Вычмат-2025

14 июня 2025 г.

Содержание 2

Содержание

	Основные определения					
	1.1	Предмет вычислительной математики. Метод и задачи вы-				
		числительной математики в терминах функционального				
		анализа				
		1.1.1 Предмет вычислительной математики				
		1.1.2 Функциональный анализ				
		1.1.3 Функциональные метрические пространства				
		1.1.4 Функции, заданные на функциональном простран-				
		стве				
	1.0	1.1.5 Методы и задачи вычислительной математики				
	1.2	Источники и классификация погрешностей результатов				
		численного решения задач. Приближенные числа. Абсолютная и относительная погрешности. Правила записи				
		приближенных чисел				
		1.2.1 Источники и классификация погрешностей				
		1.2.2 Приближенные числа. Абсолютная и относительная				
		погрешности				
		1.2.3 Правила записи приближенных чисел				
		1.2.4 Округления				
	1.3	Погрешности арифметических операций над приближен-				
		ными числами. Погрешность функции одной и многих пе-				
		ременных				
		1.3.1 Погрешности арифметических операций над при-				
		ближенными числами				
	- 1	1.3.2 Погрешность функции одной и многих переменной.				
	1.4	Корректность вычислительной задачи. Примеры коррект-				
	1 5	ных и некорректных задач				
	1.5	Обусловленность вычислительной задачи. Примеры хорошо и плохо обусловленных задач				
	1.6	Вычислительные алгоритмы. Корректность и обусловлен-				
	1.0	ность вычислительных алгоритмов				
		nocib bbi incomi confiniti don opni mob				
	Реп	Решение нелинейных уравнений, СЛАУ				
	2.1	Постановка задачи решения нелинейных уравнений. Ос-				
		новные этапы решения задачи				
		2.1.1 Задача решения нелинейного уравнения				

		2.1.2	Локализация корней	24	
		2.1.3	Итерационное уточнение корней	24	
	2.2	Скоро	ость сходимости итерационных методов уточнения ре-		
		шения	н нелинейного уравнения	26	
	2.3	Обусловленность задачи решения нелинейных уравнений.			
		гкноП	сие об интервале неопределенности. Правило Гарвика.	27	
		2.3.1	Обусловленность задачи решения нелинейных урав-		
			нений	27	
		2.3.2	Понятие об интервале неопределенности. Правило		
			Гарвика	27	
	2.4		ц бисекции решения нелинейных уравнений. Скорость		
			мости. Критерий окончания.	29	
		2.4.1	Описание метода	29	
		2.4.2	Скорость сходимости	30	
	0.5	2.4.3	Критерий окончания.	30	
	2.5		ц простой итерации. Скорость сходимости. Критерий	0.1	
			ания. Приведение к виду, удобному для итераций	31	
		2.5.1	Описание метода	31	
		2.5.2	Скорость сходимости	32	
		2.5.3	Критерий окончания.	33	
	2.6	2.5.4 Morror	Приведение к виду, удобного для итераций	35	
	2.0		ц Ньютона решения нелинейных уравнений. Вывод	37	
	2.7	_	ционной формулы метода Ньютона	31 39	
	2.8		ериорная оценка погрешности (критерий оконча-	<i>ე</i>	
	2.0		Правило выбора начального приближения на отрезке		
		/	изации корня, гарантирующего сходимость метода	41	
	2.9		фикации метода Ньютона. Упрощенный метод Нью-	11	
	2.0		Метод хорд.	42	
	2.10		фикации метода Ньютона. Метод секущих. Скорость	12	
			мости метода секущих	43	
3	Интерполяция				
4	Диф	ффере	нцирование и интегрирование	44	
5	Спи	COK R	опросов	45	
_	~ 1111	COR D		10	

1 Основные определения

- 1.1 Предмет вычислительной математики. Метод и задачи вычислительной математики в терминах функционального анализа.
- 1.1.1 Предмет вычислительной математики.

Необходимость разработки методов доведения математических исследований до числового результата привела к созданию отдельной дисциплицы - вычислительной математики.

Определение 1.1: Вычислительная математика-1

Область математики, которая призвана разрабатывать методы доведения до числового результата решений основных задач математического анализа, алгебры и геометрии и пути использования для этой цели современных вычислительных средств.

Определение 1.2: Вычислительная математика-2

Раздел математики, связанный с построением и анализом алгоритмов численного решения математических задач.

Таким образом, **вычислительная математика** помогает решать численные задачи с помощью ЭВМ.

1.1.2 Функциональный анализ.

Определение 1.3: Функциональный анализ

Область математики, изучающая свойства функциональных пространств.

Для определения **задач и методов** вычислительной математики введем важнейшие **понятия функционального анализа**.

Определение 1.4: Понятия функционального анализа

- Функциональные метрические пространства.
- Функции, определенные на функциональных пространствах.

Функциональный анализ рассматирвает элементы более общего (не евклидова) пространства.

1.1.3 Функциональные метрические пространства.

В функциональном анализе вместо евклидовых пространств рассматриваются абстрактные пространства, элементы которых могут иметь самую различную природу.

Определение 1.5: Метрическое пространство

Абстрактное множество, для любых двух элементов x и y которого **опрделено** понятие **расстояния** $\rho(x,y)$.

Лемма 1.1: Свойства расстояния

Расстояние $\rho(x,y)$ должно удовлетворять следующим **свойствам:**

- 1. $\rho(x,y) \ge 0$, причем $\rho(x,y) = 0 \leftrightarrow x$ совпадает с y.
- 2. $\rho(x, y) = \rho(y, x)$.
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y) \ \forall \ x,y,z \in \mathscr{R}$, где: \mathscr{R} метрическое пространство.

Евклидовы пространства с обычным определением расстояния удовлетворяют всем этим условиям. Но могут быть и другие метрические пространства.

Определение 1.6: Пространство непрерывных функций

Пространство C[a,b] - множество всех непрерывных функций на отрезке [a,b].

Функция f(x) непрерывная на $[a,b] \leftrightarrow f(x) \in C[a,b]$.

Пример 1.1: Неевклидово метрическое пространство

Пространства L_p , где $p \geq 1$ и $p \in \mathbb{R}$.

$$L_p = \{ f(x) | f(x) \in \mathbb{C}[a, b], \int_a^b |f(t)|^p dt < \infty \}$$

Расстояние $\rho(x,y)$ в пространстве L_p определяется следующим образом:

$$\rho(x,y) = \left[\int_{a}^{b} |x(t) - y(t)|^{p} \right]^{\frac{1}{p}}$$

В каждом метрическом пространстве можно говорить об **окрестности** данной точки.

Определение 1.7: Окрестность точки

 ε -окрестностью точки x некоторого метрического пространства $\mathscr R$ называется множество точек y таких, что:

$$\rho(x,y) \le \varepsilon$$

Пример 1.2: Окрестность точки в L_p

Окрестность точки в L_p - это совокупность всех функций y(t), принадлежащих L_p , для которых:

$$\int_{a}^{b} |x(t) - y(t)|^{p} dt < \varepsilon^{p}$$

В вычислительной математике часто приходится заменять одну функцию x(t) другой, более удобной для вычислительных целей. Обычно эту вторую функцию берут из ε -окрестности первой.

1.1.4 Функции, заданные на функциональном пространстве.

Определение 1.8: Операторы функционального пространства

Пусть нам даны два абстрактных (функциональных) пространства \mathcal{R}_1 и \mathcal{R}_2 и каждому элементу $x \in \mathcal{R}_1$ поставлен в соответствие элемент $y \in \mathcal{R}_2$. Тогда будем говорить, что нам задан **оператор**:

$$y = A(x)$$

с областью определения \mathscr{R}_1 и областью значений, принадлежащих \mathscr{R}_2 .

В частности, если \mathcal{R}_2 является областью вещественных или комплексных чисел, то оператор A(x) - функционал.

