

Ser Ala Gin Ala Ala Giy Liys Ser Asn Giy Glu Lys Lys Tyn lle Val Giy Phe Lys Gin Thr Mei Ser Thr Met 10T GCC CAG GCG GCA GCG AAA TCA AAC GGG GAA AAG AAA TAT GTC GGG TTT AAA CAG ACA ATG AGC ACG ATG **₹** ₹ Val GTA **₽** 5 Lys Ag_G g g લું જ 40 Pro Asp Leu CCT GAT TTA -1 | 1 His Val Ala His Ala Tyr Ala Gin Ser Val Pro Tyr Giy Val Ser Gin lie Lys Ala Pro Ala Leu His 399 CAC GTA GCA CAT GCG TAC GCG CAG TCC GTG CCT TAC GGC GTA TCA CAA ATT AAA GCC CCT GCT CTG CAC -107 - 107 -Val GTA Phe Lys Tyr TTC AAA TAT 20 Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val 11e Asp Ser Gly 11e Asp Ser Ser His 474 GGC TAC ACT GGA TCA AAT GTT-AAA GTA GCG GTT ATC GAC AGC GGT ATC GAT TCT TCT CAT -40 tys Lys Lys Asp Val 11e Ser Giu Lys Gly Gly Lys Val Gin Lys Gln AAG AAG AAA GAT GTC ATT TCT GAA AAA GGC GGG AAA GTG CAA AAG CAA Ser Ala Ala I AGC GCC GCT / 7 249 324

FIG._1B-1

AB GCC Val GTT CAC ∰ ACT ACT **₹** ÇA Ç Ser TCT Asn Asp Asn AAC 60 Asp GAC ნ∛ Phe TTC Asn Pro CCT Pro Asn AAT Glu Thr GAA ACA Ser TCT Pro CCT γal Cπ SO Met ATG Gly Gly Ala Ser GGC GGA GCC AGC Ata GCA £

≸સ Za Val Ata CCT ₹ Z 8 3 E **₹**₹**₹** \$ **\$** \$ Ser AGC Val Ma Pro ე ცე ₹ 1 Val GTA 88 G.¥ GGT lle ATC Ser 1CA Asn AC \$ ¥ ₹ 5 Ala GCT **≱**8 000 ka Gπ **≱** \$ 2 2 3 3 3 ₹

Met ATG Asn AAT Asa AC ₹ 🖇 Ala Re GCG ATC Тр 76**G** Głu GAG 110 Gly lle GGA ATC Asn AAC ⊮e A∏ lle ATC **Т**р 166 Ser AGC TA TAC ₽ S ა ე ₹ 2 § § ₹ Asa GAC \$ \$ \$ CT Gły GGT ₹ C1 (5 Val GTT 93

₽ 200 Val GT AB CC CC ક્રસ્ € **\$** ₹ Leu Lys Ala Ala Val TTA AAA GCG GCA GTT Ala Ala GCT GCT Gly Ser GGT 1CT 130 Ser TCT Let Gly Gly Pro CTC GGC GGA CCT \$ & Wei ATG Asa **₽** ₩ Val G∏ 5 & S 774

GGT £ 55 TAC TAC & € Val GTG **≱** ₹ AGC Se **∑** & Ser AGC 150 05.0 000 Şer TCC Ser Thr ACT ეეე ლ Glu G**A** Asn \$, **¥a** CCC **\$** \$ **₽** 55 55 kal CT 0 Val GTC Val GTA **4**3 CTC ა.ე **3** 22 ₩

P3 CC T **₹**8 Val GTA Ser AGC ₹ % 2 £ 2≥ इंट्र PR SS Arg AGA క్ర≸ Asn AAC Ser AGC Ser AGC Asp GAC 180 Val GTT Ala GCT ე დე V34 GTA ₽ ₹ Val GTC ₹ 1 **₽** ₹¥ ቼ ጜ፞፞፟፞፟፟ 954

<u>Ģ</u> A Sc ₹2 14 **₽** 800 **₹**000 7. T. Z. **≩**2 Asn **₹** 88 210 Pro CCT Thr tev ACG CTT Ser. AGC SA S∃ lle ATC £ 51 Val GTA **ა** P3 CC **T** Met ATG Val GTC & ₹ 3 E Se GAG 85

