Sistem Kontrol Robot Arm 5 DOF Berbasis Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro-Fuzzy Inference System (ANFIS)

Sistem Kontrol Robot Arm 5 DOF Berbasis Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro-Fuzzy Inference System (ANFIS)

W.S. Mada Sanjaya 12*, Dyah Anggraeni 12

¹ Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati Bandung, Jl. AH Nasution 105 Cibiru Bandung 40614, Indonesia

² Bolabot Techno Robotic Institue, CV. Sanjaya Star Group, Komp. Permata Biru Blok AH No 75A Cibiru-Cinunuk Bandung 40624, Indonesia

> * E-mail: madasws@gmail.com (Mada Sanjaya), Telp: +62-81227759579

ABSTRAK

Telah dilakukan penelitian yang menggambarkan implementasi pengenalan pola suara untuk mengontrol gerak robot arm 5 DoF dalam mengambil dan menyimpan benda. Dalam penelitian ini metode yang digunakan adalah *Mel-Frequency Cepstrum Coefficients* (MFCC) dan *Adaptive Neuro-Fuzzy Inferense System* (ANFIS). Metode MFCC digunakan untuk ekstraksi ciri sinyal suara, sedangkan ANFIS digunakan sebagai metode pembelajaran untuk pengenalan pola suara. Pada proses pembelajaran ANFIS data latih yang digunakan sebanyak 6 ciri. Data suara terlatih dan data suara tak terlatih digunakan untuk pengujian sistem pengenalan pola suara. Hasil pengujian menunjukkan tingkat keberhasilan, untuk data suara terlatih sebesar 87,77% dan data

http://ejournal.upi.edu/index.php/wafi

tak terlatih sebesar 78,53%. Sistem pengenalan pola suara ini telah diaplikasikan dengan baik untuk mengerakan robot arm 5 DoF berbasis mikrokontroler Arduino.

Kata Kunci : Pengenalan suara; ANFIS; robot arm *Mel-Frequency*Cepstrum Coefficients

ABSTRACT

Have been implemented of sound pattern recognition to control 5 DoF of Arm Robot to pick and place an object. In this research used Mel-Frequency Cepstrum Coefficients (MFCC) and Adaptive Neuro-Fuzzy Interferense System (ANFIS) methods. MFCC method used for features extraction of sound signal, meanwhile ANFIS used to learn sound pattern recognition. On ANFIS method data learning use 6 features. Trained and not trained data used to examine the system of sound pattern identification. The result show the successfull level, for trained data 87.77% and for not trained data 78.53%. Sound pattern identification system was applied to controlled 5 DoF arm robot based Arduino microcontroller.

Keywords: Sound identification; ANFIS; arm robot; *Mel-Frequency Cepstrum Coefficients*

1. Pendahuluan

Sistem otomatisasi pada bidang robotika merupakan sistem yang dapat memudahkan pekerjaaan manusia. Sistem kendali dengan menggunakan suara merupakan alternatif yang mudah dan efektif khususnya untuk pengguna yang memiliki keterbatasan fisik.

Penerapan sistem kendali menggunakan suara tidak mudah dilakukan oleh mesin, sehingga dibutuhkan metode pembelajaran pada mesin untuk dapat mengekstraksi dan mengenali ciri atau pola suara dengan mempelajari ciri-ciri sebelumnya.

Metode untuk mengekstrak ciri sinyal suara diantaranya menggunakan

http://ejournal.upi.edu/index.php/wafi

metode Linear Predictive Coding [1],

Mel-Frequency Cepstrum 2. Landasan Teori Coefficients [3] - [4] yang telah diaplikasikan pada beberapa bidang diantaranya; pengenal pembicara [5] -[6], mendiagnosis suatu penyakit [2], [7] , kontrol robot [8], [9] , kontrol motor DC [10], control robot arm [11] [12], smart home [13], biomatriks [14], kontrol otomatis kursi roda [15] dan lainnya [16]. Untuk metode pembelajaran dan pengklasifikasian pola suara, telah banyak peneliti yang menggunakan metode Neuro-Fuzzy [13], Artificial Neural Networks [17], [18] , dan metode soft computing lainnya [6], [19].

