Text Classification - II

Pawan Goyal

CSE, IIT Kharagpur

Week 11, Lecture 5

	$\hat{P}(c) = \frac{N_c}{N}$
$\hat{P}(w c) =$	$\frac{count(w,c)+1}{(c)}$
I(W(C) =	$\overline{count(c)+ V }$

M

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

P(c)=

P(j)=

 $\hat{P}(w \mid c) = \frac{count(w, c) + 1}{2}$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$count(c)+|V|$$
Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese | c) =

P(Tokyo|c) =

P(Japan | c)

P(Chinese | j) =

P(Tokyo|j)

P(Japan|*j*)

$$\hat{P}(c) = \frac{N_c}{N}$$

 $\hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese | c) = (5+1) / (8+6) = 6/14 = 3/7

P(Tokyo | c) = (0+1) / (8+6) = 1/14

P(Japan | c) = (0+1) / (8+6) = 1/14

P(Chinese | j) = (1+1) / (3+6) = 2/9

P(Tokyo|j) = (1+1)/(3+6) = 2/9

P(Japan|j) = (1+1)/(3+6) = 2/9

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

Choosing a class:

Conditional Probabilities:

$$P(Chinese | c) = (5+1) / (8+6) = 6/14 = 3/7$$

$$P(Tokyo|c) = (0+1)/(8+6) = 1/14$$

$$P(Japan | c) = (0+1) / (8+6) = 1/14$$

$$P(Chinese | j) = (1+1) / (3+6) = 2/9$$

$$P(Tokyo|j) = (1+1)/(3+6) = 2/9$$

$$P(Japan | j) = (1+1) / (3+6) = 2/9$$

		Doc	Words	Class
$\hat{P}(c) = \frac{N_c}{N_c}$	Training	1	Chinese Beijing Chinese	С
N		2	Chinese Chinese Shanghai	С
		3	Chinese Macao	С
$\hat{P}(w \mid c) = \frac{count(w,c)+1}{c}$		4	Tokyo Japan Chinese	j
count(c)+ V	Test	5	Chinese Chinese Tokyo Japan	?

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

$$P(Tokyo | c) = (0+1) / (8+6) = 1/14$$

 $P(Japan | c) = (0+1) / (8+6) = 1/14$
 $P(Chinese | j) = (1+1) / (3+6) = 2/9$
 $P(Tokyo | j) = (1+1) / (3+6) = 2/9$
 $P(Japan | j) = (1+1) / (3+6) = 2/9$

P(Chinese | c) = (5+1) / (8+6) = 6/14 = 3/7

Choosing a class:

$$P(c \mid d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14 \approx 0.0003$$

$$P(j \mid d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

Naïve Bayes and Language Modeling

In general, NB classifier can use any feature

URL, email addresses, dictionaries, network features

Naïve Bayes and Language Modeling

In general, NB classifier can use any feature

URL, email addresses, dictionaries, network features

But if we use only the word features and all the words in the text

Naïve Bayes has an important similarity to language modeling.

Naïve Bayes and Language Modeling

In general, NB classifier can use any feature

URL, email addresses, dictionaries, network features

But if we use only the word features and all the words in the text

Naïve Bayes has an important similarity to language modeling. Each class can be thought of as a separate unigram language model.

Naïve Bayes as Language Modeling

Which class assigns a higher probability to the sentence?

Mod	lel pos	Mod	del neg					
0.1	1	0.2	1	ı	love	this	fun	film
0.1	love	0.001	love	0.1	0.1	0.01	0.05	0.1
0.01	this	0.01	this	0.1	0.1 0.001	0.01 0.01	0.05 0.005	0.1
0.05	fun	0.005	fun					
0.1	film	0.1	film		P(s po	s) > P(s neg)	

Multi-value classification

A document can belong to 0, 1 or > 1 classes

Multi-value classification

A document can belong to 0, 1 or > 1 classes

Handling Multi-value classification

• For each class $c \in C$, build a classifier γ_c to distinguish c from all other classes $c' \in C$

Multi-value classification

A document can belong to 0, 1 or > 1 classes

Handling Multi-value classification

- For each class $c \in C$, build a classifier γ_c to distinguish c from all other classes $c' \in C$
- ullet Given test-doc d, evaluate it for membership in each class using each γ_c

Multi-value classification

A document can belong to 0, 1 or > 1 classes

Handling Multi-value classification

- For each class $c \in C$, build a classifier γ_c to distinguish c from all other classes $c' \in C$
- ullet Given test-doc d, evaluate it for membership in each class using each γ_c
- d belongs to any class for which γ_c returns true

One-of or multinomial classification

Classes are mutually exclusive: each document in exactly one class

One-of or multinomial classification

Classes are mutually exclusive: each document in exactly one class

Binary classifiers may also be used

• For each class $c \in C$, build a classifier γ_c to distinguish c from all other classes $c' \in C$

One-of or multinomial classification

Classes are mutually exclusive: each document in exactly one class

Binary classifiers may also be used

- For each class $c \in C$, build a classifier γ_c to distinguish c from all other classes $c' \in C$
- ullet Given test-doc d, evaluate it for membership in each class using each γ_c

One-of or multinomial classification

Classes are mutually exclusive: each document in exactly one class

Binary classifiers may also be used

- For each class $c \in C$, build a classifier γ_c to distinguish c from all other classes $c' \in C$
- ullet Given test-doc d, evaluate it for membership in each class using each γ_c
- d belongs to one class with maximum score

Evaluation: Constructing Confusion matrix c

For each pair of classes $< c_1, c_2 >$ how many documents from c_1 were incorrectly assigned to c_2 ? (when $c_2 \neq c_1$)

Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	-	1	2	13	26	5
True trade	0	0	2	14	5	10

Recall

Fraction of docs in class i classified correctly: $\sum_{j}^{c_{ii}} c$

Recall

Fraction of docs in class i classified correctly: $\sum_{j}^{c_{ii}} c_{j}$

Precision

Fraction of docs assigned class i that are actually about class i:

Recall

Fraction of docs in class i classified correctly: $\sum_{j}^{c_{ii}} c_{i}$

Precision

Fraction of docs assigned class i that are actually about class i: $\sum_{i}^{c_{ii}} c_{ji}$

Recall

Fraction of docs in class i classified correctly:

Precision

Fraction of docs assigned class i that are actually about class i: $\frac{c_{ii}}{\sum c_{ji}}$

Accuracy

$$\sum_{i} c_{ii}$$

Fraction of docs classified correctly: $\frac{\displaystyle\sum_{i} c_{ii}}{}$

If we have more than one class, how do we combine multiple performance measures into one quantity?

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macro-averaging

Compute performance for each class, then average

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macro-averaging

Compute performance for each class, then average

Micro-averaging

Collect decisions for all the classes, compute contingency table, evaluate.

Class 1

Classifier: yes

Classifier: no

Truth:

yes

10

10

Truth: 970

no

10

Class 2

Class Z						
	Truth: yes	Truth: no				
Classifier: yes	90	10				
Classifier: no	10	890				

Micro Ave. Table

	Truth: yes	Truth: no
Classifier: yes	100	20
Classifier: no	20	1860

Class 1

Classifier: yes

Classifier: no

Truth:

yes

10

10

Truth: 970

no

10

Class 2

0.435 2					
	Truth:	Truth:			
	yes	no			
Classifier: yes	90	10			
Classifier: no	10	890			

Micro Ave Table

WHEIGHT VE. TUBIE						
	Truth:	Truth:				
	yes	no				
Classifier: yes	100	20				
Classifier: no	20	1860				

• Macro-averaged precision:

Class 1

Truth: yes no Classifier: yes 10 10 Classifier: no 10 970

Class 2

Class 2		
	Truth:	Truth:
	yes	no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

Where Mer rable		
	Truth:	Truth:
	yes	no
Classifier: yes	100	20
Classifier: no	20	1860

- Macro-averaged precision: (0.5 + 0.9)/2 = 0.7
- Micro-averaged precision:

Class 1

Classifier: yes

Truth: yes	Truth:
,	110
10	10
10	970

Class 2

Class 2		
Truth:	Truth:	
yes	no	
90	10	
10	890	
	Truth: yes	

Micro Ave. Table

Where twee rable		
	Truth:	Truth:
	yes	no
Classifier: yes	100	20
Classifier: no	20	1860

- Macro-averaged precision: (0.5 + 0.9)/2 = 0.7
- Micro-averaged precision: 100/120 = 0.83

Class 1

Classifier: yes 10 10 Classifier: no 10 970		Truth: yes	Truth: no
Classifier: no 10 970	Classifier: yes	10	10
	Classifier: no	10	970

Class 2

Class 2		
	Truth:	Truth:
	yes	no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

WHEIO AVE. TUDIC		
	Truth:	Truth:
	yes	no
Classifier: yes	100	20
Classifier: no	20	1860

• Macro-averaged precision: (0.5 + 0.9)/2 = 0.7

Micro-averaged precision: 100/120 = 0.83

Micro-averaged score is dominated by score on common classes