MIPS assembly language

Ontodown	Instruction	Example		Magning	Comments	
Category	Instruction	-	<u> </u>	Meaning	Comments	
	add	add	\$s1,\$s2,\$s3		Three operands; overflow detected	
	subtract	sub	\$s1,\$s2,\$s3		Three operands; overflow detected	
	add immediate	addi addu	\$s1,\$s2,100		+ constant; overflow detected	
	add unsigned		\$s1,\$s2,\$s3		Three operands; overflow undetected	
	subtract unsigned	subu	\$s1,\$s2,\$s3		Three operands; overflow undetected	
	add immediate unsigned	addiu	\$s1,\$s2,100	\$s1 = \$s2 + 100	+ constant; overflow undetected	
Arithmetic	move from coprocessor register	mfc0	\$s1,\$epc	\$s1 = \$epc	Copy Exception PC + special regs	
Anthmetic	multiply	mult	\$s2,\$s3	Hi, Lo = $$s2 \times $s3$	64-bit signed product in Hi, Lo	
	multiply unsigned	multu	\$s2,\$s3	Hi, Lo = $$s2 \times $s3$	64-bit unsigned product in Hi, Lo	
	divide	div	\$s2,\$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Lo = quotient, Hi = remainder	
	divide unsigned	divu	\$s2 , \$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Unsigned quotient and remainder	
	move from Hi	mfhi	\$s1	\$s1 = Hi	Used to get copy of Hi	
	move from Lo	mflo	\$ s1	\$s1 = Lo	Used to get copy of Lo	
	load word	1 w	\$s1,20(\$s2)	\$s1 - Memory[\$s2 + 20]	Word from memory to register	
	store word	SW	\$s1,20(\$s2)	Memory[\$s2 + 20] - \$s1	Word from register to memory	
	load half unsigned	1 hu	\$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Halfword memory to register	
	store half	sh	\$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Halfword register to memory	
Data	load byte unsigned	1 bu	\$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Byte from memory to register	
transfer	store byte	sb	\$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Byte from register to memory	
	load linked word	11	\$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Load word as 1st half of atomic swap	
	store conditional word	sc	\$s1,20(\$s2)	Memory[\$s2+20]=\$s1;\$s1-0 or 1	Store word as 2nd half atomic swap	
	load upper immediate	lui	\$s1,100	\$s1 - 100 * 2 ¹⁶	Loads constant in upper 16 bits	
	AND	AND	\$s1,\$s2,\$s3	\$s1 - \$s2 & \$s3	Three reg. operands; bit-by-bit AND	
	OR	OR	\$s1,\$s2,\$s3		Three reg. operands; bit-by-bit OR	
	NOR	NOR	\$s1,\$s2,\$s3	\$s1 - ~ (\$s2 \$s3)	Three reg. operands; bit-by-bit NOR	
Logical	AND immediate	ANDi	\$s1,\$s2,100	\$\$1 - \$\$2 & 100	Bit-by-bit AND with constant	
Logical	OR immediate	ORi	\$s1,\$s2,100	\$s1 - \$s2 100	Bit-by-bit OR with constant	
		sll	\$s1,\$s2,100 \$s1.\$s2.10	\$s1 - \$s2 100 \$s1 - \$s2 << 10	-	
	shift left logical				Shift left by constant	
	shift right logical	srl	\$s1,\$s2,10	\$\$1 - \$\$2 >> 10	Shift right by constant	
	branch on equal	beq	\$s1,\$s2,25	if (\$s1 == \$s2) go to PC + 4 + 100	Equal test; PC-relative branch	
	branch on not equal	bne	\$s1,\$s2,25	if (\$s1!= \$s2) go to PC + 4 + 100	Not equal test; PC-relative	
Candi	set on less than	slt	\$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0	Compare less than; two's complement	
Condi- tional branch	set less than immediate	slti	\$s1,\$s2,100	if (\$s2 < 100) \$s1 = 1; else \$s1=0	Compare < constant; two's complement	
	set less than unsigned	sltu	\$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1=0	Compare less than; natural numbers	
	set less than immediate unsigned	sltiu	\$s1,\$s2,100	if (\$s2 < 100) \$s1 = 1; else \$s1 = 0	Compare < constant; natural numbers	
Uncondi-	jump	j	2500	go to 10000	Jump to target address	
tional	jump register	jr	\$ra	go to \$ra	For switch, procedure return	
jump	jump and link	jal	2500	\$ra = PC + 4; go to 10000	For procedure call	

MIPS machine language

				WIPS macr Ex	ample	up o		
Name	Format	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	Comments
add	R	0	2	3	1	, , 0	32	add \$1,\$2,\$3
sub	R	0	2	3	1	0	34	sub \$1,\$2,\$3
addi	1.	8	2	1		100		addi \$1,\$2,100
addu	R	0 .	2	3	1	0	33	addu \$1,\$2,\$3
subu	R	0	2	3	1	0	35	subu \$1,\$2,\$3
addiu	. 1	9	2	1		100		addiu \$1,\$2,100
mfc0	R	16	0	1	14	0	0	mfc0 \$1,\$epc
mult	R	0	2	3	0	0	24	mult \$2,\$3
multu	R	0 /	2	3	0	0	25	multu \$2,\$3
div .	R	0	2	3	0	0	26	div \$2,\$3
divu	R	0	2	3	0	0	27	divu \$2,\$3
mfhi	R	0	0	0	1	0	16	mfhi \$1
mf1o	R	0	0	0	1	0	18	mflo \$1
and	R	0	2	. 3	1	0	36	and \$1,\$2,\$3
or	R	0	2	3	1	0	37	or \$1,\$2,\$3
andi	1	12	2	1		100		andi \$1,\$2,100
ori	I	13	2	1		100		ori \$1,\$2,100
s11	R	0 .	0	2	1	10	0	s11 \$1,\$2,10
srl	R	0 -	0	2	1	10	2	srl \$1,\$2,10
1w	1	35	2	1		100		lw \$1,100(\$2)
SW	1	43	2	1		100		sw \$1,100(\$2)
lui	1	15	0	1		100		lui \$1,100
beq	1.	4	1	2		25		beq \$1,\$2,100
bne	1	5	1	2		25		bne \$1,\$2,100
slt	R	0 -	2	3	1	0	42	slt \$1,\$2,\$3
slti	I	10	2	1	2	100	***************************************	slti \$1,\$2,100
sltu	R	0	2	3	1	0	43	sltu \$1,\$2,\$3
sltiu	1	11	2	1		100		sltiu \$1,\$2,100
j	J	2			2500			j 10000
jr	R	0	31	0	0	0	8	jr \$31
jal	J	3			2500			jal 10000

MIPS instruction formats

Name			Comments				
Field size	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS instructions 32 bits
R-format	ор	rs	rt	rd	shamt	funct	Arithmetic instruction format
l-format	ор	rs	rt	ac	address/immediate		Transfer, branch, imm. format
J-format	ор .		target address				Jump instruction format

Main MIPS machine language. Formats and examples are shown, with values in each field: op and funct fields form the opcode (each 6 bits), rs field gives a source register (5 bits), rt is also normally a source register (5 bits), rd is the destination register (5 bits), and shamt supplies the shift amount (5 bits). The field values are all in decimal. Floating-point machine language instructions are shown in Figure 4.47 on page 291. Appendix A gives the full MIPS machine language.

Register Number	Alternative Name	Description						
0	zero	the value 0						
1	\$at	(assembler temporary) reserved by the assembler						
2-3	\$v0 - \$v1	(values) from expression evaluation and function results						
4-7	\$a0 - \$a3	(arguments) First four parameters for subroutine. Not preserved across procedure calls						
8-15	\$t0 - \$t7	(temporaries) Caller saved if needed. Subroutines can use w/out saving. Not preserved across procedure calls						
16-23	\$s0 - \$s7	(saved values) - Callee saved. A subroutine using one of these must save original and restore it before exiting. Preserved across procedure calls						
24-25	\$t8 - \$t9	(temporaries) Caller saved if needed. Subroutines can use w/out saving. These are in addition to \$t0 - \$t7 above. Not preserved across procedure calls.						
26-27	\$k0 - \$k1	reserved for use by the interrupt/trap handler						
28	\$gp	global pointer. Points to the middle of the 64K block of memory in the static data segment.						
29	\$sp	stack pointer Points to last location on the stack.						
30	\$s8/\$fp	saved value / frame pointer Preserved across procedure calls						
31	\$ra	return address						

Service Code in \$v0		Arguments	Results		
print_int	1	\$a0 = integer to be printed			
print_float	2	\$f12 = float to be printed			
print_double	3	\$f12 = double to be printed			
print_string	4	\$a0 = address of string in memory			
read_int	5		integer returned in \$v0		
read_float	6		float returned in \$v0		
read_double	7		double returned in \$v0		
read_string	8	\$a0 = memory address of string input buffer \$a1 = length of string buffer (n)			
sbrk	9	\$a0 = amount	address in \$v0		
exit	10				
print char	11	\$a0 = character to print			
read char	12		\$v0 contains char read		

MIPS Reference Data

1

CORE INSTRUCTI	ON SE				OPCODE
NAME AND A	NUC	FOR-			/ FUNCT (Hex)
NAME, MNEMO		MAT R	OPERATION (in Verilog) R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add	add addi	1		(1,2)	8 _{hex}
Add Immediate			R[rt] = R[rs] + SignExtImm		
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0/21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	1	R[rt] = R[rs] & ZeroExtImm	(3)	chex
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	lbne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	1	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		$0/08_{hex}$
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	1hu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25_{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30 _{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16*b0\}$		f_{hex}
Load Word	1w	1	R[rt] = M[R[rs]+SignExtlmm]	(2)	$23_{\rm hex}$
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)?	: 0(2)	a _{bex}
Set Less Than Imm. Unsigned	sltiu	1	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	$b_{\rm bex}$
Set Less Than Unsig	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{bex}
Shift Left Logical	s11	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	de	1	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28.
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38
Store Halfword	sh	1	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	1	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
	(2) Sig (3) Ze (4) Br (5) Ju (6) Op	gnExt roExt anch/ mpAd perand	use overflow exception Imm = { 16{immediate[15]}, imm Imm = { 16{Ib*0}, immediate } Addr = { 14{immediate[15]}, imm Idr = { PC+4[31:28], address, 2*] Is considered unsigned numbers (vertically address) and the considered for the conside	ediate, b0)	2'b0 } comp.)

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
1	opcode	rs	rt		immediate	
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				

ARITHMETIC CORE INSTRUCTION SET

AHITHME TIC CO	HE HAS	ino	CHONSEI	,	OI CODE
					FMT/FT
		FOR-			/ FUNCT
NAME, MNEMO	NIC	MAT			(Hex)
Branch On FP True	bolt	FI	if(FPcond)PC=PC+4+BranchAddr		11/8/1/
Branch On FP False	belf	FI	if(!FPcond)PC=PC+4+BranchAddr	(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]		0///1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	(6)	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]		11/10//0
FP Add Double	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$		11/11//0
FP Compare Single	C.Y.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0		11/10//y
FP Compare Double	c.v.d*	FR	FPcond = $(\{F[fs],F[fs+1]\} op \{F[ft],F[ft+1]\})?1:0$		11/11//y
* (x is eq. 1t, c	w 1e) (op is	==, <, or <=) (y is 32, 3c, or 3c)		
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]		11/10//3
FP Divide Double	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$		11/11//3
FP Multiply Single			F[fd] = F[fs] * F[ft]		11/10//2
FP Multiply Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$		11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]		11/10//1
FP Subtract Double	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$		11/11//1
Load FP Single	lwcl	1	F[rt]=M[R[rs]+SignExtImm]	(2)	31///
Load FP Double	ldcl	1	F[rt]=M[R[rs]+SignExtImm]; F[rt+1]=M[R[rs]+SignExtImm+4]	(2)	35///
Move From Hi	mfhi	R	R[rd] = Hi		0 ///10
Move From Lo	mflo	R	R[rd] = Lo		0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]		10 /0//0
Multiply	mult	R	${Hi,Lo} = R[rs] * R[rt]$		0///18
Multiply Unsigned	multu	R		(6)	0///19
Shift Right Arith	sra	R	R[rd] = R[rt] >> shamt		0///3

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opco	de	fmt		ft		fs	fd	1 3	funct
	31	26	25	21	20	16 15	11	10	6.5	.0
FI	opco	de	fmt		ft			immed	iate	
	31	26	25	21	20	16 15				0

Shift Right Arith. sra R R[rd] = R[rd] >> shamt 0/--/-1Store FP Single sdc1 I M[R[rs]+SignExtImm] = F[rd] (2) 39/--/--1Store FP Double sdc1 I M[R[rs]+SignExtImm] = F[rd]; (2) 3d/--/--1

PSEUDOINSTRUCTION SET

_	NAME	MNEMONIC	OPERATION
	Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
	Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
	Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
	Branch Greater Than or Equal	bge	if(R[rs] >= R[rt]) PC = Label
	Load Immediate	li	R[rd] = immediate
	Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
Szero	0	The Constant Value 0	N.A.
Sat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
Sk0-Sk1	26-27	Reserved for OS Kernel	No
Sgp	28	Global Pointer	Yes
Ssp	29	Stack Pointer	Yes
Sfp	30	Frame Pointer	Yes
Sra	31	Return Address	Yes