Class 9: Halloween Candy Mini Project

Lilia Jimenez (PID:A16262599)

Here we will analyze a candy dataset from the 538 website. This is a csv file from their Github repository.

##data import

```
candy <- read.csv("candy-data.txt", row.names = 1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	0)	0.732	0	.860	66.97173	
3 Musketeers	0	1	0)	0.604	0	.511	67.60294	
One dime	0	0	0)	0.011	0	.116	32.26109	
One quarter	0	0	0)	0.011	0	.511	46.11650	
Air Heads	0	0	0)	0.906	0	.511	52.34146	
Almond Joy	0	1	0)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
[1] 38
##what is your favorite candy?
     Q3. What is your favorite candy in the dataset and what is it's winpercent value?
Twix
   candy["Twix",]$winpercent
[1] 81.64291
     Q4. What is the winpercent value for "Kit Kat"?
  candy["Kit Kat",]$winpercent
[1] 76.7686
     Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
  candy["Tootsie Roll Snack Bars",]$winpercent
[1] 49.6535
     Q. what is the least liked
  x < -c(5, 3, 4, 1)
  sort(x)
[1] 1 3 4 5
  order(x)
[1] 4 2 3 1
```

inds <-order(candy\$winpercent) head(candy[inds,])</pre>

	chocolate	fruity	cara	nel j	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	ewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent	;						
Nik L Nip	22.44534	<u> </u>						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499)						
Super Bubble	27.30386	5						
Jawbusters	28.12744	Ŀ						
Root Beer Barrels	29.70369)						

library("skimr")
skim(candy)

Table 1: Data summary

Name Number of rows	candy 85
Number of columns	12
Column type frequency:	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

the winpercent has drastically different numbers

- Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?
- Q8. Plot a histogram of winpercent values

```
hist(candy$winpercent, breaks = 10
)
```

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical? no its skewed to the right

Q10. Is the center of the distribution above or below 50%? below

Q11. On average is chocolate candy higher or lower ranked than fruit candy? First find all chocolate candy and their \$winpercent values

```
choc.inds <- as.logical(candy$chocolate)
choc.win<- candy[choc.inds,]$winpercent
mean(choc.win)</pre>
```

[1] 60.92153

```
fruity.inds <- as.logical(candy$fruity)
fruity.win <- candy[fruity.inds,]$winpercent
mean(fruity.win)</pre>
```

[1] 44.11974

chocolate would be higher

Q12. Is this difference statistically significant?

```
t.test(choc.win,fruity.win)
```

Welch Two Sample t-test

data: choc.win and fruity.win t = 6.2582, df = 68.882, p-value = 2.871e-08 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: $11.44563 \ 22.15795$ sample estimates: mean of x mean of y $60.92153 \ 44.11974$

yes, small p-value so the difference is statistically significant $\,$

##Overall candy rankings

Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n=5)

		chocolate	fruity	cara	nel j	peanutyaln	nondy	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked H	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedric	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked H	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534	<u>l</u>						
Boston Baked H	Beans	23.41782	2						
Chiclets		24.52499)						

Super Bubble 27.30386 Jawbusters 28.12744

Q14. What are the top 5 all time favorite candy types out of this set?

head(candy[order(candy\$winpercent, decreasing = TRUE),], n = 5)

	chocolate	fruity	caran	nel j	peanutyaln	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedrio	cewafer	hard	bar	pluribus	sugai	rpercent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	ent winp	percer	ıt			
Reese's Peanut Butter cup	0.6	351 84	1.1802	29			
Reese's Miniatures	0.2	279 81	1.8662	26			
Twix	0.9	906 81	1.6429	91			
Kit Kat	0.5	511 76	5.7686	60			
Snickers	0.6	651 76	6.6737	78			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)
ggplot(candy)+aes(winpercent,rownames(candy))+geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

ggplot(candy)+aes(winpercent,reorder(rownames(candy),winpercent))+geom_col()+
labs(x="Win Percent",y=NULL)

ggsave('barplot1.png', width=7, height=10)

can insert images using this markdown

add color. we need to make a custom color vector

```
#start with all black
my_cols <-rep("black",nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "red"</pre>
```

ggplot(candy)+aes(winpercent,reorder(rownames(candy),winpercent))+geom_col(fill=my_cols)+
labs(x="Win Percent",y=NULL)

Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starbursts

##Take a look at pricepercent

```
head(candy$pricepercent)
```

[1] 0.860 0.511 0.116 0.511 0.511 0.767

If we want to see what is a good candy to buy in terms of winpercents and pricepercents we can plot these two variables and then see the best candy for the least amount of money.

```
ggplot(candy)+aes(winpercent, pricepercent, label=rownames(candy))+ geom_point(col=my_cols)
```


To avoid the overlap of all these labesls we can use an add package called ggrepel

```
#install.packages("ggrepel")
library(ggrepel)

ggplot(candy)+aes(winpercent, pricepercent, label=rownames(candy))+ geom_point(col=my_cols)
```

Warning: ggrepel: 50 unlabeled data points (too many overlaps). Consider increasing max.overlaps

ggplot(candy)+aes(winpercent,pricepercent, label=rownames(candy))+ geom_point(col=my_cols)

Warning: ggrepel: 74 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

reeses miniatures

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

head(candy[order(candy\$pricepercent, decreasing = TRUE),], n = 5)

	chocolate	fruity	caran	nel	peanutyalr	nondy	nougat
Nik L Nip	0	1		0		0	0
Nestle Smarties	1	0		0		0	0
Ring pop	0	1		0		0	0
Hershey's Krackel	1	0		0		0	0
Hershey's Milk Chocolate	1	0		0		0	0
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	rpercent
Nik L Nip		0	0	0	1		0.197
Nestle Smarties		0	0	0	1		0.267
Ring pop		0	1	0	0		0.732
Hershey's Krackel		1	0	1	0		0.430
Hershey's Milk Chocolate		0	0	1	0		0.430
	priceperce	ent winp	percer	nt			

```
      Nik L Nip
      0.976
      22.44534

      Nestle Smarties
      0.976
      37.88719

      Ring pop
      0.965
      35.29076

      Hershey's Krackel
      0.918
      62.28448

      Hershey's Milk Chocolate
      0.918
      56.49050
```

Nik L Nip

##5 Exploring the correlation structure

```
#install.packages("corrplot")
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Fruity and chocolate

Q23. Similarly, what two variables are most positively correlated?

##6. Principal Component Analysis

The main function is "Prcomp()' and here we kniw we need to scale our data.

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                       PC5
                                                               PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

Plot my main PCA score plote with ggplot

Warning: ggrepel: 54 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

##Loadings plot

```
loadings<-as.data.frame(pca$rotation)
ggplot(loadings)+aes(PC1, reorder(rownames(loadings), PC1))+geom_col()</pre>
```

