

UAS Sem. 6 2015/2016 CSG3G3 (Kecerdasan Mesin Dan Artifisial) Senin 11 Mei 2015 (120 menit)

Dosen: ATW, BBD, COK, FSV, MDS, UNW [Prodi S1 Informatika]

Ujian ini bersifat Close Book, Calculator Allowed, No Handphone, Smartphone or Laptop =
 Dilarang keras bekerja sama. Jika dilakukan, maka dianggap pelanggaran =
 Jika mencontek dengan alasan apapun maka nilai otomatis E =

Kerjakan soal langsung pada kertas ujian ini. Tidak disediakan kertas tambahan. Untuk perhitungan, gunakan lahan yang kosong di lembar nomor soal yang bersangkutan, tidak pindah ke lembar kertas nomor lain.

Nama Mahasiswa:	NIM:	Kls:	Ruang:	Nilai (Diisi Dosen):
Salinlah pernyataan berikut:			Tanda	Tangan Mahasiswa:
Saya mengerjakan ujian ini denga	ın jujur dan mandiri.	Jika saya		
melakukan pelanggaran, maka saya	ı bersedia menerima so	inksi.		
	•••••	•••••		
	•••••	•••••		
•••••	•••••	•••••	•••••	•••••••••••

Soal No 1:

Diketahui sebuah data training tentang pembelian computer sebagai berikut :

age	income	student Status	credit_rating	buys_computer
<=30	high	non Student	fair	no
<=30	high	Student	excellent	no
3140	high	non Student	fair	yes
>40	medium	non Student	fair	yes
>40	low	Student	fair	yes
>40	low	Student	excellent	no
3140	low	Student	excellent	yes
<=30	medium	non Student	fair	no
<=30	low	Student	fair	yes
>40	medium	Student	fair	yes
<=30	medium	Student	excellent	yes
3140	medium	non Student	excellent	yes
3140	high	Student	fair	yes
>40	medium	non Student	excellent	no

Dari data training tersebut carilah keputusan untuk record data : (age<=30 , income =medium, student=yes, credit_rating=fair), menggunakan naïve bayes.

Nama Mahasiswa:	NIM:	Kls:	Ruang:	Nilai (Diisi Dosen):
			•••••	

A. Tentukan Probabilitas Independent dan Dependent (5 point)

Probabilitas Independen

	Buys Computer
Yes	9 / 14 = 0.643
No	5 / 14 = 0.357

Probabilitas Dependent

Age	Yes	No
<=30	2 / 9 =0.22	3 / 5 = 0.6
3140	4 / 9 = 0.44	0 / 5 = 0
>40	3 / 9 =0.33	2 / 5 = 0.4

Income	Yes	No
high	2 / 9 = 0.22	2 / 5 = 0.4
medium	4 / 9 =0.44	2 / 5 =0.4
low	3 / 9 =0.33	1 / 5 =0.2

Student	Yes	No
no	3 / 9 = 0.33	3 / 5 = 0.6
yes	6 / 9 = 0. 66	2 / 5 = 0.4

Credit	Yes	No
Rating		
fair	6 / 9 = 0.66	2 / 5 = 0.4
excellent	3 / 9 = 0.33	3 / 5 = 0.6

Catatan: Setiap tabel yang benar diberikan nilai 1, bila dalam tabel ada 1 yang salah maka dianggap 0. Bila ada mahasiswa yang menjawab hanya jumlah saja (bukan probabilitas) berikan nilai 2.5 bila benar semua.

B. P(age<=30 , income =medium, student=yes, credit_rating=fair | Buy Computer = Yes) (10 point) Jawaban:</p>

$$=\frac{2}{9}*\frac{4}{9}*\frac{6}{9}*\frac{6}{9}*\frac{9}{14}=\frac{2592}{91854}=0.028219$$

Catatan: perhatikan nilai akhirnya saja

C. P(age<=30 , income =medium, student=yes, credit_rating=fair | Buy Computer = No) (10 point)

$$= \frac{3}{5} * \frac{2}{5} * \frac{2}{5} * \frac{2}{5} * \frac{2}{5} * \frac{5}{14} = \frac{120}{8750} = 0.013714$$

Catatan: perhatikan nilai akhirnya saja

D. Keputusan Buy Computer = Yes / No (5 point)

Jawaban:

Keputusan: Buy Computer = YES karena probabilitas YES > NO

Nama Mahasiswa:	NIM:	Kls:	Ruang:	Nilai (Diisi Dosen):
	••••••	••••••	••••••	

Decision Tree

E. Entropy (5 point)

Entropy awal

Yes	9 / 14
No	5 / 14

Nilai Entropy =
$$-\frac{9}{14} \log_2 \left(\frac{9}{14}\right) - \frac{5}{14} \log_2 \left(\frac{5}{14}\right) = 0.940286$$

Catatan: Perhatikan hasil akhir saja bila benar maka berikan nilai 5, bila ada salah perhitungan namun proses benar maka nilai maksimal 2.

