

Cairo University Faculty of Computers and Artificial Intelligence

Final Exam

Department: Information Technology

Course Name: Logic Design Course Code: SIT213

Instructor: Dr. Dina Tarek Mohamed

Date: 19 September 2021

Duration: 2 hours Number of pages: 7 Total Marks: 60

تعليمات هامة

- حيازة التليفون المحمول مفتوحا داخل لجنة الإمتحان يعتبر حالة غش تستوجب العقاب وإذا كان ضرورى الدخول بالمحمول فيوضع مغلقا في الحقائب.
 - لا يسمح بدخول سماعة الأذن أو البلوتوث.
 - لايسمح بدخول أي كتب أو ملازم أو أوراق داخل اللجنة والمخالفة تعتبر حالة غش.

Only solutions in the bubble sheet will be considered

Note: None in the answers means that none of the mentioned solutions is right.

A. Using k-map to simplify the following Boolean function as a Product of Sum (PoS):

$$F(W,X,Y,Z) = WXY + WXZ + Y\overline{Z} + XYZ + WXY\overline{Z} + d(W\overline{Y}\overline{Z} + \overline{W}\overline{X}Z + \overline{X}YZ)$$

				•	•
1.	Which of the foll	lowing is a minterm of	F?		
	a. 0	b. 1	c. 2	d. 3	e. None
2.	Which of the foll	lowing is a maxterm of	F?		
	a. 0	b. 1	c. 2	d. 3	e. None
3.	How many terms	s exit in the simplified	SoP function?		
	a. 1	b. 2	c. 3	d. 4	e. None
4.	Which of the foll	lowing is a term in the	simplified SoP function	?	
	a. $\overline{\mathbf{W}}$	b. WY	c. YZ	d. WZ	e. None
5.	Which of the foll	lowing is a term in the	simplified SoP function	?	
	a. W	b. XZ	c. WXY	d. WXZ	e. None
6.	How many AND	gates are needed to bu	ild the simplified SoP f	unction?	
	a. 0	b. 1	c. 2	d. 3	e. None
7.	How many OR g	ates are needed to buil	d the simplified SoP fu	nction?	
	a. 0	b. 1	c. 2	d. 3	e. None
8.	If the propagation	on delay of NOT, AND,	OR gates are 3, 10 and	1 10 nsec respectively.	What is the
	propagation dela	y of the simplified PoS	function?		
	a. 20 nsec	b. 23 nsec	c. 10 nsec	d. 13 nsec	e. None

В.	_	_	two JK flip-flops (A state of the two JK flip	*	-	ıg
	$A=\pi_{M}(0,1,2,3,5,6)$	$B=\pi_{M}(0,3,4,7)$	$Y=\pi_{M}(0,1,2,4,5,6)$			

	A=π ₁	M(0	,1,2,	,3,5,6)	$B=\pi_{M}(0,3)$	$8,4,7)$ Y= π	_M (0,	1,2,4,5,6)	(· 2)	·p·u·· = v	
9.	Wha		the	next stat	te for a pro b. 01) & a c. 1	an input of 0? 0	d.	11	e.	None
10.	Wha a. 00		the		te for a pro		1 & a c. 1	nn input of 0? 0	d.	11	e.	None
11.	Wha a. 00		the		te for a pro b. <mark>01</mark>) & a c. 1	nn input of 1? 0	d.	11	e.	None
12.	Wha a. 00		the	next stat	te for a pro b. 01		l & a c. 1	nn input of 1? <mark>0</mark>	d.	11	e.	None
	Pres Sta		Input			_		e table of this circuing stated present			ie of J_A l	$\mathcal{K}_{\mathbf{A}}$
13.	0	0	0	a.	0 X - 0 X	b. 0 X –	X 0	c. 0 X – 1 X		d. 0 X – X 1	e.	None
14.	0	0	1	a.	1 X – 0 X	b. 1 X –	X 0	c. 1 X – 1 X		d. 1 X – X 1	e.	None
15.	0	1	0	a.	X 1 – 0 X	b. 0 X –	X 0	c. X 1 – 1 X		d. X 1 – X 1	e.	None
16.	0	1	1	a.	X 1 - 0 X	b. X 1 –	X 0	c. 0 X – X 1		d. X 1 – X 1	e.	None
17.	1	0	0	a.	X 0 - 0 X	b. X 0 –	X 0	c. X 0 – 1 X		d. X 0 – X 1	e.	None
18.	1	0	1	a.	X 1 - 0 X	b. X 1 –	X 0	c. X1-1X		d. X1-X1	e.	None
19.	1	1	0	a.	X 1 - 0 X	b. X 1 –	X 0	c. X1-1X		d. X1-X1	e.	None
20.	1	1	1	a.	X 1 - 0 X	b. X 1 –	X 0	c. X 1 – 1 X		d. X1-X1	e.	None
21.	For	this	circ	ruit, wha	nt is the sin	nplified equa	ation	of J.?				
,	a. A			· · · · · · · · · · · · · · · · · · ·	b. BX	P		ABX	d.	$AB\overline{X}$	e. [None
22.	For	this	circ	cuit, wha	nt is the sin	nplified equa	ation	of KA?				
	a. B	+ \bar{\bar{\bar{\bar{\bar{\bar{\bar{	Ī		b. B + X	(c.	AB + AX	d.	$AB + B\overline{X}$	e. I	None
23.			circ	cuit, wha		nplified equa					-	\.T
	a. B				b. BX		c.		d.	$\overline{\mathbf{X}}$	e. 1	None
24.	For a . \overline{B}		circ	cuit, wha	It is the sing $b. B\overline{X}$	nplified equa	ition c.		d.	$\overline{\mathbf{X}}$	e. 1	None
		-						_		-		

