Theoretical Abstractions in Data Flow Analysis

Uday Khedker

(www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

August 2015

Part 1

About These Slides

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

DFA Theory: About These Slides

Copyright

1/121

IIT Bomb

 Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

Apart from the above book, some slides are based on the material from the

(Indian edition published by Ane Books in 2013)

following books

- M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc. 1977.
- F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag. 1998.

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use.

DFA Theory: Outline

- The need for a more general setting
- The set of data flow values
- The set of flow functions
- Solutions of data flow analyses
- Algorithms for performing data flow analysis
- Complexity of data flow analysis

2/121

Part 2

The Need for a More General Setting

What We Have Seen So Far ...

Analysis	Entity	Attribute at <i>p</i>	Paths	
Live variables	Variables	Use	Starting at p	Some
Available expressions	Expressions	Availability	Reaching p	All
Partially available expressions	Expressions	Availability	Reaching <i>p</i>	Some
Anticipable expressions	Expressions	Use	Starting at p	All
Reaching definitions	Definitions	Availability	Reaching p	Some
Partial redundancy elimination	Expressions	Profitable hoistability	Involving p	All

CS 618 DFA Theory: The Need for a More General Setting

The Need for a More General Setting

- We seem to have covered many variations
- frameworks

Yet there are analyses that do not fit the same mould of bit vector

• We use an analysis called *Constant Propagation* to observe the differences

A variable v is a constant with value c at program point p if in every execution instance of p, the value of v is c.

All introduction to Constant Propagation

DFA Theory: The Need for a More General Setting

IIT Bombay

5/121

 $\langle a, b, c, d \rangle$ Execution Sequence $\langle ?, ?, ?, ? \rangle$ n_1

Execution

Aug 2015

Execution

d = c - 1 a = 2 b = 1 c = a + b

 n_3

 $\langle a, b, c, d \rangle$ Execution Sequence

Aug 2015

Execution

5/121

d = c - 1a = 2 b = 1 c = a + b $\langle a, b, c, d \rangle$ Execution Sequence n_2 $\langle 1, 2, 3, 2 \rangle$

Aug 2015

 n_3

An introduction to Constant Propagatio

Aug 2015

CS 618

5/121

Execution

Execution

Aug 2015

Aug 2015

CS 618

Execution

5/121

Summary Values

Aug 2015

gation

ation

5/121

Summary Values

Aug 2015

gation

gation

Aug 2015

An Introduction to Constant Propagation

Summary Values

Desired Solution

Aug 2015

Difference #1: Data Flow Values

• Tuples of the form $\langle \eta_1, \eta_2, \dots, \eta_k \rangle$ where η_i is the data flow value for i^{th} variable

Unlike bit vector frameworks, value η_i is not 0 or 1 (i.e. true or false). Instead, it is one of the following:

- × indicating that variable v_i does not have a constant value
- An integer constant c_1 if the value of v_i is known to be c_1 at compile time

DFA Theory: The Need for a More General Setting

• In bit vector framewoks, data flow values of different entities are

independent

IIT Bombay

7/121

Entities

DFA Theory: The Need for a More General Setting

- In bit vector framewoks, data flow values of different entities are independent
 - ▶ Liveness of variable b does not depend on that of any other variable
 - ► Availability of expression *a* * *b* does not depend on that of any other expression

7/121

Difference #2: Dependence of Data Flow Values Across Entities

- In bit vector framewoks, data flow values of different entities are independent
 - Liveness of variable b does not depend on that of any other variable
 - ► Availability of expression *a* * *b* does not depend on that of any other expression
- Given a statement a = b * c, can the constantness of a be determined indpendently of the constantness of b and c?

Difference #2: Dependence of Data Flow Values Across Entities

- In bit vector framewoks, data flow values of different entities are independent
 - Liveness of variable b does not depend on that of any other variable
 - ► Availability of expression *a* * *b* does not depend on that of any other expression
- Given a statement a = b * c, can the constantness of a be determined independently of the constantness of b and c?

No

IIT Bomb

• Confluence operation $\langle a, c_1 \rangle \sqcap \langle a, c_2 \rangle$

П	$\langle a, ? \rangle$	$\langle a, \times \rangle$	$\langle a, c_1 angle$	
$\langle a, ? \rangle$	$\langle a, ? \rangle$	$\langle a, \times \rangle$	$\langle a, c_1 angle$	
$\langle a, imes angle$	$\langle a, \times \rangle$	$\langle a, \times \rangle$	$\langle a, imes angle$	
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle$	$\langle a, imes angle$	If $c_1 = c_2 \langle a, c_1 \rangle$ Otherwise $\langle a, \times \rangle$	

• This is neither \cap nor \cup

What are its properties?

CS 618

 $\langle a_1, c_1 \rangle, \langle a_2, c_2 \rangle$ $r = a_1 * a_2$

This cannot be expressed in the form

$$f_n(X) = \operatorname{\mathsf{Gen}}_n \cup (X - \operatorname{\mathsf{Kill}}_n)$$

DFA Theory: The Need for a More General Setting

Difference #4: Flow Functions for Constant Propagation

where Gen_n and $Kill_n$ are constant effects of block n

IIT Bombay

IIT Bombay

DFA Theory: The Need for a More General Setting

 $\langle 1, 2, 3, ? \rangle$ $\langle 1, 2, 3, 2 \rangle$ $\langle 1, 2, 3, 2 \rangle$

 $\langle 2, 1, 3, 2 \rangle$

.rc

IIT Bombay

10/121

Aug 2015

 n_2

*n*₃

d = c - 1

$$\begin{array}{c|cccc}
n_1 & b = 2 \\
c = a + b
\end{array} & \langle 1, 2, 3, ? \rangle & \langle 1, 2, 3, ? \rangle$$

$$\begin{array}{c|cccc}
n_2 & c = a + b \\
d = a * b
\end{array} & \langle 1, 2, 3, ? \rangle & \langle \times, \times, 3, 2 \rangle$$

$$\langle 1, 2, 3, 2 \rangle & \langle \times, \times, \times, \times \rangle$$

$$\begin{array}{c|cccc}
d = c - 1 \\
a = 2 \\
b = 1
\end{array} & \langle 1, 2, 3, 2 \rangle & \langle \times, \times, \times, \times \rangle$$

Issues in Data Flow Analysis

- Representation
- Approximation: Partial Order, Lattices

Ord Jalies Solutions Practicular Algorithms

IIT Bombay

issues in Data Flow Analysis

- Representation
- Approximation: Partial Order, Lattices

- Merge: Commutativity,
- Associativity, Idempotence
- Flow Functions: Monotonicity, Distributivity, Boundedness, Separability

IIT Bombay

11/121

Issues in Data Flow Analysis

- Representation
- Order, Lattices

Approximation: Partial

- Existence, Computability
- Soundness, Precision

- Operations Practice
- Merge: Commutativity, Associativity, Idempotence
- Flow Functions: Monotonicity, Distributivity, Boundedness, Separability

11/121

Representation Approximation: Partial

Order, Lattices

- Oxa Flow Oxa Jalies
 - Operations Merge: Commutativity, Associativity, Idempotence

Separability

 Flow Functions: Monotonicity, Distributivity, Boundedness,

 Existence, Computability Soundness, Precision

11/121

 Complexity, efficiency Convergence

Practice as Algorithms

- Initialization

Part 3

Data Flow Values: An Overview

CS 618 Data Flow Values: An Outline of Our Discussion

DFA Theory: Data Flow Values: An Overview

- The need to define the notion of abstraction.
- Lattices, variants of lattices
- Relevance of lattices for data flow analysis
 - Partial order relation as approximation of data flow values
 - Meet operations as confluence of data flow values
- Constructing lattices
- Example of lattices

12/121

Part 4

A Digression on Lattices

13/121

Partially Ordered Sets

Sets in which elements can be compared and ordered

- Total order. Every element in comparable with every element (including itself)
- Discrete order. Every element is comparable only with itself but not with any other element
- Partial order. An element is comparable with some but not necessarily all elements

Partially Ordered Sets and Lattices

IIT Bombay

Partially Ordered Sets and Lattices

CS 618

reflexive, transitive, and antisymmetric

Partial order □ is

x, y is u s.t. $u \sqsubseteq x$ and $u \sqsubseteq y$

A lower bound of

An upper bound of x, y is u s.t. $x \sqsubseteq u$ and $y \sqsubseteq u$

IIT Bombay

14/121

Aug 2015

Partially Ordered Sets and Lattices

14/121

Partially Ordered Sets and Lattices

5 0 10)

DFA Theory: A Digression on Lattices

Set $\{1, 2, 3, 4, 6, 9, 12\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

IIT Bombay

15/121

Aug 2015

15/121

CS 618

Set $\{1,2,3,4,6,9,12\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

15/121

Set $\{1, 2, 3, 4, 6, 9, 12\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

DFA Theory: A Digression on Lattices

Subset $\{4,9,6\}$ and $\{12,9\}$ do not have an upper bound in the set

Set $\{1,2,3,4,6,9,12,18,36\}$ with \sqsubseteq relation as "divides"

DFA Theory: A Digression on Lattices

16/121

2000

 Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub

Example:

Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub

 Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub

Example:

Lattice \mathbb{Z} of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub

 Complete Lattice: A lattice in which even ∅ and infinite subsets have a glb and a lub

IIT Bomb

 Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub

Example:

Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub

 \bullet Complete Lattice: A lattice in which even \emptyset and infinite subsets have a glb and a lub

Example:

Lattice $\mathbb Z$ of integers under \leq relation with ∞ and $-\infty$

IIT Bombay

a glb and a lub

ullet Complete Lattice: A lattice in which even \emptyset and infinite subsets have a glb

Example:

Lattice: A partially ordered set such that every non-empty finite subset has

17/121

Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub

and a lub

Example: Lattice $\mathbb Z$ of integers under \leq relation with ∞ and $-\infty$

attice $\mathbb Z$ of integers under \leq relation with ∞ and $-\delta$

- ▶ ∞ is the top element denoted \top : $\forall i \in \mathbb{Z}, i \leq \top$ ▶ $-\infty$ is the bottom element denoted \bot : $\forall i \in \mathbb{Z}, \bot \leq i$
- $-\infty$ is the bottom element denoted \pm . $\forall i \in \mathbb{Z}, \pm \leq$

18/121

Infinite subsets of $\mathbb{Z} \cup \{\infty, -\infty\}$ have a glb and lub

CS 618

Aug 2015

- ullet Infinite subsets of $\mathbb{Z}\cup\{\infty,-\infty\}$ have a glb and lub
- What about the empty set?

CS 618

T Bombay

18/121

- Infinite subsets of $\mathbb{Z} \cup \{\infty, -\infty\}$ have a glb and lub
 - What about the empty set?
 - glb(∅) is ⊤

IIT Bombay

18/121

- Infinite subsets of $\mathbb{Z} \cup \{\infty, -\infty\}$ have a glb and lub
 - What about the empty set?
 - ▶ glb(∅) is ⊤

Every element of $\mathbb{Z}\cup\{\infty,-\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset)

IIT Bombay

18/121

The greatest among these lower bounds is \top

Infinite subsets of $\mathbb{Z} \cup \{\infty, -\infty\}$ have a glb and lub

▶ glb(∅) is ⊤

What about the empty set?

Every element of $\mathbb{Z} \cup \{\infty, -\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset)

IIT Bomb

18/121

- Infinite subsets of $\mathbb{Z} \cup \{\infty, -\infty\}$ have a glb and lub
- - ▶ glb(∅) is ⊤

What about the empty set?

Every element of $\mathbb{Z} \cup \{\infty, -\infty\}$ is vacuously a lower bound of an

element in \emptyset (because there is no element in \emptyset) The greatest among these lower bounds is \top

- ▶ lub(∅) is ⊥

18/121

• Meet (\sqcap) and Join (\sqcup)

36

Aug 2015

19/121

- Meet (\sqcap) and Join (\sqcup)
 - ▶ $x \sqcap y$ computes the glb of x and y $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$

Aug 2015

Operations on Lattices

- Meet (\sqcap) and Join (\sqcup)
 - ▶ $x \sqcap y$ computes the glb of x and y $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
 - ▶ $x \sqcup y$ computes the lub of x and y $z = x \sqcup y \Rightarrow z \supseteq x \land z \supseteq y$

19/121

- Meet (□) and Join (□)
 - \triangleright $x \sqcap y$ computes the glb of x and y $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
 - \triangleright $x \sqcup y$ computes the lub of x and y
 - $z = x \sqcup y \Rightarrow z \supseteq x \land z \supseteq y$
 - ▶ □ and □ are commutative, associative, and idempotent

19/121

- Meet (□) and Join (□)
 - \triangleright $x \sqcap y$ computes the glb of x and y $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
 - \triangleright $x \sqcup y$ computes the lub of x and y
 - $z = x \sqcup y \Rightarrow z \supseteq x \land z \supseteq y$ ▶ □ and □ are commutative, associative,
 - and idempotent
- Top (\top) and Bottom (\bot) elements

$$\forall x \in L, x \sqcap \top = x$$

 $\forall x \in L, x \sqcup \top = \top$
 $\forall x \in L, x \sqcap \bot = \bot$

 $\forall x \in L, x \sqcup \bot = x$

19/121

- Meet (□) and Join (□)
 - \triangleright $x \sqcap y$ computes the glb of x and y
 - $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
 - \triangleright $x \sqcup y$ computes the lub of x and y
 - $z = x \sqcup y \Rightarrow z \supseteq x \land z \supseteq y$ ▶ □ and □ are commutative, associative,
 - and idempotent
 - Top (\top) and Bottom (\bot) elements

$$\forall x \in L, \ x \sqcap \top = x$$

$$\forall x \in L, \ x \sqcup \top = \top$$

$$\forall x \in L, \ x \sqcap \bot = \bot$$

$$\forall x \in L, \ x \sqcup \bot = x$$

36

 $x \sqcap y = gcd(x, y)$

Greatest common divisor

19/121

- Meet (□) and Join (□)
 - \triangleright $x \sqcap y$ computes the glb of x and y
 - $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$ \triangleright $x \sqcup y$ computes the lub of x and y
 - $z = x \sqcup y \Rightarrow z \supseteq x \land z \supseteq y$
 - ▶ □ and □ are commutative, associative,
 - and idempotent

• Top (\top) and Bottom (\bot) elements

$$\forall x \in L, \ x \sqcap \top = x$$

$$\forall x \in L, \ x \sqcup \top = \top$$

$$\forall x \in L, x \sqcap \bot = \bot$$

$$\forall x \in L, \ x \sqcup \bot = x$$

Lowest common multiple

Greatest common divisor

36

$$x \sqcup y = lcm(x, y)$$

 $x \sqcap y = gcd(x, y)$

Partial Order and Operations

- For a lattice ⊑ induces □ and ⊔ and vice-versa
- The choices of □, □, and □ cannot be arbitrary
 They have to be
 - consistent with each other, and
 - definable in terms of each other
- For some variants of lattices,
 □ or
 □ may not exist
 Yet the requirement of its consistency with
 □ cannot be violated

IIT Bombay

Finite Lattices are Complete

Any given set of elements has a glb and a lub

Lattice for May-Must Analysis

There is no ⊤ among the natural values

An artificial ⊤ can be added

A poset L is

- A lattice iff each non-empty finite subset of L has a glb and lub
- A complete lattice iff each subset of L has a glb and lub
- A meet semilattice iff each non-empty finite subset of L has a glb
- A join semilattice iff each non-empty finite subset of L has a lub
- A bounded lattice iff L is a lattice and has \top and \bot elements

