Assignment 1

James Zoryk

September 2020

1 Question 1

Given that $\rho = \frac{1+\sqrt{5}}{2} \in \mathbb{R}$, and $R = \{a + b\rho | a, b \in \mathbb{Z}\}.$

1.1 A)

Show that R is a subring in \mathbb{R} , and that $\mathbb{Z}[\sqrt{5}] \subset R$.

i) Let a,b=0 then $0a+0\rho=0$ which shows that addition identity 0_R is in R and thus $R\neq\emptyset$.

ii)Let $x, y \in R$ such that $x = a + b\rho$ and $y = c + d\rho$, with $a, b, c, d \in \mathbb{Z}$ then

$$x - y = (a + b\rho) - (c + d\rho)$$
$$= (a - c) + (b - d)\rho$$

Since a, b, c, d are in \mathbb{Z} which is closed under addition and inverse, then it follows that (a-c) and (b-d) are in \mathbb{Z} .

Hence (x - y) is in R, which show R is closed under addition and inverse.

iii)Let $x, y \in R$ such that $x = a + b\rho$ and $y = c + d\rho$, with a, b, c, dinZ then

$$x * y = (a + b\rho) * (c + d\rho)$$
$$= ac + (ad + bc)\rho + bd\rho^{2}$$

Since ρ^2 is always an integer, then it follows that $x * y \in \mathbb{R}$, which implies that \mathbb{R} is is closed under multiplication.

Therefore we have shown that R is a subring of \mathbb{R} .

let $x=a+b(\frac{1+\sqrt{5}}{2})$, with $a,b\in\mathbb{Z}$, such that $x=a+\frac{b}{2}+\frac{b\sqrt{5}}{2}$. Now we can write $x=a+c+c(\sqrt{5})$, where c=2b, with $c\in\mathbb{Z}$. This shows that $\mathbb{Z}[\sqrt{5}]\subset R$. However $\mathbb{Z}[\sqrt{5}]\not\supset R$, as let a,b=1 such that $1+(\frac{1+\sqrt{5}}{2})\not\in\mathbb{Z}[\sqrt{5}]$.

1.2 B)

Given that $N(\alpha) = |\alpha \bar{\alpha}|$, where $\bar{\alpha} = \overline{a + b\rho} = (a + b) - b\rho$. Show that $N(\alpha\beta) = N(\alpha)N(\beta)$ for all α, β in R, but that in general we do not have that $N(\alpha + \beta) = N(\alpha) + N(\beta)$.

Let $\alpha = a + b\rho$ and $\beta = c + d\rho$.

Then

$$\alpha * \beta = (a + b\rho)(c + d\rho)$$
$$= ac + (ad + bc)\rho + bd\rho^{2}.$$

Applying the norm function, $N(\alpha * \beta) =$

$$[ac + (ad + bc)(\frac{1+\sqrt{5}}{2}) + bd(\frac{1+\sqrt{5}}{2})^2][ac + (ad + bc)\frac{1-\sqrt{5}}{2} + bd(\frac{1-\sqrt{5}}{2})^2]$$

$$= (a^2c^2 + a^2cd - a^2d^2) + (abc^2 + abcd - abd^2) + (-b^2c^2 - b^2cd + b^2d^2)$$

Now, finding the norm of α ,

$$N(\alpha) = (a + b\rho)\overline{(a + b\rho)}$$

$$= [a + b(\frac{1 + \sqrt{5}}{2})][a + b(\frac{1 - \sqrt{5}}{2})]$$

$$= (a^2 + ab - b^2).$$

The steps above can be repeated for β , which give us $N(\beta) = (c^2 + cd - d^2)$. Using both equation found for the norm of α and β , the product of the two can be calculated as

$$N(\alpha)N(\beta) = (a^2c^2 + a^2cd - a^2d^2) + (abc^2 + abcd - abd^2) + (-b^2c^2 - b^2cd + b^2d^2).$$

Hence $N(\alpha\beta) = N(\alpha)N(\beta)$ for all α, β in R.

