Arm[®] Corstone[™] SSE-700 Secure Enclave

Revision: r0p0

Technical Reference Manual

Arm® Corstone™ SSE-700 Secure Enclave

Technical Reference Manual

Copyright © 2019, 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue	Date	Confidentiality	Change
0000-00	27 November 2019	Confidential	First release for r0p0 BET
0000-01	13 December 2019	Confidential	First release for r0p0 LAC
0000-02	13 February 2020	Non-Confidential	Second release for r0p0 LAC
0000-03	08 July 2020	Non-Confidential	First release for r0p0 EAC

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or TM are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2019, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

Contents

Arm® Corstone™ SSE-700 Secure Enclave Technical Reference Manual

	Pref	Preface Preface	
		About this book	7
		Feedback	10
Chapter 1	Intro	oduction	
	1.1	Overview	
Chapter 2	Fun	ctional description	
	2.1	Secure Enclave components	2-15
	2.2	Interfaces	2-23
	2.3	Clocks	2-27
	2.4	Power	2-29
	2.5	Reset	2-32
Chapter 3	Programmers model		
	3.1	Memory map	3-34
	3.2	Interrrupt map	3-38
	3.3	Registers	
Chapter 4	Soft	ware sequences	
	4.1	SECENCTOP power domain	
	4.2	Advancing lifecycle states	4-61

Appendix A	Revisions	
	Δ1 Revisions	Anny-A-6

Preface

This preface introduces the Arm° $Corstone^{\mathsf{TM}}$ SSE-700 Secure Enclave Technical Reference Manual.

It contains the following:

- About this book on page 7.
- Feedback on page 10.

About this book

This book is for Secure Enclave component within the Arm® Corstone™ SSE-700 Subsystem.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2, where:

rm Identifies the major revision of the product, for example, r1.

pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

This book is written for system designers, system integrators, and programmers who are designing or programming a *System-on-Chip* (SoC) that uses the SSE-700.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

This chapter introduces the Secure Enclave and its features.

Chapter 2 Functional description

This chapter provides a functional description of the Secure Enclave.

Chapter 3 Programmers model

This chapter provides general information about the Secure Enclave memory map and registers, and information for programming the device.

Chapter 4 Software sequences

This chapter describes software sequences in the Secure Enclave.

Appendix A Revisions

This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the *Arm*[®] *Glossary* for more information.

Typographic conventions

italic

Introduces special terminology, denotes cross-references, and citations.

bold

Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.

monospace

Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

<u>mono</u>space

Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.

monospace italic

Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the *Arm® Glossary*. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- · HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

Additional reading

This section lists publications by Arm and by third parties.

See *Infocenter*, for access to Arm documentation.

Arm publications

This book contains information that is specific to this product. See the following documents for other relevant information:

- Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual (101418)
- Cortex®-M0+ Technical Reference Manual (DDI 0484)
- Arm® CoreSight™ System-on-Chip SoC-600 Technical Reference Manual (100806)
- Arm®v6-M Architecture Reference Manual (DDI 0419)
- AMBA® 5 AHB Protocol Specification (IHI 0033)
- AMBA® APB Protocol Specification Version 2.0 (IHI 0024)
- AMBA® AXI and ACE Protocol Specification (IHI 0022)
- PrimeCell UART (PL011) Technical Reference Manual (DDI 0183)
- Arm® Cortex®-M System Design Kit Technical Reference Manual (DDI 0479)

The following confidential books are only available to licensees, or require registration with Arm:

- Arm[®] Corstone[™] SSE-700 Subsystem Release Note (PJDOC-1779577084-1555)
- Cortex®-M0+ Integration and Implementation Manual (DIT 0032)
- Arm[®] CoreLink[™] ADB-400 AMBA[®] Domain Bridge User Guide (DUI 0615)
- Arm® Corstone™ SSE-700 Subsystem Configuration and Integration Manual (101419)
- Arm® CoreLink™ PCK-600 Power Control Kit Configuration and Integration Manual (101151)
- Arm® Power Control System Architecture (DEN 0050)

Feedback

Feedback on this product

If you have any comments or suggestions about this product, send an email to *support-subsystem-iot@arm.com* and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- The title Arm Corstone SSE-700 Secure Enclave Technical Reference Manual.
- The number 101870 0000 03 en.
- If applicable, the page number(s) to which your comments refer.
- A concise explanation of your comments.

Arm also welcomes go	eneral suggestions for additions and improvements.
No.4a	

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.

Chapter 1 **Introduction**

This chapter introduces the Secure Enclave and its features.

It contains the following section:

• 1.1 Overview on page 1-12.

1.1 Overview

The Secure Enclave within the SSE-700, is a Cortex-M0+ based security subsystem that acts as the root-of-trust for the system. See also the Arm^{\otimes} Corstone SSE-700 Subsystem Technical Reference Manual.

The Secure Enclave holds and generates keys, and provides cryptographic services and security controls to the Host System. For example:

- Authenticating the firmware of the Secure Enclave itself, the Host System and the External System
- Enabling/disabling debug capabilities based on the secure state of the device

At power-on reset, it is the first system to boot and performs initial configuration of its own system and other components of the SSE-700, such as the Host System Firewall.

The Secure Enclave consists of:

- An Arm-v6 Cortex-M0+ Processor, with an in-built Nested Vectored Interrupt Controller (NVIC)
- · Dedicated ROM and SRAM
- PL011 UART
- Message Handling Units (MHUs) for communication with other systems.
- 2 CMSDK Timers
- 2 CMSDK watchdogs:
 - Secure Enclave watchdog
 - SoC watchdog
- Secure Enclave Base System Control registers controlling the SSE-700 subsystem
- Secure Enclave System Control registers controlling the Secure Enclave
- Independent Clock and Power Control infrastructure
- Security Control Bits (SCB) controlling security access across the SSE-700 subsystem
- A Firewall that permits the Secure Enclave to access any location in the Host System address space

For more information about the Firewall used in Secure Enclave, see section *Secure Enclave Firewall* on page 2-21.

The following figure is a high-level block diagram of the components within the Secure Enclave.

Figure 1-1 Secure Enclave block diagram

The integrator must add a Crypto Accelerator to the Secure Enclave. Therefore, the algorithms supported by the Crypto Accelerator are IMPLEMENTATION DEFINED.

To reduce complexity in security reviews, software running on the Secure Enclave is isolated by hardware. Communication between the Host System, External Systems and the Secure Enclave is done by MHUs. For more information about MHUs in the SSE-700 Secure Enclave, see *Secure Enclave MHUs* on page 2-21.

The Secure Enclave consists of two sections:

- An always-on section in the SSE-700 AONTOP power domain. This contains the following components:
 - SoC Watchdog
 - Secure Enclave UART
 - SECENCTOP PPU and PCSM
 - Crypto Accelerator Always-on
 - Secure Enclave System and Base System Control
- A switchable section in the SSE-700 SECENCTOP power domain. For more information see 2.4.1 SECENCTOP on page 2-29.
- 3.2.1 Secure Enclave interrupt map on page 3-38 and 3.1.1 Secure Enclave memory map on page 3-34 define the interrupt and address maps of the Secure Enclave.
- The 3.3.1 Secure Enclave Base System Control register summary on page 3-41 and 3.3.2 Secure Enclave System Control register summary on page 3-52 define the registers in the Base System Control and Secure Enclave System Control blocks.

Chapter 2 **Functional description**

This chapter provides a functional description of the Secure Enclave.

It contains the following sections:

- 2.1 Secure Enclave components on page 2-15.
- 2.2 Interfaces on page 2-23.
- 2.3 Clocks on page 2-27.
- 2.4 Power on page 2-29.
- 2.5 Reset on page 2-32.

2.1 Secure Enclave components

This section describes Secure Enclave components.

This section contains the following subsections:

- 2.1.1 Cryptographic Accelerator on page 2-15.
- 2.1.2 Lifecycle States (LCS) on page 2-15.
- 2.1.3 Security Control Bits (SCB) on page 2-16.
- 2.1.4 Secure Enclave Cortex-M0+ on page 2-19.
- 2.1.5 Secure Enclave reset on page 2-19.
- 2.1.6 Secure Enclave peripherals on page 2-20.

2.1.1 Cryptographic Accelerator

The Secure Enclave IMPLEMENTATION DEFINED Cryptographic Accelerator provides cryptographic services to the SSE-700. The Cryptographic Accelerator also provides lifecycle management and feature enablement based on the lifecycle state of the SoC.

2.1.2 Lifecycle States (LCS)

Using the IMPLEMENTATION DEFINED cryptographic engine, the Secure Enclave provides the *LifeCycle State* (LCS) of the SoC.

The lifecycle state is always one of the following:

Table 2-1 Lifecycle States

LCS	Description
Chip Manufacture	Initial state after manufacture
Device Manufacture	Used during device development
Secure Enable	Used when the device is deployed
Return Merchandise Authorization	Used when the device has reached end-of-life. At this point, it is not possible to boot any system other than the Secure Enclave.

The lifecycle runs in a linear direction from Chip Manufacture \rightarrow Device Manufacture \rightarrow Secure Enable \rightarrow Return Merchandise Authorization.

To change the lifecycle state of the SoC, software executing on the Secure Enclave Cortex-M0+ must perform an IMPLEMENTATION DEFINED sequence.

The SSE-700 has the *Crypto Accelerator Lifecycle Control* (CALC) interface. This interface provides a physical signal to prevent advancement of the lifecycle state by accidental or malicious means. The CALC interface is **0b1** under one of the following conditions:

- SoC Lifecycle Control (SOCLCC) interface of SSE-700 is 0b1. The Agent performing the sequence must assert the SOCLCC interface before releasing **PORESETn** to the SoC and keep it asserted until the transition is complete.
- GPO0 of the GPIO Control is 0b1. The debug agent must follow these steps:
 - Use the DP to program the GPIO Control to assert the GPO0 output
 - Cause a debug reset by either:
 - Asserting the **nSRST** input
 - Setting the DP ROM CSYSRSTREQ register to 0b1 and wait for the DP ROM CSYSRSTACK to become 0b1
 - Allow the Secure Enclave Cortex-M0+ to perform the software sequence by either:

- De-asserting the **nSRST** input
- Setting the DP ROM CSYSRSTREQ to 0b0 and waiting for the DP ROM CSYSRSTACK to become 0b0

become 909	
Note	
The sequence either uses the nSRST input or the DP ROM CSYSRSTREQ/ACK handshak to cause the reset.	кe

2.1.3 Security Control Bits (SCB)

The Secure Enclave uses the Security Control Bits (SCB) to control features within the SSE-700 subsystem.

The following table shows the bit assignment of the SCB interface as defined in the 2.2.4 Security Control Bits (SCB) interface on page 2-26. Any Reserved bits are tied LOW.

For more information on features controlled by the SCB, except for the HOST_SYS_RST_CTRL register, see the *Arm*[®] *Corstone*[™] *SSE-700 Subsystem Technical Reference Manual*.

