PROJECT TIME SERIES FORECAST ROSE WINE

TABLE OF CONTENT

Content	Pages
1. Read the data as an appropriate Time Series data and plot the data.	6
2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.	7
3. Split the data into training and test. The test data should start in 1991	8
4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression,naïve forecast models and simple average models. should also be built on the training data and check the performance on the test data using RMSE.	9
5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.	14
6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.	15
7. Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.	16
8. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.	17
9. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales. Please explain and summarize the various steps performed in this project. There should be proper business interpretation and actionable insights present	17

List of Figure and Table

Figure No.	Content	Pages
1	Dataset	6
2	Description of data	6
3	Info of data set	6
4	Time series plot	6
5	Boxplot of year sales	7
6	Boxplot of monthly sales	7
7	Monthly time series	7
8	Monthly sales over year	7
9	Monthly sales over year table	7
10	Additive decomposition	8
11	Multiplication decomposition	8
12	Head of train and test data	9
13	Tail of train and test data	9
14	Train and test data	9
15	Sample forecast data	9
16	Plot of forecasted sales in LD Model	10
17	Forecasted value table	10
18	Plot of forecasted sales in Naive model	10
19	Forecasted value table	10
20	Plot of forecasted sales in Simple average model	10
21	Forecasted value table	11
22	Plot of forecasted sales in SES	11
23	Forecasted value table	11
24	Plot of forecasted sales in SES optimized alpha	11

Figure No.	Content	Pages
25	Plot of forecasted sales in SES optimized alpha	12
26	Forecasted value table	12
27	Plot of forecasted sales in DES	12
28	Forecasted value table	12
29	Plot of forecasted sales in DES optimized alpha, beta	12
30	Triple Exponential Smoothing with Additive trend & Additive seasonality	12
31	Triple Exponential Smoothing with Additive trend & Multiplication seasonality	12
32	Triple Exponential Smoothing with Multiplication trend & Additive seasonality	12
33	Triple Exponential Smoothing with Multiplication trend & Multiplication seasonality	12
34	Dickey Fuller test on whole time series	13
35	Dickey Fuller test on differenced whole time series	13
36	Plot of differenced whole time series	13
37	Autocorrelation plot of whole time series	13
38	Autocorrelation plot of differenced whole time	13
39	Partial Autocorrelation plot of whole time series	13
40	Partial Autocorrelation plot of differenced whole time series	13
41	Stationarity of Train Dataset	13
42	Stationarity of differencing Train Dataset	13
43	Differenced Time series	13
44	Summary automated arima model	13
45	Plot of forecasted sales automated arima model	13
46	Diagnostic automated arima model	14
47	Order based on AIC	14
48	Plot of forecasted sales automated sarima model	15
49	Diagnostic automated sarima model	15

Figure No.	Content	Pages
50	Summary automated sarima model	15
51	Order based on AIC	15
52	Summary of all models	16
53	Forecast with 95% confidence to 12 month in future	17
54	Forecast with 95% confidence to 12 month in future values	17

Problem 2: Rose Wine

For this particular assignment, the data of different types of wine sales in the 20th century is to be analyzed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyze and forecast Wine Sales in the 20th century.

1. Read the data as an appropriate Time Series data and plot the data.

Figure 1: Dataset

Figure 2: Description of data

Figure 4: Info of data set

Figure 3: Null value

Figure 5: Time series plot

Inference

- The data type of first column YearMonth is datetime64 and rose is int64, first column is converted to index column
- There are two columns with 187 rows
- Rose column represents sales of rose wine
- 2 null value in the data, it is missing month value is taken the average of consecutive year I.e July 94 value is the average of July 93 & July 95
- From the description of the data, min value is 28, max value is 267.

- From plot of time series observed that data has seasonality and trend, and it is decreasing
- 2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Figure 6: Boxplot of year sales

Figure 7: Boxplot of monthly sales

Figure 7: Monthly time series

Figure8: Monthly sales over year

Inference

- From fig 6, Boxplot of year sales indicates the presence of outlier and presence of trend (downwards)
- From Figure 7 Boxplot of monthly sales increasing gradually from Jan to Dec
- Figure 7: Monthly time series, the sales of wine increasing gradually from Jan to Dec

Figure 10: Additive decomposition

- Decreasing trend is observed
- Yearly Seasonality is present is data.
- Residual has no pattern

Figure 11: Multiplication decomposition

- Decreasing trend is observed
- Yearly Seasonality is present is data. Sales reaches maximum in december every year
- Residual has no pattern

3. Split the data into training and test. The test data should start in 1991.

The data is split to training and test data, and test data split starts at 1991 Train has 132 records and 55 records...

