

Lecture title		
Review Part 1 多伦多时间: 周一-11/07 19:00-22:00	 Derivative 公式表总结 implicit differentiation logarithmic differentiation higher-order derivatives Newton's method The marginal concept and elasticity of demand 	
Review Part 2 多伦多时间: 周三-11/09 19:00-22:00 Review Part 3 多伦多时间: 周四-11/10 20:00-22:00	 First and second derivative test extreme value theorem applied max-min problems the indefinite integral integration with initial conditions Substitution rule 	

- 考试时间:
 - 多伦多时间: Saturday November 12 from 1pm 3pm 总共两小时
- 考试地点: in-person
- Midterm test 2 占分比例: 20%

1. 关于 DERIVATIVE 求导

Derivative 公式表

原方程	导数 derivative
cf(x)	cf'(x)
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$
f(x)g(x)	f'(x)g(x)+f(x)g'(x)
	"前导后不导+后导前不导"
$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}$
	"上导下不导一下导上不导"
	分母的平方
x^n	nx^{n-1}
数字	0
ln(x)	$\frac{1}{x}(1)$
e ^x	$e^x(1)$
$\log_b x$	$\frac{1}{xln(b)}(1)$
数字 b ^x	<i>b</i> ^x ln (b)(1)
Chain rule: $f(g(x))$	$f'(g(x))\cdot g'(x)$
	"从外往里导,先处理外围的,再处理里面的"

令 转换公式
$$\log_b x = \frac{\log_a x}{\log_a b} = \frac{lnx}{lnb}$$
 ------记住: $\frac{\log_b x = \frac{lnx}{lnb}}{lnb}$ 然后可以以这个形式求导

【知识点】关于求导 chain rule

- 1. 什么是复合函数(composition function)?
- the composition of f and g

$$(f \circ g)(x) = f(g(x))$$

2. 关于求导 chain rule

两种说法:

(1) If g is a differentiable at x and f is differentiable at g(x), then the composite function $f \circ g$ is differentiable at x and $(f \circ g)'(x)$ is given by:

$$(f \circ g)'(x) = [f(g(x))]' = f'(g(x)) \cdot g'(x)$$

(2) If y is a differentiable function of u and u is a differentiable function of x, then y is a differentiable function of x and

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

[practice question]

【2021 past midterm】

1. If $y = e^x x^3 + 8\sqrt{x} + \frac{6}{x-2}$, then find y'(4)

2. If $h(x) = \sqrt{9x^2 + \ln(x)} + \sqrt[3]{x^2}$, then find h'(1)

3. If k > 1 is a constant and $g(x) = kx^2 + kx + \log_5(2x + 3)$, then find g'(1)

4. If $w=x^2+2$ and $x=\sqrt{u}+e^u$, and $u=6t^2+t+1$, then fine the value of $\frac{dw}{dt}$ when t=0

【2020 past midterm】

1. If
$$y=4u^4-5u^3+9$$
 and $u=4x^2-2\sqrt{x}$, then $\frac{dy}{dx}|_{x=1}$ equals: A.7 B.408 C.28 D.476

E.496

F. none of the above

2. If
$$y = 3^{x}x^{3} + 3e^{x-1}$$
, then $y'(1)$ equals
A.12 B. $6 + 2\ln(3)$ C. $12 + 3\ln(3)$ D. $10\ln(3)$ E. $6 + 3\ln(3)$

3. If
$$a > 1$$
 is a constant and $f(x) = 5x^3 + \ln(ax) - \frac{a}{x}$, then find $f'(1)$

4. Let f and g be MATA32 functions that are differentiable for all real x. Assume we have the values: g'(0) = 6, g(0) = 1, g'(2) = 6, f(0) = 3, f'(0) = 2, g(3) = 4, and g'(3) = 5. It is then the case that the derivative of the function $g \circ f$ evaluated at x = 0 is equal to _____

5. Suppose
$$f(x) = h(g(x)k(x))$$
.
if $g(1) = 3, k(1) = 0, h(1) = -5, g'(1) = 2, k'(1) = -6, h'(1) = 3, and h'(0) = 2$
find $f'(1)$

