

OpenTURNS day

Overview of recently developed features in Persalys

Antoine Dumas + Aurélie Ladier, Julien Schueller

June 7, 2019

Bring Uncertainty Methodology to Engineers

4 years ago

 EDF MRI (now PRISME) wants to maximize the use of OpenTURNS® by its engineer/researcher (and improve an existing GUI) => develop a GUI to make more easy to use

- Phimeca has already developed an "OpenTURNS GUI" (PhimecaSoft®) which satisfy some needs of EDF R&D but not all.
- EDF R&D and Phimeca decide to start a specific partnership in order to develop a new GUI based on OpenTURNS® and "Salome Tools": Paraview, Yacs, ...
- Persalys (previously OT GUI) is available, on Salome website, in EDF Specific Salome version and commercialized by Phimeca

- As easy to use as possible and, when it is possible, a GUI which can guide the user
- Possibility to use it inside Salome Platform to
 - Use supercomputing resources (e.g. Gaïa, 3 052 Tflops peak, 41 000 cores)
 - Connect to EDF numerical code users (Code_Aster for example)
- Take benefit from the advanced visualization capability from Paraview
- Drive the GUI from a python script usable in an "expert" mode

What's recently added?

- Screening with Morris
- Optimization
- Dependence structure (definition and inference)
- Field 1D
- Distributed evaluations

Opening Persalys

Functionality of Persalys

- Documentation (links from the interface)
 - For the graphical interface
 - For the Python interface
 - Links to the OpenTURNS documentation
- Example of a cantilever beam

Screening method

Morris method

- Definition of the grid and number of trajectories
- Visualization of the generated design of experiments

Phimeca Engineering

Screening method

Morris method

- Sort the variables into three groups :
 - no effect
 - linear effect
 - non linear effect or interaction
- Selection of the influent parameters
 - Move the vertical selection cursor
 - Tick the selection box
- Order the table

Correlated input variables

Correlation is added using copulas

Define arbitrary groups of dependent variables

Dependence of a sample

Analysis of the correlation of the sample

Etude_1	Résumé	né PDF/CDF		Boîtes à moustaches		Dépendance		Table	Table Graphique Cobweb		Tableau de diagrammes de dispersion				Diagramme de dispersio	
▼ 《 Modèles de données	Estimation de la matrice de Spearman															
▼ ModèleDonnées 0		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	Coefficient de Spearman
	CRIM		-0.572	0.735	0.0423	0.82	-0.311	0.704	-0.744	0.726	0.728	0.464	-0.358	0.633	-0.557	$\rho > 0.7$ $0.3 < \rho \le 0.7$
	ZN	-0.572		-0.643	-0.0419	-0.635	0.361	-0.544	0.615	-0.279	-0.371	-0.448	0.163	-0.49	0.438	0.3 < ρ ≤ 0.7 ϵ < ρ ≤ 0.3 - ϵ ≤ ρ ≤ ϵ -0.3 ≤ ρ < - ϵ -0.7 ≤ ρ < -0.3 ρ < -0.7
	INDUS	0.735	-0.643		0.0898	0.791	-0.415	0.679	-0.757	0.456	0.664	0.434	-0.286	0.639	-0.578	
	CHAS	0.0423	-0.0419	0.0898		0.0684	0.0588	0.0678	-0.0802	0.0246	-0.0445	-0.136	-0.0398	-0.0506	0.141	
	NOX	0.82	-0.635	0.791	0.0684		-0.31	0.795	-0.88	0.586	0.65	0.391	-0.297	0.637	-0.563	
	RM	-0.311	0.361	-0.415	0.0588	-0.31		-0.278	0.263	-0.107	-0.272	-0.313	0.0537	-0.641	0.634	
	AGE	0.704	-0.544	0.679	0.0678	0.795	-0.278		-0.802	0.418	0.526	0.355	-0.228	0.657	-0.548	
	DIS	-0.744	0.615	-0.757	-0.0802	-0.88	0.263	-0.802		-0.496	-0.574	-0.322	0.25	-0.564	0.446	
	RAD	0.726	-0.279	0.456	0.0246	0.586	-0.107	0.418	-0.496		0.705	0.318	-0.283	0.394	-0.347	
	TAX	0.728	-0.371	0.664	-0.0445	0.65	-0.272	0.526	-0.574	0.705		0.453	-0.33	0.534	-0.562	
	PTRATIO	0.464	-0.448	0.434	-0.136						0.453		-0.072	0.467	-0.556	
	В	-0.358			-0.0398					-0.283	-0.33				0.186	
	LSTAT	0.633			-0.0506						0.534	0.467	-0.211		-0.853	
	MEDV	-0.557		-0.578				-0.548			-0.562	-0.556	0.186			

Dependence of a sample

- Inference of the dependence of the sample
 - Guided choice according to the BIC

Dependence of a sample

- Inference of the dependence of the sample
 - Guided choice according to the BIC

Optimization

- Bounded optimization of an output without functional constraints
 - Algorithms: TNC, Cobyla, NLopt (more than 40 algorithms)
 - Future work : parameter calibration (least square fit and Bayesian)

Workflow of the field study

Mesh definition and visualization

Possible import from text or csv file

Functional model definition and probabilistic model

Python or symbolic

Evaluation for a specific value

Validation of the model

Uncertainty propagation

Extract values at some nodes as data model

Here extraction of values at nodes 3 and 5

BagChart (from Paraview)

- Shared selection of trajectories between graphs
- Future work : PCA of dimension > 2

Distributed evaluations

- Multiprocessing available for Python model
 - In local host if on your personal computer
 - On cluster if used within Salome Meca using YACS

Future work

- Parameter calibration
 - Least square and Bayesian

- Field 1D
 - Improve the BagChart with a PCA of dimension > 2

Study with 2D field