The τ vs π argument is really long and interesting

It is mostly a notational argument

Malcolm Ramsay

June 14, 2018

Part I

A part of the argument

Why use τ when there is π

Theorem

au is great when dealing with circles

1. Fourier transforms

$$\hat{f}(\zeta) = \int_{-\infty}^{+\infty} f(x)e^{-2\pi ix\zeta}dx \tag{1}$$

Why use τ when there is π

Theorem

au is great when dealing with circles

1. Fourier transforms

$$\hat{f}(\zeta) = \int_{-\infty}^{+\infty} f(x)e^{-2\pi ix\zeta} dx \tag{1}$$

2. A simple pendulum

$$T \approx 2\pi \sqrt{\frac{L}{g}}$$
 (2)

Why not?

► A good question.

Something centred

Word