Algorithms and Complexity

Spring 2018 Aaram Yun

This page is intentionally left blank

Today

• NP-completeness

- Consider boolean circuits with a single bit output
- Circuit satisfiability
 - $\mathtt{CSAT} := \{\langle C \rangle : \exists z \text{ s.t. } C(z) = 1\}$
 - $R_{ extsf{CSAT}} := \{\langle C, z
 angle : C(z) = 1\}$
- $R_{\mathtt{CSAT}}$ is \mathcal{PC} -complete, and \mathtt{CSAT} is \mathcal{NP} -complete

Satisfiability publem i given a boolean function f, decide whether there's a satisfying assignment. This depends on how & 15 given. (If as a function tuble, this would be easy)

So, many different versions of SAT.

- Let's focus on $R_{\mathtt{CSAT}}$
- It is in \mathcal{PC} , clearly
- It is PC-complete? Proving RCSAT is PC-hard

- R: any \mathcal{PC} problem
 - Do we have a Levin reduction from R to $R_{\mathtt{CSAT}}$?
- M: any polytime checker for R
 - Idea: given any x, produce a circuit C_x , using M, so that, C_x is satisfiable iff $R(x) \neq \emptyset$, and,
 - Also, C_x has enough information about M so that, when we have $C_x(z)=1$, then, using z, it is possible to obtain y such that M(x,y)=1 (that is, $y\in R(x)$)

 $R(x) \neq \emptyset \qquad \text{iff} \qquad \exists \ \exists \ \exists \ \in R(x)$ $\text{iff} \qquad M(x,y) = 1$

- Consider $A_x(y):=M(x,y)$. Here, $A_x:\{0,1\}^* o\{0,1\}$
- We will construct a circuit C_x computing A_x
- Finally, we need to show that the mapping $x \mapsto C_x$ is polynomial-time computable

- First, since we are talking about polynomially-bounded relation R, $|y| \leq p(|x|)$ for some polynomial p, so $A_x: \{0,1\}^{p(|x|)} o \{0,1\}$
 - · Really? Whog, using padding, we can assume that 14=p(121)
- Circuit consists of layers
 - ullet Each layer represents an instantaneous configuration of M
 - For M(x, y), x is hard-wired, but y varies

(1,a)	$(1, \perp)$	$(0, \perp)$	$\left (y_1,\!oldsymbol{\perp}) \right $	$(y_2,\!\perp)$	(_, ⊥)	$(-, \perp)$	(_,⊥)	$(-, \perp)$	$(-, \perp)$
$(3, \perp)$	(1,b)	$(0,\perp)$	$(y_1,\!\perp)$	(y_2,\perp)	(₋,⊥)	(_, ⊥)	(₋,⊥)	(_, ⊥)	(₋,⊥)
$(3, \perp)$	$(1, \perp)$	(0, b)	$(y_1,\!\perp)$	(y_2,\perp)	(_, ⊥)	(_, ⊥)	(_,⊥)	(_, ⊥)	(_,⊥)
$(3, \perp)$	(1,c)	$(0, \perp)$							
(3,c)	$(1, \perp)$	$(0,\perp)$							
$(1, \perp)$	(1,f)	$(0, \perp)$							

initial configuration (with input $110y_1y_2$))

$$\delta(a,1) = (b,3+1)$$

$$(a,b) \in \sum x (Q \cup \{1\})$$

last configuration

$$a = f(a_1, b_1, a_2, b_2, a_3, b_3)$$

 $b = g(a_1, b_1, a_2, b_2, a_3, b_3)$

$$S: Q \times \Sigma \rightarrow Q \times \Sigma \times \{-(0)\}$$

Encode each square as a bitstring & {0,1}

(f,g); cm be understood as a function $\{0,1\}^3 \longrightarrow \{0,1\}^C$.

$$a = f(a_1, b_2, a_3, b_3, a_4, b_4)$$
 $b = g(a_1, b_2, a_3, b_3, a_4, b_4)$

- Circuit consists of layers
 - Given a layer representing an i.c. for M, the circuit computes the next layer representing the next i.c.
 - For each layer, another gadget checks if the layer represents an accepting i.c.
 - Take the AND of all such acceptance checking: this is the output of the circuit

