Учебник по Эконометрике

Лекция 4: Моделирование зависимости

Джон Стачурски

Лекции: Акшай Шенкер Перевел: Алексей Кедо

8 октября 2020 г.

Случайный вектор

Случайный вектор ${\bf x}$ в ${\mathbb R}^N$ — это функция из Ω в ${\mathbb R}^N$ со следующим свойством

$$\{\omega \in \Omega : \mathbf{x}(\omega) \in B\} \in \mathscr{F}$$
 для всех $B \in \mathscr{B}(\mathbb{R}^N)$

Мы можем также определить случайный вектор ${\bf x}$ в \mathbb{R}^N как список из N случайных переменных (x_1,\ldots,x_N)

 во время умножения матриц случайные векторы по умолчанию будут векторами-столбцами

Пример. Вспомните эксперимент с обезьяной с завязанными глазами

Пространство элементарных событий — это единичный диск $\Omega:=\{(h,v)\in\mathbb{R}^2:\|(h,v)\|\leq 1\}$ и пространство событий — это Борелевские множества в Ω

Если ${\bf x}$ тождественен Ω , то он просто сообщает результат (h,v) — случайный вектор

Пример. Рассмотрим случайную выборку с перечислением доходов y_n индивидов $n=1,\ldots,N$

Вектор (y_1,\ldots,y_N) который сообщает результат этой выборки, можно рассматривать как случайный вектор в \mathbb{R}^N

Измеримость

Определение случайного вектора гарантирует, что $\{\mathbf{x}\in B\}$ — определенное событие для каждого $B\in\mathscr{B}(\mathbb{R}^N)$

Чтобы убедиться, что $\mathbf{y} = f(\mathbf{x})$ — случайный вектор:

• функция $f\colon \mathbb{R}^N \to \mathbb{R}^M$ должна удовлетворять $f^{-1}(B) \in \mathscr{B}(\mathbb{R}^N)$ для всех $B \in \mathscr{B}(\mathbb{R}^M)$

Ожидания

Ожидания определяются поэлементно

Если
$$\mathbf{x} = (x_1, \dots, x_N)$$
 — случайный вектор в \mathbb{R}^N , то

$$\mathbb{E}\mathbf{x} = \mathbb{E}\left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_N \end{array}\right) := \left(\begin{array}{c} \mathbb{E}x_1 \\ \mathbb{E}x_2 \\ \vdots \\ \mathbb{E}x_N \end{array}\right)$$

Random Matrix

Случайная матрица ${\bf X}$ размера $M \times N$ — массив случайных величин размера $M \times N$

Его ожидание определяется как

$$\mathbb{E}\mathbf{X} := \begin{pmatrix} \mathbb{E} x_{11} & \cdots & \mathbb{E} x_{1N} \\ \vdots & & \vdots \\ \mathbb{E} x_{M1} & \cdots & \mathbb{E} x_{MN} \end{pmatrix}$$

Из линейности ожиданий (факт ??):

Факт. (??) Если X и Y — случайные матрицы или векторы, и A и B постоянны и согласованны, то

$$\mathbb{E}\left[AX+BY\right]=A\mathbb{E}\left[X\right]+B\mathbb{E}\left[Y\right]$$

Ковариационная матрица

Ковариационная матрица случайного вектора \mathbf{x} в \mathbb{R}^N с $\pmb{u} := \mathbb{E} \, \mathbf{x}$ является матрицей размера $N \times N$

$$\operatorname{var}[\mathbf{x}] := \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}]$$

Расширяем:

$$var[\mathbf{x}] = \begin{pmatrix} \mathbb{E}[(x_1 - \mu_1)(x_1 - \mu_1)] & \cdots & \mathbb{E}[(x_1 - \mu_1)(x_N - \mu_N)] \\ \vdots & & \vdots \\ \mathbb{E}[(x_N - \mu_N)(x_1 - \mu_1)] & \cdots & \mathbb{E}[(x_N - \mu_N)(x_N - \mu_N)] \end{pmatrix}$$

j,k-ый является скалярной ковариацией между x_i и x_k , и главная диагональ содержит дисперсию каждого x_n

- 1. var[x] существует и неотрицательно определена,
- 2. $\operatorname{var}[\mathbf{x}] = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\mathsf{T}}\right] \mu\mu^{\mathsf{T}}$, и
- 3. $var[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A} var[\mathbf{x}]\mathbf{A}^\mathsf{T}$ (для любых постоянных и согласованных \mathbf{A}, \mathbf{b}).

$$\mathrm{cov}[x,y] := \mathbb{E}\left[(x - \mathbb{E}\left[x\right]) (y - \mathbb{E}\left[y\right])^{\intercal} \right]$$

Очевидно, var[x] = cov[x, x]

Факт. (??) Если ${\bf z}$ — случайный вектор в \mathbb{R}^N , удовлетворяющий $\mathbb{E}[{\bf z}{\bf z}^{\mathsf T}]={\bf I}$ и ${\bf A}$ любая постоянная матрица размера $N\times N$, то

$$\mathbb{E}\left[\boldsymbol{z}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{z}\right]=\mathsf{trace}\,\boldsymbol{A}$$

Доказательство — решенное упражнение (смотрите упр. ??)

Совместные распределения

Распределение или закон P в \mathbb{R}^N — вероятностная мера Борелевских множеств $\mathscr{B}(\mathbb{R}^N)$

По определению, оно удовлетворяет $P(\mathbb{R}^N)=1$ и $P(\cup_{n=1}^\infty B_n)=\sum_{n=1}^\infty P(B_n)$ для любых непересекающихся последовательностей $\{B_n\}$ в $\mathscr{B}(\mathbb{R}^N)$

Рис.: Пример распределения и события A и B

$$F(\mathbf{s}) := F(s_1, \dots, s_N) := P\left(\times_{n=1}^N (-\infty, s_n]\right) \qquad (\mathbf{s} \in \mathbb{R}^N)$$

Функция F — функция совместного распределения, которая является функцией $F\colon \mathbb{R}^N \to [0,1]$ со следующими свойствами

- 1. непрерывна справа по каждому из своих аргументов,
- 2. возрастает по каждому из своих аргументов, и
- 3. удовлетворяет

$$F(\mathbf{s}_j) o 1$$
 при $\mathbf{s}_j o \infty$
и $F(s_1,\dots,s_{nj},\dots,s_N) o 0$ при $s_{nj} o -\infty$

- дискретно, если P имеет носитель распределения в счетном подпространстве \mathbb{R}^N
- абсолютно непрерывно, если P(B) = 0 всюду, где Bимеет меру Лебега равную нулю

Опять же, абсолютная непрерывность необходима и достаточна для существования функции плотности:

$$P(B) = \int_B p(\mathbf{s}) \; \mathbf{ds}$$
 для всех $B \in \mathscr{B}(\mathbb{R}^N)$

справа — многомерный интеграл, который мы можем записать как

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathbb{1}_{B}(s_{1}, \ldots, s_{N}) p(s_{1}, \ldots, s_{N}) ds_{1} \cdots ds_{N}$$

