

LIV SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

MODELO COMPUTACIONAL PARA WEAPONS-TARGET ASSIGNMENT PROBLEM UTILIZANDO ALGORITMO GENÉTICO

Eixos Temáticos: SE – Poder Marítimo, Defesa e Pesquisa Operacional

MH – Metaheurísticas

Autores: Everton Tozzo

Leonardo Antonio Monteiro Pessôa

Centro de Análises de Sistemas Navais MARINHA DO BRASIL

INTRODUÇÃO

- Um dos problemas militares de decisão mais diretos é o de alocação de meios ou armamentos a alvos inimigos de maneira eficiente;
- O Weapons-Target Assignment Problem (WTAP) é um problema de otimização que incorpora aspectos de valoração de objetivos inimigos (alvos) a probabilidades de sobrevivência de cada alvo para cada designação de armamento;
- Cada armamento deverá ser atribuído a um único alvo, objetivando-se a minimização da função de sobrevivência total do inimigo;

INTRODUÇÃO

- Nesse trabalho é abordada a versão estática do WTAP, sendo considerado somente um ataque;
- Desconsidera-se o impacto de sobrevivência ou não das forças utilizadas;
- O WTAP é considerado um problema do tipo NP difícil [Ni et al., 2011];
- Objetiva-se o desenvolvimento de uma aplicação em R para o WTAP, voltada para o usuários leigos em PO na Marinha do Brasil (MB);
- Ferramenta simples e de fácil interação com usuários; e
- Aplicação da meta-heurística Algoritmo Genético (AG).

WEAPONS-TARGET ASSIGNMENT PROBLEM

• A formulação estática do WTAP é apresentada em Kline et al. [2019]:

Seja um conjunto de armamentos $I=1,\ldots,i,\ldots,m$ em oposição a um conjunto de alvos $J=1,\ldots,j,\ldots,n$, cada qual com seu valor militar V_j . Supõe-se que cada armamento seja alocado a um único alvo, denotado por uma variável binária x_{ij} , e com uma probabilidade de sobrevivência do alvo j, dado que seja atacado pelo armamento i ($x_{ij}=1$) denotada por q_{ij} .

$$\min f = \sum_{J} V_{j} \prod_{I} (q_{ij})^{x_{ij}}$$

Sujeito a:

$$\sum_{J} x_{ij} = 1, \qquad \forall i$$

$$x_{ij} \in \{0,1\}, \quad i = 1,...,m \quad j = 1,...,n$$

ALGORITMO GENÉTICO

• Modelo de busca que se baseia no conceito de seleção natural e hereditariedade.

- Para o desenvolvimento da aplicação é utilizado o *GApackage* do R;
- Permite uma implementação flexível e multipropósito de um AG para os casos contínuos e discretos, dado problemas de otimização com ou sem restrições;
- São utilizados arquivos do formato .csv como dados de entrada;
- São necessárias as seguintes entradas:
 - O número de armamentos (m);
 - O número de alvos (n);
 - Os valores militares dos alvos (V_i) ; e
 - As probabilidades de sobrevivência dos alvos (q_{ij}) .

- Restrições: apenas um alvo deve ser designado para cada armamento;
- Um valor de penalização p é aplicado à função objetivo sempre que a quantidade de alvos atribuída para cada armamento é diferente de um;
- O valor total de penalizações g considerando todos os armamentos:

$$g = p \sum_{I} \left(\sum_{J} x_{ij} - 1 \right)$$

Dado que o GApackage trabalha com a maximização da função objetivo:

$$\max h = -(f + g)$$

- Representação do Genoma:
 - Vetor binário de tamanho n. m;
 - Linhas da matriz são representadas de forma sequencial;
 - Iniciado aleatoriamente;
- Parâmetros do AG:
 - Operador de cruzamento: pcrossover = 0,8;
 - Operador de mutação: pmutation = 0, 1;
 - Índice de elitismo: elitism = 5;
 - Tamanho da população: popSize = 100;

- Critérios de parada:
 - Número máximo de gerações: maxiter = 10.000;
 - Número máximo de gerações consecutivas sem melhoria no melhor individuo: run=2.000;
- Penalização da função objetivo: p = 10.

ESTUDO DE CASO

- Resolução de dois problemas de tamanho e complexidade diferentes:
 - CASO 1: 3 alvos e 8 armamentos; e
 - CASO 2: 9 alvos e 24 armamentos.
- Tempo de resolução aceitável: arbitrado em até 5 minutos.

