BEST AVAILABLE COPY PCT/JP2004/008091

\Box JAPAN PATENT OFFICE

03.06.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月20日

REC'D 2 2 JUL 2004

WIPO

出 番 号 Application Number:

特願2003-175825

[ST. 10/C]:

[JP2003-175825]

出 願 Applicant(s):

鐘淵化学工業株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> 2004年 7月

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

OSK-5119

【あて先】

特許庁長官殿

【国際特許分類】

C08L 33/08

CO8L 33/10

【発明者】

【住所又は居所】 大阪府摂津市鳥飼西5-1-1 鐘淵化学工業株式会社

大阪工場内

【氏名】

長谷川 伸洋

【発明者】

【住所又は居所】

大阪府摂津市鳥飼西5-1-1 鐘淵化学工業株式会社

大阪工場内

【氏名】

中川 佳樹

【特許出願人】

【識別番号】

000000941

【氏名又は名称】 鐘淵化学工業株式会社

【代表者】

武田 正利

【手数料の表示】

【予納台帳番号】 005027

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 硬化性組成物

【特許請求の範囲】

【請求項1】 以下の2成分:

架橋性シリル基を平均して少なくとも一個有するビニル系重合体(I)、及び、分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物(I I)を含有することを特徴とする硬化性組成物。

【請求項2】 分子量分布が1.8未満であるビニル系重合体を含有することを特徴とする請求項1に記載の硬化性組成物。

【請求項3】 架橋性シリル基が一般式(1)で表されることを特徴とする請求項1または2に記載の硬化性組成物。

 $-[Si(R^1)_{2-b}(Y)_{b}O]_{m}-Si(R^2)_{3-a}(Y)_{a}(1)$ (式中、 R^1 および R^2 は、同一若しくは異なって、炭素数 $1\sim 2$ 0のアルキル基、炭素数 $6\sim 2$ 0のアリール基、炭素数 $7\sim 2$ 0のアラルキル基、または(R') 3SiO一で表されるトリオルガノシロキシ基を示す(式中、R'は炭素数 $1\sim 2$ 0の 1 価の炭化水素基を示す。複数のR'は同一であってもよく又は異なっていてもよい)。 R^1 または R^2 がそれぞれ 2 個以上存在するとき、それらは同一であってもよく、異なっていてもよい。 Yは水酸基または加水分解性基を示す。 Yが 2 個以上存在するとき、それらは同一であってもよく、異なっていてもよい。 aは 1、2または 3を示す。 bは 0、1、1、または 20 を示す。 a1 の整数を示す。ただし、a2 + a2 にあることを満足する。)

【請求項4】 主鎖が、(メタ) アクリル系モノマー、アクリロニトリル系モノマー、芳香族ビニル系モノマー、フッ素含有ビニル系モノマー及びケイ素含有ビニル系モノマーからなる群から選ばれるモノマーを主として重合して製造されるものであるビニル系重合体を含有することを特徴とする請求項1~3のうち何れか1項に記載の硬化性組成物。

【請求項5】 主鎖が、(メタ)アクリル系重合体であるビニル系重合体を含有することを特徴とする請求項4に記載の硬化性組成物。

【請求項6】 主鎖が、アクリル系重合体であるビニル系重合体を含有すること

を特徴とする請求項5に記載の硬化性組成物。

【請求項7】 主鎖が、アクリル酸エステル系重合体であるビニル系重合体を含 有することを特徴とする請求項6に記載の硬化性組成物。

【請求項8】 ビニル系重合体の主鎖がリビングラジカル重合法により製造され たものであることを特徴とする請求項1~7のうち何れか1項に記載の硬化性組 成物。

【請求項9】 ビニル系重合体の主鎖が原子移動ラジカル重合法により製造され たものであることを特徴とする請求項8記載の硬化性組成物。

【請求項10】 触媒とする金属錯体が銅、ニッケル、ルテニウム、又は鉄の錯 体からなる群より選ばれる錯体であるビニル系重合体を含有することを特徴とす る請求項1~9のうち何れか1項に記載の硬化性組成物。

【請求項11】 ビニル系重合体の架橋性シリル基が分子鎖末端にあることを特 徴とする請求項1~10のうち何れか1項に記載の硬化性組成物。

【請求項12】 更に、架橋性官能基を平均して少なくとも1個有するポリエー テル系重合体を含有することを特徴とする請求項1~11のうち何れか1項に記 載の硬化性組成物。

【請求項13】 ポリエーテル系重合体の主鎖が、本質的にポリオキシアルキレ ンであることを特徴とする請求項12に記載の硬化性組成物。

【請求項14】 ポリエーテル系重合体の主鎖が、本質的にポリプロピレンオキ シドであることを特徴とする請求項13に記載の硬化性組成物。

【請求項15】 以下の2成分:

架橋性シリル基を平均して少なくとも一個有するビニル系重合体(I)、及び、 ポリオール (III)

を含有することを特徴とする硬化性組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は硬化性組成物に関する。さらに詳しくは、以下の2成分:架橋性シリ ル基を平均して少なくとも 1 個有するビニル系重合体(I)、及び、分子中に lpha

, βジオール構造又はα, γジオール構造を有する化合物(ΙΙ)を含有する硬 化性組成物に関する。

[0002]

【従来の技術】

末端に架橋性シリル基を有する硬化型液状重合体としては、ポリシロキサン系 、ポリオキシプロピレン系、ポリイソブチレン系が知られている。しかし、これ らを用いた硬化性組成物はそれぞれ問題点を有している。ポリシロキサン系は耐 候性、耐熱性、耐寒性、可撓性等に優れるものの低分子成分のブリードによる周 辺部の汚染や塗料がはじくため塗装性に問題がある。ポリオキシプロピレン系は 可撓性や塗装性、耐汚染性に優れるが耐候性は必ずしも十分でなく特にガラス周 辺の用途に用いることが難しい場合が多い。ポリイソブチレン系は耐候性、耐透 湿性に優れるものの、比較的粘度が高くまた1液型が難しいという問題がある。 そこで耐候性や耐熱性に優れかつ1液型が可能な硬化型液状重合体として、架橋 性シリル基を平均して少なくとも1個有するビニル系重合体を本発明者らは発明 したが、該重合体は、主鎖に比較して側鎖が大きいものが多く、それを硬化させ た時に低モジュラス高伸びの硬化物を得られ難い傾向にあった。また、この硬化 性組成物は貯蔵中に硬化速度が低下してくることもあった。

[0003]

一方、反応性ケイ素基含有オキシアルキレン系重合体、及び、分子中にlpha, etaジオール構造又は α, γジオール構造を有する化合物を用いて、タック、復元性 、硬化性、耐候性、保存安定性等を低下させることなく、低応力かつ高伸びであ るゴム物性が良好な硬化性組成物を得られることが開示されているが、この硬化 性組成物はオキシアルキレン系重合体を使用しているために過酷な耐熱・耐候条 件には耐えられず、より耐熱性・耐候性に優れ、かつ低応力で高伸びであるゴム 物性が良好な硬化性組成物が望まれていた。

[0004]

【特許文献1】

特開平11-080533公報

[0005]

本発明は耐候性や耐熱性に優れ、かつ低応力で高伸びであるゴム物性が良好な 硬化性組成物の提供を目的とする。

[0006]

【課題を解決するための手段】

すなわち、本発明は、上述の現状に鑑み、鋭意検討した結果、以下の2成分: 架橋性シリル基を平均して少なくとも1個有するビニル系重合体(I)、及び、分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物(II)を含有する硬化性組成物を用いることにより上記課題を改善できることを見出し、本発明に到達した。

[0007]

【発明の実施の形態】

以下に本発明の硬化性組成物について詳述する。

《ビニル系重合体(I)について》

<主鎖>

本発明者らは、これまでに様々な架橋性官能基を重合体末端に有するビニル系重合体、その製造法、硬化性組成物、及び用途に関して数々の発明を行ってきた(特開平11-080249、特開平11-080250、特開平11-005815、特開平11-116617、特開平11-116606、特開平11-080571、特開平11-080570、特開平11-130931、特開平11-100433、特開平11-116763、特開平9-272714号、特開平9-272715号等を参照)。本発明のビニル系重合体(I)としては特に限定されないが、上に例示した発明で開示される重合体をすべて好適に用いることができる。

[0008]

本発明のビニル系重合体の主鎖を構成するビニル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、

(メタ) アクリル酸、(メタ) アクリル酸メチル、(メタ) アクリル酸エチル、(メタ) アクリル酸ーnープロピル、(メタ) アクリル酸イソプロピル、(メタ)

) アクリル酸-n-ブチル、(メタ) アクリル酸イソブチル、(メタ) アクリル · 酸ーtertーブチル、(メタ)アクリル酸-n-ペンチル、(メタ)アクリル 酸ーnーヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ー n-ヘプチル、 (メタ) アクリル酸-n-オクチル、 (メタ) アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、 (メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸 フェニル、(メタ)アクリル酸トリル、(メタ)アクリル酸ベンジル、(メタ) アクリル酸-2-メトキシエチル、(メタ) アクリル酸-3-メトキシブチル、 (メタ) アクリル酸-2-ヒドロキシエチル、(メタ) アクリル酸-2-ヒドロ キシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル 、(メタ)アクリル酸 2 ーアミノエチル、γ ー(メタクリロイルオキシプロピル) トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メ タ) アクリル酸トリフルオロメチルメチル、(メタ) アクリル酸2ートリフルオ ロメチルエチル、(メタ) アクリル酸パーフルオロエチルメチル、(メタ) アク リル酸2-パーフルオロエチルエチル、(メタ)アクリル酸パーフルオロエチル パーフルオロブチルメチル、(メタ)アクリル酸2ーパーフルオロエチルー2-パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ) アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチ ル、(メタ)アクリル酸2,2ージパーフルオロメチルエチル、(メタ)アクリ ル酸パーフルオロメチルパーフルオロエチルメチル、(メタ)アクリル酸2ーパ ーフルオロメチルー2ーパーフルオロエチルエチル、(メタ)アグリル酸2ーパ ーフルオロヘキシルメチル、(メタ)アクリル酸 2 ーパーフルオロヘキシルエチ ル、(メタ)アクリル酸2ーパーフルオロデシルメチル、(メタ)アクリル酸2 ーパーフルオロデシルエチル、 (メタ) アクリル酸 2 ーパーフルオロヘキサデシ ルメチル、(メタ) アクリル酸 2 ーパーフルオロヘキサデシルエチル等の (メタ **)アクリル系モノマー;スチレン、ビニルトルエン、αーメチルスチレン、クロ** ルスチレン、スチレンスルホン酸及びその塩等の芳香族ビニル系モノマー;パー フルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有 ビニル系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等の

ケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のアクリロニトリル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは、単独で用いても良いし、複数を共重合させても構わない。

[0009]

ビニル系重合体の主鎖が、(メタ)アクリル系モノマー、アクリロニトリル系モノマー、芳香族ビニル系モノマー、フッ素含有ビニル系モノマー及びケイ素含有ビニル系モノマーからなる群より選ばれる少なくとも1つのモノマーを主として重合して製造されるものであることが好ましい。ここで「主として」とは、ビニル系重合体を構成するモノマー単位のうち30モル%以上、好ましくは50モル%以上が、上記モノマーであることを意味する。

[0010]

なかでも、生成物の物性等から、スチレン系モノマー及び (メタ) アクリル酸系モノマーが好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーであり、特に好ましくはアクリル酸エステルモノマーである。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした生産合体は耐油性に優れるが低温特性 (耐寒性) にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル

酸プチルに置き換えることも可能である。ただし、アクリル酸プチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途によってはその比率を80%以下にするのが好ましく、60%以下にするのがより好ましく、40%以下にするのが更に好ましく、30%以下にするのがもっと好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2ーメトキシエチルやアクリル酸2ーエトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は60%以下にするのが好ましく、40%以下にするのが更に好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸プチル/アクリル酸2ーメトキシエチル(重量比で40~50/20~30/30~20)の共重合体が挙げられる。

[0011]

他のポリマー、例えば、変成シリコーン樹脂(架橋性シリル基を有するオキシアルキレン重合体)との相溶性を向上させるためにステアリル基やラウリル基等の長鎖のアルキル基を持ったモノマー等を共重合させても良い。特に限定はされないが、例えば、アクリル酸ステアリルやアクリル酸ラウリルを10~20%共重合することで変成シリコーン樹脂との相溶性が非常に良好になる。それぞれのポリマーの分子量によって相溶性が変わるため、この共重合させるモノマーの比率はそれに応じて選択することが好ましい。また、その際には、ブロック共重合させても構わない。少量で効果を発現する場合がある。

[0012]

官能性シリル基を持ったビニル系重合体を含む硬化性組成物は、貯蔵によりその硬化性が遅くなることが、つまり貯蔵安定性が悪くなることがある。例えば、アクリル酸メチルを共重合することにより、そのような減少を抑制することが可能になる場合がある。また硬化物の強度を向上させたい場合に用いても構わない

。この場合にも、共重合させるモノマーの比率は分子量に応じて選択しても、並 びに/又はブロック共重合させても構わない。

[0013]

本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更に はブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重 量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば (メ タ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。

[0014]

本発明のビニル系重合体の分子量分布、すなわち、ゲルパーミエーションクロ マトグラフィーで測定した重量平均分子量(Mw)と数平均分子量(Mn)との 比(Mw/Mn)は、特に限定されない。なお、分子量分布が1.8未満、特に 1. 3以下が作業性の点から好ましい。本発明でのGPC測定においては、通常 、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにておこな い、数平均分子量等はポリスチレン換算で求めることができる。

[0015]

本発明におけるビニル系重合体の数平均分子量は特に制限はない。なお、ゲル パーミエーションクロマトグラフィーで測定した場合、500~1,000,0 00、特に5,000~50,000が作業性、物性上の点から好ましい。

<主鎖の合成法>

本発明における、ビニル系重合体の合成法は、限定はされず、フリーラジカル 重合でも構わないが、制御ラジカル重合が好ましく、リビングラジカル重合がよ り好ましく、原子移動ラジカル重合が特に好ましい。以下にこれらについて説明 する。

制御ラジカル重合

ラジカル重合法は、重合開始剤としてアゾ系化合物、過酸化物などを用いて、 特定の官能基を有するモノマーとビニル系モノマーとを単に共重合させる「一般 的なラジカル重合法」と、末端などの制御された位置に特定の官能基を導入する ことが可能な「制御ラジカル重合法」に分類できる。

[0016]

9/

「一般的なラジカル重合法」は簡便な方法であるが、この方法では特定の官能基を有するモノマーは確率的にしか重合体中に導入されないので、官能化率の高い重合体を得ようとした場合には、このモノマーをかなり大量に使う必要があり、逆に少量使用ではこの特定の官能基が導入されない重合体の割合が大きくなるという問題点がある。またフリーラジカル重合であるため、分子量分布が広く粘度の高い重合体しか得られないという問題点もある。

[0017]

「制御ラジカル重合法」は、更に、特定の官能基を有する連鎖移動剤を用いて 重合をおこなうことにより末端に官能基を有するビニル系重合体が得られる「連 鎖移動剤法」と、重合生長末端が停止反応などを起こさずに生長することにより ほぼ設計どおりの分子量の重合体が得られる「リビングラジカル重合法」とに分 類することができる。

[0018]

「連鎖移動剤法」は、官能化率の高い重合体を得ることが可能であるが、開始剤に対してかなり大量の特定の官能基を有する連鎖移動剤が必要であり、処理も含めて経済面で問題がある。また上記の「一般的なラジカル重合法」と同様、フリーラジカル重合であるため分子量分布が広く、粘度の高い重合体しか得られないという問題点もある。

[0019]

これらの重合法とは異なり、「リビングラジカル重合法」は、重合速度が高く、ラジカル同士のカップリングなどによる停止反応が起こりやすいため制御の難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い($Mw/Mnが1.1\sim1.5程度$)重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量は自由にコントロールすることができる。

[0020]

従って「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体 を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の 位置に導入することができるため、上記特定の官能基を有するビニル系重合体の 製造方法としてはより好ましいものである。

[0021]

なお、リビング重合とは狭義においては、末端が常に活性を持ち続けて分子鎖が生長していく重合のことをいうが、一般には、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。本発明における定義も後者である。

[0022]

「リビングラジカル重合法」は近年様々なグループで積極的に研究がなされている。その例としては、たとえばジャーナル・オブ・アメリカン・ケミカルソサエティー(J. Am. Chem. Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュールズ(Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物などのラジカル捕捉剤を用いるもの、有機ハロゲン化物等を開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」(Atom Transfer Radical Polymerization:ATRP)などがあげられる。

[0023]

「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するビニル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えばMatyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J. Am. Chem. Soc.)1995年、117巻、5614頁、マクロモレキュールズ(Macromolecules)1995年、28巻、7901頁,サイエンス(Science)1996年、272巻、866頁、WO96/30421号公報、WO97/18247号公報、WO98/01480号公報、WO98/40415号公報、あるいはSawamotoら、マクロモレキュールズ(Macromolecules)1995年、28巻、1

721頁、特開平9-208616号公報、特開平8-41117号公報などが 挙げられる。

[0024]

本発明において、これらのリビングラジカル重合のうちどの方法を使用するかは特に制約はないが、原子移動ラジカル重合法が好ましい。

[0025]

以下にリビングラジカル重合について詳細に説明していくが、その前に、後に説明するビニル系重合体の製造に用いることができる制御ラジカル重合のうちの一つ、連鎖移動剤を用いた重合について説明する。連鎖移動剤(テロマー)を用いたラジカル重合としては、特に限定されないが、本発明に適した末端構造を有したビニル系重合体を得る方法としては、次の2つの方法が例示される。

[0026]

特開平4-132706号公報に示されているようなハロゲン化炭化水素を連鎖移動剤として用いてハロゲン末端の重合体を得る方法と、特開昭61-271306号公報、特許2594402号公報、特開昭54-47782号公報に示されているような水酸基含有メルカプタンあるいは水酸基含有ポリスルフィド等を連鎖移動剤として用いて水酸基末端の重合体を得る方法である。

[0027]

以下に、リビングラジカル重合について説明する。

[0028]

-1-ピペリジニルオキシラジカル、2, 2, 6, 6-テトラメチル-4-オキソー1-ピペリジニルオキシラジカル、2, 2, 5, 5-テトラメチル-1-ピロリジニルオキシラジカル、1, 1, 3, 3-テトラメチル-2-イソインドリニルオキシラジカル、N, N-ジーt-プチルアミンオキシラジカル等が挙げられる。ニトロキシフリーラジカルの代わりに、ガルビノキシル(g a 1 v i n o x y 1) フリーラジカル等の安定なフリーラジカルを用いても構わない。

[0029]

上記ラジカルキャッピング剤はラジカル発生剤と併用される。ラジカルキャッピング剤とラジカル発生剤との反応生成物が重合開始剤となって付加重合性モノマーの重合が進行すると考えられる。両者の併用割合は特に限定されるものではないが、ラジカルキャッピング剤1モルに対し、ラジカル開始剤0.1~10モルが適当である。

[0030]

ラジカル発生剤としては、種々の化合物を使用することができるが、重合温度 条件下で、ラジカルを発生しうるパーオキシドが好ましい。このパーオキシドと しては、限定はされないが、ベンゾイルパーオキシド、ラウロイルパーオキシド 等のジアシルパーオキシド類、ジクミルパーオキシド、ジーtーブチルパーオキ シド等のジアルキルパーオキシド類、ジイソプロピルパーオキシジカーボネート 、ビス(4ーtーブチルシクロヘキシル)パーオキシジカーボネート等のパーオ キシカーボネート類、tーブチルパーオキシオクトエート、tーブチルパーオキ シベンゾエート等のアルキルパーエステル類等がある。特にベンゾイルパーオキ シドが好ましい。さらに、パーオキシドの代わりにアゾビスイソブチロニトリル のようなラジカル発生性アゾ化合物等のラジカル発生剤も使用しうる。

[0031]

Macromolecules 1995, 28, P. 2993で報告されているように、ラジカルキャッピング剤とラジカル発生剤を併用する代わりに、下図のようなアルコキシアミン化合物を開始剤として用いても構わない。

[0032]

【化1】

アルコキシアミン化合物を開始剤として用いる場合、それが上図で示されているような水酸基等の官能基を有するものを用いると、末端に官能基を有する重合体が得られる。これを本発明の方法に利用すると、末端に官能基を有する重合体が得られる。

[0033]

上記のニトロキシド化合物などのラジカル捕捉剤を用いる重合で用いられるモノマー、溶媒、重合温度等の重合条件は、限定されないが、次に説明する原子移動ラジカル重合について用いるものと同様で構わない。

原子移動ラジカル重合

次に、本発明のリビングラジカル重合としてより好ましい原子移動ラジカル重 合法について説明する。

[0034]

この原子移動ラジカル重合では、有機ハロゲン化物、特に反応性の高い炭素ーハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物等が開始剤として用いられる。

具体的に例示するならば、

 $C_6H_5-CH_2X$ 、 C_6H_5-C (H)(X) CH_3 、 C_6H_5-C (X)(CH_3)2(ただし、上の化学式中、 C_6H_5 はフェニル基、Xは塩素、臭素、またはヨウ素)

 R^3-C (H) (X) $-CO_2R^4$, R^3-C (CH₃) (X) $-CO_2R^4$, R^3-C (H) (X) -C (O) R^4 , R^3-C (CH₃) (X) -C (O) R^4 ,

(式中、 R^3 、 R^4 は水素原子または炭素数 $1\sim 20$ のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)

 $R^3 - C_6H_4 - SO_2X$

(式中、 R^3 は水素原子または炭素数 $1\sim 20$ のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)等が挙げられる。

[0035]

原子移動ラジカル重合の開始剤として、重合を開始する官能基以外の官能基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物を用いることもできる。このような場合、一方の主鎖末端に官能基を、他方の主鎖末端に原子移動ラジカル重合の生長末端構造を有するビニル系重合体が製造される。このような官能基としては、アルケニル基、架橋性シリル基、ヒドロキシル基、エポキシ基、アミノ基、アミド基等が挙げられる。

[0036]

アルケニル基を有する有機ハロゲン化物としては限定されず、例えば、一般式(2)に示す構造を有するものが例示される。

 $R^{6}R^{7}C(X) - R^{8} - R^{9} - C(R^{5}) = CH_{2}(2)$

(式中、 R^5 は水素、またはメチル基、 R^6 、 R^7 は水素、または、炭素数 $1\sim 2$

0の1価のアルキル基、アリール基、またはアラルキル基、または他端において相互に連結したもの、 R^8 は、-C (O) O- (エステル基)、-C (O) - (ケト基)、または o^- , m^- , p^- フェニレン基、 R^9 は直接結合、または炭素数 $1\sim20$ の2価の有機基で1個以上のエーテル結合を含んでいても良い、Xは塩素、臭素、またはヨウ素)

置換基 R^6 、 R^7 の具体例としては、水素、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。 R^6 と R^7 は他端において連結して環状骨格を形成していてもよい。

[0037]

一般式(2)で示される、アルケニル基を有する有機ハロゲン化物の具体例と しては、

[0038]

【化2】

(上記の各式において、Xは塩素、臭素、またはヨウ素、nは $0\sim2$ 0の整数) XCH₂C (O) O (CH₂) $_n$ O (CH₂) $_m$ CH=CH₂、 $_{13}$ CC (H) (X) C (O) O (CH₂) $_n$ O (CH₂) $_m$ CH=CH₂、 (H₃C) $_{2}$ C (X) C (O) O (CH₂) $_n$ O (CH₂) $_m$ CH=CH₂、CH₃CH₂C (H) (X) C (O) O (CH₂) $_n$ O (CH₂) $_m$ CH=CH₂、

[0039]

【化3】

(上記の各式において、Xは塩素、臭素、またはヨウ素、nは $1 \sim 20$ の整数、mは $0 \sim 20$ の整数)

o, m, $p-XCH_2-C_6H_4-(CH_2)_n-CH=CH_2$, o, m, $p-CH_3$

C (H) (X) $-C_6H_4-$ (CH₂) $_n-CH=CH_2$, o, m, $p-CH_3CH_2$

C (H) (X) $-C_6H_4-(CH_2)_n-CH=CH_2$

(上記の各式において、Xは塩素、臭素、またはヨウ素、 n は 0 ~ 2 0 の整数)

o, m, $p-XCH_2-C_6H_4-(CH_2)_n-O-(CH_2)_m-CH=CH_2$, o, m, $p-CH_3C$ (H) (X) $-C_6H_4-(CH_2)_n-O-(CH_2)_m-CH$

= $C H_2$, o, m, p - $C H_3 C H_2 C$ (H) (X) - $C_6 H_4$ - ($C H_2$) n-O- ($C H_2$) m $C H = C H_2$,

(上記の各式において、Xは塩素、臭素、またはヨウ素、nは $1\sim20$ の整数、mは $0\sim20$ の整数)

o, m, $p-XCH_2-C_6H_4-O-(CH_2)_n-CH=CH_2$, o, m, $p-CH_3C(H)(X)-C_6H_4-O-(CH_2)_n-CH=CH_2$, o, m, $p-CH_3CH_2C(H)(X)-C_6H_4-O-(CH_2)_n-CH=CH_2$,

(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0~20の整数)

o, m, $p-XCH_2-C_6H_4-O-(CH_2)_{n}-O-(CH_2)_{m}-CH=CH_2$

, o, m, $p-CH_3C$ (H) (X) $-C_6H_4-O-$ (CH₂) n-O- (CH₂)

 $_{m}$ -CH=CH₂, o, m, p-CH₃CH₂C (H) (X) -C₆H₄-O- (CH₂) $_{n}$ -O- (CH₂) $_{m}$ -CH=CH₂.

