SITUATION

Pour déterminer l'écriture explicite d'une suite, on peut avant tout montrer que la suite est géométrique et déterminer sa raison.

ÉNONCÉ

On considère la suite $\,(v_n)\,$ définie par $\,v_0=2\,$ et, pour tout entier naturel $\it n, \, par$:

$$v_{n+1} = 4v_n + 1$$

On s'intéresse alors à la suite (u_n) définie pour tout entier naturel n par :

$$u_n=v_n+\frac{1}{3}$$

Montrer que la suite $\,(u_n)\,$ est géométrique et déterminer sa raison.

ETAPE 1

Exprimer u_{n+1} en fonction de u_n

Pour tout entier naturel n, on factorise l'expression donnant u_{n+1} de manière à faire apparaître u_n , en simplifiant au maximum le facteur que multiplie u_n .

APPLICATION

Soit *n* un entier naturel :

$$u_{n+1} = v_{n+1} + rac{1}{3} \, .$$

On remplace $\,v_{n+1}\,$ par son expression en fonction de $\,v_n\,$:

$$u_{n+1} = 4v_n + 1 + rac{1}{3}$$

On remplace $\,v_n\,$ par son expression en fonction de $\,u_n\,$:

$$u_{n+1} = 4\left(u_n - rac{1}{3}
ight) + 1 + rac{1}{3}$$

$$u_{n+1} = 4u_n - rac{4}{3} + rac{3}{3} + rac{1}{3}$$

$$u_{n+1}=4u_n$$

ETAPE 2

Identifier l'éventuelle raison de la suite

On vérifie qu'il existe un réel q indépendant de la variable n tel que, pour tout entier naturel n,

$$u_{n+1} = q \times u_n$$
.

APPLICATION

En posant $\,q=4$, on a bien, pour tout entier naturel $\it n,\ u_{n+1}=qu_n$.

ETAPE 3

Conclure sur la nature de la suite

S'il existe un réel q indépendant de la variable n tel que, pour tout entier naturel n, $u_{n+1}=q\times u_n$, on peut conclure que la suite est géométrique de raison q. On précise alors son premier terme.

APPLICATION

La suite $\left(u_{n}
ight)$ est donc une suite géométrique de raison 4. Son premier terme vaut :

$$u_0 = v_0 + \frac{1}{3} = 2 + \frac{1}{3} = \frac{7}{3}$$

Sommaire

 u_n

X

- $oldsymbol{1}$ Exprimer u_{n+1} en fonction de
- 2 Identifier l'éventuelle raison de la suite
- 3 Conclure sur la nature de la suite