

Short i-PI tutorial

ICTP Trieste

Riccardo Petraglia 26 January 2017

What is i-PI?

- · Universal force engine interface
- Written in Python
- (not-only) with ab-initio force-evaluators

How i-PI works

Goal

Decouple the problem of evolving the ionic positions and the problem of computing the inter-atomic forces.

- i-PI and force calculator on different machine
- Crash-safe mechanism
- Faster than a "script" interface
- Easy to parallelize with many replicas

i-PI input

A look at the i-PI input

```
<simulation verbosity='medium'>
 <output prefix='npt-ice'>
   cproperties stride='20' filename='out'>
         step, time{picosecond}, conserved{electronvolt},
       temperature{kelvin}, kinetic cv{electronvolt}, potential{electronvolt},
       pressure cv{megapascal}, volume, cell hl
  <trajectory stride='20' filename='xc' format='xyz' cell_units='angstrom'> x_centroid{angstrom}</trajectory>
   <trajectory stride='20' filename='pos' format='xyz' cell units='angstrom'> positions{angstrom}/trajectory>
  <total steps>50000</total steps>
  <ffsocket name='force-provider' mode='unix'>
   <address>e3-1</address>
 </ffsocket>
  <svstem>
   <initialize nbeads='6'>
     <file mode='xyz'> ice.xyz </file>
     <velocities mode='thermal' units='kelvin'> 200 </velocities>
   e/initialize>
   <forces><force forcefield='force-provider'/></forces>
   <ensemble>
     <temperature units='kelvin'> 200 </temperature>
     pressure units='megapascal'> 10 </pressure>
   </ensemble>
   <motion mode='dvnamics'>
     <dvnamics mode='npt'>
       <barostat mode='isotropic'>
         <tau units='femtosecond'> 200</tau>
         <thermostat mode='langevin'>
           <tau units='femtosecond'> 100</tau>
         </thermostat>
         <h0> [ 25,6156, 0, 0, 0, 29,5783, 0, 0, 0, 27,8867 ]</h0>
       </barostat>
       <thermostat mode='langevin'>
         <tau units='femtosecond'> 100 </tau>
       </thermostat>
       <timestep units='femtosecond'> 0.25 </timestep>
     </dynamics>
   </motion>
 </system>
</simulation>
```


A look at the i-PI input

XYZ header

```
ba
```

PDB header

TITLE ce	ll{at	omic	_units}	ро	sition{atomic	_units}					
CRYST1	10	.00	10.00		10.00 90.00	90.00	90.00	P 1		1	
ATOM	1	Н	1	1	0.610	10.47	6.053	0.00	0.00		0
ATOM	2	Н	1	1	1.600	12.78	7.266	0.00	0.00		0
ATOM	3	Ω	1	1	0 064	12 23	6 458	0 00	0 00		Θ

Let's start the tutorial...

...remember I am here to answer your questions...

