Basics of Probability

Eklavya Sharma

Definition 1 (Probability Space). A probability space is a triple (Ω, \mathcal{F}, P) where

- Ω is the sample space, also called the set of all outcomes.
- \mathcal{F} is a σ -algebra over Ω . \mathcal{F} is called the set of all events.
- $P: \mathcal{F} \mapsto [0,1]$ is a measure over (Ω, \mathcal{F}) (i.e., P is σ -additive) such that $P(\Omega) = 1$. P is called the probability measure.

Theorem 1 (Inclusion-Exclusion Principle).

$$\Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \Pr(A_{i_{1}} \cap \dots \cap A_{i_{k}}).$$

Theorem 2. For randvars X and Y, E(X + Y) = E(X) + E(Y).

Theorem 3. For independent randvars X_1, \ldots, X_n , $E(X_1, \ldots, X_n) = E(X_1) \ldots E(X_n)$.

Theorem 4. For a non-negative randvar X,

$$E(X) = \begin{cases} \sum_{i=0}^{\infty} \Pr(X > i) & \text{if } X \text{ is discrete} \\ \int_{0}^{\infty} \Pr(X > x) dx & \text{if } X \text{ is continuous} \end{cases}.$$

Definition 2.

$$Cov(X, Y) := E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

 $Var(X) := Cov(X, X) = E((X - E(X))^2) = E(X^2) - E(X)^2$

Theorem 5.

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_{i}, X_{j}).$$

Theorem 6. Let $MGF_t(X) := E(e^{tX})$. Then MGF_t uniquely determines X's CDF.

Theorem 7 (Change of variables). Let $X \in \mathbb{R}^n$ be a continuous random vector. Let $g : \mathbb{R}^n \mapsto \mathbb{R}^n$ be a bijective function having continuous partial derivatives. Then $f_{g(X)}(y) = f_X(x)|J_g(x)|^{-1}$, where $x := g^{-1}(y)$ and J_g is the Jacobian of g (i.e., $J_g(x)[i,j] := \partial g(x)_i/\partial x_j$).

Definition 3. Let $A = [A_1, A_2, ...]$ be an infinite sequence of events. Then

$$io(A) = \lim_{m \to \infty} \bigcup_{i=m}^{\infty} A_i = \bigcap_{m=1}^{\infty} \bigcup_{i=m}^{\infty} A_i \qquad ae(A) = \lim_{m \to \infty} \bigcap_{i=m}^{\infty} A_i = \bigcup_{m=1}^{\infty} \bigcap_{i=m}^{\infty} A_i.$$

io(A) are the outcomes in Ω for which infinitely many events in A happen. ae(A) are the outcomes in Ω for which all except finitely many events in A happen.

Lemma 8 (Borel-Cantelli). $\sum_{i=1}^{\infty} \Pr(A_i) \neq \infty \implies \Pr(\text{io}(A)) = 0.$

Lemma 9. (Events in A are independent and $\sum_{i=1}^{\infty} \Pr(A_i) = \infty$) \Longrightarrow $\Pr(io(A)) = 1$.

1 Probability Distributions

Table 1: Discrete Probability Distributions

Distribution	$\Pr(X=x)$	E(X)	Var(X)	$\mathrm{MGF}_t(X)$
Bernouilli(p)	$p^x(1-p)^{1-x}$	p	p(1 - p)	$pe^t + 1 - p$
Binomial(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(pe^t + 1 - p)^n$
Geometric(p)	$(1-p)^{x-1}p$	1/p	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
$\operatorname{NegBinom}(n,p)$	$\binom{x-1}{n-1}p^n(1-p)^{x-n}$	n/p	$\frac{n(1-p)}{p^2}$	$\left(\frac{pe^t}{1 - (1 - p)e^t}\right)^n$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!$	λ	λ	$\exp(\lambda(e^t-1))$

Table 2: Continuous Probability Distributions

Distribution	$f_X(x)$	E(X)	Var(X)	$\mathrm{MGF}_t(X)$
Uniform (a, b)	$\frac{1(a \le x \le b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
$\operatorname{Exponential}(\lambda)$	$\lambda e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	$\lambda/(\lambda-t)$
$\operatorname{Gamma}(n,\lambda)$	$\frac{(\lambda x)^{n-1}}{(n-1)!} \lambda e^{-\lambda x}$	n/λ	n/λ^2	$\left(1 - \frac{t}{\lambda}\right)^{-n}$
$\operatorname{Normal}(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$\exp(\mu t + \sigma^2 t^2/2)$

Theorem 10 (Poisson approximates Binomial). Let $\lambda \in \mathbb{R}_{\geq 0}$ and $k \in \mathbb{Z}_{\geq 0}$ be constants. Let $X_n \sim \operatorname{Binom}(n, \lambda/n)$. Then $\lim_{n \to \infty} \Pr(X_n = k) = e^{-\lambda} \lambda^k / k!$.

