CHAPTER 1

INTRODUCTION TO DATABASE SYSTEMS

1.1 WHY DATABASE?

• សាកល្បងគិតអំពីការព្យាយាមធ្វើអាជីវកម្មដោយមិនដឹងថា អ្នកជាអតិថិជន របស់អ្នកផលិតផលអ្វីដែលអ្នកកំពុងលក់ អ្នកណាខ្លះដែលជំពាក់អ្នក និង អ្នក ជំពាក់អ្នកណាខ្លះ។ អាជីវកម្មទាំឯអស់ត្រវរក្សាទុកទិន្នន័យប្រភេទនេះនិងច្រើន ទៀត។ ហើយអ្វីដែលសំខាន់នោះគឺថាពួកគេត្រវមានទិន្នន័យទាំងនោះសម្រាប់ ធ្វើការសម្រេចចិត្ត នៅពេលដែលពួកគេត្រូវការ។ វាអាចត្រូវបានអះអាងថា គោលបំណងចុងក្រោយនៃប្រព័ន្ធព័ត៌មាន គឺដើម្បីជួយអាជីវកម្មឱ្យប្រើប្រាស់ ព័ត៌មានជាធនធានរបស់អង្គភាព។ ចំណុចសំខាន់នៃប្រព័ន្ធទាំងអស់នេះគឺការ ប្រមូល រក្សាទុក រៀបចំផុព្វេផ្សាយ និង គ្រប់គ្រងទិន្នន័យ។

1.2 DATA VS. INFORMATION

- ទិន្នន័យគឺជាធាតុឬតំលៃដើមដែលនៅដាច់ពីគ្នា។
- ព័ត៌មានគឺជាលទ្ធផលនៃដំណើរប្រតិបត្តិទិន្នន័យដើម (raw data) ដើម្បីធ្វើអោយមានអត្ថន័យ។
- ព័ត៌មានត្រូវការបរិបទដើម្បីធ្វើអោយមានអត្ថន័យ។
- ទិន្នន័យដើមត្រូវបានរៀបចំសម្រាប់ការផ្ទុក និងការប្រតិបត្តិ។
- ទិន្នន័យគឺជាមូលដ្ឋាននៃព័ត៌មាន។
- ទិន្នន័យជាធាតុផ្សំនៃព័ត៌មាន។
- ព័ត៌មានត្រូវបានបង្កើតឡើងដោយដំណើរប្រតិបត្តិទិន្នន័យ។
- ព័ត៌មានដែលត្រឹមត្រូវ ដែលមានប្រយោជន៍និងដែលកើតឡើងចំពេល គឺជាកូនសោរនៃការធ្វើ សេចក្តីសម្រេចចិត្តត្រឹមត្រូវ។
- សេចក្តីសម្រេចចិត្តត្រឹមត្រូវគឺជាកូនសោរនៃការធ្វើអោយមាននិរន្តរភាពរបស់អង្គការឬក្រុមហ៊ុន។

Transforming raw data into information

a) Initial Survey Screen

c) Information in Summary Format

b) Raw Data

d) Information in Graphic Format

1.3 INTRODUCTION TO DATABASE

ការគ្រប់គ្រងទិន្នន័យប្រកបដោយប្រសិទ្ធភាពជាធម្មតាតម្រូវឱ្យមានការប្រើប្រាស់ទិន្នន័យកុំព្យូទ័រ។ មូលដ្ឋានទិន្នន័យ (Database) គឺជាការប្រមូលផ្តុំនិងគ្រប់គ្រងទិន្នន័យ ដែលទាក់ទងទៅនឹងមុខងារ នៃប្រព័ន្ធពាណិជ្ជកម្មណាមួយ។ ហើយគឺជារចនាសម្ព័ន្ធកុំព្យូទ័រដែលបានចែករំលែកនិងរួមបញ្ចូលគ្នា ដែលផ្ទុកបណ្តុំនៃ៖

