SEASONALITY MODELS

Dr. Aric LaBarr
Institute for Advanced Analytics

QUICK REVIEW

Time Series Data

Forecasts extrapolate signal portion of model.

Confidence intervals account for uncertainty.

Time Series Data

Original Series

Trend / Cycle

Season

Error

U.S. AIRLINE PASSENGERS

Original Series

Level

 $L_t = \theta Y_t + (1 - \theta) L_{t-1}$

Trend

 $T_t = \gamma (L_t - L_{t-1}) + (1 - \gamma) T_{t-1}$

Season

Stationarity

- Need consistency of mean and variance.
- What about changes in mean trending, seasonality? NOT stationary.

- AR forecast a series based solely on the past values in the series – called lags.
- MA forecast a series based solely on the past errors in the series – called error lags.

- AR forecast a series based solely on the past values in the series – called lags.
- MA forecast a series based solely on the past errors in the series – called error lags.

- AR forecast a series based solely on the past values in the series – called lags.
- MA forecast a series based solely on the past errors in the series – called error lags.

ARIMA Models are typically written as the following:

U.S. Airlines Passengers 1990 – 2007

U.S. AIRLINE PASSENGERS

Split into Training and Validation

Original Series

Level

$$L_t = \theta Y_t + (1 - \theta) L_{t-1}$$

Trend

$$T_t = \gamma (L_t - L_{t-1}) + (1 - \gamma) T_{t-1}$$

Season

$$S_t = \delta(Y_t - L_t) + (1 - \delta)S_{t-p}$$


```
HWES.USAir.train <- hw(training, seasonal = "multiplicative", initial='optimal',h=12)
autoplot(HWES.USAir.train) +
  autolayer(fitted(HWES.USAir.train), series="Fitted") +
  ylab("Airlines Passengers") +
  geom_vline(xintercept = 2007.25,color="orange",linetype="dashed")

HW.error <- test - HWES.USAir.train$mean

HW.MAE <- mean(abs(HW.error))
HW.MAPE <- mean(abs(HW.error)/abs(test))*100</pre>
```


Model Evaluation on Test Data

Model	MAE	MAPE
HW Exponential Smoothing	1134.58	1.76%

SEASONALITY

Seasonality

- Seasonality is the component of time series that represents the effects of seasonal variation.
- Component that describes repetitive behavior known as seasonal periods.
 - Seasonal period = S
 - Seasonal factors repeat every S units of time.

Seasonality and Stationarity

Need consistency of mean and variance.

What about changes in mean – trending, seasonality? NOT

stationary.

Seasonality and Stationarity

Need consistency of mean and variance.

What about changes in mean – trending, seasonality? NOT

stationary.

ARIMA Framework

Seasonal ARIMA Models

- Similar to trend, seasonality can be solved with a deterministic solution or a stochastic solution.
 - Deterministic Seasonal dummy variables, Fourier transforms, predictor variables
 - Stochastic Seasonal differences
- Once data is made stationary, we can model with traditional ARIMA approaches.

Seasonal Unit-Root Testing

- Similar to trend, we can perform statistical tests (Canova-Hansen test) for evaluating whether a unit root exists for seasonal data.
- Hypotheses:

 H_0 : Deterministic Seasonality (Differencing not going to help)

 H_a : Stochastic Seasonality (Differencing needed)

Seasonal Unit-Root Testing

```
training %>% nsdiffs()
## [1] 1
Should take one seasonal difference
```

Seasonal Unit-Root Testing

Differenced Data

Unit-Root Testing

```
training %>% diff(lag = 12) %>% ndiffs()
## [1] 0
```

Should take 0 regular differences AFTER taking the seasonal difference

DETERMINISTIC SOLUTIONS

Which Deterministic Solution?

- Similar to trend, seasonality can be solved with a deterministic solution or a stochastic solution.
 - Deterministic Seasonal dummy variables, Fourier transforms, predictor variables
 - Stochastic Seasonal differences
- Once data is made stationary (model away the seasonality), we can model with traditional ARIMA approaches.

