	KSUP	NPVD	JSHMAX	ISHMAX	JSHMIN	ISHMIN
						•					./	EDGE OF	COMPLITA	ATIONAL GRID
1	.1103E-01	30	2	.3008E-03	1111E+02	4	2	.1685E+00	525	0	28	0	0	0
2	.6625E-02	30	2	.2484E-03	5506E+01	2	2	.1172E+00	528	Ó	28	Ō	Ō	Ō
3	.5177E-02	29	2	.2226E-03	.3227E+01	30	2	.9971E-01	528	0	28	0	0	0
4	.4283E-02	30	2	.2068E-03	.2579E+0l	30	2	.8992E-01	530	0	28	8	0	0
5	.3622E-02	30	2	.1931E-03	.2126E+01	30	2	.8291E-01	532	0	28	0	0	0
6	.3155E-02	30	2	.1839E-03	.1821E+01	30	2	.7740E-01	532	0	28	0	0	0
7	.2792E-02	30	2	.1761E-03	.1591E+01	30	2	.7288E-01	532	0	28	8	G	0
8	.2504E-02	30	2	.1694E-03	1417E+01	2	2	.6902E-01	534	0	28	Ō	Ó	Ó
9	.2269E-02	30	2	.1633E-03	1297E+01	2	2	.6563E-01	534	0	28	Ð	0	0

.6265E-01

534

28

.1577E-03

-.1198E+01

10

.2073E-02

71237756789012345678890999999901203456788901233456788999999990120345678991212234567899120234567899912023456789120234567899120234567899100000000000000000000000000000000000	218E-03 21725E-03 21725E-03 220734E-03 19904E-03 19904E-03 19042E-03 19042E-03 18622E-03 176692E-03 176692E-03 1776692E-03 1155619E-03 1155619E-03 1155619E-03 115908E-03 115908E-03 115908E-03 115908E-03 115908E-03 115908E-03 115908E-03 115908E-03 113038E-03 113038E-03 113038E-03 111689E-03 111689E-03 111689E-03 111689E-03 111689E-03 111689E-03 111689E-04 111689E-04 111689E-04 111689E-04 111689E-04 111689E-04 111689E-04 111689E-04 111689E-04 111689E-04 111689E-04 1116999E-04 111699E-	**************************************	7.55.2.7.04 -04 -7.55.2.7.04 -7.55.2.7.04 -6.6.7.7.05 -6.6.7.7.05 -6.6.7.7.05 -6.6.7.7.05 -6.6.7.7.05 -6.6.7.7.05 -6.6.7.7.05 -6.6.7.7.05 -6.7.05 -6.	1392E+001364E+001364E+001364E+001280E+001252E+001252E+001252E+001175E+001175E+001175E+001175E+001175E+001103E+001032E+0098842E-0198843E-018864E-018864E-018984E-016784E-016784E-016784E-015888E-015888E-015888E-015888E-015888E-01698E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-015988E-014898E-014898E-014898E-014898E-014898E-014898E-01	**************************************	.2964E-01 .2886E-01 .2886E-01 .281E-01 .2617E-01 .2617E-01 .2617E-01 .25012E-01 .25012E-01 .2383E-01 .2379E-01 .2119E-01 .2119E-01 .2119E-01 .1987EE-01 .1987EE-01 .1987EE-01 .1783EE-01 .1783EE-01 .1733EE-01 .1655E-01 .1655E-01 .1657EE-01 .1657EE-01 .1657EE-01 .1657EE-01 .1657EE-01 .1657EE-01 .1657EE-01 .1657EE-01 .1677EE-01 .1677EE-01 .1182EE-01 .1245E-01 .1245E-01 .11852E-01 .1245E-01 .11852E-01 .1293E-01 .11852E-	224 224 224 224 224 223 223 223 222 222	000000000000000000000000000000000000000	16666666666666666666666666666666666666	00000000000000000000000000000000000000	99990000000000000000000000000000000000	15562222333333333333333333333344444444444
--	---	--	--	---	--	---	---	---	--	--	--	---

130 131 132 133	5696E-04 2 2 5561E-04 2 2 5428E-04 2 2 5297E-04 2 2 5170E-04 2 2	.1764E-04 .1730E-04 .1696E-04 .1663E-04	3622E-01 4 2 3536E-01 4 2 3451E-01 4 2 3368E-01 4 2 3287E-01 4 2	.7393E-02 .7289E-02 .7185E-02 .7082E-02	216 216 216 216	0 0 0 0	16 16 16 16	30 30 30 30	10 10 10 10	14 14 14 14
134 135	5170E-04 2 2 5045E-04 2 2	.1631E-04 .1600E-04	3287E-01 4 2 3208E-01 4 2	.6980E-02 .6879E-02	216 216	0	16 16	30 30	10 10	14 14
136	4923E-04 2 2	.1569E-04	3155E-01 17 3	.6778E-02	216	Ŏ	16	30	10	14
137 138	4923E-04 2 2 4804E-04 2 2 4688E-04 2 2	.1539E-04 .1510E-04	3193E-01 16 2 3248E-01 16 2	.6680E-02 .6584E-02	216 216	0	16 16	30 30	10 10	14 14 14 14 14
139 140	4574E-04 2 2 8066E-04 11 11	.1481E-04 .1490E-04	3293E-01 16 2 5556E-01 11 11	.6489E-02 .6569E-02	216 215	0	16 16	30 30	10 10	14
141	6072E-04 11 11	.1471E-04	4387E-01 11 11	.6448E-02	215	ŏ	16	30	10	14
142 143	4681E-04 11 11 4146E-04 2 2	.1451E-04 .1428E-04	3583E-01 11 11 3514E-01 16 2	.6332E-02 .6222E-02	215 215	0	16 16	30 30	10 10	14 14
144	4046E-04 2 2	.1405E-04	3545E-01 16 2	.6118E-02	215	ŏ	16	30	10	14 14
145 146	3949E-04 2 2 3854E-04 2 2	.1382E-04 .1358E-04	3563E-01 16 2 3570E-01 16 2	.6020E-02 .5928E-02	215 215	0	16 16	30 30	10 10	14 14
147	3762E-04 2 2	.1334E-04	3566E-01 16 2	.5845E-02	215	ŏ	16	30	10	14
148 149	3949E-04 2 2 3854E-04 2 2 3762E-04 2 2 3673E-04 2 2 3587E-04 2 2	.1311E-04 .1288E-04	3514E-01 16 2 3545E-01 16 2 3563E-01 16 2 3570E-01 16 2 3552E-01 16 2 3552E-01 16 2 3532E-01 16 2 3505E-01 16 2 34075E-01 16 2 3441E-01 16 2	.5762E-02 .5680E-02	215 215	0	16 16	30 30	10 10	14 14 14 14 14
150	3503E-04 2 2	.1265E-04	3505E-01 16 2	.5598E-02	215	ŏ	16	30	10	14
151 152	3422E-04 2 2 3343E-04 2 2	.1243E-04 .1221E-04	3475E-01 16 2 3441E-01 16 2	.5517E-02 .5437E-02	215 215	0 N	16 16	30 30	10 10	14 14
153	3267E-04 2 2	.1199E-04	3406E-01 16 2	.5357E-02	215	ŏ	16	30	10	14
154 155	3193E-04 2 2 3121E-04 2 2	.1178E-04 .1157E-04	3370E-01 16 2 3334E-01 16 2	.5279E-02 .5202E-02	215 215	0	16 16	30 30	10 10	14
156	3051E-04 2 2	.1137E-04	3299E-01 16 2	.5126E-02	215	ğ	16	30	10	14
15 7 15 8	÷.2982E-04 2 2 2916E-04 2 2	.1117E-04 .1097E-04	3264E-01 16 2 3230E-01 16 2	.5052E-02 .4979E-02	215 215	0	16 16	30 - 30	10 10	14 14
159	2851E-04 2 2	.1078E-04	3197E-01 16 2	.4907E-02	215	Ö	16	30	10	14 14 14 14 14
160 161	2788E-04 2 2 2726E-04 2 2	.1059E-04 .1040E-04	3164E-01 16 2 3132E-01 16 2	.4838E-02 .4769E-02	215 215	Ů	16 16	30 30	10 10	15
162 163	7661E-04 14 10	.1079E-04 .1063E-04	3158E-01 16 2 3213E-01 16 2	.4806E-02 .4716E-02	214 214	Ū B	16 16	30	10	15
164	2780E-04 14 10	.1065E-04	3213E-01 16 2 3254E-01 16 2	.4636E-02	214	Ö	16	30 30	10 10	15
165 166	2494E-04 2 2 2440E-04 2 2	.1026E-04 .1007E-04	3213E-01 16 2 3254E-01 16 2 3275E-01 16 2 3276E-01 16 2	.4567E-02 .4504E-02	214 214	0	16 16	30 30	10 10	15
167	2386E-04 2 2	.9889E-05	3259E-01 16 2	.4442E-02	214	ő	16	30	10	15
168 169	2334E-04 2 2 2284E-04 2 2 2234E-04 2 2	.9710E-05 .9536E-05	3227E-01 16 2 .3235E-01 9 11	.4380E-02 .4319E-02	214 214	0	16 16	30 30	10 10	15
170	2234E-04 2 2	.9366E-05	.3264E-01 9 11	.4259E-02	214	Ğ	16	30	10	15
171 172	2186E-04 2 2 5914E-04 17 10	.9201E-05 .9290E-05	.3292E-01 9 11 3832E-01 17 10	.4200E-02 .4227E-02	214 213	0	16 16	30 30	10 10	15
173	4771E-04 17 10	.9195E-05	.3349E-01 9 11	.4150E-02	213	ŏ	16	30	10	15
174 175	3894E-04 17 10 3214E-04 17 10	.9079E-05 .8951E-05	.3377E-01 9 11 .3406E-01 9 11	.4077E-02 .4007E-02	213 213	0 n	16 16	30 30	10 10	15 15
176	2684E-04 17 10	.8817E-05	.3433E-01 9 11	.3944E-02	213	ŏ	16	30	ĪŌ	15
177 178	2267E-04 17 10 .9228E-04 4 13	.8680E-05 .8712E-05	.3461E-01 9 11 .3488E-01 9 11	.3887E-02 .3809E-02	213 213	0	16 16	30 30	10 10	15 15
179	1978E-04 2 12	.8618E-05	.3514E-01 9 11	.3823E-02	212	Ŏ	16	30	10	15
180 181	.9393E-04 4 13 .3278E-04 4 13	.8468E-05 .8051E-05	.3540E-01 9 11 .3565E-01 9 11	.3715E-02 .3679E-02	212 212	0	16 16	30 30	10 10	15
182 183	1721E-04 2 2 1681E-04 2 2 1641E-04 2 2	.7852E-05 .7715E-05	.3590E-01 9 11 .3614E-01 9 11	.3644E-02 .3606E-02	212 212	0	16 16	30 30	10 10	15
184	1641E-04 2 2	.7604E-05	.3637E-01 9 11	.3569E-02	212	0	16	30	10	15
185 186	1603E-04 2 2 1567E-04 2 2	.7497E-05 .7390E-05	.3660E-01 9 11 .3682E-01 9 11	.3531E-02 .3492E-02	212 212	0	16 16	30 30	10 10	15
187	1532E-04 2 2	.7282E-05	.3703E-01 9 11	.3453E-02	212	ŏ	16	30	10	15555555555555555555555555555555555555
188 189	1567E-04 2 2 1532E-04 2 2 1500E-04 2 2 1469E-04 2 2	.7174E-05 .7066E-05	.3724E-01 9 11 .3744E-01 9 11	.3414E-02 .3376E-02	212 212	0	16 16	30 30	10 10	15 15
,				.00.02 06		•		30	- •	1.5

25.7

SURFACE ARC LENGTH (S) SLOPE (THETA) AND CURVATURE (PSI)

I	X/Z	Y/Z	5	THETA	PSI	(X/Z)/XMAX	(Y/Z)/XMAX	DYBP/DZP
1	00000	01416	0.00000	9.19264	.31414	00000	02180	22360
2	.06793	00269	.06889	9.95043	.03245	.10461	00414	22405
3	.13556	.00964	.13764	9.45096	46571	.20876	.01485	22236
4	.20247	.01984	.20533	5.60673	-1.08595	.31179	.03055	20948
5	.26791	.02407	.27093	1.10677	-1.11797	.41257	.03706	19055
6	.33100	.02254	.33406	-2.73573	-1.02233	.50972	.03471	17108
7	.39088	.01723	.39418	-6.13507	71223	.60192	.02654	15019
8	.44668	.01001	.45045	-7.67253	15398	.68786	.01541	13926
9	.49758	.00289	.50184	-7.72597	.06862	.76623	.00446	13904
10	.54263	00306	. 54728	-7.34760	01984	.83561	00471	14253
11	.58080	00788	. 58575	-7.69958	30916	. 89438	01213	13880
12	.61108	01221	.61634	-8.61171	.73202	.94102	01879	12910
13	.63281	01564	.63835	-5.02490	8.90770	. 97448	02408	16944
14	.64574	01642	.65166	28.32868	77.08674	. 99439	02529	57398
15	.64938	01340	.65653	64.90918	136.75686	1.00000	02063	-1.60970
16	.64351	00760	.66581	144.55220	39.59667	.99096	01170	.24109
17	.62773	00105	.68300	160.42027	6.38028	. 96665	00161	.01279
18	.60303	.00600	.70869	165.88655	1.95459	.92862	.00924	05182
19	.57017	.01304	.74231	168.45740	.62664	.87801	.02008	07996
20	.53029	.02073	. 78292	169.23119	.23402	.81660	.03193	08785
21	.48442	.02932	.82959	169.65527	.23377	.74597	.04514	09170
22	. 43347	.03837	.88133	170.72479	. 52468	.66751	.05908	10028
23	. 37824	.04662	. 93718	173.18175	. 93847	. 58246	.07179	11760
24	.31946	.05222	. 99624	177.31196	1.21130	.49194	.08041	14222
25	.25792	.05349	1.05782	181.55226	1.24687	.39717	.08237	16294
26	.19443	.04862	1.12151	186.30045	1.11588	.29940	.07488	18228
27	.12988	.03815	1.18691	189.95137	.46051	.20001	.05875	19408
28	.06496	.02581	1.25299	190.46088	01128	.10004	.03974	19562
29	.00000	.01416	1.31900	189.86743	26637	.00000	.02180	19528
I	X/Z	Y/Z	\$	THETA	PSI	(X/Z)/XMAX	(Y/Z)/XMAX	DYBP/DZP

SMAX= 1.31900 XMAX= .64938 SMAX/XMAX= 2.03115

NEW SHOCK LOCATION

I	C(I)	CPR(I)	CSEC(I)
2345678901234567890123456789	.951288E+00 .950266E+00 .947011E+00 .947011E+00 .941086E+00 .932099E+00 .920002E+00 .905251E+00 .888816E+00 .872065E+00 .856631E+00 .84560E+00 .837060E+00 .845509E+00 .845509E+00 .981375E+00 .981375E+01 .109745E+01 .116114E+01 .122588E+01 .122588E+01 .125011E+01 .145169E+01 .145169E+01 .145169E+01 .145169E+01	0. -190599E-01 -409115E-01 -664552E-01 -939573E-01 -119642E+00 -1138976E+00 -147887E+00 -143427E+00 -872152E-01 -332324E-01 -332324E-01 -3122188E+00 .214329E+00 .306454E+00 .306454E+00 .57278E+00 .57278E+00 .57278E+00 .572483E+00 .572483E+00 .572483E+00 .572483E+00 .572483E+00 .572483E+00 .572483E+00 .572483E+00 .572483E+00 .572483E+00 .514174E+00 .452672E+00 .368103E+00 .135938E+00	162392E+00177358E+00212154E+00243171E+002437063E+002437063E+00210779E+00133846E+00250103E-01 .104516E+00 .247744E+00 .560273E+00 .703310E+00 .803538E+00 .803242E+00 .706203E+00 .567191E+00 .407984E+00 .244960E+00 .835249E-01256075E+004649952E+00857468E+00104754E+01118593E+01
30 I	.151809E+01 C(I)	O. CPR(I)	123721E+01 CSEC(I)

ITER	DELMX	I	J	DELAVG	RESMX	I	J	RESAVG	KSUP	NPVD	JSHMAX	ISHMAX	JSHMIN	ISHMIN
201	9215E-03	17	2	.4208E-04	2965E+01	16	3	.9079E-01	292	α	21	2	20	10
202	8137E-03	17	<u> </u>	.2161E-04	1499E+01	16	₹ .	.2697E-01	148	ň	21	5	20	īŏ
203	6480E-03	16	5	.1874E-04	1552E+01	16	5	.2026E-01	148	ň	21	5	20	- 6
204	5028E-03	16	້	.1683E-04	1098E+01	16	5	.1694E-01	149	ň	21	2	20 20	7
205	3735E-03	16	2	.1539E-04	7551E+00	17	ç	.1508E-01		Ÿ		~	20	7
			~				3		148	ŭ	21	2		ž
206	3555E-03	17	2	.1493E-04	6931E+00	17	3	.1441E-01	147	U	21	2	20	9
207	3101E-03	17	2	.1401E-04	5516E+00	17	3	.1371E-01	147	0	21	2	20	9
208	2402E-03	17	2	.1302E-04	4147E+00	17	3	.1300E-01	147	0	21	2	20	9
209	1957E-03	18	3	.1222E-04	3259E+00	18	3	.1229E-01	147	Ó	2Ĭ	Ž	20 20	ģ
210	1778E-03	18	3	.1166E-04	2908E+00	18	3	.1180E-01	147	Ď	21	õ	20	ġ
211	1614E-03	18	3	.1125E-04	→.2581E+00	18	3	.1150E-01	147	ň	žī	5	20 20	á
212	1491E-03	18	5	.1091E-04	2285E+00	18	₹	.1127E-01	147	ň	21	5	20	á
213	1371E-03	19	5	.1064E-04	2020E+00	18	3	.1109E-01	147	ŏ	21	5	20	á
			5				÷			ŭ				7
214	1346E-03	19	~	.1044E-04	1787E+00	18	2	.1092E-01	146	Ų	21	ž	20	ý
215	1301E-03	19	2	.1029E-04	1603E+00	19	3	.1080E-01	146	8	21	2	20	9
216	1245E-03	19	2	.1014E-04	1527E+00	19	3	.1070E-01	146	0	21	2	20 20	9
217	1182F-03	19	2	.1001F-04	1441F+00	19	3	1060F-01	146	ñ	21	<u> </u>	žň	1 Å

218	1118E-03 19	2	.9997E-05	1353E+00 19 3	.1053E-01	145	0	21	2	20	10
219	~.1054E-03 19	2	.9932E-05	1266E+00 19 3	.1043E-01	145	ŏ	21	ž	20	10
220	1042E-03 20	2	.9906E-05	1182E+00 19 3	.1035E-01	145	Ŏ	21	2	20	10
221	1022E-03 20	2	.9893E-05	1117E+00 20 4	.1028E-01	145	0	21	2	20	10
222	9961E-04 20 9662E-04 20	2 2	.9864E-05	1084E+00 20 4 1047E+00 20 4	.1020E-01	144	0	21 21	2 2 2	20	10
223 224	9662E-04 20 9335E-04 20	2	.9858E-05 .9848E-05	1047E+00 20 4 1008E+00 20 4	.1012E-01 .1004E-01	144 144	ŭ	21	ž	20 20	10 10
225	8993E-04 20	2	.9836E-05	9670E-01 20 4	.9959E-02	144	ŏ	21	2	20	10
226	8645E-04 20	2 2	.9821E-05	9264E-01 20 4	.9874E-02	144	Ŏ	21	2 2 2	20	10
227	8297E-04 20	2	.9808E-05	8863E-01 20 4	.9796E-02	144	0	21	2	20	10
228 229	8052E-04 21 7934E-04 21	2	.9795E-05	8473E-01 20 4	.9714E-02	144	0	21	2	20	10
229	7934E-04 21 7788E-04 21	2	.9776E-05 .9751E-05	8096E-01 20 4 7733E-01 20 4	.9630E-02 .9544E-02	144 144	0	21 21	2	20 20	10 10
231	7621E-04 21	2	.9722E-05	7387E-01 20 4	.9456E-02	144	ő	21	2 2	20	10
232	7438E-04 21	2	.9689E-05	7057E-01 20 4	.9370E-02	144	Ö	21	2	20	10
233	7244E-04 21	2 2 2	.9652E-05	6744E-01 20 4	.9284E-02	144	0	21	2	20	10
234 235	7043E-04 21 6838E-04 21	2	.9612E-05 .9569E-05	6447E-01 20 4 6166E-01 20 4	.9197E-02	144	0 0	21	2	20	10
236	6610E-04 21	5	.9503E-05	6166E-01 20 4 5911E-01 21 4	.9109E-02 .9017E-02	144 143	ŭ	21 21	2 2 2 2	20 20	10 10
237	6405E-04 21	2 2	.9452E-05	5719E-01 21 4	.8923E-02	143	ŏ	21	2	20	10
238	6198E-04 21	2	.9400E-05	5529E-01 21 4	.8831E-02	143	Ō	21	2	20	ĪŎ
239	5992E-04 21	2	.9346E-05	5342E-01 21 4	.8739E-02	143	0	21	2 2	20	10
240 241	5790E-04 21 5594E-04 21	2	.9292E-05 .9237E-05	5158E-01 21 4 4977E-01 21 4	.8647E-02	143	0	21	2	20	10
242	55443E-04 22	2	.9237E-05	4977E-01 21 4 4799E-01 21 4	.8558E-02 .8470E-02	143 143	0	21 21	2	20 20	10 10
243	5342E-04 22	2	.9127E-05	4627E-01 21 4	.8384E-02	143	ŏ	21	2	20	10
244	5234E-04 22	2	.9071E-05	4459E-01 21 4	.8299E-02	143	Ō	21	2 2 2	20	īŏ
245	5121E-04 22	2	.9015E-05	4296E-01 21 4	.8217E-02	143	0	21	2	20	10
246 247	5004E-04 22 4885E-04 22	2	.8958E-05	4139E-01 21 4	.8137E-02	143	0	21	2	20	10
248	4885E-04 22 4763E-04 22	2	.8902E-05 .8844E-05	3994E-01 21 5 3859E-01 21 5	.8057E-02 .7978E-02	143 143	0	21 21	2 2 2	20 20	10 10
249	4640E-04 22	2	.8787E-05	3730E-01 21 5	.7900E-02	143	ŏ	21	5	20	10
250	4517E-04 22	2 2 2	.8729E-05	3606E-01 21 5	.7823E-02	143	ŏ	21	ž	20	10
251	4395E-04 22	2	.8670E-05	3487E-01 21 5	.7748E-02	143	Ō	21	2	20	10
252 253	4274E-04 22 4155E-04 22	2	.8611E-05 .8552E-05	3373E-01 21 5 3265E-01 21 5	.7675E-02	143	Õ	21	2 2 2	20	10
254	4038E-04 22	5	.8493E-05	3265E-01 21 5 3160E-01 21 5	.7603E-02 .7532E-02	143 143	0	21 21	2	20 20	10 10
255	3923E-04 22	2 2 2	.8433E-05	3061E-01 21 5	.7462E-02	143	ŏ	21	2	20	10
256	3811E-04 22	2	.8373E-05	2966E-01 21 5	.7393E-02	143	Ō	21	2 2 2 2	20	10
257	3703E-04 22	2	.8312E-05	2875E-01 21 5 2788E-01 21 5	.7325E-02	143	0	21	2	20	10
258 259	3597E-04 22 3494E-04 22	2	.8252E-05 .8191E-05	2788E-01 21 5 2704E-01 21 5	.7257E-02 .7190E-02	143 143	0	21 21	2	20 20	10 10
260	3394E-04 22	2	.8130E-05	.2658E-01 20 19	.7124E-02	143	Ö	21	2	20	10
261	3298E-04 22	2	.8068E-05	.2657E-01 20 19	.7058E-02	143	ŏ	ži	2 2	20	îŏ
262	3204E-04 22	2 2 2	.8007E-05	.2656E-01 20 19	.6994E-02	143	Ō	21	2	20	10
263 264	3114E-04 22 3027E-04 22	2	.7945E-05	.2656E-01 20 19	.6930E-02	143	0	21	2 2 2	20	10
265	2942E-04 22	2	.7883E-05 .7821E-05	.2655E-01 20 19 .2654E-01 20 19	.6866E-02 .6804E-02	143 143	0	21 21	2	20 20	10 10
266	2860E-04 22	2	.7759E-05	.2654E-01 20 19	.6742E-02	143	ŏ	21	ž	20	10
267	2782E-04 22	2	.7697E-05	.2653E-01 20 19	.6681E-02	143	Ŏ	21	2	20	ĪŎ
268	2706E-04 22	2	.7635E-05	.2653E-01 20 19	.6620E-02	143	0	21	2 2	20	10
269 270	2632E-04 22 2561E-04 22	2	.7572E-05 .7510E-05	.2652E-01 20 19 .2652E-01 20 19	.6561E-02 .6501E-02	143 143	0	21 21	2	20	10 10
270 271	2493E-04 22	2 2 2 2	.7448E-05	.2652E-01 20 19	.6443E-02	143	Ů	21	2	20 20	10
272	2427E-04 22	ž	.7385E-05	.2652E-01 20 19	.6385E-02	143	ŏ	21	2	20	10
273	2363E-04 22	2	.7323E-05	.2652E-01 20 19	.6327E-02	143	Ŏ	21	2 2	20	10
274	2301E-04 22	2	.7261E-05	.2652E-01 20 19	.6271E~02	143	0	21	2	20	10
275 276	2242E-04 22 2185E-04 22	2	.7199E-05 .7136E-05	.2653E-01 20 19 .2653E-01 20 19	.6214E-02 .6159E-02	143 143	0	21 21	2 2	20 20	10 10
277	2129E-04 22	2	.7074E-05	.2654E-01 20 19	.6104E-02	143	ň	21	2		10
					.01045 05	TAG	U	61	~	20	10

89012345678901234567890123456789012345678901233456789012334567890123353333333333333333333333333333333333	2074E-04 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	05555555555555555555555555555555555555	.2655E-01 20 19 .2658E-01 20 19 .2658E-01 20 19 .2659E-01 20 19 .2665E-01 20 19 .2667E-01 20 19 .2677E-01 20 19 .2677E-01 20 19 .2680E-01 20 19 .2680E-01 20 19 .2689E-01 20 19 .2689E-01 20 19 .2689E-01 20 19 .2689E-01 20 19 .2704E-01 20 19 .2704E-01 20 19 .2704E-01 20 19 .2715E-01 20 19 .2715E-01 20 19 .2715E-01 20 19 .2716E-01 20 19 .2759E-01 20 19 .2768E-01 20 19 .2768E-01 20 19 .2768E-01 20 19 .2768E-01 20 19 .2786E-01 20 19 .2809E-01 20 19 .2809E-01 20 19 .2819E-01 10 19	02222222222222222222222222222222222222	144333333322222222111111111111111111111			000000000000000000000000000000000000000	
	1382E-04 20 20					•	2 2 2 2		

338 3390 3442 3443 3445 3447 3447 3489 3490	1054E-04 9877E-05 9261E-05 8689E-05 7664E-05 7204E-05 6775E-05 6531E-05 4410E-04 2378E-04 2196E-04	20 20 20 20 20 20 20 20 11 11 11	200 200 200 200 200 200 200 200 200 200	.4472E-05 .4436E-05 .4400E-05 .4363E-05 .4326E-05 .4288E-05 .425E-05 .4213E-05 .4175E-05 .4303E-05 .4294E-05 .4279E-05	.2414E-01 .2447E-01 .2480E-01 .2512E-01 .2543E-01 .2573E-01 .2630E-01 .2630E-01 .2630E-01 .2630E-01 .2707E-01	19 19 19 19 19 19 19 19	19 19 19 19 19 19 19 19	.3906E-02 .3877E-02 .3818E-02 .3818E-02 .3789E-02 .3761E-02 .3734E-02 .3704E-02 .3676E-02 .3691E-02 .3665E-02	140 140 140 140 140 140 140 140 139 139 139	0 0 0 0 0 0 0 0	21 21 21 21 21 21 21 21 21 21 21 21	222222222222	20 20 20 20 20 20 20 20 20 20 20 20 20	11 11 11 11 11 11 11 12 12 12 12
ITER	DELMX	I	J	DELAVG	RESMX	I	J	RESAVG	KSUP	NPVD	JSHMAX	ISHMAX	JSHMIN	ISHMIN

NOTE: IMPROVED SHOCK
LOCATION, NEARLY
ON A CONSTANT
GRID LINE
21 OUT OF 28 MAX
IS A REASONABLE
INSET

	I I I	I I I	+ + + + + + + + + + + + + + + + + + +	I * I *	Ī
·	İ	İ	İ +		
	I I I I I	Ī I I	Ī +	I * I * I *	Ī
	Ī	I	I +	I *	Ī
	Ī	I I I I	I +	ī ×	I
	į	Î	I + I + I +	I * I * I *	Ī
	. I	I I I I	İ +	I * I * I * I * I * I * I * I * I *	Ī
	Í	İ	İ +	į ×	Ĭ
	Î	İ	Ĭ +	i ÷	İ
	Ĭ		Ī + I +	Ī XÎ	Ï
		I I I I	Î + I +	I I I I I I I I I I I I I I I I I I I	Î I
	Ī	I I I I	I+ I+	Ĭ *	Ī
	Ī	Ī	<u>I</u> +	I * I * I * I *	Ī
	Ī	Ī	I+ I+	Ī *	Ī
	Ţ	I I I I	•	I * I * I *	Ĩ
	İ	Į Į	<u> </u>	I X	Ĭ
	į	į	+T	İ xÎ	İ
	Ī	Ī	+ + I + I + I + I + I + I	I * I * I * I *	Î
	Ĭ	Ĭ	+Ī +Ī	Ī × Ī ×	Î
	Ī	Ī		Ī * Ī *	Ĭ
•	Ī	Ī	+ I + I + I + <u>I</u>	I *	Ī
	Ĭ	Î	+ <u>I</u>	IX IX	Ī
	İ	<u> </u>	+ I + I + I + I	I× I×	
	İ	I I I	, † †	X X X X	İ
	Ī	I	+ I + I + I + I	×	İ
		I I I	+ I + I + I + I + I + I + I + I + I + I	×	
	Ī	Ī	+ Î + I + I + I	*I *I *I	Ī
	I I	I I	† I † I	*I *I	I I

ווג	7		7 * * * * * * * * * * * * * * * * * * *	T	т
113	‡ :	+ 1	;	‡	Ĭ
114	1		ı × ı	<u> </u>	<u>1</u>
115	1	; + j	[× I	I	I
116	I 1	+ 1	I * I	I	I
117	7		į × į	Ť	Ī
116	†	· i	î × î	Ť	Ť
110	‡	, '	, ° ‡	‡	‡
119	1	+	<u> </u>	Ī	Ī
120	I	. +]	I * I	I	I
121	I	+ + + + + + +	I * I	I	I
122	Ī	+)	r + T	Ŧ	Ť
107	i		: * I	‡	‡
123	<u> </u>	. *	* ±	±	
124	1	. + .	. * 1	1	1
125	I	[+]	[* I	I	Ī
126	Ī	. + :	ī × ī	Ť	Ī
127	ī	į <u> </u>	[Ť	· -
127	‡		î	±	
120	<u>‡</u>	[+]	<u>.</u> .* <u>1</u>	Ī	<u> </u>
129	I :	[+]	I * I	I	I
130	I ' '	[+]	[* I	I	I
131	Ī	+	T * T	Ī	Ŧ
132	Ŧ :	.	:	÷	‡
177	‡	Ţ	;	I I	<u>±</u>
155	I I I	+)		1	I
134	I :	. + :	ī * i	I	I
135	I :	[+]		I	111111111111111111111111111111111111111
136	I .	+	: * : : * :	Ť	Ŧ
137	I	.	,	Ŧ	Ť.
170	‡ :		<u> </u>	‡	‡
120	I I	† †	I * I	Ī	Ţ
139	I I I I I	[+]	I * I	I	I
140	Ī	[+]	I * I I * I	I	I
141	Ī	+ :	Ī × Ī	Ť	Ŧ
142	;	+	i * i	‡	‡
172		Ţ	<u>.</u> ~ <u>.</u>		± ±
143	I :	. + .	I * I	I	1
144	I	[+]	I * I	I	I I I I
145		T +	ī × ī	Ī	Ŧ
166	I I I	_	ī × ī	Ĭ	7
140	± :	Ţ	I * I I * I		±
147	<u> </u>	+	<u> </u>	<u>1</u>	<u>1</u>
148	I	. + :	I * I	I	I
149	I	· +	I * I I * I I * I I * I	I I I	I
150	I	[I * I I * I II I * I		Ť
151	Ĩ	+	7 ¥ 7	Ŧ	Ŧ
153	‡	[+ [+ [+	I * I	I I I	‡
152	Ī	<u> </u>	I * I I * I	<u>.</u>	<u>±</u>
159	Ī	<u> </u>	<u> </u>	1	I I I
154	I	[+]	1 * I	I	I
155	I	: + :	i × i	ĭ	Ī
156	Ť	i i	I * I I * I I * I I * I I * I I * I I * I I * I	Ť	Ť
167	÷	i	† <u>v</u> ^ ‡	‡	‡
150	‡		į ž į	<u> </u>	Ŧ.
129	<u> </u>	<u> </u>	<u> </u>	I	I
159	I	I + :	I	I	I
160	I	I + :	I * I	Ī	T
161	Ī	i +	ī × ī	Ť	Ť
162	₹ :	i +	i °×i	‡	‡
102	‡	: :		±.	±
102	<u> </u>	I + I +	<u> </u>	I	I
164	I	I + :	I * I	I	I
165	I I I I I	! + !	I ¥ Ī	ī	Ŧ
166	T	i +	I * I	Ť	₹
147	Ŧ	i i	i ŝ i	‡	‡
10/	÷ .	<u>.</u> .	<u>.</u>	1	<u> 1</u>
		I + :	I * I	I	I
100	<u>.</u>				
169	Ĭ	I + :	I * I	I	1
169 170	İ	I + :	I * I I * I	I	1
169 170 171	I I	T + + + + + + + + + + + + + + + + + + +	I * I I * I T * T	I I T	I I
169 170 171	I I	I + I + I + I + I + I + I + I + I + I +	I	Î I	Î
113 114 115 1116 1117 1119 1120 1122 1123 1124 1129 1130 1131 1133 1135 1136 1137 1138 1137 1138 1140 1141 1144 1145 1150 1151 1155 1156 1157 1157 1158 1159 1161 1165 1166 1167 1167 1172		T + T + T + T + T + T + T + T + T + T +	I	I I I I I I I I I I I I I I I I I I I	I I I

233	I I	+ 1	×	1	I I
233 234 235 237 238 239 240 241 242 243		+] +]	* : *	Ţ	
236	i i	+		Î :	i i
237	Ī	+ 1	. * :	I :	I I
238	Ī	+ 1	×		Ī
239	Ī	+ 1			I I I
241	i i	i i		Î	i i
242		+ 1 + 1 + 1	* * *	I :	I I
243	<u>I</u>	<u> </u>	. X		Ī
244	İ	+] +]	*		I I
246	i i	+ 1	* * *		i i
245 246 247	I 1	. +]	*	I :	I
248	<u> </u>	+ 1	×	Ī	<u> </u>
249 250	I I	+	*	I	I TI
251	İ	+	*	Ĭ	T T
252	I I I	+] +] +]	×	Ī	
253	<u>I</u> :	<u> </u>	×		Ī
254 255	Į į	[×		I I I
256	†	+ '			i i
249 251 251 252 253 255 256 257 258 259 261		· •	: ×	I :	I
258	<u>I</u>	<u> </u>			<u>I</u>
259	Ţ	+			I I
261	i	•	*		i i
262	ī	.			ī ī
262 263 264	I I I I	<u> </u>	×		<u>I</u>
264	Ţ	+			Î
265 266	i i	[I I
267	ī	į į			i i
267 268	I I I	+	×	I	Ī
269	<u> </u>	+	*	_	Ī
269 270 271 272 273	I I I I	[+] [+			I I
272	Ĭ	+			Ī
273	Ī	<u> </u>	×	I	<u>I</u>
2/4 275	1	† •	×	=	į
274 275 276 277	Ī	† †	*		I I
277	I :	. + .	: *	Ī	I I
278	Ţ	† + + + + +	X	Ī	į
2/7 280	I I	* +	; * [*		I I
281	Ī	+	*		i i
282	I	+	i ×	Ī	
283	Ī	<u> </u>	<u> </u>		<u>I</u>
282 283 284 285 286	†	+ +	;	I	I I I I I I
286	i	+		i :	i i
287	I	. + :	; * .	Ī	i i
288		<u> </u>	: *	I	Ī
20 Y 29 N	Ī	† †	. *		Ţ
291	I		[I I I	
287 288 289 290 291 292	Ī	+ :	i ¥	Ī	ī i

