PATENT

Ø 005/011

DOCKET NO.: ISIS-4976 Application No.: 10/038,335

Office Action Dated: September 27, 2005

In the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

ISIS PATENT DEPT

Claims 1-7 (canceled)

- (original) A method for inhibiting the division of a malignant mammalian cell 8. comprising contacting said malignant mammalian cell with a chemically modified oligonucleotide having no more than about 27 nucleic acid base units, said oligonucleotide having the sequence (N_xG₃₋₄)₀N_x wherein X is 1 to 8 and Q is 1 to 6, wherein said oligonucleotide modulates mammalian telomere length.
- 9. (original) The method of claim 8 which is carried out in vitro.
- 10. (original) The method of claim 8 which is carried out in vivo.

Claims 11-13 (canceled)

- 14. (previously presented) A chemically modified oligonucleotide having no more than about 27 nucleic acid base units, said oligonucleotide having the sequence (N_xG₄)_QN_X wherein X is 1 to 8 and Q is 1 to 6.
- 15. (previously presented) The oligonucleotide of claim 14 which has at least one phosphorothioate linkage.
- 16. (previously presented) The oligonucleotide of claim 14 which has at least one 2' modification of a sugar of said oligonucleotide.

PATENT

Ø 006/011

DOCKET NO.: ISIS-4976 Application No.: 10/038,335

Office Action Dated: September 27, 2005

17. (previously presented) The oligonucleotide of claim 14 which is a chimeric oligonucleotide.

18. (previously presented) The oligonucleotide of claim 14 wherein said chemical modification is:

a backbone modification selected from the group consisting of chiral phosphorothicate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, methyl phosphonate, 3'alkylene phosphonate, 5'-alkylene phosphonate, chiral phosphonate, phosphinate, phosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate, boranophosphate, morpholino, siloxane, sulfide, sulfoxide, sulfone, formacetyl, thioformacetyl, methylene formacetyl, thioformacetyl, riboacetyl, alkene containing backbone, sulfamate, methyleneimino, methylenehydrazino, sulfonate, sulfonamide, and amide; or

a modified 2' sugar moiety selected from the group consisting of F, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, O-alkynyl, S-alkynyl, N-alkynyl, O-alkyl-O-alkyl, C₁ to C₁₀ lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, NO₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, and substituted silyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl; or

a modified nucleobases selected from the group consisting of 5-methylcytosine, 5hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl adenine, 6-methyl guanine, 2-propyl adenine, 2-propyl guanine, 2-thiouracil, 2-thiothymine, 2-thiocytosine, 5halouracil, 5-holocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo thymine, 5-uracil, 4-thiouracil, 8-halo guanine, 8-amino guanine, 8-thiol guanine, 8thioalkyl guanine, 8-hydroxyl guanine, 8-halo adenine, 8-amino adenine, 8-thiol adenine, 8thioalkyl adenine, 8-hydroxyl adenine, 5-halo uracil, 5-bromo uracil, 5-trifluoromethyl uracil, 5halo cytosine, 5-bromo cytosine, 5-trifluoromethyl cytosine, 7-methylguanine, 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine, 8-azaadenine, 7-deazaguanine, 7-deazaadenine, 3**DOCKET NO.: ISIS-4976 Application No.: 10/038,335**

Office Action Dated: September 27, 2005

PATENT

Ø 007/011

deazaguanine, 3-deazaadenine, phenoxazine cytidine(1H-pyrimido(5,4-b)(1,4)benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido(5,4-b)(1,4)benzothiazin-2(3H)-one), substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido(5,4-b)(1,4)benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido(4,5-b)indol-2-one), pyridoindole cytidine (Hpyrido(3',2':4,5)pyrrolo(2,3-d)pyrimidin-2-one), 7-deaza-adenine, 7-deazaguanosine, 2aminopyridine, and 2-pyridone.

