Credit Card Default Prediction

A Supervised Machine Learning Approach

Introduction

- The increasing prevalence of credit card use has led to the problem of credit card default,
 impacting both financial institutions and consumers.
- Machine learning techniques can be used to predict credit card default based on various factors, providing early warning signals to financial institutions.
- The aim of our study is to develop a robust predictive model to identify potential credit card defaulters.

Problem Statement

- **Problem:** Credit card default results in significant losses for financial institutions and can lead to financial instability for consumers. Identifying potential defaulters in advance could help mitigate these effects.
- Objective: To predict the probability of a customer defaulting on their credit card payments using supervised machine learning algorithms.
- Approach: Develop and compare the performance of four machine learning models: Logistic Regression,
 C-Support Vector Classification, Random Forest, and Gradient Boosting (XGBoost).
- Evaluation: Models will be evaluated based on testing accuracy, efficiency (training runtime) and Area Under the Receiver Operating Characteristic (AUROC).

Dataset

- Available on the UC Irvine Machine Learning Repository
- Name: default of credit card clients
- Creator: I-Cheng Yeh
- DOI: <u>10.24432/C55S3H</u>
- Link: https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients

T-10-10	L	
Feat	tures	
	cai cs	

La	be	ı
Lu		

Feature

	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	default	PAY_LATE
0	20000	2	2	1	24	1	-2
1	120000	2	2	2	26	1	3
2	90000	2	2	2	34	0	0
3	50000	2	2	1	37	0	0
4	50000	1	2	1	57	0	-2
5	50000	1	1	2	37	0	0
6	500000	1	1	2	29	0	0
7	100000	2	2	2	23	0	-3
8	140000	2	3	1	28	0	2
9	20000	1	3	2	35	0	-10

default: 1 = yes; 0 = no.

Number of instances = 30000

LIMIT_BAL: Amount of the given credit.

SEX: 1 = male; 2 = female.

EDUCATION: 1 = graduate school; 2 = university; 3 = high school; 4 = others.

MARRIAGE: 1 = married; 2 = single; 3 = others.

AGE: in year.

PAY_LATE: Sum of past monthly payment penalty points. Measurement scale: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above.

Data Splitting, Feature Scaling and Class Balancing

```
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

# Apply feature scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Apply SMOTE to oversample the minority class
smote = SMOTE(random_state=1)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train_scaled, y_train)
```

Model Training

```
# Create a Logistic Regression Model
LR = LogisticRegression(random_state=1)

# Start the timer
start_time = time.time()

# Train the SVM classifier
LR.fit(X_train_resampled, y_train_resampled)

# Stop the timer and calculate the runtime
runtime = time.time() - start_time
```

```
# Create an SVM classifier
svm_classifier = SVC(kernel='rbf', C=0.1, gamma='scale', random_state=1)
# Start the timer
start_time = time.time()
# Train the SVM classifier
svm_classifier.fit(X_train_resampled, y_train_resampled)
# Stop the timer and calculate the runtime
runtime = time.time() - start_time
```

Model Training

```
# Create the Random Forest classifier
rf_classifier = RandomForestClassifier(random_state=1, max_depth= None, min_samples_split= 5, n_estimators= 300)
# Start the timer
start_time = time.time()
# Train the classifier on the resampled training data
rf_classifier.fit(X train_resampled, y train_resampled)
# Stop the timer and calculate the runtime
runtime = time.time() - start time
# Create an XGBoost classifier
xgb_classifier = xgb.XGBClassifier(random_state=1, learning_rate=0.1, max_depth=5, n_estimators=300)
# Start the timer
start time = time.time()
# Train the XGBoost classifier
xgb_classifier.fit(X_train_resampled, y_train_resampled)
# Stop the timer and calculate the runtime
runtime = time.time() - start time
```

Model Tuning using GridSearchCV

```
# Define the parameter grid for GridSearchCV
param grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [3, 4, 5],
    'learning_rate': [0.1, 0.01, 0.001]
# Create the GridSearchCV object
grid search = GridSearchCV(xqb classifier, param grid, scoring='accuracy', cv=5)
# Start the timer
start_time = time.time()
# Fit the GridSearchCV object to the resampled training data
grid search.fit(X train resampled, y train resampled)
# Stop the timer and calculate the runtime
runtime = time.time() - start time
# Get the best parameters and best score from the grid search
best_params = grid_search.best_params_
best score = grid search.best score
```

Results

Accuracy: 0.63 Classification		57 Log	gistic Regr	ession	Accuracy: 0.67		Randor	n Forest	
c tassii ication	precision	recall	f1-score	support	Classification	precision	recall	f1-score	support
0 1	0.86 0.33	0.63 0.64	0.73 0.44	4663 1337	0 1	0.77 0.20	0.83 0.15	0.80 0.18	4663 1337
accuracy macro avg weighted avg	0.60 0.74	0.64 0.64	0.64 0.58 0.67	6000 6000 6000	accuracy macro avg weighted avg	0.49 0.65	0.49 0.68	0.68 0.49 0.66	6000 6000 6000

Runtime: 0.04 seconds Runtime: 13.23 seconds

Accuracy: 0.77	₂₅ C-S	Support Ve	ector Class	sification (<mark>S</mark>	VI Accuracy: 0.80		XGBoost (C	<u> 3radient Bo</u>	oosting)
Classification		recall	f1-score	support	Classification	Report: precision	n recall	f1-score	support
0 1	0.85 0.49	0.86 0.48	0.85 0.49	4663 1337	0 1	0.83 0.59	0.93 0.35	0.88 0.44	4663 1337
accuracy macro avg weighted avg	0.67 0.77	0.67 0.77	0.77 0.67 0.77	6000 6000 6000	accuracy macro avg weighted avg	0.71 0.78	0.64 0.80	0.80 0.66 0.78	6000 6000 6000

Runtime: 54.46 seconds Runtime: 4.21 seconds

Model Selection

Model	Accuracy	Efficiency (Runtime)
Logistic Regression	0.6357	0.04 s
C-Support Vector Classification	0.7725	54.46 s
Random Forest	0.6773	13.23 s
XGBoost (Gradient Boosting)	0.8013	4.21 s

→ Clearly, the gradient boosting method with XGBoost performed the best in term of both accuracy (0.8013) and efficiency (4.21 s).

Further Validation using XGBoost

Accuracy: 0.80				
Classification				
	precision	recall	f1-score	support
0	0.83	0.93	0.88	4663
1	0.59	0.35	0.44	1337
accuracy			0.80	6000
macro avg	0.71	0.64	0.66	6000
weighted avg	0.78	0.80	0.78	6000

Runtime: 4.21 seconds

Further Validation using XGBoost

Feature: PAY_LATE, Importance: 0.43145278096199036 Feature: LIMIT_BAL, Importance: 0.24200183153152466

Feature: AGE, Importance: 0.2093764990568161

Feature: EDUCATION, Importance: 0.04513275995850563 Feature: MARRIAGE, Importance: 0.038681838661432266

Feature: SEX, Importance: 0.033354319632053375

Further Validation using XGBoost

