

Co - Host Utilities

UI-ASSIST Project*: Brief Overview

Presented By

Ankush Sharma, Suresh Chandra Srivastava, Shiv Kumar Singh Indian Institute of Technology Kanpur, India

Emails: ansharma@iitk.ac.in, scs@iitk.ac.in,shivks@iitk.ac.in

*UI-ASSIST project is jointly supported by the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India, through Indo-US Science and Technology Forum (IUSSTF) New Delhi, and Department of Energy (DoE), USA.

Supporting Ministries

MINISTRY OF POWER

UI-ASSIST Project under JCERDC (29 Sept 2017- 28 March 2024)

U.S. INDIA COLL**A**BORATIVE FOR **S**MART DISTRIBUTION SYSTEM WITH STORAGE

Objectives: To develop future smart and resilient distribution systems facilitating

- Optimal utilization and management of DERs.
- Interfacing DER and microgrid controls with energy storage.
- Developing and demonstrating the **ADMS/DSO functions.**

Indian Institute Of Technology Kanpur Washington State University, Pullman, WA

UI-ASSIST Project: Major Deliverables

R&D Outcomes

- Storage sizing, siting and control
- Charge-discharge algorithms
- Optimal scheduling
- Converter design
- Primary/Secondary Control
- Microgrid Protection, μEMS
- Forecasting
 - Solar, Load, & Wind as an extra
- > ADMS platform
 - Load flow, Volt-Var, Sate estimation etc
- Local Electricity Market
- DSO framework
- TSO-DSO interaction
- Cyber Infra and Cyber Security

Lab Testbeds-India

- 1. IIT Kanpur Testbed
- 2. IIT Roorkee Testbed
- 3. IIT Delhi Testbed
- 4. IIT Madras Testbed
- 5. IIT Bhubane-shwar Testbed
- 6. TERI Smart
 Controller
 (Six lab test beds in
 US)

Field Pilot Implementation-India

- 1. Rural field pilot by IIT Kanpur/DVVNL/SBF
- 2. Semi-urban field pilot by IIT Kanpur
- 3. Urban field pilot by IIT Kanpur
- 4. NETRA Semi-urban field pilot
- 5. Urban field pilot by TERI/BRPL (Five field pilots in US)

Social
Impact and
Regulatory
Aspects

Workforce Development

Field Pilots Coordinated by IIT Kanpur

Rural Pilot (IITK, DVNNL/UPPCL, SBF)

- ➤ Two hamlets in Harnoo village, Kanpur, one having 30 KWp solar PV, 30 kW Biomass, other having 70 kW solar PV
- ➤ Both have 100kWh Li-ion BESS and are interconnected through AC-DC-AC converter
- > Site data being received at MGC
- > Remoted communication to control centre at IIT Kanpur.
- > *Cyber security audit carried out by a third party, E-Gyanam, and the suggestions/modifications are already incorporated.
- ➤ *Safety clearance approval from Directorate of Safety Uttar Pradesh has been obtained.

*all the field pilots

Semi-urban Pilot (IITK)

- > 5kWp Solar PV in 30 single storey houses in two lanes of IIT Kanpur.
- Centralized storage at two places (140 kWh and 100 kWh Li-ion BESS) in the substation,
- Two EV charging stations each having 50kW DC, 22kW AC, 7.6kW V2H & 3x3.3kW Bharat Chargers integrated with 25kW Solar PV.
- Self-sustained microgrid with Smart Metering & MEMS.

Urban Pilots (IITK)

- Covers two Multistorey faculty housing towers, each having:
 - Solar PV 25kW
 - BESS 50kWh with Hybrid Inverter
- Integrated with Smart Metering & μEMS
- In case of power failure and unavailability of Solar PV output, BESS feeds common area lighting and lift loads.
- Thermal Energy Storage System (Capacity: 775 TRHR) at CESE building to relieve daytime AC peak load using phase change material (made functional in Nov 2020).
- > Designed TES running hours during peak AC load of 150TR: 5 hrs.