Если p — любая функция плотности в \mathbb{R}^N , то вышенаписанное определяет распределение

$$p(\mathbf{s}) = (2\pi)^{-N/2} \det(\mathbf{\Sigma})^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{s} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{s} - \boldsymbol{\mu})\right\}$$

где μ — любой вектор размера $N \times 1$ и Σ — положительно определенная матрица размера $N \times N$

Представим это распределение как ${ t N}(\pmb{\mu}, \pmb{\Sigma})$

Случай $\mathrm{N}(\mathbf{0},\mathbf{I})$ называется многомерным стандартным нормальным распределением

Рис.: Функция плотности двумерного стандартного нормального распределения

Факт. (??) Возьмем распределения P_1, \ldots, P_N в \mathbb{R} , существует единственное и определенное распределение \mathring{P} в \mathbb{R}^{N} . такое что

$$\mathring{P}(B_1 imes \cdots imes B_N)$$
 $= \prod_{n=1}^N P_n(B_n)$ для всех $B_n \in \mathscr{B}(\mathbb{R}), \ n=1,\ldots,N$

Единственное, потому что распределения однозначно закреплены цилиндрическими множествами \mathbb{R}^N (смотрите страницу 128 в ЕТ)

Возьмем любое распределение P в \mathbb{R}^N , n-ое частное распределение P — это распределение в \mathbb{R} определенное как

$$P_n(B) = P(\mathbb{R} \times \cdots \times \mathbb{R} \times B \times \mathbb{R} \times \cdots \times \mathbb{R})$$

Здесь B-n-ый элемент Декартого произведения

Эквивалентно,

$$P_n(B) = P\{\mathbf{s} \in \mathbb{R}^N : \mathbf{s}^\mathsf{T} \mathbf{e}_n \in B\}$$

$$F_n(s) := P_n((-\infty, s]) \qquad (s \in \mathbb{R})$$

(смотрите страницу ?? в ЕТ)

Если P_n абсолютно непрерывная, она имеет функцию плотности p_n

Если совместное распределение P имеет функцию плотности p, частное распределение P_n имеет функцию плотности p_n – "интегрировать по другим переменным"

Например, двумерный случай:

$$p_1(s_1) = \int_{-\infty}^{\infty} p(s_1, s_2) \, \mathrm{d}s_2$$

Рис.: Двумерная совместная функция плотности и две ее частных вариации

Совместное распределение не может быть получино только из частных

• частные не говорят нам о своем взаимодействии

Исключение составляют случаи отсутствия взаимодействия случай произведения функций распределения

Распределения случайных векторов

Пусть \mathbf{x} — случайный вектор в \mathbb{R}^N

Распределение ${\bf x}$ является вероятностной мерой P на $\mathscr{B}(\mathbb{R}^N)$ определяемая как

$$P(B) = \mathbb{P}\{\mathbf{x} \in B\} \qquad (B \in \mathscr{B}(\mathbb{R}^N))$$

P здесь также называется совместным распределением x_1,\ldots,x_N , и мы пишем $\mathcal{L}(\mathbf{x})=P$

Совместное распределение представлено многомерной функцией распределения $F\colon \mathbb{R}^N \to [0,1]$:

$$F(s_1,...,s_N) = \mathbb{P}\{x_1 \le s_1,...,x_N \le s_N\}$$

или, в векторной форме

$$F(\mathbf{s}) = \mathbb{P}\{\mathbf{x} \le \mathbf{s}\} \qquad (\mathbf{s} \in \mathbb{R}^N)$$

Когда распределение P абсолютно непрерывно, существует неотрицательная функция p в \mathbb{R}^N , такая что

$$\int_{\mathbb{R}} p(\mathbf{s}) \, d\mathbf{s} = \mathbb{P}\{\mathbf{x} \in B\} \qquad (B \in \mathscr{B}(\mathbb{R}^N))$$

функция p — совместная функция плотности x

Для выполнения вышеизложенного достаточно, чтобы

$$\int_{-\infty}^{s_N} \cdots \int_{-\infty}^{s_1} p(t_1, \ldots, t_N) dt_1 \cdots dt_N = F(s_1, \ldots, s_N)$$

для всех $s_n \in \mathbb{R}$, $n = 1, \ldots, N$

Если $\mathbf{x} = (x_1, \dots, x_N)$ — случайный вектор в \mathbb{R}^N , то каждый x_n — случайная величина в \mathbb{R}

Пусть $P_n = \mathcal{L}(x_n)$, тогда:

$$P_n(B) = \mathbb{P}\{x_n \in B\}$$
 $(B \in \mathcal{B}(\mathbb{R}), n = 1, ..., N)$

 P_n называется частным распределением x_n

Если $P_1 = P_2 = \cdots = P_N$, то x_1, \ldots, x_N одинаково распределены

Нормальные случайные векторы

Случайная переменная x нормально распределена, если $x = \mu + \sigma z$ для некоторых $\sigma > 0$

Мы пишем
$$\mathcal{L}(x) = N(\mu, \sigma)$$

Случайный вектор ${f x}$ в ${\mathbb R}^N$ многомерный нормальный, если

$$\mathbf{x} = \boldsymbol{\mu} + \mathbf{C}\mathbf{z}$$

где ${f z}$ — стандартный нормальный случайный вектор размера $K \times 1$, матрица ${f C}$ имеет размер $N \times K$ и вектор ${m \mu}$ имеет размер $N \times 1$

Если ${f x}$ многомерный нормальный, то мы пишем ${\cal L}({f x})={\scriptscriptstyle {
m N}}(\mu,{f \Sigma})$, где

$$\mu := \mathbb{E} \, x$$
 и $\Sigma := \operatorname{var} x$

Имеется $\mathbf{\Sigma} = \mathbf{C}\mathbf{C}^{\mathsf{T}}$ (вспомним факт 5.1.2 в ET)

 $\mathcal{L}(\mathbf{x}) = \mathrm{N}(\mu, \mathbf{\Sigma})$ не подразумевает, что \mathbf{x} имеет многомерную нормальную функцию плотности

• распределение ${f x}$ может и не быть абсолютно непрерывным, например, если ${f C}={f 0}$

Абсолютная непрерывность распределения x совпадает с условиями, где $\Sigma := \operatorname{var} x$ несингулярна — несингулярность Σ будет верна тогда и только тогда, когда \mathbf{C}^T имеет полный ранг столбцов

Факт. (??) Пусть ${\bf x}$ — случайный вектор в \mathbb{R}^N . Следующие утверждения верны:

- 1. вектор ${\bf x}$ многомерный нормальный тогда и только тогда, когда ${\bf a}^{\sf T}{\bf x}$ нормально распределено в ${\mathbb R}$ для каждого постоянного вектора ${\bf a}$ размера $N \times 1$
- 2. Если $\mathcal{L}(\mathbf{x}) = \mathrm{N}(\pmb{\mu}, \pmb{\Sigma})$, то

$$\mathcal{L}(\mathbf{A}\mathbf{x} + \mathbf{b}) = N(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}})$$

для всех постоянных согласованных A, b

Следствие: если $\mathbf{x}=(x_1,\dots,x_N)$ многомерный нормальный, то частное распределение x_n одномерное нормальное

Всегда ли совместное распределение N одномерных нормальных случайных величин является многомерным нормальным?

