

Zara, J.
09896692

09/896692

FILE 'REGISTRY' ENTERED AT 10:05:38 ON 30 MAY 2003

L1 300 S TCGCACCCATCTCTCCTCT/SQSN
L2 291 S L1 AND SQL=<100

FILE 'HCAPLUS' ENTERED AT 10:06:56 ON 30 MAY 2003

L3 109 S L2

L5 24 SEA ABB=ON PLU=ON L3(L) (HIV OR HUMAN(3W)VIRUS OR HTLV#
OR AIDS OR ACQUIRED(2W)SYNDROM?)

L5 ANSWER 1 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2001:723747 HCAPLUS

DOCUMENT NUMBER: 136:406717

TITLE: Inhibition of HIV-1 in cell culture by
oligonucleotide-loaded nanoparticles

AUTHOR(S): Berton, Myriam; Turelli, Priscilla; Trono,
Didier; Stein, Cy A.; Allemand, Eric; Gurny,
Robert

CORPORATE SOURCE: School of Pharmacy, University of Geneva,
Geneva, CH-1211, Switz.

SOURCE: Pharmaceutical Research (2001), 18(8), 1096-1101
CODEN: PHREEB; ISSN: 0724-8741

PUBLISHER: Kluwer Academic/Plenum Publishers

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The potential use of polymeric nanoparticles for the delivery of antisense oligonucleotides in HIV-1-infected cell cultures was investigated. Phosphorothioate oligonucleotides were encapsulated into poly (D,L-lactic acid) nanoparticles. Two models of infected cells were used to test the ability of nanoparticles to deliver them. HeLa P4-2 CD4+ cells, stably transfected with the .beta.-galactosidase reporter gene, were first used to evaluate the activity of the oligonucleotides on a single-round infection cycle. The acutely infected lymphoid CEM cells were then used to evaluate the inhibition of the viral prodn. of HIV-1 by the oligonucleotides. The addn. to infected CEM cells of nanoparticles contg. gag antisense oligonucleotides in the nanomolar range led to strong inhibition of the viral prodn. in a concn.-dependent manner. Similar results were previously obsd. in HeLa P4-2 CD4+ cells. Nanoparticle-entrapped random-order gag oligonucleotides had similar effects on reverse transcription. However, the reverse transcriptase activity of infected cells treated with nanomolar concns. of free antisense and random oligonucleotides was not affected. These results suggest that poly (D,L-lactic acid) nanoparticles may have great potential as an efficient delivery system for oligonucleotides in HIV natural target cells; i.e., lymphocytic cells.

IT 153021-75-1, GEM91

RL: BSU (Biological study, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
(inhibition of HIV-1 in cell culture by
oligonucleotide-loaded nanoparticles)

REFERENCE COUNT: 30 THERE ARE 30 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L5 ANSWER 2 OF 24 HCAPLUS COPYRIGHT 2003 ACS

Searcher : Shears 308-4994

09/896692

ACCESSION NUMBER: 2000:605304 HCPLUS
DOCUMENT NUMBER: 134:25093
TITLE: Evaluation of the binding between potential anti-HIV DNA-based drugs and viral envelope glycoprotein gp120 by capillary electrophoresis with laser-induced fluorescence detection
AUTHOR(S): Zhou, Wei; Tomer, Kenneth B.; Khaledi, Morteza G.
CORPORATE SOURCE: Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
SOURCE: Analytical Biochemistry (2000), 284(2), 334-341
CODEN: ANBCA2; ISSN: 0003-2697
PUBLISHER: Academic Press
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The fusion of the human immunodeficiency virus (HIV) with the target cell was assisted by the interaction between the viral envelope glycoprotein HIV-1 gp120 and a chemokine receptor. Studies have shown that the efficiency of the binding depends on the presence of the V3 loop of the gp120 which is known to interact with polyanions, such as phosphorothioate oligodeoxynucleotides (Sd, potential anti-HIV drugs). In this study, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was used to systematically evaluate binding between Sd and HIV-1 gp120. A 25-mer fluorescently tagged phosphorothioate oligodeoxynucleotide (GEM) was employed as a probe to study this interaction. The dissocn. const. (K_d) between GEM and gp120 was detd. to be 0.98 nM by Scatchard anal. The competition consts. (K_c) of a set of Sd that compete with GEM for binding to gp120 were also detd. The results showed that the interaction had a strong dependence on the sulfur phosphorothioate backbone. Chain length and the sequence of Sd also affect the ability of binding to gp120. The ability to study the protein-drug binding in the soln. with minimal sample consumption makes CE-LIF very attractive for biol. studies. (c) 2000 Academic Press.
IT 153021-75-1D, 5'-fluorescein-labeled
RL: BPR (Biological process); BSU (Biological study, unclassified);
BIOL (Biological study); PROC (Process)
(binding between potential anti-HIV DNA-based drugs and
viral envelope glycoprotein gp120)
REFERENCE COUNT: 40 THERE ARE 40 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L5 ANSWER 3 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 2000:9417 HCPLUS
DOCUMENT NUMBER: 132:160829
TITLE: Cell binding, uptake and cytosolic partition of HIV anti-gag phosphodiester oligonucleotides 3'-linked to cholesterol derivatives in macrophages
AUTHOR(S): LeDoan, Trung; Etore, Florence; Tenu, Jean-Pierre; Letourneux, Yves; Agrawal, Sudhir
CORPORATE SOURCE: Laboratoire de Biochimie des Transports Cellulaires, CNRSUMR8619, Universite de Paris XI, Orsay, 91405, Fr.
SOURCE: Bioorganic & Medicinal Chemistry (1999), 7(11), 2263-2269

09/896692

CODEN: BMECEP; ISSN: 0968-0896
PUBLISHER: Elsevier Science Ltd.

DOCUMENT TYPE: Journal
LANGUAGE: English

AB The purpose of this study is to evaluate the cell interactions of a new class of compds. composed of phosphodiester oligonucleotides linked to the cholesterol group at position 3, 7, or 22 of the steroid structure. The resulting conjugates were assessed for their capacity to bind, penetrate and partition in the cytoplasmic compartment of murine macrophages. The results showed that lipophilic conjugates bind to cells much faster ($t_{1/2} < 10$ min) than do underivatized oligomers. Oligomers tethered to the cholesterol at positions 3 and 7 (PO-GEM-3-Chol and PO-GEM-7-Chol) interacted more efficiently with cell membranes and were better internalized than oligomers attached to the cholesterol moiety at position 22 (PO-GEM-22-Chol). The cytosolic fraction of internalized oligomers was studied by a digitonin-based membrane permeabilization method. The recovered fraction of oligomers that can freely diffuse from the cytosol was comparable for GEM-91, a phosphorothioate congener, and for PO-GEM-7-Chol (50-60% of the internalized oligomers), while that of PO-GEM-3-Chol was less (30% of the internalized oligomers) indicating a higher membrane affinity of the latter deriv. as compared to the other investigated compds. Membrane binding and cell internalization correlated well with the hydrophobicity of the conjugates as characterized by their partition coeffs. in a water-octanol system. Due to their capacity of rapid binding and cytosolic partition in cells, cholesterol-derivatized oligonucleotides at position 3 or 7 of the steroid mol. appeared as good candidates for systemic delivery of anti-HIV antisense compds.

IT 153021-75-1, GEM-91 259075-60-0

259075-61-1 259075-62-2 259075-63-3

RL: BPR (Biological process); BSU (Biological study, unclassified);

PRP (Properties); BIOL (Biological study); PROC (Process)

(cell binding, uptake and cytosolic partition of HIV

anti-gag phosphodiester oligonucleotides 3'-linked to cholesterol derivs. in macrophages)

REFERENCE COUNT: 26 THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 4 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1999:189236 HCPLUS

DOCUMENT NUMBER: 130:233230

TITLE: Compositions and methods for the identification and quantitation of deletion sequence oligonucleotides in synthetic oligonucleotide preparations

INVENTOR(S): Chen, Danhua; Srivatsa, G. Susan

PATENT ASSIGNEE(S): Isis Pharmaceuticals, Inc., USA

SOURCE: PCT Int. Appl., 163 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

Searcher : Shears 308-4994

09/896692

WO 9911820 A1 19990311 WO 1998-US18084 19980901
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,
DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

AU 9891278 A1 19990322 AU 1998-91278 19980901

PRIORITY APPLN. INFO.: US 1997-923771 19970902
WO 1998-US18084 19980901

AB The invention provides compns. and methods for the identification and quantitation of a mixt. of various deletion sequence oligonucleotides present in a prepn. of a synthetic oligonucleotide. In a synthetic prepn. of oligonucleotides, yield of full-length products is less than 100% and decreases as n (the no. of nucleobases in the full-length oligonucleotide) increases. Oligonucleotides shorter than the desired full-length oligonucleotide are possibly undesirable impurities. (n-1) type impurities can be classified as terminal deletion or internal deletion sequences, depending upon the position of the missing base. In the methods of the invention, a soln. comprising a mixt. of various deletion sequence oligonucleotides that have been detectably labeled is contacted to a compn. comprising a series of immobilized probes, each probe having a nucleobase sequence that is the reverse complement of a given (n-1) deletion sequence oligonucleotide and wherein a probe is present for every possible (n-1)-mer that can be present in a prepn. of a synthetic oligonucleotide of length n. Unbound oligonucleotides (full-length and other deletion sequences) can be removed from the hybridization reaction by washing, and the (n-1)-mers can be further identified and quantified.

IT 148267-87-2 153021-75-1, GEM 91
156718-18-2 156718-19-3 156718-20-6
156718-21-7 156718-22-8 156718-23-9
156718-24-0

RL: ARU (Analytical role, unclassified); BUU (Biological use, unclassified); ANST (Analytical study); BIOL (Biological study);
USES (Uses)

(oligonucleotide targeted to HIV-1 gag gene;
identification and quantitation of deletion sequence
oligonucleotides in synthetic oligonucleotide preps.)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR
THIS RECORD. ALL CITATIONS AVAILABLE IN
THE RE FORMAT

L5 ANSWER 5 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1999:139949 HCPLUS
DOCUMENT NUMBER: 130:191877
TITLE: Novel HIV-specific synthetic antisense
oligonucleotides and methods of their use
INVENTOR(S): Agrawal, Sudhir
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 64 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English

09/896692

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9909154	A2	19990225	WO 1998-US16345	19980805
WO 9909154	A3	19990506		
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
CA 2300352	AA	19990225	CA 1998-2300352	19980805
AU 9887713	A1	19990308	AU 1998-87713	19980805
EP 1007657	A2	20000614	EP 1998-939243	19980805
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP 2001514884	T2	20010918	JP 2000-509820	19980805
US 2002168340	A1	20021114	US 2001-837806	20010418
US 2003100521	A1	20030529	US 2001-896692	20010629
PRIORITY APPLN. INFO.:			US 1997-914827 A	19970819
			WO 1998-US16345 W	19980805

AB Disclosed are synthetic oligonucleotides having a nucleotide sequence specifically complementary to nucleotides 324-345 of a conserved gag region of the HIV-1 genome, the oligonucleotide consisting of 21 nucleotides which are linked via phosphorothioate internucleotide linkages and optionally contg. 5'- and 3'-terminal 2'-O-methylribonucleotide residues. Also disclosed are methods for inhibiting and treating HIV-1 and HIV-2 infection. To det. the preclin. range of anti-HIV activity of various oligonucleotides, evaluations were performed against a variety of wild-type and drug-resistant strains of HIV-1, including both lab. derived and low passage, clin. strains of virus and T-lymphocyte-tropic and monocyte-macrophage-tropic viruses. The oligonucleotides remained active against viruses resistant to nevirapine, 3TC and protease inhibitors, but were less active against viruses with mutations conferring resistance to AZT. High test concns. exhibited no toxicity even after 14 days, and the oligonucleotides are i.v. and orally bioavailable to rats and monkeys after a single dose. The phosphorothioated oligonucleotide 5'-ucgcaccatctctctccuuc-3' (with the four 5' and the four 3' residues comprising 2'-O-methylribonucleotides) inhibits viral infection or post-viral adsorption with IC50 = 410 nM and IC90 = 1737 nM.

IT 197831-53-1, GenBank I49132

RL: BPR (Biological process); BSU (Biological study, unclassified);
BIOL (Biological study); PROC (Process)
(gag region target; HIV-specific synthetic antisense
oligonucleotides and methods of their use)

L5 ANSWER 6 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1999:26511 HCPLUS

DOCUMENT NUMBER: 130:231953

TITLE: Sequence-specific RNase H cleavage of gag mRNA
from HIV-1 infected cells by an antisense

09/896692

AUTHOR(S): oligonucleotide in vitro
Veal, Gareth J.; Agrawal, Sudhir; Byrn, Randal A.
CORPORATE SOURCE: Divisions of Hematology, Oncology and Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
SOURCE: Nucleic Acids Research (1998), 26(24), 5670-5675
CODEN: NARHAD; ISSN: 0305-1048
PUBLISHER: Oxford University Press
DOCUMENT TYPE: Journal
LANGUAGE: English

AB We have used a RNase protection assay to investigate RNase H cleavage of HIV-1 mRNA mediated by phosphorothioate antisense oligonucleotides complementary to the gag region of the HIV-1 genome in vitro. Cell lysate expts. in H9 and U937 cells chronically infected with HIV-1 IIIB showed RNase H cleavage of unspliced gag message but no cleavage of spliced message which did not contain the target gag region. RNase H cleavage products were detected at oligonucleotide concns. as low as 0.01 .mu.M and the RNase H activity was seen to be concn. dependent. Similar expts. with 1-, 3- and 5-mismatch oligonucleotides demonstrated sequence specificity at low concns., with cleavage of gag mRNA correlating with the predicted activities of the parent and mismatch oligonucleotides based on their hybridization melting temps. Expts. in living cells suggested that RNase H-specific antisense activity was largely detd. by the amt. of oligonucleotide taken up by the different cell lines studied. RNase H cleavage products were detected in antisense oligonucleotide treated MT-4 cells acutely infected with HIV-1 IIIB, but not in infected H9 cells treated with oligonucleotide under the same conditions. The data presented demonstrate potent and specific RNase H cleavage of HIV-1 mRNA mediated by an antisense oligonucleotide targeted to HIV-1 gag mRNA, and are in agreement with previous reports that the major obstacle to demonstrating antisense activity in living cells remains the lack of penetration of these agents into the desired cellular compartment.

IT 153021-75-1
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(sequence-specific RNase H cleavage of gag mRNA from HIV-1 infected cells by an antisense oligonucleotide in vitro)
REFERENCE COUNT: 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 7 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1998:409757 HCPLUS
DOCUMENT NUMBER: 129:144469
TITLE: Antisense oligonucleotide-based therapy for HIV-1 infection from laboratory to clinical trials
AUTHOR(S): Agrawal, Sudhir
CORPORATE SOURCE: Hybridon, Inc., Cambridge, MA, 02142, USA
SOURCE: Clinical Trials of Genetic Therapy with Antisense DNA and DNA Vectors (1998), 331-352.
Editor(s): Wickstrom, Eric. Dekker: New York, N. Y.
CODEN: 66HPAS

09/896692

DOCUMENT TYPE: Conference; General Review
LANGUAGE: English

AB A review with 39 refs. This chapter discusses GEM 91, a 25-mer oligodeoxynucleoside phosphorothioate designed to bind to the initiation sit of gag mRNA of HIV-1. Targets of GEM 91 during the HIV replication cycle, its antiviral activity in vitro, and experience from administration to rats and monkeys and in human clin. trials are discussed.

IT 153021-75-1, GEM 91

RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(antisense oligonucleotide-based therapy for HIV-1 infection in lab. animals and humans)

REFERENCE COUNT: 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 8 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:292803 HCPLUS

DOCUMENT NUMBER: 129:75818

TITLE: Early clinical trials with GEM 91, a systemic oligodeoxynucleotide

AUTHOR(S): Martin, R. Russell

CORPORATE SOURCE: Hybridon, Inc., Cambridge, MA, 02139, USA

SOURCE: Applied Antisense Oligonucleotide Technology (1998), 387-393. Editor(s): Stein, C. A.; Kreig, Arthur M. Wiley-Liss: New York, N. Y.
CODEN: 65ZQAC

DOCUMENT TYPE: Conference; General Review

LANGUAGE: English

AB A review with 9 refs. on the design and safety and pharmacokinetic trials of the anti-HIV-1 drug GEM 91.