(上記の各式において、Xは塩素、臭素、またはヨウ素、nは $1\sim20$ の整数、mは $0\sim20$ の整数)

アルケニル基を有する有機ハロゲン化物としてはさらに一般式 (3) で示され

る化合物が挙げられる。

 $H_2C = C (R^5) - R^9 - C (R^6) (X) - R^{10} - R^7 (3)$

(式中、 R^5 、 R^6 、 R^7 、 R^9 、Xは上記に同じ、 R^{10} は、直接結合、-C (O) O - (エステル基)、-C (O) - (ケト基)、または、o-, m-, p-フェニレン基を表す)

 R^9 は直接結合、または炭素数 $1\sim 2002$ 価の有機基(1 個以上のエーテル結合を含んでいても良い)であるが、直接結合である場合は、ハロゲンの結合している炭素にビニル基が結合しており、ハロゲン化アリル化物である。この場合は、隣接ビニル基によって炭素-ハロゲン結合が活性化されているので、 R^{10} としてC(O)O基やフェニレン基等を有する必要は必ずしもなく、直接結合であってもよい。 R^9 が直接結合でない場合は、炭素-ハロゲン結合を活性化するために、 R^{10} としてはC(O)O基、C(O)基、フェニレン基が好ましい。

[0040]

一般式(3)の化合物を具体的に例示するならば、

 $\begin{array}{l} {\rm C\,H_2=C\,H\,C\,H_2X},\ {\rm C\,H_2=C}\ ({\rm C\,H_3})\ {\rm C\,H_2X},\ {\rm C\,H_2=C\,H\,C}\ ({\rm H})\ ({\rm X}) \\ {\rm C\,H_3},\ {\rm C\,H_2=C\,H\,C}\ ({\rm C\,H_3})\ {\rm C}\ ({\rm H})\ ({\rm X})\ {\rm C\,H_3},\ {\rm C\,H_2=C\,H\,C}\ ({\rm X})\ ({\rm C\,H_3}) \\ {\rm 2},\ {\rm C\,H_2=C\,H\,C}\ ({\rm H})\ ({\rm X})\ {\rm C\,2\,H_5},\ {\rm C\,H_2=C\,H\,C}\ ({\rm H})\ ({\rm X})\ {\rm C\,H}\ ({\rm C\,H_3}) \\ {\rm 2},\ {\rm C\,H_2=C\,H\,C}\ ({\rm H})\ ({\rm X})\ {\rm C\,6\,H_5},\ {\rm C\,H_2=C\,H\,C\,H\,H}\ ({\rm X})\ {\rm C\,H_2} \\ {\rm C\,6\,H_5},\ {\rm C\,H_2=C\,H\,C\,H_2C}\ ({\rm H})\ ({\rm X})\ -{\rm C\,O_2\,R},\ {\rm C\,H_2=C\,H}\ ({\rm C\,H_2})\ {\rm 2\,C} \\ {\rm (H)\ ({\rm X})\ -{\rm C\,O_2\,R}},\ {\rm C\,H_2=C\,H\,C\,H_2C}\ ({\rm H})\ ({\rm X})\ -{\rm C\,O_2\,R},\ {\rm C\,H_2=C\,H_2C}\ ({\rm H})\ ({\rm X})\ -{\rm C\,O_2\,R},\ {\rm$

(上記の各式において、Xは塩素、臭素、またはヨウ素、Rは炭素数1~20のアルキル基、アリール基、アラルキル基)

等を挙げることができる。

[0041]

アルケニル基を有するハロゲン化スルホニル化合物の具体例を挙げるならば、o-, m-, p- $\mathrm{CH_2}$ = $\mathrm{CH-(CH_2)}_{n}$ - $\mathrm{C_6H_4}$ - $\mathrm{SO_2X}$ 、o-, m-, p

 $-CH_2=CH-(CH_2)_{n}-O-C_6H_4-SO_2X$

(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0~20の整数) 等である。

[0042]

上記架橋性シリル基を有する有機ハロゲン化物としては特に限定されず、例えば一般式(4)に示す構造を有するものが例示される。

 $R^{6}R^{7}C$ (X) $-R^{8}-R^{9}-C$ (H) (R⁵) $C\,H_{2}-$ [S i (R¹¹) $_{2-b}$ (Y) $_{b}$ O] $_{m}-$ S i (R¹²) $_{3-a}$ (Y) $_{a}$ (4)

(式中、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 、Xは上記に同じ、 R^{11} 、 R^{12} は、いずれも 炭素数 $1\sim 2$ 0のアルキル基、アリール基、アラルキル基、または $(R^r)_3S$ i $O-(R^r)$ は炭素数 $1\sim 2$ 0の 1 価の炭化水素基であって、3 個の R^r は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、 R^{11} または R^{12} が 2 個以上存在するとき、それらは同一であってもよく、異なっていてもよい。 Y は水酸基または加水分解性基を示し、Y が 2 個以上存在するときそれらは同一であってもよく、異なっていてもよい。 a は 0, 1, 2, または 3 を、また、5 は 0, 1, または 2 を示す。5 かは 1 の整数である。ただし、5 とき 1 であることを満足するものとする)

一般式(4)の化合物を具体的に例示するならば、

 $X ext{CH}_2 ext{C (O) O (CH}_2) ext{ }_n ext{S i (OCH}_3) ext{ }_3, ext{ } CH}_3 ext{C (H) (X) C (O) } O (CH}_2) ext{ }_n ext{S i (OCH}_3) ext{ }_3, ext{ } (CH}_3) ext{ }_2 ext{C (X) C (O) O (CH}_2) ext{ }_n ext{S i (OCH}_3) ext{ }_3, ext{ } X ext{C} ext{H}}_2 ext{C (O) O (CH}_2) ext{ }_n ext{S i (CH}_3) ext{ } (OCH}_3) ext{ }_2, ext{ } (CH}_3) ext{ }_2 ext{C} ext{C$

(上記の各式において、Xは塩素、臭素、ヨウ素、nは0~20の整数、) XCH₂C (O) O (CH₂) nO (CH₂) mS i (OCH₃) 3、H₃CC (H) (X) C (O) O (CH₂) nO (CH₂) mS i (OCH₃) 3、(H₃C) 2C (X) C (O) O (CH₂) nO (CH₂) mS i (OCH₃) 3、CH₃CH₂C (H) (X) C (O) O (CH₂) nO (CH₂) mS i (OCH₃) 3、XCH₂C (O) O (CH₂) nO (CH₂) mS i (OCH₃) 2、H₃CC (H) (X) C (O

) O (C H $_2$) $_n$ O (C H $_2$) $_m$ -S i (C H $_3$) (O C H $_3$) $_2$, (H $_3$ C) $_2$ C (X) C (O) O (CH₂) $_{n}$ O (CH₂) $_{m}$ -S i (CH₃) (OCH₃) $_{2}$, CH₃CH $_2$ C (H) (X) C (O) O (CH $_2$) $_n$ O (CH $_2$) $_m$ -S i (CH $_3$) (OCH $_3$) 2

(上記の各式において、Xは塩素、臭素、ヨウ素、nは1~20の整数、mは0 ~20の整数)

o, m, p-XCH₂-C₆H₄- (CH₂) ₂S i (OCH₃) ₃, o, m, p-C ${
m H_{3}C}$ (H) (X) $-{
m C_{6}H_{4}}-$ (CH₂) ${
m _{2}S}$ i (OCH₃) ${
m _{3}}$, o, m, p-CH₃ CH_2C (H) (X) $-\text{C}_6\text{H}_4-$ (CH₂) $_2\text{S}$ i (OCH₃) $_3,$ o, m, p-X $\mathrm{C\,H_2-C_6H_4-}$ ($\mathrm{C\,H_2}$) $_3\mathrm{S\,i}$ (OCH3) $_3$, o, m, p-CH3C (H) (X) $-C_6H_4-$ (CH₂) ₃S i (OCH₃) ₃, o, m, p-CH₃CH₂C (H) ($X) - C_6H_4 - (CH_2)_3Si (OCH_3)_3$, o, m, $p - XCH_2 - C_6H_4 (CH_2)_{2}-O-(CH_2)_{3}Si(OCH_3)_{3}$, o, m, p-CH₃C (H) (X) $-C_6H_4-(CH_2)_2-O-(CH_2)_3Si(OCH_3)_3$, o, m, p-C ${
m H_{3}C\,H_{2}C}$ (H) (X) ${
m -C_{6}H_{4}-}$ (CH₂) ${
m _{2}-O-}$ (CH₂) ${
m _{3}S}$ i (OCH₃) 3, o, m, $p-XCH_2-C_6H_4-O-(CH_2)$ 3S i (OCH3) 3, o, m , $p-CH_3C$ (H) (X) $-C_6H_4-O-$ (CH₂) $_3S$ i (OCH₃) $_3$, o, m, $p-CH_3CH_2C$ (H) (X) $-C_6H_4-O-$ (CH₂) $_3-S$ i (OCH₃)) 3, o, m, $p-XCH_2-C_6H_4-O-(CH_2)_2-O-(CH_2)_3-S_i$ (OCH₃) 3, o, m, p-CH₃C (H) (X) $-C_6H_4-O-$ (CH₂) $_2-O$ - (CH₂) $_3$ S i (OCH₃) $_3$, o, m, p-CH $_3$ CH $_2$ C (H) (X) -C $_6$ $H_4-O-(CH_2)_2-O-(CH_2)_3Si(OCH_3)_3$ (上記の各式において、Xは塩素、臭素、またはヨウ素)

等が挙げられる。

[0043]

上記架橋性シリル基を有する有機ハロゲン化物としてはさらに、一般式 (5) で示される構造を有するものが例示される。

 $(R^{12})_{3-a}(Y)_aS_i - [OS_i(R^{11})_{2-b}(Y)_b]_m - CH_2 - C(H)$ (R^{5}) $-R^{9}-C$ (R^{6}) (X) $-R^{10}-R^{7}$ (5)

(式中、R 5 、R 6 、R 7 、R 9 、R 10 、R 11 、R 12 、a、b、m、X、Yは上記に同じ)

このような化合物を具体的に例示するならば、

(CH₃O) 3S i CH₂CH₂C (H) (X) C₆H₅、(CH₃O) 2 (CH₃) S i CH₂CH₂C (H) (X) C₆H₅、(CH₃O) 3S i (CH₂) 2C (H) (X) -CO₂R、(CH₃O) 2 (CH₃) S i (CH₂) 2C (H) (X) -CO₂R、(CH₃O) 3S i (CH₂) 3C (H) (X) -CO₂R、(CH₃O) 2 (CH₃O) 3S i (CH₂) 4C (H) (X) -CO₂R、(CH₃O) 3S i (CH₂) 4C (H) (X) -CO₂R、(CH₃O) 2 (CH₃O) 3S i (CH₂) 4C (H) (X) -CO₂R、(CH₃O) 3S i (CH₂) 9C (H) (X) -CO₂R、(CH₃O) 3S i (CH₂O) 2 (CH₃O) 3S i (CH₂O) 4C (H) (X) -C₆H₅、(CH₃O) 3S i (CH₂O) 4C (H) (X) -C₆H₅、(CH₃O) 2 (CH₃O) 3S i (CH₂O) 4C (H) (X) -C₆H₅、(CH₃O) 3S i (CH₂O) 4C (H) (X) -C₆H₅ (CH₃O) 3S

(上記の各式において、Xは塩素、臭素、またはヨウ素、Rは炭素数1~20のアルキル基、アリール基、アラルキル基) 等が挙げられる。

[0044]

上記ヒドロキシル基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化 合物としては特に限定されず、下記のようなものが例示される。

 $HO-(CH_2)_{n}-OC(O)C(H)(R)$

(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数 $1\sim20$ のアルキル基、 Γ リール基、 Γ ラルキル基、nは $1\sim20$ の整数)

上記アミノ基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物と しては特に限定されず、下記のようなものが例示される。

 $H_2N-(CH_2)_{n}-OC(O)C(H)(R)$

(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数 $1\sim20$ のアルキル基、Pリール基、Pラルキル基、Rは $1\sim20$ の整数)

上記エポキシ基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物

ページ: 21/

としては特に限定されず、下記のようなものが例示される。

[0045]

【化4】

(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数 $1\sim20$ のアルキル基、Rリール基、アラルキル基、Rは $1\sim20$ の整数)

生長末端構造を1分子内に2つ以上有する重合体を得るためには、2つ以上の 開始点を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤と して用いるのが好ましい。具体的に例示するならば、

[0046]

【化5】

$$^{o,m,p-}X$$
— CH_2 — C_6H_4 — CH_2 — X

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_6 CH_4 CH_5 CH_6 CH_6 CH_6 CH_6 CH_7 CH_8 CH_8 CH_8

(式中、C6H4はフェニレン基、Xは塩素、臭素、またはヨウ素)

(式中、Rは炭素数1~20のアルキル基、アリール基、またはアラルキル基、nは0~20の整数、Xは塩素、臭素、またはヨウ素)

$$C_6H_5$$
 C_6H_5 $X-CH-(CH_2)_{n-}CH-X$

(式中、Xは塩素、臭素、またはヨウ素、nは0~20の整数)

[0047]

【化6】

$$X - CH_2 - C - O - (CH_2)_n - O - C - CH_2 - X$$

(式中、nは1~20の整数、Xは塩素、臭素、またはヨウ素)

$$_{0,m,p^{-}}^{0,m,p^{-}}$$
 X— $_{CH_{2}-C-O-C_{6}H_{4}-O-C-CH_{2}-X}^{0}$

$$^{o,m,p-}$$
 X— SO_2 - C_6H_4 - SO_2 -X

(式中、Xは塩素、臭素、またはヨウ素)

等が挙げられる。

[0048]

この重合において用いられるビニル系モノマーとしては特に制約はなく、既に

[0049]

重合触媒として用いられる遷移金属錯体としては特に限定されないが、好まし くは周期律表第7族、8族、9族、10族、または11族元素を中心金属とする 金属錯体である。更に好ましいものとして、0価の銅、1価の銅、2価のルテニ ウム、2価の鉄又は2価のニッケルの錯体が挙げられる。なかでも、銅の錯体が 好ましい。1価の銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅 、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅等である。銅化 合物を用いる場合、触媒活性を高めるために2, 2′ービピリジル及びその誘導 体、1,10-フェナントロリン及びその誘導体、テトラメチルエチレンジアミ ン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス (2-アミノエチ ル)アミン等のポリアミン等の配位子が添加される。好ましい配位子は、含窒素 化合物であり、より好ましい配位子は、キレート型含窒素化合物であり、さらに 好ましい配位子は、N, N, N, N", N" -ペンタメチルジエチレントリア ミンである。また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体 (RuCl₂(PPh₃)₃) も触媒として好適である。ルテニウム化合物を触媒 として用いる場合は、活性化剤としてアルミニウムアルコキシド類が添加される 。更に、2価の鉄のビストリフェニルホスフィン錯体(FeCl2(PPh3)2)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl₂(PPh₃) 2)、及び、2価のニッケルのビストリブチルホスフィン錯体(NiBr2(PB u3)2)も、触媒として好適である。

[0050]

重合は無溶剤または各種の溶剤中で行なうことができる。溶剤の種類としては、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、プロパノール、イソプロパノール、nーブチルアルコール、tertーブチルアルコール等のアルコール系溶媒、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒、酢酸エチル、酢酸

ブチル等のエステル系溶媒、エチレンカーボネート、プロピレンカーボネート等 のカーボネート系溶媒等が挙げられ、単独または2種以上を混合して用いること ができる。

[0051]

また、限定はされないが、重合は0℃~200℃の範囲で行うことができ、好 ましくは50~150℃である。

[0052]

本発明の原子移動ラジカル重合には、いわゆるリバース原子移動ラジカル重合 も含まれる。リバース原子移動ラジカル重合とは、通常の原子移動ラジカル重合 触媒がラジカルを発生させた時の高酸化状態、例えば、Cu(I)を触媒として 用いた時のCu(II')に対し、過酸化物等の一般的なラジカル開始剤を作用 させ、その結果として原子移動ラジカル重合と同様の平衡状態を生み出す方法で ある (Macromolecules 1999, 32, 2872参照)。

<官能基>

<u>架橋性シリル基の数</u>

ビニル系重合体の架橋性シリル基の数は、特に限定されないが、組成物の硬化 性、及び硬化物の物性の観点から、分子中に平均して1個以上有することが好ま しく、より好ましくは1. 1個以上4. 0以下、さらに好ましくは1. 2個以上 3. 5個以下である。

<u>架橋性シリル基の位置</u>

本発明の硬化性組成物を硬化させてなる硬化物にゴム的な性質が特に要求され る場合には、ゴム弾性に大きな影響を与える架橋点間分子量が大きくとれるため 、架橋性官能基の少なくとも1個は分子鎖の末端にあることが好ましい。より好 ましくは、全ての架橋性官能基を分子鎖末端に有するものである。

[0053]

上記架橋性シリル基を分子末端に少なくとも1個有するビニル系重合体、中で も (メタ) アクリル系重合体を製造する方法は、特公平3-14068号公報、 特公平4-55444号公報、特開平6-211922号公報等に開示されてい る。しかしながらこれらの方法は上記「連鎖移動剤法」を用いたフリーラジカル

[0054]

以下にこれらの官能基について説明する。

架橋性シリル基

本発明の架橋性シリル基としては、一般式(1);

 $- [Si(R^1)_{2-b}(Y)_bO]_m - Si(R^2)_{3-a}(Y)_a$ (1)

|式中、 R^1 、 R^2 は、いずれも炭素数 $1\sim 20$ のアルキル基、炭素数 $6\sim 20$ のアリール基、炭素数 $7\sim 20$ のアラルキル基、または(R') $_3SiO-$ (R'は炭素数 $1\sim 20$ の1価の炭化水素基であって、3個のR'は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、 R^1 または R^2 が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。 Yは水酸基または加水分解性基を示し、Yが20個以上存在するときそれらは同一であってもよく、異なっていてもよい。 aは0, 1, 2, または3を、また、10 は10 は10 ない。 11 または12 を示す。 12 の整数である。ただし、13 と 13 に表される基があげられる。

[0055]

加水分解性基としては、たとえば、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などの一般に使用されている基があげられる。これらのうちでは、アルコキシ基、アミド基、アミノオキシ基が好ましいが、加水分解性がマイルドで取り扱い易いという点から、アルコキシ基がとくに好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基…の順に反応性が低くなり、目的や用途に応じて選択できる。

[0056]

加水分解性基や水酸基は、1個のケイ素原子に $1\sim3$ 個の範囲で結合することができ、 $(a+\Sigma b)$ は $1\sim5$ 個の範囲が好ましい。加水分解性基や水酸基が架橋性シリル基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。架橋性シリル基を形成するケイ素原子は1個以上であるが、シロキサン結合などにより連結されたケイ素原子の場合には、20個以下であることが好ましい。とくに、一般式 (6)

$-S i (R^2)_{3-a} (Y)_a (6)$

(式中、 R^2 、Yは前記と同じ、aは $1\sim3$ の整数)で表される架橋性シリル基が、入手が容易であるので好ましい。

[0057]

なお、特に限定はされないが、硬化性を考慮すると a は 2 個以上が好ましい。

[0058]

このような架橋性シリル基を有するビニル系重合体は珪素原子1つあたり2つの加水分解性基が結合してなる加水分解性珪素基を有する重合体が用いられることが多いが、接着剤の用途等や低温で使用する場合等、特に非常に速い硬化速度を必要とする場合、その硬化速度は充分ではなく、また硬化後の柔軟性を出したい場合には、架橋密度を低下させる必要があり、そのため架橋密度が充分でないためにべたつき(表面タック)があることもあった。その際には、aが3個のもの(例えばトリメトキシ官能基)であるのが好ましい。

[0059]

また、aが3個のもの(例えばトリメトキシ官能基)は2個のもの(例えばジメトキシ官能基)よりも硬化が速いが、貯蔵安定性や力学物性(伸び等)に関しては2個のものの方が優れている場合がある。硬化性と物性バランスをとるために、2個のもの(例えばジメトキシ官能基)と3個のもの(例えばトリメトキシ官能基)を併用してもよい。

[0060]

例えば、Yが同一の場合、aが多いほどYの反応性が高くなるため、Yとaを種々選択することにより硬化性や硬化物の機械物性等を制御することが可能であ

り、目的や用途に応じて選択できる。また、aが1個のものは鎖延長剤として架 橋性シリル基を有する重合体、具体的にはポリシロキサン系、ポリオキシプロピ レン系、ポリイソブチレン系からなる少なくとも1種の重合体と混合して使用で きる。硬化前に低粘度、硬化後に高い破断時伸び性、低ブリード性、表面低汚染 性、優れた塗料密着性を有する組成物とすることが可能である。

架橋性シリル基の導入法

以下に、本発明のビニル系重合体への架橋性シリル基の導入法について説明するが、これに限定されるものではない。

[0061]

まず、末端官能基変換により架橋性シリル基、アルケニル基、水酸基を導入する方法について記述する。これらの官能基はお互いに前駆体となりうるので、架 橋性シリル基から溯る順序で記述していく。

[0062]

架橋性シリル基を少なくとも1個有するビニル系重合体の合成方法としては、

- (A) アルケニル基を少なくとも1個有するビニル系重合体に架橋性シリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下に付加させる方法
- (B) 水酸基を少なくとも1個有するビニル系重合体に一分子中に架橋性シリル基とイソシアネート基を有する化合物のような、水酸基と反応し得る基を有する化合物を反応させる方法
- (C) ラジカル重合によりビニル系重合体を合成する際に、1分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物を反応させる方法
- (D) ラジカル重合によりビニル系重合体を合成する際に、架橋性シリル基を 有する連鎖移動剤を用いる方法
- (E) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系重合体に1分子中に架橋性シリル基と安定なカルバニオンを有する化合物を反応させる方法;などが挙げられる。

[0063]

(A) の方法で用いるアルケニル基を少なくとも1個有するビニル系重合体は種々の方法で得られる。以下に合成方法を例示するが、これらに限定されるわけ

ではない。

[0064]

(A-a) ラジカル重合によりビニル系重合体を合成する際に、例えば下記の一般式(9) に挙げられるような一分子中に重合性のアルケニル基と重合性の低いアルケニル基を併せ持つ化合物を第2のモノマーとして反応させる方法。

$$H_2C = C (R^{14}) - R^{15} - R^{16} - C (R^{17}) = C H_2 (9)$$

(式中、 R^{14} は水素またはメチル基を示し、 R^{15} は-C(O)O-、または o^- , m^- , p^- フェニレン基を示し、 R^{16} は直接結合、または炭素数 $1\sim20$ の2 価の有機基を示し、1 個以上のエーテル結合を含んでいてもよい。 R^{17} は水素、または炭素数 $1\sim20$ のアルキル基、炭素数 $6\sim20$ のアリール基または炭素数 $7\sim20$ のアラルキル基を示す)

なお、一分子中に重合性のアルケニル基と重合性の低いアルケニル基を併せ持つ化合物を反応させる時期に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。

[0065]

(A-b) リビングラジカル重合によりビニル系重合体を合成する際に、重合 反応の終期あるいは所定のモノマーの反応終了後に、例えば1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエンなどのような重合性の低いアルケニル基を少なくとも2個有する化合物を反応させる方法。

[0066]

(A-c) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系 重合体に、例えばアリルトリブチル錫、アリルトリオクチル錫などの有機錫のようなアルケニル基を有する各種の有機金属化合物を反応させてハロゲンを置換する方法。

[0067]

(A-d) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系 重合体に、一般式(10) に挙げられるようなアルケニル基を有する安定化カル バニオンを反応させてハロゲンを置換する方法。 $M^{+}C^{-}(R^{18})(R^{19}) - R^{20} - C(R^{17}) = CH_{2}(10)$

(式中、R 17 は上記に同じ、R 18 、R 19 はともにカルバニオンC $^{-}$ を安定化する電子吸引基であるか、または一方が前記電子吸引基で他方が水素または炭素数 1 ~ 10 のアルキル基、またはフェニル基を示す。R 20 は直接結合、または炭素数 1 ~ 10 の 2 価の有機基を示し、 1 個以上のエーテル結合を含んでいてもよい。 $^{M+}$ はアルカリ金属イオン、または 4 級アンモニウムイオンを示す)

 R^{18} 、 R^{19} の電子吸引基としては、 $-CO_2R$ 、-C(O)Rおよび-CNの構造を有するものが特に好ましい。

[0068]

(A-e) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系 重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエ ノレートアニオンを調製し、しかる後にハロゲンやアセチル基のような脱離基を 有するアルケニル基含有化合物、アルケニル基を有するカルボニル化合物、アル ケニル基を有するイソシアネート化合物、アルケニル基を有する酸ハロゲン化物 等の、アルケニル基を有する求電子化合物と反応させる方法。

[0069].