₹ S ACA ACA **Т**Ф 166 AAC AS His Pro / Lys AAG Leu Ser CTT TCT 30 s Val Ala Gly Ala Ala Ala Leu Re Leu AC GTT GCC GGA GCG GCT GCT TTG ATT CT $FIG._1B-2$ Pro His CCG CAC Set TCT Aa GCA Met ATG ક્રું ઇૂ 25g 4CG 4CG

250 GIN
GIN Val Arg Sei Leu Giu Asn Thi Thi Thi Lys Leu Gly Asp Sei Phe Tyi Tyi Giy Lys Giy Leu Ile Asn
1149 CAA GTC CGC AGC AGT TTA GAA AAC ACC ACT ACA AAA CTT GGT GAT TCT TTC TAC TAT GGA AAA GGG CTG ATC AAC

270

Val Glin Ala Ala Ala Glin OC

1224 GTA CAG GCG GCG GCT CAG TAA AACATAAAAAACCGGCCCTTGGCCCCGGCGGTTTTTATTTTCTTCCTCCGCGATGTTCAATCCGCTCC

1316 ATAATCGACGGATGGCTCCCTCTGAAAATTTTAACGAGAAAACGGCGGGTTGACCCGGGTTCAGTCCCGTAACGGCCAAGTCCTGAAACGTCTCAATCGCCG

1416 CTTCCCGGTTTCCGGTCAGCTCAATGCCGTAACGGTCGGCGGCGTTTTCCTGATACCGGGAGACGGCATTCGTAATCGGATC

FIG._1B-3

FIG._1B-2 FIG._1B-3 FIG._1B-1

FIG._1B

CONSERVED RESIDUES IN SUBTILISINS FROM BACILLUS AMYLOLIQUEFACIENS

1 A Q	s	v	P	•	G	•	•	10	•	•	A	P	A	•	н		•	20 G
21 . T	G	s	•	v	ĸ	v	λ	3 (V	•	Đ	•	G		•	•	•	н	40 P
41 D L	•	•	•	G	G	A	s	50	v	P	•	•	•	•	•		Q	60 D
61 . N		н	G	T	H	v	Α	7 (G	Ţ	•	Α	A	L	N	N	s	ï	80 G
81 V L	G	v	A	P	S	A		9 (L	Y	λ	v	ĸ	v	L	G	A		100 G
101 S G	•	•	s	•	L	•		11(G		E	W	A	•	N	•	•		120
121 V .	N	•	s	L	G	•	P	130 S		s		•,				A		140
141			•	G	v		v	150 V	A	Α	•	G	N	•	G	•		160
161		•	•	•	Y	P		170	Y	•	•		•	A	v	G	A	180
181 D .	•	N	•		Α	s	P	190 S			C			L	D	•		200 A
201 P G	v	•	•	Q	s	T		210 P	G	•	•	Y		•	•	N	G	220 T
221 S M	A	•	P	H	v	A		23(A		A	L				ĸ	•		240
241 W .			Q	•	R			25(L		N	T				L	G	•	260
261	Y	G		G	L		N	27(A	A							

FIG._2

COMPARISON OF SUBTILISIN SEQUENCES FROM: B.amyloliquefaciens B.auhliis

B.amyloliquefaciens B.subtilis B.licheniformis B.lentus

444 **HHHH** 0000+ S S ≪ F 2000 HHHHH0000 S S F F н > > V V L ** >>>> KKKK >>>> zzzo 55 4 5 0000 F F K F 20 G Y G Y G F 000 % 8 8 8 Z **H H O H** ロコマス **KKK** 4404 ** KKO 001K 8 8 8 8 **>** H H H 0000 4444 > > > > 8 8 1 8 0000 4444

0000 HHHH 8 2 5 8 **z z z z** ZOZ Z 444 H **~ ~ ~** ~ ~ ~ ~ ~ н > н > H ۲ HH 020 0 0 0 < **K K K** > > > > **H H H** H * + + + \mathcal{O} 8 8 8 8 zszz z 0 0 0 60 D 999 aaeaM > * E a a z v Z zya H H K * 医医医医 5 5 5 5 a 4 4 4 > > > > **X & & &** 8 8 8 8 ~ KKK 0000 G 000 **4 2 > 2** > > > ⊢ 0000 1111 1111 1111

