

Fakultät Elektro- und Informationstechnik Institut für Automatisierungstechnik

DOKUMENTATION PRAKTIKUM MENSCH-MASCHINE-SYSTEMTECHNIK

Gruppe 2.3: Lukas Buntkiel, Alexander Lehmann, Miao Zhang, Sven Schönfeld, Falk-Jonatan Strube

19. Dezember 2014

INHALTSVERZEICHNIS

1	Einleitung: Literatur & Theoriebildung	4
	1.1 Einordnung	5
	1.2 Theoriebildung	5
2	Analyse	6
	2.1 Analyse & Entwurf	7
	2.1.1 Daten im turtle	7
	2.1.2 Darstellungen anderer Subversion Systeme	7
	2.1.3 Erster Entwurf	7
	2.1.5 LISTER LITEWAIT	,
3	Pflichtenheft	8
	3.1 Produktfunktionen	9
	3.1.1 Muss	9
	3.1.2 Kann	9
	3.1.3 Soll	9
	3.2 Qualitätsanforderungen	9
	3	9
	3.3 Einschränkungen und Randbedingungen	
	3.4 Annahmen und Abhängigkeiten	9
4	Gestaltungsentwurf	10
5	Abgabe	11
J	ANYANG	

1 EINLEITUNG: LITERATUR & THEORIEBILDUNG

1.1 EINORDNUNG

Hauptbestandteil der Aufgabenstellung ist das Entwerfen einer interaktiven Darstellung der Revisions-Struktur des Versionsverwaltungssystems (Version Control System, VCS) R43ples.

R43ples kann zur Versionsverwaltung von Named Graphs genutzt werden, dem Schlüssel-Bestandteil des Semantic Web[1]. Es verwendet dabei zur Verwaltung der Revisionen wiederum Named Graphs, in denen auch sämtliche, zur Darstellung der Struktur notwendigen, Informationen in Form von Linked Data enthalten sind [2]. R43ples verwendet dabei ein ähnliches Konzept wie klassische Versionsverwaltungssysteme (wie z.B. git[3]) indem es Verzweigungen von Revisionen in Form von Branches sowie das Kennzeichnen spezieller Revisionen mit Tags unterstützt [2].

Der Hauptunterschied zu klassischen VCS liegt also weniger im Konzept der Versionsverwaltung selbst, als in der Anwendung dieses Konzeptes auf einen neuen Typ von Ressource (Named-Graphs). Es kann daher angenommen werden, dass durch andere VCS bereits Lösungen für die graphische Darstellung von Revisionen vorhanden sind, die im Verlauf dieser Arbeit analysiert werden können, um günstige Merkmale herauszuarbeiten.

1.2 THEORIEBILDUNG

VERARBEITUNG FOLIEN ERSTPRÄSENTATION

2 ANALYSE

2.1 ANALYSE & ENTWURF

DATEN IM turtle DIAGRAMM (LUKAS)

2.1.1 DATEN IM TURTLE

Bezeichnung Nutzen Kommentar

rdf:type Gibt an, ob's Commit, Revision o. ä.

delta Removed

delta Added

revisionNumber

revisionOf

2.1.2 DARSTELLUNGEN ANDERER SUBVERSION SYSTEME

- SVN [4]
- GIT [5]
- GIT [6]

2.1.3 ERSTER ENTWURF

Abbildung 2.1: Erste Skizze

3 PFLICHTENHEFT

3.1 PRODUKTFUNKTIONEN

3.1.1 MUSS

- Daten aus turtle-Datensatz auslesen (zum weiterverarbeiten)
- Daten werden graphisch abgebildet

3.1.2 KANN

- Daten werden in in unterschiedlichen Darstellungsebenen dargestellt (Gesamt- und Detailübersicht)
- Einzelansicht für die Details von Commits
- Daten werden tabellarisch-strukturiert abgebildet

3.1.3 SOLL

• Zweckmäßige Übergangsanimationen zwischen Darstellungsansichten

3.2 QUALITÄTSANFORDERUNGEN

- Daten werden (aus den turtle-Datensätzen) unverfälscht abgebildet
- Durch Informationsreduzierung (auf das nötigste) wird ein höhere Übersichtlichkeit erreicht (Minimierung der Darstellung von merges und commits durch Unterteilung in Detailansichten)

3.3 EINSCHRÄNKUNGEN UND RANDBEDINGUNGEN

• Läuft auf neuerem Firefox und Chrome

3.4 ANNAHMEN UND ABHÄNGIGKEITEN

• Nutzer ist mit r43ples und dem semantic web vertraut

4 GESTALTUNGSENTWURF

5 ABGABE

LITERATURVERZEICHNIS

- [1] Pascal Hitzler. Semantic Web / Grundlagen. Springer, 2008.
- [2] Markus Graube, Stephan Hensel, and Leon Urbas. R43ples: Revisions for triples. *1st Workshop on Linked Data Quality*, 09 2014.
- [3] git-SCM. http://git-scm.com/.
- [4] Visualisieren von Repositorien mit Gource. http://www.pro-linux.de/kurz-tipps/2/1674/visualisieren-von-repositorien-mit-gource.html.
- [5] Git auf dem Server GitWeb. http://git-scm.com/book/de/v1/Git-auf-dem-Server-GitWeb.
- [6] Das Repository visualisieren. http://de.gitready.com/intermediate/2009/01/13/visualizing-your-repo.html.