Anna KACPRZAK, Liliana KRZYSTEK, Stanisław LEDAKOWICZ

anna.kacprzak@wipos.p.lodz.pl

Katedra Inżynierii Bioprocesowej, Wydział Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka, Łódź

Badania biochemicznego potencjału metanogennego wybranych roślin energetycznych

Wstęp

Biomasa pochodząca z plantacji roślin energetycznych może być przeznaczona do produkcji energii elektrycznej lub cieplnej, a także do wytwarzania paliwa ciekłego lub gazowego [1]. Technologie prowadzenia procesu fermentacji metanowej są nadal intensywnie rozwijane, wiele firm wprowadza własne, innowacyjne modyfikacje sposobu i warunków prowadzenia procesu, by uczynić go bardziej efektywnym i opłacalnym [2].

Celem niniejszej pracy było określenie podatności na rozkład beztlenowy oraz produktywności biogazu z kiszonek roślin energetycznych. Zakres badań obejmował analizy wstępne surowca i analizę jego biogazodochodowości oraz wyznaczenie modelu kinetycznego opisującego całkowitą produkcję metanu.

Materialy i metody

Przeprowadzono eksperymenty mające na celu określenie podatności na rozkład beztlenowy i produktywność biogazu z kiszonek roślin energetycznych (żyto, mozga, topinambur, sida, pszenżyto, kukurydza, sorgo). W pierwszej serii badaniom poddano: mozgę, żyto, topinambur, sidę; natomiast w serii drugiej: pszenżyto, kukurydzę i sorgo. Serie te różniły się zastosowanym inokulum. W drugiej serii zastosowano inokulum zawierające więcej "wygłodniałych" bakterii, które szybciej i łatwiej przystosowują się do nowego substratu. Masę fermentowanych roślin dobrano tak, aby początkowe obciążenie było zbliżone do 5 kg s.m.o./m³. Czasy prowadzonych procesów fermentacji w serii pierwszej wahały się w granicach 82–105 dni, natomiast w serii drugiej z innym inokulum 37–55 dni. Parametry operacyjne przeprowadzonych procesów fermentacji zestawiono w tab. 1, a tab. 2 przedstawia ogólną charakterystykę badanych kiszonek.

Tab. 1. Parametry procesu fermentacji dla poszczególnych substratów

	Parametry fermentacji					
	Masa fermento- wana [g]	Obciążenie początkowe bioreaktora [kg s.m.o./m³]	Całkowity czas fermentacji [doba]	Czas, w którym powstało 90% biogazu [doba]		
Mozga	15,45	5,09	86	55		
Żyto	9,0	5,0	82	67		
Topinambur	17,54	5,02	105	70		
Sida	12,04	5,0	105	70		
Pszenżyto	28,71	14,84	55	38		
Kukurydza	7,27	4,94	37	18		
Sorgo	10,77	4,71	37	19		

Tab. 2. Ogólna charakterystyka substratów

	Ogólna charakterystyka substratów						
	Sucha masa [%]	Sucha masa organiczna [%]	ChZT [gO ₂ /g s.m.]	Azot ogólny Kiejdahla [% s.m.]	рН		
Mozga	18,6	88,5	1,45	2,38	4,83		
Żyto	29,6	93,9	1,02	1,22	4,06		
Topinambur	16,1	88,9	1,06	1,3	3,9		
Sida	22,3	93,2	0,83	2,26	4,93		
Pszenżyto	27,7	93,3	1,47	1,4	3,82		
Kukurydza	33,3	96	1,1	1,22	3,94		
Sorgo	23.4	93.5	1.36	1.32	4,44		

Wyniki badań i dyskusja

Na podstawie przeprowadzonych badań doświadczalnych rozkładu beztlenowego kiszonek roślin energetycznych, obliczono wydajności produkcji biogazu i metanu w odniesieniu do: kg świeżej masy, kg suchej masy oraz kg suchej masy organicznej, które zestawiono w tab. 3. Największą wydajność produkcji biogazu z kilograma świeżej masy otrzymano z kiszonki żyta 213 Ndm³/kg ś.m., a najniższą z kiszonki sorgo 86 Ndm³/kg ś.m.

Tab. 3. Wydajność produkcji biogazu i metanu

	Wydajność produkcji						
	Biogaz			Metan			
	Ndm ³ / Ndm ³ / Ndm ³ /		Ndm ³ CH ₄ /	Ndm ³ CH ₄ /	Ndm ³ CH ₄ /		
	kg ś.m.	kg s.m.	kg s.m.o.	kg ś.m.	kg s.m.	kg s.m.o.	
Mozga	102	551	622	55	295	333	
Żyto	213	721	768	119	402	428	
Topinambur	116	722	812	89	551	619	
Sida	145	652	700	106	472	509	
Pszenżyto	112	406	435	74	266	285	
Kukurydza	142	427	445	93	280	292	
Sorgo	86	368	394	63	268	286	

Natomiast z kilograma suchej masy najwięcej biogazu zanotowano dla kiszonki z topinamburu, podczas gdy sorgo charakteryzowało się najniższą wydajnością (63 Ndm³ CH₄/kg ś.m.).

