PRML の 9 章の数式の補足

サイボウズ・ラボ 光成滋生

2011年7月22日

1 概要

この文章は『パターン認識と機械学習』(以下 PRML) の 9 章の式変形を一部埋めたものです。間違い、質問などございましたら herumi@nifty.com または twitterID:herumi までご連絡ください。面倒なので特に紛らわしいと思わない限り x を x と書いたりします。また対数尤度関数を F と書くことが多いです。

2 復習

よく使ういくつかの式を書いておく、どれも今までに既に示したものである.

https://github.com/herumi/prml/raw/master/prml2.pdf,

https://github.com/herumi/prml/raw/master/prml3.pdf を参照.

2.1 行列の公式

$$\begin{split} x^{T}Ax &= \operatorname{tr}(Axx^{T}), \\ \frac{\partial}{\partial A}\log|A| &= (A^{-1})^{T}, \\ \frac{\partial}{\partial x}\log|A| &= \operatorname{tr}(A^{-1}\frac{\partial}{\partial x}A), \\ \frac{\partial}{\partial A}\operatorname{tr}(A^{-1}B) &= -(A^{-1}BA^{-1})^{T}. \end{split}$$

2.2 微分

関数 f に対して対数関数の微分は

$$(\log f)' = \frac{f'}{f}.$$

よって逆に

$$f' = f \cdot (\log f)'.$$

ガウス分布など対数の微分が分かりやすいときによく使う.

2.3 ガウス分布

$$\mathcal{N} = \mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} |\Sigma|^{-1/2} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)).$$

期待値と分散について

$$\begin{split} E[x] &= \mu, \\ \cos[x] &= \Sigma, \\ E[xx^T] &= \mu \mu^T + \Sigma, \\ E[x^Tx] &= \mu^T \mu + \operatorname{tr}(\Sigma). \end{split}$$

3 混合ガウス分布

離散的な潜在変数を用いた混合ガウス分布の定式化. K 次元 2 値確率変数 z を考える(どれか一つの成分のみが 1 であとは 0) . つまり

$$\sum_{k} z_k = 1.$$

z の種類は K 個である. $0 \le \pi_k \le 1$ という係数を用いて

$$p(z_k = 1) = \pi_k$$

という確率分布を与える.

$$p(z) = \prod_{k} \pi_{k}^{z_{k}}.$$

$$p(x|z_{k} = 1) = \mathcal{N}(x|\mu_{k}, \Sigma_{k})$$

なので

$$P(x|z) = \prod_{k} \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}.$$

これらを合わせて

$$\begin{split} p(x) &= \sum_z p(z) p(x|z) \\ &= \sum_z \prod_k (\pi_k \mathcal{N}(x|\mu_k, \Sigma_k))^{z_k} \\ &z_k \text{ はどれかーつのみが } 1 \text{ (そのとき } \pi_k \text{) であとは } 0 \text{ なので} \\ &= \sum_k \pi_k \mathcal{N}(x|\mu_k, \Sigma_k). \end{split}$$

x が与えられたときの z の条件付き確率 $p(z_k=1|x)$ を $\gamma(z_k)$ とする.

$$\gamma(z_k) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_j p(z_j = 1)p(x|z_j = 1)} = \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)}.$$

これを混合要素 k が観測値 x に対する負担率という.

4 混合ガウス分布の EM アルゴリズム

混合ガウス分布において観測したデータ集合を $X^T=\{x_1,\ldots,x_N\},$ 対応する潜在変数を $Z^T=\{z_1,\ldots,z_N\}$ とする. X は $N\times D$ 行列で Z は $N\times K$ 行列.

