Category Theory

Q: What is Category Theory?

A:

- 1. Understanding math objects via relations with each other, i.e. taking an external view, so you do not inspect the internal structure of the objects.
- 2. A whole independent field of study.

Q: What is a category?

A: objects + morphisms

Example:

- **Set** *objects*: sets; *morphisms*: functions
- Group objects: groups; morphisms: group homomorphisms
- Top *objects*: topological spaces; *morphisms*: continuous functions
- **Program Spec** *objects*: program specifications; *morphisms*: programs that trun any program metting one spec into a program meeting another spec
- **Prop** *objects*: propositions; *morphisms*: derivation/implication
- Type *objects*: types; *morphisms*: derivation/function
- Type Theory objects: type theories; morphisms: translations

Counterexample: what is the category of probablistics?

What if two kinds of notions of morphisms are all useful? **Double category!**

Example:

- Set objects: sets; morphisms: functions
- Set objects: sets; morphisms: relations

Definition

A category C is

- a collection of objects ob $\mathcal C$
- for every $X,Y\in {\operatorname{ob}}\ {\mathcal C},$ a collection of morphisms ${\operatorname{hom}}_{\mathcal C}(X,Y)$
- **Id**: for each $X \in \text{ob } \mathcal{C}$, an id morphism $\text{id}_X \in \text{hom}_{\mathcal{C}}(X, X)$
- Comp: for each $f: X \to Y, g: Y \to Z$, a morphism $g \circ f: X \to Z$ in $\hom_{\mathcal{C}}(X, Z)$, such that
 - $f \cap \operatorname{id}_X = f = \operatorname{id}_Y \cap f$

NOTE Normally we don't differentiate left and right identity. There was one particular notion that did, but then they were shown to be equivalent.

• for any $f: X \to Y, g: Y \to Z, h: Z \to A, h \cap (g \cap f) = (h \cap g) \cap f$.

Commutative Diagrams

E.g.
$$f \cap id_X = f$$

Notice how the two paths from *X* to *Y* yield the same morphism.

NOTE There are also *string diagrams*, which is very similar to *proof nets*.

Let's get back to a concrete example.

Prop Category

- ob Prop the collection of propositions
- $\mathrm{hom}_{\mathrm{Prop}(P,Q)} = \begin{cases} \{\top\} \text{ if } P \to Q \\ \emptyset & \text{otherwise} \end{cases}$
- Id: $\operatorname{id}_P = \top$ for all $P \in \operatorname{ob}$ Prop, because $P \to P$ is always true.
- Comp: by modus ponens, $Q \to P$ and $P \to R$ implies $Q \to R$. Properties: trivial.

TODO this is cat but i don't see how it is useful. all morphisms are trivial.. maybe it serves as a gentle introduction to the concept of category that does not serve any real-world purpose?