- End-user data
- Meta data

ប្រព័ន្ធគ្រប់គ្រងមូលដ្ឋានទិន្នន័យ (Database management system=DBMS) គឺជា Application Program ដែលមាននាទីបង្កើត Database និងដំណើរការទិន្នន័យដែលស្ថិតនៅក្នុង Database។

1.3.1 ROLE AND ADVANTAGES OF THE DBMS

DBMS មាននាទីជាអន្តរការីវាងអ្នកប្រើប្រាស់ (User) ជាមួយនឹងមូលដ្ឋានទិន្នន័យ (Database) ក្នុងការគ្រប់គ្រងទៅលើរចនាសម្ព័ន្ធ របស់មូលដ្ឋានទិន្នន័យ (Database Structure) ហើយនឹង ដំណើរការទិន្នន័យ ដែលស្ថិតនៅក្នុងរចនាសម្ព័ន្ធរបស់មូលដ្ឋានទិន្នន័យនោះ។

- អត្ថប្រយោជន៍របស់ DBMS មានដូចជា៖
 - ធ្វើអោយប្រសើរឡើងនូវការបែងចែកទិន្នន័យ។
 - ធ្វើអោយប្រសើរឡើងនូវសុវត្ថិភាពទិន្នន័យ។
 - •មានភាពប្រសើរចំពោះការរួមបញ្ចូលទិន្នន័យ។
 - កាត់បន្ថយនូវភាពមិនត្រូវគ្នារបស់ទិន្នន័យ។
 - ធ្វើអោយប្រសើរឡើងនូវដំណើរការទិន្នន័យ។
 - ធ្វើអោយប្រសើរឡើងនូវសេចក្តីសំរេចចិត្ត។
 - ធ្វើអោយកើនឡើងនូវប្រសិទ្ធិភាពការងាររបស់អ្នកប្រើ ប្រាស់។

1.3.2 TYPES OF DATABASES

ជាទូទៅមូលដ្ឋានទិន្នន័យ អាចត្រូវបានរៀបចំតាមលំដាប់ថ្នាក់ឬក្រុមគឺអាស្រ័យទៅលើចំនួន នៃអ្នកប្រើប្រាស់ (Users) ទីតាំង (Location) និងវិសាលភាពនៃការប្រើប្រាស់។ ្នំចំពោះចំនួននៃអ្នកប្រើប្រាស់ នោះមូលដ្ឋានទិន្នន័យចែកចេញជាពីរប្រភេទគឺ៖

- Single-user database គឺជាមូលដ្ឋានទិន្នន័យដែលត្រូវបានប្រើដោយអ្នកប្រើប្រាស់ តែម្នាក់គត់ក្នុងពេលតែមួយ។ ចំពោះ Single-user database ដែលដំណើរការលើ Personal Computer តែមួយត្រូវបានគេហៅថា Desktop database។
- Multi-user database គឺជាមូលដ្ឋានទិន្នន័យដែលត្រូវបានប្រើដោយអ្នកប្រើប្រាស់ ជាច្រើននាក់ក្នុងពេលតែមួយ។ ប្រសិនបើអ្នកប្រើប្រាស់មានចំនួនតិចជាងឬស្មើ៥០ នាក់ នោះ Multi-user database ត្រូវបានគេហៅថា Workgroup database ក៏ ប៉ុន្តែប្រសិនបើអ្នកប្រើប្រាស់មានចំនួនលើសពី៥០នាក់ឡើងទៅ នោះ Multi-user database ត្រូវបានគេហៅថា Enterprise database។

