Matematika Diskrit [KOMS119602] - 2022/2023

7 - Teori Bilangan

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak Universitas Pendidikan Ganesha

Week 7-11 February 2022

Bagian 1: Keterbagian

Keterbagian

Teorema

Misal $a, b, c \in \mathbb{Z}$, dimana $a \neq 0$. Maka:

- 1. jika a|b dan a|c, maka a|(b+c);
- 2. jika a|b dan a|bc untuk $\forall c \in \mathbb{Z}$;
- 3. jika a|b dan b|c, maka a|c.

Corollary

Jika $a,b,c\in\mathbb{Z}$ dimana $a\neq 0$, sedemikian sehingga a|b dan a|c. Maka untuk $\forall m,n\in\mathbb{Z}$:

$$a|(mb+nc)$$

Algoritma pembagian

Teorema

Misalkan $a \in \mathbb{Z}$ dan $d \in \mathbb{Z}_+$. Maka terdapat tepat satu pasangan bilangan bulat q dan r dimana $0 \le r < d$, sedemikian sehingga

$$a = dq + r$$

- d disebut pembagi;
- a disebut dividen;
- q disebut quotient;
- r disebut sisa (*remainder*).

Notasi:

$$q = a \operatorname{div} d$$
, $r = a \operatorname{mod} d$

- 1. Tentukan hasil bagi dan sisa bagi dari 101 dibagi 11.
- 2. Tentukan hasil bagi dan sisa bagi dari -11 dibagi 3.

Aritmetika modulo

Misalkan $a, b \in \mathbb{Z}$, dan $m \in \mathbb{Z}_+$. Maka dikatakan bahwa a kongruen dengan b modulo m jika \underline{m} habis membagi a - b.

Notasi:

 $a \equiv b \pmod{m}$ mengindikasikan a kongruen dengan b modulo m, dan ini disebut kekongruenan/kongruensi.

Jika a dan b tidak kongruen modulo m, dinotasikan dengan:

$$a \not\equiv b \pmod{m}$$

 $a \equiv b \pmod{m}$ versus $a \mod m$

$a \equiv b \pmod{m}$ versus $a \mod m$

 $a \equiv b \pmod{m}$ menyatakan sebuah relasi pada bilangan bulat.

a mod m menyatakan sebuah fungsi.

Teorema

Misalkan $a, b \in \mathbb{Z}$, dan $m \in \mathbb{Z}_+$. Maka:

 $a \equiv b \pmod{m}$ jika dan hanya jika a mod $m = b \pmod{m}$

$a \equiv b \pmod{m}$ versus $a \mod m$

 $a \equiv b \pmod{m}$ menyatakan sebuah relasi pada bilangan bulat. $a \mod m$ menyatakan sebuah fungsi.

Teorema

Misalkan $a, b \in \mathbb{Z}$, dan $m \in \mathbb{Z}_+$. Maka:

 $a \equiv b \pmod{m}$ jika dan hanya jika a mod $m = b \pmod{m}$

Teorema

Misalkan $a, b \in \mathbb{Z}$, dan $m \in \mathbb{Z}_+$. Maka:

 $a \equiv b \pmod{m}$ jika $\exists k \in \mathbb{Z}$ sedemikian sehingga a = b + kn

Aritmetika modulo

Teorema

Misal
$$m \in \mathbb{Z}_+$$
. Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$, maka:

$$a + c \equiv b + d \pmod{m}$$
 dan $ac \equiv bd \pmod{m}$

Corollary

Misalkan $a, b \in \mathbb{Z}$, dan $m \in \mathbb{Z}_+$. Maka:

$$(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$$

dan

$$ab \mod m = ((a \mod m)(b \mod m)) \mod m$$

Soal 1.

Diketahui bahwa $7\equiv 2 (\text{mod }5)$ dan $11\equiv 1 (\text{mod }5)$. Tentukan kongruensi dari 77 mod 5 berdasarkan relasi tersebut.

Soal 2.

