folha 13 -

- 87. Para cada uma das relações seguintes indique o respetivo domínio e imagem.
 - (a) S é a relação de $A = \{0, 1, 2, 3, 4, 5\}$ em $B = \{1, 2, 3\}$ dada por

$$S = \{(0,1), (1,1), (2,2), (3,2), (4,3)\}.$$

- (b) R é a relação em \mathbb{R} dada por $R = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}.$
- (c) \mid é a relação "divide" em $\{2, 3, 4, 6, 9, 10, 12, 20\}$ definida por

$$a \mid b \iff \exists n \in \mathbb{N} \quad b = na.$$

- (d) Dado um conjunto A, T é a relação de A em $\mathcal{P}(A)$ dada por $\{(x,X) \mid x \in X\}$.
- (e) < é a relação "menor" usual em \mathbb{N} .
- 88. Seja $A = \{2, 4, 6, 8, 10\}$. Considere as seguintes relações em $A: R = \{(2, 2), (2, 4), (2, 6), (10, 8)\}$, $S = \{(10, 2), (10, 8)\}\ e\ T = \{(6, 2), (6, 4), (8, 10)\}.$ Determine
 - (a) R^{-1}
- (b) $R^{-1} \cup S^{-1}$
- (c) $T \setminus S^{-1}$
- (d) $T^{-1} \cap S$
- (e) $S \circ T$
- (f) $R \circ T$
- (g) $S^{-1} \circ T^{-1}$
- (h) $S^{-1} \circ S$
- 89. Sejam $A = \{1, 2, 3\}$ e $B = \{x, y, w, z\}$. Considere as relações binárias de A em B e de B em A, respetivamente:

$$R = \{(1,x), (1,z), (2,y), (2,z)\}$$

$$S = \{(x,1), (x,3), (y,2), (w,2), (z,3)\}.$$

Sejam $T = S \circ R$ e $U = R \circ S$.

- (a) Determine:

- i) R^{-1} ii) S^{-1} iii) T iv) $T \circ T$ v) U vi) $U \circ U$.

- (b) Verifique que $T^{-1} = R^{-1} \circ S^{-1}$.
- (c) Indique o domínio e a imagem de R.
- (d) Dê um exemplo de relações binárias não vazias R' de A em B e S' de B em A, tais que $S' \circ R' \neq \emptyset \in R' \circ S' = \emptyset.$
- 90. Investigue se as igualdades que se seguem são verdadeiras, para quaisquer relações R_1, R_2 e R_3 definidas em conjuntos apropriados.
 - (a) $(R_1 \circ R_2)^{-1} = (R_1^{-1} \circ R_2^{-1})$
 - (b) $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
 - (c) $(R_1 \cap R_2) \cup R_3 = R_1 \cap (R_2 \cup R_3)$
 - (d) $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$

folha 14 -

91. Sejam A um conjunto e R, S e T relações binárias definidas em A. Mostre que:

(a) $(R^{-1})^{-1} = R$;

- (b) Se $R \subseteq S$ então $R^{-1} \subseteq S^{-1}$;
- (c) $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$;
- (d) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$;
- (e) $(R \cup S) \circ T = (R \circ T) \cup (S \circ T);$ (f) $T \circ (R \cup S) = (T \circ R) \cup (T \circ S);$
- (g) $(R \cap S) \circ T \subseteq (R \circ T) \cap (S \circ T)$;
- (h) $T \circ (R \cap S) \subseteq (T \circ R) \cap (T \circ S)$.

92. Seja A um conjunto. Diga, justificando, se as seguintes proposições são verdadeiras ou falsas.

- (a) Para qualquer relação binária R definida em A, $R \circ R^{-1} = id_A$.
- (b) Para qualquer relação binária R definida em A, $R \circ id_A = id_A \circ R = R$.
- (c) Para qualquer relação binária R definida em $A, R \subseteq R \circ \omega_A$.
- 93. Considere o conjunto $A = \{1, 2, 3, 4\}$ e as seguintes relações em A:

$$R_1 = \{(1,4), (2,2), (2,3), (3,2), (4,1)\},\$$

$$R_2 = \{(2,3)\},\$$

$$R_3 = \{(1,2), (2,3), (3,2), (1,3), (2,2), (3,3)\},\$$

$$R_4 = \{(a, a) \mid a \in A\} = id_A.$$

Diga, justificando, se cada uma das relações apresentadas é ou não uma relação

- (a) reflexiva;
- (b) simétrica;
- (c) anti-simétrica;
- (d) transitiva.

