Applications

- High frequency DC-DC converters
- Lead-Free

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective $C_{\mbox{\scriptsize OSS}}$ to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

PD - 94927A IRFB41N15DPbF IRFIB41N15DPbF IRFS41N15DPbF IRFSL41N15DPbF

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	I _D
150V	0.045Ω	41A

TO-220AB TO-220 FullPak IRFB41N15D IRFIB41N15D IRFS41N15D IRFSL41N15D

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	41	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	29	Α
I _{DM}	Pulsed Drain Current ①	164	
P _D @T _A = 25°C	Power Dissipation, D ² Pak	3.1	W
P _D @T _C = 25°C	Power Dissipation, TO-220	200	
P _D @T _C = 25°C	Power Dissipation, Fullpak	48	
	Linear Derating Factor, TO-220	1.3	W/°C
	Linear Derating Factor, Fullpak	0.32	
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	2.7	V/ns
T_{J}	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	1.1(10)	N•m (lbf•in)

Thermal Resistance

Thormal Modelando						
	Parameter	Тур.	Max.	Units		
$R_{\theta JC}$	Junction-to-Case		0.75	°C/W		
$R_{\theta JC}$	Junction-to-Case, Fullpak		3.14			
$R_{\theta cs}$	Case-to-Sink, Flat, Greased Surface ®	0.50				
$R_{\theta JA}$	Junction-to-Ambient, TO-220 ®		62			
$R_{\theta JA}$	Junction-to-Ambient, D ² Pak ⑦		40			
$R_{\theta JA}$	Junction-to-Ambient, Fullpak		65			

Notes ① through ⑦ are on page 12 www.irf.com

International

TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.17		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.045	Ω	$V_{GS} = 10V, I_D = 25A$ ④
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μΑ	$V_{DS} = 150V, V_{GS} = 0V$
				250		$V_{DS} = 120V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 30V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	18			S	$V_{DS} = 50V, I_{D} = 25A$
Q_g	Total Gate Charge		72	110		I _D = 25A
Q_{gs}	Gate-to-Source Charge		21	31	nC	V _{DS} = 120V
Q_{gd}	Gate-to-Drain ("Miller") Charge		35	52		V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		16			V _{DD} = 75V
t _r	Rise Time		63			I _D = 25A
t _{d(off)}	Turn-Off Delay Time		25		ns	$R_G = 2.5\Omega$
t _f	Fall Time		14			V _{GS} = 10V ④
C _{iss}	Input Capacitance		2520			$V_{GS} = 0V$
C _{oss}	Output Capacitance		510			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		110		pF	f = 1.0MHz
C _{oss}	Output Capacitance		3090			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		230		ĺ	$V_{GS} = 0V, V_{DS} = 120V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		250		[$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V $ ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		470	mJ
I _{AR}	Avalanche Current ①		25	Α
E _{AR}	Repetitive Avalanche Energy ①		20	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
IS	Continuous Source Current			41		MOSFET symbol
	(Body Diode)				Α	showing the
I_{SM}	Pulsed Source Current			164		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 25$ A, $V_{GS} = 0$ V ④
t _{rr}	Reverse Recovery Time		170	260	ns	$T_J = 25$ °C, $I_F = 25$ A
Q _{rr}	Reverse Recovery Charge		1.3	1.9	μC	di/dt = 100A/μs ④
t _{on} Forward Turn-On Time		Intrinsi	c turn-o	n time i	s neglig	ible (turn-on is dominated by LS+LD)

IRFB/IRFIB/IRFS/IRFSL41N15DPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International
Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

IRFB/IRFIB/IRFS/IRFSL41N15DPbF

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFET® Power MOSFETs

International

Rectifier

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: INCH
- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

IRFB/IRFIB/IRFS/IRFSL41N15DPbF

TO-220 Full-Pak Package Outline

Dimensions are shown in millimeters (inches)

TO-220 Full-Pak Part Marking Information

International

TOR Rectifier

D²Pak Package Outline

D²Pak Part Marking Information (Lead-Free)

IRFB/IRFIB/IRFS/IRFSL41N15DPbF

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

International IOR Rectifier

D²Pak Tape & Reel Information

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 1.5mH, $R_G = 25\Omega$, $I_{AS} = 25A$.
- $T_{.1} \le 175$ °C.
- 4 Pulse width \leq 300µs; duty cycle \leq 2%.
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © This is only applied to TO-220AB package.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

TO-220AB & TO-220 FullPak packages are not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 08/2006 www.irf.com

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/