- For a time series with S periods within a season, there will be S-1 dummy variables, one for each period (and one accounted for with the intercept).
- Monthly Data:
 - One dummy variable for each month (S = 12)
- Weekly Data:
 - One dummy variable for each day of week (S = 7)
- Hourly Data:
 - One dummy variable for each hour (S = 24)

Example model with intercept:

$$Y_t = \beta_0 + \beta_1 JAN + \beta_2 FEB + \dots + \beta_{11} NOV + e_t$$

 $\beta_0 + \beta_M = \text{effect of M}^{\text{th}} \text{ month}$

$$\beta_0$$
 = effect of December

```
Month <- rep(0, length(training))
Month <- Month + 1:12

M <- factor(Month)
M <- relevel(M, ref="12")</pre>
```

```
Season.Lin <- lm(training ~ M)
summary(Season.Lin)</pre>
```

```
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                          <2e-16 ***
              48761.5
                          2002.3
                                 24.353
## M1
               -4461.9
                          2792.1 -1.598 0.1116
## M2
               -5433.9 2792.1 -1.946
                                        0.0531 .
                                          0.1436
## M3
               4099.8
                          2792.1
                                 1.468
               814.9
                          2831.7 0.288
## M4
                                          0.7738
## M5
               1951.8
                          2831.7
                                  0.689
                                          0.4915
                                          0.0887 .
## M6
                          2831.7
                                  1.711
               4844.6
                                          0.0087 **
## M7
               7504.9
                          2831.7
                                  2.650
## M8
               7297.4
                          2831.7
                                  2.577
                                          0.0107 *
## M9
               -3242.5
                          2831.7
                                 -1.145
                                          0.2536
## M10
               1064.1
                          2831.7 0.376
                                          0.7075
## M11
               -1268.2
                          2831.7
                                 -0.448
                                          0.6548
## ---
```

```
M.Matrix <- model.matrix(~M)

Trend <- 1:length(training)

SD.ARIMA <- auto.arima(training, xreg = M.Matrix[,2:12], method="ML", seasonal = FALSE)
summary(SD.ARIMA)</pre>
```

Seasonal Dummy Variables

```
## Series: training
## Regression with ARIMA(1,1,1) errors
##
## Coefficients:
##
           ar1
                   ma1
                           drift
                                        M1
                                                   M2
                                                             М3
                                                                        M4
##
        0.4292 -0.7971 120.7148 -3947.9347 -5040.318 4373.0410 1776.4821
## s.e. 0.1142 0.0773
                       47.0832
                                 485.1706
                                              583.269
                                                      625.8909 653.3822
                                            M8
##
              M5
                        M6
                                  M7
                                                       Μ9
                                                                M10
        2774.5010 5539.126 8075.0713 7745.7280 -2913.554 1275.9094
##
## s.e. 664.7169 667.948 665.0425 655.1154 633.936 589.7366
##
              M11
##
        -1168.1437
## s.e. 486.9715
##
## sigma^2 estimated as 3751114: log likelihood=-1844.41
## AIC=3718.82 AICc=3721.34 BIC=3768.74
##
## Training set error measures:
                     ME
                                     MAE
                                               MPE
                            RMSE
                                                       MAPE
                                                                MASE
## Training set -13.60989 1865.287 1119.089 -0.1822502 2.399032 0.4156601
##
                      ACF1
## Training set -0.002860136
```

Advantages and Disadvantages

Advantages

- Interpretation still holds.
 - Can easily measure and interpret effects from different parts of the season.
- Straight forward to implement.

Disadvantages

- Especially long or complex seasons are hard to deal with.
 - More than 24 periods in a season (365 days in year for example) is burdensome.
 - Some seasons are complex (365.25 days in a year, 52.17 weeks in a year, etc.).
- Seasonal effects remain constant.

 Fourier showed that series of sine and cosine terms of the right frequencies approximate periodic series.

 Add Fourier variables to a regression model predicting the target to remove the seasonal pattern.

$$X_{1,t} = \sin\left(\frac{2\pi t}{S}\right)$$
 $X_{3,t} = \sin\left(2 \times \frac{2\pi t}{S}\right)$ $X_{5,t} = \sin\left(3 \times \frac{2\pi t}{S}\right)$...

$$X_{2,t} = \cos\left(\frac{2\pi t}{S}\right) \qquad X_{4,t} = \cos\left(2 \times \frac{2\pi t}{S}\right) \qquad X_{6,t} = \cos\left(3 \times \frac{2\pi t}{S}\right) \qquad \dots$$

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \beta_3 X_{3,t} + \beta_4 X_{4,t} + \dots + e_t$$

