```
In [163]: # Standard imports
          import numpy as np
          import pandas as pd
          from pandas import DataFrame
          # Visualization libraries
          import seaborn as sns
          import matplotlib.pyplot as plt
          %matplotlib inline
          from matplotlib import pyplot as plt
          plt.style.use('ggplot')
          # Scikit-Learn
          import sklearn
          from sklearn import datasets
          from sklearn.tree import DecisionTreeRegressor
          from sklearn.model_selection import train_test_split
          from sklearn import metrics
          from sklearn.metrics import classification_report
          from sklearn import preprocessing
          from sklearn.metrics import mean_absolute_error as MAE
          from sklearn.metrics import mean_squared_error as MSE
           # Import model, splitting method & metrics from sklearn
          from sklearn.ensemble import RandomForestRegressor
          from sklearn.metrics import accuracy score
          from sklearn.model selection import GridSearchCV
          from sklearn.model_selection import KFold
          from sklearn.model selection import cross val score
          from sklearn.model selection import cross val predict
```

```
In [164]: #load the dataset
df = pd.read_csv("medical clean 1.1.23.csv")
```

In [165]: #examine the first 5 records of data
df.head()

Out[165]:

	CaseOrder	Customer_id	Interaction	UID	City	State	
0	1	C412403	8cd49b13- f45a-4b47- a2bd- 173ffa932c2f	3a83ddb66e2ae73798bdf1d705dc0932	Eva	AL	
1	2	Z919181	d2450b70- 0337-4406- bdbb- bc1037f1734c	176354c5eef714957d486009feabf195	Marianna	FL	
2	3	F995323	a2057123- abf5-4a2c- abad- 8ffe33512562	e19a0fa00aeda885b8a436757e889bc9	Sioux Falls	SD	Miı
3	4	A879973	1dec528d- eb34-4079- adce- 0d7a40e82205	cd17d7b6d152cb6f23957346d11c3f07	New Richland	MN	
4	5	C544523	5885f56b- d6da-43a3- 8760- 83583af94266	d2f0425877b10ed6bb381f3e2579424a	West Point	VA	

5 rows × 50 columns

```
In [166]: #view describe df.info
```

Out[166]:	66]: <bound \<="" caseorder="" customer_id="" dataframe.info="" interaction="" method="" of="" th=""></bound>											
	0		1 (412403	8cd4	49b13-	f45a-4	4b47-a2bd	-173ffa	1932c2f		
	1			919181				1406-bdbb				
	2			995323				1a2c-abad				
	3			879973				1079-adce				
	4		5 C	544523	5885	o†56b-	·d6da-4	13a3-8760	-83583a	1+94266		
	9995	9		863060	a25l	594d -	0328-4	186f-a9b9	-0567eb	0f9723		
	9996	9	997 P	712040	7073	11574-	f7b1-4	4a17-b15f	-48c545	64b70f		
	9997	9	998 R	778890	1 d79	9569d -	8e0f-4	4180-a207	-d67ee4	527d26		
	9998	9	999 E	344109	f5a6	58e69 -	2a60-4	109b-a92f	-ac0847	'b27db0		
	9999	16	9000 I	569847	bc48	32c02 -	f8c9-4	1423 - 99de	-3db5e6	2a18d5		
						UID	١	City	Stato	Coun	+,, \	
	0	220244	lb66e2ae73	200P9 1 2	14705			=	State	Coun	-	
								Eva	AL	Morg		
	1		c5eef7149					Marianna	FL	Jacks		
	2		a00aeda88					oux Falls		Minneha		
	3		'b6d152cb6					Richland	MN	Wase		
	4	d2f042	25877b 1 0ed	6bb381	f3e257	79424a	ı We	est Point	VA	King Willi		
		20404		74040	450	•••					• •	
	9995		lc28cc0388					Norlina	NC	Warr		
	9996		ccd431474					Milmay		Atlant		
	9997		aeee97a5b					Southside	TN	Montgome	_	
	9998		.ef5b1beb1					Quinn	SD	Penningt	on	
	9999	95663a	1202338000	abdf7e	993 11 0	c2a8a1	. Co	oraopolis	PA	Alleghe	ny	
		Zip	Lat		Lng		Tota]	lCharge A	ddition	al_charges	Item1	\
	0	35621	34.34960		72508			.702860		939.403420	3	,
	1	32446	30.84513		22907			.190458		612.998120	3	
	2	57110	43.54321		53772	• • •		.234222		7505.192460	2	
	3	56072	43.89744			• • •		.830423		993.437350	3	
	4	23181	37.59894	-76.8		• • •	2113	.073274	3	716.525786	2	
	0005	27562	26 42006	70 ′		• • •	COFO	042000	0		• • •	
	9995	27563	36.42886		23716	• • •		.942000		927.642000	3	
	9996	8340	39.43609		37302	• • •		.690000		507.150000	3	
	9997	37171	36.36655		29988	• • •		.481000		281.210000	3	
	9998	57775	44.10354	-102.6	ð 1 590		7644	.483000	7	781.678000	5	
	9999	15108	40.49998	-80.1	19959	• • •	7887	.553000	11	.643.190000	4	
		Item2	Item3 It	em4 I1	tem5 I	Item6	Item7	Item8				
	0	3	2	2	4	3	3	4				
	1	4	3	4	4	4	3	3				
	2	4	4	4	3	4	3	3				
	3	5	5		4	5	5	5				
				3								
	4	1	3	3	5	3	4	3				
	9995	2	2	3	4	3	4	2				
						3						
	9996	3	4	2	5		4	4				
	9997	3	3	4	4	2	3	2				
	9998	5	3	4	4	3	4	3				
	9999	3	3	2	3	6	4	3				

