Reverse Engineering of a KMM Portable Car Vacuum

Pablo Argandona Vaikunth Keshav Krishnan Randy Peterson Eric Vasquez

MCEN 5045: Design for Manufacturability
Dan Riffell

Table of Contents

Table of Figures	
Table of Tables	
Executive Summary	
Product Description	6
Black and Glass Box Diagrams	
Gantt Chart	
Fishbone Diagram	9
Patent Search	
Design Documentation	12
Full Assembly View	
Design Changes	17
Bill of Materials for Redesign	23
DFA Analysis & Comparison	23
Materials Analysis	27
Manufacturing Analysis	34
Economic Analysis	
Professional, Ethical, and Safety Issues	
Conclusions	
Appendix	
* *	

Table of Figures

Figure 1: KMM Handheld Vacuum Cleaner with Attachments	6
Figure 2: Black Box Diagram	7
Figure 3: Glass Box Diagram	8
Figure 4: Gantt Chart	8
Figure 5: Fishbone Diagram	10
Figure 6: Sketch from US Patent #01059569B2	11
Figure 7: Sketch from US Patent #008549704B2	12
Figure 8: Assembly CAD Models	17
Figure 9: Charging Base Redesign comparison	18
Figure 10: Original Blower Screen Subassembly	19
Figure 11: Blower Screen Redesign	19
Figure 12: Modification Right Side Housing	20
Figure 13: Modification Housing Left Side	21
Figure 14: Original Collection Bin	22
Figure 15: Modified Collection Bin	22
Figure 16: Examples of Clear Electronics	28
Figure 17: Left and Right Side Housings	29
Figure 18: Ashby Chart for Fracture Toughness and Elastic Modulus	30
Figure 19: Approximate material cost comparison between material types	30
Figure 20: Collection Bin	31
Figure 21: CAD model of Motor Cap	32
Figure 22: Ashby Chart for Yield Strength and Elastic Modulus	33
Figure 23: Candidate manufacturing processes based on batch size	35
Figure 24: KMM Vacuum Battery Warning	
Figure 25: Part Complexity classification	
Figure 26: Ability of Manufacturing Processes to produce shapes	47

Table of Tables

Table 1: Product Decomposition	13
Table 2: Redesign Bill of Materials	23
Table 3: Initial DFA Analysis	24
Table 4: Final DFA Analysis	25
Table 5: Weighted property index for Vacuum Housing	31
Table 6: Weighted property index for Collection Bin	32
Table 7: Weighted Property index for Motor Caps	33
Table 8: Unit Cost Analysis	38
Table 9: OME Analysis	40
Table 10: Stock Parts	42
Table 11: Break-Even Analysis	42
Table 12: Summary of Cost Estimates	44

Executive Summary

This comprehensive report examines the reverse engineering of a handheld wireless vacuum, a common household device aimed at providing convenient and efficient cleaning solutions. The analysis begins with an exploration of the economic driving factors influencing the product's design and manufacturing decisions. By understanding these financial motivations and limitations, we gain insight into the cost constraints and market demands that shape the vacuum's development.

Material selection is scrutinized to assess the strengths and weaknesses of the components used in the vacuum. This section highlights how the choice of materials impacts the device's performance, durability, and overall user experience. Through this analysis, we identify opportunities for improvement in material efficiency and cost-effectiveness.

A thorough investigation into the design flaws of the handheld vacuum reveals critical areas where the current model falls short. These flaws are documented with detailed observations, providing a foundation for potential enhancements. The discussion covers mechanical, electrical, and ergonomic aspects, ensuring a holistic evaluation of the device.

The report culminates in a redesign section that focuses on producing a vacuum with enhanced suction power, improved ease of manufacturing, and better material selection. Using data from our material analysis, we propose alternative materials that offer superior performance and durability. The redesign also considers manufacturing processes that can streamline production and reduce costs, thereby making the new model more economically viable.

In addition, the report outlines the steps involved in defining the system plant and selecting an appropriate controller for the vacuum. This phase is crucial for ensuring that the new design operates efficiently and meets performance standards. Our team has scheduled the first test of the redesigned system in two weeks, with plans for iterative refinement based on test results.

Product Description

The KMM Handheld Vacuum Cleaner is a cordless, rechargeable battery operated vacuum cleaner that can also act as a blower. Users activate the vacuum by pressing the power button. This activates the internal motor, and air is pulled in the nozzle on the front of the vacuum, and simultaneously blown out of a nozzle with a screen at the back of the vacuum. There is no speed or direction control.

The vacuum is shown with its attachments and charging cable in Figure 1. The intake nozzle of the vacuum is combined with the collection bin. A filter inside the collection bin prevents dirt and debris from being pulled inside of the vacuum. The collection bin can be easily removed and emptied by twisting it to unlock and pulling it off the front. The attachments simply slide over the nozzle at the front of the collection bin, or inside of the blower nozzle at the back of the device. The internal battery can be recharged by connecting an included USB-C cable to the charging port at the bottom of the handle.

The overall dimensions of the vacuum (with the collection bin attached) are 8.28 x 6.69 x 2.36 inches, with an overall weight of 0.73 pounds. Similar products generally cost somewhere between \$30 and \$100. The KMM Vacuum is listed at \$43.99 on Amazon, near to the low end of the handheld cordless vacuum price range.

Figure 1: KMM Handheld Vacuum Cleaner with Attachments

This product was chosen for reverse engineering because of its simple construction and customer reviews that consistently describe a few of the same issues, such as poor suction, short product

life, dirt and debris falling out of the collection bin, and a few other issues. We also set the goal of reducing the number of parts needed and to improve the assembly process.

Black and Glass Box Diagrams

As part of the analysis into the core functions of the vacuum, we generated a Black Box and Glass Box Diagram to break down the inputs and outputs of the overall device and some of its internal components. The vacuum's main inputs are electricity from a USB-C cable, inputs to a push button, and air flowing into the nozzle of the vacuum. After the vacuum is activated, it outputs air from the blower opening at the back of the vacuum, vibrations, sound, a small amount of heat, and light from an LED near the power button. A black box diagram that shows the inputs and outputs is shown in Figure 2.

Figure 2: Black Box Diagram of KMM Vacuum Cleaner

After analyzing the device from the outside, the vacuum was opened to determine which internal components used each of the inputs and where the outputs came from. Inside of the vacuum, there is a battery, DC electric motor, two LEDs (one near the power button; one near the charging port), a vacuum impeller, and a latching button switch. When the USB-C cable is plugged into the charging port, the LED closest to it flashes to indicate that it is charging the battery. After the switch is activated, the battery provides power to the DC motor and the LED near the power button. The motor drives the vacuum impeller, which pulls air in through the intake nozzle and pushes it out of the blower screen at the back of the device. A summary of the inputs and outputs for each of the main internal components were recorded in the Glass Box Diagram shown in Figure 3.

Figure 3: Glass Box Diagram of KMM Vacuum Cleaner

Gantt Chart

Activity		Tear	n Memb	ers			Sep-2024	Oct-2024				
	Eric	Pable	Randy	Vicunth	2	9	16	23	30	7.	14	21
Project Proposal	×	×	x	×			. 3					
Proposal Presentation	X	X.	X	×								
Disasembly	×		-				17		1	1		
Part CAD Modeling	×	X	X	X								
Part Drawings	×	×	X	×								
DFA Analysis		×				1						
Black Box Diagram		Y =	×								3	
Glass Box Diagram			X									
Part Cost Analysis	×	×	X	X								
Material Selection	×	×.	X	X								
New Design Drawings	×			×								
Write Final Report	×	×	X	×								
New Design Modeling	×			X.								
Design Changes	×			Х								
Final Pesentation	X	X.	X	X		1 1					P 3	

Figure 4: Gantt Chart

The successful completion of any team project hinges on effective planning and regular progress reviews to ensure tasks are completed satisfactorily and on time. Given the duration and the complexity of the reverse engineering process, our team initially devised a comprehensive execution plan, as outlined in Figure 4. This plan was visualized through a Gantt chart, which illustrated the timeline and the sequential tasks necessary for project completion.

After identifying all required tasks, our group allocated specific responsibilities to each team member, ensuring accountability and clarity. The Gantt chart not only displayed the start and end dates for each task but also helped us maintain our schedule and quickly identify any delays. It included scheduled team meetings, typically initiated at the commencement of significant tasks,

to discuss required actions and review completed work. These meetings facilitated ongoing progress, ensuring tasks met both quality and timeliness standards.

