

We Must Take the Next Steps Towards Safe, Routine Space Travel

SP/CF
TRANSPORTATION
DAY

6 1/2 Generations of Airplanes in a Century

Wright Flyer (1903)

Boeing 777 (Today)

1st Generation Reusable Launch Vehicle (1981 - Today)

Enterprise Goals

GOALS: Earth-to-Orbit

- ◆ Within 10 years,
 - Increase the safety by two orders of magnitude
 - Reduce the cost to NASA transportation of placing payloads in orbit by one order of magnitude.
- ◆ Within 25 years,
 - Increase the safety by four orders of magnitude.
 - Reduce the cost of placing payloads in orbit by two orders of magnitude.

GOALS: In-Space Transportation

- ◆ Within 15 years,
 - A factor of ten reduction in the cost of Earth orbital transportation.
 - A factor of two to three reduction in propulsion system mass and travel time required for planetary missions.
- ◆ Within 25 Years,
 - Enable bold new missions to the edge of the solar system and beyond by reducing travel times by one to two orders of magnitude.

Generations of Reusable Launch Vehicles

Today: Space Shuttle

1st Generation RLV

- ◆ Orbital Scientific Platform
- ◆ Satellite Retrieval and Repair
- ◆ Satellite Deployment
- ◆ Space Transportation
- ◆ Rendezvous, Docking, Crew Transfer
- ◆ Other on-orbit operations
- ◆ ISS Orbital Scientific Platform
- ◆ 10x Cheaper
- ◆ 100x Safer

2010: 2nd Generation RLV

2025: 3rd Generation RLV

- ◆ New Markets Enabled
- ◆ Multiple Platforms / Destinations
- ◆ 100x Cheaper
- ◆ 10,000x Safer

2040: 4th Generation RLV

- ◆ Routine Passenger Space Travel
- ◆ 1,000x Cheaper
- ◆ 20,000x Safer

Space Transportation Across NASA

Ames Research Center

- Non Metallic Thermal Protection Systems
- Computational Tools
- Information Systems
- Rocked Propulsion Systems

Stennis Space Center

- Vehicle Definition

Kennedy Space Center

- Payload and Launch Operations
- Testing Facility
- IV&M
- Cryo Testbed

Dryden Flight Research Center

- Atmospheric Flight Operations

Johnson Space Center

- Crew and Passenger Systems

Langley Research Center

- Airframe Design
- Integrated Thermal Structures
- Materials Research
- Combined Cycle Propulsion
- In-Space Propulsion Concepts
- Microelectromechanical Sensors

Glenn Research Center

- Power Systems
- Advanced Propellant
- Propulsion Materials
- Combined-Cycle Propulsion

Marshall Space Flight Center (Lead Center)

- System Integration
- Propulsion Systems
- Avionics Systems
- Design and Integration
- Advance Manufacturing
- Combined-Cycle Propulsion

Air Force Research Lab

- System Integration
- Propulsion Systems
- Avionics Systems
- Combined-Cycle Propulsion

Three Tiered Implementation Approach for Future Space Transportation Technology

"We cannot foresee the ingenuity that companies, established or entrepreneurial, will bring to the building of new industries in the 21st century based upon the Highway to Space"

Interstellar Propulsion Research

RLV Focused

In-Space Transportation

Space Shuttle Upgrades

Develop a Comprehensive, Agency Level Space Transportation Plan That Will Enable NASA's Strategic Plan

- ♦ **Focus on Safety, Reliability, Cost and NASA mission requirements** while making maximum use of US aerospace industry capabilities and commercial market leverage
- ♦ **Enable a competition at an acceptable level of risk** for a 2nd generation Reusable Launch Vehicle (RLV) by 2005 which could include Shuttle-derived and new design RLV concepts
- ♦ **Secure NASA's future through investments in 3rd generation RLV technologies for Earth-to-orbit and in-space applications**
- ♦ **Ensure Continued Safe Access to Space through Space Shuttle Safety Upgrades until a replacement alternative has been demonstrated**

