Table # initial

pots: pot #0: new:

symbol $b_0: (0, \infty)$ all:

symbol $b_0:(0,\infty)$

		x_0	x_1	x_2	x_3
x_2	b_0	1	a_{01}	1	0
x_3	1	2	1	0	1
Ψ	0	-2	-1	0	0

Table #0

Moving out basis: x_2 from line: 0

Moving to basis: x_0

pots:
pot #0:
new:

symbol $b_0: (0, 1/2]$

all:

symbol $b_0: (0, 1/2]$

		x_0	x_1	x_2	x_3
x_0	b_0	1	a_{01}	1	0
x_3	$-2b_0 + 1$	0	$-2a_{01}+1$	-2	1
Ψ	$2b_0$	0	$2a_{01} - 1$	2	0

Table #0.0

Moving out basis: x_0 from line: 0

Moving to basis: x_1

pots:

pot #0:

new:

symbol $a_{01}:(0,1/2)$

 $a_{01} - b_0 \geqslant 0$

all:

symbol $a_{01}:(0,1/2)$ symbol $b_0: (0, 1/2]$

 $a_{01} - b_0 \geqslant 0$

		x_0	x_1	x_2	x_3
x_1	$\frac{b_0}{a_{01}}$	$\frac{1}{a_{01}}$	1	$\frac{1}{a_{01}}$	0
x_3	$\frac{1}{a_{01}} \left(a_{01} - b_0 \right)$	$2 - \frac{1}{a_{01}}$	0	$-\frac{1}{a_{01}}$	1
Ψ	$\frac{b_0}{a_{01}}$	$-2 + \frac{1}{a_{01}}$	0	$\frac{1}{a_{01}}$	0

Solution:

$$x_0 = 0$$

$$x_1 = \frac{b_0}{a_0}$$

$$x_{2} = 0$$

$$x_{0} = 0$$

$$x_{1} = \frac{b_{0}}{a_{01}}$$

$$x_{2} = 0$$

$$x_{3} = \frac{1}{a_{01}} (a_{01} - b_{0})$$

$$\Psi = \frac{b_{0}}{a_{01}}$$

$$\Psi = \frac{b_0}{a_{01}}$$

Table #0.1

Moving out basis: x_3 from line: 1

Moving to basis: x_1

pots:

pot #0: new:

symbol $a_{01}:(0,1/2)$

 $-a_{01} + b_0 \geqslant 0$

all:

symbol $a_{01}:(0,1/2)$

symbol $b_0: (0, 1/2]$

 $-a_{01} + b_0 \geqslant 0$

pot #1:

new:

symbol $a_{01}: (-\infty, 0]$

symbol $a_{01}: (-\infty, 0]$ symbol $b_0: (0, 1/2]$

		x_0	x_1	x_2	x_3
x_0	$\frac{a_{01} - b_0}{2a_{01} - 1}$	1	0	$-\frac{1}{2a_{01}-1}$	$\frac{a_{01}}{2a_{01}-1}$
x_1	$\frac{2b_0 - 1}{2a_{01} - 1}$	0	1	$\frac{2}{2a_{01}-1}$	$-\frac{1}{2a_{01}-1}$
Ψ	1	0	0	0	1

Solution:

$$x_0 = \frac{a_{01} - b_0}{2a_{01} - 1}$$

$$x_1 = \frac{2b_0 - 1}{2a_{01} - 1}$$

$$x_2 = 0$$

$$x_1 = \frac{2b_0 - 1}{2a_{01} - 1}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$\Psi = 1$$

Table #0.-1

pots: pot #0: new:

symbol $a_{01}: [1/2, \infty)$

all:

symbol $a_{01}: [1/2, \infty)$ symbol $b_0: (0, 1/2]$

		x_0	x_1	x_2	x_3
x_0	b_0	1	a_{01}	1	0
x_3	$-2b_0 + 1$	0	$-2a_{01}+1$	-2	1
Ψ	$2b_0$	0	$2a_{01} - 1$	2	0

Solution:

 $x_0 = b_0$

 $x_1 = 0$

 $x_2 = 0$

 $x_3 = -2b_0 + 1$ $\Psi = 2b_0$

Table #1

Moving out basis: x_3 from line: 1

Moving to basis: x_0

pots: pot #0:

new:

symbol $b_0: [1/2, \infty)$

all:

symbol $b_0: [1/2, \infty)$

		x_0	x_1	x_2	x_3
x_2	$b_0 - \frac{1}{2}$	0	$a_{01} - \frac{1}{2}$	1	$-\frac{1}{2}$
x_0	$\frac{1}{2}$	1	$\frac{1}{2}$	0	$\frac{1}{2}$
Ψ	1	0	0	0	1

Solution:

$$x_0 = \frac{1}{2}$$

$$x_1 = 0$$

$$x_0 = \frac{1}{2} x_1 = 0 x_2 = b_0 - \frac{1}{2} x_3 = 0 \Psi = 1$$

$$x_3 = 0$$

$$\Psi = 1$$