Ответ: нет

Ожидания из распределений

Пусть $h\colon \mathbb{R}^N \to \mathbb{R}$ — любая \mathscr{B} -измеримая функция и P — распределение в \mathbb{R}^N

Функция h теперь рассматривается как а случайная переменная в $(\mathbb{R}^N,\mathscr{B}(\mathbb{R}^N),P)$

Математическое ожидание h может быть записано как

$$\mathbb{E}_P h :=: \int h(\mathbf{s}) P(\mathbf{d}\mathbf{s}) \tag{1}$$

Факт. (??) Пусть $h \colon \mathbb{R}^N \to \mathbb{R}$ \mathscr{B} -измерима и P распределение в \mathbb{R}^N . Если P дискретное, с вероятностной функцией $\{p_i\}_{i\geq 1}$ и носителем распределения $\{\mathbf{s}_i\}_{i\geq 1}$, то

$$\int h(\mathbf{s})P(\mathbf{d}\mathbf{s}) = \sum_{j\geq 1} h(\mathbf{s}_j)p_j \tag{2}$$

Если P абсолютно непрерывное с функцией плотности p, то

$$\int h(\mathbf{s})P(d\mathbf{s}) = \int h(\mathbf{s})p(\mathbf{s})\,d\mathbf{s} \tag{3}$$

правую сторону (3) следует понимать как

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(s_1, \ldots, s_N) \, p(s_1, \ldots, s_N) \, ds_1 \cdots ds_N$$

Например, пусть \mathbf{x} — случайный вектор в \mathbb{R}^K с $\mathcal{L}(\mathbf{x}) = P$

Ковариационная матрица var[x] имеет i,j-ый элемент равный $\mathbb{E}[x_i x_i] - \mathbb{E}[x_i] \mathbb{E}[x_i]$

Мы можем записать var[x] относительно P. Если

$$\mathbf{\Sigma}_P = (\sigma_{ij})$$
 , где $\sigma_{ij} := \int (s_i s_j) P(\mathrm{d}\mathbf{s}) - \int s_i P(\mathrm{d}\mathbf{s}) \cdot \int s_j P(\mathrm{d}\mathbf{s})$

тогда $\Sigma_P = \text{var}[\mathbf{x}]$

Независимость случайных величин

Множество N случайных величин $x_1, ..., x_N$ независимо, если

$$\mathbb{P} \bigcap_{n=1}^{N} \{ x_n \in B_n \} = \prod_{n=1}^{N} \mathbb{P} \{ x_n \in B_n \}$$
 (4)

для любых B_1,\dots,B_N , где каждый B_n — Борелевское подмножество $\mathbb R$

Случайные величины x_1, \ldots, x_N независимы, когда множества вида $\{x_1 \in B_1\}, \ldots, \{x_N \in B_N\}$ являются независимыми событиями

Бесконечное множество случайных величин $\{x_n\}_{n=1}^{\infty}$ независимо, если любое конечное подмножество $\{x_n\}_{n=1}^{\infty}$ независимо

Пусть P — совместное распределение $\mathbf{x}=(x_1,\ldots,x_N)$ и P_n — его n-ое частное

Так как $\bigcap_{n=1}^N \{x_n \in B_n\} = \{(x_1, \dots, x_N) \in B_1 \times \dots \times B_N\}$, случайные величины x_1, \dots, x_N независимы, если

$$P(B_1 \times \cdots \times B_N) = \prod_{n=1}^N P_n(B_n)$$

Элементы случайного вектора независимы тогда и только тогда, когда их совместное распределение равняется произведению их частных распределений

Необходимое и достаточное условие независимости x_1, \ldots, x_N :

$$F(s_1,\ldots,s_N)=\prod_{n=1}^N F_n(s_n)$$

для всех $(s_1,\ldots,s_N)\in\mathbb{R}^N$, где F функция распределения ${\bf x}$ и F_1,\ldots,F_N частные функциии распределения (почему?)

Если распределение \mathbf{x} абсолютно непрерывное, мы можем также проверить независимость с помощью его функции плотности:

Факт. $(\ref{akt.} (\ref{akt.}))$ Если $\mathbf{x} = (x_1, \ldots, x_N)$ имеет совместную функцию плотности p и частные p_1, \ldots, p_N , то x_1, \ldots, x_N независимы тогда и только тогда, когда

$$p(s_1,\ldots,s_N) = \prod_{n=1}^N p_n(s_n)$$
 для всех $(s_1,\ldots,s_N) \in \mathbb{R}^N$

Пример.

Пусть
$$\mathcal{L}(\mathbf{x}) = \mathcal{L}(x_1, \dots, x_N) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Предположим также, что Σ диагональна, с n-ым диагональным элементом $\sigma_n>0$, тогда x_1,\ldots,x_N независимые

Чтобы убедиться в этом, проверим для любых $\mathbf{s}=(s_1,\ldots,s_N)\in\mathbb{R}^N$, имеется

$$p(\mathbf{s}) = (2\pi)^{-N/2} \det(\mathbf{\Sigma})^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{s} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{s} - \boldsymbol{\mu})\right\}$$
$$= \frac{1}{(2\pi)^{N/2} \prod_{n=1}^{N} \sigma_n} \exp\left\{-\frac{1}{2} \sum_{n=1}^{N} (s_n - \mu_n)^2 \sigma_n^{-2}\right\}$$

Пример. (прод.) Вычисление определителя и обратной матрицы Σ с помощью фактов ?? и ??

Последнее выражение можно разложить дальше

$$p(\mathbf{s}) = \prod_{n=1}^{N} \frac{1}{(2\pi)^{1/2} \sigma_n} \exp\left\{\frac{-(s_n - \mu_n)^2}{2\sigma_n^2}\right\} = \prod_{n=1}^{N} p_n(s_n)$$

где p_n — функция плотности $\mathrm{N}(\mu_n,\sigma_n^2)$

Факт. (??) Если $x_1, ..., x_N$ независимые и каждый x_n интегрируемый, то

$$\mathbb{E}\left[\prod_{n=1}^{N} x_n\right] = \prod_{n=1}^{N} \mathbb{E}\left[x_n\right]$$

Независимость случайных векторов

Случайные векторы $\mathbf{x}_1,\dots,\mathbf{x}_N$ в \mathbb{R}^K называются независимыми, если

$$\mathbb{P}\bigcap_{n=1}^{N}\{\mathbf{x}_n\in B_n\}=\prod_{n=1}^{N}\mathbb{P}\{\mathbf{x}_n\in B_n\}$$

для любых B_1,\dots,B_N , где каждый B_n — Борелевское подмножество \mathbb{R}^K

Доказательство. Заметим, что $f_n(\mathbf{x}_n) \in B_n$ тогда и только тогда, когда $\mathbf{x}_n \in f^{-1}(B_n)$. Это ведет к

$$\bigcap_{n=1}^{N} \{ f_n(\mathbf{x}_n) \in B_n \} = \bigcap_{n=1}^{N} \{ \mathbf{x}_n \in f^{-1}(B_n) \}$$

Применяем независимость $\mathbf{x}_1, \dots, \mathbf{x}_N$

$$\mathbb{P}\bigcap_{n=1}^N\{f_n(\mathbf{x}_n)\in B_n\}$$

$$= \prod_{n=1}^{N} \mathbb{P}\{\mathbf{x}_n \in f^{-1}(B_n)\} = \prod_{n=1}^{N} \mathbb{P}\{f_n(\mathbf{x}_n) \in B_n\}$$

Факт. (??) Если x и y независимые, то cov(x, y) = 0.

Обратное не верно: можно найти примеры зависимых векторов с нулевой ковариацией. Однако,

Факт. (??) Если x многомерно нормально распределен и A и B согласованные постоянные матрицы, то Ax и Bx независимые тогда и только тогда, когда $\mathrm{cov}(Ax,Bx)=0$

Факт. (\ref{Action}) Пусть S — любое линейное подпространство \mathbb{R}^N , $\mathbf{P}:=\operatorname{proj} S$ и \mathbf{M} — остаточная проекция. Если $\mathcal{L}(\mathbf{z})=\operatorname{N}(\mathbf{0},\sigma^2\mathbf{I})$ в \mathbb{R}^N для некоторых $\sigma^2>0$, то \mathbf{Pz} и \mathbf{Mz} независимые

 $oldsymbol{\Phi}$ акт. $(\ref{eq:w_1,\ldots,w_N})$ независимые с $\mathcal{L}(w_n)=\mathrm{N}(\mu_n,\sigma_n^2)$ для всех n, то

$$\mathcal{L}\left[\alpha_0 + \sum_{n=1}^N \alpha_n w_n\right] = N\left(\alpha_0 + \sum_{n=1}^N \alpha_n \mu_n, \sum_{n=1}^N \alpha_n^2 \sigma_n^2\right)$$

Суммы произвольных нормальных не всегда нормальны — нам требуется многомерное нормальное распределение

В факте (??) выше:

$$\mathcal{L}(w_1,\ldots,w_N) = N(\mu,\mathbf{\Sigma})$$

где
$$\mathbf{e}_n^\intercal \pmb{\mu} = \mu_n$$
, и $\pmb{\Sigma} = \mathrm{diag}(\sigma_1^2, \dots, \sigma_N^2)$

Копула C в \mathbb{R}^N — многомерная функция распределения определённая на единичном гиперкубе $[0,1]^N$, такая что каждое ее частное распределение равномерно на [0,1]

C — функция вида

$$C(s_1,...,s_N) = \mathbb{P}\{u_1 \le s_1,...,u_N \le s_N\}$$
 (5)

Где $0 \le s_n \le 1$ и $\mathcal{L}(u_n) = U[0,1]$ для всех n

Пока каждый u_n имеет фиксированное частное распределение, существует бесконечно много способов составить совместное распределение

Частные распределения $C(s_1,1)=s_1$ и $C(1,s_2)=s_2$ как и требуется

(Это функции распределения для U[0,1] распределения)

Пример. Копула Гумбеля — класс функций в $[0,1]^2$, определяемый как

$$C(s_1, s_2) = \exp\left\{-\left[(-\ln s_1)^{\theta} + (-\ln s_2)^{\theta}\right]^{1/\theta}\right\}, \quad (\theta \ge 1)$$

Копула Клейтона определяется как

$$C(s_1, s_2) = \left\{ \max \left[s_1^{-\theta} + s_2^{-\theta} - 1, 0 \right] \right\}^{-1/\theta}, \quad (\theta \ge -1, \theta \ne 0)$$

Обе они принадлежат к общему классу, называемому Архимедовы копулы

Мы можем взять равномерные функции распределения $F_1, ..., F_N$ и копулу C, чтобы создать многомерную функцию распределения в \mathbb{R}^N с помощью

$$F(s_1,...,s_N) = C(F_1(s_1),...,F_N(s_N))$$

 $(s_n \in \mathbb{R}, n = 1,...,N)$ (6)

Польза: разделяем определение частных и определение совместного распределения

Пример. bonhomme2009assessing использует копулы для моделирования одного компонента динамики заработка в исследовании, основанном на трехлетних панельных данных (French Labor Force Survey)

Разделы относительно большие (около 30 000), что позволяет гибко моделировать частные распределения с помощью смеси нормальных

Однако, размер временного ряда короткий, поэтому используется семейство копул с одним параметром для привязки частных во времени не трудозатратным способом

Другие варианты приводят к другим распределениям

Рис.: Двумерный Гауссовская (вверху) и не-Гауссовская (внизу)

Свойства именных распределений

Факт.
$$(??)$$
 Если x_1,\ldots,x_N независимые и $\mathcal{L}(x_n)=\chi^2(k_n)$, то $\mathcal{L}(\sum_n x_n)=\chi^2(\sum_n k_n)$

$$oldsymbol{\Phi}$$
акт. $(\ref{eq:constraint})$ Если z и x независимые с $\mathcal{L}(z)={ ext{N}}(0,1)$ и $\mathcal{L}(x)=\chi^2(k)$, то

$$z\sqrt{rac{k}{x}}$$
 распределено как t с k степенями свободы

Факт. (??) Если $\mathcal{L}(\mathbf{z}) = N(\mathbf{0}, \mathbf{I})$ и \mathbf{A} симметрична и идемпотентна, то

$$\mathcal{L}\left(\mathbf{z}^{\mathsf{T}}\mathbf{A}\mathbf{z}\right)=\chi^{2}(K)$$
 , где $K:=\operatorname{trace}\mathbf{A}$

Упражнение: получите факт (??) из факта (??). (Смотрите страницу ?? в ЕТ)

Условия и ожидание

Условное ожидание — одно из важнейших понятий как в экономической теории, так и в эконометрике

В этом разделе дается построение математического ожидания, основанное на проекции:

• условное математическое ожидание как оптимальное предсказание с учетом ограниченной информации

Условные функции плотности

Сначала обсуждение условных функций плотности

Пусть x_1 и x_2 — случайные величины. Условиная функция плотности x_2 при заданном $x_1=s_1$ определяется как

$$p(s_2 | s_1) := \frac{p(s_1, s_2)}{p(s_2)}$$

Здесь p может обозначать совместную, частную или условную функцию плотности, определяемую аргументом

Закон полной вероятности расширяется до случая с функциями плотности следующим образом: Если (x_1,x_2) — случайный вектор в \mathbb{R}^2 , то

Копулы

$$p(s_2) = \int_{-\infty}^{\infty} p(s_2 | s_1) p(s_1) \, ds_1 \qquad (s_2 \in \mathbb{R})$$

Доказательство. Зафиксируем $s_2 \in \mathbb{R}$ и проинтегрируем совместную функцию плотности, чтобы получить частную, получается

$$p(s_2) = \int_{-\infty}^{\infty} p(s_1, s_2) \, \mathrm{d}s_1$$

Сочетаем с $p(s_2 \,|\, s_1) = p(s_1,s_2)/p(s_1)$, чтобы получить результат

000000

$$p(s_2 \mid s_1) = \frac{p(s_1 \mid s_2)p(s_2)}{p(s_1)}$$

Условная функция плотности x_{k+1}, \dots, x_N при $x_1 = s_1, \dots, x_k = s_k$ определяется как

$$p(s_{k+1},...,s_N | s_1,...,s_k) = \frac{p(s_1,...,s_N)}{p(s_1,...,s_k)}$$

Перегруппируйте, чтобы получить полезное разложение совместной функции плотности:

$$p(s_1,...,s_N) = p(s_{k+1},...,s_N | s_1,...,s_k) p(s_1,...,s_k)$$

Возьмем x такой, что x и y, как ожидается, будут близки при большинстве реализаций неопределенности

Но что значит "ожидаются близкими"?