[10000 rows x 50 columns]>

In [167]: #descriptive stats

df.describe()

Out[167]:

	CaseOrder	Zip	Lat	Lng	Population	Children	
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000
mean	5000.50000	50159.323900	38.751099	-91.243080	9965.253800	2.097200	53
std	2886.89568	27469.588208	5.403085	15.205998	14824.758614	2.163659	20
min	1.00000	610.000000	17.967190	- 174.209700	0.000000	0.000000	18
25%	2500.75000	27592.000000	35.255120	-97.352982	694.750000	0.000000	36
50%	5000.50000	50207.000000	39.419355	-88.397230	2769.000000	1.000000	53
75%	7500.25000	72411.750000	42.044175	-80.438050	13945.000000	3.000000	71
max	10000.00000	99929.000000	70.560990	-65.290170	122814.000000	10.000000	89

8 rows × 23 columns

In [168]: #check for null values

df.isnull()

Out[168]:

	CaseOrder	Customer_id	Interaction	UID	City	State	County	Zip	Lat	Lng	 Tc
0	False	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	False	
9995	False	False	False	False	False	False	False	False	False	False	
9996	False	False	False	False	False	False	False	False	False	False	
9997	False	False	False	False	False	False	False	False	False	False	
9998	False	False	False	False	False	False	False	False	False	False	
9999	False	False	False	False	False	False	False	False	False	False	

10000 rows × 50 columns

Out[169]: CaseOrder int64 Customer_id object Interaction object UID object City object State object County object Zip int64 Lat float64 float64 Lng Population int64 Area object TimeZone object Job object Children int64 int64 Age Income float64 Marital object Gender object object ReAdmis VitD_levels float64 Doc_visits int64 int64 Full meals eaten vitD_supp int64 Soft drink object Initial admin object HighBlood object Stroke object Complication_risk object **Overweight** object Arthritis object Diabetes object Hyperlipidemia object BackPain object Anxiety object Allergic_rhinitis object Reflux esophagitis object Asthma object Services object Initial days float64 float64 TotalCharge Additional_charges float64 Item1 int64 Item2 int64 Item3 int64 Item4 int64 Item5 int64 Item6 int64 Item7 int64 Item8 int64 dtype: object

```
In [170]: #change to integers
          df['TotalCharge'] = df['TotalCharge'].astype(int)
          df['Initial_days'] = df['Initial_days'].astype(int)
          #Change object to category
          df["Gender"] = df["Gender"].astype('category')
          df["ReAdmis"] = df["ReAdmis"].astype('category')
          df["Soft_drink"] = df["Soft_drink"].astype('category')
          df["Initial_admin"] = df["Initial_admin"].astype('category')
          df["HighBlood"] = df["HighBlood"].astype('category')
          df["Stroke"] = df["Stroke"].astype('category')
          df["Overweight"] = df["Overweight"].astype('category')
          df["Arthritis"] = df["Arthritis"].astype('category')
          df["Diabetes"] = df["Diabetes"].astype('category')
          df["Hyperlipidemia"] = df["Hyperlipidemia"].astype('category')
          df["BackPain"] = df["BackPain"].astype('category')
          df["Anxiety"] = df["Anxiety"].astype('category')
          df["Allergic_rhinitis"] = df["Allergic_rhinitis"].astype('category')
          df["Reflux_esophagitis"] = df["Reflux_esophagitis"].astype('category')
          df["Services"] = df["Services"].astype('category')
          df["Asthma"] = df["Asthma"].astype('category')
          df["Marital"] = df["Marital"].astype('category')
          df["Complication_risk"] = df["Complication_risk"].astype('category')
In [171]: #drop columns not being used
          to_drop = ['CaseOrder', 'Customer_id', 'Marital', 'Age', 'Hyperlipidemia', 'Asthr
          df.drop(to drop, inplace=True, axis=1)
In [172]:
          #check data types
          df.dtypes
Out[172]: ReAdmis
                               category
          Doc visits
                                  int64
          Full_meals_eaten
                                  int64
          Soft drink
                               category
          HighBlood
                               category
          Stroke
                               category
          Overweight
                               category
          Arthritis
                               category
          Diabetes
                               category
          BackPain
                               category
          Anxiety
                               category
          dtype: object
```

```
In [173]: dummies on categorical
mmies(df, columns = ['ReAdmis', 'HighBlood', 'Overweight','Soft_drink', 'Stroke',
```