- Add Fourier variables to a regression model predicting the target to remove the seasonal pattern.
- If you add the same number of Fourier variables as you have seasonal dummy variables, you will get the same predictions.
- However, typically do not need all the Fourier variables → especially with large values of S.

```
plots <- list()</pre>
for (i in seq(6)) {
 fit <- auto.arima(training, xreg = fourier(training, K = i),</pre>
                     seasonal = FALSE, lambda = NULL)
 plots[[i]] <- autoplot(forecast::forecast(fit,</pre>
                          xreg = fourier(training, K=i, h=12))) +
    xlab(paste("K=",i," BIC=",round(fit[["bic"]],2))) +
    ylab("") + ylim(30000,80000)
gridExtra::grid.arrange(
 plots[[1]],plots[[2]],plots[[3]],
  plots[[4]],plots[[5]],plots[[6]], nrow=3)
```


Forecasts from Regression with ARIMA(2,1,1) errors

Forecasts from Regression with ARIMA(0,1,5) errors

Forecasts from Regression with ARIMA(4,1,1) errors

Forecasts from Regression with ARIMA(1,1,1) errors


```
F.ARIMA \leftarrow auto.arima(training, xreg = fourier(training, K = 6), seasonal = FALSE)
## Series: training
## Regression with ARIMA(1,1,1) errors
##
## Coefficients:
##
                          drift
                                    S1-12
                                               C1-12
                                                        S2-12
                                                                 C2-12
          ar1
                  ma1
       0.4289 -0.7970 120.6974 -1232.3084 -4334.8049 313.9197 677.9491
##
## s.e. 0.1142 0.0773 47.1030
                                  270.2688
                                            270.3805 194.1284 193.6296
##
            S3-12
                      C3-12 S4-12 C4-12
                                                  S5-12
                                                           C5-12
                                                                 C6-12
## -2561.1131 1291.3900 413.8895 208.6503 2314.3804 274.0798 341.8763
## s.e. 152.7962 153.1557 130.4249 130.6610 118.9888 119.5082 81.8796
##
## sigma^2 estimated as 3751119: log likelihood=-1844.41
## AIC=3718.82 AICc=3721.34 BIC=3768.74
##
## Training set error measures:
##
                    ME
                           RMSE
                                   MAE
                                             MPE
                                                     MAPE
                                                              MASE
## Training set -13.55273 1865.288 1119.117 -0.1820955 2.399079 0.4156704
##
                     ACF1
## Training set -0.002801581
```

Advantages and Disadvantages

Advantages

- Can handle long and complex seasonality.
 - If multiple seasons, just add more Fourier variables to account for them.

Disadvantages

- Trial and error for "right" amount of Fourier variables to use.
- No interpretable value.
- Effect of season remains constant.

Predictor Variables for Seasonality

- Last common approach to accounting for seasonality in data is to use other predictor variables that have matching season.
- Modeling these variables against the target might remove the seasonality.
- Example: Weather data and energy data
 - Hourly temperature correlates with hourly energy usage in the summer months (high heat → high energy usage)
 - Have same 24 hour cycle

Advantages and Disadvantages

Advantages

- Can handle long and complex seasonality.
 - If multiple seasons, just add more variables to account for them.
- Interpretation still holds.
 - Can easily measure and interpret effects from these variables.

Disadvantages

- Trial and error for "right" variables to use.
- Might not have predictor variables to use in this context.

What Next?

 After removing the seasonality through deterministic approaches, the remaining error term (residuals) are modeled with Seasonal ARIMA models.

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \beta_3 X_{3,t} + \beta_4 X_{4,t} + \dots + e_t$$

Seasonal ARIMA here!

Still might need seasonal effects even though season is removed.

STOCHASTIC SOLUTION (DIFFERENCING)

Stochastic Solution

- Similar to trend, seasonality can be solved with a deterministic solution or a stochastic solution.
 - Deterministic Seasonal dummy variables, Fourier transforms, predictor variables
 - Stochastic Seasonal differences
- Once data is made stationary (model away the seasonality), we can model with traditional ARIMA approaches.

Seasonal Differencing

• Differencing on season \rightarrow look at difference between current point and the same point in the previous season: $Y_t - Y_{t-S}$

What Next?

 After removing the seasonality through stochastic approaches, the remaining differences are modeled with Seasonal ARIMA models.

$$Y_t - Y_{t-S} = W_t$$

Seasonal ARIMA here!

Still might need seasonal effects even though season is removed.

Seasonal Differencing

training %>% diff(lag = 12) %>% ggtsdisplay()

Limitations of Differencing

- Hard to evaluate stochastic effects for long and complex seasons.
- Most statistical tests for stochastic vs. deterministic can not handle past 12 or 24 periods in a season.

SEASONAL ARIMA

More Complex ARIMA

 When extending to the Seasonal ARIMA framework, we add another set of terms – P, D, Q, and S.

