Robust High-Resolution Video Matting with Temporal Guidance

Shanchuan Lin^{1*} Linjie Yang² Imran Saleemi² Soumyadip Sengupta¹ University of Washington ²ByteDance Inc.

{linsh, soumya91}@cs.washington.edu {linjie.yang, imran.saleemi}@bytedance.com

Background Matting: The World is Your Green Screen

Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman
University of Washington

Real-Time High-Resolution Background Matting

Shanchuan Lin* Andrey Ryabtsev* Soumyadip Sengupta
Brian Curless Steve Seitz Ira Kemelmacher-Shlizerman
University of Washington

{linsh, ryabtsev, soumya91, curless, seitz, kemelmi}@cs.washington.edu

Our Zoom plugin with new background

CVPR 2020

CVPR 2021 (oral)

Zoom input and background shot

Zoom with new background

Image Matting

$$I_i = \alpha_i F_i + (1 - \alpha_i) B_i \quad \alpha_i \in [0, 1].$$

$$I_i = \alpha_i F_i + (1 - \alpha_i) B_i \quad \alpha_i \in [0, 1].$$

Guidance

• Trimap

• Background Image

Mask

Method without guidance

- For specific objects
 - Semantic information
 - Detail edge information

Video Matting

- Faster
 - End-to-end
 - More applicable scenarios
 - Low complexity of objects
- Less monitoring information
 - Static background image
 - First frame trimap
 - No guidance
- Adapt to higher resolution

Main Difficulties

• How to aggregate timing information between video frames?

How to achieve end-to-end real-time matting?

How to meet the high-resolution needs of matting?

Network Structure

Bottleneck Block

Upsampling Block

Output Block

ConvGRU

$$z_{t} = \sigma(w_{zx} * x_{t} + w_{zh} * h_{t-1} + b_{z})$$

$$r_{t} = \sigma(w_{rx} * x_{t} + w_{rh} * h_{t-1} + b_{r})$$

$$o_{t} = tanh(w_{ox} * x_{t} + w_{oh} * (r_{t} \odot h_{t-1}) + b_{o})$$

$$h_{t} = z_{t} \odot h_{t-1} + (1 - z_{t}) \odot o_{t}$$

- GRU
 - RNN
 - LSTM

- ConvGRU
 - Replace the linear layer with convolution layer

Deep Guided Filter

Deep Guided Filter

Fast End-to-End Trainable Guided Filter


```
mean_x = self.box_filter(base_x)
mean_y = self.box_filter(base_y)
cov_xy = self.box_filter(base_x * base_y) - mean_x * mean_y
var_x = self.box_filter(base_x * base_x) - mean_x * mean_x

A = self.conv(torch.cat([cov_xy, var_x, base_hid], dim=1))
b = mean_y - A * mean_x

H, W = fine_src.shape[2:]
A = F.interpolate(A, (H, W), mode='bilinear', align_corners=False)
b = F.interpolate(b, (H, W), mode='bilinear', align_corners=False)
out = A * fine_x + b
```

Training Datasets

- Matting Datasets
 - VideoMatte240K 484 video, 475/4/5
 - Distinction646 human part
 - Composition1K human part 420/15/21
- Semantic Segmentation Datasets
 - YoutubeVIS 2985 human containing
 - COCO 64,111 human images
 - SPD 5711 human images
- Data Augmentation
 - Matting data augmentation
 - BGM V2 settings
 - Temporal augmentation
 - Motion augmentation

Motion Augmentation

• Easing Function

Training Procedures

- Stage 1
 - Without DGF
 - 15 Epochs
 - T=15 (data size is like (B, T, C, H, W))
 - LR backbone is 1e-4, rest is 2e-4
 - Train on VM training set (low resolution (512, 256))
- Stage 2
 - 2 more Epochs
 - T=50 (data size is like (B, T, C, H, W))
 - LR backbone is 5e-5, rest is 1e-4
 - Others follows Stage 1
- Stage 3
 - With DGF
 - 1 epoch
 - T=40 for low resolution and T=6 for high resolution(2048, 1024)
 - LR DGF is 2e-4, rest is 1e-5
- Stage 4
 - With DGF
 - 5 epochs
 - Image datasets

Loss Function

- Alpha matte loss
 - L1 loss
 - Pyramid Laplacian Loss
 - Temporal coherence loss
- Foreground loss
 - L1 loss
 - Temporal coherence loss
- Semantic loss
 - BCE loss

$$\mathcal{L}_{l1}^{\alpha} = ||\alpha_{t} - \alpha_{t}^{*}||_{1}$$

$$\mathcal{L}_{lap}^{\alpha} = \sum_{s=1}^{5} \frac{2^{s-1}}{5} ||L_{pyr}^{s}(\alpha_{t}) - L_{pyr}^{s}(\alpha_{t}^{*})||_{1}$$

$$\mathcal{L}_{tc}^{\alpha} = ||\frac{d\alpha_{t}}{dt} - \frac{d\alpha_{t}^{*}}{dt}||_{2}$$

$$\mathcal{L}_{l1}^{F} = ||(a_{t}^{*} > 0) * (F_{t} - F_{t}^{*})||_{1}$$

$$\mathcal{L}_{tc}^{F} = ||(a_{t}^{*} > 0) * (\frac{dF_{t}}{dt} - \frac{dF_{t}^{*}}{dt})||_{2}$$

$$\mathcal{L}^{M} = \mathcal{L}_{l1}^{\alpha} + \mathcal{L}_{lap}^{\alpha} + 5\mathcal{L}_{tc}^{\alpha} + \mathcal{L}_{l1}^{F} + 5\mathcal{L}_{tc}^{F}$$

$$\mathcal{L}^{S} = S_{t}^{*}(-\log(S_{t})) + (1 - S_{t}^{*})(-\log(1 - S_{t}))$$

