3.14pt

1 / 43

Wavelets

Ming Li, Quan Xiao (USTC)

2019.06.30

Outline of this presentation

- 3.14pt
- Introduction
- ② Dilation Equation
- 3 Derivaton of the Wavelets from the Scaling Function
- 4 Sufficient Conditions for the Wavelets to be Orthogonal
- 5 Expressing a Function in Terms of Wavelets
- 6 Designing a Wavelet System

Outline

- 3.14pt
- Introduction
- ② Dilation Equation
- 3 Derivaton of the Wavelets from the Scaling Function
- 4 Sufficient Conditions for the Wavelets to be Orthogonal
- 5 Expressing a Function in Terms of Wavelets
- 6 Designing a Wavelet System

Fourier Transform

4 / 43

Fourier Transform

Difference between Fourier Transform and Wavelets

Dilation

 A dilation equation is an equation where a function is defined in terms of a linear combination of scaled, shifted versions of itself. For instance,

$$f(x) = \sum_{k=0}^{d-1} c_k f(2x - k)$$

Lemma 11.1

If a dilation equation $f(x)=\sum_{k=0}^{d-1}c_kf(2x-k)$ has a solution, then $\sum_{k=0}^{d-1}c_k=2$ or $\int_{-\infty}^{\infty}f(x)dx=0$.

Proof:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \sum_{k=0}^{d-1} c_k f(2x-k) dx \xrightarrow{Funbini} \frac{1}{2} \sum_{k=0}^{d-1} c_k \int_{-\infty}^{\infty} f(x) dx$$

The Haar Wavelet

• Solve dilation equation f(x) = f(2x) + f(2x - 1), solution is

$$\phi(x) = \begin{cases} 1, & 0 \le x < 1 \\ 0, & \text{otherwise} \end{cases}$$

- The function ϕ is called a **scale function**.
- ullet Scaling and shifting of the basic scale function ϕ gives a two dimensional set of scale functions

$$\phi_{jk}(x) = \phi\left(2^j x - k\right)$$

- For each j, the set of functions $\phi_{jk}, k=0,1,2\ldots$, form a basis for a vector space V_j and are orthogonal.
- But for different values of j, $\phi_{jk}, j=0,1,2\dots$ are not orthogonal.

Haar wavelet scale functions

$$\begin{array}{c|c}
1 & 2 & 3 \\
 & 1 & 2 & 3 \\
 & \phi_{10}(x) = \phi(2x)
\end{array}$$

$$\begin{array}{c|cccc}
1 & & & \\
 & & 1 & 2 & 3 \\
\phi_{23}(x) & = \phi(4x - 3)
\end{array}$$

• Since $\phi_{jk}, \phi_{j+1,2k}$ and $\phi_{j+1,2k+1}$ are linearly dependent, for each value of j delete $\phi_{j+1,k}$ for odd values of k to get a linearly independent set of basis vectors.

Haar wavelet scale functions

$$\begin{array}{c|c}
1 & & \\
\hline
& 1 & 2 & 3\\
\phi_{10}(x) = \phi(2x)
\end{array}$$

$$\begin{array}{c|c}
1 & 2 & 3 \\
\phi_{11}(x) = \phi(2x - 1)
\end{array}$$

$$\begin{array}{c|cccc}
1 & & & \\
 & & 1 & 2 & 3 \\
\phi_{12}(x) &= \phi(2x - 2)
\end{array}$$

To get an orthogonal set of basis vectors, define

$$\psi_{jk}(x) = \begin{cases} 1 & \frac{2k}{2^j} \le x < \frac{2k+1}{2^j} \\ -1 & \frac{2k+1}{2^j} \le x < \frac{2k+2}{2^j} \\ 0 & \text{otherwise} \end{cases}$$

and replace $\phi_{j,2k}$ with $\psi_{j+1,2k}$.