Dalam penelitian ini dibahas pengujian sistem ekstraksi ciri sinyal suara menggunakan *Mel-Frequency* Cepstrum Coefficients (MFCC) dan metode belajar serta klasifikasi pola suara menggunakan metode Adaptive *Neuro-Fuzzy Inferense* System (ANFIS). Terakhir, dalam penelitian ini juga dilakukan implementasi sistem pengenalan pola suara untuk sistem kontrol robot arm pemindah barang menggunakan mikrokontroler Arduino.

2.1. Metode MFCC

MFCC merupakan cara yang paling sering digunakan pada berbagai bidang area pemrosesan suara, karena dianggap cukup baik dalam merepresentasikan sinyal. Cara kerja MFCC didasarkan pada perbedaan frekuensi yang dapat ditangkap oleh telinga manusia sehingga mampu merepresentasikan sinyal suara sebagaimana manusia merepresentasikannya.

2.2 Preemphasis

Dalam proses pengolahan sinyal wicara pre emphasis filter diperlukan setelah proses sampling. Tujuan dari pemfilteran ini adalah untuk mendapatkan bentuk spectral frekuensi sinyal wicara yang lebih halus. Dimana bentuk spectral yang relatif bernilai tinggi untuk daerah rendah dan cenderung turun secara tajam untuk daerah fekuensi diatas 2000 Hz. Filter pre-emphasis didasari oleh hubungan input/output dalam domain waktu yang

http://ejournal.upi.edu/index.php/wafi

dinyatakan dalam persamaan berikut:y(n) = x(n) - ax(n-1) (1) dimana a merupakan konstanta filter pre-emhasis, biasanya bernilai 0.9 < a < 1.0.

2.3 Frame Blocking

Pada proses ini, sinyal suara disegmentasi menjadi beberapa *frame* yang saling tumpang tindih (*overlap*). Hal ini dilakukan agar tidak ada sedikitpun sinyal yang hilang (*deletion*). Proses ini akan berlanjut sampai seluruh sinyal sudah masuk ke dalam satu atau lebih *frame*.

2.4 Windowing

Sinyal analog yang sudah diubah menjadi sinyal digital dibaca frame demi frame dan pada setiap frame-nya dilakukan windowing dengan fungsi window tertentu. Proses windowing bertujuan untuk meminimalisasi ketidakberlanjutan sinyal pada awal dan akhir setiap frame. Jika kita definisikan window sebagai w(n), $0 \le n$ $\le N-1$, dimana N adalah jumlah sampel pada setiap frame-nya, maka hasil dari windowing adalah sinyal:

$$y_1(n) = x_1(n)w(n), 0 \le n \le N - 1$$
 (2)

dimana w(n) biasanya menggunakan window Hamming yang memiliki bentuk:

$$w(n) = 0.54 - 0.46 \cdot \cos\left(\frac{2\pi n}{N-1}\right), 0 \le n \le N - 1$$
 (3)

2.5 Fast Fourier Transform (FFT)

FFT merupakan *fast algorithm* dari *Discrete Fourier Transform* (DFT) yang berguna untuk mengonversi setiap *frame* dengan N sampel dari domain waktu menjadi domain frekuensi, sebagaimana didefinisikan sebagai berikut $X_n = \sum_{k=0}^{N-1} x_k e^{-2\pi jkn/N}$

(4) dimana
$$n = 0, 1, 2, ..., N - 1$$
 dan $j = \sqrt{-1}$.

Hasil dari tahapan ini biasanya disebut dengan *spectrum* atau *periodogram*.

