

컴퓨터 시스템의 개요

023 컴퓨터의 개념 - B등급

024 컴퓨터의 분류 - B등급

025 자료 구성의 단위/코드 - B등급

예상문제은행

이 장에서 꼭 알아야 할 키워드 Best 10

- 1. 세대별 특징 및 주요 소자 2. 자료 구성 단위 3. ASCII
- 4. 펌웨어 5. 프로그램 내장 방식 6. 슈퍼 컴퓨터 7. 마이크로 컴퓨터
- 8. PDA 9. 디지털 컴퓨터 10. 아날로그 컴퓨터

Section 023_1 컴퓨터의 기원

기종	개발년도	개발자	의 의
파스칼의 계산기 (Pascalline)	1642	파스칼	덧셈, 뺄셈이 가능한 최초의 기계식 계산기
해석기관	1834	바베지	현대 컴퓨터의 개념을 최초로 제시
천공카드 시스템	1893	홀러리스	인구통계 및 국세 조사에 이용, 자동 계산의 실용성 확인
튜링기계	1937	튜링	추상적인 계산기의 모형으로서 컴퓨터의 논리적 모델이 됨
MARK-I	1944	에이컨	최초의 전기 기계식 자동계산기
ABC	1942	아타나소프	최초로 진공관을 사용한 계산기
ENIAC	1946	에커트&머큘리	최초의 전자계산기(외부 프로그램 방식)
EDSAC	1949	윌키스	최초로 프로그램 내장 방식을 도입한 계산기
UNIVAC-I	1951	에커트&머큘리	최초의 상업용 전자계산기(미 통계국에서 사용)
EDVAC	1952	폰 노이만	폰 노이만이 제작한 컴퓨터로 프로그램 내장 방식과 2진법 채택

Section 023_1 컴퓨터의 기원

- 1. 최초의 전자계산기 ENIAC에서 사용된 프로그램 방식은?
- ① 프로그램 내장 방식
- ② 어셈블리어 방식
- ③ 고급 언어 방식
- ④ 외부 프로그램 방식
- 2. 다음 중 최초의 상업용 전자계산기는 어느 것인가?
- ① UNIVAC- I
- ② IBM/370
- ③ EDVAC
- **4** ENIVAC

Section 023_2 프로그램 내장 방식

- 폴란드 수학자 폰 노이만(Von Neumann)이 제안한 방식이다.
- 프로그램과 데이터를 주기억장치에 저장해 두고, 주기억장치에 있는 프로그램 명령어를 하나씩 차례대로 수행하는 방식이다.
- 프로그램의 수정이 쉽고, 프로그램을 공동으로 사용할 수 있다.
- 대부분의 컴퓨터는 프로그램 내장방식을 사용한다.

- 1. 다음 중 프로그램 내장형 컴퓨터에 대한 설명으로 올바르지 않은 것은?
- ① 폰 노이만(Von Neumann)이 제안하였다.
- ② 프로그램의 일부를 반복 사용하는 서브 루틴이나 루프의 구현이 비경제적이다.
- ③ 프로그램 실행 시에 프로그램과 데이터를 주기억장치에 기억시켜 사용한다.
- ④ 오늘날 사용하는 대부분의 컴퓨터는 프로그램 내장형 컴퓨터이다.

Section 023_3 컴퓨터의 세대별 특징

세대	주요 소자	주기억장치	특징
제1세대	진공관	자기 드럼	기계어 사용, 하드웨어 중심, 일괄처리 시스템
제2세대	트랜지스터(TR)	자기 코어	고급언어 개발, 운영체제 도입, 온라인 실시간 처리, 다중 프로 그램
제3세대	집적 회로(IC)	집적 회로(IC)	시분할 처리, 다중처리, OCR, OMR, MICR, MIS 도입
제4세대	고밀도 집적 회로(LSI)	고밀도 집적 회로(LSI)	개인용 컴퓨터 개발, 마이크로프로세서 개발, 네트워크, 분산 처리
제5세대	초고밀도 집적 회로(VLSI)	초고밀도 집적 회로(VLSI)	인터넷, 인공지능, 퍼지 이론, 패턴 인식, 전문가 시스템 등 신기 술 개발