I	J	RHO	THE	F	U	V	MC	M	CP
2	2	.33265E+00	15708E+01	82695E-01	.12312E-14	26645E-14	.45197E-14	.13741E+01	.23227E+00
3	2	.32632E+00	14586E+01	83982E-01	33598E-01	.60972E-02	.52571E-01	.13733E+01	.23320E+00
4	2	.31934E+00	13464E+01	83455E-01	70793E-01	.13043E-01	.11076E+00	.13705E+01	.23625E+00
5	2	.31311E+00	~.12342E+01	80685E-01	10904E+00	.15143E-01	.16924E+00	.13663E+01	.24079E+00
6	2	.30958E+00	11220E+01	75412E-01	14878E+00	.93095E-02	.22898E+00	.13619E+01	.24565E+00
7	2	.30876E+00	10098E+01	68494E-01	18965E+00	92128E-03	.29110E+00	.13583E+01	.24961E+00
8	2	.30992E+00	89760E+00	60971E-01	23005E+00	11883E-01	.35343E+00	.13560E+01	.25212E+00
9	2	.31236E+00	78540E+00	53599E-01	26675E+00	19852E-01	.41024E+00	.13540E+01	.25435E+00
10	2	.31513E+00	67320E+00	46806E-01	29461E+00	22054E-01	.45265E+00	.13491E+01	.25983E+00
11	2	.31765E+00	56100E+00	40604E-01	30858E+00	21281E-01	.47286E+00	.13377E+01	.27253E+00
12	2	.32005E+00	44880E+00	34891E-01	30988E+00	25511E-01	.47381E+0 0	.13214E+01	.29105E+00
13	2	.32357E+00	33660E+00	29827E-01	30435E+00	39494E-01	.46620E+00	.13053E+01	.30968E+00
14	2	.32948E+00	22440E+00	25880E-01	28361E+00	53132E-01	.43646E+00	.12833E+01	.33553E+00
15	2	.33743E+00	11220E+00	23278E-01	15175E+00	28515E-01	.23025E+00	.12084E+01	.42782E+00
16	2	.34375E+00	71054E-14	21977E-01	.80487E+00	.12109E+80	.14348E+01	.20068E+01	24295E+00
17	2	.34902E+00	.11220E+00	19427E-01	.91651E+00	.80639E-01	.17290E+01	.22934E+01	35175E+00
18	2	.35064E+00	.22440E+00	15074E-01	.89625E+00	.32839E-01	.16714E+01	.22562E+01	34022E+00
19	2	.35191E+00	.33660E+00	88519E-02	.86271E+00	.22303E-01	.15906E+01	.22067E+01	32377E+00
20	2	.35268E+00	.44880E+00	88775E-03	.81869E+00	.22715E-01	.14903E+01	.21494E+01	30308E+00
21	2	.35410E+00	.56100E+00	.82522E-02	.76596E+00	.34739E-01	.13772E+01	.20911E+01	28008E+00
22	2	.35629E+00	.67320E+00	.18224E-01	.70893E+00	.41812E-01	.12616E+01	.20419E+01	25897E+00
23	2	.35882E+0 0	.78540E+00	.28723E-01	.63178E+00	.35638E-01	.11068E+01	.19717E+01	22604E+00
24	. 5	.36083E+00	.89760E+00	.38059E-01	.55593E+00	.16723E-01	.96177E+00	.19203E+01	19961E+00
25	2	.36125E+00	.10098E+01	.47844E-01	.48456E+00	90640E-02	.83296E+00	.18926E+01	18455E+00
26	2	.35931E+00	.11220E+01	.57294E-01	.39363E+00	34557E-01	.67352E+00	.18548E+01	16300E+00
27	2	.35417E+00	.12342E+01	.65826E-01	.28874E+00	46632E-01	.49456E+00	.18183E+01	14099E+00
28	2	.34648E+00	.13464E+01	.72814E-01	.18322E+00	36871E-01	.31432E+00	.17936E+01	12545E+00
29	2	.33853E+00	.14586E+01	.77712E-01	.86883E-01	16998E-01	.14853E+00	.17827E+01	11842E+00
30	2	.33162E+00	.15708E+01	.80619E-01	.11382E-13	.26645E-14	.19602E-13	.17802E+01	11678E+00
	A								
	Ť			POTENTIAL	CROSS FLOW	VELOCITIES	CROSS FLOW	TOTAL	PRESSURE
	L	SURFACE RESUL	LTS	(W VELOCITY)			MACH NUMBER	MACH NO.	COEFFICIENT

IF IOUT = 0, THIS DATA BLOCK IS RE-PEATED FOR ALL J's

IMCMIN=	6	MCMIN=	. 22898
TWCWTH=	ь	MCM1N=	. 2289

CROSSFLOW SONIC LINE

NUMBER OF POINTS 16

J	XXI	YYI
1 2 3 4 5 6 7	.64915	01485
2	.65189	00885
3	.65490	.00012
4	.65618	.01529
5	.65733	. 03459
6	.65577	.06236
7	.64940	.10139
8	.62887	.16375
9	.52791	.26602
1Ó	.49204	.24882
ii	.46812	
		.22112
12	.45133	. 18855
13	. 43875	.15371
14	. 42725	.11815
15	.41334	.08222
16	.39316	.04447

X, Y LOCATION OF CROSS FLOW SONIC LINE

	CONICAL FORCE	DISTRIBUTIONS,	BODY AND SH	OCK LOCATI	ONS					
I	X(I)	CL CD	OMEG	XXB	YYB	RB	xxs	YYS	RS	RS/RB
2345667891112311466781112113114611111111111111111111111111111	-1.5708 -1.4586 -1.3464 -1.2342 -1.1220 -1.0098 8976 78732 5610 4488 3366 2244 1122	.1056 .0240 .1061 .0241 .1071 .0241 .1077 .0230 .1070 .0206 .1042 .0177 .0990 .0149 .0921 .0130 .0846 .0119 .0676 .0094 .0544 .0069 .0544 .0069 .0544 .0069 .0544 .0069 .0544 .0069 .0546 .0079 .0028 -0044 .0270 .0037 .0028 -0044 .0270 .0037 .00696 .0114 .0696 .0114 .0550 .0108 .0519 .0101	-83.5714 -77.1423 -70.7143 -64.2857 -57.8571 -51.4286 -45.0000 -38.5714 -32.1423 -19.2857 -12.8576 -6.4286 12.8577 -6.4286 12.8577 25.7143 -70.7143 -71.7143	0000 .0679 .1356 .2079 .3325 .26710 .3909 .44676 .5808 .61128 .6457 .64437 .64437 .64437 .6435 .57303 .4838 .31579 .1949 .1050	0142 0027 .0096 .0198 .0241 .0172 .0172 .01029 0031 0079 0156 0156 0156 0156 0156 0130 .0130 .0293 .0384 .0482 .0525 .04881 .0258	.0142 .0142 .01359 .2034 .2699 .3318 .3913 .4466 .5426 .5809 .61330 .6460 .64936 .6277 .6031 .57007 .4853 .4351 .2004 .2004 .2104 .204 .204 .204 .204 .204 .204 .204 .2	0000 .0983 .1950 .2888 .3785 .4628 .5404 .6100 .7217 .76529 .8602 .8811 .8968 .9113 .9068 .9117 .8916 .81512 .6686 .5665 .44576 .15720	6011 5960 5815 5584 55875 4451 3419 23070 1238 1237 1238	.6011 .6040 .6133 .6287 .6492 .6736 .7001 .7277 .7763 .7992 .8433 .8629 .8811 .9159 .9356 .95702 1.03067 1.03885 1.1460 1.1681 1.1823 1.1870	42.4623 4.5125 2.09135 2.09135 2.09135 1.7893 1.62728 1.3345 1.33566 1.335664 1.35514 1.55514 1.66799 2.36881 2.36881 3.3664 1.4591 1.5514 1.6790 2.7288 3.3628 3
CL =	.4508	CD = .0664		ВО	DY LOCATION	N '	SH	OCK LOCAT	TION	
CLU=	.1989	CLL= .2520								
CDU=		CDL= .0449					, R _B			
L/D=	6.789	L/D UPPER = 9.	.248 L/I) LOWER =	5.6118			_	1	
	INITL= 10 ETADR= .750	IFINL= 23 CL(ETADR)=	.1518 CI)(ETADR)=	DRA	BOARD	XXB, YYB	a's CK	xx	S, YYS

1	ETASPN	CPU	CPL	DELTACP	DCPLIN	CCL/CA	
1234567890112345	.0000 .1000 .2000 .2994 .3972 .4919 .5825 .6675 .7460 .8166 .8780 .9286 .9666 .9910	11681184125416301846199625902590280313038340235172429	.2323 .23320 .23602 .2449 .2489 .2518 .2538 .2584 .2691 .2859 .3047 .3295 .4119	.3491 .3516 .3614 .3812 .4079 .4334 .4512 .4799 .5174 .5491 .5890 .6285 .6697 .7637	.2870 .2885 .2929 .3008 .3127 .3297 .3531 .3855 .4310 .4973 .7736 1.1207 2.1394	.6981 .6974 .6888 .6357 .5778 .5116 .4411 .3689 .2948 .2216 .1527 .0913 .0419	
I	ETASPN	СРИ	CPL	DELTACP	DCPLIN	CCL/CA LINEAR THEO UNCAMBERED	

SPANLOAD DISTRIBUTION

I	MCON	NUCON	YIN	DNY	DNZ	DNX	CPP	CPNC	DELMCH	DELNUD
I 123456789012345678901234	1.37414 1.37329 1.37048 1.36632 1.35829 1.35800 1.35800 1.354907 1.33773 1.321530 1.28333 1.20837 2.00837 2.25621 2.29669 2.19114 2.09114 2.09114 2.09116	.143949 .142003 .1442003 .1378093 .13343930 .125900 .125900 .1180278 .12180278 .12180278 .5979044 .597904	00000 1.08644 2.16809 3.23809 4.28474 6.254376 6.254383 7.14383 7.957827 9.28871 9.278304 10.12055 10.38560 10.29171 10.03923 9.644269 8.48092 7.74731 6.94916	16186 17451 17544 11481 01460 .05990 .11174 .13668 .13495 .12568 .12568 .12779 .12981 19116 64629 .45743 .31048 .23653 .19266 .18457 .17981 .18457 .17981 .16415 .12399	.98572 .98370 .98370 .98365 .99220 .99757 .98888 .985592 .98753 .98769 .98679 .95853 .196763 .92928 .97712 .987663	04639 04324 04054 04791 06779 08579 10242 09876 19363 11301 11301 11301 11723 .41797 29644 19826 14709 11621 09473 095730	.23227 .23320 .23625 .24079 .24565 .24961 .25212 .25483 .27253 .29105 .30968 .33553 .42782 24295 35175 34022 32377 30308 288008 25897 25897 25897	.10977 .11522 .12332 .13457 .14637 .17297 .18587 .19665 .22611 .24230 .22611 .24230 .26949 .36428 26408 35857 33684 32488 32488 32488 32488 32488 32488 32488	.12070 .11581 .11016 .10270 .09512 .008711 .07519 .05852 .05714 .05964 .05711 .05105 .04648 .02305 01047 .00323 .01423 .01423 .014560 .04560 .04560	3.50765 3.36312 3.19441 2.97194 2.74604 2.50866 2.15979 1.83194 1.62366 1.64744 1.66812 1.57467 1.31238 1.27082 26693 .08350 .37426 .69949 1.23386 1.80409 2.18525
24 25 26 27 28	1.89259 1.85485 1.81830 1.79359 1.78268	.40799 .38924 .37094 .35848 .35297	5.10904 4.12484 3.10950 2.07721 1.03896	.06009 02568 12586 18218 18254	.99761 .99932 .99144 .98240 .98220	02794 .00168 .02851 .04100	18455 16300 14099 12545 11842	23080 21680 20178 19155 18866	.08882 .09843 .10603 .11172 .11735	2.48971 2.78168 3.01924 3.19675 3.36338
29 I	1.78018 MCOH	NUCON	.00000 YIN	17354 DNY	. 98374 DNZ	.04632 DNX	11678 CPP	19007 CPNC	.12243 DELMCH ΔM	$\frac{3.50885}{\text{DELNUD}}$
	MCONICAL	τ ;	CONICAL					C _P NO	N-CONICAL	ΔV
							C _p CONIC			

DELTA CP FROM NON CONICAL CORRECTION

I	ETASPN	CPU	CPL	DELTACP
1 2 3 4 5 6 7 8 9 10 11 12	.0000 .1000 .2000 .2994 .3972 .4919 .5825 .6675 .7460 .8166 .8780	1901 1887 1916 2018 2168 2308 2391 2569 2786 2907 3084 3249	.1098 .1150 .1226 .1332 .1446 .1558 .1692 .1826 .1939 .2064 .2216	.2998 .3036 .3142 .3350 .3614 .3866 .4083 .4395 .4724 .4970 .55629
13 14	.9666 .9910	3368 3586	.2631 .3479	.6000 .7065
15	1.0000	2640	2640	0.0000
I	ETASPN	CPU	CPL	DELTACE

NON-CONICAL FORCE RESULTS

CN= .4110

PURE CONICAL FORCE COEFFICIENT RESULTS

```
CN (FROM SPANLOAD) =,
                                                                   .4590
    CN (FROM DELTA CP ) =
                            .4599
    SPAN E= .8694
    CL= .45084
    CD= .06640
    CN= .45480
                       CA= -.02878
    A = .6608
                        ALP=12.0000
    EMINF= 1.6200
    JOBN --- REPEAT JOB IDENTIFICATION
                                                                 FINISH 1ST GRID AND REPEAT
                                                                SAME OUTPUT ON 2ND GRID
                                                     NM= 58
X0= .64825
                 Y0= -.014260
                                  Y1= .014260
```

MAPPED BODY (B) AND SHOCK (C) LOCATIONS - WITH 1ST (PR) AND 2ND (SEC) DERIVATIVES

I	x	В	BPR	BSEC	С	CPR	CSEC
2	15708E+01	.33265E+00	0.	19717E+01	.95129E+00	0	15491E+00
3	15147E+01	.32955E+00	56365E-01	37777E-01	.95104E+00	91102E-02	16987E+00
4	14586E+01	.32632E+00	59465E-01	72759E-01	.95027E+00	18711E-01	17240E+00
5	14025E+01	.32287E+00	62241E-01	26173E-01	.94895E+00	29010E-01	19476E+00
6	13464E+01	.31934E+00	61334E-01	.58503E-01	.94701E+00	40450E-01	~.21310E+00
7	12903E+01	.31599E+00	55514E-01	.14897E+00	.94441E+00	52813E-01	22766E+00
8	12342E+01	.31311E+00	45098E-01	.22236E+00	.94109E+00	66210E-01	24995E+00
9	11781E+01	.31093E+00	31493E-01	.26266E+00	.93698E+00	80097E-01	24512E+00
10	11220E+01	.30958E+00	18180E-01	.21198E+00	.93210E+00	94184 E-01	25711E+00
11	10659E+01	.30889E+00	72624E-02	.17722E+00	.92641E+00	10782E+00	22892E+00
12	10098E+01	.30876E+00	.21319E-02	.15770E+00	.92000E+00	12044E+00	22094E+00
13	95370E+00	.30913E+00	.10263E-01	.13219E+00	.91290E+00	13147E+00	17231E+00
14	89760E+00	.30992E+00	.16857E-01	.10288E+00	.90525E+00	14028E+00	14182E+00
15	84150E+00	.31102E+00	.21762E-01	.71987E-01	.89716E+00	14648E+00	79428E-01
16	78540E+00	.31236E+00	.24390E-01	.21677E-01	.88882E+00	14956E+00	30183E-01
īž	72930E+00	.31376E+00	.24741E-01	91345E-02	.88038E+00	14929E+00	.39753E-01
18	67320E+00	.31513E+00	.23797E-01	24526E-01	.87207E+00	14534E+00	.10109E+00
19	61710E+00	.31643E+00	.22453E-01	23401E-01	.86407E+00	13756E+00	.17613E+00
20	56100E+00	.31765E+00	.21481E-01	11247E-01	.85663E+00	12575E+00	.24499E+00
21	50490E+00	.31884E+00	.21374E-01	.74199E-02	.84996E+00	10977E+00	.32487E+00
22	44880E+00	.32005E+00	.23798E-01	.79021E-01	.84431E+00	89407E-01	.40098E+00
23	39270E+00	.32151E+00	.31342E-01	.18993E+00	.83993E+00	64664E-01	.48113E+00
24	33660E+00	.32357E+00	.42078E-01	.19280E+00	.83706E+00-	35345E-01	.56408E+00

222223333333333344444444455555 567890123456789012345678901234	28050E+0022440E+0016830E+0011220E+0056100E-0171054E-0156120E+00 .16830E+00 .22440E+00 .33640E+00 .33660E+00 .39270E+00 .50490E+00 .50490E+00 .5120E+00 .72930E+00 .72930E+00 .72930E+00 .729370E+00 .729370E+00 .729370E+00 .729370E+00 .729370E+00 .729370E+01 .11281E+01 .12903E+01	.32948E+00 .32948E+00 .333743E+00 .333743E+00 .3443751E+00 .3443751E+00 .34990E+00 .35932E+00	.52677E-01 .62713E-01 .70875E-01 .66511E-01 .56348E-01 .66537E-01 .46987E-01 .21370E-01 .12624E-01 .12624E-01 .89819E-02 .84703E-01 .16430E-01 .16430E-01 .21554E-01 .21587E-01 .21587E-01 .37906E-02 -17304E-01 -59479E-01 -59479E-01 -59479E-01	.18508E+00 .17270E+00 .17270E+00 -127387E+00 -27387E+00 -288442E-01 .271006E+00 -20322E+00 -44919E-01 -1873E-01 -52749E-01 -52749E-01 .72647E-01 .72647E-01 .61028E-01 .74325E-02 -42193E-01 -188707E-01 -188707E-01 -12643E+00 -12643E+00 -12643E+00 -20903E+00 -27869E+00 -27869E+00 -11543E+00	.83596E+00 .83686E+00 .8400E+00 .84551E+00 .86428E+00 .86428E+00 .87360E+00 .91214E+00 .935621E+00 .98137E+01 .10666E+01 .109790E+01 .11611E+01 .112580E+01 .12580E+01 .12580E+01 .13784E+01 .13784E+01 .13784E+01 .145595E+01 .145714	18011E-02 .35949E-01 .77124E+00 .16727E+00 .21433E+00 .21433E+00 .30738E+00 .39739E+00 .43075E+00 .4646E+00 .49439E+00 .54017E+00 .55618E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00 .57462E+00 .57614E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00 .57702E+00	.63179E+00 .71401E+00 .715342E+00 .821275E+00 .821275E+00 .82127E+00 .82107E+00 .82107E+00 .71670E+00 .57279E+00 .57279E+00 .57279E+00 .40847E+00 .16424E+00 .16424E+00 .16424E+00 .16424E+00 .16424E+00 .16424E+00 .16424E+00 .16424E+00 .16424E+00 .16424E+00 .1642112E-01 .176840E+00 .176840E+00 .176840E+00 .176840E+00 .1768481E+00 .1768481E+00 .1768181E+00 .1768181E+00
50	.11220E+01	.35931E+00	30563E-01	26367E+00	.14050E+01	.45556E+00	64898E+00
52	.12342E+01	.35417E+00	59479E-01	20983E+00	.14517E+01	.37089E+00	86183E+00
56 57 58	.14586E+01 .15147E+01 .15708E+01	.33853E+00 .33500E+00 .33162E+00	65992E-01 61581E-01 0.	.10493E+00 .52309E-01 .21431E+01	.15103E+01 .15161E+01 .15181E+01	.13727E+00 .69407E-01	12077E+01 12116E+01 12629E+01
I	x	В	BPR	BSEC	С	CPR	CSEC

MAPPING METRIC AND FREESTREAM VELOCITIES AT GRID POINTS

1	J	RHO	THE	PSI	OMEG	н	UI	VI	MI
2	2	.33265E+00	15708E+01	.14155E-01	15708E+01	.18209E+01	.12312E-14	22174E+00	.97511E+00
3	2	.32955E+00	15147E+01	.35018E-01	24543E+00	.18349E+01	33579E-01	21616E+00	.97578E+00
4	2	.32632E+00	14586E+01	.67881E-01	39586E-01	.18428E+01	67280E-01	21022E+00	.97534E+00
5	2	.32287E+00	14025E+01	.10152E+00	.34050E-01	.18450E+01	10096E+00	20363E+00	.97383E+00
6	2	.31934E+00	13464E+01	.13508E+00	.71027E-01	.18407E+01	13445E+00	19659E+00	.97122E+00
7	2	.31599E+00	12903E+01	.16823E+00	.90173E-01	.18282E+01	16753E+00	18955E+00	.96747E+00
8	2	.31311E+00	12342E+01	.20070E+00	.97679E-01	.18059E+01	19996E+00	18304E+00	.96256E+00
9	2	.31093E+00	11781E+01	.23227E+00	.96692E-01	.17722E+01	23148E+00	17755E+00	.95650E+00
10	2	.30958E+00	11220E+01	.26277E+00	.89595E-01	.17269E+01	26184E+00	17342E+00	.94940E+00
11	2	.30889E+00	10659E+01	.29215E+00	.79487E-01	.16713E+01	29090E+00	17041E+00	.94146E+00
12	2	.30876E+00	10098E+01	.32034E+00	.68000E-01	.16068E+01	31854E+00	16837E+00	.93283E+00
13.	2	.30913E+00	~.95370E+00	.34729E+00	.55971E-01	.15346E+01	34465E+00	16726E+00	.92371E+00
14	2	.30992E+00	89760E+00	.37295E+00	.44056E-01	.14559E+01	36915E+00	16700E+00	.91424E+00

15	2	.31102E+00	84150E+00	.39726E+00	.32750E-01	.13719E+01	39196E+00	16748E+00	.90461E+00
16	2	.31236E+00	78540E+00	.42019E+00	.22401E-01	.12840E+01	41308E+00	16856E+00	.89496E+00
17	Ž	.31376E+00	72930E+00	.44169E+00	.13402E-01	.11934E+01	43252E+00	16991E+00	.88547E+00
18	2	.31513E+00	67320E+00	.46172E+00	.58178E-02	.11011E+01	45034E+00	17135E+00	.87626E+00
19	2	.31643E+00	61710E+00	.48023E+00	45849E-03	.10075E+ 0 1	46654E+00	17276E+00	.86747E+00
20	2	.31765E+00	56100E+00	.49717E+00	56375E-02	.91293E+00	48114E+00	17418E+00	.85917E+00
21	2	.31884E+00	50490E+08	.51252E+00	99438E-02	.81758E+00	49408E+0 0	17580E+Q0	.85146E+00
22	2	.32005E+00	44880E+00	.52622E+00	13566E-01	.72156E+00	50529E+00	17797E+00	.84440E+00
23	2	.32151E+00	39270E+00	.53826E+00	16825E-01	.62469E+00	51434E+00	18202E+00	.83805E+00
24	Ž	.32357E+00	33660E+00	.54862E+00	19970E-01	.52693E+00	52023E+00	-,19083E+00	.83244E+00
25	2	.32623E+00	28050E+00	.55730E+00	22701E-01	.42928E+00	52157E+00	20730E+00	.82764E+00
26	ž	.32948E+00	22440E+00	.56433E+00	24708E-01	.33308E+00	~.51507E+00	23699E+00	.82373E+00
27	2	.33327E+00	16830E+00	.56974E+00	25711E-01	.24045E+00	49087E+00	29223E+00	.82076E+00
28	2	.33743E+00	11220E+00	.57352E+00	25427E-01	.15624E+00	41163E+00	40022E+00	.81877E+00
29	5	.34073E+00	56100E-01	.57562E+00	23593E-01	.94154E-01	13029E+00	56048E+08	.81785E+90
	~								
30	2	.34375E+00	71054E-14	.57604E+00	20627E-01	.99749E-01	.38659E+00	42600E+00	.81796E+00
31	2	.34751E+00	.56100E-01	.57489E+00	16438E-01	.16534E+00	.53533E+00	20632E+00	.81906E+00
32	2	.34902E+00	.11220E+00	.57183E+00	11807E-01	.24009E+00	.56409E+00	86176E-01	.82121E+00
33	2	.34990E+00	.16830E+00	.56704E+00	69089E-02	.31887E+00	.56585E+00	18745E-01	.82429E+00
34	2	.35064E+00	.22440E+00	.56056E+00	16665E-02	.39910E+00	.55990E+00	.22197E-01	.82827E+00
35	2	.35132E+00	.28050E+00	.55243E+00	.39601E-02	.47944E+00	.55095E+00	.49252E-01	.83308E+00
36	2	.35191E+00	.33660E+00	.54267E+00	.99505E-02	.55922E+00	.54027E+00	.68589E-01	.83869E+00
37	2	.35233E+00	.39270E+00	.53128E+00	.16217E-01	.63813E+00	.52817E+00	.83470E-01	.84503E+00
38	2	.35268E+00	.44880E+00	.51831E+00	.22866E-01	.71587E+00	.51478E+00	.95098E-01	.85203E+00
39	2	.35328E+00	.50490E+00	.50383E+00	.30418E-01	.79175E+00	.50028E+09	.10354E+00	.85965E+00
40	2	.35410E+00	.56100E+00	.48790E+00	.39078E-01	.86535E+00	.48461E+00	.10970E+00	.86782E+00
41	Ž	.35512E+00	.61710E+00	.47055E+00	.49032E-01	.93633E+00	.46772E+00	.11424E+00	.87646E+00
42	ē	.35629E+00	.67320E+00	.45182E+00	.60445E-01	.10045E+01	.44955E+00	.11763E+00	.88548E+00
43	Ž	.35754E+00	.72930E+00	.43177E+00	.73479E-01	.10696E+01	.43004E+00	.12023E+00	.89477E+00
44	5	.35882E+00	78540E+00	.41045E+00	.88278E-01	.11315E+01	.40918E+00	.12232E+00	.90422E+00
45	2	.35996E+00	.84150E+00	.38788E+00	.10472E+00	.11905E+01	.38691E+00	.12430E+00	.91370E+00
46	ີ	.36083E+00	.89760E+00	.36411E+00	.12263E+00	.12469E+01	.36323E+00	.12646E+00	.92308E+00
47	5	.36129E+00	.95370E+00	.33915E+00	.14182E+00	.13007E+01	.33816E+00	.12901E+00	.93221E+00
48	2	.36125E+00	.10098E+01	.31305E+00	.16203E+00	.13524E+01	.31174E+00		.94094E+00
	ζ.							.13211E+00	
49	2	.36061E+00	.10659E+01	.28584E+00	.18300E+00	.14021E+01	.28406E+00	.13589E+00	.94913E+00
50	2	.35931E+00	.11220E+01	.25755E+00	.20450E+00	.14501E+01	.25520E+08	.14041E+00	.95664E+00
51	2	.35718E+00	.11781E+01	.22820E+00	.22548E+00	.14970E+01	.22526E+00	.14595E+00	.96331E+00
52	2	.35417E+00	.12342E+01	.19780E+00	.24506E+00	.15431E+01	.19437E+00	.15259E+00	.96899E+00
53	2	.35051E+00	.12903E+01	.16651E+00	.26416E+00	.15877E+01	.16273E+00	.15997E+00	.97362E+00
54	2	.34648E+00	.13464E+01	.13455E+00	.28569E+00	.16297E+01	.13056E+00	.16763E+00	.97717E+00
55	2	.34240E+00	.14025E+01	.10219E+00	.31698E+00	.16674E+01	.98036E-01	.17511E+00	.97966E+00
56	2	.33853E+00	.14586E+01	.69789E-01	.37816E+00	.16995E+01	.65345E-01	.18203E+00	.98112E+00
57	2	.33500E+00	.15147E+01	.38093E-01	.55085E+00	.17250E+01	.32625E-01	.18823E+00	.98158E+00
58	ž	.33162E+00	.15708E+01	.14155E-01	.15708E+01	.17444E+01	.11382E-13	.19405E+00	.98099E+00

SURFACE ARC LENGTH (S) SLOPE (THETA) AND CURVATURE (PSI)

I	X/Z	Y/Z	5	THETA	PSI	(X/Z)/XMAX	(Y/Z)/XMAX	DYBP/DZP
1	00000	01416	0.00000	9.27993	.11194	00000	02180	22360
2 3	.03398	00851	.03445	9.57893	.18181	.05233	01311	22369
3	.06793 .10181	00269 .00347	.06889 .10332	10.01198 10.33667	.18969	.10461	00414	22412
7	.13556	.00347	.13764	9.94767	01695 38189	.15678 .20876	.00534 .01485	22454
5 6	.16915	.01529	.17170	8.59966	87694	.26047	.02355	22357 21973
7	.20247	.01984	.20533	6.32239	-1.33307	.31179	.03055	21203
8	. 23543	.02284	.23843	3.33591	-1.41768	. 36255	.03517	20033
9	.26791	.02407	.27094	.90658	-1.15692	.41257	.03706	18961
10	.29981	.02388	.30284	-1.03859	-1.13566	.46168	.03678	18012
11	.33100	.02254	. 33406	-3.25098	-1.09565	.50972	.03471	16810
12 13	.36140	.02025	. 36455	-5.02297	89996	.55653	.03118	15743
14	.39088 .41934	.01723 .01374	.39418 .42286	-6.39887 -7.37860	69636 43487	.60192 .64576	.02654	14837
15	.44668	.01374	.45045	~7.88701	43487 13290	.68786	.02116 .01541	14140 13755
16	. 47280	.00634	.47683	-7.95343	.04217	.72808	.00976	13705
17	.49758	.00289	.50184	-7.77588	.15421	.76623	.00446	13860
18	.52090	00024	.52537	-7.51854	.17980	.80214	00037	14093
19	.54263	00306	.54728	-7.30492	.12491	.83561	00471	14294
20	.56264	00559	. 56745	-7.19540	05963	.86642	00862	14400
21	.58080	00788	. 58576	-7.40480	44954	.89438	01213	14184
22	.59698	01005	.60209	-8.18029	91588	.91931	01547	13367
23 24	.61108 .62304	01221	.61635	-8.98144	52492	.94102	01879	12506
25	.63281	01415 01564	.62846 .63835	-8.92193 -7.19999	.59714 4.81384	.95943 .97448	02178	12578
26	.64038	01647	.64597	-2.30565	17.08161	.98614	0240 8 02536	14514 20012
27	.64574	01642	.65135	8.01381	69.38116	.99439	02529	31677
28	.64875	01531	.65464	51.46930	278.73204	.99902	02357	-1.03944
29	.64938	01340	.65670	90.10833	264.31107	1.00000	02063	343.34222
30	.64779	01065	.65995	129.25381	104.66419	. 99755	01640	.57267
31	.64351	00760	.66524	149.03810	29.50386	. 99096	01170	.16904
32 33	.63678	00440	.67271	156.95057	10.76401	.98059	00677	.05711
33 34	.62773 .61645	00105	.68236	161.15812	5.31823 3.29739	. 96665	00161	.00372
3 4 35	.60303	.00244 .00600	.69417 .70805	163.93357 166.12317	3.29/39 2.24793	. 94928	.00376	02946
36	.58756	.00953	.72392	167.85510	1.24980	.92862 .90479	.00924 .01467	05446 07347
37	.57017	.01304	.74166	168.77447	.53431	.87801	.02008	07347
38	.55104	.01677	.76116	169.07257	.19578	.84855	.02582	08629
39	.53029	.02073	.78228	169.24399	.12962	.81660	.03193	08797
40	.50804	.02493	.80492	169.39714	.13279	.78235	.03839	08940
41	.48442	.02932	.82894	169.60480	.18025	.74597	.04514	09126
42	.45953	.03383	.85424	169.92175	.28856	.70763	.05209	09394
43 44	.43347	.03837	.88069	170.51090	.49388	.66751	.05908	09862
45	.40635 .37824	.04271 .04662	.90816	171.50808	.73557	.62574	.06577	10606
46	.3/024	.04986	. 93654	172.88719	. 93383	. 58246	.07179	11562
47	.31946	.05222	.96572 .99560	174.62837 176.73171	1.11433 1.32169	.53781 .49194	.07678 .08041	12674
48	. 28898	.05348	1.02611	179.26369	1.30579	.44500	.08236	13898 15224
49	.25792	.05349	1.05717	181.40207	1.31191	.39717	.08237	16226
50	.22636	.05192	1.08877	184.06729	1.53015	.34858	.07996	17361
51	.19443	.04862	1.12087	187.00510	1.32168	.29940	.07488	18471
52	.16224	.04388	1.15342	189.16568	.84763	.24983	.06757	19174
53	.12988	.03815	1.18627	190.41072	. 36172	.20001	.05875	19515

54	.09744	.03197	1.21930	190.76273	.01733	.15005	.04922	19600
55	.06496	.02581	1.25235	190.47562	15674	.10004	.03974	19564
56	.03247	.01995	1.28537	190.16898	09873	.05001	.03072	19532
57	.00000	.01416	1.31836	190.05525	00923	.00000	.02180	19528
τ	X/Z	Y/Z	s	THETA	PSI	(X/Z)/XMAX	(Y/Z)/XMAX	DYBP/DZP

SMAX= 1.31836 XMAX= .64938 SMAX/XMAX= 2.03016

SLOR SOLUTION ITERATION BEGINS ON MESH 2

ITER	DELMX	I	· J	DELAVG	RESMX	I	J	RESAVG	KSUP	NPVD	JSHMAX	ISHMAX	JSHMIN	ISHMIN
1	.5191E-03	55	2	.1753E-04	1648E+01	7	2	.7925E-01	1172	0	56	o	0	Q
2	3030E-03	2	2	.8217E-05	7385E+00	.2	2	.3422E-01	1173	D	56	0	D	B
3	.1176E-03	57	2	.5031E-05	4381E+00	32	ž	.2020E-01	1175	Ū	56	ō	Q	0
. 7	8528E-04	32 33	2	.3834E-05 .3190E-05	4112E+00 4087E+00	33 33	6	.1471E-01 .1194E-01	1174 1173	V	56	ŭ	ŭ	Ų
2	7080E-04	21	38	.2953E-05	3937E+00	33	6	.11942-01 .1061E-01	1173	ŭ	56 56 56	ž	V	
9	6851E-04 6931E-04	21	38	.2735E-05	3721E+00	33	2	.9609E-02	1173	ň	56	ň	ň	Ň
Ŕ	5709E-04	21	38	.2632E-05	3477E+00	33	6	.8986E-02	1171	ñ	54	ň	ň	ň
ĕ	7074E-04	22	38	.2567E-05	3215E+00	33	š	.8525E-02	1171	ň	56 56	ŏ	ň	ň
1Ó	5741E-04	22	38	.2468E-05	2953E+00	33	6	.8088E-02	1172	ă	56	ă	ŏ	ň
īĭ	3977E-04	35	Ž	.2353E-05	2709E+00	33	6	.7682E-02	1172	Š	56	ă	ŏ	ŏ
11 12 13	3987E-04	35	ž	.2279E-05	2479E+00	33	6	.7384E-02	1171	Ŏ	56 56 56	Č	Ď	Ŏ
13	3910E-04	35	2	.2247E-05	2270E+00	33	6	.7180E-02	1171	0	56	Ò	Ō	Ō
14 15 16	3778E-04	35	2	.2220E-05	2081E+00	33	6	.7016E-02	1171	8	56 56	Ō	Ō	Ō
15	3614E-04	35	2	.2184E-05	1920E+00	33	7	.6863E-02	1171	Ö	56	Ō	Ŏ	Ō
16	3611E-04	36	2	.2150E-05	1787E+00	33	7	.6721E-02	1170	0	56	0	0	0
17 18	3596E-04	36	2	.2119E-05	1664E+00	33	7	.6596E-02	1170	0	56 56	0	0	8
18	3542E-0 4	36	2	.2094E-05	1596E+00	35	6	.6491E-02	1170	0	56	C	C	0
19	3462E-04	36	2	.2073E-05	1539E+00	35	6	.6403E-02	1170	0	56	0	0	0
20 21 22 23 24	3365E-04	36	2	.2060E-05	1482E+00	35	6	.6336E-02	1169	0	56 56	0	0	0
21	3257E- 04	36	2	.2052E-05	1426E+00	35	6	.6285E-02	1169	G	56	0	0	0
22	3253E-04	37	2	.2043E-05	1370E+00	35	6	.6240E-02	1169	D	56	D	Đ	0
23	3227E-04	37	2	.2033E-05	1316E+00	35	6	.6193E-02	1169	Ō	56 56	0	0	0
24	3185E-04	37	2	.2023E-05	1264E+00	35	6	.6150E-02	1169	Q	56	0	0	0
25.	3129E-04	37	2	.2010E-05	1214E+00	35	6	.6110E-02	1169	0	56	0	0	0
26	3064E-04	37	2	.1995E-05	1165E+00	35	6	.6066E-02	1169	ō	56 56	Ō	Ō	Ō
27	2993E-04	37	2	.1978E-05	1119E+00	35	6	.6020E-02	1169	Ģ	56	Ō	Ō	0
28 29 30	2917E-04	37	2 2 2	.1961E-05	1083E+00	37	4	.5972E-02	1169	Ō	56	Ō	g	ō
29	2873E-04	38	2	.1944E-05	1055E+00	37	•	.5926E-02	1169	0	56 56	0	0	0
30	2850E-04	38	2	.1926E-05	1027E+00	37	4	.5876E-02	1168	ū	56	0	0	0
31 32 33	2819E-04	38 38	2	.1912E-05	9977E-01	37	4	.5833E-02	1168 1168	ŭ	56	Ų	Ų	0
32	2780E-04	38	2	.1898E-05	9683E-01	37 38	7	.5794E-02		Ų.	56 56	ŭ	V	ŭ
33	2736E-04	38	2	.1883E-05 .1870E-05	9500E-01 9367E-01	38 38	5	.5754E-02 .5717E-02	1167	Ų	56	Ų	Ų	ŭ
34	2686E-04 2634E-04	38	2	.1870E-05	9227E-01	38 38	5	.5/1/E-02 .5684E-02	1166 1166	Ď	56	V	Ų	ŭ
35 36	2579E-04	38	2	.1850E-05	9076E-01	38	5	.5651E-02	1166		56	V	V	, v
30 37	2523E-04	38	2	.1840E-05	8915E-01	38	5	.5618E-02	1166	ň	56	ŭ	0	ŭ
3/	2495E-04	39	ž	.1831E-05	8748E-01	38	5	.5584E-02	1166	ň	56	ň	ŏ	ň
38 39	2473E-04	39	2	.1822E-05	8575E-01	38	5	.5551E-02	1166	ň	56	ň	ň	0
40	2447E-04	39	ž	.1822E-05	8398E-01	38	5	.5521E-02	1166	ň	56	ň	ñ	ň
41	2417E-04	39	2	.1805E-05	8219E~01	38	5	.5487E-02	1166	ñ	56	Ď	ň	ň
7.1	. 671/6707	J 7	C.	. 10076-07	.02176.01	20	9	. 27076-02	1100	ų	20	U	v	U