By adhering to the Gantt chart devised at the project's onset, we aimed to fulfill all necessary steps for the successful reverse engineering of the vacuum. The structured timeline provided by the Gantt chart was instrumental in keeping the team focused and on track, fostering continuous progress towards our project goals.

Fishbone Diagram

The Fishbone Diagram shown in Figure 5 was created to analyze the Vacuum based on how each of its major components fit into assemblies. The Left Side Housing was chosen as the base part because most of the parts can be installed from the top down into this part. The main subassembly inside the vacuum consists of the circuitry and control components that drive the impeller. Most of the remaining components make up the housing assembly, which includes the Blower Screen Subassembly. The three components in the Blower Screen Subassembly can be put together separately before being installed in the base part, so they were assumed to be a single subassembly.

The Air Flow Components are parts that influence the movement of air within the vacuum based on their geometry. The collection bin and blower screen are included in other assemblies, but are also included here as they also make up the main inlet and outlet for the vacuum and blower. The impeller is the main component that influences airflow, excluding the motor that drives it. The Air filter prevents dust and debris from entering the main body of the vacuum (and potentially being blown out of the vacuum), but it also impedes air flow. These components were separated from the others as they uniquely influence the vacuum's capability compared to other parts.

Figure 5: Fishbone Diagram of KMM Vacuum Cleaner

Patent Search

In order to better understand the design criteria for the original design as well as draw inspiration to base our redesigns of the KMM Vacuum Cleaner a patent search of similar products was conducted.

The patent US010433687B2 describes a product similar to the KMM Vacuum in the design idea of a pistol grip for a handheld vacuum instead of the traditional handheld vacuum design which more often than not has a handle at the top and is held as you would a leaf blower. This design feature gives the consumer a more natural feel when using the vacuum and the ability to reach tighter places. A major difference between the KMM vacuum and the one described in this patent is how both approach dust collection. The KMM vacuum uses a detachable bin that is mounted onto the vacuum housing, the patent describes a cyclonic separating unit that is part of the housing and uses a snap-fit latch to be cleaned out. This feature could serve as inspiration for a part reduction, however its complexity is a deterrent.

Figure 6: Sketch from US Patent #01059569B2

Another patent that served as a benchmark for the KMM vacuum was US008549704B2. This patent depicts a vacuum with an external bin for dust collection that uses a HEPA filter as a primary filter. The major difference is the addition of a filter cleaning device that is supposed to dislodge particles attached to the filter while the vacuum is being used, providing the user with the opportunity of using the vacuum for longer periods without having to remove the dust bin to clean out the filter. A drawing of the described filter cleaning part is shown below.

Figure 7: Sketch from US Patent #008549704B2

Design Documentation

After settling on reverse engineering the KMM car vacuum, one of the first steps we took was to take the vacuum apart, to examine the number of parts and potential for redesign. The vacuum had a total of 26 with 20 of them being unique parts. The team drafted a fishbone diagram seen above in Figure 5 with 3 assemblies and 1 minor subassembly.

The disassembly process showed the team the fallacies that the original design had in terms of design for manufacturability and assembly. The housing was held together by 6 screws that were difficult to set upon reassembly. The design of the housing's inner walls was very complex with groves that held the components in place but also groves that held no real purpose. The button had a spring and a cover that would shoot out when the top side of the housing was removed meaning they would have to be held down during assembly. The decomposition offered a lot of ideas for part reduction later discussed in the DFA analysis. The full part by part product decomposition is detailed below in Table 1.

Table 1: Product Decomposition

Product Decomposition

Design Organization: MCEN 5045 Date: 10/14/2024

Product Decomposed: KMM Car Vacuum

Description This is a portable battery-powered car vacuum.

How it works: The vacuum functions by pressing a button that activates a small electric motor that drives an impeller that generates a suction force that is meant to pick up small debris and dust. The dust is collected in a removable collection bin.

Parts:					
Part #	Part Name	# Req'd	Material	Mfg Process	Image
RP001	Blower Screen Locking Clip	1	ABS	Injection Molding	0
RP002	Power Button Cover	1	ABS	Injection Molding	0
RP003	Dust Collection Bin	1	PC (Polycarbonate)	Injection Molding	6

			<u> </u>		, ,
RP004	Base Charging and LED Mount	1	ABS	Injection Molding	
RP005	Blower Screen	1	ABS	Injection Molding	
RP006	O-Ring Clip	1	ABS	Injection Molding	0
RP008	Impeller	1	ABS	Injection Molding	
RP009	Housing (Right Half)	1	ABS	Injection Molding	
RP010	Air Filter	1	Various Materials	Off The Shelf	
RP011	Housing (Left Part)	1	ABS	Injection Molding	-
RP012	Rubber Motor Cap	2	EVA	Injection Molding	0
RP014	Blower Screen Retaining Ring	1	ABS	Injection Molding	0
RP015	Power Button	1	Various Materials	Off The Shelf	1

RP017	Power Button Spring	1	Spring Steel	Coiling	
RP018	XV LiPo Battery	1	Lithium-Ion Polymer	Off The Shelf	
RP019	Motor	1	Various Materials	Off The Shelf	1
RP020	LED Cover	1	ABS	Injection Molding	5
RP021	Screws	6	Steel	Thread Rolling	Chillian.
RP022	LED	1	Various Materials	Off The Shelf	-
RP023	Charging Circuit Board	1	Various Materials	Off the Shelf	-

Step #	Procedure	Part #s removed	Image
1	Twist the collection bin off the housing, the air filter is pulled off the collection bin, and the O-ring is pulled off.	RP003, RP006, RP010	
2	The screws are unscrewed and pulled apart; the blower screen subassembly is pulled off the housing.	RP009, RP014, RP005, RP001	·FF
3	The blower screen subassembly is taken apart by unclipping the retaining ring from the blower screen clip.	RP001, RP005, RP014	000
4	Remove Electronics.	RP004, RP008, RP015, RP018, RP019, RP022, RP023	
5	Remove the impeller, and motor caps from the motor. The impeller was glued to the motor shaft had to be cut out.	RP008, RP012	
6	Remove the charging port board from the charging base.	RP004, RP023	
7	Remove the power button cover, LED cover, and spring from the housing.	RP002, RP020, RP017	(b) # =

Full Assembly View

Figure 8 shows two CAD models of the assembly. A drawing of the assembly is also included in the appendix.

Figure 8: Assembly CAD Models

Design Changes

Power Button Part Reduction

The original design for the power button of the vacuum consisted of an analog button that was completely inside the housing, a spring placed on top of it, and an injection molded cover with the power symbol that the user would press to turn the vacuum on and off. As stated in the product decomposition section, the cover and spring had to be held down when assembled. The team's solution was to remove the cover and spring from the design altogether and modify the housing design so that the user could press the analog button to turn the vacuum on and off. Collection cavity resizing

LED Part Reduction

The LED and LED cover were completely removed from our redesigned vacuum due to being a no-value-added feature. When using the vacuum the placement and size of the LED causes the user to completely cover the light that it is emitting. A positioning change was considered,

however, it was not pursued because it would complicate the housing design and wiring arrangement.

Charging Base Reduction

The original base cap was designed to accommodate both a charging port and an indicator LED. To streamline the electronics and reduce the complexity of the base cap's geometry, the indicator LED was removed. This simplification not only reduced the number of electronic components needed but also made the design more straightforward. Furthermore, the upper surface of the base cap was extended to incorporate a press-fit lip. This modification enhanced the overall structural integrity by ensuring a secure fit for the housing, thus eliminating the need for additional fasteners. The redesign aimed to achieve a more efficient, easier-to-manufacture component without compromising functionality or reliability.

Figure 9: Original charging base (left) vs. new charging base (right)

Motor selection

The biggest complaint was the issue of low suction. This issue was tackled by identifying that the 380/385SH DC motor is the superior alternative. This motor was chosen due to its ability to provide 14,800 RPM, an increase of 8,300 rpm over the previous motor, significantly enhancing the vacuum's performance. Implementing this motor requires no changes to the existing housing as the motor only varies in its length by 0.12 inches. This change boosts the vacuum's efficiency and performance.