Theorem 11 (Binomial over Poisson). Let $N \sim \text{Poisson}(\lambda)$ and $M \mid N \sim \text{Binom}(N, p)$. Then $M \sim \text{Poisson}(\lambda p)$.

Theorem 12 (Poisson decomposition). Let X_1, X_2, \ldots be IID randvars, where $\Pr(X_j = i) = p_i$ for $i \in [k]$ and all j, and $\sum_{i=1}^k p_i = 1$. Let $N \sim \text{Poisson}(\lambda)$ where $\{N, X_1, X_2, \ldots\}$ is independent. Let $N_i := \sum_{j=1}^N \mathbf{1}(X_j = i)$. Then $\{N_1, \ldots, N_k\}$ is independent and $N_i \mid N \sim \text{Binom}(N, p_i)$.

Theorem 13 (Scaling normal). $X \sim N(\mu, \sigma^2) \implies aX + b \sim N(a\mu + b, a^2\sigma^2)$.

Theorem 14 (Competing exponentials). Let X_1, \ldots, X_n be independent ranvars, where $X_i \sim \text{Expo}(\lambda_i)$. Let $Z := \min_{i=1}^n X_i$ and E be the event $X_1 < X_2 < \ldots < X_n$. Let $\beta := \lambda_1 + \ldots + \lambda_n$. Then

- $\Pr(X_i = Z) = \lambda_i/\beta$.
- $Z \sim \text{Expo}(\beta)$.
- E and Z are independent.

1.1 Sum of Random Variables

Theorem 15 (Convolution).

$$f_{X+Y}(z) = \begin{cases} \sum_{y \in D} f_{X,Y}(z-y,y) = \sum_{x \in D} f_{X,Y}(x,z-x) & discrete \\ \int_{-\infty}^{\infty} f_{X,Y}(z-y,y)dy = \int_{-\infty}^{\infty} f_{X,Y}(x,z-x)dx & continuous \end{cases}.$$

Theorem 16. Let X_1, \ldots, X_n be independent. Then $\mathrm{MGF}_t(\sum_{i=1}^n X_i) = \prod_{i=1}^n \mathrm{MGF}_t(X_i)$.

Theorem 17. Let X_1, \ldots, X_n be independent. Let $Y := \sum_{i=1}^n X_i$. Then

- $X_i \sim \text{Bernouilli}(p) \implies Y \sim \text{Binomial}(n, p).$
- $X_i \sim \text{Poisson}(\lambda_i) \implies Y \sim \text{Poisson}(\sum_{i=1}^n \lambda_i).$
- $X_i \sim \text{Exponential}(\lambda) \implies Y \sim \text{Gamma}(n, \lambda).$
- $X_i \sim \text{Geometric}(p) \implies Y \sim \text{NegBinom}(n, p)$.

2 Inequalities and Limits

Theorem 18 (Markov). For non-negative randvar X, $Pr(X \ge a) \le E(X)/a$.

Theorem 19 (Chebyshev). $\Pr(|X - E(X)| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$.

Theorem 20 (One-sided Chebyshev).

$$\Pr(X - \mathcal{E}(X) \ge a) \le \frac{\operatorname{Var}(X)}{\operatorname{Var}(X) + a^2}$$
 $\Pr(X - \mathcal{E}(X) \le -a) \le \frac{\operatorname{Var}(X)}{\operatorname{Var}(X) + a^2}$

Theorem 21 (Strong law of large lumbers). Let X_1, X_2, \ldots be IID randvars having mean μ . Let $Y_n := \frac{1}{n} \sum_{i=1}^n X_i$. Let

$$E := \left\{ \omega \in \Omega : \lim_{n \to \infty} Y_n(\omega) = \mu \right\}.$$

Then Pr(E) = 1.

Definition 4. Let Z be a random variable and $S := [X_1, X_2, \ldots]$ be an infinite sequence of random variables. We say that S converges to Z if $\lim_{n\to\infty} F_{X_n}(x) = F_Z(x)$ for all $x \in \mathbb{R}$ where F_Z is continuous.

