

Produit scalaire

Définition

Soit deux points A et B. La norme du vecteur \overrightarrow{AB} , notée $||\overrightarrow{AB}||$, est la distance AB.

Soit \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs. On appelle produit scalaire de \overrightarrow{AB} par \overrightarrow{AC} , noté \overrightarrow{AB} . \overrightarrow{AC} , le nombre réel défini par :

$$\overrightarrow{AB}.\overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos(\widehat{BAC})$$

Carré scalaire:

$$\overrightarrow{AB}.\overrightarrow{AB} = \overrightarrow{AB}^2 = ||\overrightarrow{AB}||^2 = AB^2$$

$$\overrightarrow{u}^2 = ||\overrightarrow{u}||^2$$

Orthogonalité

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux $\iff \overrightarrow{u} \cdot \overrightarrow{v} = 0$ Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux \iff les droits(AB) et (CD) sont perpendiculaires.

Démonstration : $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

$$\iff \overrightarrow{u} \times \overrightarrow{v} \times \cos(\overrightarrow{u}; \overrightarrow{v})$$

$$\iff \cos(\overrightarrow{u}; \overrightarrow{v}) = 0$$
 (en supposant \overrightarrow{u} et \overrightarrow{v} non nuls)

$$\iff (\overrightarrow{u}; \overrightarrow{v}) = \frac{\pi}{2} = 90^{\circ}$$

 $\iff \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont orthogonaux}$

Propriétés

• Propriété de symétrie :

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

• Propriétés de bilinéarité :

1)
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

2)
$$\vec{u} \cdot (k\vec{v}) = k\vec{u} \cdot \vec{v}$$
, avec k un nombre réel.

• Identités remarquables :

1)
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

$$\rightarrow$$
 On peut également noter : $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$

2)
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

3)
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$

• Identités de polarisation :

1)
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

2)
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (-\|\vec{u} - \vec{v}\|^2 + \|\vec{u}\|^2 + \|\vec{v}\|^2)$$

3)
$$\vec{u} \cdot \vec{v} = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

Vecteurs colinéaires

 \overrightarrow{AB} et \overrightarrow{AM} colinéaires de mm sens $\Rightarrow \overrightarrow{AB}.\overrightarrow{AM} = AB \times AM$

 \overrightarrow{AB} et \overrightarrow{AC} colinéaires de sens contraire

$$\Rightarrow \overrightarrow{AB}.\overrightarrow{AC} = -AB \times AC$$

Dans un triangle (3 longueurs)

Soit A, B, C trois points. On a:

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$

Cette expression permet de calculer le produit scalaire de 2 vecteurs à partir seulement de 3 longueurs.

Théorème d'Al Kashi:

Dans un triangle rectangle ABC:

$$a^2 = b^2 + c^2 - 2bc\cos(\widehat{A})$$

Il permet de calculer une longueur à partir de 2 longueurs et 1 angle.

Dans un repère orthonormé

Soit
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ 2 vecteurs

On a
$$\overrightarrow{u}$$
. $\overrightarrow{v} = xx' + yy'$

De plus,
$$||\overrightarrow{u}||^2 = x^2 + y^2$$

• Théorème de la médiane :

Soit I le milieu d'un segment [AB]. Pour tout point M, on a:

$$\overrightarrow{MA}.\overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$$

Projection orthogonale

Soit \overrightarrow{OA} et \overrightarrow{OB} 2 vecteurs non nuls. H est le projeté orthogonal du point B sur la droite (OA).

On a:
$$\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{OA}.\overrightarrow{OH}$$

si $H \in [OA) = OA \times OH$
si $H \notin [OA) = -OA \times OH$

$$\begin{array}{l}
D\text{\'emo}: \overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{OA} \cdot (\overrightarrow{OH} + \overrightarrow{HB}) \\
= \overrightarrow{OA}.\overrightarrow{OH} + \overrightarrow{OA}.\overrightarrow{HB} = \overrightarrow{OA}.\overrightarrow{OH}
\end{array}$$