Тестовые вопросы по Дискретной математике

1. Дано универсальное множество $U = \{1,2,3,4,5,6,7\}$ и в нем подмножества $A = \{x \mid x < 1\}$ 5}, $B = \{2,4,5,6\}$, $C = \{1,3,5,6\}$. Найти $A \cup B$ (Указать правильные варианты ответов). a. $\{1,2,2,3,4,4,5,6\}$ b. {1,2,3,4,5,6} c. $\{x | x < 7, x \in U \}$ d. {1,3} **e.** {3,4,2,5,1,6} 2. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x|x<4\}$, $B=\{2,4,5,7\}, C=\{1,2,5,6\}.$ Найти $C \cup A$ (Указать правильные варианты ответов). a. $\{1,1,2,2,3,5,6\}$ b. {1,2,3,5,6} c. $\{x | x < 7\}$ d. {3,2,6,1,5} e. {1,2} 3. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x\}$ x>4, $B=\{3,5,7\}$, $C=\{1,2,4,6\}$. Найти $C \cup B$ (Указать правильные варианты ответов). a. *U* b. {3,5,7} c. Ø d. {3,5,7,1,2,4,6} e. $\{1,2,3,4,5,6,7\}$ Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x\}$ 4. x < 5, $B = \{2,4,5,6\}$, $C = \{1,3,5,6\}$. Найти $C \cap B$ (Указать правильные варианты ответов). a. {1,2,3,4,5,5,6,6} b. {6,5} c. $\{1,2,3,4,5,6\}$ d. $\{x | x < 7\}$ e. {5,6} Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x\}$ 5. x<4}, $B=\{2,4,5,7\}$, $C=\{1,2,5,6\}$. Найти $A\cap B$ (Указать правильные варианты ответов). a. $\{1,2,3,4,5,7\}$ b. {1,2,2,3,4,5,7}

c. {2}d. {5,6}e. {x| x=2}

6. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x\mid x>4\}, B=\{3,5,7\}, C=\{1,2,4,6\}.$

Найти $B \cap A$ (Указать правильные варианты ответов).

- a. $\{7,5\}$
- b. {3,5,6,7}
- c. $\{5,7,5,7\}$
- d. {5,7}
- e. $\{x \mid 2 < x < 8\}$
- 7. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x\mid x<5\}, B=\{2,4,5,6\}, C=\{1,3,5,6\}.$

Найти декартово (прямое) произведение $D \times C$, где D = A - B (Указать правильные варианты ответов).

- a. {1,3,5,6}
- b. $\{(1,1), (3,1), (1,3), (3,3), (1,5), (3,5), (1,6), (3,6)\}$
- c. $\{(1,1), (1,3), (3,3), (1,5), (3,5), (1,6), (3,6)\}$
- d. $\{(1,3), (1,5), (3,5), (1,6), (3,6)\}$
- e. $\{(3,3), (1,5), (3,5), (1,6), (3,6), (1,1), (3,1), (1,3)\}$
- f. {1,1,3,3,5,6}
- 8. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x\mid x<4\}, B=\{2,4,5,7\}, C=\{1,2,5,6\}.$

Найти декартово (прямое) произведение $D \times A$, где D = C - B (Указать правильные варианты ответов).

- a. {1,2,3,6}
- b. $\{(1,1), (6,1), (1,2), (6,2), (1,3), (6,3)\}$
- c. $\{(1,1), (1,6), (1,2), (2,6), (1,3), (3,6)\}$
- d. {1}
- e. $\{(1,1), (1,2), (1,3), (6,1), (6,2), (6,3)\}$
- f. $\{(6,3), (1,1), (1,3), (6,1), (6,2), (1,2)\}$
- 9. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x\mid x>4\}$, $B=\{3,5,7\}$, $C=\{1,2,4,6\}$.

Найти декартово (прямое) произведение $B \times D$, где D = C - A (Указать правильные варианты ответов).

