State	ABO States $ L\Lambda S\Sigma \sigma\rangle$	ABO Type	Potential Matrix	Eigenvalues
$\Omega_{g/u}^{\pm}$		$^{2s+1}\Lambda_{g/u}^{(\pm)}$		
0_g^-	$\frac{1}{\sqrt{2}}(111, -1g\rangle + 1, -111g\rangle)$ $ 1010g\rangle$	$^{3}\Pi_{g}$ $^{3}\Sigma_{g}^{-}$	$\begin{bmatrix} \frac{C_3}{R^3} - \frac{2\Delta}{3} & \frac{\sqrt{2}\Delta}{3} \\ \frac{\sqrt{2}\Delta}{3} & -\frac{2C_3}{R^3} - \frac{\Delta}{3} \end{bmatrix}$	$-\frac{\Delta}{2} - \frac{C_3}{2R^3} \pm \frac{\sqrt{9C_3^2 - 2C_3\Delta R^3 + \Delta^2 R^6}}{2R^3}$
0_g^+	$\frac{1}{\sqrt{2}}(111, -1g\rangle - 1, -111g\rangle)$ $ 1000g\rangle$	$^3\Pi_g$ $^1\Sigma_g^+$	$\begin{bmatrix} \frac{C_3}{R^3} - \frac{2\Delta}{3} & \frac{\sqrt{2}\Delta}{3} \\ \frac{\sqrt{2}\Delta}{3} & \frac{2C_3}{R^3} - \frac{\Delta}{3} \end{bmatrix}$	$-\frac{\Delta}{2} + \frac{3C_3}{2R^3} \pm \frac{\sqrt{9C_3^2 + 6C_3\Delta R^3 + 9\Delta^2 R^6}}{6R^3}$
0_u	$\frac{1}{\sqrt{2}}(111, -1u\rangle - 1, -111u\rangle)$ $ 1000u\rangle$	$^{3}\Pi_{u}$ $^{1}\Sigma_{u}^{-}$	$\begin{bmatrix} -\frac{C_3}{R^3} - \frac{2\Delta}{3} & -\frac{\sqrt{2}\Delta}{3} \\ -\frac{\sqrt{2}\Delta}{3} & -\frac{2C_3}{R^3} - \frac{\Delta}{3} \end{bmatrix}$	$-\frac{\Delta}{2} - \frac{3C_3}{2R^3} \pm \frac{\sqrt{9C_3^2 - 6C_3\Delta R^3 + 9\Delta^2 R^6}}{6R^3}$
0,+	$\frac{1}{\sqrt{2}}(111,-1u\rangle+ 1,-111u\rangle)$ $ 1010u\rangle$	$^{3}\Pi_{u}$ $^{3}\Sigma_{u}^{+}$	$\Gamma C_2 = 2\Delta \sqrt{2\Delta}$	$-\frac{\Delta}{2} + \frac{C_3}{2R^3} \pm \frac{\sqrt{9C_3^2 + 2C_3\Delta R^3 + \Delta^2 R^6}}{2R^3}$
1_g	$ 1110g angle \ 1100g angle \ 1011g angle$	$^{3}\Pi_{g}$ $^{1}\Pi_{g}$ $^{3}\Sigma_{g}^{+}$	$\begin{bmatrix} \frac{C_3}{R^3} - \frac{\Delta}{3} & -\frac{\Delta}{3} & \frac{\Delta}{3} \\ -\frac{\Delta}{3} & -\frac{C_3}{R^3} - \frac{\Delta}{3} & \frac{\Delta}{3} \\ \frac{\Delta}{3} & \frac{\Delta}{3} & -\frac{2C_3}{R^3} - \frac{\Delta}{3} \end{bmatrix}$	Analytical solutions exist but are too horrific to be useful.
1_u	1110u⟩ 1100u⟩ 1011u⟩	$^{3}\Pi_{u}$ $^{1}\Pi_{u}$ $^{3}\Sigma_{u}^{-}$	$\begin{bmatrix} -\frac{1}{R^3} - \frac{1}{3} & -\frac{1}{3} \\ -\frac{\sqrt{2}\Delta}{3} & \frac{2C_3}{R^3} - \frac{\Delta}{3} \end{bmatrix}$ $\begin{bmatrix} \frac{C_3}{R^3} - \frac{\Delta}{3} & -\frac{\Delta}{3} & \frac{\Delta}{3} \\ -\frac{\Delta}{3} & -\frac{C_3}{R^3} - \frac{\Delta}{3} & \frac{\Delta}{3} \\ \frac{\Delta}{3} & \frac{\Delta}{3} & -\frac{2C_3}{R^3} - \frac{\Delta}{3} \end{bmatrix}$ $\begin{bmatrix} -\frac{C_3}{R^3} - \frac{\Delta}{3} & -\frac{\Delta}{3} & \frac{\Delta}{3} \\ -\frac{\Delta}{3} & \frac{C_3}{R^3} - \frac{\Delta}{3} & \frac{\Delta}{3} \\ \frac{\Delta}{3} & \frac{\Delta}{3} & \frac{2C_3}{R^3} - \frac{\Delta}{3} \end{bmatrix}$ $\frac{C_3}{R^3}$ $-\frac{C_3}{R^3}$ $-\frac{C_3}{R^3}$	Analytical solutions exist but are too horrific to be useful.
2_g	1111 <i>g</i> ⟩	$^3\Pi_g$	$\frac{C_3}{R^3}$	$ \frac{C_3}{R^3} \\ -\frac{C_3}{R^3} $
2_u	1111 <i>u</i> ⟩	$^{3}\Pi_{u}$	$-\frac{C_3}{R^3}$	$-\frac{C_3}{R^3}$