

厦门大学《《线性代数》 课程试卷

学年学期: 191901 主考教师: 线性代数教研组 A 卷(√) B 卷()

注: A^T 表示矩阵 A 的转置矩阵, A^* 表示矩阵 A 的伴随矩阵,E 是单位矩阵,|A|表示方阵 A 的行列式,R(A)表示矩阵 A 的秩

一、 单项选择题(每小题 2 分, 共 20 分)

	、	母小巡 2 万,共 20 万)	
1.	齐次线性方程组	$\begin{cases} a_1x_1 + a_2x_2 + \dots + a_n\hat{x}_n = 0 \\ b_1x_1 + b_2x_2 + \dots + b_nx_n = 0 \end{cases}$ $\begin{cases} a_1x_1 + a_2x_2 + \dots + a_n\hat{x}_n = 0 \\ b_1x_1 + b_2x_2 + \dots + b_nx_n = 0 \end{cases}$ $\begin{cases} a_1x_1 + a_2x_2 + \dots + a_n\hat{x}_n = 0 \\ b_1x_1 + b_2x_2 + \dots + b_nx_n = 0 \end{cases}$	
	的基础解系中含有 n-1	1 个解向量 其中 $a_i \neq 0$, $b_i \neq 0$, $i = 1, 2, \dots, n$)的充要条件是 ()).
	$(\mathbf{A}) a_1 = a_2 = \dots = a_n$	(B) $b_1 = b_2 = \cdots = b_n$	
	$\begin{array}{cc} (C) & \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = 0 \end{array}$	$ \overbrace{(\mathbf{D}) \frac{a_i}{b_i} = m \neq 0, i = 1, 2, \dots, n} $	
2.	设 <i>A、B</i> 为满足 <i>AB</i> =	0的任意两个非零矩阵,则必有(A)。 AB-L	
		战性相关,B的行向量组线性相关 C/S ~ B/S	
	· · · · · · · · · · · · · · · · · · ·	法性相关, B 的列向量组线性相关 (CM) ~ 分列	
	(C) A 的行向量组线	这性相关,B的行向量组线性相关A~(d,'d, -dn).	
	(D) A 的行向量组线	是性相关, B 的行向量组线性相关 $B \sim \begin{pmatrix} d_1 & d_2 & -d_n \end{pmatrix}$. $B \sim \begin{pmatrix} b_1 & b_1 & b_2 \\ b_1 & b_2 & b_3 \end{pmatrix}$ $b_1 & d_1 + b_2 & d_2 \end{pmatrix}$,
		, b,1d,+b21Q2	+bian O.

4. 设向量组 α, β, γ 及数k, l, m满足: $k\alpha + l\beta + m\gamma = 0$ 且 $km \neq 0$,则()。

$$(A)$$
 α, β 与 α, γ 等价

(B) $\alpha, \beta = \beta, \gamma$ 等价

(C) $\alpha, \gamma 与 \beta, \gamma$ 等价

(**D**) α与γ等价

1).
$$\lambda_{3}=\lambda_{1}+2\lambda_{1}$$

$$A \rightarrow \Lambda. \qquad \begin{pmatrix} \lambda_{1} \lambda_{2} \\ \lambda_{1} \lambda_{2} \end{pmatrix}$$

$$R(A)=2.$$

$$P(A)=2.$$

$$P(A)=2.$$

$$P(A)=0.$$

3. (15 分) 已知
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix}$$
, 二次型 $f(x_1, x_2, x_3) = x^T (A^T A)x$ 的秩为 2,

(1) 求实数
$$\alpha$$
 的值 (提示: $R(A^TA) = R(A)$ (3分)

(2) 求正交变换
$$x = Qy$$
将 f 化为标准型。(12 分)

$$\gamma(A) = 2$$
 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 4 \end{bmatrix}$
 $0 \quad 0 \quad 0 \quad 0 \quad 0$
 $0 \quad 0 \quad 0 \quad 0$

$$\begin{cases} x_1 + \lambda x_2 + \mu x_3 + x_4 = 0\\ 2x_1 + x_2 + x_3 + 2x_4 = 0\\ 3x_1 + (2 + \lambda)x_2 + (4 + \mu)x + 4x_4 = 1 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 2x_1 + \lambda x_2 + \mu x_3 + x_4 = 0\\ 2x_1 + x_2 + x_3 + 2x_4 = 0\\ 3x_1 + (2 + \lambda)x_2 + (4 + \mu)x + 4x_4 = 1 \end{cases}$$

已知(1,-1,1,-1)^T是该方程的一个解, 试求:

