Public Policy 529 Quiz #2

S	tudent ID number (8-digits):
1.	City government officials want to assess the effectiveness of a water conservation program In participating households, mean water consumption was 400 gallons/day (n =61; s =50) In the control group, mean water consumption was 415 gallons/day (n =63; s =60). Assume samples were randomly selected.
	(a) Calculate the standard error of the difference and explain why the formula that you used for this calculation is the correct one.
	(b) Explain how you would find the degrees of freedom in practice. What is the maximum
	possible degrees of freedom that you could have in this case? The minimum?

(c) Did the water conservation program have a statistically significant effect on water consumption at α = .05? How do you know?
2. Researchers are studying whether there is ethnic favoritism by civil service employees is granting permits for new businesses. Out of 125 permit applications by members of Ethnic Group A, 68% were approved. Out of 88 permit applications by members of Ethnic Group B, 75% were approved.
(a) Find the 95% confidence interval for the difference in the permit approval rates. Doe it appear plausible that the observed difference is due to random chance? Explain.
(b) If you were to perform a significance test for the difference in approval rates, what approval rate would represent the null hypothesis?

3.	In another study of ethnic favoritism, researchers prepare a set of 20 permit applications for various types of businesses. In this set, the applicant names are associated with Ethnic Group A. They prepare second set of 20 applications that are identical except that the applicant names are associated with Ethnic Group B. For each set, they will measure the mean time that it takes for a decision to be made. What form of significance test should the researchers use?
4.	A researcher is working with two variables. The first variable has 10 categories and the second variable that 3 categories. She constructs a cross-tabulation table. Then, she performs a χ^2 test of independence and finds that the χ^2 statistic is 26.01.
	(a) Can she reject the null hypothesis at the .05 level of significance? Explain.
	(b) Approximately what level of confidence does the researcher have in rejecting H_0 ?
5.	A colleague asks you whether he should assume equal variances when running a t-test for the difference of means. What do you tell him and why?
6.	When trying to identify whether there is a causal relationship between variables, what are the potential advantages of an experiment over an observational study?

TABLE B: t Distribution Critical Values

		.	Confider						
	80%	90%	95%	98%	99%	99.8%			
į	Right-Tail Probability								
df	t.100	t.050	t _{.025}	t.010	t.005	t.001			
1	3.078	6.314	12.706	31.821	63.656	318.289			
2	1.886	2.920	4.303	6.965	9.925	22.328			
3	1.638	2.353	3.182	4.541	5.841	10.214			
4	1.533	2.132	2.776	3.747	4.604	7.173			
5	1.476	2.015	2.571	3.365	4.032	5.894			
6	1.440	1.943	2,447	3.143	3.707	5.208			
7	1.415	1.895	2.365	2.998	3.499	4.785			
8	1.397	1.860	2.306	2.896	3.355	4.501			
9	1.383	1.833	2.262	2.821	3.250	4.297			
10	1.372	1.812	2.228	2.764	3.169	4.144			
11	1.363	1.796	2.201	2.718	3.106	4.025			
12	1.356	1.782	2.179	2.681	3.055	3.930			
13	1.350	1.771	2.160	2.650	3.012	3.852			
14	1.345	1.761	2.145	2.624	2.977	3.787			
15	1.341	1.753	2.131	2.602	2.947	3.733			
16	1.337	1.746	2.120	2.583	2.921	3.686			
17	1.333	1.740	2.110	2.567	2.898	3.646			
18	1.330	1.734	2.101	2.552	2.878	3.611			
19	1.328	1.729	2.093	2.539	2.861	3.579			
20	1.325	1.725	2.086	2.528	2.845	3.552			
21	1.323	1.721	2.080	2.518	2.831	3.527			
22	1.321	1.717	2.074	2.508	2.819	3.505			
23	1.319	1.714	2.069	2.500	2.807	3.485			
24	1.318	1.711	2.064	2.492	2.797	3.467			
25	1.316	1.708	2.060	2.485	2.787	3.450			
26	1.315	1.706	2.056	2.479	2.779	3.435			
27	1.314	1.703	2.052	2.473	2.771	3.421			
28	1.313	1.701	2.048	2.467	2.763	3.408			
29	1.311	1.699	2.045	2.462	2.756	3.396			
30	1.310	1.697	2.042	2.457	2.750	3.385			
40	1.303	1.684	2.021	2.423	2.704	3.307			
50	1.299	1.676	2.009	2.403	2.678	3.261			
60	1.296	1.671	2.000	2.390	2.660	3.232			
80	1.292	1.664	1.990	2.374	2.639	3.195			
100	1.290	1.660	1.984	2.364	2.626	3.174			
∞	1.282	1.645	1.960	2.326	2.576	3.091			

