Package 'gmwmx'

March 20, 2023

Title Estimate Functional and Stochastic Parameters of Linear Models with Correlated Residuals

Version 1.0.3

License AGPL-3

Description Implements the Generalized Method of Wavelet Moments with Exogenous Inputs estimator (GMWMX) presented in Cucci, D. A., Voirol, L., Kermarrec, G., Montillet, J. P., and Guerrier, S. (2023) <doi:10.1007/s00190-023-01702-8>.

The GMWMX estimator allows to estimate functional and stochastic parameters of linear models with correlated residuals.

The 'gmwmx' package provides functions to estimate, compare and analyze models, utilities to load and work with Global Navigation Satellite System (GNSS) data as well as methods to compare results with the Maximum Likelihood Estimator (MLE) implemented in Hector.

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>= 4.0.0)

Suggests rmarkdown, knitr, simts

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp, fs, stringi, wv, Matrix, longmemo, rjson, ltsa

NeedsCompilation yes

Author Davide Antonio Cucci [aut],

Lionel Voirol [aut, cre],

Stéphane Guerrier [aut],

Jean-Philippe Montillet [ctb],

Gaël Kermarrec [ctb]

Maintainer Lionel Voirol lionel voirol@hotmail.com>

Repository CRAN

Date/Publication 2023-03-20 15:20:02 UTC

2 cola

R topics documented:

Index		15
	write.gnssts	13
	remove_outliers_hector	
	read.gnssts	11
	print.gnsstsmodel	10
	plot.gnsstsmodel	9
	PBO_get_station	8
	PBO_get_offsets	8
	estimate_hector	7
	estimate_gmwmx	5
	create_A_matrix	5
	create.gnssts	4
	compare_fits	3
	cola	2

GNSS time series for PBO station COLA

Description

cola

Data from station COLA of the Plate Boundary Observatory

Usage

cola

Format

A gnssts object of the East position (dE) of the COLA station

Source

https://data.unavco.org/archive/gnss/products/position/COLA/COLA.pbo.igs14.pos

compare_fits 3

		_		
com	pare	e †	1	ts

Compare graphically two gnsstsmodel objects.

Description

Compare graphically two gnsstsmodel objects.

Usage

```
compare_fits(fit_1, fit_2, main = NULL, y_unit = "mm", x_unit = "days")
```

Arguments

fit_1	A gnsstsmodel object.
fit_2	A gnsstsmodel object.
main	A string specifying the plot title.
y_unit	A string specifying the y axis label.
x_unit	A string specifying the x axis label.

Value

No return value. Produce a plot comparing two estimated models.

4 create.gnssts

create.gnssts

Create a gnssts object

Description

Create a gnssts object

Usage

```
create.gnssts(t, y, jumps = NULL, sampling_period = 1)
```

Arguments

t A vector specifying the time of each observation of the time series.

y A vector specifying the values of each observation of the time series.

jumps A vector specifying the time values for which there is a jump.

sampling_period

An integer specifying the sampling period.

Value

A gnssts object.

```
phase <- 0.45
amplitude <- 2.5
sigma2_wn < -15
bias <- 0
trend < -5 / 365.25
cosU <- amplitude * cos(phase)</pre>
sinU <- amplitude * sin(phase)</pre>
year <- 5
n <- year * 365
jump_vec <- c(200, 300, 500)
jump_height <- c(10, 15, 20)
nbr_sin <- 1
A <- create_A_matrix(1:n, jump_vec, n_seasonal = nbr_sin)
x_0 <- c(bias, trend, cosU, sinU, jump_height)</pre>
eps <- rnorm(n = n, sd = sqrt(sigma2_wn))</pre>
yy <- A %*% x_0 + eps
gnssts_obj \leftarrow create.gnssts(t = 1:length(yy), y = yy, jumps = jump_vec)
str(gnssts_obj)
```

create_A_matrix 5

create_A_	matrix	D_{i}

Define matrix A of the functional model

Description

Define matrix A of the functional model

Usage

```
create_A_matrix(t_nogap, jumps, n_seasonal)
```

Arguments

t_nogap A vector specifying the index of the time series.

jumps A vector specifying the time at which there is a mean shift of the time series.

