

balanced anaesthesia

- 3 different drugs
 - hypnotic
 - · eg isoflurane
 - analgesic
 - eg morphine
 - neuromuscular blocker
 - · eg atracurium
- large doses of 1 drug
 - eg isoflurane

anaesthetic mechanisms

- GABAAR potentiation
- glycine R potentiation
- nAChR blockade
- NMDA R blockade
- 5HT₃ R blockade
- · Ca channel blockade
- Na channel blockade

typical anaesthetic

- premed
 - sedative and analgesic
- induction
 - injection anaesthetic
- maintenance
 - inhalation anaesthetic & oxygen
 - muscle relaxant?
- recovery
 - analgesic

sedative drugs

- a2 agonists
 - a2 adrenergic R
- phenothiazines
 - D2 R, H, a1 & most others (antagonist)
- benzodiazepines
 - GABAA R (agonist)
- butyrophenones
 - D2 R (antagonist)

phenothiazine effects

- sedation
- antiemetic
- vasodilatation
- · antimuscarinic
- antihistamine
- lowers temperature
- extrapyramidal stimulation
- analgesic / hyperalgesic

sedatives

- chose the sedative protocol for each individual animal
- acepromazine produces mild sedation with cardiovascular depression
- diazepam is unreliable on its own but safe
- α2 agonists used in large animals but cause cardiovascular depression and vomiting in dogs & cats
- combinations of a sedative with an opioid give deeper sedation
- deeply sedated animals need to be monitored as for general anaesthesia