FINAL DATABASE PROJECT

Members:

Yash Revadekar : 002738776 Krutik Kanakia : 002787847 Ikra Bagwan : 002794307

Project Description:

An integrated system comprising numerous entities makes up the hospital management system. The management of all these elements would be difficult. We are therefore creating a single database for hospitals to address this issue and improve system efficiency by maintaining all the information needed to administer hospitals. Additionally, with the aid of this project, we will use visualization tools to exhibit and convey the data for prevalent trends for the breakouts. This would make it easier to comprehend analytics based on data or information collected from several hospitals.

Hospital Admin Table:

We manually input the data for the hospital admin table. We have 4 columns in our table, and using Jupyter, we were able to read the hospital admin's csv file and remove all of the null values. We have verified the accuracy of the data for this table by displaying all the rows with null values. After finishing everything, we entered this information into our database.

Doctor Table:

We used python programs to web scrape the data for the doctor table from the Browse AI website. Our table has eight columns, and using Jupyter, we were able to read the doctor's csv file and remove all of the null entries. By grouping by one column (primary spec) and count (doc id), we were able to see the data. Next, we used matplotlib to plot the following bar graph. Finally, we group by primary spec once more, got the mean for the age, and plot the graph for age. After finishing everything, we entered this information into our database.

Patient Table:

We manually input the data for the patients table. We have 13 columns in our table, and using Jupyter, we were able to read the patient's csv file and remove all of the null values. We have verified the accuracy of the data for this table by displaying all the rows with null values. By converting the admit date into a month and year using the date-time format, we then grouped the data by monthyear, counted the patient IDs, and generated a line graph. After finishing everything, we entered this information into our database.

Payment Table:

The management of all patient and hospital financial information would fall under the purview of this module. All patient payment information and financial records for hospital expenses are stored and shown.

Bill Payment Table:

We manually entered the data for the bill payment table. Our database has five columns, and using Jupyter, we were able to read the bill payment csv file and remove all of the null entries. When grouping by monthyear and taking the count of the room charge, we turned the bill date into a month year by date-time before plotting the line graph. After finishing everything, we entered this information into our database.

Record Table:

We manually entered the data into the Record table. Our database has three columns, and using Jupyter, we were able to read the payment's csv file and remove all of the null entries. After finishing everything, we entered this information into our database.

ER Diagram:

Snippets From Database:

1) Hospital Admin Table:

CREATE TABLE `admin` (

`Admin_ID` int NOT NULL,

`Admin_Name` varchar(255) DEFAULT NULL,

`Contact_No` varchar(255) DEFAULT NULL,

`Email_ID` varchar(255) DEFAULT NULL,

PRIMARY KEY (`Admin_ID`)

)

2) Doctor Table:

CREATE TABLE `doctor` (

`Doc_ID` int NOT NULL,

`lst_nm` varchar(255) DEFAULT NULL,

`frst_nm` varchar(255) DEFAULT NULL,

`pri_spec` varchar(255) DEFAULT NULL,

`cty` varchar(255) DEFAULT NULL,

`st` varchar(255) DEFAULT NULL,

`phn_numbr` varchar(255) DEFAULT NULL,

`age` int DEFAULT NULL,

PRIMARY KEY (`Doc_ID`)

)

Re	sult Grid	Filter Row	5:	Edit: 🚄 📆 🚟	Export/Import:		Vrap Cell Content:	<u>‡A</u>
	Doc_ID	lst_nm	frst_nm	pri_spec	cty	st	phn_numbr	age
•	1407160575	KERR	BEATRICE	CLINICAL SOCIAL WORKER	FREDERICKSBURG	VA	5403611556.0	37
	1407164437	KORENCHEN	PATRICIA	CLINICAL SOCIAL WORKER	ALBUQUERQUE	NM	5053858496.0	34
	1407172521	WONG	ANDREW	NEUROLOGY	SAN ANTONIO	TX	8751452635.0	71
	1407182421	MOSLEY	STEPHEN	PHYSICIAN ASSISTANT	SANTA ROSA BEACH	FL	8751452635.0	48
	1407230097	BROCK	SONYA	CLINICAL SOCIAL WORKER	BARRE	MA	2149126784.0	34
	1407234792	BRADBURY	MATTHEW	PSYCHIATRY	TEMPLE	TX	8751452635.0	39
	1407243538	LU	JOSEPH	NEUROLOGY	SAN GABRIEL	CA	6264580181.0	28

```
3) Patient Table:
  CREATE TABLE `patient` (
   `P_ID` int NOT NULL,
   `F_name` varchar(255) DEFAULT NULL,
   `L_name` varchar(255) DEFAULT NULL,
   'age' varchar(255) DEFAULT NULL,
   `Gender` varchar(255) DEFAULT NULL,
   'Phone' varchar(255) DEFAULT NULL,
   `Email` varchar(255) DEFAULT NULL,
   `B Grp` varchar(255) DEFAULT NULL,
   `Address` varchar(255) DEFAULT NULL,
   `State` varchar(255) DEFAULT NULL,
   `City` varchar(255) DEFAULT NULL,
   `Admit_Date` varchar(255) DEFAULT NULL,
   `Discharge_Date` varchar(255) DEFAULT NULL,
   PRIMARY KEY (`P_ID`)
  )
```

