Awarepoint Corporation

Model: RM1

PN: 200239-01

Report No. AWAR0002 Rev 01

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: March 31, 2010 Awarepoint Corporation Model: RM1 / PN: 200239-01

	Emissions		
Test Description	Specification	Test Method	Pass/Fail
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.209:2010	ANSI C63.10:2009	Pass
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass
Output Power	FCC 15.247:2010	ANSI C63.10:2009	Pass
Power Spectral Density	FCC 15.247:2010	ANSI C63.10:2009	Pass
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass
AC Powerline Conducted Emissions	FCC 15.207:2010	ANSI C63.10:2009	Pass

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-2).

Approved By:

Don Facteau, IS Manager

RAIVIN

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision	Description	Date	Page Number
Number	Description	Date	Page Number

01	Add configuration number	5/18/10	37
01	Delete reference to clocks/oscillators	5/18/10	25

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Explanation of Northwest EMC Performance Criteria

Revision 10/05/05

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

- □ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention, once the test signal was removed. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention, once the test signal was removed.

Performance Criteria 3:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of changing EUT settings, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion of test.

Performance Criteria 4:

- □ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- In most cases there is no specific criterion to compare this to; it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Party Requesting the Test

Company Name:	Awarepoint Corporation
Address:	225 Broadway Ave Suite 1670
City, State, Zip:	San Diego, CA 92101
Test Requested By:	Eric Hoffman
Model:	RM1 / PN: 200239-01
First Date of Test:	March 29, 2010
Last Date of Test:	March 31, 2010
Receipt Date of Samples:	March 29, 2010
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):	
2.4 GHz DTS transmitter	

Testing Objective:

Demonstrate compliance of the device to FCC 15.247 requirements.

EUT Photo

Configurations

Revision 9/21/05

CONFIGURATION 1 AWAR0002

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
2.4GHz Zigbee Radio	Awarepoint	RM1 / PN: 200239-01	01034100515

CONFIGURATION 2 AWAR0002

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
2.4GHz Zigbee Radio	Awarepoint	RM1 / PN: 200239-01	01034100515

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
AC-DC supply	Panasonic	RD-9443HA	Unknown		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Cable	No	1.8m	No	EUT	AC Mains	
PA = Cable	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT		
1	3/29/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
2	3/30/2010	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
3	3/30/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
4	3/30/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
5	3/30/2010	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
6	3/31/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.		

Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

T	TEST EQUIPMENT								
	Description	Manufacturer	Model	ID	Last Cal.	Interval			
	Antenna, Horn	EMCO	3115	AHB	9/11/2009	24			
	OC11 Cables	None	1-8GHz RE Cables	OCR	3/12/2009	13			
Г	Spectrum Analyzer	Agilent	E4440A	AFA	2/9/2010	13			

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier full maximized for its highest radiated power. The EUT was transmitting at its maximum data rate with the typical modulation and a test duty cycle.

NORTHWEST					XMit 2010.01.14
EMC		Occupied Bandw	idth		
EUT:	Model: RM1 / PN: 200239-01			Work Order:	AWAR0002
Serial Number:	01034100515			Date:	03/30/10
Customer:	Awarepoint Corporation			Temperature:	19C°C
Attendees:	Eric Hoffman			Humidity:	
Project:				Barometric Pres.:	1016mb
	Jeremiah Darden		20V/60Hz	Job Site:	OC11
TEST SPECIFICATI	IONS		Test Method		
FCC 15.247:2010		F	NSI C63.10:2009		
COMMENTS					
None					
DEVIATIONS FROM	/I TEST STANDARD				
No Deviations					
Configuration #	1	Signature June 5			
			Value	Li	mit Results
Low 2405 MHz		•	1.648 MH	z >= 50	00 kHz Pass
Mid 2440 MHz			1.579 MH	z >= 50	00 kHz Pass
High 2475 MHz			1.602 MH	z >= 50	00 kHz Pass

Occupied Bandwidth

Low

Result: Pass Value: 1.648 MHz Limit: >= 500 kHz

 Mid

 Result: Pass
 Value: 1.579 MHz
 Limit: >= 500 kHz

Occupied Bandwidth

 High

 Result:
 Pass
 Value:
 1.602 MHz
 Limit:
 >= 500 kHz

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

2405, 2440, 2475 MHz

FREQUENCY RANGE INVESTIGATED					
Start Frequency	2400 MHz	Stop Frequency	2483.5 MHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT						
Description	Manufacturer	Model	ID	Last Cal.	Interval	
Antenna, Horn	EMCO	3115	AHB	9/11/2009	24	
OC11 Cables	None	1-8GHz RE Cables	OCR	3/12/2009	13	
Spectrum Analyzer	Agilent	E4440A	AFA	2/9/2010	13	

MEASUREMENT BANDWIDTHS					
Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
(MHz) (kHz) (kHz)		(kHz)	(kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		
Measurements were made us	sing the bandwidths and det	ectors specified. No video filter	was used.		

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The radiated power was measured using a spectrum analyzer and horn antenna in a semi-anechoic chamber. The resolution bandwidth was set to 3 MHz and the video bandwidth was to set to 8 MHz. A peak detector was used. The EUT was transmitting at its maximum data rate. The level of fundamental emission was maximized by rotating the turntable and moving the measurement antenna from 1 – 4 meters in height.

The field strength measurement was converted to effective radiated power (EIRP) using the Friis transmission equation. A simplified version is found in ANSI C63.10:2009, Equation 5.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Band Edge Compliance

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT						
Description	Manufacturer	Model	ID	Last Cal.	Interval	
Antenna, Horn	EMCO	3115	AHB	9/11/2009	24	
OC11 Cables	None	1-8GHz RE Cables	OCR	3/12/2009	13	
Spectrum Analyzer	Agilent	E4440A	AFA	2/9/2010	13	

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Since the EUT has an integral antenna, the radiated emissions at the edges of the authorized bands were measured. The EUT was set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at its only data rate available.