Self-reducibility of NP-complete problems

- $R \in \mathcal{PC}$
- If S_R is \mathcal{NP} -complete, then R is self-reducible
 - Step 1: R is reducible to $S_R' := \{\langle x,z \rangle \ : \ \exists y, (x,zy) \in R\}$
 - Step 2: S_R' is reducible to S_R

- Cook-Levin theorem: Circuit SAT is NP-complete
- If you want to prove that a problem Π is NP-complete, then
 - First, prove that Π is in \mathcal{NP} (or, in \mathcal{PC} if it is a search problem), and
 - Second, pick your favorite NP-complete problem Π' , and reduce Π' to Π
- Now, you have CSAT
- Reduce CSAT to SAT

- **SAT** is the set of all satisfiable CNF formulae
- SAT = $\{\phi: \phi \text{ is a satisfiable CNF}\}$
- $R_{ exttt{SAT}} = \{(\phi, au) \,:\, \phi(au) = 1\}$
- Theorem: **SAT** is \mathcal{NP} -complete and $R_{\mathtt{SAT}}$ is \mathcal{PC} -complete

$$C \mapsto \phi$$

- Theorem: **SAT** is \mathcal{NP} -complete and $R_{\mathtt{SAT}}$ is \mathcal{PC} -complete
 - Proving that $\mathtt{SAT} \in \mathcal{NP}$ and $R_{\mathtt{SAT}} \in \mathcal{PC}$ is easy
 - To prove that **SAT** is \mathcal{NP} -hard and $R_{\mathtt{SAT}}$ is \mathcal{PC} -hard, reduce from **CSAT**

• Idea: introduce new variables corresponding to gate values

make sure that the following can be expressed as What remains: clauses: $eg(X,Y) = \neg(X \oplus Y) = (X \land Y) \lor (\overline{X} \land \overline{Y})$ then, eg(X_1, Y) =(X_1, Y) $V(X_1, X_{\overline{Y}})$ $\neq (\overline{x}, \wedge y) \vee x_i) \wedge ((\overline{x}, \wedge y) \vee \overline{y})$ $= (\overline{X}, \overline{X}) \vee (\overline{X}, \overline{X}) \vee (\overline{X}, \overline{X}) \vee (\overline{X}, \overline{X})$

Case 1)
$$e_{\delta}(\overline{X_{I}},y) = (\underline{Y} \vee X_{I}) \wedge (\overline{X_{I}} \vee \overline{Y})$$

Case 2) $e_{\delta}(X_{I},Y) = (\underline{Y} \vee \overline{X}) \wedge (X \vee \overline{Y})$, so,

 $e_{\delta}(X_{I} \wedge \cdots \wedge X_{I}, y) = (\overline{X_{I} \wedge \cdots \wedge X_{I}} \vee y) \wedge ((\underline{X_{I} \wedge \cdots \wedge X_{I}} \vee \overline{Y}))$
 $= (\overline{X_{I}} \vee \cdots \vee \overline{X_{I}} \vee y) \wedge (X_{I} \vee \overline{Y}) \wedge (X_{I} \vee \overline{Y}) \wedge (X_{I} \vee \overline{Y})$
 $= ((\overline{X_{I}} \vee \cdots \vee X_{I}) \vee y) \wedge (X_{I} \vee \cdots \vee X_{I} \vee \overline{Y})$
 $= ((\overline{X_{I}} \vee \cdots \vee X_{I}) \vee y) \wedge (X_{I} \vee \cdots \vee X_{I} \vee \overline{Y})$
 $= ((\overline{X_{I}} \vee y) \wedge \cdots \wedge ((\overline{X_{I}} \vee y)) \wedge ((X_{I} \vee \cdots \vee X_{I} \vee \overline{Y}))$
 $= ((\overline{X_{I}} \vee y) \wedge \cdots \wedge ((\overline{X_{I}} \vee y)) \wedge ((X_{I} \vee \cdots \vee X_{I} \vee \overline{Y}))$

- 3SAT = $\{\phi: \phi \text{ is a satisfiable 3CNF}\}$
- $R_{\mathtt{3SAT}} = \{(\phi, \tau) : \phi(\tau) = 1 \text{ and } \phi \text{ is a 3CNF}\}$
- Theorem **3SAT** is \mathcal{NP} -complete and $R_{\mathtt{3SAT}}$ is \mathcal{PC} -complete