

CAS Practical Machine Learning Introduction

Supervised Learning

Prof. Dr. Jürgen Vogel (juergen.vogel@bfh.ch)

Supervised Learning

an algorithm learns from experience \mathbb{E} to solve some tasks \mathbb{T} with performance \mathbb{P} if \mathbb{P} improves with \mathbb{E}

Supervised Learning

- \blacktriangleright tasks \top that are solved: mapping a sample (based on its features) to
 - some output class
 - classification
 - e.g., Naïve Bayes (NB)
 - some data structure (typically a tree or network)
 - structured prediction
 - ▶ e.g., Bayesian networks
 - some ranking (in relation to other samples)
 - learning to rank
 - ► e.g., RankNet
- ▶ the ML algorithm infers the model from sample data E for which the task T has been solved with optimal performance P
- be the algorithm learns directly from the given sample data

Bayes' Theorem

- mathematical law about conditional probabilities
- piven two events A and B, then the conditional probability P(B|A) relates to the probability that event B occurs after A has occurred

- applies, e.g., when we are blindly drawing samples from a bag containing red and black balls without returning the balls
 - assume we start with 2 red and 2 black balls
 - \triangleright then P(red) = 2/4 = P(black) for the first draw
 - if we draw a red ball first, then we know upfront for the 2nd draw
 - \triangleright P(red|red) = 1/3 and P(black|red) = 2/3
- ▶ probability that two conditionally-related events P(A) and P(B|A) occur one after another: $P(A \cap B) = P(A) * P(B|A)$
 - ▶ e.g., probability to first draw red and then red again: P (red \cap red) = P(red) * P(red|red) = 2/4 * 1/3 = 1/6
- ▶ P(A|B), P(B|A) may be calculated as
 - P(A|B) = P (A ∩ B) / P(B) and P(B|A) = P(A ∩ B) / P(A) (for P(B) \neq 0 and P(A) \neq 0)
 - in the drawing example, P(red|red) = 2/4 * 1/3 / 2/4 = 1/3
- from this we can derive Bayes' theorem
 - \triangleright P(A|B) = P(B|A) P(A) / P(B)

Using Bayes' Theorem for Classification

- our events are: A = class c, B = sample x
- ▶ we calculate P(c|x)
 - the probability that a given sample belongs into a certain class
 - based on certain features of the sample
- given x, our classfier thus
 - 1. calculates P(c|x) for all c
 - 2. selects c with the highest P(c|x)

Using Bayes' Theorem for Classification

```
Calculating P(c|x) = P(x|c) P(c) / P(x)
```

- on the basis of a representative (and large) training set
 - i.e., all probabilities are estimated as relative frequencies
- \triangleright P(x|c) probability of a sample x given the class c
 - = $P(f_1, f_2, ..., f_n | c)$ where f_i are the sample's features
 - \blacktriangleright we assume that f_i are independent from each other given a class c
 - thus we can calculate $P(f_1, f_2, ..., f_n | c) = P(f_1 | c) * P(f_2 | c) * ... * P(f_n | c)$
 - ▶ 3 different NB variants for calculating P (f; |c)
 - ▶ Gaussian: f_i are continuous and $P(f_i|c)$ are normally distributed
 - ▶ multinomial: $P(f_i|c) = \#$ of times f_i occurs in c / # of times f_i occurs overall
 - Bernoulli: binary features
 - in general this independence assumption is wrong
 - within c certain features are often correlated
 - thus the name: naive bayes classifier (NB)
 - but the NB classifier performs well in practice despite this "naive" assumption
- P(c) probability of a class c
 - = # of samples within c / # of all samples
- \triangleright P(x) probability of a sample x
 - = 1 / # of samples
 - > is equal for all possible P(c|x) and thus irrelevant for the actual classification decision (just a scaling factor)

 Bern University of Applied Sciences © Jürgen Vogel

Example: Text Classifier with Words as Features

	Sample	Features	Class
Train	1	Chinese Beijing Chinese	cn
	2	Chinese Chinese Shanghai	cn
	3	Chinese Macao	cn
	4	Tokyo Japan Chinese	jp
Test	5	Chinese Chinese Tokyo Japan	?

- ightharpoonup P(c) = # of training samples within c / # of all training samples
 - P(cn) = 3/4
 - P(jp) = 1/4
- $P(x|c) = P(f_1|c) * P(f_2|c) * ... * P(f_n|c)$
 - # of words in cn: 8; in jp: 3
 - ightharpoonup P(Chinese|cn) = (5+1) / 8 = 6/8
 - P(Tokyo|cn) = (0+1) / 8 = 1/8
 - P(Japan|cn) = (0+1) / 8 = 1/8
 - ightharpoonup P(Chinese|jp) = (1+1) / 3 = 2/3
 - P(Tokyo|jp) = (1+1)/3 = 2/3
 - P(Japan|jp) = (1+1)/3 = 2/3
- P(c|x) = P(x|c) P(c) / P(x)
 - $P(cn|x_5) = 6/8 * 6/8 * 6/8 * 1/8 * 1/8 * 3/4 = 0.00494$
 - $P(jp|x_5) = 2/3 * 2/3 * 2/3 * 2/3 * 2/3 * 1/4 = 0.03$

Notes:

- P's for Beijing, Shanghai, and Macao are not listed
- in order to prevent that P(f_i|c) is 0, we always add 1
- this variant of NB is called multinomial because we add up the occurrences
- if we only note the occurrence with 0 or 1, we have Bernoulli NB

Underflow Prevention

- Multiplying many of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Summary Naive Bayes Classifier

Classify based on prior weight of class and conditional parameter for what each word says:

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \left[\log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} | c_{j}) \right]$$

Training is done by counting and dividing:

$$P(c_j) \leftarrow \frac{N_{c_j}}{N} \qquad P(x_k \mid c_j) \leftarrow \frac{T_{c_j x_k} + \alpha}{\sum_{x_i \in V} [T_{c_j x_i} + \alpha]}$$

Naive Bayes is not so Naive

Advantages

- Very fast learning and testing
 - basically just count feature occurrences
- Low storage requirements
- Optimal if the independence assumptions hold
- Very good in domains with many equally important features
- More robust to irrelevant features than many other learning methods
 - Irrelevant features cancel each other without affecting results
- A good dependable baseline classifier

Disadvantages

Often not the best classifier