Sabbir Ahmed

CMSC 411 - HW 05

DATE: November 26, 2017

1. The table below lists parameters for different direct-mapped cache designs.

	Cache Data Size	Cache Block Size
i)	64 kB	1 word
ii)	64 kB	2 words

(a) **Question** Calculate the total number of bits required for the cache listed in the table, assuming a 32-bit address.

Answer

Using:

$$2^n \times (\text{valid field size} + \text{tag size} + \text{block size})$$

where

tag size
$$=32-(n+m+2)$$

$$n=\log_2(\text{cache data size})$$

$$m=\log_2(\text{block size})$$
 valid bits $=1$

Total number of bits required for design i):

$$n=\log_2(\text{64 kB})=16$$

$$m=\log_2(2)=1$$
 tag size $=32-(16+1+2)=13$ valid bits $=1$ total bits $=2^{16}\times(1+13+2)$
$$=2^{20}\text{ bits}$$

Total number of bits required for design ii):

$$n=\log_2(\text{64 kB})=16$$

$$m=\log_2(2)=1$$

$$\log_2(2)=1$$

$$\log \text{size}=32-(16+1+2)=13$$

$$\text{valid bits}=1$$

$$\text{total bits}=2^{16}\times(1+13+2)$$

$$=2^{20}\text{ bits}$$

(b) **Question** What is the total number of bits if the cache is organized as a 4-way associative with one word blocks?

Answer

2. For a pipeline with a perfect CPI = 1 if no memory-access related stall, consider the following program and cache behaviors.

Data Reads Per 1000 In- structions	Data Writes Per 1000 In- structions		Data Cache Miss Rate	Block Size (Byte)	
200	160	0.20%	2%	8	

(a) **Question** For a write-through, write-allocate cache with sufficiently large write buffer (i.e., no buffer caused stalls), what's the minimum read and write bandwidths (measured by byte-per-cycle) needed to achieve a CPI of 2?

Answer

Let I be the number of instructions and W be the read/write bandwidth.

Data cache read miss penalty =
$$I imes rac{200}{1000} imes rac{2}{100} imes \left(rac{8}{W}+1
ight)$$
 = $0.004I imes \left(rac{8}{W}+1
ight)$

Data cache write miss penalty =
$$I \times \frac{160}{1000} \times \frac{2}{100} \times \left(\frac{8}{W} + 1\right)$$

= $0.0032I \times \left(\frac{8}{W} + 1\right)$

Instruction cache read miss penalty =
$$I imes rac{0.20}{100} imes \left(rac{8}{W}+1
ight)$$
 = $0.002I imes \left(rac{8}{W}+1
ight)$

For CPI = 2,

$$\begin{split} I\times 2 &= \text{Hit time + miss penalty} \\ &= I + I\times (0.004 + 0.0032 + 0.002)\times \left(\frac{8}{W} + 1\right) \\ &= 0.0092I\times \left(\frac{8}{W} + 1\right) \\ \Rightarrow I\times 2 &= 0.0092I\times \left(\frac{8}{W} + 1\right) \\ 2 &= 0.0092\times \left(\frac{8}{W} + 1\right) \end{split}$$

 $\therefore W \approx 0.037$ byte per cycle

(b) **Question** For a write-back, write-allocate cache, assuming 30% of replaced data cache blocks are dirty, what's the minimal read and write bandwidths needed for a CPI of 2?

Answer

Let I be the number of instructions and W be the read/write bandwidth.

Data cache read miss penalty =
$$I \times \frac{200}{1000} \times \frac{2}{100} \times \left(1 + \frac{30}{100}\right) \times \left(\frac{8}{W} + 1\right)$$
 = $0.0052I \times \left(\frac{8}{W} + 1\right)$

Data cache write miss penalty =
$$I \times \frac{160}{1000} \times \frac{2}{100} \times \left(1 + \frac{30}{100}\right) \times \left(\frac{8}{W} + 1\right)$$