• For instance,

11 / 43

The Haar Wavelet

- To approximate a function that has only finite support, select a scale vector $\phi(x)$.
- Next approximate the function by the set of scale functions $\phi\left(2^{j}x-k\right), k=0,1,\ldots$, for some fixed value of j.
- Once the value of j has been selected, the function is sampled at 2^j points, one in each interval of width 2^{-j} .
- Let the sample values be s_0, s_1, \ldots The approximation to the function is $\sum_{k=0}^{2^j-1} s_k \phi\left(2^j x k\right)$.
- Our goal is to represent the approximation to the function using the basis vectors rather than the nonorthogonal set of scale functions $\phi_{jk}(x)$.

The Haar Wavelet Example

• To represent the function corresponding to vector $(\ 3\ 1\ 4\ 8\ 3\ 5\ 7\ 9\)$, one needs to find the c_i such that

$$\begin{pmatrix} 3\\1\\4\\8\\3\\5\\7\\9 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0\\1 & 1 & 1 & 0 & -1 & 0 & 0 & 0\\1 & 1 & -1 & 0 & 0 & 1 & 0 & 0\\1 & 1 & -1 & 0 & 0 & -1 & 0 & 0\\1 & -1 & 0 & 1 & 0 & 0 & -1 & 0\\1 & -1 & 0 & -1 & 0 & 0 & 0 & 1\\1 & -1 & 0 & -1 & 0 & 0 & 0 & -1\\1 & -1 & 0 & -1 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} c_1\\c_2\\c_3\\c_4\\c_5\\c_6\\c_7\\c_8 \end{pmatrix}$$

 \bullet The first column represents the scale function ϕ and subsequent columns the ψ 's.

The Haar Wavelet Example

 Use tree methods to find the coefficients. Each vertex in the tree contains the average of the quantities of its two children.

The result is

Wavelet Systems

- A wavelet system is built from a basic scaling function $\phi(x)$.
- A basic scale function $\phi(x)$ comes from a dilation equation.
- Scaling and shifting of the basic scale function gives a two dimensional set of scale functions

$$\phi_{jk}(x) = \phi\left(2^j x - k\right)$$

- ullet For a fixed value of j, the ϕ_{jk} span a space V_j .
- If $\phi(x)$ satisfies a dilation equation

$$\phi(x) = \sum_{k=0}^{d-1} c_k \phi(2x - k)$$

then ϕ_{jk} is a linear combination of the $\phi_{j+1,k}$'s and this implies that $V_0 \subseteq V_1 \subseteq V_2 \subseteq V_3 \cdots$.

Outline

3.14pt

- Introduction
- 2 Dilation Equation
- Oerivation of the Wavelets from the Scaling Function
- 4 Sufficient Conditions for the Wavelets to be Orthogonal
- Expressing a Function in Terms of Wavelets
- 6 Designing a Wavelet System

Solving the Dilation Equation

Consider solving a dilation equation

$$\phi(x) = \sum_{k=0}^{d-1} c_k \phi(2x - k)$$

to obtain the scale function for a wavelet system.

• The easiest way is to assume a solution and then calculate the scale function by successive approximation.

Example

Example: solving

$$\phi(x) = \frac{1+\sqrt{3}}{4}\phi(2x) + \frac{3+\sqrt{3}}{4}\phi(2x-1) + \frac{3-\sqrt{3}}{4}\phi(2x-2) + \frac{1-\sqrt{3}}{4}\phi(2x-3)$$

Begin with the coefficients of the dilation equation.

$$c_1 = \frac{1+\sqrt{3}}{4}$$
 $c_2 = \frac{3+\sqrt{3}}{4}$ $c_3 = \frac{3-\sqrt{3}}{4}$ $c_4 = \frac{1-\sqrt{3}}{4}$

- Execute the following loop until the values for $\phi(x)$ converge.
 - ① Calculate $\phi(2x)$ by averaging successive values of $\phi(x)$ together. Fill out the remaining half of the vector representing $\phi(2x)$ with zeros.
 - ② Calculate $\phi(2x-1)$, $\phi(2x-2)$, and $\phi(2x-3)$ by shifting the contents of $\phi(2x)$ the appropriate distance, discarding the zeros that move off the right end and adding zeros at the left end.
 - 3 Calculate the new approximation for $\phi(x)$ using the above values for $\phi(2x-1)$, $\phi(2x-2)$, and $\phi(2x-3)$ in the dilation equation for $\phi(2x)$.

