XMAC02 Métodos Matemáticos para Análise de Dados

- Suponha que eu queira comparar a média de 3 populações: A, B e C
 - Posso usar o teste t, mas seria necessário realizar 3 testes
 - A-B
 - B-C
 - C-A

Motivação

Para 4 populações teríamos:

6 testes seriam necessários

Motivação

 Ao realizar 6 testes t com confiança de 95%, teríamos o seguinte:

 $0.95 \times 0.95 \times 0.95 \times 0.95 \times 0.95 = 0.735$

Assim, ao invés de termos 1 erro a cada 20 testes, teríamos 1 erro a cada 4 testes!

 Permite que testemos a média de múltiplas populações num único teste

$$H_0$$
: $\mu_A = \mu_B = \mu_C = \mu_D ... = \mu_k$

H_a: Ao menos uma das médias é diferente das outras

Vamos examinar 3 máquinas de envase de perfume

Máquina 1	Máquina 2	Máquina 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

$$\Box$$
 H_0 : $\mu_1 = \mu_2 = \mu_3$?

À primeira vista, parece
 que µ₃ pode ser
 diferente

Examinando as máquinas 1, 2 e 3

Máquina 1	Máquina 2	Máquina 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

□ Agora, vamos examinar as máquinas 4, 5 e 6

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

$$\Box H_0: \mu_4 = \mu_5 = \mu_6$$
?

À primeira vista, parece
 que µ₆ pode ser
 diferente

□ Agora, vamos examinar as máquinas 4, 5 e 6

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

ANOVA Variabilidade interna vs externa

□ Máquinas1, 2 e 3

ANOVA Variabilidade interna vs externa

■ Máquinas 4, 5 e 6

- ANOVA = <u>AN</u>alysis <u>Of Variance</u>
- Variância

$$s^2 = \frac{\sum (x_i - \overline{X})^2}{n - 1}$$

- Numerador: soma de quadrados (SQ)
- Denominador: degree of freedom

□ Variância de 2 pop.

$$F = \frac{s_1^2}{s_2^2}$$

$$F = \frac{\frac{\sum (x - \bar{x}_1)^2}{n_1 - 1}}{\frac{\sigma (x - \bar{x}_2)^2}{n_2 - 1}}$$

$$F = \frac{\frac{SQ_1}{df_1}}{\frac{SQ_2}{df_2}} \qquad F = \frac{MSQ_1}{MSQ_2}$$

□ Variância de 3+ pop.

$$F = rac{MSQ_{
m externa}}{MSQ_{
m interna}} \qquad F = rac{rac{SQ_{
m externa}}{rac{dlf_{
m externa}}{f_{
m externa}}}}{rac{SQ_{
m interna}}{rac{dlf_{
m interna}}{f_{
m interna}}}}$$

Máquina 1	Máquina 2	Máquina 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

 H_a : Médias não são iguais

Nível de confiança: 95%

$$F = \frac{\frac{SQ_{\text{externa}}}{\text{d}f_{\text{externa}}}}{\frac{SQ_{\text{interna}}}{\text{d}f_{\text{interna}}}}$$

1 -

Máquina 1	Máquina 2	Máquina 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

 $SQ_{interna} = 4.00 + 18.83 + 5.50 = 28.33$

Máq 1	x1 - x 1	Sqr(x1 - x 1)	Máq 2	x2 - x 2	Sqr(x2 - x 2)	Máq 3	x3 - x 3	Sqr(x3 - x̄3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00			18.83			5.50	

Máquina 1Máquina 2Máquina 3150153156151152154152148155152151156

149

152

 $\bar{x}_2 = 150.83$

v3 - v3

157

155

 $\bar{x}_3 = 155.50$

151

150

 $\bar{x}_1 = 151$

Mág 3

16

Mág 2

v2 - v2

 $SQ_{externa} = ?$

IVIAY I	XT - XT	Sqr(x1 - x1)	IVIAY Z	XZ - XZ	Sqr(xz - xz)	IVIAY 5	x3 - x3	341(x3 - x3)		
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25		
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25		
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25		
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25		
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25		
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25		
151.00			150.83			155.50			1	L52.44
		4.00			18.83			5.	.50	
	-1.44	2.07		-1.61	2.58		3.06	9.	.36	

Sarly2 - \$21

Máquina 1	Máquina 2	Máquina 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

 $SQ_{externa} = (2.07+2.58+9.36)x6 = 84.06$

Máq 1	x1 - x 1	Sqr(x1 - x̄1)	Máq 2	x2 - x 2	Sqr(x2 - x 2)	Máq 3	x3 - x 3	Sqr(x3 - x̄3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00			18.83			5.5	0
	-1.44	2.07		-1.61	2.58		3.06	9.3	6

Máquina 1	Máquina 2	Máquina 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

$$SQ_{interna} = 4.00 + 18.83 + 5.50 = 28.33$$

$$SQ_{externa} = (2.07+2.58+9.36) \times 6 = 84.06$$

Máquina 1	Máquina 2	Máquina 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

$$df_{total} = 18 - 1 = 17$$

$$df_{externa} = 3 - 1 = 2$$

- $df_{externa} = 2$

$$F = \frac{\frac{SQ_{\text{externa}}}{\boxed{df_{\text{externa}}}}}{\frac{SQ_{\text{interna}}}{\boxed{df_{\text{interna}}}}} \qquad F = \frac{MSQ_{\text{externa}}}{MSQ_{\text{interna}}}$$

$$\square$$
 MSQ_{externa} = 84.06 / 2 = 42.03

$$\square$$
 MSQ_{interng} = 28.33 / 15 = 1.89

$$F = 42.03 / 1.89 = 22.24$$

F - Distribution (α = 0.05 in the Right Tail)

	7 16			N	lumerator	Degrees	of Freedo	m		
c	_{]f2} \df1	1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.998
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.772
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.676
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.388
Ĕ	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.178
Denominator Degrees of Freedom	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.020
9	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.896
Ĕ	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.796
₽	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.714
s	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.645
ee	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.587
ģ	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.537
ခို	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.494
Ē	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.456
윷	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.422
ĕ	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.392
Ē	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.366
2	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.341
e	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.320 2.300
_	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.282
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.265
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.250
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.222
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.210
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.124
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.040 1.958
	120 ∞	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750 2.0986	2.0868 2.0096	2.0164 1.9384	1.958
	ω	3.8415	2.9957	2.6049	2.3719	2.2141	2.0966	2.0090	1.9304	1.079

- $df_{externa} = 2 \text{ (num)}$ $df_{interna} = 15 \text{ (den)}$
- $\alpha = 0.05$ uma cauda $F_{0.05, 2, 15} = 3.68$

- F = 22.24
- Arr $F_{0.05, 2, 15} = 3.68$

- Rejeitamos a hipótese nula
- Médias não são iguais