Out[173]:

		Doc_visits	Full_meals_eaten	ReAdmis_No	ReAdmis_Yes	HighBlood_No	HighBlood_Yes	O١
	0	6	0	1	0	0	1	
	1	4	2	1	0	0	1	
	2	4	1	1	0	0	1	
	3	4	1	1	0	1	0	
	4	5	0	1	0	1	0	
,	9995	4	2	1	0	0	1	
,	9996	5	0	0	1	0	1	
9	9997	4	2	0	1	0	1	
9	9998	5	2	0	1	1	0	
,	9999	5	0	0	1	1	0	

10000 rows × 20 columns

```
In [174]: the get dummies responses
mmies(df, columns = ['ReAdmis', 'HighBlood', 'Overweight','Soft_drink', 'Stroke',
```

```
In [175]: #check data types
          df_ready.dtypes
Out[175]: Doc_visits
                               int64
          Full_meals_eaten
                               int64
          ReAdmis No
                               uint8
          ReAdmis_Yes
                               uint8
          HighBlood_No
                               uint8
          HighBlood Yes
                               uint8
          Overweight_No
                               uint8
          Overweight_Yes
                               uint8
          Soft_drink_No
                               uint8
          Soft_drink_Yes
                               uint8
          Stroke_No
                               uint8
          Stroke Yes
                               uint8
          Arthritis_No
                               uint8
          Arthritis_Yes
                               uint8
          Diabetes_No
                               uint8
          Diabetes Yes
                               uint8
          BackPain_No
                               uint8
          BackPain_Yes
                               uint8
          Anxiety_No
                               uint8
          Anxiety_Yes
                               uint8
          dtype: object
In [176]: #drop multiple columns by name
          df_ready.drop(['ReAdmis_No', 'HighBlood_No', 'Overweight_No', 'Soft_drink_No',
In [177]: #check data types
          df_ready.dtypes
Out[177]: Doc visits
                               int64
          Full_meals_eaten
                               int64
          ReAdmis_Yes
                               uint8
          HighBlood Yes
                               uint8
          Overweight Yes
                               uint8
          Soft_drink_Yes
                               uint8
          Stroke_Yes
                               uint8
          Arthritis_Yes
                               uint8
          Diabetes_Yes
                               uint8
          BackPain_Yes
                               uint8
          Anxiety Yes
                               uint8
          dtype: object
```

```
In [178]: #view histograms to get a feel for the data
plt.style.use('ggplot')

X = df_ready.drop('ReAdmis_Yes', 1).values

# drop target variable
y1 = df_ready['ReAdmis_Yes'].values
pd.DataFrame.hist(df_ready, figsize = [10,10]);
plt.show()
```

C:\Users\Brittany\AppData\Local\Temp\ipykernel_14284\3692946228.py:4: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only.

