

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 4, 2000

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Групповой анализ дифференциальных уравнений

ОБ ОДНОМ КЛАССЕ ТОЧЕЧНЫХ СИММЕТРИЙ СИСТЕМЫ ВНЕШНИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

А.Н.Кусюмов

Россия, 420111, Казань, ул. К. Маркса, д. 10, Казанский государственный технический университет им. А.Н. Туполева, кафедра Аэрогидродинамики, e-mail: kusyumov@agd.kstu-kai.ru

Аннотация.

Рассматривается система внешних дифференциальных уравнений, соответсвующая произвольной системе уравнений в частных производных первого порядка с параметром. Вводится понятие "отсекающего" преобразования и "восстанавливающего" преобразования, определяемого с помощью действия некоторой группы преобразований. Восстанавливающее преобразование позволяет определить "неинвариантные" симметрии систем уравнений в частных производных. Неинвариантные симметрии используются для построения точных и приближенных решений исходной системы уравнений.

1. Введение

Как известно, наиболее развитым методом отыскания точных решений систем уравнений в частных производных является метод непрерывных

групп преобразований Ли — Овсянникова. Используя групповые свойства системы можно находить, в частности, инвариантные и частично-инвариантные решения.

Необходимым условием применения метода Π и — Овсянникова является условие существования симметрий, т.е., точечной группы преобразований G, допускаемой рассматриваемой системой уравнений. С математической точки зрения условие существования точечной группы преобразований заключается в выполнении условий инвариантности системы при действии группы G на независимые и зависимые переменные системы [1].

В настоящеее время групповые свойства исследованы для достаточно большого класса систем уравнений. В частности, исследования различных уравнений газовой динамики ведутся в рамках "Программы ПОДМОДЕ-ЛИ"[2]. В тоже время наблюдается тенденция "отхода"от классического метода группового анализа Л.В. Овсянникова в целях расширения возможностей метода. К данному направлению относятся, например, работы, в которых используется понятие приближенной инвариантности и приближенных симметрий [3].

В данной работе вводится понятие "неинвариантных" симметрий, которые используются затем для построения точных и приближенных решений систем уравнений в частных производных. Также как и в [3] считается, что исходная система уравнений содержит некоторый параметр. Однако, в отличие от [3], этот параметр не обязательно должен быть малым.

Групповой анализ осуществляется с помощью перехода от исходной системы уравнений в частных производных к системе внешних дифференциальных уравнений.

2. Исходная система и основные определения

Система уравнений в частных производных первого порядка рассматривается [4] как подмногообразие (поверхность) Σ в пространстве $J^1(\pi)$ 1 - струй локальных сечений расслоения $\pi: E \longrightarrow M \times L_{\varepsilon}$, определяемое уравнениями

$$F^{k}(x, u, p, \varepsilon) = 0 \tag{1}$$

где $x^i \in M \subset R^n, u^j \in U \subset R^m, p_i^j \in J^1(\pi), \ \varepsilon \in L_\varepsilon \subset R, \ E_0 = M \times U,$ $E = E_0 \times L_\varepsilon$. Здесь ε – параметр, который мы будем полагать малым (хотя в некотрых случаях это не является обязательным условием). При этом в

пространстве $J^1(\pi)$ определено распределение Картана C, задаваемое набором 1 - форм Картана

$$\Omega^j = du^j - \sum_{i=1}^n p_i^j dx^i \tag{2}$$

Ограничение распределения Картана C на поверхность Σ означает, что поверхность Σ должна являться интегральным многообразием распределения Картана. Поэтому одновременно с (1) должны выполняться соотношения

$$\Omega^j = 0 \tag{3}$$

Таким образом, решением системы (1) является такое сечение $u: M \times L_{\varepsilon} \longrightarrow E$, для которого выполняются соотношения (1),(3), а саму систему соотношений (1),(3) обозначим как $C\Sigma$.

Будем рассматривать квазилинейные системы уравнений (1) вида

$$F^k = c_{ii}^k(x, u)p_i^j + c_0^k(x, u, \varepsilon)$$

$$\tag{4}$$

где $c_{ji}^k(x,u),c_0^k(x,u,arepsilon)$ - непрерывные функции.