42 - 2384E-04 39 2 43 - 2310E-04 39 2 44 - 2310E-04 39 2 45 - 2270E-04 39 2 46 - 2227E-04 39 2 47 - 2189E-04 40 2 48 - 2159E-04 40 2 50 - 2119E-04 40 2 51 - 2120E-04 40 2 52 - 2052E-04 40 2 53 - 2052E-04 40 2 54 - 1987E-04 40 2 55 - 1888E-04 14 39 56 - 1888E-04 40 2 57 - 1888E-04 40 2 58 - 1855E-04 40 2 59 - 1802E-04 41 2 61 - 1783E-04 41 2 62 - 1743E-04 41 2 63 - 1651E-04 41 2 64 - 1722E-04 41 2 65 - 1655E-04 41 2 67 - 1655E-04 41 2 71 - 1548E-04 41 2 72 - 1578E-04 41 2 73 - 1495E-04 41 2 74 - 1469E-04 42 2 75 - 1435E-04 42 2 77 - 1457E-04 42 2 78 - 1468E-04 42 2 79 - 1368E-04 42 2 81 - 1331E-04 42 2 82 - 1351E-04 42 2 83 - 1254E-04 42 2 84 - 1292E-04 42 2 85 - 1275E-04 42 2 87 - 1457E-04 42 2 88 - 1257E-04 42 2 89 - 1157E-04 42 2	.1794E-05 .1784E-05 .1774E-05 .1764E-05 .1765E-05 .1737E-05 .1737E-05 .1737E-05 .1730E-05 .2566E-05 .2255E-05 .2257E-05 .2190E-05 .2257E-05 .2191E-05 .2011E-05 .2011E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1991E-05 .1914E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1891E-05 .1883E-05 .1883E-05 .18848E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1883E-05 .1884E-05 .1884E-05 .1884E-05 .1884E-05 .1884E-05	8039E-01 38 57881E-01 39 577881E-01 39 57775E-01 39 577662E-01 39 57543E-01 39 57419E-01 39 57291E-01 39 57291E-01 39 57028E-01 33 37 .8717E-01 33 37 .8717E-01 33 37 .8717E-01 33 37 .87937E-01 15 38 .8772E-01 15 38 .8772E-01 15 38 .6773E-01 33 37 .6629E-01 33 37 .6610E-01 33 37 .66447E-01 33 37 .66447E-01 33 37 .66447E-01 33 37 .66348E-01 33 37 .6236E-01 33 37 .6246E-01 33 37 .6256E-01 33 37 .62626E-01 33 37 .6276E-01 33 37 .6286E-01 33 37 .6286E-01 33 37 .6326E-01 33 37 .6326E-01 33 37 .6326E-01 33 37 .6326E-01 33 37 .6336E-01 33 37 .6336E-01 33 37 .6346E-01 33 37 .6346E-01 33 37 .6346E-01 33 37 .6346E-01 33 37 .6346E-01 33 37 .6346E-01 33 37 .6346E-01 33 37 .6354E-01 33 37	116 .545427E-02 116 .53872E-02 116 .53387E-02 116 .53387E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .5247E-02 116 .6834E-02 116 .8844E-02 116 .8844E-02 116 .8844E-02 1	66667778001133333333333333333333333333333333	66666666000000000000000000000000000000	000000000000000000000000000000000000000	000000005555555555555555555555555555555	000000000000000000000000000000000000000
881215E-04 42 2 891195E-04 42 2 901176E-04 42 2 911157E-04 42 2 921138E-04 42 2 931119E-04 42 2	.1838E-05 .1832E-05 .1827E-05 .1821E-05 .1816E-05 .1810E-05	.6314E-01 33 37 .6321E-01 33 37 .6328E-01 33 37 .6334E-01 33 37 .6341E-01 33 37	.5472E-02 37 .5441E-02 37 .5409E-02 37 .5379E-02 37 .5348E-02 37 .5318E-02 37	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	40 40 40 40 40	2 2 2 2 2	38 38 38 38 38 38	26 26 26 26 26 26

102	9805E-05 43	,	.1754E-05	.6398E-01 33 37	.5055E-02	374	0	40	9	38	26
103	9671E-05 43.	***************************************	.1747E-05	.6402E-01 33 37	.5027E-02	374	0	40	2 2 2 2	38	26 26
104 105	9537E-05 43 9403E-05 43	2	.1741E-05 .1734E-05	.6407E-01 33 37 .6411E-01 33 37	.4999E-02 .4971E-02	374 374	0 0	40 40	2	38 38	26 26
106	9269E-05 43	2	.1727E-05	.6415E-01 33 37	.4943E-02	374	Ŏ	40	2	38	26
107 108	9135E-05 43 9002E-05 43	2	.1720E-05 .1713E-05	.6419E-01 33 37 .6423E-01 33 37	.4916E-02 .4888E-02	374 374	0	40 40	2 2	38 38	.26 26
109	8869E-05 43	ž	.1718E-05	.6427E-01 33 37	.4861E-02	374	Ď	40	2	38	26
110	8737E-05 43	2	.1699E~05	.6431E-01 33 37	.4835E-02	374	0	40	2 2	38	26
111 112	8606E-05 43 8475E-05 43	2	.1692E-05 .1684E-05	.6434E-01 33 37 .6438E-01 33 37	.4808E-02 .4781E-02	374 375	9 B	40 40	2	38 38	26 26
113	8346E-05 43	ž	.1677E-05	.6441E-01 33 37	.4755E-02	375	Ď	40	2	38	26
114 115	8217E-05 43 8090E-05 43	2	.1670E-05 .1663E-05	.6444E-01 33 37 .6448E-01 33 37	.4729E-02 .4703E-02	375 375	0	40 40	2 2 2	38 38	26 26
116	7964E-05 43	2	.1655E~05	.6451E-01 33 37	.4677E-02	375	ŏ	40	2	38	26
117	7839E-05 43	2	.1648E-05	.6453E-01 33 37	.4652E-02	375	0	40	2	38	26
118 119	7716E-05 43 7594E-05 43	2	.1641E-05 .1633E-05	.6456E-01 33 37 .6459E-01 33 37	.4626E-02 .4601E-02	375 375	0 0	40 40	2	38 38	26 26
120	7474E-05 43	Ž	.1626E-05	.6462E-01 33 37	.4576E-02	375	Ŏ	40	2 2	38	26 26
121 122	7355E-05 43 7237E-05 43	2	.1618E-05 .1611E-05	.6464E-01 33 37 .6467E-01 33 37	.4551E-02 .4526E-02	375 375	0 0	40 40	2	38 38	26
123	7121E-05 43	2	.1603E-05	.6470E-01 33 37	.4502E-02	375	Ō	40	2 2	38	26 26
124	7007E-05 43	2	.1596E-05	.6472E-01 33 37	.4478E-02	375	0	40	2	38	26
125 126	6894E-05 43 6783E-05 43	2	.1588E-05 .1581E-05	.6474E-01 33 37 .6477E-01 33 37	.4454E-02 .4430E-02	375 375	0	40 40	2 2	38 38	26 26
127	6674E-05 43	2	.1573E-05	.6479E-01 33 37	.4406E-02	375	Ŏ	40	2	38	26
128 129	6566E-05 43 6460E-05 43	2	.1566E-05 .1558E-05	.6481E-01 33 37 .6484E-01 33 37	.4382E-02 .4359E-02	375 375	0	40 40	2 2	38 38	26 26
130	6355E-05 43	2	.1550E-05	.6486E-01 33 37	.4336E-02	375 375	Ó	40	2	38	26
131	6252E-05 43	2	.1543E-05	.6488E-01 33 37	.4313E-02	375	0	40	2	38	26 26
132 133	6149E-05 43 6048E-05 43	2	.1534E-05 .1527E-05	.6490E-01 33 37 .6492E-01 33 37	.4289E-02 .4266E-02	374 374	0	40 40	2 2	- 38 - 38	26 26
134	5949E-05 43	2	.1519E-05	.6495E-01 33 37	.4243E-02	374	Ō	40	2	38	26 26
135 136	5852E-05 43 5756E-05 43	2	.1511E-05 .1504E-05	.6497E-01 33 37 .6499E-01 33 37	.4221E-02 .4199E-02	374 374	0	40 40	2	38 38	26 26
137	5663E-05 43	2	.1496E-05	.6501E-01 33 37	.4176E-02	374	Õ	40 40	2	38	26 26
138 139	5570E-05 43 5480E-05 43	2	.1488E-05	.6503E-01 33 37	.4154E-02	374	0	40	.2	38	26 26
140	5480E-05 43 5391E-05 43	2	.1481E-05 .1473E-05	.6505E-01 33 37 .6507E-01 33 37	.4132E-02 .4111E-02	374 374	0	40 40	2	38 38	26
141	5304E-05 43	2	.1466E-05	.6509E-01 33 37	.4089E-02	374	0	40	2	38	26
142 143	5219E-05 43 5135E-05 43	2	.1458E-05 .1450E-05	.6511E-01 33 37 .6514E-01 33 37	.4067E-02 .4046E-02	374 374	0 8	40 40	2	38 38	26 26
144	5052E-05 43	2	.1443E-05	.6516E-01 33 37	.4024E-02	374	Ō	40	2 2 2	38	26 26 26
145 146	4971E-05 43 4892E-05 43	2	.1435E-05 .1427E-05	.6518E-01 33 37 .6520E-01 33 37	.4003E-02 .3982E-02	374 374	0 0	40 40	2 2	38 38	26 26
147	4814E-05 43	2	.1420E-05	.6522E-01 33 37	.3961E-02	374	Ŏ	40	2	38	26
148 149	4738E-05 43 4663E-05 43	2	.1412E-05	.6524E-01 33 37	.3940E-02	374	0	40	2	38	26
150	4589E-05 43	2	.1404E-05 .1397E-05	.6526E-01 33 37 .6528E-01 33 37	.3919E-02 .3899E-02	374 374	U 8	40 48	2	38 38	26 26
151	4517E-05 43	2	.1389E-05	.6530E-01 33 37	.3878E-02	374	Ō	40	2	38	26
152 153	4446E-05 43 4376E-05 43	2	.1382E-05 .1374E-05	.6533E-01 33 37 .6535E-01 33 37	.3858E-02 .3837E-02	374 374	0 0	40 40	2 2	38 38	26 26
154	4308E-05 43	ž	.1366E-05	.6537E-01 33 37	.3817E-02	374	Õ	40	2	38	26
155 156	4241E-05 43 4176E-05 43	2	.1359E-05 .1351E-05	.6539E-01 33 37 .6541E-01 33 37	.3797E-02	374	0	40 40	2 2	38	26
157	4111E-05 43	2	.1344E-05	.6541E-01 33 37 .6543E-01 33 37	.3777E-02 .3757E-02	374 374	. 0	40	2	38 38	26 26
158	4048E-05 43	2	.1336E-05	.6546E-01 33 37	.3737E-02	374	Ö	40	2	38	26
159 160	~.3986E-05 43 ~.3925E-05 43	2	.1329E-05 .1321E-05	.6548E-01 33 37 .6550E-01 33 37	.3718E-02 .3698E-02	374 374	0	40 40	2 2	38 38	26 26
161	3925E-05 43 3865E-05 43	Ž	.1314E-05	.6552E-01 33 37	.3679E-02	374	ŏ	40	2	38	26

1902538E-05 43 2 .1106E-05 .6623E-01 33 37 .3160E-02 374 0 40 2 38 26 1922470E-05 43 2 .1093E-05 .6623E-01 33 37 .314E-02 374 0 40 2 38 26 1932437E-05 43 2 .1093E-05 .6623E-01 33 37 .3127E-02 374 0 40 2 38 26 1942404E-05 43 2 .1079E-05 .6633E-01 33 37 .311E-02 374 0 40 2 38 26 1942404E-05 43 2 .1079E-05 .6633E-01 33 37 .3095E-02 374 0 40 2 38 26 1952372E-05 43 2 .1079E-05 .6635E-01 33 37 .3095E-02 374 0 40 2 38 26 1962341E-05 43 2 .1079E-05 .6635E-01 33 37 .3095E-02 374 0 40 2 38 26 1962341E-05 43 2 .1059E-05 .6653E-01 33 37 .3095E-02 374 0 40 2 38 26 1972310E-05 43 2 .1059E-05 .6665E-01 33 37 .3063E-02 374 0 40 2 38 26 1982279E-05 43 2 .1059E-05 .6665E-01 33 37 .3063E-02 374 0 40 2 38 26 1982279E-05 43 2 .1053E-05 .6665E-01 33 37 .303E-02 374 0 40 2 38 26 1992250E-05 43 2 .1046E-05 .6665E-01 33 37 .303E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1046E-05 .6665E-01 33 37 .303E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1046E-05 .6665E-01 33 37 .3016E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1046E-05 .6665E-01 33 37 .3010E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1046E-05 .6665E-01 33 37 .2986E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1046E-05 .6665E-01 33 37 .2986E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1027E-05 .6651E-01 33 37 .2986E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1027E-05 .6651E-01 33 37 .2956E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1027E-05 .6651E-01 33 37 .2956E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1002E-05 .6661E-01 33 37 .2956E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1002E-05 .6661E-01 33 37 .2956E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1002E-05 .6661E-01 33 37 .2956E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1002E-05 .6661E-01 33 37 .2250E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .1002E-05 .6661E-01 33 37 .2250E-02 374 0 40 2 38 26 20 2 .2260E-05 43 2 .9353E-06 .6661E-01 33 37 .2250E-02 374 0 40 2 38 26 20 2 .1002E-05 43 2 .9353E-06 .6661E-01 33 37 .2250E-02 374 0 40 2 38 26 20 2 .1002E-05 43 2 .9353E-06 .6661E-01 33 37 .2250E-02 374 0 40 2 3	1664 1666 1666 1666 1777 1777 1777 1777	3806E-05	.1306E-05 .1291E-05 .1291E-05 .1284E-05 .1284E-05 .1269E-05 .1269E-05 .1264E-05 .1240E-05 .1240E-05 .1218E-05 .1218E-05 .1218E-05 .1218E-05 .1218E-05 .1189E-05 .1189E-05 .1189E-05 .1189E-05 .1189E-05 .1189E-05 .1189E-05	.6555E-01 33 37 .6557E-01 33 37 .6559E-01 33 37 .6562E-01 33 37 .6564E-01 33 37 .6566E-01 33 37 .6571E-01 33 37 .6573E-01 33 37 .6573E-01 33 37 .6576E-01 33 37 .6580E-01 33 37 .6580E-01 33 37 .6580E-01 33 37 .6588E-01 33 37 .6588E-01 33 37 .6598E-01 33 37 .6598E-01 33 37 .6598E-01 33 37 .6698E-01 33 37 .6698E-01 33 37 .6698E-01 33 37 .6698E-01 33 37 .6698E-01 33 37 .6698E-01 33 37 .6698E-01 33 37 .6698E-01 33 37 .6698E-01 33 37	.3659E-02 .3640E-02 .3640E-02 .3621E-02 .3602E-02 .3564E-02 .35545E-02 .35545E-02 .3545E-02 .3473E-02 .3473E-02 .3473E-02 .3473E-02 .3479E-02 .3384E-02 .3384E-02 .3319E-02 .329E-02 .3219E-02 .3219E-02 .3219E-02	374 3774 3774 3774 3774 3774 3774 3774	000000000000000000000000000000000000000	00000000000000000000000000000000000000	22222222222222222222222222222	33888888888888888888888888888888888888	66666666666666666666666666666666666666
182283F-05 43	168 169 170	3476E-05 43 2 3425E-05 43 2 3375E-05 43 2	.1262E-05 .1254E-05 .1247E-05	.6569E-01 33 37 .6571E-01 33 37 .6573E-01 33 37	.3545E-02 .3527E-02 .3508E-02	374 374 374	0	40 40	2 2	38 38 38	26 26 26
182283F-05 43	172	325E-05 43 2 3276E-05 43 2 3229E-05 43 2	.1233E-05	.6578E-01 33 37	.3471E-02	374	Ō	40	2 2	38	26
182283F-05 43	175	3182E-05 43 2 3136E-05 43 2	.1211E-05	.6585E-01 33 37	.3417E-02	374	Ŏ	40	2	38	26
182283F-05 43	177	3046E-05 43 2 3045E-05 43 2	.1197E-05	.6590E-01 33 37	.3382E-02	374	Ŏ	40	2 2	38	26 26
182283F-05 43	179 180	2960E-05 43 2 2918E-05 43 2	.1182E-05 .1175E-05	.6595E-01 33 37 .6598E-01 33 37	.3346E-02 .3329E-02	374 374	0	40	2 2	38 38	26 26
198	182	2877E-05 43 2 2837E-05 43 2	.1161E-05	.6603E-01 33 37	.3294E-02	374	Ŏ	40	2	38	26
198	184 185	2758E-05 43 2 2720E-05 43 2	.1147E-05	.6608E-01 33 37 .6610E-01 33 37	.3260E-02 .3243E-02	374 374	Ö	40 40	2 2	38 38	26 26
198	187	2682E-05 43 2 2645E-05 43 2	.1126E-05	.6615E-01 33 37	.3210E-02	374	Ŏ	40	2 2	38	26
198	189	2573E-05 43 2 2538E-05 43 2	.1113E-05	.6620E-01 33 37	.3176E-02	374	Ō	40	2 2	38	. 26
198	192	2504E-05 43 2 2470E-05 43 2	.1093E-05	.6625E-01 33 37 .6628E-01 33 37	.3127E-02	374	Ō	40	2 2	38	26
198	194	243/E-05 43 2 2404E-05 43 2 2372F-05 43 2	.1079E-05	.6633E-01 33 37	.3095E-02	374	Ŏ	40	2 2	38	26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	196 197	2341E-05 43 2 2310E-05 43 2	.1066E-05 .1059E-05	.6638E-01 33 37 .6640E-01 33 37	.3063E-02 .3048E-02	374 374	0	40 40	2 2	38 38	26 26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	199	2279E-05 43 2 2250E-05 43 2	.1046E-05	.6645E-01 33 37	.3016E-02	374	Ŏ	40	2	38	26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	201 202	2191E-05 43 2 2163E-05 43 2	.1034E-05 .1027E-05	.6651E-01 33 37 .6653E-01 33 37	.2986E-02	374 374	Ō	40	2 2	38	26 26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	204	2135E-05 43 2 2108E-05 43 2	.1014E-05	.6658E-01 33 37	.2940E-02	374	Ō	40	2 2	38	26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	206	2054E-05 43 2 2028E-05 43 2	.1002E-05	.6663E-01 33 37	.2910E-02	374	Ŏ	40	2 2	38	26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	209	2003E-05 43 2 1977E-05 43 2	.9834E-06	.6668E-01 33 37 .6671E-01 33 37	.2880E-02 .2866E-02	374	Ŏ	40	2	38 38	26 26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	211	1958E-05 43 2 1928E-05 43 2 1904E-05 43 2	.9713E-06	.6676E- 0 1 33 37	.2837E-02	374	Õ	4Õ	2 2 2	38	26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	213 214	1881E-05 43 2 1857E-05 43 2	.9593E-06 .9533E-06	.6681E-01 33 37 .6683E-01 33 37	.2808E-02 .2794E-02	374 374	Ŏ	40 40	2	38 38	26 26
2181768E-05 43 2 .9299E-06 .6693E-01 33 37 .2738E-02 374 0 40 2 38 26 2191747E-05 43 2 .9241E-06 .6696E-01 33 37 .2724E-02 374 0 40 2 38 26 2201726E-05 43 2 .9184E-06 .6698E-01 33 37 .2710E-02 374 0 40 2 38 26	216	1835E-05 43 2 1812E-05 43 2 1790E-05 43 2	.9415E-06	.ú688E-01 33 37	.2766E-02	374	ŏ	40	2 2 2	38	26
	218 219	1768E-05 43 2 1747E-05 43 2	.9299E-06 .9241E-06	.6693E-01 33 37 .6696E-01 33 37	.2738E-02 .2724E-02	374 374	8	40 40	2 2	38 38	26 26
	220 221		.9184E-06 .9127E-06				•		2 2		

223 2224 2224 2226 2227 2232 2334 2233 2335 2337 244 2445 2445 2445 2446 2447 2448 2448 2448 2448 2448 2448 2448	1685E-05 1665E-05 1645E-05 1645E-05 1567E-05 1551E-05 1551E-05 1516E-05 1516E-05 1481E-05 1448E-05 1448E-05 1448E-05 1448E-05 1415E-05 1358E-05 1338E-05 1338E-05 1338E-05 1304E-05 1292E-05 1292E-05 1294E-05	333333333333333333333333388888888888888	222222222222222222222222222222	.9070E-06 .9014E-06 .8952E-06 .8952E-06 .8892E-06 .87384E-06 .87384E-06 .8630E-06 .8573E-06 .8573E-06 .8541E-06 .8541E-06 .8541E-06 .83162E-06 .8162E-06 .8162E-06 .8162E-06 .8162E-06 .8162E-06 .8162E-06 .8162E-06 .8173E-06	.6703E-01 .6705E-01 .6705E-01 .6708E-01 .6713E-01 .6715E-01 .6715E-01 .6722E-01 .6722E-01 .6724E-01 .6729E-01 .6734E-01 .6736E-01 .6736E-01 .6745E-01 .6745E-01 .6745E-01 .6756E-01 .6756E-01 .6768E-01	33 33 33 33 33 33 33 33 33 33 33 33 33	37 37 37 37 37 37 37 37 37 37 37 37 37 3	.2683E-02 .2670E-02 .2670E-02 .2656E-02 .2637E-02 .2637E-02 .2591E-02 .2591E-02 .2578E-02 .2552E-02 .2552FE-02 .2540E-02 .2540E-02 .2478E-02 .2478E-02 .2478E-02 .2478E-02 .2478E-02 .2478E-02 .2478E-02 .2453E-02 .2453E-02 .2453E-02 .2371E-02 .2384E-02 .2359E-02 .2359E-02	374 3774 3774 3774 3774 3774 3774 3774	800000000000000000000000000000000000000	40000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	38888888888888888888888888888888888888	26 26 26 26 26 26 26 26 26 26 26 26 26 2
ITER	DELMX	I	J	DELAVG	RESMX	I	J	RESAVG	KSUP	NPVD	JSHMAX	ISHMAX	JSHMIN	ISHMIN

	-7/-4	-6/-3	-5/-2	-4/-1	-3/ 0	-2/ 1
0 1	Ī	Ī	Ī	<u>I</u>	* <u>I</u> +	Ī
2 3	I I	I I	Ī	I× ;	+ + <u>I</u>	Ĭ
4	Ĭ	Ī	Ţ	* I * I	† I	Ĭ
5 6 7	Ì	Ì	Ì	ž į	į į	Ī
	I I	I I	Ī	* I * I	+ I + I	I
9	į	į	į	×į	Ţ	Ī
10 11	Ĭ	Ţ	Ī	* 1 +	Ī	İ
12	Į T	I T	I T	* I +	Ţ	Į
14	į	į	į		į	į
15 16	Ī	Ī	Ï	* I +	I	Ī
17	Ĭ	Ţ	Ţ	* I + * * * * * * * * * * * * * * * * *	Ţ	Ţ
19	į	į	<u> <u> </u></u>	× 1 +	Ĭ	į
20 21	I I	Ī	I ,	* I + I +	Ī	Ĭ
22	Į	Ī	I ;	(I +	I T	Ţ
24	Ī	Ĭ	Ĭ.	€ Ī+	Ī	Ī
25 26	I T	Ī	I ;		I T	I
27	į	į	I ,		Ī	į
28 29	Ī	Ĭ	I * I * I *	+	Ĭ	Ì
30 31	Ţ	Ţ	I ×	+ +	I	Ţ
32	į	į	I * I *	•	Ī	į
33 34	I I	Ĭ	I *	+ +I	Ĭ	İ
35	Ī	Ī	I ×	+Ï +T	Ĭ	Ţ
37	Ī	į	I *	+I +I +I +I +I	į	į
38 39	Ī	Ī	I ×	+1 +1 + 1	Ī	İ
40	Ţ	Ţ	I *	+ I	Ī	Ţ
42	İ	Ĭ	I *	+ I	İ	İ
43 44	Ĭ	I T	I ×	+ I + T	I	Ī
45	į	į	I *	+ Ī	į	į
46 47	Ĭ	Ĭ	I *	+ I	Ĭ	Ī
48 49	Ţ	Ţ	I *	+ I + T	Ţ	Ţ
<u>Š</u> Ó	<u> </u>	<u>-</u>	I*	<u>-</u>	<u>İ</u>	<u>1</u>
89012345678900123456789012345678901200000000000000000000000000000000000	I	Ī	I *	+Ī +Ī	I I	I
			_	**		_

58 59 601 623 645 667 68 69 701 773 775 776 778 801 82	I I I I I I I I I I I I I I I I I I I	I I I I I I I I I I I I I I I I I I I	+		
101 102 103 104 105 106 107 108 109 110 111	I I	× × I I I	+ I + I + I + I + I + I + I + I + I	I I I I I I I I I I I I	

							•
144	113	Ĭ	I *	I +	I	I I	I
- -	114 115	I	I * * * * * * * * * * * * * * * * * * *	Ĭ +	Į	ļ	
	116	Ī	<u>İ</u>	<u>i</u> ;	İ	i i	
	117 118	<u> </u>	I *	I +	Ĭ	Ţ	
	119	Ī	Ī *	<u>Ī</u>	Ī	Ī	
	120	İ	I ×	I + I + I + I + I + I + I + I + I + I +	Ĭ	I I	<u>.</u>
	122	Į	I *	Į +	Ĩ	Į	
	124	Ī	i ä	İ	·i	Ī	
	125 126	I I	I	I +	Į	I :	
	127	į	Ī ×	Ĭ +	į	İ	
	128 129	İ	I * I * I * I * I * I * I * I * I * I *	I + +	I	I I	<u>.</u>
	130	Ţ	I * I * I * I * I *	Ĭ +	į	į	
	132	İ	I X I X	I + +	Ī	Ī	
	133 134	Ţ	I *	I + + +		Ţ	·
	135	Ī	<u>İ</u>	į į	İ	İ	
	136 137	I	I *	I +	I I	I :	
	138	Ī	I * I * I * I * I * I * I *	Ī + + + + + + + + + + + + + + + + + + +	į	Ī	
	140	İ	I *	İ ;	1	I	
	141 142	I	I X	Į ;	Į,	Ţ	
	143	Ī	<u>i</u>	<u>i</u>	İ	I I	
	199 145	Ĭ	I * I * I * I * I *	+ + + + + + + + + + + + + + + + + + +	I I I I I I I I I I	I	
	146	Ī	Ī *	Ī +		Ī	
	148	İ	I *	i i	I I	Ī	<u>I</u>
	149 150	I 	I *	I +	<u> </u>	I	
	151	Ī	<u>i</u>	<u>i</u> +	i	İ	
	152 153	I I	I * I * I * I * I * I * I * I * I * I *	I + + +	I I I	I	<u> </u>
	154 155	Ţ	I × I × I ×	I + + +	į	Ī	
	156	İ	Ī ×	i i	İ	Ī	
	157 158	I	I *	I +	Ţ	Ţ	
	159	I I I	I * I * I *	1 + + + + + + + + + + + + + + + + + + +	I I I	Ī	Ī
	161	Ī	I *	I +	Ī	I	I I
	162 163	Ţ		Ĭ +	į	Ī	Ţ
	164	į	į ŝ	İ +	İ	İ	I I
	166	I I I	I X I X	1 +	Ţ	I I	I T
	167	Ĭ I	I * I * I * I *		į	į	
	169	İ	I *	i †	Ī	Ï	1 I
	113 114 115 117 118 119 120 1223 1245 127 128 130 131 132 133 134 135 137 138 139 140 141 143 144 147 148 149 150 151 151 151 152 153 154 157 158 169 161 162 163 164 165 166 167 168 169 170 170 170 170 170 170 170 170 170 170	I I I	I		I I I I I I I I I I	I I I	I T
	172	Ī	I *	i i	İ	i	I I I

173	
174	
175	
176	
1/6	I
177	I
178	
179	I I
180 I I * I + I 181 I * I + I 182 I * I + I	i i
180 1	1 1
181 I I * I + I 182 I I * I + I	
182 T T * T + T	I I
	T T
183 1 1 * 1 + 1	
184 I I * I + I 185 I I * I + I	1
185 I I * I + I	I
186 I I + I	Ť
187 I * I + I 188 I	
188 I I * I + I	I
189 I I * I + I 190 I I * I + I	T T
190 1 1 * 1 + 1	÷ ;
	± ±
191 I	1
192 I I * I + I	I
187 I I * I + I 188 I I * I + I 189 I I * I + I 190 I I * I + I 191 I I * I + I 192 I I * I + I 193 I I * I + I 194 I I * I + I 195 I I * I + I 196 I I * I + I 197 I I * I + I 198 I I * I + I 199 I I * I + I 200 I	
194 1 1 2 1 + 1	÷ ÷
194 I I * I + I 195 I I * I + I	<u> </u>
195 I I * I + I	I
196 I × I + I	T T
197 I I × I + I	7
196 I	I I
198 I I × I + I	I I
198 I I * I + I 199 I I * I + I	I Ī
200 ĪĪXĪĪĪ	· T T
	÷
201	
202 I I * I + I 203 I I * I + I	I I
203 I I * I + I	ז
204 1 1 * 1 + 1	Ŧ Ŧ
	<u> </u>
205 I I * I + I	1 1
206 I I * I + I	I I
206 I I * I + I 207 I I * I + I	Ī
208 1 1 2 + 1	÷ ;
206 1 7 1 7 1	± ±
208 I I * I + I 209 I I * I + I	I . I
210 I I * I + I	I
	Ŧ Ŧ
	± ±
212 1 1 * 1 + 1	1 1
213 I I * I + I	I I
214 1 1 * 1 + 1	T T
201	
	± ±.
216 1 1 * 1 + 1	1
217 Î Î * Î + Î	I I
218 Î Î * Î + Î	T Ť
219 I I * I + I 220 I I * I + I	<u>i</u> 1
220 I I * I + I 221 I I * I + I	I . I
221 I I * I + I	I
222 1 1 4 1	÷
217 I I * I + I 218 I I * I + I 219 I I * I + I 220 I I * I + I 221 I I * I + I 222 I I * I + I 223 I I * I + I	
223 <u>I</u> I * Î + Î	1
224 I I * I + I	I
225 Î Î X Î + Î	Ť . Ť
225	÷ ÷
750 T T T T T T T T T T T T T T T T T T T	Ī.
227 I I * I + I	I
228' Ī Ī X Ī + Ī	
229 Î Î X Î + Î	Ŧ †
	÷
230 I I * I + I	1 I
231 I I × I + I	I I
224	
• • • • • • • • • • • • • • • • • • • •	- .

71	233	Ţ	T *	Ī	+ I	I	J
6	234	Ť	Ť ¥	Ŧ	+ Ī	Ĭ	Ĭ
_	235	Ť	Ť ¥	Ť	+ Ī	Ĭ	Ĩ
	236	Ť	Ť¥	Ŧ	+ Ī	Ī	j
	237	Ť	ŤŸ	Ŧ	+ Ŧ	Ť	Ī
	238	î	Ť ¥	Ī	.+ Ĭ	Ī	Ī
	239	Ť	Ī¥	Ī	+ Ĭ	Ĩ	Ĭ
	240	Ŧ	T X	Ī	+ Ī	Ï	Ī
	241	ī	Ī×	Ī	+ Ī	Ī	Ĭ
	242	ī	Ī×	Ī	+ Ī	Ī	Ī
	243	Ĭ	Ī×	Ī	+ Ī·	Ĭ	Ī
	244	Ī	Ī×	Ī	+ Ī	Ī	J
	245	Ī	Ĩ×	Ī	+ Ī	Ĩ	J
	246	Ī	Ī×	Ī	+ Ī	Ī	Ī
	247	Í	Ι×	Ī	+ I	I	I
	248	Ī	Ι×	Ī	+ Ī	Ĭ	I
	233 2335 2337 2338 2441 2444 2444 2444 2444 2444 2444 244	Ī	Ϊ×	Ī	+ I	I	1
	250	Ī	I-*	I		I]

I	J	RHO	THE	F	U	V	MC	M	СР
2	2	.33265E+00	15708E+01	83326E-01	.12312E-14	88818E-14	.13803E-13	.13728E+01	.23372E+00
	2	.32955E+00	15147E+01	84226E-01	15316E-01	.26164E-02	.23918E-01	.13726E+01 .13719E+01	.23394E+00
4	2	.32632E+00 .32287E+00	14586E+01 14025E+01	84626E-01 84604E-01	33470E-01 51959E-01	.60958E-02 .10012E-01	.52362E-01 .81423E-01	.13717E+01	.23469E+00 .23599E+00
5 6	2	.31934E+00	13464E+01	84104E-01	70185E-01	.13476E-01	.10993E+00	.13690E+01	.23784E+00
7		.31599E+00	12903E+01	83027E-01	88265E-01	.15503E-01	.13779E+00	.13669E+01	.24019E+00
8	2	.31311E+00	12342E+01	81301E-01	10664E+00	.15357E-01	.16558E+00	.13644E+01	.24287E+00
9	2 2 2	.31093E+00	11781E+01	78920E-01	12595E+00	.12755E-01	.19447E+00	.13620E+01	.24553E+00
10	ž	.30958E+00	11220E+01	75969E-01	14627E+00	.85884E-02	.22498E+00	.13598E+01	.24790E+00
11	2	.30889E+00	10659E+01	72629E-01	16706E+00	.39272E-02	.25648E+00	.13580E+01	.24996E+00
12	2	.30876E+00	10098E+01	69033E-01	18780E+00	12965E-02	.28816E+00	.13564E+01	.25175E+00
13	2	.30913E+00	95370E+00	65287E-01	20838E+00	69176E-82	.31984E+00	.13551E+01	.25314E+00
14	2	.30992E+00	89760E+00	61496E-01	22870E+00	12438E-01	.35128E+00	.13542E+01	.25410E+00
15	2	.31102E+00	84150E+00	57751E-01	24848E+00	17384E-01	.38200E+00	.13537E+01	.25465E+00
16	2	.31236E+00	78540E+00	54124E-01	26709E+00	20853E-01	.41081E+00	.13532E+01	.25522E+00
17 18	2	.31376E+00 .31513E+00	72930E+00 67320E+00	50663E-01 47368E-01	28334E+00 29612E+00	22340E-01 22359E-01	.43572E+00 .45500E+00	.13519E+01 .13490E+01	.25667E+00 .25986E+00
19	2	.31513E+00	61710E+00	44221E-01	30493E+00	21634E-01	.46792E+00	.13442E+01	.26527E+00
ŽÓ	2	.31765E+00	56100E+00	41203E-01	30966E+00	20938E-01	.47443E+00	.13373E+01	.27297E+00
21	5	.31884E+00	50490E+08	38304E-01	31026E+00	20796E-01	.47450E+00	.13285E+01	.28303E+00
22	2	.32005E+00	44880E+00	35523E-01	30715E+00	22836E-01	.46904E+00	.13181E+01	.29490E+00
23	Ž	.32151E+00	39270E+00	32872E-01	30277E+00	29510E-01	.46237E+00	.13082E+01	.30626E+00
24	2	.32357E+00	33660E+00	30420E-01	29893E+00	38866E-01	.45747E+00	.13002E+01	.31558E+00
25	2	.32623E+00	28050E+00	28260E-01	29373E+00	47416E-01	.45084E+00	.12925E+01	.32471E+00
26	2	.32948E+00	22440E+00	26434E-01	28124E+00	53512E-01	.43281E+00	.12807E+01	.33861E+00
27	2	.33327E+00	16830E+00	24951E-01	24830E+00	52778E-01	.38205E+00	.12572E+01	.36703E+00
28	2	.33743E+00	11220E+00	23796E-01	15148E+00	29818E-01	.23018E+00	.12074E+01	.42908E+00
29	2	.34073E+00	56100E-01	22981E-01	.13615E+00	.22571E-01	.20554E+00	.12015E+01	.43659E+00
30	2	.34375E+00	71054E-14	22490E-01	.59397E+00	.10439E+00	.97607E+00	.16156E+01	.35330E-02
31	2	.34751E+00	.56100E-01	21824E-01	.78460E+00	.10611E+00	.13813E+01	.19602E+01	22031E+00
32 33	2	.34902E+00 .34990E+00	.11220E+00 .16830E+00	20610E-01 18863E-01	.87056E+00 .88246E+00	.53309E-01 .36345E-01	.15905E+01 .16253E+01	.21590E+01 .21997E+01	30667E+00 32134E+00
34	2	.35064E+00	.22440E+00	16618E-01	.87762E+00	.31600E-01	.16168E+01	.22015E+01	32134E+00
35	5	.35132E+00	.28050E+00	13868E-01	.87158E+00	.27986E-01	.16063E+01	.22039E+01	32280E+00
36	2	.35191E+00	.33660E+00	10572E-01	.86529E+00	.22086E-01	.15962E+01	.22091E+01	32460E+00
37		.35233E+00	.39270E+00	67184E-02	.85253E+00	.16727E-01	.15697E+01	.22013E+01	32190E+00
38	2 2 2	.35268E+00	.44880E+00	~.24226E-02	.83077E+00	.19954E-01	.15209E+01	.21750E+01	31256E+00
39	2	.35328E+00	.50490E+00·	.21818E-02	.80450E+00	.28822E-01	.14628E+01	.21429E+01	30061E+00
40	2	.35410E+00	.56100E+00	.70410E-02	.77724E+00	.36065E-01	.14045E+01	.21135E+01	28914E+00
41	2	.35512E+00	.61710E+00	.12125E-01	.74969E+00	.41084E-01	.13477E+01	.20881E+01	27883E+00
42	2	.35629E+00	.67320E+00	.17411E-01	.72161E+00	.43656E-01	.12912E+01	.20659E+01	26944E+00
43 44	2	.35754E+00 .35882E+00	.72930E+00 .78540E+00	.22869E-01 .28306E-01	.68880E+00 .62895E+00	.43467E-01	.12251E+01 .11006E+01	.20382E+01	25732E+00
45	2	.35996E+00	.84150E+00	.32649E-01	.58115E+00	.37839E-01 .28924E-01	.11006E+01	.19659E+01 .19217E+01	22318E+00 20035E+00
46	2	.36083E+00	.89760E+00	.37417E-01	.55930E+00	.18416E-01	.96845E+00	.19238E+01	20148E+00
47	2	.36129E+00	.95370E+00	.42367E-01	.52792E+00	.55389E-02	.91169E+00	.19140E+01	19628E+00
48	ž	.36125E+00	.10098E+01	.47354E-01	.49006E+00	82709E-02	.84349E+00	.18985E+01	18780E+00
49	-	.36061E+00	.10659E+01	.52272E-01	.44748E+00	21473E-01	.76791E+00	.18805E+01	17776E+00
50	2	.35931E+00	.11220E+01	.57053E-01	.40052E+00	34070E-01	.68613E+00	.18614E+01	16683E+00
51	2	.35718E+00	.11781E+01	.61635E-01	.34814E+00	44620E-01	.59643E+00	.18410E+01	15479E+00
52	2	.35417E+00	.12342E+01	.65890E-01	.29177E+00	49003E-01	.50057E+00	.18211E+01	14270E+00
53	2	.35051E+00	.12903E+01	.69684E-01	.23530E+00	46058E-01	.40422E+00	.18047E+01	13252E+00
54	2	.34648E+00	.13464E+01	.72940E-01	.18155E+00	37870E-01	.31188E+00	.17932E+01	12522E+00
55	2	.34240E+00	.14025E+01	.75630E-01	.13156E+00	27211E-01	.22557E+00	.17862E+01	12069E+00
56	2	.33853E+00	.14586E+01	.77767E-01	.85121E-01	16596E-01	.14549E+00	.17824E+01	11825E+00
· 57 58	2	.33500E+00 .33162E+00	.15147E+01 .15708E+01	.79406E-01	.41361E-01	76065E-02	.70529E-01	.17808E+01	11716E+00
20	۴.	.331025700	.197005701	.80668E-01	.11382E-13	.26645E-14	.19603E-13	.17803E+01	11687E+00