sult Grid	sult Grid 🔠 🔖 Filter Rows: Edit: 🕍 誌 🖶 Export/Import: 📳 🐻 Wrap Cell Content: 🏗										[
P_ID	F_name	L_name	age	Gender	Phone	Email	B_Grp	Address	State	City	Admit_Date	Discha
1	Chris	Brown	56.0	M	8578452154	cb@gmail.com	A+	56, Washington Street	MA	Boston	11/10/2021	11/25/
2	Nick	Jonas	45.0	M	8756984125	nj@gmail.com	B-	45, Lambert Street	TX	Dallas	10/20/2021	11/15/
3	Nikki	Brook	67.0	F	8796521453	nb@gmail.com	0+	15, Huntington Ave	FL	Tampa	1/7/2022	1/10/2
4	Robert	Costa	79.0	M	8763214589	rc@gmail.com	A-	25, Breaking Rocks	MA	Lowell	2/6/2022	2/12/2
5	Kelly	Mcardle	35.0	F	8796542314	km@gmail.com	A+	88, Center Street	MA	Boston	3/15/2022	3/20/2
6	James	Johnson	46.0	M	8578963254	jj@gmail.com	B+	726, Brighton Ave	NY	Rochester	11/7/2021	11/15/
7	William	Smith	52.0	М	7856452125	ws@hotmail.com	0-	63, Braintree	NV	Las Vegas	9/11/2021	10/5/2

```
4) Record Table:
  CREATE TABLE `record` (
   `R_ID` int NOT NULL,
   `Doc_ID` int DEFAULT NULL,
   `P_ID` int DEFAULT NULL,
   `Bill ID` int DEFAULT NULL,
   PRIMARY KEY (`R_ID`),
   KEY `Doc_ID` (`Doc_ID`),
   KEY `P_ID` (`P_ID`),
   KEY 'Bill ID' ('Bill ID'),
   CONSTRAINT `record_ibfk_1` FOREIGN KEY (`Doc_ID`)
  REFERENCES `doctor` (`Doc_ID`),
   CONSTRAINT `record_ibfk_2` FOREIGN KEY (`P_ID`)
  REFERENCES `patient` (`P_ID`),
   CONSTRAINT `record_ibfk_3` FOREIGN KEY (`Bill_ID`)
  REFERENCES `billpayment` (`Bill_ID`)
```

Re	Result Grid 111 💎 Filter Rows:							
	R_ID	Doc_ID	P_ID	Bill_ID				
▶	1	1407160575	1	1				
	2	1407164437	2	2				
	3	1407172521	3	3				
	4	1407182421	4	4				
	5	1407230097	5	5				
	6	1407234792	6	6				
	7	1407243538	7	7				
	8	1407245285	8	8				
	9	1407254881	9	9				
	10	1407256159	10	10				

)

```
5) Billing Payment Table:
   CREATE TABLE 'billpayment' (
    `Bill_ID` int NOT NULL,
    `Bill_Date` varchar(255) DEFAULT NULL,
    `P_ID` int DEFAULT NULL,
    `Doc Fees` varchar(255) DEFAULT NULL,
    `Room_Charge` varchar(255) DEFAULT NULL,
    PRIMARY KEY ('Bill ID'),
    KEY `P_ID` (`P_ID`),
     CONSTRAINT `billpayment_ibfk_1` FOREIGN KEY (`P_ID`)
   REFERENCES 'patient' ('P_ID'),
   )
   Result Grid | 🔢 💎 Filter Rows:
     Bill_ID Bill_Date P_ID Doc_Fees Room_Charge
    1 11/25/2021 1 50000 10000
2 11/15/2021 2 80000 15000
    3 1/10/2022 3 75000
4 2/12/2022 4 45000
                           12000
                          8000
    5 3/20/2022 5 60000
6 11/15/2021 6 57500
                           7500
                           4500
    7 10/5/2021 7 56000
8 1/10/2022 8 54500
                           8500
                          4500
6) Payment Table:
   CREATE TABLE `payment` (
    `Pay_ID` int NOT NULL,
    `Pay_Method` varchar(255) DEFAULT NULL,
    'Pay_Date' varchar(255) DEFAULT NULL,
    PRIMARY KEY (`Pay_ID`)
   Pay_ID Pay_Method Pay_Date
             Cash 11/28/2021
Card 11/19/2021
              Cash
                          1/13/2022
              Cheque 2/20/2022
             Card 2/28/2022
Cash 11/15/2021
```

