2.2:
$$(x + y) \cdot (x + \overline{y})$$

 $= x + (y \cdot \overline{y})$
 $= x + 0$
 $= x$

2.10:
$$\sum m(1,2,3,4,5,6,7)$$

$$= \overline{x_1 x_2} x_3 + \overline{x_1} x_2 \overline{x_3} + \overline{x_1} x_2 x_3 + x_1 \overline{x_2} x_3 + x_1 \overline{x_2} x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3$$

$$= x_2 x_3 (\overline{x_1} + x_1) + x_1 \overline{x_3} (\overline{x_2} + x_2) + \overline{x_2} x_3 (\overline{x_1} + x_1) + \overline{x_1} x_2 \overline{x_3}$$

$$= x_2 x_3 + x_1 \overline{x_3} + \overline{x_2} x_3 + \overline{x_1} x_2 \overline{x_3}$$

$$= x_2 (x_3 + \overline{x_1} x_3) + x_1 \overline{x_3} + \overline{x_2} x_3$$

$$= x_2 (x_3 + \overline{x_1}) + x_1 \overline{x_3} + \overline{x_2} x_3$$

$$= x_2 (x_3 + \overline{x_1}) + x_1 \overline{x_3} + \overline{x_2} x_3$$

$$= x_2 x_3 + \overline{x_1} x_2 + x_1 \overline{x_3} + \overline{x_2} x_3$$

$$= x_3 (x_2 + \overline{x_2}) + \overline{x_1} x_2 + x_1 \overline{x_3}$$

$$= x_3 + \overline{x_1} x_2 + x_1 \overline{x_3}$$

$$= x_3 + \overline{x_1} x_2 + x_1 \overline{x_3}$$

$$= x_3 + x_2 + x_1 = x_1 + x_2 + x_3$$

$$(use x + \overline{x} y = x)$$

$$= x_3 + x_2 + x_1 = x_1 + x_2 + x_3$$

2.12:
$$x_1x_3 + x_1\overline{x_2} + \overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3}$$

 $= x_3(x_1 + \overline{x_1}x_2) + \overline{x_2}(x_1 + \overline{x_1}x_3)$
 $= x_3(x_1 + x_2) + \overline{x_2}(x_1 + \overline{x_3})$
 $= x_1x_3 + x_2x_3 + x_1\overline{x_2} + \overline{x_2}\overline{x_3}$ (use Consensus)
 $= x_1x_3 + x_2x_3 + \overline{x_2}\overline{x_3}$

2.13:
$$x_1 \overline{x_2 x_3} + x_1 x_2 x_4 + x_1 \overline{x_2} x_3 \overline{x_4}$$

$$= x_1 \overline{x_2} (\overline{x_3} + x_3 \overline{x_4}) + x_1 x_2 x_4$$

$$= x_1 \overline{x_2} (\overline{x_3} + \overline{x_4}) + x_1 x_2 x_4$$

$$= x_1 \overline{x_2} \overline{x_3} + x_1 \overline{x_2} \overline{x_4} + x_1 x_2 x_4$$

2.21:
$$\sum m(1,3,4,6,7)$$

$$= \overline{x_1} \overline{x_2} x_3 + \overline{x_1} x_2 x_3 + x_1 \overline{x_2} \overline{x_3} + x_1 x_2 \overline{x_3} + x_1 x_2 x_3$$

$$= \overline{x_1} x_3 (\overline{x_2} + x_2) + x_1 \overline{x_3} (\overline{x_2} + x_2) + x_1 x_2 x_3$$

$$= \overline{x_1} x_3 + x_1 \overline{x_3} + x_1 x_2 x_3$$

$$= \overline{x_1} x_3 + x_1 (\overline{x_3} + x_2 x_3)$$

$$= \overline{x_1} x_3 + x_1 (\overline{x_3} + x_2)$$

$$= \overline{x_1} x_3 + x_1 \overline{x_3} + x_1 x_2$$

2.29:

x_1	x_2	χ_3	f
$\begin{array}{c c} x_1 \\ \hline 0 \end{array}$	$\frac{x_2}{0}$	$\begin{array}{c} x_3 \\ 0 \end{array}$	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$f(x_1, x_2, x_3) = \sum m(1, 2, 3, 4, 5, 6) = m_1 + m_2 + m_3 + m_4 + m_5 + m_6$$

$$= \overline{x_1 x_2} x_3 + \overline{x_1} x_2 \overline{x_3} + \overline{x_1} x_2 x_3 + x_1 \overline{x_2} x_3 + x_1 \overline{x_2} x_3 + x_1 x_2 \overline{x_3}$$

$$= \overline{x_1} x_3 (\overline{x_2} + x_2) + x_2 \overline{x_3} (\overline{x_1} + x_1) + x_1 \overline{x_2} (\overline{x_3} + x_3)$$

$$= \overline{x_1} x_3 + x_2 \overline{x_3} + x_1 \overline{x_2}$$

2.31:

x_1	x_2	χ_3	f
0	$\frac{x_2}{0}$	$\begin{array}{c} x_3 \\ 0 \end{array}$	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$f(x_1, x_2, x_3) = \sum m(0,3,5,6) = m_0 + m_3 + m_5 + m_6$$
$$= \overline{x_1 x_2 x_3} + \overline{x_1} x_2 x_3 + x_1 \overline{x_2} x_3 + x_1 x_2 \overline{x_3}$$

2.36a:

x_0	x_1	y_0	y_1	f
$\begin{array}{c c} x_0 \\ \hline 0 \end{array}$	$\begin{array}{c} x_1 \\ 0 \end{array}$	y_0	$\frac{y_1}{0}$	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2.36b:
$$f(x_0, x_1, y_0, y_1) = \sum m(0,4,5,6,8,10,12,13,14,15)$$

 $= m_0 + m_4 + m_5 + m_6 + m_8 + m_{10} + m_{12} + m_{13} + m_{14} + m_{15}$
 $= \overline{x_0 x_1 y_0 y_1} + \overline{x_0} x_1 \overline{y_0 y_1} + \overline{x_0} x_1 \overline{y_0} y_1 + \overline{x_0} x_1 y_0 \overline{y_1} + x_0 \overline{x_1 y_0 y_1} + x_0 \overline{x_1} y_0 \overline{y_1} + x_0 x_1 \overline{y_0 y_1} + x_0 x_1 \overline{y_0} y_1 + x_0 x_1 y_0 \overline{y_1} + x_0 x_1 y_0 \overline{y_1}$

2.41:
$$f = \sum_{i=1}^{n} m(1,3,4,6,7) = \overline{X}_{1} \times_{3} + \overline{X}_{1} \times_{3} + \overline{X}_{1} \times_{2}$$

for NAND Gates
$$(\overline{X_1X_3}) + (\overline{X_1X_3}) + (\overline{X_1X_2})$$

= $(x_1 + \overline{X_3}) + (\overline{X_1} + \overline{X_3}) + (\overline{X_1} + \overline{X_2})$

2.43:
$$f = \sum_{i=1}^{n} m(1,3,4,6,7) = \overline{X}_{1} \times_{3} + \overline{X}_{1} \times_{3} + \overline{X}_{1} \times_{2}$$