The spectrum was scanned across each band edge from at least 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST		Dand Edua Camplianas			Х	(Mit 2010.01.14
EMC		Band Edge Compliance				
EUT:	: Model: RM1 / PN: 200239-01			Work Order:	AWAR0002	
Serial Number:	: 01034100515			Date:	03/30/10	
Customer:	: Awarepoint Corporation			Temperature:	19C°C	
	: Eric Hoffman			Humidity:		
Project:				Barometric Pres.:	1016mb	
	: Jeremiah Darden	Power: 120V/60Hz		Job Site:	OC11	
TEST SPECIFICAT	TIONS	Test Method				
FCC 15.247:2010		ANSI C63.10:2009	9			
COMMENTS						
None						
	M TEST STANDARD					
No Deviations						
		Signature Juny Da				
Configuration #	1	years Da				
		Signature				
			Value	Lir	nit	Results
Low 2405MHz			-39.03dB	<= -2		Pass
High 2475MHz			-45.17dB	<= -2 <= -2		Pass
1 11g11 2-17 51VII 12			-10.17 dD	\= - <u>z</u>	-000	1 433

Band Edge Compliance

 Low 2405MHz

 Result: Pass
 Value: -39.03dB
 Limit: <= -20dB</th>

High 2475MHz

Result: Pass Value: -45.17dB Limit: <= -20dB

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Ī	TEST EQUIPMENT					
	Description	Manufacturer	Model	ID	Last Cal.	Interval
	Antenna, Horn	EMCO	3115	AHB	9/11/2009	24
	OC11 Cables	None	1-8GHz RE Cables	OCR	3/12/2009	13
	Spectrum Analyzer	Agilent	E4440A	AFA	2/9/2010	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak power spectral density was measured with the EUT set to low, medium, and high transmit frequencies. The radiated power spectral density was measured using a spectrum analyzer and horn antenna in a semi-anechoic chamber. The EUT was transmitting at its maximum data rate for each modulation type available. The level of fundamental emission was maximized by rotating the turntable and moving the measurement antenna from 1 – 4 meters in height. Per the procedure outlined in ANSI C63.10:2009, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

The field strength measurement of power spectral density was converted to effective radiated power spectral density (dBm/3kHz) (EIRP) using the Friis transmission equation. A simplified version is found in ANSI C63.10:2009, Equation 6.

NORTHWEST		DOWED ODEO	TDAL DENOIS	T\/		XMit 2010.01.14
EMC		POWER SPEC	IRAL DENSI	ΙΥ		
EUT:	Model: RM1 / PN: 200239-01			1	Work Order: AWAR0	0002
Serial Number:	01034100515				Date: 03/30/1	0
Customer:	Awarepoint Corporation			Te	emperature: 19C°C	
Attendees:	Eric Hoffman				Humidity: 30%	
Project:	None			Baron	netric Pres.: 1016mb)
	Jeremiah Darden		Power: 120V/60Hz		Job Site: OC11	
TEST SPECIFICATI	IONS		Test Method			
FCC 15.247:2010			ANSI C63.10:	:2009		
COMMENTS						
2405, 2440, 2475 M	Hz					
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
Configuration #	1	Signature	Ja			
				Value	Limit	Results
Low Channel	·			-25.9 dBm/3kHz, EIRP	<= 8 dBm/3kHz	Pass
Mid Channel				-24.3 dBm/3kHz, EIRP	<= 8 dBm/3kHz	Pass
High Channel				-23.2 dBm/3kHz, EIRP	<= 8 dBm/3kHz	Pass

POWER SPECTRAL DENSITY

Low Channel				
Result: Pa	'ass Value:	-25.9 dBm/3kHz, EIRP	Limit:	<= 8 dBm/3kHz

 Meter Reading (dBm/Hz)
 Meter Reading (dBm/3kHz)
 Factor (dBm (dBm/3kHz/meter)
 Field Strength PSD (dBm/3kHz) (dBm/3kHz/meter)
 PSD EIRP (dBm/3kHz) (EIRP)

 -106.77
 -71.77
 34.1
 -37.67
 -25.9

Mid Channel

Result: Pass Value: -24.3 dBm/3kHz, EIRP Limit: <= 8 dBm/3kHz

 Meter Reading
 Meter Reading (dBm/Hz)
 Factor (dBm/3kHz)
 Field Strength PSD (dBm/3kHz) (dBm/3kHz) (dBm/3kHz) (EIRP)

 -105.25
 -70.25
 34.2
 -36.05
 -24.3

POWER SPECTRAL DENSITY

High Channel				
Result: Pass	Value: -23.2 dBm/3kHz, EIRP	Limit:	<= 8 dBm/3kHz	

 Meter Reading (dBm/Hz)
 Meter Reading (dBm/3kHz)
 Factor (dB) (dBm/3kHz/meter)
 Field Strength PSD (dBm/3kHz) (dBm/3kHz) (EIRP)

 -104.16
 -69.16
 34.2
 -34.96
 -23.2

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
2405MHz	
2440MHz	
2475MHz	

POWER SETTINGS INVESTIGATED

3.3VDC

FREQUENCY RANGE INVESTIGATED					
Start Frequency	30MHz	Stop Frequency	26.5GHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Biconilog	EMCO	3142	AXJ	2/24/2010	13
OC10 Cables	None	10kHz-1GHz RE Cables	OCH	4/1/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AOM	4/1/2010	13
Spectrum Analyzer	Agilent	E4446A	AAY	1/15/2010	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	4/3/2009	13
Antenna, Horn	EMCO	3160-09	AHN	NCR	0
OC floating Cable	None	18-26GHz RE Cables	OCK	4/3/2009	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVP	12/21/2009	13
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	4/11/2010	13
Antenna, Horn	ETS	3160-07	AHX	NCR	0
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	9/10/2009	13
Antenna, Horn	EMCO	3115	AHB	9/11/2009	24
OC11 Cables	None	12-18GHz RE Cables	ocs	4/11/2010	13
OC11 Cables	None	1-8GHz RE Cables	OCR	3/19/2010	13

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

All radiated emissions were measured. The emissions that fell in the restricted bands of 15.205 were measured to the 15.209 limits and all other emissions were compared to the -20 dBc limit of 15.247(d).