X = df_ready.drop('ReAdmis_Yes', 1).values

In [179]: # A scatterplot to get an idea of correlations between potentially related varial
sns.scatterplot(x=df_ready['HighBlood_Yes'], y=df_ready['ReAdmis_Yes'], color='gr
plt.show()

In [180]: # A scatterplot to get an idea of correlations between potentially related varial
sns.scatterplot(x=df_ready['Full_meals_eaten'], y=df_ready['ReAdmis_Yes'], color=
plt.show()

In [181]: # A scatterplot to get an idea of correlations between potentially related varial
sns.scatterplot(x=df_ready['Doc_visits'], y=df_ready['ReAdmis_Yes'], color='greer
plt.show()

In [183]: # A scatterplot to get an idea of correlations between potentially related varial
sns.scatterplot(x=df_ready['Soft_drink_Yes'], y=df_ready['ReAdmis_Yes'], color='
plt.show()

In [184]: # A scatterplot to get an idea of correlations between potentially related varial
sns.scatterplot(x=df_ready['Stroke_Yes'], y=df_ready['ReAdmis_Yes'], color='greer
plt.show()

In [185]: # A scatterplot to get an idea of correlations between potentially related varial
sns.scatterplot(x=df_ready['Arthritis_Yes'], y=df_ready['ReAdmis_Yes'], color='gr
plt.show()

In [186]: # A scatterplot to get an idea of correlations between potentially related variate
sns.scatterplot(x=df_ready['Diabetes_Yes'], y=df_ready['ReAdmis_Yes'], color='gree
plt.show()

In [188]: # A scatterplot to get an idea of correlations between potentially related varial
sns.scatterplot(x=df_ready['Anxiety_Yes'], y=df_ready['ReAdmis_Yes'], color='gree
plt.show()


```
In [189]: # set the plot style to ggplot
plt.style.use('ggplot')
```

```
In [190]: # Countplots of categorical variables
plt.figure()
sns.countplot(x='HighBlood_Yes', hue='ReAdmis_Yes', data=df_ready, palette='RdBu
plt.xticks([0,1], ['No', 'Yes'])
plt.show()
```



```
In [192]: # Countplots of categorical variables
    plt.figure()
    sns.countplot(x='Soft_drink_Yes', hue='ReAdmis_Yes', data=df_ready, palette='RdBu
    plt.xticks([0,1], ['No', 'Yes'])
    plt.show()
```



```
In [193]: # Countplots of categorical variables
    plt.figure()
    sns.countplot(x='Stroke_Yes', hue='ReAdmis_Yes', data=df_ready, palette='RdBu')
    plt.xticks([0,1], ['No', 'Yes'])
    plt.show()
```