00000

Среднеквадратическая ошибка (MSE)

$$\mathbb{E}\left[(x-y)^2\right]$$

Среднеквадратическое отклонение:

$$||x - y|| := \sqrt{\mathbb{E}[(x - y)^2]}$$
 (7)

Есть много параллелей между обычным векторным пространством с эвклидовой нормой и множеством случайных величин в сочетании с "нормой", определенной в (7) — мы формализуем эти идеи далее

Первым геометрическим понятием, которое мы определили для векторов, было скалярное произведение

Аналогично, определим скалярное произведение между двумя случайными величинами x и y

$$\langle x, y \rangle := \mathbb{E}[xy]$$

Неравенство Коши — Буняковского для случайных величин говорит нам, что $\mathbb{E}\left[xy\right]$ должен быть конечным и определенным всюду, где x и y оба имеют конечные вторые моменты

$$L_2:=\{$$
 все случайные величины x в $(\Omega,\mathscr{F},\mathbb{P})$ с $\mathbb{E}[x^2]<\infty\}$

Факт. (??) Для любых $\alpha, \beta \in \mathbb{R}$ и любых $x, y, z \in L_2$ следующие утверждения верны:

- 1. $\langle x, y \rangle = \langle y, x \rangle$.
- 2. $\langle \alpha x, \beta y \rangle = \alpha \beta \langle x, y \rangle$.
- 3. $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$.

Свойства следуют из определения скалярного произведения и линейности \mathbb{E}

Сравните приведенное выше с фактом ?? в ЕТ для векторов в эвклидовом пространстве

$$||x|| := \sqrt{\langle x, x \rangle} := \sqrt{\mathbb{E}[x^2]} \qquad (x \in L_2)$$

Норма дает понятие расстояния $\|x-y\|$ между случайными величинами что согласуется с понятием среднеквадратического отклонения

Факт. (??) Для любых $\alpha \in \mathbb{R}$ и любых $x,y \in L_2$, следующие утверждения верные:

- 1. $\|x\| \ge 0$ и $\|x\| = 0$ тогда и только тогда, когда x = 0
- 2. $\|\alpha x\| = |\alpha| \|x\|$
- 3. $||x + y|| \le ||x|| + ||y||$
- 4. $|\langle x, y \rangle| \leq ||x|| ||y||$

Свойство 2. приведенного выше факта является непосредственным из определения нормы и линейности $\mathbb E$

Свойство 3. называется неравенством треугольника, как и в векторном случае

Свойство 4. — это просто неравенство Коши — Буняковского для случайных величин со страницы ??

Как и в векторном случае, неравенство треугольника доказывается неравенством Коши - Буняковского (смотрите упражнение ??)

Мы можем сказать, что если ||x|| = 0, то $\mathbb{P}\{x = 0\} = 1$

При работе с L_2 , принято соглашение не различать случайные величины, различающиеся с нулевой вероятностью.

Линейные подпространства в L_2

Любая линейная комбинация случайных величин с конечной дисперсией

$$\alpha_1 x_1 + \cdots + \alpha_K x_K, \qquad \alpha_k \in \mathbb{R}, \ x_k \in L_2$$
 (8)

снова в L_2

Когда X — подпространство L_2 , множество конечных линейных комбинаций, которое может быть сформировано из элементов X, называется линейной оболочкой X, и оюозначается как span X

Пример. Если $x \in L_2$ и $1 := 1_{\Omega}$ постоянная случайная переменная, всегда равная 1, то span $\{1, x\}$ — множество случайных величин

$$\alpha + \beta x := \alpha \mathbb{1} + \beta x$$
 для скаляров α, β (9)

Это множество $\mathcal L$ введенное, когда мы обсуждали лучшие линейные предикторы

Подмножество S множества L_2 называется линейным подпространством L_2 , если оно замкнуто относительно сложения и умножения на скаляр

ullet для каждого $x,y\in S$ и $lpha,eta\in\mathbb{R}$, мы имеем $lpha x+eta y\in S$

Пример. Линейная оболочка любого множества элементов L_2 — линейное подпространство в L_2

Пример. Множество $Z := \{x \in L_2 : \mathbb{E} x = 0\}$ является линейным подпространством L_2 , так как

$$x,y\in Z$$
 u $\alpha,\beta\in\mathbb{R} \implies \mathbb{E}\left[\alpha x+\beta y
ight]=\alpha\mathbb{E}\left[x
ight]+\beta\mathbb{E}\left[y
ight]=0$

Как и в \mathbb{R}^N , ортонормированный бизис линейного подпространства S пространства L_2 — множество $\{u_1,\ldots,u_K\}\subset S$ со свойством

$$\langle u_j, u_k \rangle = \mathbb{1}\{j = k\}$$

и
$$\operatorname{span}\{u_1,\ldots,u_K\}=S$$

Пример. Пусть $x \in L_2$ такой, что $S := \text{span}\{1, x\}$ множество случайных величин

$$\alpha + \beta x := \alpha \mathbb{1} + \beta x$$
 for scalars α, β (10)

Если мы определим

$$u_1 := 1$$
 u $u_2 := \frac{x - \mu}{\sigma_x}$

Тогда

$$\langle u_1, u_2 \rangle = \mathbb{E}[u_1 u_2] = \mathbb{E}\left[\frac{x - \mu}{\sigma_x}\right] = 0$$

Ясно, что $||u_1|| = ||u_2|| = 1$, так что эта пара ортонормирована

Также просто показать, что $\operatorname{span}\{u_1, u_2\} = \operatorname{span}\{1, x\}$, значит $\{u_1,u_2\}$ ортонормированный базис для S

Проекции в L_2

Как и в евклидовом случае, если $\langle x,y\rangle=0$, мы говорим, что x и y ортогональны, и пишем $x\perp y$

Факт. Если
$$x,y\in L_2$$
 и $\mathbb{E}\,x=0$ или $\mathbb{E}\,y=0$, то $x\perp y\iff \mathrm{cov}[x,y]=0$

Возьмем $y\in L_2$ и линейное подпространство $S\subset L_2$, мы ищем ближайший элемент \hat{y} множества S к y

Близость по норме L_2 , так что \hat{y} — решение минимизации $\|y-z\|$ для всех $z\in S$

