Assignment 2

For all of the below, include a link to your code.

Link to code:

https://github.com/katjadellalibera/CS112/blob/master/Regression%20and%20Bootstrapping/Regression%20and%20Boostrapping%20Code.R

- 1. Write your own original code that produces a dataset that conforms to the classic univariate regression model. Your data set should have 999 observations and a Normal error term. The slope of the coefficient on your regressor should be positive. Now include a single outlier, such that when you fit a regression to your 1000 data points, the slope of your regression line is negative. Your answer to this question should consist of:
 - (a) Your original data-generating equation

$$variable2 = 50 + \frac{variable1}{10} + random noise$$

(b) Regression results for the original 999 (copy/paste the "summary" output)

Call:

```
lm(formula = variable2 ~ variable1, data = data)
```

Residuals:

```
Min 1Q Median 3Q Max
-2.03306 -0.93114 0.00867 0.91905 2.09153
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.048228 0.074385 672.82 <2e-16 ***

variable1 0.096092 0.002552 37.65 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 1.139 on 997 degrees of freedom

Multiple R-squared: 0.5871, Adjusted R-squared: 0.5867

F-statistic: 1418 on 1 and 997 DF, p-value: < 2.2e-16

(c) Regression results with the outlier included (copy/paste "summary" output)

Call:

Im(formula = variable2 ~ variable1, data = data_with_outlier)

Residuals:

Min 1Q Median 3Q Max

-198.804 -1.347 0.137 1.778 5.056

Coefficients:

Estimate Std. Error t value Pr(>|t|)

variable1 -0.02807 0.01431 -1.961 0.0502.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.635 on 998 degrees of freedom

Multiple R-squared: 0.003838, Adjusted R-squared: 0.00284

F-statistic: 3.845 on 1 and 998 DF, p-value: 0.05016

(d) A properly-labeled data visualization that shows the regression line based on the original 999 points, and another differentiated regression line (on the same axes) based on 1000 points.

Figure 1: variable 2 as a function of variable 1 with an outlier in the bottom right corner. The red line is the linear fit to the data without consideration of the outlier which has a positive slope. The green line is a linear fit of the same data this time including the outlier in the regression.

(e) No more than 3 sentences that would serve as a caption for your figure if it were to be included in an econometrics textbook to illustrate the dangers of extrapolation.

Extrapolation is creating predictions based on the expectation that the current trend will persist. The danger of this goes both ways, the one illustrated in the figure above is that a single outlier can have a large influence on the predictions made, as illustrated by the change in coefficients for variable 1 from 0.096 to -0.028, which is a problem if the point is erroneous. On the other hand, we also shouldn't extrapolate from the data in the original section, because the trend displayed did not hold up for at least one data point and instead try to collect more data especially between the points displayed here and adjust our model as needed.¹

¹ #regression: throughout the assignment, I show my understanding of regression, its' dangers and potential in analyzing data

- 2. NOTE: FOR THIS PROBLEM (AND THIS PROBLEM ONLY), USE ONLY THE CONTROL GROUP. DO NOT USE ANY UNITS FOR WHICH TREATMENT == 1. Using the Lalonde data set and a linear model that predicts re78 as a linear additive function of age, educ, re74, re75, educ*re74, educ*re75, age*re74, age*re75, age*age, and re74*re75, estimate:
 - the 95% interval of expected values for re78, for every unit (i.e., each age 17-55, spanning the age range in the data set), using simulation (i.e., 10000 simulated predictions for every row from 10000 sets of coefficients). You should not incorporate simulated sigmas, and you should hold educ, re74, and re75 at their medians. Even include ages that are not covered by the data (e.g., 47, 49, etc.).

Medians of variables:

educ:10re74: 0re75: 0

age	Lower-bound (95% confidence interval)	median	Upper-bound (95% confidence interval)
17	3082	4466	5835
18	3168	4371	5570
19	3214	4283	5333
20	3235	4197	5142
21	3240	4126	4995
22	3217	4059	4892
23	3159	4001	4833
24	3073	3950	4808
25	2989	3909	4805
26	2918	3877	4828
27	2847	3853	4852
28	2768	3834	4870
29	2712	3826	4911
30	2665	3825	4961
31	2626	3834	5004
32	2598	3848	5047
33	2589	3870	5102
34	2577	3896	5180
35	2583	3932	5255

36	2577	3975	5342
37	2584	4025	5442
38	2587	4087	5579
39	2565	4147	5732
40	2541	4224	5916
41	2500	4308	6129
42	2460	4401	6368
43	2403	4503	6620
44	2327	4603	6904
45	2245	4722	7225
46	2145	4853	7573
47	2056	4987	7951
48	1933	5123	8362
49	1777	5273	8800
50	1600	5425	9251
51	1434	5591	9762
52	1229	5757	10284
53	1030	5932	10824
54	807	6122	11378
55	577	6315	11973

 the 95% interval of expected values for re78, for every unit, using simulation (i.e., 10000 simulated predictions for every row from 10000 sets of coefficients). You should not incorporate simulated sigmas, and you should hold educ, re74, and re75 at their 75% quantiles.

75% quantiles for variables:

educ: 11re74: 139re75: 650

age	Lower-bound (95% confidence interval)		Upper-bound (95% confidence interval)
17	3206	4694	6194
18	3294	4605	5926
19	3370	4523	5680

5494	4448	3419	20
5342	4381	3447	21
5224	4326	3435	22
5139	4276	3393	23
5111	4231	3345	24
5108	4194	3277	25
5124	4163	3202	26
5148	4143	3137	27
5190	4134	3069	28
5251	4132	3028	29
5307	4137	2980	30
5375	4153	2944	31
5438	4171	2903	32
5510	4198	2875	33
5583	4230	2868	34
5669	4273	2862	35
5773	4320	2852	36
5904	4377	2828	37
6076	4444	2811	38
6243	4520	2768	39
6436	4604	2747	40
6666	4695	2726	41
6905	4791	2694	42
7172	4905	2641	43
7481	5017	2567	44
7824	5140	2480	45
8177	5272	2374	46
8580	5415	2267	47
8981	5570	2157	48
9445	5718	2018	49
9939	5872	1862	50
10462	6032	1688	51
10992	6219	1534	52
11550	6409	1355	53

54	1123	6599	12150
55	909	6811	12781

• the 95% prediction interval for re78, for every unit (i.e., each age, spanning the age range in the data set), using simulation (i.e., 10000 simulated predictions for every row from 10000 sets of coefficients). You will need to incorporate simulated sigmas, and you should hold educ, re74, and re75 at their medians.

