M108 生化共筆

章節: CH12	
教師:鄭邑荃 老師	日期:2014/4/3
撰稿組:陳昱宏 葉東晏 高翊豪 楊聿寬	審稿組:

一、代謝能夠被分成兩個種類:

1. 分解代謝 (catabolism): 較複雜的物質被分解為較小的物質

2. 合成代謝 (metabolism):合成較複雜有機分子

*合成反應淨反應多為吸能反應(消耗 ATP),分解反應為放能反應(產生 ATP)

二、生物可由能量製造方式分為:

- 1. 無機自營生物:使用無機物作爲電子來源利用無機碳源製造生物量。
- 2. 化能自營生物:利用化學能量固定無機碳源而製造生物量
- 3. 光能自營生物:使用光作爲能量來源,以無機物(水)作爲電子供體且利用有機物碳源。
- 4. 無機異營生物:使用無機物作爲電子來源利用有機物碳源製造生物量。
- 化能異營生物:利用化學能量,利用有機物碳源。光能異養生物:使用光作爲 能量來源,利用有機物碳源。
- 6. 混合營養生物(Mixotroph):同時進行無機營養與有機營養的生物。

三、不同微生物可在含氧量不同的環境生存:

- 1. 好氧生物:在有氧存在的環境下生長的生物。
- 2. 專性需氧生物:在10~20%有氧環境下生長的生物。
- 3. 兼性需氧生物:在無氧20%有氧環境下生長的生物。
- 4. 微需氧微生物:需要在 2~10%有氧環境下生長的生物。
- 5. 納需氧微生物:需要在2%以下有氧環境下生長的生物。
- 6. 厭氧生物: 不需要氧氣生長的生物。
- 7. 專性厭氧生物:需要完全缺氧環境維持生活。
- 8. 兼性厭氧生物:在有氧的環境中進行有氧呼吸,在缺氧的環境下,部份會進行 發酵,部份則進行無氧呼吸。

9. 耐氧厭氧生物:可以在有氧氣的環境下生存,但牠們不會使 用氧氣作為最 終電子受容體

四、生物體內代謝(以糖解為例):

Step1:多糖被分解為單糖

Step2:葡萄糖磷酸化為 6-磷酸葡萄糖,在磷酸己糖異構酶的催化下生成 6-磷酸果糖,接著藉由 ATP 磷酸化生成 1,6-二磷酸果糖,在醛縮酶的参與下分解得 3-磷酸甘油醛, 兩分子 3-磷酸甘油醛會被 NAD[†]和 3-磷酸甘油醛去氫酶

(GAPDH)的氧化下生成 1,3-二磷酸甘油酸, 由磷酸甘油酸激酶催化轉變為 3-磷酸甘油酸

(Glyceraldehyde-3-phosphate)。磷酸甘油酸變位酶推動 3-磷酸甘油酸生成 2-磷酸甘油酸,成為磷酸烯醇式丙酮酸,在丙酮酸激酶的作用下磷酸烯醇式丙酮酸生成一分子 ATP 和丙酮酸

(Pyruvate)。(詳細反應式參酌洪錦堂老師 ppt) Step3:丙酮酸走發酵作用(fermentation reactions) 或氧化作用(oxidative metabolism)其中之

丙酮酸&檸檬酸循環:

Pyruvate 氧化成兩個乙烯輔酶 A,經檸檬酸循環可產生 ATP, NADH, FADH₂等高能形式分子,其總反應式為:

Acetyl-CoA + 3 NAD $^+$ + FAD + GDP + P_i + 2 H₂O \rightarrow

 $CoA-SH + 3 NADH + 3 H^{+} + FADH_2 +$ $GTP + 2 CO_2$

而還原態的 NADH, $FADH_2$ 等高能形式 分子可再經由電子傳遞鍊產生 ATP 並形成 NAD $^+$ 與 FAD 等氧化態分子。

五、Biochemical Reaction Types

- 1. 五種自然界常見的生化反應:
- (1)親核取代 (Nucleophilic Substitutions)
- (2)親核加成 (Nucleophilic Additions)
- (3) 羰基縮合 (Carbonyl Condensations)
- (4) 脫去反應 (Eliminations)
- (5)氧化還原 (Oxidations and Reductions)

(1)親核取代 (Nucleophilic Substitutions)

*自然界中有許多的化學分子包含羰基(carbonyl group,C=O),使得分子可做為nucleophiles(縮寫成 "Nu:")和 electrophiles

*S_N1、S_N2機轉請參閱有機與生化課本

(5) 氧化還原 (Oxidations and Reductions)

