departamento de matemática

universidade de aveiro

1. Seja
$$A = \begin{bmatrix} -5 & 2 \\ 2 & -1 \end{bmatrix}$$
.

- (a) Mostre que $A^{-1}=\begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix}$, usando a definição de inversa.
- (b) Sem efectuar cálculos, indique $(A^{-1})^{-1}$.
- 2. Em cada caso, use o algoritmo de inversão de matrizes para encontrar a inversa da matriz dada.

(a)
$$\begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 3 \\ 0 & 3 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & 3 & -1 \\ -1 & 0 & 0 \\ 0 & 2 & -1 \end{bmatrix}$;

(d)
$$\begin{bmatrix} 3 & 5 & 1 \\ 1 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
; (e) $\begin{bmatrix} 2 & 1 & 2 \\ -3 & -1 & -1 \\ 5 & 2 & 1 \end{bmatrix}$; (f) $\begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & -1 \\ 5 & 7 & 3 & 5 \\ 2 & 5 & 6 & 1 \end{bmatrix}$.

3. Em cada caso, encontre a matriz invertível A que satisfaz a equação matricial dada.

(a)
$$(3A)^{-1} = \begin{bmatrix} 1 & 0 \\ -5 & -1 \end{bmatrix}$$
; (b) $(5A)^T = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{-1}$;

(c)
$$(2A^T - 3I)^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$
; (d) $(A^{-1} - 3I)^T = 5 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$;

(e)
$$\left(A^T - 3\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}\right)^{-1} = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix};$$
 (f) $\left(2\begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} - 5A^{-1}\right)^T = \left(4A^T\right)^{-1}.$

4. Seja $A = \begin{bmatrix} -1 & -10 & 4 \\ 0 & 3 & -1 \\ 1 & 5 & -1 \end{bmatrix}$. Para cada caso, encontre a matriz X que satisfaz a equação matricial dada.

(a)
$$AX = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix}$$
; (b) $XA = \begin{bmatrix} 2 & 3 & -1 \\ -1 & 0 & 5 \end{bmatrix}$.

5. Considere as matrizes $A = \begin{bmatrix} 0 & 5 & -2 \\ 3 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 0 & -2 \\ -1 & 3 & 0 \end{bmatrix}$. Resolva a equação matricial $X^{-1} + (XB^{-1})^{-1} = A.$

3.1. inversa de uma matriz

página 2/3

6. Sejam
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \\ 1 & 3 & 7 \end{bmatrix}$ e sejam X_1 e X_2 matrizes tais que $AX_1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$ e $BX_2 = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$. Determine:

- (a) $A^{-1} \in B^{-1}$;
- (b) X_1 e X_2 , usando a alínea anterior.
- 7. Mostre que se $U=\left[\begin{array}{cc} 3 & -4 \\ 7 & 5 \end{array}\right]$ e AU=0 então A=0.
- 8. (a) Simplifique (I A)(I + A).
 - (b) Se $A^2 = 0$, mostre que I A é invertível e $(I A)^{-1} = I + A$.
 - (c) Se $A^3 = 0$, mostre que I A é invertível e $(I A)^{-1} = I + A + A^2$.
 - (d) Generalize, ou seja, se $A^n = 0$, determine $(I A)^{-1}$, para qualquer $n \in \mathbb{N}$.
- 9. Seja A uma matriz invertível tal que $(7A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & -7 \end{bmatrix}$. Determine A.
- 10. Seja A uma matriz quadrada tal que $A^2 3A + I = 0$. Mostre que $A^{-1} = 3I A$.
- 11. Diz-se que uma matriz M é ortogonal se $M^{-1}=M^T$. Prove que:
 - (a) $A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ é ortogonal;

Sugestão: recorde a noção de inversa de uma matriz

(b) se M e N são matrizes ortogonais então MN é ortogonal.

3.1. inversa de uma matriz

página 3/3

1. (b) A.

2. (a)
$$\begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$$
; (b) $\begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 1 & -1 \\ 2 & 2 & -3 \end{bmatrix}$;

(d)
$$\frac{1}{8} \begin{bmatrix} 2 & -5 & -7 \\ 0 & 4 & 4 \\ 2 & -5 & 1 \end{bmatrix}$$
; (e) $\frac{1}{2} \begin{bmatrix} -1 & -3 & -1 \\ 2 & 8 & 4 \\ 1 & -1 & -1 \end{bmatrix}$; (f) $\begin{bmatrix} 9 & 0 & -2 & 1 \\ 8 & 3 & -1 & 0 \\ -7 & -2 & 1 & 0 \\ -16 & -3 & 3 & -1 \end{bmatrix}$.

3. (a)
$$\frac{1}{3}\begin{bmatrix} 1 & 0 \\ -5 & -1 \end{bmatrix}$$
; (b) $\frac{1}{25}\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$; (c) $\begin{bmatrix} 2 & -\frac{1}{2} \\ -1 & 3 \end{bmatrix}$; (d) $\frac{1}{34}\begin{bmatrix} 23 & -15 \\ -10 & 8 \end{bmatrix}$; (e) $\frac{1}{2}\begin{bmatrix} 7 & 11 \\ -1 & -3 \end{bmatrix}$; (f) $\frac{21}{40}\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$.

4. (a)
$$\frac{1}{4}\begin{bmatrix} -14 & -4 \\ 5 & -4 \\ 11 & -12 \end{bmatrix}$$
; (b) $\frac{1}{4}\begin{bmatrix} -4 & -16 & 4 \\ 17 & 35 & 13 \end{bmatrix}$.

$$5. \begin{bmatrix} 10 & -13 & -8 \\ -11 & 16 & 9 \\ -28 & 40 & 22 \end{bmatrix}.$$

6. (a)
$$A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$
 e $B^{-1} = \frac{1}{9} \begin{bmatrix} 9 & 0 & 0 \\ -10 & 7 & -4 \\ 3 & -3 & 3 \end{bmatrix}$;
(b) $X_1 = \begin{bmatrix} 5 & 2 & 0 \end{bmatrix}^T$ e $X_2 = \begin{bmatrix} 1 & -\frac{25}{9} & \frac{4}{3} \end{bmatrix}^T$.

8. (a)
$$I - A^2$$
; (d) $(I - A)^{-1} = I + A + A^2 + \dots + A^{n-1}$, para todo $n \in \mathbb{N}$.

9.
$$A = \frac{1}{7} \begin{bmatrix} 7 & 2 \\ 4 & 1 \end{bmatrix}.$$