

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/21
Paper 2 Pure Math	ematics 2 (P2)		May/June 2017
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
Additional Materials	: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

						••••••
						••••••
						•••••
	•••••	•••••	•••••	•••••		
	•••••	•••••	•••••	••••••	•••••	•••••
						•••••
						•••••
Solve the inequ	vality $ 4 - x \le 3 $	-2x .				ı
Solve the inequ	sality $ 4-x \le 3 $	-2x .				l
Solve the inequ	tality $ 4 - x \le 3 $	-2x .				
Solve the inequ	Tality $ 4-x \le 3 $	- 2 <i>x</i> .				
Solve the inequ	Tality $ 4-x \le 3 $	- 2 <i>x</i> .				
Solve the inequ	Tality $ 4-x \le 3 $	- 2 <i>x</i> .				
Solve the inequ	Tality $ 4-x \leq 3 $	- 2 <i>x</i> .				
Solve the inequ	tality $ 4 - x \le 3 $	-2x .				
Solve the inequ	Tality $ 4-x \leq 3 $	- 2 <i>x</i> .				
Solve the inequ	tality $ 4-x \leq 3 $	- 2 <i>x</i> .				
Solve the inequ	tality $ 4-x \leq 3 $	- 2 <i>x</i> .				

	at $\int_0^a 4e^{\frac{1}{2}x+3}$									
			•••••				•••••			••••
•••••							•••••			
•••••	•••••		•••••		•••••		•••••	•••••		••••
	•••••									
•••••		•••••	•••••		•••••	••••••	•••••	•••••	••••••	••••
•••••			•••••				•••••	•••••		••••
•••••				,						
•••••		•••••	•••••		•••••	••••••	••••••	••••••	•	••••
•••••			•••••				••••••	•••••		••••
			•		•	•		•••••		••••
•••••										••••
			•••••							
•••••	•••••		•••••		•••••	•••••	•••••	•••••		••••
•••••										••••
•••••			•••••		•••••	••••••	•••••	•••••		••••
•••••			•••••		•••••	•••••	•••••	•••••		
•••••		•••••	•••••		•••••	••••••	•••••	•••••	••••••	••••
	•••••									

4 The sequence of values given by the iterative formula

$$x_{n+1} = \frac{2x_n^2 + x_n + 9}{(x_n + 1)^2},$$

with $x_1 = 2$, converges to α .

(i)	Find the value of α correct to 2 decimal places, giving the result of each iteration to 4 decimal places. [3]
(ii)	Determine the exact value of α . [3]

varuc	of α correct	to 2 decii	mal places	•				
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		•••••	•••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••	•••••	•••••		
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		••••••	••••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •
			•	•	•			
				5) ain 0				
Hence	e solve the e	equation 2	$\cos \theta + ($	5) $\sin \theta =$				
Hence	e solve the e	equation 2	$\cos \theta + ($	$5) \sin \theta =$	1 for 0° <			
Hence	e solve the e	quation 2	$\cos \theta + ($	$5) \sin \theta =$	1 for 0° <	θ < 360°.		
Hence	e solve the e	equation 2	$\cos \theta + ($	5) sin θ =	1 for 0° <	θ < 360°.		
Hence	e solve the e	quation 2	cos θ + (√	$5) \sin \theta =$	1 for 0° <	θ < 360°.		
Hence	e solve the e	quation 2	$\cos \theta + ($	5) $\sin \theta =$	1 for 0° <	θ < 360°.		
Hence	e solve the e	quation 2	cos θ + (√	$5) \sin \theta =$	1 for 0° <	θ < 360°.		
Hence	e solve the e	equation 2	$\cos \theta + ($	$5) \sin \theta =$	1 for 0° <	θ < 360°.		
	e solve the e				1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		
					1 for 0° <	θ < 360°.		

6

The diagram shows the curve $y = \tan 2x$ for $0 \le x \le \frac{1}{6}\pi$. The shaded region is bounded by the curve and the lines $x = \frac{1}{6}\pi$ and y = 0.

(i)	Use the trapezium rule with two intervals to find an approximation to the area of the shaded region, giving your answer correct to 3 significant figures. [3]

the	<i>x</i> -axis	•															
		•••••				· • • • • • • • • • • • • • • • • • • •	• • • • • • • •			•••••			•••••			•••••	
•••••	•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • •	•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••	•••••		•••••	••••••	•••••	• • • • • • • •		•••••	•••••	•••••	•••••	•••••	• • • • • • •		•••••	•••••
		•••••				· • • • • • • • • • • • • • • • • • • •	• • • • • • • •		•••••	•••••		•••••	•••••			•••••	
							•••••			•••••							
•••••	••••••	••••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • •	••••••	••••••	••••••
•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••		•••••	•••••	••••••		•••••	• • • • • • •		•••••	•••••
		•••••					•••••		•••••	•••••		•••••	•••••			• • • • • • • • • • • • • • • • • • • •	
		•••••				· • • • • • • • • • • • • • • • • • • •	• • • • • • • •			•••••			•••••				
	•••••			•••••					•••••	•	••••••		•••••		•••••	•••••	•••••
•••••	••••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • •	••••••	••••••	•••••
	•••••	•••••		•••••	••••••	•••••	• • • • • • • •		•••••	•••••		•••••	•••••	• • • • • • • •	•••••	•••••	•••••
										•••••			•••••				
						, 				•••••							
•••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • •	•••••	•••••	•••••
	•••••	•••••		•••••	•••••		•••••	•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
		•••••					•••••			•••••		•••••	•••••			•••••	•••••
										•••••			•••••				
•••																	
•••••	•••••	•••••		•••••	••••••		•••••		•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••

7 '	The 1	parametric	equations	of a	a curve	are
-----	-------	------------	-----------	------	---------	-----

$$x = t^3 + 6t + 1,$$
 $y = t^4 - 2t^3 + 4t^2 - 12t + 5.$

(i)	Find $\frac{dy}{dx}$ and use division to constants to be found.	to show that $\frac{dy}{dx}$	can be written	in the form $at + b$, v	where a and b are [5]
		••••••			•••••
					•••••
		•••••			••••••
	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

of <i>P</i> .	x - 2y + 9 = 0 is	the norman	the curve t	u the point 1.	Tind the co	[3
					•••••	
						•••••
					•••••	•••••
					•••••	•••••
		•••••		••••••••••	••••••	••••••
	•••••	••••••	•••••	••••••	•••••	•••••
•••••	•••••	•••••	•••••	••••••		•••••
						•••••
	•••••	••••••	•••••		••••••	••••••
	•••••				••••••	•••••

8

The diagram shows the curve with equation

$$y = 3x^2 \ln(\frac{1}{6}x).$$

The curve crosses the x-axis at the point P and has a minimum point M.

Find the gradient of the curve at the point P .	[5]
	•••••
	,

[5

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.