8144-SUDHARSAN ENGINEERING COLLEGE

REGISTER NUMBER: 814421243024

NAME: ROHINI M

DEGREE: BTECH

BRANCH: ARTIFICIAL INTELLIGENCE AND

DATA SCIENCE

PROJECT TITLE: SENTIMENT ANALYSIS

FOR MARKETING

SENTIMENT ANALYSIS FOR MARKETING USING PYTHON

PHASE 4 SUBMISSION DOCUMENT

Phase 4: Development part-2

INTRODUCTION:

- ➤ Sentiment analysis, also known as opinion mining, is a powerful technique in marketing that involves analyzing and understanding the emotions, attitudes, and opinions expressed by customers, prospects, or the general public about a product, brand, or topic.
- ➤ It plays a crucial role in shaping marketing strategies and decision-making by providing valuable insights into how people perceive and interact with your brand or products.
- Sentiment analysis is a valuable tool in the field of marketing, helping businesses gain insights into how customers perceive their products, services, and brand.
- ➤ It involves using natural language processing (NLP) and machine learning techniques to analyze and categorize the sentiment expressed in text data, such as customer reviews, social media posts, surveys, and more.

FEATURE ENGINEERING:

Feature engineering in sentiment analysis for marketing involves creating relevant input features for machine learning models to effectively analyze and classify sentiment in textual data.

Text Preprocessing:

- ❖ Tokenization: Splitting text into individual words or phrases.
- ❖ Lowercasing: Converting all text to lowercase to ensure consistency.
- ❖ Removing Stop Words: Eliminating common words (e.g., "the," "and") that carry little sentiment information.

Text Representation:

- ❖ Bag of Words (BoW): Creating a matrix of word frequencies within the text.
- ❖ TF-IDF (Term Frequency-Inverse Document Frequency): Assigning weights to words based on their importance in the document and across the corpus.
- ❖ Word Embeddings: Using pre-trained word embeddings (e.g., Word2Vec, GloVe) to capture semantic relationships between words.

N-Grams:

Consider using bigrams or trigrams to capture sequences of words that convey specific sentiment.

Sentiment Lexicons:

Integrating sentiment lexicons or dictionaries to assign sentiment scores to words or phrases.

Part-of-Speech (POS) Tagging:

Identifying and categorizing words into parts of speech to capture grammatical structure.

Text Length:

Including features related to the length of the text, such as the number of words or characters, as text length can influence sentiment.

Emoticons and Symbols:

Considering the presence of emoticons, emojis, and symbols as they often convey sentiment.

Capitalization:

Creating features to detect the presence of capitalized words or phrases, which may indicate emphasis or sentiment.

Punctuation:

Analyzing the use of punctuation marks, such as exclamation points or question marks, which can express emotion.

Negation Handling:

Identifying negation words (e.g., "not," "but") and marking the words that are negated to reverse their sentiment.

Topic Modeling:

Applying topic modeling techniques (e.g., Latent Dirichlet Allocation) to identify the main topics in the text and understand their sentiment.

Domain-Specific Features:

Incorporating industry or domain-specific terms and knowledge relevant to the marketing context.

User and Brand Mentions:

Detecting mentions of specific users, competitors, or brand names to gauge sentiment in relation to them.

Sentiment Analysis of Meta-Information:

Analyzing the sentiment of metadata, such as timestamps, user profiles, or post types, as they can provide context for sentiment.

Contextual Features:

Capturing contextual information, such as the relationship between the author and the product/brand, to understand the context of sentiment.

Custom Features:

Creating custom features based on the unique requirements of the marketing analysis, such as sentiment-related metrics or ratios.

