Výroková a predikátová logika - IX

Petr Gregor

KTIML MFF UK

ZS 2019/2029

Kanonický model

Z bezesporné větve V dokončeného tabla vyrobíme model, který se shoduje s V. Vyjdeme z dostupných syntaktických objektů - konstantních termů.

Nechť V je bezesporná větev dokončeného tabla z teorie T jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Kanonický model z větve V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$, kde

- (1) A je množina všech konstantních termů jazyka L_C ,
- (2) $f^A(s_1,\ldots,s_n)=f(s_1,\ldots,s_n)$ pro každý n-ární funkční symbol $f\in\mathcal{F}\cup(L_C\setminus L)$ a $s_1,\ldots,s_n\in A$.
- (3) $R^A(s_1,\ldots,s_n) \Leftrightarrow TR(s_1,\ldots,s_n)$ je položka na V pro každý n-ární relační symbol $R \in \mathcal{R}$ či rovnost a $s_1,\ldots,s_n \in A$.

Poznámka Výraz $f(s_1, ..., s_n)$ na pravé straně v (2) je konstantní term jazyka L_C , tedy prvek z A. Neformálně, pro zdůraznění, že jde o syntaktický objekt

$$f^{A}(s_{1},...,s_{n}) = "f(s_{1},...,s_{n})"$$

Kanonický model - příklad

Nechť teorie $T=\{(\forall x)R(f(x))\}$ je jazyka $L=\langle R,f,d\rangle$. Systematické tablo pro $F\neg R(d)$ z T obsahuje jedinou větev V a ta je bezesporná.

Kanonický model $\mathcal{A}=\langle A,R^A,f^A,d^A,c_i^A\rangle_{i\in\mathbb{N}}$ z V je pro jazyk L_C a platí $A=\{d,f(d),f(f(d)),\ldots,c_0,f(c_0),f(f(c_0)),\ldots,c_1,f(c_1),f(f(c_1)),\ldots\},$

$$d^A=d, \quad c^A_i=c_i \; \mathsf{pro} \; \; i \in \mathbb{N},$$

$$f^{A}(d) = \text{``}f(d)\text{''}, \ f^{A}(f(d)) = \text{``}f(f(d))\text{''}, \ f^{A}(f(f(d))) = \text{``}f(f(f(d)))\text{''}, \dots$$
$$R^{A} = \{d, f(d), f(f(d)), \dots, f(c_{0}), f(f(c_{0})), \dots, f(c_{1}), f(f(c_{1})), \dots\}.$$

Redukt A na jazyk L je $A' = \langle A, R^A, f^A, d^A \rangle$.

Kanonický model s rovností

Je-li jazyk L s rovností, T^* označuje rozšíření T o axiomy rovnosti pro L.

Požadujeme-li, aby rovnost byla interpretovaná jako identita, kanonický model \mathcal{A} z bezesporné větve V dokončeného tabla z T^* musíme faktorizovat dle $=^A$.

Dle definice (3), v modelu A z V pro relaci $=^A$ platí, že pro každé $s_1, s_2 \in A$, $s_1 =^A s_2 \Leftrightarrow T(s_1 = s_2)$ je položka na V.

Jelikož V je dokončená a obsahuje axiomy rovnosti, relace $=^A$ je ekvivalence na A a navíc kongruence pro všechny funkce a relace v \mathcal{A} .

Kanonický model s rovností z větve V je faktorstruktura A/=A.

Pozorování *Pro každou formuli* φ ,

$$\mathcal{A} \models \varphi \iff (\mathcal{A}/=^A) \models \varphi,$$

přičemž v \mathcal{A} je = interpretovaná relací = A , zatímco v $\mathcal{A}/=^{A}$ jako identita.

Poznámka A je (spočetně) nekonečný model, ale A/=A může být konečný.

Kanonický model s rovností - příklad

Nechť $T = \{(\forall x)R(f(x)), \ (\forall x)(x = f(f(x)))\}$ je nad $L = \langle R, f, d \rangle$ s rovností. Systematické tablo pro $F \neg R(d)$ z T^* obsahuje bezespornou větev V.

