Number Theory 1: Mods and Divisibility

Alison Miller

June 9, 2010

(based on handouts of Melanie Wood and other MOP instructors)

Useful facts

1. Divisibility:

- If $a \mid b$ then $|a| \leq |b|$. Inequalities are useful!
- Division and GCDs: Euclidean algorithm, ax + by = k(a, b).
- For any positive integers a and b, we can write a = cx, b = cy where c = (a, b) and (x, y) = 1.

2. Primes

- $p \mid ab$ iff $p \mid a$ or $p \mid b$.
- Unique Factorization.
- Infinitely many primes.
- Bertrand's Postulate: there is a prime between n and 2n inclusive.
- Dirichlet's theorem: Infinitely many primes in arithmetic progressions where (a, d) = 1.

3. Modular Arithmetic

- Addition, Subtraction, Multiplication, and Division
- Multiplicative Inverses & Complete Residue Sets
- Powers and Fermat's Little Theorem, ϕ and Euler's extension
- Chinese Remainder Theorem
- $\mathbb{Z}/p\mathbb{Z}$ is a finite field.
- $x^2 = -1 \mod p$ has a solution iff $p \equiv 1 \pmod{4}$.
- Quadratic Reciprocity.

Examples

- 1. Prove that $x^2 + y^2 + z^2 = 7w^2$ has no solutions in integers.
- **2** (Czech-Polish-Slovak '02). Let n be a positive integer and p a prime such that n divides p-1 and p divides n^3-1 . Prove that 4p-3 is a square.
- **3** (ELMO '00). Let a be a positive integer and let p be a prime. Prove that there exists an integer m such that

$$m^{m^m} \equiv a \pmod{p}$$
.

4. Let f_n be the *n*th Fibonacci number. (We use the convention $f_0 = 0$, $f_1 = 1$.) Prove that $gcd(f_n, f_m) = f_{gcd(m,n)}$.

Problems

5 (APMO 2002). Find all positive integers a and b such that

$$\frac{a^2+b}{b^2-a} \text{ and } \frac{b^2+a}{a^2-b}$$

are both integers.

- **6** (Russia '01). Find all primes p and q such that $p + q = (p q)^3$.
- 7 (Russia '01). Let a and b be distinct positive integers such that ab(a+b) is divisible by a^2+ab+b^2 : Prove that $|a-b| > \sqrt[3]{ab}$.
- **8** (Bulgaria '07). Let p = 4k + 3 be a prime number. Find the number of different residues modulo p of $(x^2 + y^2)^2$, where gcd(x, p) = gcd(y, p) = 1.
- **9** (MOP 2001). How many ordered quadruples (x, y, z, w) are there with

$$x^2 + y^2 = z^3 + w^3 \pmod{37}$$
?

- 10 (Japan '01). Let p be a prime number and m a positive integer. Show that there exists a positive integer n such that there exist m consecutive zeroes in the decimal representation of p^n .
- 11 (Bulgaria '01). Let p be a prime number congruent to 3 modulo 4, and consider the equation

$$(p+2)x^2 - (p+1)y^2 + px + (p+2)y = 1.$$

Prove that this equation has infinitely many solutions in positive integers, and show that if $(x, y) = (x_0, y_0)$. is a solution of the equation in positive integers, then $p \mid x_0$.

- 12. Natural numbers a, b and c are pairwise distinct and satisfy a|b+c+bc, b|c+a+ca, c|a+b+ab. Prove that at least one of the numbers a, b, c is not prime.
- 13 (Bulgaria 2001). Find all triples of positive integers (a, b, c) such that $a^3 + b^3 + c^3$ is divisible by a^2b , b^2c , and c^2a .

- 14 (IMO 2000). Determine if there exists a number n such that n has exactly 2000 prime divisors and $2^n + 1$ is divisible by n.
- 15 (MOP 2004). Let m and n be positive integers such that 2^m divides the number n(n+1). Prove that 2^{2m-2} divides the number $1^k + 2^k + ... + n^k$ for all positive odd integers k with k > 1.
- **16** (CGMO '03). Let n be a positive integer. Prove that at most half the divisors of n have last digit equal to 3.
- 17. Determine all positive integers n for which there exists an integer m such that $2^n 1$ is a divisor of $m^2 + 9$.
- **18.** Let a_1, a_2, \ldots, a_n be positive integers. Show that

$$\prod_{i < j} \frac{a_i - a_j}{i - j}$$

is an integer.

- 19 (IMO 2003). Determine all pairs of positive integers (a,b) such that $\frac{a^2}{2ab^2-b^3+1}$ is a positive integer.
- **20** (China, 2002). Sequence $\{a_n\}$ satisfies: $a_1 = 3$, $a_2 = 7$, $a_n^2 + 5 = a_{n-1}a_{n+1}$, $n \ge 2$. If $a_n + (-1)^n$ is prime, prove that there exists a nonnegative integer m such that $n = 3^m$.