MODEL TRAINING:

Here are some tips for training a sentiment analysis model for marketing:

- ✓ Use a large and diverse dataset.
- ✓ The larger and more diverse your dataset, the better your model will be able to learn the nuances of human language and sentiment.
- ✓ Use a balanced dataset.
- ✓ Make sure that your dataset has an equal number of positive, negative, and neutral samples.
- ✓ This will help to prevent your model from being biased towards one particular sentiment.
- ✓ Use feature engineering to improve the performance of your model.
- ✓ Feature engineering involves creating new features from the existing data that may be more informative for sentiment analysis.
- ✓ For example, you could create a feature that counts the number of exclamation points in a sentence, as this can be a signal of positive sentiment.
- ✓ Use cross-validation to evaluate your model.
- ✓ Cross-validation involves splitting the dataset into multiple folds and training and evaluating the model on each fold.
- ✓ This helps to provide a more accurate estimate of the model's generalization performance.

EVALUATION:

- ✓ Evaluating a sentiment analysis model for marketing is important to ensure that the model is accurate and reliable.
- ✓ Make sure that the model is trained on a dataset that is relevant to your marketing campaigns.
- ✓ For example, if you are using sentiment analysis to monitor social media conversations, make sure that the model is trained on a dataset of social media posts.
- ✓ Use a variety of evaluation metrics to get a complete picture of the model's performance.
- ✓ Accuracy is a good starting point, but you should also consider precision, recall, and F1 score.
- ✓ Compare the model's performance to other sentiment analysis models.
- ✓ This can help you to determine how well your model performs relative to other models.
- ✓ Evaluate the model's performance over time. Sentiment analysis models can degrade over time as the language changes.
- ✓ It is important to evaluate the model's performance regularly to ensure that it is still accurate and reliable.
- ✓ Get feedback from users. Once you have deployed the model in production, get feedback from users on the accuracy and reliability of the model's predictions.
- ✓ This feedback can help you to identify any areas where the model needs to be improved.

PROGRAM:

```
[1]: # Data Analysis
     import pandas as pd
     import numpy as np
     # Data Visualization
     from matplotlib import pyplot as plt
     import seaborn as sns
     # Machine Learning
     from sklearn_feature_extraction_text import CountVectorizer, TfidfVectorizer
     from sklearn_model_selection import train_test_split
     from sklearn_metrics import accuracy_score, fl_score
     from sklearn_linear_model import LogisticRegression
     from sklearn_naive_bayes import MultinomialNB
     from sklearn_tree import DecisionTreeClassifier
     from sklearn_ensemble import RandomForestClassifier
     from xgboost import XGBClassifier
     # NLP
     from nltk_tokenize import word_tokenize
     from nltk_corpus import stopwords
     from nltk_stem import PorterStemmer
     from wordcloud import WordCloud, STOPWORDS
     import re
     # Warning
     import warnings
     warnings.filterwarnings("ignore")
[2]: train_df = pd_read_csv("Tweets.csv")
     print(f'Train data shape: {train_df_shape}')
     train_df.head()
```

Train data shape: (14640, 15)

```
tweet_id airline_sentiment airline_sentiment_confidence \
[2]:
     0 570306133677760513
                                     neutral
                                                                  1.0000
     1 570301130888122368
                                                                  0.3486
                                   positive
     2 570301083672813571
                                     neutral
                                                                  0.6837
     3 570301031407624196
                                                                  1.0000
                                    negative
     4 570300817074462722
                                                                  1.0000
                                    negative
       negativereason negativereason_confidence
                                                        airline
     0
                  NaN
                                            NaN Virgin America
                  NaN
                                         0.0000 Virgin America
     1
     2
                  NaN
                                            NaN Virgin America
     3
           Bad Flight
                                         0.7033 Virgin America
     4
           Can't Tell
                                         1.0000 Virgin America
       airline_sentiment_gold
                                     name negativereason_gold
                                                              retweet_count \
     0
                                 cairdin
                                                         NaN
                         NaN
                                                                          0
                                                         NaN
                                                                          0
     1
                         NaN
                                inardino
     2
                         NaN yvonnalynn
                                                         NaN
                                                                          0
     3
                         NaN
                                inardino
                                                         NaN
     4
                                inardino
                         NaN
                                                         NaN
                                                    text tweet_coord \
     0
                      @VirginAmerica What @dhepburn said.
                                                                 NaN
     1 @VirginAmerica plus you've added commercials t...
                                                               NaN
     2 @VirginAmerica I didn't today... Must mean I n...
                                                             NaN
     3 @VirginAmerica it's really aggressive to blast...
                                                               NaN
     4 @VirginAmerica and it's a really big bad thing...
                                                               NaN
                    tweet_created tweet_location
                                                              user_timezone
     0 2015-02-24 11:35:52 -0800
                                            NaN Eastern Time (US & Canada)
     1 2015-02-24 11:15:59 -0800
                                            NaN Pacific Time (US & Canada)
                                        Lets Play Central Time (US & Canada)
     2 2015-02-24 11:15:48 -0800
     3 2015-02-24 11:15:36 -0800
                                            NaN Pacific Time (US & Canada)
     4 2015-02-24 11:14:45 -0800
                                            NaN Pacific Time (US & Canada)
[3]: test_df = pd_read_csv("Tweets.csv")
     print(f'Test data shape: {test_df_shape}')
     test_df.head()
    Test data shape: (14640, 15)
[3]:
                 tweet_id airline_sentiment airline_sentiment_confidence \
     0 570306133677760513
                                     neutral
                                                                   1.0000
     1 570301130888122368
                                                                  0.3486
                                   positive
     2 570301083672813571
                                                                  0.6837
                                     neutral
     3 570301031407624196
                                    negative
                                                                  1.0000
     4 570300817074462722
                                    negative
                                                                  1.0000
```

```
negativereason negativereason_confidence
                                                         airline
                                                                   \
     0
                  NaN
                                             NaN Virgin America
                  NaN
                                          0.0000 Virgin America
     1
     2
                  NaN
                                             NaN Virgin America
     3
           Bad Flight
                                          0.7033 Virgin America
     4
           Can't Tell
                                          1.0000 Virgin America
       airline_sentiment_gold
                                     name negativereason_gold
                                                                retweet_count \
     0
                          NaN
                                  cairdin
                                                          NaN
     1
                                                                            0
                          NaN
                                 inardino
                                                          NaN
     2
                          NaN yvonnalynn
                                                                            0
                                                          NaN
     3
                          NaN
                                 jnardino
                                                          NaN
                                                                            0
     4
                                                                            0
                          NaN
                                 inardino
                                                          NaN
                                                     text tweet_coord \
     0
                      @VirginAmerica What @dhepburn said.
                                                                   NaN
     1
       @VirginAmerica plus you've added commercials t...
                                                                 NaN
     2 @VirginAmerica I didn't today... Must mean I n...
                                                              NaN
     3 @VirginAmerica it's really aggressive to blast...
                                                                 NaN
     4 @VirginAmerica and it's a really big bad thing...
                                                                NaN
                    tweet_created tweet_location
                                                                user_timezone
     0 2015-02-24 11:35:52 -0800
                                             NaN Eastern Time (US & Canada)
     1 2015-02-24 11:15:59 -0800
                                             NaN Pacific Time (US & Canada)
     2 2015-02-24 11:15:48 -0800
                                        Lets Play Central Time (US & Canada)
     3 2015-02-24 11:15:36 -0800
                                             NaN Pacific Time (US & Canada)
     4 2015-02-24 11:14:45 -0800
                                             NaN Pacific Time (US & Canada)
[4]: train_df.duplicated().sum()
[4]: 36
[5]: train_df.dtypes
[5]: tweet_id
                                       int64
     airline_sentiment
                                      object
     airline_sentiment_confidence
                                     float64
     negativereason
                                      object
     negativereason_confidence
                                     float64
     airline
                                      object
     airline_sentiment_gold
                                      object
     name
                                      object
     negativereason_gold
                                      object
     retweet_count
                                       int64
     text
                                      object
     tweet_coord
                                      object
```

```
tweet_location
                                      object
     user_timezone
                                      object
     dtype: object
[6]: # Missing values check
     print(f'Missing values in train data:\n{train_df_isnull()_sum()}')
     print("-"*40)
    Missing values in train data:
                                        0
    tweet_id
    airline_sentiment
                                        0
    airline_sentiment_confidence
                                        0
    negativereason
                                     5462
                                     4118
    negativereason_confidence
    airline
    airline_sentiment_gold
                                   14600
    name
    negativereason_gold
                                    14608
    retweet_count
                                        0
                                        0
    text
                                   13621
    tweet_coord
    tweet_created
    tweet_location
                                     4733
    user_timezone
                                     4820
    dtype: int64
[7]: stopwords = set(STOPWORDS)
     # Removing 'user' word as it does not hold any importance in our context
     stopwords_add("user")
     negative_tweets = train_df['text'][train_df['airline']==1].to_string()
     wordcloud_negative = WordCloud(width = 800, height = 800,
                                    background_color = "white", stopwords = stopwords,
                                    min_font_size = 10).generate(negative_tweets)
     positive_tweets = train_df["text"][train_df["airline"]==0].to_string()
     wordcloud_positive = WordCloud(width = 800, height = 800,
                                    background_color = "white", stopwords = stopwords,
                                    min_font_size = 10).generate(positive_tweets)
     # Plotting the WordCloud images
     plt_figure(figsize=(14, 6), facecolor=None)
     plt.subplot(1, 2, 1)
```

object

tweet_created

```
plt.imshow(wordcloud_negative)
plt.axis("off")
plt.title("Negative Tweets", fontdict={"fontsize": 20})

plt.subplot(1, 2, 2)
plt.imshow(wordcloud_positive)
plt.axis("off")
plt.title("Positive Tweets", fontdict={"fontsize": 20})

plt.tight_layout()
plt.show()
```

Negative Tweets

Positive Tweets

Series

1 570301130888122368

Series

0.3486

```
[8]: # Feature Engineering
     train_df_fe = train_df.copy()
     train_df_fe["tweet_length"] = train_df_fe["text"].str.len()
     train_df_fe["num_hashtags"] = train_df_fe["text"].str.count("#")
     train_df_fe["num_exclamation_marks"] = train_df_fe["text"].str.count("\!")
     train_df_fe["num_question_marks"] = train_df_fe["text"].str.count("\?")
     train_df_fe["total_tags"] = train_df_fe["text"].str.count("@")
     train_df_fe["num_punctuations"] = train_df_fe["text"].str.count("[.,::]")
     train_df_fe["num_question_marks"] = train_df_fe["text"].str.count("[*&$%]")
     train_df_fe["num_words"] = train_df_fe["text"].apply(lambda x: len(x.split()))
     train_df_fe.head()
[8]:
                  tweet_id airline_sentiment airline_sentiment_confidence \
     0 570306133677760513
                                     neutral
                                                                   1.0000
```

positive

```
2 570301083672813571
                                     neutral
                                                                    0.6837
     3 570301031407624196
                                                                    1.0000
                                    negative
     4 570300817074462722
                                                                    1.0000
                                    negative
       negativereason negativereason_confidence
                                                         airline
     0
                  NaN
                                             NaN Virgin America
     1
                  NaN
                                          0.0000 Virgin America
     2
                                             NaN Virgin America
                  NaN
           Bad Flight
                                          0.7033 Virgin America
     3
           Can't Tell
                                          1.0000 Virgin America
       airline_sentiment_gold
                                     name negativereason_gold retweet_count ... \
                          NaN
                                  cairdin
                                                          NaN
                          NaN
                                 inardino
                                                          NaN
     1
                                                                           0
     2
                          NaN yvonnalynn
                                                          NaN
                                                                           0
     3
                          NaN
                                 jnardino
                                                          NaN
                                                                           0
                          NaN
                                 inardino
                                                          NaN
                    tweet_created tweet_location
                                                               user_timezone \
     0 2015-02-24 11:35:52 -0800
                                             NaN Eastern Time (US & Canada)
     1 2015-02-24 11:15:59 -0800
                                             NaN Pacific Time (US & Canada)
     2 2015-02-24 11:15:48 -0800
                                        Lets Play Central Time (US & Canada)
     3 2015-02-24 11:15:36 -0800
                                             NaN Pacific Time (US & Canada)
                                             NaN Pacific Time (US & Canada)
     4 2015-02-24 11:14:45 -0800
       tweet_length num_hashtags num_exclamation_marks
                                                        num_question_marks \
     0
                 35
     1
                 72
                               0
                                                      0
                                                                          0
     2
                 71
                               0
                                                      1
                                                                          0
     3
                126
                               0
                                                      0
                                                                          1
     4
                 55
        total_tags num_punctuations num_words
     0
                 2
                                   1
                                              4
     1
                 1
                                   4
                                              9
     2
                                   3
                                             12
     3
                                   1
                                             17
                                             10
                 1
     [5 rows x 22 columns]
[9]: # Visualizing relationship of newly created features with the tweet sentiments
     plt_figure(figsize=(12, 16))
     features = ["tweet_length", "num_hashtags", "num_exclamation_marks",_

¬"num_question_marks".
                 "total_tags", "num_punctuations", "num_words"]
     for i in range(len(features)):
```

```
plt_subplot(4, 2, i+1)
    sns.distplot(train_df_fe[train_df_fe.retweet_count ==0][features[i]], label_
    "Positive")
    sns.distplot(train_df_fe[train_df_fe.retweet_count ==1][features[i]], label_
    "Negative")
    plt.legend()
plt.tight_layout()
plt.show()
```



```
test = test_df
[10]
        #Data Preprocessing
        # Train-Test Splitting
        X = train_df_drop(columns=["tweet_id"])
        y = train_df["tweet_id"]
        print(X.shape, test.shape, y.shape)
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
          print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
        (14640, 14) (14640, 15) (14640,)
         (11712, 14) (2928, 14) (11712,) (2928,)
  [11] # Function to tokenize and clean the text
        def tokenize_and_clean(text):
            # Changing case of the text to lower case
            lowered = text.lower()
            # Cleaning the text
            cleaned = re_sub("@user", "", lowered)
            # Tokenization
            tokens = word_tokenize(cleaned)
            filtered_tokens = [token for token in tokens if re.match(r'\w{1,}', token)]
```

stems = [stemmer.stem(token) for token in filtered_tokens]

