Static-11

Title

2-D plane truss

Description

Determine the vertical displacements of a plane truss structure subjected to concentrated loads.

Structural geometry and analysis model

Model

```
Analysis Type
2-D static analysis (X-Z plane)

Unit System
```

Dimension

in, kip

Length 720 in Height 180 in

Element

Truss Element

Material

Modulus of elasticity $E = 30 \times 10^3 \text{ ksi}$

Section Property

```
Area A = 1.0 \text{ in}^2 (Elements 1 \sim 4)

= 2.0 \text{ in}^2 (Elements 5 \text{ and } 6)

= 1.5 \text{ in}^2 (Elements 7 \text{ and } 8)

= 3.0 \text{ in}^2 (Elements 9 \sim 1)

= 4.0 \text{ in}^2 (Elements 2 \text{ and } 3)
```

Boundary Condition

Node 1; Constrain Dx and Dz. (Hinge support) Node 3; Constrain Dz (Roller support)

Load Case

A concentrated load, 20 kips each is applied to the nodes 2, 4 and 5 in the -Z direction.

Results

Displacements of the structure

Comparison of Results

			Unit . in
Node 5	Theoretical	STAAD-III	MIDAS/Civil
Maximum vertical deflection (δ_Z)	-2.63	-2.63	-2.63

References

Jack C. Mccomack, "Structural Analysis", p. 271, Example 18-2.

"STAAD-III/ISDS, Getting Started and Example Manual", Research Engineers, Inc., 1994, Verification Problem No. 7.