6

8

Card

10/15/2021

Cash 1/12/2022

Output of Views:

1) CREATE VIEW 'bill_date_patients' AS

Select p.F_name ,p.L_name ,(Bill_Date) as bill_date From patient p Left join billpayment bp on bp.P_ID = p.P_ID Group by 1,2,3

2) CREATE VIEW 'avg_bill_patient' AS

```
SELECT
   `d`.`pri_spec` AS `pri_spec`,
   `p`.`State` AS `state`,
   AVG(`bp`.`Room_Charge`) AS `doc_fees`
FROM
   (((`patient` `p`
   LEFT JOIN `record` `r` ON ((`r`.`P_ID` = `p`.`P_ID`)))
   LEFT JOIN `doctor` `d` ON ((`d`.`Doc_ID` = `r`.`Doc_ID`)))
   LEFT JOIN `billpayment` `bp` ON ((`bp`.`Bill_ID` =
`r`.`Bill_ID`)))
   GROUP BY `d`.`pri_spec` , `p`.`State`
```


3) CREATE VIEW 'doctor_patient_perstate' AS

SELECT

`p`.`State` AS `state`, COUNT(0) AS `count_of_doctors` FROM

(`patient` `p`

LEFT JOIN `record` `r` ON ((`r`.`P_ID` = `p`.`P_ID`)))

GROUP BY `p`.`State`

4) CREATE VIEW 'highest_fees' AS

```
SELECT
   `d`.`frst_nm` AS `frst_nm`,
   `d`.`lst_nm` AS `lst_nm`,
   `d`.`st` AS `st`,
   SUM(`bp`.`Doc_Fees`) AS `doc_fees`
FROM
   ((`doctor` `d`
   LEFT JOIN `record` `r` ON ((`r`.`Doc_ID` = `d`.`Doc_ID`)))
   LEFT JOIN `billpayment` `bp` ON ((`bp`.`Bill_ID` =
`r`.`Bill_ID`)))
   GROUP BY `d`.`frst_nm` , `d`.`lst_nm` , `d`.`st`
```


5) CREATE VIEW 'highest_patients' AS

SELECT `d`.`frst_nm` AS `frst_nm`, `d`.`lst_nm` AS `lst_nm`, `d`.`st` AS `st`, COUNT(0) AS `count_of_patients` FROM (`doctor` `d` LEFT JOIN `record` `r` ON ((`r`.`Doc_ID` = `d`.`Doc_ID`))) GROUP BY `d`.`frst_nm`, `d`.`lst_nm`, `d`.`st`


```
6) CREATE VIEW `highest_room_charges` AS

SELECT

`d`.`pri_spec` AS `pri_spec`,

`d`.`st` AS `st`,

SUM(`bp`.`Room_Charge`) AS `doc_fees`

FROM

((`doctor` `d`

LEFT JOIN `record` `r` ON ((`r`.`Doc_ID` = `d`.`Doc_ID`)))

LEFT JOIN `billpayment` `bp` ON ((`bp`.`Bill_ID` = `r`.`Bill_ID`)))

GROUP BY `d`.`pri_spec` , `d`.`st`
```



```
7) CREATE VIEW `highestpay_doctor` AS

SELECT

`d`.`frst_nm` AS `frst_nm`,

`d`.`lst_nm` AS `lst_nm`,

`d`.`cty` AS `cty`,

SUM(`bp`.`Doc_Fees`) AS `doc_fees`

FROM

((`doctor` `d`

LEFT JOIN `record` `r` ON ((`r`.`Doc_ID` = `d`.`Doc_ID`)))

LEFT JOIN `billpayment` `bp` ON ((`bp`.`Bill_ID` = `r`.`Bill_ID`)))

GROUP BY `d`.`frst_nm` , `d`.`lst_nm` , `d`.`cty`
```


