An Introduction to Genome-Wide Association Studies (GWAS)

Shweta Ramdas
23 June 2021
shwetar@pennmedicine.upenn.edu

How do we find the genes responsible for a disease?

How do we find the genes responsible for a disease using genetic data from human populations?

Knowing your genetic risk for a disease

		My Risk	Population Risk	:
Colorectal Cancer	***	8.9%	5.6%	1.60x
Rheumatoid Arthritis	***	4.6%	2.4%	1.94x
Type 1 Diabetes	***	2.1%	1.0%	2.08x
Esophageal Squamous Cell Carcinoma (ESCC)	***	0.43%	0.36%	1.21x
Stomach Cancer (Gastric Cardia Adenocarcinoma)	***	0.28%	0.23%	1.22x
Bipolar Disorder	***	0.15%	0.10%	1.44x

Genome-wide association study (GWAS)

• Studies aiming to find **genetic differences between individuals** that influence **susceptibility to diseases** (or other traits).

What diseases do we study?

What diseases do we study?

• Mendelian: One gene-one disease

What diseases do we study?

- Mendelian: One gene-one disease
- Complex trait: many genes + environment = disease
 - Different people with the same trait may have different causal factors

How do we find disease genes in the genome?

- Core principle:
 - Collect a large group of people, half with a disease, half without
 - Sample their DNA
 - Look for **genetic differences** between the two groups

Defining genetic variation in the human genome

- Human genome is ______ bases long
- Genetic variant: any position in the genome that varies among individuals
 - Single Nucleotide Polymorphism (SNP)
- Allele: The nucleotides at a given genetic variant
- Genotype: The nucleotides an individual carries at a given position

Defining genetic variation in the human genome

- Human genome is ______ bases long
- Genetic variant: any position in the genome that varies among individuals
 - Single Nucleotide Polymorphism (SNP)
- Allele: The nucleotides at a given genetic variant
- Genotype: The nucleotides an individual carries at a given position

Do we test all positions in the genome for association with the disease?

- Sequencing every position in the genome is expensive
- Can we select a subset of positions to test?

Genetic recombination and linkage

- Offspring gets a mosaic of the two maternal chromosomes, and a mosaic of the two paternal chromosomes
- Physically close locations in a genome have similar genotypes across individuals
 - They 'travel together' in individuals

Genetic recombination and linkage

- Offspring gets a mosaic of the two maternal chromosomes, and a mosaic of the two paternal chromosomes
- Physically close locations in a genome have similar genotypes across individuals
 - They 'travel together' in individuals

Linkage allows us to use 'tag SNPs'

- Can use a single marker as a 'signpost' for an entire region
- These signposts are called 'tag SNPs'
- We use 1 million tag SNPs in GWAS
 - 0.03% of the total genome

Linkage allows us to use 'tag SNPs'

- Can use a single marker as a 'signpost' for an entire region
- These signposts are called 'tag SNPs'
- We use 1 million tag SNPs in GWAS
 - 0.03% of the total genome

2. Testing each SNP for association

2. Testing each SNP for association

- Test significance of association with allele at SNP1 with disease status
 - Chi-square test/linear model
- Check P-value to test significance of association
- P < 0.05 : significant
- P > 0.05 : model is not significant

P-value threshold for GWAS significance

- The more tests you run, the more likely one of these tests reaches P <
 0.05 just by chance
- P-value threshold: 5e-08 (0.05/1,000,000)
 - Correcting for 'multiple testing'

2b. Metrics of interest

• P-value:

 How significant is the association between the SNP and the trait?

• Effect size:

- What is the impact of the SNP on the trait?
- Does having a 'T' allele increase your risk of disease by 2-fold? 20 fold? 200-fold?

2b. Metrics of interest

• P-value:

 How significant is the association between the SNP and the trait?

• Effect size:

- What is the impact of the SNP on the trait?
- Does having a 'T' allele increase your risk of disease by 2-fold? 20 fold? 200-fold?

