SPECIFICATION PATENT

Date of Application and filing Complete Specification: April 25, 1956. No. 12631/56.

Application made in Switzerland on April 27, 1955. Complete Specification Published: Aug. 14, 1957.

Index at acceptance: - Class 2(3), C2B37(A1: K). International Classification: C07c4.

COMPLETE SPECIFICATION

Process for the Production of New Derivatives of Mucic Acid

We, J. R. Geigy A.-G. a body corporate wherein Hal represents chloring or bromine, organised according to the laws of Switzer- with 2 mole of amines of the general formula: land, of 215, Schwarzwaldslice, Basic, Swit-... zerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: -

The present invention is concerned with 10 new derivatives of mucic acid which have valuable pharmacological properties, as well as a process for the production thereof.

Diamides of terra acetyl mucic ecid of the general formula:

wherein R represents an aliphatic hydrocarbon radical containing at most 5 carbon

R1 represents hydrogen or an aliphatic hydrocarbon radical containing at most 5 carbon atomb.

and An is an abbreviation for the acetyl radical CH, -CO_, have not been known typ to now.

It has now been found that such compounds have a strong antiphlogistic action.

The new mucie acid derivatives defined above can be produced in a simple manner by reaching 1 mol of tetra-acetyl much acid dibalide of the general formula:

Training To

Щ

70

wherein R and Rt have the meanings given above, the reaction being performed in the presence of an acid binding agent. For crample, an excess of the amine used can be the acid binding agent and the reaction can be performed in a suitable inert organic solvent or dituent, e.g. in benzene, in the warm. Bramples of amines of the general formula III are: methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, sec. butylamine, isobitylamine, n-amylamine, isoamylamine, allylamine, methellylamine, dimethylamine, diethylamine, di-n-propylamine, di-n-butylamine, di-isobutylamine, diallylamine, dimethallylamine, methyl-ethylamine, methyl is propylamine, methyl - isopropylamine, methyl-n-butylemine, methyl-iso-butylamine, methyl-amylamine, methyl-1602myl-amine, methyl-allylamine, methyl-methallylamine, and ethyl-allylamine...

Terra-acetyl munic scid dichloride can be obtained from term-acetyl mudic acid (Skraup, Monatshefre für Chemie 14, 488) for example by means of phosphorus pentachloride (Diels, Löffund, Berichte der deutsch, chem Gesellschaft, 47, 2352 (1914)) or by means of thlonyl chloride (J. Müller, Berichte der deutsch chem Gesellschaft 47, 2655).

The fullowing examples serve to illustrate the production of the new compounds. Parts are given as parts by weight unless otherwise indicated and their relationship to parts by volume is as that of grammes to cubic centimetres. The temperatures are in degrees Centigrade.

EXAMPLE 1 13.5 Parts of come-accept mucic acid. dichloride are suspended in 200 parts by volume of abs benzene and, while stirring and cooling with water, 11 parts of diethyl-

amine in 50 parts by volume of abs. benzene are added dropwise at 30-35°. On completion of the dropwise addition, the whole is boiled under reflux for 2 hours. After cooling, about 100 parts by volume of 2 N-hydro-chloric scid are added and the precipitated terra-acetyl mucic acid-bis-diethylamide is filtered off under suction. This is then washed with saturated aqueous bicarbonate. solution and water. Recrystallised from ethyl acetate, it melts at 194-195°.

EXAMPLE 2 13.5 Parts of terra-acetyl mucic acid dichloride in 200 parts by volume of abs.

benzene are reacted as described above with 18 parts of di-n-butylamine. After cooling, the benzene solution in the separating funnel is washed with 2 N-hydrochloric acid, saturated bicarbonate solution and water. After drying with sodium sulphate, the benzene is distilled off and the residue is recrystallised from ethyl acetate. The tetra-acetyl mucic acid bis-di-n-butylamide so obtained melts at 162—163°.

The following compounds of the general 25 formula I for example, are obtained in an

analogous manner: "

R	R1	recrystallised from	M.P.
CH.—	CH3—	ethanol	229—230*
CH ₂ CH ₃	H—:	methanol	310—312°- on decomposition
CH,—CH,—CH,	- CH ₃ CH ₄ C	CH _x — ethyl acetate	188—189°
CH, >CHCH _e	CH, CH-C	H _a methanol	168—169°
CH, ∑C—CH,—	CH. CH.	ethanol	170—171°
n—C₂H,	H—	methanol	232—233°
CH ₂ -	nC₄H,	other/petroleum other (about 1:1)	111—112°

What we claim is: 1. Process for the production of new derivatives of mucio acid of the general formula:

wherein R représents an aliphatic hydrocarbon radical containing at most 5 carbon atoms, R¹ represents hydrogen or an aliphatic hydro-carbon radical containing at most 5 carbon pus 'emote

40

Ac represents the acetyl radical CH. -- CO: which comprises reacting one mol of a terra-acetyl mucic acid dibalide of the general formula:

wherein Hal represents chlorine or bromine and Ac has the meaning defined above, with 2 mods of an amine of the general 45 formula:

the reaction being performed in the presence of an acid binding agent.

2. New derivatives of mucic acid of the 50

- formula I given in claim 1 wherein R, R¹ and Ac have the meanings given in claim 1.

 3. Process for the production of new derivatives of mucic acid in any of the forest tives of mucic acid substantially as herein described with reference to and as illustrated in any of the forest production of new derivatives of mucic acid herein cularly described in any of the forest substantially as herein described with reference to and as illustrated 12, Church Street, Livempool, 1, Church Street, 1, Church Stree in any of the foregoing examples.
 - 4. Derivatives of mucic acid herein parti-cularly described in any of the foregoing

Learnington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press.—1987.
Published at The Patent Office, 25, Southampton Huildings, London, W.C.S, from which copies may be obtained.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 September 2002 (12.09.2002)

PCT

(10) International Publication Number WO 02/070463 A1

(51) International Patent Classification⁷: C07C 235/06, 235/14

(21) International Application Number: PCT/NL02/00151

(22) International Filing Date: 6 March 2002 (06.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 01200836.3 6 March 2001 (06.03.2001) EF

(71) Applicant (for all designated States except US): AP-PLIED NANOSYSTEMS B.V. [NL/NL]; Ubbo Emmiussingel 37, NL-9711 BC Groningen (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VAN ESCH, Johannes, Henricus [NL/NL]; Lepelaar 18, NL-9728 XC Groningen (NL). HEERES, André [NL/NL]; Lintdal 3, NL-9723 GC Groningen (NL).

(74) Agent: PRINS, A., W.; c/o Vereenigde, Nieuwe Parklaan 97, NL-2587 BN The Hague (NL).

(81) Designated States (national): AE, AG, AL, AM, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), DE (utility model), DK (utility model), DM, DZ, EC, EE (utility model), ES, IT (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

070463 A

(54) Title: GELLING AGENTS OR THICKENERS

(57) Abstract: The invention relates to novel class of gelling agents or thickeners, to a process for preparing said gelling agents or thickeners and to their use to prepare gels. The present gelling agents or thickeners have the form of a N,N'-disubstituted aldaramide or N,N'-disubstituted pentaramide.

Title: Gelling agents or thickeners

The invention relates to a novel class of gelling agents, a process for producing them and to their application in preparing gels for various applications.

Thermally reversible gelling or thickening of organic solvents by low molecular weight compounds are of particular interest for hardeners of spilled fluids and cooking oils, thickeners for paints, cosmetic materials and several other technical applications. The self assembly of these gelator/thickener molecules occurs by means of non-covalent interactions such as hydrophobic interaction, π - π interactions, electronic interactions, hydrogen bonding or combinations thereof. Although several gelator/thickener molecules have been identified during the last decade, there is still interest in stable gelator/thickeners that can be synthesized easily from cheap, renewable sources and gelate or thicken a wide variety of solvents.

