Вопрос 1

Теория информации - математическая дисциплина. Предмет изучения – характеристики и передача информации. В теории информации (ТИ) рассматриваются понятия: объем данных, скорость передачи, пропускная способность канала, источник информации, энтропия источника, эффективное и помехоустойчивое кодирование.

ТИ, созданная математиком Клодом Элвудом Шенноном в 1948 г, первоначально применялась в области связи. Сейчас она применяется и в других областях, например, в вычислительной технике. На рисунке 4.1 показана упрощенная структурная схема системы передачи и приема информации.

Рисунок 4.1. Обобщенная структурная схема системы передачи и приема сообщений.

1) ИС — источник сообщений. На его выходе — аналоговый x(t) или цифровой сигнал $x_i, i=1,2,3,...$.

На выходе ДИ информации – дискретные случайные последовательности сообщений (символов), на выходе НИ – непрерывный случайный процесс.

2) Кодер источника — устройство, преобразующее передаваемое сообщение в последовательность двоичных символов $X \in \{0,1\}$. Например, 00101110..... — кодовое слово длины κ (κ — количество символов «0» и «1» в кодовом слове).

Символы «0» и «1» называются **битом**. T — длительность одного бита. Тогда говорят, что двоичные символы следуют со скоростью

$$R = \frac{1}{T}$$
 (бит/с)

Кодер источника осуществляет сжатие данных с помощью эффективного кодирования. Цель — избавиться от избыточности, которой обладают реальные источники информации, для эффективного использования канала связи при передаче сообщений.

- 3) Кодер канала устройство, преобразующее кодовые слова с выхода кодера источника в **помехоустойчивые (корректирующие) коды** Z, которые позволяют обнаруживать и исправлять ошибки в приемнике.
- 4) Модулятор преобразует последовательность $Z \in \{0,1\}$ в передаваемый по каналу сигнал, соответствующий передаваемому сообщению. Некоторые виды цифровой модуляции рассмотрены в главе 3.
- Канал связи техническое устройство или физическая среда распространения сигналов. Например, провода, коаксиальный кабель, волоконно - оптический кабель (ВОК), радиоканал. В канале происходит искажение сигнала из-за помех и шумов. Модели каналов рассмотрены в главе 1.
- 6) Демодулятор преобразует искаженный каналом сигнал в последовательность двоичных символов, т.е. оценивает помехоустойчивый код \hat{Z} . Алгоритмы демодуляции (алгоритмы различения сигналов) рассмотрены в главе 2.
- 7) Декодер канала восстанавливает первоначальную последовательность по полученному помехоустойчивому коду, т.е. оценивает эффективный код \hat{X} .
- 8) Декодер источника устройство, преобразующее последовательность двоичных символов $\hat{X} \in \{0,1\}$ в сообщение $\hat{x}(t)$ ($\hat{x}_i, i = 1,2,3,...$).
- 9) Адресат лицо или устройство, которому предназначено переданное сообщение.

Наиболее важный случай - канал с аддитивным белым гауссовским шумом (АБГШ), для которого

$$y = x + \mu, \tag{5.8}$$

где μ - стационарный гауссовский процесс с нулевым математическим ожиданием и дисперсией σ_{μ}^2 .

Среднее значение взаимной информации определяется по формуле

$$I(x,y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} w(x,y) \log_2(\frac{w(x,y)}{w(x)w(y)}) dx dy$$
 (5.9)

Скорость передачи взаимной информации $R_{\kappa c}$ определяется по (5.2).

Пропускная способность НКС (см.ф-лу (5.3)):

$$C = \max_{\{w(\bullet)\}} R_{KC}$$
 (бит/отсчет с)

Пропускная способность гауссовского канала связи (ГКС).

