Block Graphs Block Tree

Polynomial Kernel for Block Graph Deletion

Abraham Hinteregger

Vienna University of Technology

25.1.2018

Chapter

Problem Statement

Block Graphs

Block Tree

Kernelization

► Block graphs consist of cliques

- ► Block graphs consist of cliques
- Multiple cliques can share a vertice (articulation points)

- ► Block graphs consist of cliques
- Multiple cliques can share a vertice (articulation points)
- No diamond graphs

 and cycles of length ≥ 4 as induced subgraphs (necessary & sufficient condition)

- ► Block graphs consist of cliques
- Multiple cliques can share a vertice (articulation points)
- No diamond graphs
 and cycles of length ≥ 4 as induced subgraphs (necessary & sufficient condition)

- ► Block graphs consist of cliques
- Multiple cliques can share a vertice (articulation points)
- No diamond graphs

 and cycles of length ≥ 4 as induced subgraphs (necessary & sufficient condition)

- ► Block graphs consist of cliques
- Multiple cliques can share a vertice (articulation points)

Block Tree

A block tree \mathcal{T}_G of a graph G is a graph with the vertex set $\mathcal{B} \cup \mathcal{C}$. $\mathcal{B} = \text{set}$ of blocks of G and $\mathcal{C} = \text{set}$ of articulation points of G. Vertices \mathcal{T}_G are connected with edge $\{c, B\} \in E(\mathcal{T}_G)$ iff the vertex c is in the block B in G.

Block Tree

A block tree \mathcal{T}_G of a graph G is a graph with the vertex set $\mathcal{B} \cup \mathcal{C}$. $\mathcal{B} = \text{set}$ of blocks of G and $\mathcal{C} = \text{set}$ of articulation points of G. Vertices \mathcal{T}_G are connected with edge $\{c, B\} \in E(\mathcal{T}_G)$ iff the vertex c is in the block B in G.

Block Graph Deletion

BLOCK GRAPH DELETION

Input: A simple undirected graph G, an integer k

Parameter: k

Question: Is there a subset S of V with $|S| \le k$ such that G - S is

a block graph?

Paper overview

The main results of [Kim and Kwon, 2017] are:

- ▶ BLOCK GRAPH DELETION admits a kernel with size $\mathcal{O}(k^6)$
- ▶ BLOCK GRAPH DELETION can be solved in time $10^k \cdot n^{\mathcal{O}(1)}$

Paper overview

The main results of [Kim and Kwon, 2017] are:

- ▶ BLOCK GRAPH DELETION admits a kernel with size $\mathcal{O}(k^6)$
- ▶ BLOCK GRAPH DELETION can be solved in time $10^k \cdot n^{\mathcal{O}(1)}$

Paper overview

The main results of [Kim and Kwon, 2017] are:

- ▶ BLOCK GRAPH DELETION admits a kernel with size $\mathcal{O}(k^6)$
- ▶ BLOCK GRAPH DELETION can be solved in time $10^k \cdot n^{\mathcal{O}(1)}$

Some details and most proofs will be omitted. For details look at the published paper (not the conference paper or the arxiv-preprint)

Chapter

Problem Statement

Kernelization

Reduction Rules 1-6

Algorithm for obtaining the kernel

Testing if a graph is a block graph can be decided in quadratic time [Hopcroft and Tarjan, 1973]

▶ RR1 (Block component rule): If G has a component H that is a block graph then we remove H from G.

¹Two vertices are true twins if they share all their neighbors (except each other) and are connected

- ▶ RR1 (Block component rule): If G has a component H that is a block graph then we remove H from G.
- ▶ RR2 (Cut vertex rule): $\exists v \in V(G)$ s.t. G v contains a component H where $G[V(H) \cup \{v\}]$ is a connected block graph, we remove H from G.

¹Two vertices are true twins if they share all their neighbors (except each other) and are connected

- ▶ RR1 (Block component rule): If G has a component H that is a block graph then we remove H from G.
- ▶ RR2 (Cut vertex rule): $\exists v \in V(G)$ s.t. G v contains a component H where $G[V(H) \cup \{v\}]$ is a connected block graph, we remove H from G.
- ▶ RR3 (Twin rule): If S is a set of vertices that are pairwise true twins¹ in G and $|S| \ge k + 2$ remove vertices until |S| = k + 1.

