Assignment Project Exam Help

https://tutorgs.com

WeChat: cstutorcs

Febuary 13, 2023

Example: the NFA N_2

For the Wee Chat: cstutorcs

 $L(N_2) = \{ \mathbf{w} \mid \mathbf{w} \text{ contains } 1 \text{ at the third position from the end} \}$

For the machine N₂ we get

WeChat: cstutorcs

= {w=6,62... on EZ* | wng of from the end]

Example: the NFA N_3

Let's consider a unary alphabet $\Sigma=\{0\}.$

Assignment Project Exam Help https://tutorcs.com

WeChat; cstutorcs

For the machine N_3 we get

 $L(N_3) = \{ \mathbf{w} \mid \text{The number of 0 symbols in } \mathbf{w} \text{ is divisible by 2 or by 3} \}$

WeChat: estutores w is

Assignment Peroject Example Help same language.

https://tutorcs.com

For every NFA, there exists an equivalent DFA.

WeChat: cstutorcs

Corrolary

A language L is regular if and only if there exists an NFA that recognizes it.

Assignment Project Exam Help We call two finite state machines equivalent if they recognize the same language.

http:sren//tutorcs.com

For every DFA D, there exist a DFA

WeChat: cstutorcs

A language L is regular, if and only if there exists on DFA that recognizes L.

Transforming an NFA into a DFA-example

Assignment Project Exam Help

that for every NFA N, there exists a DFA M with L(M) = L(N).

https://tutorcs.com

Before we see the general proof for this, we go through one concrete example. We transform NFA N_4 into an equivalent DFA.

Transforming an NFA into a DFA-example

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help

https://tutorcs.com

Transforming an NFA into a DFA-example

General proof of Theorem

Proof

Assignment $P_{\mathbf{t},\mathbf{0},\mathbf{t},\mathbf{c},\mathbf{t}'}^{\text{Let }N=(Q,\Sigma,\delta,q_0,F)}$ be some NFA.

Assuming that N does not contain any ϵ -transitions, we construct M as follows:

- 1. https://tutorcs.com

$$\delta'(R, a) = \{q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R\}$$
WeChat: cstutorcs

- 3. $q_0' = \{q_0\}$
- **4.** $F' = \{R \in Q' \mid \text{ there exists an } r \in F \text{ with } r \in R\}.$

This completes the construction for NFAs that don't contain ϵ -transitions.

General proof of Theorem

Assign $P_{\text{We need to construct a DFA}}^{\text{Proof}}$ and P_{C} $P_{\text{C$

Assuming that N does not contain any ϵ -transitions, we construct M as follows:

$\begin{array}{ll} \text{ ttp}^{1. \ Q'} = 7(9) \\ \text{ ttp}^{2} \text{ for } f \in Q' \text{ tarue } \Sigma \text{ worcs. } \text{ com} \\ \delta'(R, a) = \{q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R\} \end{array}$

Wechat: cstutores

This completes the construction for NFAs that don't contain ϵ -transitions.

Proof of Theorem

Assignment Project Exam Help

For a state $R \in Q'$, we let E(R) denote the set of states that can be reached via 0 or more ϵ -transitions from some state $r \in R$ (in N).

via 0 or more ϵ -transitions from some state $r \in R$ (in N). Then we most the transition from some state $r \in R$ (in N).

$$\delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R\}$$

and the three Chat: cstutorcs

$$q_0' = E(q_0).$$

Theorem

Regular languages are closed under unions. Ssignment Project Exam Help Programment Project Exam Help

Theorem

Assignment Project Exam Help

We need to show that if two languages A and B are regular, then so is $A \cup B$. If A and A are A and A and A are A and A and A and A are A and A and A and A are A and A and A are A are A and A are A are A and A are A and A are A are A and A are A and A are A and A are A are A and A are A are A and A are A and A are A are A are A and A are A and A are A are A are A and A are A and A are A and A are A are A are A and A are A and A are A are that there exists an NFA M with $L(M) = A \cup B$. The picture on the previous slide illustrates a construction for $M = (Q, \Sigma, \delta, q_0, F)$. Formally, we set:

- 1. Where q_0 Striet from 16 (at $S : q_0 \notin Q_1 \cup Q_2$ and this state q_0 will then also be the start state of M
- 2. $\delta(q, a) = \begin{cases} \{q_1, q_2\} & \text{if} \quad q = q_0 \text{ and } a = \epsilon \\ \delta_i(q, a) & \text{if} \quad q \in Q_i \\ \emptyset & \text{else} \end{cases}$
- 3. $F = F_1 \cup F_2$.

Theorem

Regular languages are closed under concatenations.

Assignment Project Exam Help

Theorem

Regular languages are closed under concatenations.

Assignment, Project Exam Help

- ¹ WeChat: cstutorcs
- 2. $q_0 = q_1$

3.
$$\delta(q, a) = \begin{cases} \delta_1(q, a) \cup \{q_2\} & \text{if} \quad q \in F_1 \text{ and } a = \epsilon \\ \delta_1(q, a) & \text{if} \quad q \in Q_1 \text{ and } (q \notin F_1 \text{ or } a \neq \epsilon) \\ \delta_2(q, a) & \text{if} \quad q \in Q_2 \end{cases}$$

4. $F = F_2$.

