Diel clieres Versucher it die Unterwhung der Ubertragungs. eigenschaften einer Transformators. Der Verzuch ist meigeteilt und besteht un einem Verrenuch, in welchen was sich mit einem R-C-treis bershäftigt, und dem eigentlichen Hauptheil, indem mersungen am Transformator durch geführt werden Da mit Wechrelstvam gearlieitel und, werden die verwinditen croppen als vamplee Ealilen angegeben, da diese einfeder zu handheben eind, als trigono nethische Funktionen. An stelle cles reller Wide Nandes trik romit die Impedante 2. Wiehtige Groppen bei Ukehreletrom rind die Effektionerte West und Seet, die se grop sincl wie und I bei einer ceichshomiquelle, die im gleichen Zeitintevall (pei sinus cosinus - jorniger üblishe vielfache eins leitoch) aus einem Olmsen Verbraucher dieselle elektrische Energie umsetzt. Bei simus formiger Wechelspannung ist ilet = I und I = I Dancus ergilet sich die Wirkleintung Pu zu: Pu = 1. | Û.Î | cos y. Der rusets cos y villet daher, dors nur de Realteil der Schein leist ung betrachtet wird. Da (ideale) Wondersatoren oder inclubirtaters eines reinen (inoginales) Blindwickstand darstellen, spalled sich die (Schein-) Leistung auf in Blind- und Withlestung. Ein leislungs dreich: 5 Scheinleistung 5 = Ueff. Ieff Blindleidung $Q = 5 \cdot \sin \varphi$ $S = P + Q \cdot |S| = \sqrt{P^2 + Q^2}$ Virkleidung $P = 5 \cdot \cos \varphi$

Transformator:

Grundlegerd besteht der Transformator aus zwei Spulen, die so an geordnel sind, dass bei einem Stornfluss in einer der Spulen das daduck indurieke tragnetfeld die Windungs-Fläche der under Smile durksetsting sine SommungsDabei sind die zwei Spuler auf den gegernberliegender reiden einer gezehlorenen Eirerjochs gewichelt, was dazes dient, dass möglichst wiele magnetische Feldlinier die Windungsflachen beide Spulen durchretsen.

Mit einen Transformator ist er also möglich, ohne dars die beide Spulin leitend valunder wind, withung zu übertragen. Ze nach Windungs zahl der zinralnen zpullen, hamm man dabei auf der Selundürseite die Spannung hoch - oder nurteregeleren. Dalei gilt:

$$\frac{N_1}{N_2} = \frac{U_1}{U_2} = \frac{I_2}{I_7}$$

Bei Transformatoren treten uldjelieureit verskiedene Verleide auf. Zum einen treten Vupferverlunte, bedingt durch die olimselieg (minen-) widersteinde der Expulein. Dard vormmin songenannte Einenverlunte, welch sich Zurammerselsen dur Wirbelstrom vertruten I der auch im Einerkem?

en strom indevient wind), sowie Hysterese verleute (de de Cischem standig comragnetical wind).

Isleht bem man richt davor aurgeben, dans dar bomplets Magnet feld de einen Spule die binder dierbritist. Van dahen fielnt man den strenboeffizielden o = 1 - 12 ein, der die Streuung der signet felder breichteilt.

Im Vorveruch roll remached schein-, Wish und Blindlichen unterwich werden, rowie deren Verbrildnise und Abriangig Verten. Im Hauptveruch werden dam Merkungen an einem Symetrie Transformator deurchgeführt.

Anhand derer collen verdiedene Valute und Übertragungs eigenschaften, muie der chentroeffirient berechnet wereb

Der Strom mind maximal lei $R = \theta$. Heißt: $I = \frac{U}{Z_c}$ $I = \frac{U}{Z_c} = U \cdot \omega C = U \cdot 2\pi f c$

mil U=47V, f=50Hz und C= ED ut expilet ciel I=1181 4

Wie der Fußnale zu Elhos zu ent nehmen int, sind diese empfindlich auf die richtige Poling der Betniebrspannung, de eine Fehlpoling zur zertönung der Dielektrikums und damt olls wandensators führt.

