Группа	P3110	К работе допущен
⊦руппа	P3110	к работе допуще

Студент: Романов Артём Работа выполнена

Преподаватель: М.П. Коробков Отчет принят_____

Рабочий протокол и отчет по лабораторной работе №2

1. Цель работы.

- 1) Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2) Определение величины ускорения свободного падения g.
- 2. Задачи, решаемые при выполнении работы.
 - 1) Измерение времени движения тележки по рельсу с фиксированным углом наклона.
 - 2) Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
 - 3) Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
 - 4) Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.
- 3. Объект исследования.

Движение тележки по наклонному рельсу

4. Метод экспериментального исследования.

Многократное измерение времени движения тележки по рельсу при различном расстоянии между оптическими воротами; при различном угле наклона рельса.

5. Рабочие формулы и исходные данные.

Задание 1.

$$Y = x_2 - x_1$$

$$\Delta_a = 2\sigma_a,$$

$$Z = \frac{t_2^2 - t_1^2}{2}$$

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\%.$$

$$\varepsilon_a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2}; \quad \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N} Z_i^2}},$$

Задание 2.

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x} \qquad \Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{H2}})^2 + (\Delta x_{\text{H1}})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2} \qquad B \equiv g = \frac{\sum\limits_{i=1}^N a_i \sin \alpha_i - \frac{1}{N} \sum\limits_{i=1}^N a_i \sum\limits_{i=1}^N \sin \alpha_i}{\sum\limits_{i=1}^N \sin \alpha_i}$$

$$A = \frac{1}{N} \left(\sum\limits_{i=1}^N a_i - B \sum\limits_{i=1}^N \sin \alpha_i\right) \qquad \sigma_g = \sqrt{\frac{\sum\limits_{i=1}^N d_i^2}{D(N-2)}}$$

$$d_i = a_i - (A + B \sin \alpha_i) \qquad D = \sum\limits_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \left(\sum\limits_{i=1}^N \sin \alpha_i\right)^2$$

6. Измерительные приборы.

Представлены в таблице 1.

7. Схема установки (перечень схем, которые составляют Приложение 1).

РИС. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1: Измерительные приборы

Наименование	Предел измерений	Цена деления	Класс точности	$\Delta_{\scriptscriptstyle H}$
Линейка на рельсе	1,3 м	1 см/дел	_	5 MM
Линейка на угольнике	250 мм	1 мм/дел	-	0,5 мм
ПКЦ-3 в режиме секундомера	100 с	0,1 c	_	0,1 c

Таблица 2.

х, м	x', M	h ₀ , мм	h ₀ м.м	
0,32		208	204	

Таблица 3: Результаты прямых измерений (Задание 1)

No x1, x		Измерен	Рассчитанные величина			
	x1, M	х2, м	t1, c	t2, c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c^2
1	0,15	0,4	1,3	2,4		-
2	0,15	0,5	113	2,6		
3	0.15	1,0	1,3	3, 3		
4	0,15	0,9	1,3	3,4		
5	21,0	1,10	1,3	4,1		

Таблица 4: Результаты прямых измерений (Задание 2)

NIJI	lt, mm	h', mm	Ng	t1, c	t2. c
			1	:.2	ч.0
		1 .	2	1,2	4.0
1	20%	1208	3	1,4	4.2
		1	4	1.3	4,0
			2 3 4 5 1 2	43	14,0
			1	1,2	3, 3
	1		2	1.5	3,6
2	1225	208	3	1.3	3. 4
	i		4	1,3	3,4
			5	140	3 0
/354			1	1.0	2,6
	236	208	2	1,3	3,1
3			3	1.0	1.4
			4	0,8	2.6
	1	1	5	0,7	2.5
			1	1.0	2.5
		11 50 50	3	26	2,2
4	245	500		0,6	2,1
			4	0.8	2.4
			5	0,6	2,1
			1	0,6	2.0
72)	- 0.0	3	0,6	1.0
5	254	209		0,5	1,9
	()		4	0,9	2.9
	оличество п		5	8,0	3,2