- ចំពោះទីតាំង នោះមូលដ្ឋានទិន្នន័យចែកចេញជាពីរប្រភេទគឺ៖
 - Centralized database គឺជាមូលដ្ឋានទិន្នន័យដែលទិន្នន័យត្រូវបានផ្ទុកក្នុងទីតាំងតែមួយ។
 - Distributed database គឺជាមូលដ្ឋានទិន្នន័យដែលទិន្នន័យត្រូវបានបែងចែកក្នុងការផ្ទុកនៅ
 ទីតាំងផ្សេងគ្នាជាច្រើន។
- ចំពោះវិសាលភាពនៃការប្រើប្រាស់ នោះមូលដ្ឋានទិន្នន័យចែកចេញជាពីរប្រភេទគឺ៖
 - Operational database គឺជាមូលដ្ឋានទិន្នន័យដែលដំណើរការទិន្នន័យជារៀងរាល់ថ្ងៃ។ នៅ ពេលខ្លះ វាត្រូវបានគេហៅថា Transactional databaseឬ Production database។
 - Data warehouse គឺជាមូលដ្ឋានទិន្នន័យដែលមាននាទីផ្ទុកទិន្នន័យទាំងឡាយពីមុនៗមក ដើម្បីដំណើរប្រតិបត្តិអោយក្លាយទៅជាព័ត៌មានសំរាប់បង្កើតនូវផែនការណ៍ជាយុទ្ធសាស្ត្រនា ក្នុងពេលអនាគត។

TABLE 1.1

Types of Databases

PRODUCT	NUMBER OF USERS			DATA LO	CATION	DATA U	XML	
	SINGLE	MULTIUSER						
	USER	WORKGROUP	ENTERPRISE	CENTRALIZED	DISTRIBUTED	OPERATIONAL	ANALYTICAL	
MS Access	X	X		X		X		
MS SQL	X ³	X	X	X	X	X	X	Χ
Server								
IBM DB2	X^3	X	X	X	X	X	X	Χ
MySQL	X	X	X	X	X	X	X	Χ
Oracle	X ³	X	X	X	X	X	Х	Χ
RDBMS	- 17-4							

1.4 DATABASE SYSTEMS

- ប្រព័ន្ធមូលដ្ឋានទិន្នន័យ គឺសំដៅចំពោះការសហប្រតិបត្តិការវាង
 សមាសធាតុមួយចំនួនដែល ចូល រួមក្នុងការបង្កើត គ្រប់គ្រង
 ប្រមូលផ្ដុំ ផ្ទុកនិងប្រើប្រាស់ទិន្នន័យ។
- ប្រព័ន្ធមូលដ្ឋានទិន្នន័យត្រូវបានបង្កើត និងគ្រប់គ្រងក្នុងកំរិតនៃភាព ស្មុគស្មាញផ្សេងគ្នា។
- ដំណោះស្រាយមូលដ្ឋានទិន្នន័យត្រូវតែមានតំលៃប្រសិទ្ធភាព ដូចទៅ
 នឹងប្រសិទ្ធភាពតាម យុទ្ធវិធីនិងតាមយុទ្ធសាស្ត្រ។

1.4.1 DATABASE SYSTEMS ENVIRONMENTS

សមាសធាតុទាំងឡាយ ដែលបានចូលរួមក្នុងការបង្កើតប្រព័ន្ធមូលដ្ឋានទិន្នន័យមានដូចជា៖

- Hardware គឺសំដៅចំពោះគ្រឿងបរិក្ខាកុំព្យូទ័រនិងឧបករណ៍អេឡិចត្រូនិកមួយចំនួន ដែល ត្រូវបានប្រើ សំរាប់ប្រមូលផ្ដុំ ផ្ទុកនិងគ្រប់គ្រងទិន្នន័យ។
- ❖ Software គឺសំដៅចំពោះកម្មវិធីកុំព្យូទ័រទាំងឡាយដែលត្រូវបានប្រើសំរាប់ប្រមូលផ្តុំ ផ្ទុកនិង គ្រប់គ្រងទិន្នន័យ។ Software រួមមាន Operating System, DBMS និង Application/ Utilities Software។
- ❖ People គឺសំដៅចំពោះមនុស្សទាំងឡាយដែលបានចូលរួមក្នុងការបង្កើត គ្រប់គ្រងនិងប្រើ ប្រាស់ប្រព័ន្ធមូលដ្ឋានទិន្នន័យ។ People រួមមាន System administrators, Database administrators, Database designers, System analysts∕ programmers ហើយនិង End users ។

