HU03- Fall 2013- HW8- Enrique Areyon (80)50
MILET PROBLEM 18 - Enrique Areyan Where IGEN(IF). Solution: Consider the matrix:
Let $(a-b)$, $(a-d) \in \mathbb{R}_p$. Then (ba) $(a-c)$. (1) (R_1+) is an abelian group since: (i) clearly $+$ is associative because $+$ is associative in $(R_p,+)$.
(ii) the identity with $(a-b) \in PP$ its inverse is $(-a-b) \in PP$. (iii) Given $(a-b) \in PP$ its inverse is $(-a-b) \in PP$ its inverse is $(-a-b) \in PP$. (a) is associative). (2) • is associative this is inherited from the fact that matrix multiplicative identity associative). (3) Consider $(a-b) \in PP$. then $(a-b) = (a-b)(a-b) = (a-b)(a-b)(a-b) = (a-b)(a-b) = (a-b)(a-b)(a-b) = (a-b)(a-b)(a-b) = (a-b)(a-b)(a-b) = (a-b)(a-b)(a-b) = (a-b)(a-b)(a-b) = (a-b)(a-b)(a-b) = (a-b)(a-b)(a-b)(a-b) = (a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)$

11403- Fall 2013 - HW8 - Enrique Areyan. Let $A = \begin{pmatrix} a - b \\ b a \end{pmatrix}$, $B = \begin{pmatrix} c - d \\ d c \end{pmatrix}$, $c = \begin{pmatrix} e - f \\ f e \end{pmatrix}$; $A, B, C \in Rp$. $A \cdot (B+C) = (a-b) \cdot [(c-d)+(e-f)] = (a-b) \cdot (c+e-d+f) = (a-b) \cdot (c+e-d+f) = (a-b) \cdot (c+e-d+f) = (a-b) \cdot (a+f-c+e) = (a+f-c+e$ $= \begin{pmatrix} aq+pc+at+pe & ac-pq+ae-pt \\ a(q+t)+p(c+e) & a(q+t)-p(q+t) \end{pmatrix} = \begin{pmatrix} aq+pc & ac-pq \\ aq+at+pc+pe & ac+ae-pq-pt \end{pmatrix} \begin{pmatrix} at+pe & ae-pt \\ aq+at+pc+pe & ac+ae-pq-pt \end{pmatrix}$ $= \begin{pmatrix} a(q+t)+p(c+e) & a(q+t)-p(q+t) \\ a(q+t)-p(q+t) & a(q+t)-p(q+t) \end{pmatrix} = \begin{pmatrix} aq+pc & ac-pq \\ aq+at+pc+pe & ac+ae-pq-pt \\ aq-at-pc-pe \end{pmatrix}$ = (a - b)(c - d) + (a - b)(e - f) = AB + AC.the other direction, i.e., (B+C). A = BA+CA follows Similarly. (5) • is commutative. Let A = (a - b), B = (a - b), $A \in \mathbb{R}^p$. $A \cdot B = (a - b)(c - d) = (ac - bd)(ad + bc) = (ad + cb)(ad + cb)$ $A \cdot B = (a - b)(a - cb)(ad + bc) = (ad + bc)(ad + cb)(ad + cb)$ $= \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} a - b \\ b & a \end{pmatrix} = B.A \qquad (400)$ (1),(2),(3),(4) 8 (5) => Rp is a conmutative Ring. (b) Prove that R3 and R7 are fields, but R5 is not. try to determine for which many Pt: By definition, Rp will be at field it every non-zero matrix has an inverse an inverse w.r.t. . . that is, every non-zero matrix has an inverse we know that a continuous we know that a continuous and inverse w.r.t. We know that a making is invertible iff determinat is not zero. Hence, For B3: Let (a-b) & B3/10]=> det (a-b) = a2+b2. where a = 0 (mod 3).
Possibilities are n=0 => h-12 Possibilities are: $a = 0 \Rightarrow b = 1,2$ so $1^2 = 1 \neq 0 \pmod{3}$; $2^2 = 4 \neq 0 \pmod{3}$. (Similar case when b = 0). (mod 3); $1^2 + 2^2 = 5 \neq 0 \pmod{3}$. Now, if $a = 1 \Rightarrow b = 0,1,2 \Rightarrow 1 \neq 0 \Rightarrow 0$. (Similar case when b = 1) Finally, if a=2 =) b=0,1,2=) $2^2+0^2=4\neq 0 \pmod{3}$; $2^2+1^2=5\neq 0 \pmod{3$ So every non-zero matrix in R3 is invertible w.r.t. (det \$0) For RZ: We have a similar orgument but need to chack more cases. Let us summarize this information on a table:

11403-Fall 2013-HW8-Enrique Areyan (3
Addition is all 01123 4456 Enterous freyare Addition is all 01123 4456 Entries on the table are associative, as to only the table of the table of the sociative, as to only that the size is 1512 to only that the size is 1514 to only the size is 1514 t
$\pi(v_1) = u = \pi(v_2), \pi(v_1 + v_2) = \pi(v_1) + \pi(v_2) = u + u = 1$ $\text{letae} F, v_1 \in \pi^-(u) \neq \pi(v_1) = u + \pi(v_1) = u = 1$ $\text{letae} F, v_1 \in \pi^-(u) \neq \pi(v_1) = u + \pi(v_1) = u = 1$

M403- Fall 2013- HW8 - Enzique Areyon (4) Let V be an n-dimensional vector space over a field F. Define Am = { f: VM > F | f is multilinear, alternating}. Note Am is a F-v.s. Pf: Let 1/1,.., vnd be a basis for V. Let fe Am and U1,.., Um EV. Consider f(u,,..,um)=?. Now, since u,,..,um ∈ V; we can write each of these rector Uniquely as linear combinations of elements in the basis. Therefore: f(ui,...,um) = f(\(\tilde{\Z}\di;\Vi,...,\tilde{\Z}\di;\Vi), for some scalars \(\di); \(\lesis = m;\lesis = m; However, since m>n, the set Lu,,,um3 must be linearly dependent. So we can write at least one u; as a linear combination of all other us Without loss of generality, say $u_1 = \sum_{i=2}^{m} B_i u_i$. Then: since f is multilin f(u1,..., um) = f(= Billi, u2,..., um) = Bzf(Uz,Uz,..,Um)+ B3f(U3,Uz,U3,..,Um)+...+Bmf(Um,Uz,..,Um) since fis outternativ Since the choice of 4's was arbitrary, we have that any function f & Am is zero alliness (b) Prove that if m < n, then the dimension of Am is (m).

27: We want to is zero always, hence Am = 0. Pt: We want to construct a basis for Am and And that there are (" vectors (m.a. functions : P:VM) F) in such basis. As usual, let buil..., V be a basis for V. claim: {f, fz, , fx}, where K= (m) and fi. Vm > F or m.a. functions given by $f_i(u_1, u_m) = dif(v_{d_1}, v_{d_k})$; where v_{d_1}, v_{d_k} a choice of (m) vi's from the basis of V.; form a basis for Am. Pt: To conclude that I fin fe's forms on basis it suffices to show that Now, since m<n; we can write each of ui as linear combination of e this is a linearly independent and spanning set. of the basis: filur, un) = filiphivi, ... Efmili). Now, as shown before some of the vi's will cancel leaving is wit $f_i = dif(v_{x_1,...,v_{x_n}})$, some choice (1) (m) vectors in the basis V. exactly which depends of the choice of Unbut since these are arbitrary, we set the result11403-Fall 2013-HW8-Enrique Areyon (5) Each of the following is a basis of Fx3 over the field Fx. $B = \{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \}, \quad C = \{ \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \}.$ (a) Find the change of basis matrix from B to C (MB,c), that is, And The matrix P such that P[V]B=[V]C for all V & F.3. solution: We need to compute P=([Vi]c[Vi]c[Vi]c), where V1=(-1), Vz=(3), V3=(3). Forthat purpose we need to solve the System [2 4 0][x]=Vi; so that [x]=[vi]c. Hence, let us

to consiste invert the matrix [32-1] and use it three times to compute [V1]c, [V2)c and [V3]c: (Note: -1=6 (mod 7)). $\begin{bmatrix}
\frac{2}{2} & \frac{4}{9} & \frac{9}{9} & \frac{1}{9} & \frac$ R=282 [120 | 400] R=R-12 [100 | 622] R3=383 [100 | 622] 020 | 555 | 020 | 555 | 020 | 555 | 020 | 555 | 020 | 555 | 020 | 543 | Fz=4Rz (100) 622] We can check that indeed: (240) = (666) 223 by: $\binom{240}{326}\binom{622}{243} = \binom{100}{010} = \binom{622}{666}\binom{240}{326}$. Now we can compute: $[Vz]_{C} = [(23)]_{C} = [(23)$ $[V_3]_{c} = [(\frac{1}{3})]_{c} = [\frac{2}{3}, \frac{4}{3}, \frac{9}{3}]_{c} = [\frac{1}{3}]_{c} = [\frac{1}{3}]_{c$ Hence, the change of basis matrix P s.t. $P[V]_B = [V]_C$ for all $V \in F_7^3$ is $P = \begin{bmatrix} 6 & 3 & 5 \\ 6 & 2 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ e.g. $[V_1]_B = [3]$; $P[V_1]_B = [6] = [V_1]_C$.

11403 - Fall 2013 - HW8 - Enrique Areyan (b) Let A be the following matrix over F7: $\begin{pmatrix} 1 & 0 & -1 \\ 2 & -2 & 0 \\ 3 & 1 & \cdot \end{pmatrix}$ Find the matrix LA with respect to the basis B. Solution. We want to find $L^{\pm}M_{E,B}(T)$, where $E=\{(\frac{1}{6}),(\frac{6}{6}),(\frac{6}{6})\}$. and $B = \left\{ \left(\frac{1}{1} \right), \left(\frac{2}{3} \right), \left(\frac{1}{3} \right) \right\}$, that is: $\Pi_{EB}(t) = \left(\left[T(V_1) \right]_B \left[T(V_2) \right]_B \left[T(V_3) \right]_B \right)$ $= \left(\left[T\left(\frac{1}{3} \right) \right]_{13} \left[T\left(\frac{9}{3} \right) \right]_{13} \left[T\left(\frac{9}$ $\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 & 1 & 0 \\ 0 & 5 & 3 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & 3 & 0 & 0 & 1 \end{bmatrix}$ 7 [016 154] -> [100 | 635] -> [100 | 635 | One can indeed verify that [-123] = [326], sin6 [-1233] [376] = [035] = [035] [-133] $\begin{bmatrix} -27 \\ 8 = \begin{bmatrix} 0.3 & 5 \\ 3 & 2.6 \end{bmatrix} \begin{bmatrix} -27 \\ -27 \end{bmatrix} = \begin{bmatrix} 0.3 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -27 \\ 2 & 1 \end{bmatrix}$ Therefore, $\begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{0}{3} & \frac{3}{5} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ U with respect to $[-i]_{B} = \begin{bmatrix} 9 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} -i \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$ the basis B. (C) Use your onswer to (a) to And the matrix LA wirt. the basis C. Solution: By (a) we get that Mc (LA)= PMB(LA)P" we have P, all we

 $\begin{bmatrix} 635 & 100 & R=RL-RI & 635 & 100 & R=RI-R3 & 501 & 100 \\ 623 & 010 & R=RL-RI & 005 & 610 \\ 134 & 001 & R=RL-RI & 001 & R=RI-R3 & 1001 \end{bmatrix}$

need to do is compute P-1.

1403- Fall 2013- Hw8- Enpidoe Areyan

$$\begin{bmatrix}
5 & 0 & 1 & 1 & 0 & 0 \\
0 & 6 & 5 & 6 & 1 & 0 \\
0 & 6 & 5 & 6 & 1 & 0 \\
0 & 6 & 5 & 6 & 1 & 0 \\
0 & 6 & 5 & 6 & 1 & 0 \\
0 & 6 & 5 & 6 & 1 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 5 & 6 & 0 & 0 \\
0 & 6 & 6 & 5 & 0 & 0 \\
0 & 6 & 6 & 5 & 0 & 0 \\
0 & 6 & 6 & 5 & 0 & 0 \\
0 & 6 & 6 & 5 & 0 & 0 \\
0 & 6 & 6 & 5 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 & 6 & 0 & 0 \\
0 & 6 & 6 &$$