Section 15

TA: Yasi Zhang

May 23, 2022

1 Linear Regression

Given pairs of observations $\{(X_i, Y_i)\}_{i=1}^n$ where $Y_i \in \mathbb{R}, X_i \in \mathbb{R}^p, X_{i1} = 1$, we fit the data to a linear model:

$$Y_i = X_i'\theta + \varepsilon_i = \theta_1 + X_{i2}\theta_2 + \dots + X_{ip}\theta_p + \varepsilon_i.$$

Remark 1 Our aim is to find the relationship between Y_i and X_i . They might have a perfect linear relationship, or they might not. We could fit the data to other models, e.g. $Y_i = \theta_1 + X_{i2}^2 \theta_2 + \cdots + X_{ip}^p \theta_p + \varepsilon_i$. Finally, we could compare these different models and pick the best one as our final model.

After assuming the form of linear model, we need to find the best estimated θ . Pay attention that we never know how large the true parameter θ is. What we can do is to estimate it. The model is assumed for population, but we only have a sample of X_i and Y_i of size n.

We need a criterion to find the best $\hat{\theta}$:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} (Y_i - X_i'\theta)^2$$

By FOC:

$$\hat{\theta} = (\sum_{i=1}^{n} X_i X_i')^{-1} \sum_{i=1}^{n} X_i Y_i$$

Remark 2 You could use other criterions like MAE. But we are used to using MSE as the criterion.

Linear Regression Example

Yasi Zhang

2022/5/23

```
 \begin{array}{l} X = 1:3 \\ Y = c(2.1, 2.9, 4.1) \\ print(paste('(', 'X', ', ', 'Y', ')')) \\ \\ \# [1] "( X , Y )" \\ \\ for(i in 1:3) \{ \\ print(paste('(', X[i], ', ', Y[i], ')')) \\ \\ \\ X_{12} \\ \\ \end{array} 
 \begin{array}{l} X_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ X_{2} \\ \\ \end{array} 
 \begin{array}{l} X_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ X_{2} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\ \\ \end{array} 
 \begin{array}{l} \# [1] "( 1 , 2.1 )" \\ \# [1] "( 2 , 2.9 )" \\ \# [1] "( 3 , 4.1 )" \\ \\ \\ Assume Y_{i} = \theta_{1} + \theta_{2}X_{i2} + \varepsilon_{i}, \text{ derive the best estimated } \theta. \\ \\ \\ \text{model} = \text{Im}(Y-X) \\ \\ \text{plot}(X, Y, x) \text{ where } c(0, 4) \text{ whim=} c(0, 5) ) \\ \end{array}
```


$$\hat{\theta} = (\sum_{i=1}^{n} X_i X_i')^{-1} \sum_{i=1}^{n} X_i Y_i$$

```
summary(model)
```

```
##
## Call:
## lm(formula = Y \sim X)
##
## Residuals:
##
         1
                  2
   0.06667 -0.13333  0.06667
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                1.0333
                           0.2494
                                    4.143
                                            0.1508
                1.0000
                                    8.660
                                            0.0732 .
## X
                           0.1155
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1633 on 1 degrees of freedom
## Multiple R-squared: 0.9868, Adjusted R-squared: 0.9737
                75 on 1 and 1 DF, p-value: 0.07319
       (1)+\binom{1}{2}(12)+\binom{1}{3}(13)
-\binom{1}{2}+\binom{1}{2}+\binom{1}{3}
```

2 Method of Moment Estimator

• Compute population moments $E_{\theta}(X_i^k)$, $k=1,2,\cdots$, under the PMF/PDF model $f(x,\theta)$:

$$\begin{array}{rcl} M_k(\theta) & = & E_{\theta}(X_i^k) \\ & = & \left\{ \begin{array}{ll} \int_{-\infty}^{\infty} x^k f(x,\theta) dx & \text{if X is a CRV}, \\ \\ \sum_{x \in \Omega_X} x^k f(x,\theta) & \text{if X is a DRV}; \end{array} \right. \end{array}$$

• Compute the sample moments from random sample $\mathbf{X}^n = (X_1, \dots, X_n)$:

$$\hat{m}_k = n^{-1} \sum_{i=1}^n X_i^k, \ k = 1, 2, \cdots;$$

 Match the sample moments and the population moments by choosing some parameter value θ
_n. In general, if θ is a p × 1 parameter vector, we need p equations:

$$\begin{cases} \hat{m}_1 = M_1 \left(\hat{\theta}_n \right), \\ \hat{m}_2 = M_2 \left(\hat{\theta}_n \right), \\ \dots \\ \hat{m}_p = M_p \left(\hat{\theta}_n \right). \end{cases}$$

Solving for these p equations will yield an MME $\hat{\theta}_n = \hat{\theta}(\mathbf{X}^n)$.

