

	1			
	2	45	<u> </u>	
	2	22	0	(45)10
	2	11	<u> </u>	· + .
	2	5	1 /	(101101)2
	2	2	0	
•		1		
		,		

Quiet	Quie2		(172)	0 4	
$(110101)_2 = (?)$	10	2	86	0	
2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰		2	43	1	
4 4 4 4 4 4		2	दा	7	
32 16 0 4 0 ± = (53)		2	(0	0	
	V	2	5	_	
	(10101100)	2	2	_0 /	
	\ \frac{1}{2}	_	7		

$$\frac{0/1}{2} \frac{0/1}{2} \frac{0/1}{2} \frac{0/1}{2} \frac{0/1}{2} \frac{0/1}{2} \frac{0/1}{2} = 2^{5}$$

$$= 2^{5}$$

$$= 2^{5}$$

$$= 32$$

$$0-31 \Rightarrow 0-2^{5}1$$

n bût
$$\rightarrow$$
 λ \Rightarrow $0-\lambda^{-1}$

Bitwise	opera tors
4	

& .	Ι.	۸,	~ .	<< ,	>>

a	ь	a 2 b	a_1 b	a^b	(a a	
0	D	0	0	0	1	
0	4	D	4	ユ	1	
۲,	0	O	Y	工	0	
7	4	7	1	0	0	
		-				

$$a = 29, b = 18$$

$$1 | 100 | a$$

$$10000$$

$$a | b \rightarrow 31$$

$$a^{4}b \rightarrow 15$$

$$1 | 111 | a|b$$

$$0 | 1111 | a^{4}b$$

$$a + b = b + a$$

$$a + (b + c) = (a + b) + c$$

$$a + b = b + a$$

$$a + (b + c) = (a + b) + c$$

$$a + b = b + a$$

$$a + (b + c) = (a + b) + c$$

$$a + b = b + a$$

$$a + (b + c) = (a + b) + c$$

$$a + b = b + a$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$

$$a +$$

$$a << 1 = a \neq 2$$

$$a << 2 = a \neq 2^{2}$$

$$a << 3 = a \neq 2^{3}$$

$$a << i = a \neq 2^{0}$$

$$1 << 34 = 2^{0}$$

$$1 << 34 = 2^{0}$$

$$1 << 34 = 2^{0}$$

$$1 << 34 = 2^{0}$$

$$1 << 34 = 2^{0}$$

$$1 << 34 = 2^{0}$$

Right shift

while
$$(a > 0)$$
 0 $(bits)$
 \hat{a} $(a + 1 = = 1)$ 0 (log_2N)

ent $t+t$:

Array of size No Every number occurs trucil even except for I number.

Find this unique number.

Z

for(i=0; i <n; 1="au(i);" ans="" ans;<="" eturn="" i++)="" th=""></n;>
for(?=0; i <n; 1++)<="" td=""></n;>
q ans = ancis;
extern ans;

	tor(i=0; i<32; i++)
	10 cotton am = 0.
	1 / 2-5: 3:22 = 3.44)
	for (1=0, 1<32, 177)
	l d
	S
	int cnt = 0;
	1 - (9-0) (00)
	tor (1=0) (21) /171)
- ()]	tor(j=0; j <n;j++)< td=""></n;j++)<>
T.C: 0 (n * 32)	
— V	
s·c: o(1)	2 (arry) & (1<< î) =0)
•	V
	ent+t'
	P .
	J
	a
	if (cnt-1.3!=0) _ 2" ans = ans + (1< <i);< td=""></i);<>
	il (cnt = 1, 3 = 0) _ 2
	and E and T (15-13)
	/
	10
	f