CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay Guest Lecture by : R. Govind

Sep 04, 2023 Lecture 12 – Basic Mathematical Structures Chains and Antichains

Recap: Partial order relations

Last class we saw

- ▶ Partial orders: definition and examples
- ► Posets
- ▶ Graphical representation as Directed Acyclic Graphs

Definition

- ► A partial order is a relation which is reflexive, transitive and anti-symmetric.
- ▶ A total order is a partial order in which every pair of elements is comparable.
- ▶ A poset is a set S with a partial order \leq \subseteq S \times S.

Recap: Partial order relations

Definition

- ► A partial order is a relation which is reflexive, transitive and anti-symmetric.
- ► A total order is a partial order in which every pair of elements is comparable.
- ▶ A poset is a set S with a partial order \leq \subseteq S \times S.

Examples

- \triangleright (\mathbb{Z} , \leq): integers with the usual less than or equal to relation.
- \triangleright $(\mathcal{P}(S), \subseteq)$: powerset of any set with the subset relation.
- \triangleright (\mathbb{Z}^+ , |): positive integers with divisibility relation.

Recap: Partial order relations

Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$. How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

Figure: Graph of a poset and its Hasse diagram

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

▶ Here, the poset has a minimal/maximal element

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

- ▶ Here, the poset has a minimal/maximal element
- ▶ What are the minimal & maximal elements in $(\mathbb{Z}^+, |)$.

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

- ▶ Here, the poset has a minimal/maximal element
- ▶ What are the minimal & maximal elements in $(\mathbb{Z}^+, |)$.
- ▶ Is there always a unique minimal/maximal element?

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

- ▶ Here, the poset has a minimal/maximal element
- ▶ What are the minimal & maximal elements in $(\mathbb{Z}^+, |)$.
- ▶ Is there always a unique minimal/maximal element?

Let (S, \preceq) be a poset.

- An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

- ▶ Here, the poset has a minimal/maximal element
- ▶ What are the minimal & maximal elements in $(\mathbb{Z}^+, |)$.
- ▶ Is there always a unique minimal/maximal element?
- ▶ What are the minimal element(s?) in $(\mathbb{Z}_{>1}, |)$.

Theorem

Every finite non-empty poset has at least one minimal element.

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

▶ Choose x_1 from the poset - either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

- ► Choose x_1 from the poset either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.
- ▶ If x_2 is minimal, we are done; otherwise there is some $x_3 \neq x_2$ s.t. $x_3 \leq x_2$.

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

- ► Choose x_1 from the poset either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.
- If x_2 is minimal, we are done; otherwise there is some $x_3 \neq x_2$ s.t. $x_3 \leq x_2$.
- \triangleright Repeating this step k+1 times, we get

$$x_{k+1} \leq x_k \leq \cdots \leq x_2 \leq x_1$$

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

- ► Choose x_1 from the poset either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.
- ▶ If x_2 is minimal, we are done; otherwise there is some $x_3 \neq x_2$ s.t. $x_3 \leq x_2$.
- \triangleright Repeating this step k+1 times, we get

$$x_{k+1} \leq x_k \leq \cdots \leq x_2 \leq x_1$$

Since size of poset is k, we must have $x_j = x_i, j < i$.

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

- ► Choose x_1 from the poset either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.
- ▶ If x_2 is minimal, we are done; otherwise there is some $x_3 \neq x_2$ s.t. $x_3 \leq x_2$.
- \triangleright Repeating this step k+1 times, we get

$$x_{k+1} \leq x_k \leq \cdots \leq x_j \leq \cdots \leq x_{i+1} \leq x_i \leq \cdots \leq x_2 \leq x_1$$

Since size of poset is k, we must have $x_j = x_i, j < i$.

