JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May - 2018 MATHEMATICS-II

(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

1.a) Find
$$L(\cos^3 2t)$$
. [2]

b) Find
$$L^{-1} \left\{ \frac{4}{(s+1)(s+2)} \right\}$$
. [3]

c) Evaluate
$$\int_{0}^{1} x^{7} (1-x)^{5} dx$$
. [2]

d) Evaluate
$$\int_{0}^{\infty} x^4 e^{-x^2} dx.$$
 [3]

e) Evaluate
$$\int_{0}^{1} \int_{0}^{x} xy \, dy dx$$
. [2]

f) Evaluate
$$\int_{-1-2-3}^{1} \int_{-3}^{2} dx \, dy \, dz$$
.

- g) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ then find $div \overline{r}$.
- h) State Green's theorem on a plane.
- i) Evaluate $\nabla (x^2 yz + z^2)$. [2]
- j) If \overline{a} is a constant vector then find $curl(\overline{r} \times \overline{a})$. [3]

PART - B

(50 Marks)

2.a) Find $L\{te^{2t}\sin 3t\}$.

b) Find
$$L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+25)}\right\}$$
. [5+5]

OR

3. Solve the differential equation $\frac{d^2x}{dt^2} + 9x = \sin t$ using Laplace transform, given that x(0) = 1, $x(\pi/2) = 1$. [10]

Prove that $\beta(m,n) = \frac{\Pi(m).\Pi(n)}{\Pi(m+n)}$. [10]

OR

- Show that $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, m)$. [10]
- Change the order of integration and solve $\int_{0}^{a} \int_{x^2/}^{2a-x} xy^2 dy dx.$ [10]

- Find the area of the loop of the curve $r = a(1 + \cos \theta)$. 7. [10]
- Prove that $\nabla \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\nabla \times \overline{A}) \overline{A} \cdot (\nabla \times \overline{B})$. 8.a)
 - Find the directional derivative of $2x^2 + z^2$ at (1, -1, 3) in the directional of $\overline{l} + 2\overline{j} + 3\overline{k}$. b) [5+5]

OR

- Show that $\nabla^2 [f(r)] = f''(r) + \frac{2}{r} f'(r)$ where $r = |\overline{r}|$. 9. [10]
- Verify Green's theorem for $\int_C (xy + y^2) dx + x^2 dy$ where 'C' is bounded by y = x and 10. $y = x^2$. [10]

Verify the Stoke's theorem for $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ and surface is the part of the plane $x^2 + y^2 + z^2 = 1$ above the xy - plane. 11.

---00O00---