	_
	4
	,

1	21. A method for replacing a section of blood vessel inner layer		
2	comprising the steps of:		
3	forming an incision into the blood vessel;		
4	removing a section of an inner layer of the blood vessel through the incision,		
5	wherein the removal creates at least one end flap in a remaining blood vessel inner layer;		
6	providing an artificial blood vessel inner layer comprising a diameter		
7	arranging element at one end thereof, creating an expandable end, and a supple tubular		
8	section having inner and outer surfaces;		
9	inserting the expandable end of said artificial inner layer into said blood vessel		
10	through the incision in the direction of blood flow; and		
11	positioning said artificial inner layer within said blood vessel so that said		
11 12 13 14	expandable end is positioned adjacent said remaining blood vessel inner layer at a		
1 3	downstream location from said incision; and		
14	retaining said expandable end against said blood vessel by said diameter		
15	arranging element.		
H	22. A method as in claim 21, wherein said providing step comprises		
1 2	22. A method as in claim 21, wherein said providing step comprises providing an artificial blood vessel inner layer having a tubular section comprising a fluoro		
2	carbon polymer.		
	carbon polymer.		
1	23. A method as in claim 21, wherein said providing step comprises		
2	providing an artificial blood vessel inner layer having a tubular section that has a length at		
3	least as long as said removed section of blood vessel inner layer.		
1	24. A method as in claim 21, wherein said providing step comprises		
2	providing an artificial blood vessel inner layer having a diameter arranging element		
3	comprising stainless steel.		
1	25. A method as in claim 21, wherein said providing step comprises		
2	providing an artificial blood vessel inner layer having a diameter arranging element		
3	comprising a length of memory metal preprogrammed to expand at a determined temperature.		
_			
1	26. A method as in claim 21, wherein said providing step comprises		
2	providing an artificial inner layer having an enclosure comprising a fluid-tight enclosure.		

1	27. A method as in claim 21, wherein said providing step is carned out		
2	with said diameter arranging element made of a metal.		
1 2	28. A method as in claim 21, wherein said providing step is carried out with said diameter arranging element in the form of a coil.		
1	29. A method as in claim 21, wherein said providing step is carried out		
2	with said diameter arranging element and said supple tubular section made of different		
3	materials.		
1	30. A method as in claim 21, wherein said providing step is carried out		
2	with said expandable end created by folding a portion of said tubular section back over the		
.3	outer surface creating an enclosure with said diameter arranging element at least partially		
	captured therein.		
1	31. A method as in claim 21, wherein said providing step is carried out		
2	with said expandable end created by at least partially capturing said diameter arranging		
-3	element within said tubular section.		
ii laa			
1	32. A method as in claim 21, wherein said positioning step comprises		
·2	positioning said artificial inner layer using a catheter.		
	33. A method as in claim 32, wherein said catheter comprises an elongate		
2	member slidably housed within a hollow sheath.		
1	34. A method as in claim 32, wherein said catheter comprises a blood		
2	vessel widener.		
1	35. A method as in claim 34, wherein said widener comprises a cone-		
2	shaped element operably attached to a distal end of said catheter.		
1	36. A method as in claim 34, wherein said widener comprises an inflatable		
1			
2	balloon operably attached to a distal end of said catheter.		
1	37. A method as in claim 34, wherein said widener is wider than said end		
2	section during said inserting step and narrower than said end section after said retaining step		
3	due to said diameter arranging element expanding during said expanding sten		

1	38. A method as in claim 34, wherein said widener has substantially the
2	same diameter as an internal diameter of said blood vessel.
1	39. A method as in claim 34, wherein said retaining step comprises using
2	said widener to widen said diameter arranging element in order to press said end section
3	against said blood vessel.
1	40. A method as in claim 21, wherein said retaining step comprises
2	expanding said diameter arranging element so that an outer diameter of said tubular section is
3	approximately equal to an inner diameter of said blood vessel.
1	41. A method as in claim 21, wherein the providing step comprises
2	providing an artificial blood vessel inner layer further comprising a diameter arranging
	element at each end thereof creating two expandable ends.
Ī	42. A method as in claim 21, further comprising the step of stitching one
2	end section to said blood vessel.
	43. A method as in claim 34, further comprising the step of bunging the
<u></u>	blood vessel.
1	44. A method as in claim 43 wherein said bunging step comprises bunging
2	said blood vessel using said widener.
1	45. A method as in claim 34, further comprising the step of exerting
2	pressure outwardly on said diameter arranging element with said widener during a
3	withdrawal of said catheter from said blood vessel.
1	46. A method for lining a section of a blood vessel comprising the steps of:
2	forming an incision into the blood vessel;
3	removing matter from a length of the blood vessel through the incision;
4	providing an artificial blood vessel inner layer comprising first and second
5	ends, a diameter arranging element at said first end thereof creating a first expandable end,
_	and a supple tubular section having inner and outer surfaces between the first and second
6	
7	ends:

8	inserting the first expandable end of said artificial inner layer into said blood
9	vessel through the incision;
10	positioning said artificial inner layer within said blood vessel so that said
11	artificial inner layer covers at least a portion of said length of the blood vessel; and
12	retaining said artificial inner layer against the blood vessel by expanding said
13	diameter arranging element.
1	47 A mothed as in claim 46, wherein said providing step comprises
1	47. A method as in claim 46, wherein said providing step comprises
2	providing an artificial blood vessel inner layer having a tubular section that has a length at
3	least as long as said removed section of blood vessel inner layer.
1	48. A method as in claim 46, wherein said providing step comprises
2	providing an artificial inner layer having an enclosure comprising a fluid-tight enclosure.
T	49. A method as in claim 46, wherein said providing step is carried out
2	with said diameter arranging element and said supple tubular section made of different
3	materials.
,***j	
:: 1	50. A method as in claim 46, wherein said providing step is carried out
2	with said diameter arranging element and said supple tubular section made of different
	materials.
:4 []	
	51. A method as in claim 46, wherein said positioning step comprises
2	positioning said artificial inner layer using a catheter.
1	52. A method as in claim 51, wherein said catheter comprises an elongate
2	member slidably housed within a sheath.
2	member stidably noused within a stieath.
1	53. A method as in claim 51, wherein said catheter comprises a blood
2	vessel widener.
1	54. A method as in claim 46, wherein said retaining step comprises
2	expanding said diameter arranging element so that an outer diameter of said tubular section is
3	approximately equal to an inner diameter of said blood vessel.
	PA 3094909 v1