2001 EEE 2200 2222 A OF Z H H F1 C < ** **3333** 医医医医 н нны G 000 zzso $H \triangleright K$ н нннн **≱** Ω α 3 00000 * * * > 9988 Ö 000 100 ß တတတ O 000 DESS K S S K 0 2 2 0 Ч 222 >>> > > > > > K K K K LYA ** 444 111 **M** S S S < < > < **8** 8 8 8 444 **K 57 K K** >>>> O 000 V L (4 < <

0000 8 8 8 8 Foza 0000 ខាខាលល 2222 0000 < < < v ** **A** 44 **A** > **<** > > > >>> >>> 1 > H > > 0000 5 5 2 2 < 0</p> >>> H CAAVDKAVCTVVDKAVCQAVDKAV KKKE ひとばら 4 4 4 F **4** H H A **8** 8 8 8 8 130 3 G 7 G 8 G 8 G 444 0000 0000 4444 8 8 8 8 *** z z z z ΙΛ н н **«**

FIG._3A

ZHZG **K K K K B** B B B EEE> **H H H Z** > > > H KKKK 2222 8880 000# 医医医氏 むしむれ KKKE ASKK HHHP** 4444 0000 ** > < > > 230 230 24 24 24 26 270 V O V C V E 190 5 5 5 5 5 5 5 6 0000 2222 **Pr Pr Pr Pr** ** ннн> 00000 2222 >>>> ** 0000 **HHHH** 民民民民 KKKS 4444 oozz 0000 zzoz 8 H 8 H **** ** SSZZ 円よよよ FFFF 888 260 S F S F T R 220 77 S 77 S 77 S 180 V V V V T D DZSS ** \mathcal{O} 0000 0000 **z z z z** ででよよ 4444 >>>> A A H S ** 8888 0 0 K K нннх FKKK *** > + > < ** 8 8 8 2 **K # # #** 4 D A 2020 z s s z 210 P G P G P T 250 11 11 11 13 13 14 170 K Y K Y K Y SERE 4455 UKKK SOZZ 444 4444 铁铁铁铁 8 8 8 8 * * * * > > > H 0000 $\alpha \alpha \times \alpha$ > > H H H H > > 0000 8002 F < 00 > E E E * >> < > ZZZZ 241 X X H H H H H H S X X 201 P G P G P G 161 S S S S T S T * *

