Homework 1

Richeek Das - 66113700

September 1, 2025

Problem B1 (1-7 Lee)

(a) A line passing through points N and $x \in \mathbb{S}^n \setminus \{N\}$ can be parameterized as:

$$L(t) = N + t(x - N) \text{ for } t \in \mathbb{R}$$

$$= (0, 0, \dots, 0, 1) + t((x^1, x^2, \dots, x^{n+1}) - (0, 0, \dots, 0, 1))$$

$$= (tx^1, tx^2, \dots, tx^n, 1 + t(x^{n+1} - 1))$$

We find the intersection of this line with the hyperplane $H = \{x \in \mathbb{R}^{n+1} : x^{n+1} = 0\}$ by setting the last coordinate to zero and solving for t:

$$0 = 1 + t(x^{n+1} - 1)$$

$$\Rightarrow t = \frac{1}{1 - x^{n+1}}$$

The intersection point is then:

$$L\left(\frac{1}{1-x^{n+1}}\right) = \left(\frac{x^1, x^2, \dots, x^n}{1-x^{n+1}}, 0\right) = (u, 0)$$

Therefore, the stereographic projection map σ from $\mathbb{S}^n \setminus \{N\}$ to \mathbb{R}^n is given by:

$$\sigma(x) = u = \frac{(x^1, x^2, \dots, x^n)}{1 - x^{n+1}}$$

Similarly, we can find the stereographic projection map from the south pole: $\tilde{\sigma}: \mathbb{S}^n \setminus \{S\} \to \mathbb{R}^n$ where $S = (0, 0, \dots, 0, -1)$:

$$\tilde{\sigma}(x) = \frac{(x^1, x^2, \dots, x^n)}{1 + x^{n+1}}$$

(b) We show that σ is bijective. Let us propose:

$$\sigma^{-1}(u) = \frac{\left(2u^1, 2u^2, \dots, 2u^n, |u|^2 - 1\right)}{|u|^2 + 1}$$

We can show that the image of σ^{-1} lies on $\mathbb{S}^n \setminus \{N\}$:

$$\left|\sigma^{-1}(u)\right|^{2} = \frac{\sum_{i=1}^{n} (2u^{i})^{2} + (|u|^{2} - 1)^{2}}{(|u|^{2} + 1)^{2}}$$
$$= \frac{4|u|^{2} + |u|^{4} - 2|u|^{2} + 1}{|u|^{4} + 2|u|^{2} + 1} = 1$$

So, $\sigma^{-1}(u) \in \mathbb{S}^n$. Also, $\sigma^{-1}(u) \neq N$ since the last coordinate is $\frac{|u|^2-1}{|u|^2+1} \neq 1$ for any $u \in \mathbb{R}^n$. Thus, $\sigma^{-1}(u) \in \mathbb{S}^n \setminus \{N\}$.

Next, we show that σ and σ^{-1} are inverses of each other:

$$\sigma(\sigma^{-1}(u)) = \left(\frac{2u^1, 2u^2, \dots, 2u^n}{|u|^2 + 1}\right) / \left(1 - \frac{|u|^2 - 1}{|u|^2 + 1}\right) = \frac{(2u^1, 2u^2, \dots, 2u^n)}{(|u|^2 + 1) \cdot \frac{2}{|u|^2 + 1}} = u$$

Let us calculate $|\sigma(x)|^2 = \frac{1+x^{n+1}}{1-x^{n+1}}$:

$$\sigma^{-1}(\sigma(x)) = \frac{\left(\frac{2x^1}{1-x^{n+1}}, \frac{2x^2}{1-x^{n+1}}, \dots, \frac{2x^n}{1-x^{n+1}}, \frac{1+x^{n+1}}{1-x^{n+1}} - 1\right)}{\frac{\frac{1+x^{n+1}}{1-x^{n+1}} + 1}{1-x^{n+1}} + 1}$$

$$= \frac{\left(\frac{2x^1}{1-x^{n+1}}, \frac{2x^2}{1-x^{n+1}}, \dots, \frac{2x^n}{1-x^{n+1}}, \frac{2x^{n+1}}{1-x^{n+1}}\right)}{\frac{2}{1-x^{n+1}}} = (x^1, x^2, \dots, x^n, x^{n+1}) = x$$

Therefore, σ is bijective with inverse σ^{-1} .

