MATH 601 (DUE 10/23)

HIDENORI SHINOHARA

CONTENTS

1.	Field Extension	1
2.	Factorization in Integral Domain	4

1. FIELD EXTENSION

Exercise. (Problem 1) Let p be a prime number. Let $K = \mathbb{Z}/p\mathbb{Z}(t)$ be the fraction field of $\mathbb{Z}/p\mathbb{Z}[t]$.

- (i) What is the characteristic of K?
- (ii) What is the characteristic of any extension field of K?
- (iii) Show that the Frobenius endormophism, $F: K \to K$ is not a ring isomorphism.
- (iv) Let $f(x) = x^p t \in K[x]$. Prove that f(x) is irreducible.
- (v) Prove that f(x) is not a separable polynomial.
- (vi) Construct an explicit field extension $K \subset L$ such that $f(x) \in L[x]$ has a factor of positive degree < p.
- (vii) With f and L above find all the roots of f(x) in L and determine their multiplicities.

Proof.

(i) We will prove in general that if $R \subset S$ are both commutative rings with 1, they have the same characteristic. Let $i: R \to S$ be the inclusion map. Let $\phi: \mathbb{Z} \to R$ be the unique ring homomorphism.

Then $i \circ \phi : \mathbb{Z} \to S$ is a ring homomorphism, and this is the only homomorphism from \mathbb{Z} to S by the uniqueness.

$$a \in \ker(\phi) \iff \phi(a) = 0$$

 $\iff i(\phi(a)) = 0$ (*i* is injective)
 $\iff a \in \ker(i \circ \phi).$

Thus $\ker(\phi) = \ker(i \circ \phi)$, so R and S have the same characteristic.

Therefore, $\mathbb{Z}/p\mathbb{Z}$ has the same characteristic as K. The kernel of $\psi : \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is (p), so the characteristic of K is p.

(ii) Using the result that we proved in (i), we conclude that the characteristic of any extension field of K is p.

(iii) Suppose that it is a ring isomorphism. Let $a/b \in K$ be chosen such that F(a/b) = t.

$$\left(\frac{a}{b}\right)^p = t \implies a^p = tb^p$$

$$\implies p\deg(a) = \deg(t) + p\deg(b)$$

$$\implies p(\deg(a) - \deg(b)) = 1.$$

However, $p \geq 2$, so this is impossible. Therefore, F is not a ring isomorphism.

- (iv) t is an irreducible element in $\mathbb{Z}/p\mathbb{Z}[t]$ because t=ab implies that the degree of a or b must be 0, which implies that one of them is a unit. By Corollary 4 on P.300 (Dummit and Foote), $\mathbb{Z}/p\mathbb{Z}[t]$ is a principal ideal domain and unique factorization domain. By Proposition 2 on P.284 (Dummit and Foote), t is a prime element in $\mathbb{Z}/p\mathbb{Z}[t]$. By the Eisenstein irreducibility criterion from the Factorization in Integral Domain handout, $x^p t$ is irreducible in K[x] because $-t \in (t)$ but $-t \notin (t^2)$.
- (v) $f'(x) = px^{p-1} = 0$. Thus $f(x) \in GCD(f(x), f'(x))$ and $f(x) = x^p t$ is not a unit. By Lemma 3.2 of the Field Extension handout, f(x) is not separable.
- (vi) Let $L = K[y]/(y^p t)$. Since $y^p t$ is irreducible in K[y], $(y^p t)$ is a maximal ideal in K[y]. Thus L is a field. Then $x^p t$ has a root in L because $y^p t = 0$. This implies the existence of a linear factor of $x^p t$.
- (vii) In L[x], $(x-y)^p = \sum_{i=0}^p {p \choose i} x^i (-y)^{p-i} = x^p y^p$ because $p \mid {p \choose i}$ for $1 \le i \le p-1$. Since $y^p = t$, $x^p y^p = x^p t$. Therefore, the only root is y and the multiplicity is p.

Exercise. (Problem 2) Let F be a field of characteristic 0. Let $f(x) \in F[x]$ be an irreducible polynomial. Then f(x) is separable.

Proof. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x]$ be an irreducible polynomial with $a_n \neq 0$. Since f(x) is irreducible, f(x) is neither a unit nor 0. Since F is a field, all polynomials of degree 0 are units. Thus $\deg(f(x)) = n \geq 1$. It suffices to show that $\operatorname{GCD}(f(x), f'(x)) = F^*$ by Lemma 3.2. Let $g(x) \in F[x]$ be given such that $g(x) \mid f(x), g(x) \mid f'(x)$. Since f(x) is irreducible, either g(x) is a unit or there exists a unit $u \in F^*$ such that g(x) = uf(x). Suppose g(x) is not a unit. Since $g(x) \mid f'(x), f'(x) = h(x)g(x) = uh(x)f(x)$ for some $h(x) \in F[x]$. Thus $\deg(f'(x)) = \deg(uh(x)) + \deg(f(x))$.

