Ph.D. QUALITYING EXAMINATION REAL ANALYSIS (April 30, 1984)

Let (x,A,μ) be a measure space, (Y,B) a measurable space, and $\phi\colon X\to Y$ a measurable mapping. Define

$$v(E) = \mu(\phi^{-1}(E))$$
 for $E \in B$.

Prove:

- (a) ν is a measure on \mathcal{B} .
- (b) If f is a numerise measurable function on Y, then $\int f d\nu = \int f \circ \varphi d\mu \, .$

Let $f, f_1, f_2, ...$ be a sequence in $L^1(X, A, \mu)$ such that $f_n \to f$ as $n \to \infty$ in L^1 -norm. Prove:

- (a) There exists a subsequence (f) of (f) such that $\lim_{k\to\infty} f(x) = f(x)$ for $\mu-$ almost all $x\in X$.

Prove that

$$\int \log |f| d\mu \ge K$$
.

Remark and Hint: Notice $\log 0 = -\infty$ (by definition) and $t - \log t \ge 0$.

Let f,g ϵ L¹(IR) be Borel measurable and write

$$(f*g)(x) = \int_{JR} f(x - y)g(y) dy.$$

Prove that f*g is defined a.e. on IR, Borel measurable, and satisfies $||f*g||_1 \le ||f||_1 \cdot ||g||_1$.

4. Let $f \in L^1(\mathbb{R})$ and

$$G(x) = \exp(-x^2)$$
 for $x \in \mathbb{R}$.

Prove that G*f is infinitely differentiable.

Use the relation

$$\frac{1}{x} = \int_0^\infty e^{-xt} dt \quad (x > 0)$$

to prove that

$$\lim_{A\to\infty}\int_0^A \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Time saver: You may use:

$$\frac{d}{dx} \left[-e^{-xt} (t \sin x + \cos x) \right] = (1 + t^2) e^{-xt} \sin x.$$

Let f be a complex function on IR such that fg ϵ L¹(IR) for every $g \in L^2(\mathbb{R})$. Prove that $f \in L^2(\mathbb{R})$.

Hint: Closed Graph Theorem or Uniform Boundedness Principle.

Let μ be a nonnegative finite (regular) Borel measure on 7. IR. Prove that if E is a Borel subset of IR, then the function f defined by

$$f(x) = \mu(E - x)$$

is Borel measurable.

Hint: If E is compact, then $\{x \in \mathbb{R}: f(x) < a\}$ is open for each a E IR.

8. Let f be a complex function on [0,1] which is continuous at 0 and in $I_{i}^{1}([0,1])$. Prove that $\lim_{n\to\infty} \int_{0}^{1} f(x^{n}) dx = f(0).$

Suppose that $(c_n)_{n=0}^{\infty} \subset \mathbb{C}$ and A ϵ IR satisfy

$$\left|\sum_{j=0}^{n} a_{j} c_{j}\right| \stackrel{\leq}{=} A \cdot \sup_{0 \le x \le 1} \left|\sum_{j=0}^{n} a_{j} x^{j}\right|$$

whenever $n \in \mathbb{N}$ and $(a_j)_{j=0}^n \subset \mathfrak{C}$. Prove that there exists a unique $\mu \in M([0,1])$ such that

$$c_n = \int_{[0,1]} x^n d\mu(x)$$

for all $n \stackrel{>}{=} 0$.

Let μ , τ ϵ M($\uparrow \uparrow$) satisfy τ << μ . Prove that if .10. $\lim_{\mu \to 0} \hat{\mu}(n) = 0$, then $\lim_{\tau \to 0} \hat{\tau}(n) = 0$. For μ and $n \in \mathbb{Z}$, $\hat{\mu}(n)$ is defined by

$$\hat{\mu}(n) = \int_{\pi} e^{-int} d\mu(t)$$
.