(c) The transition map from the north pole chart to the south pole chart is given by $\tilde{\sigma} \circ \sigma^{-1}$. We can write this composition as:

$$\tilde{\sigma} \circ \sigma^{-1}(u) = \tilde{\sigma}\left(\frac{\left(2u^{1}, 2u^{2}, \dots, 2u^{n}, |u|^{2} - 1\right)}{|u|^{2} + 1}\right) = \frac{\left(\frac{2u^{1}}{|u|^{2} + 1}, \frac{2u^{2}}{|u|^{2} + 1}, \dots, \frac{2u^{n}}{|u|^{2} + 1}\right)}{1 + \frac{|u|^{2} - 1}{|u|^{2} + 1}} = \frac{u}{|u|^{2}}$$

To verify that the atlas defines a smooth structure we check that the transition map is smooth C^{∞} . The map $\tilde{\sigma} \circ \sigma^{-1}$ is a rational function with denominator $|u|^2 = \sum_{i=1}^n (u^i)^2$ which is non-zero for all $u \in \mathbb{R}^n \setminus \{0\}$. Therefore, the transition map is smooth and the atlas defines a smooth structure on \mathbb{S}^n .

(d) We want to show that this smooth structure is the same as the standard smooth structure. This requires us to show that for each of the 2n + 2 coordinate charts in the example, and each of the two stereographic projection charts, the transition maps are smooth.

Consider the standard chart domain: $U_i^+ = \{x \in \mathbb{S}^n : x^i > 0\}$ and the standard chart

 $\begin{array}{ll} \text{map: } \phi_i^+(x^1,x^2,\dots,x^{n+1}) = (x^1,\dots,x^{i-1},x^{i+1},\dots,x^{n+1}). \ \ \text{Inverse of this map is given by} \\ (\phi_i^+)^{-1}(x^1,\dots,x^{i-1},x^{i+1},\dots,x^{n+1}) = (x^1,\dots,x^{i-1},\sqrt{1-\Sigma_{j\neq i}(x^j)^2},x^{i+1},\dots,x^{n+1}). \end{array}$

Now consider the transformation from the stereographic projection chart at the north pole to the standard chart at U_i^+ :

$$\phi_i^+ \circ \sigma^{-1}(u) = \phi_i^+ \left(\frac{\left(2u^1, 2u^2, \dots, 2u^n, |u|^2 - 1 \right)}{|u|^2 + 1} \right)$$

$$= \left(\frac{2u^1}{|u|^2 + 1}, \dots, \frac{2u^{i-1}}{|u|^2 + 1}, \frac{2u^{i+1}}{|u|^2 + 1}, \dots, \frac{2u^n}{|u|^2 + 1}, \frac{|u|^2 - 1}{|u|^2 + 1} \right)$$

This is a rational function with denominator $|u|^2 + 1$ which is non-zero for all $u \in \mathbb{R}^n$. Therefore, the transition map is smooth. Similarly, consider the transformation from the standard chart at U_i^+ to the stereographic projection chart at the north pole:

$$\sigma \circ (\phi_i^+)^{-1}(x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^{n+1}) = \sigma \left(x^1, \dots, x^{i-1}, \sqrt{1 - \sum_{j \neq i} (x^j)^2}, x^{i+1}, \dots, x^{n+1} \right)$$

$$= \frac{\left(x^1, \dots, x^{i-1}, \sqrt{1 - \sum_{j \neq i} (x^j)^2}, x^{i+1}, \dots, x^n \right)}{1 - x^{n+1}}$$

This is a rational function with denominator $1-x^{n+1}$ which is non-zero for all $x\in U_i^+$ since $x^{n+1}\leq 1$ on \mathbb{S}^n and $x^{n+1}=1$ only at the north pole which is not in U_i^+ . Therefore, the transition map is smooth.

