

TwinCAT System

Pierwsze kroki w TwinCAT System Manager i TwinCAT PLC Control

TwinCAT - Total Windows Control and Automation Technology

TwinCAT System:

- □ TwinCAT System Manager
 - o TwinCAT CP
 - o TwinCAT I/O
 - o TwinCAT PLC
 - o TwinCAT NC PTP
 - o TwinCAT NC I
 - o TwinCAT CNC
- ☐ TwinCAT Supplement:
 - o PLC Libraries
 - o NC Libraries
 - o Systemsoftware

Konfiguracja urządzeń

TwinCAT System Manager

BECKHOFF New Automation Technology

Konfiguracja urządzenia – krok 1. Wybór obiektu

Wybór sterownika następuje w oknie Choose Target System

Dostęp do okna wyboru sterownika:

- ikona 🖳 na pasku narzędzi
- Actions\Choose Target System...
- klawisz F8
- SYSTEM-Configuration =>
 General\Choose Target...
- Search (Ethernet) jeżeli nie ma szukanego sterownika

Konfiguracja urządzenia – krok 1. Wybór obiektu – możliwe problemy

- Broadcast Search –
 znalezienie w sieci wszystkich
 obiektów z uruchomionym
 systemem TwinCAT.
- wybieramy sterownik,
 z którym chcemy się połączyć.
- połączenie nawiązujemy komendą Add Route (IP Address).
- nawiązanie połączenia sygnalizuje Host Name Connected Connected.

Konfiguracja urządzenia – krok 2. Scan Devieces

Scan Devieces:

- wykrywa urządzenia połączone ze sterownikiem
- uruchamiana po kliknięciu prawym przyciskiem myszy na I/O Devieces
- aktywna w Config Mode

Konfiguracja urządzenia - zakończenie

TwinCAT PLC

Tworzenie prostego programu

Wybór obiektu docelowego

Krok 1.

Do wyboru jest sześć typów programów, zależnych od obiektu docelowego i sposobu komunikacji.

Podstawowe biblioteki zostaną dołączone automatycznie.

Wybór języka programowania

Krok 2.

Do wyboru jest sześć języków programowania, zgodnych ze standardem IEC 61131-3.

W oknie tym można wybrać również typ obiektu jaki zostanie stworzony: program, blok funkcyjny lub funkcja.

Okno główne

Deklaracja zmiennych

Krok 3. Wybór zakładki Resources

Krok 4. Przejście do Global_Variables

Krok 5. Deklaracja zmiennych:

Nazwa AT %I*:Typ_Zmiennej; - zmienna wejściowa

Nazwa AT %Q*:Typ_Zmiennej; - zmienna wyjściowa

Dodanie bloczka

Krok 6.

Dodawanie elementów metodą przeciągnij -> upuść Domyślny typ bloczka to bramka AND Widoczne wejścia/wyjścia bloczka Łatwe dodawanie wejść/wyjść

Nazwanie zmiennych we/wy

Krok 7.

Na wejściu/wyjściu można wpisać:

- Zmienną globalną
- Zmienną lokalną
- Zmienną wcześniej niezadeklarowaną (domyślna autodeklaracja)
- Wartość stałą (nie da się jej zmienić podczas pracy programu!)
- Wyjście z innego bloku (np. Timer1.Q)
- Wyrażenie (np. WORD_TO_BOOL(Dane))

Ctrl + Spacja

Skrót klawiszowy Ctrl + Spacja otwiera okno z zadeklarowanymi Zmiennymi, blokami funkcyjnymi i funkcjami

Wybór obiektu docelowego

Krok 8.

Local – program zostanie wgrany na lokalny komputer Pozostałe obiekty to nazwy sterowników wraz z AMS Net Id

Kompilacja projektu

Krok 9.

Warning 1990 -> brak obiektu docelowego dla zmiennej

zaadresowanej

```
Warning 1990: No 'VAR_CONFIG' for '.Diln_2' Warning 1990: No 'VAR_CONFIG' for '.Diln_3' Warning 1990: No 'VAR_CONFIG' for '.Diln_4' Warning 1990: No 'VAR_CONFIG' for '.DiDut_1' Warning 1990: No 'VAR_CONFIG' for '.DiDut_2' Warning 1990: No 'VAR_CONFIG' for '.DiDut_3' Warning 1990: No 'VAR_CONFIG' for '.DiDut_4' POU indices: 51 (2%) Size of used data: 49 of 1048576 bytes (0.00%) Size of used retain data: 0 of 32768 bytes (0.00%) 0 Error(s), 9 Warning(s).
```


