Online Appendix to

Harnessing Machine Learning for Real-Time Inflation Nowcasting

Richard Schnorrenberger $Kiel\ University$

Aishameriane Schmidt

Erasmus Universiteit Rotterdam,

Tinbergen Institute and De Nederlandsche Bank

Guilherme Valle Moura
Federal University of Santa Catarina

This version: January 2025

Contents

\mathbf{A}	Mixed-frequency framework in matrix form	2
В	Supplementary results	3

A Mixed-frequency framework in matrix form

For expositional simplicity, let us reduce the general multiple-predictors specification (1) to the single generic high-frequency predictor $x_t^{(w)}$ and neglect both the low-frequency predictors and seasonal dummies. From there, assume the latest data release for the target variable is associated with a given month t. Based on the high-frequency information set available up to the nowcast point, say t+1-h, and pre-sample information $\{\pi_0, x_0^{(w)}, x_{0-1/4}^{(w)}, \dots, x_{0-p/4}^{(w)}\}$, one can construct the nowcast for π_{t+1} at horizon h = j/w, with $j \in \{0, 1, 2, 3\}$, by using the following matrix representation for model estimation:

$$\begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \vdots \\ \pi_{t} \end{bmatrix} = \begin{bmatrix} 1 & \pi_{0} & x_{1-h}^{(w)} & x_{1-h-\frac{1}{4}}^{(w)} & x_{1-h-\frac{2}{4}}^{(w)} & \dots & x_{1-h-\frac{p}{4}}^{(w)} \\ 1 & \pi_{1} & x_{2-h}^{(w)} & x_{2-h-\frac{1}{4}}^{(w)} & x_{2-h-\frac{2}{4}}^{(w)} & \dots & x_{2-h-\frac{p}{4}}^{(w)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \pi_{t-1} & x_{t-h}^{(w)} & x_{t-h-\frac{1}{4}}^{(w)} & x_{t-h-\frac{2}{4}}^{(w)} & \dots & x_{t-h-\frac{p}{4}}^{(w)} \\ & & & & & & & & & & & & & & & & \\ \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \vdots \\ \beta_{p+1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{t} \end{bmatrix}$$
(A1)

For example, suppose we stand at day 15 of December and we want to construct the nowcast for π_{Dec} assuming a general high-frequency lag order p. In this case, the forecast horizon is h = 2/4 and we estimate the model using monthly data until November and weekly data until 15 November. To account for the lags p, the last high-frequency observations in (A1) will respectively be associated with 15 November, 8 November, 31 October, 22 October, 15 October, and so on up to the corresponding lag-length p. From there, the nowcast for π_{Dec} is constructed using the estimated coefficients and all the low- and high-frequency information available until 15 December.

Ultimately, note that (A1) makes explicit that the general prediction model is still written at the monthly frequency but accounting for the w high-frequency time increments within each common period t. The nowcast for the inflation rate at periods $t+1,\ldots,T$ can then be updated regularly using the high-frequency data increments that become available after t and well before official releases of the target inflation rate.

B Supplementary results

Table B1: RMSE: absolute values

Horizon	SPF		Shrinkage-based methods				Tree-based methods				Naive Models	
1101111011	Median	Top 5	LASSO	Ridge	Enet	sg-LASSO	RF	LLF	BART	LASSO-LLF	AR	RW
day 8	0,251	0,235**	0,215***	0,222**	0,218**	0,239	0,257	0,285	0,247	0,241	0,341	0,460
day 15	0,196	0,199	0,184	0,189	0,185	0,201	0,233	0,214	0,218	0,206	0,341	0,378
day 22	0,143	0,136**	0,128**	0,135	0,128**	0,164	0,191	0,155	0,173	0,132	0,341	0,378
End-of-month	0,119	0,115	0,110*	0,117	0,110*	0,113	0,167	0,142	0,154	0,145	0,341	0,378

Notes: The table reports the RMSE for each competing model. The models are described in Table 2. The AR column denotes a prediction from an autoregressive model or order 1 and the RW column denotes a random walk prediction. Results for the Diebold and Mariano (1995) test in the event of outperformance relative to the median of the SPF predictions benchmark are indicated by the symbols * (1% level), ** (5% level) and *** (10% level).

Figure B1: CUMSFE: tree-based methods versus the SPF benchmark

Figure B2: Fluctuation test: ML competing models versus the SPF benchmark

Notes: This Figure reports the fluctuation test from Giacomini and Rossi (2010) based on the squared loss differential between a machine learning method and SPF nowcasts. Areas between the horizontal dashed lines correspond to the 90% confidence interval of the two-sided statistical test. We used as window parameters of the test $\mu=0.1$ and five for the number of lags in the variance of the DM test.

Figure B3: Heatmap of coefficient estimates using LASSO on the SPF nowcasting errors

Notes: This Figure depicts heatmaps of LASSO-fitted coefficients using SPF nowcasting errors as the dependent variable. Empty cells represent a coefficient estimate equal to zero, and thus a predictor that has not been selected at the estimation round t in the evaluation period.