2019.06.30

Another approach

Example: soving

$$\phi(x) = \frac{1}{2}f(2x) + f(2x - 1) + \frac{1}{2}f(2x - 2)$$

• Consider continuous solutions with support in $0 \le x < 2$:

$$\begin{array}{ll} \phi(0) = \frac{1}{2}\phi(0) + \phi(-1) + \phi(-2) = \frac{1}{2}\phi(0) + 0 + 0 & \phi(0) = 0 \\ \phi(2) = \frac{1}{2}\phi(4) + \phi(3) + \phi(2) = \frac{1}{2}\phi(2) + 0 + 0 & \phi(2) = 0 \\ \phi(1) = \frac{1}{2}\phi(2) + \phi(1) + \phi(0) = 0 + \phi(1) + 0 & \phi(1) & \text{arbitrary} \end{array}$$

• Set $\phi(1) = 1$. Then

$$\begin{array}{l} \phi\left(\frac{1}{2}\right) = \frac{1}{2}\phi(1) + \phi(0) + \frac{1}{2}\phi(-1) = \frac{1}{2} \\ \phi\left(\frac{3}{2}\right) = \frac{1}{2}\phi(3) + \phi(2) + \frac{1}{2}\phi(1) = \frac{1}{2} \\ \phi\left(\frac{1}{4}\right) = \frac{1}{2}\phi\left(\frac{1}{2}\right) + \phi\left(-\frac{1}{2}\right) + \frac{1}{2}\phi\left(-\frac{3}{2}\right) = \frac{1}{4} \end{array}$$

• One can continue this process and compute $\phi\left(\frac{i}{2i}\right)$ for larger values of j until ϕ is approximated to a desired accuracy. 19 / 43

Conditions on the Dilation Equation

Lemma 11.2

Let

$$\phi(x) = \sum_{k=0}^{d-1} c_k \phi(2x - k)$$

If $\phi(x)$ and $\phi(x-k)$ are orthogonal for $k \neq 0$ and $\phi(x)$ has been normalized so that $\int_{-\infty}^{\infty} \phi(x)\phi(x-k)dx = \delta(k)$, then $\sum_{i=0}^{d-1} c_i c_{i-2k} = 2\delta(k)$.

Lemma 11.3

If $0 \le x < d$ is the support of $\phi(x)$, and the set of integer shifts, $\{\phi(x-k)|k\ge 0\}$, are linearly independent, then $c_k=0$ unless $0 \le k \le d-1$.

Outline

3.14pt

- Introduction
- 2 Dilation Equation
- 3 Derivaton of the Wavelets from the Scaling Function
- 4 Sufficient Conditions for the Wavelets to be Orthogonal
- Expressing a Function in Terms of Wavelets
- 6 Designing a Wavelet System

Lemma 1

(Orthogonality of $\psi(x)$ and $\psi(x-k)$) Let $\psi(x)=\sum_{k=0}^{d-1}b_k\phi(2x-k)$. If $\psi(x)$ and $\psi(x-k)$ are orthogonal for $k\neq 0$ and $\psi(x)$ has been normalized so that $\int_{-\infty}^{\infty}\psi(x)\psi(x-k)dx=\delta(k)$, then

$$\sum_{i=0}^{d-1} (-1)^k b_i b_{i-2k} = 2\delta(k)$$

Lemma 2

(Orthogonality of $\phi(x)$ and $\psi(x-k)$) Let $\phi(x)=\sum_{k=0}^{d-1}c_k\phi(2x-k)$ and $\psi(x)=\sum_{k=0}^{d-1}b_k\phi(2x-k)$. If $\int_{-\infty}^{\infty}\phi(x)\phi(x-k)dx=\delta(k)$ and $\int_{-\infty}^{\infty}\phi(x)\psi(x-k)dx=0$ for all k, then for all k

$$\sum_{i=0}^{d-1} c_i b_{i-2k} = 2\delta(k)$$

Proof.