Da allerdings mit Werkselspannung (Mandige Umpolung) gealeitet wind, ist die vieltige bolung nieltgegelen! zonden beide!

Skizzen

Millsseing

238. a

	URED	I [4]	u _s (4)	P. (-1)	cos 4
	4)	727	(2)	/	
1	9.24	7,76	47,6	12,6	0,23
2	13,97	7,13	47,6	17,6	was 0,33
3	27,44	1,06	47,7	24,2	840
4	28,42	0,95	47,6	28,7	0,62
5	34,7	0,82	47,6	28,9	0,74
6	38,06	0,77	47,6	27,5	0,82
7	40,42	0162	47,6	25,4	0,86
8	47,63	0,57	42,6	284	0,88
9	42,68	0,52	47,6	22,5	0,0
ъ	43,88	0,46	47,6	20,2	0,92
ワフ	44,48	0,42	47,6	18,9	0,93

 $C = 80 \mu F$ f = 50 Hz $\Delta U_{p} = 0.7 U = \Delta U_{R}$ $\Delta I = 0.07 A$

AP = 0,14

Trafo: $V_1 = V_2 = 250$ $L_1 = L_2 = 212$ $R_1 = R_2 = 0.6$

Widentandsschieler: 10052 - 1,8 A max 2,5 A/15 min

Vorveruch: Scheinleistung, Wirkleistung und Blindleistung

Schaltfild zum Vernich siehe Seite 3 (unten), Schaltbild 1"

In diesem Verreich wurde für eine RC- senenschaltung die Größen Spamung UB, Strom I, Wirkeistung Pu und die Spamung UB über dem Widerland für verschiedere Widerlande R gernersen.

Verwendet man einen Vaparitiven (Blind-) Widerland, so Eritteine Phosesverschiebung bei Spannung und Stom auf. Dies hat auch Auswirkungen auf die leidung: Diese muss behachtet werden als Scheinleidung, die sich zusemmerselit aus Willeistung (be: R) und Blindleistung (beim Vondersator):

In Folgenden werden gemersene Wirkleitung Pur, sowie berechnete Wirkleistung Ps wosig), als auch Echemleistung Ps glegen R in einem Diagramm dargestellt.

Dazu werden Folgende Größen berechnet:

- Widestand:

- Korinus des Phones winhels:

$$cos(\varphi) = \frac{U_R}{U_B}$$

$$\Delta(cos(\varphi)) = \sqrt{\frac{\Delta u_R}{U_B}^2 + \left(\frac{U_R}{U_C^2} \cdot \Delta U_B\right)^2}$$

- Schemlentung

$$P_3 = U_3 \cdot I$$
 , $\Delta P_5 = \sqrt{(I \cdot \Delta U_B)^2 + (U_B \cdot \Delta I)^2}$

- Wirkleitung:

En beveren Übereicht hie noch einmel der resutabelle.

Tabelle 1:		Mes	sung				
	Messung	U_R [V]	I [A]	U_B (V)	P_W [W]	cos(φ) [°]	
	1	9,24	1,16	47,6	12,6	0,23	$\Delta U_B [V] = 0.1$
	2	13,91	1,13	47,6	17,6	0,33	$\Delta U_R [V] = 0.1$
	3	21,44	1,06	47,7	24,2	0,48	$\Delta I [A] = 0.01$
	4	28,42	0,95	47,6	28,1	0,62	$\Delta P[V] = 0,1$
	5	34,1	0,82	47,6	28,9	0,74	C [F] = 0,00008
	6	38,06	0,71	47,6	27,5	0,82	f [Hz] = 50
	7	40,42	0,62	47,6	25,4	0,86	
	8	41,63	0,57	47,6	24	0,88	
	9	42,68	0,52	47,6	22,5	0,9	
	10	43,88	0,46	47,6	20,2	0,92	
	11	44,48	0,42	47,6	18,9	0,93	

