Úloha	1	2	3	4	5	6	7	8	9	10	SPOLU
MaxBody	4	6	6	6	6	4	5	5	4	4	50
Body											

1. Usporiadajte funkcie podľa asymptotického rastu vzostupne. Svoje tvrdenie dokážte.

$$(\frac{11}{10})^{n^2}$$
, $3^{\sqrt{n}}$, $(\log_2 n)^n$, $(\frac{n+1}{n})^{n^3}$

2. Určte výpočtom presný počet hviezdičiek, ktoré vypíše proc0. Porovnajte jej asymptotický rast s n^2 .

```
void proc0(int n) {
  int i, m=1;
  for (i=1; i<=n; i++) m *= i;
  for (i=1; i<=m; i *= 2) printf("*");
}</pre>
```

3. Určte výpočtom presný počet hviezdičiek, ktoré vypíše proc1.

```
void proc1(int n) {
   if (n>0) {
      proc1(n-1);
      for (int i=0; i<n; i++) printf("**");
      proc1(n-1);
      printf("****");
      proc1(n-1);
   }
}</pre>
```

Vzorec:
$$1 + x + x^2 + \dots x^{n-1} = \frac{1-x^n}{1-x}; \ x \neq 1$$

- 4. Použitím Master Theorem určte asymptoticky tesné hranice pre nasledujúce rekurencie :
 - (a) $T(n) = T(n/2) + \log^2 n$
 - (b) $T(n) = 2T(n/2) + \sqrt{n}$
 - (c) $T(n) = 3T(n/2) + (n \log n)^2$
- 5. Na kôpke je n zápaliek. Dvaja hráči sa pravidelne striedajú v ťahoch. Hráč, ktorý je na ťahu, môže z kôpky zobrať 1, 2 alebo 5 zápaliek alebo presne jednu tretinu zápaliek, ak je počet zápaliek na kôpke deliteľný tromi. Vyhráva hráč, ktorý vezme z kôpky poslednú zápalku. Pre n=12,13,14,15,16,17 určte, koľko zápaliek má z kôpky zobrať začínajúci hráč, aby vedel zaručene vyhrať (alebo zdôvodnite, prečo si žiadnym ťahom nemôže zaručiť výhru; ak je možností pre daný ťah viac, stačí jedna z nich). Riešte ako úlohu dynamického programovania vzhľadom na počet zápaliek na kôpke.
- 6. Použitím rozšíreného Euklidovho algoritmu vypočítajte 595⁻¹ mod 1214.
- 7. Pomocou FFT vypočítajte koeficienty polynómu $C = c_0 + c_1 x + c_2 x^2 + c_3 x^3$, ktorý je súčinom polynómov $A = a_0 + a_1 x$ a $B = b_0 + b_1 x + b_2 x^2$, ak viete, že $FFT(a_0, a_1, 0, 0) = (-4, 1 5i, 6, 1 + 5i)$ a $FFT(b_0, b_1, b_2, 0) = (0, 1 3i, 6, 1 + 3i)$.
- 8. Vypočítajte prefixovú funkciu z algoritmu KMP pre reťazec P = aabaacaabaa a potom pomocou nej zostavte konečný automat na nájdenie reťazca P v texte. Napíšte vzťah, na základe ktorého ste automat zostavili.

i	0	1	2	3	4	5	6	7	8	9	10	11
P(i)												
$\pi(i)$												

i	a	b	c
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			

9. Je daný neorientovaný Graf 1 s množinou vrcholov A, B, C, D, E, F, G a váhami hrán podľa Obr. 1. Pomocou Dijkstrovho alebo Floydovho-Warshallovho algoritmu nájdite najkratšiu cestu z vrchola A do vrchola F.

Obr. 1: Graf 1

10. Na Obr. 2 sú hranou spojené tie dvojice chlapcov a dievčat, ktoré sú si na základe istého výskumu sympatické. Použitím toku v sieti nájdite maximálny počet dizjunktných párov dievča-chlapec, ktorý by sa z nich dal vytvoriť. Nájdené páry vypíšte. Aký je ich maximálny počet?

Obr. 2: Dvojice podľa sympatií