GUIA da Unidade Curricular FÍSICA COMPUTACIONAL

Ano Letivo 2023/2024

Conteúdo

1.	Informações Gerais	2
	1.1 Docentes	2
	1.2 Horas de Contacto	
	1.3 Regimes de Faltas	
2.	Conteúdos	2
	2.1 Programa	2
	2.2 Trabalhos Práticos	3
3.	Avaliação	4
	3.1 Avaliação da componente teórica	
	3.2 Avaliação da componente prática	
	3.2.1 Formato dos testes práticos	
	3.2.2 Melhoria de nota prática positiva obtida num ano lectivo anterior	
	3.2.3 Época de recurso	
4.	Calendário das aulas práticas	7
5	Bibliografia	8

1. Informações Gerais

1.1 Docentes

Albano Neto	albanoneto@ua.pt	PL6
Gil Fernandes	gilfernandes@ua.pt	PL1
Manuel Barroso	scpip@ua.pt	PL2
Nuno Vaz	nuno.vaz@ua.pt	PL3
Sofia Latas	sofia.latas@ua.pt	T, PL4, PL5

Coordenadora: Sofia Latas

1.2 Horas de contacto

Em cada semana, haverá uma aula teórica (T), com a duração de uma hora e de natureza expositiva.

Cada estudante frequentará ainda uma aula prática laboratorial (PL), de 2 horas e 30 minutos. Os trabalhos práticos são realizados individualmente.

1.3 Regime de faltas

- Não haverá marcação de faltas nas aulas teóricas.
- Os estudantes têm que assistir a pelo menos 80% das aulas práticas, sob pena de reprovarem automaticamente à Unidade Curricular (UC), ficando impedidos de se apresentarem a qualquer prova das diferentes épocas de exames (incluindo a época especial, em Setembro). (*)
- O ponto anterior não se aplica a trabalhadores estudantes e a estudantes que tenham uma nota prática positiva obtida anteriormente.
- (*) Só é aplicável no regime presencial.

2. Conteúdos

2.1 Programa

• Métodos numéricos para problemas de valor inicial descritos por equações diferenciais ordinárias (ODE): método de Euler, métodos implícitos e semi-implícitos e métodos de Runge-Kutta.

- Problemas de condição fronteira em ODE: diferenças finitas e método de shooting.
- Métodos numéricos baseados em diferenças finitas para equações diferenciais às derivadas parciais (PDE). Aplicação a PDE elípticas e parabólicas.
- Transformadas de Fourier discretas e métodos espetrais.
- Equação de Schrödinger independente do tempo: determinação numérica de valores e vetores próprios de estados quânticos ligados.
- Métodos de Monte Carlo.

2.2 Trabalhos práticos

• Trabalho 1

Método de Euler. Movimento de corpos a 1dimensão. O oscilador harmónico simples: circuito LC

• Trabalho 2

Métodos implícitos e semi-implícitos para ODE.

Oscilador harmónico simples e oscilador não harmónico. Órbita de Mercúrio.

• Trabalho 3

Métodos de Runge-Kutta.

Aplicação de métodos de Runge-Kutta de 2ª e 4ª ordens e de passo adaptativo (*ode45*).

Trabalho 4

1ª Folha de Revisões.

• Trabalho 5

Problemas de valores fronteira. Métodos de shooting e de diferenças finitas.

Trabalho 6

Condução de calor (PDE parabólica). Método explícito e método de Crank-Nicolson.

• Trabalho 7

Transformada de Fourier discreta e sua aplicação na resolução de equações diferenciais.

- Trabalho 8
 - 2ª Folha de Revisões.
- Trabalho 9

Equação de Laplace (PDE elíptica). Métodos iterativos.

• Trabalho 10

Método de Numerov. Estados quânticos ligados.

Trabalho 11

Métodos de Monte Carlo. Cálculo de integrais. Modelo de Ising.

3. Avaliação

Para efeitos de avaliação, a UC é dividida em duas componentes, teórica e prática.

A nota final (NF) da UC é calculada através da seguinte fórmula:

 $NF = 0.7 \times (Nota da componente prática) + 0.3 \times (Nota da componente teórica),$

e arredondada ao valor inteiro mais próximo.

- As notas das duas componentes são atribuídas de forma independente.
- A nota da componente prática é arredondada às unidades.
- A nota da componente teórica é arredondada às décimas.
- Notas positivas de qualquer uma das componentes transitam de anos letivos anteriores.
- Os alunos que que tenham uma nota **inferior a 7,0** em qualquer uma das componentes serão **reprovados por nota mínima**, mesmo que o valor arredondado de NF seja igual ou superior a 10 valores.
- Não serão exigidas provas suplementares de defesa de nota para alunos aprovados com notas iguais ou superiores a 16 valores.
- As notas de ambas as componentes podem ser melhoradas independentemente na época de recurso.
- Em todas as situações em dúvida, aplica-se o Regulamento de Estudos da Universidade de Aveiro (UA).

3.1 Avaliação da componente teórica

A avaliação da componente teórica será feita por *exame final*.

A nota da componente teórica é igual à classificação do exame que incide sobre todos os conteúdos teóricos e que terá lugar durante a época de exames, em data a anunciar.

