ME 239: Rocket Propulsion

Over- and Under-expanded Nozzles and Nozzle Configurations

J. M. Meyers, PhD

Underexpanded Nozzle

- Discharges fluid at an exit pressure greater than the external pressure
- This owes to the exit area being too small for an optimum area ratio
- The expansion of the fluid is incomplete
- Further expansion happens outside of the nozzle
- Nozzle exit pressure is greater than local atmospheric pressure

Overexpanded Nozzle

- Fluid exits at lower pressure than the atmosphere
- This owes to an exit area too large for optimum

Curve AB:

 variation of axial pressure with optimum back pressure for given nozzle area ratio

Curves AC thru AF:

- Variation of axial pressure for increasingly higher external pressures.
- Sudden rise in pressure represents flow separation.
- This results in shock formation (sharp pressure rise) within the nozzle
- This shock is pushed upstream toward the nozzle as ambient pressure increases

Curve AG:

- Significant back pressure has caused the nozzle to "unstart" meaning the nozzle is no longer choked
- The diverging section now decelerates the flow

Curve AH:

 Further back pressure increase drives reduces the pressure and resulting exit velocity

Overexpanded Nozzle Pressure Traces

Fig 3-9: Distribution of pressures in a C-D nozzle for different flow conditions. Inlet pressure the same but back pressure (exit pressure) is not.

- For higher external pressures, separation will occur inside the divergent portion of the nozzle
- The jet diameter will be smaller than that of the nozzle exit diameter
- Separation location depends on local pressure and wall contour
- Decreasing external pressure pushes the separation plane out toward the nozzle (optimal altitude is being approached)

		During flight			During sealevel static tests		
Stage	A_2/A_t		h(km)	I_s (sec)		h(km)	I_s (sec)
Booster or first stage	6	Nozzle flows full, slight underexpansion	0	267	Nozzle flows full	0	267
Second stage	10	Underexpansion	24	312	Overexpansion, slight contraction	0	254
Third stage	40	Underexpansion	100	334	Flow separation caused by overexpansion	0	245

Shuttle Main Engine Test (ϵ ~ 77)

Overexpanded Nozzle

- Static pressure at exit of Space Shuttle Main Engine nozzle is considerably less than ambient pressure at sea level
- Mismatch in pressure gives rise to Mach "disc" in nozzle exhaust
- Extremely strong shock wave that creates a region of subsonic flow and produces a characteristic white luminescent glow
- Flow in picture is over-expanded (lift-off)

Overexpanded Nozzle

Overexpanded Nozzle

Underexpanded Nozzle

a)

b)

Fig. 3 Performance data for nozzle of Vulcain 1 engine (design parameters of Vulcain 1 nozzle: $\varepsilon = 45$, $p_c/p_{\rm amb} = 555$, $\bar{r} = 5.89$).

Core engine of European Ariane-5 launcher

G. Hagemann et al., "Advanced Rocket Nozzles," JOURNAL OF PROPULSION AND POWER, Vol. 14, No. 5, September –October 1998

- Ideal situation would be to have size of nozzle bell increase as altitude increases
- Altitude Adaptive Nozzles:
 - Dual-Bell Nozzle
 - Inserts, fixed and ejectable
 - Gas injection
 - Variable geometry (two-position)

Nozzle Configurations

Nozzle Configurations: Conical Nozzles

- Oldest nozzle type for rocket applications due to simplicity and ease of construction
- Cone gets its name from the fact that the walls diverge at a constant angle
- A small angle produces greater thrust, because it maximizes the axial component of exit velocity and produces a high specific impulse
- Penalty is longer and heavier nozzle that is more complex to build
- At the other extreme, size and weight are minimized by a large nozzle wall angle
 - Large angles reduce performance at low altitude because high ambient pressure causes overexpansion and flow separation
- Primary Metric of Characterization: Divergence Loss

$$\lambda = \frac{1 + \cos \alpha}{2}$$

Nozzle Configurations: Conical Nozzles

Nozzle Configurations: Conical Nozzles

- Deviation of flow from axial (thrust direction) is called the divergence factor
- Longer Nozzle → Higher Thrust and Increased Weight

