

Java Code Readability Study

Lukas Krodinger

Master Thesis Proposal in M.Sc. Computer Science Faculty of Computer Science and Mathematics Chair of Software Engineering II

Matriculation number 89801

Supervisor Prof. Dr. Gordon Fraser

Advisor Lisa Griebl

16th October 2023

1 RESEARCH OBJECTIVE

The survey aims to evaluate the accuracy of with heuristics predicted readability of Java code snippets. We define readability as a subjective impression of the difficulty of code while trying to understand it [4, 1]. The first part of the code snippets are selected from GitHub repositories with assumed high code quality. The second part is generated by Readability Decreasing Heuristics. That is, heuristics are used to manipulate the code snippets of the first part to make them less readable. The survey goal is to verify the following two assumptions:

- 1. **(well-readable-assumption)** The selected repositories contain only well readable code.
- 2. **(poorly-readable-assumption)** After the manipulations, the code is poorly readable.

The survey is conducted by the Chair of Software Engineering II¹ of the University of Passau under the supervision of Lukas Krodinger. Survey participants are selected using Prolific², and conducted online using Tien Duc Nguyen's Code Annotation Tool. This survey summary was prepared following the guidelines of Linåker et al. [3].

2 TARGET POPULATION

The target population is split into two groups:

- (students) Computer science students with Java experience
- (programmers) Java programmers in industry

To be more precise, the target population of the survey is as follows:

Target Audience	Java programmers
Unit of Observation	Java programmers
Unit of Analysis	Java programmers
Search Unit	Selected by Prolific (Programming Languages: Java)
Source of Sampling	Prolific

3 SURVEY

The first part of the survey is devoted to Prolific-specific questions and questionnaire attributes, as described in section 3.5. The second part of the survey

 $^{^1} https://www.fim.uni-passau.de/en/chair-for-software-engineering-ii/\\$

²https://www.prolific.co/

consists of 20 code snippets to be evaluated by the participants. In total, we create 20 unique questionnaires, with each questionnaire being rated by 10 individual participants. Consequently, we generate a dataset of 400 code snippets. The expected expenditure for this survey, involving 200 participants via the Prolific platform, is estimated to be around €500.

3.1 SAMPLE SIZE

To get accurate study results, multiple participants have to rate the same code snippets. We specify a size of ten participants per code snippet, similar to Scalabrino et al. [5]. According to an online calculator³ we end up with a margin of error of 33.99% at a confidence of 95%. This means that we are 95% confident that the actual readability of a code snippet is within 33.99% of the survey result score. With a probability of 5%, the readability of a code snippet differs by more than 33.99% from the score of the survey result. On a Likert scale ranging from 1 to 5, the mean of the survey results is between 1.0 and 5.0. In this context, an offset of 33.99% is an offset of more than one rating point [2]. We need to consider this when evaluating our the gathered data.

3.2 TIME REQUIREMENT

The first part (Prolific-specific questions and questionnaire attributes) takes the participant about one minute. The average time for rating a snippet is estimated with 30 seconds. Thus, rating 20 snippets takes about 10 minutes. The total time for completing one questionnaire is estimated with 11 minutes.

3.3 SAMPLING DESIGN

The survey participants are selected using Prolific. The only restriction for the participants is that they must be familiar with Java.

A big part of our code snippets might be getters and setters. However, we do not want to mostly evaluate getters and setters in our study. Therefore, we use stratified sampling [6]. Thus, code snippets are split into groups with high similarity, so-called strata. When we then randomly sample within the strata, we make sure to not only sample getters and setters.

To create the required stratas we need to measure the similarity of code snippets. Scalabrino et al. developed a tool to generate various metrics for Java source code [5]. We use this tool on each code snippet and create a code vector for each

³https://www.calculator.net/sample-size-calculator.html

snippet. The Euclidean distance between these vectors provides an estimation of source code similarity, which is used to create the strata.

3.4 INTERNAL QUESTIONS

The internal research questions are as follows:

- Does the well-readable-assumption (1) hold?
- Does the poorly-readable-assumption (2) hold?