(A-f) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば一般式 (11) あるいは (12) に示されるようなアルケニル基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。

 $H_2C = C (R^{17}) - R^{21} - O^-M^+ (11)$

(式中、 R^{17} 、M+は上記に同じ。 R^{21} は炭素数 $1\sim20$ の2価の有機基で1個以上のエーテル結合を含んでいてもよい)

 $H_2C = C (R^{17}) - R^{22} - C (O) O^{-M+} (12)$

(式中、 R^{17} 、M+は上記に同じ。 R^{22} は直接結合、または炭素数 $1\sim 2002$ 価の有機基で 1 個以上のエーテル結合を含んでいてもよい)などが挙げられる。

[0070]

上述の反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系重合

体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を 触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけでは ない。

[0071]

またアルケニル基を少なくとも1個有するビニル系重合体は、水酸基を少なくとも1個有するビニル系重合体から得ることも可能であり、以下に例示する方法が利用できるがこれらに限定されるわけではない。水酸基を少なくとも1個有するビニル系重合体の水酸基に、

(A-g)ナトリウムメトキシドのような塩基を作用させ、塩化アリルのようなアルケニル基含有ハロゲン化物と反応させる方法。

[0072]

(A-h)アリルイソシアネート等のアルケニル基含有イソシアネート化合物を反応させる方法。

[0073]

(A-i) (メタ) アクリル酸クロリドのようなアルケニル基含有酸ハロゲン 化物をピリジン等の塩基存在下に反応させる方法。

[0074]

(A-j)アクリル酸等のアルケニル基含有カルボン酸を酸触媒の存在下に反応させる方法;等が挙げられる。

[0075]

本発明では(A-a)(A-b)のようなアルケニル基を導入する方法にハロゲンが直接関与しない場合には、リビングラジカル重合法を用いてビニル系重合体を合成することが好ましい。制御がより容易である点から(A-b)の方法がさらに好ましい。

[0076]

反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを変換することによりアルケニル基を導入する場合は、反応性の高い炭素-ハロゲン結合を少なくとも1個有する有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系モノマーをラジカ

ル重合すること(原子移動ラジカル重合法)により得る、末端に反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系重合体を用いるのが好ましい。制御がより容易である点から(A-f)の方法がさらに好ましい。

[0077]

また、架橋性シリル基を有するヒドロシラン化合物としては特に制限はないが、代表的なものを示すと、一般式(13)で示される化合物が例示される。 H- [Si (R^1) 2-b (Y) $_b$ O] $_m$ -Si (R^2) $_{3$ -a (Y) $_a$ (13) [式中、 R^1 、 R^2 は、いずれも炭素数1 $_{2}$ 0のアルキル基、炭素数6 $_{2}$ 0のアリール基、炭素数7 $_{2}$ 0のアラルキル基、または (R^*) $_{3}$ SiO-(R^* 1 は炭素数1 $_{2}$ 0の1 価の炭化水素基であって、3 個の R^* 1 は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、 R^1 または R^2 が2 個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Y は水酸基または加水分解性基を示し、Y が2 個以上存在するときそれらは同一であってもよく、異なっていてもよい。A は同一であってもよく、異なっていてもよい。A は同一であってもよく、異なっていてもよい。A は同一であってもよく、異なっていてもよい。A に、A は同一であってもよく、異なっていてもよい。A に、A に、A に、A に、A に、A に、A に、A に A に

これらヒドロシラン化合物の中でも、特に一般式 (14)

 $H-S i (R^2)_{3-a} (Y)_a (14)$

(式中、R²、Y、aは前記に同じ)

で示される架橋性基を有する化合物が入手容易な点から好ましい。

[0078]

上記の架橋性シリル基を有するヒドロシラン化合物をアルケニル基に付加させる際には、遷移金属触媒が通常用いられる。遷移金属触媒としては、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金ーオレフィン錯体、白金(Ó)ージビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl (PPh3) 3, RhCl3, RuCl3, IrCl3, FeCl3, AlCl3, PdCl2·H2O, NiCl2, TiCl4等が挙げられる。

[0079]

(B) および (A-g) ~ (A-j) の方法で用いる水酸基を少なくとも1個有するビニル系重合体の製造方法は以下のような方法が例示されるが、これらの方法に限定されるものではない。

[0080]

(B-a) ラジカル重合によりビニル系重合体を合成する際に、例えば下記の一般式(15)に挙げられるような一分子中に重合性のアルケニル基と水酸基を併せ持つ化合物を第2のモノマーとして反応させる方法。

 $H_2C = C (R^{14}) - R^{15} - R^{16} - OH (15)$

(式中、R¹⁴、R¹⁵、R¹⁶は上記に同じ)

なお、一分子中に重合性のアルケニル基と水酸基を併せ持つ化合物を反応させる時期に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。

[0081]

(B-b) リビングラジカル重合によりビニル系重合体を合成する際に、重合 反応の終期あるいは所定のモノマーの反応終了後に、例えば 10-ウンデセノール、5-ヘキセノール、アリルアルコールのようなアルケニルアルコールを反応 させる方法。

[0082]

(B-c)例えば特開平5-262808に示される水酸基含有ポリスルフィドのような水酸基含有連鎖移動剤を多量に用いてビニル系モノマーをラジカル重合させる方法。

[0083]

(B-d) 例えば特開平6-239912、特開平8-283310に示されるような過酸化水素あるいは水酸基含有開始剤を用いてビニル系モノマーをラジカル重合させる方法。

[0084]

(B-e) 例えば特開平6-116312に示されるようなアルコール類を過

ページ: 34/

剰に用いてビニル系モノマーをラジカル重合させる方法。

[0085]

(B-f) 例えば特開平4-132706などに示されるような方法で、反応性の高い炭素-ハロゲン結合を少なくとも1個に有するビニル系重合体のハロゲンを加水分解あるいは水酸基含有化合物と反応させることにより、末端に水酸基を導入する方法。

[0086]

(B-g) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系 重合体に、一般式(16)に挙げられるような水酸基を有する安定化カルバニオ ンを反応させてハロゲンを置換する方法。

$$M^{+}C^{-}$$
 (R¹⁸) (R¹⁹) $-$ R²⁰ $-$ OH (16)

(式中、R18、R19、R20、は上記に同じ)

 R^{18} 、 R^{19} の電子吸引基としては、 $-CO_2R$ 、-C(O)Rおよび-CNの構造を有するものが特に好ましい。

[0087]

(B-h) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系 重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエ ノレートアニオンを調製し、しかる後にアルデヒド類、又はケトン類を反応させ る方法。

[0088]

(B-i) 反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば一般式 (17) あるいは (18) に示されるような水酸基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。

$$HO-R^{21}-O-M^{+}$$
 (17)

(式中、R²¹およびM+は前記に同じ)

$$HO-R^{22}-C$$
 (O) $O-M+$ (18)

(式中、R22およびM+は前記に同じ)

(B-j) リビングラジカル重合によりビニル系重合体を合成する際に、重合

反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして、一分子中に重合性の低いアルケニル基および水酸基を有する化合物を反応させる方法。

[0089]

このような化合物としては特に限定されないが、一般式(19)に示される化 合物等が挙げられる。

 $H_2C = C (R^{14}) - R^{21} - OH (19)$

(式中、 R^{14} および R^{21} は上述したものと同様である。)

上記一般式(19)に示される化合物としては特に限定されないが、入手が容易であるということから、10-ウンデセノール、5-ヘキセノール、アリルアルコールのようなアルケニルアルコールが好ましい。 等が挙げられる。

[0090]

本発明では(B-a)~(B-e)及び(B-j)のような水酸基を導入する 方法にハロゲンが直接関与しない場合には、リビングラジカル重合法を用いてビ ニル系重合体を合成することが好ましい。制御がより容易である点から(B-b)の方法がさらに好ましい。

[0091]

反応性の高い炭素ーハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを変換することにより水酸基を導入する場合は、有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系モノマーをラジカル重合すること(原子移動ラジカル重合法)により得る、末端に反応性の高い炭素ーハロゲン結合を少なくとも1個有するビニル系重合体を用いるのが好ましい。制御がより容易である点から(B-i)の方法がさらに好ましい。

[0092]

また、一分子中に架橋性シリル基とイソシアネート基のような水酸基と反応し得る基を有する化合物としては、例えば γ ーイソシアナートプロピルトリメトキシシラン、 γ ーイソシアナートプロピルメチルジメトキシシラン、 γ ーイソシア

ナートプロピルトリエトキシシラン等が挙げられ、必要により一般に知られているウレタン化反応の触媒を使用できる。

[0093]

(C)の方法で用いる一分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物としては、例えばトリメトキシシリルプロピル (メタ) アクリレート、メチルジメトキシシリルプロピル (メタ) アクリレートなどのような、下記一般式 (20) で示すものが挙げられる。

 $H_2C = C (R^{14}) - R^{15} - R^{23} - [Si(R^1)_{2-b}(Y)_bO]_m - Si(R^2)$ 3-a (Y)_a (20)

(式中、 R^1 、 R^2 、 R^{14} 、 R^{15} 、Y、a、b、mは上記に同じ。 R^{23} は、直接結合、または炭素数 $1\sim2$ 0の2価の有機基で1個以上のエーテル結合を含んでいてもよい。)

一分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物を反応させる時期に特に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。

[0094]

(D) の連鎖移動剤法で用いられる、架橋性シリル基を有する連鎖移動剤としては例えば特公平3-14068、特公平4-55444に示される、架橋性シリル基を有するメルカプタン、架橋性シリル基を有するヒドロシランなどが挙げられる。

[0095]

(E)の方法で用いられる、上述の反応性の高い炭素-ハロゲン結合を少なくとも1個有するビニル系重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけではない。一分子中に架橋性シリル基と安定化カルバニオンを併せ持つ化合物としては一般式(21)で示すものが挙げられる。

 $M^{+}C^{-}$ (R¹⁸) (R¹⁹) -R²⁴-C (H) (R²⁵) -C H₂- [S i (R¹) 2-b (Y) $_{b}O$] $_{m}^{-}$ S i (R²) $_{3-a}$ (Y) $_{a}$ (21)

(式中、R¹、R²、R¹⁸、R¹⁹、Y、a、b、m、は前記に同じ。R²⁴は直接結 合、または炭素数1~10の2価の有機基で1個以上のエーテル結合を含んでい てもよい、R²⁵は水素、または炭素数1~10のアルキル基、炭素数6~10の アリール基または炭素数7~10のアラルキル基を示す。)

 R^{18} 、 R^{19} の電子吸引基としては、 $-CO_2R$ 、-C(O)Rおよび-CNの 構造を有するものが特に好ましい。

<複数のビニル系重合体の使用>

上記したビニル系重合体は一種のみ使用することもでき、2種以上のビニル系 重合体を組み合わせて使用することもできる。一種のみ使用する場合は、分子量 5, 000~50, 000で架橋性シリル基の数が1. 2~3. 5個のビニル重 合体を使用することが好ましい。2種以上のビニル系重合体を組み合わせる場合 は第一の重合体は分子量5,000~50,000で架橋性シリル基の数が1. 2~3.5個のビニル重合体であって、第2の重合体は架橋性シリル基の数が少 ない重合体とすると、高い破断時伸び性、低ブリード性、表面低汚染性、優れた 塗料密着性を有する硬化物を得ることができる。また、第2の重合体の分子量を より小さく設定することにより、組成物の粘度を低下させることができる。低分 子量成分となる重合体の好ましい分子量は10,000未満、さらには5,00 0未満であり、好ましい架橋性シリル基の数は1.2未満、さらには1以下であ る。また、さらに粘度を低下させることができるので分子量分布は1.8未満が 好ましい。架橋性官能基を有し分子量分布が1.8以上のビニル系重合体と片末 端に架橋性シリル基を有するビニル系重合体を添加すると低粘度化効果が顕著で ある。

[0096]

このような低分子量で架橋性シリル基の数が少ない重合体として次のような製 法で得られる片末端に架橋性シリル基を有するビニル系重合体を使用することが 確実に架橋性シリル基を導入できるので好ましい。

[0097]

片末端に架橋性シリル基を有するビニル系重合体は、重合体末端に架橋性シリ ル基を1分子あたりほぼ1個有するものである。前記のリビングラジカル重合法 、特に、原子移動ラジカル重合法を用いることが、高い割合で分子鎖末端に架橋性シリル基を有し、分子量分布が1.8未満で分子量分布が狭く、粘度の低いビニル系重合体が得られるので好ましい。

[0098]

片末端に架橋性シリル基を導入する方法については、例えば、下記に示す方法を使用することができる。なお、末端官能基変換により架橋性シリル基、アルケニル基、水酸基を導入する方法において、これらの官能基はお互いに前駆体となりうるので、架橋性シリル基を導入する方法から溯る順序で記述する。

- (1) アルケニル基を分子鎖末端に1分子当たり1個有する重合体に、架橋性シリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下に付加させる方法、
- (2)水酸基を分子鎖末端に1分子当たり1個有する重合体に、一分子中に架橋性シリル基とイソシアネート基のような水酸基と反応し得る基を併せ持つ化合物を反応させる方法、
- (3) 反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有する 重合体に、一分子中に架橋性シリル基と安定なカルバニオンを有する化合物を反 応させる方法、

などがあげられる。

[0099]

- (1)の方法で用いるアルケニル基を分子鎖末端に1分子当たり1個有する重合体は種々の方法で得られる。以下に製造方法を例示するが、これらに限定されるわけではない。
- (1-1) 反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えばアリルトリプチル錫、アリルトリオクチル錫などの有機錫のようなアルケニル基を有する各種の有機金属化合物を反応させてハロゲンを置換する方法。
- (1-2) 反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、一般式(10) にあげられるようなアルケニル基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。

 $M^+C^-(R^{18})$ (R^{19}) $-R^{20}-C$ (R^{17}) $=CH_2$ (10)

(式中、R18、R19はともにカルバニオンC-を安定化する電子吸引基であるか、または一方が前記電子吸引基で他方が水素または炭素数 $1\sim10$ のアルキル基、またはフェニル基を示す。R20は直接結合、または炭素数 $1\sim10$ の2価の有機基を示し、1個以上のエーテル結合を含んでいてもよい。R17は水素、または炭素数 $1\sim20$ のアルキル基、炭素数 $6\sim20$ のアリール基または炭素数 $7\sim2$ 0のアラルキル基を示す。M+はアルカリ金属イオン、または4級アンモニウムイオンを示す)

 R^{18} 、 R^{19} の電子吸引基としては、 $-CO_2R$ 、-C(O)Rおよび-CNの構造を有するものが特に好ましい。

(1-3) 反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかる後にハロゲンやアセチル基のような脱離基を有するアルケニル基含有化合物、アルケニル基を有するカルボニル化合物、アルケニル基を有するイソシアネート化合物、アルケニル基を有する酸ハロゲン化物等の、アルケニル基を有する求電子化合物と反応させる方法。

(1-4) 反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えば一般式(11) あるいは(12) に示されるようなアルケニル基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。

 $H_2C = C (R^{17}) - R^{21} - O^-M^+ (11)$

(式中、 R^{17} 、 M^+ は前記に同じ。 R^{21} は炭素数 $1\sim 20$ の 2 価の有機基で 1 個以上のエーテル結合を含んでいてもよい)

 $H_2C = C (R^{17}) - R^{22} - C (O) O^{-M+} (12)$

(式中、 R^{17} 、 M^+ は前記に同じ。 R^{22} は直接結合、または炭素数 $1\sim 2002$ 価の有機基で1 個以上のエーテル結合を含んでいてもよい)などがあげられる。

[0100]

上述の反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有す

る重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属 錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわ けではない。

[0101]

またアルケニル基を分子鎖末端に1分子当たり1個有する重合体は、水酸基を分子鎖末端に少なくとも1個有する重合体から得ることも可能であり、以下に例示する方法が利用できるがこれらに限定されるわけではない。

[0102]

水酸基を分子鎖末端に少なくとも1個有する重合体の水酸基に、

- (1-5)ナトリウムメトキシドのような塩基を作用させ、塩化アリルのようなアルケニル基含有ハロゲン化物と反応させる方法、
- (1-6) アリルイソシアネート等のアルケニル基含有イソシアネート化合物を 反応させる方法、
- (1-7) (メタ) アクリル酸クロリドのようなアルケニル基含有酸ハロゲン化物をピリジン等の塩基存在下に反応させる方法、
- (1-8) アクリル酸等のアルケニル基含有カルボン酸を酸触媒の存在下に反応 させる方法、

などがあげられる。

[0103]

反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体のハロゲンを変換することによりアルケニル基を導入する場合は、反応性の高い炭素-ハロゲン結合を1分子当たり1個有する有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系単量体をラジカル重合(原子移動ラジカル重合)することにより得られる末端に反応性の高い炭素-ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体を用いることが好ましい。

[0104]

また、架橋性シリル基を有するヒドロシラン化合物としては特に制限はないが 、代表的なものを示すと、一般式(13)で示される化合物が例示される。

 $H - [Si (R_{2-b}) (Y_b) O]_m - Si (R_{3-a}) Y_a$ (13)

(式中、 R^1 、 R^2 、Y、a, b, mは前記に同じ。 R^1 または R^2 が2個以上存在 するとき、それらは同一であってもよく、異なっていてもよい。ただし、a+m b ≧ 1 であることを満足するものとする。)

これらヒドロシラン化合物の中でも、特に一般式 (14)

 $H-S i (R^2_{3-a}) Y_a (14)$

(式中、R²、Y、aは前記に同じ)

で示される架橋性シリル基を有する化合物が入手容易な点から好ましい。

[0105]

上記の架橋性シリル基を有するヒドロシラン化合物をアルケニル基に付加させ る際には、遷移金属触媒が通常用いられる。遷移金属触媒としては、例えば、白 金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させた もの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、 白金ーオレフィン錯体、白金(0)ージビニルテトラメチルジシロキサン錯体が 挙げられる。白金化合物以外の触媒の例としては、RhCl (PPh3)3, Rh Cl3, RuCl3, IrCl3, FeCl3, AlCl3, PdCl2·H2O, N i Cl₂, Ti Cl₄等があげられる。

[0106]

片末端に架橋性シリル基を有するビニル系重合体、好ましくは分子量分布が1 . 8未満の重合体、の使用量としては、ビニル系重合体100重量部に対し、モ ジュラス、伸びの点から5~400重量部であることが好ましい。

[0107]

2種以上のビニル系重合体を組み合わせて使用する第2の態様として、分子量 分布が1.8以上のビニル重合体と分子量分布が1.8未満のビニル重合体を組 み合わせて使用することもできる。分子量分布が1.8以上のビニル重合体は架 橋性ケイ素基を有していてもいなくてもよいが架橋性ケイ素基を有するほうが耐 候性や接着強度、破断時強度がより向上するので好ましい。また、組成物の硬化 物の引裂き強度の改善が期待できる。第1の重合体として使用する、分子量分布 が1.8以上のビニル系重合体や第2の重合体として使用する、分子量分布が1

. 8未満のビニル系重合体の主鎖としては、すでに述べたビニル系モノマーに起因する重合体を使用することができ、両重合体ともアクリル酸エステル系重合体が好ましい。

[0108]

分子量分布が1.8以上のビニル系重合体は、通常のビニル重合の方法、例えば、ラジカル反応による溶液重合法により得ることができる。重合は、通常、前記の単量体およびラジカル開始剤や連鎖移動剤等を加えて $50\sim150$ ℃で反応させることにより行われる。この場合一般的に分子量分布は1.8以上のものが得られる。

[0109]

前記ラジカル開始剤の例としては、2,2'ーアゾビスイソブチロニトリル、2,2'ーアゾビス(2ーメチルブチロニトリル)、4,4'ーアゾビス(4ーシアノバレリック)アシッド、1,1'ーアゾビス(1ーシクロヘキサンカルボニトリル)、アゾビスイソ酪酸アミジン塩酸塩、2,2'ーアゾビス(2,4ージメチルバレロニトリル)などのアゾ系開始剤、過酸化ベンゾイル、過酸化ジセセ・ロブチルなどの有機過酸化物系開始剤があげられるが、重合に使用する溶媒の影響を受けない、爆発等の危険性が低いなどの点から、アゾ系開始剤の使用が好ましい。

