VIETNAM NATIONAL UNIVERSITY-HCMC International University

Chapter 2. Determinants

Linear Algebra

Lecturer: Kha Kim Bao Han, MSc kkbhan@hcmiu.edu.vn

CONTENTS

Determinant

Properties of Determinants

Cramer's rule

Section 1

DETERMINANT

Introduction

- Reference: Chapter 3 in the textbook by Kolman-Hill.
- The determinant of A equals the volume of a box in n-dimensional space. The edges of the box come from the rows of A.

• They can also be used to compute A^{-1} in terms of the entries of A.

Definition: Permutation

Let $S = \{1, 2, ..., n\}$ be the set of integers from 1 to n, arranged in ascending order. A rearrangement $j_1, j_2, ..., j_n$ of the elements of S is called a permutation of S. We can consider a permutation of S to be a one-to-one mapping of S onto itself.

There are n! permutations of S; we denote the set of all permutations of S by S_n .

Example

Let $S = \{1, 2, 3\}$. Then 231 is a permutation of S. It corresponds to the function $f: S \to S$ defined by

$$f(1) = 2, f(2) = 3, f(3) = 1$$

There are 3! = 6 permutations of S_3 .

Inversion

A permutation $j_1j_2...j_n$ is said to have an inversion if a larger integer, j_r precedes a smaller one j_s . A permutation is called even if the total number of inversions in it is even, or odd if the total number of inversions in it is odd.

Example

In the permutation 231 in S_3 , 2 precedes 1, 3 precedes 1, no other inversions. Thus the total number of inversions in this permutation is 2.

In the permutation 4312 in S_4 , 4 precedes 3, 4 precedes 1, 4 precedes 2, 3 precedes 1, and 3 precedes 2. Thus the total number of inversions in this permutation is 5, and the permutation 4312 is odd.

Q: What is the number of inversions of the permutation 4132?A: 4.

Definition: Determinant functions

The determinant function, denoted by det, is defined by

$$\det\left(A\right) = \sum_{i} (\pm) a_{1j_1} a_{2j_2} ... a_{nj_n}$$

where the summation is over all permutations $j_1j_2..j_n$ of the set $S = \{1, 2, ..., n\}$. The sign is taken as + or - according to whether the permutation $j_1j_2..j_n$ is even or odd.

Determinants of 2×2 matrices

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

We have $\det(A) = \sum_{j_1 j_2} (\pm) a_{1j_1} a_{2j_2}$. There are 2 permutations: $j_1 j_2 = 12$ (even) and $j_1 j_2 = 21$ (odd). Thus,

$$\det(A) = |A| = a_{11}a_{22} - a_{12}a_{21}$$

Note:

$$\left| \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \right| = \left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|$$

Example:

$$\begin{vmatrix} 2 & -3 \\ 4 & 5 \end{vmatrix} = 2 \times 5 - (-3) \times 4 = 22$$

Determinants of a matrix of order 3

Determinant of a 3×3 matrix

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right]$$

There are 6 permutations. The even permutations are 123, 231, 312. The odd permutations are 321, 132, 213.

$$\det(A) = |A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Subtract these three products.

Add these three products.

Determinants of a matrix of order 3

Example

So

$$\det(A) = |A| = 0 + 16 - 12 - (-4) - 0 - 6 = 2$$

Determinants of a matrix of order 3

Example

Compute det(A) where

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 & 2 \end{array} \right]$$

Answer: det(A) = 6

Exercises

Find the determinant

Answer: abc.