Пример 1.3: Функционал

Оператором (функционалом) в пространстве непрерывных функций на отрезке [a,b] C[a,b] - определенный интеграл:

$$I(x) = \int_{a}^{b} x(t) dt$$

1.1.5 Методы и задачи вычислительной математики.

Определение 1.9: Задачи вычислительной математики

Многие задачи в вычислительной математике могут быть записаны в виде:

$$y = A(x)$$

где x и y принадлежат заданным пространствам \mathscr{R}_1 и \mathscr{R}_2 и A(x) - некоторых заданный оператор.

Далеко не всегда с помощью средств современной математики удается точно решить эти задачи, применяя конечное число шагов. Для этого используют методы вычислительной математики:

Определение 1.10: Основной метод вычислительной математики

Замена пространств \mathcal{R}_1 и \mathcal{R}_1 и \mathcal{R}_2 и оператора A(x) другими пространствами $\overline{\mathcal{R}_1}$ $\overline{\mathcal{R}_2}$ и оператором \overline{A} , более удобными для вичислительных целей. Замена $\overline{y} = \overline{A(\overline{x})}$ должна удовлетворять следующим неравенствам:

$$\rho(x, \overline{x}) < \varepsilon$$

$$\rho(y, \overline{y}) < \varepsilon$$

Иногда бывает достаточно произвести замену только пространств \mathscr{R}_1 и \mathscr{R}_2 или даже одного из них, или заменить только оператор.

Пример 1.4: Применение метода

 $f(x) \in C[a,b]$. Требуется решить задачу:

$$y = \int_{a}^{b} f(x) \, dx$$

причем интеграл не берется в элементарных функциях.

Тогда возможны два пути:

- 1. Замена пространств: вместо f(x) взять $P_n(x)$ алгебраический многочлен степени n.
- 2. Замена оператора: вместо интегрирования построить интегральную сумму $\sum_{i=1}^{n} f(x_i) \Delta_i$.

Определение 1.11: Вычислительный метод

Метод, используемый для преобразования задач к виду, удобному для реализации на ЭВМ.

Определение 1.12: Основные вычислительные методы

Основные классы вычислительных методов:

- Методы эквивалентных преобразований (замена исходной задачи другой (более простой), имеющее то же решение).
- **Методы аппроксимации** (аппроксимировать исходную задачу другой с небольшой погрешностью решения).
- Итерационные методы (через итерационные последовательности и функции).

Резюмируя, можно выделить **основные задачи** вычислительной математики:

Пример 1.5: Основные задачи

- Приближение множеств в функциональных пространствах.
- Приближение операторов, заданных на функциональных пространствах.
- Разработка рациональных алгоритмов и методов решения задач в условиях приминения современных вычислительных средств.

1.2 Источники и классификация погрешностей результатов численного решения задач. Приближенные числа. Абсолютная и относительная погрешности. Правила записи приближенных чисел.

1.2.1 Источники и классификация погрешностей

При решении прикладной задачи с использованием ЭВМ получить точное решение задачи практически невозможно. Получаемое **решение** почти всегда содержит погрешность, т.е. является приближенным.

Определение 1.13: Источники погрешности решения

Пусть у - точное значение величины, а y^* - ее приближенное значение, тогда:

- 1. **Неустранимая погрешность:** $\delta_{\rm H} y^*$ математическая модель и исходные данные вносят в решение ошибку, которая не может быть устранена далее.
- 2. Ошибка метода решения: $\delta_{\scriptscriptstyle \rm M} y^*$ источник данной погрешности метод решения задачи.
- 3. **Вычислительная погрешность:** $\delta_{\text{в}}y^*$ определяется характеристикой машины ЭВМ.

Таким образом, полная погрешность результата решения задачи на ЭВМ складывается из трех составляющих:

$$\delta y^* = \delta_{\scriptscriptstyle \rm H} y^* + \delta_{\scriptscriptstyle \rm M} y^* + \delta_{\scriptscriptstyle \rm B} y^*$$

На практике исходят из того, что:

- Погрешность метода должна быть на порядок меньше неустранимой погрешности.
- Величина вычислительной ошибки была хотя бы на порядок меньше величины погрешности метода.

1.2.2 Приближенные числа. Абсолютная и относительная погрешности.

Пусть - точное (неизвестное) значение некоторой величины, a^* - приближенное (известное) значение той же величины (приближенное число).

Определение 1.14: Абсолютная погрешность

Модуль разности приближенного и точного значения некоторой величины:

$$\Delta(a^*) = |a - a^*|$$

Определение 1.15: Относительная погрешность

Для соотншения погрешность величины и ее значения вводят понятие относительной погрешности:

$$\delta(a^*) = \frac{|a - a^*|}{|a|} = \frac{\Delta(a^*)}{|a|}$$

Т.к. значение неизвестно, то непосредственное вычисление величин $\Delta(a^*)$ и $\delta(a^*)$ по предыдущим формулам невозможно, то вводят верхние границы погрешностей.

Определение 1.16: Верхние границы погрешностей

 $\overline{\Delta(a^*)}$ и $\overline{\delta(a^*)}$ - верхние границы абсолютной и относительной погрешностей соответственно:

$$|a - a^*| \le \overline{\Delta(a^*)}$$

$$\frac{|a - a^*|}{|a|} \le \overline{\delta(a^*)}$$

Причем, если величина $\Delta(a^*)$ известна, то:

$$\overline{\delta(a^*)} = \frac{\overline{\Delta(a^*)}}{|a|}$$

Аналогично, если известна $\overline{\delta(a^*)}$:

$$\overline{\Delta(a^*)} = |a| \cdot \overline{\delta(a^*)}$$

1.2.3 Правила записи приближенных чисел.

Пусть приближенное число a^* задано следующим образом:

$$a^* = \alpha_n \alpha_{n-1} \dots \alpha_0 \beta_1 \beta_2 \dots \beta_m$$

где $\alpha_n\alpha_{n-1}\ldots\alpha_0$ - целая часть, $\beta_1\beta_2\ldots\beta_m$ - дробная.

Определение 1.17: Значащие цифры

Все цифры в записи числа a^* , начиная с первой ненулевой слева.

Определение 1.18: Верная цифра

Значащую цифру называют верной, если абсолютная погрешность числа не превосходит единицы разряда, соответствующей этой цифре.

Пример 1.6: Значащие и верные цифры

Пусть $a^* = 0.010300$, $\Delta(a^*) = 2 \cdot 10^{-6}$:

- 1. Значащие цифры: 10300
- 2. Верные цифры: 1030

Лемма 1.2: Связь числа верных цифр с отностительной погрешностью

Если число a^* имеет ровно N верных цифр, то $\delta(a^*) \sim 10^{-N}$.

Лемма 1.3: Правило записи

Неравенство верхней границы абсолютной погрешности эквивалентно следующему:

$$a^* - \overline{\Delta a^*} \le a \le a^* + \overline{\Delta a^*}$$

Тот факт, что число a^* является приближенным значением числа a с абслоютной точностью $\varepsilon = \overline{\Delta(a^*)}$ принято записывать в виде:

$$a = a^* \pm \overline{\Delta(a^*)}$$

Аналогично, можно получить следующие неравенства:

$$a^*(a - \overline{\delta a^*}) \le a \le a^*(a + \overline{\delta a^*})$$

Тот факт, что число a^* является приближенным значением числа a с относительной точностью $\varepsilon = \overline{\delta(a^*)}$ принято записывать в виде:

$$a = a^* (1 \pm \overline{\delta(a^*)})$$

Как правило, числа a^* , $\overline{\Delta(a^*)}$ и $\overline{\delta(a^*)}$ указывают с одинаковым числом цифр после десятичной точки.

Если число a^* приводится в качестве результата **без указания величины погрешности**, то принято считать, что все его значащие цифры являются **верными**.

1.2.4 Округления.

Определение 1.19: Округление методом усечения

Отбрасываем все цифры, расположенные слева от n-ой значащей цифры.