IIT Bombay

(-)

- Let A be all finite subsets of $\mathbb Z$
- The poset $L=(A\cup \{\mathbb{Z}\},\subseteq)$ is a bounded lattice with $\top=\mathbb{Z}$ and $\bot=\emptyset$ The join \sqcup of this lattice is \cup
- Consider a subset of *L* containing finite sets that do not contain number 1 There are two possiblities:

24/121

A Bounded Lattice need not be Complete (1)

- Let A be all finite subsets of $\mathbb Z$
- The poset $L=(A\cup \{\mathbb{Z}\},\subseteq)$ is a bounded lattice with $\top=\mathbb{Z}$ and $\bot=\emptyset$ The join \sqcup of this lattice is \cup
- Consider a subset of *L* containing finite sets that do not contain number 1 There are two possiblities:
 - ▶ $S_f \subseteq L$ contains only a finite number of such sets Then it has a lub in L(the join (i.e. union) of all sets in S_f is contained in L)

24/121

A Bounded Lattice need not be Complete (1)

- Let A be all finite subsets of Z
 The poset I = (A ∪ {Z}) ⊆ is
- The poset $L=(A\cup \{\mathbb{Z}\},\subseteq)$ is a bounded lattice with $\top=\mathbb{Z}$ and $\bot=\emptyset$ The join \sqcup of this lattice is \cup
- Consider a subset of *L* containing finite sets that do not contain number 1 There are two possiblities:
 - S_f ⊆ L contains only a finite number of such sets
 Then it has a lub in L
 (the join (i.e. union) of all sets in S_f is contained in L)
 - ▶ $S_{\infty} \subseteq L$ contains all finite sets that do not contain 1 The number of such sets is infinite Their union is $\mathbb{Z} - \{1\}$ which is not contained in L(its overapproximation \mathbb{Z} is contained in L) S_{∞} does not have a lub in L

Hence *L* is not complete

24/121

- Let A be all finite subsets of \(\mathbb{Z} \)
 - It may be tempting to assume that \mathbb{Z} is the lub of S_{∞} because it is an upper bound of S_{∞} and no other upper bound of S-infty in the lattice is weaker \mathbb{Z} .
 - However, the join operation \cup of L does not compute \mathbb{Z} as the lub of S_{∞} .
 - If we want to define such a join operation for L, it will have to distinguish between S_f and S_{∞} .
 - This distintion does not seem possible.
 - The join operation \cup is inconsistent with the partial order \supseteq of L. Hence we say that join does not exist for S_{∞} .
 - Note that there is no problem with the meet \sqcap as \cap .

IIT Bombay

Aug 2015 IIT Bombay

- A bounded lattice L has a glb and lub of L in L
- A complete lattice L should have glb and lub of all subsets of L
- A lattice L should have glb and lub of all finite non-empty subsets of L

- Strictly ascending chain $x \sqsubset y \sqsubset \cdots \sqsubset z$
- Strictly descending chain $x \supset y \supset \cdots \supset z$
- DCC: Descending Chain Condition
 All strictly descending chains are finite
- ACC: Ascending Chain Condition
 All strictly ascending chains are finite

IIT Bombay

CS 618

Complete Lattice and Ascending and Descending Chains

- If L satisfies acc and dcc, then
 - L has finite height, and
 - ▶ *L* is complete
- A complete lattice need not have finite height (i.e. strict chains may not be finite)

Example:

Lattice of integers under < relation with ∞ as \top and $-\infty$ as \bot

DFA Theory: A Digression on Lattices

28/121

IIT Bombay

DFA Theory: A Digression on Lattices

CS 618

3 411411135 61 24151555

• dcc: descending chain condition

CS 618

• dcc: descending chain condition

• dcc: descending chain condition

• dcc: descending chain condition

Variants of Lattices

• dcc: descending chain condition

- dcc: descending chain condition
- acc: ascending chain condition

Aug 2015 **IIT Bombay**

- dcc: descending chain condition
- acc: ascending chain condition

- dcc: descending chain condition
- acc: ascending chain condition

Maintain n servers and divide the traffic

- Each server maintains an *n*-tuple for each page
- Updates the counters for its own slot

Aug 2015 IIT Bombay

Page 3

An Example of Lattices: Maintaining Like Counts on Cloud

Aug 2015

Aug 2015

Synchronize:

- Send the data to other servers
- Update the counters using point-wise max

Aug 2015

IIT Bomba

Synchronize:

- Send the data to other servers
- Update the counters using point-wise max

• Lattice of *n*-tuples using point-wise > as the partial order

$$\langle x_1, x_2, \dots, x_n \rangle \sqsubseteq \langle y_1, y_2, \dots, y_n \rangle = (x_1 \ge y_1) \land (x_2 \ge y_2) \dots \land (x_n \ge y_n)$$

Tuples merged with max operation

$$\langle x_1, x_2, \dots, x_n \rangle \sqcap \langle y_1, y_2, \dots, y_n \rangle = \langle \max(x_1, y_1), \max(x_2, y_2), \dots, \max(x_n, y_n) \rangle$$

- Send the data to other servers
- Update the counters using point-wise max

- Send the data to other servers
- Update the counters using point-wise max

- Send the data to other servers
- Update the counters using point-wise max

- Send the data to other servers
- Update the counters using point-wise max

- Send the data to other servers
- Update the counters using point-wise max

Synchronize:

- Send the data to other servers
- Update the counters using point-wise max

Synchronize:

- Send the data to other servers
- Update the counters using point-wise max

Synchronize:

- Send the data to other servers
- Update the counters using point-wise max

- Send the data to other servers
- Update the counters using point-wise max

- Send the data to other servers
- Update the counters using point-wise max

Synchronize:

- Send the data to other servers
- Update the counters using point-wise max

Synchronize:

- Send the data to other servers
- Update the counters using point-wise max

Count for a page:

— Take sum of all counts at any server for the page

Aug 2015

30/121

Constructing Lattices

- Powerset construction with subset or superset relation
- Products of lattices
 - Cartesian product
 - Lexicographic product
 - Interval product
 - Set of mappings
- Lattices on sequences using prefix or suffix as partial orders

IIT Bombay

CS 618

DFA Theory: A Digression on Lattices

CS 618

IIT Bombay

31/121

$\langle 1, a angle$

CS 618

DFA Theory: A Digression on Lattices

Aug 2015

CS 618

IIT Bombay

DFA Theory: A Digression on Lattices

31/121

CS 618

31/121

$\langle 1,a \rangle$

DFA Theory: A Digression on Lattices

IIT Bombay

31/121

 $\langle x_1,y_1\rangle \sqcup_{\mathcal{C}} \langle x_2,y_2\rangle \quad = \quad \langle x_1 \sqcup_{\mathcal{N}} x_2,y_1 \sqcup_{\mathcal{A}} y_2\rangle$ Aug 2015

 $\langle x_1, y_1 \rangle \sqcap_C \langle x_2, y_2 \rangle = \langle x_1 \sqcap_N x_2, y_1 \sqcap_A y_2 \rangle$

32/121

 $(x_1, x_2) \sqsubseteq (y_1, y_2)$ iff $x_1 \sqsubseteq_1 y_1 \land x_2 \sqsubseteq_2 y_2$

• Lexicographic Product

• Set of mappings $L_1 \mapsto L_2$

Interval Product

- - $(x_1, x_2) \sqsubseteq (y_1, y_2)$ iff $x_1 \sqsubseteq_1 y_1 \land x_2 \sqsubseteq_2 y_2$
 - Interval Product
 - $(x_1, x_2) \sqsubseteq (y_1, y_2)$ iff $x_1 \sqsubseteq_1 y_1 \land y_2 \sqsubseteq_2 x_2$
 - Lexicographic Product

• Set of mappings $L_1 \mapsto L_2$

Cartesian Product

$$(x_1, x_2) \sqsubseteq (y_1, y_2) \text{ iff } x_1 \sqsubseteq_1 y_1 \land x_2 \sqsubseteq_2 y_2$$

• Interval Product
$$(x_1, x_2) \sqsubseteq (y_1, y_2)$$
 iff $x_1 \sqsubseteq_1 y_1 \land y_2 \sqsubseteq_2 x_2$

$$(x_1, x_2) \sqsubseteq (y_1, y_2)$$
 iff $(x_1 \sqsubseteq_1 y_1) \lor (x_1 = y_1 \land x_2 \sqsubseteq_2 y_2)$

Set of mappings L₁ → L₂

In each case $L \subseteq L_1 \times L_2$

Cartesian Product

Interval Product

• Set of mappings $L_1 \mapsto L_2$

32/121

 $(x_1,x_2) \sqsubseteq (y_1,y_2)$ iff $(x_1 \sqsubseteq_1 y_1) \lor (x_1 = y_1 \land x_2 \sqsubseteq_2 y_2)$

 $(x_1, x_2) \sqsubseteq (y_1, y_2)$ iff $x_1 \sqsubseteq_1 y_1 \land x_2 \sqsubseteq_2 y_2$

 $(x_1, x_2) \sqsubseteq (y_1, y_2) \text{ iff } x_1 = y_1 \land x_2 \sqsubseteq_2 y_2$

Aug 2015

IIT Bombay

Part 5

Data Flow Values: Details

The Set of Data Flow Values

CS 618

Aug 2015

Meet semilattices satisfying the descending chain condition

• Requirement: glb must exist for all non-empty finite subsets

IIT Bombay

33/121

CS 618

33/121

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets
- Corollary: ⊥ must exist

What guarantees the presence of \perp ?

33/121

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets
- What guarantees the presence of \perp ?

CS 618

 ■ T may not exist. Can be added artificially.

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets
- Corollary: ⊥ must exist

What guarantees the presence of \perp ?

Assume that two maximal descending chains terminate at two incomparable elements x_1 and x_2

 ■ T may not exist. Can be added artificially.

33/121

CS 618

33/121

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets

CS 618

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_1 and x_2
- ▶ Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z)

 ■ T may not exist. Can be added artificially

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_1 and x_2
- ▶ Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z)
 - ⇒ Neither of the chains is maximal. Both of them can be extended to include z

 ■ T may not exist. Can be added artificially

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_1 and x_2
- ▶ Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z)
 - ⇒ Neither of the chains is maximal Both of them can be extended to include z
- Extending this argument to all strictly descending chains, it is easy to see that \perp must exist
- ■ T may not exist. Can be added artificially

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets
- Corollary: ⊥ must exist

What guarantees the presence of \perp ?

- ► Assume that two maximal descending chains terminate at two incomparable elements x_1 and x_2
- Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z)
 - ⇒ Neither of the chains is maximal

 Both of them can be extended to include z
- Extending this argument to all strictly descending chains, it is easy to see that ⊥ must exist
- - ▶ lub of arbitrary elements may not exist

- Analysis
- The powerset of the universal set of expressions
 Partial order is the subset relation
- $\begin{cases}
 e_1, e_2, e_3 \\
 \downarrow \\
 e_1, e_2 \end{cases}
 \begin{cases}
 e_1, e_3 \\
 e_2, e_3 \end{cases}$ $\begin{cases}
 e_2, e_3 \\
 e_3 \end{cases}$

Set View of the Lattice

IIT Bombay

Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation.

Set View of the Lattice

34/121

 $\{e_1\}$ $\{e_2\}$ $\{e_3\}$

111 110 011 100 010 001

• The powerset of the universal set of expressions

Partial order is the subset relation.

The Concept of Approximation

DFA Theory: Data Flow Values: Details

- x approximates y iff
 x can be used in place of y without causing any problems
- Validity of approximation is context specific

CS 618

- x may be approximated by y in one context and by z in another
 - ► Approximating Money
 Earnings: Rs. 1050 can be safely approximated by Rs. 1000
 Expenses: Rs. 1050 can be safely approximated by Rs. 1100
 - ► Approximating Time Expected travel time of 2 hours can be safely approximated by 3
 - hours

 Availability of 3 day's time for study can be safely assumed to be only 2 day's time

Aug 2015 IIT Bombay

Two Important Objectives in Data Flow Analysis

The discovered data flow information should be

CS 618

- Exhaustive. No optimization opportunity should be missed
- Safe. Optimizations which do not preserve semantics should not be enabled

IIT Bombay

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
 - **Exhaustive.** No optimization opportunity should be missed
 - ► *Safe*. Optimizations which do not preserve semantics should not be enabled
- Conservative approximations of these objectives are allowed

36/121

CS 618

36/121

• The discovered data flow information should be

CS 618

- Exhaustive. No optimization opportunity should be missed
- ► *Safe*. Optimizations which do not preserve semantics should not be enabled
- Conservative approximations of these objectives are allowed
- ullet The intended use of data flow information (\equiv context) determines validity of approximations

Context Determines the Validity of Approximations

37/121

Will not do incorrect optimization
May prohibit correct optimization

May enable incorrect optimization

May enable incorrect optimization

Analysis

Application

Safe

Approximation

Approximation

Aug 2015 IIT Bombay

Will not do incorrect optimization

Context Determines the Validity of Approximations

37/121

Will not miss any correct optimization

May prohibit corre		_	correct optimization
Analysis	Application	Safe Approximation	Exhaustive Approximation
Live variables	Dead code elimination	A dead variable is considered live	A live variable is considered dead

Aug 2015 **IIT Bomba**

Context Determines the Validity of Approximations

Will not do incorrect optimization May prohibit correct optimization May enable incorrect optimization

Will not miss any correct optimization

37/121

Analysis	Application	Safe Approximation	Exhaustive Approximation
Live variables	Dead code elimination	A dead variable is considered live	A live variable is considered dead
Available expressions	Common subexpression elimination	An available expression is considered non-available	A non-available expression is considered available

Aug 2015 **IIT Bomba**

Spurious Inclusion

Spurious Exclusion

Context Determines the Validity of Approximations

Will not do incorrect optimization Will not miss any correct optimization May prohibit correct optimization May enable incorrect optimization Safe Exhaustive Analysis Application Approximation Approximation Live variables Dead code A dead variable A live variable is elimination is considered live considered dead Available Common An available A non-available expressions subexpression expression is expression is elimination considered considered non-available available

Aug 2015 IIT Bombay

Partial Order Captures Approximation

 $\bullet \sqsubseteq$ captures valid approximations for safety

 $x \sqsubseteq y \Rightarrow x$ is weaker than y

- ► The data flow information represented by x can be safely used in place of the data flow information represented by y
- ▶ It may be imprecise, though

• \sqsubseteq captures valid approximations for safety

 $x \sqsubseteq y \Rightarrow x$ is weaker than y

- ► The data flow information represented by x can be safely used in place of the data flow information represented by y
- It may be imprecise, though
- \supseteq captures valid approximations for exhaustiveness

 $x \supseteq y \Rightarrow x$ is stronger than y

- ► The data flow information represented by x contains every value contained in the data flow information represented by y
- ▶ It may be unsafe, though

Partial Order Captures Approximation

DFA Theory: Data Flow Values: Details

□ captures valid approximations for safety

 $x \sqsubseteq y \Rightarrow x$ is weaker than y

- ► The data flow information represented by x can be safely used in place of the data flow information represented by y
- It may be imprecise, though

acaptures valid approximations for exhaustiveness

- .
 - $x \supseteq y \Rightarrow x$ is stronger than y
 - ► The data flow information represented by x contains every value contained in the data flow information represented by y
 - ▶ It may be unsafe, though

We want most exhaustive information which is also safe

38/121

• Bottom. $\forall x \in L, \perp \sqsubseteq x$ Safe approximation of all values