		My Risk	Population Risk	
Colorectal Cancer	***	8.9%	5.6%	1.60x
Rheumatoid Arthritis	***	4.6%	2.4%	1.94x
Type 1 Diabetes	****	2.1%	1.0%	2.08x
Esophageal Squamous Cell Carcinoma (ESCC)	****	0.43%	0.36%	1.21x
Stomach Cancer (Gastric Cardia Adenocarcinoma)	****	0.28%	0.23%	1.22x
Bipolar Disorder	***	0.15%	0.10%	1.44x

• Colorectal Cancer:

- 1 SNP with P-value < 5e-08
- I have the 'risk allele', increasing my risk 1.6 fold

Summary of steps in a GWAS

- Collect samples (cases and controls)
- Genotype samples across 1 million SNPs
- Perform statistical test for each SNP
- Filter those SNPs with P-value < 5e-08
 - (0.05 * 1,000,000)

Visualizing GWAS results in a Manhattan plot

GWAS of height shows signals across the genome

What do GWAS tell us about biology?

Biology of human traits from GWAS

Biology of human traits from GWAS

- Most traits are highly polygenic
 - More than 100 genetic variants associated with schizophrenia, more than 200 with height, more than 500 with cholesterol
 - Cumulative genetic risk of an individual is additive effect of all associated variants

How are there so many risk factors?

 Genes act in pathways → Changes in multiple pathways lead to risk of disease

How do we compute a person's genetic risk for disease?

GWAS result:

- One significant SNP (P < 5e-08)
- SNP rs10454798 with alleles A,C
 - Effect size for allele A = 0.01
 - Effect size for allele C = 0

How do we compute a person's genetic risk for disease?

GWAS result:

- One significant SNP (P < 5e-08)
- SNP rs10454798 with alleles A,C
 - Effect size for allele A = 0.01
 - Effect size for allele C = 0

- My genotype at SNP rs10454798
 - AA (2 copies of the risk allele)
- My 'added' risk: 2* 0.01 = 0.02

- A person with a GG genotype has no added risk
- A person with an AG genotype has added risk of 0.01

Question: Calculate the genetic risk for an individual for 'handedness'

GWAS results

SNP	Effect allele	
rs3798220	G	-0.47
rs8099	Т	0.512

SNP	My Genotype	Risk from this SNP
rs3798220	AG	
rs8099	AA	

Total risk =

Biology of human traits from GWAS

- Most traits are highly polygenic
 - More than 100 genetic variants associated with schizophrenia, more than 200 with height, more than 500 with cholesterol
- Individual genetic variants have small effect sizes

Biology of human traits from GWAS

- Most traits are highly polygenic
 - More than 100 genetic variants associated with schizophrenia, more than 200 with height, more than 500 with cholesterol
- Individual genetic variants have small effect sizes
- Most causal variation is non-coding

Most causal variation is non-coding

Most causal variation is non-coding

Previous model:

Most causal variation is non-coding

Previous model:

Current model:

Regulatory variation is usually outside a gene

- What is the causal gene?
 - If most causal SNPs are regulatory, how do we find out which genes are involved in the disease?

- What is the causal gene?
 - If most causal SNPs are regulatory, how do we find out which genes are involved in the disease?

- What is the causal variant?
 - It is difficult to distinguish between variants in LD
 - The true causal variant is difficult to identify
 - The top associated variant is a proxy for the causal variant

Allele Frequency

Allele Frequency

More GWAS: GWAS and Population Stratification

- Most GWAS are conducted on European populations
 - Why?
- How transferrable are the results from a European GWAS into GWAS of another ancestry?

Review

- GWAS allow us to study the genetic basis of _____ traits, and help us find _____ variants of _____ effects.
- What does a GWAS result look like?
 - For each variant: P-value, Effect size
 - Effect size of 0 = no effect on phenotype
- GWAS show us that
 - Such traits are highly polygenic.
 - Most causal variants are non-coding

Some questions to think about

- Hypothesis-free experimental approach
 - 'Hypothesis-generating' research

Questions?

• shwetar@pennmedicine.upenn.edu