Colin Adams Math189R SU20 Homework 5 June 2020

Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework or code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

1 (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.

(a) Prove that

$$\left\|\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right\|^2 = \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j.$$

Hint: first consider the case when k = 2. Use the fact that $\mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j$ is 1 if i = j and 0 otherwise. Recall that $z_{ij} = \mathbf{x}_i^{\top} \mathbf{v}_j$.

(b) Now show that

$$J_k = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \lambda_j.$$

Hint: recall that $\mathbf{v}_j^{\top} \mathbf{\Sigma} \mathbf{v}_j = \lambda_j \mathbf{v}_j^{\top} \mathbf{v}_j = \lambda_j$. (c) If k = d there is no truncation, so $J_d = 0$. Use this to show that the error from only using k < d terms is given by

$$J_k = \sum_{j=k+1}^d \lambda_j.$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{k} \lambda_j$ and $\sum_{j=k+1}^{d} \lambda_j$.

Lots of cut and dry math coming below, so be prepared.

(a) We note the definition of the norm

$$\left\|\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right\|^2 = \left(\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right)^T \left(\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right)$$

and so, if we expand the definition we get,

$$\begin{aligned} \left\| \mathbf{x}_{i} - \sum_{j=1}^{k} z_{ij} \mathbf{v}_{j} \right\|^{2} &= \left(\mathbf{x}_{i} - \sum_{j=1}^{k} z_{ij} \mathbf{v}_{j} \right)^{T} \left(\mathbf{x}_{i} - \sum_{j=1}^{k} z_{ij} \mathbf{v}_{j} \right) \\ &= \mathbf{x}_{i}^{T} \mathbf{x}_{i} - 2 \sum_{i=1}^{k} z_{ij} \mathbf{x}_{i}^{T} \mathbf{v}_{j} + \sum_{lm}^{k} z_{il} z_{im} \mathbf{v}_{l}^{T} \mathbf{v}_{m} \\ &= \mathbf{x}_{i}^{T} \mathbf{x}_{i} - 2 \sum_{i=1}^{k} z_{ij} \mathbf{x}_{i}^{T} \mathbf{v}_{j} + \sum_{lm}^{k} z_{il} z_{im} \delta_{lm} \qquad \text{(where } \delta_{ij} \text{ is Kronecker Delta)} \\ &= \mathbf{x}_{i}^{T} \mathbf{x}_{i} - 2 \sum_{i=1}^{k} z_{ij} \mathbf{x}_{i}^{T} \mathbf{v}_{j} + \sum_{j}^{k} z_{ij} z_{ij} \\ &= \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i=1}^{k} \mathbf{v}_{j}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v}_{j} \end{aligned} \qquad \text{(using def. of } z_{ij})$$

as desired.

(b) We have

$$J_{k} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{\Sigma} \mathbf{v}_{j} \qquad \text{(using def. of } \mathbf{\Sigma}\text{)}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{i=1}^{k} \lambda_{j} \qquad \text{(since } \mathbf{\Sigma} \mathbf{v}_{j} = \lambda_{j} \mathbf{v}_{j} \text{ and } \mathbf{v}_{j}^{\top} \mathbf{v}_{j} = 1\text{)}$$

as desired.

(c) Since $J_d = 0$, from the definition of J_k , we see that

$$0 = J_d = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^d \lambda_j \quad \text{which imples that} \quad \sum_{j=1}^d \lambda_j = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i.$$

Using this fact in the more general relation for J_k , we have

$$J_{k} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{j=1}^{k} \lambda_{j}$$

$$= \sum_{j=1}^{d} \lambda_{j} - \sum_{j=1}^{k} \lambda_{j}$$

$$= \sum_{j=1}^{k} \lambda_{j} + \sum_{j=k+1}^{d} \lambda_{j} - \sum_{j=1}^{k} \lambda_{j}$$

$$= \sum_{j=k+1}^{d} \lambda_{j} - \sum_{j=1}^{k} \lambda_{j}$$
(from above)

which tells us the residual error comes from not keeping everything, which isn't super surprising but it is rather cute.