Определение 1.20: Округление по дополнению

Если первая слева от отбрасываемых цифр **меньше** 5, то сохраняемые цифры остаются **без изменения**.

Иначе: в младший сохраняемый разряд добавляется единица.

Границы абсолютной и относительной **погрешностей** принято округлять **в сторону увеличения**.

- 1.3 Погрешности арифметических операций над приближенными числами. Погрешность функции одной и многих переменных.
- 1.3.1 Погрешности арифметических операций над приближенными числами.

Теорема 1.1: Абсолютная погрешность сложения/вычитания

Абсолютная погрешность алгебраической суммы или разности не превосходит суммы абсолютных погрешностей слагаемых, т.е:

$$\Delta(a^* \pm b^*) \le \Delta(a^*) + \Delta(b^*)$$

Доказательство.

$$\Delta(a^* \pm b^*) = |(a \pm b) - (a^* \pm b^*)| = |(a - a^* \pm (b - b^*))| \le \Delta(a^*) + \Delta(b^*)$$

Следстиве 1.1: Абсолютная погрешность сложения/вычитания

В силу того, что $\Delta(a^*) \leq \overline{\Delta(a^*)}$, получаем: $\overline{\Delta(a^* \pm b^*)} = \overline{\Delta(a^*)} + \overline{\Delta(b^*)}$.

Теорема 1.2: Относительная погрешность сложения/вычитания

Пусть a и b: ab > 0. Тогда справедливы неравенства:

$$\delta(a^* + b^*) \le \delta_{\text{max}}, \ \delta(a^* - b^*) \le \nu \delta_{\text{max}}$$

где:
$$\delta_{\max} = \max\{\delta(a^*), \ \delta(b^*)\}, \ \nu = \frac{|a+b|}{|a-b|}$$

Доказательство.

$$|a+b|\delta(a^*+b^*) = \Delta(a^*+b^*) \le \Delta(a^*) + \Delta(b^*)$$
$$|a|\delta(a^*) + |b|\delta(b^*) \le |a|\delta_{\max} + |b|\delta_{\max}$$
$$(|a|+|b|)\delta_{\max} = |a+b|\delta_{\max}$$

T.e.
$$\delta(a^* + b^*) \leq \delta_{\max}$$

$$|a - b|\delta(a^* - b^*) = \Delta(a^* - b^*) \le \Delta(a^*) + \Delta(b^*) \le |a + b|\delta_{\max}$$

T.e. $\delta(a^* - b^*) \le \frac{|a + b|}{|a - b|}\delta_{\max} = \nu\delta_{\max}$

Итог: при вычислении разности близких числе точность теряется примерно в $\nu=\frac{|a+b|}{|a-b|}$ раз.

Теорема 1.3: Относительная погрешность умножения/деления

Для относительных погрешностей произведения и частного приближенных чисел верны оценки:

$$\delta(a^*b^*) \le \delta(a^*) + \delta(b^*) + \delta(a^*)\delta(b^*)$$
$$\delta(\frac{a^*}{b^*}) \le \frac{\delta(a^*) + \delta(b^*)}{1 - \delta(b^*)}$$

Доказательство.

$$|ab|\delta(a^*b^*) = \Delta(a^*b^*) = |ab - a^*b^*|$$

$$|(a-a^*)b+(b-b^*)a-(a-a^*)(b-b^*)| \le |a-a^*|\cdot|b|+|b-b^*|\cdot|a|+|a-a^*|\cdot|b-b^*|$$

$$\Delta(a^*)|b|+\Delta(b^*)|a|+\Delta(a^*)\Delta(b^*)=c$$

Разделим c на |ab|:

$$\delta(a^*b^*) = \delta(a^*) + \delta(b^*) + \delta(a^*)\delta(b^*)$$

$$\begin{split} |\frac{a}{b}|\delta(\frac{a^*}{b^*}) &= \Delta(\frac{a^*}{b^*}) = |\frac{a}{b} - \frac{a^*}{b^*}| = |\frac{ab^* - a^*b}{bb^*}| = c \\ |b^*| &= |b - (b - b^*)| = |b| \cdot |1 - \frac{b - b^*}{b}| \ge |b| \cdot (1 - \delta(b^*)) \\ c &\leq \frac{|ab^* - a^*b|}{|b|^2(1 - \delta(b^*))} \end{split}$$

Разделим c на $\left|\frac{a}{b}\right|$:

$$\delta(\frac{a^*}{b^*}) \le \frac{\delta(a^* + b^*)}{1 - \delta(b^*)}$$

Следстиве 1.2: Относительная погрешность умножения/деления

Если $\delta(a^*) << 1$ и $\delta(b^*) << 1$, то:

$$\overline{\delta(a^*b^*)} \approx \overline{\delta(a^*)} + \overline{\delta(b^*)}$$

$$\overline{\delta(\frac{a^*}{b^*})} \approx \overline{\delta(a^*)} + \overline{\delta(b^*)}$$

Общий итог:

- Выполнение арифметических операций над приближенными числами сопровождается потерей точности.
- Наибольшая потеря точности может произойти при вычитании близких чисел одного знака.
- Единственная операция, при которой потеря не происходит, это сложение чисел одного знака.

1.3.2 Погрешность функции одной и многих переменной.

Теорема 1.4: Погрешность функции одной переменной

Пусть функция f(x) - дифференцируема в окрестности точки x^* . Тогда формулы для границ погрешностей:

$$\overline{\Delta(y^*)} \approx |f'(x^*)| \overline{\Delta(x^*)}$$

$$\overline{\delta(y^*)} \approx \nu^* \overline{\delta(x^*)}$$

$$\overline{\delta(y^*)} \approx \nu \overline{\delta(x^*)}$$

где
$$\nu^* = |x^*| \frac{f'(x^*)}{f(x^*)}, \ \nu = |x| \frac{f'(x)}{f(x)}$$

Доказательство. Частный случай формул погрешностей функции многих переменных. \Box

Теорема 1.5: Погрешность функции многих переменных

Пусть $f(\vec{x}) = f(x_1, x_2, \dots, x_m)$ - дифференцируемая в области G функция m переменных, вычисление которой производится при приближенно заданных аргументах $x_1^*, x_2^*, \dots, x_m^*$. Тогда:

$$\Delta(y^*) \le \sum_{j=1}^m \max_{[x,x^*]} |f'_{x_j}| \Delta(x_j^*)$$

Доказательство. Вытекает из формулы конечных приращений Лагранжа:

$$f(\vec{x}) - f(\vec{x^*}) = \sum_{j=1}^{m} f'_{x_j}(\overline{x})(x_j - x_j^*), \ \overline{x} \in [x, x^*]$$

Далее берем модуль от правой и левой частей уравнения и правую часть заменяем на максимум. Получаем требуемое соотношение.

Следстиве 1.3: Погрешность функции многих переменных

Если $x^* \approx x$, то можно положить:

$$\overline{\Delta(y^*)} \approx \sum_{j=1}^m |f'_{x_j}(x)| \overline{\Delta(x_j^*)}$$

$$\overline{\Delta(y^*)} \approx \sum_{j=1}^{m} |f_{x_j}^{'}(x^*)| \overline{\Delta(x_j^*)}$$

Из этих формул вытекают приближенные равенства для оценки границ относительных погрешностей:

$$\overline{\delta(y^*)} pprox \sum_{j=1}^m \nu_j \overline{\delta(x_j^*)}$$

$$\overline{\delta(y^*)} pprox \sum_{j=1}^m \nu_j^* \overline{\delta(x_j^*)}$$

где:

$$\nu_j = \frac{|x_j| \cdot |f'_{x_j}(x)|}{|f(x)|}, \ \nu_j = \frac{|x_j^*| \cdot |f'_{x_j}(x^*)|}{|f(x^*)|}$$

1.4 Корректность вычислительной задачи. Примеры корректных и некорректных задач.

