Programare funcțională

Introducere în Lambda-calcul — Totul din (aproape) nimic

Ioana Leuștean Traian Florin Șerbănută

Departamentul de Informatică, FMI, UB ioana@fmi.unibuc.ro traian.serbanuta@unibuc.ro

λ -calcul pentru toate problemele noastre

Figura: All you need is Lambda

- Model de calcul introdus de Alonzo Church
- Formalizează conceptul de computabilitate
 - Ce clase de probleme pot fi rezolvate cu un calculator?
- Baza programării funcționale
 - ullet toate limbajele funcționale sunt la bază un λ -calcul

Ce este programarea funcțională

- Paradigmă de programare ce folosește funcții modelate după funcțiile din matematică
- Programele se obțin ca o combinație de expresii
- Expresiile pot fi valori concrete, variable și funcții
- Funcțiile sunt expresii ce pot fi aplicate unor intrări
 - În urma aplicării, o funcție e redusă sau evaluată
- Funcțiile sunt valori (first-class citizens)
 - pot fi folosite ca argumente pentru alte funcții

Ce este programarea funcțională

- Paradigmă de programare ce folosește funcții modelate după funcțiile din matematică
- Programele se obțin ca o combinație de expresii
- Expresiile pot fi valori concrete, variable și funcții
- Funcțiile sunt expresii ce pot fi aplicate unor intrări
 - În urma aplicării, o funcție e redusă sau evaluată
- Funcțiile sunt valori (first-class citizens)
 - pot fi folosite ca argumente pentru alte funcții

Puritate

- Toate limbajele funcționale sunt bazate pe lambda-calcul
- Unele limbaje încorporează şi lucruri ce nu sunt reprezentabile în lambda-calcul
- Haskell e un limbaj pur, pentru că nu face acest compromis

Ce este o functie

- Relație între două mulțimi (de intrare și de ieșire)
- Asociază fiecărei intrări exact o iesire
 - transparență referențială: ieșirea e unic determinată de intrare

Definirea și evaluarea funcțiilor

- Exemplu definire: f(x) = x + 1
 - o functie numită f
 - care dată fiind o valoare de intrare, să zicem x,
 - obţine valoarea de ieşire conform expresiei x + 1
- Exemplu evaluare:

$$f(1) = 1 + 1$$
 (substitui x cu 1 in $x + 1$) = 2 (simplific)

Structura λ -expresiilor

O expresie este definită recursiv astfel:

- este o variabilă (un identificator)
- se obține prin abstractizarea unei variabile x într-o altă expresie e $\lambda x.e$ exemplu: $\lambda x.x$
- se obține prin aplicarea unei expresii e₁ asupra alteia e₂
 e₁ e₂
 exemplu: (λx.x)y

Structura λ -expresiilor

O expresie este definită recursiv astfel:

- este o variabilă (un identificator)
- se obține prin abstractizarea unei variabile x într-o altă expresie e
 λx.e
 exemplu: λx.x
- se obține prin aplicarea unei expresii e_1 asupra alteia e_2 e_1 e_2 exemplu: $(\lambda x.x)y$

Operatia de abstractizare $\lambda x.e$

- reprezintă o funcție anonimă
- constă din două părti: antetul λx . si corpul e
- variabila x din antet este parametrul functiei
 - leagă aparitiile variabilei x în e (ca un cuantificator)
 - Exemplu: $\lambda x.xy x$ e legată, y e liberă
- Corpul funcției reprezintă expresia care definește funcția

α -echivalență

- Redenumirea unui parametru și a tuturor aparițiilor sale legate
 - Exemplu: $\lambda x.x \equiv_{\alpha} \lambda y.y \equiv_{\alpha} \lambda a.a$
 - Asemanator cu: f(x) = x vs f(y) = y vs f(a) = a
- Numele asociat parametrului e pur formal
 - E necesar doar ca să îl pot recunoaște în corpul funcției
 - Există reprezentări fără variabile (e.g. indecși de Bruijn)
- ullet lpha-echivalența redenumește doar aparițiile legate ale argumentului
 - Exemple:

$$(\lambda x.x)x \not\equiv_{\alpha} (\lambda y.y)y$$
$$(\lambda x.x)x \equiv_{\alpha} (\lambda y.y)x$$

β -reductie

Cum aplicăm o funcție (anonimă) unui argument?

