Linear Regression

ONE VARIABLE

Linear Regression: Housing Price prediction

Data table	
size in feet²	price in ₹1000's
2104	400
1416	232
1534	315
852	178
3210	870

Basic Terminology

- Training set
- x = Input variable or input feature
- y = Output variable or target variable
- m = number of training examples
- (x, y) = single training example
- $(x^{(i)}, y^{(i)}) = i^{th}$ training example

Data table	
size in feet²	price in ₹1000's
2104	400
1416	232
1534	315
852	178
3210	870

Supervised learning

- x feature (input variable)
- y-hat prediction (estimated y)
- f function (model)

Linear Regression (One variable) | Univariate linear Regression

Straight line equation

Model: $f_{w,b}(x) = wx + b$

w & b: parameters/ coefficients/ weights

Cost function

Model:
$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

$$\hat{y} = f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Find values of w & b so that y-hat⁽ⁱ⁾ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Cost function

Squared error cost function J(w,b)

$$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} - \frac{1}{2} \left(\frac{1}{2} \right)^{2} \right)^{2}$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Linear Regression (One variable) | Univariate linear Regression

Model	$f_{w,b}(x) = wx + b$
-------	-----------------------

Cost Function
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Objective
$$\min_{w,b} \max J(w,b)$$

Simplified Cost function

$$f_w(x) = wx$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$$

$$\min_{w} \operatorname{minimize} J(w)$$

 $f_w(x) = wx$ for fixed w, model is a function of x (input feature)

J(w) is a function of w (parameter)

General Cost function

Cost Function
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Objective
$$\min_{w,b} \max J(w,b)$$

General Cost function

General Cost function visualization

General Cost function visualization

General Cost function visualization