Умножим кажде выражение, входящее в (4), на форму объема базы

$$\omega_F^k = F^k dx^1 \wedge \dots \wedge dx^n \tag{5}$$

От 1-форм, задающих распределение Картана перейдем к n - формам

$$\Omega_i^j = \Omega^j \wedge (dx^1 \wedge \dots \wedge dx^n)_{\bar{i}} = du^j \wedge (dx^1 \wedge \dots \wedge dx^n)_{\bar{i}} + p_i^j (-1)^i dx^1 \wedge \dots \wedge dx^n$$
(6)

где $(dx^1 \wedge \cdots \wedge dx^n)_{\bar{i}} = dx^1 \wedge \cdots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \cdots \wedge dx^n$

Систему внешних дифференциальных уравнений $\Lambda(\Sigma)$ получим следующим образом:

$$\omega^k = \omega_F^k - (-1)^i c_{ji}^k \Omega_i^j = 0 \tag{7}$$

После подстановки (5),(6) формы ω^k примут вид

$$\omega^k = -(-1)^i c_{ji}^k(x, u) du^j \wedge (dx^1 \wedge \dots \wedge dx^n)_{\bar{i}} + c_0^k(x, u, \varepsilon) dx^1 \wedge \dots \wedge dx^n$$
 (8)

Таким образом, исходной системе уравнений $C\Sigma$, определяемой как поверхность Σ с заданным распределением Картана C, соответствует система внешних дифференциальных уравнений $\Lambda(\Sigma)$, определяемая соотношениями

$$\omega^k = 0 \tag{9}$$

с заданным распределением Картана (3).

Отметим, что вследствие квазилинейности исходной системы уравнений, система $\Lambda(\Sigma)$ определена не в координатах пространства $J^1(\pi)$ (как исходная система), а в координатах пространства E. Это означает, что $\Lambda(\Sigma) \in \Lambda_n(E)$, где $\Lambda_n(E)$ – пространство внешних дифференциальных n-форм, определенных на E.

Рассмотрим теперь систему внешних дифференциальных уравнений

$$\omega_0^k = 0 \tag{10}$$

где

$$\omega_0^k = \omega^k|_{\varepsilon=0} \tag{11}$$

Обозначим систему (10) как $\Lambda(\Sigma_0)$.

Для удобства дальнейшего изложения далее будем считать, что формы ω^k (но не формы ω_0^k), определяющие систему $\Lambda(\Sigma)$ записаны не в координатах x,u, а в некоторых координатах $\overline{x}\in M, \overline{u}\in U$. Соответствено вместо системы $\Lambda(\Sigma)$ будем иметь систему $\Lambda(\overline{\Sigma})$. Выражения (11) можно рассматривать как результат действия некоторого преобразования C_0 на ω^k .

Определение 1. Преобразование $C_0: \Lambda(\Sigma) \in \Lambda(E) \longrightarrow \Lambda(\Sigma_0) \in \Lambda_n(E_0)$ будем называть "отсекающим" преобразованием ("cut" - преобразованием).

Пусть теперь имеется однопараметрическая группа преобразований RG, действующая на пространстве E_0 . Пусть также $\varepsilon \in L_\varepsilon$ — параметр группы преобразований. Под действием группы RG происходит преобразование переменных $x \longrightarrow \overline{x} \in M, u \longrightarrow \overline{u} \in U$.

Замечание 1. Преобразование координат пространства E_0 в свою очередь индуцирует преобразование R_{ε} форм ω_0^k по правилу $R_{\varepsilon}(\omega_0^k) = \overline{\omega}_0^k$, где $\omega_0^k(x,u) = \overline{\omega}_0^k(\overline{x},\overline{u},\varepsilon)$.

Введем теперь понятия точной и приближенной "восстанавливающих" групп.

Определение 2. Будем говорить, что RG является точной восстанавливающей ("restore") группой, если $R_{\varepsilon}(\omega_0^k) = \omega^k$.

Определение 3. Будем говорить, что RG является приближенной восстанавливающей группой с порядком аппроксимации s, если

$$R_{\varepsilon}(\omega_0^k) = \omega^k + \varepsilon^l \omega_l^{1,k} \quad (\omega_l^{1,k} \in \Lambda_n(E_0), \ l = s, s + 1, \dots)$$

Для получения условий, определяющих существование RG группы используем метод разложения n-форм в ряд по параметру преобразования

[5].

