(Q7)

(a)

Proof. First assume P is invertible, so T_P is an isomorphism. Let β be a basis of \mathbb{F}^n , and $\beta' = T(\beta)$. Since T is an isomorphism, β' is linearly independent and a spanning set for \mathbb{F}^n . So $P = [I_{\mathbb{F}^n}]_{\beta}^{\beta'}$.

 \mathbb{F}^n . So $P = [I_{\mathbb{F}^n}]_{\beta}^{\beta'}$. Now let $P = [I_{\mathbb{F}^n}]_{\beta}^{\beta'}$ for two bases β, β' of \mathbb{F}^n . Then T_P is a linear map mapping $\mathbb{F}^n \to \mathbb{F}^n$.

(b)

Proof. First assume $A \sim B$. Then $\exists P^{-1} \in \mathcal{M}_{n \times n}$ such that $B = P^{-1}AP$. Since P is invertible, $P = [I_{\mathbb{F}^n}]_{\beta}^{\beta'}$ for some bases β, β' . Then

$$B = [I_n]_{\beta}^{\beta'}[T]_{\beta}[I_n]_{\beta}^{\beta'} = [I_n]_{\beta}^{\beta'}[T]_{\beta} = [I_n]_{\beta'}$$

Now suppose $\exists \beta' : B = [I_n]_{\beta}^{\beta'}$. Then

$$B = [I_n]_{\beta}^{\beta'}[T]_{\beta} = [I_n]_{\beta}^{\beta'}[T]_{\beta}[I_n]_{\beta}^{\beta'}$$

where $[T]_{\beta} = A$, which fulfills the definition of similarity.