2.6 Mel-Frequency Wrapping

Persepsi sistem pendengaran manusia terhadap frekuensi sinyal suara tidak dapat diukur dalam skala linear. Untuk setiap nada dengan frekuensi aktual, f, diukur dalam Hz, sebuah subjective pitch diukur dalam sebuah skala yang

http://ejournal.upi.edu/index.php/wafi

disebut "mel". Skala mel-frequency ialah sebuah frekuensi rendah yang bersifat linear di bawah 1000 Hz dan sebuah frekuensi tinggi yang bersifat logaritmik di atas 1000 Hz. Persamaan berikut menunjukkan hubungan skala mel dengan frekuensi dalam Hz: $F_{mel} =$

$$\begin{cases} 2595 * log_{10} \left(1 + \frac{F_{HZ}}{700}\right), & F_{HZ} > 1000 \\ F_{HZ}, & F_{HZ} < 1000 \end{cases}$$
(5)

Proses wrapping terhadap sinyal dalam domain frekuensi dilakukan menggunakan persamaan berikut: $X_i = log_{10}(\sum_{k=0}^{N-1}|X(k)|H_i(k))$ (6) dimana i = 1,2,3,...,M (M adalah jumlah filter segitiga) dan $H_i(k)$ adalah nilai filter segitiga ke-i untuk frekuensi akustik sebesar k.

2.7 Cepstrum

Pada tahap ini akan dikonversi mel-

spectrum ke dalam domain waktu dengan menggunakan Discrete Cosine Transform (DCT). Hasilnya disebut dengan mel-frequency cepstrum coefficient (MFCC). Berikut adalah persamaan yang digunakan dalam transformasi cosinus: $C_j =$

$$\sum_{i=1}^{M} X_i \cos\left(j(i-1)/2\frac{\pi}{M}\right) \tag{7}$$

dimana j = 1, 2, 3, ..., K (K = jumlah koefisien yang diinginkan) dan M adalah jumlah filter.

2.8 Adaptive Neuro Fuzzy Inferense System (ANFIS)

Neuro-fuzzy adalah gabungan dari dua sistem yaitu sistem logika fuzzy dan jaringan syaraf tiruan. Sistem neuro-fuzzy berdasar pada sistem inferensi fuzzy yang dilatih menggunakan algoritma pembelajaran yang diturunkan dari sistem jaringan syaraf tiruan.

Gambar 5. Contoh struktur ANFIS Roger Jang [20]

http://ejournal.upi.edu/index.php/wafi

Salah satu bentuk struktur yang sudah sangat dikenal adalah seperti terlihat pada Gambar 5 yang merupakan struktur ANFIS. Dalam struktur ini, sistem inferensi fuzzy yang diterapkan adalah inferensi fuzzy model Takagi-Sugeno-Kang.

Lapisan 1: Proses Fuzzyfication

Output dari *node i* pada *layer* 1 dinotasikan sebagai $O_{1,i}$ bersifat adaptif:

$$O_{1,i} = \mu_{Ai}(x), \quad i = 1,2$$
 (8)

$$O_{1,i} = \mu_{Bi}(y), \quad i = 1,2$$
 (9)

dimana x dan y adalah nilai-nilai input untuk *node* tersebut dan A_i dan B_i adalah himpunan *fuzzy*. Jadi, masingmasing *node* pada *layer* 1 berfungsi membangkitkan derajat keanggotaan.

Lapisan 2: Lapisan Product

Dinotasikan dengan π . Setiap node pada *layer* ini berfungsi untuk menghitung kekuatan aktivasi (firing strength) pada setiap rule sebagai product dari semua input yang masuk atau sebagai operator t-norm (triangular $O_{2,i} = w_i =$ norm): $\mu_{Ai}(x)\Delta \mu_{Bi}(y)$, i = 1,2(10)

$$w_1 = \mu_{A1}(x) \ AND \ \mu_{B1}(y) \tag{11}$$

$$w_2 = \mu_{A2}(x) \ AND \ \mu_{B2}(y)$$
 (12)

Output pada lapisan ini bertindak sebagai fungsi bobot.