NORTHWEST **SPURIOUS RADIATED EMISSIONS DATA SHEET** EMI 2006.4.26 **EMC** Work Order: AWAR0002 EUT: Model: RM1 / PN: 200239-01 Serial Number: 01034100515 Date: 03/29/10 **Customer:** Awarepoint Corporation Temperature: 19C Attendees: Eric Hoffman Humidity: 30% Project: None Barometric Pres.: 1016 Tested by: Jeremiah Darden TEST SPECIFICATIONS Power: 3.3VDC Job Site: OC10 Test Method FCC 15.247: 2010 ANSI C63.10:2009 TEST PARAMETERS Antenna Height(s) (m) 1 - 4 Test Distance (m) 3 COMMENTS Y-axis worse case EUT OPERATING MODES 2475MHz DEVIATIONS FROM TEST STANDARD No deviations. Run# Signature June 50-Configuration # 1 Results Pass 80.0 70.0 60.0 • 50.0 dBuV/m 40.0 30.0 20.0 10.0 0.0 2400.000 2410.000 2420.000 2430.000 2440.000 2450.000 2460.000 2470.000 2480.000 2490.000 2500.000 MHz External Distance Compared to Freq Amplitude Factor Azimuth Distance Polarity Adjusted Spec. Limit

Attenuation

(dB)

20.0

20.0

20.0

20.0

H-Horn

V-Horn

H-Horn

V-Horn

(meters)

3.0

3.0

3.0

3.0

Detector

ΑV

AV

PΚ

PΚ

Adjustment

(dB)

0.0

0.0

0.0

0.0

dBuV/m

45.1

45.0

58.1

57.7

Spec.

(dB)

-8.9

-9.0

-15.9

-16.3

dBuV/m

54.0

54.0

74.0

74.0

Heiaht

(meters)

1.4

1.4

1.4

1.4

(dBuV)

29.2

29.1

42.2

41.8

(MHz)

2483.496

2483.497

2483.496

2483.497

(dB)

-4.1

-4.1

-4.1

-4.1

(degrees)

203.0

203.0

203.0

NORTHWEST **SPURIOUS RADIATED EMISSIONS DATA SHEET** EMI 2006.4.26 **EMC** Work Order: AWAR0002 EUT: Model: RM1 / PN: 200239-01 Serial Number: 01034100515 Date: 03/29/10 **Customer:** Awarepoint Corporation Temperature: 19C Attendees: Eric Hoffman Humidity: 30% Project: None Barometric Pres.: 1016 Tested by: Jeremiah Darden Power: 3.3VDC Job Site: OC10 Test Meth FCC 15.247: 2010 ANSI C63.10:2009 TEST PARAMETERS Antenna Height(s) (m) 1 - 4 Test Distance (m) 3 COMMENTS Y-axis worse case EUT OPERATING MODES 2475MHz DEVIATIONS FROM TEST STANDARD No deviations. Run# 8 Signature June 50-Configuration # 1 Results Pass 0.08 70.0 60.0 \$ 50.0 \$ dBuV/m 40.0 30.0 20.0 10.0 0.0 4900.000 5400.000 5900.000 6400.000 6900.000 7400.000 MHz External Distance Compared to Freq Amplitude Factor Azimuth Heiaht Distance Polarity Adjusted Spec. Limit Attenuation Detector Adjustment Spec. (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) 305.0 1.0 3.0 H-Horn ΑV 50.6 54.0 4949.627 46.1 4.5 0.0 0.0 -3.4 4949.643 44.6 4.5 205.0 1.1 3.0 0.0 V-Horn AV0.0 49.1 54.0 -4.9 7423.111 33.5 10.2 350.0 1.2 3.0 0.0 V-Horn AV 0.0 43.7 54.0 -10.3 7425.761 30.2 10.2 267.0 1.0 3.0 0.0 H-Horn AV 0.0 40.4 54.0 -13.6 4948.982 55.8 4.5 305.0 H-Horn PK 60.3 74.0 -13.7 1.0 3.0 0.0 0.0

PK

PΚ

PΚ

0.0

0.0

0.0

58.8

53.6

51.9

74.0

74.0

74.0

-15.2

-20.4

-22.1

V-Horn

V-Horn

H-Horn

4948.780

7422.735

7422.658

4.5

10.2

10.2

54.3

43.4

41.7

205.0

350.0

267.0

1.1

1.2

1.0

3.0

3.0

3.0

0.0

0.0

	HWEST		SDLIDI	OUS E		TED E	MISSI	ONE F		CUEET	-		SA 2008.07.2 EMI 2006.4.2
EN	MC				ADIA	IEDE		ONS L	AIA				
Caria			11 / PN: 20	0239-01						W		AWAR000 03/29/10)2
	I Number: Customer:			tion						Tor	nperature:		
	Attendees:			LIOII						161	Humidity:		
	Project:		iuii							Barome	tric Pres.:		
1	Tested by:		Darden				Power:	3.3VDC			Job Site:		
EST SP	ECIFICATI	ONS						Test Metho	id				
FCC 15.2	247: 2010							ANSI C63.	10:2009				
	RAMETER Height(s) (1 - 4				Test Dista	nco (m)	3				
OMMEN		111)	1 - 4				Test Distai	ice (III)	3	1			
475MHz	ONS FROM		ANDARD										
Run #		,	9								260		
Configura	ation #		1							Vas 2	De		
lesults		Pa	iss						Signature	Jung 2			
8	30.0												
7	70.0												
6	0.0												
	50.0												
ш//\ng р	0.0												
3	30.0					•							
2	20.0												
1	0.0												
	0.0												
	12400.000)	13400.00	00	14400.0	00	15400.0	000	16400	.000	17400	0.000	
	12 100.000		10100.00		11100.0		MHz		10100	.000	77 100		
(M	req (Hz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
1490 1491	2.040 99.880 3.670 88.470	30.3 30.2 43.0 42.7	1.8 1.7 1.8 1.8	122.0 337.0 122.0 337.0	1.0 1.2 1.0 1.2	3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0	V-Horn H-Horn V-Horn H-Horn	AV AV PK PK	0.0 0.0 0.0 0.0	32.1 31.9 44.8 44.5	54.0 54.0 74.0 74.0	-21.9 -22.1 -29.2 -29.5

