Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ANÁLISE MATEMÁTICA I - Engenharia Informática 2022-23

4.1 Cálculo integral: integral definido e aplicações

Aulas TP+P: Folha 4

Integral definido, cálculo de áreas, volumes e comprimentos de curvas, integração numérica.

Integral definido: $\int_a^b f(x) dx$ é um integral definido se:

- i) o intervalo [a, b] é limitado;
- ii) a função f(x) está definida $([a,b] \subseteq D_f)$ e é contínua em [a,b].

Nota: O integral continua a ser definido se a função f(x) <u>não</u> estiver definida ou <u>não</u> for contínua num **conjunto finito de pontos** do intervalo [a,b], desde que os limites laterais nesses pontos sejam finitos.

Teorema Fundamental do Cálculo

Sejam f(x) uma função real de variável real, contínua em [a,b] e F(x) uma primitiva de f(x), isto é, $\int f(x) dx = F(x)$. Então

$$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} \equiv F(b) - F(a).$$

Integração numérica

Regra dos trapézios: $\int_{a}^{b} f(x) dx \simeq \frac{h}{2} \Big[f(x_0) + \frac{2}{2} f(x_1) + \dots + \frac{2}{2} f(x_{n-1}) + f(x_n) \Big]$ $com \quad erro \leq \frac{(b-a)^3}{12 n^2} \times \max_{[a,b]} |f''(x)|$

Regra de Simpson: $\int_a^b f(x) dx \simeq \frac{h}{3} \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big]$

Nota: n tem que ser **par**!

com erro
$$\leq \frac{(b-a)^5}{180 n^4} \times \max_{[a,b]} |f''''(x)|$$

Comandos do Geogebra:

- Calcular/representar $\int_a^b f(x) \, dx$: integral(<expressão de f(x)>, <a>,)
- \bullet Calcular $\lim_{x\to x_0^+}f(x)\colon$ LimiteàDireita(<expressão de f(x)>, < x_0 >)
- ullet Calcular $\lim_{x o x_0^-} f(x)$: LimiteàEsquerda(<expressão de f(x)>, < x_0 >)
- Regra dos trapézios: SomaTrapezoidal (< expressão de f(x)>, <a>, , <# de trapézios>)

1. Calcule o valor dos seguintes integrais definidos

a)
$$\int_0^1 \sqrt[3]{x^2} + 1 \, dx$$
;

a)
$$\int_0^1 \sqrt[3]{x^2} + 1 \, dx$$
; b) $\int_{-\frac{\pi}{4}}^{\pi} \sin(x) \cos(x) \, dx$; c) $\int_{-2}^2 \frac{1}{\sqrt{16 - x^2}} \, dx$.

c)
$$\int_{-2}^{2} \frac{1}{\sqrt{16-x^2}} dx$$

2. A função $f(x) = \begin{cases} x+1 & , x \leq 0 \\ \sqrt{x} & , x > 0 \end{cases}$ tem a representação gráfica da figura seguinte.

- (a) Indique o domínio da função f(x).
- (b) Analise a continuidade da função f(x).
- (c) Justifique que o integral $\int_{-1}^{1} f(x) dx$ é definido e calcule o seu valor.
- 3. Considere a região sombreada \mathcal{A} representada na figura seguinte.

- (a) Identifique, justificando, a região \mathcal{A} na forma $\{(x,y) \in \mathbb{R}^2 : a \leq x \leq b \land f(x) \leq y \leq g(x)\}$.
- (b) Usando integrais, indique expressões simplificadas que permitam calcular a área de $\mathcal A$
 - i. em função da variável x;
 - ii. em função da variável y.
- (c) Explique as vantagens da expressão da alínea b(ii) e, a partir dela, calcule o valor exacto da área de \mathcal{A} .
- (d) Recorrendo à expressão da alínea b(i), calcule uma aproximação para a área de \mathcal{A} , recorrendo à regra dos trapézios e a uma partição uniforme do intervalo em 4 sub-intervalos. Confirme o resultado recorrendo ao Geogebra.
- 4. Considere a região \mathcal{B} , sombreada, da figura seguinte.

- (a) Determine as coordenadas dos pontos $P, Q \in R$.
- (b) Usando integrais, indique expressões simplificadas que lhe permitam calcular a área de \mathcal{B}
 - (i) em função da variável x;
 - (ii) em função da variável y.
- (c) Recorrendo a integrais, indique uma expressão simplificada que lhe permita calcular o volume do sólido que se obtém pela rotação da região \mathcal{B} em torno do eixo Ox.