age	Lower-bound (95% interval)	median	Upper-bound (95% interval)
17	-6366	4436	15582
18	-6202	4398	15129
19	-6673	4288	15174
20	-6636	4202	14983
21	-6976	4132	14935
22	-6668	4147	14814
23	-6676	4021	15063
24	-6847	4014	14686
25	-6935	3796	14725
26	-6890	3806	14793
27	-6948	3832	14554
28	-6945	3865	14741
29	-7227	3790	14544
30	-7191	3968	14618
31	-6930	3826	14544
32	-7183	3884	14503
33	-7166	3746	14722
34	-7154	3820	14866
35	-6999	3751	14667
36	-6857	3975	14847
37	-6772	4011	14887
38	-7071	4026	15278
39	-6605	4099	15285
40	-6801	4080	15190

41	-6440	4413	15261
42	-6482	4428	15443
43	-6344	4418	15640
44	-6475	4703	15736
45	-6297	4925	15904
46	-6399	4821	15818
47	-6287	4952	16211
48	-6083	5217	16275
49	-5975	5237	16510
50	-6059	5486	16898
51	-6102	5582	17137
52	-6106	5682	17614
53	-5917	5812	17975
54	-5823	6186	18452
55	-5844	6412	18585

• the 95% prediction interval for re78, for every unit, using simulation (i.e., 10000 simulated predictions for every row from 10000 sets of coefficients). You will need to incorporate simulated sigmas, and you should hold educ, re74, and re75 at their 75% quantiles.

age	Lower-bound (95% confidence interval)	median	Upper-bound (95% confidence interval)
17	-6187	4717	15721
18	-6235	4560	15615
19	-6218	4591	15257
20	-6327	4492	15203
21	-6532	4329	15063
22	-6676	4423	15158
23	-6422	4341	15308
24	-6812	4141	15162
25	-6484	4170	15089
26	-6821	4177	15015
27	-6698	4222	14965

28 -6598 4173 29 -6754 4090 30 -6535 4185 31 -6663 4218 32 -6891 4088 33 -6729 4280 34 -6415 4294 35 -6773 4234 36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538 41 -6137 4635	14920 14902 15015 15371 14892 15185 14869 15096
30 -6535 4185 31 -6663 4218 32 -6891 4088 33 -6729 4280 34 -6415 4294 35 -6773 4234 36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	15015 15371 14892 15185 14869
31 -6663 4218 32 -6891 4088 33 -6729 4280 34 -6415 4294 35 -6773 4234 36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	15371 14892 15185 14869
32 -6891 4088 33 -6729 4280 34 -6415 4294 35 -6773 4234 36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	14892 15185 14869
33 -6729 4280 34 -6415 4294 35 -6773 4234 36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	15185 14869
34 -6415 4294 35 -6773 4234 36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	14869
35 -6773 4234 36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	
36 -6697 4303 37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	15096
37 -6535 4275 38 -6484 4392 39 -6233 4555 40 -6220 4538	
38 -6484 4392 39 -6233 4555 40 -6220 4538	15272
39 -6233 4555 40 -6220 4538	15262
40 -6220 4538	15447
	15288
41 -6137 4635	15555
	15413
42 -6270 4704	15560
43 -6058 5006	15744
44 -6226 5041	15875
45 -6085 5254	16366
46 -5718 5334	16578
-5789 5366	16656
48 -5708 5634	17018
49 -5582 5614	17166
50 -5736 5858	17397
51 -6050 6052	17920
52 -5438 6176	18033
53 -5646 6457	18661
54 -5689 6586	
55 -5554 6874	18808

Your answer to this question should consist of the following:

- (a) A table with the relevant point estimates (e.g., the bounds of the prediction intervals of y for the different ages, and the medians of the other predictors)
- (b) 1 figure for the 2 interval analyses with expected values, and 1 figure for the 2 interval analyses with predicted values. The "scatterplots" don't have to show the

original data--all I am interested in are the prediction intervals for each age. Each of these figures should show how the intervals change over time (i.e., over the range of ages in the data set). Be sure to label your plot's features (axis, title, etc.).

Plot of the expected value of re78 dependent on age

Figure 2: The 95% confidence interval of the expected values for re78 from the linear model described above. It appears to be fairly confident for younger respondents and very uncertain for older respondents

Plot of the predicted values of re78 dependent on age

Figure 3: When considering sigmas, the confidence decreases significantly and the scale increases. The model is not good at predicting the expected earnings depending on age

E.g.: https://gist.github.com/diamonaj/75fef6eb48639c2c36f73c58d54bac2f

3. Obtain the PlantGrowth dataset in R.

Specify a regression model in which the dependent variable is *weight* and the independent variable is an indicator of treatment1 (set the value = 1) or control (set the value = 0). This means you will discard observations associated with treatment2.

Then, bootstrap the 95% confidence intervals for the value of the coefficient for treatment. Then, obtain the analytical confidence interval for the coefficient value using the standard error that pops out of a regression (or equivalently, in R, you can use the *confint* function). Compare the two confidence intervals--one obtained via simulation, the other via the formula.

NOTE: Make sure that you don't use a 'canned' bootstrap function -- please code the bootstrap routine manually.

Your answer to this question should consist of the following:

(a) A table with the relevant results (bounds on the 2 confidence intervals).\

	Bootstrap intercept	Bootstrap indicator	Regression intercept	Regression indicator
2.5%	4.687	-0.945	4.569	-1.025
97.5%	5.385	0.234	5.495	0.283

(b) 1 histogram (properly labeled) showing your bootstrap-sample results. How you do this one is up to you.

Figure 4: Histograms of the coefficients obtained through a bootstrap simulation²

² #simulation: I understand the value of bootstrapping the small dataset to simulate a larger one.

(c) No more than 3 sentences summarizing the results and drawing any conclusions you find relevant and interesting.

Both the traditional regression result and the bootstrapped result agreed mostly on the coefficients of the intercept and indicator (treatment or non-treatment) as they influence weight. The impact of the intercept is approximately 5 and the treatment has a slight negative effect (-0.375).

4. Write your own function (5 lines max) that takes Ys and predicted Ys as inputs, and outputs R². Copy/paste an example using the *PlantGrowth* data (from #3 above) that shows it working.