The present invention aims to provide a novel class of gelling agents or thickeners. It is an object of the invention to provide gelling agents or thickeners that are based on readily available and economically attractive starting materials. It is further an object of the invention to provide gelling agents or thickeners that are capable of gelling or thickening a wide variety of solvents making the gelling agents or thickeners suitable to be employed in various applications. Other objects of the invention will become clear from the discussion of the invention and a number of its embodiments presented below.

Surprisingly, it has been found that the above objects can be reached by preparing gelling agents or thickeners from low molecular carbohydrates. The present invention relates to a gelling agent in the form of a N,N'-disubstituted aldaramides and N,N'-disubstituted pentaramides and derivatives thereof. Specifically, the invention relates to a gelling agent having the following structure

25

5

10

15

20

2

5

10

15

20

25

wherein n is 3 or 4, and wherein R and R' represent the same or different substituents chosen from the group of substituted or unsubstituted, branched, possibly aromatic groups containing, cyclic or linear alkyl, alkenyl, alkynyl groups having from 1 to 40 carbon atoms. In a preferred embodiment, R and R' each represent independently a linear, branched, or cyclic alkyl group having 4-20 carbon atoms. More preferred is that R and R' each are independently selected from the group of cycloalkyl groups having 4-16 carbon atoms. In a preferred embodiment, R and R' represent the same substituent.

It is one of the advantages of the present gelling agents or thickeners can be based on naturally occurring products, such as carbohydrates. Thus, the starting materials for producing them are from a renewable source.

A gelling agent or thickener according to the invention may be prepared by converting an aldose or pentose to its corresponding aldaric or pentaric acid, or a salt thereof, such as an alkali metal salt or an (alkyl)ammonium salt. It is preferred to use an aldose or pentose chosen from the group of allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose and derivatives thereof, as these lead to products having particularly favorable gelling and/or thickening properties. It is to be noted that both the L and the D isomers of the aldose or pentose, as well as mixtures thereof, can be used. Suitable derivatives of the mentioned aldoses and pentoses include deoxy aldoses or pentoses, ethers, esters and the like. In a more preferred embodiment, D-glucose is chosen as aldose.

The conversion of the aldose or pentose to its corresponding aldaric or pentaric acid is generally achieved by oxidation. The oxidation can suitably

3

be carried out using Pt/O₂,TEMPO/NaOCl/(NaBr) or HNO₃/(NaNO₂) as an oxidizing agent. Further details for the manner in which the oxidation may be carried out can be found in US patents 5,831,043, 5,599,977 and 6,049,004, and in J. Org. Chem., 1977, 42, 3562-3567; J-F. Thaburet *et al.*, Carbohydr. Res. 330 (2001), 21-29, all of which are incorporated herein by reference.

The thus obtained aldaric or pentaric acid or salt thereof is subsequently condensed with a primary amine to obtain the objective gelling agent or thickener.

5

10

15

20

25

30

The aldaric or pentaric acid can be condensed with an amount of at least 200 mole%, with respect to the aldaric or pentaric acid, of a primary amine. It is preferred to activate the aldaric or pentaric acid first by means of lactonization and/or esterification, depending on the stereochemistry of the carbohydrate. Further details may be found in Kurtz et al., J. Biol. Chem., 1939, 693-699; Hoagland, Carbohydrate Res., 1981, 98, 203-208, and US patent 5,312,967, which are incorporated herein by reference.

In an alternative embodiment, non-symmetrical N,N'-dialkylaldaramides or N,N'-dialkylpentaramides may be prepared, wherein R and R' represent different substituents. In accordance with this embodiment, the aldaric or pentaric acid may be converted into an N-alkyl-1-aldar/pentaramid-6-ate or N-alkyl-6-aldar/pentaramid-1-ate (as disclosed in US patent 5,239,044; L. Chen et al., J. Org. Chem., 61 (1996) 5847-5851; R. Lee et al., Carbohydr. Res. 64 (1978) 302-308; and K. Hashimoto et al., J. Polym. Sci. Part A, Polym. Chem., 37 (1999) 303-312), activated, and subsequently condensed with, preferably 100 mole% with respect to the N-alkyl aldar/pentar-ate, of a second primary amine.

In general, the obtained gelling agent or thickener precipitates from the reaction mixture in which it is formed and can be easily isolated by filtration. Further purification can be performed by conventional techniques like crystallization or, in the case of products based on galactaric acid derivatives, by thoroughly washing with ethanol, water, acetone or hexane.

It will be understood that the use of the present gelling agents or thickeners to prepare a gel or to thicken a composition is also encompassed by the invention. As is well-known, gelling behavior of compounds or compositions is highly unpredictable. In principle, a solution of a specific compound in a solvent, e.g. an organic solvent, is considered a gel when a homogeneous substance is obtained which exhibits essentially no gravitational flow. Preferably, the gelling phenomenon is thermoreversible. However, in as far as the present compounds do not provide a gel in a composition, they may be used as a thickener or rheology controlling agent as their addition to a composition may give rise to an increase in viscosity of the composition.

Compositions in which the present compound have been found to produce a gel include compositions in numerous solvents. Preferred examples include aromatic and non-aromatic hydrocarbons, alcohols, ethers, esters, aldehydes, alkanoic acids, epoxides, amines, halogenated hydrocarbons, silicon oils, vegetable oils, phosphoric esters, sulfoxides, water and mixtures thereof. In order to obtain a gel, the gelling agent or thickener is preferably mixed with the composition to be transformed to a gel in an amount of between 0.01 and 50 wt.%, based on the weight of the composition. In a preferred embodiment the mixture of the gelling agent or thickener and the composition is heated to allow for an even better gel formation or thickening. Typically, the heating will involve raising the temperature of the mixture to about 30 - 175 °C until a clear solution is obtained. In an alternative embodiment, the gelling agent is first dissolved in a polar or apolar solvent and then added to or sprayed into a composition or solvent to be converted into a gel.

The resultant gel or thickened composition, which is also encompassed by the present invention, may find use in one of numerous applications. It is conceived that such applications lie in the field of cosmetics, oil recovery (e.g. from the sea), food products, transport of industrial solvents, stabilization of organic solvents under near zero gravity conditions, stiffening of fuels to increase stability and reduce fluidity, lubricants, coatings, printing

5

inks, and adhesives. In these applications they may be used analogous to conventional gelling agents or thickeners, which they replace.

The invention will now be further elucidated by the following, non-restrictive examples.

5

25

EXAMPLES

Synthesis of starting materials

Potassium hydrogen D-glucarate (R.L. Whistler, M.L. Wolfrom, J.N. BeMiller, Methods in Carbohydrate Chemistry, Vol II (1963), Academic Press Inc, 47-48), D-glucaric acid (lactone) (L. Chen, D.E. Kiely, J. Org. Chem., 61 (1996) 5847-5851), D-glucaro-6,3-lactone (L. Chen, D.E. Kiely, J. Org. Chem., 61 (1996) 5847-5851), D-mannaric acid dilactone (E. Fischer, Berichte, 24 (1891) 539-546), diethyl galacterate (R.L. Whistler, M.L. Wolfrom, J.N. BeMiller, Methods in Carbohydrate Chemistry, Vol II (1963) Academic Press Inc, 40-41), D-ribaric acid (lacton) (C.E. Cantrell, D.E. Kiely, G.J. Abruscato, J.M. Riordan, J. Org. Chem., 42 (1977) 3562-3567, as described for D-xylaric acid, R.E. Gall, L. Tarasoff, Aust. J. Chem., 28 (1975) 687-691) were synthesized according to literature procedures.

Cyclohexylammonium 6-(N-cyclohexyl)-D-glucaramide-1-ate.

