Clase 04

IIC 2223

Prof. Cristian Riveros

Recordatorio: Autómata finito no-determinista

Definición

Un autómata finito no-determinista (NFA) es una estructura:

$$A = (Q, \Sigma, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- F ⊆ Q es el conjunto de estados finales (o aceptación).

+

- $\Delta \subseteq Q \times \Sigma \times Q$ es la relación de transición.
- $I \subseteq Q$ es un conjunto de estados iniciales.

Rec: ¿cómo ejecuto un autómata no-determinista?

Sea:

- Un autómata finito no-determinista $A = (Q, \Sigma, \Delta, I, F)$.
- El input $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Una **ejecución** (o run) ρ de \mathcal{A} sobre w es una secuencia:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 \in I$
- para todo $i \in \{0, ..., n-1\}, (p_i, a_{i+1}, p_{i+1}) \in \Delta.$

Una ejecución ρ de \mathcal{A} sobre w es de aceptación si:

$$p_n \in F$$
.

Desde ahora hablaremos de las ejecuciones de A sobre w

Rec: Lenguaje aceptado por un autómata no-determinista

Sea un autómata $A = (Q, \Sigma, \Delta, I, F)$ y $w \in \Sigma^*$.

Definiciones

- **A** acepta w si existe una ejecución de \mathcal{A} sobre w que es de aceptación.
- **A rechaza** w si todas las ejec. de \mathcal{A} sobre w **NO** son de aceptación.
- **El lenguaje aceptado** por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

Rec: Lenguaje aceptado por un autómata no-determinista

Rec: ¿qué tan poderoso es el no-determinismo?

Teorema

Para todo autómata finito no-determinista \mathcal{A} , existe un autómata determinista \mathcal{A}' tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, DFA \equiv NFA.

Ambos modelos computan lo mismo

Demostración

Para demostrar este resultado, construiremos la "determinación" del autómata no-determinista \mathcal{A} .

Formalización

Para un autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, definimos el autómata determinista (determinización de \mathcal{A}):

$$\mathcal{A}^{\text{det}} = (2^Q, \Sigma, \delta^{\text{det}}, q_0^{\text{det}}, F^{\text{det}})$$

- $2^Q = \{S \mid S \subseteq Q\}$ es el conjunto potencia de Q.
- $q_0^{\text{det}} = 1.$
- $\delta^{\text{det}}: 2^Q \times \Sigma \to 2^Q \text{ tal que:}$

$$\delta^{\mathsf{det}}(S, a) = \{ q \in Q \mid \exists p \in S. (p, a, q) \in \Delta \}$$

 $F^{\text{det}} = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}.$

Proposición

Dado un autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se tiene que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\mathsf{det}})$$

¿cómo demostramos que ambos autómatas definen el mismo lenguaje?

Demostración: $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}^{det})$

Sea $w = a_1 a_2 \dots a_n \in \mathcal{L}(\mathcal{A}).$

Existe una ejecución ρ de \mathcal{A} sobre w:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 \in I$.
- $(p_i, a_{i+1}, p_{i+1}) \in \Delta \quad \forall i \in \{0, \ldots, n-1\}.$
- $p_n \in F$.

Como \mathcal{A}^{det} es determinista, entonces existe una ejec. ρ' de \mathcal{A}^{det} sobre w:

$$\rho': S_0 \stackrel{a_1}{\to} S_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} S_n$$

- $S_0 = I$.
- $\delta^{\text{det}}(S_i, a_{i+1}) = S_{i+1} \quad \forall i \in \{0, 1, \dots, n-1\}.$

¿qué debemos demostrar?

Demostración: $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}^{\mathsf{det}})$

PD: $p_i \in S_i$ para todo $i \in \{0, 1, ..., n-1\}$.

Por inducción sobre i.

Caso base:
$$p_0 \in S_0$$
 (¿por qué?)

Inducción: Suponemos que $p_i \in S_i$ y demostramos para i + 1.

Como sabemos que:

$$(p_i, a_{i+1}, p_{i+1}) \in \Delta.$$

Entonces
$$p_{i+1} \in S_{i+1}$$
 (¿por qué?).

Como
$$p_n \in S_n \stackrel{?}{\Rightarrow} S_n \cap F \neq \emptyset \stackrel{?}{\Rightarrow} S_n \in F^{\text{det}}$$
.

Por lo tanto, $w \in \mathcal{L}(\mathcal{A}^{\mathsf{det}})$.

Demostración:
$$\mathcal{L}(\mathcal{A}^{\mathsf{det}}) \subseteq \mathcal{L}(\mathcal{A})$$

Sea $w = a_1 a_2 \dots a_n \in \mathcal{L}(\mathcal{A}^{\text{det}}).$

Existe una ejecución ρ de \mathcal{A}^{det} sobre w:

$$\rho: S_0 \stackrel{a_1}{\to} S_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} S_n$$

- $S_0 = I$.
- $\delta^{\det}(S_i, a_{i+1}) = S_{i+1} \quad \forall \ i \in \{0, 1, \dots, n-1\}.$
- $S_n \in F^{\text{det}}$.

