# Chapter 5

# Electronic mail security

Source by Henric Johnson

Blekinge Institute of Technology, Sweden

http://www.its.bth.se/staff/hjo/

Henric.Johnson@bth.se





#### **Outline**



- Pretty good privacy
- S/MIME
- Recommended web sites



# **Pretty Good Privacy**



#### **Pretty Good Privacy**



- The creator of PGP: Philip R. Zimmerman
- PGP provides a confidentiality and authentication service
  - Applications: Electronic mail and file storage
- What has done by Zimmermann?
  - Page 122-123

#### Why Is PGP Popular?



- It is available free on a variety of platforms.
- Based on well known algorithms.
  - Public-key encryption: RSA, DSS, Diffie-Hellman
  - Symmetric encryption: CAST-128, IDEA, 3DES
  - Hash coding: SHA-1
- Wide range of applicability
- Not developed or controlled by governmental or standards organizations.
- PGP is now on an Internet standards track (RFC 3156).

#### **Operational Description**



- Consist of five services:
  - Authentication
  - Confidentiality
  - Compression
  - E-mail compatibility
  - Segmentation
- Notation
  - Page 123

#### **Authentication**



- Digital signature
  - Algorithms used: DSS/SHA or RSA/SHA
- Detached signatures are supported.
  - A detached signature may be stored and transmitted separately from the message it signs.
  - Applications
    - A user may wish to maintain a separate signature log of all messages sent or received.
    - A detached signature of an executable program can detect subsequent virus infection.
    - Used for more than one party must sign a document.



Figure 5.1 PGP Cryptographic Functions

### Confidentiality



- Message encryption
  - Algorithms used: CAST or IDEA or 3-key 3DES with Diffie-Hellman or RSA
    - ElGamal: A variant of Diffie-Hellman that does provide encryption/decryption.
- Key distribution: One-time key
  - Each symmetric key is used only once.
  - A new key is generated as a random 128-bit number for each message.
  - It is encrypted with the receiver's public key.

#### Confidentiality



#### Observations

- To reduce encryption time the combination of symmetric and public-key encryption is used.
- The use of the public-key algorithm solves the session key distribution problem.
  - Each message is a one-time independent event with its own key.
  - Given the store-and-forward nature of electronic mail, the use of handshaking to assure that both sides have the same session key is not practical.
- The use of one-time symmetric keys strengthens what is already a strong symmetric encryption approach.
- PGP provides the user with a range of key size options from 768-3072 bits.
  - DSS key for signatures is limited to 1024 bits.

## **Confidentiality and Authentication**



- Figure 5.1c
- This sequence is preferable to the opposite: encrypting the message and then generating a signature for the encrypted message.
- It is generally more convenient to store a signature with a plaintext version of a message.
- For purposes of third-party verification, if the signature is performed first, a third party need not be concerned with the symmetric key when verifying the signature.

#### Compression



- PGP compresses the message after applying the signature but before encryption.
  - The benefit of saving space both for e-mail transmission and for file storage.
- The placement of the compression algorithm is critical.
- The compression algorithm used is ZIP.
- Two reasons about the signature is generated before compression.
  - Page 127

#### **E-mail Compatibility**



- Many electronic mail systems only permit the use of blocks consisting of ASCII text.
- When PGP is used
  - Part or all of the resulting block consists of a stream of arbitrary 8-bit octets.
  - Raw 8-bit binary stream  $\rightarrow$  A stream of printable ASCII characters
    - Radix-64 conversion
  - The use of radix-64 expands the message by 33%.



Figure 5.11 Printable Encoding of Binary Data into Radix-64 Format

#### **E-mail Compatibility**



- The radix-64 algorithm
  - It blindly converts the input stream to radix-64 format regardless of content, even if the input happens to be ASCII text.
    - Providing a certain level of confidentiality.
  - An option
    - Only used for the signature portion of signed plaintext messages.
    - This enables the human recipient to read the message without using PGP.



Figure 5.2 Transmission and Reception of PGP Messages

## Segmentation and Reassembly



- Often restricted to a maximum message length of 50,000 octets.
- Longer messages must be broken up into segments.
- PGP automatically subdivides a message that is to large.
  - The segmentation is done after all of the other processing, including the radix-64 conversion.
- The receiver strip of all e-mail headers and reassemble the block.
  - The session key component and signature component appear only once, at the beginning of the first segment.

# **Cryptographic Keys and Key Rings**



- Use of four types of keys
  - One-time session symmetric keys
  - Public keys
  - Private keys
  - Passphrase-based symmetric keys
- Three separate requirements can be identified with respect to these key.
  - Page 130

### **Session Key Generation**



- Each session key is associated with a single message and is used only for the purpose of encryption and decryption that message.
- Example: CAST-128 (Page 130)
  - The input to the random number generator
    - A 128-bit key (previous session key)
    - Two 64-bit blocks
      - Based on keystroke input from the user
        - Keystroke timing, the actual keys struck
  - The result is to produce a sequence of session keys that is effectively unpredictable.

