SZS Blatt 2

Christian Baumann 3164561, st142624@stud.uni-stuttgart.de Ellen Hafner 3253401, st151037@stud.uni-stuttgart.de Marvin Knodel 3229587, st149003@stud.uni-stuttgart.de Lion Wagner 3231355, st148345@stud.uni-stuttgart.de

02.11.2018

Christian Baumann	3164561
Ellen Hafner	3253401
Marvin Knodel	3229587
Lion Wagner	3231355

- a)
- b)
- c)
- d)
- e)
- f)

Christian Baumann	3164561
Ellen Hafner	3253401
Marvin Knodel	3229587
Lion Wagner	3231355

a)

Abbildung 2: RBD für die serielle Komposition

$$R_2(t) = R_A(t) * R_B(t)$$

Abbildung 3: RBD für die Systemredundanz

$$R_{3_{S1}}(t) = R_A(t) * R_B(t)$$
$$R_{3_{S2}}(t) = R_{A'}(t) * R_{B'}(t)$$

$$R_{3}(t) = 1 - [(1 - R_{3_{S1}}(t)) * (1 - R_{3_{S2}}(t))]$$

$$= 1 - [(1 - R_{A}(t) * R_{B}(t)) * (1 - R_{A'}(t) * R_{B'}(t))]$$

$$\Leftrightarrow 1 - [(1 - R_{A}(t) * R_{B}(t)) * (1 - R_{A}(t) * R_{B}(t))]$$

$$= 1 - [(1 - R_{A}(t) * R_{B}(t))^{2}]$$

$$= 1 - [1 - 2 * R_{A}(t) * R_{B}(t) + R_{A}(t)^{2} * R_{B}(t)^{2}]$$

$$= R_{A}(t)^{2} * R_{B}(t)^{2} + 2 * R_{A}(t) * R_{B}(t)$$

$$R_3(t) = R_A(t)^2 * R_B(t)^2 - 2 * R_A(t) * R_B(t)$$

Christian Baumann	3164561
Ellen Hafner	3253401
Marvin Knodel	3229587
Lion Wagner	3231355

Abbildung 4: RBD für die Komponentenredundanz

$$R_{4_{S1}}(t) = 1 - [(1 - R_A(t)) * (1 - R_{A'}(t))]$$

$$R_{4_{S2}}(t) = 1 - [(1 - R_B(t)) * (1 - R_{B'}(t))]$$

$$R_{4}(t) = R_{4_{S1}}(t) * R_{4_{S2}}(t)$$

$$= (1 - [(1 - R_{A}(t)) * (1 - R_{A'}(t))]) * (1 - [(1 - R_{B}(t)) * (1 - R_{B'}(t))])$$

$$\Leftrightarrow (1 - [(1 - R_{A}(t)) * (1 - R_{A}(t))]) * (1 - [(1 - R_{B}(t)) * (1 - R_{B}(t))])$$

$$= (1 - (1 - R_{A}(t))^{2}) * (1 - (1 - R_{B}(t))^{2})$$

$$= (1 - (1 - 2 * R_{A}(t) + R_{A}(t)^{2})) * (1 - (1 - 2 * R_{B}(t) + R_{B}(t)^{2}))$$

$$= (2 * R_{A}(t) - R_{A}(t)^{2}) * (2 * R_{B}(t) - R_{B}(t)^{2})$$

$$R_4(t) = (2 * R_A(t) - R_A(t)^2) * (2 * R_B(t) - R_B(t)^2)$$

b)

Beispiel:

$$R_A(t) = R_B(t) = 0.5$$

$$R_{2}(t) = R_{A}(t) * R_{B}(t)$$

$$= 0.5 * 0.5$$

$$= 0.25$$

$$R_{3}(t) = R_{A}(t)^{2} * R_{B}(t)^{2} - 2 * R_{A}(t) * R_{B}(t)$$

$$= 0.5^{2} * 0.5^{2} - 2 * 0.5 * 0.5$$

$$= 0.4375$$

$$R_{4}(t) = (2 * R_{A}(t) - R_{A}(t)^{2}) * (2 * R_{B}(t) - R_{B}(t)^{2})$$

$$= (2 * 0.5 - 0.5^{2}) * (2 * 0.5 - 0.5^{2})$$

$$= 0.5625$$

Christian Baumann	3164561
Ellen Hafner	3253401
Marvin Knodel	3229587
Lion Wagner	3231355

a)

$$y(x) = m*x + c$$

$$MTBF_c(t) = \kappa * t^{\alpha}$$

$$\Rightarrow y = \log(MTBF_c(t))$$

$$\Rightarrow m = \alpha$$

$$\Rightarrow c = \log(\kappa)$$

$$\Rightarrow x = \log(t)$$

b)

$$t_1 = 20 \quad \text{MTBF}_c(t_1) = 7$$

 $t_2 = 100 \quad \text{MTBF}_c(t_2) = 25$

$$MTBF_c(t_1): \Rightarrow 7 = \kappa * 20^{\alpha}$$

$$\Rightarrow \kappa = \frac{7}{20^{\alpha}}$$

$$\begin{aligned} & \text{MTBF}_c(\mathbf{t}_2): \\ \Rightarrow 25 &= \kappa * 100^{\alpha} \\ & \text{mit } \kappa = \frac{7}{20^{\alpha}} \Rightarrow 25 = \frac{7}{20^{\alpha}} * 100^{\alpha} \\ & \Rightarrow 25 = \frac{7*100^{\alpha}}{20^{\alpha}} \\ \Rightarrow 25 &= 7 * (\frac{100}{20})^{\alpha} \\ & \Rightarrow 25 = 7 * 5^{\alpha} \\ & \Rightarrow \alpha = \log_5(\frac{25}{7}) = 0.79 \\ & \text{mit } \alpha = 0.79 \Rightarrow \kappa = \frac{7}{20^{0.79}} = 0.66 \end{aligned}$$

c)

$$\mathrm{MTBF}_c(200) = 0.66 * 200^{0.79} = 43$$

 $\lambda_i(100) = 7\mathrm{e}^{-\frac{7}{25}*100} = 5$

Christian Baumann	3164561
Ellen Hafner	3253401
Marvin Knodel	3229587
Lion Wagner	3231355

a)

Algorithmus X:

	Pos. Pred.	Neg. Pred.
True Failure	2	3
No Failure	3	95

Algroithmus Y:

	Pos. Pred.	Neg. Pred.
True Failure	1	4
No Failure	4	91

b)

Algorithmus X hat eine leicht bessere TPR.

c)

Höherer Schwellwert \to Tatsächliche Fehler werden nicht erkannt. Niedriger Schwellwert \to Sehr hohes Rauschen, System wird empfindlich

Christian Baumann	3164561
Ellen Hafner	3253401
Marvin Knodel	3229587
Lion Wagner	3231355

d)