- ①電子由對電子親和力較低的物質流到較高的物質。
- ②Reductant(還原劑)為 electron donor, oxidant(氧化劑)為 electron acceptor(重要)

reductant electron-donating
$$Fe^{2+} \Longrightarrow Fe^{3+} + e^{-}$$
oxidant electron-accepting $Cu^{2+} + e^{-} \Longrightarrow Cu^{+}$

$$Fe^{2+} + Cu^{2+} \Longrightarrow Fe^{3+} + Cu^{+}$$

- ③生物體中大多氧化還原反應是一次轉移兩個電子。
- ④為了電荷平衡,通常質子轉移就會伴隨電子轉移。
- ⑤電負度:H<C<S<N<O,因此接有越多H的 carbon 處於較 reduced 的狀態;相對地,接著O的 carbon 是比較 oxidized 的狀態。
- ⑥生物體內的 electron transfer 有四種
- (I)電子直接轉移:conjugate redox pair。E.g. $Fe^{2+} + Cu^{2+} \rightleftharpoons Fe^{3+} + Cu^{+}$
- (\coprod)Hydrogen atom (H) : $AH_2 + B \rightleftharpoons A + BH_2 \circ (AH_2 \text{ as hydrogen/electron})$

donor)

- (Ⅲ) Hydride ion (:H˙): 帶有兩個電子的氫陰離子轉移。E.g. NAD-linked dehydrogenase
- (Ⅳ)與O結合:氧氣作為電子接受者與氧化劑(oxidant)。

E.g.
$$R - CH_3 + \frac{1}{2}O_2 \longrightarrow R - CH_2 - OH$$

六、氧化還原方程式與 $\Delta E \setminus \Delta G$

- 1. 可使用的電能就是自由能,計算公式為: $\Delta G = V \times Q$ 或 $\Delta G = nFV$
- 2. E°:標準還原電位(standard reduction potential), 25℃, 1M 與

 $H^+ + e^- \rightarrow \frac{1}{2} H_2$ 電極連接。其值越大(more positive),表示對電子的親和力 越好,越傾向還原。

3. 考慮不同濃度時,代入Nernst Equation:

$$E = E^{\circ} + \frac{RT}{n\mathcal{F}} \ln \frac{[electron\ acceptor]}{[electron\ donor]}$$

n為電子轉移數,F為Faraday constant = 96480 J/V·mol,在298K(25°C)

時,
$$\frac{RT}{\mathcal{F}}=0.026V$$
。習慣上將 pH7, 25° C下的 E 寫作 E'°(生物體中的狀況)。

 $4.\Delta G = -nF\Delta E$ or $\Delta G^{\circ} = -nF\Delta E^{\circ}$, 因為反應往 E 較正的一方進行 , 因 此當 $\Delta E > 0$ (即 $\Delta G < 0$) 時,反應向右進行 。

E.g. $Acetaldehyde + NADH + H^+ \rightarrow ethanol + NAD^+$

Acetaldehyde +
$$2H^+ + 2e^- \rightarrow ethanol$$
 E'°= -0.197V

$$NAD^{+} + 2H^{+} + 2e^{-} \rightarrow NADH + H^{+}$$
 E'°= -0.320V

$$\Delta E^{\prime \circ} = -0.197V - (-0.320V) = 0.123V$$

 $\Delta G^{\circ} = -nF\Delta E^{\circ} = -2(96.5~kJ/V\cdot mol)(0.123V) = -23.7~kJ/mol$ 此為 25° C, pH 7, all concentration=1M 的 free-energy change。考慮不同 濃度下([acetaldehyde], [NADH]=1.00M,[ethanol], [NAD⁺]=0.100M)的 狀況時,則先個別求出 reductant 的 E:

$$\begin{split} E_{acetaldehyde} &= E^{\circ} + \frac{RT}{n\mathcal{F}} \ln \frac{[acetaldehyde]}{[ethanol]} = -0.197V + \frac{0.026V}{2} \ln \frac{1.00}{0.100} \\ &= -0.167V \end{split}$$

$$E_{NADH} = E^{\circ} + \frac{RT}{n\mathcal{F}} \ln \frac{[NAD^{+}]}{[NADH]} = -0.320V + \frac{0.026V}{2} \ln \frac{1.00}{0.100} = -0.350V$$

接著可由此計算ΔE、ΔG。

七、例子: coenzymes→NAD, NADP, FMN, FAD (補充)

1. Nicotinamide adenine dinucleotide (NAD)和 nicotinamide adenine dinucleotide phosphate (NADP)兩者都是可以當作 electron carrier 的 coenzyme,其中 NAD+/NADP+是 oxidized form, NADH/NADPH 為 reduced form。NAD+傾向做為 oxidant 形成 NADH, NADP 則傾向做為 reductant 形成 NADP+。

