Dynamic Programming

Outline and Reading

- Matrix Chain-Product (§5.3.1)
- The General Technique (§5.3.2)
- ◆ 0-1 Knapsack Problem (§5.3.3)

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
 - Rather than give the general structure, let us first give a motivating example:
 - Matrix Chain-Products
- Review: Matrix Multiplication.
 - C = A *B
 - $\blacksquare A \text{ is } d \times e \text{ and } B \text{ is } e \times f$
 - $O(d \cdot e \cdot f)$ time

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- \blacksquare A_i is d_i × d_{i+1}
- Problem: How to parenthesize?

Example

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes ...
- B*(C*D) takes

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- \blacksquare A_i is d_i × d_{i+1}
- Problem: How to parenthesize?

Example

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes 1500 + 75 = 1575 ops
- \blacksquare B*(C*D) takes 1500 + 2500 = 4000 ops

Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_0*A_1*...*A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best

Running time:

- The number of parenthesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm!

Greedy Approach

- ◆ Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

- ◆ Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

"Recursive" Approach

- Define subproblems:
 - Find the best parenthesization of A_i*A_{i+1}*...*A_i.
 - Let N_{i,j} denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is $N_{0,n-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0^*...*A_i)^*(A_{i+1}^*...*A_{n-1})$.
 - Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,j} is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note that subproblems are not independent—the subproblems overlap.

Dynamic Programming Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes O(n) time.
- ◆ Total run time: O(n³)
- Getting actual
 parenthesization can be
 done by remembering
 "k" for each N entry

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- N_{i,i}'s are easy, so start with them
- Then do problems of "length" 2,3,... subproblems, and so on.
- Running time: O(n³)

Algorithm *matrixChain(S)*:

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal parenthesization of *S*

for
$$i \leftarrow 1$$
 to $n - 1$ do $N_{i,i} \leftarrow 0$

for
$$b \leftarrow 1$$
 to $n-1$ do

$$\{b = j - i \text{ is the length of the problem }\}$$

for
$$i \leftarrow 0$$
 to $n - b - 1$ do

$$j \leftarrow i + b$$

$$N_{i,i} \leftarrow +\infty$$

for
$$k \leftarrow i$$
 to $j - 1$ do

$$N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$$

return $N_{0,n-1}$

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

The 0/1 Knapsack Problem

- w_i a positive weight
- b_i a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.
 - In this case, we let T denote the set of items we take

• Objective: maximize
$$\sum_{i \in T} b_i$$

• Constraint:
$$\sum_{i \in T} w_i \leq W$$

Example

- b_i a positive "benefit"
- w_i a positive "weight"

Goal: Choose items with maximum total benefit but with weight at most W.

Items:

Weight: 4 in 2 in 2 in 6 in 2 in Benefit: \$20 \$3 \$6 \$25 \$80

"knapsack"

box of width 9 in

Solution:

- item 5 (\$80, 2 in)
- item 3 (\$6, 2in)
- item 1 (\$20, 4in)

A 0/1 Knapsack Algorithm, First Attempt

- S_k: Set of items numbered 1 to k.
- Define B[k] = best selection from S_k .
- Problem: does not have subproblem optimality:
 - Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of (benefit, weight) pairs and total weight W = 20

Best for S₄:

Best for S₅:

A 0/1 Knapsack Algorithm, Second Attempt

- ♦ S_k: Set of items numbered 1 to k.
- Define B[k,w] to be the best selection from S_k with weight at most w
- Good news: this does have subproblem optimality.

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- I.e., the best subset of S_k with weight at most w is either
 - the best subset of S_{k-1} with weight at most w or
 - the best subset of S_{k-1} with weight at most w-w_k plus item k

0/1 Knapsack Algorithm

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- Recall the definition of B[k,w]
- Since B[k,w] is defined in terms of B[k-1,*], we can use two arrays of instead of a matrix
- Running time: O(nW).
- Not a polynomial-time algorithm since W may be large
- This is a pseudo-polynomial time algorithm

Algorithm *01Knapsack(S, W)*:

Input: set S of n items with benefit b_i and weight w_i ; maximum weight W

Output: benefit of best subset of S with

weight at most W

let A and B be arrays of length W + 1

for $w \leftarrow 0$ to W do

$$B[w] \leftarrow 0$$

for $k \leftarrow 1$ to n do

copy array B into array A

for
$$w \leftarrow w_k$$
 to W do

if
$$A[w-w_k] + b_k > A[w]$$
 then

$$B[w] \leftarrow A[w - w_k] + b_k$$

return B[W]