Now, the addition of α and β is given by $(a+c)+(b+d)\rho$, applying the norm function to this gives us the follow results

$$N(\alpha + \beta) = a^2 + ab + 2ac + ad - b^2 + bc - 2bd + c^2 + cd - d^2.$$

while,

$$N(\alpha) + N(\beta) = a^2 + c^2 + ab + cd - b^2 - d^2$$

This show that $N(\alpha + \beta) \neq N(\alpha) + N(\beta)$ in generally.

1.3 C)

Consider the infinite set $\{u^n|n\in\mathbb{N}\}$, where u is a unit in R and u has infinite order. The each element of the set is a unit of R.

Now assume $v \in \mathbb{R}$ is the inverse of u such that $uv = 1_R$ then,

$$u^{n}v^{n} = 1_{R} = uv$$

$$= u^{n-1}(uv)v^{n-1}$$

$$= u^{n-1}(1_{R})v^{n-1}$$

$$= u^{n-1}v^{n-1}$$

$$= 1_{R}$$

 $N(\alpha)=\pm 1$, using Pell's equation $a^2+ab-b^2=\pm 1$, which can be arranged into $(2a+b)^2-5b^2=\pm 4$.

Since $\left(\frac{-3+\sqrt{5}}{2}\right)\left(\frac{3+\sqrt{5}}{2}\right)=1_R$, then $\left(\frac{3+\sqrt{5}}{2}\right)$ is a unit in R with infinite order, as $\left(\frac{-3+\sqrt{5}}{2}\right)^n\left(\frac{3+\sqrt{5}}{2}\right)^n=1_R$.

2 Question 2

Given $S = \mathbb{Z} * \mathbb{C}$ with addition and multiplication given by

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

 $(a_1, b_1) * (a_2, b_2) = (a_1 * a_2, a_1 * b_2 + b_1 * a_2)$

with $a_1, a_2 \in \mathbb{Z}$ and $b_1, b_2 \in \mathbb{C}$, and S being a commutative ring.

2.1 a)

Determine all zero divisors

A nonzero element a of S is a zero divisor if there is a nonzero element b in S such that either ab = 0 or ba = 0.

Using $(a_1*a_2, a_1*b_2+b_1*a_2)$, we see that $a_1*a_2 = 0$ and $a_1*b_2+b_1*a_2 = 0$, has to be satisfied in order for it to be a zero divisor. Solving these set of equations give us a zero divisor of the form (0,b) with $b \in \mathbb{C}$. Since

$$(0, b_1) * (0, b_2) = (0 * 0, 0 * b_2 + b_1 * 0)$$

= $(0, 0)_S$.

Therefor we have shown that S has a zero divisor, given by $\{(0,b)|b\in\mathbb{C}\}.$

2.2 b)

Show that this ring has an identity $1_s \neq 0_s$, and determine s^* .

The 0_S is define by the addition identity such that,

$$(0,0)_S + (a,b) = (0+a,0+b) = (a,b)$$

 $(a,b) + (0,0)_S = (a,b).$

While the multiplication identity of S is denoted by 1_S is given by

$$(a_1,b_1)_S*(a_2,b_2)=(a_2,b_2).$$

So we have

$$\begin{cases} a_1 * a_2 = a_2 \\ a_1 * b_2 + b_1 * a_2 = b_2 \end{cases}$$

Which implies the multiplication identity of S is $1_s = (1,0) \neq (0,0) = 0_S$. Hence, for the ring S, $1_s \neq 0_s$.

The units of the ring S, which form the set S^* are given as $(a_1,b_1)*(a_2,b_2)=(1,0)$, this implies that $a_1*a_2=1$ and $a_1*b_2+b_1*a_2=0$. Then it follows that $a_1,a_2=\pm 1$, so that $b_2+b_1=0$, then clearly $b_1=-b_2$. Since $b_1,b_2\in\mathbb{C}$ they can take the form of $\{x+yi|x,y\in\mathbb{R}\}$.

Hence, S^* is the set $\{(\pm 1, b) | b \in \mathbb{C}\}$, such that $(1, b) * (1, -b) = (1, 0) = 1_S$.