Înlocuim aplicația cu corpul funcției în care substituim aparițiile legate ale parametrului cu argumentul dat.

$$(\lambda x.e)e' \rightarrow_{\beta} e[x := e']$$

Comparați cu funcțiile ne-anonime:

Dacă
$$f(x) = e$$
, atunci $f(e') = e[x := e']$

β -reductie

Cum aplicăm o funcție (anonimă) unui argument?

Înlocuim aplicația cu corpul funcției în care substituim aparițiile legate ale parametrului cu argumentul dat.

$$(\lambda \mathbf{x}.\mathbf{e})\mathbf{e}' \rightarrow_{\beta} \mathbf{e}[\mathbf{x}:=\mathbf{e}']$$

Exemple

$$(\lambda \mathbf{x}.\mathbf{x})\mathbf{y} \rightarrow_{\beta} \mathbf{x}[\mathbf{x}:=\mathbf{y}] = \mathbf{y}$$

$$(\lambda x.x x)\lambda x.x \rightarrow_{\beta} x x[x := \lambda x.x] = (\lambda x.x)\lambda x.x \rightarrow_{\beta} x[x := \lambda x.x] = \lambda x.x$$

Alte exemple

Aplicarea funcțiilor se grupează la stânga

$$(\lambda x.x)(\lambda y.y)z = ((\lambda x.x)(\lambda y.y))z$$

Alte exemple

Aplicarea funcțiilor se grupează la stânga

$$(\lambda x.x)(\lambda y.y)z = ((\lambda x.x)(\lambda y.y))z$$
$$((\lambda x.x)(\lambda y.y))z \rightarrow_{\beta} (x[x := \lambda y.y])z = (\lambda y.y)z$$
$$(\lambda y.y)z \rightarrow_{\beta} y[y := z] = z$$

Functie cu variabile libere

$$(\lambda x.x \ y)z \rightarrow_{\beta} (x \ y[x := z]) = z \ y$$

lambda are are prioritate foarte mică

$$\lambda x.x \ \lambda x.x = \lambda x.(x \ (\lambda x.x))$$

- Funcțiile anonime au un singur parametru
 - si pot fi aplicate unui singur argument
- Simulăm mai multe argumente prin abstractizare repetată Exemplu: λx.λy.x y
 - Citim: primește ca argumente x și y și aplică pe x lui y
 - De fapt e o funcție de x care în urma aplicării dă o funcție de y
 - Procesul se numeşte Currying (de la Haskell Curry)
 - Pentru simplificarea notației, scriem λx y.x y în loc de $\lambda x.\lambda y.x$ y

$$(\lambda x \ y.x \ y)(\lambda z.a)1 = (\lambda x.(\lambda y.x \ y))(\lambda z.a)1 = ((\lambda x.(\lambda y.x \ y))(\lambda z.a))1$$

- Funcțiile anonime au un singur parametru
 - si pot fi aplicate unui singur argument
- Simulăm mai multe argumente prin abstractizare repetată Exemplu: λx.λy.x y
 - Citim: primește ca argumente x și y și aplică pe x lui y
 - De fapt e o funcție de x care în urma aplicării dă o funcție de y
 - Procesul se numește Currying (de la Haskell Curry)
 - Pentru simplificarea notației, scriem λx y.x y în loc de $\lambda x.\lambda y.x$ y

$$(\lambda x \ y.x \ y)(\lambda z.a)1 = (\lambda x.(\lambda y.x \ y))(\lambda z.a)1 = ((\lambda x.(\lambda y.x \ y))(\lambda z.a))1 \rightarrow_{\beta} ((\lambda y.x \ y)[x := \lambda z.a])1 = (\lambda y.(\lambda z.a)y)1$$