Theorem

Regular languages are closed under the star-operation. Ssignment Project Exam Help

Theorem

Assignment Project Exam Help

We need to show that if language A is regular, then so is A^* . If A is regular, then the language A is regular, then the language A is regular, then the language A is regular, then so is A^* . If A is regular, then so is A is regular, the

1. The state q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 where q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 where q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 where q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 where q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 where q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 where q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 where q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 is a new state, that is $q_0 \notin Q_1$ and this state q_0 is a new state, that is $q_0 \notin Q_1$ and this state $q_0 \notin Q_1$ and this state $q_0 \notin Q_1$ and $q_0 \notin Q_2$ and $q_0 \notin Q_1$ and $q_0 \notin Q_2$ and $q_0 \notin$

$$2. \ \delta(q,a) = \begin{cases} \{q_1\} & \text{if} \quad q = q_0 \text{ and } a = \epsilon \\ \delta_1(q,a) \cup \{q_1\} & \text{if} \quad q \in F_1 \text{ and } a = \epsilon \\ \delta_1(q,a) & \text{if} \quad q \in Q_1 \text{ and } (q \notin F_1 \text{ or } a \neq \epsilon) \end{cases}$$

3. $F = F_1 \cup \{q_0\}.$

Assignment Project Exam Help Regular Expressions https://tutorcs.com

Assignment Project Exam Help

A regular expression is a compact way of defining a set of words. It is a state to Σ symbolic the Oeb Cost. Can lag over some alphabet Σ .

Assignment Project Exam Help

- 2. A core set $C \subseteq U$
- 3. A finite set 0/= {01.02....0} of operations from http://www.com/states/second/secon

We developed the Set perfect that we obtain by starting with the core set and putting all those elements of U into $\mathcal{I}(U,C,O)$ that one can reach by successively applying the operations in O.

Regular expression-inductive definition

Assignment the define the set Exam), Help

- 1. The universe U is the set of all strings over
 - https://tutorcs.com
- 2. The core set C is the set of all symbols in Σ and ϵ, \emptyset and two additional symbols: $C = \Sigma \cup \{\epsilon, \emptyset\}$.
- 3. We Chat: cstutorcs
 - $o_{\cup}(R_1,R_2)=(R_1\cup R_2),$
 - $o_{\circ}(R_1, R_2) = (R_1 \circ R_2),$
 - $o_*(R) = (R^*).$

Regular expression—inductive definition

As significant alphabet (a) if each \mathcal{R} freezer \mathcal{R} freezer \mathcal{R} expressions over Σ inductively by setting $\mathcal{R}_{\Sigma} = \mathcal{I}(\mathcal{U}, \mathcal{C}, \mathcal{O})$, where

1. The <u>universe</u> U is the set of all strings over $\Sigma \cup \{(1, 1), \dots, 0^*\} \in M\}$

 $\begin{array}{c} \Sigma \cup \{(,) \cup, \circ,^*, \epsilon, \emptyset\}. \\ \text{TDS he core let U it to I of S nb G (D and t) and t additional symbols: $C = \Sigma \cup \{\epsilon, \emptyset\}$.}$

3. Three operations:

 $\mathbf{hal}^{(R_1,R_2)} = (R_1 \cup R_2),$ $\mathbf{hal}^{(R_1,R_2)} = (R_1 \cup$

of universe

There two

are not

The language of a regular expression

Each regular expression $R \in \mathcal{R}_{\Sigma}$ over some alphabet Σ represents a language over \bullet X. We define the interpretation L(R) of a regular expression R according to the stress of the stress Members of the core-set:

- The expression a for $a \in \Sigma$ represents the language $\{a\}$, that is
- $https://tutorcs.com_{(\epsilon)} = \{\epsilon\}.$
- The expression \emptyset represents the language \emptyset , that is $L(\emptyset) = \emptyset$.

Result to operation: For regular expressions R_1 , R_2 and R_3 , we define:

- $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- $L((R^*)) = L(R)^*$

We call L(R) the language of R.

The language of a regular expression.

Assign the popular expression R . Receiver some alphabet Σ approximate a language Γ to the inductive definition:

Members of the core-set:

- The expression a for $a \in \Sigma$ represents the language $\{a\}$, that is $L(a) = \{a\}$. Since expression of expressions the language $\{a\}$ that is fine expression of represents the language $\{a\}$ that is $\{a\}$.
- **Result of operation:** For regular expressions R_1, R_2 and R, we define:
 - $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$

AssignmentaliliProjectivinExamineralilelp

- 1. For an alphabet Σ , we use Σ as a regular expression representing all words of length 1 over Σ . And then Σ^* is a regular expression for the set of all words over Σ .
- 2. Attended by a kturtore of Secontal is: *, o, U.
- 3. The o-symbol is typically omitted: we use R_1R_2 as shorthand for $R_1 \circ R_2$.
- 4. Weeklatter estutores
- 5. We let R^k be the k times repeated concatenation of R with itself: $R^k = R \circ R \circ R \circ \dots \circ R$.

We let $\Sigma = \{0, 1\}$.

Assignment Project Exam Help

- 0*10*
- https://tutorcs.com
- Σ*001Σ*
- · WeChat: cstutorcs
- $(\Sigma\Sigma)^*$
- $(\Sigma\Sigma\Sigma)^*$

Regular expressions-examples

Assignment Project Exam Help

https://tutores.com.s at

WeChat: cstutorcs

E 2+ E 2*

Regular expressions-examples

Assignment: Project Exam Help 0*10*

https://tutores.com

Regular expressions–examples

→ ○ ∪

Assignment Project Exam Help

https://tutorcs.com