IT 153021-75-1, GEM 91

RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
(clin. trials of the anti-HIV-1 oligodeoxynucleotide GEM 91)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 9 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:230586 HCPLUS

DOCUMENT NUMBER: 129:12318

TITLE: Synergistic inhibition of HIV-1 by an antisense oligonucleotide and nucleoside analog reverse transcriptase inhibitors

AUTHOR(S): Veal, Gareth J.; Agrawal, Sudhir; Byrn, Randal A.

CORPORATE SOURCE: Beth Israel Deaconess Medical Center, Divisions of Hematology/Oncology and Experimental Medicine, Harvard Medical School, Boston, MA, 02215, USA

SOURCE: Antiviral Research (1998), 38(1), 63-73

09/896692

CODEN: ARSRDR; ISSN: 0166-3542

PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB We have studied the effects of the gag antisense phosphorothioate oligonucleotide GEM 91 and mismatch antisense controls on the antiviral activities of ddC and other nucleoside analogs in HIV-infected MT-4 cells using a cytoprotection based assay. Under std. assay conditions, i.e. simultaneous incubation of drugs, HIV-1 IIIB and MT-4 cells, both GEM 91 and mismatch controls interacted synergistically with ddC resulting in an approx. 40-fold decrease in the IC50 value of ddC; this suggests a potent but sequence non-specific effect of GEM 91. Under post-adsorption assay conditions, i.e. pre-incubation of virus and cells and removal of excess HIV before drug addn., GEM 91 exhibited synergism with ddC, with an approx. 5-fold decrease in ddC IC50 value. This favorable interaction was not seen with any of the mismatch oligonucleotides, suggesting the involvement of a sequence-specific mechanism of action. Similar results were seen with the thymidine analogs AZT and d4T in combination with GEM 91. These data suggest a potential role for GEM 91 and future sequence-specific antisense drugs in combination with nucleoside analogs for the treatment of HIV infection. It is essential that potential interactions between new and existing classes of anti-HIV drugs are studied extensively as antiretroviral drug combinations become increasingly more complex.

IT 153021-75-1, GEM 91

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(synergistic inhibition of HIV-1 by an antisense phosphorothioate oligonucleotide and nucleoside analog reverse transcriptase inhibitors)

REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 10 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:89349 HCPLUS

DOCUMENT NUMBER: 128:162876

TITLE: Antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans

INVENTOR(S): Schechter, Paul J.; Martin, B. Russel; Tournerie, Christophe; Agrawal, Sudhir

PATENT ASSIGNEE(S): Hybirdon, Inc., USA

SOURCE: PCT Int. Appl., 93 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9803646	A1	19980129	WO 1996-US12056	19960722
W:	AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO,			

09/896692

RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM

RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB,
GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA,
GN, ML, MR, NE, SN, TD, TG

AU 9665924 A1 19980210 AU 1996-65924 19960722

PRIORITY APPLN. INFO.: WO 1996-US12056 19960722

AB The present invention provides therapeutic compns. and methods for treating humans suffering from diseases or disorders caused by cellular expression of aberrant exogenous genes or aberrant endogenous genes comprising administering to the human a therapeutically effective amt. of an oligonucleotide capable of specifically down-regulating the expression of such a gene. Thus, oligodeoxyribonucleotides are provided which are antisense to residues 324-348 of the conserved gag gene region of human immunodeficiency virus type 1 (HIV-1). These antisense oligonucleotides are more specific, less toxic, and have greater nuclease resistance than many other chemotherapeutic agents designed to inhibit HIV-1 replication. In addn., they are more active in inhibiting viral replication than other known antisense oligonucleotides contg. less than the 324-348 HIV-1 gag sequence. The efficacy and pharmacokinetics profile of phosphorothioated 5'-ctctcgacccatctctccttct-3' in the treatment of HIV-1-infected human cell lines are described.

IT 156718-23-9

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 321-350 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 156718-21-7

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 322-349 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 156718-22-8

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 322-350 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 202833-93-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligo antisense to residues 322-351 of HIV-1 virus gag gene; antisense oligonucleotides and methods for treating specific gene expression-related diseases and disorders in humans)

IT 156718-18-2

RL: BAC (Biological activity or effector, except adverse); BSU

09/896692

(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)

(oligo antisense to residues 323-348 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 156718-20-6

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)

(oligo antisense to residues 323-349 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 148267-87-2

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)

(oligo antisense to residues 323-350 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 151285-76-6

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)

(oligo antisense to residues 324-348 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

IT 156718-19-3

RL: BAC (Biological activity or effector, except adverse); BSU
(Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)

(oligo antisense to residues 324-349 of HIV-1 virus gag
gene; antisense oligonucleotides and methods for treating
specific gene expression-related diseases and disorders in
humans)

REFERENCE COUNT:

10 THERE ARE 10 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L5 ANSWER 11 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:31391 HCAPLUS

DOCUMENT NUMBER: 128:84382

TITLE: Antisense oligonucleotides down-regulating gene
expression and their use in the treatment of
disease

INVENTOR(S): Schechter, Paul J.; Martin, R. Russell;
Tournerie, Christophe; Agrawal, Sudhir; Coombs,
Robert W.

PATENT ASSIGNEE(S): Hybridon, Inc., USA

SOURCE: PCT Int. Appl., 85 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

09/896692

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9748795	A2	19971224	WO 1997-US10143	19970611
W:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
RW:	GH, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG			
AU 9733096	A1	19980107	AU 1997-33096	19970611
PRIORITY APPLN. INFO.:				
			US 1996-20417P	P 19960618
			WO 1997-US10143	W 19970611
AB	Methods of using antisense oligonucleotides to down-regulate gene expression in the control of infection or other diseases are described. A specific example is given for the treatment of HIV infections. Phosphorothioate oligonucleotides directed against the gag gene of HIV-1 were prep'd. by std. chem. and their effectiveness tested using std. assays of HIV-1 growth and replication. In an in vitro syncytia inhibition assay, two of these oligonucleotides had EC50's of 1.81 and 1.41 .mu.g/mL. In cytopathic assays, EC50's of 2.54 and 7.75 .mu.g/mL were obsd. Human subject studies are described.			
IT	151285-76-6D, phosphorothioate bond-contg., RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (antisense DNA to HIV-1 gag gene; antisense oligonucleotides down-regulating gene expression and their use in treatment of disease)			

L5 ANSWER 12 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1997:337929 HCPLUS
DOCUMENT NUMBER: 127:13045
TITLE: The multiple inhibitory mechanisms of GEM 91, a gag antisense phosphorothioate oligonucleotide, for human immunodeficiency virus type 1
AUTHOR(S): Yamaguchi, Koushi; Papp, Bela; Zhang, Dezhen; Ali, Ahmad N.; Agrawal, Sudhir; Byrn, Randal A.
CORPORATE SOURCE: Divisions of Hematology/Oncology and Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
SOURCE: AIDS Research and Human Retroviruses (1997), 13(7), 545-554
CODEN: ARHRE7; ISSN: 0889-2229
PUBLISHER: Liebert
DOCUMENT TYPE: Journal
LANGUAGE: English
AB GEM 91 (gene expression modulator) is a 25-mer oligonucleotide phosphorothioate complementary to the gag initiation site of HIV-1. GEM 91 has been studied in various in vitro cell culture models to examine inhibitory effects on different stages of HIV-1 replication. Expts. were focused on the binding of virions to the cell surface, inhibition of virus entry, reverse transcription (HIV DNA prodn.), inhibition of steady state viral mRNA levels, inhibition of virus

09/896692

prodn. from chronically infected cells, and inhibition of HIV genome packaging within virions. Expts. were also performed in vitro to generate strains of HIV with reduced sensitivity to GEM 91. The authors obsd. sequence-dependent inhibition of virus entry/reverse transcription and a redn. in steady state viral RNA levels. The authors also obsd. sequence-independent inhibition of virion binding to cells and inhibition of virus prodn. by chronically infected cells. Using in vitro methods that were successful in generating HIV strains with reduced sensitivity to AZT, the authors were unable to generate strains with reduced sensitivity to GEM 91.

IT 153021-75-1, GEM 91

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(multiple inhibitory mechanisms of gag antisense phosphorothioate oligonucleotide GEM 91 for **human** immunodeficiency **virus** type 1 in relation to resistance)

L5 ANSWER 13 OF 24 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1997:253988 HCPLUS
DOCUMENT NUMBER: 126:235005
TITLE: Method of modifying phosphorothioate oligodeoxyribonucleotides to reduce immunogenicity
INVENTOR(S): Agrawal, Sudhir; Temsamani, Jamal; Zhao, Qiuyan
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 41 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9706253	A1	19970220	WO 1996-US11439	19960709
W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML				
US 5968909	A	19991019	US 1995-511536	19950804
CA 2229171	AA	19970220	CA 1996-2229171	19960709
AU 9664559	A1	19970305	AU 1996-64559	19960709
EP 850300	A1	19980701	EP 1996-923709	19960709
EP 850300	B1	19991013		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP 11511014	T2	19990928	JP 1996-508432	19960709
AT 185597	E	19991015	AT 1996-923709	19960709
ES 2141516	T3	20000316	ES 1996-923709	19960709
PRIORITY APPLN. INFO.:			US 1995-511536	19950804
			WO 1996-US11439	19960709

AB The present invention provides a method of reducing the immunostimulatory effects of certain phosphorothioate

09/896692

oligonucleotides used to treat pathogen-mediated disease states and other medical conditions. Immunostimulatory effects of phosphorothioate oligonucleotides are reduced by altering, in the 5'- and/or 3'-terminus, the phosphorothioate linkage to a methylphosphonate linkage, or by substituting a ribonucleotide for a deoxyribonucleotide. Phosphorothioate oligonucleotides contg. terminal methylphosphonate linkages or terminal 2'-O-methylribonucleotides induced significantly less splenic cell proliferation and antibody prodn. than did the oligonucleotides contg. only phosphorothioate linkages and no ribonucleotides.

IT 188420-47-5

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(anti-sense oligonucleotide to HIV-1 gag gene; method of modifying phosphorothioate oligodeoxyribonucleotides to reduce immunogenicity)

L5 ANSWER 14 OF 24 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1997:166407 HCPLUS
DOCUMENT NUMBER: 126:311756
TITLE: Anti-HIV activities and mechanisms of antisense oligonucleotides
AUTHOR(S): Hatta, Toshifumi; Inagawa, Takabumi; Kuwasaki, Tomoyuki; Kinzuka, Yasuhiro; Takai, Kazuyuki; Yokoyama, Shigeyuki; Nakashima, Hideki; Yamamoto, Naoki; Takaku, Hiroshi
CORPORATE SOURCE: Dep. Industrial Chem., Chiba Inst. Technol., Chiba, Japan
SOURCE: Biotechnologia (1996), (4), 116-131, 1 plate
CODEN: BIECEV; ISSN: 0860-7796
PUBLISHER: Instytut Chemii Bioorganicznej PAN
DOCUMENT TYPE: Journal
LANGUAGE: English

AB We demonstrated that unmodified and modified (phosphorothioate) oligonucleotides prevent cDNA synthesis by the AMV, MMLV, and HIV reverse transcriptases. Antisense oligonucleotide/RNA hybrids specifically arrest primer extension. The blockage involves the degrdn. of the RNA fragment bound to the antisense oligonucleotide by the reverse transcriptase assocd. RNase H activity. However, the phosphorothioate oligomer inhibited polymn. by binding to the AMV and MMLV RTs, rather than to the template RNA, whereas there was no competitive binding of the phosphorothioate oligomer on the HIV RT during reverse transcription. Observation of FITC-S-ODN-rev-treated MOLT-4 cells with a confocal laser scanning microscope, revealed diffuse fluorescence, apparently within the cytoplasm. Interestingly, fluorescent signals were accumulated in the nuclear region of chronically infected MOLT-4/HIV-1 after a 60 min incubation. We also describe the long-term treatment of human immunodeficiency virus-infected cells with antisense phosphorothioate oligonucleotides.

IT 146318-97-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(anti-HIV activities and mechanisms of antisense oligonucleotides)

09/896692

L5 ANSWER 15 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1996:751517 HCAPLUS
DOCUMENT NUMBER: 126:14743
TITLE: Antisense cooperative oligonucleotides for improved inhibition of gene expression
INVENTOR(S): Kandimalla, Ekambar R.; Agrawal, Sudhir
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 84 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9632474	A1	19961017	WO 1996-US4605	19960404
W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK				
RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR				
US 6372427	B1	20020416	US 1995-420672	19950412
AU 9654418	A1	19961030	AU 1996-54418	19960404
US 2003099959	A1	20030529	US 2002-54429	20020122
PRIORITY APPLN. INFO.:			US 1995-420672 A	19950412
			WO 1996-US4605 W	19960404

AB Disclosed is a compn. comprising at least 2 synthetic, cooperative oligonucleotides, each comprising a region complementary to one of tandem, non-overlapping regions of a target single-stranded nucleic acid, and each further comprising a dimerization domain at a terminus of each of the oligonucleotides, the dimerization domains of the oligonucleotides being complementary to each other. Also disclosed are duplex structures, ternary complexes, pharmaceutical formulations, and methods utilizing the cooperative oligonucleotides of the invention. The antisense oligonucleotides are optimized for therapeutic and diagnostic use and have improved sequence specificity for a single-stranded target, reduced toxicity, and improved biol. activity as antisense mols. The cooperative nature of the described oligonucleotides was demonstrated from (1) thermal melting studies, (2) their ability to activate RNase H, and (3) their ability to inhibit HIV-1 viral gag mRNA expression or influenza gene expression in cell culture. Modified (phosphorothioate internucleotide-linked) oligonucleotide combinations with an extended dimerization domain have an enhanced ability to inhibit the expression of the target gene.

IT 151285-76-6
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(antisense for HIV gag gene; antisense cooperative oligonucleotides for improved inhibition of gene expression)

L5 ANSWER 16 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1996:683875 HCAPLUS
DOCUMENT NUMBER: 126:70079

09/896692

TITLE: Mixed backbone antisense oligonucleotides containing 2'-5'-ribo- and 3'-5'-deoxyribonucleosides: synthesis, biochemical and biological properties

AUTHOR(S): Kandimalla, Ekambar R.; Agrawal, Sudhir

CORPORATE SOURCE: Hybridon, Inc., Worcester, MA, 01605, USA

SOURCE: Nucleic Acids Symposium Series (1996), 35(Twentythird Symposium on Nucleic Acids Chemistry, 1996), 125-126

CODEN: NACSD8; ISSN: 0261-3166

PUBLISHER: Oxford University Press

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The authors designed and synthesized mixed backbone oligonucleotides (MBOs) contg. 2'-5'-ribo- and 3'-5'-deoxyribonucleosides. Thermal melting studies of the duplexes of MBOs with complementary DNA and RNA target strands suggested that the introduction of 2'-5'-linkages destabilizes the complex with the RNA strand less than the duplex with the DNA strand. The new oligonucleotides were more stable against snake venom phosphodiesterase, S1 nuclease, and fetal calf serum. Phoshorothioate (PS) analogs of MBOs showed activity against HIV-1 in cell cultures comparable to that of a control PS-oligonucleotide.

IT 151285-76-6P 153021-75-1P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation) (synthesis of mixed backbone antisense oligonucleotides contg. 2'-5'-ribo- and 3'-5'-deoxyribonucleosides, their biochem. properties, and their inhibition of HIV-1 replication)

L5 ANSWER 17 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1995:736756 HCAPLUS

DOCUMENT NUMBER: 123:132062

TITLE: Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects

AUTHOR(S): Zhang, Ruiwen; Yan, Jieming; Shahinian, Harout; Amin, Girish; Lu, Zhihong; Liu, Tiepu; Saag, Michael S.; Jiang, Zhiwei; Temsamani, Jamal; et al.

