Öğrencinin Adı ve Soyadı:

Nosu:

NOT: Soruların cevapları yeterince açıklama içerecek şekilde detaylı olmalı; yapılan işlemler adım adım gösterilmelidir. Çözümlerinizi kendi el yazınızla yazınız ve her sayfada parafınız olacak şekilde tek bir pdf belgesi olarak sisteme yükleyiniz.

BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ FİZİK 2 DERSİ ÖDEV SORULARI

1) Şekilde görüldüğü gibi, bir elektron (yükü $q_e=-1,6.10^{-19}$ C ve kütlesi $m_e=9,1.10^{-31}$ kg) düzgün bir $\vec{E}=+500\,\hat{j}$ N/C elektrik alanlı bölgeye yatayla θ açısı yapacak şekilde $v_0=5.10^5$ m/s ilk hızıyla giriyor. Elektronun fırlatıldığı noktadan yatay olarak 2,72 mm uzaklıktaki bir hedefi vurması isteniyor. (a) Vuruşun sağlanacağı iki θ açısını, ve (b) her iki atış için de vuruşa kadarki geçen süreleri bulunuz.

2) Yarıçapı 2R olan yalıtkan bir kürede yük kürenin hacmine düzgün dağılmıştır. Bu kürenin merkezinden R kadar uzaklıkta elektrik alanın büyüklüğü $\left| \vec{E} \right| = k \frac{2q}{R^2}$ (merkezden dışarı yönde) olduğuna göre; (a) Kürenin hacimsel yük yoğunluğu ρ 'yu q ve R cinsinden bulunuz (π =3 alınız). (b) Kürenin merkezinden 5R uzaklıktaki A noktasındaki elektrik alanın büyüklüğünü k,q ve R cinsinden bulunuz. (c) A noktasına konulan -5q noktasal yüküne etki edecek elektriksel kuvveti k,q, R cinsinden bulunuz, cevabınızı birim vektörleri kullanarak yazınız.

3) Yandaki şekilde, aralarında 3 m mesafe bulunan $q_1 = 5 \mu C$ ve $q_2 = -10 \mu C$ yükleri, bulundukları yere sabitlenmişlerdir. Bu iki yük arasında, kütlesi m = 1 g olan $q_3 = 2 \mu C$ yükü A noktasından 10 m/ s hızla q_1 yönünde fırlatılıyor. q_1 yüküne en fazla ne kadar yaklaşacağını bulunuz?

4) Yandaki şekilde verilen l kenar uzunluklu karesel iletken yüzeyler arasında dielektrik madde yoktur (boşluğun elektriksel geçirgenliği ϵ_0 dır). Bu kondansatörün sığası C_0 =6 μ F'dır.

Şekil-1a'da verilen C_1 sığalı paralel plakalı düzlem kondansatörde, kenar uzunlukları ℓ ve 2ℓ olan <u>dikdörtgen</u> şeklindeki iletken yüzeyler arasındaki mesafe 2d olup, iletken yüzeyler arasındaki 2d kalınlığında ℓ /3 eninde olan hacme dielektrik sabiti K_1 =2 olan, 2d kalınlığında 2ℓ /3 enindeki hacmine de K_2 =4 olan malzemeler yerleştirilmiştir.

Şekil-1b'da verilen C_2 sığalı paralel plakalı kondansatörde de (kenarları ℓ ve 2ℓ olan <u>dikdörtgen</u> şeklindeki iletken yüzeyler arasındaki mesafe 2d'dir) iletken yüzeyler arasındaki boşluğun 4d/3 kalınlığında ℓ enindeki kısmına K_3 =6 olan dielektrik madde ve 2d/3 kalınlığında ℓ enindeki kımına da K_4 =3 olan bir dielektrik madde konulmuştur.

- (a) Şekil-1'de verilen dielektrikli kondansatörlerin sığalarını bulunuz?
- (b) Yüksüz C₀, C₁ ve C₂ kondansatörlerinden oluşan Şekil-2'deki devrede sadece S₁ anahtarı kapatılırsa devredeki eşdeğer sığa, devrede çekilen toplam yük, toplam potansiyel enerji, herbir kondansatörün yükü ve potansiyel farkı ne olur? Hesaplayınız.
- (c) C_0 ve C_1 kondansatörleri dolduktan sonra S_1 anahtarı açılıp aynı anda S_2 anahtarı kapatılırsa herbir kondansatörün yükü ve devredeki toplam potansiyel enerji ne olur?

ŞEKİL-1