#### **Key Identifiers**



- Any given user may have multiple public/private key pairs.
- Problem
  - How does the recipient know which of its public keys was used to encrypt the session key?
  - How does the recipient know which of sender's private keys was used to signed the message?
- Simple solution
  - It is to transmit the public key with the message.
  - Drawback
    - It is unnecessarily wasteful of space.

### **Key Identifiers**



- Another solution
  - It would be to associate an identifier with each public key that is unique at least within one user.
  - The combination of user ID and key ID would be sufficient to identify a key uniquely.
  - Only the much shorter key ID would need to be transmitted.
  - Drawback: It raises a management and overhead problem.
    - Key IDs must be assigned and stored so that both sender and recipient could map from key ID to public key.  $\Rightarrow$  Unnecessarily burdensome

### **Key Identifiers**



- The solution adopted by PGP
  - It is to assign a key ID to each public key that is, with very high probability, unique within a user ID.
  - The key ID associated with each public key consists of its least significant 64 bits.
    - The key ID of public key KU<sub>a</sub> is (KU<sub>a</sub> mod 2<sup>64</sup>)
  - A key ID is also required for the PGP digital signature.
    - The digital signature component of a message includes the 64-bit key ID of the required public key.
- A message consists of three components
  - The message component, a signature (optional), a session key component (optional)

#### Format of PGP Message





### **Key Rings**



- Two key IDs are included in any PGP message that provides both confidentiality and authentication.
- These keys need to be stored and organized in a systematic way for efficient and effective use by all parties.
- The scheme used in PGP is to provide a pair of data structures at each node.
  - Private-key ring
    - One to store the public/private key pairs owned by that node.
  - Public-key ring
    - One to store the public keys of other users known at this node.

#### **Private-key ring**



- The general structure of a private-key ring
  - Timestamp, Key ID, Public key, Private key, User ID
  - The private key itself is not stored in the key ring. This key is encrypted using CAST-128 (or IDEA or 3DES).
- The procedure of the encrypted private key
  - Page 133
- Retrieve a private key from the private-key ring
  - The user must supply the passphrase.
  - PGP will retrieve the encrypted private key, generate the hash code of the passphrase, and decrypt the encrypted private key using CAST-128 with the hash code.

Private Key Ring

| Timestamp | Key ID*                 | Public Key | Encrypted<br>Private Kcy              | User ID* |
|-----------|-------------------------|------------|---------------------------------------|----------|
|           | •                       | •          |                                       | •        |
|           | •                       | •          |                                       |          |
|           | •                       | •          |                                       | •        |
| $T_1$     | KU <sub>i</sub> mod 264 | KUi        | E <sub>H(Pi)</sub> [KR <sub>i</sub> ] | User i   |
|           | •                       | •          |                                       | •        |
|           |                         | •          | ٠                                     |          |
|           | •                       | •          |                                       | •        |

Public Key Ring

| Timestamp | Key ID*     | Public Key | Owner Trust | User ID* | Key         | Signature(s) | •        |
|-----------|-------------|------------|-------------|----------|-------------|--------------|----------|
|           |             |            |             |          | Legitimacy  |              | Trust(s) |
| •         | •           | •          |             |          |             |              |          |
|           |             | •          |             | •        |             |              |          |
|           |             | •          |             | •        | ٠           |              |          |
| Ti        | KUi mod 264 | KUi        | trust_flagi | Uscr i   | trust_flagi |              |          |
| •         |             | •          |             | •        |             |              |          |
|           |             | •          |             |          |             |              |          |
| •         | •           | •          |             | •        |             |              |          |

<sup>\* =</sup> field used to index table

Figure 5.4 General Structure of Private and Public Key Rings

### **Public-key Ring**



- The general structure of a public-key ring
  - Timestamp, Key ID, Public key, Owner Trust, User ID,
  - Key legitimacy, Signature(s), Signature Trust(s)
- Example: message transmission
  - The steps are performed by the sending PGP entity
    - Page 135
    - Figure 5.5
  - The steps are performed by the receiving PGP entity
    - Page 136
    - Figure 5.6



Figure 5.5 PGP Message Generation (from User A to User B; no compression or radix 64 conversion)



Figure 5.6 PGP Message Reception (from User A to User B; no compression or radix 64 conversion)

### **Public-Key Management**



- Because PGP is intended for use in a variety of formal and informal environments, no rigid public-key management scheme is set up.
- Approaches to public-key management
  - The essence of the problem
    - User A must build up a public-key ring containing the public keys of other users to interoperate with them using PGP.
    - Attacking scenario and its two threats are depicted in Page 137.
  - Some approaches minimize the risk that a user's public-key ring contains false public keys.
    - Page 137



- No include any specification for establishing certifying authorities or for establishing trust.
  - Solution: The use of trust
    - Associating trust with public keys, and exploiting trust information.
    - Each entry in the public-key ring is a public-key certificate.
- The Use of Trust
  - Key legitimacy field
  - Signature trust field
  - Owner trust field



#### Key legitimacy field

- It indicates the extent to which PGP will trust that this is a valid public key for this user.
  - The higher the level of trust, the stronger is the binding of this user ID to this key.
- It is computed by PGP.
  - Associated with the entry are zero or more signatures that the key ring owner has collected that sign this certificate.
  - Derived from the collection of signature trust fields in the entry.



