ESP1066

Prova 1 (Subst.) . Peso: 3,50 . Duração: 3h

Prof. Dr. Luiz Fernando Freitas-Gutierres luiz.gutierres@ufsm.br

Licença internacional *Creative Commons* 4.0 – Atribuição-SemDerivações

 $\verb|https://creativecommons.org/licenses/by-nd/4.0/deed.pt_BR|$

Nome & Matrícula: _			
	Nota:		

Instruções:

- ➡ Preencha seu nome completo e matrícula na capa desta avaliação e rubrique as demais folhas.
- Use caneta azul ou preta para responder.
- De Nas folhas de rascunho, é permitido o uso de lápis ou lapiseira.
- 🜣 Se precisar de espaço adicional para responder questões, solicite uma folha adicional ao professor.
- ☼ Escreva respostas de forma clara e legível. Respostas ilegíveis não serão avaliadas.
- 🗢 Em questões de certo ou errado, ao identificar itens incorretos, corrija-os e forneça justificativas.
- De Em questões que envolvam cálculos, apresente-os de maneira completa.

Prova 1

Questões	01	02	Total
Pontos	55	45	100
Notas			

- (1) A Figura 1 apresenta o esboço de um dispositivo com as seguintes características:
 - O entreferro #E1 possui comprimento médio de $x_1 = 6$ mm.
 - O entreferro #E2 possui comprimento médio de $x_2 = 1$ mm.
 - ullet O enrolamento #B1 contém $N_1=1000$ espiras e através dele flui uma corrente $I_1=2$ A.
 - O enrolamento #B2 contém $N_2=10000$ espiras e é percorrido por uma corrente $I_2=6$ A.
 - O dispositivo inclui um bloco de material não linear com comprimento médio h=8 mm.
 - O bloco de material não linear demonstra uma densidade de fluxo magnético de 1,5 T.
 - A curva B-H do material não linear também é apresentada na Figura 1.
 - Para todo o sistema, considere uma área da seção transversal S = 0.5 cm².
 - Devem ser desconsiderados o espraiamento magnético e os fluxos dispersos. O material linear é ideal.

Com base nessas especificações, responda os itens subsequentes.

Figura 1: Ilustração para a Questão 1.

- a) 20 pontos Determine o fluxo magnético no entreferro #E2. $\phi_{\#\mathrm{E2}} =$
- b) $\fbox{5}$ pontos $\fbox{Calcule a energia magnética } \mathcal{W}_g$ acumulada no entreferro #E1. $\mathcal{W}_g =$
- c) 15 pontos Quantifique as indutâncias próprias (L_1 e L_2) dos enrolamentos. L_1 = L_2 =

UFSM / CT / DESP / ESP1066

- d) 15 pontos Estabeleça a indutância mútua M entre as bobinas. M=
- (2) 45 pontos Analise os itens abaixo, indicando se são certos ou errados.
 - a) \square Na Figura 2, $\Delta \mathcal{V}'_{ad} = (L_1 + L_2) \, di_1/dt$, considerando exclusivamente as autoindutâncias.
 - b) C E Na Figura 2, $\Delta V_{ad}'' = (2M) di_1/dt$ ao considerar apenas as indutâncias mútuas do sistema eletromagnético como um todo.
 - c) $\lceil \mathsf{C} \rceil \lceil \mathsf{E} \rceil$ Na Figura 2, a força eletromotriz (\mathcal{E}_{22}) autoinduzida em #2 orienta-se no sentido de c para d.
 - d) \square \square Na Figura 2, a força eletromotriz (\mathcal{E}_3) equivalente na bobina #3 é expressa por (L_3) di_2/dt , levando em consideração tanto as autoinduções quanto as induções mútuas.
 - e) C E A negligência dos fluxos dispersos no entreferro resultará em uma estimativa da indução magnética inferior ao valor real.
 - f) C E Um pequeno entreferro contínuo representa uma relutância magnética muito grande, aumentando muito a força magnetomotriz de excitação e, portanto, a corrente de magnetização.
 - g) C E A área do laço de histerse corresponde às perdas por ciclo e por unidade de volume do material.
 - h) C E A permeabilidade magnética tende a apresentar seu valor máximo após o "joelho" da curva de magnetização.
 - i) C E É possível estimar as perdas por correntes parasitas tendo posse de dados da curva de magnetização de um equipamento.
 - j) C E Em um transformador, as perdas no ferro são de 50 W a 40 Hz. Quando a frequência é elevada para 60 Hz, mantendo-se a tensão constante, as perdas aumentam para 90 W. Com base nos procedimentos de cálculo descritos em ESP1066, pode-se inferir que as perdas por correntes parasitas excedem 35 W quando o transformador opera a 50 Hz com a mesma intensidade de tensão.

Figura 2: Duas bobinas L_1 e L_2 estão conectadas em série, sendo ambas percorridas por uma corrente i_1 . Além disso, há um terceiro enrolamento L_3 , pertencente a um circuito distinto, que é percorrido por uma corrente i_2 . Existe uma indutância mútua M entre cada par de enrolamentos (1, 2 e 3).