Scilab Textbook Companion for Concise Physics by H. Matyaka¹

Created by
Thamma Janaki
B.Tech
Computer Engineering
Sastra University
College Teacher
K. Indhu
Cross-Checked by
Mukul Kulkarni and Lavitha Pereira

May 31, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Concise Physics

Author: H. Matyaka

Publisher: Edward Arnold, Britian

Edition: 1

Year: 1987

ISBN: 0-7131-3593-X

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Basics	6
2	Mechanics	9
3	Waves	24
4	Waves	28
5	Light	32
6	Heat	36
7	Electricity	43
8	Magnetisn and ac theroy	48
9	The Atom	57
10	Physical Optics	64
11	Semiconductors	69

List of Scilab Codes

Exa 1.1	Neutral temperature	6
Exa 2.1	acceleration and distance	9
Exa 2.2	acceleration and distance	9
Exa 2.3	time to reach aircraft	10
Exa 2.4	resultant force	10
Exa 2.5	car and wind	11
Exa 2.7	velocity of speedboat	11
Exa 2.8	tension on string	12
Exa 2.10	resultant force	12
Exa 2.11	components of velocity	13
Exa 2.12	components of force	13
Exa 2.13	inelastic collission	14
Exa 2.14	Inelastic collission	14
Exa 2.15	angular velocity and centripetal force	15
Exa 2.16	tension in arm	15
Exa 2.17	inclination and reaction	16
Exa 2.18	planet mean density	16
Exa 2.19	orbit radius and linear velocity	17
Exa 2.20	mass of galaxy	17
Exa 2.21	total kinetic energy	17
Exa 2.22	time taken to move	18
Exa 2.23	angular velocity ratio	18
Exa 2.25	attributes of shm	19
Exa 2.26	simple harmonic motion	19
Exa 2.27	attrbutes simple pendulum	20
Exa 2.28	maximum displacement shm	20
Exa 2.29	maximum potential energy shm	21
Exa 2.30	extension of steel wire	21

Exa 2.31	Youngs modulus
Exa 2.32	wire length change
Exa 3.1	refraction and incidence angle
Exa 3.2	critical angle
Exa 3.3	wavespeed in medium
Exa 3.4	frequency for antinode
Exa 3.5	wave frequency speed
Exa 3.6	wave attributes
Exa 4.1	amplitude and pressure change
Exa 4.3	length of tube
Exa 4.4	frequency of beats
Exa 4.5	fundamental frequency
Exa 4.6	doppler effect
Exa 4.7	apparent frequency change
Exa 5.1	minimum deviation
Exa 5.2	incidence and prism angle
Exa 5.3	position and nature of image
Exa 5.4	position of image
Exa 5.5	position and nature of image
Exa 5.6	lens values
Exa 6.1	heat given out
Exa 6.2	potential difference heater
Exa 6.3	heat loss and specific heat
Exa 6.4	Boyles law
Exa 6.5	Charles law
Exa 6.6	pressure law
Exa 6.7	KE and rms velocity
Exa 6.8	ideal gas equation
Exa 6.9	Boyles law
Exa 6.10	gas external work
Exa 6.12	platinum resistance theromoeter 41
Exa 6.14	length at temperature
Exa 6.15	heat transfer rate
Exa 6.16	temperature gradient
Exa 7.1	Electric potential strength
Exa 7.2	ratio of force
Exa 7.3	emf and internal resistance
Exa 7.4	power output
	5

Exa 7.5	percent of pd	45
Exa 7.6	final resistance calculation	46
Exa 7.7	internal resistance calculation	46
Exa 7.8	calculation of resistance	46
Exa 8.1	force on field	48
Exa 8.2	flux density	48
Exa 8.4	permeability of free space	49
Exa 8.5	faraday law	49
Exa 8.6	moment of couple	50
Exa 8.7	maximum emf power	50
Exa 8.8	pd across motor	51
Exa 8.9	transformer equation	51
Exa 8.10	power loss ratio	52
Exa 8.11	secondary power output	52
Exa 8.12	charge produced	53
Exa 8.13	relative permittivity	53
Exa 8.14	charge in capacitors	54
Exa 8.15	rms and peak voltage	54
Exa 8.16	Qmax and rms current	55
Exa 8.17	capacitance of C	55
Exa 8.18	rate of change of pd	56
Exa 8.19	determine resistance and capacitance	56
Exa 9.1	electric field effect	57
Exa 9.2	Millikan experiment	58
Exa 9.3	Stephan Boltzmann law	58
Exa 9.4	working temperature	59
Exa 9.5	stephan law	59
Exa 9.6	incereased temperature effect	59
Exa 9.7	plancks theory	60
Exa 9.8	quantities of metal	61
Exa 9.9	decay law	61
Exa 9.10	count rate determination	62
Exa 9.11	determination of attributes	62
Exa 9.12	velocity selection	63
Exa 10.1	plancks theory	64
Exa 10.2	wavelength and prism angle	64
Exa 10.3	thin film interference	65
Exa 10.4	fringe width determination	65

Exa 10.5	increasing thickness effect	66
Exa 10.6	wavelength and angular displacement	66
Exa 10.7	wavelength and diffraction angle	67
Exa 10.8	telescope angular magnification	68
Exa 11.1	rms current and peak pd	69
Exa 11.2	common emittor transistor	69
Exa 11.3	common base transistor	70
Exa. 11.4	common emittor amplifier	70

List of Figures

1.1	Neutral temperature												7
	Neutral temperature												8

Chapter 1

Basics

Scilab code Exa 1.1 Neutral temperature

```
1 clc
2 clear
3 //input
4 x=(0:50:550)//temperature difference in x axis
      =[0,0.43,0.79,1.10,1.36,1.54,1.69,1.77,1.80,1.78,1.70,1.54]
     //emf in y axis
6 //calculation
7 title("a graph of E vs teta")//setting title for
8 xlabel("temperature difference teta")//setting x
      label
9 ylabel("emf E")//setting y label
10 plot(x,y)//plotting the graph
11 printf("from the grapph it can be determined that
      neutral temperature is 400 deg C")
12 x = (50:50:550) / temperature difference in x axis
13 y = [8.6, 7.9, 7.3, 6.8, 6.2, 5.6, 5.1, 4.5, 4.0, 3.4, 2.8] //E/
      theta in y axis
14 plot(x,y,"+-")//plotting the graph
15 title ("a graph of E/teta vs teta") //set title
```


Figure 1.1: Neutral temperature

```
16 xlabel("temperature difference teta")//set x label
17 ylabel("E/teta")//set y label
18 legend("E Vs Theta", "E/theta Vs theta")
19 b=-(4.5*10^-6)/400//gradient of graph is b
20 a=4.5*10^-6-(b*400)//finding the intercept on y axis
            by substututing the points(400,4.5) in line
            equation
21 printf("\n the value of b is %3.3e VdegC^-2",b)
22 printf("\n the value of a is %3.3e VdegC^-1",a)
```


