

RFID ALKALMAZÁSI LEHETŐSÉGEI

(...és korlátai)

Varga Tamás BME MIK

tvarga@mik.bme.hu

Tartalom

- Azonosítási lehetőségek
- Történeti áttekintés
- Egy RFID rendszer felépítése
- Rádiós megvalósítás jellemzői
 - Frekvenciák
 - Csatolások
 - Működési módok
 - Adattárolási képességek
 - Többes leolvasás
- Szabványok
- NFC
- Alkalmazási példák
 - Intelligens bevásárlókocsi
 - RFID őrszem
 - Egyéb rendszerek

AZONOSÍTÁSI MÓDSZEREK

Azonosítási lehetőségek

Tudás

- Jelszó
- PIN- kód

Birtok

- Kulcs
- Vonalkód
- Mágneskártya
- Chipkártya
- Smart card
- RFID

Biometria

- Hang
- Ujjlenyomat
- Arc
- Írisz
- Retina

Rendszerek

Biometrikus azonosító rendszerek

- Retina alapú azonosító rendszerek
- Írisz alapú azonosító rendszerek
- Ujjlenyomat azonosító rendszerek
- Beszélő felismerés
- Aláírás azonosítás
- Arc azonosítás
- Kézfej alak alapján történő azonosítás
- Ujjak geometriája alapján történő azonosítás
- Tenyér azonosítás

Birtok alapú azonosító rendszerek

- Vonalkód alapú azonosító rendszerek
- Optikai karakterfelismerés alapú azonosító rendszerek
- Smart card-ok, memóriakártyák
- Mágnescsíkos kártyák
- RFID rendszerek

Előadás címe

Biometrikus azonosítás

Módszer vs. Relatív pontosság

- Retina-azonosítás 1:10 000000
- Írisz-vizsgálat 1:131,000
- Ujjlenyomat-azonosítás 1:500
- Hang-azonosítás 1:50
- Arc-felismerés N/A

Előadás címe

Biometrikus azonosítás

Módszer vs. Rekordméret (byte)

- Retina-azonosítás 35
- Írisz-vizsgálat 256
- Ujjlenyomat-azonosítás 512-1000*
- Hang-azonosítás N/A
- Arc-felismerés N/A

*FBI: '60-as évektől: ma több mint 70 millió ujjlenyomat

TÖRTÉNETI ÁTTEKINTÉS

Történeti áttekintés – a kezdetek

- Hadiipari alkalmazással kezdődött
 - A II. világháborúban a britek kifejlesztették a radart
 - Sir Robert Alexander Wattson-Watt
 - A radar kiegészítése azonosítással
 - IFF Identification Friend or Foe
- Harry Stockman, "Communication by Means of Reflected Power" (visszavert hullámokon alapuló kommunikáció) 1948

Történeti áttekintés – a 60-as, 70-es évek

- Kereskedelmi alkalmazások
- Sensormatic → EAS Electronic Article Surveillance
 - 1 bites tag (olcsó és könnyen használható)
 - Nehezen terjedt el
 - Megalapozta az RFID elterjedését
- Matt Lezin és Tom Wilson üvegkapszulába ágyazott
 RFID-t "épít be" szarvasmarhába az 1970-es években

Történeti áttekintés – a 80-as, 90-es évek

- Gyakorlati alkalmazások
 - Logisztika
 - Útdíj (mikrohullámú és induktív csatolású)
 - Beléptetés
 - Texas (TIRIS)
- IBM + Wallmart → eladták az Intermec cégnek

Történeti áttekintés – a 90-es évek vége

UHF RFID lendülete: Auto-ID

Uniform Code Council, az EAN International, a Procter & Gamble és a Gillette

Csak egy szám a tag-ben (olcsóbb)

