Probabilistic Lambda Calculi

Research Project

Pedro Amorim and Eric Jackson

1 Abstract

In section 2, we introduce a probabilistic version of Call-By-Push Value. In section 3, we introduce two probabilistic lambda-calculi, λ_{IID} and λ_{PC} , which correspond to independent and identically distributed sampling and perfectly correlated sampling, respectively.

2 Probabilistic Call-By-Push-Value

2.1 Syntax

Types

CBPV types are given by $\tau = A \mid B$ where A and B are defined inductively according to the following rules:

$$A ::= U\underline{B} \, | \, A + A \, | \, A \times A \, | \, 1 \, | \, \mathbb{R}$$
$$\underline{B} ::= FA \, | \, \underline{B} \times \underline{B} \, | \, A \to \underline{B}$$

As discussed in Levy's thesis, A can be thought of as defining values and B computations.

Expressions

```
V, M ::= x
             |()
             |\lambda \times M|
             |\text{let} \times \text{be } V. M|
             |V'M|
             |\mathsf{produce}\,V|
             |M to \times . N
             |\mathsf{thunk}\, M|
             |force V|
             |(M,M)|
             |#1M
             |#2M
             |\operatorname{pm} V \operatorname{as}(x, y). M|
             |\operatorname{inl}_{A+A}V|
             |\inf_{A+A}V|
             | pm V as \{x.M, y.M\}
             coin
             rand
```

2.2 Static Semantics

Unit

$$\overline{\Gamma \vdash^v ():1}$$

Functions and Application

$$\begin{split} \frac{\Gamma_{\times:A} \vdash^v M : \underline{B}}{\Gamma \vdash^c \lambda \times .\, M : A \to \underline{B}} \\ \frac{\Gamma \vdash^v V : A \qquad \Gamma_{V:A} \vdash^c M : A \to \underline{B}}{\Gamma \vdash^c V `M : \underline{B}} \\ \frac{\Gamma \vdash^v V : A \qquad \Gamma_{V:A} \vdash^c M : A \to \underline{B}}{\Gamma \vdash^c \text{let } \times \text{be } V .\, M : B} \end{split}$$

Produce and To

$$\begin{split} \frac{\Gamma \vdash^{v} V : A}{\Gamma \vdash^{c} \mathsf{produce} \, V : FA} \\ \frac{\Gamma \vdash^{c} M : FA \qquad \Gamma_{\mathsf{x} : A} \vdash^{c} N : \underline{B}}{\Gamma \vdash^{c} M \; \mathsf{to} \; \mathsf{x} \cdot N : \underline{B}} \end{split}$$

Thunk and Force

$$\frac{\Gamma \vdash^c M : \underline{B}}{\Gamma \vdash^v \mathsf{thunk}\, M : U\underline{B}}$$

$$\frac{\Gamma \vdash^v V : U\underline{B}}{\Gamma \vdash^c \mathsf{force}\, V : B}$$

2.3 Denotational Semantics

Products

$$\begin{split} \frac{\Gamma \vdash^c M : \underline{B} & \Gamma \vdash^c M' : \underline{B'}}{\Gamma \vdash^c (M, M') : \underline{B} \times \underline{B'}} \\ & \frac{\Gamma \vdash^c M : \underline{B} \times \underline{B'}}{\Gamma \vdash^c \# 1 \, M : \underline{B}} \\ & \frac{\Gamma \vdash^c M : \underline{B} \times \underline{B'}}{\Gamma \vdash^c \# 1 \, M : \underline{B'}} \\ & \frac{\Gamma \vdash^c M : \underline{B} \times \underline{B'}}{\Gamma \vdash^c \# 1 \, M : \underline{B'}} \\ & \frac{\Gamma \vdash^c (M, M') : \underline{B} \times \underline{B'} & \Gamma_{\times : \underline{B}, \, y : \underline{B'}} \vdash^c M : \underline{B}}{\Gamma \vdash^c \text{pm} \, V \text{ as } (\mathsf{x}, \, \mathsf{y}) . \, M : \underline{B}} \end{split}$$