Figure 1.2: Neutral temperature

Chapter 2

Mechanics

Scilab code Exa 2.1 acceleration and distance

```
1 clc
2 clear
3 //input from given graph
4 //calculation of initial accleration
5 ia = 18/4
6 // calculation of final accleration
7 fa = -18/10
8 decel=-(fa)//calculation of deceleration
9 //calculation of total distance covered
10 d=0.5*(4*18)+(8*18)+0.5*(10*18)//area under velocity
       time graph
11 //output
12 printf("\n the initial acceleration is \%3.3 \,\mathrm{f} m/s<sup>2</sup>",
13 printf("\n the final acceleration is \%3.3 \,\mathrm{f} \,\mathrm{m/s}^2",
      decel)
14 printf("\n the distance covered is is \%3.3 \, \text{f m}",d)
```

Scilab code Exa 2.2 acceleration and distance

```
1 clc
2 clear
3 //input
4 v=0 //car stops => final velocity=0
5 u=29 //initial velocity
6 t=11 //time
7 //calculation of acceleration
8 a=(v-u)/t//eqn of uniformly accelerated body
9 //calculating distance travelled during this period
10 d=(v+u)*t*0.5//eqn of uniformly accelerated body
11 //output
12 printf("the accleration is %3.3 f ms^-2 ",a)
13 printf("\nthe distance travelled is %3.3 f m",d)
```

Scilab code Exa 2.3 time to reach aircraft

Scilab code Exa 2.4 resultant force

```
1 clc
2 clear
3 //input
4 f1=50
```

```
5 f2=50
6 //calculation of net force
7 f=f1+f2 // the two forces act in same direction
8 //output
9 printf("the resultant force is %3.3 f N",f)
```

Scilab code Exa 2.5 car and wind

```
1 clc
2 clear
3 //input
4 vc=25 // velocity of car
5 va=10 //velocity of wind
6 val=15 //velocity of wind westward
7 //calculation
8 v1=vc+va//resultant velocity for a tail of wind
9 v2=vc-va//when wind blows westward at 10 m/s^
      resultant velocity
10 v3=vc-va1//resultant velocity when wind blows
      westward at 15m/s<sup>2</sup>
11 //output
12 printf("1. the resultant velocity of wind is %3.3 f
     ms^-1 eastwards ",v1)
13 printf("\n2. the resultant velocity of wind is \%3.3 \,\mathrm{f}
      ms^-1 westwards ",v2)
14 printf ("\n3. the resultant velocity of wind is \%3.3 f
        ms^-1westwards ", v3)
```

Scilab code Exa 2.7 velocity of speedboat

```
1 clc
2 clear
3 //input
```

Scilab code Exa 2.8 tension on string

```
1 clc
2 clear
3 //input
4 f1=6 //tension on string AB
5 f2=6 //tension on string BC
6 //calculation of tension
7 t=2*f1*sind(55)// the resultant tension is the diagonal of rhombus formed
8 //output
9 printf("/n the resultant tension is %3.3 f N",t)
```

Scilab code Exa 2.10 resultant force

```
1 clc
2 clear
3 //input magnitude of forces
4 f1=40
5 f2=50
6 //calculation
7 d=50^2+40^2+2*50*40*cosd(50)//finding the diagonal
```

```
8 r=50^2+40^2+2*50*(40)*cosd(130)//reversing the side
         and finding diagonlprintf("the resultant is %3.3 f
         ",d1)
9 r1=sqrt(r)//resultant sum
10 d1=sqrt(d)// resultant when smaller force is
          subtracted from larger
11 //output
12 printf("1. the resultant sum is %3.3 f N",d1)
13 printf("\n 2. the resultant when smaller force is
          subtracted from larger is %3.3 f N",r1)
```

Scilab code Exa 2.11 components of velocity

```
1 clc
2 clear
3 //input
4 v=380//velocity
5 //calculation
6 vh=v*cosd(60)//horizontal component
7 vv=v*sind(60)//vertical component
8 //output
9 printf("the horizontal component is %3.3 f ms^-1",vh)
10 printf("\nthe vertical component is %3.3 f ms^-1",vv)
```

Scilab code Exa 2.12 components of force

```
1 clc
2 clear
3 //input
4 fc=50//force applied by magnet
5 x=90-20 //angle of force
6 //calculation
7 fb=fc*sind(70)//force due to b
```

```
8 fa=fc*cosd(70)//force due to a
9 //output
10 printf("the force due to b is %3.3 f N",fb)
11 printf("\nthe force due to b is %3.3 f N",fa)
```

Scilab code Exa 2.13 inelastic collission

Scilab code Exa 2.14 Inelastic collission

```
1 clc
2 clear
3 //input
4 m1=1//mass of object 1
5 v1=25//velocity of object 1
6 m2=2//mass of object 2
7 v2=0//body at rest, velocity =0
8 v3=10
9 //caclulation
```

Scilab code Exa 2.15 angular velocity and centripetal force

```
1 clc
2 clear
3 //input
4 m=2//mass
5 r=4//radius
6 v=6//uniform speed
7 //calculation
8 w=v/r//angular velocity
9 f=m*r*w*w//centripetal force
10 //output
11 printf("the angular velocity is %3.3 f rads^-1",w)
12 printf("\n the centripetal force is %3.3 f N",f)
```

Scilab code Exa 2.16 tension in arm

```
1 clc
2 clear
3 //input
4 m=140//mass
5 v=8//speed
6 r=5//radius
7 g=9.8//acceleration due to gravity
8 //calculation
9 t=((m*v^2/5)^2)+(140*9.8)^2 //applying parallelogram of vectors
10 t1=sqrt(t)
```

```
11 //output
12 printf("the tension in arm is %3.3 f N",t1)
```

Scilab code Exa 2.17 inclination and reaction

```
clc
clear
//input
v=15//velocity
m=70//mass
r=50//radius
//calculation
x=v*v/(r*10)//applying parallelogram of vectors, then
for equilibrium
y=atand(x)
r1=(m*10)/cosd(y)
//output
printf("the inclination is %3.3 f deg",y)
printf("\n the reaction is %3.3 f N",r1)
```

Scilab code Exa 2.18 planet mean density

```
1 clc
2 clear
3 //input
4 r=5500//radius
5 g1=6.7*10^-11
6 g=7//acceleration due to gravity
7 //calculation of mean density
8 p=3*g/(4*%pi*r*10^3*g1)//mean density
9 //output
10 printf("the mean density of planet is %3.3 f kgm^-3", p)
```

Scilab code Exa 2.19 orbit radius and linear velocity

Scilab code Exa 2.20 mass of galaxy

```
1 clc
2 clear
3 //input
4 v=3*10^5//orbit speed
5 r=4.6*10^20//distance
6 g1=6.7*10^-11
7 //calculation of mass
8 m=v*v*r/g1 //Newtons law
9 //output
10 printf("the mass is %2.3e kg",m)
```

