Finite Group Theory

IKHAN CHOI

Contents

1. Special groups	1
1.1. Cyclic groups	1
1.2. Abelian groups	1
1.3. Symmetric groups	1
1.4. Coxeter groups	1
1.5. Linear groups	1
2. Classification of small groups	2
2.1. Sylow theorem	2
2.2. Semidirect product	3
2.3. Groups of order less than 64	3
3. Extension theory	5

1. Special groups

1.1. Cyclic groups.

- (1) A subgroup is also cyclic.
- (2) The number of subgroups = the number of divisors of its order.
- (3) Endomorphism ring is given by $\mathbb{Z}/n\mathbb{Z}$.
- (4) Automorphism group is given by $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- (5) The number elements of order d is $\phi(d)$.
- (6)
- 1.2. Abelian groups. Fundamental theorem of finitely generated abelian groups
- **Theorem 1.1.** Let G be a finite group. If G/Z(G) is cylic, then G is abelian.

Theorem 1.2. Let G be a finite group. If $x \mapsto x^3$ is a surjective endomorhpism, then G is abelian.

- 1.3. Symmetric groups.
- 1.4. Coxeter groups.
- 1.5. Linear groups.

First Written: November 26, 2019. Last Updated: November 26, 2019.

2. Classification of small groups

2.1. Sylow theorem.

Definition 2.1 (Sylow *p*-subgroup). Let G be a finite group of order $n = p^a m$ for a prime $p \nmid m$. A Sylow *p*-subgroup is a subgroup of order p^a . We are going to denote the set of Sylow *p*-subgroups by $\operatorname{Syl}_p(G)$ and the number of Sylow *p*-subgroups by $n_p(G)$.

Theorem 2.1 (Sylow). Let G be a finite group of order $n = p^a m$ for a prime $p \nmid m$. Then,

$$p \mid n_p - 1, \qquad n_p \mid m$$

for some $k \in \mathbb{N}$.

Proof. Step 1: A Sylow p-subgroup exists. We apply mathematical induction on orders. The base step is trivial. Suppose every finite group of order less than n possesses a Sylow p-subgroup.

By applying the orbit-stabilizer theorem for the action $G \curvearrowright G$ by conjugation, build the class equation

$$n = |Z(G)| + \sum_{i} |G : C_G(g_i)|.$$

There are two cases: $p \mid |Z(G)|$ or $p \nmid |Z(G)|$.

Case 1: $p \mid |Z(G)|$. The group G has a normal subgroup of order p by applying Cauchy's theorem for abelian groups on the center. Then, the inverse image of a Sylow p-subgroup of the quotient group is also a Sylow p-subgroup of G.

Case 2: $p \nmid |Z(G)|$. Since $p \mid n$, we have $p \nmid |G| : C_G(g)|$ for some $g \in G$. Then, a Sylow p-subgroup of the centralizer is also a Sylow p-subgroup of G.

Therefore, we are done for Step 1.

Step 2: Normality implies uniqueness. Let $P \in \operatorname{Syl}_p(G)$ and $P \subseteq G$. Since $p \nmid |G/P|$, $\ker(G \to G/P) = P$ contains all p-subgroups of G. Thus, the Sylow p-subgroup is clearly unique.

Step 3: A Sylow p-subgroups get action by conjugation. Let P be a Sylow p-subgroup of G. We construct class equations via the orbit-stabilizer theorm for various actions to extract information on n_p . Note that stabilizers in any setwise conjugation action is exactly normalizers.

(1) The action $P \curvearrowright \operatorname{Syl}_p(G)$ gives

$$n_p = 1 + \sum_{i} |P: N_P(P_i)|$$

since $P = N_P(P_i)$ implies $P \leq N_G(P_i)$ and $P = P_i$.

(2) Suppose the action $G \curvearrowright \operatorname{Syl}_p(G)$ is not transitive. Take another Sylow p-subgroup P' is not conjugate with P in G. The two actions $P \curvearrowright \operatorname{Orb}_G(P)$ and $P' \curvearrowright \operatorname{Orb}_G(P)$ gives

$$|\operatorname{Orb}_G(P)| = 1 + \sum_i |P : N_P(P_i)| = \sum_i |P' : N_{P'}(P_i)|.$$

It deduces $|\operatorname{Orb}_G(P)| \equiv 0, 1 \pmod{p}$ simultaneously, which leas a contradiction.