¹Two vertices are true twins if they share all their neighbors (except each other) and are connected

- ▶ RR1 (Block component rule): If G has a component H that is a block graph then we remove H from G. ⇒ graph only has obstructed components
- ▶ RR2 (Cut vertex rule): $\exists v \in V(G)$ s.t. G v contains a component H where $G[V(H) \cup \{v\}]$ is a connected block graph, we remove H from G.
- ▶ RR3 (Twin rule): If S is a set of vertices that are pairwise true twins¹ in G and $|S| \ge k + 2$ remove vertices until |S| = k + 1.

¹Two vertices are true twins if they share all their neighbors (except each other) and are connected

- ▶ RR1 (Block component rule): If G has a component H that is a block graph then we remove H from G. ⇒ graph only has obstructed components
- ▶ RR2 (Cut vertex rule): $\exists v \in V(G)$ s.t. G v contains a component H where $G[V(H) \cup \{v\}]$ is a connected block graph, we remove H from $G \implies$ no "unobstructed" blocks
- ▶ RR3 (Twin rule): If S is a set of vertices that are pairwise true twins¹ in G and $|S| \ge k + 2$ remove vertices until |S| = k + 1.

¹Two vertices are true twins if they share all their neighbors (except each other) and are connected

- ▶ RR1 (Block component rule): If G has a component H that is a block graph then we remove H from G. ⇒ graph only has obstructed components
- ▶ RR2 (Cut vertex rule): $\exists v \in V(G)$ s.t. G v contains a component H where $G[V(H) \cup \{v\}]$ is a connected block graph, we remove H from $G \implies$ no "unobstructed" blocks
- ▶ RR3 (Twin rule): If S is a set of vertices that are pairwise true twins¹ in G and $|S| \ge k + 2$ remove vertices until |S| = k + 1. \Longrightarrow If one of the vertices is part of an obstruction, all of them are.

¹Two vertices are true twins if they share all their neighbors (except each other) and are connected

► RR4 (Reduce block-cut vertex paths): Let $t_1t_2t_3t_4$ be an induced path

- ▶ RR4 (Reduce block-cut vertex paths): Let $t_1t_2t_3t_4$ be an induced path and for $1 \le i \le 3$, let $S_i \subseteq V(G)\{t_1 ... t_4\}$ be a clique of G s.t.:
 - For each $1 \le i \le 3$ and $v \in S_i$: $N_G(v) \setminus S_i = \{t_i, t_{i+1}\}$

- ▶ RR4 (Reduce block-cut vertex paths): Let $t_1t_2t_3t_4$ be an induced path and for $1 \le i \le 3$, let $S_i \subseteq V(G)\{t_1 ... t_4\}$ be a clique of G s.t.:
 - For each $1 \le i \le 3$ and $v \in S_i$: $N_G(v) \setminus S_i = \{t_i, t_{i+1}\}$
 - For each 2 < i < 3:

$$N_G(t_i) = \{t_{i-1}, t_{i+1}\} \cup S_{i-1} \cup S_i$$

- ▶ RR4 (Reduce block-cut vertex paths): Let $t_1t_2t_3t_4$ be an induced path and for $1 \le i \le 3$, let $S_i \subseteq V(G)\{t_1 ... t_4\}$ be a clique of G s.t.:
 - For each $1 \le i \le 3$ and $v \in S_i$: $N_G(v) \setminus S_i = \{t_i, t_{i+1}\}$
 - For each $2 \le i \le 3$: $N_G(t_i) = \{t_{i-1}, t_{i+1}\} \cup S_{i-1} \cup S_i$
 - ▶ Then: Remove $S = S_1 \cup S_2 \cup S_3$