D-glucaro 6,3-lacton (1.04 g, 5.4 mmol) was added to a solution of cyclohexylamine (1.34 g, 13.5 mmol) in EtOH (50 ml). After 20 stirring the precipitate was filtered off and crystallized from EtOH. Yield 0.97 g, (2.5 mmol, 46%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm, δ 1.10-1.38 (m, 10 H), 1.45-1.90 (m, 10H), 2.91 (m, 1H), 3.55 (m, 1H), 3.65 (m, 2H), 3.78 (t, 1H), 3.89 (d, 1H), 7.55 (d, 1H). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 24.54, 25.23, 25.32, 25.85, 31.28, 32.86, 32.93, 47.88, 49.82, 71.60, 72.45, 72.80, 73.27, 172.70,

6

176.36. Anal Calcd for C₁₈H₃₄N₂O₇: C, 55.37; H, 8.78, N, 7.17. Found: C, 55.22; H, 8.76; N, 7.37.

Synthesis of 3-O-methyl diethyl D-glucaric acid.

3-O-Methyl- \forall ,3-D-glucose (7.00 g, 36 mmol) was added in portions (in 45 minutes) to a solution of NaNO₂ (0.010 g, 0.14 mmol) in HNO₃ (15 ml, 65%) at T = 50-55° C. After 45 minutes T = 50° C the reaction was cooled to RT, and stirred for another 30 minutes. EtOH (40 ml) was added in portions and the reaction mixture was stripped with EtOH several times using a rotavap. The crude reaction mixture was distilled (Kugelrohr) and the fraction of b.p. 225° C/0.4 mm Hg was collected. Yield 4.74 g (16.9 mmol, 47%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm, δ 1.20 (t, 6H), 3.31 (s, 3H), 4.10 (m, 4H + 1H), 4.35 (m, 1H), 4.49 (m, 1H), 4.94 (t, 1H). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 15.09, 59.50, 61.47, 69.96, 71.81, 78.06, 83.89, 171.47, 176.02.

15

20

25

30

10

5

Synthesis of citronellylamine.

1) Preparation of 3,7-dimethyl-oct-6-enal oxim. Citronellal (15,37 g, 100 mmol) in EtOH (300 ml) was added to a solution of NH₂OH (7.00 g, 100 mmol) and NaOH (4.07 g, 102 mmol) in H₂O (100 ml) and stirred for 20 hours at T = 60° C. After evaporation the remaning oil was dissolved in H₂O, acidified with 2M HCl, and subsequently extracted with Et₂O (2 x). After drying with Na₂SO₄ filtration and evaporation crude 3,7-dimethyloct-6-enal oxim (mixture of cis/trans) was isolated. Yield 14.89 g (88 mmol, 88%). ¹H-NMR (CDCl₃, 300 MHz, ppm, 8 0.88 (t, 3H), 1.11-1.34 (m, 2H), 1.54 (s, 3H), 1.62 (s, 3H), 1.94-2.30 (m, 5H), 5.01 (t, 1H), 6.69 (t, 0.5 H), 7.36 (0.5 H). ¹³C-NMR (CDCl₃, 300 MHz, ppm): 15.12, 16.92, 17.21, 22,89, 22.95, 23.18, 27.98, 28.42, 29.47, 33.88, 34.11, 34.32, 121.79, 121.84, 128.96, 148.91. 2)
Preparation of citronellyl amine. 3,7-Dimethyloct-6-enal oxim (mixture of cis/trans 1:1, 14.54 g, 68 mmol) was added slowly to 173 ml of a solution of 1M LiAlH₄ in THF under N₂ atmosphere. After 20 hours refluxing the suspension

7

was decanted and the precipitate was washed with Et₂O (3x). After drying of the Et₂O/THF layer with Na₂SO₄, filtration and evaporation of the solvent the remaining oil was distilled under reduced pressure (0.8-1.0 mm Hg, $T = 65^{\circ}$ C). Yield 5.00 g (32.4 mmol, 37%). ¹H-NMR (CDCl₃, 300 MHz, ppm, δ 0.88 (d, 3H), 0.92-1.44 (m, 7H), 1.50 (s, 3H), 1.58 (s, 3H), 1.88 (m, 2H), 2.62 (m, 2H), 5.00 (t, 1H). ¹³C-NMR (CDCl₃, 300 MHz, ppm): 15.07, 17.00, 22.94, 23.15, 27.57, 34.67, 37.57, 38.68, 122.27, 128.57.

Synthesis of 8-amino-pentadecane.

10 1) Preparation of pentadecan-8-one oxim. Dihexylketon (13,47 g, 68 mmol) in EtOH (300 ml) is added to a solution of NH2OH (4.74 g, 68 mmol) and NaOH (2.74 g, 69 mmol) in H_2O (100 ml) and stirred for 20 hours at T =60° C. After evaporation the remaning oil is dissolved in H₂O, acidified with 2M HCl, and subsequently extracted with Et₂O (2 x). After drying with 15 Na₂SO₄ filtration and evaporation crude pentadecan-8-one oxim (mixture of cis/trans 1:1) was isolated. Yield 13.57 g (64 mmol, 93%). ¹H-NMR (CDCl₃, 300 MHz, ppm, δ 0.83 (t, 6H), 1.25 (m, 8H), 1.45 (m, 4H), 2.11 (t, 2H), 2.28 (t, 2H). ¹³C-NMR (CDCl₃, 300 MHz, ppm): 11.56, 20.06, 23.13, 23.76, 25.99, 26.51, 27.07, 29.09, 31.61, 159.57. 2) Preparation of 8-amino-pentadecane. 20 Pentadecan-8-one oxim (mixture of cis/trans 1:1, 13.45 g, 63 mmol) was added slowly to 127 ml of a solution of 1M LiAlH₄ in THF under N₂ atmosphere. After 20 hours refluxing the suspension was decanted and the precipitate was washed with Et₂O (3x). After drying of the Et₂O/THF layer with Na₂SO₄, filtration and evaporation of the solvent the remaining oil was distilled under reduced pressure (0.8-1.0 mm Hg, $T = 105^{\circ}$ C). Yield 5.17 g (26.1 mmol, 41%). 25

%). ¹H-NMR (CDCl₃, 300 MHz, ppm, δ 0.79 (d, 6H), 1.18-1.30 (m, 20H), 2.58 (m, 1H). ¹³C-NMR (CDCl₃, 300 MHz, ppm): 11.53, 20.09, 23.62, 26.97, 29.35, 35.67, 48.67.

5

Example 1

Synthesis of dibutyl D-glucaramide. D-Glucaric acid (lactone) (1.43 g, about 7.1 mmol) was added to a solution of butylamine (1.34 g, 17.9 mmol) in EtOH (30 ml). After 20 hours stirring the precipitate was filtered off and crystallized from EtOH (yield 0.31 g, 1.0 mmol, 14%). H-NMR (d₆-DMSO, 300 MHz, ppm): δ 0.87 (t, 6H), 1.28 (m, 4H), 1.40 (m, 4H), 3.08 (m, 4H), 3.69 (bs, 1H, H₄), 3.88 (bs, 1H, H₃), 3.92 (bs, 1H, H₅), 3.98 (bs, 1H, H₂), 4.61 (d, 1H, OH₃), 4.74 (d, 1H, OH₄), 5.35 (d, 1H, OH₂), 5.52 (d, 1H, OH₅), 7.59 (t, 1H, NH₁), 7.84 (t, 1H, NH₆). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 14.65, 20.45, 32.21, 38.83, 71.33, 72.50, 73.95, 74.21, 173.01, 173.98, Anal Calcd for C₁₄H₂₈N₂O₆: C, 52.48; H, 8.81, N, 8.74. Found: C, 52.06; H, 8.79; N, 8.61.