- Procedures គឺសំដៅចំពោះសេចក្ដីណែនាំនិងក្បួនច្បាប់ទាំងឡាយ ដែលមានឥទ្ធិពលទៅលើ
 ការចេនានិងប្រើប្រាស់ប្រព័ន្ធមូលដ្ឋានទិន្នន័យ។
- ទិន្នន័យ (Data) គឺជាតំលៃទាំងឡាយអាចជាចំនួនលេខ តួអក្សរ តំរៀបនៃតួអក្សរនិងកាល បរិច្ឆេទ ដែលនៅដាច់ពីគ្នា ដោយពុំទាន់មានអត្ថន័យ។ ជាទូទៅទិន្នន័យមានប្រភពមកពី ព័ត៌មានរបស់មនុស្ស ព័ត៌មានរបស់វត្ថុ ព័ត៌មានរបស់ទីកន្លែង និងព័ត៌មានរបស់ ព្រឹត្តិការណ៍ ទាំងឡាយដែលត្រូវកត់ត្រាទុក។

The database system environment

1.4.2 DBMS FUNCTIONS

DBMS ប្រតិបត្តិនូវមុខងារសំខាន់ៗមួយចំនួន ដែលធានារ៉ាប់រងនូវសុក្រឹតភាព និងភាពដូចៗគ្នា បេស់ទិន្នន័យនៅក្នុងមូលដ្ឋានទិន្នន័យ។ មុខងារទាំងនោះរួមមាន៖

- ការគ្រប់គ្រង់ទៅលើ Data dictionary៖ DBMS ផ្ទុកនូវនិយមន័យរបស់ជាតុមួយចំនួននៃ ទិន្នន័យ (Data elements) ហើយនិងទំនាក់ទំនងរបស់វានៅក្នុង Data dictionary។ DBMS ប្រើប្រាស់ Data dictionary ដើម្បីស្វែងរករចនាសម្ព័ន្ធដែលជាផ្នែកតូចៗរបស់ ទិន្នន័យនិង ទំនាក់ទំនងរបស់ផ្នែកតូចៗទាំងនោះ។
- ការផ្លាស់ប្តូរទ្រង់ទ្រាយនិងការបង្ហាញទិន្នន័យ៖ DBMS ផ្លាស់ប្តូរទ្រង់ទ្រាយទិន្នន័យ
 ដែលបានបញ្ចូលដោយគោរពតាមតំរូវការនៃរចនាសម្ព័ន្ធរបស់ទិន្នន័យ។ ម៉្យាងទៀត
 DBMS អាចធ្វើការផ្លាស់ប្តូរទ្រង់ទ្រាយរបស់ទិន្នន័យក្នុងការបង្ហាញ ទៅតាមការរៀបចំ
 អោយត្រូវតាមតំរូវការរបស់អ្នកប្រើប្រាស់។