Scilab code Exa 2.21 total kinetic energy

Scilab code Exa 2.22 time taken to move

```
1 clc
2 clear
3 //input
4 t1=34
5 u=0//starts from rest
6 x=3//distance to move
7 //calculation
8 t=(3*3/(10*sind(t1)))^0.5//from law of conservation of energy
9 //output
10 printf("the time taken is %3.3 f s",t)
```

Scilab code Exa 2.23 angular velocity ratio

```
6 //calculation
7 r=i1/i2//law of conservation of angular momentum
8 //output
9 printf("the ratio of angular velocities is %3.3f",r)
```

Scilab code Exa 2.25 attributes of shm

```
1 clc
2 clear
3 //input
4 f=9//frequency
5 \text{ x=0//at midpoint of stroke x=0}
6 //calculation
7 t = 1/f
8 a=-4*\%pi^2*f^2*x//acceleration for shm
9 v=2*\%pi*f*0.05//velocity for shm
10 a1=-4*\%pi^2*9^2*0.05//acceleration at amplitude
11 v1=0//velocity at amplitude is 0
12 //output
13 printf ("the period of oscillation is \%3.3 \,\mathrm{f \ s^-1}",t)
14 printf("\n the velocity at midpoint of stroke is \%3
      .3 \text{ f ms}^-1", v)
15 printf("\n the acceleration at midpoint of stroke is
       \%3.3 \text{ f ms}^-2\text{",a}
16
17 printf("\n the velocity at amplitude is \%3.3 f
18 printf("\n the acceleration at amplitude is %3.3 f ms
      ^{-}2",a1)
```

Scilab code Exa 2.26 simple harmonic motion

1 clc

```
2 clear
3 //input
4 g=10
5 t=0.3//period of shm
6 //calculation
7 x=g*t^2/(4*%pi^2)//for shm maximum amplitude
8 //output
9 printf("the maximum amplitude for bead to be in contact is %3.3 f m",x)
```

Scilab code Exa 2.27 attrbutes simple pendulum

```
clc
clear
//input
p1=2.3//period of pendulum
p2=3.1//period when pendulum is lengthened
//calculation
g=4*%pi^2/(p2^2-p1^2)//acceleration of free fall
l=p1^2*g/(4*%pi^2)//length of pendulum
//output
printf("the acceleration of free fall is %3.3 f m/s^2 ",g)
printf("\n the length of pendulum is %3.3 f m",1)
```

Scilab code Exa 2.28 maximum displacement shm

```
1 clc
2 clear
3 //INPUT DATA
4 f=55 //frequency
5 a=7*10^-3 //amplitude
```

```
7
8 //calculation
9 a=(-2*%pi*f)^2*a
10
11 //output
12 printf("the acceleration of the body when it is at its maximum displacement from its zero position is -%3.1 f ms^-2",a)
```

Scilab code Exa 2.29 maximum potential energy shm

Scilab code Exa 2.30 extension of steel wire

```
1 clc
2 clear
3 //input
4 l=6.5//length
5 m=0.06//mass of wire
6 m1=10//mass attached
7 g=9.8//acceleration due to gravity
8 e=2.1*10^11//youngs modulus
```

```
9 ro=8*10^3//density of steel
10 //calculation
11 e1=m1*g*ro*l*l/(e*m)//extension caused
12 pe=0.5*g*m1*e1//potential energy
13 //output
14 printf("the extension caused is %3.3 e m",e1)
15 printf("\n the potential energy is %3.3 f J",pe)
```

Scilab code Exa 2.31 Youngs modulus

```
1 clc
2 clear
3 //input
4 w=250*10^3
5 s=0.00003//strain
6 a=0.04//area
7 w1=320*10^3
8 //calculation
9 e=w/(a*s)//youngs module
10 st=w1/a//stress
11 //output
12 printf("the youngs modulus is %3.3 e N/m^2",e)
13 printf("\n the stress is %3.0 e N/m^2",st)
```

Scilab code Exa 2.32 wire length change

```
1 clc
2 clear
3 //input
4 m=40//mass
5 g=9.8//acceleration due to gravity
6 E=2*10^11//youngs modulus
7 //calculation
```

```
8 t1=m*g/5//principle of momentum
9 t2=4*m*g/5 //principle of momentum
10 d=4*(t2-t1)/(4*%pi*10^-6*E)//difference in length
11 //output
12 printf("the difference is %3.0e m",d)
```

Chapter 3

Waves

Scilab code Exa 3.1 refraction and incidence angle

```
clc
clear
//calculation of angle of refraction
rj=(sind(6)/0.76)//from snells law
x=asind(rj)
printf("the refractive index of jelly is %3.3f deg",
x)
// calculating angle of incidence
printf("\nsince angle of refraction and angle of incidence are alternate angles, angle of incidence is %3.3f deg",x)
//calculating angle of refraction
np=0.59/0.76 // according to relationship of media
jnp=sind(7.9)/0.78
rp=asind(jnp)
rrintf("\nthe angle of refraction is %3.3f deg",rp)
```

Scilab code Exa 3.2 critical angle

Scilab code Exa 3.3 wavespeed in medium

```
1 clc
2 clear
3 //input data
4 nb=0.67 //refractive index
5 va=3.45*10^3
6 //calculation
7 vb=va/nb //snells law
8 //output
9 printf("the speed of the wave in medium b is %3.3f m /s",vb)
```

Scilab code Exa 3.4 frequency for antinode

```
1 clc
2 clear
3 //input data
4 f=120 //lowest frequency
```

```
5 //calculation
6 x=3*f // the next higher frequency is thrice the
    lowest frequency
7 //output
8 printf("the next higher frequency where the antinode
    is formed is at %3.3 f Hz",x)
```

Scilab code Exa 3.5 wave frequency speed

```
1 clc
2 clear
3 //input data
4 amp=3.4*10^-5 //amplitude of the wave
5 af=5.7*10^2 //angular frequency
6 \text{ k=20} //\text{wavenumber}
7 //calculation
8 //wave frequency
9 f = af/(2*\%pi)
10 l = (2*\%pi)/k
11 \quad v = f * 1
12 printf("the wave frequency is %3.3f and the speed is
       \%3.3 \, \text{f} \, \text{m/s}, f, v)
13 //calculating greatest speed for the wave to pass
      through
14 vmax=af*amp //greatest speed
15 //output
16 printf("\nthe greatest value of speed for the wave
      to pass through is %3.3 f m/s", vmax)
```

Scilab code Exa 3.6 wave attributes

```
1 clc
2 clear
```

```
3 //input
4 k = 16
5 w = 23
6 //calculation
7 //1. wavelength
8 1=2*\%pi/k
9 //output
10 printf("the wavelength is \%3.3 \, \text{f} m",1)
11 //2. wavespeed
12 v = (1*w)/(2*\%pi)
13 printf("\nthe wavespeed is \%3.3\,\mathrm{f} m/s",v)
14 // 3. pase difference
15 pha=(0.5*2*\%pi)/0.39 // phase difference of
      molecules 0.5m apart
16 printf("\n the phase difference is \%3.3\,\mathrm{f} radians",
      pha)
```