c. $A\overline{B}$

d. ABX

25. For this circuit, what is the simplified equation of Y?

b. BX

a. $A\overline{B}\overline{X}$

e. None

C. For the following state table, reduce the number of states, always start with the states in the upper rows, and in case of matching always keep the state in the upper rows. 26. What is the removed state after the first reduction? **Next State** Output Present c. H a. C b. G d. \mathbf{E} e. None X=0 X=1 X=1 X=0 State f b 0 0 a 27. What is the removed state after the second reduction? 0 0 b d c a. F h. G c. B d. \mathbf{E} e. None 0 0 a e \mathbf{c} 1 0 d 28. What is the removed state after the third reduction? g 0 0 d a. C b. G c. H d. \mathbf{e} e. None f b 0 f 29. What is the removed state after the fourth reduction? h 1 g g \mathbf{C} a. F b. G c. B d. e. None 0 g 30. What is the number of flip flops needed to build the circuit before \rightarrow after the reduction? b. $4\rightarrow3$ a. $3\rightarrow 3$ c. $3\rightarrow 2$ d. $4 \rightarrow 4$ e. None D. Using the minimum number of half adder(s) and full adder(s), design a combinational circuit that adds six to a 4-bit binary number (A3 A2 A1 A0). Note CP is the carry resulting from adding previous bit. 31. How many half adders are needed? d. 3 a. 0 **b.** 1 c. 2 e. None 32. How many full adders are needed? a. 0 b. 1 c. 2 d. 3 e. None 33. What are the inputs of the least significant bit if using half adder? a. A0, 0 b. A0, 1 c. A1, 0 d. A1, 1 e. Do not need a half adder 34. What are the inputs of the second bit (from the right side) if using full adder? b. A1, 0, CP c. A2, 1, CP d. A1, 0, CP e. Do not need a full adder 35. What are the inputs of the third bit (from the right side) if using full adder? d. A3, 1, CP e. Do not need a full adder a. A2, 1, CP b. A2, 0, CP c. A3, 1, CP 36. What are the inputs of the fourth bit (from the right side) if using half adder? a. A3, CP b. A3, 1 c. A3, 1, CP d. A3, 1, CP e. Do not need a half adder **E.** Using various codes, answer the following: 37. How is $(0101.1001)_{7421}$ represented in decimal? a. 22.41 b. 22.9 c. 5.9 d. 5.8 e. None 38. How is (0011.1001) Excess-3 represented in BCD? a. 3.9 b. 000.110 c. 0000.0110 d. 0011.1100 e. None 39. What is the 9's Complement of (0110.0111) BCD? b. 1011.1010 a. 1011.1001 c. 0101.0011 d. 0101.0100 e. None