	RTHWEST	Ş	SP <u>UR</u> I	IOUS F	RADIA	TED	EMISSI	ONS E	ATA	SHEE	Γ		. 2008.07.: MI 2006.4.:
E	MC EUT:	Model: RM										AWAR0002	
	al Number:	010341005	15									03/29/10	
		Awarepoin		tion						Ter	nperature:		
	Attendees: Project:	Eric Hoffm	an							Parame	Humidity: etric Pres.:		
	Tested by:	Jeremiah E)arden				Power:	3.3VDC		Daronne	Job Site:		
ST SI	PECIFICATI	ONS	Jaraon				1 Ower.	Test Metho	d		OOD OILO	0010	
CC 15.	247: 2010							ANSI C63.	10:2009				
	ARAMETER												
ntenna DMME	a Height(s)	(m)	1 - 4				Test Dista	nce (m)	3				
UT OP 175MH EVIAT		MODES M TEST STA	NDARD										
ın #	ration #	10								Jung -	D.		
esults		Pa							Signature	1			
	80.0]
	70.0												
	60.0												-
	50.0												-
dBuV/m	40.0												-
_	30.0											1	_
;	20.0											1	
	10.0												-
	0.0												
	8200.000	8700.	000 9	2200.000	9700.00	ນບ 102	MHz	10700.000	11200	.000 117	700.000	12200.000	1
(1	Freq MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec. (dB)
123	372.540 376.290 374.660	28.6 28.6 41.5	-7.9 -7.9 -7.9	51.0 185.0 51.0	1.0 1.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	V-Horn H-Horn V-Horn	AV AV PK	0.0 0.0 0.0	20.7 20.7 33.6 32.6	54.0 54.0 74.0	-33.3 -33.3 -40.4

NORTHWEST SPURIOUS RADIATED EMISSIONS DATA SHEET EMI 2006.4.26 **EMC** Work Order: AWAR0002 EUT: Model: RM1 / PN: 200239-01 Serial Number: 01034100515 Date: 03/29/10 **Customer:** Awarepoint Corporation Temperature: 19C Attendees: Eric Hoffman Humidity: 30% Project: None Barometric Pres.: 1016 Tested by: Jeremiah Darden Power: 3.3VDC Job Site: OC10 Test Method FCC 15.247: 2010 ANSI C63.10:2009 TEST PARAMETERS Antenna Height(s) (m) 1 - 4 Test Distance (m) 3 COMMENTS Y-axis worse case EUT OPERATING MODES 2440MHz DEVIATIONS FROM TEST STANDARD No deviations. Run# 11 Signature June 50-Configuration # 1 Results Pass 0.08 70.0 60.0 50.0 dBuV/m 40.0 30.0 20.0 10.0 0.0 4800.000 5300.000 5800.000 6300.000 6800.000 7300.000 MHz External Distance Compared to Freq Amplitude Factor Azimuth Heiaht Distance Polarity Adjusted Spec. Limit Attenuation Detector Adjustment Spec. (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) 42.4 151.0 1.3 3.0 H-Horn ΑV 46.7 54.0 4878.722 4.3 0.0 0.0 -7.3 4878.718 42.0 4.3 95.0 1.9 3.0 0.0 V-Horn AV0.0 46.3 54.0 -7.7 7318.052 31.8 10.0 291.0 1.2 3.0 0.0 H-Horn AV 0.0 41.8 54.0 -12.2 7318.003 31.0 10.0 34.0 1.3 3.0 0.0 V-Horn AV 0.0 41.0 54.0 -13.0

H-Horn

V-Horn

V-Horn

H-Horn

PK

PK

PΚ

PΚ

0.0

0.0

0.0

0.0

56.5

56.3

52.1

50.8

74.0

74.0

74.0

74.0

-17.5

-17.7

-21.9

-23.2

4878.642

4880.477

7317.612

7317.680

52.2

52.0

42.1

40.8

4.3

4.3

10.0

10.0

151.0

95.0

34.0

291.0

1.3

1.9

1.3

1.2

3.0

3.0

3.0

3.0

0.0

0.0

0.0

NORTHWEST **SPURIOUS RADIATED EMISSIONS DATA SHEET** EMI 2006.4.26 **EMC** EUT: Model: RM1 / PN: 200239-01 Serial Number: 01034100515 Work Order: AWAR0002 Date: 03/29/10 Customer: Awarepoint Corporation Temperature: 19C Attendees: Eric Hoffman Humidity: 30% Project: None Tested by: Jeremiah Darden TEST SPECIFICATIONS Barometric Pres.: 1016 Power: 3.3VDC Job Site: OC10 Test Method FCC 15.247: 2010 ANSI C63.10:2009 TEST PARAMETERS Test Distance (m) 3 Antenna Height(s) (m) 1 - 4 COMMENTS Y-axis worse case EUT OPERATING MODES 2405MHz DEVIATIONS FROM TEST STANDARD No deviations. 12 Run# Signature June 50-Configuration # 1 Results Pass 0.08 70.0 60.0 50.0 dBuV/m 40.0 30.0 20.0 10.0 0.0 4800.000 4810.000 4820.000 4830.000 4840.000 4850.000 4860.000 4870.000 4880.000 4890.000 4900.000

	Compared to
Adjusted Spec. Limit	Spec.
dBuV/m dBuV/m	(dB)
46.8 54.0	-7.2
43.5 54.0	-10.5
56.6 74.0	-17.4
53.1 74.0	-20.9
	dBuV/m dBuV/m 46.8 54.0 43.5 54.0 56.6 74.0