V kanonickém modelu $\mathcal{A}=\langle A,R^A,=^A,f^A,d^A,c_i^A\rangle_{i\in\mathbb{N}}$ z V pro relaci $=^A$ platí $s_1=^As_2 \quad \Leftrightarrow \quad s_1=f(\cdots(f(s_2)\cdots) \text{ nebo } s_2=f(\cdots(f(s_1)\cdots),$ kde f je aplikováno 2i-krát pro nějaké $i\in\mathbb{N}$.

Kanonický model s rovností z V je $\mathcal{B}=(\mathcal{A}/=^A)=\langle A/=^A,R^B,f^B,d^B,c_i^B
angle_{i\in\mathbb{N}}$

$$(A/=^A) = \{[d]_{=^A}, [f(d)]_{=^A}, [c_0]_{=^A}, [f(c_0)]_{=^A}, [c_1]_{=^A}, [f(c_1)]_{=^A}, \dots \}, \ d^B = [d]_{=^A}, \quad c^B_i = [c_i]_{=^A} \quad \text{pro} \quad i \in \mathbb{N}, \ f^B([d]_{=^A}) = [f(d)]_{=^A}, \quad f^B([f(d)]_{=^A}) = [f(f(d))]_{=^A} = [d]_{=^A}, \quad \dots \ R^B = (A/=^A).$$

Redukt \mathcal{B} na jazyk L je $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$.

Úplnost

Lemma Kanonický model A z bezesporné dok. větve V se shoduje s V. Důkaz Indukcí dle struktury sentence vyskytující se v položce na V.

- Pro φ atomickou, je-li $T\varphi$ na V, je $\mathcal{A} \models \varphi$ dle (3). Je-li $F\varphi$ na V, není $T\varphi$ na V, neboť V je bezesporná, a tedy $\mathcal{A} \models \neg \varphi$ dle (3).
- Je-li $T(\varphi \wedge \psi)$ na V, je $T\varphi$ a $T\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \varphi$ a $\mathcal{A} \models \psi$, tedy $\mathcal{A} \models \varphi \wedge \psi$.
- Je-li $F(\varphi \wedge \psi)$ na V, je $F\varphi$ nebo $F\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \neg \varphi$ nebo $\mathcal{A} \models \neg \psi$, tedy $\mathcal{A} \models \neg (\varphi \wedge \psi)$.
- Pro ostatní spojky obdobně jako v předchozích dvou případech.
- Je-li $T(\forall x)\varphi(x)$ na V, je $T\varphi(x/t)$ na V pro každé $t\in A$, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A}\models\varphi(x/t)$ pro každé $t\in A$, tedy $\mathcal{A}\models(\forall x)\varphi(x)$. Obdobně pro $F(\exists x)\varphi(x)$ na V.
- Je-li $T(\exists x)\varphi(x)$ na V, je $T\varphi(x/c)$ na V pro nějaké $c\in A$, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A}\models\varphi(x/c)$, tedy $\mathcal{A}\models(\exists x)\varphi(x)$. Obdobně pro $F(\forall x)\varphi(x)$ na V. \square

Věta o úplnosti

Ukážeme, že tablo metoda ve predikátové logice je úplná.

Věta Pro každou teorii T a sentenci φ , je-li φ pravdivá v T, je φ tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

extstyle ext

- Kdyby ne, v tablu τ je nějaká bezesporná větev V.
- Dle předchozího lemmatu existuje struktura \mathcal{A} pro jazyk L_C shodující se s větví V, speciálně s položkou $F\varphi$ v kořeni, tj. $\mathcal{A} \models \neg \varphi$.
- Nechť A' je redukt struktury A na původní jazyk L. Platí $A' \models \neg \varphi$.
- Jelikož větev V je dokončená, obsahuje $T\psi$ pro každé $\psi \in T$.
- Tedy \mathcal{A}' je modelem T (neboť \mathcal{A}' se shoduje s $T\psi$ pro každé $\psi \in T$).
- To je ale ve sporu s tím, že φ platí v každém modelu teorie T.

Tedy tablo τ je důkazem φ z T. \square

Vlastnosti teorií

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie jazyka L. Je-li sentence φ dokazatelná z T, řekneme, že φ je <u>věta</u> (teorém) teorie T. Množinu vět teorie T označme

$$Thm^{L}(T) = \{ \varphi \in Fm_{L} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

- $sporn\acute{a}$, jestliže je v T dokazatelný \bot (spor), jinak je $bezesporn\acute{a}$,
- kompletní, jestliže není sporná a každá sentence je v ní dokazatelná či zamítnutelná, tj. T ⊢ φ či T ⊢ ¬φ.
- extenze teorie T' jazyka L', jestliže $L' \subseteq L$ a $\mathrm{Thm}^{L'}(T') \subseteq \mathrm{Thm}^{L}(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud L = L', a konzervativní, pokud $\mathrm{Thm}^{L'}(T') = \mathrm{Thm}^{L}(T) \cap \mathrm{Fm}_{L'}$,
- ekvivalentní s teorií T', jestliže T je extenzí T' a T' je extenzí T.

Důsledky

Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

Důsledek Pro každou teorii T a sentence φ , ψ jazyka L,

- $T \vdash \varphi$ právě když $T \models \varphi$,
- Thm $^{L}(T) = \theta^{L}(T)$,
- T je sporná, právě když je sémanticky sporná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má až na elementární ekvivalenci jediný model,
- $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$ (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.

Löwenheim-Skolemova věta a kompaktnost

Věta Každá bezesporná teorie T spočetného jazyka L bez rovnosti má spočetně nekonečný model.

extstyle ext

Poznámka Jde o slabou verzi tzv. Löwenheim-Skolemovy věty. Ve spočetném jazyce s rovností je kanonický model s rovností spočetný.

Věta Teorie má model, právě když každá její konečná část má model.

Důkaz Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný \bot systematickým tablem τ . Jelikož je τ konečné, je \bot dokazatelný z nějaké konečné $T' \subseteq T$, tj. T' nemá model.

Nestandardní model přirozených čísel

Nechť $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel.

Označme $\overline{\operatorname{Th}}(\underline{\mathbb{N}})$ množinu všech pravdivých sentencí v $\underline{\mathbb{N}}$. Pro $n \in \mathbb{N}$ označme \underline{n} term $S(S(\cdots(S(0)\cdots),$ tzv. \underline{n} -tý numerál, kde S je aplikováno \underline{n} -krát.

Uvažme následující teorii T, kde c je nový konstantní symbol.

$$T = \operatorname{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

Pozorování Každá konečná část teorie T má model.

Tedy dle věty o kompaktnosti má T model \mathcal{A} , jde o nestandardní model přirozených čísel. Každá sentence z $\operatorname{Th}(\underline{\mathbb{N}})$ v něm platí, ale zároveň obsahuje prvek c^A větší než každé $n \in \mathbb{N}$ (tj. hodnota termu \underline{n} v \mathcal{A}).

Rozšiřování teorií

Ukážeme, že zavádění nových pojmů má "pomocný charakter".

Tvrzení Nechť T je teorie jazyka L, T' je teorie jazyka L' a $L \subseteq L'$.

- (i) T' je extenze T, právě když redukt A každého modelu A' teorie T'na jazyk L je modelem teorie T,
- (ii) T' je konzervativní extenze T, je-li T' extenze T a každý model Ateorie T lze expandovat do jazyka L' na model A' teorie T'.

Důkaz

- (i)a) Je-li T' extenze T a φ libovolný axiom T, pak $T' \models \varphi$. Tedy $\mathcal{A}' \models \varphi$ a rovněž $\mathcal{A} \models \varphi$, z čehož plyne, že \mathcal{A} je modelem T.
- (i)b) Je-li \mathcal{A} modelem T a $T \models \varphi$, kde φ je jazyka L, pak $\mathcal{A} \models \varphi$ a rovněž $\mathcal{A}' \models \varphi$. Z toho plyne, že $T' \models \varphi$ a tedy T' je extenze T.
 - (ii) Je-li $T' \models \varphi$, kde φ je nad L, a A je model T, pak v nějaké jeho expanzi $\mathcal{A}' \models \varphi$ a tedy $\mathcal{A} \models \varphi$. Z čehož $T \models \varphi$, tj. T' je konzervativní.