Sums

$$\begin{split} & \frac{\Gamma \vdash^v V : A}{\Gamma \vdash^v \mathsf{inl}_{A+A'} V : \tau_1 + \tau_2} \\ & \frac{\Gamma \vdash^v V : A}{\Gamma \vdash^v \mathsf{inr}_{A+A'} V : \tau_1 + \tau_2} \\ & \frac{\Gamma \vdash^v V : A}{\Gamma \vdash^v \mathsf{inr}_{A+A'} V : \tau_1 + \tau_2} \\ & \frac{\Gamma \vdash^v V : A + A' \qquad \Gamma_{\mathsf{x} : A, \mathsf{y} : A'} \vdash^c M : \underline{B}}{\Gamma \vdash^c \mathsf{pm} \, V \, \mathsf{as} \, \{\mathsf{x} . M, \, \mathsf{y} . M\} : \underline{B}} \end{split}$$

Random Variables

$$\frac{\Gamma \vdash^c \mathsf{coin} : F \, \mathbb{R}}{\Gamma \vdash^c \mathsf{rand} : F \, \mathbb{R}}$$

λ_{IID} and λ_{PC} 3

3.1 Syntax

Types

The types of λ_{IID} and λ_{PC} are defined according to the following rules

$$\tau ::= \mathsf{unit} \mid \mathbb{R} \mid \tau \to \tau \mid \tau + \tau \mid \tau \times \tau$$

Expressions

The expressions of λ_{IID} and λ_{PC} of the following form

e := x|() $|\lambda x : \tau. e|$ |let x = e in e||e|ecoin rand $|\mathsf{inl}_{\tau_1 + \tau_2} e$ $|\operatorname{inr}_{\tau_1+\tau_2}e|$ $|\mathsf{case}\,e\,\mathsf{of}\,e\,|\,e$ |(e, e)||#1e| #2 e |e to x in e

3.2 **Static Semantics**

Unit

$$\overline{\Gamma \vdash () : \mathsf{unit}}$$

Functions and Application

$$\frac{\Gamma_{x:\tau} \vdash e : \tau'}{\Gamma \vdash \lambda x : \tau \cdot e : \tau \to \tau'}$$

$$\frac{\Gamma \vdash e_1 : \tau' \qquad \Gamma_{x:\tau'} \vdash e_2 : \tau}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{in} \ e_2 : \tau}$$

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \, e_2 : \tau'}$$

Products

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \#1 \, e : \tau_1}$$

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \#2 \, e : \tau_2}$$

Sums

$$\begin{split} \frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{inl}\,_{\tau_1 + \tau_2} e : \tau_1 + \tau_2} \\ \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{inr}\,_{\tau_1 + \tau_2} e : \tau_1 + \tau_2} \\ \frac{\Gamma \vdash e_1 : \tau_1 + \tau_2}{\Gamma \vdash \mathsf{case}\,e_1 \,\mathsf{of}\,e_2 \mid e_3 : \tau} \end{split}$$

Random Variables

To

$$\begin{array}{ccc} \overline{\Gamma \vdash \mathsf{coin}} : \mathbb{R} \\ \\ \underline{\Gamma \vdash e_1 : \tau' \qquad \Gamma_{x:\tau'} \vdash e_2 : \tau} \\ \hline \Gamma \vdash e_1 \mathsf{\,to\,} x \mathsf{\,in\,} e_2 : \tau \end{array}$$

$$\overline{\Gamma \vdash \mathsf{rand}\, : \mathbb{R}}$$

4 Translating λ_{IID} and λ_{PC} to CBPV

Rather than defining denotational semantics for λ_{IID} and λ_{PC} , we will define a translation from each of these languages into CBPV. Then, we can use the CBPV semantics to generate denotational semantics.

4.1 Types

We begin with defining type translations from λ_{HD} and λ_{PC} to CBVP. These translations are essentially identical to the translations of CBN and CBV to CBPV presented in Levy's thesis.

