Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Secția: Informatică engleză, Curs: Dynamical Systems, An: 2015/2016

Seminars 4 and 5. 1

Consider

(1)
$$x_1' = a_{11}x_1 + a_{12}x_2 x_2' = a_{21}x_1 + a_{22}x_2$$

whose matrix is

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right).$$

Our aim is to find explicitly the general solution of this system.

First we distinguish two classes of such systems: the uncoupled systems

(2)
$$x_1' = a_{11}x_1 x_2' = a_{22}x_2$$

and, respectively, the *coupled* systems, which are the systems which are not uncoupled, that is either $a_{12} \neq 0$ or $a_{21} \neq 0$.

It is very easy to see that the uncoupled system (2) has the general solution

$$x_1 = c_1 e^{a_{11}t}, \quad x_2 = c_2 e^{a_{22}t}, \quad c_1, c_2 \in \mathbb{R}.$$

From now on we will study only coupled systems.

In the sequel we will see that for a coupled system with $a_{12} \neq 0$ the variable x_1 can be found as the solution of a second-order linear homogeneous differential equation. Similar property holds for the variable x_2 if $a_{22} \neq 0$.

Consider, for example, that $a_{12} \neq 0$. We use the first equation in (1) to write explicitly x_2 in function of x'_1 and x_1 ,

$$(3) x_2 = \frac{x_1' - a_{11}x_1}{a_{12}},$$

and also to compute x_1'' ,

$$x_1'' = a_{11}x_1' + a_{12}x_2'.$$

Here we use the second equation in (1) to replace x'_2 by $a_{21}x_1 + a_{22}x_2$. Now we use (3) to obtain x''_1 only in function of x'_1 and x_1 ,

$$x_1'' = a_{11}x_1' + a_{12}a_{21}x_1 + a_{22}(x_1' - a_{11}x_1).$$

¹©2015 Adriana Buică, Dynamical Systems. Problems.

This last relation is the second order linear homogeneous equation

(4)
$$x_1'' - (a_{11} + a_{22})x_1' + (a_{11}a_{22} - a_{12}a_{21})x_1 = 0.$$

The general solution of system (1) can be found now in two steps. First find x_1 as the general solution of (4), then find x_2 using (3). This method is called the method of reduction of the coupled system (1) to a second order differential equation.

1. Prove that the roots of the characteristic equation of (4) coincide with the eigenvalues of the matrix A of system (1). To deduce this, it is sufficient if you show that both the equation of the eigenvalues of A and the characteristic equation of (4) are

$$\lambda^2 - (\operatorname{tr} A) \lambda + \det A = 0,$$

where trA denotes the trace of the matrix A, while det A denotes its determinant.

Sketch the phase portrait of each of the following scalar differential equations. Indicate the stability type of their equilibria using the linearization method. Given an equilibrium point η^* , reading the phase portrait, indicate the maximal range for the initial state η such that either $\lim_{t\to +\infty} \varphi(t,\eta) = \eta^*$ or $\lim_{t\to -\infty} \varphi(t,\eta) = \eta^*$. For each $\eta \in \mathbb{R}$ establish the monotonicity properties of the function $\varphi(\cdot,\eta)$. As usual, $\varphi(t,\eta)$ denotes the flow of the given scalar differential equation.

- 2. a) $\dot{x} = -2x$ b) $\dot{x} = 1 + x$ c) $\dot{x} = 1 x^2$ d) $\dot{x} = -4 + x^2$ e) $\dot{x} = 8 x^3$
- 3. (The logistic equation) $\dot{x} = x(N-x)$ where N > 0 is a parameter
- 4. $\dot{x} = x(1-x) c$ 5. $\dot{x} = x(1-x) cx$ where c > 0 is a parameter
- 6. $\dot{x} = -x x^3 + 1$ 7. $\dot{x} = -x x^3 + \lambda$ where $\lambda \in \mathbb{R}$ is a parameter
- 8. $\dot{x} = \sin x$ 9. $\dot{x} = 2\sin x$ 10. $\dot{x} = 1 2\sin x$ 11. $\dot{x} = 2 \sin x$
- 12. $\dot{x} = \lambda x^2$ where $\lambda \in \mathbb{R}$ is a parameter.

For each of the following linear systems study the type and stability of its equilibrium point (0,0). Then find its general solution.

13.
$$x' = -2x$$
, $y' = 3y$

14.
$$x' = x$$
, $y' = -x + 2y$

15.
$$x' = x + y$$
, $y' = -2x + 4y$

16.
$$x' = x + y$$
, $y' = x - 4y$

17.
$$x' = 4x - 5y$$
, $y' = x - 2y$

- 18. For what values of the real parameter a the system $\dot{x} = ax 5y$, $\dot{y} = x 2y$ has a center at the origin? In that cases find the general solution of the system.
 - 19. a) Give an example of a coupled linear planar system which has a node at the origin.
 - b) Give an example of a coupled linear planar system which has a saddle at the origin.
- c) There exist uncoupled linear planar systems with either a center or a focus at the origin?

For each of the following linear systems study the type and stability of its equilibrium point (0,0). For those systems for which (0,0) is not a focus, represent their phase portrait in two ways: by using the definition of an orbit and then by using the differential equation of the orbits. For those systems for which (0,0) is a focus, represent their phase portrait by passing to polar coordinates.

20.
$$x' = -3x$$
, $y' = -3y$ 21. $x' = -x$, $y' = -2y$

22.
$$x' = 3x$$
, $y' = 3y$ 23. $x' = -2x$, $y' = 2y$

24.
$$x' = -y$$
, $y' = \omega^2 x$ where $\omega > 0$ is a parameter

25.
$$\dot{x} = -x - y$$
, $\dot{y} = x - y$ 26. $\dot{x} = -x + y$, $\dot{y} = -x - y$.

Find the equilibria and study their stability for the following nonlinear planar systems.

27.
$$\dot{x} = -x + xy$$
, $\dot{y} = -2y + 3y^2$, 28. $\dot{x} = 2x - x^2 - xy$, $\dot{y} = -y + xy$,

29.
$$\dot{x} = x - 2xy$$
, $\dot{y} = x^2/2 - y$, 30. $\dot{x} = 1 - xy$, $\dot{y} = x - y^2$,

31. (The Van der Pol equation) $\ddot{y} + y + \lambda \left(\frac{1}{3}\dot{y}^3 + y\right) = 0$ where $\lambda \in \mathbb{R}$ is a parameter;

$$32. \ \ddot{y} + \dot{y} + y^3 = 0.$$

33. We consider the Lotka-Volterra system (also called the predator-prey system)

$$\dot{x} = x - xy, \quad \dot{y} = -0.3y + 0.3xy.$$

- a) Notice that (1,1) is an equilibrium point and show that it is non-hyperbolic.
- b) Write the differential equation of the orbits of this system and notice that it is separable. Find its general solution.
- c) Notice that the general solution found at b) can be written as $H(x,y)=c, \quad c\in\mathbb{R}$, with the function $H:(0,\infty)\times(0,\infty)\to\mathbb{R}$,

$$H(x, y) = y - \ln y + 0.3(x - \ln x).$$

2

²©2015 Adriana Buică, Dynamical Systems. Problems.