対数尤度関数の最大点の条件をもとめる.

$$F = \log p(X|\boldsymbol{\pi}, \mu, \Sigma) = \sum_{n=1}^{N} \log(\sum_{j=1}^{K} \pi_{j} \mathcal{N}(x_{n}|\mu_{j}, \Sigma_{j}))$$

とする.

$$\frac{\partial}{\partial \mu} \log \mathcal{N}(x|\mu, \Sigma) = \frac{\partial}{\partial \mu} (-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)) = \Sigma^{-1} (x - \mu)$$

より

$$\frac{\partial}{\partial \mu} \mathcal{N} = \mathcal{N} \cdot (\frac{\partial}{\partial \mu} \log \mathcal{N}) = \mathcal{N} \cdot \Sigma^{-1}(x - \mu).$$

 $\mathcal{N}_{nk} = \mathcal{N}(x_n | \mu_k, \Sigma_k)$ とおいて

$$\frac{\partial}{\partial \mu_k} F = \sum_n \frac{\pi_k \frac{\partial}{\partial \mu_k} \mathcal{N}_{nk}}{\sum_j \pi_j \mathcal{N}_{nj}}$$

$$= \sum_n \left(\frac{\pi_k \mathcal{N}_{nk}}{\sum_j \pi_j \mathcal{N}_{nj}}\right) \frac{\partial}{\partial \mu_k} \log \mathcal{N}_{nk}$$

$$= \sum_n \gamma(z_{nk}) \frac{\partial}{\partial \mu_k} \log \mathcal{N}_{nk}$$

$$= \sum_k \gamma(z_{nk}) \left(\sum_j \gamma(z_{nk})(x_n - \mu_k)\right) = 0.$$

よって

$$\sum_{n} \gamma(z_{nk}) x_n - (\sum_{n} \gamma(z_{nk})) \mu_k = 0.$$

$$N_k = \sum_{n} \gamma(z_{nk})$$

とおくと

$$\mu_k = \frac{1}{N_k} \sum_n \gamma(z_{nk}) x_n.$$

これは μ_k が X の重みつき平均であることを示している.

次に Σ_k に関する微分を考える.

$$\mathcal{N} = \mathcal{N}(x|\mu, \Sigma)$$

のとき

$$\log \mathcal{N} = -\frac{D}{2} \log(2\pi) - \frac{1}{2} \log|\Sigma| - \frac{1}{2} \operatorname{tr}(\Sigma^{-1}(x - \mu)(x - \mu)^{T})$$

なので $\Sigma^T = \Sigma$ ならば

$$\frac{\partial}{\partial \Sigma}(\log \mathcal{N}) = -\frac{1}{2}(\Sigma^{-1}) + \frac{1}{2}(\Sigma^{-1}(x-\mu)(x-\mu)^T \Sigma^{-1}).$$

よって μ_k の微分と同様にして

$$\begin{split} \frac{\partial}{\partial \Sigma_k} F &= \sum_n \gamma(z_{nk}) \frac{\partial}{\partial \Sigma_k} \log \mathcal{N}_{nk} \\ &= \sum_n \gamma(z_{nk}) \left(-\frac{1}{2} (\Sigma_k^{-1}) + \frac{1}{2} (\Sigma_k^{-1} (x_n - \mu_k) (x_n - \mu_k)^T \Sigma_k^{-1}) \right) = 0. \end{split}$$

よって

$$\sum_{n} \gamma(z_{nk}) (I - (x_n - \mu_k)(x_n - \mu_k)^T \Sigma_k^{-1}) = 0.$$

$$\Sigma_k = \frac{1}{N_k} \sum_n \gamma(z_{nk}) (x_n - \mu_k) (x_n - \mu_k)^T.$$

最後に π_k に関する微分を考える. $\sum_k \pi_k = 1$ の制約を入れる.

$$G = F + \lambda(\sum_{k} \pi_k - 1)$$

とすると

$$\frac{\partial}{\partial \pi_k} G = \sum_n \frac{\mathcal{N}_{nk}}{\sum_j \pi_j \mathcal{N}_{nj}} + \lambda = \sum_n \gamma(z_{nk}) / \pi_k + \lambda = N_k / \pi_k + \lambda = 0.$$

つまり

$$N_k = -\lambda \pi_k$$
.

よって

$$N = \sum_k N_k = \sum_k (-\lambda \pi_k) = -\lambda.$$

よって

$$\pi_k = \frac{N_k}{-\lambda} = \frac{N_k}{N}.$$

5 混合ガウス分布再訪

$$p(z) = \prod_k \pi_k^{z_k},$$

$$p(x|z) = \prod_k \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}$$

より

$$F = \log p(X, Z | \mu, \Sigma, \boldsymbol{\pi}) = \log(\prod_{n,k} \pi_k^{z_{nk}} \mathcal{N}(x_n | \mu_k, \Sigma_k)^{z_{nk}})$$
$$= \sum_{n,k} z_{nk} (\log \pi_k + \log \mathcal{N}_{nk}).$$

 z_n は $(0,0,\dots,1,0,\dots,0)$ の形で $\sum_k \pi_k = 1$ の制約条件を入れると上式の微分を考えると

$$G = F + \lambda (\sum_{k} \pi_k - 1)$$

$$\frac{\partial}{\partial \pi_k} G = \sum_n z_{nk} \frac{1}{\pi_k} + \lambda = (\sum_n z_{nk}) / \pi_k + \lambda = 0.$$

よって

$$\pi_k = -\frac{1}{\lambda} \sum_n z_{nk}.$$

$$\sum_{k} \pi_k = -\frac{1}{\lambda} \sum_{n,k} z_{nk} = -\frac{N}{\lambda} = 1.$$

よって $\lambda = -N$. つまり

$$\pi_k = \frac{1}{N} \sum_{n} z_{nk}.$$

完全データ集合についての対数尤度関数の最大化は解けるが、潜在変数が分からない場合の不完全データに関する対数尤度関数の最大化は困難.この場合は潜在変数の事後分布に関する完全データ尤度関数の期待値を考える.

$$p(Z|X,\mu,\Sigma,\boldsymbol{\pi}) = \frac{p(X,Z|\mu,\Sigma,\pi)}{p(X|\mu,\Sigma,\boldsymbol{\pi})} \propto \prod_{n,k} (\pi_k \mathcal{N}_{nk})^{z_{nk}}.$$

$$E[z_{nk}] = \frac{\sum_{z_n} z_{nk} \prod_j (\pi_j \mathcal{N}_{nj})^{z_{nj}}}{\sum_{z_n} \prod_j (\pi_j \mathcal{N}_{nj})^{z_{nj}}} = \frac{\pi_k \mathcal{N}_{nk}}{\sum_j \pi_j \mathcal{N}_{nj}} = \gamma(z_{nk}).$$

よって

$$F = E_Z[\log p(X, Z | \mu, \Sigma, \boldsymbol{\pi})] = \sum_{n,k} \gamma(z_{nk})(\log \pi_k + \log \mathcal{N}_{nk}).$$

まずパラメータ $\mu,\,\Sigma,\,\pi$ を適当に決めて負担率 $\gamma(z_{nk})$ を求め、それを fix して $\mu_k,\,\Sigma_k,\,\pi_k$ について F を最大化、今までと同様にできる、 $F'=F+\lambda(\sum_k\pi_k-1)$ として

$$\frac{\partial}{\partial \pi_k} F' = \sum_{n} \gamma(z_{nk})(1/\pi_k) + \lambda = 0$$

より

$$\sum_{n} \gamma(z_{nk}) = \lambda \pi_k.$$

$$\sum_{n,k} \gamma(z_{nk}) = -\lambda(\sum_k \pi_k) = -\lambda = N$$

より

$$\pi_k = \frac{1}{N} \sum_{n} \gamma(z_{nk}) = \frac{N_k}{N}.$$

$$\frac{\partial}{\partial \mu_k} F = \sum_n \gamma(z_{nk}) (-\Sigma_k^{-1} (x_n - \mu_k)) = \Sigma_k^{-1} (\sum_n \gamma(z_{nk}) x_n - (\sum_n \gamma(z_{nk})) \mu_k) = 0.$$

よって

$$\mu_k = \frac{1}{N_k} \sum_{n} \gamma(z_{nk}) x_n.$$

$$\frac{\partial}{\partial \Sigma_k} F = \sum_n \gamma(z_{nk}) \frac{\partial}{\partial \Sigma_k} \log \mathcal{N}_{nk} = 0$$

として同様(流石に略).

6 K-means との関連

式 (9.43) は不正確. E ではなく ϵE を考えないと (9.43) の右辺にはならない. 式 (9.40) を E とおく.

$$E = \sum_{n,k} \gamma(z_{nk}) (\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)).$$

 ϵE ات

$$\mathcal{N}(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi\epsilon)^{D/2}} \exp(-\frac{1}{2\epsilon}||x - \mu_k||^2)$$

を代入する.

$$\epsilon E = \sum_{n,k} \gamma(z_{nk}) \left(\epsilon \log \pi_k - \frac{D}{2} \epsilon \log(2\pi\epsilon) - \frac{1}{2} ||x_n - \mu_k||^2\right).$$

 $\epsilon \to 0$ τ

$$\gamma(z_{nk}) \to r_{nk},$$

 $\epsilon \log \pi_k \to 0,$
 $\epsilon \log(2\pi\epsilon) \to 0$

より

$$\epsilon E \to -\frac{1}{2} \sum_{n,k} r_{nk} ||x_n - \mu_k||^2 = -J.$$

よって期待完全データ対数尤度の最大化は J の最小化と同等.

7 混合ベルヌーイ分布

$$x = (x_1, \dots, x_D)^T$$
, $\mu = (\mu_1, \dots, \mu_D)^T$ とする.

$$p(x|\mu) = \prod_{i=1}^{D} \mu_i^{x_i} (1 - \mu_i)^{(1-x_i)}.$$

 $E[x] = \mu$ は容易に分かる.

$$E[x_i x_j] = \begin{cases} \mu_i \mu_j (i \neq j) \\ \mu_i (i = j). \end{cases}$$

よって

$$cov[x]_{ij} = E[(x - \mu)(x - \mu)^T]_{ij} = E[x_i x_j] - (\mu \mu^T)_{ij} = (\mu_i - \mu_i^2)\delta_{ij}$$

より

$$cov[x] = diag(\mu_i(1 - \mu_i)).$$

 $\mu = \{\mu_1, \dots, \mu_K\}, \pi = \{\pi_1, \dots, \pi_K\}$ として次の混合分布を考えよう.

$$p(x|\mu_k) = \prod_i \mu_{ki}^{x_i} (1 - \mu_{ki})^{(1 - x_i)}.$$

$$E[x] = \int x p(x|\mu) \, dx = \sum_{k} \pi_{k} \int x p(x|\mu_{k}) \, dx = \sum_{k} \pi_{k} E_{k}[x] = \sum_{k} \pi_{k} \mu_{k}.$$

$$E_k[xx^T] = \operatorname{cov}_k[x] + \mu_k \mu_k^T = \Sigma_k + \mu_k \mu_k^T$$

より

$$cov[x] = E[(x - E[x])(x - E[x])^{T}] = E[xx^{T}] - E[x]E[x]^{T} = \sum_{k} \pi_{k}(\Sigma_{k} + \mu_{k}\mu_{k}^{T}) - E[x]E[x]^{T}.$$

データ集合 $X = \{x_1, \dots, x_N\}$ が与えられたとき、対数尤度関数は

$$\log p(X|\mu, \boldsymbol{\pi}) = \sum_{n} \log(\sum_{k} \pi_{k} p(x_{n}|\mu_{k})).$$

対数の中に和があるので解析的に最尤解をもとめられない。 ${
m EM}$ アルゴリズムを使う。x に対応する潜在変数 を $z=(z_1,\dots,z_K)^T$ を導入する。どれか一つのみ 1 でその他は 0 のベクトルである。z の事前分布を

$$p(z|\pi) = \prod_k \pi_k^{z_k}$$

とする. z が与えられたときの条件付き確率は

$$p(x|z,\mu) = \prod_k p(x|\mu_k)^{z_k}.$$

$$p(x, z | \mu, \pi) = p(x | z, \mu) p(z | \pi) = \prod_{k} (\pi_k p(x | \mu_k))^{z_k}.$$

よって

$$p(x|\mu, \boldsymbol{\pi}) = \sum_{z} p(x, z|\mu, \boldsymbol{\pi}) = \sum_{k} \pi_k p(x|\mu_k).$$

完全データ対数尤度関数は $X=\{x_n\},\,Z=\{z_n\}$ として

$$\log p(X, Z | \mu, \pi) = \sum_{n,k} z_{nk} (\log \pi_k + \sum_i x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log (1 - \mu_{ki}))$$

$$= \sum_{n,k} z_{nk} A_{nk}$$
 とおく.

続く