Table 2-2 SCB Interface bit assignment

SCB offset	Name	Description
0	SECENCAUTH_DBGEN	Controls the SECENCAUTH DAZ
1	SECENCAUTH_NIDEN	
2-3	Reserved	-
4	SECENCAUTH_CHEN	Controls the Channel Gate in the SECENCAUTH DAZ
5	DPAUTH_DBGEN	Controls the DPAUTH DAZ
6	DPAUTH_NIDEN	
7	DPAUTH_SPIDEN	
8	DPAUTH_SPNIDEN	
9	COMAUTH_PEN	Controls the COMAUTH DAZ
10	COMAUTH_RRDIS	
11-12	Reserved	-
13	TPIUAUTH_DBGEN	Controls the TPIUAUTH DAZ
14	TPIUAUTH_NIDEN	
15	TPIUAUTH_SPIDEN	
16	TPIUAUTH_SPNIDEN	
17	TPIUATH_CHEN	Controls the Channel Gate in the TPIUAUTH DAZ

Table 2-2 SCB Interface bit assignment (continued)

SCB offset	Name	Description	
18	COUNTERAUTH_DBGEN	Controls the COUNTERAUTH DAZ	
19	COUNTERAUTH_NIDEN		
20	COUNTERAUTH_SPIDEN		
21	COUNTERAUTH_SPNIDEN	-	
22	COUNTERAUTH_CHEN	Controls the Channel Gate in the COUNTERAUTH DAZ	
23	HOSTEXTAUTH_NS	Controls HOSTEXTAUTH DAZ	
24	HOSTEXTAUTH_S		
25	HOSTAXIAUTH_DBGEN	Controls HOSTAXIAUTH DAZ	
26	HOSTAXIAUTH_NIDEN		
27	HOSTAXIAUTH_SPIDEN		
28	HOSTAXIAUTH_SPNIDEN		
29	HOSTAUTH_DBGEN	Controls the HOSTAUTH DAZ, and drives the HOSTCPUDBGAUTH and	
30	HOSTAUTH_NIDEN	HOSTDBGAUTH interfaces.	
31	HOSTAUTH_SPIDEN		
32	HOSTAUTH_SPNIDEN		
33	HOSTAUTH_CHEN	Controls the Channel Gate in the HOSTAUTH DAZ	
34	SOC_DFTENABLE	Drives the DFTENABLE[0] signal of the SOCSC interface	
35	PPU_DBGEN	Controls whether the PPU debug functionality is enabled	
36	SECENC_FW_BYPASS	Drives the Bypass interfaces of the Secure Enclave Firewall	
37	HOST_FW_BYPASS	Drives the Bypass interfaces of the Host System Firewall	
38	DPEXTACG	Controls the DAACG on the DP port of the External Debug Bus	
39	HOSTEXTACG	Controls the DAACG on the Host System port of the External Debug Bus	
40	EXTSYS0EXTACG	Controls the DAACG on the External System 0 port of the External Debug Bus	
41	EXTSYS1EXTACG	Controls the DAACG on the External System 1 port of the External Debug Bus	
42-47	Reserved	-	
48	HOST_CPUWAIT_WEN	Controls whether the HOST_SYS_RST_CTRL.CPUWAIT field is writeable	
49	EXT_SYS0_CPUWAIT_WEN	Controls whether the EXT_SYS0_RST_CTRL.CPUWAIT field is writeable	

Table 2-2 SCB Interface bit assignment (continued)

SCB offset	Name	Description
50	EXT_SYS1_CPUWAIT_WEN	Controls whether the EXT_SYS1_RST_CTRL.CPUWAIT field is writeable
51-62	Reserved	-
63	SECENC_DFTENABLE	Drives the DFTENABLE[1] signal of the SOCSC interface
64-127	SoC Expansion	Used for IMPLEMENTATION DEFINED use-cases within the SoC, for example, controlling the debug privileges of the External System

The SSE-700 subsystem defines the following rules for the SCB:

- The default values of an SCB are dependent on the lifecycle state of the SoC. Until the lifecycle state is known all SCB must have a value of 0b0.
- The values of the SCBs must not change to the lifecycle dependent value until the lifecycle has been determined and the LCS interface is stable.
- In all lifecycle states the **COMAUTH PEN** is **0b1** by default in all lifecycle states.
- In all lifecycle states the COMAUTH RRDIS is IMPLEMENTATION DEFINED in all lifecycle states.
- In the Chip Manufacture lifecycle state:
 - The value of all SCBs, other than **COMAUTH** signals, is IMPLEMENTATION DEFINED.
 - It is implementation defined whether the SCB can be updated by either:
 - Software running on the Secure Enclave. Arm recommends that this is done as part of a certificate authentication.
 - Debug accesses using the Secure Enclave M0+
- In the Device Manufacture lifecycle state:
 - The value of all SCBs, other than **COMAUTH** signals, is IMPLEMENTATION DEFINED.
 - It is IMPLEMENTATION DEFINED whether the SCB can be updated by either:
 - Software running on the Secure Enclave. Arm recommends that this is done as part of a certificate authentication.
 - Debug accesses using the Secure Enclave M0+
- In the Secure Enable lifecycle state:
 - The values of all SCBs, other than **COMAUTH**, **HOST_CPUWAIT_WEN**, and **EXT_SYS{0-1}_CPUWAIT_WEN** signals, must be 0.
 - The HOST CPUWAIT WEN and EXT SYS{0-1} CPUWAIT WEN signals must be 1.
 - The following SCBs must be updatable:
 - DPAUTH {x}
 - TPIUAUTH {x}
 - COUNTERAUTH {x}
 - HOTEXTAUTH {x}
 - HOSTAUTH {x}
 - HOSTAXIAUTH {x}
 - HOSTEXTACG
 - EXTSYS{0-1}EXTACG

by either:

- Software running on the Secure Enclave. Arm recommends that this is done as part of a certificate authentication.
- Debug accesses using the Secure Enclave M0+

Note	
Arm strongly recommends that bot	h methods are implemented.

- For all other SCBs it is IMPLEMENTATION DEFINED whether the bits are updatable.
- In the Return Merchandise Authorization lifecycle state:
 - The values of all SCBs, other than **COMAUTH PEN**, is IMPLEMENTATION DEFINED.
 - It is IMPLEMENTATION DEFINED whether the SCB can be updated by either:
 - Software running on the Secure Enclave. Arm recommends that this is done as part of a certificate authentication.
 - Debug access using the Secure Enclave M0+

Arm recommends:

- In the Chip Manufacture state, the minimum enabled features allow for a debug agent to be able to transition the SoC to the Device Manufacture state. This is achieved using the injection of certificate using the Arm CoreSight SDC-600 Secure Debug Channel, or having debug access enabled by default in the Secure Enclave. For more information see the *Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual*.
- In the Device Manufacture state, the minimum enabled features allow for a debug agent to be able to debug the SoC. This can be by the injection of a certificate using the SDC-600, or having debug access enabled by default. For more information see the *Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual*.
- Security requirements of the SoC in the lifecycle:
 - To prevent the Secure Enclave keys being extracted by an attacker when enabling debug, the keys must be destroyed on entry into the Return Merchandise Authorization state.
- Debuggability requirements of the SoC in the lifecycle:
 - Discovering the issues with returned devices is hampered if a debug agent is not enabled, or there is no way to re-enable debug in the Return Merchandise Authorization state.

2.1.4 Secure Enclave Cortex-M0+

The Secure Enclave contains a Cortex-M0+ processor, configured as follows:

- Little-endian data
- NVIC with support for 32 interrupts
- MPU with 8 regions
- 2 data watchpoints
- 4 breakpoints
- Halted debug support
- Privileged and Unprivileged support
- Systick Timer
- Vector Table Offset Register support
- Disables support for individual interrupts. The value is 0xEB5F 8010.
- Architectural Clock Gating support

The SysTick timer of the Secure Enclave Cortex-M0+ uses the following clocks:

- SECENCDIVCLK
- S32KCLK

For the definitions of Clock Domains, see the *Arm*[®] *Corstone*[™] *SSE-700 Subsystem Technical Reference Manual*.

2.1.5 Secure Enclave reset

The Secure Enclave can request a reset of itself, or other systems in the SoC, using any of the following mechanisms:

- A Secure Enclave or SoC watchdog reset request. When either of these events occur, the entire SoC is
 reset.
- A Secure Enclave software reset request triggered using the Cortex-M0+ AIRCR.SYSRESETREQ field. The entire SoC is reset, except for all logic on **AONTOPPORESETn**. For more information on Reset Domains, see the *Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual*. For more information on Cortex-M0+ AIRCR.SYSRESETREQ, see the *Arm®v6-M Architecture Reference Manual*.
- Using the Secure Enclave Base System Control registers on page 3-41:
 - Initiate reset of the Host and External System, using the HOST_SYS_RST_CTRL.RST_REQ field
 - Initiate reset of the SoC, using the SOC_RST_CTRL.RST_REQ field.

2.1.6 Secure Enclave peripherals

This section describes peripheral devices attached to the Secure Enclave.

ROM and RAM

The Secure Enclave has its own dedicated ROM and RAM.

For more information on the Secure Enclave ROM and RAM, see the *Secure Enclave ROM region* on page 3-35 and *Secure Enclave RAM region* on page 3-35.

Interrupt collator

The Secure Enclave has an interrupt collator enabling more than 32 interrupts to be handled by the Secure Enclave Cortex-M0+ processor.

It is controlled by the Secure Enclave Base System Control registers. For more information on these registers, see the *3.3.1 Secure Enclave Base System Control register summary* on page 3-41.

Timers

The Secure Enclave has two CMSDK timers, Timer 0 and 1. These are in the SECENCTOP power domain and use the **SECENCDIVCLK** clock.

For more information, see 2.3.3 SECENCDIVCLK on page 2-27.

Both of the Secure Enclave CMSDK timers support being halted when the Secure Enclave Cortex-M0+ is halted by a debugger. The timer is halted when the Secure Enclave Cortex-M0+ is halted if software sets bit 1 of the CTRL register of the timer to 0b1. For more information on the Timers see the *Arm*® *Cortex*®-*M System Design Kit Technical Reference Manual*.

Watchdogs

The Secure Enclave includes two CMSDK watchdogs:

•	The Secure Enclave Watchdog is in the SECENCTOP power domain and uses SECENCDIVCLK
	The SoC Watchdog is in the AONTOP power domain and uses S32KCLK
	Note

An access to the SoC Watchdog takes 6-7 **S32KCLK** clock cycles. Accessing it too often might lead to software performance issues.

For more information on the CMSDK Watchdog, see the *Arm® Cortex®-M System Design Kit Technical Reference Manual*.

On the first expiry of the counter, both watchdogs generate interrupts to the Secure Enclave Cortex-M0+. On the second expiry, they generate a reset request to the Reset Controller of SSE-700 and cause a reset of the entire SoC. For more information, see the $Arm^{\text{\tiny{\$}}}$ $Corstone^{\text{\tiny{\$}}}$ SSE-700 Subsystem Technical Reference Manual.

When the Cortex-M0+ is halted by a debugger, both Secure Enclave watchdogs are halted.

Secure Enclave MHUs

The MHUs between the Host System and the Secure Enclave are split across the SECENCTOP and SYSTOP power domains. The MHUs between the External Systems and the Secure Enclave are split across the EXTSYS {0-1}TOP and SECENCTOP power domain.

For more information on MHUs, see the *Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual*.

System Control registers

The System Control registers are in the AONTOP power domain and control various aspects of the Secure Enclave.

For more information see the 3.3.2 Secure Enclave System Control register summary on page 3-52.

Base System Control registers

The Base System Control registers are in the Always ON power domain. They control the features of the Host and External Systems in the integration of the Secure Enclave System into the SSE-700 subsystem.