Blower Screen Integration

The Blower Screen was re-designed to eliminate the need for the Blower Screen Retaining Ring and Locking Clip. and reduce the complexity of the screen itself. In the original design, the retaining ring and the locking clip primarily exist to attach the Blower Screen to the vacuum housing. A ring molded in the blower screen interfaces with a circular rib inside of the vacuum housing. This ring can be expanded and fit into a groove in the housing wall, eliminating the need for 2 extra parts while still providing an attachment point for the removable nozzles that come with the vacuum. The nozzle attachments are slightly flexible, and are held inside of the main cylindrical portion of the blower screen by friction. All existing attachments will still function with the revised screen.

The original blower screen subassembly and the re-designed blower screen are shown in Figure X and Y.

Figure 10: Original Blower Screen Subassembly

Figure 11: Blower Screen redesign

Simplification of Outer Shells

Instead of using screws, our team opted for cantilever snap-fits like the one shown in Figures A and B. This choice enhances the product's user-friendliness, as snap-fits allow for easier assembly and disassembly compared to traditional screws. From a manufacturing perspective, this approach also results in cost savings, increasing overall profitability.

Figure 12: Modified Right Side Housing

Figure 13: Modified Housing Left Side

Increasing Length of Collection Bin

The collection bin is compact, and our team believes this helps reduce the amount of dust buildup within the component. To improve its capacity and functionality, we decided to increase the size of the collection bin. This change offers additional benefits, such as reducing the frequency of emptying the bin, which enhances user convenience. The redesign aims to improve the overall efficiency of the vacuum by increasing dust-holding capacity while minimizing any impact on the vacuum's performance and suction power.

Figure 14: Original Collection Bin

Figure 15: Modified Collection Bin

Bill of Materials for Redesign

Table 2: Redesign Bill of Materials

Part Number	QTY	Part Name	Material
RP003	1	Dust Collection Bin	PC (Polycarbonate)
RP004	1	Base Charging & LED Mount	ABS
RP005	1	Blower Screen	ABS
RP006	1	O-ring Clip	ABS
RP008	1	Impeller	ABS
RP009	1	Housing (Right Half)	ABS
RP010	1	Air Filter	ABS
RP011	1	Housing (Left Half)	ABS
RP012	2	Rubber Motor Cap	Rubber
RP015	1	Power Button	Various Materials
RP018	1	XV LiPo Battery	Lithium-ion Polymer
RP019	1	Motor	ABS
RO023	1	Charging Circuit Board	Various Materials

DFA Analysis & Comparison

After having completed a product decomposition and established the design changes. A DFA analysis was conducted on the original design and the redesigned products to help illustrate the quantitative effects that the redesign choices had.

Table 3: Initial DFA Analysis

DFA Analys		KMM vacuum.									Yearn	Manager	m Rede	alan	-				Dorto	100	0/9/202	2.0
Assenta	y mane:	Astro-yacaum.									realli.	22000	III. NEUE	Sign.					Date	- An	1/3/20/	-
		Part	0.000	DFA nglexity		tional / sign Op			Em Prod		H	landlin	5		inse	rtio	n l	Ses	onda	ry O	peratio	ins
Part Number	_	Part Name	Number of Parts (Np)	Number of Interfaces (NI)	These State Minimum Part	Partition to Shadoded (Frot along) the dark)	Cast (Low/Mediam/Wigh)	Practical Minimum Part	Assemble Wong Part/ Oneit Fast	Assemble Part Wrong Way Around	Tangle, Next, or Stick Together	Flootbie, Pospile, Sharp or Silepory	Plies, Tweney, er Magnifring Glass Needed	Difficelt to Align/ lacate	Holding Down Required	Residence to teneration	Obstructed Access/	Bo-orient Warkplace	Screen, Dall, Twist, Bleet, Bend, or Crimp	Wold, Solder, or Glas	Paint, Labe, Hoat, Apply Uppell or Gas	Test, Measure or Adjust
	RFOOL	KIVIM Blower Screen Locking Clip	1	1	0	.0	4	0	0.	0	0	.0.	0	0	0	0	0	0	0.	0	0	٥
	88002	Power Button Cover	1	A.	-0	.0	1	0	0	1	0	.0	0	0	0	0	0	0	0	0	0	0
	RP003	KMM Blower Dust Collection Bin	1	3	1	.0.	L	1	0	0	0	.0.	. 0	0.	0	0	0	0	0	0	0	0
	RF004	KIMM Bece Charging and LED mount	1	- 3	1	0	L	1	0	.0	0		0	-0	0	0	0	0	0	0	1	D
		Blower Screen	1		.0	1	L	0	0	1	0	D	0	0	0	0	· a	0	0	0	0	D
	RF006	O-Ring Clip	1	2	.0	1	6	0	0	. 1	0	1	0	0	0	0	0	0	0	0	1	0
	RF008	Impeller	1	1	1	0	1.	1	0	1	. 0	0	0	0	0	0	1	0	0	0	0	0
	RECOR	KMM Housing (right half)	1	19	1 1	п	1	1	0	0	0	п	0	0	0	0	0	0	1	0	D.	D
	RR010	Ar Fiber	1	1.	0	1	4	1	0	.0	0	n	.0	0.	0	0	a.	0	ò.	0	0	0
	RF011	KN/M Housing (left half) (base part)	1	19	4	0	L	1	0	.0	0	0	0	0.	0	0	0	0	1	0	0	0
		Rubber Mater Cep	3	đ:	0	1	L	1	10	0	0	: 0		0	0	0	I	0	0	0	. 0	D
	R#014	Blower Screen Retaining Ring	1	-3	0	1	L	0	10	0	. 0	: 0		1	0	0	0	0	0	0	1	D
	RF015	Power Button	1	3	124	0	E.	1	0.	0.	0	0	0	0	0	0	1	0	0.	1	0	0
	RF017	Power Button Spring	1	2	0	0	£	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0
	REGIS	XV LIPo Bettery	1	2	13	.0	Ħ	1	0	1	0	.0	0	0.	0	0	1	0	0	1		D
	RF019	Motor	1	3	12	1	M	1	0	0	0	. 0	0	0.	0	0	1	0	0	1	0	D
	RP020	TEO Cove.	1	3	0	0	L.	0	1	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	HFC21	sorew		18	.0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RP022	LED	1	3	.0	0	E.	0	0	1	0	0	0	0	0	đ	1	0	0	1	D.	D
	87023	Charging circuit sound	1	2	3 1	0	M	1		1	0	0	0	0	0	0	0	0		1	0	D
2		Totals	26	103	. 9	. 6	0	12	4	7	1	1	0	1	1	0	7	0.	2	5	5	0
		Design for Assembly Metrics	51.7	4939613	34.6%	e-theor POLLE	ofy. fy.+	46.2%	1.2	2	- 650	0.22		75.40	1.	00	JIL		-518	1.11		
		Targets		30	60.0%			75.0%	1.0	0	- 7	0.20			0.	75	- 1			1.00		

DFA Analysis Worksheet Date: 10/9/2024 Assembly Name: KMM Vacuum Redesigned Team: Vacuum Redesign DFA Functional Analysis / Handling Part Complexity Redesign Opportunity Proofing Secondary Operations of (Low/Medium/High Magnifying Glass Needed Can be Standardood (N not a heady stendard) retical Minimum Par rable Wmag Fart/ exible, Pts glo, Sharp exists not to beenfor servible Part Wrong amber of Parts (Na) Interfaces sex, Dell, Twist, Riv reld, Soldor, or Glas Next, or Stick Reariest Wedgece Beed, or Crimp **Authorised Access** Onsit Part Pert Number Part Name RP003 KMM Blower Dust Collection Bin 0 RPOD4 KMM Sees Charging and LED mount 0 0 0 0 0 П ó 0 8PODS Blower Screen 1 a a 89006 O-Ring Clip 0 ø 0 0 0 Û SPOOS Impeller 1 п 1 0 0 0 0 RP009 KMM Housing (right half) 10 0 a RP010. Air Filter 0 0 0 RPC11 KMM Housing (left haif) (base part) a п RP012: Rubber Motor Cap 0 0 0 0 G 0 0 G 0 0 RP015 Power Button 0 0 \$POIR XV LiPo Battery 0 0 RP019: Motor Ó 0 0 RP023 Changing circuit books Totals Design for Assembly Metrics

Table 4: Final DFA Analysis

DFA Complexity Factor

The original design by KMM had 26 components and those components had 103 interfaces. This led to a design for assembly complexity factor of 51.74 not a high factor by any means but one the team felt could be improved on. In our redesigned model the team managed to bring down the number of parts to 14 and the number of interfaces to 43, which led to a complexity factor of 26.19 a number that surpassed our set target.