Chapter 4

Waves

Scilab code Exa 4.1 amplitude and pressure change

```
1 clc
2 clear
3 //INPUT DATA
4 w=1.8 // wavelength
5 // calulation
6 y=sind(15*360/180)//displacement at 15cm from
    reflector
7 // output
8 printf("1. at 45cm, antinode occurs and hence
    pressure is minimum")
9 printf("\n 2. at 90cm node arises and hence pressure
    is maximum")
10 printf("\n 3. at 15cm frm reflector the displacement
    is %3.3f",y)
```

Scilab code Exa 4.3 length of tube

1 clc

```
2 clear
3 //INPUT DATA
4 f=520 //frequency
5 t2=293 //air temperature to produce fundamental +273
6 t1=273// 0deg C
7 v1=330//speed of sound waves
8 //calculation
9 v2=330*(293/273)^0.5 //speed at 20 deg C
10 l=v2/f//wavelength
11 len=1/4 - 0.01 //length
12 //output
13 printf("the length of tube is %3.3 f m",len)
```

Scilab code Exa 4.4 frequency of beats

```
1 clc
2 clear
3 //INPUT DATA
4 v1=330 //speed of sound
5 t3=303 //fundamental temperature for the air
6 t1=273// 0deg C
7 //calculation
8 v3=v1*(t3/t1)^0.5 //new speed of sound
9 f=v3/0.66 //frequency
10 fb=f-520 //frequency of beats
11 //output
12 printf("the frequency of beats is %3.3 f Hz",fb)
```

Scilab code Exa 4.5 fundamental frequency

```
1 clc
2 clear
3 //INPUT DATA
```

```
4 T=100 //tension
5 l=1.5 //length
6 m=0.3*10^-6 //mass
7 //calculation
8 f=(T/(m/1))^0.5/(2*1)//fundamental frequency
        produced
9 //output
10 printf("the fundamental frequency produced is %3.3 f
        Hz",f)
```

Scilab code Exa 4.6 doppler effect

```
1 clc
2 clear
3 //INPUT DATA
4 f=150 //frequency
5 v=320 //speed of sound
6 ul=11 //speed with which listener approaches
7 us=7 //speed of source
8 //calculation
9 fa=f*v/(v-us)//doppler effect
10 fa1=(v+u1)*f/(v)/doppler effect
11 fa2=(v+u1)*f/(v-us)//doppler effect
12 //output
13 printf ("frequency when source moves at 7 \text{ms}^--1 \% 3.3 \text{ f}
      Hz",fa)
14
15 printf("\n frequency when listener moves at 11 \text{ms}^-1
      \%3.3 \, f \, Hz", fa1)
16 printf ("\n frequency when source moves at 7 \text{ms}^- - 1 and
       listener at 11\text{ms}^--1 %3.3 f Hz", fa2)
```

Scilab code Exa 4.7 apparent frequency change

Chapter 5

Light

Scilab code Exa 5.1 minimum deviation

```
1 clc
2 clear
3 //INPUT DATA
4 np=1.39 //refractive index of prism
5 nl=1.29 //refractive index of liquid
6 a=62 //refracting angle of prism
7 //calculation
8 x=np*sind(62/2)/nl//snells law
9 y=asind(x)
10 d=(y*2)-a//minimum deviation
11 //output
12 printf("the minimum deviation is %3.3f degree",d)
```

Scilab code Exa 5.2 incidence and prism angle

```
1 clc
2 clear
3 //INPUT DATA
```

```
4 np=1.39 //refractive index in air
5 a=62 //refracting angle of prism
6 //calculation
7 x=1/np
8 c=asind(x)//critical angle
9 r=a-c
10 i= np* sind(r)//snells law
11 i1=asind(i)
12 A=2*c//greatest prism angle allowing refraction
13 //output
14 printf("angle of incidence producing maximum deviation is %3.3f deg",r)
15 printf(" \n greatest prism angle allowing refraction is %3.3f deg",A)
```

Scilab code Exa 5.3 position and nature of image

```
1 clc
2 clear
3 //input
4 f=0.15 //focal length
5 u=0.2 //distance of object
6 //calculation
7 x=(1/-f)-(1/u)//lens formula
8 y=1/x
9 m=y/u//linear magnification
10 //output
11 printf("the position of image is %3.3 f m",y)
12 printf("\n linear magnification is %3.3 f hence image is diminished",m)
```

Scilab code Exa 5.4 position of image

```
clc
clear
//input
f1=0.25 //focal length of diverging lens
f2=0.2 //focal length of converging lens
//calculation
x=(1/-f1)+(1/f2)//lens formula
y=1/x
a=(1/y)-(1/0.15)//lens formula
b=1/a
//output
printf("the position of image is %3.3f m hence the image is virtual",b)
```

Scilab code Exa 5.5 position and nature of image

```
1 clc
2 clear
3 //input
4 f=0.5 //focal length
5 \text{ u=0.8} // \text{distance of object}
6 f1=0.2 //focal length of converging lens
7 d=1 //distance behind the first lens
8 //calculation
9 x = (1/f) - (1/u) / lens formula
10 y = 1/x
11 u1 = -(y-d) // second lens
12 a=1/f1 + (1/-u1)//lens formula
13 b=1/a
14 //output
15 printf("the image lies %3.3 f m behind second lens", b
16 printf("\n the image is \%3.3f m behind first lens",
      b+d)
```

Scilab code Exa 5.6 lens values

```
1 clc
2 clear
3 //input
4 F=5 //power of lenses
5 f1=0.45 //focal length
6 //calculation
7 x=F-(1/f1)//lens formula
8 f2=1/x
9 //output
10 printf("the focal length is %3.3 f m",f2)
11 printf("\n the power is %3.3 f dioptre",x)
```

Chapter 6

Heat

Scilab code Exa 6.1 heat given out

```
1 clc
2 clear
3 //input
4 m=0.5 //mass
5 c=460 //specific heat capacity of iron
6 t1=70//initial temperature
7 t2=10//final temperature
8 //calculation
9 q=m*c*(t1-t2)//heat required
10 //output
11 printf("the heat required is %3.0 f J",q)
```

Scilab code Exa 6.2 potential difference heater

```
1 clc
2 clear
3 //input
4 T=100 //rise in temperature
```

```
5 i=2.7 //current
6 t=950 //time taken
7 mc=0.15//mass of calorimeter
8 cy=3*10^3//specific heat capacity of y
9 cc=2*10^3//specific heat capacity of calorimeter
10 my=160*10^-3//mass of liquid
11 //calculation
12 v=((my*cy)+(mc*cc))*T/(i*t)//law of conservation of heat
13 //output
14 printf("the potential difference is %3.0 f V",v)
```

