Test Plan for Bike Garage Pro (Group 33, 2015)

Alexander Skafte tfy13ask@student.lu.se

Contents

C	ontents	U
1	References	1
2	Introduction	1
	2.1 Tested system	1
3	Test process	1
	3.1 Process overview	1
	3.2 Unit testing	1
	3.3 Integration testing	1
	3.4 System testing	2
	3.5 Acceptance testing	2
4	Tested items	2
5	Test recording procedure	2
	5.1 Unit testing	2
	5.2 Integration testing	2
	5.3 System testing	$\frac{1}{2}$
	5.4 Acceptance testing	2
6	Test cases for system testing	2
Ū	6.1 Test cases	2
	6.2 Requirements coverage and traceability	2
${f A}$	Test cases	3

1 References

2 Introduction

2.1 Tested system

The system described in this document is the software for a public bicycle garage. This software is responsible for managing the authentication of users and the management of their information and their bicycles.

This document provides a specification for testing the bicycle garage software. The test process consists of the following phases:

- Unit testing
- Integration testing
- System testing
- Acceptance testing

3 Test process

3.1 Process overview

3.2 Unit testing

Every non-trivial function is tested in software through the use of a test suite library.

Performed by: Developers

Type of test: Structural

Criteria: Every line of code is tested

Stop rule: No errors found

3.3 Integration testing

Integration testing is performed in a similar way to unit testing, but larger and more inclusive modules are tested. Each module is tested in software through the use of a test suite library.

Performed by: Developers

Type of test: Structural

Criteria: Every API method is tested completely

Stop rule: No errors found

3.4 System testing

During system testing, all requirements specified inside the Software Requirements Specification are tested.

Performed by: Developers

Type of test: Functional

Criteria: All requirements inside the SRS are fulfilled

Stop rule: No critical errors found

3.5 Acceptance testing

Acceptance testing is performed by the client and not the developers, and is therefore not discussed in this document.

4 Tested items

- 5 Test recording procedure
- 5.1 Unit testing
- 5.2 Integration testing
- 5.3 System testing
- 5.4 Acceptance testing
- 6 Test cases for system testing
- 6.1 Test cases
- 6.2 Requirements coverage and traceability

A Test cases

Test case 1:	Registration of a new user
Primary actor:	Operator
Preconditions:	User is unregistered
Postconditions:	User is registered

Main success scenario:

- 1. Operator provides the required user information to the control interface.
- 2. A new PIN code is generated for the user.
- 3. The user is added to the system.

Test case 2:	Registration of an already registered user
Primary actor:	Operator
Preconditions:	User is registered
Postconditions:	User is registered

Main success scenario:

- 1. Operator provides the required user information to the control interface.
- 2. The system responds with an error message, e.g. "The user is already registered."

Test case 3:	Unregistration of a registered user
Primary actor:	Operator
Preconditions:	User is registered

Main success scenario:

- 1. Operator provides the required user information to the control interface.
- 2. All bicycles associated with the user are removed from the system.
- 3. The user is removed from the system.

Test case 4:	Association of a new bicycle with a user
Primary actor:	Operator
Preconditions:	User is registered; garage is not full
Postconditions:	Bicycle is associated with user

Main success scenario:

- 1. Operator provides the required user information to the control interface.
- 2. A unique 5-digit identification number is generated and associated with the bicycle.
- 3. The bicycle is added to the set of bicycles owned by the user.
- 4. A barcode associated with the 5-digit ID is printed and given to the user.

Test case 5:	Disassociation of a user's bicycle
Primary actor:	Operator
Preconditions:	User is registered. The bicycle is associated with the user.
Postconditions:	Bicycle is not associated with user nor is it present in the system.

Main success scenario:

- 1. Operator provides the required user information to the control interface.
- 2. The bicycle is disassociated with the user.
- 3. The unique 5-digit identification number associated with the bicycle is returned to the pool of available ID's. As a consequence, the barcode is rendered invalid.

Test case 6:	A valid PIN code is entered
Primary actor:	User
Preconditions:	The PIN code entered is associated with a registered user, who has at least one bicycle stored in the garage.
Postconditions:	-

Main success scenario:

- 1. User enters their PIN code at the PIN code terminal.
- 2. The green LED lamp is lit for 4 seconds. Simultaneously, the entrance door opens and stays open for 10 seconds.

Test case 6:	An invalid PIN code is entered
Primary actor:	User
Preconditions:	The PIN code entered is not associated with any registered user.
Postconditions:	-

Main success scenario:

- 1. User enters the PIN code at the PIN code terminal.
- 2. The red LED lamp is lit for 4 seconds.