Варианты ответов:

- **a.** {1,2,3,4,5,7}
- **b.** {(3,1),(5,1),(7,1),(3,2),(5,2),(7,2),(3,4),(5,4),(7,4)}
- **c.** U- {4}
- **d.** $\{(1,3),(2,3),(3,4),(1,5),(2,5),(4,5),(1,7),(2,7),(4,7)\}$
- **e.** $\{(3,1),(3,2),(3,4),(5,1),(5,2),(5,4),(7,1),(7,2),(7,4)\}$
- f. \emptyset
- 10. Если А высказывание "9 делится на 3", а В –"8 делится на 3". Определить какое из высказываний истинно:
- 1) $A \rightarrow B$
- $2) B \rightarrow A$
- 3) $A \leftrightarrow B$
- 4) $\neg A \leftrightarrow \neg B$
- $5) \neg B \rightarrow \neg A$

- Если А высказывание "9 делится на 3", а В "8 делится на 3". Определить какое 11. из высказываний ложно:
 - 1) $A \leftrightarrow B$
 - 2) $B \rightarrow A$
 - 3) $\neg A \rightarrow B$
 - 4) $\neg B \rightarrow A$
 - 5) $A \leftrightarrow \neg B$
- 12. Какое из следующих высказываний ложно:
 - а. Если 11 делится на 6, то 11 делится на 3,
 - b. Если 15 делится на 6, то 15 делится на 3
 - с. Если 15 делится на 3, то 15 делится на 6,
 - d. 12 делится на 6 тогда и только тогда, когда 12 делится на 3,
 - е. 11 делится на 6 тогда и только тогда, когда 11 делится на 3.
- 13. Какая из этих формул является противоречием
 - a. $(P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P)$;
 - b. $((P \rightarrow Q) \rightarrow P) \rightarrow Q$;
 - c. $((I \rightarrow Q) \rightarrow P) \rightarrow Q$; c. $(P \land (Q \lor \neg P)) \land ((\neg Q \rightarrow P) \lor Q)$;
 - d. $P \wedge (Q \wedge (\neg P \vee \neg Q));$
 - e. $((P \lor \neg Q) \to Q) \land (\neg P \lor Q)$
- Какое из следующих высказываний ложно:
- 1) $(\forall x)(\exists y)(x+y=7)$;
- 2) $(\exists y)(\forall x)(x+y=7)$;
- 3) $(\exists x)(\exists y)(x + y = 7)$;
- 4) $((\forall x)(\forall y)(x+y=3)) \rightarrow (3=4);$
- 5) $(\exists b)(\forall a)(\exists x)(x^2 + ax + b = 0)$.
- Если А высказывание "9 делится на 3", а В "8 делится на 3". Определить какое 15. из высказываний истинно:
 - 1) $\neg B \rightarrow \neg A$
 - 2) $A \leftrightarrow B$
 - $3) \neg A \rightarrow \neg B$
 - 4) $\neg A \leftrightarrow \neg B$
 - 5) $A \rightarrow B$
- 16. Какое из следующих высказываний ложно:
 - а. Если 12 делится на 6, то 12 делится на 3,
 - b. Если 11 делится на 6, то 11 делится на 3,
 - с. Если 15 делится на 6, то 15 делится на 3,
 - d. 12 делится на 6 тогда и только тогда, когда 12 делится на 3,
 - е. 15 делится на 6 тогда и только тогда, когда 15 делится на 3.