More Complex ARIMA

 When extending to the Seasonal ARIMA framework, we add another set of terms – P, D, Q, and S.

$$ARIMA(1,0,1)(2,1,0)_{12}$$

$$ARIMA(1,0,1)(2,1,0)_{12}$$

$$Y_t - Y_{t-12} = W_t$$

ARIMA(1,0,1)(2,1,0)₁₂

$$Y_t - Y_{t-12} = W_t$$

ARIMA(1,0,1)(2,1,0)₁₂

$$Y_{t} - Y_{t-12} = W_{t}$$

$$W_{t} = \omega + \phi_{1}W_{t-1} + \phi_{2}W_{t-12} + \phi_{3}W_{t-24} + \theta_{1}e_{t-1} + e_{t}$$

ARIMA(1,0,1)(2,1,0)₁₂

$$Y_t - Y_{t-12} = W_t$$

$$W_t = \omega + \phi_1 W_{t-1} + \phi_2 W_{t-12} + \phi_3 W_{t-24} + \theta_1 e_{t-1} + e_t$$

- Seasonal ARIMA models have the same structure and approach as typical ARIMA models with AR and MA patterns in the PACF and ACF.
- The pattern is just on the seasonal lag instead of the individual lags.

$$ARIMA(0,0,0)(1,0,0)_{12}$$

- Seasonal ARIMA models have the same structure and approach as typical ARIMA models with AR and MA patterns in the PACF and ACF.
- The pattern is just on the seasonal lag instead of the individual lags.

$$ARIMA(0,0,0)(0,0,1)_{12}$$

Seasonal Differencing

training %>% diff(lag = 12) %>% ggtsdisplay()


```
training %>%
  Arima(order=c(1,0,0), seasonal=c(1,1,1)) %>%
  residuals() %>% ggtsdisplay()
```



```
S.ARIMA <- Arima(training, order=c(1,0,0), seasonal=c(1,1,1))
summary(S.ARIMA)
## Series: training
## ARIMA(1,0,0)(1,1,1)[12]
##
## Coefficients:
##
           ar1
                  sar1
                          sma1
   0.9056 0.0917 -0.672
## s.e. 0.0364 0.1091 0.093
##
## sigma^2 estimated as 4126436: log likelihood=-1763.94
## AIC=3535.88 AICc=3536.09 BIC=3548.97
##
## Training set error measures:
##
                     ME
                            RMSE
                                      MAE
                                                MPE
                                                       MAPE
                                                                 MASE
                                                                            ACF1
## Training set 338.6503 1956.379 1156.221 0.5565257 2.418163 0.4294517 -0.2622466
```

checkresiduals(S.ARIMA)

```
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,0)(1,1,1)[12]
## Q* = 45.934, df = 21, p-value = 0.001304
##
## Model df: 3. Total lags used: 24
```



```
S.ARIMA <- auto.arima(training, method="ML", seasonal = TRUE)</pre>
summary(S.ARIMA)
## Series: training
## ARIMA(1,0,1)(0,1,1)[12] with drift
##
## Coefficients:
##
           ar1
                                     drift
                    ma1
                            sma1
        0.8800 -0.2962 -0.6785 124.9788
## s.e. 0.0454 0.0950 0.0600 23.6330
##
## sigma^2 estimated as 3639517: log likelihood=-1751.67
## AIC=3513.34 AICc=3513.66 BIC=3529.7
##
## Training set error measures:
##
                      ME
                            RMSE
                                     MAE
                                                MPE
                                                        MAPE
                                                                  MASE
                                                                             ACF1
## Training set -4.332616 1832.54 1055.07 -0.1745474 2.217472 0.3918815 0.01300462
```

checkresiduals(S.ARIMA)

```
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,1)(0,1,1)[12]
## Q* = 21.957, df = 20, p-value = 0.3428
##
## Model df: 4. Total lags used: 24
```


Multiple Differences

- Models can contain both unit roots and seasonal unit roots.
- After removing the seasonal unit root through differencing to get W_t , ordinary differences can be calculated.

$$\begin{aligned} W_t &= Y_t - Y_{t-12} \\ W_t &= W_{t-1} + e_t - \beta e_{t-1} \\ W_t - W_{t-1} &= e_t - \beta e_{t-1} \\ (Y_t - Y_{t-12}) - (Y_{t-1} - Y_{t-13}) &= e_t - \beta e_{t-1} \\ Y_t &= Y_{t-1} + Y_{t-12} - Y_{t-13} + e_t - \beta e_{t-1} \end{aligned}$$