For more information, see the 3.3.1 Secure Enclave Base System Control register summary on page 3-41.

UART

The Secure Enclave has a PL011 UART located in the AONTOP power domain.

The Secure Enclave supports hardware-based flow control, and uses the **SECENCDIVCLK** for both the **PCLK** and **UARTCLK** inputs of PL011. Secure Enclave only uses the combined interrupt from the UART.

For more information on the PL011 UART see the Arm® Corstone SSE-700 Subsystem Technical
Reference Manual, and the Arm® PrimeCell® UART (PL011) Technical Reference Manual.
Note
The SSE-700 subsystem only supports the PL011 as an RS232-compliant UART.

2.2.3 Secure Enclave UART (SECENCUART) interface on page 2-25 describes the Secure Enclave UART interface, SECENCUART.

SECENCTOP PPU

The Secure Enclave has a *Power Policy Unit* (PPU) controlling the SECENCTOP power domain.

For more information on the PPU and SECENCTOP, see the Arm^* CoreLink^M PCK-600 Power Control Kit Technical Reference Manual and 2.4.1 SECENCTOP on page 2-29.

Secure Enclave Firewall

The Secure Enclave has a d	edicated Firewall instance.
Note —	-
•	s two Firewalls. This section only describes the Secure Enclave Firewall. **ubsystem Technical Reference Manual** describes the Secure Enclave in more detail.
This Firewall is configured	as follows:

- Lockdown Extension level 0
- Save and Restore Extension level 0
- Security Extension level 1

The Secure Enclave Firewall has the same Firewall interfaces as defined in the *Arm*[®] *Corstone*[™] *SSE-700 Subsystem Technical Reference Manual*, except that it does not have Lockdown and Tamper Interrupt interfaces.

The Secure Enclave Firewall is in the SECENCTOP power domain and includes two Firewall Components (FC0 – FCTLR and FC1). FC1 is on the memory path to the Host System.

The Protection Size of the Secure Enclave Firewall Component 1 is set to 4GB. *Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual* defines the Firewall IMPLEMENTATION DEFINED behavior. All of this behavior applies to the Secure Enclave Firewall.

The following table describes the Firewall Component configuration:

Table 2-3 Firewall component configuration

Firewall component	PE_LVL	ME_LVL	TE_LVL	RSE_LV L	NUM_R GN	MNRS	MXRS	NUM_M PE	SINGLE _MST
FCTLR	1	0	0	1	3	7	21	1	1
FC1	2	2	2	0	8	7	32	1	1

The following configurable values apply to all Firewall Components:

- MST_ID_WIDTH is 1 bit. All transactions have a fixed StreamID of 0 for the Secure Enclave Firewall.
- SEC SPT is 0b1
- MA SPT is 0b1
- SH SPT is 0b0
- INST SPT is 0b1
- PRIV SPT is 0b1

For Firewall Components that use PE.1, the following regions are predefined:

- Firewall Controller:
 - As the Arm[®] Corstone[™] SSE-700 Subsystem Technical Reference Manual Appendix defines.
 - The Configuration Master is set to the ID of the Secure Enclave.

When the Secure Enclave Firewall terminates a read transaction, or detects a read transaction marked as either an AMBA AXI5 SLVERR or DECERR, and the Firewall's monitor logic is enabled, the read data value is set to <code>0xDEAD_DEAD</code>.

For more information on the SSE-700 Subsystem Firewall, see the *Arm*[®] *Corstone*[™] *SSE-700 Subsystem Technical Reference Manual* Appendix.

2.2 Interfaces

A summary of the Secure Enclave Interfaces.

In the following sections the clock, power and reset domains of each interface are defined. This section must be read while referring to the Arm° $Corstone^{-1}$ SSE-700 Subsystem Technical Reference Manual as required.

This section contains the following subsections:

- 2.2.1 Crypto Accelerator interfaces on page 2-23.
- 2.2.2 Debug interface on page 2-25.
- 2.2.3 Secure Enclave UART (SECENCUART) interface on page 2-25.
- 2.2.4 Security Control Bits (SCB) interface on page 2-26.

2.2.1 Crypto Accelerator interfaces

The interfaces listed are used to integrate a Crypto Accelerator into the SSE-700 subsystem.

The SSE-700 subsystem Crypto Accelerator is split between the SECENCTOP and AONTOP power domains. These two components are:

- Crypto Accelerator (CA)
- Crypto Accelerator Always-on (CA AON)

Crypto Clock interface

The Crypto Clock interface **CRYPTOCLKOUT** is driven by the **SECENCCLK**. It is used only for the integration of the Crypto Accelerator into the Secure Enclave.

Crypto AON Clock Interface

The Crypto AON Clock interface **CRYPTOAONCLKOUT** is driven by **SECENCCLK**. It is used only for the integration of the Crypto Accelerator Always-On into the Secure Enclave.

Crypto Reset interface

The reset signal is active-LOW asynchronous assertion, synchronous de-assertion with respect to **CRYPTOCLKOUT**. The Crypto Reset interface **CRYPTORESETn** is driven by **SECENCWARMRESETn**.

Crypto AON Reset Interface

The Crypto Reset interface **CRYPTOAONRESETn** is driven by **SEPORESETn**. The reset signal is active-LOW asynchronous assertion, synchronous de-assertion with respect to **CRYPTOAONCLKOUT**.

Crypto Accelerator Master (CAM) interface

The Crypto Accelerator Master interface is a AHB master interface, with the following properties:

- AHB3
- 32-bit address
- 32-bit data
- CRYPTOCLKOUT
- SECENCTOP
- CRYPTORESETn

For more information on the CAM interface see the SSE-700 subsystem CIM.

Crypto Accelerator Slave (CAS) interface

The Crypto Accelerator slave interface must be connected to the AXI master interface, with the following properties:

- AXI4
- 32-bit address
- 32-bit data
- CRYPTOCLKOUT
- SECENCTOP
- CRYPTORESETn

Note

This interface provides access only to the Host Access Region of the Secure Enclave memory map.

Crypto Accelerator Firewall Configuration (CAFWCFG) interface

The Crypto Accelerator Firewall Configuration interface is an AXI Slave, with the following properties:

- AXI4
- 32-bit address
- 32-bit data
- CRYPTOCLKOUT
- SECENCTOP
- CRYPTORESETn

This interface provides access only to the Secure Enclave Firewall region of the Secure Enclave memory map.

Crypto Accelerator AON (CAAON) interface

The Crypto Accelerator AON interface is used for communication between the two halves of the IMPLEMENTATION DEFINED Crypto Accelerator.

The Crypto Accelerator AON interface is made up of two multi-bit signals, CA2CAAON and CAAON2CA, allowing the two halves of the Crypto Accelerator to communicate. The signals are used for:

- Information sent from the Crypto Accelerator to Crypto Accelerator Always-on. (CA2CAAON).
- Information sent from the Crypto Accelerator Always-on to Crypto Accelerator. (CAAON2CA).

The properties of the interface differ for each signal:

- · CA2CAAON:
 - Width equal to CAAON2CA_WIDTH
 - CRYPTOCLKOUT
 - CRYPTORESETn
- CAAON2CA:

- Width equal to CA2CAAON WIDTH
- CRYPTOAONCLKOUT
- CRYPTOAONRESETn

These signals are used only for the integration of the Crypto Accelerator into the SSE-700 subsystem.

Note

Note

CA2CAAON interface crossing the power domain. In one instance the CA2CAAON and CAAON2CA signals are input and output respectively. In the other, the CA2CAAON and CAAON2CA signals are output and input respectively.

Crypto Accelerator lifecycle Control (CALC) interface

The Crypto Accelerator lifecycle Control interface is used to control the advance of the lifecycle of the SoC, with the following properties:

- Asynchronous
- AONTOP

Crypto Accelerator Interrupt (CAINT) interface

The Crypto Accelerator Interrupt interface connects the interrupts from the Crypto Accelerator to the Cortex-M0+ NVIC, with the following properties:

- 2 interrupts
 - any unused interrupts must be tied LOW
- CRYPTOAONCLKOUT
- AONTOP
- CRYPTOAONRESETn

Crypto Accelerator Power P-Channel (CAPWRP) interface

The Crypto Accelerator Power P-Channel interface is used to control the power mode of the Crypto Accelerato, with the following properties:

- P-Channel interface with 4 PSTATE bits and 11 PACTIVE bits. The encoding of the **PSTATE** and **PACTIVE** signals follow the recommended usage defined in the *Arm® Power Control System Architecture*.
- Asynchronous
- AONTOP
- CRYPTOAONRESETn

2.2.2 Debug interface

The Secure Enclave has an APB4 and Cross Trigger Channel interface. This connects the internal debug logic of the Secure Enclave's debug logic with the debug logic of the SSE-700 Subsystem.

For more information about the SSE-700 debug infrastructure, see the Arm° Corstone $^{\circ}$ SSE-700 Subsystem Technical Reference Manual.

2.2.3 Secure Enclave UART (SECENCUART) interface

The Secure Enclave UART has a standard interface with flow control.

The following table shows the SECENCUART interface signals:

Table 2-4 SECENCUART interface

Signal	Description	I/O
SECENCUARTTX	UART Transmit data	О
SECENCUARTRX	UART Receive data	I
SECENCUARTRTSn	UART Request to Send	О
SECENCUARTCTSn	UART Clear to Send	Ι
SECENCUARTRIn	UART Ring Indicator	Ι
SECENCUARTDCDn	UART Data Carrier Detect	Ι
SECENCUARTDSRn	UART Data Set Ready	Ι
SECENCUARTDTRn	UART Data Terminal Ready	0
SECENCUARTOUT1n	UART Out1	0
SECENCUARTOUT2n	UART Out2	0

The SECENCUART interface has the following properties:

- · Asynchronous
- AONTOP
- SEPORESETn

For the definitions of Clock, Power and Reset Domains, see the *Arm*[®] *Corstone*[™] *SSE-700 Subsystem Technical Reference Manual*.

2.2.4 Security Control Bits (SCB) interface

The Security Control Bits provide an input interface to control security features within the SSE-700 subsystem.

For more details on the SCB see 2.1.3 Security Control Bits (SCB) on page 2-16.

This interface has the following properties:

- Multi-bit signal, as defined in 2.1.3 Security Control Bits (SCB) on page 2-16
- Asynchronous
- AONTOP
- CRYPTOAONRESETn

2.3 Clocks

For information on **S32KCLK** used by designs in both SSE-700 Host System and Secure Enclave, see **S32KCLK** in the *Arm*[®] *Corstone*[™] *SSE-700 Subsystem Technical Reference Manual*.

This section contains the following subsections:

- 2.3.1 SECENCREFCLK on page 2-27.
- 2.3.2 SECENCCLK on page 2-27.
- 2.3.3 SECENCDIVCLK on page 2-27.

2.3.1 SECENCREFCLK

SECENCREFCLK is the reference clock for the Secure Enclave. It is only used to generate the clocks of the Secure Enclave.

2.3.2 SECENCCLK

The following table summarizes SECENCCLK.

Table 2-5 SECENCCLK

Clock name	SECENCCLK			
Sources	Name Default Divider Suppo			
	SECENCREFCLK	Yes	No	
	SYSPLL	No	Yes	
High-level clock gating support	No			
Components	Crypto Accelerator Secure Enclave Firewall (FCTLR and FC1)			

Inside the Secure Enclave, there are several gated versions of SECENCCLK to reduce dynamic power.