1	XAMXXX	Y/XMAX	PSI	OMEG	CP	MC	U	V	M	BETA	vs.	WS	UC	VC	MC	DELT
2 3	0000 .0523	0218 0131	.81 2.01	-90.00 -14.06	.2337 .2339	.0000 .0239	.8918 .8916	0000 0000	.0000 0155	-1.00	-66.36	159.30 .01	.0000 .0150	0126 0102	.8917 .8915	0.0 -66.3
4	.1046	0041	3.89	-2.27 1.95	.2347 .2360	.0524 .0814	.8907 .8892	0000 0000	0340 0529	-2.19 -3.41	-77.72 -81.61	.04 .05	.0269 .0383	0083 0065	.8909 .8900	-77.6 -81.5
6	.1568 .2088	.0053 .0149	5.82 7.74	4.07	.2378	.1099	.8871	0000	0715	-4.61	-84.12	.08	.0494	0039	.8886	-84.0
7	.2605	.0236	9.64	5.17 5.60	.2402	.1378	.8844 .8813	0000 0000	0896 1077	-5.79 -6.97	-86.57 -89.27	.12 .18	.0602 .0699	0001 .0051	.8869 .8850	-86.4 -89.0
9	.3118 .3625	.0306 .0352	11.50' 13.31	5.54	.2429 .2455	.1656 .1945	.8776	0000	1266	-8.21	-92.20	.29	.0781	.0118	.8831	-91.9
10	.4126	.0371	15.06	5.13	. 2479	.2250	.8734	0000	1465	-9.52	-94.23	15	.0845	.0188	.8814	-94.3
11 12	.4617 .5097	.0368 .0347	16.74 18.35	4.55 3.90	.2500 .2517	.2565 .2882	.8688 .8638	0000 0000	1671 1878	-10.89 -12.27	-95.59 -97.15	63 54	.0894 .0934	.0253 .0315	.8799 .8785	-96.2 -97.6
13	.5565	.0312	19.98	3.21	.2531	.3198	.8584	0000	2085	-13.65	-98.23	59	.0965	.0374	.8773	-98.8
14 15	.6019 .6458	.0265 .0212	21.37 22.76	2.52 1.88	.2541 .2547	.3513 .3820	.8527 .8469	0000 0000	2290 2491	-15.03 -16.39	-98.92 -99.26	69 79	.0986 .1000	.0426 .0467	.8764 .8758	-99.6 -180.0
16	.6879	.0154	24.07	1.28	. 2552	.4108	.8408	0000	2679	-17.67	-99.17	86	.1011	.0490	.8753	-100.0
17	.7281	.0098	25.31	.77	.2567	.4357	.8348	0000	2842	-18.80	-98.72	91	.1029	.0490	.8745	-99.6
18 19	.7662 .8021	.0045 0004	26.45 27.51	.33 03	.2599 .2653	.4550 .4679	.8289 .8232	0000 0000	2970 3057	-19.71 -20.37	-98.11 -97.49	94 95	.1064 .1122	.0473	.8727 .8698	-99.0 -98.4
20	.8356	0047	28.49	32	.2730	.4744	.8180	0000	3104	-20.78	-96.98	96	.1202	.0422	.8655	-97.9
21	.8664	0086 0121	29.36 30.15	57 78	.2830 .2949	.4745 .4690	.8132 .8089	0000 0000	3110 3080	-20.93 -20.85	-96.63 -96.63	98 -1.06	.1305 .1429	.0399 .0392	.8598 .8528	-97.6 -97.6
22 23	.8944 .9193	0155	30.84	96	.3063	.4624	.8052	0000	3042	-20.70	-97.22	-1.26	.1552	.0422	.8456	-98.4
24	.9410	0188	31.43	-1.14	.3156	.4575	.8020	0000	3014	-20.60	-97.84	-1.46	.1654	.0454	.8395	-99.3
25 26	. 9594 . 9745	0218 0241	31.93 32.33	-1.30 -1.42	. 3247 . 3386	.4508 .4328	.7994 .7973	0000 0000	2975 2863	-20.42 -19.75	-97.62 -95.78	-1.61 -1.79	.1746 .1875	.0438 .0331	.8337 .8255	-99.2 -97.5
27	.9861	0254	32.64	-1.47	.3670	.3820	.7958	0000	2539	-17.69	-90.83	-1.74	.2159	.0058	.8069	-92.5
28 29	.9944 .9990	0253 0236	32.86 32.98	-1.46 -1.35	.4291 .4366	.2302 .2055	.7950 .7949	0000 .0000	1544 .1380	~10.99 9.85	-80.53 -37.18	2.36 -6.50	.3035 .5149	0394 .0877	.7498 .6149	-78.1 -43.6
30	1.0000	0206	33.00	-1.18	.0035	.9761	.7955	.0000	.6031	37.17	1.29	9.78	.3483	.5848	.7302	11.0
31	. 9976	0164	32.94	94	2203	1.3813	.7972	0000	.7917	44.80	40.20	22	.0166	.6065	. 9457	39.9
32 33	.9910 .9806	0117 0068	32.76 32.49	68 40	3067 3213	1.5905 1.6253	.8006 .8054	0000 0000	.8722 .8832	47.45 47.64	59.71 67.35	-3.27 -3.15	1722 2354	.4842 .3860	1.0666	56.4 64.2
34	. 9666	0016	32.12	10	3220	1.6168	.8116	0000	.8782	47.26	71.25	-2.83	2596	. 3233	1.1216	68.4
35 36	.9493 .9286	.0038 .0092	31.65 31.09	.23 .57	3228 3246	1.6063	.8192 .8281	0000 0000	.8720 .8656	46.79 46.27	73.71 75.55	-2.52 -2.22	2739 2849	.2801 .2455	1.1305	71.1 73.3
37	.9048	.0147	30.44	. 93	3219	1.5697	.8383	0000	.8527	45.49	76.93	-1.95	2889	.2163	1.1400	74.9
38	.8780	.0201	29.70	1.31	3126	1.5209	.8496	0000	.8310	44.37	77.46	-1.77	2832	.1989	1.1369	75.7
39 40	.8486 .8166	.0258 .0319	28.87 27.95	1.74 2.24	3006 2891	1.4628	.8618 .8749	0000 0000	.8050 .7781	43.05 41.65	77.33 77.00	-1.69 -1.62	272 8 2624	.1915	1.1312	75.6 75.3
41	.7823	.0384	26.96	2.81	2788	1.3477	.8886	0000	.7508	40.20	76.59	-1.55	2529	.1817	1.1209	75.0
42 43	.7460 .7076	.0451 .0521	25.89 24.74	3.46 4.21	2694 2573	1.2912	.9029 .9176	0000 0000	.7229 .6902	38.68 36.95	76.14 75.71	-1.47 -1.37	2442 2326	.1766 .1697	1.1167	74.6 74.3
44	.6675	.0591	23.52	5.06	2232	1.1006	. 9325	0000	.6301	34.05	75.45	-1.26	1982	.1548	1.0970	74.1
45	.6257	.0658	22.22 20.86	6.00 7.03	2004 2015	1.0065 .9684	.9464	0000 0000	.5819	31.59 30.23	75.51	-1.13 -1.00	1763 1794	.1390	1:0880 1:0899	74.3 74.8
46 47	.5825 .5378	.0718 .0768	19.43	8.13	1963	.9117	.9605 .9746	0000	.5596 .5279	28.45	75.86 76.50	-1.00	1750	.1251 .1074	1.0892	75.6
48	.4919	.0804	17.94	9.28	1878	.8435	. 9883	0000	.4901	26.38	77.45	82	1656	. 0878	1.0871	76.6
49 50	.4450 .3972	.0824 .0824	16.38 14.76	10.49 11.72	1778 1668	.7679 .6361	1.0014 1.0137	0000 0000	.4480 .4020	24.10 21.63	78.78 79.68	95 34	1527 1363	.0678 .0477	1.0842	77.8 79.3
51	. 3486	.0800	13.07	12.92	1548	.5964	1.0249	0000	.3510	18.90	81.15	.07	1153	.0285	1.0768	81.2
52 53	.2994 .2498	.0749 .0676	11.33 9.54	14.04 15.13	1427 1325	.5006 .4042	1.0349	0000 0000	.2959 .2398	15.95 12.94	82.96 84.03	01 03	0908 0666	.0147 .0079	1.0724	82.9 84.0
54	.2000	.0587	7.71	16.37	1252	.3119	1.0501	0000	.1855	10.02	84.04	03	0457	.0068	1.0654	84.0
55	.1501	.0492	5.86	18.16	1207	.2256	1.0553	0000	.1343	7.26	82.60	02	0290	.0087	1.0634	82.5
56 57	.1000 .0500	.0397 .0307	4.00 2.18	21.67 31.56	1182 1172	.1455 .0785	1.0589 1.0610	0000 0000	.0867 .0421	4.68 2.27	78.81 68.61	00 .00	0165 0069	.0116 .0137	1.0622	78.8 68.6
58	.0000	.0218	.81	90.00	1169	.0800	1.0617	.0000	.0000		3930.91	.18	.0000	.0150	1.0616	0.0
I	X/XMAX	Y/XMAX	PSI	OMEG	CP	MC	U	٧	W	BET		WS	υc	VC	MC	DELT

IMCMIN= 6 MCMIN= .10993

CROSSFLOW SONIC LINE

NUMBER OF POINTS 30

J	XXI	YYI
J 123456789012345678901234567	XXI .64935 .65019 .65110 .65196 .65324 .65350 .65375 .65355 .65113 .64824 .64824 .64824 .64829 .64829 .64829 .64829 .64829 .64829 .64829 .64829 .64829 .64829 .64829 .64829 .64829 .64829	YYI0132600685006850068500339 .01877 .02825 .03987 .06859 .13674 .17751 .260941 .25869 .18987 .1163470 .1165370
28 29 30	.42094 .41347 .40161	.08040 .06204 .04338

CONICAL FORCE DISTRIBUTIONS, BODY AND SHOCK LOCATIONS

2 -1.5708 . 10630242 -90.000	I	X(I)	CL	CD	OMEG	XXB	YYB	RB	xxs	YYS	RS	RS/RB
3 -1.5147 .1865 .1068 .2242 -86.7857 .03400085 .0350 .04946035 .6056 17.2860 4 -1.4826 .1068 .2243 -83.5714 .0679 .0027 .0680 .09865997 .6077 .8.9389 5 -1.4822 .1073 .2244 -80.3371 .1018 .0035 .1019 .14745934 .6115 .6.0027 7 -1.2903 .1083 .1244 -80.3371 .1018 .0035 .1019 .14745934 .6115 .6.0027 8 -1.2904 .1083 .2244 -80.3371 .1018 .0035 .1019 .14745934 .1616 .4.5388 8 -1.2342 .1087 .2233 -70.7143 .2025 .1088 .2034 .22985620 .6166 .4.5388 8 -1.2342 .1087 .2233 -70.7143 .2025 .0198 .2034 .22985620 .6123 .17174 10 -1.1229 .1086 .222 -67.5000 .2354 .0228 .2365 .2353 .4.5975 .6423 .2.7144 10 -1.1229 .1086 .1027 .64.2857 .2679 .0241 .2690 .3799 .5311 .6530 .2.7141 11 -1.0659 .1068 .1012 .64.2957 .2679 .0241 .2690 .3799 .5311 .6530 .2.7141 11 -1.0659 .1068 .1012 .64.2957 .3514 .0228 .23514 .6409 .3799 .5311 .6530 .2.7141 11 -1.0659 .1068 .1012 .64.2957 .3514 .0228 .23514 .6404 .4026 .6777 .2.000 119337 .1027 .1063 .1059 .51.226 .3514 .0228 .33348 .60434926 .6777 .2.000 128415 .0963 .0138 .842 .193 .0112 .1913 .1913 .1946 .5764 .4210 .7138 .1.7012 158415 .0963 .0138 .842.143 .193 .0137 .4196 .5764 .4210 .7388 .1.991 158415 .0963 .0138 .842.143 .193 .0137 .4196 .5764 .4210 .7388 .7351 .1.5177 177293 .0885 .0123 .417857 .4788 .0063 .4728 .6422 .3699 .7411 .1.5673 177293 .0885 .0123 .417857 .4788 .0063 .4728 .6422 .3699 .7411 .1.5673 177294 .0889 .013 .012 .4388 .53514 .000 .4468 .5010 .3995 .7270 .1.6272 .		-1.5708	.1063		-90.0000	0000	0142	.0142	0000	6050	.6050	42.7366
5 -1.4025 .1073 .0244 .803.571 .1018 .0035 .1019 .14745934 .6115 6 .0027 6 -1.3664 .1078 .0244 .77.1429 .1356 .0096 .1359 .1996 .5550 .6169 4.5388 7 -1.202 .1087 .0241 .73.4228 .1691 .0153 .1698 .2431 7 -1.202 .1080 .0241 .73.4228 .1691 .1018 .2035 .2431 10 -1.1220 .1080 .0221 .67.543 .2035 .0241 .2038 .2038 .2038 .2038 11 -1.659 .1086 .0027 .64.2857 .26679 .0241 .2090 .3799 11 -1.659 .1086 .0027 .76.73.871 .3310 .0225 .3318 .4643 12 -1.0098 .1050 .0177 .75.8571 .3310 .0225 .3318 .4643 13 13 14 15 15 16 16 16 17 18 18 18 19 19 10	3		.1065	.0242		.0340	0085			6035	.6056	17.2860
5 -1.4025 .1073 .0244 .803.571 .1018 .0035 .1019 .14745934 .6115 6 .0027 6 -1.3664 .1078 .0244 .77.1429 .1356 .0096 .1359 .1996 .5550 .6169 4.5388 7 -1.202 .1087 .0241 .73.4228 .1691 .0153 .1698 .2431 7 -1.202 .1080 .0241 .73.4228 .1691 .1018 .2035 .2431 10 -1.1220 .1080 .0221 .67.543 .2035 .0241 .2038 .2038 .2038 .2038 11 -1.659 .1086 .0027 .64.2857 .26679 .0241 .2090 .3799 11 -1.659 .1086 .0027 .76.73.871 .3310 .0225 .3318 .4643 12 -1.0098 .1050 .0177 .75.8571 .3310 .0225 .3318 .4643 13 13 14 15 15 16 16 16 17 18 18 18 19 19 10			.1068	.0243	-83.5714	.0679	0027	.0680	.0986	5997	.6077	8.9389
9 -1.398	5			.0244	-80.3571	.1018	.0035	.1019	.1474	5934	.6115	6.0027
8 -1.2342 .1087 .0233 -70.7143 .2025 .0198 .2034 .2298 .5620 .6323 3.1079	6	-1.3464	.1078	.0244	<i>-</i> 77.1429	.1356	.0096	.1359			.6169	4.5388
8 -1.2342 .1087 .0233 .70.7143 .2025 .0198 .2034 .2898 .5620 .6323 3.1079		-1.2903	.1083	.0241		.1691	.0153	.1698	. 2431	5745	. 6238	3.6731
7 - 1.181	8	-1.2342	.1087	.0233	-70.7143	.2025	.0198	.2034	. 2898	5620	. 6323	3.1079
11	. 9	-1.1781	.1086	.0221	-67.5000	. 2354	.0228	. 2365	. 3354	5475	.6421	2.7144
11	10	-1.1220	.1080	.0207	-64.2857	.2679	.0241	.2690	.3799	5311	.6530	2.4274
14 - 9976	11	-1.0659	.1068	.0192	-61.0714	.2998	.0239	.3008	.4229	5128	.6647	2.2101
15	12	-1.0098	.1050	.0177	-57.8571	.3310	.0225	.3318	.4643	4926	.6770	2.0405
15	13	955/	.1027	.0163	-54.6429	. 3614	.0202	.3620	.5038	4705	. 6893	1.9044
1.7-273	14		.0998	.0150	-51.4286	. 3909	.0172	.3913	.5411	4464	.7015	1.7929
1.7-273	15	- 7956	.0903	.0138	-48.2143	.4193	.013/	.4196	.5764	4210	.7138	1.7012
	17	- 7203	.0724	.0127	-43.0000	.446/	.0100	.4468	.6100	3955	.7270	1.6272
	18	- 6732	1844	.0123	-38 5716	.4/20	.0003	.4/28	.6422	3699	- /411	1.5673
205610		- 6171	0800	0116	~35.3714	,47/0 5200	.0027	.47/0		3438	./552	1.51//
21 -5049 .0731 .0107 -28.9286 .5626 0056 .5627 .7567 2631 .7995 .4138 22 -4.488 .0685 .0085 -25.7143 .5808 0079 -5809 .7727 -2358 .8079 1.3908 23 3927 .0627 .0085 -22.5000 .5970 0100 .5971 .7926 -2083 .8199 1.3726 24 3366 .0554 .0070 -19.2857 .6111 -0122 .6112 .8104 -2083 .8199 1.3726 25 2805 .0474 .0060 -16.0714 .6230 0156 .6330 .8392 1227 .8484 1.3403 26 2244 .0392 .0056 -12.8571 .6328 0156 .6330 .8392 1227 .8484 1.3403 27 1633 .0010 .001 .001 .0016 .6457 0164 .6460 .8675 0396 .8578 1.3391 28 122 .0231 .0079 <td< td=""><td></td><td>- 5610</td><td>0771</td><td>0112</td><td>-32 1420</td><td>5626</td><td></td><td>.5209</td><td>./000</td><td>31/2</td><td>. / 6 9 0</td><td>1.4/64</td></td<>		- 5610	0771	0112	-32 1420	5626		.5209	./000	31/2	. / 6 9 0	1.4/64
23 - 3927	žĭ	- 5049	0731		-28 9284	5426	- 0051	.3420	./20/	2903	./825	1.4420
233927	22		0685		-25.7200	5202	- 0070	.3027	./30/	2031	./955	1.4138
252805	23		.0627		-22 5000	. J000 5978	- 8100	.3007 5071	7026	- 2000	. 80/9.	1.3908
25 -2805		3366	0554	.0023	-19 2857	6111	- 0100	6112		- 1907	.0170	1.3/20
262244	25		0474		-16 0714	6230	- 0161	6232	.0104	- 1507	.0303	1.3284
29 -0.0561	26	2244	0392		-12 8571	6328	- 0156	.0232	.0237	- 1267	.639/	1.34/3
29 -0.0561		1683	.0313		-9 6429	6404		6606	8523	- 0048	.0404	1.3403
29 0561 .0093 .0083 -3.2143 .6487 0153 .6489 .8757 0392 .8766 1.35509 30 0000 0000 .0001 0000 .6494 01134 .6495 .8857 0088 .8857 1.3637 31 .0561 .0097 0039 3.2143 .6478 .0106 .6479 .8945 .0231 .8947 1.3813 32 .1122 .02243 0034 6.4286 .6435 00076 .6468 .9018 .0568 .9036 1.4040 34 .2244 .0458 .0011 12.8571 .6277 0010 .6277 .9155 .1314 .9249 1.4734 35 .2805 .0554 .0018 16.0714 .6164 .0024 .6165 .9192 .1723 .9353 1.5172 36 .3566 .0649 .0037 19.2857 .6030 .0060 .6031 .9204 .211 .9552	28	1122	.0231		-6.4286		0164	.6460	8646	~ NAR4	8673	1 3427
32	29	0561	.0093		-3.2143	.6487	0153	6489	8757	- 0307 - 0302	8766	1.342/
32	30		0000	.0001	8000	.6494	0134	6495	8857		8857	1.3307
34 .2244 .0458 .0001 12.8571 .6277 0010 .6277 .9155 .1314 .9249 1.4734 35 .2805 .0554 .0018 16.0714 .6164 .0024 .6165 .9192 .1723 .9353 1.5176 36 .3366 .0649 .0037 19.2857 .6030 .0060 .6031 .9204 .2156 .9453 1.5676 37 .3927 .0730 .0055 .22.5000 .5876 .0095 .5876 .9189 .2611 .9552 1.6256 38 .4488 .0786 .0067 .25.7143 .5702 .0130 .5703 .9145 .3089 .9652 1.6256 39 .5049 .0824 .0072 .28.9286 .5510 .0168 .5513 .9071 .3588 .9755 1.7695 40 .5610 .0853 .0076 .32.1429 .5303 .0207 .5307 .8966 .4108 .9862	31	.0561	.0097	0039	3.2143	.6478	0106	.6479	.8945	.0231	.8947	1.303/
34 .2244 .0458 .0001 12.8571 .6277 0010 .6277 .9155 .1314 .9249 1.4734 35 .2805 .0554 .0018 16.0714 .6164 .0024 .6165 .9192 .1723 .9353 1.5176 36 .3366 .0649 .0037 19.2857 .6030 .0060 .6031 .9204 .2156 .9453 1.5676 37 .3927 .0730 .0055 .22.5000 .5876 .0095 .5876 .9189 .2611 .9552 1.6256 38 .4488 .0786 .0067 .25.7143 .5702 .0130 .5703 .9145 .3089 .9652 1.6256 39 .5049 .0824 .0072 .28.9286 .5510 .0168 .5513 .9071 .3588 .9755 1.7695 40 .5610 .0853 .0076 .32.1429 .5303 .0207 .5307 .8966 .4108 .9862	32	.1122	.0243	0034	6.4286	.6435	0076	.6436	.9018	.0568	. 9036	1.4040
34 .2244 .0458 .0001 12.8571 .6277 0010 .6277 .9155 .1314 .9249 1.4734 35 .2805 .0554 .0018 16.0714 .6164 .0024 .6165 .9192 .1723 .9353 1.5176 36 .3366 .0649 .0037 19.2857 .6030 .0060 .6031 .9204 .2156 .9453 1.5676 37 .3927 .0730 .0055 .22.5000 .5876 .0095 .5876 .9189 .2611 .9552 1.6256 38 .4488 .0786 .0067 .25.7143 .5702 .0130 .5703 .9145 .3089 .9652 1.6256 39 .5049 .0824 .0072 .28.9286 .5510 .0168 .5513 .9071 .3588 .9755 1.7695 40 .5610 .0853 .0076 .32.1429 .5303 .0207 .5307 .8966 .4108 .9862	33	.1683	.0358	0016	9.6429	.6368	0044	.6368	. 90 90	.0928	9137	1 4349
36	34	. 2244	.0458		12.8571	.6277	0010	.6277	.9155	.1314	9249	1.4734
42 .6732 .0895 .0083 38.5714 .4844 .0293 .4853 .8650 .5197 1.0091 2.0793 43 .7293 .0897 .0086 41.7857 .4595 .0338 .4608 .8434 .5761 1.0213 2.2166 44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899	35	.2805	.0554	.0018	16.0714	.6164	.0024	.6165	.9192	.1723	. 9353	1.5172
42 .6732 .0895 .0083 38.5714 .4844 .0293 .4853 .8650 .5197 1.0091 2.0793 43 .7293 .0897 .0086 41.7857 .4595 .0338 .4608 .8434 .5761 1.0213 2.2166 44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899	36	. 3366	. 0649	.0037	19.2857	.6030	.0060	.6031	. 9204	.2156	. 9453	1.5676
42 .6732 .0895 .0083 38.5714 .4844 .0293 .4853 .8650 .5197 1.0091 2.0793 43 .7293 .0897 .0086 41.7857 .4595 .0338 .4608 .8434 .5761 1.0213 2.2166 44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899	3/	. 3927	.0730	.0055	22.5000	. 5876	.0095	. 5876	.9189	.2611	. 9552	1.6256
42 .6732 .0895 .0083 38.5714 .4844 .0293 .4853 .8650 .5197 1.0091 2.0793 43 .7293 .0897 .0086 41.7857 .4595 .0338 .4608 .8434 .5761 1.0213 2.2166 44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899	38	.4488	.0786		25.7143	.5702	.0130	.5703	.9145	.3089	.9652	1.6925
42 .6732 .0895 .0083 38.5714 .4844 .0293 .4853 .8650 .5197 1.0091 2.0793 43 .7293 .0897 .0086 41.7857 .4595 .0338 .4608 .8434 .5761 1.0213 2.2166 44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899		.5049	.0824	.0072	28.9286	.5510	.0168	.5513	.9071	. 3588	. 9755	1.7695
42 .6732 .0895 .0083 38.5714 .4844 .0293 .4853 .8650 .5197 1.0091 2.0793 43 .7293 .0897 .0086 41.7857 .4595 .0338 .4608 .8434 .5761 1.0213 2.2166 44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899			. 0853	.00/6	32.1429	.5303	.0207	.5307	.8966		. 9862	1.8583
43 .7293 .0897 .0086 41.7857 .4595 .0338 .4608 .8434 .5761 1.0213 2.2166 44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899 3.3670 49 1.0659 .0746 .0112 61.0714 .2890 .0535 .2939 .6205 .9141 1.1048	41	.01/1			35.35/1	.5080	.0249	.5087	.8826	. 4645	. 9974	1.9608
44 .7854 .0812 .0081 45.0000 .4335 .0384 .4352 .8176 .6332 1.0341 2.3763 45 .8415 .0757 .0081 48.2143 .4063 .0427 .4086 .7874 .6906 1.0473 2.5634 46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899 3.3670 49 1.0659 .0746 .0112 61.0714 .2890 .0535 .2939 .6205 .9141 1.1048 3.7592 50 1.1220 .0712 .0116 64.2857 .2579 .0535 .2634 .5671 .9656 1.1198	42	.0/32	.0093	.0083	38.5/14	. 4844	.0293	.4853	.8650	.5197	1.0091	2.0793
45	43	./293	.0097		41./85/	. 4595	.0338	.4608	.8434		1.0213	2.2166
46 .8976 .0786 .0092 51.4286 .3782 .0466 .3811 .7527 .7479 1.0611 2.7843 47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899 3.3670 49 1.0659 .0746 .0112 61.0714 .2890 .0535 .2939 .6205 .9141 1.1048 3.7592 50 1.1220 .0712 .0116 64.2857 .2579 .0535 .2634 .5671 .9656 1.1198 4.2511 51 1.1781 .0669 .0117 67.5000 .2264 .0519 .2322 .5090 1.0140 1.1345 4.8851 52 1.2342 .0622 .0116 70.7143 .1944 .0486 .2004 .4463 1.0584 1.1487	45	9615	.0012	.0081		.4335	.0384	.4352	.8176		1.0341	2.3763
47 .9537 .0788 .0100 54.6429 .3492 .0499 .3528 .7133 .8046 1.0753 3.0480 48 1.0098 .0773 .0107 57.8571 .3195 .0522 .3237 .6693 .8602 1.0899 3.3670 49 1.0659 .0746 .0112 61.0714 .2890 .0535 .2939 .6205 .9141 1.1048 3.7592 50 1.1220 .0712 .0116 64.2857 .2579 .0535 .2634 .5671 .9656 1.1198 4.2511 51 1.1781 .0669 .0117 67.5000 .2264 .0519 .2322 .5090 1.0140 1.1345 4.8851 52 1.2342 .0622 .0116 70.7143 .1944 .0486 .2004 .4463 1.0584 1.1487 5.7316 53 1.2903 .0580 .0112 73.9286 .1622 .0439 .1681 .3793 1.0976 1.1613 6.9936 54 1.3464 .0549 .0108 77.1429 .1299 .0381 .1354 .3084 1.1306 1.1719 8.6572	46	9074	.0/3/	.0001	40.2143	.4063	.0427	.4086	.7874	.6906	1.0473	2.5634
49 1.0559 .0746 .0112 61.0714 .2890 .0535 .2939 .6205 .9141 1.1048 3.7592 50 1.1220 .0712 .0116 64.2857 .2579 .0535 .2634 .5671 .9656 1.1198 4.2511 51 1.1781 .0669 .0117 67.5000 .2264 .0519 .2322 .5090 1.0140 1.1345 4.8851 52 1.2342 .0622 .0116 70.7143 .1944 .0486 .2004 .4463 1.0584 1.1487 5.7316 53 1.2903 .0580 .0112 73.9286 .1622 .0439 .1681 .3793 1.0976 1.1613 6.9098 54 1.3464 .0549 .0108 77.1429 .1229 .0381 .1354 .3084 1.1306 1.1719 8.6572		0537	.0700	.0092	21.4286	.3/82	.0466		.7527	.7479		2.7843
49 1.0559 .0746 .0112 61.0714 .2890 .0535 .2939 .6205 .9141 1.1048 3.7592 50 1.1220 .0712 .0116 64.2857 .2579 .0535 .2634 .5671 .9656 1.1198 4.2511 51 1.1781 .0669 .0117 67.5000 .2264 .0519 .2322 .5090 1.0140 1.1345 4.8851 52 1.2342 .0622 .0116 70.7143 .1944 .0486 .2004 .4463 1.0584 1.1487 5.7316 53 1.2903 .0580 .0112 73.9286 .1622 .0439 .1681 .3793 1.0976 1.1613 6.9098 54 1.3464 .0549 .0108 77.1429 .1229 .0381 .1354 .3084 1.1306 1.1719 8.6572	48	7 0008	0700	0100	34.0427 57 9571	.3492	.0499	. 3528	./133	.8046	1.0/53	3.0480
51 1.1781 .0669 .0117 67.5000 .2264 .0519 .2322 .5090 1.0140 1.1345 4.2511 52 1.2342 .0622 .0116 70.7143 .1944 .0486 .2004 .4463 1.0584 1.1487 5.7316 53 1.2903 .0580 .0112 73.9286 .1622 .0439 .1681 .3793 1.0976 1.1613 6.9098 54 1.3464 .0549 .0108 77.1429 .1299 .0381 .1354 .3084 1.1306 1.1719 8.6572	49	1.0659	0746	0107	57.0371 61 0714	. 3173	. 0522	.323/	.0093	.8602	1.0899	3.3670
51 1.1781 .0669 .0117 67.5000 .2264 .0519 .2322 .5090 1.0140 1.1345 4.8851 52 1.2342 .0622 .0116 70.7143 .1944 .0486 .2004 .4463 1.0584 1.1487 5.7316 53 1.2903 .0580 .0112 73.9286 .1622 .0439 .1681 .3793 1.0976 1.1613 6.9098 54 1.3464 .0549 .0108 77.1429 .1299 .0381 .1354 .3084 1.1306 1.1719 8.6572	5Ó		.0712	.0112	66 2857	, 2070 2570	.0232	. 2 7 3 7	.0205 5471	. 9141	1.1048	3.7592
52 1.2342 .0622 .0116 70.7143 .1944 .0486 .2004 .4463 1.0584 1.1487 5.7316 53 1.2903 .0580 .0112 73.9286 .1622 .0439 .1681 .3793 1.0976 1.1613 6.9098 54 1.3464 .0549 .0108 77.1429 .1299 .0381 .1354 .3084 1.1306 1.1719 8.6572	51	1.1781	.0669	.0117	67.5000	2266	0510	, <u>2</u> 037 9399	.50/1	. 70.70 0.410 C	1.1179	4.2011
53 1.2903 .0580 .0112 73.9286 .1622 .0439 .1681 .3793 1.0976 1.1613 6.9098 54 1.3464 .0549 .0108 77.1429 .1299 .0381 .1354 .3084 1.1306 1.1719 8.6572	52	1.2342	.0622	.0116	70.7143	1944	0486	2004	4463	1.0140	1.1343	4.0001
54 1.3464 .0549 .0108 77.1429 .1299 .0381 .1354 .3084 1.1306 1.1719 8.6572	53	1.2903	.0580	.0112	73.9286	.1622	.0439	. 1681	3793	1 1976	1.140/	2./316
55 1.4025 .0530 .0105 80.3571 .0974 .0320 .1026 .2343 1.1571 1.1805 11.5116	54	1.3464		.0108	77.1429	.1299	.0381	.1354	.3084	1.1366	1 1710	9.7070 8.6579
	55	1.4025	.0530	.0105	80.3571	.0974	.0320	.1026	.2343	1.1571	1.1805	11.5116

56 57 58	1.4586 1.5147 1.5708	.0519 .0103 .0513 .0101 .0511 .0101	86.7857	.0650 .0325 .0000	.0258 .0199 .0142	.0699 .0381 .0142	.1577 .0793 .0000	1.1763 1.1880 1.1919	1.1868 1.1907 1.1919	16.9786 31.2413 84.1924
CL =	.4535	CD = .0684								
CLU=	.2001	CLL=2535								
CDU=	.0223	CDL= .0461								
L/D=	6.629	L/D UPPER = 8.	972 L/D	LOWER =	5.4964					

INITL= 18 IFINL= 42

ETADR= .750 CL(ETADR)= .1495 CD(ETADR)= .0156

DELTA CP , FLAT PLATE LINEAR DCP , AND SPANLOAD DISTRIBUTION

I	ETASPN	CPU	CPL	DELTACP	DCPLIN	CCL/CA
1	.0000	1169	,2337	.3506	. 2887	.7012
2	.0500	1172	. 2339	.3511	. 2891	.6975
2	.1000	1182	.2346	. 3529	.2902	.6926
4	.1501	1207	. 2358	.3565	.2920	.6856
5	.2000	1252	.2375	.3628	.2947	.6757
6	.2498	1325	.2397	.3722	.2982	.6570
6 7	.2994	1427	.2422	.3849	.3026	.6351
à	.3486	1548	.2448	.3996	.3080	.6094
9	.3972	1668	.2472	.4140	.3146	.5802
10	.4450	1778	. 2493	.4270	.3224	. 5484
īĭ	.4919	1878	.2511	.4389	.3316	.5145
īž	.5378	1963	.2526	.4489	.3425	.4795
13	. 5825	~.2015	.2537	.4552	. 3552	.4440
14	.6257	2004	.2544	. 4548	.3701	.4092
15	.6675	2232	.2549	.4781	.3878	. 3743
16	.7076	2573	. 2559	.5133	.4086	. # 3372
17	.7460	2694	.2582	.5276	.4335	.2990
18	.7823	2788	.2623	.5411	.4636	.2615
19	.8166	2891	.2686	.5577	.5002	.2248
20	.8486	-:3006	:2772	.5778	. 5457	. 1891
21	.8780	3126	. 2880	.6005	.6032	.1548
22	. 9048	3219	. 2996	.6216	.6780	.1223
23	. 9286	3246	.3103	.6349	.7782	.0924
24	. 9493	3228	.3197	.6425	.9183	.0660
25	. 9666	3220	.3314	.6534	1.1274	.0435
26	. 9806	3213	. 3535	.6748	1.4725	.0250
27	.9910	3067	.4033	.7099	2.1521	.0106
28	.9976	2203	.4342	.6545	4.1294	.0016
29	1.0000	.0035	.0035	0.0000	0.0000	0.0000
I	ETASPN	CPU	CPL	DELTACP	DCPLIN	CCL/CA

I	MCON	нисон	YIN	DNY	DNZ	DNX	CPP	CPNC	DELMCH	DELNUD
1	1.37281	.14325	00000	16186	. 98572	04639	.23372	.11099	.12074	3.50765
. 2	1.37261	.14315	.54348	16549	.98518	04519	.23394	.11326	.11854	3.44287
3	1.37192	.14281	1.08644	17451	.98370	04324	.23469	.11649	.11585	3.36312
4	1.37073	.14221	1.62821	18108	.98260	04121	.23599	.12032	.11303	3.27910
5	1.36903	.14137	2.16809	17544	. 98365	04054	.23784	.12468	.11020	3.19441
6 7	1.36687	.14030	2.70514	15299	. 98731	04231	.24019	.13043	.10641	3.08112
	1.36443	.13909	3.23809	11481	.99220	04791	. 24287	.13636	.10276	2.97195
8	1.36200	.13789	3.76527	06531	.99618	05732	.24553	.14199	.09945	2.87275
9	1.35984	.13682	4.28474	01459	. 99757	06791	.24790	.14833	.09519	2.74601
10	1.35797	.13589	4.79480	.02542	.99668	07731	.24996	.15382	.09154	2.63771
11	1.35636	.13509	5.29376	.05990	.99449	08579	.25175	.15982	.08716	2.50864
12 13	1.35509 1.35423	.13447 .13405	5.77985 6.25135	.08935 .11174	.99164 .98888	09293 09799	.25314 .25410	.16677 .17404	.08153 .07524	2.34336 2.15976
13	1.35373	.13380	6.70657	.12853	.98650	10140	.25465	.18119	.06877	1.97138
15	1.35322	.13355	7.14383	.13668	.98531	10242	.25522	.18667	.06397	1.83192
16	1.35191	.13290	7.56151	.13840	.98515	10156	.25667	.19137	.06074	1.73756
17	1.34904	.13149	7.95781	.13495	.98592	09876	.25986	.19668	.05852	1.67134
18	1.34420	.12911	8.33075	.12987	.98691	09555	. 26527	.20302	.05732	1.63335
19	1.33734	.12575	8.67827	.12653	. 98753	09363	.27297	.21045	.05715	1.62366
20	1.32846	.12141	8.99827	.12463	. 98788	09257	.28303	.21972	.05734	1.62233
21	1.31807	.11638	9.28871	.12568	. 98764	09361	.29490	.22963	.05851	1.64745
22	1.30823	.11164	9.54755	.14293	. 98424	10393	.30626	.23957	.05920	1.65845
23	1.30024	.10781	9.77304	.15779	.98099	11301	.31558	. 24767	.05981	1.66811
24	1.29246	.10410	9.96424	.15593	.98141	11164	. 32471	. 25642	.05967	1.65641
25	1.28074	.09856	10.12055	.12981	.98679	09384	.33861	.27229	.05721	1.57467
26	1.25716	.08758	10.24166	.05575	. 99562	04467	.36703	.30283	.05404	1.45973
27	1.20739	.06529	10.32735	16695	. 96399	.10139	.42908	. 36493	.05150	1.32289
28	1.20150	.06275	10.37540	62860	.52553	.40433	.43659	.37473	.04936	1.25731
29	1.61565	.26744	10.38560	38400	.20780	.24799	.00353	02735	.03890	1.14905
30	1.96022 2.15899	.44117 .53515	10.36018 10.29171	.65084	.59830	42292 30126	22031	23334	.02643 02226	.73396
31	2.19970	.55370	10.291/1	.46471 .37587	.83246 .89387	24233	30667 32134	29825 31531	02226	58705 44300
32 33	2.20154	.55453	10.13700	.31313	.92807	20007	32198	31824	01064	27636
34	2.20389	.55560	9.85887	.27212	.94661	~.17173	32280	32144	00389	10080
35	2.20912	.55796	9.64427	.23800	.95975	14801	32460	32561	.00294	.07594
36	2.20132	.55443	9.39683	.20630	.97014	12673	32190	32485	.00852	.22053
37	2.17504	.54249	9.11869	.19257	. 97437	11624	31256	31764	.01414	.36877
38	2.14290	.52775	8.81273	.18890	.97563	11167	30061	30797	.01958	.51567
39	2.11348	.51413	8.48092	.18460	.97704	10634	28914	29934	.02608	.69247
40	2.08811	.50227	8.12516	.18345	.97777	10150	27883	29306	.03527	.94246
41	2.06586	.49181	7.74731	.17991	.97909	09491	26944	28835	.04564	1.22598
42 43	2.03820	.47869	7.34919	.17487	. 98069	08738	25732	28154	.05650	1.52788
43	1.96594	.44395	6.93251	.16447	. 98325	07816	22318	25416	.06522	1.79863
44	1.92165	.42232	6.49869	.14812	.98659	06763	20035	23684	.07226	2.01482
45	1.92377	.42336	6.04916	.12458	.99056	05558	20148	24074	.07836	2.18191
46	1.91404	.41858	5.58543	.09586	. 99434	04253	19628	23867	.08373	2.33554
47	1.89847	.41090	5.10904	.06090	.99756	02825	18780 17776	~.23366	.08884	2.48655
48 49	1.88047 1.86139	.40199 .39251	4.62161 4.12484	.02139 02459	.99945	01355	16683	22742	.09403	2.64197
50	1.84099	.38232	3.62021	07698	.99935 .99658	.00137 .01609	15679	22016 21168	.09852 .10228	2.77972 2.89850
51	1.82107	.37233	3.10950	12507	.99155	.02833	14270	20325	.10604	3.01757
52	1.80472	.36410	2.59463	16114	.98619	.03647	13252	19615	.10908	3.11440
53	1.79323	.35831	2.07721	18203	.98243	.04095	12522	19132	.11166	3.19509
54	1.78619	.35474	1.55841	18762	.98129	.04315	12069	19132 18908	.11166	3.19509
55	1.78243	.35284	1.03896	18268	.98218	.04415	11825	18849	.11729	3.26324
56	1.78075	.35199	.51936	17577	.98340	.04502	11716	18894	.11978	3.43355
57	1.78031	.35177	.00000	17358	. 98373	.04629	11687	19012	.12238	3.50743
I	MCON	NUCON	MIA	DNY	DNZ	DNX	CPP	CPNC	DELMCH	DELNUD