• 집적 회로의 집적도에 따른 크기 순서(작음 \rightarrow 큼) : SSI \rightarrow MSI \rightarrow LSI \rightarrow VLSI \rightarrow ULSI

- 1. 다음은 컴퓨터 세대와 주요 회로를 연결한 것이다. 틀리게 연결된 것은?
- ① 1세대 진공관
- ③ 3세대 자기드럼

- ② 2세대 트랜지스터
- ④ 4세대 고밀도 집적 회로

슈퍼 컴퓨터	높은 정밀도를 가지고 있어 정확한 계산을 수행, 초당 연산 능력이 30페타플롭스(PFlops)를 넘는 것도 있고, 인공위성 제어, 일기예보, 우주 항공 산업 등에 사용
메인 프레임	대규모 시스템으로, 수백 명의 사용자가 동시에 사용 가능
미니 컴퓨터	중규모 시스템으로, 학교 · 연구소 등의 업무 처리나 과학기술 계산에 사용
마이크로 컴퓨터	'마이크로프로세서(MPU)'를 CPU로 사용하는 컴퓨터이며, 네트워크에서 주로 클라이언트(Client) 역할을 함
워크스테이션	RISC 프로세서를 사용, 네트워크에서 서버 역할, 고성능 그래픽 처리 등에 사용
데스크톱 컴퓨터	일반적인 개인용 컴퓨터, 가정이나 사무실에서 사용
휴대용 컴퓨터	휴대가 가능한 컴퓨터로, 크기에 따라 랩톱 〉 노트북 〉 팜톱으로 구분 - 랩톱(Laptop): 무릎 위에 놓고 사용할 수 있는 크기의 컴퓨터 - 노트북(Notebook): 노트(Note) 크기만한 컴퓨터 - 팜톱(Palmtop): 손바닥 위에 놓고 사용할 수 있는 크기의 컴퓨터 - 태블릿PC(Tablet PC): 노트북의 기능에 PDA의 휴대성을 더한 컴퓨터로, 키보드 대신 터치스크린이나 스타일러스 펜을 입력 장치로 사용 - PDA: 팜톱 컴퓨터의 일종으로 전자수첩, 이동통신, 개인 정보 관리 기능 등이 있음

등급

- 1. 다음 중 컴퓨터를 처리 능력에 따라 분류할 때, 분류 범주에 속하지 않는 것은?
- ① 미니 컴퓨터(Mini Computer)
- ② 범용 컴퓨터(General Computer)
- ③ 마이크로 컴퓨터(Micro Computer)
- ④ 슈퍼 컴퓨터(Super Computer)
- 2. 고성능의 데이터 처리나 웹 서버용으로 사용되고 주로 RISC 계열의 프로세서(CPU)를 채택하는 컴퓨터는 다음 중 어느 것인가?
- ① 팜톱 컴퓨터
- ② 랩톱 컴퓨터
- ③ 파워스테이션
- ④ 워크스테이션

Section 024_2 컴퓨터의 분류 - 데이터 취급(형태)

- 디지털 컴퓨터 : 문자나 숫자화된 비연속적인 데이터(디지털형)를 처리하는 컴퓨터로, 사회 각 분야에서 일반적으로 사용하는 컴 퓨터
- 아날로그 컴퓨터 : 온도, 전류, 속도 등과 같이 연속적으로 변화하는 데이터(아날로그형)를 처리하기 위한 특수 목적용 컴퓨터
- 하이브리드 컴퓨터 : 디지털 컴퓨터와 아날로그 컴퓨터의 장점을 혼합하여 만든 컴퓨터
- 디지털 컴퓨터와 아날로그 컴퓨터의 비교

