Анализ данных

Лабораторная работа 1: Построение вариационного ряда

Тема: "Вариационный ряд"

Цель: получить навыки установления статистических закономерностей, присущих массовым случайным явлениям средствами Excel;

Используемое оборудование: Персональный компьютер, Excel 2013, Microsoft Word 2013, online IDE Repl.it

1) Постановка задачи:

1. Имеются данные о распределении 100 рабочих цеха по выработке в отчетном году (в процентах к предыдущему году). Всего n=100 значений. (см. файл **zadanie1.docx** в приложении, внизу этой страницы)

Ряд	103.4	115.2	127	131	 102,3	114.5	118	127
признаков								

Необходимо построить вариационный ряд. Сгруппировать его и построить графические изображения вариационного ряда. Построить полигон (гистограмму), кумулянту и эмпирическую функцию распределения рабочих

1) Математическая модель:

$$\Psi_{actoctb}$$
: $W_i = \frac{m_i}{n}$

Накопленная частота
$$m_x = \sum_{x_i < x} m_i$$

Накопленной частость:

Количество интервалов: $k=1+1,4\ln n$

Длина интервала: $\Delta = x_{max} - x_{min}/k$

Начало 1-го интервала: $x_{\text{\it Hall}} = x_{\min} - \frac{k}{2}$

Эмпирическая функция распределения Е

 Γ де m_i — частоты, n — количество элементов в ряду, x_{max} — максимальный элемент ряда, x_{min} — минимальный элемент ряда.

1) Решение:

- Воспользуемся встроенными инструментами форматирования таблиц и данных.
- Воспользуемся встроенными формулами и ссылками Excel для расчётов формул.
- Воспользуемся встроенными инструментами Excel для построения необходимых графиков.

2. В таблице 2 дан дискретный ряд. В ней приведены данные о распределении 50-ти рабочих цеха по тарифному разряду.

Тарифный разряд хі (варианты)	1	2	3	4	5	6
Частота (количество рабочих) ni	2	3	6	8	22	9

Построить полигон (гистограмму), кумулянту и эмпирическую функцию распределения рабочих

2) Математическая модель:

$$q_{\text{астость:}} w_i = \frac{m_i}{n}$$

Накопленная частота
$$m_{x} = \sum_{x_{i} < x} m_{x}$$

Накопленной частость:

Количество интервалов: $k=1+1,4\ln n$

Длина интервала: $\Delta = x_{max} - x_{min}/k$

Начало 1-го интервала: $x_{\text{\it Har}} = x_{\min} - \frac{k}{2}$

Эмпирическая функция распределения n

 Γ де m_i — частоты, n — количество элементов в ряду, x_{max} — максимальный элемент ряда, x_{min} — минимальный элемент ряда.

2) Решение:

- Воспользуемся встроенными инструментами форматирования таблиц и данных.
- Воспользуемся встроенными формулами и ссылками Excel для расчётов формул.
- Воспользуемся встроенными инструментами Excel для построения необходимых графиков.

- 3) Постановка задачи:
- **3.** В файле zadanie2.docx (в приложении внизу страницы) содержатся выборочные данные. Постройте вариационный ряд и его графические изображения (гистограмму, полигон, кумулянту и эмпирическую функцию распределения).
- 3) Математическая модель:

Накопленная частота
$$m_{x} = \sum_{x_{i} < x} m_{x}$$

$$y = \sum_{n=1}^{m} \sum_{n \in \mathcal{X}} n$$

Накопленной частость:

Количество интервалов: k=1+1,41nn

Длина интервала: $\Delta = x_{max} - x_{min}/\ k$

Начало 1-го интервала: $x_{\text{\tiny Haq}} = x_{\text{\tiny min}} - \frac{k}{2}$

Эмпирическая функция распределения
$$n$$

 Γ де m_i — частоты, n — количество элементов в ряду, x_{max} — максимальный элемент ряда, x_{min} — минимальный элемент ряда.

- 3) Решение:
- Воспользуемся встроенными инструментами форматирования таблиц и данных.
- Воспользуемся встроенными формулами и ссылками Excel для расчётов формул.
- Воспользуемся встроенными инструментами Excel для построения необходимых графиков
 - 3) Результат:

4. Имеются выборочные данные по результатам экзамена по химии учащихся школы. Построить интервальный вариационный ряд и его графическое представление (гистограмму, полигон, кумулянту и эмпирическую функцию распределения).

