příjmení, jméno	kruh cvičení	výsledek
	např. Po 14:30	

MI-MPI, Matematika pro informatiku, úkol č.2

k odevzdání do 8:00 dne 14. 12. 2014, kdy zveřejníme vzorové řešení. Odevzdat Vaše řešení můžete na jakémkoli cvičení předmětu MI-MPI příp. v jedné z kanceláří A-1431, A-1429, A-1426, A-1426. Odevzdání mailem je možné pouze ve formátu jednoho pdf souboru (viz dále).

Instrukce k vypracování úkolu:

- Měli byste se pokusit vyřešit všechny příklady. V případě, že se Vám jeden nebo dva příklady vyřešit nepodaří, můžete stále získat všechny tři body, pokud zbytek úkolu bude bezchybný.
- Podepište se prosím na každý papír svého řešení a na úvodní stranu napište i jaké cvičení navštěvujete a o jaký dokument se jedná (např. Josefa Vzorová-Nováková, Po 14:30, MI-MPI, úkol č.2).
- Při bodování úkolu (ale i písemek) se nebere ohled pouze na správný postup a výsledky, ale i na přehlednost jejich prezentace.
- Příklady můžete vypracovávat v libovolném pořadí, musí být ale jasné, kde který příklad končí a začíná.
- Svůj výpočet rozumně okomentujte, aby bylo čtenáři vždy jasné, co a *proč* počítáte. Řešení musí být "možno přečíst" a nikoli "nutno vyluštit".
- Nepište do řešení odpovědi na nepoložené otázky! Vědět co je pro řešení příkladu důležité a co nepodstatné je jedním z nejdůležitějších aspektů řešení!
- Ani správné řešení, které nebude v souladu s těmito požadavky, nebude bodováno plným počtem bodů!
- Úkol je myšlen jako důležitá součást přípravy na následující test: za poctivé vypracování nezískáte tedy pouze (zdánlivě neúměrné) tři body, ale i výrazně vyšší pravděpodobnost na úspěch v testu.
- Pokud úkol odevzdáváte ve formátu pdf, musí se jednat o jeden pdf soubor neobsahující černé plochy, které by značně prodražovaly tisk. Jednotliví cvičící si mohou příp. klást další požadavky.

Příklad 1. Jak přesně bude vypadat 32 bitů reprezentujících následující čísla (uvažujeme jednoduchou přesnost, pouze normalizovaná čísla a zaokrouhlování dolů – první bit je znaménko, pak exponent a pak mantisa):

- a) -1/13,
- b) 1/17,
- c) součet těchto čísel.

Nápověda: vyjádřete si čísla ve dvojkové soustavě pomocí hladového algoritmu a pak už je to jednoduché.

Příklad 2. Mějme skupinu pěti žen $(z_1 \text{ až } z_5)$ a pěti mužů $(m_1 \text{ až } m_5)$ s preferencemi pro párování danými následujícími tabulkami.

z_1	z_2	z_3	z_4	z_5
m_2	m_2	m_2	m_1	m_1
m_3	m_3	m_1	m_2	m_2
m_4	m_5	m_3	m_3	m_3
m_5	m_4	m_5	m_4	m_4
m_1	m_1	m_4	m_5	m_5

m_1	m_2	m_3	m_4	m_5
z_1	z_4	z_4	z_4	z_4
z_2	z_5	z_5	z_2	z_3
z_3	z_1	z_2	z_3	z_5
z_4	z_2	z_1	z_1	z_1
z_5	z_3	z_3	z_5	z_2

- (a) Najděte alespoň dvě stabilní párování.
- (b) Najděte všechna stabilní párování a vysvětlete svůj postup.

Příklad 3. (Opakování jednorozměrných derivací.) Najděte lokální extrémy funkcí

(a)
$$\ln\left(x+\sqrt{1+x^2}\right)$$
,

(b)
$$x + \sqrt{1-x}$$
.

Příklad 4. Najděte množinu bodů, ve kterých je tečná rovina ke grafu funkce

$$f(x,y) = 4 + \frac{x^3}{6} + \frac{(y-3)^3}{9}$$

kolmá na vektor (-2, -3, 1).

