Modelos de STOCK

El objetivo a minimizar es el Costo Total Esperado (CTE) que resulta de sumar los siguientes costos:

K: Costo de preparación, lanzamiento o emisión de la orden de adquisición o producción.

b : Costo del producto, de adquisición o producción.

C1: Costo de almacenamiento.

 $D = n \cdot q$

C2: Costo de escasez o agotamiento

 $T = n \cdot Ti$

D: demanda total en un tiempo total T

q : lote de reposición

n : veces que se solicita un reaprovisionamiento

d = D / T

d : demanda unitaria

Modelo Modelo Simple sin Agotamiento

Costo total de preparación =
$$\frac{D}{Q}$$
· K

Costo total del producto = b. D

Costo total de almacenamiento = $\frac{1}{2}$ q T C₁

CTE =
$$\frac{D}{q}$$
. K + b. D + $\frac{1}{2}$ q T (

CTEo = b. D
$$+\sqrt{2.T.D.K.C_1}$$

$$q_0 = \sqrt{\frac{2.K.D}{T.C_1}}$$

$$T_0 = \frac{T}{n_0} = \frac{T.q_0}{D} = \sqrt{\frac{2.K.T}{D.C_1}}$$

Análisis de la sensibilidad a izquierda y derecha del valor óptimo

$$\alpha = \frac{q_0}{q_1}$$

$$\lambda = \frac{1}{2} \left[\frac{1}{\alpha} + \alpha \right]$$

Modelo II Modelo Simple sin Agotamiento y con stock de protección

sp : stock de protección (stock mínimo de reposición)

Costo total de preparación = $\frac{D}{q}$ · K

Costo total del producto = b. D

Costo total de almacenamiento = $\frac{1}{2}$ q T C₁

Costo de adquisición del sp = sp b

Costo de mantenimiento del sp = $sp T C_1$

CTE =
$$\frac{D}{q}$$
. K + b. D + $\frac{1}{2}$ q T C₁ +sp T C₁+sp b

CTEo = b. D +
$$\sqrt{2.T.D.K. C_1}$$
 + sp T C_1 + sp b

$$q_0 = \sqrt{\frac{2.K.D}{T.C_1}}$$

$$T_0 = \sqrt{\frac{2.K.T}{D.C_1}}$$

Modelo III Modelo Simple con Agotamiento

s: stock real almacenado

qo - So = cantidad pendiente óptimo

q : lote de reposición

Costo total de preparación = $\frac{D}{q}$ · K

Costo total del producto = b. D

Costo total de almacenamiento = $\begin{array}{ccc} \frac{1}{2} & S^2 \cdot & \underline{T} C_1 \\ q & q \end{array}$

Costo de agotamiento = $\frac{1}{2} \frac{\prod (q - s)^2 C_2}{q}$

CTE =
$$\frac{D}{q}$$
. K + b. D + $\frac{1}{2}$ s². $\frac{T}{q}$ C₁ + $\frac{1}{2}$ $\frac{T}{q}$ (q - s)² C₂

$$s_0 = \frac{C_2}{C_1 + C_2} \cdot q_0 = \sqrt{\frac{2.K.D}{T.C_1}} \cdot \sqrt{\frac{C_2}{C_1 + C_2}}$$

$$qo = \sqrt{\frac{2.K.D}{T.C_1}} \cdot \sqrt{\frac{C_1 + C_2}{C_2}}$$

CTE₀ = b. D +
$$\sqrt{2.T.D.K.C_1} \cdot \sqrt{\frac{C_2}{C_1 + C_2}}$$

$$T_0 = \sqrt{\frac{2.K.T}{D.C_1}} \cdot \sqrt{\frac{C_1 + C_2}{C_2}}$$

Modelos de STOCK

El objetivo a minimizar es el Costo Total Esperado (CTE) que resulta de sumar los siguientes costos:

K : Costo de preparación, lanzamiento o emisión de la orden de adquisición o producción.

b : Costo del producto, de adquisición o producción.

C1: Costo de almacenamiento.

 $D = n \cdot q$

D: demanda total en un tiempo total T

q : lote de reposición

T = n . Ti

n : veces que se solicita un reaprovisionamiento

d : demanda unitaria

d = D / T

Modelo Triangular (reposición no instantánea)

p : velocidad de producción (u. prod / u. tpo)

P > d

Costo total de preparación =
$$\frac{D}{q}$$
· K

Costo total del producto = b. D

Costo total de almacenamiento =
$$\frac{1}{2}$$
 q T C₁ $\left(1 - \frac{d}{p}\right)$

CTE =
$$\frac{D}{q}$$
. K + b. D + $\frac{1}{2}$ q T C₁ $\left(1 - \frac{d}{p}\right)$

$$q_0 = \sqrt{\frac{2.K.D.}{C_1 \left(1 - \frac{d}{p}\right)T}} = \sqrt{\frac{2.K.d.}{C_1 \left(1 - \frac{d}{p}\right)}} = \sqrt{\frac{2.K.d.p}{C_1 \left(p - d\right)}}$$

Modelo V

Modelo Simple sin Agotamiento con precios de adquisición o producción variables de acuerdo al tamaño del lote ordenado

P: porcentaje de interés que se produciría con el dinero inmovilizado

C'i : Costo efectivo de almacenamiento

bi : Costo del i-esimo producto

 $Ci = P \cdot bi + C'i$

Costo total de preparación =
$$\frac{D}{q}$$
· K

Costo total del producto = bi. D

Costo total de almacenamiento = $\frac{1}{2}$ q T Ci

Costo del dinero inmovilizado = P . bi

CTE(q, bi) =
$$\frac{D}{q}$$
. K+bi. D + $\frac{1}{2}$ q T (P. bi + C'i)

$$q_{0i} = \sqrt{\frac{2 \cdot K \cdot D}{T \cdot (P \cdot bi + C'i)}}$$