$$\int_{x=-\infty}^{\infty} \phi(x)\psi(x-k)dx = \int_{x=-\infty}^{\infty} \sum_{i=0}^{d-1} c_i \phi(2x-i) \sum_{j=1}^{d-1} b_j \phi(2x-2k-j)dx$$

$$= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} c_i b_j \int_{x=-\infty}^{\infty} \phi(2x-i)\phi(2x-2k-j)dx$$

$$= \frac{1}{2} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} c_i b_j \int_{y=-\infty}^{\infty} \phi(y)\phi(y-2k-j+i)dy$$

$$= \frac{1}{2} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} c_i b_j \delta(2k+j-i)$$

$$= \frac{1}{2} \sum_{i=0}^{d-1} c_i b_{i-2k} = 0$$

Lemma 3

Let
$$\phi(x)=\sum_{k=0}^{d-1}c_k\phi(2x-k)$$
 and $\psi(x)=\sum_{k=0}^{d-1}b_k\phi(2x-k)$. If $\int_{-\infty}^{\infty}\phi(x)\phi(x-k)dx=\delta(k)$ and $\int_{-\infty}^{\infty}\phi(x)\psi(x-k)dx=0$ for all k , then for all k

$$b_k = (-1)^k c_{d-1-k}$$

Proof.

By last lemma, $\sum_{j=0}^{d-1} c_j b_{j-2k} = 0$ for all k, which can be written as

$$\sum_{j=0}^{\frac{d}{2}-1}c_{2j}b_{2j-2k}+\sum_{j=0}^{\frac{d}{2}-1}c_{2j+1}b_{2j+1-2k}=0$$

Similarly, By Lemmas 11.2 and 11.4, we can get

$$\sum_{j=0}^{\frac{d}{2}-1} c_{2j} c_{2j-2k} + \sum_{j=0}^{\frac{d}{2}-1} c_{2j+1} c_{2j+1-2k} = 2\delta(k)$$

and

$$\sum_{j=0}^{\frac{d}{2}-1} b_{2j} b_{2j-2k} + \sum_{j=0}^{\frac{d}{2}-1} (-1)^j b_{2j+1} b_{2j+1-2k} = 2\delta(k)$$

26 / 43

2019.06.30

Proof.

$$c_0b_0 + c_2b_2 + c_4b_4 + \dots + c_1b_1 + c_3b_3 + c_5b_5 + \dots = 0 \quad k = 0$$

$$c_2b_0 + c_4b_2 + \dots + c_3b_1 + c_5b_3 + \dots = 0 \quad k = 1$$

$$c_4b_0 + \dots + c_5b_1 + \dots = 0 \quad k = 2$$

$$c_0c_0 + c_2c_2 + c_4c_4 + \dots + c_1c_1 + c_3c_3 + c_5c_5 + \dots = 0 \quad k = 0$$

$$c_2c_0 + c_4c_2 + \dots + c_3c_1 + c_5c_3 + \dots = 0 \quad k = 1$$

$$c_4c_0 + \dots + c_5c_1 + \dots = 0 \quad k = 2$$

$$b_0b_0 + b_2b_2 + b_4b_4 + \dots + b_1b_1 + b_3b_3 + b_5b_5 + \dots = 0 \quad k = 0$$

$$b_2b_0 + b_4b_2 + \dots + b_3b_1 + b_5b_3 + \dots = 0 \quad k = 1$$

$$b_4b_0 + \dots + b_5b_1 + \dots = 0 \quad k = 2$$
Let $C_e = (c_0, c_2, \dots, c_{d-2}), C_o = (c_1, c_3, \dots, c_{d-1}), B_e = (b_0, b_2, \dots, b_{d-2}).$ Equation 12.1, 12.2 and 11.3 can be expressed as convolutions of these sequences. We can get the matrix format as

$$\begin{pmatrix} C_e & C_o \\ B_e & B_o \end{pmatrix} * \begin{pmatrix} C_e^R & B_e^R \\ C_o^R & B_o^R \end{pmatrix} = \begin{pmatrix} 2\delta & 0 \\ 0 & 2\delta \end{pmatrix}$$