94. Sejam $A = \{1,2,3\}$ e $R = \{(1,2),(3,1)\}$ uma relação binária em A. Determine a menor relação binária em A que inclua R e que seja reflexiva (respetivamente, simétrica, transitiva e de equivalência).

95. Seja R uma relação binária em A. Mostre que:

- (a) R é reflexiva em A se e só se $id_A \subseteq R$.
- (b) R é simétrica em A se e só se $R^{-1} = R$.
- (c) R é transitiva em A se e só se $R \circ R \subseteq R$.
- (d) R é antissimétrica se e só se $R \cap R^{-1} = id_A$.

96. Sejam A um conjunto e R uma relação simétrica e transitiva em A. Mostre que

- (a) R não é necessariamente reflexiva.
- (b) Se o domínio de $R \in A$, então $R \in R$ fereflexiva.

97. Seja $A = \{-3, -1, 0, 1, 2, 3\}$ e considere a relação de equivalência R em A definida por x R y se e só se $x^2 = y^2$. Indique todos os elementos da classe $[-3]_R$ e determine o conjunto quociente A/R.

98. Seja $A = \{1, 2, 4, 6, 7, 9\}$ e considere a relação de equivalência \sim em A definida por $x \sim y$ se e só se x+y=2n, para algum $n\in\mathbb{N}$. Indique todos os elementos da classe $[2]_{\sim}$ e determine o conjunto quociente A/\sim .

folha 15 -

99. Seja $A = \{1, 2, 3\}$ e considere a relação \sim em $\mathcal{P}(A)$ definida por

$$X \sim Y$$
 se e só se $X \cup \{1, 2\} = Y \cup \{1, 2\}$.

- (a) Mostre que \sim é uma relação de equivalência em $\mathcal{P}\left(A\right)$.
- (b) Indique todos os elementos da classe $[\{1\}]_{\sim}$.
- (c) Determine o conjunto quociente $\mathcal{P}(A) / \sim$.
- 100. Considere as relações R_1, R_2 e R_3 apresentadas a seguir:
 - R_1 é a relação em $A = \{1, 2, 3, 4, 5, 6, 8\}$ definida por $x R_1 y$ se e só se x e y têm o mesmo resto na divisão inteira por 3;
 - R_2 é a relação em $\mathbb{R} \times \mathbb{R}$ definida por (x,y) R_2 (z,w) se e só se y=w;
 - R_3 é a relação em $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ definida por (a,b) R_3 (c,d) se e só se ad = bc.
 - (a) Verifique que R_1 , R_2 e R_3 são relações de equivalência.
 - (b) Para as relações R_1 e R_2 descreva cada classe de equivalência e indique o conjunto quociente.
 - (c) Mostre que a correspondência $[(a,b)] \mapsto \frac{a}{b}$ define uma bijecção $(\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}))/R_3 \to \mathbb{Q}$.
- 101. Seja $A = \{2, 3, 4, 6, 7\}$ e sejam

$$\begin{split} \Pi_1 &= \left\{ \left\{ 2,4 \right\}, \left\{ 3 \right\}, \left\{ 4,6 \right\}, \left\{ 3,6,7 \right\} \right\}, & \Pi_2 &= \left\{ \left\{ 2,4,6 \right\}, \left\{ 3,7 \right\} \right\}, \\ \Pi_3 &= \left\{ \left\{ 2 \right\}, \left\{ 3,4,7 \right\} \right\}, & \Pi_4 &= \left\{ \left\{ 2 \right\}, \left\{ 3 \right\}, \left\{ 4 \right\}, \left\{ 6 \right\}, \left\{ 7 \right\} \right\}, \\ \Pi_5 &= \left\{ \left\{ 2 \right\}, \emptyset, \left\{ 3,4 \right\}, \left\{ 6,7 \right\} \right\}, & \Pi_6 &= \left\{ \left\{ 2,6 \right\}, \left\{ 3,7 \right\}, \left\{ 4 \right\} \right\}. \end{split}$$

- (a) Diga, justificando, quais dos conjuntos Π_i $(1 \le j \le 6)$ são partições de A.
- (b) Para os conjuntos Π_j ($1 \le j \le 6$) que são partições, determine a relação de equivalência em A associada a Π_j .
- 102. Sejam $A = \{1, 2, 3, 6, 7, 9, 10, 11, 26\}$ e \sim a relação de equivalência em A definida por

 $x \sim y \Leftrightarrow x \in y$ têm o mesmo número de divisores naturais

Determine a partição de A associada a \sim , isto é, o conjunto quociente A/\sim .

103. Considere a relação \sim em \mathbb{Z} definida por

$$x \sim y$$
 se e só se $|x| = |y|$.

- (a) Mostre que \sim é uma relação de equivalência.
- (b) Determine a partição de \mathbb{Z} associada a \sim , isto é, o conjunto quociente \mathbb{Z}/\sim .
- 104. Sejam $A = \{1, 2, 3, 4\}$ e sejam ρ_1, ρ_2, ρ_3 e ρ_4 as seguintes relações em A:

$$\rho_{1} = \{(1,1), (4,1), (2,2), (4,2), (3,3), (4,4)\}
\rho_{2} = \{(1,1), (1,4), (2,2), (4,2), (3,3), (4,4), (2,4)\}
\rho_{3} = \{(1,1), (2,2), (3,3), (4,4)\}
\rho_{4} = \{(1,1), (2,3), (2,2), (2,1), (3,3), (4,4), (3,1)\}$$

Indique se cada uma destas relações é ou não uma ordem parcial e, para cada ordem parcial, apresente o correspondente diagrama de Hasse.

folha 16 -

- 105. Mostre que os seguintes pares são c.p.o.'s:
 - (i) $(\mathcal{P}(A),\subseteq)$, onde A é um conjunto; (ii) $(\mathbb{N},|)$, onde | é a relação "divide".
- 106. Construa diagramas de Hasse para os seguintes c.p.o.'s:
 - (i) $(\mathcal{P}(A), \subseteq)$, sendo $A = \{1, 2, 3, 4\}$; (ii) (A, |), sendo $A = \{2, 3, 4, 6, 10, 12, 20\}$.
- 107. Sejam $P = \{1, 2, 3, 4, 5, 6, 7, 8\}, X = \{1, 2, 6\}$ e $Y = \{2, 3, 4, 8\}$. Considere o c.p.o. (P, \leq) como seguinte diagrama de Hasse:

Para cada um dos conjuntos X e Y determine, caso existam, os majorantes e minorantes, o supremo e o ínfimo, os elementos maximais e minimais e o máximo e o mínimo.

108. Seja $P = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Considere o c.p.o. (P, \leq) cuja relação de ordem parcial é dada pelo diagrama de Hasse

- (a) Seja $X = \{1, 2, 3, 4\}$. Determine, caso existam, Maj(X), Min(X), max(X) e min(X).
- (b) Justifique que $\sup(\emptyset) = 3$ e que não existe $\inf(\emptyset)$.
- (c) Dê exemplo de um subconjunto de P com exatamente 3 elementos e que tenha 2 elementos minimais e 2 elementos maximais.
- 109. Sejam (A, \leq) um c.p.o. e $X \subseteq A$. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes proposições:
 - (a) Se X tem um elemento maximal então X tem elemento máximo;
 - (b) Se X tem elemento máximo então X tem um elemento maximal;
 - (c) Se existe $\sup(X)$ então X tem um elemento maximal;
 - (d) Se X tem um elemento maximal então existe $\sup(X)$;
- 110. Seja (A, \leq) um c.p.o.. Mostre que o supremo (ínfimo) de um subonjunto X de A, caso exista, é único.
- 111. Sejam (A, \leq) um c.p.o.. e $X \subseteq A$. Mostre que se m é o elemento máximo de X, então m é o supremo de X.

- folha 17 **-**

112. (a) Sejam (P, \leq) um c.p.o. e \leq_d a relação binária definida em P por

$$a \leq_d b$$
 se e só se $b \leq a$.

Mostre que \leq_d é uma relação de ordem parcial.

