Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

graficzny © CKE 2013	UZUP	EŁNIA ZDAJĄCY	Miejsce
	KOD	PESEL	Miejsce na naklejkę z kodem
Układ			

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

11 MAJA 2020

Godzina rozpoczęcia: 14:00

WYBRANE:

•••••	(środowisko)
•••••	(kompilator)
•••••	(program użytkowy)

Czas pracy: 75 minut

Liczba punktów do uzyskania: 20

MIN-P1 **1**P-202

Zadanie 1. Liczby

Rozważ poniższy algorytm

Specyfikacja:

```
Dane:
```

n — liczba całkowita dodatnia
 T[1..n] – tablica liczb całkowitych dodatnich
 a — liczba całkowita dodatnia

Wynik:

s – liczba całkowita równa

Algorytm:

```
s \leftarrow 0

i \leftarrow 1

dopóki i \le n wykonuj

jeśli T[i] = a to

dopóki i \le n wykonuj

i \leftarrow i + 1

s \leftarrow s + T[i]

i \leftarrow i + 1
```

Zadanie 1.1. (2 pkt)

Podaj wartości zmiennych s oraz i po wykonaniu powyższego algorytmu dla liczby a = 6, n = 9 i tablicy T = [1, 5, 4, 2, 6, 3, 2, 7, 3].

Miejsce na obliczenia

Odpowiedź:

i =

s =

Zadanie 1.2. (2 pkt)

Uzupełnij specyfikację algorytmu podaną w zadaniu 1. – wpisz odpowiednią informację w miejsce kropek.

Zadanie 1.3. (2 pkt)	
Podaj przykład tablicy $T[110]$ oraz liczby a , tak aby wynikiem działania algorytmu t $s = 2019$.	było
	,
	· • • • • •

	Nr zadania	1.1.	1.2.	1.3.
Wypełnia	Maks. liczba pkt.	2	2	2
egzaminator	Uzyskana liczba pkt.			

Zadanie 2. Algorytm

Trzy państwa: Oktolandia, Tercjolandia i Kwintolandia uruchomiły połączenia lotnicze pomiędzy swoimi stolicami. Połączenia realizowane są przez linie lotnicze OKTA, TERCJA i KWINTA. Cena biletu lotniczego na tej samej trasie może być różna, zależnie od linii lotniczej, która oferuje połączenie. Ta cena jest zapisywana w systemie liczbowym obowiązującym w kraju, do którego linie należą:

- w Oktolandii w systemie ósemkowym,
- w Tercjolandii w systemie trójkowym,
- w Kwintolandii w systemie piątkowym.

Jeśli wykupimy bilet na lot ze stolicy Tercjolandii do stolicy Kwintolandii, który obsługiwany jest przez linie lotnicze TERCJA, zapłacimy za bilet 2210 w walucie Tercjolandii. Natomiast jeśli wykupimy lot na tej samej trasie, ale obsługiwany przez linie lotnicze KWINTA, to w walucie Kwintolandii zapłacimy 321.

Zadanie 2.1. *(2 pkt)*

Podaj ceny biletów ze stolicy Tercjolandii do stolicy Kwintolandii, oferowanych przez linie TERCJA i KWINTA, w systemie ósemkowym.

Cena biletu na przelot liniami TERCJA w systemie ósemkowym
Cena hiletu na przelot liniami KWINTA w systemie ósemkowym

Zadanie 2.2. (2 pkt)

Oblicz różnicę między cenami biletów linii KWINTA i TERCJA. Różnicę zapisz w systemach liczenia właściwych dla krajów będących właścicielami linii, czyli – odpowiednio – piątkowym i trójkowym.

W/ k	Tazinto	Jandii	różnica to

W Terciolandii różnica to	
---------------------------	--

	Nr zadania	2.1.	2.2.
Wypełnia	Maks. liczba pkt.	2	2
egzaminator	Uzyskana liczba pkt.		

