91 L'esagono in figura ha tutti i lati congruenti; inoltre  $\widehat{AFE} \cong \widehat{CDE}$ .



Dimostra che:

- a. i triangoli *AFE* e *CDE* sono congruenti;b. i triangoli *AEB* e *BEC* sono congruenti.
- a) AFE = CDE per il 1º ait. di conex.
- b) EB in comme, AB ≈ BC for ifotoxi, AE ≈ EC forche loti consispendent in the conserventi, quindo AEB ≈ BEC for il 3° cit. di conex.
  - 92 In riferimento alla figura, si sa che:  $AB' \cong A'B$ ,  $CD \cong C'D'$ ,  $B'\widehat{A}D \cong B\widehat{A'}D'$ ,  $A\widehat{B'}D \cong A'\widehat{B}D'$  e i punti A, B, B', A' sono allineati. Dimostra che:
    - a. i triangoli AB'D e A'BD' sono congruenti;
      b. i triangoli ABC e A'B'C' sono congruenti.



- e) AB'D = A'BD' per il 2° cut. di Gregmensa
- b) AC = A'C' perche somme sti segment congruent (C'D' = CD)

  for ipotesi e  $AD \cong A'D'$  perche loti coning. In tr. conquert)
  - AB = A'B' fecte AB' = BA' fer ifeteri, duque somme di segmenti conquerti. CAB = C'A'B' fer ip. ABC = A'BC fer il 1º cit. & 60gr.

Sia ABC un triangolo isoscele sulla base AB. Considera un punto P, interno al triangolo ABC, e tale che  $P\widehat{A}B \cong P\widehat{B}A$ .

Dimostra che:

- a.  $AP \cong PB$ ;
- b. CP è la bisettrice dell'angolo  $A\widehat{C}B$ ;  $\Rightarrow$   $A\widehat{CP} \cong B\widehat{CP}$
- c. detti D ed E due punti appartenenti rispettivamente a BC e AC tali che  $DC \cong EC$ , risulta  $EP \cong DP$ .



C) DC \( \alpha \) \( \text{CE} \) for if tesi \( D\) \( \alpha \) \( \text{EP} \) for \( \text{conse} \), \( \text{P} \) in \( \text{conse} \), \( \text{Quindi} \) for il 10 (it. shi ones. \( D\) \( \text{EP} \) \( \text{EP} \) for \( \text{cui DP} \) \( \text{EP} \) for \( \text{cui perblember} \) in \( \text{tr.} \) \( \text{Consequential} \)