- (b) Considere o c.p.o. (P, \leq) definido no exercício 107. e construa o diagrama de Hasse de (P, \leq_d) .
- 113. Considere os reticulados (P_1, \leq_1) e (P_2, \leq_2) a seguir representados

Para cada uma das aplicações h seguintes, diga se: i. h é isótona; ii. h é um isomorfismo de c.p.o.'s.

- (a) $h: P_1 \to P_1$, definida por h(a) = a, h(b) = c, h(c) = d, h(d) = e, h(e) = e.
- (b) $h: P_1 \to P_2$, definida por h(a) = x, h(b) = y, h(c) = z, h(d) = w, h(e) = v.
- (c) $h: P_2 \to P_1$, definida por h(x) = a, h(y) = b, h(z) = c, h(w) = d, h(v) = e.
- (d) $h: P_2 \to P_2$, definida por h(x) = x, h(y) = z, h(z) = y, h(w) = w, h(v) = v.
- 114. Sejam (\mathbb{N}, \leq) e (\mathbb{N}, \leq') os c.p.o.'s cujas relações de ordem são definidas em \mathbb{N} por

$$a \leq b$$
 se e só se $a \mid b$,

$$a \leq b$$
 se e só se $b = a^k$, para algum $k \in \mathbb{N}$.

Mostre que a função identidade $id_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}$ é um homomorfismo de (\mathbb{N}, \leq) em (\mathbb{N}, \leq') , mas não é um isomorfismo.

115. Sejam (A, \leq) um c.p.o. e $f: A \to \mathcal{P}(A)$ a aplicação definida por

$$f(x) = \{ y \mid y \in A \land y < x \}.$$

Prove que f é um mergulho de ordem. Justifique que f é injetiva.

116. Considere o conjunto $A=\{1,2,3,4,5,6,7,8,9\}$ e o c.p.o. (A,\leq) representado pelo diagrama de Hasse

Indique, justificando:

- (a) Elementos $x, y \in A$ não comparáveis e tais que $\{x, y\}$ tenha supremo.
- (b) Um subconjunto X de A com exatamente 4 elementos e tais que (X, \leq_X) seja um reticulado.
- (c) Um subconjunto Y de A que tenha exatamente 2 elementos maximais e 3 elementos minimais.

folha 18 –

117. Considere em N a relação | definida por

$$x|y \Leftrightarrow \exists k \in \mathbb{N} : y = kx.$$

- (a) Mostre que o c.p.o. (N, |) não é uma cadeia.
- (b) Diga, justificando, se $(\mathbb{N}, |)$ tem elemento máximo ou elemento mínimo.
- (c) Mostre que $(\mathbb{N}, |)$ é um reticulado, indicando para quaisquer $a, b \in \mathbb{N}_0$, o supremo e o ínfimo de $\{a, b\}$.
- (d) Considere $X = \{0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18\}$ e $Y = \{1, 2, 5, 6, 12, 20, 30, 120\}$.
 - (i) Construa os diagramas de Hasse de $(X, |_X)$ e de $(Y, |_Y)$.
 - (ii) Indique, caso existam, os elementos minimais e os elementos maximais de X.
 - (iii) Indique, caso existam, elementos $a, b \in Y$ tais que:
 - (α) exista supremo de $\{a,b\}$ em $(Y,|_Y)$ e este supremo seja diferente do supremo de $\{a,b\}$ em $(\mathbb{N},|);$
 - (β) não exista supremo de $\{a,b\}$ em $(Y,|_Y)$.
 - (iv) Dê exemplo de um subconjunto Z de X tal que $(Z,|_Z)$ tenha elemento máximo e elemento mínimo e não seja um reticulado.
- 118. Sejam (A, \leq) e (B, \leq') c.p.o.'s e $\varphi: A \to B$ um isomorfismo. Mostre que se a relação \leq é uma ordem total, então \leq' também é uma ordem total.
- 119. Seja A um conjunto. Mostre que $(\mathcal{P}(A),\subseteq)$ é um reticulado com elemento máximo e elemento mínimo.
- 120. Seja (A,\leq) um c.p.o.. Mostre que se (A,\leq) é um conjunto bem ordenado, então (A,\leq) é uma cadeia.