COHOMOLOGY OF EILENBERG-MAC LANE SPACES: FIRST APPLICATIONS

ANDRÉS MORÁN LAMAS

ABSTRACT. The present document aims to compute the first stable homotopy groups for the sphere, following [1]. The main theoretical dependency is the computation of the mod 2 cohomology of Eilenberg-Mac Lane spaces. The computation will rely on a Postnikov tower-like argument and the Bockstein differentials to recover the 2^k -torsion, and to compute certain related fiber cohomologies.

1 Preliminaries

We first start with this application of Serre classes that resembles the usage of localization in (co)homology. The computation will only need the implicance $(I) \implies (VII)$.

Theorem 1 (C_p approximation theorem). Let X and A be 1-connected nice spaces (for example, CW complexes) such that $H_i(A; \mathbb{Z})$ and $H_i(X; \mathbb{Z})$ are finitely generated for each $i \in \mathbb{N}_0$. Let $f: A \to X$ be a map such that $f_*: \pi_2(A) \to \pi_2(X)$ is surjective. Then, conditions (I) – (VI) are equivalent and imply condition (VII).

- (i) $f^* : H^i(X; \mathbb{Z}/p\mathbb{Z}) \to H^i(A; \mathbb{Z}/p\mathbb{Z})$ is an isomorphism for i < n injective for i = n.
- (ii) $f_*: H_i(A; \mathbb{Z}/p\mathbb{Z}) \to H_i(X; \mathbb{Z}/p\mathbb{Z})$ is an isomorphism for i < n and surjective for i = n.
- (iii) $H_i(X, A; \mathbb{Z}/p\mathbb{Z}) = 0$ for $i \geq n$.
- (iv) $H_i(X, A; \mathbb{Z}) \in \mathcal{C}_p$ for $i \geq n$.
- (v) $\pi_i(X, A) \in \mathcal{C}_p$ for $i \geq n$.
- (vi) $f_*: \pi_i(A) \to \pi_i(X)$ is a \mathcal{C}_p -isomorphism for i < n and \mathcal{C}_p -surjective for i = n.
- (vii) $\pi_i(A)_{(p)} \cong \pi_i(X)_{(p)}$ for i < n.

Proof. See [1]. \Box

The preceding theorem reduces the problem of computing the p-component of $\pi_i(X)$ to that of finding a space A with the same $\mathbb{Z}/p\mathbb{Z}$ -cohomology, together with a map $A \to X$ inducing isomorphisms in $\mathbb{Z}/p\mathbb{Z}$ -cohomology.

We also require the following results related to the Bockstein morphism. These results allow us to detect mod 2 reduction of \mathbb{Z} -cohomology classes. The next result, in particular, is useful to compute $H^*(K(\mathbb{Z}/2^m\mathbb{Z},1);\mathbb{Z}/2\mathbb{Z})$.

Definition 1 (Bockstein exact couple). The Bockstein exact couple is of the form

$$D^{1} = H^{*}(-; \mathbb{Z}) \xrightarrow{i^{1}} H^{*}(-; \mathbb{Z})$$

$$E^{1} = H^{*}(-; \mathbb{Z}/2\mathbb{Z})$$

The morphism i^1 is induced by multiplication by 2 in \mathbb{Z} ; j^1 is induced by the mod 2 reduction morphism $\rho \colon \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$, and k^1 is the Bockstein morphism δ_2 .

For convenience, we will denote the Bockstein differentials using subscripts, thus $d_1 = d$, $d_2 = d_2 = j^2 k^2 cdots E^2$, etc. The operation d_r acts as follows: take a cocycle in $\mathbb{Z}/2\mathbb{Z}$ —coefficients; represent it by an integral cocycle; take its coboundary; divide by 2^r (this is possible because d_r is defined only on the kernel of d_{r-1}); and apply mod 2 reduction on the coefficients. Notice that $d_r cdots H^*(-; \mathbb{Z}/2\mathbb{Z}) \to H^{*+1}(-; \mathbb{Z}/2\mathbb{Z})$. By the universal coefficient theorem

$$H^p(X;G) = \operatorname{Hom}(H_p(X),G) \oplus \operatorname{Ext}(H_{p-1}(X),G).$$

Date: June 19, 2024.