- ▶ RR4 (Reduce block-cut vertex paths): Let $t_1t_2t_3t_4$ be an induced path and for $1 \le i \le 3$, let $S_i \subseteq V(G)\{t_1 ... t_4\}$ be a clique of G s.t.:
 - For each $1 \le i \le 3$ and $v \in S_i$: $N_G(v) \setminus S_i = \{t_i, t_{i+1}\}$
 - For each $2 \le i \le 3$: $N_G(t_i) = \{t_{i-1}, t_{i+1}\} \cup S_{i-1} \cup S_i$
 - ► Then: Remove $S = S_1 \cup S_2 \cup S_3$ & contract edge between t_2 and t_3

Assume there is an obstruction in $S \cup \{t_2, t_3\}$ (the vertices affected by RR4)

- Assume there is an obstruction in $S \cup \{t_2, t_3\}$ (the vertices affected by RR4)
- A vertex in S cannot be part of an obstruction (a cycle of length ≥ 4 or a diamond graph \square

- Assume there is an obstruction in $S \cup \{t_2, t_3\}$ (the vertices affected by RR4)
- A vertex in S cannot be part of an obstruction (a cycle of length ≥ 4 or a diamond graph <a>
 ☐
- Vertices in obstructions are 2-connected, thus the obstruction is a superset of $\{t_2, t_3\}$ that contains no vertex of S.

- Assume there is an obstruction in $S \cup \{t_2, t_3\}$ (the vertices affected by RR4)
- A vertex in S cannot be part of an obstruction (a cycle of length \geq 4 or a diamond graph \square
- Vertices in obstructions are 2-connected, thus the obstruction is a superset of $\{t_2, t_3\}$ that contains no vertex of S.
- As $t_1
 ldots t_4$ is an induced path, the obstruction cannot be a diamond graph or a cycle of length 4 \implies the obstruction has to be a cycle of length ≥ 5

- Assume there is an obstruction in $S \cup \{t_2, t_3\}$ (the vertices affected by RR4)
- A vertex in S cannot be part of an obstruction (a cycle of length \geq 4 or a diamond graph \square
- Vertices in obstructions are 2-connected, thus the obstruction is a superset of $\{t_2, t_3\}$ that contains no vertex of S.
- As $t_1
 ldots t_4$ is an induced path, the obstruction cannot be a diamond graph or a cycle of length 4 \implies the obstruction has to be a cycle of length ≥ 5
- ▶ Contracting an edge in a cycle of length \geq 5 results in a cycle of length \geq 4. Therefore, RR4 does not remove an obstruction.

Proposition: Given a graph G and $v \in V(G)$ and k a positive integer. In $\mathcal{O}(kn^3)$ time we can find either:

- 1. k + 1 pairwise vertex disjoint obstructions
- 2. k+1 obstructions containing vertex v
- 3. $S_v \subseteq V(G) \setminus \{v\}$ with $|S_v| \le 7k$ s.t. $G S_v$ has no obstruction containing v.

The complete degree of v is defined as the minimum number of components of $G[N_G(v) \setminus S_v]$ among all S_v considered above.

Proposition: Given a graph G and $v \in V(G)$ and k a positive integer. In $\mathcal{O}(kn^3)$ time we can find either:

- 1. k+1 pairwise vertex disjoint obstructions \Longrightarrow No-instance
- 2. k+1 obstructions containing vertex $v \Longrightarrow \text{Remove } v, \ k=k-1$
- 3. $S_v \subseteq V(G) \setminus \{v\}$ with $|S_v| \le 7k$ s.t. $G S_v$ has no obstruction containing v.

The complete degree of v is defined as the minimum number of components of $G[N_G(v) \setminus S_v]$ among all S_v considered above.

▶ RR5 ((k + 1)-distinct obstructions rule): Apply the proposition above.

Proposition: Given a graph G and $v \in V(G)$ and k a positive integer. In $\mathcal{O}(kn^3)$ time we can find either:

- 1. k+1 pairwise vertex disjoint obstructions \Longrightarrow No-instance
- 2. k+1 obstructions containing vertex $v \Longrightarrow \text{Remove } v, \ k=k-1$
- 3. $S_v \subseteq V(G) \setminus \{v\}$ with $|S_v| \le 7k$ s.t. $G S_v$ has no obstruction containing v.

