ESERCIZI di ALGEBRA LINEARE

Esercizio 1

In \mathbb{C}^3 si considerino i vettori $v_1 = \begin{pmatrix} t \\ 2t \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} -2 \\ -4 \\ t-1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, al

variare del parametro complesso t. Determinare, se esistono, i valori di t per i quali v_1, v_2, v_3 sono linearmente indipendenti.

Esercizio 2

Trovare una base dello spazio generato dai vettori $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix}, v_5 = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Esercizio 3

Sia S l'insieme delle soluzioni del sistema

$$\left\{ \begin{array}{l} x+2y+z=1 \\ 2x+3y+3z=4 \end{array} \right.$$

Determinare S. S è un sottospazio vettoriale di \mathbb{C}^3 ? Esiste un vettore $v = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{C}^3$ tale che $v + S = \{v + s | s \in S\}$ sia un sottospazio vettoriale di \mathbb{R}^3 ?

Esercizio 4

Si considerino i seguenti vettori di \mathbb{C}^4 $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} i \\ i \\ 0 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 2 \\ 0 \\ 3 \end{pmatrix}$,

$$v_4 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 2i \\ 0 \\ 2i \\ 0 \end{pmatrix}, v_7 = \begin{pmatrix} 1 \\ 7 \\ 3 \\ 2 \end{pmatrix}$$
. Si dimostri che sono un insieme di

generatori per \mathbb{C}^4 e si determini una base contenuta in $\{v_1,v_2,v_3,v_4,v_5,v_6,v_7\}$

Esercizio 5

Trovare una base di C(A) e una base di $C(A^H)$, dove A è la matrice

$$A = \left(\begin{array}{rrrr} 1 & 3 & 0 & 0 \\ 1 & 6 & -3 & -1 \\ 1 & 0 & 3 & 1 \end{array}\right)$$

Esercizio 6

Si consideri il seguente sottoinsieme di $M_2(\mathbb{C})$:

$$W = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid a + d = 0 \right. \right\}$$

Verificare che è un sottospazio di $M_2(\mathbb{C})$. Trovare una base di W.

Esercizio 7

Trovare un sottoinsieme di \mathbb{C}^2 chiuso rispetto alla somma ma non rispetto al prodotto per scalari, e un sottoinsieme di \mathbb{C}^2 chiuso rispetto al prodotto per scalari ma non rispetto alla somma.

Esercizio 8

Si consideri la seguente funzione $f_s: \mathbb{C}^3 \to \mathbb{C}^3$: $f_s \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x-y+s \\ sx+(s-1)z \end{pmatrix}$ Per quali valori di $s \in \mathbb{C}$ f_s è una applicazione lineare? Per tali valori determinare $N(f_s)$, $Im(f_s)$ e la controimmagine mediante f_s del vettore $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

Esercizio 9

Sia
$$f: \mathbb{C}^2 \to \mathbb{C}^3$$
 l'applicazione lineare $f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+3y \\ y \\ x+3y \end{pmatrix}$. Determinare $N(f)$ e $Im(f)$. Determinare $f^{-1} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

Esercizio 10

Si considerino, al variare del parametro reale k, le seguenti applicazioni lineari: $f_k:\mathbb{R}^3\to\mathbb{R}^3$

$$f_k \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} kx + y - z \\ ky + (k+1)z \\ (k-1)z \end{pmatrix}$$

- 1. Determinare per quali valori di k l'applicazione f_k è iniettiva.
- 2. Determinare per quali valori di k il vettore $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ appartiene a $Im(f_k)$.

Esercizio 11

Sia $f_A: \mathbb{C}^3 \to C^3$ l'applicazione lineare indotta da

$$A = \left(\begin{array}{ccc} 1 & -1 & -2 \\ 0 & -4 & 0 \\ -2 & -1 & 4 \end{array}\right)$$

Si dica se f_A è invertibile. Determinare $N(f_A)$ e $Im(f_A)$, e una base per ciascuno di tali sottospazi. Il vettore $w=\begin{pmatrix} 1\\ -4\\ -5 \end{pmatrix}$ appartiene a $Im(f_A)$? In caso affermativo trovare v tale che $f_A(v)=w$.

Esercizio 12

Sia $P_4(\mathbb{R})$ l'insieme dei polinomi a coefficienti reali di grado strettamento minore di 4, e sia $f: P_4(\mathbb{R}) \to P_4(\mathbb{R})$ definita da f(p) = xp', dove p' è la derivata del polinomio p. Dimostrare che f è una applicazione lineare, trovare N(f) e Im(f).

Esercizio 13

Si considerino i seguenti sottospazi vettoriali di \mathbb{C}^3 :

$$U_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| 2x + y - z = 0, \ x - y = 0 \right\}$$

$$U_2 = \left\{ \begin{pmatrix} -i \\ i \\ i \end{pmatrix} \right\}$$

Esiste una applicazione lineare $f: \mathbb{C}^3 \to \mathbb{C}^3$ che abbia U_1 come spazio nullo ed U_2 come spazio immagine? In caso affermativo costruire f.

Esiste una applicazione lineare iniettiva $g: \mathbb{C}^3 \to \mathbb{C}^3$ che abbia U_2 come immagine? In caso affermativo costruire g.

Esiste una applicazione lineare suriettiva $h: \mathbb{C}^3 \to \mathbb{C}^3$ che abbia U_1 come nucleo? In caso affermativo costruire h.

Esercizio 14

Sia $f: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ definita da

$$f\left(\begin{array}{cc} x & y \\ z & t \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} x & y \\ z & t \end{array}\right)$$

Verificare che f è una applicazione lineare, trovare N(f) e Im(f).