DELTA CP FROM NON CONICAL CORRECTION

I	ETASPN	CPU	CPL	DELTACP
1 1234567890123456789012345678	.0000 .05000 .10000 .2049986 .394519 .5825756 .66670760 .748268 .89088 .99296 .99800 .99916	1901188918911913196120322117222742337238724072368254228884293129333080318231823183	.1110 .1132 .1198 .1239 .1239 .13494 .14620 .1576 .16409 .17079 .1840 .18939 .1995 .2062 .21438 .22338 .24316 .2883 .24316 .2883 .33716	.3011 .3021 .3047 .3089 .3153 .3254 .3382 .3521 .3665 .3794 .3913 .4027 .4117 .4148 .4382 .4705 .4822 .4926 .5056 .5223 .5415 .5586 .5687 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5730 .5887 .5887 .5887 .5887 .5887 .5887 .5887 .5888
29 I	1.0000 ETASPN	0274 CPU	0274 CPL	0.0000 DELTACP
-	EINSEN	Of U	01 E	DEC I AUI

NON-CONICAL FORCE RESULTS

CN= .4102

PURE CONICAL FORCE COEFFICIENT RESULTS

CH (FROM DELTA CP) = .4595 CH (FROM SPANLOAD) =, .4595 SPAN E= .8774

CL= .45353

CD= .06841

CH= .45784 CA= -.02737

A = .6612

EMINF= 1.6200 ALP=12.0000

JOBH

0 1 0 0 0 0 0 20 30

LIST OF INPUT CARDS

GRUMMAN W12SC3 PROGRAM STARTS

12345678901234567890123456789012345678901234567890123456789012345678901234567890

SC3 DEMO WING ALONE FOR COMBINED ANALYSIS DESIGN-CRAIDON GEOMETRY

```
0.0 0.147 0.586 1.317 2.338 3.645 5.235 7.102 9.242 11.649 14.314 17.231 20.391 23.784 27.400 31.230 35.261 39.483 43.881 48.445
 53.159 58.011 62.986 68.070 73.247 78.503 83.822 89.188 94.586100.000
-0.0000 0.0 0.0 23.8401
1.6587 0.7735-0.165622.3368
 3.3171 1.5471-0.272320.8338
 4.9747 2.3206-0.334119.3317
 6.6296 3.0941-0.361617.8324
 8.2770 3.8676-0.363716.3413
 9.9051 4.6412-0.348414.8714
11.4905 5.4147-0.323313.4495
13.0004 6.1882-0.295512.1174
14.4103 6.9617-0.278110.9170
15.7249 7.7353-0.2864 9.8687
16.9739 8.5088-0.2616 8.9614
18.1883 9.2823-0.2386 8.1602
19.387910.0558-0.2230 7.4225
20.581910.8294-0.2179 6.7156
21.773911.6029-0.2164 6.0212
22.965312.3764-0.2192 5.3313
24.156613.1499-0.2286 4.6430
25.357313.9235-0.2459 3.9456
27.500014.6970-0.1566 2.3063
         0.0000 0.0 0.0
                                   0.0
                                            0.0
                                                    0.0
                                                             0.0
                                                                     0.0
                                                                              0.0
                                                            0.0
                                                                     0.0
                                                                              0.0
         0.0 0.0
0.0 0.0
                          0.0
                                   0.0
                                           0.0
                                                    0.0
 0.0
                                   0.0
                                           0.0
                                                 0.0
                                                            0.0
                                                                     0.0
                                                                              0.0000
 D . D
                          0.0
         0.0085 0.0310 0.0615 0.0962 0.1328 0.1684 0.2006 0.2279 0.2500
 0.2665 0.2780 0.2857 0.2908 0.2942 0.2963 0.2977 0.2986 0.2991 0.2994
 0.2995 0.2995 0.2995 0.2993 0.2992 0.2990 0.2989 0.2987 0.2986 0.2986
         0.0073 0.0281 0.0593 0.0972 0.1396 0.1851 0.2323 0.2793 0.3245
 0.3662 0.4037 0.4365 0.4647 0.4880 0.5061 0.5200 0.5302 0.5377 0.5428
 0.5461 0.5480 0.5488 0.5488 0.5482 0.5473 0.5462 0.5451 0.5442 0.5433 0.0 0.0063 0.0247 0.0533 0.0898 0.1317 0.1777 0.2269 0.2784 0.3310
 0.3834 0.4344 0.4827 0.5276 0.5685 0.6054 0.6381 0.6669 0.6909 0.7101
 0.7250 0.7360 0.7436 0.7484 0.7511 0.7521 0.7521 0.7517 0.7509 0.7500
         0.0055 0.0214 0.0469 0.0802 0.1196 0.1634 0.2109 0.2613 0.3140
 0.3684 0.4235 0.4784 0.5321 0.5838 0.6329 0.6788 0.7214 0.7603 0.7953
 0.8262 0.8516 0.8715 0.8865 0.8974 0.9050 0.9104 0.9142 0.9167 0.9181 0.0 0.0047 0.0185 0.0409 0.0706 0.1064 0.1470 0.1913 0.2388 0.2889
 0.3415 0.3959 0.4516 0.5081 0.5645 0.6202 0.6744 0.7265 0.7757 0.8212 0.8625 0.8993 0.9315 0.9589 0.9810 0.9989 1.0135 1.0251 1.0344 1.0416
          0.0041 0.0160 0.0355 0.0618 0.0939 0.1308 0.1715 0.2155 0.2622
 0.3115 0.3633 0.4172 0.4729 0.5300 0.5877 0.6453 0.7019 0.7564 0.8080 0.8559 0.8996 0.9390 0.9740 1.0053 1.0337 1.0590 1.0807 1.0992 1.1149
         0.0035 0.0140 0.0310 0.0542 0.0829 0.1162 0.1535 0.1940 0.2373
 0.2832 0.3317 0.3826 0.4357 0.4907 0.5470 0.6038 0.6603 0.7156 0.7689 0.8193 0.8665 0.9101 0.9505 0.9881 1.0230 1.0552 1.0848 1.1119 1.1367
```

0.0 0.2580 0.7633 0.0 0.2423	0.0031 0.3029 0.8109 0.0026 0.2832	0.0123 0.3500 0.8565 0.0105 0.3260	0.0275 0.3992 0.9003 0.0235 0.3704	0.0482 0.4502 0.9421 0.0413 0.4163	0.0739 0.5026 0.9816 0.0636 0.4635	0.1041 0.5557 1.0189 0.0902 0.5116	0.1382 0.6090 1.0539 0.1235 0.5601	0.1755 0.6618 1.0866 0.1613 0.6086	0.2155 0.7134 1.1170 0.2015
0.7037 0.0 0.2507 0.6644	0.7505 0.0031 0.2876 0.7093	0.7966 0.0123 0.3257 0.7541	0.8417 0.0276 0.3650 0.7987	0.8855 0.0487 0.4056 0.8425 0.0443	0.9277 0.0750 0.4472 0.8855 0.0677	0.9683 0.1057 0.4897 0.9274 0.0950	1.0070 0.1396 0.5327 0.9679 0.1253	1.0438 0.1758 0.5760 1.0069 0.1578	1.0786 0.2132 0.6199 1.0444 0.1916
0.0 0.2257 0.5942 0.0 0.1992	0.0029 0.2593 0.6361 0.0025 0.2295	0.0114 0.2926 0.6785 0.0099 0.2590	0.0253 0.3270 0.7209 0.0220 0.2885	0.3622 0.7632 0.0386 0.3193	0.3983 0.8051 0.0590 0.3514	0.4351 0.8463 0.0830 0.3847	0.4731 0.8868 0.1096 0.4192	0.5125 0.9262 0.1384 0.4549	0.5529 0.9644 0.1685 0.4917
0.5294	0.5678	0.6068	0.6462	0.6857	0.7253	0.7645	0.8034	0.8416	0.8790
0.0	0.0021	0.0085	0.0188	0.0330	0.0506	0.0712	0.0942	0.1193	0.1458
0.1734	0.2015	0.2294	0.2568	0.2848	0.3139	0.3441	0.3753	0.4074	0.4405
0.4744	0.5090	0.5443	0.5800	0.6161	0.6523	0.6886	0.7247	0.7605	0.7958
0.0	0.0018	0.0073	0.0163	0.0287	0.0442	0.0624	0.0832	0.1060	0.1304
0.1561	0.1824	0.2089	0.2351	0.2608	0.2871	0.3142	0.3420	0.3707	0.4001
0.4302	0.4610	0.4923	0.5241	0.5563	0.5887	0.6213	0.6538	0.6863	0.7185
0.0	0.0016	0.0064	0.0144	0.0253	0.0390	0.0552	0.0738	0.0942	0.1163
0.1396	0.1638	0.1885	0.2132	0.2375	0.2613	0.2854	0.3101	0.3354	0.3612
0.3876	0.4145	0.4419	0.4696	0.4977	0.5260	0.5545	0.5831	0.6117	0.6401
0.0	0.0014	0.0056	0.0124	0.0219	0.0338	0.0480	0.0642	0.0822	0.1018
0.1226	0.1444	0.1667	0.1894	0.2120	0.2344	0.2561	0.2777	0.2997	0.3221
0.3449	0.3681	0.3916	0.4154	0.4394	0.4636	0.4879	0.5124	0.5368	0.5612
0.0	0.0012	0.0047	0.0105	0.0185	0.0287	0.0408	0.0547	0.0702	0.0871
0.1052	0.1243	0.1441	0.1643	0.1847	0.2051	0.2252	0.2449	0.2639	0.2831
0.3025	0.3221	0.3420	0.3620	0.3821	0.4024	0.4227	0.4431	0.4634	0.4837
0.0	0.0010	0.0038	0.0085	0.0151	0.0233	0.0332	0.0446	0.0574	0.0714
0.0864	0.1024	0.1192	0.1365	0.1543	0.1723	0.1905	0.2085	0.2262	0.2434
0.2597	0.2760	0.2924	0.3088	0.3253	0.3419	0.3584	0.3749	0.3914	0.4078
0.0	0.0004	0.0016	0.0036	0.0064	0.0100	0.0144	0.0195	0.0253	0.0318
0.0389	0.0467	0.0551	0.0640	0.0734	0.0833	0.0936	0.1043	0.1154	0.1267
0.1355	0.1444	0.1533	0.1624	0.1715	0.1806	0.1898	0.1990	0.2082	0.2173
0.0	0.1866	0.3670	0.5412	0.7088	0.8696	1.0230	1.1685	1.3057	1.4337
1.5517	1.6588	1.7539	1.8357	1.9029	1.9538	1.9867	1.9998	1.9912	1.9587
1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	0.9333	0.6649	0.3668	0.0400
0.0	0.2168	0.4199	0.6094	0.7856	0.9490	1.1001	1.2393	1.3674	1.4845
1.5912	1.6873	1.7727	1.8466	1.9081	1.9555	1.9870	1.9998	1.9912	1.9587
1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	0.9333	0.6649	0.3668	0.0400
0.0	0.2432	0.4660	0.6689	0.8527	1.0184	1.1674	1.3012	1.4212	1.5290
1.6257	1.7122	1.7891	1.8561	1.9126	1.9571	1.9872	1.9998	1.9912	1.9587
1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	0.9333	0.6649	0.3668	0.0400
0.0	0.2657	0.5054	0.7197	0.9099	1.0776	1.2249	1.3540	1.4672	1.5669
1.6551	1.7335	1.8031	1.8642	1.9165	1.9584	1.9874	1.9998	1.9912	1.9587
1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	0.9333	0.6649	0.3668	0.0400
0.0	0.2844	0.5381	0.7619	0.9574	1.1268	1.2726	1.3978	1.5054	1.5984
1.6795	1.7511	1.8147	1.8710	1.9198	1.9596	1.9876	1.9998	1.9912	1.9587
1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	0.9333	0.6649	0.3668	0.0400
0.0	0.2993	0.5640	0.7954	0.9951	1.1658	1.3104	1.4325	1.5357	1.6234
1.6989	1.7651	1.8239	1.8763	1.9223	1.9604	1.9878	1.9998	1.9912	1.9587
1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	0.9333	0.6649	0.3668	0.0400
0.0	0.3103	0.5833	0.8202	1.0231	1.1947	1.3385	1.4583	1.5581	1.6419
1.7133	1.7755	1.8307	1.8803	1.9242	1.9611	1.9879	1.9998	1.9912	1.9587
1.9002	1.8141	1.6990	1.5539	1.3781	1.1712	0.9333	0.6649	0.3668	0.0400
0.0 1.7226 1.9002	0.3174 1.7822 1.8141	0.5958 1.8351 1.6990	0.8363 1.8829 1.5539	1.0412 1.9255	1.2135 1.9615 1.1712	1.3568 1.9879 0.9333	1.4751 1.9998 0.6649	1.5727 1.9912 0.3668	1.6539 1.9587 0.0400


```
.366539
.379375
  .397169
  .445002
 .491935
.537806
              .391259
               .402665
.411663
 .537806
.582457
.625741
.667512
.707633
.745967
               .414758
.438176
               .470520
               .482211
.492589
  .816604
               .505572
  .848553
               .522309
  .878013
               .541463
  .904794
               .558632
  .928619
               .568655
               .573043
  .949283
               .582279
.603604
.637355
  .966649
  .980588
  .990960
  .997553
               .604970
1.000000 0.000000
```

WING PANEL CORNER POINT COORDINATES
1 AND 3 INDICATE WING PANEL LEADING-EDGE POINTS, 2 AND 4 INDICATE TRAILING-EDGE POINTS

PANEL	×.	Y_	z.	x_	Y	z	x_	Y_	z_	×,	Y	Z,
	1	1	. 1	2	2	2	3	3	3	4	4	4
1	0.00000	0.00000	0.00000	2.38401	0.00000	0.00000	3.15117	1.46970	26162	5.24959	1.46970	26162
Ž	2.38401	0.00000	0.00000	4.76802	0.00000	0.00000	5.24959	1.46970	26162	7.34801	1.46970	26162
3	4.76802	0.00000	0.00000	7.15203	0.00000	0.00000	7.34801	1.46970	26162	9.44643	1.46970	26162
4	7.15203	0.00000	0.00000	9.53604	0.00000	0.00000	9.44643	1.46970		11.54485	1.46970	26162
5 6	9.53604 11.92005	0.00000		11.92085 14.30406	0.00000	0.00000	11.54485	1.46970 1.46970		13.64326 15.74168	1.46970 1.46970	26162 26162
7	14.30406	0.00000	0.00000	16.68807	0.00000		15.74168	1.46970		17.84010	1.46970	26162
8	16.68807	0.00000		19.07208	0.00000		17.84010	1.46970		19.93852	1.46970	26162
. 9	19.07208	0.00000		21.45609	0.00000		19.93852	1.46970		22.03693	1.46970	26162
10 11	21.45609 3.15117	0.00000 1.46970	0.00000 26162	23.84010 5.24959	0.00000 1.46970	26162	22.03693 6.29862	1.46970 2.93940	35610	24.13535 8.11185	1.46970 2.93940	26162 35610
12	5.24959	1.46970	26162	7.34801	1.46970	26162	8.11185	2.93940	35610	9.92507	2.93940	35610
13	7.34801	1.46970	26162	9.44643	1.46970	26162	9.92507	2.93940	35610	11.73830	2.93940	35610
14	9.44643	1.46970		11.54485	1.46970		11.73830	2.93940		13.55152	2.93940	35610
15 16	11.54485 13.64326	1.46970 1.46970		13.64326 15.74168	1.46970 1.46970	26162	13.55152 15.36475	2.93940 2.93940		15.36475 17.17798	2.93940 2.93940	35610
17	15.74168	1.46970		17.84010	1.46970		17.17798	2.93940		18.99120	2.93940	35610 35610
18	17.84010	1.46970		19.93852	1.46970		18.99120	2.93940		20.80443	2.93940	35610
19	19.93852	1.46970		22.03693	1.46970		20.80443	2.93940		22.61765	2.93940	35610
20 21	22.03693 6.29862	1.46970 2.93940	26162 35610	24.13535 8.11185	1.46970	26162 35610	22.61765 9.41663	2.93940		24.43088	2.93940	35610
22	8.11185	2.93940	35610	9.92507	2.93940		10.94787	4.40910 4.40910		10.94787 12.47911	4.40910 4.40910	35299 35299
23	9.92507	2.93940		11.73830	2.93940		12.47911	4.40910		14.01035	4.40910	35299
24	11.73830	2.93940		13.55152	2.93940		14.01035	4.40910	35299	15.54159	4.40910	35299
25 26	13.55152 15.36475	2.93940 2.93940		15.36475 17.17798	2.93940 2.93940		15.54159 17.07283	4.40910 4.40910		17.07283	4.40910	35299
27	17.17798	2.93940		18.99120	2.93940		18.60407	4.40910		18.60407 20.13531	4.40910 4.40910	35299 35299
28	18.99120	2.93940		20.80443	2.93940		20.13531	4.40910		21.66655	4.40910	35299
29	20.80443	2.93940		22.61765	2.93940		21.66655	4.40910		23.19780	4.40910	35299
30 31	22.61765 9.41663	2.93940 4.40910		24.43088 10.94787	2.93940 4.40910		23.19780	4.40910		24.71.114	4.40910	35299
32	10.94787	4.40910	35299		4.40910		12.39644	5.87880 5.87880		13.60146 14.92649	5.87880 5.87880	30662 30662
33	12.47911	4.40910	35299	14.01035	4.40910		14.92649	5.87880		16.19151	5.87880	30662
34	14.01035	4.40910	35299		4.40910		16.19151	5.87880		17.45654	5.87880	30662
35 36	15.54159 17.07283	4.40910 4.40910	35299	17.07283 18.60407	4.40910 4.40910		17.45654 18.72156	5.87880 5.87880		18.72156 19.98658	5.87880 5.87880	30662 30662
37	18.60407	4.40910		20.13531	4.40910		19.98658	5.87880		21.25161	5.87880	30662
38	20.13531	4.40910		21.66655	4.40910		21.25161	5.87880		22.51663	5.87880	30662
39	21.66655	4.40910	35299		4.40910	35299		5.87880		23.78166	5.87880	30662
40 41	23.19780 12.39644	4.40910 5.87880		24.72904 13.66146	4.40910 5.87880		23.78166 15.06760	5.87880 7.34850		25.04668 16.10689	5.87880	30662
42	13.66146	5.87880		14.92649	5.87880		16.10689	7.34850		17.14617	7.34850 7.34850	28225 28225
43	14.92649	5.87880	30662	16.19151	5.87880		17.14617	7.34850		18.18546	7.34850	28225
44	16.19151	5.87880		17.45654	5.87880		18.18546	7.34850		19.22474	7.34850	28225
45 46	17.45654 18.72156	5.87880 5.87880		18.72156	5.87880		19.22474	7.34850	28225		7.34850	28225
47	19.98658	5.87880		19.98658 21.25161	5.87880 5.87880		20.26403	7.34850 7.34850		21.30331 22.34260	7.34850 7.34850	28225 28225
48	21.25161	5.87880	30662	22.51663	5.87880		22.34260	7.34850			7.34850	28225
49	22.51663	5.87880		23.78166	5.87880		23.38188	7.34850	28225	24.42117	7.34850	28225
50 51	23.78166 15.06760	5.87880 7.34850	30662	25.04668 16.10689	5.87880		24.42117	7.34850		25.46045	7.34850	28225
52	16.10689	7.34850		17.14617	7.34850 7.34850		17.45966 18.32375	8.81820 8.81820	25240 25240	18.32375 19.18784	8.81820 8.81820	25240 25240
53	17.14617	7.34850		18.18546	7.34850		19.18784	8.81820		20.05194	8.81820	25240
												· -

54	18.18546 7.34850	28225 19.22474	7.34850	28225	20.05194	8.81820	25240	20.91603	8.81820	25240
55	19.22474 7.34850			28225	20.91603	8.81820	25240		8.81820	25240
56	20.26403 7.34851		7.34850		21.78012	8.81820			8.81820	25240
57	21.30331 7.34850				22.64421	8.81820			8.81820	25240
58	22.34260 7.34850		7.34850 7.34850		23.50830	8.81820			8.81820	25240
59 60	23.38188 7.34850 24.42117 7.34850				24.37240 25.23649	8.81820 8.81820			8.81820 8.81820	25240 25240
61	17.45966 8.81820				19.74613			20.46717 1		22147
62	18.32375 8.81820				20.46717			21.18821 1		22147
63	19.18784 8.81820	25240 20.05194	8.81820	25240	21.18821	10.28790		21.90925 1		22147
64	20.05194 8.81820				21.90925			22.63030 1		22147
65	20.91603 8.81820				22.63030			23.35134 1		22147
66	21.78012 8.81820		8.81820 8.81820		23.35134			24.07238 1		22147 22147
67 68	22.64421 8.81820 23.50830 8.81820				24.07238 24.79342			24.79342 1 25.51446 1		22147
69	24.37240 8.81820				25.51446			26.23550 1		22147
70	25.23649 8.81820				26.23550			26.95654 1		22147
71	19.74613 10.28790				22.01218			22.60050 1		21696
72	20.46717 10.28790				22.60050			23.18882 1		21696
73	21.18821 10.28790				23.18882			23.77715 1		21696
74	21.90925 10.28790				23.77715			24.36547 1		21696
75 76	22.63030 10.28790 23.35134 10.28790				24.36547			24.95379 1 25.54211 1		21696 21696
77	24.07238 10.28790				25.54211			26.13043 1		21696
78	24.79342 10.28790				26.13043			26.71876 1		21696
79	25.51446 10.28790				26.71876			27.30708 1		21696
80	26.23550 10.28790				27.30708			27.89540 1		21696
81	22.01218 11.75760				24.27673			24.73405 1		23033
82	22.60050 11.75760				24.73405			25.19138 1		23033
83 84	23.18882 11.75760 23.77715 11.75760				25.19138 25.64870			25.64870 1 26.10602 1		23033 23033
85	24.36547 11.75760				26.10602			26.56334 1		23033
86	24.95379 11.75760				26.56334			27.02067 1		23033
87	25.54211 11.75760				27.02067			27.47799 1		23033
88	26.13043 11.75760				27.47799			27.93531 1		23033
89	26.71876 11.75760				27.93531			28.39263 1		23033
90 91	27.30708 11.75760 24.27673 13.22730				28.39263 27.50000			28.84996 1 27.73063 1		23033 15660
92	24.73405 13.22730				27.73063			27.96126 1		15660
93	25.19138 13.22730				27.96126			28.19189 1		15660
94	25.64870 13.22730				28.19189			28.42252 1		15660
95	26.10602 13.22730				28.42252			28.65315 1		15660
96	26.56334 13.22730				28.65315			28.88378 1		15660
97	27.02067 13.22730				28.88378			29.11441 1		15660
98 99	27.47799 13.22730 27.93531 13.22730				29.11441 29.34504			29.34504 1 29.57567 1		15660 15660
100	28.39263 13.22730				29.57567			29.80630 1		15660
100	20.37203 13.22/30	.23033 20.04770	13,22,30	. 23033	.,,,	17.07/00	. 13000	27.00030 1	1.07700	.13000

WING PANEL EDGE POINTS ON CHORD PASSING THROUGH CENTROID, AND INCLINATION ANGLES

POINT	X CP	Y СР	Z CP	THETA RAD	CAMBER Slope	THICKNESS SLOPE	S THETA DEG
1 2	1.54212 3.78637	.71924 .71924	12803 12803	17617 17617	.24757 .04066	.22476 .05069	-10.09362 -10.09362
3	6.03062	.71924	12803	17617	.00836	.02517	-10.09362
4	8.27486	.71924	12803	17617	.00204	.01160	-10.09362
5	10.51911	.71924	12803	17617	.00060	00001	-10.09362
6	12.76336	.71924	12803	17617	.00011	01151	-10.09362
7 8	15.00760 17.25185	.71924 .71924	12803 12803	17617 17617	.00003 00007	02260 03327	-10.09362 -10.09362
9	19.49610	.71924	12803	17617	00007	04356	-10.09362
1Ó	21.74034	.71924	12803	17617	00012	05342	~10.09362
11	23.98459	.71924	12803	17617	.00004	06293	-10.09362
12	4.68665	2.18669	30771	06419	.22607	.24992	-3.67804
13 14	6.64594 8.60523	2.18669 2.18669	30771 30771	06419 06419	.11128 .06991	.04370 .02078	-3.67804 -3.67804
15	10.56451	2.18669	30771	06419	.04366	.01040	-3.67804
16	12.52380	2.18669	30771	06419	.02720	00001	-3.67804
ĩŽ	14.48309	2.18669	30771	06419	.01483	01151	-3.67804
. 18	16.44238	2.18669	30771	06419	.00694	02260	-3.67804
19	18.40166	2.18669	30771	06419	.00234	03327	-3.67804
20 21	20.36095 22.32024	2.18669 2.18669	30771 30771	06419 06419	00007 00070	04356 05342	-3.67804 -3.67804
22	24.27952	2.18669	30771	06419	00089	06293	-3.67804
23	7.81381	3.65360	35459	.00212	.20064	.26777	.12123
24	9.49000	3.65360	35459	.00212	.12746	.03874	.12123
25	11.16620	3.65360	35459	.00212	.10248	.01769	.12123
26	12.84240	3.65360	35459	.00212	.08301	.00954	.12123
27 28	14.51859 16.19479	3.65360 3.65360	35459 35459	.00212 .00212	.06598 .05018	00002 01151	.12123 .12123
29	17.87098	3.65360	35459	.00212	.03549	02260	.12123
30	19.54718	3.65360	35459	.00212	.02282	03327	.12123
31	21.22338	3.65360	35459	.00212	.01444	04356	.12123
32	22.89957	3.65360	35459	.00212	.00908	05342	.12123
33	24.57577	3.65360	35459	.00212	.00526	06293	.12123
34 35	10.85925 12.26161	5.12063 5.12063	33054 33054	.03154 .03154	.18141 .13367	.27824 .03582	1.80714 1.80714
36	13.66397	5.12063	33054	.03154	.11637	.01587	1.80714
37	15.06632	5.12063	33054	.03154	.10546	.00903	1.80714
38	16.46868	5.12063	33054	.03154	.09215	00002	1.80714
39	17.87103	5.12063	33054	.03154	.07651	01151	1.80714
40	19.27339	5.12063	33054	.03154	.06129	02260	1.80714
41 42	20.67575 22.07810	5.12063 5.12063	33054 33054	.03154 .03154	.04951 .04101	03327 04356	1.80714 1.80714
43	23.48046	5.12063	33054	.03154	.03315	05342	1.80714
44	24.88282	5.12063	33054	.03154	.02683	06293	1.80714
45	13.68841	6.58965	29483	.01658	.16756	. 28155	. 94997
46	14.84425	6.58965	29483	.01658	.14700	.03489	- 94997
47 48	16.00009 17.15593	6.58965	29483 29483	.01658 .01658	.12221 .11226	.01532 .00888	.94997 .94997
48 49	18.31177	6.58965 6.58965	29483 29483	.01658	.11226	00003	.94997
ŠÓ	19.46761	6.58965	29483	.01658	.09035	01151	. 94997
51	20.62345	6.58965	29483	.01658	.08084	02260	. 94997
52	21.77929	6.58965	29483	.01658	.07283	03327	. 94997
53	22.93513	6.58965	29483	.01658	.06498	04356	. 94997
54	24.09097	6.58965	29483	.01658	.05773	05342	. 94997

55	25.24681	6.58965	29483	.01658	.05104	06293	. 94997
				.01030		00273	
56	16.22693	8.06080	26778	.02031	.21703	.28166	1.16353
57	17.18131	8.06080	26778	.02031	.15970	.03486	1.16353
58	18.13569	8.06080	26778	.02031	.11822	.01531	1.16353
59	19.09006	8.06080	26778	.02031	.10738	.00886	1.16353
60	20.04444		- 24779	02071	10047	00003	1.16353
		8.06080	26778	.02031	.10063	00003	
61	20.99881	8.06080	26778	.02031	.09681	01151	1.16353
62	21.95319	8.06080	26778		00709	02260	1.16353
92	21.73317	0.00000	20//0	.02031	.07300	02260	1.10333
63	22.90757	8.06080	26778	.02031	.08834	03327	1.16353
64	23.86194	8.06080	26778	.02031	.09308 .08834 .08323 .07774	04356	1.16353
92	23.00177	0.0000	.20776	.02031	.00323	07336	1.10223
65	24.81632	8.06080	26778	.02031	.07774	05342	1.16353
66	25.77069	8.06080	26778	.02031	.07234	06293	1.16353
				.02034	.07207		1.10333
67	18.56850	9.53094	23740	.02104	.20328	.28166	1.20562
68	19.36322	9.53094	23740	.02104	. 15367	.03486	1.20562
69	20 15704	9.53094	23740	02106	11107	01571	
	20.15794	7.23074	23/40	.02104	.11100	.01531	1.20562
70	20.95266	9.53094	23740	.02104	.10228	.00886	1.20562
71	21.74738	9.53094	23740	.02104	00039	- 00007	1.20562
<u> </u>	21./7/30	7.23077	23/70	.02104	. 0 7 7 3 0	-,00003	
72	22.54210	9.53094	23740	.02104	.15367 .11183 .10228 .09938 .09781	-,00003 01151 02260	1.20562
73	23.33681	9.53094	23740	.02104	09602	- 02260	1.20562
		0 57884	- 077/4	.06107	.07002	. 02200	1.60705
74	24.13153	9.53094	23740	.02104	.093//	03327	1.20562
75	24.92625	9.53094	23740	.02104	.09377 .09116	04356	1.20562
76	25.72097	9.53094	23740	.02104	00005	05342	
		7.23074			.08825 .08473	05342	1.20562
77	26.51569	9.53094	23740	.02104	.08473	06293	1.20562
78	20.84087	10.99792	21929	.00307	.18112	.28166	.17582
40	20.07007	10.77772	21727	.00307	.10115		
79	21.49780	10.99792	21929	.00307	. 15256	.03486	.17582
80	22.15472	10.99792	21929	.00307	.12246 .10188 .09720	.01531	.17582
		10.77772		.00507	.12270	.01551	.17502
81	22.81164	10.99792	21929	.00307	.10122	.00886	.17582
82	23.46857	10.99792	21929	.00307	.09720	00003	.17582
	24.12549				00677		
83	24.12349	10.99792	21929	.00307	.09473	01151	.17582
84	24.78242	10.99792	21929	.00307	.09327	02260	.17582
85	25.43934	10.99792	21929	.00307	.09219	03327	.17582
		10.77772	.21727	.00307	.07217	03327	.17362
86	26.09626	10.99792	21929	.00307	.09095	04356	.17582
87	26.75319	10.99792	21929	.00307	.09095 .08952	05342	.17582
		10.00702		.00307	.00732	.05572	.17502
88	27.41011	10.99792	21929	.00307	.08773	06293	.17582
89	23.09717	12.46176	22337	00910	. 17826	.28166	52125
9ó	23.62273	12 44174	_ 22337	00910	15344		
	23.022/3	12.46176 12.46176	22337	00710	.15366 .13000	.03486	52125
91	24.14829	12.46176	22337 22337	00910	.13000	.01531	52125
92	24.67384	12.46176	- 22337	00910	.10887	.00886	52125
72	27.0/304	12.701/0	2233/	00710	.1000/	.0000	
93	25.19940	12.46176	22337	00910	.09458	00003	52125
94	25.72496	12.46176	22337 .	00910	. 0 9 0 6 9	01151	52125
	24 25050	10 44174	22337 · 22337	- 00010	00007	. 01177	
95	26.25052	12.46176	2233/	00910	.08841	02260	52125
96	26.77607	12.46176	22337	00910	.08665	03327	52125
97	27.30163	12.46176	22337	00910	00536		
	51.20103	12.401/0	2233/	00710	.08534	04356	52125
98	27.82719	12.46176	22337	00910	.08463	05342	52125
99	28.35275	12.46176	22337	00910	.08399	06293	52125
	20.33273	12.70170	. 22337	00910	. 00377		
100	25.71135	13.88143	19751	.05013	.17521	.28166	2.87197
101	26.06777	13.88143	19751	.05013	14852	.03486	2.87197
	20.00777	13.00173	.17751	.05015	.17072		
102	26.42420	13.88143	19751	.05013	.13272	.01531	2.87197
103	26.78062	13.88143	19751	.05013	.17521 .14852 .13272 .11784	.00886	2.87197
	27 17765	17 00167	- 10751	05017	1077/	- 00003	
104	27.13705	13.88143	19751	.05013	.10374	00003	2.87197
105	27.49348	13.88143	19751	.05013	.08835	01151	2.87197
106	27.84990	13 00167	19751	.05013	0.02.00	02260	2 97107
	27.04790	13.88143	~.I7/5I	.02013	.08389	02200	2.87197
107	28.20633	13.88143	19751	.05013	.08100	03327	2.87197
108	28.56275	13.88143	19751	.05013	.07904	04356	2.87197
	20.302/3	13.00113					
109	28.91918	13.88143	19751	.05013	.07786	05342	2.87197
110	29.27560	13.88143	19751	.05013	.07665	06293	2.87197

	4854	AHADD
PANEL	AREA	CHORD
1 2	3.34569 3.34569	2.24425 2.24425
3	3.34569	2.24425 2.24425 2.24425 2.24425
4	3.34569 3.34569	2.24425
5	3.34569	2.24425
5 6 7	3.34569	2.24425
7	3.34569 3.34569	2.24425
8	3.34569 3.34569 3.34569 3.34569	2.24425
9 10	3.34569 3.34569	2.24423
11	2.88040	1.95929
12	2.88040	2.24425 2.24425 2.24425 2.24425 2.24425 2.24425 2.24425 1.95929
12 13	2.88040 2.88040	1.////
14	2.88040 2.88040	1.95929 1.95929
15 16	2.88040	1.95929
16	2.88040 2.88040	1.95929
17 18	2.88040	1.95929
19	2.88040 2.88040	1.95929 1.95929
ŽÓ	2.88040	1.95929
21	2.88040 2.45769	1.95929 1.67620
22	2.45769	1.95929 1.67620 1.67620 1.67620
23	2.45769	1.67620
24	2.45/69	1.6/620
26	2.45769	1.67620 1.67620 1.67620 1.67620
27	2.45769	1.67620
20 21 223 245 227 227 289 311 333	3.34569 3.3	1.67620 1.67620 1.67620 1.67620 1.40236 1.40236
29	2.45769	1.67620
30	2.45769	1.67620
31	2.05586	1.40236
32	2.05586	1.40236 1.40236 1.40236 1.40236 1.40236 1.40236
34	2.05586 2.05586	1.40236
35 36	2.05586	1.40236 1.40236
36	2.05586 2.05586	1.40236
37	2.05586 2.05586	1.40236 1.40236 1.40236
38	2.05586	1.40236
39 40	2.05586	1.40236
41	2.05586 1.69355	1.40236 1.40236 1.15584
42	2.05586 2.05586 2.05586 2.05586 2.05586 1.69355 1.69355 1.69355	1.40236 1.40236 1.40236 1.40236 1.15584 1.15584 1.15584 1.15584 1.15584 1.15584
43	1.69355	1.15584 1.15584
44	1.69355	1.15584 1.15584
45	1.69355	1.15584
46	1.69355	1.15584
47 48	1.69355 1.69355	1.15584 1.15584
49		1.15584
5.0	1.69355	1 15584
51	1.69355 1.39899	.95438
52	1.39899	. 95438
53	1.39899	. 95438
54	1.39899	. 95438
51 52 53 54 55 56	1.39899	.95438 .95438
57	1.39899 1.39899 1.39899	. 95438 . 95438 . 95438
	0/0//	.,,,,,,,,

84 .76842 .5. 85 .76842 .5. 86 .76842 .5. 87 .76842 .5. 88 .76842 .5. 90 .76842 .5. 91 .50618 .3. 92 .50618 .3. 93 .50618 .3.	9472 9472 9472 9472 9692 5692 5692 5692 2556 22556 22556 22556 22556 3643 3643 3643
91 .50618 .3 92 .50618 .3 93 .50618 .3 94 .50618 .3 95 .50618 .3 96 .50618 .3 97 .50618 .3 98 .50618 .3 99 .50618 .3	5643 5643 5643

```
SAEROIN
NOPT = 2, -3, 0, 2, 1, 0, 0, 0, 0, 0,
MXSTMS = 3,
XSTN
      0.0, 0.0,
XAPEX = .3907E+01,
YAPEX = 0.0,
XLAMDA = .57E+02,
SEND
IPART=
         1
NWING= 100 NCPT= 110 NSEG=
NROW(N),N=1, 10
10 10 1
                  10
                        10
                                  10
                                       10
                                            10
                                                 10
NCOL(N),N=1, 10
                   1
                        1
                             1
                                  1
                                        1
                                             1
                                                  1
PARTITION = 5 TIME = 214.94400 INFLUENCE OF WING ON WING
END OF AIC CALCULATIONS, TIME = 249.42000
NBODY=
         0
NBBLOK=
          1
IPART=
         1
HWING=
       100 NCPT=
                  110 NSEG=
                               10
NROW(N), N=1, 10
10 10
             10
                   10
                        10
                             10
                                  10
                                       10
                                             10
                                                 18
NCOL(N), N=1, 10
                   1
                        1
                              1
                                   1
                                        1
                                             1
                                                  1
NWBLOK≃
         10
IPART=
NWING=
         8 NCPT=
                    0 NSEG=
NWBLOK=
          1
VELCMP, TIME = 249.77200
```

1st DEPARTURE FROM USSAERO

PRESSURE .00000

WING/BODY SOLUTION

CONICAL CAMBER PANEL DESIGN

INPUT M=1.62, ALPHA=12.0 , AZ=33.00 XSTN=19.90

ETA DCP 0.00000 .30112 .05001 .30210 .10004 .30469 .15006 .30891 .20001 .31527 .24983 .32539	GC D O
.05001 .30210 .10004 .30469 .15006 .30891 .20001 .31527	
.10004 .30469 .15006 .30891 .20001 .31527	
.15006 .30891 .20001 .31527	
.20001 .31527	
24983 32539	
167700 106707	
.29941 .33818	
.34858 .35212	
.39717 .36654 .44500 .37938	
.49194 .39126	
.53781 .40267	
.58246 .41166	
.62 <u>57</u> 4 .4 <u>1</u> 476	
.66751 .43818	
.70763 .47052 .74597 .48221	
.78235 .49259	
.81660 .50557	
.84855 .52231	
.87801 .54146	
. 90479 . 55863	
.92862 .56866 .94928 .57304	
.96665 .58228	
.98059 .60360	
.99096 .63736	
.99755 .60497	
1.00000 0.00000	

PANEL	x	Y	ETA
1	3.67416	.71924	1.00000
Ž	5.91841	.71924	.55063
3	8.16265	.71924	.26025
4	10.40690	.71924	.17039
5	12.65115	.71924	.12666
6	14.89539	.71924	.10079
7	17.13964	.71924	.08370
8	19.38389	.71924	.07156
9	21.62813	.71924	.06250
10	23.87238	.71924	.05547

IF η < $\eta_{\rm DR}$, pressure is not specified on the panel. If η > $\eta_{\rm DR}$, the interpolated value of $\Delta c_{\rm p}$ is prescribed.

