

Let & Pwait (1) be a gausian distribution with mean Twait, standard deviation Fwait.

similarly Psearch (1) ~ N(Theresearch, Secretary)

S	a	s'	Υ,	P(s',rls,a)
high	searh	bigh .	•	a Psearch (7)
high	seach	low	Υ	(1-a) " Psearch (r)
low	search	high	4-3	(1-B) , Psearch (1)
Cow	seouch	loω	~	B & Psearch (4)
high	wait	high	r	1 x Pwait(i)
low	walt	cow	Y	1 × Pwait (x)
low	recharge	high	0	1 × 1

Un(S) = E[G+ | S+ = S] Now 9 Git = Rt+1 + TR+12 + T2 Rt+3+. le it is be the new neward with cost constant. added to it. 3 Pr= 8,+6 3 Gt = SYKRITH $= \frac{S}{S} \left[T^{K} \left(R_{t+K+1} \right) + C^{K} \right]$ $= \frac{S}{K=0} \left[T^{K} \left(R_{t+K+1} \right) + C^{K} \right]$ $= \frac{S}{K=0} \left[T^{K} \left(R_{t+K+1} \right) + C^{K} \right]$ $= \frac{G_{t+} C}{1-r}$ $= \frac{G_{t+} C}{1-r}$ $= \frac{G_{t+} C}{1-r}$ $= \frac{G_{t+} C}{1-r}$ $= \frac{G_{t+} C}{1-r}$ = E[G+1S+=5]+ C $\Rightarrow V_{\Pi}(s) = V_{\Pi}(s) + C$

(3)(b) If the task is episodic, let the task finish after t=N se. S_N is terminal state.

following from the above quesción

$$\hat{\Upsilon}_{t} = \Upsilon_{t} + C$$

$$\hat{G}_{t} = \sum_{\kappa=0}^{N} \Upsilon^{\kappa} \hat{R}_{t+\kappa+1} = \sum_{\kappa=0}^{N} \Upsilon^{\kappa} (R_{t+\kappa+1} + C)$$

$$= \sum_{\kappa=0}^{N} \Upsilon^{\kappa} R_{t+\kappa+1} + \sum_{\kappa=0}^{N} C \Upsilon^{\kappa}$$

$$= G_{t} + C \left(\frac{\Upsilon^{N} - 1}{\Upsilon - 1} \right)$$

$$= \hat{V}_{\Pi}(S) = E[\hat{G}_{\pm}|S_{t}=S]$$

$$= V_{\Pi}(S) \times V_{\Pi}(S)$$

$$= E[\hat{G}_{t}+C(\frac{N-1}{N-1})|S_{t}=S]$$

since N is a random voriable that depends on St, therefore it can't come out of expectation Hence, there is no simple mapping ûn(s) and vn(s)

by def V_{*} in terms of q_{*} by def $V_{*}^{(s)}$ is the best we can do starting

at state Sby dy^{n} $q_{*}(s,a)$ is the best we can do starting

at state S and performing attain atherefore, $V_{*}(s) = \max_{a \in A(s)} q_{*}(s,a)$