Bagian 2: Representasi integer (bilangan bulat)

Representasi integer (bilangan bulat)

Misalkan $b \in \mathbb{Z}$ dan b > 1. Jika $n \in \mathbb{Z}_+$, maka n dapat dituliskan sebagai:

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

dimana $k \in \mathbb{Z}_{\geq 0}$, $a_0, a_1, \ldots, a_k \in \mathbb{Z}_{\geq 0}$ dan kurang dari b, serta $a_k \neq 0$.

Ekspansi biner

Bagaimana menyatakan (1 0101 1111)₂ dalam ekspansi biner?

Ekspansi biner

Bagaimana menyatakan (1 0101 1111)₂ dalam ekspansi biner?

Solusi:

$$(1\ 0101\ 1111)_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3$$
$$+ 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$
$$= 351$$

Ekspansi oktal

Bagaimana menyatakan (7016)₈ dalam ekspansi biner?

Ekspansi oktal

Bagaimana menyatakan (7016)₈ dalam ekspansi biner?

Solusi:

Gunakan definisi sebelumnya dengan mengambil nilai b = 8.

$$(7016)_8 = 7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 6 \cdot 8^0 = 3598$$

Ekspansi oktal

Bagaimana menyatakan (7016)₈ dalam ekspansi biner?

Solusi:

Gunakan definisi sebelumnya dengan mengambil nilai b = 8.

$$(7016)_8 = 7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 6 \cdot 8^0 = 3598$$

Dalam ekspansi heksadesimal, digunakan 16 digit, yaitu:

Ekspansi heksadesimal

Dalam ekspansi heksadesimal, digunakan 16 digit, yaitu:

$$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F$$

dimana digit A hingga F merepresentasikan bilangan 10 hingga 15.

Ekspansi heksadesimal

Dalam ekspansi heksadesimal, digunakan 16 digit, yaitu:

dimana digit A hingga F merepresentasikan bilangan 10 hingga 15.

Bagaimana menyatakan $(2AE0B)_{16}$ dalam ekspansi biner?

Ekspansi heksadesimal

Dalam ekspansi heksadesimal, digunakan 16 digit, yaitu:

dimana digit A hingga F merepresentasikan bilangan 10 hingga 15.

Bagaimana menyatakan $(2AE0B)_{16}$ dalam ekspansi biner?

Solusi:

Gunakan definisi sebelumnya dengan mengambil nilai b = 8.

$$(7016)_8 = 7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 6 \cdot 8^0 = 3598$$

Bagian 3: Konversi ekspansi bilangan biner, oktal, dan heksadesimal

Algoritma

Bagaimana mengkonstruksi ekspansi basis b dari suatu integer n?

Langkah 1: Bagi n dengan b untuk mendapatkan <u>hasil bagi</u> dan sisa bagi, yakni:

$$n=bq_0+a_0, \quad 0\leq a_0\leq b$$

Sisa a_0 adalah digit paling kanan dari ekspansi n.

Langkah 2: Bagi q_0 dengan b sehingga diperoleh:

$$q_0 = bq_1 + a_1, \quad 0 \le a_1 < b$$

 a_1 adalah digit kedua dari kanan dari ekspansi n.

Langkah berikutnya: Lanjutkan proses tersebut, dengan membagi secara berurutan hasil bagi dengan *b*. Proses ini dihentikan ketika hasil baginya adalah 0.

Output: Rangkaian digit yang dihasilkan merupakan representasi/ekspansi bilangan n dalam basis b (ditulis dari kanan ke kiri).

Temukan ekspansi oktal dari $(12345)_{10}$.

Temukan ekspansi oktal dari (12345)₁₀.

Solusi:

$$12345 = 8 \cdot 1543 + 1$$

$$1543 = 8 \cdot 192 + 7$$

$$192 = 8 \cdot 24 + 0$$

$$24 = 8 \cdot 3 + 0$$

$$3 = 8 \cdot 0 + 3$$

Jadi, $(12345)_{10} = (30071)_8$.