We now provide some examples.

2.1 Practice

Suppose $\{X_i\}_{i=1}^n \sim iid\ U(a,b)$. Find MME for a and b.

3 Maximum Likelihood Estimator

We now summarize the procedure of MLE:

- Find the log-likelihood function, $\ln \hat{L}(\theta|\mathbf{X}^n)$. For an IID random sample with population PMF/PDF $f(x,\theta)$, we have $\ln \hat{L}(\theta|\mathbf{X}^n) = \sum_{i=1}^n \ln f(X_i,\theta)$.
- Solve for the first order conditions (FOC) and find θ̂_n.
- Check the second order conditions (SOC) to ensure $\hat{\theta}_n$ is a global maximizer or at least a local maximizer.

3.1 Practice

- 1. Suppose $\{X_i\}_{i=1}^n \sim iid\ Poi(\lambda)$.
- a. Given $X_i = 169$, find the MLE for λ .
- b. Given $\{X_i\}_{i=1}^n$, find the MLE for λ .
- 2. Suppose $\{X_i\}_{i=1}^n \sim iid\ U(a,b)$. Find MLE for a and b.

4 Optimization Problem

4.1 Unconstrained Problem

$$\min_{x} f(x)$$

FOC: Find the x_* that lets $f'(x_*) = 0$.

Remark 3 Our target is to find a global minimum or maximum. FOC only ensures x_* is a local maximum or minimum.

After finding the x_* , think about how the function f(x) looks and check x_* is a local maximum or minimum, or calculate its second-order derivative.

Some examples: $f(x) = x^2 - x$, $f(x) = x^3$, f(x) = sin(x)

4.2 Constrained Problem

The standard form of a continuous optimization problem is

$$\begin{array}{ll}
\text{minimize} & f(x) \\
\text{subject to} & g(x) = 0
\end{array}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function to be minimized over the n-variable vector x, g(x) = 0 is called equality constraint.

A maximization problem can be treated by negating the objective function.

We introduce a new variable λ called a Lagrange multiplier and study the Lagrange function defined by

$$\mathcal{L}(x,\lambda) = f(x) + \lambda g(x),$$

By FOC,

$$\nabla_x \mathcal{L} = 0 \tag{1}$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \tag{2}$$

4.3 Example

$$\min_{x,y} \ or \ \max_{x,y} \ 8x^2 - 2y$$
$$s.t. \ x^2 + y^2 = 1$$

$$L(x,y_{1}x)$$

$$= 8x^{2}-2y+\lambda(x^{2}+y^{2}-1)$$

$$= 8x^{2}-2y+\lambda(x^{2}+y^{2}-1)$$

$$= 8x^{2}-2y+\lambda(x^{2}+y^{2}-1)$$

$$= -2+2\lambda y=0$$

$$= -2+2\lambda y=0$$

$$= x^{2}+y^{2}-1=0$$

$$0 \times = 0 \quad 3 \times \neq 0 \\
1 \times = 0 \quad 3 \times \neq 0 \\
1 \times = -8 \\
1 \times = -8 \\
1 \times = -8 \\
2 \times = 1 - 1 \\
2 \times = 65 \\
2 \times = 1 - 1 \\
3 \times = 65 \\
3 \times = 1 - 1 \\
3 \times$$

$$(01) =) - 2$$

 $(0-1) =) 2$
 $(\frac{3\sqrt{5}}{8}, \frac{1}{8}) =) 8/125$
 $(\frac{3\sqrt{5}}{8}, \frac{1}{8}) =) 78/125$

4.4 Practice

Example 213 (8.15). Suppose $X^n = (X_1, \dots, X_n)$ is an independent but not identically distributed random sample, with $E(X_i) = \mu$ and $var(X_i) = \sigma_i^2 < \infty, i = 1, \dots, n$. Find a uniformly best linear unbiased estimator of μ within the class of estimators

$$\Gamma = \left\{ \hat{\mu}_n : \mathbb{R}^n \to \mathbb{R} \mid \hat{\mu}_n = \sum_{i=1}^n c_i X_i, \ (c_1, \dots, c_n) \in \mathbb{R}^n \right\},\,$$

where $\sum_{i=1}^{n} c_i = 1$.