CORPORATE SOURCE: Department Pharmacology Toxicology, University Alabama, Birmingham, AL, USA

SOURCE: Clinical Pharmacology and Therapeutics (St. Louis) (1995), 58(1), 44-53

CODEN: CLPTAT; ISSN: 0009-9236

PUBLISHER: Mosby-Year Book

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Human pharmacokinetics of an antisense oligodeoxynucleotide phosphorothioate (GEM 91) developed as an antihuman immunodeficiency virus (HIV) agent was carried out in this study. 35S-labeled GEM 91 was administered to 6 HIV-infected individuals by means of 2-h i.v. infusions at a dose of 0.1 mg/kg. Plasma disappearance curves for GEM 91-derived radioactivity could be described by the sum of 2 exponentials, with half-life values of 0.18 .+- . 0.04 and 26.71 .+- . 1.67 h. The radioactivity in plasma was further evaluated by

09/896692

polyacrylamide gel electrophoresis, showing the presence of both intact GEM 91 and lower mol. wt. metabolites. Urinary excretion represented the major pathway of elimination, with 49.15% .+- . 6.80% of the administered dose excreted within 24 h and 70.37% .+- . 6.72% over 96 h after dosing. The radioactivity in urine was assocd. with lower mol. wt. metabolites. No drug-related toxicity was obsd.

IT 170274-79-0, GEM 91

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected humans)

L5 ANSWER 18 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1994:645487 HCAPLUS

DOCUMENT NUMBER: 121:245487

TITLE: Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells

AUTHOR(S): Lisziewicz, Julianna; Sun, Daisy; Weichold, Frank F.; Thierry, Alain R.; Lusso, Paolo; Tang, Jinyan; Gallo, Robert C.; Agrawal, Sudhir

CORPORATE SOURCE: Lab. Tumor Cell Biology, Natl. Cancer Inst., Bethesda, MD, 20892, USA

SOURCE: Proceedings of the National Academy of Sciences of the United States of America (1994), 91(17), 7942-6

CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Gene-expression modulator 91 (GEM91) is a 25-nt antisense oligodeoxynucleotide phosphorothioate complementary to the Gag mRNA of human immunodeficiency virus type 1 (HIV-1). Cellular uptake and intracellular distribution of GEM91 within cells suggest that this oligomer is readily available for antisense activity. GEM91 inhibited HIV-1 replication in a dose-dependent and sequence-specific manner. In a comparative study, 2 .mu.M GEM91 was as effective as 5 .mu.M 3'-azido-3'-deoxythymidine in blocking virus replication during the 28-day treatment of an HIV-1-infected T-cell line. GEM91 also completely inhibited (>99%) of the growth of three different HIV-1 isolates in primary lymphocytes and prevented the cytopathic effect of the virus in primary CD4+ T cells. Similarly, treatment with GEM91 for 3 wk of HIV-1/BaL-infected primary macrophages blocked virus replication. Based on GEM91 anti-HIV-activity, safety, and pharmacokinetic profile in animals, a clin. trial was started using this compd. as an antisense oligonucleotide drug for the treatment of the acquired immunodeficiency syndrome.

IT 170274-79-0, GEM 91

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(phosphorothioate-linked antisense oligonucleotide to gag gene of HIV-1, for inhibition of replication)

L5 ANSWER 19 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1994:597667 HCAPLUS

DOCUMENT NUMBER: 121:197667

TITLE: Method of conferring resistance to retroviral

09/896692

INVENTOR(S): Greatbatch, Wilson; Sanford, John C.
PATENT ASSIGNEE(S): Greatbatch Gen-Aid, Ltd., USA
SOURCE: U.S., 35 pp. Cont.-in-part of U.S. Ser. No. 156,188, abandoned.
CODEN: USXXAM
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 3
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5324643	A	19940628	US 1991-739718	19910729
AT 208813	E	20011115	AT 1989-102692	19890216
US 5580761	A	19961203	US 1994-217210	19940323
PRIORITY APPLN. INFO.:			US 1988-156188	B2 19880216
			US 1991-739718	A2 19910729

AB A method of conferring resistance to retroviral infection upon a host cell by interfering with one or more of the infection processes including retroviral replication and assembly into infective viral particles is described. The method involves the introduction of a polynucleotide that is transcribed to form a transcript that is complementary or homologous sequence to a viral sequence and interferes with replication or assembly of the retrovirus. Retrovirus resistant cells prep'd. by this method can be used in the treatment of retroviral infection. The method is demonstrated using sequences directed against feline leukemia virus to prevent its growth in cultured mink lung cells. Oligonucleotides interfering with the function of the long terminal repeat, the primer binding site, and translation initiation were all shown to slow the rate of virus multiplication.

IT 157909-44-9

RL: BIOL (Biological study)
(synthetic oligonucleotide interfering with tat transcript splicing and gag gene expression and translation in **human immunodeficiency virus**)

L5 ANSWER 20 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1994:501227 HCAPLUS
DOCUMENT NUMBER: 121:101227
TITLE: Therapeutic anti-HIV oligonucleotide and pharmaceutical
INVENTOR(S): Agrawal, Sudhir; Tang, Jin Yan
PATENT ASSIGNEE(S): Hybridon, Inc., USA
SOURCE: PCT Int. Appl., 49 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9408004	A1	19940414	WO 1993-US9392	19931004
W: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, LK, LV, NO, NZ, PL, RO, RU, SD, US				
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, PT, SE				

Searcher : Shears 308-4994

09/896692

EP 664833	A1	19950802	EP 1993-924289	19931004
EP 664833	B1	19961227		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
HU 72400	A2	19960429	HU 1995-995	19931004
JP 08504570	T2	19960521	JP 1993-509354	19931004
AT 146819	E	19970115	AT 1993-924289	19931004
ES 2096343	T3	19970301	ES 1993-924289	19931004
AU 678415	B2	19970529	AU 1994-54028	19931004
AU 9454028	A1	19940426		
BR 9307191	A	19990330	BR 1993-7191	19931004
US 5684147	A	19971104	US 1994-319823	19941007
FI 9501600	A	19950510	FI 1995-1600	19950404
NO 9501307	A	19950601	NO 1995-1307	19950404
PRIORITY APPLN. INFO.:			US 1992-958135	A 19921005
			WO 1993-US9392	W 19931004

AB Disclosed are oligonucleotides having nucleotide sequences that hybridize to at least nucleotides 324 to 348 of a conserved gag region of the HIV-1 genome. These oligonucleotides have about 25 to 30 nucleotides linked by at least one non-phosphodiester internucleotide linkage which render them resistant to nuclease digestion. Also disclosed are therapeutic formulations contg. such oligonucleotides and methods of inhibition HIV-1 proliferation and of treating HIV-1 infection in a mammal. Phosphorothioate-modified oligodeoxynucleotides 25-30 nucleotide in length which hybridize to the specified region of the HIV-1 genome were shown to be more effective than a 20-mer complementary to 327-346 or a 28-mer complementary to only a fragment of the 324-348 region. Syncytia formation, p24 expression, cytopathic effect, and reverse transcriptase activity were monitored to assay the effects of the antisense oligonucleotides.

IT 148267-87-2D, phosphorothioate-contg. 151285-76-6D
, phosphorothioate-contg. 156718-18-2D,
phosphorothioate-contg. 156718-19-3D, phosphorothioate-
contg. 156718-20-6D, phosphorothioate-contg.
156718-21-7D, phosphorothioate-contg. 156718-22-8D
, phosphorothioate-contg. 156718-23-9D,
phosphorothioate-contg. 156718-24-0D, phosphorothioate-
contg.

RL: USES (Uses)
(antisense oligonucleotide complementary to **HIV-1 gag**
gene sequence for treatment of **HIV-1 infection**)

L5 ANSWER 21 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1993:573628 HCAPLUS
DOCUMENT NUMBER: 119:173628
TITLE: Long-term treatment of human immunodeficiency virus-infected cells with antisense oligonucleotide phosphorothioates
AUTHOR(S): Lisziewicz, Julianna; Sun, Daisy; Metelev, Valeri; Zamecnik, Paul; Gallo, Robert C.; Agrawal, Sudhir
CORPORATE SOURCE: Lab. Tumor Cell Biol., Natl. Cancer Inst., Bethesda, MD, 20853, USA
SOURCE: Proceedings of the National Academy of Sciences of the United States of America (1993), 90(9), 3860-4
CODEN: PNASA6; ISSN: 0027-8424

09/896692

DOCUMENT TYPE: Journal
LANGUAGE: English

AB The antiviral activity of antisense oligodeoxy-nucleotide phosphorothioates complementary to the tat gene, the gag mRNA, and the rev mRNA were studied in a long-term infection model. Three antisense oligonucleotides directed to the splice-acceptor site of the tat gene failed to suppress human immunodeficiency virus type I replication at 1 .mu.M concn. in the long-term culture. In contrast, two oligodeoxynucleotide phosphorothioates (28-mer) complementary to the gag and the rev mRNAs inhibited viral replication for >80 days, and the antiviral activity was sequence- and length-dependent. In addn., after pretreatment of cells, the authors could reduce the concn. of the antisense oligodeoxynucleotides by >10-fold and still maintain the inhibition of viral replication. These results suggest that chemotherapy for human immunodeficiency virus type 1 infection with antisense oligodeoxynucleotide phosphorothioates may be achieved by an initial high-dose treatment followed by a lower maintenance dose.

IT 148267-87-2

RL: BIOL (Biological study)
(**human immunodeficiency virus** inhibition by,
as antisense oligonucleotide)

L5 ANSWER 22 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1993:462145 HCAPLUS
DOCUMENT NUMBER: 119:62145
TITLE: GEM 91 - an antisense oligonucleotide phosphorothioate as a therapeutic agent for AIDS
AUTHOR(S): Agrawal, Sudhir; Tang, Jin Yan
CORPORATE SOURCE: Hybridon, Inc., Worcester, MA, USA
SOURCE: Antisense Research and Development (1992), 2(4), 261-6
CODEN: AREDEI; ISSN: 1050-5261
DOCUMENT TYPE: Journal; General Review
LANGUAGE: English
AB A review and discussion with 18 refs.
IT 170274-79-0, GEM 91
RL: BIOL (Biological study)
(as antisense oligonucleotide phosphorothioate, for treatment of AIDS)

L5 ANSWER 23 OF 24 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1993:420486 HCAPLUS
DOCUMENT NUMBER: 119:20486
TITLE: Method of inhibiting viral replication, and application to inhibition of human immunodeficiency virus-1 (HIV-1)
INVENTOR(S): Lisziewicz, Julianna; Sun, Daisy M. S.
PATENT ASSIGNEE(S): United States Dept. of Health and Human Services, USA
SOURCE: U. S. Pat. Appl., 31 pp. Avail. NTIS Order No. PAT-APPL-7-906,881.
CODEN: XAXXAV
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

09/896692

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 906881	A0	19930401	US 1992-906881	19920702
WO 9401551	A1	19940120	WO 1993-US6380	19930702
W: AU, CA, JP RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
AU 9346664	A1	19940131	AU 1993-46664	19930702
AU 678980	B2	19970619		
EP 649466	A1	19950426	EP 1993-916997	19930702
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
PRIORITY APPLN. INFO.:			US 1992-906881	19920702
			WO 1993-US6380	19930702

AB A method is disclosed for selection of drugs suitable for use in inhibiting viral replication in vivo. Also disclosed is a method for inhibiting viral replication using oligonucleotides complementary to specific regions of the genome of the target virus. A culture system is provided that simulates in vivo conditions of viral infection, esp. HIV-1 infection. The culture system can be used to evaluate the long-term efficacy of antiviral drug treatment, e.g. antisense oligonucleotide treatment. The invention further relates to a method of reducing the viral burden in an infected individual. The method involves the sequential treatment of virally infected cells with a combination of different antisense oligonucleotides. The method has the advantage that it prevents the formation of escape mutants of the target virus. The culture system of the invention extends the treatment period over weeks rather than days and therefore permits simulation of a treatment schedule that can be given to a virally infected patient. The methodol. of the invention was used to test the effect of antisense nucleotides (sequences included) on HIV-1 replication in a CD4+ cell line (Molt3) infected with a low multiplicity of infection of HIV-1/IIIB.

IT 148267-87-2D, phosphorothioate-derivatized

RL: ANST (Analytical study)
(antisense oligonucleotide, human immunodeficiency
virus 1 inhibition with)

L5 ANSWER 24 OF 24 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1993:116248 HCAPLUS

DOCUMENT NUMBER: 118:116248

TITLE: Specific inhibition of human immunodeficiency
virus type 1 replication by antisense
oligonucleotides: an in vitro model for
treatment

AUTHOR(S): Lisziewicz, Julianna; Sun, Daisy; Klotman, Mary;
Agrawal, Sudhir; Zamecnik, Paul; Gallo, Robert

CORPORATE SOURCE: Lab. Tumor Cell Biol., Natl. Cancer Inst.,
Bethesda, MD, 20892, USA

SOURCE: Proceedings of the National Academy of Sciences
of the United States of America (1992), 89(23),
11209-13

CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE: Journal

LANGUAGE: English

AB We have developed a culture system, simulating in vivo conditions of
human immunodeficiency virus type 1 (HIV-1) infection, to evaluate
the long-term efficacy of antisense oligonucleotide treatment. Five

09/896692

oligonucleotide phosphorothioates (28-mers), complementary to different regions of HIV-1 RNA, blocked replication of the virus in a sequence-specific manner at 1 .mu.M concn. Variations in antiviral activity were seen among the different oligonucleotides, revealing an effect of target selection. Mismatched or random oligonucleotide phosphorothioates delayed, but did not completely inhibit, HIV-1 replication. In the case of inhibition by a splice-acceptor-site antisense oligodeoxynucleotide, a breakthrough phenomenon occurred after 25 days of treatment, suggesting the development of an "escape mutant". This result did not occur when the inhibitory oligodeoxynucleotides were complementary to the primary-sequence areas of the rev-responsive element and rev-1 genes. Sequential treatment of HIV-1-infected cells with a combination of different antisense oligonucleotides, each administered once, also prevented the development of escape mutants. Results suggest that chemotherapy based on specifically targeted antisense-oligonucleotide phosphorothioates may be an effective method for reducing the viral burden in HIV-1-infected individuals at clin. achievable oligonucleotide concns.