(3) The action $G \curvearrowright \operatorname{Syl}_{p}(G)$ gives

$$n_p = |G: N_G(P_i)|$$

for all $P_i \in \operatorname{Syl}_n(G)$ because the action is transitive.

Then, (1) proves $p \mid n_p - 1$, and (3) proves $n_p \mid m$.

Corollary 2.2. Let G be a finite group. Then,

- (1) every pair of two Sylow p-subgroup is conjugate.
- (2) every p-subgroup is contained in a Sylow p-subgroup.
- (3) a Sylow p-subgroup is normal if and only if $n_p = 1$.

Theorem 2.3. Alternative proof for existence of p-groups.

Proof. Let $|G| = p^{a+b}m$. Let \mathcal{P}_{p^a} be the set of all p^a -sets in G. Give $G \curvearrowright \mathcal{P}_{p^a}$ by left multiplication. Since $v_p(|\mathcal{P}_{p^a}|) = v_p(\binom{p^a(p^bm)}{p^a}) = b$, there is an orbit \mathcal{O} such that $v_p(|\mathcal{O}|) \leq b$. We have transitive action $G \curvearrowright \mathcal{O}$ and the stabilizer H satisfies $p^a \mid |G|/|\mathcal{O}| = |H|$. Since $H \curvearrowright \mathcal{O}$ trivially, $H \curvearrowright A$ for $A \in \mathcal{O} \subset \mathcal{P}_{p^a}$. It is only possible when $H \subset A$, hence $|H| = p^a$.

Investigation of a group of a given order is divided into two main parts: the existence of a subgroup of particular orders and the measurement of the size of conjugate subgroups.

In order to show the existence of subgroups of paricular orders:

- (1) p-groups always exist,
- (2) extension theory, (what can subgroups of subgroups do?)
- (3) normalizers,
- (4) Poincare theorem: kernel of permutation representation

In order to find the size of conjugacy classes:

- (1) measure the order of normalizers, (find some groups normalize a subgroup)
- (2) count elements,

2.2. Semidirect product.

Definition 2.2 (External semidirect product). Suppose we have three data: groups $(N, +), (H, \cdot)$ and a group homomorphism $\varphi : H \to \operatorname{Aut}(N)$. The *semidirect product* $N \rtimes_{\varphi} H$ is a group defined on the set $N \times H$ by

$$(n,h)(n',h') = (n + \varphi(h)n',hh').$$

The motivation of the group structure of semidirect product is shown in the following theorem.

Theorem 2.4 (Internal semidirect product). Let N, H be subgroups of G such that

$$N \triangleleft G$$
, $N \cap H = 1$, $NH = G$.

Then, $G \cong N \rtimes_{\varphi} H$, where the action φ is given by conjugation

$$\varphi(h): N \to N: n \mapsto hnh^{-1}$$
.

2.3. Groups of order less than 64.

IKHAN CHOI

2.3.1. Two primes.

4

Example 2.1 ($|G| = p^2$).

Example 2.2 (|G| = pq).

2.3.2. Three primes.

Lemma 2.5. Let N, H be groups. Let $\varphi_1, \varphi_2 : H \to \operatorname{Aut}(N)$ be group actions. If there are $\nu \in \operatorname{Aut}(N)$ and $\eta \in \operatorname{Aut}(H)$ such that a diagram

$$H \xrightarrow{\varphi_1} \operatorname{Aut}(N)$$

$$\downarrow^{\eta} \qquad \qquad \downarrow_{\nu \cdot \nu^{-1}}$$

$$H \xrightarrow{\varphi_2} \operatorname{Aut}(N)$$

commutes, then a map

$$N \rtimes_{\varphi} H \to N \rtimes_{\varphi'} H : (n,h) \mapsto (\nu(n),\eta(h))$$

is an isomorphism.

Lemma 2.6.

Example 2.3 ($|G| = p^3$).

Example 2.4 $(|G| = p^2q)$.

Let
$$1 + p < q$$
. Then, $n_q = 1$.

(1)

$$\varphi: Z_{p^2} \to \operatorname{Aut}(Z_q) \cong Z_{q-1}.$$

There are $\min\{2, v_p(q-1)\}$ nonabelian groups.

