Práctica No. 5. Máquinas de estado

Simón Sánchez Rúa Juan Camilo Arteaga Ibarra

Equipo 8

Digitales 1

Universidad de Antioquia Facultad de ingeniería

Medellín

2022

Objetivos:

- Comprender y aplicar el concepto de máquinas de estado para la solución de problemas.
- Diseñar máquinas de estado que den respuestas a diversos sistemas.

Materiales:

• FPGA Basys 3 y Software vivado.

Descripción:

A partir de los ejemplos asignados, se realizan cambios los ejercicios propuestos en el github y se implementan haciendo uso del lenguaje VHDL una vez diseñados los diagramas de estado para cada uno de los ejemplos.

Ejemplo 1:

Del diseño planteado en <u>github</u> se realizan los cambios pertinentes y se diseñan los diagramas de estado para cada caso. La condición es que la respuesta sea 1 cuando la entrada es igual a 0 durante 3 o más intervalos de reloj.

Moore:

Estado Inicial	Estado final		Z E.Inicial
Moore	X=0	X=1	
А	В	А	0
В	С	А	0
С	D	А	0
D	D	А	1

Tabla 1: tabla de transición de estados de la máquina Moore Ej1.

Ilustración 1: diagrama de estados Ej1 Moore.

Ilustración 2: Waveform Moore Ejemplo 1.

Los cambios de estado se dan de la siguiente manera (estado actual es state_int, entrada x_int y salida z_int):

- 1. Cuando la entrada es 1, del estado actual C con salida 0 se pasa al estado A con salida 0.
- 2. Con la entrada manteniéndose como 1, el estado sigue en A con salida 0.
- 3. La entrada cambia a 0, donde se pasa del estado A con salida 0 al estado B con salida 0.
- 4. La entrada se mantiene en 0, así que del estado B con salida 0 se pasa al estado C con salida 0.
- 5. La entrada se mantiene en 0, el estado C con salida 0 pasa al estado D con salida 1.
- 6. La entrada pasa a ser 1, por ende el estado D con salida 1 pasa al estado A con salida 0.

Los cambios de estado funcionan como la máquina de estado planteada, por ende el código funciona como era esperado. Ver código.

• Mealy:

Ilustración 3: diagrama de estados Ej1 Mealy.

Estado Inicial	Estado final/Z		
Mealy	X=0	X=1	
А	B/0	A/0	
В	C/0	A/0	
С	D/1	A/0	

Tabla 2: tabla de transición de estados de la máquina Mealy Ej1.

Ilustración 4: Waveform Mealy Ejemplo 1.

Los cambios de estado se dan de la siguiente manera (estado actual es state_int, entrada x_int y salida z_int):

- 1. La entrada es 1, por eso el estado C con salida 1 pasa al estado A con salida 0.
- 2. La entrada se mantiene en 1, así que el estado A con salida 0 se mantiene igual.
- 3. La entrada pasa a 0, el estado A con salida 0 pasa al estado B con salida 0.
- 4. La entrada sigue en 0, entonces el estado B con salida 0 pasa al estado C con salida 1.
- 5. La entrada pasa a ser 1, el estado C con salida 1 pasa al estado A con salida 0.

Los estados y salida coinciden con el diagrama planteado y por ende el programa funciona como se deseaba. Ver código.

Ejemplo 2:

Para este caso también se hace uso del ejemplo propuesto en <u>github</u>, realizando las modificaciones pertinentes. La condición es que salga un 1 después de una secuencia de 0010, la repetición es permitida.

• Moore:

Ilustración 5: diagrama de estados Ej2 Moore.

Ilustración 6: Waveform Moore Ejemplo 2.