3. Условия существования *RG*-групп

Рассмотрим далее restore-группу с порядком аппроксимации s. Используя введенные выше определения, можно записать restore-условия, определяющие существование приближенной RG-группы

$$R_{\varepsilon} \circ C_0(\omega^k) = \omega^k + \varepsilon^l \omega_l^{1,k} \quad (l = s, s + 1, \dots)$$
(12)

Разложим выражения для n-форм $\omega^k(\overline{x}(x,u,\varepsilon),\varepsilon,\overline{u}(x,u,\varepsilon))$ в ряд по параметру преобразования ε

$$\omega^k = \omega_0^k + \varepsilon^l \omega_l^{2,k} \quad (\omega_l^{2,k} \in \Lambda_n(E_0), \ l = 1, 2, \dots)$$
(13)

Подставив выражение (13) в (12), получим

$$R_{\varepsilon} \circ C_0(\omega^k) = \omega_0^k + \varepsilon^l \omega_l^{2,k} + \varepsilon^l \omega_l^{1,k}$$

Отсюда, с учетом замечания 1, на интегральных многообразиях системы $\Lambda(\Sigma_0)$ имеем

$$(\omega_l^{2,k})|_{\Lambda(\Sigma_0)}$$
 $(l=1,\ldots,s-1), \quad (\omega_l^{1,k}+\omega_l^{2,k}=0)|_{\Lambda(\Sigma_0)}$ $(l=s,s+1,\ldots)$

Учитывая выше сказанное можно сформулировать теорему.

Теорема 1. Для приближенной RG-группы c порядком аппроксимации s restore-условия имеют вид

$$(\omega_l^{2,k})|_{\Lambda(\Sigma_0)} = 0 \quad (l = 1, 2, \dots, s - 1)$$
 (14)

Следствие. Для существования точной RG-группы необходимо выполнение бесконечной цепочки соотношений

$$(\omega_l^{2,k} = 0)|_{\Lambda(\Sigma_0)} \quad (l = 1, 2, \dots)$$
 (15)

Отметим здесь, что в классическом групповом анализе группы преобразований, допускаемые исходной системой $C\Sigma$ (или $\Lambda(\Sigma)$), находятся из условий инвариантности и называются также симметриями. В случае существования restore-группы речь также может идти о симметриях. Однако, поскольку существование restore-группы не связано с условием инвариантности системы относительно действия группы преобразований, то симметрии такого класса будем называть "неинвариантными симметриями".

4. Использование RG-группы для построения решений

Как известно, в классическом групповом анализе симметрии (инвариантные) системы $C\Sigma$ могут быть использованы для построения инвариантногрупповых решений (инвариантных или частично - инвариантных) [1]. При этом алгоритм построения инвариантно-групповых решений опирается на использование системы инвариантов группы преобразований (полной или не полной). Поскольку существование restore-группы не связано с выполнением условий инвариантности, то и алгоритм использования неинвариантных симметрий отличается от классического алгоритма использования симметрий.

Определение 4. Сечение $u: M \times L_{\varepsilon} \longrightarrow E$ будем называть приближенным решением системы внешних дифференциальных уравнений $\Lambda(\Sigma)$ с порядком аппроксимации s, если

$$\omega^k(x, u, \varepsilon) = \varepsilon^l \omega_l^{0,k} \qquad (\omega_l^{0,k} \in \Lambda_n(M), \ l = s, s + 1, \dots)$$

В соответствии с данным определением можно сказать также, что совокупность точек $x, \varepsilon, u(x, \varepsilon)$ определяет приближенное (с порядком аппроксимации s) интегральное многообразие системы $\Lambda(\Sigma)$.

Предположим, что $u^j = u^j_0(x)$ – решение системы $\Lambda(\Sigma_0)$. Под действием приближенной RG-группы порядка аппроксимации s происходит преобразование координат пространства $E_0: x^i \longrightarrow \overline{x}^i = \phi^i(x, u, \varepsilon) \in M$, $u^j \longrightarrow \overline{u}^j = \psi^j(x, u, \varepsilon) \in U$. Одновременно происходит преобразование точек интегрального многообразия $x^i, u^j = u^j_0(x)$ по правилу $x^i \longrightarrow \overline{x}^i = \phi^i(x, u_0(x), \varepsilon) = \phi^i_1(x, \varepsilon), u^j = u^j_0(x) \longrightarrow \overline{u}^j(u_0(x)) = \psi^j(x, u_0(x), \varepsilon)$.

Теорема 2. Значения \overline{x}^i , ε , $\overline{u}^j(u_0(x))$ определяют приближенное интегральное многообразие системы $\Lambda(\overline{\Sigma})$.

