Assignment 1

Computational Intelligence, SS2020

Team Members				
Last name	First name	Matriculation Number		
Blöcher	Christian	01573246		
Bürgener	Max	01531577		

1 Maximum Likelihood Estimation of Model Parameters

• Analytical derivation for the Gaussian distribution:

$$p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2}}$$

The data is independent identically distributed (iid), therefore the likelihood function is the product of all individual likelihoods

$$P(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{[\bar{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2}}$$

To convert the product to a sum we apply the natural logarithm.

$$L(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = ln \left[\prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2}} \right]$$

$$L(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} \left[ln(\frac{1}{\sqrt{2\pi\sigma^2}}) - \frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2} \right]$$

Since we want to find the parameter σ^2 , which maximizes the probability of the distance, we derive $L(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p})$ and set it to zero.

$$L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} \left[ln(1) - \frac{1}{2} ln(2\pi\sigma^{2}) - \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{2\sigma^{2}} \right] \mid \frac{\partial}{\partial \sigma^{2}}$$

$$\frac{\partial}{\partial \sigma^{2}} L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} \left[-\frac{1}{\sigma^{2}} + \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{\sigma^{4}} \right] \stackrel{!}{=} 0$$

$$0 = \sum_{n=0}^{N-1} \left[-\frac{1}{\sigma^{2}} + \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{\sigma^{4}} \right]$$

$$\frac{N}{\sigma^{2}} = \sum_{n=0}^{N-1} \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{\sigma^{4}}$$

$$\sigma^{2} = \sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}$$

$$\frac{N}{\sigma^{2}} = \sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}$$

• Analytical derivation for the Exponential distribution:

$$p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \begin{cases} \lambda_i e^{-\lambda_i [\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, p)]} &, \tilde{d}_n(a_i, \mathbf{p}) \ge d(a_i, \mathbf{p}) \\ 0 &, \text{else} \end{cases}$$

$$L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} ln(\lambda_{i}) - \lambda_{i} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})] \mid \frac{\partial}{\partial \lambda_{i}}$$

$$\frac{\partial}{\partial \lambda_{i}} L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \frac{N}{\lambda_{i}} - \sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})] \stackrel{!}{=} 0$$

$$\frac{N}{\lambda_{i}} = \sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]$$

$$\lambda_{i} = \frac{N}{\sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]} , \tilde{d}_{n}(a_{i}, \mathbf{p}) \geq d(a_{i}, \mathbf{p})$$

2 Estimation of the Position

2.1 Least-Squares Estimation of the Position

• Analytical conversion of the ML estimation equation:

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmax}} \prod_{i=0}^{N_A-1} p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p})$$

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmax}} \ln \left[\prod_{i=0}^{N_A-1} p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) \right]$$

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmax}} \sum_{i=0}^{N_A-1} \ln \left(\frac{1}{\sqrt{2\pi\sigma_i^2}} \right) - \frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma_i^2}$$

Because in scenario 1 we only use Gaussian models for all anchors that were calibrated with the same distance to the reference position, we can assume that $\sigma_i^2 = \sigma^2 \,\forall i$. That means the ln-term can be neglected since it only shifts the value of the maximum by a constant but does not affect its position. Similarly $\frac{1}{2\sigma^2}$ can be omitted, as it is also just a scaling factor. Furthermore argmax $(-\dots)$ is equivalent to argmin (\dots) . Thus:

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmin}} \sum_{i=0}^{N_A-1} [\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2 = \hat{\mathbf{p}}_{LS}(n)$$

2.2 Gauss-Newton Algorithm for Position Estimation

• Analytical solution for the Jacobian matrix.

$$[J(p)]_{i,1} = \frac{\partial}{\partial x} \left[\tilde{d}_n(a_i, \mathbf{p}) - \sqrt{(x_i - x)^2 + (y_i - y)^2} \right]$$

$$[J(p)]_{i,1} = -\frac{[(-)2(x_i - x)]}{2 \cdot \sqrt{(x_i - x)^2 + (y_i - y)^2}}$$

$$[J(p)]_{i,1} = \frac{(x_i - x)}{\sqrt{(x_i - x)^2 + (y_i - y)^2}}$$

$$[J(p)]_{i,2} = \frac{(y_i - y)}{\sqrt{(x_i - x)^2 + (y_i - y)^2}}$$

	Scenario 1	Scenario 2		Scenario 3
		with exponential anchor	without exponential anchor	Scenario 3
Error mean μ_e	0.278	0.640	0.399	1.265
Error variance σ_e^2	0.022	0.275	0.054	0.939

Table 1: .

2.3 Numerical Maximum Likelihood Estimation of the Position

2.3.1 Single Measurement

• The numerical maximum likelihood estimate is computed by finding the maximum of the joint likelihood of all anchors evaluated within a 2D-grid enclosed by the anchors. Because of the i.i.d.-assumption the joint likelihood can be calculated as the product of all individual exponential likelihoods:

$$p(\tilde{\mathbf{d}}_n(\mathbf{p})|\mathbf{p}) = \begin{cases} \prod_{i=0}^{N_A - 1} p(\tilde{d}_n(a_i, \mathbf{p})|\mathbf{p}), & \text{if } \tilde{d}_n(a_i, \mathbf{p}) \ge d(a_i, \mathbf{p}) \ \forall i \\ 0 & \text{else} \end{cases}$$

Figure 1: $p(\tilde{\mathbf{d}}_0(\mathbf{p})|\mathbf{p})$ evaluated within a 2D-grid enclosed by the anchors.

• Because of its nonlinearity the joint likelihood function of the first sample n=0 has two local maxima (s. figure 1). If we used a gradient ascent algorithm with a random starting position, it would stop once it reaches any of them, possibly leading to a false estimation of

the position, if the found maximum is not global.

• The found maximum at $\mathbf{p}_{0,NML} = \begin{bmatrix} 2.5 \\ -5 \end{bmatrix}$ is not at the true position. Of Course That's Because...???

2.3.2 Multiple Measurements

	Least-Squares	Numerical Maximum Likelihood	Bayes
Error mean μ_e	1.265	0.915	0.680
Error variance σ_e^2	0.939	0.489	0.095

Table 2: Error-mean and -variance of Least-Squares-, Numerical Maximum Likelihood- and Bayes-Estimation.

- •
- •
- •

(a) Full view of scatter plot.

(b) Detailed view centered on $\mathbf{p_{true}}$.

Figure 2: Scatter plot of NML-estimated positions with Gaussian-contour.

 $\label{thm:continuous} \mbox{Figure 3: ECDF of Least-Squares-, Numerical Maximum Likelihood- and Bayes-Estimation.}$

(a) Full view of scatter plot.

(b) Detailed view centered on $\mathbf{p_{true}}.$

Figure 4: Scatter plot of Bayes-estimated positions with Gaussian-contour.