Should be specified to NULL if there is not presence of offsets in the signal.

n_seasonal An integer specifying the number of sinusoidal signals in the time series.

Value

Matrix A in order to compute the functional component of the model in a linear fashion

Examples

```
n= 10*365
jump_vec <- c(200, 300, 500)
nbr_sin = 2
A <- create_A_matrix(1:n, jump_vec, n_seasonal = nbr_sin)
head(A)
A <- create_A_matrix(1:n, jumps = NULL, n_seasonal = nbr_sin)
head(A)</pre>
```

estimate_gmwmx

Estimate a stochastic model in a two-steps procedure using the GMWMX estimator.

Description

Estimate a stochastic model in a two-steps procedure using the GMWMX estimator.

6 estimate_gmwmx

Usage

```
estimate_gmwmx(
    X,
    theta_0,
    n_seasonal = 1,
    model_string,
    method = "L-BFGS-B",
    maxit = 1e+06,
    ci = FALSE,
    k_iter = 1
)
```

Arguments

Χ	A gnssts object
theta_0	A vector specifying the initial values for the vector of parameter of the stochastic model considered.
n_seasonal	An integer specifying the number of seasonal component in the time series.
model_string	A string specifying the model to be estimated.
method	A string specifying the numerical optimization method that should be supplied to optim()
maxit	An integer specifying the maximum number of iterations for the numerical optimization procedure.
ci	A boolean specifying if confidence intervals for the estimated parameters should be computed.
k_iter	An integer specifying the number of time the two steps GMWMX procedure should be run.

Value

A gnsstsmodel object.

estimate_hector 7

estimate_hector	Estimate a stochastic model based on the MLE and the Hector implementation.

Description

Estimate a stochastic model based on the MLE and the Hector implementation.

Usage

```
estimate_hector(
   x,
   n_seasonal = 1,
   model_string,
   likelihood_method = "AmmarGrag",
   cleanup = TRUE
)
```

Arguments

Value

A gnsstsmodel object.

PBO_get_station

PBO_get_offsets

Extract offsets for a PBO station

Description

Extract offsets for a PBO station

Usage

```
PBO_get_offsets(station_name)
```

Arguments

station_name A string specifying the PBO station name.

Value

A vector specifying the offsets of a PBO station.

Examples

```
## Not run:
pbo_cola_offsets = PBO_get_offsets(station_name = "COLA")
pbo_cola_offsets
## End(Not run)
```

PBO_get_station

Load station data from PBO

Description

Load station data from PBO

Usage

```
PBO_get_station(station_name, column, time_range = c(-Inf, Inf), scale = 1)
```

Arguments

 ${\tt station_name} \qquad A \ {\tt string} \ {\tt specifying} \ {\tt the} \ {\tt PBO} \ {\tt station} \ {\tt name}.$

column A string specifying the name of the column to extract.

time_range A vector of 2 specifying the time range of data to extract.

scale A scalar specifying an optional scaling parameter applied to the extracted data.

plot.gnsstsmodel 9

Value

A gnssts object that contains the data associated with the specified PBO station.

Examples

```
## Not run:
pbo_cola_data = PBO_get_station("COLA", column="dE")
str(pbo_cola_data)
## End(Not run)
```

plot.gnsstsmodel

Plotting method for a gnsstsmodel object.

Description

Plotting method for a gnsstsmodel object.

Usage

```
## S3 method for class 'gnsstsmodel'
plot(
    x,
    main = NULL,
    y_unit = "mm",
    x_unit = "days",
    legend_position = "bottomright",
    legend_position_wv = "bottomleft",
    ...
)
```

Arguments

Value

No return value. Plot a gnsstsmodel object.

10 print.gnsstsmodel

Examples

print.gnsstsmodel

Print method for a gnsstsmodel object.

Description

Print method for a gnsstsmodel object.

Usage

```
## S3 method for class 'gnsstsmodel' print(x, ...)
```

Arguments

x A gnsstsmodel object.

... Additional graphical parameters.

Value

No return value. Print a gnsstsmodel object.

read.gnssts 11

read.gnssts

Read a gnssts object

Description

Read a gnssts object

Usage

```
read.gnssts(filename, format = "mom")
```

Arguments

filename A string specifying the name of the file to read.

format A string specifying the format of the file to read.