Scilab code Exa 6.3 heat loss and specific heat

```
1 clc
2 clear
3 //input
4 iw=4.5 // current
5 \text{ vw=}5.2 \text{ //pd of water}
6 mw=6*10^-2 //flow of water
7 cw=4.18*10^3 //heat capacity of water
8 ix=5.5//current of x
9 iv=7.7/pd of x
10 im=18*10^-2/flow of x
11 //calculation
12 x=(iw*vw)-((mw*cw*5)/60)//rate of heat loss
13 cx=(6*4180)/18 +1263//specific heat capacity of x
14 //output
15 printf("the rate of heat loss is %3.3 f W",x)
16 printf("\n the specific heat of x is \%3.3 \,\mathrm{e} \,\mathrm{Jkg}^--1\mathrm{K}
      ^{\hat{}}-1",cx)
```

Scilab code Exa 6.4 Boyles law

```
1 clc
2 clear
3 //input
4 v1=0.52 //volume of ideal gas
5 p1=2.3*10^5 //pressure of ideal gas
6 p2=6.7*10^5 //pressure changed
7 //calculation
8 v2=p1*v1/p2//boyle's law
9 //output
10 printf("the volume is %3.3 f m^3", v2)
```

Scilab code Exa 6.5 Charles law

```
1 clc
2 clear
3 //input
4 v2=11.3 //final volume
5 v1=7.8//initial volume
6 t1=67+273 //initial temperature
7 //calculation
8 t2=v2*t1/v1//charles law
9 //output
10 printf("the final temperature is %3.0d K",t2)
```

Scilab code Exa 6.6 pressure law

```
1 clc
2 clear
3 //input
4 p1=1.01*10^5//initial pressure
5 t2=135+273//final temperature
6 t1=273//initial temperature
7 d=2.8 //density
```

```
8 //calculation
9 p2=p1*t2/t1//pressure law
10 p=(3*p2/2.8)^0.5//kinetic theory
11 //output
12 printf("rms speed of gas molecule is %3.0 f m/s",p)
```

Scilab code Exa 6.7 KE and rms velocity

```
1 clc
2 clear
3 //input
4 t1=273//initial tenperature
5 t2=408//final temperature
6 //calculation
7 e=t1/t2//ratio of mean molecuar KE
8 c1=402*sqrt(0.67)//rms speed
9 //output
10 printf("the ratio of kinetic energy is %3.3f",e)
11 printf("\n the rms speed of gas molecule is %3.0f ms^-1",c1)
```

Scilab code Exa 6.8 ideal gas equation

```
1 clc
2 clear
3 //input
4 p=1.01*10^7 //pressure of gas
5 v=0.1 //volume of gas
6 R=8.3
7 T=280//temperature
8 g=0.017//mass of 1 mole
9 d=1100//density
10 //calculation
```

```
11 n=p*v/(R*T)//ideal gas equation
12 m=n*g//mass of gas
13 v=m/d//volume occupied
14 //output
15 printf("the volume is %3.3e m^3",v)
```

Scilab code Exa 6.9 Boyles law

```
1 clc
2 clear
3 //input
4 p1=9*10^4//total pressure
5 x=1*10^4//water pressure
6 //calculation
7 p2=(p1-x)/2//boyles law
8 p=p2+x//adding vapour pressure
9 //output
10 printf("the final pressure is %3.0e Pa",p)
```

Scilab code Exa 6.10 gas external work

```
1 clc
2 clear
3 //input
4 m=3*10^-2 //mass of water
5 r1=1*10^3//density of water
6 r2=0.5//density of steam
7 p=1.01*10^5//atmospheric pressure
8 //calculation
9 v1=m/r1//volume of water
10 v2=m/r2//volume of gas
11 w=(v2-v1)*p//external work done by gas
12 //output
```

Scilab code Exa 6.12 platinum resistance theromoeter

Scilab code Exa 6.14 length at temperature

Scilab code Exa 6.15 heat transfer rate

```
1 clc
2 clear
3 //input
4 a=5 //area
5 k=0.07 //thermal conductivity
6 dt=21 //temperature difference
7 x= 4*10^-3 //thickness of wood
8 //calculation
9 y=-(k*a*dt/x)//steady state equation
10 //output
11 printf("the rate of transfer is %3.3 f Js^-1",y)
```

Scilab code Exa 6.16 temperature gradient

```
1 clc
2 clear
3 //input
4 d=3*10^-3//thickness of sheet
5 l=12*10^-3//seperated distance
6 //calculation
7 x=1/40//law of conservation of energy
8 y=x*d/1//from x
9 //output
10 printf("the ratio of temperature gradient in rubber to polystyrene is %3.3f0",x)
11 printf("\nthe ratio of temperature difference across rubber and polystyrene is %3.3e",y)
```

Chapter 7

Electricity

Scilab code Exa 7.1 Electric potential strength

```
1 clc
2 clear
3 //input
4 e=1.6*10^-19 //charge of electron
5 r=0.075*10^-3 // radius of electron
6 ep=8.85*10^-12 //permittivity of free space
7 //calculation
8 v=-e/(4*%pi*ep*r)//electric potential
9 e=-e/(4*%pi*ep*r*r)//electric field strength
10 //output
11 printf("resultant potential is %3.3e V",v)
12 printf("\n resultant electric field strength %3.3f V /m",e)
```

Scilab code Exa 7.2 ratio of force

```
1 clc
2 clear
```

```
3 //input
4 q=2.4*10^-19 //charge1
5 Q=3.8*10^-19//charge2
6 ep=8.85*10^-12//permittivity of free space
7 G=6.7*10^-11
8 m=8.9*10^-31//mass 1
9 M=1.5*10^-30//mass 2
10 //calculation
11 x=q*Q/(4*%pi*ep*m*M*G)//coulumbs law
12 //output
13 printf("the ratio of electrostatic force between charges %3.3e",x)
```

Scilab code Exa 7.3 emf and internal resistance

```
1 clc
2 clear
3 //input
4 i=0.5 //current in circuit
5 R=6 //resistance of circuit
6 i1=0.3//dropped current
7 //calculation
8 r=1.2/0.2
9 e=i*(r+R)//ohms law
10 //output
11 printf("the battery emf is %3.3 f V",e)
12 printf("\n the internal resistence is %3.3 f ohm",r)
```

Scilab code Exa 7.4 power output

```
1 clc
2 clear
3 //input
```

```
4 d=8.2*10^-7 //resistivity of coil
5 l=15 //length of wire
6 \text{ r=0.3*10^--3} //\text{radius of wires}
7 v=160 //power output
8 //calculations
9 R=d*1/(%pi*r*r)
10 p=v*v/R //for one coil
11 p1=v*v/(R+R) //for two coils in series
12 rp=(R*R)/(R+R)//total resistence
13 pp=(v*v)/rp//total power
14 //output
15 printf("the power when one coil is %3.3 f W",p)
16 printf("\nthe power when two coils in series is %3.3
      f W', p1)
17 printf("\n the power when coils in parallel is %3.3 f
      W, pp)
```

