NTIN090 — Základy složitosti a vyčíslitelnosti 5. cvičení

Petr Kučera

15. prosince 2022

1. Ukažte, že tyto problémy Klika, Nezávislá množina a Vrcholové pokrytí jsou na sebe vzájemně polynomiálně převoditelné.

Problém 1: Klika

Instance: Graf G = (V, E) a přirozené číslo $k \ge 0$.

Otázka: Obsahuje *G* jako podgraf úplný graf (kliku) s alespoň *k* vrcholy?

Problém 2: Nezávislá množina

Instance: Graf G = (V, E) a přirozené číslo k.

Otázka: Existuje v grafu *G* nezávislá množina velikosti alespoň *k*? Tj. existuje

množina vrcholů $S \subseteq V$, pro kterou platí, že $|S| \ge k$ a žádné dva

vrcholy v S nejsou spojeny hranou?

Problém 3: Vrcholové pokrytí

Instance: Graf G = (V,E) a přirozené číslo $k \ge 0$.

Otázka: Existuje množina vrcholů $S \subseteq V$ velikosti nejvýš k, která obsahuje

alespoň jeden vrchol z každé hrany (tj. pokrývá hrany G)?

Řešení:

- (a) Klika \leq_m^P Nezávislá množina funkcí $f(\langle G,k\rangle)=\langle G',k\rangle$, kde graf G'=(V,E') s množinou hran $E'=\binom{V}{2}\setminus E$. Jinými slovy pro každou dvojici vrcholů $u,v\in V$ platí, že $\{u,v\}\in E'$, právě když $\{u,v\}\notin E$.
- (b) Nezávislá množina \leq_m^p Klika týmž převodem jako v bodu a.
- (c) Nezávislá množina \leq_m^p Vrcholové pokrytí funkcí $f(\langle G,k\rangle)=f(\langle G,n-k\rangle)$, kde n=|V|. Toto platí proto, že množina $S\subseteq V$ je vrcholové pokrytí G, právě když $S\setminus V$ je nezávislá množina v G.
- (d) Vrcholové pokrytí \leq_m^p Nezávislá množina týmž převodem jako v bodu c.
- 2. Ukažte, že následující problém je NP-úplný (například převodem z problému Vrcholového рокrytí, nezapomeňte zdůvodnit, že tento problém patří do NP).

Problém 4: Pokrytí orientovaných cyklů

Instance: Orientovaný graf G = (V, E) a přirozené číslo k.

Otázka: Existuje množina vrcholů $S \subseteq V$ velikosti nejvýš k, která obsahuje

alespoň jeden vrchol z každého orientovaného cyklu v G?

Řešení: Polynomiální verifikátor problému Pokrytí orientovaných cyklů očekává jako certifikát seznam vrcholů S a otestuje (například pomocí DFS), zda graf G', který vznikne z G odstraněním vrcholů v S, je acyklický.

Vrcholové pokrytí \leq_m^P Pokrytí orientovaných cyklů funkcí $f(\langle G,k\rangle)=(G',k)$, kde G'=(V,E') je orientovaný graf, který vznikne z G tím, že každou neorientovanou hranu $\{u,v\}\in E$ nahradíme dvojicí orienovaných hran $(u,v),(v,u)\in E'$. Potom pro každou množinu $S\subseteq V$ platí, že jde o vrcholové pokrytí G, právě když je současně pokrytím orientovaných cyklů G'.

3. Definujme problém Hamiltonovská kružnice následovně:

Problém 5: Hamiltonovská kružnice (HK)

Instance: Neorientovaný graf G = (V, E).

Otázka: Existuje v grafu *G* hamiltonovská kružnice, tj. kružnice procházející

všemi vrcholy?

O tomto problému je známo, že je NP-úplný. Ukažte s pomocí problému Hamiltonovské kružnice, že následující problémy jsou NP-úplné:

Problém 6: Orientovaná Hamiltonovská kružnice (OHK)

Instance: Orientovaný graf G = (V, E).

Otázka: Existuje v grafu *G* hamiltonovská kružnice, tj. kružnice procházející

všemi vrcholy?

Problém 7: Hamiltonovská cesta z s do t (HC(s, t))

Instance: Neorientovaný graf G = (V, E) a vrcholy s a t.

