assignment2

Xiaoma

2022.09.16

1. 对于一个按升序排列的包含 n 个元素的有序数组 A 来说,HEAPSORT 的时间复杂度是多少? 如果 A 是降序呢,请简要分析并给出结果。

降序排列: 建堆时调用 n 次 MAX-HEAPIFY(A,i), 初始序列为降序, 故 每次时间复杂度为 O(1), 故建堆时间复杂度为 O(n), 排序时, 调用 (n-1) 次 MAX-HEAPIFY(A, i), 若发生交换, MAX-HEAPIFY(A, i) 还要进行 logn 次, 故排序的时间复杂度为 $O(\log n)$, 整体时间复杂度为 $O(\log n)$ 。

升序排列: 建堆时调用 n 次 MAX-HEAPIFY(A,i),每次都发生交换,时间复杂度为 O(logn),排序时,调用 (n-1) 次 MAX-HEAPIFY(A,i),若发生交换,MAX-HEAPIFY(A,i) 还要进行 logn 次,故排序的时间复杂度为 O(logn),整体时间复杂度为 O(logn)。

- 2. 快速排序: (a) 假设快速排序每一层所做的划分比例都是 $1-\alpha:\alpha$, 其中 $0<\alpha\leqslant 1/2$ 且是一个常数。试证明: 在相应的递归树中,叶节点的最小深度大约是 $-\lg n/\lg \alpha$,最大深度约是 $-\lg n/(1-\alpha)$ (无序考虑舍入问题)。(b) 试证明: 在一个随机输入数组上,对于任何常数 $0<\alpha\leqslant 1/2$,PARTITION 产生比 $1-\alpha:\alpha$ 更平衡的划分的概率约为 $1-2\alpha$ 。
 - (a) 若要求最小深度则选择划分比例小的一侧,不断迭代 k 次直至剩余一个元素,即 $n\alpha^k = 1$,则 $k = \frac{-\lg n}{\lg \alpha}$ 若要求最大深度则选择换分比例大的一侧,不断迭代 k 次直至剩余一个元素即 $n(1-\alpha)^k = 1$,则 $k = \frac{-\lg n}{\lg(1-\alpha)}$
 - (b) 若要产生比 $1-\alpha$: α 更平衡的划分,那么划分点应该在 $n\alpha$ 与 $n(1-\alpha)$ 之间,又因为划分点的选取服从均匀分布,则

$$\mathbf{P} = \frac{(1-\alpha)n - \alpha n}{n} = 1 - 2\alpha$$