SECENCLK is provided for integration of the Crypto Accelerator into SSE-700 using **CRYPTOCLKOUT** and **CRYPTOAONCLKOUT**. They cannot be used for any other logic.

2.3.3 SECENCDIVCLK

SECENCOLK is an integer divided version of **SECENCOLK**. It can be configured to be either 1:1 or 1:2, depending on the programming of the Clock Divider Control register in the Secure Enclave System Control Unit.

The follwing table summarizes **SECENCDIVCLK**.

Table 2-6 SECENCDIVCLK

Clock name	SECENCDIVCLK			
Sources	Name Default Divider Support		Divider Support	
	SECENCCLK	Yes	Yes	

Table 2-6 SECENCDIVCLK (continued)

Clock name	SECENCDIVCLK
High-level clock gating support	No
Components	Secure Enclave Cortex-M0+
	Secure Enclave RAM
	Secure Enclave ROM
	Secure Enclave Watchdog
	Secure Enclave Timer 0 and 1
	Sender frames of the SEH{0-1} and SEES{0-1}{0-1} MHUs
	Receiver frame of the HSE{0-1} and ES{0-1}SE{0-1} MHUs
	Secure Enclave System Control
	Secure Enclave Base System Control
	Secure Enclave UART
	Secure Enclave AHB AP
	Secure Enclave CS ROM
	Secure Enclave CTI
	Channel Gate for SECENCAUTH
	SECENC PPU

2.4 Power

This section describes the Secure Enclave power control and sleep states.

This section contains the following subsections:

- 2.4.1 SECENCTOP on page 2-29.
- 2.4.2 Secure Enclave sleep states on page 2-30.

2.4.1 SECENCTOP

This section describes the SECENCTOP power domain.
Note
You must also read the Power section of the Arm® Corstone SSE-700 Subsystem Technical Reference Manual.
The SECENCTOP power domain supports the following power modes:
ON All 1 10 F 1 DAM' 1

- ON: All logic and Secure Enclave RAM is powered
- MEM_RET: Secure Enclave RAM is in a retention state, all other logic is powered off
- OFF: All logic, including the RAM is powered off

Note

WARM_RST is supported by the SECENCTOP PPU, but Arm strongly recommends that software never directs the PPU to WARM_RST.

The SECENCTOP power domain contains the following components:

- Secure Enclave Cortex-M0+
- Secure RAM and ROM
- Secure Enclave CMSDK Timer 0 and 1
- Secure Enclave Watchdog
- Sender frame of the SEH{0-1} and SEES{0-1}{0-1} MHUs
- Receiver frame of the HSE{0-1} and ES{0-1}SE{0-1} MHUs
- Secure Enclave Firewall
- · Crypto Accelerator
- Secure Enclave AHB AP
- Secure Enclave CS ROM
- Secure Enclave CTI
- · Channel Gate for SECENCAUTH DAZ

The SECENCTOP domain has the following power modes:

OFF power mode

- Any debug access to the Cortex-M0+ generates an error.
- A CTI event to or from the Secure Enclave CTI is ignored and does not cause a change in the power mode.

MEM_RET power mode

- Any debug access to the Cortex-M0+ generates an error.
- A CTI event to or from the Secure Enclave CTI is ignored and does not cause a change in the power mode.

ON power mode

- Any debug access to the Cortex-M0+ is allowed.
- A CTI event to or from the Secure Enclave CTI is allowed.
- Any access to the Secure Enclave RAM is allowed.

WARM RST power mode

- Software must never request entry into the WARM_RST power mode because it is unable to cause the SECENCTOP power domain to exit the WARM_RST power mode.
- Any debug access to the Cortex-M0+ generates an error.
- A CTI event to or from the Secure Enclave CTI is ignored and does not cause a change in the power mode.

Software is responsible for guaranteeing that the Crypto Accelerator is idle before entering into an power mode other than ON.	ıny

2.4.2 Secure Enclave sleep states

The Secure Enclave has the following sleep states:

- SLEEPING:
 - The clock is gated to the following components:
 - Secure Enclave Cortex-M0+, excluding the NVIC
 - Secure Enclave RAM and ROM
 - The conditions for entering the SLEEPING state are:
 - The SCR.SLEEPDEEP bit set to 0b0
 - Secure Enclave software executes a WFE or WFI instruction
 - EXTDBG ROM CDBGPWRUPREQ0 is 0b0
 - Exit from the SLEEPING state occurs when any of the following occur:
 - An interrupt to the Secure Enclave Cortex-M0+ is detected
 - EXTDBG ROM CDBGPWRUPREO0 is 0b1
 - The Secure Enclave can enter the SLEEPING state in any SSE-700 subsystem power state other than BSYS.OFF.
- · SLEEPDEEP:
 - The SLEEPDEEP sleep state is the same as the SLEEPING state, except that the **SCR.SLEEPDEEP** bit is set to 0b1. Otherwise all conditions for entering and exiting from SLEEPDEEP state are the same as SLEEPING.

SLEEPDEEP state are the same as SLEEPING.	
Note	
For more information on:	

- SCR register, see the Arm® Armv6-M Architecture Reference Manual
- EXTDBG ROM CDBGPWRUPREQ, see the Arm® SSE-700 Subsystem Technical Reference Manual

• SLEEPDEEP PG:

- In the SLEEPDEEP PG state all components of the Secure Enclave in the SECENCTOP domain lose their context.
- Entry into SLEEPDEEP PG is by the SLEEPDEEP state.
- Secure Enclave software must carry out the following before entering the SLEEPDEEP PG state:
 - Disable the Secure Enclave Timer {0,1} and Watchdog
 - Guarantee that Secure Enclave is idle, including Crypto Accelerator
- Conditions for entering the SLEEPDEEP PG state are:
 - All the conditions for SLEEPDEEP state are met
 - SE PWR CTRL.PWR GATE EN is 0b1
 - **SECENCTOP PPU** is in the OFF or MEM_RET power mode
- Exit from SLEEPDEEP PG state occurs when any of the following occur:
 - The Secure Enclave Base System Control **BSYS_PWR_REQ.WAKEUP_EN** is **0b1** and an interrupt is detected from one of the following sources:

- SoC Watchdog
- Host System Firewall Tamper interrupt
- Interrupt Router Tamper interrupt
- Secure Watchdog WS1
- SECENCTOP PPU
- Secure Enclave UART UARTINTR
- The Secure Enclave Base System Control BSYS PWR REQ.WAKEUP EN is 0b1 and an interrupt is detected from one of the following sources and the interrupt is unmasked:
- Any interrupt routed to the Secure Enclave from the Interrupt Router - Note -By masking the interrupt in the interrupt collator, software can disable wakeup from any interrupt. EXTDBG ROM CDBGPWRUPREQ0 is 0b1. Any condition which causes the SECENCTOP PPU to exit the OFF or MEM RET power mode. — The Secure Enclave can enter the SLEEPDEEP PG state in any SSE-700 subsystem power state. - Note -For entry into the BSYS.OFF power state, the SECENCTOP power domain must be in OFF.

2.5 Reset

You must read this section with the reset section of the *Arm*® *Corstone SSE-700 Subsystem Technical Reference Manual*.

This section contains the following subsections:

- 2.5.1 SEPORESETn on page 2-32.
- 2.5.2 SECENCPORESETn on page 2-32.
- 2.5.3 SECENCWARMRESETn on page 2-32.

2.5.1 SEPORESETn

The **SEPORESETn** reset domain contains the following logic:

- SoC Watchdog
- Secure Enclave UART
- Secure Enclave System and Base System Control registers
- Crypto Accelerator Always-on and OTP
- SECENCTOP PPU and PCSM

2.5.2 SECENCPORESETn

The **SECENCPORESETn** reset domain contains the following logic:

- Debug logic within the Cortex-M0+
- Secure Enclave AHB AP and CS ROM table
- Secure Enclave CTI
- Channel Gate for SECENCAUTH DAZ

2.5.3 SECENCWARMRESETn

The SECENCWARMRESETn reset domain contains the following logic:

- Non-debug logic within the Cortex-M0+
- Secure Enclave Timers
- Secure Enclave Watchdog
- Sender halves of SEH{0,1} and SEES{0-1}{0-1} MHUs
- Receiver halves of HSE {0,1} and ES {0-1} SE {0-1} MHUs
- Crypto Accelerator

Chapter 3 **Programmers model**

This chapter provides general information about the Secure Enclave memory map and registers, and information for programming the device.

It contains the following sections:

- *3.1 Memory map* on page 3-34.
- *3.2 Interrrupt map* on page 3-38.
- *3.3 Registers* on page 3-41.

3.1 Memory map

This section gives an overview of the Secure Enclave Memory Map regions.

This section contains the following subsection:

• 3.1.1 Secure Enclave memory map on page 3-34.

3.1.1 Secure Enclave memory map

The Secure Enclave has a 32-bit address space.

All unallocated memory regions are Reserved. Access to Reserved regions results in a RAZ/WI and a bus error response, except for the Reserved locations defined by the Cortex-M0+ processor.

The following table shows the Secure Enclave memory map.

Table 3-1 Memory Map

Base address	Size	Region	Notes
0×0000_0000	32KB	Secure Enclave ROM Region	Provides access to the Secure Enclave ROM. See Secure Enclave ROM Region on page 3-35.
	96KB	Reserved	-
0x0002_0000	896KB	Down of	
0x0010_0000	765MB	Reserved	-
0x2F00_0000	16MB	Crypto Accelerator	Exposed on the CAM interface. For more information on the CAM interface, see <i>Crypto Accelerator Master (CAM) interface</i> on page 2-23.
0x3000_0000	128KB	Secure Enclave RAM Region	Secure Enclave RAM. See section Secure Enclave RAM region on page 3-35.
	896KB	Reserved	-
0x3010_0000	511MB	Reserved	-
0x5000_0000	256MB	Secure Enclave Peripheral Region	See Secure Enclave Peripheral region on page 3-35
0x6000_0000	2GB	Host Access Region	See Host Access region on page 3-36
0×E000_0000	1MB	Private Peripheral Bus	See Private Peripheral Bus (PPB) on page 3-36
0xE010_0000	255MB	Reserved	-
0xF000_0000	4KB	Secure Enclave CS ROM	-
0xF000_1000	4KB	Secure Enclave CTI	-
0xF000_2000	1016KB	Reserved	-
0xF010_0000	255MB	Reserved	-

Note	
The Secure Enclave Memory Map applies to the Cortex-M0+. The CAS interface only has verified the Host Access Region.	isibility of

Secure Enclave ROM region

The Secure Enclave ROM provides a 32KB area of memory starting at address 0x0000_0000. This is where the Secure Enclave's Processor core boots from.

Secure Enclave RAM region

The Secure Enclave RAM region provides a 128KB area for accessing private on-chip RAM. This starts at address 0x3000_0000.

