CS2040S Data Structures and Algorithms

(e-learning edition)

Welcome!

Announcements

Lectures are now available via video (only).

Tutorials and Recitations continue in person.

Watch the lecture before recitation!

Plan of the Day

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Dictionary Interface

A collection of (key, value) pairs:

interface	IDictionar	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
Key	successor(Key k)	find next key > k
Key	predecessor(Key k)	find next key < k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Dictionary

Implementation

Option 1: Sorted array

- insert: add to middle of array --- O(n)
- search: binary search through array --- O(log n)

Option 2: Linked list

- insert: add to middle of array --- O(n)
- search : no binary search in array --- O(n)

Dictionary Implementation

Possible Choices:

- Implement using an array (see: java.util.ArrayList).
- Implement using an array (see: java.util.Vector).
- Implement using a queue.
- Implement using a LinkedList
- ...
- Implement using a tree.

Dictionary

Implementation idea: Tree

Terminology

Terminology

Recursive Definition right sub-tree 23 left sub-tree

A binary tree is either:

- (a) empty
- (b) a node pointing to two binary trees

Java??

```
public class BinaryTree {
      private BinaryTree leftTree;
      private BinaryTree rightTree;
      private KeyType key;
      private ValueType value;
       // Remainder of binary tree implementation
```

Binary Search Trees (BST)

BST Property:

all in left sub-tree < key < all in right sub-right

- 1. Yes
- 2. No
- 3. I don't know.

- ✓ 1. Yes
 - 2. No
 - 3. I don't know.

- 1. Yes
- 2. No
- 3. I don't know.

- 1. Yes
- **✓**2. No
 - 3. I don't know.

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - search, insert
 - searchMin, searchMax
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Height:

Number of edges on longest path from root to leaf.

Calculating the heights

check for null

```
public int height() {
      int leftHeight = -1;
       int rightHeight = -1;
       if (m leftTree != null)
             leftHeight = m leftTree.height();
       if (m rightTree != null)
             rightHeight = m rightTree.height();
       return max(leftHeight, rightHeight) + 1;
```

max of subtrees

The height of this tree is?

- 1. 2
- 2. 4
- 3. 5
- 4. 6
- 5. 7
- 6. 42

The height of this tree is?

- 1. 2
- 2. 4
- **√**3. 5
 - 4. 6
 - 5. 7
 - 6. 42

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Search for the maximum key:

Search for the maximum key:

Search for maximum key

Searching for the maximum key

```
public BinaryTree searchMax() {
    if (rightTree != null) {
        return rightTree.searchMax();
    }
    else return this; // Key is here!
}
```

searchMax()

searchMax()

searchMax()

searchMax()

Search for the minimum key:

Binary Tree

Searching for the minimum key

```
public BinaryTree searchMin() {
    if (m_leftTree != null) {
        return leftTree.searchMin();
    }
    else return this; // Key is here!
}
```

searchMin()

searchMin()

searchMin()

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Search for a key:

Search for a key: 25 < 41

Search for a key:

Binary Tree

Inserting a new key

```
public BinaryTree search(KeyType queryKey) {
       if (queryKey.compareTo(key) < 0) {</pre>
              if (leftTree != null)
                     return leftTree.search(key);
              else return null;
       else if (queryKey.compareTo(key) > 0) {
              if (rightTree != null)
                     return rightTree.search(key);
              else return null:
       else return this; // Key is here!
```


- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Inserting a new key:

25 < 41

Inserting a new key:

Inserting a new key:

Binary Tree

Inserting a new key

```
public void insert(Key insKey) {
       if (insKey.compareTo(key) < 0) {
             if (leftTree != null)
                    leftTree.insert(insKey);
             else leftTree = new BinaryTree(insKey);
      else if (insKey.compareTo(key) > 0) {
             if (rightTree != null)
                    rightTree.insert(insKey);
             else rightTree = new BinaryTree(insKey);
      else return; // Key is already in the tree!
```


What is the worst-case running time of search in a BST?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. $O(n^3)$
- 6. $O(2^n)$

What is the worst-case running time of search in a BST?

- 1. O(1)
- 2. O(log n)
- **✓**3. O(n)
 - 4. $O(n^2)$
 - 5. $O(n^3)$
 - 6. $O(2^n)$

search(72) : O(h)

search(72) : O(h)

Trees come in many shapes

What determines shape?