Field Pilots Coordinated by TERI and NETRA

Urban Pilots by TERI and BRPL New Delhi

Pilot Locations	Installed BESS (LFP) Capacity	Application	Inter- connection Point with BRPL
Category A (New Friends Colony, Taimur Nagar)	288 kWh (4*72kWh stack)	Primary: overload management of DTR Secondary: energy arbitrage	
Category B (Ispatika Society, Dwarka, Sector-4)	216 kWh (3*72 kWh stack)	Primary: back-up power Secondary: energy arbitrage	At DG Output terminal connected to Grid
Category C (TERI School of Advanced Studies, Vasant Kunj)	72 kWh (1 stack of 72 kWh)	Primary: energy time shift Secondary: dispatchable solar PV generation	At Low tension terminal of 1600 kVA DT

Semi-Urban Pilot by NETRA Greater NOIDA

Early Meetings for Setting Up the Rural Pilot

Chabba Niwada Initial Meeting in late 2018

Bargadia Purwa- having lot of cattles

Small solar installations found

Ground Breaking Ceremony Nov 2019

Transformers and Wires by Local Utility

Meeting to finalize Society Byelaws for local management

Rural Field Pilot in Harnoo Village Kanpur

Chhaba Niwada AC microgrid

Bargadiya Purwa

AC microgrid

70kW Solar PV,

- 100kWh BESS with Hybrid Inverter
- 25kW AC-DC-AC converter for power sharing between both
- 30kW Solar PV,
- 100kWh BESS with Hybrid Inverter
- 30kW Biomass System utilizing cattle and farm waste

Other Unique Features

- Six solar irrigation pumps enhancing agriculture produce, street lighting.
- Agriculture based cottage industries for providing the local employment.
- Unique model for managing and operating the rural microgrid

Status Before Development

- Both village hamlets were unelectrified.
- Transformers and wires to houses provided by utility partner DVVNL with Grid supply being unreliable

Beneficiaries

- Approx. 700 people of Harnoo village are getting benefited
- Getting administrative approvals for the pilot land

Challenges

- Sensitizing & involving local community.
- Getting administrative approvals for the pilot land.

Remote connectivity to Smart Grid Control Centre (SGCC) is done for monitoring and tertiary control from ADMS developed.

Recent Activities in the Rural Field Pilot

Bargadiya Purwa Hamlet - Rural Pilot

Chhabba Niwada Hamlet - Rural Pilot

Post Installation survey key findings:

- Rural Hamlets getting 24x7 reliable power supply helping in children education, increased revenue generation. Increasing use of modern electrical appliances observed.
- Enhanced agriculture yield due to standalone solar irrigation pumps in the village.

ADMS Platform at IITK Smart Grid Control Centre

- Indigenous setup at IITK with Synergy Systems & Solutions (Industry Partner)
- Integration with existing SCADA and MDM a on ESB
- Different ADMS Algorithms/DSO functions tested on the platform in plug and play mode
- Integration of microgrid controllers with existing SCADA
- Industry standard interfaces like
 - CIM for modeling, ESB, IEC/OPC-UA protocols for data exchange
- GIS integration using OpenStreetMaps
- Serves as future testing of Smart Distribution concepts and training platform

- **ADMS** applications on top of SCADA real-time communications interface
- **❖** ADMS module as a plug and play distributed architecture
- **❖** Separate ADMS database around CIM

Key Highlights: Value Addition to National Development

- 1. Evolved future smart distribution systems integrating RES (Solar PV & Biomass), Energy Storage, cyber infrastructure, smart metering, MEMS, ADMS and EV charging infrastructure.
- 2. Social upliftment specifically through rural pilot providing 24x7 electricity access, meeting irrigation needs, enhancing local employment and education opportunities.
- 3. Reduced Carbon footprint using green energy sources (IITK pilots alone will reduce approx. 400 Tons of carbon emission per year, NETRA pilot alone will provide approx. 10-fold benefit)
- 4. Evolution of distribution system operator (DSO) model in Indian context.
- 5. Indigenous development of ADMS platform demonstrated at IITK (MAKE IN INDIA goal)
- 6. New networked microgrid model in rural area for reliable power sharing between villages.
- 7. Capacity building and skill development to utilities, industries, researchers and technicians.
- 8. Policy and regulatory recommendations for wider adoption of Smart Distribution Systems.
- 9. Micro-PMU developed using Indian NAVIC signal, its commercialisation through Startup.

THANK YOU

For discussions/suggestions/queries email: <u>isuw@isuw.in</u> <u>visit: www.isuw.in</u>

Links/References

https://uiassist.org/

https://uiassist.org/media/reports/UI-ASSIST_Compendium.pdf

https://uiassist.org/media/reports/DSO-White-Paper.pdf

https://uiassist.org/pilots.php

https://uiassist.org/testbed.php