Example 2

10

Synthesis of dibutyl D-mannaramide. D-Mannaric acid dilactone

(0.61 g, 3.5 mmol) is added to a solution of butylamine (0.81 g, 10.8 mmol) in

EtOH (20 ml). After 20 hours stirring the precipitate was filtered off and
crystallized from EtOH (yield 0.38 g, 1.2 mmol, 34%). ¹H-NMR (d₆-DMSO, 300

MHz, ppm): δ 0.87 (t, 6H), 1.24 (m, 4H), 1.39 (m, 4H), 3.09 (q, 4H), 3.70 (t, 2H,

H₃, H₄), 3.88 (t, 2H, H₂, H₅), 4.79 (d, 2H, OH₃, OH₄), 5.42 (d, 2H, OH₂, OH₅),

7.84 (t, 2H, NH₁, NH₆). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 14.64, 20.45,
32.13, 38.59, 72.09, 72.37, 174.36. Anal Calcd for C₁₄H₂₈N₂O₆: C, 52.48; H,
8.81, N, 8.74. Found: C, 52.07; H, 8.79; N, 8.65.

Example 3

Synthesis of dibutyl galactaramide. Diethyl Galactarate (2.00 g, 7.5 mmol) was added to a solution of butylamine (1.40 g, 18.8 mmol) in EtOH (30 ml). After 20 hours stirring the precipitate was filtered off and crystallized from DMSO/H₂O (yield 0.30 g, 0.9 mmol, 13%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm): δ 0.88 (t, 6H), 1.29 (m, 4H), 1.40 (m, 4H), 3.11 (m, 4H), 3.78 (s, 2H, H₃, 30 H₄), 4.11 (s, 2H, H₂, H₅), 4.39 (bs, 2H, OH₃, OH₄), 5.23 (bs, 2H, OH₂, OH₅), 7.55

(t, 2H, NH₁, NH₆). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 14.67, 20.41, 32.32, 38.86, 71.57, 174.07. Anal Calcd for C₁₄H₂₈N₂O₆: C, 52.48; H, 8.81, N, 8.74. Found: C, 51.58; H, 8.88; N, 8.50.

Example 4

5

10

15

20

25

Synthesis of dicyclohexyl D-ribaramide. D-Ribaric acid (lacton) (0.32 g, 2.0 mmol) was added to a solution of NEt₈ (0.25 ml) and cyclohexylamine (0.45 g, 4.5 mmol) in EtOH (20 ml). After 20 h stirring the solution was cooled to $T = 4^{\circ}$ C and filtered. Yield 0.14 g (0.41 mmol, 20%). ¹H-NMR (d₆-DMSO, 500 MHz, $T = 100^{\circ}$ C, ppm): δ 1.27(m, 10H), 1.70 (m, 10H), 3.59 (bs, HDO + 1H), 3.97 (s, 2H), 7.52 (d, 1H, NH₆). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 25.90, 26.38, 33.42, 48.59, 73.24, 75.98, 173.12. Anal Calcd for $C_{17}H_{30}N_2O_5$: C, 59.63; H, 8.83, N, 8.18. Found: C, 59.30; H, 9.05; N, 8.03.

Example 5

Synthesis of dicyclohexyl D-glucaramide. D-Glucaro 6,3 lactone (1.07 g, 5.6 mmol) was added to a solution of p-toluene sulfonic acid (0.042 g, 0.22 mmol) in EtOH (20 ml). At T = 50° C cyclohexylamine (1.10 g, 11,1 mmol) is dropped slowly to the solution. After 1 h stirring the solution was cooled to RT and H₂O (20 ml) was added. Evaporation till 10-15 ml gave a white precipitate which was filtered off and crystallized from EtOH (yield 0.89 g, 2.1 mmol, 38%). 1 H-NMR (d₆-DMSO, 300 MHz, ppm): δ 1.26 (m, 10H), 1.69 (m, 10H), 3.56 (bs, 2H), 3.68 (bs, 1H), 3.89 (bs, 2H), 3.96 (s, 1H), 4.61 (d, 1H), 4.69 (d, 1H), 5.36 (d, 1H), 5.45 (d, 1H), 7.31 (d, 1H, NH₁), 7.58 (d, 1H, NH₆). 13 C-NMR (d₆-DMSO, 300 MHz, ppm): 25.57, 26.07, 33.16, 48.10, 48.25, 71.34, 72.57, 73.85, 74.04, 172.17, 172.98, Anal Calcd for C₁₈H₃₂N₂O₆: C, 58.05; H, 8.66, N, 7.52. Found: C, 58.11; H, 8.76; N, 7.46.

10

15

20

Example 6

Synthesis of dicyclohexyl D-mannaramide. D-Mannaric acid dilactone (0.45 g, 2.3 mmol) was added to a solution of cyclohexylamine (0.58 g, 5.9 mmol) in EtOH (20 ml). After 20 hours stirring the solution was refluxed for 2 hours and after cooling the precipitate was filtered off and crystallized from EtOH (yield 0.05 g, 0.13 mmol, 6%). 1 H-NMR (d₆-DMSO, 300 MHz, ppm): 5 1.24 (m, 10H), 1.70 (m, 10H), 3.59 (bs, 2H), 3.69 (t, 2H), 3.86 (t, 2H), 4.72 (d, 2H), 5.34 (d, 2H), 7.62 (d, 2H, NH). 13 C-NMR (d₆-DMSO, 300 MHz, ppm): 5 25.52, 26.10, 33.16, 48.26, 71.96, 72.27, 173.36. Anal Calcd for 5 C, 58.05; H, 8.66, N, 7.52. Found: C, 57.80; H, 8.74; N, 7.37.

Example 7

Synthesis of dicyclohexyl galactaramide. Diethyl galacterate (2.66 g, 10.0 mmol) was added to a solution of cyclohexylamine (2.68 g, 27.0 mmol) in EtOH (50 ml). After 20 hours stirring the suspension was refluxed for 3 hours and after cooling the precipitate was filtered off, washed with H₂O/aceton 9:1 (3 x 25 ml) and H₂O (50 ml) and crystallized from DMSO (yield 0.84 g, 2.3 mmol, 23%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm): δ 1.24 (m, 10H), 1.71 (m, 10H), 3.60 (bs, 2H), 3.76 (d, 2H), 4.09 (d, 2H), 4.38 (d, 2H), 5.18 (d, 2H), 7.26 (d, 2H, NH). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 25.08, 25.82, 32.95, 47.87, 71.39, 71.60, 172.74. Anal Calcd for C₁₄H₂₈N₂O₆: C, 58.05; H, 8.66, N, 7.52. Found: C, 57.88; H, 8.74; N, 7.42.

Example 8

Synthesis of dioctyl D-glucaramide. D-Glucaric acid (lactone) (1.35 g, about 7.0 mmol) was added to a solution of octylamine (1.85 g, 14.0 mol) in EtOH (30 ml). After 20 hours stirring the suspension was refluxed for 3 hours and after cooling the precipitate was filtered off and recrystallized twice from EtOH (yield 0.57 g, 1.3 mmol, 19%). ¹H-NMR (d₆-DMSO, 500 MHz, COSY, T = 50°C, ppm): δ 0.83 (t, 6H), 1.22 (m, 20 H), 1.37 (m, 4H), 3.04 (m, 4H), 3.65 (m,

5

10

1H, H₄), 3.82 (m, 1H, H₃), 3.88 (m, 1H, H₅), 3.94 (m, 1H, H₂), 4.56 (d, 1H, J = 6.9 Hz, OH₃), 4.70 (d, 1H, J = 4.7 Hz, OH₄), 5.31 (d, 1H, J = 5.2 Hz, OH₂), 5.48 (d, 1H, J = 6.3 Hz, OH₅), 7.56 (t, 1H, J = 5.9 Hz, NH₁), 7.80 (t, 1H, J = 5.9 Hz, NH₆). ¹H-NMR (d₆-DMSO, 500 MHz, COSY, 1 drop D₂O added, T = 50°C ppm): δ 0.83 (t, 6H), 1.22 (m, 20 H), 1.37 (m, 4H), 3.04 (m, 4H), 3.65 (dd, 1H, J_{4,5} = 6.2 Hz, J_{3,4} = 3.5 Hz, H₄), 3.82 (t, 1H, J_{2,3} = 3.7 Hz, H₃), 3.88 (d, 1H, H₅), 3.94 (d, 1H, H₂), ¹³C-NMR (d₆-DMSO, 300 MHz, HMQC, T = 50°C, ppm): 14.65, 22.80, 27.10, 29.47, 29.72, 29.82, 31.98, 38.97, 71.08, 72.37, 73.55, 73.66, 172.70, 173.60, Anal Calcd for C₂₂H₄₄N₂O₆: C, 61.08; H, 10.25, N, 6.48. Found: C, 60.94; H, 10.41; N, 6.42.