IT 146318-97-0

RL: BIOL (Biological study)
(HIV-1 replication inhibition by)

E1 THROUGH E20 ASSIGNED

FILE 'REGISTRY' ENTERED AT 10:09:59 ON 30 MAY 2003

L6 20 SEA FILE=REGISTRY ABB=ON PLU=ON (153021-75-1/BI OR
148267-87-2/BI OR 151285-76-6/BI OR 156718-18-2/BI OR
156718-19-3/BI OR 156718-20-6/BI OR 156718-21-7/BI OR
156718-22-8/BI OR 156718-23-9/BI OR 170274-79-0/BI OR
146318-97-0/BI OR 156718-24-0/BI OR 157909-44-9/BI OR
188420-47-5/BI OR 197831-53-1/BI OR 202833-93-0/BI OR
259075-60-0/BI OR 259075-61-1/BI OR 259075-62-2/BI OR
259075-63-3/BI)

L7 20 L2 AND L6

L7 ANSWER 1 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-63-3 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-[3-[(3.beta.)-3-hydroxycholest-5-en-22-yl]amino]-3-
oxopropyl]dithio]propyl hydrogen phosphate] (9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ====== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 2 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-62-2 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-[3-[(3.beta.)-3-hydroxycholest-5-en-7-yl]dithio]propyl hydrogen

09/896692

phosphate] (9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 3 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-61-1 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-[3-[(3.beta.)-cholest-5-en-3-yldithio]propyl hydrogen phosphate]
(9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 4 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 259075-60-0 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T),
3'-(3-(2-pyridinyl)dithio)propyl hydrogen phosphate] (9CI) (CA INDEX
NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ===== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 132:160829

L7 ANSWER 5 OF 20 REGISTRY . COPYRIGHT 2003 ACS
RN 202833-93-0 REGISTRY
CN DNA, d(A-C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G-
C) (9CI) (CA INDEX NAME)
CI MAN
SQL 31

SEQ 1 acgctctcg acccatctc ctccttctag c
===== ===== =====

HITS AT: 7-28

REFERENCE 1: 128:162876

L7 ANSWER 6 OF 20 REGISTRY COPYRIGHT 2003 ACS

09/896692

RN 197831-53-1 REGISTRY
CN DNA, d(T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T) (9CI) (CA INDEX NAME)
CI MAN
SQL 22

SEQ 1 tcgcacccat ctcttcctt ct
===== ====== ==
HITS AT: 1-22

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:191877

L7 ANSWER 7 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 188420-47-5 REGISTRY
CN DNA, d(C-P-deoxy-P-methyl-T-P-deoxy-P-methyl-C-P-deoxy-P-methyl-T-P-deoxy-P-methyl-C-sp-G-sp-C-sp-A-sp-C-sp-C-sp-C-sp-A-sp-T-sp-C-sp-T-sp-C-sp-T-sp-C-sp-T-sp-C-sp-C-P-deoxy-P-methyl-T-P-deoxy-P-methyl-T-P-deoxy-P-methyl-C-P-deoxy-P-methyl-T) (9CI) (CA INDEX NAME)
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ====== ==
HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 126:277696

REFERENCE 2: 126:235005

L7 ANSWER 8 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 170274-79-0 REGISTRY
CN DNA, d(P-thio)(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T), tetracosasodium salt (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(P-thio)(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-C-T-C-T), tetracosasodium salt
OTHER NAMES:
CN Trecovirsen sodium
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ====== ==
HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 127:28622

REFERENCE 2: 124:277954

REFERENCE 3: 123:132062

REFERENCE 4: 122:255450

09/896692

REFERENCE 5: 122:95897

REFERENCE 6: 121:245487

REFERENCE 7: 119:62145

L7 ANSWER 9 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 157909-44-9 REGISTRY

CN DNA (synthetic human immunodeficiency virus gene gag/tat expression-inhibiting) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid (synthetic human immunodeficiency provirus gene gag/tat expression-inhibiting)

CI MAN

SQL 70

SEQ 1 tgacgctctc gcacccatct ctctccttct agcctccgct agtcaaaatt
===== ===== =====

51 tttggcgtag tcaccagtcg

HITS AT: 9-30

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 121:197667

L7 ANSWER 10 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 156718-24-0 REGISTRY

CN DNA, d(A-C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A-G) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid, d(A-C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G)

CI MAN

SQL 30

SEQ 1 acgctctcgc acccatctct ctccttctag
===== ===== =====

HITS AT: 7-28

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 121:101227

L7 ANSWER 11 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 156718-23-9 REGISTRY

CN DNA, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A-G-C) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G-C)

CI MAN

SQL 30

09/896692

SEQ 1 cgctctcgca cccatctctc tccttctagc
 ===== ===== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 12 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-22-8 REGISTRY
CN DNA, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G)
(9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-C-T-A-G)
CI MAN
SQL 29

SEQ 1 cgctctcgca cccatctctc tccttctagc
 ===== ===== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 13 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-21-7 REGISTRY
CN DNA, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G)
(9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A-G)
CI MAN
SQL 28

SEQ 1 gctctcgcac ccatactctc ccttctagc
 ===== ===== =====

HITS AT: 5-26

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

09/896692

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 14 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-20-6 REGISTRY
CN DNA, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A) (9CI)
(CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A)
CI MAN
SQL 27

SEQ 1 gctctcgac ccatctctc ctttcta
===== ===== =====

HITS AT: 5-26

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 15 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-19-3 REGISTRY
CN DNA, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T) (9CI)
(CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T)
CI MAN
SQL 26

SEQ 1 gctctcgac ccatctctc ctttcta
===== ===== =====

HITS AT: 5-26

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

L7 ANSWER 16 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 156718-18-2 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A) (9CI)
(CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-

09/896692

T-C-T-A)
CI MAN
SQL 26

SEQ	1	ctctcgaccc	catctctctc	tttcta
		=====	=====	====
HITS AT:	4-25			

RELATED SEQUENCES AVAILABLE WITH SEOLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

SEQ 1 ctctcgccacc catctctctc cttct
 ===== ===== =====
HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEOLINK

REFERENCE 1: 136:406717

BEEFENCE 2: 135-335066

REFERENCE 3: 134:25093

REFERENCE 4: 133:27336

REFERENCE 5: 132:279454

REFERENCE 6: 132-160829

REFERENCE 7: 130:267702

BEEFERENCE 8: 130:267697

REFERENCE 9: 130:246352

REFERENCE 10: 130:233230

09/896692

L7 ANSWER 18 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 151285-76-6 REGISTRY
CN DNA, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T) (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T)
T-C-T)
OTHER NAMES:
CN 6: PN: US6140490 SEQID: 157 unclaimed DNA
CI MAN
SQL 25

SEQ 1 ctctcgacc catctcttc cttct
===== ====== =====

HITS AT: 4-25

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 133:321004

REFERENCE 2: 130:168605

REFERENCE 3: 130:129956

REFERENCE 4: 130:52683

REFERENCE 5: 129:299001

REFERENCE 6: 128:162876

REFERENCE 7: 128:151268

REFERENCE 8: 128:84382

REFERENCE 9: 128:57018

REFERENCE 10: 128:48453

L7 ANSWER 19 OF 20 REGISTRY COPYRIGHT 2003 ACS
RN 148267-87-2 REGISTRY
CN DNA, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-C-T-T-C-T-A) (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Deoxyribonucleic acid, d(C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-T-C-T-A)
C-T-T-C-T-A)
CI MAN
SQL 28

SEQ 1 cgctctcgca cccatcttc tccttcta
===== ====== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 130:233230

REFERENCE 2: 130:129956

09/896692

REFERENCE 3: 128:162876

REFERENCE 4: 121:101227

REFERENCE 5: 119:173628

REFERENCE 6: 119:20486

L7 ANSWER 20 OF 20 REGISTRY COPYRIGHT 2003 ACS

RN 146318-97-0 REGISTRY

CN DNA, d(P-thio) (C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Deoxyribonucleic acid, d(P-thio) (C-G-C-T-C-T-C-G-C-A-C-C-C-A-T-C-T-C-T-C-T-C-C-T-T-C-T-A)

CI MAN

SQL 28

SEQ 1 cgctctcgca cccatctctc tccttcta .

===== ===== =====

HITS AT: 6-27

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 126:311756

REFERENCE 2: 118:116248

FILE 'HOME' ENTERED AT 10:10:35 ON 30 MAY 2003

RECEIVED

SEARCH REQUEST FORM

Scientific and Technical Information Center

MAY 22 2003

13 /CHEM. ET.

Requester's Full Name: JANE ZARA

Examiner #: 77512 Date: 5/22/03

Art Unit: 1635

Phone Number 305-5820

Serial Number: 09/896,692

Mail Box and Bldg/Room Location: 11D03

Results Format Preferred (circle): PAPER DISK E-MAIL

L-11812

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc., if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Novel HIV oligo's

Inventors (please provide full names): Agrawal et al.

Earliest Priority Filing Date: 8/19/97

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

STAFF USE ONLY

Searcher: Beverly C 4994

Searcher Phone #:

Searcher Location:

Date Searcher Picked Up:

Date Completed: 05-30-03

Searcher Prep & Review Time: 3

Clerical Prep Time:

Online Time: 25

Type of Search

NA Sequence (#)

AA Sequence (#)

Structure (#)

Bibliographic

Litigation

Fulltext

Patent Family

Other

Vendors and cost where applicable

STN

Dialog

Questel/Orbit

Dr. Link

Lexis/Nexis

Sequence Systems

WWW/Internet

Other (specify) CGN

GenCore Version 5.1.4_P5_4578
 copyright (c) 1993 - 2003 Compugen Ltd.

score greater than or equal to the score of the result being printed,
 and is derived by analysis of the total score distribution.
SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1	22	100	0	22	6	I49132 Sequence 6
2	22	100	0	23	6	I49131 Sequence 5
3	22	100	0	24	6	I49130 Sequence 4
4	22	100	0	25	6	AR001561 Sequence
5	22	100	0	25	6	AR052661 Sequence
6	22	100	0	25	6	AR052662 Sequence
7	22	100	0	25	6	AR052663 Sequence
8	22	100	0	25	6	AR052664 Sequence
9	22	100	0	25	6	AR07068 Sequence
10	22	100	0	25	6	AR080760 Sequence
11	22	100	0	25	6	AR080761 Sequence
12	22	100	0	25	6	AR080762 Sequence
13	22	100	0	25	6	AR082591 Sequence
14	22	100	0	25	6	AR082592 Sequence
15	22	100	0	25	6	AR082593 Sequence
16	22	100	0	25	6	AR082594 Sequence
17	22	100	0	25	6	AR082595 Sequence
18	22	100	0	25	6	AR082596 Sequence
19	22	100	0	25	6	AR082597 Sequence
20	22	100	0	25	6	AR082598 Sequence
21	22	100	0	25	6	AR082599 Sequence
22	22	100	0	25	6	AR082600 Sequence
23	22	100	0	25	6	AR082601 Sequence
24	22	100	0	25	6	AR082602 Sequence
25	22	100	0	25	6	AR082603 Sequence
26	22	100	0	25	6	AR082604 Sequence
27	22	100	0	25	6	AR082605 Sequence
28	22	100	0	25	6	AR082606 Sequence
29	22	100	0	25	6	AR082607 Sequence
30	22	100	0	25	6	AR082608 Sequence
31	22	100	0	25	6	AR082609 Sequence
32	22	100	0	25	6	AR118312 Sequence
33	22	100	0	25	6	AR206340 Sequence
34	22	100	0	25	6	AX363485 Sequence
35	22	100	0	25	6	AX363486 Sequence
36	22	100	0	25	6	AX363487 Sequence
37	22	100	0	25	6	AX363488 Sequence
38	22	100	0	25	6	AX363489 Sequence
39	22	100	0	25	6	AX363490 Sequence
40	22	100	0	25	6	AX363491 Sequence
41	22	100	0	25	6	AX363492 Sequence
42	22	100	0	25	6	AX363493 Sequence
43	22	100	0	25	6	AX363494 Sequence
44	22	100	0	25	6	AX363495 Sequence
45	22	100	0	25	6	AX363496 Sequence
46	22	100	0	25	6	AX363497 Sequence
47	22	100	0	25	6	AX363498 Sequence
48	22	100	0	25	6	AX363499 Sequence
49	22	100	0	25	6	AX363500 Sequence
50	22	100	0	25	6	AX363501 Sequence
51	22	100	0	25	6	AX363502 Sequence
52	22	100	0	25	6	I19490 Sequence 1
53	22	100	0	25	6	I21846 Sequence 1
54	22	100	0	25	6	I23712 Sequence 7
55	22	100	0	25	6	I24071 Sequence 7
56	22	100	0	25	6	I26576 Sequence 1
57	22	100	0	25	6	I27196 Sequence 7
58	22	100	0	25	6	I33454 Sequence 1
59	22	100	0	25	6	I39881 Sequence 1
60	22	100	0	25	6	I45566 Sequence 1
61	22	100	0	25	6	I49129 Sequence 3
62	22	100	0	25	6	I50340 Sequence 1
63	22	100	0	25	6	I58786 Sequence 1
64	22	100	0	25	6	I58787 Sequence 2
65	22	100	0	25	6	I58788 Sequence 3

Pred. No. is the number of results predicted by chance to have a

66	22	100.0	25	6	158789	Sequence 4	139	19	86.4	20	6	I09442
67	22	100.0	25	6	158790	Sequence 5	140	19	86.4	20	6	I72636
68	22	100.0	25	6	158791	Sequence 6	141	19	86.4	20	6	A3363503
69	22	100.0	25	6	158792	Sequence 7	142	19	86.4	25	6	I91513
70	22	100.0	25	6	158793	Sequence 8	143	19	86.4	46	6	AR051892
71	22	100.0	25	6	158794	Sequence 9	144	19	86.4	46	6	E08866
72	22	100.0	25	6	158795	Sequence 10	145	19	86.4	46	6	HIVPACK
73	22	100.0	25	6	158796	Sequence 11	146	19	86.4	51	6	AX306434
74	22	100.0	25	6	158797	Sequence 12	147	18.8	85.5	23	6	AR206327
75	22	100.0	25	6	158798	Sequence 13	148	18.8	85.5	32	6	AX306435
76	22	100.0	25	6	158799	Sequence 14	149	18.8	85.5	43	6	I78658
77	22	100.0	25	6	158800	Sequence 15	150	18.8	85.5	43	6	I78659
78	22	100.0	25	6	158801	Sequence 16	151	18.4	83.6	21	6	AR206343
79	22	100.0	25	6	158802	Sequence 17	152	17.2	78.2	25	6	A03724
80	22	100.0	25	6	158803	Sequence 18	153	17.2	78.2	25	6	AR03726
81	22	100.0	25	6	158804	Sequence 19	154	17.2	78.2	20	6	A31890
82	22	100.0	25	6	158805	Sequence 1	155	17.2	78.2	43	6	Synthetic M
83	22	100.0	25	6	17620	Sequence 1	156	17.2	78.2	43	6	I78653
84	22	100.0	25	6	17620	Sequence 2	157	17.2	77.3	17	6	AR206344
85	22	100.0	25	6	17620	Sequence 3	158	17.2	77.3	17	6	A03724
86	22	100.0	25	6	17620	Sequence 4	159	17.2	77.3	17	6	01Gonucleo
87	22	100.0	25	6	17620	Sequence 5	160	17.2	77.3	20	6	com
88	22	100.0	27	6	AR206341	Sequence 1	161	17.2	77.3	20	6	A45278
89	22	100.0	27	6	172127	Sequence 2	162	17.2	77.3	20	6	AR051893
90	22	100.0	27	6	172634	Sequence 3	163	17.2	77.3	20	6	I78654
91	22	100.0	28	6	A03725	Nucleotide	164	17.2	77.3	20	6	AX418589
92	22	100.0	28	6	AR049695	Sequence	165	17.2	77.3	31	6	I28579
93	22	100.0	28	6	17631	Sequence 5	166	17.2	77.3	31	6	I58741
94	22	100.0	28	6	17632	Sequence 6	167	17.2	77.3	31	6	A45277
95	22	100.0	29	6	17633	Sequence 7	168	17.2	77.3	31	6	AR051894
96	22	100.0	30	6	17634	Sequence 8	169	17.2	77.3	31	6	AR116258
97	22	100.0	30	6	17235	Sequence 9	170	17.2	77.3	31	6	AR156206
98	22	100.0	33	6	AR001555	Sequence	171	17.2	77.3	31	6	AR064157
99	22	100.0	33	6	AR080763	Sequence	172	17.2	77.3	31	6	AR026209
100	22	100.0	34	6	AR001554	Sequence	173	16.8	76.4	21	6	AR026223
101	22	100.0	35	6	AR001553	Sequence	174	16.8	76.4	25	6	AR026237
102	22	100.0	35	6	107197	Sequence 20	175	16.8	76.4	25	6	AR094674
103	22	100.0	36	6	AR001552	Sequence	176	16.4	74.5	39	6	AR203366
104	22	100.0	37	6	AR001551	Sequence	177	16.4	74.5	62	6	AR030568
105	22	100.0	38	6	AR001550	Sequence	178	16.4	74.5	19	6	AR064475
106	22	100.0	39	6	AR001549	Sequence	179	16.4	72.7	24	6	AX210240
107	22	100.0	39	6	AR001562	Sequence	180	16.4	72.7	24	6	AR064342
108	22	100.0	39	6	AR206342	Sequence	181	16.4	72.7	43	6	AR094674
109	22	100.0	40	6	AR001541	Sequence	182	16.4	72.7	57	6	AR030565
110	22	100.0	40	6	AR001548	Sequence	183	15.8	71.8	24	6	AR051544
111	22	100.0	41	6	AR001547	Sequence	184	15.8	71.8	43	6	AR030566
112	22	100.0	41	6	172638	Sequence 12	185	15.6	70.9	43	6	AR064476
113	22	100.0	42	6	AR001546	Sequence	186	15.6	70.9	43	6	AR094674
114	22	100.0	43	6	AR001545	Sequence	187	15.6	70.9	43	6	AR094674
115	22	100.0	45	6	AR001540	Sequence	188	15.6	70.9	43	6	AR051544
116	22	100.0	45	6	AR001543	Sequence	189	15.6	70.9	43	6	AR051544
117	22	100.0	46	6	145570	Sequence 5	190	15.6	70.9	43	6	AR051544
118	22	100.0	46	6	AR170400	Sequence	191	15.4	70.0	20	6	AR100320
119	22	100.0	51	6	17639	Sequence 13	192	15.4	70.0	20	6	AR149975
120	22	100.0	57	6	121849	Sequence 4	193	15.4	70.0	50	6	AR064461
121	22	100.0	58	6	AR026572	Sequence	194	15.2	69.1	99	6	E15288
122	22	100.0	58	6	AR129020	Sequence	195	15.2	69.1	18	6	AR26572
123	22	100.0	58	6	172640	Sequence 14	196	15.2	68.2	30	6	AR01542
124	22	100.0	62	6	AR028628	Sequence	197	15.2	68.2	42	6	AR064448
125	22	100.0	70	6	19134	Sequence 8	198	15.2	68.2	49	6	AR08292
126	22	100.0	70	6	100363	Sequence 17	199	14.8	67.3	26	6	I78654
127	21	95.5	21	6	AK146648	Sequence	200	14.6	66.4	44	6	AR055073
128	21	95.5	21	6	AK146648	Sequence	201	14.6	66.4	44	6	AR156322
129	21	95.5	21	6	AK146648	Sequence	202	14.6	66.4	68	6	AR055074
130	20	90.9	20	6	19134	Sequence 8	203	14.6	66.4	68	6	AR156323
131	20	90.9	21	6	AR206325	Sequence	204	14.6	66.4	91	8	AF005068
132	20	90.9	22	6	AR170398	Sequence	205	14.6	65.5	19	6	I78654
133	20	90.9	33	6	AR001558	Sequence	206	14.4	65.5	25	6	AR044679
134	20	90.9	39	6	AR001557	Sequence	207	14.2	64.5	19	6	AR205333
135	20	90.9	45	6	AR001556	Sequence	208	14.2	64.5	21	6	AR02658
136	19.4	88.2	22	6	AR140320	Sequence	209	14.2	64.5	21	6	AR053751
137	19.4	88.2	22	6	AR206326	Sequence	210	14.2	64.5	21	6	AR14251
138	19.4	88.2	22	6	A27240	Antiviral D	211	14.2	64.5	21	6	AR178205

