NASA HIGH TEMPERATURE TURBINE SEAL RIG DEVELOPMENT

Bruce M. Steinetz and Margaret P. Proctor NASA Lewis Research Center Cleveland, Ohio

Contributors

G. Garrison, J. Dirkes, A. McNickle, Stein Seal J. Flowers, Army; M. Adams, M. Tong, P. Dunlap, MTC G. Arora, Allied Signal, J. Gardner, EG&G

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
715 3.5 3.5 7. 5

Air Force E. Mayhew; A. VegBali; M. Stibich

HSR/NASA J. Shaw; M. Long Davis; B. Troha

HITEMP C. Ginty

Turbomachinery Seal Development Ojectives

cugine speed and temperature requirements.

eration

- · Complete fabrication/installation of state-of-the-art turbomachinery seal test rig capable of testing seals under known/anticipated design conditions.
- · Work with industry to assess/demonstrate performance of their seals prior to test in engine.

High Temperature Turbomachinery Seal Test Rig

Test rig designed to test at speeds and temperatures envisioned for next generation commercial and military turbine engines. Test rig is one-of-a-kind. More capable than any known test rig in existence at either engine manufacturers or seal vendors.

Temperature Room Temperature thru 1500 °F

Surface Speed 1500 fps at 40,455 RPM, 1600 fps at 43,140 RPM

Seal Diameter 8.5" design; other near sizes possible

Air Seals: brush, finger, labyrinth, film riding rim seal Seal Type:

•

•

150 psi @ 1445 °F: with Hydrotest qualification of heater 70 psi @ 1500 °F: Current Seal Pressure

60 HP (60,000 RPM) Barbour Stockwell Air Turbine with advanced digital control for high accuracy/control Motor Drive

Test Parameters

- Seal flow vs. pressure, speed, temperature
 (Both test rig and test seal are heavily instrumented)
- · Seal performance vs. simulated ramp cycles using new digital air turbine speed controller. Multiple speed step mission profile capabilities.
- · Seal durability vs. once-per-rev rotor runout condition
- Seal durability for prescribed seal offset condition (e.g. 3 mil seal offset)
- Accelerated life tests
- · Seal and coating wear

Highlights of Engineering Calculations

- Tri-hub burst containment: Pressure vessel contains disc failure thru operating and overspeed conditions
- · Pressure vessel sized and to be hydrotested to ASME pressure vessel code
- Squeeze film dampers damp anticipated inbalance. Less than 0.001 in. run-out for anticipated inbalance.
- ullet Relative seal-holder to test-rotor thermal growths acceptable thru 1500 $^\circ\mathrm{F}$ operating range
- Rotor windage heating: > 150 °F at 1500 fps
- Critical fits: rotor, bearing, bearing nuts, etc., stay "tight" during maximum speed and temperature conditions

Seal Rig Global Thermal Analysis

Global thermal analysis with windage heating provides input to component stress and displacement analysis

Seal Rig Global Thermal Analysis

Global thermal analysis with windage heating provides input to component stress and displacement analysis

17:

Test Rig Status

Complete	Complete June, '97	Ongoing red	4thQ FY98 Est.	2ndQ FY99 Est.
 Engineering Calculations: Rig capable of 1500 +fps/1500 °F operation 	• Detailed Drawings:	 Facility/Test Cell Preparation: — High temperature valves/instrumentation ordered 	• Complete Rig Fabrication	• Test rig ready for test

Summary

- · Test rig heated by multiple conduction heaters, radiant heater and air heater to overcome significant metal heat loss permitting 1500 $^{\circ}\mathrm{F}$ operation.
- Squeeze film dampers designed to provide smooth operation over operating range.
- MAR M-247 (Ni Co) cast alloy used for rotor and seal holder meet rotor and seal holder creep and LCF life goals.
- · Test facility designed to meet anticipated IHPTET, HSR, AST seal test requirements: significant asset for the U.S. engine/seal community.

Seal Rig Schematic

