QUANTIFICATION OF SNOWMELT-INDUCED STREAMFLOW WITHIN THE SMITH RIVER WATERSHED, MONTANA, USING A WATER BALANCE ANALYSIS

Eastern Snow Conference 2025

Farhaan Cooverji^{1*}, Eunsang Cho², Bailing Li^{3,4}, Carrie Vuyovich³, Jennifer Jacobs⁵, Eunsaem Cho³, Samuel E. Tuttle⁶, Eric A. Sproles⁷

1Department of Geography and Environmental Studies, Texas State University, San Marcos, TX, USA; 3Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA; 4Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA; 5Department of Civil and Environmental Sciences, Syracuse University, Syracuse, NY, USA; 7Montana State University, Earth Sciences, Bozeman, MT, USA *Email: uhw2@txstate.edu

Motivation and Background

- > Regional water supply in the western United States heavily relies on seasonal snowpack and meltwater.
- > A better understanding of regional water balance in a snowdominant watershed, particularly the contribution of snowmelt to streamflow, can provide valuable insights into quantifying available water resources.
- > Previous studies have utilized numerous methods to quantify snow-generated streamflow. However, there is yet some uncertainty regarding the fate of solid precipitation on land. To estimate the snowmelt portion of runoff:
 - > Barnett et al. (2005), and Kapnick and Delworth (2013) used Snowfall/Total Runoff.
 - > Serreze et al. (1999) used SWE/ Precipitation.
 - > Doesken and Judson (1996), and Kapnick and Delworth (2013) used Snowfall/Total Precipitation.
 - > Mankin et al. (2015) used Snowmelt/Total Precipitation
 - > Stewart et al. (2004) used Melt season runoff/ Total runoff
 - Li et al. (2017) used hydrologic model simulations and snowmelt tracking algorithms.
- > To estimate the amount of snowmelt-induced streamflow. this study utilizes modeled and ground observation variables for its calculation, and addresses the following research objectives:
 - > 1. Explore the water balance within the watershed
 - > 2. Explore the uncertainty of snowmelt runoff using only two
 - > 3. Quantify streamflow resulting from snowmelt using relevant variables from the water balance

Study Area

- > Study Area: Conducted in the Smith River Watershed, Montana, USA, for a five-year period of October 1, 2016, to September 30, 2021 (WY2017 - WY2021)
- > The watershed was delineated based on a USGS gage (06077500) near Eden, Montana, and spans an area of 4112.6 sq. km or 1587.9 sq. miles.

Data

Dataset	Resolution	Variables used	Relevant information
Western Land Data Assimilation System (WLDAS)	1 x 1 km	Precipitation, Groundwater storage, Soil Moisture, Evapotranspiration	Noah-MP forced by NLDAS-2
Snow Data Assimilation System (SNODAS)	1 x 1 km	SWE, Sublimation	Modeling data assimilation system developed by NOHRSC
United States Geological Survey gage (USGS)	-	Streamflow	Ground observation gages
Landsat-based irrigation reanalysis dataset (LANID)	HUC12	Irrigation water usage	Utilizes OpenET4SSEBop to calculate Eta, Eto, irrigated areas, consumptive use, and effective precipitation

Result 1: Regional Water Balance

> We generated a water balance table comparing the values of modelled and ground observation variables, namely Precipitation (P),

1. WLDAS watershed-averaged water balance

> Method: The following formula was used for the water balance: $P(in) = ET + Sub + \Delta GW + \Delta SM + Q(out)$

WY	Solid P	Liquid P	Total P	ET	Sub	ΔGW	ΔSM	Q	Difference ce (in - out)
WY 2017	230	312	543	356	5	2	-12	199	-7
WY 2018	359	395	754	413	9	17	-22	346	-9
WY 2019	313	489	802	443	7	0	61	291	0
WY 2020	291	393	684	443	8	4	-55	300	-16
WY 2021	267	297	564	(All 385 lues	in 110 m)	-11	-9	199	-10

2. Mixed Source and Consumptive Use watershed-averaged water balance

- \triangleright We used modeled SNODAS sublimation (Sub), USGS gage streamflow (Q), and LANID irrigation consumptive use (CU) values for this water balance version. The rest of the variables were derived from WLDAS
- > Method: Mixed source formula:

D(in) = ET + Sub	+ VCIV/+ VCV/+	O + CU(out)
P(in) = ET + Sub	+ \(\omega \ome	Q + CU (OUL)

WY	Solid P	Liquid P	Total P	ET	Sub	ΔGW	ΔSM	Q	CU	Difference e (in - out)
WY 2017	230	312	543	356	112	2	-12	44	75	-33
WY 2018	359	395	754	413	119	17	-22	82	71	74
WY 2019	313	489	802	443	84	0	61	97	67	49
WY 2020	291	393	684	443	126	4	-55	86	75	4
WY 2021	267	297	564	385	134	-11	-9	36	67	-39

Sources: <u>WLDAS</u> - Precipitation, ET, ΔGroundwater Storage, Δ Soil Moisture; **SNODAS** - Sublimation;

USGS,- Streamflow; **LANID**: Irrigation use

3. Sublimation value uncertainty

- > WLDAS and SNODAS sublimation values vary significantly over the analysis period. So, we compared annually accumulated SWE values to sublimation values for each dataset.
- > The amount of snow sublimated from the snowpack averaged at 5% per year for WLDAS, while SNODAS sublimation averaged at 38% per year during WY2017- 2021