- ការគ្រប់គ្រងទៅលើកន្លែងផ្ទុកទិន្នន័យ (Data storage management)៖ DBMS បង្កើត និងគ្រប់គ្រងទៅលើរចនាសម្ព័ន្ធដ៏ស្មុគស្មាញ ដែលត្រូវការចាំបាច់សំរាប់ការផ្ទុកទិន្នន័យ។ DBMS ផ្ដល់នូវកន្លែងផ្ទុកមិនមែនសំរាប់តែទិន្នន័យប៉ុណ្ណោះទេ គឺវាអាចផ្ទុកនូវកន្សោម លក្ខខណ្ឌរបស់ទិន្នន័យ ផ្ទុកនូវ Procedure codes ហើយផ្ទុកនូវរចនាសម្ព័ន្ធនៃការផ្ទុករូបភាព ផងដែរ។ DBMS អាចផ្ទុកមូលដ្ឋានទិន្នន័យនៅក្នុង Data files ជាច្រើនផ្សេងគ្នា។
- ការគ្រប់គ្រងទៅលើសុវត្ថិភាព៖ DBMS បង្កើតប្រព័ន្ធសុវត្ថិភាពមួយដែលអនុវត្តតាម
 user security និង data privacy មានន័យថាយើងអាចកំណត់ថាតើ user ណា
 ដែលអាចដំណើរការលើ Database ហើយតើដំណើរប្រតិបត្តិមួយណាដូចជា Read,
 Add, Delete និង Modify ដែល User អាចប្រើបាន។

- ការត្រួតពិនិត្យទៅលើដំណើរការដោយអ្នកប្រើប្រាស់ជាច្រើននាក់៖ DBMS ភាគច្រើនបាន ការពារមិនអោយអ្នកប្រើប្រាស់ជាច្រើននាក់អាចអាន Data item មួយក្នុងពេលតែមួយនោះ ឡើយ។
- ការគ្រប់គ្រង់ទៅលើការចំលង់ទុក (Backup) និងការធ្វើអោយដូចដើមវិញ (Recovery)៖
 DBMS ភាគច្រើនមាន routines សំរាប់ចំលង់ទុកនូវទិន្នន័យ ហើយនិងធ្វើទិន្នន័យអោយដូច ដើមវិញ នៅពេលដែលមានបញ្ហាណាមួយកើតឡើង។
- ការគ្រប់គ្រងទៅលើភាពសុក្រឹតនៃទិន្នន័យ៖ គ្រប់ DBMS ទាំងអស់សុទ្ធតែមានកន្លែងសម្រាប់ ធ្វើទំនាក់ទំនង (Relationship) វវាង Tables ដែលជាកន្លែងផ្ទុកទិន្នន័យជានិរន្ត៍ ដោយការកំណត់អោយមាននូវភាពសុក្រឹតនៃទិន្នន័យ។

- អំផ្ទេសម្រាប់ Application program និងភាសាសម្រាប់ប្រតិបត្តិទៅលើទិន្នន័យ៖ ក្នុងគ្រប់ DBMS ទាំងអស់សុទ្ធតែមានភាសាមួយគឺ SQL (Structured Query Language) ដែល មាននាទីបង្កើត Table សម្រាប់ផ្ទុកទិន្នន័យ ហើយនិងប្រតិបត្តិទៅលើទិន្នន័យដែលស្ថិតនៅ ក្នុង Table(s) ដូចជាបន្ថែម Record ថ្មី ទាញយក Record មកបង្ហាញ កែប្រែទិន្នន័យនិង លុប Record ជាដើម។ ម៉្យាងទៀតវាអាចបង្កើតផ្ទៃដែលអនុញ្ញាតិអោយ Application program ផ្សេងអាចដំណើរការទិន្នន័យដែលស្ថិតនៅក្នុង Database Structure បាន។
- ផ្ទៃសម្រាប់ទំនាក់ទំនងមូលដ្ឋានទិន្នន័យ៖ DBMS ក្នុងសម័យបច្ចុប្បន្នអនុញ្ញាតិអោយ Endusers ស្នើសុំប្រើប្រាស់ទិន្នន័យដែលស្ថិតនៅក្នុង Database តាមរយៈប្រភពជាច្រើននៃការតបណ្តាញកុំព្យូទ័រ (Computer Networking)។