[0110]

連鎖移動剤の例としては、nードデシルメルカプタン、tertードデシルメルカプタン、ラウリルメルカプタン、γーメルカプトプロピルトリメトキシシラン、γーメルカプトプロピルメチルジメトキシシラン、γーメルカプトプロピルトリエトキシシラン、γーメルカプトプロピルメチルジエトキシシラン等のメルカプタン類や含ハロゲン化合物等があげられる。

[0111]

重合は溶剤中で行なってもよい。溶剤の例としては、エーテル類、炭化水素類 、エステル類などの非反応性の溶剤が好ましい。

[0112]

架橋性シリル基を導入する方法としては、例えば、重合性不飽和結合と架橋性

シリル基とを併せ持つ化合物を(メタ)アクリル酸エステル単量体単位と共重合させる方法があげられる。重合性不飽和結合と架橋性シリル基とを併せ持つ化合物としては、一般式(26):

 $CH_2=C$ (R²⁸) $COOR^{30}-$ [S i (R¹_{2-b}) (Y_b) O] mS i (R²_{3-a}) Y_a (26)

(式中、R 28 は前記に同じ。R 30 は炭素数 $1 \sim 6$ の 2 価のアルキレン基を示す。R 1 , R 2 , Y, a, b, m は前記と同じ。)

または一般式 (27):

 $CH_2=C (R^{28}) - [Si (R^{1}_{2-b}) (Y_b) O]_mSi (R^{2}_{3-a}) Y_a$ (27)

(式中、 R^{28} , R^1 , R^2 , Y, a, b, mは前記と同じ。)

で表される単量体、例えば、アーメタクリロキシプロピルトリメトキシシラン、アーメタクリロキシプロピルメチルジメトキシシラン、アーメタクリロキシプロピルトリエトキシシラン等のアーメタクリロキシプロピルポリアルコキシシラン、アーアクリロキシプロピルトリメトキシシラン、アーアクリロキシプロピルトリメトキシシラン、アーアクリロキシプロピルトリエトキシシラン等のアーアクリロキシプロピルポリアルコキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン等のビニルアルキルポリアルコキシシランなどがあげられる。また、メルカプト基と架橋性シリル基とを併せ持つ化合物を連鎖移動剤に用いると重合体末端に架橋性シリル基を導入することができる。そのような連鎖移動剤としては、例えば、アーメルカプトプロピルトリメトキシシラン、アーメルカプトプロピルトリエトキシシラン、アーメルカプトプロピルトリエトキシシラン、アーメルカプトプロピルメチルジエトキシシラン等のメルカプタン類があげられる。

[0113]

架橋性官能基を有し分子量分布が1.8以上のビニル系重合体は、GPC測定によるポリスチレン換算での数平均分子量が500~100,000のものが取り扱いの容易さの点から好ましい。さらに1,500~30,000のものが硬化物の耐候性、作業性が良好であることからより好ましい。

《分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物(II)について》

本発明の硬化性組成物に含有される分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物(II)としては、一般によく知られたものが利用できる。なお、本明細書中、上記 α , β ジオール構造は、隣接する炭素原子に2つの水酸基を有する構造を表し、上記 α , γ ジオール構造は、一つおいて隣り合う炭素原子に2つの水酸基を有する構造を表し、また、グリセリン等に代表されるように、 α , β ジオール構造と α , γ ジオール構造の両方、ないしは何れかの構造を含むトリオールやテトラオール等のポリオールも含む。

[0114]

上記分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物としては特に限定されず、例えば、エチレングリコール、プロピレングリコール、1, 3 ープロパンジオール、1, 2 ープタンジオール、1, 3 ープタンジオール、2, 2 ージメチルー1, 3 ープロパンジオール、2, 2 ージメチルー1, 3 ープロパンジオール、2 ール、2 ーメチルー2 ーヒドロキシメチルー1, 3 ープロパンジオール等のジオール類; グリセリン、1, 2, 6 ーへキサントリオール、1, 1, 1 ートリス(ヒドロキシメチル)プロパン、2, 2 ービス(ヒドロキシメチル)プタノール等のトリオール類; ペンタエリスリトール、Dーソルビトール、Dーマンニトール、ジグリセリン、ポリグリセリン等の4 価以上のポリオール類; グリセリンモノステアレート、グリセリンモノイソステアレート、グリセリンモノオレエート、グリセリンモノラウレート、グリセリンモノパルミテート、グリセリンモノカプリレート、グリセリンモノアセテート、グリセリンモノカルボン酸エステル類;

ジグリセリンモノステアレート、ジグリセリンモノオレエート、ジグリセリンモノラウレート、テトラグリセリンモノステアレート、テトラグリセリンモノオレエート、テトラグリセリンジステアレート、テトラグリセリンジオレエート、デトラグリセリンジラウレート、デカグリセリンモノステアレート、デカグリセリンモノオレエート、デカグリセリンモノラウレート、デカグリセリンジステアレート、デカグリセリンジオレエート、デカ

グリセリンジラウレート等のポリグリセリンカルボン酸エステル類;ペンタエリスリトールモノステアレート、ペンタエリスリトールモノイソステアレート、ペンタエリスリトールモノラウレート等のペンタエリスリトールモノカルボン酸エステル類;ペンタエリスリトールジステアレート、ペンタエリスリトールジオレエート、ペンタエリスリトールジラウレート等のペンタエリスリトールジカルボン酸エステル類:

ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンモノラ ウレート、ソルビタンモノパルミテート、ソルビタンモノベヘネート等のソルビ タンモノカルボン酸エステル類;ソルビタンジステアレート、ソルビタンジオレ エート、ソルビタンジラウレート、ソルビタンジパルミテート、ソルビタンジベ ヘネート等のソルビタンジカルボン酸エスエル類;グリセリンモノステアリルエ ーテル、グリセリンモノオレイルエーテル、グリセリンモノラウリルエーテル、 グリセリンモノー2-エチルヘキシルエーテル等のグリセリンモノアルキルエー テル類;ジグリセリンモノステアリルエーテル、ジグリセリンモノオレイルエー テル、ジグリセリンモノラウリルエーテル、テトラグリセリンモノステアリルエ ーテル、テトラグリセリンモノオレイルエーテル、テトラグリセリンモノラウリ ルエーテル、テトラグリセリンジステアリルエーテル、テトラグリセリンジオレ イルエーテル、テトラグリセリンジラウリルエーテル、デカグリセリンモノステ アリルエーテル、デカグリセリンモノオレイルエーテル、デカグリセリンモノラ ウリルエーテル、デカグリセリンジステアリルエーテル、デカグリセリンジオレ イルエーテル、デカグリセリンジラウリルエーテル等のポリグリセリンアルキル エーテル類:

ペンタエリスリトールモノステアリルエーテル、ペンタエリスリトールモノオレイルエーテル、ペンタエリスリトールモノラウリルエーテル等のペンタエリスリトールジステアリルエーテルリトールジステアリルエーテル、ペンタエリスリトールジオレイルエーテル、ペンタエリスリトールジラウリルエーテル等のペンタエリスリトールジアルキルエーテル類;ソルビタンモノステアリルエーテル、ソルビタンモノオレイルエーテル、ソルビタンモノラウリルエーテル等のソルビタンモノアルキルエーテル類;ソルビタンジステアリルエーテ

ル、ソルビタンジオレイルエーテル、ソルビタンジラウリルエーテル等のソルビタンジアルキルエーテル類等を挙げることができる。

[0115]

上記化合物の多くは、乳化剤、界面活性剤、分散剤、消泡剤、防曇剤、可溶化剤、増粘剤、滑剤として汎用のものが多く、容易に入手できる。

[0116]

上記の化合物(II)は、単独で使用してもよいし2種以上併用してもよい。上記の化合物(II)の使用量は、上記(I)成分であるビニル系重合体100重量部に対し、0.01~100重量部が好ましい。0.01重量部未満であると、目的とする効果が得られず、100重量部を超えると、硬化物の機械的強度が不足するという問題点を生じるため好ましくない。より好ましくは、0.1~20重量部である。

《ポリオール (III)》

なお本発明においては、上記の化合物(II)の上位概念であるポリオール(III)を用いることも可能であり、ポリオール(III)を用いれば、化合物(II)と同様の効果を発揮させることができる。ポリオール(III)の好ましい分子量や使用量は、上記化合物(II)の場合と同様である。

《架橋性官能基を有するポリエーテル系重合体》

主鎖

ポリエーテル系重合体の主鎖は特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド、ポリフェニレンオキシドなどが挙げられる。このうち、本質的にポリオキシアルキレンであることが好ましく、本質的にポリプロピレンオキシドであることがより好ましく、これは、プロピレンオキシド以外に、エチレンオキシド、ブチレンオキシド、フェニレンオキシドなどを含んでもよい。また、ポリエーテル系重合体は、主鎖中にウレタン結合を含んでいてもよく、含んでいなくてもよい。ここで「主鎖が本質的にポリプロピレンオキシドである」とは、プロピレンオキシド単位が、主鎖を構成する繰り返し単位のうち50%以上、好ましくは70%以上、より好ましくは90%以上を占めることをいう。より低粘度であれば取扱い性が良好になるので、ポリ

プロピレンオキシド系重合体の分子量分布(Mw/Mn)が1.5以下のものがより好ましい。

架橋性官能基

ポリエーテル系重合体中の架橋性官能基としては特に限定されず、好ましいものとして、架橋性シリル基、アルケニル基、水酸基、アミノ基、重合性の炭素一炭素二重結合を有する基、エポキシ基が挙げられる。特に、架橋性シリル基が好ましい。

[0117]

ポリエーテル系重合体が有する架橋性官能基の個数は少なくとも1個有するのが好ましいが、1個以下でも構わない。組成物の硬化性の観点から、1個より多く有することが好ましく、より好ましくは平均して1.1~4.0個、さらに好ましくは平均して1.5~2.5個である。また、架橋性官能基は、ポリエーテル系重合体の末端にあることが、硬化物のゴム弾性の観点から好ましい。より好ましくは重合体の両末端に官能基があることである。

分子量

この架橋性官能基を少なくとも一個有するポリエーテル系重合体としては、数平均分子量7500以上のものが好ましいが7500以下でも構わない。特に数平均分子量7500~25000の有機重合体を使用することがより好ましい。ポリエーテル系重合体の数平均分子量が7500より低い場合は硬化物が硬く、かつ伸びが低いものとなり、数平均分子量が25000を超えると硬化物の柔軟性および伸びは問題ないが、該重合体自体の接着性が著しく低くなってしまい、実用性が低くなる。但し、分子量が低くても、架橋性官能基の個数が少ないと柔軟性および伸びが向上することがあるし、分子量が高くても、架橋性官能基の個数が多いと接着性が向上することがある。数平均分子量は特に8000~2000が3から好ましいが、8000以下でも構わないし、20000以上でも構わない。

混合比

ビニル系重合体とポリエーテル系重合体の混合比は任意の割合でよいが、混合する場合は重量比で100/1~1/100の範囲が好ましく、100/5~5

✓100の範囲にあることがより好ましく、100/10~10/100の範囲にあることがさらに好ましい。ビニル系重合体のプレンド比が少ないと、本発明の効果の1つである優れた耐候性が発現されにくい場合がある。

[0118]

上記のポリエーテル系重合体中に一般的なラジカル重合法で製造された (メタ) アクリル系重合体、または高温連続塊状重合体 (例えば東亜合成 (株) 製SGOオリゴマーまたはそれらのシリル化物をあらかじめ混合させたものをビニル系重合体との混合に用いてもよい。

<架橋性シリル基を有するポリエーテル系重合体>

以下に架橋性シリル基を有するポリエーテル系重合体について説明する。

[0119]

主鎖

架橋性シリル基を有するポリエーテル系重合体の主鎖構造としては、上記したものと同じである。主鎖は直鎖状であっても分枝状であってもよく、あるいは、これらの混合物であってもよい。その中でも特に好ましいのはポリオキシプロピレンジオール、ポリオキシプロピレントリオールやそれらの混合物に起因する主鎖である。また、他の単量体単位等が含まれていてもよいが、上記式に表わされる単量体単位が、重合体中に50重量%以上、好ましくは80重量%以上存在することが好ましい。

[0120]

なお、主鎖中にウレタン結合、ないしはウレア結合を含んでいてもよく、含ん でいなくてもよい。

[0121]

ポリエーテル系重合体の分子構造は、使用用途や目的とする特性により相違し、特開昭63-112642記載のもの等が使用できる。このようなポリオキシアルキレンは通常の重合方法(苛性アルカリを用いるアニオン重合法)や、セシウム金属触媒、特開昭61-197631号、特開昭61-215622号、特開昭61-215623号および特開昭61-218632号等に例示されるポルフィリン/アルミ錯体触媒、特公昭46-27250号及び特公昭59-15

336号等に例示される複合金属シアン化錯体触媒、特開平10-273512に例示されるポリフォスファゼン塩からなる触媒を用いた方法等により得ることができる。

ポルフィリン/アルミ錯体触媒、複合金属シアン化錯体触媒やポリフォスファゼン塩からなる触媒を用いた方法では分子量分布(Mw/Mn)が1.6以下、さらには1.5以下などの小さい値のオキシアルキレン重合体を得ることができ、分子量分布が小さい場合、硬化物の低モジュラスと高伸びを維持して組成物粘度を小さくできるという利点がある。

架橋性シリル基

架橋性シリル基としては、ビニル系重合体と同様に、一般式(1)で表される基を用いることができ、一般式(6)で表される基が好ましい。一般式(1)や一般式(6)で表される基についてした説明は架橋性シリル基を有するポリエーテル系重合体についても同じように適用される。ポリエーテル系重合体中の架橋性シリル基は、架橋性シリル基を有するビニル系重合体中の架橋性シリル基と同じ構造のものでもよいし、異なる構造のものでもよい。

[0122]

架橋性シリル基とポリエーテル部分の間の結合部は、耐加水分解性を有することから、シリル基のケイ素原子とポリエーテル部分のエーテル酸素原子の間に少なくとも3個の炭素原子が存在するように、トリメチレン、テトラメチレンのようなアルキレン基であることが好ましい。

架橋性シリル基の数と位置

架橋性シリル基の数は組成物の硬化性等の観点から少なくとも1.2個より多く有することが好ましく、1.2個以上4.0以下であることがより好ましく、更に好ましくは1.5~2.5個以下である。また、ポリエーテル系重合体の架橋性シリル基は、硬化物のゴム弾性の観点から分子鎖の末端にあることが好ましく、より好ましくは重合体の両末端に官能基があることである。

[0123]

また、平均して1.2個未満の架橋性シリル基を有するポリエーテル重合体を を使用することもできる。この場合、高い破断時伸び性、低ブリード性、表面低

汚染性、優れた塗料密着性を有する硬化物を得ることができる。また、この重合体の分子量をより小さく設定することにより、組成物の粘度を低下させることができる。架橋性シリル基の個数の下限は少なくとも0.1個以上であることが好ましく、0.3個以上であることがより好ましく、0.5個以上であることが更に好ましい。架橋性シリル基は分子鎖の末端にあることが好ましい。また、このポリエーテル系重合体の架橋性シリル基は、主鎖中の一つの末端にのみ有し、他の末端には有しないものが好ましいが、平均して1.2個以下であれば特に限定されるものではない。平均して1.2個未満の架橋性シリル基を有するポリエーテル重合体を使用して低粘度化を図る場合、好ましい分子量は10,000未満、さらには5,000未満である。

架橋性シリル基の導入法

架橋性シリル基の導入は公知の方法で行なえばよい。すなわち、例えば、以下の方法が挙げられる。例えば複合金属シアン化錯体触媒を用いて得られるオキシアルキレン重合体の場合は特開平3-72527に、ポリフォスファゼン塩と活性水素を触媒として得られるオキシアルキレン重合体の場合は特開平11-60723に記載されている。

[0124]

(1)末端に水酸基等の官能基を有するオキシアルキレン重合体と、この官能 基に対して反応性を示す活性基及び不飽和基を有する有機化合物を反応させるか 、もしくは不飽和基含有エポキシ化合物との共重合により、不飽和基含有オキシ アルキレン重合体を得る。次いで、得られた反応生成物に架橋性シリル基を有す るヒドロシランを作用させてヒドロシリル化する。

[0125]

(2) (1) 法と同様にして得られた不飽和基含有オキシアルキレン重合体に メルカプト基及び架橋性シリル基を有する化合物を反応させる。

[0126]

(3)末端に水酸基、エポキシ基やイソシアネート基等の官能基(以下、Y官能基という)を有するオキシアルキレン重合体に、このY官能基に対して反応性を示す官能基(以下、Y'官能基という)及び架橋性シリル基を有する化合物を

反応させる。

[0127]

このY' 官能基を有するケイ素化合物としては、 $\gamma-(2-7ミノエチル)$ ア ミノプロピルトリメトキシシラン、γー (2-アミノエチル) アミノプロピルメ チルジメトキシシラン、γーアミノプロピルトリエトキシシラン、3ーアミノ, 2-メチルプロピルトリメトキシシラン、N-エチルー3-アミノ,2-メチル プロピルトリメトキシシラン、4ーアミノ、3ーメチルプロピルトリメトキシシ ラン、4-アミノ,3-メチルプロピルメチルジメトキシシラン、N-フェニル 3-アミノプロピルトリメトキシシラン、さらには各種アミノ基含有シランと マレイン酸エステルやアクリレート化合物との部分マイケル付加反応物などのよ うなアミノ基含有シラン類;γーメルカプトプロピルトリメトキシシラン、γー メルカプトプロピルメチルジメトキシシランなどのようなメルカプト基含有シラ ン類; γ ーグリシドキシプロピルトリメトキシシラン、 β ー (3, 4 ーエポキシ シクロヘキシル) エチルトリメトキシシランなどのようなエポキシシラン類;ビ ニルトリエトキシシラン、γーメタクリロイルオキシプロピルトリメトキシシラ ン、γーアクリロイルオキシプロピルメチルジメトキシシランなどのようなビニ ル型不飽和基含有シラン類;γークロロプロピルトリメトキシシランなどのよう な塩素原子含有シラン類; γ ーイソシアネートプロピルトリエトキシシラン、 γ ーイソシアネートプロピルメチルジメトキシシラン、γ ーイソシアネートプロピ ルトリメトキシシランなどのようなイソシアネート含有シラン類;メチルジメト キシシラン、トリメトキシシラン、メチルジエトキシシラン、トリエトキシシラ ンなどのようなハイドロシラン類などが具体的に例示されうるが、これらに限定 されるものではない。

[0128]

また、架橋性シリル基の数が平均して1.2個以下の重合体を製造する場合、 架橋性シリル基を導入する際に、分子内にただ一個の官能基を有するポリエーテル系重合体を用い、その官能基と当量ないしはより少ない量の、架橋性シリル基 を有する化合物を反応させることにより、架橋性シリル基を平均して1.2個以 下有するポリエーテル系重合体を得る方法と、平均して分子内に一個以上の官能

基を有するポリエーテル系重合体を用い、その官能基よりも更に少ない架橋性シリル基を有する化合物を反応させることにより、結果的に架橋性シリル基を平均して1.2個以下有するポリエーテル系重合体を得る方法がある。

[0129]

架橋性シリル基を有するポリエーテル系重合体の使用量

架橋性シリル基を有するポリエーテル系重合体の使用量としては、ビニル系重合体とポリエーテル系重合体の混合比は重量比で $100/1\sim1/100$ の範囲が好ましく、 $100/5\sim5/100$ の範囲にあることがより好ましく、 $100/10\sim10/100$ の範囲にあることが更に好ましい。ビニル系重合体の量が少なすぎると耐候性や耐熱性が低下することがある。

[0130]

平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体を使用する場合その使用量としては、ビニル系重合体100重量部に対し1重量部以上200重量部以下が好ましく、3重量部以上100重量部以下がより好ましく、5重量部以上80重量部以下が更に好ましい。1重量部未満では添加効果が得られにくく、200重量部を超えると硬化物の物性が不安定になる傾向がある。

[0131]

混合使用する態様として、①一般式(1)で表される架橋性シリル基を有するビニル系重合体に、架橋性シリル基を有するポリエーテル系重合体とさらに平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体を添加すること、②架橋性シリル基を有するポリエーテル系重合体とさらに片末端に架橋性シリル基を有するビニル系重合体を添加すること、③架橋性シリル基を有するポリエーテル系重合体とさらに架橋性官能基を有し分子量分布が1.8以上のビニル系重合体を添加する場合、平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体とさらに片末端に架橋性シリル基を有するビニル系重合体を添加すること、④平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体と空島に片末端に架橋性シリル基を有するポリエーテル系重合体と架橋性官能基を有し分子量分布が1.8以上のビニル系重合体を添加すること等があげられるがこれらに限定されない。

<アルケニル基を有するポリエーテル重合体>

以下にアルケニル基を有するポリエーテル系重合体について説明する。

[0132]

主鎖、アルケニル基の数と位置は前記の架橋性シリル基を有するポリエーテル 系重合体の場合と同様である。

アルケニル基

本発明におけるアルケニル基は、限定はされないが、一般式 (28) で表される ものであることが好ましい。

 $H_2C = C (R^{26}) - (28)$

(式中、R²⁶は水素原子あるいは炭素数1~20の炭化水素基である)

一般式(28)において、 R^{26} は水素原子あるいは炭素数 $1\sim20$ の炭化水素基であり、具体的には以下のような基が例示される。

 $\begin{array}{l} - \text{ (CH$_2$) }_{n} - \text{CH$_3$, -CH (CH$_3$)} - \text{ (CH$_2$) }_{n} - \text{CH$_3$, -CH (CH$_2$CH$_3$)} \\ \text{H$_3$)} - \text{ (CH$_2$) }_{n} - \text{CH$_3$, -CH (CH$_2$CH$_3$)}_{2}, -\text{C (CH$_3$)}_{2} - \text{(CH$_2$)}_{2} \\ \text{2) }_{n} - \text{CH$_3$, -C (CH$_3$)} + \text{(CH$_2$CH$_3$)}_{2} - \text{(CH$_2$)}_{2} - \text{CH$_3$, -C$_6$H$_5$, -$

(nは0または1以上の整数で、各基の合計炭素数は20以下)

これらの内では、水素原子が好ましい。

アルケニル基と重合体の主鎖の結合形式は、特に限定されないが、炭素 - 炭素結合、エステル結合、エステル結合、カーボネート結合、アミド結合、ウレタン結合等を介して結合されていることが好ましい。

アルケニル基の導入方法

アルケニル基の導入は公知の方法で行なえばよい。すなわち、例えば、以下の方法が挙げられる。例えば複合金属シアン化錯体触媒を用いて得られるオキシアルキレン重合体の場合は特開平3-72527に、ポリフォスファゼン塩と活性水素を触媒として得られるオキシアルキレン重合体の場合は特開平11-60723に記載されている。

(1) 末端に水酸基等の官能基を有するオキシアルキレン重合体と、この官能基 に対して反応性を示す活性基及びアルケニル基を有する有機化合物を反応させる か、もしくはアルケニル基含有エポキシ化合物との共重合により、アルケニル基 含有オキシアルキレン重合体を得る。

(2)末端に水酸基、エポキシ基やイソシアネート基等の官能基(以下、Y官能基という)を有するオキシアルキレン重合体に、このY官能基に対して反応性を示す官能基(以下、Y'官能基という)及びアルケニル基を有する化合物を反応させる。

