Reading multiple data files

MERGING DATAFRAMES WITH PANDAS

AnacondaInstructor

Tools for pandas data import

- pd.read_csv() for CSV files
- dataframe = pd.read_csv(filepath)
- dozens of optional input parameters
- Other data import tools:
 - o pd.read_excel()
 - o pd.read_html()
 - o pd.read_json()

Loading separate files

```
import pandas as pd

dataframe0 = pd.read_csv('sales-jan-2015.csv')

dataframe1 = pd.read_csv('sales-feb-2015.csv')
```

Using a loop

```
filenames = ['sales-jan-2015.csv', 'sales-feb-2015.csv']

dataframes = []

for f in filenames:
          dataframes.append(pd.read_csv(f))
```

Using a comprehension

```
filenames = ['sales-jan-2015.csv', 'sales-feb-2015.csv']

dataframes = [pd.read_csv(f) for f in filenames]
```

Using glob

```
from glob import glob

filenames = glob('sales*.csv')

dataframes = [pd.read_csv(f) for f in filenames]
```

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Reindexing DataFrames

MERGING DATAFRAMES WITH PANDAS

AnacondaInstructor

"Indexes" vs. "Indices"

- indices: many index labels within Index data structures
- indexes: many pandas Index data structures

indexes

NOC	AFG	АНО	ALG	ANZ	ARG	ARM	 VEN	VIE	YUG	ZAM	ZIM	ZZX
Edition												
1896	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN
1900	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	33.561198
1904	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	-22.642384
1908	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1912	NaN	NaN	NaN	-26.092774	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1920	NaN	NaN	NaN	0.000000	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1924	NaN	NaN	NaN	0.000000	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1928	NaN	NaN	NaN	0.000000	131.101152	NaN	 NaN	NaN	323.521127	NaN	NaN	0.000000
1932	NaN	NaN	NaN	0.000000	-25.794206	NaN	 NaN	NaN	0.000000	NaN	NaN	0.000000
1936	NaN	NaN	NaN	0.000000	-10.271982	NaN	 NaN	NaN	-29.357594	NaN	NaN	0.000000
1948	NaN	NaN	NaN	0.000000	-4.601500	NaN	 NaN	NaN	47.596769	NaN	NaN	0.000000
1952	NaN	NaN	NaN	0.000000	-10.508545	NaN	 NaN	NaN	34.043608	NaN	NaN	0.000000

Importing weather data

```
import pandas as pd
w_mean = pd.read_csv('quarterly_mean_temp.csv', index_col='Month')
w_max = pd.read_csv('quarterly_max_temp.csv', index_col='Month')
```


Examining the data

```
print(w_mean)
```

```
Mean TemperatureF

Month
Apr 61.956044

Jan 32.133333

Jul 68.934783
Oct 43.434783
```

print(w_max)

```
Max TemperatureF

Month

Jan 68

Apr 89

Jul 91

Oct 84
```

The DataFrame indexes

```
print(w_mean.index)
Index(['Apr', 'Jan', 'Jul', 'Oct'], dtype='object', name='Month')
print(w_max.index)
Index(['Jan', 'Apr', 'Jul', 'Oct'], dtype='object', name='Month')
print(type(w_mean.index))
<class 'pandas.indexes.base.Index'>
```


Using.reindex()

```
ordered = ['Jan', 'Apr', 'Jul', 'Oct']
w_mean2 = w_mean.reindex(ordered)
print(w_mean2)
```

```
Mean TemperatureF
Month
Jan 32.133333
Apr 61.956044
Jul 68.934783
Oct 43.434783
```


Using .sort_index()

```
w_mean2.sort_index()
```

	Mean TemperatureF	
Moi	nth	
Ар	61.956044	
Jai	n 32.133333	
Ju	l 68.934783	
0c	43.434783	

Reindex from a DataFrame Index

w_mean.reindex(w_max.index)

	Mean TemperatureF	
Month		
Jan	32.133333	
Apr	61.956044	
Jul	68.934783	
0ct	43.434783	

Reindexing with missing labels

```
w_mean3 = w_mean.reindex(['Jan', 'Apr', 'Dec'])
print(w_mean3)
```

```
Mean TemperatureF

Month

Jan 32.133333

Apr 61.956044

Dec NaN
```


Reindex from a DataFrame Index

```
w_max.reindex(w_mean3.index)
```

```
Max TemperatureF
Month
Jan 68.0
Apr 89.0
Dec NaN
```

```
w_max.reindex(w_mean3.index).dropna()
```

```
Max TemperatureF
Month
Jan 68.0
Apr 89.0
```


Order matters

w_max.reindex(w_mean.index)

		Max TemperatureF
ı	Month	
ı	Apr	89
ı	Jan	68
ı	Jul	91
ı	0ct	84

w_mean.reindex(w_max.index)

```
Mean TemperatureF

Month

Jan 32.133333

Apr 61.956044

Jul 68.934783

Oct 43.434783
```

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Arithmetic with Series & DataFrames

MERGING DATAFRAMES WITH PANDAS

AnacondaInstructor

Loading weather data

```
Date
2013-07-01
              0.18
2013-07-02
              0.14
2013-07-03
              0.00
              0.25
2013-07-04
              0.02
2013-07-05
2013-07-06
              0.06
2013-07-07
              0.10
Name: PrecipitationIn, dtype: float64
```


