

6.4.3 共价键的类型

天津大学

邱海霞

共价键的类型

σ 键

原子轨道沿核间联线方向进行头碰头同号重叠

p轨道与p轨道形成的σ键

σ键的特点

沿键轴成圆柱形对称

π键

原子轨道垂直核间联线并相互平行进行肩并肩同号重叠

π键的特点: 分布在键轴所在平面的上下方

N₂的形成

头碰头形成1个σ键

 $N_{:} 2s^2 2p_x$

 $1. 2s^2 2p_x^{-1}$

 $2p_y^{-1}$

 $2p_{y}^{-1}|2p_{z}$

只能肩并肩形成2个π键

π键的类型

σ键和π键的区别

	σ键	π键
重叠方式	头碰头	肩并肩
电子云分布	沿键轴方向呈圆柱形分布	分布在键轴所在平 面上下
稳定性	较稳定	较活泼
存在方式	可以单独存在	与σ键共存

双键或叁键中,常常既具有σ键,又具有π键

单键 双键 叁键

 σ 键 σ 键 + π 键 σ 键 + 2π 键

两个d轨道四重交叠,"面对面"重叠形成 δ 键,多 存在于含有过渡金属原子或离子的化合物中

δ 键有两个电子云密度为零节面: xz和yz平面

配位共价键

按成键原子提供共用电子对的方式不同:

◆正常共价键

共用电子对成键的两个原子各自提供一个电子

◆配位共价键

共用电子对由一个原子单方面提供

配位共价键

形成条件

- ◆一个原子价层有孤对电子(电子给予体)
- ◆另一个原子价层有空轨道(电子接受体)

C≒O 分子结构式

分子结构式 → 表示配位键

箭头方向表示电子对给予体到接受体的方向