MA 372: Stochastic Calculus for Finance

July - November 2023

Department of Mathematics, Indian Institute of Technology Guwahati Exercises 2

August 31, 2023

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $B \in \mathcal{F}$ an event with $\mathbb{P}(B) \neq 0$. We call

 $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

the conditional probability of A given B. Prove that $A \mapsto \mathbb{P}(A \mid B)$ is a probability measure on \mathcal{F} .

2. Let H_1, H_2, \cdots be a partition of Ω such that $\mathbb{P}(H_n) \neq 0$ for any $n = 1, 2, \cdots$. Then for any event A

$$\mathbb{P}(A) = \sum_{n=1}^{\infty} \mathbb{P}(A \mid H_n) \mathbb{P}(H_n).$$

- 3. Set $\Omega=\{a,b,c,d\}, \mathcal{F}=2^{\Omega}, \mathbb{P}(\{a\})=1/6, \mathbb{P}(\{b\})=1/3, \mathbb{P}(\{c\})=1/4, \mathbb{P}(\{d\})=1/4$. Then $(\Omega,\mathcal{F},\mathbb{P})$ is a probability space. We next define two random variables, X and Y , by the formulas X(a)=X(b)=1, X(c)=X(d)=-1 any Y(a)=Y(c)=1, Y(b)=Y(d)=-1. We then define Z=X+Y.
 - (i) List the sets in $\sigma(X)$. (ii) Determine E[Y|X].
 - (iii) Determine E[Z|X]. (iv) Compute E[Z|X] E[Y|X].
- 4. Let $\Omega = \{1, 2, 3, \dots, 8\}$, $\mathcal{F} = 2^{\Omega}$, $\mathbb{P}(\{i\}) = 1/10$ for $i \leq 4$ and $\mathbb{P}(\{i\}) = 3/20$ for i > 4. Suppose $X = \mathbb{I}_{\{1,2,3,4\}} + 2\mathbb{I}_{\{5,6,7,8\}}$ and $Y = \mathbb{I}_{\{1,5\}} + 2\mathbb{I}_{\{2,3,4,6,7,8\}}$. Let \mathcal{G} denote the σ -field generated by $\{\{1,2\},\{3,4\}\}$ and let \mathcal{H} denote the σ -field generated by $\{1,2,3,4\}$. Show that

$$\mathbb{E}[\mathbb{E}[X \cdot Y | \mathcal{G}] | \mathcal{H}] = X \cdot \mathbb{E}[Y].$$

(Use two methods: direct calculation and applications of the three fundamental laws in conditional expectation.)

5. Cauchy-Schwartz inequality. Let X, Y be random variables with finite second moments. Show that

$$E(XY)^2 \le EX^2EY^2.$$

(Hint: Use the fact that $E(tX+Y)^2 \ge 0$ for any $t \in \mathbb{R}$.)

- 6. Suppose that X and Y are jointly continuous random variables with join density $f_{X,Y}(x,y) = ce^{x+y}$ for $x,y \in (-\infty,0]$ and $f_{X,Y}(x,y) = 0$ otherwise
 - a) what is the value of c?
 - b) What is the probability that X < Y?
 - c) What are the marginal densities f_X and f_Y ?
 - d) Show that X and Y are independent.

- 7. Show that
 - a) Var(X + a) = Var(X) for any $a \in \mathbb{R}$.
 - b) $Var(bX + a) = b^2 Var(X)$ for any $a, b \in \mathbb{R}$.
 - c) Var(X + Y) = Var(X) + Var(Y) if X and Y are independent.
- 8. Let (X,Y) be jointly normal, with the density function

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left\{\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right\}\right],$$

where $\sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$, and μ_1, μ_2 are real numbers.

- (i) Calculate the marginal densities of X and Y.
- (ii) Find the covariance of X and Y.
- (iii) Finally show that X and Y are independent if and only if $\rho = 0$.
- 9. Show that

$$E(\mathbb{I}_A | \mathbb{I}_B) = \left\{ \begin{array}{ll} \mathbb{P}(A \mid B) & \text{if } w \in B \\ \mathbb{P}(A \mid B^c) & \text{if } w \notin B \end{array} \right.$$

for any B such that $1 \neq \mathbb{P}(B) \neq 0$.

10. Let X and Y have the joint distribution measure

$$\mu_{X,Y}(\{m,n\}) = \left\{ \begin{array}{ll} \frac{1}{2^{m+1}} & \text{if } m \geq n \\ 0 & \text{if } m < n \end{array} \right.$$

for $m, n = 1, 2, 3, \cdots$ Compute the marginal distributions μ_X and μ_Y .

- 11. A die is rolled twice; X is the sum of the outcomes and Y is the outcomes of the first roll. Compute E[X|Y].
- 12. Let X and Y be integrable random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then $Y = Y_1 + Y_2$, where $Y_1 = E[Y|X]$ is $\sigma(X)$ -measurable. Show that Y_2 and X are uncorrelated.
- 13. Let $\Omega = \mathbb{N} = \{1, 2, 3, \dots\}$ be equipped with the σ -algebra of all subsets of Ω and a probability measure \mathbb{P} such that $\mathbb{P}(\{k\}) = 2^{-k}$ for each $k = 1, 2, 3, \dots$. Suppose X(k) = k and $Y(k) = (-1)^k$ for each $k = 1, 2, 3, \dots$
 - (i) List the sets in $\sigma(Y)$.
 - (ii) List the sets in $\sigma(X)$.
 - (iii) Find E[X|Y].
- 14. Let Ω be the unit square $[0,1] \times [0,1]$ with the Borel σ -field and \mathbb{P} the Lebesgue measure on $[0,1] \times [0,1]$. Suppose that X and Y are random variables on Ω with join density $f_{X,Y}(x,y) = x + y$ for $x,y \in [0,1]$ and $f_{X,Y}(x,y) = 0$ otherwise. Show that

$$\mathbb{E}[X|Y] = \frac{2+3Y}{3+6Y}.$$