The results of the questions are equally important, and thus none of them is prioritized over the other.

3.5 QUESTIONNAIRE ATTRIBUTES

The survey neither contains demographic questions nor filter questions. Besides the readability questions, each user is asked the following dependent question: "How would you describe your familiarity with Java?". The user can answer within a five point Likert scale: expert (5), advanced (4), intermediate (3), beginner (2), novice (1).

3.6 SURVEY QUESTIONS

For each code snippet, the following closed-ended question is given: "How do you rate the readability of this code?". The answers follow the Likert Scale: very high (5), high (4), medium (3), low (2), very low (1).

3.7 SURVEY RESULT EVALUATION

Once a survey is completed by a participant, the survey result is evaluated to make sure the participants did not choose answers at random. The code snippet rating answers are checked for plausibility. For example, if a code snippet with expected rating 5 (by the heuristics and/or by other participants) is rated with 2 or less, this is an indication that the participant did not fill out the survey carefully. Several such indications lead to the exclusion of the participant and his answers.

4 SOFTWARE

We use Prolific to pay participants for completing our survey. Our participants fill out the survey using Tien Duc Nguyen's Code Annotation Tool.

5 SURVEY EVALUATION GROUPS

We evaluate the survey construction by presenting it to the following groups:

- Subject-matter experts
- Focus group (discussion with about 7 people)
- Pilot survey group

6 THREADS TO VALIDITY AND RELIABILITY

This section addresses potential threats to the survey's validity and reliability. These threats include:

- 1. **Ill-defined Target Population:** Ensuring a well-defined target population is critical to the survey's quality. To mitigate this threat, we clearly define our target population within this document (see section 2). Additionally, we conduct a pre-survey evaluation (see section 5) to ensure the adequacy of our target population definition. Thereby, we enhance content and construct validity.
- 2. **Sampling Method (Stratified Sampling):** Our chosen sampling method is well-defined and proven in practice. This approach ensures that our sample represents all parts of the population under investigation. This is improving the survey's external validity.
- 3. **Insufficient Responses for Drawing Conclusions:** To prevent drawing conclusions from an insufficient number of responses, we scale our survey to an appropriate size. This guarantees that we collect a substantial volume of responses, allowing for robust statistical analysis.

7 SCHEDULE

You can find the survey schedule in table 1.

Task	Timeline (finished latest)
Survey concept proposal	October 2023
Presentation to survey evaluation groups	November 2024
Survey conduction	December 2023
Evaluation of results	January 2024

Table 1: Survey Timeline

8 EXPECTED RESULTS

We expect that the averaged ratings of the selected code snippets matches the predicted code readability to a certain extent. We do not expect an exact match. We measure this extent by applying the mean as a measure of central tendency and standard deviation as a measure of variability, as proposed by Linåker et al. [3]. We make those measurements with respect to stratified sampling. Our null hypothesis is, that both assumptions (assumption 1 and 2) hold, i.e., that the expected readability does not deviate too much from the mean of the survey participants. After conduction, we visualize our results by generating car charts. We also provide a visualization that summarizes the mean deviations of participants' ratings from expected readability for all snippets.

Bibliography

- [1] Raymond PL Buse and Westley R Weimer. 'Learning a metric for code readability'. In: *IEEE Transactions on software engineering* 36.4 (2009), pp. 546–558.
- [2] Rensis Likert. 'A technique for the measurement of attitudes.' In: *Archives of psychology* (1932).
- [3] Johan Linåker et al. 'Guidelines for Conducting Surveys in Software Engineering'. In: (May 2015).
- [4] Daryl Posnett, Abram Hindle and Premkumar Devanbu. 'A simpler model of software readability'. In: *Proceedings of the 8th working conference on mining software repositories*. 2011, pp. 73–82.
- [5] Simone Scalabrino et al. 'Improving code readability models with textual features'. In: 2016 IEEE 24th International Conference on Program Comprehension (ICPC). IEEE. 2016, pp. 1–10.
- [6] Steven K Thompson. Sampling. Vol. 755. John Wiley & Sons, 2012, pp. 141– 156.