EAS 501 PROJECT

Chicago Taxi Trip Analysis

NAMES	UBIT NAME
ADVAIT KULKARNI	advaitan
SUHIT DATTA	suhitdat
VARAD TUPE	varadsha

Introduction

- The data was extracted from Chicago Data Portal
- Main dataset contains total of 113 Million records
- The data set used for analysis is from April July 2017

Data Description

Taxi Trip Data

Column Name	Description	Type
Trip ID	A unique identifier for the trip.	Plain Text
Taxi ID	A unique identifier for the taxi.	Plain Text
Trip Start Timestamp	When the trip started, rounded to the nearest 15 minutes.	Date & Time
Trip End Timestamp	When the trip ended, rounded to the nearest 15 minutes.	Date & Time
Trip Seconds	Time of the trip in seconds.	Number
Trip Miles	Distance of the trip in miles.	Number
Pickup Census Tract		
Dropoff Census Tract	The Census Tract where the trip ended. For privacy, this Census Tract is not shown for some trips.	Plain Text
Pickup Community Area	The Community Area where the trip began.	Number
Dropoff Community Area where the trip ended.		Number
Fare	The fare for the trip.	Money
Tips	The tip for the trip. Cash tips generally will not be recorded.	Money
Tolls	The tolls for the trip.	Money

Column Name	Description	Туре
Extras	Extra charges for the trip.	
Trip Total	Total cost of the trip, the total of the previous columns.	Money
Payment Type	Type of payment for the trip.	Plain Text
Company	The taxi company.	Plain Text
Pickup Centroid Latitude	The latitude of the center of the pickup census tract or the community area if the census tract has been hidden for privacy.	Number
Pickup Centroid Longitude	The longitude of the center of the pickup census tract or the community area if the census tract has been hidden for privacy.	Number
Dropoff Centroid Latitude	The latitude of the center of the dropoff census tract or the community area if the census tract has been hidden for privacy.	Number
Dropoff Centroid Longitude	The longitude of the center of the dropoff census tract or the community area if the census tract has been hidden for privacy.	Number

After cleaning the data, the volume of the data has been reduced to 1.6 million records.

Assumption: The trip duration is a value between 1 and 60 minutes both inclusive.

Q1) If you had to fit a probability distribution to the trip duration, how would you do it and why?

In order to analyze the data, we extracted the data pertaining to the trip duration column and made a new table in MySQL. Then we extracted the data in Python using pandas library.

The data consists of Trip duration which is varying from 1 minutes in duration to 60 minutes.

The next step is to analyze the data. The best way to analyze the data is to plot a Histogram of the data points related to Trip Duration. The visual representation is as shown below:

The Histogram plot shows that there is a high bulge in the data during the Trip Duration values between 5 to 15 minutes. This kind of plot is strikingly similar to a <u>Gaussian Distribution</u>. The only difference in this case it is Right-Skewed that is it displays Positive Skewness.

We fit a Normal Curve on this plot and we obtain the following:

The values of Mean and Standard Deviation are as follows for the fitted curve.

Mean: 13.72098125

Standard Deviation: 11.09201266

Variance: 123.0327448496

Q2) Divide the data you are using into two parts (Training and Testing), and analyze it using the distribution you mentioned in Q1. Basically you have to learn the parameters from the training set and analyze the applicability of the fitted model on the testing set.

The data obtained in the first part is divided into two parts: Training Set and the Test Set in the ratio 80% and 20%.

Following is the Histogram of the Training Data along with the fitted Normal Curve.

The Normal curve used to fit the Training Data is plotted along with the Test Data as follows:

In order to compare the fit of the training curve on the Test Data, the curve used to fit the Training Data and the Test Data are plotted in conjunction with the Test Data as follows:

The red line represents the Fit for the Test Data and the Blue Dotted Line represents the fit for the Training Data. Both these lines are plotted over the Histogram of the Test Data.

As can be seen in the figure, the fits for the Training Data and the Test Data are almost overlapping. This shows that the fit for the Training Data nearly fits the Test Data Set.

The following are the parameters of the Dataset:

	Mean	Standard Deviation
Training Data (80% of Data)	13.722488291950164	11.09387577373475
Test Data (20% of Data)	13.714953098683321	11.084555005296062

It can be seen that the Mean and the Standard Deviation parameters are very close to each other for the Training Data and the Test Data.

Q3) Given you have to reach a certain location (any area code of your choice) at 2 pm what should be the estimated start time?

For this problem, we assume that the area we have to reach has the code 8, as that area has the maximum drop-offs.

The aim is to find the time we have to reach there by 2 pm.

To find the estimated start time, we consider all the instances where the pickup was a certain area and drop-off area was one with code 8(near South Side). This area has one of the largest number of Drop-offs.

The process that we used is as follows:

Due to limited data for some areas, like those with Area Codes 9 and 10 which have very few instances (~ 2 or 3), the <u>Average</u> was considered.