Příklad 5. Nechť $a, b \in \mathbb{Z}$. Dokažte nebo vyvratte, že pokud $7|(a^2+b^3)$, potom platí 7|b.

Příklad 6. Uvažujme plochu zadanou jako graf funkce

$$f(x,y) = \sqrt{x^2 - 2xy + y^2} \,,$$

kde x a y bereme takové, že $x \geq y$. Najděte bod na této ploše, který je nejblíže bodu (1,-1,0).

Příklad 7. Zjistěte, pro jaké hodnoty parametru a je matice

$$\begin{pmatrix} 1 & 2 & 2a \\ -2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

pozitivně (semi)definitní, resp. negativně (semi)definitní, resp. indefinitní.

Příklad 8. Najděte funkci f(x, y, z) tří proměnných, jejíž definiční obor je celé \mathbb{R}^3 a jež má právě jeden kritický bod (2, -3, 1), který je navíc ostrým lokálním maximem.

MI-MPI, Řešení úkolu č. 1

Řešení 1. Nejprve musíme najít binární reprezentaci zadaných čísel. Použijeme k tomu hladový algoritmus. Jelikož 1/13 nelze zapsat ve tvaru $n/2^{\ell}$, kde n a ℓ jsou celá čísla, bude binární reprezentace nekonečná a periodická. Najdeme k tak, že $2^{k+1} > 1/13 \ge 2^k$, zřejmě k = -4. Čtvrtý bit za tečkou a_{-4} tedy bude první nenulový a $r_{-4} = \frac{1/13}{1/2^4} - 1 = 3/13$. Pokračujeme následovně:

$$a_{-5} = \left\lfloor 2\frac{3}{13} \right\rfloor = 0 \qquad r_{-5} = \frac{6}{13} - 0 = \frac{6}{13}$$

$$a_{-6} = \left\lfloor 2\frac{6}{13} \right\rfloor = 0 \qquad r_{-6} = \frac{12}{13} - 0 = \frac{12}{13}$$

$$a_{-7} = \left\lfloor 2\frac{12}{13} \right\rfloor = 1 \qquad r_{-7} = \frac{24}{13} - 1 = \frac{11}{13}$$

$$a_{-8} = \left\lfloor 2\frac{11}{13} \right\rfloor = 1 \qquad r_{-8} = \frac{22}{13} - 1 = \frac{9}{13}$$

$$a_{-9} = \left\lfloor 2\frac{9}{13} \right\rfloor = 1 \qquad r_{-9} = \frac{18}{13} - 1 = \frac{5}{13}$$

$$a_{-10} = \left\lfloor 2\frac{5}{13} \right\rfloor = 0 \qquad r_{-10} = \frac{10}{13} - 0 = \frac{10}{13}$$

$$a_{-11} = \left\lfloor 2\frac{10}{13} \right\rfloor = 1 \qquad r_{-11} = \frac{20}{13} - 1 = \frac{7}{13}$$

$$a_{-12} = \left\lfloor 2\frac{7}{13} \right\rfloor = 1 \qquad r_{-12} = \frac{14}{13} - 1 = \frac{1}{13}$$

$$a_{-13} = \left\lfloor 2\frac{1}{13} \right\rfloor = 0 \qquad r_{-13} = \frac{2}{13} - 0 = \frac{2}{13}$$

$$a_{-14} = \left\lfloor 2\frac{2}{13} \right\rfloor = 0 \qquad r_{-14} = \frac{4}{13} - 0 = \frac{4}{13}$$

$$a_{-15} = \left\lfloor 2\frac{4}{13} \right\rfloor = 0 \qquad r_{-15} = \frac{8}{13} - 0 = \frac{8}{13}$$

$$a_{-16} = \left\lfloor 2\frac{8}{13} \right\rfloor = 1 \qquad r_{-16} = \frac{16}{13} - 1 = \frac{3}{13}$$

a jelikož $r_{-4} = r_{-16}$ budou se další bity periodicky opakovat $(a_{-17} = a_{-5}, a_{-18} = a_{-6},$ atd.), získáváme tedy binární reprezentaci

$$-1/13 = -(0.000\overline{100111011000})_2.$$

Tu můžeme přepsat do tvaru

$$-1/13 = (-1)^{1} (1.\overline{001110110001})_{2} 2^{123-127},$$

z čehož je již jasné, že reprezentace ve tvaru s|e|m je

1|01111011|00111011000100111011000.