F. IG(Age) (10 point)

Entropy awal = 0.940286

Entropy Age= '<30' =
$$-\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = 0.970931$$

Entropy Age= '31...40' = $-\frac{4}{4}\log_2\left(\frac{4}{4}\right) - \frac{0}{4}\log_2\left(\frac{0}{4}\right) = 0$
Entropy Age= '>40' = $-\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) = 0.970931$
IG= 0.940286 - (5/14)*0.970931 -(4/14)*0 - (5/14)*0.970931 =0.24675

Catatan: Perhatikan hasil akhir saja bila benar maka berikan nilai 10, bila ada salah perhitungan namun proses benar maka nilai maksimal 5.

G. IG(Student) (10 point)

Entropy awal = 0.940286

Entropy Student= 'no' =
$$-\frac{3}{6}\log_2\left(\frac{3}{6}\right) - \frac{3}{6}\log_2\left(\frac{3}{6}\right) = 1$$

Entropy Student= 'yes' = $-\frac{6}{8}\log_2\left(\frac{6}{8}\right) - \frac{2}{8}\log_2\left(\frac{3}{8}\right) = 0.811278$
IG= 0.940286 - $(6/14)*1$ - $(8/14)*0.811278$ =0.048127

Catatan: Perhatikan hasil akhir saja bila benar maka berikan nilai 10, bila ada salah perhitungan namun proses benar maka nilai maksimal 5.

Soal No 2:

Selesaikan masal0061h berikut ini dengan menggunakan Goal Stack Planing

Daftar PAD

STACK(x,y)

P : CLEAR(y) \wedge HOLDING(x) A : $ON(x,y) \wedge ARMEMPTY$ D : HOLDING(x) \wedge CLEAR(y)

UNSTACK(x,y)

P : $ON(x,y) \wedge CLEAR(x) \wedge ARMEMPTY$

A : $HOLDING(x) \land CLEAR(y)$ D : $ON(x,y) \land ARMEMPTY$

PICKUP(x)

P : ONTABLE(x) \land CLEAR(x) \land ARMEMPTY

A : HOLDING(x)

D : $ONTABLE(x) \land ARMEMPTY$

PUTDOWN(x)

P : HOLDING(x)

A : ONTABLE(x) ∧ ARMEMPTY

D : HOLDING(x)

Nama Mahasiswa:	NIM:	Kls:	Ruang:	Nilai (Diisi Dosen):

A. Tentukan (5 Point)

Initial State: ON(B,A) ^ ARMEMPTY ^ ONTABLE(A) ^ CLEAR (B) -> 2.5

Goal State: ON(A,B) ^ ARMEMPTY ^ ONTABLE(B) ^ CLEAR (A) > 2.5

Catatan:

Kekurangan 1 state maka -0.5

Untuk notasi ON(x,y) bisa saja ditulis berkebalikan namun inti dari jawaban bahwa notasi ON(X,Y)

pada initial state berlawanan dengan goal state

B. Iterasi untuk mendapatkan Queue pertama (Nilai = 7,5)

Stack

٧	ARMEMPTY
٧	CLEAR(B)
٧	ON(B,A)
٧	ON(B,A) ^ CLEAR(B)^ARMEMPTY
1	UNSTACK(B,A)
*	CLEAR(A)
	ARMEMPTY
	ONTABLE(B)
	ON(A,B)
~	ON(A,B) ^ ARMEMPTY ^
	ONTABLE(B) ^ CLEAR (A)

ON(B,A) Λ ARMEMPTY Λ CLEAR(B) Λ ONTABLE(A)

HOLDING (B) Λ CLEAR(A) ^ ONTABLE(A)

Current State

Queue

1. UNSTACK(B,A)

C. Iterasi untuk mendapatkan Queue kedua (Nilai = 7,5)

Stack

٧	HOLDING(B)
←	PUTDOWN(B)
٧	CLEAR(A)
	ARMEMPTY
*	ONTABLE(B)
	ON(A,B)
~	ON(A,B) ^ ARMEMPTY ^
	ONTABLE(B) ^ CLEAR (A)

	$\langle \mathbf{D} \rangle \mathbf{A}$	CIEAD(A)) ^ ONTABLE(A	A \
HULLING	181/	ULEAKIA	$1 \cap UNIABLEG$	41

ONTABLE(B) Λ ONTABLE(A) Λ ARMEMPTY Λ CLEAR(A) Λ CLEAR(B)

Current State Queue

1. UNSTACK(B,A) 2.PUTDOWN(B)

Panduan Penilaian B dan C:

Pertama kali periksa isi Queue, jika benar berikan nilai 5, lanjutkan dengan memeriksa current state (lihat baris ke-2 saja), bila benar berikan nilai 1, kemudian periksa isi stack bila logis berikan nilai 1.5. Biasanya bila Queue sudah benar maka current state dan stack juga benar.

