Statistical Inference: matched pairs and normal quantile plot

Matched pairs

Some data:

subject	druga	drugb
1	2.0	3.5
2	3.6	5.7
3	2.6	2.9
4	2.6	2.4
5	7.3	9.9
6	3.4	3.3
1 2 3 4 5 6 7 8 9	14.9	16.7
8	6.6	6.0
9	2.3	3.8
10	2.0	4.0
11	6.8	9.1
12	8.5	20.9

Matched pairs data

- Data are comparison of 2 drugs for effectiveness at reducing pain.
 - 12 subjects (cases) were arthritis sufferers
 - Response is #hours of pain relief from each drug.
- In reading example, each child tried only one reading method.
- But here, each subject tried out both drugs, giving us two measurements.
 - Possible because, if you wait long enough, one drug has no influence over effect of other.
 - Advantage: focused comparison of drugs. Compare one drug with another on same person, removes a lot of variability due to differences between people.
 - Matched pairs, requires different analysis.
- Design: randomly choose 6 of 12 subjects to get drug A first, other 6 get drug B first.

Paired t test: reading the data

Values aligned in columns:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/c32/analgesic.t
pain <- read_table(my_url)

## Parsed with column specification:
## cols(</pre>
```

```
## cols(
## subject = col_double(),
## druga = col_double(),
## drugb = col_double()
## )
```

The data

pain

subject	druga	drugb
1	2.0	3.5
2	3.6	5.7
3	2.6	2.9
4	2.6	2.4
5	7.3	9.9
6	3.4	3.3
7	14.9	16.7
8	6.6	6.0
9	2.3	3.8
10	2.0	4.0
11	6.8	9.1
12	8.5	20.9

Paired *t*-test

```
with(pain, t.test(druga, drugb, paired = T))
##
##
   Paired t-test
##
## data: druga and drugb
## t = -2.1677, df = 11, p-value = 0.05299
## alternative hypothesis: true difference in means is not equal to
## 95 percent confidence interval:
## -4.29941513 0.03274847
## sample estimates:
## mean of the differences
##
                 -2.133333
```

- P-value is 0.053.
- Not quite evidence of difference between drugs.

t-testing the differences

- Likewise, you can calculate the differences yourself and do a 1-sample t-test on them.
- First calculate a column of differences:

(pain %>% mutate(diff=druga-drugb) -> pain)

subject	druga	drugb	diff
1	2.0	3.5	-1.5
2	3.6	5.7	-2.1
3	2.6	2.9	-0.3
4	2.6	2.4	0.2
5	7.3	9.9	-2.6
6	3.4	3.3	0.1
7	14.9	16.7	-1.8
8	6.6	6.0	0.6
9	2.3	3.8	-1.5
10	2.0	4.0	-2.0
11	6.8	9.1	-2.3
12	8.5	20.9	-12.4

t-test on the differences

-2.133333

with(pain,t.test(diff,mu=0))

 then throw them into t.test, testing that the mean is zero, with same result as before:

```
##
    One Sample t-test
##
##
## data: diff
## t = -2.1677, df = 11, p-value = 0.05299
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -4.29941513 0.03274847
## sample estimates:
## mean of x
```

Assessing normality

- 1-sample and 2-sample t-tests assume (each) group normally distributed.
- Matched pairs analyses assume (theoretically) that differences normally distributed.
- Though we know that t-tests generally behave well even without normality.
- How to assess normality? A normal quantile plot.
 - Idea: scatter of points should follow the straight line, without curving.
 - Outliers show up at bottom left or top right of plot as points off the line.

The normal quantile plot

of differences from matched pairs data

 Points should follow the straight line. Bottom left one way off, so normality questionable here: outlier.

More normal quantile plots

- How straight does a normal quantile plot have to be?
- There is randomness in real data, so even a normal quantile plot from normal data won't look perfectly straight.
- With a small sample, can look not very straight even from normal data.
- Looking for systematic departure from a straight line; random wiggles ought not to concern us.
- Look at some examples where we know the answer, so that we can see what to expect.

Normal data, large sample

```
d=tibble(x=rnorm(200))
ggplot(d,aes(x=x))+geom_histogram(bins=10)
```


The normal quantile plot

Normal data, small sample

• Not so convincingly normal, but not obviously skewed:

```
d=tibble(x=rnorm(20))
ggplot(d,aes(x=x))+geom_histogram(bins=5)
```


The normal quantile plot

Good, apart from the highest and lowest points being slightly off. I'd call this good:

Chi-squared data, df = 10

Somewhat skewed to right:

```
d=tibble(x=rchisq(100,10))
ggplot(d,aes(x=x))+geom_histogram(bins=10)
```


The normal quantile plot

Somewhat opening-up curve:

Chi-squared data, df = 3

Definitely skewed to right:

```
d=tibble(x=rchisq(100,3))
ggplot(d,aes(x=x))+geom_histogram(bins=10)
```


The normal quantile plot

Clear upward-opening curve:

t-distributed data, df = 3

Long tails (or a very sharp peak):

```
d=tibble(x=rt(300,3))
ggplot(d,aes(x=x))+geom_histogram(bins=10)
```


The normal quantile plot

Low values too low and high values too high for normal.

Our pain-relief data

Comments

- Definitely not normal. What to do?
- Sign test on differences, null median 0.

Sign test

- Most easily: calculate differences in data frame, then use smmr.
- Null median difference is 0:

```
pain %>% mutate(mydiff=druga-drugb) %>%
sign_test(mydiff,0)
```

```
## $above_below
## below above
## 9 3
##
## $p_values
## alternative p_value
## 1 lower 0.07299805
## 2 upper 0.98071289
## 3 two-sided 0.14599609
```

Comments

- P-value 0.1460. No evidence that the drugs are different.
- Since we are working in a pipeline, input data frame to sign_test is "whatever came out of previous step".

(Some of) the kids' reading data, again

```
## Parsed with column specification:
## cols(
## group = col_character(),
## score = col_double()
## )
```

kids %>% slice_sample(n=12)

group	score
t	49
С	48
С	46
С	17
t	43
t	44
С	26

Where we were at

- 21 kids in "treatment", new reading method; 23 in "control", standard reading method.
- Assessing assumptions:
 - We did two-sample t-test (Satterthwaite-Welch) before.
 - Assumes approx. normal data within each group.
 - Does not assume equal spread.
 - (Pooled t-test does assume equal spread).
 - Assess each group separately.

Boxplots for reading data

Facetted normal quantile plots

Done this way:

```
ggplot(kids,aes(sample=score))+stat_qq()+stat_qq_line()+
facet_wrap(~group)
```


Comments

- These plots show no problems with normality. Both groups are more or less symmetric/normal and there are no outliers.
- Equal spreads questionable, but we don't need that.
- Assess equal spreads by looking at slopes of normal quantile plots.
- We ought be happy with the (Welch) two-sample t-test (over)

Welch two-sample test

##

```
t.test(score~group,data=kids,alternative="less")
##
##
   Welch Two Sample t-test
##
## data: score by group
## t = -2.3109, df = 37.855, p-value = 0.01319
## alternative hypothesis: true difference in means is less tl
## 95 percent confidence interval:
        -Inf -2.691293
##
## sample estimates:
## mean in group c mean in group t
```

from which we concluded that the new reading method really does help.

41.52174 51.47619