FIG. 3A

1	A12	IKDFHVYFRESRDAG	49	E12	SATSRGVLVVAASGN
2	A11	LEQAVNSATSRGVLV	50	E11	SRGVLVVAASGNSGA
3	A10	AQSVPWGISRVQAPA	51	E10	VLVVAASGNSGAGSI
4	A9	VPWGISRVQAPAAHN	52	E9	VAASGNSGAGSISYP
5		GISRVQAPAAHNRGL	53	E8	SGNSGAGSISYPARY
	A8				SGAGSISYPARYANA
6	A 7	RVQAPAAHNRGLTGS	54	E7	
7	A 6	APAAHNRGLTGSGVK	55	E6	GSISYPARYANAMAV
8	A5	AHNRGLTGSGVKVAV	56	E 5	SYPAR <u>YANAMAVGA</u> T
9	A4	RGLTGSGVKVAVLDT	57	E 4	<u>ARYANAMAVGA</u> TDQN
10	A3	TGSGVKVAVLDTGIS	58	E 3	ANAMAVGATDQNNNR
11	A2	GVKVAVLDTGISTHP	59	E2	MAVGATDQNNNRASF
12		VAVLDTGISTHPDLN	60	E1	GATDONNNRASFSQY
13	A1	LDTGISTHPDLNIRG	61	F12	DONNNRASFSQYGAG
	R12		62		
14	B11	GISTHPDLNIRGGAS		F11	NNRASFSQYGAGLDI
15	B10	THPDLNIRGGASFVP	63	F10	ASFSQYGAGLDIVAP
16	B9	DLNIRGGASFVPGEP	6 4	F9	SQYGAGLDIVAPGVN
17	B8	IRGGASFVPGEPSTQ	65	F8	GAGLDIVAPGVNVQS
18	B7	GASFVPGEPSTQDGN	66	F7	LDIVAPGVNVQSTYP
19	B6	FVPGEPSTQDGNGHG	67	F6	VAPGVNVQSTYPGST
20		GEPSTQDGNGHGTHV	68	F 5	GVNVQSTYPGSTYAS
21	B5	STODGNGHGTHVAGT	69		VQSTYPGSTYASLNG
22	B4		70	F4	TYPGSTYASLNGTSM
	В3	DGNGHGTHVAGTIAA		F3	
23	B2	GHGTHVAGTIAALNN	71	F2	GSTYASLNGTSMATP
24	B 1	THVAGTIAALNNSIG	72	F1	YASLNGTSMATPHVA
25	C12	$\mathtt{AGTIAALNNSIGVLG}$	73	G12	LNGTSMATPHVAGAA
26	C11	IAALNNSIGVLGVAP	74	G11	TSMATPHVAGAAALV
27	C10	LNNSIGVLGVAPSAE	75	G10	ATPHVAGAAALVKQK
28		SIGVLGVAPSAELYA	76	G9	HVAGAAALVKQKNPS
29	C9 C8	VLGVAPSAELYAVKV	77	G8	GAAALVKQKNPSWSN
30		VAPSAELYAVKVLGA	78	G7	ALVKQKNPSWSNVQI
31	C7		7 9		KOKNPSWSNYOIRNH
	C6	SAELYAVKVLGASGS		G6	
32	C 5	LYAVKVLGASGSGSV	80	G5	NPSWSNVQIRNHLKN
33	C 4	VKVLGASGSGSVSSI	81	G4	WSNVQIRNHLKNTAT
34	С3	LGASGSGSVSSIAQG	82	G3	VQIRNHLKNTATSLG
35	C 2	SGSGSVSSIAQGLEW	83	G2	RNHLKNTATSLGSTN
36	C1	GSVSSIAQGLEWAGN	84	G1	LKNTATSLGSTNLYG
37	Ď12	SSIAQGLEWAGNNGM	85	H12	TATSLGSTNLYGSGL
38	D11	AQGLEWAGNNGMHVA	86	H11	SLGSTNLYGSGLVNA
39		LEWAGNNGMHVANLS	87	H10	STNLYGSGLVNAEAA
40	D10	AGNNGMHVANLSLGS	88	H9	NLYGSGLVNAEAATR
41	D9		00	пЭ	ND1GDGDVNALAA1N
	D8	NGMHVANLSLGSPSP			
42	D7	HVANLSLGSPSPSAT			
43	D6	NLSLGSPSPSATLEQ			
44	D5	LGSPSPSATLEQAVN			
45	D4	PSPSATLEQAVNSAT			
46	D3	SATLEQAVNSATSRG		•	
47	D2	LEQAVNSATSRGVLV			
48	D1	AVNSATSRGVLVVAA			
	υI				

					WITHIN MI CICCDE
1	A12	IKDFHVYFRESRDAG	49	E12	KKIDVLNLSIGGPDF
2	A11	DAELHIFRVFTNNQV	50	E11	DVLNLSIGGPDFMDH
3	A10	PLRRASLSLGSGFWH	51	E10	NLSIGGPDFMDHPFV
4	Α9	RASLSLGSGFWHATG	52	E9	IGGPDFMDHPFVDKV
5	8 A	LSLGSGFWHATGRHS	53	E8	PDFMDHPFVDKVWEL
6	Α7	GSGFWHATGRHSSRR	54	E7	MDHPFVDKVWELTAN
7	A 6	FWHATGRHSSRRLLR	5 5	E6	PFVDKVWELTANNVI
8	A 5	ATGRHSSRRLLRAIP	56	E 5	DKVWELTANNVIMVS
9	A 4	RHSSRRLLRAIPRQV	57	E 4	WELTANNVIMVSAIG
10	А3	SRRLLRAIPRQVAQT	58	E3	TANNVIMVSAIGNDG
11	A2	LLRAIPRQVAQTLQA	59	E2	NVIMVSAIGNDGPLY
12	A1	AIPRQVAQTLQADVL	60	E 1	MVSAIGNDGPLYGTJ
13	B12	RQVAQTLQADVLWQM	61	F12	A IGNDGPLYGTLNNP
14	B11	AQTLQADVLWQMGYT	62	F11	NDGPLYGTLNNPADQ
15	B10	LQADVLWQMGYTGAN	63	F10	PLYGTLNNPADQMDV
16	B9	DVLWQMGYTGANVRV	64	F9	GTLNNPADQMDVIGV
17	B8	WOMGYTGANVRVAVF	65	F8	NNPADQMDVIGVGGI
18	B7	GYTGANVRVAVFDTG	66	F7	ADOMDVIGVGGIDFE
19	В6	GANVRVAVFDTGLSE	67	F6	MDVIGVGGIDFEDNI
20	B5	VRVAVFDTGLSEKHP	68	F5	IGVGGIDFEDNIARF
21	B4	AVFDTGLSEKHPHFK	69	F4	GGIDFEDNIARFSSR
22	В3	DTGLSEKHPHFKNVK	70	F3	DFEDNIARFSSRGMT
23	B2	LSEKHPHFKNVKERT	71	F2	DNIARFSSRGMTTWE
24	B1	KHPHFKNVKERTNWT	72	F1	ARFSSRGMTTWELPG
25	C12	HFKNVKERTNWTNER	73	G12	SSRGMTTWELPGGYG
26	C11	NVKERTNWTNERTLD	74	G11	GMTTWELPGGYGRM K
27	C10	ERTNWTNERTLDDGL	75	G 10	TWELPGGYGRMKPDI
28	С9	NWTNERTLDDGLGHG	76	G9	LPGGYGRMKPDIVTY
29	C 8	NERTLDDGLGHGTFV	77	G8	GYGRMKPDIVTYGAG
30	C 7	TLDDGLGHGTFVAGV	78	G7	RMKPDIVTYGAGVRG
31	Č6	DGLGHGTFVAGVIAS	79	G6	PDIVTYGAGVRGSGV
32	C5	GHGTFVAGVIASMRE	80	G5	VTYGAGVRGSGVKGG
33	C 4	TFVAGVIASMRECOG	81	G4	GAGVRGSGVKGGCRA
34	C3	AGVIASMRECQGFAP	82	G3	VRGSGVKGGCRALSG
35	C2	IASMRECOGFAPDAE	83	G2	SGVKGGCRALSGTSV
36	C1	MRECQGFAPDAELHI	84	G1	KGGCRALSGTSVASP
37	D12	COGFAPDAELHIFRV	85	H12	CRALSGTSVASPVVA
38	D11	FAPDAELHI FRVFTN	86	H11	LSGTSVASPVVAGAV
39	D10	DAELHIFRVFTNNQV	87	H10	TSVASPVVAGAVTLL
40	D10	LHIFRVFTNNQVSYT	88	Н9	ASPVVAGAVTLLVST
41	D8	FRVFTNNQVSYTSWF	89	H8	VVAGAVTLLVSTVQK
42	D7	FTNNQVSYTSWFLDA	90	H7	GAVTLLVSTVOKREL
43	D6	NQVSYTSWFLDAFNY	91	Н6	TLLVSTVQKRELVNP
44	D5	SYTSWFLDAFNYAIL	92	H5	VSTVQKRELVNPASM
45	D4	SWFLDAFNYAILKKI	93	H4	VOKRELVNPASMKQA
46	D3	LDAFNYAILKKIDVL	94	Н3	RELVNPASMKQALIA
47	D2	FNYAILKKIDVLNLS	95	H2	VNPASMKQALIASAR
48	D1	AILKKIDVLNLSIGG	96	H1	ASMKQALIASARRLP
• •	- 1	- TT TITLY TO THE TOTAL	20		· ioi ii (Qi iii ii ii (i (II i

