ЛАБОРАТОРНАЯ РАБОТА № 1 ИСТЕЧЕНИЕ ЖИДКОСТИ ЧЕРЕЗ НАСАДКИ

Цель работы.

Определение коэффициентов расхода, скорости и сопротивления насадков и сравнение их со справочными значениями.

Общие сведения.

Насадками называют трубки различной формы, приставляемые к отверстию в стенке резервуара или к концу трубы с целью увеличения расхода или для получения более компактной струи.

При входе в насадок, благодаря острой входной кромке, струя жидкости сначала сужается, как и при истечении через отверстие, а затем расширяется, заполняя все сечение насадка, и вытекает из него полным сечением (рис.7.1). Вследствие сжатия струи в сжатом сечении скорость жидкости больше, а давление, соответственно, меньше, чем на входе из насадка. При истечении в атмосферу в сжатом сечении образуется вакуум. Это приводит к подсасыванию жидкости из резервуара, в результате чего при одинаковом напоре расход жидкости через насадок будет больше, чем через отверстие.

В случае истечения жидкости через насадок скорость и расход определяются по тем же формулам, что и для отверстия, т.е.:

$$\upsilon = \varphi \cdot \sqrt{2g \cdot H} \,\,\,(1.1)$$

$$Q = \mu \cdot \omega \cdot \sqrt{2g \cdot H} \ . \tag{1.2}$$

Здесь ω - площадь выходного отверстия насадка;

$$\varphi = \frac{1}{\sqrt{1 + \zeta_{_{\scriptscriptstyle H}}}}$$
 - коэффициент скорости;

 $\zeta_{\scriptscriptstyle H}$ - коэффициент сопротивления насадка:

$$\zeta_{H} = \frac{\zeta_{ex.}}{\varepsilon_{c}^{2}} + \zeta_{e.p.} + \zeta_{\partial n.}, \qquad (1.3)$$

где $\zeta_{\text{вх.}} \cong 0{,}06$ - коэффициент сопротивления входного отверстия насадка;

 $\zeta_{\text{в.р.}}$ - коэффициент гидравлических сопротивлений на расширение потока за сжатым сечением;

 $\zeta_{\text{дл.}}$ - коэффициент гидравлического сопротивления по длине насадка. Для цилиндрического насадка:

$$\zeta_{\partial n} = \lambda \cdot \frac{l}{d}$$

где λ - коэффициент гидравлического трения;

1 - длина насадка;

d - диаметр насадка;

 ϵ_{c} - коэффициент сжатия струи внутри насадка.

Для внешнего цилиндрического насадка (рис.1.1) $\epsilon_c = 0.64$.

Так как истечение из насадка наружу в большинстве случаев происходит полным сечением (струя на выходе не сужается), т.е. $\varepsilon_{\text{вых.}}=1$, то коэффициент расхода насадка μ равен коэффициенту скорости ϕ :

$$\mu = \mathcal{E}_{\text{\tiny GBLX}} \cdot \varphi = \varphi \ . \tag{1.4}$$

Вследствие вакуума в сжатом сечении возрастает полный действующий напор, складывающийся из напора над центром входного отверстия насадка и величины вакуума в сжатом сечении. Это приводит к увеличению расхода жидкости через насадок.

Оценим теоретическое значение вакуума в сжатом сечении при истечении жидкости через внешний цилиндрический насадок (рис.7.1). Напишем уравнение Бернулли для сечений О-О и С-С (сжатое сечение), приняв в сечении О-О скорость жидкости v_0 =0:

$$\frac{P_0}{\gamma} + H = \frac{{\upsilon_c}^2}{2g} + \frac{P_c}{\gamma} + \zeta_{\text{ex.}} \frac{{\upsilon_c}^2}{2g},$$

откуда:

$$\frac{P_0 - P_c}{\gamma} = \frac{v_c^2}{2g} (1 + \zeta_{\text{ex.}}) - H, \qquad (1.5)$$

где P_0 и P_c - давления, соответственно, в сечениях O-O и C-C.