In [194]: # Countplots of categorical variables plt.figure() sns.countplot(x='Arthritis_Yes', hue='ReAdmis_Yes', data=df_ready, palette='RdBu plt.xticks([0,1], ['No', 'Yes']) plt.show()


```
In [196]: # Countplots of categorical variables
    plt.figure()
    sns.countplot(x='BackPain_Yes', hue='ReAdmis_Yes', data=df_ready, palette='RdBu')
    plt.xticks([0,1], ['No', 'Yes'])
    plt.show()
```



```
In [197]: # Countplots of categorical variables
plt.figure()
sns.countplot(x='Anxiety_Yes', hue='ReAdmis_Yes', data=df_ready, palette='RdBu')
plt.xticks([0,1], ['No', 'Yes'])
plt.show()
```



```
In [198]: # A scatter matrix of the discrete variables for high Level overview of potential
    df_discrete = df_ready[['Doc_visits', 'Full_meals_eaten']]
    pd.plotting.scatter_matrix(df_discrete, figsize = [20, 20])
```



```
In [199]: #save prepared data
df_ready.to_csv('Documents/PreparedData D209 Task2.csv')
```

```
In [200]: # List features for analysis
          features = (list(df_ready.columns[:-1]))
          print('Features for analysis include: \n', features)
          Features for analysis include:
           ['Doc_visits', 'Full_meals_eaten', 'ReAdmis_Yes', 'HighBlood_Yes', 'Overweight
          _Yes', 'Soft_drink_Yes', 'Stroke_Yes', 'Arthritis_Yes', 'Diabetes_Yes', 'BackPa
          in_Yes']
In [201]: # Re-read fully numerical prepared dataset
          df_ready = pd.read_csv("PreparedData D209 Task2.csv")
In [202]: # Set predictor features & target variable
          X = df_ready.drop('ReAdmis_Yes', axis=1).values
          y = df_ready['ReAdmis_Yes'].values
In [203]: # Create training and test sets
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, rande
In [204]: # Export y test dataset
          y_test_df_ready = pd.DataFrame(X_test)
          y_test_df_ready.to_csv('Documents/PreparedData D209 y_test Task2.csv')
In [205]: |# Export y train dataset
          y_train_df_ready = pd.DataFrame(X_train)
          y_train_df_ready.to_csv('Documents/PreparedData D209 y_train Task2.csv')
In [206]: # Export X train dataset
          X_train_df_ready = pd.DataFrame(X_train)
          X_train_df_ready.to_csv('Documents/PreparedData D209 X_train Task2.csv')
In [207]: # Export X test dataset
          X_test_df_ready = pd.DataFrame(X_test)
          X_test_df_ready.to_csv('Documents/PreparedData D209 X_test Task2.csv')
In [267]: # Instantiate Decision Tree Regressor model
          dt = DecisionTreeRegressor(max_depth = 8, min_samples_leaf = 0.1, random_state =
In [268]: |# Fit dataframe to Decision Tree Regressor model
          dt.fit(X_train, y_train)
Out[268]:
                                     DecisionTreeRegressor
           DecisionTreeRegressor(max_depth=8, min_samples_leaf=0.1, random_state=1)
In [269]: |# Predict Outcomes from test set
          y_pred = dt.predict(X_test)
In [270]: # Compute test set MSE
          mse_dt = MSE(y_test, y_pred)
```

```
In [271]: # Compute test set RMSE
          rmse dt = mse dt**(1/2)
In [272]: # Print initial RMSE
          print('Initial RMSE score Decision Tree Regressor model: {:.3f}'.format(rmse dt))
          Initial RMSE score Decision Tree Regressor model: 0.302
In [273]: # Compute the coefficient of determination (R-squared)
          scores = cross_val_score(dt, X, y, scoring='r2')
In [274]: # Print R-squared value
          print('Cross validation R-squared values: ', scores)
          Cross validation R-squared values: [ 1.
                                                             1.
                                                                          0.56957248 -0.005
          45571 -0.00253707]
In [275]: # Print Mean Squared Error
          print('With a manual calculation, the Mean Squared Error: {:.3f} '.format(sum(ab
          With a manual calculation, the Mean Squared Error: 0.091
In [276]: print('Using scikit-lean, the Mean Squared Error: {:.3f}'.format(MSE(y test, y print))
          Using scikit-lean, the Mean Squared Error: 0.091
In [277]: # Calculate & print the Root Mean Squared Error
          RMSE = MSE(y_{test}, y_{pred})**(1/2)
In [278]: # Print the Root Mean Squared Error
          print('Root Mean Squared Error: {:.3f} '.format(RMSE))
          Root Mean Squared Error: 0.302
In [279]:
          # Get parameters of Decision Tree Regression model for cross validation
          dt.get_params()
Out[279]: {'ccp alpha': 0.0,
            'criterion': 'squared error',
            'max depth': 8,
            'max features': None,
            'max_leaf_nodes': None,
            'min impurity decrease': 0.0,
            'min_samples_leaf': 0.1,
            'min samples split': 2,
            'min_weight_fraction_leaf': 0.0,
            'random_state': 1,
            'splitter': 'best'}
```

```
In [280]: # Define grid of hyperparameters
          params_dt = {'max_depth': [4, 6, 8],
           'min_samples_leaf': [0.1, 0.2],
           'max_features': ['log2', 'sqrt']}
In [281]: # Re-instantiate Decision Tree Regressor for cross validation
          dt = DecisionTreeRegressor()
In [282]: # Instantiate GridSearch cross validation
          dt_cv = GridSearchCV(estimator=dt,
           param_grid=params_dt,
           scoring='neg_mean_squared_error',
           cv=5,
           verbose=1,
           n_{jobs=-1}
In [283]: # Fit model to
          dt_cv.fit(X_train, y_train)
          Fitting 5 folds for each of 12 candidates, totalling 60 fits
Out[283]:
                       GridSearchCV
            ▶ estimator: DecisionTreeRegressor
                 ▶ DecisionTreeRegressor
In [284]: # Print best parameters
          print('Best parameters for this Decision Tree Regressor model: {}'.format(dt_cv.\)
          Best parameters for this Decision Tree Regressor model: {'max depth': 4, 'max f
          eatures': 'log2', 'min samples leaf': 0.2}
In [285]: print('Best score for this Decision Tree Regressor model: {:.3f}'.format(dt_cv.be
          Best score for this Decision Tree Regressor model: -0.122
  In [ ]:
```