97	112	IKDFHVYFRESRDAG
98	I 1 1	DAELHIFRVFTNNQV
99	I 10	KQALIASARRLPGVN
100	19	LIASARRLPGVNMFE
101	18	SARRLPGVNMFEQGH
102	I 7	RLPGVNMFEQGHGKL
103	16	GVNMFEQGHGKLDLL
104	15	MFEQGHGKLDLLRAY
105	I 4	QGHGKLDLLRAYQIL
106	13	GKLDLLRAYQILNSY
107	12	DLLRAYQILNSYKPQ
108	I 1	RAYQILNSYKPQASL
109	J12	QILNSYKPQASLSPS
110	J11	NSYKPQASLSPSYID
111	J10	KPQASLSPSYIDLTE
112	J9	ASLSPSYIDLTECPY
113	J8	SPSYIDLTECPYMWP
114	J7	YIDLTECPYMWPYCS
115	J6	LTECPYMWPYCSQPI
116	J5	CPYMWPYCSQPIYYG

FIG. 6C

MKLVNIWLLLLVVLLCGKKHLGDRLEKKSFEKAPCPGCSHLTLKVEFSSTVVEYEYIVAFNGYFT AKARNSFISSALKSSEVDNWRIIPRNNPSSDYPSDFEVIQIKEKQKAGLLTLEDHPNIKRVTPQR KVFRSLKYAESDPTVPCNETRWSQKWQSSRPLRRASLSLGSGFWHATGRHSSRRLLRAIPRQVAQ TLQADVLWQMGYTGANVRVAVFDTGLSEKHPHFKNVKERTNWTNERTLDDGLGHGTFVAGVĨASM RECQGFAPDAELHIFRVFTNNQVSYTSWFLDAFNYAILKKIDVLNLSIGGPDFMDHPFVDKVWEL TANNVIMVSAIGNDGPLYGTLNNPADQMDVIGVGGIDFEDNIARFSSRGMTTWELPGGYGRMKPD ${\tt IVTYGAGVRGSGVKGGCRALSGTSVASPVVAGAVTLLVSTVQKRELVNPASMKQALIASARRLPG}$ VNMFEQGHGKLDLLRAYQILNSYKPQASLSPSYIDLTECPYMWPYCSQPIYYGGMPTVVNVTILN GMGVTGRIVDKPDWQPYLPQNGDNIEVAFSYSSVLWPWSGYLAISISVTKKAASWEGIAQGHVMI TVASPAETESKNGAEQTSTVKLPIKVKIIPTPPRSKRVLWDQYHNLRYPPGYFPRDNLRMKNDPL ${\tt DWNGDHIHTNFRDMYQHLRSMGYFVEVLGAPFTCFDASQYGTLLMVDSEEEYFPEEIAKLRRDVD}$ NGLSLVIFSDWYNTSVMRKVKFYDENTRQWWMPDTGGANIPALNELLSVWNMGFSDGLYEGEFTL ANHDMYYASGCSIAKFPEDGVVITQTFKDQGLEVLKQETAVVENVPILGLYQIPAEGGGRIVLYG DSNCLDDSHRQKDCFWLLDALLQYTSYGVTPPSLSHSGNRQRPPSGAGSVTPERMEGNHLHRYSK VLEAHLGDPKPRPLPACPRLSWAKPQPLNETAPSNLWKHQKLLSIDLDKVVLPNFRSNRPQVRPL SPGESGAWDIPGGIMPGRYNQEVGQTIPVFAFLGAMVVLAFFVVQINKAKSRPKRRKPRVKRPQL MQQVHPPKTPSV

FIG. 7

	10	20	30	40	50
BPN' SAVINASE S2HSBT	AQSVPYGVSQ-IKAPALI AQSVPWGISR-VQAPAAI -RAIPRQVAQTLQADVLV	INRGLTGSGVK	VAVLDTGI-S	THPDLN-IRG	GA 47
	60	70	80	90	100 (GA 98
BPN' SAVINASE S2HSBT	SMVPSETNPFQDNNSHG SFVPGEPST-QDGNGHG NWTNERTLDDGLGHG	THVAGTIAALN	INSIGVLGVAP	PSAELYAVKVL	GA 96
DDW	110 DGSGQYSWIINGIEWAI	120	130 .GGPS-GSAAI	140 KAAVDKAVAS	150 GGV 147
BPN' SAVINASE S2HSBT	SGSGSVSSIAQGLEWAG! NQVSYTSWFLDAFNYAI:	NNGMHVANLSI	JGSPS-PSATI	JEQAVNSATSF	RGV 145
	160	170	180	190	200
BPN' SAVINASE S2HSBT	VVVAAAGNEGTSGSSST LVVAASGNSGAGS IMVSAIGNDGPLYGT	ISYPARYANAI	MANGATDQNNN	N R A S F S Q Y G A C	3L - 191
	210	220	230	240	250
BPN' SAVINASE S2HSBT	DVMAPG DIVAPG ELPGGYGRMKPDIVTYG	V SIQSTLPGNI VNVQSTYPGS AGVRGSGVKG(TYASLNGTSMA	ATPHVAGAAAI	LVK 229
	260	270	280	290	
BPN' SAVINASE S2HSBT	SKHPNWTNTQ VRSS QKNPSWSNVQ IRNH STVQKRELVNPASMKQA	LKNTATSLGS	TNLYGSGLVN	AEAATR	275 269 280

FIG. 8

FIG. 10

Peptide number	Sequence	
1 (unmodified sequence)	GSISYPARYANAMAV	
2	ASISYPARYANAMAV	
3	GAISYPARYANAMAV	
4	GSASYPARYANAMAV	
5	GSIAYPARYANAMAV	
6	GSISAPARYANAMAV	
7	GSISYAARYANAMAV	
8	GSISYPAAYANAMAV	
9	GSISYPAR A ANAMAV	
10	GSISYPARYAAAMAV	
11	GSISYPARYANAAAV	
12	GSISYPARYANAMAA	

FIG. 11

peptide designations

FIG. 12

Peptide

FIG. 13A

1	2	3	4	5
1234567890	1234567890	1234567890	1234567890	1234567890
MRSSPLLPSA	VVAALPVLAL	AADGRSTRYW	DCCKPS CGWA	KKAPVNOPVF
SCNANFQRIT	DFDAKSGCE <u>P</u>	GGVAYSCADQ	<u>TPWA</u> VNDDFA	LGFAATSIAG
SNEAGWCCAC	YELTFTSGPV	AGKKMVVQST	STGGDLGSNH	FDLNIPGGGV
		ISSRNECDRF		
PSFSFRQVQC	PAELVARTGC	RRNDDGNFPA	VQIPSSSTSS	PVNQPTSTST
TSTSTTSSPP	VOPTTPSGCT	AERWAO		

FIG. 13B

FIG. 14A

1 mrsslvlffv sawtalaspi rrevsqdlfn qfnlfaqysa aaycgknnda 51 pagtnitctg nacpevekad atflysfeds gv**gdvtqfla** ldntnklivl 101 sfrgsrsien wignlnfdlk eindicsger ghdgftsswr svadtlrqkv 151 edavrehpdy rvvftghslg galatvagad lrgngydidv fsygaprvgn 201 rafaefltvq tggtlyrith tndivprlpp refgyshssp eywiksgtlv 251 pvtrndivki egidatggnn qpnipdipah lwyfgligte l

FIG. 14B

FIG. 15A

1 mftpvrrrvr taalalsaaa alvlgstaas gasatpspap apapapvkqg
51 ptsvayvevn nnsmlnvgky tladgggnaf dvavifaani nydtgtktay
101 lhfnenvqrv ldnavtqirp lqqqgikvll svlgnhqgag fanfpsqqaa
151 safakqlsda vakygldgvd fddeyaeygn ngtaqpndss fvhlvtalra
201 nmpdkiisly nigpaasrls yggvdvsdkf dyawnpyygt wqvpgialpk
251 aqlspaavei grtsrstvad larrtvdegy gvyltynldg gdrtadvsaf
301 trelygseav rtp

FIG. 15B

peptide designate

GG36 percent responders

FIG. 17

Hybrid enzyme sequence (GG36-BPN)

GG36

AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGISTHPDLNIRGGASFVPGEPSTQDGNGH

BPN

GTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVINMSLGGS $\boldsymbol{\triangle}$

GSAALKAAVDKAVASGVVVVAAAGNEGTSGSSSTVGYPGKYPSVIAVGAVDSSNQRASFSSVGP

 ${\tt ELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPNWTNTQVRSSLENTTTKLGD}$

SFYY GKGLINVQAAAQ