- $f'(x) = \sum_{i=1}^{n} i a_i x^{i-1}, n \ge 1$ and $a_n \ne 0$. Since F is a field of characteristic $0, na_n \ne 0$. Therefore, $\deg(f'(x)) = n 1$.
- $\deg(uh(x)) \ge 0$.
- $\deg(f(x)) = n$.

However, this implies that $n-1 \ge 0+n=n$. This is a contradiction, so g(x) must be a unit. Therefore, $GCD(f(x), f'(x)) = F^*$.

Exercise. (Problem 3) Let F be a field. Let $f(x) \in F[x]$ be an irreducible polynomial which is not separable. Show that $f'(x) = 0 \in F[x]$.

Proof. Suppose f(x) is irreducible. Then $f(x) \neq 0$ and f(x) is not a unit by definition. Thus $\deg(f(x)) \geq 1$.

Since f(x) is not separable, there exists a non-unit $g(x) \in F[x]$ such that $g(x) \mid f(x)$ and $g(x) \mid f'(x)$ by Lemma 3.2 from the Field Extension handout. Since f(x) is irreducible and g(x) is not a unit, f(x) is the product of g(x) and a unit. This implies that $\deg(f(x)) = \deg(g(x))$.

Since $g(x) \mid f'(x), f'(x) = h(x)g(x)$. If f'(x) = 0, we are done. Suppose otherwise. Then $\deg(f'(x)) = \deg(h(x)) + \deg(g(x)) = \deg(h(x)) + \deg(f(x)) \geq \deg(f(x))$. However, by the definition of the ' operator, $\deg(f'(x)) < \deg(f(x))$. This is a contradiction, so f'(x) = 0. \square

Exercise. (Problem 4) Let F be a field of prime characteristic p. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x]$ be an irreducible polynomial. Give a necessary and sufficient criterion for f(x) to be inseparable in terms of the coefficients a_i .

Proof. We claim that $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$ is a necessary and sufficient criterion.

- Suppose f(x) is inseparable. By Lemma 5.5 from the Field Extension handout, f'(x) = 0. If f'(x) = 0, then $ia_i = 0$ for each i. Since p is a prime, a_i must be 0 if $i \notin p\mathbb{Z}$.
- Suppose $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$. Then f'(x) = 0, so $f(x) \mid f(x), f(x) \mid f'(x)$ and f(x) is not a unit since f(x) is irreducible. Therefore, $GCD(f(x), f'(x)) \neq F^{\times}$, so f is inseparable by Lemma 3.2.

Hence, $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$ is a necessary and sufficient criterion.

Exercise. (Problem 5) What is the characteristic of the ring $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$?

Proof. Let ϕ be the only ring homomorphism from $\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$. Then $\phi(a) = (a, a + (2), a + (10))$ for any $a \in \mathbb{Z}$. If $\phi(a) = (0, 0, 0)$, then a = 0. Since $\ker(\phi) = (0)$, the characteristic is 0.

Exercise. (Problem 6) Let K be a finite field of characteristic p. Let $a, b \in K^*$ be two elements which have the same order in this finite group. Show that $\mathbb{Z}/p[a] = \mathbb{Z}/p[b]$ as subfields of K.

Proof. We will consider the subgroups $\langle a \rangle$, $\langle b \rangle \leq K^*$. $\langle a \rangle$, $\langle b \rangle$ contain all powers of a, b, respectively. Since a, b have the same order, $\langle a \rangle$, $\langle b \rangle$ must have the same number of elements. Since K^* is a cyclic group, $\langle a \rangle = \langle b \rangle$. (Theorem 7(3), P.58, Dummit and Foote) $\mathbb{Z}/p[a] = \{\sum_{i=0}^n a_i a^i \mid n \geq 0, a_i \in \mathbb{Z}/p\}$, so it is the collection of all linear combinations of $\langle a \rangle$ over \mathbb{Z}/p . Similarly, $\mathbb{Z}/p[b]$ is the collection of all linear combinations of $\langle b \rangle$ over \mathbb{Z}/p . Since $\langle a \rangle = \langle b \rangle$, $\mathbb{Z}/p[a] = \mathbb{Z}/p[b]$.

Exercise. (Problem 7) Let K be a field with 81 elements. List all positive integers n which are orders of elements in the group, K^* . Now compute the function $d(n) = [\mathbb{Z}/3[a] : \mathbb{Z}/3]$, where $a \in K^*$ is any element of order n. Present your results in the form of a table with entries n and d(n).

