

Nikolaos Mavridis, PhD Massachusetts Institute of Technology Professor, Innopolis University; Director, IRML Lab; Head of Robotics Institute, Innopolis

MY BACKGROUND

PhD from MIT Media Lab

Born in Thessaloniki, Greece

Situation Models: Where words and percepts meet

Grounded

Nikolaos Mavridis

Education

- PhD Massachusetts Institute of Tech (MIT)
- MS University of California Los Angeles (UCLA)
- 5-Yr Dipl. Eng. Aristotle Uni of Thessaloniki
- "Coder" and "Maker" since 10 years old! + onlin

Experience

- Professor and Lab Director 7 years
- Graduate Researcher 7 years
- Fields: Interactive and Social Robotics, Applied Computer Vision & Machine Learning, Cognitive Systems
- Leadership, Consultancy & Volunteering Positions

Academic Bases

- Massachusetts Institute of Technology (USA)
- ITI & NCSR-Demokritos (GREECE)

MS-RO: 2-Year Robotics Masters @ Innopolis

Program Objectives

- 1) Create future leaders for industry, entrepreneurship and government
- 2) Students for PhD programs in various Robotics-related disciplines
- 3) Interdisciplinary thinkers with advanced collaboration skills
- 4) Competitive in national and international job markets
- 5) Provide strong basis for just-in-time and life-long learning

• Emphasis on

- Hands-on experience with all the latest tools, in an ideal mix with deep interdisciplinary understanding that enables rapid adaptation
- Very strong synergistic connectivity with local & global ecosystem

Some of our Resources

Labs, Advanced Curriculum, World-class Faculty, Selected Students

If you want:

- A cool interdisciplinary field, where everything you will want to explore in your life will somehow be connected with your work!
- A way to help humanity improve its present condition
- Exciting teamwork and many employment and startup opportunities
- The possibility to really deeply self-reflect about cognition, perception, emotion, beliefs, goals, interaction...

..and to Know Thyself

THEN, BECOME A ROBOTICIST!

Chapter 1

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Or... How we will go all the way from Sand....

...through your Laptops....

....to the Collective Intelligence of the Earth

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

Background

- Microprocessors have revolutionized our world
 - Cell phones, Internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$300 billion in 2011

The Game Plan

- Purpose of course:
 - Understand what's under the hood of a computer
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs
 - Design and build a microprocessor

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y's
 - Hierarchy
 - Modularity
 - Regularity

Sid

Abstraction

Hiding details when they aren't important

focus of this course

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
 - Discrete voltages instead of continuous
 - Simpler to design than analog circuits can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones,
 CDs

The Three -y's

- Hierarchy
- Modularity
- Regularity

The Three -y's

Hierarchy

A system divided into modules and submodules

Modularity

Having well-defined functions and interfaces

Regularity

Encouraging uniformity, so modules can be easily reused

Example: The Flintlock Rifle

Hierarchy

- Three main modules:
 lock, stock, and barrel
- Submodules of lock:
 hammer, flint, frizzen,
 etc.

NE RON

Example: The Flintlock Rifle

Modularity

- Function of stock: mount barrel and lock
- Interface of stock: length and location of mounting pins

Regularity

Interchangeable parts

The Digital Abstraction

- Most physical variables are continuous
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Digital abstraction considers discrete subset of values

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –

 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Chapter 1 < 22>

Digital Discipline: Binary Values

Two discrete values:

- 1's and 0's
- 1, TRUE, HIGH
- 0, FALSE, LOW
- 1 and 0: voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent 1 and 0
- Bit: Binary digit

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws *of Thought* (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and **NOT**

nstitute of Physics

Number Systems

Decimal numbers

Binary numbers

Number Systems

Decimal numbers

1's column 10's column 100's column 1000's column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary numbers

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$$
one
eight
one
four
one
one
one
one
one
one
one

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^8 =$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

2

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary
 - $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:

- N-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

Binary Values and Range

- N-digit decimal number
 - How many values? 10^N
 - Range? $[0, 10^{N} 1]$
 - Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]
- N-bit binary number
 - How many values? 2^N
 - Range: [0, $2^N 1$]
 - Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand for binary

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

Bits, Bytes, Nibbles...

Bits

most least significant bit bit

Bytes & Nibbles

10010110 nibble

Bytes

CEBF9AD7

most least significant byte byte

2

Large Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2^{24} ?

How many values can a 32-bit variable represent?

Estimating Powers of Two

• What is the value of 2^{24} ?

$$2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

ONE

Addition

Decimal

• Binary

Addition

Decimal

• Binary

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

NE 50

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

• Range of an *N*-bit sign/magnitude number:

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

$$+6 = 0110$$

• Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

Problems:

- Addition doesn't work, for example -6 + 6:

– Two representations of $0 (\pm 0)$:

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

Two's Complement Numbers

• Msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

Two's Complement Numbers

• Msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

$$[-(2^{N-1}), 2^{N-1}-1]$$

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$\frac{2. + 1}{1101} = -3_{10}$$

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of 1001_2 ?