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

<u>Задание 1</u>:

Расчет ускорения.

$$Y_1 = x2 - x1 = 0,4 - 0,15 = 0,25$$
M.
 $Z_1 = t \frac{t_2^2 - t_1^2}{2} = \frac{((2,4*2,4) - (1,3*1,3))}{2} = 2,035c^2$

$$Y_1 * Z_1 = 0.25 * 2.035 = 0,50875 \text{m*c}^2$$

 $Z_1^2 = 0,26 \text{c}^4$
 $a = \frac{sum(Yi*Zi)}{sum(Zi*Zi)} \approx 0.20 \text{m/c}^2$

Результаты всех вычислений:

Yi, m	Zi, c^2	Yi*Zi, m*c^2	Сумм(Yi*Zi), m*c^2	Zi^2, c^4	a, м/c^2
0,25	2,035	0,50875		0,258826563	
0,35	2,535	0,88725		0,787212563	
0,55	4,6	2,53	15,608	6,4009	0,196876656
0,75	6	4,5		20,25	
0,95	7,56	7,182		51,581124	

Задание 2:

Расчёт угла наклона рельса к горизонту и ускорения.

$$\sin a1 = \frac{h_0 - h_1 - (h'_0 - h'_1)}{x' - x} = \frac{h'_{0\phi \text{AKT}} - h'_{1\phi \text{AKT}} - (h_{0\phi \text{AKT}} - h_{1\phi \text{AKT}})}{x' - x} = 0,0012^\circ$$

$$< t1 >_{(1)} = \frac{\sum_{1}^{5} t1}{5} = \frac{6,4}{5} = 1,28c$$

$$< t2 >_{(1)} = \frac{\sum_{1}^{5} t2}{5} = \frac{20,2}{5} = 4,04c$$

$$< a >_{(1)} = \frac{2(x_2 - x_1)}{\langle t \rangle_2^2 - \langle t \rangle_1^2} = \frac{0,5}{14,69} = 0,03\text{M/c}^2$$

Результаты для остальных расчетов представлены в приложении №1 (табл.5)

Расчет коэффициентов А и В:

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i * \sin a_i - \frac{1}{N} * \sum_{i=1}^{N} a_i * \sum_{i=1}^{N} \sin a_i}{\sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} (\sum_{i=1}^{N} \sin a_i)^2} = \frac{0,0138312}{0,0018374} = 7,52 \text{M/c}^2$$

$$A = \frac{1}{N} * \left(\sum_{i=1}^{N} a_i - B * \sum_{i=1}^{N} \sin a_i \right) = \frac{1}{5} * (-0,15) = -0,03 \text{M/c}^2$$

10. Расчет погрешностей измерений (*для прямых и косвенных измерений*). Задание 1:

Расчет погрешности для ускорения.

$$(Y_1 - a * (Z_1))^2 = (0.25 - 0.2 * 2.035)^2 = 0.022 \text{m}^2$$

$$\sigma a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - a(Z_i))^2}{N - 1(\sum_{i=1}^{N} (Z_i)^2)}} = 0.045 \text{m/c}^2$$

$$\Delta a = 2\sigma a = 0.09 \text{ m/c}^2$$

$$\varepsilon_a = \frac{\Delta a}{a} = \frac{0.09}{0.2} = 0.45$$

Результаты всех вычислений:

(Yi - a*Zi)^2, m^2	Сүмма С25-С29	число изм N	среднее отклонение сигма, м/с^2
0,022693614			
0,022225539			
0,12647456	0,647239973	5	0,045177912
0,185985135			
0,289861125			

Задание 2:

Расчет СКО, доверительного интервала (для a = 0.95), абсолютной и относительной погрешности:

$$S_{t1}^{-} = \sqrt{\frac{\sum_{i=1}^{n} (t1_{i-\overline{t_1}})^2}{N(N-1)}} = 0.04$$

$$\Delta_{\overline{t_1}} = t_{a,n} * S_{\overline{t_1}} = 0.11$$

$$\Delta_{t1} = \sqrt{\Delta_{t1}^2 + (\frac{2}{3} * \Delta_{\text{M}t1})^2} \approx 0.13$$

$$\varepsilon_{t1} = \frac{\Delta_{t1}}{\overline{t_1}} * 100\% = 10.1\%$$

Аналогично для t₂

Результаты всех вычислений для t₁ и t₂:

Nº	S_{t1}^-	$\Delta_{\frac{1}{t_1}}$	Δ_{t1}	$arepsilon_{t1}$
1	0,04	0,11	0,13	10,1
2	0,08	0,22	0,23	18
3	0,09	0,27	0,28	28
4	0,08	0,22	0,23	32
5	0,07	0,2	0,2	29

Nº	S_{t2}^-	Δ t2	Δ_{t2}	ε_{t2}
1	0,04	0,11	0,13	3,25
2	0,09	0,27	0,28	8,3
3	0,1	0,29	0,3	11
4	0,1	0,29	0,3	13
5	0,18	0,5	0,5	22,7

Расчет погрешности для ускорения:

$$\Delta a = \langle a \rangle * \sqrt{\frac{(\Delta_{\chi_{H2}})^2 + (\Delta_{\chi_{H1}})^2}{(x_2 - x_1)^2} + 4 * \frac{(\langle t_1 \rangle * \Delta_{t1})^2 + (\langle t_2 \rangle * \Delta_{t2})^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}} = 0.06$$

Результаты для остальных расчетов представлены в приложении №1 (табл.5)

Расчет СКО для коэф.B(g).

$$d_1 = a_1 - (A + B * sina_1) = 0.03 + 0.021 = 0.051$$
м/с²
Аналогично для остальных і:

d1	d2	d3	d4	d5
0,051	-0,05	-0,055	0,0125	0,04

$$\begin{split} D &= \sum_{i=1}^{N} sina_{i}^{2} - \frac{1}{N} * \left(\sum_{i=1}^{N} sina_{i}\right)^{2} = 0,001837452 \\ \sigma_{g} &= \sqrt{\frac{\sum_{i=1}^{N} d_{i}^{2}}{D(N-2)}} = 1,34 \\ \Delta_{g} &= 2,68 \\ \varepsilon_{g} &= 35,7\% \end{split}$$

Сравнение абсолютной погрешности g с фактической разницей g табл. и g:

$$g_{\text{санкт}} = 9.82 \text{ M/}c^2$$

$$\Delta g$$
(фактич.) = $|g_{\text{табл}} - g_{\text{эксп}}| = 2.31 \text{ м/c}^2$

$$\varepsilon_{\rm g}$$
(фактич.)=2,31/9,82 * 100%=23,5%

Графики (перечень графиков, которые составляют Приложение 2). 11.

- Окончательные результаты. 12.
 - График зависимости Y=Y(Z)
 - График зависимости $a=a(\sin \alpha)$

$$a = (0.2\pm0.09) \text{ m/c}^2; \qquad \varepsilon_a = 4.5\%;$$

a =
$$(0.2\pm0.09)$$
 m/c²; ε_a =4,5%; α = 0.90.
g = (7.5 ± 2.68) m/c²; ε_g = 35,7% α = 0.95.

$$\Delta g$$
(фактич.) = 2,31 м/с²; ε_g (фактич.) = 23,5%

13. Вывод и анализ результатов работы:

Задание 1:

Мы провели экспериментальную проверку равноускоренности движения тележки по наклонной плоскости и посчитали погрешности значений времени и ускорения. Смотря на полученные результаты можно прийти к выводу, что движение тележки по наклонной плоскости при фиксированном угле наклона является равноускоренным, это подтверждает график1 и низкая погрешность измерений.

Задание 2:

В результате измерений был получен g = 7,5, что значительно $(\varepsilon_g(\varphi_{akt}) = 23.5\%)$ отличается от табличного значения g = 9.82. Это связано с систематической погрешностью (методика обработки данных, неточность измерительного инструмента, различные внешние факторы, влияющие на точность измерений).

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).