Also Mode has been used for those area codes with a considerable number of rides to area 8.

The threshold value considered for the cutoff was at least 10 trips for the Mode.

The following is the approximate Leaving Time for each Community Area to Near North Side (Community Area 8):

Area	Community_Name	Leaving	Time to	Method	Nrow/Freq
		Time	Reach (Min)		
1	Rogers Park	1:41 PM	19	Mode	21
2	West Ridge	1:34 PM	26	Average	133
3	Uptown	1:49 PM	11	Mode	218
4	Lincoln Square	1:39 PM	21	Mode	22
5	North Center	1:43 PM	17	Mode	38
6	Lake View	1:49 PM	11	Mode	1400
7	Lincoln Park	1:51 PM	9	Mode	1916
8	Near North Side	1:55 PM	5	Mode	28085

9	Edison Park	1:30 PM	30	Average	2
10	Norwood Park	1:34 PM	26	Average	18
11	Jefferson Park	1:34 PM	26	Average	39
12	Forest Glen	1:28 PM	32	Average	10
13	North Park	1:32 PM	28	Average	9
14	Albany Park	1:44 PM	16	Mode	42
15	Portage Park	1:34 PM	26	Average	28
16	Irving Park	1:42 PM	18	Mode	12
17	Dunning	1:31 PM	29	Average	4
18	Montclare	1:24 PM	36	Average	14
19	Belmont Cragin	1:30 PM	30	Average	16
20	Hermosa	1:35 PM	25	Average	14
21	Avondale	1:47 PM	13	Mode	11
22	Logan Square	1:49 PM	11	Mode	120
23	Humboldt Park	1:41 PM	19	Average	52
24	West Town	1:52 PM	8	Mode	914
25	Austin	1:37 PM	23	Average	3
26	West Garfield Park	1:45 PM	15	Average	2
27	East Garfield Park	1:45 PM	15	Average	9
28	Near West Side	1:50 PM	10	Mode	5733
29	North Lawndale	1:38 PM	22	Average	10
30	South Lawndale	1:35 PM	25	Average	16
31	Lower West Side	1:42 PM	18	Mode	11
32	The Loop	1:53 PM	7	Mode	17207
33	Near South Side	1:45 PM	15	Mode	1383
34	Armour Square	1:45 PM	15	Mode	49
35	Douglas	1:41 PM	19	Mode	24
36	Oakland	1:41 PM	19	Average	19
37	Fuller Park	1:29 PM	31	Average	8
38	Grand Boulevard	1:36 PM	24	Average	26
39	Kenwood	1:44 PM	16	Mode	38
40	Washington Park	1:33 PM	27	Average	6
41	Hyde Park	1:42 PM	18	Mode	101
42	Woodlawn	1:35 PM	25	Average	14
43	South Shore	1:36 PM	24	Average	38
44	Chatham	1:25 PM	35	Average	11
45	Avalon Park	1:31 PM	29	Average	4
46	South Chicago	1:27 PM	33	Average	5
49	Roseland	1:25 PM	35	Average	1
50	Pullman	1:35 PM	25	Average	2
52	East Side	1:16 PM	44	Average	1
53	West Pullman	1:25 PM	35	Average	1
54	Riverdale	1:07 PM	53	Average	1

56	Garfield Ridge	1:28 PM	32	Mode	443
57	Archer Heights	1:35 PM	25	Average	4
58	Brighton Park	1:33 PM	27	Average	10
59	McKinley Park	1:39 PM	21	Average	11
60	Bridgeport	1:39 PM	21	Average	102
61	New City	1:32 PM	28	Average	13
62	West Elsdon	1:27 PM	33	Average	20
63	Gage Park	1:17 PM	43	Average	3
64	Clearing	1:24 PM	36	Average	9
65	West Lawn	1:24 PM	36	Average	3
66	Chicago Lawn	1:25 PM	35	Average	4
67	West Englewood	1:28 PM	32	Average	1
68	Englewood	1:28 PM	32	Average	10
69	Greater Grand	1:34 PM	26	Average	9
	Crossing				
71	Auburn Gresham	1:28 PM	32	Average	2
76	O Hare	1:28 PM	32	Mode	1018
77	Edgewater	1:47 PM	13	Mode	98

The image below shows a sample point such as O Hare. On clicking the sample point, we obtain the estimated start time and the duration. This can be better visualized in the Python notebook relevant to this Project. This can be done for the other points as per the Visualization.

Github Link:

 $\underline{https://github.com/varadtupe/ChicagoTaxiTrip/blob/master/Probability/Chicago\%20Taxi\%20Probability\%20Project.ipynb}$

Nbviewer Link:

http://nbviewer.jupyter.org/github/varadtupe/ChicagoTaxiTrip/blob/master/Probability/Chicago%20Taxi%20Probability%20Project.ipynb