このY'官能基を有するケイ素化合物としては、アリルグリシジルエーテルなどのようなアルケニル基含有エポキシ化合物類;アリルメタクリレート、アリルアクリレートなどのようなアルケニル基含有(メタ)アクリレート類;アリルイソシアネートなどのようなアルケニル基含有イソシアネート類、アリルアミンなどのようなアルケニル基含有アミン類;アリルメルカプタンなどのようなアルケニル基含有メルカプタン類;などが具体的に例示されうるが、これらに限定されるものではない。

《各種の架橋性官能基を有する重合体任意成分》

本発明の硬化性組成物においては、任意成分として各種の架橋性官能基を有する重合体を添加しても構わない。架橋性官能基を有する重合体としては、(i) 架橋性官能基を有するポリイソブチレン系重合体、特に架橋性シリル基を有するポリイソブチレン系重合体、(ii) ポリシロキサンを例示することができる。これらの重合体の1種または2種以上を添加することが出来る。

[0133]

これらの重合体任意成分を、本発明の架橋性シリル基を有するビニル系重合体に添加する際に、珪素原子1つあたり2つの加水分解性基が結合してなる加水分解性珪素基を有するビニル系重合体と、架橋性官能基1つあたり3つの加水分解性基が結合してなる重合体任意成分を組合せても良いし、逆に、珪素原子1つあたり3つの加水分解性基が結合してなる加水分解性珪素基を有するビニル系重合体と、架橋性官能基1つあたり2つの加水分解性基が結合してなる重合体任意成分を組合せても良い。また、何れの重合体も3つの加水分解性基が結合してなる架橋性官能基を有する組合せでも構わないし、2つの加水分解性基が結合してなる架橋性官能基を有する組合せでも構わない。更には、1つから3つのものが混

《硬化性組成物》

本発明の硬化性組成物においては、硬化触媒や硬化剤が添加されることが多い。また、目的とする物性に応じて、各種の配合剤を添加しても構わない。 <硬化触媒・硬化剤>

架橋性シリル基を有する重合体は、従来公知の各種縮合触媒の存在下、あるいは非存在下にシロキサン結合を形成することにより架橋、硬化する。硬化物の性状としては、重合体の分子量と主鎖骨格に応じて、ゴム状のものから樹脂状のものまで幅広く作成することができる。

[0134]

このような縮合触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫 ジアセテート、ジブチル錫ジエチルヘキサノエート、ジブチル錫ジオクテート、 ジブチル錫ジメチルマレート、ジブチル錫ジエチルマレート、ジブチル錫ジブチ ルマレート、ジブチル錫ジイソオクチルマレート、ジブチル錫ジトリデシルマレ ート、ジブチル錫ジベンジルマレート、ジブチル錫マレエート、ジオクチル錫ジ アセテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオク チル錫ジエチルマレート、ジオクチル錫ジイソオクチルマレート等のジアルキル 錫ジカルボキシレート類、例えば、ジブチル錫ジメトキシド、ジブチル錫ジフェ ノキシド等のジアルキル錫アルコキシド類、例えば、ジブチル錫ジアセチルアセ トナート、ジブチル錫ジエチルアセトアセテートなどのジアルキル錫の分子内配 位性誘導体類、例えば、ジブチル錫オキシドやジオクチル錫オキシド等のジアル キル錫オキシドと例えば、ジオクチルフタレート、ジイソデシルフタレート、メ チルマレエート等のエステル化合物との反応物、例えば、ジブチル錫ビストリエ トキシシリケート、ジオクチル錫ビストリエトキシシリケート等のジアルキル錫 オキシドとシリケート化合物との反応物、およびこれらジアルキル錫化合物のオ キシ誘導体(スタノキサン化合物)等の4価のスズ化合物類;例えば、オクチル 酸錫、ナフテン酸錫、ステアリン酸錫、フェルザチック酸スズ等の2価のスズ化 合物類、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物 および混合物;例えば、モノブチル錫トリスオクトエートやモノブチル錫トリイ

ソプロポキシド等のモノブチル錫化合物やモノオクチル錫化合物等のモノアルキ ル錫類;例えば、テトラブチルチタネート、テトラプロピルチタネート、テトラ (2-エチルヘキシル) チタネート、イソプロポキシチタンビス (エチルアセト アセテート)等のチタン酸エステル類;アルミニウムトリスアセチルアセトナー ト、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウ ムエチルアセトアセテート等の有機アルミニウム化合物類;カルボン酸ビスマス 、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム 、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カル ボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケ ル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム等のカルボ ン酸(2-エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナ フテン酸等)金属塩、あるいはこれらと後述のラウリルアミン等のアミン系化合 物との反応物および混合物;ジルコニウムテトラアセチルアセトナート、ジルコ ニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチル アセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテー ト、チタンテトラアセチルアセトナート等のキレート化合物類;メチルアミン、 エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルア ミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルア ミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ス[・] テアリルアミン、シクロヘキシルアミン等の脂肪族第一アミン類;ジメチルアミ ン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミ ン、ジアミルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジ デシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチ ルステアリルアミン、エチルステアリルアミン、プチルステアリルアミン等の脂 肪族第二アミン類;トリアミルアミン、トリヘキシルアミン、トリオクチルアミ ン等の脂肪族第三アミン類;トリアリルアミン、オレイルアミン、などの脂肪族 不飽和アミン類;ラウリルアニリン、ステアリルアニリン、トリフェニルアミン 等の芳香族アミン類;および、その他のアミン類として、モノエタノールアミン 、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエ

チレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、 ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキ サメチレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジ ン、2, 4, 6ートリス(ジメチルアミノメチル)フェノール、モルホリン、Nーメチルモルホリン、2-エチルー4-メチルイミダゾール、1,8-ジアザビ シクロ(5, 4, 0)ウンデセンー7(DBU)等のアミン系化合物、あるいは これらのアミン系化合物のカルボン酸等との塩;ラウリルアミンとオクチル酸錫 の反応物あるいは混合物のようなアミン系化合物と有機錫化合物との反応物およ び混合物;過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂 ;過剰のポリアミンとエポキシ化合物との反応生成物;γーアミノプロピルトリ メトキシシラン、γーアミノプロピルトリエトキシシラン、γーアミノプロピル トリイソプロポキシシラン、γーアミノプロピルメチルジメトキシシラン、γー アミノプロピルメチルジエトキシシラン、 N ー(β ーアミノエチル)アミノプロ ピルトリメトキシシラン、N-($\beta-$ アミノエチル)アミノプロピルメチルジメ トキシシラン、 $N-(\beta-r$ ミノエチル) アミノプロピルトリエトキシシラン、 N-(β-アミノエチル)アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル) アミノプロピルトリイソプロポキシシラン、γーウレイドプロピ ルトリメトキシシラン、Nーフェニルー γ ーアミノプロピルトリメトキシシラン 、Nーベンジルー γ ーアミノプロピルトリメトキシシラン、Nービニルベンジル - γ - アミノプロピルトリエトキシシラン等を挙げることができる。また、これ らを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマ ー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリ ル化シリコーン等のアミノ基を有するシランカップリング剤;等のシラノール縮 合触媒、さらにはフェルザチック酸等の脂肪酸や有機酸性リン酸エステル化合物 等他の酸性触媒、塩基性触媒等の公知のシラノール縮合触媒等が例示できる。

[0135]

酸性触媒の有機酸性リン酸エステル化合物としては、(CH_3O) $_2-P$ (=O) (-OH) \cdot (CH₃O) -P (=O) (-OH) $_2$ (C₂H₅O) $_2$ -P (= O) (-OH), $(C_2H_5O) - P (=O) (-OH)_2$, $(C_3H_7O)_2 - P ($ =O) (-OH)、(C₃H₇O) -P (=O) (-OH)₂、(C₄H₉O)₂-P (=O) (-OH)、(C₄H₉O) -P (=O) (-OH)₂、(C₈H₁₇O)₂ -P (=O) (-OH)、(C₈H₁₇O) -P (=O) (-OH)₂、(C₁₀H₂₁O)₂ -P (=O) (-OH)、(C₁₀H₂₁O) -P (=O) (-OH)₂、(C₁₀H₂₁O)₂ -P (=O) (-OH)、(C₁₀H₂₁O) -P (=O) (-OH)₂、(C₁₀H₂₁O)₂ -P (=O) (-OH)、(C₁₀H₃₀O) -P (=O) (-OH)₂、(C₁₆H₃₃O)₂-P (=O) (-OH)、(C₁₆H₃₃O) -P (=O) (-OH)₂、(HO-C₆H₁₂O)₂-P (=O) (-OH)、(HO-C₆H₁₂O) -P (=O) (-OH)₂、(HO-C₈H₁₆O) -P (=O) (-OH)、(HO-C₈H₁₆O) -P (=O) (-OH)、(HO-C₈H₁₆O) -P (=O) (-OH) (CHOH) O]₂ -P (=O) (-OH)、[(CH₂OH) (CHOH) O] -P (=O) (-OH)₂、[(CH₂OH) (CHOH) O] -P (=O) (-OH)₃、[(CH₂OH) (CHOH) O] -P (=O) (-OH)₃、[(CH₂OH) (CHOH) C₂H₄O]₂-P (=O) (-OH)₃ (CH₂OH) (CHOH) C₂H₄O]₂-P (=O) (-OH)₃ (CH₂OH) (CHOH) C₂H₄O]₁-P (=O) (-OH)₂ などがあげられるが、例示物質に限定されるものではない。

[0136]

これら有機酸類とアミンの併用系は、触媒活性が高くなるため、使用量を減少できる観点でより好ましい。有機酸とアミン併用系の中では、酸性リン酸エステルとアミン、有機カルボン酸とアミン、特に有機酸性リン酸エステルとアミン、脂肪族カルボン酸とアミンの併用系は、触媒活性がより高く、速硬化性の観点で好ましい。

[0137]

これらの触媒は、単独で使用してもよく、2種以上併用してもよい。この縮合触媒の配合量は、架橋性シリル基を有する重合体100部(重量部、以下同じ)に対して0.01~20部程度が好ましく、0.5~5部が更に好ましい。シラノール縮合触媒の配合量がこの範囲を下回ると硬化速度が遅くなることがあり、また硬化反応が十分に進行し難くなる場合がある。一方、シラノール縮合触媒の配合量がこの範囲を上回ると硬化時に局部的な発熱や発泡が生じ、良好な硬化物が得られ難くなるほか、ポットライフが短くなり過ぎ、作業性の点からも好ましくない。なお、特に限定はされないが、錫系硬化触媒が硬化性を制御し易い点で好ましい結果を与える。

[0138]

特に限定はされないが、後述のような1成分系組成物にする際には、硬化速度 や組成物の貯蔵安定性などの面から、錫系硬化触媒の場合、4価錫が好ましいが 、2価錫と有機アミンの組み合わせや非錫化合物も使用できる。

[0.139]

また、特に限定はされないが、サイディンクボード用シーリング剤等の用途に用いる際には、1成分系、2成分系問わず、硬化物が応力緩和し易いことから、被着体にダメージを与えない、接着界面での剥離が起き難いなどの面から、4価錫が好ましい。

[0.140]

近年、環境問題に焦点が当てられ、錫系触媒が嫌われることもあるが、その様な場合にはカルボン酸ビスマスやカルボン酸チタン等他の非錫系触媒を選択しても良い。

[0141]

また、本発明の硬化性組成物においては、縮合触媒の活性をより高めるために、アミン系化合物と同様に、上記のアミノ基を有するシランカップリング剤を助触媒として使用することも可能である。このアミノ基含有シランカップリング剤は、加水分解性基が結合したケイ素原子を含む基(以下加水分解性シリル基という)及びアミノ基を有する化合物であり、この加水分解性基として既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。

[0142]

これらのアミン化合物の配合量は、架橋性シリル基を有する重合体100重量部に対して0.01~50重量部程度が好ましく、更に0.1~20重量部がより好ましい。アミン化合物の配合量が0.01重量部未満であると硬化速度が遅くなる場合があり、また硬化反応が充分に進行し難くなる場合がある。一方、アミン化合物の配合量が30重量部を越えると、ポットライフが短くなり過ぎる場合があり、作業性の点から好ましくない。

[0143]

これらのアミン化合物は、1種類のみで使用しても良いし、2種類以上混合使用しても良い。

[0144]

更に、アミノ基やシラノール基をもたないケイ素化合物を助触媒として添加しても構わない。これらのケイ素化合物としては、限定はされないが、フェニルトリメトキシシラン、フェニルメチルジメトキシシラン、フェニルジメチルメトキシシラン、ジフェニルジメトキシシラン、ドリフェニルメトキシシラン等が好ましい。特に、ジフェニルジメトキシシランやジフェニルジエトキシシランは、低コストであり、入手が容易であるために最も好ましい。

[0145]

このケイ素化合物の配合量は、架橋性シリル基を有する重合体100部に対して0.01~20部程度が好ましく、0.1~10部が更に好ましい。ケイ素化合物の配合量がこの範囲を下回ると硬化反応を加速する効果が小さくなる場合がある。一方、ケイ素化合物の配合量がこの範囲を上回ると、硬化物の硬度や引張強度が低下することがある。

[0146]

なお、硬化触媒・硬化剤の種類や添加量は目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。また、架橋性シリル基を有する重合体のシリル基の反応性によっても硬化触媒・硬化剤の種類や添加量を変えることが可能であり、反応性が高い場合は0.01~1部の少量の範囲で充分硬化させることが可能である。

[0147]

硬化触媒・硬化剤の種類や添加量は、本発明のビニル系重合体のYの種類とaの数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。Yがアルコキシ基である場合、炭素数の少ない方が反応性が高く、またaが多い方が反応性が高いため少量で充分硬化させることが可能である。

<脱水剤>

硬化性組成物は、作製する際の水分等によって、その貯蔵している間に増粘、 ゲル化が進み、使用する際の作業性に難が生じたり、また、その増粘、ゲル化が 進んだ硬化性組成物を使用することにより、硬化後の硬化物の物性が低下して、 本来の目的であるシール性等を損なったりする問題が生じることがある。つまり 硬化性組成物の貯蔵安定性が問題となることがある。

[0148]

この硬化性組成物の貯蔵安定性を改良するには、硬化性組成物に、共沸脱水により含水分量を減らす方法がある。例えば、水に対して極小共沸点を有する揮発性有機化合物を 0. 1~10重量部程度添加し、均一に混合した後、50~90 C程度に加熱し真空ポンプで吸引しながら水ー有機化合物の共沸組成物を形骸に取出す方法が挙げられる。水に対して極小共沸点を有する揮発性有機化合物としては塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン等のハロゲン化物;エタノール、アリルアルコール、1ープロパノール、ブタノール等のアルコール類;酢酸エチル、プロピオン酸メチル等のエステル類;メチルエチルケトン、3ーメチルー2ーブタノン等のケトン類;エチルエーテル、イソプロピルエーテル等のエーテル類;ベンゼン、トルエン、キシレン、ヘキサン等の炭化水素類等が例示できる。しかしながら、この方法は脱揮操作が入るため、揮発性の他の配合剤に対する工夫が必要となったり、共沸させる揮発性有機化合物の処理、回収等が必要になったりする。そのため、以下の脱水剤を添加する方が好ましいことがある。

[0149]

上述の様に、本発明の組成物には、貯蔵安定性を改良する目的で組成物中の水分を除去するための脱水剤を添加することができる。脱水剤としては、例えば、5酸化リンや炭酸水素ナトリウム、硫酸ナトリウム(無水ボウ硝)、モレキュラーシープス等の無機固体等が挙げられる。これらの固体脱水剤でも構わないが、添加後の液性が酸性や塩基性に傾いて逆に縮合し易く貯蔵安定性が悪くなったり、固体を後で取り除くなどの作業性が悪くなったりすることもあるため、後述の、液状の加水分解性のエステル化合物が好ましい。加水分解性のエステル化合物としては、オルトぎ酸トリメチル、オルトぎ酸トリエチル、オルトぎ酸トリプロ

[0150]

それ以外の加水分解性のエステル化合物としては、更に、式 $R_{4-n}S$ i Y_n (式 中、Yは加水分解可能な基、Rは有機基で官能基を含んでいても含まなくともよ い。nは1~4の整数であり、好ましくは3または4である)で示される加水分 解性有機シリコン化合物が挙げられ、その具体例としては、ビニルトリメトキシ シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエ トキシシラン、フェニルトリエトキシシラン、メチルトリアセトキシシラン、オ ルトケイ酸テトラメチル(テトラメトキシシランないしはメチルシリケート)、 オルトケイ酸テトラエチル (テトラエトキシシランないしはエチルシリケート) 、オルトケイ酸テトラプロピル、オルトケイ酸テトラブチル等のシラン化合物ま たはこれらの部分加水分解縮合物、 γ - アミノプロピルトリメトキシシラン、 γ ーグリシドキシプロピルトリメトキシシラン、 $N-(\beta-r$ ミノエチル) $-\gamma-$ アミノプロピルトリメトキシシラン、γーアクリロキシプロピルトリメトキシシ ラン、γーメタクリロキシプロピルトリメトキシシラン、γーグリシドキシプロ \mathbb{C}^{2} ルトリメトキシシラン、 γ -メルカプトプロピルトリメトキシシラン、 $\mathbb{N}-$ (β ーアミノエチル) $-\gamma$ ーアミノプロピルメチルジメトキシシラン等のシランカ ップリング剤、またはこれらの部分加水分解縮合物等が挙げられる。これらの中 から1種または2種以上併用して配合することができる。

[0151]

貯蔵安定性改良剤の使用量としては、ビニル系重合体100重量部に対し、 $0.1 \sim 30$ 重量部、好ましくは $0.3 \sim 20$ 重量部、より好ましくは $0.5 \sim 10$ 重量部である。

[0152]

なお、これらの貯蔵安定性改良剤を添加する際には硬化性組成物を無水の状態 にしてから行なうのが好ましいが、水分を含んだままの状態で添加しても構わな

130

<接着性付与剤>

本発明の組成物には、シランカップリング剤や、シランカップリング剤以外の 接着性付与剤を添加することができる。接着付与剤を添加すると、外力により目 地幅等が変動することによって、シーリング材がサイディングボード等の被着体 から剥離する危険性をより低減することができる。また、場合によっては接着性 向上の為に用いるプライマーの使用の必要性がなくなり、施工作業の簡略化が期 待される。シランカップリング剤の具体例としてはアミノ基や、メルカプト基、 エポキシ基、カルボキシル基、ビニル基、イソシアネート基、イソシアヌレート 、ハロゲン等の官能基をもったシランカップリング剤が例示でき、その具体例と しては、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネート プロピルトリエトキシシラン、γーイソシアネートプロピルメチルジエトキシシ ラン、γ-イソシアネートプロピルメチルジメトキシシラン等のイソシアネート 基含有シラン類;γーアミノプロピルトリメトキシシラン、γーアミノプロピル トリエトキシシラン、γーアミノプロピルトリイソプロポキシシラン、γーアミ ノプロピルメチルジメトキシシラン、γーアミノプロピルメチルジエトキシシラ ン、 γ - $(2-アミノエチル) アミノプロピルトリメトキシシラン、<math>\gamma$ - (2-アミノエチル) アミノプロピルメチルジメトキシシラン、γー(2-アミノエチ ル) アミノプロピルトリエトキシシラン、γ-(2-アミノエチル) アミノプロ ピルメチルジエトキシシラン、γ - (2-アミノエチル) アミノプロピルトリイ ソプロポキシシラン、 γ -ウレイドプロピルトリメトキシシラン、N -フェニル ーγーアミノプロピルトリメトキシシラン、Nーベンジルーγーアミノプロピル トリメトキシシラン、Nービニルベンジルーγーアミノプロピルトリエトキシシ ラン等のアミノ基含有シラン類;γーメルカプトプロピルトリメトキシシラン、 γーメルカプトプロピルトリエトキシシラン、γーメルカプトプロピルメチルジ メトキシシラン、γ - メルカプトプロピルメチルジエトキシシラン等のメルカプ ト基含有シラン類;γーグリシドキシプロピルトリメトキシシラン、γーグリシ ドキシプロピルトリエトキシシラン、γーグリシドキシプロピルメチルジメトキ シシラン、 β - (3 , 4 -エポキシシクロヘキシル) エチルトリメトキシシラン

、etaー(3,4ーエポキシシクロヘキシル)エチルトリエトキシシラン等のエポ キシ基含有シラン類; β - カルボキシエチルトリエトキシシラン、 β - カルボキ シエチルフェニルビス(2-メトキシエトキシ)シラン、 $N-\beta-$ (カルボキシ メチル) アミノエチルーγ-アミノプロピルトリメトキシシラン等のカルボキシ シラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γーメタク リロイルオキシプロピルメチルジメトキシシラン、γーアクロイルオキシプロピ ルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γークロロプ ロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシ リル)イソシアヌレート等のイソシアヌレートシラン類、ビス(3ートリエトキ シシリルプロピル)テトラスルファン等のポリスルファン類等を挙げることがで きる。また、上記のアミノ基含有シラン類とエポキシ基含有シラン類との反応物 、アミノ基含有シラン類とアクロイルオキシ基含有シラン類との反応物、アミノ 基含有シラン類とイソシアネート基含有シラン類との反応物も使用できる。また 、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノ ポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミ ノシリル化シリコーン、ブロックイソシアネートシラン、シリル化ポリエステル 等もシランカップリング剤として用いることができる。また、上記のアミノ基含 有シラン類と例えばメチルイソブチルケトン等のケトン化合物との反応によって 得られるケチミン化合物等もシランカップリング剤として用いることができる。

[0153]

本発明に用いるシランカップリング剤は、通常、架橋性シリル基を有する重合体100部に対し、0.1~20部の範囲で使用される。特に、0.5~10部の範囲で使用するのが好ましい。本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩ビ、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。

[0154]

シランカップリング剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、ポリスチレンーポリブタジエンーポリスチレン、ポリスチレンーポリイソプレンーポリスチレン、ポリスチレンーポリイソプレン/ブタジエン共重合体ーポリスチレン、ポリスチレンーポリエチレン/プロピレン共重合体ーポリスチレン、ポリスチレンーポリエチレン/ブチレン共重合体ーポリスチレン、ポリスチレンーポリエチレン/ブチレン共重合体ーポリスチレン、ポリスチレンーポリイソブテンーポリスチレン等の直鎖状または分岐状のブロック共重合体、アルキルスルフォン酸エステル、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。エポキシ樹脂は上記のアミノ基含有シラン類と反応させて使用することができる。

[0155]

上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。特に限定はされないが、接着性、特にオイルパンなどの金属被着面に対する接着性を向上させるために、上記接着性付与剤の中でもシランカップリング剤を0.1~20重量部、併用することが好ましい。

[0156]

接着性付与剤の種類や添加量は、本発明のビニル系重合体のYの種類とaの数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。特に硬化性や伸びに影響するためその選択には注意が必要である。

<可塑剤>

本発明の硬化性組成物には、各種可塑剤を必要に応じて用いても良い。可塑剤を後述する充填材と併用して使用すると硬化物の伸びを大きくできたり、多量の充填材を混合できたりするためより有利となるが、必ずしも添加しなければならないものではない。可塑剤としては特に限定されないが、物性の調整、性状の調節等の目的により、例えば、ジブチルフタレート、ジヘプチルフタレート、ジ(2ーエチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケー

ト、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類 ;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;ジ エチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、 ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;ト リクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリ メリット酸エステル類;ポリスチレンやポリーαーメチルスチレン等のポリスチ レン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエンーアクリ ロニトリル、ポリクロロプレン;塩素化パラフィン類;アルキルジフェニル、部 分水添ターフェニル、等の炭化水素系油;プロセスオイル類;ポリエチレングリ コール、ポリプロピレングリコール、エチレンオキサイドープロピレンオキサイ ド共重合体、ポリテトラメチレングリコール等のポリエーテルポリオール、これ らポリエーテルポリオールの水酸基の片末端または両末端もしくは全末端をアル キルエステル基またはアルキルエーテル基などに変換したアルキル誘導体等のポ リエーテル類;エポキシ化大豆油、エポキシステアリン酸ベンジル、E-PS等 のエポキシ基含有可塑剤類;セバシン酸、アジピン酸、アゼライン酸、フタル酸 等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリ コール、プロピレングリコール、ジプロピレングリコール等の2価アルコールか ら得られるポリエステル系可塑剤類;アクリル系可塑剤を始めとするビニル系モ ノマーを種々の方法で重合して得られるビニル系重合体類等が挙げられる。

[0157]

なかでも数平均分子量500~15,000の重合体である高分子可塑剤は、添加することにより、該硬化性組成物の粘度やスランプ性および該組成物を硬化して得られる硬化物の引張り強度、伸びなどの機械特性が調整できるとともに、重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持し、該硬化物にアルキッド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。なお、限定はされないがこの高分子可塑剤は、官能基を有しても有しなくても構わない。

[0158]

上記で高分子可塑剤の数平均分子量は、500~15,000と記載したが、

好ましくは800~10,000であり、より好ましくは1,000~8,000である。分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキッド塗装性が改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。

[0159]

これらの高分子可塑剤の中ではポリエーテル系可塑剤と(メタ)アクリル系重合体の型剤が高伸び特性あるいは高耐候性の点から好ましい。アクリル系重合体の合成法は、従来からの溶液重合で得られるものや、無溶剤型アクリルポリマー等を挙げることができる。後者のアクリル系可塑剤は溶剤や連鎖移動剤を使用せず高温連続重合法(USP4414370、特開昭59-6207、特公平5-58005、特開平1-313522、USP5010166)にて作製されるため本発明の目的にはより好ましい。その例としては特に限定されないが例えば東亞合成品のARUFON UPシリーズ(UP-1000、UP-1110、UP-2000、UP-2130)(SGOと呼ばれる)等が挙げられる(防水ジャーナル2002年6月号参照)。勿論、他の合成法としてリビングラジカル重合法をも挙げることができる。この方法によれば、その重合体の分子量分布が狭く、低粘度化が可能なことから好ましく、更には原子移動ラジカル重合法がより好ましいが、これに限定されるものではない。

[0160]

高分子可塑剤の分子量分布は特に限定されないが、粘度の点から狭いことが好ましく、1.8未満が好ましい。1.7以下がより好ましく、1.6以下がなお好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましく、1.3以下が最も好ましい。

[0161]

なお、粘度の点から言えば、主鎖に分岐構造を有する方が同一分子量では粘度が低くなるので好ましい。上述の高温連続重合法はこの例として挙げられる。

[0162]

上記高分子可塑剤を含む可塑剤は、単独で使用してもよく、2種以上を併用してもよいが、必ずしも必要とするものではない。また必要によっては高分子可塑

剤を用い、物性に悪影響を与えない範囲で低分子可塑剤を更に併用しても良い。 また、例えば、本発明のビニル系重合体と架橋性官能基を有する重合体任意成分 の一つであるポリエーテル系重合体とを混合した組成物の場合には、混合物の相 溶性の点から、フタル酸エステル類、アクリル系重合体が特に好ましい。

[0163]

なおこれら可塑剤は、重合体製造時に配合することも可能である。

[0164]

可塑剤を用いる場合の使用量は、限定されないが、架橋性シリル基を有する重合体100重量部に対して5~150重量部、好ましくは10~120重量部、さらに好ましくは20~100重量部である。5重量部未満では可塑剤としての効果が発現しにくく、150重量部を越えると硬化物の機械強度が不足する傾向がある。

<充填材>

本発明の硬化性組成物には、各種充填材を必要に応じて用いても良い。充填材としては、特に限定されないが、木粉、パルプ、木綿チップ、アスベスト、ガラス繊維、炭素繊維、マイカ、クルミ殻粉、もみ殻粉、グラファイト、ケイソウ土、白土、シリカ(ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、非晶質球形シリカ等)、カーボンブラックのような補強性充填材;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、ベんがら、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、亜鉛末、炭酸亜鉛およびシラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末などの充填材;石綿、ガラス繊維およびガラスフィラメント、炭素繊維、ケブラー繊維、ポリエチレンファイバー等の繊維状充填材等が挙げられる。

[0165]

これら充填材のうちでは沈降性シリカ、ヒュームドシリカ、結晶性シリカ、溶 融シリカ、ドロマイト、カーボンブラック、炭酸カルシウム、酸化チタン、タル

[0166]

特に、これら充填材で透明性または強度の高い硬化物を得たい場合には、主にヒュームドシリカ、沈降性シリカ、無水ケイ酸、含水ケイ酸、カーボンプラック、表面処理微細炭酸カルシウム、結晶性シリカ、溶融シリカ、焼成クレー、クレーおよび活性亜鉛華などから選ばれる充填材を添加できる。これらは透明建築用シーラント、透明DIY接着剤等に好適である。なかでも、比表面積(BET吸着法による)が10m²/g以上、通常50~400m²/g、好ましくは100~300m²/g程度の超微粉末状のシリカが好ましい。またその表面が、オルガノシランやオルガノシラザン、ジオルガノシクロポリシロキサン等の有機ケイ素化合物で予め疎水処理されたシリカが更に好ましい。

[0167]

補強性の高いシリカ系充填材のより具体的な例としては、特に限定されないが、ヒュームドシリカの1つである日本アエロジル社のアエロジルや、沈降法シリカの1つである日本シリカ社工業のNipsil等が挙げられる。平均粒径は1nm以上30μ以下のシリカが使用できる。特にヒュームドシリカについては、一次粒子の平均粒径1nm以上50nm以下のヒュームドシリカを用いると、補強効果が特に高いのでより好ましい。なお、本発明における平均粒径とは、篩い分け法による。具体的には、粉体を各種の目開きの篩(マイクロシーブ等)で分級し、測定に供した粉体の全重量の50重量%が通過した篩の目開きに相当する値(重量平均粒径)で定義されるものである。充填剤で補強された組成物は即固定性に優れ、自動車ガラスグレージング接着に好適である。

[0168]

透明性はPMMA粉末など樹脂粉末などを充填材に用いることによっても得る ことができる。

[0169]

また、低強度で伸びが大である硬化物を得たい場合には、主に酸化チタン、炭酸カルシウム、タルク、酸化第二鉄、酸化亜鉛およびシラスバルーンなどから選ばれる充填材を添加できる。なお、一般的に、炭酸カルシウムは、比表面積が小

さいと、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が充分でないことがある。比表面積の値が大きいほど、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果はより大きくなる。炭酸カルシウムの形状は立方形非立方形、不定形等各種の形状が使用できる。

[0170]

更に、炭酸カルシウムは、表面処理剤を用いて表面処理を施してある方がより 好ましい。表面処理炭酸カルシウムを用いた場合、表面処理していない炭酸カル シウムを用いた場合に比較して、本発明の組成物の作業性を改善し、該硬化性組 成物の接着性と耐候接着性の改善効果がより向上すると考えられる。前記の表面 処理剤としては脂肪酸、脂肪酸石鹸、脂肪酸エステル等の有機物や各種界面活性 剤、および、シランカップリング剤やチタネートカップリング剤等の各種カップ リング剤が用いられている。具体例としては、以下に限定されるものではないが 、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリ ン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸等の 脂肪酸と、それら脂肪酸のナトリウム、カリウム等の塩、そして、それら脂肪酸 のアルキルエステルが挙げられる。界面活性剤の具体例としては、ポリオキシエ チレンアルキルエーテル硫酸エステルや長鎖アルコール硫酸エステル等と、それ らのナトリウム塩、カリウム塩等の硫酸エステル型陰イオン界面活性剤、またア ルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、パラフィンスルホ ン酸、 $\alpha-$ オレフィンスルホン酸、アルキルスルホコハク酸等と、それらのナト リウム塩、カリウム塩等のスルホン酸型陰イオン界面活性剤等が挙げられる。こ の表面処理剤の処理量は、炭酸カルシウムに対して、0.1~20重量%の範囲 で処理するのが好ましく、1~5重量%の範囲で処理するのがより好ましい。処 理量が0.1重量%未満の場合には、作業性、接着性と耐候接着性の改善効果が 充分でないことがあり、20重量%を越えると、該硬化性組成物の貯蔵安定性が 低下することがある。

[0171]

特に限定はされないが、炭酸カルシウムを用いる場合、配合物のチクソ性や硬化物の破断強度、破断伸び、接着性と耐候接着性等の改善効果を特に期待する場

[0172]

一方、重質炭酸カルシウムは配合物の低粘度化や増量、コストダウン等を目的 として添加することがあるが、この重質炭酸カルシウムを用いる場合は必要に応 じて下記のようなものを使用することができる。

[0173]

重質炭酸カルシウムとは、天然のチョーク(白亜)、大理石、石灰石などを機械的に粉砕・加工したものである。粉砕方法については乾式法と湿式法があるが、湿式粉砕品は本発明の硬化性組成物の貯蔵安定性を悪化させることが多いために好ましくないことが多い。重質炭酸カルシウムは、分級により、様々な平均粒子径を有する製品となる。特に限定されないが、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果を期待する場合には、比表面積の値が1.5m2/g以上50m2/g以下のものが好ましく、2m2/g以上50m2/g以下が更に好ましく、2.4m2/g以上50m2/g以下がより好ましく、3m2/g以上50m2/g以下が特に好ましい。比表面積が1.5m2/g未満の場合には、その改善効果が充分でないことがある。もちろん、単に粘度を低下させる場合や増量のみを目的とする場合などはこの限りではない。

[0174]

なお、比表面積の値とは、測定方法としてJIS K 5101に準じて行なった空気透過法(粉体充填層に対する空気の透過性から比表面積を求める方法。)による測定値をいう。測定機器としては、島津製作所製の比表面積測定器SS-100型を用いるのが好ましい。

[0175]

これらの充填材は目的や必要に応じて単独で併用してもよく、2種以上を併用してもよい。特に限定はされないが、例えば、必要に応じて比表面積の値が1. 5 m²/g以上の重質炭酸カルシウムと膠質炭酸カルシウムを組み合わせると、配合物の粘度の上昇を程々に抑え、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が大いに期待できる。

[0176]

<微小中空粒子>

また、更に、物性の大きな低下を起こすことなく軽量化、低コスト化を図ることを目的として、微小中空粒子をこれら補強性充填材に併用しても良い。

[0177]

このような微少中空粒子(以下バルーンという)は、特に限定はされないが、「機能性フィラーの最新技術」(CMC)に記載されているように、直径が $1\,\mathrm{m}$ m以下、好ましくは $5\,0\,0\,\mu\,\mathrm{m}$ 以下、更に好ましくは $2\,0\,0\,\mu\,\mathrm{m}$ 以下の無機質あるいは有機質の材料で構成された中空体が挙げられる。特に、真比重が $1.\,0\,\mathrm{g}$ / c m 3以下である微少中空体を用いることが好ましく、更には $0.\,5\,\mathrm{g}$ / c m 3 以下である微少中空体を用いることが好ましい。

[0178]

前記無機系バルーンとして、珪酸系バルーンと非珪酸系バルーンとが例示でき、珪酸系バルーンには、シラスバルーン、パーライト、ガラス(シリカ)バルーン、フライアッシュバルーン等が、非珪酸系バルーンには、アルミナバルーン、ジルコニアバルーン、カーボンバルーン等が例示できる。これらの無機系バルーンの具体例として、シラスバルーンとしてイヂチ化成製のウインライト、三機工業製のサンキライト、ガラス(シリカ)バルーンとして富士シリシア化学のフジバルーン、日本板硝子製のカルーン、住友スリーエム製のセルスター Z ー 2 8、EMERSON&CUMING製のMICRO BALLOON、PITTSBURGE CORNING製のCELAMIC GLASSMODULES、3M製のGLASS BUBBLES、旭硝子製のQーCEL、太平洋セメント製のEーSPHERES、フライアッシュバルーンとして、PFAMARKETI

NG製のCEROSPHERES、FILLITE U.S.A製のFILLITE、アルミナバルーンとして昭和電工製のBW、ジルコニアバルーンとしてZIRCOA製のHOLLOW ZIRCONIUM SPHEES、カーボンバルーンとして呉羽化学製クレカスフェア、GENERAL TECHNOLOGIES製カーボスフェアが市販されている。

[0179]

前記有機系バルーンとして、熱硬化性樹脂のバルーンと熱可塑性樹脂のバルーンが例示でき、熱硬化性のバルーンにはフェノールバルーン、エポキシバルーン、尿素バルーンが、熱可塑性バルーンにはサランバルーン、ポリスチレンバルーン、ポリメタクリレートバルーン、ポリビニルアルコールバルーン、スチレンーアクリル系バルーンが例示できる。また、架橋した熱可塑性樹脂のバルーンも使用できる。ここでいうバルーンは、発泡後のバルーンでも良く、発泡剤を含むものを配合後に発泡させてバルーンとしても良い。

[0180]

これらの有機系バルーンの具体例として、フェノールバルーンとしてユニオンカーバイド製のUCAR及びPHENOLIC MICROBALLOONS、エポキシバルーンとしてEMERSON&CUMING製のECCOSPHERES、尿素バルーンとしてEMERSON&CUMING製のECCOSPHERES、尿素バルーンとしてEMERSON&CUMING製のECCOSPHERES、VF-O、サランバルーンとしてDOW CHEMICAL製のSARAN MICROSPHERES、日本フィラメント製のエクスパンセル、松本油脂製薬製のマツモトマイクロスフェア、ポリスチレンバルーンとしてARCOPOLYMERS製のDYLITE EXPANDABLE POLYSTYRENE、BASF WYANDOTE製の EXPANDABLE POLYSTYRENE、BEADS、架橋型スチレンーアクリル酸バルーンには日本合成ゴム製のSX863(P)が、市販されている。

[0181]

上記バルーンは単独で使用しても良く、2種類以上混合して用いても良い。さらに、これらバルーンの表面を脂肪酸、脂肪酸エステル、ロジン、ロジン酸リグニン、シランカップリング剤、チタンカップリング剤、アルミカップリング剤、

ポリプロピレングリコール等で分散性および配合物の作業性を改良するために処理したものも使用することができる。これらの、バルーンは配合物の硬化前では切れ性等の作業性改善、硬化後では柔軟性および伸び・強度を損なうことなく、軽量化させることによるコストダウン、さらには表面のつや消し、スパッタ等意匠性付与等のために使用される。

[0182]

バルーンの含有量は、特に限定されないが架橋性シリル基を有する重合体100 重量部に対して、好ましくは $0.1\sim50$ 部、更に好ましくは $0.1\sim30$ 部の範囲で使用できる。この量が0.1 部未満では軽量化の効果が小さく50 部以上ではこの配合物を硬化させた場合の機械特性のうち、引張強度の低下が認められることがある。またバルーンの比重が0.1以上の場合は $3\sim50$ 部、更に好ましくは $5\sim30$ 部が好ましい。

<物性調整剤>

本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。

[0183]

物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、ロープロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、ターグリシドキシプロピルメチルジイソプロペノキシシラン、ターグリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、ターグリシドキシプロピルトリメトキシシラン、アーグリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、アーアミノプロピルトリメトキシシラン、Nー(ターアミノエチル)アミノプロピルメチルジメトキシシラン、ハー(ターアミノエチル)アミノプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、硬度を下げ、伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用して

もよい。

<シラノール含有化合物>

本発明の硬化性組成物には、硬化物の物性を変える等の必要に応じてシラノール含有化合物を添加しても良い。シラノール含有化合物とは、分子内に1個のシラノール基を有する化合物、及び/又は、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物のことをいう。これらは一方のみを用いてもよいし、両化合物を同時に用いてもよい。

[0184]

シラノール含有化合物の一つである分子内に1個のシラノール基を有する化合物は、特に限定されず、下記に示した化合物、

(CH₃) 3SiOH、(CH₃CH₂) 3SiOH、(CH₃CH₂CH₂) 3SiOH、(n-Bu) 3SiOH、(sec-Bu) 3SiOH、(t-Bu) 3SiOH、(t-Bu) 3SiOH、(t-Bu) 3SiOH、(t-Bu) 3SiOH、(t-Bu) 3SiOH、(t-Bu) Si(CH₃) 2OH、(C₅H₁₁) 3SiOH、(C₆H₁₃) 3SiOH、(C₆H₅) 2Si(CH₃) OH、(C₆H₅) 2Si(CH₃) OH、(C₆H₅) 2Si(C₂H₅) OH、C₆H₅Si(C₂H₅) 2OH、C₁OH₇Si(CH₃) 2OH (ただし、上記式中C₆H₅はフェニル基を、C₁OH₇はナフチル基を示す。)等のような(R") 3SiOH (ただし式中R"は同一または異種の置換もしくは非置換のアルキル基またはアリール基)で表わすことができる化合物等のような主鎖が珪素、炭素、酸素からなるポリマー末端にシラノール基が結合した化合物等が例示できる。中でも、入手が容易であり、効果の点から分子量の小さい(CH₃) 3SiOH等が好ましい。

[0185]

上記、分子内に1個のシラノール基を有する化合物は、架橋性シリル基を有する重合体の架橋性シリル基あるいは架橋により生成したシロキサン結合と反応することにより、架橋点の数を減少させ、硬化物に柔軟性を与えるとともに表面低タックや耐埃付着性に優れた組成物を与える。

また本発明の成分の1つである、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、特に限定されないが、

N, O-ビス (トリメチルシリル) アセトアミド、N- (トリメチルシリル) アセトアミド、ビス (トリメチルシリル) トリフルオロアセトアミド、N-メチ ルーNートリメチルシリルトリフルオロアセトアミド、ビストリメチルシリル尿 素、N-(t-ブチルジメチルシリル) N-メチルトリフルオロアセトアミド、 (N, N-ジメチルアミノ) トリメチルシラン、(N, N-ジエチルアミノ) ト リメチルシラン、ヘキサメチルジシラザン、1,1,3,3ーテトラメチルジシ ラザン、N- (トリメチルシリル) イミダゾール、トリメチルシリルトリフルオ ロメタンスルフォネート、トリメチルシリルフェノキシド、nーオクタノールの トリメチルシリル化物、2-エチルヘキサノールのトリメチルシリル化物、グリ セリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル) 化物、ペンタエリスリトールのトリス (トリメチルシリル) 化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物、 (CH3) 3S i N H S i (C H 3) 3、 (C H 3) 3 S i N S i (C H 3) 2、アリロキシトリメチ ルシラン、N, Oービス (トリメチルシリル) アセトアミド、Nー (トリメチル シリル) アセトアミド、ビス (トリメチルシリル) トリフルオロアセトアミド、 N-メチル-N-トリメチルシリルトリフルオロアセトアミド、ビストリメチル シリル尿素、N-(t-ブチルジメチルシリル)N-メチルトリフルオロアセト アミド、(N, Nージメチルアミノ)トリメチルシラン、(N, Nージエチルア ミノ) トリメチルシラン、ヘキサメチルジシラザン、1, 1, 3, 3ーテトラメ チルジシラザン、N-(トリメチルシリル) イミダゾール、トリメチルシリルト リフルオロメタンスルフォネート、トリメチルシリルフェノキシド、n-オクタ ノールのトリメチルシリル化物、2-エチルヘキサノールのトリメチルシリル化 物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンの トリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチル シリル) 化物、ペンタエリスリトールのテトラ (トリメチルシリル) 化物、

N, O-ビス(トリメチルシリル)アセトアミド、N-(トリメチルシリル)アセトアミド、トリメチルシリルフェノキシド、n-オクタノールのトリメチルシリル化物、2-エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチル

シリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)、ポリプロピレングリコールのトリメチルシリル化物、ポリプロピレントリオールのトリメチルシリル化物等ポリエーテルポリオールのトリメチルシリル化物、ポリプロピレンテトラオールのトリメチルシリル化物、アクリルポリオールのトリメチルシリル化物等が挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を併用してもよい。

[0186]

この水分と反応することにより分子内に1個のシラノール基を有する化合物を 生成し得る化合物は、貯蔵時、硬化時あるいは硬化後に水分と反応することによ り、分子内に1個のシラノール基を有する化合物を生成する。この様にして生成 した分子内に1個のシラノール基を有する化合物は、上述のようにビニル系重合 体の架橋性シリル基あるいは架橋により生成したシロキサン結合と反応すること により、架橋点の数を減少させ、硬化物に柔軟性を与えているものと推定される

[0187]

このシラノール含有化合物の構造は、本発明のビニル系重合体のYの種類と a の数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。

[0188]

シラノール含有化合物は、後述の空気酸化硬化性物質と併用してもよく、併用 することにより、硬化物のモジュラスを低いままに保ち、表面へ塗装したアルキッド塗料の硬化性および埃付着性を改善するので好ましい。

[0189]

シラノール含有化合物の添加量は、硬化物の期待物性に応じて適宜調整可能である。シラノール含有化合物は、架橋性シリル基を有する重合体100重量部に対して $0.1\sim50$ 重量部、好ましくは $0.3\sim20$ 重量部、さらに好ましくは $0.5\sim10$ 重量部添加できる。0.1重量部未満では添加効果が現れず、50重量部を越えると架橋が不十分になり、硬化物の強度やゲル分率が低下しすぎる

[0190]

また、シラノール含有化合物を添加する時期は特に限定されず、重合体の製造時に添加してもよく、硬化性組成物の作製時に添加してもよい。

<チクソ性付与剤(垂れ防止剤)>

本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。

[0191]

チキソ性付与剤(垂れ防止剤)は揺変性付与剤ともいう。チキソ性付与とはカートリッジからビード状に押出したり、ヘラ等により塗布したり、スプレー等により吹付けたりするときのように強い力を加えられる時には流動性を示し、塗布ないしは施工後に硬化するまでの間、流下しない性質を付与するものである。

[0192]

また、チクソ性付与剤(垂れ防止剤)としては特に限定されないが、例えば、ディスパロン(楠本化成製)に代表されるアマイドワックスや水添ヒマシ油、水添ヒマシ油誘導体類、脂肪酸の誘導体、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類、1,3,5ートリス(トリアルコキシシリルアルキル)イソシアヌレート等の有機系化合物や、脂肪酸や樹脂酸で表面処理した炭酸カルシウムや微粉末シリカ、カーボンブラック等の無機系化合物が挙げられる。

[0193]

微粉末シリカとは、二酸化ケイ素を主成分とする天然又は人工の無機充填剤を 意味する。具体的には、カオリン、クレー、活性白土、ケイ砂、ケイ石、ケイ藻 土、無水ケイ酸アルミニウム、含水ケイ酸マグネシウム、タルク、パーライト、 ホワイトカーボン、マイカ微粉末、ベントナイト、有機ベントナイト等を例示で きる。

[0194]

なかでも、ケイ素を含む揮発性化合物を気相で反応させることによって作られる超微粒子状無水シリカや有機ベントナイトが好ましい。少なくとも 5 0 m²/

g、更には50~400m²/gの比表面積を有していることが好ましい。また、親水性シリカ、疎水性シリカの何れをも使用することができる。表面処理はあってもなくても構わないが、ケイ素原子に結合した有機置換基としてメチル基のみを有するシラザン、クロロシラン、アルコキシシランもしくはポリシロキサンによりその表面が疎水処理されている疎水性シリカが好ましい。