Problem B2 (1-9 Lee)

Let \mathbb{CP}^n be the set of all 1-dimensional complex-linear subspaces of \mathbb{C}^{n+1} . This is an equivalence relation on $\mathbb{C}^{n+1} \setminus \{0\}$, where $z \sim w$ if $z = \lambda w$ for some $\lambda \in \mathbb{C} \setminus \{0\}$.

Manifold To show that \mathbb{CP}^n is a topological manifold, we construct an atlas. For each $j \in \{0, \dots, n\}$, let $U_j = \{[z^0 : \dots : z^n] \in \mathbb{CP}^n : z^j \neq 0\}$. Each U_j is open in the quotient topology because its preimage under the projection map $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ is $\pi^{-1}(U_j) = \{z \in \mathbb{C}^{n+1} \setminus \{0\} : z^j \neq 0\}$, which is open in $\mathbb{C}^{n+1} \setminus \{0\}$. These sets form an open cover of \mathbb{CP}^n (quotient topology). We define a chart map $\phi_j : U_j \to \mathbb{C}^n$ by

$$\phi_j([z^0:\dots:z^n]) = \left(\frac{z^0}{z^j},\dots,\frac{z^{j-1}}{z^j},\frac{z^{j+1}}{z^j},\dots,\frac{z^n}{z^j}\right)$$

The map ϕ_j is a homeomorphism from U_j to \mathbb{C}^n . Since \mathbb{C}^n is homeomorphic to \mathbb{R}^{2n} , this shows that \mathbb{CP}^n is locally Euclidean of dimension 2n.

The space $\mathbb{C}^{n+1}\setminus\{0\}$ is second-countable, and the quotient space of a second-countable space is second-countable. To show \mathbb{CP}^n is Hausdorff, consider two distinct points $[z],[w]\in\mathbb{CP}^n$. This means z and w are not scalar multiples of each other. We can choose representatives such that |z|=|w|=1. The angle between them is non-zero. We can find disjoint open neighborhoods of z and w in $\mathbb{C}^{n+1}\setminus\{0\}$ that are invariant under multiplication by complex numbers of modulus 1. Their projections to \mathbb{CP}^n will be disjoint open neighborhoods of [z] and [w]. Thus, \mathbb{CP}^n is a 2n-dimensional topological manifold.

Compactness Let $S^{2n+1}=\{z\in\mathbb{C}^{n+1}:|z|^2=\sum_{i=0}^n|z^i|^2=1\}$. This is the unit sphere in $\mathbb{C}^{n+1}\cong\mathbb{R}^{2n+2}$, which is compact. The restriction of the projection map $\pi:S^{2n+1}\to\mathbb{CP}^n$ is surjective. Since the continuous image of a compact set is compact, \mathbb{CP}^n is compact.

Smooth Structure We show that the atlas $\{(U_j,\phi_j)\}_{j=0}^n$ defines a smooth structure. Let $u=(u^0,\ldots,u^{j-1},u^{j+1},\ldots,u^n)$ be coordinates on \mathbb{C}^n for the chart ϕ_j , and $v=(v^0,\ldots,v^{k-1},v^{k+1},\ldots,v^n)$ for the chart ϕ_k . The transition map $\phi_k\circ\phi_j^{-1}$ is defined on $\phi_j(U_j\cap U_k)$. For $u\in\phi_j(U_j\cap U_k)$, we have:

$$\phi_i^{-1}(u) = [u^0 : \dots : u^{j-1} : 1 : u^{j+1} : \dots : u^n].$$

In this equivalence class, the k-th component is u^k (if $k \neq j$) or 1 (if k = j). Since we are in U_k , this component is non-zero. Then $\phi_k \circ \phi_j^{-1}(u)$ is obtained by dividing all components by the k-th component. For k < j:

$$v^{i} = \begin{cases} u^{i}/u^{k} & i < k \\ u^{i+1}/u^{k} & k \le i < j-1 \\ 1/u^{k} & i = j-1 \\ u^{i}/u^{k} & j-1 < i \end{cases}$$

Each component of the transition map is a rational function of the complex variables u^i . Since we identify \mathbb{C}^n with \mathbb{R}^{2n} by $(x^1+iy^1,\ldots)\mapsto (x^1,y^1,\ldots)$, these maps are smooth where the denominator is non-zero, which is true on $U_i\cap U_k$. The atlas defines a smooth structure on \mathbb{CP}^n .

