代数闭域上一类齐次多项式的可约性

戚天成 ⋈

复旦大学 数学科学学院

2024年6月5日

设 \mathbb{R} 是代数闭域, 正整数 $n \geq 2$, 这份笔记的目的是记录下述观察的证明:

对任给 $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{k}$, $y^n + \alpha_1 x y^{n-1} + \cdots + \alpha_{n-1} x^{n-1} y + \alpha_n x^n$ 是 $\mathbb{k}[x, y]$ 中可约多项式.

更进一步, 如果设 $c_1, ..., c_n \in \mathbb{R}$ 是多项式 $t^n + \alpha_1 t^{n-1} + \cdots + \alpha_{n-1} t + \alpha_n$ 在 \mathbb{R} 中的根, 则有

$$y^{n} + \alpha_{1}xy^{n-1} + \dots + \alpha_{n-1}x^{n-1}y + \alpha_{n}x^{n} = \prod_{i=1}^{n}(y - c_{i}x).$$

下面介绍的绝妙证明方法来自黄逸敏: 沿用前面的记号, 这时在多项式代数 &[t] 中有分解

$$t^{n} + \alpha_{1}t^{n-1} + \dots + \alpha_{n-1}t + \alpha_{n} = (t - c_{1})(t - c_{2}) \cdots (t - c_{n}).$$

考虑 $y/x \in \mathbb{k}(x,y)$, 对上式作赋值 t = y/x 得到

$$(\frac{y}{x})^n + \alpha_1(\frac{y}{x})^{n-1} + \dots + \alpha_{n-1}(\frac{y}{x}) + \alpha_n = (\frac{y}{x} - c_1)(\frac{y}{x} - c_2) \cdots (\frac{y}{x} - c_n).$$

对上式等号两边乘上 x^n , 得到

$$y^{n} + \alpha_{1}xy^{n-1} + \dots + \alpha_{n-1}x^{n-1}y + \alpha_{n}x^{n} = \prod_{i=1}^{n}(y - c_{i}x).$$

我们把刚才的讨论记录为

Proposition 1. 设 \mathbb{k} 是代数闭域,正整数 $n,m \geq 2$, $\alpha_1,\alpha_2,...,\alpha_n \in \mathbb{k}$, 并设 $c_1,...,c_n \in \mathbb{k}$ 是多项式 $t^n + \alpha_1 t^{n-1} + \cdots + \alpha_{n-1} t + \alpha_n$ 在 \mathbb{k} 中的根. 那么在多项式代数 $\mathbb{k}[x_1,x_2,...,x_m]$ 中有

$$x_2^n + \alpha_1 x_1 x_2^{n-1} + \dots + \alpha_{n-1} x_1^{n-1} x_2 + \alpha_n x_1^n = \prod_{i=1}^n (x_2 - c_i x_1).$$

特别地, 在 $\mathbb{k}[x_1, x_2, ..., x_m]$ 中 $(x_2^n + \alpha_1 x_1 x_2^{n-1} + \cdots + \alpha_{n-1} x_1^{n-1} x_2 + \alpha_n x_1^n)$ 不是素理想.

作为[命题1]的应用, 我们来计算[BG03, 3.2 Remark]中考虑的多项式 Poisson 代数的 Poisson 素谱.

Corollary 1 ([BG03]). 设 \mathbb{R} 是特征为零的代数闭域, 考虑 $C = \mathbb{R}[x,y,z]$ 上由

$$\{x,y\} = 0, \{x,z\} = x, \{y,z\} = y$$

所定义出的 Poisson 结构 $(C, \{-, -\})$. 那么 C 的 Poisson 素谱由以下形式的素理想构成:

$$0, (x - \alpha y), (y), (x, y), (x, y, z - \beta), \ \text{ if } \ \alpha, \beta \in \mathbb{k}.$$

Proof. 根据 [Dix77, Lemma 3.3.2] 以及 C 的仿射性, C 的 Poisson 素理想就是素 Poisson 理想. 设 $\alpha, \beta \in \mathbb{k}$, 易计算验证 $0, (x - \alpha y), (y), (x, y)$ 以及 $(x, y, z - \beta)$ 均为素 Poisson 理想. 设 $P \in \operatorname{Spec} C$, 我们说明 P 只可能是 $0, (x - \alpha y), (y), (x, y), (x, y, z - \beta)$ 中的某个 (其中 $\alpha, \beta \in \mathbb{k}$). 下面主要分 x 是否在 P 中这两种情况讨论.

