6-0 Complex Numbers

The roots of the quadratic equation in the form $ax^2 + bx + c = 0$ is given by the formulae,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

 \Rightarrow the roots of the equation, $5x^2 - 6x + 5 = 0$ can be obtained using the formula above to obtain:

$$x = \frac{-6 \pm \sqrt{36 - 100}}{10} = \frac{-6 \pm \sqrt{-64}}{10}.$$

The problem arising here is that $\sqrt{-64}$ cannot be obtained directly because $\sqrt{-64} \notin \mathbb{R}$, so we cannot conclude that the solution to $\sqrt{-64}$ is either 8 or -8. We can express -64 as -1 x 64 such that $\sqrt{-64} = \sqrt{-1} \times 64 = 8 \times \sqrt{-1}$.

We can represent $\sqrt{-1}$ by a letter say, i such that $\sqrt{-64}$ = 8i. The expression 8i is called a complex number due to the presence of the letter i.

A complex number, \mathbb{Z} has the form $\mathbb{Z} = \mathbf{a} + \mathbf{b}\mathbf{i}$ such that $\mathbf{a}, \mathbf{b} \in \mathbb{R}$, \mathbf{a} is called the real part and \mathbf{b} is known as the imaginary part of the complex number, \mathbf{i} is called the imaginary unit with the following properties:

(i)
$$i = \sqrt{-1} \implies i^2 = -1$$

(ii)
$$i^3 = i^2 i = -1 \cdot i = -i$$

(iii)
$$i^4 = i^2 \cdot i^2 = -1 \times -1 = 1$$

(iv)
$$i^7 = (i^2)^3 i = (-1)^3 \cdot i = (-1) \times i = -i$$

Note: The complex number a + bi is said to be pure imaginary if a = 0 and $b \ne 0$ e.g. 10i also a + bi is said to be pure real if b = 0.

6-1 Algebra of Complex Numbers

(a) Addition and Subtraction: If a, b, c and d are real numbers, then

(i)
$$(a + bi) + (c + di) = a + c + bi + di = (a + c) + (b + d)i$$

(ii)
$$(a + bi) - (c + di) = a + bi - c - di = a - c + bi - di = (a - c) + (b - d)i$$

Example 1.

Write each of the following in the form a + bi and simplify

$$(1.)(8+i)+(2+3i)$$
 $(2)(7+8i)-(-4-3i)$

Solution.

$$(1)(8+i)+(2+3i)=(8+2)+i+3i=(8+2)+(1+3)i=10+4i$$

$$(2)(7+8i)-(-4-3i)=7-(-4)+8i-(-3i)=7+4+8i+3i=11+(8+3)i=11+11i.$$

##

(b) Multiplication: If a, b, c and d are real numbers, then (a + bi) (c + di) = $ac + adi + cbi + bdi^2$

But
$$i^2 = -1$$
, (a + bi) (c + di) = ac + (ad + cb)i + bdi²
= (ac - bd) + (ad + cb)i.

Example 2.

Obtain the product of the following and simplify:

(a.)
$$(2-7i)(2+5i)$$
 (b) $-5i(4+6i)$

Solution

(a)
$$(2 - 7i) (2 + 5i) = 4 + 10i - 14i - 35i^2$$

= $4 + (10 - 14)i - 35 (-1)$
= $4 + (-4)i + 35$
= $4 + 35 - 4i = 39-4i$.

(b)
$$-5i (4 + 6i) = -20i - 30i^2$$

= $-20i - 30(-1)$
= $-20i + 30 = 30 - 20i$.

6-2 Conjugate of a Complex Number

If \mathbb{Z} = a + bi is a complex number, a, b $\in \mathbb{R}$ then the complex conjugate of \mathbb{Z} denoted as $\overline{\mathbb{Z}} = a - bi$

Note: $\mathbb{Z} = \overline{\mathbb{Z}}$ if b = 0.

(c) Division: To divide a complex number by another complex number, we multiply by the conjugate of the denominator.