Problem D

We want to show that the volume of the unit 3-sphere \mathbb{S}^3 in \mathbb{R}^4 is $2\pi^2$. The equation for \mathbb{S}^3 is $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$.

Let's group the coordinates into two pairs: (x_1, x_2) and (x_3, x_4) . Let $r_1 = \sqrt{x_1^2 + x_2^2}$ be the radius in the x_1x_2 -plane and $r_2 = \sqrt{x_3^2 + x_4^2}$ be the radius in the x_3x_4 -plane. The equation for the 3-sphere becomes $r_1^2 + r_2^2 = 1$.

Since r_1 and r_2 are non-negative, this equation describes a quarter circle in the (r_1, r_2) -plane. We can parameterize this quarter circle with an angle $\psi \in [0, \pi/2]$:

$$r_1 = \cos \psi, \quad r_2 = \sin \psi$$

For any fixed value of ψ between 0 and $\pi/2$, we have two separate circles:

- $x_1^2 + x_2^2 = \cos^2 \psi$: A circle in the $x_1 x_2$ -plane with radius $\cos \psi$. Its circumference is $2\pi \cos \psi$.
- $x_3^2 + x_4^2 = \sin^2 \psi$: A circle in the x_3x_4 -plane with radius $\sin \psi$. Its circumference is $2\pi \sin \psi$.

The set of points in \mathbb{R}^4 for a fixed ψ is the product of these two circles, which forms a torus. The surface area of this torus is the product of the two circumferences: $(2\pi\cos\psi)(2\pi\sin\psi) = 4\pi^2\cos\psi\sin\psi$. The 3-sphere can be seen as a union of these tori parameterized by ψ . To find the total volume of the 3-sphere, we can integrate the surface area of these tori.

We integrate along the arc of the quarter circle in the (r_1, r_2) -plane. The arc length element ds for the curve $(r_1(\psi), r_2(\psi)) = (\cos \psi, \sin \psi)$ is $ds = d\psi$. The volume of the 3-sphere is the integral of the torus surface area along this arc:

$$Vol(\mathbb{S}^3) = 4\pi^2 \int_0^{\pi/2} \frac{1}{2} \sin(2\psi) \, d\psi$$

$$= 2\pi^2 \left[-\frac{1}{2} \cos(2\psi) \right]_0^{\pi/2}$$

$$= 2\pi^2 \left(-\frac{1}{2} \cos(\pi) - \left(-\frac{1}{2} \cos(0) \right) \right)$$

$$= 2\pi^2 \left(\frac{1}{2} + \frac{1}{2} \right) = 2\pi^2$$

Thus, the volume of the unit 3-sphere is $2\pi^2$.

Problem E

We want to show that the Grassmann manifold $G_k(\mathbb{R}^n)$ of oriented k-planes in \mathbb{R}^n is a smooth manifold. We will do this by constructing an atlas of coordinate charts and showing that the transition maps are smooth.

An oriented k-plane can be represented by an ordered, orthonormal basis $\{v_1, \ldots, v_k\}$. We can represent this basis as an $n \times k$ matrix $V = [v_1|\cdots|v_k]$ such that $V^TV = I_k$.

Let $\alpha = (\alpha_1, \dots, \alpha_k)$ be an ordered multi-index with $1 \le \alpha_1 < \dots < \alpha_k \le n$. There are $\binom{n}{k}$ such multi-indices. For each α , let V_{α} be the $k \times k$ submatrix of V formed by the rows indexed by α .