Мы ищем

$$\hat{y} = \underset{z \in S}{\operatorname{argmin}} \|y - z\| = \underset{z \in S}{\operatorname{argmin}} \sqrt{\mathbb{E}\left[(y - z)^2\right]}$$
 (11)

Теорема. (??) Пусть $y \in L_2$ и S — любое непустое замкнутое линейное подпространство L_2

Следующие утверждения верны:

- 1. задача оптимизации (11) имеет ровно одно решение
- 2. $\hat{y} \in L_2$ является единственным решением

Утверждение, что S замкнуто значит, что $\{x_n\}\subset S$ и $x\in L_2$ с $\|x_n-x\| o 0$ подразумевает $x\in S$ — условие истинное для всех линейных подпространств, с которыми мы хотим работать Возьмем фиксированное S, операция

 $y \mapsto$ ортогональная проекция y на S

- функция из L_2 в L_2 :
 - ullet функция называется ортогональной проекцией на S
 - функция обозначается как Р
 - мы пишем P = proj S

Для каждого $y\in L_2$, $\mathbf{P} y$ отображение y с помощью \mathbf{P} , которое является ортогональной проекцией \hat{y}

• интерпретируем Ру как лучший преликтор у из множества случайных величин, содержащегося в S 1. Р — линейная функция.

Более того, для любых $y \in L_2$, получается

- 2. **P** $y \in S$,
- 3. $y \mathbf{P}y \perp S$,
- 4. $||y||^2 = ||\mathbf{P}y||^2 + ||y \mathbf{P}y||^2$,
- 5. $\|\mathbf{P}y\| \le \|y\|$, и
- 6. $\mathbf{P}y = y$ тогда и только тогда, когда $y \in S$.
- В 1, ${\bf P}$ линейна значит, что ${\bf P}(\alpha x+\beta y)=\alpha {\bf P} x+\beta {\bf P} y$ для всех $x,y\in L_2$ и $\alpha,\beta\in\mathbb{R}$

Факт. (??) Пусть S_i — линейное подпространство L_2 для i=1,2 и $\mathbf{P}_i=\operatorname{proj} S_i$. Если $S_1\subset S_2$, то $\mathbf{P}_1\mathbf{P}_2y=\mathbf{P}_1y$ для всех $y \in L_2$

Факт. (??) Если $\{u_1, ..., u_K\}$ — ортонормированный базис S, то для всех $y \in L_2$,

$$\mathbf{P}y = \sum_{k=1}^{K} \langle y, u_k \rangle \ u_k \tag{12}$$

Пусть
$$S:=\operatorname{span}\{\mathbb{1}\}$$
, где $\mathbb{1}:=\mathbb{1}_{\Omega}$, и $\mathbf{P}:=\operatorname{proj} S$

Объект $\mathbf{P}x$ как раз лучший предиктор x в классе постоянных случайных величин

He удивительно, что $\mathbf{P}x = \mu \mathbb{1}$, где $\mu := \mathbb{E} x$

Самый простой способ проверить это — заметить, что $\{1\}$ является ортонормированным множеством, охватывающим S, и следовательно, по (12),

$$\mathbf{P}x = \langle x, 1 \rangle \ 1 = \mathbb{E}[x1]1 = \mathbb{E}[x]1 = \mu 1$$

Вы можете также проверить утверждение, что $\mu \mathbb{1}$ — проекция x на S, проверив условия в (ii) теоремы,??

Пример.

Зафиксируем $x,y\in L_2$ и рассмотрим проецирование y на $S:=\mathrm{span}\{\mathbb{1},x\}$

Множество S является множеством случайных величин

$$\alpha + \beta x := \alpha \mathbb{1} + \beta x$$
 для скаляров α, β

Задача проецирования y на S is эквивалентна задаче поиска лучшего линейного предиктора из §??

Для реализации отзыва проекции

$$u_1 := \mathbb{1}$$
 u $u_2 := \frac{x - \mu}{\sigma_x}$

сформируем ортонормированный базис для S

$$\mathbf{P}y = \langle y, u_1 \rangle u_1 + \langle y, u_2 \rangle u_2 = \mathbb{E}[y] + \frac{\operatorname{cov}[x, y]}{\operatorname{var}[x]} (x - \mathbb{E}[x])$$

Альтернативно

$$\mathbf{P}y = \alpha^* + \beta^*x$$

где
$$eta^* := rac{\mathrm{cov}[x,y]}{\mathrm{var}[x]}$$
 и $lpha^* := \mathbb{E}[y] - eta^* \mathbb{E}[x]$

Регрессия населения

Рассмотрим расширение задачи поиска лучшего линейного предиктора, описанной выше, до задачи, в которой информация для прогнозирования y — случайный вектор ${\bf x}$ в ${\mathbb R}^K$

Мы ищем L_2 ортогональную проекцию y на линейное подпространство:

 $\mathrm{span}\{\mathbf{x}\} := \,$ случайные величины вида $\mathbf{x}^\mathsf{T}\mathbf{b}$ для некоторых $\mathbf{b} \in \mathbb{R}^K$

Предположим, что $\mathbb{E}\left[x^\mathsf{T}x
ight]<\infty$

Факт. (??) Если $\mathbb{E}[xx^T]$ положительно определена, то проекция $\mathbf{P}y$ любого $y \in L_2$ на $\mathrm{span}\{\mathbf{x}\}$ определяется как

$$\hat{y} = \mathbf{x}^\mathsf{T} \mathbf{b}^*$$
 где $\mathbf{b}^* := \mathbb{E} \left[\mathbf{x} \mathbf{x}^\mathsf{T}
ight]^{-1} \mathbb{E} \left[\mathbf{x} \mathbf{y}
ight]$

Упражнение ?? просит доказать вышеизложенный факт

Положительная определенность $\mathbb{E}\left[\mathbf{x}\mathbf{x}^{\mathsf{T}}\right]$ обеспечивает обратимость, значит b^* однозначно определено

По определению ортогональных проекций, \mathbf{b}^* обязательно удовлетворяет

$$\mathbf{b}^* = \operatorname*{argmin}_{\mathbf{a} \in \mathbb{R}^K} \mathbb{E}\left[(y - \mathbf{x}^\mathsf{T} \mathbf{a})^2 \right]$$

Задача линейного прогнозирования рассматривается также под названием линейная регрессия населения

• "население", потому что мы используем истинное совместное распределение (\mathbf{x},y) , когда считаем ожидания

У регрессии популяции есть аналог, называемый многомерной линейной регрессией, основанный на наблюдениях (\mathbf{x},y) – мы обсудим это в главе $\ref{eq:condition}$?

