

B657 Final Project – Andrew Corum

More Random Graphs for Neural Architecture Search

Background

CNNs for Image Classification

1. Images have too many inputs for full-connected NNs

Design of CNN architectures often done by hand

(ZFNet, AlexNet, ResNet, DenseNet)

ZFNet AlexNet

Neural Architecture Search

- 1. Neural architecture search (NAS) can be automated
 - NASNet
 - Create family of wiring patterns to sample from
- 2. Current NAS search spaces are extremely narrow
 - Still constrain wiring patterns based on hand-made assumptions

RandWire (ICCV 2019)

1. Expand NAS search space by using randomly generated graphs

stage	output	small regime	regular regime	
$conv_1$	112×112	3×3 conv, $C/2$		
$conv_2$	56×56	3×3 conv, C	random wiring $N/2, C$	
conv ₃	28×28	random wiring	random wiring	
		N, C	N, 2C	
conv ₄	14×14	random wiring	random wiring	
		N, 2C	N, 4C	
conv ₅	7×7	random wiring	random wiring	
		N, 4C	N, 8C	
classifier	1×1	1×1 conv, 1280-d global average pool, 1000-d fc, softmax		

Ref: Xie, Kirillov, Gershick, and He (2019)

RandWire (ICCV 2019)

Competitive results, with even top designed CNNs

network	top-1 acc.	top-5 acc.	FLOPs (B)	params (M)
ResNet-50 [11]	77.1	93.5	4.1	25.6
ResNeXt-50 [52]	78.4	94.0	4.2	25.0
RandWire-WS, C =109	79.0 ±0.17	94.4 ± 0.11	$4.0_{\pm 0.09}$	$31.9_{\pm 0.66}$
ResNet-101 [11]	78.8	94.4	7.8	44.6
ResNeXt-101 [52]	79.5	94.6	8.0	44.2
RandWire-WS, C =154	80.1 _{±0.19}	94.8 _{±0.18}	$7.9_{\pm 0.18}$	$61.5_{\pm 1.32}$

Project Description

RandWire Reconstruction

Results of RandWire are surprising... are they reproduceable?

Project Goals:

- Reconstruct RandWire
 - Found PyTorch implementation [ref], with a few mistakes
 - Wanted to fix and re-create in Tensorflow
- Evaluate RandWire against other architectures:
 - AlexNet
 - TinyCNN
 - Hand-tuned CNN

Implementation

Random DAGs

- 3 different DAG generators
 - 1. Erdos-Renyi (ER)
 - 2. Barabasi-Albert (BA)
 - 3. Watts-Strogatz (WS)
- Still not purely random DAGs (inherent structure due to features of each DAG generator)

Random DAGs (N=32)

Results

Data

- Used MNIST contains 70,000 handwritten digits (28x28)
 - Note: RandWire paper used ImageNet (~1.4 million images, 1000 classes, >150GB)
- MNIST is more manageable
- However, then my RandWire construction must differ from the paper's

RandWire Learning curves

Other CNN Learning Curves

Results on test data

Model	Test Accuracy	Test Loss
RandWire, ER(.2)	69.49%	1.017
RandWire, BA(5)	71.67%	0.9562
RandWire, WS(4, .75)	54.31%	1.146
AlexNet*	96.40%	57.07
TinyCNN	99.17%	0.04160
HandmadeCNN	99.46%	0.02386

Discussion

Discussion

- 1. My RandWire did not perform as well as shown in Xie et al. Why?
 - Different dataset (RandWire built to perform on larger images)
 - This issue also seemed to plague implementation of AlexNet
 - Different optimizer for learning
 - Fewer resources. Not able to perform large NAS over many different random DAGs.
- 2. My RandWire did fit the dataset with much better than random performance

Questions?

Feel free to ask questions in the zoom chat.

Thanks!

Key References: (see final report for remaining references)

Papers:

- S. Xie, A. Kirillov, R. Girshick, and K. He. Exploring randomly wired neural networks forimage recognition. In2019 IEEE/CVF International Conference on Computer Vision (ICCV)
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deepconvolutional neural networks. Commun. ACM
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale imagerecognition. InICLR, 2015
- isualizing and understanding convolutional networks. InEuropean conference on computer vision

Code:

 SeungWonPark. Randwirenn, 2019.https://github.com/seungwonpark/RandWireNN/tree/0850008e9204cef5fcb1fe508d4c99 576b37f995

Images:

ZFNet: https://arxiv.org/pdf/1311.2901.pdf