Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 02.10.2015

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note
	A C 1	1	0	0	4		
	Aufgabe	1	2	3	10	\sum_{40}	
	erreichbare Punkte	8	11	11	10	40	
	erreichte Punkte						
${\bf Bitte}\;$							
tragen Sie	Name, Vorname und	Matrik	ælnumr	ner auf	dem I	Deckblat	et ein,
rechnen S	ie die Aufgaben auf se	parate	n Blätte	ern, ni	c ht auf	dem A	ngabeblatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Vamen	sowie d	lie Mat	rikelnu	mmer a	n,
begründer	n Sie Ihre Antworten a	ausführ	lich und	d			
	ie hier an, an welchem könnten (<i>unverbindlich</i>		genden	Termi	ne Sie z	ur mün	dlichen Prüfung

 \square Mo., 12.10.2015

 \square Fr., 09.10.2015

1. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben

8 P.|

a) Gegeben ist das nichtlineare zeitdiskrete System der Form

$$\mathbf{x}_{k+1} = \begin{bmatrix} x_{1,k} + 3x_{1,k}^2 - 2e^{-x_{2,k}} \\ (2 + x_{1,k})^3 + x_{2,k} (1 + \sinh(u_k)) \end{bmatrix}$$
$$y_k = 2\sqrt{x_{1,k}^2 + x_{2,k}^2}.$$

- i. Berechnen Sie alle Ruhelagen \mathbf{x}_R des Systems für $u=u_R=0.$ 1 P.
- ii. Linearisieren Sie das System um diese Ruhelagen und geben Sie alle Systemmatrizen an. $$2\,\mathrm{P.}|$$
- b) Berechnen Sie für das System

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 8 & 7 \\ 0 & -1 & -1 \\ 0 & 4 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}$$

- i. die Übertragungsfunktion G(s) 2.5 P.
- ii. und die Impulsantwort g(t). 2.5 P.|

Hinweis: Die Rechnung vereinfacht sich, wenn Sie die besondere Struktur des Eingangsvektors und des Ausgangsvektors berücksichtigen. 2. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben:

11 P.|

a) Gegeben ist das folgende System

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 0 & 0 & 3 & 7 \\ -3 & -2 & 0 & 0 & 8 & 8 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 4 & 0 \\ 0 & 0 & 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 6 & 7 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 3 & 8 & 7 & 0 & 0 & -1 \end{bmatrix} \mathbf{x} + 25u$$

i. Testen Sie das System auf asymptotische Stabilität.

2 P.|

- ii. Die Erreichbarkeitsmatrix \mathcal{R} des Systems besitzt den Rang 5. Bestimmen 1P. Sie den **nicht** erreichbaren Zustand.
- iii. Ist das System sprungfähig?

 $0.5 \, P.$

Begründen Sie Ihre Antworten ausführlich!

b) Die Hankelmatrix \mathbf{H}_d eines nicht sprungfähigen, linearen, zeitdiskreten Systems ist durch

7.5 P.

$$\mathbf{H}_d = \begin{bmatrix} \alpha & \beta & 1 \\ \beta & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

mit $\alpha, \beta \in \mathbb{R}$ gegeben.

i. Zeigen Sie, dass das zugehörige dynamische System vollständig erreichbar 1 P.| und beobachtbar ist.

ii. Ermitteln Sie die Impulsantwort (g_k) des Systems anhand der Markov- 1.5 P.| Parameter unter der Annahme, dass $g_k = 0$ für k > 5 gilt. Bestimmen Sie weiterhin die zugehörige z-Übertragungsfunktion G(z).

iii. In den weiteren Teilaufgaben wird der Spezialfall

$$G(z) = \frac{z^2 - \sqrt{2} + 1}{z^3},$$

welcher sich für eine bestimmten Wahl von α und β ergibt, betrachtet. Berechnen Sie die eingeschwungene Lösung (y_{∞}) des Ausgangs y_k der Übertragungsfunktion G(z) für $(u_k) = \left(\sin\left(\frac{1}{4}kT_a\right)\right)$, mit der Abtastzeit $T_a = \pi$. 2 P.

- iv. Ermitteln Sie eine Minimalrealisierung von G(z). 1 P.
- v. Für eine Eingangsfolge (u_k) und $\mathbf{x}_0 = \mathbf{0}$ ergibt sich der Ausgang zu $(y_k) = 2P$. $(0,0,\frac{1}{\sqrt{2}},0,0,\dots)$. Bestimmen Sie den Anfangsvektor \mathbf{x}_0 der gewählten Minimalrealsierung derart, dass bei gleicher Eingangsfolge die Ausgangsfolge $(y_k) = (0,0,0,\dots)$ folgt.

3. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben

11 P.|

a) Gegeben ist das System der Form

 $3.5 \, P.$

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 1 \\ -\frac{37}{67} & \frac{96}{67} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k, \quad \mathbf{x}(0) = \mathbf{x}_0$$
$$y = \begin{bmatrix} \frac{4}{67} & \frac{4}{67} \end{bmatrix} \mathbf{x}_k.$$

Berechnen Sie für dieses System die zugehörige q-Übertragungsfunktion $G^{\#}(q)$ für ein allgemeines $\Omega_0 = \frac{2}{T_a}$.

b) Nehmen Sie an, dass die q-Übertragungsfunktion des Systems durch

4.5 P.|

$$G^{\#}(q) = \frac{1 - \frac{q}{5}}{1 + \frac{3}{2}q + q^2}$$

gegeben ist. Bestimmen Sie für diese Strecke die Parameter $\rho,\,V_I$ und T_I des Reglers

$$R^{\#}\left(q\right) = \frac{V_{I}\left(1 + qT_{I}\right)}{q^{\rho}}$$

mit Hilfe des FKL-Verfahrens so, dass der geschlossene Kreis folgenden Eigenschaften aufweist:

- Anstiegszeit $t_r = 2.4 \text{ s}$
- $\ddot{u} = 1 \%$
- $\bullet e_{\infty}|_{(r_k)=(1^k)}=0.$

 $\it Hinweis$: Verwenden Sie die Approximationen arctan (0.1) $\approx 6^{\circ}$ und arctan (10) $\approx 84^{\circ}$.

c) Zeichnen Sie den Betrags- und Phasengang der Übertragungsfunktion 3 P.

$$G(s) = -10^{-3} \frac{s^2 - 10^8}{10^4 + 100\sqrt{2}s + s^2}$$

in der beiliegenden Vorlage.

4. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben:

10 P.

a) Gegeben ist das linear zeitdiskrete System

8 P.

2 P.

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & -2 & 2 \\ 2 & 0 & 2 \\ 1 & 4 & 1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} u_k$$
$$y = \begin{bmatrix} 1 & \frac{1}{2} & 1 \end{bmatrix} \mathbf{x}_k + u_k$$

- i. Zeigen Sie, dass das System vollständig beobachtbar ist.
- ii. Entwerfen Sie einen vollständigen Zustandsbeobachter mit Hilfe der Formel 6 P. von Ackermann so, dass alle Eigenwerte des Fehlersystems bei $\frac{1}{2}$ liegen.
- b) Geben Sie ein lineares, zeitinvariantes, zeitkontinuierliches System 2. Ordnung 2 P.| an, das folgende Eigenschaften aufweist:
 - Das System ist BIBO-stabil,
 - das System ist nicht asymptotisch stabil und
 - das System ist vollständig erreichbar.

.