IIT Bombay

39/121

- *Top.* $\forall x \in L, x \sqsubseteq \top$ Exhaustive approximation of all values
 - \blacktriangleright Using \top in place of any data flow value will never miss out (or rule out) any possible value
- Bottom. $\forall x \in L, \perp \sqsubseteq x$ Safe approximation of all values

39/121

most ripproximate values in a complete dather

- *Top.* $\forall x \in L, x \sqsubseteq T$ Exhaustive approximation of all values
 - ightharpoonup Using ightharpoonup in place of any data flow value will never miss out (or rule out) any possible value
 - ▶ The consequences may be sematically *unsafe*, or *incorrect*
- *Bottom*. $\forall x \in L, \perp \sqsubseteq x$ Safe approximation of all values

Most Approximate Values in a Complete Lattice

- *Top.* $\forall x \in L$, $x \sqsubseteq \top$ Exhaustive approximation of all values
 - ► Using T in place of any data flow value will never miss out (or rule out) any possible value
 - ▶ The consequences may be sematically *unsafe*, or *incorrect*
- Bottom. $\forall x \in L, \perp \sqsubseteq x$ Safe approximation of all values
 - lackbox Using ot in place of any data flow value will never be *unsafe*, or *incorrect*

Most Approximate Values in a Complete Lattice

- *Top.* $\forall x \in L, x \sqsubseteq T$ Exhaustive approximation of all values
 - ightharpoonup Using ightharpoonup in place of any data flow value will never miss out (or rule out) any possible value

39/121

- ▶ The consequences may be sematically *unsafe*, or *incorrect*
- Bottom. $\forall x \in L, \perp \sqsubseteq x$ Safe approximation of all values
 - lackbox Using ot in place of any data flow value will never be *unsafe*, or *incorrect*
 - ► The consequences may be *undefined* or *useless* because this replacement might miss out valid values

Aug 2015 IIT Bombay

Most Approximate Values in a Complete Lattice

• Top. $\forall x \in L, x \sqsubseteq T$ Exhaustive approximation of all values

- .
- ► Using T in place of any data flow value will never miss out (or rule out) any possible value
- ▶ The consequences may be sematically *unsafe*, or *incorrect*
- *Bottom*. $\forall x \in L, \perp \sqsubseteq x$ Safe approximation of all values
 - ► Using ⊥ in place of any data flow value will never be unsafe, or incorrect
 - ► The consequences may be *undefined* or *useless* because this replacement might miss out valid values

Appropriate orientation chosen by design

coming of amount

Available Expressions Analysis	Live Variables Analysis	
	$ \begin{cases} v_1 \\ \downarrow \\ \{v_1, v_2\} \\ \downarrow \\ \{v_1, v_2\} \\ \downarrow \\ \{v_1, v_2, v_3\} \end{cases} \begin{cases} v_2, v_3 \\ \downarrow \\ \{v_1, v_2, v_3\} \end{cases} $	
\sqsubseteq is \subseteq	⊑ is ⊇	
□is ∩	□is∪	

Aug 2015 IIT Bombay

$$x \sqsubseteq x$$

 $x \sqsubseteq y, y \sqsubseteq z$

$$\Rightarrow x \sqsubseteq z$$

Reflexive

Transitive

CS 618

Antisymmetric
$$x \sqsubseteq y, y \sqsubseteq x$$

 $\Leftrightarrow x = y$

Aug 2015

Partial Order Relation

CS 618

Transitive

41/121

Reflexive $x \sqsubseteq x$ x can be safely used in place of x

 \Rightarrow $x \sqsubseteq z$ and y can be safely used in place of z, then x can be safely used in place of z

 $x \sqsubseteq y, y \sqsubseteq z$ If x can be safely used in place of y

Antisymmetric $x \sqsubseteq y, y \sqsubseteq x$ If x can be safely used in place of y and y can be safely used in place of x, then x must be same as y

Aug 2015 IIT Bombay

3 3

• $x \sqcap y$ computes the *greatest lower bound* of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

largest z such that $z \sqsubseteq x$ and $z \sqsubseteq$

The largest safe approximation of combining data flow information \boldsymbol{x} and \boldsymbol{y}

DFA Theory: Data Flow Values: Details

42/121

CS 618

• $x \sqcap y$ computes the *greatest lower bound* of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information x and y

• Commutative $x \sqcap y = y \sqcap x$

Associative
$$x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$$

Idempotent
$$x \sqcap x = x$$

Merging Information

42/121

largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

CS 618

The largest safe approximation of combining data flow information x and y

flow information is merged,

• Commutative $x \sqcap y = y \sqcap x$ The order in which the data

does not matter Associative $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$ Allow n-ary merging without

any restriction on the order

 $x \sqcap x = x$ Idempotent No loss of information if x is merged with itself

Aug 2015

42/121

• $x \sqcap y$ computes the *greatest lower bound* of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information \boldsymbol{x} and \boldsymbol{y}

flow information is merged,

No loss of information if x is

does not matter

• Commutative
$$x \sqcap y = y \sqcap x$$
 The order in which the data

Associative $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$ Allow n-ary merging without any restriction on the order

• \top is the identity of \sqcap

 $x \sqcap x = x$

Idempotent

CS 618

- ► Presence of loops ⇒ self dependence of data flow information
- Presence of loops ⇒ self dependence of data flow info
 Using ⊤ as the initial value ensure exhaustiveness

Aug 2015 IIT Bombay

More on Lattices in Data Flow Analysis

IIT Bombay

43/121

 $\widehat{L} = \text{Lattice for a single expression}$

CS 618

More on Lattices in Data Flow Analysis

Cartesian products if sets are used, vectors (or tuples) if bit are used.

- $L = \widehat{L} \times \widehat{L} \times \widehat{L}$ and $x = \langle \widehat{x}_1, \widehat{x}_2, \widehat{x}_3 \rangle \in L$ where $\widehat{x}_i \in \widehat{L}$
- $\Box = \widehat{\Box} \times \widehat{\Box} \times \widehat{\Box}$ and $\Box = \widehat{\Box} \times \widehat{\Box} \times \widehat{\Box}$

L = Lattice for all expressions

• $T = \hat{T} \times \hat{T} \times \hat{T}$ and $I = \hat{I} \times \hat{I} \times \hat{I}$

44/121

 (\perp) (\perp)

 \sqcap is \cup or Boolean OR

IIT Bombay

 \sqcap is \cap or Boolean AND

nonconst or nc

DFA Theory: Data Flow Values: Details

Component Lattice for Integer Constant Propagation

45/121

undef or ud

- Overall lattice L is the set of mappings from variables to \widehat{L} .
- \sqcap and $\widehat{\sqcap}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$.

CS 618

Π	$\langle a, ud \rangle$	$\langle a, nc \rangle$	$\langle a, c_1 angle$
$\langle a, ud \rangle$	$\langle a, ud \rangle$	$\langle a, nc \rangle$	$\langle a, c_1 angle$
$\langle a, nc \rangle$	$\langle a, nc \rangle$	$\langle a, nc \rangle$	$\langle a, nc angle$
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle$	$\langle a, nc \rangle$	If $c_1=c_2$ then $\langle a,c_1 angle$ else $\langle a,nc angle$

Aug 2015 **IIT Bombay**

Relation between pointer variables and locations in the memory

IIT Bombay

46/121

46/121

- Relation between pointer variables and locations in the memory
- Assuming three locations l_1 , l_2 , and l_3 , the component lattice for pointer p is

Aug 2015 **IIT Bombay**

Component Lattice for May 1 onts-10 Analysis

- Relation between pointer variables and locations in the memory
 Assuming three locations l₁, l₂, and l₃, the component lattice for pointer p
- is

Aug 2015

CS 618

Component Lattice for Must Points-To Analysis

A pointer can point to at most one location

IIT Bombay

47/121

CS 618 **Combined Total and Partial Availability Analysis**

 Two bits per expression rather than one. Can be implemented using AND (as below) or using OR (reversed lattice)

DFA Theory: Data Flow Values: Details

48/121

Can also be implemented as a product of 1-0 and 0-1 lattice with AND for the first bit and OR for the second bit

 What approximation of safety does this lattice capture? Uncertain information (= no optimization) is guaranteed to be safe

Aug 2015 IIT Bomba

General Lattice for May-Must Analysis

Interpreting data flow values

- Unknown. Nothing is known as yet
- No. Information does not hold along any path
- Must. Information must hold along all paths
- May. Information may hold along some path

Possible Applications

- Pointer Analysis : No need of separate of *May* and *Must* analyses eg. $(p \rightarrow I, May)$, $(p \rightarrow I, Must)$, $(p \rightarrow I, No)$, or $(p \rightarrow I, Unknown)$
- Type Inferencing for Dynamically Checked Languages

IIT Bombay

Part 6

Flow Functions

DFA Theory: Flow Functions

Flow Functions: An Outline of Our Discussion

- Defining flow functions
- Properties of flow functions
 (Some properties discussed in the context of solutions of data flow analysis)

50/121

- F contains an identity function

To model "empty" statements, i.e. statements which do not influence the data flow information

- ► F is closed under composition Cumulative effect of statements should generate data flow information from the same set
- ▶ For every $x \in L$, there must be a finite set of flow functions $\{f_1, f_2, \dots f_m\} \subseteq F$ such that

$$x = \prod_{1 \le i \le m} f_i(BI)$$

- Properties of f
 - Monotonicity and Distributivity
 - Loop Closure Boundedness and Separability

- Bit Vector Frameworks: Available Expressions Analysis, Reaching Definitions Analysis Live variable Analysis, Anticipable Expressions Analysis, Partial Redundancy Elimination etc
 - ▶ All functions can be defined in terms of constant Gen and Kill

$$f(x) = \mathsf{Gen} \cup (x - \mathsf{Kill})$$

- ▶ Lattices are powersets with partial orders as \subseteq or \supseteq relations
- ▶ Information is merged using ∩ or ∪

- Bit Vector Frameworks: Available Expressions Analysis, Reaching Definitions Analysis Live variable Analysis, Anticipable Expressions Analysis, Partial Redundancy Elimination etc
 - ▶ All functions can be defined in terms of constant Gen and Kill

$$f(x) = \mathsf{Gen} \cup (x - \mathsf{Kill})$$

- ▶ Lattices are powersets with partial orders as ⊆ or ⊇ relations
- ▶ Information is merged using ∩ or ∪
- Flow functions in Strong Liveness Analysis, Pointer Analyses, Constant Propagation, Possibly Uninitialized Variables cannot be expressed using constant Gen and Kill
 - Local context alone is not sufficient to describe the effect of statements fully

• Partial order is preserved: If x can be safely used in place of y then f(x) can be safely used in place of f(y)

53/121

CS 618

53/121

meneral of Field Familians

• Partial order is preserved: If x can be safely used in place of y then f(x) can be safely used in place of f(y)

53/121

• Partial order is preserved: If x can be safely used in place of y then f(x) can be safely used in place of f(y)

 $\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$

53/121

Aug 2015

Wonotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then f(x) can be safely used in place of f(y)

DFA Theory: Flow Functions

$$\forall x,y\in L,x\sqsubseteq y\Rightarrow f(x)\sqsubseteq f(y)$$

 $f(x) \sqsubseteq f(y)$

Alternative definition

$$\forall x, y \in L, f(x \sqcap y) \sqsubseteq f(x) \sqcap f(y)$$

• Partial order is preserved: If x can be safely used in place of y then f(x) can be safely used in place of f(y)

DFA Theory: Flow Functions

$$\forall x,y\in L,x\sqsubseteq y\Rightarrow f(x)\sqsubseteq f(y)$$

53/121

Alternative definition

$$\forall x, y \in L, f(x \sqcap y) \sqsubseteq f(x) \sqcap f(y)$$

 Merging at intermediate points in shared segments of paths is safe (However, it may lead to imprecision)

54/121

Distributivity of Flow Functions

Merging distributes over function application

• Merging distributes over function application

54/121

Merging distributes over function application

54/121

CS 618

Merging distributes over function application

$$\forall x, y \in L, f(x \sqcap y) = f(x) \sqcap f(y)$$

$$f$$

$$f(x \sqcap y)$$

 Merging at intermediate points in shared segments of paths does not lead to imprecision

Monotonicity and Distributivity

55/121

Monotonicity and Distributivity

55/121

Monotonicity and Distributivity

55/121

Monotonicity and Distributivity

55/121

Monotonicity and Distributivity

55/121

55/121

Monotonicity and Distributivity

Monotonicity and Distributivity

CS 618

56/121

DFA Theory: Flow Functions

 $= \operatorname{\mathsf{Gen}} \cup ((x - \operatorname{\mathsf{Kill}}) \cup (y - \operatorname{\mathsf{Kill}}))$

CS 618

$$f(x \cup y) = \operatorname{Gen} \cup ((x \cup y) - \operatorname{Kill})$$

$$= \operatorname{Gen} \cup ((x - \operatorname{Kill}) \cup (y - \operatorname{Kill}))$$

$$= (\operatorname{Gen} \cup (x - \operatorname{Kill})) \cup \operatorname{Geo}$$

$$= f(x) \cup f(y)$$

$$f(x \cap y) = \operatorname{Gen} \cup ((x \cap y) - \operatorname{Kill})$$

$$= \operatorname{Gen} \cup ((x - \operatorname{Kill}) \cap (y - \operatorname{Kill})) \cap \operatorname{Geo}$$

$$= (\operatorname{Gen} \cup (x - \operatorname{Kill})) \cap \operatorname{Geo}$$

$$= (Gen \cup (x - Kill) \cup Gen \cup (y - Kill))$$

$$= f(x) \cup f(y)$$

$$f(x \cap y) = Gen \cup ((x \cap y) - Kill)$$

$$= Gen \cup ((x - Kill) \cap (y - Kill))$$

$$= (Gen \cup (x - Kill) \cap Gen \cup (y - Kill))$$

$$= f(x) \cap f(y)$$
IIT Bomba

 $f(x) = \operatorname{Gen} \cup (x - \operatorname{Kill})$ $f(y) = \operatorname{Gen} \cup (y - \operatorname{Kill})$

Teori Distributivity of Constant 1 Topugation

DFA Theory: Flow Functions

IIT Bombay

57/121

• $x = \langle 1, 2, 3, ud \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

IIT Bombay

Non-Distributivity of Constant 1 Topagation

DFA Theory: Flow Functions

•
$$y = \langle 2, 1, 3, 2 \rangle$$
 (Along $Out_{n_3} \rightarrow In_{n_2}$)

• $x = \langle 1, 2, 3, ud \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

IIT Bombay

57/121

$$a = 1$$

$$b = 2$$

$$c = a + b$$

$$a = 1, b = 2$$

$$c = a + b$$

$$d = a * b$$

$$a = 2, b = 1$$

CS 618

$$n_1 \begin{bmatrix} a = 1 \\ b = 2 \\ c = a + b \end{bmatrix}$$
• $y = \langle 2, 1, 3, 2 \rangle$ (Along $Out_{n_3} \rightarrow In_{n_2}$)
• Function application for block n_2 before merging

• $x = \langle 1, 2, 3, ud \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

$$f(x) \sqcap f(y) = f(\langle 1, 2, 3, ud \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$$

= $\langle 1, 2, 3, 2 \rangle \sqcap \langle 2, 1, 3, 2 \rangle$
= $\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$

57/121

Aug 2015 **IIT Bombay**

$$n_1 \begin{vmatrix} a - 1 \\ b = 2 \\ c = a + b \end{vmatrix}$$

$$a = 1, b = 2$$

•
$$x = \langle 1, 2, 3, ud \rangle$$
 (Along $Out_{n_1} \to In_{n_2}$)
• $y = \langle 2, 1, 3, 2 \rangle$ (Along $Out_{n_1} \to In_{n_2}$)