Scilab code Exa 7.5 percent of pd

```
1 clc
2 clear
3 //input
4 r1=40//resistance 1
5 r2=20//resistance 2
6 r3=10//resistance 3
7 v=1.6//voltage
8 //calculation
9 R=r1+r2+r3//total resistance in series
10 x=((v*r1)*70)/((2*50)*(1.6*40))//fraction of pd
11 x=x*100//percentage pd
12 //output
13 printf("the percentage of pd is %3.0f percent",x)
```

Scilab code Exa 7.6 final resistance calculation

```
1 clc
2 clear
3 //input
4 a=4.3*10^-3//temperature co-efficient of resistance
5 //calculation
6 r2=((60*a+1)/(20*a+1))*10//resistance
7 //output
8 printf("the final resistence is %3.3 f ohm",r2)
```

Scilab code Exa 7.7 internal resistance calculation

```
1 clc
2 clear
3 //input
4 l1=82.3//balance length with switch open
5 l2=75.8//balance length with switch closed
6 R=9//resistance
7 //calculation
8 r=(R*11/12)-R//internal resistance
9 //output
10 printf("the internal resistence is %3.3 f ohm",r)
```

Scilab code Exa 7.8 calculation of resistance

```
1 clc
2 clear
3 //input
4 p=2*10^-6//pd across wire
5 v=1.5//voltage
6 l=1.5*10^3//length of potentiometer
7 R=7//resistance
```

```
8 //calculation
9 vw=p*1//pd across the wire
10 x=(7*v/vw)-R//resistace of x
11 //output
12 printf("the resistance of x is %3.0 f ohm",x)
```

Chapter 8

Magnetisn and ac theroy

Scilab code Exa 8.1 force on field

Scilab code Exa 8.2 flux density

```
1 clc
2 clear
3 //input
4 i=3.4 //current passing
5 a=0.04 //distance from centre of cconductor
6 //calcution
7 b=(4*%pi*10^-7*5)/(2*%pi*a)//magnetic flux density
8 //output
9 printf("the flux density is %3.3e T",b)
```

Scilab code Exa 8.4 permeability of free space

```
1 clc
2 clear
3 //INPUT DATA
4 Ix=1 //current in first wire
5 Iy=1 //current in second wire
6 FbyL=2*10^--7 //according to the definition of ampere
7 a=1 //distance between the wires
8
9
10 //calculation
11
12 m=(2*\%pi*a*FbyL)/(Ix*Iy)
13
14
15
16 //output
17 printf("the permeability of free space is %3.3e H/m
      ",m)
```

Scilab code Exa 8.5 faraday law

```
1 clc
2 clear
3 //input
4 n=10 //number of rounds
5 B=2*10^-2 //flux density
6 a=5*10^-4 //areaof cross section
7 t=10//time
8 //calculation
9 c=n*B*a //change in flux
10 emf=c/t //induced emf
11 //output
12 printf("the flux changed is %3.3e Wb",c)
13 printf("\n the induced emf is %3.3e V",emf)
```

Scilab code Exa 8.6 moment of couple

```
clc
clear
//input
N=250 //number of turns
B=8.6*10^-4 //flux density
I=5 //current
A=16*10^-4//area
t=35
//calculation
c=B*I*A*N*sind(t)//moment of couple
x=c/(B*I*2*A*N)//doubling the area
y=asind(x)
//output
printf("the moment of couple is %3.3e Nm",c)
printf("\n the new angle produced is %3.3f deg",y)
```

Scilab code Exa 8.7 maximum emf power

```
1 clc
2 clear
3 //input
4 a=20*10^-4 //area
5 n=900 //number of turns
6 b=5*10^-2 //flux density
7 i=4.5 //current
8 //calculation
9 e=b*a*n*2*%pi*30//emf induced
10 p=e*i//power output
11 //output
12 printf("the emf induced is %3.3 f V",e)
13 printf("\n the power output is %3.3 f W",p)
```

Scilab code Exa 8.8 pd across motor

```
1 clc
2 clear
3 //input
4 R=68 //resistence
5 i=4.5 //current
6 e=17 //emf
7 //calculation
8 v=(i*R)+e//supply pd
9 //output
10 printf("the supply of pd across motor is %3.0 f V",v)
```

Scilab code Exa 8.9 transformer equation

```
1 clc
2 clear
3 //input
4 ns=330 //number of turns of secondary
```

```
5 np=450 //number of turns in primary
6 e=0.65 //efficiency
7 vp=240 //ac supply of primary
8 //calculation
9 vs=e*(vp*ns)/np//transformer equation
10 //output
11 printf("the pd across secondary is %3.0 f V", vs)
```

Scilab code Exa 8.10 power loss ratio

```
1 clc
2 clear
3 //input
4 v=15*10^3 //voltage
5 p=80*10^3 //power
6 r=430 //resistence
7 v1=150*10^3//stepped value
8 //calculation
9 i=p/v//cable current
10 i1=p/v1//stepped up cable current
11 k=i*i/(i1*i1)//ratio of power loss
12 //output
13 printf("the ratio of power loss is %d",k)
```

Scilab code Exa 8.11 secondary power output

```
1 clc
2 clear
3 //input
4 ep=150*10^3 //electric energy to primary
5 e=0.69 //efficieny
6 t=70 //time
7 //calculation
```

```
8 es=e*ep//transformer equation
9 ps=es/t//power
10 //output
11 printf("the power output is %3.3 e W",ps)
```

Scilab code Exa 8.12 charge produced

```
1 clc
2 clear
3 //input
4 v=250 //dc voltage
5 s=0.22 //length
6 d=4*10^-3 //diameter
7 //calculation
8 q=8.9*10^-12*1*0.22*0.22*250/(4*10^-3)//for air
9 q1=8.9*10^-12*6.8*0.22*0.22*250/(4*10^-3)//for material
10 //output
11 printf("the permittivity for air is %3.3e C",q)
12 printf("\n the relative permittivity for material is %3.3e C",q1)
```

Scilab code Exa 8.13 relative permittivity

```
1 clc
2 clear
3 //input
4 d=6*10^-5
5 w=0.1
6 er=9.4 //relative permittivity of medium
7 c=1*10^-6 //capacitance
8 //calculation
```

Scilab code Exa 8.14 charge in capacitors

```
1 clc
2 clear
3 //input
4 v=3 //voltage
5 c1=2.5*10^-6 //capacitance
6 c2=2.5*10^-6
7 c3=2.5*10^-6
8 //calculation
9 q=v/((1/c1)+(1/c2)+(1/c3))//capacitors in series
10 q1=c1*v//capacitors in parallel
11 //output
12 printf("the pd when capacitors are in series is %3.3 e C",q)
13 printf("\n the pd when capacitors are in parallel is %3.3 e C",q1)
```

Scilab code Exa 8.15 rms and peak voltage

```
1 clc
2 clear
3 //input
4 v=14 //voltage
5 //calculation
6 v0=v*sqrt(2)//rms value
7 //output
8 printf("rms value of ac is 14 V")
```

```
9 printf("\n the peak value of ac is \%3.3 \,\mathrm{f} V", v0)
```