Therefore, a direct summand \mathbb{Z} gives rise to a summand \mathbb{Z} in $H^p(X;\mathbb{Z})$, and to a summand $\mathbb{Z}/2\mathbb{Z}$ in $H^p(X;\mathbb{Z}/2\mathbb{Z})$. A summand $\mathbb{Z}/2^n\mathbb{Z}$ in $H_p(X;\mathbb{Z})$ gives rises to a $\mathbb{Z}/2^n\mathbb{Z}$ in $H^{p+1}(X;\mathbb{Z})$ and to summands $\mathbb{Z}/2\mathbb{Z}$ in $H^p(X;\mathbb{Z}/2\mathbb{Z})$ and $H^{p+1}(X;\mathbb{Z}/2\mathbb{Z})$.

Proposition 1 (Torsion detected by the Bockstein morphisms I). Elements of $H^*(X; \mathbb{Z}/2\mathbb{Z})$ which come from *free* integral classes lie in $\operatorname{Ker}(d_r)$ for every $r \geq 0$ and not in $\operatorname{Im}(d_r)$ for all $r \geq 0$. If $z \in H^{n+1}(X; \mathbb{Z})$ generates a direct summand of order 2^r , then there exist cyclic direct summands of order 2 in $H^n(X; \mathbb{Z}/2\mathbb{Z})$, and $H^{n+1}(X; \mathbb{Z}/2\mathbb{Z})$ generated by z' and z'' respectively; $d_i(z'), d_i(z'') = 0$ for i < r, and $d_r(z') = z''$ (implicitly, z' and z'' are also not in $\operatorname{Im}(d_r)$ for i < r.)

Proof. Proven in [1]. \Box

Definition 2 (Persistent elements). In the context of the previous result, we say that the image by ρ of the free subgroups of $H^*(X;\mathbb{Z})$ persists to E^{∞} and that z' and z'' persists to E^r but not to E^{r+1} .

The following application is related to $\pi_*(S^n)$.

Corollary 1 (Torsion detected by the Bockstein morphisms II). Let X be a space, such that $H^i(X; \mathbb{Z}/2\mathbb{Z}) = 0$ for i < n, and $H^n(X; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}\{z\}$. Then we can infer $H^n(X; \mathbb{Z})$, except for odd prime torsion. That is, $H^n(X; \mathbb{Z}) \cong \mathbb{Z}$ if $d_r z = 0$ for all $r \geq 1$, and $H^n(X; \mathbb{Z}) = \mathbb{Z}/2^n\mathbb{Z}$ if $d_i z = 0$ for i < n and $d_n z \neq 0$.

Theorem 2 (Bockstein lemma). Let (E, p, B; F) be a fibre space. Let the class $u \in H^n(F; \mathbb{Z}/2\mathbb{Z})$ be transgressive, and suppose that, for some $i \in \mathbb{N}_{>0}$ and for some $v \in H^n(B; \mathbb{Z}/2\mathbb{Z})$, $d_i(v) = \tau(u)$. Then $d_{i+1}p^*v$ is defined, and moreover

$$j^*d_{i+1}p^*(v) = d_1(u)$$

where j is the inclusion $F \subseteq E$.

Proof. See [1].

Here the members of the formula $d_i(v) = \tau(u)$ and the formula of the conclusion lie in appropriate quotient groups of $H^{n+1}(F; \mathbb{Z}/2\mathbb{Z})$.