8) CREATE VIEW `no_of_patients` AS

SELECT

COUNT(`patient`.`P_ID`) AS `COUNT(P_ID)`,

`patient`.`City` AS `City`

FROM

`patient`

GROUP BY `patient`.`City`

9) CREATE VIEW `patient_bill_record` AS SELECT

`record`.`R_ID` AS `R_ID`,
`billpayment`.`Bill_ID` AS `Bill_ID`

FROM

(`record`

JOIN `billpayment` ON ((`record`.`P_ID` = `billpayment`.`P_ID`)))


```
10) CREATE VIEW `patient_doctor_sees` AS

SELECT

`p`.`F_name` AS `F_name`,

`p`.`L_name` AS `L_name`,

`p`.`City` AS `City`,

COUNT(0) AS `count_of_doctors`

FROM

(`patient` `p`

LEFT JOIN `record` `r` ON ((`r`.`P_ID` = `p`.`P_ID`)))

GROUP BY `p`.`F_name` , `p`.`L_name` , `p`.`City`
```


11) CREATE VIEW `patient_treated_speciality` AS SELECT `d`.`pri_spec` AS `pri_spec`, COUNT(0) AS `count_of_patients` FROM (`doctor` `d` LEFT JOIN `record` `r` ON ((`r`.`Doc_ID` = `d`.`Doc_ID`))) GROUP BY `d`.`pri_spec`


```
13) CREATE VIEW `room_charges` AS

SELECT

`p`.`F_name` AS `F_name`,

`p`.`L_name` AS `L_name`,

`p`.`City` AS `City`,

SUM(`bp`.`Room_Charge`) AS `room_charge`

FROM

((`patient` `p`

LEFT JOIN `record` `r` ON ((`r`.`P_ID` = `p`.`P_ID`)))

LEFT JOIN `billpayment` `bp` ON ((`bp`.`Bill_ID` = `r`.`Bill_ID`)))

GROUP BY `p`.`F_name` , `p`.`L_name` , `p`.`City`
```



```
14) CREATE VIEW `track_doctor` AS

SELECT
   `doctor`.`Doc_ID` AS `Doc_ID`,
   `record`.`R_ID` AS `R_ID`,
   `doctor`.`frst_nm` AS `frst_nm`

FROM
   (`doctor`
   JOIN `record` ON ((`doctor`.`Doc_ID` = `record`.`Doc_ID`)))
```



```
15) CREATE VIEW `no_oftimes_admitted` AS

SELECT
    `patient`.`P_ID` AS `P_ID`,
    `patient`.`F_name` AS `F_name`,
    COUNT(`patient`.`Admit_Date`) AS `count(Admit_Date)`
FROM
    `patient`
GROUP BY `patient`.`P_ID`
LIMIT 1
```


USE-CASES:

1) To show number of patients a doctor serves in each city:

2) To show amount of room charged in each city for Patient:

3) Show billing date of patients:

4) View the number of patients served by doctors in a particular state:

5) To show highest-paid medical professional in each city:

6) Number of patients treated in each speciality:

7) Specialty bringing in highest room charges per state:

8) Doctor with highest fees in each state:

9) Doctor served the highest patients in every state:

10) Average bill per patient per state:

11) Patient Admitted the maximum time:

```
1 • select P_ID,F_name,count(Admit_Date) as number_ofTimes_admitted
2 from patient
3 group by patient.P_ID
4 limit 1;
```


12) Count patient admit date:

- 1 SELECT COUNT(P_ID) , Admit_Date
- 2 FROM patient
- 3 GROUP BY Admit_Date;

13) Count Bill ID:

```
Limit to 1000 rows

| Select record.R_ID, billpayment.Bill_ID
| From Record
| Inner Join billpayment On record.P_ID = billpayment.P_ID;
```


14) To show doctor and record ID:

15) To show total count of patient per city:

16) View the follower and tweet id:

17) View the total number of tweets by a particular user:

Steps for choosing datasets to get final DB:

https://data.cms.gov/provider-data/topics/doctors-clinicians

We first located the dataset on this website, and then we scraped the data using Python scripts. The data for the doctor table was web scraped from the Browse AI website using python programs, and using Jupyter, we were able to read the doctor's csv file and eliminate all of the null values. We were able to see the data by grouping by one column (main spec) and count (doc id). We then plotted the following bar graph using matplotlib. Finally, we re-group by primary spec, calculate the age mean, and plot the age graph. After completing everything, we manually entered the data in other tables and through our database after entering this information by Python programs The data was entered into my sql workbench. We obtained our final database after normalizing the data from the prior assignment.