Proof.

- Problem 6 shows that d(n) is well defined.
- K is considered to be an extension field of $\mathbb{Z}/3$.
- Let $K^* = \langle \alpha \mid \alpha^{80} = 1 \rangle$.
- α^{40} is the only element of order 2, and $2 \in \mathbb{Z}/3$ is an element of order 2. Thus $\alpha^{40} = 2$.
- Let a be given. Let n be the order of a. By Problem 6, we can assume $a = \alpha^k$ where k = 80/n. This is because $(\mathbb{Z}/3)[a] = (\mathbb{Z}/3)[\alpha^k]$.
- Let a be given. Then $(\mathbb{Z}/3\mathbb{Z}[a])^* \leq K^*$. Let α^k be a generator of $(\mathbb{Z}/3\mathbb{Z}[a])^*$. This k can't be anything because α^{40} is always in $\mathbb{Z}/3[a]$. For instance, $\mathbb{Z}/3\mathbb{Z}[\alpha^{20}] = \{0, 1, 2, \alpha^{20}, 2\alpha^{20}\}$, so the degree of extension is 2 because $\{1, \alpha^{20}\}$ is a $\mathbb{Z}/3\mathbb{Z}$ -basis.
- $\mathbb{Z}/3[a] \leq K$ as additive groups. $(\mathbb{Z}/3[a])^* \leq K^*$ as multiplicative groups. Thus $\mathbb{Z}/3[a]$ must contain 3, 9, or 81 elements. By Lemma 6.2(ii), this implies that every element of $\mathbb{Z}/3[a]$ is a root of $x^3 x$, $x^9 x$, $x^{81} x$, respectively. The order of $\mathbb{Z}/3[a]$ is 3, 9, 81. Since $\mathbb{Z}/3 = \{0, 1, \alpha^{40}\}$, $a \neq 0$ implies that the order of $\mathbb{Z}/3[a] = 9, 81$. Can I use a similar argument for other cases? 9 is much smaller than 81.

2. Factorization in Integral Domain

Exercise. (Problem 7) Define $\mathbb{Z}_{(p)} = \{a/b \in \mathbb{Q} : p \nmid p\}$. Now $\mathbb{Z}_{(p)}$ is a subring of \mathbb{Q} and $p\mathbb{Z}_{(p)}$ is a maximal ideal.

- (i) Prove that there is a ring isomorphism, $\mathbb{Z}/p\mathbb{Z} \simeq \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}$.
- (ii) Suppose given $f \in \mathbb{Z}_{(p)}[x, y]$ such that when viewed as an element of $\mathbb{Q}(x)[y]$, f has content 1 and degree n in y. Prove that if the reduction mod p of f, $f_0 \in \mathbb{Z}/p[x, y]$ is irreducible and of degree n in y, then f is irreducible in $\mathbb{Q}[x, y]$.

Proof.

- (i) Define $\phi: \mathbb{Z}_{(p)} \to \mathbb{Z}/p\mathbb{Z}$ such that $a/b \mapsto ab^{-1}$.
 - Claim: ϕ is well-defined. If $p \nmid b$, then $b \notin \mathbb{Z}/p\mathbb{Z}$, so b^{-1} exists. Moreover, if $a/b = c/d \in \mathbb{Z}(p)$, then ad = bc, so $ab^{-1} = cd^{-1}$.
 - Claim: ϕ is surjective. For all $a \in \mathbb{Z}/p\mathbb{Z}, \ \phi(a/1) = a$.
 - Claim: $\ker(\phi) = p\mathbb{Z}_{(p)}$.

$$\frac{a}{b} \in \ker(\phi) \iff ab^{-1} = 0$$
$$\iff p \mid a$$
$$\iff \frac{a}{b} \in p\mathbb{Z}_{(p)}.$$

By the first isomorphism theorem for rings (Theorem 7, P.243, Dummit and Foote), $\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \simeq \mathbb{Z}/p\mathbb{Z}$.

• Suppose $f(x,y) = f_1(x,y)f_2(x,y)$ in $\mathbb{Q}[x,y]$ where f_1, f_2 are not units. Since the content of f is 1, $\deg_y(f_1(x,y)) \geq 1$ and $\deg_y(f_2(x,y)) \geq 1$. Let $f_{1,0}, f_{2,0}$ be the reduction of f_1, f_2 . Since $f_0 = f_{1,0}f_{2,0}, f_{1,0} \in \mathbb{Z}/p[x,y]$ is a unit without loss of generality. Therefore, the leading coefficient of $f_1 \in \mathbb{Q}(x)[y]$ is in $p\mathbb{Z}[x]$. This means the leading coefficient of f is in $p\mathbb{Z}[x]$. However, this means the degree of f_0 is less than f_0 . This is a contradiction.

