Convex Optimization

Yunwei Ren

Contents

2	Convex Sets		
	2.1	Definition of convexity	2
	2.2	Examples	2
	2.3	Examples	5
3	Convex Functions		
	3.1	Definition of convexity	6
	3.2	Definition of convexity	7
4	Convex Optimization Problems		
	4.1	Basic terminology and optimality conditions	8

2 Convex Sets

2.1 Definition of convexity

1.

Proof. For k = 2, $\theta_1 x_1 + \theta_2 x_2 \in C$ holds by definition. We argue by induction on k and assume that the inclusion holds for k < m. When k = m, denoting $\sum_{i=1}^{m-1} \theta_i$ by s,

$$\sum_{i=1}^{m} \theta_i x_i = s \sum_{i=1}^{m-1} \frac{\theta_i x_i}{s} + \theta_m x_m.$$

Since $\sum_{i=1}^{m-1} \theta_i/s = 1$, by the induction hypothesis, $\sum_{i=1}^{m-1} \theta_i x_i/s \in C$. Meanwhile, as $s + \theta_m = 1$, $\sum_{i=1}^m \theta_i x_i \in C$, completing the proof.

2.

Proof. Clear that the intersection of two convex sets is still convex. Hence, the intersection of $C \subset \mathbb{R}^n$ and any line is convex as long as C is convex.

Now we suppose that the intersection of C and any line is convex. For any $x_1, x_2 \in C$, $C_l = C \cap \{\theta x_1 + (1 - \theta)x_2 : \theta \in \mathbb{R}\}$ is convex and therefore $\theta x_1 + (1 - \theta)x_2 \in C_l \subset C$ for every $0 < \theta < 1$. Thus, C is convex.

The above argument, $mutatis\ mutandis$, gives the second result.

3.

Proof. For every $\theta \in [0,1]$, the process of bisecting the interval implies there exists a series $\langle \delta_n \rangle$ whose sum is θ . Hence, for every $a, b \in C$, $x_n = a + (b-a) \sum_{n=1}^{\infty} \delta_n$ converges to $a + \theta(b-a)$. Meanwhile, the midpoint convexity implies $x_n \in C$ for every n. And since C is closed, $a + \theta(b-a) \in C$. Thus, C is convex.

4.

Proof. Let D be the intersection of all convex sets containing C. If $x \in C$, then its is a convex combination of some points in C. Hence, for every convex set containing C, it contains x. Therefore, $\operatorname{\mathbf{conv}} C \subset D$. For the converse, since $\operatorname{\mathbf{conv}} C$ itself is a convex set containing C, $D \subset \operatorname{\mathbf{conv}} C$. Thus, $\operatorname{\mathbf{conv}} C = D$.

2.2 Examples

5.

Solution. $|b_2 - b_1|/||a||_2$.

7.

Proof. $||x-a||_2 \le ||x-b||_2$ iff $\langle x-a, x-a \rangle \le \langle x-b, x-b \rangle$ iff $2\langle x, b-a \rangle \le \langle b, b \rangle - \langle a, a \rangle$. Namely, $2(b-a)^T x \le ||b||_2^2 - ||a||_2^2$.

Proof.

(a) It is trivial when a_1 and a_2 are linearly dependent, so we assume that a_1 and a_2 are linearly independent. We first tackle the problem for orthonormal a_1 and a_2 and then reduce the general situation to it.

Suppose that a_1 and a_2 are orthonormal. Let $S_0 = \operatorname{span}(a_1, a_2)$ and (b_1, \ldots, b_{n-2}) a basis of S_0^{\perp} . Then

$$x \in S_0 \quad \Leftrightarrow \quad \begin{bmatrix} b_1^T \\ \vdots \\ b_{n-2}^T \end{bmatrix} x = Bx = 0.$$

For $y = y_1 a_1 + y_2 a_2 \in S_0$, $y_1 \le 1$ iff $a_1^T y \le 1$ as (a_1, a_2) is an orthonormal basis of S_0 . Hence,

$$-1 \le y_1, y_2 \le 1 \quad \Leftrightarrow \quad \begin{bmatrix} a_1^T \\ a_2^T \\ -a_1^T \\ -a_2^T \end{bmatrix} y = Ay \le \mathbf{1}.$$

Thus, for orthonormal a_1 and a_2 , $S = \{x : Bx = 0, Ax \leq 1\}$, a polyhedron.

Now we only assume the liner independence of a_1 and a_2 . We know that there exists some invertible n-by-n matrix a_1 such that $[\tilde{a}_1, \tilde{a}_2] = R[a_1, a_2]$ and a_1 and a_2 are orthonormal. Denoting the set described in the problem with respect to a_1 and a_2 by a_1 by a_2 by a_3 by a_4 by a_4

$$S(a_1, a_2) = \{x : \tilde{B}Rx = 0, \tilde{A}Rx \leq 1\}.$$

- (b) Yes, and the provided form has already satisfied the requirement.
- (c) No. Note that $\langle x,y\rangle_2 \leq 1$ for all y with 2-norm 1 implies

$$||x||_2 = \langle x, x/||x|| \rangle_2 \le 1.$$

And by the Cauchy-Schwarz inequality, for every $||x|| \le 1$, $\langle x, y \rangle_2$ holds for every $||y||_2 = 1$. Hence, S is the intersection of the unit ball and $\{x : x \succeq 0\}$, which is not a polyhedron.

(d) Yes. Let $\tilde{S} = \{x \in \mathbb{R}^n : x \succeq 0, ||x||_{\infty} \leq 1\}$, which is clearly a polyhedron since when $x \succeq 0, ||x||_{\infty} \leq 1$ is equivalent to $[e_1, \ldots, e_n]x \preceq \mathbf{1}$ where e_i is the *i*-th vector in the standard basis of \mathbb{R}^n .

Now we show that $S = \tilde{S}$. Suppose that $x \succeq 0$. If $\langle x, y \rangle_2 \leq 1$ for all y with 1-norm 1, then $x_i = \langle x, e_i \rangle_2 \leq 1$. Namely, $||x||_{\infty} \leq 1$. Meanwhile, if $||x||_{\infty} \leq 1$,

$$\langle x, y \rangle \le \sum_{i=1}^{n} x_i |y_i| \le 1$$

as it is just the weighted average of x_1, \ldots, x_n . Hence, $S = \tilde{S}$, completing the proof. \square

¹We can use QR factorization to construct the matrix explicitly

2.9

Proof.

(a) By the definition,

$$x \in V \Leftrightarrow \|x - x_0\|_2^2 - \|x - x_i\|_2^2 \leq 0$$

$$\Leftrightarrow 2\langle x, x_i - x_0 \rangle \leq \langle x_i, x_i \rangle - \langle x_0, x_0 \rangle \quad \text{for } i = 1, \dots, K$$

$$\Leftrightarrow 2 \begin{bmatrix} \langle x, x_1 - x_0 \rangle \\ \vdots \\ \langle x, x_K - x_0 \rangle \end{bmatrix} \preceq \begin{bmatrix} \|x_1\|_2^2 - \|x_0\|_2^2 \\ \vdots \\ \|x_K\|_2^2 - \|x_0\|_2^2 \end{bmatrix}$$

$$\Leftrightarrow 2 \begin{bmatrix} (x_1 - x_0)^T \\ \vdots \\ (x_K - x_0)^T \end{bmatrix} x \preceq \begin{bmatrix} \|x_1\|_2^2 - \|x_0\|_2^2 \\ \vdots \\ \|x_K\|_2^2 - \|x_0\|_2^2 \end{bmatrix}$$

Hence, V is a polyhedron. Intuitively, the border of a Voronoi set are the lines with the same distances to x_0 and x_i .

(b) Suppose that $P = \{x : \alpha_k^T x \leq b_k, k = 1, ..., K\}$. Let x_0 be any point of P and we construct the other points by reflection. For each k, let \tilde{x}_k be any point of $\{x : \alpha_k^T x = b_k\}$, $U_k = I - 2\alpha_k \alpha_k^T / \|\alpha_k\|_2^2$, the Householder matrix, and

$$R_k(x) = U_k(x - \tilde{x}_k) + \tilde{x}_k = x + 2\frac{\alpha_k}{\|\alpha_k\|_2^2} (b_k - \alpha_k^T x).$$

It is easy to verified that P is the Voronoi region of x_0 with respect to $R_1(x_0), \ldots, R_K(x_0)$.

10.

Proof.