Determinants of triangular matrices

Determinants of upper triangular matrices

All the entries above the main diagonal are zeros.

$$\left|\begin{array}{ccc} a & 0 & 0 \\ 1 & b & 0 \\ 3 & d & c \end{array}\right| = abc$$

Determinants of lower triangular matrix

All the entries below the main diagonal are zeros.

$$\left| \begin{array}{ccc} a & 3 & 4 \\ 0 & b & 1 \\ 0 & 0 & c \end{array} \right| = abc$$

Section 2

Properties of Determinants

Triangular matrices

Theorem

If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then its determinant is the product of the entries on the main diagonal. That is

$$\det(A) = |A| = a_{11}a_{22}a_{33}\cdots a_{nn}$$

Example

lf

$$A = \left[\begin{array}{cccccc} -2 & 0 & 0 & 0 & 0 \\ 10 & 4 & 0 & 0 & 0 \\ 5 & 0 & 2 & 0 & 0 \\ 7 & 6 & 0 & 5 & 0 \\ 9 & 2 & 4 & 1 & -1 \end{array} \right]$$

then
$$det(A) = (-2)(4)(2)(5)(-1) = 80$$

Triangular matrices

Theorem

If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then its determinant is the product of the entries on the main diagonal. That is

$$\det(A) = |A| = a_{11}a_{22}a_{33}\cdots a_{nn}$$

Example

Ιf

$$A = \left[\begin{array}{cccccc} -2 & 0 & 0 & 0 & 0 \\ 10 & 4 & 0 & 0 & 0 \\ 5 & 0 & 2 & 0 & 0 \\ 7 & 6 & 0 & 5 & 0 \\ 9 & 2 & 4 & 1 & -1 \end{array} \right]$$

then
$$det(A) = (-2)(4)(2)(5)(-1) = 80$$

Theorem (Determinant of a transpose)

If A is a $n \times n$ matrix A then $det(A^T) = det(A)$.

Proof: Let

$$A = [a_{ij}], A^T = [b_{ij}]$$

$$\det \left(A^{T}\right) = \sum_{j_{1}, j_{2}, \dots, j_{n}} (\pm) a_{j_{1} 1} a_{j_{2} 2} \dots a_{j_{n} n}$$

We can then write

$$b_{1j_1}b_{2j_2}...b_{nj_n}=a_{j_11}a_{j_22}...a_{j_nn}=a_{1k_1}a_{2k_2}...a_{nk_n}$$

which is a term of det(A). Thus the terms in $det(A^T)$ and det(A) are identical.

Example

lf

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 & 2 \end{array} \right]$$

then

$$A^{T} = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 3 & 2 \end{array} \right]$$

and

$$|A| = 6 = |A^T|$$

Elementary operations

Theorem (Row operations)

Let A be a square matrix.

- a. If a multiple of one row of A is added to another row to produce a matrix B then det(B) = det(A).
- b. If two rows of A are interchanged to produce B, then det(B) = -det(A).
- c. If one row of A is multiplied by k to produce B, then det(B) = k det(A).

Corollary

- a. If two rows (columns) of A are equal, then det(A) = 0.
- b. If a row (column) of A consists entirely of zeros, then det(A) = 0.

Example

Given
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{bmatrix}$$
, $det(A) = -2$.

Let
$$A_1 = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -3 & -2 \\ 1 & 2 & 1 \end{bmatrix}$$
 $(R_2 - 2 \times R_1),$

then $det(A_1) = det(A) = -2$.

$$Let A_2 = \left[\begin{array}{ccc} 4 & 8 & 12 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{array} \right]$$

then $det(A_2) = 4 det(A) = (4)(-2) = -8$.

Example

Evaluate

$$\begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} \xrightarrow{R_2 - 2R_1} \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ -1 & 7 & 0 \end{vmatrix}$$

$$= \left| \begin{array}{ccc|c} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2 \end{array} \right| \stackrel{l_{23}}{=} - \left| \begin{array}{ccc|c} 1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5 \end{array} \right| = 15$$

Example

Compute det(A) where

$$A = \left[\begin{array}{rrrr} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9 \end{array} \right]$$

Solution:

Add 2 times row 1 to row 3 to obtain

$$\det(A) = \begin{vmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ 0 & 5 & -3 & -6 \\ -5 & -8 & 0 & 9 \end{vmatrix} = 0$$

Exercises

$$A = \left(\begin{array}{cccc} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{array}\right)$$

Evaluate det(A).