- 19. (previously presented) The oligonucleotide of claim 18 wherein the 2' sugar modification is -O-CH₂CH₂OCH₃, -O(CH₂)₂ON(CH₃)₂, -O-CH₂-O-CH₂-N(CH₂)₂, -O-CH₃, - $OCH_2CH_2CH_2NH_2$, $-CH_2-CH=CH_2$), -F, $-O((CH_2)_nO)_mCH_3$, $-O(CH_2)_nOCH_3$, $-O(CH_2)_nNH_2$, $-O(CH_2)_nOCH_3$, - $O(CH_2)_nCH_3$, $-O(CH_2)_nONH_2$, or $-O(CH_2)_nON((CH_2)_nCH_3))_2$, where n and m are from 1 to about 10.
- 20. (previously presented) The oligonucleotide of claim 14 wherein said oligonucleotide modulates mammalian telomere length.
- 21. (previously presented) A chemically modified oligonucleotide having no more than about 27 nucleic acid base units, said oligonucleotide having the sequence (N_xG₄N_y)₀ or (G₄N_xG₄)₀ wherein X is 1 to 8, Y is 1 to 8, and Q is 1 to 4, wherein said oligonucleotide modulates mammalian telomere length.
- 22. (previously presented) The oligonucleotide of claim 21 which has at least one phosphorothioate linkage.
- 23. (previously presented) The oligonucleotide of claim 21 which has at least one 2' modification of a sugar of said oligonucleotide.
- 24. (previously presented) The oligonucleotide of claim 21 which is a chimeric

PATENT

Ø 008/011

DOCKET NO.: ISIS-4976 Application No.: 10/038,335

Office Action Dated: September 27, 2005

oligonucleotide.

25. (previously presented) The oligonucleotide of claim 21 wherein said chemical modification is:

a backbone modification selected from the group consisting of chiral phosphorothicate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, methyl phosphonate, 3'alkylene phosphonate, 5'-alkylene phosphonate, chiral phosphonate, phosphinate, phosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate, boranophosphate, morpholino, siloxane, sulfide, sulfoxide, sulfone, formacetyl, thioformacetyl, methylene formacetyl, thioformacetyl, riboacetyl, alkene containing backbone, sulfamate, methyleneimino, methylenehydrazino, sulfonate, sulfonamide, and amide; or

a modified 2' sugar moiety selected from the group consisting of F, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, O-alkynyl, S-alkynyl, N-alkynyl, O-alkyl-O-alkyl, C₁ to C₁₀ lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-aralkyl, O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, NO₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, and substituted silyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl; or

a modified nucleobases selected from the group consisting of 5-methylcytosine, 5hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl adenine, 6-methyl guanine, 2-propyl adenine, 2-propyl guanine, 2-thiouracil, 2-thiothymine, 2-thiocytosine, 5halouracil, 5-holocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo thymine, 5-uracil, 4-thiouracil, 8-halo guanine, 8-amino guanine, 8-thiol guanine, 8thioalkyl guanine, 8-hydroxyl guanine, 8-halo adenine, 8-amino adenine, 8-thiol adenine, 8thioalkyl adenine, 8-hydroxyl adenine, 5-halo uracil, 5-bromo uracil, 5-trifluoromethyl uracil, 5halo cytosine, 5-bromo cytosine, 5-trifluoromethyl cytosine, 7-methylguanine, 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine, 8-azaguanine, 7-deazaguanine, 7-deazaguanine, 3deazaguanine, 3-deazaadenine, phenoxazine cytidine(1 H-pyrimido(5,4-b)(1,4)benzoxazin**DOCKET NO.:** ISIS-4976 **Application No.: 10/038,335**

Office Action Dated: September 27, 2005

PATENT

@ 009/011

2(3H)-one), phenothiazine cytidine (1H-pyrimido(5,4-b)(1,4)benzothiazin-2(3H)-one), substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido(5,4-b)(1,4)benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido(4,5-b)indol-2-one), pyridoindole cytidine (Hpyrido(3',2':4,5)pyrrolo(2,3-d)pyrimidin-2-one), 7-deaza-adenine, 7-deazaguanosine, 2aminopyridine, and 2-pyridone.

26. (previously presented) The oligonucleotide of claim 25 wherein the 2' sugar modification is -O-CH₂CH₂OCH₃, -O(CH₂)₂ON(CH₃)₂, -O-CH₂-O-CH₂-N(CH₂)₂, -O-CH₃, - $OCH_2CH_2CH_2NH_2$, $-CH_2-CH=CH_2$), -F, $-O((CH_2)_nO)_mCH_3$, $-O(CH_2)_nOCH_3$, $-O(CH_2)_nNH_2$, $-O(CH_2)_nOCH_3$, - $O(CH_2)_nCH_3$, $-O(CH_2)_nONH_2$, or $-O(CH_2)_nON((CH_2)_nCH_3))_2$, where n and m are from 1 to about 10.