Capstone 3 Final Presentation

Ashley Kim

Background:

- Thyroid cancer is the most common endocrine cancer
- Symptoms are very hard to detect, therefore it is hard to identify the cancer in its early stages
- There are several types of thyroid cancer
- Prior thyroid cancer patients have a 20% risk of recurrence

What this project will be doing:

- With data analysis, thyroid cancer recurrence can potentially be prevented
- Identifying common trends in clinicopathological features such as:
 - Smoking
 - Radiotherapy
 - Thyroid function
 - Physical examination
 - Adenopathy
 - Pathology
 - Focality
 - And a few more
- Identifying these trends can help in creating models that can predict recurrence in past thyroid patients

Steps taken for this project:

- Data wrangling
 - Identify and eliminate any missing values
 - Change any column data types
 - Replace categorical values with numerical values
- EDA
 - Observe trends using box plots, linear plot graphs, and bar graphs
 - Observe correlation between features using heat maps
- Pre-processing
 - Create a training and testing set to use in the model
- Model
 - Use Random Forest Classification and confusion matrix

Dataset description:

- Dataset includes the following columns:
 - Age: age of patient
 - Gender: gender of patient
 - Smoking: currently smoking
 - Hx Smoking: history of smoking
 - Hx radiotherapy: history of receiving radiotherapy
 - Risk: level of risk for recurrence
 - T: size of tumor
 - N: spread of cancer to nearby lymph nodes
 - M: metastasis (spread to other parts of body)
 - Stage: stage of cancer
 - Response: efficacy of therapy
 - Recurred: recurred thyroid cancer

Data wrangling:

- No null values found
- Unique values per column
 - Age showed a wide variation of values
 - Other categories were all categorical
- Changed all categorical values into numerical values to use for the pre-processing stage

Age	int64
Gender	object
Smoking	int64
Hx Smoking	int64
Hx Radiothreapy	int64
Thyroid Function	int64
Physical Examination	int64
Adenopathy	int64
Pathology	int64
Focality	int64
Risk	int64
Т	int64
N	int64
M	int64
Stage	int64
Response	int64
Recurred	object
dtype: object	

	count	%
Age	0	0.0
Gender	0	0.0
Smoking	0	0.0
Hx Smoking	0	0.0
Hx Radiothreapy	0	0.0
Thyroid Function	0	0.0
Physical Examination	0	0.0
Adenopathy	0	0.0
Pathology	0	0.0
Focality	0	0.0
Risk	0	0.0
т	0	0.0
N	0	0.0
М	0	0.0
Stage	0	0.0
Response	0	0.0
Recurred	0	0.0

Age	65
Gender	2
Smoking	2
Hx Smoking	2
Hx Radiothreapy	2
Thyroid Function	5
Physical Examination	5
Adenopathy	6
Pathology	4
Focality	2
Risk	3
*T	7
N	3
M	2
Stage	5
Response	4
Recurred	2
dtype: int64	

Null values

Unique values

EDA:

- Heatmap shows some correlation between categories
 - Stage and Age
 - Risk and Stage
 - N and Risk
- Boxplot shows the variability in age
- Other features have low variability because they are categorical data

Pre-processing data:

- Features used to create dummy variables are "Age" and "Gender"
- Did a test train split to create data to use for the model

```
features=['Age', "Gender"]
dummies=pd.get_dummies(df[features])
merged=pd.concat([df,dummies],axis=1)
final=merged.drop(['Age', "Gender"], axis=1)
df=final
df.head()

from sklearn.model_selection import train_test_split

# dont forget to define your X and y
X= df.drop(['Recurred'],axis=1)
y=df['Recurred']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=1)
X_train = pd.get dummies(X_train)
```

X test = pd.get dummies(X test)

Model:

- Used the Random Forest Classifier
 - Accuracy = 0.935
 - F1-score = 0.935
- Used the normalized confusion matrix to identify where the misclassification occurred
 - 6% misclassified for the Yes true label
 - 7% misclassified for the No true label

Random Forest: Accuracy=0.935 Random Forest: f1-score=0.935

Model continued:

- Created a bar graph to identify which clinicopathological features were of most importance when determining recurrence
 - Response had almost 100% relative importance
 - Risk had almost 60% relative importance
 - Hx Smoking and Hx radiotherapy seemed to have the lowest relative importance

Future Research:

- Test out additional models
 - Ex: linear regression model
- Research and collect additional characteristics that have a high variability in numerical value
 - The given dataset only had categorical data, which could limit the prediction ability