λ_{IID}	$\lambda_{\sf PC}$
$\llbracket unit \rrbracket_{IID} riangleq F1$	
$\llbracket \mathbb{R} rbracket{ ceil}_{HD} riangleq F \mathbb{R}$	$\llbracket \mathbb{R} \rrbracket_{PC} \triangleq \mathbb{R}$
$\llbracket \tau_1 \to \tau_2 \rrbracket_{IID} \triangleq (U \llbracket \tau_1 \rrbracket_{IID}) \to \llbracket \tau_2 \rrbracket_{IID}$	$\llbracket \tau_1 \to \tau_2 \rrbracket_{PC} \triangleq U(\llbracket \tau_1 \rrbracket_{PC} \to F \llbracket \tau_2 \rrbracket_{PC})$
$[\![\tau_1 + \tau_2]\!]_{IID} \triangleq F(U[\![\tau_1]\!]_{IID} + U[\![\tau_2]\!]_{IID})$	$\llbracket \tau_1 + \tau_2 \rrbracket_{PC} \triangleq U \llbracket \tau_1 \rrbracket_{PC} + U \llbracket \tau_2 \rrbracket_{PC}$
$\llbracket \tau_1 \times \tau_2 \rrbracket_{HD} \triangleq \llbracket \tau_1 \rrbracket_{HD} \times \llbracket \tau_2 \rrbracket_{HD}$	$\llbracket au_1 imes au_2 rbracket_{PC} riangleq \llbracket au_1 rbracket_{PC} imes \llbracket au_2 rbracket_{PC}$

4.2 Expressions

Now, we define translations from expressions in IID and PC to CBPV.

IID

4.3 Contexts

IID

PC

Theorem.

- If $\Gamma \vdash_{\mathsf{IID}} e : \tau \ then \ \llbracket \Gamma \rrbracket_{\mathsf{IID}} \vdash_c \llbracket e \rrbracket_{\mathsf{IID}} : \llbracket \tau \rrbracket_{\mathsf{IID}}.$
- If $\Gamma \vdash_{\mathsf{PC}} e : \tau \ then \ \llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket e \rrbracket_{\mathsf{PC}} : F \llbracket \tau \rrbracket_{\mathsf{PC}}$.

Proof.

We proceed by mutual induction on $\Gamma \vdash_{\mathsf{IID}} e : \tau$ and $\Gamma \vdash_{\mathsf{PC}} e : \tau$.

- $\Gamma \vdash_{\mathsf{PC}}$ () : unit. We would like to show $\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket () \rrbracket_{\mathsf{PC}} : F\llbracket \mathsf{unit} \rrbracket_{\mathsf{PC}}$. By the expression and type translation rules, this is equal to $\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \mathsf{produce}$ () : F1 which holds by the CBPV produce and unit type rules.
- $\Gamma \vdash_{\mathsf{PC}} x : \tau$. We would like to show $\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket x \rrbracket_{\mathsf{PC}} : F \llbracket \tau \rrbracket_{\mathsf{PC}}$. By the expression and type translation rules, this is equal to $\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \mathsf{produce}\, x : F$. By inspection $\Gamma(x) = \tau$, so by the context rule $\llbracket \Gamma \rrbracket_{\mathsf{PC}}(x) = \llbracket \tau \rrbracket_{\mathsf{PC}}$. Thus, this typing holds.
- $\Gamma \vdash_{\mathsf{PC}} \lambda x : \tau \cdot e : \tau \to \tau'$. We have

$$\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket \lambda x : \tau.\, e \rrbracket_{\mathsf{PC}} : F\llbracket \tau \to \tau' \rrbracket_{\mathsf{PC}} = \llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \mathsf{produce}\,\mathsf{thunk}\, \lambda x : \llbracket \tau \rrbracket_{\mathsf{PC}} \cdot \llbracket e \rrbracket_{\mathsf{PC}} : FU(\llbracket \tau \rrbracket_{\mathsf{PC}} \to F\llbracket \tau' \rrbracket_{\mathsf{PC}})$$

By the inductive hypothesis, $\llbracket \Gamma_{x:\tau} \rrbracket_{\mathsf{PC}} \vdash_c \llbracket e \rrbracket_{\mathsf{PC}} : \llbracket \tau' \rrbracket_{\mathsf{PC}}$, thus this typing is valid.

• $\Gamma \vdash_{\mathsf{PC}} \mathsf{let} \, x = e_1 \mathsf{in} \, e_2 : \tau$. We have

$$[\![\Gamma]\!]_{\mathsf{PC}} \vdash_c [\![\det x = e_1 \text{ in } e_2]\!]_{\mathsf{PC}} : F[\![\tau]\!]_{\mathsf{PC}} = [\![\Gamma]\!]_{\mathsf{PC}} \vdash_c [\![e_1]\!]_{\mathsf{PC}} \text{ to } x. [\![e_2]\!]_{\mathsf{PC}} : F[\![\tau']\!]_{\mathsf{PC}}$$

By inspection, $\Gamma \vdash_{\mathsf{PC}} e_1 : \tau'$ and $\Gamma_{x:\tau'} \vdash_{\mathsf{PC}} e_2 : \tau$. Thus by the inductive hypothesis $\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_{\mathsf{PC}} \llbracket e_1 \rrbracket_{\mathsf{PC}} : F \llbracket \tau' \rrbracket_{\mathsf{PC}}$ and $\llbracket \Gamma_{x:\tau'} \rrbracket_{\mathsf{PC}} \vdash_{\mathsf{PC}} \llbracket e_2 \rrbracket_{\mathsf{PC}} : F \llbracket \tau \rrbracket_{\mathsf{PC}}$. Thus, by the CVPB to rule, this typing holds.

