Exam 4a Chem 1141 Fall 2008

Name:_____

MULTIPLE CHOICE. [3 pts ea.] Circle the best response.												
Q1. How many valence		atom of carbon										
a) 1	b) 2	c) 3	d) 4	e) 5								
	How many core electrons does an atom of carbon contain? a) 1 b) 2 c) 3 d) 4 e) 5											
,	,	c) 3	d) 4	e) 5								
Q3. The electron config a) 1s ²		c) 1s ² 2s ² 2p ⁶ 3s ²	s ² d) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ e) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²									
Q4. The relative sizes of a) $C < O < Se$	carbon, oxygen, b) Se < O < C			e) O < C < Se								
$I_4 = 13100 \text{ kJ/mol.}$	Which element is	s it be most likely	to be?	= 422 kJ/mol , $I_3 = 630 \text{ kJ/mol}$,								
a) Si	b) Al	c) Mg	d) Na	e) Ne								
a) $Na(g) \rightarrow Na^{+}$ b) $Na(s) \rightarrow Na^{+}$ c) $e^{-} + Na(g) \rightarrow$	 26. The chemical equation corresponding to the first electron affinity of sodium is: a) Na(g) → Na⁺(g) + e⁻ b) Na(s) → Na⁺(aq) + e⁻ c) e⁻ + Na(g) → Na⁻(g) d) e⁻ + Na(s) → Na⁺(s) 											
Q7. The total number of			on is:									
a) 16	b) 14	c) 12	d) 11	e) 10								
Q8. The type of bond for	•	0										
a) Ionic	b) Polar covaler		c) single bond	d) double bond e) triple bond								
Q9. The number of lone a) 0	e pairs on a hydro b) 1	ogen sulfide mole c) 2	cule, H ₂ S is: d) 3	e) 4								
Q10. Which bond would a) C—N	d be the most pol b) C—O	ar: C—N or C—c) Impossible to										
Q11. The formal charge	on the sulfur ato	m in the following	ng polyatomic ion	is:								
[::== N==	J											
a) –2	b) –1	c) 0	d) +1	e) +2								

Q12. The formal charge the nitrogen atom in the following polyatomic ion is:

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ a) -2 & b) -1 & c) 0 & d) +1 & e) +2 \end{bmatrix}$$

Q13. The molecular geometry of the following molecule is:

- c) Square Planar d) Tetrahedral e) Trigonal bipyramidal

Q14. The molecular geometry of the following molecule is:

- a) Octahedral
- b) Bent
- c) See-saw
- d) Tetrahedral e) Trigonal bipyramidal

Short Response.

Show ALL work to receive credit. Use the conversion factor method for all problems to receive full credit.

Q15. [8 pts.] Write full electron configurations for the following ions:

- a) Cr+
- b) Mg²⁺
- c) V²⁺
- d) O²⁻

Q16. [6 pts.] Draw a valid Lewis structure for the sulfite ion, SO₃²-

Q17. [6 pts.] Draw all possible resonance structures for S_3 .
Q18. [6 pts.] Is CSe2 polar or non-polar? Explain.
Q19. [9 pts.] Name the following compounds:
a) Mg(NO ₂) ₂
b) FeO
c) Na ₂ SO ₄ •4H ₂ O

Q20. [12 pts.] Predict the *molecular* geometry of H_2S using VSEPR theory. Be sure to include (1) a valid Lewis structure, (2) a sketch of the molecular geometry, (3) the name of the molecular geometry, and (4) approximate bond angles.

Q21. [6 pts.] 24.5 mL of 0.100 M AgNO ₃ (aq) was mixed with 13.4 mL of 0.350 M MgCl ₂ (aq). A white precipita	te
is formed which weighs 0.283 g. Calculate the percent yield of the reaction.	

Q22. [5 pts.] One of the most commonly used white pigments in paint is a compound of titanium and oxygen that contains 59.9% Ti by mass. Determine the empirical formula of this compound.

BONUS: (A) Predict ΔH^{o} for the reaction:

 $2H_2(g) + \mathrm{O}_2(g) \to 2H_2\mathrm{O}(g)$ Given the following table of bond energies:

Type of Bond	Bond Energy / kJ mol ⁻¹
Н–Н	436.4
O=O	498.7
О–Н	460

⁽B) How much heat would be produced/absorbed if 12.0 g of water was formed?

Seful Information

		Periodic Table of the Elements															
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA 18
1]																2
H 1.01																	He 4.00
3	2											13 5	14	15 7	16 8	17 9	10
Li	Be											в	c	Ń	ô	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	- 1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	ī	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb		Ho	Er	Tm	Υb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	Dy 162.50	164.93	167.26	168.93	173.04		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	t	
	**	Ac	Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		
		/		-										,	,	1	