Połączenie programu z urządzeniami

TwinCAT System Manager

Konfiguracja urządzenia – krok 3. Dodanie projektu PLC

Append PLC Project:

 wywołanie kliknięciem prawym przyciskiem myszy na PLC – Configuration

otwieramy plik z rozszerzeniem *.tpy

Konfiguracja urządzenia sterownik + program PLC

Konfiguracja urządzenia – krok 4. linkowanie zmiennych

Linkowanie zmiennych:

• wywołanie 2-krotnym kliknięciem na zmienną we/wy w programie PLC lub kliknięcie prawym przyciskiem i wybranie opcji Change Link...

 linkowane mogą być zmienne tego samego typu

 zmienne zlinkowane mają symbol strzałki i są oznaczone "x"

Konfiguracja urządzenia – krok 5. aktywacja konfiguracji

Zakończenie konfiguracji sterownika:

• aktywowanie konfiguracji (Active configuration)

przejście w tryb pracy (Run Mode)

Wgranie programu na sterownik

TwinCAT PLC

Logowanie/wylogowanie się

Krok 10.

Zalogowanie się:

lub

Podczas logowania się w razie potrzeby wgrywany jest program PLC.

Wylogowanie się: 🚟

lub

Wgranie projektu na obiekt docelowy - komunikaty

Na sterowniku nie ma programu:

Na sterowniku jest już program, jednak znacznie różni się od obecnego:

Na sterowniku jest już program, nieznacznie różniący się od obecnego, możliwa jest zmiana w trybie on-line (program PLC się nie zatrzymuje):

Praca w trybie on-line

Uruchomienie programu (f5) lub

Target: CX_00F436 (5.0.244.54.1.1), Run Time: 1 | ONLINE: | SIM | RUN

Wpisywanie zmienych (Ctrl + f7)

Praca w trybie on-line

Podgląd wartości zmiennych adresowanych typu bool):

0001	AnIn_1 = 0
0002	Diln_1 (%IX0.1) = <mark>TRUE</mark>
0003	Diln_2 (%IX0.2) = <mark>TRUE</mark>
0004	Diln_3 (%IX0.3) = FALSE
0005	Diln_4 (%IX0.4) = FALSE
0006	DiOut_1 (%QX0.0) = <mark>TRUE</mark>
0007	DiOut_2 (%QX0.1) = FALSE
0008	DiOut_3 (%QX0.2) = FALSE
0009	DiOut_4 (%QX0.3) = FALSE

Nieadresowane, typ Int oraz String:

Tworzenie bloku funkcyjnego

Problem do rozwiązania

Przeskalowanie wartości z zakresu przetwornika (0-32767) na wyjście modułu (4 - 20 mA)

Zakres pracy przetwornika

Rozdzielczość 15 bitów => 0 - 32767

Współczynniki

$$fA := (Y1 - Y0) / (X1 - X0);$$

$$fB := Y1 - fA * X1;$$

Dodanie bloku

Krok 1.

Wybór typu obiektu i języka programowania

Deklaracja zmiennych

Krok 2.

Var_Input – zmienne wejściowe bloczka Var_Output – zmienne wyjściowe bloczka Var – zmienne wewnętrzne bloczka

```
0001 FUNCTION BLOCK FB Skalowanie
0002VAR INPUT
       Value
                 REAL:
                 REAL:
       \times 0
                 REAL:
       Y0
                 REAL:
                 REAL:
0008 END VAR
0009VAR OUTPUT
       OUT: REAL:
0011 END VAR
                 REAL:
                 REAL:
0015 END_VAR
```

Deklaracja zmiennych może odbywać się na bieżąco podczas pojawiania się nowych zmiennych w programie PLC

Pisanie programu (język ST)

Krok 3.

Kod:

fA := (Y1 - Y0) / (X1 - X0);

fB := Y1 - fA * X1;

OUT := fA * Value + fB;

WADA: Brak ograniczeń zakresu!

Pisanie programu (język ST)

Krok 4. Kod:

WADA: Brak odporności na X1 = X2!

Wywołanie bloczka

Krok 5.