Определение 1.21: Вычислительная задача

Постановка вычислительной задачи включает в себя:

- 1. Задание множества допустимых входных данных X.
- 2. Задание множества возможных решений Y.

Цель вычислительной задачи состоит в нахождении решения $y \in Y$ по заданному входному данному $x \in X$.

Определение 1.22: Корректность вычислительной задачи

Вычислительная задача называется корректной, если выполнены следующие все требования:

- 1. Решение $y \in Y$ **существует** при любых входных данных $x \in X$.
- 2. Решение единственно.
- 3. Решение **устойчиво** по отношению к малым возмущениям входных данных (решение зависит от входных данных непрерывным образом: $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 \; \forall x^* \colon \Delta x^* < \delta \to y^* \colon \Delta(y^*) < \varepsilon$).

Пример 1.7: Корректная вычислительная задача

Решение квадратного уравнения: $x^2 + bx + c = 0$ (a = 1).

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

- Наличие решения: в области $\mathbb R$ должно выполняться неравенство: $b^2-4ac \geq 0$.
- Единственность решения: два корня можно представить в виде вектора $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- Устойчивость решения: корни являются непрерывными функциями коэффициентов b и c.

Вычисление определенного интеграла: $I = \int_a^b f(x) \, dx \ (f(x) \in C[a,b]).$

$$I^* = \int_a^b f^*(x) \, dx, \, \Delta(f^*(x)) = \max_{x \in [a,b]} |f(x) - f^*(x)|$$
$$\Delta(I^*) = |I - I^*|$$

$$\left| \int_{a}^{b} f(x) \, dx - \int_{a}^{b} f^{*}(x) \, dx \right| \leq \int_{a}^{b} \left| f(x) - f^{*}(x) \right| \, dx \leq (b - a) \cdot \Delta(f^{*}(x))$$

Значит, $\forall \varepsilon > 0$ неравенство $\Delta(I^*) < \varepsilon$ будет выполено, если потребовать выполнения условия $\Delta(f^*(x)) < \delta = \frac{\varepsilon}{b-a}$.

Пример 1.8: Некорректная вычислительная задача

Нахождение ранга матрицы в общем случае: $A \in M_n(R)$

Пусть
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $A_{\varepsilon} = \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix}$. Тогда:

$$rk(A) = 1, rk(A_{\varepsilon}) = 2$$

Т.е. задача неустойчива.

Вычисление производной u(x) = f'(x) приближенно заданной функции.

Пусть $f \in C^1[a,b], f^*(x)$ - приближенная функция, $u^*(x) = (f^*)'(x)$. Тогда:

$$\Delta(f^*(x)) = \max_{x \in [a,b]} |f(x) - f^*(x)|$$

$$\Delta(u^*(x)) = \max_{x \in [a,b]} |u(x) - u^*(x)|$$

Если взять $f^*(x) = f(x) + \alpha \sin(\frac{x}{\alpha^2})$, где 0 < alpha << 1. Тогда:

$$u^*(x) = u(x) + \alpha^{-1}\cos(\frac{x}{\alpha^2})$$

Следовательно:

$$\Delta(u^*) = \alpha^{-1}, \, \Delta(f^*) = \alpha$$

Значит, сколь угодно малой погрешности задания функции f(x) может отвечать сколь угодно большая погрешность производной f'(x).

1.5 Обусловленность вычислительной задачи. Примеры хорошо и плохо обусловленных задач.

На пракстике погрешность исходных данных не всегда сколь угодно малая, точность их ограничена.

Определение 1.23: Обусловленность вычислительной задачи

Чувствительность решения задачи к малым погрешностям исходных данных.

Задачу называют:

- хорошо обусловленной, если малым погрешностям исходных данных отвечают малые погрешности решения.
- плохо обусловленной, если возможны сильные изменения решения при малых погрешностях исходных данных.

Определение 1.24: Число обусловленности

Коэффициент возможного возрастания погрешностей в решении по отношению к вызвавшим их погрешностям входных данных.

Обычно под числом обусловленности понимают одну из величин $(\nu_{\Delta}, \nu_{\delta})$:

- Абсолютное число обусловленности: $\Delta(y^*) \leq \nu_\Delta \Delta(x^*)$.
- Относительное число обусловленности: $\delta(y^*) \leq \nu_\delta \delta(x^*)$.

Для плохо обусловленной задачи $\nu >> 1$.

Если $\nu_{\delta} \approx 10^N$, то порядок N показывает число верных цифр, которое может быть утеряно в результате по сравнению с числом верных цифр входных данных.

Определение 1.25: Обусловленность задачи вычисления функции одной переменной

Для задачи, состоящей в вычислении по заданному x значения y=f(x) дифференцируемой функции f(x), числа обусловленности примут вид:

$$\nu_{\Delta} \approx |f'(x)|$$

$$\nu_{\delta} \approx \frac{|x| \cdot |f'(x)|}{|f(x)|}$$

Пример 1.9: Обусловленность вычислительных задач

Задача вычисления значения функции: $y = \exp(x)$.

$$\nu_{\delta} = |x|$$

При реальных вычислениях эта величина не может быть очень большой (в противном случае переполнение).

Задача вычисления значения функции: $y = \sin(x)$.

$$\nu_{\Delta} = |\cos(x)| \le 1, \ \nu_{\delta} = |\cot(x)| \cdot |x|$$

При $x \to \pi k, \ \nu_\delta \to \infty$. Следовательно, задача плохо обусловлена.

Задача вычисления определенного интеграла: $I = \int_a^b f(x) \, dx$.

$$\Delta(I^*) = |I - I^*| = |\int_a^b f(x) - f^*(x) \, dx| \le \int_a^b |f(x) - f^*(x)| \, dx$$

$$\delta(I^*) \le \frac{\int_a^b |f(x) - f^*(x)| \, dx}{|\int_a^b f(x) \, dx|} \le \frac{\int_a^b \left| \frac{f(x) - f^*(x)}{f(x)} \right| \cdot |f(x)| \, dx}{|\int_a^b f(x) \, dx|}$$

$$\frac{\int_a^b \delta(f^*(x))|f(x)| \, dx}{|\int_a^b f(x) \, dx|} \le \frac{\int_a^b |f(x)| \, dx}{|\int_a^b f(x) \, dx|} \cdot \overline{\delta(x)}$$

Таким образом, $\delta(I^*) \leq \frac{\int_a^b |f(x)| \, dx}{|\int_a^b f(x) \, dx|} \cdot \overline{\delta(x)}$.

Значит, при знакопостоянной функции f(x), $\nu_{\delta} \approx 1$. Иначе: $\nu_{\delta} > 1$ (если f(x) сильно осцилированная).

1.6 Вычислительные алгоритмы. Корректность и обусловленность вычислительных алгоритмов.

Определение 1.26: Вычислительный алгоритм

Вычислительный метод, доведенный до степени детализации (точное предписание действий), позволяющей реализовать его на ЭВМ.

Определение 1.27: Корректность вычислительных алгоритмов

Вычислительный алгоритм - корректный, если выполнены условия:

- Алгоритм за конечное число элементарных для ЭВМ операций (сложение, вычитание, умножение, деление) приводит к достижению результата.
- Алгоритм устойчив по отношению к малым погрешностям исходных данных.
- Алгоритм вычислительно устойчив, т.е: погрешность решения стремится к нулю, если машинный эпсилон стремится к нулю.

Определение 1.28: Обусловленность вычислительных алгоритмов

Отражает чувствительность результата работы алгоритма к малым, но неизбежным ошибкам округления.

Алгоритм называют:

- хорошо обусловленным, если малые относительные погрешности округления (характеризуемые машинной точностью $\varepsilon_{\rm M}$) приводят к малой относительной вычислительной погрешности $\delta(y^*)$ результата y^* .
- плохо обусловленным, если вычислительная погрешность может быть недопустимо большой.