Consider the complex numbers \mathbb{Z}_1 and \mathbb{Z}_2 of the form a + bi and c + di respectively, then

$$\frac{\mathbb{Z}_{1}}{\mathbb{Z}_{2}} = \frac{a+bi}{c+di} = \frac{a+bi}{c+di} \times \frac{c-di}{c-di}$$

$$= \frac{ac-a di+bci-b di^{2}}{c^{2}-c di+c di-d^{2}i^{2}}$$

$$= \frac{ac+bci-a di-b d(-1)}{c^{2}-d^{2}(-1)}$$

$$= \frac{ac+bci-a di+b d}{c^{2}+d^{2}}$$

$$= \frac{(ac+b d)+(bc-a d)i}{c^{2}+d^{2}}$$

$$= \frac{ac+bd}{c^{2}+d^{2}} + \frac{(bc-a d)i}{c^{2}+d^{2}}$$

Example 3.

(a.) Express
$$\frac{3+5i}{4+7i}$$
 in the form a + bi.

(b.) Express
$$\frac{\sqrt{3} + 2i}{\sqrt{3} - 2i}$$
 in the form x + yi

(a.)
$$\frac{3+5i}{4+7i} = \frac{3+5i}{4+7i} \times \frac{4-7i}{4-7i}$$

$$= \frac{12-21i+20i-35i^2}{16-28i+28i-49i^2}$$

$$= \frac{12-i-35(-1)}{16-49(-1)} = \frac{12-i+35}{16+49} = \frac{47-i}{65} = \frac{47}{65} - \frac{1}{65}i$$

(b.)
$$\frac{\sqrt{3} + 2i}{\sqrt{3} - 2i} = \frac{\sqrt{3} + 2i}{\sqrt{3} - 2i} \times \frac{\sqrt{3} + 2i}{\sqrt{3} + 2i}$$

$$= \frac{3 + 2\sqrt{3}i + 2\sqrt{3}i + 4i^2}{3 + 2\sqrt{3}i - 2\sqrt{3}i - 4i^2}$$

$$= \frac{3 + 4\sqrt{3}i + 4(-1)}{3 - 4i^2}$$

$$= \frac{3 + 4\sqrt{3}i - 1}{3 - 4(-1)}$$

$$= \frac{3 - 4 + 4\sqrt{3}i}{3 + 4}$$

$$= \frac{-1 + 4\sqrt{3}i}{7} = \frac{-1}{7} + \frac{4\sqrt{3}i}{7}$$

6-3 Absolute value of a Complex Number

This is the non-negative square root of the real number z denoted by |z|, i.e. $|z| = \sqrt{z\bar{z}}$ where \bar{z} = the complex conjugate of z .

If
$$z = a + bi$$
, $\bar{z} = a - bi$

$$|z| = \sqrt{z\bar{z}}$$

$$= \sqrt{(a + bi)(a - bi)}$$

$$= \sqrt{a^2 - abi + abi - b^2i^2}$$

$$|z| = \sqrt{a^2 - b^2i^2}$$

$$= \sqrt{a^2 - b^2(-1)}$$

$$|z| = \sqrt{a^2 + b^2}$$

Example 4. Find the absolute value of $\frac{4}{5} - \frac{2}{5}i$.

Solution.

Let
$$Z = \frac{4}{5} - \frac{2}{5}i$$
, $\bar{Z} = \frac{4}{5} + \frac{2}{5}i$,

the absolute value of z, $|z| = \sqrt{z\overline{z}}$

$$|z| = \sqrt{\left(\frac{4}{5} - \frac{2}{5}i\right)\left(\frac{4}{5} + \frac{2}{5}i\right)}$$

$$= \sqrt{\frac{16}{25} + \frac{8}{25}i - \frac{8}{25}i - \frac{4}{25}i^2}$$

$$= \sqrt{\frac{16}{25} - \frac{4}{25}(-1)}$$

$$= \sqrt{\frac{16}{25} + \frac{4}{25}}$$

$$|z| = \sqrt{\frac{20}{25}} = \frac{\sqrt{20}}{\sqrt{25}} = \frac{\sqrt{4 \times 5}}{5} = \frac{2\sqrt{5}}{5}.$$

Exercise:

1. If
$$z = x + iy$$
, Evaluate $(z)^2 + (\bar{z})^2 - \bar{z}z$.

2. Express the solution of the following equations in the form a + bi

(a)
$$x^2 + 16 = 0$$

(Ans.)
$$x = \pm 4i$$

(b.)
$$x^2 + 2x + 5 = 0$$

(Ans.)
$$x = -1 \pm 2i$$

(c.)
$$x^2 + 4x + 40 = 0$$

(d.) Show that
$$1 + i - 3i^2 + i^7 = 4$$

3. Evaluate in the form a + ib:

$$(i) \frac{1+i}{2-i}$$

(i)
$$\frac{1+i}{2-i}$$
 (ii) $\frac{3-4i}{5+2i}$

6-4 Graphical Representation of a Complex Number (Argand diagram)

A complex number, z = a + bi can be define as z = a + bi = (a, b) where all the properties satisfied by a + bi are also satisfied by (a, b) for example, (a, b) + (c, d) = (a + c, b + d).