166	11 12 13 14 15 16 17 18 19	6.54797 8.50726 10.46655 12.42584 14.38512 16.34441 18.30370 20.26299 22.2227 24.18156	2.18669 2.18669 2.18669 2.18669 2.18669 2.18669 2.18669 2.18669 2.18669	1.00000 .73196 .51333 .39527 .32136 .27073 .23389 .20587 .18385	.00000	
	21 22 23 24 25 26 27 28 29	9.40619 11.08239 12.75859 14.43478 16.11098 17.78717 19.46337 21.13957 22.81576 24.49196	3.65360 3.65360 3.65360 3.65360 3.65360 3.65360 3.65360 3.65360	1.00000 .78408 .63560 .53440 .46100 .40533 .36166 .32648 .29754	.00000 .49324	
	31 32 33 34 35 36 37 38 39	12.19149 13.59385 14.99620 16.39856 17.80092 19.20327 20.60563 22.00799 23.41034 24.81270	5.12063 5.12063 5.12063 5.12063 5.12063 5.12063 5.12063 5.12063 5.12063 5.12063	.95179 .81400 .71106 .63123 .56752 .51549 .47220 .43562 .40429 .37717	.57438 .50458	
	412 444 445 446 447 48 490	14.78646 15.94230 17.09814 18.25398 19.40982 20.56566 21.72150 22.87734 24.03318 25.18902	6.58965 6.58965 6.58965 6.58965 6.58965 6.58965 6.58965 6.58965 6.58965	.93269 .84312 .76924 .70727 .65454 .60912 .56960 .53490 .50418 .47680	.56952 .51946 .48885	
	5123 554 557 557 559 60	17.13359 18.08797 19.04234 19.99672 20.95110 21.90547 22.85985 23.81422 24.76860 25.72298	8.06080 8.06080 8.06080 8.06080 8.06080 8.06080 8.06080 8.06080 8.06080	.93845 .87530 .82010 .77146 .72826 .68965 .65492 .62352 .59500	.57074 .53970 .50741 .48948	

61 62 63 64 65 66 67 68 69	19.32349 20.11821 20.91292 21.70764 22.50236 23.29708 24.09180 24.88651 25.68123 26.47595	9.53094 9.53094 9.53094 9.53094 9.53094 9.53094 9.53094 9.53094 9.53094	.95199 .90532 .86302 .82449 .78925 .75690 .72710 .69956 .67403	.57448 .55885 .53171 .50970 .49520 .48533
71 72 73 74 75 76 77 78 79	21.46495 22.12187 22.77880 23.43572 24.09265 24.74957 25.40649 26.06342 26.72034 27.37726	10.99792 10.99792 10.99792 10.99792 10.99792 10.99792 10.99792 10.99792 10.99792	.96454 .92975 .89739 .86720 .83898 .81254 .78771 .76435 .74234 .72157	.58116 .56890 .55388 .53443 .51729 .50403 .49462 .48746
81 82 83 85 86 87 88 90	23.59645 24.12201 24.64757 25.17312 25.69868 26.22424 26.74980 27.27535 27.80091 28.32647	12.46176 12.46176 12.46176 12.46176 12.46176 12.46176 12.46176 12.46176 12.46176	.97461 .94927 .92521 .90235 .88059 .85985 .84007 .82117 .80311 .78583	.59445 .57304 .56722 .55706 .54311 .52965 .51786 .50797 .50046
91 92 93 94 95 96 97 98 99	26.04995 26.40638 26.76280 27.11923 27.47565 27.83208 28.18851 28.54493 28.90136 29.25778	13.88143 13.88143 13.88143 13.88143 13.88143 13.88143 13.88143 13.88143 13.88143	.96534 .95005 .93524 .92087 .90695 .89344 .88032 .86759 .85522	.58158 .57345 .57006 .56540 .55954 .55135 .54294 .53468 .52664
PANEL	Х	Y	η	$\Delta C_{\mathbf{p}}$

CAMBER SLOPES AT PANEL CONTROL POINTS (95% of Panel)

SPANWISE STATION	1	2	3	4	5	6	7	8	9	10
CHORDWISE STATION 1 2 3 4 5 6 7 8 9 10	.05663 18038 34828 40399 37131 29035 25976 23002 20364	.12507 02475 10448 13539 12809 12915 13045 13324 14508	.15772 .00888 03153 07917 08731 10306 11329 12286 13408 14717	11266 12201 17095 20048 21317 21797 20705 19405 17799 16484	00318 03042 03522 06817 10640 13231 14348 14510 14616 14649	.01929 01487 03068 03081 07114 09661 12079 13398 13863 13729	.02787 00797 02682 03669 04247 04806 07920 09664 10984 11813	.03718 .00255 01796 03088 04209 05122 05427 05935 08247	.04737 .01614 00384 01920 03234 04565 05637 06476 07282 07723	.15638 .09926 .06457 .03998 .02014 .00368 01025 02200 03602 04800
WING CHORD LENGTHS(C)									
	22.44247	19.59287	16.76196	14.02357	11.55840	9.54376	7.94718	6.56924	5.25557	3.56426
TANGENT OF THE LO	CAL INCIDE	NCE ANGLE								
	.25604	.09621	.06519	.17812	.09569	.07555	.05379	.03933	.03087	02677
CAMBER SLOPE	(slo	pes have α	removed,	so that the	e camber li	ine starts	and ends a	t 0.0)		
SPANWISE STATION	1	2	3	4	5	6	7	8	9	10
CHORDWISE STATION 1 2 3 4 5 6 7 8 9 10	.31267 .07565 09224 14795 11527 07326 03431 00372 .02602 .05240	.22128 .07146 00827 03918 03188 03294 03424 03702 04887 06036	.22290 .07406 .03366 01398 02212 03787 04810 05767 06889 08199	.06545 .05610 .00717 02236 03506 039893 01594 .00012 .01328	.09251 .06527 .06048 .02752 01071 036719 04940 05047	.09484 .060487 .04474 .00441 02106 04524 05843 06308	.08167 .04583 .02698 .01710 .01132 .005741 04284 05605 06434	.07651 .04187 .02136 .00845 00277 01189 01495 02003 04315	.07824 .04701 .02703 .01167 00147 0147 02550 03389 04195	.12961 .07249 .03780 .01321 00663 02309 03703 04877 06280
CAMBER SHAPE										
SPANWISE STATION	1	2	3	4	5	6	7	8	9	10
CHORDWISE STATION 1 2 3 4 5	.03127 .03883 .02961 .01481 .00329	.02213 .02927 .02845 .02453 .02134	.02229 .02970 .03306 .03166 .02945	.00655 .01216 .01287 .01064 .00713	.00925 .01578 .02183 .02458 .02351	.00948 .01555 .02004 .02451 .02495	.00817 .01275 .01545 .01716 .01829	.00765 .01184 .01397 .01482 .01454	.00782 .01253 .01523 .01640	.01296 -95% .02021 of panel .02399 .02531 .02465

Note: 95% is taken to be equal to the T.E. location on the last panel

6 7 8 9 10 WING CAMBER	00404 00747 00784 00524 00000	.01805 .01463 .01092 .00604 00000	.02086 .01509 .00820 00000	.00315 .00025 00134 00133 00000	.01985 .01507 .01013 .00508 00000	.02285 .01832 .01248 .00617 00000	.01886 .01632 .01204 .00643 00000	.01335 .01186 .00986 .00554 00000	.01477 .01222 .00883 .00464 00000	.02234 .01863 .01376 .00748	
SPANWISE S	HOITATE	1	2	3	4	5	6	7	8	9	10
CHORDWISE	STATION										
1 2		.10404 13298	.15504 .00522	.18748 .03865	11079 12014	.00226 02498	.02613 00804	.03504	.04411 .00947	.05362	.16781
į		31470	08854	02345	16116	03426	02752	00080 02305	01386	.02238 .00016	.11068 .07151
4		39285	12921	06964	19457	06158	03079	03472	02830	01612	.04490
5		37785	~.12955	08568	21063	09875	06307	04131	03985	02971	.02411
6		33770	12894	09991	21701	12713	09151	04694	04939	04299	.00697
7		29814	13019	11124	20923	14125	11595	07297	~.05366	05423	~.00746
8		26588	13268	12094	19665	14477	13134	09315	05834	06308	01965
10		23596 20892	14271 15427	13184 14455	18121	14595 14667	~.13770	~.10720	07785 00228	07121	~.03322
10		20072	1342/	14433	16747	14643	~.13756	11648	09228	~.07635	~.84561

NOTE: ONCE THE CAMBER SLOPES ARE DEFINED, THE PROGRAM BEGINS A STANDARD ANALYSIS. IF $\alpha \neq 0$, THEN α IS ADDED TO THE SLOPES FOR ANALYSIS.

VFIX: FOR CARLSON CORRECTION IS BASED ON FLAT PLATE LINEAR THEORY AND IS 0 FOR DESIGN (α = 0).

WING UPP	ER SUR	FACE CONT			MACH=1.620 SOLUTION	ALPHA=	0.000	VFIX=		00000 LOPES AT C	ONTROL POINT	S		, t = \$\frac{1}{2}\frac{1}{2}
POINT	×	Y		Z	G	U	٧	1	W	DZCDX	DZTDX (THICKNESS)	CP (CA	CPSTR RLSON COR	POINT RECTION)
1	3.674	16 .71	1924	1280	.00000	00416	50	1955	.12645	. 05663	.05939	.00833	.02470	1
ž	5.918		1924	1280		.11214		6585	10359	18038	.02645	22428	22681	2
3	8.162	65 .73	1924	1280	.34812	.1649	03	5451	27769	34828	.01228	32980	26381	3
4	10.406		1924	1280		.1449		1837	35298	40399	.00057	28982	16779	4
	12.651		1924	1280		. 09651		3428	34697	37131	01093	19301	06088	5
	14.895	39 .7	1924	1280		.07278		9717	32275	32930	02204	14555	03207	6
	17.139	64 .7.	1924	1280		.0697		8380	29698	29035	03274	13946	04857	7
	19.383		1924	1280		.0709		.8267 .7593	27711 25864	25976 23002	04305 05292	14182 14733	06728 08512	8 9
	21.628 23.872		1924 1924	1280 1280		.0780		7617	24198	20364	06246	15607	10402	10
11	6.547		8669	3077		.0195		5431	.18033	.12507	.05401	03909	00103	iĭ
12	8.507		8669	3077		.1151		4562	.01369	02475	.02192	23031	24815	12
	10.466		8669	3077	,28722	.1471		8720	07456	10448	.01092	-,29423	29884	13
	12.425		8669	3077		.1365		6867	11718	13539	.00051	27316	27295	14
	14.385		8669	3077	71 .18776	.1108	52	2016	12535	12809	01093	22171	21978	15
	16.344		8669	3077		.0968		20106	13870	12915	02204	19368	18958	16
	18.303		8669	3077		.0909		9250	15132	13045	03274	18190	17476	17
	20.262		8669	3077		.0933		9097	16462	13324	04305	18678	17514	18
	22.222		8669	3077	71 .11940	.0969	3]	9245	18637	14508	05292	19387	17534	19
	24.181		8669	3077	11804	.1030		9055	20764	15657	06246	20611	17844	20 21
21 22	9.406 11.082		5360 5360	3545 3545	59 .00000 59 .24662	.0362		8629 7300	.20671 .02824	.15772 .00888	.05019 .01874	07256 26613	02647 28125	51
	12.758		5360	354		.1558		9683	02221	03153	.00995	31171	31867	22 23
	14.434		5360	354		.1558		9454	07934	07917	.00046	31160	31540	24
	16.110		5360	354		.1240		4989	09879	08731	01093	24818	25704	25
	17.787		5360	354		.1153	9 - 3	3199	12561	10306	02204	23077	23532	26
	19.463		5360	354		.1060	2 - 2	2112	14651	11329	03274	21205	21423	27
	21.139		5360	3545	59 .13940	.1058		21603	16636	12286	04305	21168	20845	28
	22.815		5360	3545	59 .13656	.1098		21480	18746	13408	05292	21960	20951	29
	24.49	96 3.6	5360	354		.1117		1282	21008	14717	06246	22342	20600	30
	12.191		2063	330		.1944		9215	07737	11266	.04794	38890	39101	31
	13.593		2063	330		.1414		30223	~.11428	12201	.01687	28291	29824	32
	14.996	20 5.1	2063 2063	330		.1592 .1554		51814 50848	17120	17095	.00938 .00043	31849	31944	33 34
	16.398 17.800		2063	330! 330!		.1292		27487	20988 23287	20048 - <i>.</i> 21317	01093	31081 25858	30462 25037	34 35
36	19.203	27 5 1	2063	330	54 .18034	.1195	7 5	25684	24823	21797	02204	23910	22480	36
	20.60		2063	330		.1089		24235	24755	20765	03274	21798	20329	37
	22.00		2063	330		.1039		23706	24493	19405	04305	20791	19461	38
	23.410		2063	330		.1041	52	23226	23854	17799	05292	20830	19562	39
40	24.812		2063	330	54 .11538	.1078	32	23024	23482	16484	06246	21566	20229	40
	14.786		8965	2948		.2066		37698	.03780	00318	.04722	41326	39762	41
	15.942		8965	2948		.1500		28770	01885	03042		30006	30869	42
	17.098		8965	2948	.24443	.1396		26595	03076	03522	.00920	27936	28829	43
	18.25		8965	2948	3 .27922	.1573	9;	28339	07274	06817	.00042	31469	31490	44
	19.409		8965	294		.1572 .1470		2 8130 26959	12202	10640	01094	31439	31010	45
	21.72		8965 8965	2948 2948		.1470		25611	15884 18049	13231 14348	02204 03274	29400 28025	28829 27081	46 47
	22.87		8965	294		.1304		24513	19224	14510	04305	26095	25109	48
	24.03		8965	2948	83 .15775	.1267		24113	20311	14616	05292	~.25348	24187	49
	25.18		8965	294		.1262		23762	21292	14649	06246	25257	23773	5Ó
	17.13		6080	267		.2247		36678	.05909	.01929	.04720	44940	41016	51
	18.08		6080	267	78 .26985	.1627	8:	27573	00418	01487	.01628	32556	32098	52
	19.042		6080	267		.1471		25212	02652	03068		29432	29413	53
	19.99		6080	267		. 1433		23900	03517	03081	.00042	28678	28519	54
55	20.95	TO 8.0	6080	267	78 .27854	.1713	4:	26842	08744	07114	01094	34269	32701	55

56	21.90547	8.06080	26778	.27076	.17260	26857	12413	09661	02204	34520	32566	56
57	22.85985	8.06080	26778	.25216	.16824	26335	15890	12079	03274	33649	31465	57
58	23.81422	8.06080	26778	.21905	.15862	24885	18212	13398	04305	31725	29424	58
59	24.76860	8.06080	26778	.19114	.14893	23894	19644	13863	05292	29787	27534	59
60		8.06080				23334						
	25.72298		26778	.16992	.14201		20453	13729	06246	28402	26215	60
61	19.32349	9.53094	23740	.28724	.24097	37345	.06725	.02787	.04720	48194	42551	61
62	20.11821	9.53094	23740	.27943	.17457	27885	.00246	00797	.01628	34914	33601	62
63	20.91292	9.53094	23740	.26586	.15601	25606	02301	02682	.00918	31201	30679	63
64	21.70764	9.53094	23740	. 25485	.15469	24527	04143	03669	.00042	30939	30174	64
65	22.50236	9.53094	23740	.24760	.16007	24786	05861	~.04247	01094	32015	30880	65
66	23.29708	9.53094	23740	.24267	.16402	25089	∽.07537	04806	02204	32803	31383	66
67	24.09180	9.53094	23740	.27582	.18296	26752	~.11760	07920	03274	36592	33858	67
68	24.88651	9.53094	23740	.26415	.18369	26880	14537	09664	04305	36737	33708	68
69	25.68123	9.53094	23740	.24085	.17891	25771	16823	10984	05292	35781	32536	69
78	26.47595	9.53094	23740	.21174	.16879	24639	~.18582	11813	06246	33758	30662	70
71	21.46495	10.99792	21929	.29058	.25237	38431	.08269	.03718	.04720	50473	43719	71
72	22.12187	10.99792	21929	.28445	.18297	28797	.01772	.00255	.01628	36593	34815	72
73	22.77880	10.99792	21929	.27694	.16503	26758	00977	01796	.00918	33007	~.32138	73
74	23.43572	10.99792	21929	.26722	.16536	26452	~.03191	03088	.00042	33072	32061	74
73	24.09265	10.99792	~.21929	.25865	.16972	26131	05441	04209	01094	33944	32433	75
76	24.74957	10.99792	21929	.25202	.17407	26363	07473	05122	02204	34814	~.32925	76
	25.40649	10.77772	21929 21929									
77				.24731	.17737	26610	08857	05427	03274	35475	~.33304	77
78	26.06342	10.99792	~.21929	.24373	.17883	26660	10322	05935	04305	35766	33369	78
79	26.72034	10.99792	21929	.26874	.19663	28184	13626	08247	05292	39327	~.35548	79
80	27.37726	10.99792	~.21929	.25832	.19878	27645	15805	09474	06246	39756	35406	88
81	23.59645	12.46176	22337	.29723	.26526	39917	.09779	.04737	.04720	53052	45014	81
82	24.12201	12.46176	22337	. 28652	.18992	29623	.03490	.01614	.01628	37984	35793	82
83	24.64757	12.46176	22337	.28361	.17285	27776	.00770	00384	.00918	34570	33374	83
84	25.17312	12.46176	~.22337	.27853	.17305	28220	01644	01920	.00042	34610	33506	84
85	25.69868	12.46176	22337	.27156	.18132	27262	04122	03234	01094	36264	34150	85
86	26.22424	12.46176	22337	.26483	.19055	27392	06563	04565	02204	38109	35141	86
87	26.74980	12.46176	22337	.25893	.19468	27443	08708	05637	03274	38935	35494	87
88	27.27535	12.46176	22337	.25398	.19757	27558	10582	06476	-,04305	39514	35710	88
89	27.80091	12.46176	22337	.25023	.19675	27304	12326	07282	05292	39351	35387	89
90	28.32647	12.46176	22337	.24695	,20148	27840	13717	07723	06246	40297	35917	90
91	26.04995	13.88143	19751	.29079	.23525	47981	.18111	.15638	.04720	47850	43678	91
92	26.40638	13.88143	19751	.28673	.19333	40657	.09633		.01628	38666	38746	92
								.09926				
93	26.76280	13.88143	19751	.28503	.18710	40038	.05504	.06457	.00918	37421	38358	93
94	27.11923	13.88143	19751	.28270	.18867	40732	.02161	.03998	.00042	37734	38981	94
95	27.47565	13.88143	19751	.27977	.18899	41259	00946	.02014	01094	37797	39310	95
96	27.83208	13.88143	19751	.27568	.19400	42344	03720	.00368	02204	38801	40170	96
97	28.18851	13.88143	19751	.27147	.19593	43044	06184	01025	03274	39187	40567	97
98	28.54493	13.88143	19751	.26734	.19957	43392	08374	02200	04305	39914	40970	98
99	28.90136	13.88143	19751	. 26332	.20859	42733	10700	03602	05292	41719	41485	99
100	29.25778	13.88143	19751	.25975	.21108	42863	13211	04800	06246	42216	41689	100

SC3 DEMO WING ALONE FOR COMBINED ANALYSIS DESIGN-CRAIDON GEOMETRY AERO SECTION - DEMO WING - BASIC L.E.

SPANWISE PRESSURE DISTRIBUTION

ON THE WING UPPER SURFACE

Ј5ТН= 1 ј0	X(JST)=	15.50000 ETA	BASIC CP	CARLSON CORRECTION CPSTR
1 2 3 4 5	.71924 2.18669 3.65360 5.12063 6.58965	.09554 .29045 .48530 .68016 .87528	14391 20576 27129 31573 34338	03651 20259 27831 31412 34272
JSTN= 2	X(JST)=	19.90000		
JQ	Y	ETA	CP	CPSTR
1 2 3 4 5 6 7	.71924 2.18669 3.65360 5.12063 6.58965 8.06080 9.53094	.06925 .21054 .35178 .49303 .63448 .77612	14309 18587 21195 22861 30574 28755 38560	07138 17507 21273 21411 30085 28610 36058
JSTN= 3	X(JST)=	24.40000		
JQ	Y	ETA	CP	CPSTR
1 2 3 4 5 6 7	3.65360 5.12063 6.58965 8.06080 9.53094 10.99792 12.46176	.27454 .38477 .49515 .60570 .71616 .82640 .93639	22321 21349 25319 30535 36649 34351 36178	20619 20033 24056 28264 33800 32663 34513

INTERPOLATION OF RESULTS FROM CONTROL POINTS TO SPECIFIED X STATION TO PROVIDE SPANWISE PRESSURE DISTRIBUTIONS SC3 DEMO WING ALONE FOR COMBINED ANALYSIS DESIGN-CRAIDON GEOMETRY AERO SECTION – DEMO WING – BASIC L.E.

INTEGRATION OF THE PRESSURE DISTRIBUTION

ON THE WING UPPER SURFACE

INTERPOLATION OF PRESSURES TO PANEL MIDPOINT

	MACH=	1.6200	ALPHA= 0.	0000					
POINT	x	Y	Z	X/C	2Y/B	Z/C	СР	CPSTR	POINT
1	2.66425	.71924	12803	.05000	.04894	0.00000	.00833	.02470	1
2	4.90849	.71924	12803	.15000	.04894	0.00000	22428	22681	2
3	7.15274	.71924	12803	.25000	.04894	0.00000	32980	26381	3 4
4	9.39699	.71924	12803	.35000	.04894	0.00000	28982	16779	
	11.64123	.71924	12803	.45000	.04894	0.00000	19301	06088	5
	13.88548	.71924	12803	.55000	.04894	0.00000	14555	03207	6
	16.12973 18.37397	.71924 .71924	12803 12803	.65000	.04894	.00000	13946	04857	7
	20.61822	.71924	12803 12803	.75000 .85000	.04894 .04894	0.00000 0.00000	14182 14733	06728 08512	8 9
	22.86247.	.71924	12803	.95000	.04894	0.00000	14/33	10402	10
11	5.66629	2.18669	30771	.05000	.14878	0.00000	03909	00103	11
12	7.62558	2.18669	30771	.15000	.14878	00000	23031	24815	12
13	9.58487	2.18669	30771	.25000	.14878	0.00000	29423	29884	13
	11.54416	2.18669	30771	.35000	.14878	00000	27316	27295	14
	13.50344	2.18669	30771	.45000	.14878	0.00000	22171	21978	îż
	15.46273	2.18669	30771	.55000	.14878	00000	19368	18958	16
17	17.42202	2.18669	30771	.65000	.14878	0.00000	18190	17476	17
18	19.38131	2.18669	30771	.75000	.14878	00000	18678	17514	18
19	21.34059	2.18669	30771	.85000	.14878	0.00000	19387	17534	19
	23.29988	2.18669	30771	.95000	.14878	00000	20611	17844	20
21	8.65191	3.65360	35459	.05000	.24859	0.00000	07256	02647	21
	10.32810	3.65360	35459	.15000	.24859	0.00000	26613	28125	22
	12.00430	3.65360	35459	.25000	. 24859	0.00000	31171	31867	23
	13.68049	3.65360	35459	.35000	.24859	0.00000	31160	31540	24
	15.35669	3.65360	35459	.45000	.24859	0.00000	24818	25704	25
	17.03289	3.65360	35459	.55000	. 24859	0.00000	23077	23532	26
	18.70908	3.65360	35459 35459	.65000 .75000	.24859	0.00000	21205	21423	27
	20.38528 22.06147	3.65360 3.65360	35459 35459	.85000	.24859 .24859	0.00000 00000	21168 21960	20845	28
	22.00147	3.65360	35459	.95000	.24859	0.00000	21960 22342	20951 20600	29 30
	11.56043	5.12063	33054	.05000	.34841	0.00000	38890	39101	31
	12.96279	5.12063	33054	.15000	.34841	0.00000	28291	29824	32
	14.36514	5.12063	33054	.25000	.34841	0.00000	31849	31944	33
	15.76750	5.12063	33054	.35000	.34841	.00000	31081	30462	34
	17.16986	5.12063	33054	.45000	.34841	0.00000	25858	25037	35
	18.57221	5.12063	33054	.55000	.34841	0.00000	23910	22480	36
	19.97457	5.12063	33054	.65000	.34841	0.00000	21798	20329	37
	21.37693	5.12063	33054	.75000	.34841	0.00000	20791	19461	38
	22.77928	5.12063	33054	.85000	.34841	0.00000	20830	19562	39
	24.18164	5.12063	33054	.95000	.34841	0.00000	21566	20229	40
	14.26633	6.58965	29483	.05000	.44837	0.00000	41326	39762	41
	15.42217	6.58965	29483	.15000	.44837	0.00000	30006	30869	42
	16.57801	6.58965	29483	.25000	.44837	0.00000	27936	28829	43
	17.73385	6.58965	29483	.35000	.44837	0.00000	31469	31490	44
45	18.88969	6.58965	29483	.45000	.44837	0.00000	31439	31010	45

46	20.04553	6.58965	29483	.55000	.44837	0.00000	29400	28829	46
									47
47	21.20137	6.58965	29483	.65000	.44837	0.00000	28025	27081	
48	22.35721	6.58965	29483	.75000	.44837	0.00000	26095	25109	48
49	23.51305	6.58965	29483	.85000	.44837	0.00000	25348	24187	49
50	24.66889	6.58965	29483	.95000	. 44837	0.00000	25257	23773	50
51	16.70412	8.06080	26778	.05000	.54847	0.00000	44940	41016	51
						0.00000	32556	32098	52
52	17.65850	8.06080	26778	.15000	.54847				
53	18.61287	8.06080	26778	.25000	.54847	0.00000	29432	29413	53
54	19.56725	8.06080	26778	.35000	.54847	0.00000	28678	28519	54
55	20.52163	8.06080	26778	.45000	.54847	0.00000	34269	32701	55
56	21.47600	8.06080	26778	.55000	.54847	0.00000	34520	32566	56
			26778		.54847	0.00000	33649	31465	57
57	22.43038	8.06080		.65000					
58	23.38475	8.06080	26778	.75000	.54847	0.00000	31725	29424	58
59	24.33913	8.06080	26778	.85000	. 54847	0.00000	29787	27534	59
60	25.29351	8.06080	26778	.95000	.54847	0.00000	28402	26215	60
61	18.96586	9.53094	23740	.05000	.64850	0.00000	48194	42551	61
62	19.76058	9.53094	23740	.15000	.64850	00000	34914	33601	62
								~.30679	63
63	20.55530	9.53094	23740	.25000	.64850	00000	31201		
64	21.35002	9.53094	23740	.35000	.64850	.00000	30939	30174	64
65	22.14474	9.53094	23740	.45000	.64850	00000	32015	30880	65
66	22.93945	9.53094	23740	.55000	.64850	00000	32803	31383	66
67	23.73417	9.53094	23740	.65000	.64850	00000	36592	33858	67
68	24.52889	9.53094	23740	.75000	.64850	0.00000	36737	33708	68
69	25.32361	9.53094	23740	.85000	.64850	00000	35781	32536	69
70	26.11833	9.53094	23740	.95000	.64850	00000	33758	30662	70
71	21.16934	10.99792	21929	.05000	.74831	0.00000	50473	43719	71
72	21.82626	10.99792	21929	.15000	.74831	0.00000	36593	34815	72
73	22.48318	10.99792	21929	.25000	.74831	0.00000	33007	32138	73
74	23.14011	10.99792	21929	.35000	.74831	0.00000	33072	32061	74
75	23.79703	10.99792	21929	.45000	.74831	0.00000	33944	32433	75
76	24.45395	10.99792	21929	.55000	.74831	0.00000	34814	32925	76
77	25.11088	10.99792	~.21929	.65000	.74831	0.00000	35475	33304	77
78	25.76780	10.99792	21929	.75000	.74831	0.00000	35766	33369	78
79	26.42473	10.99792	21929	.85000	.74831	0.00000	39327	35548	79
					.74831		39756	35406	8Ó
80	27.08165	10.99792	21929	.95000		0.00000			
81	23.35995	12.46176	22337	.05000	.84791	0.00000	53052	45014	81
82	23.88551	12.46176	22337	.15000	.84791	0.00000	37984	35793	82
83	24.41107	12.46176	22337	.25000	.84791	0.00000	34570	33374	83
84	24.93662	12.46176	22337	.35000	.84791	0.00000	34610	33506	84
- 85	25.46218	12.46176	~.22337	.45000	.84791	0.00000	36264	34150	85
								35141	86
86	25.98774	12.46176	22337	.55000	.84791	0.00000	38109		
87	26.51330	12.46176	22337	.65000	.84791	0.00000	38935	35494	87
88	27.03885	12.46176	22337	.75000	.84791	0.00000	39514	35710	88
89	27.56441	12.46176	22337	.85000	.84791	0.00000	39351	35387	89
90	28.08997	12.46176	22337	.95000	.84791	0.00000	40297	35917	90
91	25.88956	13.88143	19751	.05000	.94451	0.00000	47050	43678	91
92	26.24598	13.88143	19751	.15000	. 94451	.00000	38666	38746	92
93	26.60241	13.88143	19751	.25000	. 94451	.00000	37421	38358	93
94	26.95884	13.88143	19751	.35000	. 94451	.00000	37734	38981	94
95	27.31526	13.88143	19751	.45000	.94451	.00000	37797	39310	95
96	27.67169	13.88143	19751	.55000	.94451	.00000	38801	40170	96
97	28.02811	13.88143	19751	.65000	.94451	0.00000	39187	48567	97
98	28.38454	13.88143	19751	.75000	. 94451	.00000	39914	40970	98
99	28.74097	13.88143	19751	.85000	.94451	.00000	41719	41485	99
100	29.09739	13.88143	19751	.95000	.94451	.00000	42216	41689	100

POINT	×	Y	z	G	U	٧	W	DZCDX	DZTDX	CP	CPSTR	POINT
1	3.67416	.71924	12803	.00000	00416	04037	.00951	.05663	.05939	.00833	.00661 .29529	1 2
2	5.91841	.71924	12803	.25386	14172	.20465	24107	18038	.02645 .01228	.28344 .36645	.42450	3
3	8.16265	.71924 .71924	12803 12803	.34812 .29355	18322 14864	.28134 .23901	41583 45336	34828 40399	.01228	.29728	.41696	4
5	10.40690 12.65115	.71924	12803	.17152	07502	.16547	39592	37131	01093	.15003	.25517	
6	14.89539	.71924	12803	.10642	03365	.13249	33665	32930	02204	.06729	.14053	5 6
ž	17.13964	.71924	12803	.08541	01568	.12968	28628	29035	03274	.03136	.07490	7
8	19.38389	.71924	12803	.07951	00860	. 12994	24531	25976	04305	.01721	.04113	8
9	21.62813	.71924	12803	.07356	.00011	.13675	20679	23002	05292	00021	.00585	. 9
10	23.87238	.71924	12803	.07252	.00552	.13945	17128	20364	06246.	01104	01651 03706	10 11
11	6.54797	2.18669	30771	.00000	.01955	06124 .19673	.07253 05868	.12507 02475	.05401 .02192	03909 .22873	.18721	12
12	8.50726 10.46655	2.18669 2.18669	30771 30771	.22952 .28722	11437 14010	.25731	13144	10448	.01092	.28021	.22026	13
13 14	12.42584	2.18669	30771	.26708	13050	.24590	15128	13539	.00051	.26101	.21708	14
15	14.38512	2.18669	30771	.18776	07691	.18803	12968	12809	01093	.15381	.13374	15
16	16.34441	2.18669	30771	.14724	05040	.16129	11781	12915	02204	.10080	.08782	16
17	18.30370	2.18669	30771	.12688	03594	.15141	10781	13045	03274	.07187	.05932	17
18	20.26299	2.18669	30771	.11887	02548	.14800	10014	13324	04305	.05096	.03741	18
19	22.22227	2.18669	30771	.11940	02246	.14810	10219	14508 15657	05292	.04493 .02998	.03148 .01583	19 20
20	24.18156	2.18669	30771	.11804	01499 .03628	.15069 08608	10440 .10634	.15772	06246 .05019	07256	06578	21
21 22	9.40619 11.08239	3.65360 3.65360	35459 35459	.00000 .24662	11356	.20297	00824	.00888	.01874	.22712	.18001	22
23	12.75859	3.65360	35459	.28962	13376	.25382	04094	03153	.00995	. 26752	.19336	23
24	14.43478	3.65360	35459	.29320	13740	.26161	07907	07917	.00046	.27481	.20417	24
25	16.11098	3.65360	35459	.21040	08631	.19410	07598	08731	01093	.17262	.14089	25
26	17.78717	3.65360	35459	.17731	06192	.17350	08066	10306	02204	.12385	.10189	26
27	19.46337	3.65360	35459	.15177	04574	.15953	08022	11329	03274	.09149	07429	27 28
28	21.13957	3.65360	35459	.13940	03356	.15495	07947	12286 13408	04305 05292	.06712 .05351	.05104 .03766	29
29	22.81576 24.49196	3.65360 3.65360	35459 35459	.13656 .13300	02676 02129	.15447 .15501	08083 08438	14717	06246	.04259	.02710	30
30 31	12.19149	5.12063	33054	.28719	02127	.19257	15486	11266	.04794	.18548	.19160	31
32	13.59385	5.12063	33054	.25229	11084	.21616	13168	12201	.01687	.22167	.20528	32
33	14.99620	5.12063	33054	.28876	12951	.26044	17171	17095	.00938	.25903	.23965	33
34	16.39856	5.12063	33054	. 28274	12733	.26061	19279	20048	.00043	.25467	. 24738	34
35	17.80092	5.12063	33054	.21354	08425	.20423	19590	21317	01093	.16849	.18864	35 36
36	19.20327	5.12063	33054	.18034	06079 04037	.18355 .16826	19023 16909	21797 20705	02204 03274	.12157 .08074	.14309	36 37
37 38	20.60563	5.12063 5.12063	33054 33054	.14936 .13090	02694	.15889	14629	19405	04305	.05388	.05903	38
30 39	23.41034	5.12063	33054	.11764	01348	.15540	12040	17799	05292	.02697	.02320	39
40	24.81270	5.12063	33054	.11538	00755	.15593	09765	16484	06246	.01510	.00439	40
41	14.78646	6.58965	29483	.28476	07813	.14199	04805	00318	.04722	.15626	.13987	41
42	15.94230	6.58965	29483	.25973	10970	.18861	04355	03042	.01630	.21940	.18382	42
43	17.09814	6.58965	29483	. 24443	10475	.18702	04165	03522	.00920 .00042	.20949 .24374	.17425	43 44
44	18.25398	6.58965	29483	.27922 .25971	12187 10252	.21647 .19473	06529 09225	06817 10640	01094	.20504	.17937	45
45 46	19.40982 20.56566	6.58965 6.58965	29483 29483	.23153	08453	.17651	10735	13231	02204	.16907	.15597	46
47	21.72150	6.58965	29483	.20048	06036	.16182	10808	14348	03274	.12072	.11213	47
48	22.87734	6.58965	29483	.17271	04224	.15184	09954	14510	04305	.08447	.07564	48
49	24.03318	6.58965	29483	.15775	03101	.14672	09082	14616	05292	.06202	.05188	49
50	25.18902	6.58965	29483	.14536	01907	. 14452	08165	14649	06246	.03815	.02615	50
51	17.13359	8.06080	26778	.28537	06067	.09941	02586	.01929	.04720	.12135	.11320	51 52
52	18.08797	8.06080	26778	.26985 .25370	10707 10654	.16580 .16671	02779 03637	01487 03068	.01628 .00918	.21414 .21308	.18611 .18599	52 53
53 54	19.04234 19.99672	8.06080 8.06080	26778 26778	.253/U .24474	10654 10135	.16810	02774	03081	.00918	.20270	.17377	54
55	20.95110	8.06080	26778	.27854	10720	.17710	05652	07114	01094	.21440	.18685	55
,,,	20.73110	3.0000								/ -		