What was the order of insertion?

- 2. 20, 11, 41, 29, 65
- 3. 11, 20, 41, 29, 65
- 4. 65, 41, 29, 20, 11
- 5. Impossible to tell.

What was the order of insertion?

- **✓** 2. 20, 11, 41, 29, 65
 - 3. 11, 20, 41, 29, 65
 - 4. 65, 41, 29, 20, 11
 - 5. Impossible to tell.

What determines shape?

- Order of insertion
- Does each order yield a unique shape?

What determines shape?

- Order of insertion
- Does each order yield a unique shape? NO
 - # ways to order insertions: n!
 - − # shapes of a binary tree? ~4ⁿ

Catalan Numbers

Catalan Numbers

 $C_n = \#$ of trees with (n+1) leaves

C_n = # expressions with n pairs of matched parentheses

((())) ()(()) (()()) (()())

Why are these the same?

Trees come in many shapes

Tree Shape

Trees come in many shapes

- same keys ≠ same shape
- performance depends on shape
- insert keys in a random order ⇒ balanced

Binary Search Trees

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

11 20 29 32 41 50 65 72 91 99


```
public void in-order-traversal() {
       // Traverse left sub-tree
       if (leftTree != null)
               leftTree.in-order-traversal();
       visit(this);
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
```

How long does an in-order-traversal take?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. O(n log n)
- 5. $O(n^2)$
- 6. $O(2^n)$

How long does an in-order-traversal take?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
 - 4. O(n log n)
 - 5. $O(n^2)$
 - 6. $O(2^n)$

in-order-traversal(v)

```
public void in-order-traversal() {
       // Traverse left sub-tree
       if (leftTree != null)
               leftTree.in-order-traversal();
       visit(this);
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
```

Running time: O(n)

visits each node at most once

in-order-traversal(v)

- left-subtree
- SELF
- right-subtree

pre-order-traversal(v)

- SELF
- left-subtree
- right-subtree

post-order-traversal(v)

- left-subtree
- right-subtree
- SELF

pre-order-traversal(v)

```
public void pre-order-traversal() {
      visit(this);
       // Traverse left sub-tree
       if (leftTree != null)
               leftTree.in-order-traversal();
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
```


41 20

41 20 11

41 20 11

41 20 11 29

41 20 11 29 32 65 50 91 72 99

post-order-traversal(v)

```
public void post-order-traversal() {
       // Traverse left sub-tree
       if (leftTree != null)
               leftTree.in-order-traversal();
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
      visit(this);
```


11 32 29 20 50 72 99 91 65 41

41 20 65

41 20 65 11 29 50 91

41 20 65 11 29 50 91 32 72 99

Several varieties:

- pre-order
- in-order
- post-order
- level-order

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Airport Scheduling

Dictionary

How do we implement this?

Key 42 is not in the tree

Key 42 is not in the tree

Key 33 is not in the tree

Basic strategy: successor(key)

1. Search for key in the tree.

2. If (result > key), then return result.

3. If (result <= key), then search for successor of result.

Key 33 is not in the tree

Case 1: node has a right child.

Case 2: node has no right child.

Case 2: node has no right child.

Case 2: node has no right child.

Case 2: node has no right child.

Find the next TreeNode:

```
public TreeNode successor() {
       if (rightTree != null)
             return rightTree.searchMin();
      TreeNode parent = parentTree;
      TreeNode child = this;
      while ((parent != null) && (child = parent.rightTree))
             child = parent;
             parent = child.parentTree;
       return parent;
```

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

delete(v)

delete(50)

delete(50)

delete(29)

delete(29)

delete(29)

delete(65)

Case 3: 2 children

41

Claim: successor of deleted node has at most 1 child!

Proof:

- DeletedNode has two children.
- DeletedNode has a right child.
- successor() = right.findMin()
- · min element has no left child.

delete(v)

Running time: O(h)

Three cases:

- 1. No children:
 - remove v
- 2. 1 child:
 - remove v
 - connect child(v) to parent(v)
- 3. 2 children
 - x = successor(v)
 - delete(x)
 - remove v
 - connect x to left(v), right(v), parent(v)

Modifying Operations

- insert: O(h)
- delete: O(h)

Query Operations:

- search: O(h)
- predecessor, successor: O(h)
- findMax, findMin: O(h)
- in-order-traversal: O(n)

Plan of the Day

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations