APPENDIX B

Armature Reaction

Flux produced by armature winding (when current I_a flows) reacts with the flux set up by the rotor field, causing a redistribution of the total resultant flux. Such an interaction between the two fluxes is called <u>armature</u> reaction \rightarrow This affects the terminal voltage V.

Let us examine a sequence of events that will take place when the generator delivers a load at <u>unity pf</u>.

- (a) If $\phi_F = \text{rotor flux}$ Then E must lag ϕ_F by 90° (stated before)
- (b) I_a is in phase with V (UPF load)
- (c) I_a produces a flux ϕ_{ar} which is in phase with I_a . Effective flux $\phi_T = \phi_F + \phi_{ar}$.
- (d) Flux ϕ_{ar} produces an EMF E_{ar} in the armature winding.

 $E_{ar} = armature \ reaction \ EMF$, and it lags ϕ_{ar} by 90°.

$$\Rightarrow$$
 Effective generated voltage $E_T = E + E_{ar} \Rightarrow E = E_T - E_{ar}$

(e) Terminal voltage V is obtained by subtracting I_aR_a & jI_aX_l drops from E_T .

$$\Rightarrow$$
 $E_T = I_a R_a + j I_a X_l + V$

Note from the phasor diagram that

- the armature reaction has reduced the effective flux per pole (from ϕ_F to ϕ_T) at UPF load.
- armature reaction has reduced the terminal voltage.

Equiv. CKT. showing the induced EMF in the armature winding due to the armature reaction.

Phasor diagram showing effect of armature reaction when <u>load is UPF load</u>. ($\phi_T < \phi_F$, V < E)

Lagging PF load ($\phi_T < \phi_F$, V < E)

Leading PF loads ($\phi_T > \phi_F$, V > E)

Since E_{ar} lags I_a (& ϕ_{ar}) by 90°, we can also express it as

$$E_{ar} = -jI_aX_{ar}$$
 where $X_{ar} =$ armature reaction reactance

Since both $X_{ar} \& X_l$ are present all the time & it is rather difficult to separate them, we combine them together, and

 $X_s = X_{ar} + X_l$ where X_s is called <u>synchronous reactance</u>.

$$X_s \gg R_a$$
 (usually)

 Z_s = synchronous impedance per phase = $R_a + iX_s$

$$\therefore E = I_a R_a + j X_s I_a + V$$
$$\Rightarrow V = E - I_a Z_s$$

Neglecting R_a , $Z_s = j(X_{ar} + X_l)$