항목	디지털 컴퓨터	아날로그 컴퓨터
입력 형태	숫자, 문자	전류, 전압, 온도
출력 형태	숫자, 문자	곡선, 그래프
연산 형식	산술 · 논리 연산	미 · 적분 연산
연산 속도	느림	빠름
구성 회로	논리 회로	증폭 회로
프로그래밍	필요	불필요
정밀도	필요한 한도까지	제한적임
기억 기능	있음	없음
적용성	범용	특수 목적용

Section 024_2 컴퓨터의 분류 - 데이터 취급(형태)

- 1. 컴퓨터를 분류하는 방법은 사용 목적, 취급하는 데이터의 형태, 처리 능력 등에 따라 분류할 수 있다. 다음 중 컴퓨터가 취급하는 데이터의 형태에 의한 분류에 해당되지 않는 것은?
- ① 아날로그 컴퓨터
- ② 디지털 컴퓨터
- ③ 하이브리드 컴퓨터
- ④ 마이크로 컴퓨터
- 2. 다음 중 디지털 컴퓨터의 특성을 설명한 것으로 옳지 않은 것은?
- ① 부호화된 숫자와 문자, 이산 데이터 등을 사용한다.
- ② 산술·논리 연산을 주로 한다.
- ③ 증폭 회로를 사용한다.
- ④ 연산속도가 아날로그 컴퓨터보다 느리다.

Section 025_1 자료 구성의 단위

No.	
비트(Bit)	 자료(정보) 표현의 최소 단위임 두 가지 상태(0과 1)를 표시하는 2진수 1자리임
니블(Nibble)	• 4개의 비트(Bit)가 모여 1개의 니블(Nibble)을 구성함 • 4비트로 구성되며 16진수 1자리를 표현하기에 적합함
바이트(Byte)	 문자를 표현하는 최소 단위로, 8개의 비트(Bit)가 모여 1Byte를 구성함 1Byte는 256(28)가지의 정보를 표현할 수 있음
워드(Word)	CPU가 한 번에 처리할 수 있는 명령 단위 반워드(Half Word) : 2Byte 전워드(Full Word) : 4Byte 더블워드(Double Word) : 8Byte
필드(Field)	 파일 구성의 최소 단위, 의미 있는 정보를 표현하는 최소 단위 자료 처리의 최소 단위이며, 여러 개의 필드가 모여 레코드가 됨
레코드(Record)	하나 이상의 관련된 필드가 모여서 구성됨(논리 레코드)
블록(Block)	하나 이상의 논리 레코드가 모여서 구성됨
파일(File)	프로그램 구성의 기본 단위로, 여러 레코드가 모여서 구성됨
데이터베이스 (Database)	여러 개의 관련된 파일(File)의 집합

Section 025_1 자료 구성의 단위

- 1. 다음 중 자료의 단위가 작은 것부터 큰 순으로 바르게 나열된 것은?
- ① Bit Byte Item Record Word
- 2 Bit Byte Word Item Record
- 3 Bit Byte Item Word Record
- 4 Bit Byte Word Record Item

문자 표현 코드

BCD 코드 (2진화 10진)	 하나의 문자를 2개의 Zone 비트와 4개의 Digit 비트로 표현함 2⁶ = 64가지의 문자를 표현할 수 있음 영문 소문자를 표현하지 못함
ASCII 코드 (미국 표준)	 하나의 문자를 3개의 Zone 비트와 4개의 Digit 비트로 표현하며, 영문 대·소문자, 숫자, 문장 부호, 미국 영어에 사용되는 특수 제어 문자를 나타냄 2⁷ = 128가지의 문자를 표현할 수 있음 7비트 코드이지만 실제로는 패리티 비트를 포함하여 8비트로 사용됨 데이터 통신 또는 PC의 문자 표현 등에 사용됨
EBCDIC 코드 (확장 2진화 10진)	 BCD 코드를 확장한 것으로 하나의 문자를 4개의 Zone 비트와 4개의 Digit 비트로 표현함 2º = 256가지의 문자를 표현할 수 있음 대형 컴퓨터에서 사용함