[0195]

上記の表面処理剤を具体的に例示すると、ヘキサメチルジシラザン等のようなシラザン類;トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン等のようなハロゲン化シラン類;トリメチルアルコキシシラン、ジメチルジアルコキシシラン、メチルトリアルコキシシラン等のようなアルコキシシラン類(ここで、アルコキシ基としてはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる);環状あるいは直鎖状のポリジメチルシロキサン等のようなシロキサン類等が挙げられ、これらは単独又は2種以上を組み合わせて使用してもよい。これらの中でもシロキサン類(ジメチルシリコーンオイル)によって表面処理を施された疎水性微粉末シリカが揺変性付与効果の面から好ましい。

[0196]

また、微粉末シリカにジエチレングリコール,トリエチレングリコール,ポリエチレングリコール等のポリエーテル化合物,ポリエーテル化合物と官能性シランの反応生成物等やエチレンオキシド鎖を有する非イオン系界面活性剤を併用するとチキソ性が増す。この非イオン系界面活性剤は1種又は2種以上使用してもよい。

[0197]

この微粉末シリカの具体例としては、例えば、日本アエロジル製の商品名Aerosil R974、R972、R972V、R972CF、R805、R812、R812S、RY200、RX200、RY200S、#130、#200、#300、R202等や、日本シリカ製の商品名Nipsil SSシリーズ、徳山曹達製の商品名Rheorosil MT-10、MT-30、QS-102、QS-103、Cabot製の商品名Cabosil TS-720、

MS-5, MS-7、豊順洋行製のエスベンやオルガナイト等の市販品が挙げられる。

[0198]

また、有機ベントナイトとは、主にモンモリロナイト鉱石を細かく粉砕した粉末状の物質で、これを各種有機物質で表面処理したものをいう。有機化合物としては脂肪族第1級アミン、脂肪族第4級アミン(これらはいずれも炭素数20以下が好ましい)などが用いられる。この有機ベントナイトの具体例としては、例えば、白石工業製の商品名オルベンD、NewDオルベン、土屋カオリン製の商品名ハードシル、Bergess Pigment製のクレー#30、Southern Clay社#33、米国National Lead製の「ベントン(Bentone)34」(ジメチルオクタデシルアンモニウムベントナイト)等が挙げられる。

[0199]

チキソ性指標とは、回転粘度計による粘度測定において、回転速度の低速(例えば、 $0.5\sim12$ r p m)と高速(例えば、 $2.5\sim60$ r p m)とにおける見掛け粘度の比を意味する(ただし、高速回転の速度と低速回転の速度の比が少なくとも 5、更には $5\sim10$ の範囲内が好ましい。

[0200]

これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。

<光硬化性物質>

本発明の硬化性組成物には、必要に応じて光硬化性物質を添加しても良い。光硬化性物質とは、光の作用によって短時間に、分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この光硬化性物質を添加することにより、硬化性組成物を硬化させた際の硬化物表面の粘着性(残留タックともいう)を低減できる。この光硬化性物質は、光をあてることにより硬化し得る物質であるが、代表的な光硬化性物質は、例えば室内の日の当たる位置(窓付近)に1日間、室温で静置することにより硬化させることができる物質である。この種の化合物には、有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物など多く

のものが知られており、その種類は特に限定されないが、例えば、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂、エポキシ化合物、ビニルエーテル化合物等が挙げられる。

[0201]

不飽和アクリル系化合物としては、具体的には、エチレングリコール、グリセ リン、トリメチロールプロパン、ペンタエリスリトール、ネオペンチルアルコー ル等の低分子量アルコール類の(メタ)アクリル酸エステル類(オリゴエステル アクリレート);ビスフェノールA、イソシアヌル酸等の酸あるいは上記低分子 量アルコール等をエチレンオキシドやプロピレンオキシドで変性したアルコール 類の(メタ)アクリル酸エステル類;主鎖がポリエーテルで末端に水酸基を有す るポリエーテルポリオール、主鎖がポリエーテルであるポリオール中でビニル系 モノマーをラジカル重合することにより得られるポリマーポリオール、主鎖がポ リエステルで末端に水酸基を有するポリエステルポリオール、主鎖がビニル系あ るいは (メタ) アクリル系重合体であり、主鎖中に水酸基を有するポリオール等 の(メタ)アクリル酸エステル類;主鎖がビニル系あるいは(メタ)アクリル系 重合体であり、主鎖中に多官能アクリレートを共重合して得られる(メタ)アク リル酸エステル類;ビスフェノールA型やノボラック型等のエポキシ樹脂と(メ タ)アクリル酸を反応させることにより得られるエポキシアクリレート系オリゴ マー類;ポリオール、ポリイソシアネートおよび水酸基含有(メタ)アクリレー ト等を反応させることにより得られる分子鎖中にウレタン結合および(メタ)ア クリル基を有するウレタンアクリレート系オリゴマー等が挙げられる。

[0202]

ポリケイ皮酸ビニル類とは、シンナモイル基を感光基とする感光性樹脂であり、ポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル系誘導体が挙げられる。

[0203]

アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はアジド化合物を感光剤として加えたゴム感光液のほか「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、93頁~、106頁から、117

頁~) に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加えて使用することができる。

[0204]

エポキシ化合物、ビニルエーテル化合物としては、エポキシ基末端またはビニルエーテル基末端ポリイソブチレン等が挙げられる。

[0205]

上記の光硬化性物質の中では、取り扱い易いという理由で不飽和アクリル系化 合物が好ましい。

[0206]

光硬化性物質は、架橋性シリル基を有する重合体100重量部に対して0.0 1~20重量部添加するのが好ましい。0.01重量部未満では効果が小さく、また20重量部を越えると物性への悪影響が出ることがある。なお、ケトン類、ニトロ化合物などの増感剤やアミン類等の促進剤を添加すると、効果が高められる場合がある。

<空気酸化硬化性物質>

本発明の硬化性組成物には、必要に応じて空気酸化硬化性物質を添加しても良い。空気酸化硬化性物質とは、空気中の酸素により架橋硬化できる不飽和基を有する化合物である。この空気酸化硬化性物質を添加することにより、硬化性組成物を硬化させた際の硬化物表面の粘着性(残留タックともいう)を低減できる。本発明における空気酸化硬化性物質は、空気と接触させることにより硬化し得る物質であり、より具体的には、空気中の酸素と反応して硬化する性質を有するものである。代表的な空気酸化硬化性物質は、例えば空気中で室内に1日間静置することにより硬化させることができる。

[0207]

空気酸化硬化性物質としては、例えば、桐油、アマニ油等の乾性油;これら乾性油を変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコーン樹脂、ウレタン樹脂;1,2ーポリプタジエン、1,4ーポリプタジエンを、C5~C8ジエンの重合体や共重合体、更には該重合体や共重合体の各種変性物(マレイン化変性物、ボイル油変性物など

[0208]

上記液状ジエン系重合体の具体例としては、ブタジエン、クロロプレン、イソプレン、1,3ーペンタジエン等のジエン系化合物を重合又は共重合させて得られる液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させて得られるNBR,SBR等の重合体や更にはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これら液状ジエン系化合物のうちでは液状ポリブタジエンが好ましい。

[0209]

空気酸化硬化性物質は、単独で用いてもよく、2種以上を併用してもよい。また空気酸化硬化性物質と同時に酸化硬化反応を促進する触媒や金属ドライヤーを 併用すると効果を高められる場合がある。これらの触媒や金属ドライヤーとして は、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸 コバルト、オクチル酸ジルコニウム等の金属塩やアミン化合物等が例示される。

[0210]

空気酸化硬化性物質は、前述の光硬化性物質と併用してもよく、さらに前述のシラノール含有化合物を併用することができる。これら2成分の併用または3成分の併用によりその効果を更に発揮し、特に長期に渡って曝露される場合や、塵埃や微粉土砂の多い汚染性の過酷な地域においても顕著な汚染防止効果を発揮することがあるので特に好ましい。

[0211]

空気酸化硬化性物質は、架橋性シリル基を有する重合体100重量部に対して0.01~20重量部添加するのが好ましい。0.01重量部未満では効果が小さく、また20重量部を越えると物性への悪影響が出ることがある。

<酸化防止剤>

本発明の硬化性組成物には、必要に応じて酸化防止剤を添加しても良い。酸化

防止剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235~242)等に記載された種々のものが挙げられるが、これらに限定されるわけではない。 例えば、MARK PEP-36、MARK AO-23等のチオエーテル系(以上いずれも旭電化工業製)、Irgafos38、Irgafos168、IrgafosP-EPQ(以上いずれもチバ・スペシャルティ・ケミカルズ製)等のようなリン系酸化防止剤等が挙げられる。なかでも、以下に示したようなヒンダードフェノール系化合物が好ましい。

[0212]

ヒンダードフェノール系化合物としては、具体的には以下のものが例示できる t-プチルー4-エチルフェノール、モノ(又はジ又はトリ)(α メチルベンジ ル) フェノール、2, 2' ーメチレンビス (4エチルー6ーtertーブチルフ ェノール)、2,2'ーメチレンビス(4メチルー6ーtertープチルフェノ ール)、4, 4'ープチリデンビス(3-メチルー6-tertープチルフェノ ール)、4, 4'ーチオビス (3-メチルー6-tert-ブチルフェノール)、 2, 5 - ジーtertープチルハイドロキノン、 2, 5 - ジーtertーアミ ルハイドロキノン、トリエチレングリコールービスー [3-(3-t-ブチルー 5ーメチルー4ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオ ールービス [3-(3,5-ジ-t-ブチルー4-ヒドロキシフェニル) プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3 , 5 ージー t ーブチルアニリノ) ー 1 , 3 , 5 ー トリアジン、ペンタエリスリチ ルーテトラキス [3-(3,5-ジ-t-ブチルー4-ヒドロキシフェニル) プロピオネート]、2,2ーチオージエチレンビス [3-(3,5-ジーt-ブチ ルー4ーヒドロキシフェニル)プロピオネート]、オクタデシルー3ー(3,5 ージーtーブチルー4ーヒドロキシフェニル)プロピオネート、N, N'ーヘキ サメチレンビス (3, 5 – ジー t ープチルー 4 – ヒドロキシーヒドロシンナマミ ド)、3,5-ジーt-ブチルー4-ヒドロキシーベンジルフォスフォネート-ジエチルエステル、1,3,5ートリメチルー2,4,6ートリス(3,5ージ

- t ープチルー4 - ヒドロキシベンジル) ベンゼン、ビス (3, 5 - ジー t ープ チルー4ーヒドロキシベンジルホスホン酸エチル)カルシウム、トリスー(3, 5 ージー t ープチルー 4 ーヒドロキシベンジル) イソシアヌレート、2, 4 - 2 , 4 ービス[(オクチルチオ)メチル] ο ークレゾール、N, N' ービス[3 -(3, 5 ージー t ーブチルー 4 ーヒドロキシフェニル)プロピオニル]ヒドラジ ン、トリス (2, 4 - ジー t - ブチルフェニル) フォスファイト、2 - (5 - メ チルー2ーヒドロキシフェニル) ベンゾトリアゾール、2ー [2ーヒドロキシー 3, 5-ビス (α, α-ジメチルベンジル) フェニル] <math>-2H-ベンゾトリアゾ ール、2 - (3, 5 - ジー t - ブチルー2 - ヒドロキシフェニル) ベンゾトリア ゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフ ェニル) -5-クロロベンゾトリアゾール、2-(3,5-ジーt-アミル-2 ーヒドロキシフェニル) ベンゾトリアゾール、2-(2'-ヒドロキシ-5'tーオクチルフェニル) ーベンゾトリアゾール、メチルー3ー [3-tーブチル -5-(2H-ベンゾトリアゾールー2ーイル)-4-ヒドロキシフェニル] プロピオネートーポリエチレングリコール(分子量約300)との縮合物、ヒドロ キシフェニルベンゾトリアゾール誘導体、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル) -2-n-ブチルマロン酸ビス(1, 2, 2, 6, 6-ペ ンタメチルー4ーピペリジル)、2,4ージーtーブチルフェニルー3,5ージ - t - プチル-4-ヒドロキシベンゾエート等が挙げられる。

[0213]

商品名で言えば、ノクラック 2 0 0、ノクラック M-1 7、ノクラック SP、ノクラック SP-N、ノクラック NS-5、ノクラック NS-6、ノクラック NS-3 0、ノクラック 3 0 0、ノクラック NS-7、ノクラック DAH (以上いずれも大内新興化学工業製)、MARK AO-3 0、MARK AO-4 0、MARK AO-5 0、MARK AO-6 1 6、MARK AO-6 3 5、MARK AO-6 5 8、MARK AO-8 0、MARK AO-1 5、MARK AO-1 8、MARK 3 2 8、MARK AO-3 7 (以上いずれも旭電化工業製)、IRGANOX-2 4 5、IRGANOX

-259、IRGANOX-565、IRGANOX-1010、IRGANOX-1024、IRGANOX-1035、IRGANOX-1076、IRGANOX-1081、IRGANOX-1098、IRGANOX-1222、IRGANOX-1330、IRGANOX-1425WL(以上いずれもチバ・スペシャルティ・ケミカルズ製)、SumilizerGM、SumilizerGA-80(以上いずれも住友化学製)等が例示できるがこれらに限定されるものではない。

[0214]

酸化防止剤は後述する光安定剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐熱性が向上することがあるため特に好ましい。予め酸化防止剤と光安定剤を混合してあるチヌビンC353、チヌビンB75 (以上いずれもチバ・スペシャルティ・ケミカルズ製)などを使用しても良い。

[0215]

酸化防止剤の使用量は、架橋性シリル基を有する重合体100重量部に対して0.1~10重量部の範囲であることが好ましい。0.1重量部未満では耐候性を改善の効果が少なく、5重量部超では効果に大差がなく経済的に不利である。

本発明の硬化性組成物には、必要に応じて耐光安定剤を添加しても良い。耐光安定剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235~242)等に記載された種々のものが挙げられる。これらに限定されるわけではないが、耐光安定剤の中では、紫外線吸収剤やヒンダードアミン系光安定剤化合物が好ましい。具体的には、チヌビンP、チヌビン234、チヌビン320、チヌビン326、チヌビン327、チヌビン329、チヌビン213(以上いずれもチバ・スペシャルティ・ケミカルズ製)等のようなベンゾトリアゾール系化合物やチヌビン1577等のようなトリアジン系、CHIMASSORB81等のようなベンゾフェノン系、チヌビン120(チバ・スペシャルティ・ケミカルズ製)等のようなベンゾエート系化合物等が例示できる。

[0216]

[0217]

商品名で言えば、チヌビン622LD、チヌビン144、CHIMASSOR B944LD、CHIMASSORB119FL、Irgafos168、(以上いずれもチバ・スペシャルティ・ケミカルズ製)、MARK LA-52、MARK LA-57、MARK LA-62、MARK LA-67、MARK LA-63、MARK LA-68、MARK LA-82、MARK LA-87、(以上いずれも旭電化工業製)、サノールLS-770、サノールLS-765、サノールLS-292、サノールLS-2626、サノールLS-114、サノールLS-744、サノールLS-440(以上いずれも三共製)などが例示できるがこれらに限定されるものではない。

[0218]

耐光安定剤は前述した酸化防止剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐候性が向上することがあるため特に好ましい。組み合わせは特に限定されないが、前述のヒンダードフェノール系酸化防止剤と例えばベンゾトリアゾール系の紫外線吸収剤との組み合わせや前述のヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤化合物との組合せが好ましい。あるいは、前述のヒンダードフェノール系酸化防止剤と例えばベンゾトリアゾール系の紫外線吸収剤とヒンダードフェノール系酸化防止剤と例えばベンゾトリアゾール系の紫外線吸収剤とヒンダードアミン系光安定剤化合物との組合せが好ましい

。予め光安定剤と酸化防止剤を混合してあるチヌビンC353、チヌビンB75 (以上いずれもチバ・スペシャルティ・ケミカルズ製)などを使用しても良い。

[0219]

ヒンダードアミン系光安定剤は前述した光硬化性物質と併用してもよく、併用 することによりその効果を更に発揮し、特に耐候性が向上することがあるため特 に好ましい。組み合わせは特に限定されないが、この場合、3級アミン含有のヒ ンダードアミン系光安定剤が貯蔵中の粘度上昇が少なく貯蔵安定性が良好である ので好ましい。

[0220]

光安定剤の使用量は、架橋性シリル基を有する重合体100重量部に対して0 $1 \sim 10$ 重量部の範囲であることが好ましい。0.1 重量部未満では耐候性を 改善の効果が少なく、5重量部超では効果に大差がなく経済的に不利である。 <エポキシ樹脂>

本発明の組成物はエポキシ樹脂、エポキシ樹脂用硬化剤を配合することができ る。本発明のビニル系重合体とエポキシ樹脂の混合物を用いて硬化させると強度 が強く、接着力の高い硬化物が得られる。エポキシ樹脂としては、従来公知のも のを広く使用でき、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノール F型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エ ポキシ樹脂やこれらを水添したエポキシ樹脂、グリシジルエステル型エポキシ樹 脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ノボラック型エポ キシ樹脂、ウレタン結合を有するウレタン変性エポキシ樹脂、フッ素化エポキシ 樹脂、ポリブタジエンあるいはNBRを含有するゴム変性エポキシ樹脂、テトラ プロモビスフェノールAのグリシジルエーテル等の難燃型エポキシ樹脂等が挙げ られる。これらのエポキシ樹脂は、単独で用いてもよく2種以上併用してもよい 。これらエポキシ樹脂の中では、作業性や硬化性、接着強度、被着体汎用性、耐 水性、耐久性等のバランスの点から、ビスフェノールA型エポキシ樹脂が好まし V30

[0221]

斯かるエポキシ樹脂の使用量は任意の割合で使用できるが、弾性接着剤用途向

け等、硬化後において弾性体の性質を維持したまま用いる場合は、架橋性シリル基を有する重合体100重量部に対し、通常10~80重量部程度の範囲、好ましくは20~70重量部の範囲で使用されるのが良い。10重量部未満では接着強度や耐水性が不十分となり、80重量部を超えると剥離強度の低下等が起こり好ましくない。

[0222]

本発明の組成物はエポキシ樹脂用硬化剤を含むことができる。エポキシ樹脂用 硬化剤としては、従来公知のものを広く使用することができる。例えば、エチレ ンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレン ペンタミン、ジエチルアミノプロピルアミン、ヘキサメチレンジアミン、メチル ペンタメチレンジアミン、トリメチルヘキサメチレンジアミン、グアニジン、オ レイルアミン、等の脂肪族アミン類;メンセンジアミン、イソホロンジアミン、 ノルボルナンジアミン、ピペリジン、N, N' ージメチルピペラジン、Nーアミ ノエチルピペラジン、1,2ージアミノシクロヘキサン、ビス(4ーアミノー3ーメチルシクロヘキシル)メタン、ビス(4ーアミノシクロヘキシル)メタン、 ポリシクロヘキシルポリアミン、1, 8 - ジアザビシクロ <math>[5, 4, 0] ウンデ センー7 (DBU) 等の脂環族アミン類;メタフェニレンジアミン、4、4'ー ジアミノジフェニルメタン、4,4'ージアミノジフェニルスルホン等の芳香族 アミン類;mーキシリレンジアミン、ベンジルジメチルアミン、2-(ジメチル アミノメチル) フェノール、2, 4, 6 - トリス (ジメチルアミノメチル) フェ ノール等の脂肪芳香族アミン類;3,9-ビス(3-アミノプロピル)-2,4 , 8, 10ーテトラオキサスピロ [5, 5] ウンデカン(ATU)、モルホリン 、Nーメチルモルホリン、ポリオキシプロピレンジアミン、ポリオキシプロピレ ントリアミン、ポリオキシエチレンジアミン等のエーテル結合を有するアミン類 ;ジエタノールアミン、トリエタノールアミン等の水酸基含有アミン類;テトラ ヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸 、ヘキサヒドロ無水フタル酸、ドデシル無水コハク酸等の酸無水物類;ダイマー 酸にジエチレントリアミンやトリエチレンテトラミン等のポリアミンを反応させ て得られるポリアミド、ダイマー酸以外のポリカルボン酸を使ったポリアミド等

のポリアミドアミン類;2ーエチルー4ーメチルイミダゾール等のイミダゾール類;ジシアンジアミド;ポリオキシプロピレン系ジアミン,ポリオキシプロピレン系トリアミン等のポリオキシプロピレン系アミン類;フェノール類;上記アミン類にエポキシ化合物を反応させて得られるエポキシ変性アミン、上記アミン類にホルマリン、フェノール類を反応させて得られるマンニッヒ変性アミン、マイケル付加変性アミン、ケチミンといった変性アミン類;2,4,6ートリス(ジメチルアミノメチル)フェノールの2ーエチルへキサン酸塩等のアミン塩等が挙げられる。これらの硬化剤は、単独で用いてもよく2種以上併用してもよい。これらエポキシ樹脂用硬化剤の中では、硬化性や物性バランスの点から、2,4,6ートリス(ジメチルアミノメチル)フェノールやポリオキシプロピレン系ジアミンが好ましい。

[0223]

斯かるエポキシ樹脂用硬化剤は、エポキシ樹脂の配合量にもよるが、架橋性シリル基を有する重合体100重量部に対し、通常1~60重量部程度の範囲、好ましくは2~50重量部程度の範囲で使用されるのが良い。1重量部未満ではエポキシ樹脂の硬化が不十分となり接着強度が低下する。また、60重量部を超えると界面へのブリード等が起こって接着性が低下し好ましくない。

<相溶化剤>

本発明の硬化性組成物には、相溶化剤を添加することができる。このような添加物の具体例は、たとえば、特開2001-329025の明細書に記載されている複数のビニル系モノマーの共重合体等が使用できる。

<その他の添加剤>

本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、難燃剤、硬化性調整剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。

[0224]

このような添加物の具体例は、たとえば、特公平4-69659号、特公平7

-108928号、特開昭63-254149号、特開昭64-22904号の各明細書などに記載されている。

[0225]

本発明の硬化性組成物は、実質的に無溶剤で使用できる。作業性の観点等から溶剤を使用しても構わないが、環境への影響から使用しないことが望ましい。

[0226]

本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製しても良く、硬化剤として別途硬化 触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調整しても良い。2成分型にすると、2成分の混合時に着色剤を添加することができ、例えば、サイディングボードの色に合わせたシーリング材を提供する際に、限られた在庫で豊富な色揃えをすることが可能となるなど、市場から要望されている多色化対応が容易となり、低層建物用等により好ましい。また、2成分型と同様の理由で着色剤を1成分型硬化性組成物では多色化対応が容易となる。1成分型として調整されたものを使用し施工する際に、容器から取出した後に水を添加して混合等を行なって硬化させても良い。

[0227]

着色剤は、例えば顔料と可塑剤、場合によっては充填材を混合しペースト化したものを用いると作業し易い。また、更に2成分の混合時に遅延剤を添加することにより硬化速度を作業現場にて微調整することができる。

《態様》

本発明の硬化性組成物の態様の1部は次のとおりである。

[0228]

(1) 架橋性シリル基を有するビニル系重合体、または該ビニル系重合体と、 架橋性シリル基を有する、ポリエーテル系重合体又は前記(i)、(i i)等の 重合体との合計量 100 重量部、分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物 0. $01\sim100$ 重量部、可塑剤 $5\sim150$ 重量部、炭酸カルシウム $1\sim200$ 重量部(粒径が 0. 5μ 以下の膠質炭酸カルシウムと粒径