5 Take-Home Practice

5. (a) Consider i.i.d. Pois(λ) r.v.s X_1, X_2, \ldots The MGF of X_j is $M(t) = e^{\lambda(e^{t}-1)}$. Find the MGF $M_n(t)$ of the sample mean $\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$

(b) Find the limit of $M_n(t)$ as $n \to \infty$. (You can do this with almost no calculation using a relevant theorem; or you can use (a) and the fact that $e^x \approx 1+x$ if x is very small.

Consider the MGF for the standardized poteson $M_X(t) = e^{(\lambda e^{t/\sqrt{\lambda}} - \lambda - t/\sqrt{\lambda})}$

Prove $\int_{x\to\infty} M_x(+) = Q^{\frac{t^2}{2}}$

$$\begin{cases} EX = \frac{a+b}{2} \\ V_{M}(X) = \frac{(a-b)^{2}}{1^{2}} \end{cases} \begin{cases} EX = \frac{X_{1}+\cdots+X_{n}}{n} \stackrel{\triangle}{=} \stackrel{\triangle}{m_{1}} \\ EX = \frac{a+b}{2} \end{cases}$$

$$= \sum_{\substack{b \in X = -1 \\ EX^{2} = -1 \\$$

$$\hat{A} = \hat{M} - \sqrt{36^2}$$

$$\hat{b} = \hat{M} + \sqrt{36^2}$$

Remark: We can see that there may exist some sample poshts outside (a, b)

$$0 \quad X_1 \sim P_{\sigma_1^*}(\lambda)$$

$$J(x) = f(x = x_1; \lambda)$$

$$= e^{-\lambda} \frac{\lambda^{x_1}}{x!}$$

$$\ln \mathcal{L}(\lambda) = -\lambda + \chi_1 \ln \lambda - \ln(\chi)$$

$$\frac{\partial \ln J(\lambda)}{\partial \lambda} = -1 + \frac{\chi_1}{\lambda} = 0$$

$$\lambda = \chi_1 = 16\%$$

$$\int_{\lambda} (\lambda) = \int_{\lambda=1}^{N} f(X=X_{i}; \lambda)$$

$$=\frac{1}{11}e^{-\lambda}\frac{\lambda^{n}}{\chi_{i}!}$$

$$\ln L(\lambda) = \sum_{i=1}^{n} \left[-\lambda + x_i \ln \lambda - \ln(x_i) \right]$$

$$= -n\lambda + \left(\sum_{i=1}^{n} x_i\right) \ln \lambda + co$$

$$\frac{\partial \ln J(\lambda)}{\partial \lambda} = -n + \left(\frac{\lambda}{2} \times \lambda^2\right) \frac{\lambda}{\lambda} = 0$$

MLE for U(a,b) $f(x_i; a,b) = \begin{cases} \frac{1}{b-a} & a < x_i < b \\ 0 & o \cdot \omega \end{cases}$ If any $xi \notin (a,b)$, then L(a,b)=0, which will never be the maximum Assert a < Xi < b, Yi $L(a,b) = (b-a)^n$, a < xi < b, $\forall z'$ α α Max 2 (=> Min (b-a). $\int_{0}^{\infty} = \max_{x} x_{x}$ $\alpha = \min_{x} x_{x}$ Remark: All {Xi}'s are inside (a, b)

Table - Home

$$M_{X}(t) = e^{\lambda(e^{t}-1)}.$$

$$M_{X}(t) = \int_{0}^{\infty} e^{\lambda(x_{1}+\cdots+x_{n})}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{\lambda(e^{t}-1)}$$

$$= \int_{0}^{\infty} e^{\lambda(e^{t}-1)}$$

 $\int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$ $= \int_{\lambda \to 0} e^{\lambda e^{t/x}} - \lambda - t/x$