PRÁCTICO 7

Transformaciones lineales Álgebra II – Año 2024/1 – FAMAF

Objetivos.

- Familiarizarse con las transformaciones lineales.
- Aprender a decidir si un función es una transformación lineal, monomorfismos, epimorfismo o isomorfismo.
- o Aprender a calcular el núcleo y la imagen de una transformación.
- o Familiarizarse con el teorema sobre la dimensión del núcleo y la imagen.

Ejercicios. Los ejercicios con el símbolo (a) tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco.

- (1) Decidir si las siguientes funciones son transformaciones lineales entre los respectivos espacios vectoriales sobre \mathbb{K} .
 - a) La traza Tr : $\mathbb{K}^{n \times n} \longrightarrow \mathbb{K}$ (recordar ejercicio (9) b) del Práctico 3)
 - b) $T: \mathbb{K}[x] \longrightarrow \mathbb{K}[x]$, T(p(x)) = q(x) p(x) donde q(x) es un polinomio fijo.
 - c) $T: \mathbb{K}^2 \longrightarrow \mathbb{K}$, T(x, y) = xy
 - d) $T: \mathbb{K}^2 \longrightarrow \mathbb{K}^3$, T(x, y) = (x, y, 1)
 - e) El determinante det : $\mathbb{K}^{n \times n} \longrightarrow \mathbb{K}$.
- (2) Sea $T: \mathbb{C} \longrightarrow \mathbb{C}$, $T(z) = \overline{z}$.
 - a) Considerar a $\mathbb C$ como un $\mathbb C$ -espacio vectorial y decidir si $\mathcal T$ es una transformación lineal.
 - b) Considerar a $\mathbb C$ como un $\mathbb R$ -espacio vectorial y decidir si $\mathcal T$ es una transformación lineal.
- (3) Sea $T: \mathbb{K}^3 \longrightarrow \mathbb{K}^3$ una transformación lineal tal que $T(e_1)=(1,2,3), T(e_2)=(-1,0,5)$ y $T(e_3)=(-2,3,1).$
 - a) Calcular T(2,3,8) y T(0,1,-1).
 - b) Calcular T(x, y, z) para todo $(x, y, z) \in \mathbb{K}^3$. Es decir, dar una fórmula para T donde en cada coordenada del vector de llegada hay una combinación lineal de x, y, z.
 - c) Encontrar una matriz $A \in \mathbb{K}^{3\times 3}$ tal que $T(x,y,z) = A\begin{bmatrix} x \\ y \\ z \end{bmatrix}$. En esta parte del ejercicio escribiremos/pensaremos a los vectores de \mathbb{K}^3 como columnas.

Observación. En el ejercicio (3) b) lo que hicimos fue deducir cuánto vale la transformación lineal en todos los vectores de \mathbb{K}^3 a partir de saber cuánto vale la transformación lineal en la base canónica. A partir del valor de T en una base vectores podemos saber el valor de T en todo el espacio. Esto vale para cualquier transformación lineal entre espacios vectoriales y cualquier base porque las transformaciones lineales respetan combinaciones lineales y todo vector de un espacio vectorial es combinación lineal de los vectores de una base.

Observación. La matriz del ejercicio (3) c) es la matriz de la transformación lineal T con respecto a la base canónica. En el próximo práctico aprenderemos a calcular la matriz de una transformación lineal con respecto a distintas bases.

Observación. Para la resolución de los siguientes ejercicios se debe tener en cuenta la proposición 5.2.7 y el ejemplo 5.2.8 de las notas de la materia, versión 2024. Recordemos brevemente el resultado:

Sea $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una transformación lineal y $A \in \mathbb{R}^{m \times n}$ la matriz asociada. Entonces

- \circ El núcleo de T es el conjunto de soluciones del sistema homogéneo AX =
- \circ La imagen de T es el conjunto de los $b \in \mathbb{R}^m$ para los cuales el sistema AX = b tiene solución

Por lo tanto, resolviendo AX = b con un b genérico obtenemos una descripción de la imagen de T y haciendo b=0 obtenemos una descripción del núcleo de T.

