CÁLCULO DIFERENCIAL E INTEGRAL 1 #03

EXERCÍCIO 1.— Mostre que o conjunto dos números irracionais não é fechado para nenhuma das operações usuais: adição, produto, e exponenciação. Ou seja, existem irracionais $x, y, u, v, w, z \in \mathbb{I}$ tais que $x + y \notin \mathbb{I}$, $u \cdot v \notin \mathbb{I}$ e $w^z \notin \mathbb{I}$.

EXERCÍCIO 2. – Considere o conjunto $A = \{x \in \mathbb{R} \mid x^6 + 2x^3 - 2 \le 0\}$.

- I. Exprima A na forma de um intervalo de números reais.
- 2. Determine Maj(A), Min(A), sup(A), inf(A), max(A) e min(A).

EXERCÍCIO 3. – Considere os seguintes conjuntos: $A = \{x \in \mathbb{R} \mid |x| + 1 > 2x\},$ $B = \{x \in \mathbb{R} \mid x^4 + 3x^3 + 2x^2 \le 0\}$ e $C = \mathbb{R} \setminus \mathbb{Q}$.

- 1. Mostre que $A =]-\infty$, 1[e $B = [-2, -1] \cup \{0\}$. Verifique se os conjuntos $A, B, C, A \cap B \cap C$, são majorados ou minorados e caso sejam, indique em \mathbb{R} o conjunto dos majorantes e dos minorantes dos mesmos.
- 2. Caso existam, determine em \mathbb{R} o supremo, infimo, máximo e minimo de cada um dos conjuntos $A, B, C, A \cap B \cap C$.

Exercício 4. – Seja A um subconjunto de \mathbb{R} majorado e não-vazio, com supremo $s = \sup A$. Mostre que para qualquer $\epsilon > o$ existe $a \in A$ tal que $a > s - \epsilon$.

EXERCÍCIO 5. – Seja A um subconjunto de $\mathbb R$ majorado e não-vazio, com supremo $s = \sup A$. Seja ainda $m \in \mathbb R$ um majorante de A distinto de s. Mostre que existe $\epsilon > o$ tal que $a < m - \epsilon$ para todo o $a \in A$.

EXERCÍCIO 6.— Sejam A e B dois subconjuntos não-vazios de \mathbb{R} , tais que $a \le b$, para quaisquer $a \in A$ e $b \in B$. Mostre que existem o supremo de A e o ínfimo de B, e que sup $A \le \inf B$.

EXERCÍCIO 7. – Sejam A e B dois subconjuntos de \mathbb{R} , não-vazios e limitados, tais que $\sup A = \inf B$. Mostre que para qualquer $\epsilon > 0$, existem $a \in A$ e $b \in B$ tais que $|a-b| < \epsilon$.

Exercício 8. – Sejam A e B dois subconjuntos não-vazios de \mathbb{R} , tais que B é majorado e $A \subseteq B$. Mostre que A e B têm supremo e que sup $A \le \sup B$.