= $0.00416I \times \left(\frac{8}{W} + 1\right)$

Instruction cache read miss penalty =
$$I \times \frac{0.20}{100} \times \left(\frac{8}{W} + 1\right)$$
 = $0.002I \times \left(\frac{8}{W} + 1\right)$

For CPI = 2,

$$\begin{split} I\times 2 &= \text{Hit time + miss penalty} \\ &= I + I\times (0.0052 + 0.00416 + 0.002)\times \left(\frac{8}{W} + 1\right) \\ &= 0.01136I\times \left(\frac{8}{W} + 1\right) \\ \Rightarrow I\times 2 &= 0.01136I\times \left(\frac{8}{W} + 1\right) \\ 2 &= 0.01136\times \left(\frac{8}{W} + 1\right) \end{split}$$

 $\therefore W \approx 0.046$ byte per cycle

3. Using the sequences of 32-bit memory read references, given as word addresses in the following table:

6	214	175	21/	6	8/1	65	17/	64	105	85	215
O	Z 14	175	214	O	04	00	1/4	04	100	00	210

For each of these read accesses, identify the binary address, the tag, the index, and whether it experiences a hit or a miss, for each of the following cache configurations. Assume the cache is initially empty.

(a) Question A direct-mapped cache with 16 one-word blocks.

Answer

Since the block size is 1 word, $\log_2(1) = 0$ offset bits are required.

Table 1: A Direct-mapped Cache With 16 One-word Blocks

Memory	Binary	Tag	Index	Hit / Miss
6	00000110	0000	0110	miss
214	11010110	1101	0110	miss
175	10101111	1010	1111	miss
214	11010110	1101	0110	hit
6	00000110	0000	0110	miss
84	01010100	0101	0100	miss
65	01000001	0100	0001	miss
174	10101110	1010	1110	miss
64	01000000	0100	0000	miss
105	01101001	0110	1001	miss
85	01010101	0101	0101	miss
215	11010111	1101	0111	miss

(b) **Question** A direct-mapped cache with two-word blocks and a total size of 8 blocks. **Answer** Since the block size is 2 words, $\log_2(2)=1$ offset bits are required.

Table 2: A Direct-mapped Cache With Two-word Blocks And A Total Size Of 8 Blocks

Memory	Binary	Tag	Index	Hit / Miss
6	00000110	0000	011	miss
214	11010110	1101	011	miss
175	10101111	1010	111	miss
214	11010110	1101	011	hit
6	00000110	0000	011	miss
84	01010100	0101	010	miss
65	01000001	0100	000	miss
174	10101110	1010	111	miss
64	01000000	0100	000	miss
105	01101001	0110	100	miss
85	01010101	0101	010	miss
215	11010111	1101	011	miss

(c) **Question** A fully associative cache with two-word blocks and a total size of 8 words. Use LRU replacement.

Answer

Table 3: A Fully Associative Cache With Two-word Blocks And A Total Size Of 8 Words With LRU Replacement

Memory	Binary	Tag	Index	Hit / Miss
6	00000110			miss
214	11010110			miss
175	10101111			miss
214	11010110			hit
6	00000110			hit
84	01010100			miss
65	01000001			miss
174	10101110			hit
64	01000000			hit
105	01101001			miss
85	01010101			hit
215	11010111			hit

(d) **Question** A 2-way set associative cache with one-word block size and total size of 8 words, while applying LRU replacement policy.

Answer

 \because The number of sets $= \frac{8 \text{ words}}{2 \text{ blocks per set}}$ = 4 sets \Rightarrow 2 index bits = 2 byte offset

Table 4: A 2-way Set Associative Cache With One-word Block Size And Total Size Of 8 Words With LRU Replacement Policy

Memory	Binary	Tag	Index	Hit / Miss
6	00000110	0000	01	miss
214	11010110	1101	01	miss
175	10101111	1010	11	miss
214	11010110	1101	01	hit
6	00000110	0000	01	hit
84	01010100	0101	01	miss
65	01000001	0100	00	miss
174	10101110	1010	11	hit
64	01000000	0100	00	hit
105	01101001	0110	10	miss
85	01010101	0101	01	hit
215	11010111	1101	01	hit