Improving PPO Sample Efficiency Sparse Reward Environments

Leibniz Universität Hannover

Johny Tarbouch & Qasim Sefaldeen

Poster Presentations in context of Reinforcement Learning Lecture

Approach

SIL Loop

- Collect rollout τ using $\pi\theta$ store in PPO buffer
- Update πθ, Vφ using PPO on τ

$$L^{CLIP}(heta) = \mathbb{E}_t \left[\min \left(r_t(heta) \hat{A}_t, clip(r_t(heta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t
ight)
ight]$$

$$L(\theta) = L^{CLIP}(\theta) + c_1 L^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t)$$

Store positive episodes T in SIL buffer

→ Sampling

$$p_i = \max(return_i, \epsilon)^{lpha}$$
 Sampling $P(i) = \frac{p_i}{\sum_k p_k}$ Higher return $P(i) = \frac{p_i}{\sum_k p_k}$ Higher return $P(i) = \frac{p_i}{\sum_k p_k}$ More sampling

• if |BSIL| ≥ batch_size and i % update_freq = 0 then

Experiment & Results PPO Parameters SIL Parameters 1×10^{-4} SIL learning rate Learning rate 1×10^{-4} 0.99 Discount factor (γ) Buffer size 10,000 0.95 Batch size GAE lambda (λ) Clip ratio

Total timesteps: 1,000,000 Environment: MiniGrid Random seeds: 10 [0-9]

RND Results

Rollout size

Batch size

PPO Learning Curve

- → Main Finding:
 - RND's effectiveness depends on task complexity
- RND 6x6 → What Worked
 - RND works on simple task like Doorkey 6x6.
 - Vanilla PPO worked better than PPO+RND setup.

SIL Results

- Update Frequency: 5 -> Optimal Frequency 3 -> Too slow, hinder the performance
- **Success Threshold:**

- → Main Finding: ◆ PPO+SIL improves sparse reward learning
 - SIL prefer learning from only successful episodes
- ◆ PPO prefere exploitation on sparse reward environments
- → What Worked:
 - Adaptive threshold prevents low-quality buffer
 - Prioritized replay focuses learning
 - Maintains PPO stability
- Improving sample efficiency

Future Works

- Extensions include adaptive prioritization scheme
- integration with other exploration driven methods
- Further investigate performance and improve when successful experiences become repetitive.
- Additional hyperparameter tuning Entropy coef
- SIL with Entropy loss

References

[1] Oh, Junhyuk, et al. "Self-imitation learning." International conference on machine learning. PMLR, 2018. [2] Eimer, Theresa, Marius Lindauer, and Roberta Raileanu. "Hyperparameters in reinforcement learning and how to tune them." International conference on machine learning. PMLR, 2023. [3] Yuri Burda and Harrison Edwards and Amos J. Storkey and Oleg Klimov "Exploration by Random Network Distillation" CoRR.2018.