Otázka: Existuje v grafu *G* hamiltonovská cesta z vrcholu *s* do vrcholu *t*? Tj.

existuje v grafu G cesta z vrcholu s do t, která prochází každým

vrcholem grafu *G* právě jednou?

Problém 8: Hamiltonovská cesta (HC)

Instance: Neorientovaný graf G = (V, E).

Otázka: Existuje v grafu *G* hamiltonovská cesta? Tj. existuje v grafu *G* cesta,

která prochází každým vrcholem grafu G právě jednou?

Řešení: Všechny tři problémy patří do třídy NP, protože pro danou posloupnost vrcholů lze ověřit v polynomiálním čase, zda jde o hamiltonovskou kružnici či cestu a případně zda začíná a končí v zadaných vrcholech s a t.

- (a) HK \leq_m^p OHK funkcí $f(\langle G \rangle) = \langle G' \rangle$, kde G' = (V, E') je orientovaný graf, který vznikne z G tím, že každou neorientovanou hranu $\{u,v\} \in E$ nahradíme dvojicí orienovaných hran $(u,v),(v,u) \in E'$.
- (b) HK \leq_m^p HC(s, t) funkcí $f(\langle G \rangle) = \langle G', s, t \rangle$, kde G' = (V', E') je neorientovaný graf zkonstruovaný následujícím způsobem. Budeme předpokládat, že G je souvislý graf, který obsahuje alespoň dva vrcholy (v opačném případě můžeme namapovat G na triviální instanci s nebo bez hamiltonovské cesty podle toho, jaká má být správná odpověď). Vybereme si vrchol $v \in V$ a položíme s = v. Přidáme nový vrchol t, tedy $V' = V \cup \{t\}$. Vrchol t spojíme hranami se všemi sousedy v, tedy $E' = E \cup \{\{t, u\} \mid \{v, u\} \in E\}$.
- (c) $HC(s,t) \leq_m^p HS$ funkcí $f(\langle G,s,t\rangle) = \langle G'\rangle$, kde G' = (V',E') vznikne z G následujícím způsobem. Přidáme dva nové vrcholy s' a t', které připojíme hranou k s, respektive t. Tedy $V' = V \cup \{s',t'\}$ a $E' = E \cup \{\{s,s'\},\{t,t'\}\}$.
- 4. Ukažte, že problém HK je polynomiálně převoditelný na problém SAT.

Problém 9: Splnitelnost (SAT)

Instance: Formule φ v KNF

Otázka: Je formule φ splnitelná?

Řešení: Popíšeme, jak ke grafu G sestrojit formuli φ takovou, že φ je splnitelná, právě když G má hamiltonovskou kružnici. Předpokládejme, že $V = \{v_1, \ldots, v_n\}$. Vytvoříme proměnné $x_{i,j}$ pro $i, j = 1, \ldots, n$. Proměnná $x_{i,j} = 1$ ve splňujícím ohodnocení znamená, že v_i je j-tý vrchol pořadí určujícího hamiltonovskou kružnici. Dále přidáme klauzule

- 1. $(x_{i,1} \vee \cdots \vee x_{i,n})$ pro i = 1, ... n
- 2. $(x_{1,i} \vee \cdots \vee x_{1,i})$ pro $j = 1, \dots n$
- 3. $(\neg x_{i,j_1} \lor \neg x_{i,j_2})$ pro $i = 1, ..., n, 1 \le j_1 < j_2 \le n$
- 4. $(\neg x_{i_1,j} \lor \neg x_{i_1,j})$ pro $1 \le i_1 < i_2 \le n, j = 1, ..., n$
- 5. $(\neg x_{i_1,j} \lor \neg x_{i_2,(j \mod n)+1})$ pro každou dvojici vrcholů $\{v_{i_1},v_{i_2}\} \notin E$ a $j=1,\ldots,n$.
- 5. Ukažte, že problém HK je polynomiálně převoditelný na problém Obchodního cestujícího.

Problém 10: Obchodní cestující (OC, Traveling salesperson)

Instance: Množina měst $C = \{c_1, \dots, c_n\}$, hodnoty $d(c_i, c_j) \in \mathbb{N}$ přiřazující každé

dvojici měst vzdálenost a přirozené číslo D.

