МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИС

ПРАКТИЧЕСКАЯ РАБОТА

по дисциплине «Теория принятия решений»

Тема: Применение методов линейного и динамического программирования для решения практических задач (по вариантам)

Вариант: 89

Студентка гр. 0374	 Крылова Е.П.
Преподаватель	 Степуленок Д.О.

Санкт-Петербург

2023

Введение

Целью данной работы является нахождение оптимального решения представленной задачи линейного программирования при помощи современного инструмента – GNU Octave.

Задача

1.1. Условие задачи

Запасы товара на трех складах торговой компании, составляют 113, 135, и 136. Компания имеет пункты реализации товара в пяти населенных пунктах, причем средние транспортные затраты на перевозку единицы товара из складов в населенные пункты, а также спрос на товар в каждом из пунктов указаны в табл. 1.

Для стимуляции спроса торговая компания может провести рекламную акцию в каждом из пунктов. Потенциальный эффект от рекламной акции (увеличение спроса на единицу стоимости рекламной акции) зависит от бюджета рекламной акции. Параметры зависимости различны для городов и сведены в табл. 2. Следует обратить внимание, что эффект характеризуется убывающей отдачей (что в определенной степени моделирует насыщение рынка). Так, например, при бюджете рекламной акции 120, увеличение спроса в первом городе будет вычисляться следующим образом: 0.5*40 + 0.4*60 + 0.3*(120 - 40 - 60).

Требуется:

- 1. Определить минимальные издержки на реализацию всего товара.
- 2. Выявить населенные пункты, требующие максимальный и минимальный рекламный бюджет.
- 3. Провести анализ чувствительности оптимальной стратегии к стоимости перевозок между складом 2 и населенным пунктом 3.

Таблица 1: Транспортные расходы

Склад\Город	1	2	3	4	5
1	9	5	10	7	9
2	9	8	5	10	5
3	6	8	8	6	6
Спрос	36	45	29	32	56

Таблица 2: Эффективность рекламных акций

Стоимость акции	1	2	3	4	5
до 40	0.5	0.3	0.4	0.5	0.3
до 100	0.4	0.2	0.3	0.4	0.2
более 100	0.3	0.1	0.2	0.3	0.1

1.2. Формализация задачи

Для решения этой задачи линейного программирования введем переменную x_i , отвечающую за количество перевезенного товара со склада в город, и составим таблицу, получаемую добавлением x_i к таблице транспортных расходов.

TT ~ 2 T	7	`	\ ~	
Iannua 3 - I	naucnonmume	пасходы с	$A \cap A \cap A \cap B \cap A \cap A \cap A \cap A \cap A \cap A \cap $	переменной x_i .
1 aonuga 5 1	panenophinoie	pacaoone	000abicities w	ricpementou xi.

Склад/Город	1	2	3	4	5	Запасы
1	$9(x_1)$	$5(x_2)$	$10(x_3)$	$7(x_4)$	$9(x_5)$	113
2	$9(x_6)$	$8(x_7)$	$5(x_8)$	$10(x_9)$	$5(x_{10})$	135
3	$6(x_{11})$	$8(x_{12})$	$8(x_{13})$	$6(x_{14})$	$6(x_{15})$	136
Спрос	36	45	29	32	56	

Посчитаем сумму спроса и запасов, вычислим их разницу.

Спрос = 198, запасы = 384, разница = 186.

Необходимо реализовать весь товар, поэтому повышаем спрос за счет проведения рекламных акций. Для этого составим таблицу 4, где s_i -повышенный спрос за счет p_i средств.

Tаблица $4 - \Pi$ овышение спроса.

Склад/Город	1	2	3	4	5
Спрос	$36 + s_1$	$45 + s_2$	$29 + s_3$	$32 + s_4$	56 + s ₅

Функция цели:

$$F = \sum_{1}^{15} ci * xi + \sum_{1}^{5} pi \rightarrow min$$

Где c_i – стоимость перевозки со склада в город, а p_i – средства, затраченные на рекламные акции.

Пропишем ограничения, опираясь на условие задачи:

1. По запасам:

$$X_1 + X_2 + X_3 + X_4 + X_5 = 113$$

 $X_6 + X_7 + X_8 + X_9 + X_{10} = 135$
 $X_{11} + X_{12} + X_{13} + X_{14} + X_{15} = 136$

2. По спросу:

$$X_1 + X_6 + X_{11} - S_1 = 36$$

 $X_2 + X_7 + X_{12} - S_2 = 45$
 $X_3 + X_8 + X_{13} - S_3 = 29$
 $X_4 + X_9 + X_{14} - S_4 = 32$
 $X_5 + X_{10} + X_{15} - S_5 = 56$

