Combinatorial Game Theory & The Fuzzy Consequences

Isaac Beh

Red Wins

Basic Strategy & Intuition

A Non-Integer Value

A Non-Integer Value

Red wins, so -1 + a < 0 and a < 1

A Non-Integer Value

Second player wins, so -1 + a + a = 0 and $a = \frac{1}{2}$

Second Player Wins

0 0

$$-x + x = 0$$

The Reals

The Reals

The Reals

The Reals

The Reals

$$-\frac{1}{2^n} + c$$

Red wins, so $-\frac{1}{2^n} + c < 0$ and $a < \frac{1}{2}$

Blue wins, so c + 1 > 0 and -1 < c

$$c+\frac{1}{2^n}$$

Blue wins, so $c + \frac{1}{2^n} > 0$ and $-\frac{1}{2^n} < c$

$$A < B \mid B-A > 0$$
 or Blue always wins $B-A$ $A = B \mid B-A = 0$ or the second player wins $B-A$ $A > B \mid B-A < 0$ or Red always wins $B-A$ $A \parallel B \mid B-A \parallel 0$ or the first player wins $B-A$

$$d + \frac{1}{2^n}$$

Blue wins, so $d + \frac{1}{2^n} > 0$ and $-\frac{1}{2^n} < d$

$$-\frac{1}{2^n} + d$$

Red wins, so $-\frac{1}{2^n}+d<0$ and $d<\frac{1}{2^n}$

Blue wins, so d + d > 0 and thus $d \neq 0$.

Blue wins, so f > 0

$$-\frac{1}{2^n} + f$$

Red wins, so $-\frac{1}{2^n}+f<0$ and $f<\frac{1}{2^n}$

- **▶** ↓ := -↑
- $ightharpoonup \uparrow := \uparrow + \uparrow \text{ with } \uparrow \uparrow = \uparrow > 0 \text{ so } \uparrow > \uparrow$
- $ightharpoonup \downarrow := \downarrow + \downarrow$

- **▶** ↓ := -↑
- $ightharpoonup \uparrow := \uparrow + \uparrow \text{ with } \uparrow \uparrow = \uparrow > 0 \text{ so } \uparrow > \uparrow$
- $ightharpoonup \downarrow := \downarrow + \downarrow$

n times

- $ightharpoonup \downarrow * := \downarrow + *$
- $n.\downarrow * := n.\downarrow + *$

- $ightharpoonup \uparrow * \uparrow = * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $ightharpoonup \uparrow * \downarrow = \uparrow + * + \uparrow = \uparrow * > 0$, so $\uparrow * > \downarrow$
- $ightharpoonup \uparrow * \uparrow = * \uparrow = \downarrow * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $ightharpoonup \uparrow *-3.\uparrow = *-\uparrow = \downarrow * < 0$, so $\uparrow * < 3.\uparrow$

- $ightharpoonup \uparrow * \uparrow = * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $\uparrow * \downarrow = \uparrow + * + \uparrow = \uparrow * > 0$, so $\uparrow * > \downarrow$
- $ightharpoonup \uparrow * \uparrow = * \uparrow = \downarrow * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $ightharpoonup \uparrow * 3. \uparrow = * \uparrow = \downarrow * < 0$, so $\uparrow * < 3. \uparrow$

- $ightharpoonup \uparrow * \uparrow = * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $\uparrow * \downarrow = \uparrow + * + \uparrow = \uparrow * > 0$, so $\uparrow * > \downarrow$
- $ightharpoonup \uparrow * \uparrow = * \uparrow = \downarrow * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $\uparrow * 3.\uparrow = * \uparrow = \downarrow * < 0$, so $\uparrow * < 3.\uparrow$

- $ightharpoonup \uparrow * \uparrow = * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $\uparrow * \downarrow = \uparrow + * + \uparrow = \uparrow * > 0$, so $\uparrow * > \downarrow$
- $\uparrow * \uparrow = * \uparrow = \downarrow * \parallel 0$, so $\uparrow * \parallel \uparrow$
- $\uparrow * -3.\uparrow = * \uparrow = \downarrow * < 0$, so $\uparrow * < 3.\uparrow$

Other Strange Creatures

- ▶ Other games must be:
 - 2-player
 - Deterministic
 - No hidden information
 - Finite
- Games have braket notation like:

$$\uparrow * =$$
 $= \langle ----- \rangle = \langle 0 | *, 0 \rangle$

 $*n := \langle *(n-1), \dots, *2, *|*(n-1), \dots, *2, * \rangle$ and *n + *m = *(n XOR m)

Other Strange Creatures

- Hot games incentivise quick action. The temperature of the game is equal to the advantage of going first and is determined from its thermographs.
- ▶ The hottest components are the most attractive.
- Multiplication is distributive and commutative.

- ► Games are not closed under addition, e.g.
- Finite games are closed and form a field.
- Infinite game results rely upon the set theory axioms.
- ightharpoonup "Tiny" and "miny" ($+_G$ and $-_G$) are the smallest possible positive and negative values.
- Every small valued game has an atomic weight or uppitiness, which is how many \uparrow 's it is approximately equal to.

Applications

- ▶ Pleasure and aesthetic beauty
- ► Go
- ► Timetabling?

Further Reading/Viewing

- "Winning Ways for Your Mathematical Plays" by Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy
- ► HACKENBUSH: a window to a new world of math by Owen Maitzen
- ► Elwyn Berlekamp's channel
- https://hackenbush.xyz/