Scalar multiplication

```
weather.loc['2013-07-01':'2013-07-07', 'PrecipitationIn'] * 2.54
```

```
Date
2013-07-01
             0.4572
2013-07-02
             0.3556
2013-07-03
             0.0000
2013-07-04
             0.6350
2013-07-05
             0.0508
2013-07-06
             0.1524
2013-07-07
             0.2540
Name: PrecipitationIn, dtype: float64
```


Absolute temperature range

		Min TemperatureF	Max TemperatureF
ı	Date		
ı	2013-07-01	66	79
ı	2013-07-02	66	84
ı	2013-07-03	71	86
ı	2013-07-04	70	86
ı	2013-07-05	69	86
ı	2013-07-06	70	89
ı	2013-07-07	70	77

Average temperature

```
Date
2013-07-01
              72
2013-07-02
              74
2013-07-03
              78
2013-07-04
              77
2013-07-05
              76
2013-07-06
              78
2013-07-07
              72
Name: Mean TemperatureF, dtype: int64
```


Relative temperature range

week1_range / week1_mean

```
RuntimeWarning: Cannot compare type 'Timestamp' with type 'str',
sort order is undefined for incomparable objects
  return this.join(other, how=how, return_indexers=return_indexers)
           2013-07-01 00:00:00 2013-07-02 00:00:00 2013-07-03 00:00:00 \\
Date
2013-07-01
                            NaN
                                                 NaN
                                                                      NaN
2013-07-02
                            NaN
                                                 NaN
                                                                      NaN
2013-07-03
                            NaN
                                                NaN
                                                                      NaN
2013-07-04
                            NaN
                                                 NaN
                                                                      NaN
2013-07-05
                            NaN
                                                 NaN
                                                                      NaN
2013-07-06
                            NaN
                                                 NaN
                                                                      NaN
2013-07-07
                            NaN
                                                 NaN
                                                                      NaN
           2013-07-04 00:00:00 2013-07-05 00:00:00 2013-07-06 00:00:00 \\
Date
2013-07-01
                            NaN
                                                 NaN
                                                                      NaN
```


Relative temperature range

week1_range.divide(week1_mean, axis='rows')

	Min TemperatureF	Max TemperatureF
Date		
2013-07-01	0.916667	1.097222
2013-07-02	0.891892	1.135135
2013-07-03	0.910256	1.102564
2013-07-04	0.909091	1.116883
2013-07-05	0.907895	1.131579
2013-07-06	0.897436	1.141026
2013-07-07	0.972222	1.069444

Percentage changes

```
week1_mean.pct_change() * 100
```

```
Date
2013-07-01
                 NaN
2013-07-02 2.777778
2013-07-03
           5.405405
2013-07-04
           -1.282051
2013-07-05
           -1.298701
2013-07-06 2.631579
2013-07-07 -7.692308
Name: Mean TemperatureF, dtype: float64
```


Bronze Olympic medals

```
bronze = pd.read_csv('bronze_top5.csv', index_col=0)
print(bronze)
```

```
Total
Country
United States 1052.0
Soviet Union 584.0
United Kingdom 505.0
France 475.0
Germany 454.0
```


Silver Olympic medals

```
silver = pd.read_csv('silver_top5.csv', index_col=0)
print(silver)
```

```
Total
Country
United States 1195.0
Soviet Union 627.0
United Kingdom 591.0
France 461.0
Italy 394.0
```


Gold Olympic medals

```
gold = pd.read_csv('gold_top5.csv', index_col=0)
print(gold)
```

```
Total
Country
United States 2088.0
Soviet Union 838.0
United Kingdom 498.0
Italy 460.0
Germany 407.0
```


Adding bronze, silver

```
bronze + silver
```

```
Country
France 936.0
Germany NaN
Italy NaN
Soviet Union 1211.0
United Kingdom 1096.0
United States 2247.0
Name: Total, dtype: float64
```


Adding bronze, silver

```
bronze + silver
Country
                   936.0
France
Germany
                     NaN
Italy
                     NaN
                  1211.0
Soviet Union
United Kingdom
                  1096.0
United States
                  2247.0
Name: Total, dtype: float64
print(bronze['United States'])
1052.0
print(silver['United States'])
1195.0
```


Using the .add() method

bronze.add(silver)

```
Country
France 936.0
Germany NaN
Italy NaN
Soviet Union 1211.0
United Kingdom 1096.0
United States 2247.0
Name: Total, dtype: float64
```


Using a fill_value

```
bronze.add(silver, fill_value=0)
```

```
Country
France 936.0
Germany 454.0
Italy 394.0
Soviet Union 1211.0
United Kingdom 1096.0
United States 2247.0
Name: Total, dtype: float64
```


Adding bronze, silver, gold

```
bronze + silver + gold
```

Country

France NaN

Germany NaN

Italy NaN

Soviet Union 2049.0

United Kingdom 1594.0

United States 4335.0

Name: Total, dtype: float64

Chaining.add()

```
bronze.add(silver, fill_value=0).add(gold, fill_value=0)
```

```
Country
France 936.0
Germany 861.0
Italy 854.0
Soviet Union 2049.0
United Kingdom 1594.0
United States 4335.0
Name: Total, dtype: float64
```


Let's practice!

MERGING DATAFRAMES WITH PANDAS