```
r_function<- function(Y,pred_y) cor(Y,pred_y)^2
```

Tested on the expected weight from the linear model of plant growth and the actual weight, it returns the $R^2=0.073$. This is in agreement with the multiple R-squared from the summary of the linear model

5. Obtain the *nsw.dta* dataset from http://users.nber.org/~rdehejia/data/nswdata2.html. Read the description of this data set provided on the page. If you proceed with this work in R (recommended) use the *foreign* library to open it (so you can use *read.dta*).

Use this *nsw.dta* dataset to estimate the probability of being assigned to the treatment group (vs. the control group) for every observation in the data set. Your logistic regression model should be a linear additive function of all predictors available to you -- no interaction terms needed. NOTE: re78 is not a predictor because it postdates the treatment. (In other words, it's an outcome.)

Your answer to this question should consist of the following:

(a) Two properly labeled histograms: one in red (showing the distribution of the treatment group's estimated probabilities) and one in blue (showing the distribution of the control group's estimated probabilities). Extra credit for a legend in the plot.

Figure 5: A plot of the two distributions of probabilities with the treatment group in red and the control group in blue.³

(b) No more than 3 sentences summarizing the differences between the two distributions of estimated probabilities, and whether/not your results are surprising and/or intuitive.

The distributions were surprisingly similar, with most of the observations being predicted as control group in both the control group and treatment group. This can be explained by the size of the control group in general and suggests that the groups are too similar to build a strong predictive model

³ #dataviz: I clearly label and describe my plots and make this one even more clear by putting the distributions on the same axis.