- 1. Przechodzimy do programu głównego
- 2. Wstawiamy bloczek (domyślnie AND)

- 3. Zaznaczamy nazwę bloczka i:
- A) Wciskamy F2 i wybieramy interesujący nas bloczek

B) Wpisujemy nazwę bloku funkcyjnego (FB_Skalowanie)

Wywołany jest dopiero blok funkcyjny, należy przypisać mu jeszcze nazwę

Przypisanie zmiennych we/wy

Krok 6. Okno autodeklaracji

Gotowy bloczek skalujący zakres (0 - 32767) na (4 - 20)

Uruchomienie programu

Krok 7.
Wpisanie nowej wartości

Wpisanie wartości – Ctrl + f7 Forsowanie wartości – f7

Praca bloczka w trybie on-line

Krok 8.

Praca w trybie on-line

Wejście do bloczka:

Instances – podgląd wartości zmiennych w konkretnym bloczku Implementation – podgląd kodu bloczka

Podgląd wartości zmiennych w bloczku

Krok 9.

Wejście do bloczka pozwala na sprawdzenie aktualnych wartości zmiennych lokalnych w bloczku.

Wyświetlany jest również kod źródłowy bloczka.

```
fA = 4.882962e-004
0001
         fB = 4
         Value = 16383.5
        X0 = 0
        X1 = 32767
0006
         Y0 = 4
        Y1 = 20
         0UT = 12
0001 IF (Value > X1) THEN
                                                    Value = 16383.5
                                                                         X1 = 32767
         OUT := Y1:
                                                    OUT = 12
                                                                         Y1 = 20
0003 ELSIF (Value <= X0) THEN
                                                    Value = 16383.5
                                                                         \times 0 = 0
                                                    0UT = 12
                                                                         Y0 = 4
        OUT := Y0:
0005 ELSE
0006
            fA := (Y1 - Y0) / (X1 - X0);
                                                    fA = 4.882962e-004 Y1 = 20
                                                                                              Y0 = 4
                                                                                                                   X1 = 32767
                                                                                                                                       X0 = 0
            fB := Y1 - fA * X1;
                                                    fB = 4
                                                                         Y1 = 20
                                                                                              fA = 4.882962e-004 X1 = 32767
            OUT := fA * Value + fB:
                                                    OUT = 12
                                                                         fA = 4.882962e-004 Value = 16383.5
                                                                                                                   fB = 4
0009 END_IF
```


Alarmy

Krok 10. Dodanie alarmu o przekroczeniu zakresu górnego lub dolnego.

Alarmy

Kod:

Deklaracja zmiennych: Program:

```
0001 FUNCTION BLOCK FB Skalowanie
0002VAR_INPUT
       Value
                 REAL;
       \times 0
                  REAL:
       \times 1
                 REAL:
       Y0
                 REAL:
       Y1
                 REAL:
0008 END_VAR
0009VAR OUTPUT
        OUT : REAL;
0010
       Alarm_HI: BOOL;
       Alarm_LO: BOOL;
0013 END_VAR
0014VAR
                  REAL:
                 REAL:
0017 END VAR
```

```
0001 IF (Value > X1) THEN
0002
         OUT := Y1;
         Alarm_HI := TRUE;
         Alarm LO := FALSE;
0005 ELSIF (Value <= X0) THEN
         OUT := Y0:
         Alarm_LO := TRUE;
0008
         Alarm HI := FALSE;
0009ELSE
         fA := (Y1 - Y0) / (X1 - X0);
         fB := Y1 - fA \times X1;
         OUT := fA \times Value + fB:
         Alarm_LO := FALSE;
         Alarm HI := FALSE;
0015 END_IF
```

Zmiany w bloczku w programie głównym:

Alarmy

Kod:

Deklaracja zmiennych:

```
FUNCTION_BLOCK FB_Skalowanie
     VAR_INPUT
                 REAL;
       Value :
       \times 0
                 REAL:
       X1
                 REAL:
                 REAL:
       Υ0
       Y1
                 REAL:
0008 END VAR
0009 VAR OUTPUT
       OUT : REAL;
       Alarm HI: BOOL;
       Alarm LO: BOOL;
0013 END VAR
0014VAR
                 REAL:
                 REAL:
0017 END VAR
```

Program:

```
0001 IF (Value > X1) THEN
0002 OUT := Y1;
0003 Alarm_HI := TRUE;
0004 Alarm_LO := FALSE;
0005 ELSIF (Value <= X0) THEN
0006 OUT := Y0;
0007 Alarm_LO := TRUE;
0008 Alarm_HI := FALSE;
0009 ELSE
0010 fA := (Y1 - Y0) / (X1 - X0);
0011 fB := Y1 - fA * X1;
0012 OUT := fA * Value + fB;
0013 Alarm_LO := FALSE;
0014 Alarm_HI := FALSE;
0015 END_IF
```