Functional Analysis

The theoretical minimum part count established by the team that is necessary to have a functioning vacuum was 9 components. The practical number of components to have a vacuum that is marketable and comfortable to use was 12. Comparing these numbers to the original component count, the theoretical efficiency was 34.6% and the practical efficiency was 46.2%. The team originally set the target to be 60% and 75% for theoretical and practical efficiency respectively. The redesigned model was successful in both of these goals achieving 64.3% and 85.7% theoretical and practical efficiencies respectively in the functional analysis portion of the DFA analysis.

Error Proofing

Approximately 15% of the total parts like the two rubber motor caps, power button spring, blower retaining ring, and LED cover are liable to be omitted during assembly and not be noticed until testing and inspection. 26% of the total number of parts can be assembled the wrong way around. After redesigns the rubber motor caps are the only unique part that can be omitted. The motor, battery, and impeller can still be assembled the wrong way around. This brought the error-proofing index from 1.22 to 0.44.

Handling

The small spring that loads the power button cover and the screws can be tangled and are small enough that are prone to be dropped when being handled. The O-ring, retaining ring, and LED can be considered fragile components. Totaling 7 components out of the 9 theoretical minimum parts equaling a 0.78 handling index. Since the redesigns eliminate the spring, screws, and consolidate the retaining ring into the blower screen it brings down the handling index to 0.11.

Insertion

The original design only had 3 insertion and alignment issues for assembly. The screws are not self-locating and are inserted into small indents on the housing making it difficult to insert them. The spring is the cause of the majority of the insertion issues it has to be held down and is resistant to insertion. The redesigned model eliminates both of these components bringing the insertion index down from 0.33 to 0.

Secondary Operations

The original design requires the housing to be screwed together. To remove this secondary operation, the redesign holds the top of the housing with the O-ring and the bottom charging base was changed to a snap-fit lid to hold the bottom of the housing together. All the electronic components are soldered together; the elimination of the LED is the only reduction in electronic components made in the redesign. Some components are spray-painted for the sake of aesthetics the team decided to keep this process; however, some of the parts were eliminated or consolidated onto other parts like the power button cover, and blower screen retaining ring. The secondary operations index was reduced from 1.22 to 0.67.

Materials Analysis

Many of the components in the KMM Vacuum are made of polymer materials. There are 4 main materials used. The Collection Bin is made of a clear polymer with a smoky-gray color, and the electric motor that drives the impeller is supported by 2 soft rubber-like rings that reduce vibrations. The main housing halves and blower screen are both made out of an opaque blue plastic with a matte finish. The remaining plastic components are made of opaque black plastics with a slightly more lustrous finish. Any exterior surfaces of any black plastic components were painted with a metallic bronze color for aesthetic purposes. The electronic components, fasteners, and Power Button Spring are not included in this material selection analysis, as they are likely either off-the-shelf components or custom manufactured by a subcontractor.

Environment and Loading Assumptions

To begin, a few assumptions were made about the vacuum and the environment it operates in. Since the vacuum is a small, handheld device that is not intended to impart force onto other objects, it is not expected to experience significant loads. However, it may be dropped on hard surfaces from distances of up to 6 feet, so the materials selected should be resistant to fracture. Many plastics and polymers would fit this criteria.

The vacuum is battery operated and marketed as a "car vacuum", so it is likely that users will leave the vacuum in their car for cleaning small messes. As such, the vacuum could experience temperatures up to 140°F as the car heats under the sun. The melting point of most plastics are well beyond this threshold, but the material used should stay rigid up to 150°F to prevent any issues from arising, especially over time.

The average lifecycle of a vacuum cleaner is 5-10 years, so it is anticipated that the vacuum will not experience more than 20,000 activations throughout its lifecycle. 20,000 uses equates to over 5 uses per day for 10 years; a duty cycle which seems unlikely. Generally speaking, the vacuum is not expected to experience any drastic loads or conditions, so the primary driver of material selection for all parts will be the material cost.

Material Selections

When it is feasible to do so, standardizing materials across an assembly can lead to great benefits. Simplified supply chains, material inspection procedures, and easier material storage can all be realized by selecting consistent materials. For this reason, one of the goals in material selection is to use as few different materials as possible. The original designers of the KMM vacuum used 3 different types of plastic, one of which was transparent. The only transparent part

was the dust collection bin, and it was likely made this way so that the user can see how full the bin is. This is a good design choice, so this part should be made out of a clear material.

The distinction between the other two types of plastic is less obvious. There is no apparent difference in the loads or conditions experienced by the two different types of parts, so it was decided that a simplified design should only use one type of plastic. The Left and Right Vacuum housing are the most exposed to the elements, most likely to experience loads or impacts, and largest out of all components in the assembly, so it was assumed that any material suitable for these components would also be suitable for the remaining parts.

The other plastic components could theoretically be made out of the same clear material that the collection bin is made of. Clear electronics like those shown in Figure 13 were first used in prisons in the 1970s and 1980s to prevent contraband from being smuggled into prisons, but also became common in the public market in the 1990s and early 2000s. However, as computers and other devices saw more widespread adoption, design trends changed and these styles of devices fell out of favor with consumers. For this reason, the remaining components should not be made of clear material to prevent the vacuum from appearing "old" or "outdated".

Figure 16: Examples of clear electronics

Finally, the rings that support the motor are made from a black, flexible material. This part reduces vibrations felt by the user and prevents the plastic columns that support the motor from slowly wearing down the columns. This material should be flexible enough that it conforms to

the shape of the motor and support pillars while under a slight amount of tension to keep it wrapped around the motor. The material should also have a moderate hardness. It should be rigid enough that it effectively damps vibrations, but also soft enough to deform to the parts it interfaces with.

Left and Right Side Housings

The main function of these components is to contain or provide a mounting point for the rest of the components. They are the largest parts in the entire assembly, and will likely experience the largest loads of the entire assembly. Both housing halves are shown in Figure 14.

Figure 17: Left and Right Side Housings (PN:RP011 (left), RP009 (right))

Since the housing is also the part that is most likely to crack if dropped, an Ashby chart that plots Fracture toughness and Elastic Modulus was used to identify candidate materials. Hardness was chosen for analysis because it can influence how resistant a material is to scratching. Fewer scratches means there will be fewer opportunities for cracks to propagate. This chart is shown in Figure 15. The handle can be approximated as a beam under bending limited by displacement, so a material index of $M = K^2/E$ was chosen. As a result, ABS, PP, PTFE, and PC were identified as candidate materials. A weighted material index was then used to down-select from these materials.

Figure 18: Ashby Chart for Fracture Toughness and Elastic Modulus

Figure 19: Approximate material cost comparison between material types

We analyzed the Elastic Modulus, Shore D hardness, Fracture Toughness, and cost of each material. The cost was estimated using the relative comparison chart shown in Figure 16, and the material properties were gathered from various sources; primarily MatWeb. The results of this weighted analysis are shown in Table 5. The properties were weighted as follows: Elastic modulus, 10%; Hardness, 10%; Cost, 50%, Fracture Toughness, 20%. PP failed the initial

go/no-go check because it begins to soften at about 150°F, and may fail early if left in a hot environment. ABS ended up with the highest property index, and was selected as the best material for the vacuum. The material cost is low and the properties are suitable for the application.

	6030-98	Elect Models		Ber	deer	- 0	04	Tremes 3s	Энин Зоры		
Canadate Material	Begins Softening at > 150 F	leni	Ø.	Shore D	ß	\$ lb	β	MPaxim	β	×	
ABS	Y (200 F)	340	76%	100	100.00%	\$1.00	80%	2.00	83:33%	0.74	
20	N (150 F)	TA /	26	.70%	100	TIA	1300	ma.	179	194	
PC PC	Y (300F)	450	100%	90	90:00%	\$2.05	59%	2.40	100.00%	0.69	
199504	NY CENOTS.	7.6	1.795	2.50	CE ODD	1200 000	VM400	1.00	Ab Sake	0.700	

Table 5: Weighted property index for Vacuum Housing

Collection Bin

The collection bin (shown in Figure 17) is the only part of the entire assembly made of a clear substance. This allows users to see how full the collection bin is, and if it is properly removing debris. It interfaces with both of the housings and is held on by two small locking lugs. The Collection Bin is also an exterior part and is subject to the same environment as the housing, and must be resistant to cracking or shattering when dropped. For this reason, the same Ashby Chart and material index was used to identify materials for the Collection bin.

