Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		e
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Reihe: Platz:	I	II
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Reihe: Platz: Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 – 10:30 Uhr Hörsaal: Reihe: Platz: Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik 6 Klausur Mathematik 3 für Physik (Analysis 2) 8 Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben II		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 – 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 – 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik 6 Klausur Mathematik 3 für Physik (Analysis 2) 8 Prof. Dr. S. Warzel ↓ 4. August 2009, 09:00 − 10:30 Uhr Hörsaal:		
Fakultät für Mathematik Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Platz: Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Fakultät für Mathematik 7 Hausur Platz: II		
Klausur Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Mathematik 3 für Physik (Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben II		
(Analysis 2) Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben II		
Prof. Dr. S. Warzel 4. August 2009, 09:00 − 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben II		
4. August 2009, 09:00 – 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
4. August 2009, 09:00 – 10:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		
Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	Erstkorrek	tur
Oberprüsen Sie die Vonstandigkeit der Angabe. G Aufgaben		
Rearheitungszeit: 90 min	Zweitkorre	ktur
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter		
Erreichbare Gesamtpunktzahl: 74 Punkte		
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.		

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

1. Stetigkeit, Differenzierbarkei	1.	Stetigkeit,	Differenzierbarkeit
-----------------------------------	----	-------------	---------------------

(7 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6}, & (x,y) \neq 0, \\ 0, & (x,y) = 0. \end{cases}$$

- (a) Beweisen Sie, dass f im Nullpunkt nicht stetig ist. *Hinweis:* Bestimmen Sie x_n , so dass $f(x_n, y_n)$ für $y_n = \frac{1}{n}$ konstant ist.
- (b) Die partielle Ableitung $\partial_1 f(0,0)$ ist

 $\Box -1$ $\Box 0$ $\Box \frac{1}{2}$ $\Box 1$ \Box nicht definiert.

(c) Die partielle Ableitung $\partial_2 f(0,0)$ ist

 $\Box -1$ $\Box 0$ $\Box \frac{1}{2}$ $\Box 1$ \Box nicht definiert.

(d) Wie lautet die totale Ableitung von f im Nullpunkt?

 $\Box \, Df(0) = \begin{pmatrix} 0 & 0 \end{pmatrix} \qquad \Box \, Df(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Box \, Df(0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

 \square Df(0) ist nicht definiert \square Df(0) hängt von der betrachteten Kurve ab

0	Gradient	
•	(∓radieni	г

Gegeben sei die skalare Funktion $F: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$, $F(x) = \frac{1}{|x|^2}$ und die Kurve $x: \mathbb{R} \to \mathbb{R}^2$, $x(t) = \binom{e^t}{e^{-t}}$.

(a) Berechnen Sie den Gradient von F.

 $\operatorname{grad} F(x) =$

(b) Wie lautet die Geschwindigkeit von x(t) zum Zeitpunkt t=2?

 $\dot{x}(2) =$

(c) Die Funktion $F\circ x:\mathbb{R}\to\mathbb{R}$ ist in einer Umgebung des Punktes t=2

 \square streng monoton steigend,

 \square streng monoton fallend,

 \square we der monoton steigend noch monoton fallend.

${\it 3. \,\, Differential gleichungs system}$

(10 Punkte)

Gegeben ist das Differentialgleichungssystem:

$$\dot{x}_1(t) = x_1(t) - x_2(t),$$

$$\dot{x}_2(t) = -x_1(t) + x_2(t).$$

(a) Schreiben Sie das System in der Form $\dot{x}(t) = A x(t)$ mit einer 2×2 -Matrix A und der vektorwertigen Funktion $x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$:

(b) Welche Dimension hat der Lösungsraum von $\dot{x} = Ax$?

 $\square \ 0 \qquad \square \ 1 \qquad \square \ 2 \qquad \square \ 3 \qquad \square \ 4 \qquad \square \ 5$

(c) Bestimmen Sie die Lösung x(t) des Anfangswertproblems

$$\dot{x}=A\,x\,,\ x(0)=v=\begin{pmatrix}1\\0\end{pmatrix}\,.$$

 $Zur\ Kontrolle:$ Die Matrix A hat die beiden Eigenwerte 0 und 2.