Wydajność produkcji metanu z kilograma suchej masy badanych kiszonek była w granicach $266-551~{\rm Ndm^3CH_4/kg~s.m.}$

Największą zawartością metanu charakteryzował się biogaz wyprodukowany z topinamburu (76%) a także z sorgo i sidy (73%). Najmniejsze stężenie metanu zanotowano w biogazie z mozgi (53%) i żyta (56%). Obliczone wydajności biogazu i metanu z hektara na rok zestawiono na rys. 1.

■ Wydajność metanu z hektara [Nm3 CH4/ha rok]
■ Wydajność biogazu z hektara [Nm3/ha rok]

Rys. 1. Wydajność produkcji z hektara

W tab. 4 pokazano uśredniony skład biogazu uzyskanego w przeprowadzonych doświadczeniach.

Na podstawie przeprowadzonych eksperymentów analizy biogazodochodowości dla kiszonek roślin energetycznych zaproponowano model kinetyczny opisujący wydajność produkcji biogazu.

Uzyskane wyniki zostały dopasowane do zmodyfikowanego równania *Gompertza* [3], które opisuje całkowitą produkcję metanu w próbach okresowych, tj.

Tab. 4. Uśredniony skład biogazu

	TT/ 1 ' 11 11'						
	Uśredniony skład biogazu [% v/v]						
	CH_4	CO_2	O_2	H_2S	H_2	NH_3	Inne gazy
	[%]	[%]	[%]	[ppm]	[ppm]	[ppm]	[%]*
Mozga	53	13	3	1	36	14	31
Żyto	56	12	2	1	37	14	30
Topinambur	76	10	1	3	30	9	12
Sida	73	9	2	12	33	18	17
Pszenżyto	66	26	1	202	421	46	7
Kukurydza	66	23	1	42	549	6	10
Sorgo	73	23	2	3	77	2	3

$$M = P \exp\left\{-\exp\left[\frac{R_m e}{P}(\lambda - t) + 1\right]\right\}$$
 (1)

gdzie:

M – całkowita produkcja metanu, [dm 3],

P – potencjał produkcji metanu, [dm³],

 R_m – maksymalna szybkość produkcji metanu, [dm 3 /d],

 t – czas trwania eksperymentu, podczas którego obliczana jest całkowita produkcja metanu,

 λ – długość lag fazy [d].

Długość lag fazy w dużej mierze zależy od okresu aklimatyzacji mikroorganizmów do odpowiedniego substratu i zawartości wilgoci.

Dopasowanie modelu kinetycznego do danych doświadczalnych oraz estymację parametrów kinetycznych przeprowadzono w programie *Easyfit* [4].

W tab. 5 przedstawiono wartości parametrów obliczone na podstawie zaproponowanego modelu kinetycznego.

Tab. 5. Zestawienie wartości parametrów

	$P \left[\mathrm{dm}^3 \right]$	$R_m [dm^3CH_4/d]$	λ [d]
Mozga	648,44	15,64	14,67
Topinambur	746,29	12,40	11,08
Żyto	807,26	13,57	11,49
Sida	651,72	12,01	15,52
Kukurydza	435,96	30,36	3,06
Pszenżyto	403,23	16,24	4,99
Sorgo	374,31	24,63	2,85

Na rys. 2 przedstawiono przykładowe dopasowanie modelu kinetycznego do danych doświadczalnych (kiszonka sorgo). Zaproponowany model dobrze opisuje produkcję biogazu.

Rys. 2. Dopasowanie danych doświadczalnych do modelu kinetycznego

Wnioski

Zaproponowany model dobrze opisuje dane doświadczalne. Największą wydajność produkcji biogazu z kilograma świeżej masy otrzymano z kiszonki żyta 213 Ndm³/kg ś.m., a najniższą z kiszonki sorgo 86 Ndm³/kg ś.m. Największą zawartością metanu charakteryzował się biogaz wyprodukowany z topinamburu (76%). Najkrótszy czas adaptacji (lag-fazy) wynosił 2,85 w przypadku sorgo, a najdłuższy 15,52 w przypadku sidy. Zaproponowany model matematyczny dobrze opisuje zmiany całkowitej produkcji metanu w czasie dla badanych kiszonek roślin energetycznych.

LITERATURA

- [1] Commission proposes an integrated energy and climate change package to cut emissions for the 21st Century, (IP/07/29).
- [2] S. Ledakowicz, L. Krzystek: Biotechnologia 70, nr 3, 165 (2005).
- [3] J.-J. Lay, Y.-Y. Li, T. Noike: J. Environ. Syst. Eng. JSCE, 101 (1996).
- [4] K. Schittkowski: Numerical Data Fitting in Dynamical Systems A Practical Introduction with Applications and Software, Kluwer Academic Publishers, 2002.

Badania zostały wykonane w ramach projektu badawczego Ministerstwa Nauki i Szkolnictwa Wyższego Nr PBZ-MNiSW-1/3/2006.