 $n_1 \left| egin{array}{c} a=1 \\ b=2 \\ c=a+b \end{array} \right| \quad ullet y=\langle 2,1,3,2 \rangle \; ext{(Along $Out_{n_3} o In_{n_2}$)} \ & \quad ext{Function application for block n_2 before merging} \end{array}$

 $f(x) \sqcap f(y) = f(\langle 1, 2, 3, ud \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$

57/121

$$= \langle 1, 2, 3, 2 \rangle \sqcap \langle 2, 1, 3, 2 \rangle$$
$$= \langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$$

• Function application for block
$$n_2$$
 after merging
$$f(x \sqcap y) = f(\langle 1, 2, 3, ud \rangle \sqcap \langle 2, 1, 3, 2 \rangle)$$
$$= f(\langle \widehat{\bot}, \widehat{\bot}, 3, 2 \rangle)$$
$$= \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

$$a = 2, b = 1$$

$$n_3$$

$$c = a + b$$

$$d = a * b$$

$$d = c - 1$$

$$a = 2$$

$$b = 1$$

$$c = a + b$$

Aug 2015 IIT Bombay

$$\begin{array}{c}
a = 1 \\
b = 2 \\
c = a + b
\end{array}$$

$$\begin{array}{c}
a = 1, b = 2 \\
c = a + b \\
d = a * b
\end{array}$$

$$\begin{array}{c}
c = a + b \\
d = a * b
\end{array}$$

$$n_1 \left| egin{array}{c} a=1 \\ b=2 \\ c=a+b \end{array} \right| \quad ullet y=\langle 2,1,3,2 \rangle \; ext{(Along $Out_{n_3} o In_{n_2}$)} \ & \quad ext{Function application for block n_2 before merging} \end{array}$$

• $x = \langle 1, 2, 3, ud \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

 $f(x) \sqcap f(y) = f(\langle 1, 2, 3, ud \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$

 $=\langle 1,2,3,2\rangle \sqcap \langle 2,1,3,2\rangle$

$$= \quad \langle \widehat{\bot}, \widehat{\bot}, 3, 2 \rangle$$
 • Function application for block n_2 after merging

$$f(x \sqcap y) = f(\langle 1, 2, 3, ud \rangle \sqcap \langle 2, 1, 3, 2 \rangle)$$

= $f(\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle)$
= $\langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$

• $f(x \sqcap y) \sqsubset f(x) \sqcap f(y)$

Aug 2015

IIT Bombay

58/121

willy is Constant Propagation Non-Distribitive:

DFA Theory: Flow Functions

Possible combinations due to merging

$$\begin{bmatrix} a=1\\b=2 \end{bmatrix} \qquad \begin{array}{c} a=2\\b=1 \end{array} \qquad \begin{array}{c} a=1\\ \end{array} \qquad \begin{array}{c} a=2\\ \end{array} \qquad \begin{array}{c} b=1\\ \end{array} \qquad \begin{array}{c} b=2\\ \end{array}$$

IIT Bombay

58/121

58/121

Possible combinations due to merging

Correct combination.

IIT Bombay

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging

Correct combination.

IIT Bombay

b=2

Why is Constant Propagation Non-Distribitive?

DFA Theory: Flow Functions

Possible combinations due to merging

58/121

b=2

- Wrong combination
- Mutually exclusive information
- No execution path along which this information holds

IIT Bombay Aug 2015

Why is Constant Propagation Non-Distribitive?

58/121

- Wrong combination
- Mutually exclusive information
- No execution path along which this information holds

Aug 2015 IIT Bombay

Part 7

Solutions of Data Flow Analysis

Discussion

DFA Theory: Solutions of Data Flow Analysis

- MoP and MFP assignments and their relationship
- Existence of MoP assignment
- Boundedness of flow functions
- Existence and Computability of MFP assignment
 - ► Flow functions Vs. function computed by data flow equations
- Safety of MFP solution

Solutions of Data Flow Analysis

- An assignment A associates data flow values with program points $A \sqsubseteq B$ if for all program points p, $A(p) \sqsubseteq B(p)$
- Performing data flow analysis

Given

- ▶ A set of flow functions, a lattice, and merge operation
- ▶ A program flow graph with a mapping from nodes to flow functions

Find out

► An assignment A which is as exhaustive as possible and is safe

CS 618 DFA Theory: Solutions of Data Flow Analysis

An Example For Available Expressions Analysis

Some Assignments								
	A_0	A_1	A_2	A_3	A_4	A_5	A_6	
In_1	11	00	00	00	00	00	00	
Out_1	11	11	00	11	11	11	11	
In ₂	11	11	00	00	10	01	01	
Out ₂	11	11	00	00	10	01	10	

61/121

Aug 2015 IIT Bombay

An Example For Available Expressions Analysis

Some Assignments							
	A_0	A_1	A_2	A_3	A_4	A_5	A_6
In_1	11	00	00	00	00	00	00
Out_1	11	11	00	11	11	11	11
In ₂	11	11	00	00	10	01	01
Out ₂	11	11	00	00	10	01	10

Lattice L of data flow values at a node

IIT Bombay

An Example For Available Expressions Analysis

Some Assignments							
	A_0	A_1	A_2	A_3	A_4	A_5	A_6
In_1	11	00	00	00	00	00	00
Out_1	11	11	00	11	11	11	11
In ₂	11	11	00	00	10	01	01
Out_2	11	11	00	00	10	01	10

Lattice *L* of data flow values at a node

Lattice $L \times L \times L \times L$ for data flow values at all nodes

Meet Over Paths (MoP) Assignment

• The largest safe approximation of the information reaching a program point along all information flow paths

$$\mathit{MoP}(p) = \prod_{
ho \, \in \, \mathit{Paths}(p)} f_{
ho}(\mathit{BI})$$

- f_{ρ} represents the compositions of flow functions along ρ
- BI refers to the relevant information from the calling context
- All execution paths are considered potentially executable by ignoring the results of conditionals

Meet Over Paths (MoP) Assignment

 The largest safe approximation of the information reaching a program point along all information flow paths

$$\mathit{MoP}(p) = \prod_{
ho \, \in \, \mathit{Paths}(p)} f_{
ho}(\mathit{BI})$$

- ${\it f}_{\rho}$ represents the compositions of flow functions along ρ
- ► *BI* refers to the relevant information from the calling context
- ► All execution paths are considered potentially executable by ignoring the results of conditionals
- Any $Info(p) \sqsubset MoP(p)$ is safe

• Difficulties in computing MoP assignment

CS 618

IIT Bombay

63/121

- Difficulties in computing MoP assignment
 - ► In the presence of cycles there are infinite paths
 If all paths need to be traversed ⇒ Undecidability

63/121

• Difficulties in computing MoP assignment

CS 618

- In the presence of cycles there are infinite paths
 If all paths need to be traversed ⇒ Undecidability
- ► Even if a program is acyclic, every conditional multiplies the number of paths by two
 If all paths need to be traversed ⇒ Intractability

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment
 - In the presence of cycles there are infinite paths
 If all paths need to be traversed ⇒ Undecidability
 - ► Even if a program is acyclic, every conditional multiplies the number of paths by two
 If all paths need to be traversed ⇒ Intractability
- Why not merge information at intermediate points?
 - ▶ Merging is safe but may lead to imprecision.
 - ▶ Computes fixed point solutions of data flow equations.

63/121

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment
 - In the presence of cycles there are infinite paths
 If all paths need to be traversed ⇒ Undecidability
 - ► Even if a program is acyclic, every conditional multiplies the number of paths by two
 If all paths need to be traversed ⇒ Intractability
- Why not merge information at intermediate points?
 - Merging is safe but may lead to imprecision.
 - ▶ Computes fixed point solutions of data flow equations.

specification

Path based

63/121

Edge based specifications

Assignments for Constant 1 Topagation Example

DFA Theory: Solutions of Data Flow Analysis

IIT Bombay

64/121

MoP

IIT Bombay

64/121

Aug 2015

64/121

IIT Bombay

65/121

1 ossible Assignments as Solutions of Data Flow Analyses

1 Ossible Assignments as Solutions of Data I low Analyses

DFA Theory: Solutions of Data Flow Analysis

65/121

1 Ossible Assignments as Solutions of Data Flow Analyses

r costste rickigimients as colations of Bata rick rinaryses

CS 618

65/121

Consta	ant Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f _{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
fa	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f_e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f _e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

• Is the lattice a meet semilattice?

IIT Bombay

Lattice
$$\begin{cases}
a*b, b*c \\
\\
a*b \end{cases}$$

$$\begin{cases}
b*c \\
\emptyset$$

Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f _{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f_e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

- Is the lattice a meet semilattice?
- What is the meet operation that computes glb?

IIT Bomba

Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
fa	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f _e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

- Is the lattice a meet semilattice?
- What is the meet operation that computes glb?
- Are all strictly descending chains finite?

Lattice
$$\begin{cases}
a*b, b*c \\
\\
\{a*b\} \qquad \{b*c \\
\emptyset
\end{cases}$$

Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
fa	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f _e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

- Is the lattice a meet semilattice?
- What is the meet operation that computes glb?
- Are all strictly descending chains finite?
- Does the function space have an identity function?

IIT Bombay

66/121

Lattice
$$\begin{cases}
a*b, b*c \\
\\
a*b
\end{cases}$$

$$\begin{cases}
b*c
\end{cases}$$

Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f _e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

- Is the lattice a meet semilattice?
- What is the meet operation that computes glb?
- Are all strictly descending chains finite?
- Does the function space have an identity function?
- Are all values in the lattice computable from a finite merge of flow functions?

Lattice
$ \begin{cases} a*b, b*c \\ \\ a*b \\ \\ \emptyset \end{cases} $ $ \begin{cases} b*c \\ \\ \emptyset \end{cases} $

Lattice

Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f _e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

- Is the lattice a meet semilattice?
- What is the meet operation that computes glb?
- Are all strictly descending chains finite?
- Does the function space have an identity function?
- Are all values in the lattice computable from a finite merge of flow functions?
- Is the function space closed under composition?

66/121

Lattice

Constant Functions		Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	Х
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f_e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

 $\begin{cases}
a*b, b*c \\
\\
\{a*b\} \qquad \{b*c\}
\end{cases}$

Lattice

Constant Functions		Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	$\{b*c\}$	f_e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

Program $1 \begin{array}{c} a*b \\ b*c \\ \end{array}$

IIT Bombay

Constant Functions		Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> * <i>c</i> }	f_e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

Flow Functions			
Node	Flow Function		
1	$f_{ op}$		
2	f _{id}		

Consta	nt Functions	Dependent Functions		
f	f(x)	f	f(x)	
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X	
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$	
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$	
f_b	$\{b*c\}$	f_e	$x - \{a*b\}$	
		f_f	$x - \{b*c\}$	

Flow Functions						
Node	Flow Function					
1	$f_{ op}$					
2	f _{id}					

Como Dossiblo Assimumonto									
Some Possible Assignments									
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
In ₁	00	00	00	00	00	00			
Out_1	11	00	11	11	11	11			
In ₂	11	00	00	10	01	01			
Outs	11	00	00	10	01	10			

 f_{id}

An Instance of Available Expressions Analysis

 Out_1

 ln_2

Out₂

Flow F	unctions
Node	Flow Function
1	$f_{ op}$
2	f _{id}

	Some i essible i tesigninents									
		<u> </u>	-A ₃	A_4	A_5	A_6				
In_1	00	00	00	00	00	00				
Out_1	11	00	11	11	11	11				
In_2	11	00	00	10	01	01				
Out_2	11	00	00	10	01	10				

 f_{id}

An Instance of Available Expressions Analysis

 ln_2

 Out_2

67/121

An Instance of Available Expressions Analysis

Lattice of Assignments for Available Expressions Analysis

Some Assignments									
	A_0	A_1	A_2	A_3	A_4	A_5	A_6		
In_1	11	00	00	00	00	00	00		
Out_1	11	11	00	11	11	11	11		
In ₂	11	11	00	00	10	01	01		
Out ₂	11	11	00	00	10	01	10		

Lattice of Assignments for Available Expressions Analysis

Some Assignments								
	A_0	A_1	A_2	A_3	A_4	A_5	A_6	
In_1	11	00	00	00	00	00	00	
Out_1	11	11	00	11	11	11	11	
In ₂	11	11	00	00	10	01	01	
Out ₂	11	11	00	00	10	01	10	

Lattice $L \times L \times L \times L$ for all assignments (many assignments omitted, e.g. node 1 could have data flow values 10 and 01)

Lattice of Assignments for Available Expressions Analysis

	Some Assignments								
	A_0	A_1	A_2	A_3	A_4	A_5	A_6		
In_1	11	00	00	00	00	00	00		
Out_1	11	11	00	11	11	11	11		
In ₂	11	11	00	00	10	01	01		
Out ₂	11	11	00	00	10	01	10		

Lattice $L \times L \times L \times L$ for all assignments (many assignments omitted, e.g. node 1 could have data flow values 10 and 01)

Safe assignments

Lattice of Assignments for Available Expressions Analysis

ſ	Some Assignments							
		A_0	A_1	A_2	A_3	A_4	A_5	A_6
ſ	In_1	11	00	00	00	00	00	00
Ī	Out_1	11	11	00	11	11	11	11
Ī	In ₂	11	11	00	00	10	01	01
	Out ₂	11	11	00	00	10	01	10

Lattice $L \times L \times L \times L$ for all assignments (many assignments omitted, e.g. node 1 could have data flow values 10 and 01)

Safe assignments

68/121

CS 618

Existence of an MoP Assignment (1)

69/121

 $MoP(p) = \prod_{\rho \in Paths(p)} f_{\rho}(BI)$

- If a finite number of paths reach *p*, then existence of solution trivially follows
 - ► Function space is closed under composition

CS 618

▶ glb exists for all non-empty finite subsets of the lattice (Assuming that the data flow values form a meet semilattice)

Existence of an MoP Assignment (2)

$$\mathit{MoP}(p) = \prod_{
ho \,\in \, \mathit{Paths}(p)} f_{
ho}(\mathit{BI})$$

• If an infinite number of paths reach p then,

CS 618

$$MoP(p) = f_{\rho_1}(BI) \sqcap f_{\rho_2}(BI) \sqcap f_{\rho_3}(BI) \sqcap \dots$$

70/121

Aug 2015

Existence of an MoP Assignment (2)

$$MoP(p) = \prod_{
ho \in Paths(p)} f_{
ho}(BI)$$

• If an infinite number of paths reach *p* then,

CS 618

$$MoP(p) = \underbrace{f_{\rho_1}(BI)}_{X_1} \sqcap f_{\rho_2}(BI) \sqcap f_{\rho_3}(BI) \sqcap \dots$$

IIT Bombay

70/121

Aug 2015 IIT Bo

Existence of an MoP Assignment (2)

70/121

$$MoP(p) = \prod_{
ho \in Paths(p)} f_{
ho}(BI)$$

• If an infinite number of paths reach p then,

CS 618

$$MoP(p) = \underbrace{f_{\rho_1}(BI)}_{X_1} \sqcap f_{\rho_2}(BI) \sqcap f_{\rho_3}(BI) \sqcap \dots$$

Every meet results in a weaker value

Existence of an MoP Assignment (2)

70/121

$$MoP(p) = \prod_{
ho \in Paths(p)} f_{
ho}(BI)$$

• If an infinite number of paths reach p then,

CS 618

$$MoP(p) = \underbrace{f_{\rho_1}(BI) \sqcap f_{\rho_2}(BI) \sqcap f_{\rho_3}(BI) \sqcap \dots}_{X_1}$$

$$X_2$$

$$X_3$$

Every meet results in a weaker value

70/121

• If an infinite number of paths reach
$$p$$
 then,
$$MoP(p) = \underbrace{f_{\rho_1}(BI)}_{X_1} \sqcap f_{\rho_2}(BI) \sqcap f_{\rho_3}(BI) \sqcap \dots$$

 $\overline{X_3}$

DFA Theory: Solutions of Data Flow Analysis

Existence of an MoP Assignment (2)

 $MoP(p) = \prod_{\rho \in Paths(p)} f_{\rho}(BI)$

• Every meet results in a weaker value

CS 618

- The sequence X_1, X_2, X_3, \ldots follows a descending chain
- Since all strictly descending chains are finite, MoP exists (Assuming that our meet semilattice satisfies DCC)

Does existence of MoP imply it is computable?

