Algorithmique et programmation 2025 - Questionnaire 1 (01/10, 3ème séance)

Nombre de participants : 57

Combien d'instructions 2. élémentaires seront exécutées par le programme suivant ?

20 bonnes réponses sur 45 répondants

1 int x, y;
2 x = x + y;
3 y = x - y;
4 x = x - y;

En pire cas, combien d'instructions 3. élémentaires seront exécutées par le programme suivant?

14 bonnes réponses sur 47 répondants

```
if (rand () % 2 == 0) {
 2
       int temp;
 3
       temp = a;
       a = b;
 4
 5
       b = tmp;
 6 } else {
 7
       a = a + b;
       b = a - b;
 8
 9
       a = a - b;
10 }
```


Donner l'ordre de grandeur en ${\cal O}$ et

4. Ω du nombre d'instructions exécutées en pire cas par le programme suivant

35 bonnes réponses sur 45 répondants

```
void afficher(int tab[], int n) {
   for (int i = 0; i < n; i++) {
      printf("%d,", tab[i]);
}
</pre>
```


Est-il vrai qu'il existe un algorithme avec une complexité en $O(log_2(n))$ pour rechercher un élément dans un tableau trié de taille n ?

34 bonnes réponses sur 46 répondants

Soient g et h deux fonctions. On dit que g est dominée par h quand:

45 bonnes réponses sur 48 répondants

7. Quelles propositions sont vraies?

36 bonnes réponses sur 47 répondants

8. Quelles propositions sont vraies?

42 bonnes réponses sur 48 répondants

Donner la complexité algorithmique en O de n du nombre d'instructions exécutées en pire cas par le programme suivant:

44 bonnes réponses sur 46 répondants

```
1 int vais_je_avoir_une_bonne_note(int tableau[], int n) {
       for (int i = 0; i < n; i++) {
2
           for (int j = 0; j < n; j++) {
3
               if (tableau[i] > tableau[j]) {
4
5
                   return 0;
               }
6
7
8
       return 1;
9
10 }
```


×

Donner la complexité algorithmique en Ω de n du 10. nombre d'instructions exécutées en pire cas par le programme suivant:

12 bonnes réponses

sur 48 répondants

```
1 int vais_je_avoir_une_bonne_note(int tableau[], int n) {
       for (int i = 0; i < n; i++) {
2
           for (int j = 0; j < n; j++) {
 3
               if (tableau[i] > tableau[j]) {
4
                    return 0;
5
               }
6
7
           }
8
       return 1;
9
10 }
```


×

Donner la complexité algorithmique en Θ de n du 11. nombre d'instructions exécutées en pire cas par le programme suivant:

0 bonne réponse sur 43 répondants

1 int vais_je_avoir_une_bonne_note(int tableau[], int n) { for (int i = 0; i < n; i++) { 2 for (int j = 0; j < n; j++) { 3 if (tableau[i] > tableau[j]) { 4 return 0; 5 } 6 7 } 8 9 return 1; 10 }

- x

12.

Donner la complexité algorithmique en Θ de n du nombre d'instructions exécutées en pire cas par le programme suivant, où n est la taille de zozo.

24 bonnes réponses sur 44 répondants

On supposera que alpha=0 et

zeta=n.

```
1 int suis_je_un_zozo(char zozo[], int alpha, int zeta, char moi) {
 2
       if (zeta-alpha < 1) return -1;</pre>
       int mu = (alpha + zeta) /2;
 3
       if (zozo[mu] == moi) {
 4
 5
           return mu;
       } else if (zozo[mu] < moi) {</pre>
 6
           return suis_je_un_zozo(zozo, mu+1, zeta, moi);
 7
       } else {
 8
           return suis_je_un_zozo(zozo, alpha, mu-1, moi);
 9
10
11 }
```


×

Donner la complexité algorithmique Θ de n du nombre d'instructions exécutées en pire cas par le programme suivant, où

13. cas par le programme suivant, où n est la taille de zozo. On supposera que alpha=0 et que n>50000.

6 bonnes réponses sur 47 répondants

```
1 char afficher_zozos(char zozo[], int alpha) {
2    if (alpha >= 10000) return zozo[alpha];
3    printf("%c ", zozo[alpha]);
4    afficher_zozos(zozo, alpha+1);
5 }
```


 $\Theta(n!)$ 6 votes

Soit t un tableau d'entiers et n sa taille maximale, où n>0. Donner la complexité algorithmique, en pire cas, en Θ de n de l'opération suivante. A jouter un élément à

suivante: Ajouter un élément à la position i, où $0 \le i \le n-1$. Si une valeur est présente, elle sera supprimée. On suppose que si $i-1 \ge 0$, alors t[i-1] contient une valeur.

14 bonnes réponses sur 43 répondants

- x

Soit t un tableau d'entiers et n sa taille maximale, où n>0. Donner la complexité algorithmique, en pire cas, en Θ de n de l'opération suivante: Ajouter l'élément à la

15. position i, où $0 \le i \le n-1$. Contrainte: l'ordre initial du tableau devra être préservé. On suppose que t[n-1] ne contient pas de valeur et que si $i-1 \ge 0$, alors t[i-1] contient une valeur.