Por supuesto, que si solo nos piden comprobar si un vector está en el núcleo de una transformación lineal, no es necesario resolver el sistema, basta verificar que el vector es solución de AX = 0.

- (4) Sea $T: \mathbb{K}^3 \longrightarrow \mathbb{K}^3$ definida por T(x, y, z) = (x + 2y + 3z, y z, x + 5y).
- Sea $T: \mathbb{K}^3 \longrightarrow \mathbb{K}^3$ definida por T(x, y, z) = (x + 2y + 3z, y) z_1, \ldots, z_n a) Encontrar una matriz $A \in \mathbb{K}^{3\times 3}$ tal que $T(x, y, z) = A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Como en el

ejercicio (3) c) pensamos a los vectores como columnas.

- b) Decir cuáles de los siguientes vectores están en el núcleo: (1, 1, 1), (-5, 1, 1).
- c) Describir mediante ecuaciones (implícitamente) el núcleo y la imagen de Т.
- d) Dar un conjunto de generadores del núcleo y la imagen de T.
- e) Decir cuáles de los siguientes vectores están en la imagen: (0,1,0), (0, 1, 3).

(5) Sea $T: \mathbb{K}^4 \to \mathbb{K}^5$ dada por T(v) = Av donde A es la siguiente matriz

$$A = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 1 & 3 & 0 & 1 \\ -1 & -1 & 0 & 0 \\ 3 & 0 & 3 & 0 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$

- a) Describir mediante ecuaciones (implícitamente) el núcleo y la imagen de Т.
- b) Dar una base del núcleo y de la imagen de T y decir cuál es la dimensión de cada uno.
- c) Decir cuáles de los siguientes vectores están en el núcleo: (1,2,3,4), (1, -1, -1, 2), (1, 0, 2, 1).
- d) Decir cuáles de los siguientes vectores están en la imagen: (2, 3, -1, 0, 1), (1, 1, 0, 3, 1), (1, 0, 2, 1, 0).
- (6) Para cada una de las siquientes transformaciones lineales calcular el núcleo y la imagen. Describir ambos subespacios implícitamente y encontrar una base de cada uno de ellos.

a)
$$T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $T(x, y) = (x - y, x + y, 2x + 3y)$.
b) $S : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $S(x, y, z) = (x - y + z, 2x - y + 2z)$.

b)
$$S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $S(x, y, z) = (x - y + z, 2x - y + 2z)$.

(7) Para cada una de las siguientes transformaciones lineales calcular el núcleo y la imagen. Describir ambos subespacios implícitamente y encontrar una base de cada uno de ellos.

a)
$$D: P_4 \longrightarrow P_4$$
, $D(p(x)) = p'(x)$.

b)
$$T: M_{2\times 2}(\mathbb{K}) \longrightarrow \mathbb{K}$$
, $T(A) = \operatorname{tr}(A)$.

c)
$$L: P_3 \longrightarrow M_{2\times 2}(\mathbb{R}), L(ax^2 + bx + c) = \begin{bmatrix} a & b+c \\ b+c & a \end{bmatrix}.$$

d)
$$Q: P_3 \longrightarrow P_4$$
, $Q(p(x)) = (x+1)p(x)$.

(8) Sea $T: \mathbb{K}^{2\times 2} \longrightarrow \mathbb{K}_4[x]$ la transformación lineal definida por

$$T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a - c + 2d)x^3 + (b + 2c - d)x^2 + (-a + 2b + 5c - 4d)x + (2a - b - 4c + 5d)$$

a) Decir cuáles de los siguientes matrices están en el núcleo:

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}.$$

b) Decir cuáles de los siguientes polinomios están en la imagen:

$$p(x) = x^3 + x^2 + x + 1$$
, $q(x) = x^3$, $r(x) = (x - 1)(x - 1)$

- (9) Sea $T: \mathbb{K}^3 \longrightarrow \mathbb{K}$ definida por T(x, y, z) = x + 2y + 3z.
 - a) Probar que T es un epimorfismo.
 - b) Dar la dimensión del núcleo de T.
 - c) Encontrar una matriz A tal que $T(x, y, z) = A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. ¿De qué tamaño debe ser A? Como en el ejercicio (4) a) pensamos a los vectores como columnas.
- (10) Determinar cuáles transformaciones lineales de los ejercicios (6) y (7) son monomorfismos, epimorfismos y/o isomorfismos.
- (11) Encontrar en cada caso, cuando sea posible, una matriz $A \in \mathbb{K}^{3\times 3}$ tal que la transformación lineal $T: \mathbb{K}^3 \longrightarrow \mathbb{K}^3$, T(v) = Av, satisfaga las condiciones exigidas (como en el ejercicio (3) c) pensamos a los vectores como columnas). Cuando no sea posible, explicar por qué no es posible.
 - a) dim Im(T) = 2 y dim Nu(T) = 2.
 - b) T inyectiva y $T(e_1) = (1,0,0)$, $T(e_2) = (2,1,5)$ y $T(e_3) = (3,-1,0)$.
 - c) T sobreyectiva y $T(e_1) = (1, 0, 0)$, $T(e_2) = (2, 1, 5)$ y $T(e_3) = (3, -1, 0)$.
 - d) $e_1 \in Im(T)$ y $(-5, 1, 1) \in Nu(T)$.
 - e) $\dim \operatorname{Im}(T) = 2$.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- (12) Sea $T: \mathbb{K}^3 \longrightarrow \mathbb{K}[x]$ una transformación lineal tal que $T(e_1) = x^2 + 2x + 3$, $T(e_2) = -x^2 + 5$ y $T(e_3) = -2x^2 + 3x + 1$. Calcular T(2,3,8) y T(0,1,-1). Más generalmente, calcular T(a,b,c) para todo $(a,b,c) \in \mathbb{K}^3$.
- (13) Describir mediante ecuaciones implícitas y con generadores el núcleo y la imagen de las siguientes transformaciones lineales.

a)
$$T: \mathbb{K}^3 \longrightarrow \mathbb{K}^3$$
, $T(x, y, z) = (x + 2y + 3z, y - z, 0)$.

b)
$$S: \mathbb{K}^2 \longrightarrow \mathbb{K}^3$$
, $S(x, y) = (x - y, x + y, 2x + 3y)$.

- (14) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,-1)=(1,-1) y T(-1,0,1)=(1,0).
 - b) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,-1)=(1,-1) y T(-1,0,1)=(-1,1).
 - c) Si $T: \mathbb{R}^9 \to \mathbb{R}^7$ es una transformación lineal, entonces dim $Nu(T) \ge 2$.
 - d) Sea $T: V \to W$ una transformación lineal tal que $T(v_i) = w_i$, para i = 1, ..., n. Si $\{w_1, ..., w_n\}$ genera W, entonces $\{v_1, ..., v_n\}$ genera V.

- e) Existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^5$ tal que los vectores (1,0,-1,0,0), (1,1,-1,0,0) y (1,0,-1,2,1) pertenecen a la imagen de T.
- f) Existe una transformación lineal sobreyectiva $T: \mathbb{R}^5 \to \mathbb{R}^4$ tal que los vectores (1,0,1,-1,0) y (0,0,0,-1,2) pertenecen al núcleo de T.
- (15) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Si $T: \mathbb{R}^{13} \to \mathbb{R}^9$ es una transformación lineal, entonces dim Nu $(T) \ge 4$.
 - b) Sea $T: \mathbb{K}^6 \longrightarrow \mathbb{K}^2$ un epimorfismo y W un subespacio de \mathbb{K}^6 con dim W=3. Entonces existe $0 \neq w \in W$ tal que T(w)=0.
 - c) Existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^4$ tal que los vectores (1,0,-1,2), (0,1,2,-1,) y (0,0,2,2) pertenecen a la imagen de T.
- (16) Sea V un espacio vectorial de dimensión finita y $T:V\longrightarrow V$ una transformación lineal. Probar las siguientes afirmaciones.
 - a) $Nu(T) \subseteq Nu(T^2)$

b) $Nu(T) \neq Im(T)$ si dim(V) es impar.

Ayudas.

Ejercicio (4) a): recordar en el ejercicio (8) de la Práctica 3 como podemos interpretar el producto de una matriz por un vector columna.