Scilab code Exa 8.16 Qmax and rms current

```
1 clc
2 clear
3 //input
4 c=65*10^-6 //capcacitor
5 v=12 //voltage
6 f=90 //frequency
7 //calculation
8 vmax=v*sqrt(2)//peak pd
9 qmax=c*vmax//from eqn Q=CV
10 irms=v*2*%pi*f*c//maximum charge from capacitor reactance
11 //output
12 printf("the maximum charge is %3.3 f A",irms)
```

Scilab code Exa 8.17 capacitance of C

```
1 clc
2 clear
3 //input
4 r=200 //resistence
5 v=14 //voltage
6 vr=9//pd across each component
7 f=90 //frequency
8 //calculation
9 c=vr/(2*%pi*f*vr*r)//capacitor connected
10 //output
11 printf("the capacitor connected is %3.3e F",c)
```

Scilab code Exa 8.18 rate of change of pd

```
1 clc
2 clear
3 //input
4 v=4 //voltage
5 r=200 //resistence
6 c=8.8*10^-6 //capacitance
7 //calculation
8 x=v/(r*c)//calculating V/t
9 //output
10 printf("the initial rate is %3.3e Vs^-1",x)
```

Scilab code Exa 8.19 determine resistance and capacitance

```
1 clc
2 clear
3 //input
4 v=14 // voltage
5 f=90 //frequency
6 i=0.4 //current
7 t=55 //phase
8 //calculation
9 r=v/(i*sqrt(1+tand(t)^2))// value of resistance
10 l=r*tand(t)/(2*f*%pi)//value of inductance
11 c=1/(4*\%pi*\%pi*f*f*l)//value of capacitance for
      resonance to occur
12 //output
13 printf("the value of resistance is %3.3f ohm",r)
14 printf("\nthe value of inductance is \%3.3 \, \mathrm{f} H",1)
15 printf("\nthe value of capacitor is \%3.3e F",c)
```

Chapter 9

The Atom

Scilab code Exa 9.1 electric field effect

```
1 clc
2 clear
3 //input
4 v = 400 // voltage
5 d=0.18 //distance of screen from centre
6 e=1.6*10^-19 //electronic charge
7 \text{ m} = 9.1 * 10^{-31} // \text{mass}
8 1=0.03 //length of parallel plates
9 \text{ s=0.01 } // \text{air gap}
10 //calculation
11 w=e*v//work done
12 v1=sqrt(2*e*v/m)//speed of electron
13 e1=v/s//electric field strength
14 d1=d*6*10^3*1/(2*v)//vertical displacement
15 //output
16 printf("the work done is %3.3e J",w)
17 printf("\n the speed of electron is \%3.3\,\mathrm{e\ ms^-}1",v1)
18 printf("\n the displacement is \%3.3 \, \text{f} m",d1)
```

Scilab code Exa 9.2 Millikan experiment

```
1 clc
2 clear
3 //input
4 v=5.7*10^-4 // velocity
5 \text{ ro=830} // \text{density}
6 d=4*10^{-3}
7 V=3.2*10^3 / pd
8 g=9.8 //acceleration due to gravity
9 k=4.2*10^--4 //resistive force of air
10 //calculation
11 r=sqrt(3*k*v/(4*\%pi*ro*g))/equating the forces on
12 q=4*%pi*r^3*ro*g/(3*V/d)//electric firld between
      plates
13 //output
14 printf("the radius of oil drop is %3.3e m",r)
15 printf("\n the value of electric firld between
      plates is %3.3e C",q)
```

Scilab code Exa 9.3 Stephan Boltzmann law

```
1 clc
2 clear
3 //input
4 sig=6//stephans constant
5 //calculation
6 x=3^4*6*2^2/6//ratio of rate of emission
7 //output
8 printf("the ratio of rate of emission is %d and hence larger cube emits faster than smaller",x)
```

Scilab code Exa 9.4 working temperature

```
1 clc
2 clear
3 //input
4 p=900 //power
5 d=4*10^-3 //diameter
6 l=0.87//length
7 sig=5.7*10^-8 //stephans constant
8 //calculation
9 t=(p/(%pi*d*l*sig))^0.25//temperature
10 //output
11 printf("the working temperature is %d K",t)
```

Scilab code Exa 9.5 stephan law

```
1 clc
2 clear
3 //input
4 e1=350//heat per second
5 t=7+273 //teperature
6 sig=5.7*10^-8//stephans constant
7 //calculation
8 e2=e1*4//stephans law
9 E=sig*(t^4-t^4)//stephans law
10 //output
11 printf("the rate of emission is %3.3 f W",e2)
12 printf("\nthe rate of emission when outer temperature is increased is %d W",E)
```

Scilab code Exa 9.6 incereased temperature effect

```
1 clc
```

```
2 clear
3 //input
4 t1=280
5 t2=290//temperature of surroundings
6 sig=5.7*10^-8 //stephans constant
7 //calculation
8 e3=sig*(t1^4-t2^4)//stephans law
9 e1=6.2*10^9*sig
10 e3=0.15*e1
11 //output
12 printf("the absorbing rate is %d W", e3)
```

Scilab code Exa 9.7 plancks theory

```
1 clc
2 clear
3 //input
4 c=3*10^8 //velocity of speed
5 w=5.1*10^-7 //wavelength of green light
6 w1=0.7 //wavelength of radio waves
7 w2=1.3*10^-13 //wavelength of gamma
8 h=6.6*10^-34
9 //calculation
10 e1=h*c/w//plancks theory for greeen light
11 e2=h*c/w1//plancks theory for radio waves
12 e3=h*c/w2//plancks theory for gamma waves
13 //output
14 printf("energy carried by green light is \%3.3e J",e1
15 printf("\nenergy carried by radio waves is \%3.3e J",
16 printf("\nenergy carried by gamma waves is \%3.3e J",
     e3)
```

Scilab code Exa 9.8 quantities of metal

```
1 clc
2 clear
3 //input
4 c=3*10^8/speed of light
5 \text{ m=9.1*10}^{-31} // \text{mass of electron}
6 tw=5.12*10^-7/threshold wavelength
7 w1=4.52*10^-8 //radiation wavelength
8 h=6.6*10^-34/stephans constant
9 //calculation
10 f0=c/tw//threshhold frequency
11 w=h*f0//work function
12 a=h*c/w1//einsteins photo electric equation
13 v = sqrt((2*(a-w))/m)//photoelectric energy
14 \text{ emax} = 0.5*m*v*v
15 //output
16 printf("threshhold frequency is %3.3e Hz",f0)
17 printf("\n the work function is \%3.3\,\mathrm{e} J",w)
18 printf("\n the maximum photoelectric speed is \%3.3e
      ms^-1", v)
19 printf("\n the maximum photoelectric energy is \%3.3e
       J", emax)
```

