

Data organisation practices

Introduction to Data Management Practices course

NBIS DM Team

data@nbis.se

Objectives

- What to consider for maintaining data organization strategies in a project
- What to consider when settling for a file structure

 Understanding good practices for data storage, processing and documentation (FAIR-ification)

Credit: This image was created by Scriberia for The Turing Way community and is used under a CC-BY licence.

Exercise 1

What measures do you take in order to avoid file chaos in your data organisation?

Digitalbevaring.dk

Managing Research Data

- Research data is a core component of any research project or publication.
- Good data management practices are important in all phases of research
 - Ethics and legislation
 - Information security
 - Research documentation
 - Project organisation
- Research data needs to stay authentic and be secured beyond the project's time frame

Digitalbevaring.dk

The Data Lifecycle

Data *content* is subject to changes at all phases of its life cycle

- Creation
- Error corrections
- New variables
- > Changing file formats

> Etc.

Data structure may change at all phases of data life cycle

- Data splits
- > Re-organization
- Storage change
- > Etc.

Planning for Data Management®

🛂 SciLifeLab

- Large impact in the planning phase
 - Intended folder structure
 - Clustering of files
 - File naming convention
 - Standards for dates/measures
 - Documentation procedures
- Prepare your project for receiving data by making a Data Management Plan

Data Management Recipients

Reach for FAIR

Adopting good practices for data organization, makes research data more **FAIR**

Time vs. Effort

Planned data organization reduces disorder and optimizes time vs. effort

Exercise 2

Rank the following data organization steps from 1-5 (1 being the one you believe you think is most important, and 5 the least). Also mark with an "X" the steps you have implemented in your own research.

- File naming convention
- Folder naming convention
- File versioning system
- File organisation documentation (README.txt)
- File and folder maintenance (moving, deleting)

Raw data

- Raw data is the purest form of scientific data
- NOT for analysis
- Preservation and access restriction

- Extense of raw data package(s)
- Versioning
- Documentation

- Status of sub-selections
- Associated data
- Long term / Publication package

Analyses and code

- Data (subset) + Analyses = Results
- Document for reproducibility
- Describe analyses, avoid "default"
- Self-sufficient descriptions

- Rich metadata
- Store code close to data
- Document and publish code for analyses
- Cross-reference code and data in metadata

Analyses and code

Reproduction of data analyses in 18 articles on microarray-based gene expression profiling published in Nature Genetics in 2005–2006:

Can reproduce...

Summary of the efforts to replicate the published analyses.

Adopted from: loannidis et al. Repeatability of published microarray gene expression analyses.

Nature Genetics 41 (2009) doi:10.1038/ng.295

Analyses and code

Reproduction of data analyses in 18 articles on microarray-based gene expression profiling published in Nature Genetics in 2005–2006:

Can reproduce...

Summary of the efforts to replicate the published analyses.

Adopted from: loannidis et al. Repeatability of published microarray gene expression analyses.

Nature Genetics **41** (2009) doi:10.1038/ng.295

Tabular data is not a data type, but a mode to organise data

- Do not mix with notes/code/analyses
- Data visualization ≠ data use
- Missing values

Interoperable as .csv or .tsv

- Column = Variable
- Row = Observation
- Cell = Value

Open Access training									
Date	Length (hours)	Registered	Attended	Delivered by	Canceled				
16/01/17	1	26	23	JM	N				
05/02/17	1	38	26	JM	N				
17/02/17	1	19	25	PG	N				
07/03/17	1	27	17	JМ	N				
29/03/17	1	32	15	PG	N				
02/04/17	1	41		PG	Y				
24/04/17	2	44	44	JM	N				
25/05/17	1	43	37	PG	N				
16/06/17	1	15	15	<mark>ДМ</mark>	N				

Do not:

- Spatially distribute data
- Combine values in cells
- Split compatible data in tables
- Use colors