Exercise. (Problem 10) Prove that $x^4 + x^3 + x^2 + x + 3 \in \mathbb{Q}[x]$ is irreducible.

(ii)

Proof. By the third properties of the content from the factorization in integral domains handout, $f(x) = x^4 + x^3 + x^2 + x + 3$ is primitive. By Corollary 1(ii) of the factorization in integral domains handout, it suffices to show that f(x) is irreducible in $\mathbb{Z}[x]$. Since $\deg(f(x)) = 4$, if f(x) is not irreducible it must have a factor of degree 1 or 2.

If there exists a factor of degree 1, then f(x) must have a root in $\mathbb{Z}[x]$. If $x(x^3+x^2+x^1+1)=-3$, x must divide 3. In other words, the only values that may be a root of f(x) are $\pm 1, \pm 3$. However, none of them are actually roots because f(3)=123, f(-3)=63, f(1)=7, f(-1)=3

If there exists a factor of degree 2, then $f(x) = (x^2 + ax + b)(x^2 + cx + d) = x^4 + (a+c)x^3 + (b+ac+d)x^2 + (bc+ad)x + bd$ for some $a, b, c, d \in \mathbb{Z}$. Then bd = 3. This implies that (b,d) = (1,3), (-1,-3), (3,1), (-3,-1). By symmetry, it suffices to only check (1,3), (-1,-3).

• If (b,d)=(1,3), then we have a system of equations

$$\begin{cases} a+c &= 1\\ c+3a &= 1. \end{cases}$$

Thus a = 0, c = 1. However, $b + ac + d = 1 + 0 + 3 = 4 \neq 1$.

• If (b,d)=(-1,-3), then we have a system of equations

$$\begin{cases} a+c &= 1\\ -c-3a &= 1. \end{cases}$$

Thus a = -1, c = 2. However, $b + ac + d = -1 + -2 + -3 = -6 \neq 1$.

Therefore, there exist no such a, b, c, d, so f(x) must be irreducible.

Exercise. (Problem 11) Let R be a commutative ring and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ a nonzero polynomial of degree d. Suppose that $a_n \in R^*$. Show that R[x]/(f(x)) is a free R-module with basis, $1, x, x^2, \dots, x^{n-1}$. In other words, using the notation, I := (f(x)), show that every element of R[x]/I may be written as an R-linear combination of $1 + I, \dots, x^{n-1} + I$ in exactly one way.

Proof. First, we will show the uniqueness. Suppose $\sum_{i=0}^{n-1} b_i(x^i + I) = \sum_{i=0}^{n-1} c_i(x^i + I)$.

$$\sum_{i=0}^{n-1} b_i(x^i + I) = \sum_{i=0}^{n-1} c_i(x^i + I) \implies (\sum_{i=0}^{n-1} (b_i - c_i)x^i) + I = 0$$

$$\implies \sum_{i=0}^{n-1} (b_i - c_i)x^i \in (f(x))$$

$$\implies \exists g(x) \in R[x], \sum_{i=0}^{n-1} (b_i - c_i)x^i = g(x)f(x).$$

If g(x) = 0, then $b_i - c_i = 0$ for each i, so we are done. Suppose $g(x) \neq 0$. Since the leading coefficient of f(x) is a unit, $\deg(g(x)f(x)) \geq \deg(f(x)) = n$. However, this is a contradiction because the left hand side is either 0 or a polynomial of degree $\leq n-1$.

Next, we will show the existence by induction. Let P(m) be the statement " $\sum_{i=0}^{m} b_i x^i + I \in$ R/I may be written as an R-linear combination of $1+I, \cdots, x^{n-1}+I$." P(m) is clearly true when $m \le n-1$. Suppose that P(m) is true for some $m \ge n-1$. We will show that P(m+1) is true. Let $h(x) = \sum_{i=0}^{m+1} b_i x^i + I$. Let $h'(x) = h(x) - \frac{b_{m+1}}{a_n} f(x) x^{m+1-n}$.

- This is possible because a_n is a unit and $m+1-n \ge (n-1)+1-n=0$. h'(x) can be written now as $\sum_{i=0}^{m} c_i x^i + I$ for some $c_i \in R$.
- h(x) + I = h'(x) + I because $h(x) h'(x) \in I = (f(x))$.

By the inductive hypothesis, h(x) + I can be written as an R-linear combination of 1 + $I, \cdots, x^{n-1} + I.$

By induction, P(m) is true for any non-negative integer m.