Und die dazugelönigen, beedneten Größen

Tabelle 1.1:

Tabal		7.						
Messung	R [Ω]	ΔR [Ω]	cos(φ) [°]	Δcos(φ) [°]	P_S [W]	ΔP_S [W]	P_W [W]	ΔP_W (W)
1	7,9655	0,1102	0,1941	0,0021	55,2160	0,4899	10,7184	0,1517
2	12,3097	0,1404	0,2922	0,0022	53,7880	0,4892	15,7183	0,1852
3	20,2264	0,2129	0,4495	0,0023	50,5620	0,4886	22,7264	0,2485
4	29,9158	0,3320	0,5971	0,0024	45,2200	0,4854	26,9990	0,3102
5	41,5854	0,5216	0,7164	0,0026	39,0320	0,4830	27,9620	0,3604
6	53,6056	0,7680	0,7996	0,0027	33,7960	0,4813	27,0226	0,3954
7	65,1935	1,0638	0,8492	0,0028	29,5120	0,4800	25,0604	0,4157
8	73,0351	1,2933	0,8746	0,0028	27,1320	0,4794	23,7291	0,4261
9	82,0769	1,5901	0,8966	0,0028	24,7520	0,4788	22,1936	0,4350
10	95,3913	2,0851	0,9218	0,0029	21,8960	0,4782	20,1848	0,4453
11	105.9048	2,5328	0,9345	0,0029	19,9920	0,4778	18,6816	0,4502

Im folgesden das Diagramm, in dem Pu, Ps und Ps cos (a)

Abb. 1 RC-Kreis

Benitst dafür wurden die West aus Teilelle 1 und 1.1.

Um die maximale leirtung Pw.max, die die Schallung der Spannungsquelle entrehmen kann, Kann man die Spannungsquelle als ideal anveren, dem die Spannung blieb über den geramten Mersworgang, unabhängig von der Belartung besiehungsweire der Leistung, Vorrtant.

Im Falle einer idealen Spannungsquelle gilt:

Das traximum liegt bei
$$R = |x|$$
 und $P_{w_{imax}} = \frac{U_{L,eff}^2}{2|x|}$.

mit f = 50 Hz; $U_{L_1eff} = U_C = 47,6 \text{ V}$; $C = 80 \mu\text{ F}$ somie $w = 2\pi f$; $IXI = \frac{1}{wC}$

foled für die maximale Workleistung:

Diese leistung wiede entnommen bei einem Widertand von

$$R = |X| = \frac{1}{wC} = \frac{1}{2\pi f C} = 39,79 \Omega$$

Dierar Punkt nuncie per Augenmaps (x) in das Diogramm (Akto. 1), eingetroden und passit sehr gut nich der bedrachtwaren Tendem des Verlaufs!

Fazit Vorversuch

problemles at und auch das Expelinis des turnesting it quit.

Die gemessene servie die berechnete Wihleinung itimmer in ihnen Verlauf zehn schön überein, auch verm die vom Carry-System erfassten Weste tenderielletwas höher uurfallen In diesen Verlauf gliedet sich auch die errechnete Movemalwielleistung ein.

Der Verlauf de Scheinleichung paset auch sehr gut. Es wurde erwatet, dars sich die Scheinleitung immer weite an die Wirhleitung amabert, da sich die Scheinleistung aus Wirh- und Blindleidung zurammersetet und letstese, mit wachrenden durscher Widestand, im Verlähtnis zur Willeitung immer Weiser wird.

Hauptveruch: Messunger am Transformator:

238 C+d

In Hauphversch wurden Messeungen am Transformator deuchgeführt. Für verchiedere R wurden auf der P. imärseile, sowie
auf der Sehundärseile des Transformators die Spannung 4,
der Strom i und die Witteirtung Pu gemessen.

(Schaltbild: siehe Seile 3 (unten) "Schaltbild 2")

Die die Palen mit einem Compute erfasst wurden, folgt zunächt
eine Talelle nit der erfassten Westen:

Tapelle 2: Mentabelle

Messung	I_1 [A]	U_1 [V]	I_2 [A]	U_2 [V]	P_1 [W]	<u>P_</u> 2 [W]	
1	0,1132	47,9725	0	47,3096	2,8095	0	
2	0,1774	47,9076	0,0995	47,1077	6,3043	4,6784	
3	0,2587	47,8926	0,1956	46,9159	10,3977	9,1635	
4	0,3500	47,8137	0,2955	46,6428	14,8472	13,7805	
5	0,4483	47,7597	0,3991	46,3940	19,5250	18,4995	
6	0,5507	47,8009	0,5038	46,1507	24,3433	23,2395	ΔU [V] = 0
7	0,7411	47,7529	0,6958	45,5802	33,0374	31,7055	ΔI [A] = (
8	0,9455	47,6642	0,9020	44,7498	41,9711	40,3305	$\Delta P[W] = 0$
9	1,1458	47,6354	1,1004	43,9696	50,5107	48,3555	
10	1,3489	47,5714	1,3023	43,0436	58,7237	56,0190	N1 = N2 = 3
11	1,5520	47,5498	1,5030	42,0544	66,5732	63,1650	L1 [H] = L2 [H] = (
12	1,7526	47,5759	1,7034	41,0249	73,9062	69,8370	$R1[\Omega] = R2[\Omega] = 0$
13	1,9507	47,5670	1,8984	39,8586	80,5716	75,6225	
14	2,1576	47,4924	2,1039	38,3792	86,5326	80,6805	
15	2,3514	47,4972	2,2961	37,0101	91,7501	84,9150	
16	2,5619	47,4005	2,5040	35,2493	96,2532	88,1977	
17	2,7616	47,3118	2,7025	33,4340	99,4827	90,2895	
18	2,9664	47,2182	2,9047	31,4047	101,6645	91,1565	
19	3,1655	47,2428	3,1015	29,3718	102,9536	91,0305	
20	3,3668	47,3826	3,3021	27,2120	103,2099	89,7945	
21	3,5650	47,3074	3,5016	24,5768	100,9410	86,0010	
22	3,7641	47,3504	3,7016	21,6994	96,8558	80,2665	
23	3,9630	47,3486	3,9007	18,3407	89,9549	71,4960	
24	4,0635	47,4490	4,0027	16,5738	85,6532	66,2940	
25	4,1606	47,3940	4,0970	14,4976	79,7621	59,3595	
26	4,2601	47,4159	4,2003	12,1955	72,4712	51,1935	
27	4,3575	47,4349	4,3000	9,5582	63,4614	41,0745	
28	4,4587	47,4704	4,4017	6,3325	51,3189	27,8550	•
29	4,5626	47,6343	4,5051	0,7141	34,7477	2,8305	

Aus dieses Westers kann man weitere, verschiedene Großen berechnen:

- primare/sehundare Scheinsleintung Ps. , und Ps. :

$$P_5$$
: = $U_i \cdot T_i$

$$\text{mit} \quad \Delta P_{s} := \sqrt{\left(\mathbf{I}_{1} - \Delta U\right)^{2} + \left(\mathbf{U}_{1} - \Delta \bar{\mathbf{I}}\right)^{2}}$$

- Verlustleistung Pv:

$$P_v = P_{w_1} - P_{w_2}$$

- Kupfeverluste Pau:

- Eisenverluste Pfe:

$$P_{Fe} = P_V - P_{cu}$$

- Wirlungs good n:

wit
$$\Delta_{\eta} = \sqrt{\left(\frac{\Delta P}{P_{w,1}}\right)^2 + \left(\frac{P_{v,2}}{P_{w,1}^2} \cdot \Delta P\right)}$$

Die einzelner Werte sind in der folgerden Talvelle (Tabelle 3) zusammengefant.

