

Design and Analysis of Algorithms

Lecture - 2

Success is always inevitable with Hard Work and Perseverance

N. Ravitha Rajalakshmi

Design and Analysis of Algorithm

Learning Objective

- Learn mechanisms to effectively debug the programs
- Understand the framework used for measuring the runtime of the algorithm.

Problem Solving

How do we devise an algorithm? (or) What is the primary criteria for an algorithm?

Debugging

- Finding logical errors are always difficult
- Errors happen as the user is concerned with known test cases
- Corner cases (or) edge cases [input cases that lie at the extreme of the problem space] are not looked upon

Stress Test

- Random generation of test cases
- Comparing the output of the algorithm with some well known method

Maximum Pairwise sum

• Find the maximum sum of two distinct numbers in a sequence of nonnegative integers.

Input: A sequence of non-negative integers.

Output: The maximum value that can be

obtained by multiplying two different

elements from the sequence.

Input: [9, 3, 10, 11, 8, 6]

Output: 21

Maximum Pairwise sum

	9	3	10	11	8	6
9		12	19	20	17	15
3			13	14	11	9
10				21	18	16
11					19	17
8						14
6						

Function MaxPairwiseSum (a, n)

```
# a is array # n - number of elements
best = -1
for i from 1 to n-1
  for j from i+1 to n
       if (a[i] + a[j]) > best
              best = a[i] + a[j]
return best
```

Pause & Think

- Stress test helps in identifying logical (or) syntactic errors?
- How do you detect
 - Syntactic errors -
 - Runtime errors -

Computing Runtime of an algorithm

- Actual amount of time taken by the algorithm for producing the output.
- Why to compute runtime?
 - Find which algorithm to be better
- Can lines of code be a metric for measuring the runtime?
 - No, as each line performs varied number of operations
- Can we use profilers?

Why Measuring runtime is difficult??

• It depends on extraneous factors

Speed

System Architecture

Why Measuring runtime is difficult??

Compiler Optimization

Memory Hierarchy

- Finding actual runtime is difficult
- Client specification is unknown

Measure runtime without considering these unknowns

Pause & Think

- Is there anything else to be considered?
- When will the algorithms differ?

Formal Framework to compute runtime

- Asymptotic Notation
- Measure of runtime that ignore the constant multiples
- Measure the runtime with respect to the growth of the input size

Approximate Runtime

Assume processing speed 1GHZ lt can perform 10^9 operations per second

n/Runtime	n	n log n	n^2	2^n
n = 20	1sec	1sec	1sec	1sec
n = 50	1sec	1sec	1sec	13 day
$n = 10^2$	1sec	1sec	1sec	4. 10 ¹³ year
$n = 10^6$	1sec	1sec	17 min	
$n = 10^9$	1sec	30sec	30 year	

Summary

- Logical errors to some extent can be easily identified through stress test
- Computing exact runtime is difficult
- Runtime is measured with respect to growth in input size

Thank You Happy Learning

Success is always inevitable with Hard Work and Perseverance