Adriann Liceralde Dr. Brian McPherson Carbon Science Research at the University of Utah CSR Arduino Collection Project Last Updated February 20, 2022

Information for the SCD30 CO2 Sensor

Introduction

- The SCD30 is a low-cost NDIR-based sensor that measures CO₂, temperature, and humidity.
- Any microcontroller can control this sensor. However, this guide and the associative codes use an Arduino Uno to operate the device.
- It is compatible with three different communication methods: I²C, UART, and PWM. This guide only covers how to use I²C.
- A separate device, the Bi-Directional Logic Level Converter, is needed to operate the sensor more reliably.

Important Notes

- This device is EXTREMELY sensitive to electrostatic discharge.
- NEVER touch the sensor UNLESS wearing Anti-Static Gloves.
- Even if the sensor is not connected to a power source, exercise extreme caution.
- DO NOT place the SCD30 in direct contact with sunlight.

Specifications

	Via I ² C
Range	0 - 40,000 ppm
Accuracy	$\pm (30 \text{ ppm} + 3\% \text{MV})$
	for 400-10000 ppm
Repeatability	\pm 10 ppm
Frequency	2.1 sec
Current	19 mA (avg)
	75 mA (max)
Voltage	3.3 V - 5.5 V
Response Time	20 sec (τ63%)
Lifespan	15 years

Links

• Product Info for Sensor:

https://sensirion.com/products/catalog/SCD30/

• Product Info for Level Converter: https://www.sparkfun.com/products/12009

• Arduino Library:

https://github.com/sparkfun/SparkFun SCD30 Arduino Library

• Arduino Code https://github.com/RiceAllDay22/EGI Arduino Collection/tree/main/SCD30

Wiring

- To operate the sensor, a minimum of 4 pins are required to be connected to an Arduino:
 - o VIN (Voltage Input)
 - o GND (Ground)
 - o SCL (Clock Line for I²C communication)
 - o SDA (Data Line for I²C communication)
- The sensor can accept a voltage input range of 3.3V to 5.5 V.
- The I²C pins can be at 5V but are highly recommended to be at 3.3 V.
- Therefore, the sensor can be wired up in two ways.

Wiring – Method #1 (Recommended for reliability)

- This method powers the sensor at 5V with the SCL and SDA lines operating at 3.3 V using a Bi-Directional Logic Converter.
- Below is a wiring diagram and a schematic diagram of the circuit.

Figure 1. Wiring Diagram for I²C lines at 3.3 V

Figure 2. Schematic Diagram for I²C lines at 3.3 V

Wiring – Method #2 (Not recommended, but is simpler)

• This method powers the sensor at 5V with the SCL and SDA lines operating at 5 V. Below is a wiring diagram and a schematic diagram of the circuit.

Figure 3. Wiring Diagram for I²C lines at 5 V

Figure 4. Wiring Diagram for I²C lines at 5 V

Calibration

- Manual calibrations occur via software.
- The following line of Arduino code performs a calibration to 1000 ppm:
 - o airSensor.setForcedRecalibrationFactor(1000)
 - o The number inside the parentheses can is changeable to any value

Contact

For any questions or assistance, email Adriann Liceralde at adriann8399@gmail.com.