Temukan ekspansi heksadesimal dari (177130)₁₀.

Temukan ekspansi heksadesimal dari $(177130)_{10}$.

Solusi:

$$177130 = 16 \cdot 11070 + 10$$

$$11070 = 16 \cdot 691 + 14$$

$$691 = 16 \cdot 43 + 3$$

$$43 = 16 \cdot 2 + 11$$

$$2 = 16 \cdot 0 + 2$$

Sisa pembagian terurut dari operasi di atas adalah: 10, 14, 3, 11, 2 sehingga:

$$(177130)_{10} = (2B3EA)_{16}$$

Temukan ekspansi biner dari (241)₁₀

Temukan ekspansi biner dari (241)₁₀

Solusi:

$$241 = 2 \cdot 120 + 1$$

$$120 = 2 \cdot 60 + 0$$

$$60 = 2 \cdot 30 + 0$$

$$30 = 2 \cdot 15 + 0$$

$$15 = 2 \cdot 7 + 1$$

$$7 = 2 \cdot 3 + 1$$

$$3 = 2 \cdot 1 + 1$$

$$1 = 2 \cdot 0 + 1$$

Sisa pembagian terurut dari operasi di atas adalah: 1, 0, 0, 0, 1, 1, 1, 1, sehingga:

$$(241)_{10} = (1111\ 0001)_2$$

Tabel konversi

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.																
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Penjumlahan bilangan bulat

Contoh

Jumlahkan $a = (1110)_2$ dan $b = (1011)_2$.

Solusi:

Penjumlahan bilangan bulat

Contoh

Jumlahkan $a = (1110)_2$ dan $b = (1011)_2$.

Solusi:

Jabarkan langkah-langkah menjumlahkan bilangan dalam basis b.

Perkalian bilangan bulat

Contoh

Hitunglah $a = (110)_2 \ dan \ b = (101)_2$.

Perhatikan bahwa:

$$ab_0 \cdot 2^0 = (110)_2 \cdot 1 \cdot 2^0 = (110)_2$$

 $ab_1 \cdot 2^1 = (110)_2 \cdot 0 \cdot 2^1 = (0000)_2$
 $ab_2 \cdot 2^1 = (110)_2 \cdot 0 \cdot 2^1 = (0000)_2$

Jabarkan langkah-langkah mengalikan bilangan dalam basis b.

Bagian 4: Bilangan prima dan FPB

Bilangan prima

Bilangan bulat p > 1 disebut bilangan prima jika faktor dari p hanyalah 1 dan p.

Bilangan bulat yang lebih dari 1 dan *bukan prima* disebut bilangan komposit.

Tugas: berikan contoh bilangan prima dan bilangan komposit.

Teorema dasar aritmetika

Teorema

Setiap bilangan bulat yang lebih dari 1 dapat dinyatakan dengan tepat satu cara sebagai bilangan prima atau perkalian dari dua atau lebih bilangan prima, dimana faktor-faktor primanya disusun dalam urutan tak-turun (non-decreasing).

Contoh

Faktorisasi prima dari 100, 641, 999, dan 1024 adalah:

$$100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^{2} \cdot 5^{2}$$

$$641 = 641$$

$$999 = 3 \cdot 3 \cdot 3 \cdot 37 = 3^{3} \cdot 37$$

$$1024 = 2 \cdot 2 = 2^{10}$$

Menyelidiki suatu bilangan prima atau bukan

Buktikan teorema berikut

Teorema

Jika n adalah bilangan komposit, maka n memiliki faktor prima yang kurang dari atau sama dengan \sqrt{n} .

Menyelidiki suatu bilangan prima atau bukan

Buktikan teorema berikut

Teorema

Jika n adalah bilangan komposit, maka n memiliki faktor prima yang kurang dari atau sama dengan \sqrt{n} .

Latihan:

- 1. Tunjukkan bahwa 101 adalah bilangan prima.
- 2. Temukan faktorisasi prima dari 7007.

