

DEPARTMENT OF AEROSPACE ENGINEERING

Indian Insitute of Technology Kanpur

Rocket Propulsion (Code: AE441A) Instructor: Sathesh Mariappan Assignment due: 3 September 2021

Course assignment

Maximum Marks: 10

- 1. (a) Plot the rocket trajectory (horizontal (x) vs. vertical (h) distance), rocket speed (u vs. t), rocket angle $(\theta$ vs. t) and rocket height (h vs. t) until the burn out time $(t=t_b)$. Also tabulate the burnout height (h_b) , burnout speed (u_b) , and angle of rocket at burnout (θ_b) . The rocket is fired from the ground (at t=0:x,h=0) at an angle of 1 degree from the vertical $(\theta=1$ degree) with a non-zero initial vertical velocity 30 m/s. Given: constant equivalent exhaust velocity $u_{eq}=3048$ m/s, initial rocket mass $(M_0)=15000$ kg, propellant mass $(M_p)=12000$ kg, burnout time $(t_b)=100$ s, constant acceleration due to gravity $(g_0)=9.81$ m/s², neglect drag (D=0), assume constant mass burning rate (\dot{m}) . Compute the results (overlay the plots for the cases a-d and tabulate other results) if all other parameters are as given above and:
 - (b) Only acceleration due to gravity (g) varies (and D = 0): with height (h): $g = g_0 [R_e/(R_e + h)]^2$, where, R_e is the earth's radius = 6,400 km.
 - (c) Only drag (D) varies (and $g = g_0$): with ambient gas density (ρ) and rocket velocity (u): $D = C_D(1/2)\rho u^2 A_f$, where, C_D is the coefficient of drag = 0.1 (assumed constant), A_f is the frontal cross-sectional area of the rocket = 1 m². $\rho(h) = 1.2 exp \left(-2.9 \times 10^{-5} h^{1.15}\right)$ kg/m³, h is in m.
 - (d) Both g and D varies: as given in (b) and (c), respectively. Try with different time steps $(\Delta t = 0.1 \text{ s}, 0.01 \text{ s...etc}).$
 - (e) Realistic condition: C_D varies with Mach number according to the plot shown in figure 1.

[10]

Figure 1: Variation of drag coefficient C_D with flight Mach number M for a typical launch vehicle. Source: http://www.braeunig.us/space/aerodyn_wip.htm

Student's name: End of exam