c. 0000.0110

40. How is (0110.0101) BCD represented in Gray Code?

b. 0000.0110

a. 0101.0111

e. None

d. 0011.1100

F.	Subtracting the two I	BCD numbers A and B	where is	A 0101 1001 and	d B is 0011 0101:	
41.	What is the 9's comp a. 0110 0100	b. 0110 0101		c. 0010 0100	d. 0110 0110	e. None
42.	What is the 10's com a. 0110 0100	plement of B? b. 0110 0101		c. 0010 0100	d. 0110 0110	e. None
43.	What is the initial real a. 1110 0100	esult of subtracting A a b. 1011 1111	nd B?	c. 1011 1110	d. 1011 0110	e. None
44.	What is the value ne	eeded to be added in the		ion step (if neede 0110	ed)? d. 1	e. None
45.	What is the final res	ult of subtracting A an b. 0100 0100	d B?	c. 0010 0100	d. 1011 1110	e. None
	Using tabular method then answer the follow	d to simplify the follow	ing funct	ion as SoP: F(A,	B,C)= $\sum m(0,1,2,4,6)$ -	+d(7),
46.	How many groups a a. 2	re initially formed? b. 4	c. 6		d. 8	e. None
47.	Which of the following a. 1,2,4,6	ing numbers form the s b. 1,2,4	second gr c. 0,	•	d. 4,6,7	e. None
48.	Which of the following a. 4,6	ing numbers form the t b. 4,7	hird gro	up?	d. 6,7	e. None
49.	Which of the following a. 1,2	ing combined terms is f	Formed in c. 4,		on? d. 2,7	e. None
50.	Which of the following a. 1,4	ing combined terms is f	formed in c. 2,		on? d. 1,7	e. None
51.	Which of the following a. 2,7	ing combined terms is f	Formed in c. 1,		on? d. 4,7	e. None
52.	Which of the following a. 0,4,2,6	ing combined terms is f b. 1,7,2,6	formed in		ation? d. 4,7,6,2	e. None
53.	Using simple gates (a. \overline{AB}	AND, OR, NOT), which	h of the f	_	m in the simplified f d. AB	unction? e. None
54.	Using simple gates (a function?	AND, OR, NOT), how	many inv	verters are neede	ed to build the simpl	ified
	a. 0	b. 1	c. 2		d. 3	e. None
55.	Using simple gates (a function?	AND, OR, NOT), how	many AN	ND or OR are ne	eded to build the sin	nplified
	a. 0	b. 1	c. 2		d. 3	e. None

H. Design a combinational circuit that builds the following: having a four-bit number ABCD. Two outputs X & Y are used, the output X equals one if two or more successive zeros occurs in the input, while Y equals one if two or more successive ones occurs in the input

The following table represents the truth table of this circuit. What is the value of the outputs XY in case of the following inputs ABCD?

_						_		ving inputs ABCD	
	Inputs A B C D				value of the	c outputs A1 II	i case of the follow	ving inputs ABCD	•
56.	0	0	0	0	a. 00	b. 01	c. 10	d. 11	e. None
57.	0	0	0	1	a. 00	b. 01	c. 10	d. 11	e. None
58.	0	0	1	0	a. 00	b. 01	c. 10	d. 11	e. None
59.	0	0	1	1	a. 00	b. 01	c. 10	d. 11	e. None
60.	0	1	0	0	a. 00	b. 01	c. 10	d. 11	e. None
61.	0	1	0	1	a. 00	b. 01	c. 10	d. 11	e. None
62.	0	1	1	0	a. 00	b. 01	c. 10	d. 11	e. None
63.	0	1	1	1	a. 00	b. 01	c. 10	d. 11	e. None
64.	1	0	0	0	a. 00	b. 01	c. 10	d. 11	e. None
65.	1	0	0	1	a. 00	b. 01	c. 10	d. 11	e. None
66.	1	0	1	0	a. 00	b. 01	c. 10	d. 11	e. None
67.	1	0	1	1	a. 00	b. 01	c. 10	d. 11	e. None
68.	1	1	0	0	a. 00	b. 01	c. 10	d. 11	e. None
69.	1	1	0	1	a. 00	b. 01	c. 10	d. 11	e. None
70.	1	1	1	0	a. 00	b. 01	c. 10	d. 11	e. None
71.	1	1	1	1	a. 00	b. 01	c. 10	d. 11	e. None
72.	Whi	ch o	of th	ne fo	ollowing is a tern	n in the simplif	ied function X as	SoP?	
	a. <i>F</i>				b. $\overline{A}\overline{B}$	•	c. C	d. AC	e. None
73.	3. Which of the following is a term in the simplified function X as SoP?								
	a. <i>A</i>	\C			b. $\overline{B}\overline{C}$		c. BCD	d. AB	e. None
74.	74. How many inverters are needed to build X as SoP?								
	a. 1				b. 2		c. 3	d. 4	e. None
75.	How a. 3		ms	are	there in the sim	plified function	x as SoP?	d. 6	e. None
			a ·-	•					c. mone
7 6.			of th	ie fo	_	n in the simplif	ied function Y as		a Nama
	a. <i>F</i>	7DC			b. AB		c. CD	d. ĀBD	e. None