1.5 TABLE CHARACTERISTICS

- Table ត្រូវបានដឹងថាជារចនាសម្ព័ន្ធ២វិមាត្រ ដែលមានជួរដេកនិងជួរឈរប្រសព្វគ្នា
- 💠 ជ្ជរដេកនីមួយៗ (tuple) គឺតំណាងអោយ single entity ដែលកើតមានឡើងនៅក្នុង entity set
- ជូរឈរនីមួយៗរបស់ Table តំណាងអោយ attribute ហើយ ជូរឈរនីមួយៗមានឈ្មោះ
 ផ្សេងៗគ្នា
- ប្រសព្វរវាងជូរដេកនិងជូរឈរ តំណាងអោយ single data value
- តម្លៃទាំងអស់នៅក្នុងជួរឈរត្រូវតែអនុលោមទៅតាមទិន្នន័យដែលបានកំណត់
- ជូរឈរនីមួយៗមានតម្លៃជាក់លាក់ត្រូវបានគេស្គាល់ថា Attribute domain
- 💠 លំដាប់នៃជូរដេកនិងជួរឈរគឺមិនសំខាន់សំរាប់ DBMS
- Table នីមួយៗត្រូវតែមាន attribute មួយឬក៏ការរួមផ្សំរវាង attributes ពិសេសមួយដើម្បី
 កំណត់ជូរដេកនីមួយៗ

STUDENT table attribute values

Table name: STUDENT

Database name: Ch03_TinyCollege

STU_NUM	STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_CLASS	STU_GPA	STU_TRANSFER	DEPT_CODE	STU_PHONE	PROF_NUM
321452	Bowser	William	C	12-Feb-1975	42	So	2.84	No	BIOL	2134	205
324257	Smithson	Anne	K	15-Nov-1981	81	Jr	3.27	Yes	CIS	2256	222
324258	Brewer	Juliette		23-Aug-1969	36	So	2.26	Yes	ACCT	2256	228
324269	Oblonski	Walter	H	16-Sep-1976	66	Jr	3.09	No	CIS	2114	222
324273	Smith	John	D	30-Dec-1958	102	Sr	2.11	Yes	ENGL	2231	199
324274	Katinga.	Raphael	P	21-Oct-1979	114	Sr	3.15	No	ACCT	2267	228
324291	Robertson	Gerald	T	08-Apr-1973	120	Sr	3.87	No	EDU	2267	311
324299	Smith	John	8	30-Nov-1986	15	Fr	2.92	No	ACCT	2315	230

STU_NUM = Student number STU_LNAME = Student last name STU_FNAME = Student first name STU_INIT = Student middle init

STU_INIT = Student middle initial

STU_DOB = Student date of birth

STU_HRS = Credit hours earned

STU_CLASS = Student classification

STU_GPA = Grade point average

STU_TRANSFER = Student transferred from another institution

DEPT_CODE = Department code

STU_PHONE = 4-digit campus phone extension

PROF_NUM = Number of the professor who is the student's advisor

1.5.1 KEYS

Keys មានសារសំខាន់ណាស់នៅក្នុង Relational Model ដោយសារតែពួកវាត្រូវបាន ប្រើដើម្បីធានាថា ជួរដេកនិមួយៗនៅក្នុង Table មួយត្រូវបានកំណត់ អត្តសញ្ញាណតែមួយ គត់។ ហើយ Keys ត្រូវបានប្រើសម្រាប់បង្កើតទំនាក់ទំនងរវាង Tables ដើម្បីធានាបាននូវ ភាពត្រឹមត្រូវនៃទិន្នន័យ។ Key មួយអាចមាន Attribute មួយឬច្រើនដើម្បីកំណត់ Attributes ដទៃទៀត។ Keys ជាទូទៅត្រូវបានគេចែកចេញជា ៥ គឺ: Super Key, Candidate Key, Primary Key, Secondary Key and Foreign Key

- Super Key: គឺជា Attribute មួយឬក៏បន្សំរវាង Attributes ដែលមានតម្លៃជាឯកតា សម្រាប់តាងអោយជូរដេកនីមួយៗនៅក្នុង Table។
- 💠 Candidate Key: គឺជា Super Key ដែលតូចជាឯគេៗ គឺជា Super Key ដែលមិន មាន subset of attributes ហើយដែលវាខ្លួនវាជា Super Key។