212	14.2	64.5	21	6	I73330	Sequence 26	285	13	59.1	51	6	AX203981		
213	14.2	64.5	24	6	I78655	Sequence 10	286	13	59.1	65	6	AX483292		
C	214	64.5	25	6	AR03182	Sequence	C	287	13	59.1	73	6	AX084040	
C	215	64.5	25	6	I17357	Sequence 7	C	288	.13	59.1	73	9	AB03820	
C	216	14.2	64.5	29	6	AX461477	Sequence	289	13	59.1	78	10	S6930455	
C	217	14	63.6	18	6	AR043090	Sequence	C	290	13	59.1	88	1	AF372550S1
C	218	14	63.6	18	6	AR098575	Sequence	C	291	13	59.1	100	11	G4360_WIAF-2192-S
C	219	14	63.6	22	6	AX061328	Sequence	C	292	12.8	58.2	16	6	AR206331
C	220	14	63.6	36	6	AR03340	Sequence	C	293	12.8	58.2	17	6	AR206332
C	221	14	63.6	36	6	I72088	Sequence 3	C	294	12.8	58.2	19	6	I78653
C	222	14	63.6	39	6	AR001559	Sequence	C	295	12.8	58.2	19	6	I78664
C	223	14	63.6	43	6	I78646	Sequence 1	C	296	12.8	58.2	19	6	I78666
C	224	14	63.6	43	6	I78647	Sequence 2	C	297	12.8	58.2	20	6	AX298392
C	225	14	63.6	43	6	I78648	Sequence 3	C	298	12.8	58.2	23	6	ARI4933
C	226	14	63.6	53	6	AR098682	Sequence	C	299	12.8	58.2	34	6	AX000999
C	227	14	63.6	53	6	AR098683	Sequence	C	300	12.8	58.2	45	6	I09495
C	228	14	63.6	53	6	AR204756	Sequence	C	301	12.8	58.2	49	6	AX279639
C	229	14	63.6	53	6	AR204757	Sequence	C	302	12.8	58.2	51	6	AX20255
C	230	14	63.6	69	6	AX283688	Sequence	C	303	12.8	58.2	84	11	HUMPT568A
C	231	14	63.6	71	6	AR012490	Sequence	C	304	12.8	58.2	87	5	AF033554
C	232	14	63.6	71	6	AR020318	Sequence	C	305	12.8	58.2	97	6	HSMC4B11
C	233	14	63.6	71	6	AI103339	Sequence	C	306	12.6	57.3	19	6	AR030024
C	234	14	63.6	71	6	I82664	Sequence 10	C	307	12.6	57.3	24	6	AX48607
C	235	14	63.6	72	5	AF420582	Salmo sal	C	308	12.6	57.3	35	6	ARI4606
C	236	14	63.6	80	11	HSO6R	Sequence	C	309	12.6	57.3	26	6	ARI194993
C	237	14	63.6	91	14	AY047262S2	Sequence	C	310	12.6	57.3	26	6	I17360
C	238	13.8	61.8	51	9	S78662	Human	C	311	12.6	57.3	26	6	128230
C	239	13.8	62.7	97	9	AF010484	Homo sapi	C	312	12.6	57.3	27	6	A30368
C	240	13.6	61.8	21	6	BDD12580	Human	C	313	12.6	57.3	32	6	AX356541
C	241	13.6	61.8	21	23	BD008148	Human	C	314	12.6	57.3	35	6	AR091420
C	242	13.6	61.8	37	6	AR079383	Sequence	C	315	12.6	57.3	35	6	ARI26625
C	243	13.6	61.8	80	3	AF127338	Euphragma	C	316	12.6	57.3	35	6	AX073741
C	244	13.6	61.8	84	3	AF318495	Scutigera	C	317	12.6	57.3	36	6	AR050803
C	245	13.6	61.8	94	4	MME309054	Meles mel	C	318	12.6	57.3	36	6	AR066068
C	246	13.4	60.9	69	11	AL823984	Arabidops	C	319	12.6	57.3	37	6	I13783
C	247	13.4	60.9	73	6	AR012430	Sequence	C	320	12.6	57.3	37	6	168753
C	248	13.4	60.9	73	6	AR020258	Sequence	C	321	12.6	57.3	46	12	SYNPWMP
C	249	13.4	60.9	73	6	ARI9279	Sequence	C	322	12.6	57.3	50	6	AR032985
C	250	13.4	60.9	73	6	I82604	Sequence 45	C	323	12.6	57.3	50	6	AR209649
C	251	13.4	60.9	82	11	HUMS971496	Sequence	C	324	12.6	57.3	50	6	I29725
C	252	13.4	60.9	100	3	AF411993	Formica e	C	325	12.6	57.3	50	6	I91399
C	253	13.4	60.9	24	6	A41490	Sequence 5	C	326	12.6	57.3	51	6	AX117177
C	254	13.2	60.0	50	8	AX158892	Sequence	C	327	12.6	57.3	51	6	AX160433
C	255	13.2	60.0	50	8	AF247740	Zea mays	C	328	12.6	57.3	51	6	AX160986
C	256	13.2	60.0	51	6	AX162063	Sequence	C	329	12.6	57.3	51	6	AX199439
C	257	13.2	60.0	71	9	HSU384SNR	H. sapiens	C	330	12.6	57.3	54	6	AR050807
C	258	13.2	60.0	88	13	E05713	Black pine	C	331	12.6	57.3	54	6	AR056072
C	259	13.2	60.0	88	8	MPOCPTRSA	M20964	C	332	12.6	57.3	60	6	AR011228
C	260	13.2	60.0	96	6	E00720	Synthetic D	C	333	12.6	57.3	60	6	I17866
C	261	13.2	60.0	99	6	E010104	DNA sequenc	C	334	12.6	57.3	63	6	A18237_HBV S1 (adv
C	262	13.2	60.0	99	6	E01047	DNA encodin	C	335	12.6	57.3	63	6	BD004821
C	263	13.2	60.0	100	6	E01048	DNA encodin	C	336	12.6	57.3	65	6	AX486053
C	264	13.2	60.0	100	6	AR010489	Sequence	C	337	12.6	57.3	69	3	AG2H20
C	265	13	59.1	13	6	AR018132	Sequence	C	338	12.6	57.3	71	6	AR054796
C	266	13	59.1	13	6	AR018133	Sequence	C	339	12.6	57.3	71	6	AR066061
C	267	13	59.1	13	6	AR018134	Sequence	C	340	12.6	57.3	81	12	SYNPWMP
C	268	13	59.1	27	6	AR064541	Sequence	C	341	12.6	57.3	83	9	F29530507
C	269	13	59.1	13	6	AR18238	Sequence	C	342	12.6	57.3	83	9	D78291
C	270	13	59.1	13	6	I45567	Sequence 2	C	343	12.6	57.3	88	8	MPOCPTRSA
C	271	13	59.1	20	6	ARI0336	Sequence	C	344	12.6	57.3	96	8	AF317968
C	272	13	59.1	20	6	ARI49991	Sequence	C	345	12.4	56.4	71	6	AR012215
C	273	13	59.1	27	6	AR030170	Sequence	C	346	12.4	56.4	77	6	AR090520
C	274	13	59.1	27	6	ARI40599	Sequence	C	347	12.4	56.4	27	6	AF205396
C	275	13	59.1	29	6	AR182385	Sequence	C	348	12.4	56.4	30	6	AX050209
C	276	13	59.1	30	6	AX148786	Sequence	C	349	12.4	56.4	30	6	AX474209
C	277	13	59.1	33	6	A45279	Sequence 10	C	350	12.4	56.4	31	6	E14828
C	278	13	59.1	33	6	A45280	Sequence 11	C	351	12.4	56.4	35	6	E17165
C	279	13	59.1	33	6	ARI16259	Sequence	C	352	12.4	56.4	41	6	AR202829
C	280	13	59.1	33	6	AR116260	Sequence	C	353	12.4	56.4	41	6	AX040137
C	281	13	59.1	35	6	ARI41975	Sequence	C	354	12.4	56.4	43	6	AR20693
C	282	13	59.1	35	6	AR202544	Sequence	C	355	12.4	56.4	48	6	A17170
C	283	13	59.1	42	6	AX080391	Sequence	C	356	12.4	56.4	48	6	AR027553
C	284	13	59.1	51	6	AX203980	Sequence	C	357	12.4	56.4	50	9	S47176

c	358	12.4	56.4	51	6	AX165573		c	431	12.2	55.5	25	6	AR197993	Sequence
c	359	12.4	56.4	54	6	AX074089	Sequence	c	432	12.2	55.5	27	6	AX03574	Sequence
c	360	12.4	56.4	54	6	AX074132	Sequence	c	433	12.2	55.5	27	6	AX29886	Sequence
c	361	12.4	56.4	55	6	AX397798		c	434	12.2	55.5	31	6	AX248885	Sequence
c	362	12.4	56.4	57	6	E15743		c	435	12.2	55.5	31	6	E0015	Primer: 9/1
c	363	12.4	56.4	57	9	S57598	T-cell-rece	c	436	12.2	55.5	33	6	AX128309	Sequence
c	364	12.4	56.4	63	9	S57600	T-cell-rece	c	437	12.2	55.5	38	6	AX060471	Sequence
c	365	12.4	56.4	63	9	S57602	Homo sapien	c	438	12.2	55.5	40	6	AR05496	Sequence
c	366	12.4	56.4	65	6	AX485443		c	439	12.2	55.5	40	6	AR05070	Sequence
c	367	12.4	56.4	69	6	AR012251	Sequence	c	440	12.2	55.5	50	6	AX164811	Sequence
c	368	12.4	56.4	69	6	AR020349		c	441	12.2	55.5	51	6	AX15761	Sequence
c	369	12.4	56.4	69	6	AR109370		c	442	12.2	55.5	51	6	AX160434	Sequence
c	370	12.4	56.4	69	6	I182695	Sequence	c	443	12.2	55.5	51	6	AX162677	Sequence
c	371	12.4	56.4	71	10	MNU403546		c	444	12.2	55.5	51	6	E22400	Antisense n
c	372	12.4	56.4	72	10	MNU79537		c	445	12.2	55.5	65	6	AR09770	Sequence
c	373	12.4	56.4	75	9	HSA305429		c	446	12.2	55.5	65	6	AX48227	Sequence
c	374	12.4	56.4	75	10	AR098407	Homo sapi	c	447	12.2	55.5	65	6	AX85312	Sequence
c	375	12.4	56.4	78	9	HSA305430		c	448	12.2	55.5	71	6	AR054777	Sequence
c	376	12.4	56.4	84	10	RNU20303	Rattus norv	c	449	12.2	55.5	71	6	AR06042	Sequence
c	377	12.4	56.4	84	11	NM28615	M.musculus	c	450	12.2	55.5	72	9	S60877	Sequence
c	378	12.4	56.4	84	11	AL773196	Arabidops	c	451	12.2	55.5	73	9	S60869	TCR B (t17)
c	379	12.4	56.4	84	11	AL773197	Arabidops	c	452	12.2	55.5	77	6	AR009156	Sequence
c	380	12.4	56.4	85	9	AY006234	Homo sapi	c	453	12.2	55.5	77	6	I13422	Sequence
c	381	12.4	56.4	86	10	NM286016		c	454	12.2	55.5	81	5	AF03355	Sequence
c	382	12.4	56.4	87	9	AY006232		c	455	12.2	55.5	83	9	S63933	Sequence
c	383	12.4	56.4	90	9	AY006230	Homo sapi	c	456	12.2	55.5	90	12	SYNTRWH	Sequence
c	384	12.4	56.4	90	9	AY006228	Homo sapi	c	457	12.2	55.5	91	10	MUSQOP1S03	Sequence
c	385	12.4	56.4	90	9	AY006233	Homo sapi	c	458	12	54.5	12	6	AR203323	Sequence
c	386	12.4	56.4	90	9	AY006302	Homo sapi	c	459	12	54.5	12	6	AR008661	Sequence
c	387	12.4	56.4	90	9	HSA405800		c	460	12	54.5	12	6	AR203324	Sequence
c	388	12.4	56.4	91	9	AY04727852	Homo sapi	c	461	12	54.5	15	6	AR203330	Sequence
c	389	12.4	56.4	91	9	AY04728452		c	462	12	54.5	15	6	AR095229	Sequence
c	390	12.4	56.4	91	9	AY041821		c	463	12	54.5	20	6	AR17801	Sequence
c	391	12.4	56.4	91	14	AY0726452	HIV-1	c	464	12	54.5	20	6	AR17269	HIV-1
c	392	12.4	56.4	91	14	AY04726852	HIV-1	c	465	12	54.5	21	6	AR008661	Sequence
c	393	12.4	56.4	91	14	AY0472782Z	HIV-1	c	466	12	54.5	21	6	AR080899	Sequence
c	394	12.4	56.4	91	14	AY0472823	HIV-1	c	467	12	54.5	21	6	AR173729	Sequence
c	395	12.4	56.4	91	14	AY04728452	HIV-1	c	468	12	54.5	22	6	AY008488	Sequence
c	396	12.4	56.4	92	9	AY006236	Homo sapi	c	469	12	54.5	22	6	AX07144	Sequence
c	397	12.4	56.4	93	9	AY006224	Homo sapi	c	470	12	54.5	22	6	AX11674	Sequence
c	398	12.4	56.4	93	9	AY006305	Homo sapi	c	471	12	54.5	22	6	AY418160	Sequence
c	399	12.4	56.4	94	9	AY006226	Homo sapi	c	472	12	54.5	23	6	AY12716	Sequence
c	400	12.4	56.4	94	9	AY006231	Homo sapi	c	473	12	54.5	24	6	AYX91073	Sequence
c	401	12.4	56.4	94	9	AY006235	Homo sapi	c	474	12	54.5	24	6	AX291082	Sequence
c	402	12.4	56.4	94	9	AY006236	Homo sapi	c	475	12	54.5	24	6	AX392029	Sequence
c	403	12.4	56.4	95	3	AYF299136	Evechius	c	476	12	54.5	27	6	AX067979	Sequence
c	404	12.4	56.4	95	10	MNV8IN24		c	477	12	54.5	27	6	142618	Sequence
c	405	12.4	56.4	95	10	MNV8IN38		c	478	12	54.5	27	6	I12716	Sequence
c	406	12.4	56.4	96	9	AY006107	Homo sapi	c	479	12	54.5	28	6	AR157617	Sequence
c	407	12.4	56.4	97	3	AYF454676	Lasiogloss	c	480	12	54.5	28	6	AR178564	Sequence
c	408	12.4	56.4	97	9	AY006223	Homo sapi	c	481	12	54.5	28	6	AY146177	Sequence
c	409	12.4	56.4	97	9	AY006229	Homo sapi	c	482	12	54.5	28	6	I42664	Sequence
c	410	12.4	56.4	97	9	AY006229	Homo sapi	c	483	12	54.5	35	6	AR001398	Sequence
c	411	12.4	56.4	97	10	NM286014		c	484	12	54.5	35	6	AR078378	Sequence
c	412	12.4	56.4	98	10	MNV8IN35		c	485	12	54.5	35	6	AR058229	Sequence
c	413	12.4	56.4	98	10	MNV8IN26		c	486	12	54.5	35	6	AR138149	Sequence
c	414	12.4	56.4	98	10	MNV8IN28		c	487	12	54.5	35	6	AR194276	Sequence
c	415	12.4	56.4	98	10	MNV8IN36		c	488	12	54.5	37	6	AR06854	Sequence
c	416	12.4	56.4	99	100	AY006225	Homo sapi	c	489	12	54.5	37	6	AR080892	Sequence
c	423	12.4	56.4	100	9	AY006300		c	490	12	54.5	37	6	AR11930	Sequence
c	418	12.4	56.4	100	14	NCRNPB53		c	491	12	54.5	37	6	AR173722	Sequence
c	419	12.2	55.5	18	6	AR029833		c	492	12	54.5	38	6	AX424524	Sequence
c	420	12.2	55.5	20	6	AY453152		c	493	12	54.5	39	6	AR053682	Sequence
c	421	12.2	55.5	20	6	E15161	Phosphoth	c	494	12	54.5	40	6	AR2030569	Sequence
c	422	12.2	55.5	20	6	E22407	Antisense	c	495	12	54.5	40	6	AX556400	Sequence
c	423	12.2	55.5	20	6	E22408	Antisense	c	496	12	54.5	45	6	AR080900	Sequence
c	424	12.2	55.5	21	6	AX097979		c	497	12	54.5	45	6	AR173730	Sequence
c	425	12.2	55.5	23	6	B0008043		c	498	12	54.5	46	6	AR032675	Sequence
c	426	12.2	55.5	24	6	AR02019		c	499	12	54.5	46	6	AR203339	Sequence
c	427	12.2	55.5	24	6	AR12154		c	500	12	54.5	46	6	I2415	Sequence
c	428	12.2	55.5	24	6	AR149196		c	501	12	54.5	46	6	19089	Sequence
c	429	12.2	55.5	25	6	AR173215		c	502	12	54.5	47	6	AR121449	Sequence
c	430	12.2	55.5	25	6	AR090958		c	503	12	54.5	47	6	AR121450	Sequence