Lapisan 3: Lapisan Normalisasi

Dinotasikan dengan *N*. Setiap node pada lapisan ini bersifat *non-adaptif* yang berfungsi hanya untuk menghitung rasio antara *firing strength* pada *rule* ke-*i* terhadap total *firing strength* dari semua *rule*:

$$O_{3,i} = \overline{w}_i = \frac{w_i}{w_1 + w_2}, \ i = 1,2$$
 (13)

Lapisan 4: Lapisan Defuzzyfication

Setiap node pada lapisan ini bersifat adaptif dengan fungsi:

$$O_{4,i} = \overline{w}_i f_i = \overline{w}_i (p_i x + q_i y + r_i)$$
 (14)
dimana \overline{w}_i adalah output pada *layer* 3
dan $\{x + q_i y + r_i\}$ adalah himpunan
parameter pada *fuzzy* model Sugeno
orde pertama.

Lapisan 5: Lapisan Total Output

Satu node tunggal yang dilambangkan dengan Σ pada layer ini berfungsi mengagregasikan seluruh output pada layer 4 (penjumlahan dari semua sinyal yang masuk):

$$O_{5,i} = \sum_{i} \overline{w}_{i} f_{i} = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$
 (15)

http://ejournal.upi.edu/index.php/wafi

Sehingga secara keseluruhan, kelima *layer* tersebut akan membangun suatu *adaptive-networks* yang secara fungsional ekivalen dengan *fuzzy* model Sugeno orde pertama.

3. Metodologi dan Perancangan Sistem

Peralatan yang digunakan pada penelitian yaitu *michrophone -*54db+2

db dengan spesifikasi (impedansi 32 ohm at 1 kHz sensitivitas 102db/mW), laptop, mikrokontroler arduino, relay, lampu AC. Kabel USB dan komputer digunakan sebagai komunikasi data menggunakan *software* MATLAB 2012. Metode penelitian secara garis besar dapat dilihat:

Gambar 6. Skema umum kontrol robot arm menggunakan perintah suara

Terdapat dua bagian proses dalam penelitian ini, proses pertama adalah proses pembelajaran sistem yang didalamnya meliputi proses ekstraksi ciri menggunakan MFCC dan proses **ANFIS** belajar menggunakan sehingga terbentuk database berupa formulasi logika fuzzy. Proses kedua adalah proses pengujian sistem yang meliputi proses ekstraksi ciri MFCC, proses pengklasifikasian data ANFIS, serta implementasi berupa komunikasi data secara serial antara komputer dengan mikrokontroler Arduino untuk menggerakan robot arm dalam memindahkan barang menggnakan perintah suara manusia.

3.1. Perancangan Elektronik

Berikut ini adalah skema robot lengan yang akan digunakan dalam penelitian. Robot arm ini terdiri dari lima komponen motor servo yang terkoneksi dengan mikrokontroler

http://ejournal.upi.edu/index.php/wafi

Gambar 7 Skema robot lengan dengan 5 DoF dan realisasinya

Susunan rangkaian robot terlihat seperti skema robot arm 5 DoF pada Gambar 7, tiap servo harus diberi sumber tegangan berupa baterai 5 volt dan berarus 100 mA (sesuai datasheet tiap servo) agar dapat beroperasi dengan baik. Ground tiap servo terkoneksi dengan ground pada mikrokontroler Arduino. Robot arm yang telah dibuat terdiri dari 5 bauh servo. Servo1 adalah servo paling bawah yang terhubung dengan pin 8, berfungsi seperti leher (berputar secara horizontal). Servo 2 terhubung dengan pin 9 yang fungsinya sama seperti tulang lengan bawah manusia (bergrak secara vertikal). Servo 3 terhubung pada pin 10, yang berfungsi seperti pergelangan tangan manusia (bergerak vertikal). Servo 4

terhubung pada pin 11 yang berfungsi seperti pergelangan tangan (bergerak untuk memutarkan pergelangan/horizontal). Dan Servo 5 terhubung pada pin 12, berfungsi sebagai pencapit atau jari tangan sederhana untuk mengambil dan memindahkan barang.