- 💠 Primary Key: គឺជា Candidate Key មួយដែលត្រូវបានជ្រើសរើសជា តំណាងសម្រាប់ entity set មួយ។
- Secondary Key: គឺជា attribute មួយឬក៏បន្សំរវាង attributes ដែលត្រូវបានប្រើយ៉ាងតឹងរឹង
 សម្រាប់ការទាញយកទិន្នន័យ។
- Foreign Key: គឺជា attribute ឬក៏បន្សំរវាង attributes នៅក្នុង Table មួយ ដែលតម្លៃរបស់វា ដាច់ខាតត្រូវតែមាននៅក្នុង Primary Key នៃ Table មួយទៀត។

Table name: PRODUCT Database name: Ch Primary key: PROD_CODE Foreign key: VEND_CODE								e: Ch03_Sa
PROD_CODE	PROD_DESC	CRIPT	PROD_PRICE	PROD_	ON_HAND	VEND_C	ODE	
001278-AB	Claw hammer		12.95	23			232	
123-21UUY F	Houselite chain sav	v, 16-in. bar	189.99		4		235	
QER-34256 S	Sledge hammer, 16	18.63	6			231		
SRE-657UG F	Rat-tail file	2.99		15		232		
ZZX/3245Q S	Steel tape, 12-ft. ler	6.79		8		235		
link								
		VEND_CODE	: VEND_CON	NTACT	VEND_AR	EACODE	VEND_PHONE	
Table name: V	/ENDOR	23	Shelly K. Sm	Shelly K. Smithson		608		
Primary key: \	VEND_CODE	23	James John	James Johnson			123-4536	
Foreign key: r	none	23	2 Annelise Cr	Annelise Crystall			224-2134	
0 ,		23	3 Candice Wa	Candice Wallace			342-6567	
		23	84 Arthur Jone	s	615		123-3324	
		23	5 Henry Ortoz	Henry Ortozo		615		

1.5.1 MS ACCESS DATA TYPES

Type of Data	Description	Size
Short Text	Text or combinations of text and numbers, including numbers that do not require calculating (e.g. phone numbers).	Up to 255 characters.
Long Text	Lengthy text or combinations of text and numbers.	Up to 63, 999 characters.
Number	Numeric data used in mathematical calculations.	1, 2, 4, or 8 bytes (16 bytes if set to Replication ID).
Date/Time	Date and time values for the years 100 through 9999.	8 bytes
Currency	Currency values and numeric data used in mathematical calculations involving data with one to four decimal places.	8 bytes
AutoNumber	A unique sequential (incremented by 1) number or random number assigned by Microsoft Access whenever a new record is added to a table.	4 bytes (16 bytes if set to Replication ID).
Yes/No	Yes and No values and fields that contain only one of two values (Yes/No, True/False, or On/Off).	1 bit.

1.6 STRUCTURE QUERY LANGUAGE (SQL)

SQL (Structure Query Language) គឺជាភាសាមួយដែលត្រូវបានប្រើនៅក្នុង DBMS សម្រាប់បង្កើត Database បង្កើត Table និង ដំណើរការទិន្នន័យក្នុង Table។ ជា ទូទៅ SQL ចែកចេញជាបីប្រភេទគឺ:

- ❖ DDL (Data Definition Language) មាននាទីដូចជា: Create Table, Drop Table,
 Alter Table
- ្ស DML (Data Manipulation Language) មាននាទីដូចជា: Insert Into, Select Into, Update, Delete, Select
- ❖ DCL (Data Control Language) មាននាទីដូចជា: Alter Database, Create Group, Drop Group, Create User, Alter User, Drop User, Add User, Grant Privilege and Revoke Privilege