Answer: -30.

Example

Evaluate

$$\begin{array}{ccc|c}
1 & 2 & 3 \\
-1 & 0 & 7 \\
1 & 2 & 3
\end{array}$$

Example

Compute

Solution: Employ the row operations: $R_k - R_1 \rightarrow R_k$, for k = 2, 3, ..., n.

$$D_n = \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 0 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & -1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -1 & 0 \\ 0 & 0 & 0 & \dots & 0 & -1 \end{vmatrix} = (-1)^{n-1}$$

Example

Compute

$$E_n = \left| \begin{array}{cccccc} 0 & 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & 1 & \dots & 1 \\ 1 & 1 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 & 0 & 1 \\ 1 & 1 & 1 & \dots & 1 & 0 \end{array} \right|$$

Hint:

$$R_1 + R_2 + \ldots + R_n \rightarrow R_1$$

Thus,
$$E_n = (n-1)D_n = (n-1)(-1)^{n-1}$$
.

The Vandermonde Matrix

Find the determinant of the following Vandermonde matrix

1.

$$V_3 = \left[\begin{array}{ccc} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{array} \right]$$

2*.

$$V_n = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix}$$

Definition

An $n \times n$ elementary matrix of type I, type II, or type III is a matrix obtained from the identity matrix I_n by performing a single elementary row (or elementary column) operation of type I, type II or type III, respectively.

Example

Let

$$E_1 = \left[egin{array}{ccc} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight]$$

$$E_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

 E_1 is an elementary matrix of type I and E_2 is an elementary matrix of type II.

Theorem

If E is an elementary matrix, then det(EA) = det(E)det(A), and det(AE) = det(A)det(E).

Theorem (Multiplicative property)

If A and B are $n \times n$ matrices then

- a. det(AB) = det(A) det(B),
- b. $det(kA) = k^n det(A)$, where k is constant.

Theorem

A square matrix A is invertible (nonsingular) if and only if $\det(A) \neq 0$ and

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Equivalent conditions for invertibility

If A is an n \times n matrix, then the following statements are equivalent

- A is invertible.
- Ax = b has a unique solution for every $n \times 1$ matrix b.
- Ax = 0 has only the trivial solution.
- $det(A) \neq 0$.

Corollary

If A is a nxn matrix, then Ax = 0 has a nontrivial solution if and only if det(A) = 0.

Examples

Let

$$A = \left[\begin{array}{rrr} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{array} \right]$$

Compute $det(A^{-1})$, det(2A).

Solution

$$|A| = \begin{vmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{vmatrix} = 4.$$

Thus

$$|A^{-1}| = \frac{1}{|A|} = \frac{1}{4}$$

and

$$|2A| = 2^3 |A| = 32$$

Exercises

- 1. Let A and B be 4×4 matrices, with det(A) = -1 and det(B) = 2. Compute
- a. det(AB), b. $det(B^5)$, c. det(2A), d. $det(A^TA)$.

2. Let A and P be square matrices, with P invertible. Show that $det(PAP^{-1}) = det(A)$.

3. Suppose that A is a square matrix such that $det(A^4) = 0$. Explain why A can not be invertible.

Let A_{ij} be the matrix formed by removing the ith row and jth column of the matrix A

Determinant of an $n \times n$ matrix A

Let $C_{ij} := (-1)^{i+j} |A_{ij}|$, C_{ij} is called the cofactor of a_{ij} . Then

$$\det(A) = |A| = a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}$$

where A_{ij} is the matrix formed by removing the ith row and jth column of the matrix A.

