Machine Learning in Photonics:

Ian Hammond, Alec Hammond

EME Overview

Finite Difference Overview

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

MEEP Yee Lattice
MEEP FDTD Paper
EMpy FD Modesolver Paper

Neural Network (Convolutional Autoencoder)

<u>Convolutional Autoencoder</u>
MIT OpenCourseWare Neural Networks

EMEPy Overview

• Convolutional Neural Networks (CNN) replace Finite Difference (FD) solver

EMEPy Docs
CLEO EMEPy Paper
Optics Letters EMEPy Paper

EMEPy Recent Updates

- MultiMode Field Propagation
- Recently discovered critical error!*

EMEPy Inverse Design

1) Overlap Integrals

2) Phase Propagation

Density Based Inverse Design

- Pixel Based
- Binary material at each pixel

MEEP Topology Optimization

Quantum Emitter Topology Optimization (FiO)

Photonic TopOpt for Foundry Design

Hybrid Time/Frequency-Domain TopOpt

Level Set Based Inverse Design

Explicit Geometry

Parameterized boundaries

(x,y) = (x(s),y(s))

Implicit Geometry

Boundaries given by zero level set

<u>Implicit vs Explicit Level Set</u>

Adjoint Formulation

$$abla f(x,y) = \lambda
abla g(x,y)$$
 Lagrange Multiplier

$$\frac{\partial f_n}{\partial \boldsymbol{\rho}} = -\widehat{\mathbf{E}}_a^T(\boldsymbol{\rho}, \widehat{\boldsymbol{\omega}}) \frac{\partial \boldsymbol{\varepsilon}_r(\boldsymbol{\rho}, \widehat{\boldsymbol{\omega}})}{\partial \boldsymbol{\rho}} \widehat{\mathbf{E}}_f(\boldsymbol{\rho}, \widehat{\boldsymbol{\omega}}) \quad \text{FDTD/FDFD Adjoint}$$

Adjoint Defined for MEEP
Stephen Johnson MIT Adjoint Notes

Proposed Algorithm

- 1. Use **explicit** level set (discretization then differentiation)
- 2. Utilize **implicit** level set method of sub pixel smoothing
- Forward simulation -> Store steady state fields (E)
- 4. Adjoint simulation -> Store steady state fields (λ)
- 5. $\nabla_{\phi} f = -\lambda A_{\phi} E$

A = Maxwell Operator

Sharp corners

Subpixel Smoothing Eliminates

Topology changes

Explicit Level Set Allows

Fast Gradients

Adjoint Routine