

HCF4021B

ASYNCHRONOUS PARALLEL IN OR SYNCHRONOUS SERIAL IN/SERIAL OUT 8 - STAGE STATIC SHIFT REGISTER

- MEDIUM SPEED OPERATION: 12 MHz (Typ.) CLOCK RATE AT V_{DD} - V_{SS} = 10V
- FULLY STATIC OPERATION
- 8 MASTER-SLAVE FLIP-FLOPS PLUS OUTPUT BUFFERING AND CONTROL GATING
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

The HCF4021B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. This device is an 8-stage parallel or serial input/ serial output register having common CLOCK and PARALLEL/SERIAL CONTROL inputs, a single SERIAL data input, and individual parallel "JAM" inputs to each register stage. Each register stage is a D-type, master-slave flip-flop in addition to an output from stage 8, "Q" outputs are also available from stages 6 and 7. Serial entry is synchronous with the clock but parallel entry is asynchronous.

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4021BEY	
SOP	HCF4021BM1	HCF4021M013TR

In this device, entry is controlled by the PARALLEL/SERIAL CONTROL input. When the PARALLEL/SERIAL CONTROL input is low, data is serially shifted into the 8-stage register synchronously with the positive transition of he clock line. When the PARALLEL/SERIAL CONTROL input is high, data is jammed into the 8-stage register via the parallel input lines and synchronous with the positive transition of the clock line, the CLOCK input of the internal stage is "forced" when asynchronous parallel entry is made. Register expansion using multiple package is permitted.

PIN CONNECTION

September 2001 1/11

IINPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION			
7, 6, 5, 4, 13, 14, 15, 1	PI1 to PI8	Parallel Input			
11	SERIAL IN	Serial Input			
9	PARALLEL/ SERIAL CONTROL	Parallel/Serial Input Control			
10	CLOCK	Clock Input			
2, 3, 12	Q6, Q7, Q8	Buffered Outputs			
8	V_{SS}	Negative Supply Voltage			
16	V_{DD}	Positive Supply Voltage			

TRUTH TABLE

CLOCK	SERIAL INPUT	PARALLEL/ SERIAL CONTROL	PI - 1	PI - n	Q ₁ (INTERNAL)	Q _n
Х	X	1	0	0	0	0
Х	X	1	0	1	0	1
X	X	1	1	0	1	0
Х	X	1	1	1	1	1
	0	0	Х	X	0	Q _n - 1
	1	0	Х	Х	1	Q _n - 1
L	Х	Х	Х	Х	Q ₁	Q _n

X : Don't Care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
VI	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol	Parameter	Vı	v _o	l _o	V_{DD}	Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	μΑ
		0/15			15		0.04	20		600		600	μΑ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mA
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		ША
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I_{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mA
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \ (T_{amb} = 25^{\circ}\text{C}, \ \ C_{L} = 50 \text{pF}, \ R_{L} = 200 \text{K}\Omega, \ \ t_{r} = t_{f} = 20 \ \text{ns})$

	_		Test Condition	,	Value (*)		
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
CLOCKE	D OPERATION				1		1
t _{PLH} t _{PHL}	Propagation Delay Time	5			160	320	
		10			80	160	ns
		15			60	120	
t _{THL} t _{TLH}	Transition Time	5			100	200	
THE TEH TRANSMONT TIME	10			50	100	ns	
		15			40	80	
f _{CL} ⁽¹⁾	Maximum Clock Input	5		3	6		
OL	Frequency	10		6	12		MHz
		15		8.5	17		
t _W	Clock Pulse Width	5		180	90		
		10		80	40		ns
		15		50	25		
t _r , t _f	Clock Input Rise or Fall	5				15	
1	Time	10				15	μs
		15				15	
t _{setup}	Setup Time, serial Input	5		120	60		
·	(ref to CL)	10		80	40		ns
		15		60	30		
t _{setup}	Setup Time, Parallel Inputs	5		50	25		
	(ref to P/S)	10		30	15		ns
		15		20	10		
t _{hold}	Hold Time, serial in,	5		0			
	parallel in, parallel /serial	10		0			ns
	control	15		0			
t _{WH}	P/S Pulse Widht	5		160	80		
		10		80	40		ns
		15		50	25		
t _{rem}	P/S Removal Time (ref to	5		280	140		
	CL)	10		140	70		ns
		15		100	50		1

^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.
(1) If more than one unit is cascaded t_rCL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage of the estimated capacitive load.

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200KΩ R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM 1 : PROPAGATION DELAY TIMES, CLOCK PULSE WIDTH (f=1 MHz; 50% duty cycle)

47/ 6/11

WAVEFORM 2: SETUP AND HOLD TIMES (SI TO CLOCK) (f=1MHz; 50% duty cycle)

WAVEFORM 3 : SETUP AND HOLD TIME (PI TO P/S) (f=1MHz; 50% duty cycle)

477

WAVEFORM 4: PULSE WIDTH AND REMOVAL TIME (P/S TO CLOCK) (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

 $Downloaded \ from \ \underline{Elcodis.com} \ \ electronic \ components \ distributor$

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S		•	8° (max.)	•	•		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

