Today's Agenda:
V
Recursion
→ Inho
-> Sum ef N numbers
-> Power
-> fibonacci
Dynamic Programming
→ 9mho
→ Types
-> Fibonacci
→ 0-1 knaplack
-> Unbounded knapsace
-> Coin Change
-> Edit Distance

Recuesion: - Junction calling itself
Lowing Problems using Smaller instance of Some problem.
Sum (10) = 1+2+3+ 10. Sum(4) = Sum(3)+4.
Sum (10) = Sum (10-1) + 10. Las Jupproblem.
Geop1on
How do we weike a secusive code? 1) Assumption: - you will assure your Junction would for subproblem
2) Main lagnic:- Lolve biggen problem with subproblem.
3) Bose Condn: - Just muite the answer you smalley input you know:

```
3 (w mul tri
   if cu==1) & subven 13
   return 2 um (10-1) + N
  Jack (3) = 1 + 2 + 3 = 6. Jack (w) = Jack (w-1) + W
   Jack (4): 1+2+3+43 Jack (4)= fact (3)+4.
   int jad wo) &
       it ( N==0) & return 13
      return fact (N-1) * N
     3
       Tracing, N=4
  int Sum (N=4) {
     16 M2=1) &
      return (;
                            T.C > lecuverence
    m+ (1-wml reul)
                                  lelation.
                             Tm)= Tm-1)+1
     int Sum (N=3) {
        3 (1==00) 7;
           return 1;
                            T.Cs OCN)
       ereturn Sum (10-1) + n
                             1.C > 0 (N)
```


fib(): 0 1 1 2 3 5 8 (3 21 34 55 grew
$$\Rightarrow$$
 0 1 2 3 4 5 6 7 8 9 10

this (M) = fib (M-1) + fib (M-2)

int fib (M) {

if ($n=0$ | | | $n=0$ | | $n=0$ | | $n=0$ | $n=0$ |

return fib (M-1) + fib (M-2)

3

This simple code is very poisoners.

 $f(3)$
 $f(4)$
 $f(5)$
 $f(4)$
 $f(5)$
 $f(4)$
 $f(5)$
 $f(1)$
 $f(1)$

0-1 knapsack

Given Nitems each with a weight and value, find more value which can be obtained by Picking items such that total weights of all items <= Cap

Note: Every item can be picked at more ! time.
Note 1: we can't take part of item.

en: N= 4 items, K= 50.

N = 1 2 3 4 $\frac{1}{2}$ $\frac{1}{2}$

ideal: Take elements in mos value:

 $\frac{\text{val}: 150 + 60 & 210}{\text{Cap}: 50 - 40 \Rightarrow 10 - 1000}$

ideal: Take elements in (4) sahio:

lod = 60 + 100 = 160 Cap = 50 - 10 = 40 - 200 = 20

The above two were greedy approaches and they failed. het all subsets weight <= k idea 3:-& get mor value Cap =15 eg:-2 3 5 15 = CV 7 3 4 5 1 tw 10 7 3 8 2 3 Val stelection for item 1,15 -> cafacity. (2,11)+5 2, 15

(4,1) (4,4) (4,8) (4,11) (4,8) (4,12) (4,12) (4,13)

Public int helper (int [] was, int [] wis, int idn, int cap interestings if (idn:= uls.length) & z returno', int selection = 0: if (dp [idn) [cap]!=0) { return dp [idn] [cap] 3 if (cap >= wb Tidn] & solp delection: helper(val, us, idn +1, cap- who [idn] + wal Lidn] int rejection: helper wal, wb, idn+1, (ap)', eletur of [:dn] [cap] Math. more (selection, rejection); 3

T.C->0(2m)

dp \Rightarrow Trading space for time. T.C.> O(m + cap)S.C.> O(m) + O(m + cap)

Oues) Essactly same as above problem.

Note:- A single item can be picked
as many times as we want.

 $\frac{60!}{\text{col}} = \frac{1}{20} = \frac{2}{10} = \frac{3}{10} = \frac{50}{10}$ $\frac{1}{10} = \frac{2}{100} = \frac{3}{10} = \frac{40}{150}$ $\frac{1}{100} = \frac{1}{100} = \frac{1$

> 20

Coin change Problem:

Jupply of it, you how to find the no of ways we can make the sum.

e.g.) lum = 4, $coins = {1,2,33}$ $lum = {2,1,1,1,3}, {1,1,23}, {2,23}, {1,33}$

Let's by to do it with Tabulation: -

e.g, Jum=2, coms= &2,3,53

	0	(2	3	Ч	S	6	ર
	ı	0	1	١	•	2		2
'	•		٠2	. გ	-92	-9 3 -5	.222	·223
						. 5		
				•		ı	ı	

int [] dp= new int [sum+]

dp[o]=1

for (i =0; i < cohy.dergtn; i ++) {

For 1J= coins [i]; Jx dp. length; J++) &

0(au	3 nx (OP)		3	465	1= d4	PZJ+ PE6J+ i	dp[6-3		
		3				22,		3		
0	١	2	3	ч	S	7	7	q	9	10
l	0	1	1	1	0		0	•	0	1
		1	J Of Orlow	المازلع	`	Spad	,			

Ours) Edit Distance:
hive two Strings Stri & Stol,
below openations are allowed:
1) Insect
2) femove
3) leplace.
•
min openations -> Convers the 1 to stes.
e.g.) Str1= 'cat' str2= 'cut'
$ans = 1$ operation $\rightarrow a$ to \underline{u} ,
eg.2) 'Lunday' to 'Labourday'