c 504	12	54.5	47	6	AX195002	577	11.8	53.6	36	10	MMD299486
c 505	12	54.5	47	6	156041 Sequence 22	c 578	11.8	53.6	40	6	AR064974
c 506	12	54.5	47	6	156042 Sequence 23	c 579	11.8	53.6	60	6	AR177471
c 507	12	54.5	47	6	156042 Sequence 23	c 580	11.8	53.6	60	6	AR177472
c 508	12	54.5	47	6	159512 Sequence 22	c 581	11.8	53.6	63	1	U09802 Herdmanni m
c 509	12	54.5	50	6	159513 Sequence 23	c 582	11.8	53.6	65	1	S7467552
c 510	12	54.5	50	6	AR02859 Sequence 23	c 583	11.8	53.6	72	9	HUMGBLYMC
c 511	12	54.5	50	6	129599 Sequence 47	c 584	11.8	53.6	75	9	S63942 IgH fCDR3 r
c 512	12	54.5	50	6	191273 Sequence 47	c 585	11.8	53.6	76	8	NEUTTRV
c 513	12	54.5	51	6	AX156929 Sequence	c 586	11.8	53.6	80	9	S57152 Homo sapien
c 514	12	54.5	51	6	AX156930 Sequence	c 587	11.8	53.6	81	3	AF015943 Ulophysum
c 515	12	54.5	51	6	AX158531 Sequence	c 588	11.8	53.6	81	14	AF207080
c 516	12	54.5	52	6	AR122336 Sequence	c 589	11.8	53.6	81	14	AF207081
c 517	12	54.5	52	6	AR160234 Sequence	c 590	11.8	53.6	81	14	AF207082
c 518	12	54.5	60	6	AR160239 Sequence	c 591	11.8	53.6	81	14	AF207083
c 519	12	54.5	60	8	S44200 class VI zy	c 592	11.8	53.6	81	14	AF207084
c 520	12	54.5	61	6	AR118282 Sequence	c 593	11.8	53.6	81	14	AF207085
c 521	12	54.5	62	10	AF265758 Mus muscu	c 594	11.8	53.6	81	14	AF207086
c 522	12	54.5	64	9	S81084S20 Sequence	c 595	11.8	53.6	81	14	AF207087
c 523	12	54.5	65	6	AX480190 Sequence	c 596	11.8	53.6	81	14	AF207088
c 524	12	54.5	65	6	AX48197 Sequence	c 597	11.8	53.6	81	14	AF207089
c 525	12	54.5	70	6	AR02474 Sequence	c 598	11.8	53.6	81	14	AF207090
c 526	12	54.5	70	6	AR020302 Sequence	c 599	11.8	53.6	81	14	AF207091
c 527	12	54.5	70	6	AR109323 Sequence	c 600	11.8	53.6	81	14	AF207092
c 528	12	54.5	70	6	182648 Sequence 89	c 601	11.8	53.6	81	14	AF207093
c 529	12	54.5	76	6	AR042693 Sequence	c 602	11.8	53.6	81	14	AF207095
c 530	12	54.5	76	6	AR056826 Sequence	c 603	11.8	53.6	81	14	AF207096
c 531	12	54.5	79	4	PCU46759 Sequence	c 604	11.8	53.6	81	14	AF207097
c 532	12	54.5	80	6	AR110376 Sequence	c 605	11.8	53.6	81	14	AF207098
c 533	12	54.5	80	6	BD003936 Chimeric,	c 606	11.8	53.6	81	14	AF207099
c 534	12	54.5	81	3	AF015945 Carcinus	c 607	11.8	53.6	81	14	AF207100
c 535	12	54.5	81	3	AF14884 Pteropodus	c 608	11.8	53.6	83	10	MVNIVN30
c 536	12	54.5	81	6	AR096176 Sequence	c 609	11.8	53.6	88	9	U00823
c 537	12	54.5	81	6	AR210575 Sequence	c 610	11.8	53.6	92	9	HUMP30
c 538	12	54.5	81	9	HSU07136 Human clone	c 611	11.8	53.6	94	6	AX387879
c 539	12	54.5	81	14	D87756 Hepatitis C	c 612	11.8	53.6	100	9	HUMLB27
c 540	12	54.5	81	14	HPC1090C11	c 613	11.6	53.6	100	9	AX317621
c 541	12	54.5	82	11	HUMT789B	c 614	11.6	52.7	100	6	AR037341
c 542	12	54.5	87	3	PFE2719_93 Sequence	c 615	11.6	52.7	20	6	AR040624
c 543	12	54.5	87	3	A42839 Sequence	c 616	11.6	52.7	20	6	E1109
c 544	12	54.5	87	6	I87345 Sequence 17	c 617	11.6	52.7	20	6	119635
c 545	12	54.5	87	14	AF050506 Human end	c 618	11.6	52.7	20	6	188645
c 546	12	54.5	87	14	AF050515 Human end	c 619	11.6	52.7	21	6	AX191810
c 547	12	54.5	88	6	A42834 Sequence 16	c 620	11.6	52.7	22	9	X87712 H. sapiens p
c 548	12	54.5	88	6	187340 Sequence 16	c 621	11.6	52.7	24	6	AX397670
c 549	12	54.5	89	9	S63934 Sequence 17	c 622	11.6	52.7	24	6	AX45884
c 550	12	54.5	90	6	AF087830 Galillus ga	c 623	11.6	52.7	25	6	A65298
c 551	12	54.5	90	6	A42845 Sequence 17	c 624	11.6	52.7	25	6	AR150446
c 552	12	54.5	90	6	187351 Sequence 17	c 625	11.6	52.7	25	6	AX317618
c 553	12	54.5	91	14	AB034436 Human 1mm	c 626	11.6	52.7	25	11	C75924 Homo sapien
c 554	12	54.5	91	14	AB034443 Human 1mm	c 627	11.6	52.7	26	6	A65299
c 555	12	54.5	93	6	A42846 Sequence	c 628	11.6	52.7	26	6	AR150447
c 556	12	54.5	93	6	187352 Sequence 17	c 629	11.6	52.7	26	6	AR211783
c 557	12	54.5	99	6	165773 Sequence 9	c 630	11.6	52.7	26	6	BD009910
c 558	12	54.5	99	10	MUSAQP1S04	c 631	11.6	52.7	27	6	AX090069
c 559	12	54.5	100	10	MMDND521	c 632	11.6	52.7	27	6	AR039142
c 560	12	54.5	100	11	HSPF113	c 633	11.6	52.7	29	6	AR065272
c 561	11.8	53.6	18	6	AR098334 Sequence	c 634	11.6	52.7	30	6	AR150444
c 562	11.8	53.6	18	6	AR174188 Sequence	c 635	11.6	52.7	34	6	A92573
c 563	11.8	53.6	19	6	AR202163 Sequence	c 636	11.6	52.7	34	6	AR212448
c 564	11.8	53.6	21	6	AR198750 Sequence	c 637	11.6	52.7	34	6	BD003669
c 565	11.8	53.6	21	6	AX117559 Sequence	c 638	11.6	52.7	40	6	AR135225
c 566	11.8	53.6	24	6	AX288614 Sequence	c 639	11.6	52.7	40	6	AR146721
c 567	11.8	53.6	25	6	AR9250 Sequence 26	c 640	11.6	52.7	40	6	AR152292
c 568	11.8	53.6	30	6	AR118765 Sequence	c 641	11.6	52.7	40	6	AR157830
c 569	11.8	53.6	30	6	106397 Sequence 17	c 642	11.6	52.7	40	6	AX456445
c 570	11.8	53.6	30	6	132178 Sequence 54	c 643	11.6	52.7	40	6	AR141022
c 571	11.8	53.6	30	6	134269 Sequence 54	c 644	11.6	52.7	43	6	AX207948
c 572	11.8	53.6	30	6	182474 Sequence 54	c 645	11.6	52.7	43	6	AX207950
c 573	11.8	53.6	31	6	AX107904 Sequence	c 646	11.6	52.7	43	6	AX466471
c 574	11.8	53.6	31	6	AX248858 Sequence	c 647	11.6	52.7	43	6	AX194951
c 575	11.8	53.6	31	6	AX249138 Sequence	c 648	11.6	52.7	47	12	SYNP214A
c 576	11.8	53.6	33	6	AX151706 Sequence	c 649	11.6	52.7	48	6	A93514 Sequence 7