- Какая из этих формул является тавтологией 17.
 - a. $((P \lor \neg Q) \to Q) \land (\neg P \lor Q)$;
 - b. $((P \rightarrow Q) \rightarrow P) \rightarrow Q$;
 - v. $((P \to Q) \to P) \to Q$; c. $(P \land (Q \lor \neg P)) \land ((\neg Q \to P) \lor Q)$;
 - d. $P \wedge (Q \wedge (\neg P \vee \neg Q));$
 - e. $((P \land \neg Q) \rightarrow Q) \rightarrow (P \rightarrow Q)$
- Какое из следующих высказываний истинно:
- 1) $(\exists y)(\forall x)(x+y=7);$
- 2) $(\exists x)(\exists y)(x + y = 7)$;
- 3) $(\forall x)(\forall y)(x + y = 7)$;
- 4) $(\forall b)(\exists a)(\forall x)(x^2 + ax + b > 0);$
- 5) $(\exists a)(\forall b)(\exists x)(x^2 + ax + b = 0).$
- 19. Какое из следующих высказываний ложно:
 - а. Если 12 делится на 6, то 12 делится на 3,
 - b. Если 11 делится на 6, то 11 делится на 3,
 - с. Если 15 делится на 6, то 15 делится на 3,
 - d. Если 15 делится на 3, то 15 делится на 6,
 - е. 12 делится на 6 тогда и только тогда, когда 12 делится на 3.
- 20. Какая из этих формул является тавтологией
- a. $(P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P)$;
- b. $((P \rightarrow Q) \rightarrow P) \rightarrow Q$; c. $(P \land (Q \lor \neg P)) \land ((\neg Q \rightarrow P) \lor Q)$; d. $P \land (Q \land (\neg P \lor \neg Q))$;
- e. $((P \vee \neg Q) \rightarrow Q) \wedge (\neg P \vee Q)$
- Граф Свадан следующей матрицей смежности 21.

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Какие из вершин имеют наибольшую степень, нумерация вершин начинается с 1

- a. 1
- b. 2
- c. 3
- d. 5
- e. 6

22. Граф G задан следующей матрицей смежности

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Какая из вершин имеет наименьшую степень, нумерация вершин начинается с 1

- a. 1
- b. 5
- c. 2
- d. 4
- e. 6

23. Граф *G*задан следующей матрицей смежности:

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Какая из вершин имеет наименьшую степень, нумерация вершин начинается с 1

- a. 1
- b. 5
- c. 2
- d. 4
- e. 6

24. Граф *G*задан следующей матрицей смежности:

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Какие из вершин имеют наибольшую степень, нумерация вершин начинается с 1

- a. 1
- b. 2
- c. 3
- d. 4
- e. 6

25. Граф Gзадан следующей матрицей смежности:

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

a. 1 b. 2 c. 3 d. 4 e. 5 26. Граф Gзадан следующей матрицей смежности: $\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$ Какие из вершин имеют наибольшую степень, нумерация вершин начинается с 1 a. 1 b. 2 c. 3 d. 4 e. 6 27. Сколько существует неизоморфных деревьев с 6 вершинами? Ответ6 Сколько существует неизоморфных связных графов с 5 вершинами и 4 28. ребрами? Ответ3 29. Сколько существует неизоморфных связных графов с 5 вершинами и 5 ребрами? Ответ5 30. Выберите условия, каждое из которых является необходимым для того, чтобы связный граф с пвершинами был планарным (т число ребер): a. $m \le 3n - 6$ b. m < 3n - 6с. m = 8 при n = 6d. *m*< 19 при *n*= 8 e. $m \leq 3n$ Выберите условия, каждое из которых является достаточным для того, чтобы 31. граф с пвершинами был планарным (т- число ребер):

