Лабораторная работа №17

Имитационное моделирование

Волгин Иван Алексеевич

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	18

Список иллюстраций

3.1	Код реализации модели работы выч. центра	7
3.2	Отчет модели работы выч. центра	8
3.3	Код реализации модели работы аэропорта	9
3.4	Отчет модели работы аэропорта	10
3.5	Код реализации 1 части модели работы порта	11
3.6	Отчет 1 части модели работы порта	12
3.7	Отчет оптимизированной 1 части модели работы порта	13
3.8	Код реализации 2 части модели работы порта	14
3.9	Отчет 2 части модели работы порта	15
3.10	Код оптимизированной реализации 2 части модели работы порта	16
3.11	Отчет оптимизированной 2 части модели работы порта	17

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

Начинаем выполнять первую чать лабораторной работы. Задача состояла в следующем:

На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче. Я написал реализацию кода и смоделировал работу центра на 80 часов (рис. 3.1). В результате получил данный отчет (рис. 3.2), из которого видно, что загруженность системы равна 0.994.

```
ram STORAGE 2
;моделирование заданий класса А
GENERATE 20,5
QUEUE class A
ENTER ram, 1
DEPART class A
ADVANCE 20,5
LEAVE ram, 1
TERMINATE 0
; моделирование заданий класса В
GENERATE 20,10
QUEUE class B
ENTER ram, 1
DEPART class B
ADVANCE 21,3
LEAVE ram, 1
TERMINATE 0
; моделирование заданий класса С
GENERATE 28,5
QUEUE class C
ENTER ram, 2
DEPART class C
ADVANCE 28,5
LEAVE ram, 2
TERMINATE 0
; таймер
GENERATE 4800
TERMINATE 1
START 1
```

Рис. 3.1: Код реализации модели работы выч. центра

		пятни	ца, мая 3	0, 2025	16:37:25	5					
	START T	IME	E	ND TIME	BLOCKS	FACILITIES	S STOR	RAGES			
	0.					0 1					
	NAME				VALUE						
				10	VALUE 001.000						
	CLASS B			10	002.000						
	CLASS_A CLASS_B CLASS_C			10	003.000						
	RAM			10	000.000						
LABEL		LOC	BLOCK TY	PE	ENTRY COU	JNT CURRENT					
		1	GENERATE		240		0	0			
			QUEUE		240		4	0			
			ENTER		236		0	-			
		5	DEPART ADVANCE		236 236		1	0			
		6	LEAVE		235		0	0			
		7	TERMINAT	E	235		0	0			
			GENERATE				0	0			
			QUEUE		236		5	0			
		10	ENTER		231		0	0			
		11	DEPART		231		0	0			
		12	ADVANCE		231		1	0			
			LEAVE		230		0	0			
			TERMINAT		230		0	0			
		15	GENERATE		172		0	0			
			QUEUE		172 0	17	72	0			
			ENTER DEPART		0		0	0			
			ADVANCE		0		0	0			
		20	LEAVE		0		0	0			
			TERMINAT		0		0	0			
			GENERATE		1		0	0			
		23	TERMINAT	E	1		0	0			
QUEUE		MAX C	ONT. ENTR	Y ENTRY	(0) AVE.	CONT. AVE.TI	IME A	WE.(-0)	RETRY		
CLASS_A CLASS_B		7	4 24	0	3 3.2	288 65.7 280 66.7	765	66.597	0		
CLASS_B		7	5 23	6	1 3.2	280 66.7	703	66.987	0		
CLASS_C		172	172 17	2	0 85.7	786 2394.0	38 2	394.038	0		
STORAGE RAM						AVL. AVE.C. 1 1.988					
KAPI		2	0 0	2	70/	1.988	0.994	: 0 1	LOI		