(2)

$$\varphi: Z_p \times Z_p \to \operatorname{Aut}(Z_q) \cong Z_{q-1}.$$

There are $\min\{1, v_p(q-1)\}$ nonabelian groups.

Let p > q. Then, $n_p = 1$.

(1) $G \cong Z_{p^2} \rtimes Z_q$. Consider

$$\varphi: Z_q \to \operatorname{Aut}(Z_{p^2}) \cong Z_{p(p-1)}.$$

There are $\min\{1, v_q(p-1)\}$ nonabelian groups.

(2) $G \cong (Z_p \times Z_p) \rtimes Z_q$. Consider

$$\varphi: Z_q \to \operatorname{Aut}(Z_p \times Z_p) \cong \operatorname{GL}_2(\mathbb{F}_p).$$

There are

$$\begin{cases} 2 & , q = 2 \\ 1 & , q \mid p+1 \\ \frac{q+3}{2} & , q \mid p-1 \\ 0 & , \text{otherwise} \end{cases}$$

nonabelian groups. Since the number of one-dimensional linear subspaces is q+1 and the number of symmetric subspaces is 2 in \mathbb{F}_q^2 , we have $\frac{(q+1)-2}{2}+2=\frac{q+3}{2}$ conjugacy classes of subgroups of order q in $\mathrm{GL}_2(\mathbb{F}_p)$.

Let p = 2 and q = 3.

Example 2.5 (|G| = pqr).

$\overline{ G = p^2 q \ (p < q)}$	12	20	28	44	45	52	63
# of groups	5	5	4	4	2	5	4

$ G = p^2 q \ (p > q)$	12	18	50	(75)	G = pqr	30	42
# of groups	5	5	5	3	# of groups	4	6

2.3.3. More than four primes. Under 64, there are some exceptions whose orders are formed by product of more than four primes.

$ G = \prod^4 p$							
# of groups	$\overline{14}$	15	$\overline{14}$	15	13	14	13

$$|G| = \prod^{5 \text{ or } 6} p \quad 32 \quad 48 \quad 64$$

of groups | 51 | 52 | 267

3. Extension theory

Proposition 3.1. Let N and H be groups. Then, the following objects have one-to-one correspondences among each other.

(1) isomorphic types of groups G such that a sequence

$$0 \to N \to G \to H \to 0$$

is exact and right split,

- (2) isomorphic types of groups G such that $N \subseteq G \ge H$ with G = NH and $N \cap H = 1$,
- (3) group actions $H \cap N$ preserving the group structure of N.

Definition 3.1. The group G in the previous proposition is called the *semidirect product* of N and H.

$$0 \longrightarrow F \longrightarrow E \longrightarrow G \longrightarrow 0.$$

Four data $G, F, \varphi: G \to \operatorname{Aut}(F), c: G \times G \to F$ completely determine the extension E.

Suppose we have an extension $F \to E \to G$. There is a set-theoretic section $s: G \to E$. The number of s is |G||F|.

Definition of $action \varphi$: For two sections s and s', s(g) and s'(g) acts on F equivalently. Thus, we can define a $group\ homomorphism\ \varphi:G\to \operatorname{Aut}(F)$ independently on sections.

Definition of 2-cocycle c: It is a set-theoretic function $c: G \times G \to F$ defined by $c(g,g')=s(g)s(g')s(gg')^{-1}$ for a section s. Actually, c depends on the section s, and

6 IKHAN CHOI

c measures how much s fails to be a group homomorphism. It requires the cocycle condition for the associativity of group operation, i.e.

$$c(g,h)c(gh,k) = \varphi_q(c(h,k))c(g,hk)$$

should be satisfied. Conversely, a map $G \times G \to F$ satisfying the condition the cocycle condition gives a associative group operation on G.

If F is abelian, then the set of cocycles forms an abelian group, and is denoted by $Z^2(G, F)$. The boundaries are also defined in abelian F case.

- (1) φ , c is trivial \Leftrightarrow direct product,
- (2) c is trivial $\Leftrightarrow s$ is a homomorphism \Leftrightarrow semidirect product,
- (3) φ is trivial \Leftrightarrow central extension.

Group cohomology is defined for a group G and G-module A (three data: G, A, φ . What is important is that the cohomology depends on the action of G on A.

If φ is trivial so that A is just an abelian group, then the universal coefficient theorem can be applied.