3.2 Avaliação da componente prática

A avaliação da componente prática pode ser *discreta* ou por *exame final*. O regime de avaliação discreta desta componente é fortemente recomendado. Cada estudante só pode ser avaliado por um dos regimes.

No início do semestre, assume-se que todos os estudantes serão sujeitos à avaliação discreta.

Passarão ao regime de exame final os estudantes que,

- manifestem a sua intenção de o fazer durante um período a designar;
- não compareçam ao primeiro momento presencial de avaliação discreta;
- compareçam ao primeiro momento presencial de avaliação discreta, mas indiquem claramente na sua folha de teste que desistem desse momento.

Para os alunos avaliados por exame final, a nota da componente prática é igual à classificação de um exame que incide sobre todos os conteúdos práticos e que terá lugar durante a época de exames, em data a anunciar.

Onde,

TP1

é a nota, arredondada às décimas, de um teste prático que avaliará os conteúdos abordados nos 4 primeiros trabalhos práticos. Prevê-se que este teste tenha início às 16h30 de sexta-feira, dia **22 de Março**.

TP2

é a nota, arredondada às décimas, de um teste prático que avaliará os conteúdos abordados nos trabalhos práticos 5 a 8. Prevê-se que este teste tenha início às 16h30 de quarta-feira, dia **8 de Maio**.

RG

é a média simples das notas, arredondadas às unidades, de um relatório de grupo, e da apresentação e discussão oral do mesmo. Este incidirá sobre os conteúdos abordados num dos trabalhos 8 a 10. O trabalho a realizar por cada grupo será sorteado na aula prática. Após a divulgação dos temas, os alunos dispõem de uma semana para a elaboração do mesmo. A apresentação e a discussão oral serão realizadas na aula prática.

3.2.1 Formato dos testes práticos

Os testes práticos são realizados, individualmente, nos computadores da sala de aulas, em contas de exame que não proporcionarão acesso à Internet.

Imediatamente antes do início do teste, os estudantes poderão copiar para o computador, a partir de um dispositivo de armazenamento USB, todos os ficheiros que desejarem. Esses ficheiros poderão ser consultados durante a realização do teste. Não é permitida a consulta de documentos através de qualquer outro meio.

3.2.2 Melhoria de nota prática positiva obtida num ano letivo anterior

Os alunos repetentes que já têm uma nota prática positiva, obtida num ano letivo anterior, são sujeitos a avaliação por exame prático final. No fim do semestre, a nota prática será a melhor de entre a nota anterior e a obtida em 2023/2024.

3.3 Época de recurso

A avaliação da componente teórica na época de recurso é feita através de um exame que incide sobre a totalidade dos conteúdos teóricos. A nota desse exame substitui a nota da componente teórica apenas se for superior.

A avaliação da componente prática na época de recurso é feita através de um exame que incide sobre a totalidade dos conteúdos práticos. A nota desse exame substitui a nota da componente prática (quer esta tenha sido obtida por exame final ou por avaliação discreta durante o semestre, quer tenha transitado de um ano anterior) apenas se for superior.

As melhorias das classificações das duas componentes na época de recurso são independentes.

Assim,

- se o estudante realizar apenas um dos exames de recurso (teórico ou prático), manterá a classificação da componente a que não realizou exame de recurso, e, na componente a que realizou exame de recurso, ficará com a melhor das duas classificações (a que já tinha ou a que resulte da classificação do exame de recurso);
- se o estudante realizar os dois exames de recurso, as melhorias das classificações às duas componentes são independentes uma da outra, ou seja, em cada componente ficará com a melhor das duas classificações (a que já tinha ou a que resulte da classificação do exame de recurso), qualquer que tenha sido o resultado obtido no exame de recurso da outra componente.

4. Calendário das aulas práticas

Tabela 1: Planeamento das aulas práticas.

SEMANA	2ª Feira	3ª Feira	6ª Feira
	PL5	PL3,PL4	PL1, PL2, PL6
14 a 16 de Fevereiro			
19 a 23 de Fevereiro	T1	T1	T1
26 de Fev a 1 de Março	T2	T2	T2
4 a 8 de Março	Т3	Т3	Т3
11 a 15 de Março	T4_FR1	T4_FR1	T4_FR1
18 a 22 de Março	T5	T5	T5
25 a 29 de Março		Páscoa	
1 a 5 de Abril		Т6	Т6
8 a 12 de Abril	Т6	Т7	Т7
15 a 19 de Abril	Т7	T8_FR2	T8_FR2
22 a 26 de Abril	T8_FR2	Т9	Т9
29 de Abr a 3 de Maio		Semana Académica	
6 a 10 de Maio	Т9	T10	T10
13 a 17 de Maio	T10	T11	T11
20 a 24 de Maio	T11	AD	AD
27 a 31 de Maio	AD	AD	Trabalhos
3 a 7 de Junho	Trabalhos	Trabalhos	

FRFolha de Revisões
AD
Aula de Dúvidas

5. Bibliografia

- ●N. J. Giordano e H. Nakanishi, Computational Physics, Pearson Prentice Hall, 2006
- Parviz Moin, Fundamentals of Engineering Numerical Analysis, Cambridge University Press, 2010
- <u>Steven Chapra</u>, <u>Raymond Canale</u>, <u>Numerical Methods for Engineers</u>, McGraw-Hill Science/Engineering/Math, 2008
- Apontamentos das Aulas (eLearning)