Complex numbers do not have the ordering property as they cannot be represented by points on a line but are represented by points on a plane [rectangular or polar].

The graph above is called Argand diagram, where the y-axis is called the imaginary axis and the x-axis is the real axis.

Example 6.

Draw an argand diagram to represent the following:

(i)
$$z_1 = 1 + 3i$$
, (ii) $z_2 = -2 + 5i$ (iii) $z_3 = 3 - 2i$

Solution.

6•5 De Moivre's Theorem

If n is a rational number, then it holds that $[r (\cos \Theta + i \sin \Theta)]^n = r^n (\cos n \Theta + i \sin n \Theta)$ This statement is known as De Moivre's theorem.

Example 7.

Express
$$(\frac{1}{2} - \frac{\sqrt{3}}{\sqrt{2}})^3$$
 in the form r (Cos Θ + i sin Θ).

Solution

Let
$$z = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

$$r = \sqrt{(\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2}$$

$$= \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{\frac{4}{4}} = \sqrt{1} = 1$$

$$\Theta = \tan^{-1} \left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \right)$$
$$= \tan^{-1} (\sqrt{3})$$
$$= -60^{\circ}$$

But α =360° - 60° = 300° (since z falls in the fourth quadrant)

$$z = 1(\cos 300 + i \sin 300).$$

$$= \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

By de Moivre's theorem

$$[r(\cos \Theta + i \sin \Theta)]^n = r^n (\cos n \Theta + i \sin n \Theta)$$

 $[1(\cos 300 + i \sin 300]^3 = 1^3[(\cos(300 \times 3) + i \sin(300 \times 3))]$
 $= \cos 900 + i \sin 900.$

900 can be reduced as

$$900-2(360) = 900 - 720 = 180^{\circ}$$
.

$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 = 1(\cos 180^\circ + i \sin 180^\circ).$$

Example 8

Express
$$\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{99}$$
 in the form $z = x + iy$

Solution. Let

$$Z = \frac{\sqrt{3}}{2} - \frac{i}{2} = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

$$r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(-\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{\frac{4}{4}} = \sqrt{1} = 1$$

$$\Theta = \tan^{-1} \left(-\frac{1/2}{\sqrt{3}} \right)$$

$$= \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

$$= -30^{\circ}$$

$$\alpha = 360^{\circ} - 30^{\circ} = 330^{\circ}$$

$$\frac{\sqrt{3}}{2} - \frac{1}{2} = 1(\cos 330^{\circ} + i \sin 330^{\circ})$$

$$z = \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{99} = [1(\cos 330^\circ + i \sin 330^\circ)]^{99}$$

$$= 1^{99} [\cos(330 \times 99) + i \sin(330 \times 99)]$$

$$= \cos 32670 + i \sin 32670.$$

32670 can be reduced to

$$32670 - (360 \times 90) = 32670 - 32400 = 270^{\circ}$$

$$z = \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{99}$$

$$= \cos 270 + i \sin 270^{\circ}$$

$$= 0 - i = 0 + (-1)i$$
.

6.6 Root of Complex Numbers

Every complex number in the form $r(\cos \Theta + i \sin \Theta)$ [$r \neq 0$] has exactly n distinct nth root. This roots all have the same absolute values or modulus, the positive value $r^{1/n}$, the angles may be taken respectively as

$$\frac{\theta + k \cdot 360}{n}$$
, k = 0, 1, ..., n - 1

:
$$[r(\cos \Theta + i \sin \Theta)]^{1/n} = r^{1/n} [\cos \left(\frac{\Theta + k \cdot 360}{n}\right) + i \sin \left(\frac{\Theta + k \cdot 360}{n}\right)], \quad k = 0, 1, 2, ..., n - 1.$$

Example 9

Express $\sqrt{3}$ -i in the form r(cos Θ + i sin Θ) where - π < Θ < Θ .

Using De Moivre's theorem, express the square root of this number in the same form.

