Übungen zu: AUSWERTUNG VON MESSUNGEN UND FEHLERRECHNUNG

 Blatt Nr. 3/C Größtfehler - WS 2023/2024

 Datensatz Nr. D.3-8/D.1-136

 1. Abgabe (06.11.2023 14:00 Uhr)

 A)
 B)
 C)
 D)
 E)
 F)

 A)
 B)
 C)
 D)
 E)
 F)

 A)
 B)
 C)
 D)
 E)
 F)

Jun Wei

VORNAME

A.) Absoluter Fehler

Tan

NAME

Berechnen Sie den absoluten Fehler des Drehimpulses $L = 23.9 \text{ kg m}^2/\text{s}$ wenn die Genauigkeit der Messung 4,2% ist!

Drehimpuls L/kg m ² /s	1. Abgabe		2. Abgabe	
23,9	1,0 ky m 3-1	V		

B.) Größtfehler bei einer Variablen 😮 1,7%

Wenn für t das Ergebnis (8,20 ± 0,14)s gefunden wird, wie groß sind dann die absoluten Fehler für folgende Größen (Größtfehler)!

	1. Abgabe		2. Abgabe	
t ²	(8,2± 1,1);2	15		
1/t	(0,100 ± 0,0021)5-1	/		
17 t ³	(93,7± 1,6)x1033	ΛF		

C.) Größtfehler bei mehreren Variablen

Ein Student erhält folgende Messwerte $a=(3,0\pm2,0)$ cm, $b=(19,0\pm2,0)$ cm, $c=(12,31\pm0,25)$ cm, $t=(3,20\pm0,15)$ s. Berechnen Sie folgende Ausdrücke inklusive Fehler (Größtfehler)!

	1. Abgabe		2. Abgabe	
a+b+c	(34,3±4,3)un	/		
a + b - c	(9,7t4,3)un	V		
c· t	(39,4 ± 1,6) cms	V		

D.) Volumen eines Zylinders

Berechnen Sie das Volumen V eines Zylinder (Radius r und Höhe h) inklusive Fehler nach der Methode des Größtfehlers!

Meswerte	1. Abgabe		2. Abgabe
$r = (3.71 \pm 0.15) \text{ mm}$	v (a - a - 19 a n 7/)	3	$v = (5.05 \pm 0.76)_{ca}^{3}$
$h = (11,67 \pm 0,81) \text{ cm}$	$V = \left(\underbrace{0,0505 \pm 0,0076}_{\text{2x}} \right) \text{cm}$	76	$V = (5,05 \pm 0,76)c^{3}$
	Mal-Mul		

E.) Dichte von Luft

Berechnen Sie die Dichte ρ von Luft inklusive Fehler nach der Methode des Größtfehlers! Die Dichte von Luft wird bestimmt, indem man die Masse eines Glaskolbens (Volumen V) einmal mit Luft m_{ML} und einmal ohne Luft (evakuiert) m_{OL} misst.

Messwerte	1. Abgabe		2. Abgabe	
$V = (196,0 \pm 2,1) \text{ cm}^3$		}	ユ	
$m_{\rm ML} = (10,3621 \pm 0,0020) \text{ g}$	(11140 <u>01 </u> /	15	ρ= ±	
$m_{\rm OL} = (10,1093 \pm 0,0022) \text{ g}$	Wet	4		

F.) Fehlerfortpflanzung bei trigonometrischen Funktionen

Bei einem Praktikumsversuch messen Sie einen Winkel $\alpha = (118,00 \pm 0,52)^{\circ}$. Wie groß ist der $\sin(\alpha)$ inklusive Fehler?

	1. Abgabe		2. Abgabe	
$sin(\alpha) =$	0,8829 ± 0,0043	/	±	

Platz für Nebenrechnungen: