ທະນາຄານແຫ່ງ ສປປ ລາວ ສະຖາບັນການທະນາຄານ

ຄະນິດສາດ

ຮງບຮງງໂດຍ: ອາຈານ ຄຳພຸດ ໂສພາລີ

ອາຈານ ເຢີຢ່າງ ເຍ່ຍຕູ້

ກວດແກ້ໂດຍ: ກຸ່ມວິຊາຄະນິດສາດ

ถ้ำบำ

ເພື່ອໃຫ້ນັກສຶກສາສະຖາບັນການທະນາຄານມີປຶ້ມອ່ານປະກອບການຮຽນວິຊາຄະນິດສາດ ແລະ ເພື່ອເປັນເອກະສານຄົ້ນຄ້ວາຂອງອາຈານໃນການສິດສອນວິຊາຄະນິດສາດ, ພວກຂ້າພະເຈົ້າໄດ້ຮຽບຮຽງ ປຶ້ມຫົວນີ້ອອກມາ.

ໂຄງສ້າງເນື້ອໃນປື້ມຫົວນີ້ແມ່ນໄປຕາມເນື້ອໃນວິຊາຄະນິດສາດທີ່ສອນຢູ່ໃນສະຖາບັນການສຶກສາ ຊັ້ນສູງ ແລະ ມະຫາວິທະຍາໄລ. ເນື້ອໃນຂອງປື້ມຫົວນີ້ສ່ວນໜຶ່ງແມ່ນເປັນການທວນຄືນວິຊາຄະນິດສາດ ຊັ້ນມັດທະຍົມປາຍ ແລະ ໄດ້ເພີ່ມເຕີມບາງຫົວຂໍ້ເຂົ້າຕື່ມເພື່ອຍົກລະດັບໃຫ້ນັກສຶກສາເຫັນໄດ້ການນຳເອົາ ວິຊາຄະນິດສາດໄປໃຊ້ໃນຂົງເຂດເສດຖະກິດ

ເຖິງແມ່ນວ່າ ເນື້ອໃນສ່ວນໃຫຍ່ຂອງປື້ມຫົວນີ້ໄດ້ໃຊ້ເປັນບົດສອນຂອງອາຈານໃນຫຼາຍໆສົກຮູງນ ຜ່ານມາແລ້ວກໍຕາມ ແຕ່ອາດຍັງມີສິ່ງຂາດຕົກບົກຜ່ອງ, ດັ່ງນັ້ນພວກຂ້າພະເຈົ້າຈະຖືເປັນພະຄຸນຢ່າງສູງ ຖ້າທ່ານຜູ້ອ່ານໄດ້ໃຫ້ຄວາມກະລຸນາສິ່ງຂ່າວມາຍັງພວກຂ້າພະເຈົ້າເພື່ອປັບປຸງປື້ມຫົວນີ້ໃຫ້ດີຂື້ນເລື້ອຍໆ ແລະ ມີຄວາມສອດຄ່ອງຫຼາຍຂື້ນ.

> ຄຳພຸດ ໂສພາລີ 1 ສິງຫາ 2013

ສາລະບານ

		ໝາ
ບິດທີ 1:	ทามบับ (Counting)	
1.1	ເຕັກນິກພື້ນຖານໃນການນັບ	1
1.2	ການຈັດລຽງ	5
1.2.1	ການຈັດລຽງແບບແຖວຊື່ສິ່ງຂອງ n ອັນແຕກຕ່າງກັນ	5
1.2.2	ການຈັດລຽງແບບແຖວຊື່ສິ່ງຂອງ n ອັນຊຶ່ງມີບາງອັນຄືກັນ	6
1.2.3	ການຈັດລຽງແບບວົງມົນ	7
1.3	ການຈັດໝວດ	7
1.4	ສຳປະສິດຂອງທະວີພຶດ	9
ບິດທີ 2:	ตำลา (Functions)	
2.1	ນິຍາມ	14
2.2	ການຄຳນວນກ່ຽວກັບຕຳລາ	15
2.3	ລັກສະນະຂອງຕຳລາ	16
2.4	ຂອບເຂດຂອງຕຳລາ	17
2.5	ຂອບເຂດຂອງຕຳລາທີ່ກຳນົດຫຼາຍຫວ່າງຕ່າງກັນ	19
2.6	ການຕໍ່ເນື່ອງຂອງຕຳລາ	19
ບ ຶດທີ 3:	ຜົນຕຳລາ (Derivatives)	
3.1	ຜົນຕຳລາ	22
3.1.1	ສຳປະສິດມຸມຂອງເສັ້ນຕິດ ແລະ ຜົນຕຳລາ	22
3.1.2	ສູດການຄິດໄລ່ຜົນຕຳລາ	23
3.1.3	ຫຼັກການຄິດ ໄລ່ຜົນຕຳລາ	23
3.1.4	ຜົນຕຳລາຂັ້ນສູງ	24
3.2	ການນໃຊ້ຜົນຕຳລາ	25
3.2.1	ເພື່ອຄິດໄລ່ຂອບເຂດ	25
3.2.2	ເພື່ອຊອກຫາຫວ່າງຂື້ນ, ຫວ່າງແຮມ, ຄ່າໃຫຍ່ສຸດ	
	ແລະ ຄ່ານ້ອຍສຸດທຸງບຖານ	25

បិ លហិ 4:	ມາຕຣິດສ໌ (Matrix)	
4.1	ນິຍາມ ແລະ ກິດການຄຳນວນລະຫວ່າງມາຕຣິດສ໌	28
4.2	ມາຕຣິດສ໌ປົ້ນ, ການຜັນປ່ຽນມາຕຣິດສ໌ , ມາຕຣິດສ໌ເຄິ່ງຄື	31
4.3	ລະບົບສື່ມຜືນລີເນແອ, ວິທີລຶບຂອງກາວສ໌	32
4.3.1	ລະບົບສົມຜົນລີເນແອທີ່ປະກອບດ້ວຍສອງສົມຜົນ ແລະ ສອງຕົວລັບ	33
4.3.2		36
4.4	ການຊອກມາຕຣິດສ໌ປົ້ນດ້ວຍວິທີຂອງກາວສ໌	46
4.5	ການສະແດງລະບົບສື່ມຜືນດ້ວຍມາຕຣິດສ໌	47
បិ តហិ 5:	ពេពេរារាិហ័ៗ (Determinang)	
5.1	ນິຍາມ ແລະ ສູດການຄຳນວນເດແຕກມີນັງ	54
5.1.1	ນິຍາມ	54
5.1.2	ສຸດການຄຳນວນເດແຕກມີນັງ	54
5.2	ຄຸນລັກສະນະຂອງເດແຕກມີນັງ	57
5.3	ການຊອກມາຕຣິດສ໌ປິ້ນດ້ວຍເດແຕກມີນັງ ແລະ ສູດກຣາແມ	60
5.3.1	ການຊອກມາຕຣິດສ໌ປິ້ນດ້ວຍເດແຕກມີນັງ	60
5.3.2	ການແກ້ລະບົບສື່ມຜືນດ້ວຍເດແຕກມີນັງ ສູດກຣາແມ (Grammer formula)61	
ປິດທີ 6:	ໂປຣແກຣມລີເນແອ (Linaer programming)	
6.1	ໂຄງສ້າງຂອງໂປຣແກຣມແບບເສັ້ນຊື່ (ໂປຣແກຣມລີເນແອ)	65
6.2	ວິທີແກ້ໂປຣແກຣມແບບເສັ້ນຊື່ດ້ວຍເສັ້ນສະແດງ	67
6.3	ວິທີແກ້ໂປຣແກຣມແບບເສັ້ນຊື່ດ້ວຍວິທີຊິມເປຼັກສ໌ (Simplex Method)	71
6.3.1	ກໍລະນີຊອກຄ່າໃຫຍ່ສຸດ	71
6.3.2	ກໍລະນີຊອກຄ່ານ້ອຍສຸດ	76
6.3.3	ກໍລະນີບັນດາເງື່ອນໄຂບໍ່ຢູ່ໃນຮູບຮ່າງມາດຕະຖານ	81
ຶ ບດທີ 7:	ตำลาซายติอป่วม(Functions many variables)	
7.1	ຕຳລາຫຼາຍຕົວປ່ຽນ	88
7.2	ຜົນຕຳລາພາກສ່ວນ	89
7.3	ຫລັກການຊອກຜົນຕຳລາພາກສວ່ນຂັ້ນໜຶ່ງ	89

7.4	ຜົນຕຳລາພາກສວ່ນຂັ້ນສອງ	91
7.5	ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດຂອງຕຳລາສອງຕົວປ່ຽນ	92
7.6	ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດພາຍໃຕ້ເງື່ອນໄຂຂອງຕົວຄຸນ Lagrange	93
7.7	ຄວາມໝາຍຂອງຕົວຄຸນ Lagrange	95
7.8	ຈຸນລະຄະນິດເຕັມສວ່ນ	95
7.9	ຜົນຕຳລາເຕັມສວ່ນ	96
7.10	ການນຳໃຊ້ຜົນຕຳລາພາກສວ່ນໃນຂົ່ງເຂດເສດຖະກິດ	96
:	ສົມຜົນຈູນລະຄະນິດ	
: 8.1	ສິມຜົນຈູນລະຄະນິດ ນິຍາມ	103
	·	103 103
8.1	ุ มียาม	
8.1 8.2	ນິຍາມ ສືມຜືນຈຸນລະຄະນິດແຍກຕ໊ວປ່ຽນໄດ້	103
8.1 8.2 8.3	ນິຍາມ ສືມຜືນຈຸນລະຄະນິດແຍກຕ໊ວປ່ຽນໄດ້ ສືມຜືນຈຸນລະຄະນິດລີເນແອ	103 104
8.1 8.2 8.3 8.4 8.5	ນິຍາມ ສື່ມຜືນຈຸນລະຄະນິດແຍກຕົວປ່ຽນໄດ້ ສື່ມຜືນຈຸນລະຄະນິດລີເນແອ ສື່ມຜືນຈຸນລະຄະນິດເຕັມສ່ວນ	103 104 105
	7.5 7.6 7.7 7.8 7.9	7.5 ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດຂອງຕຳລາສອງຕົວປ່ຽນ 7.6 ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດພາຍໃຕ້ເງື່ອນໄຂຂອງຕົວຄຸນ Lagrange 7.7 ຄວາມໝາຍຂອງຕົວຄຸນ Lagrange 7.8 ຈຸນລະຄະນິດເຕັມສວ່ນ 7.9 ຜົນຕຳລາເຕັມສວ່ນ

ເອກະສານອ້າງອີງ

- 1. ຄະນິດສາດ 1 ສຳລັບວິທະຍາໄລວິທະຍາສາດພື້ນຖານ ມະຫາວິທະຍາໄລແຫ່ງຊາດ , 2000
- 2. ຄະນິດສາດ 2 ສຳລັບວິທະຍາໄລວິທະຍາສາດພື້ນຖານ ມະຫາວິທະຍາໄລແຫ່ງຊາດ , 2001
- 3. ຄະນິດສາດສຳລັບເສດຖະສາດ 210MA221 ມະຫາວິທະຍາໄລແຫ່ງຊາດ , 2002
- 4. Mathamatic for Business ຄະນະເສດຖະສາດ ມະຫາວິທະຍາໄລແຫ່ງຊາດ , 1999
- ຄຸ່ມືກຽມສອບຄະນິດສາດ ມ.4.5.6 ຮອງສາດສະດາຈານ ສະໄໝ ເຫຼົ່າວານິດ
 ຫຼັກສຸດການສຶກສາຂັ້ນພື້ນຖານ ພສ 2544.
- 6. ຄະນິດສາດ ມ.5 ເຫຼັ້ມ 3 ຄ o13 ຫຼັກສູດປັບປຸງໃໝ່ ສສວທ ລ່າສຸດ ຮອງສາດສະດາຈານ ກາມົນ ເອກໄທຈະເລີນ.

ບົດທີ 1

ການນັບ

(Counting)

- 1.1 ເຕັກນິກພື້ນຖານໃນການນັບ.
- 1.1.1. ໃຊ້ຫຼັກການການໂຮມ ແລະ ການຕັດ.

ເມື່ອ A ແລະ B ເປັນກຸ່ມຈຳກັດຈະເຫັນໄດ້ວ່າ

ຕົວຢ່າງ 1: ທະນາຄານ A ໄດ້ປອ່ຍສິນເຊື່ອໃຫ້ລູກຄ້າໃນໝູ່ບ້ານແຫ່ງໜຶ່ງທີ່ດຳເນີນທຸລະກິດລົງງໝູ ແລະ ລົງປາທັງໝົດ 10 ຄອບຄົວ. ຮູ້ວ່າລູກຄ້າທີ່ດຳເນີນທຸລະກິດລົງງໝູມີ 8 ຄອບຄົວ, ລູກຄ້າທີ່ດຳເນີນທຸລະກິດລົງງປາມີ 6 ຄອບຄົວ. ຖາມວ່າລູກຄ້າທີ່ດຳເນີນທຸລະກິດທັງສອງປະເພດມີຈັກຄອບຄົວ? ວິທີແກ້: ໃຫ້ A ແທນກຸ່ມລູກຄ້າທີ່ລົງງໝູ

B ແທນກຸ່ມລູກຄ້າທີ່ລຸ້ງປາ

1.1.2. ໃຊ້ແຜນວາດຂອງແວນ.

ຕົວຢາງ 2: ໃນໂອກາດວັນຄູແຫ່ງຊາດທີ 7 ຕຸລານັກຂ່າວໄດ້ສຳພາດນັກສຶກສາສອງຫ້ອງຈຳນວນ 60 ຄົນພົບວ່າມີ 35 ຄົນມອບຊໍ່ດອກໄມ້ໃຫ້ຄູອາຈານ, ມີ 25 ຄົນຂູງນບັດອ່ວຍພອນຄູອາຈານ ແລະ ນັກ ສຶກສາ 10 ຄົນທັງຂູງນບັດອ່ວຍພອນ ແລະ ມອບຊໍ່ດອກໄມ້ໃຫ້ຄູອາຈານ. ຖາມວ່າມີນັກສຶກສາຈັກຄົນ ທີ່ບໍ່ເຮັດທັງສອງຢ່າງ?

ວິທີແກ້: ໃຫ້ A ແທນກຸ່ມນັກສຶກສາທີ່ມອບຊໍ່ດອກໄມ້
B ແທນກຸ່ມນັກສຶກສາທີ່ຂຽນບັດອວຍພອນ

ຮູ້ວ່າ
$$n(A \cup B) = 60$$
, $n(A) = 35$, $n(B) = 25$, $n(A \cap B) = 10$ $n[(A \cup B)'] = ?$

ໂດຍໃຊ້ແຜນວາດຂອງແວນເຮົາສາມາດແຍກກຸ່ມຕ່າງໆທີ່ບໍ່ຕັດກັນແລ້ວວາງຈຳນວນອົງປະກອບຂອງ ກຸ່ມເຫຼົ່ານັ້ນໃສ່ໃນເຂດຂອງມັນໂດຍເລີ່ມວາງໃສ່ເຂດທີ່ຢູ່ດ້ານໃນກ່ອນຈະໄດ້ດັ່ງນີ້

ຈາກແຜນວາດນີ້ຈະເຫັນວ່າຈຳນວນນັກສຶກສາທີ່ບໍ່ເຮັດທັງສອງຢ່າງຄືຈຳນວນທີ່ຢູ່ນອກທັງສອງກຸ່ມມີ 5 ຄົນ \Rightarrow n[(A \cup B) $\dot{}$] = 10

1.1.3. ໃຊ້ແຜນວາດງ່າໄມ້.

ຕົວຢ່າງ 3: ມີໂສ້ງ 2 ຜືນສີຕ່າງກັນ ແລະ ເສື້ອ 3 ຜືນສີຕ່າງກັນ. ຈົ່ງຊອກຫາຈຳນວນວິທີທັງໝົດທີ່ ຈະນຸ່ງເຄື່ອງໃຫ້ເປັນຊຸດແຕກຕ່າງກັນໂດຍບໍ່ໃຫ້ນຸ່ງໂສ້ງ ແລະ ເສື້ອສີດງວກັນຊ້ຳກັນ.

ວິທີແກ້: ໃຫ້ 1, 2 ແທນໂສ້ງ 2 ຜືນທີ່ມີ.

ໃຫ້ a, b, c ແທນຈຳນວນເສື້ອ 3 ຜືນທີ່ມີ.

ຈາກແຜນວາດດັ່ງກ່າວສະຫຼຸບໄດ້ວ່າສາມາດເລືອກນຸ່ງເຄື່ອງໃຫ້ເປັນຊຸດແຕກຕ່າງກັນທັງໝົດໄດ້ 6 ວິທີ

1	.1	.4.	ໃຊ້ຫຼັກການການ	າຄນ

1.1.4. ໃຊ້ຫຼັກການການຄູນ
<u>ຫລັກເກນ</u> ໃນການເຮັດວງກໃດໜຶ່ງ, ຕັ້ງແຕ [່] ເລີ່ມຕົ້ນຈົນວງກງານສຳເລັດລວມມີ k ຂັ້ນຕອນທີ່ຕ່າງກັນ,
ຊຶ່ງຂັ້ນຕອນທີ 1 ສາມາດເຮັດໄດ້ n_1 ວິທີຕ່າງກັນ. ຂັ້ນຕອນທີ 2 ສາມາດເຮັດໄດ້ n_2 ວິທີຕ່າງກັນ.
ຂັ້ນຕອນທີ 3 ສາມາດເຮັດໄດ້ $n_{_{\! 3}}$ ວິທີຕ່າງກັນແລະ ຂັ້ນຕອນທີ k ສາມາດເຮັດໄດ້ $n_{_{\! k}}$ ວິທີຕ່າງ
ກັນ. ຈຳນວນວິທີທັງໝົດທີ່ເຮັດວຽກ k ຂັ້ນຕອນເທົ່າກັບ $n_1.n_2.n_3n_k$ ວິທີ.
ຕົວຢ່າງ 4: ໃນການພິມໃບຫວຍຊຸດໜຶ່ງ 3 ຕົວເລກ. ຖາມວ່າໃບຫວຍຊຸດດັ່ງກ່າວຈະມີ
ກ. ໃບຫວຍທັງໝົດຈັກໃບ ?
ຂ. ໃບຫວຍທີ່ເປັນຈຳນວນຄີກຈັກໃບ ?
ວິທີແກ້:
ຕົວເລກທີ່ຈະນຳມາຈັດໃສ່ໃບຫວຍມີ 0,1, 2, 3,,9. ມີທັງໝົດ 10 ຕົວເລກ. ໃບຫວຍ ປະດ້ວຍຕົວເລກ 3 ຫຼັກ ຊຶ່ງແຕ [່] ລະຫຼັກສາມາດຊ້ຳກັນໄດ [້] ໂດຍເລືອກຈາກຕົວເລກ 0 ຫາ 9
ກ. ຈຳນວນໃບຫວຍທັງໝົດ
$ egin{array}{ c c c c c c c c c c c c c c c c c c c$
ຂ. ຈຳນວນໃບຫວຍທີ່ເປັນຈຳນວນຄີກ ເພື່ອໃຫ້ໄດ້ໃບຫວຍທີ່ເປັນຈຳນວນຄີກຕົວເລກທ້າຍຂອງໃບຫວຍຕ້ອງເປັນເລກຄີກ ເຮົາເຫັນວ່າ ຕົວເລກທັງໝົດມີຈຳນວນຄີກຢູ່ 5 ຕົວຄື: 1, 3, 5, 7 ແລະ 9 ເລືອກມາໃສ່ຫຼັກໜວ່ຍໄດ້ 5 ວິທີ. ສ່ວນຕົວເລກໃນຫຼັກ 10 ແລະ ຫຼັກ 100 ບໍ່ມີເງື່ອນໄຂໃດແລ້ວສາມາດເລືອກຕົວເລກ ທັງ 10 ຕົວມາໃສ່ສອງບ່ອນທີ່ຍັງເຫຼືອຈັດໄດ້ທັງໝົດດັງນີ້:
$egin{array}{cccccccccccccccccccccccccccccccccccc$
ຕົວຢ [່] າງ 5: ຈາກຕົວເລກ 0, 4, 6, 7, 8 ຈະສາມາດສ້າງເປັນຈຳນວນທີ່ມີ 4 ຕົວເລກ ໃຫ້ມີຄວາມ
ໝາຍເລກບໍ່ຊ້ຳກັນໄດ້ຈັກຈຳນວນ.
ກ. ເປັນຈຳນວນໃດກໍ່ໄດ້. ຂ. ເປັນຈຳນວນໃຫ່ຍກ [່] ວາ 7000.
ຄ. ເປັນຈຳນວນຄູ່. ງ. ເປັນຈຳນວນຫານຂາດໃຫ້ 5 ແລະ ນ້ອຍກ່ວາ 7000.
ວິທີແກ້:
ກ. ເປັນຈຳນວນໃດກໍ່ໄດ້ແຕ່ໃຫ້ມີຄວາມໝາຍນັ້ນໝາຍຄວາມວ່າເລກ 0 (ສູນ) ບໍ່ສາມາດເອົາ ມາໃສ່ຫຼັກພັນໄດ້ດັ່ງນັ້ນຕົວເລກທີ່ເອົາມາໃສ່ຫຼັກພັນໄດ້ມີ 4 ຕົວເລກຍົກເວັ້ນ 0. ສ່ວນຫຼັກ 100, ຫຼັກ 10 ແລະ ຫຼັກໜວ່ຍມີແຕ່ເງື່ອນໄຂບໍ່ຊ້ຳກັນ. ດັ່ງນັ້ນເອົາຕົວເລກທີ່ຍັງເຫຼືອມາຈັດໃສ່ 3 ບ່ອນທີ່ຍັງເຫຼືອໂດຍຫຼຸດລົງເທື່ອລະ 1 ຈຳນວນສາມາດຈັດໄດ້ດັ່ງນີ້:
oxdots $oxdots$ $oxdots$ ຈຳນວນທັງໝົດເທົ່າກັບ $4 imes 4 imes 3 imes 2 = 96$ ຈຳນວນ

 ຂ. ເປັນຈຳນວນໃຫ່ຍກ່ວາ 7000 ເພື່ອໃຫ້ໄດ້ຈຳນວນໃຫຍ່ກວ່າ 7000 ໝາຍຄວາມວ່າຕົວເລກທີ່ເອົາມາໃສ່ຫຼັກພັນໄດ້ມີພູງສອງຕົວເລກຄື 7 ຫຼື 8ເລືອກໄດ້ 2 ວິທີ. ສ່ວນຫຼັກ 100, ຫຼັກ 10 ແລະ ຫຼັກໜວ່ຍມີແຕ່ເງືອນໄຊ ບໍ່ຊ້ຳກັນ. ດັ່ງນັ້ນເອົາຕົວເລກທີ່ຍັງເຫຼືອມາຈັດໃສ່ 3 ບ່ອນທີ່ຍັງເຫຼືອໂດຍຫຼຸດລົງເທື່ອລະ 1 ຈຳນວນສາມາດຈັດໄດ້ດັ່ງນີ້:
 ຄ. ເປັນຈຳນວນຄູ່ ເພື່ອໃຫ້ຈຳນວນທີ່ສ້າງອອກມາເປັນຈຳນວນຄູ່ຕົວເລກທ້າຍຕ້ອງເປັນເລກຄູ່ຊື່ງເລກຄູ່ມີ 4 ຕົວຄ 0, 4, 6 ແລະ 8. ແຕ່ເຫັນວ່າເລກ 0 ບໍ່ສາມາດໃສ່ບ່ອນຫຼັກພັນໄດ້ ສ່ວນ 4, 6 ຫຼື 8 ສາ ມາດໃສ່ຫຼັກພັນໄດ້ດັ່ງນັ້ນເຮົາຕ້ອງໄດ້ແຍກເປັນສອງກໍລະນີດັ່ງນີ້: ກໍລະນີລົງທ້າຍດວ້ຍ 0
ເລືອກເລກ 0 ມາໃສ່ຫຼັກໜ່ວຍໄດ້ 1 ວິທີ. ສວ່ນຫຼັກພັນ, ຫຼັກຮ້ອຍ ແລະ ຫຼັກສິບຍັງເຫຼືອແຕ່ ເງື່ອນໄຂເລກບໍ່ຊ້ຳກັນ. ດັ່ງນັ້ນເລືອກເອົາຕົວເລກທີ່ຍັງເຫຼືອ 4 ຕົວມາຈັດໃສ່ 3 ບ່ອນທີ່ຍັງ ເຫຼືອໂດຍຫຼຸດລົງເທື່ອລະ 1 ຈຳນວນສາມາດຈັດໄດ້ດັ່ງນີ້:
ຈຳນວນທັງໝົດເທົ່ກັບ $4 \times 3 \times 2 \times 1 = 24$ ຈຳນວນ
ນວນສາມາດຈັດໄດ້ດັ່ງນີ້:
3 3 2 3 ສອງກໍລະນີຂ້າງເທິງຖືວ່າແຕ່ລະກໍລະນີແມ່ນຈັດສຳເລັດໂດຍທີ່ທັງສອງກໍລະນີບໍ່ມີຄວາມຕໍ່ເນື່ອງກັນ. ດັ່ງນັ້ນຈຳນວນທັງໝົດທີ່ສາມາດສ້າງເປັນຈຳນວນຄູ່ໄດ້ເທົ່າກັບ 54+24 = 78 ຈຳນວນ ງ. ເປັນຈຳນວນຫານຂາດໃຫ້ 5 ແລະ ນ້ອຍກ່ວາ 7000
ເພື່ອໃຫ້ເປັນຈຳນວນຫານຂາດໃຫ້ 5 ຕົວເລກທ້າຍຕ້ອງເປັນເລກ 0 ຫຼື ເລກ 5 ແຕ່ຈຳນວນຢູ່ ໃຫ້ມາບໍ່ມີເລກ 5 ແນ່ນອນຕ້ອງລົງທ້າຍດ້ວຍ 0 ເທົ່ານັ້ນໄດ້ 1 ວິທີ. ເພື່ອໃຫ້ເປັນຈຳນວນ ນ້ອຍກວ່າ 7000 ຕົວເລກທີ່ເອົາມາໃສ່ຫຼັກພັນມີພູງ 2 ຕົວຄື 4 ຫຼື 6 ເລືອກໄດ້ 2 ວິທີ. ສວ່ນຫຼັກຮ້ອຍ ແລະ ຫຼັກສິບຍັງເຫຼືອແຕ່ເງື່ອນໄຂເລກບໍ່ຊ້ຳກັນ. ດັ່ງນັ້ນເລືອກເອົາຕົວເລກທີ່ຍັງເຫຼືອ 3 ຕົວມາຈັດໃສ່ 2 ບ່ອນທີ່ຍັງເຫຼືອໂດຍຫຼຸດລົງເທື່ອລະ 1 ຈຳນວນສາມາດຈັດໄດ້ດັ່ງນີ້:

1.2. ການຈັດລຽນ (Permutation).

1.2.1 ວິທີຈັດລຸງນສິ່ງຂອງ n ອັນຕ່າງກັນແບບແຖວຊື່

ຈາກຫຼັກການການຄູນຂ້າງເທິງ, ເຮົາສາມາດນັບຈຳນວນວິທີທັງໝົດທີ່ສາມາດລູງນສິ່ງຂອງ n ອັນແຕກຕ່າງກັນ ໂດຍລຸງນເທື່ອລະ k ອັນຕາມແຖວຊື່ໄດ້ດັ່ງນີ້:

$$P_n^k = n(n-1)(n-2)(n-3)...(n-k+1) = \frac{n!}{(n-k)!}$$

ເມື່ອ k = n ຈະໄດ້ P n = n(n-1)(n-2)(n-3).....2.1 = n!
n! ອ່ານວ່າ n ແຟກຫໍຣູງນ (n factorial) ແລະ ເພິ່ນກຳນົດ 0! = 1
ເຮົາສາມາດຂູງນໄດ້ n! = n(n-1)!
ເມື່ອ n = 1 ຈະໄດ້ 1! = 1(1-1)! = 1×0! = 1

ຕົວຢ[່]າງ 6:

1.
$$4! = 4 \times 3 \times 2 \times 1 = 24$$

2.
$$6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$$

3.
$$\frac{5!}{3!} = \frac{5 \times 4 \times 3!}{3!} = 5 \times 4 = 20$$

4.
$$\frac{4 \times 7!}{3!5!} = \frac{4 \times 3 \times 7 \times 6 \times 5!}{3!5!} = 7 \times 6 \times 4 = 168$$

ຕົວຢ[່]າງ 7: ຈະມີຈັກວິທີຈະຈັດຄົນ 8 ຄົນ ຊຶ່ງໃນນັ້ນມີ ທ້າວ ກ ແລະ ທ້າວ ຂ ລວມຢູ່ນຳ ນັ່ງຕັ່ງ ອີ້ລຽນກັນເປັນແຖວຊື່ ໂດຍໃຫ[້] ທ້າວ ກ ແລະ ທ້າວ ຂ ນັ່ງຕິດກັນສະເໝີ.

ວິທີແກ້: ເນື່ອງຈາກໂຈດກຳນົດໃຫ້ ທ້າວ ກ ແລະ ທ້າວ ຂ ນັ່ງຕິດກັນສະເໝີ, ດັ່ງນັ້ນວິທີງ່າຍໆຄືເຮົາ ຖືວ່າທ້າວ ກ ແລະ ທ້າວ ຂ ຢຶດຕິດກັນເປັນຄົນ 1 ຄົນ ໃນການນຳໄປຈັດບວກກັບ 6 ຄົນທີ່ຍັງເຫຼືອ ເປັນ 7 ຄົນ. ນັ້ນໝາຍຄວາມວ່າເຮົາມີຄົນທັງໝົດ 7 ຄົນເອົາມານັ່ງລຸງນກັນເປັນແຖວຊື່ສາມາດຈັດໄດ້ $P_7^7 = 7!$ ວິທີ. ແຕ່ ທ້າວ ກ ແລະ ທ້າວ ຂ ທີ່ຢຶດຕິດກັນນັ້ນສາມາດປ່ຽນກັນໄດ້ 2! ວິທີ ດັ່ງນັ້ນ ຈຳນວນວິທີທີ່ຈັດໄດ້ທັງໝົດ = $7! \times 2! = 10,080$ ວິທີ.

1.2.2 ການຈັດລຸເນສິ່ງຂອງ n ອັນທີ່ມີບາງອັນຄືກັນຕາມແຖວຊື່

ສົມມຸດເຮົາມີສິ່ງຂອງ n ອັນ ຊຶ່ງໃນນັ້ນມີ:

 n_1 ຄືກັນເປັນແບບທີ່ 1

 n_2 ຄືກັນເປັນແບບທີ່ 2

.

 n_k ຄືກັນເປັນແບບທີ່ k

ນຳສິ່ງຂອງ n ອັນດັ່ງກ່າວມາຈັດລຸເນເປັນແຖວຊື່ຈຳນວນວິທີທັງໝົດທີສາມາດຈັດໄດ້ແມ່ນ:

$$P_n^{n_1,n_2,n_3,\dots,n_k} = \frac{n!}{n_1! \times n_2 \times ! n_3! \times \dots \times n_k!}$$

ຕົວຢ[່]າງ 8: ຈາກຄຳວ[່]າ " Banking " ຈົ່ງຊອກຫາຈຳນວນຄຳສັບໃໝ[່]ທີ່ເປັນໄດ[້]ທັງໝົດ ທີ່ເກີດຈາກ ການປະກອບຂອງຕົວອັກສອນຈາກຄຳດັ່ງກ[່]າວຄືນໃໝ[່] ໂດຍບໍ່ຄຳນຶງເຖິງຄວາມໝາຍ.

- ກ. ບໍ່ມີຂໍ້ຈຳກັດໃດໆ
- ຂ. ຄຳປະກອບໃໝ[່]ຕ້ອງຂຶ້ນດ້ວຍ a ແລະ ລົງທ້າຍດ້ວຍ b ສະເໝີ.

ວິທີແກ້: ຄຳວ່າ "Banking" ປະກອບດ້ວຍຕົວອັກສອນທັງໝົດ 7 ຕົວ ຄື: n ມີ 2 ຕົວ, b ມີ 1 ຕົວ, a ມີ 1 ຕົວ, i ມີ 1 ຕົວ, g ມີ 1 ຕົວ ແລະ k ມີ 1 ຕົວ.

ເຮົາມີ: n ມີ 2 ຕົວ ຄືກັນເປັນແບບທີ່ 1

b ມີ 1 ຕົວ ເປັນແບບທີ່ 2

a ມີ 1 ຕົວ ເປັນແບບທີ່ 3

i ມີ 1 ຕົວ ເປັນແບບທີ່ 4

g ມີ 1 ຕົວ ເປັນແບບທີ່ 5

k ມີ 1 ຕົວ ເປັນແບບທີ່ 6

ກ. ວິທີທັງໝົດທີ່ຈັດໄດ້ແມ່ນ:

$$P_7^{2,1,1,1,1,1} = \frac{7!}{2 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1!}$$

$$=\frac{5040}{2}$$
 = 2,520 ວິທີ

ຂ. ຂຶ້ນຕົ້ນດ້ວຍ a ແລະ ລົງຫ້າຍດ້ວຍ b ສະເໝີ

ມີ a ໜຶ່ງຕົວເລືອກມາໃສ່ບອ່ນທຳອິດໄດ້ 1 ວິທີ ແລະ b ໜຶ່ງຕົວເລືອກມາໃສ່ບອ[່]ນສຸດທ້າຍ ໄດ້ 1 ວິທີຍັງເຫຼືອຕົວອັກສອນ 5 ຕົວເອົາມາຈັດໃສ່ທາງກາງວິທີທັງໝົດທີ່ຈັດໄດ້ແມ[່]ນ:

$$1 \times 1 \times P_5^{2,1,1,1,1} = \frac{5!}{2! \times 1! \times 1! \times 1! \times 1!} = 60$$
 ວິທີ.

1.2.3. ການຈັດລຽນສິ່ງຂອງ n ອັນທີ່ແຕກຕ່າງກັນແບບວົງມົນ.

ສົມມຸດມີສິ່ງຂອງ n ອັນຕ່າງກັນ ນຳສິ່ງຂອງດັ່ງກ່າວມາຈັດລຽນແບບວົງມົນ ຈຳນວນວິທີທັງ ໝົດທີ່ສາມາດຈັດໄດ້ແມ[່]ນ: (n-1)! ວິທີ.

ຕົວຢ[່]າງ 9: ຈົ່ງຊອກຫາຈຳນວນວິທີທີ່ຈະຈັດໃຫ້ຜູ້ຊາຍ 4 ຄົນ ແລະ ຜູ້ຍິງ 4 ຄົນ ເຂົ້ານັ່ງອ້ອມໂຕະ ມົນໜ່ວຍໜຶ່ງ ໂດຍທີ່

ຊ

ຊ

ജ

- ກ. ໃຜຈະນັ່ງບ່ອນໃດກໍໄດ້?
- ຂ. ຊາຍ ແລະ ຍິງຕ້ອງນັ່ງສະຫຼັບກັນ ?

ວິທີແກ້: ຜູ້ຊາຍ 4 ຄົນ ແລະ ຜູ້ຍິງ 4 ຄົນ ລວມກັນເປັນ 8 ຄົນ.

- ກ. ຈຳນວນວິທີທີ່ຈະຈັດໄດ້ແມ່ນ: (8-1)! = 7! = 5,040 ວິທີ.
- ຂ. ຊາຍ ແລະ ຍິງນັ່ງສະຫຼັບກັນ
 ສາມາດເອົາຊາຍ ຫຼື ຍິງ ເຂົ້ານັ່ງກ່ອນກໍໄດ້
 ຖ້າໃຫ້ຜູ້ຊາຍເຂົ້ານັ່ງກ່ອນ ຊາຍ 4 ຄົນ ເອົາມານັ່ງອ້ອມໂຕະມົນ ຍຸ ມົນຈັດໄດ້ (4 1)! = 3! ວິທີ
 ເຮົາສັງເກດເຫັນວ່າບອຸ່ນທີ່ຍິງຈະນັ່ງໄດ້ມີ 4 ບ່ອນ ສະນັ້ນ ການຈັດຍິງ 4 ຄົນເຂົ້ານັ່ງ 4 ບອ່ນນັ້ນບໍ່ແມ່ນການຈັດແບບວົງມົນ ອີກແລວເພາະວ່າແຕ່ລະຕຳແໜ່ງບໍ່ສາມາດປຸ່ງນບອຸ່ນກັນໄດ້. ການຈັດ ແມ່ນຄ້າຍຄືການຈັດລຸງນແບບແຖວຊື່. ດັ່ງນັ້ນເລືອກເອົາຍິງ 4 ຄົນທີ່ ຍັງເຫຼືອເຂົ້ານັ່ງຕາມບ່ອນຫວ່າງ 4 ບ່ອນຈັດໄດ້ P⁴ = 4! ວິທີ ຈຳນວນວິທີທີ່ຈັດຄົນ 8 ຄົນເຂົ້ານັ່ງໄດ້ແມ່ນ:

 $3! \times 4!$ ວິທີ = 144 ວິທີ.

1.3. ภามจัดໝວດ (Combination).

ການຈັດໝວດຄືວິທີການເລືອກສິ່ງຂອງທັງໝົດ ຫຼື ບາງສ່ວນທີ່ກຳນົດໃຫ້ເອົາມາຈັດລຸງນ ໂດຍບໍ່ຄຳນຶ່ງເຖິງລຳດັບຂອງສິ່ງຂອງທີ່ເລືອກມາ.

ສົມມຸດ ມີສິ່ງຂອງ n ອັນຕ[່]າງກັນ ນຳເອົາສິ່ງຂອງດັ່ງກ[່]າວມາຈັດໝວດ ໂດຍຈັດໝວດລະ k ອັນ $(k \le n)$. ຈຳນວນວິທີທັງໝົດທີ່ສາມາດຈັດໄດ້ແມ່ນ:

ຕົວຢ[່]າງ 10: ຂໍ້ສອບວິຊາຄະນິດສາດຂອງນັກສຶກສາປີທີ່ 1 ຢູ່ສະຖາບັນການທະນາຄານ ມີ 12 ຂໍ້ ໃນນັ້ນກຳນົດໃຫ້ນັກສຶກສາຕ[້]ອງເລືອກແກ[້] 10 ຂໍ້ ແລະ ຕ້ອງໄດ້ເລືອກເອົາຢ[່]າງໜ້ອຍ 5 *ຂໍ້*ຈາກ 6 ຂໍ້ ທຳອິດ. ຈຶ່ງຊອກຫາຈຳນວນວິທີທັງໝົດທີ່ຈະເລືອກແກ[້]ຂໍ້ສອບໃຫ້ຄົບ 10 ຂໍ້ ?

ວິທີແກ້:

ການເລືອກແກ້ຂໍ້ສອບນັກສຶກສາສາມາດເລືອກແກ້ຂໍ້ໃດກ່ອນກໍໄດ້ດັ່ງນັ້ນການເລືອກດັ່ງກ່າວຈຶ່ງ ເປັນການຈັດໝວດ

ເລືອກແກ້ຂໍ້ສອບຢ່າງໜ້ອຍ 5 ຂໍ້ ຈາກ 6 ຂໍ້ ທຳອິດ ໝາຍຄວາມວ່າຕ້ອງເລືອກແກ້ເອົາ 5 ຂໍ້ ຫຼື ແກ້ 6 ຂໍ້ ຈາກ 6 ຂໍ້ ທຳອິດ. ຈຳນວນວິທີທີ່ສາມາດເລືອກແກ້ໄດ້ແມ່ນ:

ກໍລະນີເລືອກແກ້ 5 ຂໍ້ ຈາກ 6 ຂໍ້ ທຳອິດ ແລະ 5 ຂໍ້ ຈາກ 6 ຂໍ້ ສຸດທ້າຍ.

$$C_6^5 C_6^5 = \frac{6!}{5!(6-5)!} \times \frac{6!}{5!(6-5)!} = 6 \times 6 = 36$$
 30.

ກໍລະນີເລືອກແກ້ 6 ຂໍ້ ຈາກ 6 ຂໍ້ ທຳອິດ ແລະ 4 ຂໍ້ ຈາກ 6 ຂໍ້ ສຸດທ້າຍ.

$$C_6^6 C_6^4 = \frac{6!}{6!(6-6)!} \times \frac{6!}{4!(6-2)!} \approx 15$$
 ວິທີ

ຈຳນວນວິທີທັງໝົດທີ່ສາມາດເລືອກແກ້ຂໍ້ສອບໃຫ້ຄົບ 10 ຂໍ້ເທົ່າກັບ 36 + 15 = 51 ວິທີ.

ຕົວຢ່າງ11: ໃນການແຂ່ງຂັນເຕະບານເພື່ອຂໍານັບຮັບຕ້ອນວັນສ້າງຕັ້ງ ທະນາຄານແຫ່ງ ສປປ ລາວ ຄົບຮອບ 44 ປີ ທີ່ຜ່ານມາ ມີທິມເຕະບານເຂົ້າແຂ່ງຂັນຮອບທຳອິດທັງໝົດ 24 ທິມ, ແບ່ງເປັນ 6 ສາຍໆລະ 4 ທິມ ຊຶ່ງແຕ່ລະທິມໃນແຕ່ລະສາຍຕ້ອງໄດ້ແຂ່ງຂັນແບບພົບກັນໝົດ. ຖາມວ່າ ໃນຮອບ ທຳອິດນີ້ຈະມີການແຂ່ງຂັນທັງໝົດຈັກຄັ້ງ?

ວິທີແກ້:

ຮູ້ວ່າສາຍໜຶ່ງມີ 4 ທິມ, ການແຂ່ງຂັນຄັ້ງໜຶ່ງຕ້ອງມີ 2 ທິມ ການແຂ່ງຂັນແບບພົບກັນໝົດ ໝາຍຄວາມວ່າເຮົາຕ້ອງເລືອກ 2 ທິມ ຈາກ 4 ທິມເຂົ້າມາແຂ່ງຂັນ ສາມາດເລືອກໄດ້

$$C_4^2 = \frac{4!}{2!(4-2)!} = \frac{4!}{2!2!} = 6$$
 ຄັ້ງ.

ໃນນັ້ນຮອບທີ່ໜຶ່ງມີ 6 ສາຍ, ແຕ່ລະສາຍຕ້ອງໄດ້ແຂ່ງຂັນກັນ 6 ຄັ້ງ. ດັ່ງນັ້ນໃນການແຂ່ງຂັນຮອບ ທຳອິດຈະໄດ້ແຂ່ງຂັນກັນທັງໝົດແມ[່]ນ: $6 \times 6 = 36$ ຄັ້ງ.

ຕົວຢ[່]າງ12: ໃນກັບອັນໜຶ່ງມີປາກາ 4 ປາກ, ບິກ 3 ກ້ານ ແລະ ສໍດຳ 2 ກ້ານ ຈົກເອົາເຄື່ອງອອກ ຈາກກັບ 1 ເທື່ອ 3 ອັນ ພ້ອມກັນ. ຈົ່ງຊອກຫາຈຳນວນວິທີທີ່ຈະເລືອກໄດ້

- ກ. ສິ່ງຂອງແຕ່ລະຢ່າງແນວລະ 1 ອັນ?
- ຂ. ສໍດຳຢ[່]າງໜ[້]ອຍ 1 ອັນ?

ວິທີແກ້. ການເລືອກສິ່ງຂອງອອກຈາກກັບເປັນການຈັດໝວດເນື່ອງຈາກວ່າລຳດັບຂອງສິ່ງຂອງບໍ່ສຳຄັນ

ກ. ໄດ້ສິ່ງຂອງແຕ່ລະຢ່າງແນວລະ 1 ອັນ ເລືອກໄດ້

$$C_4^1 \times C_3^1 \times C_2^1 = 4 \times 3 \times 2 = 24$$

ຂ. ໄດ້ສໍດຳຢ່າງໜ້ອຍ 1 ອັນໝາຍຄວາມວ່າໄດ້ສໍດຳ 1 ອັນ ຫຼື ໄດ້ ສໍດຳ 2 ອັນເລືອກໄດ້

$$C_{2}^{1} \times C_{7}^{2} + C_{2}^{2} \times C_{7}^{1} = \frac{2 \times 7!}{1 \times 5 \times 2!} + \frac{2 \times 7!}{2 \times 6 \times 1!}$$

= 42 + 7 = 49

$$\mathfrak{D} \quad C_9^3 - C_7^3 = \frac{9!}{6! \times 3!} - \frac{7!}{4! \times 3!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} - \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 84 - 35 = 49$$

• ຄຸນລັກສະນະ

1.
$$C_n^n = C_n^0 = 1$$

2.
$$C_n^1 = C_n^{n-1} = n$$

3.
$$C_n^{k} = C_n^{n-k}$$

4.
$$C_n^k + C_n^{k-1} = C_{n+1}^k$$

5.
$$C_n^k = C_n^p$$
 ກໍ່ຕໍ່ເມື່ອ $p + k = n$

1.4. ສຳປະສິດທະວີພືດ

ໃນການຂະຫຍາຍ $(a+b)^n$ ເມື່ອ $a;b\in R$ ແລະ $n\in N$

$$(a+b)^0=1$$

$$(a+b)^1 = a+b$$

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$\mathfrak{P}$$
 $(a + b)^2 = C_2^0 a^2 + C_2^1 ab + C_2^2 b^2$

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
 \mathfrak{D} $(a + b)^3 = C_3^0a^3 + C_3^1a^2b + C_3^2ab^2 + C_3^3b^3$

$$(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

$$\mathfrak{P}(a+b)^4 = C_4^0 a^4 + C_4^1 a^3 b + C_4^2 a^2 b^2 + C_4^3 a b^3 + C_4^4 b^4$$

$$(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

$$\mathfrak{D}(a+b)^5 = C_5^0 a^5 + C_5^1 a^4 b + C_5^2 a^3 b^2 + C_5^3 a^2 b^3 + C_5^4 a b^4 + C_5^5 b^5$$

ໃນທຳນອງດຽວກັນເຮົາຈະໄດ້

$$(\mathbf{a}+\mathbf{b})^{\mathbf{n}}=C_{n}^{0}\mathbf{a}^{\mathbf{n}-\mathbf{0}}\mathbf{b}^{0}+C_{n}^{1}\mathbf{a}^{\mathbf{n}-\mathbf{1}}\mathbf{b}^{1}+C_{n}^{2}\mathbf{a}^{\mathbf{n}-\mathbf{2}}\mathbf{b}^{2}+\cdots+C_{n}^{k}\mathbf{a}^{\mathbf{n}-\mathbf{k}}\mathbf{b}^{k}+...+C_{n}^{n-1}\mathbf{a}\mathbf{b}^{\mathbf{n}-\mathbf{1}}+C_{n}^{n}\mathbf{a}^{\mathbf{n}-\mathbf{n}}\mathbf{b}^{\mathbf{n}}$$
 $=\sum_{k=0}^{n}C_{n}^{k}a^{n-k}b^{k}$; ຈຳນວນ C_{n}^{k} ແມ່ນສຳປະສິດຂອງພົດທີ່ $k+1$

ຄ່າຂອງ c_n^k ອາດຊອກໄດ້ຈາກຕາຕະລາງຂອງຮູບສາມແຈ Pascal's ດັ່ງນີ້:

1
$$\leftarrow (a+b)^0$$

1 2 1
$$\leftarrow (a+b)^2$$

1 3 3 1
$$\leftarrow$$
 $(a+b)^3$

ພຶດທົ່ວໄປຂອງການຂະຫຍາຍ $(a+b)^n$

ສັງເກດເຫັນວ່າ: $(a+b)^n$

$$T_1 = C_n^0 a^{n-0} b^0$$
 \mathfrak{F} $T_{0+1} = C_n^0 a^{n-0} b^0$

$$T_2 = C_n^1 a^{n-1} b^1$$
 \mathfrak{F} $T_{n+1} = C_n^1 a^{n-1} b^1$

$$T_3 = C_n^2 a^{n-2} b^2$$
 \mathfrak{F} $T_{2+1} = C_n^2 a^{n-2} b^2$

ດັ່ງນັ້ນຈະໄດ້ພຶດທີ່ k+1 ແມ່ນ: $T_{k+1} = C_n^k a^{n-k} b^k$

ຕົວຢ່າງ 13: ຊອກຫາພົດທີ່ 4 ຂອງການຂະຫຍາຍ $\left(x-\frac{2}{x}\right)^{10}$ ວິທີແກ້:

ເຮົາມີ
$$a=x$$
 ; $b=-\frac{2}{x}$; $n=10$ ຈາກສູດ: $T_{k+1}=C_n^ka^{n-k}b^k$ ເຮົາໄດ້ $T_{3+1}=C_{10}^3x^{10-3}\left(-\frac{2}{x}\right)^3$
$$=\frac{10!}{3!7!}x^7\left(-\frac{8}{x^3}\right)$$

$$=\frac{10.9.8.7!}{3!7!}(-8)x^4$$
 \Rightarrow $T_4=-960\,x^4$

ຕົວຢ່າງ14: ຈົ່ງຊອກຫາພຶດທີ່ບໍ່ມີ x ຈາກການຂະຫຍາຍ $\left(\mathbf{x}^2 + \frac{1}{\mathbf{x}}\right)^{12}$ ວິທີແກ້:

ສົມມຸດວາງ $\mathbf{T_{k+1}}$ ແມ່ນພຶດທີ່ບໍ່ມີ x (ໝາຍຄວາມພຶດທີ່ \mathbf{x}^0) ຊອກຫາຄ່ຳຂອງ \mathbf{k}

จาทสูถ
$$T_{k+1}=C_{12}^k(x^2)^{12-k}\left(\frac{1}{x}\right)^k$$

$$=C_{12}^k(x^2)^{12-k}(x^{-1})^k=C_{12}^kx^{24-3k}$$

$$24-3k=0 \implies k=8$$

ພືດທີ່ບໍ່ມີ x ແມ່ນພືດທີ່ : $T_{8+1} = C_{12}^8 x^0$

$$\Rightarrow$$
 $T_9 = \frac{12!}{8!4!} = 495$

ຕົວຢ່າງ15: ຈົ່ງຫາພົດທີ່ມີ x^6 ໃນການຂະຫຍາຍ $(x^2+2x)^5$

ເຮົາມີ
$$T_{k+1} = C_5^k (x^2)^{5-k} (2x)^k = C_5^k x^{10-k}$$

ຊອກຄ່າຂອງ k ເຮົາ*ໄດ*້ $10 - k = 6$

$$\Rightarrow$$
 k = 4

ເຮົາໄດ້
$$T_5 = C_5^4 2^4 x^6$$

$$= \frac{5!}{4!} \times 16 \times x^6 = 5 \times 16 x^6 = 80 x^6$$

$$\Rightarrow T_5 = 80 x^6$$

ບົດຝຶກຫັດ

- 1. ເມື່ອສອບຖາມລູກຄ້າຂອງທະນາຄານແຫ່ງໜຶ່ງຈຳນວນ 800 ຄົນ, ເຫັນວ່າແຕ່ລະຄົນລ້ວນແຕ່ມີ ບັນຊີເງິນຝາກປະຢັດ ຫຼື ບັນຊີເງິນຝາກປະຈຳ ຫຼື ມີທັງສອງຢ່າງ. ຖ້າວ່າ 80% ເປັນລູກຄ້າທີ່ມີບັນຊີ ເງິນຝາກປະຢັດ ແລະ 30% ເປັນລູກຄ້ຳທີ່ມີບັນຊີເງິນຝາກປະຈຳ. ຈະມີລູກຄ້ຳທີ່ມີບັນຊີເງິນຝາກປະຢັດ ແລະ ບັນຊີເງິນຝາກປະຈຳຈັກຄົນ ?
- 2. ກຳນົດໃຫ້ A, B, C ເປັນກຸ່ມ ຖ້າ n(B)=42 ; n(C)=28 ; $n(A\cap B\cap C)=3$ $n(A\cap B\cap C')=2$; $n(A\cap B'\cap C')=20$ ແລະ $n(A\cup B\cup C)=80$. ຈິ່ງຊອກຫາ $n(A'\cap B\cap C)=?$
- 3. ຫ້ອງປະຊຸມໜຶ່ງມີປະຕູຢູ່ 4 ປ໋ອງ, ຖ້າເຂົ້າປະຕູໜຶ່ງແລ້ວໃຫ້ອອກອີກປະຕູໜຶ່ງ ຊຶ່ງບໍ່ຊ້ຳກັບປະຕູທີ່ ເຂົ້າມາ ຈະມີວິທີເຂົ້າ ແລະ ອອກໄດ້ທັງໝົດຈັກວິທີ?
- 4. ຈາກການສຳຫຼວດຄວາມຄິດເຫັນຂອງນັກສຶກສາ 50 ຄົນເຫັນວ່າ ມີນັກສຶກສາມັກເບິ່ງເຕະບານ 29 ຄົນ, ມີນັກສຶກສາມັກເບິ່ງຕີບານ 21 ຄົນ ແລະ ມີນັກສຶກສາ 10 *ຄົນ*ມັກເບິ່ງກິລາທັງສອງປະເພດນີ້. ຖາມວ່າ:
 - ກ. ມີນັກສຶກສາມັກເບິ່ງເຕະບານ ຫຼື ຕີບານຈັກຄົນ ?
 - ຂ. ມີນັກສຶກສາບໍ່ມັກເບິ່ງເຕະບານ ແລະ ບໍ່ມັກເບິ່ງຕີບານຈັກຄົນ?
 - ຄ. ມີນັກສຶກສາມັກເບິ່ງເຕະບານແຕ່ບໍ່ມັກເບິ່ງຕີບານຈັກຄົນ ?
- 5. ກຳນົດໃຫ້*ຕົວ*ເລກ 0,1,2,3,4 ແລະ 5. ເອົາມາສ້າງເປັນຈຳນວນທີ່ມີຄ[່]າຢູ່ລະຫວ[່]າງ 99 ຫາ 999 ໂດຍມີເງື່ອນໄຂວ[່]າ
 - ກ. ຕົວເລກໃນແຕ່ລະຫຼັກຕ້ອງບໍ່ຊ້ຳກັນ
 - ຂ. ຕົວເລກໃນແຕ່ລະຫຼັກຕ້ອງບໍ່ຊ້ຳກັນ ແລະ ເປັນຈຳນວນຄີກ
 - ຄ. ຕົວເລກໃນແຕ່ລະຫຼັກຕ້ອງບໍ່ຊ້ຳກັນ ແລະ ມີຄ່າໃຫ່ຍກ່ວາ 350
 - ງ. ຕົວເລກໃນແຕ່ລະຫຼັກຕ້ອງບໍ່ຊ້ຳກັນ ແລະ ເປັນຈຳນວນທີ່ຫານຂາດໃຫ້ 10
- 6. ຈາກຕົວເລກ 1, 2, 3, 4, 5, 6, 7. ໃຫ້ສ້າງເປັນເລກ 3 ຫຼັກທີ່ບໍ່ຊ້ຳກັນ ໄດ້ຈັກຈຳນວນຖ້າວ່າ*:*
 - ກ. ເປັນຈຳ*ນວນ*ຄູ[່]ທີ່ນ້ອຍກ[່]ວາ 400 ?
 - ຂ. ເປັນຈຳນວນຄີກທີ່ໃຫ່ຍກ່ວາ 400 ?
- 7. ກຳນົດໃຫ້ນຳຕົວເລກ 0, 3, 5, 6, 9 ມາສ້າງເປັນເລກ 3 ຫຼັກທີ່ມີຄວາມໝາຍ, ເລກບໍ່ຊ້ຳກັນ ຈະໄດ້ຈັກຈຳນວນຖ້ຳວ່າ
 - ກ. ເປັນຈຳນວນຫານຂາດໃຫ້ 5 ແລະ ນ້ອຍກ່ວາ 500 ?
 - ຂ. ເປັນຈຳນວນຄີກທີ່ໃຫ່ຍກ່ວາ 600 ?
- 8. ຈົ່ງຊອກຫາຈຳນວນວິທີທີ່ຈະຈັດໃຫ້ຊາຍ 4 ຄົນ ແລະ ຍິງ 4 ຄົນ ຢືນລຽນແຖວຖ່າຍຮູບໂດຍທີ່:
 - ກ. ຊາຍ *ແລະ* ຍິງຕ[້]ອງຢືນສະຫຼັບກັນ.
 - ຂ. ຍິງທັງ 4 ຄົນຕ້ອງຢືນຕິດກັນ.
- 9. ຈະມີຈັກວິທີຈັດໃຫ້ຊາຍ 5 ຄົນ ແລະຍິງ 4 ຄົນຢືນລູງນກັນເປັນແຖວຊື່ ໂດຍບໍ່ໃຫ້ຍິງ 2 ຄົນໃດ ຢືນຕິດກັນ?

- 10. ຈະມີວິທີຈັດໃຫ້ຄົນ 3 ຄົນນັ່ງຕັ່ງອີ້ ຊຶ່ງລູງນກັນເປັນແຖວຍາວ 10 ໜ່ວຍ ໄດ້ຈັກວິທີ ໂດຍທີ່ວ[່]າ ຄົນທັງ 3 ຕ[້]ອງນັ່ງຕິດກັນສະເໜີ?
- 11. ມີປຶ້ມບັນຊີທະນາຄານ 3 ຫົວຄືກັນ, ປຶ້ມບັນຊີວິສາຫະກິດ 2 ຫົວຄືກັນ ແລະ ປຶ້ມ ບໍລິຫານການ ທະນາຄານ 2 ຫົວຄືກັນ. ຈະມີຈັກວິທີທີ່ຈະຈັດປຶ້ມເຫຼົ່ານີ້ມາໄວ້ເທິງຖ້ານໃນຫ້ອງສະມຸດໂດຍໃຫ້ຈັດລຸງນ ກັນເປັນແຖວຊື່ ?
- 12. ຈົ່ງຊອກຫາຈຳນວນວິທີທີ່ຈະຈັດໃຫ້ຊາຍ 7 ຄົນ ແລະ ຍິງ 6 ຄົນນັ່ງອ້ອມໂຕະມົນໜ່ວຍໜຶ່ງ ໂດຍບໍ່ໃຫ້ຜູ້ຍິງ 2 ຄົນໃດນັ່ງຕິດກັນ ?
- 13. ຈະມີວິທີທີ່ຈະຈັດຊາຍ 3 ຄົນ, ຍິງ 2 ຄົນ ແລະ ເດັກນ້ອຍ 1 ຄົນນັ່ງອ້ອມໂຕະມົນໂດຍຄົນທີ່ ນັ່ງກົງກັນຂ້າມກັບເດັກນ້ອຍ ຕ້ອງເປັນຜູ້ຊາຍ ?
- 14. ຈະມີວິທີຈັດໃຫ້ຄົນ 8 ຄົນນັ່ງອ້ອມໂຕະມົນ 2 ໜ່ວຍ, ໜ່ວຍລະ 4 ຄົນໄດ້ຈັກວິທີ ?
- 15. ມີສະຫຼາກ 10 ໃບຢູ່ກັບອັນໜຶ່ງ ຊຶ່ງມີໝາຍເລກ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. ຈັບ ສະຫຼາກອອກຈາກກັບ 2 ໃບ ເທື່ອລະໃບແລ້ວບໍ່ເອົາໃສ່ຄືນ ຈະມີວິທີເລືອກໄດ້ທັງໝົດຈັກວິທີ ໂດຍທີ່ ຜົນບວກຂອງໝາຍເລກເທິງສະຫຼາກທັງສອງໃບທີ່ຈັບໄດ້ເປັນຈຳນວນຄີກ ?
- 16. ມີເສັ້ນຂະໜານຊຸດໜຶ່ງຈຳນວວນ 4 ເສັ້ນ ຕັດກັບເສັ້ນຂະໜານອີກຊຸດໜຶ່ງຊຶ່ງມີຈຳນວນ 3 ເສັ້ນ ເຮັດໃຫ້ເກີດຮູບສີ່ແຈຂ້າງຂະໜານຈັກຮູບ ?
- 17.ໃນການແຂ່ງຂັນກິລາບານເຕະເພື່ອຕ້ອນຮັບວັນສ້າງຕັ້ງທະນາຄານແຫ່ງ ສປປ ລາວ ຄົບຮອບ 45 ປີ ໃນປີ 2013 ທີ່ຜ່ານມາມີທິມເຂົ້າຮ່ວມໃນຮອບທຳອິດທັງໝົດ 24 ທິມ, ແບ່ງອອກເປັນ 4 ສາຍໆລະ 6 ທິມ ຊຶ່ງແຕ່ລະທິມໃນແຕ່ລະສາຍຕ້ອງໄດ້ແຂ່ງຂັນແບບພົບກັນໝົດ. ຖາມວ່າໃນຮອບ

ທຳອິດນີ້ ຈະມີການແຂ່ງຂັນທັງໝົດຈັກຄັ້ງ ?

- 18. ຫົວບົດສອບເສັງວິຊາໜຶ່ງມີທັງໝົດ 13 ຂໍ້, ນັກສຶກສາຄົນໜຶ່ງຕ້ອງແກ້ໃຫ້ໄດ້ 10 ຂໍ້ ພາຍໃຕ້ ເງື່ອນໄຂທີ່ວ່າຕ້ອງເລືອກແກ້ໃຫ້ໄດ້ 4 ຂໍ້ ຈາກ 5 ທຳອິດ. ຖາມວ່າຈະມີຈັກວິທີທີ່ຈະ ເລືອກແກ້ໃຫ້ຄົບ 10 ຂໍ້ ?
- 19. ໃນງານລັງງຂອງສະມາຄົມແຫ່ງໜຶ່ງ ແຂກທຸກຄົນທີ່ມາຮ່ວມງານຕ່າງກໍ່ທັກທາຍກັນດ້ວຍການຈັບມືສະບາຍດີ. ສັງເກດເຫັນວ່າຈຳນວນຄັ້ງໃນການຈັບມືຂອງແຂກໃນງານນີ້ເທົ່າກັບ 66 ຄັ້ງ. ຖາມວ່າໃນງານລັງງຂອງສະມາຄົມດັ່ງກ່າວມີແຂກມາຮ່ວມງານທັງໝົດຈັກຄົນ ?
- 20. ຈົ່ງຊອກຄ່ຳຂອງ n ຈາກສົມຜືນ:

$$1. \quad \frac{n!}{(n-2)!} = 56$$

2.
$$\frac{n!}{(n-3)!} = 24$$

$$3. \quad \frac{\left(n+1\right)!}{\left(n-1\right)!} = 72$$

4.
$$p_n^5 = 2p_n^3$$

5.
$$C_n^{n-2} = 10$$

6.
$$C_n^{15} = C_n^{11}$$

- 21. ກຳນົດໃຫ້ $P_n^k = 3024$ ແລະ $C_n^k = 126$ ຈົ່ງຊອກຄ່ຳຂອງ k = ?
- 22. ຈົ່ງຊອກພຶດ 5 ຂອງການຂະຫຍາຍ $\left(x^2-2y\right)^6$
- 23. ຈົ່ງຊອກພົດທີ່ມີ x^6 ໃນການຂະຫຍາຍ $\left(x^2+2x\right)^5$

- 24. ຈົ່ງຊອກສຳປະສິດຂອງພຶດທີ່ມີ x^{14} ໃນການຂະຫຍາຍ $\left(2x^2-3x\right)^{10}$
- 25. ຈົ່ງຊອກສຳປະສິດຂອງພົດ x^4y^5 ໃນການຂະຫຍາຍ $\left(2x+3y\right)^9$
- 26. ຈົ່ງຊອກຫາພຶດທີ່ບໍ່ມີ x ໃນການຂະຫຍາຍ $\left(2x^2 + \frac{1}{x}\right)^{12}$
- 27. ຈົ່ງຊອກຫາພຶດທີ່ບໍ່ມີ x ໃນການຂະຫຍາຍ $\left(x^3 + \frac{3}{x^2}\right)^{10}$
- 28. ຈົ່ງຊອກຫາພຶດທີ່ມີ x^9 ໃນການຂະຫຍາຍ $\left(3x + \frac{2}{\sqrt{x}}\right)^{12}$

ບົດທີ 2

ຕຳລາ

(Functions)

ນິຍາມ 2.1

ໃຫ້ສອງກຸ່ມ A ແລະ B ເມື່ອແຕ່ລະອົງປະກອບ x ຂອງກຸ່ມ A ຫາກພົວພັນກັບອົງປະກອບ y ຂອງກຸ່ມ B ບໍ່ເກີນໜຶ່ງຄ[່]າຕາມກົດເກນ f ໃດໜຶ່ງເພີ່ນເວົ້າວ[່]າ f ແມ[່]ນຕຳລາແຕ[່]ກຸ່ມ A ຫາກຸ[່]ມ B ແທນດ້ວຍ

f : A → B

 $x \longmapsto y = f(x)$

ຕົວຢ[່]າງ 1:

Α

В

f ເປັນຕຳລາ

f ບໍ່ເປັນຕຳລາ

f ເປັນຕຳລາ

ຕົວຢ່າງ 2: ໃຫ້ຕຳລາ
$$f(x) = x^2 + 2x - 3$$

$$f(2) = 2^2 + 2 \times 2 - 3 = 5$$

$$f(-3) = (-3)^2 + 2(-3) - 3 = 0$$

$$f(\frac{1}{2}) = (\frac{1}{2})^2 + 2(\frac{1}{2}) - 3 = -\frac{7}{4}$$

ຕົວຢ່າງ 3: ໃຫ້ຕຳລາ $f(x) = \begin{cases} x, x < -1 \\ x^2, -1 \le x < 1 \\ 2x + 1, x \ge 1 \end{cases}$

$$f(-3) = -3$$

$$f(-\frac{2}{3}) = (-\frac{2}{3})^2 = \frac{4}{9}$$

$$f(2) = 2 \times 2 + 1 = 5$$

$$f(t^2 + 1) = 2(t^2 + 1) + 1 = 2t^2 + 3$$

ທ່ານ Euler ຊູງນ y=f(x) ແທນ y ແມ່ນຕຳລາທີ່ມີຕົວປ່ຽນແມ່ນ x ຫຼື y ເທົ່າກັບ f ຂອງ x ກຸ່ມຄ່າຂອງ x ທີ່ເຮັດໃຫ້ຕຳລາ f(x) ມີຄວາມໝາຍ ຫຼື ສາມາດຄິດໄລ່ໄດ້ເອີ້ນວ່າເຂດກຳນົດຂອງ ຕຳລາ f (Domain of f function) ສັນຍາລັກດ້ວຍ D_f

 $\left\{y/y=f(x), \forall x\in D_f \right\}$ ເອີ້ນວ່າກຸ່ມຄ່າຂອງ f (Rang of f function) ສັນຍາລັກດ້ວຍ R_f

ຕົວຢ່າງ 4: 1) ໃຫ້ຕຳລາ
$$f(x)=-2x+3$$

$$D_f = \left]-\infty, +\infty\right[, \qquad R_f = \left]-\infty, +\infty\right[$$

2) ໃຫ້ຕຳລາ
$$f(x) = \sqrt{2x+2}$$

$$D_f \ = \ \left[-1, +\infty\right[\ , \qquad R_f \ = \ \left[0, +\infty\right[$$

3) ໃຫ້ຕຳລາ
$$f(x) = 3^x$$

$$D_f = \left] -\infty, +\infty \right[, \qquad R_f = \left] 0, +\infty \right[$$

4) ໃຫ້ຕຳລາ
$$f(x) = \log_2 x$$

$$D_f = \left]0, +\infty\right[, \qquad R_f = \left]-\infty, +\infty\right[$$

2.2 ການຄຳນວນກຸ່ງວກັບຕຳລາ

ໃຫ້ສອງຕຳລາ f(x) ແລະ g(x) ຕາມໃຈ ເຮົາສາມາດບວກ, ລົບ, ຄູນ, ຫານ ແລະ ຊ້ອນຕຳລາໄດ້ດັ່ງນີ້:

1.
$$(f+g)(x) = f(x) + g(x)$$

2.
$$(f-g)(x) = f(x) - g(x)$$

3.
$$(f.g)(x) = f(x).g(x)$$

4.
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, $g(x) \neq 0$

5.
$$(f \circ g)(x) = f[g(x)]$$

6.
$$(g \circ f)(x) = g[f(x)]$$

ຕົວຢ່າງ 5: ໃຫ້ຕຳລາ f(x) = 2x + 1 . $g(x) = x^2 - 2$

1.
$$(f+g)(x) = f(x) + g(x) = 2x+1+x^2-2 = x^2+2x-1$$

2.
$$(f-g)(x) = f(x) - g(x) = 2x + 1 - x^2 + 2 = -x^2 + 2x + 3$$

3.
$$(f.g)(x) = f(x).g(x) = (2x+1)(x^2-2) = 2x^3 + x^2 - 4x - 2$$

4.
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{2x+1}{x^2-2}$$

5.
$$(f \circ g)(x) = f[g(x)] = 2(x^2 - 2) + 1 = 2x^2 - 3$$

6.
$$(g \circ f)(x) = g[f(x)] = (2x+1)^2 - 2 = 4x^2 + 4x - 1$$

- ການກຳນົດເຂດກຳນົດຂອງ $\big(f\circ g\big)(x)$ ຫຼື $D_{f\circ g}$ ແມ່ນການຊອກຄ່າຂອງ x ທີ່ຕອບສະໜອງສອງເງື່ອນໄຂ
 - 1. g(x) ຕ້ອງມີຄວາມໝາຍ

$$2. \quad g(x) \in D_f$$

• ການກຳນົດເຂດກຳນົດຂອງ $\left(g\circ f\right)(x)$ ຫຼື $D_{g\circ f}$ ແມ່ນການຊອກຄ່ຳຂອງ x ທີ່ຕອບສະໜອງສອງເງື່ອນໄຂ

1.
$$f(x)$$
 ຕ້ອງມີຄວາມໝາຍ

2.
$$f(x) \in D_g$$

ຕົວຢ່າງ 6: ໃຫ້ຕຳລາ $f(x) = x^2$. $g(x) = \sqrt{x+1}$

$$(f \circ g)(x) = f[g(x)] = [g(x)]^{2} = (\sqrt{x+1})^{2} = x+1$$

$$\begin{cases} x+1 \ge 0 \\ \forall x \end{cases} \Rightarrow \begin{cases} x \ge -1 \\ \forall x \end{cases} \Rightarrow x \ge -1 \Rightarrow D_{f \circ g} = [-1, +\infty[$$

$$(g \circ f)(x) = g[f(x)] = \sqrt{f(x) + 1} = \sqrt{x^2 + 1}$$

$$\begin{cases} \forall x \\ x^2 + 1 \ge 0 \end{cases} \Rightarrow \begin{cases} \forall x \\ \forall x \end{cases} \Rightarrow \forall x \Rightarrow D_{g \circ f} =]-\infty, +\infty[$$

2.3 ລັກສະນະຂອງຕຳລາ

ໃຫ້ຕຳລາ
$$y = f(x)$$

ເມື່ອ f(-x) = f(x) ເພີ່ນເວົ້າວ່າ y = f(x) ເປັນຕຳລາຄູ່. ເສັ້ນສະແດງຂອງຕຳລາຄູ່ເຄີ່ງຄືກັນ ທຸງບກັບແກນ oy

ເມື່ອ f(-x) = -f(x) ເພີ່ນເວົ້າວ່າ y = f(x) ເປັນຕຳລາຄີກ. ເສັ້ນສະແດງຂອງຕຳລາຄີກເຄີ່ງ ຄືກັນທຸງບກັບເມັດເຄົ້າ

ຕົວຢ່າງ 7: ໃຫ້ຕຳລາ $f(x) = x^2$, $g(x) = x^3$ ເຮົາມີ $f(-x) = (-x)^2 = x^2 = f(x)$ ສະແດງວ່າ f(x) ແມ່ນຕຳລາຄູ່

 $g(-x) = (-x)^3 = -x^3 = -g(x)$ สะแกๆอ่า g(x) แม่มตำลาศิท

2.4 ຂອບເຂດຂອງຕຳລາ

ໃຫ້ຕຳລາ y = f(x)

 $\lim_{x \to a^-} f(x)$ ເອີ້ນວ່າຂອບເຂດເບື້ອງຊ້າຍຂອງຕຳລາ f(x) ເມື່ອ $x \to a$

 $\lim_{x \to a^{+}} f(x)$ ເອີ້ນວ່າຂອບເຂດເບື້ອງຂວາຂອງຕຳລາ f(x) ເມື່ອ $x \to a$

ເພີ່ນເວົ້າວ່າຕຳລາ f(x) ມີຂອບເຂດເມື່ອ $x \to a$ ກໍຕໍ່ເມື່ອຂອບເຂດເບື້ອງຊ້ຳຍເທົ່າກັບຂອບເຂດເບື້ອງຂວາຂອງ a ໝາຍຄວາມວ່າ ມີ $\lim_{x \to a} f(x) \iff \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$

ຫຼັກເກນພື້ນຖານ

1.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x).\lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad , \quad \lim_{x \to a} g(x) \neq 0$$

$$4. \quad \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

5.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

6.
$$\lim_{x \to a} a^{f(x)} = a^{\lim_{x \to a} f(x)}$$

7.
$$\lim_{x \to a} \log_a f(x) = \log_a \lim_{x \to a} f(x)$$

ຕົວຢ[່]າງ 8:

1)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x + 3)(x - 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 6$$

2)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{\sqrt{x} - 2}{\left(\sqrt{x} - 2\right)\left(\sqrt{x} + 2\right)} = \lim_{x \to 4} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}$$

3)
$$\lim_{x \to -\infty} \frac{x+1}{\sqrt{x^2 + x - 2}} = \lim_{x \to -\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\sqrt{x^2\left(1 + \frac{1}{x} - \frac{2}{x^2}\right)}} = \lim_{x \to -\infty} \frac{x\left(1 + \frac{1}{x}\right)}{|x|\sqrt{\left(1 + \frac{1}{x} - \frac{2}{x^2}\right)}}$$

$$-\lim_{x \to -\infty} \frac{x\left(1 + \frac{1}{x}\right)}{x\sqrt{1 + \frac{1}{x} - \frac{2}{x^2}}} = -\lim_{x \to -\infty} \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} - \frac{2}{x^2}}} = -1$$

4)
$$\lim_{x \to +\infty} \frac{2^{\sqrt{x+1}}}{2^{\sqrt{x}}} = \lim_{x \to +\infty} 2^{(\sqrt{x+1} - \sqrt{x})} = 2^{\lim_{x \to +\infty} (\sqrt{x+1} - \sqrt{x})} = 2^{\lim_{x \to +\infty} \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}}}$$
$$2^{\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}}} = 2^0 = 1$$

5)
$$\lim_{x \to +\infty} \log_3 \frac{9x + 2}{x} = \log_3 \lim_{x \to +\infty} \frac{9x + 2}{x} = \log_3 \lim_{x \to +\infty} \frac{x \left(9 + \frac{2}{x}\right)}{x} = \log_3 9 = 2$$

2.5 ຂອບເຂດຂອງຕຳລາທີ່ກຳນົດຫຼາຍຫວ່າງຕ່ຳກັນ

ຕົວຢ່າງ 9: ໃຫ້ຕຳລາ
$$f(x) = \begin{cases} 30-3x^2, x \le -3 \\ -2x-3, -3 < x \le 5 \\ 2x+10, x > 5 \end{cases}$$

$$\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{+}} (30 - 3x^{2}) = 3$$

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} (-2x - 3) = 3$$

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (-2x - 3) = -13$$

$$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} (2x + 10) = 20$$

$$\Rightarrow \text{ with } \lim_{x \to 5} f(x)$$

2.6 ການຕໍ່ເນື່ອງຂອງຕຳລາ

ເມື່ອຕຳລາ f(x) ກຳນົດຢູ່ເມັດ x=a ມີຂອບເຂດເມື່ອ $x \to a$ ແລະ $\lim_{x \to a} f(x) = f(a)$ ເພີ່ນເວົ້າວ່າຕຳລາ f(x) ຕໍ່ເນື່ອງຢູ່ເມັດ x=a

ຕົວຢ່າງ 10: ໃຫ້ຕຳລາ
$$f(x) = \begin{cases} 3 - x^2, x < 1 \\ x + 1, x \ge 1 \end{cases}$$

1. ຕຳລາ f(x) ກຳນົດຢູ່ເມັດ x=1

2.
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(3 - x^{2} \right) = 3 - 1 = 2$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \left(x + 1 \right) = 1 + 1 = 2$$
 \Rightarrow ສະແດງວ່າ
$$\lim_{x \to 1} f(x) = 2$$

3.
$$f(1) = 1 + 1 = 2$$
 $\Rightarrow \lim_{x \to 1} f(x) = f(1)$ ດັ່ງນັ້ນ ຕຳລາ $f(x)$ ຕໍ່ເນື່ອງຢູ່ເມັດ $x = 1$

ບົດຝຶກຫັດ

1. ໃຫ້ຕຳລາ $f(x) = x^2 - 3x + 2$

ຈົ່ງຊອກ
$$f(-2)$$
 , $f(0)$, $f(\frac{1}{2})$, $f(3)$

ຈົ່ງຊອກຄ່າ
$$f(-2)$$
 , $f(1)$, $f(\frac{3}{2})$, $f(4)$, $f(100)$

3. ຊອກເຂດກຳນົດຂອງຕຳລາລຸ່ມນີ້:

1.
$$f(x) = \log_2(x^2 + 2x)$$

2.
$$f(x) = \sqrt{x^2 - 1} + \sqrt{\log_2 x + 1}$$

3.
$$f(x) = 3^{\frac{1}{|x|-1}}$$

4.
$$f(x) = \frac{1}{x^2 + 1} + \log_3(5 - x^2)$$

5.
$$f(x) = \lg \log_2(x-3)$$

6.
$$f(x) = \frac{2x+1}{(x-1)\log_4(1-x^2)}$$

7.
$$f(x) = \frac{1}{x^2 + 3} \log_2(x^2 + x + 2)$$

8.
$$f(x) = \log_2 |x^2 - 4x + 3|$$

9.
$$f(x) = \frac{x^2 - 4x + 5}{\sqrt{x^2 - 3x + 2}} + \frac{1}{\sqrt{10 + 9x - x^2}}$$
 19. $f(x) = \frac{1 - x}{\sqrt[3]{3x - 6}}$

10.
$$f(x) = \sqrt{-(|2x-1|-3)}$$

11.
$$f(x) = \log_2 \log_3 |x-1|$$

12.
$$f(x) = \ln(1-x^2)$$

13.
$$f(x) = \sqrt{\lg \frac{1 - 2x}{x + 3}}$$

14.
$$f(x) = \frac{1}{\lg(3-x)} + \sqrt{49-x^2}$$

15.
$$f(x) = \sqrt{\log_3^2(x-3)-1}$$

16.
$$f(x) = f(x) = \sqrt{9 - x^2} + \frac{1}{|x - 1|}$$

17.
$$f(x) = \frac{2x^2 - 3x + 4}{|x + 1| + 2}$$

$$18. \quad f(x) = \ln(\ln x)$$

19.
$$f(x) = \frac{1-x}{\sqrt[3]{3x-6}}$$

$$20. \quad f(x) = \frac{1}{\sqrt{|x| - x}}$$

4. ຈົ່ງກວດເບີ່ງລັກສະນະຄູ່, ຄີກ ຫຼື ບໍ່ຄູ່ບໍ່ຄີກຂອງຕຳລາລຸ່ມນີ້:

$$1. \qquad f(x) = x^2 + x$$

2.
$$f(x) = \frac{1}{x^2 - 4}$$

2.
$$f(x) = \frac{1}{x^2 - 4}$$
 3. $f(x) = x + \frac{1}{x}$

4.
$$f(x) = \frac{2^x + 2^{-x}}{2}$$

5.
$$f(x) = \log_3 \frac{x-1}{x+1}$$

4.
$$f(x) = \frac{2^x + 2^{-x}}{2}$$
 5. $f(x) = \log_3 \frac{x-1}{x+1}$ 6. $f(x) = \sqrt{x^2 - x + 1} + \sqrt{x^2 + x + 1}$

5. ໃຫ້ຕຳລາ f(x) ແມ່ນຕຳລາຄຸ່ ແລະ f(x) = 2x + 3 ເມື່ອ $x \in [3,5]$. ຈົ່ງຊອກຄ່າຂອງ f(-4) = ?

6. ໃຫ້ຕຳລາ f(x) ແມ່ນຕຳລາຄີກ ແລະ f(x) = 7 - 3x ເມື່ອ $x \in [1,3]$. ຈົ່ງຊອກຄ່ຳຂອງ f(-2) = ?

7. ใຫ້ຕຳລາ $f(2x+1) = x^2 + 2x + 6$. ຈົ່ງຊອກຫາຕຳລາ f(x) = ?

- 8. ໃຫ້ຕຳລາ $f(9^x) = x$. ຈົ່ງຊອກຄ່ຳຂອງ $f(\sqrt{3}) = ?$
- $f(2x-3) = x^2 + 3x 5$. ຈົ່ງຊອກຄ່ຳຂອງ f(3) = ?9. ໃຫ້ຕຳລາ
- 10.ໃຫ້ $f(x+1)+f(2x+1)=2x^2+x+1$ ແລະ $2f(x+1)-f(2x+1)=x^2-4x+2$. ຊອກ f(4)?
- 11. ໃຫ້ຕຳລາ f(x+1) = 3x + 2 + f(x) ແລະ f(0) = 1 . ຈົ່ງຊອກຄ່າຂອງ f(2) = ?
- 12. ໃຫ້ຕຳລາ f(x) = x + 3 ແລະ $g(x) = x^2 5$. ຈົ່ງຊອກຕຳລາ $(f \circ g)(x)$ ແລະ $(g \circ f)(x) = ?$
- 13. ຈົ່ງຊອກຕຳລາ f(x) . ຖ້າວ່າ g(x) = 3x + 4 ແລະ $(g \circ f)(x) = x^2$?
- 14. ຈົ່ງຊອກຕຳລາປິ້ນຂອງຕຳລາລຸ່ມນີ້:

1.
$$y = 2^{-x} + 2$$

2.
$$y = 2^{x-1}$$

3.
$$y = e^{x+}$$

$$4. y = \log_4 \frac{1-x}{1+x}$$

1.
$$y = 2^{-x} + 2$$
 2. $y = 2^{x-1}$ 3. $y = e^{x+1}$
4. $y = \log_4 \frac{1-x}{1+x}$ 5. $y = \log_2(x + \sqrt{x^2 - 2})$ 6. $y = x^2 - 4x + 4$

6.
$$y = x^2 - 4x + 4$$

- 15. ໃຫ້ຕຳລາ f(3x-1) = 2x+8 . ຈົ່ງຊອກຄ່ຳຂອງ $f^{-1}(10)$ = ?

16. ໃຫ້ຕຳລາ
$$f(\frac{x}{2}+1) = \frac{x}{2}-1$$
 . ຈົ່ງຊອກຄ່ຳຂອງ $f^{-1}(2) = ?$

ຈົ່ງຊອກຄ່ຳຂອງ
$$f^{-1}(2)$$
 = ?

- 17. ໃຫ້ຕຳລາ $f(x-1) = x^3 3x^2 + 3x + 5$. ຈົ່ງຊອກຄ້າຂອງ $f^{-1}(5) f^{-1}(-2) = ?$
- 18. ຄິດໄລ່ຂອບເຂດຂອງຕຳລາລຸ່ມນີ້:

1.
$$\lim_{x \to -1} \frac{2x^2 + 5x + 3}{x^2 - 6x - 7}$$
 2. $\lim_{x \to 1} \frac{\sqrt{3 + x}}{1 - \sqrt{2 - x}}$ 3. $\lim_{x \to 0} \frac{\sqrt{x} - x}{\sqrt{x} + x}$

$$2. \quad \lim_{x \to 1} \frac{\sqrt{3+x}}{1-\sqrt{2-x}}$$

$$3. \quad \lim_{x \to 0} \frac{\sqrt{x - x}}{\sqrt{x} + x}$$

4.
$$\lim_{x \to -1} \frac{\sqrt{2x+3}-1}{\sqrt{x+5}-2}$$
 5. $\lim_{x \to 1} \frac{x^3-1}{x^2+5x-6}$ 6. $\lim_{x \to 2} \frac{\sqrt[3]{4x}-2}{x-2}$

5.
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 5x - 6}$$

6.
$$\lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{x - 2}$$

7.
$$\lim_{x \to -1} \frac{x^3 - x^2 - 5x - 3}{x^3 + x^2 + x + 1}$$
 8. $\lim_{x \to -1} \frac{\sqrt{x^2 + 3} + 2x}{x + 1}$ 9. $\lim_{x \to 0} \frac{2\sqrt{x} - 3x}{3\sqrt{x} - 2x}$

8.
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 3} + 2}{x + 1}$$

$$9. \quad \lim_{x \to 0} \frac{2\sqrt{x} - 3x}{3\sqrt{x} - 2x}$$

10.
$$\lim_{x \to 4} \frac{x + \sqrt{x} - 6}{x - 5\sqrt{x} + 6}$$
 11. $\lim_{x \to 1} \frac{x - 1}{\sqrt[3]{x} - 1}$ 12. $\lim_{x \to -3} \frac{\sqrt[3]{x - 5} + 2}{x + 3}$

11.
$$\lim_{x \to 1} \frac{x-1}{\sqrt[3]{x}-1}$$

12.
$$\lim_{x \to -3} \frac{\sqrt[3]{x-5} + 2}{x+3}$$

13.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[3]{x^2} + 2\sqrt[3]{x} - 3}$$
 14. $\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$

14.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$

15.
$$\lim_{x \to 1} \frac{\sqrt[3]{x+7} - 2}{1 - \sqrt{2-x}}$$

16.
$$\lim_{x \to -\infty} \frac{3^{x+1}}{4^{x-1}}$$

17.
$$\lim_{x \to \infty} \frac{3^x - 1}{2^x + 2}$$

18.
$$\lim_{x \to +\infty} \frac{2^x - 3^x}{2^x + 3^x}$$

$$19. \quad \lim_{x \to -\infty} \frac{x+1}{\sqrt{x^2 + x - 2}}$$

19.
$$\lim_{x \to -\infty} \frac{x+1}{\sqrt{x^2 + x - 2}}$$
 20. $\lim_{x \to +\infty} (x - \sqrt{x^2 - 2x})$

19. ຈົ່ງກວດເບີ່ງຕຳລາລຸ່ມນີ້ຕໍ່ເນື່ອງຢູ່ເມັດທີ່ກຳນົດໃຫ້ ຫຼື ບໍ່?

1.
$$f(x) = \begin{cases} 2x, x \le 0 \\ x^2, x > 0 \end{cases}$$
 ຢູ່ເມັດ $x = 0$

ຢູ່ເມັດ
$$x = 0$$

2.
$$f(x) = \begin{cases} x^2 + 3, x \le 3 \\ 2x + 6, x > 3 \end{cases}$$
 $\forall x = 3$

ຢູ່ເມັດ
$$x=3$$

ບົດທີ 3

ຜົນຕຳລາ

(Derivatives)

3.1 ຜົນຕຳລາ

3.1.1 ສຳປະສິດມູມຂອງເສັ້ນຕິດ ແລະ ຜົນຕຳລາ

ໃຫ້ $\mathsf{P}(x_0,f(x_0))$ ແລະ $\mathsf{Q}(x_0+\Delta x,f(x_0+\Delta x))$ ແມ່ນສອງເມັດໃນເສັ້ນສະແດງຂອງຕຳລາ y=f(x) ເສັ້ນຊື່ທີ່ໄປຜ່ານເມັດ P ແລະ Q ເອີ້ນວ່າເສັ້ນຕັດກັບ y=f(x) ສະນັ້ນສຳປະສິດມູມ ຂອງເສັ້ນຕັດ PQ ແມ່ນ

$$m_{\text{sec}} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

ເມື່ອ $\Delta x \to 0$ ເມັດ Q ຈະເຄື່ອນທີ່ຕາມເສັ້ນໂຄງມາເຕັງກັບເມັດ P $(Q \to P)$ ເວລານັ້ນເສັ້ນຕັດ (secant) ຈະມາເຕັງກັບເສັ້ນຕິດ (tangent) ຂອງ y = f(x) ຢູ່ເມັດ $x = x_0$ ແລະ ຈະໄດ້ $m_{\tan} \Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ ແມ່ນສຳປະສິດມູມຂອງເສັ້ນຕິດກັບ y = f(x) ຢູ່ເມັດ $x = x_0$ ອີກດ້ານໜຶ່ງ $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ ແມ່ນອັດຕາປ່ຽນແປງຂອງຕຳລາ y = f(x) ເມື່ອ x ປ່ຽນແປງ ແຕ່ເມັດ x_0 ຫາເມັດ $x_0 + \Delta x$ ແລະ $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ ແມ່ນອັດຕາປ່ຽນແປງຂອງຕຳລາ y = f(x) ເມື່ອ x ປ່ຽນແປງເຕ່ເມັດ x_0 ຫາຄ່າທີ່ຢູ່ອ້ອມແອ້ມເມັດ x_0 ຊື່ງ x ປ່ຽນແປງໜ້ອຍທີ່ ສຸດ. ຄ່າຂອງອັດຕາປ່ຽນແປງຂອງຕຳລາ y = f(x) ເມື່ອ x ປ່ຽນແປງໜ້ອຍທີ່ ສຸດ. ຄ່າຂອງອັດຕາປ່ຽນແປງຂອງຕຳລາ y = f(x) ເມື່ອ x ປ່ຽນແປງໜ້ອຍທີ່ ສຸດ. ຄ່າຂອງອັດຕາປ່ຽນແປງຂອງຕຳລາ y = f(x) ເມື່ອ x ປ່ຽນແປງໜ້ອຍທີ່ ສຸດຈາກເມັດ x_0 ເອີ້ນວ່າຜົນຕຳລາຂອງຕຳລາ y = f(x) ຢູ່ເມັດ $x = x_0$ ແລະ ສັນຍາລັກດ້ວຍ

$$y'(x_0) = \frac{dy}{dx}\Big|_{x=x_0}$$
 $\mathfrak{F}'(x_0) = \frac{df}{dx}\Big|_{x=x_0}$

ດັ່ງນັ້ນ,

$$\frac{df}{dx}\Big|_{x=x_0} = m_{\tan}\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

3.1.2 ສູດການຄິດໄລ່ຜົນຕຳລາ

ລ/ດ	ຕຳລາ $y = f(x)$	ຜົນຕຳລາ $y'(x)$	ຕຳລາ $y = f(u)$	ຜົນຕຳລາ y (u)
1	k	0		
2	x	1		
3	χ^n	nx^{n-1}	u^n	$nu^{n-1}u$
4	\sqrt{x}	$\frac{1}{2\sqrt{x}}$	\sqrt{u}	$\frac{u}{2\sqrt{u}}$
5	a^{x}	$a^x \ln a$	a^{u}	$a^{x}u^{'}\ln a$
6	e^{x}	e^{x}	e^u	$e^{u}u^{'}$
7	$\log_a x$	$\frac{1}{x \ln a}$	$\log_a u$	$\frac{u}{u \ln a}$
8	ln x	$\frac{1}{x}$	ln u	$\frac{u}{u}$

3.1.3 ຫຼັກການຄິດໄລ່ຜົນຕຳລາ

1.
$$(f \pm g)' = f' \pm g'$$

2.
$$(f.g)' = f'g + g'f$$

3.
$$(k.f)' = k.f'$$
 (k = const)

$$4. \quad (\frac{f}{g}) = \frac{f g - g f}{g^2}$$

ຕືວຢ່າງ

1.
$$f(x) = x^3 + 3x^2 - 2x$$

$$f'(x) = (x^3 + 3x^2 - 2x)' = (x^3)' + (3x^2)' - (2x)' = 3x^2 + 6x - 2$$

2.
$$f(x) = (x^2 - 1)(x^3 + 2)$$

$$\frac{df}{dx} = \frac{d}{dx} \Big[(x^2 - 1)(x^3 + 2) \Big] = (x^3 + 2) \frac{d}{dx} (x^2 - 1) + (x^2 - 1) \frac{d}{dx} (x^3 + 2)$$
$$= (x^3 + 2)2x + (x^2 - 1)(3x^2) = 5x^4 - 3x^2 + 4x$$

$$\frac{df}{dx} = 5x^4 - 3x^2 + 4x$$

3.
$$f(x) = \frac{3x-1}{2x+3}$$

$$f'(x) = \left(\frac{3x-1}{2x+3}\right)' = \frac{(3x-1)'(2x+3)-(2x+3)'(3x-1)}{(2x+3)^2}$$

$$= \frac{3(2x+3)-2(3x-1)}{(2x+3)^2} = \frac{6x+9-6x+2}{(2x+3)^2} = \frac{11}{(2x+3)^2}$$

$$f'(x) = \frac{11}{(2x+3)^2}$$
4.
$$f(x) = (4x^2+2)^3$$

$$f'(x) = 3(4x^3+2)^2(4x^3+2)' = 3(4x^3+2)^2(12x^2) = 36x^2(4x^3+2)^2$$
5.
$$f(x) = 4^{\ln x}$$

$$f'(x) = \left(4^{\ln x}\right)' = 4^{\ln x} \cdot \ln 4 \cdot (\ln x)' = \frac{1}{x} 4^{\ln x} \cdot \ln 4$$
6.
$$f(x) = e^{x^2+x-1}$$

$$f'(x) = e^{x^2+x-1}(x^2+x-1)' = e^{x^2+x-1}(2x+1)$$

3.1.4 ຜົນຕຳລາຂັ້ນສູງ

$$y'' = (y')' = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

$$y''' = (y'')' = \frac{d}{dx}(\frac{d^2y}{dx^2}) = \frac{d^3y}{dx^3}$$

$$y^{(n)} = (y^{(n-1)})' = \frac{d}{dx}(\frac{d^{n-1}y}{dx^{n-1}}) = \frac{d^ny}{dx^n}$$

ຕົວຢ່າງ:

$$y = x^{4} - x^{3} + 3x^{2} + 5x + 2$$

$$y' = 4x^{3} - 3x^{2} + 6x + 5$$

$$y'' = 12x^{2} - 6x + 6$$

$$y''' = 24x - 6$$

$$y^{(4)} = 24$$

$$y^{(5)} = 0$$

3.2 ການນຳໃຊ້ຜົນຕຳລາ

3.2.1 ເພື່ອຄິດໄລ່ຂອບເຂດ

ຫຼັກເກນ ໂລປີຕານ (L'Hôspital)

ເມື່ອ
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 ມີຮູບຮ່າງບໍ່ກຳນົດ $\frac{0}{0}$ ຫຼື $\frac{\infty}{\infty}$ ຈະໄດ້
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f''(x)}{g''(x)} = \lim_{x \to a} \frac{f'''(x)}{g''(x)} = \dots$$

ຕົວຢ່າງ:

1.
$$\lim_{x \to 1} \frac{3x^3 - x^2 - x - 1}{x^3 - x^2 - x + 1} = \lim_{x \to 1} \frac{(3x^3 - x^2 - x - 1)}{(x^3 - x^2 - x + 1)} = \lim_{x \to 1} \frac{9x^2 - 2x - 1}{3x^2 - 2x - 1}$$
$$= \frac{9 - 2 - 1}{3 - 2 - 1} = \frac{6}{0} = \infty$$

2.
$$\lim_{x \to \infty} \frac{x^3 + 5x^2 + 6x + 10}{4x^3 + 2x^2 + x + 3} = \lim_{x \to \infty} \frac{(x^3 + 5x^2 + 6x + 10)}{(4x^3 + 2x^2 + x + 3)} = \lim_{x \to \infty} \frac{3x^2 + 10x + 6}{12x^2 + 4x + 1}$$
$$= \lim_{x \to \infty} \frac{(3x^2 + 10x + 6)}{(12x^2 + 4x + 1)} = \lim_{x \to \infty} \frac{6x + 10}{24x + 4} = \lim_{x \to \infty} \frac{(6x + 10)}{(24x + 4)} = \lim_{x \to \infty} \frac{6}{24} = \frac{1}{4}$$

3.
$$\lim_{x \to +\infty} x^{-\frac{1}{x}} = \lim_{x \to +\infty} e^{\ln x^{(-\frac{1}{x})}} = \lim_{x \to +\infty} e^{(-\frac{1}{x}\ln x)} = e^{-\frac{\lim_{x \to \infty} \ln x}{x}}$$
$$= e^{-\frac{\lim_{x \to \infty} \ln x}{x}} = e^{-\frac{\lim_{x \to \infty} 1/x}{x}} = e^{0} = 1$$

4.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\ln(1+x)^{(\frac{1}{x})}} = \lim_{x \to 0} e^{\frac{1}{x}\ln(1+x)} = e^{\lim_{x \to 0} \frac{\ln x}{x}}$$
$$= e^{\lim_{x \to 0} \frac{1/(1+x)}{1}} = e^{\lim_{x \to 0} \frac{1}{1+x}} = e$$

3.2.2 ເພື່ອຊອກຫາຫວ່າງຂື້ນ, ຫວ່າງແຮມ, ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດທຸງບຖານ

ເມື່ອ $x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \ \forall x_1, x_2 \in \left]a,b\right[$ f ເປັນຕຳລາຂື້ນໃນ $\left]a,b\right[$ ຫຼື $\left]a,b\right[$ ແມ່ນຫວ່າງ ຂື້ນຂອງ f ສັນຍາລັກ f\[\begin{array}{c} 1 \] a,b\[\]

• ສັງເກດເຫັນວ່າເມື່ອ $f \uparrow a, b \Rightarrow$ ສຳປະສິດ ມູມຂອງເສັ້ນຕິດກັບ y = f(x) ຢູ່ແຕ່ລະເມັດ $x \in a, b$ ມີຄ່າບວກ ແລະ ສາມາດພິສູດໃຫ້ເຫັນ ວ່າເມື່ອ f(x) > 0 $\forall x \in a, b \Rightarrow f \uparrow a, b$

ເມື່ອ $x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \ \forall x_1, x_2 \in \left]a,b\right[$ f ເປັນຕຳລາແຮມໃນ $\left]a,b\right[$ ຫຼື $\left]a,b\right[$ ແມ່ນຫວ່າງ ແຮມຂອງ f ສັນຍາລັກ f \downarrow $\left]a,b\right[$

- ສັງເກດເຫັນວ່າເມື່ອ $f \downarrow a,b \Rightarrow$ ສຳປະສິດ ມູມຂອງເສັ້ນຕິດກັບ y=f(x) ຢູ່ແຕ່ລະເມັດ $x\in a,b$ ມີຄ່າລົບ ແລະ ສາມາດພິສູດໃຫ້ເຫັນວ່າ ເມື່ອ f(x)<0 $\forall x\in a,b$ $\Rightarrow f\downarrow a,b$
- ເມື່ອ f(x) ຕໍ່ເນື່ອງຢູ່ເມັດ x_0 , $f^{\uparrow}]x_0 \mathsf{v}, x_0[$ ແລະ $f^{\downarrow}]x_0, x_0 + \mathsf{v}[$ ເພິ່ນເວົ້າວ່າ $(x_0, f(x_0))$ ແມ່ນເມັດໃຫຍ່ສຸດທຸງບຖານ (ທຸງບໃສ່ບັນດາມັດຢູ່ໃກ້ໆກັບເມັດ x_0) ຫຼື ເມັດ x_0 ແມ່ນເມັດທີ່ພາໃຫ້ f(x) ມີຄ່າໃຫຍ່ສຸດທຸງບຖານ ແລະ ສັນຍາລັກຄ່າໃຫຍ່ສຸດທຸງບຖານຂອງ f ດ້ວຍ f_{\max} ເມື່ອ f(x) ຕໍ່ເນື່ອງຢູ່ເມັດ x_0 , $f^{\downarrow}]x_0 \mathsf{v}, x_0[$ ແລະ $f^{\uparrow}]x_0, x_0 + \mathsf{v}[$ ເພິ່ນເວົ້າວ່າ $(x_0, f(x_0))$

ແມ່ນເມັດນ້ອຍສຸດທຽບຖານ (ທຽບໃສ່ບັນດາມັດຢູ່ໃກ້ໆກັບເມັດ x_0) ຫຼື ເມັດ x_0 ແມ່ນເມັດທີ່ພາໃຫ້ f(x) ມີຄ່ານ້ອຍສຸດທຽບຖານ ແລະ ສັນຍາລັກຄ່ານ້ອຍສຸດທຽບຖານຂອງ f ດ້ວຍ f_{\min} ຕົວຢ່າງ: ຈິ່ງຊອກຫວ່າງຂື້ນ, ຫວ່າງແຮມ, ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດທຽບຖານຂອງຕຳລາລຸ່ມນີ້:

 $f(x) = -x^{3} + 4x^{2} - 5x + 1$ $f'(x) = -3x^{2} + 8x - 5$ $f'(x) = 0 \Leftrightarrow -3x^{2} + 8x - 5 = 0$ $x_{1} = 1 \quad \mathfrak{F} \quad x_{2} = \frac{5}{3}$ $f'(x) < 0 \qquad \forall x \in]-\infty, 1[\cup]\frac{5}{3}, +\infty[\Rightarrow f \downarrow]-\infty, 1[\quad \text{ແລະ} \quad f \downarrow]\frac{5}{3}, +\infty[$ $f'(x) > 0 \qquad \forall x \in]1, \frac{5}{3}[\quad \Rightarrow f \uparrow]1, \frac{5}{3}[$ $(1, f(1)) = (1, -1) \qquad \text{ແມ່ນເມັດນ້ອຍສຸດທັງບຖານ}$ $(\frac{5}{3}, f(\frac{5}{3})) = (\frac{5}{3}, -\frac{23}{27}) \quad \text{ແມ່ນເມັດໃຫຍ່ສຸດທັງບຖານ}$

ບົດຝຶກຫັດ

1. ຈົ່ງຄິດໄລ່ຜົນຕຳລາຂັ້ນໜຶ່ງຂອງຕຳລາລຸ່ມນີ້:

1.
$$f(x) = x^2(3x^4 - 6x + 4)$$

3.
$$f(x) = \frac{1}{1-x} + \frac{x}{1-x^2}$$

5.
$$f(x) = \sqrt{e^{2x} - 1}$$

7.
$$f(x) = 3^{x^2+2}$$

9.
$$f(x) = \ln(x^2 + 1)$$

11.
$$f(x) = (x^2 + 2)^4$$

13.
$$f(x) = \frac{1}{\sqrt[3]{x^2 - 3}}$$

15.
$$f(x) = x + \sqrt{x^2 + 1}$$

17.
$$f(x) = e^{x^2}$$

19.
$$f(x) = \ln(1 + x + \sqrt{2x + x^2})$$

2.
$$f(x) = \frac{1}{x} + \frac{2}{x^2}$$

4.
$$f(x) = \sqrt[3]{x^2 + 1}$$

6.
$$f(x) = x^3 e^{-3x}$$

8.
$$f(x) = e^{x^2 - 2x + 3}$$

10.
$$f(x) = \ln^3 x$$

$$12. \quad f(x) = \ln(\ln x)$$

14.
$$f(x) = \frac{1}{e^{x^2 + x + 1}}$$

16.
$$f(x) = \frac{1}{\sqrt[3]{x^2 + 4}}$$

$$18. \qquad f(x) = e^{x \ln x}$$

20.
$$f(x) = x\sqrt{x}(3\ln x - 2)$$

2. ຊອກຜົນຕຳລາຂັ້ນສອງຂອງຕຳລາລຸ່ມນີ້
$$\left(rac{d^2y}{dx^2}
ight)$$

1.
$$f(x) = 5x^3 - 4x^2 + x$$

3.
$$f(x) = \sqrt[3]{2x+9}$$

$$2. \qquad f(x) = \frac{1+x}{x}$$

$$\overline{9}$$
 4. $f(x) = 3^{x^2}$

$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

$$\lim_{x \to +\infty} \frac{x \ln x}{x + \ln x}$$

$$5. \qquad \lim_{x \to 1} x^{\frac{1}{1-x}}$$

7.
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x^2}\right)^x$$

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

4.
$$\lim_{x\to +\infty} xe^{-x}$$

$$6. \qquad \lim_{x \to +\infty} (\ln x)^{\frac{1}{x}}$$

8.
$$\lim_{x\to 0^+} \left(e^{2x}-1\right)^{\frac{1}{\ln x}}$$

4. ຈົ່ງຊອກຫວ່າງຂື້ນ, ຫວ່າງແຮມ, ຄ່າໃຫຍ່ສຸດ, ຄ່ານ້ອຍສຸດທຸງບຖານຂອງຕຳລາລຸ່ມນີ້:

1.
$$f(x) = \frac{1}{3}x^3 - 3x^2 + 5x + 1$$

2.
$$f(x) = 3x^4 - 4x^3$$

ບົດທີ 4

ມາຕຣິດສ໌

(Matrix)

4.1 ນິຍາມ ແລະ ກົດການຄຳນວນລະຫວ່າງມາຕຣິດສ໌

ຕາຕະລາງຈຳນວນເຊັ່ນ

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

 $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{-1} & a_{-2} & \dots & a_{-m} \end{bmatrix}$ ເອີ້ນວ່າມາຕຣິດສ໌ m ແຖວ n ຖັນ ຫຼື ມາຕຣິດສ໌ຂະໜາດ mxn

ສັນຍາລັກ $\mathbf{A} = (\mathbf{a}_{ij})_{m \times n}$; ແຕ່ລະຈຳນວນໃນມາຕຣິດສ໌ເອີ້ນວ່າອົງປະກອບຂອງ ມາຕຣິດສ໌ ຕົວຢ[້]າງ 1:

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -1 & 4 \\ 3 & 2 & -2 \end{bmatrix}$$
 ແມ່ນມາຕຣິດສ໌ຂະໜາດ 3 X 3 $B = \begin{bmatrix} 0 & 3 & 1 \\ 2 & -3 & 4 \end{bmatrix}$ ແມ່ນມາຕຣິດສ໌ຂະໜາດ 2 X 3 $C = \begin{bmatrix} -1 & 2 \\ 3 & 0 \\ 1 & -2 \end{bmatrix}$ ແມ່ນມາຕຣິດສ໌ຂະໜາດ 3 X 2

$$B = \begin{bmatrix} 0 & 3 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$
 ແມ່ນມາຕຣິດສ໌ຂະໜາດ 2 X 3

$$C = \begin{bmatrix} -1 & 2 \\ 3 & 0 \\ 1 & -2 \end{bmatrix}$$
 ແມ່ນມາຕຣິດສ໌ຂະໜາດ 3 X 2

• ມາຕຣິສ໌ຂະໜາດ ($1 \times n$) ເອີ້ນວ່າມາຕຣິດສ໌ແຖວເຊັ່ນ $A = \begin{bmatrix} 1 & 0 & 2 & 4 \end{bmatrix}$

• ມາຕຣິສ໌ຂະໜາດ (m×1) ເອີ້ນວ່າມາຕຣິດສ໌ຖັນ ຫຼື ມາຕຣິດສ໌ເສົາເຊັ່ນ
$$B=\begin{bmatrix}2\\3\\-1\end{bmatrix}$$

ມາຕຣິດສ໌ທີ່ມີຈຳນວນແຖວເທົ່າກັບຈຳນວນຖັນເອີ້ນວ່າມາຕຣິດສ໌ຈະຕຸລັດ ໃຫ້ສອງມາຕຣິດສ໌ $A=(a_{ij})_{m imes n}$ ແລະ $B=(b_{ij})_{m imes n}$

$$A = B \quad \Leftrightarrow \quad a_{ij} = b_{ij} \quad \forall i, j$$

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

ການບວກສອງມາຕຣິດສ໌ເຂົ້າກັນຈະປະຕິບັດໄດ້ກໍຕໍ່ເມື່ອສອງມາຕຣິດສ໌ຕ້ອງມີຂະໜາດເທົ່າກັນ

ຕ<mark>ົ</mark>ວຢ[່]າງ 2:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ -2 & 3 & 2 \end{bmatrix} \quad , \qquad B = \begin{bmatrix} -1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & -3 & 0 \end{bmatrix}$$

$$A+B = \begin{bmatrix} 1-1 & 2+3 & 3+2 \\ 0+4 & -1+1 & 4+3 \\ -2+2 & 3-3 & 2+0 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 5 \\ 4 & 0 & 7 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 1+1 & 2-3 & 3-2 \\ 0-4 & -1-1 & 4-3 \\ -2-2 & 3+3 & 2-0 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ -4 & -2 & 1 \\ -4 & 6 & 2 \end{bmatrix}$$

ໃຫ້ມາຕຣິດສ໌
$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 ແລະ ຈຳນວນຄົງຄ່ຳ k

ການຄູນຈຳນວນຄົງຄ່າໃສ່ມາຕຣິດສ໌ປະຕິບັດໄດ້ດັ່ງນີ້

$$kA = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{bmatrix}$$

ຕົວຢ່າງ 3:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ -2 & 3 & 2 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} 2 & 4 & 6 \\ 0 & -2 & 8 \\ -4 & 6 & 4 \end{bmatrix}$$

ການບວກມາຕຣິດສ໌ ແລະ ການຄູນຈຳນວນຄົງຄ່າໃສ່ມາຕຣິດສ໌ມີຄຸນລັກສະນະພື້ນຖານດັ່ງລຸ່ມນີ້:

•
$$k(A + B) = kA + kB$$

•
$$A - A = 0$$

ໃຫ້ສອງມາຕຣິດສ໌
$$A=(a_{ij})_{m\times n}$$
 ແລະ $B=(b_{ij})_{n\times k}$
$$A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad B=\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$AB=\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21}+a_{13}b_{31} & a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{32} & a_{11}b_{13}+a_{12}b_{23}+a_{13}b_{33} \\ a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31} & a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32} & a_{21}b_{13}+a_{22}b_{23}+a_{23}b_{33} \\ a_{31}b_{11}+a_{32}b_{21}+a_{33}b_{31} & a_{31}b_{12}+a_{32}b_{22}+a_{33}b_{32} & a_{31}b_{13}+a_{32}b_{23}+a_{33}b_{33} \end{bmatrix}$$

ຈະດຳເນີນການຄູນ AB ໄດ້ກໍຕໍ່ເມື່ອຈຳນວນຖັນຂອງ A ເທົ່າຈຳນວນແຖວຂອງ B ຫຼື ຈຳນວນຖັນ ຂອງມາຕຣິດສ໌ທີ່ໜຶ່ງຕ້ອງເທົ່າກັບຈຳນວນແຖວຂອງມາຕຣິດສ໌ທີ່ສອງ ຕົວຢ່າງ 4:

1.
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1.1 + 2.2 & 1.3 + 2.4 \\ (-1).1 + 3.2 & (-1).3 + 3.4 \end{bmatrix} = \begin{bmatrix} 5 & 11 \\ 5 & 9 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ -2 & 3 & 2 \end{bmatrix}$$
 , $B = \begin{bmatrix} -1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & -3 & 0 \end{bmatrix}$

$$AB = \begin{bmatrix} 1.(-1) + 2.4 + 3.2 & 1.3 + 2.1 + 3.(-3) & 1.2 + 2.3 + 3.0 \\ 0.(-1) + (-1).4 + 4.2 & 0.3 + (-1).1 + 4.(-3) & 0.2 + (-1).3 + 4.0 \\ (-2).(-1) + 3.4 + 2.2 & (-2).3 + 3.1 + 2.(-3) & (-2).2 + 3.3 + 2.0 \end{bmatrix}$$

$$= \begin{bmatrix} 13 & -4 & 8 \\ 4 & -13 & -3 \\ 18 & -9 & 5 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1.4 + 2.0 + 4.2 & 1.1 + 2.(-1) + 4.7 & 1.4 + 2.3 + 4.5 & 1.3 + 2.1 + 4.2 \\ 2.4 + 6.0 + 0.2 & 2.1 + 6.(-1) + 0.7 & 2.4 + 6.3 + 0.5 & 2.3 + 6.1 + 0.2 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

ການຄູນລະຫວ່າງມາຕຣິດສ໌ມີຄຸນລັກສະນະພື້ນຖານກັ່ງລຸ່ມນີ້:

•
$$(kA)B = k(AB)$$

•
$$A(BC) = (AB)C$$

•
$$A(B + C) = AB + AC$$

•
$$(B+C)A = BA + CA$$

ໂດຍທົ່ວໄປແລ້ວ $AB \neq BA$

ມາຕຣິດສ໌ທີ່ມີອົງປະກອບໃນເສັ້ນເນັ່ງຈອມແຕ່ຂ້າຍຫາຂວາແມ່ນ 1 ສ່ວນອົງປະກອບອື່ນແມ່ນ 0 ໝົດ ເອີ້ນວ່າມາຕຣິດສ໌ຫົວໜ່ວຍສັນຍາລັກດ້ວຍ I ຕົວຢ່າາ 5:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 ; $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

ມາຕຣິດສ໌ທີ່ທຸກໆອົງປະກອບແມ່ນ 0 ໝົດເອີ້ນວ່າມາຕຣິດສ໌ສູນ ຕົວຢ່າງ 6:

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad ; \qquad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

4.2 ມາຕຣິດສ໌ປິ້ນ , ການຜັນປ່ຽນມາຕຣິດສ໌ , ມາຕຣິດສ໌ເຄິ່ງຄື

ສັງເກດເຫັນວ່າ AI = IA = A

์ ท้าอ่า AB = BA = I

ເພິ່ນເວົ້າວ່າ B ແມ່ນມາຕຣິດສ໌ປີ້ນຂອງ A (Inverse matrix) ແລະ ສັນຍາລັກດ້ວຍ $B=A^{-1}$ ມາຕຣິດສ໌ໃດໜຶ່ງຈະມີມາຕຣິດສ໌ປີ້ນກໍຕໍ່ເມື່ອແມ່ນມາຕຣິດສ໌ຈະຕຸລັດ

• ສໍາລັບມາຕຣິດສ໌ຂະໜາດ 2 x 2

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 ຈະໄດ້ $A^{-1} = \frac{1}{ad - cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

ຕ<mark>ົ</mark>ວຢ[່]າງ 7:

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
 ຈະໄດ້ $A^{-1} = \frac{1}{2 \cdot 3 - 1 \cdot 5} \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$

• ສຳລັບມາຕຣິດສ໌ທີ່ມີຂະໜາດໃຫຍ່ກວ່າ 2 x 2 ແມ່ນບໍ່ສາມາດນຳໃຊ້ວິທີຂ້າງເທິງຊອກ ມາຕຣິດສ໌ປີ້ນໄດ້

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad \Rightarrow \quad A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$

ເພິ່ນເອີ້ນ A^{T} ແມ[່]ນມາຕຣິດສ[໌]ຜັນປ[່]ງນຂອງ A . ຕົວຢ[່]າງ 8:

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & -3 & 0 \end{bmatrix} \implies A^{T} = \begin{bmatrix} -1 & 4 & 2 \\ 3 & 1 & -3 \\ 2 & 3 & 0 \end{bmatrix}$$

ການຜັນປ່ຽນມາຕຣິດສ໌ມີຄຸນລັກສະນະພື້ນຖານດັ່ງລຸ່ມນີ້

$$\bullet \qquad (A^T)^T = A$$

$$\bullet \qquad (A + B)^T = A^T + B^T$$

$$\bullet \qquad (AB)^T = B^T A^T$$

ຖ້າວ່າ $A^T = A$ ເພິ່ນວ່າ A ແມ່ນມາຕຣິດສ໌ເຄິ່ງຄື ຕົວຢ່າງ 8:

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 3 \\ -1 & 3 & 4 \end{bmatrix}$$
 ແມ່ນມາຕຣິດສ໌ເຄິ່ງຄື

4.3 ລະບົບສົມຕົນລີເນແອ, ວິທີລຶບຂອງກາວສ໌

ຄວາມຮູ້ກ່ຽວກັບລະບົບສົມຜົນລີເນແອ

ລະບົບສົມຜົນລີເນແອທີ່ມີ m ສົມຜົນ ແລະ n ຕົວລັບແມ[່]ນລະບົບສົມຜົນທີ່ມີຮູບຮ[່]າງ

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots & a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots & a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots & a_{mn}x_n = b_m \end{cases}$$

ຊຶ່ງແມ່ນລະບົບສົມຜົນ (mxn) ໃນນັ້ນ $a_{ij}, b_j \in R$, $1 \le i \le m$. $1 \le j \le n$

4.3.1 ລະບົບສົມຜົນລີເນແອທີ່ປະກອບດ້ວຍສອງສົມຜົນ ແລະ ສອງຕົວລັບ

ຮູບຮ່າງທົ່ວໄປຂອງລະບົບສົມຜົນດັ່ງກ່າວແມ່ນ:

$$\begin{cases} a_1 x + b_1 y = c_1 & (1) \\ a_2 x + b_2 y = c_2 & (2) \end{cases}$$

ຊຶ່ງ \mathbf{a}_1 ; \mathbf{a}_2 ; \mathbf{b}_1 ; \mathbf{b}_2 ; \mathbf{c}_1 ; \mathbf{c}_2 ແມ່ນຈຳນວນຈິງ. ລະບົບສົມຜົນດັ່ງກ່າວແມ່ນລະບົບສົມ ຜົນ (2x2). ໃຈຜົນຂອງລະບົບສົມຜົນນີ້ຈະມີຮູບຮ່າງ (x,y) ຊຶ່ງເອີ້ນວ່າແຝດຂອງຈຳນວນຈິງ x ແລະ y ທີ່ຕອບສະໜອງສົມຜົນທັງສອງ.

ການຊອກຫາໃຈຜົນຂອງລະບົບສົມຜົນດັ່ງກ່າວແມ່ນການຊອກຫາເມັດຕັດກັນລະຫວ່າງສອງ ເສັ້ນຊື່ທີ່ບັນຈຸໃນລະບົບສົມຜົນນັ້ນຊຶ່ງສາມາດສະແດງທາງດ້ານເລຂາຄະນິດໄດ້ດັ່ງນີ້:

ລະບົບສົມຜົນມີໃຈຜົນດູງວເມື່ອສອງ ເສັ້ນຊື່ຕັດກັນຢູ່ເມັດໜຶ່ງ

ລະບົບສົມຜົນບໍ່ມີໃຈຜົນເມື່ອສອງເສັ້ນຊື່ບໍ່ ຕັດກັນ ຫຼື ສອງເສັ້ນຊື່ຂະໜານກັນ

ລະບົບສົມຜົນມີຫຼາຍໃຈຜົນເມື່ອສອງ ເສັ້ນຊື່ເຕັງກັນ

4.3.1.1 ການແກ້ລະບົບສົມຜົນ (2x2) ດ້ວຍເສັ້ນສະແດງ

ຕົວຢ່າງ 9: ຈົ່ງຊອກຫາໃຈຜົນຂອງລະບົບສົມຜົນລຸ່ມນີ້:

$$\begin{cases} x + y = 1 \\ x - y = 1 \end{cases}$$

2)
$$\begin{cases} x+y=5\\ x+y=1 \end{cases}$$
 3)
$$\begin{cases} x+y=1\\ 3x+3y=3 \end{cases}$$

$$3) \begin{cases} x+y=1\\ 3x+3y=3 \end{cases}$$

ເຮົາສັງເກດເຫັນວ່າສອງເສັ້ນຊື່ຕັດກັນຢູ່ເມັດ ທີ່ມີຕົວປະສານ x ເທົ່າ 1 ແລະ ຕົວປະສານ y ເທົ່າ 0 ດັ່ງນັ້ນລະບົບສົມຜົນດັ່ງກ່າວມີໃຈຜົນແມ່ນ (1,0)

ເຮົາສັງເກດເຫັນວ່າສອງເສັ້ນຊື່ຂະໜານກັນ ສະແດງວ່າລະບົບສົມຜົນບໍ່ມີໃຈຜົນ

ສອງເສັ້ນຊື່ເຕັງກັນສະແດງວ່າລະບົບສົມ ຜົນມີຫຼາຍໃຈຜົນ ຫຼື ລະບົບສົມຜົນມີໃຈຜົນ ບໍ່ສິ້ນສຸດ

4.3.1.2 ການແກ້ລະບົບສົມຜົນ (2x2) ດ້ວຍວິທີຄັດແທນ

- ຂັ້ນຕອນທີ 1 ຖອນເອົາ x ຫຼື y ຈາກສົມຜົນ (1)
- ຂັ້ນຕອນທີ 2 ເອົາຄ່າ x ຫຼື y ທີ່ຖອນໄດ້ຈາກສົມຜົນ (1) ແທນໃສ່ສົມຜົນ (2)
- ຂັ້ນຕອນທີ 3 ຊອກຫາຄ່ຳ x ຫຼື y ຈາກສົມຜົນ (2)
- ຂັ້ນຕອນທີ 4 ເອົາຄ່ຳ x ຫຼື y ທີ່ຊອກໄດ້ຈາກສົມຜົນ (2) ແທນໃສ່ສົມຜົນທີ່ຖອນໄດ້ ຈາກສົມຜົນ (1)

ຕົວຢ່າງ 10: ແກ້ລະບົບສົມຕົນລຸ່ມນີ້ດ້ວຍວິທີຄັດແທນ

$$\begin{cases} x + 3y = 270 & (1) \\ x - y = 10 & (2) \end{cases}$$

ຈາກສົມຜົນ (1) ຈະໄດ້ x = 270 - 3y (3)

ເອົາ (3) ແທນໃສ່ (2) ຈະໄດ້

$$270 - 3y - y = 10$$

$$\Leftrightarrow 270 - 4y = 10$$

$$\Leftrightarrow 4y = 260$$

$$\Rightarrow y = \frac{260}{4} = 65$$

จาก (3)
$$\Rightarrow x = 270 - 3 \times 65 = 75$$

ລະບົບສົມຜົນທີ່ໃຫ້ມາມີໃຈຜົນແມ່ນ (75 , 65)

4.3.1.3 ການແກ້ລະບົບສົມຜົນ (2x2) ດ້ວຍວິທີລົບລ້າງ

$$\begin{cases} a_1 x + b_1 y = c_1 & (1) \\ a_2 x + b_2 y = c_2 & (2) \end{cases}$$

• ຂັ້ນຕອນທີ 1 ຄູນຈຳນວນຄົງຄ່ຳ a_1 ແລະ a_2 ໃສ່ສົມຜົນທີ (2) ແລະ (1) ຕາມລຳດັບ ແລ້ວເອົາຜົນໄດ້ຮັບລົບອອກຈາກກັນຈະໄດ້ສົມຜົນທີ່ມີຕົວລັບ y ພຸງງຕົວດງວ

$$- a_2 \begin{cases} a_1 x + b_1 y = c_1 & (1) \\ a_1 \begin{cases} a_2 x + b_2 y = c_2 & (2) \end{cases} \end{cases}$$

$$a_2b_1y - a_1b_2y = a_2c_1 - a_1c_2$$

• ຂັ້ນຕອນທີ 2 ແກ້ສົມຜົນທີ່ໄດ້ຈາກຂັ້ນຕອນທີ 1 ຈະໄດ້ຄ່າຂອງ y

$$y = \frac{a_2c_1 - a_1c_2}{a_2b_1 - a_1b_2}$$

ullet ຂັ້ນຕອນທີ 3 ເອົາຄ່າ ຂອງ y ແທນໃສ່ (1) ຫຼື (2) ຈະໄດ້ຄ່າຂອງ x

ຕົວຢ່າງ 11: ແກ້ລະບົບສົມຜົນລຸ່ມນີ້ດ້ວຍວິທີລົບລ້າງ

$$\begin{cases} 3x + 5y = 21 & (1) \\ 5x + 9y = 37 & (2) \end{cases}$$

ຄູນ 5 ໃສ່ (1) ແລະ 3 ໃສ່ (2) ຈະໄດ້

$$-\frac{5}{3} \begin{cases} 3x + 5y = 21 & (1) \\ 5x + 9y = 37 & (2) \end{cases}$$

25y - 27y = 105 - 111 $\Leftrightarrow -2y = -6$

$$\Rightarrow$$
 $y=3$

แทบค่ำ y = 3 ใส่สิมติบ (1) จะได้ $3x + 5 \times 3 = 21$

$$\Rightarrow x=2$$

ດັ່ງນັ້ນໃຈຜົນຂອງລະບົບສົມຜົນທີ່ໃຫ້ມາແມ່ນ (2 , 3)

4.3.2 ລະບົບສົມຜົນລີເນແອທີ່ປະກອບດ້ວຍສາມສົມຜົນ ແລະ ສາມຕົວລັບ

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

$$a_{ii}, b_i \in \mathbb{R} \quad , \quad 1 \le i \le 3; 1 \le j \le 3$$

ໃຈຜົນຂອງລະບົບສົມຜົນດັ່ງກ່າວມີຮູບຮ່າງ (x,y,z)

- ສອງລະບົບສົມຜົນທີ່ມີຕົວລັບເທົ່າກັນ ແລະ ມີກຸ່ມໃຈຜົນເທົ່າກັນເອີ້ນວ່າທູງບເທົ່າກັນ. ເຮົາສາມາດ ນຳໃຊ້ຫຼັກການຄຳນວນ 3 ວິທີຕໍ່ໄປນີ້ກັບລະບົບສົມຜົນລີເນແອຈະໄດ້ລະບົບສົມຜົນລີເນແອທີ່ທູງບ ເທົ່າກັບລະບົບສົມຜົນເດີມ.
 - 1. ເຮົາສາມາດປ່ຽນລຳດັບຂອງສົມຜົນໃນລະບົບສົມຜົນໄດ້.
 - 2. ເຮົາສາມາດຄູນຈຳນວນຄົງຄ່າຕ່າງສູນກັບສົມຜົນໃດໜຶ່ງ.
 - 3. ເຮົາສາມາດບວກສອງສົມຜົນເຂົ້າກັນເພື່ອໃຫ້ໄດ້ສົມຜົນໃໝ່.
- ລະບົບສົມຜົນລີເນແອຂະໜາດ $n \times n$ ຊື່ງໃນສົມຜົນທີ່ k ສຳປະສິດຂອງຕົວລັບ k-1 ຕົວທຳອິດ ເທົ່າສູນໝົດແຕ່ສຳປະສິດຂອງຕົວລັບ x_k ຕ່າງສູນ (k=1,2,3,...,n) ເອີ້ນວ່າລະບົບສົມຜົນໃນ <u>ຮູບຮ່າງສາມແຈ.</u>

ຕົວຢ່າງ 12: ລະບົບສົມຜົນ

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 1 & (1) \\ x_2 - x_3 = 2 & (2) \\ 2x_3 = 4 & (3) \end{cases}$$

ແມ[່]ນລະບົບສົມຜົນໃນ<u>ຮູບ</u>ຮ່າງສາມແຈ<u>.</u>

ສັງເກດເຫັນວ່າລະບົບສົມຜົນໃນຮູບຮ່າງສາມແຈແກ້ງ່າຍ. ເຊັ່ນລະບົບສົມຜົນຂ້າງເທິງນີ້ຈາກສົມຜົນ (3) ຈະໄດ້ $x_3=2$. ເມື່ອແທນ $x_3=2$ ໃສ່ສົມຜົນ (2) ຈະໄດ້ $x_2=4$. ເມື່ອແທນ $x_3=2$ ແລະ $x_2=4$ ໃສ່ສົມຜົນ (1) ຈະໄດ້ $x_1=-3$. ຂະບວນການແທນຄ່າຂອງຕົວລັບແຕ່ລຸ່ມຂື້ນເທິງ ເອີ້ນວ່າຂະບວນການແທນຄືນຫຼັງ.

ເມື່ອລະບົບສົມຜົນລີເນແອຂະໜາດ n×n ບໍ່ຢູ່ໃນຮູບຮ່າງສາມແຈເຮົາສາມາດນຳໃຊ້ຫຼັກການຄຳນວນ 3 ວິທີສຳລັບລະບົບສົມຜົນເພື່ອປ່ຽນຮູບຮ່າງລະບົບສົມຜົນໃຫ້ໄປສູ່ລະບົບສົມຜົນຮູບຮ່າງສາມແຈຊື່ງ ທຸງບເທົ່າກັບລະບົບສົມຜົນເດີມ.

ຕົວຢ[່]າງ 13: ແກ້ລະບົບສົມຜົນ

$$\begin{cases} x_1 + 2x_2 + x_3 = 3 & (1) \\ 3x_1 - x_2 - 3x_3 = -1 & (2) \\ 2x_1 + 3x_2 + x_3 = 4 & (3) \end{cases}$$

$$-3(1)+(2) \rightarrow (4)$$

-2(1) + (3) \rightarrow (5) ຈະໄດ້ລະບົບສົມຜົນໃໝ່ທຸງບເທົ່າກັບສົມຜົນເດີມດັ່ງນີ້

$$\begin{cases} x_1 + 2x_2 + x_3 = 3 & (1) \\ -7x_2 - 6x_3 = -10 & (4) \\ -x_2 - x_3 = -2 & (5) \end{cases}$$

-7(5) + (4)
ightarrow (6) ຈະໄດ້ລະບົບສົມຜົນໃໝ່ທຽບເທົ່າກັບສົມຜົນເດີມດັ່ງນີ້

$$\begin{cases} x_1 + 2x_2 + x_3 = 3 & (1) \\ -7x_2 - 6x_3 = -10 & (4) \\ x_2 = 4 & (6) \end{cases}$$

ໂດຍໃຊ້ຂະບວນການແທນຄືນຫຼັງຈະໄດ້ $x_3=4$, $x_2=-2$, $x_1=3$

ເມື່ອເບິ່ງແຕ່ສຳປະສິດຂອງຕົວລັບໃນລະບົບສົມຜົນທີ່ໃຫ້ມາຂ້າງເທິງນີ້ຈະເຫັນຕາຕະລາງຈຳນວນ ທີ່ມີສາມແຖວ ແລະ ສາມຖັນດັ່ງລຸ່ມນີ້:

ເມື່ອຕື່ມສຳປະສິດເອກະລາດໃສ່ມາຕຣິດສ໌ສຳປະສິດຂອງລະບົບສົມຕົນຈະໄດ້ມາຕຣິສ໌

ຫຼັກການຄຳນວນ 3 ວິທີທີ່ໃຊ້ກັບລະບົບສົມຜົນສາມາດນຳໃຊ້ກັບມາຕຣິດສ໌ຂະຫຍາຍຈະໄດ້ ມາຕຣິດສ໌ຂະຫຍາຍຂອງລະບົບສົມຜົນໃໝ່ທີ່ທຸງບເທົ່າກັບລະບົບສົມຜົນເດີມ. ເຊັ່ນການຄຳນວນ ກັບລະບົບສົມຜົນໃນຕົວຢ່າງຂ້າງເທິງເມື່ອຂຸງນໃນຮູບຮ່າງມາຕຣິດສ໌ຈະໄດ້:

$$(-3)R_1 + R_2 \rightarrow R_{2,1}$$

$$(-7)R_3 + R_{2.1} \rightarrow R_{3.1.2}$$

$$\begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -7 & -6 & -10 \\ 0 & -1 & -1 & -2 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_{2.1} \end{matrix} \quad \longleftrightarrow \quad \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -7 & -6 & -10 \\ 0 & 0 & 1 & 4 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_{2.1} \\ R_{3.1.2} \end{matrix}$$

ຊຶ່ງເປັນມາຕຣິດສ[໌]ຂະຫຍາຍຂອງລະບົບສົມຜົນທີ່ທຽບເທົ່າກັບລະບົບສົມຜົນເດີມຊຶ່ງເອີ້ນວ[່]າ ມາຕຣິດສ[໌]ຂະຫຍາຍຮູບຮ[່]າງສາມແຈ.

ຈາກມາຕຣິດສ໌ຂະຫຍາຍສຸດທ້າຍເຮົາຈະໄດ້ລະບົບສົມຜົນ

$$\begin{cases} x + 2y + z = 3\\ 0x - 7y - 6z = -10\\ 0x + 0y + z = 4 \end{cases}$$

ໂດຍໃຊ້ຂະບວນການແທນຄືນຫຼັງຈະໄດ້ $x_3=4$, $x_2=-2$, $x_1=3$ ມີບາງກໍລະນີເຮົາບໍ່ສາມາດປ່ຽນມາຕຣິດສ໌ຂະຫຍາຍຂອງລະບົບສົມຜົນໄປສູ່ຮູບຮ່າງສາມແຈ. ຕົວຢ່າງ 14:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 1 & -1 \\ -2 & 0 & 0 & 3 & 1 \\ 0 & 1 & 1 & 3 & -1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

ມາຕຣິດສ໌ທີ່ໄດ້ມາບໍ່ແມ່ນຮູບຮ່າງສາມແຈ. ມາຕຣິດສ໌ສຸດທ້າຍຂອງລະບົບສົມຜົນຂ້າງເທິງນີ້<u>ມີຮູບຮ່າງ</u>
<u>ຂັ້ນໃດ</u> . ຂະບວນການປ່ຽນມາຕຣິດສ໌ຂະຫຍາຍຂອງລະບົບສົມຜົນລີເນແອໃຫ້ເປັນມາຕຣິດສ໌ຮູບຮ່າງ
ຂັ້ນໃດເອີ້ນວ່າວິທີລຶບຂອງກາວສ໌

ສັງເກດເຫັນວ່າເມື່ອມາຕຣິດສ໌ຂະຫຍາຍຂອງລະບົບສົມຜົນທີ່ຢູ່ໃນຮູບຮ່າງຂັ້ນໃດໃນກໍລະນີລຸ່ມນີ້:

1.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ -1 & 2 & 2 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow ລະບົບສົມຜົນບໍ່ມີໃຈຜົນ$$

2.
$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & -1 & 1 & 2 \\ 4 & 3 & 3 & 4 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1/5 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Rightarrow \text{ລະບົບສົມຜົນມີໃຈຜົນດຸງວ}$$

3.
$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & -1 & 1 & 2 \\ 4 & 3 & 3 & 4 \\ 3 & 1 & 2 & 3 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow ລະບົບສົມຜົນມີຫຼາຍໃຈຜົນ$$

4.3.2.1 ການແກ້ລະບົບສົມຕີນລີເນແອ (3×3) ດ້ວຍວິທີຂອງ ກາວສ໌ - ຈໍແດນ

ຂັ້ນຕອນຂອງວິທີ ກາສ໌ - ຈໍແດນ

ຈາກລະບົບສົມຜົນ
$$\begin{cases} a_{11}x+a_{12}y+a_{13}z=b_1\\ a_{21}x+a_{22}y+a_{23}z=b_2\\ a_{31}x+a_{32}y+a_{33}z=b_3 \end{cases}$$

• ຂັ້ນຕອນທີ 1 ຜັນປ່ຽນສຳປະສິດຂອງ x ເຮັດໃຫ້ສຳປະສິດຂອງ x ເທົ່າ 1 ສຳລັບສົມຜົນທີ 1 ແລະ ເທົ່າ 0 ສຳລັບສົມຜົນທີ 2 ແລະ 3 ໝາຍຄວາມວ່າໃນເບື້ອງຕົ້ນສຳປະສິດຂອງ x ມີ

ຮູບຮ່າງ
$$egin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$$
 R_1 ຈະຖືກຜັນປ່ຽນເປັນ $egin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $R_{1.1}$ $R_{2.1}$ $R_{3.1}$

• ຂັ້ນຕອນທີ 2 ຜັນປ[່]ຽນສຳປະສິດຂອງ *y*

ເຮັດໃຫ້ສຳປະສິດຂອງ y ເທົ່າ 1 ສຳລັບສົມຜົນທີ 2 ແລະ ເທົ່າ 0 ສຳລັບສົມຜົນທີ 1 ແລະ 3 ໝາຍຄວາມວ່າໃນເບື້ອງຕົ້ນສຳປະສິດຂອງ y ມີ

ຮູບຮ່າງ
$$egin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix}$$
 R_1 ຈະຖືກຜັນປຸ່ງນເປັນ $egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $R_{1.1}$ $R_{2.1}$ $R_{3.1}$

• ຂັ້ນຕອນທີ 3 ຜັນປ $\dot{}$ ຽນສຳປະສິດຂອງ z

ເຮັດໃຫ້ສຳປະສິດຂອງ z ເທົ່າ 1 ສຳລັບສົມຜົນທີ 3 ແລະ ເທົ່າ 0 ສຳລັບສົມຜົນທີ 1 ແລະ 2 ໝາຍຄວາມວ່າໃນເບື້ອງຕົ້ນສຳປະສິດຂອງ z ມີ

ຮູບຮ່າງ
$$egin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$$
 $egin{align*} R_1 \\ R_2 \\ R_3 \end{bmatrix}$ ຈະຖືກຜັນປ່ຽນເປັນ $egin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $egin{align*} R_{1.1} \\ R_{2.1} \\ R_{3.1} \end{bmatrix}$

ຕົວຢ່າງ 15: ຈົ່ງນຳໃຊ້ວິທີຂອງ ກາວສ໌ - ຈໍແດນ ແກ້ລະບົບສົມຜົນລຸ່ມນີ້:

$$\begin{cases} 2x + 8y + 6z = 20 & (R_1) \\ 4x + 2y - 2z = -2 & (R_2) \\ 3x - y + z = 11 & (R_3) \end{cases}$$

ວິທີແກ້:

• ຂັ້ນຕອນທີ 1 ຜັນປ່ານສຳປະສິດຂອງ x

$$\frac{1}{2}(R_{\scriptscriptstyle 1}) \to (R_{\scriptscriptstyle 1.1})$$

$$\begin{cases} 2x + 8y + 6z = 20 & (R_1) \\ 4x + 2y - 2z = -2 & (R_2) \\ 3x - y + z = 11 & (R_3) \end{cases} \longrightarrow \begin{cases} x + 4y + 3z = 10 & (R_{1.1}) \\ 4x + 2y - 2z = -2 & (R_2) \\ 3x - y + z = 11 & (R_3) \end{cases}$$

$$-4(R_{1.1}) + (R_2) \rightarrow (R_{2.1})$$

$$\begin{cases} x + 4y + 3z = 10 & (R_{1.1}) \\ 4x + 2y - 2z = -2 & (R_2) \\ 3x - y + z = 11 & (R_3) \end{cases} \longrightarrow \begin{cases} x + 4y + 3z = 10 & (R_{1.1}) \\ 0x - 14y - 14z = -2 & (R_{2.1}) \\ 3x - y + z = 11 & (R_3) \end{cases}$$

$$-3(R_{1.1}) + (R_3) \rightarrow (R_{3.1})$$

$$\begin{cases} x + 4y + 3z = 10 & (R_{1.1}) \\ 0x - 14y - 14z = -2 & (R_{2.1}) \\ 3x - y + z = 11 & (R_3) \end{cases} \longrightarrow \begin{cases} x + 4y + 3z = 10 & (R_{1.1}) \\ 0x - 14y - 14z = -2 & (R_{2.1}) \\ 0x - 13y - 8z = -19 & (R_{3.1}) \end{cases}$$

• ຂັ້ນຕອນທີ 2 ຜັນປ^{ູ່}ເນສຳປະສິດຂອງ y

$$-\frac{1}{14}(R_{2.1}) \to (R_{2.1.2})$$

$$\begin{cases} x + 4y + 3z = 10 & (R_{1.1}) \\ 0x - 14y - 14z = -42 & (R_{2.1}) \\ 0x - 13y - 8z = -19 & (R_{3.1}) \end{cases} \longrightarrow \begin{cases} x + 4y + 3z = 10 & (R_{1.1}) \\ 0x + y + z = 3 & (R_{2.1.2}) \\ 0x - 13y - 8z = -19 & (R_{3.1}) \end{cases}$$

$$-4(R_{2.1.2}) + (R_{1.1}) \rightarrow (R_{1.1.2})$$

$$\begin{cases} x+4y+3z=10 & (R_{1.1}) \\ 0x+y+z=3 & (R_{2.1.2}) \\ 0x-13y-8z=-19 & (R_{3.1}) \end{cases} \longrightarrow \begin{cases} x+0y-z=-2 & (R_{1.1.2}) \\ 0x+y+z=3 & (R_{2.1.2}) \\ 0x-13y-8z=-19 & (R_{3.1}) \end{cases}$$

$$13(R_{212}) + (R_{31}) \rightarrow (R_{312})$$

$$\begin{cases} x + 0y - z = -2 & (R_{1.1.2}) \\ 0x + y + z = 3 & (R_{2.1.2}) \\ 0x + 0y - 8z = -19 & (R_{3.1}) \end{cases} \longrightarrow \begin{cases} x + 0y - z = -2 & (R_{1.1.2}) \\ 0x + y + z = 3 & (R_{2.1.2}) \\ 0x + 0y + 5z = 20 & (R_{3.1.2}) \end{cases}$$

• ຂັ້ນຕອນທີ 3 ຜັນປ_{ູ່}ານສຳປະສິດຂອງ z

$$\frac{1}{5}(R_{3.1.2}) \to (R_{3.1.2.3})$$

$$\begin{cases} x + 0y - z = -2 & (R_{1.1.2}) \\ 0x + y + z = 3 & (R_{2.1.2}) \\ 0x + 0y + 5z = 20 & (R_{3.1.2}) \end{cases}$$

$$\begin{cases} x + 0y - z = -2 & (R_{1.1.2}) \\ 0x + y + z = 3 & (R_{2.1.2}) \\ 0x + 0y + z = 4 & (R_{3.1.2.3}) \end{cases}$$

$$(R_{3,1,2,3}) + (R_{1,1,2}) \rightarrow (R_{1,1,2,3})$$

$$\begin{cases} x + 0y - z = -2 & (R_{1.1.2}) \\ 0x + y + z = 3 & (R_{2.1.2}) \\ 0x + 0y + z = 4 & (R_{3.1.2.3}) \end{cases} \longrightarrow \begin{cases} x + 0y + 0z = 2 & (R_{1.1.2.3}) \\ 0x + y + z = 3 & (R_{2.1.2}) \\ 0x + 0y + z = 4 & (R_{3.1.2.3}) \end{cases}$$

$$-1(R_{3.1.2.3}) + (R_{2.1.2}) \rightarrow (R_{2.1.2.3})$$

$$\begin{cases} x + 0y + 0z = 2 & (R_{1.1.2.3}) \\ 0x + y + 0z = -1 & (R_{2.1.2.3}) \\ 0x + 0y + z = 4 & (R_{3.1.2.3}) \end{cases}$$

ດັ່ງນັ້ນໃຈຜົນຂອງລະບົບສົມຜົນແມ່ນ x=2 ; y=-1 ແລະ z=4

4.3.2.2 ການນຳໃຊ້ວິທີຂອງກາວສ໌ - ຈໍແດນເຂົ້າໃນມາຕຣິດສ໌ຂະຫຍາຍຂອງລະບົບສົມຜົນ

ຈາກລະບົບສົມຕົນ
$$\begin{cases} a_{11}x+a_{12}y+a_{13}z=b_1\\ a_{21}x+a_{22}y+a_{23}z=b_2\\ a_{31}x+a_{32}y+a_{33}z=b_3 \end{cases}$$

ເຮົາຈະໄດ້ມາຕຣິດສ໌ຂະຫຍາຍແມ່ນ: $\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$

• ຂັ້ນຕອນທີ 1 ຜັນປ່ຽນເສົາທີ 1

ຜັນປ່ຽນມາຕຣິດສ໌ຂະຫຍາຍໄປສູ່ມາຕຣິດສ໌ຂະຫຍາຍໃໝ່ໂດຍເຮັດໃຫ້ອົງປະກອບທີ 1 ໃນເສົາທີ 1 ມີຄ່າເທົ່າກັບ 1 ສ່ວນອົງປະກອບອື່ນໃນເສົາທີ 1 ໃຫ້ມີຄ່າເທົ່າ 0

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{bmatrix}$$

• ຂັ້ນຕອນທີ 2 ຜັນປ່ຽນເສົາທີ 2

ຜັນປ່ຽນມາຕຣິດສ໌ຂະຫຍາຍທີ່ໄດ້ຈາກຂັ້ນຕອນທີ 1 ໄປສູ່ມາຕຣິດສ໌ຂະຫຍາຍໃໝ່ໂດຍເຮັດໃຫ້ອົງ ປະກອບທີ 2 ໃນເສົາທີ 2 ມີຄ່ຳເທົ່າກັບ 1 ສ່ວນອົງປະກອບອື່ນໃນເສົາທີ 2 ໃຫ້ມີຄ່ຳເທົ່າ 0

$$\begin{bmatrix} 1 & * & * | * \\ 0 & * & * | * \\ 0 & * & * | * \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & * | * \\ 0 & 1 & * | * \\ 0 & 0 & * | * \end{bmatrix}$$

ຂັ້ນຕອນທີ 3 ຜັນປ່ຽນເສົາທີ 3
 ຜັນປ່ຽນມາຕຣິດສ໌ຂະຫຍາຍທີ່ໄດ້ຈາກຂັ້ນຕອນທີ 2 ໄປສູ່ມາຕຣິດສ໌ຂະຫຍາຍໃໝ່ໂດຍເຮັດໃຫ້ອົງປະກອບທີ 3 ໃນເສົາທີ 3 ມີຄ່າເທົ່າກັບ 1 ສ່ວນອົງປະກອບອື່ນໃນເສົາທີ 3 ໃຫ້ມີຄ່າເທົ່າ 0

$$\begin{bmatrix} 1 & 0 & * | * \\ 0 & 1 & * | * \\ 0 & 0 & * | * \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 | a \\ 0 & 1 & 0 | b \\ 0 & 0 & 1 | c \end{bmatrix}$$

• ຂັ້ນຕອນສຸດທ້າຍອ່ານໃຈຜົນຈາກເສົາເບື້ອງຂວາມື

$$\begin{cases} x + 0y + 0z = a \\ 0x + y + 0z = b \\ 0x + 0y + z = c \end{cases}$$

ສະແດງວ່າໃຈຜົນຂອງລະບົບສົມຜົນ ແມ່ນ: (x,y,z)=(a,b,c) ຕົວຢ່າງ 16: ຈົ່ງຊອກຫາໃຈຜົນຂອງລະບົບສົມຜົນລຸ່ມນີ້ດ້ວຍວິທີຂອງກາວສ໌ - ຈໍແດນ

$$\begin{cases} x + y + z = 6 \\ 2x + y + 6z = 22 \\ 3x + 6y + z = 18 \end{cases}$$

ຈາກລະບົບສົມຜົນເຮົາຈະໄດ້ມາຕຣິດສ໌ຂະຫຍາຍແມ່ນ: \begin{bmatrix} 1 & 1 & 6 \\ 2 & 1 & 6 & 22 \\ 3 & 6 & 1 & 18 \end{bmatrix}

• ຂັ້ນຕອນທີ 1 ຜັນປ່ຽນເສົາທີ 1

$$-2R_1 + R_2 \rightarrow R_{2.1}$$

$$-3R_1 + R_3 \rightarrow R_{3.1}$$

• ຂັ້ນຕອນທີ 2 ຜັນປ່ຽນເສົາທີ 2 $-R_{2,1} \to R_{2,1,2}$

$$(-1) \begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & -1 & 4 & | & 10 \\ 0 & 3 & -2 & | & 0 \end{bmatrix} \quad \begin{array}{c} R_1 \\ R_{2.1} \\ R_{3.1} \end{array} \quad \rightarrow \quad \begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & -4 & | & -10 \\ 0 & 3 & -2 & | & 0 \end{bmatrix} \quad \begin{array}{c} R_1 \\ R_{2.1.2} \\ R_{3.1} \end{array}$$

$$(-1)R_{2,1,2} + R_1 \rightarrow R_{1,1}$$

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -4 & -10 \\ 0 & 3 & -2 & 0 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_{2.1.2} \end{matrix} \quad \rightarrow \quad \begin{bmatrix} 1 & 0 & 5 & 16 \\ 0 & 1 & -4 & -10 \\ 0 & 3 & -2 & 0 \end{bmatrix} \quad \begin{matrix} R_{1.1} \\ R_{2.1.2} \\ R_{3.1} \end{matrix}$$

$$(-3)R_{212} + R_{31} \rightarrow R_{312}$$

$$\begin{bmatrix} 1 & 0 & 5 & 16 \\ 0 & 1 & -4 & -10 \\ 0 & 3 & -2 & 0 \end{bmatrix} \quad \begin{matrix} R_{1.1} \\ R_{2.1.2} \\ R_{3.1} \end{matrix} \rightarrow \begin{bmatrix} 1 & 0 & 5 & 16 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 10 & 30 \end{bmatrix} \quad \begin{matrix} R_{1.1} \\ R_{2.1.2} \\ R_{3.1.2} \end{matrix}$$

• ຂັ້ນຕອນທີ 3 ຜັນປ່ຽນເສົາທີ 3

$$(\frac{1}{10})R_{3.1.2} \rightarrow R_{3.1.2.3}$$

$$(-5)R_{3.1.2.3} + R_{1.1} \rightarrow R_{1.1.2}$$

$$\begin{bmatrix} 1 & 0 & 5 & 16 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 1 & 3 \end{bmatrix} \quad \begin{array}{c} R_{1.1} \\ R_{2.1.2} \\ R_{3.12.3} \end{array} \rightarrow \quad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 1 & 3 \end{bmatrix} \quad \begin{array}{c} R_{1.1.2} \\ R_{2.1.2} \\ R_{3.12.3} \end{array}$$

$$(4)R_{3.1.2.3} + R_{2.1.2} \rightarrow R_{2.1.2.3}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & -4 & | & -10 \\ 0 & 0 & 1 & | & 3 \end{bmatrix} \quad \begin{array}{c} R_{1.1.2} \\ R_{2.1.2} \\ R_{3.1.2.3} \end{array} \quad \rightarrow \quad \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{bmatrix} \quad \begin{array}{c} R_{1.1.2} \\ R_{2.1.2.3} \\ R_{3.1.2.3} \end{array}$$

ຈາກມາຕຣິດສ໌ຂະຫຍາຍສຸດທ້າຍເຮົາຈະໄດ້ລະບົບສົມຜົນ

$$\begin{cases} x + 0y + 0z = 1 \\ 0x + y + 0z = 2 \\ 0x + 0y + z = 3 \end{cases}$$
 ສະແດງວ່າໃຈຜົນຂອງລະບົບສົມຜົນ ແມ່ນ: $(x, y, z) = (1, 2, 3)$

4.3.3 ການຊອກມາຕຣິດສ໌ປີ້ນດ້ວຍວິທີຂອງກາວສ໌

ການຊອກມາຕຣິດສ໌ປັ້ນຕາມແຜນຫວາດ

 $\left[A/I
ight] \leftrightarrow \left[I/A^{-1}
ight]$ ເອີ້ນວ່າການຊອກມາຕຣິດສ໌ປັ້ນດ້ວຍວິທີຂອງກາວສ໌

ຕົວຢ່າງ 16: ໃຫ້ມາຕຣິດສ໌
$$A = \begin{bmatrix} 1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$$

ເຮົາສາມາດຊອກມາຕຣິດສ໌ປິ້ນຂອງ A ໄດ້ດັ່ງນີ້:

$$\begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 & 0 & 1 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_2 \\ R_3 \end{matrix} \longleftrightarrow \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & -6 & -3 & -2 & 0 & 1 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_{2.1} \\ R_{3.1} \end{matrix}$$

$$(3)R_{21} + R_{31} \rightarrow R_{32}$$

$$\begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & -6 & -3 & -2 & 0 & 1 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_{2.1} \\ R_{3.1} \end{matrix} \quad \longleftrightarrow \quad \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \quad \begin{matrix} R_1 \\ R_{2.1} \\ R_{3.2} \end{matrix}$$

$$-rac{1}{2}R_{3,2}+R_{1}
ightarrow R_{1,1}$$
 ແລະ $-rac{1}{2}R_{3,2}+R_{2,1}
ightarrow R_{2,2}$

$$\begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \quad \begin{array}{c} R_1 \\ R_{2.1} \\ R_{3.2} \end{array} \quad \leftrightarrow \quad \begin{bmatrix} 1 & 4 & 0 & 1/2 & -3/2 & -1/2 \\ 0 & 2 & 0 & 1/2 & -1/2 & -1/2 \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \quad \begin{array}{c} R_{1.1} \\ R_{2.2} \\ R_{3.2} \end{array}$$

$$(-2)R_{2,2} + R_{1,1} \rightarrow R_{1,2}$$

$$\begin{bmatrix} 1 & 4 & 0 & | 1/2 & -3/2 & -1/2 \\ 0 & 2 & 3 & | 1/2 & -1/2 & -1/2 \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \quad \begin{matrix} R_{1.1} \\ R_{2.1} \\ R_{3.2} \end{matrix} \longleftrightarrow \quad \begin{bmatrix} 1 & 0 & 0 & | -1/2 & -1/2 & 1/2 \\ 0 & 2 & 0 & | 1/2 & -1/2 & -1/2 \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \quad \begin{matrix} R_{1.2} \\ R_{2.2} \\ R_{3.2} \\ \end{matrix}$$

$$\leftrightarrow \begin{bmatrix} 1 & 0 & 0 & -1/2 & -1/2 & 1/2 \\ 0 & 1 & 0 & 1/4 & -1/4 & -1/4 \\ 0 & 0 & 1 & 1/6 & 1/2 & 1/6 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \begin{bmatrix} -1/2 & -1/2 & 1/2 \\ 1/4 & -1/4 & -1/4 \\ 1/6 & 1/2 & 1/6 \end{bmatrix}$$

4.3.4 ການສະແດງລະບົບສົມຜົນດ້ວຍມາຕຣິດສ໌

ໃນພຶດຊະຄະນິດລີເນແອເພິ່ນສາມາດສະແດງລະບົບສົມຜົນລີເນແອດ້ວຍມາຕຣິດສ໌ໄດ້ເຊັ່ນ ລະບົບສົມຜົນ

$$\begin{cases} 7x + 3y = 45 \\ 4x + 5y = 29 \end{cases}$$
 ສາມາດສະແດງລະບົບສົມຜົນດັ່ງກ່າວດ້ວຍມາຕຣິດສ໌ດັ່ງນີ້:
$$\begin{bmatrix} 7 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 45 \\ 29 \end{bmatrix}$$

ຫຼື ສາມາດຂຸງນໄດ້ດັ່ງນີ້ : AX = B

$$A = \begin{bmatrix} 7 & 3 \\ 4 & 5 \end{bmatrix} \quad , \qquad X = \begin{bmatrix} x \\ y \end{bmatrix} \quad , \qquad B = \begin{bmatrix} 45 \\ 29 \end{bmatrix}$$

ໃຫ້ລະບົບສົມຕົນ

$$\begin{cases} x + 2y + z = 3\\ 3x - y - 3z = -1\\ 2x + 3y + z = 4 \end{cases}$$

 $\begin{cases} x + 2y + z = 3 \\ 3x - y - 3z = -1 \end{cases}$ ສາມາດສະແດງລະບົບສົມຜົນດັ່ງກ່າວດ້ວຍມາຕຣິດສ໌ດັ່ງນີ້:

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$$

ຫຼື ສາມາດຂຸເນໄດ້ດັ່ງນີ້ : AX = B

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{bmatrix} , \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} , \quad B = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$$

ເຮົາສາມາດແກ້ລະບົບສົມຜົນຂ້າງເທິງດ້ວຍມາຕຣິດສ໌ປັ້ນໄດ້ ຖ້າວ່າມາຕຣິດສ໌ A ມີມາຕຣິດສ໌ປັ້ນ ໃນກໍລະນີມາຕຣິດສ໌ A ບໍ່ມີມາຕຣິດສ໌ປິ້ນແມ[່]ນບໍ່ສາມາດແກ້ລະບົບສົມຜົນດັ່ງກ[່]າວດ້ວຍມາຕຣິດສ໌ໄດ້.

4.3.4.1 ການແກ້ລະບົບສົມຜົນດ້ວຍມາຕຣິດສ໌ປີ້ນ:

$$AX = B$$

$$\Rightarrow A^{-1}A X = A^{-1}B$$

$$\Rightarrow I X = A^{-1}B$$

$$\Rightarrow X = A^{-1}B$$

ຕົວຢ[່]າງ 17: ແກ[້]ລະບົບສົມຕົນ $\begin{cases} x - y = 2 \\ 2x + y = 3 \end{cases}$

$$\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \quad , \qquad X = \begin{bmatrix} x \\ y \end{bmatrix} \quad , \qquad B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

ເຮົາຈະໄດ້ລະບົບສົມຜົນດັ່ງກ່າວມີຮູບຮ່າງ AX = B

$$A^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \quad \text{จะเด} \quad X = A^{-1}B$$

$$X = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{5}{3} \\ -\frac{1}{3} \end{bmatrix}$$

ถั่ງນັ້ນເຮົາຈະໄດ້ໃຈຜົນ $x = \frac{5}{3}$ และ $y = -\frac{1}{3}$

ຕົວຢ່າງ 18: ແກ້ລະບົບສົມຜົນ $\begin{cases} x+y+2z=3\\ 2x+3y+2z=4\\ x+y+3z=5 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 2 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 2 \\ 1 & 1 & 3 \end{bmatrix} \qquad , \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} , \qquad B = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

ເຮົາຈະໄດ້ລະບົບສົມຜົນດັ່ງກ່າວມີຮູບຮ່າງ AX = B ຊອກມາຕຣິດສ໌ປິ້ນຂອງ A ຕາມສູດຂອງກາວສ໌ $\left[A/I\right] \leftrightarrow \left[I/A^{-1}\right]$

$$\begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 31 & -1 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & 4 & 7 & -1 & -4 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 1 \end{bmatrix}$$

$$\leftrightarrow \begin{bmatrix} 1 & 0 & 0 & 7 & -1 & -4 \\ 0 & 1 & 0 & -4 & 1 & 2 \\ 0 & 0 & 1 & -1 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \begin{bmatrix} 7 & -1 & -4 \\ -4 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$X = A^{-1}B = \begin{bmatrix} 7 & -1 & -4 \\ -4 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix}$$

ດັ່ງນັ້ນເຮົາຈະໄດ້ໃຈຜົນ x=-3 ; y=2 ແລະ z=2

ບົດຝຶກຫັດ

1. ໃຫ້ A,B,C,D,E ແມ $\dot{}$ ນມາຕຣິດສ໌ຂະໜາດ 4imes5, 4imes5, 5imes2, 4imes2 ແລະ 5imes4 ຕາມລຳດັບ ຈົ່ງບອກວ່າສຳນວນໃດລຸ່ມນີ້ສາມາດຄິດໄລ່ໄດ້ ແລະ ແມ່ນມາຕຣິດສ໌ຂະໜາດເທົ່າໃດ ?

BA a.

AC+D

AE+B C.

d. AB+B e. E(A+B) f. E(AC)

BE+A g.

h. E^TA i. $(A^T + E)D$

2. ຈົ່ງຊອກຄ່ຳຂອງ a, b, c, d ຈາກສະເໝີຜິນລຸ່ມນີ້:

$$\begin{bmatrix} a-b & b+c \\ 3d+c & 2a-4d \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$$

3. ໃຫ້ສອງມາຕຣິດສ໌ $A = \begin{bmatrix} 3 & 1 & 4 \\ -2 & 0 & 1 \\ 1 & 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 1 & 1 \\ 2 & 4 & 1 \end{bmatrix}$

ຈົ່ງຄິດໄລ[່]ຄ່າຂອງສຳນວນລຸ່ມນີ້:

2A a.

A+B b.

2A-3B

 $(2A)^{T} - (3B)^{T}$

AB

f. BA

 $A^T B^T$

 $B^T A^T$ h.

 $(BA)^T$ i.

4. ຈົ່ງຊອກມາຕຣິດສ໌ປີ້ນຂອງມາຕຣິດສ໌ A ລຸ່ມນີ້:

a. $A = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$

b. $A = \begin{vmatrix} 2 & -3 \\ 4 & 4 \end{vmatrix}$

c. $A = \begin{bmatrix} -3 & 1 \\ -5 & 2 \end{bmatrix}$

 $d. \qquad A = \begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$

5. ຈົ່ງຊອກມາຕຣິດສ໌ A ຈາກມາຕຣິດສ໌ປັ້ນລຸ່ມນີ້ :

a. $A^{-1} = \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix}$ b. $(7A)^{-1} = \begin{bmatrix} -3 & 7 \\ 1 & -2 \end{bmatrix}$

c. $(5A^T)^{-1} = \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix}$ d. $(I+2A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$

6. ໃຫ້ສອງມາຕຣິດສ໌
$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
 , $B = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$

ຈົ່ງຊອກມາຕຣິດສ໌ x ທີ່ຕອບສະໜອງສະເໜີຜົນລຸ່ມນີ້:

a.
$$AX = B$$

b.
$$XA = B$$

7. ໃຫ້ສາມມາຕຣິດສ໌
$$A = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$
 ; $B = \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix}$ ແລະ $C = \begin{bmatrix} 4 & -2 \\ -6 & 3 \end{bmatrix}$

$$B = \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix}$$
 ແລະ $C = \begin{bmatrix} 4 & -2 \\ -6 & 3 \end{bmatrix}$

ຈົ່ງຊອກມາຕຣິດສ໌ x ທີ່ຕອບສະໜອງສະເໜີຜົນລຸ່ມນີ້:

a.
$$AX + B = C$$
 b. $XA + B = C$ c. $AX + B = X$ d. $XA + C = X$

b.
$$XA + B = C$$

c.
$$AX + B = X$$

d.
$$XA + C = X$$

a.
$$\begin{cases} x + 2y = 30 \\ 5x + 4y = 54 \end{cases}$$

b.
$$\begin{cases} x + 4y = 17 \\ 2x + 6y = 28 \end{cases}$$

c.
$$\begin{cases} x - 2y + 2z = 1 \\ 3x + 2y - 3z = 4 \\ 2x + 4y + 3z = -5 \end{cases}$$

d.
$$\begin{cases} x + y + 2z = 0 \\ 2x + 4y + 6z = 4 \\ 4x + 2y + 7z = -2 \end{cases}$$

e.
$$\begin{cases} x+2y+z=3\\ 3x-y-3z=-1\\ 2x+3y+z=4 \end{cases}$$

a.
$$\begin{cases} x+2y=30 \\ 5x+4y=54 \end{cases}$$
 b.
$$\begin{cases} x+4y=17 \\ 2x+6y=28 \end{cases}$$
 c.
$$\begin{cases} x-2y+2z=1 \\ 3x+2y-3z=4 \\ 2x+4y+3z=-5 \end{cases}$$
 d.
$$\begin{cases} x+y+2z=0 \\ 2x+4y+6z=4 \\ 4x+2y+7z=-2 \end{cases}$$
 e.
$$\begin{cases} x+2y+z=3 \\ 3x-y-3z=-1 \\ 2x+3y+z=4 \end{cases}$$
 f.
$$\begin{cases} 2x+3y+2z=9 \\ x+2y-3z=14 \\ 3x+4y+z=16 \end{cases}$$

9. ຈົ່ງກວດເບີ່ງມາຕຣິດສ໌ຂະຫຍາຍຂອງລະບົບສົມຜົນລຸ່ມນີ້ວ່າລະບົບສົມຜົນໃດມີໃຈຜົນ.ຖ້ຳມີໃຈຜົນ ດງວໃຫ້ຊອກໃຈຜົນຂອງລະບົບສົມຜົນດັ່ງກ່າວ?

a.
$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 3 & 2 | -2 \\ 0 & 0 & 1 | 4 \\ 0 & 0 & 0 | 1 \end{bmatrix}$$

a.
$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 1 & 3 & 2 & -2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c.
$$\begin{bmatrix} 1 & -2 & 2 & -2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

10. ໃຫ້ມາຕຣິດສ໌ຂະຫຍາຍຂອງລະບົບສົມຜົນດັ່ງລຸ່ມນີ້:

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 5 & 3 & 0 \\ -1 & 1 & x & 0 \end{bmatrix}$$

a. ຈົ່ງຊອກຄ່ຳຂອງ
$$x$$
 ເພື່ອໃຫ້ລະບົບສົມຜົນມີໃຈຜົນດຸງວ ?

b. ຈົ່ງຊອກຄ[່]າຂອງ
$$x$$
 ເພື່ອໃຫ້ລະບົບສົມຜົນມີຫຼາຍໃຈຜົນ ?

11. ຈົ່ງຊອກມາຕຣິດສ໌ປິ້ນຂອງມາຕຣິດສ໌ລຸ່ມນີ້ດ້ວຍວິທີຂອງກາວສ໌

a.
$$A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

a.
$$A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$
 b. $A = \begin{bmatrix} 5 & 6 \\ 4 & 5 \end{bmatrix}$

c.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$$

c.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$$
 d. $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{bmatrix}$

12. ໃຫ້ A ແມ່ນມາຕຣິດສ໌ຂະໜາດ 3×3

ຖ້າວ່າ
$$A \begin{bmatrix} 15 & 0 & 12 \\ -9 & 3 & -6 \\ 0 & -3 & -12 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$
 ຈຶ່ງຊອກ $A^{-1} = ?$

13. ຈົ່ງແກ້ລະບົບສົມຜົນລຸ່ມນີ້ດ້ວຍມາຕຣິດສ໌ປິ້ນ

a.
$$\begin{cases} 6x + 5y = 49 \\ 3x + 4y = 32 \end{cases}$$

b.
$$\begin{cases} 2x + y - 3z = 0 \\ 4x + 5y + z = 8 \\ -2x - y + 4z = 2 \end{cases}$$

c.
$$\begin{cases} x+2y+z=3\\ 3x-y-3z=-1\\ 2x+3y+z=4 \end{cases}$$
 d.
$$\begin{cases} 2x+3y+2z=9\\ x+2y-3z=14\\ 3x+4y+z=16 \end{cases}$$

d.
$$\begin{cases} 2x + 3y + 2z = 9 \\ x + 2y - 3z = 14 \\ 3x + 4y + z = 16 \end{cases}$$

ບົດທີ 5

ເດແຕກມີນັງ

(Determenang)

5.1 ນິຍາມ ແລະ ສູດການຄຳນວນເດແຕກມີນັງ

5.1.1 ນິຍາມ

ສົມມຸດ J = (j_1, j_2, j_3, j_n) ແມ່ນການຈັດລຸງນໜຶ່ງຈາກຈຳນວນ 1, 2, 3, 4,..., n ເຊັ່ນວ່າ (1, 2, 4) ແມ່ນການຈັດລຸງນໜຶ່ງຈາກ 1, 2, 3, 4. ໃນ J ສາມາດສ້າງບັນດາແຝດ (j_m, j_n) ຊຶ່ງ m < n ແລະ ໃນບັນດາແຝດເຫຼົ່ານີ້ຖ້າວ່າ $j_m > j_n$ ເພິ່ນເວົ້າວ່າແຝດບໍ່ເປັນລະບຸງບ ໃນ J. ຈຳນວນແຝດທີ່ບໍ່ເປັນລະບຸງບທັງໝົດໃນ J ເອີ້ນວ່າຄວາມບໍ່ເປັນລະບຸງບຂອງ J ສັນຍາລັກ ດ້ວຍ $\mathfrak{u}(J)$

ຕົວຢ[່]າງ 1: ເມື່ອ J = (3, 2, 1, 4) ຈະມີແຝດ (3.2) , (3,1) , (2,1) ບໍ່ເປັນລະບູງບ ດັ່ງນັ້ນ u(J) = 3

ສົມມຸດ $A=(a_{ii})_{n \times n}$ ແລະ J = $(j_1,j_2,j_3,....j_n)$

ນິຍາມ: ເດແຕກມີນັງຂອງມາຕຣິດສ໌ A ສັນຍາລັກ $\det(\mathsf{A})$ ຫຼື $\begin{vmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & . & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{vmatrix}$

ແລະມີຄ່ຳເທົ່າກັບ $\sum (-1)^{\mathsf{u}(J)} a_{1_{j_1}} a_{2_{j_2}} ... a_{n_{j_n}}$, ຊຶ່ງການບວກນີ້ແມ່ນບວກຕາມທຸກໆການຈັດລຽນໃນ J ທີ່ເປັນໄປໄດ້.

ໝາຍເຫດ: ສຳລັບມາຕຣິດສ໌ຈະຕຸລັດຂັ້ນ n , ຜົນບວກໃນເດແຕກມີນັງຈະມີ n! ພົດ. ເພາະວ່າຈຳ ນວນ J ທັງໝົດທີ່ເປັນໄປໄດ້ເທົ່າກັບ n! .

5.1.2 ສູດການຄຳນວນເດແຕກມີນັງ

1)
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = (-1)^{\mathsf{u}(1,2)} a_{11} a_{22} + (-1)^{\mathsf{u}(2,1)} a_{12} a_{21} = a_{11} a_{22} - a_{12} a_{21}$$

2)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{u(1,2,3)} a_{11} a_{22} a_{33} + (-1)^{u(2,3,1)} a_{12} a_{23} a_{31} + (-1)^{u(3,1,2)} a_{13} a_{21} a_{32}$$

$$+ (-1)^{u(3,2,1)} a_{13} a_{22} a_{31} + (-1)^{u(2,1,3)} a_{12} a_{21} a_{33} + (-1)^{u(1,3,2)} a_{11} a_{23} a_{32}$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{33} - a_{11} a_{23} a_{32}$$

ຖ້າຈະຄິດໄລ່ເດແຕກມີນັງລະດັບສູງ (ເດແຕກມີນັງຂອງມາຕຣິດສ໌ຂະໜາດໃຫຍ່) ຈາກນິຍາມຂ້າງ ເທິງນີ້ເຫັນວ່າມີຄວາມຫຍຸ້ງຍາກຫຼາຍດັ່ງນັ້ນອາດຈະໃຊ້ສູດທີ່ໄດ້ຈາກນິຍາມຂ້າງເທິງ.

จาทสูถ
$$\det(A) = \sum_{(-1)^{u(J)}} a_{1j_1} a_{2j_2} ... a_{nj_n}$$

ເຫັນວ່າແຕ່ລະພົດຂອງຜົນບວກເດແຕກມີນັງນີ້ມີສ່ວນຄູນໜຶ່ງຈາກແຖວທີ i. ຖ້າເຮົາໂຮມພົດທີ່ມີ a_{i1} ແລ້ວແຍກ a_{i1} ອອກເປັນສ່ວນຄູນແລ້ວແທນສຳນວນຢູ່ໃນວົງເລັບຂອງຜົນຄູນກັບ a_{i1} ດ້ວຍ A_{i1} . ຕໍ່ໄປກໍໂຮມພົດທີ່ມີ a_{i2} ແລ້ວແຍກ a_{i2} ອອກເປັນສ່ວນຄູນແລ້ວແທນສຳນວນຢູ່ໃນວົງເລັບຂອງຜົນ ຄູນກັບ a_{i2} ດ້ວຍ A_{i3} ສືບຕໍ່ເຮັດຄ້າຍຄືກັນໄປເລື້ອຍໆຈະໄດ້

 $\det(\mathsf{A}) = a_{i1} \ A_{i1} + a_{i2} \ A_{i2} + a_{i3} \ A_{i3} + \ldots + a_{in} \ A_{in}$ ສູດນີ້ເອີ້ນວ່າການແຈກເດແຕກມີນັງຕາມອົງປະກອບໃນແຖວທີ່ i ແລະ A_{ij} ເອີ້ນວ່າຕົວຕື່ມເຕັມ ຂອງ a_{ij} ໃນ $\det(\mathsf{A})$. A_{ij} ໄດ້ຈາກການລຶບແຖວທີ່ i ແລະຖັນທີ່ j ໃນເດແຕກມີນັງຂອງ A . ເຊັ່ນ :

1)
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = (-1)^{(1+1)} a_{11} a_{22} + (-1)^{(2+1)} a_{12} a_{21} = a_{11} a_{22} - a_{12} a_{21}$$

2)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{23} a_{31} - a_{21} a_{33}) + a_{13} (a_{21} a_{2} - a_{22} a_{31})$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{33} - a_{12} a_{23} a_{32}$$

ຕ<mark>ົ</mark>ວຢ[່]າງ 2:

1)
$$\begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix} = 2 \times 3 - 1 \times 4 = 6 - 4 = 2$$

2)
$$\begin{vmatrix} 2 & 3 & 5 \\ 1 & -2 & 4 \\ 3 & 6 & 1 \end{vmatrix} = 2 \begin{vmatrix} -2 & 4 \\ 6 & 1 \end{vmatrix} - 3 \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & -2 \\ 3 & 6 \end{vmatrix}$$

$$= 2(-2 \times 1 - 6 \times 4) - 3(1 \times 1 - 3 \times 4) + 5(1 \times 6 + 3 \times 2)$$

$$= 2 \times (-26) - 3 \times (-11) + 5 \times 12 = -52 + 33 + 60 = 41$$

ຖ້າເປັນເດແຕກມີນັງຂະໜາດ 3×3 ເຮົາສາມາດຄິດໄລຄ່າຂອງເດແຕກມີນັງຄືດັງລຸ່ມນີ້

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

= $a_{11}a_{22}a_{33}$ + $a_{12}a_{23}a_{31}$ + $a_{13}a_{21}a_{32}$ - $a_{12}a_{21}a_{33}$ - $a_{11}a_{23}a_{32}$ - $a_{13}a_{22}a_{31}$ ຕົວຢ່າງ 3:

$$\begin{vmatrix} 2 & 3 & 5 \\ 1 & -2 & 4 \\ 3 & 6 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 3 & 5 & 2 & 3 \\ 1 & -2 & 4 & 1 & -2 \\ 3 & 6 & 1 & 3 & 6 \end{vmatrix} = 2 \times (-2) \times 1 + 3 \times 4 \times 3 + 5 \times 1 \times 6 - 3 \times 1 \times 1 - 2 \times 4 \times 6$$

$$-5 \times (-2) \times 3 = -4 + 36 + 30 - 3 - 48 + 30 = 41$$

ຖ້າເຮົາວາງ

$$M_{11} = \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$$
, $M_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}$, $M_{13} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$

 M_{ij} ເອີ້ນວ່າ Minor ຂອງ a_{ij} ຊຶ່ງແມ່ນມາຕຣິດສ໌ຂະໜາດນ້ອຍກວ່າຂະໜາດຂອງມາຕຮິດສ໌ A ໜຶ່ງຂັ້ນ ແລະ ອົງປະກອບຂອງ M_{ij} ໄດ້ຈາກການລຶບອົງປະກອບຂອງ A ໃນແຖວທີ່ i ແລະຖັນທີ່ J ດັ່ງນັ້ນ:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1} a_{11} |M_{11}| + (-1)^{1+2} a_{12} |M_{12}| + (-1)^{1+3} a_{13} |M_{13}|$$

ສາມາດສະແດງໃຫ້ເຫັນວ່າເມື່ອ A ແມ່ນມາຕຣິດສ໌ຈະຕຸລັດຂະໜາດ n×n

$$|A| = (-1)^{i+1} a_{i1} |M_{i1}| + (-1)^{i+2} a_{i2} |M_{i2}| + (-1)^{i+3} a_{i3} |M_{i3}| + \dots + (-1)^{i+n} a_{in} |M_{in}|$$

ື້
$$\left|A\right| = (-1)^{1+j} a_{1j} \left|M_{1j}\right| + (-1)^{2+j} a_{2j} \left|M_{2j}\right| + (-1)^{3+j} a_{3j} \left|M_{3j}\right| + \dots \\ (-1)^{n+j} a_{nj} \left|M_{nj}\right|$$
 ຕົວຢ່າງ 4:

$$\begin{vmatrix} 8 & 3 & 2 \\ 6 & 4 & 7 \\ 5 & 1 & 3 \end{vmatrix} = (-1)^{1+1} 8 \begin{vmatrix} 4 & 7 \\ 1 & 3 \end{vmatrix} + (-1)^{1+2} 3 \begin{vmatrix} 6 & 7 \\ 5 & 3 \end{vmatrix} + (-1)^{1+3} 2 \begin{vmatrix} 6 & 4 \\ 5 & 1 \end{vmatrix}$$
$$= 8 (12 - 7) - 3 (18 - 35) + 2 (6 - 20)$$
$$= 40 + 51 - 28 = 63$$

$$\begin{vmatrix} 8 & 3 & 2 \\ 6 & 4 & 7 \\ 5 & 1 & 3 \end{vmatrix} = (-1)^{1+1} 8 \begin{vmatrix} 4 & 7 \\ 1 & 3 \end{vmatrix} + (-1)^{2+1} 6 \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} + (-1)^{3+1} 5 \begin{vmatrix} 3 & 2 \\ 4 & 7 \end{vmatrix}$$
$$= 8 (12 - 7) - 6 (9 - 2) + 5 (21 - 8)$$
$$= 40 - 42 + 65 = 63$$

5.2 ຄຸນລັກສະນະຂອງເດແຕກມີນັງ

- 1) det (A) = det (A^T) $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = 1 \times 4 2 \times 3 = -2$
- 2) ເມື່ອອົງປະກອບຂອງມາຕຣິດສ໌ A ມີແຖວ ຫຼື ຖັນໃດໜຶ່ງແມ່ນສູນໝົດຈະໄດ້ det(A) = 0

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \\ 5 & 4 & 3 \end{bmatrix} \qquad ; \qquad B = \begin{bmatrix} 2 & 4 & 0 \\ 5 & 3 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \\ 5 & 4 & 3 \end{vmatrix} = 1 \times 0 \times 3 + 3 \times 0 \times 5 + 2 \times 4 \times 0 - 2 \times 0 \times 5 - 3 \times 0 \times 3 + 1 \times 4 \times 0 = 0$$

$$\Rightarrow \begin{vmatrix} 2 & 4 & 0 \\ 5 & 3 & 0 \\ 1 & 2 & 0 \end{vmatrix} = 2 \times 3 \times 0 + 4 \times 0 \times 1 + 0 \times 5 \times 2 - 0 \times 3 \times 1 - 4 \times 5 \times 0 + 2 \times 2 \times 0 = 0$$

3) ເມື່ອອົງປະກອບຂອງມາຕຣິດສ໌ A ມີສອງແຖວ ຫຼື ສອງຖັນຄືກັນຈະໄດ້ det (A) = 0

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 3 & 2 \\ 5 & 4 & 3 \end{bmatrix} \qquad ; \qquad B = \begin{bmatrix} 2 & 4 & 2 \\ 5 & 3 & 5 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} 1 & 3 & 2 \\ 1 & 3 & 2 \\ 5 & 4 & 3 \end{vmatrix} = 1 \times 3 \times 3 + 3 \times 2 \times 5 + 2 \times 4 \times 1 - 2 \times 3 \times 5 - 3 \times 1 \times 3 - 1 \times 4 \times 2$$

$$= 3 + 30 + 8 - 30 - 9 - 8 = 0$$

$$\Rightarrow \begin{vmatrix} 2 & 4 & 2 \\ 5 & 3 & 5 \\ 1 & 2 & 1 \end{vmatrix} = 2 \times 3 \times 1 + 4 \times 5 \times 1 + 2 \times 5 \times 2 - 2 \times 3 \times 1 - 4 \times 5 \times 1 + 2 \times 2 \times 5$$

$$= 6 + 20 + 20 - 6 - 20 - 20 = 0$$

4)
$$\det (AB) = \det (A) \cdot \det (B)$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad ; \qquad B = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$

det (A) =
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \times 4 - 2 \times 3 = -2$$

det (B) =
$$\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = 2 \times (-1) - 1 \times 3 = -5$$

$$\det(A) \cdot \det(B) = (-2)(-5) = 10$$

A.B =
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 10 & 5 \end{bmatrix}$$

$$\Rightarrow$$
 det (AB) = $\begin{vmatrix} 4 & 1 \\ 10 & 5 \end{vmatrix} = 4 \times 5 - 10 \times 1 = 20 - 10 = 10$

5) ເມື່ອ A ແມ່ນມາຕຣິດສ໌ຈະຕຸລັດຂະໜາດ n×n ຈະໄດ້ det (kA) = k" det (A)

•
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow \det(A) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 1 \times 4 - 2 \times 3 = -2$$

$$3A = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix} \Rightarrow \det(3A) = \begin{vmatrix} 3 & 6 \\ 9 & 12 \end{vmatrix} = 3 \times 12 - 9 \times 6 = 36 - 54 = -18$$

$$3^2$$
 det (A) = $9 \times$ (-2) = -18 ສະແດງວ່າ det (3A) = 3^2 det (A)

•
$$A = \begin{bmatrix} 8 & 3 & 2 \\ 6 & 4 & 7 \\ 5 & 1 & 3 \end{bmatrix} \Rightarrow \det(A) = \begin{bmatrix} 8 & 3 & 2 \\ 6 & 4 & 7 \\ 5 & 1 & 3 \end{bmatrix} = 63$$

$$2A = \begin{bmatrix} 16 & 6 & 4 \\ 12 & 8 & 14 \\ 10 & 2 & 6 \end{bmatrix}$$

$$\Rightarrow \det (2A) = \begin{vmatrix} 16 & 6 & 4 \\ 12 & 8 & 14 \\ 10 & 2 & 6 \end{vmatrix} = 768 + 840 + 96 - 432 - 448 - 320 = 504$$

$$2^3$$
 det (A) = 8 × 63 = 504 ສະແດງວ່າ det (2A) = 2^3 det (A)

6) det (A⁻¹) =
$$\frac{1}{\det(A)}$$

$$A = \begin{bmatrix} 4 & 6 \\ 2 & 2 \end{bmatrix} \implies \det (A) = \begin{vmatrix} 4 & 6 \\ 2 & 2 \end{vmatrix} = -4$$

$$A^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & -1 \end{bmatrix} \Rightarrow \det(A^{-1}) = \begin{bmatrix} -\frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & -1 \end{bmatrix}$$
$$= (-\frac{1}{2})(-1) - (\frac{1}{2})(\frac{3}{2}) = \frac{1}{2} - \frac{3}{2} = -\frac{1}{4} = -\frac{1}{4} = \frac{1}{\det(A)}$$

7) ການຄູນຈຳນວນຄົງຄ່າໃຫ້ເດແຕກມີນັງແມ່ນຄູນຈຳນວນຄົງຄ່າເຂົ້າແຖວໃດໜຶ່ງ ຫຼື ຄູນຈຳນວນ ຄົງຄ່າເຂົ້າຖັນໃດໜຶ່ງ .

$$\begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix}$$

$$\begin{vmatrix} 8 & 3 & 2 \\ 6 & 4 & 7 \\ 5 & 1 & 3 \end{vmatrix} = 2 (96 + 105 + 12 - 40 - 54 - 56) = 2 \times 63 = 126$$

$$\begin{vmatrix} 16 & 6 & 4 \\ 6 & 4 & 7 \\ 5 & 1 & 3 \end{vmatrix} = 192 + 210 + 24 - 108 - 112 - 80 = 126$$

$$\begin{vmatrix} 16 & 3 & 2 \\ 12 & 4 & 7 \end{vmatrix} = 192 + 210 + 24 - 108 - 112 - 80 = 126$$

8)

$$\begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{i1} + c_{i1} & \dots & b_{ij} + c_{ij} & \dots & b_{in} + c_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{i1} & \dots & b_{ij} & \dots & b_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{i1} & \dots & c_{ij} & \dots & c_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

$$\begin{vmatrix} 8 & 3 & 2 \\ 6 & 4 & 7 \\ 5 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 8 & 3 & 2 \\ 3 & 2 & 4 \\ 5 & 1 & 3 \end{vmatrix} + \begin{vmatrix} 8 & 3 & 2 \\ 3 & 2 & 3 \\ 5 & 1 & 3 \end{vmatrix} = 35 + 28 = 63$$

$$\begin{vmatrix} 8 & 3 & 2 \\ 3 & 2 & 4 \\ 5 & 1 & 3 \end{vmatrix} = 48 + 60 + 6 - 20 - 27 - 32 = 35$$

$$\begin{vmatrix} 8 & 3 & 2 \\ 3 & 2 & 3 \\ 5 & 1 & 3 \end{vmatrix} = 48 + 45 + 6 - 20 - 27 - 24 = 28$$

9) ຄ່າຂອງເດແຕກມີນັງບໍ່ປ່ຽນແປງເມື່ອເຮົາຄູນຈຳນວນຈິງຕ່າງສູນໃສ່ແຖວໃດໜຶ່ງ ຫຼື ຖັນໃດໜຶ່ງ ແລ້ວເອົາໄປບວກກັບແຖວອື່ນ ຫຼື ຖັນອື່ນອີກ.

$$= \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & -2 \\ 0 & -2 & 0 & -2 \\ 0 & -2 & -2 & 0 \end{vmatrix} = (-1)^{1+1} 1 \times \begin{vmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{vmatrix}$$

 $(-1)R_2 + R_3$ จะได้เดแตทมิ่มั่ງ

$$= \begin{vmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ 0 & -2 & 2 \end{vmatrix} = (-1)^{2+1} (-2) \begin{vmatrix} -2 & -2 \\ -2 & 2 \end{vmatrix} = 2 \begin{vmatrix} -2 & -2 \\ -2 & 2 \end{vmatrix} = 2[-2 \times 2 - (-2)(-2)] = -16$$

•
$$\begin{vmatrix} 0 & 2 & 3 & 0 \\ 0 & 4 & 5 & 0 \\ 0 & 1 & 0 & 3 \\ 2 & 0 & 1 & 3 \end{vmatrix} = (-1)^{4+1} 2 \begin{vmatrix} 2 & 3 & 0 \\ 4 & 5 & 0 \\ 1 & 0 & 3 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 0 \\ 4 & 5 & 0 \\ 1 & 0 & 3 \end{vmatrix}$$
$$= (-2)(-1)^{3+3} 3 \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = (-2)(3) \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -6(10-12) = 12$$

5.3 ການຊອກມາຕຣິດສ໌ປິ້ນດ້ວຍເດແຕກມີນັງ ແລະ ສູດກຣາແມ.

5.3.1 ການຊອກມາຕຣິດສ໌ປີ້ນດ້ວຍເດແຕກມີນັງ

ໃຫ້ມາຕຣິດສ໌
$$A = egin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \ a_{21} & a_{22} & ... & a_{2n} \ . & . & . & . \ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}$$

ມາຕຣິດສ໌
$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix}^T = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}$$
ເອີ້ນວ່າມາຕຣິດສ໌ຕົວຕື່ມເຕັມຂອງ A

ຊຶ່ງ A_{ij} ແມ່ນຕົວຕື່ມເຕັມຂອງ a_{ij} ໃນ \det (A) ສັນຍາລັກດ້ວຍ adj(A) ຖ້າວ່າ A ແມ່ນມາຕຣິດສ໌ທີ່ມີເດແຕກມີນັງຕ່າງສູນຈະໄດ້ $A^{-1} = \frac{adj(A)}{\det(A)}$ ຕົວຢ່າງ 6:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix} \Rightarrow \det (A) = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{vmatrix} = 1$$

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 4 \\ 2 & 3 \end{vmatrix} = 1 ; A_{12} = (-1)^{1+2} \begin{vmatrix} 3 & 4 \\ 2 & 3 \end{vmatrix} = -1 ; A_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = 0$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} = 2$$
; $A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} =$; $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 0 \\ 2 & 2 \end{vmatrix} = -2$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 0 & 1 \\ 3 & 4 \end{vmatrix} = -3$$
; $A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 3 & 4 \end{vmatrix} = -1$; $A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 0 \\ 3 & 3 \end{vmatrix} = 3$

$$adj(A) = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & -1 \\ 0 & -2 & 3 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & -1 \\ 0 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & -1 \\ 0 & -2 & 3 \end{bmatrix}$$

5.3.2 ການແກ້ລະບົບສົມຜົນດ້ວຍເດແຕກມີນັງ (ສູດກຣາແມ)

ສົມມຸດມາຕຣິດສ໌ A ແມ່ນມາຕຣິດສ໌ທີ່ມີເດແຕກມີນັງຕ່າງສູນລະບົບສົມຜົນລີເນແອ AX = B ຈະມີພຽງແຕ່ໜຶ່ງໃຈຜົນໃນຮູບແບບ

$$x_i = \frac{\det(A_i)}{\det(A)}$$
 ; i=1, 2, 3,..., n

ຊຶ່ງ $\det \left(\ \mathsf{A}_{i} \ \right)$ ໄດ້ຈາກ $\det \left(\ \mathsf{A} \ \right)$ ດ້ວຍການແທນຖັນທີ່ i ດ້ວຍ B

ຕົວຢ່າງ 7: ຈົ່ງແກ້ລະບົບສົມຜົນລຸ່ມນີ້:

$$\begin{cases} x_1 + 2x_2 + x_3 = 3 \\ 3x_1 - x_2 - 3x_3 = -1 \\ 2x_1 + 3x_2 + x_3 = 4 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{bmatrix} \quad ; \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} ; B$$

$$B = \begin{vmatrix} 3 \\ -1 \\ 4 \end{vmatrix}$$

det (A) =
$$\begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{vmatrix} = -1 - 12 + 9 + 2 - 6 + 9 = 1$$

$$\det (A_1) = \begin{vmatrix} 3 & 2 & 1 \\ -1 & -1 & -3 \\ 4 & 3 & 1 \end{vmatrix} = -3 - 24 - 3 + 4 + 2 + 27 = 3$$

det (A₂) =
$$\begin{vmatrix} 1 & 3 & 1 \\ 3 & -1 & -3 \\ 2 & 4 & 1 \end{vmatrix} = -1 - 18 + 12 + 2 - 9 + 12 = -2$$

$$\det (A_3) = \begin{vmatrix} 1 & 2 & 3 \\ 3 & -1 & -1 \\ 2 & 3 & 4 \end{vmatrix} = -4 - 4 + 27 + 6 - 24 + 3 = 4$$

$$x_1 = \frac{\det(A_1)}{\det(A)} = \frac{3}{1} = 3$$
 ; $x_2 = \frac{\det(A_2)}{\det(A)} = -\frac{2}{1} = -2$; $x_3 = \frac{\det(A_3)}{\det(A)} = \frac{4}{1} = 4$

ບົດຝຶກຫັດ

1. ກຳນົດໃຫ້
$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{ ຈົ່ງຊອກ} \qquad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \ = \ ?$$

2. ກຳນົດໃຫ້
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 6 \end{bmatrix}$$
; $B = \begin{bmatrix} 4 & 6 \\ 2 & x \end{bmatrix}$

ท้าอ่า det (AB+B) = - 64 จิ๋าสุอภ B⁻¹ = ?

3. ໃຫ້ມາຕຣິດສ໌

$$A = \begin{bmatrix} 2 & 7 \\ 1 & 4 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 2 & 6 \\ 4 & 5 \end{bmatrix} \quad ; \quad C = \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix}$$

$$\det \left[(AB + AC)^T \right] = ?$$

4. ໃຫ້ມາຕຣິດສ໌
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \\ -1 & 0 & 2 \end{bmatrix}$$
 ; $B = \begin{bmatrix} 0 & 2 & 1 \\ -1 & 0 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ ຄ່າຂອງ $\det \begin{bmatrix} (A + AB)^T \end{bmatrix} = ?$

5. ຈົ່ງຄິດໄລ່ເດແຕກມີນັງລຸ່ມນີ້:

a.
$$\begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{vmatrix}$$

b.
$$\begin{vmatrix} 2 & 1 & 1 \\ 2 & 3 & -2 \\ 3 & 3 & 4 \end{vmatrix}$$

a.
$$\begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{vmatrix}$$
 b. $\begin{vmatrix} 2 & 1 & 1 \\ 2 & 3 & -2 \\ 3 & 3 & 4 \end{vmatrix}$ c. $\begin{vmatrix} 6 & 2 & 0 \\ 5 & 2 & 1 \\ 0 & 3 & 1 \end{vmatrix}$

d.
$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 4 & -1 \\ 1 & 6 & -1 \end{vmatrix}$$

d.
$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 4 & -1 \\ 1 & 6 & -1 \end{vmatrix}$$
 e. $\begin{vmatrix} 1 & -2 & 1 \\ 2 & -1 & -1 \\ -2 & 4 & -1 \end{vmatrix}$ f. $\begin{vmatrix} 1 & 2 & 2 \\ 1 & 4 & 6 \\ 4 & 2 & 7 \end{vmatrix}$

g.
$$\begin{vmatrix} 1 & -2 & 3 & 4 \\ 2 & 1 & -4 & 3 \\ 3 & -4 & -1 & -2 \\ 4 & 3 & 2 & -1 \end{vmatrix}$$
 h.
$$\begin{vmatrix} -1 & -1 & -1 & -1 \\ -1 & -2 & -4 & -8 \\ -1 & -3 & -9 & -27 \\ -1 & -4 & -16 & -64 \end{vmatrix}$$
 i.
$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \end{vmatrix}$$

$$\begin{bmatrix}
 -1 & -1 & -1 & -1 \\
 -1 & -2 & -4 & -8 \\
 -1 & -3 & -9 & -27 \\
 -1 & -4 & -16 & -64
 \end{bmatrix}$$

i.
$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \end{vmatrix}$$

j.
$$\begin{vmatrix} 0 & -1 & -2 & -10 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 9 & 10 \\ 0 & 1 & 2 & 0 \end{vmatrix}$$
 k.
$$\begin{vmatrix} 1 & 2 & 0 & 0 & 0 \\ 3 & 2 & 3 & 0 & 0 \\ 0 & 4 & 3 & 4 & 0 \\ 0 & 0 & 5 & 4 & 5 \\ 0 & 0 & 0 & 6 & 5 \end{vmatrix}$$

6. ໃຫ້ມາຕຣິດສ໌
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{bmatrix}$$
 ; $B = \begin{bmatrix} 2 & 1 & -3 \\ 4 & 5 & 1 \\ -2 & -1 & 4 \end{bmatrix}$ ຈົ່ງຄິດໄລ້

- det (2A)
- b. det (3A)
- det (A+B) d. det (AB)
- det (BA) f. det (A^TB^T)
- g. $\det(A^{-1})$
- h. det ($A^{-1}B^{-1}$)

7. ຈົ່ງຊອກມາຕຣິດສ໌ປິ້ນຂອງມາຕຣິດສ໌ລຸ່ມນີ້:

a.
$$A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{bmatrix}$$

a.
$$A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{bmatrix}$$
 b. $A = \begin{bmatrix} 1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$ c. $A = \begin{bmatrix} 4 & 3 & 2 \\ 1 & 2 & 1 \\ 5 & 0 & 3 \end{bmatrix}$

c.
$$A = \begin{bmatrix} 4 & 3 & 2 \\ 1 & 2 & 1 \\ 5 & 0 & 3 \end{bmatrix}$$

d.
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$

d.
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$
 e. $A = \begin{bmatrix} -2 & -2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 8 \end{bmatrix}$ f. $A = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{bmatrix}$

f.
$$A = \begin{vmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{vmatrix}$$

8. ຈົ່ງແກ້ລະບົບສົມຜົນລຸ່ມນີ້ດ້ວຍເດແຕກມີນັງ (ສູດກຣາແມ)

a.
$$\begin{cases} 2x_1 + x_2 - 3x_3 = 0 \\ 4x_1 + 5x_2 + x_3 = 8 \\ -2x_1 - x_2 + 4x_3 = 2 \end{cases}$$
 b.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ x_1 + x_2 - x_3 = 0 \\ 4x_1 - x_2 + 5x_3 = 3 \end{cases}$$

b.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ x_1 + x_2 - x_3 = 0 \\ 4x_1 - x_2 + 5x_3 = 3 \end{cases}$$

c.
$$\begin{cases} 2x_1 + x_2 - x_3 = 5\\ x_1 - 2x_2 + 2x_3 = -5\\ 7x_1 + x_2 - x_3 = 10 \end{cases}$$

c.
$$\begin{cases} 2x_1 + x_2 - x_3 = 5 \\ x_1 - 2x_2 + 2x_3 = -5 \\ 7x_1 + x_2 - x_3 = 10 \end{cases}$$
 d.
$$\begin{cases} x_1 + x_2 + 2x_3 = 0 \\ 2x_1 + 4x_2 + 6x_3 = 4 \\ 4x_1 + 2x_2 + 7x_3 = -2 \end{cases}$$

e.
$$\begin{cases} x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 - 5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$$

e.
$$\begin{cases} x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 - 5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$$
 f.
$$\begin{cases} x_1 + x_2 - 3x_3 + 2x_4 = 6 \\ x_1 - 2x_2 - x_4 = -6 \\ x_2 + x_3 + 3x_4 = 16 \\ 2x_1 - 3x_2 + 2x_3 = 6 \end{cases}$$

ບົດທີ 6

ໃປຣແກຣມລີເນແອ

(Linaer programming)

ໂປຣແກຣມແບບເສັ້ນຊື່ (ໂປຣແກຣມລີເນແອ) ເປັນເທັກນິກໃນການແກ້ໄຂບັນຫາທາງດ້ານການຈັດ ສັນປັດໃຈ ແລະ ຊັບພະຍາກອນໂດຍມີຈຸດປະສົງເພື່ອແກ້ໄຂໃນການຕັດສິນໃຈໃຫ້ເກີດຜົນຕາມແນວ ທາງການດຳເນີນງານທີດີທີ່ສຸດເຊັ່ນ: ກຳໄລສູງສຸດ, ຄ່າໃຊ້ຈ່າຍໜ້ອຍສຸດ ຫຼື ການດຳເນີນງານອື່ນໆທີ່ ໃຫ້ຜົນປະໂຍດຫຼາຍທີ່ສຸດໂດຍມີເງື່ອນໄຂທີ່ກຳນົດໃຫ້ເຊັ່ນ: ສະພາບຂອງຕະລາດ, ການຂາດແຄນວັດ ຖຸດິບ, ແຮງງານ, ເຄື່ອງຈັກ, ເງິນທຶນ, ສະຖານທີ່, ຄວາມຮູ້ຂໍ້ກຳນົດກົດໝາຍ ຫຼື ນະໂຍບາຍຕ່າງໆ ຂອງຜູ້ບໍລິຫານເປັນຕົ້ນ. ນັກເສດຖະສາດ, ວິສາວະກອນ ແລະ ນັກວິທະຍາສາດໃນຫຼາຍໆຂະແໜງ ການໄດ້ນຳໃຊ້ເທັກນິກນີ້ໃນການແກ້ບັນຫາຂອງພວກເຂົາເຈົ້າ ແລະ ໄດ້ຮັບຜົນສຳເລັດມາແລ້ວຢ່າງ ຫຼວງຫຼາຍ. ໃນວຸງກງານກະສິກຳເພີ່ນໄດ້ນຳໃຊ້ເທັກນິກນີ້ໃນການວິເຄາະບັນຫາຈັດສັນປັດໃຈທີ່ມີຢູ່ຈຳ ກັດເຊັ່ນ: ທີ່ດິນ, ປຸຍ, ນ້ຳ, ແຮງງານ ແລະ ເງິນທຶນ. ຜົນທີ່ໄດ້ຮັບຊ່ວຍໃຫ້ສາມາດຕັດສິນໃຈທີ່ຖືກ ຕ້ອງໃນການຈັດການໃຫ້ເກີດຜົນເກັບກຸ່ງວທີ່ສູງສຸດ, ສາມາດເພາະປູກຊະນິດພືດໃຫ້ເໝາະສົມກັບລະດູ ການ ແລະ ແທດເໝາະກັບຄວາມຕ້ອງການຂອງຕະລາດ. ໃນວົງການທຸລະກິດເຊັ່ນການຂົນສົ່ງທາງ ບົກ, ທາງນ້ຳ ແລະ ທາງອາກາດກໍໄດ້ພັດທະນານຳໃຊ້ເທັກນິກນີ້ເພື່ອລີດຄ່າໃຊ້ຈ່າຍໃນການຂົນສົ່ງ, ສາມາດຂົນຖ່າຍຜູ້ໂດຍສານ ຫຼື ສິນຄ້າໄດ້ຢ່າງມີປະສິດທະພາບ.

6.1 ໂຄງສ້າງຂອງໂປຣແກຣມແບບເສັ້ນຊື່ (ໂປຣແກຣມລີເນແອ)

ຮູບແບບທາງດ້ານຄະນິດສາດຂອງ ໂປຣແກຣມແບບເສັ້ນຊື່ມີດັ່ງນີ້:

- ມີຕຳລາເປົ້າໝາຍຊຶ່ງເປັນສະເໝີຜົນທີ່ສະແດງຄວາມສຳພັນລະຫວ່າງບັນດາປັດໃຈເພື່ອກຳນົດ ເປົ້າໝາຍສູງສຸດ ຫຼື ຕ່ຳສຸດ.
- ມີບັນດາເງື່ອນໄຂສະແດງຄວາມຈຳກັດຂອງບັນດາເງື່ອນໄຂ ຫຼື ຊັບພະຍາກອນຢູ່ໃນຮູບຮ່າງ ຂອງອະສະເໝີຜົນ.
- ຄວາມສຳພັນຕ່າງໆຢູ່ໃນຕຳລາເປົ້າໝາຍ ຫຼື ໃນອະສະເໝີຜົນເງື່ອນໄຂຕ້ອງຢູ່ໃນຮູບແບບເສັ້ນຊື່ ໝາຍຄວາມວ່າຕ້ອງເປັນສົມຜົນ ຫຼື ອະສົມຜົນຂັ້ນໜຶ່ງ.

ตำลาเป้าໝาย:
$$\text{MaxZ} = c_1 x_1 + c_2 x_2 + c_3 x_3 + ... + c_n x_n$$

ອະສະເໝີຜົນເງື່ອນໄຂ:
$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ... + a_{1n}x_n \leq b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + ... + a_{2n}x_n \le b_2$$

.

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + ... + a_{mn}x_n \le b_m$$

$$x_i \ge 0$$
 ; i =1, 2, 3,, n

$$b_i \ge 0$$
 ; j =1, 2, 3,..., m

ໂດຍມີ $Z=f(x_i)$ ເປັນຕຳລາເປົ້າໝາຍ, x_i ແມ[່]ນບັນດາຕົວປ[†]່ງນຊຶ່ງເປັນຕົວແທນຂອງບັນດາປັດໃຈ ຕ່າງໆ , b $_j$ ໝາຍເຖິງປະລິມານຊັບພະຍາກອນທີ່ມີຈຳກັດໃນການນຳມາໃຊ້.

ໃນການແກ້ບັນຫາໂດຍໂປຣແກຣມແບບເສັ້ນຊື່ (ໂປຣແກຣມລີເນແອ) ຈະຕ້ອງວິເຄາະລວບລວມເອົາ ບັນຫາແລ້ວຈັດໃຫ້ມີຮູບແບບຄືດັ່ງທີ່ໄດ້ກ່າວມາຂ້າງເທິງ.

ຕົວຢ່າງ1: ໂຮງງານຜະລິດສິນຄ້າແຫ່ງໜຶ່ງຜະລິດສິນຄ້າ 2 ຊະນິດ, ຊະນິດທີ່ໜຶ່ງໄດ້ກຳໄລ 2 ໂດລາ ຕໍ່ອັນ, ຊະນິດທີ່ສອງໄດ້ກຳໄລ 5 ໂດລາຕໍ່ອັນ. ສິນຄ້າຊະນິດທີ່ໜຶ່ງແຕ່ລະອັນຈະຕ້ອງໃຊ້ເວລາຜະລິດ 3 ຊື່ວໂມງ ແລະ ໃຊ້ວັດຖຸດິບ 9 ຫົວໜ່ວຍ. ສິນຄ້າຊະນິດທີ່ສອງແຕ່ລະອັນຈະຕ້ອງໃຊ້ເວລາຜະລິດ 4 ຊື່ວໂມງ ແລະ ໃຊ້ວັດຖຸດິບ 7 ຫົວໜ່ວຍ. ເວລາທຳການຜະລິດມີຈຳກັດພຸງແຕ່ 200 ຊື່ວໂມງ, ວັດຖຸດິບມີຈຳກັດພຸງງແຕ່ 300 ຫົວໜ່ວຍ. ຕະລາດຕ້ອງການສິນຄ້າຊະນິດທີ່ໜຶ່ງບໍ່ຕ່ຳກວ່າ 20 ອັນ ຈົ່ງສ້າງຮູບແບບໂປຣແກຣມແບບເສັ້ນຊື່ເພື່ອຊອກຫາກຳໄລສູງສຸດທີ່ໂຮງງານດັ່ງກ່າວສາມາດມີໄດ້? ວິທີແກ້:

ສົມມຸດ Z ແມ[່]ນຜົນກຳໄລ

 x_1 ແມ່ນປະລິມານສິນຄ້າຊະນິດທີ່ 1

 x_2 ແມ່ນປະລິມານສິນຄ້າຊະນິດທີ່ 2

ຕຳລາເປົ້າໝາຍ
$$ext{MaxZ} = 2x_1 + 5x_2$$

ສຳລັບເວລາມີຈຳກັດ
$$3x_1 + 4x_2 \le 200$$

สำลับอัดทูดิบมีจำทัด
$$9x_1 + 7x_2 \le 300$$

ຄວາມຕ້ອງການສິນຄ້າ
$$x_{\rm l} \ge 20$$

$$x_1 \ge 0 \; ; \; x_2 \ge 0$$

ຕົວຢ່າງ 2: ໂຮງງານແຫ່ງໜຶ່ງຜະລິດສິນຄ້ຳ 3 ຊະນິດຊຶ່ງແຕ່ລະຊະນິດຈະຕ້ອງຜ່ານຂະບວນການ ແລະ ເວລາໃນການຜະລິດດັ່ງຕາຕະລາງລຸ່ມນີ້:

ຂັ້ນຕອນ	ເວລານັ້	ີ່າໃຊ [້] ໃນການຜະຊິ	ດສິນຄ ້ າ	ເວລາທີ່ມີໃຫ້
ການຕະລິດ	ຊະນິດທີ 1	ຊະນິດທີ 2	ຊະນິດທີ 3	ນາທີ/ວັນ
1	1	2	1	430
2	3	1	2	480
3	1	4	3	420

ຜົນກຳໄລທີ່ໄດ້ຂອງສິນຄ້າຊະນິດທີ 1, 2 ແລະ 3 ແມ່ນ 3\$, 4\$ ແລະ 5\$ ຕາມລຳດັບ. ໃນການ ຜະລິດແຕ່ລະວັນຄວນຜະລິດສິນຄ້າແຕ່ລະຊະນິດຈຳນວນເທົ່າໃດຈຶ່ງຈະເຮັດໃຫ້ໄດ້ຜົນກຳໄລສູງສຸດ? ສົມມຸດ Z ແມ່ນຜົນກຳໄລ

 x_1 ແມ່ນປະລິມານສິນຄ້າຊະນິດທີ່ 1

 x_2 ແມ່ນປະລິມານສິນຄ້າຊະນິດທີ່ 2

 x_3 ແມ່ນປະລິມານສິນຄ້າຊະນິດທີ່ 3

ตำลาเป้าพาย $MaxZ = 3x_1 + 4x_2 + 5x_3$

ອະສະເໝີຜົນເງື່ອນໄຂ $x_1 + 2x_2 + x_3 \le 430$

 $3x_1 + x_2 + 2x_3 \le 480$

 $x_1 + 4x_2 + 3x_3 \le 420$

 $x_1 \ge 0; x_2 \ge 0; x_3 \ge 0$

6.2 ວິທີແກ້ໂປຣແກຣມແບບເສັ້ນຊື່ດ້ວຍເສັ້ນສະແດງ.

ການແກ້ໂປຣແກຣມແບບເສັ້ນຊື່ດ້ວຍເສັ້ນສະແດງເປັນວິທີທີ່ງ່າຍແຕ່ມີຂໍ້ຈຳກັດເພາະວ່າສາມາດໃຊ້ໄດ້ ກັບກໍລະນີທີ່ມີ 2 ຕົວປຸ່ງນເທົ່ານັ້ນ. ການແກ້ດ້ວຍວິທີນີ້ກ່ອນອື່ນເຮົາຕ້ອງປຸ່ງນບັນດາອະສະເໝີຜົນ ເງື່ອນໄຂໃຫ້ເປັນສະເໝີຜົນແລ້ວແຕ້ມເສັ້ນສະແດງຂອງພວກມັນໃສ່ລະບົບເສັ້ນເຄົ້າສາກໂດຍມີແກນ ນອນເປັນແກນສະແດງຕົວປຸ່ງນ x_1 ແລະ ແກນຕັ້ງເປັນແກນສະແດງຕົວປຸ່ງນ x_2 . ຫຼັງຈາກນັ້ນຈຶ່ງ ກຳນົດເຂດໃນໜ້າພຸງທີ່ຕອບສະໜອງບັນດາອະສະເໝີຜົນເງື່ອນໄຂ, ເຂດດັ່ງກ່າວນັ້ນເອີ້ນວ່າເຂດ ຄວາມເປັນໄປໄດ້ຂອງໃຈຜົນ.

ເຂດຄວາມເປັນໄປໄດ້ຂອງໃຈຜົນແມ່ນຮູບຫຼາຍແຈ ແລະ ໜຶ່ງໃນຈຳນວນເມັດຈອມຂອງມັນຈະແມ່ນໃຈ ຜົນທີ່ຕ້ອງການ. ການກວດເບີ່ງວ່າເຂດໃດແມ່ນເຂດຄຳຕອບທີ່ຕອບສະໜອງແຕ່ລະອະສະເໝີຜົນເງື່ອນ ໄຂຄືຫຼັງຈາກທີ່ເຮົາແຕ້ມເສັ້ນສະແດງທີ່ເປັນສະເໝີຜົນແລ້ວເລືອກເອົາເມັດໃດເມັດໜຶ່ງຕາມໃຈໄປແທນ ໃສ່ອະສະເໝີຜົນເງື່ອນໄຂຖ້ຳຕອບສະໜອງສະແດງວ່າເຂດຄຳຕອບຢູ່ເບື້ອງດັ່ງກ່າວ. ແຕ່ຖ້ຳວ່າບໍ່ຕອບ ສະໜອງສະແດງວ່າເຂດຄຳຕອບຢູ່ເບື້ອງກົງກັນຂ້ຳມກັບເມັດດັ່ງກ່າວ.

ການກຳນົດວ່າເມັດຈອມໃດຂອງເຂດຄວາມເປັນໄປໄດ້ຂອງໃຈຜົນແມ່ນຄຳຕອບທີ່ຕ້ອງການເຮົາສາ ມາດນຳໃຊ້ໜຶ່ງໃນສອງວິທີຂ້າງລຸ່ມນີ້:

- ທົດສອບບັນດາເມັດຈອມໂດຍການເອົາບັນດາເມັດຈອມແທນໃສ່ຕຳລາເປົ້າໝາຍເມັດໃດເຮັດ ໃຫ້ຕຳລາເປົ້າໝາຍມີຄ່າໃຫຍ່ສຸດ (ໃນກໍລະນີຊອກຄ່າສູງສຸດ) ເມັດໃດເຮັດໃຫ້ຕຳລາເປົ້າໝາຍ ມີຄ່ານ້ອຍສຸດ (ໃນກໍລະນີຊອກຄ່າຕ່ຳສຸດ) ຈະແມ່ນໃຈຜົນທີ່ຕ້ອງການ.
- 2. ແຕ້ມເສັ້ນຕຳລາເປົ້າໝາຍຄົງຄ່າ $Z = f(x_1, x_2) = k \ (k \ ແມ່ນຈຳນວນຄົງຄ່າ) ໃນກໍລະນີ ຂອງກຳໄລເອີ້ນວ່າເສັ້ນກຳໄລສະເໝີຄ່າ (Isoprofit) ແລະກໍລະນີຂອງຕົ້ນທຶນເອີ້ນວ່າເສັ້ນ ຕົ້ນທຶນສະເໝີຄ່າ (Isocost). ແຕ່ປົກກະຕິແລ້ວເພິ່ນນິຍົມແຕ້ມເສັ້ນຕຳລາຄົງຄ່າເທົ່າ 0. ຫຼັງຈາກນັ້ນເພິ່ນຈະຍ້າຍຂະໜານເສັ້ນຕຳລາເປົ້າໝາຍຄົງຄ່າໄປທາງເບື້ອງຂວາມື ກໍລະນີຊອກ ຄ່າສູງສຸດຖ້າມັນຕັດເມັດຈອມໃດເປັນເມັດສຸດທ້າຍເມັດດັ່ງກ່າວຈະແມ່ນໃຈຜົນທີ່ຕ້ອງການ . ກໍລະນີຊອກຄ່າຕໍ່າສຸດຖ້າມັນຕັດເມັດຈອມໃດເປັນເມັດທຳອິດເມັດດັ່ງກ່າວຈະແມ່ນໃຈຜົນທີ່ ຕ້ອງການ.$

ຕົວຢ່າງ 3: ໃຫ້ຕຳລາເປົ້າໝາຍ
$$\begin{aligned} \mathit{MaxZ} &= 50x_1 + 60x_2 \\ \end{aligned}$$
 ບັນດາເງື່ອນໄຂ
$$\begin{aligned} x_1 + 2x_2 &\leq 8 \\ 2x_1 + 2x_2 &\leq 10 \\ 9x_1 + 4x_2 &\leq 36 \\ x_1, x_2 &\geq 0 \end{aligned}$$

ກ່ອນອື່ນເຮົາຕ້ອງປ່ຽນບັນດາອະສະເໝີຜົນເງື່ອນໄຂໃຫ້ເປັນສະເໝີຜົນແລ້ວແຕ້ມເສັ້ນສະແດງຂອງ ພວກມັນໃສ່ລະບົບເສັ້ນເຄົ້າສາກ

$$x_1 + 2x_2 = 8$$

 $2x_1 + 2x_2 = 10$
 $9x_1 + 4x_2 = 36$

ສ່ວນ $x_1, x_2 \geq 0$ ໝາຍຄວາມວ່າໃຈຜົນຈະນອນຢູ່ໃນສວ່ນສີ່ທີ່ 1 ຂອງລະບົບເສັ້ນເຄົ້າສາກ

ຈາກເສັ້ນສະແດງຂ້າງເທິງເຮົາເຫັນວ່າເຂດທີ່ເປັນໄປໄດ້ຂອງໃຈຜົນແມ່ນຮູບ 5 ແຈ OMNPQ ຊື່ງມີບັນດາເມັດຈອມແມ່ນ O(0,0), M(0,4), N(2,3), P(3.2,1.8), Q(4,0) ໃຈຜົນທີ່ເຮົາຕ້ອງ ການຈະແມ່ນໜຶ່ງໃນ 5 ເມັດນີ້ເອງ. ຢາກຮູ້ວ່າເມັດໃດແມ່ນໃຈຜົນທີ່ຕ້ອງການເຮົາຈະທົດສອບດ້ວຍ ການແທນຄ່າຂອງພວກມັນໃສ່ຕຳລາເປົ້າໝາຍຄືດັ່ງນີ້:

$$Z(O) = Z(0,0) = 50(0) + 60(0) = 0$$

 $Z(M) = Z(0,4) = 50(0) + 60(4) = 240$

$$Z(N) = Z(2,3) = 50(2) + 60(3) = 280$$

$$Z(P) = Z(3.2,1.8) = 50(3.2) + 60(1.8) = 268$$

$$Z(Q) = Z(4,0) = 50(4) + 60(0) = 200$$

ເຫັນວ່າເມັດ N(2,3) ແມ່ນເມັດທີ່ເຮັດໃຫ້ຕຳລາເປົ້າໝາຍມີຄ່າສູງສຸດຄື 280 ດັ່ງນັ້ນໃຈຜົນທີ່ຕ້ອງການ ແມ່ນ x_1 = 2 , x_2 = 3 ແລະ MaxZ = 280

ອີກວິທີໜຶ່ງຄືແຕ້ມເສັ້ນຕຳລາເປົ້າໝາຍເທົ່າ 0 ຄື $MaxZ = 50x_1 + 60x_2 = 0$

ຊຶ່ງໃນເສັ້ນສະແດງຂ້າງເທິງຄືເສັ້ນ ℓ ແລ້ວຍ້າຍຂະໜານເສັ້ນດັ່ງກ່າວໄປທາງຂວາມືເມັດສຸດທ້າຍທີ່ ເສັ້ນຕຳລາຄົງຄ່າເທົ່າ 0 ໄປຕັດຈະແມ່ນເມັດ N(2,3). ດັ່ງນັ້ນໃຈຜົນທີ່ຕ້ອງການແມ່ນ $x_1=2$, $x_2=3$ ແລ້ວເອົາຄ່າຂອງໃຈຜົນໄປແທນໃສ່ຕຳລາເປົ້າໝາຍກໍຈະໄດ້ MaxZ=280

ຕົວຢ່າງ 4: ໃຫ້ຕຳລາເປົ້າໝາຍ $\mathit{MinZ} = 2x_1 + 8x_2$

ບັນດາເງື່ອນໄຂ
$$x_1 + x_2 \le 9$$

$$4x_1 + x_2 \ge 12$$

$$x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

ກ່ອນອື່ນເຮົາຕ້ອງປ່ຽນບັນດາອະສະເໝີຜົນເງື່ອນໄຂໃຫ້ເປັນສະເໝີຜົນແລ້ວແຕ້ມເສັ້ນສະແດງຂອງ ພວກມັນໃສ[່]ລະບົບເສັ້ນເຄົ້າສາກ

$$x_1 + x_2 = 9$$

 $4x_1 + x_2 = 12$
 $x_1 + 2x_2 = 10$

ສ່ວນ $x_1, x_2 \geq 0$ ໝາຍຄວາມວ່າໃຈຜົນຈະນອນຢູ່ໃນສວ່ນສີ່ທີ່ 1 ຂອງລະບົບເສັ້ນເຄົ້າສາກ

ຈາກເສັ້ນສະແດງຂ້າງເທິງເຮົາເຫັນວ່າເຂດທີ່ເປັນໄປໄດ້ຂອງໃຈຜົນແມ່ນຮູບ 3 ແຈ ABC ຊື່ງມີບັນດາເມັດຈອມແມ່ນ A(2,4), B(1,8), C(8,1) ໃຈຜົນທີ່ເຮົາຕ້ອງການຈະແມ່ນໜຶ່ງໃນ 3 ເມັດນີ້ເອງ. ຢາກຮູ້ວ່າເມັດໃດແມ່ນໃຈຜົນທີ່ຕ້ອງການເຮົາຈະທົດສອບດ້ວຍການແທນຄ່າຂອງ ພວກມັນໃສ່ຕຳລາເປົ້າໝາຍຄືດັ່ງນີ້:

$$Z(A) = Z(2,4) = 2(2) + 8(4) = 36$$

$$Z(B) = Z(1,8) = 2(1) + 8(8) = 66$$

$$Z(C) = Z(8,1) = 2(8) + 8(1) = 24$$

ເຫັນວ່າເມັດ C(8,1) ແມ່ນເມັດທີ່ເຮັດໃຫ້ຕຳລາເປົ້າໝາຍມີຄ່າຕ່ຳສຸດຄື 24 ດັ່ງນັ້ນໃຈຜົນທີ່ຕ້ອງການ ແມ່ນ $x_1 = 8$, $x_2 = 1$ ແລະ MinZ = 24

6.3 ແກ້ໂປຣແກຣມແບບເສັ້ນຊື່ດ້ວຍວິທີຊິມເປຼັກ (Simplex Method) .

6.3.1 ກໍລະນີຊອກຄ່າໃຫຍ່ສຸດ

ວິທີ Simplex ແມ່ນວິທີໜຶ່ງໃນການແກ້ບັນຫາການວາງແຜນແບບລີເນແອທີ່ຊອກຄ່ຳໃຫຍ່ສຸດຂອງ ຕຳລາລີເນແອພາຍໃຕ້ເງື່ອນໄຂທີ່ເປັນອະສະເໝີຜົນນ້ອຍກວ່າ ຫຼື ເທົ່າກັບ.

ການໝູນໃຊ້ວິທີ Simplex ເຂົ້າໃນແກ້ໂປຣແກຣມແບບເສັ້ນຊື່ຈະປະຕິບັດຕາມຂັ້ນຕອນດັ່ງນີ້:

1. ຂຸງນບັນຫາໃຫ້ຢູ່ໃນຮູບຮ່າງມາດຕະຖານ

2. ໝູນໃຊ້ຕົວປ່ຽນເພີ່ມ (Slack variables) $s_1, s_2, s_3,, s_m$ ເພື່ອປ່ຽນບັນດາອະສະເໝີ ຜົນເງື່ອນໄຂໃຫ້ເປັນສະເໝີຜົນດັ່ງນີ້:

$$x_i \ge 0$$
 ; b_j ≥ 0 ; i=1, 2, 3, ..., n ; j = 1,2,3,...,m

3. ສ້າງຕາຕະລາງ Simplex ເບື້ອງຕົ້ນ

Row	Р	x_1	x_2	 \mathcal{X}_n	s_1	s_2	 S_m	RHS
0	1	- c ₁	- c ₂	 - C _n	0	0	 0	0
1	0	a_{11}	a_{12}	 a_{1n}	1	0	 0	$b_{\scriptscriptstyle m l}$
2	0	a_{21}	a_{22}	 a_{2n}	0	1	 0	b_2
	•	•	-	 -	-			
m	0	a_{m1}	a_{m2}	a_{mn}	0	0	 1	$b_{\scriptscriptstyle m}$

- 4. ເລືອກຖັນ, ແຖວ ແລະ ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ
 - ຖັນທີ່ເປັນຕົວຕັ້ງ (Pivot column) ແມ່ນຖັນທີ່ວ່າໃນແຖວ 0 (ແຖວສະເໝີຜົນຂອງຕຳ ລາເປົ້າໝາຍ) ຫາກມີຈຳນວນລົບນ້ອຍກວ່າໝູ່.
 - ແຖວທີ່ເປັນຕົວຕັ້ງ (Pivot Row) ແມ່ນແຖວທີ່ວ່າຜົນຫານຂອງອົງປະກອບເບື້ອງຂວາ ມື (RHS) ໃຫ້ອົງປະກອບທີ່ມີຄ່າບວກຢູ່ໃນຖັນທີ່ເປັນຕົວຕັ້ງມີຄ່ານ້ອຍສຸດ.
 - ອົງປະກອບທີ່ຢູ່ບ່ອນຕັດກັນລະຫວ່າງຖັນ ແລະ ແຖວ ທີ່ເປັນຕົວຕັ້ງເອີ້ນວ່າອົງປະກອບທີ່ເປັນ ຕົວຕັ້ງ (Pivot element) .
- 5. ປ່ຽນອົງປະກອບທີ່ເປັນຕົວຕັ້ງໃຫ້ເປັນ 1 ແລະ ອົງປະກອບອື່ນໆໃນຖັນທີ່ເປັນຕົວຕັ້ງໃຫ້ເປັນ 0 ໂດຍໃຊ້ວິທີຂອງກາວສ໌.

ຫຼັງຈາກປ່ຽນແລ້ວຖ້າອົງປະກອບໃນແຖວ 0 ຍັງເປັນຈຳນວນລົບແມ່ນໃຫ້ສືບຕໍ່ປະຕິບັດຂັ້ນຕອນທີ່ 4 ໄປຈົນກວ່າເວລາໃດອົງປະກອບໃນແຖວ 0 ບໍ່ມີຈຳນວນລົບນັ້ນຄືຕາຕະລາງສຸດທ້າຍແລ້ວເຮົາສາມາດ ອ່ານຄຳຕອບຢູ່ໃນຖັນສຸດທ້າຍ (RHS) ຊຶ່ງກົງກັບສຳປະສິດຂອງຕົວປ່ຽນທີ່ມີຄ່າເທົ່າ 1. ຕົວຢ່າງ 5: ຈົ່ງແກ້ບັນຫາຂອງໂປຣແກຣມແບບເສັ້ນຊື່ລຸ່ມນີ້:

ຕຳລາເປົ້າໝາຍ
$$MaxP=3x_1+4x_2$$

ບັນດາເງື່ອນໄຂ $2x_1+4x_2 \leq 120$
 $2x_1+2x_2 \leq 80$
 $x_1,x_2 \geq 0$

1. ໝູນໃຊ້ຕົວປ່ຽນເພີ່ມ (Slack variables) s_1, s_2 ເພື່ອປ່ຽນບັນດາອະສະເໝີຜົນເງື່ອນໄຂ ໃຫ້ເປັນສະເໝີຜົນດັ່ງນີ້:

$$P - 3x_1 - 4x_2 = 0$$

$$2x_1 + 4x_2 + s_1 = 120$$

$$2x_1 + 2x_2 + s_2 = 80$$

$$x_1, x_2 \ge 0$$

3. ສ້າງຕາຕະລາງ Simplex ເບື້ອງຕົ້ນ

Row	Р	x_1	x_2	<i>S</i> ₁	s_2	RHS
0	1	-3	-4	0	0	0
1	0	2	4	1	0	120
2	0	2	2	0	1	80

3. ເລືອກຖັນ, ແຖວ ແລະ ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ

Row	Р	x_1	x_2	<i>S</i> ₁	s_2	RHS	
0	1	-3	-4	0	0	0	
1	0	2	4	1	0	120	120/4=30
2	0	2	2	0	1	80	80/2=40
ແຖວທີ່ເບັ	່ໃນຕົວຕັ້ງ		1	→	ທີ່ເປັນຕົວຕໍ	ทั้ง	
Dow	D					DHC	

	Row	Р	x_1	x_2	S_1	s_2	RHS		
	0	1	-1	0	1	0	120		
	1	0	$\frac{1}{2}$	1	$\frac{1}{4}$	0	30	30/0.5=60	
	2	0	1	0	$-\frac{1}{2}$	1	20	20/1=20	
ແຖວທີ່ເປັນຕົວຕັ້ງ									

Row	Р	x_1	x_2	<i>S</i> ₁	s_2	RHS
0	1	0	0	$\frac{1}{2}$	1	140
1	0	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	20
2	0	1	0	$-\frac{1}{2}$	1	20

ມາຮອດນີ້ເຮົາໄດ້ຕາຕະລາງ Simplex ສຸດທ້າຍແລ້ວເພາະວ່າອົງປະກອບໃນແຖວ 0 ບໍ່ມີຈຳນວນ ລົບເຮົາສາມາດອ່ານຄຳຕອບຢູ່ໃນຖັນສຸດທ້າຍ (RHS) ຊື່ງກົງກັບສຳປະສິດຂອງຕົວປຸ່ງນທີ່ມີຄ່າເທົ່າ 1 ດັ່ງນີ້:

$$x_1 = 20$$
 , $x_2 = 20$, $MaxP = 140$

ຕົວຢ່າງ 6: ຈົ່ງແກ້ບັນຫາຂອງໂປຣແກຣມແບບເສັ້ນຊື່ລຸ່ມນີ້:

$$MaxP=14x_1+12x_2+8x_3$$

ບັນດາເງື່ອນໄຂ $2x_1+x_2+x_3\leq 2$
$$x_1+x_2+3x_3\leq 4$$

$$x_1\geq 0; x_2\geq 0; x_3\geq 0$$

1. ໝູນໃຊ້ຕົວປ່ຽນເພີ່ມ (Slack variables) s_1, s_2 ເພື່ອປ່ຽນບັນດາອະສະເໝີຜົນເງື່ອນໄຂ ໃຫ້ເປັນສະເໝີຜົນດັ່ງນີ້:

P -
$$14x_1 - 12x_2 - 8x_3 = 0$$

 $2x_1 + x_2 + x_3 + s_1 = 2$
 $x_1 + x_2 + 3x_3 + s_2 = 4$
 $x_1 \ge 0; x_2 \ge 0; x_3 \ge 0$
 $s_1 \ge 0; s_2 \ge 0$

2. ສ້າງຕາຕະລາງ Simplex ເບື້ອງຕົ້ນ

Row	Р	\mathcal{X}_1	x_2	<i>x</i> ₃	s_1	s_2	RHS
0	1	-14	-12	-8	0	0	0
1	0	2	1	1	1	0	2
2	0	1	1	3	0	1	4

3. ເລືອກຖັນ, ແຖວ ແລະ ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ

	Row	Р	x_1	x_2	x_3	S_1	s_2	RHS	
	0	1	-14	-12	-8	0	0	0	
_	1	0	2	1	1	1	0	2	2/2=1
	2	0	1	1	3	0	1	4	4/1=4
ແຖວທີ່ເປັນຕົວຕັ້ງ ຖັນທີ່ເປັນຕົວຕັ້ງ									

	Row	Р	x_1	x_2	x_3	S_1	s_2	RHS	
	0	1	0	-5	-1	7	0	14	
_ 	. 1	0	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	1	1/0.5=2
	2	0	0	$\frac{1}{2}$	$\frac{5}{2}$	$-\frac{1}{2}$	1	3	3/0.5=6

Row	Р	x_1	x_2	x_3	s_1	s_2	RHS
0	1	10	0	4	12	0	24
1	0	2	1	1	1	0	2
2	0	-1	0	2	1	1	2

ມາຮອດນີ້ເຮົາໄດ້ຕາຕະລາງ Simplex ສຸດທ້າຍແລ້ວເພາະວ່າອົງປະກອບໃນແຖວ 0 ບໍ່ມີຈຳນວນ ລົບເຮົາສາມາດອ່ານຄຳຕອບຢູ່ໃນຖັນສຸດທ້າຍ (RHS)

$$x_1 = x_3 = 0$$
 , $x_2 = 2$, $MaxP = 24$

6.3.2 ກໍລະນີຊອກຄ່ານ້ອຍສຸດ

ຂັ້ນຕອນຕ່າງໆ ໃນການແກ້ບັນຫາຊອກຄ່ານ້ອຍສຸດຂອງ ໂປຣແກຣມແບບເສັ້ນຊື່ມີດັ່ງນີ້:

1. ຂງນບັນຫາໃຫ້ຢູ່ໃນຮູບຮ່າງມາດຕະຖານ

$$\begin{aligned} & \text{MinC} &= c_1 x_1 + c_2 x_2 + c_3 x_3 + \ldots + c_n x_n \\ & a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + \ldots + a_{1n} x_n & \geq & b_1 \\ & a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + \ldots + a_{2n} x_n & \geq & b_2 \\ & \ddots & \ddots & \ddots & \ddots \\ & a_{m1} x_1 + a_{m2} x_2 + a_{m3} x_3 + \ldots + a_{mn} x_n & \geq & b_m \\ & x_i \geq 0 \; \; ; \; b_j \; \geq \; 0 \; \; ; \; i = 1, \; 2, \; 3, \; \ldots \; \; , n \; \; ; \; j \; = \; 1, 2, 3, \ldots \end{aligned}$$

2. ສ້າງມາຕຣິດສ໌ຂະຫຍາຍຊຶ່ງໄດ້ຈາກຕຳລາເປົ້າໝາຍ ແລະ ບັນດາອະສະເໝີຜົນເງື່ອນໄຂດັ່ງນີ້:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \\ c_1 & c_2 & \dots & c_n & 0 \end{bmatrix}$$

3 .ຂຸງນມາຕຣິດສ໌ຜັນປຸ່ງນຂອງມາຕຣິດສ໌ຂະຫຍາຍຂ້າງເທິງ

$$\begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} & c_1 \\ a_{12} & a_{22} & \dots & a_{m2} & c_2 \\ \vdots & \vdots & \dots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} & c_n \\ b_1 & b_2 & \dots & b_m & 0 \end{bmatrix}$$

4. ໝູນໃຊ້ບັນຫາຄວບຄູ່ຖ່າຍທອດມາຕຣິດສ໌ຜັນປ່ຽນຂ້າງເທິງໃຫ້ເປັນບັນຫາຊອກຄ່າໃຫຍ່ສຸດ.

- 5. ໝູນໃຊ້ວິທີ Simplex ເພື່ອແກ້ບັນຫາຄວບຄູ່ຂ້າງເທິງຕາມຂັ້ນຕອນຄືທີ່ໄດ້ສະເໜີຜ່ານມາ. ຫຼັງຈາກໄດ້ຕາຕະລາງ simplex ສຸດທ້າຍແລ້ວເຮົາຈະອ່ານໃຈຜົນຂອງລະບົບໂປຣແກຣມແບບ ເສັ້ນຊື່ໃນກໍລະນີຊອກຄ່ານ້ອຍສຸດຈະແມ່ນອັນດຸງວກັນກັບໃຈຜົນຂອງບັນຫາຄວບຄູ່ຂອງມັນໝາຍ ຄວາມວ່າ MinC = MaxP . ສ່ວນຄ່າຂອງຕົວປ່ຽນທີ່ 1, ຄ່າຂອງຕົວປ່ຽນທີ່ 2, ... ໃນກໍລະນີຊອກຄ່ານ້ອຍສຸດແມ່ນອ່ານໄດ້ຈາກອົງປະກອບຢູ່ໃນແຖວ 0 ທີ່ກົງກັບຖັນຕົວປ່ຽນເພີ່ມ \$1,\$5,... ຕາມລຳດັບ.
- ຕົວຢ່າງ 7: ຈົ່ງແກ້ບັນຫາຂອງໂປຣແກຣມແບບເສັ້ນຊື່ລຸ່ມນີ້:

$$MinC=2x_1+3x_2$$

ບັນດາເງື່ອນໄຂ $2x_1+x_2\geq 6$ $x_1+2x_2\geq 4$ $x_1+x_2\geq 5$ $x_1\geq 0; x_2\geq 0$

1. ສ້າງມາຕຣິດສ໌ຂະຫຍາຍຊຶ່ງໄດ້ຈາກຕຳລາເປົ້າໝາຍ ແລະ ບັນດາອະສະເໝີຜົນເງື່ອນໄຂດັ່ງນີ້:

$$\begin{bmatrix}
2 & 1 & | 6 \\
1 & 2 & | 4 \\
1 & 1 & | 5 \\
2 & 3 & | 0
\end{bmatrix}$$

2. ຂຸງນມາຕຣິດສ໌ຕັນປຸ່ງນຂອງມາຕຣິດສ໌ຂະຫຍາຍຂ້າງເທິງ

$$\begin{bmatrix} 2 & 1 & 1 | 2 \\ 1 & 2 & 1 | 3 \\ 6 & 4 & 5 | 0 \end{bmatrix}$$

3. ໝູນໃຊ້ບັນຫາຄວບຄູ່ຖ່າຍທອດມາຕຣິດສ໌ຜັນປ່ຽນຂ້າງເທິງໃຫ້ເປັນບັນຫາຊອກຄ່າໃຫຍ່ສຸດ.

$$\label{eq:maxP} \mathsf{MaxP} = 6y_1 + 4y_2 + 5y_3$$
 ພາຍໃຕ້ເງື່ອນໄຊ
$$2y_1 + y_2 + y_3 & \leq 2$$

$$y_1 + 2y_2 + y_3 & \leq 3$$

$$y_1 \geq 0; y_2 \geq 0; y_3 \geq 0$$

4. ໝູນໃຊ້ຕົວປ່ຽນເພີ່ມ (Slack variables) s_1, s_2 ເພື່ອປ່ຽນບັນດາອະສະເໝີຜົນເງື່ອນໄຂ ໃຫ້ເປັນສະເໝີຜົນດັ່ງນີ້:

$$P - 6y_1 - 4y_2 - 5y_3 = 0$$

$$2y_1 + y_2 + y_3 + s_1 = 2$$

$$y_1 + 2y_2 + y_3 + s_2 = 3$$

$$y_1 \ge 0; y_2 \ge 0; y_3 \ge 0$$

$$s_1 \ge 0; s_2 \ge 0$$

4. ສ້າງຕາຕະລາງ Simplex ເບື້ອງຕົ້ນ

Row	Р	\mathcal{Y}_1	y_2	<i>y</i> ₃	s_1	s_2	RHS
0	1	-6	-4	-5	0	0	0
1	0	2	1	1	1	0	2
2	0	1	2	1	0	1	3

6. ເລືອກຖັນ, ແຖວ ແລະ ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ

	Row	Р	y_1	y_2	<i>y</i> ₃	S_1	s_2	RHS	
	0	1	-6	-4	-5	0	0	0	
_	1	0	2	1	1	1	0	2	2/2=1
	2	0	1	2	1	0	1	3	3/1=3
	ແກວທີ່ເ	ປັນຕົວຕັ້ງ	<u> </u>	→ ຖັນ	ທີ່ເປັນ ຕົວ	ຕັ້ງ			

r						1			
	Row	Р	y_1	y_2	y_3	s_1	s_2	RHS	
	0	1	0	-1	-2	3	0	6	
_	1	0	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	1	1/0.5=2
	2	0	0	$\frac{3}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	1	2	2/0.5=4
		ແຖວທີ່ເປັນ	ບຕິວຕັ້ງ		<u> </u>	ຖັນທີ່ເຂັ	ປ ິນຕົວຕັ້ງ		

Row	Р	y_1	\mathcal{Y}_2	<i>y</i> ₃	s_1	s_2	RHS
0	1	4	1	0	5	0	10
1	0	2	1	1	1	0	2
2	0	-1	1	0	-1	1	1

ມາຮອດນີ້ເຮົາໄດ້ຕາຕະລາງ Simplex ສຸດທ້າຍແລ້ວເພາະວ່າອົງປະກອບໃນແຖວ 0 ບໍ່ມີຈຳນວນລົບ ເຮົາສາມາດອ່ານຄຳຕອບຢູ່ໃນຖັນສຸດທ້າຍ (RHS)

$$y_1 = y_2 = 0$$
 , $y_3 = 2$, $MaxP = 10$
MinC = MaxP = 10 ; $x_1 = 5$, $x_2 = 0$

ຕົວຢ່າງ 8: ຈົ່ງແກ້ບັນຫາຂອງໂປຣແກຣມແບບເສັ້ນຊື່ລຸ່ມນີ້:

$$MinC = 30x_1 + 50x_2$$

ພາຍໃຕ້ເງື່ອນໄຂ $6x_1 + 2x_2 \ge 30$
 $3x_1 + 2x_2 \ge 24$
 $5x_1 + 10x_2 \ge 60$
 $x_1 \ge 0; x_2 \ge 0$

1. ສ້າງມາຕຣິດສ໌ຂະຫຍາຍຊຶ່ງໄດ້ຈາກຕຳລາເປົ້າໝາຍ ແລະ ບັນດາອະສະເໝີຜົນເງື່ອນໄຂດັ່ງນີ້:

2. ຂຸງນມາຕຣິດສ໌ຕັນປຸ່ງນຂອງມາຕຣິດສ໌ຂະຫຍາຍຂ້າງເທິງ

$$\begin{bmatrix} 6 & 3 & 5 & 30 \\ 2 & 2 & 10 & 50 \\ 30 & 24 & 60 & 0 \end{bmatrix}$$

3. ໝູນໃຊ້ບັນຫາຄວບຄູ່ຖ່າຍທອດມາຕຣິດສ໌ຜັນປ່ຽນຂ້າງເທິງໃຫ້ເປັນບັນຫາຊອກຄ່າໃຫຍ່ສຸດ.

$$\label{eq:maxP} \text{MaxP} = 30y_1 + 24y_2 + 60y_3$$
 ພາຍໃຕ້ເງື່ອນໄຂ
$$6y_1 + 3y_2 + 5y_3 \leq 30$$

$$2y_1 + 2y_2 + 10y_3 \leq 50$$

$$y_1 \geq 0; y_2 \geq 0; y_3 \geq 0$$

4. ໝູນໃຊ້ຕົວປ່ຽນເພີ່ມ (Slack variables) s_1, s_2 ເພື່ອປ່ຽນບັນດາອະສະເໝີຜົນເງື່ອນໄຂ ໃຫ້ເປັນສະເໝີຜົນດັ່ງນີ້:

P -
$$30y_1 - 24y_2 - 60y_3 = 0$$

 $6y_1 + 3y_2 + 5y_3 + s_1 = 30$
 $2y_1 + 2y_2 + 10y_3 + s_2 = 50$
 $y_1 \ge 0; y_2 \ge 0; y_3 \ge 0$
 $s_1 \ge 0; s_2 \ge 0$

5. ສ້າງຕາຕະລາງ Simplex ເບື້ອງຕົ້ນ

Row	Р	\mathcal{Y}_1	\mathcal{Y}_2	y_3	S_1	s_2	RHS
0	1	-30	-24	-60	0	0	0
1	0	6	3	5	1	0	30
2	0	2	2	10	0	1	50

6. ເລືອກຖັນ, ແຖວ ແລະ ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ

	Row	Р	\mathcal{Y}_1	y_2	y_3	s_1	s_2	RHS	
	0	1	-30	-24	-60	0	0	0	
	1	0	6	3	5	1	0	30	30/5=6
_	2	0	2	2	10	0	1	50	50/10=5
	 (ແຖວທີ່ເບື	ປັນຕົວຕັ້ງ			ຖັນທີ່ເ	ປັນຕົວຕັ້	; ງ	

	Row	Р	\mathcal{Y}_1	y_2	y_3	s_1	s_2	RHS		
	0	1	-18	-12	0	0	6	300		
_	1	0	5	2	0	1	$-\frac{1}{2}$	5	5/5=1	
	2	0	$\frac{1}{5}$	<u>1</u> 5	1	0	$\frac{1}{10}$	5	5/0.2=25	
	→ ແຖວທີ່ເປັນຕົວຕັ້ງ → ຖັນທີ່ເປັນຕົວຕັ້ງ									

	Row	Р	y_1	y_2	y_3	s_1	s_2	RHS	
	0	1	0	- 24 5	0	18 5	<u>21</u> 5	318	
_	1	0	1	<u>2</u> 5	0	$\frac{1}{5}$	$-\frac{1}{10}$	1	$\frac{5}{2}$
	2	0	0	$\frac{3}{25}$	1	$-\frac{1}{25}$	$\frac{3}{25}$	<u>24</u> 5	40
→ ແຖວທີ່ເປັນຕົວຕັ້ງ → ຖັນທີ່ເປັນຕົວຕັ້ງ									

Row	Р	y_1	y_2	y_3	s_1	s_2	RHS
0	1	12	0	0	6	3	330
1	0	$\frac{5}{2}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{5}{2}$
2		$-\frac{3}{10}$	0	1	$-\frac{1}{10}$	$\frac{1}{25}$	$\frac{9}{2}$

ມາຮອດນີ້ເຮົາໄດ້ຕາຕະລາງ Simplex ສຸດທ້າຍແລ້ວເພາະວ່າອົງປະກອບໃນແຖວ 0 ບໍ່ມີຈຳນວນລົບ ເຮົາສາມາດອ່ານຄຳຕອບຢູ່ໃນຖັນສຸດທ້າຍ (RHS)

$$y_1 = 0$$
 , $y_2 = \frac{5}{2}$; $y_3 = \frac{9}{2}$, $MaxP = 330$
MinC = MaxP = 330 ; $x_1 = 6$, $x_2 = 3$

6.3.3 ກໍລະນີບັນດາເງື່ອນໄຂບໍ່ຢູ່ໃນຮູບຮ່າງມາດຕະຖານ

ໝາຍຄວາມວ່າບັນດາເງືອນໄຂມີເຄື່ອງໝາຍອະສະເໝີຜົນບໍ່ຄືກັນ ຕົວຢ່າງ 9:

$$ext{MaxP} = 20x_1 + 15x_2$$

ພາຍໃຕ້ເງື່ອນໄຊ $x_1 + x_2 \geq 7$
 $9x_1 + 5x_2 \leq 45$
 $2x_1 + x_2 \geq 8$
 $x_1 \geq 0; x_2 \geq 0$

1. ປ່ານບັນດາເງື່ອນໄຂໃຫ້ຢູ່ໃນຮູບຮ່າງມາດຕະຖານ

$$ext{MaxP} = 20x_1 + 15x_2$$

ພາຍໃຕ້ເງື່ອນໄຊ $-x_1 - x_2 \leq -7$
 $9x_1 + 5x_2 \leq 45$
 $-2x_1 - x_2 \leq -8$
 $x_1 \geq 0; x_2 \geq 0$

2. ໝູນໃຊ້ຕົວປ່ຽນເພີ່ມ (Slack variables) s_1, s_2, s_3 ເພື່ອປ່ຽນບັນດາອະສະເໝີຜົນເງື່ອນໄຂ ໃຫ້ເປັນສະເໝີຜົນດັ່ງນີ້:

P -
$$20x_1 - 15x_2 = 0$$

ພາຍໃຕ້ເງື່ອນໄຊ
$$-x_1 - x_2 + s_1 = -7$$

$$9x_1 + 5x_2 + s_2 = 45$$

$$-2x_1 - x_2 + s_3 = -8$$

$$x_1 \ge 0; x_2 \ge 0$$

$$s_1 \ge 0, s_2 \ge 0, s_3 \ge 0$$

3. ສ້າງຕາຕະລາງ Simplex ເບື້ອງຕົ້ນ

Row	Р	x_1	x_2	<i>S</i> ₁	s_2	<i>S</i> ₃	RHS
0	1	-20	-15	0	0	0	0
1	0	-1	-1	1	0	0	-7
2	0	9	5	0	1	0	45
3	0	-2	-1	0	0	1	-8

ເຮົາສັງເກດເຫັນວ່າຖັນສຸດທ້າຍ (RHS) ມີຈຳນວນລົບ ສະນັ້ນເຮົາຕ້ອງກຳນົດເອົາຖັນດັ່ງກ່າວເປັນ ຖັນທີ່ເປັນຕົວຕັ້ງ. ຫຼັງຈາກນັ້ນສັງເກດໃນຖັນທີ່ເປັນຕົວຕັ້ງຖ້າວ່າອົງປະກອບໃດມີຄ່າລົບນ້ອຍກວ່າໝູ່ ເຮົາກຳນົດເອົາແຖວດັ່ງກ່າວເປັນແຖວທີ່ເປັນຕົວຕັ້ງເຊັ່ນຕົວຢ່າງຂ້າງເທິງແມ່ນອົງປະກອບ - 8 ນ້ອຍ ກ່ວາໝູ່ດັ່ງນັ້ນແຖວ 3 ເປັນແຖວທີ່ເປັນຕົວຕັ້ງ. ການກຳນົດອົງປະກອບທີ່ເປັນຕົວຕັ້ງແມ່ນໃຫ້ຫານອົງ ປະກອບທີ່ເປັນຈຳນວນລົບຢູ່ແຖວທີ່ເປັນຕົວຕັ້ງໃຫ້ອົງປະກອບທີ່ເປັນຈຳນວນລົບຢູ່ແຖວທີ່ເປັນຕົວຕັ້ງໃຫ້ອົງປະກອບທີ່ເປັນຈຳນວນລົບຢູ່ໃນຖັນສຸດທ້າຍທີ່ກົງ ກັບແຖວດັ່ງກ່າວ. ຖ້າວ່າຜົນຫານໃດໃຫຍ່ກວ່າໝູ່ແມ່ນອົງປະກອບດັ່ງກ່າວເປັນອົງປະກອບທີ່ເປັນຕົວຕັ້ງ ເຊັ່ນຕົວຢ່າງຂ້າງເທິງຈະມີ $\frac{-2}{-8} = \frac{1}{4} > \frac{-1}{-8} = \frac{1}{8}$ ດັ່ງນັ້ນ - 2 ແມ່ນ ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ

4. ເລືອກຖັນ, ແຖວ ແລະ ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ

Row	Р	\mathcal{X}_1	x_2	S_1	s_2	S_3	RHS		
0	1	-20	-15	0	0	0	0		
1	0	-1	-1	1	0	0	-7		
2	0	9	5	0	1	0	45		
3	0	(-2)	-1	0	0	1	-8		
→ ແຖວທີ່ເ	ປັນຕົວຕັ້ງ	l	.		ງົນທີ່ເປັນຕົ	ວຕັ້ງ 🗲			
ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ									

	Row	Р	\mathcal{X}_1	x_2	S_1	s_2	S_3	RHS			
	0	1	0	-5	0	0	-10	80			
_	1	0	0	-1/2	1	0	$-\frac{1}{2}$	-3			
	2	0	0	$\frac{1}{2}$	0	1	$\frac{9}{2}$	9			
	3	0	1	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	4			
	→ ແຖວທີ່	່ເປັນຕົວຕັ້	D			ຖັນທີ່ເປັງ	ມຕິວຕັ້ງ ◀				
	ອົງປະກອບທີ່ເປັນຕົວຕັ້ງ										

Row	Р	\mathcal{X}_1	x_2	S_1	s_2	s_3	RHS
0	1	0	0	-10	0	-5	110
1	0	0	1	-2	0	1	6
2	0	0	0	1	1	4	6
3	0	1	0	1	0	-1	1

5. ສັງເກດເຫັນວ່າຖັນສຸດທ້າຍບໍ່ມີຈຳນວນລົບອີກແລ້ວໝາຍຄວາມວ່າລະບົບໂປຣແກຣມແບບເສັ້ນຊື່ ກາຍເປັນລະບົບໂປຣແກຣມແບບເສັ້ນຊື່ຢູ່ໃນຮູບຮ່າງມາດຕະຖານເຮົາສາມາດນຳໃຊ້ວິທີ Simplex

ແກ້ໄຂຄືດັ່ງທີ່ໄດ້ສະເໜີຜ່ານມາເຮົາຈະໄດ້ຜົນດັ່ງນີ້:

Row	Р	x_1	x_2	s_1	s_2	S ₃	RHS
0	1	10	0	0	0	-15	120
1	0	2	1	0	0	-1	8
2	0	-1	0	0	1	5	5
3	0	1	0	1	0	-1	1

Row	Р	x_1	x_2	<i>S</i> ₁	s_2	<i>S</i> ₃	RHS
0	1	7	0	0	3	0	135
1	0	$\frac{9}{5}$	1	0	$\frac{1}{5}$	0	9
2	0	$-\frac{1}{5}$	0	0	$\frac{1}{5}$	1	1
3	0	<u>4</u> 5	0	1	<u>1</u> 5	0	2

MaxP = 135 ;
$$x_1 = 0$$
 ; $x_2 = 9$

ບົດຝຶກຫັດ

- ໂຮງານແຫ່ງໜຶ່ງຜະລິດເຫຼັກກ້າ 2 ຊະນິດຄື F₁ ແລະ F₂. ຊະນິດທີ່ 1 ຕ້ອງໃຊ້ເວລາ 2 ຊົ່ວ ໂມງໃນການຫຼອມ, 4 ຊົ່ວໂມງໃນການກິ່ງ ແລະ 10 ຊົ່ງໂມງໃນການຕັດ. ຊະນິດທີ່ 2 ຕ້ອງໃຊ້ເວລາ 5 ຊົ່ວໂມງໃນການຫຼອມ, 2 ຊົ່ວໂມງໃນການກິ່ງ ແລະ 5 ຊົ່ງໂມງໃນການຕັດ. ການຫຼອມເຫຼັກກ້າທັງ ໝົດຕ້ອງໃຊ້ເວລາພາຍໃນ 40 ຊົ່ວໂມງ, ການກິ່ງຕ້ອງໃຊ້ເວລາພາຍໃນ 20 ຊົ່ວໂມງ ແລະ ການຕັດ ຕ້ອງໃຊ້ເວລາພາຍໃນ 60 ຊົ່ວໂມງ. ກຳໄລໃນການຂາຍເຫຼັກກ້າຊະນິດທີ່ 1 ແມ່ນ 35 \$ ແລະ ຊະ ນິດທີ່ 2 ແມ່ນ 30 \$. ຈົ່ງສ້າງໂປຣແກຣມແບບເສັ້ນຊື່ຂອງບັນຫາດັ່ງກ່າວ ?
- 4. ຊາວກະສິກອນຜູ້ໜຶ່ງກຳລັງພິຈາລະນາວ່າຈະຕັດສິນໃຈຊື້ໝູ ແລະ ງົວມາລັງງແນວລະຈັກຕົວ. ຮູ້ ວ່າເຂົາຈະມີກຳໄລຈາກການຂາຍຫູແມ່ນ20 \$ ຕໍ່ຕົວ. ງົວແຕ່ລະຕົວຈະກິນອາຫານ 3 ຖັງຕໍ່ອາທິດ, ສ່ວນໝູແຕ່ລະຕົວຈະກິນອາຫານ 1 ຖັງ

ຕ້ອງທີ່ດ, ຊາວກະສິກອນຜູ້ນີ້ສາມາດຜະລິດອາຫານໄດ້ບໍ່ເກີນ 9 ຖັງຕໍ່ອາທິດແຕ່ລາວມີເງື່ອນໄຂວ່າ ຕ້ອງຊື້ສັດທັງສອງຊະນິດນີ້ມາລຸ້ງຢ່າງໜ້ອຍ 4 ຕົວ,ແຕ່ວ່າຈຳນວນງົວບໍ່ໃຫ້ກາຍ 4 ຕົວ ແລະ ຈຳ ນວນໝູບໍ່ໃຫ້ກາຍ 6 ຕົວ. ເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດລາວຄວນຊື້ສັດແຕ່ລະຊະນິດມາລຸ້ງງແນວລະຈັກ ຕົວ. ຈົ່ງສ້າງໂປຣແກຣມແບບເສັ້ນຊື່ຂອງບັນຫາດັງກ່າວ ແລະ ແກ້ດ້ວຍວິທີເສັ້ນສະແດງ ? 5. ທ້າວແກ້ວໄດ້ບັນຈຸເຂົ້າໜົມ 2 ຊະນິດໃສ່ກັບເພື່ອສົ່ງຂາຍໃຫ້ຮ້ານຂາຍເຄື່ອງຍ່ອຍແຫ່ງໜຶ່ງ, ໂດຍທີ່ ເຂົ້າໜົມຊະນິດທີ່ 1 ລາວບັນຈຸໃສ່ກັບລະ 5 ກ້ອນ. ເຂົ້າໜົມຊະນິດທີ່ 2 ລາວບັນຈຸໃສ່ກັບລະ 4 ກ້ອນທາງຮ້ານມີຂໍ້ສະເໜີວ່າໃນແຕ່ລະວັນຈະຮັບເຂົ້າໜົມຈາກທ້າວແກ້ວບໍ່ເກີນ 19 ກັບຊຶ່ງລວມກັນ ແລ້ວບໍ່ເກີນ 68 ກ້ອນ. ຮູ້ວ່າເຂົ້າໜົມຊະນິດທີ່ 1 ໄດ້ກຳໄລ 500 ກີບຕໍ່ກັບ ແລະ ຊະນິດທີ່ 2 ໄດ້ກຳ ໄລ 600 ກີບຕໍ່ກັບ. ຖາມວ່າໃນແຕ່ລະວັນທ້າວແກ້ວຄວນສົ່ງເຂົ້າໜົມໃຫ້ທາງຮ້ານຊະນິດລະຈັກກ້ອນ ເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດແຕ່ຕ້ອງຕອບສະໜອງຕາມເງື່ອນໄຂຂອງທາງຮ້ານໄດ້ກຳນົດໄວ້ ? 6. ຈົ່ງແກ້ບັນຫາໂປຣແກຣມແບບເສັ້ນຊື່ລຸ່ມນີ້ດ້ວຍວິທີ Simplex

a.
$$ext{MaxP} = 5x_1 + 3x_2$$

ພາຍໃຕ້ເງື່ອນໄຂ $3x_1 + 5x_2 \leq 29$
 $5x_1 + 2x_2 \leq 23$
 $x_1 \geq 0; x_2 \geq 0$

b. MaxP =
$$50x_1 + 30x_2$$

ພາຍໃຕ້ເງື່ອນໄຂ $2x_1 + x_2 \le 14$
 $5x_1 + 5x_2 \le 40$
 $x_1 + 3x_2 \le 18$
 $x_1 \ge 0; x_2 \ge 0$

7. ຈົ່ງແກ້ບັນຫາ ໂປຣແກຣມແບບເສັ້ນຊື່ລຸ່ມນີ້ດ້ວຍວິທີ Simplex ໂດຍການປ່ຽນບັນຫາດັ່ງກ່າວເປັນ ບັນຫາຄວບຄູ່

a.
$$\text{MinC} = 4x_1 + 6x_2$$
 ພາຍໃຕ້ເງື່ອນໄຂ $x_1 + 2x_2 \geq 4$
$$x_1 + x_2 \geq 3$$

$$x_1 \geq 0; x_2 \geq 0$$

ບົດທີ່ 7

ຕຳລາຫຼາຍຕົວປຸ່ງນ

7.1 ຕຳລາຫຼາຍຕົວປ່ຽນ

ຜ່ານມາພວກເຮົາໄດ້ສຶກສາກ່ຽວກັບຕຳລາຕົວປ່ຽນດຽວ y=f(x) ເຊັ່ນ: $f(x)=2x^2+3x-6$ ເຮົາສັງເກດເຫັນວ່າຕຳລາ f ມີຕົວປ່ຽນພຽງຕົວປ່ຽນດຽວຄື x. ຖ້າເຮົາສຳນຶກໃນທຳນອງດຽວກັນນີ້ຕຳ ລາໃນຮູບແບບ z=f(x,y) ເຊັ່ນ: $f(x,y)=x^2+2xy+4$ ເຮົາສັງເກດເຫັນວ່າຕຳລາ f ມີສອງຕົວ ປ່ຽນຄື x ແລະ y ເພີ່ນເອີ້ນວ່າຕຳລາສອງຕົວປ່ຽນ ຫຼື ຕຳລາຫຼາຍຕົວປ່ຽນ .

้ กุ๋าอ่าตำลา $f(x) = 2x^2 + 3x - 6$

f(1) ໝາຍເຖິງຄ່າຂອງຕຳລາf(x) ເມື່ອແທນຄ່າ x=1

ດັ່ງນັ້ນ ຈະໄດ້
$$f(1) = 2(1^2) + 3(1) - 6 = -1$$

ຖ້າວ່າຕຳລາ $f(x, y) = x^2 + 2xy + 4$

f(1,2) ໝາຍເຖິງຄ່າຂອງຕຳລາ f(x,y) ເມື່ອແທນຄ່າ x=1 ແລະ y=2 ດັ່ງນັ້ນ ຈະໄດ້ $f(1,2)=1^2+2(1)(2)+4=9$

ໃນວິຊາເສດຖະສາດຈຸລະພາກຕຳລາຫຼາຍຕົວປຸ່ງນຊຶ່ງນັກສຶກສາມັກຈະໄດ້ພົບຄື:

ullet ຕຳລາການຜະລິດ $\mathit{Q} = f(\mathit{K}, \mathit{L})$

ໃນນັ້ນ Q : ໝາຍເຖິງປະລິມານການຕະລິດ

K : ໝາຍເຖິງຈຳນວນທຶນທີ່ໃຊ້ໃນການຕະລິດ

L : ໝາຍເຖິງຈຳນວນແຮງງານ

• ຕຳລາການຜະລິດຂອງ Cobb – Douglas

$$Q = AK^{r}L^{1-r}$$

ຕົວຢ່າງ 1: ບໍລິສັດໜຶ່ງມີແບບຕັ້ງໃນການຜະລິດສິນຄ້າຊະນິດໜຶ່ງຕາມສູດ $Q = 30K^{0.75}L^{0.25}$. ຖ້າບໍລິສັດດັ່ງກ່າວໃຊ້ທຶນ 1620 ຫົວໜວ່ຍ ແລະ ແຮງງານ 20 ຫົວໜວ່ຍ ເພື່ອຜະລິດສິນຄ້າ ດັ່ງກ່າວ. ຖາມວ່າຈະໄດ້ຮັບສິນຄ້າຈັກຫົວໜວ່ຍ?

ວິທີແກ້: ຄຳຖາມແມ \mathbf{n} ນຊອກຄ່ຳ f(1620,20) ດັ່ງນັ້ນຈຳນວນສິນຄ້ຳທີ່ຊອກແມ \mathbf{n} ນ:

$$f(1620, 20) = 30(1620)^{0.75}(20)^{0.25}$$

= 30
$$(2^2 \times 3^4 \times 5)^{\frac{3}{4}} (2^2 \times 5)^{\frac{1}{4}}$$
 = 30 $(2^2 \times 3^3 \times 5) = 16200$ ຫົວໜວ່ຍ

ໝາຍຄວາມວ່າຖ້າບໍລິສັດໃຊ້ທຶນ 1620 ຫົວໜວ່ຍ ແລະ ແຮງງານ 20 ຫົວໜວ່ຍ ເພື່ອຜະລິດສິນຄ້າ ຈະສາມາດຜະລິດສິນຄ້າໄດ້ທັງໝົດ 16 200 ຫົວໜ່ວຍ

7.2 ຜົນຕຳລາພາກສ່ວນ

ນັກສຶກສາໄດ້ຮູ້ວ່າ $\frac{d(x^n)}{dx} = nx^{n-1}$ ຊຶ່ງແມ່ນຜົນຕຳລາຂັ້ນ 1 ຂອງຕຳ $y = f(x) = x^n$ ທີ່ມີຕົວ ປ່ງນດງວຄື x. ສຳລັບຕຳລາຫຼາຍຕົວປ່ງນເຊັ່ນຕຳລາສອງຕົວປ່ງນ z = f(x,y) ແມ່ນເຮົາບໍ່ສາມາດ ຊອກຜົນຕຳລາຂອງມັນພ້ອມກັນຕາມສອງຕົວປ່ງນໄດ້, ແຕ່ເຮົາສາມາດຊອກຜົນຕຳລາຕາມແຕ່ລະຕົວ ປ່ງນໄດ້ໂດຍຖືວ່າຕົວປ່ງນອື່ນແມ່ນຕົວຄົງຄ່າ ເພີ່ນເອີ້ນຜົນຕຳລາແບບນີ້ວ່າຜົນຕຳລາພາກສ່ວນ. ສັນຍາລັກດ້ວຍ:

$$\frac{\partial z}{\partial x} = z_x$$
 ຫຼື $\frac{\partial f}{\partial x} = f_x$ ແມ່ນຜົນຕຳລາພາກສ່ວນຂັ້ນໜຶ່ງຕາມຕົວປ່ຽນ x

$$\frac{\partial z}{\partial y} = z_y$$
 ຫຼື $\frac{\partial f}{\partial y} = f_y$ ແມ່ນຜົນຕຳລາພາກສ່ວນຂັ້ນໜຶ່ງຕາມຕົວປ່ຽນ y

ການຄິດໄລ່ຜົນຕຳລາພາກສ່ວນກໍແມ່ນອີງໃສ່ກົດເກນການຄິດໄລ່ຜົນຕຳລາຂອງຕຳລາຕົວປ່ຽນດຽວທຸກປະການ, ມີແຕ່ວ່າຖ້າຄິດໄລ່ຜົນຕຳລາພາກສ່ວນຕາມ x ($\frac{\partial z}{\partial x}$) ແມ່ນໃຫ້ຖືວ່າ y ແມ່ນຕົວຄົງຄ່າ. ຖ້າຄິດໄລ່ຜົນຕຳລາພາກສ່ວນຕາມ y ($\frac{\partial z}{\partial y}$) ແມ່ນໃຫ້ຖືວ່າ x ແມ່ນຕົວຄົງຄ່າ.

ຕົວຢ່າງ 2: ໃຫ້ຕຳລາສອງຕົວປ່ງນ
$$z=3x^2y^3$$

$$\frac{\partial z}{\partial x} = z_x = 3y^3 \frac{\partial (x^2)}{\partial x} = 3y^3 (2x) = 6xy^3$$

$$\frac{\partial z}{\partial y} = z_y = 3x^2 \frac{\partial (y^3)}{\partial y} = 3x^2 (3y^2) = 9x^2 y^2$$

7.3 ຫລັກການຊອກຜົນຕຳລາພາກສວ່ນຂັ້ນໜຶ່ງ

7.3.1 ຜົນຕຳລາພາກສວ່ນຂອງຜົນບວກຂອງສອງຕຳລາ.

ໃຫ້ຕຳລາສອງຕົວປຸ່ງນ z = f(x, y) + g(x, y)

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial x}$$

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} + \frac{\partial g}{\partial y}$$

ຕົວຢ່າງ 3: ใຫ້ຕຳລາສອງຕົວປຸ່ງນ $z = 5x^3 - 3x^2y^2 + 6y^4$

$$\frac{\partial z}{\partial x} = \frac{\partial (5x^3)}{\partial x} - \frac{\partial (3x^2y^2)}{\partial x} + \frac{\partial (6y^4)}{\partial x} = 15x^2 - 6xy^2 + 0 = 15x^2 - 6xy^2$$

$$\frac{\partial z}{\partial y} = \frac{\partial (5x^3)}{\partial y} - \frac{\partial (3x^2y^2)}{\partial y} + \frac{\partial (6y^4)}{\partial y} = 0 - 6x^2y + 24y^3 = -6x^2y + 24y^3$$

7.3.2 ຜົນຕຳລາພາກສວ່ນຂອງຜົນຄູນຂອງສອງຕຳລາ.

ໃຫ້ຕຳລາສອງຕົວປຸ່ງນ z = f(x, y).g(x, y)

$$\frac{\partial z}{\partial x} = g(x, y) \frac{\partial f}{\partial x} + f(x, y) \frac{\partial g}{\partial x}$$
$$\frac{\partial z}{\partial y} = g(x, y) \frac{\partial f}{\partial y} + f(x, y) \frac{\partial g}{\partial y}$$

ຕົວຢ່າງ 4: ໃຫ້ຕຳລາສອງຕົວປ່ຽນ z = (3x+5)(2x+6y)

$$\frac{\partial z}{\partial x} = (2x + 6y)\frac{\partial (3x + 5)}{\partial x} + (3x + 5)\frac{\partial (2x + 6y)}{\partial x}$$

$$= 3(2x+6y)+2(3x+5)=12x+18y+10$$

$$\frac{\partial z}{\partial y} = (2x + 6y)\frac{\partial (3x + 5)}{\partial y} + (3x + 5)\frac{\partial (2x + 6y)}{\partial y}$$

$$= 0(2x+6y)+6(3x+5)=18x+30$$

7.3.3 ຜົນຕຳລາພາກສວ່ນຂອງຜົນຫານຂອງສອງຕຳລາ.

ໃຫ້ຕຳລາສອງຕົວປ່ຽນ
$$z = \frac{f(x,y)}{g(x,y)}$$

$$\frac{\partial z}{\partial x} = \frac{g(x, y)\frac{\partial f}{\partial x} - f(x, y)\frac{\partial g}{\partial x}}{\left[g(x, y)\right]^2}$$

$$\frac{\partial z}{\partial y} = \frac{g(x, y)\frac{\partial f}{\partial y} - f(x, y)\frac{\partial g}{\partial y}}{[g(x, y)]^2}$$

ຕົວຢ່າງ 5: ໃຫ້ຕຳລາສອງຕົວປ່ຽນ
$$z = \frac{6x + 7y}{5x + 3y}$$

$$\frac{\partial z}{\partial x} = \frac{(5x+3y)\frac{\partial (6x+7y)}{\partial x} - (6x+7y)\frac{\partial (5x+3y)}{\partial x}}{(5x+3y)^2} = \frac{6(5x+3y) - 5(6x+7y)}{(5x+3y)^2} = -\frac{17y}{(5x+3y)^2}$$

$$\frac{\partial z}{\partial x} = \frac{(5x+3y)\frac{\partial (6x+7y)}{\partial y} - (6x+7y)\frac{\partial (5x+3y)}{\partial y}}{(5x+3y)^2} = \frac{7(5x+3y) - 3(6x+7y)}{(5x+3y)^2} = \frac{17x}{(5x+3y)^2}$$

7.3.4 ຜົນຕຳລາພາກສວ່ນຂອງຕຳລາກຳລັງ

ໃຫ້ຕຳລາສອງຕົວປຸ່ງນ $z = [f(x, y)]^n$

$$\frac{\partial z}{\partial x} = n[f(x, y)]^{n-1} \frac{\partial f}{\partial x}$$

$$\frac{\partial z}{\partial y} = n[f(x, y)]^{n-1} \frac{\partial f}{\partial y}$$

ຕົວຢ່າງ 6: ໃຫ້ຕຳລາສອງຕົວປຸ່ງນ $z = (x^3 + 7y^2)^4$

$$\frac{\partial z}{\partial x} = 4(x^3 + 7y^2)^3 \frac{\partial (x^3 + 7y^2)}{\partial x} = 12x^2(x^3 + 7y^2)^3$$

$$\frac{\partial z}{\partial y} = 4(x^3 + 7y^2)^3 \frac{\partial (x^3 + 7y^2)}{\partial y} = 56y (x^3 + 7y^2)^3$$

7.4 ຜົນຕຳລາພາກສວ່ນຂັ້ນສອງ

ໃຫ້ຕຳລາສອງຕົວປ່ຽນ z=f(x,y) ຜົນຕຳລາພາກສວ່ນຂັ້ນສອງຂອງ z ກໍແມ່ນຜົນຕຳລາພາກສວ່ນຂັ້ນໜຶ່ງຂອງຜົນຕຳລາພາກສວ່ນຂັ້ນໜຶ່ງ ໂດຍຖືວ່າຖ້ຳຊອກຜົນຕຳລາຕາມຕົວປ່ຽນໃດແມ່ນໃຫ້ຕົວ ປ່ຽນອື່ນເປັນຕົວຄົງຄ່ຳ.

$$\begin{split} f_{xy} &= (f_x)_y = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x} \\ f_{yx} &= (f_y)_x = \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial x \partial y} \end{split} \right\} \quad \text{ພື້ນຕຳລາສອງຢ່າງນີ້ເອີ້ນວ່າພື້ນຕຳລາພາກສວ່ນຂັ້ນສອງໄຂ່ວ$$

ຕາມຫຼັກເກນຂອງ Young ຖ້າວ່າ f_{xy} ແລະ f_{yx} ຫາກຕໍ່ເນື່ອງເວລານັ້ນ $f_{xy}=f_{yx}$ ຕົວຢ່າງ 7: ໃຫ້ຕຳລາສອງຕົວປ່ຽນ $z=3x^2y^3$

$$\frac{\partial z}{\partial x} = 6xy^{3} \qquad \frac{\partial^{2} z}{\partial x^{2}} = 6y^{3}$$

$$\frac{\partial z}{\partial y} = 9x^{2}y^{2} \qquad \frac{\partial^{2} z}{\partial y^{2}} = 18x^{2}y$$

$$\frac{\partial^{2} z}{\partial y \partial x} = \frac{\partial}{\partial y} (\frac{\partial z}{\partial x}) = \frac{\partial}{\partial y} (6xy^{3}) = 18xy^{2}$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{\partial z}{\partial y}) = \frac{\partial}{\partial x} (9x^{2}y^{2}) = 18xy^{2}$$

ຕົວຢ່າງ 8: ໃຫ້ຕຳລາສອງຕົວປຸ່ງນ $z = 7x^3 + 9xy + 2y^5$

$$\frac{\partial z}{\partial x} = 21x^2 + 9y$$

$$\frac{\partial^2 z}{\partial x^2} = 42x$$

$$\frac{\partial z}{\partial y} = 9x + 10y^4$$

$$\frac{\partial^2 z}{\partial y^2} = 40y^3$$

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} (\frac{\partial z}{\partial x}) = \frac{\partial}{\partial y} (21x^2 + 9y) = 9$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{\partial z}{\partial y}) = \frac{\partial}{\partial x} (9x + 10y^4) = 9$$

7.5 ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດຂອງຕຳລາສອງຕົວປ່ງນ

ໃຫ້ຕຳລາສອງຕົວປຸ່ງນ Z = f(x, y)

ຖ້າວ່າ :

1.
$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

2.
$$F(x_0, y_0) = f_{xx} f_{yy} - (f_{xy})^2 > 0$$

3.
$$f_{xx}(x_0, y_0) > 0$$

f(x,y) จะมีถ่าม้อยสุดทุกขามยู่เม็ด (x_0,y_0) .

• ຖ້າວ່າ :

1.
$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

2.
$$F(x_0, y_0) = f_{xx} f_{yy} - (f_{xy})^2 > 0$$

3.
$$f_{xx}(x_0, y_0) < 0$$

f(x,y) จะมีถ่าใชย่สุดทูบทามยู่เม็ด (x_0,y_0) .

ຖ້າວ່າ :

1.
$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

2.
$$F(x_0, y_0) = f_{xx} f_{yy} - (f_{xy})^2 < 0$$

ເມັດ (x_0, y_0) ຈະແມ[່]ນເມັດອານມ້ຳຂອງຕຳລາ f(x, y)

ຕົວຢ່າງ 9: ໃຫ້ຕຳລາສອງຕົວປ່ານ $z = x^2 - 4x + 2y^2 + 6y + 2$

$$\begin{aligned}
f_x &= 2x + 4 \\
f_y &= 4y + 6
\end{aligned} \implies \begin{cases}
f_x &= 0 \\
f_y &= 0
\end{cases} \iff \begin{cases}
2x - 4 &= 0 \\
4y + 6 &= 0
\end{cases} \implies x = 2, y = -\frac{3}{2}$$

$$f_{xx} = 2 > 0$$
 ; $f_{yy} = 4$; $f_{xy} = 0$

$$F(2, -\frac{3}{2}) = 2 \times 4 - 0^2 = 8 > 0$$

ດັ່ງນັ້ນເມັດ $(2,-\frac{3}{2})$ ແມ່ນເມັດທີ່ເຮັດໃຫ້ຕຳລາ z = f(x,y) ມີຄ່ານ້ອຍສຸດທຸງບຖານ

ຕົວຢ່າງ 10: ໃຫ້ຕຳລາສອງຕົວປ່ງນ $z = -x^2 + 4x - y^2 - 6y$

$$\begin{aligned}
f_x &= -2x + 4 \\
f_y &= -2y - 6
\end{aligned} \implies \begin{cases}
f_x &= 0 \\
f_y &= 0
\end{cases} \iff \begin{cases}
-2x + 4 = 0 \\
-2y - 6 = 0
\end{cases} \implies x = 2, y = -3$$

$$f_{xx} = -2 < 0$$
 ; $f_{yy} = -2$; $f_{xy} = 0$

$$F(2,-3) = (-2) \times (-2) - 0^2 = 4 > 0$$

ດັ່ງນັ້ນເມັດ (2,-3) ແມ່ນເມັດທີ່ເຮັດໃຫ້ຕຳລາ z=f(x,y) ມີຄ່າໃຫຍ່ສຸດທຸງບຖານ

ຕົວຢ່າງ 11: ໃຫ້ຕຳລາສອງຕົວປ່ຽນ $z=-x^2+8x+y^2+4y$

$$\begin{aligned}
f_x &= -2x + 8 \\
f_y &= 2y + 4
\end{aligned} \implies \begin{cases}
f_x &= 0 \\
f_y &= 0
\end{cases} \iff \begin{cases}
-2x + 8 &= 0 \\
2y + 4 &= 0
\end{cases} \implies x = 4, y = -2$$

$$f_{xx} = -2 < 0$$
 ; $f_{yy} = 2$; $f_{xy} = 0$

$$F(4,-2) = (-2) \times 2 - 0^2 = -4 < 0$$

ດັ່ງນັ້ນເມັດ (4,-2) ແມ $^{'}$ ນເມັດອານມ້ຳ.

7.6 ຄ່າໃຫຍ່ສຸດ ແລະ ຄ່ານ້ອຍສຸດພາຍໃຕ້ເງື່ອນໄຂຂອງຕົວຄູນ Lagrange

ໃຫ້ຕຳລາສອງຕົວປ່ຽນ z=f(x,y) ຊຶ່ງຢູ່ພາຍໃຕ້ເງື່ອນໄຂ g(x,y)=k (k ເອີ້ນວ່າຕົວຄົງຄ່າ ເງື່ອນໄຂ) .

ຂັ້ນຕອນໃນການຊອກ ຄ່າໃຫຍ່ສຸດ ຫຼື ຄ່ານ້ອຍສຸດພາຍໃຕ້ເງື່ອນໄຂຂອງຕົວຄູນ Lagrange

ສ້າງຕຳລາໃໝ່
$$F(x, y, \}) = f(x, y) + \}[k - g(x, y)]$$

ໂດຍວາງເງື່ອນໄຂໃຫ້ເທົ່າ 0 ຄື k-g(x,y)=0

- F(x, y, }) ເອີ້ນວ່າຕຳລາ Lagrange
- f(x,y) ເອີ້ນວ່າຕຳລາເປົ້າໝາຍ
- g(x,y) = k ເອີ້ນວ່າເງື່ອນໄຂ
- } ເອີ້ວ່າຕົວຄູນ Lagrange

ແລ້ວຊອກເມັດ $(x_0,y_0,\}_0)$ ທີ່ເຮັດໃຫ້ຕຳລາ f(x,y) ມີຄ່າໃຫຍ່ສຸດ (ຫຼື ຄ່ານ້ອຍສຸດ)

ຈາກລະບົບສົມຜົນ $\begin{cases} \frac{\partial F}{\partial x} = 0 \\ \frac{\partial F}{\partial y} = 0 \\ \frac{\partial F}{\partial y} = 0 \end{cases}$

ຍ້ອນວ່າຢູ່ເມັດ $(x_0,y_0,\}_0)$ ນັ້ນ $\}[k-g(x,y)]=0$ ສະນັ້ນ $f(x,y)=F(x_0,y_0,\}_0)$ ຕົວຢ່າງ 12: ຈົ່ງຊອກຄ່າໃຫຍ່ສຸດຂອງຕຳລາ $z=4x^2+3xy+6y^2$ ຢູ່ພາຍໃຕ້ເງື່ອນໄຂ x+y=56 1. ວາງເງື່ອນໄຂໃຫ້ເທົ່າ 0 ຄື 56-x-y=0 ແລະ ສ້າງຕຳລາ Lagrange

$$F(x, y, \}) = 4x^2 + 3xy + 6y^2 + \{(56 - x - y)\}$$

2. ຊອກເມັດ $(x_0, y_0, \}_0)$ ຈາກລະບົບສົມຜົນ

$$\begin{cases} F_x = 8x + 3y - \} = 0 & (1) \\ F_y = 3x + 12y - \} = 0 & (2) \\ F_y = 56 - x - y = 0 & (3) \end{cases}$$

ເອົາ (1) - (2)
$$\Rightarrow 5x-9y=0$$
 (4)

ເອົາ
$$5(3)$$
 - (4) \Rightarrow $14y = 280$ \Rightarrow $y = 20$ \Rightarrow $x = \frac{180}{5} = 36$

ເອົາຄ $^{'}$ າ x ແລະ y ແທນເຂົ້າ (1) ຈະໄດ້:

$$} = 8x + 3y = 8 \times 36 + 3 \times 20 = 348$$

ດັ່ງນັ້ນຄ່າໃຫຍ່ສຸດທີ່ຊອກແມ່ນ:

$$f(36,20) = 4(36)^2 + 3 \times 36 \times 20 + 6(20)^2 + 348(56-36-20)$$
$$= 4(1296) + 3(720) + 6(400) + 348(0) = 9744$$

7.7 ຄວາມໝາຍຂອງຕົວຄູນ Lagrange

ຕົວຄູນ Lagrange } ໝາຍເຖິງຜົນກະທົບທີ່ມີຕຳລາເປົ້າໝາຍ f(x,y) ເມື່ອມີການປ່ຽນແປງ ຕົວຄົງຄ່າເງື່ອນໄຂ k .ໝາຍຄວາມວ່າເມື່ອ k ປ່ຽນແປງ 1 ຫົວໜວ່ຍເວລານັ້ນຕຳລາເປົ້າໝາຍຈະ

ປ່ຽນແປງ } ຫົວໜວ່ຍໂດຍປະມານ. ໃນຕົວຢ່າງຂ້າງເທິງເຮົາມີ } = 348 ຊຶ່ງໝາຍເຖິງວ່າເມື່ອຕົວ ຄົງຄ່າເງື່ອນໄຂ k ປ່ຽນແປງ 1 ຫົວໜວ່ຍ ເວລານັ້ນຕຳລາເປົ້າໝາຍຈະປ່ຽນແປງ 348 ຫົວໜວ່ຍ ໂດຍປະມານ.

ຕົວຢ່າງ 13: ໃນຕົວຢ່າງ 12 ເມື່ອ k=56 ແລະ $\}=348$ ຈະໄດ້ $\mathsf{F}=9744$ ຖ້າໃຫ້ k=57 ເວລານັ້ນ

$$\begin{cases} F_x = 8x + 3y - \} = 0 & (1) \\ F_y = 3x + 12y - \} = 0 & (2) \\ F_y = 57 - x - y = 0 & (3) \end{cases}$$

ແກ້ລະບົບສົມຜົນຂ້າງເທິງເຮົາຈະໄດ້ x = 36.64 ; y = 20.36 ; y = 354.2 ແລະ F = 10095 ຊຶ່ງໃຫຍ່ກວ່າເກົ່າ $351 \approx 348$ ຫົວໜວ່ຍ.

7.8 ຈຸນລະຄະນິດເຕັມສວ່ນ

- ສຳລັບຕຳລາຕົວປຸ່ງນດງວy=f(x) ຈຸນລະຄະນິດຂອງມັນແມ່ນ df=f(x)dx
- ສຳລັບຕຳລາສອງຕົວປຸ່ງນz=f(x,y) ຈຸນລະຄະນິດຂອງມັນແມ່ນ

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 ຊຶ່ງເພິ່ນເອີ້ນວ່າຈຸນລະຄະນິດເຕັມສວ່ນ

• ໂດຍທົ່ວໄປແລ້ວຕຳລາ n ຕົວປ່ຽນ $u = f(x_1, x_2, x_3, ..., x_n)$ ຈຸນລະຄະນິດເຕັມສວ່ນຂອງ ມັນແມ່ນ:

$$du = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 + \dots + \frac{\partial u}{\partial x_n} dx_n$$

ຕົວຢ່າງ 14 : ໃຫ້ຕຳລາສອງຕົວປຸ່ງນ $z = x^4 + 8xy + 3y^3$

$$\frac{\partial z}{\partial x} = 4x^3 + 8y \qquad \qquad \frac{\partial z}{\partial y} = 8x + 9y^2$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = (4x^3 + 8y)dx + (8x + 9y^2)dy$$

ຕົວຢ່າງ 15 : ໃຫ້ຕຳລາສອງຕົວປ່ຽນ $z = \frac{x-y}{x+1}$

$$\frac{\partial z}{\partial x} = \frac{1+y}{(x+1)^2} \qquad \frac{\partial z}{\partial y} = -\frac{x+1}{(x+1)^2} = -\frac{1}{x+1}$$

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = \frac{1+y}{(x+1)^2} dx - \frac{1}{x+1} dy$$

7.9 ຜົນຕຳລາເຕັມສວ່ນ

ສົມມຸດໃຫ້ຕຳລາ z=f(x,y) ແລະ y=g(x) ເວລານັ້ນຕຳລາ z ຈະເປັນຕຳລາປະສົມຕາມ

ຕົວປ່ຽນ x ແລະ ຜົນຕຳລາ $\frac{dz}{dx}$ ເອີ້ນວ່າຜົນຕຳລາເຕັມສວ່ນຂອງ z ຕາມ x .

ສັນຍາລັກດ້ວຍ:

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$

ຕົວຢ່າງ 16 : ໃຫ້ຕຳລາ $z = 6x^3 + 7y$ ແລະ $y = 4x^2 + 3x + 8$

$$\frac{\partial z}{\partial x} = 18x^2 \qquad \qquad \frac{\partial z}{\partial y} = 7 \qquad \qquad \frac{dy}{dx} = 8x + 3$$

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx} = 18x^2 + 7(8x + 3) = 18x^2 + 56x + 21$$

• ໃນກໍລະນີ z=f(x,y) , x=u(t) ແລະ y=v(t) ເວລານັ້ນ z ຈະແມ່ນຕຳລາປະສົມຕາມ ຕົວປ່ງນ t ເຮົາສາມາດຂະຫຍາຍມະໂນພາບກ່ງວກັບຜົນຕຳລາເຕັມສວ່ນຂອງ z ຕາມ t ດັ່ງນີ້:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

ຕົວຢ່າງ 17 : ໃຫ້ຕຳລາ $z = 8x^2 + 3y^2$; x = 4t ແລະ y = 5t ເວລານັ້ນ:

$$\frac{\partial z}{\partial x} = 16x$$
 $\frac{\partial z}{\partial y} = 6y$ $\frac{dx}{dt} = 4$ $\frac{dy}{dt} = 5$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = 16x(4) + 6y(5) = 64x + 30y = 64(4t) + 30(5t) = 406t$$

7.10 ການນຳໃຊ້ຜົນຕຳລາພາກສວ່ນໃນຂົງເຂດເສດຖະກິດ

7.10.1 ການຕະລິດເພີ່ມ

ຜະລິດຜົນວັດຖຸເພີ່ມຂອງທຶນ (P_{mp_k}) ແມ່ນການຜັນປ່ຽນຂອງການຜະລິດທີ່ສືບເນື່ອງມາຈາກການປ່ຽນແປງຂອງທຶນ ໂດຍທີ່ຕົວປ່ຽນອື່ນຄົງຄ່າ.

ຜະລິດຜົນວັດຖຸເພີ່ມຂອງແຮງງານ (P_{ກກຼ}) ແມ່ນການຜັນປ[່]ຽນຂອງການຜະລິດທີ່ສືບເນື່ອງ ມາຈາກການປ[່]ຽນແປງຂອງແຮງງານໂດຍທີ່ຕົວປ[່]ຽນອື່ນຄົງຄ[່]າ.

ຕົວຢ[່]າງ 18 : ໃຫ້ຕຳລາການຜະລິດໜຶ່ງ $Q = 36KL - 2K^2 - 3L^2$

$$\mathsf{P}_{mp_K} = \frac{\partial Q}{\partial K} = 36L - 4K$$

$$P_{mp_L} = \frac{\partial Q}{\partial I} = 36K - 6L$$

7.10.2 ຕົວຄູນຂອງລາຍຮັບ ແລະ ການກຳນົດຫາລາຍຮັບ

ໂດຍໃຊ້ຜົນຕຳລາພາກສວ່ນເຮົາສາມາດຖອນເອົາຕົວຄູນຕ່າງໆທີ່ມີຢູ່ໃນແບບຈຳລອງຂອງລາຍ ຮັບແຫ່ງຊາດໄດ້ດັ່ງຕໍ່ໄປນີ້: ສົມມຸດມີແບບຈຳລອງລາຍຮັບ Y = C + I + G + X – Z

ຊຶ່ງໃນນັ້ນ:
$$C = C_0 + by$$
 $I = I_0 + ay$ $G = G_0$ $X = X_0$ $Z = Z_0$

Y : ລາຍຮັບ G : ການໃຊ້ຈ່າຍພາກລັດ

C : ການບໍລິໂພກ X : ການສົ່ງອອກ

I : ການລົງທຶນ Z : ການນຳເຂົ້າ

a : ທ່າອ່ຽງການລົງທຶນເພີ່ມ b : ທ່າອ່ຽງການບໍລິໂພກເພີ່ມ

ເຮົາຈະໄດ້ລາຍຮັບດຸ່ນດ່ຽງ $ar{Y}$ ເມື່ອ $ar{Y}=C+I+G+X-Z$

$$\widetilde{\overline{Y}} = C_0 + b\overline{Y} + I_0 + a\overline{Y} + G_0 + X_0 - Z_0$$

$$\overline{Y} - b\overline{Y} - a\overline{Y} = C_0 + I_0 + G_0 + X_0 - Z_0$$

$$\overline{Y}(1 - b - a) = C_0 + I_0 + G_0 + X_0 - Z_0$$

ດັ່ງນັ້ນເຮົາຈະໄດ້ລາຍຮັບດຸ່ນດົ່ງງ $\overline{Y} = \frac{1}{1-b-a} (C_0 + I_0 + G_0 + X_0 - Z_0)$

ເມື່ອຄິດ ໄລ່ຜົນຕຳລາຕາມຕົວປ່ງນໃດໜຶ່ງເຮົາກໍຈະ ໄດ້ຕົວຄູນທີ່ກົງກັບຕົວປ່ງນນັ້ນໆ.

ຕົວຄູນທີ່ກົງກັບການໃຊ້ຈ່າຍພາກລັດ G₀ ແມ່ນ:

$$\frac{\partial \overline{Y}}{\partial G_0} = \frac{1}{1 - b - a}$$

• ຕົວຄູນທີ່ກົງກັບການນຳເຂົ້າ $Z_{\scriptscriptstyle 0}$ ແມ່ນ:

$$\frac{\partial \overline{Y}}{\partial Z_0} = \frac{1}{1 - b - a}$$

• ຕົວຄູນທີ່ກົງກັບການຜັນປ່ຽນຂອງທ່າອ່ຽງການລົງທຶນເພີ່ມ a ແມ່ນ:

$$\frac{\partial z}{\partial a} = \frac{(1 - b - a)(0) - (C_0 + I_0 + G_0 + X_0 - Z_0)(-1)}{(1 - b - a)^2} = \frac{C_0 + I_0 + G_0 + X_0 - Z_0}{(1 - b - a)^2}$$

$$\frac{\partial z}{\partial a} = \frac{1}{1 - b - a} \frac{C_0 + I_0 + G_0 + X_0 - Z_0}{1 - b - a} = \frac{\overline{Y}}{1 - b - a}$$

ຕົວຢ່າງ 19: ຈາກຂໍ້ 4.10.2 ສົມມຸດວ່າ a = 0.10 , b = 0.70 ແລະ Y = 1200 ເຮົາສາມາດນຳໃຊ້ການຄິດໄລ່ຈຸນລະຄະນິດເພື່ອຊອກຫາຜົນກະທົບຂອງການເພີ່ມຂື້ນຂອງຕົວປ່ຽນ ເອກະລາດໃດໜຶ່ງ.

ຮູ້ວ່າຜົນຕຳລາພາກສວ່ນຂອງລາຍຮັບທຸງບໃສ່ການໃຊ້ຈ່າຍພາກລັດແມ່ນ:

$$\frac{\partial \overline{Y}}{\partial G_0} = \frac{1}{1 - b - a}$$

ຈຸນລະຄະນິດຂອງລາຍຮັບດຸ່ນດ່ຽງ $d\overline{Y} = \frac{1}{1-b-a}dG_0$

ດ້ວຍວ່າ $\overline{Y}=f(G_0)$ ເປັນຕຳລາລີເນແອຊຶ່ງເຫັນໄດ້ຈາກສຳປະສິດມູມຢູ່ທຸກໆຈຸດຂອງມັນ

$$\dfrac{\partial \overline{Y}}{\partial G_0} = \dfrac{1}{1-b-a}$$
 ເປັນຈຳນວນຄົງຄ່າ. ດັ່ງນັ້ນເຮົາຈະໄດ້: $\dfrac{\partial \overline{Y}}{\partial G_0} = \dfrac{\Delta \overline{Y}}{\Delta G_0}$

ດ້ວຍເຫດນີ້ເຮົາຈຶ່ງໄດ້: $\Delta \overline{Y} = \frac{1}{1-h-a} \Delta G_0$

ສະນັ້ນໃນຕົວຢ່າງນີ້ຖ້າພາກສວ່ນລັດຫາກເພີ່ມການໃຊ້ຈ່າຍດ້ານງິບປະມານຂື້ນອີກ 100 ລ້ານກີບ ($\Delta G_0 = 100$ ລ້ານກີບ) ລາຍຮັບແຫ່ງຊາດຈະເພີ່ມຂື້ນ $\Delta \bar{Y} = \frac{1}{1-0.70-0.10}100 = 500$ ລ້ານກີບ

7.10.3 ການຊອກຄ່າໃຫຍ່ສຸດ ຫຼື ຕໍ່າສຸດຂອງຕໍາລາຫຼາຍຕົວປຸ່ງນ

ຕົວຢ່າງ 20: ວິສາຫະກິດໜຶ່ງຜະລິດ ແລະ ຈຳໜ່າຍສິນຄ້າສອງຊະນິດຄື x ແລະ y ຊຶ່ງມີຕຳລາກຳ ໄລດັ່ງລຸ່ມນີ້: $f = 64x - 2x^2 + 4xy - 4y^2 + 32y - 14$. ຈົ່ງຊອກຫາປະລິມານການຜະລິດສິນຄ້າທັງ ສອງເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດ ແລະ ຊອກກຳໄລສູງສຸດດັ່ງກ່າວ ? ວິທີແກ້ :

$$\begin{array}{c} f_x = 64 - 4x + 4y \\ f_y = 4x - 8y + 32 \end{array} \Rightarrow \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \Leftrightarrow \begin{cases} 64 - 4x + 4y = 0 \\ 4x - 8y + 32 = 0 \end{cases} \Rightarrow x = 40 \text{ where } y = 24 \end{cases}$$

$$f_{xx} = -4 < 0$$
 $f_{yy} = -8$ $f_{xy} = -4$

$$F(40,24) = (-4)(-8) - (-4)^2 = 32 - 16 = 16 > 0$$

ດັ່ງນັ້ນ (40,24) ຈຶ່ງແມ່ນປະລິມານການຕະລິດເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດ ແລະ ກຳໄລສູງສຸດແມ່ນ:

$$f(40,24) = 64 \times 40 - 2(40)^2 + 4 \times 40 \times 24 - 4(24)^2 + 32 \times 24 - 14 = 1650$$

ຕົວຢ່າງ 21: ຜູ້ຜະລິດລາຍໜຶ່ງສະເໜີຂາຍສິນຄ້າຂອງຕົນສອງຊະນິດໂດຍມີຕຳລາຄວາມຕ້ອງການ ສິນຄ້າທັງສອງແມ່ນ: $Q_x = 25 - 0.5 P_x$; $Q_y = 30 - P_y$ (1) ແລະ ຕຳລາຕົ້ນທຶນການຜະລິດສິນຄ້າ ທັງສອງແມ່ນ: $CT = Q_x^2 + 2Q_xQ_y + Q_y^2 + 20$. ຈົ່ງຊອກປະລິມານການຜະລິດ , ລາຄາຂາຍທີ່ ເໝາະສົມເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດ ແລະ ຊອກຫາກຳໄລສູງສຸດດັ່ງກ່າວ?

ວິທີແກ້ :
$$f = RT - CT = P_x Q_x + P_y Q_y - Q_x^2 - 2Q_x Q_y - Q_y^2 - 20$$

จาก (1)
$$\Rightarrow$$
 P $_x$ = $50-2Q_x$; P $_y$ = $30-Q_y$

$$f = (50 - 2Q_x)Q_x + (30 - Q_y)Q_y - Q_x^2 - 2Q_xQ_y - Q_y^2 - 20$$

$$f = 50Q_x - 3Q_x^2 + 30Q_y - 2Q_y^2 - 2Q_xQ_y - 20$$

$$f_x = 50 - 6Q_x - 2Q_y$$
 $\Rightarrow \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \Leftrightarrow \begin{cases} 6Q_x + 2Q_y = 50 \\ 2Q_x + 4Q_y = 30 \end{cases} \Rightarrow Q_x = 7$ และ $Q_y = 4$

$$f_{xx} = -6 < 0$$
 $f_{yy} = -4$ $f_{xy} = -2$

$$F(7,4) = (-6)(-4) - (-2)^2 = 24 - 4 = 20 > 0$$

ດັ່ງນັ້ນ $Q_x = 7$ ແລະ $Q_y = 4$ ຈຶ່ງແມ່ນປະລິມານການຕະລິດເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດ ແລະ ລາຄາ ຂາຍທີ່ເໝາະສົມທີ່ສຸດຄື $P_x = 50 - 2 \times 7 = 50 - 14 = 36$ $P_y = 30 - 4 = 26$

ເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດຕ້ອງຜະລິດສິນຄ້າຊະນິດໜຶ່ງ 7 ຫົວໜວ່ຍ , ສິນຄ້າຊະນິດທີ່ສອງ 4 ຫົວ ໜວ່ຍ ແລະລາຄາຂາຍທີ່ເໝາະສົມແມ່ນສິນຄ້າຊະນິດໜຶ່ງ 36 ຫົວໜວ່ຍ , ສິນຄ້າຊະນິດທີ່ສອງ 26 ຫົວໜວ່ຍ. ກຳໄລສູງສຸດແມ່ນ:

$$f(7,4) = 50 \times 7 - 3(7)^2 + 30 \times 4 - 2(4)^2 - 2 \times 4 \times 7 - 20 = 215$$

ຕົວຢ່າງ 22: ວິສາຫະກິດໜຶ່ງຜະລິດສິນຄ້າສອງຊະນິດຄື x ແລະ y ຊຶ່ງມີຕຳລາຕົ້ນທຶນການຜະລິດ ທັງໝົດ $CT = 8x^2 - xy + 12y^2$. ແຕ່ບໍລິສັດຕ້ອງປະຕິບັດສັນຍາໃນການຜະລິດສິນຄ້າທັງໝົດໃຫ້ໄດ້ 42 ຫົວໜວ່ຍ. ຈົ່ງຊອກຫາປະລິມານການຜະລິດຂອງບໍລິສັດດັ່ງກ່າວເພື່ອໃຫ້ມີຕົ້ນທຶນຕ່ຳສຸດ ແລະ ຊອກຕົ້ນທຶນຕ່ຳສຸດດັ່ງກ່າວ?

ວິທີແກ້ : ບໍລິສັດມີເງື່ອນໄຂໃນການຜະລິດ x+y=42ປ່ຽນເງື່ອນໄຂໃຫ້ເທົ່າ O ແລະ ສ້າງຕຳລາ Lagrange

$$F(x, y, \}) = 8x^{2} - xy + 12y^{2} + \{(42 - x - y)\}$$

$$\begin{cases}
F_{x} = 16x - y - \} = 0 & (1) \\
F_{y} = -x + 24y - \} = 0 & (2) \\
F_{y} = 42 - x - y = 0 & (3)
\end{cases}$$

ເອົາ (1) - (2)
$$\Rightarrow$$
 $17x - 25y = 0$ (4)

ເອົາ 17(3) - (4)
$$\Rightarrow$$
 42y=714 \Rightarrow y = 17

$$\Rightarrow x = 42 - 17 = 25$$

ເອົາຄ່ຳ x ແລະ y ແຫນເຂົ້າ (1) ຈະໄດ້:

$$= 16x - y = 16 \times 25 - 17 = 383$$

ດັ່ງນັ້ນ ປະລິມານການຜະລິດເພື່ອໃຫ້ມີຕົ້ນທຶນຕໍ່າສຸດ ແມ່ນ x=25 , y=17 ແລະ ຕົ້ນທຶນຕໍ່າສຸດທີ່ຊອກແມ່ນ:

$$CT(25,17) = 8(25)^2 - 25 \times 17 + 12(17)^2 = 8043$$

ບົດຝຶກຫັດ

- 1. ແມ່ຄ້າຄົນໜຶ່ງຂາຍໄກ່ກິໂລລະ 75000 ກີບ ແລະ ຂາຍເປັດກິໂລລະ 50000 ກີບ. ຈົ່ງຂູງນ ສູດລາຍຮັບ R(x, y) ຈາກການຂາຍໄກ່ x ກິໂລ ແລະ ເປັດ y ກິໂລ. ຫລັງຈາກນັ້ນໃຫ້ຄິດ ໄລ່ລາຍຮັບຈາກການຂາຍໄກ່ 25 ກິໂລ ແລະ ຂາຍເປັດ 30 ກິໂລ ?
- 2. ຈົ່ງຊອກຜົນຕຳລາພາກສວ່ນຂັ້ນໜຶ່ງຂອງຕຳລາລຸ່ມນີ້:

a.
$$z = 8x^2 + 14xy - 5y^2 + 10$$

b.
$$z = 3x^2(5x + 7y)$$

c.
$$z = 2x^2 + 6y(5x - 3y^3)$$

$$d. \qquad z = \frac{x^2 - y^2}{3x + 2y}$$

e.
$$z = (7x^2 + 4y^3)^4$$

3. ຈົ່ງຊອກຜົນຕຳລາພາກສວ່ນຂັ້ນສອງຂອງຕຳລາລຸ່ມນີ້:

a.
$$z = x^3 + 2xy + 2y^3$$

b.
$$z = x^4 + x^3y^2 - 3xy^3 - 2y^4$$

c.
$$z = (x^2 + 2y)^4$$

d.
$$z = x^{0.6} y^{0.4}$$

4. ຈົ່ງຊອກຄ່າໃຫຍ່ສຸດ, ຄ່ານ້ອຍສຸດ ແລະ ເມັດອານມ້າຂອງຕຳລາລຸ່ມນີ້:

a.
$$f(x, y) = x^2 + 3y^2 + 4x + 6y + 8$$

b.
$$f(x, y) = x^3 + y^2 - 3x + 6y$$

c.
$$f(x, y) = 3x^2 + 2y^2 - xy - 4x - 7y + 12$$

d.
$$f(x, y) = 5x^2 - 3y^2 - 30x + 7y + 4xy$$

e.
$$f(x, y) = x^3 - 6x^2 + 2y^3 + 9y^2 - 63x - 60y$$

5. ຈົ່ງຊອກຫາຈຸນລະຄະນິດເຕັມສວ່ນຂອງຕຳລາລຸ່ມນີ້:

a.
$$z = 5x^3 - 12xy - 6y^5$$

b.
$$z = 3x^2(8x - 7y)$$

c.
$$z = (5x^2 + 7y)(2x - 4y^3)$$

d.
$$z = (x-3y^2)^3$$

6. ຈົ່ງຊອກຫາຜົນຕຳລາເຕັມສວ່ນຂອງຕຳລາລຸ່ມນີ້:

c.
$$z = 10x^2 - 6xy - 12y^2$$
 (a) $x = 5t$; $y = 4t$

- 7. ພໍ່ຄ້າຄົນໜຶ່ງຂາຍສິນຄ້າຂອງລາວໃນສອງຕົວເມືອງດ້ວຍລາຄາແຕກຕ່າງກັນສົມມຸດ x ແມ່ນ ຈຳນວນສິນຄ້າທີ່ຂາຍໃນຕົວເມືອງທີ່ໜຶ່ງ y ແມ່ນຈຳນວນສິນຄ້າທີ່ຂາຍໃນຕົວເມືອງທີ່ສອງ. ຢູ່ຕົວເມືອງທີ່ໜຶ່ງລາວຂາຍດ້ວຍລາຄາ ($97 \frac{x}{10}$) ໂດລາຕໍ່ອັນ ແລະ ຢູ່ຕົວເມືອງທີ່ສອງລາວຂາຍ ດ້ວຍລາຄາ ($83 \frac{y}{20}$) ໂດລາຕໍ່ອັນ. ຕົ້ນທຶນໃນການຜະລິດສິນຄ້າດັ່ງກ່າວແມ່ນ: 3x + 3y + 20000 ໂດລາ. ຈົ່ງຊອກຫາປະລິມານສິນຄ້າທີ່ຕ້ອງຂາຍໃນຕົວເມືອງທີ່ໜຶ່ງ ແລະ ຕົວເມືອງທີ່ສອງເພື່ອໃຫ້ໄດ້ ກຳໄລສູງສຸດ.
- 8. ຈົ່ງຊອກຄ່າໃຫຍ່ສຸດຂອງຕຳລາລຸ່ມນີ້:

a.
$$z = 4x^2 - 2xy + 6y^2$$
 ພາຍໃຕ້ເງື່ອນໄຂ $x + y = 72$

b.
$$z = 64x - 2x^2 + 4xy - 4y^2 + 32y - 14$$
 พายใต้เวื่อมไล $x + y = 79$

9. ສົມມຸດມີແບບຈຳລອງໃນການກຳນົດຫາລາຍຮັບຂອງສາມຂະແໜງການດັ່ງນີ້:

$$Y = C + I + G$$

$$C = C_0 + bYd$$
 $Yd = Y - T$ $T = T_0 + tY$ $G = G_0$ $I = I_0$

Yd : ລາຍຮັບຫັກພາສີແລ້ວ T : ພາສີ

Tຸ: ອາກອນ t : ອັດຕາພາສີ

ຈົ່ງຊອກຕົວຄູນຂອງລາຍຮັບທີ່ກົງກັບ

- a. ภามใล้จายพากลัก ($G_{\scriptscriptstyle 0}$)
- b. ອາກອນ ($T_{\scriptscriptstyle 0}$)
- c. ອັດຕາພາສີ (t)
- 10. ສົມມຸດມີແບບຈຳລອງໃນການກຳນົດຫາລາຍຮັບຂອງສາມຂະແໜງການດັ່ງນີ້:

$$Y = C + I + G$$

$$C = C_0 + bYd$$
 $Yd = Y - T$ $T = T_0 + tY$ $G = G_0$ $I = I_0$
 $C_0 = 100$ $G_0 = 330$ $I_0 = 90$ $T_0 = 240$ $b = 0.75$ $t = 0.20$

- a. ຈົ່ງຊອກຫາລາຍຮັບດຸ່ນດ $\dot{}_{
 m J}$ ງ ($ar{Y}$)
- b. ຊອກຫາຜົນກະທົບທີ່ມີຕໍ່ລາຍຮັບດຸ່ນດ່ຽງ $ar{Y}$ ເມື່ອມີການຜັນປ່ຽນເພີ່ມຂື້ນເປັນຈຳນວນເງິນ ເທົ່າກັບ 50 ຫົວໜວ່ຍຢູ່ໃນ
 - ການໃຊ້ຈ່າຍພາກລັດ
 - ອາກອນ

- 11. ຈາກຂໍ້ 10 (a) ຖ້າມີການນຳໃຊ້ແຮງງານຢ່າງເຕັມສວ່ນ(ບໍ່ມີການຫວ່າງງານ) ຈະເຮັດໃຫ້ລາຍ ຮັບເພີ່ມຂື້ນເປັນ 1000 . ຖ້າລັດຕ້ອງການແກ້ໄຂໄພຫວ່າງງານລັດຈະຕ້ອງຜັນປຸ່ງນແນວໃດຢູ່ໃນ
 - ການໃຊ້ຈ່າຍພາກລັດ
 - ການເກັບອາກອນ
- 12. ວິສາຫະກິດໜຶ່ງຜະລິດ ແລະ ຈຳໜ່າຍສິນຄ້າສອງຊະນິດຄື x ແລະ y ຊຶ່ງມີຕຳລາກຳໄລດັ່ງລຸ່ມ ນີ້: $f = 160x 3x^2 2xy 2y^2 + 120y 18$. ຈົ່ງຊອກຫາປະລິມານການຜະລິດ ແລະ ຈຳໜ່າຍ ສິນຄ້າທັງສອງເພື່ອໃຫ້ໄດ້ກຳໄລສູງສຸດ ແລະ ຊອກກຳໄລສູງສຸດດັ່ງກ່າວ ?
- 13. ວິສາຫະກິດໜຶ່ງຕະລິດ ແລະ ຈຳໜ່າຍສິນຄ້າສອງຊະນິດຄື x ແລະ y ຊຶ່ງມີຕຳລາຕົ້ນທຶນລວມ ດັ່ງນີ້: $CT = 6x^2 + 10y^2 xy + 30$ ແຕ່ວິສາຫະກິດຕ້ອງປະຕິບັດສັນຍາໃນການຕະລິດສິນຄ້າທັງ ສອງພາຍໃຕ້ເງື່ອນໄຂ x + y = 34. ຖາມວ່າບໍລິສັດຄວນຕະລິດສິນຄ້າຊະນິດລະເທົ່າໃດເພື່ອໃຫ້ມີຕົ້ນ ທຶນຕ່ຳສຸດ ແລະ ປະເມີນຕົ້ນກະທົບທີ່ມີຕໍ່ຕົ້ນທຶນລວມຖ້ຳຫລຸດການຕະລິດສິນຄ້ຳລົງ 1 ຫົວໜວ່ຍ? 14. ວິສາຫະກິດໜຶ່ງຕະລິດ ແລະ ຈຳໜ່າຍສິນຄ້ຳສອງຊະນິດຄື x ແລະ y ຊຶ່ງມີຕຳລາກຳໄລດັ່ງລຸ່ມ ນີ້: $f = 80x 2x^2 xy 3y^2 + 100y$.
 - a. ຈົ່ງຊອກຫາປະລິມານການຜະລິດ ແລະ ຈຳໜ່າຍສິນຄ້າທັງສອງເພື່ອໃຫ້ໄດ້ກຳໄລສູງ
 ສຸດພາຍໃຕ້ເງື່ອນໄຂ x + y = 12
 - b. ປະເມີນຜົນກະທົບທີ່ມີຕໍ່ກຳໄລຖ້າມີການເພີ່ມປະລິມານການຜະລິດສິນຄ້າຂື້ນຕື່ມ 1 ຫົວ ໜວ່ຍ?

ບົດທີ 8

ສົມຜົນຈຸນລະຄະນິດ

8.1 ນິຍາມ:

ສົມຜົນຈຸນລະຄະນິດແມ່ນສົມຜົນທີ່ມີຜົນຕຳລາ ແລະ ຕົວລັບແມ່ນຕຳລາ ການແກ້ສົມຜົນຈຸນລະຄະນິດໃດໜຶ່ງໝາຍເຖິງການຊອກຫາຕຳລາທັງໝົດທີ່ຕອບສະໜອງສົມຜົນຈຸນລະ ຄະນິດນັ້ນໆ ແລະ ໃຈຜົນຂອງສົມຜົນຈຸນລະຄະນິດໜຶ່ງໆແມ່ນຕຳລາທີ່ຕອບສະໜອງສົມຜົນຈຸນລະຄະ ນິດນັ້ນໆຊຶ່ງສາມາດແບ່ງໃຈຜົນຂອງສົມຜົນຈຸນລະຄະນິດອອກເປັນສອງຊະນິດຄືໃຈຜົນລວມ ຫຼື ໃຈຜົນ ທົ່ວໄປ ແລະ ໃຈຜົນສະເພາະ

ສົມຜົນຈຸນລະຄະນິດແບ່ງອອກເປັນສອງຊະນິດຄືດັ່ງລຸ່ມນີ້:

- ສົມຜົນຈຸນລະຄະນິດທຳມະດາຊຶ່ງຕຳລາເປັນຕົວລັບແມ່ນຕຳລາ 1 ຕົວປຸ່ງນ
- ສົມຜົນຈຸນລະຄະນິດພາກສ່ວນຊຶ່ງຕຳລາທີ່ເປັນຕົວລັບແມ່ນຕຳລາ 2 ຕົວປ່ຽນ

- 2) $(\frac{dy}{dx})^2 + y + 7 = 0$ ແມ່ນສົມຜົນຈຸນລະຄະນິດທຳມະດາຂັ້ນ 1
- 4) (y+x)dx+(x-2)dy=0 แม่นสิมติบจุนละคะนึกพาทส่วนຂั้น 1

ຂັ້ນສູງສຸດຂອງຜົນຕຳລາໃນສົມຜົນຈຸນລະຄະນິດເອີ້ນວ່າຂັ້ນຂອງສົມຜົນຈຸນລະຄະນິດ

8.2 ສົມຜົນຈຸນລະຄະນິດແຍກຕົວປຸ່ງນໄດ້

ສົມຜົນໃນຮູບແບບ g(y)y'=f(x) ຫຼື g(y)dy=f(x)dx ເອີ້ນວ່າສົມຜົນຈຸນລະຄະນິດແຍກ ຕົວປ່ງນໄດ້

ເມື່ອຄິດໄລ່ສັງຄະນີດສໍາລັບຕໍາລາຢູ່ທັງສອງພາກຂອງສົມຜົນຂ້າງເທິງຈະໄດ້

$$\int g(y)dy = c$$
 ; (c = const) ຊຶ່ງແມ່ນສູດເສັ້ນສັງຄະນິດແຍກຕົວປ່ຽນໄດ້

ຕົວຢ່າງ 2: ຊອກເສັ້ນສັງຄະນິດຂອງສົມຜົນ 9yy + 4x = 0

ສາມາດຂຽນສົມຜົນຂ້າງເທິງໃນຮູບແບບ $9\,ydy=-4\,xdx$ ເມື່ອຄິດໄລ່່ສັງຄະນິດຕາມ x

ຈະໄດ້
$$\frac{9}{2}y^2 = -2x^2 + c$$

$$\frac{x^2}{Q} + \frac{y^2}{A} = c$$

ເສັ້ນສັງຄະນິດຂອງສົມຜົນທີ່ໃຫ້ມາແມ່ນບັນດາເສັ້ນແອນລິບ

ຕົວຢ່າງ 3: ຊອກຫາໃຈຜົນທົ່ວໄປຂອງສົມຜົນລຸ່ມນີ້:

$$x(y^{2}-1)dx + y(x^{2}-1)dx = 0$$

$$\frac{x}{x^{2}-1}dx + \frac{y}{y^{2}-1}dy = 0$$

$$\int \frac{x}{x^{2}-1}dx + \int \frac{y}{y^{2}-1}dy = c_{1}$$

$$\ln |x^{2}-1| + \ln |y^{2}-1| = c_{1}$$

$$\ln |(x^{2}-1)(y^{2}-1)| = c_{1}$$

$$(x^{2}-1)(y^{2}-1) = e^{\ln c_{1}} = c$$

8.3 ສົມຕົນຈຸນລະຄະນິດລີເນແອ

ສົມຜົນ $\frac{dy}{dx} + P(x)y = f(x)$ ເອີ້ນວ່າສົມຜົນລີເນແອສຳລັບສົມຜົນຈຸນລະຄະນິດຂັ້ນ 1

ກໍລະນີ f(x) = 0 ສາມາດຊອກໃຈຜົນຂອງສົມຜົນລີເນແອໄດ້ດັ່ງນີ້

$$\frac{dy}{dx} = -P(x)y$$

$$\frac{dy}{y} = -P(x)dx$$

$$\int \frac{dy}{y} = -\int P(x)dx$$

$$\ln y = -\int P(x)dx + c$$

$$v(x) = Ce^{-\int P(x)dx}$$

ຕົວຢ່າງ 4: ຊອກຫາໃຈຜົນທົ່ວໄປຂອງສົມຜົນລຸ່ມນີ້

$$\frac{dy}{dx} + 4x = 0$$
$$y(x) = Ce^{-\int 4dx}$$
$$y(x) = Ce^{-4x}$$

ກໍລະນີ $f(x) \neq 0$ ສາມາດຊອກໃຈຜົນຂອງສົມຜົນລີເນແອໄດ້ດັ່ງນີ້

$$y(x) = C(x)e^{-\int P(x)dx}$$

ຄິດໄລ່ຜົນຕຳລາທັງສອງພາກຈະໄດ້

$$y'(x) = C'(x)e^{-\int P(x)dx} - C(x)P(x)e^{-\int P(x)dx}$$

ເມື່ອແທນຄ່ຳ y ແລະ y ່ໃສ່ສົມຜົນລີເນແອຂ້າງເທິງຈະໄດ້

$$C'(x)e^{-\int P(x)dx} = f(x)$$

$$C'(x) = f(x)e^{\int P(x)dx}$$

$$C(x) = \int f(x)e^{\int P(x)dx}dx + c$$

ດັ່ງນັ້ນ $y(x) = [\int f(x)e^{\int P(x)dx}dx + c]e^{-\int P(x)dx}$ ແມ່ນໃຈຜົນທົ່ວໄປຂອງສົມຜົນ $\frac{dy}{dx} + P(x)y = f(x)$

ຕົວຢ່າງ 5: ຊອກຫາໃຈຜົນທົ່ວໄປຂອງສົມຜົນລຸ່ມນີ້

$$\frac{dy}{dx} + 3x^{2}y = x^{2}$$

$$y(x) = \left[\int x^{2}e^{\int 3x^{2}dx} dx + c\right]e^{-\int 3x^{2}dx}$$

$$y(x) = \left[\int x^{2}e^{x^{3}} dx + c\right]e^{-x^{3}}$$

$$y(x) = \left[\int e^{x^{3}} d(x^{3}) + c\right]e^{-x^{3}}$$

$$y(x) = \frac{1}{3}(e^{x^{3}} + c)e^{-x^{3}}$$

$$y(x) = \frac{1}{3} + ce^{-x^{3}}$$

ຕົວຢ່າງ 6: ຊອກຫາໃຈຜົນທົ່ວໄປຂອງສົມຜົນລຸ່ມນີ້

$$\frac{dy}{dx} - y = e^x$$

$$y(x) = \left[\int e^x e^{-\int dx} dx + c \right] e^{\int dx}$$

$$y(x) = \left[\int e^x e^{-x} dx + c \right] e^x$$

$$y(x) = \left[\int dx + c \right] e^x$$

$$y(x) = (x + c) e^x$$

8.4 ສົມຜົນຈຸນລະຄະນິດເຕັມສ່ວນ

ສົມຜົນຈຸນລະຄະນິດເຕັມສ່ວນແມ່ນສົມຜົນຈຸນລະຄະນິດທີ່ມີຮູບຮ່າງ

M(x,y)dy+N(x,y)dx=0 ໃນນັ້ນ M(x,y)dy+N(x,y)dx=0 ຕ້ອງແມ່ນຈຸນລະຄະນິດ ເຕັມສ່ວນຂອງຕຳລາ F(x,y) ໃດໜຶ່ງ. ໝາຍຄວາມວ່າ $\frac{\partial F}{\partial y}=M$; $\frac{\partial F}{\partial x}=N$

ແລະ dF(x,y)=Mdy+Ndx ເງື່ອນໄຂຈຳເປັນ ແລະ ພຸງພໍເພື່ອໃຫ້ M(x,y)dy+N(x,y)dx=0 ເປັນສົມຜົນຈຸນລະຄະນິດພາກສ່ວນແມ່ນ: $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$

ຕົວຢ່າງ 7: ຊອກຫາໃຈຜົນທົ່ວໄປຂອງສົມຜົນລຸ່ມນີ້

$$(y+3)dx + (x-2)dy = 0$$

ຈາກສົມຕົນຂ້າງເທິງເຮົາມີ

$$M = x-2 \Rightarrow \frac{\partial M}{\partial x} = 1$$

$$N = y+3 \Rightarrow \frac{\partial N}{\partial y} = 1$$

ສະນັ້ນສົມຜົນຂ້າງເທິງແມ່ນສົມຜົນຈຸລະຄະນິດເຕັມສ່ວນ.

ຈາກ
$$\frac{\partial F}{\partial y} = M = x - 2 \Rightarrow F(x, y) = \int (x - 2)dy + z(x)$$

$$F(x, y) = (x - 2)y + z(x)$$

$$\frac{\partial F}{\partial x} = y + z'(x) = N = y + 3 \Rightarrow z'(x) = 3$$
ຈະໄດ້ $z(x) = \int 3dx = 3x + c$
ດ້ານັ້ນ $F(x, y) = (x - 2)y + 3x + c$ ແມ່ນໃຈຜົນທີ່ວໄປ

ຕົວຢ່າງ 8: ຊອກຫາໃຈຜົນທົ່ວໄປຂອງສົມຜົນລຸ່ມນີ້

$$(6xy+9y^2)dy+(3y^2+8x)dx=0$$

ຈາກສົມຜົນຂ້າງເທິງເຮົາມີ

$$M = 6xy + 9y^{2} \implies \frac{\partial M}{\partial x} = 6y$$

$$N = 3y^{2} + 8x \implies \frac{\partial N}{\partial y} = 6y$$

ສະນັ້ນສົມຜົນຂ້າງເທິງແມ່ນສົມຜົນຈຸລະຄະນິດເຕັມສ່ວນ.

ຈາກ
$$\frac{\partial F}{\partial y} = M = 6xy + 9y^2 \Rightarrow F(x,y) = \int (6xy + 9y^2) dy + z(x)$$

$$F(x,y) = 3xy^2 + 3y^3 + z(x)$$

$$\frac{\partial F}{\partial x} = 3y^2 + z'(x) = N = 3y^2 + 8x \Rightarrow z'(x) = 8x$$
ຈະໄດ້ $z(x) = \int 8x dx = 4x^2 + c$
ດັ່ງນັ້ນ $F(x,y) = 3xy^2 + 3y^3 + 4x^2 + c$ ແມ່ນໃຈຜົນທົ່ວໄປ

8.5 ຕົວຄູນສັງຄະນິດ

ກໍລະນີ M(x,y)dy + N(x,y)dx = 0 ບໍ່ແມ່ນສົມຜົນຈຸນລະຄະນິດເຕັມສ່ວນໝາຍຄວາມວ່າ $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$ ແຕ່ຖ້າຫາກສາມາດຊອກຕຳລາ $\sim (x,y)$ ທີ່ເຮັດໃຫ້ສົມຜົນ

 $\sim (x,y)M(x,y)dy + \sim (x,y)N(x,y)dx = 0$ ກາຍເປັນສົມຜົນຈຸນລະຄະນິດເຕັມສ່ວນເວລາ ນັ້ນເພິ່ນເອີ້ນ $\sim (x,y)$ ວ່າຕົວຄູນສັງຄະນິດ.

ໃນການຊອກຫາຕົວຄູນສັງຄະນິດຈະອີງໃສ່ສອງຫຼັກການດັ່ງລຸ່ມນີ້

• **ຫຼັກການທີ1** ຖ້າວ່າ $\frac{1}{N}(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y}) = f(y)$ ເປັນຕຳລາທີ່ມີຕົວປ່ຽນ y ພຽງຕົວດຽວ

ເວລານັ້ນຈະໄດ້ $\sim = e^{\int f(y)dy}$ ແມ່ນຕົວຄູນສັງຄະນິດ

• **ຫຼັກການທີ2** ຖ້າວ່າ $\frac{1}{M}(\frac{\partial N}{\partial y} - \frac{\partial M}{\partial x}) = g(x)$ ເປັນຕຳລາທີ່ມີຕົວປ່ຽນ x ພງງຕົວດຽວ

ເວລານັ້ນຈະໄດ້ $\sim = e^{\int g(x)dx}$ ແມ່ນຕົວຄູນສັງຄະນິດ

ຕົວຢ່າງ 9: ຈົ່ງຊອກໃຈຜົນສົມຜົນຈຸນລະຄະນິດຕໍ່ໄປນີ້: $5xydy + (5y^2 + 8x)dx = 0$

ຈາກສົມຜົນຂ້າງເທິງເຮົາມີ

$$M = 5xy \qquad \Rightarrow \qquad \frac{\partial M}{\partial x} = 5y$$

$$N = 5y^2 + 8x \qquad \Rightarrow \qquad \frac{\partial N}{\partial y} = 10y$$

 $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$ ສະນັ້ນສົມຜົນຂ້າງເທິງບໍ່ແມ່ນສົມຜົນຈຸລະຄະນິດເຕັມສ່ວນ.

• ໝູນໃຊ້ **ຫຼັກການທີ1** $\frac{1}{5y^2 + 8x}(5y - 10y) = -\frac{5y}{5y^2 + 8x}$ ບໍ່ແມ່ນຕຳລາຕາມຕົວປ່ຽນ

y ພງງຕົວດງວ, ສະນັ້ນພວກເຮົາບໍ່ສາມາດກຳນົດຕົວຄູນສັງຄະນິດຈາກຫຼັກເກນນີ້ໄດ້.

• ໝູນໃຊ້ **ຫຼັກການທີ2** $\frac{1}{5xy}(10y-5y) = -\frac{5y}{5xy} = \frac{1}{x}$ ແມ່ນຕຳລາທີ່ຂື້ນກັບ x ພງງຕົວ

ດງວ, ສະນັ້ນ $\sim = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ ຈະແມ່ນຕົວຄູນສັງຄະນິດ ແລະ ສົມຜົນ

 $5x^2ydy + x(5y^2 + 8x)dx = 0$ จะแม่นสิมติบจุนละถะนิดเต็มส่อน

ຈາກສົມຜົນຂ້າງເທິງເຮົາມີ

$$M = 5x^{2}y \qquad \Rightarrow \frac{\partial M}{\partial x} = 10xy$$

$$N = x(5y^{2} + 8x) \qquad \Rightarrow \frac{\partial N}{\partial y} = 10xy$$

ສະນັ້ນສົມຜົນຂ້າງເທິງແມ່ນສົມຜົນຈຸລະຄະນິດເຕັມສ່ວນ.

ຈາກ
$$\frac{\partial F}{\partial y} = M = 5x^2y \Rightarrow F(x,y) = \int 5x^2y dy + z(x)$$

$$F(x,y) = \frac{5}{2}x^2y^2 + z(x)$$

$$\frac{\partial F}{\partial x} = 5xy^2 + z'(x) = N = 5xy^2 + 8x^2 \Rightarrow z'(x) = 8x^2$$
ຈະໄດ້ $z(x) = \int 8x^2 dx = \frac{8}{3}x^3 + c$

ດັ່ງນັ້ນ
$$F(x,y) = \frac{5}{2}x^2y^2 + \frac{8}{3}x^3 + c$$
 ແມ່ນໃຈຜົນທີ່ວໄປ

8.6 ສົມຜົນແບກນູລີ (Bernoulli equation)

ສົມຜົນແບກນູລີ ແມ່ນສົມຜົນທີ່ມີຮູບຮ່າງ $\frac{\partial y}{\partial x} + P(x)y = Q(x)y^n$ ໃນນີ້ສົມມຸດວ່າ $n \neq 0; n \neq 1$ ໃນການແກ້ສົມຜົນແບກນູລີຈະຕ້ອງໄດ້ຜັນປ່ຽນໃຫ້ເປັນສົມຜົນຈຸນລະຄະນິດລີເນແອໂດຍໃຊ້ຕົວປ່ຽນໃໝ່ ຄືດັ່ງຕໍ່ໄປນີ້:

• ຜັນປ່ຽນສົມຜົນ
$$\frac{\partial y}{\partial x} + P(x)y = Q(x)y^n$$
 ໃຫ້ເປັນ $y^{-n}\frac{dy}{dx} + P(x)y^{1-n} = Q(x)$

• ແທນ
$$\frac{dz}{dx} = (1-n)y^{n-1}\frac{dy}{dx}$$
 ໃສ່ສົມຕົນຂ້າງເທິງຈະໄດ້ສົມຕົນຈຸນລະຄະນິດລີເນແອທີ່ມີຕົວ

ປ່ງນ z ແລະ x ຄືດັ່ງຕໍ່ໄປນີ້:

$$\frac{1}{1-n}\frac{dz}{dx} + P(x)z = Q(x)$$

$$\mathfrak{D} \frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x)$$

ຕົວຢ[່]າງ10: ຈົ່ງຊອກຫາໃຈຜົນຂອງສົມຜົນແບກນູລີ $\frac{dy}{dx} - y = xy^2$

ຈາກສົມຜົນຂ້າງເທິງເຫັນວ່າ n = 2 ສະນັ້ນເຮົາສາມາດປ່ຽນໃຫ້ສົມຜົນກາຍເປັນສົມຜົນຈຸນລະ ຄະນິດລີເນແອຄືດັ່ງນີ້

$$\frac{dz}{dx} + z = -x$$

ໃຈຜົນທົ່ວໄປຂອງສົມຜົນດັ່ງກ່າວແມ່ນ

$$z(x) = \left(\int -xe^{\int xdx} dx + c\right)e^{-\int xdx}$$

$$z(x) = \left(\int -xe^x dx + c\right)e^{-x}$$

$$z(x) = \left(-xe^x + e^x + c\right)e^{-x} = -x + 1 + e^{-x}$$

ແທນ $z=y^{-1}$ ໃສ່ສົມຜົນສຸດທ້າຍຈະໄດ້ໃຈຜົນທົ່ວໄຂອງສົມຜົນແບກນູລີທີ່ໃຫ້ດັ່ງນີ້:

$$y(x) = (-x+1+ce^{-x}) = \frac{1}{-x+1+ce^{-x}}$$

8.7 ສົມຜົນຈຸນລະຄະນິດຂັ້ນສອງ

ສົມຜົນຈຸນລະຄະນິດຂັ້ນສອງແມ່ນສົມຜົນທີ່ມີຮູບຮ່າງ

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = r(x) \tag{1}$$

ໃນນັ້ນ p(x);q(x);f(x) ແມ່ນຕຳລາທີ່ໃຫ້ກອ່ນ, ຖ້າວ່າ p, q ແລະ r ແມ່ນຈຳນວນຄົງຄ່າເພີ່ນເອີ້ນ ສົມຜົນ (1) ວ່າສົມຜົນຈຸນລະຄະນິດຂັ້ນສອງທີ່ມີສຳປະສິດຄົງຄ່າ.

ໃນກໍລະນີ r(x)=0 ເພີ່ນເອີ້ນສົມຜົນຈຸນລະຄະນິດລີເນແອເອກະພັນສໍາລັບສົມຜົນຈຸນລະຄະນິດ ຂັ້ນສອງ.

ຕໍ່ໄປນີ້ພວກເຮົາຈະສຶກສາການແກ້ສົມຜົນຈຸນລະຄະນິດລີເນແອເອກະພັນ.

ໃຫ້ສອງຕຳລາ f(x) ແລະ g(x) ທີ່ເປັນຕຳລາຕໍ່ເນື່ອງ, ຖ້າບໍ່ມີຈຳນວນຄົງຄ່າ k ໃດໆຕ່າງ 0 ທີ່ ເຮັດໃຫ້ຕອບສະໜອງເງື່ອນ k f(x) = k g(x) ເພີ່ນເວົ້າວ່າສອງຕຳລານີ້ເປັນເອກະລາດຕໍ່ກັນ ຕົວຢ່າງ 11: ໃຫ້ສອງຕຳລາ f(x) = x ແລະ $g(x) = x^2$ ເຮົາສັງເກດເຫັນວ່າບໍ່ມີຈຳນວນຄົງຄ່າ $k \neq 0$ ໃດໆທີ່ເຮັດໃຫ້ຕອບສະໜອງ ເງື່ອນ $k \neq 0$ ໃດໆທີ່ເຮັດໃຫ້ຕອບສະໜອງ ເງື່ອນ $k \neq 0$ ໃດໆທີ່ເຮັດໃຫ້ຕອບສະໜອງ ເງື່ອນ $k \neq 0$ ໃດໆທີ່ເກັນ.

ຫຼັກເກນ. ຖ້າວ່າ $y_1(x)$ ແລະ $y_2(x)$ ແມ່ນສອງໃຈຜົນຂອງສົມຜົນ

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0 \tag{2}$$

ທີ່ເປັນເອກະລາດຕໍ່ກັນ. ໃນກໍລະນີນີ້ເຮົາຈະໄດ້ໃຈຜົນຂອງສົມຜົນ (2) ແມ່ນ

$$y = c_1 y_1(x) + c_2 y_2(x)$$

ໃນນັ້ນ c_1 ແລະ c_2 ແມ[່]ນຈຳນວນຄົງຄ່ຳ. ໃນນີ້ $y_1(x)$ ແລະ $y_2(x)$ ເອີ້ນວ່າໃຈຜົນພື້ນຖານຂອງ ສົມຜົນ (2).

ໃນກໍລະນີ p ແລະ q ແມ[່]ນຈຳນວນຄົງຄ[່]າສາມາດຊອກໃຈຜົນພື້ນຖານຂອງສົມຜົນ (2) ໃນຮູບແບບ

$$y = e^{mx} (3)$$

ເມື່ອເອົາສົມຜົນ (3) ແທນໃສ່ສົມຜົນ (2) ຈະໄດ້

$$(m^2 + pm + q)e^{mx} = 0$$

 $m^2 + pm + q = 0$ (4)

ສົມຜົນ (4) ເອີ້ນວ[່]າສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນສໍາລັບສົມຜົນ (2)

- ກໍລະນີ \mathbf{m}_1 ແລະ \mathbf{m}_2 ແມ່ນສອງຈຳນວນຈິງຕ່າງກັນທີ່ເປັນໃຈຜົນຂອງສົມຜົນ (4) ຈະໄດ້ $y_1(x) = e^{m_1 x}$ ແລະ $y_2(x) = e^{m_2 x}$ ແມ່ນສອງໃຈຜົນພື້ນຖານຂອງສົມຜົນ (2)
- ກໍລະນີ $\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}$ ແມ່ນໃຈຜົນຂອງສົມຜົນ (4) ຈະໄດ້ $y_1(x) = e^{\mathbf{m}x}$ ແລະ $y_2(x) = xe^{\mathbf{m}x}$ ແມ່ນສອງໃຈຜົນພື້ນຖານຂອງສົມຜົນ (2)
- ກໍລະນີ $\mathbf{m}_1 = \mathbf{a} + \mathbf{b}\mathbf{i}$ ແລະ $\mathbf{m}_2 = \mathbf{a} \mathbf{b}\mathbf{i}$ ແມ່ນສອງຈຳນວນສົນຕ່າງກັນທີ່ເປັນໃຈຜົນຂອງສົມຜົນ (4) ຈະໄດ້

 $y_1(x) = e^{ax}\cos bx$ ແລະ $y_2(x) = e^{ax}\sin bx$ ແມ່ນສອງໃຈຜົນພື້ນຖານຂອງສົມຜົນ (2) ຕົວຢ່າງ 12: ຈົ່ງຊອກໃຈຜົນທີ່ວໄປຂອງສົມຜົນ $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 0$

ເຮົາມີສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນແມ່ນ: $m^2 - 5m + 4 = 0$ ຊຶ່ງມີໃຈຜົນຂອງສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນແມ່ນ $m_1 = 1$ ແລະ $m_2 = 4$ ດັ່ງນັ້ນຈະໄດ້ໃຈຜົນພື້ນຖານຂອງສົມຜົນທີ່ໃຫ້ມາແມ່ນ $y_1(x) = e^x$ ແລະ $y_2(x) = e^{4x}$ ແລະ ໃຈຜົນທົ່ວໄປຂອງສົມຜົນຂ້າງເທິງແມ່ນ $y = c_1 e^x + c_2 e^{4x}$

ຕົວຢ່າງ 13: ຈົ່ງຊອກໃຈຜົນສະເພາະຂອງສົມຜົນ $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} - y = 0$, y(0) = 1 ແລະ y'(0) = 0

ເຮົາມີສົມຕົນທີ່ບອກລັກສະນະໃຈຕົນແມ່ນ: $m^2-1=0$

ຊຶ່ງມີໃຈຜົນຂອງສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນແມ່ນ $\mathbf{m_1} = 1$ ແລະ $\mathbf{m_2} = -1$ ດັ່ງນັ້ນຈະໄດ້ໃຈຜົນພື້ນຖານຂອງສົມຜົນທີ່ໃຫ້ມາແມ່ນ $y_1(x) = e^x$ ແລະ $y_2(x) = e^{-x}$ ແລະ ໃຈຜົນທີ່ວໄປຂອງສົມຜົນຂ້າງເທິງແມ່ນ $y = c_1 e^x + c_2 e^{-x}$

ຈາກເງື່ອນໄຂ $y(0) = 1 \Rightarrow c_1 + c_2 = 1$

$$y'(0) = 0 \implies c_1 - c_2 = 0$$

 $\Rightarrow c_1 = c_2 = \frac{1}{2}$

 $Y = \frac{1}{2} e^{x} + \frac{1}{2} e^{-x}$ ແມ່ນໃຈຜົນສະເພາະຂອງສົມຜົນທີ່ໃຫ້ມາ

ຕົວຢ່າງ 14: ຊອກໃຈຜົນທົ່ວໄປຂອງສົມຜົນ $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4 \frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 0$

ເຮົາມີສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນແມ່ນ: $m^2 - 4m + 4 = 0$

ຊຶ່ງມີໃຈຜົນແມ່ນ $\mathbf{m}_{_{1}}=\mathbf{m}_{_{2}}=2$ ດັ່ງນັ້ນຈະໄດ້ໃຈຜົນພື້ນຖານຂອງສົມຜົນທີ່ໃຫ້ມາແມ່ນ

$$y_1(x) = e^{2x}$$
 แລะ $y_2(x) = xe^{2x}$

ແລະ ໃຈຜົນທົ່ວໄປຂອງສົມຜົນຂ້າງເທິງແມ່ນ $y=e^{2x}(c_1+c_2x)$

ຕົວຢ່າງ 15: ຈົ່ງຊອກໃຈຜົນສະເພາະຂອງສົມຜົນ

ເຮົາມີສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນແມ່ນ: $m^2 - 6m + 9 = 0$ = 0

ຊຶ່ງມີໃຈຜົນຂອງສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນແມ່ນ $\mathbf{m}_1 = \mathbf{m}_2 = 3$

ດັ່ງນັ້ນຈະໄດ້ໃຈຜົນພື້ນຖານຂອງສົມຜົນທີ່ໃຫ້ມາແມ່ນ $y_1(x) = e^{3x}$ ແລະ $y_2(x) = xe^{3x}$ ແລະ ໃຈຜົນທີ່ວໄປຂອງສົມຜົນຂ້າງເທິງແມ່ນ $y = c_1 e^{3x} + c_2 x e^{3x}$

ຈາກເງື່ອນໄຂ y(0) = 2 ⇒ c₁e⁰+ c₂0 e⁰ = 2 ⇒ c₁ = 2

$$y'(x) = 3c_1e^{3x} + c_2e^{3x} + 3c_2xe^{3x}$$
 $y'(0) = 3c_1e^0 + c_2e^0 + 3c_20e^0 = 1 \Rightarrow c_2 = -6$
 $y = 2e^{3x} - 6xe^{3x}$ ແມ່ນໃຈຜົນສະເພາະຂອວສົມຜົນທີ່ໃຫ້ມາ

ຕົວຢ່າງ 15: ຊອກໃຈຜົນທົ່ວໄປຂອງສົມຜົນ
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$$

ເຮົາມີສົມຜົນທີ່ບອກລັກສະນະໃຈຜົນແມ່ນ: $\mathbf{m}^2 + \mathbf{m} + \mathbf{1} = \mathbf{0}$

ຊຶ່ງມີໃຈຜົນແມ່ນ $\mathbf{m}_{_{1}}=-rac{1}{2}+rac{\sqrt{3}}{2}\mathbf{i}$ ແລະ $\mathbf{m}_{_{2}}=-rac{1}{2}-rac{\sqrt{3}}{2}\mathbf{i}$ ດັ່ງນັ້ນຈະໄດ້ໃຈຜົນພື້ນຖານຂອງສົມຜົນ

ທີ່ໃຫ້ມາແມ່ນ
$$y_1(x) = e^{-\frac{1}{2}x}\cos\frac{\sqrt{3}}{2}x$$
 ແລະ $y_2(x) = e^{-\frac{1}{2}x}\sin\frac{\sqrt{3}}{2}x$

ແລະ ໃຈຜົນທົ່ວໄປຂອງສົມຜົນຂ້າງເທິງແມ່ນ
$$y = e^{-\frac{1}{2}x}(c_1\cos\frac{\sqrt{3}}{2}x + c_2e^{-\frac{1}{2}x}\sin\frac{\sqrt{3}}{2}x)$$

ບົດຝຶກຫັດ

1. ຈົ່ງແກ້ສົມຜົນຈຸນລະຄະນິດແຍກຕົວປຸ່ງນໄດ້ດັ່ງຕໍ່ໄປນີ້:

$$a. y^2 dx + 2xy dy = 0$$

b.
$$x \frac{dy}{dx} + y = 0$$
 ; $y(1) = 1$

c.
$$\frac{dy}{dx} = \frac{x}{y} ; y(2) = 0$$

2. ຈົ່ງແກ້ສົມຜົນຈຸນລະຄະນິດລີເນແອດັ່ງຕໍ່ໄປນີ້:

a.
$$\frac{dy}{dx} + y = (x+1)^2$$
; $y(0) = 0$

b.
$$\frac{dy}{dx} - 2xy = e^{x^2}$$

$$c. \qquad \frac{dy}{dx} + 4xy = 6x$$

$$d. \qquad \frac{dy}{dx} - (1 + \frac{3}{x})y = x + 2$$

3. ຈົ່ງແກ້ສົມຜົນຈຸນລະຄະນິດເຕັມສ່ວນດັ່ງຕໍ່ໄປນິ້:

a.
$$(4y+8x^2)dy+(16xy-3)dx=0$$

b.
$$(12y+7x+6)dy+(7y+4x-9)dx=0$$

c.
$$(12y^2x^2 + 10y)dy + (8xy^3)dx = 0$$

d.
$$2x^3(y-1)dy + 3x^2(y-1)^2 dx = 0$$

e.
$$8xy \frac{dy}{dx} = -3x^2 - 4y^2$$

f.
$$60xy^2 \frac{dy}{dx} = -12x^3 - 20y^3$$

4. ຈົ່ງແກ້ສົມຜົນຈຸນລະຄະນິດຂັ້ນສອງຕໍ່ໄປນີ້:

a.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$$

b.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = 0 , \quad y(0) = 1 \text{ ase } y'(0) = 5$$

c.
$$\frac{d^2 y}{dx^2} - 6 \frac{dy}{dx} + 9y = 0$$
 d. $\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + y = 0$

e.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$
 f. $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$