13.3 - Arc Length in Space

Arc Length Along a Space Curve

Length of a curve r(t)=x(t)i+y(t)j+z(t)k, $a\leq t\leq b$, that is traced exactly once as t increases from t=a to t=b is

$$L=\int_{a}^{b}\sqrt{\left(rac{dx}{dt}
ight)^{2}+\left(rac{dy}{dt}
ight)^{2}+\left(rac{dz}{dt}
ight)^{2}}\,dt$$
 $L=\int_{a}^{b}\leftert v
ightert dt$

Speed on a Smooth Curve

$$rac{ds}{dt} = |v(t)|$$

Unit Tangent Vector

$$T=rac{v}{|v|}$$