Доказательство теоремы достаточно очевидно. В соответствии с определением 4, необходимо показать, что

$$\omega^{k}(\overline{x}, \overline{u}, \varepsilon) = \varepsilon^{l} \omega_{l}^{0,k} \qquad (\omega_{l}^{0,k} \in \Lambda_{n}(M), \ l = s, s + 1, \dots)$$
 (16)

Подставим выражения для \overline{x}^i , $\overline{u}^j(u_0(x))$ в выражения для внешних дифференциальных форм $\omega^k(\overline{x},\overline{u},\varepsilon)$. По определению RG-группы и для $\overline{u}^j(u_0(x))$

$$\omega^k = R_{\varepsilon} \circ C_0(\omega^k) - \varepsilon^l \omega_l^{0,k} \quad (l = s, s + 1, \dots)$$

Так как $u_0(x)$ – интегральное многообразие системы $\Lambda(\Sigma_0)$, то, с учетом замечания $1, R_{\varepsilon} \circ C_0(\omega^k) = 0$, откуда и вытекает (16) (теорема доказана).

Решение системы $\omega^k(\overline{x}, \overline{u}, \varepsilon) = 0$ в координатах можно получить следующим образом. Пусть $x^i = \phi^i_{-1}(\overline{x}, \varepsilon)$, где ϕ^i_{-1} – функция, обратная ϕ^i_1 . Пусть также $u_0(x)$ – какое нибудь решение системы $\Lambda(\Sigma_0)$ (эта система более проста по сравнению с исходной). Тогда $\overline{u}^j = \psi^j(\phi^i_{-1}(\overline{x}, \varepsilon), u_0(\phi^i_{-1}(\overline{x}, \varepsilon)), \varepsilon)$ определяют приближенное решение с порядком аппроксимации s системы внешних дифференциальных уравнений $\omega^k(\overline{x}, \overline{u}, \varepsilon) = 0$.

5. Пример

Существование и использование неинвариантных симметрий для уравнений в частных производных можно проиллюстрировать на следующем простом примере.

Рассмотрим простейшее неоднородное волновое уравнение

$$u_t + uu_x + f(t, x, u, \varepsilon) = 0 \tag{17}$$

Здесь $f(t,x,u,\varepsilon)$ – гладкая функция, такая что f(t,x,u,0)=0. Построим некоторые решения этого уравнения, используя RG симметрии и решения однородного волнового уравнения.

Запишем внешнее дифференциальное уравнение $\Lambda(\Sigma)$, соответствующее (17), в переменных $\overline{t}, \overline{x}, \overline{u}$ (формальная замена переменных)

$$\omega = d\overline{u} \wedge d\overline{x} - \overline{u}d\overline{u} \wedge d\overline{t} + f(\overline{t}, \overline{x}, \overline{u}, \varepsilon)d\overline{t} \wedge d\overline{x} = 0$$

Соответствующее уравнение $\Lambda(\Sigma_0)$ примет вид

$$\omega_0 = du \wedge dx - udu \wedge dt = 0$$

Разложим функцию $f(\overline{t}, \overline{x}, \overline{u}, \varepsilon)$ в ряд

$$f(\overline{t}, \overline{x}, \overline{u}, \varepsilon) = \varepsilon f_1(\overline{t}, \overline{x}, \overline{u}) + \varepsilon^2 f_2(\overline{t}, \overline{x}, \overline{u}) + \dots$$

где f_1, f_2, \ldots – некоторые функции. Определим restore-группу RG, имеющую второй порядок аппроксимации.

Для этого представим преобразованные переменные в виде

$$\overline{t} = t + \varepsilon \xi_t(t, x, u) + o(\varepsilon^2), \quad \overline{x} = x + \varepsilon \xi_x(t, x, u) + o(\varepsilon^2),$$

$$\overline{u} = u + \varepsilon \eta(t, x, u) + o(\varepsilon^2)$$

Здесь $\xi_t(t,x,u),\xi_x(t,x,u),\eta(t,x,u)$ — гладкие функции, $o(\varepsilon^2)$ — определяет слагаемые начиная со второго порядка и выше. Подстановка этих выражений в (13) дает

$$\omega = \omega_0 + \varepsilon (d\eta \wedge dx + du \wedge d\xi_x - \eta du \wedge dt - u d\eta \wedge dt - du \wedge d\xi_t + f_1 dt \wedge dx) + \varepsilon^l \omega_l^{2,k} \quad (l = 2, 3, ...)$$