MHz

EMC	SPURIO	JUS R	IEU	EMIS	SION	5 D/	NΙΑ	SHE	EEI				EMI 200
	Model: RM1 / PN: 200	239-01							Wo	k Ord	er: A	WAR	0002
Serial Number:												3/30/1	0
	Awarepoint Corporati	on								oeratu			
	Eric Hoffman							-		lumidi			
Project:	vone Jeremiah Darden		 	Dou	er: 3.3VD			Ва	romet	Job Si			
ST SPECIFICATION	NS			TOW		lethod				300 31	ie. O	CII	
C 15.247: 2010						C63.10:	2009						
ST PARAMETERS	6												
enna Height(s) (ı	n) 1 - 4			Test Di	stance (m	1)	3	3					
MMENTS													
xis worse case													
COPERATING M	ODES												
5MHz	JDE3												
	TEST STANDARD												
deviations.													
า #	14												
	14 1							Que.	1	T-	_	_	
nfiguration #						Si	gnature		5	Te			
nfiguration #	1					Si	gnature		5	Ta-			
figuration # ults	1					Si	gnature		2	Te			
nfiguration #	1					Si	gnature		5				
nfiguration # sults	1					Si	gnature		5	Time -			
figuration # ults	1					Si	gnature			1			
afiguration #	1					Si	gnature		5				
figuration # ults 80.0	1					Si	gnature		5				
afiguration #	1					Si	gnature		5				
figuration # ults 80.0	1					Si	gnature		5				
80.0 70.0	1					Si	ignature						
80.0	1					Si	gnature		5				
80.0 70.0 60.0 50.0	1 Pass					Si	gnature		5				
80.0 70.0 60.0 50.0	1					Si	gnature		5				
80.0 70.0 60.0 50.0	1 Pass					Si	gnature		5				
80.0 70.0 60.0 50.0	1 Pass					Si	gnature		5				
80.0 70.0 60.0 50.0 40.0	1 Pass	•				Si	gnature		5				
80.0 70.0 60.0 50.0	1 Pass	•				Si	gnature						
80.0 70.0 60.0 50.0 40.0	1 Pass	•				Si	gnature						
80.0 80.0 70.0 60.0 50.0 80.0 30.0	1 Pass	•				Si	gnature						
80.0 70.0 60.0 50.0 40.0	1 Pass	•				Si	gnature						
80.0 70.0 60.0 50.0 EM/NBD 30.0	1 Pass	•				S	gnature						
80.0 70.0 60.0 50.0 E//ngp 30.0	1 Pass	•				Si	gnature						
70.0	1 Pass	•				Si	gnature						

External Attenuation Distance Adjustment Compared to Spec. Freq Spec. Limit Amplitude Factor Azimuth Height Distance Polarity Detector Adjusted (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) 44.8 1.2 3.0 V-Horn 32.6 9621.296 -12.2 7.0 0.0 ΑV 0.0 54.0 -21.4 9621.312 42.6 -12.2 15.0 1.4 3.0 0.0 H-Horn AV 0.0 30.4 54.0 -23.6 9621.537 -12.2 1.2 PΚ 74.0 54.5 7.0 3.0 0.0 V-Horn 0.0 42.3 -31.7 9621.136 52.6 -12.2 15.0 1.4 3.0 0.0 H-Horn PΚ 0.0 40.4 74.0 -33.6

9600.000 9610.000 9620.000 9630.000 9640.000 9650.000 9660.000 9670.000 9680.000 9690.000 9700.000 **MHz**

EMC		OUS RA			AOA.O							
	Model: RM1 / PN: 200	239-01						V				R0002
Serial Number: 0											03/30/	/10
Attendees: E	Awarepoint Corporat	ion	 					16	mpera	ature:		
Project: N								Baron	etric F	Pres ·	1016	
	leremiah Darden			Powe	r: 3.3VDC			Buitin			OC10	
T SPECIFICATIO					Test Met	hod						
C 15.247: 2010					ANSI C6	3.10.200	9					
T PARAMETERS												
enna Height(s) (n MMENTS	n) 1 - 4			Test Dis	tance (m)		3					
	DDES TEST STANDARD											
deviations.	45	1										
1#	15								4			
figuration #	1							ing.	2/10			
sults	Pass					Signa	iture					
80.0 T	Pass					Signa	ature					
	Pass					Signa	ature					
80.0	Pass					Signa	ature					
70.0	Pass					Signa	nture					
80.0 70.0 60.0 50.0						Signa	nture					
80.0 70.0 60.0 50.0	Pass					Signa	nture					
80.0 70.0 60.0 50.0						Signa	nture					
80.0 70.0 60.0 50.0						Signa	nture					
80.0 70.0 60.0 50.0 40.0 30.0 20.0						Signa	nture					
80.0 70.0 60.0 50.0 40.0 30.0						Signa	nure					

