Consider a permutation, p_i , of integers from 1 to n. Let's determine the **distance** of p_i to be the minimum absolute difference between any 2 consecutive integers in p_i :

$$distance(p_i) = \min_{0 \leq j < n-1} \mid p_i[j] - p_i[j+1] \mid ext{if } n > 1, ext{ or } 0 ext{ if } n = 1$$

Generate a <u>lexicographically</u> sorted list of all permutations of length n having a maximal distance between all permutations of the same length. Print the lexicographically $\pmb{k^{th}}$ permutation.

Input Format

The first line contains an integer, t (the number of test cases).

The t subsequent lines each contain two space-separated integers, n_i (the permutation length) and k_i (the 1-based index in the list of permutations having a maximal distance), respectively. The $m{i}^{th}$ line corresponds to the i^{th} test case.

Note: It is guaranteed that the sum of all n_i does not exceed 10^6 .

Constraints

- $1 \le t \le 10$
- $1 \le n_i \le 10^6$
- $1 < k_i < 10^{18}$

Output Format

For each test case: if the list of permutations having maximal distance has at least k elements, print the k^{th} permutation as sequential (i.e.: from 1 to n) space-separated integers on a new line; otherwise, print -1.

Sample Input

3 3 5

4 2

Sample Output

3 1 4 2

Explanation

For n=3 and k=5:

```
p_1 = [1, 2, 3]; distance(p_1) = min(|1 - 2|, |2 - 3|) = min(1, 1) = 1
p_2 = [1,3,2]; distance(p_2) = min(|1-3|,|3-2|) = min(2,1) = 1
p_3 = [2,1,3]; distance(p_3) = min(|2-1|,|1-3|) = min(1,2) = 1
p_4 = [2, 3, 1]; distance(p_4) = min(|2 - 3|, |3 - 1|) = min(1, 2) = 1
p_5 = [3,1,2]; distance(p_5) = min( \ |3-1|, |1-2| \ ) = min(2,1) = 1
p_6 = [3, 2, 1]; distance(p_6) = min( \left| 3 - 2 \right|, \left| 2 - 1 \right|) = min(1, 1) = 1
```

Each of the ${f 6}$ permutations has distance ${f 1}$. We choose the fifth one (because ${m k}={f 5}$), and print 3 1 2 on a new line.

For n=4 and k=2:

The maximal distance in the list of permutations of integers from ${\bf 1}$ to ${\bf 4}$ is ${\bf 2}$, and the only permutations having that distance are $P_{11}=[2,4,1,3]$ and $P_{14}=[3,1,4,2]$. We choose the second one (because k=2), and print 3 1 4 2 on a new line.