CASO 1 – DESCRIÇÃO DO PROBLEMA

Tamanho: 3 alvos e 8 armamentos;

Valor militar:

$$V_i = |5, 10, 20|$$

Matriz de sobrevivência:

$$q_{ij} = \begin{vmatrix} 0.7 & 0.8 & 0.5 \\ 0.7 & 0.8 & 0.5 \\ 0.7 & 0.8 & 0.5 \\ 0.7 & 0.8 & 0.5 \\ 0.7 & 0.8 & 0.5 \\ 0.7 & 0.8 & 0.5 \\ 0.9 & 0.4 & 0.5 \\ 0.9 & 0.4 & 0.5 \\ 0.6 & 0.5 & 0.6 \end{vmatrix}$$

CASO 1 – RESULTADOS

1000

Generation

	0,7	0,8	0,5	
	0,7	0,8	0,5	
	0,7	0,8	0,5	
$q_{ij} =$	0,7	0,8	0,5	
	0,7	0,8	0,5	
	0,9	0,4	0,5	
	0,9	0,4	0,5	
	0,6	0,5	0,6	

Solução factível;

0

- f = 4,95;
- Tempo execução: 21 segundos; e
- Critério de parada: 2.000 gerações consecutivas.

500

2000

1500

CASO 2 – DESCRIÇÃO DO PROBLEMA

- Tamanho: 9 alvos e 24 armamentos;
- Valor militar:

$$V_i = |5, 10, 20, 50, 15, 35, 10, 60, 45|$$

Matriz de Sobrevivência

$$q_{ij} = \begin{bmatrix} 0.9 & 0.8 & 0.6 & 0.9 & 0.5 & 0.5 & 0.6 & 0.9 & 0.6 \\ 1 & 0.7 & 1 & 0.9 & 0.9 & 0.7 & 1 & 1 & 0.5 \\ 0.7 & 0.7 & 0.6 & 0.8 & 0.9 & 0.6 & 0.6 & 0.5 & 0.9 \\ 0.5 & 0.5 & 0.9 & 0.7 & 0.6 & 0.9 & 1 & 0.6 & 0.7 \\ 0.6 & 0.6 & 0.5 & 0.8 & 0.6 & 0.8 & 0.6 & 0.7 & 0.7 \\ 0.6 & 0.9 & 0.7 & 0.5 & 1 & 1 & 0.6 & 0.8 & 1 \\ 0.9 & 0.6 & 0.9 & 0.7 & 0.6 & 1 & 1 & 0.8 & 0.8 \\ 0.9 & 1 & 0.8 & 0.6 & 0.9 & 0.9 & 0.9 & 0.9 & 0.5 & 0.6 \\ 0.7 & 0.7 & 0.7 & 0.6 & 0.8 & 0.7 & 0.5 & 0.7 & 1 \\ 0.5 & 0.5 & 0.8 & 0.8 & 1 & 0.6 & 0.7 & 0.8 & 1 \\ 0.9 & 0.7 & 0.7 & 0.6 & 0.8 & 0.7 & 0.5 & 0.7 & 1 \\ 0.5 & 0.5 & 0.5 & 0.8 & 0.8 & 1 & 0.6 & 0.7 & 0.8 & 1 \\ 0.9 & 0.7 & 0.9 & 0.5 & 0.9 & 0.7 & 0.6 & 0.9 & 0.5 \\ 0.9 & 0.7 & 0.6 & 1 & 0.7 & 1 & 0.6 & 1 & 1 \\ 1 & 0.7 & 0.6 & 0.9 & 0.5 & 1 & 0.6 & 1 & 1 \\ 1 & 0.5 & 0.9 & 0.6 & 0.6 & 0.7 & 0.7 & 0.5 & 0.7 \\ 1 & 1 & 0.5 & 0.9 & 0.6 & 0.6 & 0.7 & 0.7 & 0.5 & 0.9 \\ 0.7 & 0.6 & 0.7 & 0.9 & 0.9 & 1 & 0.5 & 0.6 & 0.9 \\ 0.7 & 1 & 0.7 & 0.7 & 0.9 & 0.6 & 0.8 & 0.9 & 0.7 \\ 1 & 0.7 & 1 & 0.6 & 0.7 & 0.5 & 0.5 & 1 & 0.5 \\ 0.5 & 0.6 & 0.9 & 0.5 & 0.6 & 0.5 & 0.7 & 0.7 & 1 \\ 0.9 & 1 & 1 & 0.9 & 0.8 & 1 & 0.9 & 1 & 0.7 \\ 0.5 & 0.8 & 0.5 & 0.6 & 0.7 & 0.6 & 1 & 0.6 & 0.7 \\ 0.6 & 0.9 & 0.9 & 1 & 0.5 & 1 & 0.7 & 0.9 & 0.7 \\ 0.6 & 0.9 & 0.9 & 1 & 0.5 & 1 & 0.7 & 0.9 & 0.7 \\ 0.6 & 0.9 & 0.9 & 1 & 0.5 & 1 & 0.7 & 0.9 & 0.7 \\ 0.6 & 0.9 & 0.9 & 1 & 0.5 & 1 & 0.7 & 0.9 & 0.7 \\ 0.6 & 0.5 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.5 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.5 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.9 & 0.9 & 1 & 0.5 & 1 & 0.7 \\ 0.6 & 0.9 & 0.9 & 1 & 0.5 & 1 & 0.7 & 0.9 & 0.7 \\ 0.6 & 0.9 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.5 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.9 & 0.9 & 1 & 0.5 & 1 & 0.7 \\ 0.9 & 0.6 & 0.9 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.9 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.9 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9 & 0.6 & 0.9 \\ 0.7 & 0.6 & 0.9 & 0.9 & 0.8 & 0.9 & 0.7 & 0.9$$

