

Kalman Filter

Grundlagen

P. Schön (5121059), C. Thein (5121017)

02.06.2024

Table of contents

- 1 Introduction
- 2 Foundations
- 3 Simplified explanation
- 4 Joystick example
- 5 Summary

What is the Kalman Filter?

The Kalman filter is a mathematical method for iteratively estimating parameters to describe system states.

In this process, a prediction about a parameter value is repeatedly made, combined with the error-prone measurement, and then used again to make a new prediction.

---- Kalman Filter

Fig.: Procedure of the Kalman Filter¹

Sensors susceptible to failure

- Light sensor (photoresistor)
- Ultrasonic sensor
- Infrared sensor
- Temperature sensor (thermoelectric)
- Magnetic field sensor
- Gas and air quality sensor
- Humidity sensor
- Motion sensor (accelerometer)
- Pressure sensor
- Sound sensor

Fig.: sensors

The Mean

$$\mu = \frac{1}{N} \sum_{n=1}^{N} V_n = \frac{1}{5} (5 + 5 + 10 + 10 + 10) = 8cent$$

The standarddeviation

The variance

The covariance

Process of Kalman Filters

Prediction

- 1. State prediction: $\hat{x}_k = A\hat{x}_{k-1} + Bu_{k-1}$
- 2. Covariance prediction: $P_k = AP_{k-1}A^T + Q$

Correction

- 3. Kalman Gain Prediction: $K_k = P_k H^T (H P_k H^T + R)^{-1}$
- 4. State Update: $\hat{x}_k = \hat{x}_k + K_k(z_k H\hat{x}_k)$
- 5. Covariance Update: $P_k = (I K_k H)P_k$

Fig.: Start Postion at t_0

Fig.: Calculated Postion at t_1

Fig.: Predicted Postion at t_1

Fig.: Messured Sensor Data of Postion at t_1

Fig.: Correction of the Kalman Gain after measurement at t_1

Takeaways

- The precision decreases with the prediction
- The precision increases with the correction

State Representation

We define the state vector \boldsymbol{x} to include the position and velocity of the mouse in both \boldsymbol{x} and \boldsymbol{y} directions

$$x = \begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix}$$

where:

- x is the position on the x-axis
- y is the postion on the y-axis
- ullet v_x is the velocity in the x-direction
- v_u is the velocity in the y-direction

Formulate the Transtition Model

The state transition model describes how the state evolves from one time step to the next. If we assume a constant velocity model, the state transition can be expressed as:

$$x_{k+1} = Ax_k + w_k$$

where w_k represents the proces noise, assumed to be Gaussian with zero mean and covariance Q.

Create the Transition Matrix

The transition matrix A for a constant velocity Model is:

$$A = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Δt is the time intervall between mesurements.

Observation Model

The observation model realtes the state to the measurements:

$$z_k = Hx_k + v_k$$

where v_k represents the measurement noise, assumed to be Gaussian with zero mean and covariance ${\cal R}.$

The observation matrix \boldsymbol{H} for direct measurement of position is:

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Prediction Step

The prediction step estimates the next state and its uncertainty:

• Predict the state:

$$x_{k+1} = Ax_k \tag{1}$$

Predict the error coavriance:

$$P_{k+1} = AP_k A^T + Q (2)$$

Correction Step

The correction step updates the state estimate with the new measurement:

• Compute the Kalman gain:

$$K_k = P_k H^T (H P_k H^T + R)^{-1}$$
 (3)

Update the state estimate:

$$x_k = x_k + K_k(z_k - Hx_k) \tag{4}$$

• Update the error covariance:

$$P_k = (I - K_k H) P_k \tag{5}$$

---- Kalman Filter

Prediction

Project the state ahead

$$X_{k+1} = AX_k + BU_k$$

Project the error covariance ahead

$$P_{k+1} = AP_kA^T + Q$$

Correction

Compute the Kalman Gain

$$K_{\nu} = P_{\nu}H^{T}(HP_{\nu}H^{T} + R)^{-1}$$

Update the estimate via measurement

$$X_k = X_k + K_k(z_k - Hx_k)$$

Update the error covariance

$$\mathbf{P}_{k} = (I - K_{k}H)P_{k}$$

Initialize R, P, Q once

Fig.: Iterative Nature of the Kalman filter

Cheat Sheet - Math Symbols

Symbol	Meaning
k	Interval / iteration of the Kalman filter
z_k	Measurement from the sensor
x_k	Value of the current estimation
x_{k-1}	Value of the previous estimation
P_k	Value of the current error covariance
P_{k-1}	Value of the previous error covariance
R	Variance of the measurements
Q	Process noise covariance
A	Transition Matrix
H	Observation Matrix
Bu_{k-1}	Control signal

KALMA KALMA!

List of figures