Commercial
Space

Timeline for Addressing NASA's Needs

Significant 2nd Generation Technology Drivers

- ◆ **Crew Escape and Survival**
 - Detection, separation, ascent/descent
- ◆ **Operable, Long-life H₂/O₂ and RP/O₂ Engines**
 - 200 mission life, 100 missions to overhaul
- ◆ **Long life, lightweight integrated airframe**
 - Critical integrated cycle testing (500 missions)
- ◆ **Advanced TPS, IVHM, and Operations**
 - Quick turn vehicle with intelligent data analysis
- ◆ **Ejector Ramjet**
 - Improved performance margin
- ◆ **SHARP Leading Edges** *Cutting Edge for 2nd Generation*
 - Global crossrange from orbit

Significant Commonality Between Shuttle Derived and New Design RLV Needs

Example Large Scale Ground Demonstrations

LOx/LH₂ Engine Prototypes

LOx/Hydrocarbon
Engine Prototype

Ejector Ramjet Testbed

Crew Escape Demonstrations

Integrated Airframe
Life Cycle Testing

Large Scale Advanced Mfg

 SP/CE
TRANSPORTATION
DAY

Example Pathfinder Demonstrations

Additional X-34 and
X-37 Experiments
And Demonstrations

Space Shuttle Experiments

Reusable First Stage

Rocket Based Combined Cycle Experiments

SHARP Materials /
High Lift/Drag Experiments

Crew Escape Demonstrations
(Narrow Envelope / Subscale)

Rapid Operations
Demonstrations

3rd Generation Technology Drivers

♦ Dramatic Propulsion Performance Improvement

- RBCC/TBCC - Dual Mode Ramjet/Scramjet
- PDE - Pulse Detonation Rocket Engine / Combined Cycle Engine

♦ Low Drag aerodynamic structures

- SHARP ultra-high temperature ceramics
- Integrated smart/adaptive thermal-structures
- Morphing structures
- Drag modulation through electromagnetics and flow physics

♦ Adaptive Intelligent Systems

- Adaptive, self-diagnosis, self-healing thermal protection systems
- Structurally integrated, wireless, micro/nano sensors and avionics
- Regenerative sensors and system healing
 - Autonomous, adaptive control

♦ Spaceport Range Operations

Systems Approach to Safety, Reliability and Cost

ASTP Organization is Driven By Goals

Overview

2000 PMC

64238

RLV Focused Project

Technical Challenges

2000 PMC

Composite Tank and Structures (LaRC)

- Materials and Manufacturing Processes

Propellant Densification (GRC)

- Reduced GLOW

Propulsion (MSFC)

- Light weight, High-performance, Increased Safety Margins and Manufacturing

Power (GRC)

- High Power Density and Reliability

TPS and Hot Structures (ARC/LaRC)

- Materials, Waterprooing, and Manufacturing

National Center for Advanced Manufacturing

Manufacturing Technology Development

2000 PMC --

RLV Focused Project

- *Provide World Class Manufacturing Capability Enabling Future Space Transportation Systems*
- *Strengthen U.S. Competitiveness in Aerospace/Commercial Markets*
- *Create Federal, State, University and Industry Mfg. Partnerships*
- *Enhance Educational Development*
- *Effect a cultural change in Manufacturing to Intelligent-Collaborative Environment*

Large Scale Propulsion Testbeds/Demonstrations

RLV Focused Project

2000 PMC

Two Focused Investments

Upperstage Technology Project

2000 PMC

◆ Peroxide/RP Propulsion

AR2-3 Test Program
Boeing Rocketdyne SAA

Advanced Catalysts,
Ignitors, & Turbopumps
Boeing Rocketdyne CA
Aerojet CA
TRW/GK/Purdue FFPC
FMC FFPC

Upper Stage
Flight Experiment
• Pressure fed engine
• Common bulkhead
composite structures
Orbital Sciences-IFCC