Pro 1/17 postupujeme stejně, najdeme k tak, že $2^{k+1} > 1/17 \ge 2^k$, zřejmě k = -5. Čtvrtý bit za tečkou a_{-5} tedy bude první nenulový a $r_{-5} = \frac{1/17}{1/2^5} - 1 = 15/17$. Pokračujeme následovně:

$$a_{-6} = \left\lfloor 2\frac{30}{17} \right\rfloor = 1 \qquad r_{-6} = \frac{30}{17} - 1 = \frac{13}{17}$$

$$a_{-7} = \left\lfloor 2\frac{13}{17} \right\rfloor = 1 \qquad r_{-7} = \frac{26}{17} - 1 = \frac{9}{17}$$

$$a_{-8} = \left\lfloor 2\frac{9}{17} \right\rfloor = 1 \qquad r_{-8} = \frac{18}{17} - 1 = \frac{1}{17}$$

$$a_{-9} = \left\lfloor 2\frac{1}{17} \right\rfloor = 0 \qquad r_{-9} = \frac{2}{17} - 0 = \frac{2}{17}$$

$$a_{-10} = \left\lfloor 2\frac{2}{17} \right\rfloor = 0 \qquad r_{-10} = \frac{4}{17} - 0 = \frac{4}{17}$$

$$a_{-11} = \left\lfloor 2\frac{4}{17} \right\rfloor = 0 \qquad r_{-11} = \frac{8}{17} - 0 = \frac{8}{17}$$

$$a_{-12} = \left\lfloor 2\frac{8}{17} \right\rfloor = 0 \qquad r_{-12} = \frac{16}{17} - 0 = \frac{16}{17}$$

$$a_{-13} = \left\lfloor 2\frac{16}{17} \right\rfloor = 1 \qquad r_{-13} = \frac{32}{17} - 1 = \frac{15}{17}$$

$$a_{-14} = \left\lfloor 2\frac{15}{17} \right\rfloor = 1 \qquad r_{-14} = \frac{30}{17} - 1 = \frac{13}{17}$$

a jelikož $r_{-6} = r_{-14}$ budou se další bity periodicky opakovat $(a_{-15} = a_{-7}, a_{-16} = a_{-8}, atd.)$, získáváme tedy binární reprezentaci

$$1/17 = (0.\overline{00001111})_2.$$

Tu můžeme přepsat do tvaru

$$1/17 = (-1)^0 (1.\overline{11100001})_2 2^{122-127}$$

z čehož je již jasné, že reprezentace ve tvaru s|e|m je

Pro jednoduší a čitelnější postup reprezentujeme číslo 1/13 - 1/17 a pak otočíme znaménko. Čísla si napíšeme ve tvaru součtu mocnin čísla 2:

$$1/13 = 2^{-4} \left(1 + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-7} + 2^{-8} + 2^{-12} + 2^{-15} + 2^{-16} + 2^{-17} + 2^{-19} + 2^{-20} \right)$$

a podobně pro 1/17 (aby se čísla lépe odečítala, uděláme to tak, aby před závorkou bylo 2^{-4})

$$1/17 = 2^{-4} \left(2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-12} + 2^{-17} + 2^{-18} + 2^{-19} + 2^{-20} \right).$$

Při odečítání využijeme toho, že $1-2^{-1}-2^{-2}=2^{-3},\ 2^{-8}-2^{-9}-2^{-10}-2^{-11}=2^{-11}$ a $2^{-16}-2^{-18}=2^{-17}+2^{-18},$ a dostaneme výsledek

$$2^{-6} \left(1 + 2^{-3} + 2^{-5} + 2^{-9} + 2^{-13} + 2^{-15} + 2^{-16}\right)$$

což dává (otáčíme znaménko a e = 121)

1|01111001|00101000100010110000000.

