ЛАБОРАТОРНАЯ РАБОТА № 1

Разработка и программирование алгоритмов для разветвляющихся вычислительных процессов

Цель: изучение основ языка высокого уровня на примере C/C++ (типизация, синтаксис и семантика), изучение возможностей языка C++ по организации разветвляющихся вычислительных процессов; получение навыков разработки и отладки консольных приложений в среде Visual Studio.

Контрольные вопросы для самоподготовки

- 1 Понятия «решение», «проект» и «конфигурация» в MS Visual Studio.
- 2 Возможности рабочего пространства проекта.
- 3 Этапы построения консольного приложения.
- 4 Понятия «препроцессор» и «условная компиляция» в С++.
- 5 Назначение команд препроцессора #include, #define.
- 6 Понятия «оператор», «операнд», «идентификатор», «переменная» и «константа» в С++.
 - 7 Приоритетность операций и порядок обработки выражений в С++.
- 8 Понятие типизации. Правила преобразования значений операндов из одного типа в другой в C++.
 - 9 Порядок автоматического приведения типов в выражениях в С++.
- 10 Средства и особенности языка С++ при организации разветвляющегося процесса.
 - 11 Возможности языка С++ для организации циклического процесса.
 - 12 Особенности организации в C++ итеративного процесса. Цикл for.
 - 13 Инструментальная панель отладчика в среде $Visual\ C++.$
- 14 Точки останова и точки трассировки. Настройки отладчика и пошаговое выполнение программы.
- 15 Возможности языка C++ по организации ввода и вывода данных для консольного приложения. Форматированный вывод данных.

Задание

- 1 Согласовать вариант задания с преподавателем, внимательно изучить исходные данные к задаче (таблица 1.1) и пример.
 - 2 Разработать алгоритм для решения следующей задачи:

Вычислить бесконечную сумму S с точностью ε .

Считать, что требуемая точность достигнута, если значение очередного слагаемого по модулю меньше заданного ε (это и все последующие слагаемые можно не учитывать). Определить и вывести количество слагаемых найденной суммы, учтенных при расчете. Значение суммы выводить с точностью до 8 знаков в дробной части. Если ни одно из слагаемых не было учтено, то выдать об этом сообщение.

Внимание! Для нахождения степени числа не использовать стандартных функций, а вычислять его самостоятельно с помощью оператора цикла. Для вычисления факториала числа применить цикл **for**.

Ограничения: **х,** ϵ – действительные числа (**x** \neq 0, ϵ > 0), **a** – целое число ($|a| < 10^6$)

- 3 Написать программный код реализации составленного алгоритма с учетом требований и ограничений по индивидуальному заданию.
- 4 При выполнении задания реализовать ввод исходных данных пользователем с клавиатуры, а вывод результатов выполнения программы в консоль (на экран). Организовать текстовый пользовательский интерфейс и форматированный вывод данных.
- 5 Проверить правильность вычислений на контрольных примерах, используя возможности отладчика. Организовать трассировку переменных и проследить изменение их значений в ходе выполнения программы, выполнить отладку цикла.
- 6 Построить укрупненную схему составленного алгоритма (блок-схему работы программы).
- 7 Дополнительно следует учесть, что правильность вводимых значений не гарантируется. Необходимо обеспечить проверку соответствия входных данных указанным в условии требованиям и ограничениям. При разработке программы предусмотреть пропуск слагаемых равных нулю или бесконечности.
- 8 **Дополнительно** для своего варианта определить диапазон возможных значений аргументов. Обосновать свое решение.

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Вариант	Задание	Дополнительные условия
1	$S = b + \sum_{k=1}^{\infty} \left(\cos(k * \frac{\pi}{4}) * \frac{(x^k)}{k!} \right)$	$b = \begin{cases} \frac{1}{a}, \varepsilon < 1\\ a!, \varepsilon \ge 1 \end{cases}$
2	$S = \sum_{k=1}^{\infty} \left(\frac{\cos(k * x)}{k^2} * b \right)$	$b = egin{cases} a!, k - ext{нечетное} \ 0, k - ext{четное} \end{cases}$
3	$S = \sum_{k=1}^{\infty} \left(\frac{\sin(k * x)}{k} * b \right)$	$b = egin{cases} a!, k - ext{нечетное} \ -1, k - ext{четное} \end{cases}$
4	$S = \sum_{k=0}^{\infty} \frac{(-1)^k * x^b}{b * (2k+1)!}$	$b = \begin{cases} k * a, \varepsilon < 1 \\ \frac{1}{a}, \varepsilon \ge 1 \end{cases}$
5	$S = \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{(k!)^2} * \left(\frac{x}{b} \right)^{2k} \right)$	$b = \begin{cases} 2a, \varepsilon < 1 \\ 2, \varepsilon \ge 1 \end{cases}$
6	$S = \sum_{k=0}^{\infty} \left(\frac{(-1)^{k+1}}{(2k)!} * \left(\frac{x}{b} \right)^{4k} \right)$	$b = \begin{cases} a, \varepsilon < 1 \\ 3, \varepsilon \ge 1 \end{cases}$
7	$S = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} * x^{2k}}{b * (2k)!}$	$b = \begin{cases} \frac{1}{a}, \varepsilon < 1\\ a!, \varepsilon \ge 1 \end{cases}$
8	$S = b + \sum_{k=1}^{\infty} \left(\frac{(a-k +1)!}{k! * 2k} * x^k \right)$	$b = \begin{cases} \frac{1}{a}, \varepsilon < 1\\ a!, \varepsilon \ge 1 \end{cases}$
9	$S = \sum_{k=1}^{\infty} \frac{x^k}{k^3 + k\sqrt{ x } + b}$	$b = \begin{cases} \frac{1}{a}, \varepsilon < 1\\ a!, \varepsilon \ge 1 \end{cases}$
10	$S = \sum_{k=0}^{\infty} \frac{(-1)^k * b * x^k}{3^k}$	$b = \begin{cases} \frac{1}{a}, \varepsilon < 1\\ a!, \varepsilon \ge 1 \end{cases}$

11	$S = \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{k! * (k+2)!} * \left(\frac{x}{b} \right)^{a+2k} \right)$	$b = \begin{cases} 2a, \varepsilon < 1 \\ 2, \varepsilon \ge 1 \end{cases}$
12	$S = \sum_{k=0}^{\infty} \frac{(-1)^k * x^{bk+1}}{(2k)! * (2k+1)}$	$b = \begin{cases} 2, \varepsilon < 1 \\ 2a, \varepsilon \ge 1 \end{cases}$
13	$S = \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{k! * (k+1)!} * \left(\frac{x}{b} \right)^{2k} \right)$	$b = \begin{cases} 2a, \varepsilon < 1 \\ \frac{1}{a}, \varepsilon \ge 1 \end{cases}$
14	$S = \sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{(2k+1)!} * \left(\frac{x}{b} \right)^{4k} \right)$	$b = \begin{cases} 3a, \varepsilon < 1\\ \frac{1}{a}, \varepsilon \ge 1 \end{cases}$
15	$S = \sum_{k=0}^{\infty} \frac{(-1)^k * x^b}{(k+1)*b!}$	$b = \begin{cases} (k+2), \varepsilon < 1\\ 2a, \varepsilon \ge 1 \end{cases}$
16	$S = \sum_{k=0}^{\infty} \frac{x^{2k} * b}{2^k * k!}$	$b = egin{cases} -1, k - ext{нечетное} \ a, k - ext{четное} \end{cases}$
17	$S = \sum_{k=0}^{\infty} \frac{(-x)^{2k}}{b * k!}$	$b = \begin{cases} a, \varepsilon < 1 \\ 2, \varepsilon \ge 1 \end{cases}$
18	$S = b + \sum_{k=1}^{\infty} \left(\sin \left(k * \frac{\pi}{3} \right) * \frac{x^k}{k!} \right)$	$b = \begin{cases} \frac{1}{a}, \varepsilon < 1\\ a!, \varepsilon \ge 1 \end{cases}$
19	$S = \sum_{k=1}^{\infty} \left(x^k * \cos \left(k * \frac{\pi}{4} \right) * b \right)$	$b = \left\{ egin{alred} a! & , k - ext{нечетноe} \ 1, k - ext{четноe} \end{array} ight.$
20	$S = \sum_{k=1}^{\infty} \left(b * \frac{\cos(k * x)}{k^2} \right)$	$b = \left\{ egin{array}{ll} 1, k - ext{нечетное} \ -1, k - ext{четноe} \end{array} ight.$