4.	Taylor-Formel	(10 Punkte)
		(

Gegeben sei eine Funktion $g \in C^3(\mathbb{R}^2)$, die im Ursprung einen kritischen Punkt besitzt. Weiter gilt

$$g(0) = 5$$
, $\partial_1^2 g(0) = \partial_1 \partial_2 g(0) = 1$, $\partial_2^2 g(0) = 0$.

(a) Wie lautet explizit die Taylorentwicklung bis zur zweiten Ordnung von g im Entwicklungspunkt $0 \in \mathbb{R}^2$?

 $g(x,y) = +R_3(x,y)$

(b) Für welche $k \in \mathbb{N}_0$ kann man $\lim_{(x,y)\to 0} \frac{R_3(x,y)}{\sqrt{x^2+y^2}^k} = 0$ folgern?

 $\square \ k = 0$ $\square \ k = 1$ $\square \ k = 2$ $\square \ k = 3$ $\square \ k = 4$ $\square \ k = 5$

(c) Sei nun f(x,y)=(-y,x+y). Wie lautet die Taylorentwicklung bis zur zweiten Ordnung von $h=g\circ f$ im Entwicklungspunkt 0 explizit?

 $h(x,y) = +R_3'(x,y)$

5. Extremalstellen Sei $f(x,y) = 1 - x^3 - y^2 + x^3y^2, x, y \in \mathbb{R}$.	(12 Punkte)
(a) Bestimmen und klassifizieren Sie die kritischen Punkte von f .	
(b) Bestimmen und klassifizieren Sie die lokalen Extrema von f entlang der Kurv $\gamma(t)=(t^{1/3},t^{1/2}).$	$\forall e \ \gamma : \mathbb{R}_0^+ \to \mathbb{R}^2,$

6. Implizit definierte Funktionen

(8 Punkte)

Seien $f_1(t, x, y) = \log x + y^2t - 4$, $f_2(t, x, y) = x^2 + yt^2 + t^2$ für $t, x, y \in \mathbb{R}$, x > 0, und P = (1, 1, -2). Es gilt $f_1(P) = f_2(P) = 0$.

(a) Die Gleichung $f_1(t, x, y) = 0$ kann offenbar in einer Umgebung des Punktes P lokal nach y aufgelöst werden. Man erhält die Funktion $(t, x) \mapsto \tilde{y}(t, x)$. Berechnen Sie grad $\tilde{y}(1, 1)$.

 $\partial_t \tilde{y}(1,1) =$

$$\partial_x \tilde{y}(1,1) =$$

(b) Der Punkt P ist eine Lösung des Gleichungssystems

$$f_1(t, x, y) = 0,$$

$$f_2(t, x, y) = 0.$$

Dieses soll in einer Umgebung von P lokal nach x und y aufgelöst werden. Die Invertierbarkeit welcher Matrix muss dazu überprüft werden?

M =

$\overline{}$	Vektoranal	
- /	Verterana	17/212
	v CK tot ana.	r'à pro

(9 Punkte)

Sei $v : \mathbb{R}^3 \to \mathbb{R}^3$ das Vektorfeld mit $v(x) = \left(\frac{2x_1}{1+x_1^2+x_2^2}, \frac{2x_2}{1+x_1^2+x_2^2}, 0\right)$.

(a) Berechnen Sie:

rot v(x) =

(b) Es gilt:

 \Box der Definitionsbereich von vist sternförmig

 \square v ist konservativ

 \square v ist nicht konservativ

 $\square \ v$ besitzt ein Potential

 $\square \ v$ besitzt kein Potential

(c) Berechnen Sie das Kurvenintegral $\int_{\gamma} v(x) \cdot dx$ von ventlang der Kurve

 $\gamma: [0,1] \ni t \mapsto (1-t, 2t, \tanh t) \in \mathbb{R}^3.$

$G = \{ (G \mid G \mid G) \mid \Pi \mid $	$x_3 \ge 0$. Gesucht sind Volumen V	(10 Punkt v und Schwerpunktkoordinaten
$S = (S_1, S_2, S_3)$ der Halbku	$\operatorname{gel} H.$	
(a)		
V =	$S_1 =$	$S_2 =$
(b) Barachnan Sia S- mit	Hilfe von Kugelkoordinaten.	
(b) Derecimen Sie 53 mit	inne von Kugeikoordinaten.	