Рис. 3.2: Отчет модели работы выч. центра

Вторым этапом я выполнял реализацию модели работы аэропорта. Текст задания выглядит следующим образом: Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой — для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Я написал код реализации модели (рис. 3.3) и получил отчет (рис. 3.4). В нем указано, что взлетело 146 самолетов, приземлилось 142 и ни один самолет не был направлен на запасной аэродром. Также можно увидеть, что загруженность полосы составила 0.4

```
GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE arrival
landing GATE NU runway,wait
SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE 0

; OXMIANIME
ADVANCE 5
ASSIGN 1+1; CGRU SHAWHUME ATPUMOYA MENSUE 5, TO CYCTYUK NDWOGABRASET 1 (KDYF) И ИПЕТ ПОПЫТКА ПРИЗЕМЯННЯЯ

RELEASE ROJUMNATE 1

RELEASE reserve
DEPART arrival
RELEASE reserve
TERMINATE 0

; BSRGE
GENERATE 10,2,,,2
QUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE 0

; TAÄMED
GENERATE 1540
TERMINATE 1

START 1
```

Рис. 3.3: Код реализации модели работы аэропорта

	START TIME	END T	IME BLOCKS F	ACILITIES	STORAGES		
	0.000		000 26				
	NAME		VALUE				
	ARRIVAL		10002.000				
	GOAWAY		14.000				
	LANDING		4.000				
	RESERVE		UNSPECIFIED				
	RUNWAY		10001.000				
	TAKEOFF		10000.000				
	WAIT		10.000				
LABEL		BLOCK TYPE					
		GENERATE		0			
		ASSIGN	146	0			
		QUEUE	146	0			
LANDING		GATE	184	0	-		
	5	SEIZE	146	0			
	6	DEPART	146	0			
		ADVANCE	146	0			
		RELEASE	146	0	0		
	9	TERMINATE		0	0		
WAIT	10	TEST	38	0	0		
	11	ADVANCE	38	0	0		
	12	ASSIGN	38	0	0		
	13	TRANSFER	38	0	0		
GOAWAY	14	SEIZE	0	0	0		
	15	DEPART	0	0	0		
	16	RELEASE	0	0	0		
	17	TERMINATE	0	0	0		
	18	GENERATE	142	0	0		
	19	QUEUE	142	0	0		
	20	SEIZE	142	0	0		
	21	DEPART	142	0	0		
	22	ADVANCE	142	0	0		
	23	RELEASE	142	0	0		
	24	TERMINATE	142	0	0		
	25	GENERATE	1	0	0		
	26	TERMINATE	1	0	0		
FACILITY	ENTRIE	S UTIL. AVE	. TIME AVAIL.	OWNER PEND	INTER RETRY	DELAY	
RUNWAY	288	0.400	2.000 1	0 0	0 0	0	
QUEUE	MAX	CONT. ENTRY EN	TRY(0) AVE.CON	T. AVE.TIME	AVE. (-0)		
TAKEOFF	1	0 142 0 146	114 0.017	0.173	0.880		
ARRIVAL					5.937		

Рис. 3.4: Отчет модели работы аэропорта

Условие третьей задачи выглядит так: Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b\pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a = 20 \text{ y}, \delta = 5 \text{ y}, b = 10 \text{ y}, \varepsilon = 3 \text{ y}, N = 10, M = 3;$$