¿cómo demostramos una ejecución de aceptación de ${\mathcal A}$ sobre w?

 $(S_n \cap F \neq \emptyset)$

Demostración:
$$\mathcal{L}(\mathcal{A}^{\mathsf{det}}) \subseteq \mathcal{L}(\mathcal{A})$$

PD: Para todo $i \le n$ y para todo $p \in S_i$, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_i}{\to} p_i = p$$

1. $p_0 \in I$.

2.
$$(p_j, a_{j+1}, p_{j+1}) \in \Delta \quad \forall j \in \{0, \dots, i-1\}.$$

Por inducción sobre i.

Caso base: Si $p \in S_0 = I$, entonces la ejec. $\rho : p$ cumple 1. y 2.

Demostración:
$$\mathcal{L}(\mathcal{A}^{\text{det}}) \subseteq \mathcal{L}(\mathcal{A})$$

PD: Para todo $i \le n$ y para todo $p \in S_i$, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_i}{\rightarrow} p_i = p$$

1. $p_0 \in I$.

2.
$$(p_j, a_{j+1}, p_{j+1}) \in \Delta \quad \forall j \in \{0, \ldots, i-1\}.$$

Inducción: Supongamos que se cumple para todo $p \in S_i$. Sea $q \in S_{i+1}$.

Como
$$\delta^{\text{det}}(S_i, a_{i+1}) = S_{i+1} = \{q \in Q \mid \exists p \in S_i. (p, a, q) \in \Delta\}$$
 y $q \in S_{i+1}$ entonces existe $p \in S_i$ tal que $(p, a_{i+1}, q) \in \Delta$.

Por **HI**, existe $\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_i}{\to} p_i = p$ que satisface 1. y 2.

Por lo tanto, $\rho': p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_i}{\to} p_i \stackrel{a_{i+1}}{\to} q$ también satisface 1. y 2. \checkmark

Demostración: $\mathcal{L}(\mathcal{A}^{\mathsf{det}}) \subseteq \mathcal{L}(\mathcal{A})$

Por lo tanto: Para todo $i \le n$ y para todo $p \in S_i$, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_i}{\to} p_i = p$$

- 1. $p_0 \in I$.
- 2. $(p_j, a_{j+1}, p_{j+1}) \in \Delta \quad \forall j \in \{0, \ldots, i-1\}.$

Como
$$S_n \cap F \neq \emptyset$$
, (¿por qué?)

para $p \in S_n \cap F$ existe una ejecución de acept. de A sobre w.

Por lo tanto, $w \in \mathcal{L}(A)$.

Outline

Expresiones regulares

Definición (Sintaxis)

R es una expresión regular sobre Σ si R es igual a:

- 1. a para alguna letra $a \in \Sigma$.
- ε
- 3. ø
- 4. $(R_1 + R_2)$ donde R_1 y R_2 son expresiones regulares.
- $5. \ (\textit{R}_1 \cdot \textit{R}_2) \qquad \qquad \text{donde } \textit{R}_1 \text{ y } \textit{R}_2 \text{ son expresiones regulares}.$
- 6. (R_1^*) donde R_1 es una expresión regular.

Denotaremos como ExpReg el conjunto de todas las expresiones regulares sobre Σ

Ejemplos de expresiones regulares

- (a+b)
- $((a \cdot b) \cdot c)$
- (a*)
- $(b \cdot (a^*))$
- $((a+b)^*)$
- $((a \cdot ((b \cdot a)^*)) + \epsilon)$
- $((a \cdot ((b \cdot a)^*)) + \emptyset)$

Para reducir la cantidad de paréntesis, se define el orden de precedencia:

- 1. estrella $(\cdot)^*$
- 2. concatenación ·
- 3. unión +

Ejemplos

Considere el alfabeto $\Sigma = \{a, b, c\}$.

- $a \cdot b + a^* = ?$
- $(a+b)\cdot c + a = ?$

Definición (Semántica)

Para una expresión regular R cualquiera, se define el lenguaje $\mathcal{L}(R) \subseteq \Sigma^*$ inductivamente como:

- 1. $\mathcal{L}(a) = \{a\}$ para toda letra $a \in \Sigma$.
- 2. $\mathcal{L}(\epsilon) = \{\epsilon\}.$
- 3. $\mathcal{L}(\emptyset) = \emptyset$.
- 4. $\mathcal{L}(R_1 + R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$ donde R_1 y R_2 son expresiones regulares.

Definición (Semántica)

■ Para dos lenguajes $L_1, L_2 \subseteq \Sigma^*$, se define el **producto** de L_1 y L_2 :

$$L_1 \cdot L_2 = \left\{ w_1 \cdot w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \right\}$$

¿cuál es el resultado del producto de estos lenguajes?

