15. Untersuchen Sie die folgenden rekursiv definierten Folgen (x_n) auf Konvergenz und berechnen Sie gegebenenfalls ihre Grenzwerte:

(a)
$$x_{n+1} = \frac{1}{2}(1 - x_n^2), \quad n \ge 1, \quad x_1 = 0,$$

(b)
$$x_{n+1} = \frac{1}{1+x_n}$$
, $n \ge 0$, $x_0 = 1$

16. Zeigen Sie, dass

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e}$$

gilt.

17. Zeigen Sie: $\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right) = \frac{1}{2}$.

Hinweis: Schätzen Sie den Klammer-Ausdruck geeignet nach oben und unten ab, und zeigen Sie von den beiden neuen Folgen, dass sie den Grenzwert $\frac{1}{2}$ besitzen!

- 18. Untersuchen Sie die folgenden Reihen auf Konvergenz:
 - (a) $\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n^2 1}}$,
 - (b) $\sum_{n=1}^{\infty} \frac{5n^2}{n^4+1}$.
- 19. Sei 0 < a < b. Die rekursiv definierten Folgen (a_n) und (b_n) mit $a_0 = a, \ b_0 = b$ und

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} = \text{harmonisches Mittel von } a_n \ und \ b_n,$$

$$b_{n+1} = \frac{a_n + b_n}{2}$$
 = arithmetisches Mittel von a_n und b_n

bilden eine Intervall-Schachtelung für das geometrische Mittel \sqrt{ab} von a und b. (Hinweis: $a_nb_n=ab$ für alle $n\in\mathbb{N}$).