35 bonnes réponses sur 45 répondants

Soit t un tableau d'entiers et n sa taille maximale, où n>0. Donner la complexité algorithmique, en meilleur cas, en Θ de n de l'opération suivante: Ajouter

16. l'élément à la position i, où $0 \le i \le n-1$. Contrainte: l'ordre initial du tableau devra être préservé. On suppose que t[n-1] ne contient pas de valeur, et que si $i-1 \ge 0$, alors t[i-1]

contient une valeur.

38 bonnes réponses sur 45 répondants

×

Soit l une liste chaînée de n éléments. Donner la complexité algorithmique, en pire cas, en Θ 17. de n de l'opération suivante: Lire l'élément situé en $i_{\grave{e}me}$ position dans la liste, où $i\in\mathbb{N}$

0 bonne réponse sur 0 répondant

	$\Theta(n^2)$	0%	0 votes
	$\Theta(n^4)$	0%	0 votes
	$\Theta(1)$	0%	0 votes
	$\Theta(log_2(n))$	0%	0 votes
•	$\Theta(n)$	0%	0 votes
	$\Theta(2^n)$	0%	0 votes
	$\Theta(n!)$	0%	0 votes

18.

- ×

Soit l une liste chaînée de n éléments. Donner la complexité algorithmique, en meilleur cas, en Θ de n de l'opération suivante: Lire l'élément situé en $i_{\grave{e}me}$ position dans la liste, où $i\in\mathbb{N}$

0 bonne réponse sur 0 répondant

Soit l une liste chaînée de n éléments. Donner la complexité algorithmique, en pire cas, en Θ

19. de n de l'opération suivante:

Supprimer l'élément situé en première position dans la liste.

Contrainte: l'ordre initial de la liste devra être préservée.

0 bonne réponse sur 0 répondant

	$\Theta(n^2)$	0%	0 votes
	$\Theta(n^4)$	0%	0 votes
?	$\Theta(1)$	0%	0 votes
	$\Theta(log_2(n))$	0%	0 votes
	$\Theta(n)$	0%	0 votes
	$\Theta(2^n)$	0%	0 votes
	$\Theta(n!)$	0%	0 votes

Soit t un tableau d'entiers et n sa taille maximale, où n>0. Donner la complexité algorithmique, en

20. meilleur cas, en Θ de n de l'opération suivante: Supprimer l'élément à la position 1. Contrainte: l'ordre initial du tableau devra être préservé.

0 bonne réponse sur 0 répondant

	$\Theta(n^2)$	0%	0 votes
	$\Theta(n^4)$	0%	0 votes
	$\Theta(1)$	0%	0 votes
	$\Theta(log_2(n))$	0%	0 votes
•	$\Theta(n)$	0%	0 votes
	$\Theta(2^n)$	0%	0 votes
	$\Theta(n!)$	0%	0 votes

Soit l une liste chaînée de n éléments. Donner la complexité algorithmique, en pire cas, en Θ

21. de *n* de l'opération suivante:

Rechercher un élément e. Hypothèse: la liste est triée par ordre croissant des valeurs.

0 bonne réponse sur 0 répondant

	$\Theta(n^2)$	0%	0 votes
	$\Theta(n^4)$	0%	0 votes
	$\Theta(1)$	0%	0 votes
	$\Theta(log_2(n))$	0%	0 votes
⊘	$\Theta(n)$	0%	0 votes
	$\Theta(2^n)$	0%	0 votes
	$\Theta(n!)$	0%	0 votes

Soit l une liste chaînée de n éléments. Donner la complexité algorithmique, en pire cas, en Θ

22. de n de l'opération suivante:

Échanger l'élément en première position avec l'avant dernier élément. On suppose que les deux éléments existent.

0 bonne réponse sur 0 répondant

	$\Theta(n^2)$	0%	0 votes
	$\Theta(n^4)$	0%	0 votes
	$\Theta(1)$	0%	0 votes
	$\Theta(log_2(n))$	0%	0 votes
⊘	$\Theta(n)$	0%	0 votes
	$\Theta(2^n)$	0%	0 votes
	$\Theta(n!)$	0%	0 votes

Soit M une matrice de n lignes et m colonnes représentée par un tableau à deux dimensions. Donner la complexité algorithmique, en pire cas, en Θ

23. de n de l'opération suivante: Rechercher la position i,j, si elle existe, de l'entier v où $0 \le i \le n-1$ et $0 \le j \le m-1$. On suppose que n=m et que v est

dans le tableau.

0 bonne réponse sur 0 répondant

$\Theta(n^2)$	0%	0 votes
$\Theta(n^4)$	0%	0 votes
$\Theta(1)$	0%	0 votes
$\Theta(log_2(n))$	0%	0 votes
0(1092(11))		o votes
$\Theta(n)$	0%	0 votes
$\Theta(2^n)$	0%	0 votes
0(1)		
$\Theta(n!)$	0%	0 votes