Lecture 1.3

Reinforcement Learning: Model-Free RL methods

Alexey Gruzdev alexey.s.gruzdev@gmail.com HSE, Winter 2019

Recap: Dynamic Programming

- $V_{\pi}(s), V_{*}(s)$
- If you know v_{*}(s), p(r,s' | s,a) → know optimal policy
- We can learn $v_*(s)$ with Dynamic Programming:

$$v_*(s) = \max_{a} \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma v_*(s')]$$

 $q_{\pi}(s, \alpha), q_{*}(s, \alpha)$

$$q_*(s, a) = \sum_{r,s'} p(r, s' \mid s, a) [r + \gamma \max_{a'} q_*(s', a')]$$

Decision making: reality check

Decision making: reality check

Model-Free Setup

 We don't know internal environment representation, e.g.

$$p(r, s' \mid s, a)$$
 - unknown

What should we do?

Let's count all letters that we introduced

- $-\alpha$, r, s, p(r, s'|s)
- $G_t(s)$
- $\mathbf{v}_{\pi}(s), \mathbf{v}_{*}(s)$
- $q_{\pi}(s, a), q_{*}(s, a)$
- **π, π***
- Not enough? Next lectures we'll fix that!

Learning from trajectories

 $s_1 -> a_1 -> r_1 -> s_2 -> \dots -> s_n - trajectory$

- Model-based setup:
 - you can apply Dynamic Programming
 - you can plan (!)
- Model-free setup:
 - you can experiment with different actions
 - no guaranties (!!!)

Learning from trajectories

$$s_1 -> a_1 -> r_1 -> s_2 -> \dots -> s_n - trajectory$$

We can sample trajectories (a lot of trajectories!)

- What should we learn?
 - p(r,s' | s,a)
 - $V_{\pi}(s)$
 - $q_{\pi}(s, a)$

Monte-Carlo RL

- Just like N+1 heuristic:
 - Get all trajectories containing particular (s, a)
 - Estimate G_t(s, a) for each trajectory
 - Average them to get estimation of expectation

Monte-Carlo RL

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Note: can only apply MC to episodic MDPs
 - All episodes must terminate

Incremental Mean

The mean μ_1 , μ_2 , ..., μ_k of a sequence x_1 , x_2 , ..., x_k can be computed incrementally:

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

Temporal Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

Temporal Difference

- Just like in the 'incremental mean' example we can improve $q_{\pi}(s, \alpha)$ iteratively:

$$q_*(s, a) = \sum_{r,s'} p(r, s' \mid s, a) [r + \gamma \max_{a'} q_*(s', a')]$$

• We don't have $p(r, s' \mid s, a)$ to compute 'fair' expectation, so what should we do?

Temporal Difference

$$\sum_{r,s'} p(r,s'\mid s,a)[r + \gamma \max_{a'}q_*(s',a')] \approx$$

$$\approx \frac{1}{N} \sum_{i} r_{i} + \gamma \max_{a'} Q(s'_{i}, a')$$

 One more trick: use incremental averaging with 1 sample.

$$Q(s_t, a_t) = \alpha (r_t + \gamma \max_{a'} Q(s_{t+1}, a')) + (1 - \alpha) Q(s_t, at)$$

Q-learning

- Works on a sequence of
 - states (s)
 - actions (a)
 - rewards (r)

Q-learning

- Initialize Q(s, a) with zeros
- Cycle:
 - Sample <s, a, r, s'> from environment

Q-learning

- Initialize Q(s, a) with zeros
- Cycle:
 - Sample <s, a, r, s'> from environment
 - Compute $\widehat{Q}(s,a) = r(s,a) + \gamma \max_{a_i} Q(s',ai)$
 - Update: $Q(s_t, at) = \alpha \widehat{Q}(s, a) + (1 \alpha) Q(s_t, at)$

Q-learning mouse example

Q-learning mouse example

State:

Action values:

Q - learning results:

What's wrong with Q-learning?

S-A-R-S-A

- Initialize Q(s, a) with zeros
- Cycle:
 - Sample <s, a, r, s', a'> from environment
 - Compute $\widehat{Q}(s,a) = r(s,a) + \gamma Q(s',a')$
 - Update: $Q(s_t, at) = \alpha \widehat{Q}(s, a) + (1 \alpha) Q(s_t, at)$

SARSA - learning results:

Expected value S-A-R-S-A

- Initialize Q(s, a) with zeros
- Cycle:
 - Sample <s, a, r, s'> from environment
 - Compute $\widehat{Q}(s,a) = r(s,a) + \gamma E_{a''\sim\pi}[Q(s',a'')]$
 - Update: $Q(s_t, at) = \alpha \widehat{Q}(s, a) + (1 \alpha) Q(s_t, at)$

S-A-R-S-A vs Q-learning

- SARSA gets optimal rewards under current policy
- Q-learning policy would be optimal (converges to Q*)

S-A-R-S-A vs Q-learning

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \epsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathcal{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \epsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

MC vs TD

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

MC vs TD: Bias/Variance Trade-off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $V_{\pi}(S_t)$
- True TD target R_{t+1} + $\gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $V_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Exploration/Exploitation Revisited

 Balance between using what you learned and trying to find something even better

Exploration/Exploitation Revisited

Strategies:

- ε-greedy
 With probability ε take random action, otherwise take optimal action.
- Softmax
 Pick action proportional to softmax of shifted normalized Q-values.

$$\pi(a \mid s) = softmax(Q(s,a) \mid \tau)$$

ε- dithering
 Adding random noise to Q-values with ε probability

Exploration/Exploitation over time

 If you want to converge to optimal policy you need to gradually reduce exploration.

Example:

Initialize ε -greedy ε = 0.5, then gradually reduce it

- If $\epsilon \rightarrow 0$, it's **greedy in the limit**
- Be careful with non-stationary environments

Resume

What have we learned today?

Questions?

