

Apellidos:

Nombre:

PROBLEMA 2 (Segundo Parcial) (4 PTOS.)

Dado el circuito lógico CMOS de la figura:

A.(1 pto.) Indique la expresión lógica de F en función de las variables de entrada, y el tipo de salida. Justifique la respuesta.

$$F = (A.B) + (c.0) = (\overline{A} + \overline{B}) \cdot (\overline{c} + \overline{D})$$

Tipo de salida (Estándar, Drenador abierto o Tri-estado):

Bloque MMOS (GrMos) Ay B > Serie > (A. B) CyD -> serie -> (C.D) Lowo $F = G_{NMOS} \Rightarrow F = (A, B) + (C, D)$ $C_{OMO} = (A + B) \cdot (C + D) + C_{OMOS} \Rightarrow F = (A, B) \cdot (C, D) = (A + B) \cdot (C + D) + C_{OMOS} \Rightarrow C_{O$

B. (1 pto.) Compruebe el funcionamiento del circuito para la combinación de entradas: A = B = "1", y C = D = "0".

B.1.Sustituya los transistores Mosfet por interruptores (abiertos y/o cerrados). Dibuje el circuito con interruptores.

B.2. Justifique el valor lógico de la salida F.

de habitación (caso de Frienado) F=0 porque le salida tilue un camino de Conexión con la masa fe coppobora en la expresión de la función: T = (1.1) + (0.0) = 1 = 0

C.(1 pto.) Realice una estimación aproximada de la potencia consumida por el circuito.

Potencia estática	Potencia dinámica
V _{DD} = 5V (tensión de alimentación)	V _{DD} = 5V (tensión de alimentación)
Suponga las corrientes de fuga de los	f = 1GHz (frecuencia de reloj)
transistores= 1pA /transistor (1pA = 10^{-12} A)	α = 0.5 (factor de actividad medio del circuito)
	$C_L = 20 fF/transistor$ (capacidad media por transistor;1fF = $10^{-15}F$)
$P_{\text{estática}}(\text{mW}) = 40 \times 10^{-9}$	P _{dinámica} (mW) = 2

D. (1 pto.) Suponga que se modifica el circuito del apartado A) de la forma siguiente (ver la figura). Indique el nuevo tipo de salida, y rellene la tabla de verdad del circuito. (Nota: /EN = señal EN invertida)

Apellidos: Soluciones — Nombre:

Problema 2 (Segundo PARCIAL) (4 PTOS)

A. (1 pto.) Se pretende diseñar la función $F = AB + \overline{AC}$ en lógica CMOS complementaria. Dibuje un esquema con transistores. Justifique el diseño.

Nota: utilice el símbolo simplificado de los transistores

B. (1 pto.) Suponga que el circuito pertenece a un chip con una tensión de alimentación V_{DD} = 2.5V y frecuencia de reloj fclock = 1GHz. Además el factor de actividad medio de las entradas es α = 0.4 y la capacidad media por transistor es C_L = 10 fF (1fF = 10⁻¹⁵F). Calcule la potencia dinámica aproximada del circuito, en mW. Incluya en el cómputo los transistores de los inversores necesarios para generar las variables negadas.

Pd =
$$(Voo)^2 \propto f$$
 CL
CL: N^2 transfer to N^2 transfer N^2

- C. (1 pto.) Modifique el esquema de la figura para dotar al circuito de salida triestado. Añada los transistores y las señales de control necesarias.
 - Dibuje el esquema
 - Explique el funcionamiento

A partir de les bloques, PMOS y

NMOS del apartado A), que

fe indican en la figura como

ma caja, para himplifican

Si En = "1" > funciona miento

namal

Fi En = "0" > alta impedencia

EN=

PMOS

Fino hey conexiani con

Upo ni con 6ND

- D. (1 pto.) Efectúe un diseño alternativo del circuito, basado en puertas de transmisión CMOS. Nota orientativa: utilice la estructura del multiplexor inversor.
 - Explique brevemente el diseño
 - Dibuje el esquema con transistores

F= (A)B + (A) C =>

Serial Selección

 $A=0 \Rightarrow F=\overline{C}$ $A=1 \Rightarrow F=\overline{B}$