First few rows of Training Data	First few rows of Test Data
Rose	Rose
YearMonth	YearMonth
1980-01-01 112.0	1991-01-01 54.0
1980-02-01 118.0	1991-02-01 55.0
1980-03-01 129.0	1991-03-01 66.0
1980-04-01 99.0	1991-04-01 65.0
1980-05-01 116.0	1991-05-01 60.0
Last few rows of Training Data	Last few rows of Test Data
Rose	Rose
YearMonth	YearMonth
1990-08-01 70.0	1995-03-01 45.0
1990-09-01 83.0	1995-04-01 52.0
1990-10-01 65.0	1995-05-01 28.0
1990-11-01 110.0	1995-06-01 40.0
1990-12-01 132.0	1995-07-01 62.0

Fig 12: Head of train and test data Fig 13: Tail of train and test data

Fig 14: Plot of train and test data

4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression,naïve forecast models and simple average models. should also be built on the training data and check the performance on the test data using RMSE.

Model 1: Linear Regression

Fig 15: train and test data Fig 16: Sample forecast data Fig 17: Plot of forecasted sales in LD Model

- The data is split accordingly and numerical time instance is generated
- Head and tail is shown in fig 15
- Fig 16 is the forecasted value

- Figure 17 us the Plot of forecasted sales in LD Model, green line indicated LD which is not matching with actual value
- RMSE calculated is 15.3

Model 2: Naive Approach

Fig 18: Forecasted value table

Figure 19: Plot of forecasted sales in Naive model

- The forecast value is same throughout
- Forecasted value is a straight line and not matching with actual value
- RMSE is 79.28

Model 3: Simple average approach

Fig 20: Forecasted value table Figure 21: Plot of forecasted sales in Simple average model

- The forecast value is same throughout
- Forecasted value is a straight line and not matching with actual value
- RMSE is 53.02

Model 4: Simple Exponential Smoothing

Fig 22: Forecasted value table Figure 23: Plot of forecasted sales in SES

- The model doesnt consider trend and seasonality
- The forecasted value is same throughout

- Forecasted value is a straight line and not matching with actual value
- RMSE is 36.3

Optimizing Alpha based on Test RMSE

- Different values are used to find the lowest RMSE. From it best alpha is 0.1
- Forecasted value is a straight line and not matching with actual value
- RMSE is 36.4

Fig 24: Forecasted value table

Figure 25: Plot of forecasted sales in SES optimized alpha

Model5: Double Exponential Smoothing

Fig 26: Forecasted value table

Figure 27: Plot of forecasted sales in DES

- Fig 28: Forecasted value table Figure 29: Plot of forecasted sales in DES optimized alpha, beta
 - This model has trend but no seasonality the rmse without optimisation is 15.3
 - After optimizing alpha and beta between 0 to 1. The best model is optimised, RMSE: 36.4

Fig 30: Triple Exponential Smoothing with Additive trend & Additive seasonality

Fig 31: Triple Exponential Smoothing with Additive trend & Multiplication seasonality

Fig 32: Triple Exponential Smoothing with Multiplication trend & Additive seasonality Fig 33: Triple Exponential Smoothing with Multiplication trend & Multiplication seasonality

- RMSE of Triple Exponential Smoothing with Additive trend & Additive seasonality .. 23.0
- RMSE of Triple Exponential Smoothing with Additive trend & Multiplication seasonality..1.6
- RMSE of Triple Exponential Smoothing with Multiplication trend & Additive seasonality..19.8
- RMSE of Triple Exponential Smoothing with Multiplication trend & Multiplication seasonality..27.2

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

Fig 34 Dickey Fuller test on whole time series Fig 35 Dickey Fuller test on differenced whole time series

Fig 36:Plot of differenced whole time series

Fig 37:Autocorrelation plot of whole time series Fig 38:Autocorrelation plot of differenced whole time series

Fig 39:Partial Autocorrelation plot of whole time series Fig 40: Partial Autocorrelation plot of differenced whole time series

Fig 41: Stationarity of Train Dataset Fig 42: Stationarity of differencing Train Dataset

Fig 43: Differenced Time series

Inteference

- ADF is a test to find if the model is stationary or not
- Ho states model is non stationary, H1 states model is stationary
- If alpha is <=0.05 then null value can be disproved
- p is 0.219 training dataset is non stationary. Take differencing on training set
- p is 0.0 training dataset is stationary at one level differenced training dataset

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

The arima model is created with p = 0 to 3, q = 0 to 3, d = 1

Fig 44: summary automated arima model Fig 45 Plot of forecasted sales automated arima model

Fig 46:diagnostic automated arima model Fig 47:Order based on AIC

- From this observed actual not matching with forecast, it is thus not a good model for forecasting.
- RMSE is 36.45
- Based on the Lowest AIC the best parameter is (2,1,3)

SARIMA Model

Following value p between 0 to 3, q between 0 to 3, d between 0 to 1

- From this observed actual not matching with forecast, it is thus not a good model for forecasting.
- RMSE is 16.67
- Based on the Lowest AIC the best parameter is (2, 1, 3, 6) AIC = 889.2

Fig 48: Plot of forecasted sales automated sarima model Fig 51::Order based on AIC

Fig 49:diagnostic automated sarima model Fig 50: summary automated sarima model

7. Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

	Test RMSE
Triple Exponential Smoothing Forecast with Multiplicative Trend & Multiplicative Seasonality Alpha =0.2, Beta=0.7,Gamma=0.2	9.053
	9.266
Triple Exponential Smoothing Forecast with Additive Trend & Multiplicative Seasonality smoothing_level=0.1,smoothing_trend=0.2,smoothing_seasonal=0.1	
Triple Exponential Smoothing Forecast with Additive Trend & Additive Seasonality	14.158
Linear Regression	15.303
Double Exponential Smoothing Forecast	15.305
Triple Exponential Smoothing Forecast with Multiplicative Trend & Additive Seasonality Alpha=0.1, Beta=0.8,Gamma=0.2	15.640
forecast_SARIMA_auto	16.673
Triple Exponential Smoothing Forecast with Additive Trend & Multiplicative Seasonality	18.681
Triple Exponential Smoothing Forecast with Multiplicative Trend & Multiplicative Seasonality	19.876
Triple Exponential Smoothing Forecast with Multiplicative Trend & Multiplicative Seasonality	19.876
Triple Exponential Smoothing Forecast with additive trend & additive seasonality Alpha =0.1, Beta=0.4,Gamma=0.3	23.029
Triple Exponential Smoothing Forecast with Multiplicative Trend & Multiplicative Seasonality Alpha =0.1111, Beta=0.0494, Gamma=0.3622	27.222
Simple Exponential Smoothing Forecast	36.382
Simple Exponential Smoothing Forecast with alpha =0.1	36.413
Double Exponential Smoothing Forecast Alpha =0.665, Beta=0.0001	36.449
forecast_ARIMA_auto	36.457
Simple Average	53.030
Naive Forecast	79.282

Fig 51: summary of all models

From the above the table, the best model is the triple exponential smoothing with additive trend and multiplicative seasonality with the parameters with alpha = 0.4, beta =0.1 and gamma = 0.2

8. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Fig 52: Forecast with 95% confidence to 12 month in future fig Fig 53: Forecast with 95% confidence to 12 month in future values

Fig 53: Forecast with 95% confidence to 12 month in future table

Best model is the triple exponential smoothing with additive trend and multiplicative seasonality with the parameters with smoothing_level=0.2,smoothing_trend=0.7,smoothing_seasonal=0.2

- RMSE is 9.05
- The value is forecasted to 12 month interval with this model

- 9. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.
 - Best model is the triple exponential smoothing with additive trend and multiplicative seasonality with the parameters with smoothing level=0.2,smoothing trend=0.7,smoothing seasonal
 - RMSE is 9.05
 - Total wine sales follows a similar downwards pattern overall
 - Sales of wine is highest during the month of december
 - Sales of wine is expected to have few outlier
 - Sales increase gradually from aug to dec

Measures to increase sales:

- During peak season maximum stock should be available for more sales
- Find out the reason why sales is less in other months
- Since the trend is downwards action should be taken to improve some aspects to improve sales