Řešení 2. Nejprve provedeme dvořící algoritmus pro varianty "ženy na balkónech" a "muži na balkónech". Tučně jsou uvedeni ti, kteří pod balkónem zůstávají i do dalšího kroku algoritmu.

balkóny:
$$\begin{vmatrix} z_1 \\ 1 \text{ krok} \end{vmatrix} = \begin{vmatrix} z_1 \\ m_1 \end{vmatrix} = \begin{vmatrix} z_2 \\ m_2 \end{vmatrix} = \begin{vmatrix} z_3 \\ m_2, m_3, m_4, m_5 \end{vmatrix} = \begin{vmatrix} z_5 \\ m_3 \end{vmatrix}$$
2. krok $\begin{vmatrix} m_1 \\ m_2 \end{vmatrix} = \begin{vmatrix} m_4 \\ m_5 \end{vmatrix} = \begin{vmatrix} m_5 \\ m_2 \end{vmatrix} = \begin{vmatrix} m_3 \\ m_3 \end{vmatrix}$

Získáváme tedy jedno stabilní párování

$$(z_1, m_1), (z_2, m_4), (z_3, m_5), (z_4, m_2), (z_5, m_3).$$
 (1)

Nyní postavíme na balkóny muže:

Získáváme tedy další stabilní párování

$$(z_1, m_4), (z_2, m_5), (z_3, m_1), (z_4, m_2), (z_5, m_3).$$
 (2)

Z přednášky víme, že tato dvě párování jsou extrémní, neb pro ty na balkóně dopadnou nejhůře a pro ty pod balkónem nejlépe a to v tomto smyslu: je-li v párování (1) z_2 spárována s mužem m_4 , v žádném jiném stabilním párování hůře dopadnout nemůže, a tedy nikdy nemůže být v páru s m_1 . Jelikož v párování (2) je z_2 spárována s m_5 , nemůže dopadnout lépe, a tedy nikdy nebude ve stabilním párování s m_2 ani s m_3 . Tuto úvahu zopakujeme pro všechny muže a ženy a zjistíme tak všechny možné potenciální páry ve stabilním párování:

	možní partneři ve stab. pár.		možné partnerky ve stab. pár.
z_1 :	$\mathbf{m_4}, \mathbf{m_5}, \mathbf{m_1}$	m_1 :	$\mathbf{z_1}, z_2, \mathbf{z_3}$
z_2 :	$\mathbf{m_5}, \mathbf{m_4}$	m_2 :	$\mathbf{z_4}$
z_3 :	$\mathbf{m_1}, m_3, \mathbf{m_5}$	m_3 :	\mathbf{z}_{5}
z_4 :	$\mathrm{m_2}$	m_4 :	$\mathbf{z_2}, z_3, \mathbf{z_1}$
z_5 :	$\mathrm{m_3}$	m_5 :	$\mathbf{z_3}, z_5, \mathbf{z_1}, \mathbf{z_2}$

Vidíme, že v každém stabilním párování budou páry (z_4, m_2) a (z_5, m_3) . Je tedy jasné, že z_3 nebude nikdy v páru s m_3 . Podobně m_1 nebude v páru se z_2 , neb z_2 nemá m_1 mezi možnými stabilními partery. Postupně takto vyřadíme ještě z_3 jako možný pár pro m_4 a z_5 pro m_5 . Celkem jsme tedy omezili možné páry ve stabilních párováních na ty uvedené v tabulce výše tučně. Ty již snadno projdeme ručně.

- (a) Je-li z_1 v páru s m_4 , musí být z_2 s m_5 a z_3 s m_1 , dostáváme tedy párování (2).
- (b) Je-li z_1 v páru s m_5 , musí být z_2 s m_4 a z_3 s m_1 , dostáváme tedy párování

$$(z_1, m_5), (z_2, m_4), (z_3, m_1), (z_4, m_2), (z_5, m_3),$$
 (3)

které je stabilní, neb neobsahuje nestabilní pár, jak snadno ověříme.

(c) Je-li z_1 v páru s m_1 , musí být z_3 s m_5 a z_2 s m_4 , dostáváme tedy párování (1). Celkem existují tři stabilní párování (1), (2) a (3).

Řešení 3. Tento příklad je tak jednoduchý a jednorozměrný, že jej přeskočíme.