Theorem 22 (Central Limit Theorem). Let X_1, X_2, \ldots be IID randvars having mean μ and variance σ^2 . Let $Y_n := \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n X_i - \mu \right)$. Then $[Y_1, Y_2, \ldots]$ converges to $N(0, \sigma^2)$.

Theorem 23 (Jensen's inequality). If X is a random variable and f is a convex function, then $f(E(X)) \leq E(f(X))$.

Theorem 24 (Cauchy-Schwarz inequality). For random variables X and Y, $|E(XY)|^2 \le E(X^2) E(Y^2)$ and $|Cov(X,Y)|^2 \le Var(X) Var(Y)$.

3 Conditional Probability

Theorem 25. Let X and Y be randvars (either of them can be discrete or continuous). Let f_X and f_Y be their distribution functions (either PMF or PDF), respectively. Let $f_{X,Y}$ be their joint distribution function. Let g_x be the distribution function of Y conditioned on X = x. Then $g_x(y) = f_{X,Y}(x,y)/f_X(x)$. We denote $g_x(y)$ by $f_{Y|X}(y|x)$.

Definition 5. Let X and Y be randvars and A be an event. Let $g(x) := \Pr(A \mid X = x)$ and $h(x) := E(Y \mid X = x)$. Then $\Pr(A \mid X) := g(X)$ and $E(Y \mid X) := h(X)$.

Theorem 26. $E(Pr(A \mid X)) = Pr(A)$ and $E(E(Y \mid X)) = E(Y)$.

Theorem 27. $Var(Y) = E(Var(Y \mid X)) + Var(E(Y \mid X)).$

4 Binomial Coefficient

The binomial coefficient $\binom{n}{k}$ is the number of subsets of $\{1, 2, ..., n\}$ of size k, where $n \in \mathbb{Z}_{>0}$ and $k \in \mathbb{Z}$.

•
$$\binom{n}{k} = \binom{n}{n-k} = \begin{cases} 0 & \text{if } k < 0 \text{ or } k > n \\ \frac{n!}{k!(n-k)!} & \text{if } 0 \le k \le n \end{cases}$$
.

• Additive recursion: For
$$n \ge 1$$
, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n+1}{k+1} - \binom{n}{k+1}$.

• Decrement: For
$$n \ge 1$$
, $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1} = \frac{n}{n-k} \binom{n-1}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$.

• Sum 1:
$$\sum_{i=k}^{n} {i \choose k} {n \choose i} x^i = {n \choose k} x^k (1+x)^{n-k}.$$
 Set $k = 0$ to get
$$\sum_{i=0}^{n} {n \choose i} x^i = (1+x)^n.$$

• Sum 2:
$$\sum_{i=0}^{p} {m \choose i} {n \choose p-i} = {m+n \choose p}.$$

• Sum 3:
$$\sum_{i=k}^{n-b} \binom{i}{k} \binom{n-i}{b} = \binom{n+1}{k+b+1}. \text{ Set } b = 0 \text{ to get } \sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}.$$

5 Other useful results

$$\forall x \in \mathbb{R}, \quad e^x \ge 1 + x.$$

$$\forall x > 0, \quad \frac{x-1}{x} \le \ln x \le x - 1.$$

$$\forall n \ge 1, \quad \left(\sum_{i=1}^n \frac{1}{i}\right) - \ln n \in [1/n, 1].$$

Stirling's approximation: For $n \ge 1$, $\frac{n!}{n^{n+\frac{1}{2}}e^{-n}} \in [\sqrt{2\pi}, e]$.

$$\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}_{>0}, \quad \left\lceil \frac{a}{b} \right\rceil = \left\lfloor \frac{a-1}{b} \right\rfloor + 1 \quad \text{and} \quad \left\lfloor \frac{a}{b} \right\rfloor = \left\lceil \frac{a+1}{b} \right\rceil - 1.$$

Theorem 28 (Generalization of Geometric series). For $0 \le a \le b$,

$$\sum_{i=0}^{\infty} \binom{b+i}{a} p^i = \frac{1}{1-p} \sum_{i=0}^{a} \binom{b}{i} \left(\frac{p}{1-p}\right)^{a-i}.$$

On setting b = a, we get

$$\sum_{i=0}^{\infty} \binom{a+i}{a} p^{i} = \frac{1}{(1-p)^{a+1}}.$$