The complete degree of v is defined as the minimum number of components of $G[N_G(v) \setminus S_v]$ among all S_v considered above.

- RR5 ((k + 1)-distinct obstructions rule): Apply the proposition above.
 - ▶ If *G* is reduced with RR1-RR5 and has more than $\mathcal{O}(k^6)$ vertices, *G* has a vertex *v* s.t. RR6 can be applied

▶ RR6 (Large complete degree rule): $v \in V(G)$ and $X \subseteq V(G) \setminus \{v\}$ with $|X| \le 7k|$. Let \mathcal{C} be a set of connected components of $G - X \cup \{c\}$. Let $\varphi : X \to C_3$ where C_3 is the set of subsets of \mathcal{C} with cardinality 3, s.t.:

- ▶ RR6 (Large complete degree rule): $v \in V(G)$ and $X \subseteq V(G) \setminus \{v\}$ with $|X| \le 7k|$. Let \mathcal{C} be a set of connected components of $G X \cup \{c\}$. Let $\varphi : X \to C_3$ where C_3 is the set of subsets of \mathcal{C} with cardinality 3, s.t.:
 - \triangleright v together with any component in $\mathcal C$ induces a subgraph of G that is a blockgraph.

Reduction Rule 6

- ► RR6 (Large complete degree rule):
 - $v \in V(G)$ and $X \subseteq V(G) \setminus \{v\}$ with $|X| \le 7k|$. Let \mathcal{C} be a set of connected components of $G - X \cup \{c\}$. Let $\varphi : X \to C_3$ where C_3 is the set of subsets of \mathcal{C} with cardinality 3, s.t.:
 - \triangleright v together with any component in $\mathcal C$ induces a subgraph of G that is a blockgraph.
 - ▶ v has a neighbor in $\forall C \in C$ and there is a $x \in X$ that has a neighbor in C.

Reduction Rule 6

- ▶ RR6 (Large complete degree rule):
 - $v \in V(G)$ and $X \subseteq V(G) \setminus \{v\}$ with $|X| \le 7k|$. Let \mathcal{C} be a set of connected components of $G - X \cup \{c\}$. Let $\varphi : X \to C_3$ where C_3 is the set of subsets of \mathcal{C} with cardinality 3, s.t.:
 - v together with any component in C induces a subgraph of G that is a blockgraph.
 - ▶ v has a neighbor in $\forall C \in C$ and there is a $x \in X$ that has a neighbor in C.
 - $\triangleright \varphi(x)$ maps x to components that are neighbors of x.

Reduction Rule 6

- ► RR6 (Large complete degree rule):
 - $v \in V(G)$ and $X \subseteq V(G) \setminus \{v\}$ with $|X| \le 7k|$. Let \mathcal{C} be a set of connected components of $G - X \cup \{c\}$. Let $\varphi : X \to C_3$ where C_3 is the set of subsets of \mathcal{C} with cardinality 3, s.t.:
 - \triangleright v together with any component in \mathcal{C} induces a subgraph of G that is a blockgraph.
 - ▶ v has a neighbor in $\forall C \in C$ and there is a $x \in X$ that has a neighbor in C.
 - $\triangleright \varphi(x)$ maps x to components that are neighbors of x.
 - $ightharpoonup \varphi(x) \cap \varphi(y) \neq \emptyset \text{ iff } x \neq y$

Illustration of RR6

Figure: Application of RR6: $\bigcup_{x \in X} \varphi(x)$ gets disconnected from v and for each $x \in X$ two vertex disjoint paths (\nearrow) from x to v are added

Illustration of RR6

Figure: Application of RR6: $\bigcup_{x \in X} \varphi(x)$ gets disconnected from v and for each $x \in X$ two vertex disjoint paths (\nearrow) from x to v are added

For $\geq 3|X|$ removed edges 2|X| edges are introduced that are connected to a vertex with degree 2

Illustration of RR6

Figure: Application of RR6: $\bigcup_{x \in X} \varphi(x)$ gets disconnected from v and for each $x \in X$ two vertex disjoint paths (\nearrow) from x to v are added

For $\geq 3|X|$ removed edges 2|X| edges are introduced that are connected to a vertex with degree 2

RR6 reduces edges that connect two vertices with degree \geq 3 by at least 1.

