APPEARANCE MATCHING

Principal Components

Given: Mean-Subtracted image set $\{f_1, f_2, \dots, f_M\}$ $(f_m \text{ is } N^*l \text{ vector})$

Find: Orthonormal basis $\{e_1, e_2, ..., e_K\}$ (e_k is N*1 vector)

Such that

$$f_m \approx \sum_{k=1}^K p_k^{(m)} \mathbf{e}_k$$

Where:

$$p_k^{(m)} = \mathbf{e}_k^T \mathbf{f}_m \qquad (linear)$$

$$\mathbf{e}_i^T \mathbf{e}_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} (Orthonormal)$$

Principal Components

Projection of the Random variable (image) f along the lst Principal Component e is (f* e)

Find e that maximizes Variance of (f * e)

$$Var[f*e] = E[{e*(f-E[f])}^2]$$

Mean of f: E[f] = 0)

$$Var[f * e] = E[\{e * f\}^2] = E[e^T f f^T e] = e^T E[f f^T] e = e^T R e$$

Where $R_{N^*N} = E[ff^T]$ is Covariance matrix

Principal Components

Projection of the Random variable (image) f along the l^{st} Principal Component e is (f^*e) Find e that maximizes Variance of (f^*e)

$$\max_{\mathbf{e}}(\mathbf{e}^T R \mathbf{e}) \text{ such that } \mathbf{e}^T \mathbf{e} = 1$$

Find eigenvalues and eigen vectors of R (Covariance matrix)

lst eigenvector corresponds to maximum eigenvalue

PCA algorithm

- 1. Data Matrix: $F = [f_1 f_2 ... f_M]$ (N * M)
- 2. Covariance Matrix: $R = FF^T (N*N)$
- 3. Solve for eigenvalues and eigenvectors
- 4. Eigenvalues: $\{\lambda_1, \lambda_2, ..., \lambda_K\}$
- 5. Eigenvectors: $\{e_1, e_2, ..., e_K\}$

Eigenvectors are calculated on Orthonormal basis and referred as Linear Subspace aka Eigenspace

Dimensionality Reduction

Dimensionality Reduction

If we want to capture 95% of variations in the dataset

$$\frac{Sum\ of\ K\ largest\ Eigenvalues}{Sum\ of\ all\ Eigenvalues} = \frac{\sum_{i}^{K} \lambda_{i}}{\sum_{j}^{N} \lambda_{j}} \geq 0.95$$

Visual Appearance

Projecting learning images to Eigenspace

Parametric Appearance Representation

Fit a parameter model (Interpolation) $p(\omega)$ as a function of $\omega = [\omega_1, \omega_2, ..., \omega_T]$ to the distribution.

Object appearance representation is reduced to:

Mean image + Eigenvectors + Manifold

Correlation and distance in Eigenspace

Appearance Learning (offline)

Given: M learning images $\left\{I_1^{(q)}, I_2^{(q)}, \dots, I_M^{(q)}\right\}$ for each of the Q training objects. $q = \{1, 2, \dots, Q\}$

For each object q, perform steps 1-8:

Step 1: Normalize all images to remove brightness variations.

$$I_m^{\prime(q)} = I_m^{(q)} / \|I_m^{(q)}\|$$

Step 2: Convert image $I_m^{\prime(q)}$ to feature vector $f_m^{\prime(q)}$.

Step 3: Compute the mean feature vector $\mathbf{c}^{(q)}$.

Step 4: Subtract from each feature vector the mean vector:

$$\boldsymbol{f}_{m}^{(q)} = \boldsymbol{f}_{m}^{\prime(q)} - \mathbf{c}^{(q)}$$

Appearance Learning (offline)

Step 5: Compute the data matrix and covariance matrix.

$$F^{(q)} = \begin{bmatrix} \boldsymbol{f}_1^{(q)} & \boldsymbol{f}_2^{(q)} & \dots & \boldsymbol{f}_M^{(q)} \end{bmatrix}$$
$$R^{(q)} = F^{(q)}F^{(q)}^T$$

Step 6: Compute the K eigenvectors $\{\mathbf{e}_1^{(q)}, \mathbf{e}_2^{(q)}, ... \mathbf{e}_K^{(q)}\}$ of $R^{(q)}$ that represent the new orthonormal basis ("eigenspace").

Step 7: Project the learning images to the eigenspace.

$$\mathbf{p}_m^{(q)} = \begin{bmatrix} \mathbf{e}_1^{(q)} & \mathbf{e}_2^{(q)} & \dots & \mathbf{e}_K^{(q)} \end{bmatrix}^T \times \boldsymbol{f}_m^{(q)}$$

Step 8: Fit a parametric manifold to the projected image points as a function of extrinsic variables $\omega = [\omega_1, \omega_2, ..., \omega_T]$.

Example Object Manifolds in Eigenspace

Recognition (Online)

Given: Input image (I) for object recognition.

Step 1: Normalize the image to remove brightness variations:

$$I' = I/\|I\|$$

Step 2: Convert image I' to feature vector f'.

For each object q in the database, perform steps 3-6:

Step 3: Subtract the mean feature vector for object *q*:

$$\mathbf{f}^{(q)} = \mathbf{f}' - \mathbf{c}^{(q)}$$

Step 4: Project feature vector to eigenspace for object *q*:

$$\mathbf{p}^{(q)} = \begin{bmatrix} \mathbf{e}_1^{(q)} & \mathbf{e}_2^{(q)} & \dots & \mathbf{e}_K^{(q)} \end{bmatrix}^T \times \mathbf{f}^{(q)}$$

te if. Neval

Recognition (Online)

Step 5: In the eigenspace for object q, find closest point on the manifold to projected point.

$$\mathbf{\omega}^{(q)} = \arg\min_{\mathbf{\omega}} \|\mathbf{p}^{(q)} - \mathbf{p}^{(q)}(\mathbf{\omega})\|$$

Use a Nearest Neighbor Algorithm for finding closest point.

Step 6: Find the distance $d^{(q)}$ between the projected image point and the closest point on the manifold.

Step 7: Find the object q for which $d^{(q)}$ is minimum.