# Formul ario

# Cinematica

moto rettilineo uniforme

$$\int \infty(t) = \infty_0 + v_0 t$$

vo costante

moto uniformemente accelerato

$$\left(\infty(t):\infty_0+\nu_0t+\frac{1}{2}a_0t^2\right)$$

( 2. costante

moto armonico

$$\infty(t) = A \sin(\phi + \omega t)$$

$$a(t) = -A\omega^2 \sin(\phi + \omega t) = -\omega^2 \propto (t)$$

Frequenz 2: 
$$\gamma = \frac{1}{T} : \frac{\omega}{2\pi}$$

pulsa zione : w = 277/

# moto circolare (R: rayyio)

w(E) = velocità anyolare

2 = du accelerazione Langenziale

$$\overline{V} = \overline{W} \times \overline{R}$$
 moto circ. Unifor.



(D= WE

### Dinamica

F = m. ā

Impulso 
$$I = \int_{t_0}^{t} \bar{F} dt$$
 e  $I = \Delta \bar{P}$ 

For 22 media = 
$$\frac{1}{\Delta t} = \frac{\Delta \vec{p}}{\Delta t} = \frac{|\vec{p}(t) - \vec{p}(t_2)|}{|t_2 - t_1|}$$

Attrito

Rn Nersove velocito

Forza Elastica

F = 
$$-K(x-x_0)$$

Pos

 $x_0$ 
 $x_0$ 
 $x_0$ 
 $x_0$ 

Pendolo

$$-my \sin \theta = -m \frac{d^2S}{dt^2}$$

$$-my \sin(\frac{S}{\ell}) = -m \frac{d^2S}{dt^2}$$

per 
$$\theta \rightarrow 0 \Rightarrow -my \frac{s}{2} = -m \frac{d^2s}{dt}$$
  
 $\Rightarrow s = A\cos(\omega t + \phi)$ 

$$\omega = \sqrt{\frac{9}{2}}$$

Lavoro

F: 
$$\mathbb{R}^3 \to \mathbb{R}^2$$
 campo di Forze

L:  $\int_{\mathbb{R}} \vec{f} d\vec{i} = \int_{\mathbb{R}} \vec{f} d\vec{i} \cos \theta = \Delta T$ 

A di

energia cinetica  $T = \frac{1}{2} mv^2$ 

L:  $\frac{1}{2} mv^2(B) - \frac{1}{2} mv^2(A)$ 

F:  $e'$  conservativa se

L:  $-\Delta U$  dive  $U$  energia potenziale

 $\int_{\mathbb{R}} \vec{f} d\vec{i} = 0$  altera

Potenziale gravitazionale  $U(r) := \frac{GMm}{r}$ 

Contanta

Potenziale elastica  $U(z) := \frac{1}{2} \kappa(z - z_0)^2$ 

Energia meccanica  $E_m : U + T = U + \frac{1}{2} mv^2$ 

Se  $\vec{F}$  e' conservativa  $\Delta E_m : O = \frac{1}{2} (z - z_0)^2$ 

Potenza

Potenza

 $D := \frac{1}{2} mv^2 = \frac{1}{2} mv^2 = \frac{1}{2} mv^2$ 
 $D := \frac{1}{2} mv^2 = \frac{1}{2} m$ 

Momento Angolare

$$\overline{M} = \overline{R} \times \overline{p} = \overline{R} \times \frac{d}{dt} m \overline{v}$$

momento della quantità di moto

 $\overline{b} = \overline{R} \times m \overline{v}$ 
 $\overline{M} = \frac{d\overline{b}}{dt} - \frac{d\overline{R}}{dt} \times m \overline{v}$ 
 $\overline{M} = \frac{d\overline{b}}{dt} - \frac{d\overline{b}}{dt} \times m \overline{v}$ 

# Urti Pendolo Composto ·elastici: la quantita di moto conserva. 2 corpi M355e: $M_1$ , $M_2$ Vel. post who $V_1$ , $V_2$ Vel. pre vito $V_1$ , $V_3$ Cons. quantita di moto Imomento In. $m_1 v_1 + m_2 v_2 = m_1 v_1 + m_2 v_2$ cons. energia cinetica $\frac{1}{2}$ m, $v_1^2 + \frac{1}{2}$ m<sub>2</sub> $v_2^2 = \frac{1}{2}$ m, $v_1^2 + \frac{1}{2}$ m<sub>2</sub> $v_2^2$ Rotolamento Momento Sistema di Punti $\int \vec{M}_1 = \frac{d\vec{b}_1}{dt} + \vec{V}_0 \times \vec{\Gamma}_1$ i momenti interni annullano $\left(\frac{d}{dt}\sum_{i}\bar{b}_{i}\right)+\bar{\nu}_{o}\times\left(\sum_{i}\bar{r}_{i}\right)$ Si puó riscrivere $\frac{d}{dt} \left( \sum_{i} \bar{r}_{i} \times m_{i} \bar{v}_{i} \right) + \bar{v}_{o} \times \left( \sum_{i} \bar{r}_{i} \right)$ Il momento del sistema non e unuale alla somma dei momenti Sistema Continuo per un oggetto puntiforme I:Rm² $dI: R^2 dm = R^2 \times dR \Rightarrow \times densita': \frac{dm}{dR} = \times$ I = SdI sup. oggetto



# Campo Elettrico

Coloumb

Campo Elettrico

$$\overline{E} = \lim_{q \to 0} \overline{\overline{q}} = \frac{1}{4\pi \epsilon_0} \frac{q}{r^2} \hat{r}$$

Sistema di caviche : 
$$\vec{E} = \frac{1}{4\pi \epsilon_0} \sum_{i=1}^{N} \frac{q_i}{r_i^2} \hat{r}_i$$

Sup. carica : 
$$\vec{E} = \frac{1}{4\pi \epsilon_0} \int_{5}^{6Q} \hat{r}$$

#### Anello Carico

$$\frac{dE_{x}}{dn} = \frac{dQ}{dn} \cos \alpha$$

$$\frac{dE_{x}}{dn} = \frac{dQ}{dn} \cos \alpha$$

$$\frac{dQ}{dn} = \frac{dQ}{dn} =$$

$$E_{x} = \frac{1}{4\pi \epsilon_{0}} \int_{A}^{1} \frac{dl}{r^{2}} \cos \theta = \frac{1}{4\pi \epsilon_{0}} \frac{1}{r^{2}} \cos \theta Q$$

$$\frac{1}{4\pi \epsilon_{0}} \int_{A}^{1} \frac{1}{r^{2}} \cos \theta Q$$

$$\Rightarrow r\cos\theta = \infty \Rightarrow \cos\theta = \frac{\infty}{r}$$

$$E = \frac{1}{4\pi \epsilon_3} \frac{\infty}{r_3^3} Q \qquad r = \sqrt{R^2 + \infty^2}$$

### Disco Carico

$$dQ = \lambda dS \qquad dS = sup. Infinitesima$$

$$E = \frac{1}{411\xi_0} \int_{-\infty}^{\infty} \sqrt{2}$$

anello

$$dE = \frac{1}{4\pi \epsilon_0} \frac{\alpha}{(\alpha^2 + \epsilon^2)^{3/2}} \cdot dQ$$

$$E = \frac{1}{4\pi \epsilon_0} \cdot \sigma_2 \gamma \cdot \infty \int_0^{\infty} \frac{\zeta}{\left(\infty^2 \cdot \chi^2\right)^{3/2}} d\zeta$$

$$E(x) = \frac{\sigma_{\infty}}{2\xi_{0}} \cdot \left( \frac{1}{|x|} - \frac{1}{\sqrt{2c^{2}+R^{2}}} \right)$$

# Plano Carico

$$\lim_{R \to \infty} \sigma_{\infty} \left( \frac{1}{|z|} - \frac{1}{\sqrt{2c^2 + R^2}} \right) = \frac{1}{2\epsilon_0}$$