Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського"

Факультет прикладної математики Кафедра системного програмування і спеціалізованих комп'ютерних систем

ЛАБОРАТОРНА РОБОТА №1

з дисциплін «Бази даних та засоби управління»

Група: КВ-13

Виконав: Соболєв Т.Ю.

Оцінка:

Проектування бази даних та ознайомлення з базовими операціями СУБД PostgreSQL

 $Mетою роботи \in$ здобуття вмінь проектування бази даних та практичних навичок створення реляційних баз даних за допомогою PostgreSQL.

Завдання роботи полягає у наступному:

- 1. Розробити модель «сутність-зв'язок» предметної галузі, обраної студентом самостійно, відповідно до пункту «Вимоги до ЕR-моделі».
- 2. Перетворити розроблену модель у схему бази даних (таблиці) PostgreSQL.
- 3. Виконати нормалізацію схеми бази даних до третьої нормальної форми (3HФ).
- 4. Ознайомитись із інструментарієм PostgreSQL та pgAdmin 4 та внести декілька рядків даних у кожну з таблиць засобами pgAdmin 4.

Концептуальна модель предметної області "Платформа для оренди та бронювання спортивних об'єктів."

В концептуальній моделі предметної області "Платформа для оренди та бронювання спортивних об'єктів." (Рисунок 1) виділяються наступні сутності та зв'язки між ними:

- 1. Сутність "Client" з атрибутами: id, name, email;
- 2. Cyтність "Sport_object" з атрибутами: id, name, price;
- 3.3в'язок "Reservation" з атрибутами: id, client_id, object_id, booking_start_date, booking_end_date;
 - 4. Сутність "Company" з атрибутами: id, name;

Один клієнт може оформити декілька підтверджень на оренду спортивних об'єктів, а кожен факт підтвердження оренди може бути наданий одному клієнту (зв'язок 1:N).

Один спортивний об'єкт може бути орендований декількома людьми на різній час, тому до одного об'єкта може належати одразу декілька фактів його оренди (зв'язок 1:N).

Виходячи з вищенаведеного одна людина може орендувати декілька спортивних об'єктів, а один об'єкт можуть бути орендовані різними людьми. Тобто маємо зв'язок багато до багатьох N:M.

Також один клієнт може бути у одній компанії, а компаній може бути декілька (зв'язок 1:N).

Рисунок 1 – Концептуальна модель предметної області.

Логічна модель (схема) БД "Платформа для оренди та бронювання спортивних об'єктів".

В логічній моделі (Рисунок 2):

- 1. Сутність "Client" перетворена в таблицю "Client";
- 2. Сутність "Sport_object" перетворена в таблицю "Sport_object";
- 3. Зв'язок "Client" та "Sport_object" перетворений в таблицю "Reservation";
- 4. Сутність "Сотрану" перетворена в таблицю "Сотрану";

Опис структури БД

Сутність	Атрибут	Tun
Client	id - унікальний ID клієнта	Число
(інформація про клієнта)	name – повне ім'я клієнта	Текст
	email – пошта клієнта	Текст
Sport_object (інформація про об'єкт)	id - унікальний ID об'єкта	Число
	name — ім'я об'єкту	Текст
Reservation (інформація про оренду)	id - унікальний ID оренди	Число
	client_id — зовнішній ключ	Число
	object_id — зовнішній ключ	Число
	booking_start_date – час початку оренди	Дата
	booking_end_date – час кінця оренди	Дата
	price — ціна	Число
Company	id - унікальний ID компанії	Число
(інформація про компанію)	name – повне ім'я компанії	Текст

Відповідність схеми БД до третьої нормальної форми

- 1. Унікальність первинного ключа. Для всіх сутностей ϵ ключ з іменем "id".
- 2. Атомарні значення. Кожен атрибут не повинен містити якихось структур. У даних таблицях атрибутів які містять структуру не має.
- 3. Всі неключові атрибути залежать від первинного ключа.
 - У сутності "Client" атрибути "name", "email", залежать від ключа "id".
 - У сутності "Sport_object" атрибути "name", залежать від ключа "id".
 - У зв'язку "Reservation" атрибути "booking_start_date", "booking_end_date", "price", залежать від ключа "id".
 - У сутності "Сотрапу" атрибути "name", залежать від ключа "id".

Отже дана БД відповідає умовам третьої нормальної форми.

Структура БД "Платформа для оренди та бронювання спортивних об'єктів" в pgAdmin 4

Рисунок 3 - Структура предметної області "Платформа для оренди та бронювання спортивних об'єктів" в pgAdmin 4

	id [PK] integer	company_id integer	name character varying	email character varying
1	1	1	Даніїл	[null]
2	2	1	Олег	[null]
3	3	[null]	Богдан	[null]

Github - https://github.com/balalay4ik/DB1