INE5429-07208 Segurança em Computação Noções Básicas de Segurança

Prof. Jean Everson Martina

O que é segurança em Computação?

Math?

Engineering?

Philosophy?

Natural Sciences?

Qual a diferença?

Conhecendo o adversário

- Segurança em Computação estuda como os sistemas computacionais se comportam na presença de um adversário.
- Nós consideramos este adversário inteligente.
 - Ele tenta achar formas de comportamento não esperado que levam o sistema falhar
 - Essas falahas podem ser exploradas subvertendo a segurança.

Para Ganhar devemos Conhecer o Adversário

- Quais os motivos para sermos atacados?
- Quais são as capacidades do atacante?
- O que ele sabe de antemão?
- Quais os pontos fracos da minha estrutura?
- Quem pode ser o atacante?
- Qual o nível de acesso dele?
- Que contra-medidas eu posso tomar?
- Deu Ruim! O que eu faço pra continuar?
- Como eu descubro exatamente o que aconteceu?

A Forma de Pensar em Segurança

- Pensando como um atacante:
 - Entender as técnicas para contornar a segurança.
 - Procurar formas como o mecanismo de segurança podem quebrar
- Pensando como um defensor
 - Entenda o que você está defendendo e contra quem
 - Leve em conta o custo x benefício
 - Nenhum sistema é seguro pra sempre
 - Tenha um certo grau de paranóia.

Porque Estudar Ataques?

- Ajudar a identificar vulnerabilidades pra corrigir e estabelecer novas defesas.
- Criar incentivos para todos serem mais cuidadosos no futuro
- Aprender sobre diferentes classes de ameaças
- Nos ajuda a projetar sistemas mais robustos em termos de segurança
- Nos ajuda a avaliar mai precisamente o risco que estamos sujeitos.

Hierarquia de Insegurança

Pensando como um Atacante:

- Procure pelo elo mais fraco
 - Ele é mais fácil de atacar
- Identifique as suposições que o mecanismo de segurança depende
 - Da para tornar essas suposições falsas?
- Pense fora da caixinha:
 - Não se atenha a forma de pensar de quem projetou o sistema.
- Pratique pensar como um atacante:
 - Para cada sistema que você for usar pense o que significa ele ser seguro e como você poderia fazer para ele não ser.

E se eu não pensar como um atacante?

Exercício:

Pensando como um Defensor:

Politica de Segurança

- O que estamos protegendo?
- Que propriedades estamos esperando?

Modelo de Ameaça

- Quem são os atacantes?
- Quais as capacidades deles? Quais a motivações?
- Que tipos de ataques queremos previnir?

Gerenciamento de Risco

- Quais as fraquezas do sistema?
- Quanto vai custar um ataque pra gente?
- Qual a probabilidade de um ataque com sucesso?

Contramedidas

- Custo x Benefício?
- Solução técnica x Nâo Técnica?

Politicas de Segurança

- O que estamos tentando defender?
- Quais propriedades nós queremos?
 - Confidencialidade
 - Integridade
 - Temporalidade
 - Disponibilidade
 - Privacidade
 - Autenticidade
 - o etc...

Modelos de Ameaça

- Quem são os nossos adversários?
 - Quais seus motivos?
 - Quais suas capacidades?
- Que tipo de ataques nós precisamos previnir?
 - Pense como um atacante!
- Limites das ameaças:
 - Que tipos de ataques podemos ignorar?
 - Isso é importante para manter o custo baixo.

Avaliando o Risco

- O que uma invasão vai nos custar?
 - Custo direto:
 - Dinheiro
 - Propriedade
 - Proteção
 - Custo Indireto:
 - Reputação
 - Negócios futuros
 - Bem Estar
- Qual a probabilidade destes custos?
 - Qual a probabilidade de um ataque?
 - Qual a probabilidade de sucesso?

Contramedidas

- Contramedidas tecnicas
 - Software
 - Hardware
- Contramedidas não técnicas
 - Legais
 - Procedimentos
 - Treinamento
 - Auditoria
 - Incentivos

Custo das Medidas de Segurança

- Nada que vai te deixar mais seguro é de graça
 - Custos Diretos:
 - Projeto
 - Implementação
 - Execução
 - Falsos Positivos
 - Custos Indiretos:
 - Perda de produtividade
 - Adição de complexidade
- Um grande desafio é balancear custo versus risco:
 - A NAtureza humana torna dificil avaliar eventos de alto custo e baixa probabilidade.

Exercício:

- Você deve trancar a porta ao sair de casa?
- É seguro passar o seu cartão de credito em qualquer lugar?
- Você andaria num carro autônomo?

- Ativos?
- Adversários?
- Gerenciamento de Risco?
- Contramedidas?
- Custo/Beneficio?

Projeto de Sistemas Seguros

- Erro principal:
 - Tentar se convencer que o sistema que voce está projetando é seguro
- Melhor abordagem:
 - Sempre identificar as fraquezas do seu design e se focar em corrigi-las.
- Projeto de sistemas seguros é um processo e não um produto
- Tem que ser constante durante todo ciclo de vida.
- Não dá pra pegar algo pronto e transformar em algo seguro.
- Uma boa estratégia é trabalhar com segurança em profundidade.

Onde focar as nossas defesas?

Componentes seguros

- Partes do sistema que tem que funcionar corretamente para que o sistema seja seguro
- Ex.: Hardware de proteção de chaves, TPM, etc

Superficie de ataque

- Que partes do sistema ficam expostos ao atacante?
- Ele consegue acesso direto a componente seguros?

Complexidade versus Segurança

- Ser seguro normalmente é sinônimo de ser simples.
- Muitas camadas abrem espaço para erros conceituais.

Testes de Segurança

- Especifique requisitos para que voce possa testar contra eles.
 - Quais são os requisitos corretos?
- Apliques testes como se fosse um atacante
 - Black box testing
 - Gray box testing
 - White box testing

Como se tornar um 1337 hax0r

- Pensamento Crítico
 - Como pensar como um atacante
 - Como raciocinar sobre ameaça e risco
 - Como balancear custo e benefício
- Capacidade Técnica
 - Como se proteger
 - Como gerenciar e defender sistemas
 - Como projetar e programar sistemas seguros
- Aprenda a ser consciente da sua segurança sempre
- Seja ético!

Preceitos Éticos da Disciplina

Don't be EVIL

- Preceitos éticos requerem que menos sabendo como você de abstenha de praticar o mal
- Sempre respeite a privacidade e a propriedade alheia
- Uma falta ética é motivo de reprovação sumária nesta disciplina.,
- Existem leis federais e estaduais sobre crimes cibernéticos
 - Se você fizer algo de errado o professor vai te denunciar
- Regras da UFSC proíbem você de atacar quaisquer sistemas no CAMPUS
 - As penas iniciam em suspensão e vão até a expulsão da Universidade.

Próximas Aulas

- Prática:
 - Trabalho Individual I
 - Envolve todo este conteúdo que vimos na aula de hoje
- Teórica:
 - Introdução a criptografia e criptosistemas classicos
 - Parte mais difícil da disciplina

Perguntas?

jean.martina@ufsc.br