が1µ以上の炭酸カルシウムの混合物が好ましい)、チクソ性付与剤(タレ防止剤)0.1~20重量部、酸化防止剤0.1~10重量部、光安定剤0.1~10重量部、紫外線吸収剤0.1~10重量部、脱水剤0.5~10重量部、シランカップリング剤0.1~20重量部、硬化触媒0.1~20重量部、マイクロバルーン0~50重量部を含有する組成物。これらの組成物において硬化触媒は4価の錫化合物が好ましいが、2価錫と有機アミンの組み合わせや非錫化合物も使用できる。

[0229]

(2) (1) の具体的配合例を次に示す。架橋性シリル基を有するビニル系重 合体または該ビニル系重合体と、架橋性シリル基を有する、ポリエーテル系重合 体又は前記(i)、(i i)等の重合体との合計量100重量部、ステアリン酸 モノグリセライド3重量部、脂肪酸処理膠質炭酸カルシウム(粒径0.08μ、 白石工業製「白艶華CCR」) 100重量部、重質炭酸カルシウム(粒子径2μ 、白石工業製「ホワイトンSB」)30重量部、酸化チタン(石原産業(株)製 、R-820)20重量部、可塑剤として数平均分子量3000のポリプロピレ ングリコール50重量部、チクソ性付与剤(ポリアミド系タレ防止剤、楠本化成 (株) 製、D-6500) 2重量部、ヒンダードフェノール酸化防止剤 (チバガ イギー(株)製、イルガノックス1010)1重量部、ヒンダードアミン系光安 定剤(三共(株)製、サノールLS770)1重量部、ベンゾトリアゾール系紫 外線吸収剤(チバ・スペシャルティ・ケミカルズ(株)製、チヌビン327) 1 重量部、ビニルトリメトキシシラン2重量部、アミノシラン化合物(日本ユニカ 一(株)製、A-1120)3重量部、硬化触媒(日東化成(株)製、U-22 0) 2 重量部、ガラスバルーン(旭硝子(株)製、Q―セル#200) 3 重量部 を含有する硬化性組成物。

[0230]

この組成物において、数平均分子量3000のポリプロピレングリコールに代えて、あるいは追加的にARUFON UPシリーズ(東亞合成(株)製、UP-1000、UP-1110、UP-2000、UP-2130)等のアクリル系可塑剤、あるいは、ジイソデシルフタレート等のフタル酸エステル類、ジオク

[0231]

(3) 架橋性シリル基を有するビニル系重合体、または該ビニル系重合体と、 架橋性シリル基を有する、ポリエーテル系重合体又は前記 (i)、(ii)等の 重合体との合計量100重量部、可塑剤5~150重量部、エポキシ化合物0.1~20重量部、炭酸カルシウム1~200重量部(粒径が0.5µ以下の膠質 炭酸カルシウムと粒径が1µ以上の炭酸カルシウムの混合物が好ましい)、チクソ性付与剤(タレ防止剤)0.1~20重量部、酸化防止剤0.1~10重量部、 光安定剤0.1~10重量部、 紫外線吸収剤0.1~10重量部、空気酸化硬化性化合物0.1~10重量部、 光硬化性化合物0.1~10重量部、 加水分解により1価のシラノールを生成する化合物0.1~20重量部、 硬化触媒0.1~20重量部、マイクロバルーン0~10重量部を含有する組成物。この組成物にさらに架橋性シリル基を有するポリエーテル系重合体を10~300重量部合有する組成物。これらの組成物において硬化触媒は2価の錫化合物と有機アミンが好ましい。

[0232]

(4) (3) の具体的配合例を次に示す。架橋性シリル基を有するビニル系重合体、または該ビニル系重合体と、架橋性シリル基を有する、ポリエーテル系重合体又は前記(i)、(i i)等の重合体との合計量100重量部、脂肪酸処理膠質炭酸カルシウム(粒径 0.08μ 、白石工業製「白艶華CCR」)100重量部、重質炭酸カルシウム(粒子径 2μ 、白石工業製「ホワイトンSB」)30重量部、可塑剤としてジー(2-エチルヘキシル)フタレート50重量部、エポキシ化合物としてジー(2-エチルヘキシル)4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)20重量部、チクソ性付与剤(ポリアミド系タレ防止剤、楠本化成(株)製、D-6500)5重量部、ヒンダードフェノール酸化防止剤(チバガイギー(株)製、イルガノックス1010)1重量部、3級アミン含有ヒンダードアミン系光安定剤(チバ・スペシャルティ・ケミカルズ(株)製、チヌビン144)1重量部、ベンゾトリアゾール系紫外線吸

収剤(チバ・スペシャルティ・ケミカルズ(株)製、チヌビン327)1重量部、酸素硬化性物質として液状1,4ーポリブタジエン(ヒュルス社製、ポリオイルLCB-110)5重量部、オリゴエステルアクリレート光硬化性物質(東亜合成(株)製、アロニクスM-309)5重量部、トリメチルシリルフェノキシド1重量部、硬化触媒としてオクチル酸錫3重量部およびラウリルアミン1重量部、有機樹脂マイクロバルーン(松本油脂製薬(株)製、マツモトマイクロスフェアーF80ED)1重量部を含有する硬化性組成物。

[0233]

この組成物において、ジー(2ーエチルヘキシル)に代えて、あるいは追加的にARUFON UPシリーズ(東亞合成(株)製、UP-1000、UP-110、UP-2000、UP-2130)等のアクリル系可塑剤、例えば数平均分子量3000のポリプロピレングリコール、あるいは、ジイソデシルフタレート等のフタル酸エステル類、ジオクチルアジペート等の非芳香族二塩基酸エステル類、アセチルリシリノール酸メチル等の脂肪族エステル類を用いることができる。

[0234]

この組成物において、エポキシ化合物としてジー(2ーエチルヘキシル)4,5ーエポキシシクロヘキサンー1,2ージカーボキシレート(EーPS)にかえて、あるいは追加的にエポキシ化大豆油を用いることができる。また、チクソ性付与剤としてポリアミド系タレ防止剤にかえて、あるいは追加的に水添ひまし油を用いることができる。また、酸素硬化性物質として液状1,4ーポリプタジエンにかえて、あるいは追加的にアマニ油、桐油などの乾性油を用いることができる。また、トリメチルシリルフェノキシドにかえて、あるいは追加的に全水酸基がトリメチルシリル化されたトリメチロールプロパンやグリセリンを用いることができる。

[0235]

(1)~(4)の各組成物において、架橋性シリル基を有するポリエーテル系重合体は分子量分布Mw/Mnが1.20などの1.60以下のものや1.80など1.60を超えるものを用いることができる。また、架橋性シリル基を有す

るオキシアルキレン重合体は不純物イオンのナトリウム、亜鉛、コバルトの合計量が20ppm以下であるものを用いることができる。さらに、Mw/Mnが1.60を超え不純物イオンのナトリウム、亜鉛、コバルトの合計量が20ppm以下のものを用いることができる。架橋性シリル基を有するオキシアルキレン重合体として、亜鉛ヘキサシアノコバルテートを触媒とし、数平均分子量3000のポリプロピレングリコールを開始剤として、プロピレンオキシドを重合して得られる直鎖状水酸基末端オキシアルキレン重合体をアリルクロライドと反応させアリル基末端オキシアルキレン重合体とし、ジメトキシメチルシランを反応させて得られる数平均分子量が11000、分子量分布Mw/Mnが1.80、全末端の80%に反応性ケイ素基が導入されている反応性ケイ素基末端オキシアルキレン重合体を用いることができる。

《用途》

本発明の硬化性組成物は、限定はされないが、建築用弾性シーリング剤、サイディングボード用シーリング剤、複層ガラス用シーリング剤、車両用シーリング剤等建築用および工業用のシーリング剤、太陽電池裏面封止剤などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、粘着剤、接着剤、弾性接着剤、コンタクト接着剤、タイル用接着剤、反応性ホットメルト接着剤、塗料、粉体塗料、コーティング材、発泡体、缶蓋等のシール材、電気電子用ポッティング剤、フィルム、ガスケット、注型材料、各種成形材料、人工大理石、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車や船舶、家電等に使用される防振・制振・防音・免震材料、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤、防水剤等の様々な用途に利用可能である。

[0236]

更に、本発明の硬化性組成物から得られたゴム弾性を示す成形体は、ガスケット、パッキン類を中心に広く使用することができる。例えば自動車分野ではボディ部品として、気密保持のためのシール材、ガラスの振動防止材、車体部位の防振材、特にウインドシールガスケット、ドアガラス用ガスケットに使用することができる。シャーシ部品として、防振、防音用のエンジンおよびサスペンジョン

[0237]

も使用できる。

本発明の硬化性組成物は、シーリング材や接着剤として特に有用であり、特に

ット、モルタルホース、モルタルストレーナ等、工事補助材料としてゴムシート

類、エアホース等、安全対策商品としてゴムブイ、消波材等、環境保全商品とし

てオイルフェンス、シルトフェンス、防汚材、マリンホース、ドレッジングホー

ス、オイルスキマー等に使用できる。その他、板ゴム、マット、フォーム板等に

耐候性や耐熱性が要求される用途や透明性が必要な用途に有用である。また、本 発明の硬化性組成物は耐候性と接着性に優れるので、目地埋めなしでの外壁タイ ル接着用工法に使用できる。

[0238]

本発明の硬化性組成物に用いることができる架橋性シリル基を有する重合体の 例、添加剤の例、用途の例を表1に示した。

[0239]

【表1】

架橋性シ		TEN - TH
ル基を有		用途の例
る重合体の) ·	
例		
(1)架衝	分子中口 《 《 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
官能基を存	しょうしゅう ドンカール値行りけん るき上 っ	建築用弾性シーリ
するポリコ		ング剤、サイディ
ーテル系質	こし ノロらレンクリコール 1 っこっていいこう	ングボード用シー
合体、特心	*・ ~ か、とりとりと、ペンタテロラロー 。	リング剤、複層ガ
架橋性シリ		ラス用シーリング
ル基を有す	() ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	剤、車両用シーリ
るポリエー	ー・・・ノ ドノン リセリ ンジステマレー しっぱく ェー	ング剤等建築用お
テル系重合	ー フヘッドールモノスデマルート	トバー共産業用お
体	「一笑」は微珠:ンノナル縄ジアヤチルマム・ユー・・・・	よび工業用のシー
142	- ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	リング剤、太陽電
(11)	- リー・プログラン アン・ファン・ファン・コード・コード・コード・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン	池裏面封止剤など
(川)平均し	「プラック・イン部場体(スタノ土井)・ルム・・・・・・	の電気・電子部品
て1.2個	リー・フル吸物 ノエルサナック能プラ ~ねっしっょ	材料、電線・ケー
以下の架橋	1 フルノマノマノミノ条化合物との反应物または、1	ブル用絶縁被覆材
性シリル基		などの電気絶縁材
を有するポ		料、粘着剤、接着
リエーテル	ート、N- (β-アミノエチル) - γ-アミノブ	剤、弾性接着剤、
系重合体、		コンタクト接着
	接着付与剤:アーアミノプロピルトリンしょ、、 - 。	剤、タイル用接着
(川)分子量	γ-アミノプロピルメチルジメトキシシラン、γ	剤、反応性ホット
分布が1.	- (2-アミノエチル) アミノプロピルトリメト	メルト接着剤、塗
8未満で片	キシシラン、ケー(2-アミノエチル) アミノブ	料、粉体塗料、コ
末端に架橋	ロピルメチルジメトキシシラン、これらの誘導体	ーティング材、発
性シリル基	等。	泡体、缶蓋等のシ
を有するビ	可塑剤:フタル酸エステル、PPG、PPT、SGO	ール材、電気電子
ニル系重合	(アクリルオリゴマー)。	用ポッティング
体	充填材:膠質炭酸カルシウム、重質炭酸カルシウム、	剤、フィルム、ガ
	シリカ、カーボンブラック、樹脂粉末等。	スケット、注型材
(IV)架橋性	微小中空粒子・ガラフバル、大大の大手。	料、各種成形材料、
官能基を有		人工大理石、およ
し分子量分		び、網入りガラス
布が1.8	りか ない/ まは、水分とかでするっしょしょ。	や合わせガラス端
以上のビニ		面(切断部)の防
ル系重合体		錆・防水用封止材、
等。		自動車や船舶、家
	WATER WATER 2017年 1.	電等に使用される
および		防臓・制臓・防音・
これらの重	167 フラルがに言いが表	免震材料、自動車
合体の1種		部品、電機部品、
	ハノーノ水田らい子	各種機械部品など
	酸化防止剤:ヒンダードフェノール系化合物等。	こおいて使用され
合わせ。	四ルメル形:ヘンソトリアソール玄 トロラン・デート	る液状シール剤、
ロシに。	`イノノエノノ治、ベンソT―LSのタヒムル シウッァッッ しゃ	が対策。
1		かんだいが、
ľ	ーハナン協調:ドスフェノールA和Iエジュ、*****・	i
	こうに・知念が、徳代は記録的、金属不洋がルカーユー	1
	ゾン劣化防止剤、リン系過酸化物分解剤、滑剤、 顔料、発泡剤、相溶化剤等。	i i

本発明における重合体の合成例を以下に示した。

[0240]

「部」および「%」は、それぞれ「重量部」および「重量%」を表す。また、 本製造例において「トリアミン」とは、ペンタメチルジエチレントリアミンをい う。

[0241]

下記合成例中、「数平均分子量」および「分子量分布(重量平均分子量と数平 均分子量の比)」は、ゲルパーミエーションクロマトグラフィー (GPC) を用 いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリ スチレン架橋ゲルを充填したもの(shodex GPC K-804;昭和電 工製)、GPC溶媒としてクロロホルムを用いた。

(合成例1)

特開2001-279108の製造例4に記載された方法に基づき、それぞれ 下記のシリル基末端ビニル系重合体を得た。

CuBr (251.82g、1.76mol)、アセトニトリル (3360mL)、アクリル酸ーnーブチル(33.60L)、2、5ージブロモアジピン酸ジ エチル (351g、0.975mol)、トリアミン (248.0mL、1.4 05mmol)、1,7-オクタジエン(8640mL、58.5mol)、酢 酸カリウム(245g)、N,Nージメチル酢酸アミド(30L)、ハイドロタ ルサイト (4.5 kg、協和化学製、キョーワード500SH、キョーワード7 00SL)、キシレン(6.0L)を用いて、アルケニル基末端ビニル系重合体 (重合体 [P1]) を得た。

[0242]

この重合体 [P1] (1000g) と、ジメトキシメチルヒドロシラン (53 . 7 m L)、オルトぎ酸メチル(1 5. 9 m L)、および白金触媒を用いて、末 端にシリル基を有するポリ(アクリル酸-n-ブチル)重合体 [P2] を得た。 得られた重合体の数平均分子量は約29000、重合体1分子当たりに導入され た平均のシリル基の数を 1 H NMR分析により求めたところ、 3 . 1 個であっ た。

(合成例2)

ページ: 100/

同様にCuBr(1.09kg)、アクリル酸プチル(130kg)、及び2, 5-ジプロモアジピン酸ジエチル(<math>2.28kg)、アセトニトリル(57.1kg)、1,7-オクタジエン(<math>14.0kg)、トリアミン(659g)を用い、アルケニル基末端重合体 $\{ \mathbb{P} \mathbb{P} \mathbb{P} \} \}$ を得た。

[0243]

この重合体 [P3] (54.9kg) と、ジメトキシメチルヒドロシラン (1.0kg) 、オルトぎ酸メチル (0.42kg) 、および 0 価白金の 1 、 1 、 3 、 3 ーテトラメチルー 1 、 3 ージビニルジシロキサン錯体のキシレン溶液を原料として、シリル基末端ビニル系重合体(重合体 [P4])を得た。得られた重合体の数平均分子量は約 2 7 0 0 0 、重合体 1 分子当たりに導入された平均のシリル基の数を 1 1 NMR分析により求めたところ、 1 の

[0244]

【実施例】

以下に、本発明の具体的な実施例を比較例と併せて説明するが、本発明は、下 記実施例に限定されるものではない。

[0245]

下記実施例および比較例中「部」および「%」は、それぞれ「重量部」および「重量%」を表す。

(実施例1~2)

上記合成例で得られた重合体〔重合体 P 2〕と表 2 における脱水剤、接着付与剤、硬化触媒以外の配合剤との混合物を、充分に手混ぜし、3本ペイントロールを用いて充分混練した後、脱水剤、接着付与剤、硬化触媒を配合し、更に手混ぜで充分撹拌混合したものを、約 2 mm厚のシート状に塗工した。

このシート状施工物を室温にて3日間静置し、更に50℃にて4日間静置し硬化養生させた。何れも充分なゴム弾性を示す硬化物が得られた。硬化養生後の硬化物から3号形ダンベル型試験片を打抜き、引張物性(島津製オートグラフ使用、測定温度:23℃、引張速度:200mm/sec)を評価した。それぞれの各種配合剤と添加部数、100%伸長した時の応力(M100)の結果を表2に示

(比較例1~2)

分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物を添加しな かった以外は実施例1~2と同様にして硬化物を作製し、同様に引張物性を評価 した。それぞれの各種配合剤と添加部数、結果を表2に示した。

[0246]

【表2】

ポリマー	FAU. 7	実施例1	実施例2	比較例1	比較例2
	重合体【P2】	100	100	100	100
(*)	れんと酸モノケ 'ルライト'	5	5		
炭加	CCR	150	150	150	150
74.45	ナノックス25A	20	20	20	
酸化チケン	R-820	10	10	10	20
可塑剤	DIDP	60		60	10
	UP-1000	_	80		
外防止剤	デ イスパ ロン6500	2	2	2	80
光安定剤	LS-765	1			2
紫外線吸収剤	f スピン213	1			1
脱水剤	A-171	2	2		1
接着付与剤	A-1120	1		2	2
校间小子的	A-187			1	1
硬化触媒	U-220	2		1	1
合計			2	2	2
M100 (MPa)		355	375	350	370
(*): α、βジオール構造又は		0. 187	0.176	0. 502	0. 388

(*): lpha 、 eta ジオール構造又はlpha 、 γ ジオール構造を有する化合物

炭酸カルシウム:

CCR…白艶華CCR(膠質炭酸カルシウム、白石工業製)

ナノックス25A…同名(重質炭酸カルシウム、丸尾カルシウム製)

酸化チタン:

R-820…タイペークR-820 (ルチル型、石原産業製)

可塑剤:

DIDP… (フタル酸ジイソデシル)

UP-1020…ARUFON UP-1020 (東亞合成製)

垂れ防止剤:

ディスパロン6500…同名(楠本化成製)

光安定剤:

LS-765…サノールLS765 (HALS、三共製)

紫外線吸収剤:

チヌビン213…同名(チバ・スペシャルティ・ケミカルズ製)

脱水剤:

A-171…ビニルトリメトキシシラン (日本ユニカー製)

接着付与剤:

 $A-1120 \cdots N-(\beta-r$ ミノエチル) $-\gamma-r$ ミノプロピルトリメトキシシ ラン (日本ユニカー製)

Α-187…γーグリシドキシプロピルトリメトキシシラン (日本ユニカー製)

硬化触媒:

U-220…ネオスタンU-220(ジブチル錫ジアセチルアセトナート、日東 化成製)

何れの実施例の硬化性組成物も作業性に問題なく、それを硬化して得られた硬化 物は、分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物を添 加しなかった比較例に比べ、低モジュラスの傾向を示した。

(実施例3~7)

上記合成例で得られた重合体〔重合体 P 4〕に各種配合剤を添加、手混ぜし、 遊星式ミキサーを用いて1液化し、カートリッジに詰めて1週間室温で保存した ものを用いて、実施例1~2と同様に硬化物を作製し引張物性を評価した。更に 、同様に詰めた別のカートリッジを室温で保存せずにすぐに50℃×4週間貯蔵 し、その後に同じ様に取出して貯蔵前の皮張り時間と比較した。それぞれの各種 配合剤と添加部数、それぞれの結果を表3に示した。

(比較例3)

分子中に α , β ジオール構造又は α , γ ジオール構造を有する化合物を添加しな かった以外は実施例3~7と同様にして硬化物を作製し、同様に引張物性及び貯 蔵前後の硬化性を評価した。各種配合剤と添加部数、それぞれの結果を表3に示 した。

[0247]

【表3】

1.0		実施例3	実施例4	実施例5	実施例6	E TOPACON T	
#* U7-	重合体【P4】	100	100	100		実施例7	比較例3
	れん酸化がルライド	1.5	3	100	100	100	100
(*)	ステアリン酸モノグリセライド	 		<u> </u>		_	
	酢酸むグリセライド			1.5			
	グルツ				3		
炭加	COR	150	150			0.39	
	ナノックス25A	20	150	150	150	150	150
酸化チタン	R-820		20	20	20	20	20
可塑剤	DIDP	10	10	10	10	10	10
外防止剤	デ イスパ ロン6500	60	60	60	60	60	60
光安定剤	LS-765	2	2	2	2	2	2
紫外線吸収剤		1	1	1	1	1	
脱水剤	デヌヒ ン213	1	1	1	1	-	
接着付与剤	A-171	2	2	2	2	2	
	A-1120	2	2	2	2		2
硬化触媒	U-220	2	2	2	2	2	2
合計		351.5	353, 0	351.5		2	2
M100 (MPa)		0.34	0. 29	0.36	353.0	353.4	350.0
初期に対する50°C×4W 貯蔵後の			0. 23	0.30	0. 34	0. 27	0. 44
皮張時間 遅延率 (於23°C測定) (*): α、βジオール構造又は		1.1	1.7	1.4	1.0	0. 81	5, 3

(*): lpha 、 eta ジオール構造又はlpha 、 γ ジオール構造を有する化合物

何れの実施例の硬化性組成物も作業性に問題なく良好な貯蔵安定性を示した。ま たそれらの硬化性組成物を硬化して得られた硬化物は、分子中に α , β ジオール 構造又は α , γ ジオール構造を有する化合物を添加しなかった比較例に比べ、低 モジュラスの傾向を示した。

[0248]

【発明の効果】

耐候性や耐熱性に優れ、かつ低応力で高伸びである様にゴム物性が良好であり 、更に、貯蔵安定性が良好な硬化性組成物が得られる。

【書類名】

要約書

【課題】

耐候性や耐熱性に優れ、かつ低応力で高伸びであるゴム物性が良好な硬化性組 成物の提供を目的とする。

【解決手段】

架橋性シリル基を平均して少なくとも1個有するビニル系重合体、及び、分子中に α 、 β ジオール構造又は α 、 γ ジオール構造を有する化合物を含有することを特徴とする硬化性組成物を用いる。

ビニル系重合体の主鎖としては、(メタ) アクリル系モノマー、アクリロニトリル系モノマー、芳香族ビニル系モノマー、フッ素含有ビニル系モノマー及びケイ素含有ビニル系モノマーからなる群から選ばれるモノマーを主として重合して製造されるものであることが好ましい。

【選択図】

なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-175825

受付番号

5 0 3 0 1 0 3 0 4 4 5

書類名

特許願

担当官

第六担当上席

0095

作成日

平成15年 6月23日

<認定情報・付加情報>

【提出日】

平成15年 6月20日

次頁無

特願2003-175825

出願人履歴情報

識別番号 .

[000000941]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月27日 新規登録

大阪府大阪市北区中之島3丁目2番4号

鐘淵化学工業株式会社