METCS 248 HW#7

1) Fill in the following table so that $(\{x, y, z\}, *)$ forms a group.

*	x	y	z
\boldsymbol{x}	X	3	Z
y	35	2	X
z	3	え	3

Identify the identity element, and the inverses of x, y, and z.

2) Does [$\{0000, 0010, 1101, 1111\}, +_2$] form a subgroup of [$B^4, +_2$]? If yes, find all the cosets. ($+_2$: represents addition modulo 2, $B^4 = B \times B \times B \times B$ where \times is the Cartesian product, and $B = \{0, 1\}$).

$$\frac{|G|}{|H|} = 4 \quad \text{There exists } 4 \text{ cosets.}$$

$$0000 +_2 H = 20000, 0010, 1101, 11113$$

$$0001 +_2 H = 20001, 0011, 1100, 11103$$

$$0100 +_2 H = 20100, 0110, 1001, 10113$$

$$0101 +_2 H = 20100, 0111, 1000, 10103$$

$$0101, 1000, 10103$$

3) Check if the following is a homomorphism or an isomorphism: $f: [B^3, +_2] \rightarrow [Z_4, +_4]$ And f(x) = w(x), where w(x) is the weight of x i.e. the number of ones (1's) in the binary number x. (e.g. if x = 101, then w(x) = 2), $Z_4 = \{0, 1, 2, 3\}$, $+_4$: addition modulo 4. $(1 +_4 2 = 3, 3 +_4 3 = 2 \dots \text{etc.})$

Cardinality of
$$B^3$$
 is 8 and Z_4 is 4.

Therefore, no possibility of isomorphism.

Verification of homomorphism.

 $f(00|+20|1) = f(0|0) = 1$
 $f(00|+20|1) = 1+42 = 3$
 $f(00|+20|1) \neq f(0|0) + 4 = 6$

Therefore, the given function is not beginn the supplism

$$f(00|+2011) = f(010) = 1$$

 $f(00|+4f(011) = 1+42 = 3$
 $f(00|+2011) \neq f(001) + 4f(011)$
Therefore, the given function is
not homomorphism.

4) Let G be the set of all-nonzero real numbers and let $a * b = \frac{ab}{2}$. Show that (G,*) is an abelian group.

- 1) Structure? Yes, closure and unique.
- 2) Commutative? Yes. $\alpha*b = \frac{ab}{2} = \frac{ba}{2} = b*a$ 3) Associative? Yes. $(a*b)*c = \frac{ab}{2} = \frac{a}{2} = \frac{a \cdot bc}{2}$ = 01*(b*c)

- Yes, since it is a commutative group.

5) Let $S = \{a, b, c\}$ and $T = \{x, y, z\}$, and let [S, *] and [T, #] be defined as:

*	а	b	C
а	а	b	c
b	b	c	a
c	С	a	b

#	x	y	z
x	z	x	y
y	x	y	z
z	y	z	\boldsymbol{x}

Can you find an isomorphism between [S,*] and [T, #]?

6) Check if the following mappings form a homomorphism or an isomorphism from [Z, +] to [Z, +].

a)
$$f(x) = 5x$$

Homognorphism? Yes.
 $f(x*z) = f(x) * f(z)$
 $f(x) * f(z) = f(x+z) = f(x+z)$
 $f(x) * f(z) = f(x+z) = f(x+z)$
b) $g(x) = x + 1$
Homognorphism? No,
 $f(x*y) \neq f(x) * f(x) * f(x+z)$

c) =
$$5x$$
comognorphism? Yes.

F(X*3) = $F(X+3)$ = $F(X+3)$

F(X+3) = $F(X+3)$ = $F(X+3)$

F(X) # $F(X+3)$ = $F(X+3)$ = $F(X+3)$

We have a subjective now bijective.

 $F(X)$ = $F(X+3)$ = $F(X+3)$ = $F(X+3)$

F(x) # f(x) = 5x + 5y = 2x + 5y =

7) Can you find an isomorphism from [5Z, +] to [12Z, +]? 子(九)= 造ん