Stemming

return stems

stemmer = PorterStemmer()

```
[12]:
      import nltk
       nltk_download("punkt")
       # BOW Vectorization
       # bow_vectorizer = CountVectorizer(tokenizer=tokenize_and_clean,_
        stop_words='english')
       # X train tweets bow = bow vectorizer.fit transform(X train['tweet'])
       \# X\_test\_tweets\_bow = bow\_vectorizer.transform(X\_test['tweet'])
       # print(X train tweets bow.shape, X test tweets bow.shape)
       # TF-IDF Vectorization
       tfidf_vectorizer = TfidfVectorizer(tokenizer=tokenize_and_clean,__
        ⇔stop_words="english")
       X_train_tweets_tfidf = tfidf_vectorizer.fit_transform(X_train["name"])
       X_test_tweets_tfidf = tfidf_vectorizer_transform(X_test["name"])
       print(X_train_tweets_tfidf.shape, X_test_tweets_tfidf.shape)
       # TF-IDF Vectorization on full training data
       tfidf_vectorizer = TfidfVectorizer(tokenizer=tokenize_and_clean,...
        ⇔stop_words="english")
       X_tweets_tfidf = tfidf_vectorizer_fit_transform(X["name"])
       test_tweets_tfidf = tfidf_vectorizer_transform(test["name"])
       print(X_tweets_tfidf.shape, test_tweets_tfidf.shape)
```

```
[nltk_data] Downloading package punkt to [nltk_data] C:\Users\Ragu\AppData\Roaming\nltk_data... [nltk_data] Package punkt is already up-to-date! (11712, 6730) (2928, 6730) (14640, 7704) (14640, 7704)
```

```
plt.figure(1, figsize=(15, 12)) # Adjust the figsize as needed
[13]:
       airlines = ["US Airways", "United", "American", "Southwest", "Delta", "Virgin_
        America 
       for i, airline in enumerate(airlines, 1):
           plt.subplot(2, 3, i)
           new_value = train_df[train_df['airline'] == airline]
           print(new_value["airline_sentiment"].value_counts(), airline)
           sns_countplot(data=new_value, x="airline_sentiment")
           plt.title(f'Sentiments for {airline}')
       plt.tight_layout()
       plt.show()
      negative
                  2263
      neutral
                   381
                   269
      positive
      Name: airline_sentiment, dtype: int64 US Airways
      negative
                  2633
      neutral
                   697
      positive
                   492
      Name: airline_sentiment, dtype: int64 United
      negative
                  1960
                   463
      neutral
      positive
                   336
      Name: airline_sentiment, dtype: int64 American
                  1186
      negative
```

Name: airline_sentiment, dtype: int64 Southwes

negative 955 neutral 723 positive 544

neutral

positive

Name: airline_sentiment, dtype: int64 Delta

664 570

Negative 181 neutral 171 positive 152

Name: airline_sentiment, dtype: int64 Virgin America


```
[14]: sns_countplot(train_df, x = "airline_sentiment", palette= "viridis");
  plt.xlabel("Airline Sentiment")
  plt.ylabel("Count")
  plt.show()
```



```
[15]: from transformers import pipeline
  classifier = pipeline("sentiment-analysis")
  texts = train_df["text"].tolist()
  predictions = classifier(texts)
  predictions[:5]
```

No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english and revision af0f99b (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english).

Using a pipeline without specifying a model name and revision in production is not recommended.

```
      Downloading (...)lve/main/config.json:
      0%|
      | 0.00/629 [00:00<?, ?B/s]</td>

      Downloading model.safetensors:
      0%|
      | 0.00/268M [00:00<?, ?B/s]</td>

      Downloading (...)okenizer_config.json:
      0%|
      | 0.00/48.0 [00:00<?, ?B/s]</td>

      Downloading (...)solve/main/vocab.txt:
      0%|
      | 0.00/232k [00:00<?, ?B/s]</td>
```

```
[15]: [{'label': 'POSITIVE', 'score': 0.8633624911308289}, {'label': 'POSITIVE', 'score': 0.6070874333381653}, {'label': 'NEGATIVE', 'score': 0.9973426461219788},
```

```
{'label': 'NEGATIVE', 'score': 0.9973449110984802},
    {'label': 'NEGATIVE', 'score': 0.9995823502540588}]

[19]: submission = pd.DataFrame({"tweet_id":test_df.tweet_id, "label":predictions})
    submission.head()
    submission.to_csv("Submission.csv", index=False)
    print("Submission is successful!")
```

Submission is successful!

CONCLUSION:

- ❖ This project has demonstrated the potential of sentiment analysis to be used for a variety of marketing purposes, including:
 - ➤ Feature engineering
 - ➤ Model training
 - ➤ Evaluation
- ❖ Sentiment analysis is a powerful tool that can be used to improve marketing effectiveness and achieve better business outcomes.
- ❖ By understanding and measuring customer sentiment, businesses can make better decisions about how to develop, market, and sell their products and services.