- 1. Let f(x) is a function. Given nodes are $\{0, 0.7, 1.4, 2.1\}$ and the values of the function of the nodes are $\{2, 2.80, 3.431, 7.05\}$.
 - a) Find the Vadermonde matrix for a linear polynomial passing through (0,2) and (0.7, 2.80).
 - b) Find the Reverse Vadermonde matrix of the matrix in (a).
 - c) Find the value of a_0 and a_1 .
- 2. In the previous questions, you have computed the coefficients, a0 and a1 of the linear polynomial that passes the points (0,2) and (0.7,2.80). Using these results, compute the following:
 - a) Write down the linear polynomial p1(x).
 - b) Compute p1(0.50).
 - c) If $f(x)=e^x$, find the error |f(x)-p1(x)| at x=0.50.
 - d) If we would like to reduce the error in the previous part, what we need to do.