课程编号______1800440080

批改日期

深圳大学实验报告

课程名称:_	大学	物理实验	<u>(—)</u>		
实验名称:_	几何	光学综合的	<u> </u>		
学院:_	计算	机与软件等	<u> </u>		
指导教师 <u>:</u>		王光辉			
报告人:	何泽锋	组号:		12	
学号 <u>20</u>	022150221	_ 实验地点	Ē	204B	
实验时间:_	2023	年 <u></u> 5	月_	4	.日
提交时间:	2023	年	月		日

1

一、实验目的

- 1. 了解透镜作为光学元件在光学系统中的作用
- 2. 用位移法测凸透镜焦距
- 3. 自组望远镜并测量凹透镜焦距

二、实验原理

1. 物理原理

透镜是光学系统中很重要的光学元件,它能把光线会聚或者发散。它本身是由两个折射面包围一种透明介质所构成的元件。焦距则反映光学透镜特性的重要物理量,当透镜的厚度比其焦距小很多时,称为薄透镜。不同焦距的透镜和透镜组组成各种各样的光学仪器,为了使用光学仪器,对透镜焦距的测定是不可缺少的一个重要环节。测定透镜焦距的方法其原理都是建立在透镜成像规律的基础上

2. 薄透镜成像公式

在近轴光束的条件下,薄透镜的成像公式为:

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{V} \tag{1}$$

u 为物距, V 为像距, f 为焦距物理模型如图 2-1 所示

图 2-1 薄透镜成像模型

3. 不同透镜成像

①凹透镜成像

图 2-2 凹透镜成像图

②凸透镜成像•

图 2-3 凸透镜成像图

4. 位移法测凸透镜焦距

物像公式法、自准法都因透镜的中心位置不易确定而在测量中引进误差,为避免这一缺点,可取物屏和像屏之间的距离 D 大于四倍焦距(4f),且保持不变,沿光轴方向移动透镜,则必能在像屏上观察到二次成像

实验相关公式:

$$f = \frac{D^2 - d^2}{4D} \tag{2}$$

5. 物体视角放大器

开普勒式望远镜——共焦凸透镜 伽利略式望远镜——共焦凹透镜

三、实验仪器

主要实验器材:

导轨, LED 灯, 凹透镜 (f=-50mm), 凸透镜 (f=100mm, f=150mm), 白屏, 带 logo 物屏, 带分划板目镜组**实验仪器图:**

图 3-1 实验仪器实物图

四、实验内容与步骤

1. 位移法测凸透镜焦距

- (1) 物 AB 与像屏的间距 D>4f (f=150) 时;
- (2) 透镜在间移动时可在像屏上成两次像,一次成放大的像 u1,一次成缩小的像 u2, d=u2-u1,
- (3) 改变像屏位置即改变 D, 重复测量 6次, 求平均值。

注: 首先进行共轴调节; 测量时记录的是位置, 而不是距离

图 4-1 测量凸透镜焦距实验原理图

2. 自组望远镜并测量凹透镜焦距

- (1)调整物屏与透镜 L3(f=100)组距离为透镜的焦距,使得物平光经过透镜后为平行光(相当于透过透镜看物屏,将物屏移至无穷远);
- (2) 透镜 L1(f=150)与目镜组成望远镜,通过望远镜观察物屏像(物屏 logo),调节 L1 与目镜距离,直到所观察的物屏像最清晰,记下此时 L1 与目镜距离(两透镜共焦);
- (3) 用 L3(f=100)成一缩小实像,记下实像位置 a(近似成像与透镜 L3 焦平面上),如图放上凹透镜 L2,调节 L2 位置,直至通过望远镜能观察到最清晰的物屏像,记下此时 L2 位置 b(L3\L2 共焦),则 L2 焦距数值为 a-b
- (4) 改变实像位置 a, 重复测量 6次, 记录实验数据, 求平均值, 。

图 4-2 测量凹透镜焦距实验原理图

四、数据处理

1. 实验一: 位移法测量凸透镜焦距

表 1 凸透镜数据测量记录表

单位: cm

序	号	物屏	透镜位置1	透镜位置2	像屏	D	d	f
	1	9.00	23. 82	42.02	56.00	47. 00	18. 20	9. 99
	2	9.00	22. 93	46. 45	60.00	51.00	23. 52	10.04
	3	9.00	22. 23	50.05	64.00	55.00	27.82	10. 23
	4	9.00	21.90	55. 47	68.00	59.00	33. 57	9. 97
	5	9.00	21.71	59.70	72.00	63.00	37. 99	10.02

按照实验要求连接实物图后,通过位移法测量得到物屏、透镜位置 1、透镜位置 2 和像屏,如表 1 所示。通过计算可以得到 D、d、f。其中 D 为像屏与物屏的距离,d 为透镜位置 2 和透镜位置 1 的距离。f 由公式 (1) 得到

$$f = \frac{D^2 - d^2}{4D} \tag{1}$$

通过计算结果可知,此透镜的焦距大概为 10.05cm,与标定焦距 100mm 相差较小,故测试结果较精准。

2. 实验二: 自组望远镜并测量凹透镜焦距

表 2 凹透镜测量数据记录表

单位: cm

L1	与目镜距离	实物位置 a	L2 位置 b	L2焦距(a-b)
	18. 79	68.00	63. 20	4.80
	18. 79	64. 00	58. 97	5. 03
	18. 79	60.00	54. 95	5. 05
	18. 79	56.00	50. 92	5. 08
	18. 79	52. 00	46. 83	5. 17
	18. 79	72. 00	66. 89	5. 11

按照实验要求,调节 L1 与目镜的距离,使得二者共焦距,即表中数据 18.79cm,实际位置分别为 81.21cm 和 100cm。再通过调节光屏与凸透镜的位置得到清晰像后测量凹透镜位置。计算得到焦距,计算公式为

$$f=a-b$$
 (2)

通过计算结果可知,此凹透镜的焦距大概为 5.05cm,与标定焦距 50mm 相差较小,故测试结果较精准。

六、结果陈述

通过本次实验,学会了如何测试凸透镜和凹透镜,分别采用了位移法和自组望远镜法进行测量。本次实验需要注意的是,需要将透镜,物体等放置在统一高度的直线上,且成像需要在凸透镜的 4f 外,否则无法得到清楚的像。对于实验一,通过调整像屏与凸透镜的位置得到多组结果,求平均值后得到焦距。对于实验二,需要先确定好 L_1 和目镜的距离,使得二者共焦距。再通过改变像屏和凸透镜的位置测量凹透镜位置,计算得到焦距。

七、思考题

(1) 利用位移法测凸透镜焦距有什么优点?

精确度较高,位移法通过对光线的位置移动量进行测量,可以得到较为精确的焦距值。位移法可以在实验室条件下进行,且对差别大小的透镜都适用,不受透镜直径和曲率半径的限制。

(2) 共轴调节的具体方法。

准备好一个光源和透镜,将透镜固定在透镜架上,并将透镜架放在光源前方使其能够接收到光线。取一块白屏,将其放置在透镜后方。调整白屏的位置和朝向,使其能够与透镜平行,且足够接收到透镜透过的光线。调整白屏的位置和朝向,使得光线通过透镜后能够投影到纸张上,大致确定成像位置。

指导教师批阅意见

成绩评定

预习 (20 分)	操作及记录 (40分)	数据处理与结果陈述 (30分)	思考题 (10分)	报告整体 印 象	总分

注:正文统一用5号字,标题可大一号,图表名可小一号;

原始数据记录表需单独起页(表格自拟,作为预习报告评分的一部分),提交报告时附在最后;