(1) 方程组的全部解 并用对应的齐次线性方程组的基础解系表示全部解;(10分)

$$\begin{pmatrix}
1 & \lambda & \lambda & 1 & 0 \\
2 & 1 & 1 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & \lambda & \lambda & 1 & 0 \\
2 & 1 & 1 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & \lambda & \lambda & 1 & 0 \\
0 & 1 & 3 & 1 & 0 \\
0 & 0 & 2(2\lambda - 1)2\lambda - 1 & 2\lambda - 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & \lambda & \lambda & \lambda & \lambda & \lambda \\
2 & \lambda & \lambda & \lambda & \lambda & \lambda
\end{pmatrix}$$

$$\frac{0}{1-\frac{1}{2}} \cdot \begin{bmatrix} 1 & 0 & -1 & \frac{1}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\xi_1 = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$$

$$\begin{cases} 2 - \begin{cases} -\frac{1}{2} \\ -1 \end{cases} \\ 0 \\ 1 \end{cases}$$

$$\int = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 0 \end{bmatrix}$$

$$\xi_1 = \begin{pmatrix} -1 \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \sim$$

(2)
$$\lambda = \frac{1}{2}$$

$$\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{pmatrix} = |\mathcal{L}_1 \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \end{pmatrix} + |\mathcal{L}_2 \begin{pmatrix} -1 \\ -\frac{1}{2} \\ -1 \\ 0 \end{pmatrix} + |\mathcal{L}_3 \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}.$$

$$\begin{cases} \chi_2 = -3k_1 - k_2 + 1 \\ \chi_3 = k_1 \\ \chi_2 = \chi_3 = 1 \end{cases}$$

0 xt = -

- (1) 证明 R(A) = 2; (5分)
- (2) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$, 求方程组 $Ax = \beta$ 的通解。(5 分)

3. (15 分) 已知
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix}$$
, 二次型 $f(x_1, x_2, x_3) = x^T (A^T A)x$ 的秩为 2,

- (1) 求实数 α 的值(提示: $R(A^TA) = R(A)$)(3 分)
- (2) 求正交变换x = Qv将 f 化为标准型。(12 分)
- 4. (13 分) 设线性方程组

$$\begin{cases} x_1 + \lambda x_2 + \mu x_3 + x_4 = 0 \\ 2x_1 + x_2 + x_3 + 2x_4 = 0 \\ 3x_1 + (2 + \lambda)x_2 + (4 + \mu)x_3 + 4x_4 = 1 \end{cases}$$

已知 $(1,-1,1,-1)^T$ 是该方程的一个解, 试求:

- (1) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(10分)
- (2) 该方程满足 $x_2 = x_3$ 的全部解。(3分)

四、 证明题(每题5分,共15分)

- 1. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 是 R^3 的一个基,证明:向量组 $\beta_1 = 2\alpha_1 + k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 也是 R^3 的一个基。
- 2. 设 A 为行满秩的 $m \times n$ 型实矩阵,证明: $B = AA^T$ 是正定矩阵。
- 3. 设 $A_{m\times n}$ 的m个行向量是某个n元齐次线性方程组的一组基础解系,又B为m阶可逆方阵,证明BA的行向量也构成该齐次线性方程组的一组基础解系。

- 2. 设 A 为行满秩的 $m \times n$ 型实矩阵,证明: $B = AA^T$ 是正定矩阵。
- 3. 设 $A_{m\times n}$ 的m个行向量是某个n元齐次线性方程组的一组基础解系,又B为m阶可逆方阵, 证明 BA 的行向量也构成该齐次线性方程组的一组基础解系。

- 1. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 是 R^3 的一个基,证明: 向量组 β_1 =2 α_1 + $k\alpha_3$, β_2 =2 α_2 , β_3 = α_1 + $(k+1)\alpha_3$ 也是 R^3 的一个基。
- 2. 设A为行满秩的 $m \times n$ 型实矩阵,证明: $B = AA^T$ 是正定矩阵
- 3. 设 $A_{m \times n}$ 的m个行向量是某个n元齐次线性方程组的一组基础解系,又B为m阶可逆方阵, 证明 BA 的行向量也构成该齐次线性方程组的一组基础解系。

①、特伦伯华>0. (D) 版图单式 > 0 13 过、以及 0 则 xAx > 0.

B=A.AT

- 1. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 是 R^3 的一个基,证明:向量组 $\beta_1 = 2\alpha_1 + k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 也是 R^3 的一个基。
- 2. 设 A 为行满秩的 $m \times n$ 型实矩阵,证明: $B = AA^T$ 是正定矩阵。

3

3. 设 $A_{m\times n}$ 的m个行向量是某个n元齐次线性方程组的一组基础解系,又B为m阶可逆方阵,证明BA的行向量也构成该齐次线性方程组的一组基础解系。

CX = 0

~~ BA们向向里里解

江町基础有多,

A价何里里重社前等 R(A)=m.
m午们的坚保性大关。

B 可适

$$\Upsilon(A) = \gamma(BA) = m$$
.

BA呈 (不可重型生