TFE4152 Design of Integrated Circuits

Project Presentation

September 2019

Project Description

- Design of circuits for a four pixel digital camera.
 - Pixel circuit, readout and control circuit
- The pixel circuit and pixel array are analog circuits
 - Light to voltage conversion before analog-to-digital conversion
 - Transistor level design
 - Simulate and verify using AIM-Spice
- The readout control circuit is a digital circuit
 - Controls the operation of the camera.
 - Describe the design using Verilog.
 - Simulate and verify using Active-HDL

The Pixel Circuit

- The circuit topology is given in the specification.
- Your task is to size the components within the constraints given in the specification.
- You will use a 180nm technology
- AIM-Spice is used for circuit simulation.

The Pixel Circuit

The Pixel Array

- The pixel circuit will be put into an array
 - Containing 4 pixels
- Two and two pixels share an ADC and an active load.
- The read out of the pixel values are sequenced by a digital circuit that you design.
- In this project we do not design the ADC, and we do not have to think about what happens after the ADC.

The Pixel Array

Analog Design

- Before you start, read the specification carefully.
- Make sure you understand what all the components in the circuit do
 - Switches, amplifier, active load, how light is converted to a voltage
- Partition your circuit into smaller parts and test individually
- Combine the part when they work as expected to simulate the whole circuit.

- Design and describe using HDL (Hardware Description Language)
 - Verilog
- You will use the program Active-HDL to simulate you designs.

- Controls the camera
 - Setting and control of the exposure time
 - Control readout of the ADCs
- The readout and control circuit interface is given by the specification.
 - you design the circuit using this interface
- Timing is important
 - Controls the camera
- Timing is given in the specification

Digital Design

- Read the specification carefully.
- Partition you design into smaller functional parts and test them individually.
- When all parts have been tested, combine them to simulate and verify the whole circuit.
- You are going to hand in your Verilog code, so be sure to follow the interface naming.
 - Only the design is to be handed in, not the testbenches.
 - All code should still be included in the report as described in the project description.

What are you going to hand in

- You are going to write a technical report
 - There is a description of what is expected in the project description
- You are going to hand in your Verilog design
 - This is the design only, and not the testbench
 - This is your Verilog source files
 - Do not worry about the paths in include statements in the code you hand in, just make sure you hand in every thing that makes up the design.

Important Information

- Two members per group
 - Form a group and send me your names
 - aslak.holen@ntnu.no, subject: TFE4152
 - If you can not find a group, contact me.
- The report counts 30% of the total grade
- Deadline: November 18 before 15:00
- A detailed description of the project and other resources will be uploaded to Blackboard.

Additional tips

- Read the project description carefully!
- Start early!
- Use the exercise hours
 - Thursdays 08:15 10:00