2 First stable homotopy groups

Now, we can state and prove the following result. By the previous results related to the minimal p-torsion in $\pi_*(S^n)$, it will be just needed to compute $\pi_i(S^n)_{(2)}$ for i=1,2,3. The proof depends on the computation of $H^*(K(\mathbb{Z}/2\mathbb{Z},n);\mathbb{Z}/2\mathbb{Z})$, $H^*(K(\mathbb{Z},n);\mathbb{Z}/2\mathbb{Z})$ and $H^*(K(\mathbb{Z}/2^k\mathbb{Z},n);\mathbb{Z}/2\mathbb{Z})$. The idea of the proof consists of constructing fibrations approximating the n-sphere by an inductive Postnikov tower-like argument. In each approximation, specific cohomology classes will be killed to make the fiber's canonical class a transgressive element. The role of the Bockstein morphisms is to detect the 2^k -torsion and to compute a basis for the cohomology of the fibers.

Theorem 3 (First stable homotopy groups). We have the following isomorphisms.

- (i) $\pi_1^s(S^0) \cong \mathbb{Z}/2\mathbb{Z}$.
- (ii) $\pi_2^s(S^0) \cong \mathbb{Z}/2\mathbb{Z}$.
- (iii) $\pi_3^s(S^0) \cong \mathbb{Z}/24\mathbb{Z}$.

Proof. Since the stated assertion is concerned with stable homotopy groups, assume that $n \gg 1$. This ensures that we will be working with the Steenrod algebra and that we will not need to consider cup products in the spectral sequence arguments. Consider the map $\operatorname{Sq}^2\colon K(\mathbb{Z},n)\to K(\mathbb{Z}/2\mathbb{Z},n+2)$ which represents $\operatorname{Sq}^2(\iota_n)\in H^{n+2}(K(\mathbb{Z},n);\mathbb{Z}/2\mathbb{Z})$. Essentially, we will construct a Postnikov tower inductively. The first step is the following. Take the path-loop fibration $K(\mathbb{Z}/2\mathbb{Z},n+1)\to P\to K(\mathbb{Z}/2\mathbb{Z},n+2)$. Now, take the pullback of this fibration under $\operatorname{Sq}^2\colon K(\mathbb{Z},n)\to K(\mathbb{Z}/2\mathbb{Z},n+2)$, as the following commutative diagram shows.

By commutativity of the previous diagram, $\operatorname{Sq}^2 \circ p = \operatorname{ev}_1 \circ F$. Therefore, $p^* \circ \operatorname{Sq}^2 = F^* \circ (\operatorname{ev}_1)^*$. Because $P \cong \{*\}$, it follows that $p^* \circ \operatorname{Sq}^2 = 0$, hence $p^*\operatorname{Sq}^2\iota_n = 0 \in H^{n+2}(X_1; \mathbb{Z}/2\mathbb{Z})$, i.e. we have killed the cohomology class $\operatorname{Sq}^2\iota_n \in H^{n+2}(K(\mathbb{Z},n); \mathbb{Z}/2\mathbb{Z})$. Since $K(\mathbb{Z},n)$ is 1-connected, by the cohomological Serre spectral sequence with $\mathbb{Z}/2\mathbb{Z}$ -coefficients we have the following diagram.

Figure 1. Serre spectral sequence associated with $K(\mathbb{Z}/2\mathbb{Z}, n+1) \to X_1 \to K(\mathbb{Z}, n)$.

