

Universidad de Buenos Aires Facultad de Ingeniería

2^{do} Cuatrimestre 2019

Modelos y Optimización I (71.14)

Informe Trabajo Práctico 1

FECHA: 11 de octubre de 2019

INTEGRANTES:

Apellido y Nombre	Padrón	Correo Electrónico
Ferres, Julian	101483	julianferres@gmail.com
—-		cyntgamarra@gmail.com
Loguercio, Sebastian	100517	seba21log@gmail.com

Índice

1.	Par	te A	1
	1.1.	Análisis	1
	1.2.	Objetivo	1
	1.3.	Hipótesis	1
	1.4.		1
	1.5.	Constantes	1
		1.5.1. Variables	1
		1.5.2. Ecucaciones	1
	1.6.	Modelo en computadora	1
		Resolución	1
		Análisis de la solución	1
2	Dam	to D	•
2.	Par		2
2.	2.1.	Análisis	
2.	2.1. 2.2.	Análisis	2
2.	2.1. 2.2. 2.3.	Análisis	2
2.	2.1. 2.2. 2.3.	Análisis	2
2.	2.1. 2.2. 2.3.	Análisis	
2.	2.1. 2.2. 2.3.	Análisis	
2.	2.1. 2.2. 2.3.	Análisis Objetivo . Hipótesis Modelo de programación lineal continua 2.4.1. Variables	
2.	2.1. 2.2. 2.3. 2.4.	Análisis Objetivo Hipótesis Modelo de programación lineal continua 2.4.1. Variables 2.4.2. Ecuaciones 2.4.3. Funcional	
2.	2.1. 2.2. 2.3. 2.4.	Análisis Objetivo Hipótesis Modelo de programación lineal continua 2.4.1. Variables 2.4.2. Ecuaciones 2.4.3. Funcional Modelo en computadora	

- 1. Parte A
- 1.1. Análisis
- 1.2. Objetivo

Alaska y Hawaii

1.3. Hipótesis

Las hipotesis impuestas son las siguientes:

- La heladera dura todo el viaje, por lo que habrá que comprar solo una.
- 1.4. Modelo de programación lineal continua
- 1.5. Constantes
 - d_{ij} : Distancia entre la ciudad i y la ciudad j (en km).
- 1.5.1. Variables
 - \bullet U_i Orden en el que la capital i fue visitada.
 - \bullet Y_{ij} El camino entre la capital i y la j está en el tour.
 - lacksquare D: Distancia recorrida (en km).
 - DES_j : Descansan 2 dias en la ciudad j
 - ullet H: Compro la heladera (binaria).
 - Agua: Precio de una botella de agua (usd), entera $Agua \in \{2,3\}$
- 1.5.2. Ecucaciones

$$D = \sum_i \sum_j d_{ij} Y_{ij}$$

- 1.6. Modelo en computadora
- 1.7. Resolución
- 1.8. Análisis de la solución

2. Parte B

2.1. Análisis

2.2. Objetivo

Determinar la cantidad de pases Gold, pases Silver y paquetes de merchandising a vender para obtener la mayor ganancia posible en un periodo determinado.

2.3. Hipótesis

- Todos los pases se venden.
- Las entradas de protocolo son Silver o Gold o cualquiera??
- Dice "un par" de entradas de protocolo. Osea 2?
- Los 100 pases Gold al dueño del predio generan ganancia?

2.4. Modelo de programación lineal continua

2.4.1. Variables

 M_{gold} = Cantidad de metros cuadrados dedicados a ubicaciones Gold.

 ${\cal M}_{silv} = {
m Cantidad}$ de metros cuadrados dedicados a ubicaciones Silver.

 S_{gold} = Cantidad de pases Gold a vender.

 $S_{silv} = \text{Cantidad de pases Silver a vender.}$

P =Cantidad de paquetes de merchandisign comprados.

 P_{gold} = Cantidad de paquetes comprados destinados a ubicaciones Gold.

 P_{silv} = Cantidad de paquetes comprados destinados a ubicaciones Silver.

2.4.2. Ecuaciones

• 8000 metros cuadrados en total disponibles:

$$M_{gold} + M_{silv} \le 8000 \, m^2$$

■ Relación pases Gold y metros cuadrados:

$$S_{gold} = \frac{1 \ pase}{m^2} \cdot M_{gold}$$

• Relación pases Silver y metros cuadrados:

$$S_{silv} = \frac{2 \ pases}{m^2} \cdot M_{silv}$$

■ 100 pases Golds al dueño del predio: (se cobran ??)

$$S_{gold} \ge 100 \, pases$$

• 500 pases Silver vendidos para pagar la reserva del predio:

$$S_{silv} \geq 500 \ pases$$

2

■ Paquetes de merchandising:

$$P = P_{gold} + P_{silv}$$

■ Se pueden comprar hasta 800 paquetes:

$$P \leq 800 \; paquetes$$

• Un paquete cubre hasta 20 personas que compraron un pase Silver:

$$P_{silv} \le \frac{1 \ paquete}{20 \ pases} \cdot S_{silv}$$

■ Un paquete cubre hasta 8 personas que compraron un pase Gold:

$$P_{gold} \leq \frac{1 \, paquete}{8 \, pases} \cdot S_{gold}$$

- 2.4.3. Funcional
- 2.5. Modelo en computadora
- 2.6. Resolución
- 2.7. Análisis de la solución