FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Teodor Duraković Naměřeno: 24. dubna 2024

Obor: F Skupina: St 8:00 Testováno:

Úloha č 3:

Měření viskozity, hustoty a povrchového

 $T = 20.3 \, {}^{\circ}\text{C}$

napětí kapalin

p = 97814 Pa $\varphi = 33.5 \%$

1. Zadání

Určit

- 1. teplotní závislost viskozity vody Ubbelohdeho viskozimetrem
- 2. viskozitu vody metodou výtoku z Mariottovy láhve
- 3. hustotu lihu metodou a) pyknometrickou a b) ponorného tělíska
- 4. povrchové napětí destilované vody a lihu metodou du Noüyho metodou kroužku
- 5. kontaktní úhly vody a methylen jodidu.

2. Postup, metody měření

2.1. Viskozita vody

2.1.1. Metoda Ubbelohdeho viskozimetru

Ubbelhodeho viskozimetr se používá ke stanovení kinematické viskozity kapalin. Platí vztah:

$$\nu = Kt \tag{1}$$

kde ν je kinematická viskozita, K časová konstanta viskosimetru a t čas změny hladiny kapaliny v trubici mezi dvěma vyznačenými úrovněmi. Měření provádíme třikrát, při teplotě kapaliny cca 20,30 a $40^{\circ}C$.

2.1.2. Metoda Mariottovy láhve

Mariottova láhev za jišťuje konstantní tlakový spád mezi konci trubice. Proudění lze při výtoku považovat za laminární a proto platí vztah:

$$\eta = \frac{\pi R^4 pt}{8VL} = \frac{\pi \rho R^4 \rho gh t}{8mL} \tag{2}$$

kde R je poloměr trubice, p je rozdíl tlaků mezi konci trubice, t čas, za který vyteče z nádoby objem V, L je délka trubice a h výškový rozdíl mezi trubicí a kapilárou lahve.

2.2. Hustota lihu

2.2.1. Pyknometrická metoda

Metoda pyknometru je založena na tom, že nádoba u referenční i zkoumané kapaliny pojme identický objem. Platí:

$$\rho = (\rho_k - \rho_v) \frac{m - m_p}{m_k - m_p} + \rho_v \tag{3}$$

kde ρ_k je hustota kalibrační kapaliny (v našem případě destilované vody), ρ_v hustota vzduchu, m_p hmotnost pyknometru, m_k hmotnost kalibrační kapaliny a m hmotnost lihu.

2.2.2. Metoda ponorného tělíska

Na váhy zavěsíme závaží, váhy vytárujeme a kapalinu ve válci postavíme pod váhy. Při plně ponořeném závaží zaznamenáme měřenou hmotnost při obou kapalinách (měřené a kalibrační). Zde aplikujeme formuli

$$\rho = \frac{m}{m_k} \rho_i \tag{4}$$

2.3. Povrchové napětí

2.3.1. Metoda kroužku

V souladu s návodem měříme sílu při odtržení kroužku. Používáme vztah

$$\sigma = \frac{F_{max}}{4\pi R} \cdot f \tag{5}$$

kde F je maximální síla při odtržení kroužku, $2\pi R$ je obvod kroužku a f je Harkins-Jordanův koeficient, jehož hodnota činí přibližně f=0.77.

2.3.2. metoda kontaktního úhlu

Měríme dispersní složku povrchové energie vody a kalibrační kapaliny. Používáme formuli

$$\frac{\sigma_{\text{H}_2\text{O}}^{lw}}{\sigma_{\text{H}_2\text{O}}} = \frac{\sigma_{kal}^{lw}}{\sigma_{kal}} \frac{\sigma_{\text{H}_2\text{O}}}{\sigma_{kal}} \left(\frac{1 + \cos\theta_{\text{H}_2\text{O}}}{1 + \cos\theta_{kal}} \right)^2 \tag{6}$$

kde σ_k jsou jmenovité hodnoty povrchové energie vody a kalibrační kapaliny, σ_k^{lw} jsou Lifshitz - van der Waalsovy složky povrchového napětí obsahující coulombickou, indukční a dispersní složku povrchové energie. Θ_k značí kontaktní úhly na kapkách přichycených na teflonovém povrchu^[3].

3. Měření

3.1. Viskozita vody

3.1.1. Ubbelohdeho viskozimetr

Pro kalkulaci používáme vztah (1), časová konstanta pro použitý viskozimetr je rovna $K=1.063\cdot 10^{-3}\,\mathrm{mm^2\,s^{-2}},\,r(K)=0.65\%\,(p\,95\%)$

Získáváme:

T [°C]	t [s]	$\eta [\mathrm{mm^2 s^- 1}]$
21.0	947.9	1.008 ± 0.007
28.8	776.4	0.825 ± 0.005
38.9	628.3	0.668 ± 0.004

3.1.2. Mariottova láhev

Měřením získáváme následující hodnoty:

R	$0.570 \pm 0.001 \mathrm{mm}$
m	$74.190 \pm 0.003 \mathrm{g}$
${ m L}$	$165.0\pm0.5\mathrm{mm}$
t	$319.86 \pm 0.3 \mathrm{s}$
h	$112.00 \pm 0.05 \mathrm{mm}$
$ ho^{[1]}$	$0.9982\mathrm{g.cm^{-3}}$

Po vložení hodnot do formule (2) získáváme hodnotu $\eta = 1.186 \pm 0.009\,\mathrm{mPa.s.}$

3.2. Hustota lihu

3.2.1. Pyknometrická metoda

Měříme hodnoty:

m_p	$23.868 \pm 0.003 \mathrm{g}$
m_k	$74.042 \pm 0.003 \mathrm{g}$
m	$64.070 \pm 0.003 \mathrm{g}$
$ ho_v^{[2]}$	$0.00116\mathrm{g.cm^{-3}}$
$ ho_k^{[1]}$	$0.9982{\rm g.cm^{-3}}$

Po aplikaci formule (3) získáváme: $\rho = 800.04 \pm 0.08 \, \mathrm{kg.m^{-3}}$.