由圖(b)可以看到還原態的 NADH 在 340nm 左右有個吸收峰。

- 2. Flavin mononucleotide (FMN)靠著 flavin-dependent oxidases 利用 oxygen 做為電子傳遞鏈最終電子的 receptor。FMN 出現在 complex I(呼吸作用電子傳遞鏈中的一個 complex)中,flavin adenine dinucleotide (FAD)則出現在 complex II中。
- 3. NADH/NADPH,FMN/FAD四個的差異在於NADH/NADPH是兩個氫(雙電子)的置換,而 FMN/FAD可接受一次一個氫(單電子)的置換。

八、Some Bioenergetic Considerations(一些有關生物能量的思考)(老師說這個部分屬於承先啟後的,所以內容比較少,重要性較低)

大部分的生物能量是由還原態代謝物經一系列反應氧化而衍生,而氧氣(強氧化劑)通常作為最終的電子接受者。
 以葡萄糖的氧化為例:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 $\Delta G^{\circ\prime} = -2870 \text{ kJ/mol}$

$$C_6H_{12}O_6 + 10NAD^+ + 2FAD + 6H_2O \rightarrow 6CO_2 + 10NADH + 10H^+ + 2FADH_2$$

 $10NADH + 10H^+ + 2FADH_2 + 6O_2 \rightarrow 10NAD^+ + 2FAD + 12H_2O$

Net:
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

- *註:這些從 intermediate electron carriers 到氧氣間電子的轉移靠的是電子傳遞鏈 (ETC)。
- 2. 並非所有代謝的能量都來自於氧氣的氧化,有些厭氧微生物就會用其他物質 作為最終的電子接受者,以 Desulfovibrio(脫硫弧菌)來說,它就會用硫酸鹽當 作最終電子接受者。

$$SO_4^{2^-} + 8e^- + 8H^+ \rightarrow S^{2^-} + 4H_2O$$

3. 每單位脂質燃燒的熱量大於醣類,因此我們可以說脂質有更高的 caloric content,以葡萄糖和 palmitic acid 棕欖酸(十六烷酸)的燃燒為例:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 $\Delta G^{\circ\prime} = -3.74 \text{ kcal/g}$ $C_{16}H_{32}O_2 + 23O_2 \rightarrow 16CO_2 + 16H_2O$ $\Delta G^{\circ\prime} = -9.30 \text{ kcal/g}$

- 4. 在 reductive biosynthesis 中,主要的電子來源是 NADPH, nicotinamide adenine dinucleotide phosphate (還原態),而 NADP+/NADPH 和 NAD+/NADH 結構上 只差在後者把前者在 C-2 的 OP 換成 OH。(見下圖)
- 5. NAD⁺和 NADP⁺兩者都是可以當作 electron carrier 的 coenzyme,其中 NAD⁺/NADP⁺是氧化態,NADH/NADPH 為還原態。NAD⁺傾向做為 oxidant 形成 NADH,NADPH 則傾向做為 reductant 形成 NADP⁺。
- 6. NAD⁺是大部份脫氫酶(dehydrogenase)的輔因子,而 NADPH 是大部分還原酶 (reductase)的輔因子。(見下圖)

- 7. ATP 在基本生物作用扮演的角色是 energy-coupling compound,它的功能是將熱力學上不合適的步驟轉換成合適的。
- 8. 活化的中間產物,如 ATP,可以在代謝中間產物的生理相關濃度中發生反應。
- 9. Phosphoanhydride bonds (酐鍵):在熱力學上不穩定,在動力學上穩定,而 大的自由能需要酵素來降低活化能。(如下圖所示)

- 10. 當細胞內的濃度不平衡造成反應放出能量時,ATP 可以促使更高能的物質合成,像是 higher phosphate transfer potential 中的 creatine phosphate (磷酸肌酸),而 ATP 的分解通常伴隨著熱力學上不利的反應。
- 11. Creatine phosphate 將來自 ATP 分解後磷酸鍵的能量,從粒線體轉移到肌原纖維(myofibrils),而這正是肌肉收縮機轉的能量來源。
- 12. Creatine phosphate 是藉由 creatine kinase 的催化從 creatine (肌酸)產生出來的。 (如下圖所示)。

從ATP 釋出的磷酸根並沒有成為Pi,反而直接與creatine結合

上圖為 creatine 的功效, 可以幫助身體變得更強壯

上圖為 Creatine-creatine phosphate 穿梭在肌肉收縮機轉裡。

下圖為其他高能量物質。

table 14-6

	$\Delta G^{\prime \circ}$	
	(kJ/mol)	(kcal/mol)
Phosphoenolpyruvate	-61.9	-14.8
1,3-bisphosphoglycerate (→ 3-phosphoglycerate + P _i)	-49.3	-11.8
Phosphocreatine	-43.0	-10.3
$ADP (\rightarrow AMP + P_i)$	-32.8	-7.8
ATP (\rightarrow ADP + P _i)	-30.5	-7.3
$ATP (\rightarrow AMP + PP_i)$	-45.6	-10.9
AMP (\rightarrow adenosine + P _i)	-14.2	-3.4
$PP_i (\rightarrow 2P_i)$	-19	-4.0
Glucose 1-phosphate	-20.9	-5.0
Fructose 6-phosphate	-15.9	-3.8
Glucose 6-phosphate	-13.8	-3.3
Glycerol 1-phosphate	-9.2	-2.2
Acetyl-CoA	-31.4	-7.5

