第七章 代数系统

第十节代数系统周构的性质 (2)

3、保持幺元存在性

3) 如果 <X, $\star>$ 中有幺元 e_{\star} ,则 <Y, $\oplus>$ 也有幺元 e_{\oplus} 且 $f(e_{\star})=e_{\oplus}$ 。

证明: 任取 $y \in Y$,因 $f: X \to Y$ 是满射,所以存在 $x \in X$,使得y=f(x)。而

$$y \oplus f(e_{\star}) = f(x) \oplus f(e_{\star}) = f(x \star e_{\star}) = f(x) = y$$

$$f(e_{\star}) \oplus y = f(e_{\star}) \oplus f(x) = f(e_{\star} \star x) = f(x) = y$$

所以 $f(e_{\star})$ 是<Y, \oplus >的幺元。即 $f(e_{\star})=e_{\oplus}$ 。

4、保持零元存在性

4) 如果 $\langle X, \star \rangle$ 中有零元 θ_{\star} ,则 $\langle Y, \oplus \rangle$ 也有零元 θ_{\oplus} 且 $f(\theta_{\star}) = \theta_{\oplus}$ 。

证明: 任取 $y \in Y$, 因 $f: X \to Y$ 是满射,所以存在 $x \in X$,使得 y = f(x)。而 $y \oplus f(\theta_{\star}) = f(x) \oplus f(\theta_{\star}) = f(x \star \theta_{\star}) = f(\theta_{\star})$ $f(\theta_{\star}) \oplus y = f(\theta_{\star}) \oplus f(x) = f(\theta_{\star} \star x) = f(\theta_{\star})$ $所以 f(\theta_{\star}) \oplus g = f(\theta_{\star}) \oplus f(x) = f(\theta_{\star} \star x) = f(\theta_{\star})$

5、保持逆元存在性(映像的逆元=逆元的映像)

5) 如果<X,★>中每个 $x \in X$ 可逆,即 $x^{-1} \in X$,则 <Y, ⊕> 中每个 $y \in Y$ 也可逆,即 $y^{-1} \in Y$ 。 并且如果 y=f(x),则 $y^{-1}=(f(x))^{-1}=f(x^{-1})$ 。

证明: 任取 $y \in Y$,因 $f: X \to Y$ 是满射,所以存在 $x \in X$,使得 y = f(x)。 (往证 $y \oplus f(x^{-1}) = e_{\oplus}$ 和 $f(x^{-1}) \oplus y = e_{\oplus}$) 设运算 * 的幺元 e_{\star} ,运算 \oplus 的幺元 e_{\oplus} ,于是有 $f(e_{\star}) = e_{\oplus}$ 。 $y \oplus f(x^{-1}) = f(x) \oplus f(x^{-1}) = f(x \star x^{-1}) = f(e_{\star}) = e_{\oplus}$ $f(x^{-1}) \oplus y = f(x^{-1}) \oplus f(x) = f(x^{-1} \star x) = f(e_{\star}) = e_{\oplus}$ 所以 $y^{-1} = (f(x))^{-1} = f(x^{-1})$ 。

第十节 结束