Nama Mahasiswa:	NIM:	Kls:	Ruang:	Nilai (Diisi Dosen):
			••••••	

Soal No 3:

(1) Kompetensi: Mahasiswa mengetahui terminologi terkait dengan Jaringan Syaraf Tiruan

Tuliskan pemaparan yang tepat mengenai terminologi dalam Jaringan Syarat Tiruan pada tabel berikut: (5 Point) -> nilai awal 1, setiap benar +1

No	Terminologi	Paparan
1	Fungsi Aktivasi	Mekanisme untuk mentransformasikan luaran pada sebuah neuron menjadi nilai pada rentang tertentu
2	Overfiting	Kondisi dimana hasil pelatihan JST sangat sesuai dengan kondisi training namun tidak sesuai dengan saat testing
3	Learning Rate	Sebuah parameter yang digunakan untuk mengatur laju pembelajaran dengan mempengaruhi besar perubahan bobot
4	Epoch	Banyaknya iterasi yang dilakukan dalam proses training JST

(2) Kompetensi : Mahasiswa mengetahui, memahami dan dapat menjalankan formulasi mengenai perceptron sebagai elemen dasar dalam jaringan syarat tiruan

Diketahui ilustrasi dari sebuah perceptron sebagai berikut:

h'

Fungsi Aktivasi yang digunakan adalah Hard-Limit:

Nama Mahasiswa:	NIM:	Kls:	Ruang:	Nilai (Diisi Dosen):

Tuliskan pseudo-code (dengan melengkapi template yang disediakan) untuk proses pembelajaran pada sebuah perceptron dengan informasi variable yang terlibat sebagai berikut: (15 Point)

- Xi adalah input perceptron dengan jumlah sebanyak N,
- Wi adalah bobot yang terhubung Xi
- B adalah nilai bias dalam sebuah perceptron,
- h adalah hasil summation pada perceptron
- h' adalah luaran perceptron setelah melewati fungsi aktivasi,
- η adalah learning rate dari perceptron,
- L adalah jumlah data latih yang tersedia,
- Ti adalah nilai Target untuk data latih dengan id ke-i

Jawaban

```
for id_latih=1 to <u>L</u> {iterasi untuk data latih }
    {perhitungan h}
```

```
h= 0
      for id_input=1 to \underline{\mathbf{N}} {iterasi untuk input }
           h= h+X<sub>i</sub>*W<sub>i</sub>
      endfor
     h= h+B
      {perhitungan h'}
      if ( h>0 __) then
           h' = 1
      else
            h'=0
      endif
      {proses update bobot}
     error= T<sub>i</sub> - h'
      for id_input=1 to __N___ {iterasi untuk update bobot }
           W_i = W_i + \eta \cdot error \cdot X_i
      endfor
endfor
Catatan: terdapat 10 isian, setiap kesalahan isian -1, bila logika sedikit benar kurangi dengan -0.5
```

Nama Mahasiswa:	NIM:	Kls:	Ruang:	Nilai (Diisi Dosen):
		••••••	•••••	

Berdasarkan pseudo-code proses pembelajaran pada sebuah perceptron, lakukan simulasi perhitungan sebanyak 8 iterasi bila diketahui: (10 point)

Id Sample Pattern	X1	X2	Target
1	0	0	0
2	1	0	1
3	0	1	1
4	0	0	1

Bias = -1, Learning rate = 0.5. Inisialisasi bobot awal adalah w1=0.5 dan w2=0.5 Formulasi untuk h yang digunakan adalah w1*x1 + w2*x2 +bias

Jawaban untuk Soal No 2:

	Id									
Iterasi	Sample	x 1	x2	w1	w2	h	h'	error	w1'	w2'
ke-	Pattern									
1	1	0	0	0.25	0.25	-1	0	0	0.25	0.25
2	2	1	0	0.25	0.25	-0.75	0	1	1.25	0.25

Catatab: terdapat 12 isian pada tabel yang harus diisikan, setiap kesalahan isian - 1, nilai maksimal 10 dan minimla 0