Oppgaver for kapittel 0

0.1.1

Gitt $v \in [0^{\circ}, 90^{\circ}]$.

- a) Vis at $\sin v = \sin(180^{\circ} v)$.
- b) Vis at $\cos v = -\cos(180^{\circ} v)$

0.1.2

Finn arealet til $\triangle ABC$ når

- a) $\angle A = 60^{\circ}$, AB = 5 og AC = 7.
- b) $\angle B = 18^{\circ}$, AB = 4 og BC = 3. $\left(\sin 18^{\circ} = \frac{\sqrt{5}-1}{4}\right)$
- c) $\angle A = 75^{\circ}$, $\angle B = 60^{\circ}$, $AC = \sqrt{6}$ og $BC = \sqrt{3} + 1$

0.1.3

a) Bevis arealsetningen. b) Bevis sinussetningen.

0.1.4

- a) Vis at $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$.
- b) Vis at $\sin 30^{\circ} = \frac{1}{2}$.
- c) Vis at $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$.

0.1.5

 $Vis at \tan v = \frac{\sin v}{\cos v}.$

0.2.1 (1TH21D1)

Gitt trekanten over. Bestem lengden til siden BC.

0.2.2

Gitt en trekant med sidelengder a, b og c og innskrevet sirkel med radius r. Forklar hvorfor arealet til trekanten er gitt som

$$\frac{1}{2}(a+b+c)r$$

0.2.3

La a = BC, b = AC, c = AB og DM = r.

- a) Vis at $r = \frac{ac}{a+b+c}$.
- b) Vis at 2r = a + c b.
- c) Bruk uttrykkene fra oppgave (a) og (b) til å finne b^2 uttrykt ved a og c. Hva kalles denne formelen?

2

0.2.4

Den røde linja tangerer sirkelen. Vis at $\angle BAC = \angle EBC$.

Gruble 0.1

(1TH21D1)

En trekant har omkrets 12, og den éne siden i trekanten har lengde 2. Bestem arealet til trekanten.

Gruble 0.1

Bevis cosinussetningen.

Gruble 0.2

Vis at

$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

Det er tilstrekkelig å vise likheten for tilfellet hvor $v,u \in [0^{\circ}, 90^{\circ}]$.

Gruble 0.2

Vis at $\sin 18^\circ = \frac{1}{4}(\sqrt{5} - 1)$. (Hint: Se figur.)

