

Applicant : Abraham Phillip Lee
Appl. No. : 10/777,470
Examiner : Mui, Christine T
Docket No. : 703538.4033

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently Amended) A method of forming droplets comprising the steps of: forming a sheath flow from three inlet streams wherein a first stream comprising a first solution is sandwiched between second and third streams comprising a second solution; and
generating a droplet from the first stream by controlling shear forces generated by the second and third streams acting upon the first stream.
2. (Original) The method of claim 1, wherein the first and second solution comprise immiscible fluid solutions.
3. (Original) The method of claim 1, wherein the first solution comprises an aqueous solution and the second solution comprises a solvent solution.
4. (Original) The method of claim 1, wherein the first solution comprises an aqueous solution and the second solution comprises an oil solution.
5. (Original) The method of claim 1, further comprising a step of dissolving a reagent in the first solution.
6. (Original) The method of claim 5, wherein the reagent comprises a drug.
7. (Original) The method of claim 1, further comprising a step of dissolving a first type of amphiphilic molecules in the second solution.
8. (Original) The method of claim 7, wherein the step of generating a droplet includes encapsulating the droplet with the amphiphilic molecules to form a monolayer vesicle.
9. (Original) The method of claim 8, further comprising the step of passing the monolayer vesicle through the first and second solution interface to form a bilayer

Applicant : Abraham Phillip Lee
Appl. No. : 10/777,470
Examiner : Mui, Christine T
Docket No. : 703538.4033

vesicle

10. (Original) The method of claim 9, wherein the first and second solution interface comprises a second type of amphiphilic molecule.

11. (Original) The method of claim 10, wherein the second type of amphiphilic molecule is different from the first type of amphiphilic molecule.

12. (Original) The method of claim 9, wherein the first and second solution interface is formed by a third solution flowing through two downstream input channels.

13. (Original) The method of claim 1, further comprising dissolving a first type of polymer molecules in the second solution.

14. (Canceled)

15. (Currently Amended) The method of claim 144, wherein controlling increasing the shear forces comprises increasing flow rates of the second and third streams.

16. (Original) The method of claim 1, further comprising controlling flow rates of the three inlet streams.

17. (Original) The method of claim 13, wherein the flow rates are controlled by one or more pumps.

18. (Original) The method of claim 13, further comprising manipulating the flow rate of the first solution to control the rate of droplet formation, wherein the first solution comprises an aqueous solution.

19. (Original) The method of claim 13, further comprising increasing the flow rate of the second solution to decrease the size of the droplets formed, wherein the second solution comprises an oil solution.

Applicant : Abraham Philip Lee
Appl. No. : 10/777,470
Examiner : Mui, Christine T
Docket No. : 703538.4033

20. (Original) The method of claim 13, further comprising decreasing the flow rate of the second solution to increase the size of the droplets formed, wherein the second solution comprises an oil solution.

21. – 30. (Cancelled)

31. (Currently Amended) A method of manufacturing droplets comprising the steps of:

forming a sheath flow from three inlet streams wherein a first stream comprising a first solution is sandwiched between second and third streams comprising a second solution;

generating a droplet from the first stream by controlling shear forces generated by the second and third streams acting upon the first stream; and

processing the droplet.

32. (Original) The method of claim 31, wherein processing comprises sorting the droplet.

33. (Original) The method of claim 32, wherein the droplet is sorted by size.

34. (Original) The method of claim 31, wherein processing comprises splitting the droplet.

35. (Original) The method of claim 34, wherein the droplet is split into two droplets of substantially equal size.

36. (Original) The method of claim 34, wherein the droplet is split into two droplets of unequal size.

37. (Original) The method of claim 31, wherein processing comprises fusing two or more droplets to form a larger droplet.

38. (Currently Amended) A microfluidic device for manufacturing droplets

Applicant : Abraham Philip Lee
Appl. No. : 10/777,470
Examiner : Mui, Christine T
Docket No. : 703538.4033

comprising:

- a first input microchannel comprising a first solution;
- second and third input microchannels comprising a second solution;
- a microchannel junction in communication with the first, second and third input microchannels;
- a plurality of pumps in communication with the three input microchannels to direct flow through the microchannels to the microchannel junction;
- an output channel in communication with the microchannel junction wherein the output channel is set to receive droplets formed from shearing forces at interfaces between the first solution and the second solution; and
- a droplet processor.

39. (Original) The microfluidic device of claim 38, wherein the droplet processor comprises a droplet splitter including:

- a splitter input channel;
- two or more daughter channels in communication with the splitter input channel;
- a corner wall junction disposed between the daughter channels; and
- a second plurality of pumps in communication with the daughter channels, wherein the pumps generate a pressure gradient between the daughter channels to split a droplet at the corner wall junction of the daughter microchannels.

40. (Original) The microfluidic device of claim 38, wherein the droplet processor comprises a droplet sorter including:

- a sorter input channel;
- a daughter channel in communication with the sorter input channel;
- a second plurality of pumps in communication with the sorter input channel and the daughter channel, wherein the pumps generate a pressure gradient between the daughter channel and the sorter input channel to sort droplets.

41. (Original) The microfluidic device of claim 38, wherein the droplet processor comprises a droplet fuser including:

Applicant : Abraham Philip Lee
Appl. No. : 10/777,470
Examiner : Mui, Christine T
Docket No. : 703538.4033

a first fusion input channel;
a second fusion input channel in communication with the first fusion input channel and having a necked region of reduced width;
a fusion channel junction in communication with the first and second fusion input channels;
a fusion output channel in communication with the fusion output junction.