In Anschluss daren muden die beiden Wirkleitunge (Abb. 2), die Verlutleistungen (Abb. 3) sowie der Wirlungsgrad (Abb. 4) gegen Iz aufgetragen.

Ν	lessung	P_S,1 [W]	ΔP_S,1 [W]	P_S,2 [W]	ΔP_S,2 [W]	η =	Δη	P_V [W]	P_Cu [W]	ΔP_Cu [W]	P_Fe (W)	ΔP_Fe [W]
	1	5,4300	0,4799	0	0,4731	0	0,0356	2,8095	0,0077	0,0014	2,8019	0,2014
	2	8,4987	0,4794	4,6872	0,4712	0,7421	0,0198	1,6260	0,0248	0,0024	1,6012	0,2024
	3	12,3921	0,4796	9,1756	0,4696	0,8813	0,0128	1,2342	0,0631	0,0039	1,1711	0,2039
	4	16,7348	0,4794	13,7814	0,4674	0,9282	0,0092	1,0667	0,1259	0,0055	0,9408	0,2055
	5	21,4092	0,4797	18,5169	0,4657	0,9475	0,0071	1,0255	0,2161	0,0072	0,8094	0,2072
	6	26,3254	0,4812	23,2501	0,4642	0,9547	0,0057	1,1038	0,3343	0,0090	0,7695	0,2090
	7	35,3883	0,4832	31,7167	0,4611	0,9597	0,0042	1,3319	0,6200	0,0122	0,7119	0,2122
	8	45,0661	0,4859	40,3642	0,4565	0,9609	0,0033	1,6406	1,0245	0,0157	0,6160	0,2157
	9	54,5812	0,4899	48,3856	0,4533	0,9573	0,0027	2,1552	1,5143	0,0191	0,6409	0,2191
	10	64,1680	0,4945	56,0567	0,4497	0,9539	0,0024	2,7047	2,1093	0,0225	0,5954	0,2225
	11	73,7993	0,5002	63,2077	0,4466	0,9488	0,0021	3,4082	2,8007	0,0259	0,6075	0,2259
	12	83,3817	0,5070	69,8822	0,4442	0,9449	0,0019	4,0692	3,5839	0,0293	0,4853	0,2293
	13	92,7876	0,5141	75,6690	0,4415	0,9386	0,0017	4,9491	4,4455	0,0327	0,5036	0,2327
	14	102,4690	0,5216	80,7443	0,4377	0,9324	0,0016	5,8521	5,4488	0,0362	0,4032	0,2362
	15	111,6844	0,5300	84,9800	0,4355	0,9255	0,0015	6,8351	6,4807	0,0394	0,3544	0,2394
	16	121,4353	0,5388	88,2630	0,4324	0,9163	0,0014	8,0555	7,6999	0,0430	0,3556	0,2430
	17	130,6553	0,5478	90,3555	0,4299	0,9076	0,0014	9,1932	8,9579	0,0464	0,2353	0,2464
	18	140,0677	0,5576	91,2224	0,4278	0,8966	0,0013	10,5080	10,3422	0,0498	0,1658	0,2498
	19	149,5450	0,5687	91,0960	0,4272	0,8842	0,0013	11,9231	11,7836	0,0532	0,1395	0,2532
	20	159,5270	0,5813	89,8572	0,4279	0,8700	0,0013	13,4154	13,3435	0,0566	0,0719	0,2566
	21	168,6528	0,5924	86,0580	0,4278	0,8520	0,0013	14,9400	14,9824	0,0600	-0,0424	0,2600
	22	178,2301	0,6049	80,3219	0,4291	0,8287	0,0013	16,5893	16,7219	0,0634	-0,1325	0,2634
	23	187,6417	0,6174	71,5413	0,4310	0,7948	0,0014	18,4589	18,5524	0,0667	-0,0935	0,2667
	24	192,8073	0,6247	66,3393	0,4332	0,7740	0,0015	19,3592	19,5199	0,0684	-0,1607	0,2684
	25	197,1889	1	59,3967	0,4346	0,7442	0,0016	20,4026	20,4578	0,0701	-0,0552	0,2701
	26	201,9978	1	51,2250	0,4374	0,7064	0,0017	21,2777	21,4748	0,0718	-0,1971	0,2718
	27	206,6998	0,6441	41,1000	0,4405	0,6472	0,0019	22,3869	22,4867	0,0735	-0,0998	0,2735
	28	211,6546	0,6513	27,8734	0,4447	0,5428	0,0022	23,4639	23,5527	0,0752	-0,0888	0,2752
	29	217,3367	0,6596	3,2173	0,4506	0,0815	0,0029	31,9172	24,6680	0,0769	7,2492	0,2769