3. Повышенный спрос и разница:

$$S_1 + S_2 + S_3 + S_4 + S_5 = 186$$

- 4. Выпишем ограничения из таблицы эффективности рекламных акций:
 - 1. Стоимость рекламных акций до 40, 100, больше 100 соответственно.
 - 1) $S_1 0.5P_1 <= 0$
 - 2) $S_1 0.4P_1 < = 4$
 - 3) $S_1 0.3P_1 < = 14$
 - 2. Стоимость рекламных акций до 40, 100, больше 100 соответственно.
 - 1) $S_2 0.3P_2 <= 0$
 - 2) $S_2 0.2P_2 <= 4$
 - 3) $S_2 0.1P_2 <= 14$
 - 3. Стоимость рекламных акций до 40, 100, больше 100 соответственно.
 - 1) $S_3 0.4P_3 <= 0$
 - 2) $S_3 0.3P_3 < =4$
 - 3) $S_3 0.2P_3 <= 14$
 - 4. Стоимость рекламных акций до 40, 100, больше 100 соответственно.
 - 1) $S_4 0.5P_4 <= 0$
 - 2) $S_4 0.4P_4 <= 4$
 - 3) $S_4 0.3P_4 <= 14$

- 5. Стоимость рекламных акций до 40, 100, больше 100 соответственно.
- 1) $S_5 0.3P_5 <= 0$
- 2) $S_5 0.2P_5 <= 4$
- 3) $S_5 0.1P_5 <= 14$

Где S_i – повышенный спрос за счет p_i (затраты на рекламные акции) средств.

1.3. Решение задачи

Решение задачи реализовано в среде GNU Octave с помощью основной функции glpk. Определены минимальные издержки, максимальный и минимальный бюджет в городах.

Ниже представлены таблицы «Транспортные расходы», «Спрос», «Эффективность рекламных акций».

```
Таблица транспортные расходы:
9 5 10 7 9
9 8 5 10 5
6 8 8 6 6

Таблица спрос:
36 45 29 32 56

Таблица эффективности рекламных акций:
0.5 0.3 0.5 0.4 0.3
0.4 0.2 0.3 0.4 0.2
0.3 0.1 0.2 0.3 0.1
```

Puc. 1 - Таблииы.

Далее приведем результаты работы кода.

```
xmin =
     0
    69
     0
    44
     0
     0
    63
     0
    72
    80
     0
     0
    56
   100
   100
   180
    60
    44
    24
    34
    68
    16
Fmin = 2684
```

Puc. 2 - Результат поиска минимальных издержек, а также минимального и максимального бюджета.

Пояснение:

$$X_2 = 69; X_4 = 44; X_8 = 63; X_{10} = 72; X_{11} = 80; X_{14} = 56.$$

Затраты на рекламные акции:

$$P_1\!\!=\!\!100;\,P_2\!\!=\!\!100;\,P_3\!\!=\!\!100;\,P_4\!\!=\!\!180;\,P_5\!\!=\!\!60.$$

Вывод:

Минимальные издержки на реализацию всего товара равны 2684 (значение Fmin). Населенные пункты, требующие минимальный бюджет — это город 5, а максимальный бюджет 4 в городе.

Теперь проведем анализ чувствительности оптимальной стратегии к стоимости перевозок между складом 2 и населенным пунктом 3 и приведем графики. Для решения будем изменять стоимость от 1 до 10 (т.к. 10 – максимальная стоимость перевозок в таблице, а чем выше стоимость – тем менее выгодно перевозить товар этим путем).

Посмотрим, как меняются издержки при изменении цены перевозки между складом 2 и населенным пунктом 3.

Рис. $3 - \Gamma$ рафик 1 (изменение издержек).

```
Long-step dual simplex will be used
ans = 2288
Long-step dual simplex will be used
ans = 2423
Long-step dual simplex will be used
ans = 2542
Long-step dual simplex will be used
ans = 2617
Long-step dual simplex will be used
ans = 2684
Long-step dual simplex will be used
ans = 2747
Long-step dual simplex will be used
ans = 2808
Long-step dual simplex will be used
ans = 2863
Long-step dual simplex will be used
ans = 2918
Long-step dual simplex will be used
ans = 2957
```

Рис. 4 – Анализ чувствительности (изменение издержек).

Из анализа и по графику видно, что издержки меняются от 2288 единицы до 2957 единиц.

Посмотрим, что происходит с перевозками при разных ценах.

Рис. 5 - График 2 (изменение цен).

Long-step dual simplex will be used ans = 135Long-step dual simplex will be used ans = 135Long-step dual simplex will be used ans = 91Long-step dual simplex will be used ans = 67Long-step dual simplex will be used ans = 63Long-step dual simplex will be used ans = 63Long-step dual simplex will be used ans = 56Long-step dual simplex will be used ans = 55Long-step dual simplex will be used ans = 41Long-step dual simplex will be used ans = 39

Рис. 6 - Анализ чувствительности (изменение цен).

Видим, что при стоимости от 1 до 2 включительно, в город поставляют 135 единицы товара; при стоимости 5-91 единиц товара, 6-67, 7-63, 8-56, 9-56, 10-55, 11-41, 12-39.

Заключение

В ходе выполнения работы получили оптимальное решение поставленной задачи линейного программирования и познакомились со средой GNU Octave.