2 (ℓ_1 -**Regularization**) Consider the ℓ_1 norm of a vector $\mathbf{x} \in \mathbb{R}^n$:

$$\|\mathbf{x}\|_1 = \sum_i |\mathbf{x}_i|.$$

Draw the norm-ball $B_k = \{\mathbf{x} : \|\mathbf{x}\|_1 \le k\}$ for k = 1. On the same graph, draw the Euclidean norm-ball $A_k = \{\mathbf{x} : \|\mathbf{x}\|_2 \le k\}$ for k = 1 behind the first plot. (Do not need to write any code, draw the graph by hand).

Show that the optimization problem

minimize:
$$f(\mathbf{x})$$

subj. to: $\|\mathbf{x}\|_p \le k$

is equivalent to

minimize:
$$f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$$

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using ℓ_1 regularization (adding a $\lambda \|\mathbf{x}\|_1$ term to the objective) will give sparser solutions than using ℓ_2 regularization for suitably large λ .

The boundary of the norm balls in two dimensions can be visualized as

We have a function $f(\mathbf{x})$ that is constrained to $\|\mathbf{x}\|_p \le k$ that we are hoping to minimize. We note that the constraint tells us

$$\|\mathbf{x}\|_{p} - k \le 0$$
 \Rightarrow $\lambda(\|\mathbf{x}\|_{p} - k) = 0$

for some λ . Our goal is to find

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x}) + \lambda \left(\|\mathbf{x}\|_{p} - k \right)$$

$$= \underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{p} \qquad \text{(since } -\lambda k \text{ only shifts function up or down)}$$

and hence minimizing $f(\mathbf{x})$ is equivalent to minimizing $f(\mathbf{x}) + \lambda \|\mathbf{x}\|_p$. The L_1 norm gives sparser solutions because there are an infinite number of solutions in which one of the parameters can be zero whereas there is exactly one in the L_2 case.

Extra Credit (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the weights θ of a model is equivelent to ℓ_1 regularization in the Maximum-a-Posteriori estimate

maximize:
$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$
.

Note the form of the Laplace distribution is

$$Lap(x|\mu, b) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

where μ is the location parameter and b > 0 controls the variance. Draw (by hand) and compare the density Lap(x|0,1) and the standard normal $\mathcal{N}(x|0,1)$ and suggest why this would lead to sparser solutions than a Gaussian prior on each elements of the weights (which correspond to ℓ_2 regularization).

If we are hoping to maximize $p(\boldsymbol{\theta}|\mathcal{D})$ then this is the same as asking to maximize the $\log p(\boldsymbol{\theta}|\mathcal{D})$. And so

$$\text{maximize: } \log p(\boldsymbol{\theta}|\mathcal{D}) = \log \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})} = \log p(\mathcal{D}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) - \log p(\mathcal{D})$$

We ignore the constant term on the right. If we assume that $p(\theta_i) \sim \text{Lap}(\theta_i | \mu = 0, b)$, then

$$\begin{split} \log p(\boldsymbol{\theta}) &\propto \log \prod_{i} \operatorname{Lap}(\boldsymbol{\theta}_{i} | \mu = 0, b) = \sum_{i} \log \operatorname{Lap}(\boldsymbol{\theta}_{i} | \mu = 0, b) \\ &= \sum_{i} \log \frac{1}{2b} \exp \left(-\frac{|\boldsymbol{\theta}_{i}|}{b} \right) \\ &= -\sum_{i} \log 2b - \sum_{i} \frac{|\boldsymbol{\theta}_{i}|}{b} \\ &= -\sum_{i} \log 2b - \frac{1}{b} \|\boldsymbol{\theta}\|_{1} \end{split}$$

This tells us that—if we ignore any constant terms—that maximizing $p(\theta|\mathcal{D})$ is the same as

maximize:
$$\log p(\boldsymbol{\theta}|\mathcal{D}) = \log p(\mathcal{D}|\boldsymbol{\theta}) - \lambda \|\boldsymbol{\theta}\|_1$$
 where $\lambda \equiv 1/b$,

or, equivalently,

minimize:
$$\log p(\boldsymbol{\theta}|\mathcal{D}) = -\log p(\mathcal{D}|\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_1$$
.

Here is the plot comparing the Laplacian and Gaussian distributions (I'm sorry about the resolution):

This would lead to sparser solutions presumably because more of the distribution is centered around zero than the Gaussian.