56 21.99547 8.0608026778 2.791609816 1.6846071160956102204 1.19631 1.7580 55 57 228.5955 8.0608026778 2.5121600331 1.156280880213379806305 1.16783 1.15228 57 58 23.81422 8.0608026778 1.911406220 1.34620880213379806305 1.12086 1.1219 58 59 24.76860 8.0608026778 1.911406220 1.34620880213379806305 1.12086 1.1219 58 60 25.76288 8.0608026778 1.911406220 1.34620880213379806305 1.20866 1.1219 58 60 25.76288 8.0608026778 1.911406220 1.3462082881386305262 0.8641 1.07635 59 60 25.76288 8.0608026778 1.911406220 1.3462082881386305262 0.8641 1.07635 59 60 25.76288 8.0608026778 1.911406220 1.346208264 1.02863 0.04663 60 61 21.32849 5.309423740 2.02624 0.0072206627 1.07522072241372906246 1.05833 0.04663 60 62 21.31862 9.5309423740 2.668610085 1.51150325902682 0.0018 2.1272 1.31925 62 63 21.31862 9.5309423740 2.668610085 1.51150325902682 0.0018 2.1272 1.31925 62 64 21.71649 9.5309423740 2.466008753 1.166140284505469 0.0042 2.00511 1.7657 64 65 22.51236 9.5309423740 2.476008753 1.16614028450424701094 1.17506 1.15446 65 66 23.29708 9.5309423740 2.758200285 1.5249043260922003274 1.18571 1.16497 67 68 24.808651 9.5309423740 2.758200285 1.5249043260920003274 1.18571 1.16497 67 68 24.808651 9.5309423740 2.758200285 1.15249043260942003274 1.18571 1.16497 67 68 24.808651 9.5309423740 2.408506109 1.1316054131008405222 1.12389 1.1066 69 69 25.68123 9.5309423740 2.408506109 1.1316054131008405222 1.12389 1.1066 69 71 22.475755 9.5309423740 2.408506109 1.1316054131008405222 1.12389 1.1066 69 71 22.476755 9.5309423740 2.408506109 1.131605413008400942003274 1.18571 1.16497 67 72 24.74957 10.9979221299 2.408501385 1.181805414054200942003274 1.18571 1.16497 67 73 22.47889 1.09979221299 2.408506108 1.108800814030840084200842 -													
57 22.85985 8 0.668026778 .295008391 .15628084891207903274 16783 .15528 57 82 3.8422 8 .0608026778 .199506083 .14612088801339804395 .12086 .11219 58 59 24.76860 8 .0608026778 .1991404220 .13482082981386304395 .12086 .11219 58 59 24.76860 8 .0608026778 .1699202792 .12827072241372906246 .05583 .04663 .0618 .1219 .1992 .19929 .23740 .27938 .10466 .157120204400797 .01628 .20772 .18435 .62 61 19.32349 .9.5394923740 .27943 .10466 .157120204400797 .01628 .20772 .18435 .62 62 19.1229 .9.5394923740 .27943 .10466 .157120204400797 .01628 .20772 .18435 .62 62 19.1229 .9.5394923740 .27940 .20875 .161120325906822 .00118 .20713 .19463 .62 62 62 .19129 .9.5394923740 .2746008753 .161140325906822 .00118 .20713 .19463 .66 62 25.29708 .9.5394923740 .2746008753 .1614032590426701094 .17536 .15446 .65 62 25.29708 .9.5394923740 .2758209285 .13737023100480602244 .18573 .13891 .66 62 25.29708 .9.5394923740 .2758209285 .13737023100480602244 .18573 .13891 .66 62 24.88651 .9.5394923740 .2045500195 .13316 .05413 .1098405292 .12889 .1066 .69 25.68123 .9.5394923740 .2045500195 .13316 .05413 .1098405292 .12889 .11066 .69 25.68123 .9.5394923740 .2045500195 .13316 .05413 .1098405292 .12889 .11066 .69 25.68123 .9.5394923740 .20455 .00195 .13316 .05413 .1098405292 .12889 .11066 .69 25.68123 .9.5394923740 .20455 .00195 .13316 .05413 .1098405292 .12889 .11066 .69 25.68123 .9.53949 .2.3740 .20455 .00195 .13316 .05413 .1098405292 .12889 .11066 .69 25.68123 .9.53949 .2.3740 .20455 .00195 .13316 .05413 .1098405292 .12889 .10966 .69 25.68123 .9.53949 .2.3740 .20455 .00195 .13316 .05413 .1098405292 .12889 .10666 .69 25.68123 .9.53949 .2.3740 .20455 .00195 .10188 .10	54	21 98567	2 06020	- 26772	27076	- 09816	16846	07116	09661	02204	.19631	. 17580	56
58 23. 81422 8. 06080 -26778 21914 -00420 11462 -08802 -13868 -04592 12864 17358 -04592 12841 17355 59 60 25. 72298 8. 06080 -26778 1692 -02792 12827 -07224 -13729 -08441 107635 59 61 19. 32349 9. 53094 -223740 22792 -126627 -07724 -13729 -06276 05583 .04663 60 62 20. 11821 9. 53094 -223740 22793 -10466 .15712 -00797 -01628 20972 .18435 62 64 21. 7964 9. 53094 -23740 22545 -10016 .15767 -33788 -03669 -00442 .20311 .17637 65 64 22. 52083 9. 53094 -23740 22675 -08765 .16177 -03285 -04247 -00444 .15566 .15566 .15466 .22. 20383 9. 53094 -23740 .2665													
59 24, 76860 8.06080 26778 1.9114 04220 1.3482 08298 13863 05292 .08441 .07635 59 60 25.72298 8.06080 23740 .28724 04627 .07522 01774 .02787 .04720 .09255 .08799 61 62 20.11821 9.53094 23740 .22740 .01571 .02094 00797 .01628 .20792 .18435 22 63 20.91292 9.53094 23740 .26586 10016 .15767 .03378 .03669 .0042 .2031 .17637 46 65 22.50236 9.53094 23740 .24667 .07853 .116115 03279 .004247 -01094 .17506 .15446 65 62 23.53094 23740 .24657 .07852 .09235 .15249 .04247 .01094 .17506 .15446 65 62 23.53094 23740 .27582 .09228 .02924 .00429													
60 25.72298 8.06080 -26778 16992 -02792 12827 -07226 -13729 -05246 05583 04663 60 61 19.32349 9.53094 -23740 27943 -10486 15712 -02094 -00797 01628 20972 18435 62 62 01.1821 9.53094 -23740 25485 -10985 16115 -03259 -02682 00918 21970 19426 63 63 01.91292 9.53094 -23740 25485 -10916 15767 -03378 -03669 00042 20031 17657 64 65 22.50236 9.53094 -23740 25485 -10016 15767 -03378 -03669 00042 20031 17657 64 65 22.50236 9.53094 -23740 24267 -07865 13737 -02310 -04806 -02204 15730 13891 66 67 24.09180 9.53094 -23740 24267 -07865 13737 -02310 -04806 -02204 15730 13891 66 67 24.09180 9.53094 -23740 26415 -08046 14059 -05046 -07920 -03274 18571 16497 67 68 24.88651 9.53094 -23740 26415 -08046 14059 -05046 -07920 -03274 18571 16497 67 68 26.488651 9.53094 -23740 26415 -08046 14059 -05046 -07920 -03274 18571 16497 67 68 27.486123 9.53094 -23740 26415 -08046 14059 -05046 -07920 -03274 18571 16497 67 68 28.88651 9.53094 -23740 26415 -08046 14059 -05046 -07920 -03274 18571 16497 67 68 27.486123 9.53094 -23740 26415 -08046 14059 -05046 -07920 -03274 18571 16497 67 68 27.486123 9.53094 -23740 26405 -06195 13316 -05413 -10984 -05222 12389 11066 69 70 26.47595 9.53094 -23740 21174 -04296 12431 -05307 -11813 -06246 08591 07448 70 71 21.46495 10.99792 -21929 284455 -10148 15126 -01350 00255 01628 20296 17885 72 73 22.77880 10.99792 -21929 284455 -10148 15126 -01350 00255 01628 20296 17885 72 74 23.43572 10.99792 -21929 26722 -10185 15203 -03160 -03040 -03042 20371 18085 74 75 24.74557 10.99792 -21929 26722 -10185 15203 -03160 -03080 00042 20371 18085 74 76 24.74557 10.99792 -21929 26722 -10185 15203 -03160 -03040 -03094 17785 15738 75 76 24.74557 10.99792 -21929 26722 -10185 15203 -03160 -03080 00042 20371 18085 74 78 26.06342 10.99792 -21929 24373 -06490 12477 -01592 -00592 -00592 -00593 13887 12564 77 78 26.06342 10.99792 -21929 24373 -06490 12477 -01592 -00592 -00592 -00592 -00593 13887 12564 77 78 26.06342 10.99792 -21929 24373 -06490 12457 -00592 -00592 -00592 -00592 -00592 -00593 -00592 -00593 -00592 -00593 -00592 -00593 -0059													
60 25.72298 8.0608026778 1.699202792 .12827072241372906246 .05583 .04663 60 61 19.32349 9.5309423740 .2794310486 .157120209400797 .01628 .20972 .18435 62 62 02.11821 9.5309423740 .25658610985 .161150325902682 .00918 .21970 .19426 63 63 02.19292 9.5309423740 .2548510016 .157670337803669 .00042 .20031 .17637 64 65 22.50236 9.5309423740 .2548510016 .157670337803669 .00042 .20031 .17637 64 65 22.50236 9.5309423740 .24660 .08753 .14614028450042701094 .17506 .15446 65 66 23.29708 9.5309423740 .2426707865 .1373702310 .0480602204 .15730 .13891 66 67 24.09180 9.5309423740 .2641508046 .1405908046 .07920 .03274 .18571 .16497 67 68 24.88651 9.5309423740 .2641508046 .140590504409664 .04305 .16092 .14529 68 69 25.68123 9.5309423740 .2641508046 .14059050440966404305 .16092 .14529 68 69 25.68123 9.5309423740 .26415082066 .12431053071181306246 .08591 .07448 70 71 21.46495 10.9979221299 .28495013821 .04610 .01034 .03718 .00720 .01638 .20296 .17885 72 72 22.12187 10.9979221299 .2849510148 .1512601350 .00255 .01628 .20296 .17885 72 73 22.77880 10.9979221299 .2672210185 .1520303166 .03808 .00042 .20371 .18088 73 74 23.43572 10.9979221299 .2672210185 .1520303166 .03808 .00042 .20371 .18088 73 75 24.09265 10.9979221299 .2672210185 .1520303166 .03808 .00042 .20371 .18088 73 76 24.74577 10.9979221299 .2672210185 .1520303166 .03808 .00042 .20371 .18088 73 75 24.09265 10.9979221299 .2672210185 .1520303166 .03808 .00042 .20371 .18088 73 76 24.74577 10.9979221299 .2672210185 .1520303166 .03808 .00042 .20371 .18088 73 77 25.0046 .109979221299 .2672210185 .1520303166 .03808 .00042 .20371 .18088 73 78 25.4064 .109979221299 .2672210185 .15203 .03166 .03808 .00042 .20371 .18088 .73 78 26.6064 .109979221299 .2672210185 .15203 .03166 .03808 .00042 .20371 .18088 .73 78 26.6064 .10	59	24.76860	8.06080	26778	.19114	04220	.13482	08298	13863	05292	.08441	.07635	59
61 19.32349 9.53094 -23740 227943 -10486 1.5712 -02094 -00797 01628 20972 18435 62 20.91292 9.53094 -23740 25585 -10916 1.5712 -02094 -00797 01628 20972 18435 63 64 21.70764 9.53094 -23740 25585 -10916 1.5767 -03259 -02682 00918 21970 19426 63 64 21.70764 9.53094 -23740 25585 -10916 1.5767 -03378 -03669 00042 20031 1.7637 64 65 22.50236 9.53094 -23740 24760 -0.8753 1.4614 -0.2845 -0.04247 -0.1094 1.7506 1.5466 65 66 23.29708 9.53094 -23740 24760 -0.8753 1.4614 -0.2845 -0.04247 -0.1094 1.7506 1.5466 65 66 23.29708 9.53094 -23740 24267 -0.7865 1.5737 -0.2310 -0.04806 -0.2204 1.5730 1.3891 65 66 23.29708 9.53094 -23740 24267 -0.08453 1.5414 -0.2845 -0.04247 -0.1094 1.7506 1.5466 65 66 23.29708 9.53094 -23740 24615 -0.8846 1.4059 -0.08460 -0.2204 1.5730 1.3891 65 66 25.68123 9.53094 -23740 24615 -0.8646 1.4059 -0.08564 -0.07664 -0.4505 1.8092 1.4526 68 69 25.68123 9.53094 -23740 24088 -0.6195 1.3316 -0.08416 -1.0984 -0.05242 1.2389 1.1066 69 71 22.4055 1.5092 1.2092 2.2006 1.3092 1.2006 1.300		25 72298	8 06080	- 26778	16002	- N2792	12827	- 07224	- 13729	- 06246	.05583	.04663	60
62 20.11821 9.5309423740 25686 -1.0985 1.61150235902682 .00918 21970 19426 63 20.1929 9.5309423740 25686 -1.0985 1.61150325902682 .00918 21970 19426 63 21.70764 9.5309423740 25685 -1.0016 1.57670337803669 .00042 .20031 17637 64 65 22.50236 9.5309423740 2476008753 1.4614028450424701094 1.7506 1.5446 65 23.29708 9.5309423740 .2476008753 1.4614028450424701094 1.7506 1.5466 65 24.09180 9.5309423740 .2426707865 1.3737023100480602204 .15730 1.3891 66 67 24.09180 9.5309423740 .2468508046 1.4059050440976003274 1.8571 1.6497 66 25.88123 9.5309423740 .2468506195 1.331608046 .096440964404305 1.6092 1.4529 68 25.88123 9.5309423740 .2408506195 1.3316053071181306246 .8591 .07468 70 71 21.46495 10.9979221929 .2905803821 .0640101034 .03718 .04720 .07643 .07284 71 22.212187 10.9979221929 .2844510148 .1512601356 .00255 .01628 .20296 .17885 72 73 22.77880 10.9979221929 .2672210185 .152030314603088 .00042 .20371 .18085 72 73 22.77880 10.9979221929 .2566508892 .14551503130 .00255 .01628 .20296 .17885 72 74 23.43572 10.9979221929 .2566508892 .14551503130 .00255 .01628 .20296 .17885 75 75 24.09265 10.9979221929 .2566708892 .14551503130 .00255 .01091 .15788 75 75 24.09265 10.9979221929 .2566707955 .13543029410512202046 .15589 .13625 76 77 25.4049 10.9979221929 .2566707955 .13543029110512202046 .15589 .13625 76 77 25.4049 10.9979221929 .2566707955 .13543029110512202046 .15589 .13625 76 77 25.4049 10.9979221929 .2566508892 .145915013100420901094 .17785 .15738 75 75 24.7457 10.9979221929 .2566508892 .145915031300420901094 .17785 .15738 75 75 24.7457 10.9979221929 .2566508892 .145915001300420901094 .15789 .15738 75 75 24.7457 10.9979221929 .2566508892 .145915001300420901094 .15789 .15738 75 75 24.7455 10.9979221929 .2566706964 .12817001094 .10094 .10094 .1													
63 20.91292 9.53094 -23740 25985 -10016 1.9767 -0325902682 .00918 .21970 1.9426 63 64 21.70764 9.5309423740 .25485 -10016 1.9767 -0.0337803669 .00042 .20031 1.7637 64 65 22.50236 9.5309423740 .25486 -1.0036 1.9767 -0.0231004806 -0.02204 1.7506 1.5446 65 62 32.9708 9.5309423740 .2426707865 1.3737 -0.0231004806 -0.02204 1.7506 1.5446 65 62 32.9708 9.5309423740 .2426707865 1.3737 -0.0321004806 -0.02204 1.5730 1.3891 66 66 23.29708 9.5309423740 .2641508446 1.4059050640966404305 1.6092 1.4529 68 69 25.68123 9.5309423740 .2641508446 1.4059050640966404305 1.6092 1.4529 68 69 25.68123 9.5309423740 .21174 -04296 1.24310550105504055071181306246 0.8591 .07448 70 71 21.46495 10.9979221929 .2045803821 .0640101034 .03718 .06720 .07643 .07284 71 72 22.12187 10.9979221929 .2644510148 .1512601350 .00255 .01628 .20296 1.7885 72 73 22.77880 10.9979221929 .26722 -10185 .152030314603088 .00042 .20371 .18085 72 74 23.43572 10.9979221929 .26722 -10185 .152030314603088 .00042 .20371 .18085 74 75 24.09265 10.9979221929 .2580508882 .14505031300420901094 .17785 .15738 75 76 24.74957 10.9979221929 .2580508882 .14505031300420901094 .17785 .15738 75 77 25.4069 10.9979221929 .2637306490 .12437015920593504305 .12980 .11428 78 79 26.72034 10.9979221929 .2637306490 .12437015920593504305 .12980 .11428 78 79 26.72034 10.9979221929 .2637305946 .015920593504305 .12980 .11428 78 79 26.72034 10.9979221929 .2637305954 .12730015920593504305 .12980 .11428 78 82 22.7766 12.4617622337 .2855205954 .12730015920593504305 .12980 .11428 78 82 22.7276 12.4617622337 .2855305954 .12750015920593504305 .21980 .11428 78 82 22.72755 12.4617622337 .2855305954 .127500159205955 .04305 .12880 .11428 78 82 22.72755 12.4617622337 .28538 .07564 .14766 .22337 .04566 .02108 .02534 .00198 .22153 .19931 .28573 .29594 .20464 .13109 .0													
64 21.70764 9.5309423740 .2548510016 .157670337803669 .00042 .20031 .17637 64 65 22.50236 9.5309423740 .2466708753 .14614028450424701094 .17506 .15446 65 66 23.29708 9.5309423740 .2426707865 .13737023100480602204 .15730 .13891 66 67 24.09180 9.5309423740 .2426709265 .152490543260792003274 .18571 .16497 67 68 24.88651 9.5309423740 .2408506195 .15249050640966404305 .16092 .14529 68 69 25.68123 9.5309423740 .2408506195 .13316054031098405292 .12389 .11066 69 70 26.47595 9.5309423740 .2408506195 .13316055071181306246 .08591 .07448 70 71 21.46495 10 .9979221929 .2408503221 .04081053071181306246 .08591 .07448 70 71 21.46495 10 .9979221929 .22769410194 .1512601350 .00255 .01628 .20296 .17885 72 73 22.77880 10 .9979221929 .22769411191 .161380268201796 .00918 .22382 .19688 73 74 23.43572 10 .9979221929 .2286508892 .14505031300420901094 .17785 .15738 75 75 24.09265 10 .9979221929 .2286508892 .14505031300420901094 .17785 .15738 75 76 24.74957 10 .9979221929 .2473106940 .124370131300420901094 .17785 .15738 75 76 24.74957 10 .9979221929 .2473106940 .124370131300420901094 .17785 .15738 75 76 24.74957 10 .9979221929 .2473106940 .12437019320530504305 .12980 .11428 78 77 25.40649 10 .9979221929 .24317 .06940 .12437019320593504305 .12980 .12827 79 26.72034 10 .9979221929 .2437306940 .12437019320593504305 .12980 .12827 79 26.72034 10 .9979221929 .2437306940 .12437019320593504305 .12980 .12428 78 82 27.37726 10 .9979221929 .2437306940 .12437019320593504305 .12980 .13428 78 82 24.2201 12 .4617622337 .2855205954 .1273001940 .00343 .00918 .22153 .19371 .83 82 24.2201 12 .4617622337 .2855305954 .1273001940 .00440 .0	62	20.11821	9.53094	23740	.27943	10486		02094					
64 21.70764 9.5309423740 .2548510016 .157670337803669 .00042 .20031 .17637 64 65 22.50236 9.5309423740 .2466708753 .14614028450424701094 .17506 .15446 65 66 23.29708 9.5309423740 .2426707865 .13737023100480602204 .15730 .13891 66 67 24.09180 9.5309423740 .2426709265 .152490543260792003274 .18571 .16497 67 68 24.88651 9.5309423740 .2408506195 .15249050640966404305 .16092 .14529 68 69 25.68123 9.5309423740 .2408506195 .13316054031098405292 .12389 .11066 69 70 26.47595 9.5309423740 .2408506195 .13316055071181306246 .08591 .07448 70 71 21.46495 10 .9979221929 .2408503221 .04081053071181306246 .08591 .07448 70 71 21.46495 10 .9979221929 .22769410194 .1512601350 .00255 .01628 .20296 .17885 72 73 22.77880 10 .9979221929 .22769411191 .161380268201796 .00918 .22382 .19688 73 74 23.43572 10 .9979221929 .2286508892 .14505031300420901094 .17785 .15738 75 75 24.09265 10 .9979221929 .2286508892 .14505031300420901094 .17785 .15738 75 76 24.74957 10 .9979221929 .2473106940 .124370131300420901094 .17785 .15738 75 76 24.74957 10 .9979221929 .2473106940 .124370131300420901094 .17785 .15738 75 76 24.74957 10 .9979221929 .2473106940 .12437019320530504305 .12980 .11428 78 77 25.40649 10 .9979221929 .24317 .06940 .12437019320593504305 .12980 .12827 79 26.72034 10 .9979221929 .2437306940 .12437019320593504305 .12980 .12827 79 26.72034 10 .9979221929 .2437306940 .12437019320593504305 .12980 .12428 78 82 27.37726 10 .9979221929 .2437306940 .12437019320593504305 .12980 .13428 78 82 24.2201 12 .4617622337 .2855205954 .1273001940 .00343 .00918 .22153 .19371 .83 82 24.2201 12 .4617622337 .2855305954 .1273001940 .00440 .0	63	20.91292	9.53094	23740	. 26586	10985	.16115	03259	02682	.00918	.21970	.19426	63
65 22.50236 9.5309423740 .2476008753 .14614022850624701094 .17506 .15446 65 66 23.29708 9.5309423740 .2750207865 .13573023100480602204 .15730 .13891 66 67 24.09180 9.5309423740 .2753209285 .15249043260792003274 .18571 .16497 67 68 24.88651 9.5309423740 .2641508046 .14059050640966404305 .16092 .14529 68 69 25.68123 9.5309423740 .2641508046 .14059050640966404305 .16092 .12529 68 69 25.68123 9.5309423740 .2408506195 .13316054131098405292 .12389 .11066 69 70 26.47595 9.5309423740 .2117404296 .12431053071181306266 .08591 .07448 70 71 21.46495 10.9979221929 .2905803321 .0640101034 .03718 .04720 .07643 .07284 71 72 22.12187 10.9979221929 .2844510148 .1512601350 .00255 .01668 .20296 .17885 72 73 22.77880 10.9979221929 .2674210185 .152030314603388 .00042 .20371 .18085 74 74 23.43572 10.9979221929 .2672210185 .152030314603388 .00042 .20371 .18085 74 75 24.09265 10.9979221929 .2526207795 .13543029410512202204 .15589 .13825 76 76 24.74957 10.9979221929 .2526207795 .13543029410512202204 .15589 .13825 76 77 25.40649 10.9979221929 .2473106994 .12819021890542703274 .13887 .12364 77 78 26.06342 10.9979221929 .2473106994 .12819021890542703274 .13887 .12364 77 826.06342 10.9979221929 .2583205954 .1273003180064070512202204 .15589 .13825 76 80 27.37726 10.9979221929 .2583205954 .127300318909474052220593504305 .12980 .11428 78 80 27.37726 10.9979221929 .2583205954 .2730031890542705292 .14421 .12821 79 80 27.37726 10.9979221929 .2583205954 .12730031890542705292 .14421 .12821 79 80 27.37726 10.9979221929 .2583205954 .127300318909474052220593504305 .12830 .11428 78 80 27.37726 10.9979221929 .2583205954 .127500593504305 .12830 .14287 .12821 .19766 .22337 .2865205954 .12850 .0595405924 .05935 .05646 .19979 .05542 .05954 .05959 .													64
66 23.29708 9.53094 - 23740 24267 - 07865 13737 - 02310 - 04806 - 0.2204 15730 13891 66 67 24.09180 9.53094 - 23740 27532 - 0.9285 1.5249 - 0.04326 - 0.07920 - 0.3274 1.8571 1.6497 67 68 24.88651 9.53094 - 23740 24085 - 0.6496 1.4059 - 0.50164 - 0.0964 - 0.4305 1.6092 1.4529 68 69 25.68123 9.53094 - 23740 24085 - 0.64195 1.3316 - 0.55413 - 1.0984 - 0.5222 1.2189 1.1066 69 70 26.47595 9.53094 - 23740 24085 - 0.64296 1.2431 - 0.55307 - 1.1813 - 0.6246 0.8591 0.7448 70 1.244495 10.99792 - 2.1929 2.9058 - 0.3321 0.6401 - 0.1034 0.3718 0.04720 0.7643 0.72284 71 1.72 1.244495 10.99792 - 2.1929 2.8445 - 1.0148 1.5126 - 0.1550 0.0255 0.01628 2.0296 1.7885 72 1.727880 10.99792 - 2.1929 2.7694 - 1.1191 1.6138 - 0.2682 - 0.1796 0.0918 2.2336 1.9688 73 1.74 23.44572 10.99792 - 2.1929 2.5865 - 0.8892 1.4505 - 0.03130 - 0.0209 - 0.10094 1.7785 1.5738 75 1.75 24.09265 10.99792 - 2.1929 2.5865 - 0.8892 1.4505 - 0.3130 - 0.04209 - 0.10094 1.7785 1.5738 75 1.75 24.09265 10.99792 - 2.1929 2.25865 - 0.8892 1.4505 - 0.3130 - 0.04209 - 0.10094 1.7785 1.5738 75 1.75 24.06265 10.99792 - 2.1929 2.25302 - 0.7795 1.3543 - 0.2582 - 0.55122 - 0.2204 1.5589 1.3825 76 1.256 1.09792 - 2.1929 2.24373 - 0.6690 1.2437 - 0.1592 - 0.5527 - 0.3224 1.3587 1.3564 77 1.256 1.09792 - 2.1929 2.24373 - 0.6690 1.2437 - 0.1592 - 0.5935 - 0.04305 1.2980 1.1428 78 1.2573 1.2564 77 1.256 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.2566 1.257372 1.25674 1.2581 1.2575 1.2575 1.2575 1.2575 1.2575 1.2575 1.2575 1.2575 1.2575 1.2575 1.2575 1													
67 24.09180 9.53094 -23740 27582 -09285 1.5249 -043260792003274 1.8571 1.6497 67 68 24.88651 9.53094 -23740 26415 -0.08104 1.405905040409305 1.6092 1.4529 88 69 25.68123 9.53094 -23740 24085 -0.6195 1.3316 -0.54131088405292 1.2389 1.1066 69 70 26.47595 9.53094 -23740 21174 -0.04296 1.243105307 -1181306246 0.8591 0.7448 70 71 21.46495 10.99792 -21929 2.804501824 0.0540101034 0.03718 0.04720 0.7643 0.7284 71 72 22.12187 10.99792 -21929 2.804501184 0.1512401350 0.0255 0.01828 2.0294 1.7885 72 73 22.77880 10.99792 -21929 2.804501185 0.0255 0.01828 2.0294 1.7885 72 74 23.43572 10.99792 -21929 2.669411191 1.6138 -0.268201796 0.0918 2.2382 1.9688 73 75 24.09265 10.99792 -21929 2.5865 -0.8892 1.4505 -0.3136 -0.4209 -0.0194 1.7785 1.5738 75 76 24.74957 10.99792 -21929 2.25865 -0.8892 1.4505 -0.3130 -0.4209 -0.0194 1.7785 1.5738 75 77 25.40649 10.99792 -21929 2.4373 -0.6490 1.2437 -0.01592 -0.5535 -0.4305 1.2980 1.1428 78 78 26.06342 10.99792 -21929 2.4373 -0.6490 1.2437 -0.1592 -0.5535 -0.4305 1.2980 1.1428 78 79 26.72034 10.99792 -21929 2.6874 -0.7211 1.2956 -0.2915 -0.8247 -0.5292 1.4461 1.2821 79 80 27.37726 10.99792 -2.1929 2.6874 -0.7211 1.2956 -0.2915 -0.8247 -0.5292 1.4461 -0.2337 2.8652 -0.9600 1.4587 -0.0108 0.0918 2.2153 1.9371 83 82 24.12201 12.46176 -2.2337 2.8535 -0.9650 1.4588 -0.0108 0.0018 0.0018 0.0042 2.2037 1.7055 82 83 24.64757 12.46176 -2.2337 2.8535 -0.0960 1.4587 -0.0108 0.0018 0.0018 0.0004 2.21096 1.8772 84 82 25.17312 12.46176 -2.22337 2.8535 -0.04626 1.1567 -0.0108 0.0018 0.0004 2.21096 1.8772 84 82 25.17312 12.46176 -2.22337 2.5853 -0.04626 1.3567 -0.0215 -0.0004 2.21096 1.8772 84 82 27.27535 12.46176 -2.22337 2.5853 -0.04626 1.3657 -0.02534 -0.01094 1.8067 1.1283 0.0951 88 82 7.27535 12.46176 -2.2337 2.5853 -0.04626 1.3657 -0.02534 -0.01094 1.8067 1.1283 0.0951 88 82 7.27535 12.46176 -2.22337 2.5853 -0.04626 1.3657 -0.02534 -0.01094 1.8067 1.1283 0.0951 88 82 7.27535 12.46176 -2.22337 2.5808 -0.05461 1.11076 1.0050 -0.0108 0.0042 2.1096 1.8772 84													
68 24.88651 9.53094 - 23740 24615 - 08046 14059 - 0.01664 - 0.04505 16092 14529 68 26.08123 9.53094 - 23740 24085 - 0.0195 13316 - 0.05413 - 1.01984 - 0.5292 1.2389 1.1066 69 26.47595 9.53094 - 23740 21174 - 0.0296 1.2431 - 0.05307 - 1.1813 - 0.06246 0.8591 0.7448 70 71 21.46495 10.99792 - 21929 2.0585 - 0.03821 0.06401 - 0.0134 0.03718 0.04720 0.07643 0.7284 71 72 22.12187 10.99792 - 21929 2.26445 - 1.0148 1.15126 - 0.01350 0.0255 0.0628 2.0296 1.7885 72 73 22.77880 10.99792 - 21929 2.27694 - 1.1191 1.16138 - 0.0262 - 0.0756 0.0918 2.2382 1.9688 73 74 23.43572 10.99792 - 21929 2.27694 - 1.1191 1.16138 - 0.0262 - 0.0756 0.0918 2.2382 1.9688 73 74 23.43572 10.99792 - 21929 2.27694 - 1.1191 1.16138 - 0.0262 - 0.0764 0.0042 2.0371 1.8085 74 75 24.09265 10.99792 - 21929 2.25865 - 0.08892 1.14505 - 0.03130 - 0.0420 - 0.01094 1.7785 1.5738 75 76 24.74957 10.99792 - 21929 2.25865 - 0.08892 1.14505 - 0.03130 - 0.0420 - 0.01094 1.7785 1.5738 75 76 24.0469 10.99792 - 21929 2.26731 - 0.06994 1.2819 - 0.02189 - 0.05122 - 0.02204 1.5589 1.3825 76 78 26.06342 10.99792 - 21929 2.26731 - 0.06994 1.2819 - 0.02189 - 0.05427 - 0.03274 1.3987 1.2364 77 826.06342 10.99792 - 21929 2.26874 - 0.07211 1.2956 - 0.02915 - 0.08247 - 0.05202 1.14221 79 80 27.37726 10.99792 - 21929 2.26874 - 0.07211 1.2956 - 0.02915 - 0.08247 - 0.05393 1.0280 1.1428 78 80 27.37726 10.99792 - 21929 2.28832 - 0.05954 1.2730 - 0.03189 - 0.09774 - 0.06246 1.1908 1.03376 80 81 23.59645 12.46176 - 22337 2.2652 - 0.09660 1.14587 - 0.0078 - 0.0474 - 0.06246 1.1908 1.03376 80 81 23.59645 12.46176 - 22337 2.2652 - 0.09660 1.14587 - 0.0078 - 0.0474 - 0.06246 1.1908 1.03376 80 82 4.12201 12.46176 - 22337 2.2652 - 0.09660 1.14587 - 0.0078 - 0.0074 - 0.06246 1.1908 1.03376 80 82 4.12201 12.46176 - 22337 2.2652 - 0.09660 1.14587 - 0.0078 - 0.0042 1.1096 1.0078 82 2.1537 1.2917 80 2.0096 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428 1.2009 1.1428													
68 24.88651 9.53094 -23740 .2641508046 .14059050640966404305 .16092 .14529 68 925.68123 9.53094 -23740 .2408506195 .13316053171098405292 .12389 .11066 69 70 26.47595 9.53094 -23740 .2117406296 .124311053071181306246 .08591 .07448 70 71 21.46495 10.9979221929 .2905803821 .0640101034 .03718 .04720 .07643 .07284 71 72 22.12187 10.9979221929 .2844510148 .1512601350 .00255 .01628 .20296 .17885 72 73 22.77880 10.9979221929 .26769411191 .161380268201766 .00918 .22382 .19688 73 74 23.45572 10.9979221929 .26769411191 .161380268201766 .00918 .22382 .19688 73 74 23.45572 10.9979221929 .2586508892 .14505031500420901094 .17785 .15738 75 76 24.79557 10.9979221929 .2586508892 .14505031500420901094 .17785 .15738 75 76 24.09265 10.9979221929 .2673106994 .12819021890512202204 .15589 .13825 76 77 25.40649 10.9979221929 .2473106994 .12819021890542703274 .13987 .12364 77 826.06342 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 79 26.77264 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 79 26.77726 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 79 26.77726 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 79 26.77726 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 79 26.77726 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 79 26.77726 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 79 26.77726 10.99792 .21929 .2687407211 .12956029150824705393 .06086 81 23.59645 12.4617622337 .2665209660 .1458700169 .01614 .01628 .19320 .17065 82 24.64757 12.4617622337 .2665209660 .1458700169 .01614 .01628 .19320 .17065 82 24.64757 12.4617622337 .2648301608 .14676021300169 .00642 .10909 .00642 .1096 .18772 88 27.75555 12.4617622337 .2648307428 .11076 .100078 .100078 .0	67	24.09180	9.53094	23740	. 27582	09285	.15249	04326	07920	03274	.18571	.16497	67
69 25.68123 9.53094 -23740 24085 -06195 13316 -10984 -05292 12389 11066 69 70 26.47595 9.53094 -23740 22114 -00296 12431 -010357 -11813 -06226 08591 07463 07284 71 71 21.46495 10.99792 -21929 22845 -101148 15126 -01350 00255 01628 20296 17885 72 73 22.77880 10.99792 -21929 22694 -11191 16138 -02682 -01796 00918 22382 19688 73 74 23.43572 10.99792 -21929 226722 -10185 15203 -03166 -03088 .00042 20371 18885 74 75 24.09265 10.99792 -21929 225202 -07795 13543 -02199 -01094 17785 26.06342 10.99792 -21929 24373 -06994 12819 -02189 -03	6.8		9 53096	- 23748	26415	- በጽበፋሉ	14059	- 05066	- 09664	84305	16892	. 14529	68
70													
71 21.46495 10.99792 -21929													
72 22.12187 10.9979221929 .2844510148 .1512601350 .00255 .01628 .20296 .17885 72 .73 22.77880 10.9979221929 .2679411191 .1613802682 .01796 .00918 .22382 .19688 73 .74 23.43572 10.9979221929 .2672210185 .152030314603088 .00042 .20371 .18085 .74 .75 24.09265 10.9979221929 .2586508892 .14505031300420901094 .1785 .15738 .75 .76 .24.74957 10.9979221929 .2580507795 .13543029410512202204 .15589 .13825 .76 .77 25.40649 10.9979221929 .2473106994 .128190218905542703274 .13987 .12364 .77 82 6.06342 10.9979221929 .2473106490 .12437015920593504305 .12980 .11428 .78 .79 26.72034 10.9979221929 .2687407211 .12956029150824705292 .14421 .12821 .79 80 27.37726 10.9979221929 .25832055954 .12730031890947406246 .11908 .10376 .80 .737726 10.9979221929 .25832055954 .12730031890947406246 .11908 .10376 .80 .737726 10.99792 .21929 .28832055954 .12730031890947406246 .11908 .10376 .80 .737726 10.99792 .21929 .28832055954 .12730031890947406246 .11908 .10376 .80 .737726 10.99792 .22337 .2865209660 .1458700169 .01614 .01628 .19320 .17065 .82 .74 .12401 .72 .4617622337 .2865209660 .1458700169 .01614 .01628 .19320 .17065 .82 .74 .74 .74 .74 .74 .74 .74 .74 .74 .74													
73 22.77880 10.9979221929 .2769411191 .161380268201796 .00918 .22382 .19688 73 74 23.43572 10.9979221929 .2586508892 .14505031300420901094 .17785 .15738 75 75 24.09265 10.9979221929 .2586508892 .14505031300420901094 .17785 .15738 75 76 24.74957 10.9979221929 .2586506892 .14505029410512202204 .15589 .13825 76 77 25.40649 10.9979221929 .2473106994 .128190512202204 .15589 .13825 76 78 26.06342 10.9979221929 .2437306994 .12819051220593504305 .12980 .11428 78 79 26.72034 10.9979221929 .2437306490 .12437015920593504305 .12980 .11428 78 80 27.37726 10.9979221929 .2583205954 .12730031890947406246 .11908 .10376 80 81 23.59645 12.4617622337 .2285205954 .12730031890947406246 .11908 .10376 80 82 24.12201 12.4617622337 .2865209660 .1458700169 .01614 .01628 .19320 .17065 82 83 24.64757 12.4617622337 .2865209660 .1458700169 .01614 .01628 .19320 .17065 82 84 25.17312 12.4617622337 .2853610548 .149760212001920 .00042 .21096 .18772 84 85 25.69868 12.4617622337 .2715609023 .15129023210323401094 .18047 .15674 85 86 26.22424 12.4617622337 .2715609023 .15129023210323401094 .18047 .15674 85 87 27.27535 12.4617622337 .2589306462 .13657025540563703274 .12851 .10974 87 88 27.27535 12.4617622337 .2589306462 .13657025540563703274 .12851 .10974 87 88 27.27535 12.4617622337 .2589305641 .13107023420553401094 .18047 .15674 85 89 27.80091 12.4617622337 .2589305641 .13107023420563703274 .12851 .10974 87 90 28.32647 12.4617622337 .2685504547 .12308015890772305292 .10695 .08960 89 90 28.32647 12.4617622337 .2685504547 .12308015890772306246 .09094 .07542 90 91 26.40638 13.8814319751 .2867309554 .12309 .05191 .03998 .00042 .18805 .13703 94 92 26.40638 13.8814319751 .2867309554 .12309 .00102503274 .15856 .09094 .17856 .13968 .00042 .18805 .13703 94 97 27.47565	71	21.46495	10.99792	21929	.29058	03821	.06401	01034	.03718	.04720	.07643	.07284	71
73 22.77880 10.9979221929 .2769411191 .161380268201796 .00918 .22382 .19688 73 74 23.43572 10.9979221929 .2586508892 .14505031300420901094 .17785 .15738 75 75 24.09265 10.9979221929 .2586508892 .14505031300420901094 .17785 .15738 75 76 24.74957 10.9979221929 .2586506892 .14505029410512202204 .15589 .13825 76 77 25.40649 10.9979221929 .2473106994 .128190512202204 .15589 .13825 76 78 26.06342 10.9979221929 .2437306994 .12819051220593504305 .12980 .11428 78 79 26.72034 10.9979221929 .2437306490 .12437015920593504305 .12980 .11428 78 80 27.37726 10.9979221929 .2583205954 .12730031890947406246 .11908 .10376 80 81 23.59645 12.4617622337 .2285205954 .12730031890947406246 .11908 .10376 80 82 24.12201 12.4617622337 .2865209660 .1458700169 .01614 .01628 .19320 .17065 82 83 24.64757 12.4617622337 .2865209660 .1458700169 .01614 .01628 .19320 .17065 82 84 25.17312 12.4617622337 .2853610548 .149760212001920 .00042 .21096 .18772 84 85 25.69868 12.4617622337 .2715609023 .15129023210323401094 .18047 .15674 85 86 26.22424 12.4617622337 .2715609023 .15129023210323401094 .18047 .15674 85 87 27.27535 12.4617622337 .2589306462 .13657025540563703274 .12851 .10974 87 88 27.27535 12.4617622337 .2589306462 .13657025540563703274 .12851 .10974 87 88 27.27535 12.4617622337 .2589305641 .13107023420553401094 .18047 .15674 85 89 27.80091 12.4617622337 .2589305641 .13107023420563703274 .12851 .10974 87 90 28.32647 12.4617622337 .2685504547 .12308015890772305292 .10695 .08960 89 90 28.32647 12.4617622337 .2685504547 .12308015890772306246 .09094 .07542 90 91 26.40638 13.8814319751 .2867309554 .12309 .05191 .03998 .00042 .18805 .13703 94 92 26.40638 13.8814319751 .2867309554 .12309 .00102503274 .15856 .09094 .17856 .13968 .00042 .18805 .13703 94 97 27.47565	72	22.12187	10.99792	21929	. 28445	10148	.15126	01350	.00255	.01628	.20296	.17885	72
74 23.45572 10.99792 -21929													
75													
76													
77	75												
77	76	24.74957	10.99792	21929	.25202	07795	.13543	02941	05122	02204	.15589	.13825	76
78				- 21929						- 03274			
79													
80 27.37726 10.99792 21929 .25832 05954 .12730 03189 09474 06246 .11908 .16376 80 81 23.59645 12.46176 22337 .28652 09660 .14587 00169 .01614 .01628 .19320 .17065 82 83 24.64757 12.46176 22337 .28361 11076 .16050 01464 00384 .00918 .22153 .19371 83 84 25.173312 12.46176 22337 .27853 10548 .14976 02120 .01920 .00042 .21096 .18772 84 85 25.69868 12.46176 22337 .27853 10548 .14976 02120 .01920 .00042 .21096 .18772 84 86 26.22424 12.46176 22337 .25893 07428 .14281 02533 04565 02204 .18856 .12787 86 87 26.74980 12.46176 22337 .25893 05641 .13107 02342 0647													
81 23.59645 12.46176 22337 .29723 03196 .05791 00078 .04737 .04720 .06393 .06086 81 82 24.12201 12.46176 22337 .28652 09660 .14587 00169 .01614 .01628 .19320 .17065 82 83 24.64757 12.46176 22337 .28361 11076 .16050 01464 00384 .00918 .22153 .19371 83 84 25.17312 12.46176 22337 .27156 09023 .15129 02321 03234 01094 .18047 .15674 85 85 25.69868 12.46176 22337 .274683 07428 .14281 02533 04565 02204 .14856 .12787 86 87 26.74980 12.46176 22337 .25893 05641 .13107 02342 06476 04305 .11283 .09551 88 87 2.60911													
82 24.12201 12.46176 22337 .28652 09660 .14587 00169 .01614 .01628 .19320 .17065 82 83 24.64757 12.46176 22337 .28361 11076 .16050 01464 00384 .00918 .22153 .19371 83 84 25.17312 12.46176 22337 .27853 10548 .14976 02120 001920 .00042 .21096 .18772 84 85 25.69868 12.46176 22337 .26483 07428 .14281 02533 01094 .18047 .15674 85 87 26.74980 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 88 27.27535 12.46176 22337 .25398 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176	80	27.37726	10.99792	21929	. 25832	05954	.12730	03189	09474	06246	.11908	.10376	80
82 24.12201 12.46176 22337 .28652 09660 .14587 00169 .01614 .01628 .19320 .17065 82 83 24.64757 12.46176 22337 .28361 11076 .16050 01464 00384 .00918 .22153 .19371 83 84 25.17312 12.46176 22337 .27853 10548 .14976 02120 001920 .00042 .21096 .18772 84 85 25.69868 12.46176 22337 .26483 07428 .14281 02533 01094 .18047 .15674 85 87 26.74980 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 88 27.27535 12.46176 22337 .25398 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176	81	23.59645	12.46176	22337	.29723	03196	.05791	00078	.04737	.04720	.06393	.06086	81
83 24.64757 12.46176 22337 .28361 11076 .16050 01464 00384 .00918 .22153 .19371 83 84 25.17312 12.46176 22337 .27156 09023 .15129 02321 03234 01094 .18047 .15674 85 86 25.69868 12.46176 22337 .26483 07428 .14281 02533 04565 02204 .14856 .12787 86 87 26.74980 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 89 27.80091 12.46176 22337 .25893 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176 22337 .25043 05447 .12308 01284 05284 05292 .10695 .08960 8990 28.32647 12.4													
84 25.17312 12.46176 22337 .27853 10548 .14976 02120 001920 .00042 .21096 .18772 84 85 25.69868 12.46176 22337 .27156 09023 .15129 02334 01094 .18047 .15674 85 86 26.2424 12.46176 22337 .26483 07428 .14281 02533 004565 02204 .14856 .12787 86 87 26.74980 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 88 27.27535 12.46176 22337 .25398 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176 22337 .25033 05347 .12308 01208 07228 05292 .10695 .08960 89 90 28.32647 12.46176 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
85 25.69868 12.46176 22337 .27156 09023 .15129 03221 03234 01094 .18047 .15674 85 86 26.22424 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 88 27.27535 12.46176 22337 .25893 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176 22337 .25023 05347 .13068 02108 07282 05292 .10695 .08960 89 90 28.32647 12.46176 22337 .25023 05347 .12308 01589 07723 06246 .09094 .07542 90 91 26.04995 13.88143 19751 .29079 05554 .16107 .11873 .15638 .04720 .11109 .09591 91 92 26.40638													
86 26.2424 12.46176 22337 .26483 07428 .14281 02533 04565 02204 .14856 .12787 86 87 26.74980 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 88 27.27535 12.46176 22337 .2598 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176 22337 .25023 05347 .13068 02108 07282 05292 .10695 .08960 89 90 28.32647 12.46176 22337 .24695 04547 .12308 01589 07723 06246 .09094 .07542 90 91 26.04995 13.88143 19751 .28673 09340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457													
87 26.74980 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 88 27.27535 12.46176 22337 .25398 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176 22337 .25023 05347 .13068 02108 07282 05292 .10695 .08960 89 90 28.32647 12.46176 22337 .24695 04547 .12308 01589 07723 06246 .09094 .07542 90 91 26.04995 13.88143 19751 .29079 05554 .16107 .11873 .15638 .04720 .11109 .09591 91 92 26.40638 13.88143 19751 .28673 09340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457<	85	25.69868	12.46176	22337	.27156	09023	.15129	02321	03234	01094	.18047	.15674	85
87 26.74980 12.46176 22337 .25893 06426 .13657 02534 05637 03274 .12851 .10974 87 88 27.27535 12.46176 22337 .25398 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176 22337 .25023 05347 .13068 02108 07282 05292 .10695 .08960 89 90 28.32647 12.46176 22337 .24695 04547 .12308 01589 07723 06246 .09094 .07542 90 91 26.04995 13.88143 19751 .29079 05554 .16107 .11873 .15638 .04720 .11109 .09591 91 92 26.40638 13.88143 19751 .28673 09340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457<	86	26.22424	12.46176	22337	. 26483	07428	. 14281	02533	04565	02204	. 34856	. 12787	86
88 27.27535 12.46176 22337 .25398 05641 .13107 02342 06476 04305 .11283 .09551 88 89 27.80091 12.46176 22337 .25023 05347 .13068 02108 07282 05292 .10695 .08960 89 90 28.32647 12.46176 22337 .24695 04547 .12308 01589 07723 06246 .09094 .07542 90 91 26.04995 13.88143 19751 .29079 05554 .16107 .11873 .15638 .04720 .11109 .09591 91 92 26.40638 13.88143 19751 .28673 09340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457 .00918 .19585 .13983 93 94 27.11923 13.88143 19751 .28270 09403 .21339 .05191 .03398 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
89 27.80091 12.46176 22337 .25023 05347 .13068 02108 07282 05292 .10695 .08960 89 90 28.32647 12.46176 22337 .24695 04547 .12308 01589 07723 06246 .09094 .07542 90 91 26.040638 13.88143 19751 .28079 05554 .16107 .11873 .15638 .04720 .11109 .09591 91 93 26.40638 13.88143 19751 .28673 09793 .22523 .06804 .06457 .00918 .19585 .13983 93 94 27.11923 13.88143 19751 .28270 09403 .21339 .05191 .03998 .00042 .18805 .13703 94 95 27.47565 13.88143 19751 .27977 09078 .20237 .04329 .02014 01094 .18156 .13563 95 96 27.83208 13.88143 19751 .27568 08167 .18460 .03745 .00368													
90 28.32647 12.4617622337 .2469504547 .12308015890772306246 .09094 .07542 90 91 26.04995 13.8814319751 .2907905554 .16107 .11873 .15638 .04720 .11109 .09591 91 92 26.40638 13.8814319751 .2867309340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.8814319751 .2850309793 .22523 .06804 .06457 .00918 .19585 .13983 93 94 27.11923 13.8814319751 .2827009403 .21339 .05191 .03998 .00042 .18805 .13703 94 95 27.47565 13.8814319751 .2797709078 .20237 .04329 .0201401094 .18156 .13563 95 96 27.83208 13.8814319751 .2797608167 .18460 .03745 .0036802204 .16334 .12564 96 97 28.18851 13.8814319751 .2714707554 .17122 .033900102503274 .15108 .11900 97 98 28.54493 13.8814319751 .2673406777 .16212 .033970220004305 .13555 .10708 98													
91 26.04995 13.88143 19751 .29079 05554 .16107 .11873 .15638 .04720 .11109 .09591 91 92 26.40638 13.88143 19751 .28673 09340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457 .00918 .19585 .13983 93 94 27.11923 13.88143 19751 .28270 09403 .21339 .05191 .03398 .00042 .18805 .13703 94 95 27.47565 13.88143 19751 .27977 09078 .20237 .04329 .02014 01094 .18156 .13563 95 96 27.83208 13.88143 19751 .27568 08167 .18460 .03745 .00368 02204 .16334 .12564 96 97 28.18851 13.88143 19751 .27147 07554 .17122 .03390 01025													
92 26.40638 13.88143 19751 .28673 09340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457 .00918 .19585 .13983 93 94 27.11923 13.88143 19751 .28270 09403 .21339 .05191 .03398 .00042 .18805 .13703 94 95 27.47565 13.88143 19751 .27977 09078 .20237 .04329 .02014 01094 .18156 .13563 95 96 27.83208 13.88143 19751 .27568 08167 .18460 .03745 .00368 02204 .16334 .12564 96 97 28.18851 13.88143 19751 .26734 06774 .16212 .03237 00200 04305 .13555 .10708 98	90	28.32647	12.46176	22337	.24695	04547	.12308	01589	07723	06246	.09094	.07542	90
92 26.40638 13.88143 19751 .28673 09340 .22294 .09531 .09926 .01628 .18679 .13637 92 93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457 .00918 .19585 .13983 93 94 27.11923 13.88143 19751 .28270 09403 .21339 .05191 .03398 .00042 .18805 .13703 94 95 27.47565 13.88143 19751 .27977 09078 .20237 .04329 .02014 01094 .18156 .13563 95 96 27.83208 13.88143 19751 .27568 08167 .18460 .03745 .00368 02204 .16334 .12564 96 97 28.18851 13.88143 19751 .26734 06774 .16212 .03237 00200 04305 .13555 .10708 98	91	26.04995	13.88143	19751	.29079	05554	.16107	.11873	. 15638	.04720	.11109	.09591	91
93 26.76280 13.88143 19751 .28503 09793 .22523 .06804 .06457 .00918 .19585 .13983 93 94 27.11923 13.88143 19751 .28270 09403 .21339 .05191 .03998 .00042 .18805 .13703 94 95 27.47565 13.88143 19751 .27977 09078 .20237 .04329 .02014 01094 .18156 .13563 95 96 27.83208 13.88143 19751 .27568 08167 .18460 .03745 .00368 02204 .16334 .12564 96 97 28.18851 13.88143 19751 .27147 07554 .17122 .03390 01025 03274 .15108 .11900 97 98 28.54493 13.88143 19751 .26734 06777 .16212 .03237 02200 04305 .13555 .10708 98													
94 27.11923 13.88143 19751 .28270 09403 .21339 .05191 .03998 .00042 .18805 .13703 94 95 27.47565 13.88143 19751 .27977 09078 .20237 .04329 .02014 01094 .18156 .13563 95 96 27.83208 13.88143 19751 .27568 08167 .18460 .03745 .00368 02204 .16334 .12564 96 97 28.18851 13.88143 19751 .27147 07554 .17122 .03390 01025 03274 .15108 .11900 97 98 28.54493 -13.88143 19751 .26734 06777 .16212 .03237 02200 04305 .13555 .10708 98													
95 27.47565 13.8814319751 .2797709078 .20237 .04329 .0201401094 .18156 .13563 95 96 27.83208 13.8814319751 .2756808167 .18460 .03745 .0036802204 .16334 .12564 96 97 28.18851 13.8814319751 .2714707554 .17122 .033900102503274 .15108 .11900 97 98 28.54493 13.8814319751 .2673406777 .16212 .032370220004305 .13555 .10708 98							.22523						
96 27.83208 13.8814319751 .2756808167 .18460 .03745 .0036802204 .16334 .12564 96 97 28.18851 13.8814319751 .2714707554 .17122 .033900102503274 .15108 .11900 97 98 28.54493 13.8814319751 .2673406777 .16212 .032370220004305 .13555 .10708 98					.28270	09403				.00042	.18805	.13703	
96 27.83208 13.8814319751 .2756808167 .18460 .03745 .0036802204 .16334 .12564 96 97 28.18851 13.8814319751 .2714707554 .17122 .033900102503274 .15108 .11900 97 98 28.54493 13.8814319751 .2673406777 .16212 .032370220004305 .13555 .10708 98	95	27.47565	13.88143	19751	.27977	09078	.20237	.04329	.02014	01094	.18156	.13563	95
97 28.18851 13.8814319751 .2714707554 .17122 .033900102503274 .15108 .11900 97 98 28.54493 13.8814319751 .2673406777 .16212 .032370220004305 .13555 .10708 98													
98 28.54493 13.8814319751 .2673406777 .16212 .032370220004305 .13555 .10708 98													
99 28.90136 13.8814319751 .2633205473 .16387 .028640360205292 .10945 .08051 99													
	99	28.90136	13.88143	19751	. 26332	05473	.16387	.02864	03602	05292	.10945	.08051	99
100 29.25778 13.8814319751 .2597504867 .15875 .022440480006246 .09734 .07055 100	100	29.25778	13.88143	19751	.25975	04867	.15875	.02244	04800	06246	.09734	.07055	100

