4.1. Refer to the diagram below. ABCDE is a pentagon such that BC // AE, AB = BC + AE and $\angle B = \angle D$. Let M be the midpoint of CE and O be the circumcenter of $\triangle BCD$. Show that if $OM \perp MD$ then $\angle CDE = 2\angle ADB$.

Sol: Refer to the left diagram below. Extend AE to G such that BC = EG. Since AB = BC + AE, we have AB = AG.

Now $\angle ABG = \angle AGB = \angle CBG$ (because AE // BC), i.e., BG bisects $\angle ABC$. It is also easy to see that BCGE is a parallelogram where M is the center.

We claim that A, B, D, G are coney clic. (1)

Notice that (1) would imply that $\angle ADB = \angle AGB$, which leads to the conclusion because $\angle AGB = \angle CBG = \frac{1}{2} \angle ABC = \frac{1}{2} \angle CDE$.

Refer to the right diagram above. It suffices to show that $\angle BDG = 180^{\circ} - \angle A$, where $180^{\circ} - \angle A = \angle ABC = \angle CDE$. Hence, it suffices to show $\angle BDG = \angle CDE$, or $\angle BDC = \angle EDG$. (2)

Let D' be the reflection of D about OM. Refer to the diagram below. Since OD = OD', D' must lie on $\bigcirc O$ whose radius is OD. Notice that $\bigcirc O$ is exactly the circumcircle of $\triangle BCD$, i.e., B, C, D, D' are concyclic.

Now $\angle BDC = \angle 1$. (3)

On the other hand, one sees that *CDED*' is a parallelogram because *DD*' and *CE* bisect each other at *M*

It follows that CD' = DE' and CD' // DE. Now it is easy to see that $\triangle BCD' \cong \triangle GED$ (S.A.S.). We conclude that $\angle EDG = \angle 1$. (4).

(3) and (4) imply (2), which completes the proof.

On the other hand