Neural networks

Generative models

Introduction

Create computational models to generate artificial data in a self-supervised manner.

Generative adversarial networks

Variational autoencoders

Auto-encoder

- Encoder: transforms the input into a feature vector
- Decoder: transforms the feature vector into the output
- The input and the output are the same

Auto-encoder

What is this architecture used for?

Auto-encoder applications

Applications

- Data compression
- Information correction

Auto-encoder applications

Image denoising

A new offline handwritten database for guage, which contains full Spanish senter been developed: the Spartacus database Spanish Restricted-domain Task of Cursiv were two main reasons for creating this co most databases do not contain Spanish sente Spanish is a widespread major language. A reason was to create a corpus from semanti These tasks are commonly used in practice of linguistic knowledge beyond the lexicon inition process.

A new offline handwritten database for guage, which contains full Spanish senter been developed: the Spartacus database Spanish Restricted-domain Task of Cursiv were two main reasons for creating this comost databases do not contain Spanish sente Spanish is a widespread major language. A reason was to create a corpus from semanti These tasks are commonly used in practice of linguistic knowledge beyond the lexicon nition process.

Autoencoders - Problems

Distribution of feature vectors is not continuous.

Feature vectors are learnt by minimizing the reconstruction error.

Difficult to find a correspondence between the feature space and the data.

Difficult to understand the data distribution because the distribution is not regularized.

Regularize the distribution of feature space: we need a continuous distribution

We can use a known distribution.

Encoder produces two vectors: mean and standard deviation of the feature space

Each element of μ y σ are the mean and standard deviation of a random variable, from which we sample a feature vector

Create a continuous embedding space

Add a regularizer over the distribution. Kullback-Leibler divergence

$$D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$
$$D_{KL}(P||Q) = \int P(x) \log \frac{P(x)}{Q(x)} dx$$

If we use two Gaussian distributions, we get

$$\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$$

Neural networks

Generative adversarial networks

GAN

Generative Adversarial Network

GAN ingredients

- To learn the data distribution, we define a latent variable z, and a function to compute the data space $G(z, \theta_g)$.
- To learn the difference between real data and fake data, another function makes the classification $D(x, \theta_d)$.
- Tasks
 - Maximize of assigning a correct class
 - Minimize the capacity of the classifier to label generated data.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- ullet Sample minibatch of m noise samples $\{z^{(1)},\ldots,z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(z^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.