【2019 past midterm】

1. Find f'(x) where $f(x) = (\frac{3x+2}{x+5})^2$

2. Let f and g be differentiable functions such that f(g(x)) = x and $f'(x) = 1 + (f(x))^2$ for all real x. Find g'(0)

3. Find f'(0) where $f(x) = \sqrt{\frac{9+x^2}{4-x}} + \frac{2^x}{\ln(2)}$

[2018 Winter past midterm]

1. Let $f(u) = u^3 - 3u^2 + 2u + 1$ where $u = u(x) = 2x^2 + e^{x-1}$. Use the chain rule to find the value of $\frac{df}{dx}$ when x = 1

[2017 Fall past midterm/final]

1. Find
$$f(x) = xln(x) + 2\sqrt{x}$$
, then $f'(1)$ equals: A.0 B.2 C.1+e

2. If
$$w = \frac{5}{2-x^2}$$
 then $\frac{dw}{dx}$ equals

A. $2w^2x$
B. $\frac{2w^2x}{5}$
C. $\frac{4w^2x}{5}$

B.
$$\frac{2w^2x}{5}$$

C.
$$\frac{4w^2x}{x}$$

D.
$$-\frac{2w^2x}{5}$$

E.
$$\frac{5w^2x}{2}$$

3. Let
$$f(x) = \frac{e^{x^2}}{x}$$
 find $f'(2)$ and leave answer in terms of familiar mathematical constants, not decimals

4. Find
$$\frac{du}{dt}$$
 when $u = t^3 \log_3 t + 4\sqrt{t}$

5. Let $g(x) = \frac{10x}{x+1}$ and it's derivative is $g'(x) = \frac{10}{(x+1)^2}$

Calculate $\frac{du}{dx}|_{x=0}$ where $u=g(f(x))+f(0)\big(e^{g(x)}\big)$ and f is a differentiable function such that f(0)=4 and f'(0)=5

[2016 past midterm]

1. Let a and b be positive constants. If $u=\sqrt{3ax^2+b}$, then $\frac{du}{dx}$ equals

B. 2axu

F. none of the above

2. If $y = x5^{(x^2+x)}$ then $\frac{dy}{dx}|_{x=1}$ equals : A. 35 B. 25 + 30ln (5)

C. 50

D.25 + 75ln(5)

E. none of the above

3. Suppose y = h(x) and x = g(t). Given that g(3) = 5, g'(3) = -4, h(-4) = 1, h'(3) = 3, h(3) = 2, and h'(5) = -2. evaluate $\frac{dy}{dt}$ at t = 3

【2015 past midterm】

1. If
$$y = x^2 \sqrt{3x^2 + 4}$$
, then $\frac{dy}{dx}$ when $x = 2$ is A. $\frac{1}{2}$ B. 6 C. $\frac{33}{2}$

- D.14
- E.28
- F. 22

2. Find $\frac{dy}{dx}$ in fully factored form where $y = (4x + 3)^3 (2x + 5)^6$

3. Assumer P(x) and Q(x) are differentiable functions and that for all real numbers x, P(Q(x)) = x and $P'(x) = 4 + (\frac{P(x)}{2})^2$. Find Q'(0)

[2014 past midterm]

1. If
$$f(x) = 4x^2\sqrt{4x+1} + 0.4x$$
 then $f'(6)$ is

- A. 224.6
- B.296
- C.298
- D.355.6
- E.none of the above

2. Let
$$f(x) = \frac{3x+2}{7x+1}$$
 and $f'(x) = \frac{-11}{(7x+1)^2}$
Assume g is a differentiable function such that $g(0) = g(2) = g'(2) = 2$ and $g'(0) = 4$
Find $\frac{dA}{dx}$ when $x = 0$ where $A(x) = g(x)g(f(x))$

[2014 past final exam]

1. Let S represent the future value of an ordinary annuity as a function of n, the number of compounding periods

$$S=R\cdot\frac{(1+r)^n-1}{r}$$

Show that $\frac{dS}{dn} = \alpha(K+S)$ where $K = \frac{R}{r}$ and $\alpha = \ln(1+r)$

【2013 past midterm】

1. Let $f(x) = xe^{-x^2}$. Find f'(x)

2. Let $y = x^3 \log_2 x$. Find $\frac{dy}{dx}$

2. IMPLICIT DIFFERENTIATION 隐函数

【知识点】对比:

- (1) explicit differentiation(显函数求导)
- 例如: y = 2x³ + 1
- (2) Implicit differentiation(隐函数求导)
- $\not\in X$: defines y implicitly as a differentiable function of x and try to find the derivative $\frac{dy}{dx}$ or y'
- 形式: x 和 y 都在等式同一边,并且无法将单独的一个"y" 放在等式一边
- 例如: $xe^y + ye^x = 1$
- 做题方法/步骤:
 - (a) 涉及 function "y" 的求导, 用到 chain rule

即: 涉及到 function "y"的求导,求导公式和之前一样 但是<mark>求完之后要再乘以一个 function y' 或者 $\frac{dy}{dx}$ </mark>

(b) 最后 isolate y' 在等式左边

【例题】: find $\frac{dy}{dx}$ by implicit differentiation if $x^2 + 3y^2 = 2xy$ 步骤:

- (1) Differentiating both sides with respect to x
- (2) Solving for $\frac{dy}{dx}$ side

[past exam questions]

1. (2020 winter final exam) assume the equation $x^3y + y^3x = 10$ defines y implicitly as a function of x, find the value of $\frac{dy}{dx}$ at (1,2) is

2. (2015 fall final exam) assume y is defined implicitly as a function of x by the equation $2\sqrt{y} + \ln(xy^2) = 1$ Solve for x when y = 1 in this equation, and then evaluate $\frac{dy}{dx}$ at the point (x, 1)

3. (2014 Fall midterm) if y is defined implicitly by the equation $e^{xy} + y = 2 + (x+1)^2$, then find the value of $\frac{dy}{dx}$ evaluated at (0,2)

4. (2013 winter final exam)If y is defined implicitly as a function of x by the equation $xy^2 + y = 4x$ then find the value of $\frac{dy}{dx}$ When x = 0

【注意读题】

1. Differentiate the following equation with respect to
$$t$$
: If $y = x^3 + 5x$ and $\frac{dx}{dt} = 7$, find $\frac{dy}{dt}$ where $x = 1$

2. If Nu - 10u + N = 300, find $\frac{dN}{du}$

3. LOGARITHMIC DIFFERENTIATION 对数微分

【知识点】

1. properties of logarithmic

转换形式: $lnx = y \Leftrightarrow e^y = x$	$ln(x^y) = ylnx$
$ ln(e^x) = x $	$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln\left(y\right)$
$e^{lnx} = x$	ln(xy) = ln(x) + ln(y)
lne = 1	
$ \ln\left(1\right) = 0 $	

对于ex

Domain: R

Range: (0 ,+∞)

对于ln(x)

Domain: (0,+∞) Range: R

2. logarithmic differentiation 对数求导法

$$let y = f(x)$$

- 做题步骤:
 - (1) 左右两边加 ln
 - (2) 通过使用 properties of logarithmic 的公式去简化式子
 - (3) 左右两边分别求导
 - (4) isolate y' 在等式左边
 - (5) 等式右边的**y 替换成原方程**

- 涉及题型:
 - (1) 方程里面带有多个函数 相乘 或者 相除
 - *加数 例如: x^x
- 【例题】: find y' using logarithmic differentiation
- ◆ 题型1:两个函数相乘

$$y = (x+1)^2(x-2)(x^2+3)$$

◆ 题型 2: 两个函数 相除

$$y = \frac{(2x-5)^3}{x^2 \sqrt[4]{x^2 - 1}}$$

◆ **题型 3:** 未知数

$$y = x^{x^2 + 1}$$

[past exam questions]

1. (2016 Fall final exam) find y'(1) where $y = 8(ex)^{\sqrt{x}}$

2. (2014 past midterm) If
$$u=(e^2x)^{\sqrt{x}}$$
 then $u'(1)$ equals: A. $2e^2$ B. $2e$ C. e^2 D. $2e^2+1$

E. none of the above

3. (2017 winter final exam) find y'where $y = \frac{x(1+x^2)^2}{\sqrt{2+x^2}}$

4. (2017 Fall final exam) find the exact value of f'(1) where $f(x) = (4x^2 + 5)^x + \log_2 x$

5. (2013 Fall final exam) if $y = (\frac{9}{x^2})^x$ then y'(3) equals A. 3 B.-2 C. $\frac{2}{9}$ D.2

- E. None of the above

6. (2013 winter final exam) If $f(x) = (2x + 3)^x$ then f'(0) equals A. 0 B. $\frac{2}{3} + \ln(3)$ C. $\ln 27$ D. $\ln 3$