	I D . EL .V.I
Paths reaching the entry of p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$
	•••

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

. ,

ullet If f is not monotonic, the computation may not converge

72/121

• If f is not monotonic, the computation may not converge

 \bullet If f is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

72/121

Computability of MoP (2)

ullet If f is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \ldots = 0$$

ullet If f is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \ldots = 0$$

Iteratively computing the solution

• If *f* is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap ... = 0$$

Iteratively computing the solution

• If *f* is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap ... = 0$$

• Iteratively computing the solution

Aug 2015

• If f is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \ldots = 0$$

Iteratively computing the solution

Aug 2015

• If *f* is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \ldots = 0$$

• Iteratively computing the solution

• If *f* is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \ldots = 0$$

Iteratively computing the solution

• If *f* is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \ldots = 0$$

• Iteratively computing the solution

Aug 2015

• If f is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap ... = 0$$

Iteratively computing the solution

Aug 2015

• If f is not monotonic, the computation may not converge

Χ	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \ldots = 0$$

• Iteratively computing the solution

The values in the loop keep changing

Aug 2015

Defining a Data Flow Framework

- Meet semilattice satisfying descending chain condition
- Monotonic flow functions which are closed under composition

IIT Bombay

73/121

CS 618

74/121

Computability of MoP (3)

- Even if all functions are monotonic, MoP computation may not converge
- General result: MoP computation is undecidable
 There does not exist any algorithm that can compute MoP for every possible instance of every possible data flow framework

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then

DFA Theory: Solutions of Data Flow Analysis

 $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top), \ j < k$

T Bombay

75/121

CS 618

75/121

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then

$$f(\top)$$

 $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

IIT Bomba

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

• $\top \supseteq f(\top) \supseteq f^2(\top) \supseteq f^3(\top) \supseteq f^4(\top) \supseteq \dots$

IIT Bombay

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

- $\top \supseteq f(\top) \supseteq f^2(\top) \supseteq f^3(\top) \supseteq f^4(\top) \supseteq \dots$
- Since strictly descending chains are finite, there must exist $f^k(\top)$ such that $f^{k+1}(\top) = f^k(\top)$ and $f^{j+1}(\top) \neq f^j(\top), j < k$ $f^{k+1}(\top) = f^k(\top)$

IIT Bombay

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

- $\top \supset f(\top) \supset f^2(\top) \supset f^3(\top) \supset f^4(\top) \supset \dots$ • Since strictly descending chains are finite, there
 - must exist $f^k(\top)$ such that $f^{k+1}(\top) = f^k(\top)$ and

IIT Bomba

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

• $\top \supset f(\top) \supset f^2(\top) \supset f^3(\top) \supset f^4(\top) \supset \dots$

75/121

- must exist $f^k(\top)$ such that $f^{k+1}(\top) = f^k(\top)$ and
- - ▶ Basis (i = 0): $p \sqsubseteq f^0(\top) = \top$ ▶ Inductive Hypothesis: Assume that $p \sqsubseteq f^i(\top)$

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

•
$$\top \supseteq f(\top) \supseteq f^2(\top) \supseteq f^3(\top) \supseteq f^4(\top) \supseteq \dots$$

must exist $f^k(\top)$ such that $f^{k+1}(\top) = f^k(\top)$ and

- Proof strategy: Induction on i for $f^i(\top)$

 - ▶ Basis (i = 0): $p \sqsubseteq f^0(\top) = \top$

 $\Rightarrow p \sqsubset f^{i+1}(\top)$

▶ Inductive Hypothesis: Assume that $p \sqsubseteq f^i(\top)$

Proof:
$$f(p) \sqsubseteq f(f^i(\top))$$
 (f is monotonic)
⇒ $p \sqsubseteq f(f^i(\top))$ ($f(p) = p$)

75/121

Aug 2015

CS 618

For monotonic $f: L \mapsto L$, if all strictly descending chains are finite, then

DFA Theory: Solutions of Data Flow Analysis

 $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

- $\top \supset f(\top) \supset f^2(\top) \supset f^3(\top) \supset f^4(\top) \supset \dots$
- Since strictly descending chains are finite, there must exist $f^k(\top)$ such that $f^{k+1}(\top) = f^k(\top)$ and
- Proof strategy: Induction on i for $f^i(\top)$
 - ▶ Basis (i = 0): $p \sqsubseteq f^0(\top) = \top$ ▶ Inductive Hypothesis: Assume that $p \sqsubseteq f^i(\top)$ ▶ Proof: $f(p) \sqsubseteq f(f^i(\top))$ (f is monotonic)

 \Rightarrow $p \sqsubseteq f(f^i(\top)) (f(p) = p)$

$$\Rightarrow \quad p \sqsubseteq f^{i+1}(\top)$$
• Since this holds for every p that is a fixed point,

 $f^{k+1}(\top)$ must be the Maximum Fixed Point

76/121

Recall that

CS 618

$$MFP(f) = f^{k+1}(\top) = f^k(\top)$$
 such that $f^{j+1}(\top) \neq f^j(\top), j < k$.

Recall that

CS 618

$$MFP(f) = f^{k+1}(\top) = f^k(\top)$$
 such that $f^{j+1}(\top) \neq f^j(\top), j < k$.

▶ What is *f* in the above?

IIT Bombay

76/121

Recall that

CS 618

 $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top), j < k$.

- ▶ What is *f* in the above?
- ► Flow function of a block? Which block?

IIT Bombay

76/121

76/121

Recall that

CS 618

$$MFP(f) = f^{k+1}(\top) = f^k(\top)$$
 such that $f^{j+1}(\top) \neq f^j(\top), j < k$.

- ▶ What is *f* in the above?
- ► Flow function of a block? Which block?
- Our method computes the maximum fixed point of data flow equations!

• Our method computes the maximum fixed point of data now equations:

Tixed Folito Computation Flow Functions voi Equations

Recall that

$$MFP(f) = f^{k+1}(\top) = f^k(\top)$$
 such that $f^{j+1}(\top) \neq f^j(\top), j < k$.

- ▶ What is *f* in the above?
- ► Flow function of a block? Which block?
- Our method computes the maximum fixed point of data flow equations!
- What is the relation between the maximum fixed point of data flow equations and the MFP defined above?

Fixed Points Computation: Flow Functions Vs. Equations

77/121

• Data flow equations for a CFG with N nodes can be written as

CS 618

$$\begin{array}{rcl} In_1 & = & BI \\ Out_1 & = & f_1(In_1) \\ In_2 & = & Out_1 \sqcap \dots \\ Out_2 & = & f_2(In_2) \\ & \dots \\ In_N & = & Out_{N-1} \sqcap \dots \\ Out_N & = & f_N(In_N) \end{array}$$

Tixed Folito Computation: Flow Functions Vo. Equations

DFA Theory: Solutions of Data Flow Analysis

• Data flow equations for a CFG with N nodes can be written as

$$\begin{array}{rcl} \textit{In}_1 & = & \textit{f}_{\textit{In}_1}(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{Out}_1 & = & \textit{f}_{\textit{Out}_1}(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{In}_2 & = & \textit{f}_{\textit{In}_2}(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{Out}_2 & = & \textit{f}_{\textit{Out}_2}(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle) \\ & \dots \\ \textit{In}_N & = & \textit{f}_{\textit{In}_N}(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{Out}_N & = & \textit{f}_{\textit{Out}_N}(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle) \end{array}$$

where each flow function is of the form $L \times L \times ... \times L \mapsto L$

77/121

77/121

• Data flow equations for a CFG with N nodes can be written as

CS 618

$$\langle In_1, Out_1, \dots, In_N, Out_N \rangle = \langle f_{In_1}(\langle In_1, Out_1, \dots, In_N, Out_N \rangle), f_{Out_1}(\langle In_1, Out_1, \dots, In_N, Out_N \rangle), \dots f_{In_N}(\langle In_1, Out_1, \dots, In_N, Out_N \rangle), f_{Out_N}(\langle In_1, Out_1, \dots, In_N, Out_N \rangle), \rangle$$

where each flow function is of the form $L \times L \times ... \times L \mapsto L$

• Data flow equations for a CFG with N nodes can be written as

$$f_{In_N}(\mathcal{X}), \ f_{Out_N}(\mathcal{X}),$$

 $\mathcal{X} = \langle f_{ln_1}(\mathcal{X}),$

where $\mathcal{X} = \langle \mathit{In}_1, \mathit{Out}_1, \ldots, \mathit{In}_N, \mathit{Out}_N \rangle$

IIT Bombay

77/121

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\mathcal{X} = \mathcal{F}(\mathcal{X})$$

where
$$\mathcal{X} = \langle In_1, Out_1, \dots, In_N, Out_N \rangle$$

 $\mathcal{F}(\mathcal{X}) = \langle f_{In_1}(\mathcal{X}), f_{Out_1}(\mathcal{X}), \dots, f_{In_N}(\mathcal{X}), f_{Out_N}(\mathcal{X}) \rangle$

77/121

Aug 2015

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\mathcal{X} = \mathcal{F}(\mathcal{X})$$

where
$$\mathcal{X} = \langle In_1, Out_1, \dots, In_N, Out_N \rangle$$

 $\mathcal{F}(\mathcal{X}) = \langle f_{In_1}(\mathcal{X}), f_{Out_1}(\mathcal{X}), \dots, f_{In_N}(\mathcal{X}), f_{Out_N}(\mathcal{X}) \rangle$

We compute the fixed points of function ${\mathcal F}$ defined above

IIT Bombay

77/121

All instance of Available Expressions Analysis

Program

• Conventional data flow equations $In_1 = 00$

$$Out_1 = 11$$

IIT Bombay

DFA Theory: Solutions of Data Flow Analysis

Program

 $In_1 = 00$ $In_2 = Out_1 \cap Out_2$

$$Out_1 = 11$$
 $Out_2 = In_2$

IIT Bombay

78/121

Program

 Conventional data flow equations $In_1 = 00$

$$In_1 = 00$$
 $In_2 = Out_1 \cap Out_2 = Out_2$ $Out_1 = 11$ $Out_2 = In_2$

IIT Bombay

DFA Theory: Solutions of Data Flow Analysis

 $In_1 = 00$ $In_2 = Out_1 \cap Out_2 = Out_2$ $Out_1 = 11$

$$Out_1 = 11$$
 $Out_2 = In_2$ $= Out_2$

IIT Bombay

78/121

DFA Theory: Solutions of Data Flow Analysis

Program

CS 618

$$In_1 = 00$$
 $In_2 = Out_1 \cap Out_2 = Out_2$
 $Out_1 = 11$ $Out_2 = In_2 = Out_2$

• Data Flow Equation
$$\mathcal{X} = \mathcal{F}(\mathcal{X})$$
 is

• Data Flow Equation
$$\mathcal{X} = \mathcal{F}(\mathcal{X})$$
 is

$$\mathcal{F}(\langle \textit{In}_1, \textit{Out}_1, \textit{In}_2, \textit{Out}_2 \rangle) = \langle 00, 11, \textit{Out}_2, \textit{Out}_2 \rangle$$

IIT Bomba

 $= Out_2$

DFA Theory: Solutions of Data Flow Analysis

Program

CS 618

$$In_1 = 00$$
 $In_2 = Out_1 \cap Out_2 = Out_2$
 $Out_1 = 11$ $Out_2 = In_2 = Out_2$

 $\mathcal{F}(\langle In_1, Out_1, In_2, Out_2 \rangle) = \langle 00, 11, Out_2, Out_2 \rangle$

• Data Flow Equation $\mathcal{X} = \mathcal{F}(\mathcal{X})$ is

$$\mathcal{F}(\langle 11,11,11,11 \rangle) = \langle 00,11,11,11 \rangle$$

IIT Bomba

DFA Theory: Solutions of Data Flow Analysis

Program

$$egin{array}{ll} \emph{In}_1 = \emph{00} & \emph{In}_2 = \emph{Out}_1 \cap \emph{Out}_2 = \emph{Out}_2 \ \emph{Out}_1 = \emph{11} & \emph{Out}_2 = \emph{In}_2 = \emph{Out}_2 \end{array}$$

 $\mathcal{F}(\langle 11, 11, 11, 11 \rangle) = \langle 00, 11, 11, 11 \rangle$

 $\mathcal{F}(\langle 00, 00, 00, 00 \rangle) = \langle 00, 11, 00, 00 \rangle$

 $\mathcal{F}(\langle In_1, Out_1, In_2, Out_2 \rangle) = \langle 00, 11, Out_2, Out_2 \rangle$

• Data Flow Equation $\mathcal{X} = \mathcal{F}(\mathcal{X})$ is

78/121

IIT Bombay

79/121

Aug 2015

Entry

CS 618

 $ho \in \mathit{Paths}(v)$

CS 618

Safety of FP Assignment: FP MoP

DFA Theory: Solutions of Data Flow Analysis

$$\rho \in Paths(v)$$
• Proof Obligation: $\forall \rho_{V} \ FP(V) \sqsubseteq f_{\rho_{V}} \ (BI)$

CS 618

Safety of FP Assignment: FP MoP

DFA Theory: Solutions of Data Flow Analysis

- $Proof Obligation: \forall a \ FP(v)$
 - Proof Obligation: $\forall \rho_v \ FP(v) \sqsubseteq f_{\rho_v}(BI)$ • Claim 1: $\forall u \rightarrow v \ FP(v) \vdash f \qquad (FP(u))$
 - Claim 1: $\forall u \to v, FP(v) \sqsubseteq f_{u \to v} (FP(u))$

Safety of FP Assignment: FP □ MoP

• Proof Obligation:
$$\forall \rho_{v} \ FP(v) \sqsubseteq f_{\rho_{v}}(BI)$$

• $MoP(v) = \prod_{\rho \in Paths(v)} f_{\rho}(BI)$

- Claim 1: $\forall u \rightarrow v, FP(v) \sqsubseteq f_{u \rightarrow v}(FP(u))$ Proof Outline: Induction on path length
 - Base case: Path of length 0.