C	650	11.6	52.7	48	6	I23498	Sequence 3	C	723	11.4	51.8	20	6	I82530	Sequence 11
C	651	11.6	52.7	50	6	AX165840	Sequence	C	724	11.4	51.8	20	6	I93768	Sequence 11
C	652	11.6	52.7	50	6	AX199420	Sequence	C	725	11.4	51.8	21	6	AR137433	Sequence
C	653	11.6	52.7	50	6	AX199422	Sequence	C	726	11.4	51.8	21	6	AX097315	Sequence
C	654	11.6	52.7	51	6	AX157005	Sequence	C	727	11.4	51.8	21	6	AX097362	Sequence
C	655	11.6	52.7	51	6	AX157006	Sequence	C	728	11.4	51.8	21	6	AX137780	Sequence
C	656	11.6	52.7	51	6	AX157609	Sequence	C	729	11.4	51.8	21	6	AX370582	Sequence
C	657	11.6	52.7	51	6	AX159419	Sequence	C	730	11.4	51.8	21	6	E54093	Novel gene
C	658	11.6	52.7	51	6	AX159421	Sequence	C	731	11.4	51.8	22	6	AX211675	Sequence
C	659	11.6	52.7	51	6	AX204239	Sequence	C	732	11.4	51.8	22	6	AX427064	Sequence
C	660	11.6	52.7	51	6	AX204348	Sequence	C	733	11.4	51.8	23	6	A14168	A14168 vectorette
C	661	11.6	52.7	55	9	HSDSS	Sequence	C	734	11.4	51.8	23	6	A45285	Sequence 16
C	662	11.6	52.7	57	6	AR199607	Sequence	C	735	11.4	51.8	23	6	AR099727	Sequence
C	663	11.6	52.7	57	6	AX366870	Sequence	C	736	11.4	51.8	23	6	AR16265	Sequence
C	664	11.6	52.7	62	6	AX18745	Sequence	C	737	11.4	51.8	23	6	AX058583	Sequence
C	665	11.6	52.7	10	10	RATIVS303	Sequence	C	738	11.4	51.8	23	6	AX254776	Sequence
C	666	11.6	52.7	65	9	AX28855	Sequence	C	739	11.4	51.8	23	6	AX300515	Sequence
C	667	11.6	52.7	66	9	HSAVPOG19	Sequence	C	740	11.4	51.8	23	6	AR099727	Sequence
C	668	11.6	52.7	67	6	A36470	Sequence	C	741	11.4	51.8	24	6	A22615	Sequence
C	669	11.6	52.7	67	6	AR071656	Sequence	C	742	11.4	51.8	24	6	A21805	Sequence
C	670	11.6	52.7	67	6	AR080103	Sequence	C	743	11.4	51.8	25	6	AX254648	Sequence
C	671	11.6	52.7	67	6	AR202436	Sequence	C	744	11.4	51.8	26	6	A01116	A01116_SalI-BgIII-
C	672	11.6	52.7	70	17	E2523	Sequence 10	C	745	11.4	51.8	26	6	AR051705	Sequence
C	673	11.6	52.7	76	5	AF051705	Sequence	C	746	11.4	51.8	26	6	AR27063	Sequence
C	674	11.6	52.7	76	5	AF051725	Sequence	C	747	11.4	51.8	26	6	A22615	Oligonucleo
C	675	11.6	52.7	76	9	A36495	Sequence	C	748	11.4	51.8	26	6	A21805	Sequence
C	676	11.6	52.7	78	5	AF051706	Sequence	C	749	11.4	51.8	26	6	AX254648	Sequence
C	677	11.6	52.7	80	3	AF01277	Sequence	C	750	11.4	51.8	26	6	E1040	A01140_Oligonucleo
C	678	11.6	52.7	80	9	HPSP5E10	Sequence	C	751	11.4	51.8	28	6	A01117	A01117_SalI-BgIII-
C	679	11.6	52.7	81	3	AY096249	Sequence	C	752	11.4	51.8	28	6	AR096249	Sequence
C	680	11.6	52.7	81	5	GGIGACRS	Sequence	C	753	11.4	51.8	28	6	AX038114	Sequence
C	681	11.6	52.7	82	8	A5051725	Sequence	C	754	11.4	51.8	28	6	AR038115	Sequence
C	682	11.6	52.7	82	5	AF051722	Sequence	C	755	11.4	51.8	30	6	A14059	A14059_Nucleotide
C	683	11.6	52.7	82	6	AX195313	Sequence	C	756	11.4	51.8	30	6	AR028324	Sequence
C	684	11.6	52.7	84	5	AF051723	Sequence	C	757	11.4	51.8	30	6	AR028324	Sequence
C	685	11.6	52.7	84	5	AF051714	Sequence	C	758	11.4	51.8	30	6	AR058695	Sequence
C	686	11.6	52.7	84	5	AF051718	Sequence	C	759	11.4	51.8	30	6	AX074011	Sequence
C	687	11.6	52.7	84	5	AF051720	Sequence	C	760	11.4	51.8	30	6	I47221	Sequence
C	688	11.6	52.7	85	5	AF051704	Sequence	C	761	11.4	51.8	31	6	AX248582	Sequence
C	689	11.6	52.7	86	5	AF051711	Sequence	C	762	11.4	51.8	31	6	AR084536	Sequence
C	690	11.6	52.7	86	5	AF051723	Sequence	C	763	11.4	51.8	31	6	AR04537	Sequence
C	691	11.6	52.7	86	5	AF051724	Sequence	C	764	11.4	51.8	38	6	AR046280	Sequence
C	692	11.6	52.7	88	8	AF051718	Sequence	C	765	11.4	51.8	38	6	137831	Sequence
C	693	11.6	52.7	88	8	MPOCPTRSB	Sequence	C	766	11.4	51.8	38	6	137974	Sequence
C	694	11.6	52.7	90	3	AF362093	Sequence	C	767	11.4	51.8	38	6	147221	Sequence
C	695	11.6	52.7	90	1	AF051717	Sequence	C	768	11.4	51.8	38	6	140140	Sequence
C	696	11.6	52.7	90	6	AX376948	Sequence	C	769	11.4	51.8	38	6	14059	Nucleotide
C	697	11.6	52.7	90	6	E03540	Sequence	C	770	11.4	51.8	40	6	AR046280	Sequence
C	698	11.6	52.7	90	10	MMPTRVJAS	Sequence	C	771	11.4	51.8	40	6	AX080990	Sequence
C	699	11.6	52.7	92	6	AF051719	Sequence	C	772	11.4	51.8	41	6	AR109085	Sequence
C	700	11.6	52.7	94	5	AF051710	Sequence	C	773	11.4	51.8	41	6	AR200740	Sequence
C	701	11.6	52.7	94	6	AX440115	Sequence	C	774	11.4	51.8	42	6	AX060318	Sequence
C	702	11.6	52.7	94	8	VFSN5L5R	Sequence	C	775	11.4	51.8	45	6	A26132	A26132_Artificial
C	703	11.6	52.7	95	3	AGXH454	Sequence	C	776	11.4	51.8	45	6	A29559	A29559_R.lactis ge
C	704	11.6	52.7	95	9	AR165689	Sequence	C	777	11.4	51.8	45	6	AR09531	Sequence
C	705	11.6	52.7	96	6	A21832	Poly nucleot	C	778	11.4	51.8	45	6	AR086445	Sequence
C	706	11.6	52.7	96	6	A33970	Sequence	C	779	11.4	51.8	45	6	AR02218	Sequence
C	707	11.6	52.7	96	6	AR200232	Sequence	C	780	11.4	51.8	45	6	AR172143	Sequence
C	708	11.6	52.7	96	6	AR165688	Sequence	C	781	11.4	51.8	45	6	I33670	I33670_Sequence 13
C	709	11.6	52.7	98	6	191501	Sequence 35	C	782	11.4	51.8	45	6	143818	Sequence 5
C	710	11.6	52.7	99	10	AR1056382	Sequence	C	783	11.4	51.8	45	6	166205	Sequence 12
C	711	11.6	52.7	100	4	AY05524	Sequence	C	784	11.4	51.8	45	6	166218	Sequence
C	712	11.6	52.7	105	6	AR131837	Sequence	C	785	11.4	51.8	47	6	AR150542	Sequence
C	713	11.6	52.7	106	6	AR176148	Sequence	C	786	11.4	51.8	47	6	AR150520	Sequence
C	714	11.6	52.7	107	17	AR191184	Sequence	C	787	11.4	51.8	47	6	BD001828	Method fo
C	715	11.6	52.7	108	18	AR105021	Sequence	C	788	11.4	51.8	47	6	I77232	Sequence 22
C	716	11.6	52.7	108	18	AR101065	Sequence	C	789	11.4	51.8	48	6	A40264	Sequence 4
C	717	11.6	52.7	108	18	AR101067	Sequence	C	790	11.4	51.8	48	6	AR19390	Sequence
C	718	11.6	52.7	108	18	HSREP18	Sequence	C	791	11.4	51.8	49	6	AR178012	Sequence
C	719	11.6	52.7	108	20	AX293247	Sequence	C	792	11.4	51.8	49	6	AR178013	Sequence
C	720	11.6	52.7	108	20	AX300508	Sequence	C	793	11.4	51.8	49	6	AX254646	Sequence
C	721	11.6	52.7	108	20	AX300510	Sequence	C	794	11.4	51.8	49	6	AX32822	Sequence
C	722	11.6	52.7	108	20	AX402163	Sequence	C	795	11.4	51.8	49	6	BD007505	High-dens

996	11.4	51.8	50	6	A45286	Sequence 17	c .869	11.4	51.8	87	6	AR105032
997	11.4	51.8	50	6	A92283	Sequence 2	c .870	11.4	51.8	87	6	AF522869
798	11.4	51.8	50	6	A92334	Sequence 2	c .871	11.4	51.8	88	6	SPO518855
799	11.4	51.8	50	6	AR116266	Sequence	c .872	11.4	51.8	88	9	AJ251855
800	11.4	51.8	50	6	AX156824	Sequence	c .873	11.4	51.8	88	10	HSRPTNAC
801	11.4	51.8	50	6	AX160074	Sequence	c .874	11.4	51.8	88	10	RNPTR88
c	11.4	51.8	50	6	AX162064	Sequence	c .875	11.4	51.8	89	10	AF522868
c	11.4	51.8	50	6	AX190214	Sequence	c .876	11.4	51.8	90	6	AR195942
803	11.4	51.8	50	6	AX20199	Sequence	c .877	11.4	51.8	90	6	AK239591
804	11.4	51.8	50	6	BD007224	Lentivirus	c .878	11.4	51.8	91	8	AF263002
805	11.4	51.8	50	6	AX157377	Sequence	c .879	11.4	51.8	91	10	X95094 R. norvegicus
c	11.4	51.8	50	6	AX157378	Sequence	c .880	11.4	51.8	91	14	AB034435
c	11.4	51.8	50	6	AX158577	Sequence	c .881	11.4	51.8	93	5	AF033553
c	11.4	51.8	50	6	AX159061	Sequence	c .882	11.4	51.8	93	10	RATNACHRR1
c	11.4	51.8	50	6	AX160073	Sequence	c .883	11.4	51.8	95	6	AR165724
c	11.4	51.8	50	6	AX162233	Sequence	c .884	11.4	51.8	95	6	AO108070
c	11.4	51.8	50	6	AX162475	Sequence	c .885	11.4	51.8	95	9	HSIIPR10
c	11.4	51.8	50	6	AX162582	Sequence	c .886	11.4	51.8	95	9	HSSTP200
c	11.4	51.8	50	6	AX162718	Sequence	c .887	11.4	51.8	95	10	F321780S29
c	11.4	51.8	50	6	AX190364	Sequence	c .888	11.4	51.8	95	11	HUMUT5301A
c	11.4	51.8	50	6	AX190365	Sequence	c .889	11.4	51.8	96	4	SSU-4
c	11.4	51.8	50	6	AX190372	Sequence	c .890	11.4	51.8	96	5	AF420574
c	11.4	51.8	50	6	AX190373	Sequence	c .891	11.4	51.8	97	6	A45370
c	11.4	51.8	50	6	AX201043	Sequence	c .892	11.4	51.8	97	6	AR061175
c	11.4	51.8	50	6	AX449473	Sequence	c .893	11.4	51.8	97	9	HSU32398
c	11.4	51.8	50	6	AB013762	Macaca as	c .894	11.4	51.8	97	9	J05232 Rat. neurona
c	11.4	51.8	50	6	AB013763	Macaca as	c .895	11.4	51.8	97	6	AR165724
c	11.4	51.8	50	6	AB013764	Macaca fa	c .896	11.4	51.8	97	6	AX080700
c	11.4	51.8	50	6	A03834	Artificial	c .897	11.4	51.8	100	6	A50641 Human Inter
c	11.4	51.8	50	6	I77233	Sequence 23	c .898	11.4	51.8	100	6	U72200 Human pheno
c	11.4	51.8	50	6	AX236423	Sequence	c .899	11.4	51.8	100	11	AF31808 Mus muscu
c	11.4	51.8	50	6	AR208349	Sequence	c .900	11.2	50.9	100	6	L30027 Human STS U
c	11.4	51.8	50	6	AB013761	Macaca mu	c .901	11.2	50.9	100	6	U62328 Sus scrofa
c	11.4	51.8	50	6	AF465486	Human STS U	c .902	11.2	50.9	100	6	AF420574
c	11.4	51.8	50	6	AF466493	Hepatitis	c .903	11.2	50.9	100	6	Salmo sal
c	11.4	51.8	50	6	A59482	Sequence 32	c .904	11.2	50.9	100	6	A45370
c	11.4	51.8	50	6	DME00080	Drosophil	c .905	11.2	50.9	20	6	A010819
c	11.4	51.8	50	6	X88001	H. sapiens D	c .906	11.2	50.9	20	6	AR020427
c	11.4	51.8	50	6	L2950	Human STS U	c .907	11.2	50.9	20	6	Sequence
c	11.4	51.8	50	6	AX482399	Sequence	c .908	11.2	50.9	21	12	U32538 Human pre-B
c	11.4	51.8	50	6	AX483162	Sequence	c .909	11.2	50.9	21	12	X86911 H. sapiens A
c	11.4	51.8	50	6	AX483160	Sequence	c .910	11.2	50.9	22	6	AR020427
c	11.4	51.8	50	6	AX483160	Sequence	c .911	11.2	50.9	22	6	AR020427
c	11.4	51.8	50	6	AX485504	Sequence	c .912	11.2	50.9	22	6	Sequence
c	11.4	51.8	50	6	AR002290	Sequence	c .913	11.2	50.9	22	6	AL03906 H. sapiens
c	11.4	51.8	50	6	AR053141	Sequence	c .914	11.2	50.9	22	6	AX317690
c	11.4	51.8	50	6	AR055670	Sequence	c .915	11.2	50.9	22	6	AR035143
c	11.4	51.8	50	6	AX080386	Sequence	c .916	11.2	50.9	22	6	Sequence
c	11.4	51.8	50	6	AR19382	Homo sapi	c .917	11.2	50.9	22	6	AR059390
c	11.4	51.8	50	6	Z98218	H. sapiens D	c .918	11.2	50.9	22	6	Sequence
c	11.4	51.8	50	6	AR193222	Sequence	c .919	11.2	50.9	22	6	AB069535 Synthetic
c	11.4	51.8	50	6	M74580	Synthetic G	c .920	11.2	50.9	22	6	AB069535 Synthetic
c	11.4	51.8	50	6	AR014249	Sequence	c .921	11.2	50.9	22	6	AX356947 Sequence
c	11.4	51.8	50	6	AR020257	Sequence	c .922	11.2	50.9	22	6	AX486725 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .923	11.2	50.9	24	6	AR060257 Sequence
c	11.4	51.8	50	6	AR02278	Sequence 44	c .924	11.2	50.9	24	6	AR060273 Sequence
c	11.4	51.8	50	6	J02254	Ret insulin	c .925	11.2	50.9	24	6	AR060273 Sequence
c	11.4	51.8	50	6	AX23476	Sequence	c .926	11.2	50.9	25	6	AR037105 Sequence
c	11.4	51.8	50	6	AF010173	Ethnomotig	c .927	11.2	50.9	25	6	Sequence
c	11.4	51.8	50	6	AF148867	Norwalk-1	c .928	11.2	50.9	26	6	E26697 Transgenic
c	11.4	51.8	50	6	TM250452	Tripsosterone	c .929	11.2	50.9	27	6	AR061819 Sequence
c	11.4	51.8	50	6	AX080696	Sequence	c .930	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AF062783	Lupinus a	c .931	11.2	50.9	27	6	AR037105 Sequence
c	11.4	51.8	50	6	AX32876	SINGERDH	c .932	11.2	50.9	27	6	Sequence
c	11.4	51.8	50	6	AR012429	Sequence	c .933	11.2	50.9	27	6	AR061819 Sequence
c	11.4	51.8	50	6	AR020257	Sequence	c .934	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .935	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .936	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .937	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .938	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .939	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .940	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR02278	Sequence	c .941	11.2	50.9	27	6	AR061861 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .942	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .943	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .944	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .945	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .946	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .947	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .948	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .949	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .950	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .951	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .952	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .953	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .954	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .955	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .956	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .957	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .958	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .959	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .960	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .961	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .962	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .963	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .964	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .965	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .966	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .967	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .968	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .969	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .970	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .971	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .972	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .973	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .974	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .975	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .976	11.2	50.9	30	6	AR061641 Sequence
c	11.4	51.8	50	6	AR061641	Sequence	c .977	11.2	5			

QY	1	TCGCACCCATCTCTCTCTCT	22				REFERENCE	Unclassified.
Db	3	TCGCACCCATCTCTCTCT	24				AUTHORS	(bases 1 to 25)
							TITLE	Iyer, R.P., Agrawal, S. and Tan, W.
							JOURNAL	Procedure for the solid phase synthesis of .sup.35 S-labeled
							FEATURES	oligonucleotides with 3H-1,2-benzodithiol-3-one-1,1-dioxide
							ORGANISM	Patent: US 5833944-A 2 10-NOV-1998;
RESULT 4							SOURCE	Location/Qualifiers
AR001561	AR001561	Sequence 22 from patent US 5739308.	25 bp	DNA	linear	PAT 04-DEC-1998	Source	1. .25
							BASE COUNT	/organism="unknown"
							ORIGIN	2 a 13 c 1 g 9 t
REFERENCE	1 (bases 1 to 25)							
AUTHORS	Kandimla, E.R. and Agrawal, S.							
TITLE	Integrated oligonucleotides							
JOURNAL	Patent: US 573308-A 22-14-APR-1998;							
FEATURES	Location/Qualifiers							
SOURCE	Unknown.							
	Unclassified.							
BASE COUNT	2 a 13 c 1 g 9 t							
ORIGIN								
Query Match	100.0%; Score 22; DB 6; Length 25;							
DEFINITION	Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;							
VERSION	Matches 22; Conservative 0;							
QY	1	TCGCACCCATCTCTCTCT	22				QY	100.0%; Score 22; DB 6; Length 25;
Db	4	TCGCACCCATCTCTCTCT	25				Db	TCGCACCCATCTCTCTCT
RESULT 5							Query Match	100.0%; Score 22; DB 6; Length 25;
AR052661	AR052661	Sequence 1 from patent US 5833944.	25 bp	DNA	linear	PAT 29-SEP-1999	DEFINITION	Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;
LOCUS							VERSION	Matches 22; Conservative 0;
DEFINITION	Accession AR052661.1 GI:5977523						KEYWORDS	Unknown.
VERSION							SOURCE	Unknown.
KEYWORDS							ORGANISM	Unclassified.
SOURCE							REFERENCE	1 (bases 1 to 25)
ORGANISM	Unknown.						AUTHORS	Iyer, R.P., Agrawal, S. and Tan, W.
REFERENCE	Unclassified.						TITLE	Procedure for the solid phase synthesis of .sup.35 S-labeled
AUTHORS	1 (bases 1 to 25)						JOURNAL	oligonucleotides with 3H-1,2-benzodithiol-3-one-1,1-dioxide
TITLE	Iyer, R.P., Agrawal, S. and Tan, W.						FEATURES	Patent: US 5833944-A 3 10-NOV-1998;
JOURNAL	Procedure for the solid phase synthesis of .sup.35 S-labeled						SOURCE	Location/Qualifiers
FEATURES	oligonucleotides with 3H-1,2-benzodithiol-3-one-1,1-dioxide						BASE COUNT	1. .25
SOURCE	Patent: US 5833944-A 1 10-NOV-1998;						ORIGIN	/organism="unknown"
BASE COUNT	2 a 13 c 1 g 9 t							
ORIGIN								
Query Match	100.0%; Score 22; DB 6; Length 25;							
DEFINITION	Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;							
VERSION	Matches 22; Conservative 0;							
QY	1	TCGCACCCATCTCTCTCT	22				QY	100.0%; Score 22; DB 6; Length 25;
Db	4	TCGCACCCATCTCTCTCT	25				Db	TCGCACCCATCTCTCTCT
RESULT 6							Query Match	100.0%; Score 22; DB 6; Length 25;
AR052662	AR052662	Sequence 2 from patent US 5833944.	25 bp	DNA	linear	PAT 29-SEP-1999	DEFINITION	Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;
LOCUS							VERSION	Matches 22; Conservative 0;
DEFINITION	Accession AR052662.1 GI:5977524						KEYWORDS	Unknown.
VERSION							SOURCE	Unknown.
KEYWORDS							ORGANISM	Unknown.
SOURCE							REFERENCE	1 (bases 1 to 25)
ORGANISM	Unknown.						AUTHORS	Iyer, R.P., Agrawal, S. and Tan, W.
REFERENCE	Procedure for the solid phase synthesis of .sup.35 S-labeled						TITLE	oligonucleotides with 3H-1,2-benzodithiol-3-one-1,1-dioxide
JOURNAL	Patent: US 5833944-A 4 10-NOV-1998;						FEATURES	Location/Qualifiers
SOURCE							BASE COUNT	1. .25
ORGIN							ORIGIN	/organism="unknown"
Query Match	100.0%; Score 22; DB 6; Length 25;							

Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

RESULT 19

Qy	1 TCGCACCCATCTCTCTCTCT 22
Db	4 TCGCACCCATCTCTCTCT 25

LOCUS AR082597
DEFINITION Sequence 7 from patent US 5973136.
ACCESSION AR082597
VERSION AR082597.1
KEYWORDS
SOURCE Unknown.
ORGANISM Unknown.
REFERENCE 1 (bases 1 to 25)
AUTHORS Agrawal,S.
TITLE Inverted chimeric oligonucleotides
JOURNAL Patent: US 5973136-A 9 26-OCT-1999;
FEATURES Location/Qualifiers

BASE COUNT source 2 a /organism="unknown"
ORIGIN 1. .25

Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

RESULT 20

Qy	1 TCGCACCCATCTCTCTCTCT 22
Db	4 TCGCACCCATCTCTCTCT 25

LOCUS AR082598
DEFINITION Sequence 8 from patent US 5973136.
ACCESSION AR082598
VERSION AR082598.1
KEYWORDS
SOURCE Unknown.
ORGANISM Unclassified.
REFERENCE 1 (bases 1 to 25)
AUTHORS Agrawal,S.
TITLE Inverted chimeric oligonucleotides
JOURNAL Patent: US 5973136-A 8 26-OCT-1999;
FEATURES Location/Qualifiers

BASE COUNT source 2 a /organism="unknown"
ORIGIN 1. .25

Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

RESULT 21

Qy	1 TCGCACCCATCTCTCTCTCT 22
Db	4 TCGCACCCATCTCTCTCT 25

LOCUS AR082599
DEFINITION Sequence 9 from patent US 5973136.
ACCESSION AR082599

Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

RESULT 22

Qy	1 TCGCACCCATCTCTCTCTCT 22
Db	4 TCGCACCCATCTCTCTCT 25

LOCUS AR082600
DEFINITION Sequence 10 from patent US 5973136.
ACCESSION AR082600
VERSION AR082600.1
KEYWORDS
SOURCE Unknown.
ORGANISM Unknown.
REFERENCE 1 (bases 1 to 25)
AUTHORS Agrawal,S.
TITLE Inverted chimeric oligonucleotides
JOURNAL Patent: US 5973136-A 10 26-OCT-1999;
FEATURES Location/Qualifiers

BASE COUNT source 2 a /organism="unknown"
ORIGIN 1. .25

Query Match 100.0%; Score 22; DB 6; Length 25;
Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

RESULT 23

Qy	1 TCGCACCCATCTCTCTCTCT 22
Db	4 TCGCACCCATCTCTCTCT 25

LOCUS AR082601
DEFINITION Sequence 11 from patent US 5973136.
ACCESSION AR082601
VERSION AR082601.1
KEYWORDS
SOURCE Unknown.
ORGANISM Unknown.
REFERENCE 1 (bases 1 to 25)
AUTHORS Agrawal,S.
TITLE Inverted chimeric oligonucleotides
JOURNAL Patent: US 5973136-A 11 26-OCT-1999;
FEATURES Location/Qualifiers

BASE COUNT source 2 a /organism="unknown"
ORIGIN 1. .25

		Query Match	100.0%; Score 22; DB 6; Length 25;				
Best Local Similarity	100.0%; Pred. No. 2.8;	Mismatches	0; Indels 0; Gaps 0;				
Matches	22; Conservative	0; Mismatches	0; Indels 0; Gaps 0;				
Qy	1 TCGCACCCATCTCTCCTCT 22						
Db	4 TCGCACCCATCTCTCCTCT 25						
RESULT 24							
AR082602	AR082602	Sequence 12 from patent US 5973136.	25 bp DNA	linear	PAT 31-AUG-2000		
LOCUS							
DEFINITION							
ACCESSION							
VERSION							
KEYWORDS							
SOURCE							
ORGANISM							
REFERENCE							
AUTHORS							
TITLE							
JOURNAL							
FEATURES							
source							
BASE COUNT	2 a	13 c	1 g	9 t			
ORIGIN							
Query Match	100.0%; Score 22; DB 6; Length 25;						
Best Local Similarity	100.0%; Pred. No. 2.8;	Mismatches	0; Indels 0; Gaps 0;				
Matches	22; Conservative	0; Mismatches	0; Indels 0; Gaps 0;				
Qy	1 TCGCACCCATCTCTCCTCT 22						
Db	4 TCGCACCCATCTCTCCTCT 25						
RESULT 25							
AR082603	AR082603	Sequence 13 from patent US 5973136.	25 bp DNA	linear	PAT 31-AUG-2000		
LOCUS							
DEFINITION							
ACCESSION							
VERSION							
KEYWORDS							
SOURCE							
ORGANISM							
REFERENCE							
AUTHORS							
TITLE							
JOURNAL							
FEATURES							
source							
BASE COUNT	2 a	13 c	1 g	9 t			
ORIGIN							
Query Match	100.0%; Score 22; DB 6; Length 25;						
Best Local Similarity	100.0%; Pred. No. 2.8;	Mismatches	0; Indels 0; Gaps 0;				
Matches	22; Conservative	0; Mismatches	0; Indels 0; Gaps 0;				
Qy	1 TCGCACCCATCTCTCCTCT 22						
Db	4 TCGCACCCATCTCTCCTCT 25						
RESULT 26							
AR082604	AR082604	Sequence 14 from patent US 5973136.	25 bp DNA	linear	PAT 31-AUG-2000		
LOCUS							
DEFINITION							
ACCESSION							
VERSION							
KEYWORDS							
SOURCE							
ORGANISM							
REFERENCE							
AUTHORS							
TITLE							
JOURNAL							
FEATURES							
source							
BASE COUNT	2 a	13 c	1 g	9 t			
ORIGIN							
Query Match	100.0%; Score 22; DB 6; Length 25;						
Best Local Similarity	100.0%; Pred. No. 2.8;	Mismatches	0; Indels 0; Gaps 0;				
Matches	22; Conservative	0; Mismatches	0; Indels 0; Gaps 0;				
Qy	1 TCGCACCCATCTCTCCTCT 22						
Db	4 TCGCACCCATCTCTCCTCT 25						
RESULT 27							
AR082605	AR082605	Sequence 15 from patent US 5973136.	25 bp DNA	linear	PAT 31-AUG-2000		
LOCUS							
DEFINITION							
ACCESSION							
VERSION							
KEYWORDS							
SOURCE							
ORGANISM							
REFERENCE							
AUTHORS							
TITLE							
JOURNAL							
FEATURES							
source							
BASE COUNT	2 a	13 c	1 g	9 t			
ORIGIN							
Query Match	100.0%; Score 22; DB 6; Length 25;						
Best Local Similarity	100.0%; Pred. No. 2.8;	Mismatches	0; Indels 0; Gaps 0;				
Matches	22; Conservative	0; Mismatches	0; Indels 0; Gaps 0;				
Qy	1 TCGCACCCATCTCTCCTCT 22						
Db	4 TCGCACCCATCTCTCCTCT 25						
RESULT 28							
AR082606	AR082606	Sequence 16 from patent US 5973136.	25 bp DNA	linear	PAT 31-AUG-2000		
LOCUS							
DEFINITION							
ACCESSION							
VERSION							
KEYWORDS							
SOURCE							
ORGANISM							
REFERENCE							
AUTHORS							
TITLE							
JOURNAL							
FEATURES							
source							
BASE COUNT	2 a	13 c	1 g	9 t			
ORIGIN							
Query Match	100.0%; Score 22; DB 6; Length 25;						

Best Local Similarity 100.0%; Pred. No. 2.8; Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCCTCCCT 22
Db 4 TCGCACCCATCTCCTCCCT 25

RESULT 29

AR02607 AR02607 25 bp DNA linear PAT 31-AUG-2000

LOCUS Sequence 17 from patent US 5973136.

DEFINITION 1 (bases 1 to 25)

ACCESSION AR02607

VERSION AR02607.1 GI:10009327

KEYWORDS AUTHORS Agrawal,S.
 TITLE Inverted chimeric oligonucleotides
 JOURNAL Patent: US 5973136-A 19 26-OCT-1999;
 FEATURES source /organism="unknown"

REFERENCE 1 (bases 1 to 25)

AUTHORS Agrawal,S.
 TITLE Inverted chimeric oligonucleotides
 JOURNAL Patent: US 5973136-A 17 26-OCT-1999;
 FEATURES source /organism="unknown"

BASE COUNT 2 a 13 c 1 g 9 t

ORIGIN

Query Match 100.0%; Score 22; DB 6; Length 25; Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCCTCCCT 22
Db 4 TCGCACCCATCTCCTCCCT 25

RESULT 30

AR02608 AR02608 25 bp DNA linear PAT 31-AUG-2000

LOCUS Sequence 18 from patent US 5973136.

DEFINITION 1 (bases 1 to 25)

ACCESSION AR02608

VERSION AR02608.1 GI:10009328

KEYWORDS SOURCE Unknown.

ORGANISM Unclassified.

REFERENCE 1 (bases 1 to 25)

AUTHORS Agrawal,S.
 TITLE Inverted chimeric oligonucleotides
 JOURNAL Patent: US 5973136-A 18 26-OCT-1999;
 FEATURES source /organism="unknown"

BASE COUNT 2 a 13 c 1 g 9 t

ORIGIN

Query Match 100.0%; Score 22; DB 6; Length 25; Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCCTCCCT 22
Db 4 TCGCACCCATCTCCTCCCT 25

RESULT 32

AR118312 AR118312 25 bp DNA linear PAT 16-MAY-2001

LOCUS Sequence 157 from patent US 6140490.

DEFINITION 1 (bases 1 to 25)

ACCESSION AR118312

VERSION AR118312.1 GI:14099218

KEYWORDS SOURCE Unknown.

ORGANISM Unclassified.

REFERENCE 1 (bases 1 to 25)

AUTHORS Bleisecker,G. and Gold,L.
 TITLE High affinity nucleic acid ligands of complement system proteins
 JOURNAL Patent: US 6140490-A 157 31-OCT-2000;
 FEATURES source /organism="unknown"

BASE COUNT 2 a 13 c 1 g 9 t

ORIGIN

Query Match 100.0%; Score 22; DB 6; Length 25; Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

Matches 22; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCCTCCCT 22
Db 4 TCGCACCCATCTCCTCCCT 25

RESULT 33

AR206340 AR206340 25 bp DNA linear PAT 20-JUN-2002

LOCUS Sequence 20 from patent US 6372427.

DEFINITION 1 (bases 1 to 25)

ACCESSION AR206340

VERSION AR206340.1 GI:21504912

KEYWORDS SOURCE Unknown.

ORGANISM Unclassified.

REFERENCE 1 (bases 1 to 25)

AUTHORS Kandimalla,E.R. and Agrawal,S.
 TITLE Cooperative oligonucleotides
 JOURNAL Patent: US 6372427-A 20 16-APR-2002;
 FEATURES source /organism="unknown"

BASE COUNT 2 a 13 c 1 g 9 t

ORIGIN

Query Match 100.0%; Score 22; DB 6; Length 25; Best Local Similarity 100.0%; Pred. No. 2.8; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TCGGACCCATCTCCTCCCT 22
Db 4 TCGCACCCATCTCCTCCCT 25

RESULT 31

AR082609 AR082609 25 bp DNA linear PAT 31-AUG-2000

LOCUS Sequence 19 from patent US 5973136.

DEFINITION 1 (bases 1 to 25)

ACCESSION AR082609

VERSION AR082609.1 GI:10009329

KEYWORDS

	BASE COUNT	2 a	13 c	1 g	9 t	
ORIGIN						
Query Match	100.0%	Score 22;	DB 6;	Length 25;		
Best Local Similarity	100.0%	Pred. No. 2.8;	2.8;	Length 25;		
Matches	22;	Mismatches	0;	Indels	0;	Gaps
QY	1	TGGCACCCATCTCTCCTCT	22			
Db	4	TCGCACCCATCTCTCCTCT	25			
RESULT 39						
AX363490	AX363490	Sequence 6 from Patent WO0208420.	25 bp	DNA	Linear	PAT 15-FEB-2002
DEFINITION		AX363490				
ACCESSION		AX363490.1				
VERSION		GI:18695605				
KEYWORDS						
SOURCE						
ORGANISM						
REFERENCE						
AUTHORS		Agrawal,S., Diasio,R.B. and Zhang,Z.				
TITLE		A method of down-regulating gene expression				
JOURNAL		HIBRIDON, INC. (US)				
FEATURES						
source		/organism="synthetic construct"				
		/db_xref="taxon:32630"				
		/note="oligonucleotide"				
RESULT 39						
AX363490	AX363490	Sequence 6 from Patent WO0208420.	25 bp	DNA	Linear	PAT 15-FEB-2002
DEFINITION		AX363490				
ACCESSION		AX363490.1				
VERSION		GI:18695605				
KEYWORDS						
SOURCE						
ORGANISM						
REFERENCE						
AUTHORS		Agrawal,S., Diasio,R.B. and Zhang,Z.				
TITLE		A method of down-regulating gene expression				
JOURNAL		HIBRIDON, INC. (US)				
FEATURES						
source		/organism="synthetic construct"				
		/db_xref="taxon:32630"				
		/note="oligonucleotide"				
RESULT 40						
AX36491	AX36491	Sequence 7 from Patent WO0208420.	25 bp	DNA	Linear	PAT 15-FEB-2002
DEFINITION		AX36491				
ACCESSION		AX36491.1				
VERSION		GI:18695606				
KEYWORDS						
SOURCE						
ORGANISM						
REFERENCE						
AUTHORS		Agrawal,S., Diasio,R.B. and Zhang,Z.				
TITLE		A method of down-regulating gene expression				
JOURNAL		HIBRIDON, INC. (US)				
FEATURES						
source		/organism="synthetic construct"				
		/db_xref="taxon:32630"				
		/note="oligonucleotide"				