IMSP

Master en Data science

TD 03

Exercice 1 : Calcul du Support et de la Confiance

On dispose du tableau suivant représentant des transactions dans un supermarché :

Transaction ID	Articles achetés
1	{Lait, Pain, Beurre}
2	{Lait, Pain}
3	{Pain, Beurre}
4	{Lait, Beurre}
5	{Lait, Pain, Beurre}

- 1. Calculez le **support** de la règle {Lait} → {Pain}.
- 2. Calculez la **confiance** de la règle {Lait} → {Beurre}.
- 3. La règle {Pain} → {Beurre} est-elle forte si le seuil de confiance minimum est de 60 % ?

Exercice 2 : Analyse des Règles avec le Lift

On extrait trois règles d'association :

- 1. $\{X\} \rightarrow \{Y\}$ avec confiance = 80 % et support = 30 %
- 2. $\{X\} \rightarrow \{Z\}$ avec confiance = 50 % et support = 20 %
- 3. $\{Y\} \rightarrow \{Z\}$ avec confiance = 70 % et support = 40 %

Sachant que les supports individuels sont :

- Support(X) = 50 %
- Support(Y) = 60 %
- Support(Z) = 30 %
- 1. Calculez le lift des trois règles.
- 2. Déterminez si elles sont intéressantes (lift > 1 signifie une corrélation positive).

Exercice 3: Implémentation d'un CNN simple (MNIST)

Objectif: Construire un réseau CNN en utilisant Keras et TensorFlow pour classifier des chiffres manuscrits du dataset MNIST. Instructions:

- 1. Charger le dataset MNIST.
- 2. Normaliser les images (les valeurs des pixels entre 0 et 1).
- 3. Construire un CNN avec:
 - o Une couche Conv2D (32 filtres 3×3, ReLU).
 - o Une couche MaxPooling2D (2×2).
 - o Une couche Fully Connected.
- 4. Compiler et entraîner le modèle.

Exercice 4: Amélioration de la Précision avec Data Augmentation

Objectif : Utiliser Data Augmentation pour améliorer la généralisation du CNN sur CIFAR-10.

Instructions:

- 1. Charger CIFAR-10 et normaliser les images.
- 2. Ajouter des transformations :
 - o Rotation, zoom, miroir, translation.
- 3. Comparer la précision avec et sans Data Augmentation.

Exercice 5 : Implémentation de Dropout et Batch Normalization

Objectif : Comparer l'impact du Dropout et de la Batch Normalization sur l'apprentissage du modèle.

Instructions:

- 1. Entraîner un CNN sur CIFAR-10 sans régularisation.
- 2. Ajouter **Batch Normalization** après chaque couche convolutionnelle.
- 3. Ajouter **Dropout** (0.5) avant la couche fully connected.
- 4. Comparer les performances et analyser les courbes d'apprentissage.

Exercice 6: Utilisation d'un CNN pré-entraîné (Transfer Learning)

Objectif : Utiliser **ResNet50** pré-entraîné sur **ImageNet** pour classer des images personnalisées.

Instructions:

- 1. Charger **ResNet50** sans la dernière couche de classification.
- 2. Remplacer la dernière couche par une nouvelle adaptée à votre dataset.
- 3. Entraîner uniquement cette couche avec un petit dataset.
- 4. Comparer les performances avec un entraînement from scratch.

Exercice 7: Extraction de Features pour du Clustering

Objectif: Extraire les **features** d'un CNN pour effectuer du **clustering** avec **K-Means**. **Instructions**:

- 1. Entraîner un CNN sur CIFAR-10 (ou utiliser un modèle pré-entraîné).
- 2. Extraire les **features latentes** (sortie d'une couche Fully Connected).
- 3. Appliquer **K-Means** sur ces features.
- 4. Visualiser les clusters formés.

Exercice 8 : Classification du Cancer du Sein (Mammographies)

Objectif : Construire un CNN pour classer les mammographies en bénignes ou malignes.

Instructions:

- 1. Charger un dataset de mammographies (ex: BCDR, CBIS-DDSM).
- 2. Prétraiter les images :
 - Normalisation des pixels
 - Redimensionnement
 - Augmentation des données (flip, rotation, contraste)
- 3. Construire un CNN avec:
 - 3 couches Conv2D + MaxPooling
 - o 2 couches Fully Connected
 - Fonction d'activation Softmax (classification binaire)

- 4. Entraîner et évaluer le modèle.
- 5. Bonus : Tester un modèle pré-entraîné (ResNet, VGG16) et comparer les résultats.