FP(Entry) = MoP(Entry) = BI

 \Rightarrow $FP(v) \sqsubseteq f_{u \to v} (f_{\rho_u}(BI))$ $\Rightarrow FP(v) \sqsubseteq f_{ov}(BI)$

Inductive hypothesis: Assume it holds for paths consisting of k edges (say at u)

consisting of
$$k$$
 edges (say at u)

 $FP(u) \sqsubseteq f_{\rho_u}(BI)$ (Inductive hypothesis)

 $FP(v) \sqsubseteq f_{u \to v}(FP(u))$ (Claim 1)

This holds for every FP an hence for MFP also

CS 618

Undecidability of Data Flow Analysis

- Reducing MPCP (Modified Post's Correspondence Problem) to constant propagation
- MPCP is known to be undecidable
- If an algorithm exists for detecting all constants
 - \Rightarrow MPCP would be decidable
- Since MPCP is undecidable
 - ⇒ There does not exist an algorithm for detecting all constants
 - ⇒ Static analysis is undecidable

Part 8

Theoretical Abstractions: A Summary

DFA Theory: Theoretical Abstractions: A Summary

81/121

Necessary and sufficient conditions for designing a data flow framework

CS 618

DFA Theory: Theoretical Abstractions: A Summary

Necessary and sufficient conditions for designing a data flow framework $% \left(1\right) =\left(1\right) \left(1\right) \left($

A meet semilattice satisfying dcc

CS 618

Γ Bombay

81/121

DFA Theory: Theoretical Abstractions: A Summary

Necessary and sufficient conditions for designing a data flow framework

A meet semilattice satisfying dcc

A function space

CS 618

Monotonic functions

IIT Bombay

81/121

Necessary and sufficient conditions for designing a data flow framework

- A meet semilattice satisfying dcc
 - ▶ Meet: commutative, associative, and idempotent
 - Partial order: reflexive, transitive, and antisymmetric
 - ▶ Existence of ⊥
- A function space

Monotonic functions

Theoretical Abstractions: A Summary

Necessary and sufficient conditions for designing a data flow framework

- A meet semilattice satisfying dcc
 - ▶ Meet: commutative, associative, and idempotent
 - Partial order: reflexive, transitive, and antisymmetric
 - ▶ Existence of ⊥
- A function space
 - Existence of the identity function
 - Closure under composition
 - Monotonic functions

Part 9

Performing Data Flow Analysis

.

DFA Theory: Performing Data Flow Analysis

- Algorithms for computing MFP solution
- Complexity of data flow analysis

CS 618

Factor affecting the complexity of data flow analysis

82/121

Aug 2015

DFA Theory: Performing Data Flow Analysis

Successive recomputation after conservative initialization (\top)

Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

- + Simplest to understand and implement
- May perform unnecessary computations

83/121

relative Methods of Ferforming Data Flow Analysis

DFA Theory: Performing Data Flow Analysis

Successive recomputation after conservative initialization (\top)

Round Robin. Repeated traversals over nodes in a fixed order

Termination: After values stabilise

- + Simplest to understand and implement
- May perform unnecessary computations

Our examples use this method.

83/121

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (\top)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination: After values stabilise

- + Simplest to understand and implement
- May perform unnecessary computations
- Our examples use this method.
- Work List. Dynamic list of nodes which need recomputation

Termination: When the list becomes empty

- + Demand driven. Avoid unnecessary computations
- Overheads of maintaining work list

83/121

DFA Theory: Performing Data Flow Analysis

Delayed computations of dependent data flow values of dependent nodes

- Interval Based Analysis. Uses graph partitioning
- T_1, T_2 Based Analysis. Uses graph parsing

Find suitable single-entry regions.

CS 618

84/121

Classification of Lages in a Crapi

DFA Theory: Performing Data Flow Analysis

IIT Bombay

Classification of Edges in a Graph

Classification of Edges in a Graph

Classification of Edges in a Graph

Back edges →
Forward edges →

A depth first spanning tree of *G*

For data flow analysis, we club *tree*, *forward*, and *cross* edges into *forward* edges. Thus we have just forward or back edges in a control flow graph

IIT Bombay

CS 618

Reverse Post Order Traversal

 A reverse post order (rpo) is a topological sort of the graph obtained after removing back edges

G' obtained after removing

86/121

• Some possible RPOs for *G* are: (1,2,3,4,5,6,7,8), (1,6,7,2,3,4,5,8), (1,6,2,7,4,3,5,8), and (1,2,6,7,3,4,5,8)

ricana ricani reciacive / ilgericini

```
for all j \neq 0 do
          In_i = \top
 4
      change = true
 5
      while change do
 6
          change = false
          for j = 1 to N - 1 do
                       \prod_{p \in pred(j)} f_p(In_p)
 8
             temp =
 9
              if temp \neq In_i then
10
                 In_i = temp
11
                 change = true
12
13
14
```

 $In_0 = BI$

IIT Bombay

87/121

Treating region rectangle ringerianing

```
In_0 = BI
      for all j \neq 0 do
          In_i = \top
 4
      change = true
 5
      while change do
 6
          change = false
          for i = 1 to N - 1 do
             temp = \prod_{p \in pred(j)} f_p(In_p)
 8
 9
              if temp \neq In_i then
10
                 In_i = temp
11
                  change = true
12
13
14
```

 Computation of Out_j has been left implicit
 Works fine for unidirectional frameworks

round room residence rugorium.

DFA Theory: Performing Data Flow Analysis

```
for all j \neq 0 do
          In_i = \top
 4
      change = true
 5
      while change do
 6
          change = false
          for j = 1 to N - 1 do
                       \prod_{p\in pred(j)} f_p(In_p)
 8
             temp =
 9
              if temp \neq In_i then
10
                 In_i = temp
11
                 change = true
12
13
14
```

 $In_0 = BI$

 Computation of Out_j has been left implicit
 Works fine for unidirectional frameworks

⊤ is the identity of ⊓ (line 3)

IIT Bombay

87/121

CS 618

DFA Theory: Performing Data Flow Analysis

```
In_0 = BI
      for all j \neq 0 do
          In_i = \top
 4
      change = true
 5
      while change do
 6
          change = false
          for j = 1 to N - 1 do
                       \prod_{p\in pred(j)} f_p(In_p)
 8
             temp =
 9
              if temp \neq ln_i then
10
                 In_i = temp
11
                 change = true
12
13
14
```

CS 618

 Computation of Out; has been left implicit Works fine for unidirectional frameworks

(line 3)

 Reverse postorder (rpo) traversal for efficiency (line 7)

Aug 2015 **IIT Bombay**

Round Robin Iterative Algorithm

DFA Theory: Performing Data Flow Analysis

```
In_0 = BI
      for all j \neq 0 do
          In_i = \top
 4
      change = true
 5
      while change do
 6
         change = false
          for j = 1 to N - 1 do
 8
             temp =
                      p \in pred(j)
 9
             if temp \neq In_i then
10
                 In_i = temp
11
                 change = true
12
13
14
```

CS 618

 Computation of Out_j has been left implicit
 Works fine for unidirectional frameworks

⊤ is the identity of ⊓ (line 3)

 Reverse postorder (rpo) traversal for efficiency (line 7)

rpo traversal AND no loops
 ⇒ no need of initialization

Aug 2015 IIT Bombay

Complexity of Round Robin Iterative Algorithm

- Unidirectional bit vector frameworks
 - ▶ Construct a spaning tree *T* of *G* to identify postorder traversal
 - ► Traverse *G* in reverse postorder for forward problems and Traverse *G* in postorder for backward problems
 - ▶ Depth d(G, T): Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of <i>In</i> and <i>Out</i>	1
Convergence (until <i>change</i> remains true)	d(G,T)
Verifying convergence	1

Complexity of Round Robin Iterative Algorithm

- Unidirectional bit vector frameworks
 - ▶ Construct a spaning tree *T* of *G* to identify postorder traversal
 - ► Traverse *G* in reverse postorder for forward problems and Traverse *G* in postorder for backward problems
 - ▶ Depth d(G, T): Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of <i>In</i> and <i>Out</i>	1
Convergence (until <i>change</i> remains true)	d(G,T)
Verifying convergence (change becomes false)	1

• What about bidirectional bit vector frameworks?

Complexity of Round Robin Iterative Algorithm

► Traverse *G* in reverse postorder for forward problems and

Unidirectional bit vector frameworks

- lacktriangleright Construct a spaning tree $\mathcal T$ of $\mathcal G$ to identify postorder traversal
- Traverse G in postorder for backward problems
- ▶ Depth d(G, T): Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of <i>In</i> and <i>Out</i>	1
Convergence (until <i>change</i> remains true)	d(G,T)
Verifying convergence (change becomes false)	1

- What about bidirectional bit vector frameworks?
- What about other frameworks?


```
2
 3
        int i,j,a,b,c;
 4
        c=a+b;
 5
        i=0;
 6
        while(i<m)
 7
 8
             j=0;
 9
             while(j<n)
10
11
                a=i+j;
12
                j=j+1;
13
14
             i=i+1;
15
```

void fun(int m, int n)

IIT Bombay

89/121

16

CS 618

CS 618

CS 618

CS 618

i = 0

DFA Theory: Performing Data Flow Analysis

c = a + b

 n_1

3+1 iterations for available expressions analysis

CS 618

CS 618

CS 618

DFA Theory: Performing Data Flow Analysis

Aug 2015

CS 618

DFA Theory: Performing Data Flow Analysis

90/121

Example: Consider the following CFG for PRE

CS 618

Example: Consider the following CFG for PRE

 Node numbers are in reverse post order 90/121

DFA Theory: Performing Data Flow Analysis

Example: Consider the following CFG for PRE

- Node numbers are in reverse post order
- Back edges in the graph are $n_5
 ightarrow n_2$ and $n_{10} \rightarrow n_9$.

IIT Bombay

Example: Consider the following CFG for PRE

 Node numbers are in reverse post order

• Back edges in the graph are $n_5 \rightarrow n_2$

- and $n_{10} \rightarrow n_9$.
- d(G, T) = 1

IIT Bombay

90/121

CS 618

CS 618

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

- Node numbers are in reverse post order
 Back edges in the graph are n₅ → n₂
- and $n_{10} \rightarrow n_9$.
- d(G, T) = 1
- Actual iterations : 5

IIT Bombay

		Pairs of Out, In Values											
	Initia- lization	// 1	lt	erat	ions		Fin: tran	al values & sformation					
			#2	<u> </u>	#4		7	,					
	O,I	O,I	O,I	O,I	Q,I	0,1	O,I						
12	0,1				X								
11	1,1		d		,								
10	1,1	7	7										
9	1,1	Š											
8	1,1												
7	1,1												
6	1,1												
5	1,1												
4	1,1												
3	1,1												
2	1,1												

Aug 2015

			ues	46				
	Initia- lization				es ir ions	1	Fina	al values & sformation
			#2		#4	#5		Signification
	O,I	O,I	O,I	O,I	Q,I	0,1	O,I	
12	0,1	0,0			X			
11	1,1	0,1	d		יל			
10	1,1	7	C					
9	1,14	J ,						
8	1,1							
V	1,1							
6	1,1	1,0						
5	1,1							
4	1,1							
3	1,1							
2	1,1							
1	1,1	0,0						

Aug 2015

91/121

Complexity of Bidirectional Bit Vector Frameworks

	Pairs of Out, In Values											
	Initia- lization	,,,	lt	Iterations				al values & sformation				
		#1	#1 #2 #3 #4 #5					,				
	O,I	O,I	O,I	O,I	Q,I	0,1	O,I					
12	0,1	0,0			X							
11	1,1	0,1	d	-	7.							
10	1,1	1	U									
9	1,14	7,										
8	1,1											
V	1,1											
6	1,1	1,0										
5	1,1											
4	1,1											
3	1,1											
2	1,1		1,0					_				
1	1,1	0,0										

			In Val	ues	46			
	Initia- lization			nang erat		1	Fine	al values & sformation
				#3	#4	#5	7	S.O. mation
	O,I	O,I	O,I	O,I	Q,I	0,1	O,I	
12	0,1	0,0			X			
11	1,1	0,1	d		יל			
10	1,1	7	U					
9	1,1	J ,						
8	1,1							
X	1,1							
6	1,1	1,0						
5	1,1			0,0				
4	1,1			0,1				
3	1,1			0,0				
2	1,1		1,0	0,0				
1	1,1	0,0						

Aug 2015 IIT Bo

			In Val	ues	46			
	Initia- lization		Cł It	erat	anges in erations			al values & sformation
		#1	#2	#3	#4	#4 # 5		Siormation
	O,I	O,I	O,I	O,I	Q,I	0,1	O,I	
12	0,1	0,0			X			
11	1,1	0,1	d		0,0			
10	1,1	1	D.		0,1			
9	1,1	7			1,0			
8	1,1							
Y	1,1				0,0			
6	1,1	1,0			0,0			
5	1,1			0,0				
4	1,1			0,1	0,0			
3	1,1			0,0				
2	1,1		1,0	0,0				
1	1,1	0,0						

	Pairs of <i>Out,In</i> Values											
	Initia- lization		lt	erat	langes in erations			al values & sformation				
		#1	#2	#3	#4	#5		Siormation				
	O,I	O,I	O,I	O,I	Q,I	0,1	O,I					
12	0,1	0,0			X							
11	1,1	0,1	d		0,0							
10	1,1	7	U		0,1							
9	1,1	J ,			1,0							
8	1,1					1,0						
7	1,1				0,0							
6	1,1	1,0			0,0							
5	1,1			0,0								
4	1,1			0,1	0,0							
3	1,1			0,0								
2	1,1		1,0	0,0								
1	1,1	0,0										

			ues	46				
	Initia- lization	// 1	lt	nang erat	ions			al values & sformation
	<u> </u>	#1	#2	#3	#4	#5		
	O,I	O,I	O,I	O,I	Q,I	0,1	I,O	
12	0,1	0,0			X		0,0	
11	1,1	0,1	d		0,0		0,0	
10	1,1	1	U)	0,1		0,1	
9	1,1	7,			1,0		1,0	
8	1,1					1,0	1,0	
Y	1,1				0,0		0,0	
6	1,1	1,0			0,0		0,0	
5	1,1			0,0			0,0	
4	1,1			0,1	0,0		0,0	
3	1,1			0,0			0,0	
2	1,1		1,0	0,0			0,0	
1	1,1	0,0					0,0	

	Pairs of Out, In Values											
	Initia- lization		Changes in Iterations					al values & sformation				
		#1	#2	#3	#4	#5	13					
	O,I	O,I	O,I	O,I	Q,I	0,1	O,I					
12	0,1	0,0			X		0,0					
11	1,1	0,1	d		0,0		0,0					
10	1,1	1	U)	0,1		0,1	Delete				
9	1,1	J ,			1,0		1,0	Insert				
8	1,1					1,0	1,0	Insert				
7	1,1				0,0		0,0					
6	1,1	1,0			0,0		0,0					
5	1,1			0,0			0,0					
4	1,1			0,1	0,0		0,0					
3	1,1			0,0			0,0					
2	1,1		1,0	0,0			0,0					
1	1,1	0,0					0,0					

- PavIn₆ becomes 0 in the first itereation
 This cause many all other values to
- become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

CS 618

- PavIn₆ becomes 0 in the first itereation
 - This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Aug 2015 IIT Bombay

- PavIn₆ becomes 0 in the first itereation
 This cause many all other values to
- become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

- PavIn₆ becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

CS 618

- PavIn₆ becomes 0 in the first itereation
 - This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Aug 2015 IIT Bombay

An Example of Information Flow in Our PRE Analysis

- PavIn₆ becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Aug 2015 IIT Bombay

CS 618

- PavIn₆ becomes 0 in the first itereation
 - This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Aug 2015 **IIT Bombay**

An Example of Information Flow in Our PRE Analysis

- PavIn₆ becomes 0 in the first itereation
 - This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Aug 2015 IIT Bombay

An Example of Information Flow in Our PRE Analysis

- *PavIn*₆ becomes 0 in the first itereation
 - This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Aug 2015 IIT Bombay