Определение 1.29: Число обусловленности вычислительного алгоритма

Если $\delta(y^*)$ и ε_{M} связаны неравенством $\delta(y^*) \leq \nu_{\mathrm{A}} \varepsilon_{\mathrm{M}}$, то число ν_{A} называют **числом обусловленности** вычислительного алгоритма.

Для плохо обусловленных алгоритмов $\nu_{\rm A}>>1$.

2 Решение нелинейных уравнений, СЛАУ

- 2.1 Постановка задачи решения нелинейных уравнений. Основные этапы решения задачи.
- 2.1.1 Задача решения нелинейного уравнения.

Определение 2.1: Задача решения нелинейного уравнения

Нахождение корня - \overline{x} такого, что: $f(\overline{x}) = 0$.

Определение 2.2: Простой/кратный корень

Корень \overline{x} уравнения f(x) называется:

- Простым: если $f'(\overline{x}) \neq 0$.
- **Кратным степени m**: если $f^{(k)}(\overline{x})=0$ для $k\in \overline{[1,\ldots,m-1]}$ и $f^{(m)}(\overline{x})\neq 0.$

Геометрически корень \overline{x} соответствует точке пересечения графика функции y = f(x) с осью Ох.

Корень \overline{x} является простым, если график пересекает ось Ох под ненулевым углом, и кратным, если пересечение происходит под нулевым углом.

Виды корней:

- $a) x_1^* кратный корень;$
- б) x_{2}^{*} простой корень;
- $s) x_3^*$ вырожденный корень.

Рис. 1: Пример корней уравнения

Определение 2.3: Основные этапы решения нелинейного уравнения

Решение задачи вычисления корней нелинейного уравнения, как правило, осуществляется в два этапа:

- Локализация корней.
- Итерационное уточнение корней.

2.1.2 Локализация корней.

Определение 2.4: Отрезок локализации

Отрезок [a,b], содержащий только один корень \overline{x} , называют **отрезком локализации**.

Цель этапа локализации: для каждого из корней указать отрезок локализации (длину отрезка стараются по возможности сделать минимальной).

Для локализации корней широко применяют построение таблиц значений функции f(x) вида $y_i = f(x_i), i = 1, 2, \ldots, n$. При этом способе локализации, о наличии на отрезке $[x_{i-1}, x_i]$ корня судят по перемене знака функции на концах отрезка.

Теорема 2.1: Больцано-Коши

Пусть функция f(x) непрерывна на отрезке [a,b] и принимает на его концах значения разных знаков, т.е. $f(a) \cdot f(b) < 0$.

Тогда отрезок [a,b] содержит по крайне мере один корень уравнения f(x) = 0.

2.1.3 Итерационное уточнение корней.

Основная идея: использовать итерационный метод, что позволит построить последовательность $x^{(0)}, x^{(1)}, \ldots, x^{(n)}, \ldots$ приближений к корню \overline{x} .

Определение 2.5: Виды итерационных методов

Итерационный метод может быть:

- одношаговым: для вычисления очередного приближения $x^{(n+1)}$ используется только одно предыдущее значение $x^{(n)}$.
- k-шаговым: для вычисления $x^{(n+1)}$ используется k предыдущих приближений $x^{(n-k+1)}, x^{(n-k+2)}, \ldots, x^{(n)}$.

Определение 2.6: Итерационная функция

Итерационную последовательность $x^{(0)}, x^{(1)}, \dots, x^{(n)}, \dots$ строится через **итерационную функцию**:

$$\phi(x^{(0)}) = x^{(1)}$$

$$\phi(x^{(1)}) = x^{(2)}$$

. . .

$$\phi(x^{(n-1)}) = x^{(n)}$$

. .

2.2 Скорость сходимости итерационных методов уточнения решения нелинейного уравнения.

Определение 2.7: Скорость сходимости

Говорят, что метод сходится со скоростью **геометрической прогрес- сии**, знаменатель которой q < 1, если для всех n справедливо:

$$|x^{(n)} - \overline{x}| \le c_0 q^n$$

Пусть существует σ -окрестность корня \overline{x} такая, что если приближение $x^{(n)}$ принадлежит этой окрестности, то справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le C|x^{(n)} - \overline{x}|^p$$

где C>0 и $p\geq 1$ - постоянные. Тогда:

- Если p=1 и C<1, то метод обладает **линейной** скоростью сходимости в указанной σ -окрестности корня.
- Если p > 1, то метод обладает **сверхлинейной** скоростью сходимости: при p = 2 **квадратичной**, при p = 3 **кубической**.

Лемма 2.1: Связь линейной и геометрической сходимости

Пусть одношаговый итерационный метод обладает линейной скоростью сходимости в некоторой σ -окрестности корня \overline{x} . Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$:

- Итерационная последовательность $x^{(n)}$ не выходит за пределы этой окрестности.
- Метод сходится со скоростью геометрической прогрессии со знаменателем q=C.

А также имеет место следующая оценка:

$$|x^{(n)} - \overline{x}| \le q^n |x^{(0)} - \overline{x}|, \ n \ge 0$$

Доказательство. $q < 1 \to x^{(n)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$. Тогда $x^{(n)}$ сходися к \overline{x} . Справедливость оценки установим через индукцию:

 $\mathbf{\Pi}$ ри n=0:

$$|x^{(0)} - \overline{x}| \le |x^{(0)} - \overline{x}|$$

При переходе от n=m-1 к n=m:

$$|x^{(m)} - \overline{x}| \le q|x^{(m-1)} - \overline{x}| \le q^m|x^{(0)} - \overline{x}|$$

- 2.3 Обусловленность задачи решения нелинейных уравнений. Понятие об интервале неопределенности. Правило Гарвика.
- 2.3.1 Обусловленность задачи решения нелинейных уравнений.

Пусть \overline{x} - корень уравнения, f(x) - входные данные для задачи вычисления корня \overline{x} , $f^*(x)$ - приближенные значения функции.

Определение 2.8: Обусловленность задачи решения нелинейных уравнений

Нельзя ожидать, что в окрестности корня относительная погрешность $\delta(f^*(x))$ окажется малой, например:

$$y = \sin(x)$$

в окрестности корней $x = \pi \cdot k, k \in \mathbb{Z}, \delta(f^*(x)) = |x| \cdot \cot(x) \to \infty.$

Реально рассчитывать можно лишь на то, что малой окажется абсолютная погрешность вычисления значений функции:

$$\Delta(f^*(x)) \approx |f'(x)| = |\cos(x)|$$

2.3.2 Понятие об интервале неопределенности. Правило Гарвика.

Определение 2.9: Интервал неопределенности

Окрестность корня $(\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon})$, в котором невозможно точно определить знак функции f(x): знак вычисленного значения $f^*(x)$ может не совпадать со знаком f(x) для $x \in (\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon})$.

Лемма 2.2: Оценка $\bar{\varepsilon}$ для интервала неопределенности

Пусть корень \overline{x} - простой. Тогда для близких к \overline{x} значений x справедливо приближенное равенство:

$$f(x) \approx f(\overline{x}) + f'(\overline{x})(x - \overline{x}) = f'(\overline{x})(x - \overline{x})$$

В интервале $(\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon}), |f(x)| < \overline{\Delta(f^*(x))}$. Следовательно:

$$|f'(x)(x-\overline{x})| < \overline{\Delta(f^*(x))}$$

$$\text{Mtop: } \overline{x} - \frac{\overline{\Delta(f^*(x))}}{|f'(x)|} < x < \overline{x} + \frac{\overline{\Delta(f^*(x))}}{|f'(x)|} \to \overline{\varepsilon} = \frac{1}{|f'(x)|} \cdot \overline{\Delta(f^*(x))}.$$

Определение 2.10: Число обусловленности задачи нахождения корня

 $u_{\Delta} = \frac{1}{|f'(\overline{x})|}$ - число обусловленности задачи нахождения корня.