(a) Suppose $x_1, x_2 \in C$ and $\theta \in (0, 1)$. Let $x = \theta x_1 + (1 - \theta)x_2$. Since A is symmetric, $x_2^T A x_1 = x_1^T A x_2$. Thus,

$$f(x) = x^{T} A x + b^{T} x + c$$

= $\theta^{2} x_{1}^{T} A x_{1} + 2\theta (1 - \theta) x_{1}^{T} A x_{2} + (1 - \theta)^{2} x_{2}^{T} A x_{2}$
+ $\theta b^{T} x_{1} + (1 - \theta) b^{T} x_{2} + \theta c + (1 - \theta) c.$

Note that

$$\theta^{2} x_{1}^{T} A x_{1} + \theta b_{1}^{T} x_{1} + \theta c = \theta (x_{1}^{T} A x_{1} + b_{1}^{T} x_{1} + c) - \theta (1 - \theta) x_{1}^{T} A x_{1}$$

$$\leq -\theta (1 - \theta) x_{1}^{T} A x_{1}$$

and we can get a similar inequality for x_2 . Hence,

$$f(x) \le -\theta(1-\theta)(x_1^T A x_1 - 2x_1^T A x_2 + x_2^T A x_2)$$

= $-\theta(1-\theta)(x_1 - x_2)^T A(x_1 - x_2) \le 0$

as $A \succeq 0$. Hence, C is convex.

(b) Put
$$H = \{x : g^T x + h = 0\}, B = A + \lambda g g^T \text{ and}$$

 $C_P = \{x \in \mathbb{R}^n : x^T B x + b^T x + c - \lambda h^2 \le 0\}.$

By (a), C_B is convex and so does $C_B \cap H$. Suppose $x \in H$, then $x^T B x = x^T A x + \lambda h^2$. Therefore, $C_B \cap H = C$. Thus, C is convex.

2.3 Operations that preserve convexity

2.16

Proof. For every $(a, b_1 + b_2), (c, d_1 + d_2) \in S$ and $0 \le \theta \le 1$, let

$$z_{\theta} = \theta(a, b_1 + b_2) + (1 - \theta)(c, d_1 + d_2) = (x, y_1 + y_2)$$

where

$$x = \theta a + (1 - \theta)c$$
, $y_i = \theta b_i + (1 - \theta)d_i$ for $i = 1, 2$.

Since S_i is convex and $(a, b_i), (c, d_i) \in S_i$,

$$(x, y_i) = \theta(a, b_i) + (1 - \theta)(c, d_i) \in S_i.$$

Hence, S is convex.

18.

Proof. By Remark 2.2, $f^{-1} = \mathcal{P}^{-1} \circ Q^{-1} \circ \mathcal{P}$.

3 Convex Functions

3.1 Definition of convexity

1.

Proof.

(a) Clear that $\frac{b-x}{b-a}$, $\frac{x-a}{b-a} \ge 0$ and the sum of them is 1 for all $x \in [a,b]$. Hence, by the definition of convexity,

$$f(x) = f\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b).$$

(b) By (a),

$$\frac{f(x) - f(a)}{x - a} \le \frac{\frac{b - x}{b - a}f(a) + \frac{x - a}{b - a}f(b) - f(a)}{x - a} = \frac{f(b) - f(a)}{b - a}.$$

And a similar argument gives the second inequality.

- (c) Just let x approach a and b respectively and we get these two inequalities.
- (d) By (c), for every $a < b \in \operatorname{dom} f$,

$$f'(b) - f'(a) \ge \frac{f(b) - f(a)}{b - a} - f'(a) \ge 0.$$

Let $a \to b-$ and we get $f''(b-) \ge 0$. Since f is twice differentiable, this implies $f''(b) \ge 0$. This argument, mutatis mutandis, yields $f''(a) \ge 0$.

3. There is another proof which shows the concavity by showing the convexity of **hypo** g. But I think there exists some faults related to the domain of f in that proof.

Proof. We show that g is concave. For every $y_1, y_2 \in (f(a), f(b))$, suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is convex,

$$\frac{y_1 + y_2}{2} = \frac{f(x_1) + f(x_2)}{2} \ge f\left(\frac{x_1 + x_2}{2}\right).$$

Since f is increasing, so is q. Hence,

$$g\left(\frac{y_1+y_2}{2}\right) \ge g\left(f\left(\frac{x_1+x_2}{2}\right)\right) = \frac{x_1+x_2}{2} = \frac{1}{2}g(y_1) + \frac{1}{2}g(y_2).$$

Thus, g is concave.