• Default value at each program point: \top

- Information flow path
- -

IIT Bombay

93/121

- ullet Default value at each program point: op
- Information flow path

CS 618

Sequence of adjacent program points

IIT Bombay

93/121

Aug 2015 IIT Bombay

- - Information flow path

CS 618

Sequence of adjacent program points along which data flow values change

Default value at each program point: ⊤

IIT Bombay

information flow and information flow faths

- ullet Default value at each program point: op
- Information flow path

Sequence of adjacent program points along which data flow values change

- A change in the data flow at a program point could be
 - ▶ Generation of information Change from \top to a non- \top due to local effect (i.e. $f(\top) \neq \top$)
 - ▶ Propagation of information Change from x to y such that $y \sqsubseteq x$ due to global effect

IIT Bombay

- ullet Default value at each program point: op
- Information flow path

Sequence of adjacent program points along which data flow values change

- A change in the data flow at a program point could be
 - ▶ Generation of information Change from \top to a non- \top due to local effect (i.e. $f(\top) \neq \top$)
 - ▶ Propagation of information Change from x to y such that $y \sqsubseteq x$ due to global effect
- Information flow path (ifp) need not be a graph theoretic path

Edge and Node Flow Functions

94/121

Edge and Node Flow Functions

Edge and Node Flow Functions

Edge and Node Flow Functions

CS 618

General Data Flow Equations

$$In_{n} = \begin{cases} BI_{Start} & \sqcap f_{n}^{b}(Out_{n}) & n = Start \\ \left(\prod_{m \in pred(n)} f_{m \to n}^{f}(Out_{m})\right) & \sqcap f_{n}^{b}(Out_{n}) & \text{otherwise} \end{cases}$$

$$Out_{n} = \begin{cases} BI_{End} & \sqcap f_{n}^{f}(In_{n}) & n = End \\ \left(\prod_{m \in succ(n)} f_{m \to n}^{b}(In_{m})\right) & \sqcap f_{n}^{f}(In_{n}) & \text{otherwise} \end{cases}$$

Edge flow functions are typically identity

$$\forall x \in L, \ f(x) = x$$

• If particular flows are absent, the correponding flow functions are

$$\forall x \in L, \ f(x) = \top$$

IIT Bombay

95/121

Modelling Information Flows Using Edge and Node Flow **Functions**

IIT Bombay

information flow faths in fixe

Information could flow along arbitrary paths

IIT Bombay

mornation flow factor in fixe

Information could flow along arbitrary paths

Aug 2015

Information Flow Faths in FIXE

Information could flow along arbitrary paths

IIT Bombay

mornation flow factor in fixe

• Information could flow along arbitrary paths

Aug 2015

Information could flow along arbitrary paths

Aug 2015

information Flow Paths in PRE

• Information could flow along arbitrary paths

97/121

Aug 2015 IIT Bombay

Information could flow along arbitrary paths

Aug 2015 IIT Bombay

Information Flow Paths in PRE

- Information could flow along arbitrary paths
- Theoretically predicted number : 144
- Actual iterations : 5

Information Flow Paths in PRE

- Information could flow along arbitrary paths • Theoretically predicted number: 144
- Actual iterations: 5
- Not related to depth (1)

Frameworks

DFA Theory: Performing Data Flow Analysis

Complexity of Worklist Algorithms for Bit Vector

- Assume n nodes and r entities
- Total number of data flow values = $2 \cdot n \cdot r$
- A data flow value can change at most once
- Complexity is $\mathcal{O}(n \cdot r)$

IIT Bomba

98/121

Frameworks

- Assume *n* nodes and *r* entities
- Total number of data flow values = $2 \cdot n \cdot r$
- A data flow value can change at most once
- Complexity is $\mathcal{O}(n \cdot r)$
- Must be same for both unidirectional and bidirectional frameworks (Number of data flow values does not change!)

IIT Bombay

98/121

- Lacuna with PRE : Complexity
 - r is typically $\mathcal{O}(n)$
 - ► Assuming that at most one data flow value changes in one traversal

IIT Bombay

99/121

- Lacuna with PRE : Complexity
 - r is typically $\mathcal{O}(n)$
 - Assuming that at most one data flow value changes in one traversal
 - Worst case number of traversals = $\mathcal{O}(n^2)$

99/121

Education With Order Estimates of Title Complexity

- Lacuna with PRE : Complexity
 - ightharpoonup r is typically $\mathcal{O}(n)$
 - ▶ Assuming that at most one data flow value changes in one traversal
 - ▶ Worst case number of traversals = $\mathcal{O}(n^2)$
- Practical graphs may have upto 50 nodes
 - ▶ Predicted number of traversals : 2,500
 - ▶ Practical number of traversals : ≤ 5

Lacuna with Older Estimates of PRE Complexity

- Lacuna with PRE : Complexity
 - ightharpoonup r is typically $\mathcal{O}(n)$
 - ▶ Assuming that at most one data flow value changes in one traversal
 - ▶ Worst case number of traversals = $\mathcal{O}(n^2)$
- Practical graphs may have upto 50 nodes
 - ▶ Predicted number of traversals : 2.500
 - ► Practical number of traversals : ≤ 5
- No explanation for about 14 years despite dozens of efforts

Ededing with Older Estimates of The Complexity

- Lacuna with PRE : Complexity
 - ightharpoonup r is typically $\mathcal{O}(n)$
 - Assuming that at most one data flow value changes in one traversal

- ightharpoonup Worst case number of traversals $=\mathcal{O}\left(n^2
 ight)$
- Practical graphs may have upto 50 nodes
 - ▶ Predicted number of traversals : 2,500
 - Practical number of traversals : ≤ 5
- No explanation for about 14 years despite dozens of efforts
- Not much experimentation with performing advanced optimizations involving bidirectional dependency

Complexity of Round Robin Iterative Method

DFA Theory: Performing Data Flow Analysis

Buy OTC (Over-The-Counter) medicine No U-Turn 1 Trip

100/121

CS 618 DFA Theory: Performing Data Flow Analysis 100/121

Complexity of Round Robin Iterative Method

- Buy OTC (Over-The-Counter) medicine No U-Turn 1 Trip
- Buy cloth. Give it to the tailor for stitching No U-Turn 1 Trip

CS 618 DFA Theory: Performing Data Flow Analysis 100/121

Complexity of Round Robin Iterative Method

No U-Turn

1 Trip

- Buy OTC (Over-The-Counter) medicine
- Buy cloth. Give it to the tailor for stitching No U-Turn 1 Trip
- Buy medicine with doctor's prescription 1 U-Turn 2 Trips

Aug 2015 IIT Bombay

CS 618 **DFA Theory: Performing Data Flow Analysis** 100/121

Complexity of Round Robin Iterative Method

- Buy OTC (Over-The-Counter) medicine
- Buy cloth. Give it to the tailor for stitching
- Buy medicine with doctor's prescription
- Buy medicine with doctor's prescription. The diagnosis requires X-Ray

1 Trip 1 U-Turn 2 Trips

1 Trip

No U-Turn

No U-Turn

2 U-Turns 3 Trips

Aug 2015 **IIT Bomba** **DFA Theory: Performing Data Flow Analysis**

Information Flow Paths and Width of a Graph

• A traversal $u \to v$ in an ifp is

CS 618

- ightharpoonup Compatible if u is visited before v in the chosen graph traversal
- ► *Incompatible* if *u* is visited *after v* in the chosen graph traversal

101/121

Aug 2015 IIT Bombay

DFA Theory: Performing Data Flow Analysis

Information Flow Paths and Width of a Graph

- A traversal $u \to v$ in an ifp is
 - ► Compatible if u is visited before v in the chosen graph traversal
 - ightharpoonup Incompatible if u is visited after v in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration

101/121

CS 618

Information Flow Paths and Width of a Graph

- A traversal $u \to v$ in an ifp is
 - ► Compatible if u is visited before v in the chosen graph traversal
 - ► *Incompatible* if *u* is visited *after v* in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration
- Width of a program flow graph with respect to a data flow framework
 Maximum number of incompatible traversals in any ifp, no part of which is bypassed

Information Flow Paths and Width of a Graph

101/121

• A traversal $u \to v$ in an ifp is

CS 618

- ► Compatible if u is visited before v in the chosen graph traversal
- ► *Incompatible* if *u* is visited *after v* in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration
- Width of a program flow graph with respect to a data flow framework
 Maximum number of incompatible traversals in any ifp, no part of which is bypassed
- Width + 1 iterations are sufficient to converge on MFP solution (1 additional iteration may be required for verifying convergence)

Aug 2015 IIT Bombay

Complexity of Bidirectional Bit Vector Frameworks

Every "incompatible" edge traversal ⇒ One additional graph traversal

IIT Bombay

- Every "incompatible" edge traversal One additional graph traversal
- Max. Incompatible edge traversals
- = Width of the graph = 0?
- Maximum number of traversals =
 - 1 + Max. incompatible edge traversals

CS 618

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal ⇒ One additional graph traversal
 - Max. Incompatible edge traversals
- = *Width* of the graph = 1?
- Maximum number of traversals =1 + Max. incompatible edge traversals

IIT Bombay

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal ⇒ One additional graph traversal
- Max. Incompatible edge traversals = *Width* of the graph = **2?**
- Maximum number of traversals =
 - $1 + \mathsf{Max}$. incompatible edge traversals

- Every "incompatible" edge traversal One additional graph traversal
- Max. Incompatible edge traversals = Width of the graph = 3?
- Maximum number of traversals =
- 1 + Max. incompatible edge traversals

IIT Bombay

- Every "incompatible" edge traversal One additional graph traversal
- Max. Incompatible edge traversals
- = Width of the graph = 3?
- Maximum number of traversals = 1 + Max. incompatible edge traversals

IIT Bombay

- Every "incompatible" edge traversal One additional graph traversal
- Max. Incompatible edge traversals
 - = Width of the graph = 3?
- Maximum number of traversals =
 - 1 + Max. incompatible edge traversals

- Every "incompatible" edge traversal ⇒ One additional graph traversal
- Max. Incompatible edge traversals
 - = Width of the graph = 3?
- Maximum number of traversals =
 - $1 + \mathsf{Max}$. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal ⇒ One additional graph traversal
- Max. Incompatible edge traversals
 - = *Width* of the graph = 4
- Maximum number of traversals =
 - $1+{\sf Max}.$ incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal ⇒ One additional graph traversal
- Max. Incompatible edge traversals
- = *Width* of the graph = **4**
- Maximum number of traversals =1 + 4 = 5

IIT Bombay

- Depth is applicable only to unidirectional data flow frameworks
- Width is applicable to both unidirectional and bidirectional frameworks
- For a given graph for a unidirectional bit vector framework, Width \leq Depth

Width provides a tighter bound

Comparison Between Width and Depth

- Depth is purely a graph theoretic property whereas width depends on control flow graph as well as the data framework
- Comparison between width and depth is meaningful only
 - ► For unidirectional frameworks
 - ▶ When the direction of traversal for computing width is the natural direction of traversal
- Since width excludes bypassed path segments, width can be smaller than depth

104/121

CS 618

Assuming reverse postorder traversal for available expressions analysis • Depth = 2

Aug 2015 **IIT Bombay**

Width and Depti

Assuming reverse postorder traversal for available expressions analysis

- Depth = 2
- Information generation point n₅ kills expression "a + b"

IIT Bombay

Assuming reverse postorder traversal for available expressions analysis

- Depth = 2
- Information generation point
 n₅ kills expression "a + b"
- Information propagation path $n_5 \rightarrow n_4 \rightarrow n_6 \rightarrow n_2$

No Gen or Kill for "a + b" along this path

Aug 2015 IIT Bombay

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth = 2
- Information generation point n₅ kills expression "a + b"
- Information propagation path $n_5 \rightarrow n_4 \rightarrow n_6 \rightarrow n_2$

No Gen or Kill for "a + b" along this path

• Width = 2

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth = 2
- Information generation point n₅ kills expression "a + b"
- Information propagation path $n_5 \rightarrow n_4 \rightarrow n_6 \rightarrow n_2$

No Gen or Kill for "a + b" along this path

- Width = 2
- What about "j + 1"?

Aug 2015 IIT Bombay

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth = 2
- Information generation point n_5 kills expression "a + b"
- Information propagation path $n_5 \rightarrow n_4 \rightarrow n_6 \rightarrow n_2$

No Gen or Kill for "a + b" along this path

- Width = 2
- What about "j + 1"?
- Not available on entry to the loop

Aug 2015 IIT Bombay

DFA Theory: Performing Data Flow Analysis

Structures resulting from repeat-until loops with pre-

mature exits • Depth = 3

IIT Bombay

CS 618

•

DFA Theory: Performing Data Flow Analysis

Structures resulting from repeat-until loops with premature exits

- Depth = 3
- However, any unidirectional bit vector is guaranteed to converge in 2+1 iterations

IIT Bombay

CS 618

CS 618

Structures resulting from repeat-until loops with premature exits

- Depth = 3
- However, any unidirectional bit vector is guaranteed to converge in 2 + 1 iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$

IIT Bombay

DFA Theory: Performing Data Flow Analysis

CS 618

106/121

Structures resulting from repeat-until loops with premature exits

- Depth = 3
- \bullet However, any unidirectional bit vector is guaranteed to converge in $2\,+\,1$ iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 7$ is bypassed by the edge $6 \rightarrow 7$

CS 618

Structures resulting from repeat-until loops with premature exits

106/121

- Depth = 3
- guaranteed to converge in 2 + 1 iterations

• However, any unidirectional bit vector is

- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 7$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$

Aug 2015 IIT Bombay **DFA Theory: Performing Data Flow Analysis**

CS 618

width and Depti

Structures resulting from repeat-until loops with premature exits

106/121

- Depth = 3
 - guaranteed to converge in 2+1 iterations

• However, any unidirectional bit vector is

- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 7$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$

For forward unidirectional frameworks, width is 1

CS 618

106/121

Width and Depti

Structures resulting from repeat-until loops with premature exits

- Depth = 3
- guaranteed to converge in 2+1 iterations

• However, any unidirectional bit vector is

- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 7$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$
- $\text{inp } I \rightarrow 2 \rightarrow 0 \text{ is by passed by the edge } I \rightarrow 0$
- ullet For forward unidirectional frameworks, width is 1
- Splitting the bypassing edges and inserting nodes along those edges increases the width

Directly traverses information flow paths

 $In_0 = BI$

```
for all j \neq 0 do
       \{ In_i = \top
          Add j to LIST
 5
 6
       while LIST is not empty do
          Let j be the first node in LIST. Remove it from LIST
                    \prod_{p \in pred(j)} f_p(In_p)
 8
           temp =
          if temp \neq In_i then
10
              In_i = temp
11
              Add all successors of j to LIST
12
13
```

Aug 2015 IIT Bombay

Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume that the work list follows FIFO (First in First Out) policy

Show the trace of the analysis in the folloing format:

Step	Node	Remaining work list	<i>Out</i> DFV	Change?	Node Added	Resulting work list
------	------	---------------------	----------------	---------	---------------	---------------------

DFA Theory: Performing Data Flow Analysis

CS 618

For available expressions analysis

Round robin method needs

3+1 iterations

109/121

Total number of nodes processed = $7 \times 4 = 28$

 We illustrate work list method for expression a + b (other expressions are unavailable in the first iteration because of BI)

Aug 2015 IIT Bombay

Tutorial Problem for Work List Based Analysis

Step	Node	Remaining work list	<i>Out</i> DFV	Change?	Node Added	Resulting work list
1	n_1	$n_2, n_3, n_4, n_5, n_6, n_7$	1	No		$n_2, n_3, n_4, n_5, n_6, n_7$
2	n_2	n_3, n_4, n_5, n_6, n_7	1	No		n_3, n_4, n_5, n_6, n_7
3	<i>n</i> ₃	n_4, n_5, n_6, n_7	1	No		n_4, n_5, n_6, n_7
4	n_4	n_5, n_6, n_7	1	No		n_5, n_6, n_7
5	n_5	n_6, n_7	0	Yes	n ₄	n_6, n_7, n_4
6	n_6	n_7, n_4	1	No		n_7, n_4
7	n ₇	n_4	1	No		n_4
8	n_4		0	Yes	n_5, n_6	n_5, n_6
9	<i>n</i> ₅	n_6	0	No		n_6
10	n_6		0	Yes	n_2	n_2
11	n_2		0	Yes	n_3, n_7	n_3, n_7
12	<i>n</i> ₃	n ₇	0	Yes	n ₄	n_7, n_4
13	n ₇	n_4	0	Yes		n ₄
14	n ₄		0	No		$Empty \Rightarrow End$

Aug 2015 IIT Bombay

Part 10

Precise Modelling of General Flows

DFA Theory: Precise Modelling of General Flows

DFA Theory: Precise Modelling of General Flows

IIT Bombay

Complexity of Constant Propagation?