Определение 2.11: Правило Гарвика

$$q^{(n)} = \frac{|x^{(n)} - x^{(n-1)}|}{|x^{(n-1)} - x^{(n-2)}|}$$

В интервале неопределенности $q^{(n)} > 1$, т.е. начинается разболтка - хаотическое поведение итерационной последовательности.

В этой ситуации вычисления следует прекратить и принять правильное решение. Лучшее из последовательностей приближений к решению становится $x^{(n-1)}$.

Метод бисекции решения нелинейных уравне-2.4 ний. Скорость сходимости. Критерий окончания.

2.4.1Описание метода.

По сравнению с другими методами метод бисекции сходится довольно медленно. Однако он очень прост и непритязателен; для его применения достаточно, чтобы:

- Выполнялось неравенство: $f(a)f(b) \le 0$.
- Функция f(x) была непрерывна.
- Верно определялся знак функции.

Метод гарантирует точность приближения, примерно равную радиусу интервала неопределенности $\overline{\varepsilon}$.

Определение 2.12: Описание метода

Пусть требуется найти с заданной точностью ε корень \overline{x} , а также задан отрезок локализации $[a^{(0)},b^{(0)}]$ такой, что: $f(a^{(0)})\cdot f(b^{(0)})<0$, тогда:

$$x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2}$$

- начальное приближенное значение корня. Погрешность данного приближения: $\frac{b^{(0)}-a^{(0)}}{2}$

В качестве $[a^{(1)},b^{(1)}]$ берут тот из отрезков $[a^{(0)},x^{(0)}]$ и $[x^{(0)},b^{(0)}]$, на концах которого выполняется условие: $f(a^{(1)})f(b^{(1)}) \leq 0$. Середина полученного отрезка:

$$x^{(1)} = \frac{a^{(1)} + b^{(1)}}{2}$$

- следующее приближение к корню с погрешностью: $\frac{b^{(1)}-a^{(1)}}{2}=\frac{b^{(0)}-a^{(0)}}{2^2}$

На очередной (n+1) итерации происходит следующее:

- Вычисляется $f(x^{(n)})$.
- Если $f(a^{(n)})f(x^{(n)}) \leq 0$, то в качестве отрезка локализации $[a^{(n+1)},b^{(n+1)}]$ принимается отрезок $[a^{(n)},x^{(n)}]$, иначе $[x^{(n)},b^{(n)}]$.
 Вычисляется $x^{(n+1)}=\frac{a^{(n+1)}+b^{(n+1)}}{2}$.

Если $\frac{b-a}{2^{n+1}} < \varepsilon$, то останавливаемся: $\overline{x} \approx \frac{a^{(n-1)} + b^{(n-1)}}{2}$.

2.4.2 Скорость сходимости.

Лемма 2.3: Скорость сходимости

Середина n-го отрезка - точка $x^{(n)} = \frac{a^{(n)} + b^{(n)}}{2}$ дает приближение к корню \overline{x} , имеющее оценку погрешности:

$$|x^{(n)} - \overline{x}| \le \frac{b^{(n)} - a^{(n)}}{2} = \frac{b - a}{2^{n+1}}$$

Получаем: метод бисекции сходится со скоростью геометрической прогрессии со знаменателем $q=\frac{1}{2}.$

2.4.3 Критерий окончания.

Лемма 2.4: Критерий окончания

Итерации следовательно вести до тех пор, пока не будет выполнено неравенство:

$$(b^{(n)} - a^{(n)}) < 2\varepsilon$$

При его выполнении можно принять $x^{(n)}$ за приближение к корню с точностью ε .

2.5 Метод простой итерации. Скорость сходимости. Критерий окончания. Приведение к виду, удобному для итераций.

2.5.1 Описание метода.

Геометрически, метод можно представить следующим образом:

Рис. 2: Геометрическое представление метода простых итераций

Определение 2.13: Описание метода

Основная идея метода - привести нелинейное уравнение к виду, удобному для итерации:

$$x = \phi(x)$$

где функция $\phi(x)$ - итерационная функция.

В методе простых итераций $\phi(x)=x-\alpha f(x)$, где α - какая-то константа, f(x) - исходная функция.

Убедимся, что корень $\phi(x)$ - корень f(x):

$$\phi(\overline{x}) = \overline{x} - \alpha f(\overline{x}) = \overline{x}$$

Пусть $x^{(0)} \in [a, b]$ - начальное приближение корня, тогда:

$$x^{(1)} = \phi(x^{(0)})$$

$$x^{(2)} = \phi(x^{(1)})$$

 $x^{(n+1)} = \phi(x^{(n)}), n \ge 0$

. . .

2.5.2 Скорость сходимости.

Рис. 3: Сходимость метода простых итераций

Как видно на рисунках, в случаях (а), (б) - метод сходится, а в (в) и (г) - расходится. Это связано с тем, что в (а) и (б) $|\phi'(x)| < 1$, а в (в) и (г) наоборот, $|\phi'(x)| > 1$.

Теорема 2.2: Об априорной погрешности

Пусть в некоторой σ -окрестности корня \overline{x} функция $\phi(x)$ дифференцируема и удовлетворяет неравенству:

$$|\phi'(x)| \le q$$

где $0 \leq q < 1$ - постоянная.

Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$ итерационная последовательность:

- Не выходит за пределы этой окрестности.
- Метод сходится со скоростью геометрической прогрессии.

А также справедлива следующая оценка погрешности:

$$|x^{(n)} - \overline{x}| \le q^n |x^{(0)} - \overline{x}|$$

Доказательство. По определению:

$$x^{(n+1)} = \phi(x^{(n)})$$

$$\overline{x} = \phi(\overline{x})$$

Тогда:

$$x^{(n+1)} - \overline{x} = \phi(x^{(n)}) - \phi(\overline{x}) = \phi'(\xi^{(n)})(x^{(n)} - \overline{x})$$

Причем:

$$\xi^{(n)} \in [x^{(n)}, \overline{x}]$$

Значит:

$$|x^{(n+1)} - \overline{x}| = |\phi'(\xi^{(n)})| \cdot |x^{(n)} - \overline{x}| \le q \cdot |x^{(n)} - \overline{x}|$$

Следовательно: интерполяционная последовательность $x^{(0)}, x^{(1)}, \dots, x^{(k)}, \dots$ сходится линейно к \overline{x} (отсюда получаем, что последовательность сходится со скоростью геометрической последовательности со знаменателем q).

Априорные оценки погрешности позволяют еще до вычислений дать некоторое заключение о качестве метода.

2.5.3 Критерий окончания.

Теорема 2.3: Об апостериорной погрешности

Пусть в некоторой σ -окрестности корня \overline{x} функция $\phi(x)$ дифференцируема и удовлетворяет неравенству:

$$|\phi'(x)| \le q$$

где $0 \le q < 1$ - постоянная.

Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$ верна следующая апостериорная оценка погрешности:

$$|x^{(n)} - \overline{x}| \le \frac{q}{1-q} |x^{(n)} - x^{(n-1)}|, \ n \ge 1$$

Доказательство.

$$x^{(n)} - \overline{x} = \phi(x^{(n-1)}) - \phi(\overline{x}) = \phi'(\xi^{(n)})(x^{(n-1)} - \overline{x})$$

Пусть:

$$\phi'(\xi^n) = \alpha^{(n+1)}$$

Тогда:
$$x^{(n)} - \overline{x} = \alpha^{(n+1)}(x^{(n+1)} - \overline{x})$$

$$\alpha^{(n+1)}(x^{(n-1)} - x^{(n)} + x^{(n)} - \overline{x}) = \alpha^{(n+1)}(x^{(n-1)} - x^{(n)}) + \alpha^{(n+1)}(x^{(n)} - \overline{x})$$
 Значит:
$$|x^{(n)} - \overline{x}| \leq |\alpha^{(n+1)}| \cdot |x^{(n-1)} - x^{(n)}| + |\alpha^{(n+1)}| \cdot |x^{(n)} - \overline{x}|$$

$$(1 - |\alpha^{(n+1)}|) \cdot |x^{(n)} - \overline{x}| \leq |\alpha^{(n+1)}| \cdot |x^{(n-1)} - x^{(n)}|$$

$$|x^{(n)} - \overline{x}| \leq \frac{|\alpha^{(n+1)}|}{1 - |\alpha^{n+1}|} \cdot |x^{(n-1)} - x^{(n)}|$$
 Т.к.
$$\begin{cases} |\alpha^{(n+1)}| \leq q \\ 1 - |\alpha^{(n+1)}| \geq 1 - q \end{cases}$$
 то:
$$|x^{(n)} - \overline{x}| \leq \frac{q}{1 - q} \cdot |x^{(n-1)} - x^{(n)}|$$

Если величина q известна, то неравенство выше дает эффективный метод контроля погрешности и можно сформулировать следующий критерий окончания итерационного процесса.

