OUTILS MATHÉMATIQUES 4 Résolution d'une équation différentielle du second ordre

1 Mise en forme de l'équation différentielle du second ordre

L'équation différentielle que l'on cherche à résoudre est de la forme :

$$\frac{d^2y}{dt^2} + 2\xi\omega_0\frac{dy}{dt} + \omega_0^2y = f(t) \Leftrightarrow \ddot{y} + 2\xi\omega_0\dot{y} + \omega_0^2y = f(t)$$
ou
$$\frac{d^2y}{dt^2} + \frac{\omega_0}{Q}\frac{dy}{dt} + \omega_0^2y = f(t) \Leftrightarrow \ddot{y} + \frac{\omega_0}{Q}\dot{y} + \omega_0^2y = f(t)$$

 ω_0 et ξ (ou ω_0 et Q) étant deux constantes positives et f(t) représentant le **second membre**.

L'équation sans second membre (essm) associée est :

$$\frac{d^2y}{dt^2} + 2\xi\omega_0 \frac{dy}{dt} + \omega_0^2 y = 0 \Leftrightarrow \ddot{y} + 2\xi\omega_0 \dot{y} + \omega_0^2 y = 0$$
ou
$$\frac{d^2y}{dt^2} + \frac{\omega_0}{Q} \frac{dy}{dt} + \omega_0^2 y = 0 \Leftrightarrow \ddot{y} + \frac{\omega_0}{Q} \dot{y} + \omega_0^2 y = 0$$

2 Résolution en 5 étapes

① Solution de l'équation sans second membre

L'équation caractéristique associée à l'essm est : $r^2 + 2\xi\omega_0r + \omega_0^2 = 0$, de la forme $ar^2 + br + c = 0$.

Le **discriminant** est : $\Delta = b^2 - 4ac$.

Le **discriminant réduit** est $\Delta' = \frac{\Delta}{4} = b'^2 - ac$ avec $b' = \frac{b}{2}$.

Si $\Delta > 0$ ou $\Delta' > 0$, l'équation caractéristique a **deux racines réelles distinctes** r_1 et r_2 et la solution de l'essm s'écrit :

$$y_{essm}(t) = Ae^{r_1t} + Be^{r_2t}$$

 $\operatorname{avec} A$ et B deux constantes à déterminer.

❖ Si $\Delta = 0$ ou $\Delta' = 0$, l'équation caractéristique a **une racine réelle double** r et la solution de l'essm s'écrit :

$$y_{essm}(t) = (A + Bt)e^{rt}$$

avec A et B deux constantes à déterminer.

* Si $\Delta < 0$ ou $\Delta' < 0$, l'équation caractéristique a **deux racines complexes conjuguées** $r_{1,2} = \alpha \pm j\beta$ et la solution de l'essm s'écrit :

$$y_{essm}(t) = (A\cos(\beta t) + B\sin(\beta t))e^{\alpha t} = (K\cos(\beta t + \varphi))e^{\alpha t}$$

avec A et B (ou K et φ) deux constantes à déterminer.

2 Solution particulière

On la recherche sous la **même forme** que le **second membre** f(t), qui peut être une constante, un polynôme, une exponentielle ou une fonction sinusoïdale.

3 Solution complète

C'est la **somme** de la solution de l'équation sans second membre et de la solution particulière.

$$y(t) = y_{essm}(t) + y_{P}$$

Conditions initiales

Par un raisonnement physique, on détermine les valeurs initiales de la

fonction et de sa **dérivée** en
$$t = 0$$
 : $y(0)$ et $\dot{y}(0) = \left(\frac{dy}{dt}\right)_{t=0}$

En remplaçant t par 0 dans l'expression de y(t) et dans celle de sa dérivée $\dot{y}(t) = \frac{dy}{dt}$, établie à partir de la solution complète, on **détermine les valeurs**

des constantes A et B.

© Solution finale

On **remplace** *A* **et** *B* par leurs expressions dans la solution complète.

3 Cas particulier : équation différentielle du second ordre sans dérivée première

- \triangleright Elle est obtenue pour $\xi = 0$.
- Forme canonique de l'équation différentielle

$$\frac{d^2y}{dt^2} + \omega_0^2 y = f(t) \Leftrightarrow \ddot{y} + \omega_0^2 y = f(t)$$

 ω_0 étant une constante positive et f(t) représentant le **second membre**.

Solution de l'équation sans second membre (essm)

L'équation caractéristique associée à l'essm est : $r^2 + \omega_0^2 = 0$

Le discriminant réduit est : $\Delta' = -ac = -\omega_0^2 < 0$.

L'équation caractéristique a deux racines complexes conjuguées $r_{1,2} = \pm j\omega_0$ et la solution de l'essm s'écrit :

$$\begin{aligned} y_{essm}(t) &= A\cos\left(\omega_{0}t\right) + B\sin\left(\omega_{0}t\right) \\ \text{ou } y_{essm}(t) &= C\cos\left(\omega_{0}t + \varphi\right) \text{ ou } y_{essm}(t) = D\sin\left(\omega_{0}t + \psi\right) \end{aligned}$$

avec A et B (ou C et φ ou D et ψ) deux constantes à déterminer.