Sieve Erastothenes

Contoh kasus: Bagaimanakah membuat list bilangan prima yang < 100?

- Sesuai teorema, bilangan komposit ≤ 100 pastilah memiliki faktor prima yang ≤ 10 .
- ▶ Bilangan prima yang kurang dari 10 adalah 2, 3, 5, 7.
- Maka, bilangan prima yang \leq 100 adalah 2, 3, 5, 7, dan bilangan di antara 1 dan 100 yang tidak habis dibagi oleh 2, 3, 5, 7.

Sieve Erastothenes

Inte	gers	divisi	ble b	y 2 ot	ther t	han 2				In	teger	s divi	sible	by 3	other	than	3		
rece	eive a	n un	derlin	ıe.						re	ceive	an u	nderl	ine.					
1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20	11	12	13	14	15	16	17	18	19	20
21	<u>22</u>	23	24	25	<u>26</u>	27	<u>28</u>	29	30	21	22	23	24	25	26	27	<u>28</u>	29	30
31	<u>32</u>	33	<u>34</u>	35	<u>36</u>	37	<u>38</u>	39	40	31	<u>32</u>	<u>33</u>	<u>34</u>	35	36	37	<u>38</u>	<u>39</u>	40
41	<u>42</u>	43	<u>44</u>	45	<u>46</u>	47	<u>48</u>	49	<u>50</u>	41	42	43	<u>44</u>	<u>45</u>	<u>46</u>	47	48	49	50
51	<u>52</u>	53	<u>54</u>	55	<u>56</u>	57	<u>58</u>	59	<u>60</u>	<u>51</u>	<u>52</u>	53	<u>54</u>	55	<u>56</u>	<u>57</u>	<u>58</u>	59	60
61	<u>62</u>	63	<u>64</u>	65	<u>66</u>	67	<u>68</u>	69	<u>70</u>	61	<u>62</u>	<u>63</u>	<u>64</u>	65	<u>66</u>	67	<u>68</u>	<u>69</u>	70
71	<u>72</u>	73	<u>74</u>	75	<u>76</u>	77	<u>78</u>	79	80	71	72	73	74	<u>75</u>	<u>76</u>	77	<u>78</u>	79	80
81	<u>82</u>	83	<u>84</u>	85	<u>86</u>	87	88	89	90	<u>81</u>	<u>82</u>	83	84	85	<u>86</u>	<u>87</u>	88	89	90
91	92	93						99	100										
	_),	<u>94</u>	95	<u>96</u>	97	<u>98</u>	99	100	91	<u>92</u>	93	<u>94</u>	95	<u>96</u>	97	<u>98</u>	99	100
Inte	gers		_		96 ther t		_	99	100		_	s divi	_		=		_	_	100
		divisi	_	y 5 ot	_		_	99	100	In	teger		sible	by 7	= other	than	7 rec	eive	100
		divisi	ble b	y 5 ot	_		_	99		In	teger	s divi	sible	by 7	= other	than	7 rec	eive	
rece	ive a	divisi n una	ble b	y 5 oi ie.	ther t	han 5	i		100 20	In an	teger	s divi erline	sible ; inte	by 7 o	= other in co	than lor ai	7 rec e pri	eive me.	10
rece	ive a	divisi n una	ble b derlin	y 5 ot ne.	ther to	han 5		9	10 20	In an	teger und	s divi erline	sible ; inte	by 7 o	= other in co <u>6</u>	than lor ai	7 rec e prii <u>8</u>	eive me.	10 20
1 1	2 12	divisi n uni 3 13	ible b derlin 4 14	y 5 ot ne. 5 <u>15</u>		7 17		<u>9</u> 19	<u>10</u>	In an 1	teger under 2 12	erline 3 13	sible; inte	by 7 of egers 5 15	= other in co 	than lor ar 7 17	7 rec e pri	eeive me.	10 20 30
1 11 21	2 12 22	3 13 23	derlin 4 14 24	y 5 or ne. 5 <u>15</u> <u>25</u>	6 16 26	7 17 <u>27</u>	8 18 28	<u>9</u> 19 29	10 20 30	In an 1 11 21	2 12 22 22	3 13 23		by 7 cegers 5 15 25	= other in co 	than lor ar 7 17 27	7 rec re prii 8 18 28	9 19 29	10 20 30 40
1 11 21 31	2 12 22 22 32	3 13 23 33	4 14 24 34	y 5 or ne. 5 15 25 35	6 16 26 36	7 17 <u>27</u> 37	8 18 28 38	9 19 29 39	10 20 30 40 50 60	1 1 11 21 31	2 12 22	3 13 23 33		by 7 cegers 5 15 25 35	= other in co	than lor ar 7 17 27 37	7 rec re prii 8 18 28 38	9 19 29	10 20 30 40 50
1 11 21 31 41 51	2 12 22 22 32 42	3 13 23 3 43	4 14 24 34 44	y 5 or ne. 5 15 25 25 45	6 16 26 36 46 56	7 17 <u>27</u> 37 47	8 18 28 38 48	9 19 29 39 49	10 20 30 40 50 60	In an 1 11 21 31 41	2 12 22 32 42	3 13 23 33 43	4 14 24 34 44	by 7 degers 5 15 25 35 45	6 16 26 36 46	7 17 27 37 47	7 rec re prii 8 18 28 38 48	9 19 29 39 49	10 20 30 40 50
1 11 21 31 41 51 61	2 12 22 22 32 42 52 62	3 13 23 33 43	4 14 24 34 44 54 64	y 5 or ne. 5 15 25 35 45 55 65	6 16 26 36 46	7 17 27 37 47 57	8 18 28 28 38 48 58	9 19 29 39 49 59	10 20 30 40 50 60	1 1 11 21 31 41 51	2 12 22 22 32 42 52 62	3 13 23 33 43	24 24 34 44 54	by 7 cegers 5 15 25 35 45 55 65	6 16 26 36 46	than 7 17 27 37 47 57 67	7 rec re prii 8 18 28 38 48 58 68	9 19 29 39 49	10 20 30 40 50 60
1 11 21 31 41	2 12 22 22 32 42 52	3 13 23 33 43 53	14 24 34 44 54	y 5 or 15	6 16 26 36 46 56	7 17 27 37 47 57 67	8 18 28 38 48 58 68	9 19 29 39 49 59	10 20 30 40 50 60 70	1 11 21 31 41 51 61	2 12 22 22 32 42 52	3 13 23 33 43 53 63	4 14 24 34 44 54 64	5 15 25 35 45 55	6 16 26 36 46 56	7 17 27 37 47 57	7 rec re prii 8 18 28 28 38 48 58	9 19 29 39 49 59	100 200 300 400 500 600 800 900