(Cofactor expansion along the i-th row)

Or

$$\det(A) = |A| = \sum_{i=1}^{n} a_{ij} C_{ij} = a_{1j} C_{1j} + a_{2j} C_{2j} + \dots + a_{nj} C_{nj}$$

(Cofactor expansion along the j-th column)

Determinants of 3×3 matrices

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Example

$$\begin{vmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{vmatrix} = 1 \begin{vmatrix} 4 & -1 \\ -2 & 0 \end{vmatrix} - 5 \begin{vmatrix} 2 & -1 \\ 0 & 0 \end{vmatrix} + 0 \begin{vmatrix} 2 & 4 \\ 0 & -2 \end{vmatrix} = -2$$

Example

$$\begin{vmatrix} 5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & -6 \end{vmatrix} = (-1)^{1+3} 2 \begin{vmatrix} 0 & 3 & 4 \\ -5 & -8 & 3 \\ 0 & 5 & -6 \end{vmatrix}$$
$$= 2(-1)^{2+1} (-5) \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} = 20$$

Example

Find the determinant of

$$A = \left[\begin{array}{rrrr} 1 & -2 & 3 & 0 \\ -1 & 1 & 0 & 2 \\ 0 & 2 & 0 & 3 \\ 3 & 4 & 0 & -2 \end{array} \right]$$

Solution

$$\det(A) = (3)(C_{13}) + (0)(C_{23}) + (0)(C_{33}) + (0)(C_{43}) = 3C_{13}$$

$$= 3(-1)^{1+3} \begin{vmatrix} -1 & 1 & 2 \\ 0 & 2 & 3 \\ 3 & 4 & -2 \end{vmatrix} = 3 \begin{vmatrix} -1 & 1 & 2 \\ 0 & 2 & 3 \\ 3 & 4 & -2 \end{vmatrix}$$

Solution (Cont.)

$$\begin{vmatrix} -1 & 1 & 2 \\ 0 & 2 & 3 \\ 3 & 4 & -2 \end{vmatrix} = (0)(-1)^{2+1} \begin{vmatrix} 1 & 2 \\ 4 & -2 \end{vmatrix} + (2)(-1)^{2+2} \begin{vmatrix} -1 & 2 \\ 3 & -2 \end{vmatrix}$$
$$+(3)(-1)^{2+3} \begin{vmatrix} -1 & 1 \\ 3 & 4 \end{vmatrix}$$
$$= 0 + (2)(1)(-4) + (3)(-1)(-7) = 13$$

Thus, det(A) = 39.

Section 2

Cramer's rule

Consider a linear system of n equations in n unknowns:

or in matrix notation AX = b, where $A = (a_{ij})_{n \times n}$.

1. If $D = |A| \neq 0$, the system of linear equations has a unique solution

$$x_k = \frac{D_k}{D}, k = 1, 2, ..., n$$

where D_k is the determinant of the matrix obtained by substituting the k-th column of the matrix A by the column

$$b = (b_1 b_2 \cdots b_n)^T$$

For example:

$$D_1 = \begin{vmatrix} b_1 & a_{12} & \cdots & a_{1n} \\ b_2 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

2. If D=0 and at least one of the D_k 's is non-zero, then the system has no solution.

Example

Use Cramer's Rule to solve the system

$$3x - 2y = 6$$
$$-5x + 4y = 8$$

We have

$$D = \det(A) = \begin{vmatrix} 3 & -2 \\ -5 & 4 \end{vmatrix} = 2,$$

$$D_1 = \begin{vmatrix} 6 & -2 \\ 8 & 4 \end{vmatrix} = 40, \quad D_2 = \begin{vmatrix} 3 & 6 \\ -5 & 8 \end{vmatrix} = 54.$$

Therefore,

$$x = \frac{D_1}{D} = \frac{40}{2} = 20, y = \frac{D_2}{D} = \frac{54}{2} = 27.$$