Следстиве 2.1: Критерий остановки

Вычисления следует вести до выполнения неравенства:

$$\frac{q}{1-q}|x^{(n)} - x^{(n-1)}| < \varepsilon$$

или равносильному ему неравенства:

$$|x^{(n)} - x^{(n-1)}| < \frac{1-q}{q}\varepsilon$$

Использование данного критерия окончания требует знание величины q. Чтобы избавиться от нее, оценим q.

Лемма 2.5: Оценка величины q

$$|x^{(n)} - x^{(n-1)}| < \frac{1 - \overline{\alpha^{(n)}}}{\overline{\alpha^{(n)}}} \varepsilon$$

Доказательство. Заметим, что в малой окрестности корня величина производной $\phi'(x)$ практически постоянна:

$$\phi'(x) \approx \phi'(\overline{x})$$

Тогда величину $\alpha^{(n)} = \phi'(\xi^{(n-1)})$ можно приближенно заменить на $\phi'(\overline{x})$.

Следовательно:

$$x^{(n)} - x^{(n-1)} = \phi(x^{(n-1)}) - \phi(x^{(n-2)}) = \phi'(\overline{\xi^{(n)}})(x^{(n-1)} - x^{(n-2)})$$

где: $\overline{\xi^{(n)}} \in [x^{(n-1)}, x^{(n-2)}].$

Тогда:

$$\overline{\alpha^{(n)}} = \frac{x^{(n)} - x^{(n-1)}}{x^{(n-1)} - x^{(n-2)}} = \phi'(\overline{\xi^{(n)}}) \approx \phi'(\overline{x})$$

Таким образом: можно положить $\alpha^{(n)} \approx \overline{\alpha^{(n)}}$.

$$|x^{(n)} - x^{(n-1)}| < \left| \frac{1 - \overline{\alpha^{(n)}}}{\overline{\alpha^{(n)}}} \right| \varepsilon$$

2.5.4 Приведение к виду, удобного для итераций.

Теорема 2.4: Приведение к виду, удобного для итераций

Предположим, что производная f'(x) на отрезке [a,b] непрерывна и положительна. Тогда существуют постоянные m и M такие, что $0 < m \le f'(x) \le M$, $x \in [a,b]$.

Найдем такое α , что $|\phi^{'}(x)| \leq q < 1$, причем значение q - минимально.

$$\alpha_{\rm opt} = \frac{2}{m+M}$$

Доказательство. Т.к. $m \leq \phi'(x) \leq M$, то:

$$1 - \alpha M \le \phi'(x) \le 1 - \alpha m$$

В соотношении:

$$|\phi'(x) \le q|$$

Величина q должна быть минимальна.

Следовательно:

$$|\phi'(x)| \le \max_{\alpha} |\{|1 - \alpha M|, |1 - \alpha m|\}$$

Получаем:

$$1 - \alpha m = -1 + \alpha M$$

Отсюда:

$$\alpha_{\rm opt} = \frac{2}{m+M}$$

2.6 Метод Ньютона решения нелинейных уравнений. Вывод итерационной формулы метода Ньютона.

Расчетную формулу метода можно получить, используя различные подходы.

Рис. 4: Метод касательных

Определение 2.14: Метод касательных

Шаги алгоритма:

- Пусть $x^{(0)} \in [a,b]$ начальное приближение к корню \overline{x} .
- Выбираем точку $M(x^{(0)}, f(x^{(0)}))$.
- Строим через M касательную к графику f(x).
- Пересечение с осью Ox следующее приближение $x^{(1)}$.

Продолжая этот процесс далее, получим последовательность $x^{(0)}, x^{(1)}, \ldots, x^{(n)}, \ldots$ приближений к корню \overline{x} .

Уравнение касательной, проведенной к графику функции y=f(x) в точке $(x^{(n)},f(x^{(n)}))$, имеет вид:

$$y = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)})$$

Полагая в равенстве y = 0 и $f'(x^{(n)}) \neq 0$, получаем:

$$0 = f(x^{(n)}) + f'(x^{(n)})(x^{(n+1)} - x^{(n)})$$

Расчетная формула:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}, n \ge 0$$

С более общих позиций метод Ньютона можно рассматривать как итерационный метод, использующий специальную линеаризацию задачи.

Определение 2.15: Метод линеаризации

Пусть приближение $x^{(n)}$ уже получено. Представим функцию в окрестности точки $x^{(n)}$ по формуле Тейлора:

$$f(x) = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) + \frac{f''(\xi)}{2}(x - x^{(n)})^{2}$$

где: $\xi \in [x, x^{(n)}]$

Заменяя в уравнении f(x) = 0 функцию f(x), получаем:

$$f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) = 0$$

Принимая решение уравнения за новое приближение $x^{(n+1)}$, приходим к формуле:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

В качестве начального приближения можно выбрать **не любую** точку из [a,b]. Иначе: касательная может пересечь Ox вне интервала.

Теорема 2.5: Критерий выбора начального приближения

Пусть $f(x) \in C^2[a,b]$ и f'(x) и f''(x) - знакопостоянны.

Тогда итерационная последовательность метода Ньютона сходится, если в качестве $x^{(0)}$ выбрать точку такую, что:

$$f(x^{(0)})f''(x^{(0)}) > 0$$

2.7 Априорная погрешность метода Ньютона.

Теорема 2.6: Об априорной погрешности

Пусть $f(x) \in C^2[a,b]$ - отрезок локализации и \overline{x} - простой корень. Тогда сущствует некоторая σ -окрестность: $(\overline{x} - \sigma, \overline{x} + \sigma)$: $\forall x^{(0)} \in (\overline{x} - \sigma, \overline{x} + \sigma)$, итерационная последовательность не выходит из этой окрестности и справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le C|x^{(n)} - \overline{x}|^2, n \ge 0$$

где: $C = \sigma^{-1}$.

Доказательство. Т.к. $f \in C^2[a,b]$, то:

$$\exists \alpha, \beta > 0: \begin{cases} 0 < \alpha \le |f'(x)| \\ |f''(x)| < \beta \end{cases}$$

Тогда:

1.
$$0 = f(x^{(n)}) + f'(x^{(n)})(x^{(n+1)} - x^{(n)})$$

2.
$$f(x) = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) + \frac{f''(\xi)}{2}(x - x^{(n)})^2$$

Подставим во второе уравнение $x = \overline{x}$: $f(\overline{x}) = 0$

$$0 = f(x^{(n)}) + f'(x^{(n)})(\overline{x} - x^{(n)}) + \frac{f''(\xi)}{2}(\overline{x} - x^{(n)})$$

Вычтем из перовго уравнения второе:

$$0 = f'(x^{(n)})(\overline{x} - x^{(n)} - x^{(n+1)} + x^{(n)}) + \frac{f''(\xi)}{2}(\overline{x} - x^{(n)})^{2}$$
$$f'(x^{(n)})(x^{(n+1)} - \overline{x}) = \frac{f''(\xi)}{2}(x^{(n)} - \overline{x})^{2}$$
$$\alpha |x^{(n+1)} - \overline{x}| \le \frac{\beta}{2}|x^{(n)} - \overline{x}|^{2}$$
$$|x^{(n+1)} - \overline{x}| \le \frac{\beta}{2\alpha}|x^{(n)} - \overline{x}|^{2}$$

Возьмем за $\sigma = \frac{2\alpha}{\beta}$:

$$|x^{(n+1)} - \overline{x}| \le \sigma^{-1}|x^{(n)} - \overline{x}|^2$$

Следстиве 2.2: Априорной погрешности

Априорная оценка погрешности для метода Ньютона:

$$|x^{(n)} - \overline{x}| \le \sigma q^{2^n}, \ n \ge 0$$

где:
$$q = \sigma^{-1} |x^{(0)} - \overline{x}|$$
.