Запишем restore-условие (14)

$$(\eta_{,t} + u\eta_{,x} + f_1)dt \wedge dx + (\xi_{x,t} + u\xi_{x,x} - u\xi_{t,t} - u^2\xi_{t,x} - \eta)du \wedge dt = 0.$$

Из данного условия следует неоднородная квазилинейная система уравнений в частных производных первого порядка относительно функций $\eta, \, \xi_t, \, \xi_x$

$$\eta_{,t} + u\eta_{,x} = -f_1, \quad \xi_{x,t} + u\xi_{x,x} - u\xi_{t,t} - u^2\xi_{t,x} - \eta = 0$$
(18)

Частные решения этой системы при заданной функции $f_1(t, x, u)$ определяют restore-симметрии уравнения (17). Приведем некоторые такие решения для решений "полиномиального типа".

Пусть $f_1 = -1$, т.е., уравнение (17) (в преобразованных переменных) имеет вид

$$\overline{u}_{\overline{t}} + \overline{u}\,\overline{u}_{\overline{x}} - \varepsilon = 0 \tag{19}$$

Частное решение системы (18) определяется выражениями

$$\eta = t, \quad \xi_x = t^2/2, \quad \xi_t = 0$$

Отсюда следует вид преобразований restore-группы

$$\overline{u} = u + \varepsilon \overline{t}, \quad \overline{x} = x + \varepsilon \overline{t}^2 / 2, \quad \overline{t} = t$$
 (20)

Решение уравнения (19) можно определить следующим образом

$$\overline{u} = u_0(t, x) + \varepsilon \overline{t}/2$$

где $u_0(t,x)$ – решение уравнения $\Lambda(\Sigma_0)$ (соответствует однородному уравнению (17)). При этом связь между x,t и \overline{x} , \overline{t} определяется соотношениями (20). Непосредственной проверкой можно убедиться, что если положить $f(t,x,u,\varepsilon) = \varepsilon$, то в данном случае, была получена точная restore-симметрия, поскольку все $(\omega_l^2 = 0)|_{\omega_0=0}$ для l > 1 (условия (15) выполнены).

Пусть теперь $f_1 = -u$, т.е., в преобразованных переменных уравнение (17) имеет вид

$$\overline{u}_{\overline{t}} + \overline{u}\,\overline{u}_{\overline{x}} - \varepsilon\overline{u} = 0 \tag{21}$$

В этом случае преобразования restore-группы имеют вид

$$\overline{u} = u + \varepsilon 2x/(2 - \varepsilon t), \quad \overline{x} = 4x(2 - \varepsilon t)^{-2}, \quad \overline{t} = 2t/(2 - \varepsilon t)$$

Решение уравнения (19) можно определить как

$$\overline{u} = u_0(t, x) + \varepsilon 2\overline{x}/(2 + \varepsilon \overline{t}) \tag{22}$$

где $u_0(t,x)$ – решение $\Lambda(\Sigma_0)$ и

$$t = 2\overline{t}/(2 + \varepsilon \overline{t}), \quad x = 4\overline{x}(2 + \varepsilon \overline{t})^{-2}$$

Подстановка (22) в (21) показывает, что левая часть (21) обращается в ноль с точностью до слагаемых, пропорциональных степени два (и выше) параметра преобразования ε .

Таким образом, если исходная система допускает restore-группу преобразований, то решение системы (точное или приближенное) может быть получено с помощью решений системы аналогичного класса, но более простого вида. В рассмотренном выше примере исходная система уравнений состоит из одного уравнения. Поэтому система (18), определяющая restore-симметрии является недоопределенной. Для систем более общего вида система, определяющая приближенные restore-симметрии второго порядка и аналогичная (18), является переопределенной.

Автор благодарен Павлову В.Г. за замечания по работе.

Список литературы

- [1] Овсянников Л.В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978. 399 с.
- [2] Овсянников Л.В. Программа ПОДМОДЕЛИ. Газовая динамика// Прикладная математика и механика. 1994. Т. 58. Вып. 4. С. 31 54.
- [3] Gazizov R.K. Representation of General Invariants for Approximate Transformation Groups//J. of Mathematical Analysis and Applications. 1997. N 213. Pp. 202 – 228.
- [4] Симметрии и законы сохранения уравнений математической физики / Под. ред. Виноградова А.М. и Красильщика И.С. М.: Изд во "Факториал", 1997. 464 с.