3.2 Perancangan Antarmuka

Antarmuka diperlukan untuk mempermudah penggunaan dari sistem yang dibuat. Pada penelitian ini telah dibuat antarmuka menggunakan GUI MATLAB. Antarmuka yang dibuat berisi setting komunikasi serial antara mikrokontroler dan komputer, nilai koefisien ekstraksi ciri menggunakan metode MFCC, grafik time series

http://ejournal.upi.edu/index.php/wafi

sinyal suara, tombol record suara, serta suara. output ANFIS berupa pengenalan pola

Gambar 9. Rancangan antarmuka

4. Hasil dan Pembahasan

4.2 Pembuatan Database Ekstraksi Ciri Menggunakan MFCC

Telah dilakukan pembuatan database 6 buah ciri /pola sinyal suara menggunakan metode MFCC terhadap seorang responden degan mengucapkan dua buah kata "ambil" dan "simpan" dengan masing-masing 10 kali pengulangan yang secara lengkap dapat dilihat pada tabel berikut:

Tabel 1. Hasil ekstraksi ciri MFCC dan target

N	Ciri 1	Ciri 2	Ciri 3	Ciri 4	Ciri 5	Ciri 6	Targe
0							t
1	1.02576	0.43096	0.70954	-	-	-	1
	4	8	3	1.16757	0.06185	0.16551	1
2	3.8107	1.84287	2.48224	0.71784	0.53090	-	1
	3.8107	1.84287	7	2	6	0.22903	1
3	2.99013	1 22624	1.37000	-2.0106	-	-	1
	1	1.32624	7		0.51325	0.43964	
4	1.00477	0.26855	0.43315	-	-	-	1
	7	4	1	1.36025	0.33288	0.24274	1
5	3.64567	2.84625	2.53058	-	-	-	1
	4	6	6	2.41073	0.95367	0.77988	1

http://ejournal.upi.edu/index.php/wafi

11	3.26284	0.24001	0.26511	0.23590	0.16143	0.06330	0
	1	6	2	9		2	0
12	4.70256	0.25053	0.27633	0.24529	0.16729	0.06532	0
	7	9	0.27633	7	5	6	0
13	5.07718	3.75179	2.55767	-	-	-0.5631	0
	7	2	1	3.76957	0.70939	-0.3031	U
14	2.31811	0.30361	0.57216	-	-	-	0
	8	9	1	1.03665	0.00629	0.17874	0
15	2.55203	1.02744	0.91949	-	-	-0.4275	0
	2.33203	8	0.71747	1.39003	0.54355	-0.4273	Ü

Dari tabel di atas terlihat bahwa kata"ambil" dan "simpan" memiliki pola ciri berbeda. Pola suara "ambil" akan di simbolkan dengan nilai target "1' sedangkan pola suara "simpan" akan disimbolkan dengan nilai target "0". Pola ini kemudian akan menjadi input untuk metode pembelajaran ANFIS yang kemudian akan menghasilkan database berupa logika Fuzzy.

4.3 Pengujian Sistem Pengenalan Pola Suara

Hasil pengujian pengenalan ucapan menunjukkan bahwa total tingkat akurasi antara responden di dalam database sebesar 87,77% dan di responden luar database menghasilkan akurasi sebesar 78,53%. Kesalahan-kesalahan pengenalan pola dapat dipengaruhi oleh suara aksen/intonasi kata masukan dan gangguan (noise) dari lingkungan mengingat waktu pengujian responden di dalam database dan responden di luar database yang berbeda.

http://ejournal.upi.edu/index.php/wafi

Tabel 2. Hasil pengujian pengenalan ucapan responden di dalam *database*.