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	1
7213.113	34.7	9.7	356.0	1.5	3.0	0.0	V-Horn	AV	0.0	44.4	54.0	-9.6	
7215.984	33.9	9.7	138.0	1.0	3.0	0.0	H-Horn	AV	0.0	43.6	54.0	-10.4	
7216.073	45.7	9.7	356.0	1.5	3.0	0.0	V-Horn	PK	0.0	55.4	74.0	-18.6	
7216.145	45.2	9.7	138.0	1.0	3.0	0.0	H-Horn	PK	0.0	54.9	74.0	-19.1	
	(MHz) 7213.113 7215.984 7216.073	(MHz) (dBuV) 7213.113 34.7 7215.984 33.9 7216.073 45.7	(MHz) (dBuV) (dB) 7213.113 34.7 9.7 7215.984 33.9 9.7 7216.073 45.7 9.7	(MHz) (dBuV) (dB) (degrees) 7213.113 34.7 9.7 356.0 7215.984 33.9 9.7 138.0 7216.073 45.7 9.7 356.0	(MHz) (dBuV) (dB) (degrees) (meters) 7213.113 34.7 9.7 356.0 1.5 7215.984 33.9 9.7 138.0 1.0 7216.073 45.7 9.7 356.0 1.5	(MHz) (dBuV) (dB) (degrees) (meters) (meters) 7213.113 34.7 9.7 356.0 1.5 3.0 7215.984 33.9 9.7 138.0 1.0 3.0 7216.073 45.7 9.7 356.0 1.5 3.0	(MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) 7213.113 34.7 9.7 356.0 1.5 3.0 0.0 7215.984 33.9 9.7 138.0 1.0 3.0 0.0 7216.073 45.7 9.7 356.0 1.5 3.0 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity 7213.113 34.7 9.7 356.0 1.5 3.0 0.0 V-Horn 7215.984 33.9 9.7 138.0 1.0 3.0 0.0 H-Horn 7216.073 45.7 9.7 356.0 1.5 3.0 0.0 V-Horn	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector 7213.113 34.7 9.7 356.0 1.5 3.0 0.0 V-Horn AV 7215.984 33.9 9.7 138.0 1.0 3.0 0.0 H-Horn AV 7216.073 45.7 9.7 356.0 1.5 3.0 0.0 V-Horn PK	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector (dB) Adjustment (dB) 7213.113 34.7 9.7 356.0 1.5 3.0 0.0 V-Horn AV 0.0 7215.984 33.9 9.7 138.0 1.0 3.0 0.0 H-Horn AV 0.0 7216.073 45.7 9.7 356.0 1.5 3.0 0.0 V-Horn PK 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) </th <th>Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment dBuV/m Adjustment dBuV/m<th>Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment dBuV/m Adjustment dBuV/m Spec. Limit dBuV/m Spec. Limit (dB) 7213.113 34.7 9.7 356.0 1.5 3.0 0.0 V-Horn H-Horn AV 0.0 44.4 54.0 -9.6 7215.984 33.9 9.7 138.0 1.0 3.0 0.0 H-Horn H-Horn AV 0.0 43.6 54.0 -10.4 7216.073 45.7 9.7 356.0 1.5 3.0 0.0 V-Horn V-Horn PK 0.0 55.4 74.0 -18.6</th></th>	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment dBuV/m Adjustment dBuV/m <th>Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment dBuV/m Adjustment dBuV/m Spec. Limit dBuV/m Spec. Limit (dB) 7213.113 34.7 9.7 356.0 1.5 3.0 0.0 V-Horn H-Horn AV 0.0 44.4 54.0 -9.6 7215.984 33.9 9.7 138.0 1.0 3.0 0.0 H-Horn H-Horn AV 0.0 43.6 54.0 -10.4 7216.073 45.7 9.7 356.0 1.5 3.0 0.0 V-Horn V-Horn PK 0.0 55.4 74.0 -18.6</th>	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment dBuV/m Adjustment dBuV/m Spec. Limit dBuV/m Spec. Limit (dB) 7213.113 34.7 9.7 356.0 1.5 3.0 0.0 V-Horn H-Horn AV 0.0 44.4 54.0 -9.6 7215.984 33.9 9.7 138.0 1.0 3.0 0.0 H-Horn H-Horn AV 0.0 43.6 54.0 -10.4 7216.073 45.7 9.7 356.0 1.5 3.0 0.0 V-Horn V-Horn PK 0.0 55.4 74.0 -18.6

NORTHWEST **SPURIOUS RADIATED EMISSIONS DATA SHEET** EMI 2006.4.26 **EMC** EUT: Model: RM1 / PN: 200239-01 Serial Number: 01034100515 Work Order: AWAR0002 Date: 03/30/10 Customer: Awarepoint Corporation Temperature: 19C Attendees: Eric Hoffman Humidity: 30% Project: None Tested by: Jeremiah Darden TEST SPECIFICATIONS Barometric Pres.: 1016 Power: 3.3VDC Job Site: OC10 Test Method FCC 15.247: 2010 ANSI C63.10:2009 TEST PARAMETERS Antenna Height(s) (m) 1 - 4 Test Distance (m) 3 COMMENTS Y-axis worse case EUT OPERATING MODES 2440MHz DEVIATIONS FROM TEST STANDARD No deviations. 16 Run# Signature June 50-Configuration # 1 Results Pass 0.08 70.0 60.0 50.0 dBuV/m 40.0 30.0 20.0 10.0 0.0 $9700.000 \quad 9710.000 \quad 9720.000 \quad 9730.000 \quad 9740.000 \quad 9750.000 \quad 9760.000 \quad 9770.000 \quad 9780.000 \quad 9790.000 \quad 9800.000 \quad 9790.000 \quad 9790.0000$ MHz

						External			Distance			Compared to	Ĺ
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	ĺ
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	İ
9761.265	44.7	-12.1	11.0	1.5	0.0	0.0	V-Horn	AV	0.0	32.6	54.0	-21.4	
9761.318	44.6	-12.1	9.0	1.4	0.0	0.0	H-Horn	AV	0.0	32.5	54.0	-21.5	
9761.205	54.5	-12.1	11.0	1.5	0.0	0.0	V-Horn	PK	0.0	42.4	74.0	-31.6	
9761.315	54.5	-12.1	9.0	1.4	0.0	0.0	H-Horn	PK	0.0	42.4	74.0	-31.6	

NORTHWEST EMC	SF	PURIOL	JS RAD	IAT	ED	EMIS	SSI	ON	IS D	ATA	Sł	IEE]	Г			PSA 2008.0 EMI 2006.
	Model: RM1 /	PN: 200239-	01									W	ork O	rder:	AWAR	0002
Serial Number:			•												03/30/1	
	Awarepoint C											Ter	npera			
	Eric Hoffman											<u> </u>	Humi			
Project:	Jeremiah Da	rden				Po	wer.	3.3V	DC:			Barome			0C10	
ST SPECIFICAT		don				10	WOI.		Metho	d			000	Oito.	0010	
C 15.247: 2010								ANO	1 003.1	10:2009						
ST PARAMETER								,	, l		2					
enna Height(s) MMENTS	(m) 1 -	· 4				Test I	Dista	nce (m)		3					
T OPERATING I ISMHZ VIATIONS FROI		DARD														
deviations.	47															
n#	17										4		5			
nfiguration #	1 Pass									Ciamatum	1	119 -				
suits	rass									Signatur	е					
70.0																
60.0																
50.0 =																
40.0 H														•	•	
30.0															**	
20.0																
10.0																
0.0																
	9910.000	9920.000	9930.000	9940	0.000	9950.0	000	9960	0.000	9970 (000	9980.0	000	9990	.000	10000.000
3300.000	0010.000	3320.000	3000.000	0070		MH :		5500		5570.0	,00	5550.0	,00	5550		. 5000.000
Freq	Amplitude		imuth Heig		Distance (meters)	Exte Attenu	ation	Pol	arity	Detector		istance justment	Adju		Spec. L	

