

Scanning the surveyed region using a sliding window:

Overlapping windows: Width = $0.1 (10kb)^*$ Step = 0.05 (5kb)

*values are not fixed Can be setted by users.

7 computed statistics in different windows :

Average π over SNPs Variation for π over SNPs Watterson's θ Tajima's DAchaz's Y^* Pearson's r (position ~ pi) P-value of Pearson's r

Simple visualisation of some statistics across a surveyed region of 100kb

Example:

Position Sp = 0.4

.Coefficient $S_{AA} = 3.5 \%$

.Fixation time SF = 30,000 gen

.L = 100kb

.Recomb rate = $2e^{-8}/bp$

Can we use [ABC + random forests] to estimate Sp, SF and S_{AA} ?

Sp, SF and S_{AA} are estimated for 10,000 simulated datasets with random combinations of $\{Sp; SF; S_{AA}\}$

SF: randomly sampled from uniform U(0, 400,000) generations

 S_{AA} : randomly sampled from uniform U(0.002, 0.5)

Schematic representation + interpretation

Real simulated parameter value to estimate

Schematic representation + interpretation

Real simulated parameter value to estimate

Schematic representation + interpretation

Real simulated parameter value to estimate

Results: ABC analyses of 10,000 of simulated datasets 1. Plot of 10,000 points (real values, estimated values)

Visual interpretation:

Estimating the position : not bad, except in the proximity of extremities (general problem with ABC). Not a big issue if genomes are scanned using a sliding window.

Fixation time: looks efficient, except for ancient fixation.

Selective coefficient: cannot be estimated for now. It's normal according to Pennings and Hermisson when using patterns of diversity.

Results : ABC analyses of 10,000 of simulated datasets

2. Distributions of the ratio estimates/real values within bins of parameters

Visual interpretation:

Estimating the position : not bad, except in the proximity of extremities (general problem with ABC). Not a big issue if genomes are scanned using a sliding window.

Fixation time: looks efficient, except for ancient fixation.

Selective coefficient: cannot be estimated for now. It's normal according to Pennings and Hermisson when using patterns of diversity.

Results of explicit model comparisons:

Since selective coefficients cannot be estimated using the current version, an explicit test of sweep can be an option :

Number of simulations: 9598 (4841 'neutral' + 4757 'with sweep') (not exactly 10,000 after removing simulations with at least one 'NA' statistic)

Confusion matrix:

Classified as				
Simulated models	Neutral Selection	Neutral 4796 3	selection 45 4754	class.error 0.0092956001 0.0006306496

Mean error rate: 0.004963125

Very low error rate (~0.05%) when discriminating among «neutral» and «sweeped» datasets

Next step:

- 1) trying to add statistics taking informations from LD (i.e : H12 stat from http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004845)
- 2) exploring genomes:

For instance, it can be done by first:

- i) comparing « neutral » versus « selective » scenarios in overlapping 100kb regions of genomes (divided themselves in windows like in slide 3)
- ii) estimating the position Sp and the time SF for regions supporting the selective Scenarios
- 3) To do before: fitting a demographic scenario to avoid bias because of recent expansion/contraction of populations
- 4) all codes will be uploaded here: https://github.com/popgenomics/ABCsweep