Solution

Let
$$z = \sqrt{3}$$
-i
$$r = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3+1} = \sqrt{4} = 2$$

$$\Theta = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = 30^{\circ}$$

$$\alpha = 360^{\circ} - 30^{\circ} = 330^{\circ}$$

but the polar form of a complex number is $r(\cos \Theta + i \sin \Theta)$

$$z = 2(\cos 330^{\circ} + i \sin 330^{\circ})$$

$$z = \sqrt{(3-i)} = (\sqrt{3}-i)^{1/2}$$

$$\sqrt{3} - i = 2(\cos 330^\circ + i \sin 330^\circ)$$

$$(\sqrt{3} - i)^{1/2} = [2(\cos 330^\circ + i \sin 330^\circ)]^{1/2}$$

$$\sqrt{2} = 2^{1/2} \left[\cos \left(\frac{330 + k \cdot 360}{2} \right) + i \sin \left(\frac{330 + k \cdot 360}{2} \right) \right], \text{ where } k = 0, 1.$$

When k = 0

$$\sqrt{z_0} = 2^{1/2} \left[\cos \left(\frac{330 + 0 \cdot 360}{2} \right) + i \sin \left(\frac{330 + 0 \cdot 360}{2} \right) \right]$$

=
$$2^{1/2} \left[\cos \left(\frac{330}{2} \right) + i \sin \left(\frac{330}{2} \right) \right]$$

= $2^{1/2} \left[\cos 165^\circ + i \sin 165^\circ \right]$
= $1.4142 (\cos 165^\circ + i \sin 165^\circ).$

When k = 1,

$$\sqrt{z_1} = 2^{1/2} \left[\cos \left(\frac{330 + 1 \cdot 360}{2} \right) + i \sin \left(\frac{330 + 1 \cdot 360}{2} \right) \right]$$

$$= 2^{1/2} [\cos 345^{\circ} + i \sin 345^{\circ}]$$

$$= 1.4142[\cos 345^{\circ} + i \sin 345^{\circ}].$$

Example 10

Find the 3 cubic roots of $1 + i\sqrt{3}$ and exhibit $1 + \sqrt{3}i$ and its cubic roots on an argand diagram.

Solution.

Let
$$z = 1 + i\sqrt{3}$$

$$r = \sqrt{(1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{1 + 3} = \sqrt{4}$$

$$\Theta = \tan^{-1} \sqrt{3} = 60^{\circ}$$

but the polar form of a complex number is $r(\cos \Theta + i \sin \Theta)$

$$z = 2(\cos 60^{\circ} + i \sin 60^{\circ})$$

(ii)
$$\sqrt[3]{z} = \sqrt[3]{(1+i\sqrt{3})} = (1+i\sqrt{3})^{1/3}$$

= $[2(\cos 60 + i \sin 60)]^{1/3}$

$$Z^{1/3} = 2^{1/3} \left[\cos \left(\frac{60 + k \cdot 360}{3} \right) + i \sin \left(\frac{60 + k \cdot 360}{3} \right) \right]$$
, where k = 0, 1,2

When k = 0

$$Z_0^{1/3} = 2^{1/3} \left[\cos \left(\frac{60 + 0 \cdot 360}{3} \right) + i \sin \left(\frac{60 + 0 \cdot 360}{3} \right) \right]$$

$$= 2^{1/3} [\cos 20^{\circ} + i \sin 20^{\circ}]$$

$$= 1.184 + i0.431$$

When k = 1.

$$Z_1^{1/3} = 2^{1/3} \left[\cos \left(\frac{60 + 1 \cdot 360}{3} \right) + i \sin \left(\frac{60 + 1 \cdot 360}{3} \right) \right]$$

= $2^{1/3} \left[\cos 140^{\circ} + i \sin 140^{\circ} \right]$

$$= -0.965 + i0.8099$$

When k = 2,

$$Z_2^{1/3} = 2^{1/3} \left[\cos \left(\frac{60 + 2 \cdot 360}{3} \right) + i \sin \left(\frac{60 + 2 \cdot 360}{3} \right) \right]$$
$$= 2^{1/3} \left[\cos 260^\circ + i \sin 260^\circ \right]$$

References:

- T. O. Sikiru (2018). Mathematical Basics: Algebra, Trigonometry and Complex Numbers, Volume 1. His Lineage Publishing House, Ibadan, Nigera.
- B. D. Bunday (1967). Pure Mathematics for Advanced Level, Second Edition. Heinemana Educational Books (Nigeria) Plc, Nigeria.