Evapotranspiration (*ET*), Sublimation (*Sub*), Groundwater Storage (ΔGW), Soil Moisture (ΔSM), and Streamflow (*Q*)

WY	WLDAS swe	WLDAS sublimation	% Sublimated
WY 2017	112	5	5%
WY 2018	210	9	4%
WY 2019	208	7	3%
WY 2020	193	8	4%
WY 2021	165	10	6%

WY	SNODAS SWE	SNODAS sublimation	% Sublimated
WY 2017	301	112	37%
WY 2018	476	119	25%
WY 2019	313	84	27%
WY 2020	270	126	47%
WY 2021	237	134	56%

(All values in mm)

Result 2: Snowmelt Runoff Estimation Using Prior Methods

- > We used methods employed by researchers mentioned in the background section, to get an estimate of the amount of snow-driven streamflow in the watershed.
- > The results are based on watershed-averaged values of the variables used in each calculation

Method:

Used by	Method	Result (avg WY2017-21)
Mankin et al. (2015)	Snowmelt/Total Precipitation	31%
Doesken and Judson (1996), and Kapnick and Delworth (2013)	Snowfall/Total Precipitation	44%
Serreze et al. (1999)	SWE/ Precipitation	48%
Stewart et al. (2004)	Melt Season Runoff/Total Runoff	68%
Barnett et al. (2005), Kapnick and Delworth (2013)	Snowfall/Total Runoff	472% *

result reflects extremely high values for each year due to WLDAS snowfall output being consistently larger than USGS streamflow values

Source

SNODAS: SWE WLDAS: solid and liquid precipitation, snowmelt, streamflow

Eden gage: streamflow

Result 3: Estimating Snow-Generated Surface Runoff

> We followed the methodology of Li et al. (2017) to partition snowmelt-induced surface runoff (SR) and subsurface runoff (SubSR) from rain-generated runoff.

- Snow SR+Snow SubR > Formula to estimate snow contribution to total runoff:
- > To calculate snow surface runoff per pixel, we calculated total infiltration (i) for each pixel in the watershed using i = Melt + Rain - SR
- > Assuming that snowmelt and rain exhibit identical infiltration and runoff ratios, we calculate the fraction of snowmelt infiltration using the ratio of melt to the total water available: $f_{snow} = \frac{men}{Melt+Rain}$
- \triangleright We then calculate snow-generated surface runoff (Snow SR) per pixel in the watershed by subtracting snow infiltration from melt: $Snow SR = Melt - (i * f_{snow})$
- > On average, snow surface runoff was estimated to be 32 mm per year, accounting for roughly 45% of total surface runoff per year. Calculations for snow subsurface runoff are yet to be completed

WY	Snow SR (mm)
WY 2017	20
WY 2018	49
WY 2019	35
WY 2020	35
WY 2021	23

Key Takeaways:

Result 1: Sublimation, Δ groundwater, and Δ soil moisture change, along with irrigation water use, are important variables required to track the water balance and fate of snow. WLDAS sublimation and streamflow values vary significantly compared to those of SNODAS sublimation and USGS streamflow

Result 2:. The contribution of snowpack to streamflow reasonably ranges from 31% to 68% in this watershed, displaying the uncertainty of using only two variables for snowmelt runoff calculation

Result 3: Snowmelt accounts for roughly 45% for surface runoff within the Smith River Watershed for the analysis period of WY2017- WY2021

Future Scope

- > We will quantify snowmelt-driven subsurface runoff values per pixel within the watershed, based on the calculations provided by Li et al. (2017)
- > SnowModel output variables (references) will be compared with SWE, sublimation, and snowmelt variables generated by WLDAS (Noah-MP) to verify their reliability.
- > A separate analysis comparing SWE outputs from WLDAS, SNODAS, University of Arizona (UA), Western United States Snow Reanalysis (WUS-SR), and Snow Telemetry (SNOTEL) datasets will be done to assess model performance within the watershed.

References

Barnett et al. (2005), Potential impacts of a warming climate on water availability in snow-dominated regions, *Nature*

Doesken et al. (1996), The Snow Booklet: A Guide to the Science, Climatology, and Measurement of Snow in the United States, Dep. of Atmos. Sci., Colo. State Univ., Fort Collins, CO.

Erlingis et al. (2021), A high-resolution land data assimilation system optimized for the western United States JAWRA Journal of the American

Kapnick, S. B., and T. L. Delworth (2013), Controls of global snow under a changed climate, *American Meteorological Society* Li et al. (2017), How much runoff originates as snow in the western United States, and how will that change in the future?, Geophysical Research

Mankin et al. (2015), The potential for snow to supply human water demand in the present and future, Environmental Research Letters Serreze et al. (1999), Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data, Water Resources Research

Stewart et al. (2004), Changes in snowmelt runoff timing in western North America under 'a business as usual' climate change scenario, Climate Wyoming-Montana Water Science Center (2018), Water use in Montana

Acknowledgements

This research has been supported by NASA Subseasonal-to-Seasonal Hydrometeorological Prediction (grant no. 80NSSC24K1278) and Bureau of Reclamation Snow Water Supply Forecasting Program FY 2023 (grant no. R24AC00021-00). Farhaan Cooverji also acknowledges the travel support provided by the Ingram School of Engineering at Texas State University.