SC3 DEMO WING ALONE FOR COMBINED ANALYSIS DESIGN-CRAIDON GEOMETRY AERO SECTION - DEMO WING - BASIC L.E.

SPANWISE PRESSURE DISTRIBUTION

ON THE WING LOWER SURFACE

JSTN= 1	X(JST)=	15.50000		
JQ	Y	ETA	CP	CPSTR
1 2 3 4 5	.71924 2.18669 3.65360 5.12063 6.58965	.09554 .29045 .48530 .68016 .87528	.05761 .12365 .20987 .25746 .19524	.12285 .10761 .16396 .24243 .16700
JSTN= 2	X(JST)=	19.90000		
JQ	Y	ETA	CP	CPSTR
1 2 3 4 5 6 7	.71924 2.18669 3.65360 5.12063 6.58965 8.06080 9.53094	.06925 .21054 .35178 .49303 .63448 .77612	.01320 .05483 .08514 .10129 .18978 .20375	.03301 .04147 .06823 .11881 .16945 .17501
JSTN= 3	X(JST)=	24.40000		
Jø	· Y	ETA	CP	CPSTR
1 2 3 4 5 6 7	3.65360 5.12063 6.58965 8.06080 9.53094 10.99792 12.46176	.27454 .38477 .49515 .60570 .71616 .82640 .93639	.04319 .01859 .05445 .09849 .17610 .16758 .20818	.02768 .00992 .04371 .09019 .15734 .14843

SC3 DEMO WING ALONE FOR COMBINED ANALYSIS DESIGN-CRAIDON GEOMETRY AERO SECTION - DEMO WING - BASIC L.E.

INTEGRATION OF THE PRESSURE DISTRIBUTION

ON THE WING LOWER SURFACE

	MACH=	1.6200	ALPHA=	0.0000				-	
POINT	×	Y	Z	x/c	2Y/B	Z/C	CP	CPSTR	POINT
1	2.66425	.71924	128		.04894	0.00000	.00833	.00661	1
2	4.90849	.71924	128		.04894	0.00000	.28344	. 29529	2
3	7.15274	.71924	128		.04894	0.00000	.36645	.42450	3
4	9.39699	.71924	128		.04894	0.00000	.29728	.41696	3 4 5
5	11.64123	.71924	128		.04894	0.00000	.15003	.25517	5
6	13.88548	.71924	128		.04894	0.00000	.06729	.14053	6
7	16.12973	.71924	128	03 .65000	.04894	.00000	.03136	.07490	7
8	18.37397	.71924	128		.04894	0.00000	.01721	.04113	
9	20.61822	.71924	128	03 .85000	.04894	0.00000	00021	.00585	9
10	22.86247	.71924	128		.04894	8.00000	01104	01651	10
11	5.66629	2.18669	307		.14878	0.00008	03909	03706	
12	7.62558	2.18669	307	71 .15000	.14878	00000	.22873	.18721	12 13
13	9.58487	2.18669	307		.14878	0.00000	.28021	.22026	13
14	11.54416	2.18669	307	71 .35000	.14878	00000	.26101	.21708	
15	13.50344	2.18669	307	71 .45000	.14878	0.00008	.15381	. 13374	
16	15.46273	2.18669	307		.14878	00000	.10080	.08782	
17	17.42202	2.18669	307		.14878	0.00000	.07187	.05932	
18	19.38131	2.18669	307	71 .75000	.14878	00000	.05096	.03741	
19	21.34059	2.18669	307	71 .85000	.14878	0.00000	.04493	.03148	
20	23.29988	2.18669	307	71 .95000	.14878	00000	.02998	.01583	
21	8.65191	3.65360	354	59 .05000	.24859	0.00000	07256	06578	
22 23	10.32810	3.65360	354 354	59 .15000 59 .25000	.24859 .24859	0.00000	.22712	.18001	
23 24	13.68049	3.65360 3.65360	354 354		.24859	0.00000	.26752 .27481	.19336 .20417	
25	15.35669	3.65360	354	59 45000	.24859	0.00000	.17262	.14089	
26	17.03289		354	59 .55000	.24859	0.00000	,12385	.19089	
27	18.70908	3.65360	354 354	59 .65000	.24859	0.00000	.09149	.07429	
28	20.38528	3.65360	354	59 .75000	.24859	0.00000	.06712	.07427	
29	22.06147	3.65360	354		.24859	00000	.05351	.03766	29
30	23.73767	3.65360	354		.24859	0.00000	.04259	.02710	
31	11.56043	5.12063	330		.34841	0.00000	.18548	.19160	
32	12.96279	5.12063	330		.34841	0.00000	.22167	.20528	32
33	14.36514		330		.34841	0.00000	.25903	.23965	
34	15.76750	5.12063			.34841	.00000	.25467	.24738	
35	17.16986	5.12063			.34841	0.00000	.16849	.18864	
36	18.57221	5.12063	330		.34841	0.00000	.12157	.14309	
37	19.97457	5.12063	330		.34841	0.00000	.08074	.09422	
38	21.37693	5.12063	330		.34841	0.00000	.05388	.05903	
39	22.77928	5.12063	330	54 .85000	.34841	0.00000	.02697	.02320	
40	24.18164	5.12063	330		.34841	0.00000	.01510	.00439	
41	14.26633	6.58965			.44837	0.00000	.15626	.13987	
42	15.42217	6.58965	294		.44837	0.00000	.21940	.18382	
43	16.57801	6.58965		83 .25000	.44837	0.00008	.20949	.17425	
44	17.73385	6.58965	294	83 .35000	.44837	0.00000	.24374	.19869	
45	18.88969	6.58965	294	83 .45000	.44837	0.00008	.20504	.17937	

46	20.04553	6.58965	29483	.55000	.44837	0.00000	.16907	.15597	46
47	21.20137	6.58965	29483	.65000	.44837	0.00000	.12072	.11213	47
48	22.35721	6.58965	29483	.75000	.44837	0.00000	.08447	.07564	48
49	23.51305	6.58965	∽.29483	.85000	.44837	0.00000	.06202	.05188	49
50	24.66889	6.58965	29483	.95000	. 44837	0.00000	.03815	.02615	50
						0.00000			
51	16.70412	8.06080	26778	.05000	. 54847		.12135	.11320	51
52	17.65850	8.06080	26778	.15000	. 54847	0.00000	.21414	.18611	52
53	18.61287	8.06080	26778	.25000	. 54847	0.00000	.21308	.18599	53
54	19.56725	8.06080	26778	.35000	.54847	0.00000	.20270	.17377	54
55	20.52163	8.06080	26778	.45000	.54847	0.00000	.21440	.18685	55
56	21.47600	8.06080	26778	.55000	. 54847	0.00000	.19631	.17580	56
57	22.43038	8.06080	26778	.65000	.54847	0.00000	.16783	.15528	57
					54047	0.00000			
58	23.38475	8.06080	26778	.75000	.54847		.12086	.11219	58
59	24.33913	8.06080	26778	.85000	.54847	0.00000	.08441	.07635	59
60	25.29351	8.06080	26778-	.95000	.54847	0.00000	.05583	.04663	60
61	18.96586	9.53094	23740	.05000	.64850	0.00000	.09255	.08799	61
62	19.76058	9.53094	23740	.15000	.64850	00000	.20972	.18435	62
63	20.55530	9.53094	23740	.25000	.64850	00000	.21970	.19426	63
64	21.35002	9.53094	23740	.35000	.64850	.00000	.20031	.17637	64
65	22.14474	9.53094	23740	.45000	.64850	00000	.17506	.15446	65
66	22.93945	9.53094	23740	.55000	.64850	00000	.15730	.13891	66
67	23.73417	9.53094	23740	.65000	.64850	00000	.18571	.16497	67
68	24.52889	9.53094	23740	.75000	.64850	0.00000	.16092	.14529	68
69	25.32361	9.53094	23740	.85000	.64850	00000	.12389	.11066	69
70	26.11833	9.53094	23740	.95000	.64850	00000	.08591	.07448	70
71	21.16934	10.99792	21929	.05000	.74831	0.00000	.07643	.07284	71
72	21.82626	10.99792	21929	.15000	.74831	0.00000	.20296	.17885	72
					.74831	0.00000		.19688	73
73	22.48318	10.99792	21929	.25000			.22382		
74	23.14011	10.99792	21929	.35000	.74831	0.00000	.20371	.18085	74
75	23.79703	10.99792	21929	.45000	.74831	0.00000	.17785	.15738	75
76	24.45395	10.99792	21929	.55000	.74831	0.00000	.15589	.13825	76
								.12364	77
77	25.11088	10.99792	21929	.65000	.74831	0.00000	.13987		
78	25.76780	10.99792	21929	.75000	.74831	0.00000	.12980	.11428	78
79	26.42473	10.99792	21929	.85000	.74831	0.00000	.14421	.12821	79
80	27.08165	10.99792	~.21929	.95000	.74831	0.00000	.11908	.10376	80
81	23.35995	12.46176	22337	.05000	.84791	0.00000	.06393	.06086	81
82	23.88551	12.46176	22337	.15000	.84791	0.00000	.19320	.17065	82
83	24.41107	12.46176	~.22337	.25000	.84791	0.00000	.22153	.19371	83
84	24.93662	12.46176	22337	.35000	.84791	0.00000	.21096	.18772	84
85	25.46218	12.46176	22337	.45000	.84791	0.00000	.18047	.15674	85
86	25.98774	12.46176	- .22337	.55000	.84791	0.00000	.14856	.12787	86
87	26.51330	12.46176	22337	.65000	.84791	0.00000	.12851	.10974	87
88	27.03885	12.46176	22337	.75000	.84791	0.00000	.11283	.09551	88
89	27.56441	12.46176	22337	.85000	.84791	0.00000	.10695	.08960	89
90	28.08997	12.46176	22337	.95000	.84791	0.00000	.09094	.07542	90
91	25.88956	13.88143	19751	.05000	.94451	0.00000	.11109	.09591	91
92			19751	.15000	.94451	.00000	.18679	.13637	92
	26.24598	13.88143							
93	26.60241	13.88143	19751	.25000	. 94451	.00000	.19585	.13983	93
94	26.95884	13.88143	19751	.35000	. 94451	.00000	.18805	.13703	94
95	27.31526	13.88143	19751	.45000	.94451	.00000	.18156	.13563	95
	27.67169	13.88143	~.19751	.55000	.94451	.00000	.16334	.12564	96
96									
97	28.02811	13.88143	19751	.65000	. 94451	0.00000	.15108	.11900	97
98	28.38454	13.88143	19751	.75000	. 94451	.00000	. 13555	.10708	98
99	28.74097	13.88143	19751	.85000	.94451	.00000	.10945	.08051	99
100	29.09739	13.88143	19751	.95000	.94451	.00000	.09734	.07055	100
100	67.07/37	13.00143	. 17/31	. 75000	. 74431	.00000	. 07/34	.07055	100

```
TOTAL COEFFICIENTS
  ON THE WING
                    INPUT REFERENCE AREA
                                                                             NOTE: REFERENCE AREA IS 1/2 TOTAL
            171.0500
                      REFB=
                                                                                   PLANFORM AREA, CONSISTENT
  REFA=
                                  14.6970
                                           REFC=
                                                      14.7470
                                                                                   WITH WOODWARD I PRACTICE.
  REFX=
             16.7010
                      REFZ=
                                   0.0000
MACH=
            1.62000
ALPHA=
            0.00000
  CN=
              .40000
  CA=
             .04401
  CM=
             -.03583
  CL=
             .40000
  CD=
              .04401
 XCP=
              .08958
CDCL=
              .21579 -
  BASED ON THE CARLSON CORRECTION
MACH=
            1.62000
ALPHA=
            0.00000
  CH=
              .36941
  CA=
              .04109
  CM=
             -.03109
  CL=
             .36941
  CD=
              .04109
 XCP=
             .08415
CDCL=
              .23623
                       (TOTAL-AREA) - INTERNALLY COMPUTED PLANFORM AREA
AREA=
          172.34067
AREA=
          118.97679
                       CNF=
              .26123
                       (EXPOSED-LIFT)
 CDF=
              .04407
                       (EXPOSED-DRAG)
CDFCL=
              .21611
                       (EXPOSED DRAG-TOTAL LIFT)
  BASED ON THE CARLSON CORRECTION
 CNF=
              .24125
                       (EXPOSED-LIFT)
 CDF=
              .04056
                       (EXPOSED-DRAG)
CDFCL=
              .23322
                       (EXPOSED DRAG-TOTAL LIFT)
```

SECTION COEFFICIENTS

(BASIC SPANWISE DISTRIBUTIONS USING STANDARD PRESSURES)

ON THE WING

K	Y	ETA	C/CAVE	C*CL/CAVE	C*CD/CAVE	CN	CA	CL	CD	CM	XCP	K
1 2 3 4 5 6 7 8 9	.71924 2.18669 3.65360 5.12063 6.58965 8.06080 9.53094 10.99792 12.46176 13.88143	.04894 .14878 .24859 .34841 .54847 .54847 .64850 .74831 .84791	1.92831 1.68346 1.44023 1.20494 .99312 .82002 .68284 .56444 .45157	.51090 .48463 .44259 .39818 .34998 .29790	.17495 .05967 .03656 .08278 .03567 .02467 .01498 .00879 00585	.29191 .31918 .35473 .40221 .44565 .48558 .51254 .52778 .53565	.09073 .03545 .02538 .06870 .03590 .03008 .02193 .01548 .01106	.29191 .31918 .35473 .40221 .44565 .48558 .51254 .52778 .53565	.09073 .03545 .02538 .06870 .03590 .03008 .02193 .01548 .01106	.11669 .06065 .02043 .00172 06408 13078 19853 26314 32468	39974 19002 05760 00427 .14379 .26932 .38734 .49857	1 2 3 4 5 6 7 8 9

SECTION COEFFICIENTS

ON THE WING

BASED ON THE CARLSON CORRECTION

K	Y	ETA	C/CAVE	C*CL/CAVE	C*CD/CAVE	CN	CA	CL	CD	CM	XCP	K
1 2 3 4 5 6 7 8 9	.71924 2.18669 3.65360 5.12063 6.58965 8.06080 9.53090 10.99792	.04894 .14878 .24859 .34841 .44837 .54887 .64850 .74831	1.92831 1.64023 1.44023 1.20494 .99312 .82002 .68284 .56444	.47797 .41643 .36967 .32218 .27294 .21843	.08123 .03328 .02287 .01394 .00826 .00474	.26311 .28761 .32094 .39668 .41932 .45080 .47182 .48355	.08191 .03298 .02471 .06741 .03351 .02788 .02041 .01463	.26311 .28761 .32094 .39668 .41932 .45080 .47182 .48355	.08191 .03298 .02471 .06741 .03351 .02788 .02041 .01463	.11813 .05516 .01645 .00368 05992 12102 18235 24084 29287	44897 19181 05126 00928 .14291 .26848 .49806	1 2 3 4 5 6 7 8 9
10	13.88143	.94451	.30625	.15311	00515	.49996	01682	.49996	01682	36491	.72988	

CPSTAG = 1.83986 CPCRIT = .71476 CPVAC = -.54434

SOLVE, TIME = 261.32300

SOLVE, TIME = 261.32300

CONCLUSIONS

The two computer programs described in this report provide the aerodynamicist with a very powerful and flexible capability to do supersonic wing design. In particular, the flowfield in the vicinity of the leading edge can be analyzed in more detail using COREL due to the spanwise section mapping which, together with the complete full potential equation, eliminates the leading edge singularity and provides for the explicit treatment of the supercritical crossflow. The W12SC3 code offers many linear theory wing design and analysis options and can be used for investigating the impact of SC³ wing design on total configuration characteristics.

Grumman Aerospace Corporation

Bethpage, New York 11714

October 14, 1983

REFERENCES

- 1. Miller, D.S., Carlson, H.W., and Middleton, W.D., "A Linearized Theory Method of Constrained Optimization for Supersonic Cruise Wing Design," Proc. of the SCAR Conf., NASA CP-001, November 1976.
- Mason, W.H., and Miller, D.S., "Controlled Supercritical Crossflow on Supersonic Wings - An Experimental Validation," AIAA Paper No. 80-1421, July, 1980.
- 3. Mason, W.H., and DaForno, G., "Opportunities for Supersonic Performance Gains Through Non-Linear Aerodynamics," AIAA Paper No. 79-1527, July 1979.
- 4. Grossman, B., "A Numerical Procedure for the Computation of Supersonic Conical Flows," AIAA J., Vol. 17, No. 8, Aug. 1979, pp. 828-837.
- 5. Woodward, F.A., "An Improved Method for the Aerodynamic Analysis of Wing-Body-Tail Configurations in Subsonic and Supersonic Flow," NASA CR-2228, Parts I and II, 1973.
- 6. Craidon, C.B., "A Computer Program for Fitting Smooth Surfaces to an Aircraft Configuration and Other Three-Dimensional Geometries," NASA TM X-3206, 1975.
- 7. Siclari, M.J., and Marconi F., "Analysis and Design of Supersonic Aircraft Based on Inviscid Nonlinear Eulerian Equations," Part I, Rotational Euler Solutions with Explicit Shock Fitting, AFWAL TR-80-3110, October 1980, pp. 53-56.
- 8. Woodward, F.A., "USSAERO Computer Program Development, Versions B and C," NASA CR-3227, 1980.
- 9. Woodward, F.A., Tinoco, E.N., and Larsen, J.W., "Analysis and Design of Supersonic Wing-Body Combinations, Including Flow Properties in the Near Field," Part I Theory and Application, NASA CR-73106, 1967.

- 10. Cenko, A., "Advances in Supersonic Configuration Design Methods," <u>Journal of Aircraft</u>, Vol. 17, No. 2, Feb. 1980, pp. 119-126.
- 11. Carlson, H.W., "A Modification to Linearized Theory for Prediction of Pressure Loadings on Lifting Surfaces at High Supersonic Mach Numbers and Large Angles of Attack," NASA TP-1406, 1979.
- 12. Craidon, C.B., "Description of a Digital Computer Program for Airplane Configuration Plots," NASA TM X-2074, 1970.
- 13. Miller, D.S., Landrum, E.J., Townsend, J.C., and Mason, W.H., "Pressure and Force Data for a Flat Wing and a Warped Conical Wing Having a Shockless Recompression at Mach 1.62", NASA TP-1759, 1981.
- 14. Siclari, M.J., and Grossman, B., "Analysis and Design of Supersonic Aircraft Based on Inviscid Nonlinear Eulerian Equations", <u>Part II</u>, Nonlinear Potential Flow Solutions with Shock Capturing, AFWAL TR-80-3110, October 1980.
- 15. Mason, W.H., "Experimental Pressure Distributions and Aerodynamic Characteristics of a Demonstration Wing for a Wing Concept for Supersonic Maneuvering", Grumman Aerodynamics Report 393-82-02, July 1982. (Available from the author upon request.)
- 16. Grossman, B., and Siclari, M.J., "The Nonlinear Supersonic Potential Flow over Delta Wings", AIAA Paper No. 80-0269, January 1980.
- 17. Mason, W.H., "Experimental Pressure Distributions and Aerodynamic Characteristics of Flat and Cambered Conceptual Wing-Body and Wing-Body-Canard", Grumman Aerodynamics Report 393-81-1, October 1981. (Available from the author upon request.)
- 18. Harris, R.V., Jr., "An Analysis and Correlation of Aircraft Wave Drag", NASA TM X-947, 1964.

		<u> </u>							
1,	Report No. NASA CR-3676	sion No.	. 3, R	. 3, Recipient's Catalog No.					
-	Title and Subtitle			5. R	eport Date				
"	THE COREL AND W12SC3 CO	איסוויייביט סטחפט אאפ דה	D		ecember 1983				
	SUPERSONIC WING DESIGN A		LL.	6. P	erforming Organization Code				
	DOLENDONIO WING DEDIGN A	MD MMIDIO		3.					
7.	Author(s)	<u> </u>		8. P	erforming Organization Report No.				
	William H. Mason and Bru	uce S. Rosen							
ŀ				10. W	ork Unit No.				
9.	Performing Organization Name and Addr	'ess							
	Grumman Aerospace Corpo	ration		 					
ļ	Bethpage, New York 11			1	ontract or Grant No.				
	,				AS1-15351				
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	13. T	ype of Report and Period Covered				
12.	Sponsoring Agency Name and Address		-	C	ontractor Report				
	National Aeronautics &	Space Administrati	on	14 8	consoring Agency Code				
	Washington, D.C. 2056	-	- 	14. 3	consuming Agency Code				
15.	Supplementary Notes	· · · · · · · · · · · · · · · · · · ·							
	Langley Technical Monito	or: David S. Mill	er						
	Final Report								
16.	Abstract								
	This report contain	ns a description o	£ two cor	nputer codes	useful in the				
	supersonic aerodynamic								
	The non-linear full pote								
	section of the wing in t								
	A subsequent approximate								
	for nonconical effects.								
	numbers normal to shock								
	solved to obtain detaile								
	crossflow, and any cross								
	which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by								
					examples, detailed input				
	instructions and a sample case.								
	•								
					i				
					İ				
	į								
	•				}				
17.	17. Key Words (Suggested by Author(s)) 18. Distribution Statement								
- • •	Aerodynamics			ssified-Unli	mited				
!	Supersonic Flow								
	Conical Flow								
	Supercritical Crossflow		Subject Category 02						
19.	Security Classif, (of this report)	20. Security Classif. (of this	oace)	21. No. of Pages	22. Price				
- 	Unclassified Unclassified			190	A09				