Taking the Fourier of z-transform yields

$$\left(\begin{array}{cc} F\left(C_{e}\right) & F\left(C_{o}\right) \\ F\left(B_{e}\right) & F\left(B_{o}\right) \end{array}\right) \left(\begin{array}{cc} F\left(C_{e}^{R}\right) & F\left(B_{e}^{R}\right) \\ F\left(C_{e}^{R}\right) & F\left(B_{e}^{R}\right) \end{array}\right) = \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right)$$

Proof.

Taking the determinant yields

$$\begin{split} &\left(F\left(C_{e}\right)F\left(B_{o}\right)-F\left(B_{e}\right)F\left(C_{o}\right)\right)\left(F\left(C_{e}\right)F\left(B_{o}\right)-F\left(C_{o}\right)F\left(B_{e}\right)\right)=4. \\ &\text{Thus, } F\left(C_{e}\right)F\left(B_{o}\right)-F\left(C_{o}\right)F\left(B_{e}\right)=2 \text{ and the inverse transform yields} \\ &C_{e}*B_{o}-C_{o}*B_{e}=2\delta(k). \text{ Convolution by } C_{e}^{R} \text{ yields} \end{split}$$

$$C_e^R * C_e * B_o + C_o^R * B_o * C_o = 2C_e^R * \delta(k)$$

$$(C_e^R * C_e + C_o^R * C_o) * B_o = 2C_e^R * \delta(k)$$

$$2\delta(k) * B_o = 2C_e^R * \delta(k)$$

$$C_e = B_o^R$$

Thus, $c_i = b_{d-1-i}$ for even i. Similarly, we can get $c_i = -b_{d-1-i}$ for all odd i and hence $c_i = (-1)^i b_{d-1-i}$ for all i.

Outline

3.14pt

- Introduction
- Dilation Equation
- Openion of the Wavelets from the Scaling Function
- 4 Sufficient Conditions for the Wavelets to be Orthogonal
- 5 Expressing a Function in Terms of Wavelets
- 6 Designing a Wavelet System

Wavelets system:

- Wavelets, $psi_j(2^jx-k)$, at all scales and shifts to be orthogonal to the scale function phi(x)
- All wavelets to be orthogonal. That is

$$\int_{-\infty}^{\infty} \psi_j \left(2^j x - k \right) \psi_l \left(2^l x - m \right) dx = \delta(j - l) \delta(k - m)$$

• $\phi(x)$ and $\psi_{jk}, j \leq l$, and all k, to span V_l , the space spanned by $\phi(2^jx-k)$ for all k.

Lemma 4

If $b_k=(-1)^kc_{d-1-k}$, then $\int_{-\infty}^{\infty}\phi(x)\psi\left(2^jx-l\right)dx=0$ for all j and l.

Proof.

We first show that $\phi(x)$ and $\psi(x-k)$ are orthogonal for all values of k. Then we modify the proof to show that $\phi(x)$ and $\psi(2^jx-k)$ are orthogonal for all j and k.

Proof.

$$\int_{-\infty}^{\infty} \phi(x)\psi(x-k) = \int_{i=0}^{\infty} \sum_{i=0}^{d-1} c_i \phi(2x-i) \sum_{j=0}^{d-1} b_j \phi(2x-2k-j) dx$$

$$= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} c_i (-1)^j c_{d-1-j} \int_{-\infty}^{\infty} \phi(2x-i) \phi(2x-2k-j) dx$$

$$= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} (-1)^j c_i c_{d-1-j} \delta(i-2k-j)$$

$$= \sum_{j=0}^{d-1} (-1)^j c_{2k+j} c_{d-1-j}$$

$$= c_{2k} c_{d-1} - c_{2k+1} c_{d-2} + \dots + c_{d-2} c_{2k-1} - c_{d-1} c_{2k}$$

$$= 0$$

The last step requires that d be even which we have assumed for all scale functions.

