## LISTING OF CLAIMS:



- 1. (Canceled)
- 2. (Canceled)
- 3. (Canceled)

4. (ORiginal). A piperazinylalkylbenzofuran derivative of the formula

as claimed in Claim 1, wherein represents a C<sub>1-4</sub> alkyl group,  ${ t R}^2$  stands for a hydrogen atom, means an oxygen atom, is a hydroxy group, Z represents a hydrogen atom, Ar' represents a diphenylmethyl group, a pyridyl group, a partially saturated 5-membered heterocyclic group containing two oxygen\_atoms and being condensed with a phenyl group, or a phenyl group substituted by substituents Ro, Ro and  $R^7$ , wherein  $R^5$ ,  $R^6$  and  $R^7$  mean, independently, a hydrogen atom, a halo atom, a trifluoromethyl group, a C1\_4 alkyl group, a  $C_{1-4}$  alkoxy group, or a methylenedicxy group,

n has a value of O or 1, and pharmaceutically suitable acid addition salts thereof.

5. (Original) A piperazinylalkylbenzofuran derivative as claimed in Claim 4, wherein in formula Ia R<sup>1</sup> represents a methyl group, R<sup>2</sup> stands for a hydrogen atom, X means an oxygen atom, is a hydroxy group, z represents a hydrogen atom, Ar' represents a diphenylmethyl group, a pyridyl group, a benzo-1,3-dioxolanyl group or a phenyl group optionally substituted by one or two halo atom(s), one or two methyl group(s), a methylenedioxy group, a trifluoromethyl group or a methoxy group, n has a value of O or 1, and pharmaceutically suitable acid addition salts thereof.

- 7. (Original). A process for the preparation of a benzofuran derivative of the formula I, wherein R<sup>1</sup>, R<sup>2</sup>, Z, X, Y, A, B and Ar are as defined in Claim 1, or a pharmaceutically suitable acid addition salt thereof, characterized in that
  - a) a halide of the formula

wherein  $\mathbb{R}^1$ ,  $\mathbb{R}^2$ , X, Y and Z are as defined in connection with formula I, Hal represents a halo atom, is reacted with a secondary amine of the formula

wherein A, B and Ar are as stated in connection with formula I; or

b) for the preparation of a benzofuran derivative of the formula I, wherein Y represents a hydroxy group,  $R^1$ ,  $R^2$ , X, Z, A, B and Ar are as defined in connection with formula I, an epoxide of the formula

wherein  $R^1$ ,  $R^2$ , Z and X are as defined above, is reacted with a secondary amine of the

wherein  $R^2$ , A, B and Ar are as stated above; or

- e) for the preparation of a benzofuran derivative of the formula I, wherein A forms with B a group of the formula -C=C-, R<sup>1</sup>, R<sup>2</sup>, X, Y, Z and Ar are as defined in connection with formula I, a benzofuran derivative of the formula I, wherein A stands for a group of the formula COH, B represents a methylene group, R<sup>1</sup>, R<sup>2</sup>, X, Y, Z and Ar are as stated above, is dehydrated; or
- f) for the preparation of a benzofuran derivative of the formula I, wherein A represents a group of the formula COH, B stands for a methylene group, R<sup>1</sup>, R<sup>2</sup>, X, Y, Z and Ar are as defined in connection with formula I, however, Ar is other than a hydrogen atom, a ketone of the formula

wherein  $R^1$ ,  $R^2$ , X, Y and Z are as stated above, is reacted with an arylmagnesium halide of the formula

Hal-Mg-Ar

XVI

wherein Ar is as stated above, Hal represents

a halo atom, and the adduct formed is decomposed with water; or

g) for the preparation of a benzofuran derivative of the formula I, wherein A represents a group of the formula COH, B stands for a methylene group, R<sup>1</sup>, R<sup>2</sup>, X, Y, Z and Ar are as defined in connection with formula I, but Ar is other than a hydrogen atom, a ketone of the formula XV, wherein R<sup>1</sup>, R<sup>2</sup>, X, Y and Z are as stated above, is reacted with an aryl lithium compound of the formula

## Li-Ar

IIVX

wherein Ar is as stated above, and the adduct formed is decomposed with water; or

- h) for the preparation of a benzofuran derivative of the formula I, wherein A represents a group of the formula CH, B stands for a methylene group, R<sup>1</sup>, R<sup>2</sup>, X, Y, Z and Ar are as defined in connection with formula I, a compound of the formula I, wherein A forms with B a group of the formula -C=C-, R<sup>1</sup>, R<sup>2</sup>, X, Y, Z and Ar are as stated above, is hydrogenized; or
- i) for the preparation of a benzofuran derivative of the formula I, wherein A represents a group of the formula CH, B stands for a methylene group,  $R^1$ ,  $R^2$ , X, Y, Z and Ar are as defined in connection with formula I, an epoxide of the formula III, wherein  $R^1$ ,  $R^2$ , Z and X are as stated above, is reacted

with a secondary amine of the formula IV, wherein A stands for a group of the formula CHOH, B and Ar are as stated above, under dehydrating reaction conditions, and the formed compound of the formula I, wherein A forms with B a group of the formula -C=C-, R<sup>1</sup>, R<sup>2</sup>, X, Y, Z and Ar are as stated above, is hydrogenized in the reaction mixture in which it was prepared; and

if desired, an obtained base of the formula I is reacted with an inorganic or organic acid to form a pharmaceutically suitable acid addition salt thereof, or liberated from the acid addition salt with a base.