4	4	3	3	2	5	2	3	3	4
3	4	4	2	5	2	3	3	4	4
3	3	4	4	2	5	5	2	3	3

4) Математическая модель:

Частость:
$$w_i = \frac{m_i}{n}$$

Накопленная частота
$$m_{x} = \sum_{x_{i} < x} m_{y}$$

$$y = \sum_{n=1}^{m} \sum_{n \in \mathcal{N}} n$$

Накопленной частость:

Количество интервалов: k=1+1,41пm

Длина интервала: $\Delta = x_{max} - x_{min}/k$

Начало 1-го интервала: $x_{\text{нач}} = x_{\text{min}} - \frac{k}{2}$

Эмпирическая функция распределения Е

 Γ де m_i — частоты, n — количество элементов в ряду, x_{max} — максимальный элемент ряда, x_{min} — минимальный элемент ряда.

4) Решение:

- Воспользуемся встроенными инструментами форматирования таблиц и данных.
- Воспользуемся встроенными формулами и ссылками Excel для расчётов формул.
- Воспользуемся встроенными инструментами Excel для построения необходимых графиков.

5. В ходе спортивных соревнований были получены результаты бега 30 спортсменов. Эти результаты образуют следующий ряд:

[18	10	17	13	15	15	14	17	20	19
	15	15	14	13	16	16	12	11	13	14

					_				
19	20	15	16	15	16	14	16	13	12

Построить интервальный вариационный ряд и его графическое представление (гистограмму, полигон, кумулянту и эмпирическую функцию распределения).

5) Математическая модель:

$$q_{\text{астость:}} w_i = \frac{m_i}{n}$$

Накопленная частота
$$m_{x} = \sum_{x_{i} < x} m_{x}$$

Накопленной частость:

Количество интервалов: k=1+1,4ln ν

Длина интервала: $\Delta = x_{max} - x_{min}/k$

Начало 1-го интервала: $x_{\text{\it hav}} = x_{\min} - \frac{k}{2}$

Эмпирическая функция распределения n

 Γ де m_i — частоты, n — количество элементов в ряду, x_{max} — максимальный элемент ряда, x_{min} — минимальный элемент ряда.

5) Решение:

- Воспользуемся встроенными инструментами форматирования таблиц и данных.
- Воспользуемся встроенными формулами и ссылками Excel для расчётов формул.
- Воспользуемся встроенными инструментами Excel для построения необходимых графиков.

Взять одну из задач. Построить вариационный ряд, рассчитать весы и необходимые величины, используя язык программирования. (Выбранная задача: №4)

6) Математическая модель:

Накопленная частота
$$m_x = \sum_{x_i < x} m_i$$

Накопленной частость:

Количество интервалов: $k=1+1,4\ln n$

Длина интервала: $\Delta = x_{max} - x_{min}/k$

Начало 1-го интервала: $x_{\text{нач}} = x_{\text{min}} - \frac{k}{2}$

Эмпирическая функция распределения
$$n$$

 Γ де m_i — частоты, n — количество элементов в ряду, x_{max} — максимальный элемент ряда, x_{min} — минимальный элемент ряда.

- 6) Решение:
- Создадим массив, который наполним элементами из задачи №4 в том же порядке.
- С помощью возможностей Python, отсортируем список.
- Произведём вычисление частот определённых значений ряда.
- Проведём вычисление величин, необходимых для построения и обработки вариационного ряда.
- Создадим массивы, для сохранения данных о границах интервалов, интервалах, частотах и накопленных частостях.
- Оформим и выведем нужные значения на экран.

<u>Ссылка на код, расположенный в Repl.it</u>

6) Результат:

Изначальный ряд

[4, 4, 3, 3, 2, 5, 2, 3, 3, 4, 3, 4, 4, 2, 5, 2, 3, 3, 4, 4, 3, 3, 4, 4, 2, 5, 5, 2, 3, 3]

Ряд, обработанный по возрастанию

[2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5]

Количество оценок 5

Количество оценок 4
9
Количество оценок 3
11
Количество оценок 2
6
Количество элементов в ряду
30
Приближённое значение k
6
Максимальное значение в ряду
5
Минимальное значение в ряду
2
х начальное
-0.8808381671635086
Длина интервала
1.5

Первый интервал $[-0.8808381671635086,\, 0.6191618328364914]$ Частота 0 Накопленная частость 0.0 Второй интервал [0.6191618328364914, 2.1191618328364914]Частота 6 Накопленная частость 0.0 Третий интервал [2.1191618328364914, 3.6191618328364914]Частота 11 Накопленная частость

0.2

```
Четвёртый интервал
[3.6191618328364914, 5.119161832836491]
Частота
13
Накопленная частость
0.56666666666666667
Пятый интервал
[5.119161832836491, 6.619161832836491]
Частота
0
Накопленная частость
1.0
Шестой интервал
[6.619161832836491, 8.119161832836491]
Частота
0
Накопленная частость
1.0
```

Вывод:

В итоге, нам удалось получить необходимые навыки установления статистических закономерностей, присущих массовым случайным явлениям, используя средства Excel и языка программирования Python.