Proof.

For the case where the wavelet is $\psi(2^j - l)$, first express $\phi(x)$ as a linear combination of $\phi(2^{j-1}x - n)$. Now for each these terms

$$\int_{-\infty}^{\infty} \phi\left(2^{j}x - m\right)\psi\left(2^{j}x - k\right)dx = \frac{1}{2^{j-1}}\int_{-\infty}^{\infty} \phi(y - m)\psi(2y - k)dy = 0$$

Lemma 5

If
$$b_k = (-1)^k c_{d-1-k}$$
, then

$$\int_{-\infty}^{\infty} \frac{1}{2^j} \psi_j \left(2^j x - k \right) \frac{1}{2^k} \psi_l \left(2^l x - m \right) dx = \delta(j - l) \delta(k - m)$$

Proof.

This first level wavelets are orthogonal.

$$\int_{-\infty}^{\infty} \psi(x)\psi(x-k)dx = \int_{-\infty}^{\infty} \sum_{i=0}^{d-1} b_i \phi(2x-i) \sum_{j=0}^{d-1} b_j \phi(2x-2k-j)dx$$

$$= \sum_{i=0}^{d-1} b_i \sum_{j=0}^{d-1} b_j \int_{-\infty}^{\infty} \phi(2x-i)\phi(2x-2k-j)dx$$

$$= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} b_i b_j \delta(i-2k-j)$$

$$= \sum_{i=0}^{d-1} b_i b_{i-2k}$$

$$= \sum_{i=0}^{d-1} (-1)^i c_{d-1-i} (-1)^{i-2k} c_{d-1-i+2k}$$

$$= \sum_{i=0}^{d-1} (-1)^{2i-2k} c_{d-1-i} c_{d-1-i+2k}$$

Proof.

Substituting j for d - l - i yields

$$\sum_{j=0}^{d-1} c_j c_{j+2k} = 2\delta(k)$$

Example of orthogonality when wavelets are of different scale.

$$\int_{-\infty}^{\infty} \psi(2x)\psi(x-k)dx = \int_{-\infty}^{\infty} \sum_{i=0}^{d-1} b_i \phi(4x-i) \sum_{j=0}^{d-1} b_j \phi(2x-2k-j)dx$$
$$= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} b_i b_j \int_{-\infty}^{\infty} \phi(4x-i)\phi(2x-2k-j)dx$$

Proof.

Since
$$\phi(2x-2k-j) = \sum_{l=0}^{d-1} c_l \phi(4x-4k-2j-l)$$

$$\begin{split} \int_{-\infty}^{\infty} \psi(2x)\psi(x-k)dx &= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \sum_{l=0}^{d-1} b_i b_j c_l \int_{-\infty}^{\infty} \psi(4x-i)\phi(4x-4k-2j-l)dx \\ &= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \sum_{l=0}^{d-1} b_i b_j c_l \delta(i-4k-2j-l) \\ &= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} b_i b_j c_{i-4k-2j} \end{split}$$

Since
$$\sum_{j=0}^{d-1} c_j b_{j-2k} = 0, \sum_{i=0}^{d-1} b_i c_{i-4k-2j} = \delta(j-2k)$$
 Thus

$$\int_{-\infty}^{\infty} \psi(2x)\psi(x-k)dx = \sum_{j=0}^{d-1} b_j \delta(j-2k) = 0$$

Proof.

$$\int_{-\infty}^{\infty} \phi(x)\psi(2x-k)dx = \int_{-\infty}^{\infty} \sum_{j=0}^{d-1} c_j \phi(2x-j)\psi(2x-k)dx$$
$$= \sum_{j=0}^{d-1} c_j \int_{-\infty}^{\infty} \phi(2x-j)\psi(2x-k)dx$$
$$= \frac{1}{2} \sum_{j=0}^{d-1} c_j \int_{-\infty}^{\infty} \phi(y-j)\psi(y-k)dy$$
$$= 0$$

If ψ was of scale 2^j , ϕ would be expanded as a linear combination of ϕ of scale 2^j all of which would be orthogonal to ψ .

