Homework 7 Section 3.2

Jonathan Petersen A01236750

March 2nd, 2016

3.b. Find all the idempotents in \mathbb{Z}_{12} .

In \mathbb{Z}_{12} :

$$0^{2} = 0$$
 $6^{2} = 0$
 $1^{2} = 1$ $7^{2} = 1$
 $2^{2} = 4$ $8^{2} = 4$
 $3^{2} = 9$ $9^{2} = 9$
 $4^{2} = 4$ $10^{2} = 4$
 $5^{2} = 1$ $11^{2} = 1$

Therefore $\{0, 1, 4, 9\}$ are the idempotents in \mathbb{Z}_{12} .

6.b. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, find four solutions to the equation AX = 0.

$$\begin{bmatrix}2&2\\-1&-1\end{bmatrix}\begin{bmatrix}4&4\\-2&-2\end{bmatrix}\begin{bmatrix}8&8\\-4&-4\end{bmatrix}\begin{bmatrix}16&16\\-8&-8\end{bmatrix}$$

8. Let R be a ring and b be a fixed element of R. Let $T = \{rb | r \in R\}$. Prove that T is a subring of R.

To prove that T is a subring of R we must prove that

- (a) T is a subset of R.
- (b) T is closed under subtraction.
- (c) T is closed under multiplication.

Since T only contains multiples of elements from R, and since R is closed under multiplication, it is trivial to see that T is a subset of R. Let us then focus on the other two requirements.

Given some arbitrary $u, v \in T$, we can see that

$$u-v = (rb) + -(sb) \qquad r, b, s \in R$$
$$= (r-s)b$$
$$= kb \qquad k = r-s$$

Since R is a ring, it must be closed under subtraction, therefore $k \in R$ and by extension, $u - v \in T$, so T is closed under subtraction. Next we consider multiplication.

$$\begin{aligned} u*v &= rb*sb & r,b,s \in R \\ &= (r*s)b & \\ &= kb & k = r*s \end{aligned}$$

and since R is closed under multiplication, $kb \in R \implies u * v \in T$. Therefore, T must be a subring of R

13.a. Let S and T be subrings of a ring R. Prove or disprove that $S \cap T$ is a subring.

Let $s \in S$, $t \in T$ such that $s, t \in S \cap T$. It is obvious that if $s, t \in S \cap T$ then $s, t \in S$. Since S is a subring of R, we know that it must be closed under subtraction, and thus that $s-t \in S$. By similar logic, we know that $s, t \in T$ and so $s-t \in T$. Since $s-t \in S$ and $s-t \in T$, it is clear that $s-t \in S \cap T$. Therefore, $S \cap T$ is closed under subtraction.

By the same logic above, $s,t\in S\cap T$ implies that $s,t\in S,T$, leading to $s*t\in S,T$ and finally $s*t\in S\cap T$. This shows that $S\cap T$ is closed under multiplication, and according to Theorem 3.6 this means that $S\cap T$ is a subring of R

13.b. Let S and T be subrings of a ring R. Prove or disprove that $S \cup T$ is a subring.

Consider the example when $R = \mathbb{Z}$, $S = \{3k | k \in \mathbb{Z}\}$, $T = \{2j | j \in \mathbb{Z}\}$. Then let s = 3(1) and t = 2(1). We can see that $s \in S$ and $t \in T$ implies that $s, t \in S \cup T$, but s+t=5, and since 5 is not a multiple of 2 or 3, $5 \notin S$ and $5 \notin T$, therefore $S \cup T$ is not necessarily closed under subtraction, and we cannot assume that $S \cup T$ is a subring of $R \blacksquare$

15.a. If a and b are units in a ring R with identity, prove that ab is a unit whose inverse is $(ab)^{-1} = b^{-1} * a^{-1}$

To show that ab is a unit, we must show that there exists some $x \in R$ such that 1 = abx in R. Since R is a ring with identity, we know that a^{-1} and b^{-1} are both in R, and since rings are closed under multiplication we know that the product of those two elements must also be in the ring. Therefore, let $x = b^{-1} * a^{-1}$ and we can see that:

$$abx = 1$$

$$a * b * b^{-1} * a^{-1} = 1$$

$$a * 1 * a^{-1} = 1$$

$$a * a^{-1} = 1$$

$$1 = 1$$

Which is true. Therefore, if a and b are units in a ring R with identity, ab is a unit whose inverse is $(ab)^{-1} = b^{-1} * a^{-1}$

31.a. Prove that a + a = 0 for every a in a boolean ring.

Let R be a boolean ring, and let $a \in R$. Furthermore, x * x = x implies that there is no x other than 0 such that x * x = 0, or rather that R is an integral domain. We can then see that

$$(a+a) = (a+a)^{2}$$
$$(a+a)^{2} = (a+a)(a+a)$$
$$(a+a) = (a+a)(a+a)$$
$$0 = (a+a)$$

Therefore a + a = 0

31.b. Prove that every boolean ring is commutative.

Let R be a boolean ring, and let $a, b \in R$. Then

$$a + b = (a + b)^{2}$$

$$= a^{2} + ab + ba + b^{2}$$

$$= a + ab + ba + b$$

$$0 = ab + ba$$

$$ab = -ba$$

However, note that since R is a boolean ring

$$(-a) = (-a)^{2}$$
$$= (-a)(-a)$$
$$= a^{2}$$
$$= a$$

Therefore -ba from our original equation is equal to ba, and we see that

$$ab = ba$$

Or, in other words, that R is commutative