 ■ EPC számozási eljárás: Uniform Code Council + EAN International → EPCglobal

Történeti áttekintés – a jelen

Történeti áttekintés – a jelen

2003	2004	2005	2006	2007	2008
Metro	Egyre több	Wal-Mart	Wal-Mart	Wal-Mart:	RFID kiadások
	üzleti	részleges	előírások	közel a	stagnálnak
"Future	alkalmazás	előírása	körének	100%-hoz	
Store"			bővítése		
Az AutoID	Növekvö	Olvasók	Firmware	Részleges	Még mindig túl
EPCglobal-lá	viszonteladói	árának	frissítések	frissítések	magas költségek a
válik	igény	esése			termék-szintű
					nyomon követéshez
Wal-Mart	Első C1G2	C1G2 tag-	Egyre több	A korábbi	A főbb átállások
kezdeti	tag-ek	ek	viszonteladó	elterjedtségi	lezajlanak
alkalmazások	megjelenése	elterjedése	tér át RFID-	szint újbóli	
			re	elérése	
Passzív EPC	Passzív EPC	Passzív	Passzív EPC	Passzív	Passzív EPC tag-ek
tag-ek 0,50\$-	tag-ek 0,50\$	EPC tag-ek	tag-ek 0,15\$	EPC tag-ek	0,05\$ körül
1\$ között	körül	0,35\$ körül	körül	0,10\$ körül	

Egy RFID rendszer felépítése

- Transzponder, mely az azonosítani kívánt objektumon helyezkedik el
- Olvasó, mely olvasni és/vagy írni is képes a transzpondert
- Háttér infrastruktúra

Rádiós megvalósítási lehetőségek – RFID rendszerek frekvenciák szerint

LF rendszerek (<135 kHz)

- · induktív csatolás, kis távolság
- Legelterjedtebbek (technológia kiforrott)
- · Legkevésbé nyelődik folyadékokban, illetve fémekben

HF rendszerek (13,56 MHz)

- induktív csatolást és kapacitív csatolást használók is
- kicsi, vagy közepes olvasási távolság
- Jól áthatolnak a fémes anyagokon és folyadékokon
- Smart card

UHF rendszerek (EU: 868 MHz, USA 915 MHz)

- Kapacitív csatolás
- nagy olvasási távolsággal és gyors adatátvitelisebességgel rendelkeznek
- sok tag olvasása esetén is megfelelő megoldás
- az IC technológia fejlődése révén az LF és HF tageknél olcsóbbak

Mikrohullámú rendszerek (2,45 GHz; 5,8 GHz)

- hasonló olvasási tulajdonságokkal rendelkeznek, mint az UHF
- még gyorsabb adatátviteli-sebesség
- fém és folyadékok közelében ezek olvasási sebessége csökken leginkább

RFID frekvenciák és alkalmazási lehetőségek

Frekvencia	Előnyök	Hátrányok	Alkalmazási
			területek
	Legelterjedtebb változat	1,5 méternél kisebb	Állatazonosítás
		olvasási távolság	
Alacsony	Fémes környezetben is		
(9-135 kHz)	működőképes	Nem EPC szabványos	Könyvtári
	_	-	nyilvántartás
	Jelenleg is elterjedt		Raklapazonosítás
Magas (13,56 MHz)	Nedves környezetben is működik		Betegazonosítás
			Reptéri alkalmazások
	1,5 méternél nagyobb	Elnyelődés veszélye	Jármű
	olvasási távolság		nyomonkövetés
Ultra magas			
(300-1200 MHz)	Nedves környezetben is	Japánban nem	
	működőképes	használható	
	Növekvő elterjedés		
Mikrohullám	1,5 méternél nagyobb		Járműbeléptetés
(2,45, vagy 5,8	olvasási távolság		
GHz)			

A fizikai környezet hatásai

Anyag \ Frekv.	LF	HF	UHF	Mikrohullám
Ruházat	Áthatol rajta	Áthatol rajta	Áthatol rajta	Áthatol rajta
Száraz fa	Áthatol rajta	Áthatol rajta	Áthatol rajta	Elnyelődik
Grafit	Áthatol rajta	Áthatol rajta	Visszaverődik	Visszaverődik
Folyadékok (ált.)	Áthatol rajta	Áthatol rajta	Elnyelődik	Elnyelődik
Fémek (fólia)	Áthatol rajta	Áthatolhat	Visszaverődik	Visszaverődik
Motorolaj	Áthatol rajta	Áthatol rajta	Áthatol rajta	Áthatol rajta
Papír termékek	Áthatol rajta	Áthatol rajta	Áthatol rajta	Áthatol rajta
Műanyagok (ált.)	Áthatol rajta	Áthatol rajta	Áthatol rajta	Áthatol rajta
Sampon	Áthatol rajta	Áthatol rajta	Elnyelődik	Elnyelődik
Víz	Áthatol rajta	Áthatol rajta	Elnyelődik	Elnyelődik
Nedves fa	Áthatol rajta	Áthatol rajta	Elnyelődik	Elnyelődik