Bemerkung zu Abb. 3. Velwileirkungen:

Der letite Daten punkt bommt zustande, da für diesen Meriwet
der Widertand R so blein wie möglich zin gestellt wurde.

Wir befinden uns an dieser Etelle nahere liem Kurrahleur.

238 e Selbstracultion.

Es soll who bestimmt werden har Leerlauffell (R = 05) gilt:

$$\omega L = \frac{U_1}{I_1} \quad \text{wit} \ \Delta(\omega L) = \sqrt{\frac{\Delta U}{I_1}^2 + \left(\frac{U_1}{I_1^2} \cdot \Delta I\right)^2}$$

238. [Strenboefinent

In dieser Aufgabe roll de Streutorefficient $\sigma = 1 - \frac{M^2}{L^2}$ auf 4 verschiedere Weisen bestimmt weder: Einmal aus de gemersteren Stromübertagung in Verschlussfall, dann aus der gemersenen zuemungzübertragung im Verlauf, aus der gemessemn Beträglis der Eingangsimpedanzen für Vererblus und Leelauf und zuletzt aus dem gemerseren Versrellusstorn $I_{2,n}$ mit $I_{2,n}$ wit $I_{2,n}$

Bestimming von $\sigma = 1 - \frac{M^2}{L^2}$

· uns der genersenen strom übetragung im kunschleurfall (R=O)

$$\frac{I_2}{I_1} = \frac{M}{L} = \sqrt{1-\sigma'} \approx 1 - \frac{\sigma}{2}$$

$$\Rightarrow \sigma \approx 2-2 \cdot \frac{\overline{1}_2}{\overline{1}_1} \quad \text{mit} \quad \Delta \sigma = \sqrt{\left(\frac{2}{\overline{1}_1} \cdot \Delta \overline{1}\right)^2 + \left(\frac{2\overline{1}_2}{\overline{1}_1^2} \cdot \Delta \overline{1}\right)^2}$$

· cour de gemersenen Spannengrübertregung im beslauf
$$(R = x)$$

$$\frac{U_2}{U_1} = \frac{M}{L} = \sqrt{1-\sigma} \approx 1-\frac{\sigma}{2}$$

=)
$$\sigma \approx 2 - 2 \frac{U_2}{u_1}$$
 wit $\Delta \sigma = \sqrt{\left(\frac{2}{u_1} \cdot \Delta U\right)^2 + \left(\frac{2u_2}{u_1^2} \cdot \Delta U\right)^2}$

· aus des gemesseren rétrègles de Eingangrimpedanses fin Unschlus, met lex lauf:

$$\frac{U_{k_{1}}}{I_{k,1}} \cdot \frac{\bar{I}_{k_{1}}}{U_{k_{1}}} \cdot \frac{\bar{I}_{k_{1}}}{U_{k_{1}}} = \left(\frac{\Delta u \cdot \bar{I}_{k_{1}}}{u_{k_{1}} \cdot U_{k_{1}}}\right)^{2} + \left(\frac{U_{k_{1}} \cdot \bar{I}_{k_{1}}}{\bar{I}_{k_{1}} \cdot U_{k_{$$

