Lecture 8: December 17,2094 Polynomial interpolation 2 dota $P_{1}(x) = a + bx$ Polynomial of degree 1 $P_{0}(x) = a$ $P_2(x) = a + bx + cx^2$ $P_3(x) = a + bx + cx + dx$

Ex:
$$(1,2)$$
, $(2,5)$, $(4,1)$, $(5,4)$

P(x) = $a + bx + cx^2 + dx^3$
 $a + b \cdot 1 + c \cdot 1 + d \cdot 1 = 2$
 $a + b \cdot 2 + c \cdot 2 + d \cdot 2 = 5$
 $a + b \cdot 4 + c \cdot 4 + d \cdot 4 = 1$
 $a + b \cdot 5 + c \cdot 5 + d \cdot 5 = 4$

1 1 2 13 $a = 1$

1 2 3 $a = 1$

1 1 2 3 $a = 1$

1 2 3 $a = 1$

1 2 3 $a = 1$

1 3 $a = 1$

1 4 4 4 5 5 5 5 6 6 7 $a = 1$

Newton's form of polynomial

Ex: $(1, 2)$, $(2, 5)$

1 $y = mx + c$

$$= 2x + (-1)$$

1 $y = 3x - 1$

Fx: (1, 2), (2, 5)

P₁(x) = a + bx

a + 1.b = 2

a + 2.b = 5

a =
$$\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \begin{bmatrix} 2 \\ 5 \end{vmatrix}$$

a = $\begin{vmatrix} 1 & 5 \\ 1 & 2 \end{vmatrix} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{2}{5}$

P₁(x) = $\frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{4-5}{5} = 1$, $b = \begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix} = 5-2=3$

P₁(x) = $\frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{4-5}{5} = 1$, $b = \begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix} = 5-2=3$

(x₀, y₀), (x₁, y₁)

P₁(x) = $\frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{4-5}{5} = 1$, $b = \begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix} = 5-2=3$

(x₀, y₀), (x₁, y₁)

P₁(x) = $\frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{4-5}{5} = 1$, $b = \begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix} = 5-2=3$

(x₀, y₀), (x₁, y₁)

P₁(x) = $\frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \begin{vmatrix} a \\ 1 & 2 \end{vmatrix} = \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{1} = \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{5} \cdot \frac$

Ex:
$$(1, 2)$$
, $(2, 5)$
 $P_1(x) = a + (x - 1) b$
 $a + (1 - 1) b = 2 \Rightarrow a = 2$
 $2x^2 + (2 - 1) b = 5$
 $b = \frac{5 - 2}{2 - 1} = 3$
 $2x + (2 - 1) b = 5$
 $2x + (2 - 1) b + (2 - 1) b$

 $(6,97 \Rightarrow)$ 5 + (6-2)b+0=4, $b=-\frac{1}{4}$ $(8,5) \Rightarrow$ 5 - $\frac{1}{4}(8-2)+(8-2)(8-6)c=5$

Ex: (1, 2), (2, 5), (4, 3)

Newton's divided difference. f(x) $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ f[x] = f(x)(x3,y3) $f[x] = f(x) = y_0$ $f[x_0,x_1] = f[x_1] - f[x_0]$ 13+ difference $f[x_0, x_1, x_2] = f[x_1, x_2] - f[x_0, x_1]$ $f[x_0, x_1, x_2, x_3] = f[x_1, x_2, x_3] - f[x_0, x_1, x_2]$ Newton's divided difference table $\begin{array}{ccc} x_o & f[x_o] \\ x_1 & f[x_1] \end{array} \rightarrow f[x_o, x_1]$ f(x), f(x)

Ex:
$$(1, 2)$$
, $(\frac{x}{2}, \frac{y}{5})$, $(\frac{x_{2}, y_{2}}{4})$
 \times_{0} f[x_{0}] $+$ [x_{0}, x_{1}] $+$ [x_{0}, x_{1}, x_{2}] $+$ [x_{0}, x_{1}, x_{2}] $+$ [x_{1}, x_{2}]

$$(x_{0}, y_{0}), (x_{1}, y_{1}), (x_{2}, y_{2}), \dots (x_{n}, y_{n})$$

$$P_{n}(x) = a + a_{1}x + a_{2}x^{2} + \dots + a_{n}x^{n}$$

$$\text{standard form of polynomial}$$

$$P_{n}(x) = a + (x - x_{1})a_{1} + (x - x_{0})(x - x_{1})a_{2} + \dots$$

$$+ (x - x_{0})(x - x_{1}) \dots (x - x_{n-1})a_{n}$$

$$P_{n}(x) = f[x_{1}] + (x - x_{2})f[x_{2}, x_{1}] + (x - x_{1})(x - x_{1})f[x_{2}, x_{1}, x_{2}]$$

$$+ \dots + (x - x_{1})(x - x_{1}) \dots (x - x_{n-1})f[x_{2}, x_{1}, x_{2}, \dots, x_{n-1}, x_{n}]$$