Secure Enclave Peripheral region

The Secure Enclave Peripheral region provides an area for accessing all internal Secure Enclave peripherals. The following table shows the memory map:

Table 3-2 Secure Enclave Peripheral region

Base address	Size	Region	Notes	
0x5000_0000	4KB	Timer 0	CMSDK Timers. For more information, see the Arm* Cortex*-M System Design Kit Technical Reference Manual.	
0x5000_1000	4KB	Timer 1		
0x5000_2000	4KB	Reserved	-	
0x5000_3000	4KB	SEH 0 Sender	MHUs between Secure Enclave and Host System. For more details of these MHUs, see Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual.	
0x5000_4000	4KB	HSE 0 Receiver		
0x5000_5000	4KB	SEH 1 Sender		
0x5000_6000	4KB	HSE 1 Receiver		
0x5000_7000	36KB	Reserved	-	
0x5001_0000	4KB	SEES0 0 Sender	MHUs between Secure Enclave and Host System. For more details of these MHUs, see Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual.	
0x5001_1000	4KB	ES0SE 0 Receiver		
0x5001_2000	4KB	SEES0 1 Sender		
0x5001_3000	4KB	ES0SE 1 Receiver		
0x5001_4000	4KB	SEES1 0 Sender		
0x5001_5000	4KB	ES1SE 0 Receiver		
0×5001_6000	4KB	SEES1 1 Sender		
0x5001_7000	4KB	ES1SE 1 Receiver		
0x5001_8000	32KB	Reserved	-	
0x5002_0000	96KB	Reserved	-	

Table 3-2 Secure Enclave Peripheral region (continued)

Base address	Size	Region	Notes	
0x5008_0000 4KB		Secure Enclave System Control Register	Secure Enclave System Control Register. See section 3.3.2 Secure Enclave System Control register summary on page 3-52	
0x5008_1000	4KB	Watchdog Timer CSMDK Watchdog. Refer to the Arm® Cortex®-M System Design Kit Technical Reference Manual.		
0x5008_2000	44KB	Reserved	-	
0x5008_D000	4KB	SECENCTOP PPU	See SECENCTOP PPU on page 2-21	
0x5008_E000	4KB	Secure Enclave Base System Control Register	See 3.3.1 Secure Enclave Base System Control register summary on page 3-41	
0x5008_F000	4KB	SoC Watchdog	See the Arm® Cortex®-M System Design Kit Technical Reference Manual	
0x5009_0000	4KB	UART	See the Arm® PrimeCell® UART (PL011) Technical Reference Manual	
0x5009_1000	1084KB	Reserved	-	
0x5020_0000	2MB	Secure Enclave Firewall	See Secure Enclave Firewall on page 2-21	
0x5040_0000 252MB Reserved -		-		

Host Access region

The Host Access Region is a 2GB area starting at 0x6000_0000. It gives the Secure Enclave access to the Host System address space.

All access passes through FC1 of the Secure Enclave Firewall. The mapping between the Secure Enclave and Host System address space is controlled using the regions within the Secure Enclave Firewall and the Translation Extension. For more information on Firewall translation, see the Arm^{*} Corstone * SSE-700 Subsystem Technical Reference Manual.

Note		
The security of access to the I	Host System address space is controlled l	by the Firewall translation
extension.		

Cortex®-M0+ Private Peripheral Bus (PPB) region

The Private Peripheral Bus region is available only to the Cortex-M0+ core. For more details, see the *Arm®v6-M Architecture Reference Manual*.

Timers and Watchdog timers

Timers 0 and 1 and the Secure Enclave Watchdog timer are located in the SECENCTOP power domain.

The SoC Watchdog resides within the AONTOP domain of the Secure Enclave. For more information on these timers, see the *Arm*[®] *Cortex*[®]-*M System Design Kit Technical Reference Manual*.

MHUs

The Secure Enclave supports six pairs of MHUs. Each pair provides full-duplex communication between the Secure Enclave and either the Host System or an External System.

For more information on the MHUs, see the relevant section in the Arm^{\otimes} $Corstone^{-1}$ SSE-700 Subsystem Technical Reference Manual.

3.2 Interrrupt map

This section gives an overview of the Secure Enclave Interrupt Map and Interrupt Expansion.

This section contains the following subsections:

- 3.2.1 Secure Enclave interrupt map on page 3-38.
- 3.2.2 Secure Enclave interrupt expansion on page 3-39.

3.2.1 Secure Enclave interrupt map

The following table summarises the Secure Enclave interrupt map.

Table 3-3 Interrupt Map

Interrupt number	Interrupt source	Level/edge	Notes
NMI	SoC Watchdog Timer	Level	-
0	Secure Enclave Interrupt Expansion	Level	See 3.2.2 Secure Enclave interrupt expansion on page 3-39
1	Crypto Accelerator Interrupt 0	Level	Any unused interrupts are Reserved and must be tied
2	Crypto Accelerator Interrupt 1	Level	LOW
3	Secure Enclave Watchdog Timer	Level	-
4	Reserved	-	-
5	CMSDK Timer 0	Level	-
6	CMSDK Timer 1	Level	-
7	Host System Firewall Tamper Interrupt	Level	-
8	Interrupt Router Tamper Interrupt	Level	-
9	Secure Watchdog WS1	Level	-
10	SECENCTOP PPU	Level	-
11	UART UARTINTR	Level	-
12	Secure Enclave Firewall Interrupt	Level	-
13	Secure Enclave CTI Trigger Out 2	Level	-
14	Secure Enclave CTI Trigger Out 3	Level	-
15-20	Reserved	-	-
21	SEH0 MHU Sender Combined interrupt	Level	-
22	Reserved	-	-
23	HSE0 MHU Receiver Combined interrupt	Level	-
24	Reserved	-	-

Table 3-3 Interrupt Map (continued)

Interrupt number	Interrupt source	Level/edge	Notes
25	Reserved	-	-
26	SEH1 MHU Sender Combined interrupt	Level	-
27	Reserved	-	-
28	HSE1 MHU Receiver Combined interrupt	Level	-
29-31	Reserved	-	-

3.2.2 Secure Enclave interrupt expansion

The Secure Enclave interrupt collator provides 128 interrupts in addition to the interrupts provided by the Cortex-M0+ NVIC.

The output drives interrupt 0 in the Secure Enclave Cortex-M0+. If an interrupt is unmasked and Secure Enclave Base System Control **BSYS_PWR_REQ.WAKEUP_EN** is HIGH, these interrupts force the Secure Enclave to exit the OFF or MEM_RET power modes.

Software uses the SEC_ENC_INT_COL_ST {0-3} and SEC_ENC_INT_COL_MSK {0-3} registers to monitor the status, and mask the interrupt respectively. All interrupts routed to the Secure Enclave must be level-based as there is no logic to capture which source caused the interrupt. The Secure Enclave Expansion interrupts are referred to as SEEI{x}, where x is the interrupt number starting from 0.

The following table summarizes the Secure Enclave interrupt expansion.

Table 3-4 Secure Enclave interrupt expansion

Interrupt number (SEEI{x})	Interrupt source	Level/ edge	Notes
0	Host System Firewall Interrupt	Level	
1	SDC-600	Level	
2	Host PPU Combined Interrupt	Level	
3	REFCLK Timer 0	Level	All interrupt sources are routed through the Interrupt Router.
4	REFCLK Timer 1	Level	For more information about the Interrupt Router, see the <i>Arm</i> [®] <i>Corstone</i> [™] <i>SSE-700 Subsystem Technical Reference Manual.</i>
5	REFCLK Timer 2	Level	
6	REFCLK Timer 3	Level	
7	S32K Timer 0	Level	
8	S32K Timer 1	Level	
9-31	Reserved	-	-

Table 3-4 Secure Enclave interrupt expansion (continued)

Interrupt number (SEEI{x})	Interrupt source	Level/ edge	Notes
32-63	Shared Interrupt 32-63	Level	All interrupt sources are routed through the Interrupt Router. The source of the interrupt is IMPLEMENTATION DEFINED.
64	SEES00 MHU Sender Combined Interrupt	Level	For more information about the MHU interrupt, see the <i>Arm</i> ® <i>Corstone</i> ™ <i>SSE-700 Subsystem Technical Reference Manual</i> .
65	ES0SE0 MHU Receiver Combined Interrupt	Level	
66	SEES01 MHU Sender Combined Interrupt	Level	
67	ES0SE1 MHU Receiver Combined Interrupt	Level	
68	SEES10 MHU Sender Combined Interrupt	Level	
69	ES1SE0 MHU Receiver Combined Interrupt	Level	
70	SEES11 MHU Sender Combined Interrupt	Level	
71	ES1SE1 MHU Receiver Combined Interrupt	Level	
72-127	Reserved	-	-

3.3 Registers

This section summarizes the Secure Enclave Base and System Control registers.

This section contains the following subsections:

- 3.3.1 Secure Enclave Base System Control register summary on page 3-41.
- 3.3.2 Secure Enclave System Control register summary on page 3-52.

3.3.1 Secure Enclave Base System Control register summary

This section summarizes the Secure Enclave Base System Control registers.

The Secure Enclave Base System Control registers are in the Secure Enclave Peripheral Map. They are only accessible by the Secure Enclave Cortex-M0+ processor. The Secure Enclave Base System Control registers are accessed at offset 0x5008_E000 in the Secure Enclave memory map. These registers are in the Always ON power domain.

Table 3-5 Secure Enclave Base System Control register summary

Offset	Short name	Access	Name
0x000	HOST_SYS_RST_CTRL on page 3-42	RW	Host System Reset Control
0x004	HOST_SYS_RST_ST on page 3-43	RO	Host System Reset Status
0x008	SOC_RST_CTRL on page 3-43	RW	SoC Reset Control
0x00C	SOC_RST_SYN on page 3-44	RO	SoC Reset Syndrome
0x010	SEC_ENC_INT_COL_ST0 on page 3-44	RO	Secure Enclave Interrupt Collator Status 0
0x014	SEC_ENC_INT_COL_ST1 on page 3-44	RO	Secure Enclave Interrupt Collator Status 1
0x018	SEC_ENC_INT_COL_ST2 on page 3-44	RO	Secure Enclave Interrupt Collator Status 2
0x01C	SEC_ENC_INT_COL_ST3 on page 3-45	RO	Secure Enclave Interrupt Collator Status 3
0x020	SEC_ENC_INT_COL_MSK0 on page 3-45	RW	Secure Enclave Interrupt Collator Mask 0
0x024	SEC_ENC_INT_COL_MSK1 on page 3-45	RW	Secure Enclave Interrupt Collator Mask 1
0x028	SEC_ENC_INT_COL_MSK2 on page 3-46	RW	Secure Enclave Interrupt Collator Mask 2
0x02C	SEC_ENC_INT_COL_MSK3 on page 3-46	RO	Secure Enclave Interrupt Collator Mask 3
0x030 – 0x3FC	-	RO	Reserved
0x400	BSYS_PWR_REQ on page 3-46	RW	Base System Power Request
0x404	BSYS_PWR_ST on page 3-47	RO	Base System Power Status
0x408 – 0x7FC	-	RO	Reserved
0×800	SECENCCLK_CTRL on page 3-48	RW	SECENCCLK Control
0×804	SECENCCLK_DIV on page 3-48	RW	SECENCCLK Divider
0x808 – 0x9FC	-	RO	Reserved

Table 3-5 Secure Enclave Base System Control register summary (continued)

Offset	Short name	Access	Name
0xA00	CLKFORCE_ST on page 3-49	RO	Clock Force Status
0×A04	CLKFORCE_SET on page 3-49	WO	Clock Force Set
0xA08	CLKFORCE_CLR on page 3-49	WO	Clock Force Clear
0xA10	SEC_ENC_PLL_ST on page 3-50	RO	PLL Status
0xA14 – 0xFCC	-	RO	Reserved
0xFD0	PID4 on page 3-50	RO	Peripheral ID4
0xFD4	PID5 on page 3-50	RO	Peripheral ID5
0xFD8	PID6 on page 3-50	RO	Peripheral ID6
0xFDC	PID7 on page 3-51	RO	Peripheral ID7
0xFE0	PID0 on page 3-51	RO	Peripheral ID0
0xFE4	PID1 on page 3-51	RO	Peripheral ID1
0xFE8	PID2 on page 3-51	RO	Peripheral ID2
0xFEC	PID3 on page 3-51	RO	Peripheral ID3
0xFF0	CID0 on page 3-52	RO	Component ID0
0xFF4	CID1 on page 3-52	RO	Component ID1
0xFF8	CID2 on page 3-52	RO	Component ID2
0xFFC	CID3 on page 3-52	RO	Component ID3

The Secure Enclave Base System Control registers support only 32-bit word aligned accesses. Access by other bit sizes or unaligned accesses are treated as 32-bit word aligned access without generating an error response.