Működési módok

- Full Duplex:
 - az olvasó által kisugárzott jel frekvenciájának alharmonikusán
 - frekvenciájától teljesen függetlenül (ún. anharmonikus frekvencián)
 - olvasótól a transzponder felé irányuló energia folyamatos
- Half Duplex: Uplink-downlink adatcsere felváltva működik

Szekvenciális: energiaátvitel csak az olvasó → transzponder irányú

kommunikációra

RFID alkalmazási lehetőségei

Működési módok

- Aktív önálló energiaellátás (például telep)
- Félpasszív önálló energiaellátás, de a kommunikáció a passzív rendszereknél megszokott
- Passzív a működéséhez szükséges energiát az olvasótól kapja

Csatolási módok

- Csatolás: Az a mód, melynek segítségével az olvasó és a transzponder kapcsolatba lépnek egymással
- Távolság:
 - Szoros (close) <1 cm
 - Közeli (vicinity) <1 m
 - Távoli (long-range)
- Csatolás fizikai tulajdonságai:
 - Mágneses
 - Induktív
 - Kapacitív
 - Backscatter (visszaszórásos)

Mágneses csatolás

- Hasonlít az induktív csatoláshoz (transzformátor)
- Különbség: az olvasó egy kör, vagy U alakú tekércseléssel ellátott ferrit magos tekercs
- A transzpondernek az olvasó 1 cm-es körzetében kell lennie a transzformátor légrésében.
- A távolság nagyon kicsi
- A csatolás erős → nagy teljesítményfelvételű chipek is használhatók

Induktív csatolás

- Az olvasó antennája egy erős nagyfrekvenciás EM mező (rezgőkör) → a transzponder tekercsében feszültség indukálódik → chip energiaellátása.
- Antennatekercs + C1 hangolva: a tekercsen eső feszültség maximális (transzformátor gyenge csatolással)
- A teljesítmény-átvitel hatékonysága függ:
 - Frekvencia
 - Menetek száma
 - A transzponder antennatekercse által körülzárt terület
 - A két tekercs egymáshoz képesti szöge
- A frekvencia növelésével a tekercs szükséges induktivitása, így annak menetszáma csökken.
 - 135 kHz-es frekvencián például 100-1000
 - 13,56 MHz-en kb. 3-10
- Legtöbbször passzív működés

Kapacitív (elektromos) csatolás

- Egy elektródapár vesz részt benne
- A két lemez egymással párhuzamos
- A transzponder chipje a transzponder két lemeze közt helyezkedik el
- Az egyik az olvasó lemezével
- A másik a Földdel képez kondenzátort.
- A terhelés moduláció alkalmazható
 - ellenállás kapcsolgatásával (ohmikus)
 - egy kondenzátor kapcsolgatásával (transzponder rezonancia frekvenciáját) ezáltal az olvasó antennáján eső feszültséget amplitúdóban és fázisban egyaránt modulálja

Adattárolási képességek

- Low-end rendszerek
 - 1-bites tagek (EAS)
 - Csak olvasható rendszerek (pár bájtos, előre programozott)
 - Például állatazonosítás (ISO11785)
- Mid-range rendszerek
 - Nagy, írható-olvasható memória (EEPROM/SRAM)
 - Ütközésfeloldó algoritmusok használata jellemző
 - Egyszerűbb parancsok
- High-end rendszerek
 - Smart card operációs rendszer
 - Komplex titkosító, hitelesítő algoritmusok
 - Tipikus rendszerek: ISO14443

Többes leolvasás – ütközések elkerülése, feloldása

- Bináris fa bejárásán alapuló protokollok
- ALOHA- alapú protokollok
 - Réselt ALOHA
 - DFSA
- Logisztikában használt EPCglobal Class-1 Gen2 tagek:
 DFSA

Többes leolvasás Gen2 tagekben

- DFSA Dynamic Framed Slotted ALOHA
- Véletlenszámokon alapuló algoritmus
 - Q bit széles véletlenszámok
- Ha a résszámláló 0, a tag válaszol
- OMNeT++ szimulátor