3.2.2. Metoda ponorného tělíska

Získáváme hodnoty:

\overline{m}	$3.828 \pm 0.003 \mathrm{g}$
m_k	$4.814 \pm 0.003 \mathrm{g}$
$ ho_k^{[1]}$	$0.9982\mathrm{g.cm^{-3}}$

Po dosazení do formule (4) získáváme $\rho = 793.7 \pm 0.8 \, \mathrm{kg.m^{-3}}$.

3.3. Povrchové napětí

3.3.1. Metoda kroužku

Získáváme:

F_{max} - líh [mN]	F_{max} – voda [mN]
11.76	31.79
11.50	32.15
11.06	33.01
11.68	34.73
12.34	34.17
11.96	33.86
10.18	35.20
10.54	34.75
11.82	34.85
11.62	34.60
11.15	33.50

Po dosazení do formule (5) spolu s poloměrem kroužku $R=29\pm0.05\,\mathrm{mm}$ získáváme hodnoty: $\sigma_{lih}=24.1\pm0.4\,\mathrm{mN.m^{-1}}$ a $\sigma_{voda}=71.6\pm0.7\,\mathrm{mN.m^{-1}}$

3.3.2. Metoda kontaktního úhlu

Při použití glycerolu jakožto kalibrační kapaliny získáváme

$\Theta_{H_2O}[^{\circ}]$	$\Theta_{kal}[^{\circ}]$
77.7	61.3
72.6	54.3
75.4	57.7
70.8	56.8
71.6	69

Po dosazení průměrných hodnot do formule (6) získáváme: $\sigma_{H_2O}^{lw}=32.02\,\mathrm{mN.m^{-1}}$

4. Závěr

Pro viskozitu vody získáváme metodou Ubbelohdeho viskozimetru uspokojivé výsledky, u Mariottovy láhve se však výsledek výrazně odchyluje od očekáváného. Hustota lihu je při obou použitých metodách měření v očekávaných mezích při očekáváné přesnosti. Povrchové napětí vody i lihu je při metodě měření kroužkem blízké tabulkovým hodnotám, u metody kontaktního úhlu se však měřená hodnota od hodnoty tabulkové odchyluje, což připisujeme zejména nepřesnosti při měření úhlu a kontaminaci vzorků.

5. Použitý kód

```
from uncertainties import *
import numpy as np
K = ufloat(1.063 *10**(-3), 6.9095*10**(-6))
# Define the array of ufloat values for t
t_array = np.array([ufloat(947.9, 0.1), ufloat(776.4, 0.1), ufloat(628.3, 0.1)])
# Calculate nu for every t
nu_array = K * t_array
# Print the nu values
for nu in nu_array:
print (nu)
h1 = ufloat(16.17, 0.006)
h2 = ufloat(16.20, 0.006)
h3 = ufloat(16.20, 0.006)
d1 = ufloat(5.0, 0.006)
d2 = ufloat(4.98, 0.006)
d3 = ufloat(4.99, 0.006)
# više v kg, m

R = ufloat (0.570e-3, 0.001e-3)

h = (h1+h2+h3 - d1 -d2 -d3)/300

m = ufloat (74.190e-3, 0.003e-3)

L = ufloat (16.5e-2, 0.05e-2)

t = ufloat (319.86, 0.3)
rho = ufloat(0.9982e3, 0)
g = ufloat (9.81, 0)
eta = ((np.pi * rho**2 *R**4 * g * h*t)/(8 * m * L))
print(eta*1000)
#hustota-pyknometr-metoda
mp = ufloat(23.868, 0.003)
mk = ufloat(74.042, 0.003)
m = ufloat (64.070, 0.003)
mk = mk - mp
m = m - mp

m = m - mp

print (mk, m)

rhok = ufloat(0.9982, 0)
rhov = ufloat(0.001157, 0)
\texttt{rho} = (\texttt{rhok} - \texttt{rhov}) * ((\texttt{m})/(\texttt{mk})) + \texttt{rhov}
print (rho*1000)
#hustota-ponorna metoda
m = ufloat(3.828, 0.003)
mk = ufloat(4.814, 0.003)
rhok = ufloat(0.9982, 0)
```

```
rho = m/mk * rhok
print(rho*1000)

#Viskosita - krouzek

Flih = ufloat(11.42, 0.19)
Fvoda = ufloat (33.87, 0.34)
R = ufloat (58.0, 0.1)

sigmalih = (Flih/(2*np.pi*R)) * 0.77
print(sigmalih*1000)
sigmavoda = Fvoda/(2*np.pi*R) * 0.77
print (sigmavoda*1000)
```

6. Zdroje

[1] Water density calculator [on-line]

Dostupný z WWW: https://www.omnicalculator.com/physics/water-viscosity

[2] Air density calculator [on-line]

Dostupný z WWW: https://www.omnicalculator.com/physics/air-density [3] ŠTYKS, Martin, MĚRĚNÍ KONTAKTNÍHO ÚHLU A POVRCHOVÉ ENERGIE NA POVRCHU POVLAKŮ BETA-FOSFOREČNANU VÁPENATÉHO dostupné on-line: [https://dspace.cvut.cz/bitstream/handle/10467/103553/F2-BP-2022-Styks-Martin-BP_STYKS_MARTIN.pdf]