- E. None of the above

7. (2012 winter final exam) for x>0, let $f(x)=\left(\frac{1}{x}\right)^x$. find the exact value of f'(e) and simplify your answer. ("exact value" mean no decimals)

4. HIGHER-ORDER DERIVATIVES

【知识点】:

- 1. Higher order derivatives:
- If y = f(x), then we can write its nth derivative :

$$y^{(n)}$$
 or $f^{(n)}(x)$ or $\frac{d^n y}{dx^n}$

- 例如:
 - (1) First derivative: $y' = f'(x) = \frac{dy}{dx}$
 - (2) Second derivative: $y'' = f''(x) = \frac{d^2y}{dx^2}$ (3) Third derivative: $y''' = f'''(x) = \frac{d^3y}{dx^3}$

 - (4) Fourth derivative: $y^{(4)} = f^{(4)}(x) = \frac{d^4y}{dx^4}$

[past exam questions]

1. (2016 Fall final exam) Find g''(1) if $g(x) = e^{x^2} + x^3$

2. (2015 Fall final exam) let $f(x) = 2(5^x)$. Calculate $f^{(2)}(1)$

- 3. (2014 Fall final exam) if $y = 2(5^x)$ and n is a positive integer, then $y^{(n)}(1)$ equals
- A. $10(ln5)^{-n}$
- B. (2ln5)5n
- C. (10ln5)n
- D. $10\ln{(5^n)}$
- E. $10(ln5)^n$

4. (2017 Fall final exam) if $y = 4(2^x)$ and n is a positive integer, then $y^{(n)}(1)$ equals

5. (2020 Fall final exam) if $f(x) = 4(3^x)$ and $n \ge 2$ is a positive integer, then $f^{(n)}(1)$ equals

A. $12(ln3)^n$

B. $12(\ln(3^n))$

C. $4n3^n$

D. $(12ln3)^n$

E. None of the above

6. (2014 Fall final exam) Find the cubic polynomial $y = Q(x) = ax^3 + bx^2 + cx + d$ having all these properties: Q(1) = 31, Q'(1) = 7, Q''(1) = 24, and Q'''(1) = 24

5. NEWTON'S METHOD

【知识点】

1. Newton's method: make an approximation to root of f(x)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- 有些式子我们通过解方程也解不出来的时候,我们就需要去估算"approximation"

做题步骤

- (1) 找到函数表达式, 求导 derivative:
- (2) 写出公式表达式: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- (3) 把题目给的初始估算值 initial estimate 带入
- (4) 当看见答案相似的时候,就可以得出答案了或者根据题目要求算出答案

[past exam questions]

1. (2016 fall final exam) assume newton's method is used to approximate the number $\sqrt[4]{36}$. If $x_1 = 2$, calculate x_2 as a simplified function.

2. (2017 fall final exam) Let $x_1 = 2$ and select the appropriate function for Newton's method to approximate the number $\sqrt[3]{10}$, Calculate x_2 .

3. (2015 fall final exam) assume newton's method is used to approximate the number $\sqrt{20}$. If $x_1 = 4$, calculate x_2

4. (2020 fall final exam) A number $c \in (3,4)$ has the special property that "its square is 7 more than the number". If we apply Newton's method to the most appropriate quadratic function that has c as a root and take $x_1 = 3.5$ as a first estimate of the number c, what would x_2 be (rounded down to 3 decimal places)?

A. 2.974

B. 3.112

C.3.537

D. 3.208

E. none of the above

5. (2021 fall final exam) When you apply Newton's method to the equation $x^3 - 2x - 5 = 0$ with the starting value of $x_1 = 2$, find the value of x_3 rounded up to three decimal places

6. 求导的应用公式 A RATE OF CHANGE

记住: (1) the rate of change = derivative f'(x)