Доказательство. По индукции.

2.8 Апостериорная оценка погрешности (критерий окончания). Правило выбора начального приближения на отрезке локализации корня, гарантирующего сходимость метода.

Теорема 2.7: Об апостериорная погрешность

Пусть $x^{(n)} \in (\overline{x} - \frac{\sigma}{2}, \overline{x} + \frac{\sigma}{2})$, тогда: в условиях теоремы об априорной погрешности:

$$|x^{(n)} - \overline{x}| \le |x^{(n)} - x^{(n-1)}|$$

Доказательство.

$$2|x^{(n)} - \overline{x}| \le 2\sigma^{-1}|x^{(n-1)} - \overline{x}|^{2}$$

$$2 \cdot \sigma^{-1}|x^{(n-1)} - \overline{x}| \cdot |x^{(n-1)} - \overline{x}| \le |x^{(n-1)} - \overline{x}|$$

$$|x^{(n-1)} - x^{(n)} + x^{(n)} - \overline{x}| \le |x^{(n-1)} - x^{(n)}| + |x^{(n)} - \overline{x}|$$

$$|x^{(n)} - \overline{x}| \le |x^{(n-1)} - x^{(n)}|$$

Следстиве 2.3: Критерий остановки

$$|x^{(n)} - x^{(n-1)}| < \varepsilon$$

где: ε - заданная точность.

2.9 Модификации метода Ньютона. Упрощенный метод Ньютона. Метод хорд.

2.10 Модификации метода Ньютона. Метод секущих. Скорость сходимости метода секущих.

3 Интерполяция

4 Дифференцирование и интегрирование

5 Список вопросов

- 1. Предмет вычислительной математики. Метод и задачи вычислительной математики в терминах функционального анализа.
- 2. Источники и классификация погрешностей результатов численного решения задач. Приближенные числа. Абсолютная и относительная погрешности. Правила записи приближенных чисел.
- 3. Погрешности арифметических операций над приближенными числами. Погрешность функции одной и многих переменных.
- 4. Корректность вычислительной задачи. Примеры корректных и некорректных задач.
- 5. Обусловленность вычислительной задачи. Примеры хорошо и плохо обусловленных задач.
- 6. Вычислительные алгоритмы. Корректность и обусловленность вычислительных алгоритмов.
- 7. Постановка задачи решения нелинейных уравнений. Основные этапы решения задачи.
- 8. Скорость сходимости итерационных методов уточнения решения нелинейного уравнения.
- 9. Обусловленность задачи решения нелинейных уравнений. Понятие об интервале неопределенности. Правило Гарвика.
- 10. Метод бисекции решения нелинейных уравнений. Скорость сходимости. Критерий окончания.
- 11. Метод Ньютона решения нелинейных уравнений. Вывод итерационной формулы метода Ньютона.
- 12. Априорная оценка погрешности метода Ньютона (теорема о скорости сходимости).
- 13. Апостериорная оценка погрешности (критерий окончания). Правило выбора начального приближения на отрезке локализации корня, гарантирующего сходимость метода.
- 14. Модификации метода Ньютона. Упрощенный метод Ньютона. Метод хорд.
- 15. Модификации метода Ньютона. Метод секущих. Скорость сходимости метода секущих.
- 16. Решение систем линейных алгебраических уравнений. Постановка задачи.
- 17. Решение систем линейных алгебраических уравнений. Определение понятия нормы вектора. Абсолютная и относительная погрешности вектора.

- 18. Решение систем линейных алгебраических уравнений. Определение понятия нормы матрицы, подчиненной норме вектора. Геометрическая интерпретация нормы матрицы.
- 19. Обусловленность задачи решения системы линейных алгебраических уравнений для приближенно заданной правой части. Количественная мера обусловленности системы линейных алгебраических уравнений. Геометрическая интерпретация числа обусловленности.
- 20. Обусловленность задачи решения системы линейных алгебраических уравнений для приближенно заданных матрицы и правой части.
- 21. Метод Гаусса решения систем линейных алгебраических уравнений. Схема единственного деления. LU разложение. Свойства метода.
- 22. Метод Гаусса решения систем линейных алгебраических уравнений. Схемы частичного и полного выбора ведущих элементов. Свойства методов.
- 23. Применение метода Гаусса к решению задач линейной алгебры. Вычисление решений системы уравнений с несколькими правыми частями.
- 24. Применение метода Гаусса к решению задач линейной алгебры. Вычисление обратной матрицы.
- 25. Применение метода Гаусса к решению задач линейной алгебры. Вычисление выражений вида v = CWw. Вычисление определителя матрицы.
- 26. Метод Холецкого решения систем линейных алгебраических уравнений с симметричной положительно определенной матрицей. Свойства метода.
- 27. Метод прогонки решения систем линейных алгебраических уравнений с трехдиагональными матрицами. Свойства метода.
- 28. Постановка задачи приближения функций. Приближение функций обобщенными многочленами.
- 29. Приближение методом интерполяции. Интерполяция обобщенными многочленами.
- 30. Понятия линейно-независимой системы функций на заданном множестве точек. Теорема о существовании единственного решения задачи интерполяции.
- 31. Понятия ортогональной системы функций на заданном множестве точек. Утверждение о существовании единственного решения задачи интерполяции с помощью ортогональной системы функций. Решение задачи интерполяции для этого случая.

- 32. Полиномиальная интерполяция. Интерполяционный многочлен в форме Лагранжа.
- 33. Погрешность полиномиальной интерполяции.
- 34. Интерполяционный многочлен с кратными узлами. Погрешность интерполяции с кратными узлами.
- 35. Минимизация оценки погрешности интерполяции. Многочлены Чебышева и их свойства. Применение для решения задачи минимизации погрешности.
- 36. Интерполяционная формула Ньютона для неравных промежутков. Разделенные разности и их свойства.
- 37. Вывод формулы Ньютона для неравных промежутков с помощью разделенных разностей.
- 38. Интерполяционная формула Ньютона для равных промежутков. Конечные разности и их связь с разделенными разностями.
- 39. Вывод формул Ньютона для интерполирования вперед и назад.
- 40. Проблемы глобальной полиномиальной интерполяции. Интерполяция сплайнами. Определение сплайна. Интерполяционный сплайн.
- 41. Интерполяция сплайнами. Построение локального кубического интерполяционного сплайна.
- 42. Интерполяция сплайнами. Глобальные способы построения кубического интерполяционного сплайна.
- 43. Простейшие формулы численного дифференцирования. Вычисление первой производной. Погрешность формул.
- 44. Простейшие формулы численного дифференцирования. Вычисление второй производной. Погрешность формул.
- 45. Общий подход к выводу формул численного дифференцирования с помощью интерполяционного многочлена.
- 46. Обусловленность формул численного дифференцирования.
- 47. Численное интегрирование. Простейшие квадратурные формулы. Формула прямоугольников. Погрешность формулы.
- 48. Численное интегрирование. Простейшие квадратурные формулы. Формула трапеций. Погрешность формулы.
- 49. Численное интегрирование. Простейшие квадратурные формулы. Формула Симпсона. Погрешность формулы.
- 50. Апостериорные оценки погрешности квадратурных формул. Правило Рунге.