CS 618

111/121

Aug 2015 IIT Bombay

Part 11

Extra Topics

Post's Correspondence Problem (PCP)

• Given strings $u_i, v_i \in \Sigma^+$ for some alphabet Σ , and two k-tuples,

$$U = (u_1, u_2, \ldots, u_k)$$
 $V = (v_1, v_2, \ldots, v_k)$
 $V = (v_1, v_2, \ldots, v_k)$

Is there a sequence i_1,i_2,\ldots,i_m of one or more integers such that

$$V=(v_1,v_2,\ldots,v_k)$$
 Is there a sequence i_1,i_2,\ldots,i_m of one or more integor $u_{i_1}u_{i_2}\ldots u_{i_m}=v_{i_1}v_{i_2}\ldots v_{i_m}$

DFA Theory: Extra Topics

 $U = (u_1, u_2, \dots, u_k)$ $V = (v_1, v_2, \dots, v_k)$ • Given strings $u_i, v_i \in \Sigma^+$ for some alphabet Σ , and two k-tuples,

$$U = (u_1, u_2, \dots, u_k)$$

$$V = (v_1, v_2, \dots, v_k)$$

Is there a sequence i_1, i_2, \ldots, i_m of one or more integers such that

$$u_{i_1}u_{i_2}\ldots u_{i_m} = v_{i_1}v_{i_2}\ldots v_{i_m}$$

• For U=(101,11,100) and V=(01,1,11001) the solution is 2,3,2

IIT Bomba

112/121

CS 618

Post's Correspondence Problem (PCP)

DFA Theory: Extra Topics

• Given strings
$$u_i, v_i \in \Sigma^+$$
 for some alphabet Σ , and two k -tuples,

CS 618

 $U = (u_1, u_2, \dots, u_k)$ $V = (v_1, v_2, \dots, v_k)$

$$V = (v_1, v_2, \dots, v_k)$$

$$V = (v_1, v_2, \dots, v_k)$$

Is there a sequence i_1,i_2,\ldots,i_m of one or more integers such that

$$u_{i_1}u_{i_2}\dots u_{i_m}=v_{i_1}v_{i_2}\dots v_{i_m}$$
 • For $U=(101,11,100)$ and $V=(01,1,11001)$ the solution is $2,3,2$

112/121

 $u_2u_3u_2 = 1110011$ $v_2v_3v_2 = 1110011$ For $V=(1,10111,10),\ V=(111,10,0),\ \text{the solution is }2,1,1,3$

IIT Bomba Aug 2015

Post's Correspondence Problem (PCP)

DFA Theory: Extra Topics

112/121

• Given strings $u_i, v_i \in \Sigma^+$ for some alphabet Σ , and two k-tuples,

CS 618

$$U = (u_1, u_2, \ldots, u_k)$$
 $V = (v_1, v_2, \ldots, v_k)$
 $V = (v_1, v_2, \ldots, v_k)$

Is there a sequence i_1,i_2,\ldots,i_m of one or more integers such that

$$u_{i_1}u_{i_2}\dots u_{i_m}=v_{i_1}v_{i_2}\dots v_{i_m}$$
 • For $U=(101,11,100)$ and $V=(01,1,11001)$ the solution is $2,3,2$

$$u_2u_3u_2 = 1110011$$

$$u_2u_3u_2 = 1110011$$

$$v_2v_3v_2 = 1110011$$
For $U = (1, 10111, 10)$, $V = (111, 10, 0)$, the solution is $2, 1, 1, 3$

For U = (01, 110), V = (00, 11), there is no solution

DFA Theory: Extra Topics

113/121

The first string in the correspondence relation should be the first string

• The first string in the correspondence relation should be from the
$$k$$
-tuple
$$u_1u_{i_1}u_{i_2}\dots u_{i_m}=v_1v_{i_1}v_{i_2}\dots v_{i_m}$$

CS 618

Aug 2015 **IIT Bomba**

DFA Theory: Extra Topics

113/121

The first string in the correspondence relation should be the first string

• The first string in the correspondence relation should be from the
$$k$$
-tuple
$$u_1u_{i_1}u_{i_2}\dots u_{i_m}=v_1v_{i_1}v_{i_2}\dots v_{i_m}$$

CS 618

Aug 2015 **IIT Bomba**

iviodified 1 ost s correspondence 1 roblem (ivii ci)

113/121

• The first string in the correspondence relation should be the first string from the *k*-tuple

$$u_1u_{i_1}u_{i_2}\ldots u_{i_m}=v_1v_{i_1}v_{i_2}\ldots v_{i_m}$$

• For U = (11, 1, 0111, 10), V = (1, 111, 10, 0), the solution is 3, 2, 2, 4

$$u_1 u_3 u_2 u_4 = 11011111110$$

$$v_1 u_3 v_2 v_2 v_4 = 11011111110$$

Aug 2015 IIT Bombay

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

IIT Bombay

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

CS 618

114/121

Hecht's MPCP to Constant Propagation Reduction

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

Aug 2015

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

IIT Bombay

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

114/121

Aug 2015 IIT Bombay

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

- $i == j \Rightarrow r = 1$ $i != j \Rightarrow r = 0$
 - If there exists an algorithm which can determine that

IIT Bombay

DFA Theory: Extra Topics

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

- $i == j \Rightarrow r = 1$ $i != j \Rightarrow r = 0$
 - If there exists an algorithm which can determine that
 - r=1 along some path
 - $\Rightarrow x == y$ ⇒ MPCP instance has a solution

DFA Theory: Extra Topics

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

- $i == j \Rightarrow r = 1$ $i != j \Rightarrow r = 0$
 - If there exists an algorithm which can determine that
 - r=1 along some path
 - $\Rightarrow x == y$ ⇒ MPCP instance has a solution
 - ightharpoonup r = 0 along every path
 - $\Rightarrow x != y$ ⇒ MPCP instance does
 - not have a solution

⇒ MPCP is decidable

CS 618

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.

- $i == j \Rightarrow r = 1$ $i != j \Rightarrow r = 0$
 - If there exists an algorithm which can determine that
 - r=1 along some path $\Rightarrow x == y$
 - ⇒ MPCP instance has a solution ightharpoonup r = 0 along every path
 - $\Rightarrow x != y$ ⇒ MPCP instance does
 - not have a solution ⇒ MPCP is decidable

MPCP is not decidable ⇒ Constant Propagation is not decidable

115/121

Taiski's Tixea Tollic Theorem

Given monotonic $f: L \mapsto L$ where L is a complete lattice

Then

LFP(f) =
$$\square Red(f) \in Fix(f)$$

MFP(f) = $\square Ext(f) \in Fix(f)$

IIT Bombay

115/121

Taiski's Tixed I offic Theorem

Given monotonic $f: L \mapsto L$ where L is a complete lattice

$$p$$
 is a fixed point of f : $Fix(f) = \{p \mid f(p) = p\}$
 f is reductive at p : $Red(f) \Rightarrow \{p \mid f(p) \subseteq p\}$
 f is extensive at p : $Ext(f) \Rightarrow \{p \mid f(p) \supseteq p\}$

Then

$$LFP(f) = \prod Red(f) \in Fix(f)$$

 $MFP(f) = \coprod Ext(f) \in Fix(f)$

Guarantees only existence, not computability of fixed points

Examples of Reductive and Extensive Sets

Finite L Monotonic $f: L \mapsto L$ v_1 $Red(f) \cap Ext(f)$ $\{\top, \bot\}$ lub(Ext(f))V3 lub(Fix(f))LFP(f)glb(Red(f))= glb(Fix(f))

Aug 2015 IIT

CS 618

118/121

a(f) Med for cs618 of 2015-16

DFA Theory: Extra Topics

Existence of MFP: Proof of Tarski's Fixed Point Theorem

CS 618

DFA Theory: Extra Topics

Existence of MFP: Proof of Tarski's Fixed Point Theorem

vt(f) Med for cs618 of 2015-16

IIT Bombay

- 1. Claim 1: Let $X \subseteq L$. $- \cdot \cdot \cdot \rho = \sqcup(X).$ 2. In the following we use Ext(f) as X. $\forall x \in X, \ p \sqsupseteq x \Rightarrow p \sqsupseteq \bigsqcup(X).$

IIT Bombay

- 1. Claim 1: Let $X \subseteq L$. 2. In the following we use Ext(f) as X. 3. $\forall p \in Ext(f)$. $hi \neg f$ $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$

Aug 2015 IIT Bombay

Existence of MFP: Proof of Tarski's Fixed Point Theorem

- $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$
- 2. In the following we use Ext(f) as X
- 3. $\forall p \in Ext(f)$, $hi \supseteq \emptyset$

1. Claim 1: Let $X \subseteq L$.

4. $hi \supseteq p \Rightarrow f(hi) \supseteq f(p) \supseteq p \text{ (monotonicity)}$ (claim 1)

IIT Bombay

Existence of MFP: Proof of Tarski's Fixed Point Theorem

- $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$
- 2. In the following we use Ext(f) as X
- 3. $\forall p \in Ext(f), hi \supseteq \mathbf{p}$

1. Claim 1: Let $X \subseteq L$.

- 4. $hi \supseteq p \Rightarrow f(hi) \supseteq f(p) \supseteq p \text{ (monotonicity)}$ $\Rightarrow f(hi) \supseteq hi \text{ (claim 1)}$
- 5. f is extensive at hi also: $hi \in Ext(f)$

IIT Bombay

118/121

CS 618

- 1. Claim 1: Let $X \subseteq L$.
 - $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$ 2. In the following we use Ext(f) as X

 - 3. $\forall p \in Ext(f)$, $hi \supseteq p$
 - 4. $hi \supseteq p \Rightarrow f(hi) \supseteq f(p) \supseteq p \text{ (monotonicity)}$ $\Rightarrow f(hi) \supseteq hi \text{ (claim 1)}$
 - 5. f is extensive at hi also: $hi \in Ext(f)$
 - $f(hi) \supseteq hi \Rightarrow f^2(hi) \supseteq f(hi)$
 - 2 m ⇒ r (m) ⊒ r(m)
 - $\Rightarrow f(hi) \in Ext(f)$

$$\Rightarrow hi \supseteq f(hi)$$

\Rightarrow hi = f(hi) \Rightarrow hi \in Fix(f)

(from 3)

Aug 2015

$$\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$$
2. In the following we use $Ext(f)$ as X

- 3. $\forall p \in Ext(f)$, $hi \supseteq \mathbf{p}$

1. Claim 1: Let $X \subseteq L$.

4. $hi \supseteq p \Rightarrow f(hi) \supseteq f(p) \supseteq p$ (monotonicity)

 \Rightarrow hi \supset f(hi)

$$(hi) \supseteq hi \qquad (claim 1)$$
5. f is extensive at hi also: $hi \in Ext(f)$

 $f(hi) \supseteq hi \Rightarrow f^2(hi) \supseteq f(hi)$

$$f(ni) \supseteq ni \Rightarrow f^{-}(ni) \supseteq f(ni)$$

 $\Rightarrow f(hi) \in Ext(f)$

$$Ei_{Y}(f)$$

$$\Rightarrow hi = f(hi) \Rightarrow hi \in Fix(f)$$

7.
$$Fix(f) \subseteq Ext(f)$$

$$Fix(f) \subseteq Ext(f)$$
 (by definition)
 $\Rightarrow hi \supseteq p, \ \forall p \in Fix(f)$

Aug 2015

(from 3)

CS 618

DFA Theory: Extra Topics

Existence and Computation of the Maximum Fixed Point

Excluded for cs618 of 2015-16

IIT Bomba

DFA Theory: Extra Topics

Existence and Computation of the Maximum Fixed Point

CS 618

119/121

CS 618

DFA Theory: Extra Topics

- $\sqcup Ext(f) \in Fix(f)$ See complete $\text{ adon: } MFP(f) = f^{k+1}(\top) = f^k(\top) \text{ su}$ $(\top) \neq f^j(\top), \ j < k.$ Requires all *strictly descending* chains to be finite ▶ Computation: $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that

Aug 2015 IIT Bomba

119/121

DFA Theory: Extra Topics

For monotonic $f: L \mapsto L$

Excluded

- ► Existence: $MFP(f) = \bigsqcup Ext(f) \in Fix(f)$ Requires L to be complete
- Computation: $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k.
- Requires all *strictly descending* chains to be finite
- Finite strictly descending and ascending chains
 ⇒ Completeness of lattice

Aug 2015 IIT Bombay

Existence and Computation of the Maximum Fixed Point

- For monotonic $f: I \mapsto I$
 - ▶ Existence: $MFP(f) = \bigsqcup Ext(f) \in Fix(f)$ Requires *L* to be complete
 - ▶ Computation: $MFP(f) = f^{k+1}(\top$ $f^{j+1}(\top) \neq f^j(\top), j < k.$ Requires all strictly descending chains to be finite
- Finite strictly descending and ascending chains
 - ⇒ Completeness of lattice
- Exclude

Aug 2015

119/121

Existence and Computation of the Maximum Fixed Point

- For monotonic $f: I \mapsto I$
 - ▶ Existence: $MFP(f) = \bigsqcup Ext(f) \in Fix(f)$ Requires L to be complete
 - ▶ Computation: $MFP(f) = f^{k+1}(\top$ $f^{j+1}(\top) \neq f^j(\top), j < k.$ Requires all strictly descending chains to be finite
- Finite strictly descending and ascending chains
 - ⇒ Completeness of lattice
- Completeness of lattice ≠ Finite strictly descending chains
- ⇒ Even if MFP exists, it may not be reachable unless all strictly descending chains are finite

IIT Bomba

DFA Theory: Extra Topics

Excluded for cs618 of 2015-16

Aug 2015

CS 618

IIT Bombay

DFA Theory: Extra Topics

Depends on the loop closure properties of the framework

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework

Complexity of Round Robin Iterative Algorithm

 Unidirectional rapid frameworks 		£ 2015-16		
	Task	Number of Irreducible <i>G</i>	iterations Reducible <i>G</i>	
Initialisa	ation	1	1	
Converg (until c	gence hange remains true)	d(G,T)+1	d(G,T)	
(change	g convergence becomes false)	1	1	
Exclude				