Value

Return a gnssts object.

```
phase <- 0.45
amplitude <- 2.5
sigma2_wn < -15
bias <- 0
trend <- 5 / 365.25
cosU <- amplitude * cos(phase)</pre>
sinU <- amplitude * sin(phase)</pre>
year <- 5
n \leftarrow year * 365
jump_vec <- c(200, 300, 500)
jump_height <- c(10, 15, 20)
nbr_sin <- 1
A <- create_A_matrix(1:n, jump_vec, n_seasonal = nbr_sin)
x_0 \leftarrow c(bias, trend, cosU, sinU, jump_height)
eps <- rnorm(n = n, sd = sqrt(sigma2_wn))</pre>
yy <- A %*% x_0 + eps
gnssts_obj <- create.gnssts(t = 1:length(yy), y = yy, jumps = jump_vec)</pre>
str(gnssts_obj)
## Not run:
write.gnssts(x = gnssts_obj, filename = "test.mom")
gnssts_obj <-read.gnssts(filename = "test.mom", format = "mom")</pre>
## End(Not run)
```

```
remove_outliers_hector
```

Remove outliers from a gnssts object using Hector

Description

Remove outliers from a gnssts object using Hector

Usage

```
remove_outliers_hector(x, n_seasonal, IQ_factor = 3, cleanup = TRUE)
```

Arguments

X	A gnssts object
n_seasonal	An integer specifying the number of seasonal component in the time series.
IQ_factor	A double specifying the number used to scale the interquartile range and corresponding to the argument IQ_factor in Hector removeoutliers.ctl
cleanup	An boolean specifying if temporary files should be cleaned.

Value

A gnssts object.

```
phase =
            0.45
amplitude = 2.5
                 15
sigma2_wn =
bias =
trend =
                 5/365.25
                 amplitude*cos(phase)
cosU =
sinU =
                 amplitude*sin(phase)
n= 2*365
# define time at which there are jumps
jump_vec = c(100, 200)
jump_height = c(10, 20)
# generate residuals
eps = rnorm(n = n, sd = sqrt(sigma2_wn))
# add trend, gaps and sin
A = create_A_matrix(1:length(eps), jump_vec, n_seasonal = 1)
# define beta
x_0 = c(bias, trend, jump_height, cosU, sinU)
# create time series
yy = A %*% x_0 + eps
plot(yy, type="l")
n_{outliers} = 30
set.seed(123)
```

write.gnssts 13

```
id_outliers=sample(150:350, size = n_outliers)
val_outliers = rnorm(n = n_outliers, mean = max(yy)+10, sd = 5)
yy[id_outliers] = val_outliers
plot(yy, type="1")
# save signal in temp
gnssts_obj = create.gnssts(t = 1:length(yy), y = yy, jumps = jump_vec)
## Not run:
clean_yy = remove_outliers_hector(x=gnssts_obj, n_seasonal = 1)
plot(clean_yy$t, clean_yy$y, type="1")
## End(Not run)
```

write.gnssts

Write a gnssts object

Description

Write a gnssts object

Usage

```
write.gnssts(x, filename, format = "mom")
```

Arguments

x A R object to save as a gnssts object.

filename A string specifying the name of the file to write.

format A string specifying the format of the file to write.

Value

No return value. Write a gnssts object in a .mom file by default.

```
phase <- 0.45
amplitude <- 2.5
sigma2_wn <- 15
bias <- 0
trend <- 5 / 365.25
cosU <- amplitude * cos(phase)
sinU <- amplitude * sin(phase)
year <- 5
n <- year * 365
jump_vec <- c(200, 300, 500)
jump_height <- c(10, 15, 20)
nbr_sin <- 1
A <- create_A_matrix(1:n, jump_vec, n_seasonal = nbr_sin)
x_0 <- c(bias, trend, cosU, sinU, jump_height)</pre>
```

14 write.gnssts

```
eps <- rnorm(n = n, sd = sqrt(sigma2_wn))
yy <- A %*% x_0 + eps
gnssts_obj <- create.gnssts(t = 1:length(yy), y = yy, jumps = jump_vec)
str(gnssts_obj)
## Not run:
write.gnssts(x = gnssts_obj, filename = "test.mom")
## End(Not run)</pre>
```

Index