5. Running average of a convex function

Proof. Put t = sx, then

$$F(x) = \frac{1}{x} \int_0^1 f(sx) d(sx) = \int_0^1 f(sx) ds.$$

It can be verified that for fixed s, f(sx) is convex in x. Hence, for every $\lambda \in (0,1)$, $a,b \in \operatorname{dom} F$,

$$F(\lambda a + (1 - \lambda)b) \le \int_0^1 \{\lambda f(sa) + (1 - \lambda)f(sb)\} = \lambda F(a) + (1 - \lambda)F(b).$$

Thus, F is convex.

13.

Proof. Define $f(x) = \sum_{i=1}^{n} x_i \log x_i$. Some computation yields $D_{kl}(u, v) = f(u) - f(v) - \nabla f(v)^T (u - v)$. The inequality and the equality condition follows immediately from the fact that f is strictly convex.

3.2 Examples

16.

Solution.

- (a) Convex. For every $x \in \mathbb{R}$, $f''(x) = e^x > 0$.
- (b) Quasiconcave. For every $(x_1, x_2)^T \in \mathbb{R}^2_{++}$, $\nabla^2 f = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, which is neither positive semidefinite nor negative semidefinite. Hence, f is not convex or concave. Its superlevel sets S_{α} , however, are convex as

$$\frac{(x_1 + x_2)(y_1 + y_2)}{4} \ge \sqrt{x_1 x_2 y_1 y_2} \ge \alpha$$

as long as $(x_1, x_2), (y_1, y_2) \in S_{\alpha}$.

(c) Convex. For every $(x_1, x_2) \in \mathbb{R}^2_{++}$,

$$\nabla^2 f(x_1, x_2) = \frac{1}{x_1 x_2} \begin{bmatrix} \frac{2}{x_1^2} & \frac{1}{x_1 x_2} \\ \frac{1}{x_1 x_2} & \frac{2}{x_2^2} \end{bmatrix}.$$

Since both $2/x_1^3x_2$ and $\det(\nabla^2 f)$ are positive, $\nabla^2 f$ is positive definite. Thus, f is convex.

(d) Quasilinear. For every $(x_1, x_2) \in \mathbb{R}^2_{++}$,

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 0 & -1/x_2^2 \\ -1/x_2^2 & 2x_1/x_2^3 \end{bmatrix},$$

which is neither positive nor negative semidefinite since $(x \pm \sqrt{x_1^2 + x_2^2})/x_2^3$, the eigenvalues of $\nabla^2 f$, always have different signs. However, since it sublevel sets $S_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} : x_1/x_2 \le \alpha\} = \{(x_1, x_2) \in \mathbb{R}^2_{++} : [1, -\alpha][x_1, x_2]^T \le 0\}$, which is convex, f is quasiconvex. Similarly, f is quasiconcave. Thus, f is quasilinear.

(e) Convex. For every $(x_1, x_2) \in \mathbb{R} \times \mathbb{R}_{++}$,

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 1/x_2 & -2x_1/x_2^2 \\ -2x_1/x_2^2 & 2x_1^2/x_2^3 \end{bmatrix},$$

which is positive semidefinite since both $1/x_2$ and $\det(\nabla^2 f)$ are nonnegative.

(f) Concave. For every $(x_1, x_2) \in \mathbb{R}^2_{++}$,

$$\nabla^2 f(x_1, x_2) = \alpha(\alpha - 1) x_1^{\alpha} x_2^{1-\alpha} \begin{bmatrix} x_1^{-2} & -(x_1 x_2)^{-1} \\ -(x_1 x_2)^{-1} & x_2^{-2} \end{bmatrix},$$

which is negative definite since both $\alpha(\alpha-1)x_1^{\alpha}x_2^{1-\alpha}x_1^{-2}$ and $\det(\nabla^2 f)$ are negative. \Box

4 Convex Optimization Problems

4.1 Basic terminology and optimality conditions

1.

Solution.

- (a) f_0 attains its optimal 3/5 at (2/5, 1/5).
- (b) It is unbounded below.
- (c) Optimal value = 0; Optimal set = $\{(0, x_2) : x_2 \ge 1\}$.
- (d) f_0 attains its optimal 1/3 at (1/3, 1/3).