Pengulangan	Kata	Target	Output Pengenalan Database	Output Pengenalan Luar <i>Database</i>
1 -	Ambil	1	1.05553	0.883592
1	Simpan	0	0.005402	0.188365
2 -	Ambil	1	0.904094	1.15296
	Simpan	0	0.150967	0.0114219
3 -	Ambil	1	0.940149	1.23366
3	Simpan	0	0.16039	0.366108
4 -	Ambil	1	0.778915	1.51449
4	Simpan	0	0.210363	0.0297445
5 -	Ambil	1	1.24385	0.73461
5	Simpan	0	0.019448	-0.268652

Berikut adalah tampilan GUI saat dilakukan pengujian terhadap kata"ambil" dan "simpan". Dari Gambar 11 terlihat, saat kata "ambil" direcord maka sistem akan mengenali dengan output 0.811674 mendekati nilai "1" sehingga komputer akan mengirimkan data serial berupa karakter "1" ke mikrokontroler untuk menggerakan robot arm dalam posisi mengambil benda. Sedangkan saat kata "simpan" direcord maka sistem akan mengenali dengan output sebesar 0.490851 yang mendekati nilai "0" sehingga komputer akan mengirimkan data serial berupa karakter "0" ke mikrokontroler untuk menggerakan robot arm dalam posisi menyimpan benda. Sehingga secara umum alat berfungsi dengan baik 100% karena adanya pembulatan nilai pengenalan.

http://ejournal.upi.edu/index.php/wafi

Gambar 11. Tampilan GUI MATLAB kontrol robot arm menggunakan perintah suara

5. Simpulan

dapat disimpulkan hasil pengujian gerak sistem menunjukan bahwa sistem telah bekerja dengan baik sesuai dengan perintah yang diberikan. Dari 6. Ucapan Terima Kasih hasil pengujian sistem pengenal ucapan yang didapatkan penerapan metode MFCC dan ANFIS memiliki tingkat akurasi yang tinggi, yaitu 87,77% untuk responden yang terdapat dalam data latih (database) dan 78,53% untuk responden diluar data latih (database).

Berdasarkan hasil penelitian diatas

Dalam pengujian untuk mengontrol robot arm 5 DoF memindahkan barang, sistem dapat bekerja dengan baik 100% melalui pembulatan nilai output hasil pengenalan pola suara.

Penelitian ini didanai oleh DIPA-BLU FST, UIN Sunan Gunung Djati Bandung.

http://ejournal.upi.edu/index.php/wafi

6. Referensi

- [1] Thiang and S. Wijoyo, "Speech Recognition Using Linear Predictive Coding and Artificial Neural Network for Controlling Movement of Mobile Robot," International [8] Conference on Information Electronics Engineering, vol. 6, pp. 179-183, 2011.
- [2] A. Rizal, L. Anggraeni and V. Suryani, "Pengenalan Suara Paru-Paru Normal Menggunakan LPC dan Back- [9] Jaringan **Syaraf** Tiruan Propagation," Proceeding EECCIS, 2006.
- [3] B. Abinayaa, D. Arun, B. Darshini and C. Nataraj, "Voice Command Based Computer Application," International Journal of Innovative [10] B. Kulji, S. János and S. Tibor, Research in Science, Engineering and Technology, vol. 4, no. 4, pp. 57-63, 2015.
- [4] G. Chauhan and Р. Chaudhari, "Robotic Control using Android," Recognition and International Journal of Engineering Research and General Science, vol. 3, no. 1, 2015.
- [5] S. Tripathy, N. Baranwal and G. "A MFCC based Hindi Speech Recognition Technique using [12] K. S. Jadhav and S. M. Gaikwad, Toolkit," *IEEE* HTK Second International Conference on Image Information Processing, pp. 539-544, 2013.
- [6] B. A. Q. Al-Qatab and R. N. Ainon, "Arabic Speech Recognition Using Hidden Markov Model Toolkit(HTK)," *IEEE*, pp. 557-562,

2010.