Zadanie 2.3. (4 pkt)

Zapisz (w postaci listy kroków, schematu blokowego lub w wybranym języku programowania) algorytm, który pozwoli przeliczyć cenę biletów (liczbę k), zapisaną systemie pozycyjnym o podstawie p, na jej postać w systemie ósemkowym.

Specyfikacja algorytmu:

Dane:

- p podstawa systemu liczenia, będąca liczbą naturalną z przedziału [2, 9]
- n liczba naturalna taka, że n + 1 jest liczbą cyfr w zapisie liczby k w systemie o podstawie p
- a_n, a_{n-1}, \dots, a_0 kolejne cyfry liczby k (w systemie p), w kolejności od cyfry najbardziej znaczącej

Wynik:

- m liczba naturalna taka, że m+1 jest liczbą cyfr w zapisie liczby k w systemie ósemkowym
- b_m, b_{m-1}, \dots, b_0 kolejne cyfry liczby k (w systemie ósemkowym), w kolejności od cyfry najbardziej znaczącej

Zadanie 3. Test

W zadaniach od 3.1 do 3.6. zaznacz kółkiem jedną prawidłową odpowiedź. Jeśli popełnisz błąd, skreśl błędną odpowiedź znakiem X i zaznacz kółkiem poprawną.

Zadanie 3.1. (1 pkt)

Rozróżniamy trzy podstawowe topologie połączeń komputerów w sieci:

- A. magistrala, pierścień i gwiazda.
- B. LAN, WAN, MAN.
- C. "każdy z każdym", "klient serwer", "serwer klient".
- **D.** ARPANET, BITNET, SIPRNet.

Zadanie 3.2. (1 pkt)

Jednostka gęstości "dpi" określa

- A. liczbę bitów na cal.
- **B.** liczbę kropek (punktów) na cal wydruku.
- C. liczbę znaków alfanumerycznych na cal.
- D. liczbę bajtów na cal.

Zadanie 3.3. (1 pkt)

Liczba binarna 111010101 to w systemie dziesiętnym

- **A.** 481.
- **B.** 467.
- **C.** 469.
- **D.** 471.

Zadanie 3.4. (1 pkt)

Jeżeli w arkuszu kalkulacyjnym komórka A4 zawiera liczbę 10, a komórka A5 – liczbę 12, to wpisanie formuły

=JEŻELI(A4<10; A4/2; JEŻELI(A5<>12; 2; MOD(A4;A5)))

w komórce A6 poskutkuje wyświetleniem liczby

- **A.** 2.
- **B.** 5.
- **C.** 10.
- **D.** 8.

	Nr zadania	2.3.	3.1.	3.2.	3.3.	3.4.
Wypełnia	Maks. liczba pkt.	4	1	1	1	1
egzaminator	Uzyskana liczba pkt.					

Zadanie 3.5. (1 pkt)

Ploter to

- A. urządzenie elektroniczne, pozwalające nakładać na siebie obraz cyfrowy i analogowy.
- **B.** urządzenie wskazujące, służące przede wszystkim do rysowania elementów graficznych na komputerze.
- C. urządzenie umożliwiające druk 3D.
- **D.** komputerowe urządzenie peryferyjne, służące do pracy z dużymi płaskimi powierzchniami, mogące nanosić obrazy, wycinać wzory, grawerować.

Zadanie 3.6. (1 pkt)

Dla tablicy A [1..n] algorytm:

dla
$$j=1,2,...,n-1$$
:
dla $i=1,2,...,n-1$:
jeśli $A[i] > A[i+1]$ to $A[i] \leftrightarrow A[i+1]$

(gdzie ↔ oznacza zamianę wartości elementów)

opisuje algorytm sortowania

- A. szybkiego.
- **B.** przez wybór.
- C. przez wstawianie.
- D. bąbelkowego.

	Nr zadania	3.5.	3.6.
Wypełnia	Maks. liczba pkt.	1	1
egzaminator	Uzyskana liczba pkt.		

BRUDNOPIS (nie podlega ocenie)