Example 9

Synthesis of dioctyl D-mannaramide. D-Mannaric acid dilactone (2.14 g, 12.3 mmol) is added to a solution of octylamine (3.10 g, 5.9 mmol) in EtOH (50 ml). After 20 hours stirring the suspension was refluxed for 1 hour and after cooling the precipitate was filtered off and crystallized from EtOH (yield 1.59 g, 3.7 mmol, 30%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm): δ 0.87 (t, 6H), 1.25 (m, 20H), 1.42 (m, 4H), 3.08 (m, 4H), 3.70 (t, 2H), 3.88 (t, 2H), 4.79 (d, 2H), 5.41 (d, 2H), 7.87 (d, 2H, NH). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 14.91, 23.05, 27.31, 29.62, 29.99, 32.23, 39.28, 72.05, 72.38, 174.3. Anal Calcd for C₂₂H₄₄N₂O₆: C, 61.08; H, 10.25, N, 6.48. Found: C, 60.84; H, 10.39; N, 6.40.

Example 10

Synthesis of dioctyl galactaramide. Diethyl galacterate (2.66 g, 10.0 mmol) was added to a solution of octylamine (2.64 g, 20.5 mmol) in EtOH (50 ml). After 20 hours stirring the precipitate was filtered off and crystallized from DMSO (yield 3.00 g, 6.9 mmol, 69%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm): δ 0.90 (bs, 6H), 1.30 (bs, 20H), 1.48 (bs, 4H), 3.14 (bs, 4H), 3.82 (bs, 2H), 4.08 (bs, 2H), 4.17 (bs, 2H), 4.85(bs, 2H), 7.33 (bs, 2H, NH). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 14.11, 22.37, 26.82, 28.95, 29.11, 29.61, 31.60, 38.97,

71.45, 173.34. Anal Calcd for C₂₂H₄₄N₂O₆: C, 61.08; H, 10.25, N, 6.48. Found: C, 61.15; H, 10.47; N, 6.44.

Example 11

5

10

15

Synthesis of dicitronellyl D-glucaramide. D-Glucaric acid (lactone) (2.90 g, about 14.0 mmol) was added to a solution of citronellylamine (5.00 g, 32.4 mmol) in EtOH (40 ml). After 20 hours stirring the suspension was refluxed for 3 hours and after cooling the precipitate was filtered off and recrystallized from 2-PrOH. Yield 2.30 g (4.8 mmol, 33%). ¹H-NMR (d₆-DMSO, 500 MHz, ppm): δ 0.86 (d, 6H), 1.09-1.45 (m, 10H), 1.58 (s, 6H), 1.66 (s, 6H), 1.95 (m, 4H), 3.12 (m, 4H), 3.71 (bs, 1H), 3.89 (bs, 1H), 3.92 (bs, 1H), 3.98 (bs, 1H), 4.63 (bs, 1H, 4.77 (bs, 1H), 5.10 (t, 2H), 5.35 (bs, 1H), 5.55 (bs, 1H), 7.57 (t, 1H), 7.84 (t, 1H). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 18.45, 20.15, 25.84, 26.44, 30.57, 36.99, 37.09, 37.25, 37.32, 37.53, 71.32, 72.47, 73.89, 74.18, 125.60, 131.37, 172.92, 173.97. Anal Calcd for C₂₆H₄₈N₂O₆: C, 64.43; H, 9.98, N, 5.78. Found: C, 64.13; H, 10.02; N, 5.75.

Example 12

Synthesis of didodecyl D-glucaramide. D-Glucaric acid (lactone)

(0.81 g, about 3.9 mmol) was added to a solution of dodecylamine (1.94 g, 10.5 mmol) in EtOH (25 ml). After 72 hours stirring the suspension was refluxed for 3 hours and after cooling the precipitate was filtered off and recrystallized from DMSO. Yield 1.30 g (2.4 mmol, 61%). ¹H-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): δ 0.89 (t, 6H), 1.29 (m, 36H), 1.47 (t, 4H), 3.13 (m, 4H), 3.75 (m, 1H), 3.92 (m, 1H), 3.97 (m, 1H), 3.99 (m, 1H), 4.50 (bs, 2H), 5.05 (bs, 2H), 7.30 (t, 1H), 7.53 (t, 1H). ¹³C-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): 14.07, 22.34, 26.79, 28.99, 29.12, 29.33, 31.63, 38.86, 71.15, 72.41, 73.37, 73.55, 172.37, 173.41. Anal Calcd for C₃₀H₆₀N₂O₆: C, 66.14; H, 11.10, N, 5.14. Found: C, 66.14; H, 11.05; N, 5.12.

13

Example 13

Synthesis of didodecyl D-mannaramide. D-Mannaric acid dilactone (0.43 g, 2.5 mmol) was added to a solution of dodeylamine (1.12 g, 6.1 mmol) in EtOH (20 ml). After 72 hours stirring the precipitate was filtered off and crystallized from DMSO (yield 0.35 g, 3.7 mmol, 26%). ¹H-NMR (d₆-DMSO, 300 MHz, $T = 100^{\circ}$ C, ppm): δ 0.89 (t, 6H), 1.29 (m, 36H), 1.47 (t, 4H), 3.14 (m, 4H), 3.77 (d, 2H), 3.95 (d, 2H), 4.61 (bs, 2H), 5.08 (bs, 2H), 7.54 (t, 1H). ¹³C-NMR (d₆-DMSO, 300 MHz, $T = 100^{\circ}$ C, ppm): 14.05, 22.35, 26.77, 28.98, 29.11, 29.34, 31.63, 38.96, 71.96, 72.31, 173.60. Anal Calcd for $C_{30}H_{60}N_2O_6$: C, 66.14; H, 11.10, N, 5.14. Found: C, 65.76; H, 11.01; N, 5.11.

Example 14

Synthesis of didodecyl galactaramide. Diethyl galacterate (2.66 g, 10.0 mmol) was added to a solution of dodecylamine (3.75 g, 20.5 mmol) in EtOH (50 ml). After 72 hours stirring the precipitate was filtered (yield 4.87 g, 8.9 mmol, 89%). Owing to the low solubility in several solvents tested, no proper NMR spectra could be obtained.

Example 15

Synthesis of dicyclododecyl D-glucaramide. D-Glucaro 6,3-lacton (7.67 g, 40.0 mmol) was added to a solution of cyclododecylamine (14.93 g, 81.6 mmol) in 2-methoxyethanol (125 ml). The reaction mixture was heated slowly till T = 120° C in 3h and kept at this T for 4 hours. After cooling the precipitate was filtered off and recrystallized from DMSO and EtOH . Yield 9.50 g (17.6 mmol, 44%). 1 H-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): δ 1.36 (m, 36H), 1.60 (m, 4H), 3.75 (m, 1H), 3.97 (m, 5H), 4.47 (bs, 2H), 6.98 (bs, 1H), 7.21 (bs, 1H). 13 C-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): 22.03, 23.97, 24.14, 30.59, 45.45, 71.21, 72.32, 73.33, 73.71, 171.76, 172.76. Anal Calcd for C₃₀H₅₆N₂O₆: C, 66.63; H, 10.44, N, 5.18. Found: C, 67.00; H, 11.30; N, 4.97.