Section 025_2 코드

에러 검출 코드

패리티 체크 비트	에러 검출을 목적으로 원래의 데이터에 추가되는 1비트 • 짝수(우수) 패리티 : 1의 개수가 짝수가 되도록 만듦 • 홀수(기수) 패리티 : 1의 개수가 홀수가 되도록 만듦
해밍 코드(Hamming Code)	에러 검출 및 교정이 가능한 코드로, 2비트의 에러 검출 및 1비트의 에러 교정이 가능함
순환 중복 검사 (CRC)	순환 중복 검사를 위해 미리 정해진 다항식을 적용하여 오류를 검출하는 방식
블록합 검사(BSC)	패리티 검사의 단점을 보완한 방식으로, 프레임 내의 모든 문자의 같은 위치 비트들에 대한 패리티를 추가로 계산하여 블록의 맨 마지막에 추가 문자를 부가하는 방식

한글 코드

KS X 1001 완성형 한글 코드	 자주 사용하는 문자를 만들어 놓고 코드값을 지정하는 방식으로 정보 교환용으로 사용 영문/숫자 1바이트, 한글/한자 2바이트
KS X 1001 조합형 한글 코드	 한글 창제의 원리인 초성, 중성, 종성에 코드값을 지정하는 방식으로 정보 처리용으로 사용 영문/숫자 1바이트, 한글/한자 2바이트
KS X 1005-1 (유니코드)	 전 세계의 모든 문자를 2바이트로 표현할 수 있는 국제 표준 코드로, 정보 처리/정보 교환용으로 사용 데이터의 교환을 원활하게 하기 위하여 문자 1개에 부여된 값을 16비트(2바이트)로 통일

Section 025_2 코드

- 1. 다음 중 컴퓨터에서 사용하는 코드체계에서 에러 검출뿐만 아니라 교정도 할 수 있는 코드로 옳은 것은?
- ① Hamming Code
- 2 Parity Code
- ③ ASCII Code
- 4 BCD Code
- 2. 다음 문자 코드 중 한 문자가 차지하는 Byte 크기가 다른 것은?
- ① KS X 1001 완성형 한글에서 영문 표현
- ② KS X 1001 완성형 한글에서 한글 표현
- ③ KS X 1001 조합형 한글에서 한글 표현
- ④ Unicode 2.0에서 영문 표현

- 1. 다음 중 연속적인 데이터 형식을 사용하는 아날로그 컴퓨터의 주요 구성 회로로 옳은 것은?
- ① 논리 회로
- ② 증폭 회로
- ③ 연산 회로
- ④ 제어 회로
- 2. 십진수 33.25를 이진수로 올바르게 표현한 것은?
- ① 100001.01
- 2 100010.1
- ③ 100101.01
- 4 11001.1
- 3. 다음 중 자료(Data)와 정보(Information)를 잘 비교하여 설명한 것 은?
- ① 정보는 자료를 일반적인 상황에서 평가한 것이다.
- ② 정보는 자료를 특정하게 처리하여 유용한 형태로 가공한 것이다.
- ③ 정보와 자료 가치의 크기는 절대적이다.

섹션 리스트 검색

④ 자료와 정보는 어떤 위치와 시간에 따라 달라질 수 없다.

4. 다음 중 컴퓨터의 기능을 잘못 설명한 것은?

- ① 입력: 컴퓨터 외부의 데이터를 입력장치를 통해 컴퓨터 내부로 읽 어오는 기능이다.
- ② 출력: 컴퓨터가 처리한 결과를 출력장치를 통해 사람에게 보여주는 기능이다.
- ③ 기억: 컴퓨터가 처리한 데이터나 프로그램들을 기억하는 기능이다.
- ④ 연산 : 입력, 출력, 기억들을 제어하고 감독하는 기능이다.

