Decision Tree

BA810: Supervised Machine Learning

Nachiketa Sahoo

Recap

- Support vector machines
 - Good at separating classes with complex boundaries
 - Support vectors are the training data points that are on or within the margin around the boundary
- 1. It's good to have class boundaries that have large gap/margin around them
 - But can be violated for a cost
- 2. Data points more easily separate in higher dimensions
 - 1. Kernels offer a way to compute similarity in higher dimensions more easily
 - 2. Linear kernels good for large dataset with large number of features
 - Radial Basis kernels for fewer features and smaller datasets
- Can be slow for moderate to large datasets
 - Hard to interpret ... (e.g., relative to linear regression)

Decision Trees

- Another approach to form nonlinear separating boundary
 - Simpler to understand predictions
 - Faster to learn
- Partition data by X values repeatedly
 - Predict one value for all points in a region
 - Average for regression
 - Mode for classification
- Example: Predicting the salary of a baseball player

A Decision Tree and Regions

A Decision Tree and Regions

Building the Tree (Training)

 Goal: partition features into regions such that the total prediction error is minimized

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$

where, J is the number of regions, j indexes regions (labeled R_j s), and i indexes data points.

• All observation in a region are predicted same $(\hat{y}_{R_i})!$

- Follow a greedy top-down approach
 - 1. Find attribute X_j and its cut-point s that leads to lowest error
 - 2. Split dataset into $\{X | X_j < s\}$ and $\{X | X_j \ge s\}$
 - 3. Repeat 1 over all regions and split (Step 2) the region that reduces the error most

Tree Grown Unchecked

Better Than Stopping: Pruning a Tree

- Stopping tends to stop prematurely
 - Often multiple sequential splits are needed to realize the value of a feature.
 - E.g., cholesterol level may not predict stroke in general, but do so once we divide data by age, into young and old
- First grow a full tree, then *prune* back: merge two split leaves into their parent node (becomes the new leaf)
 - One prediction at the new leaf, instead of two predictions at two older leaves
 - Analogy with backward sequential search (keep the splits/features that work well together)

 A penalty for complexity is added to objective:

$$\sum_{j=1}^{|T|} \sum_{i} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|$$

where, |T| is the number of leaves, equivalent to the number of regions.

- α: regularization parameter controls biasvariance tradeoff — chosen via cross validation
- The subtree that minimizes the modified objective is returned

(Cost complexity pruning)

Decision Tree for Classification

- Similar steps, but objective functions differ
- Classification error for *pruning*: $1 \max_{k} (\hat{p}_{jk})$ where j indexes regions/leaves, k classes.
 - Predict most probable class, knowing that rest (error) can occur with their estimated probability.
 - Closely related to the misclassification rate
- More sensitive metrics are used during growing:
 - Gini Impurity: $G = \sum_{k=1}^{K} \hat{p}_{jk} (1 \hat{p}_{jk})$
 - Entropy: $-\sum_{k=1}^{K} \hat{p}_{jk} \log \hat{p}_{jk}$

Summary with Pros and Cons

- Predictions are easy to explain (for small trees) Less accurate; common prediction in a
- Easily approximates non-linear boundaries
- Normalization not needed
- Easily handles categorical and null values

- Less accurate; common prediction in a region
- High variance, sensitive to noise
- Can struggle to approximate simple boundaries if they don't line up with axes