FPB

Misalkan $a, b \in \mathbb{Z}$ dimana a dan b tidak keduanya 0. Bilangan terbesar d sedemikian sehingga d|a dan d|b disebut faktor persekutuan terbesar (FPB) dari a dan b.

FPB dari a dan b dinotasikan dengan fpb(a, b).

Latihan

- 1. Tentukan fpb dari 24 dan 36
- 2. Tentukan fpb dari 17 dan 22

Definisi

Dua bilangan a dan b dimana fpb(a, b) = 1 disebut relatif prima.

Kelipatan persekutuan terkecil (KPK)

KPK dari dua bilangan bulat positif a dan b adalah bilangan bulat positif **terkecil** yang habis dibagi a dan b.

KPK dari a dan b dinotasikan dengan kpk(a, b).

Latihan

- 1. Tentukan kpk dari 24 dan 36
- 2. Tentukan kpk dari 17 dan 22

Menghitung fpb dan kpk dengan faktorisasi prima

Misalkan faktorisasi prima dari a dan b adalah:

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$

 $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

Maka:

$$fpb(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$$

dan

$$kpk(a, b) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \cdots p_n^{max(a_n,b_n)}$$

Latihan: Hitunglah fpb dan kpk dari 120 dan 500.

Algoritma Euclid

Lemma

Misalkan a = bq + r dimana a, b, q, r adalah integer. Maka:

$$gcd(a, b) = gcd(b, r)$$

Bagaimana menentukan fpb(a, b) untuk suatu bilangan $a, b \in \mathbb{Z}$?

Misalkan $a, b \in \mathbb{Z}$ dengan $a \ge b$. Misalkan $r_0 = a$ dan $r_1 = b$. Maka:

$$r_{0} = r_{1}q_{1} + r_{2}0 < r_{2} < r_{1}$$

$$r_{1} = r_{2}q_{2} + r_{3}0 < r_{3} < r_{2}$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_{n}0 < r_{n} < r_{n} - 1$$

$$r_{n-1} = r_{n}q_{n}$$

Algoritma Euclid

Lemma

Misalkan a = bq + r dimana a, b, q, r adalah integer. Maka:

$$\gcd(a,b)=\gcd(b,r)$$

Bagaimana menentukan fpb(a, b) untuk suatu bilangan $a, b \in \mathbb{Z}$?

Misalkan $a, b \in \mathbb{Z}$ dengan $a \ge b$. Misalkan $r_0 = a$ dan $r_1 = b$. Maka:

$$r_{0} = r_{1}q_{1} + r_{2}0 < r_{2} < r_{1}$$

$$r_{1} = r_{2}q_{2} + r_{3}0 < r_{3} < r_{2}$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_{n}0 < r_{n} < r_{n} - 1$$

$$r_{n-1} = r_{n}q_{n}$$

- Apa yang menjamin bahwa sisa bagi yang terakhir adalah 0?
- ▶ Dari algoritma tersebut, berapakah nilai dari fpb(a, b)?

Analisis algoritma Euclid

Apa yang menjamin bahwa sisa bagi yang terakhir adalah 0?

Dari algoritma tersebut, berapakah nilai dari fpb(a, b)?

Analisis algoritma Euclid

Apa yang menjamin bahwa sisa bagi yang terakhir adalah 0?

Barisan sisa $a=r_0>r_1>r_2>\cdots\geq 0$ tidak memuat lebih dari a suku.

Dari algoritma tersebut, berapakah nilai dari fpb(a, b)?

Analisis algoritma Euclid

Apa yang menjamin bahwa sisa bagi yang terakhir adalah 0?

Barisan sisa $a=r_0>r_1>r_2>\cdots\geq 0$ tidak memuat lebih dari a suku.

Dari algoritma tersebut, berapakah nilai dari fpb(a, b)?

$$fpb(a, b) = fpb(r_0, r_1) = fpb(r_1, r_2) = \cdots = fpb(r_{n-2}, r_{n-1})$$

= fpb(r_{n-1}, r_n) = fpb(r_n, 0) = r_n

Latihan

Tentukan fpb dari 414 dan 662 dengan menggunakan algoritma Euclid.

Latihan

Tentukan fpb dari 414 dan 662 dengan menggunakan algoritma Euclid.

Solusi:

$$662 = 414 \cdot 1 + 248$$

$$414 = 248 \cdot 1 + 166$$

$$248 = 166 \cdot 1 + 82$$

$$166 = 82 \cdot 2 + 2$$

$$82 = 2 \cdot 41 + 0$$

Jadi, fpb(414, 662) = 2, karena 2 adalah sisa bagi tak-nol yang terakhir.

Teorema Bezout

Teorema

Jika a dan b adalah bilangan bulat positif, maka terdapat bilangan bulat s dan t sedemikian sehingga:

$$fpb(a,b) = sa + tb$$

Contoh

- 1. Nyatakan fpb(48, 96) = 12 sebagai kombinasi linier dari 48 dan 96.
- 2. Nyatakan fpb(252, 198) = 18 sebagai kombinasi linier dari 252 dan 198.
- 3. Nyatakan fpb(75, 40) = 5 sebagai kombinasi linier dari 75 dan 40.