The Secure Enclave Base System Control registers have the following behavior:

- Any read to a write-only register is treated as RAZ.
- · Any write to a read-only register is treated as WI.

In both cases no error is generated.

Host System Reset Control (HOST_SYS_RST_CTRL) register

The following table gives a bit-level description of the HOST SYS RST CTRL register.

Table 3-6 HOST_SYS_RST_CTRL register

Bits	Name	Description	Туре	Reset
[31:2]	-	Reserved	RO	0x0000_0000
[1]	RST_REQ	Reset request for Host System 0b0: No reset requested 0b1: Reset requested	RW	0b0
[0]	CPUWAIT	CPU Wait control 0b0: Host System's CPUWAIT signal is de-asserted. 0b1: Host System's CPUWAIT signal is asserted. When CPUWAIT becomes 0b0 attempts to set it back to 0b1 are ignored. This field only returns to 0b1 when any of the following occur: External Power on Reset Internal Power on Reset Debug reset Host System reset A request to set this field 0b0 at the same time as the field is to be set to 0b1 results in the field being set to 0b1. This field becomes RO when HOST_CPUWAIT_WEN is LOW. Any attempt to set this field to 0b0 by software is ignored.	RW	0b1

Host System Reset Status (HOST_SYS_RST_ST) register

The following table gives a bit-level description of the HOST_SYS_RST_ST register.

Table 3-7 HOST_SYS_RST_ST register

Bits	Name	Description	Туре	Reset
[31:3]	-	Reserved	RO	0x00_0000
[2:1]	RST_ACK	Status of reset request	RO	0b00
		0b00 – No reset requested		
		0b01 – Reset request unable to complete		
		0b10 – Reset request complete		
		0b11 – Reserved		
[0]	-	Reserved	RO	0b0

SoC Reset Control (SOC_RST_CTRL) register

The following table gives a bit-level description of the SOC_RST_CTRL register.

Table 3-8 SOC_RST_CTRL register

Bits	Name	Description	Туре	Reset
[31:2]	-	Reserved	RO	0x0000_0000
[1]	RST_REQ	Reset request for SoC. 0b0 : No reset requested 0b1 : Reset requested	RW	0b0
[0]	-	Reserved	RO	0b0

SoC Reset Syndrome (SOC_RST_SYN) register

The following table gives a bit-level description of the SOC RST SYN register.

Table 3-9 SOC RST SYN register

Bits	Name	Description	Туре	Reset
[31]	SEC_ENC	Indicates the source of the last reset is captured in the SE_RST_SYN register in the Secure Enclave System Control registers	RO	UNKNOWN
[30:4]	-	Reserved	RO	0×000_0000
[3]	SOC_WDOG	Indicates the last reset of the SoC was caused by the SoC Watchdog	RO	UNKNOWN
[2]	-	Reserved	RO	0x000_0000
[1]	nSRST	Indicates that the last reset of the SoC was caused by either: • nSRST pin being asserted • DP ROM CSYSRSTREQ being asserted	RO	UNKNOWN
[0]	POR	Indicates that the last reset of the SoC was caused by either: • PORESETn pin being asserted • DP CDBGRSTREQ being asserted • SOC_RST_CTRL.RST_REQ bit set to 0b1	RO	UNKNOWN

Secure Enclave Interrupt Collator Status 0 (SEC_ENC_INT_COL_ST0) register

The following table gives a bit-level description of the SEC_ENC_INT_COL_ST0 register.

Table 3-10 SEC_ENC_INT_COL_ST0 register

Bits	Name	Description	Туре	Reset
[31:0]	SSI_ST	Status of the Secure Enclave Expansion Interrupt (SEEI) {0-31} after the respective mask field from SEC_ENC_INT_COL_MSK0 register has been applied. SEEI0 assigned to bit[0].	RO	UNKNOWN
		0b0: Interrupt is de-asserted		
		0b1: Interrupt is asserted		

Secure Enclave Interrupt Collator Status 1 (SEC_ENC_INT_COL_ST1) register

The following table gives a bit-level description of the SEC_ENC_INT_COL_ST1 register.

Table 3-11 SEC_ENC_INT_COL_ST1 register

Bits	Name	Description	Туре	Reset
[31:0]	SSI_ST	Status of the Secure Enclave Expansion Interrupt (SEEI) {32-63} after the respective mask field from SEC_ENC_INT_COL_MSK1 register has been applied. SEEI32 assigned to bit[0]: 0b0: Interrupt is de-asserted 0b1: Interrupt is asserted	RO	UNKNOWN

Secure Enclave Interrupt Collator Status 2 (SEC_ENC_INT_COL_ST2) register

The following table gives a bit-level description of the SEC ENC INT COL ST2 register.

Table 3-12 SEC_ENC_INT_COL_ST2 register

Bits	Name	Description	Туре	Reset
[31:0]	SSI_ST	Status of the Secure Enclave Expansion Interrupt (SEEI) {64-95} after the respective mask field from SEC_ENC_INT_COL_MSK2 register has been applied. SEEI64 assigned to bit[0]: 0b0: Interrupt is de-asserted 0b1: Interrupt is asserted	RO	UNKNOWN

Secure Enclave Interrupt Collator Status 3 (SEC_ENC_INT_COL_ST3) register

The following table gives a bit-level description of the SEC_ENC_INT_COL_ST3 register.

Table 3-13 SEC_ENC_INT_COL_ST3 Register

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Secure Enclave Interrupt Collator Mask 0 (SEC_ENC_INT_COL_MSK0) register

The following table gives a bit-level description of the SEC ENC INT COL MSK0 register.

Table 3-14 SEC ENC INT COL MSK0 register

Bits	Name	Description	Туре	Reset
[31:0]	SSI_MSK	Configures whether Secure Enclave Expansion Interrupt (SEEI) {0-31} generates an interrupt to the Secure Enclave Cortex-M0+ core, with SEEI0 assigned to bit[0]: 0b0: Interrupt is unmasked	RW	0x0000_0000
		0b1: Interrupt is masked		

Secure Enclave Interrupt Collator Mask 1 (SEC_ENC_INT_COL_MSK1) register

The following table gives a bit-level description of the SEC_ENC_INT_COL_MSK1 register.

Table 3-15 SEC_ENC_INT_COL_MSK1 register

Bits	Name	Description	Туре	Reset
[31:0]	SSI_MSK	Configures whether Secure Enclave Expansion Interrupt (SEEI) {32-63} generates an interrupt to the Secure Enclave Cortex-M0+ core, with SEEI32 assigned to bit[0]: 0b0: Interrupt is unmasked 0b1: Interrupt is masked	RW	0x0000_0000

Secure Enclave Interrupt Collator Mask 2 (SEC_ENC_INT_COL_MSK2) register

The following table gives a bit-level description of the SEC_ENC_INT_COL_MSK2 register.

Table 3-16 SEC_ENC_INT_COL_MSK2 register

Bits	Name	Description	Туре	Reset
[31:0]	SSI_MSK	Configures whether Secure Enclave Expansion Interrupt (SEEI) {64-95} generates an interrupt to the Secure Enclave Cortex-M0+ core, with SEEI64 assigned to bit[0]: 0b0: Interrupt is unmasked 0b1: Interrupt is masked	RW	0x0000_0000

Secure Enclave Interrupt Collator Mask 3 (SEC_ENC_INT_COL_MSK3) register

The following table gives a bit-level description of the SEC ENC INT COL MSK3 register

Table 3-17 SEC_ENC_INT_COL_MSK3 register

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Base System Power Request (BSYS_PWR_REQ) register

The following table gives a bit-level description of the BSYS PWR REQ register.

Table 3-18 BSYS_PWR_REQ register

Bits	Name	Description	Туре	Reset
[31:6]	-	Reserved	RO	0x0000_0000
[5:3]	SYSTOP_PWR_REQ	Select SYSTOP power domain behaviour when no activity in the domain: 0b000 – No request for logic or volatile memory to be powered. 0b001 – No request for logic to be powered, but volatile memory must be	RW	0b000
		retained. 0b01x - Request for logic to be powered, but volatile memory can be either powered or retained. 0b1xx - Request for logic and volatile memory to be powered.		

Table 3-18 BSYS_PWR_REQ register (continued)

Bits	Name	Description	Туре	Reset
[2]	DBGTOP_PWR_REQ	Select DBGTOP power domain behaviour when no activity in the domain: 0b0 – No request for DBGTOP to be powered 0b1 – Request for DBGTOP to be powered	RW	0b0
[1]	REFCLK_REQ	Request REFCLK: 0b0 – No request for REFCLK to be supplied 0b1 – Request for REFCLK to be supplied	RW	0b0
[0]	WAKEUP_EN	Secure Enclave wakeup enable: 0b0 – Wakeup for Secure Enclave is disabled 0b1 – Wakeup for Secure Enclave is enabled	RW	0b0

Base System Power Status (BSYS_PWR_ST) register

The following table gives a bit-level description of the BSYS_PWR_ST register.

Table 3-19 BSYS_PWR_ST register

Bits	Name	Description	Туре	Reset
[31:6]	-	Reserved	RO	0×0000_0000
[5:3]	SYSTOP_PWR_ST	SYSTOP power domain status: 0b000: SYSTOP is in the OFF or WARM_RST power mode 0b001: SYSTOP is in the MEM_RET power mode 0b010: SYSTOP is in the FUNC_RET power mode 0b100: SYSTOP is in the ON power mode All other values are Reserved	RO	UNKNOWN
[2]	DBGTOP_PWR_ST	DBGTOP power domain status: 0b0: DBGTOP is in the OFF or WARM_RST power mode 0b1: DBGTOP is in the ON-power mode	RO	UNKNOWN
[1]	-	Reserved	RO	0b0
[0]	-	Reserved	RO	0b0

Note
11016

The values in these registers are driven from the **PPUHWSTAT** outputs of the respective PPU. The values are only valid if the respective PPU is not making a transition. For more information on the PPU, see the *Arm® Power Policy Unit Architecture Specification, version 1.1*.

SECENCCLK Clock Control (SECENCCLK_CTRL) register

The following table gives a bit-level description of the SECENCCLK CTRL register.