Example

Use Cramer's Rule to solve the system

$$x + y + z = -2$$
$$3x - y + 2z = 4$$
$$4x + 2y + z = -8$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 3 & -1 & 2 \\ 4 & 2 & 1 \end{vmatrix} = 10, \quad D_1 = \begin{vmatrix} -2 & 1 & 1 \\ 4 & -1 & 2 \\ -8 & 2 & 1 \end{vmatrix} = -10$$

$$D_2 = \begin{vmatrix} 1 & -2 & 1 \\ 3 & 4 & 2 \\ 4 & -8 & 1 \end{vmatrix} = -30, \quad D_3 = \begin{vmatrix} 1 & 1 & -2 \\ 3 & -1 & 4 \\ 4 & 2 & -8 \end{vmatrix} = 20$$

Thus,

$$x = \frac{D_1}{D} = -1, y = \frac{D_2}{D} = -3, z = \frac{D_3}{D} = 2$$

Example

Use Cramer's Rule to solve the system

$$-2x_1 + 3x_2 - x_3 = 1$$
$$x_1 + 2x_2 - x_3 = 4$$
$$-2x_1 - x_2 + x_3 = -3$$

$$D = \begin{vmatrix} -2 & 3 & -1 \\ 1 & 2 & -1 \\ -2 & -1 & 1 \end{vmatrix} = -2, \quad D_1 = \begin{vmatrix} 1 & 3 & -1 \\ 4 & 2 & -1 \\ 3 & -1 & 1 \end{vmatrix} = -4$$

$$D_2 = \begin{vmatrix} -2 & 1 & -1 \\ 1 & 4 & -1 \\ -2 & 3 & 1 \end{vmatrix} = -6, \quad D_3 = \begin{vmatrix} -2 & 3 & 1 \\ 1 & 2 & 4 \\ -2 & -1 & 3 \end{vmatrix} = -8$$

Thus, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$.

Exercises

Use Cramer's Rule to solve the system

$$2x + 5y - z = 15$$

 $x - y + 3z = 4$
 $3x + 3y - 5z = 2$

Answer: (x, y, z) = (1, 3, 2).

Exercises

Solve the linear system

$$2x + 3y - z = 7$$
$$x - y + z = 1$$
$$4x - 5y + 2z = 3$$

Using

- a. Gaussian elimination method,
- b. Cramer's rule.

The Adjoint and a Theoretical formula for A^{-1}

Definition: Matrix of cofactors

The matrix of cofactors of A has the form

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

Definition: The Adjoint

If A is $n \times n$ matrix, **the adjoint** of A, denoted by adj(A), is the transpose of the matrix of cofactors,

$$adj(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

The Adjoint and a Theoretical formula for A^{-1}

The adjoint of A plays the following extremely important role.

Theoretical formula for A^{-1}

If A is $n \times n$ matrix, then

$$Aadj(A) = (\det A)I$$

Thus if det $A \neq 0$ so that A^{-1} exists, then

$$A^{-1} = \frac{1}{\det A} adj (A)$$

The Adjoint and a Theoretical formula for A^{-1}

Example

Let

$$A = \left[\begin{array}{rrr} 2 & -3 & 1 \\ 4 & 0 & -2 \\ 3 & -1 & -3 \end{array} \right]$$

Thus, $\det A = -26$ and the the matrix of cofactors is

$$(C_{ij}) = \begin{bmatrix} -2 & 6 & -4 \\ -10 & -9 & -7 \\ 6 & 8 & 12 \end{bmatrix}$$

Therefore,

$$A^{-1} = \frac{1}{\det A} adj (A) = \frac{1}{-26} \begin{bmatrix} -2 & -10 & 6 \\ 6 & -9 & 8 \\ -4 & -7 & 12 \end{bmatrix}$$

Homeworks

Textbook: B. Kolman and David R. Hill, Elementary Linear Algebra with Applications, 9th edition, Prentice Hall, 2008

-Section 3.1: 14, 16

-Section 3.2: 2, 3, 6

-Section 3.3: 1, 3, 11

-Section 3.4: 2, 10

Deadline: April 4th, 2022