VECM model

Weiheng Zhang

2022-04-25

- Goal: To estimate the VEC model, to forecast the price of the gas and compare the predictability of VEC model with those of forecasts using AR/MA/ARMA model.
- Data:
 - Crude Oil price (FRED/MCOILWTICO);
 - US Regular conventional gas price: (FRED/GASREGCOVM)

(a) Create a single time series plot with two log prices logpGASt and logpOILt for the sample 1995M1-2017M4.

```
# (a)
par(mfrow = c(1, 1))
plot(loil, type = "l", main = "WTI vs. Gas", col = "blue",
    ylim = c(-1, 5))
```


1995-01-01 / 2017-03-01

lines(lgas, col = "red")

WTI vs. Gas

1995-01-01 / 2017-03-01

(b) Perform unit root tests to determine whether logpGASt and logpOILt are I(0) or I(1).

```
# (b)
library(urca)
ur.ers(loil, type = "P-test", model = "trend") %>%
   summary()
##
## # Elliot, Rothenberg and Stock Unit Root Test #
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 9.6438
##
## Critical values of P-test are:
              1pct 5pct 10pct
##
## critical values 3.96 5.62 6.89
ur.ers(lgas, type = "P-test", model = "trend") %>%
   summary()
##
## # Elliot, Rothenberg and Stock Unit Root Test #
##
## Test of type P-test
## detrending of series with intercept and trend
## Value of test-statistic is: 8.3139
##
## Critical values of P-test are:
##
              1pct 5pct 10pct
## critical values 3.96 5.62 6.89
# both series could be I(1) or more
doil <- diff(loil)</pre>
dgas <- diff(lgas)</pre>
ur.ers(doil, type = "P-test", model = "trend") %>%
   summary()
##
## # Elliot, Rothenberg and Stock Unit Root Test #
## Test of type P-test
## detrending of series with intercept and trend
##
```

```
## Value of test-statistic is: 0.8329
##
## Critical values of P-test are:
##
                1pct 5pct 10pct
## critical values 3.96 5.62 6.89
ur.ers(dgas, type = "P-test", model = "trend") %>%
   summary()
##
## # Elliot, Rothenberg and Stock Unit Root Test #
##
## Test of type P-test
## detrending of series with intercept and trend
## Value of test-statistic is: 0.4757
## Critical values of P-test are:
                1pct 5pct 10pct
##
## critical values 3.96 5.62 6.89
# now we cannot reject the null hypothesis that
# no unit root problem.
par(mfrow = c(1, 1))
plot(doil, type = "1", main = "(log difference)WTI vs. (log difference)Gas",
   col = "blue", ylim = c(-0.4, 0.4))
```

(log difference)WTI vs. (log difference)Gas 1995-01-01 / 2017-03-01

(log difference)WTI vs. (log difference)Gas 1995-01-01 / 2017-03-01

(c) Determine the number of lags to include in cointegration analysis using Schwarz information criterion. Run the Johansen's trace and maximum eigenvalue cointegration tests for (logpGASt and logpOILt) using the sample 1995M1-2010M12. Use time series plots from (a) as a guide to determine the specification of the deterministic components in the cointegration test (i.e. whether to use Case 2, Case 3, of Case 4 cointegration test).

(c)