Řešení 4. Víme, že tečná rovina ke grafu funkce f(x,y) v bodě (a,b) má rovnici

$$\frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b) - z + f(a,b) = 0.$$

Jedná se tedy o rovinu s normálovým vektorem

$$\vec{n} = \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b), -1\right).$$

Aby tato rovina byla kolmá na vektor $\vec{s} = (-2, -3, -1)$, musí být tento vektor rovnoběžný s \vec{n} , neboli musí být jeho násobkem.

Spočítáme parciální derivace v bodě (a, b)

$$\frac{\partial f}{\partial x}(a,b) = \frac{a^2}{2}$$
 $\frac{\partial f}{\partial y}(a,b) = \frac{(b-3)^2}{3}$

a to dosadíme do rovnice $\vec{s} = \alpha \vec{n}$, kde $\alpha \in \mathbb{R}$. Pro rovnici třetí souřadnice dostaneme $1 = -\alpha$, a tedy $\alpha = -1$. Pro první a druhou souřadnici tedy musí platit

$$a^2 = 4$$
 a $(b-3)^2 = 9$.

Řešením jsou tedy body (2,0), (2,6), (-2,0) a (-2,6).

Řešení 5. Nejdříve zjistíme, jak se chovají zbytky po dělení 7, když je umocníme na druhou a na třetí:

Z tabulky je hned vidět, že pro a=1 a b=3 dostáváme $7|(a^2+b^3)$ a přesto $7 \not|b$, výrok tedy neplatí.

Řešení 6. Vzdálenost bodu (x, y, z) od bodu (1, -1, 0) je dána funkcí

$$d(x, y, z) = \sqrt{(x-1)^2 + (y+1)^2 + z^2}.$$

Jelikož nás ale zajímají pouze body na grafu funkce f(x,y), vyjádříme souřadnici z = f(x,y) (rozmyslet!). Navíc si snadno rozmyslíme, že namísto funkce d můžeme hledat minimum funkce d^2 a získáme stejný bod.

Hledáme tedy minimum funkce

$$d^{2}(x,y) = (x-1)^{2} + (y+1)^{2} + x^{2} - 2xy + y^{2}.$$

Gradient této funkce je vektor

$$\nabla d^2(x,y) = (4x - 2y - 2, 4y - 2x + 2)$$

a ten je nulový pro x = 1/3 a y = -1/3.

Z geometrie úlohy je celkem jasné, že se jedná o minimum, ale pro sicher si spočítáme také Hesseovu matici:

$$\nabla^2 d^2(x,y) = \nabla^2 d^2(1/3, -1/3) = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}.$$

Pomocí Sylvestrova kritéria (matice je symetrická) zjistíme, že se jedná o pozitivně definitní matici, neb rohové subdeterminanty jsou rovny 4 resp. 15. Bod (1/3, -1/3) je tedy ostré lokální minimum. Abychom spočítali i zetovou souřadnici, dosadíme tento bod do funkce $f(x,y) = \sqrt{(x-y)^2}$. Hledaný bod má souřadnice (1/3, -1/3, 2/3).

Řešení 7. Matice

$$\begin{pmatrix} 1 & 2 & 2a \\ -2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

není symetrická, a proto nelze použít Sylvestrovo kritérium. Spočítáme tedy příslušnou kvadratickou formu

$$(x,y,z) \begin{pmatrix} 1 & 2 & 2a \\ -2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x^2 + 2xy + 2axz - 2xy + 2xz + z^2 = (x + (a+1)z)^2 - (a^2 + 2a)z^2.$$

Výraz $a^2 + 2a$ je kladný pro a > 0 a a < -2. Pro tato a je matice indefinitní, neb pro vektory (1,0,0) a (a+1,0,-1) má výraz různá znaménka. Pro ostatní a je výraz vždy nezáporný, a jelikož pro vektor (0,1,0) je nulový, je matice pro zbývající hodnoty $a \in [-2,0]$ pozitivně semidefinitní.

Řešení 8. Bez dalšího komentáře uvádíme triviální řešení:

$$f(x, y, z) = -(x - 2)^{2} - (y + 3)^{2} - (z - 1)^{2},$$

funkce je všude mimo bod (2,-3,1) záporná, a tak tento bod musí být ostré maximum. Další vlastnosti ověříte snadno sami.