

Machine learning

Logistic regression notes

Helder Daniel

hdaniel@ualg.pt

v2024/5 1.0

Variable definition

We assume that we have 2 input variables X and y

	X	Υ
	x1 x2 xn	
sample 0	1 3 -4	2
sample 1	3 2 1	1
 sample m	5 -2 4	0

- X is an mxn matrix with features
- \mathbf{y} is an $m \times 1$ vector with targets
- *m* is the number of samples (or data points)
- *n* is the number of features

Variable definition

We assume that we have 2 input variables X and y

$$\mathbf{X}_{m imes(1+n)} = egin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(n)} \ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(n)} \ & dots & & & \ 1 & x_m^{(1)} & x_m^{(2)} & \dots & x_m^{(n)} \end{bmatrix} \qquad \mathbf{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_m \end{bmatrix}$$

- X is an mxn matrix with features
- \mathbf{y} is an $m \times 1$ vector with targets
- *m* is the number of samples (or data points)
- *n* is the number of features

$$heta_0 = heta_0 \qquad \qquad -lpha rac{1}{m} \sum_{i=0}^m (h_ heta(x^{(i)}) - y^{(i)}) x_0^{(i)} \qquad , \quad j = 0$$

$$heta_j = heta_j \left(1 - lpha rac{\lambda}{m}
ight) - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad, \quad j = 1, 2, \ldots, n$$

- Note that θ_0 is not updated
- θ_0 coefficient sets the distance from the axis

$$heta_0 = heta_0 \qquad \qquad -lpha rac{1}{m} \sum_{i=0}^m (h_ heta(x^{(i)}) - y^{(i)}) x_0^{(i)} \qquad , \quad j = 0$$

$$heta_j = heta_j \left(1 - lpha rac{\lambda}{m}
ight) - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad, \quad j = 1, 2, \ldots, n$$

• We need to multiply $\theta_{j>0}$ by: $\left(1-\alpha\frac{\lambda}{m}\right)$

$$\left(1-\alpha\frac{\lambda}{m}\right)$$

$$heta_0 = heta_0 \qquad \qquad -lpha rac{1}{m} \sum_{i=0}^m (h_ heta(x^{(i)}) - y^{(i)}) x_0^{(i)} \qquad , \quad j = 0$$

$$heta_j = heta_j \left(1 - lpha rac{\lambda}{m}
ight) - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad, \quad j=1,2,\ldots,n$$

The vectorial form without regularization is:

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \frac{1}{m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T \mathbf{X}$$

• To avoid updating θ_0 we can form matrix **R**:

$$\mathbf{R}_{(n+1) imes(n+1)} = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & \left(1-lpharac{\lambda}{m}
ight) & \dots & 0 \ & dots & dots \ 0 & 0 & \dots & \left(1-lpharac{\lambda}{m}
ight) \end{bmatrix}$$

and update with:

$$\boldsymbol{\theta} = \mathbf{R}\boldsymbol{\theta} - \alpha \frac{1}{m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T \mathbf{X}$$

To compute in Python use Numpy specialized functions

$$\boldsymbol{\theta} = \mathbf{R}\boldsymbol{\theta} - \alpha \frac{1}{m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T \mathbf{X}$$

np.add

np.multiply

np.dot

•••

This translates to Python as below:

$$\boldsymbol{\theta} = \mathbf{R}\boldsymbol{\theta} - \alpha \frac{1}{m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T \mathbf{X}$$

$$\theta = R.dot(\theta)-(\alpha/m)*(X.dot(\theta)-y).T.dot(X))$$

Or we can:

- 1) save θ_0
- 2) multiply all θ
- 3) replace θ_0 with the saved value

This translates to Python as below:

$$\boldsymbol{\theta} = \mathbf{R}\boldsymbol{\theta} - \alpha \frac{1}{m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T \mathbf{X}$$

theta0 =
$$\theta[0]$$

 $\theta = \theta * (1-\alpha * \lambda/m) - (\alpha/m)*(X.dot(\theta)-y).T.dot(X))$
 $\theta[0] = theta0$

Logistic Regression

Gradient descent update with regularization

to apply the logistic function:

$$h_{\theta}(x) = g(\theta^T x)$$

$$z = heta^T x$$
 $g(z) = rac{1}{1 + e^{-z}}$

to apply the logistic function:

first compute: $z = X \theta$

$$h_{ heta}(x) = g(heta^T x)$$
 $z = heta^T x$ $g(z) = rac{1}{1 + e^{-z}}$

to apply the logistic function:

first compute: $z = X \theta$

Then: gz = sigmoid(z)

$$h_{ heta}(x) = g(heta^T x)$$
 $z = heta^T x$ $g(z) = rac{1}{1 + e^{-z}}$

to apply the logistic function:

first compute: $z = X \theta$

Then: gz = sigmoid(z)

and replace $X \theta$ by gz in:

$$h_{ heta}(x) = g(heta^T x)$$

$$z = heta^T x$$
 $g(z) = rac{1}{1 + e^{-z}}$

$$\boldsymbol{\theta} = \mathbf{R}\boldsymbol{\theta} - \alpha \frac{1}{m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T \mathbf{X}$$

Logistic Regression

with

feature expansion

Logistic Regression with feature expansion

• Before **fit(Xe, y)** expand **X** matrix with:

Xe = mapFeatures(X1, X2, degree)

before predict(xpe) expand xp vector with:

xpe = mapFeatures(xp[:,0], xp[:,1], degree)