Scilab code Exa 9.9 decay law

```
1 clc
2 clear
3 //input
4 t=2.14*10^6*365*24*60*60//half time
5 //calculation
6 l=0.693/t//decay constant
```

```
7 t1=1.1097/1//decay law
8 t2=t1/(365*60*60*24)//time in yrs
9 //output
10 printf("time taken is %3.3e yrs",t2)
```

Scilab code Exa 9.10 count rate determination

```
1 clc
2 clear
3 //input
4 w=0.004//weight of manganese
5 a=6*10^23
6 t=303*24*3600//half time
7 //calculation
8 N=w*a/0.054//number of moles
9 x=0.693*N/(303*24*3600)//count rate from decay law
10 //output
11 printf("the count rate is %3.3e counts per second",x
)
```

Scilab code Exa 9.11 determination of attributes

```
1 clc
2 clear
3 //input
4 v=400//pd
5 d=4*10^-3 //distance of seperation
6 B=0.52//flux density
7 na=6*10^23//avagadro number
8 //calcuation
9 E=v/d//electric field strength
10 v1=E/B// speed of ions
11 m=24*10^-3/na//mass of each ion
```

Scilab code Exa 9.12 velocity selection

```
clc
clear
//input
v=400//pd
d=4*10^-3 //distance of seperation
B=0.52//flux density
na=6*10^23//avagadro number
//calculation
x=2*1.6*10^-19/(4*10^-26)//specific charge of ions
r=1*10^5/(8*10^6*B*B)// path radius
//output
printf("the specific charge of ions is %3.0e C/kg",x
)
printf("\n the path radius is %3.3e m",r)
```

Chapter 10

Physical Optics

Scilab code Exa 10.1 plancks theory

```
1 clc
2 clear
3 //input
4 h=6.6*10^-34 //plancks constant
5 c=3*10^8 //velocity of light
6 e1=12.34//excited state
7 e2=14.19//ground state
8 //calculation
9 l=(h*c)/((e2-e1)*1.6*10^-19)//conservation of energy and plancks theory
10 //output
11 printf("the wavelength is %3.3e m",1)
```

Scilab code Exa 10.2 wavelength and prism angle

```
1 clc
2 clear
3 //input
```

Scilab code Exa 10.3 thin film interference

```
1 clc
2 clear
3 //input
4 n=7//order of fringe
5 l=0.63*10^-6 //wavelength
6 x=24.8*10^-3 //seperation of bands
7 d=1.5
8 //calculation
9 a=n*d*l/x//slit seperation
10 //output
11 printf("the slit seperation is %3.3e m",a)
```

Scilab code Exa 10.4 fringe width determination

```
1 clc
2 clear
3 //input
4 n=6//order of fringe
```

```
5 l=0.63*10^-6 //wavelength
6 x=24.8*10^-3 //seperation of bands
7 d=1.5
8 a=2.7*10^-4
9 //calculation
10 x=d*(6+1/2)*1/a//distance between centre and sixth fringe
11 w=1*1.6/a//fringe width
12 //output
13 printf("the distance between centre and sixth fringe is %3.3e m",x)
14 printf("\nthe fringe width is %3.3e m",w)
```

Scilab code Exa 10.5 increasing thickness effect

```
1 clc
2 clear
3 //input
4 a=4//widge dimension
5 b=64//edge of tissue
6 c=33//bright fringes
7 l=0.53*10^-6 //wavelength
8 //calculation
9 m=b*c/a//number of bright fringes
10 t=m*1/2//thickness
11 //output
12 printf("the thickness is %3.3e m and hence number of fringes also increases",t)
```

Scilab code Exa 10.6 wavelength and angular displacement

```
1 clc
2 clear
```

```
3 //input
4 n1=6//6th order image
5 \text{ n2=} 5//5 \text{th order image}
6 \text{ n=3000//lines per cm}
7 //calculation
8 l=n2*0.11*10^-6/(6-5)/applying dsinx=nl
9 11=1+(0.11*10^-6)/applying dsinx=nl
10 d=1/(n*100)//applying dsinx=nl, grating space
      calculation
11 x=n1*1/d
12 \text{ y=asind(x)}
13 //output
14 printf("the wavenlength of first wave is \%3.3e m",1)
15 printf("\nthe wavenlength of second wave is %3.3e m"
      ,11)
16 printf("\n the angular displacement is \%3.3 \, \mathrm{f} \, \deg",y)
```

Scilab code Exa 10.7 wavelength and diffraction angle

```
1 clc
2 clear
3 //input
4 n2=1.36//refractive index
5 N=5000*100 //number of lines per m
6 t=23 //angle of diffraction
7 //calculation
8 l=sind(t)/(n2*N)//applying dsinx=nl, calculating
      wavelength
9 x=N*1//angle of diffraction
10 \text{ y=asind(x)}
11 //output
12 printf ("the wavelength of light in methanol is %3.3e
      m",1)
13 printf("\n the angle of diffraction is %3.3f degrees
     ",y)
```

Scilab code Exa 10.8 telescope angular magnification

```
1 clc
2 clear
3 //input
4 fo=1.5//objective's focal length
5 fc=0.04//eyepiece focal length
6 //calculation
7 m=fo/fc//angular magnification
8 v=fc*(fc+fo)/fo//distance of eye ring from eyepiece
9 //output
10 printf("the angular magnification is %3.2f",m)
11 printf("\n the distance of eye ring from eyepiece is %3.3f m",v)
```

Chapter 11

Semiconductors

Scilab code Exa 11.1 rms current and peak pd

```
clc
clear
//input
vp=50//ac source supply
r1=35
r2=1450 //resistors
//calculation
vs=4*vp//transformer equation
i=100/(r1+r2)//peak current
v=100*r1/(r1+r2)
pp=100-v0//peak pd
//output
printf("the rms value of current is %3.3 f A",irms)
printf("\n the peak pd is %3.3 f V",pp)
```

Scilab code Exa 11.2 common emittor transistor

```
clc
clear
//input
vbe=1.2//pd across emitter
ib=120*10^-6//base current
v1=1.5//final voltafe
i2=175*10^-6//increased current
//calculation
r=vbe/ib//static input resistence
h=(v1-vbe)/(i2-ib)//input hybrid parameter
//output
printf("the static input resistence is %3.0e ohm",r)
printf("\nthe input hybrid parameter is %3.3e ohm",h
)
```

Scilab code Exa 11.3 common base transistor

```
1 clc
2 clear
3 //input
4 v1=7.5//initial voltag
5 v2=11.5//final voltage
6 ic=18*10^-6//collector current
7 //calculation
8 r=(v2-v1)/ic//output resistance
9 //output
10 printf("the output resistance is %2.2e ohm ",r)
```

Scilab code Exa 11.4 common emittor amplifier

```
1 clc
2 clear
3 //input
```

```
4 vbe=2.5//voltage across base-emitter
5 hfe=75//current gain
6 rb=75*10^3 //base current
7 //calculation
8 rc=5*rb/(vbe*hfe)//collector load resistance
9 //output
10 printf("the collector load resistance is %2.2e ohm", rc)
```