Пусть ширина полосы рабочих частот канала F_a : $0 \le f \le F_a$. Пропускная способность ищется следующим образом:

$$C = \frac{1}{T_H} (H_d(y) - H(y/x))_{\text{max}},$$

где T_H - длительность реализации случайных процессов x(t), y(t). Вместо одного отсчета рассмотрим выборку $\vec{y}_n = (y_1, ..., y_n), \vec{x}_n = (x_1, ..., x_n)$, объем выборки $n = 2F_aT_H$, т.к. $n = \frac{T_H}{\Delta t}, \Delta t = \frac{1}{2F} \Rightarrow n = 2F_aT_H$. Тогда

$$\begin{split} H_d(\vec{y}_n) &= \sum_{k=1}^n H_d(y_k) = \sum_{k=1}^n \frac{1}{2} \log_2(2\pi e \sigma_y^2) = \frac{n}{2} \log_2(2\pi e \sigma_y^2) = \frac{2F_e T_H}{2} \log_2(2\pi e \sigma_y^2) = F_e T_H \log_2(2\pi e \sigma_y^2) = H_{d \max}(\vec{y}_n) \\ \Pi \text{ричем}, \quad \sigma_y^2 &= \sigma_x^2 + \sigma_\mu^2 \text{. B результате имеем } H_{\max}(\vec{y}_n) = F_e T_H \log_2(2\pi e (\sigma_x^2 + \sigma_\mu^2)) \text{ .} \end{split}$$

Далее с учетом формулы (5.8) запишем:

$$H(\vec{y}_n/\vec{x}_n) = H_d(\vec{y}_n - \vec{x}_n) = H_d(\vec{\mu}_n) = \sum_{k=1}^n H_d(\mu_k) = \sum_{k=1}^n \frac{1}{2} \log_2(2\pi e \sigma_\mu^2) = \frac{n}{2} \log_2(2\pi e \sigma_\mu^2) = F_e T_H \log_2(2\pi e \sigma_\mu^2)$$

Тогда пропускная способность гауссовского канала связи равна

$$C = \frac{F_{s}T_{H}}{T_{H}}(\log_{2}(2\pi e(\sigma_{x}^{2} + \sigma_{\mu}^{2})) - \log_{2}(2\pi e\sigma_{\mu}^{2})) = F_{s}\log_{2}(\frac{\sigma_{x}^{2} + \sigma_{\mu}^{2}}{\sigma_{\mu}^{2}}) = F_{s}\log_{2}(1+q),$$

где $q=\frac{\sigma_x^2}{\sigma_\mu^2}=\frac{\sigma_x^2}{F_eN_0}$ - отношение сигнал/шум, $N_{_0}$ - односторонняя СПМ белого гауссовского шума.

$$C = F_a \log_2(1 + \frac{\sigma_x^2}{F_a N_0})$$
 (5.10)

Таким образом, пропускная способность ГКС растет с увеличением ширины полосы канала и стремится к предельному значению $\frac{\sigma_x^2}{N_o}\log_2 e$.

6.Помехоустойчивое кодирование.

Для увеличения помехоустойчивости приема (уменьшения вероятности ошибки) применяют канальное (помехоустойчивое) кодирование. Оно позволяет обнаружить и исправить ошибки в приемнике, тем самым уменьшая вероятность ошибки приема символа.

6.1. Линейные блоковые коды.

Блоковый код состоит из набора векторов фиксированной длины, которые называются кодовыми словами. Длина кодового слова — число элементов в векторах, обозначим ее буквой n. Элементы кодового слова выбираются из алфавита с q элементами. Если q=2, тогда код называют двоичным. Если q>2, то код недвоичный. Если же $q=2^b$, где b - целое положительное число, то каждый элемент имеет эквивалентное двоичное представление, состоящее из b битов. Т.е. недвоичный код длины N можно представить двоичным кодом длиной n=bN.

Кодовое слово длины n содержит k < n информационных символов. Код обозначается как (n,k) - код, а отношение

$$R_c = \frac{k}{n} \tag{6.1}$$

называется **скоростью кода**. Величина $1 - R_c$ - избыточность.

Блок из k информационных бит отображается в кодовое слово длины n, выбираемое из набора $M=2^k$ кодовых слов. Каждое кодовое слово состоит из k информационных бит и n-k проверочных.

