SCIENCE 10
BIG BANG THEORY

DETERMINING DISTANCES IN SPACE

DISTANCES TO STARS

Distance is measured in 2 ways:

1. _____(AU)

2. _____(LY)

ASTRONOMICAL UNIT (AU)

The between earth and the sun is

150 million km

Distance to Planets:

Sun = 1 AU

Jupiter = 4 AU (at it's closest to Earth)

Pluto = 38 AU (at it's closest to Earth)

stars and galaxies

Figure 4.26: Using the AU to measure distances in the solar system is simpler and more convenient than using kilometres.

LIGHT YEAR (LY)

Unit of distance equal to the	light travels in
(~9.46x10 ¹² km in one year)	
Ex. time for light to travel to the earth from	:
Moon =	
Sun =	
Alpha Centauri =	
Betelgeuse, the red supergiant in Orion =	=
Polaris (North Star) =	
How far is the nearest star?	
(red dwarf)	ly away

HOW DO WE MEASURE DISTANCES IN

Triangulation

Uses simple geometry to measure distance to something that cannot be physically reached

Measure _____ and length of a ____ to get distance to object

TRIANGULATION EXAMPLE

Imagine you're standing on the shore of a lake and see a small island but you can't get there

STEPS TO SOLVE

1) Measure a accurate), say 120m	along the shore (the longer the more
and specific point on the	e a protractor and measure angle A between baseline island, like top of a tree say, 65° he baseline, measure angle B btw baseline and the same of tree), say 75°
3) Create a Use angles and base)	line to make scale drawing on a piece of paper (1 cm =
	line lke perpendicular line between baseline and tree, the line, calculate actual distance using scale of drawing

TRIANGULATION EXAMPLE

If the scale is 1 cm = 20 m

Scale distance was 8.2 cm between the tree and the baseline

Actual distance

PARALLAX

The appearance of something _____ against an un-moving background due to a change in

Same thing happens with stars view from earth

PARALLAX

When you look at a star, it ______ to **shift** against background of other stars from _____

Two people at different locations on Earth can measure angles of sight from a baseline & calculate the distance to star using **triangulation**

PARALLAX

Astronomers use width of Earth's _____ as as baseline

Take a year for Earth to orbit the sun, so take measurement form each end of baseline 6 months apart (when Earth reaches farthest points on either side of the sun)

YOUR MISSION

Handouts:

Using Triangulation to Determine Distance

Astronomical Distance units