25

10

15

20

10

15

25

Example 16

Synthesis of dicyclododecyl D-mannaramide. D-Mannaric acid dilactone (1.99 g, 11.4 mmol) was added to a solution of cyclododecylamine (0.58 g, 5.9 mmol) in EtOH (20 ml). After 20 hours stirring the solution was refluxed for 2 hours and after cooling the precipitate was filtered off and crystallized from EtOH and DMSO (yield 0.51 g, 0.94 mmol, 10%). 1 H-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): δ 1.36 (m, 36H), 1.61 (m, 8H), 3.75 (bs, 2H), 3.93 (bs, 4H), 4.58 (bs, 2H), 5.07 (bs, 2H), 7.24 (d, 2H, NH). 13 C-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): 22.05, 23.99, 24.17, 30.62, 45.68, 72.23, 173.01. Anal Calcd for $C_{30}H_{56}N_{2}O_{6}.0.25$ $C_{2}H_{6}SO$: C, 65.01; H, 10.46, N, 5.05 Found: C, 65.08; H, 10.29; N, 5.05.

Example 17

Synthesis of dicyclododecyl galactaramide. Diethyl galacterate (2.67 g, 10.0 mmol) was added to a solution of cyclododecylamine (3.78 g, 20.7 mmol) in EtOH (50 ml). After 48 hours stirring the precipitate was filtered and washed with H₂O and EtOH (yield 2.43 g, 4.5 mmol, 45%). Owing to the low solubility in several solvents tested, no proper NMR spectra could be obtained.

Example 18

Synthesis of di-8-pentadecyl D-glucaramide. D-Glucaric acid (lactone) (2.53 g, about 12.7 mmol) is added to a solution of 8-aminopentadecane (5.17 g, 26.1 mmol) in EtOH (35 ml). After 20 hours stirring the suspension was refluxed for 20 hours and recrystallized from EtOH/ H_2O (3x). Yield 0.72 g (1.3 mmol, 10%). 1H -NMR (d₆-DMSO, 300 MHz, ppm): 3 0.86 (t, 12H), 1.23 (m, 32H), 1.36 (t, 8H), 3.69 (bs, 3H), 3.88 (bs, 1H), 3.94 (bs, 1H), 3.99 (m, 1H), 4.56 (bs, 1H), 4.71 (bs, 1H), 5.33 (bs, 1H), 5.47 (bs, 1H), 7.15 (d, 1H), 7.41 (d, 1H). ^{13}C -NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): 14.86, 23.03, 26.37, 29.58, 29.68, 32.21, 35.36, 48.78, 48.97, 71.43, 71.73, 73.85,

15

74.30, 172.52, 173.71. Anal Calcd for $C_{30}H_{60}N_2O_6$: C, 67.09; H, 11.26, N, 4.89. Found: C, 66.98; H, 11.38; N, 4.90.

Example 19

Synthesis of dioleyl D-glucaramide. D-Glucaric acid (lactone) (1.27 g, about 6.5 mmol) was added to a solution of oleylamine (3.87 g, 14.4 mmol) in EtOH (30 ml). After 20 hours stirring the suspension was refluxed for 0.5 hour and recrystallized from EtOH (2x) and DMSO. Yield 0.72 g (1.4 mmol, 21%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm): δ 0.88 (t, 6H), 1.28 (m, 44H), 1.45 (m, 4H), 2.01 (m, 8H), 3.07 (bs, HDO + 4H), 3.75 (m, 1H), 3.91 (m, 1H), 3.96 (m, 1H), 3.98 (m, 1H), 4.38 (bs, 1H), 4.52 (bs, 1H), 5.10 (bs, 2H), 5.35 (m, 4H), 7.32 (bs, 1H), 7.55 (bs, 1H). ¹³C-NMR (d₆-DMSO, 500 MHz, T = 100° C, ppm): 14.36, 22.61, 27.04, 27.30, 27.34, 29.24, 28.28, 29.38, 29.44, 29.48, 29.62, 29.68, 29.76, 29.80, 31.88, 39.12, 39.20, 71.40, 72.67, 73.67, 73.86, 130.3, 172.68, 173.68. Anal Calcd for C₄₂H₈₀N₂O₆: C, 71.14; H, 11.37, N, 3.95. Found: C, 70.87; H, 11.43; N, 3.97.

Example 20

20

25

Synthesis of 3-O-methyl-dicyclohexyl D-glucaramide. 3-O-Methyl diethyl D-glucarate (0.54 g, 1.9 mmol) was added to a solution of cyclohexylamine (0.48 g, 4.8 mmol) in EtOH (20 ml). After 20 hours stirring the precipitate was filtered off. Yield 0.20 g (0.75 mmol, 39%). ¹H-NMR (d₆-DMSO, 300 MHz, ppm): δ 1.26 (m, 10H), 1.70 (m, 10H), 3.32 (s, 3H), 3.59 (m, 2H), 3.65(m, 1H), 3.74 (m, 1H), 3.89 (m, 1H), 4.08 (m, 1H), 4.78 (m, 1H), 5.45 (bs, 2H), 7.40 (d, 1H), 7.51 (d, 1H). ¹³C-NMR (d₆-DMSO, 300 MHz, ppm): 24.53, 26.13, 33.21, 48.20, 60.95, 72.35, 73.24, 74.51, 81.85, 172.00, 172.50. Anal Calcd for C₁₉H₃₄N₂O₆: C, 59.05; H, 8.87, N, 7.25. Found: C, 58.91; H, 8.90; N, 7.27.

16

Example 21

Synthesis of 3-O-methyl-didodecyl D-glucaramide. 3-O-Methyl diethyl D-glucarate (0.60 g, 2.1 mmol) was added to a solution of cyclododecylamine (0.93 g, 5.0 mmol) in EtOH (20 ml). After 72 hours stirring the precipitate was filtered off and crystallized from EtOH. Yield 0.55 g (0.98 mmol, 46%). 1 H-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): δ 0.84 (t, 6H), 1.26 (m, 36 H), 1.45 (m, 4H), 3.34 (s, 3H), 3.70 (m, 1H), 3.80 (m, 1H), 3.95 (m, 1H), 4.09 (m, 1H), 4.58 (bs, 1H), 5.03 (bs, 2H), 7.32 (bs, 1H), 7.42 (bs, 1H). 13 C-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): 14.08, 22.38, 26.83, 29.03, 29.16, 28.38, 31.66, 38.97, 60.02, 72.06, 72.72, 73.91, 81.39, 172.37, 173.15. Anal Calcd for C_{31} H₆₂N₂O₆: C, 66.63; H, 11.18, N, 5.01. Found: C, 66.63; H, 11.33; N, 5.04.

Example 22

Synthesis of 3-O-methyl-dicyclododecyl D-glucaramide. 3-O-Methyl diethyl D-glucarate (0.60 g, 2.1 mmol) is added to a solution of cyclododecylamine (0.98 g, 5.3 mmol) in EtOH (20 ml). After 20 hours stirring the precipitate was filtered off and crystallized from EtOH. Yield 0.30 g (0.54 mmol, 25%). 1 H-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): δ 1.33 (m, 36H), 1.57 (m, 8H), 3.35 (s, 3H), 3.69 (bs, 1H), 3.77 (bs, 1H), 3.93 (bs, 3H), 4.09 (bs, 1H), 4.47 (bs, 1H), 5.03 (bs, 2H), 7.02 (d, 1H), 7.12 (d, 1H). 13 C-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): 22.02, 23.97, 24.16, 30.61, 45.52, 60.06, 71.91, 72.62, 72,76, 73.86, 81.43, 171.71, 172.42. Anal Calcd for $C_{31}H_{58}N_{2}O_{6}$: C, 67.11; H, 10.54, N, 5.05. Found: C, 65.64; H, 10.44; N, 5.00.