b. граф не содержит подграфа, гомеоморфного графу K_{33} , и подграфа,

a. $m \le 3n - 6$

e. m = 5 при n = 7

гомеоморфного графу K_{s}

d. граф не содержит подграфа, изоморфного графу K_{33}

с. m = n-1, и граф связный

Какая из вершин имеет наименьшую степень, нумерация вершин начинается с 1

- 32. Выберите условия, каждое из которых является достаточным для того, чтобы граф с *п*вершинами не был планарным (*m* число ребер):
 - а. граф содержит подграф, изоморфный графу K_{ς}
 - b. m = 10 при n = 20
 - с. граф содержит подграф, гомеоморфный графу $K_{_{6}}$
 - d. m > 3n (+2 балла)
 - e. m = 10 при n = 5
- 33. Пусть граф G с nвершинами является деревом. Тогда: (Выберите для G верные утверждения)
 - а. число ребер m = n 1
 - b. граф связный
 - с. граф не содержит циклов
 - d. граф планарный
 - е. есть вершина степени больше 1
- 34. Пусть граф G с nвершинами является несвязным. Тогда: (Выберите для G верные утверждения.)
 - а. число компонент связности всегда равно 2
 - b. число компонент связности может быть равно 2
 - с. степень каждой вершины не превосходит *n* 2
 - d. число компонент связности больше 1
 - е. граф не может быть двудольным
- 35. Пусть граф *G*с *п*вершинами является двудольным. Тогда: (Выберите для *G* верные утверждения.)
 - а. в нем нет циклов четной длины
 - b. в нем могут быть циклы четной длины
 - с. в нем все циклы имеют четную длину
 - d. граф связный
 - е. граф планарный
- 36. Сколько граней у плоского графа:

Ответ4

37. Сколько граней у плоского графа:

Ответ5

38. Сколько граней у плоского графа:

Ответ5

39. Сколько граней у плоского графа:

Ответ8

40. Сколько граней у плоского графа:

Ответ6

41. Сколько граней у плоского графа:

Ответ6

42 Чему равно число размещений с повторениями из 5 по 2 U(5,2)

a.	2
	10
	20
	25 120
C.	120
43 Че	му равно число размещений с повторениями из 10 по 3 U(10,3)
a.	6
	30
c.	60
d.	100
e.	1000
44 Ye	му равно число размещений без повторений из 5 по 2 А(5,2)
а	2
	5
	10
	20
e.	120
15 II.	
43 46	му равно число размещений без повторений из 8 по 2 А(8,2)
a.	2
b.	8
	56
	64
e.	256
<mark>46 Че</mark>	му равно число перестановок из 5 предметов Р(5)
a.	5
	10
c.	
d.	120
e.	500
47 Ye	му равно число перестановок из 4 предметов Р(4)
a.	4
	16
c.	24
	96
e.	400
48 Че	му равно число сочетаний из 4 по 2 C_4^2
я	2
	4
	6
	8
u.	

- e. 24
- 49 Чему равно число сочетаний из 5 по 3 C_5^3
 - a. 3
 - b. 10
 - c. 15
 - d. 125
 - e. 273
- 50 Чему равно число сочетаний из 10 по 2 C_{10}^2
 - a. 2
 - b. 10
 - c. 45
 - d. 100
 - e. 1024
- 51 Как записывается СДН Φ для функции, определенной следующей таблицей истинности

X	y	f(x,y)
0	0	1
0	1	0
1	0	1
1	1	1

- a. $\bar{x}\bar{y} \vee x\bar{y} \vee xy$
- b. $\bar{x} \vee y$
- c. $\bar{x}\bar{y}\oplus\bar{x}y\oplus xy$
- d. $(\bar{x} \lor \bar{y}) \land (x \lor \bar{y}) \land (x \lor y)$
- e. $\bar{x}\bar{y} \vee \bar{x}\bar{y} \vee xy$
- 52 Как записывается СКНФ для функции, определенной следующей таблицей истинности

X	y	f(x,y)
0	0	1
0	1	0
1	0	1
1	1	1

- a. $\bar{x}\bar{y} \vee x\bar{y} \vee xy$
- b. $x \vee \bar{y}$
- c. $\bar{x}\bar{y}\oplus\bar{x}y\oplus xy$
- d. $(x \lor y) \land (\bar{x} \lor y)$
- e. $\bar{x}\bar{y} \vee \bar{x}\bar{y} \vee xy$
- 53 Как записывается полином Жегалкина для функции, определенной следующей таблицей истинности

