Problema 5.1

a) Obtenha uma lista contendo os projetos e funcionários(ssn e nome completo)que lá trabalham;

π Fname, Lname, Pname ((ρ list ((project) \bowtie Pno = Pnumber (works_on))) \bowtie list.Essn = Ssn (employee))

b) Obtenha o nome de todos os funcionários supervisionados por 'Carlos D Gomes';

π list2.Fname, list2.Lname ((ρ list (σ Fname='Carlos' Λ Minit='D' Λ Lname='Gomes' (employee))) \bowtie list2.Super_ssn (ρ list2 (σ Super_ssn \neq null (employee))))

c) Para cada projeto, listar o seu nome e o número de horas (por semana) gastos nesse projeto por todos os funcionários;

y Pname; SUM(works_on.Hours)->total ((project) ⋈ Pnumber=Pno(works_on))

d) Obter o nome de todos os funcionários do departamento 3 que trabalham mais de 20 horas por semana no projeto 'Aveiro Digital';

π list.Fname (σ Pname='Aveiro Digital'(ρ list(σ Dno=3(employee) \bowtie Ssn=Essn(works_on)) \bowtie list.Pno=Pnumber(project)))

e) Nome dos funcionários que não trabalham para projetos;

 π Fname,Lname (σ Pno=null ((employee) × Ssn=Essn (works on)))

f) Para cada departamento, listar o seu nome e o salário médio dos seus funcionários do sexo feminino;

y Dname; avg(Salary)->avg_salary (σ Sex='F' ((employee) ⋈ Dno=Dnumber (department)))

g) Obter uma lista de todos os funcionários com mais do que dois dependentes;

π Fname,Lname (σ num_dep>2 (γ Fname,Lname,Ssn; count(Ssn)-> num_dep ((employee) \bowtie Essn=Ssn (dependent))))

h) Obtenha uma lista de todos os funcionários gestores de departamento que não têm dependentes;

π Fname, Minit, Lname (σ dependent.Essn=null (((employee) \bowtie Mgr_ssn=Ssn (department)) \bowtie Essn=Mgr_ssn (dependent)))

i) Obter os nomes e endereços de todos os funcionários que trabalham em, pelo menos, um projeto localizado em Aveiro mas o seu departamento não tem nenhuma localização em Aveiro.

tmp = π Fname, Minit, Lname, Address, Dno (σ Plocation='Aveiro' (employee \bowtie Ssn=Essn works_on \bowtie Pno=Pnumber project))

aux = π Dnumber (σ Dlocation!='Aveiro' (employee \bowtie Ssn=Essn works_on \bowtie Dno = Dnumber department \bowtie dept_location))

π Minit, Lname, Fname, Address (tmp ⋈ Dno=Dnumber aux)

Problema 5.2

a)Lista dos fornecedores que nunca tiveram encomendas;

π nome, fax, endereco, nif, tipo, condpag (σ numero=null ((encomenda) κ nif=fornecedor (fornecedor)))

b)Número médio de unidades encomendadas para cada produto;

γ nome; avg(item.unidades)->avg_uni ((item) ⋈ codigo=codProd (produto) ⋈ numEnc=numero (encomenda))

c)Número médio de produtos por encomenda;(nota: não interessa o número de unidades);

γ avg(contagem) ->avg_count (γnumEnc; count(numero) -> contagem (encomenda ⋈ numero=numEnc item))

d)Lista de produtos (e quantidades) fornecidas por cada fornecedor;

 π fornecedor.nome,produto.nome, item.unidades (((fornecedor \bowtie nif=fornecedor encomenda) \bowtie numero=numEnc item) \bowtie codProd=codigo produto)

 π fornecedor.nome, produto.nome, item.unidades (((fornecedor \bowtie nif = fornecedor encomenda) \bowtie numero = numEnc item) \bowtie codProd = codigo produto)

fornecedor.nome	produto.nome	item.unidades
LactoSerrano	Bife da Pa	200
LactoSerrano	Secretos de Porco Preto	300
FrescoNorte	Laranja Algarve	1200
FrescoNorte	Pera Rocha	3200
FrescoNorte	Pera Rocha	1200

Problema 5.3

a) Lista de pacientes que nunca tiveram uma prescrição;

 π nome, dataNasc, endereco, paciente.numUtente (σ numPresc=null ((paciente) \bowtie paciente.numUtente=prescricao.numUtente (prescricao)))

b) Número de prescrições por especialidade médica;

γ especialidade;count(especialidade)->count ((medico) ⋈ numMedico=numSNS (prescricao))

c) Número de prescrições processadas por farmácia;

y nome; count(nome)-> count ((farmacia) ⋈ farmacia=nome (prescricao))

d) Para a farmacêutica com registo número 906, lista dos seus fármacos nunca prescritos;

π farmaco.nome,formula (σ numReg=null ((σ numReg=906 (farmaceutica)) κ numRegFarm=numReg (farmaco)))

e) Para cada farmácia, o número de fármacos de cada farmacêutica vendidos;

γ farmacia.nome; count(farmacia.nome)->num_vendidos ((farmacia) ⋈ nome=farmacia (prescricao) ⋈ prescricao.numPresc=presc_farmaco.numPresc (presc_farmaco))

f) Pacientes que tiveram prescrições de médicos diferentes.

σ count≥2 (γ paciente.numUtente, paciente.nome; count(paciente.numUtente)->count (π paciente.nome, paciente.numUtente, prescricao.numMedico ((paciente) ⋈ paciente.numUtente=prescricao.numUtente (prescricao) ⋈ numSNS=numMedico (medico))))

 $\begin{array}{l} \sigma_{\text{ count } \geq 2} \text{ (} \gamma_{\text{ paciente.numUtente, paciente.nome; COUNT(paciente.numUtente)} \rightarrow \text{count (} \pi_{\text{ paciente.nome, paciente.numUtente, prescricao.numMedico ((paciente))}))} \\ \text{prescricao.numMedico ((paciente)))} \\ \end{array} \\ \begin{array}{l} \sigma_{\text{ count } \geq 2} \text{ (} \gamma_{\text{ paciente.nome, paciente.numUtente, paciente.numUtente, prescricao.numUtente)} \\ \text{prescricao.numMedico ((paciente))))} \\ \end{array} \\ \begin{array}{l} \sigma_{\text{ count } \geq 2} \text{ (} \gamma_{\text{ paciente.nome, paciente.numUtente, paciente.numUtente, paciente.numUtente)} \\ \text{prescricao.numMedico ((paciente))))} \\ \end{array} \\ \begin{array}{l} \sigma_{\text{ count } \geq 2} \text{ (} \gamma_{\text{ paciente.nome, paciente.numUtente, paciente.numUtente, paciente.numUtente)} \\ \text{prescricao.numMedico ((paciente))))} \\ \end{array} \\ \begin{array}{l} \sigma_{\text{ count } \geq 2} \text{ (} \gamma_{\text{ paciente.nome, paciente.numUtente, paciente.numUtente, paciente.numUtente, paciente.numUtente)} \\ \text{prescricao.numMedico ((paciente)))} \\ \end{array} \\ \begin{array}{l} \sigma_{\text{ count } \geq 2} \text{ (} \gamma_{\text{ paciente.nome, paciente.numUtente, paciente.numU$

paciente.numUtente	paciente.nome	count
1	Renato Manuel Cavaco	2
3	Ines Couto Souto	2

.