Los cambios de estado se dan de la siguiente manera (estado actual es state_int, entrada x_int y salida z_int):

- 1. Con la entrada en 0, el estado S1 con salida 0 pasa al estado S2 con salida 0.
- 2. La entrada se mantiene en 0, así que el estado S2 con salida 0 se mantiene igual.
- 3. La entrada pasa a ser 1, entonces el estado S2 con salida 0 pasa al estado S3 con salida 0.
- 4. La entrada pasa a ser 0, entonces el estado S3 con salida 0 pasa al estado S4 con salida 1.
- 5. La entrada pasa a ser 1, entonces el estado S4 con salida 1 pasa al estado S0 con salida 0.
- 6. La entrada se mantiene en 1, así que el estado S0 con salida 0 se mantiene igual.
- 7. La entrada pasa a ser 0, el estado S0 con salida 0 pasa al estado S1 con salida 0.
- 8. La entrada pasa a ser 1, el estado S1 con salida 0 pasa al estado S0 con salida 0.

Las salidas y estados concuerdan con la máquina de estado planteada, por ende el código funciona según lo esperado. Ver código.

• Mealy:

Ilustración 7: diagrama de estados Ej2 Mealy.

Estado Inicial	Estado final/Z		
Mealy	X=0	X=1	
S0	S1/0	S0/0	
S1	S2/0	S0/0	
S2	S2/0	S3/0	
S3	S1/1	S0/0	

Tabla 4: tabla de transición de estados de la máquina Mealy Ej2.

Ilustración 8: Waveform Mealy Ejemplo 2.

Los cambios de estado se dan de la siguiente manera (estado actual es state_int, entrada x_i y salida z_i int):

- 1. La entrada está en 1, el estado S0 con salida 0 se mantiene igual.
- 2. La entrada pasa a 0, el estado S0 con salida 0 pasa al estado S1 con salida 0.
- 3. La entrada pasa a 1, el estado S1 con salida 0 pasa al estado S0 con salida 0.
- 4. La entrada se mantiene en 1, el estado S0 con salida 0 se mantiene igual.
- 5. La entrada pasa a 0, el estado S0 con salida 0 pasa al estado S1 con salida 0.
- 6. La entrada se mantiene en 0, el estado S1 con salida 0 pasa al estado S2 con salida 0.
- 7. La entrada se mantiene en 0, el estado S2 con salida 0 queda igual.
- 8. La entrada cambia a 1, el estado S2 con salida 0 pasa al estado S3 con salida 0.
- 9. La entrada cambia a 0, el estado S3 con salida 0 pasa a tener salida 1, luego pasa al estado S1 con salida 0.
- 10. La entrada cambia a 1, el estado S1 con salida 0 pasa al estado S0 con salida 0.

Las salidas y los estados son los mismos que se dan en el diagrama de estados, por ende el programa funciona correctamente.

Ejemplo 7:

En github.

Figura X: Waveform Motor Ejemplo 7.

El motor cambia de dirección de la siguiente forma:

- 1. Cuando Press es 1 el estado pasa a w_open, esto es así debido a que Open_CW pasa a ser 1 y Close CCW a ser 0.
- 2. Press2 pasa a ser 1 y Press 0, el estado pasa a w_stop porque Open_CW pasa a 1 y Close_CCW pasa a 1.
- 3. Press2 se mantiene en 1 y Press pasa a 1, el estado pasa a w_closed debido a que Open_CW pasa a 0 y Close_CCW pasa a 1.
- 4. Press sigue en 1 y Press 2 pasa a 0, el estado pasa a w_open debido a que Open_CW pasa a 1 y Close_CCW a 0.
- 5. Press2 pasa a 1 y Press a 0, el estado pasa a w_stop debido a que Open_CW pasa a 1 y Close_CCW pasa a 1.
- 6. Press 2 pasa a 0 y Press sigue en 0, el estado es w_closed debido a que Open_CW pasa a 0 y Close_CCW pasa a 1
- 7. Por último Press pasa a 1 y Press2 sigue en 0, el estado pasa a w_open debido a que Open_CW pasa a 1 y Close_CCW a 0.

El motor rota como se deseaba puesto que los estados se cumplen, así que el programa funciona correctamente incluso con los nuevos estados de stop. Ver código.