Module 2: Transmission Lines

Lecture 4 : Physical Interpretation of Voltage & Current Solution

Objectives

In this course you will learn the following

- Demonstration of wave motion.
- Forward and backward travelling waves.
- Interpretation of the propagation constant γ .
- Attenuation and phase constants and their units.
- Definition of wavelength and its relation to the phase constant.
- Characteristic impedance of the transmission line.
- Relation between voltage and current for forward and backward travelling waves.

Forward Travelling Wave

Combining now the space-time we get what is called the 'Wave Motion'. See Figure. The voltage pattern appears travelling from left to right.

The first term of the voltage colution and $-i \hat{g}_{i}$ represents a voltage travelling wave in + and disc

The first term of the voltage solution $V^+e^{-\alpha x}e^{j\omega t-j\beta x}$ represents a voltage travelling wave in +x direction (left to right), and V^+ gives the amplitude of the wave at x=0. We call this wave, the 'Forward Travelling Wave '

Backward	Travell	ing	Wave
----------	---------	-----	------

	Similarly, the second term in the voltage solution $V = e^{\alpha x} e^{j\alpha t + j\beta x}$ gives a travelling wave but travelling in negative x		
direction (right to left) as shown in Figure V gives the amplitude of the wave at $x=0$. This wave we			
	'Backward Travelling Wave' .		

Current Travelling Waves

- The first term of the current solution $I^+e^{-\alpha x}e^{j\omega t-j\beta x}$ represents a current travelling wave in +x direction (left to right), and I^+ gives the amplitude of the wave at x=0. We call this wave, the 'Forward Current Travelling Wave '
- Similarly, the second term in the current solution $I^-e^{\alpha x}e^{j\omega t+j\beta x}$ gives a travelling wave but travelling in negative 'x' direction (right to left) as shown in Figure. I^- gives the amplitude of the at x=0. This wave we call the 'Backward Current Travelling Wave'.

Important Conclusion

- The Voltage and the Current exist in the form of waves on a transmission line.
- In general, we can say that in a circuit, any time varying voltage and/or current always exist in the form of waves, although the wave nature may not be evoked at low frequencies where the transit time effects are negligible.

Complex Propogation Constant

The propagation constant γ in general is complex

$$\gamma = \alpha + j\beta$$

The wave amplitude varies as $e^{-\alpha x}$. That is α denotes the exponential decay of the wave along its direction of propagation. α therefore is called the 'Attenuation Constant' of the line. It has the unit Neper/m. For α =1 Neper/m, the wave amplitude reduces to 1/e of its initial value over a distance of 1m.

Note

In voltage/current expressions, α should always be in Neper/m. Therefore if α is given in dB/m it should be converted to Neper/m before it is used in the voltage/current equations.

The wave phase has two components

- Time phase at
- Space phase ± βx

The parameter β gives the phase change per unit length and hence called the 'Phase Constant' of the line. Its units are Radian/m.

Now for a wave the distance over which the phase changes by 2π is called the 'wavelength' (\mathcal{X}) . Therefore the phase change per unit length

$$\beta = \frac{2\pi}{\lambda}$$

Characteristic Impedance of Transmission Line

Substituting the voltage and current solutions in the differential equations, and noting that the equations must be satisfied by two waves indepentely we get,

$$\begin{split} \frac{V^+}{I^+} &= \frac{R+j\omega L}{\gamma} = \sqrt{\frac{R+j\omega L}{G+j\omega C}} \\ \frac{V^-}{I^-} &= -\frac{R+j\omega L}{\gamma} = -\sqrt{\frac{R+j\omega L}{G+j\omega C}} \end{split}$$

We define a parameter called the 'Characteristic Impedance' of the line as

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

Note

- The ratio of Forward Voltage and Current waves is always Z_0 , and the ratio of the Backward Voltage and Current waves is always $-Z_0$.
- The parameters γ and Z_0 completely define the voltage and current behaviour on a transmission line. These two parameters are related to R, L, G, and C, and the frequency of the signal. In transmission line analysis knowledge of γ and Z_0 is adequate and the explicit knowledge of R, L, G, C is rarely needed.

Module 2: Transmission Lines

Lecture 4 : Physical Interpretation of Voltage & Current Solution

Recap

In this course you have learnt the following

- Demonstration of wave motion.
- Forward and backward travelling waves.
- Interpretation of the propagation constant γ .
- Attenuation and phase constants and their units.
- Definition of wavelength and its relation to the phase constant.
- Characteristic impedance of the transmission line.
- Relation between voltage and current for forward and backward travelling waves.