Since we have killed $\operatorname{Sq}^2\iota_n\in H^{n+2}(X_1;\mathbb{Z}/2\mathbb{Z})$, we have that $\iota_{n+1}\in F=H^*(K(\mathbb{Z}/2\mathbb{Z},n+1);\mathbb{Z}/2\mathbb{Z})$ is transgressive. Therefore, by the commutativity of transgressive differentials with the Steenrod operations, it follows that $d_{n+2}(\operatorname{Sq}^1\iota_{n+1})=\operatorname{Sq}^1(d_{n+1}(\iota_{n+1}))=\operatorname{Sq}^1\operatorname{Sq}^2(\iota_n)=\operatorname{Sq}^3(\iota_n)$, applying the Adem relations. Moreover, $d_{n+4}(\operatorname{Sq}^2\iota_{n+1})=\operatorname{Sq}^2\operatorname{Sq}^2\iota_n=\operatorname{Sq}^3\operatorname{Sq}^1\iota_n=0$, and $d_{n+5}(\operatorname{Sq}^{2,1}\iota_{n+1})=\operatorname{Sq}^{2,1,2}\iota_n=\operatorname{Sq}^5\iota_n+\operatorname{Sq}^{4,1}\iota_n=\operatorname{Sq}^5\iota_n,$ $d_{n+5}(\operatorname{Sq}^3\iota_{n+1})=\operatorname{Sq}^{3,2}\iota_n=0$. Similarly, $d_{n+6}(\operatorname{Sq}^4\iota_{n+1})=\operatorname{Sq}^{4,2}\iota_n$ and $d_{n+6}(\operatorname{Sq}^{3,1}\iota_{n+1})=\operatorname{Sq}^{3,1,2}\iota_n=\operatorname{Sq}^{5,1}\iota_n=0$. Analogously, $d_{n+7}(\operatorname{Sq}^5\iota_{n+1})=\operatorname{Sq}^{5,2}\iota_n$ and $d_{n+7}(\operatorname{Sq}^4\iota_{n+1})=\operatorname{Sq}^{5,2}\iota_n$.

Now, by the convergence of the Serre spectral sequence, and applying the same argument with d_{n+3} , we obtain that

$$\tilde{H}^i(X_1; \mathbb{Z}/2\mathbb{Z}) \cong \begin{cases} \mathbb{Z}/2\mathbb{Z}, & i = n, \\ 0 & i < n \text{ or } n < i \le n+2. \end{cases}$$

Additionally, the previous computation with the transgression gives us the following generators (as a $\mathbb{Z}/2\mathbb{Z}-\text{module}$) in the following degrees

$$H^{n+3}(X_1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\{a\},$$

 $H^{n+4}(X_1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\{b\} \oplus \mathbb{Z}/2\mathbb{Z}\{p^*(\operatorname{Sq}^4 \iota_n)\},$

$$H^{n+5}(X_1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\{c\},$$

$$H^{n+6}(X_1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\{d\} \oplus \mathbb{Z}/2\mathbb{Z}\{p^*(\operatorname{Sq}^6 \iota_n)\},$$

where

$$i^*(a) = \operatorname{Sq}^2 \iota_{n+1},$$

$$i^*(b) = \operatorname{Sq}^3 \iota_{n+1},$$

$$i^*(c) = \operatorname{Sq}^{3,1} \iota_{n+1},$$

$$i^*(d) = \operatorname{Sq}^5 \iota_{n+1} + \operatorname{Sq}^{4,1} \iota_{n+1}.$$

This will be required to compute a basis for $H^{n+i}(X_2; \mathbb{Z}/2\mathbb{Z})$ during the next step of this inductive argument. Now let $f: S^n \to K(\mathbb{Z}, n)$ represent the homotopy class of a generator of $\pi_n(K(\mathbb{Z}, n)) = \mathbb{Z}$. The composition

$$S^n \xrightarrow{f} K(\mathbb{Z}, n) \xrightarrow{\operatorname{Sq}^2} K(\mathbb{Z}/2\mathbb{Z}, n+2)$$

is null-homotopic, since $\pi_n(K(\mathbb{Z}/2\mathbb{Z}, n+2)) = 0$. Therefore, by the homotopy lifting property applied to the path-loop fibration, and the universal property of the pullback, this induces a map $f_1: S^n \to X_1$. Note that

$$(f_1)^* \colon H^i(X_1; \mathbb{Z}/2\mathbb{Z}) \to H^i(S^n; \mathbb{Z}/2\mathbb{Z})$$

is an isomorphism for $i \leq n+1$ and surjective for i=n+2. By the homotopy exact sequence, $\pi_{n+1}(X_1)_{(2)} \cong \mathbb{Z}/2\mathbb{Z}$. Applying the \mathcal{C}_p approximation theorem with \mathcal{C}_2 , and noticing that $\pi_{n+2}(S^n)$ does not have odd p-torsion, it follows that

$$\pi_{n+1}(S^n) \cong \pi_{n+1}(S^n)_{(2)} \cong \pi_{n+1}(X_1)_{(2)} \cong \mathbb{Z}/2\mathbb{Z}.$$

