

Module :3 Matrices Properties: Eigen Values & Eigen Vectors

Dr. Rachana Desai

A-201, Second floor,
Department of Science & Humanities,
K. J. Somaiya College of Engineering,
Somaiya Vidyavihar University,
Mumbai-400077

Email: rachanadesai@somaiya.edu

Profile: https://kjsce-old.somaiya.edu/kjsce-old/somaiya.edu/kjsce-old/somaiya.edu/kjsce-old/academic/faculty/0000160634/dr rachana v desai/0#Personal Profile

http://linear.ups.edu/html/section-PEE.html

Singular Matrices have Zero Eigenvalues.

Statement: Suppose A is a square matrix. Then A is singular if and only if $\lambda=0$ is an eigenvalue of A.

Proof: A is singular \Leftrightarrow there exists $x \ne 0$,

 \Leftrightarrow there exists x \neq 0, Ax=0x

 $\Leftrightarrow \lambda=0$ is an eigenvalue of A

Eigenvalues of the Transpose of a Matrix

Statement: Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix A^T . i.e. A and A^T have eigenvalues.

Proof: Suppose A has order n.

Now,
$$det(A-\lambda I)^T = det(A^T - \lambda I^T) = det(A^T - \lambda I)$$

$$det(A-\lambda I)^T = 0 \Leftrightarrow det(A^T-\lambda I)=0$$

So A and A^T have the same characteristic polynomial and their eigenvalues are identical and have equal algebraic multiplicities.

Eigenvalues of a Scalar Multiple of a Matrix

Statement: Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha\lambda$ is an eigenvalue of αA .

Proof: Let $x\neq 0$ be one eigenvector of A for λ . Then $(\alpha A)x=\alpha(Ax)$

 $=\alpha(\lambda x)$

 $=(\alpha\lambda)x$

So $x\neq 0$ is an eigenvector of αA for the eigenvalue $\alpha \lambda$.

Eigenvalues Of Matrix Powers

Statement: Suppose A is a square matrix of order n and λ is an eigenvalue of A. Then for any integer s ≥ 0 , λ^s is an eigenvalue of A^s.

Proof: Let $x\neq 0$ be one eigenvector of A for λ .

We will prove the theorem by mathematical induction on s.

$$A^{s}x = A^{0}x = I_{n}x = x$$
$$= 1x = \lambda^{0}x = \lambda^{s}x$$

 \therefore The theorem is true for s=0.

Step 2: Assume the theorem is true for s, then we will prove its true for s+1.

$$A^{s+1}x=A^sAx=A^s(\lambda x)=\lambda(A^sx)=\lambda(\lambda^sx)=(\lambda\lambda^s)x=\lambda^{s+1}x$$

So, $x\neq 0$ is an eigenvector of A^{s+1} corresponding to eigenvalue λ^{s+1}

By Mathematical induction, Theorem is true for all s≥0.

Eigenvalues of the Polynomial of a Matrix

Statement: Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix q(A).

Proof: Let $x\neq 0$ be one eigenvector of A for λ , and write $q(x)=a_0+a_1x+a_2x^2+\cdots+a_mx^m$ Then $q(A)x=(a_0+a_1A+a_2A^2+\cdots+a_mA^m)x$ $=a_0(A^0x)+a_1(A^1x)+a_2(A^2x)+\cdots+a_m(A^mx)$ $=a_0(\lambda^0x)+a_1(\lambda^1x)+a_2(\lambda^2x)+\cdots+a_m(\lambda^mx)$ $=(a_0+a_1\lambda+a_2\lambda^2+\cdots+a_m\lambda^m)x$ $=q(\lambda)x$

So $x\neq 0$ is an eigenvector of q(A) for the eigenvalue $q(\lambda)$.

Eigenvalues of the Inverse of a Matrix

Statement: Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then λ^{-1} is an eigenvalue of the matrix A^{-1} .

Proof: since A is assumed nonsingular, A^{-1} exists and $1/\lambda$ does not involve division by zero.

Let $x\neq 0$ be one eigenvector of A for λ . Suppose A has order n. Then

$$A^{-1} x = A^{-1} (1x) = A^{-1} (\frac{1}{\lambda} \lambda x)$$

$$= \frac{1}{\lambda} A^{-1} (\lambda x)$$

$$= \frac{1}{\lambda} A^{-1} (Ax) = \frac{1}{\lambda} (A^{-1} Ax)$$

$$= \frac{1}{\lambda} (I_n x) = \frac{1}{\lambda} x$$

So $x\neq 0$ is an eigenvector of A^{-1} for the eigenvalue $\frac{1}{\lambda}$.

Eigenvalues of the Adjoint of a Matrix

Statement: Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then $\frac{|A|}{\lambda}$ is an eigenvalue of the matrix Adj.(A).

Proof: We know that A adj.A=|A|I

Premultiplying by A⁻¹

$$A^{-1}A$$
 adj. $A = A^{-1}|A|$

$$\therefore$$
 adj.A= A⁻¹ |A|

Post multiplying by x, x is the eigenvector corresponding to λ .

$$(adj.A)x = |A| A^{-1}x = |A| \frac{1}{\lambda}x = \frac{|A|}{\lambda}x$$

 $\therefore \frac{|A|}{\lambda}$ is an eigenvalue of the matrix Adj.(A).

The eigenvalues of a unitary matrix are of unit modulus.

Statement: Suppose A is a Unitary matrix and λ is an eigenvalue of A. Then $|\lambda| = 1$.