						External			Distance			Compared to	i
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	i
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
9994.726	38.0	-12.2	231.0	1.0	0.0	0.0	V-Horn	AV	0.0	25.8	54.0	-28.2	
9993.253	37.8	-12.2	301.0	1.0	0.0	0.0	H-Horn	AV	0.0	25.6	54.0	-28.4	
9994.841	49.6	-12.2	301.0	1.0	0.0	0.0	H-Horn	PK	0.0	37.4	74.0	-36.6	
9988.771	49.3	-12.2	231.0	1.0	0.0	0.0	V-Horn	PK	0.0	37.1	74.0	-36.9	
	(MHz) 9994.726 9993.253 9994.841	(MHz) (dBuV) 9994.726 38.0 9993.253 37.8 9994.841 49.6	(MHz) (dBuV) (dB) 9994.726 38.0 -12.2 9993.253 37.8 -12.2 9994.841 49.6 -12.2	(MHz) (dBuV) (dB) (degrees) 9994.726 38.0 -12.2 231.0 9993.253 37.8 -12.2 301.0 9994.841 49.6 -12.2 301.0	(MHz) (dBuV) (dB) (degrees) (meters) 9994.726 38.0 -12.2 231.0 1.0 9993.253 37.8 -12.2 301.0 1.0 9994.841 49.6 -12.2 301.0 1.0	(MHz) (dBuV) (dB) (degrees) (meters) (meters) 9994.726 38.0 -12.2 231.0 1.0 0.0 9993.253 37.8 -12.2 301.0 1.0 0.0 9994.841 49.6 -12.2 301.0 1.0 0.0	(MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) 9994.726 38.0 -12.2 231.0 1.0 0.0 0.0 9993.253 37.8 -12.2 301.0 1.0 0.0 0.0 9994.841 49.6 -12.2 301.0 1.0 0.0 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity 9994.726 38.0 -12.2 231.0 1.0 0.0 0.0 V-Horn 9993.253 37.8 -12.2 301.0 1.0 0.0 0.0 H-Horn 9994.841 49.6 -12.2 301.0 1.0 0.0 0.0 H-Horn	Freq (MHz) Amplitude (dBuV) Factor (dBu) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity (dB) Detector 9994.726 38.0 -12.2 231.0 1.0 0.0 0.0 V-Horn AV AV 9993.253 37.8 -12.2 301.0 1.0 0.0 0.0 H-Horn AV 9994.841 49.6 -12.2 301.0 1.0 0.0 0.0 H-Horn PK	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (degrees) Distance (meters) Attenuation (dB) Polarity Detector (dB) Adjustment (dB) 9994.726 38.0 -12.2 231.0 1.0 0.0 0.0 V-Horn AV 0.0 9993.253 37.8 -12.2 301.0 1.0 0.0 0.0 H-Horn AV 0.0 9994.841 49.6 -12.2 301.0 1.0 0.0 0.0 H-Horn PK 0.0	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector (dB) Adjustment (dB)	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment dBuV/m Adjustment dBuV/m Spec. Limit dBuV/m 9994.726 38.0 -12.2 231.0 1.0 0.0 0.0 V-Horn AV 0.0 25.8 54.0 9993.253 37.8 -12.2 301.0 1.0 0.0 0.0 H-Horn AV 0.0 25.6 54.0 9994.841 49.6 -12.2 301.0 1.0 0.0 0.0 H-Horn PK 0.0 37.4 74.0	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector (dB) Adjustment (dB) Adjusted (dB) Spec. Limit (dB) Spec. (dB) 9994.726 38.0 -12.2 231.0 1.0 0.0 0.0 V-Horn (MB) AV 0.0 25.8 54.0 -28.2 9993.253 37.8 -12.2 301.0 1.0 0.0 0.0 H-Horn (MB) AV 0.0 25.6 54.0 -28.4 9994.841 49.6 -12.2 301.0 1.0 0.0 0.0 H-Horn (MB) Polarity (MB) Height (MB) Height (MB) Spec. Limit (MB) Spec. Limit (MB) Spec. Limit (MB) Height (

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

2475 MHz, High channel

2405 MHz, Low channel

2440 MHz, Mid channel

POWER SETTINGS INVESTIGATED

120V/60Hz

CONFIGURATIONS INVESTIGATED

AWAR0002 - Config 2

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Pasternack	6N10W-20	AWC	1/27/2010	13 mo
OC06 Cables	None	CE Cables	OCM	3/8/2010	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFP	3/8/2010	13 mo
LISN	Solar	9252-50-R-24-BNC	LIC	3/10/2009	13 mo
Receiver	Rohde & Schwarz	ESCI	ARG	3/15/2010	13 mo

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

	Pea	ak Data - vs -	· Quasi Peak L	imit			Peak Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted ()	Spec. Limit	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted ()	Spec. Limit	Compared to Spec. (dB)		
3.928	13.0	20.5	33.5	56.0	-22.5	3.928	13.0	20.5	33.5	46.0	-12.5		
1.344	13.0	20.4	33.4	56.0	-22.6	1.344	13.0	20.4	33.4	46.0	-12.6		
2.688	12.6	20.5	33.1	56.0	-22.9	2.688	12.6	20.5	33.1	46.0	-12.9		
4.104	12.5	20.5	33.0	56.0	-23.0	4.104	12.5	20.5	33.0	46.0	-13.0		
2.792	12.2	20.5	32.7	56.0	-23.3	2.792	12.2	20.5	32.7	46.0	-13.3		
2.464	12.1	20.4	32.5	56.0	-23.5	2.464	12.1	20.4	32.5	46.0	-13.5		
3.264	11.9	20.5	32.4	56.0	-23.6	3.264	11.9	20.5	32.4	46.0	-13.6		
1.840	11.9	20.4	32.3	56.0	-23.7	1.840	11.9	20.4	32.3	46.0	-13.7		
3.664	11.8	20.5	32.3	56.0	-23.7	3.664	11.8	20.5	32.3	46.0	-13.7		
1.384	11.8	20.4	32.2	56.0	-23.8	1.384	11.8	20.4	32.2	46.0	-13.8		
2.216	11.8	20.4	32.2	56.0	-23.8	2.216	11.8	20.4	32.2	46.0	-13.8		
4.920	11.6	20.5	32.1	56.0	-23.9	4.920	11.6	20.5	32.1	46.0	-13.9		
2.008	11.6	20.4	32.0	56.0	-24.0	2.008	11.6	20.4	32.0	46.0	-14.0		
3.064	11.4	20.5	31.9	56.0	-24.1	3.064	11.4	20.5	31.9	46.0	-14.1		
4.608	11.4	20.5	31.9	56.0	-24.1	4.608	11.4	20.5	31.9	46.0	-14.1		
0.859	11.3	20.4	31.7	56.0	-24.3	0.859	11.3	20.4	31.7	46.0	-14.3		
0.675	11.1	20.4	31.5	56.0	-24.5	0.675	11.1	20.4	31.5	46.0	-14.5		
0.653	11.0	20.4	31.4	56.0	-24.6	0.653	11.0	20.4	31.4	46.0	-14.6		
0.821	11.0	20.4	31.4	56.0	-24.6	0.821	11.0	20.4	31.4	46.0	-14.6		