25

30

5

10

15

20

Example 23

Synthesis of N₁-cyclododecyl, N₆-cyclohexyl D-glucaramide. Cyclohexylammonium 6-(N-cyclohexyl)-D-glucaramide-1-ate (0.60 g, 2.1 mmol) was added to a solution of Dowex H⁺ (1x8) in H_2O (40 ml). After 30 minutes stirring the suspension is filtered and washed thoroughly with H_2O . The

10

17

filtrate was evaporated and the crude 6-(N-cyclohexyl)-D-glucaramide (lacton) was added to a solution of p-toluene sulfonic acid (0.038 g, 0.20 mmol) in EtOH (20 ml). At T = 50°C cyclododecylamine (0.47 g, 2.6 mmol) was dropped slowly to the solution. After 1 h stirring the solution was cooled to T = 4°C and recrystallized from DMSO/H₂O. Yield 0.13 g (0.33 mmol, 13%). ¹H-NMR (d₆-DMSO, 300 MHz, T = 100° C, ppm): 1.13-1.75 (m, 32 H), 3.59 (bs, 1H), 3.70 (m, 1H), 3.92 (m, 1H), 3.94 (m, 2H), 3.99 (m, 1H), 4.49 (bs, 1H), 4.63 (bs, 1H), 5.20 (bs, 1H), 5.33 (bs, 1H), 7.13 (bs, 1H), 7.45 (bs, 1H).). ¹³C-NMR (d₆-DMSO, 300 MHz, T = 95° C, ppm): 22.20, 22.27, 24.20, 24.38, 25.05, 25.89, 30.86, 32.80, 32.84, 45.65, 48.15, 71.41, 72.68, 73.65, 73.90, 172.05, 172.80.

Example 24 Solvent scope of N,N'-dialkylaldaramides (1%) or N,N'-dialkylpentaramides (1%) 1-24 refers to the compounds prepared in example 1-23)

160	[
23	•	đ	Ъ	1	d	ı	•	•	•	1	1	>	а	Ω	Ъ
22	us	ρΩ	ď	ρ	Д	ď	Ωı	Q	ď	Q		•	•		•
21	ď	ы	đ	đ	ပ	ф	ပ	Q,	ď	Ω	ns	>	•	Q	1
20	ns	us	Q.	ď	ď	ပ	ф	ပ	ပ	Ø	ns	ı	•	,	•
19	ď	đ	ф	ď	ပ	ပ	ပ	ပ	ပ	ပ	ns		1	,	1
18	တ	တ	တ	Ø	တ	Ø	Ø	œ	ß	Ø	ρ	Ø	Ø	œ	Ø
17	ns	ns	ns	ns	ns	ns	ns	as	ns	ns	ns	ns	ns	ns	su
16	ns	ns	ns	ns	as	ပ	ω	g	Q	Q	ns	,	•	ı	ı
15	ns	ρο	ρD	bo	ρο	σσ	တ	ပ	99 99	gg	ns	рр	аđ	рър	υ
14	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		,		
13	us	ns	ns	ns	ns	ပ	ď	ပ	ns	ပ	ns			,	
12	ns	ns	ns	ns	ns	ď	ns	ns	വ	Ø	ns		ŧ	1	,
11	D.	¢vo *	ф	a	д	Ø	ø	Ø	മ	Ø	ပ	,	•	•	
10	ns	ns	ns	su	ns	as	su	us	ບ	Ø	ns	ı	,	٠,	,
6	ns	ns	ns	ns	ns	ns	ns	ပ	ပ	ပ	ns	1		1	i
σo	ns	ns	ns	ns	ns	su	ns	ပ	ပ	Ø	su			1	,
1	ns	su	ns	ns	ns	ns	su	ບ	ပ	ပ	su	ı	1	,	•
9		ns	,	ns	su	ď	•	•		,	,			,	1
က	ns	ರ	ರ	ŭ	ರ	g	86	90 PB	g	89	us	ტ	Ö	ß	ß
4	gu	ns	ď	ď	മ	ø	ď	đ	Ø	Ø	ns	,	•	1	ı
က	su	ns	su	ns	su	ns	ns	ပ	ပ	Ø	ns	,	,	,	ı
2	S.	Ns	$_{s}^{N}$	Z,	Z S	$\ddot{\rm Z}$	NS S	C	ŭ	ပ	N _s		,	,	,
1	ns	ns	ns	ns	su	ns	Ъ	ပ	C	ß	ns	ı	1		
	Hexadecane	Cyclohexane	p-xylene	Toluene	n-butylacetate	1,2-dichloroethane	2-octanol	2-propanol	Ethanol	Dimethylsulfoxide	Water	silicon oil	methyl laurate	methyl benzoic acid	2-methoxyethanol

g = gelation, s = soluble, p = precipitates, c = crystallizes, ns = not soluble, v = viscous, $g^* = unstable$ gel, precipitates, cg = crystalline gel

 $\label{eq:example 25} \textbf{ Gelation of N,N'-dialkylaldaramides (1\%) in mixtures }$ of solvents

	11	12	15
	(cit-Glu-cit)	(12-Glu-12)	(C12-Glu-C12)
cyclohexane	g*	ns	g
cyclohexane/dioxane 1:1	s	-	cg
Dioxane	s	c	cg
dioxane/H ₂ O 3:1	s	c	cg
dioxane/H ₂ O 2:1	s	c	cg
dioxane/H ₂ O 1:1	p	ns	g
dioxane/H ₂ O 1:2	p	ns	ns
H_2O	С	ns	ns

g = gelation, s = soluble, p = precipitates, c = crystallizes, ns = not soluble, $g^* = unstable gel$, precipitates, cg = crystalline gel

Example 26

Addition of a solution of the gelling agent (10% in NMP, 0.05 ml) to an organic solution (0.5 ml, "cold gelation")

	5	12	15	18
	(C6-Glu-C6)	(12-Glu-12)	(C12-Glu-C12)	(B13-Glu-B13)
cyclohexane	р	p	g	s
methyllaurate	c ·	p	g	s
Toluene	c	p	g	s
n-butyl acetate	c	p	g	S
1,2-dichloroethane	c	p	c	s
silicon oil	-	-	g	-
Aceton	-	-	cg	-
benzaldehyde	-	-	s	<u>-</u>
Chloroform	-	. •••	s	~
diethylether	-	-	g	-
ethylacetate	-	-	p	-
Heptane	-	-	p	-
Hexane	-	-	p	-
Acetonitril	-	-	g	-
tetrahydrofuran	-	-	c	_

Example 27

Maximum gelator concentration of 5 (C6-Glu-C6) and 15 (C12-Glu-C12)

	5 (in %)	15 (in %)
	(C6-Glu-C6)	(C12-Glu-C12)
cyclohexane	< 5	< 5
methyllaurate	< 2.5	< 5
silicon oil	< 2.5	< 50
(Dow Corning 702)		
Toluene	< 2.5	< 50
n-butylacetate	< 2.5	< 50
1,2-dichloroethane	< 5	< 50

Example 28

5

10

15

Phase diagram of 5 (C6-Glu-C6) and 15 (C12-Glu-C12) (dropping ball method)

The phase diagram of 5 (C6-Glu-C6) and 15 (C12-Glu-C12) was determined (see Figure 1) by using the dropping ball method (A. Takashi, M. Sakai, T. Kato, *Polym. J.*, 12 (1980) 335-341, F.S. Schoonbeek, J.H. van Esch, R. Hulst, R.M. Kellogg, B.L. Feringa, *Chem. Eur. J.*, 6 (2000) 2633-2643). A linear correlation was observed between the T_m-1 and the logarithm of the mole fraction of 15 (C12-Glu-C12) in cyclohexane, silicon oil and p-xylene, as expected for the dissolution proces of crystals (gels) (K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, S. Shinkai, *J. Am. Chem. Soc.*, 116 (1994) 6664-6676).

5

10

Claims

1. A gelling agent or thickener in the form of a N,N'-disubstituted aldaramide, a N,N'-disubstituted pentaramide, or a derivative thereof.

2. A gelling agent or thickener according to claim 1 having the formula

$$\begin{array}{c|c} R & & \\ &$$

wherein n is 3 or 4, and wherein R and R' represent the same or different substituents chosen from the group of substituted or unsubstituted, branched, possibly aromatic groups containing, cyclic or linear alkyl, alkenyl, alkynyl groups having from 1 to 40 carbon atoms.