Pyramid Laplacian Loss

$$\mathcal{L}_{lap}^{\alpha} = \sum_{s=1}^{5} \frac{2^{s-1}}{5} ||L_{pyr}^{s}(\alpha_t) - L_{pyr}^{s}(\alpha_t^*)||_1$$

Evaluation

Dataset	Method	SAD	MSE	Grad	dtSSD
VM 1920×1080	MODNet + FGF Ours	1	5,54 1.93		3.08 1.90
D646	MODNet + FGF Ours	1	6.13 4.28		2.19 1.64
AIM 2048×2048	MODNet + FGF Ours		10.10 9.01		2.60 1.71

Table 2: High-resolution alpha comparison. Ours is better than MODNet with Fast Guided Filter (FGF).

				Alpha	l		FG
Dataset	Method	MAD	MSE	Grad	Conn	dtSSD	MSE
	DeepLabV3	14.47	9.67	8.55	1.69	5.18	
	FBA	8.36	3.37	2.09	0.75	2.09	
VM	BGMv2	25.19	19.63	2.28	3.26	2.74	
512×288	MODNet	9.41	4.30	1.89	0.81	2.23	
	Ours	6.08	1.47	0.88	0.41	1.36	
D646 512×512	DeepLabV3	24.50	20.1	20.30	6.41	4.51	
	FBA	17.98	13.40	7.74	4.65	2.36	5.84
	BGMv2	43.62	38.84	5.41	11.32	3.08	2.60
	MODNet	10.62	5.71	3.35	2.45	1.57	6.31
	Ours	7.28	3.01	2.81	1.83	1.01	2.93
AIM 512×512	DeepLabV3	29.64	23.78	20.17	7.71	4.32	
	FBA	23.45	17.66	9.05	6.05	2.29	6.32
	BGMv2	44.61	39.08	5.54	11.60	2.69	3.31
	MODNet	21.66	14.27	5.37	5.23	1.76	9.51
	Ours	14.84	8.93	4.35	3.83	1.01	5.01

Table 1: Low-resolution comparison. Our alpha prediction is better than all others. Our foreground prediction is behind BGMv2 but outperforms FBA and MODNet. Note that FBA uses synthetic trimap from DeepLabV3; BGMv2 only sees ground-truth background from the first frame; MODNet does not predict foreground so it is evaluated on the input image.

Speed & Size

Method	Parameters (Million)	Size (MB)		
DeepLabV3	60.996	233.3		
FBA	34.693	138.8		
BGMv2	5.007	19.4		
MODNet	6.487	25.0		
Ours	3.749	14.5		

Table 3: Ours is lighter than all compared methods. Size is measured on FP32 weights.

Resolution	s	Method	FPS (GMACs*
512×288		DeepLabV3 + FBA	12.3	205.77
	1	BGMv2	152.5	8.46
	1	MODNet	104.9	8.80
		Ours	131.9	4.57
1920×1080		BGMv2	70.6	9.86
	0.25	MODNet + FGF	100.3	7.78
		Ours	104.2	4.15
		BGMv2	26.5	17.04
3840×2160	0.125	MODNet + FGF	88.6	7.78
		Ours	76.5	4.15

Table 4: Model performance comparison. *s* denotes the down-sample scale. Models are converted to TorchScript and optimized before testing (BatchNorm fusion *etc.*). FPS is measured as FP32 tensor throughput on an Nvidia GTX 1080Ti GPU. GMACs is a rough approximation.

• Temporal Information

• Role of Segmentation Training Objective

Role of Deep Guided Filter

Role of dynamic background

• Temporal Information

Figure 4: Average alpha MAD over time on VM without DGF. Our metric improves over time and is stable, showing that temporal information improves quality and consistency.

• Role of Segmentation Training Objective

Method	mIOU
DeepLabV3 MobileNetV3 + LR-ASPP	68.93 58.58
Ours (alpha output, no seg objective)	38.24
Ours (alpha output) Ours (segmentation output)	60.88 61.50

Table 5: Segmentation performance on COCO validation set. Training with segmentation objective makes our method robust while training only with pre-trained weights regresses.

• Role of Deep Guided Filter

Method	Params	FPS	MAD	MSE	Grad	dtSSD
Ours (FGF) Ours	3.748 3.749	109.4	8.70 8.67	4.13	31.44	1.89 1.64
Ours	3.749	104.2	0.07	4.20	30.00	1.04

Table 6: Comparing switching DGF to FGF on D646. Parameters are measured in millions. FPS is measured in HD.

• Static vs. Dynamic Backgrounds

Background	Method	MAD	MSE	Grad	dtSSD
Static	BGMv2* MODNet + FGF Ours	11.04	0.32 5.42 1.07	15.80	1.33 3.10 1.84
Dynamic	BGMv2 MODNet + FGF Ours	11.23	37.05 5.65 2.80	14.79	4.61 3.06 1.96

Table 7: Comparing VM samples on static and dynamic backgrounds. Ours does better on static backgrounds but can handle both cases. Note that BGMv2 receives ground-truth static backgrounds, but in reality the backgrounds have misalignment.