- Funcțiile anonime au un singur parametru
 - si pot fi aplicate unui singur argument
- Simulăm mai multe argumente prin abstractizare repetată Exemplu: λx.λy.x y
 - Citim: primește ca argumente x și y și aplică pe x lui y
 - De fapt e o funcție de x care în urma aplicării dă o funcție de y
 - Procesul se numește Currying (de la Haskell Curry)
 - Pentru simplificarea notației, scriem λx y.x y în loc de $\lambda x.\lambda y.x$ y

$$(\lambda x \ y.x \ y)(\lambda z.a)1 = (\lambda x.(\lambda y.x \ y))(\lambda z.a)1 = ((\lambda x.(\lambda y.x \ y))(\lambda z.a))1 \rightarrow_{\beta} ((\lambda y.x \ y)[x := \lambda z.a])1 = (\lambda y.(\lambda z.a)y)1 \rightarrow_{\beta} ((\lambda z.a)y)[y := 1] = (\lambda z.a)1$$

- Funcțiile anonime au un singur parametru
 - si pot fi aplicate unui singur argument
- Simulăm mai multe argumente prin abstractizare repetată Exemplu: λx.λy.x y
 - Citim: primește ca argumente x și y și aplică pe x lui y
 - De fapt e o funcție de x care în urma aplicării dă o funcție de y
 - Procesul se numește Currying (de la Haskell Curry)
 - Pentru simplificarea notației, scriem λx y.x y în loc de $\lambda x.\lambda y.x$ y

$$(\lambda x \ y.x \ y)(\lambda z.a)1 = (\lambda x.(\lambda y.x \ y))(\lambda z.a)1 = ((\lambda x.(\lambda y.x \ y))(\lambda z.a))1 \to_{\beta} ((\lambda y.x \ y)[x := \lambda z.a])1 = (\lambda y.(\lambda z.a)y)1 \to_{\beta} ((\lambda z.a)y)[y := 1] = (\lambda z.a)1 \to_{\beta} a[z := y] = a$$

Evaluarea ca simplificare

Forma normală β

- O λ -expresie este în forma normală β dacă regula β nu mai poate fi aplicată asupra ei.
- Corespunde ideii de expresie complet evaluată
- Evaluarea unei λ -expresii constă în simplificarea ei
 - ullet folosind regula eta până la ajungerea la o formă normală
- O λ -expresie nu poate avea mai multe forme normale
 - modulo α -conversie

Exemple

- λx.x este în formă normală
- $(\lambda x.x)z$ nu este în formă normală (z este)
- $z(\lambda x.x)$ este în formă normală

Combinatori

- Combinatorii sunt λ-expresii fără variabile libere
- Scopul lor este de a "combina" argumentele primite la intrare

Contraexemple

- λy.x y e legată, dar x este liberă
- λx.x z x e legată, dar z este liberă

Exemple distinse

- **combinatorul I**: funcția identitate $\lambda x.x$
- combinatorul K: proiecția stângă λx y.x
- combinatorul S: substituţie λx y z.xz(yz)
- orice λ-expresie poate fi obţinută dintr-o combinaţie de S,K, I
- Vă place Tetris? Încercați Combinatris

Divergență

- Nu toate λ-expresiile au formă normală
 - cele care au se numesc convergente
 - celelalte se numesc divergente
- Exemplu de expresie divergentă: **combinatorul** ω $(\lambda x.x x)(\lambda x.x x)$

Divergență

- Nu toate λ-expresiile au formă normală
 - cele care au se numesc convergente
 - celelalte se numesc divergente
- Exemplu de expresie divergentă: **combinatorul** ω $(\lambda x.x \ x)(\lambda x.x \ x) \rightarrow_{\beta} (x \ x)[x := \lambda x.x \ x] = (\lambda x.x \ x)(\lambda x.x \ x)$

Mai multe despre currying

Mai multe despre currying

- Fie $f: A \times B \to C$ o funcție. În mod uzual scriem f(x, y) = z unde $x \in A$, $y \in B$ și $z \in C$.
- Pentru $x \in A$ (arbitrar, fixat) definim $f_x : B \to C$, $f_x(y) = z$ dacă și numai dacă f(x, y) = z. Funcția f_x se obține prin aplicarea parțială a funcției f.