Limitations of Differencing

- Hard to evaluate stochastic effects for long and complex seasons.
- Most statistical tests for stochastic vs. deterministic can not handle past 12 or 24 periods in a season.
- Long/complex seasons → Best to just approach with deterministic solutions

MULTIPLICATIVE VS. ADDITIVE

Multiplicative vs. Additive

Backshift Operator – B

- The backshift operator is the mathematical operator to convert observations to their lags.
 - $B(Y_t) = Y_{t-1}$
 - This can be extended to any number of lags.
 - $B^2(Y_t) = B(Y_{t-1}) = Y_{t-2}$

Additive

$$(1 - \alpha_1 \mathbf{B} - \alpha_2 \mathbf{B}^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B)(1 - \alpha_2 B^{12})Y_t = e_t$$

Additive

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$
$$Y_t - \alpha_1 B(Y_t) - \alpha_2 B^{12}(Y_t) = e_t$$

$$(1 - \alpha_1 B)(1 - \alpha_2 B^{12})Y_t = e_t$$

Additive

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$Y_t - \alpha_1 B(Y_t) - \alpha_2 B^{12}(Y_t) = e_t$$

$$Y_t - \alpha_1 Y_{t-1} - \alpha_2 Y_{t-12} = e_t$$

$$(1 - \alpha_1 B)(1 - \alpha_2 B^{12})Y_t = e_t$$

Additive

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$Y_t - \alpha_1 B(Y_t) - \alpha_2 B^{12}(Y_t) = e_t$$

$$Y_t - \alpha_1 Y_{t-1} - \alpha_2 Y_{t-12} = e_t$$

$$Y_t = \alpha_1 Y_{t-1} + \alpha_2 Y_{t-12} + e_t$$

$$(1 - \alpha_1 B)(1 - \alpha_2 B^{12})Y_t = e_t$$

Additive

$$(1 - \alpha_1 \mathbf{B} - \alpha_2 \mathbf{B}^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B)(1 - \alpha_2 B^{12})Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12} + \alpha_1 \alpha_2 B^{13})Y_t = e_t$$

Additive

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12} - \alpha_3 B^{13}) Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B - \alpha_2 B^{12}) Y_t = e_t$$

Additive

$$(1 - \alpha_1 \mathbf{B} - \alpha_2 \mathbf{B}^{12}) Y_t = e_t$$

$$(1 - \alpha_1 B)(1 - \alpha_2 B^{12})Y_t = e_t$$

Seasonal Differencing

training %>% diff(lag = 12) %>% ggtsdisplay()

Additive

```
S.ARIMA <- Arima(training, order=c(1,0,13),
                  seasonal=c(0,1,0),
                  fixed=c(NA,NA,0,0,0,0,0,0,0,0,0,0,NA,NA),
                  method="ML",)
 summary(S.ARIMA)
## Coefficients:
##
            ar1
                           ma2
                                ma3
                                          ma5
                                               ma6
                                                     ma7
                                                          ma8
                     ma1
                                     ma4
         0.9679
                 -0.3698
         0.0237
## s.e.
                  0.0880
                                       0
                                            0
                                                  0
                                                       0
##
         ma9
               ma10
                      ma11
                               ma12
                                       ma13
##
                          0 -0.6612
                                     0.2490
## s.e.
                            0.0626
                                     0.0766
```

```
## Coefficients:

## ar1 ma1 sma1 drift

## 0.8800 -0.2962 -0.6785 124.9788

## s.e. 0.0454 0.0950 0.0600 23.6330
```

Seasonal ARIMA Models

```
S.ARIMA <- auto.arima(training, method="ML", seasonal = TRUE)

autoplot(forecast::forecast(S.ARIMA, h = 12)) +
    autolayer(fitted(S.ARIMA), series="Fitted") +
    ylab("Airlines Passengers") +
    geom_vline(xintercept = 2007.25,color="orange",linetype="dashed")

S.ARIMA.error <- test - forecast::forecast(S.ARIMA, h = 12)$mean

S.ARIMA.MAE <- mean(abs(S.ARIMA.error))

S.ARIMA.MAPE <- mean(abs(S.ARIMA.error)/abs(test))*100</pre>
```

Seasonal ARIMA Models

Model Evaluation on Test Data

Model	MAE	MAPE
HW Exponential Smoothing	1134.58	1.76%
Seasonal ARIMA	1229.21	1.89%

