

Numerical Simulation of Turbulent Combustion Using the Turbulent Flamelet Model

CNF, Atlanta 2019.

Yu Cang

INTRODUCTION

part1.1 part1.5

Backgound

Turbulent combustion is encountered in most practical combustion system such as rocket, ICE, and aircraft engien.

Backgound

Turbulent combustion is encountered in most practical combustion system such as rocket, ICE, and aircraft engien.

Meaningful to practical systems:

- (a) Improve efficiency, meet demanding standards[1].
- Reduce pollution, environment friendly.

Numerical simulation of flowfield

Based on CFD, there're 3 possible approaches:

- (a) Direct Numerical Simulation(DNS)-Precise, but costly(Tremendous memory and CPU).
- (b) Large Eddy Simulation(LES)-Compromise between accuracy and computational cost.
- (c) Reynolds Averaged Navier-Stokes(RANS)
 - -Inaccurate for combustion phenomenon.

Although based on LES, traditional flame models are inadequate:

- Distribution of flame properties are mannually assumed.
- Parameter tuning may be unphysical.

Although based on LES, traditional flame models are inadequate:

■ Distribution of flame properties are mannually assumed.

Numerical Results

■ Parameter tuning may be unphysical.

These drawbacks are overcame by the turbulent flamelet model to be introduced:

- Designed especially for LES, with fewer approximation.
- Relations are provided through scaling law, which is based on DNS database 2.

TURBULENT FLAMELET MODEL

ırt2.3

Theory

Original G.E. in the context of LES:

$$\frac{\partial \bar{\rho}\tilde{Z}}{\partial t} + \nabla \cdot (\bar{\rho}\tilde{Z}\tilde{\vec{u}}) = \nabla \cdot [\bar{\rho}(D + D_T)\nabla\tilde{Z}]$$
 (1)

$$\frac{\partial \bar{\rho} \tilde{Y}_{i}}{\partial t} + \nabla \cdot (\bar{\rho} \tilde{Y}_{i} \tilde{\vec{u}}) = \nabla \cdot [\bar{\rho} (D + D_{T}) \nabla \tilde{Y}_{i}] + \overline{\omega}_{i}$$
 (2)

Original G.E. in the context of LES:

$$\frac{\partial \bar{\rho}\tilde{Z}}{\partial t} + \nabla \cdot (\bar{\rho}\tilde{Z}\tilde{\vec{u}}) = \nabla \cdot [\bar{\rho}(D + D_T)\nabla\tilde{Z}]$$
 (1)

$$\frac{\partial \bar{\rho} \tilde{Y}_{i}}{\partial t} + \nabla \cdot (\bar{\rho} \tilde{Y}_{i} \tilde{\tilde{u}}) = \nabla \cdot [\bar{\rho} (D + D_{T}) \nabla \tilde{Y}_{i}] + \overline{\omega_{i}}$$
 (2)

After coordinate transformation(x_1, x_2, x_3, t) \rightarrow (Z, Z_2, Z_3, τ):

$$\begin{split} & \bar{\rho} \frac{\partial \tilde{Y}_{i}}{\partial \tau} + \bar{\rho} \Big(\tilde{\vec{u}} \cdot \nabla_{\perp} \tilde{Y}_{i} + \frac{\partial \tilde{Y}_{i}}{\partial Z_{2}} \frac{\partial Z_{2}}{\partial t} + \frac{\partial \tilde{Y}_{i}}{\partial Z_{3}} \frac{\partial Z_{3}}{\partial t} \Big) = \frac{\bar{\rho} \chi}{2 Le_{T}} \frac{\partial^{2} \tilde{Y}_{i}}{\partial^{2} \tilde{Z}} \\ & + \frac{\partial \tilde{Y}_{i}}{\partial \tilde{Z}} \nabla \cdot \left[\bar{\rho} (\mathcal{D}_{T,i} - \mathcal{D}_{T}) \vec{n} \cdot \frac{\partial \tilde{Z}}{\partial \vec{n}} \right] + \nabla \cdot (\bar{\rho} \mathcal{D}_{T,i} \nabla_{\perp} \tilde{Y}_{i}) + \overline{\omega_{i}} \end{split}$$
(3

Laminar Flamelet assumption

Locally, the characteristic timescale of chemical reaction is much smaller that that of flow($t_c \ll t_f$).

Thus, local flame structure can be described by the difffusion flame under counterflow configuration.

Each micro flamelet can be described by Z and χ :

- Z describes chemical reaction.
- $\blacksquare \chi$ indicates turbulence stretching effect.

Thus, a database can be pre-computed for later looking-up.

Turbulent Flamelet

Unlike the laminar flamelet introduced above, G.E. of the counterflow flame is slightly modified by our turbulet flamelet model from

$$\rho \frac{\mathrm{DY_i}}{\mathrm{Dt}} = \mathcal{D}_i \frac{\partial^2 Y_i}{\partial^2 x} + \omega_i(T, \vec{Y})$$
(4)

to

$$\bar{\rho} \frac{D\tilde{Y}_{i}}{Dt} = \mathcal{D}_{i} \frac{\partial^{2} \tilde{Y}_{i}}{\partial^{2} x} + \tilde{\omega}_{i} (\tilde{T}, \tilde{\vec{Y}})$$
(5)

The two equations share similar form, but have totally different meanings. Based on the filtered turbulent flamelet database generated in the way descirbed above, the full solution procedure that incorporates a CFD solver can be described as follows:

NUMERICAL RESULTS

Comparsion of "S" curve

The T_{max} plot:

- One of the most convincing testing cases.
- Difference and transition position are clearly revealed[3].

Comparsion between experimental data, which is widely used as benchmark[4].

CONCLUSIONS

þ

ne

Conclusions

■ Turbulent flamelet model has good agreement with experimental data.

- Turbulent flamelet model has good agreement with experimental data.
- Numerical simulation based on Large Eddy Simulation(LES) shows better resolution of flame structures.

- Turbulent flamelet model has good agreement with experimental data.
- Numerical simulation based on Large Eddy Simulation(LES) shows better resolution of flame structures.
- Flamelet modeling based on the filtered G.E. is physically effective for combustion problem.

- Charles David Pierce and Parviz Moin. "Progress-variable |1|approach for large-eddy simulation of turbulent combustion". Thesis. 2001 (cit. on pp. 3, 4).
- [2]Wang Lipo. "Analysis of the filtered non-premixed turbulent flame". In: Combustion and Flame 175 (2017), pp. 259–269 (cit. on pp. 6, 7).
- [3] Joseph F Grear. "The Twopnt program for boundary value problems". In: Sandia National Laboratories Report SAND91-8230 (1992) (cit. on p. 15).
- P. E. Dimotakis. "The mixing transition in turbulent |4|flows". In: Journal of Fluid Mechanics 409 (2000), pp. 69–98. ISSN: 0022-1120. DOI: 10.1017/s0022112099007946 (cit. on p. 16).