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Для начала я релизовал модель основанную на первом наборе входных данных (рис. 3.5) и получил отчет (рис. 3.6), в котором видно что загруженность порта состовляет 0.148

```
pier STORAGE 10
GENERATE 20,5
;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0
;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.5: Код реализации 1 части модели работы порта

GPSS World Simulation Report - Untitled Model 1.6.1

		пятница	, мая 30,	2025 17	1:18:08			
	START T					FACILITIES 0		
	NAME ARRIVE PIER			V2 10001 10000				
LABEL		1 G 2 Q 3 E 4 D 5 A 6 L 7 T 8 G	LOCK TYPE ENERATE UEUE NTER EPART DVANCE EAVE ERMINATE ERMINATE ERMINATE		215	0 0 0 0		
QUEUE ARRIVE							ME AVE.(-0)	
STORAGE PIER							UTIL. RETRY 0.148 0	
	0	4324.26 4335.23		5 0	6 1	PARAMETER	R VALUE	

Рис. 3.6: Отчет 1 части модели работы порта

Затем я подобрал оптимальные параметры для производительности порта. Исправил реализацию и получил отчет (рис. 3.7), из которого можно сделать вывод, что работа порта стала оптимальнее, так как коэффициент стал 0.495

Рис. 3.7: Отчет оптимизированной 1 части модели работы порта

Далее я релизовал модель основанную на втором наборе входных данных (рис. 3.8) и получил отчет (рис. 3.9), в котором видно что загруженность порта состовляет 0.087

pier STORAGE 6 GENERATE 30,10

;моделирование занятия причала QUEUE arrive ENTER pier,2 DEPART arrive ADVANCE 8,4 LEAVE pier,2 TERMINATE 0

; таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.8: Код реализации 2 части модели работы порта

GPSS World Simulation Report - Untitled Model 1.8.1

		пятница	, мая 30,	2025	17:21:40			
						FACILITIES		
	0.0	000	432	0.000	9	0		
	NAME			7	VALUE			
	ARRIVE			1000	01.000			
	PIER			1000	00.00			
LABEL		LOC B	LOCK TYPE	El	NTRY COU	NT CURRENT	COUNT RETRY	
		1 G	ENERATE				0 0	
		2 Q	UEUE		143		0 0	
		3 E	NTER		143		0 0	
		-	EPART		143		0 0	
			DVANCE		143		1 0	
			EAVE		142		0 0	
		7 T	ERMINATE		142		0 0	
		8 G	ENERATE		180		0 0	
		9 T	ERMINATE		180		0 0	
QUEUE ARRIVE		MAX CON	T. ENTRY	ENTRY () AVE.C	ONT. AVE.TI	ME AVE.(-0)	RETRY
AKKIVE		1	0 143	143	0.0	0.0	0.000	0
STORAGE		CAD DE	м мти м	יז עני	ג פקדם דה	VI AVEC	UTIL. RETRY	DELAY
PIER							0.087 0	
EEG IN	DD -		3.000	cupp.		T PARAMETE		
	0					I PAKAMEIE	.K VALUE	
324			9 324					
324			0 325					
323	U	1311.00	0 325	U	0			

Рис. 3.9: Отчет 2 части модели работы порта

Затем я подобрал оптимальные параметры для производительности порта. Исправил реализацию (рис. 3.10) и получил отчет (рис. 3.11), из которого можно сделать вывод, что работа порта стала оптимальнее, так как коэффициент стал 0.495

```
pier STORAGE 2
GENERATE 30,10
;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0
;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.10: Код оптимизированной реализации 2 части модели работы порта

GPSS World Simulation Report - Untitled Model 1.9.1

пятница, мая 30, 2025 17:22:39

	START TIME			END TIME BLOCKS FAC					FACILITIES STORAGES			
	0.		4320.000 9					0 1				
	NAME					VALUE						
	ARRIVE				100	01.00	0					
	PIER					00.00						
LABEL		LOC	BLOC	K TYPE	E	NTRY	COUNT	CURRENT	COUNT	RETRY		
		1	GENE	RATE		14	3		0	0		
		2	QUEU	E		14	3		0	0		
		3	ENTE	R		14	3		0	0		
		4	DEPA	RT		14	3		0	0		
		5	ADVA	NCE		14	3		1	0		
		6	LEAV	E		14	2		0	0		
		7	TERM	INATE		14	2		0	0		
		8	GENE	RATE		18	0		0	0		
		9	TERM	INATE		18	0		0	0		
QUEUE		MAX C	ONT.	ENTRY	ENTRY (0) AV	E.CON	T. AVE.TI	ME A	AVE. (-0)	RETRY	
ARRIVE		1	0	143	143		0.000	0.0	00	0.000	0	
STORAGE		CAP.	REM. I	MIN. M	AX. E	NTRIE	S AVL	. AVE.C.	UTIL.	RETRY	DELAY	
PIER		2	0	0	2	286	1	0.524	0.262	2 0	0	
FEC XN	PRI	BDT		ASSEM	CURR	ENT	NEXT	PARAMETE	R 1	/ALUE		
322	0	4325.	892	322	5		6					
324	0	4336.	699	324	0		1					
325					0							

Рис. 3.11: Отчет оптимизированной 2 части модели работы порта

4 Выводы

В ходе данной лабораторной работы я реализовал с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.