- [7] "Ekstrasi Ciri Suara Jantung menggunakan Metode Dekomposisi Sinval Korelasi (Dekoriet) Berbasis Jaringan Saraf Tiruan," Jurnal Teori dan Aplikasi Fisika, vol. 3, no. 1, pp. 51-59, 2015.
 - Y.-m. Koo, G.-B. Kim, S.-C. Jang, W.-S. Lee, H.-G. Kim and S.-H. Han, "A Study on Travelling Control of Mobile Robot by Voice Commend," International Conference on Control, Automation and Systems, vol. 15, pp. 13-16, 2015.
 - A. Punchihewa and Z. M. Arshad, "Voice Command Interpretation for Control," **International** Robot Conference on Automation, Robotics and Applications, vol. 5, pp. 90-95, 2011.
- "Mobile robot controlled by voice," International Symposium Intelligent Systems and Informatics, vol. 5, pp. 189-192, 2007.
- Speech [11] M. Varalakshmi and N. N. Raju, "Design of Speech Controlled Pick and Place Robot with Wireless Zigbee Technology," *International* Journal of Scientific Engineering and Technology Research, vol. 3, no. 20, pp. 4062-4066, 2014.
 - "Writing Robotic Arm by Speech Recognition," International Journal of Advanced Research in Electrical, Electronics and *Instrumentation* Engineering, vol. 4, no. 6, pp. 4983-4990, 2015.
 - [13] W. S. M. Sanjaya and Z. Salleh, "Implementasi Pengenalan Pola

http://ejournal.upi.edu/index.php/wafi

- Suara Menggunakan Mel_Frequency Cepstrum Coefficients (MFCC) dan Neuro-Fuzzy Inferense Adaptive System (ANFIS) sebagai Kontrol Lampu Otomatis," Al-Hazen Journal [18] N. Srivastava, "Speech Recognition of Physics, vol. 1, no. 1, pp. 44-54, 2014.
- [14] D. Rudrapal, S. . D. Smita Das and N. D. N. Kar, "Voice Recognition and Authentication as a Proficient [19] I. M. M. El-emary, M. Fezari and Biometric Tool and its Application in Online Exam for P.H People," International Journal of Computer Applications, vol. 39, no. 12, pp. 6-12, 2012.
- [15] Srishti, P. Jain, Shalu and S. Singh, "Design and Development of Smart Wheelchair using Voice Recognition and Head Gesture Control System," [20] R. Jang, C.-T. Sun and E. Mizutani, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 4, no. 5, pp. 4790-4798, 2015.
- [16] C.-Y. Liu, T.-H. Hung, K.-C. Cheng and T.-H. S. Li, "HMM and BPNN based Speech Recognition System for Home Service Robot," International Conference on Advanced Robotics and Intelligent Systems, 2013.
- [17] N. Rai and B. Rai, "An ANN Based Mobile Robot Control Through Voice Command Recognition Using Language," **International** Nepali

- Journal **Applied** Control, Electrical and **Electronics** Engineering (IJACEEE), vol. 2, no. 4, pp. 13-22, 2014.
- using Artificial Neural Network," International Journal of Engineering Science and Innovative Technology, vol. 3, no. 3, pp. 406-412, 2014.
- "Hidden Hamz, Markov model/Gaussian mixture models(HMM/GMM) based voice command system: A way to improve the control of remotely operated robot arm TR45," Scientific Research and Essays, vol. 6, no. 2, pp. 341-350, 2011.
- Neuro-Fuzzy and Soft Computing, Prentice-Hall, Inc., 1997.