Beweis der Euler-Charakteristik

Wir verwenden eine Methode der Informatik und Mathematik, um unsere Beobachtung zu festigen. Wir *beweisen* die Euler-Charakteristik.

Dabei betrachten wir genauer, was passiert, wenn wir einen planaren Graphen zeichnen. Wir beginnen mit dem einfachsten Graphen, den es gibt: Nur eine Ecke.

Berechne dazu die Euler-Charakteristik:

Ecken	Kanten	Flächen	E-K+F

Das ist unser Basisfall. Von hier aus zeichnen wir schrittweise weiter. Es gibt zwei unterschiedliche Schritte:

Wir möchten dieses Vorgehen erstmal testen:

Führe die Schritte A oder B aus, um den Graphen nachzuzeichnen, und fülle die Tabelle für jeden Schritt aus. Der Basisfall ist schon eingetragen.

Schritt (A / B)	Ecken	Kanten	Flächen	E-K+F
Basis	1	0	1	2

In **Partnerarbeit**: Zeichne einen beliebigen planaren Graphen. Dein Partner soll nun das Vorgehen aus dem Beweis auf deinen Graphen anwenden.

Mit dem Verfahren haben wir bewiesen, dass die Euler-Charakteristik für planare Graphen 2 ist.