BASIC INPUT

Declare a variable: a=5; ... Continue input on next line

Declare a matrix: Suppress output $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6];$

BASIC COMMANDS & TOOLS				
help fn doc fn	Invoke help on function fn	format short format long	Toggle output detail	
clc	Clear command window	tic	Start timer	
		toc	Stop timer	

COMPARISON OPERATORS		MATHEMATICAL OPERATORS				
== equal to		ELEM	ELEMENTWISE OPERATORS		LINEAR-ALGEBRAIC OPERATORS	
~=	not equal to	+	addition			
>	greater than	_	subtraction			
<	less than	• *	multiplication	*	multiplication	
>=	greater than or equal to	./	right division	/	right division B/A=B*inv(A)	
<=	less than or equal to	.\	left division	\	left division A\B=inv(A)*B	
LOGICAL OPERATORS		+	unary plus (positive)			
& &	and	-	unary minus (negative)			
	or	:	range			
~	unary not	.^	exponentiation	^	exponentiation	
xor	exclusive or (either)	.'	transpose	1	complex conjugate transpose	

ARRAY FUNCTIONS			
CREATION		MANIPULATION	
eye(n) eye(m,n)	$n \times n$ identity matrix $m \times n$ identity matrix	<pre>cat(dim,A,B)</pre>	Concatenate arrays A and B along dimension dim .
ones()	Matrix of 1s	horzcat(A,B)	Concatenate arrays horizontally
rand()	Random matrix [0,1)	vertcat(A,B)	Concatenate arrays vertically
zeros()	Matrix of 0s	reshape(A, x, y)	Arrange A into new shape $x \times y$
<pre>linspace(a,b,n)</pre>	Return linearly-spaced vector of n points between values a and b	MATHEMATICAL	
meshgrid(xv,yv)	Return 2 grids based on xv, yv	inv(A)	Invert matrix A
a:b	Span range from a to b	linsolve(A,b)	Return solution of A*x=b
a:d:b	Span from a to b in steps of d	eig(A)	Return eigenvalues of A

PROGRAMMING CONSTRUCTS			
for index = values statements	Execute code a specific number of times.	if expr statements	Execute alternate blocks of code based on logical
end	values may be a range or columns of an array.	elseif <i>expr</i> statements else	expressions <i>expr</i> .
while expr statements end	Execute statements repeatedly while <i>expr</i> holds true.	statements end	
break Terminate for o	or while loop	function Declare new	w function (type "help function")
continue Jump to next it	eration of for or while loop	return Return con	trol to invoking function

TRIGONOMETRIC & SPECIAL FUNCTIONS					
sin(x)	Sine	sinh(x)	Hyp. sine	sqrt(x)	Square root
cos(x)	Cosine	cosh(x)	Hyp. cosine	nthroot (x)	Real <i>n</i> th root of <i>x</i>
tan(x)	Tangent	tanh(x)	Hyp. tangent	besselj (nu,x)	Bessel function of the first kind of order nu
exp(x)	Exponential	log(x)	Natural logarithm (In)	erf(x)	Error function
expm1(x)	$\exp(x)-1$ (accurate for small x)	log10(x)	Logarithm base 10	erfc(x)	Complementary error function
abs(x)	Absolute value	log1p(x)	log(1+x) (accurate for small x)	gamma(x)	Γ function
(append "d" after any trigonometric name to yield result in degrees)				i	Imaginary unit

SYMBOLIC COMMA	ANDS		
sym('x')	Declare vars x as sym objs	int(f,x)	Indefinite integral of f w.r.t. x
syms x		int(f,x,a,b)	Definite integral of f w.r.t. x over
sym('#')	Convert number # to sym objs	, , , , ,	range a to b
sym('expr')	Convert expression expr to sym obj		
symvar(g)	List sym vars in g	diff(f,x)	Derivative of f w.r.t. x
formula(f)	Return formula for f	diff(f,x,n)	nth derivative of f w.r.t. x
double(x)	Calculate numerical value of x	solve(f, x)	Analytically solve equation f
Use the Symbolic Toolbox for anything more complicated than this.			

PLOTTING	
plot(x,y) plot(x,y,)	Plot 2D data, y versus x. "help plot" for full details.
fplot(@fn,rng)	Plot 2D function fn over range $rng = [lo hi]$
plot3(x,y,z)	Plot 3D data as line
surf(Z) surf(x,y,Z)	Plot 3D data as surface
ezsurf('fn')	Plot 3D function as surface
hold on hold off	Toggle persistence of previous plots

POLYNOMIALS	
poly(v)	Return coefficients of polynomial with roots \boldsymbol{v}
roots(v)	Return roots of a polynomial with coefficients \boldsymbol{v}
polyder(v)	Return derivative coefs of poly v
polyval(v,x)	Evaluate polynomial with coefficients v at value x
polyint(v)	Return integral coefs of poly v
polyfit(x,y,n)	Returns polynomial of n th degree which fits data in x,y best

NUMBER THEORY		
factor(x)	Return list of factors of x	
isprime(x)	Return primeness of \mathbf{x}	
primes(x)	Return list of primes from zero up to and including \boldsymbol{x}	

FILLING	
spline(x,y,xx)	Return cubic-spline interpolation of x, y at xx
<pre>interp2(X,Y,V, Xq,Yq)</pre>	Return 2D linear interpolation at Xq, Yq based on values V on grid X, Y

ORDINARY DIFFERENTIAL EQUATIONS [T,Y] = ode45(odefun,tspan,y0,options) T vector of time pts Y solution array odefun handle to right side of DEs tspan interval [t0, tf] y0 initial conditions options options = odeset('name1',value1,'name2',value2,...) options = odeset('RelTol',1e-8,'InitialStep',1e-5)