Before we can continue, we will require the following lemma, which gives useful Bockstein relations in $H^*(X_1; \mathbb{Z}/2\mathbb{Z})$. These relations are needed because we do not know the exact behavior of the squaring operations in $H^*(X_1; \mathbb{Z}/2\mathbb{Z})$.

Lemma 1 (Bockstein relations in $H^*(X_1; \mathbb{Z}/2\mathbb{Z})$). In $H^*(X_1; \mathbb{Z}/2\mathbb{Z})$, there are the following relations in terms of the Bockstein differentials $\beta_i \colon H^*(X_1; \mathbb{Z}/2\mathbb{Z}) \to H^{*+1}(X_1; \mathbb{Z}/2\mathbb{Z})$.

- (a) $\beta_1(a) = b + k \cdot p^*(\operatorname{Sq}^4 \iota_n)$ for some $k \in \mathbb{Z}$.
- (b) $\beta_2(p^*(\operatorname{Sq}^4 \iota_n)) = c$.
- (c) $\beta_1(c) = 0$.

Proof.

- (a) We have $i^*(a) = \operatorname{Sq}^2 \iota_{n+1}$ by definition of $a \in H^{n+3}(X_1; \mathbb{Z}/2\mathbb{Z})$. Therefore $i^*(\beta_1 a) = \beta_1 i^*(a) = \beta_1 \operatorname{Sq}^2 \iota_{n+1} = \operatorname{Sq}^3 \iota_{n+1}$. Moreover, $i^*(b) = \operatorname{Sq}^3 \iota_{n+1}$. Since $p^* \operatorname{Sq}^4 \iota_n \in \operatorname{Im}(p^*)$, $i^* p^* \operatorname{Sq}^4 \iota_n = 0$, by the (cohomological) Serre exact sequence associated to the fibration $K(\mathbb{Z}/2\mathbb{Z}, n+1) \to X_1 \to K(\mathbb{Z}, n)$.
- (b) Notice that $\beta_1 \operatorname{Sq}^4 \iota_n = \operatorname{Sq}^1 \operatorname{Sq}^4 \iota_n = \operatorname{Sq}^5 \iota_n = d_{n+5} (\operatorname{Sq}^{2,1} \iota_{n+1})$. Thus $\beta_1 p^* \operatorname{Sq}^4 \iota_n = 0$ since $p^* d_{n+5} = 0$ (remember that d_{n+5} is the transgression). By the Bockstein lemma (Lemma 2),

$$i^*\beta_2 p^* \operatorname{Sq}^4 \iota_n = \beta_1 (Sq^{2,1}\iota_{n+1}) = \operatorname{Sq}^{3,1}\iota_{n+1} = i^*(c).$$

Since $H^{n+5}(X_1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\{c\}$, the result follows.

(c) This follows from (b) since $\beta_1(u) = 0$ for all $u \in \text{Im}(\beta_r)$.

The next step in this inductive computation is to kill the generator $H^{n+3}(X_1; \mathbb{Z}/2\mathbb{Z})$ in such a way that the canonical class in the fiber cohomology transgresses too. Consider the following commutative diagram, obtained analogously from the previous one.

As in the previous step, consider the associated cohomological Serre spectral sequence, described in the next figure.

Figure 2. Serre spectral sequence associated to $K(\mathbb{Z}/2\mathbb{Z}, n+2) \to X_2 \to X_1$.

