Power Supply Homework 2: The Zemer Diode

Daniel Halmrast

October 6, 2016

Using The parameters V_{out} , i_{load} , $\langle P_z \rangle$, I_{zmin} , V_p , f, solve for the parameters R, C, ΔV in the following circuit.

Firstly, we concern ourselves with the ripple voltage. We know from earlier analysis that the ripple voltage is given as

$$\Delta V = V_p \frac{1}{CR_{eq}f}$$

It is clear from analysis of the right side that the Thevevin equivalent resistance is just R. Thus, we have

$$\Delta V = V_p \frac{1}{CRf} \tag{1}$$

Next, we will analyze the average power requirement. It can be approximated that the average power through the Zemer diode is

$$\langle P_z \rangle = \overline{IV}$$

Thus,

$$\overline{I} = \frac{\langle P_z \rangle}{V_{out}}$$

$$i_{zmax} - \frac{\Delta i_z}{2} = \frac{\langle P_z \rangle}{V_{out}}$$

Since $i_z = i_R - i_l$, and $i_R = \frac{v_r}{R}$, it follows that

$$\begin{split} \frac{V_p - V_{out}}{R} - i_l - \frac{\Delta i_z}{2} &= \frac{\langle P_z \rangle}{V_{out}} \\ \frac{V_p - V_{out}}{R} - i_l - \frac{\Delta V}{2R} &= \frac{\langle P_z \rangle}{V_{out}} \\ V_p - V_{out} - i_l R - \frac{\Delta V}{2} &= \frac{\langle P_z \rangle}{V_{out}} R \end{split}$$

Thus,

$$V_p - V_{out} - \frac{\Delta V}{2} = \left(\frac{\langle P_z \rangle}{V_{out}} - i_l\right) R$$
 (2)

Finally, we will analyze the minimum current requirement. Following a similar process to equation (2),

$$i_{zmin} = i_{zmax} - \Delta i$$

$$= i_{Rmax} - i_l - \Delta i$$

$$= \frac{V_p - V_{out}}{R} - i_l - \frac{\Delta V}{R}$$

$$i_{zmin}R = V_p - V_{out} - i_l R - \Delta V$$

This leads to the final relation

$$V_p - V_{out} - \Delta V = (i_{zmin} + i_l)R$$
(3)