Case 1. 设 $x \in P$, 我们说明 P = (x) 或 (x,y) 或存在 $\beta \in \mathbb{R}$ 使得 $P = (x,y,z-\beta)$. 假设 $P \supsetneq (x)$, 那么 P/(x) 是 $\mathbb{R}[x,y,z]/(x) \cong \mathbb{R}[y,z]$ 的素理想,将 $\mathbb{R}[y,z] = \mathbb{R}[z][y]$ 视作 P.I.D. 上一元多项式环,那么由 P.I.D. 上多项式环的素理想的刻画(例如见 [AK13, Theorem 2.20]),非极大的非零素理想是某个不可约多项式生成的主理想. 因此当非零素理想 P/(x) 不是极大理想时,存在不可约多项式 $f \in \mathbb{R}[y,z]$ 使得 P/(x) = (f). 注意 $\{f,z\} = y(\partial f/\partial y)$,所以由 f 整除 $\{f,z\}$ (注意 (x) 是 f 的 Poisson 理想,所以自然诱导 f f Poisson 结构),f 是不可约多项式以及 f charf = 0 得到 f deg f = 1. 于是 f = f

Case 2. 设 $x \notin P$, 我们说明 P = 0 或 (y) 或存在 $\alpha \neq 0 \in \mathbb{R}$ 使得 $P = (x - \alpha y)$. 不妨设 $P \neq 0$. 注意到对任何 $f \in P$ 有 $\{x, f\} = x(\partial f/\partial z) \in P$, 因此 $x \notin P$ 保证了对所有 $f \in P$ 有 $\partial f/\partial z \in P$. 对每个 P 中多项式 f = f(x, y, z), 总可表达为 $f = a_0(x, y) + a_1(x, y)z + \cdots + a_s(x, y)z^s$ 的形式, 其中 $a_j(x, y) \in \mathbb{R}[x, y]$, $s \in \mathbb{N}$. 反复利用 $f \neq F$ z 的偏导数在 P 中可知 $a_0(x, y), \dots, a_s(x, y) \in P$. 这一观察说明 P 的生成元集总可选取在 $\mathbb{R}[x, y]$ 中. 因此只要确定了 $P \cap \mathbb{R}[x, y]$ 的生成元集,那么该生成元集在 C 中生成的理想就是 P. 易知 $P \cap \mathbb{R}[x, y]$ 是 $\mathbb{R}[x, y]$ 的素理想,同样由 P.I.D. 上多项式环的素理想的刻画,当 $P \cap \mathbb{R}[x, y]$ 不是极大理想时必定是某个不可约多项式生成的主理想. 当 $P \cap \mathbb{R}[x, y]$ 是极大理想时,存在 $\alpha, \beta \in \mathbb{R}$ 使得 $P \cap \mathbb{R}[x, y] = (x - \alpha, y - \beta)$,于是 $P = (x - \alpha, y - \beta)$. 现在 $\{x - \beta, z\} = x \in P$,这与假设矛盾。所以当 $x \notin P$ 时, $P \cap \mathbb{R}[x, y]$ 不是 $\mathbb{R}[x, y]$ 的极大理想. 于是由前面的讨论知存在 $\mathbb{R}[x, y]$ 中不可约多项式 f 使得 P = (f). 将 f = f(x, y) 写作

$$f = a_0(x) + a_1(x)y + \dots + a_s(x)y^s, a_i(x) \in \mathbb{k}[x], s \in \mathbb{N}, a_s(x) \neq 0.$$

至此我们得到 C 任何 Poisson 理想来自 $0, (x-\alpha y), (y), (x,y), (x,y,z-\beta),$ 其中 $\alpha, \beta \in \mathbb{R}$, 中的一类. \square

Remark 1. 在 [BG03, 3.2 Remark] 给出的 Poisson 素谱描述中遗漏了形如 $(x, y, z - \beta), \beta \in \mathbb{R}$ 的素理想.

Hilbert 零点定理使得我们能够把握代数闭域 \mathbb{R} 上多项式代数 $\mathbb{R}[x,y,z]$ 的极大谱,于是我们能够在 [推论1] 基础上进一步来计算其中的 Poisson 代数的 Poisson 本原理想 (这里要求 char $\mathbb{R}=0$). 固定 $C=\mathbb{R}[x,y,z]$ 上由 [推论1] 条件定义的 Poisson 结构,任何 $\mathfrak{m}\in\max \operatorname{Spec} C$ 形如 $(x-\alpha_1,y-\alpha_2,z-\alpha_3)$,其中 $\alpha_1,\alpha_2,\alpha_3\in\mathbb{R}$. 我们把 \mathfrak{m} 包含的 Poisson 本原理想记作 $\mathcal{P}(\mathfrak{m})$, \mathfrak{m} 所在的辛核记作 $\mathscr{C}(\mathfrak{m})$.