CASO 2 – RESULTADOS

- f = 35,21;
- Tempo execução: 181 segundos; e
- Critério de parada: 2.000 gerações consecutivas.

١	0,9	0,8	0,6	0,9	0,5	0,5	0,6	0,9	0,6
-	1	0,7	1	0,9	0,9	0,7	1	1	0,5
-	0,7	0,7	0,6	0,8	0,9	0,6	0,6	0,5	0,9
-	0,5	0,5	0,9	0,7	0,6	0,9	1	0,6	0,7
	0,6	0,6	0,5	0,8	0,6	0,8	0,6	0,7	0,7
	0,6	0,9	0,7	0,5	1	1	0,6	0,8	1
-	0,9	0,6	0,9	0,7	0,6	1	1	0,8	0,8
-	0,9	1	0,8	0,6	0,9	0,9	0,9	0,5	0,6
-	0,7	0,7	0,7	0,6	0,8	0,7	0,5	0,7	1
	0,5	0,5	0,8	0,8	1	0,6	0,7	0,8	1
	0,5	0,5	0,5	0,8	0,5	0,8	0,8	0,9	0,5
	0,9	0,7	0,9	0,5	0,9	0,7	0,6	0,9	0,7
	0,5	0,7	0,6	1	0,7	1	0,6	1	1
-	1	0,7	0,6	0,9	0,5	1	0,6	1	1
-	1	0,5	0,9	0,6	0,6	0,7	0,7	0,5	0,7
-	1	1	0,5	0,9	0,8	0,5	0,9	0,5	0,9
-	0,7	0,6	0,7	0,9	0,9	1	0,5	0,6	0,9
-	0,7	1	0,7	0,7	0,9	0,6	0,8	0,9	0,7
-	1	0,7	1	0,6	0,7	0,5	0,5	1	0,5
	0,5	0,6	0,9	0,5	0,6	0,5	0,7	0,7	1
	0,9	1	1	0,9	0,8	1	0,9	1	0,7
	0,5	0,8	0,5	0,6	0,7	0,6	1	0,6	0,7
	0,6	0,9	0,9	1	0,5	1	0,7	0,9	0,7
	0,6	0,5	0,9	0,8	0,9	0,7	0,9	0,6	0,9

CONCLUSÃO

• Considerando cenários realísticos, o algoritmo apresentou robustez para problemas de diferentes tamanhos e complexidades; e

 O algoritmo obteve soluções em tempo considerado aceitável para a tomada de decisão na Marinha do Brasil.

TRABALHOS FUTUROS

• Implementação do AG para o caso dinâmico do WTAP; e

• Comparação do desempenho do AG com outras heurísticas e metaheurísticas para a resolução de um mesmo conjunto de instâncias para o problema.

REFERÊNCIAS

Ni, M., Yu, Z., Ma, F., e Wu, X. (2011). A lagrange relaxation method for solving weapon-target assignment problem. Mathematical problems in engineering, 2011:1–10. ISSN 1024-123X.

Kline, A., Ahner, D., e Hill, R. (2019). The weapon-target assignment problem. Computers & operations research, 105:226–236. ISSN 0305-0548.

Lee, C. (2018). A review of applications of genetic algorithms in operations management. Engineering Applications of Artificial Intelligence, 76:1–12. ISSN 09521976. URL https://linkinghub.elsevier.com/retrieve/pii/S095219761830174X.

Manne, A. S. (1958). A Target-Assignment Problem. Operations Research, 6(3):346–351. ISSN 0030-364X, 1526-5463. URL http://pubsonline.informs.org/doi/abs/10.1287/opre.6.3.346.

Pessôa, L. A. M., de Arruda, E. F., e Bahiense, L. (2019). Um panorama do uso de pesquisa operacional no ambiente de guerra submarino.

Obrigado pela atenção!

tozzo@marinha.mil.br

http://lattes.cnpq.br/9813

190823822213