Branching Time: CTL

Natasha Alechina Brian Logan

Utrecht University
n.a.alechina@uu.nl b.s.logan@uu.nl

Branching Time: CTL and CTL*

- CTL: Computation Tree Logic
- Reasoning about all possible computations of a system
- Path quantifiers: A (for all paths), E (there is a path)
- Temporal operators: X (next), F (sometime), G (always), U (until)
- "Vanilla" CTL: every temporal operator must be immediately preceded by exactly one path quantifier
- CTL*: no syntactic restrictions; two kinds of formulas: state formulas vs. path formulas
- model checking CTL is much easier

Branching Time: CTL and CTL*

- Models: transition systems; include: states (time points, situations), transitions (changes)
- Paths: full sequences of states that can be produced by following transitions in the transition system

Computational vs. Behavioral Structures

Computational

Computational vs. Behavioral Structures

Computational

Computational vs. Behavioural Structures

In CTL/CTL*, models are defined as computational structures!

Semantics of CTL*

Definition (Semantics of CTL*: state formulae)

 $extit{M}, q \models E\gamma$ iff there is a path λ , starting from q, such that $extit{M}, \lambda \models \gamma$; $extit{M}, q \models A\gamma$ iff for all paths λ , starting from q, we have $extit{M}, \lambda \models \gamma$.

Definition (Semantics of CTL*: path formulae)

Semantics of CTL*

Definition (Semantics of CTL*: state formulae)

 $\textit{M}, \textit{q} \models \textit{E}\gamma$ iff there is a path λ , starting from q, such that $\textit{M}, \lambda \models \gamma$; $\textit{M}, \textit{q} \models \textit{A}\gamma$ iff for all paths λ , starting from q, we have $\textit{M}, \lambda \models \gamma$.

Definition (Semantics of CTL*: path formulae)

Like in LTL!

Semantics of CTL*

Definition (Semantics of CTL*: state formulae)

```
\textit{M}, \textit{q} \models \textit{E}\gamma \quad \text{iff there is a path } \lambda \text{, starting from } \textit{q} \text{, such that } \textit{M}, \lambda \models \gamma; \\ \textit{M}, \textit{q} \models \textit{A}\gamma \quad \text{iff for all paths } \lambda \text{, starting from } \textit{q} \text{, we have } \textit{M}, \lambda \models \gamma.
```

Definition (Semantics of CTL*: path formulae)

```
\begin{array}{ll} \textit{M}, \lambda \models \varphi & \text{iff } \textit{M}, \lambda[0] \models \varphi \text{, for a state formula } \varphi; \\ \textit{M}, \lambda \models \textit{X}\varphi & \text{iff } \textit{M}, \lambda[1...\infty] \models \varphi; \\ \textit{M}, \lambda \models \textit{F}\varphi & \text{iff } \textit{M}, \lambda[i..\infty] \models \varphi \text{ for some } i \geq 0; \\ \textit{M}, \lambda \models \textit{G}\varphi & \text{iff } \textit{M}, \lambda[i..\infty] \models \varphi \text{ for all } i \geq 0; \\ \textit{M}, \lambda \models \varphi \, \textit{U}\psi & \text{iff } \textit{M}, \lambda[i...\infty] \models \psi \text{ for some } i \geq 0, \text{ and } \textit{M}, \lambda[j...\infty] \models \varphi \text{ for all } 0 \leq j < i. \end{array}
```


$$M, q \models EX\varphi$$
 iff there is a path λ starting from q , such that $M, \lambda[1] \models \varphi$;

$$M, q \models EX\varphi$$
 iff there is a path λ starting from q , such that $M, \lambda[1] \models \varphi$;

$$M, q \models EX\varphi$$
 iff there is a path λ starting from q , such that $M, \lambda[1] \models \varphi$;

$$M, q \models EF\varphi$$
 iff there is a path λ starting from q , such that $M, \lambda[i] \models \varphi$ for some $i \geq 0$;

$$M,q \models EX\varphi$$
 iff there is a path λ starting from q , such that $M,\lambda[1] \models \varphi;$
$$M,q \models EF\varphi$$
 iff there is a path λ starting from q , such that
$$M,\lambda[i] \models \varphi \text{ for some } i \geq 0;$$

$$M,q \models EG\varphi$$
 iff there is a path λ starting from q , such that
$$M,\lambda[i] \models \varphi \text{ for all } i \geq 0;$$