Измеримость

Мы не всегда хотим ограничиваться линейными прогнозами

Чтобы отказаться от требования линейности, изменим линейное подпространство, используемое для проецирования, из множества линейных функций ${\bf x}$ на множество произвольных функций ${\bf x}$

В результате, лучший предиктор — это условное математическое ожидание относительно ${\bf x}$

Подпространством произвольных действительных функций от ${f x}$ называются х-измеримые функции

Пусть $\mathcal{G} := \{x_1, \dots, x_D\}$ — любое множество случайных величин и z — любая другая случайная величина

Переменная z \mathcal{G} -измерима, если существует \mathscr{B} -измеримая функция $g \colon \mathbb{R}^D \to \mathbb{R}$, такая что

$$z = g(x_1, \ldots, x_D)$$

 равенство между случайными величинами следует интерпретировать поточечно

Мы также будем писать $\mathbf{x}=(x_1,\dots,x_D)$ и говорить, что z является \mathbf{x} -измеримым

Аналогичная терминология будет использоваться для скаляров и матриц

• например, если ${f X}$ — случайная матрица, то ${f X}$ -измеримость означает ${\cal G}$ -измеримость, когда ${\cal G}$ содержит все элементы ${f X}$

Интуиция: \mathcal{G} -измеримость z значит, что z полностью определяется элементами в \mathcal{G}

Пример. Пусть x, y и z — случайные величины и пусть α и β скаляры

Если
$$z=\alpha x+\beta y$$
, то z $\{x,y\}$ -измеримо (возьмем $g(s,t):=\alpha s+\beta t)$

Пример. Если $x_1, ..., x_N$ — случайные величины и $\mathcal{G}:=\{x_1,\ldots,x_N\}$, то выборочное среднее $\bar{x}_N:=\frac{1}{N}\sum_{n=1}^N x_n$ является \mathcal{G} -измеримым.

Тогда y не является **х**-измеримым. Если бы он таким являлся, мы бы имели $y = g(\mathbf{x})$ для некоторой функции g, противоречащее независимости х и 1/

Пример. Пусть $y = \alpha$, гле α — константа

Эта вырожденная случайная величина является \mathcal{G} -измеримой для любых информационных множеств \mathcal{G} , потому что \mathcal{U} уже детерминированный

Например, если $\mathcal{G} = \{x_1, \dots, x_p\}$, то мы можем взять $y = g(x_1, ..., x_p) = \alpha + \sum_{i=1}^{p} 0x_i$

Предположим, что $\mathcal{G} \subset L_2$ и рассмотрим множество

$$L_2(\mathcal{G}) := \{$$
все \mathcal{G} -измеримые случайные величины в $L_2\}$

С учетом факта ??:

Факт. Для любых $\mathcal{G} \subset L_2$, множество $L_2(\mathcal{G})$ — линейное подпространство L_2

Это дает нам подпространство для проецирования, что позволяет нам определять условные математические ожидания $oldsymbol{\Phi}$ акт. $(\ref{eq:constraint})$ Если $\mathcal{G}\subset\mathcal{H}$ и z является \mathcal{G} -измеримой, то zявляется \mathcal{H} -измеримой.

Если z известен, когда переменные в $\mathcal G$ известны, то он точно известен, когда дополнительная информация, предоставленная \mathcal{H} , доступна

Пример. Пусть x_1, x_2 и y — случайные величины и пусть

$$G := \{x_1\} \subset \{x_1, x_2\} =: \mathcal{H}$$

Если y является \mathcal{G} -измеримой, то $y = g(x_1)$ для некоторых \mathscr{B} -измеримых g. Но тогда y будет также являться \mathcal{H} -измеримой. Например, мы можем написать $y = h(x_1, x_2)$, где $h(x_1, x_2) = g(x_1) + 0x_2$.

Факт. (5.2.12) Если $\mathcal{G} \subset \mathcal{H}$, то $L_2(\mathcal{G}) \subset L_2(\mathcal{H})$

Условное математическое ожидание

Пусть $\mathcal{G}\subset L_2$ и y — некоторая случайная величина L_2

Условное математическое ожидание y при данном $\mathcal G$ записывается как $\mathbb E\left[y\,|\,\mathcal G\right]$ или $\mathbb E^{\,\mathcal G}[y]$ и определяется как

$$\mathbb{E}\left[y \mid \mathcal{G}\right] := \underset{z \in L_2(\mathcal{G})}{\operatorname{argmin}} \|y - z\| \tag{13}$$

 $\mathbb{E}\left[y\,|\,\mathcal{G}\right]$ — лучший предиктор y при данной информации, содержащейся в \mathcal{G}

• да и да

Имеется

$$\mathbb{E}\left[y\,|\,\mathcal{G}
ight] = \mathbf{P}y$$
 , когда $\mathbf{P} := \operatorname{proj} L_2(\mathcal{G})$

По теореме об ортогональной проекции, проекция существует и является единственной

Функция \hat{y} , где $\hat{y} \in L_2$, — условное математическое ожидание y при данном \mathcal{G} , если

- 1. \hat{y} является \mathcal{G} -измеримой и
- 2. $\mathbb{E}\left[\hat{y}z\right] = \mathbb{E}\left[yz\right]$ для всех \mathcal{G} -измеримых $z \in L_2$.

Для удобства мы также будем использовать такие символы, как $\mathbb{E}\left[y \mid x_1, \dots, x_D\right]$ или $\mathbb{E}\left[y \mid \mathbf{x}\right]$

ullet так же, как $\mathbb{E}[y \mid \mathcal{G}]$, когда \mathcal{G} определяется как информационное множество, содержащее переменные, на которые мы ставим условие

Пример. Если x и u независимые, $\mathbb{E} u = 0$ и y = x + u, то $\mathbb{E}\left[y\,|\,x\right]=x$. Чтобы доказать это, нам нужно показать, что xудовлетворяет условиям 1-2 выше

Ясно, что x является x-измеримой

Для 2. мы должны показать, что $\mathbb{E}\left[x\,z\right]=\mathbb{E}\left[y\,z\right]$ для всех x-измеримых z. Это означает утверждение

$$\mathbb{E}\left[xg(x)\right] = \mathbb{E}\left[(x+u)g(x)\right]$$

для любых \mathscr{B} -измеримых g, которое является верным из-за независимости и $\mathbb{E}u=0$

Факт. (??) Возьмем $\mathbf{x} \in \mathbb{R}^D$ и y в L_2 , существует \mathscr{B} -измеримая функция $f^* \colon \mathbb{R}^D \to \mathbb{R}$, такая что $\mathbb{E}\left[y \mid \mathbf{x}\right] = f^*(\mathbf{x})$

Частная функция f^* , удовлетворяющая $f^*(\mathbf{x}) = \mathbb{E}\left[y\,|\,\mathbf{x}\right]$ называется функцией регрессии y при данном \mathbf{x}

Пример. Если x и y — случайные величины и $p(y \mid x)$ —условная функция плотности y при данном x, то

$$\mathbb{E}\left[y\,|\,x\right] = \int tp(t\,|\,x)\,\mathrm{d}t$$

Докажите в качестве упражнения ?? в ЕТ

Факт. (??) Пусть x и y — случайные величины в L_2 , пусть α и β — скаляры, и пусть $\mathcal G$ и $\mathcal H$ — подмножества L_2 . Следующие свойства выполняются:

- 1. Линейность: $\mathbb{E}\left[\alpha x + \beta y \,|\, \mathcal{G}\right] = \alpha \mathbb{E}\left[x \,|\, \mathcal{G}\right] + \beta \mathbb{E}\left[y \,|\, \mathcal{G}\right]$
- 2. Если $\mathcal{G}\subset\mathcal{H}$, то $\mathbb{E}\left[\mathbb{E}\left[y\,|\,\mathcal{H}\right]\,|\,\mathcal{G}\right]\mathbb{E}\left[y\,|\,\mathcal{G}\right]$ и $\mathbb{E}\left[\mathbb{E}\left[y\,|\,\mathcal{G}\right]\right]=\mathbb{E}\left[y\right]$ (закон повторных ожиданий)
- 3. Если y іне зависима от переменных в \mathcal{G} , то $\mathbb{E}\left[y\,|\,\mathcal{G}\right]=\mathbb{E}\left[y\right].$
- 4. Если y является \mathcal{G} -измеримой, то $\mathbb{E}\left[y\,|\,\mathcal{G}\right]=y$
- 5. Если x является \mathcal{G} -измеримой, то $\mathbb{E}\left[xy\,|\,\mathcal{G}\right]=x\mathbb{E}\left[y\,|\,\mathcal{G}\right]$ (условный детерминизм)

Резюмирем: при данном $y \in L_2$ и случайном векторе ${f x}$ в ${\mathbb R}^D$, условное математическое ожидание $\mathbb{E}\left[y\,|\,\mathbf{x}\right]$ — функция f^* переменной x, называемая функцией регрессии y при данном **х**, такая что:

$$f^*(\mathbf{x}) = \operatorname*{argmin}_{g \in G} \mathbb{E}\left[(y - g(\mathbf{x}))^2 \right]$$
 (14)

где G — множество функций из \mathbb{R}^D в \mathbb{R} с $g(\mathbf{x}) \in L_2$

Для любых $g \in G$, мы также имеем

$$\mathbb{E}[(y - g(\mathbf{x}))^2] = \mathbb{E}[(y - f^*(\mathbf{x}))^2] + \mathbb{E}[(f^*(\mathbf{x}) - g(\mathbf{x}))^2] \quad (15)$$

Это подразумевает, что (14), потому что $(f^*(\mathbf{x}) - g(\mathbf{x}))^2 \ge 0$

Чтобы доказать (15), пусть f^* — функция регрессии, возьмем любой $g \in G$ и заметим, что

$$(y - g(\mathbf{x}))^2 = (y - f^*(\mathbf{x}) + f^*(\mathbf{x}) - g(\mathbf{x}))^2$$
$$= (y - f^*(\mathbf{x}))^2 + 2(y - f^*(\mathbf{x}))(f^*(\mathbf{x}) - g(\mathbf{x}))$$
$$+ (f^*(\mathbf{x}) - g(\mathbf{x}))^2$$

Рассмотрим математическое ожидание перемножения разных величин. Из закона повторных ожиданий:

$$\mathbb{E}\left\{ (y - f^*(\mathbf{x}))(f^*(\mathbf{x}) - g(\mathbf{x})) \right\}$$

$$= \mathbb{E}\left\{ \mathbb{E}\left[(y - f^*(\mathbf{x}))(f^*(\mathbf{x}) - g(\mathbf{x})) \mid \mathbf{x} \right] \right\}$$
(16)

Используем условный детерминизм, перепишем часть в фигурных скобках справа как

$$(f^*(\mathbf{x}) - g(\mathbf{x}))\mathbb{E}\left[(y - f^*(\mathbf{x})) \mid \mathbf{x}\right]$$

Для второй части данного умножения

$$\mathbb{E}\left[y - f^*(\mathbf{x}) \mid \mathbf{x}\right] = \mathbb{E}\left[y \mid \mathbf{x}\right] - \mathbb{E}\left[f^*(\mathbf{x}) \mid \mathbf{x}\right] = \mathbb{E}\left[y \mid \mathbf{x}\right] - f^*(\mathbf{x}) = 0$$

Значит математическое ожидание в (16) равно нулю — Уравнение (15) следует

Возьмем случайные матрицы X и Y

$$\mathbb{E}\left[\mathbf{Y} \,|\, \mathbf{X}\right] := \left(\begin{array}{ccc} \mathbb{E}\left[y_{11} \,|\, \mathbf{X}\right] & \cdots & \mathbb{E}\left[y_{1K} \,|\, \mathbf{X}\right] \\ \vdots & & \vdots \\ \mathbb{E}\left[y_{N1} \,|\, \mathbf{X}\right] & \cdots & \mathbb{E}\left[y_{NK} \,|\, \mathbf{X}\right] \end{array} \right)$$

Мы также определим

- 1. $\operatorname{cov}[\mathbf{x}, \mathbf{y} \mid \mathbf{Z}] := \mathbb{E}[\mathbf{x}\mathbf{y}^{\mathsf{T}} \mid \mathbf{Z}] \mathbb{E}[\mathbf{x} \mid \mathbf{Z}] \mathbb{E}[\mathbf{y} \mid \mathbf{Z}]^{\mathsf{T}}$
- 2. $\operatorname{var}[\mathbf{x} \mid \mathbf{Z}] := \mathbb{E}[\mathbf{x}\mathbf{x}^{\mathsf{T}} \mid \mathbf{Z}] \mathbb{E}[\mathbf{x} \mid \mathbf{Z}]\mathbb{E}[\mathbf{x} \mid \mathbf{Z}]^{\mathsf{T}}$

Свойства скалярных условных математических ожиданий в факте ?? переходят к случаю с матрицами

Неполный список:

Факт. (??) Если X, Y и Z — случайные матрицы и A и Bпостоянные и согласованные, то

- 1. $\mathbb{E}[\mathbf{Y} | \mathbf{Z}]^{\mathsf{T}} = \mathbb{E}[\mathbf{Y}^{\mathsf{T}} | \mathbf{Z}].$
- 2. $\mathbb{E}[\mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{Y} | \mathbf{Z}] = \mathbf{A}\mathbb{E}[\mathbf{X} | \mathbf{Z}] + \mathbf{B}\mathbb{E}[\mathbf{Y} | \mathbf{Z}].$
- 3. $\mathbb{E}\left[\mathbb{E}\left[Y\mid X\right]\right] = \mathbb{E}\left[Y\right]$ u $\mathbb{E}\left[\mathbb{E}\left[Y\mid X,Z\right]\mid X\right] = \mathbb{E}\left[Y\mid X\right]$.
- 4. Если X и Y независимые, то $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.
- 5. Если $g(\mathbf{X})$ матрица, зависимая только от \mathbf{X} , то
 - 5.1 $\mathbb{E}[g(\mathbf{X}) | \mathbf{X}] = g(\mathbf{X})$
 - 5.2 $\mathbb{E}[g(\mathbf{X})\mathbf{Y}|\mathbf{X}] = g(\mathbf{X})\mathbb{E}[\mathbf{Y}|\mathbf{X}]$ и $\mathbb{E}\left[\mathbf{Y}\,g(\mathbf{X})\,|\,\mathbf{X}\right] = \mathbb{E}\left[\mathbf{Y}\,|\,\mathbf{X}\right]g(\mathbf{X})$