- Fie $f: A \times B \to C$ o funcție. În mod uzual scriem f(x, y) = z unde $x \in A$, $y \in B$ și $z \in C$.
- Pentru $x \in A$ (arbitrar, fixat) definim $f_x : B \to C$, $f_x(y) = z$ dacă și numai dacă f(x, y) = z. Funcția f_x se obține prin aplicarea parțială a funcției f.

In mod similar putem defini *aplicarea parțială* pentru orice $y \in B$ $f^y : A \to C$, $f^y(x) = z$ dacă și numai dacă f(x, y) = z.

- Fie $f: A \times B \to C$ o funcție. În mod uzual scriem f(x, y) = z unde $x \in A$, $y \in B$ și $z \in C$.
- Pentru $x \in A$ (arbitrar, fixat) definim $f_x : B \to C$, $f_x(y) = z$ dacă și numai dacă f(x, y) = z. Funcția f_x se obține prin aplicarea parțială a funcției f.
- Dacă notăm $B \to C \stackrel{not}{=} \{h : B \to C \mid h \text{ funcție}\}$ observăm că $f_x \in B \to C$ pentru orice $x \in A$.

- Fie $f: A \times B \to C$ o funcție. În mod uzual scriem f(x, y) = z unde $x \in A$, $y \in B$ și $z \in C$.
- Pentru $x \in A$ (arbitrar, fixat) definim $f_x : B \to C$, $f_x(y) = z$ dacă și numai dacă f(x, y) = z. Funcția f_x se obține prin aplicarea parțială a funcției f.
- Dacă notăm $B \to C \stackrel{not}{=} \{h : B \to C \mid h \text{ funcție}\}$ observăm că $f_x \in B \to C$ pentru orice $x \in A$.
- Asociem lui f funcția
 cf: A → (B → C), cf(x) = f_x
 Observăm că pentru fiecare element x ∈ A, funcția cf întoarce ca rezultat funcția f_x ∈ B → C, adică
 cf(x)(y) = z dacă și numai dacă f(x, y) = z

- Fie $f: A \times B \to C$ o funcție. În mod uzual scriem f(x, y) = z unde $x \in A$, $y \in B$ și $z \in C$.
- Pentru $x \in A$ (arbitrar, fixat) definim $f_x : B \to C$, $f_x(y) = z$ dacă și numai dacă f(x, y) = z. Funcția f_x se obține prin aplicarea parțială a funcției f.
- Dacă notăm $B \to C \stackrel{not}{=} \{h : B \to C \mid h \text{ funcție}\}$ observăm că $f_x \in B \to C$ pentru orice $x \in A$.
- Asociem lui f funcția
 cf: A → (B → C), cf(x) = f_x
 Observăm că pentru fiecare element x ∈ A, funcția cf întoarce ca rezultat funcția f_x ∈ B → C, adică
 cf(x)(y) = z dacă și numai dacă f(x, y) = z

Forma curry

Vom spune că funcția *cf* este *forma curry* a funcției *f*.

Currying

Teoremă

Mulțimile $(A \times B) \to C$ și $A \to (B \to C)$ sunt echipotente.

"Currying" este procedeul prin care o funcție cu mai multe argumente este transformată într-o funcție care are un singur argument și întoarce o altă functie.

Currying in Haskell

Teoremă

Mulțimile $(A \times B) \to C$ și $A \to (B \to C)$ sunt echipotente.

Observatie

Funcțiile curry și uncurry din Haskell stabilesc bijecția din teoremă:

```
curry :: ((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c

curry f a b = f (a, b)

uncurry :: (a \rightarrow b \rightarrow c) \rightarrow (a, b) \rightarrow c

uncurry f (a,b) = f a b
```

Currying în Haskell

- In Haskell toate funcțiile sunt forma curry, deci au un singur argument.
- Operatorul \rightarrow pe tipuri este asociativ la dreapta, adică tipul $a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n$ îl gândim ca $a_1 \rightarrow (a_2 \rightarrow \cdots (a_{n-1} \rightarrow a_n) \cdots)$.
- Aplicarea funcțiilor este asociativă la stânga, adică expresia $f x_1 \cdots x_n$ o gândim ca $(\cdots ((f x_1) x_2) \cdots x_n)$.