Вес кода $w_i(i=1,2,..,M)$ — число ненулевых элементов слова, является одной из важных характеристик кода. Для двоичных кодов вес - это количество единиц в кодовом слове. Каждое кодовое слово имеет свой вес. Набор всех весов кода $\{w_i\}$ образует **распределение весов кода**. Если все M кодовых слов имеют одинаковый вес, тогда код называется кодом с **постоянным весом**.

Функции кодирования и декодирования включают арифметические операции сложения и умножения, выполненные над кодовыми словами. Эти операции соответствуют соотношениям и правилам для алгебраического поля с q элементами. Если q=2, то имеем символы $\{0;1\}$. В общем поле F состоит из q элементов $\{0;1;....,q-1\}$. Операции сложения и умножения удовлетворяют следующим аксиомам.

Вопрос 2

Спектр модулирующего сигнала $U_{HY}(t) = \cos\Omega t$.

Спектр АМ сигнала.

3.4. Энергетические показатели АМ.

Определим среднюю мощность AM сигнала на сопротивление R за большой интервал времени:

$$U_{AM}(t) = U_m(1 + M_A \cos \Omega t) \cos \omega_0 t$$

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{U_{AM}^{2}(t)dt}{R} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{U_{m}^{2}}{R} (1 + M_{A} \cos \Omega t)^{2} \cos^{2} \omega_{0} t dt =$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left(\frac{U_m^2}{R} + \frac{2U_m^2 M_A}{R} \cos \Omega t + \frac{U_m^2 M_A^2}{R} \cos^2 \Omega t \right) (0.5 + 0.5 \cos 2\omega_0 t) dt =$$

Все слагаемые, содержащие $\cos \Omega t$, $\cos 2\omega_0 t$ после интегрирования и усреднения по времени уничтожаются, так что остаются два слагаемых:

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left(\frac{U_m^2}{R} + \frac{U_m^2 M_A^2}{2R} \right) \frac{1}{2} dt = \lim_{T \to \infty} \frac{1}{4T} \int_{-T}^{T} \left(\frac{U_m^2}{R} + \frac{U_m^2 M_A^2}{2R} \right) dt = \lim_{T \to \infty} \frac{1}{4T} \frac{U_m^2 M_A^2}{R} t \Big|_{-T}^{T} + \lim_{T \to \infty} \frac{1}{4T} \frac{U_m^2 M_A^2}{2R} t \Big|_{-T}^{T} = \frac{U_m^2}{2R} + \frac{U_m^2 M_A^2}{4R}$$
(3.8)

1-ое слагаемое – мощность несущей, 2-ое слагаемое – мощность боковых.

При амплитудной модуляции мощность боковых, которые переносят полезную информацию даже при M_A =1 составляют, только 1/3 средней мощности передатчика. 2/3 мощности передатчика тратится на излучение несущей, которая не несёт информацию. Т.е., АМ имеет плохие энергетические показатели. Поэтому используется более эффективные виды модуляции.

3.5. Балансная АМ (БАМ)

При БАМ не передают несущей частоты. Спектр БАМ при гармонической модуляции имеет вид:

2.3. Однополосная модуляция

Вид модуляции, при которой в спектре AM сигнала сохраняется лишь одна боковая полоса, называется однополосной модуляцией (OM), а само колебание называется однополосно-модулированным сигналом.

Задача

Задача. Амплитуда колебания — стационарный случайный процесс с одномерной плотностью распределения вероятности Релея $w(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$. Найти математическое ожидание и дисперсию случайного процесса. При решении воспользуйтесь табличными интегралами: $\int\limits_0^\infty x^2 e^{-a^2x^2} dx = \frac{\sqrt{\pi}}{4a^3}, \int\limits_0^\infty x^{2\alpha+1} e^{-r^2x^2} dx = \frac{\alpha!}{2r^{2\alpha+2}}.$

$$V(x) = \frac{x^{2}}{62} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2} = \frac{x^{2}}{262} = 0 \le x < \infty$$

$$\int_{0}^{\infty} x^{2}$$