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

- ► Choose x_1 from the poset either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.
- ▶ If x_2 is minimal, we are done; otherwise there is some $x_3 \neq x_2$ s.t. $x_3 \leq x_2$.
- \triangleright Repeating this step k+1 times, we get

$$x_{k+1} \leq x_k \leq \cdots \leq x_i \leq \cdots \leq x_{i+1} \leq x_i \leq \cdots \leq x_2 \leq x_1$$

Since size of poset is k, we must have $x_j = x_i, j < i$. We get $x_j \leq x_{i+1}$ and $x_{i+1} \leq x_j$ (violates anti-symmetry) Contradiction!

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

- ► Choose x_1 from the poset either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.
- ▶ If x_2 is minimal, we are done; otherwise there is some $x_3 \neq x_2$ s.t. $x_3 \leq x_2$.
- \triangleright Repeating this step k+1 times, we get

$$x_{k+1} \leq x_k \leq \cdots \leq x_i \leq x_{i+1} \leq x_i \leq \cdots \leq x_2 \leq x_1$$

Since size of poset is k, we must have $x_j = x_i, j < i$. We get $x_j \leq x_{i+1}$ and $x_{i+1} \leq x_j$ (violates anti-symmetry) Contradiction!

Proof by induction?(H.W)

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

- ► Choose x_1 from the poset either it is minimal, or there is some $x_2 \neq x_1$ s.t. $x_2 \leq x_1$.
- ▶ If x_2 is minimal, we are done; otherwise there is some $x_3 \neq x_2$ s.t. $x_3 \leq x_2$.
- \triangleright Repeating this step k+1 times, we get

$$x_{k+1} \leq x_k \leq \cdots \leq x_i \leq x_{i+1} \leq x_i \leq \cdots \leq x_2 \leq x_1$$

Since size of poset is k, we must have $x_j = x_i, j < i$. We get $x_j \leq x_{i+1}$ and $x_{i+1} \leq x_j$ (violates anti-symmetry) Contradiction!

What about infinite posets?

Posets: Chains and Antichains

Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

Posets: Chains and Antichains

Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- ► Subsets that are totally ordered?
- ▶ Subsets that are unordered?

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- \triangleright a chain if every pair of elements in B is related by \preceq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- \triangleright a chain if every pair of elements in B is related by \preceq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- \triangleright a chain if every pair of elements in B is related by \preceq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

▶ an anti-chain if no two distinct elements of A are related to each other under \leq .

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- \triangleright a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

- ▶ an anti-chain if no two distinct elements of A are related to each other under \preceq .
- ▶ That is, $\forall a, b \in A, a \neq b$, we have neither $a \leq b$ nor $b \leq a$.

Chains and Anti-chains: examples

▶ Let $S = \{1, 2, 3\}$.

Figure: Graph of poset $(\mathcal{P}(S), \subseteq)$ and its Hasse diagram

▶ What are the chains in this poset?

Chains and Anti-chains: examples

ightharpoonup Let $S = \{1, 2, 3\}$.

Figure: Graph of poset $(\mathcal{P}(S), \subseteq)$ and its Hasse diagram

- ▶ What are the chains in this poset?
- ▶ What are the anti-chains in this poset?

)

Chains and Anti-chains: examples

ightharpoonup Let $S = \{1, 2, 3\}$.

Figure: Graph of poset $(\mathcal{P}(S), \subseteq)$ and its Hasse diagram

- ▶ What are the chains in this poset?
- ▶ What are the anti-chains in this poset?
- Give an example of an infinite chain & anti-chain in $(\mathbb{Z}^+, |)$.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

► Clearly, this shows the dependencies.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- ► Clearly, this shows the dependencies.
- ▶ But when you cook you need a total order, right?

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- ► Clearly, this shows the dependencies.
- ▶ But when you cook you need a total order, right?
- ► Further, this total order must be consistent with the po.
- ► This is called a linearization or a topological sorting.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Proof: (H.W)

- ► Recall the lemma:
 - Every finite non-empty poset has at least one minimal element $(x \text{ is minimal if } \not\exists y, y \leq x).$
- ▶ Then, construct a (new) chain to complete the proof.