· aus dem gemersenen Kurrhlusstrom Iz.4:

$$\sigma = \frac{U_{1,u}}{I_{u,2} \cdot \omega L} \quad \text{mit } \delta \sigma = \sqrt{\left(\frac{\delta U}{I_{u,2} \cdot \omega L}\right)^2 + \left(\frac{U_{u,1} \cdot \delta I}{I_{u,2} \cdot \omega L}\right)^2 + \left(\frac{U_{u,1} \cdot \delta U}{I_{u,2} \cdot (\omega L)}\right)^2}$$

Die Weste für o sind sehr gut miteinander weträglich, wolsei Methode 3 und 4 genauche Engelmisse zu ließem schemen. Man muss hielei bedenhen, dars die Weste für dem Veurschlus fall nur annichtend stimmen, da bei der Veruchsdunkfülerzur zwar ein sehr bleine Wickerland eingestellt wurde, aller Vein Veurschlus zumuliet wurde.

Dies wird auch der Grund sein, wiere de Weit für Methoole 2 von den intrigen etwar abweicht, da hier als einziger de Verszehlungtvorm nicht gebraucht wurde.

is The Fishe de este widen stad defin große!

Es roll die Spannungsühldragung Un mit den gemerenen Weden M/L und wL und R= 42/Iz, rowie Rv (auf zuelen ongegeleen) besechnet werden und zurammen mit dem gemenkeren 4 pannungs verhältnis gegen Iz aufgetragen werden.

Für einen symmetrischen transformator mit unpherveleuten gilt für die Spannungsübersetung:

$$\frac{U_2}{U_1} = \frac{R}{R + 2R_V} \cdot \frac{M/L}{1 + \left(\frac{\sigma \omega L}{R + 2R_V}\right)^{2}}$$

Aus des Teilauffaben e und f erhalter wir:

$$\frac{M}{L} = \frac{U_2}{U_1} = 1 - \frac{\sigma}{2} \quad \text{mit } \Delta(\frac{U}{L}) = \sqrt{\frac{\Delta U}{U_1}^2 - (\frac{U_2}{U_1^2} \cdot \Delta U)^2}$$

$$C = (00249 \pm 00022)$$

$$\omega L = (423,79 \pm 37,45) \frac{V}{A}$$

soure.

$$R = \frac{U_2}{I_2} \quad \text{mit } \Delta R = \sqrt{\left(\frac{\Delta U}{\bar{I}_2}\right)^2 + \left(\frac{U_2}{\bar{I}_2^2} \Delta I\right)^2}$$

Rv = 0,6 12

Der Fehler auf die Spamungsübersetzumi) ergelt sich nach Gaupseher Fehlerfotpflanzumg zus

$$\Delta\left(\frac{u_{2}}{u_{1}}\right) = \sqrt{\frac{M_{L} \cdot \left(2 \cdot R_{V} R + 4 R_{V}^{2} + \left(o \omega L\right)^{2}\right) \cdot \Delta R}{\left(R + 2 R_{V}\right)^{3} \cdot \left(\frac{\left(o \omega L\right)^{2}}{\left(R + 2 R_{V}\right)^{2}} + 1\right)^{3/2}}} + \frac{\left(R \cdot \Delta\left(\frac{M}{L}\right)^{2}\right)^{2}}{\left(R + 2 R_{V}\right)^{3} \cdot \left(\frac{\left(o \omega L\right)^{2}}{\left(R + 2 R_{V}\right)^{2}} + 1\right)^{3/2}}$$

$$+\left(\frac{M_{L} \cdot \sigma \cdot R(\omega L)^{2} \cdot \Delta \sigma}{(2R_{V}+R)^{3} \cdot ((\frac{\omega \omega L}{2R_{V}+R})^{2}+1)^{\frac{3}{2}}}\right)^{2} + \frac{(M_{L} \cdot R \cdot \sigma^{2} \cdot \omega L \cdot \Delta(\omega L)}{(2R_{V}+R)^{3} ((\frac{\omega \omega L}{2R_{V}+R})^{2}+1)^{\frac{3}{2}}}\right)^{2}$$

