

CHAPITRE II: Modélisation avec UML

Les diagrammes fonctionnels (comportement)

Diagramme de cas d'utilisation (statiques)

Diagramme de séquence (dynamique)

Diagramme d'activités (dynamique)

Définition

- Le diagramme d'activité présente un certain nombre de points communs avec le diagramme d'état-transition puisqu'il concerne le comportement interne des opérations ou des cas d'utilisation.
- Cependant le comportement visé ici s'applique aux flots de contrôle et aux flots de données propres à un ensemble d'activités.
- Les concepts communs ou très proches entre le diagramme d'activité et le diagramme d'état-transition sont :
- transition,
- nœud initial (état initial),
- O nœud final (état final),
- ➤ Onœud de fin de flot (état de sortie),

Représentation

Action

- Une action correspond à un traitement qui modifie l'état du système.
- Cette action peut être appréhendée soit à un niveau élémentaire proche d'une instruction en termes de programmation soit à un niveau plus global correspondant à une ou plusieurs opérations.

Nom de l'action

Saisir commande

Représentation

Transition et flot de contrôle

Dès qu'une action est achevée, une transition automatique est déclenchée vers l'action suivante.

L'enchaînement des actions constitue le flot de contrôle.

Représentation (Activité)

- Une activité représente le comportement d'une partie du système en termes d'actions et de transitions.
- Une activité est composée de trois types de nœuds :
 - nœud d'exécution (action),
 - nœud de **contrôle** :
 - (nœud initial, nœud final, flux de sortie, nœud de bifurcation, nœud de jonction, nœud de fusion-test, nœud de test-décision, pin d'entrée et de sortie),
 - nœud d'objet.
- Une activité peut recevoir des paramètres en entrée et en produire en sortie.

noeud d'objet

Représentation

Activité composée

Représentation

Nœud de bifurcation

Un nœud de bifurcation (fourche) permet à partir d'un flot unique entrant de créer plusieurs flots concurrents en sortie de la barre de synchronisation.

Représentation

Nœud de bifurcation (fourche)

Diagramme d'activités avec nœud de bifurcation

Représentation

Nœud de bifurcation (fourche)

Diagramme d'activité avec bifurcation de flots de contrôle

Représentation

Nœud de jonction (synchronisation)

Un nœud de jonction (synchronisation) permet, à partir de **plusieurs flots concurrents** en **entrée** de la synchronisation, de produire **un flot unique sortant**.

Représentation

Nœud de test-décision

Un nœud de **test-décision** permet de faire un **choix entre plusieurs flots sortants** en fonction des **conditions de garde** de chaque flot. Symbole du nœud de décision-test

Un nœud de test-décision n'a qu'un seul flot en entrée.

On peut aussi utiliser seulement deux flots de sortie : le premier correspondant à la condition vérifiée et l'autre traitant le cas sinon.

Représentation

Nœud de test-décision

Représentation

Nœud de fusion-test

Un nœud de fusion-test permet d'avoir plusieurs flots entrants possibles et un seul flot sortant.

Le flot sortant est donc exécuté dès qu'un des flots entrants est activé.

Nœud de fusion-test

Représentation

Pin d'entrée et de sortie

pin d'entrée ou de sortie

Un **pin** d'entrée ou de sortie représente un **paramètre que l'on peut spécifier en entrée** ou en **sortie** d'une **action**.

Un nom de donnée et un type de donnée peuvent être associés au pin.

Un paramètre peut être de type objet.

p1 : entier

p2 : texte r1 : réel

Représentation

Flot de données et nœud d'objet

Un nœud d'objet permet de représenter le flot de données véhiculé entre les actions.

Les objets peuvent se représenter de deux manières différentes : soit en utilisant le **pin d'objet** soit en représentant **explicitement un objet**.

Exercice

- Réaliser un diagramme d'activités qui correspond au traitement d'une commande.
- Une fois la commande reçue, la carte de crédit sera vérifier et la même chose pour le produit.
- Si la carte n'est pas valide ou le produit n'est plus disponible, alors la commande sera annulée.
- Sinon, il faut préparer la commande et débiter la carte de crédit.
- Après la préparation de la commande, elle sera expédiée. Un fois la carte de crédit est débitée, il faut envoyer la facture.

Exercice

Représentation

20

GAB

Diagramme d'activité de Retrait de l'argent

Les régions d'activités interruptibles

Une région d'activités interruptible inclut un groupe de nœuds d'activité dont l'exécution peut être interrompue par une exception.