Так как $\upsilon_c = \upsilon/\varepsilon_c$, где $\upsilon = \varphi \cdot \sqrt{2g \cdot H}$ - скорость жидкости на выходе из насадка, то из уравнения (7.5) получим:

$$\frac{P_0 - P_c}{\gamma} = \frac{\upsilon^2}{\varepsilon_c^2 \cdot 2g} (1 + \zeta_{ex.}) - H = \frac{\varphi^2 \cdot H}{\varepsilon_c^2} (1 + \zeta_{ex.}) - H = H \cdot \left[\frac{\varphi^2}{\varepsilon_c^2} (1 + \zeta_{ex.}) - 1 \right]$$
(1.6)

Положив $P_0 = P_{ar.}$ и подставив соответствующие значения коэффициентов: $\varphi = 0.82$; $\varepsilon_c = 0.64$; $\zeta_{Bx.} = 0.06$, получим:

$$\frac{P_{am.} - P_c}{\gamma} = H \cdot \left[\frac{0.82^2}{0.64^2} (1 + 0.06) - 1 \right] \approx 0.74H.$$

Разность между атмосферным давлением $P_{ar.}$ и давлением в сечении C-C (P_c) есть вакуум. Следовательно, величина вакуума, выраженная высотой столба жидкости, в сжатом сечении внешнего цилиндрического насадка равна $h_{\text{вак.}} = 0,74 \text{ H}.$ (1.7)

Уменьшение давления в сжатом сечении насадка (увеличение вакуума $h_{\text{вак.}}$) физически возможно до давления насыщенных паров данной жидкости при данной температуре ($P_{\text{н.п.}}$). Предельное значение вакуума с сжатом сечении определяется по формуле:

$$h_{\text{вак.пред.}} = \frac{P_{am} - P_{\text{н.п.}}}{\gamma}. \tag{1.8}$$

Если расчетная величина вакуума (7.7) превосходит предельное значение (7.8),то происходит срыв режима работы насадка (срыв вакуума): струя отрывается от стенок насадка и истекает неполным сечением.

Рис.1.1. Истечение жидкости через насадки.

В технике применяют насадки различной формы. Основные типы насадков приведены на рис.7.2, а средние значения их коэффициентов μ , φ , ζ , ϵ - в табл. 1.1.

Таблица 1.1.

Тип насадка или отверстие	Рисунок	φ	μ	$\mathcal{E}_{(B \mapsto IX)}$	ξ
Круглое отверстие в тонкой стенке	_	0,97	0,62	0,64	0,06
Внешний цилиндрический насадок	2A	0,82	0,82	1	0,5
Конический сходящийся насадок при $\theta = 13^0$	2Б	0,96	0,95	0,98	0,075
Коноидальный насадок (сопло)	2B	0,98	0,98	1	0,06
Конический расходящийся насадок при $\theta = 5^0$	2Γ	0,47	0,47	1	3,4

ЛАБОРАТОРНАЯ РАБОТА № 2 СНЯТИЕ ХАРАКТЕРИСТИК ЦЕНТРОБЕЖНОГО НАСОСА.

Цель работы.

Снятие рабочих характеристик центробежного насоса H=f(Q) и $N_{\pi}=f(Q)$ при заданном постоянном числе оборотов колеса.

Общие сведения.

В центробежном насосе передача энергии жидкости осуществляется лопатками рабочего колеса, вращающегося в корпусе. Вращаясь с колесом, жидкость подвергается действию центробежных сил, что обусловливает движение ее от центра к периферии (рис. 2.1). На валу может быть установлено несколько рабочих колес (многоступенчатый насос).

Рис.2.1. Рабочее колесо центробежного насоса.

Рабочими характеристиками центробежного насоса называются зависимости напора H, потребляемой мощности N и полного кпд η от его подачи (производительности) Q при постоянном числе оборотов рабочего колеса n.

Напор H — это удельная энергия, которую необходимо сообщить весовой единице жидкости, чтобы поднять на высоту H_{cr} (рис. 2), преодолев при этом сопротивление всасывающей и нагнетательной магистралей. Напор измеряют в метрах столба перекачиваемой жидкости:

$$H = E_{\scriptscriptstyle H} - E_{\scriptscriptstyle G} = \left(Z_{\scriptscriptstyle H} + \frac{P_{\scriptscriptstyle H}}{\gamma} + \frac{\upsilon_{\scriptscriptstyle H}^2}{2g}\right) - \left(Z_{\scriptscriptstyle G} + \frac{P_{\scriptscriptstyle G}}{\gamma} + \frac{\upsilon_{\scriptscriptstyle G}^2}{2g}\right),\,$$

где E_{H} , P_{H} , Z_{H} , υ_{H} — соответственно, удельная энергия, давление, уровень и средняя скорость потока у входа в нагнетательную магистраль, т. е. на выходе из насоса (сеч. 2-2).

 $E_{\text{в}}$, $P_{\text{в}}$, $Z_{\text{н}}$, $\upsilon_{\text{в}}$ – эти же параметры в конце всасывающей магистрали, т. е. на входе в насос (сеч. 1-1).

Так как Z_{H} — Z_{H} = Z_0 , то при одинаковых диаметрах входного и выходного патрубков υ_{H} = υ_{B} , а напор насоса равен:

$$H = \frac{P_{\scriptscriptstyle H} - P_{\scriptscriptstyle g}}{\gamma} + Z \ . \tag{2.1}$$

Полезная мощность насоса — это приращение энергии, получаемой всем потоком жидкости, проходящей через насос в единицу времени, т. е.

$$N_n = \gamma \cdot Q \cdot H \text{ (BT)}, \tag{2.2}$$

где Q — производительность насоса (M^3/c);

 γ – удельный вес жидкости (н/м³),

Н – напор (м).

Рис.2.2. Схема работы центробежного насоса.

Потребляемая мощность насоса (мощность на валу) больше полезной, т. к. часть энергии затрачивается на преодоление трения в подшипниках, уплотнениях, на трение дисков рабочего колеса о жидкость.

Полный КПД насоса η — отношение полезной мощности N_{π} к потребляемой N:

$$\eta = \frac{N_n}{N} = \frac{\gamma \cdot Q \cdot H}{N} \,. \tag{2.3}$$

Потребляемую мощность N можно найти, зная КПД электродвигателя $\eta_{\text{эд}}$ и его мощность $N_{\text{эл}}$:

$$N = \eta_{\mathfrak{d}} \cdot N_{\mathfrak{d}}. \tag{2.4}$$

Рабочие характеристики, снятые для какого-либо числа оборотов n, могут быть пересчитаны на другие числа оборотов n по формулам подобия:

$$\frac{Q}{Q^*} = \frac{n}{n^*}; \frac{H}{H^*} = \left(\frac{n}{n^*}\right)^2; \frac{N}{N^*} = \left(\frac{n}{n^*}\right)^3. \tag{2.5}$$

Эти зависимости имеют достаточную степень точности только в оптимальных режимах (в области высоких КПД).

Рис. 2.3. Схема опытной установки.

Опытная установка (рис. 9.3) состоит из резервуара (1), заполненного водой, центробежного насоса (2) с электродвигателем, расходомерного устройства (счетчика жидкости) (3), всасывающего и напорного трубопроводов (соответственно (4) и (5)). Вентиль (6) предназначен для регулирования расхода жидкости. Вакуумметр (7) и манометр (7) служат для измерения давления соответственно на входе и на выходе из насоса. Вентиль (9) перекрывает подачу жидкости в трубопровод переменного сечения.

ЛАБОРАТОРНАЯ РАБОТА №3 ИЗУЧЕНИЕ ПЛАСТИНЧАТОГО НАСОСА

Цель работы.

Ознакомиться с устройством и принципом действия двухкратного пластинчатого насоса и снятие его рабочих характеристик.

Общие сведения.

Благодаря малым габаритным размерам, несложной конструкции и высокому КПД, пластинчатые гидромашины широко применяются в гидроприводах станков и других машин-орудий. Особенно распространены отличающие высокой надежностью пластинчатые нерегулируемые насосы двухкратного действия для давления 7-14 МПа.

Основными частями пластинчатого насоса (рис. 10.1) являются вращающийся ротор (1) с пластинами (2), расположенный в статоре (3) специального профиля. В статоре прорезаны окна (4, 5, 6, 7), соединенные с подводящей и отводящей линиями. Дуги перемычек между окнами (4, 5, 6, 7) соответствуют угловому шагу между пластинами $2\pi/z$ где z – число пластин.

Рис. 3.1. Устройство двукратного пластинчатого насоса.

При вращении ротора (1) лопатки (2) под действием центробежной силы и силы давления масла, подведенного под лопатки, всегда прижаты ко внутренней поверхности статора (3).

Каждая из камер между двумя соседними лопатками во время соединения с окнами всасывания (4) и (5) благодаря профилю статора увеличивает свой объем и заполняется жидкостью. Во время соединения камеры с окнами нагнетания (6) и (7) ее объем q уменьшается и жидкость вытесняется в отводящую магистраль.

Пластина при перемещении между окнами (4) и (6) или (5) и (7) в единицу времени вытесняет объем q:

$$q = f \cdot \theta, \tag{3.1}$$

где f – площадь рабочей части пластины;

 $f = B \cdot h$ (В — ширина пластины; h — высота рабочей части пластины h = R - r);

υ – окружная скорость центра движения пластины;

 $\upsilon = \frac{R+r}{2} \cdot \omega$ (R — большой радиус статора, r — малый радиус статора, ω — угловая скорость ротора).

Таким образом:

$$q = \omega \cdot \frac{R - r}{2} \cdot (R - r) \cdot B = \frac{\omega \cdot B}{2} \cdot (R^2 - r^2). \tag{3.2}$$

Учитывая, что $\omega = 2\pi \cdot n$, и что одновременно происходит вытеснение жидкости двумя пластинами (из двух камер), получим приближенное выражение для вычисления теоретического расхода насоса:

$$Q_m = 2\pi \cdot n \cdot B \cdot \left(R^2 - r^2\right). \tag{3.3}$$

С учетом толщины пластин:

$$Q_m = \left[\pi \cdot (R^2 - r^2) - (R - r) \cdot \delta \cdot z\right],\tag{3.4}$$

где δ – толщина пластин.

Объемная постоянная насоса V_0 (подача насоса за один оборот):

$$V_0 = 2B \cdot \left(\pi \cdot \left(R^2 - r^2\right) - \left(R - r\right) \cdot \delta \cdot z\right). \tag{3.5}$$

Полезная мощность насоса:

$$N_n = p \cdot Q \,, \tag{3.6}$$

где р – давление нагнетания;

Q – производительность насоса.

Описание опытной установки.

Схема лабораторной установки представлена на рис. 10.2. Она включает электродвигатель (1) типа АОЛ-2-31-4 (n = 1430 об/мин, N = 2,2 кВт) и пластинчатый насос (2) типа БГ12-4 ($P_{\text{ном}} = 100 \text{ кгс/см}^2, Q_{\text{ном}} = 10 \text{ л/мин, } n_{\text{ном}} = 1500 \text{ об/мин}$). Для предохранения системы от перегрузок служит предохранительный клапан (3). Изменение давления и расхода производится регулятором потока (4).

Для определения расхода жидкости имеется стеклянный мерный цилиндр (5) диаметром 20 см с мерной линейкой (6). Клапан (7) служит для слива жидкости из мерного бака в питательный бак (3). Давление в нагнетательном трубопроводе измеряется манометром (9).

Порядок проведения работы.

- 1. Провести геометрический обмер ротора, статора и пластин насоса, аналогичного испытуемому, и записать в табл. 3.1.
- 2. При открытом клапане (7) включить насос. С помощью регулятора потока (4) установить определенное давление в магистрали.
- 3. Закрыть клапан (7) и одновременно включить секундомер. Через 5...10 секунд замерить уровень жидкости в мерном цилиндре и выключить секундомер.

4. Опыт повторить при 6...8 различных значениях развиваемого насосом давления.

Данные обмера, опытов и расчетов заносятся в таблицу 10.2.

Рис. 3.2. Схема опытной установки.

Обработка результатов измерений и опытов.

- 1. Определить постоянную насоса V_0 .
- 2. Определить теоретическую производительность насоса Q_т.
- 3. Определить действительную производительность насоса:

$$Q = \frac{(h_2 - h_1)}{t} \cdot \frac{\pi \cdot d^2}{4},$$

где D – диаметр внутреннего сечения мерного цилиндра;

 $h_1,\,h_2$ — начальные и конечные уровни жидкости в мерном цилиндре.

4. Определить объемный к.п.д. насоса:

$$\eta_{o\delta} = \frac{Q}{Q_m}.$$

5. Определить полезную мощность:

$$N_n = p \cdot Q$$
.

6. Построить графики зависимостей Q, $N_{\rm II}$, $\eta_{\rm of}$ от давления p.

Таблица 3.1.

Наименьший диаметр статора d = 2r	46	MM	
Набольший диаметр статора D = 2R	49,8	MM	
Ширина пластины В	16	MM	
Толщина пластины δ	1,6	MM	
Количество пластин Z	12	_	
Постоянная насоса V_0		см ³ /об	
Число оборотов ротора n	1430	об/мин	
Теоретическая производительность $Q_{\scriptscriptstyle T}$		см ³ /сек	

Таблица 3.2

	Давление P, кгс/см ²	Уровень					
		h ₁ , см	h ₂ , см	Время t, сек	Производительн ость Q, л/сек	Объемный КПД, η_{ob}	N _{пол} , Вт
1							
2							
3							
4							
5							
6							