Young_DSC 640_Assignment 5.2_R

Bret Young 11/07/2020

```
# load data
file = 'ppg2008.csv'
data_1 = read.delim(file, header = TRUE, sep = ',')
```

```
# Print data
head(data_1)
```

Name <fctr></fctr>	G <int></int>	MIN <dbl></dbl>	PTS <dbl></dbl>	FGM <dbl></dbl>	FGA <dbl></dbl>	FGP <dbl></dbl>	FTM <dbl></dbl>	FTA <dbl></dbl>
1 Dwyane Wade	79	38.6	30.2	10.8	22.0	0.491	7.5	9.8
2 LeBron James	81	37.7	28.4	9.7	19.9	0.489	7.3	9.4
3 Kobe Bryant	82	36.2	26.8	9.8	20.9	0.467	5.9	6.9
4 Dirk Nowitzki	81	37.7	25.9	9.6	20.0	0.479	6.0	6.7
5 Danny Granger	67	36.2	25.8	8.5	19.1	0.447	6.0	6.9
6 Kevin Durant	74	39.0	25.3	8.9	18.8	0.476	6.1	7.1
6 rows 1-10 of 22 columns								

```
# Margins area
par(oma=c(5,3,3,3)) # all sides have 3 lines of space
par(mar=c(5,4,4,2) + 0.1)
# load library
library("RColorBrewer")
row.names(data_1) = data_1$Name
# set lables
colnames(data_1)[2:21] = c('Games', 'Minutes', 'Points', 'Field Goals Made', 'Field G
oal Attempts', 'Field Goal Percentage', 'Free Throws Made', 'Free Throw Attempts', 'F
ree Throw Percentage', 'Three-pointers made', 'Three-point Attempts', 'Three-point Pe
rcentage', 'Offensive Rebounds', 'Defensive Rebounds', 'Total Rebounds', 'Assists', '
Steals', 'Blocks', 'Turnovers', 'Personal Fouls')
# convert to matrix
data 1_matrix = data.matrix(data_1[,2:21])
heatmap(data_1_matrix, scale = "column", Colv = NA, Rowv = NA, main = "NBA Player Per
Game Stats", col = brewer.pal(9, "Blues"))
```

NBA Player Per Game Stats

Allen Iverson Rashard Lewis Maurice Williams LaMarcus Aldridge Richard Hamilton O.J. Mayo Andre Iguodala Rudy Gay Tim Duncan Jason Terry Yao Ming Al Harrington Dwight Howard Stephen Jackson Caron Butler **David West Devin Harris** Amare Stoudemire Antawn Jamison Chris Bosh Chris Paul **Kevin Martin Danny Granger** Kobe Bryant Dwyane Wade

Games
Minutes
Points
Points
Field Goals Made
Field Goal Attempts
sld Goal Percentage
Free Throw Attempts
Throw Percentage
Three-point Attempts
se-point Percentage
Three-point Attempts
See-point Rebounds
Total Rebounds
Total Rebounds
Personal Fouls
Blocks
Turnovers

```
# load data
file_2 = 'costcos-geocoded.csv'
data_2 = read.delim(file_2, header = TRUE, sep = ',')
```

```
# Print data
head(data 2)
```

Address <fctr></fctr>	City <fctr></fctr>	State <fctr></fctr>	Zip.Code <fctr></fctr>	Latitude <dbl></dbl>	Longitude <dbl></dbl>
1 1205 N. Memorial Parkway	Huntsville	Alabama	35801-5930	34.74309	-86.60096
2 3650 Galleria Circle	Hoover	Alabama	35244-2346	33.37765	-86.81242
3 8251 Eastchase Parkway	Montgomery	Alabama	36117	32.36389	-86.15088
4 5225 Commercial Boulevard	Juneau	Alaska	99801-7210	58.35920	-134.48300
5 330 West Dimond Blvd	Anchorage	Alaska	99515-1950	61.14327	-149.88422
6 4125 DeBarr Road	Anchorage	Alaska	99508-3115	61.21081	-149.80434
6 rows					

str(data_2)

```
## 'data.frame': 417 obs. of 6 variables:
## $ Address : Factor w/ 416 levels "1 Industrial Lane",..: 49 255 387 316 243 276
269 268 341 124 ...
## $ City : Factor w/ 369 levels "Albany", "Albuquerque",..: 139 137 210 147 7 7
256 330 330 117 ...
## $ State : Factor w/ 40 levels "Alabama", "Alaska",..: 1 1 1 2 2 2 3 3 3 3 ...
## $ Zip.Code : Factor w/ 415 levels "01089-4672", "01923-1014",..: 115 114 116 415 4
14 413 239 238 237 235 ...
## $ Latitude : num 34.7 33.4 32.4 58.4 61.1 ...
## $ Longitude: num -86.6 -86.8 -86.2 -134.5 -149.9 ...
```

```
# Load library for plotting data
library(ggplot2)
library(mapproj)
library(maps)
library(dplyr)
# Get the USA map
US = map_data("world") %>% filter(region == "USA")
# Create Plot and custom features
ggplot() +
    geom_polygon(data = US, aes(x = long, y = lat, group = group), fill="grey", alpha
=0.3) +
    geom_point(data = data_2, aes(x = Longitude, y = Latitude), color = 'blue') +
    theme void() +
    xlim(-170, -55) +
    ylim(15, 72) +
    coord map() +
    ggtitle("Costco Locations In the United States") +
    labs(caption = "Source: Data Collected By Nathan Yau") +
    theme(plot.title = element text(face = "bold", size = 18),
          plot.caption = element text(color = "light gray")
          )
```

Costco Locations In the United States

Source: Data Collected By Nathan Yau

head(data_3)

	rowname	key	value
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	1	100

2	2	1	101
3	3	1	102
4	4	1	103
5	5	1	104
6	6	1	105
6 rows			

```
# import Library
library(directlabels)
ggplot(data_3) +
      geom_contour_filled(aes(x = rowname,
                   y = key,
                   z = value,
                   colour = ..level..)) +
      scale_colour_brewer(palette = 'Blues') +
      scale_fill_brewer(palette = "Blues", direction = -1) +
      ggtitle("Valcano Elevation Plot") +
      labs(caption = "Source: Data is loaded from R volcano dataset",
          x = "",
          y = "") +
      theme_classic() +
      theme(plot.title = element_text(face = "bold", size = 18),
            plot.subtitle = element_text(color = "light gray"),
            plot.caption = element text(color = "light gray")
            ) +
      guides(x = "none", y = "none")
```

Valcano Elevation Plot

Source: Data is loaded from R volcano dataset