Szabványok – a Gen2 RFID szabvány

- 860- 960 MHz működési frekvencia
- Backscatter csatolás
- Nagy átviteli sebesség
- Nagy leolvasási sebesség DFSA algoritmus
- KILL parancs
- Jelszavak

- Near Field Communication
- HF (13,56 MHz) rádiós kommunikáció
- Körülbelül maximum 10 cm távolság
- ISO 18000-3 RFID szabvány
- 106 424 kbit/s adatátviteli sebesség
- Két működési mód
 - Aktív
 - Mindkét résztvevő fél áramforrással kell, hogy rendelkezzen
 - Felváltva adás
 - Passzív

NFC és RFID

- NFC eszköz
 - Képes tagként viselkedni
 - MIFARE
 - Képes RFID olvasóként viselkedni

NFC alkalmazások

- Fizetési rendszerek
 - Google Wallet
- Egyszerűbb konfiguráció
 - Bluetooth, WLAN
- RFID- tól örökölt lehetőségek
- NDEF NFC Data Exchange Format
 - URI-k, MIME-type-pal rendelkező adatok átvitele

ALKALMAZÁSI LEHETŐSÉGEK

Alkalmazási lehetőségek – RFID bevásárlókocsi

- Lehetséges megvalósítások
 - A kocsi tartalmának folyamatos monitorozása
 - A kocsi feletti tér folyamatos monitorozása
 - Kézi beolvasás
 - Beolvasás fizetéskor
- Problémák
 - Túl kicsi olvasási távolság
 - Túl nagy olvasási távolság
 - Szabványok korlátozásai
 - Emberi tényezők
 - Kitakarás

Alkalmazási lehetőségek – RFID bevásárlókocsi

- Tesztek 3 antennával
 - Egyelemű, négyzet alakú antenna (összehasonlítási céllal)
 - Miniatürizált, téglalap alakú antenna
 - Erősen miniatürizált, téglalap alakú antenna

Alkalmazási lehetőségek – RFID bevásárlókocsi – antennák

Alkalmazási lehetőségek – RFID bevásárlókocsi – antennák

Alkalmazási lehetőségek – RFID bevásárlókocsi – antennák

Alkalmazási lehetőségek – RFID bevásárlókocsi – prototípus

- 1:Egyelemű, négyzet alakú antenna
- 2: Miniatürizált, téglalap alakú antenna
- 3: Erősen miniatürizált, téglalap alakú antenna
- 4: PDA + RFID olvasó

Alkalmazási lehetősége – RFID "őrszem" – célok

- Passzív tag-ek védelme
 - idegen leolvasások,
 - törlések vagy
 - írások ellen
- A tagek módosítása nélkül
- Intelligens aktív eszközzel
- Az olvasási (törlési, írási) műveletek meghiúsítása zavarással

Alkalmazási lehetősége – RFID őrszem – működési elv

Alkalmazási lehetőségek – RFID őrszem – mérések

Az olvasó jelének spektruma + a tag-ek válaszfrekvenciája

(a tag FM0 kódolást használ, és 160kHz-es válaszfrekvenciát)

Alkalmazási lehetőségek – RFID őrszem – a zavaró jel

A beállított zavarjel: PRBS16 álvéletlen jel, 65 ksymbol/sec sebeség, Gray kódolással, ASK moduláció, 100%-os mod. mélység, rectangular ablakozás. A sárga az olvasó és a tagválaszt, a kék szín a zavarjelet mutatja

Alkalmazási lehetőségek – RFID őrszem – az elkészült "buta őrszem"

Alkalmazási lehetőségek – RFID őrszem – az "okos őrszem"

Alkalmazási lehetőségek – RFID őrszem – eredmények

- Egy csatornán működik
- Alvó állapotban figyel
- Olvasási kísérlet esetén ébred fel
- A kommunikációt ellehetetleníti

Alkalmazási lehetőségek – egyéb alkalmazási lehetőségek

- Logisztika
- Egészségügy
 - Aktív RFID rendszerek egészségügyi alkalmazásra
 - Betegek azonosítása
 - Gyógyszerek azonosítása
- Könyvtár
 - HF rendszerek, dán adatmodell
 - UHF rendszerek
 - Felhasználás áruvédelemre
- Meglepő felhasználási módok

Kérdések?

KÖSZÖNÖM A FIGYELMET!

Varga Tamás BME MIK

tvarga@mik.bme.hu