Комбинаторни конфигурации

Вариация

Вариация без повторение на n елемента от k-ти клас V_n^k (k < n) се нарича такова съединение, което съдържа по k различни елемента от дадените n и те се различават едно от друго или по елементите, или по реда на елементите.

$$V_n^k = n. (n-1). (n-2). \cdots. (n-k-1), 0 \le k \le n$$

Вариация без повторение при която k = n е частен случай. Нарича се още **пермутация**.

$$V_n^k = P_n = n ! = n. (n-1). (n-2). \cdots 3.2.1$$

Вариация с повторение (с наредба) от на n елемента от k-ти клас V_n^k (k < n) се нарича наредена k - торка елементи от n , която всеки елемент може да участва само веднъж т.е. елементите са различни.

$$V_n^k = n^k$$

Пермутация

<u>Пермутация</u> P_n на n елемента е всяка тяхна вариация от n -ти клас т.е всяка тяхна подредба.

Пермутациите от n елемента са наредени n — торки, които са съставени от всички елементи на множеството и се различават само по наредбата на елементите в тях.

$$P_n = n ! = n. (n-1). (n-2). \cdots 3.2.1$$

Пермутация без повторение наричаме конфигурация от n - елементно множество, от което трябва да изберем всичките n елемента, като редът е от значение. Броят на конфигурациите е n! (ен факториел) и има стойност

$$n ! = n. (n-1). (n-2). \cdots 3.2.1$$

$$P_n = n ! = n. (n-1). (n-2). \cdots 3.2.1$$

Пермутация от n неразличими елемента $\{a_1, a_2, ..., a_n\}$ от k вида c повторение е всяка тяхна наредба, където a_i се среща n_i пъти за всяко i=1,k.

$$P_n (n_1, n_2, ..., n_k) = n! / n_1! ... n_k!$$

Пермутация с повторение наричаме съединение на n - елемента от n - елементно множество, като редът е от значение, при което някои елементи от множеството могат да се повтарят в съединението. Броят на всичките конфигурации е \mathbf{n}^n .

$$P_n = n^n$$

Комбинация

Комбинация без повторение от k-ти клас C_n^k се нарича наредена k- торка от елементи, в която всеки един елемент може да участва точно веднъж (елементите са различни).

Комбинация без повторение е ненаредена извадка т.е редът на елементите е без значение. Две комбинации са еднакви, ако се състоят от едни и същи елементи или се състоят от равен брой елемети. Например, комбинациите (2,4,7,9) и (7,4,9,2) са еднакви, както и комбинациите (1,2,2,1), (2,2,1,1) и (2,1,1,2). Последните комбинации са от 4 — ти клас на елементите на множеството $A=\{1,2\}$.

Броят на всички комбинации без повторение на \mathbf{n} – елемента от \mathbf{k} -ти клас се определя по формулата:

$$C_n^k = n ! /k! . (n-k) != V_n^k/k!$$

Комбинация с повторение от k-ти клас C_n^k се нарича наредена k- торка от незадължително различни елементи. Броят на комбинациите се определя по следната формула:

$$C_n^k = (n+k-1)!/k!.(n-1)!=n.(n+1)...(n+k-1)/k!$$

n!/k!. (n-k)! - се нарича още биномен коефициент.

Примери за приложение на комбинаторните конфигурации

1.
$$V_{18}^4 = \text{n.(n-1).(n-2).(n-3)} = 18.17.16.15 = 73440$$

2.
$$V_{16}^4 = 4^{16} = 4294967296$$

4. 11 броя, 5 вида (2 ч., 3 з., 4 с., 1 б., 1 черно)

5. 7 момчета и 5 момичета Отбори 6 участника (4 момчета и 2 момичета)

$$C_7^4$$
. C_5^2 = n!/k!. (n-k)!=(7!/4!.3!). (5!/2!.3!)=350 - броя на възможните комбинации