Table 3-20 SECENCCLK_CTRL register

Bits	Name	Description	Туре	Reset
[31:24]	ENTRY_DELAY	Configure number of idle clock cycles before clock is gated	RW	0×00
[23:16]	-	Reserved	RO	0×00
[15:8]	CLKSELECT_CUR	Currently selected clock source for SECENCCLK: 0x00: Clock gate 0x01: SECENCREFCLK 0x02: SYSPLL All other values are Reserved.	RO	UNKNOWN
[7:0]	CLKSELECT	Select the clock source for SECENCCLK: 0x00: Clock gate 0x01: SECENCREFCLK 0x02: SYSPLL All other values are Reserved. Selecting a value which is Reserved can cause a deadlock.	RW	0x01

SECENCCLK Clock Divider (SECENCCLK_DIV) register

The following table gives a bit-level description of the SECENCCLK_DIV register.

Table 3-21 SECENCCLK_DIV register

Bits	Name	Description	Туре	Reset
[31:21]	-	Reserved	RO	0x000
[20:16]	CLKDIV_CUR	current variate of integer arviate applied to \$151 BE.	RO	UNKNOWN
		0x00: Divide by 1		
		0 x 01 : Divide by 2		
		0x1F: Divide by 32		

Table 3-21 SECENCCLK_DIV register (continued)

Bits	Name	Description	Туре	Reset
[15:5]	-	Reserved	RO	0×000
[4:0]	CLKDIV	Select the value of the integer divider applied to SYSPLL : 0x00: Divide by 1 0x01: Divide by 2 0x1F: Divide by 32	RW	0x00

Clock Force Status (CLKFORCE_ST) register

The following table gives a bit-level description of the CLKFORCE_ST register.

Table 3-22 CLKFORCE_ST register

Bits	Name	Description	Туре	Default
[31:1]	-	Reserved	RO	0x0000_0000
[0]	SECENCCLK_FORCE_ST	Status of SECENCCLK clock force:	RO	0b0
		0b0: High-level clock gating is enabled		
		0b1 : High-level clock gating is disabled		

Note	
The SECENCCLK_FORCE	_ST field applies to both high-level clock gating on SECENCCLK and
SECENCDIVCLK.	

Clock Force Set (CLKFORCE_SET) register

The following table gives a bit-level description of the CLKFORCE_SET register.

Table 3-23 CLKFORCE_SET register

Bits	Name	Description	Туре	Reset
[31:1]	-	Reserved	RO	0x0000_0000
[0]	SECENCCLK_FORCE_SET	Set SECENC_FORCE_ST in CLKFORCE_ST register.	WO	0b0
		Writing a value of 0b0 has no effect.		
		This field always reads as 0b0 .		

Clock Force Clear (CLKFORCE_CLR) register

The following table gives a bit-level description of the CLKFORCE_CLR register.

Table 3-24 CLKFORCE_CLR register

Bits	Name	Description		Reset
[31:1]	-	Reserved	RO	0x0000_0000
[0]	SECENCCLK_FORCE_CLR	Clear SECENC_FORCE_ST in CLKFORCE_ST register.	WO	0b0
		Writing a value of 0b0 has no effect.		
		This field always reads as 0b0 .		

Secure Enclave Phase Locked Loop (PLL) Status (SEC_ENC_PLL_ST) register

The following table gives a bit-level description of the SEC_ENC_PLL_ST register.

Table 3-25 SEC_ENC_PLL_ST register

Bits	Name	Description	Туре	Reset
[31:1]	-	Reserved	RO	0x0000_0000
[0]	SYSPLLLOCK_ST	Status of the SYSPLLLOCK input.	RO	UNKNOWN
		0b0: PLL is not locked		
		0b1 : PLL is locked		

Peripheral ID 4 (PID4) register

The following table gives a bit-level description of the Peripheral ID 4 register.

Table 3-26 PID4 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	Size	Number of 4KB occupied by the System ID block. This field is deprecated.		0x0
[3:0]	DES_2	JEP Continuation	RO	0x4

Peripheral ID 5 (PID5) register

The following table gives a bit-level description of the Peripheral ID 5 register.

Table 3-27 PID5 fegister

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Peripheral ID 6 (PID6) register

The following table gives a bit-level description of the Peripheral ID 6 register.

Table 3-28 PID6 register

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Peripheral ID 7 (PID7) register

The following table gives a bit-level description of the Peripheral ID 7 register.

Table 3-29 PID7 register

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Peripheral ID 0 (PID0) register

The following table gives a bit-level description of the Peripheral ID 0 register.

Table 3-30 PID0 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PART_0	Bits [7:0] of part ID	RO	0x77

Peripheral ID 1 (PID1) register

The following table gives a bit-level description of the Peripheral ID 1 register.

Table 3-31 PID1 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0×00_0000
[7:4]	DES_0	Bits [3:0] of JEP 106 Identity	RO	0xB
[3:0]	PART_1	Bits [11:8] of part ID	RO	0x0

Peripheral ID 2 (PID2) register

The following table gives a bit-level description of the Peripheral ID 2 register.

Table 3-32 PID2 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	REVISION	Major revision of the System ID block.	RO	0x0
[3]	JEDEC	Indicates the use of JEDEC JEP106 identification scheme.	RO	0b1
[2:0]	DES_1	Bits [6:4] of JEP 106 Identity	RO	0b011

Peripheral ID 3 (PID3) register

The following table gives a bit-level description of the Peripheral ID 3 register.

Table 3-33 PID3 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	REVAND	Minor revision of the System ID block	RO	0x0
[3:0]	CMOD	Customer modification field	RO	0x0

Component ID 0 (CID0) register

The following table gives a bit-level description of the Component ID 0 register.

Table 3-34 CID0 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PRMBL_0	Preamble 0	RO	0x0D

Component ID 1 (CID1) register

The following table gives a bit-level description of the Component ID 1 register.

Table 3-35 CID1 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	CLASS	Class of the component	RO	0xF
[3:0]	PRMBL_1	Preamble 1	RO	0x0

Component ID 2 (CID2) register

The following table gives a bit-level description of the Component ID 2 register.

Table 3-36 CID2 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PRMBL_2	Preamble 2	RO	0x05

Component ID 3 (CID3) register

The following table gives a bit-level description of the Component ID 3 register.

Table 3-37 CID3 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PRMBL_3	Preamble 3	RO	0xB1

3.3.2 Secure Enclave System Control register summary

This section summarizes the Secure Enclave System Control registers.

The Secure Enclave System Control Registers are in the Secure Enclave Memory Map. These registers are only accessible to the Secure Enclave Cortex-M0+ processor. The Secure Enclave System Control registers are accessed at offset 0x5008_0000 in the Secure Enclave memory map. These registers are in the Always ON power domain.

Table 3-38 Secure Enclave System Control register summary

Offset	Short name	Access	Name
0x000	SE_RST_SYN on page 3-54	RO	Secure Reset Syndrome
0x004	-	RO	Reserved
0x008	nSE_PWR_CTRL on page 3-54	RW	Secure Enclave Power Control
0x00C - 0x010	-	RO	Reserved
0x014	SE_GP0 on page 3-54	RW	Secure Enclave General Purpose 0
0x018	SE_GP1 on page 3-54	RW	Secure Enclave General Purpose 1
0x01C	SE_GP2 on page 3-54	RW	Secure Enclave General Purpose 2
0x020	SE_GP3 on page 3-54	RW	Secure Enclave General Purpose 3
0x024 -0x02C	-	RO	Reserved
0x030	SE_CLK_DIV on page 3-55	RW	Secure Enclave Clock Divider Control
0x034 -0x0F4	-	RO	Reserved
0x0F8	SE_BLD_CFG on page 3-55	RO	Secure Enclave Build Configuration
0x0FC - 0xFCC	-	RO	Reserved
0xFD0	Peripheral ID 4 (PID4) register on page 3-50	RO	Peripheral ID4
0xFD4	Peripheral ID 5 (PID5) register on page 3-50	RO	Peripheral ID5
0xFD8	Peripheral ID 6 (PID6) register on page 3-50	RO	Peripheral ID6
0xFDC	Peripheral ID 7 (PID7) register on page 3-51	RO	Peripheral ID7
0xFE0	Peripheral ID 0 (PID0) register on page 3-51	RO	Peripheral ID0
0xFE4	Peripheral ID 1 (PID1) register on page 3-51	RO	Peripheral ID1
0xFE8	Peripheral ID 2 (PID2) register on page 3-51	RO	Peripheral ID2
0xFEC	Peripheral ID 3 (PID3) register on page 3-51	RO	Peripheral ID3
0xFF0	Component ID 0 (CID0) register on page 3-52	RO	Component ID0
0xFF4	Component ID 1 (CID1) register on page 3-52	RO	Component ID1
0xFF8	Component ID 2 (CID2) register on page 3-52	RO	Component ID2
0xFFC	Component ID 3 (CID3) register on page 3-52	RO	Component ID3

The Secure Enclave System Control registers only support 32-bit word aligned accesses. Access by other bit sizes or unaligned accesses, are treated as 32-bit word aligned accesses without generating an error reponse.

The Secure Enclave System Control registers have the following behavior:

- Any read to a write-only register is treated as RAZ.
- Any write to a read-only register is treated as WI.

In both cases no error is generated.

Secure Enclave Reset Syndrome (SE_RST_SYN) register

The following table gives a bit-level description of the Secure Enclave Reset Syndrome register for Secure Enclave internal sources.

Table 3-39 SE_RST_SYN register

Bits	Name	Description	Туре	Reset
[31:2]	-	Reserved	RO	0x0000_0000
[1]	WD_RESET	Indicates that the last reset cause of the Secure Enclave was caused by the Secure Enclave Watchdog or not:	RO	0b0
		0b0: Last reset of the Secure Enclave was not caused by the Secure Enclave Watchdog		
		0b1 : Last reset of the Secure Enclave was caused by the Secure Enclave Watchdog		
[0]	SW_RESET	Indicates that the last reset cause of the Secure Enclave was caused by the Secure Enclave software reset request:	RO	0b0
		0b0 : Last reset of the Secure Enclave was not caused by the Secure Enclave software reset request		
		0b1 : Last reset of the Secure Enclave was caused by the Secure Enclave software reset request		

Note	
This register must be used in conjunction with the SOC_RST_SYN register in the Secure Enclave I	Base
System Control registers.	

Secure Enclave Power Control (SE_PWR_CTRL) register

The following table gives a bit-level description of the SECENTOP Power Domain Control register.

Table 3-40 SE_PWR_CTRL register

Bits	Name	Description	Туре	Reset
[31:1]	-	Reserved	RO	0×0000_0000
[0]	PWR_GATE_EN	SECENCTOP can enter OFF or MEM_RET: 0b0: SECENCTOP must remain in ON. 0b1: SECENCTOP can enter OFF or MEM_RET next time the Secure Enclave is idle.	RW	0b0

Secure Enclave General Purpose {0-3} (SE_GP{0-3}) register

The following table gives a bit-level description of the SE_GP{0-3} register.

Table 3-41 SE_GP{0-3} register

В	Bits	Name	Description	Туре	Reset
[3	31:0]	GP	General-purpose data register	RW	0x0000_0000

Secure Enclave Clock Divider Control (SE_CLK_DIV) register

The following table gives a bit-level description of the SE CLK DIV register.

Table 3-42 SE_CLK_DIV register

Bits	Name	Description	Туре	Reset
[31:21]	-	Reserved	RO	0×000
[20:16]	CLKDIV_CUR	Current value of integer divider applied to SECENCCLK : 0x00: Divide by 1 0x01: Divide by 2 0x1F: Divide by 32	RO	UNKNOWN
[15:5]	-	Reserved	RO	0×000
[4:0]	CLK_DIVIDER	Controls the clock divider ratio: 0: 1:1 ratio between SECENCDIVCLK clock and SECENCCLK clock 1: 1:2 ratio between SECENCDIVCLK and SECENCCLK 2 - 31: Reserved	RW	0x01

Secure Enclave Build Configuration (SE_BLD_CFG) register

The following table gives a bit-level description of the SE_BLD_CFG register.

Table 3-43 SE_BLD_CFG register

Bits	Name	Description	Туре	Reset
[31:16]	RAM_SIZE	Secure Enclave RAM size.	RO	0×80
		The value of this field is the size of the Secure Enclave RAM in KB. A value of 0x00 is Reserved.		
		For example, a value of 0x40 indicates a RAM of 64KB whilst a value of 0x80 indicates a RAM of 128KB.		
[15:0]	ROM_SIZE	Secure Enclave ROM size.	RO	0x20
		The value of this field is the size of the Secure Enclave ROM in KB. A value of 0x00 is Reserved.		
		For example, a value of 0x20 indicates a ROM of 32KB whilst a value of 0x40 indicates a ROM of 64KB.		

Peripheral ID 4 (PID4) register

The following table gives a bit-level description of the Peripheral ID 4 register.

Table 3-44 PID4 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	Size	Number of 4KB occupied by the System ID block. This field is deprecated.	RO	0x0
[3:0]	DES_2	JEP Continuation	RO	0x4

Peripheral ID 5 (PID5) register

The following table gives a bit-level description of the Peripheral ID 5 register.

Table 3-45 PID5 fegister

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Peripheral ID 6 (PID6) register

The following table gives a bit-level description of the Peripheral ID 6 register.

Table 3-46 PID6 register

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Peripheral ID 7 (PID7) register

The following table gives a bit-level description of the Peripheral ID 7 register.

Table 3-47 PID7 register

Bits	Name	Description	Туре	Reset
[31:0]	-	Reserved	RO	0x0000_0000

Peripheral ID 0 (PID0) register

The following table gives a bit-level description of the Peripheral ID 0 register.

Table 3-48 PID0 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PART_0	Bits [7:0] of part ID	RO	0x73

Peripheral ID 1 (PID1) register

The following table gives a bit-level description of the Peripheral ID 1 register.

Table 3-49 PID1 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	DES_0	Bits [3:0] of JEP 106 Identity	RO	0xB
[3:0]	PART_1	Bits [11:8] of part ID	RO	0x0

Peripheral ID 2 (PID2) register

The following table gives a bit-level description of the Peripheral ID 2 register.

Table 3-50 PID2 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	REVISION	Major revision of the System ID block.	RO	0x0
[3]	JEDEC	Indicates the use of JEDEC JEP106 identification scheme.	RO	0b1
[2:0]	DES_1	Bits [6:4] of JEP 106 Identity	RO	0b011

Peripheral ID 3 (PID3) register

The following table gives a bit-level description of the Peripheral ID 3 register.

Table 3-51 PID3 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	REVAND	Minor revision of the System ID block	RO	0x0
[3:0]	CMOD	Customer modification field	RO	0x0

Component ID 0 (CID0) register

The following table gives a bit-level description of the Component ID 0 register.

Table 3-52 CID0 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PRMBL_0	Preamble 0	RO	0x0D

Component ID 1 (CID1) register

The following table gives a bit-level description of the Component ID 1 register.

Table 3-53 CID1 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:4]	CLASS	Class of the component	RO	0xF
[3:0]	PRMBL_1	Preamble 1	RO	0x0

Component ID 2 (CID2) register

The following table gives a bit-level description of the Component ID 2 register.

Table 3-54 CID2 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PRMBL_2	Preamble 2	RO	0x05

Component ID 3 (CID3) register

The following table gives a bit-level description of the Component ID 3 register.

Table 3-55 CID3 register

Bits	Name	Description	Туре	Reset
[31:8]	-	Reserved	RO	0x00_0000
[7:0]	PRMBL_3	Preamble 3	RO	0xB1

Chapter 4 **Software sequences**

This chapter describes software sequences in the Secure Enclave.

It contains the following sections:

- 4.1 SECENCTOP power domain on page 4-60.
- 4.2 Advancing lifecycle states on page 4-61.

4.1 SECENCTOP power domain

The SECENCTOP power domain is controlled using:

- PWR_GATE_EN field in the Power Control register of the Secure Enclave System Control registers. For more information see *3.3.2 Secure Enclave System Control register summary* on page 3-52.
- Power policy of the SECENC PPU
- Cortex-M0+ in a DeepSleep state

Arm strongly recommends that the SECENCTOP PPU policy is set to either dynamic OFF or dynamic MEM_RET, depending on whether software requires the retention of the contents of the Secure Enclave's SRAM. It is assumed that the PPU policy is either set to dynamic OFF or dynamic MEM_RET.

	ote ———
Setting the	ECENCTOP PPU policy to another policy may lead to different behavior

To enter the SECENCTOP power domain into the MEM_RET or OFF power mode, software must do the following:

- Save any state which needs to be retained that otherwise is lost by entering either the MEM_RET or the OFF power state.
- Set the PWR GATE EN bit 0b1.
- Set the SCR.SLEEPDEEP bit 0b1 and execute a WFI.

To select between entering MEM RET or OFF, software can change the power policy in the PPU:

- To enter MEM RET software must set the policy to dynamic MEM RET.
- To enter OFF, software must set the policy to OFF.

Arm strongly recommends that the SECENCTOP PPU is always programmed for dynamic transitions.

When the SECENCTOP power domain exits the MEM_RET or OFF power mode, software must set the PWR GATE EN bit 0b0 before performing any other actions.

4.2 Advancing lifecycle states

This section gives example sequences for advancing lifecycle states: one uses the SSE-700 **SOCLCC** signal, and the other uses the GPIO Control component.

This section contains the following subsections:

- 4.2.1 Using the SOCLCC signal on page 4-61.
- 4.2.2 Using the Debug Port on page 4-61.

4.2.1 Using the SOCLCC signal

The following example sequence uses the **SOCLCC** signal:

Procedure

- 1. Assert the **SOCLCC** signal of the SSE-700 subsystem HIGH.
- 2. De-assert **PORESETn** to the SSE-700 subsystem.
- 3. The Secure Enclave Cortex-M0+ CPU performs an IMPLEMENTATION DEFINED software sequence to advance the lifecycle state. The software sequence depends on the Cryptographic Accelerator implemented in the Secure Enclave.
- 4. When the transition is complete, de-assert the **SOCLCC** signal LOW.

4.2.2 Using the Debug Port

The following example sequence uses the *Debug Port* (DP):

Procedure

- 1. Set the GPIO Control GPO0 output HIGH.
- 2. Cause a debug reset by either:
 - Asserting **nSRST** LOW.
 - Asserting CSYSRSTREQ of the DP ROM HIGH, and waiting for DP ROM CSYSRSTACK to become HIGH.
- 3. Release the SSE-700 subsystem from debug reset by:
 - De-asserting the **nSRST** HIGH.
 - De-asserting DP ROM CSYSRSTREQ LOW and waiting for the DP ROM CSYSRSTACK to become LOW.
- 4. The Secure Enclave Cortex-M0+ CPU performs an IMPLEMENTATION DEFINED software sequence to advance the lifecycle state. This sequence depends upon the Cryptographic Accelerator implemented in the Secure Enclave.

Appendix A **Revisions**

This appendix describes the technical changes between released issues of this book.

It contains the following section:

• A.1 Revisions on page Appx-A-63.

A.1 Revisions

This appendix describes changes between released issues of this book.

Table A-1 Issue 0100-00

Change	Location	Affects
First release for BET	-	BET release

Table A-2 Differences between issue 0000-00 and issue 0000-01

Change	Location	Affects
Numerous minor technical updates applied throughout document	All sections	r0p0 LAC release
Included PL011 UART in Overview	For more information see 1.1 Overview on page 1-12	
Extended description of Secure Enclave components list	1.1 Overview on page 1-12	
Re-cast of Lifecycle States advancement description	2.1.2 Lifecycle States (LCS) on page 2-15	
Identified DFTENABLE[1] as signal	2.1.2 Lifecycle States (LCS) on page 2-15	
Re-cast SSE-700 subsystem SCB rules	2.1.3 Security Control Bits (SCB) on page 2-16	
Re-aligned style of binary values from 0/1 to 0b0/0b1	All sections	
Extended cross-refs to Timers	Timers on page 2-20	
Changed intro to Base System Control registers	Base System Control registers on page 2-21	
Additional information added to the Secure Enclave Firewall	Secure Enclave Firewall on page 2-21	
Removed reference to protection size of firewall component	Secure Enclave Firewall on page 2-21	

Table A-2 Differences between issue 0000-00 and issue 0000-01 (continued)

Change	Location	Affects
Removed reference to integration of the Crypto Accelerator into the Secure Enclave	Crypto Reset interface on page 2-23	r0p0 LAC release
Added text explaining the Crypto Reset interface CRYPTORESETN is driven by SECENCWARMRESETN	Crypto Reset interface on page 2-23	
Removed reference to integration of the Crypto Accelerator AON into the Secure Enclave	Crypto AON Reset Interface on page 2-23	
Reverted to bullet list description for Crypto Accelerator Master interface	Crypto Accelerator Master (CAM) interface on page 2-23	
Changed all references to signal names ending in 'N' to 'n'	All sections	
Removed information relating to signals as components of AONTOP and SECENTOP power domains	Crypto Accelerator AON (CAAON) interface on page 2-24	
Removed reference to Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual	2.2.4 Security Control Bits (SCB) interface on page 2-26	
Re-organized the enumeration of Memory map, interrupt map, and registers	Chapter 3 Programmers model on page 3-33	
Merged notes column at lines 64-71, added reference to Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual	3.2.2 Secure Enclave interrupt expansion on page 3-39	
Added reference to Arm® Corstone™ SSE-700 Subsystem Technical Reference Manual	MHUs on page 3-36	
Reversed clock names in descriptions	Secure Enclave Clock Divider Control (SE_CLK_DIV) register on page 3-55	

Table A-3 Differences between issue 0000-01 and issue 0000-02

Change	Location	Affects
Changed from confidential to non-confidential	-	r0p0 LAC non-confidential release
Numerous minor editorial updates applied throughout document. Post LAC Release Review.	All sections	r0p0

Table A-4 Differences between issue 0000-02 and issue 0000-03

Change	Location	Affects
Change confidential to non- confidential	-	r0p0 EAC
Removed extraneous section descriptions, made editorial changes and corrections, added references	Throughout the manual	
Updated publications list	Additional reading on page 8	
Updated functional description information	2.1.3 Security Control Bits (SCB) on page 2-16, Timers on page 2-20, 2.3.2 SECENCCLK on page 2-27, 2.4.1 SECENCTOP on page 2-29	
Updated programmers model information	3.2.2 Secure Enclave interrupt expansion on page 3-39, Peripheral ID 1 (PID1) register on page 3-51, Secure Enclave Reset Syndrome (SE_RST_SYN) register on page 3-54, Secure Enclave Power Control (SE_PWR_CTRL) register on page 3-54, Peripheral ID 1 (PID1) register on page 3-51	
Updated software sequences information	4.2.2 Using the Debug Port on page 4-61	