◆ Peroxide/Hybrid Propulsion

Hybrid Sounding
Rocket (HYSR)
LMMSS-SAA

LMA/Thiokol/Boeing-IFCC

Scope of Space Transfer Technology Project

Space Transfer Technology Project
2000 PMC

Orbital Transfer Vehicles

ROTV

Sample return

In-Situ Prop/
Ascent Chem
Prop Stage

Interstellar Precursor Technologies

Interstellar Precursor Project

2000 PMC

Solar Sails

Nuclear
Electric
Propulsion

Propulsion Technology Project

2000 PMC

Technical Challenges

- ♦ Improved propulsion performance to specific impulse (Isp) > 500 sec using combined cycle air-breathing rocket propulsion
- ♦ Increased all propulsion system thrust-to-weight ratio through the use of metal matrix composites, ceramics, and other advanced materials
- ♦ Increased propulsion life cycle capability to 500 missions through advanced design techniques and materials
- ♦ Decrease development cost through advanced design techniques and robust testing

Propulsion Technology Project

Accomplishments

2000 PMC

- ◆ **Aerojet & Rocketdyne Flowpath Tested**
 - Test Conducted From M 0 to Mach 8
 - Total Of 253 Test Conducted
 - Good Overall Performance

- ◆ **Several First In Testing**
 - Dynamic Trajectory Simulation (AAR \rightarrow RAM and RAM \rightarrow SCRAM))
 - SCRAM Testing @ High Dynamic Pressure (M8 @ 1,200 Psf)

- ◆ **Parametric Test Performed By Pennsylvania State University**

- ◆ **Trailblazer Concept Development**
 - Lead By Glenn Research Center
 - Currently Testing @ GASL

- ◆ **System Studies**
 - Various Vehicle/Engine Combinations Being Studied
 - RBCC
 - TBCC
 - PDE
 - Sensitivity Trades Being Made
 - Trajectories
 - Fineness ratio
 - Payload capability

RBCC Flowpath Test Hardware

Propulsion Technology Project

2000 PMC

Airframe Technology Project

Airframe Technology Elements

2000 PMC

Integrated Airframe Design (LaRC Lead)

Integrated Thermal Structures and Materials (LaRC Lead)

Thermal Protection Systems (ARC Lead)

Aero/Aerothermo Enhancement
(LaRC Lead)
No FY00 Funding

Launch Technologies Elements

Launch Technologies Project

2000 PMC

Avionics and Flight Control

Lead Center - MSFC

Power

Lead Center - GRC

Integrated Design and Analysis tools

Lead Center - MSFC

Crew Systems

(No FY00 Funding)

IVHM Elements

VHM Technology Project

Propulsion IVHM
GRC and MSFC

GRC and MSFC

Systems Engineering and Integration IVHM
ARC

ARC

Avionics /VHM
MSFC

Structures IVHM
LaRC

Power /VHM
GRC

Core Technologies (ARC)
Information Technologies
Sensors
Communications

Systems Engineering and Integration VHM

100

Thermal Protection Systems /VHM
ARC

Project Elements

— Operations and Range Technology Project

— 2000 PMC

Commercial Broadcast Stations

MagLev Launch Assist

Spaceport Range and Operations

Automated Umbilical

Space Transportation Research

Space Transportation Research

2000 PMC

♦ Objectives - Space Transportation Research Investment Area

- The Space Transportation Research Investment Area is responsible for developing the technologies to enable bold new missions.
- Research will pursue proof-of-concept research in revolutionary technology areas that may lead to
 - Dramatic reductions in the cost of access to space or
 - Enable new interplanetary or interstellar space missions by reducing travel times by one to two orders of magnitude.
- This investment area consists of the
 - Advanced Propulsion Research Project
 - Breakthrough Propulsion Physics Project.

♦ Areas

- Advanced Chemical
- Electromagnetic
- Advanced Nuclear
- Fusion / Antimatter
- Interstellar Research
- Breakthrough Propulsion Physics