5. 컴퓨터에 대한 다음 설명 중 바르지 않은 것은?

- ① EDPS(Electronic Data Processing System) 또는 ADPS(Automatic Data Processing System)라고도 한다.
- ② GIGO(Garbage In Garbage Out)란 컴퓨터 시스템에서 데이터를 처리할 때 사용되는 말로 입력 데이터가 나쁘면 출력 결과도 좋지 않 다는 의미이다.
- ③ 컴퓨터의 기본 5대 기능은 입력 기능, 기억 기능, 제어 기능, 통신 기 능. 출력 기능을 말한다.
- ④ 컴퓨터에는 고속성, 정확성, 대량성, 범용성, 호환성 등의 특징이 있다.

6. 다음 중 컴퓨터에서 사용하는 펌웨어(Firmware)에 관한 설명으로 옳 은 것은?

- ① 컴퓨터 운영에 필수적인 하드웨어 구성 요소이다.
- ② 주로 RAM에 저장되어 하드웨어를 제어하거나 관리한다.
- ③ 내용을 변경하거나 추가 또는 삭제할 수 있다.
- ④ 업그레이드를 위하여 하드웨어를 교체하여야 한다

7. 다음 중 '모의 실험' 이라는 의미로 컴퓨터로 특정 상황을 설정해서 구 현하는 기술로 옳은 것은?

① 워크스테이션

② 에뮬레이션

③ 시뮬레이션

④ 테라플롭스

8. 컴퓨터의 세대별 특징을 설명한 것이다. 이중 틀린 것은 무엇인가?

- ① 제1세대는 하드웨어 개발에 치중하였으며 진공관 소자를 주요 소자 로 사용하였다.
- ② 각 세대별 컴퓨터의 기억장치는 고속화, 대용량화 되었다.
- ③ 컴퓨터의 중앙처리장치는 속도가 빨라졌으며 기억장치의 용량이 증 가했다.
- ④ 5세대에 이르기까지 소프트웨어 기술의 발달은 하드웨어 기술의 발 달을 월등히 능가한다.

9. 다음에 주어진 보기 중에서 가장 작은 컴퓨터 정보 표현 단위는 무엇 인가?

- ① 바이트(Byte)
- ② 워드(Word)
- ③ 레코드(Record)
- ④ 니블(Nibble)

10. 다음 설명 중 올바르지 않은 것은 어느 것인가?

- ① 컴퓨터의 정보처리는 기억장치에 기억되어 있는 정보를 중앙처리장 치를 사용하여 처리하고 그 결과를 출력장치를 이용하여 사용자가 활용할 수 있도록 한다
- ② 컴퓨터를 이용한 과학 기술적 계산 응용은 주로 과학이나 공학에서 많이 쓰이는 복잡한 함수의 계산에 이용하는 것을 의미한다.
- ③ 컴퓨터를 이용한 사무 자동화 응용은 수치적 계산 능력의 이용보다 도 컴퓨터의 문자 처리 능력과 대단히 많은 양의 정보를 동시에 처리 할 수 있는 기능을 응용하는 것을 의미한다.
- ④ 컴퓨터는 성능에 따라 아날로그 컴퓨터, 디지털 컴퓨터, 하이브리드 컴퓨터로 분류할 수 있다.