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

$$\frac{2. + 1}{1010_2} = -6_{10}$$

- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110

$$\frac{2. + 1}{0111_2} = 7_{10}$$
, so $1001_2 = -7_{10}$

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

Add 6 + (-6) using two's complement numbers
 111
 0110
 + 1010

• Add -2 + 3 using two's complement numbers

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1:

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

$$1011 = -5_{10}$$

- 8-bit zero-extended value:
$$00001011 = 11_{10}$$

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

Logic Gates

- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Α	Y
0	0
1	1

Two-Input Logic Gates

AND

$$Y = AB$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

OR

$$Y = A + B$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

Two-Input Logic Gates

AND

$$Y = AB$$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

NOR

$$Y = \overline{A + B}$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR

$$Y = \overline{A + B}$$

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$Y = \overline{A + B}$$

A	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Multiple-Input Logic Gates

NOR₃

$$Y = \overline{A + B + C}$$

A	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

AND3

$$Y = ABC$$

A	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

NE

Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

AND3

$$Y = ABC$$

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• Multi-input XOR: Odd parity

Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - -0 = ground (GND) or 0 volts
 - $-1 = V_{DD}$ or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?

Logic Levels

- Range of voltages for 1 and 0
- Different ranges for inputs and outputs to allow for noise

ONE ROM

What is Noise?

What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V

The Static Discipline

 With logically valid inputs, every circuit element must produce logically valid outputs

 Use limited ranges of voltages to represent discrete values

Logic Levels

Noise Margins

$$NM_H = V_{OH} - V_{IH}$$

 $NM_L = V_{IL} - V_{OL}$

DC Transfer Characteristics

Ideal Buffer:

Real Buffer:

$$NM_H = NM_L = V_{DD}/2$$

 NM_H , $NM_L < V_{DD}/2$

DC Transfer Characteristics

V_{DD} Scaling

- In 1970's and 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has dropped
 - Avoid frying tiny transistors
 - Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Be careful connecting chips with different supply voltages

Chips operate because they contain magic smoke

Proof:

 if the magic smoke is let out, the chip stops working

Logic Family Examples

Logic Family	V_{DD}	V_{IL}	V_{IH}	V_{OL}	V_{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

Transistors

- Logic gates built from transistors
- 3-ported voltage-controlled switch
 - 2 ports connected depending on voltage of 3rd
 - d and s are connected (ON) when g is 1

Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

MOS Transistors

- Metal oxide silicon (MOS) transistors:
 - Polysilicon (used to be metal) gate
 - Oxide (silicon dioxide) insulator
 - Doped silicon

Transistors: nMOS

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

Transistors: pMOS

- pMOS transistor is opposite
 - ON when Gate = 0
 - OFF when Gate = 1

Transistor Function

nMOS

pMOS

Transistor Function

 nMOS: pass good 0's, so connect source to GND

• pMOS: pass good 1's, so connect source to

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0			
1			

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

A	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

\overline{A}	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

ONE ROM

CMOS Gate Structure

NOR Gate

How do you build a three-input NOR gate?

NOR3 Gate

Other CMOS Gates

How do you build a two-input AND gate?

AND2 Gate

S

Transmission Gates

- nMOS pass 1's poorly
- pMOS pass 0's poorly
- Transmission gate is a better switch
 - passes both 0 and 1 well
- When EN = 1, the switch is ON:
 - -EN = 0 and A is connected to B
- When EN = 0, the switch is OFF:
 - A is not connected to B

Pseudo-nMOS Gates

- Replace pull-up network with weak pMOS transistor that is always on
- pMOS transistor: pulls output HIGH only when nMOS network not pulling it LOW

Pseudo-nMOS Example

Pseudo-nMOS NOR4

Gordon Moore, 1929-

Cofounded Intel in 1968 with Robert Noyce.

Moore's Law:

number of transistors on a computer chip doubles every year (observed in 1965)

Since 1975, transistor counts have doubled every two years.

Moore's Law

"If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ."

Robert Cringley

Power Consumption

- Power = Energy consumed per unit time
 - Dynamic power consumption
 - Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 - Capacitor is charged f/2 times per second (discharging from 1 to 0 is free)
- Dynamic power consumption:

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD}
 (also called the leakage current)
- Static power consumption:

$$P_{static} = I_{DD}V_{DD}$$

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$-C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

NE

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$-C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

$$P = \frac{1}{2}CV_{DD}^2f + I_{DD}V_{DD}$$

=
$$\frac{1}{2}$$
(20 nF)(1.2 V)²(1 GHz) + (20 mA)(1.2 V)

$$= (14.4 + 0.024) W \approx 14.4 W$$