By construction $d_{n+3}(\iota_{n+2}) = a$. Then, $d_{n+4}(\operatorname{Sq}^1\iota_{n+2}) = \operatorname{Sq}^1(a) = \beta_1(a) = b + k \cdot p^*(\operatorname{Sq}^4\iota_n)$, and $d_{n+5}(\operatorname{Sq}^2\iota_{n+2}) = \operatorname{Sq}^2(a)$. We must verify if $\operatorname{Sq}^2(a) = c$ or 0. Note that $a = i^*(\operatorname{Sq}^2\iota_{n+1})$, so $\operatorname{Sq}^2(a) = i^*(\operatorname{Sq}^{2,2}\iota_{n+1}) = i^*(\operatorname{Sq}^{3,1}\iota_{n+1}) = i^*(\operatorname{Sq}^{3,1}\iota_$ $i^*(c)$. Hence, $d_{n+5}(\operatorname{Sq}^2 \iota_{n+2}) = \operatorname{Sq}^2 a = c$. Similarly, $d_{n+6}(\operatorname{Sq}^{2,1} \iota_{n+2}) = d + m \cdot p^* \operatorname{Sq}^6 \iota_n$, for some $m \in \mathbb{Z}$, since

$$i^*(\operatorname{Sq}^{2,1}a) = \operatorname{Sq}^{2,1}(i^*a) = \operatorname{Sq}^{2,1,2}(\iota_{n+1}) = (\operatorname{Sq}^5 + \operatorname{Sq}^{4,1})(\iota_{n+1}) = i^*(d).$$

Hence, $\operatorname{Sq}^{2,1}a = d + m \cdot p^*\operatorname{Sq}^6\iota_n$ where $m \in \mathbb{Z}$. The same argument gives us $d_{n+6}(\operatorname{Sq}^3\iota_{n+2}) = 0 + n \cdot p^*\operatorname{Sq}^6\iota_n$, for some $n \in \mathbb{Z}$. Notice that $\operatorname{Sq}^3 \iota_{n+2} = \operatorname{Sq}^{1,2} \iota_{n+2}$. Thus,

$$d_{n+6}(\operatorname{Sq}^3 \iota_{n+2}) = \operatorname{Sq}^1(d_{n+5}(\operatorname{Sq}^2 \iota_{n+2})) = \operatorname{Sq}^1(c).$$

But $\operatorname{Sq}^1(c) = 0$ by Lemma 1. Therefore, $d_{n+6}(\operatorname{Sq}^3\iota_{n+2}) = 0$. Now it follows that $\operatorname{Coker}(d_{n+6}) = \mathbb{Z}/2\mathbb{Z}\{(p_2)^*p^*\operatorname{Sq}^6(\iota_n)\}$. Therefore, this computation gives us that $H^{n+3}(X_2;\mathbb{Z}/2\mathbb{Z}) = 0$ and $H^{n+4}(X_2;\mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}\{(p_2)^*p^*\operatorname{Sq}^4\iota_n\}$, assuming WLOG that k=0 (since dim $Coker(\tau)=1$, and thus we can identify the corresponding generator with $(p_2)^*p^*\operatorname{Sq}^4\iota_n$). Analogously, $H^{n+5}(X_2;\mathbb{Z}/2\mathbb{Z})\cong\mathbb{Z}/2\mathbb{Z}\{(p_2)^*p^*\operatorname{Sq}^6(\iota_n)\}$.

In summary, we have computed the following partial basis for $H^{n+i}(X_2; \mathbb{Z}/2\mathbb{Z})$.

$$H^{n+3}(X_2; \mathbb{Z}/2\mathbb{Z}) = 0,$$

$$H^{n+4}(X_2; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\{(p_2)^* p^* \operatorname{Sq}^4 \iota_n\},$$

$$H^{n+5}(X_2; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\{A\},$$

where

$$i^*(A) = \operatorname{Sq}^3(\iota_{n+2}).$$

Therefore, by the homotopy exact sequence, we obtain that $\pi_{n+2}(S^n) \cong \mathbb{Z}/2\mathbb{Z}$. We will need the following Bockstein relations.

