V2V2V2V2V2 V2V2V2V2V2 V2V2V2V2V2 V2V2V2V2V2V2V2V2V2V2

National University of Computer & Emerging Sciences FAST-Karachi Campus CS4051- Information Retrieval Quiz#3

Date	d: April 22, 2024 Marks: 20					
Time	e: 20 min.					
Std-I	D:Sol					
Quest	ion No. 1					
a.	What are the assumptions in building language model for IR? List them.					
	Assumptions for Language Model					
	 Both documents and query are objects of the same type. Documents are relevant to the query, if the same generative process is used to generate query that generated the document. Probability that the query is generated from the same document is used as a relevance to the query. (It is a generative model for each document). 					
b.	Consider making a language model from the following training text:					
	Humpty Dumpty sat on a wall. Humpty Dumpty had a great fall					
	(i) Under a MLE-estimated unigram probability model, what are P(humpty) and P(sat)?					
	P(humpty) = 2/12 = 1/6					
	P(sat) = 1/12					
	(ii) Under a MLE-estimated bigram model, what are P(dumpty humpty) and P(humpty/dumpty)?					
	P(dumpty humpty) = P(dumpty,humpty) / P(humpty) = 2/2=1					
	P(humpty/ dumpty)= P(humpty,dumpty)/P(dumpty) = 0/2=0					

Question No. 2

Suppose we have a collection that consists of the 3 documents given in the below table.

DocID	Doc-content Doc-content
1	w3 w4 w2 w5
2	w3 w1 w3 w2
3	w2 w3 w4 w3

Build a query likelihood language model for this document collection. Assume a mixture model between the documents and the collection, with λ =0.6 for document. Give the document ranking against the query ="w3 w4". You can use Laplace Smoothing. [10]

Language Model

Doc-Model	w1	w2	w3	w4	W5
D1	0	1/4	1/4	1/4	1/4
D2	1/4	1/4	2/4	0	0
D3	0	1/4	2/4	1/4	0
Collection	1/12	1/4	5/12	1/6	1/12
Model					

Model Probabilities for query =" w3 w4"

$$P(MD1/q) = [0.6*1/4 + 0.4*5/12] + [0.6*1/4 + 0.4*1/6] = 0.15 + 0.16 + 0.15 + 0.06 = 0.526$$

$$P(MD2/q) = [0.6*2/4+0.4*5/12] + [0.4*1/4+0.4*0] = 0.25+0.1=0.35$$

$$P(MD3/q) = [0.6*2/4+0.4*5/12]+[0.4*1/4+0.4*1/6] = 0.46+0.46=0.91$$

Ranking will be D3,D1 and D2.