Case 1. 当 $\alpha_1 \in \mathbb{k}^{\times}$ 时, $x \notin \mathcal{P}(\mathfrak{m})$, 所以由 $\mathcal{P}(\mathfrak{m})$ 是素 Poisson 理想知 $\mathcal{P}(\mathfrak{m})$ 只可能是 0 或 (y) 或 $(x - \alpha y)$, 这 里 $\alpha \in \mathbb{k}^{\times}$. 由 $\mathcal{P}(\mathfrak{m})$ 的定义知 $\mathcal{P}(\mathfrak{m}) \neq 0$. 所以当进一步 $\alpha_2 \in \mathbb{k}^{\times}$ 时, $\mathcal{P}(\mathfrak{m}) = (x - \alpha_1 y / \alpha_2)$. 否则, 即 $\alpha_2 = 0$ 时, $\mathcal{P}(\mathfrak{m}) = (y)$ (否则, 由 $y \in \mathfrak{m}$ 得到 $x \in \mathfrak{m}$, 矛盾).

Case 2. 当 $\alpha_1 = 0$ 时, $\mathcal{P}(\mathfrak{m}) = (x)$ 或 (x,y) 或存在 $\beta \in \mathbb{R}$ 使得 $\mathcal{P}(\mathfrak{m}) = (x,y,z-\beta)$. 如果 $\alpha_2 \in \mathbb{R}^{\times}$, 那么 $y \notin \mathcal{P}(\mathfrak{m})$, 于是知 $\mathcal{P}(\mathfrak{m}) = (x)$. 如果 $\alpha_2 = 0$, 那么 $(x,y) \subseteq \mathcal{P}(\mathfrak{m})$. 于是 $\mathcal{P}(\mathfrak{m}) = (x,y,z-\alpha_3) = \mathfrak{m}$.

总结一下, 对 [推论1] 中 Poisson 代数 $(C, \{-, -\})$ 以及 $\mathfrak{m} = (x - \alpha_1, y - \alpha_2, z - \alpha_3) \in \max \operatorname{Spec} C$ 有:

$$\mathcal{P}(\mathfrak{m}) = \begin{cases} (x - (\alpha_1 \alpha_2^{-1})y), & \alpha_1, \alpha_2 \in \mathbb{k}^{\times} \\ (y), & \alpha_1 \in \mathbb{k}^{\times}, \alpha_2 = 0 \\ (x), & \alpha_1 = 0, \alpha_2 \in \mathbb{k}^{\times} \\ (x, y, z - \alpha_3), & \alpha_1 = \alpha_2 = 0. \end{cases}$$

因此 $(C, \{-, -\})$ 的所有 Poisson 本原理想是: $(y), (x - \alpha y), (x, y, z - \beta)$, 其中 $\alpha, \beta \in \mathbb{R}$.

上述 Poisson 本原素谱的计算表明考虑的 Poisson 代数具有无穷多个不同的辛核 (因为 $(x-(\alpha_1\alpha_2^{-1})y)$ 中 $\alpha_1,\alpha_2\in \mathbb{k}^{\times}$ 可以产生无穷多个不同的 Poisson 本原理想). 下面我们罗列所有的辛核:

• 对 $\beta \in \mathbb{k}^{\times}$, Poisson 本原理想 $(x - \beta y)$ 决定的辛核是

$$\mathscr{C}_{\beta} = \{(x - \alpha_1, y - \alpha_2, z - \alpha_3) \in \max \operatorname{Spec} C | \alpha_1, \alpha_2 \in \mathbb{R}^{\times}, \alpha_1 = \beta \alpha_2 \}.$$

- Poisson 本原理想 (x) 决定的辛核是 $\mathscr{C}_x = \{(x \alpha_1, y \alpha_2, z \alpha_3) \in \max \operatorname{Spec} C | \alpha_1 = 0, \alpha_2 \in \mathbb{R}^{\times} \}.$
- Poisson 本原理想 (y) 决定的辛核是 $\mathscr{C}_y = \{(x \alpha_1, y \alpha_2, z \alpha_3) \in \max \operatorname{Spec} C | \alpha_1 \in \mathbb{k}^{\times}, \alpha_2 = 0 \}.$
- 对 $\gamma \in \mathbb{k}$, Poisson 本原理想 $\mathfrak{m} = (x, y, z \gamma)$ 决定的辛核 $\mathscr{C}(\mathfrak{m}) = \{\mathfrak{m}\}$. 这里 $\mathscr{C}_{\beta}(\beta \in \mathbb{k}^{\times}), \mathscr{C}_{x}$ 和 \mathscr{C}_{y} 都是 $\max \operatorname{Spec} C$ 中的局部闭子集, $\mathfrak{m} = (x, y, z \gamma)$ 决定的辛核自然是闭集.

参考文献

- [AK13] Allen Altman and Steven Kleiman. A term of commutative algebra. Worldwide Center of Mathematics, 2013.
- [BG03] Kenneth A. Brown and Iain Gordon. Poisson orders, symplectic reflection algebras and representation theory. J. Reine Angew. Math., 559:193–216, 2003.
- [Dix77] Jacques Dixmier. *Enveloping algebras*, volume Vol. 14 of *North-Holland Mathematical Library*. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French.