Proof: But A is Unitary. \therefore AA θ = A θ A=I

Let $x\neq 0$ be one eigenvector of A corresponding to eigenvalue λ .

$$\therefore Ax = \lambda x \dots (1)$$

Taking complex conjugate transpose on both sides

$$(Ax)^{\theta} = (\lambda x)^{\theta}$$

$$x^{\theta} A^{\theta} = \overline{\lambda} x^{\theta} \dots (2)$$

Multiplying (1) & (2)

$$(x^{\theta} A^{\theta})^{(A} x) = (\overline{\lambda} x^{\theta}) (\lambda x)$$

$$\therefore x^{\theta} (A^{\theta}A) x = \overline{\lambda} \lambda (x^{\theta}x)$$

$$\therefore x^{\theta} x = \overline{\lambda} \lambda (x^{\theta} x)$$

Since X is an eigen vector, $x^{\theta}x \neq 0$

$$\lambda \bar{\lambda} = 1 \cdot |\lambda| = 1$$

Hermitian Matrices have Real Eigenvalues

Statement: Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then $\lambda \in \mathbb{R}$.

Proof: Let $x\neq 0$ be one eigenvector of A corresponding to eigenvalue λ .

we know $Ax = \lambda x$

Premultiplying by x^{θ} we get

$$x^{\theta} Ax = x^{\theta} \lambda x = \lambda x^{\theta} x \dots 1$$

Taking complex congugate transpose on both sides

$$(x^{\theta} Ax)^{\theta} = (\lambda x^{\theta} x)^{\theta}$$

$$x^{\theta} A^{\theta} (x^{\theta})^{\theta} = \overline{\lambda} x^{\theta} (x^{\theta})^{\theta} \dots 2$$

But A is Hermitian. \therefore A= A^{θ}

By 2,
$$x^{\theta} A x = \overline{\lambda} x^{\theta} x \dots 3$$

From (1) & (3), we get

$$\lambda x^{\theta} x = \overline{\lambda} x^{\theta} x$$

Since X is an eigen vector, $x^{\theta}x \neq 0$

$$\lambda = \overline{\lambda}$$

Corollaries

- Determinent of Harmitian mtrix is real
- * Real Symmetric Matrices have Real Eigenvalues
- Eigenvalues of a Skew-Hermitian Matrix are either purely imaginary or zero.
- The eigen values of a real skew-symmetric matrix are purely imaginary or zero.

The eigenvalues of an Orthogonal Matrix are of unit modulus.

Statement: Suppose A is a Orthogonal matrix and λ is an eigenvalue of A. Then $|\lambda| = 1$.

Hint: If the element of a unitary matrix A are all real, then A becomes the orthogonal Matrix.

Ex. Find the eigenvalues of Adj. A and inv. A Where

$$A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 4 & -5 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

 \clubsuit Eigenvalues of A are $\lambda = 1,2,4,6$

By properties,

Eigenvalues of Adj.A = $\frac{|A|}{\lambda}$ & |A|=Product of eigenvalues

- ∴ Eigenvalues of Adj.A = $\frac{48}{1}$, $\frac{48}{2}$, $\frac{48}{4}$, $\frac{48}{6}$
- ∴ Eigenvalues of Adj.A =48, 24,12, 8

Eigenvalues of Inv.A =
$$\frac{1}{\lambda} = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots, \dots, \dots$$

Ex. 1 Find the eigenvalues and eigen vectors of

$$6A^{-1}+A^3+2I$$
. Where $A = \begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$

Eigenvalues of A are λ = -1, -1 and corresponding eigenvector is X= [1,0]' (Can be found by students) By properties,

Eigenvalues of
$$6A^{-1}+A^3+2I = 6\frac{1}{\lambda} + \lambda^3 + 2(1)$$

∴ Eigenvalues of 6 $A^{-1}+A^3+2I$ are $(-6)+(-1)^3+2=5$, 5 with and corresponding eigenvector is X=[1,0].

Ex. Find eigen values of A and prove they are of unit modulus.

$$A = \begin{bmatrix} \frac{1+i}{2} & -\frac{1-i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}$$

The characteristic equation of A is

$$\left| \frac{1+i}{2} - \lambda - \frac{1-i}{2} \right| = 0$$

$$\therefore \left(\frac{1+i}{2} - \lambda \right) \left(\frac{1-i}{2} - \lambda \right) + \left(\frac{1+i}{2} \right) \left(\frac{1-i}{2} \right) = 0$$

$$\therefore \left\{ \left(\frac{1}{2} - \lambda \right)^2 - \left(\frac{i}{2} \right)^2 \right\} + \left\{ \left(\frac{1}{2} \right)^2 - \left(\frac{i}{2} \right)^2 \right\} = 0$$

$$\therefore \lambda^2 - \lambda + 1 = 0$$

Eigen values are: $\lambda = \frac{1+i\sqrt{3}}{2}$, $\frac{1-i\sqrt{3}}{2}$ & their modulus are 1.

Ex. If
$$A = \begin{bmatrix} sin\theta & cosec\theta & 1 \\ sec\theta & cos\theta & 1 \\ tan\theta & cot\theta & 1 \end{bmatrix}$$
 then prove that there

does not exists a real value of θ for which characteristic roots of A are -1,1 & 4.

Soln. Sum of A= sum of diagonal elements

$$= sin\theta + cos\theta + 1....(1)$$

By properties, trace of A = sum of eigen values = 4....(2)

$$sin\theta + cos\theta + 1 = 4$$
(3)

For no real value of θ equation (3) holds true.

Hence the proof.