Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-2210. Вариант 34

1. Пусть
$$z = \frac{1}{2} + \frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{2\sqrt{3} + 2i}$ имеет аргумент $-\frac{25\pi}{42}$.

2. Решить систему уравнений:

$$\begin{cases} x(-9+2i) + y(-4-13i) = -142 - 84i \\ x(8+7i) + y(-2+i) = 46 + 44i \end{cases}$$

- 3. Найти корни многочлена $2x^6 2x^5 8x^4 + 80x^3 98x^2 14x 1560$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = 2 + 3i$, $x_2 = -1 + 2i$, $x_3 = -4$.
- 4. Даны 3 комплексных числа: -19+12i, -27-18i, 6+17i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 4$, $z_2 = -2 + 2\sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 6 + 4i| < 1\\ |arg(z + 1 + 2i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-1, 1, 4), b = (6, -3, -1), c = (0, 1, 6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-11,-14,13) и плоскость P:-36x-54y+50z+1554=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(3,-12,4), $M_1(-2,9,5)$, $M_2(5,2,5)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -5x - 19y + z + 60 = 0 \\ -7x - 2y + 6z + 107 = 0 \end{cases} \qquad L_2: \begin{cases} 2x - 17y - 5z - 1955 = 0 \\ -14x - 19y + 5z - 1441 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.