5. Considere a região C, a sombreado, da figura seguinte.

- (a) Identifique, justificando, a região $\mathcal C$ na forma $\{(x,y)\in {\rm I\!R}^2: a\leq y\leq b \ \land \ f(y)\leq x\leq g(y)\}$.
- (b) Indique uma expressão simplificada que permita calcular a área de \mathcal{C} .
- (c) Usando integrais, calcule o volume do sólido de revolução que se obtém a partir da rotação da região $\mathcal C$ em torno do eixo Oy.
- 6. Considere a região $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : y \le (x-1)^2 \land x^2 + y^2 \le 1 \land y \ge 0\}$.
 - (a) Represente graficamente a região \mathcal{D} .
 - (b) Usando integrais, indique expressões simplificadas que permitam calcular a área de \mathcal{D}
 - (i) em função da variável x;
 - (ii) em função da variável y.
 - (c) Usando integrais, indique uma expressão simplificada que permita calcular o volume do sólido de revolução que se obtém a partir da rotação da região \mathcal{D} em torno do eixo Oy.
 - (d) Usando integrais, indique uma expressão simplificada que permita calcular o perímetro de \mathcal{D} .
- 7. Considere a região \mathcal{E} representada na figura seguinte:

- (a) Identifique, justificando, a região $\mathcal E$ na forma $\{(x,y)\in {\rm I\!R}^2: a\leq y\leq b \ \land \ f(y)\leq x\leq g(y)\}$.
- (b) Usando integrais, calcule a área de \mathcal{E} .
- (c) Indique uma expressão simplificada que lhe permita calcular o perímetro de \mathcal{E} .
- (d) Usando integrais, indique expressões simplificadas que lhe permitam calcular os volumes dos seguintes sólidos de revolução representados nas figuras 1 e 2, obtidos a partir da rotação da região $\mathcal E$ em torno dos eixos Oy e Ox, respectivamente.

8. Considere a região sombreada \mathcal{F} representada na figura seguinte.

- (a) Identifique, justificando, a região \mathcal{F} na forma $\{(x,y) \in \mathbb{R}^2 : a \leq x \leq b \land f(x) \leq y \leq g(x)\}$.
- (b) Usando integrais, calcule a área de \mathcal{F} .
- (c) Calcule uma aproximação para a área de \mathcal{F} , recorrendo à regra dos trapézios e a uma partição uniforme do intervalo em 4 sub-intervalos. Confirme o resultado recorrendo ao Geogebra.
- (d) Determine um majorante para o erro da aproximação da alínea anterior.
- (e) Recorrendo à regra de Simpson, determine uma nova estimativa para a área de \mathcal{F} com, pelo menos, uma casa decimal correcta (erro ≤ 0.05).
- 9. Considere a região $\mathcal{G} = \{(x,y) \in \mathbb{R}^2 : x \ge 1 y^2 \land y \le -\ln(x) \land -1 \le y \le 0\}$.
 - (a) Represente graficamente a região \mathcal{G} .
 - (b) Usando integrais, indique expressões simplificadas que permitam calcular a área de $\mathcal G$
 - i. em função da variável x;
 - ii. em função da variável y.
 - (c) Explique as vantagens da expressão da alínea b(ii) e, a partir dela, calcule o valor exacto da área de $\mathcal G$.
 - (d) Tendo em conta a expressão da alínea b(ii) calcule uma aproximação para a área de \mathcal{G} recorrendo à regra dos trapézios e a uma partição uniforme em 4 sub-intervalos.
 - (e) Tendo em conta o gráfico da figura seguinte, calcule um majorante para o erro da estimativa da alínea anterior. Confirme o resultado, tendo em conta as alíneas (c) e (d).

- 10. Considere a região $\mathcal{H} = \{(x,y) \in \mathbb{R}^2 : y \le -x^2 + 1 \land y \ge x 1 \land 0 \le x \le 1\}$.
 - (a) Represente graficamente a região \mathcal{H} .
 - (b) Usando integrais, indique expressões simplificadas que permitam calcular a área de \mathcal{H}
 - (i) em função da variável x;
 - (ii) em função da variável y.
 - (c) Usando integrais, indique uma expressão simplificada que permita calcular o volume do sólido de revolução que se obtém a partir da rotação da região \mathcal{H} em torno do eixo
 - (i) O_x ;
 - (ii) O_y .
 - (d) Indique uma expressão simplificada que permita calcular o perímetro de \mathcal{H} .
 - (e) Recorrendo à regra dos trapézios, ao integral da alínea anterior e ao Geogebra, determine uma estimativa para o perímetro de \mathcal{H} com, pelo menos, uma casa decimal correcta (erro ≤ 0.05).