X	у	f(x,y)
0	0	1
0	1	0
1	0	1
1	1	1

- a. $\bar{x}\bar{y} \vee x\bar{y} \vee xy$
- b. $\bar{x} \vee y$
- c. $\bar{x}\bar{y}\oplus\bar{x}y$
- d. $(x \lor y) \land (\bar{x} \lor y)$
- e. $xy \oplus y \oplus 1$

54Как записывается СДНФ для функции, определенной следующей таблицей истинности

X	y	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- a. $\bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z \vee \bar{x}yz \vee xy\bar{z} \vee xyz$
- b. $\bar{x}\bar{y}z \vee \bar{x}yz \vee xy\bar{z} \vee xyz$
- c. $\bar{x}\bar{y}\bar{z}\oplus\bar{x}\bar{y}z\oplus\bar{x}yz\oplus xy\bar{z}\oplus xyz$
- d. $(\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor y \lor \bar{z})$
- e. $(\bar{x} \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor \bar{z}) \land (x \lor \bar{y} \lor z)$

55Как записывается СКНФ для функции, определенной следующей таблицей истинности

истинности				
У	Z	f(x,y,z)		
0	0	1		
0	1	1		
1	0	0		
1	1	1		
0	0	0		
0	1	0		
1	0	1		
1	1	1		
	y 0 0 1 1 0	y z 0 0 1 1 1 0 1 1 0 0 0 1		

- a. $\bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z \vee \bar{x}yz \vee xy\bar{z} \vee xyz$
- b. $\bar{x}\bar{y}z \vee \bar{x}yz \vee xy\bar{z} \vee xyz$
- c. $\bar{x}\bar{y}\bar{z}\oplus\bar{x}\bar{y}z\oplus\bar{x}yz\oplus xy\bar{z}\oplus xyz$
- d. $(\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor y \lor \bar{z})$
- e. $(\bar{x} \lor y \lor z) \land (\bar{x} \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z)$

56 Как записывается полином Жегалкина для функции, определенной следующей таблицей истинности

X	y	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- a. $\bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z \vee \bar{x}yz \vee xy\bar{z} \vee xyz$
- b. $\bar{x}\bar{y}z \vee \bar{x}yz \vee xy\bar{z} \vee xyz$
- c. $xyz \oplus xz \oplus yz$
- d. $(\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor y \lor \bar{z})$
- e. $(\bar{x} \lor y \lor \bar{z}) \oplus (x \lor \bar{y} \lor \bar{z}) \oplus (x \lor \bar{y} \lor z)$

57Как записывается СКНФ для функции, определенной следующей таблицей истинности

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- a. $(\bar{x} \lor y \lor \bar{z}) \land (x \lor y \lor \bar{z}) \land (x \lor y \lor z)$
- b. $\bar{x}\bar{y}z \vee \bar{x}yz \vee xy\bar{z} \vee xyz$
- c. $\bar{x}y\bar{z}\oplus xy\bar{z}$
- d. $(x \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{y} \lor z)$
- e. $\bar{x}y\bar{z} \vee xy\bar{z}$

58. Выберите верные утверждения для функции f(x,y,z)

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

а. переменная х – существенная

- b. переменная x фиктивная
- с. переменная у существенная
- d. переменная у фиктивная
- е. переменная z существенная
- 59. Выберите верные утверждения для функции f(x,y,z)

X	y	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- а. переменная х существенная
- b. переменная у существенная
- с. переменная у фиктивная
- d. переменная z существенная
- е. переменная z фиктивная
- 60. Выберите верные утверждения для функции f(x,y,z)

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- а. переменная х существенная
- b. переменная x фиктивная
- с. переменная у существенная
- d. переменная у фиктивная
- е. переменная z существенная
- 61. Выберите верные утверждения для функции f(x,y,z)

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- а. переменная х существенная
- b. переменная x фиктивная
- с. переменная у существенная
 d. переменная у фиктивная
- е. переменная z существенная