4	Α	В	С	D	E	F	G	Н	1	J	K	L	M
			F	RDM training			Open access						
5		Date	Length (hours)	PGR PDRA other	Delivered by		Date	Len	Attendees	Delivered by			
		12 Jan	1.5	45 0 0	FG		8 Jan	1.5 hours	20	FG			
		7 Feb		2 38 0 0	GH		13 Jan	1 hour	21	JM			
		4 Mar		2 43 3 0	GH		22 Jan	1 hour	35	JM			
		6 Mar		1 21 7 0	GH		2 Feb	1.5 hours	36	JM		cancelled	
		17 Mar	1.5	34 1 0	FG		3 Feb	1.5 hours	22	JM			
		21 Mar		1 25 2 0	DQ		3 Feb	1 hours	30	JM			
)		23 Mar		2 32 10 0	FG		20 Feb	1.5 hours	36	FG			
		19 Apr		1 34 0 0	GH		28 Feb	1.5 hours	28	JM			
		30 Apr		37 0 0	FG		19 Mar	1.5 hours		FG			
3		4 Jun		1 45 0 0	GH		19 Mar	1 hour	39	JM			
		12 Jun		2 36 0 0	DQ		4 Apr	1.5 hours	21	JM			
		22 Jun		38 0 0	DQ			1.5 hours	25	JM			
		25 Jun		1 35 4 0	GH			1 hour	22	JM			
		30 Jun		44 3 0	FG		19 May	1.5 hours	20	FG			
		1 Jul	1.5	40 0 4	FG		21 May	1.5 hours	21	JM			
)		6 Jul		21 0 0	GH			1.5 hours	37	JM			
)		7 Jul		1 37 4 1	DQ		18 Jun	1.5 hours	25	JM			
		9 Jul		1 29 7 0	GH		4 Jul	1.5 hours	39	JM			
		30 Jul		2 22 3 0	FG		6 Jul	1.5 hours	39	JM			
3		29 Aug		22 4 0	GH		10 Jul	1.5 hours	34	JM			
		10 Sep		1 38 0 0	FG		13 Jul	1.5 hours	23	FG			
5		21 Sep		1 31 0 0	GH		17 Jul	1.5 hours	30	JM			
5		1 Oct		2 26 9 5	DQ			1.5 hours		JM			
7		25 Oct		20 4 0	DQ			1.5 hours	32	JM			
3		4 Nov		38 5 5	FG			1.5 hours		JM			
9		5 Nov		2 40 0 0	GH			1.5 hours		FG			
)		8 Nov		2 22 7 0	FG			1.5 hours		JM			
		1 Dec		2 41 6 0	DQ		21 Oct	1.5 hours	34	JM			
2		19 Dec		2 39 9 1	GH		9 Nov	1.5 hours	32	JM			
3							15 Nov	1.5 hours	35	JM			
								1.5 hours		JM			
5								1.5 hours		FG			
								1.5 hours		JM			
								1.5 hours		FG			
3								1.5 hours		FG			

- ✓ Raw means raw!
- ✓ Tidy data tables
 One cell—one value
 One column—one variable
 One row—one observation
- ✓ Beware of Excel "features"
 Misguided "auto-corrections" of dates, casing, numbers etc.
 Misaligned formulas
 Limited numerical precision
 Limited number of rows/columns

Δ	Α	В	С	D	E	F	G	Н	1	J	K
1	data							analysis			
2	id	biomarker1	biomarker2	biomarker3	biomarker4			variation	ave	problem	
3	81	0.08502	0.07002	0.07735	0.07746			0.008	0.0775		
4	82	0.0658	0.06859	0.06958	0.06799			0.002	0.068	no	
5	83	0.07757	0.07497	0.0801	0.07755			0.003	0.0775		
6	84	0.07185	0.06957	0.07474	0.07205			0.003	0.0721	yes	
7	85	0.06959	0.07361	0.07113	0.07145			0.002	0.0714	maybe	
8	86	0.09291	0.10439	0.09425	0.09718			0.006	0.0972		
9	87	0.07878	0.08143	0.07203	0.07742			0.005	0.0774		
10	88	0.07907	0.077	0.08227	0.07944			0.003	0.0794		
11	89	0.07299	0.07616	0.08131	0.07682			0.004	0.0768		
12	90	0.07487	0.0664	0.0671	0.06946			0.005	0.0695		
13											
14	mean	0.076845	0.076214	0.076986	0.076682						
15								biomarker QC			
16	notes							b1	b2	b3	b4
17	* patient id86 ma	y need remo	ving due to	missing note:	5			0.46336967	0.875281336	0.918250702	0.1495392

Organising files and folders

Practices

Your primary collaborator is yourself from 6 months ago, and that person is really difficult to communicate with!

Good practices

- Organise files hierarchically
- Use folders to divide files into categories
- Choose a file naming strategy
- Create documentation files

Divide files into categories

Organise files hierarchically

Hierarchy?