- ${\color{red} \bullet} \; \{ \textit{a}, \textit{ab}, \epsilon \} \; \cdot \; \{ \textit{ba}, \textit{a} \}$
- $\{a\}^* \cdot \{b\}^*$
- {a}* · Ø

Definición (Semántica)

■ Para dos lenguajes $L_1, L_2 \subseteq \Sigma^*$, se define el **producto** de L_1 y L_2 :

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

■ Para un lenguaje $L \subseteq \Sigma^*$ se define la **potencia** a la $n \ge 0$:

$$L^n = \left\{ w_1 \cdot w_2 \cdot \ldots \cdot w_n \mid \forall i \leq n. \ w_i \in L \right\}$$

¿cuál es el resultado de la potencia de estos lenguajes?

- $[0,1]^{32}$
- $\left(\left\{ a \right\}^* \right)^4$
- $(\{a\}^*)^0$

Definición (Semántica)

■ Para dos lenguajes $L_1, L_2 \subseteq \Sigma^*$, se define el **producto** de L_1 y L_2 :

$$L_1 \cdot L_2 = \left\{ w_1 \cdot w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \right\}$$

■ Para un lenguaje $L \subseteq \Sigma^*$ se define la **potencia** a la $n \ge 0$:

$$L^n = \left\{ w_1 \cdot w_2 \cdot \ldots \cdot w_n \mid \forall i \leq n. \ w_i \in L \right\}$$

■ Para un lenguaje $L \subseteq \Sigma^*$ se define la **potencia** a la 0:

$$L^0 = \{\epsilon\}$$

Definición (Semántica)

Para una expresión regular R cualquiera, se define el lenguaje $\mathcal{L}(R) \subseteq \Sigma^*$ inductivamente como:

- 1. $\mathcal{L}(a) = \{a\}$ para toda letra $a \in \Sigma$.
- 2. $\mathcal{L}(\epsilon) = \{\epsilon\}.$
- 3. $\mathcal{L}(\emptyset) = \emptyset$.
- 4. $\mathcal{L}(R_1 + R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$ donde R_1 y R_2 son expresiones regulares.
- 5. $\mathcal{L}(R_1 \cdot R_2) = \mathcal{L}(R_1) \cdot \mathcal{L}(R_2)$ donde R_1 y R_2 son expresiones regulares.
- $6. \ \mathcal{L}(R_1^*) = \bigcup_{k=0}^{\infty} \mathcal{L}(R_1)^k$ donde R_1 es una expresión regular.

¿cuál es el lenguaje definido por las siguientes ExpReg?

$$\mathcal{L}((a \cdot b) \cdot (b \cdot a)) = \{abba\}$$

$$\mathcal{L}(a \cdot (b \cdot a) + b \cdot a + (a \cdot b) \cdot a) = \{aba, ba\}$$

Simplificación de expresiones regulares

Definición

- **R**₁ es equivalente a R_2 si, y solo si, $\mathcal{L}(R_1) = \mathcal{L}(R_2)$.
- Si R_1 es equivalente a R_2 , escribiremos $R_1 \equiv R_2$.

Lema

Los operadores de unión + y producto \cdot son asociativos.

$$(R_1 + R_2) + R_3 \equiv R_1 + (R_2 + R_3)$$
$$(R_1 \cdot R_2) \cdot R_3 \equiv R_1 \cdot (R_2 \cdot R_3)$$

Demostración: ejercicio.

Más ejemplos de expresiones regulares

¿cuál es el lenguaje definido por las siguientes ExpReg?

- $\mathcal{L}(a^* \cdot b \cdot a^*) = \text{todas las palabras con una sola } b.$
- $\mathcal{L}((a+b)^* \cdot b \cdot (a+b)^*) = \text{todas las palabras con una o más } b$'s.

Abreviaciones útiles para expresiones regulares

Definición

Usamos las siguientes abreviaciones de expresiones regulares:

$$R^{+} \equiv R \cdot R^{*}$$

$$R^{k} \equiv R \cdot \stackrel{k}{\cdots} \cdot R$$

$$R^{?} \equiv R + \epsilon$$

$$\Sigma \equiv a_{1} + \ldots + a_{n}$$

para $R \in ExpReg \ y \ \Sigma = \{a_1, \ldots, a_n\}.$

Más ejemplos de expresiones regulares

¿cuál es el lenguaje definido por las siguientes ExpReg?

- $\mathcal{L}(\Sigma^* \cdot b \cdot \Sigma^*)$ = todas las palabras con una sola b.
- $\mathcal{L}(b^* \cdot (a \cdot b^*)^5)$ = todas las palabras con 5 a's.
- $\mathcal{L}(a^* \cdot (b+c)^?)$ = todas las palabras de a's y terminadas en b o c.
- $\mathcal{L}((a \cdot b^+)^+) = \text{todas las palabras que empiezan con } a \text{ y}$ donde cada a esta seguida de al menos una b.

Más ejemplos de expresiones regulares

Defina una ExpReg para los siguientes lenguajes

- Todas las palabras sobre {a,b}
 cuya ante-penúltima letra es una a-letra.
- 2. Todas las palabras sobre $\{a, b\}$ con una cantidad par de a-letras.
- 3. Todas las palabras sobre $\{a, b\}$ con a lo mas un par de *a*-letras consecutivas.

Mapa actual de nuestros modelos de computación

¿son las ExpReg equivalentes a los lenguajes regulares?