Nozzle Configurations: Contoured Nozzles

- Contoured nozzles are most common
- Offers significant advantages over conical nozzle, both in size and performance
- Bell consists of two sections
 - Near throat, nozzle diverges at relatively large angle, (1)
 - Degree of divergence tapers off further downstream
 - Near nozzle exit, divergence angle is very small ~2º-8º, (2)
 - Minimize weight / maximize performance ~10-25% shorter than conic
- Issue is to contour nozzle to avoid oblique shocks and maximize performance
- Remember: Shape only optimum at one altitude

Further Subclasses

- Contoured Full Length
- Contoured Shortened
- Contoured Minimum Length

Nozzle Configurations: Contoured Nozzles

- Often referred to as spike nozzles
 - Named for prominent spike centerbody
 - May be thought of as a contoured nozzleturned inside out
 - Nozzle is only one of many possible spike configurations
 - (a) traditional curved spike with completely external supersonic expansion
 - (b) similar shape in which part of the expansion occurs internally
 - (c) design similar to E-D nozzle in which all expansion occurs internally

- Each of spike nozzles features a curved, pointed spike
 - Most ideal shape
- Spike shape allows exhaust gases to expand through isentropic process
- Nozzle efficiency is maximized and no energy is lost because of turbulent mixing
- Isentropic spike may be most efficient but tends to be prohibitively long and heavy
- Replace curve shape by shorter and easier to construct cone ~1% performance loss
- Can be <u>linear</u> or <u>axisymmetric</u>

Nozzle Configurations: Truncated Aerospike

- Go even further by removing pointed spike altogether and replace with a flat base
 - This configuration is known as a truncated spike
- Disadvantage of "flat" plug is turbulent wake forms aft of base at high altitudes resulting in high base drag and reduced efficiency

Nozzle Configurations: Truncated Aerospike

- Reduced energy results from high kinetic energy being transformed to thermal energy in the separation process resulting in the need for significant thermal management at the truncation location
- Alleviated by introducing a "base bleed," or secondary subsonic flow
- Circulation of this secondary flow and its interaction with the engine exhaust creates an "aerodynamic spike" that behaves much like the ideal, isentropic spike
- Secondary flow re-circulates upward pushing RESTRAINING BAND on base to produce additional thrust

Nozzle Configurations: Truncated Aerospike Nozzles

G. Hagemann et al., "Advanced Rocket Nozzles," JOURNAL OF PROPULSION AND POWER, Vol. 14, No. 5, September –October 1998

Nozzle Configurations: Aerospike

During the 1960s, Pratt & Whitney Rocketdyne tested numerous aerospike engines, ranging in size from subscale, cold-flow models to this 250,000-pound-thrust oxygen/ hydrogen engine shown at a test stand in Nevada.

Nozzle Configurations: Linear Aerospike

- Still another variation of aerospike nozzle is linear (instead of annular)
- Linear Aerospike pioneered by Rocketdyne (now division of Boeing) in 1970's
- Places combustion chambers in a line along two sides of nozzle
- Approach results in more versatile design
 - Use of lower-cost modular combustors

Modules can be combined in varying configurations depending on

application.

Nozzle Configurations: Linear Aerospike

Nozzle Configurations: Linear Aerospike

Nozzle Alignment

- When the motor thrust does not align with the vehicle's mass center a turning moment will be generated
- This turning moment will cause the vehicle to rotate
- This can be undesirable for conditions where altitude gain is desired (boost and upper stage)
- It can also be useful for attitude adjustment. If these motors can be placed far from the body's CG providing improved mechanical advantage

Exit of nozzles for Shuttle attitude adjustment motors