Extenze o definovaný relační symbol

Nechť T je teorie jazyka $L, \psi(x_1, \ldots, x_n)$ je formule jazyka L ve volných proměnných x_1, \ldots, x_n a L' je rozšíření L o nový n-ární relační symbol R.

Extenze teorie T o definici R formulí ψ je teorie T' vzniklá přidáním axiomu

$$R(x_1,\ldots,x_n) \leftrightarrow \psi(x_1,\ldots,x_n)$$

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

Důsledek T' je konzervativní extenze T.

Tvrzení Pro každou formuli φ' nad L' existuje φ nad L, $t.\check{z}$. $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz Každou podformuli $R(t_1,\ldots,t_n)$ nahradíme za $\psi'(x_1/t_1,\ldots,x_n/t_n)$,

kde ψ' je vhodná varianta ψ zaručující substituovatelnost všech termů.

Např. symbol \leq lze zavést v jazyce aritmetiky pomocí axiomu

$$x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$$

Extenze o definovaný funkční symbol

Nechť T je teorie jazyka L a pro formuli $\psi(x_1,\ldots,x_n,y)$ jazyka L ve volných proměnných x_1, \ldots, x_n, y platí

$$T \models (\exists y)\psi(x_1,\ldots,x_n,y)$$
 (existence)

$$T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$$
 (jednoznačnost)

Označme L' rozšíření L o nový n-ární funkční symbol f.

Extenze teorie T o definici f formulí ψ je teorie T' vzniklá přidáním axiomu

$$f(x_1,\ldots,x_n)=y \leftrightarrow \psi(x_1,\ldots,x_n,y)$$

Poznámka Je-li ψ tvaru $t(x_1,\ldots,x_n)=y$, kde x_1,\ldots,x_n jsou proměnné termu t, podmínky existence a jednoznačnosti platí.

Např. binární funkční symbol – lze zavést pomocí + a unárního – axiomem

$$x_1 - x_2 = y \quad \leftrightarrow \quad x_1 + (-x_2) = y$$

Extenze o definovaný funkční symbol (pokr.)

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

Důsledek T' je konzervativní extenze T.

Tvrzení Pro každou formuli φ' nad L' existuje φ nad L, t.ž. $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz Stačí uvážit φ' s jediným výskytem f. Má-li φ' více výskytů f, lze postup aplikovat induktivně (v případě vnořených výskytů jdeme od vnitřních k vnějším). Označme φ^* formuli vzniklou z φ' nahrazením termu $f(t_1,\ldots,t_n)$ za novou proměnnou z. Za φ vezmeme formuli

$$(\exists z)(\varphi^* \wedge \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)),$$

kde ψ' je vhodná varianta ψ zaručující substituovatelnost všech termů.

Nechť \mathcal{A} je model T', e je ohodnocení, $a = f^A(t_1, \dots, t_n)[e]$. Díky oběma podmínkám platí $A \models \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)[e]$ právě když e(z) = a. Tedy

$$\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi'[e]$$

pro každé ohodnocení e, tj. $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ a tedy $T' \models \varphi' \leftrightarrow \varphi$. \square

Extenze o definice

Teorie T' jazyka L' je *extenze* teorie T jazyka L *o definice*, pokud vznikla z T postupnou extenzí o definici relačního či funkčního symbolu.

Důsledek Nechť T' je extenze teorie T o definice. Pak

- každý model teorie T lze jednoznačně expandovat na model T',
- T' je konzervativní extenze T,
- pro každou formuli φ' nad L' existuje φ nad L taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Např. v teorii $T=\{(\exists y)(x+y=0),(x+y=0)\land(x+z=0)\to y=z\}$ nad $L=\langle+,0,\leq\rangle$ s rovností lze zavést < a unární funkční symbol - axiomy

$$-x = y \leftrightarrow x + y = 0$$

$$x < y \leftrightarrow x \le y \land \neg(x = y)$$

Pak formule -x < y je v této extenzi o definice ekvivalentní formuli

$$(\exists z)((z \le y \land \neg(z = y)) \land x + z = 0).$$

