

María Salazar

Adrián Sanjurjo

Introducción a la física computacional

Índice

- Introducción y contexto histórico
- Planteamiento del problema
- Programa desarrollado
- Discusión de resultados

Introducción histórica

- Astronomía
- Cosmología y astrofísica :
- Teoría de la Relatividad de Einstein

Universo en expansión de Lemâitre frente al Universo estático de Einstein Prueba de la expansión del Universo: corrimiento al rojo de las Galaxias.

A mayor distancia, color más rojo. Efecto Doppler de la luz.

Es debido a un aumento de la velocidad entre cúmulos celestes originado por la creación de nuevo espacio

Redshift 'z' de la luz

$$z = \frac{\lambda_r - \lambda_e}{\lambda_e}$$

Modelos posibles del Universo en expansion

Edwin Hubble

Astrofísico. Logró encontrar una relación lineal entre las distancias entre Galaxias y sus velocidades.

Es la denominada Ley de Hubble

$$V = H_0 \cdot d$$

V; Velocidad $(km \cdot s^{-1})$

d; Distancia (MPc)

 H_c es la llamada constante de Hubble. Tomó datos observacionales.

Valores a lo largo de la historia:

- Hubble: $500 \pm 50 \text{ Km} \cdot \text{s}^{-1} \cdot \text{MPc}^{-1}$
- 1956: 180 ± 25 Km·s⁻¹ · MPc⁻¹
- Década de los 70: Entre 50 y 100 $\text{Km} \cdot \text{s}^{-1} \cdot \text{MPc}^{-1}$
- 2003: 72 ± 8 Km· s^{-1} · MPc⁻¹
 - 2014: 67,3 \pm 1,2 Km·s⁻¹ · MPc⁻¹ (Valor actual)

Planteamiento del problema

- 1. Ajustar por el método de Mínimos cuadrados los valores (leídos de un fichero de datos externo) de la velocidad (km/s) frente a la distancia (Mpc) asumiendo un comportamiento lineal, obteniendo la constante de Hubble.
- 2. Obtener los parámetros estadísticos tales como la incertidumbre en los parámetros y representarlos en la gráfica con el ajuste
- 3. Representar con Visual las galaxias como esferas distantes que se alejan de nosotros con la velocidad dada por la constante de Hubble

Ajuste por mínimos cuadrados

$$m = \frac{N\sum XY - \left(\sum X\right)\left(\sum Y\right)}{N\sum X^{2} - \left(\sum X\right)^{2}}$$

$$b = \frac{\sum Y \sum X^{2} - (\sum X)(\sum XY)}{N \sum X^{2} - (\sum X)^{2}}$$

Programa desarrollado

- 1- Importación de módulos:
- Numpy: manejo de datos en arrays
- Scipy: Funciones de ajuste lineal
- Matplotlib: Muestreo gráfico de resultados
- Visual: Representación gráfica
- Astropy: Uso de su función Table

- Dos funciones lineales: La función de Hubble y una auxiliar de ajuste
- Desviación típica de las muestras:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}}$$

2-Definición de funciones

 Función para determinar la bondad del ajuste:

$$x^{2} = \sum_{i=1}^{N} \frac{(x_{i-obs} - x_{i-esp})^{2}}{(x_{i-obs} - \bar{x})^{2}}$$

3- Carga de ficheros de datos

- Lectura de datos medidos por Hubble y datos de 1991
- Estructuramos arrays para concatenarlos con las funciones

• Curve Fit

Least Square

 Cálculo de incertidumbres con funciones estadísticas

4-Ajustes por funciones de Scipy

Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant Freedman, Wendy L.

5- Muestreo de datos

- Función Table de Astropy .
- Gráficas de Matplotlib
- De ejemplo concreto representamos
 Andrómeda

6- Representación de Visual

 Alejamiento de dos Galaxias. La Tierra como sistema de referencia

Discusión de resultados

 Utilizando los datos de medida que recogió Hubble, obtenemos un valor de la constante de 406 km/(Mpc·s), que es similar al que se calculó en la epoca. (least-square)

Con los datos de 1991, obtenemos un valor de la constante de 72,7;
 frente al 67 que es el valor actual (2014). (curve_fit)