Otázka: Existuje permutace měst $c_{\pi(1)}, c_{\pi(2)}, \dots, c_{\pi(n)}$, pro kterou platí, že

$$\left(\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(n)}, c_{\pi(1)}) \le D?$$

Řešení: Ke grafu G = (V, E) zkonstruujeme instanci OC takto. Množinu měst položíme rovnou množine vrcholů, C = V. Vzdálenost mezi městy určíme

$$d(c_i, c_j) = \begin{cases} 0 & \{c_i, c_j\} \in E \\ 1 & \text{jinak} \end{cases}$$

Položíme D = 0.

6. Ukažte, že následující problémy jsou NP-těžké. K důkazu můžete použít převodu z některého z následujících problémů: Splnitelnost, Klika, Nezávislá množina nebo Vrcholové pokrytí.

Problém 11: Celočíselné programování (IP)

Instance: Matice nad celými čísly A typu $m \times n$ a vektor celých čísel b délky m.

Otázka: Existuje celočíselný vektor x délky n, pro který platí $Ax \ge b$?

Problém 12: Binární celočíselné programování (BIP)

Instance: Matice nad celými čísly A typu $m \times n$ a vektor celých čísel b délky m.

Otázka: Existuje vektor $x \in \{0,1\}^n$, pro který platí $Ax \ge b$?

Ukažte, že problém Binárního celočíselného programování patří do NP a je tedy NP-úplný. Rozmyslete si, proč není tak snadné zdůvodnit, že i problém celočíselného programování bez omezení hodnot patří do třídy NP (byť to platí).

Řešení: Převod Splnitelnosti na BIP zkonstruuje k KNF formuli $\varphi = C_1 \wedge \cdots \wedge C_m$ na proměnných x_1, \ldots, x_n instanci BIP na proměnných x_1, \ldots, x_n s podmínkami

$$\sum_{x_i \in C_j} x_i + \sum_{\neg x_i \in C_j} (1 - x_i) \ge 1$$

pro každou klauzuli C_i .

Při převodu BIP na IP je potřeba přidat podmínky $0 \le x_i \le 1$ pro každou proměnnou x_i .

BIP patří do NP protože polynomiální verifikátor může u daného binárního vektoru ověřit, zda jde o přípustné řešení soustavy nerovností dané maticí A. U IP je to složitější v tom, že přípustné řešení může obsahovat velká čísla. Platí však, že pokud A má přípustné celočíselné řešení, pak má i přípustné řešení polynomiální velikosti, proto i IP patří do třídy NP.

Domácí úkoly

7. (10 bodů) Ukažte, že problém Vrcholové рокrytí je polynomiálně převoditelný na problém Dominující мnožina

Problém 13: Dominující množina

Instance: Graf G = (V, E) a přirozené číslo k.

Otázka: Existuje v G množina vrcholů $S \subseteq V$ velikosti nejvýš k, pro kterou

platí, že každý vrchol $v \in V \setminus S$ má souseda v S?

8. (20 bodů) Problém Loupežníci definujeme následujícím způsobem:

Problém 14: Loupežníci

Instance: Množina prvků A a s každým prvkem $a \in A$ asociovaná cena (váha,

velikost, ...) $s(a) \in \mathbb{N}$.

Otázka: Lze rozdělit prvky z *A* na dvě části s toutéž celkovou cenou? Přesněji,

existuje množina $A' \subseteq A$ taková, že

$$\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)?$$

(a) (10 bodů) Ukažte, že problém Loupežníci je polynomiálně převoditelný na problém Ватон

Problém 15: Ватон

Instance: Množina předmětů A, pro každý předmět a přirozené číslo s(a)

udávající jeho velikost a přirozené číslo v(a) udávající jeho cenu,

přirozená čísla B a K.

Otázka: Existuje množina předmětů A', pro kterou platí, že $\sum_{a \in A'} s(a) \le B$

a $\sum_{a \in A'} v(a) \ge K$?

(b) (10 bodů) Ukažte, že problém Loupežníci je polynomiálně převoditelný na problém Rozvrhování.

Problém 16: Rozvrhování

Instance: Počet procesorů *m*, množina úloh *U*, pro každou úlohu *u*

přirozené číslo d(u) a přirozené číslo D.

Otázka: Existuje rozdělení množiny předmětů *U* na *m* po dvou

disjunktních podmnožin U_1, \ldots, U_m tak, aby pro každou z nich,

tedy pro každé $1 \le i \le m$ platilo, že $\sum_{u \in U_i} d(u) \le D$?