Pembuktian Teorema Bezout

Ingatlah bahwa Teorema Bezout menyatakan:

Jika a dan b adalah bilangan bulat positif, maka terdapat bilangan bulat s dan t sedemikian sehingga:

$$fpb(a, b) = sa + tb$$

Coba Anda buktikan teorema tersebut secara formal. (*Hint:* gunakan algoritma Euclid.)

Bagian 5: Kongruensi

Kongruensi linier

Kongruensi linier adalah bentuk:

$$ax \equiv b \pmod{m}$$

dimana $m \in \mathbb{Z}_+$, $a, b \in \mathbb{Z}$, dan x adalah variabel.

Solusi dari kongruensi linier tersebut adalah semua bilangan bulat x yang memenuhi kongruensitersebut.

Bagaimana menentukan solusi dari ax $\equiv b \pmod{m}$?

Kita akan cari nilai $\bar{a} \in \mathbb{Z}$ (jika ada) sedemikian sehingga $\bar{a}a \equiv 1 \pmod{m}$.

Invers modulo

Misalkan $m \in \mathbb{Z}_+$, $a, b \in \mathbb{Z}$. Suatu bilangan bulat $\bar{a} \in \mathbb{Z}$ yang memenuhi $\bar{a}a \equiv 1 \pmod{m}$ dinamakan invers dari $a \mod m$.

Teorema

Jika a dan m adalah bilangan bulat relatif prima (memiliki fpb = 1) dan m > 1, maka a memiliki invers.

Lebih lanjut, terdapat <u>tepat satu</u> bilangan bulat \bar{a} yang < m yang merupakan invers dari \bar{a} modulo \bar{m} . Invers lain dari \bar{a} modulo \bar{m} kongruen dengan \bar{a} modulo \bar{m} .

Invers modulo

Misalkan $m \in \mathbb{Z}_+$, $a, b \in \mathbb{Z}$. Suatu bilangan bulat $\bar{a} \in \mathbb{Z}$ yang memenuhi $\bar{a}a \equiv 1 \pmod{m}$ dinamakan invers dari $a \mod m$.

Teorema

Jika a dan m adalah bilangan bulat relatif prima (memiliki fpb = 1) dan m > 1, maka a memiliki invers.

Lebih lanjut, terdapat <u>tepat satu</u> bilangan bulat \bar{a} yang < m yang merupakan invers dari \bar{a} modulo \bar{m} . Invers lain dari \bar{a} modulo \bar{m} kongruen dengan \bar{a} modulo \bar{m} .

Bagaimana menentukan invers dari a modulo m untuk nilai m yang kecil?

Tugas: Buatlah beberapa (minimal 3) kongruensi linier, dan tunjukkan kebenaran teorema tersebut.

Latihan 1

Temukan invers dari 3 modulo 7 dengan cara menentukan koefesien Bézout dari 3 dan 7.

Solusi:

Karena fpb(3,7) = 1, maka berdasarkan Teorema sebelumnya, 3 memiliki invers modulo 7.

Aplikasikan algoritma Euclid, sehingga pada barik akhir ditemukan:

$$7 = 2 \cdot 3 + 1$$

yang ekuivalen dengan: $-2 \cdot 3 + 1 \cdot 7 = 1$.

Ini berarti -2 dan 1 adalah koefesien Bézout dari 3 dan 7

Bagian 6: Penerapan Teori Bilangan

Aktivitas eksploratif: Penerapan Teori Bilangan

Buatlah kelompok beranggotakan 2-3 orang.

Selidiki penerapan teori bilangan dalam bidang Informatika.

- 1. Fungsi hashing
- 2. Bilangan pseudorandom
- 3. Digit pengecekan
- 4. Kriptografi
- 5. ...
- 6. ...