

Ensaio 7: Operação do Motor de Indução 3 \(\phi \) e Ensaios a Vazio e de Rotor Bloqueado

1. Atividade prévia

Responda primeiramente ao que se pede, para melhor compreender o ensaio a ser realizado.

Um motor de indução trifásico, 30 HP, 2500 V, 4 polos, 60 Hz, tem a resistência do estator por fase medida igual a 3,0 Ω . Calcular os parâmetros do circuito equivalente do motor sabendo que foram feitos os ensaios em vazio e com o rotor bloqueado e obtido os seguintes valores:

```
a) Ensaio em vazio (NL)
VNL = 2.500 V
f = 60 Hz
INL = 4,6 A
PNL = 1.490 W
b) Ensaio com rotor bloqueado (BL).
VBL = 300 V
fBL = 15 Hz
IBL = 27 A
PBL = 9.000 W
```

2. Objetivos

Os objetivos desse ensaio são:

- a) Analisar o comportamento do motor de indução 3φ;
- b) Realizar os ensaios a vazio e com rotor bloqueado;
- c) Obter os parâmetros do circuito equivalente do motor.

3. Equipamentos utilizados

- a) Motores de indução;
- b) Tacômetro;
- c) Wattímetros;
- d) Cabos.

4. Atividade I – Inspeção

Observação: A conexão do motor deve ser condizente com a tensão nominal da bancada.

De posse dos dados de placa do motor, preencha a tabela 1.

Tabela 1 – Dados de placa do MIT

Tensão nominal de linha(V)	
Corrente nominal de linha(A)	
Freqüência(Hz)	
Potência (kW)	
Fator de potência	
Velocidade nominal do rotor(rpm)	
Velocidade de sincronismo(rpm)	

4. Atividade II – Ensaio a vazio:

Monte o esquema de ligação apresentado na figura 1.

Figura 1. Ligação do MIT a vazio

Ensaio 4: Observações na operação do motor de indução 3 \u03c4 e Ensaios a Vazio e de Rotor Bloqueado

Passo 1: Realize a montagem da figura 1, com os wattímetros conectados no borne de 5A.

Passo 2: Faça a conexão de 220 V no estator da máquina, conforme esquema de ligação informado na placa.

Passo 3: Curto circuite os terminais do rotor para que o motor de indução fique do tipo gaiola de esquilo (o motor do laboratório é do tipo rotor bobinado).

Passo 4: Ligue a bancada e aplique, gradualmente a tensão de 0 a 220 V. Observe as deflexões dos wattímetros (caso exista deflexão negativa em um dos wattímetros, inverta as conexões da bobina de corrente do equipamento) e do amperímetro (corrente de linha).

Passo 5: Preencha a tabela 2.

Tabela 2 – Parâmetros x Ensaios

Ensaio	Tensão	Corrente	W1	W2	Potência Total	RPM
Vazio						

Passo 5: Diminua a tensão, gradualmente, até 0 V.

5. Atividade III – Ensaio com rotor bloqueado:

Passo 6: **COM O MOTOR PARADO**, um integrante da equipe deverá bloquear com a mão o rotor da máquina.

Passo 7: Aumente a tensão, gradualmente, até o motor drenar corrente nominal e preencha a Tabela 3.

Tabela 3 – Parâmetros x Ensaios

Ensaio	Tensão	Corrente	W1	W2	Potência Total	RPM
Rotor bloqueado						

Passo 8: Reduza a tensão e desligue a bancada.

-Calcule os parâmetros do circuito equivalente do motor.

Ensaio 4: Observações na operação do motor de indução 3 \phi e Ensaios a Vazio e de Rotor Bloqueado
-Qual era a velocidade esperada para o motor a vazio?
-Por que se aplica, gradualmente, a tensão e não a partida direta, com 220 V?
-A que se devem as perdas em vazio?
-A que se devem as perdas com rotor bloqueado?
6.Atividade IV – Campo Girante
Usando a mesma configuração do MIT da Atividade II, inverta duas fases, ligue o motor e verifique para que lado o motor está girando. Desligue a bancada.
-Explique o que ocorre ao inverter duas fases do MIT. Justifique.
7. Atividade V:
Desconecte uma fase do estator do MIT. Tente partir a máquina.
O que a equipe concluiu?

8. Atividade VI:

Com o disjuntor S aberto, parta o motor com as 3 fases conectadas, seguindo o procedimento da Atividade II. Quando o MIT estiver operando com a tensão nominal desconecte uma das fases.

CUIDADO PARA NÃO TOMAR CHOQUE.

Verifique também a velocidade do rotor nessa situação: N_r =

-Explique o que ocorre no motor em operação quando desconecta-se uma das fases da alimentação. Anote os valores das tensões de linha antes e depois de retirar uma das fases de alimentação.

9. Atividade VII:

Com o disjuntor S fechado, parta o motor com as 3 fases conectadas, seguindo o procedimento da Atividade II. Quando o MIT estiver operando com a tensão nominal desconecte uma das fases.

CUIDADO PARA NÃO TOMAR CHOQUE.

Verifique também a velocidade do rotor nessa situação: N_r =

-Explique o que ocorre no motor em operação quando desconecta-se uma das fases da alimentação. Anote os valores das tensões de linha antes e depois de retirar uma das fases de alimentação.

10. Atividade VIII - RESISTÊNCIA DO ENROLAMENTO DO ESTATOR

Verifique com o ohmímetro a resistência de enrolamento do rotor. Faça o teste nas 3 fases para verificar se as resistências possuem o mesmo valor.

 R_{AB} = R_{CA} =

-Compare o valor medido da resistência do motor com o valor calculado no circuito equivalente.

-Calcule o conjugado nominal e o rendimento do motor empregando para isso o circuito equivalente do MIT. Apresente todos os cálculos e comente os resultados encontrados, justificando cada um dos aspectos citados.