Тема 5. Сортировка

5.6. Сортировка подсчетом

Данная сортировка известна также как *сортировка перечислением*. Метод основан на том, что j-е имя в окончательно упорядоченной таблице превышает точно j-1 остальных имен. Тогда если известно, что некоторое имя больше j-1 других имен, то в отсортированной таблице оно займет j-ю позицию. Таким образом, идея сортировки заключается в попарном сравнении всех имен и подсчете, сколько из них меньше каждого отдельного имени. Очевидно, что нет необходимости сравнивать имя само с собой и после сравнения x_i с x_j не нужно сравнивать x_j с x_i .

Для реализации сортировки подсчетом необходимо каждому имени x_i исходной таблицы сопоставить элемент (счетчик) c_i , т. е. всего требуется n таких элементов. Если $x_i < x_j$, то увеличивается на единицу значение элемента c_j , в противном случае — элемента c_i . После завершения всех сравнений каждый элемент c_i будет содержать число имен, меньших имени x_i . Чтобы окончательно выполнить сортировку, достаточно поместить каждое имя x_i в позицию $c_i + 1$ (если начальное значение $c_i = 0$) выходной таблицы. Следует отметить, что при правильной реализации сортировка подсчетом обладает свойством устойчивости.

Пример

Исходная таблица <i>X</i>										
i	1	2	3	4	5	6	7	8		
x_i	22	54	07	42	14	27	17	49		
Счетчики										
	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8		
	0	0	0	0	0	0	0	0		
i = 1	3	1	0	1	0	1	0	1		
i = 2	3	7	0	1	0	1	0	1		
i = 3	3	7	0	2	1	2	1	2		
i = 4	3	7	0	5	1	2	1	3		
i = 5	3	7	0	5	1	3	2	4		
i = 6	3	7	0	5	1	4	2	5		
i = 7	3	7	0	5	1	4	2	6		
Выходная таблица										
Результат	07	14	17	22	27	42	49	54		

В выходную таблицу имя x_i записывается в позицию $c_i + 1$.

Число сравнений: 7+6+5+4+3+2+1=28.

В общем случае число сравнений:
$$\frac{(n-1)n}{2} = O(n^2)$$

Таким образом, сортировка подсчетом кроме исходной таблицы требует вспомогательный массив из n элементов для хранения счетчиков c_i и дополнительную выходную таблицу для формирования результатов сортировки. В целях экономии памяти сортировку подсчетом можно выполнить на месте, т. е. переразместить имена внутри исходной таблицы, используя только вспомогательный массив счетчиков. Ясно, что это приведет к некоторому увеличению времени сортировки.

Время работы сортировки подсчетом (независимо от того, используется дополнительная выходная таблица или сортировка выполняется на месте) составляет $O(n^2)$.

Разновидностью сортировки подсчетом является сортировка распределяющим подсчетом. Она применима в основном в тех случаях, когда исходная таблица может содержать много равных имен, причем каждое имя является целым положительным числом в диапазоне от a до b.

Сортировка выполняется следующим образом. Каждому имени i из диапазона (не из таблицы) сопоставляется элемент c_i , т. е. требуется вспомогательный массив C из k = b - a + 1 элементов. Сначала элементу c_i присваивается количество имен в исходной таблице, равных i. Затем находятся частичные суммы последовательности c_a, \ldots, c_b , т. е. для всех i от a+1 до b элементу c_i присваивается c_i+c_{i-1} . В результате значение c_i будет показывать количество имен, не превосходящих i, т. е. позицию имени i в отсортированной таблице. Для завершения сортировки имя i помещается в позицию c_i выходной таблицы. При этом необходимо учитывать следующее обстоятельство. Если все n имен в исходной таблице различны, то в отсортированной таблице имя i должно стоять в позиции c_i , так как именно столько имен в таблице не превосходит имя i. Если же встречаются равные имена, то после каждой записи имени i в выходную таблицу значение c_i должно уменьшаться на единицу, поэтому при следующей встрече с именем, равным i, оно будет записано на одну позицию левее. Чтобы сортировка была устойчивой, запись имен в выходную таблицу следует производить, просматривая исходную таблицу справа налево, начиная с имени x_n и завершая x_1 .

Пример. Диапазон имен [5, 7], т. е. имеем 3 счетчика: c_5 , c_6 , c_7 .

Исходная таблица Х									
i	1	2	3	4	5	6	7	8	
x_i	71	61	72	51	52	7 ₃	62	53	

Результат прохода по таблице: $c_5 = 3$, $c_6 = 2$, $c_7 = 3$, число операций O(n).

Результат подсчета частичных сумм: $c_5 = 3$, $c_6 = 5$, $c_7 = 8$, число операций O(k), где k – число счетчиков.

Заполнение выходной таблицы (справа налево):

i = 8: имя 5_3 в позицию $c_5 = 3$, устанавливаем $c_5 = 2$.

i = 7: имя 6_2 в позицию $c_6 = 5$, устанавливаем $c_6 = 4$.

i = 6: имя 7_3 в позицию $c_7 = 8$, устанавливаем $c_7 = 7$.

i = 5: имя 5_2 в позицию $c_5 = 2$, устанавливаем $c_5 = 1$.

i = 4: имя 5_1 в позицию $c_5 = 1$, устанавливаем $c_5 = 0$.

i = 3: имя 7_2 в позицию $c_7 = 7$, устанавливаем $c_7 = 6$.

i = 2: имя 6_1 в позицию $c_6 = 4$, устанавливаем $c_6 = 3$.

i = 1: имя 7_1 в позицию $c_7 = 6$, устанавливаем $c_7 = 5$.

Число операций O(n).

Выходная таблица:

i	1	2	3	4	5	6	7	8
$\overline{x_i}$	51	5 ₂	5 ₃	61	62	$\overline{7}_1$	7 ₂	7 ₃

Таким образом, сортировка распределяющим подсчетом дополнительно к исходной таблице требует вспомогательный массив из k элементов для хранения счетчиков и выходную таблицу для записи результатов сортировки. В целях экономии памяти сортировку распределяющим подсчетом можно выполнить на месте внутри исходной таблицы, что несколько усложнит алгоритм и приведет к дополнительным затратам времени.

Подсчет числа имен, равных i, и запись имен в выходную таблицу требуют времени O(n), предварительная инициализация счетчиков и нахождение частичных сумм — времени O(k). Таким образом, сортировка выполняется за время O(n+k). Если k=O(n), то время работы есть O(n). Полученная оценка не противоречит нижней оценке эффективности алгоритмов сортировки, рассмотренной в разд. 5.1. Это связано с тем, что нижние оценки определялись для алгоритмов сортировки, основанных на сравнении имен, а сортировка распределяющим подсчетом не сравнивает имена между собой, а использует их в качестве индексов.