This file documents the details of the simulation.

List of functions:

a. 1D Compton-y profile

def battaglia_profile(r, Mvir, z)

Input: radius (Mpc), virial mass (m_{volar}), redshift, ect.

Output: Electron pressure profile (KeV/cm^3)

Library: colossus

Paper: https://arxiv.org/abs/1109.3711 (Battaglia, 2012)

https://arxiv.org/abs/1608.04160 (Vikram, 2016)

https://ui.adsabs.harvard.edu/abs/1986MNRAS.222..323K/abstract (Kaiser,

1986)

https://arxiv.org/abs/astro-ph/0410173 (Voit, 2005)

Steps:

- 1. Calculate ρ_{cri} using Battaglia Eq.1
- 2. Convert M_{vir} to M_{200} & R_{200} using colossus (Concentration: Ishiyama, 2021)
- 3. Calculate P_{200} (Kaiser, 1986; Voit, 2005)
- 4. Calculate p_{th} using Battaglia Eq.10
- 5. Calculate p_e from p_{th} assuming primordial helium mass fraction of 0.24 (Vikram, 2016)

def epp_to_y(profile)

Input: Electron pressure profile (p_e)

Output: Compton-y profile

Paper: https://arxiv.org/abs/1006.1945 (Shaw, 2010)

Steps:

1. Convert from p_e to y using Shaw Eq. 4

b. 2D Compton-y submap

def make proj image new(radius, profile,maxRadius=0.5,pixel scale=0.005,extrapolate=False)

Input: radius, profile (numpy arrays)

Output: image (default to range of 0.5 *Mpc*)

Steps:

- 1. Mesharid and calculate distance from center
- 2. Assign amplitude using profile

def Mpc_to_arcmin(r, z)

Input: Distance, redshift

Output: angular scale (arcmin)

Library: astropy

Steps:

1. Set cosmology and use conversion from astropy

def convolve_map_with_gaussian_beam(pix_size, beam_size_fwhp, Map):

Input: pixel_size, beam_size, submap

Output: convolved submap Source: CMB summer school

Steps:

- 1. Make gaussian beam
- 2. Fourier transform the submap and beam
- 3. Convolution & IFT

c. Conversion between Compton-y and ΔT submap

def f_sz(f, T_CMB)

Input: Electron pressure profile (p_e)

Output: Compton-y profile

Paper: https://arxiv.org/abs/2101.08373 (Vavagiakis, 2021)

Steps:

- 1. Calculate radiation frequency using Vavagiakis Eq.2
- 2. Calculate temperature decrement using Vavagiakis Eq.1

d. Image output

def generate_img(radius, profile, f, noise_level, beam_size, z, option, s = False, p = None):
Options:

- 1. 1D Compton-y Profile
- 2. 2D Compton-y Submap (Range 5 *Mpc*)
- 3. 2D Compton-y Submap (Range 0.5 *Mpc*) (unconvolved)
- 4. Gaussian beam
- 5. 2D Compton-y Submap (Range 0.5 *Mpc*) (convolved)
- 6. 2D ΔT submap
- 7. Gaussian Noise
- 8. 2D ΔT submap with noise
- 9. 2D Compton-y Submap with noise