- 8. (Canceled)
- 9. (Canceled)
- 10. (Canceled)

11. (Original). A pharmaceutical composition as claimed in Claim 8, comprising a piperazinylalkylbenzofuran derivative of the formula

$$R^{\frac{1}{N}} = R^{\frac{N}{N}} =$$

wherein

 $R^{1}$  represents a  $C_{1-4}$  alkyl group,  $R^{2}$  stands for a hydrogen atom,

X means an oxygen atom,

Y is a hydroxy group,

Z represents a hydrogen atom,

Ar' represents a diphenylmethyl group, a pyridyl group, a partially saturated 5-membered heterocyclic group containing two oxygen atoms and being condensed with a phenyl group, or a phenyl group substituted by substituents R<sup>5</sup>, R<sup>6</sup> and R<sup>7</sup>, wherein

 $R^5$ ,  $R^6$  and  $R^7$  mean, independently, a hydrogen atom, a halo atom, a trifluoromethyl group, a  $C_{1-4}$  alkyl group, a  $C_{1-4}$  alkoxy group, or a methylenedioxy group,

n has a value of O or 1, or a pharmaceutically suitable acid addition salt thereof as the active ingredient.

12. (Original). A pharmaceutical composition as claimed in Claim 11, comprising a piperazinylalkylbenzofuran derivative of the formula Ia, wherein

R represents a methyl group,

R<sup>2</sup> stands for a hydrogen atom,

x means an oxygen atom,

Y is a hydroxy group,

z represents a hydrogen atom,

Ar' represents a diphenylmethyl group, a pyridyl group, a benzo-1,3-dioxolanyl group or a phenyl group optionally substituted

by one or two halo atom(s), one or two
methyl group(s), a methylenedioxy group,
a trifluoromethyl group or a methoxy group,
n has a value of 0 or 1,
or a pharmaceutically suitable acid addition
salt thereof as the active ingredient.

- 13. (Canceled)
- 14. (Canceled)
- 15. (Canceled)

16. (Original) A halide of the formula

$$R \downarrow 0$$
  $X \downarrow Hal$   $R^2$ 

wherein

 $R^1$  and  $R^2$  represents, independently, a hydrogen atom or a  $C_{1-4}$  alkyl group,

X stands for an oxygen atom or a sulfur atom,

Y means a hydrogen atom or a hydroxy group,

Z represents a hydrogen atom, a halo atom, a  $C_{1-4}$  alkyl group, a  $C_{1-4}$  alkoxy group, an amino group, a nitro group, a cyano group, a trifluoromethyl group or a group of the formula  $-\text{COOR}^3$ ,  $-\text{NHCOR}^3$  or  $-\text{SO}_2\text{NR}^3\text{R}^4$ , wherein

 ${\ensuremath{\mathbb{R}}}^3$  stands for a hydrogen atom or a  ${\ensuremath{\text{C}}}_{1-4}$  alkyl group,

 $R^4$  means a  $C_{1-4}$  alkyl group, or

R<sup>3</sup> and R<sup>4</sup> form, together with the adjacent nitrogen atom, a saturated or unsaturated heterocyclic group having 5 to 10 members and optionally comprising one or more nitrogen atom(s) and/or one or more oxygen atom(s) and/or one or more sulfur atom(s),

Hal represents a halo atom. 17. (Original). A ketone of the formula

$$R \rightarrow 0$$
 $X \rightarrow X$ 
 $X \rightarrow X$ 
 $X \rightarrow X$ 
 $X \rightarrow X$ 

wherein

- ${\bf R}^1$  and  ${\bf R}^2$  represents, independently, a hydrogen atom or a  ${\bf C}_{1-4}$  alkyl group,
- X stands for an oxygen atom or a sulfur atom,
- Y means a hydrogen atom or a hydroxy group,
- represents a hydrogen atom, a halo atom, a  $C_{1-4}$  alkyl group, a  $C_{1-4}$  alkoxy group, an amino group, a nitro group, a cyano group, a trifluoromethyl group or a group of the formula  $-COOR^3$ ,  $-NHCOR^3$  or  $-SO_2NR^3R^4$ . wherein
  - R<sup>3</sup> stands for a hydrogen atom or a C<sub>1-4</sub> alkyl group,
  - ${\bf R}^4$  means a  ${\bf C}_{1-4}$  alkyl group, or  ${\bf R}^3$  and  ${\bf R}^4$  form, together with the adjacent nitrogen atom, a saturated or unsaturated

heterocyclic group having 5 to 10 members and optionally comprising one or more nitrogen atom(s) and/or one or more oxygen atom(s) and/or one or more sulfur atom(s).