$$M,q \models EX\varphi$$
 iff there is a path λ starting from q , such that $M,\lambda[1] \models \varphi;$
$$M,q \models EF\varphi \qquad \text{iff there is a path } \lambda \text{ starting from } q, \text{ such that } M,\lambda[i] \models \varphi \text{ for some } i \geq 0;$$

$$M,q \models EG\varphi \qquad \text{iff there is a path } \lambda \text{ starting from } q, \text{ such that } M,\lambda[i] \models \varphi \text{ for all } i \geq 0;$$

$$M,q \models E\varphi U\psi \qquad \text{iff there is a path } \lambda \text{ starting from } q, \text{ such that } M,\lambda[i] \models \psi \text{ for some } i \geq 0, \text{ and } M,\lambda[j] \models \varphi \text{ for all } 0 < j < i.$$

The semantics of "vanilla" CTL can be given entirely with respect to states in the model:

$$\begin{array}{ll} \textit{M}, \textit{q} \models \textit{EX}\varphi & \text{iff there is a path } \lambda \text{ starting from } \textit{q}, \text{ such that } \\ \textit{M}, \lambda[1] \models \varphi; \\ \textit{M}, \textit{q} \models \textit{EF}\varphi & \text{iff there is a path } \lambda \text{ starting from } \textit{q}, \text{ such that } \\ \textit{M}, \lambda[i] \models \varphi \text{ for some } i \geq 0; \\ \textit{M}, \textit{q} \models \textit{EG}\varphi & \text{iff there is a path } \lambda \text{ starting from } \textit{q}, \text{ such that } \\ \textit{M}, \lambda[i] \models \varphi \text{ for all } i \geq 0; \\ \textit{M}, \textit{q} \models \textit{E}\varphi \textit{U}\psi & \text{iff there is a path } \lambda \text{ starting from } \textit{q}, \text{ such that } \\ \textit{M}, \lambda[i] \models \psi \text{ for some } i \geq 0, \text{ and } \textit{M}, \lambda[j] \models \varphi \text{ for all } \\ \textit{0} < \textit{j} < \textit{i}. \end{array}$$

...and analogously for AX, AF, AG, AU.

Rocket and Cargo: More Properties

Motivating Example: Rescue Robots

Everybody is safe

$$\bigwedge_{i \in People} safe_i$$

· Everybody will eventually be safe

```
\bigwedge_{i \in People} AF safe<sub>i</sub>
Another interpretation: AF(\bigwedge_{i \in People} safe_i)
```

Everybody will always be safe, from some moment on

```
\bigwedge_{i \in People} AFG safe<sub>i</sub>
Equivalently: AFG (\bigwedge_{i \in People} safe_i)
```

Everybody may eventually be safe, if everything goes fine

```
\bigwedge_{i \in People} EF safe<sub>i</sub>
Another interpretation: EF(\bigwedge_{i \in People} safe_i)
```

Motivating Example: Rescue Robots

Whenever person i gets in trouble, she will eventually be rescued
 AG(¬safe_i → AFsafe_i)

 If person i gets outside the building then she will never be in danger anymore

$$AG$$
 (outside_i $\rightarrow AG$ safe_i)

 Person i may be rescued without any robot ever entering the building, but guaranteed rescue requires some robots to enter

$$E(\bigwedge_{j \in Robots} \text{outside}_j) U \text{safe}_i \wedge \neg A(\bigwedge_{j \in Robots} \text{outside}_j) U \text{safe}_i$$

Fixpoint Equivalences in CTL

Theorem (Fixpoint characterization of branching-time operators)

The following formulae are valid in CTL:

- $EF\varphi \leftrightarrow \varphi \lor EX EF\varphi$
- $EG\varphi \leftrightarrow \varphi \land EX EA\varphi$
- $E\varphi_1 U\varphi_2 \leftrightarrow \varphi_2 \lor (\varphi_1 \land EX E\varphi_1 U\varphi_2).$

- $AF\varphi \leftrightarrow \varphi \lor AXAF\varphi$
- $AG\varphi \leftrightarrow \varphi \land AXAG\varphi$
- $A\varphi_1 U \varphi_2 \leftrightarrow \varphi_2 \vee (\varphi_1 \wedge AX A\varphi_1 U \varphi_2)$.

Fixpoint Equivalences in CTL

What is the importance of fixpoint equivalences?

- they say that paths satisfying CTL specifications can be constructed incrementally, step by step
- moreover, solutions to the verification problem can be obtained iteratively
- ...which will be used in most model checking algorithms (see the next lecture)