77.	which of the following	g is a term in the simpli	ıtıea	function Y as SoP?			
	a. AB	b. AC	c.	BD	d. AC	e.	None
78.	How terms are there i	in the simplified function	on Y	as Sum of Product	(SoP)?		
	a. 1	b. 2	c.	3	d. 4	e.	None
79.	What is the optimal si	ze of the decoder neede	ed to	build this circuit?			
	a. 3x8	b. 3x16	c.	4x16	d. 4x8	e.	None
80.	If only a multiplexer i	s used to build X, what	is tl	he size of this multip	lexer?		
	a. 32x1	b. 16x1	c.	8x1	d. 4x1	e.	None
81.	How many multiplexe	ers (with the size in que	stio	n 80) are used to bui	ld this circuit?		
	a. 1	b. 2	c.	3	d. 4	e.	None
I. 1	Having the following fu	nction: if (A=B or C=D) th	en F(A,B,C,D)=D els	se F(A,B,C,D)=BD		
82.	-	nultiplexer size used to					
	a. 32x1	b. 16x1	c.	8x1	d. 4x1	e.	None
83.	_	, what is the size of mul	_				
	a. 32x1	b. 16x1	c.	8x1	d. 4x1	e.	None
84.	Using ABC as selector	rs, what is the input to	the	1 st input to the multi	plexer?		
	a. D	b. D	c.	0	d. 1	e.	None
85.	Using ABC as selector	rs, what is the input to	the :	5 nd input to the mult	iplexer?		
	a. D	b. D	c.	0	d. 1	e.	None
86.	Using AB as selectors	, what is the input to th	ie 3 ^r	d input to the multip	lexer?		
	a. 1	b. CD	c.	•	d. CD	e.	None
87	Using AR as selectors	, what is the input to th	e la	st innut of the multi	nlever?		
07.	a. CD	b. C+D	c.	•	d. 1	e.	None

- J. The shown sequential circuit has an input Z, two flip flops X and Y and an output W.
- 88. For a T flip-flop, if T=1, what is the value of Q(t+1)?
 - a. 0
- b. 1
- c. Q(t)
- d. $\overline{Q(t)}$
- e. None
- 89. For a T flip-flop, if T=0, what is the value of Q(t+1)?
 - a. 0
- b. 1
- c. Q(t)
- d. $\overline{Q(t)}$
- e. None

- 90. For this circuit, what is the equation of T_A ?
 - a. BX
- b. AX
- c. A + X
- d. $\mathbf{B} + \mathbf{X}$
- None

- 91. For this circuit, what is the equation of T_B ?
 - a. BX
- b. AX
- c. A + X
- d. $\mathbf{B} + \mathbf{X}$
- None

- 92. For this circuit, what is the equation of W?
 - a. BX
- b. AX
- $\mathbf{c.} \ \mathbf{A} + \mathbf{X}$
- d. $\mathbf{B} + \mathbf{X}$
- None

	Sta	In	
	A	В	X
93.	0	0	0
94.	0	0	1
95.	0	1	0
96.	0	1	1
97.	1	0	0
98.	1	0	1
99.	1	1	0
100.	1	1	1

Present \ \mathbb{z}

- This table represents the state table of this circuit. What are the flip-flops next state-output (AB-W) for each of the stated flip flops's present state and input (ABX)?
- a. 00–0
- b. 00-1
- c. 01-0
- d. 01-1
- e. None

- a. 00-0
- b. 00-1
- c. 01-0
- d. 01-1
- e. None

- a. 00-0 a. 00-0
- b. 00-1 b. 00-1
- c. 01-0
- d. 01-1 d. 10-1
- e. None e. None

- a. 10–0
- b. 10-1
- c. 01-0 c. 11-1
- d. 11-0
- e. None

- a. 00-0 a. 00-0
- b. 11-1
- c. 01-0
- d. 01-1
- e. None

- b. 00-1
- c. 10-0
- d. 01-1
- e. None

- a. 00-0
- b. 00-1
- c. 01-0
- d. 01-1
- e. None

Good Luck Dr. Dina Tarek