Lemma 2 (Bockstein relations for $H^*(X_2; \mathbb{Z}/2\mathbb{Z})$). In $H^*(X_2; \mathbb{Z}/2\mathbb{Z})$, $\beta_3((p_2)^*p^*\operatorname{Sq}^4\iota_n) = A$, where $A \in H^{n+5}(X_2; \mathbb{Z}/2\mathbb{Z})$ is defined by $i^*A = \operatorname{Sq}^3 \iota_{n+2}$.

Proof. By the Bockstein lemma (Lemma 2) and Lemma 1, we have

$$\beta_2 p^* \operatorname{Sq}^4 \iota_n = c = d_{n+5} (\operatorname{Sq}^2 \iota_{n+2}) \in H^{n+5} (X_1; \mathbb{Z}/2\mathbb{Z}).$$

Thus,

$$i^* (\beta_3(p_2)^* p^* \operatorname{Sq}^4 \iota_n) = \beta_1(\operatorname{Sq}^2 \iota_{n+2}) = \operatorname{Sq}^3 \iota_{n+2} = i^* A.$$

Now, we would try to kill $H^{n+4}(X_2; \mathbb{Z}/2\mathbb{Z})$ representing $(p_2)^*p^*\operatorname{Sq}^4\iota_n$ as a map $X_2 \to K(\mathbb{Z}/2\mathbb{Z}; n+4)$. However, it will follow that $d_{n+5}(\operatorname{Sq}^1\iota_{n+3}) = 0$, since $\beta_1(p_2)^*p^*\operatorname{Sq}^4\iota_n = 0$. Since $\beta_1((p_2)^*p^*\operatorname{Sq}^4\iota_n) = \beta_2((p_2)^*p^*\operatorname{Sq}^4\iota_n) = 0$, by Proposition 1, $(p_2)^*p^*\operatorname{Sq}^4\iota_n$ corresponds to the mod 2 reduction of some $\mathbb{Z}/8\mathbb{Z}$ -cohomology class. Let $C \in H^{n+4}(X_2; \mathbb{Z}/8\mathbb{Z})$ be such class. Consider a map $X_2 \to K(\mathbb{Z}/8\mathbb{Z}, n+4)$ representing C.

Analogously as before, consider the following diagram that gives us X_3 .

Then $H^{n+4}(K(\mathbb{Z}/8\mathbb{Z}, n+3); \mathbb{Z}/2\mathbb{Z})$ is generated by $\beta_3\iota_{n+3}$ which transgresses to $A = \beta_3(p_2)^*p^*\operatorname{Sq}^4\iota_n$. Applying the cohomological Serre spectral sequence, and our computation of $H^*(K(\mathbb{Z}/2^r\mathbb{Z}, m); \mathbb{Z}/2\mathbb{Z}) \cong H^*(K(\mathbb{Z}/2\mathbb{Z}, m); \mathbb{Z}/2\mathbb{Z})$ (as graded ring algebras) brings us:

Figure 3. Serre spectral sequence associated to $K(\mathbb{Z}/8\mathbb{Z}, n+3) \to X_3 \to X_2$.

By the homotopy exact sequence, it follows that $\pi_{n+3}(X_3) = \mathbb{Z}/8\mathbb{Z}$. By the \mathcal{C}_p -approximation theorem, we conclude that $\pi_{n+3}(S^n)_{(2)} \cong \mathbb{Z}/8\mathbb{Z}$, for $n \gg 1$.

References

[1] R. E. Mosher, M. C. Tangora, "Cohomology Operations and Applications in Homotopy Theory", Harper and Row, New York, 1968.

Email address: andres.moran.l@uc.cl