Hierarchy?

README.txt

Exercise 3

Considering your own file structure, or the file structure used in your research group, write in the shared document:

- If your current file structure is top-down or bottom-up, or a mix of the two.
- 2. Who the "inventor" of your file structure is (title, not name!), and to what extent you can influence how it is organized?
- One thing you believe you could improve in your current file structure.

File names

- Year or other date
- Type of data, document or file
- Project stages
- Analysis version or revision
- Experiments
- Instruments
- Time periods
- Geographic location
- Storage requirements
- Team member, institution or project site

Choose a file naming strategy V SciLifeLab

- A file name is a principal identifier for the file
- Consistent in time and among different people
- Practically useful when accessing files, such as sorting and filtering

Chronologically

(ISO 8601 date standard)

20171028 001.tiff 20171028 002.tiff 20171028 003.tiff 20171029 001.tiff 20171029 002.tiff

Classification or code

(standardized)

USNM 379221 01.tiff USNM 379221 02.tiff USNM 379221 03.tiff USNM 379222 01.tiff USNM 379222 02.tiff

Alphabetically

(depending on type of files)

bos 20171028 001.tiff bos 20171028 002.tiff bos 20171029 001.tiff cam 20170922 001.tiff cam 20170922 002.tiff

- Human readable
- Machine readable

File naming

A well suited file naming protocol should be:

1. Human readable

A name describes the content of the file, connects to concept of a *slug* from semantic URLs (e.g. www.scilifelab.se/*this-is-a-slug*).

2. Machine readable

Avoid spaces, deliberate punctuation, accented or odd characters, inconsistent letter casing

3. Default ordered

Put something numeric first, use the ISO 8601 standard for dates (YYYYMMDD, or YYYY-MM-DD), left pad single digits with zeros (01, 02, 03... 10)

Human readable

01_marshal-data.md	01.md
01_marshal-data.r	01.r
02_pre-dea-filtering.md	02.md
02_pre-dea-filtering.r	02.r
03_dea-with-limma-voom.md	03.md
03_dea-with-limma-voom.r	03.r
04_explore-dea-results.md	04.md
04_explore-dea-results.r	04.r
90_limma-model-term-name-fiasco.md	90.md
90_limma-model-term-name-fiasco.r	90.r
Makefile	Makefile
figure	figure
helper01_load-counts.r	helper01.r
helper02_load-exp-des.r	helper02.r
helper03_load-focus-statinf.r	helper03.r
helper04_extract-and-tidy.r	helper04.r
tmp.txt	tmp.txt

Machine readable

2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H01.csv
2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H02.csv
2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H03.csv
2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_platefile.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A01.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A02.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A03.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A03.csv

- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H01.csv
- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H02.csv
- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H03.csv
- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_platefile.csv

File naming

Examples of a **poor** file name:

"Honeybee project, experiment 2 done in Helsinki, data file created on the second of December 2020"

File name - Runnew_again_2NDTRY.xls

Explanation - N/A

File naming

Examples of a **good** file name:

"Honeybee project, experiment 2 done in Helsinki, data file created on the second of December 2020"

File name - 20201202_HB_EXP2_HEL_DATA_V03.xls

Explanation - Time_ProjectAbbreviation_ExperimentNumber_
Location_TypeOfData_VersionNumber

Documenting file structure

- Ensures orientation and longevity of data
- Add to top level folder in separate plain text file
- Collect all information to be documented and cross-reference where necessary
- Shared projects where files are handles by several individuals with different areas of responsibility
- Project ending to guarantee rememberance of file structure over longer time (past your present You)

Conditions and use

- Consider upgrading your file structure with an explicit Conditions and use agreement, and apply it to file permissions, at least for raw data.
- Edits and changes to raw data should be restricted to only a few trusted individuals with particular responsibilities.

Increasing file findability

When we collect data and organise it for research purposes, findability is not necessarily our primary motivation.

Increase the number of file copies

Pros - Someone (always?) have the latest version of a file! Cons - Who has the latest version of a file?

Increase the number of shortcuts

- Pros Easy to create, file name of shortcut can be changed and may even increase findability when named differently.
- Cons Shortcut may break if original file location or name is changed. Easy to lose orientation if not maintained regularly.

Increasing file findability

When we collect data and organise it for research purposes, findability is not necessarily our primary motivation.