- 3. A gelling agent or thickener according to claim 2, wherein R and R', R and R' each represent independently a linear, branched, or cyclic alkyl group having 4-20 carbon atoms.
- 4. A gelling agent or thickener according to claim 3, wherein R and R'
 each are independently selected from the group of cycloalkyl groups having 416 carbon atoms.
 - 5. A gelling agent or thickener according to any of the claims 2-4 wherein R and R' are the same.
- 6. A gelling agent or thickener according to any of the preceding claims 20 being a N,N'-dicycloalkyl deglucaramide.
 - 7. A process for preparing a gelling agent or thickener according to any of the preceding claims, comprising oxidation of an aldose or pentose to form an aldaric or pentaric acid or a salt thereof, and condensation with a primary amine of the formula RNH₂ and a primary amine of the formula RNH₂.

20

- 8. A process according to claim 7, wherein the aldaric or pentaric acid or salt thereof is activated before condensation by lactonization and/or esterification.
- 9. A process according to any claim 7 or 8 wherein the aldose or pentose is chosen from the group of allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose and derivatives thereof.
 - 10. A process according to claim 9, wherein the derivative is a deoxy aldose or pentose, an ether, or an ester
- 10 11. A process for preparing a gel or thickening by mixing a gelling agent or thickener according to any one of claims 1-6 with a composition.
 - 12. A process according to claim 11 wherein the composition comprises an organic solvent.
- 13. A process according to claim 12 wherein the solvent is chosen from
 the group of aromatic and non-aromatic hydrocarbons, alcohols, ethers, esters,
 aldehydes, alkanoic acids, epoxides, amines, halogenated hydrocarbons, silicon
 oils, vegetable oils, phosphoric esters, sulfoxides, water and mixtures thereof.
 - 14. A process according to any one of claims 11-13 wherein the gelling agent or thickener is mixed with the composition in a ratio of between 0.01 and 50% by weight.
 - 15. A process according to any one of claims 13-14 wherein the mixture of the gelling agent or thickener and the composition is heated, or wherein a solution of the gelling agent or thickener is added to or sprayed into the composition.
- 25 16. A gel comprising a gelling agent or thickener according to any one of claims 1-6.
 - 17. A gel according to claim 16 obtainable by a process according to any one of claims 11-15.

Fig. 1

SUBSTITUTE SHEET (RULE 26)

ional Application No

INTERNATIONAL SEARCH REPORT PCT/NL 02/00151 A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C235/06 C07C235/14 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7C Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, WPI Data, EPO-Internal, BEILSTEIN Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X A. C. KURTZ ET AL: "Saccharolactone as a 1-3,5-9reagent for precipitating cartain amines" J. BIOL. CHEM. 1939, pages 693-99, XP001013068 cited in the application table I X P. D. HOAGLAND: "The Formation of 1-3,5-9Intermediate Lactones During Aminolysis of Diethyl Galactarate" CARBOHYDRATE RES., vol. 98, 1981, pages 203-8, XP001013051 cited in the application page 207, line 6 page 207, line 30 -page 208, line 6 -/--ΧI Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but fater than the priority date claimed in the art. '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report

Name and mailing address of the ISA

17 April 2002

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

24/04/2002

Seufert, G

Authorized officer

INTERNATIONAL SEARCH REPORT

In tional Application No FUI/NL 02/00151

	Retevant to claim No.
Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.
US 5 478 374 A (KIELY, DONALD E.) 26 December 1995 (1995-12-26) * table 1, last three examples, column 1, lines 38-42 *	1-3,5
CHEMICAL ABSTRACTS, vol. 114, no. 1, 7 January 1991 (1991-01-07) Columbus, Ohio, US; abstract no. 7009, CHEN, L. ET AL: "Molecular modeling of acyclic carbohydrate derivatives N,N'-dimethyl- and N,N'-dihexylxylaramide. Model compounds for synthetic poly(hexamethylenexylaramide)" XP002173886 * abstract and RN 130741-88-7 * abstract & ACS SYMP. SER. (1990), 430(COMPUT. MODEL. CARBOHYDR. MOL.), 141-51, 1990,	1-3,5
US 2 084 626 A (TABERN DONALEE L) 22 June 1937 (1937-06-22) examples 1,3,4	1,2,5-9
DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 6247081 (BRN) XP002173887 abstract & K. REHSE ET AL.: ARCH. PHARM., vol. 320, no. 11, 1987, pages 1155-61,	1,2,5
DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 3222706 (BRN) XP002173888 abstract & J. PRAKT. CHEM. <2>6, 1872, page 141	1,6-9
DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 1729539 (BRN) XP002173889 abstract & J. CHEM. SOC., 1957, page 805, 809	1,2,5-9
-/	
	US 5 478 374 A (KIELY, DONALD E.) 26 December 1995 (1995-12-26) * table 1, last three examples, column 1, lines 38-42 * CHEMICAL ABSTRACTS, vol. 114, no. 1, 7 January 1991 (1991-01-07) Columbus, Ohio, US; abstract no. 7009, CHEN, L. ET AL: "Molecular modeling of acyclic carbohydrate derivatives N,N'-dimethyl- and N,N'-dihexylxylaramide. Model compounds for synthetic poly(hexamethylenexylaramide)" XP002173886 * abstract and RN 130741-88-7 * abstract & ACS SYMP. SER. (1990), 430(COMPUT. MODEL. CARBOHYDR. MOL.), 141-51, 1990, US 2 084 626 A (TABERN DONALEE L) 22 June 1937 (1937-06-22) examples 1,3,4 DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 6247081 (BRN) XP002173887 abstract & K. REHSE ET AL.: ARCH. PHARM., vol. 320, no. 11, 1987, pages 1155-61, DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 3222706 (BRN) XP002173888 abstract & J. PRAKT. CHEM. <2>6, 1872, page 141 DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 1729539 (BRN) XP002173889 abstract & J. PRAKT. CHEM. <2>6, 1872, page 141 DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 1729539 (BRN) XP002173889 abstract & J. CHEM. SOC., 1957, page 805, 809

INTERNATIONAL SEARCH REPORT

In ional Application No

	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 1668843 (BRN) XP002173890 abstract & YAKUGAKU ZASSHI, 86, 1966, page 1057, 1062	1
X	DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 40270 (BRN) XP002173891 abstract & J. AMER. CHEM. SOC., vol. 71, 1949, page 4131	1,6-9
X	DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 3226566 (BRN) XP002173892 abstract & BULL. CHEM. SOC. CHIM. FR. <2> 48,, 1887, page 721	1,6-9
X	GB 781 255 A (GEIGY AG J R) 14 August 1957 (1957-08-14) * table page 2, examples 2 und 6 *	1,6-9
A	US 5 112 601 A (SEBAG HENRI ET AL) 12 May 1992 (1992-05-12) page 1, line 5 - line 37; claims	1-16

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

With regard to the very general expression "derivatives of aldaramide and pentaramide" the scope of claim 1 is considered unclear to such an extend that a complete search is not possible. The search has therefore be limited to compounds having the structure (I) of claim 2. However, despite this limitation the search revealed a very large number of documents relevant to the issue of novelty, which cannot possibly be cited. Search and search report can be considered complete for compounds of formula (I) wherein R and R' are unsubstituted linear, branched or cyclic alkyl groups having 4-20 carbon atoms (claims 3, 4 and 6). The documents cited against claims 1 and 2 are merely an arbitrary selection of the large number of novelty destroying documents.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Ir lonal Application No

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5478374	A	26-12-1995	US US	5329044 A 5473035 A	12-07-1994 05-12-1995
US 2084626	Α	22-06-1937	NONE		
GB 781255	A	14-08-1957	NONE		
US 5112601	Α	12-05-1992	FR DE GB US	2647445 A1 4016517 A1 2231871 A ,B 5247121 A	30-11-1990 29-11-1990 28-11-1990 21-09-1993