Message Recovery Attack on ACES

Samuel Jaques

April 24, 2024

https://arxiv.org/abs/2401.13255 (hereinafter "the paper") is an interesting and ambitious attempt to use category theory to unify homomorphic properties in different cryptographic schemes. It also proposes a bootstrapping-free FHE scheme called ACES, which unfortunately has an efficient key recovery attack, detailed below.

1 ACES

Translating the ACES cryptosystem into more familiar terms for lattice cryptographers, version 2 is similar to a module LWE scheme with some NTRU-like elements. The usual notation for module LWE is with a ring

$$R_q = \mathbb{Z}_q[x]/(u(x)). \tag{1}$$

The paper uses $\mathbb{Z}_q[x]_u$ to refer to this ring. The scheme is parameterized by q, u, a root ω such that $u(\omega) \equiv 0 \mod q$, module parameters k_1 and k_2 , and a second smaller prime p. This is in fact a slight generalization of the scheme, which used $k_2 = 1$.

KeyGen: Alice selects a random matrix $A \in R_q^{k_2 \times k_1}$, a secret vector $s \in \mathbb{R}_q^{k_1}$, and a secret error $e \in R_q^{k_2}$, but chosen specifically so that each component e_i satisfies $e_i(\omega) \equiv kp \mod q$. She outputs an LWE public key (A, b = As + e) and retains s as the secret key.

(in the notation of the paper, $f_0 = A$, $f_1 = b$, x = s, e = e, and $n = k_1$).

Encrypt: Bob selects a random vector of polynomials $r \in R_q^{k_2}$, a random error $e' \in R_q$ such that $e'(\omega) \equiv kp \mod q$ for some k, and a random message encoding polynomial I'll call $n \in R_q$, chosen such that $n(\omega) \equiv m \mod q$,

where m is the message he wants to encrypt. He computes $c_1 = r^T A \in R_q^{k^2}$ and $c_2 = r^T b + e' + n \in R_q$ and outputs (c_1, c_2) .

(in the notation of the paper, b = r and r(m) = n and e' = e

Decrypt: Alice receives c_1 and c_2 and computes $c_2 - c_1 s \in R_q$ and evalutes this polynomial at ω . The result will be $m \mod q$.

Homomorphisms: To compute homomorphisms, Alice's public key also includes a 3-tensor $\lambda=\lambda_{ij}^k\in\mathbb{Z}_q^{k_1^3}$ satisfying

$$s_i \cdot s_j = \sum_{k=1}^{k_1} \lambda_{ij}^k s_k \tag{2}$$

1.1 Break

We can evaluate the homomorphism equation at the root ω . This gives us

$$s_i(\omega) \cdot s_j(\omega) = \sum_{k=1}^{k_1} \lambda_{ij}^k s_k \tag{3}$$

For notational convenience, I'll let $S_i = s_i(\omega)$. This is an element of \mathbb{Z}_q . Fix some $i \in \{1, \ldots, k_1\}$. Then we see that

$$S_i S_j = \sum_{k=1}^{k_1} \lambda_{ij}^k S_k \tag{4}$$

Let Λ_i be the matrix where the entry in the jth row and kth column is λ_{ij}^k , and let S be the vector (S_1, S_{k_1}) . Then we can see that the above equation becomes

$$S_i S = \Lambda_i S \tag{5}$$

In other words, S_i is an eigenvalue of Λ_i .

Since Λ_i is public, if q is a prime it is straightforward to find its eigenvalues. One of them is the *i*th component of the secret. More important, the associated eigenvector is the entire secret itself!

The remaining question is how to decide which eigenvector is the secret. There are many methods; since we will only have n eigenvectors at most, we could simply try using them to decrypt. I used a slightly different method of filtering through eigenvectors and eigenvalues:

- 1. First, the eigenvalue must lie in \mathbb{Z}_q , not an extension field.
- 2. Second, if we used Λ_i , we know that the associated eigenvalue must be the *i*th entry of the eigenvector. Thus, we can normalize the eigenvector.
- 3. Second, we know that the homomorphism equation must hold generally, so we can test it for all i, j, k.
- 4. Third, we know that the public key (A, b) satisfies b = As + e, and evaluted at all entries, $b(\omega) \equiv A(\omega)s(\omega) + e(\omega) \equiv A(\omega)s(\omega) + kp \mod q$. Thus, we test whether this holds.

Once this all holds, we have found $s(\omega)$. This is enough to recover all messages, since we can simply compute $c_2(\omega) - c_1(\omega)s(\omega) \mod q$ in the decryption step because evaluation at ω is a homomorphism.

1.2 Composite moduli

The above description works for prime moduli, and this is what the sage script implements. This should extend straightforwardly to square-free composite moduli by reducing by modulo each factor, and possibly would work for prime-power moduli (and hence all moduli) with Hensel lifting.