- Increase the amount of metadata
 - Pros Possible to enrich any file with unlimited amounts of metadata
 - Cons Can be cumbersome to keep updated as number of files increase and file names are changed

Increasing file findability

Keyword tagging

```
(Metadata.txt content)
20220115_MyFile_Project1_Location_Dataiteration1_V1.xml
First version of X data from Y, with additions of Z made by A and B on 20220110 includi
ng suggestions by C.
Keywords HumptyDumpty Genome_Assembly
20220115_MyFile_Project1_Location_Dataiteration2.xml
Contains X data from Y, with additions of Z made only by A on 20220111 not including su
ggestions by C.
Keywords Published
```

Associated metadata to increase findability of files over e.g. multiple projects

Exercise 4

For the following filename, construct a metadata explanation:

20220310_GenAnn_AssemblyProj2_GOT_Dataiteration_2nd_try.xml

Exercise 5

Using the downloaded compressed file directory Example_project_begin.zip :

- Create a hierarchical folder system based on the file names and contents.
- 2. Rename files in a consistent manner if required, such that it reflects both contents and file version. Consider number and date formats as well.
- 3. Optionally, create a file for tagging files with metadata and keywords in accordance with file contents.

Storage & back-up

- How to store during the project?
- Storage/processing locations
 For data collection, analysis,
 reporting, code, transfers etc.
- Back-up and data recovery
 Strategies to mitigate risks of data-loss and data corruption?

 (Beware of laptops and external storage)
- Technical requirements
 Software and systems required to access / process the data?

- How to protect data?
- Information classification
 Suitable storage based on the characteristics of the data?
- Access control
 Who will have access to what data and how will it be enforced?
- Data protection procedures
 Other strategies to mitigate risks
 of unwanted data disclosure or
 sabotage.

Data storage and processing Variable ScilifeLab

Data has a life cycle

Raw (experiment) data – produce, collect, license, get access, ...

Processed – generate, clean, aggregate, label, transform, analyse, ...

Long-term storage – document, select, convert, package, submit, ...

Published – FAIRify, promote reuse, ...

- Maintain data integrity and authenticity
- Plan a storage strategy
- Plan a backup and disaster recovery strategy

Discussion 1

What storage categories do you use and what factors do you consider when selecting which category to use or not to use?

- Portable devices Laptops, tablets, external harddrives, flash drives and Compact Discs
- Cloud storage E.g. Google Drive, OneDrive, Dropbox, a University's OwnCloud, Open Science Framework and Tresorit
- Local storage Desktop computers and personal laptops
- Networked drives Shared drives on university servers, NAS servers (Network Attached Storage) or infrastructures (such as SNIC)

Portable devices

- Temporary, short-term storage for non-sensitive data, e.g. in the field or to transport data and files when online transmission is not possible.
- In combination with encryption and strong password protection, especially if working with sensitive information.

- Conduct regular checks to ensure your device is working and that files are accessible.
- Not for long-term storage or master copies of your data

Cloud storage

- Granting shared, remote and easy access to data and other files to all involved in the project
- Read the terms of service.
 Especially focus on rights to use content given to the service provider
- Opt for European, national, or institutional cloud services which store data in Europe if possible

- Not your only storage and backup solution
- Not for unencrypted (sensitive) personal data

Local storage

- When working on different (local) workstations, e.g. laptop at home and the desktop in the office:
 - always make sure that you are working on the most current version, for example with the help of versioning software or guidelines
 - make sure that the most
 current version is always
 backed up somewhere else

- Suitable as a primary storage for projects involving only very few people
- Avoid if data will be moved back and forth between personal computers frequently

Networked drives

- Use in projects involving many people who need access to data and files
- Use a suitable security strategy to protect data and files against unauthorised access
- Agree on rules for versioning files and data to ensure that everyone can locate and access what they need

- Long-term store complete data that has been analysed, which can be cost efficient and offer increased security
- Restrict access where possible using rights and permissions, e.g. write protect a master copy and only grant access to specific files/folders when necessary

Backup and disaster recovery V SciLifeLab

A minimalist strategy

- There are at least
 - > Three copies of the data, of which...
 - Two are kept on different types of storage media
 - Two are at different locations
 - ✓ One is located off-site
- ☐ All copies are checked regularly to make sure that they work
- ☐ The process is known and applied in the project (automated)

... also determine what you want to back up, and find out whether your institution already has a backup strategy.

Discussion 2

What are examples of potential causes for data loss in a research project?