섹션 리스트 검색

- 11. 다음 중 컴퓨터의 중앙처리장치가 한 번의 연산 처리에서 사용하는 데이터의 단위를 나타내는 것으로 옳은 것은?
- ① BIT

② BYTE

③ WORD

- (4) BPS
- 12. 다음 중 이진수 (0110)의 2의 보수 표현으로 옳은 것은?
- ① 1001

② 1010

③ 1011

- 13. 명령어로 구성되는 프로그램이 수행되기 위해서는 이 명령어들이 주 기억장치 내에 존재해야 한다. 이러한 방식을 무엇이라 하는가?
- ① 컴파일러 방식
- ② 프로세서 방식
- ③ 프로그램 내장 방식
- ④ 임베디드 시스템 방식
- 14. 다음 중 컴퓨터에서 사용하는 코드와 관련하여 패리티 비트(Parity Bit)에 대한 설명으로 옳지 않은 것은?
- ① 에러가 발생한 비트를 의미한다.

섹션 리스트 검색

- ② 에러 검출용 비트이다
- ③ 짝수(Even)와 홀수(Odd) 등의 패리티 비트를 사용할 수 있다.
- ④ 패리티 비트는 1비트를 사용한다.

15. 다음 중 컴퓨터의 분류에 대한 설명으로 거리가 먼 것은?

- ① 범용 컴퓨터는 다양한 종류의 디지털 데이터에 대한 처리가 용이 하다
- ② 미니 컴퓨터는 마이크로 컴퓨터보다 처리 용량이 크고. 속도가 빠 르다
- ③ 워크스테이션은 고성능의 컴퓨터로 대부분 CISC 프로세서를 채택 한다.
- ④ 하이브리드 컴퓨터는 디지털 컴퓨터와 아날로그 컴퓨터의 장점을 혼 합한 형태이다.
- 16. 다음 중 집적 회로를 집적의 크기 순서로 나열한 것은?
- ① LSI MSI VLSI ULSI SSI
- ② SSI MSI LSI VLSI ULSI
- 3 SSI LSI ULSI MSI VLSI
- 4 VLSI ULSI SSI MSI LSI

- 17. 현재 초당 연산 능력이 최대 30PTFlops 이상이며, 주로 초정밀 과학 기술 계산이나 일기예보 분야 등에 사용되는 컴퓨터는?
- ① 슈퍼 컴퓨터(Super Computer)
- ② 대형 컴퓨터(Main Frame)
- ③ 미니 컴퓨터(Mini Computer)
- ④ 워크스테이션(Workstation)
- 18. 디지털 컴퓨터(Digital Computer)에 대한 설명 중 옳지 않은 것은?
- ① 2진수를 사용한다.
- ② 숫자, 문자 등으로 결과를 출력한다.
- ③ 산술 및 논리 연산에 적합하다.
- ④ 기억 능력과 프로그램이 필요 없다.
- 19. 다음의 괄호 안에 들어갈 용어로 가장 올바른 것은?

최초의 컴퓨터인 ENIAC은 그 사용이 매우 불편하였다. 이러한 문제점을 해결하기 위해 수학자 폰 노이만(Von Neumann)은 컴퓨터의 ()에 ()을(를) 내장시켜 놓고 사용하는 구조를 제안하였는데, 이는 후에 현대 컴퓨터 하드웨어의 기본 구조가 되었다.

- ① 기억장치, 데이터
- ② 입·출력장치, 프로그램
- ③ 기억장치, 프로그램
- ④ 입·출력장치, 데이터
- 20. 랜덤 액세스 기억장치의 출현은 프로그램 내장형 컴퓨터를 개발하는 데 획기적인 역할을 하였다. 이러한 랜덤 액세스 기억장치를 도입한 컴퓨터를 이용하는 경우의 장점으로 가장 적합하지 않은 것은?
- ① 프로그램과 데이터를 기억장치 내에 수행되는 순서대로 기억시킬 필요가 없다.
- ② 기억장치 내에서 프로그램과 데이터가 명확히 구분된다.
- ③ 기억시켜 놓은 데이터를 반복해서 사용할 수 있다.
- ④ 기억시켜 놓은 프로그램의 전부 또는 일부분을 반복해서 사용할 수 있다.
- 21. 다음 중 십진수 13을 16진수로 올바르게 표현한 것은?
- 1 15

② B

③ D

4 100