Figure 20: Collection bin (PN: RP003)

PMMA, ABS, PTFE and PC were identified as candidate materials. All metals were excluded automatically because the part needs to be clear. The same properties assessed for the vacuum housing were gathered for these 4 materials and assessed at the same weights in another weighted property, and the results are shown in Table 5. While ABS is included in both tables,

the properties are different when applied to the collection bin. This is because ABS is opaque by default, but can be made transparent by adding Methyl Methacrylate (MMA) to the ABS as it is being processed. Doing so changes the properties of the material, increases cost, and manufacturing complexity.

Table 6: Weighted property index for Collection Bin

	5558.68	\$566	EGIS SHARK		Beton		100		Françoi Dieghers		
Carolini Shiresti	Begins Softening at > 150 F	Transporent	kai	#	Shore D	, IT	5/lb	8	MParim	- //	M
FMMA	Y (183 E)	Y	490	100%	90	96.00%	\$1.10	78%	0.50	20.83%	0.62
405	Y (200 F)	Y	180	-37%	100	100.00%	\$2.00	60%	2.00	R3.33%	0.60
PC PC	Y (300 F)	Y	450	92%	90	99,00%	\$2.05	59%	2.40	100.00%	0,68
PIE	Y (500 F)	Y	75	15%	55	55.00%	\$5.00	.0%	1.50	62.50%	0.20

Based on the results in Table 6, PC is the best material for the Collection bin, followed by PMMA.

Motor Caps

A CAD model of the motor cap is shown in Figure 18. There are 2 motor caps used in the assembly, one at the front and back of the motor. They wrap around the diameter of the motor and reduce vibrations to the rest of the assembly. The caps were modeled as a spring based on how they interact with the motor and support pillars, so a material index of $\sigma_f^2/E\rho$ was selected and plotted on the Ashby chart shown in Figure 19.

Figure 21: CAD model of Motor Cap

Figure 22: Ashby Chart for Yield Strength and Elastic Modulus

Figure FFF identifies some EVA, Silicone Elastomers, and cork as candidates. The Elastic Modulus, Shore D hardness, and cost per pound were measured and assessed in a weighted property index shown in Table 7 The elastic modulus was weighted at 10%, the Shore hardness at 20%, and the cost at 70%. The weighted property index identifies EVA as the superior material of those considered.

Table 7: Weighted Property index for Motor Caps

Consiste Material	Begins Softening at > 150 F	Electri Motorius		Borben		Ces		weighted property indica-
		ksi	β	Shore D	β	\$/16	β	8
E104	Y (180 F)	15	100%	35.8	70.33%	\$1.75	86%	0.84
Cork	Y (400F)	2,4	16%	15	29.47%	\$5.50	55%	0.46
Sticoor Electronic	Y (260 F)	0.003	0%	50.9	100.00%	\$12.15	0%	0.20

In summary, the results of the material selection analysis show that ABS should be chosen for all opaque plastic parts, PC should be used for the collection bin, and EVA should be used for the motor caps.

Manufacturing Analysis

Most of the unique components of the KMM vacuum are made of some form of plastic or polymer. Mold lines can be found on almost all of the original parts, meaning they were most likely injection molded. However, manufacturing analysis will still be completed to ensure that the most efficient process is selected. Our manufacturing analysis will be limited to the Right and Left side Housings (part number RP011 (left), and RP009 (right)). These are the largest and most complex parts in the entire assembly, and their manufacturing cost will likely drive the total manufacturing cost the most.

Manufacturing Assumptions

Data Available from Amazon indicated that the KMM Car Vacuum was selling approximately 10,000 units per month worldwide. Assuming that this vacuum is produced and sold for approximately 5 years before being replaced by an improved model, the total production run can be estimated at 600,000 units. The sale price of each vacuum is around \$45. The two halves need to be highly standardized, and any two halves from a batch need to be able to fit together. These attributes indicate that a high-volume repetitive manufacturing operation would be ideal.

ABS was chosen as the material for these parts. Not only does it meet the required properties at a low cost, but ABS is also a commonly available, easy to manufacture material. There should be no difficulty in finding alternate sources of supply if needed.

Manufacturing Process Selection

With assumptions in place, candidate manufacturing processes can be identified. Figure UUU plots a few different manufacturing processes with their economical batch sizes. Based on the batch size alone, Extrusion, Blow Molding, and Injection molding stand out as candidates for manufacturing polymer parts. However, there are a few other polymer processing techniques that should be considered, like vacuum casting and compression molding. Vacuum casting is generally used for small production volumes, or to rapidly produce parts that will later be injection molded. Based on the expected production volume, this process can be eliminated.

Manufacturing processes are also limited by the types of geometry they can produce. Figure ABC and ABC1 in the appendix show which manufacturing processes can handle certain geometries. The alignment ribs, grooves, and screw alignment pillars make it so the housings are best described as an S4 part. Extrusion is not viable because the housings do not have a uniform cross section. Blow molding might work for the exterior surfaces, but would likely not work for the internal ribs. Injection and compression molding could be used to make the required shape.

Figure 23: Candidate manufacturing processes based on batch size

Fundamentally, injection and compression molding are similar processes. In both cases, liquid plastic is forced into a negative mold of the intended part. The methods by which the plastic is forced are different. Compression molding uses high pressure to push heated material, while injection molding uses a long screw to compress and inject liquid plastic. The high pressure involved with compression molding could present a safety concern, and may also lead to deformation of small features. Injection molding is also a very low-waste process. This results in less material used, and the used material can be re-used in the molding process, resulting in less waste lost to the environment. Compression molding leads to more waste as more overflow is needed to completely fill a mold. This material can be recycled, but risks being contaminated and thrown away. To reduce material cost and mitigate potential environmental impacts, Injection molding should be used to manufacture the left and right side housings.

The batch size for most of the plastic parts in the assembly is expected to be the same size as the batch for the housings. For process and material handling standardization purposes, injection molding should be selected for all plastic parts in the assembly.

Economic Analysis

Understanding the design complexity, manufacturing process, and weight helps in obtaining an accurate cost estimate. A detailed cost analysis must be conducted for each part, with the depth of the analysis depending on the shape, design complexity, and size of the product.

Injection Molding

Most components in our part are injection molded. The cost of injection molding depends mostly on the mass of the product and complexity of Design. A steel mold is used for manufacturing. Due to the complexity of the process the price of each part is reduced if it is manufactured on a large scale.

The following equations and assumptions were used for obtaining Unit Cost:

A. Material Cost:

$$C_{\rm M} = \frac{{\it Mass of Material} \, (m) - {\it Cost of Material} \, ({\it cost/lb})}{1 - {\it Fraction of Matrial lost in scrap}}$$

B. Labour Cost:

$$C_L = \frac{Labour\ Cost(\$/lb)}{Production\ Rate(\frac{Units}{hr})}$$

Labour Cost (\$/lb): \$25 /Hour

Production Run (Units/hr): The production rate depends on the complexity and size of the product. For a more complex and large product like RP011, the production rate is around 30 parts/hour and for RP003, which is considerably less complex, the rate is 50 parts/hour.

C. Tooling Cost:

$$C_{7} = \frac{Cost\ of\ Tooling\ (\$) \times Sets\ of\ Tooling\ Required}{Production\ Run(No.\ of\ Parts)}$$

Sets of Tooling Required
$$-\frac{Production\ Run(No.\ of\ Parts)}{Life\ of\ Tooling}$$

Cost of Tooling(\$): Tooling cost depends on the complexity and Production rate. Based on these factors the tooling costs range between 10,000 to 60,000. For RP003, the cost is estimated to be 20,000 based on the complexity, Production rate and size of the product. For RP011 it is estimated to be around 50,000 based on the same factors.

Life of Tooling (Cost/lb): A steel mold usually lasts for 500,000 units.

Production Run (No. of Parts): Using the market estimate from Amazon around 10,000 units are bought a year we assumed a production run of 250,000 units.

D. Equipment Cost:

$$C_E = \left(\frac{1}{Production\,Rate(\frac{Enlts}{loc})}\right) \times \left(\frac{Capital\,Cost(\$)}{Load\,Factor\,\times (Capital\,Write-off\,Time)}\right) \times Load\,Sharing\,Factor$$

Capital Cost (\$): An Injection molding machine for a production run of this size costs around \$100,000.

Capital Write-off Time: Assuming 5 years, 40 hours per week, 3 shifts per day, and 50 weeks per year.

Load Fraction: We assume there is one operator per machine.

Load Sharing Factor: We assume one machine per part.

E. Overhead Cost (C_{OH}) :

$$Overhead\ Cost\ (C_{0H}) = \frac{Overhead\ Hourly\ Rate(\frac{\$}{hr})}{Life\ of\ Tooling}$$

Overhead Hourly Rate: \$50 / Hour

F. Total Unit Cost:

The **Total Unit Cost** (C_U) is the sum of all these costs:

$$C_U = C_M + C_L + C_T + C_E + C_{OH}$$

A comprehensive unit cost analysis was conducted for both the original and redesigned equipment. The table below provides detailed information used in the cost estimation process. Grey-shaded cells in the table indicate the unit cost estimates that were calculated using the equations mentioned earlier.

Table 8: Unit Cost Analysis

			Lint Cost	Andysis				
COMPONENT	KMIU Slower Screen Locking Clip	Power Button Cover	RUM Blower Qust Callection Bin	M SMU Blace Charging and LED mount	BlawerStreen	0-Ring Olip	Impellet	(New Housing (New 18g/8)
Cost Element	18910t	LP 900	RP061	RP00I	187906	HPOM:	RP008	PP 800
Cost of Waterial (Costility)	\$1,000	\$1,400	\$1,006	\$1,400	\$1,800	\$2,300	\$3,600	\$1.480
Fraction of process that is scrap	1.06	0.85	6.05	0.05	0.85	1.15	0.05	0.6
Mass of Material (19)	8.88198416	0.90202	# 15	8.00462	£ 0127868	0.00284	8.08347	0.1
Link Material Cost (Cu)	\$0.000	\$8.083	\$0.158	\$0.907	\$0.024	\$6.067	\$0.005	\$8.780
Labor Cost (B/b)	25	15	25	- 6	25	15	15	325.0
Production Rate (Unitedny)	15	120	- 58	120	90	188	120	3
Unit Labor Cost (C ₁)	80.333	11.12	\$0.506	\$2.125	50,417	30.003	\$0,125	10.530
Cost of Tooling (S)	\$20,000.00	50000	28006	- 61800	\$69,890.90	20010	-50000	\$60,000.00
Production Rue (No. of Pate)	250000	250000	259000	251800	250090	250000	250100	25000
Life of Tooling	308008	190090	588008	500900	300090	580009	500000	50000
Sate of Tooling Required	S23	1	223	1000	1 223	7	1000	1 200
Unit Tooling Cost (Cr.)	\$0.000	18.297	\$0,000	90.000	88.290	\$6,000	\$9.200	89.29
Capital cost	\$1,90,900,000	\$1,00,000 000	\$10,90,000,000	\$19,00,000,000	51,00,000 000	\$1,90,000,000	\$1,00,000,000	31,00,000,000
Capital wels-off time	38000	30000	18000	30900	30680	30000	38400	3068
LasdFrection	777			1		1	- 33	-
Lead Sharing Fraction	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 3			1	1	
Unit Capital Cost (Cg)	90.044	\$8,000	\$0.663	30.278	\$119	\$5.019	\$0.128	58.1W
Factory Overhead	- 50	50	56	50	50	59	50	50
Produtius Rata ("Indo/kr)	75	120	-51	120	-80	188	120	3
Unit Overhead Cost (Cos.)	\$0.667	\$8.417	\$1,000	\$0.417	33.633	\$6.271	\$0.417	\$2.00
Tensi Usit Cost Cu+Cu+Cu+Cu+Ca+Cos	\$1.527	11.772	\$2.408	\$1.60	23110	39 287	111 00	\$3.10

			Unit Cost Analysis	6			
COMPONENT	Air Filter	KMM Housing (left half) (base part)	Rubber Motor Cap	Blower Screen Retaining Ring	Power Button	LED Cover	Charging circuit board
Cost Element	RP010	RP011	RP012	RP014	RP015	RP020	RP023
Cost of Material (Cost/lb)	\$2.700	\$1.400	\$0.900	\$2.300	\$1.400	\$1.400	\$1.300
Fraction of process that is scrap	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Mass of Material (lb)	0.03	0.1	0.1	0.004	0.002	0.004	0.00169
Unit Material Cost (C _M)	\$0.160	\$0.147	\$0.095	\$0.010	\$0.003	\$0.006	\$0.002
Labor Cost (\$/lb)	\$25.00	25	25	25	25	25	15
Production Rate (Units/hr)	120	30	30	180	180	120	120
Unit Labor Cost (C _L)	\$0.830	\$0.833	\$0.833	\$0.139	\$0.139	\$0.208	\$0.125
Cost of Tooling (\$)	\$50,000.00	50000	50000	15000	10000	20000	20000
Production Run (No. of Parts)	250000	250000	250000	250000	250000	250000	250000
Life of Tooling	1000000	500000	500000	500000	300000	250000	500000
Sets of Tooling Required	1	1	1	1	1	1	1
Unit Tooling Cost (C _T)	\$0.200	\$0.200	\$0.200	\$0.060	\$0.040	\$0.080	\$0.080
Capital cost	\$1,00,000.000	\$1,00,000.000	\$1,00,000.000	\$1,00,000.000	\$1,00,000.000	\$1,00,000.000	\$1,00,000.000
Capital write-off time	30000	30000	30000	30000	30000	30000	30000
Load Fraction	1	1	1	1	1	1	1
Load Sharing Fraction	2	1	1	1	1	1	1
Unit Capital Cost (CE)	\$0.110	\$0.111	\$0.111	\$0.019	\$0.019	\$0.028	\$0.028
Factory Overhead	50	50	50	50	50	50	50
Prodution Rate (Units/hr)	120	30	30	180	180	120	120
Unit Overhead Cost (C _{OH})	\$2.000	\$1.667	\$1.667	\$0.278	\$0.278	\$0.417	\$0.417
Total Unit Cost $C_M+C_L+C_T+C_E+C_{OH}$	\$3.300	\$2.958	\$2.906	\$0.505	\$0.478	\$0.739	\$0.652

Redesign:

Unit Cost Analysis							
COMPONENT	EMM Blower Dust Collection Bin	KMM Base Charging and LED mount	Blower Scieen	O-Ring Clip	Inseler	- KMM Historing (Right Half)	AirFilter
Cost florare	RP001	RPDD4	RP905	RP000	RP008	RP000	REPORTO
Gest of Material (Cost/b)	\$1,000	81,400	\$1,800	\$2,900	\$3.600	\$1,400	\$2,700
Fraction of process that is scrap.	0.95	0.05	0.06	0.05	0.05	0.05	0.05
Mass of Material (b)	0.15	0.00462	0.0127868	0.00284	0.00347	0.1	9,03
Unit Material Cost (Cu)	\$0.158	\$0.007	\$0.024	80.007	\$0.013	\$0.147	\$0.085
Lebor Cost (8/8)	25	15	25	15	15	\$25.00	\$25.00
Production Rate (Units/hr)	. 50	120	60	180	120	30	120
Unit Labor Cost (C _c)	\$0.500	\$6.125	80.417	\$0.083	90.125	\$0.633	80.208
Gost of Tooling (\$)	20000	50000	\$50,000.00	20000	50000	\$80,000.00	\$59,000.00
Production Sun (No. of Parts)	250000	250000	250000	250000	250000	250000	250000
Life at Tooling	500000	500000	300000	500000	500000	500000	1000000
Sets of Tooling Required	1000	1	333.4	701,000	70000	3223	1
Unit Tooking Cost (Cr.)	\$0.000	\$0,200	\$0,200	\$0,000	\$0.200	\$0,200	\$0.200
Capital cost	\$10,00,000.000	\$10,00,000,000	\$1,00,000.000	\$1,00,000,000	\$1,00,000,000	\$1,00,000.000	\$1,00,000,000
Capital write-off time	30000	30000	30000	30000	30000	30000	30000
Load Fraction	0.00	- 200		-	- 2000		-
Load Sharing Fraction	- 3	1	1				
Unit Capital Cost (Co)	\$0.007	\$0.278	\$0.056	\$0.019	\$0.025	\$0.111	\$0.050
Factory Overhead	50	. 50	50	.50	50	. 50	.50
Prodution Rate (Units hr)	50	120	60	180	120	30	120
Unit Overhead Cost (Cox)	\$1,000	90.417	80.633	80:278	\$0.417	\$1.667	80.417
Total Unit Cost Ca+Ca+Ca+Ca+Ca+Ca	82.435	\$1,026	\$1.530	90.467	90 783	42.968	\$0.966

Oret Cost Arseysts							
COMPONENT	Air Filter	KMM Housing (left half) (been part)	Hubber Motor Cap	Blower Screen	Power Button	LED Cover	Charging circuit board
Cod Element	RPD10	RP011	HPUTE	RP054	RP015	H\$P0000	RP023
Cost of Material (Cost/b)	\$2,700	\$1,400	\$0.900	\$2,300	\$1.400	81.400	\$1,300
Fraction of process that is screp-	0.05	0.05	0.05	D.02	0.05	0.05	0.05
Mess of Melenel (b)	0.03	0.1	0.1	0.004	0.002	0.004	0.00109
Unit Malarial Cost (Call	80 005	80.147	90.095	80.009	80.003	90,006	80.002
Labor Cost (\$/b)	825.00	25	25	25	25	25	15
Production Rate (Units/hr)	120	-30	30	60	180	120	120
Oral Cabler Cost (CL)	80.208	\$0.833	\$0.833	80,417	\$0.199	\$0,208	60.125
Cost of Tooling (\$)	\$50,000.00	50000	50000	15000	19000	20000	20000
Production Run (No. of Parts)	250000	2500000	250000	250000	2500000	250000	250000
Life of Tooking	1000000	500000	500000	500000	300000	250000	500000
Sets of Tooling Required	1	- 1		1	1	1	1
Unit Toping Cost (Gr.)	\$0.200	\$0,3830	\$0.300	\$0,000	\$0.040	\$0,000	\$0.000
Capital cost	\$1,00,000 000	\$1,00,000,000	\$1,00,000,000	\$1,00,000,000	\$1,00,000.000	\$1,00,000 (800	\$1,00,000,000
Capital write-off time	30000	30000	30000	30000	30000	30000	30000
Load Fraction	1	. 1	. 1	1	1	1	. 1
Load Sharing Fraction	2			- 1	1		
Unit: Capital: Cost (Ca)	80.056	60.111	50.111	80.056	80.010	90.028	80.028
Factory Overfeed	90	:90	50	- 50	50	- 50	90 120
Prodution Bate (Hertube)	120	30	30	180	180	120	120
Unit Overhead Cost (Cos.)	80.417	\$1,007	31.067	80.278	90.279	90:417	80.417
Total Unit Cost Cg+Cg+Cg+Cg+Cg+Cg	\$0,000	\$2,958	\$2,900	\$0,010	\$0.4TI	\$0.739	\$0.012

Order of Magnitude(OME) Estimates:

This method was employed to roughly guess the price of each component using the 1:3:9 rule. The Material Cost, Manufacturing Cost, and Selling Price were calculated based on the Cost of Material (cost/lb), Mass of Material (m), and Fraction of Material lost in scrap using the following equations:

Material Cost (\$)=Cost of Material $(C_M)(\cos t/lb) + Labour Cost(C_L)$ (\$/hr)

Manufacturing Cost (\$) = 3 × Material Cost(\$)

Selling Price (\$) =9 × Material Cost(\$)

Table 9: OME Analysis

the same of the sa			OME A	nalysis				
COMPONENT	KMM Blower Screen Lacking Clip	Power Button Cover	KMM Blower Dust Collection Bin	KMM Base Charging and LED mount	Blower Screen	O-Ring Clip	Impeller	KMM Housing (Right Half)
Cost Element	RP001	RP002	RP003	RP004	RP005	RP006	RP008	RP009
Mass of Material (lb)	\$0.002	\$0.003	\$0.158	\$0.007	\$0.024	\$0.007	\$0.013	\$0.147
Material Cost (\$)	0.3354	0.1280	0.6579	0.1318	0.4409	0.0902	0.1381	0.9807
Manufacturing Cost (\$)	1.0063	0.3839	1.9737	0.3954	1.3227	0.2706	0.4144	2.9421
Selling Price (\$)	3,0188	1.1518	5.9211	1.1863	3.9680	0.8119	1.2433	8.8263

			OME Analysis				
COMPONENT	Air Filter	KMM Housing (left half) (base part)	Rubber Motor Cap	Blower Screen Retaining Ring	Power Button	LED Cover	Charging circuit board
Cost Element	RP010	RP011	RP012	RP014	RP015	RP020	RP023
Mass of Material (lb)	0.013	0.147	0.085	0.147	0.095	0.010	0.003
Material Cost (\$)	0.14	0.98	0.29	0.98	0.93	0.15	0.14
Manufacturing Cost (\$)	0.41	2.94	0.88	2.94	2.78	0.45	0.43
Selling Price (\$)	1.24	8.83	2.64	8.83	8.35	1.34	1.28

Redesign:

		OME A	nalysis				
COMPONENT	KMM Blower Dust Collection Bin	KMM Base Charging and LED mount	Blower Screen	O-Ring Clip	Impeller	KMM Housing (Right Half)	
Cost Element	RP003	RP004	RP005	RP006	RP008	RP009	
Mass of Material (lb)	\$0.158	\$0.007	\$0.024	\$0.007	\$0.013	\$0.147	
Material Cost (\$)	0.6579	0.1318	0.4409	0.0902	0.1381	0.9807	
Manufacturing Cost (\$)	1,9737	0.3954	1.3227	0.2706	0.4144	2.9421	
Selling Price (\$)	5.9211	1.1863	3.9680	0.8119	1.2433	8.8263	

2	73	V 7	OME Analysis	VI.			
COMPONENT	Air Filter	KMM Housing (left half) (base part)	Rubber Motor Cap	Blower Screen	Power Button	LED Cover	Charging circuit board
Cost Element	RP010	RP011	RP012	RP014	RP015	RP020	RP023
Mass of Material (b)	0.085	0.147	0.095	0.009	0.003	0.006	0.002
Material Cost (\$)	0.29	0.98	0.93	0.43	0,14	0.21	0.13
Manufecturing Cost (\$)	0.88	2.94	2.78	1.28	0.43	0.64	0.38
Selling Price (\$)	2.64	8.83	8.35	3.83	1.28	1.93	1.15

Stock Parts

This product consists of 6 stock parts, which are common components such as springs, batteries, screws, etc. These parts can be procured from manufacturers that produce them in large quantities. Since these materials are available in standardized sizes and specifications, producing them in-house would incur excess costs, making purchasing the more cost-effective option.

Table 10: Stock Parts

	St	ock Parts		
PART NO.	ELEMENT	Quantity	COST (\$)	OVERALLCOST (\$)
RP017	Power Button Spring	1	0.94	0.94
RP018	XV LiPo Battery	1	10	10
RP019	Motor	1	5	5
RP021	Screw	6	0.08	0.48

Resdesign:

Stock Parts									
PART NO.	ELEMENT	Quantity	COST (\$)	OVERALLCOST (\$)					
RP018	XV LiPo Battery	1	10	10					
RP019	Motor	1	5	5					

Break-Even Product:

The analysis was carried out to determine the price at which each component should be sold in order to cover the cost of Manufacturing.

$$Break - Even\ Cost = \frac{Fixed\ Costs\ (\frac{\$}{Month}) + (5000\ units + Variable\ Cost))}{Fixed\ Costs\ (\frac{\$}{Month})}$$

$$Variable\ Cost = C_M + C_L$$

Table 11: Break-Even Analysis

	DESCRIPTION OF THE PARTY OF THE		Brook-Eye	n Analysis			1	and the second
COMPONENT	KMM Blower Screen Locking Clip	Power Button Cover	KMM Blower Dust Collection Bin	KMM Base Charging and LED mount	Blower Screen	O-Ring Clip	Impeller	KMM Housing (Right Half)
Cost Element	RP001	RP002	RP003	RP004	RP005	RP006	RP008	RP009
Fixed Costs (\$/month)	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00
Variable Costs (\$)	\$0.335	\$0.128	\$0,658	\$0.132	\$0.441	\$0.090	\$0.138	\$0.981
Price to Break Even	\$1.48	\$1.18	\$1.94	\$1.19	\$1.63	\$1.13	\$1.20	\$2.40