Zmiany w bloczku w programie głównym (sygnalizacja diodowa):

Praca w trybie on-line

Wartość z zakresu (alarmy wyłączone):

Wartość spoza zakresu (uruchomiony alarm):

Podane jest też napięcie na odpowiednie wyjście cyfrowe (sygnalizowane jest to zapaleniem się diody)

Wizualizacja

Obiekty wizualizacji znajdują się na zakładce Vizualizations

Dodanie nowego obiektu

Nadanie nazwy

Element wyświetlający wartość

Wybór elementu

Wstawienie elementu

Ustawienie parametrów elementu

Wstawienie tekstu

Tekst wyświetlany na elemencie (przycisku, polu, itp.)

%.3f – wyświetlenie zmiennej typu Real z trzema miejscami po przecinku%s – zmienna wyświetlana jako napis

Edycja tekstu

Każda cecha wyświetlanego tekstu może być kontrolowana przez zmienną w programie

Edycja linii

Każda cecha wyświetlanego tekstu może być kontrolowana przez zmienną w programie

Kolory

Ruch elementu

Wartość 0 to pozycja elementu w trybie offline.

Kontrola ruchu elementu może odbywać się poprzez zmienne typu Int Dokładność 1 piksela.

Ruch krawędzi elementu

Dynamiczna zmiana położenia krawędzi pozwala na kontrolę wymiarów elementów w wizualizacji za pomocą zmiennych.

Własności elementu

Ustawienie:

- znikania,
- blokowania,
- zmiany koloru,
- wyświetlanego tekstu
- podpowiedzi w trybie on-line

Main.Wejscie

– odwołanie do zmiennej zadeklarowanej w programie głównym

.DiOut 1

– odwołanie do zmiennej globalnej

Akcje

Akcja wykonuje się podczas naciśnięcia obiektu.

Możliwe akcje:

- Przełączenie zmiennej
- Chwilowe włączenie zmiennej
- Zmiana wizualizacji
- Wykonanie programu
- Zmiana wartości

Main.Wejscie – odwołanie do zmiennej zadeklarowanej

w programie głównym

.DiOut_1 – odwołanie do zmiennej globalnej

Możliwe jest ograniczenie zakresu wpisywanych wartości i wybór sposobu ich wpisywania.

Wykonanie programu

W oknie wykonania programu:

- 1: wybieramy typ programu
- wybieramy zmienną,na której operacji dokonujemy
- 3: wpisujemy działanie jakie wykonujemy
- 4: dodajemy operację
- 5: wybieramy kolejna operację lub wracamy do okna głównego

W programie możemy wykorzystywać zmienne wcześniej zdefiniowane, wartości stałe oraz wszystkie operacje matematyczne.

Wprowadzenie wartości

Możliwy wybór:

- sposobu wprowadzenia danych,
- zakresów,
- nazwy dla pojawiającego się obiektu.

Widok on-line

Wiz – strona 1 (off–line)

Wejscie -> Wyjscie:

- Dodanie / odjęcie 5% wartości zakresu
- Zerowanie wejścia,
- Zmiana zakresów
- Wyświetlenie trendu Wyjscie(t)

Wiz – strona 1 (on-line)

Wejscie -> Wyjscie:

- Dodanie / odjęcie 5% wartości zakresu
- Zerowanie wejścia,
- Zmiana zakresów
- Wyświetlenie trendu Wyjscie(t)

Dodanie elementu:

Trend:

- Kierunek zmian,
- Konfiguracja obu osi,
- Wybór zmiennej
- Konfiguracja krzywej

Oś pozioma:

- Jednostki czas,
- Linie podziałowe,
- Skala,
- Odświeżanie,
- Opis osi.

Oś pionowa:

- Jednostki dowolne,
- Linie podziałowe,
- Skala,
- Opis osi.

Zmienne:

- Wybór zmiennej,
- Kolor na wykresie,
- Styl linii,
- Znacznik.

Trend – strona 2 (off-line)

Trend – strona 2 (on-line)

Tabela – wstawienie elementu

Tabela – konfiguracja komórek

Parametry komórek mogą być konfigurowane tak samo jak każdego elementu w wizualizacji

Tabela – zaznaczanie elemetnu

Zdefiniowanie zmiennych wskazujących na element tablicy pozwala np. na śledzenie obróbki