0.762

10.9

20.4

31.3

46.0

-14.7

10

100.00

0.10

1.00

10.00

100.00

10

0.762

10.9

20.4

31.3

56.0

-24.7

0.10

1.00

	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted ()	Spec. Limit	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted ()	Spec. Limit	Compared to Spec. (dB)
ı	1.240	12.3	20.4	32.7	56.0	-23.3		1.240	12.3	20.4	32.7	46.0	-13.3
	2.960	12.3	20.4	32.7	56.0	-23.3		2.960	12.3	20.4	32.7	46.0	-13.3
	4.456	12.1	20.5	32.6	56.0	-23.4		4.456	12.1	20.5	32.6	46.0	-13.4
	3.096	11.9	20.5	32.4	56.0	-23.6		3.096	11.9	20.5	32.4	46.0	-13.6
	0.726	11.9	20.4	32.3	56.0	-23.7		0.726	11.9	20.4	32.3	46.0	-13.7
	2.192	11.9	20.4	32.3	56.0	-23.7		2.192	11.9	20.4	32.3	46.0	-13.7
	2.416	11.8	20.4	32.2	56.0	-23.8		2.416	11.8	20.4	32.2	46.0	-13.8
	4.608	11.6	20.5	32.1	56.0	-23.9		4.608	11.6	20.5	32.1	46.0	-13.9
	0.507	11.5	20.5	32.0	56.0	-24.0		0.507	11.5	20.5	32.0	46.0	-14.0
	0.626	11.6	20.4	32.0	56.0	-24.0		0.626	11.6	20.4	32.0	46.0	-14.0
	0.828	11.6	20.4	32.0	56.0	-24.0		0.828	11.6	20.4	32.0	46.0	-14.0
	1.464	11.5	20.4	31.9	56.0	-24.1		1.464	11.5	20.4	31.9	46.0	-14.1
	2.016	11.4	20.4	31.8	56.0	-24.2		2.016	11.4	20.4	31.8	46.0	-14.2
	0.473	11.6	20.5	32.1	56.5	-24.4		0.473	11.6	20.5	32.1	46.5	-14.4
	0.567	11.1	20.5	31.6	56.0	-24.4		0.567	11.1	20.5	31.6	46.0	-14.4
	0.544	10.9	20.5	31.4	56.0	-24.6		0.544	10.9	20.5	31.4	46.0	-14.6
	0.842	10.7	20.4	31.1	56.0	-24.9		0.842	10.7	20.4	31.1	46.0	-14.9
	0.609	10.4	20.4	30.8	56.0	-25.2		0.609	10.4	20.4	30.8	46.0	-15.2
	0.312	13.0	20.7	33.7	59.9	-26.2		0.312	13.0	20.7	33.7	49.9	-16.2
	11.470	12.9	20.7	33.6	60.0	-26.4		11.470	12.9	20.7	33.6	50.0	-16.4

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted ()	Spec. Limit	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted	Spec. Limit	Compared to Spec. (dB)
(-				(-	-	
3.640	13.3	20.5	33.8	56.0	-22.2	_	3.640	13.3	20.5	33.8	46.0	-12.2
2.960	12.3	20.5	32.8	56.0	-23.2		2.960	12.3	20.5	32.8	46.0	-13.2
1.248	11.9	20.4	32.3	56.0	-23.7		1.248	11.9	20.4	32.3	46.0	-13.7
2.176	11.9	20.4	32.3	56.0	-23.7		2.176	11.9	20.4	32.3	46.0	-13.7
0.597	11.8	20.4	32.2	56.0	-23.8		0.597	11.8	20.4	32.2	46.0	-13.8
1.656	11.8	20.4	32.2	56.0	-23.8		1.656	11.8	20.4	32.2	46.0	-13.8
2.656	11.7	20.5	32.2	56.0	-23.8		2.656	11.7	20.5	32.2	46.0	-13.8
3.336	11.6	20.5	32.1	56.0	-23.9		3.336	11.6	20.5	32.1	46.0	-13.9
4.312	11.6	20.5	32.1	56.0	-23.9		4.312	11.6	20.5	32.1	46.0	-13.9
1.496	11.6	20.4	32.0	56.0	-24.0		1.496	11.6	20.4	32.0	46.0	-14.0
3.264	11.5	20.5	32.0	56.0	-24.0		3.264	11.5	20.5	32.0	46.0	-14.0
4.248	11.5	20.5	32.0	56.0	-24.0		4.248	11.5	20.5	32.0	46.0	-14.0
4.976	11.5	20.5	32.0	56.0	-24.0		4.976	11.5	20.5	32.0	46.0	-14.0
0.731	11.5	20.4	31.9	56.0	-24.1		0.731	11.5	20.4	31.9	46.0	-14.1
0.740	11.5	20.4	31.9	56.0	-24.1		0.740	11.5	20.4	31.9	46.0	-14.1
1.904	11.5	20.4	31.9	56.0	-24.1		1.904	11.5	20.4	31.9	46.0	-14.1
0.643	11.4	20.4	31.8	56.0	-24.2		0.643	11.4	20.4	31.8	46.0	-14.2
0.473	11.7	20.5	32.2	56.5	-24.3		0.473	11.7	20.5	32.2	46.5	-14.3
0.801	11.3	20.4	31.7	56.0	-24.3		0.801	11.3	20.4	31.7	46.0	-14.3

0.482

11.4

20.5

31.9

46.3

-14.4

0.482

11.4

20.5

31.9

56.3

-24.4