(2) the relative rate of change = $\frac{f'(x)}{f(x)}$

【知识点】关于 rate of change to economics

- 1. Total cost function: c = c(q)
 - c代表:产生某种产品所产生的费用 total cost
 - q代表: quantity (数量/产量)
- 2. average cost (\bar{c}) :

$$\overline{c} = \frac{c}{q} = \frac{total\ cost}{quantity}$$

- 3. Marginal cost (边际成本)
- 指的是将要生产的下一 unit 单位产品 或者 额外生产 1 unit 单位的成本
- 两个公式:

$$(1) c' = c'(q) = \frac{dc}{dq}$$

(2)
$$c' = c'(q) \approx c(q+1) - c(q)$$

4. Total Revenue (r) 收入:

$$r = pq$$

- p 代表: price per unit

q 代表 quantity

(1) average revenue (r) 平均收入:

$$\bar{r} = \frac{r}{q} = \frac{total\ revenue}{quantity}$$

(2) marginal revenue(r') 边际收益:

$$r' = \frac{dr}{dq}$$

5. profit function 利润方程:

$$profit = revenue - cost$$

- **marginal profit** = derivative of profit
- 6. Demand function 需求方程

$$p = f(q)$$

- Where *p* is unit price(单价) and *q* is quantity(数量)

【知识点2】

- 1. Point elasticity of demand (η) 点弹性
- 公式: if p = f(q) is differentiable demand function, then the point elasticity of demand is:

$$\eta = \eta(q) = \frac{\frac{p}{q}}{\frac{dp}{dq}} = \frac{\frac{f(q)}{q}}{f'(q)}$$

- 注意: η 读做"eta", 它本身是负数 negative
- 三种 elasticity 种类

种类	特点
When $ \eta > 1$	demand is elastic 需求富有弹性/高弹性
When $ \eta = 1$	demand has unit elasticity 需求单一弹性
When $ \eta < 1$	demand is inelastic. 需求缺乏弹性/低弹性

FIGURE 12.3 Elasticity for linear demand.

【公式小总结】

(1) If demand function is p = f(q)

$$\eta = \frac{p}{q} \cdot \frac{1}{p'}$$
 where $p' = \frac{dp}{dq}$

- 注意: p'是 demand function f'(q)的导数。即: 题目给了 p=
- 例如: p = 10 0.04q
- (2) If demand function is q = f(p)

$$\eta = \frac{p}{q} \cdot q'$$
 where $q' = \frac{dq}{dp}$

- 注意: q'是 demand function f'(p)的导数。即: 题目给了q =_____的方程
- 例如: q = 1200 150p

关于 marginal revenue (r')边际收益

- 两种情况:
- (1) If demand function is p = f(q),

$$MR = r' = \frac{dr}{dq} = p'q + p$$

$$MR = r' = \frac{dr}{dq} = p(1 + \frac{1}{\eta})$$

(2) If demand function is q = f(p),

$$MR = r' = \frac{dr}{dp} = q + pq'$$

$$MR = r' = \frac{dr}{dp} = q(1 + \eta)$$

[past exam questions]

- 1. (2017 winter final exam) let $p = \sqrt{1600 q^2}$ be a demand function for $0 \le q \le 40$
- (a) Show that the (point) elasticity of demand is $\eta = -\frac{p^2}{q^2}$
- (b) For q = 15, determine if the (point) elasticity of demand is elastic or inelastic.
- (c) Find the value(s) of q for which the (point) elasticity of demand is unit.

2. (2017 fall midterm) find the values of q for which the demand equation $p = 120 - 0.4q^2$ has unit elasticity

3. (2015 fall final exam) Assume $p = f(q) = (q + 3)e^{-q}$ is a demand function where q > 0 is quantity. Find all values of q such that the (point) elasticity of demand is elastic.

- 4. (2014 fall final exam) if p = -3q + 150 is a demand function where the quantity q satisfies 0 < q < 50, then we have unit elasticity at
- A. q = 48
- B. q = 30
- C. q = 25
- D. q = 5 E.none of the above

- 5. (2012 fall final exam) if p = mq + b is a demand function where m < 0 < b, q is quantity and $0 < q < -\frac{b}{m}$ then we have unit elasticity when q equals $-\frac{b}{3m}$ B. $-\frac{b}{2m}$ C. $\frac{b}{2m}$ D. no value of q

- E. none of the above

6. (2021 fall final exam) If a demand equation is $p = \frac{600}{3q+1}$ where q > 0 is quantity, For q = 10, determine if the (point) elasticity of demand is elastic or inelastic.

7. (2016 final exam) In all of this question let $p = 1200 - q^2$ be a demand function.

- a) Find the point elasticity of demand.
- b) Find the value of q for which the demand has unit elasticity.
- c) Find the marginal revenue when q = 10.