Für die Sparmungsübertragung lieldet man der Verhaltnis

Uz

Uz aus den gemeisenen weten für Uz bru. Uz

Der Fehle beschnet eich nach Gaups zu:

$$\Delta\left(\frac{U_2}{U_1}\right) = \sqrt{\left(\frac{\Delta U_2}{U_1}\right)^2 + \left(\frac{\Delta U_1 \cdot U_2}{U_1^2}\right)^2}$$

Alle Größen lassen sich in folgender Talselle finder:

Tabelle 4:

Messur	ng I	Berechnung							
U_2/U_1	Δ(U_2/U_1)	R [Ω]	ΔR [Ω]	U_2/U_1	Δ(U_2/U_1)				
0,9862	0,0029	00	/	0,9862	/				
0,9833	0,0029	473,4507	47,5942	0,9834	0,0029				
0,9796	0,0029	239,8859	12,2763	0,9803	0,0029				
0,9755	0,0029	157,8621	5,3535	0,9766	0,0029				
0,9714	0,0029	116,2395	2,9231	0,9722	0,0030				
0,9655	0,0029	91,6079	1,8292	0,9672	0,0033				
0,9545	0,0029	65,5034	0,9523	0,9565	0,0041				
0,9389	0,0029	49,6119	0,5611	0,9427	0,0056				
0,9230	0,0029	39,9567	0,3743	0,9273	0,0077				
0,9048	0,0028	33,0513	0,2651	0,9093	0,0103				
0,8844	0,0028	27,9804	0,1977	0,8891	0,0132				
0,8623	0,0028	24,0840	0,1531	0,8666	0,0163				
0,8379	0,0027	20,9955	0,1225	0,8422	0,0196				
0,8081	0,0027	18,2423	0,0989	0,8129	0,0233				
0,7792	0,0027	16,1185	0,0826	0,7834	0,0267				
0,7436	0,0026	14,0774	0,0690	0,7472	0,0303				
0,7067	0,0026	12,3715	0,0589	0,7092	0,0336				
0,6651	0,0025	10,8115	0,0507	0,6663	0,0364				
0,6217	0,0025	9,4702	0,0444	0,6217	0,0386				
0,5743	0,0024	8,2408	0,0392	0,5733	0,0399				
0,5195	0,0024	7,0188	0,0349	0,5169	0,0403				
0,4583	0,0023	5,8622	0,0313	0,4547	0,0393				
0,3874	0,0023	4,7019	0,0283	0,3829	0,0365				
0,3493	0,0022	4,1407	0,0270	0,3447	0,0344				
0,3059	0,0022	3,5386	0,0259	0,3012	0,0314				
0,2572	0,0022	2,9035	0,0248	0,2525	0,0274				
0,2015	0,0022	2,2229	0,0238	0,1972	0,0223				
0,1334	0,0021	1,4386	0,0230	0,1302	0,0153				
0,0150	0,0021	0,1585	0,0222	0,0147	0,0022				

Zu beachten int, dass der beelaufstrom O und R somt os war Dementesprechend nuncien die Eerler auf O (1) gesetst. Un die gemesseme nut der bliebriten spammigsübertragung engleichen werden beide in einem Diegramm gegen iz

Hier, sinch
cle Doderpowhere wich!
sub-consenses
an underscholown

Fazit Transforción:

Der Verruch, als auch die Auruset ung werlief ohne große Rolelant.

Die West wores alle mie emestet, vor allen stimmer die glineven, sowie die beredneten weste für die Wirkleitung, als auch die Spanningsületragung überein.

Bei der Eisenweluler war auffällig, dass diese unter Anderen negative werte varahmen, da die berechneten Vrupfe weltwike ingendwarm die geneuren Gerantwellute "Neutiegen. Sont sondre und sondre Acourthy!

Bertenden!

