Difference in thickness of iron thin film

2021/07/13~17 BL05 Akatuka Hiroaki, Hlguchi Takashi

目次

- 目的
- 実験セットアップ
- 実験結果 (q vs R, B(mT) vs Pのグラフ)

目的

• 鉄薄膜がどの程度の磁場によって磁化するかを測定

Setup 鉄薄膜の反射率測定

Distance from the concrete shielding exit (mm)

Setup 鉄薄膜の反射率測定

Distance from the concrete shielding exit (mm)

q-dependence of the polarization power (Fe 30nm)

Color coding by the magnitude of the magnetic field applied to the sample

q-dependence of the polarization power (Fe 50nm)

Color coding by the magnitude of the magnetic field applied to the sample

q-dependence of the polarization power (Fe 90nm)

Color coding by the magnitude of the magnetic field applied to the sample

Setup M2による偏極率測定 (サンプルの代わりにM2を置いて測定)

Distance from the concrete shielding exit (mm)

SF, M2の性能

Direct, SF OFF, SF ON, Polarization rate

SF, M2の性能 [Rebin(5)]

Direct, SF OFF, SF ON, Polarization rate

Back up

- ・セットアップ
- 何も置かないスペクトル
- m1のみ、m1,m2のみ、サンプル
- 1枚目に置いていないダイレクト?

Setup (Comparison of incidence angles with different m2)

Comparison of incidence angles with different m2

incidence angle m2 0.48deg vs 0.97deg (8.01mT, AFP ON)

Comparison of incidence angles with different m2 incidence angle m2 0.48deg vs 0.97deg (8.01mT, AFP OFF)

ミラーの性能

0.3 < q < 1.1であれば偏極率 $P \sim 1$ 、 $q \sim 0.2$ でP > 0.9

Fe / Si polarising supermirror

Spin dependent reflectivity and polarization of a Fe/Si polarizing supermirror m = 5.5

Determination of peak position

Determine the peak from the average of the histogram over the selected range

範囲の選択の仕方によって ±1 mm程度ずれてくる(選択範囲を示す)

$$2 \sin \theta_{\text{m}_2} \sim \frac{x_{\text{peak}} - x_{\text{direct}}}{x_{\text{m}_2 \sim \text{det}}}$$

$$= \frac{\sqrt{1^2 + 1^2}}{344} = 0.0041$$

$$Y_{\text{error}_{\text{max}}} = \frac{2\pi}{0.2} \times 0.0041 \sim \pm 0.13$$

どのようにピークを決定すべきか?

サンプルを変えた時にqがずれてくる

$$\lambda(0.2 \sim 1 \text{ nm})$$

磁場測定と業者の測定と比較

妥当性を検証? 残差のプロット?磁場を変える精度が3%ある?

• 業者の測定

$$B_{\text{kitaguchi}}(\text{mT}) = -4.395(9) \frac{\text{mT}}{A} I_{\text{real}} - 0.34(4)$$

今回の測定(y方向)

$$B_y(\text{mT}) = -4.296(9) \frac{\text{mT}}{A} I_{\text{real}} - 0.205(9)$$

• 今回の測定(ノルム)

$$B_{\text{norm}}(\text{mT}) = -4.323(8) \frac{\text{mT}}{A} I_{\text{real}} - 0.202(9)$$

sample 30 nm 8.01 mT (saturated)

緑をとるには、上流ミラーの角度を深くする必要がある

sample 50 nm 8.13 mT (saturated)

sample 90 nm 8.13 mT (saturated)

AFP OFF

AFP ON

- Pol power の続き
- 上流ミラーのみをおいて測ったデータで何か言える?

•