- ▶ Apply rules 1-5 exhaustively. Then one of the following is true:
 - 1. The given instance is a No-instance
 - 2. The reduced graph is a polykernel of size $\mathcal{O}(k^6)$
 - 3. There exists a vertex v s.t. RR6 can be applied

- ▶ Apply rules 1-5 exhaustively. Then one of the following is true:
 - 1. The given instance is a No-instance
 - 2. The reduced graph is a polykernel of size $\mathcal{O}(k^6)$
 - 3. There exists a vertex v s.t. RR6 can be applied
- Count the number of components (from RR6) with obstructions

- ▶ Apply rules 1-5 exhaustively. Then one of the following is true:
 - 1. The given instance is a No-instance
 - 2. The reduced graph is a polykernel of size $\mathcal{O}(k^6)$
 - 3. There exists a vertex v s.t. RR6 can be applied
- ► Count the number of components (from RR6) with obstructions ($\# > k \implies \text{No-instance}$)

- ▶ Apply rules 1-5 exhaustively. Then one of the following is true:
 - 1. The given instance is a No-instance
 - 2. The reduced graph is a polykernel of size $\mathcal{O}(k^6)$
 - 3. There exists a vertex v s.t. RR6 can be applied
- Count the number of components (from RR6) with obstructions ($\# > k \implies \text{No-instance}$)
- Application of RR6 yields components that are connected to the rest of the graph via a cut vertex $x \in X$.

- ▶ Apply rules 1-5 exhaustively. Then one of the following is true:
 - 1. The given instance is a No-instance
 - 2. The reduced graph is a polykernel of size $\mathcal{O}(k^6)$
 - 3. There exists a vertex v s.t. RR6 can be applied
- Count the number of components (from RR6) with obstructions ($\# > k \implies \text{No-instance}$)
- Application of RR6 yields components that are connected to the rest of the graph via a cut vertex $x \in X$.
- ► These components can be removed from G with RR2 (Cut vertex rule), then start again from top.

- ▶ Apply rules 1-5 exhaustively. Then one of the following is true:
 - 1. The given instance is a No-instance
 - 2. The reduced graph is a polykernel of size $\mathcal{O}(k^6)$
 - 3. There exists a vertex v s.t. RR6 can be applied
- ► Count the number of components (from RR6) with obstructions ($\# > k \implies \text{No-instance}$)
- Application of RR6 yields components that are connected to the rest of the graph via a cut vertex $x \in X$.
- ► These components can be removed from G with RR2 (Cut vertex rule), then start again from top.
- ▶ Each application of RR6 reduces the number of edges which connect two vertices with a vertex degree \geq 3 by at least 1.

- ▶ Apply rules 1-5 exhaustively. Then one of the following is true:
 - 1. The given instance is a No-instance
 - 2. The reduced graph is a polykernel of size $\mathcal{O}(k^6)$
 - 3. There exists a vertex v s.t. RR6 can be applied
- Count the number of components (from RR6) with obstructions ($\# > k \implies \text{No-instance}$)
- Application of RR6 yields components that are connected to the rest of the graph via a cut vertex $x \in X$.
- ► These components can be removed from *G* with RR2 (Cut vertex rule), then start again from top.
- ▶ Each application of RR6 reduces the number of edges which connect two vertices with a vertex degree \geq 3 by at least 1.
- ▶ Therefore at some point either (1) or (3) is true

References

- Hopcroft, J. and Tarjan, R. (1973).
 Algorithm 447: Efficient Algorithms for Graph Manipulation.

 Commun. ACM, 16(6):372–378.
- Kim, E. J. and Kwon, O.-J. (2017).
 A Polynomial Kernel for Block Graph Deletion.

 Algorithmica, 79(1):251–270.
- Thomassé, S. (2010).

 A 4k² kernel for feedback vertex set.

 ACM Transactions on Algorithms (TALG), 6(2):32.