#### Signature trust field

- Each signature has associated with it.
- It indicates the degree to which this PGP user trusts the signer to certify public keys.

#### Owner trust field

- It indicates the degree to which this public key is trusted to sign other public-key certificates.
- This level of trust is assigned by the user.
- Operations for the use of trust
  - Page 138



- Periodically, PGP processes the public-key ring to achieve consistency.
  - A top-down process
  - For each OWNERTRUST field, PGP scans the ring for all signatures authored by that owner and updates the SIGTRUST field to equal the OWNERTRUST field.
  - This process starts with keys for which there is ultimate trust.
  - Then all KEYLEGIT fields are computed on the basis of the attached signatures.



#### The Structure of a Public-Key Ring

- Figure 5.7
  - It provides an example of the way in which signature trust and key legitimacy are related.
  - It shows the structure of a public-key ring.
  - The user has acquired a number of public keys, some directly from their owners and some from a third party such as a key server.
- Several points are illustrated in Figure 5.7
  - Page 140-141

#### The Structure of a Public-Key Ring

= key is deemed legitimate by you





### **Revoking Public Keys**



- The owner issue a key revocation certificate.
- Normal signature certificate with a revoke indicator.
- Corresponding private key is used to sign the certificate.



# S/MIME (Secure/Multipurpose Internet Mail Extension)



# S/MIME



- Secure/Multipurpose Internet Mail Extension
- S/MIME V.S. PGP
  - S/MIME will probably emerge as the industry standard for commercial and organizational use.
  - PGP will remain the choice for personal e-mail security for many users.
- Two prior works for studying S/MIME
  - The underlying e-mail format—MIME
  - The traditional e-mail format standard—RFC 822

# Simple Mail Transfer Protocol (SMTP, RFC 822)



- SMTP defines a format for text messages that are sent using electronic mail.
  - Messages are viewed as having an envelope and contents.
- SMTP Limitations Can not transmit, or has a problem with:
  - executable files, or other binary files (jpeg image)
  - "national language" characters (non-ASCII)
  - messages over a certain size
  - ASCII to EBCDIC translation problems
  - lines longer than a certain length (72 to 254 characters)

# **MIME**



- MIME is intended to resolve these problems in a manner that is compatible with existing RFC 822 implementations.
- The elements of MIME
  - Five new message header fields are defined.
  - A number of content formats are defined.
    - Supporting multimedia electronic mail
  - Transfer encodings are defined.

### **Header fields in MIME**



#### MIME-Version

• Must be "1.0"  $\to$  RFC 2045, RFC 2046

#### Content-Type

More types being added by developers (application/word)

#### Content-Transfer-Encoding

How message has been encoded (radix-64)

#### Content-ID

• Unique identifying character string.

#### Content Description

Needed when content is not readable text (e.g.,mpeg)

# **S/MIME Functions**



#### Enveloped Data

Encrypted content and encrypted session keys for recipients.

#### Signed Data

Message Digest encrypted with private key of "signer."

#### Clear-Signed Data

Only the digital signature is encoded using base64.

#### Signed and Enveloped Data

Various orderings for encrypting and signing.

# **Algorithms Used**



- Message Digesting
  - SHA-1 and MD5
- Digital Signatures
  - DSS
- Secret-Key Encryption
  - Triple-DES, RC2/40 (exportable)
- Public-Private Key Encryption (for session keys)
  - RSA with key sizes of 512 and 1024 bits, and a variant of Diffie-Hellman (ElGamal).

# Sending agent



- Two decisions are made by a sending agent
  - The sending agent must determine if the receiving agent is capable of decrypting using a given encryption algorithm.
  - If the receiving agent is only capable of accepting weakly encryption, the sending agent must decide if it is acceptable to send using weak encryption.
- The sending rules
  - Page 151

# **User Agent Role**



- S/MIME uses Public-Key Certificates X.509 version 3 signed by Certification Authority
- Functions:
  - **Key Generation** Diffie-Hellman, DSS, and RSA key-pairs.
  - **Registration** Public keys must be registered with X.509 CA.
  - Certificate Storage Local (as in browser application) for different services.
  - **Signed and Enveloped Data** Various orderings for encrypting and signing.

# **User Agent Role**



- Example: Verisign (www.verisign.com)
  - Three levels (classes) of security for public-key certificates
    - Class 1 Digital IDs
      - Buyer's email address confirmed by emailing vital info.
    - Class 2 Digital IDs
      - Postal address is confirmed as well, and data checked against directories.
    - Class 3 Digital IDs
      - Buyer must appear in person, or send notarized documents.

# **Enhanced Security Services**



- Three enhanced security services: (Page 156-158)
  - Signed receipts
  - Security labels
  - Secure mailing lists

#### **Recommended Web Sites**



- PGP home page: www.pgp.com
- MIT distribution site for PGP
- S/MIME Charter
- S/MIME Central: RSA Inc.'s Web Site