左圖為 creatine 和 creatine phosphate 的關係。

九、phosphorylated compound 的水解:

phosphorylated compound 的水解,具有 large and negative 的 $\Delta G^{,o}$,原因有:

- 1. 反應物的 electrostatic repulsion 終於釋放(e.g. P,O 都是拉電子性)
- 2. 產物有共振,較穩定;產物在溶液中的溶解度較佳
- 3. 產物會進一步進行 tautomerization(形成可互換結構的異構物)
- 4. 產物會進一步進行 ionization(也是為了形成共振結構)

反應物	發生	過程		
	hydrolysis(
	水解)的位置			
PEP 的水	phosphate	⁻ 0, ,0		
解	ester bond	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	(此反應發生 在:	CH_2 CH_2 CH_3 PEP $\operatorname{Pyruvate}$ $\operatorname{(enol\ form)}$ $\operatorname{(keto\ form)}$		
	glycolysis, gluconeogen-	$PEP^{3-} + H_2O \longrightarrow pyruvate^- + P_i^{2-}$ $\Delta G^{\circ} = -61.9 \text{ kJ/mol}$		
	esis)	*此反應式由 one form(PEP)變成 two form(enol form 與 keto		
		form 產物),亂度增加,故有利於反應進行		
1,3BPG 的水解	anhydride bond (此反應發生 在: glycolysis, photosynthes- is)	OOH OOH OOH OOH OOH OOH OOH OOH		
Phosphoc reatine (磷酸肌 酸)的水	P-N bond (此反應發生 在:須高能量 的腦細胞中)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		*形成共振而穩定		

+ Major Metabolic Control Mechanisms:

- *Eukaryotic cell(真核細胞)中主要 metabolic pathways 的位置。
- *這是一個假設的細胞,包含植物和動物細胞的特色。

+- · Experimental Analysis of Metabolism:

- 1. 找出每個反應的 reactants, products, cofactors 和 stoichiometry(化學計量)。
- 2. 了解每一個反應的速率在他所處的組織中是如何被調控的。
- 3. 了解每一個反應與其調控機制生理學上的功用。

*Metabolic probes:能夠干擾 pathway 中某特定反應或某部分特定反應的媒介。 最常見的是 metabolic inhibitors 和 mutations。例如,mutations 和 enzyme inhibitors(它們會使個別的 enzymes 失去活性)幫助我們了解各酵素的代謝角色。 (EX)使用 mutation 當作 biochemical probes。

藉由分析突變在 pathway 中各步驟造成的缺失,我們可以驗證假設的 pathway 是否正確。

例如,我們可以藉由當 enzyme III 因 突變而不存在時 C 累積,推知 metabolite(代謝物) C 是 enzyme III 的 substrate(會和 enzyme III 起作用的 物質)。

因為當我們加入 D 或 E 到 enzyme III 發生突變的細胞中,發現細胞可以順 利生長,所以我們可以推知在 pathway 中,D 和 E 都位於 C 之後。

A mutant defective in enzyme:	Accumulates metabolite in culture medium:	Requires an external source of:	Culture filtrate allows the growth of another mutant, defective in enzyme:
I	A	B, C, D, or E	—
II	B	C, D, or E	
III	C	D or E	or
IV	D	E	, , or

Analysis of mutants

十二、Metabolomics(代謝體學)

新科技的誕生導致-omics(體學:大規模的研究)的革命,包含 Genomics, Transcriptomics, Proteomics & metabolomics。

樣品中上千的物質可同時被量測出來,所以測量 full set of transcripts (transcriptome), proteins (proteome), or metabolites (metabolome)在特定細胞或組織中變得可行。

*metabolome : the ultimate molecular phenotype of a cell under a given set of conditions because all the changes in gene expression and enzyme activity eventually lead to changes in cellular metabolite levels (the metabolic state or profile).

十三、Basic process of metabolic profiling:

- (a)藉由 analytical method(分析方 法)Metabolites(代謝物)被確認 並定量。
- (b)藉由 informatics approaches(資 訊學方法)蒐集並形象化資料。
- (c)在藉由 informatics approaches(資訊學方法)找出樣 本間的關係和模式。

*紅色:表示相對於對照組, metabolite(代謝物)的量上升。

*綠色:表示相對於對照組, metabolite(代謝物)的量下降。

*黑色:表示介於中間的量。