

Linear Algebra (MT-1004)

Lecture # 09 & 10

Reflection Operators:

Some of the most basic matrix operators on \mathbb{R}^2 and \mathbb{R}^3 are those that map each point into its symmetric image about a fixed line or a fixed plane that contains the origin; these are called reflection operators

Operator	Illustration	Images of e_1 and e_2	Standard Matrix
Reflection about the <i>x</i> -axis $T(x,y) = (x, -y)$	$T(\mathbf{x})$ (x, y) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the <i>y</i> -axis T(x,y) = (-x,y)	(-x, y) (x, y) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x,y) = (y,x)	y = x (x, y) x	$T(\mathbf{e}_1) = T(1,0) = (0,1)$ $T(\mathbf{e}_2) = T(0,1) = (1,0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Operator	Illustration	Images of e_1, e_2, e_3	Standard Matrix
Reflection about the <i>xy</i> -plane T(x, y, z) = (x, y, -z)	x (x, y, z) $(x, y, -z)$	$T(\mathbf{e}_1) = T(1,0,0) = (1,0,0)$ $T(\mathbf{e}_2) = T(0,1,0) = (0,1,0)$ $T(\mathbf{e}_3) = T(0,0,1) = (0,0,-1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane T(x, y, z) = (x, -y, z)	(x, -y, z) $T(x)$ x y	$T(\mathbf{e}_1) = T(1,0,0) = (1,0,0)$ $T(\mathbf{e}_2) = T(0,1,0) = (0,-1,0)$ $T(\mathbf{e}_3) = T(0,0,1) = (0,0,1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane T(x, y, z) = (-x, y, z)	$T(\mathbf{x})$ $(-x, y, z)$ (x, y, z) y	$T(\mathbf{e}_1) = T(1,0,0) = (-1,0,0)$ $T(\mathbf{e}_2) = T(0,1,0) = (0,1,0)$ $T(\mathbf{e}_3) = T(0,0,1) = (0,0,1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

TABLE 1 Reflections

Transformation	Image of the Unit Square	Standard Matrix
Reflection through the x_1 -axis		$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$
Reflection through the x_2 -axis		$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection through the line $x_2 = x_1$	$\begin{bmatrix} x_2 \\ x_2 = x_1 \end{bmatrix}$	$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$

Projection Operators:

Matrix operators on \mathbb{R}^2 and \mathbb{R}^3 that map each point into its orthogonal projection onto a fixed line or plane through the origin are called projection operators (or more precisely, orthogonal projection operators)

Operator	Illustration	Images of e1 and e2	Standard Matrix
Orthogonal projection onto the <i>x</i> -axis	(x,y)	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
T(x,y)=(x,0)	$T(\mathbf{x})$ $(x,0)$ x	$\Gamma(\mathbf{c}_2) = \Gamma(0,1) = (0,0)$	[o o]
Orthogonal projection onto the y-axis	(0,y) (x,y)	$T(\mathbf{e}_1) = T(1,0) = (0,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	
T(x,y)=(0,y)	T(x) x	$I(\mathbf{e}_2) = I(0,1) = (0,1)$	[0 1]

Operator	Illustration	Images of e_1, e_2, e_3	Standard Matrix
Orthogonal projection onto the xy-plane T(x, y, z) = (x, y, 0)	x (x, y, z) y $(x, y, 0)$	$T(\mathbf{e}_1) = T(1,0,0) = (1,0,0)$ $T(\mathbf{e}_2) = T(0,1,0) = (0,1,0)$ $T(\mathbf{e}_3) = T(0,0,1) = (0,0,0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz -plane T(x, y, z) = (x, 0, z)	(x, 0, z) $T(x)$ x (x, y, z) y	$T(\mathbf{e}_1) = T(1,0,0) = (1,0,0)$ $T(\mathbf{e}_2) = T(0,1,0) = (0,0,0)$ $T(\mathbf{e}_3) = T(0,0,1) = (0,0,1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz-plane T(x,y,z) = (0,y,z)	$T(\mathbf{x})$ $(0, y, z)$ (x, y, z) $(0, y, z)$	$T(\mathbf{e}_1) = T(1,0,0) = (0,0,0)$ $T(\mathbf{e}_2) = T(0,1,0) = (0,1,0)$ $T(\mathbf{e}_3) = T(0,0,1) = (0,0,1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Rotation Operators:

Matrix operators on R^2 that move points along arcs of circles centered at the origin are called rotation operators

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

TABLE 5

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	(w_1, w_2) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

In the plane, counterclockwise angles are positive and clockwise angles are negative. The rotation matrix for a *clockwise* rotation of $-\theta$ radians can be obtained by replacing θ by $-\theta$ in (19). After simplification this yields

$$R_{-\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Some Extra Example of Transformation (not included in Ex # 1.8)

TABLE 3 Shears

k < 0

0

Vertical shear

Task for Students As per Course outline: Do (Q.1 till 24 & 27 till 41 from Ex # 1.8)

Compositions of Matrix Transformations

Simply stated, the "composition" of matrix transformations is the process of first applying a matrix transformation to a vector and then applying another matrix transformation to the image vector. For example, suppose that T_A is a matrix transformation from R^n to R^k and T_B is a matrix transformation from R^k to R^m . If \mathbf{x} is a vector in R^n , then T_A maps this vector into a vector $T_A(\mathbf{x})$ in R^k , and T_B , in turn, maps that vector into the vector $T_B(T_A(\mathbf{x}))$ in R^m . This process creates a transformation directly from R^n to R^m that we call the **composition of** T_B with T_A and which we denote by the symbol

$$T_B \circ T_A$$

which is read " T_B circle T_A ." As illustrated in **Figure 1.9.1**, the transformation T_A in the formula is performed first; that is,

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x})) \tag{1}$$

Theorem 1.9.1

If $T_A: R^n \to R^k$ and $T_B: R^k \to R^m$ are matrix transformations, then $T_B \circ T_A$ is also a matrix transformation and

$$T_B \circ T_A = T_{BA} \tag{2}$$

EXAMPLE 1 | The Standard Matrix for a Composition

Let $T_1: \mathbb{R}^3 \to \mathbb{R}^2$ and $T_2: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformations given by

$$T_1(x, y, z) = (x + 2y, x + 2z - y)$$

and

$$T_2(x,y) = (3x + y, x, x - 2y)$$

Find the standard matrices for $T_2 \circ T_1$ and $T_1 \circ T_2$.

Solution The standard basis vectors for \mathbb{R}^3 are $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$ From which it follows that

$$T_1(\mathbf{e}_1) = (1, 1), \quad T_1(\mathbf{e}_2) = (2, -1) \quad \text{and} \quad T_1(\mathbf{e}_3) = (0, 2)$$

Thus

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix}$$

is the standard matrix for T_1 . Similarly, the standard basis vectors for \mathbb{R}^2 are $\mathbf{e}_1=(1,0)$ and $\mathbf{e}_2=(0,1)$, so

$$T_2(\mathbf{e}_1) = (3, 1, 1)$$
 and $T_2(\mathbf{e}_2) = (1, 0, 2)$

Thus

$$B = \begin{bmatrix} 3 & 1 \\ 1 & 0 \\ 1 & -2 \end{bmatrix}$$

is the standard matrix for T_2 . Applying equation (3), the standard matrix for $T_2 \circ T_1$ is

$$BA = \begin{bmatrix} 3 & 1 \\ 1 & 0 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 5 & 2 \\ 1 & 2 & 0 \\ -1 & 4 & -4 \end{bmatrix}$$

and the standard matrix for $T_1 \circ T_2$ is

$$AB = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 0 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 4 & -3 \end{bmatrix}$$