Source: "Table of Percentage Points of the *t*-Distribution." Computed by Maxine Merrington, Biometrika, 32 (1941): 300. Reproduced by permission of the Biometrika trustees.

TABLE A: Normal curve tail probabilities. Standard normal probability in right-hand tail (for negative values of z, probabilities are found by symmetry)

	Second Decimal Place of z									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	1.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918 .0764	.0901 .0749	.0885 .0735	.0869 .0722	.0853 .0708	.0838 .0694	.0623
1.4	.0808	.0793	.0778							
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571 .0465	.0559
1.6	.0548	.0537	.0526	.0516 .0418	.0505 .0409	.0495 .0401	.0485	.0475 .0384	.0465	.0455
1.7 1.8	.0446	.0436 .0352	.0427 .0344	.0336	.0409	.0322	.0392	.0304	.0373	.0294
1.8	.0287	.0332	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
		.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.0 2.1	.0228	.0222	.0217	.0212	.0207	.0202	.0154	.0150	.0146	.0143
2.1	.0179	.0174	.0170	.0129	.0102	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
2.9	.0019	.0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
3.0	.00135									
3.5	.000233									
4.0	.0000317									
4.5	.00000340									
5.0	.000000287									

Source: R. E. Walpole, Introduction to Statistics (New York: Macmillan, 1968).

TABLE C: Chi-Squared Distribution Values for Various Right-Tail Probabilities

-	Right-Tail Probability								
df	0.250	0.100	0.050	0.025	0.010	0.005	0.001		
1	1.32	2.71	3.84	5.02	6.63	7.88	10.83		
2	2.77	4.61	5.99	7.38	9.21	10.60	13.82		
3	4.11	6.25	7.81	9.35	11.34	12.84	16.27		
4	5.39	7.78	9.49	11.14	13.28	14.86	18.47		
5	6.63	9.24	11.07	12.83	15.09	16.75	20.52		
6	7.84	10.64	12.59	14.45	16.81	18.55	22.46		
7	9.04	12.02	14.07	16.01	18.48	20.28	24.32		
8	10.22	13.36	15.51	17.53	20.09	21.96	26.12 27.88		
9	11.39	14.68	16.92	19.02	21.67 23.21	23.59 25.19	27.88 29.59		
10	12.55	15.99	18.31	20.48					
11	13.70	17.28	19.68	21.92	24.72	26.76	31.26		
12	14.85	18.55	21.03	23.34 24.74	26.22 27.69	28.30 29.82	32.91 34.53		
13 14	15.98 17.12	19.81 21.06	22.36 23.68	26.12	27.09	31.32	34.33 36.12		
15	18.25	22.31	25.00	27.49	30.58	32.80	37.70		
16	19.37	23.54	26.30	28.85	32.00	34.27	39.25		
17	20.49	24.77	27.59	30.19	33.41	35.72	40.79		
18	21.60	25.99	28.87	31.53	34.81	37.16	42.31		
19	22.72	27.20	30.14	32.85	36.19	38.58	43.82		
20	23.83	28.41	31.41	34.17	37.57	40.00	45.32		
25	29.34	34.38	37.65	40.65	44.31	46.93	52.62		
30	34.80	40.26	43.77	46.98	50.89	53.67	59.70		
40	45.62	51.80	55.76	59.34	63.69	66.77	73.40		
50	56.33	63.17	67.50	71.42	76.15	79.49	86.66		
60	66.98	74.40	79.08	83.30	88.38	91.95	99.61		
70	77.58	85.53	90.53	95.02	100.4	104.2	112.3		
80	88.13	96.58	101.8	106.6	112.3	116.3	124.8		
90	98.65	107.6	113.1	118.1	124.1	128.3	137.2		
100	109.1	118.5	124.3	129.6	135.8	140.2	149.5		

Source: Calculated using StaTable, software from Cytel Software, Cambridge, MA.

Public Policy 529 Formula Sheet

Descriptive and Distributional Statistics

$$\bar{y} = \frac{\sum y_i}{n}$$

$$s^2 = \frac{\sum (y_i - \bar{y})^2}{n-1}$$

$$Z = \frac{y - \mu_y}{\sigma}$$

$$IQR = Q_3 - Q_1$$

$$SS = \sum (y_i - \bar{y})^2$$

$$s = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n - 1}}$$

$$\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$$

Probability

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

$$P(A \text{ and } B) = P(A) \times P(B|A)$$

$$P(\sim A) = 1 - P(A)$$

$$P(A \text{ and } B) = P(A) \times P(B)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(x) = \frac{n!}{x!(n-x)!} \pi^x (1-\pi)^{n-x}$$

Confidence Intervals and Significance Tests

$$t = \frac{\bar{y} - \mu_0}{\hat{\sigma}_{\bar{y}}}$$

$$\hat{\sigma}_{\hat{\pi}} = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

$$Z = \frac{\hat{\pi} - \pi_0}{\hat{\sigma}_{\pi_0}}$$

$$c.i. = \bar{y} \pm t \cdot \hat{\sigma}_{\bar{y}}$$

$$\hat{\sigma}_{\bar{y}} = \frac{s}{\sqrt{n}}$$

$$c.i. = \bar{y} \pm Z \cdot \hat{\sigma}_{\bar{y}}$$

$$\hat{\sigma}_{\pi_0} = \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$$

$$\mathrm{c.i.} = \hat{\pi} \pm Z \cdot \hat{\sigma}_{\hat{\pi}}$$

$$se_{\text{diff}} = \sqrt{(se_1)^2 + (se_2)^2}$$

$$z = \frac{(\hat{\pi}_2 - \hat{\pi}_1) - H_0}{se_0}, \text{ where } se_0 = \sqrt{\frac{\hat{\pi}(1 - \hat{\pi})}{n_1} + \frac{\hat{\pi}(1 - \hat{\pi})}{n_2}} \qquad c.i. = (\hat{\pi}_2 - \hat{\pi}_1) \pm z\sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}$$

$$t = \frac{(\bar{y}_2 - \bar{y}_1) - H_0}{se_{\text{diff}}}$$
 $ci = (\bar{y}_2 - \bar{y}_1) \pm t \cdot se_{\text{diff}}$

Unequal Variance:

$$se_{\text{diff}} = \hat{\sigma}_{\bar{y}_1 - \bar{y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \qquad df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} \qquad \text{approx. } df = \min(n_1 - 1, n_2 - 1)$$

Equal Variance:

$$se_{\text{diff}} = \hat{\sigma}_{\bar{y}_1 - \bar{y}_2} = \sqrt{\frac{s_{pooled}^2}{n_1} + \frac{s_{pooled}^2}{n_2}} = s_{pooled} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \qquad s_{pooled} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$$df = n_1 + n_2 - 2$$

$$t = \frac{\bar{y}_d - H_0}{\hat{\sigma}_{\bar{y}_d}} \qquad \qquad \hat{\sigma}_{\bar{y}_d} = \frac{s_d}{\sqrt{n}}, \text{ where } s_d = \sqrt{\frac{\sum (y_{di} - \bar{y}_d)^2}{n - 1}}$$

Measures of Association

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}, \quad \text{se}_r = \sqrt{\frac{1 - r^2}{n - 2}}$$

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$
, where $f_e = \frac{\text{(row total)(column total)}}{n}$