		Brea	ak-Even Analy	sis			
COMPONENT	Air Filter	KMM Housing (left haif) (base part)	Rubber Motor Cap	Blower Screen Retaining Ring	Power Button	LED Cover	Charging circuit board
Cost Element	RP010	RP011	RP012	RP014	RP015	RP020	RP023
Fixed Costs (\$/month)	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00
Variable Costs (\$)	\$0.294	\$0.981	\$0.928	\$0.149	\$0.142	\$0.214	\$0.127
Price to Break Even	\$1,42	\$2.40	\$2.33	\$1.21	\$1.20	\$1.31	\$1.18

Redesign:

Break-Even Analysis								
COMPONENT	KMM Blower Dust Collection Bin	KMM Base Charging and LED mount	Blower Screen	O-Ring Clip	Impeller	KMM Housing (Right Half)		
Cost Element	RP003	RP004	RP005	RP006	RP008	RP009		
Fixed Costs (\$/month)	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00		
Variable Costs (\$)	\$0.658	\$0.132	\$0.441	\$0.090	\$0.138	\$0.981		
Price to Break even at	\$1.94	\$1.19	\$1.63	\$1.13	\$1.20	\$2.40		

		Brea	ak-Even Analy	sis			
COMPONENT	Air Filter	KMM Housing (left half) (base part)	Rubber Motor Cap	Blower Screen Retaining Ring	Power Button	LED Cover	Charging circuit board
Cost Element	RP010	RP011	RP012	RP014	RP015	RP020	RP023
Fixed Costs (\$/month)	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00	\$7,000.00
Variable Costs (\$)	\$0.294	\$0.981	\$0.928	\$0.426	\$0.142	\$0.214	\$0.127
Price to Break even at	\$1.99	\$2.38	\$2.33	\$1.83	\$1.54	\$1.61	\$1,53

A table summarizing the Costs incurred for the Original and Redesigned Product is given below.

Summary of Cost Estimates PART NO. Original Redesign Unit Cost \$20.27 \$18.69 OME \$58.63 \$49.96 Stock Parts \$16.42 \$15.00 Break-Even Cost \$23.20 \$22.69

Table 12: Summary of Cost Estimates

The product's listed price on Amazon is \$43.99, so the production cost should be lower than that. Our analysis shows that the break-even price for the product is \$23.20. This implies that the company is achieving a profit, assuming these materials were used.

The redesigns made the product more compact and did not significantly reduce the overall cost. The power button cover (with a unit cost of \$0.772), the power button spring (costing \$0.94), and the screws (costing \$0.48) were removed. The Blower Screen Locking Clip and Retaining Ring were combined resulting in the entity Blower Screen.

Professional, Ethical, and Safety Issues

Safety Concerns with Initial Design

The main safety concern that exists with the KMM Vacuum is any harmful emissions or fires that could result from improper handling of the battery. One of the pictures included on the vacuum's Amazon page includes a caption that states the device should not be charged for 10 minutes after use to allow the battery to cool. This warning is shown in Figure 24. Ideally, the circuitry would be designed such that this is not an issue. Not only is this an unnecessary issue to have in the first place, notifying the user of it in a picture on a website or a line in the user manual is not sufficient. A warning should be molded in the plastic next to the charging port to ensure users are aware of this constraint.

This Vacuum is also specifically marketed as a "Car Vacuum Cleaner", and there is a high probability that some users will simply keep the vacuum in their car. On hot, sunny days, the inside temperature of a car can easily pass 100°F in less than half an hour. While LiPo batteries have an operating temperature range of about 0-140°F, the combination of a hot car and heating from use may present an issue for some users.

Figure 24: KMM Vacuum Battery Warning

Ethical Concerns

The primary ethical concern with the KMM Vacuum is more so a concern with KMM as a company. Very little visibility is provided into the company. A country of origin is difficult to locate, but the country of origin for many products listed on the company website is China. The address listed on the company's website is 221B, Baker Street, Marylebone, London NW1 6XE, United Kingdom. 221B Baker Street is the fictional address of Sherlock Holmes, and the address listed is the location of the Sherlock Holmes Museum in London. The phone number provided is also not reachable. Even the meaning of the letters "KMM" is difficult to determine. Given the lack of available information and visibility into the company's supply chain, manufacturing processes, and the low prices of the 110 different vacuum cleaners listed for sale on the company website, it seems likely that KMM exploits the low labor costs and lack of regulations in China to sell products at the lowest possible cost. KMM is also likely not the manufacturer or designer of these products, but rather a distributor or reseller. The overall lack of transparency exhibited by KMM presents a red flag to consumers and potential collaborators alike.

Conclusions

This reverse engineering project provides an extensive examination of a handheld vacuum, beginning with a detailed analysis of its design purpose and user intent. The project then advances to the deconstruction phase, where each component of the vacuum was meticulously modeled and evaluated. These parts underwent rigorous assessments focusing on several critical aspects, including manufacturability, material selection, economic feasibility, and assembly efficiency.

Through this deconstruction, a thorough understanding of the product's design and functionality was achieved. Each part's design and material choices were scrutinized to determine their impact on overall performance and production costs. The insights gained from these assessments were pivotal in identifying areas for improvement.

Following the comprehensive analysis, the project transitioned into the redesign phase, addressing significant customer concerns. These concerns were primarily centered around enhancing the vacuum's collection bin capacity and improving suction strength. The redesign aimed to meet these demands while also simplifying the manufacturing process. This was accomplished by reducing the number of components and optimizing the geometry to facilitate easier and more cost-effective production. Additionally, the redesigned vacuum incorporated improved materials, further enhancing its durability and performance.

Overall, the project not only succeeded in refining the handheld vacuum's design to better meet user needs but also achieved a more efficient and economical manufacturing process. The result is a product that combines enhanced functionality with streamlined production, offering both superior performance and greater cost savings.

Appendix

Figure 25: Part Complexity classification.

Ability of Manufacturing Processes to Produce Shapes

Process	Capability for Producing Shapes				
Casting processes					
Sand casting	Can make all shapes				
Plaster casting	Can make all shapes				
Investment casting	Can make all shapes				
Permanent mold	Can make all shapes except T3, T5; F5; U2, U4, U7				
Die casting	Same as permanent mold casting				
Deformation processes					
Open-die forging	Best for R0 to R3; all B shapes; T1; F0; Sp6				
Hot impression die forging	Best for all R, B, and S shapes; T1, T2; Sp				
Hot extrusion	All 0 shapes				
Cold forging/cold extrusion	Same as hot die forging or extrusion				
Shape drawing	All 0 shapes				
Shape rolling	All 0 shapes				
Sheet-metal working processes					
Blanking	F0 to F2; T7				
Bending	R3; B3; S0, S3, S7; T3; F3, F6,				
Stretching	F4; S7				
Deep drawing	T4; F4, F7				
Spinning	T1, T2, T4, T6; F4, F5				
Polymer processes					
Extrusion	All 0 shapes				
Injection molding	Can make all shapes with proper coring				
Compression molding	All shapes except T3, T5, T6, F5, U4				
Sheet thermoforming	T4, F4, F7, S5				
Powder metallurgy processes					
Cold press and sinter	All shapes except S3, T2, T3, T5, T6, F3, F5, all U shapes				
Hot isostatic pressing	All shapes except T5 and F5				
Powder injection molding	All shapes except T5, F5, U1, U4				
PM forging	Same shape restrictions as cold press and sinter				
Machining processes					
Lathe turning	R0, R1, R2, R7; T0, T1, T2; Sp1, Sp6; U1, U2				
Drilling	то, т6				
Milling	All B, S, SS shapes; F0 to F4; F6, F7, U7				
Grinding	Same as turning and milling				
Honing, lapping	R0 to R2; B0 to B2; B7; T0 to T2, T4 to T7; F0 to F2; Sp				

Figure 26: Ability of Manufacturing Processes to produce shapes

Original Assembly Drawings

SOLIDWORKS Educational Product. For Instructional Use Only.

Redesign Drawings