We define a collection of open sets $\{U_{\alpha}\}$ that cover $G_k(\mathbb{R}^n)$. Let U_{α} be the set of all oriented k-planes whose representing matrix V has an invertible submatrix V_{α} .

$$U_{\alpha} = \{ [V] \in G_k(\mathbb{R}^n) : \det(V_{\alpha}) \neq 0 \}$$

These sets cover the manifold because for any k-plane, we can always find a basis such that the corresponding matrix V has at least one invertible $k \times k$ submatrix.

Now, we define the coordinate charts $\phi_{\alpha}: U_{\alpha} \to M_{k \times (n-k)}(\mathbb{R}) \cong \mathbb{R}^{k(n-k)}$. For any plane in U_{α} , we can choose a unique basis (and thus a unique representative matrix V) such that $V_{\alpha} = I_k$. This is our canonical representative for the plane in this chart. Let α^c be the multi-index of the n-k rows not in α . Let V_{α^c} be the $(n-k) \times k$ submatrix of V with rows from α^c . The chart map is defined as:

$$\phi_{\alpha}([V]) = (V_{\alpha^c})^T$$

This map takes a plane in U_{α} and maps it to a $k \times (n-k)$ matrix, which we identify with a point in $\mathbb{R}^{k(n-k)}$. The map is well-defined and bijective.

To show this is a smooth manifold, we must check that the transition maps are smooth. Let's consider two overlapping charts, $(U_{\alpha}, \phi_{\alpha})$ and $(U_{\beta}, \phi_{\beta})$. Let $X = \phi_{\alpha}([V])$ and $Y = \phi_{\beta}([V])$ for some plane $[V] \in U_{\alpha} \cap U_{\beta}$.

From the definition of ϕ_{α} , the canonical matrix V for the chart U_{α} has $V_{\alpha} = I_k$ and $(V_{\alpha^c})^T = X$. We can reconstruct V from X. This matrix V represents our plane, but it is not the canonical representative for the chart U_{β} , because $V_{\beta} \neq I_k$. To find the coordinates in the β -chart, we must find a new matrix V' representing the same plane, such that $V'_{\beta} = I_k$. Since V and V' represent the same plane, they are related by V' = VG for some $G \in GL(k, \mathbb{R})$. From $V'_{\beta} = I_k$, we have $(VG)_{\beta} = I_k$. The rows of VG are the rows of V multiplied by G. So, $V_{\beta}G = I_k$, which implies $G = (V_{\beta})^{-1}$. The new coordinates are $Y = \phi_{\beta}([V]) = \phi_{\beta}([V']) = (V'_{\beta^c})^T$.

$$Y = ((VG)_{\beta^c})^T = (V_{\beta^c}G)^T = G^T(V_{\beta^c})^T = ((V_{\beta})^{-1})^T(V_{\beta^c})^T$$

The matrices V_{β} and V_{β^c} are submatrices of V, which is constructed from X. The entries of V are either constants (0 or 1, from $V_{\alpha} = I_k$) or are the entries of X (from V_{α^c}). Therefore, the entries of V_{β} and V_{β^c} are smooth (in fact, linear) functions of the entries of X.

The transition map $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ is given by $X \mapsto Y = ((V_{\beta}(X))^{-1})^T (V_{\beta^c}(X))^T$.

The entries of $V_{\beta}(X)$ and $V_{\beta^c}(X)$ are smooth functions of the coordinates of X. The determinant

of $V_{\beta}(X)$ is a polynomial in the entries of X, and it is non-zero on the domain of the transition map, $U_{\alpha} \cap U_{\beta}$. The entries of the inverse matrix $(V_{\beta})^{-1}$ are rational functions of the entries of V_{β} , with the non-zero determinant in the denominator, making the inversion map smooth. Since matrix multiplication is also a smooth operation, the transition map $X \mapsto Y$ is a composition of smooth functions and is therefore smooth. This confirms that we have a covering family of charts with smooth transition maps, proving that $G_k(\mathbb{R}^n)$ is a smooth manifold of dimension k(n-k).