• $\Gamma \vdash_{\mathsf{PC}} e_1 e_2 : \tau$. We have

$$\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket e_1 \, e_2 \rrbracket_{\mathsf{PC}} : F \llbracket \tau \rrbracket_{\mathsf{PC}} = \llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket e_2 \rrbracket_{\mathsf{PC}} \text{ to } x. \, \llbracket e_1 \rrbracket_{\mathsf{PC}} \text{ to } f. \, x'(\text{force } f) : F \llbracket \tau' \rrbracket_{\mathsf{PC}} = \mathbb{E}[\tau]_{\mathsf{PC}}$$

By inspection, $\Gamma \vdash_{\mathsf{PC}} e_1 : \tau \to \tau'$ and $\Gamma \vdash_{\mathsf{PC}} e_2 : \tau$. By the inductive hypothesis, $\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket e_1 \rrbracket_{\mathsf{PC}} : F \llbracket \tau \to \tau' \rrbracket_{\mathsf{PC}}$ and $\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket e_2 \rrbracket_{\mathsf{PC}} : F \llbracket \tau \rrbracket_{\mathsf{PC}}$. Checking the to and force type rules allows us to verify that this typing is valid.

• $\Gamma \vdash_{\mathsf{PC}} \mathsf{coin} : \mathbb{R}$.

$$\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket \mathsf{coin} \rrbracket_{\mathsf{PC}} : F \llbracket \mathbb{R} \rrbracket_{\mathsf{PC}} = \llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \mathsf{produce} \mathsf{coin} : F \mathbb{R}$$

which clearly holds by the CBPV typing rules for coin and produce.

• $\Gamma \vdash_{\mathsf{PC}} \mathsf{rand} : \mathbb{R}$.

$$[\![\Gamma]\!]_{\mathsf{PC}} \vdash_c [\![\mathsf{rand}\,]\!]_{\mathsf{PC}} : F[\![\mathbb{R}\,]\!]_{\mathsf{PC}} = [\![\Gamma]\!]_{\mathsf{PC}} \vdash_c \mathsf{produce}\,\mathsf{rand}\,: F\,\mathbb{R}$$

which clearly holds by the CBPV typing rules for coin and produce.

• $\Gamma \vdash_{\mathsf{PC}} (e_1, e_2) : \tau_1 \times \tau_2$.

$$\llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \llbracket (e_1,\,e_2) \rrbracket_{\mathsf{PC}} : F\llbracket \tau_1 \times \tau_2 \rrbracket_{\mathsf{PC}} = \llbracket \Gamma \rrbracket_{\mathsf{PC}} \vdash_c \mathsf{produce} \left(\llbracket e_1 \rrbracket_{\mathsf{PC}},\,\llbracket e_2 \rrbracket_{\mathsf{PC}} \right) : FU(F\llbracket \tau_1 \rrbracket_{\mathsf{PC}},\,F\llbracket \tau_2 \rrbracket_{\mathsf{PC}})$$

By the inductive hypothesis, $\llbracket\Gamma\rrbracket_{\mathsf{PC}} \vdash_c e_1 : F\llbracket\tau_1\rrbracket_{\mathsf{PC}}$ and $\llbracket\Gamma\rrbracket_{\mathsf{PC}} \vdash_c e_2 : F\llbracket\tau_2\rrbracket_{\mathsf{PC}}$. Thus, by the CBPV typing rules, this typing holds.

QED

Theorem. If $\Gamma \vdash_{\mathsf{IID}} e : \tau_1 \times \tau_2 \ then \llbracket e \rrbracket = \mu_1 \times \mu_2$.

Proof. TODO! QED

5 Potential Applications

- 5.1 System Security
- 5.2 Key Reuse
- 5.3 Psuodo-Number Generators
- 5.4 Random Variables