

Qiang Qu

Course Schedule

∠ Lecture (Start 17 Aug 2015) - English
Monday 9:00-10:30

✓ Seminar and Exercise Groups - English, Russian
10 groups on Monday

Rule: NO SWAP

∠ Logic of groups

Grade level

Various seminar lectures, exercises, lab sessons

Possible language support

Stuff and Teaching Philosophy

- ✓ Primary Instructor (PI)
 Qiang Qu, qu@innopolis.ru
- ✓ Secondary Instructor (SI)
 Sadegh Nobari, nobari@innopolis.ru
- ✓ Assistant Instructor (AI)

 Jooyoung Lee, j. lee@innopolis.ru

 Waqas Nawaz, w. nawaz@innopolis.ru
- Teaching Assistant (TA)

 Rasul Tumyrkin, rasul.tumyrkin@mail.ru

 Emil Melnikov, e. melnikov@innopolis.ru

 Ais Khairullina, ais.khairullina@gmail.com

✓ Define curriculum + Learning by doing + Your own speed

Textbook

∠ A First Course in Database Systems (3rd E) by Jeffrey D. Ullman, Jennifer Widom http://www.amazon.com/First-Course-Database-Systems-Edition/dp/013600637X

- ∠ Slides are adapted from ETH Z.
- ∠ Reference Book:

Concepts of Database Management (7th E) by Philip J. Pratt, Joseph J. Adamski http://www.amazon.com/Concepts-Database-

Management-Philip-Pratt/dp/1111825912

Overview

∠ How to use a database system?

Data modelling (ER, theory)

Database programming (SQL)

∠ How to build a database system?

Query optimization

Transaction management

Internals

∠ What next?

Big Data: Data Warehousing, Data Mining

XML & WWW

Exercises and Exams

∠ Project

TBA in seminar groups one/two, one is graded

✓ Written Exams – both closed book

Mid-term

Final-term

Scoring Scheme

∠ The 5 components matter

```
Attendence: 5% (fail if in total +5 times of absence in lectures and seminars)
```

Assignments: 15%

Mid-term Exam: 20%

Final-term Exam: 50%

Project: 10%

A Short History of Computing

- ∠ since 1940s: Computers for Number Crunching
 von Neuman Machine, Moore's law
- ∠ since 1990s: Magnetic storage cheaper than paper various technologies (tape, disk, flash, ···)
- ∠ since 2000s: "The Cloud"

sensors: most data is digitally born e.g., mobile phones, cars, microwaves, fitbit, ...

A Short History of Computing

- Moor Calculator

 (hit (+, -, *, /)
- various technologies (disk, DRAM, SSD, PCM, ...)
 continued trend of high density at same cost
- ∠ since

Information Hub

(store, process, communicate data)

Computer Science in Change

∠ Traditional Computing - automate processes
execute a sequence of +, *, ...

∠ Today: "Big Data"- automate experiences
do not do the same mistake twice
answer tough questions based on past evidence

Simple Truths

∠ "Power of data"

the more data the merrier (GB -> TB)
data comes from everywhere in all shapes
value of data often discovered later
data has no owner within an organization (no silos!)

- ∠ Services turn data into \$
 - the more services the merrier need to adapt quickly
- ∠ E.g.: Google, Amadeus, Disney, Walmart, BMW, ...
- ✓ Platforms: IBM, Oracle, MS, SAP, Google, 28msec, ...

Two Examples

∠ Google Translate

translate text based on snippets of multi-lang. corpora, e.g., EU patents, translated books, Web sites, etc.

∠ Patients

find patients with the same disease, summarizing features of the disease

Challenges

Automate Experience – NOT Thinking!

only works if you ask the right questions and interpret the answers correctly shortage of Big Data talent on job market

Misuse of data & privacy

owner must control usage of data

∠ Democratization

Big Data opportunities in the hands of everybody

Big Data Question: Yes or No?

- ∠ Find a spouse?
- ∠ Cure for cancer?
- ∠ How to treat a cough?
- ∠ Should I give somebody a loan?
- ✓ Premium for fire insurance?
- ∠ When should my son come home?
- ∠ Which book should I read next?
- ∠ 1+1?

Vision

Answer all questions

Store all data and make it available and useful to all authorized people, anytime and anywhere.

∠ Google's mission statement:

Organize all the information of the world.

✓ Status: Technology is there (card boxes). The model is missing (labels).

Data Science: Science of Questions

- ∠ How to formulate questions?
 relational algebra
- ∠ How to organize data to answer questions?
 ER / UML, relational data model
- ∠ How to acquire data to answer questions?

 project, transactions, (much more not covered)
- ∠ How to make it efficient normal forms, optimization

What is a Database System (DBMS)?

A DBMS is a tool that helps develop and run dataintensive applications (create and maintain):

large databases

large data streams

✓ Database:

collection of interrelated data, which

- 1. represents some aspects of the real world
- 2. is logically coherent with some inherent meaning
- 3. has an intended group of users and applications

The Data Management Universe

DB vs. BD

∠ Databases

You know questions upfront

Closed world: data correct & complete

∠ Big Data

The exact opposite in all regards

∠ But, similar algorithms, languages, technology

Collect data to answer question when it is asked

Bridge time between event (data) and question

Data and Data Models

∠ Formats

XML, serialized Java objects, binary, ...

∠ Structures / Models

Tuples, hierarchies, relationships, lists, unstructured, ...

∠ Examples

Lecture notes

Financial accounts

Emotions (?): love, taste, ...

Systems

∠ Software platforms that store & organize data

```
File system: Windows, ...

Relational database systems: Postgres, Oracle, ...

Other database systems: OB, Sausalito, OODB, ...

Key/value stores: HBase, AWS S3, MongoDB, ...

Interpreters: JVM, .NET, ...

Human intelligence
```

∠ Hardware that stores & organizes data

```
HDD, SSD, main memory, ...
```

Paper

Human brain

Where is data stored today?

Mechanical Turk: Prices for humans going down again. How come?

Typical Applications (data / operations)

- ∠ Bank (Accounts / "Money Transfer")
- ∠ Library (Books / "Lend Book")
- Content Management System (docs, "show")
- ∠ E-Business (Catalogue, "search")
- ∠ ERP (Order, "delivery")
- ✓ Decision Support (Order, "emp of the month")
- ∠ Facebook, Twitter, ... (Friends, "post tweet")

Why use a DBMS?

- Avoid redundancy and inconsistency
- ∠ Rich (declarative) access to the data
- Synchronize concurrent data access
- Recovery after system failures
- ∠ Security and privacy

✓ Reduce cost and pain to do something useful
There is always an alternative!!!

The Data Management Universe

Data Modelling

Example

Overview of Data Models

- ✓ Network model (e.g., CODASYL)
- ∠ Hierarchical model (IBM IMS/FastPath)
- ∠ Relational model (SQL)
- ∠ Object-oriented model (ODMG 2.0)
- ∠ Semi-structured model (XML Infoset)
- ∠ Deductive model (Datalog, Prolog)

Relational Data Model

Student	
Legi	Name
26120	Fichte
25403	Jonas

atte	ends
Legi	Lecture
25403	5022
26120	5001

Lecture	
Nr	Title
5001	DMD
5022	PDS

Select Name

From Student, attend, Lecture

Where Student.Legi = attend.Legi and

attend.Lecture= Lecture.Nr and

Lecture.Title = `DMS';

Update Lecture

set Title = `Data modelling and Databases'

where Nr = 5001;

Database Abstraction Layers

Data Independence

Logical Data Independence

Physical Data Independence