2019.06.30

Outline

3.14pt

- Introduction
- 2 Dilation Equation
- Oerivation of the Wavelets from the Scaling Function
- 4 Sufficient Conditions for the Wavelets to be Orthogonal
- 5 Expressing a Function in Terms of Wavelets
- 6 Designing a Wavelet System

Expressing a Function in Terms of Wavelets

- Aim: Express a function f(x) in terms of an orthogonal basis of the wavelet system using given wavelet system with scale function ϕ and mother wavelet ψ .
- Let $f(x) = \sum_{k=0}^{\infty} a_{jk} \phi_j(x-k)$ where the a_{jk} are the coefficients in the expansion of f(x) using level j scale functions. Since the $\phi_j(x-k)$ are orthogonal

$$a_{jk} = \int_{x=-\infty}^{\infty} f(x)\phi_j(x-k)dx$$

Expanding ϕ_j in terms of ϕ_{j+1} yields

$$a_{jk} = \int_{x=-\infty}^{\infty} f(x) \sum_{m=0}^{d-1} c_m \phi_{j+1} (2x - 2k - m) dx$$

$$= \sum_{m=0}^{d-1} c_m \int_{x=-\infty}^{\infty} f(x) \phi_{j+1} (2x - 2k - m) dx$$

$$= \sum_{m=0}^{d-1} c_m a_{j+1,2k+m}$$

$$= \sum_{m=0}^{d-1} c_{m-2k} a_{j+1,n}$$

Outline

3.14pt

- Introduction
- ② Dilation Equation
- Oerivation of the Wavelets from the Scaling Function
- 4 Sufficient Conditions for the Wavelets to be Orthogonal
- 5 Expressing a Function in Terms of Wavelets
- 6 Designing a Wavelet System

Designing a Wavelet System

ullet If one uses d terms in the dilation equation, one defree of freedom can be used to satisfy

$$\sum_{i=0}^{d-1} c_i = 2$$

which insures the existence of a solution with a nonzero mean. Another $\frac{d}{2}$ degrees of freedom are used to satisfy

$$\sum_{i=0}^{d-1} c_i c_{i-2k} = \delta(k)$$

which insures the orthogonal properties. The remaining $\frac{d}{2}-1$ degrees of freedom can be used to obtain some desirable properites such as smoothness.

The Haar Wavelet

- Use scal function to generate the two dimensional family of functions $\phi_{jk}(x) = \phi\left(2^j x k\right)$.
- \bullet For a given value of j, the shifted versions, $\{\phi_{jk}|k\geq 0\},$ span a space $V_j.$
- Since $\phi(x)$ is the solution of a dilation equation, for any fixed j, ϕ_{jk} is a linear combination of the $\{\phi_{j+1,k'}|k'\geq 0\}$. So $V_j\subseteq V_{j+1}$.
- For each j, the set of functions $\phi_{jk}, k=0,1,2\ldots$, form a basis for a vector space V_j and are orthogonal. But for different values of j are not orthogonal.
- Since ϕ_{jk} , $\phi_{j+1,2k}$ and $\phi_{j+1,2k+1}$ are linearly dependent, for each value of j delete $\phi_{j+1,k}$ for odd values of k to get a linearly independent set of basis vectors.
- To get an orthogonal set of basis vectors, define

$$\psi_{jk}(x) = \begin{cases} 1 & \frac{2k}{2^j} \le x < \frac{2k+1}{2^j} \\ -1 & \frac{2k+1}{2^j} \le x < \frac{2k+2}{2^j} \\ 0 & \text{otherwise} \end{cases}$$