Advanced Logic Design Lecture 2: Combinational Logic Circuits Refresher

Mingoo Seok Columbia University

BV: Sec. 2.1-2.8, 2.11-2.22

Logic Circuits

- Logic circuits: in which the signals are constrained to have only some number of discrete values
- Binary logic: only two values, 0 and 1
 - − Other logic circuits exist: e.g., ternary (-1,0,+1)
 - But binary logic has an advantage in robust and scalable VLSI hardware implementation

Binary Switch

(a) Two states of a switch

(b) Symbol for a switch

(a) Simple connection to a battery

(b) Using a ground connection as the return path

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

$$L(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3$$

$$\overline{x} = x' = !x = \sim x = \text{NOT } x$$

- The switch will short-circuit the light and prevent the current from flowing through it
- Inverse = complement = NOT

Truth Table

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1
		AND	OR

• Logic function defined in the form of a table

Logic Gates and Networks

(a) AND gates

(c) NOT gate

Logic Analysis & Synthesis

$$x_1 \\ x_2 \\ x_3$$
 $f = (x_1 + x_2) \cdot x_3$

- A digital system designer needs:
 - Determine the function performed by a logic network → Logic analysis
 - Designing a new (logic) network that implements a desired function behavior →
 Logic synthesis

(a) Network that implements $f = \bar{x}_1 + x_1 \cdot x_2$

x_1	x_2	$f(x_1, x_2)$	A	В
0	0	1	1	0 0 0
0	1	1	1	0
1	0	0	0	0
1	1	1	0	1
			ı	

(b) Truth table

(d) Network that implements $g = \bar{x}_1 + x_2$

Functionally equivalent networks

- \rightarrow f(x₁,x₂) and g(x₁,x₂) are functionally equivalent
- →It makes sense to use the simpler one, which is less costly to implement

Boolean Algebra

- In 1849 George Boole published a scheme for the algebraic description of processes involved in logical thoughts and reasoning
- In the late 1930s Claude Shannon showed that Boolean algebra provides an effective means of describing circuits built with switches

Axioms (Assumptions)

1a.
$$0 \cdot 0 = 0$$

1b. $1 + 1 = 1$
2a. $1 \cdot 1 = 1$
2b. $0 + 0 = 0$
3a. $0 \cdot 1 = 1 \cdot 0 = 0$
3b. $1 + 0 = 0 + 1 = 1$
4a. If $x = 0$, then $\overline{x} = 1$
4b. If $x = 1$, then $\overline{x} = 0$

5*a*.
$$x \cdot 0 = 0$$

$$5b. \quad x + 1 = 1$$

$$6a. \quad x \cdot 1 = x$$

$$6b. \quad x + 0 = x$$

7a.
$$x \cdot x = x$$

7b.
$$x + x = x$$

8a.
$$x \cdot \overline{x} = 0$$

$$8b. \quad x + \overline{x} = 1$$

9.
$$\overline{\overline{x}} = x$$

Properties

10a.
$$x \cdot y = y \cdot x$$

$$10b. \quad x + y = y + x$$

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

11b.
$$x + (y + z) = (x + y) + z$$

12a.
$$x \cdot (y+z) = x \cdot y + x \cdot z$$

12b.
$$x + y \cdot z = (x + y) \cdot (x + z)$$

13a.
$$x + x \cdot y = x$$

13*b*.
$$x \cdot (x + y) = x$$

14*a*.
$$x \cdot y + x \cdot \overline{y} = x$$

14*b*.
$$(x + y) \cdot (x + \overline{y}) = x$$

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

15*b*.
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

$$16a. \quad x + \overline{x} \cdot y = x + y$$

16*b*.
$$x \cdot (\overline{x} + y) = x \cdot y$$

17*a*.
$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$

17b.
$$(x+y) \cdot (y+z) \cdot (\overline{x}+z) = (x+y) \cdot (\overline{x}+z)$$

More Comments

Duality

- Dual of any true statement in Boolean algebra is also a true statement
- Implying that at least two different ways exist to express every logic function with Boolean algebra; often one expression leads to a simpler physical implementation than the other
- Huntington's basic postulates
 - Theorems 5 and 8 and Properties 10 and 12
 - All the other identities can be derived from these postulates

More Comments

- OR
 - Logical sum
 - -+
- AND
 - Logical product
 - _ •
- Operation order
 - $NOT \rightarrow AND \rightarrow OR$
 - To be clear, use parentheses for a complex logic function

Logic Analysis & Synthesis

x_1 x_2	$f(x_1, x_2)$	
0 0 0 1 1 0 1 1	1 1 0 1	$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$

• A possible procedure for designing a logic circuit that implements this truth table is to create a product term that has a value of 1 for each valuation for which the output function *f* has to be 1. Then we can take a logical sum of these product terms to realize *f*.

Logic Synthesis

- Not necessarily the optimal in terms of implementation cost (i.e., many logic gates)
- Further
 simplification using
 Boolean algebra's
 theorems and
 properties

Sum of Products

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
0 1 2 3 4 5 6 7	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

- Minterms: a product term in which each of the n variables appears once
- Sum of minterms \rightarrow sum of products
- Maxterms: the complements of minterms

Sum of Products

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$	$f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2$
0	0	0	0	0	$f = (\overline{x}_1 + x_1)\overline{x}_2x_3 + x_1(\overline{x}_2 + x_2)\overline{x}_3$
2	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 1	$\frac{1}{0}$	0	$= 1 \cdot \overline{x}_2 x_3 + x_1 \cdot 1 \cdot \overline{x}_3$
3	0	1	1	0	$= \overline{x}_2 x_3 + x_1 \overline{x}_3$
5	1	0	1	1	$f(x_1, x_2, x_3) = \sum_{m_1, m_4, m_5, m_6} (m_1, m_4, m_5, m_6)$
6 7	1 1	1 1	0	0 1 0 0 1 1 1 0	

Product of Sums

Row number	x_1	x_2	x_3	Minterm	Maxterm
0 1 2 3 4 5 6 7	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

- Maxterm: the dual of minterm
- Product of sums: the dual of SoP

Maxterms; Product of Sums

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_{1}, x_{2}, x_{3}) = m_{0} + m_{2} + m_{3} + m_{7}$$

$$= \overline{x}_{1} \overline{x}_{2} \overline{x}_{3} + \overline{x}_{1} x_{2} \overline{x}_{3} + \overline{x}_{1} x_{2} x_{3} + x_{1} x_{2} x_{3}$$

$$f = \overline{m_{0} + m_{2} + m_{3} + m_{7}}$$

$$= \overline{m_{0} \cdot \overline{m}_{2} \cdot \overline{m}_{3} \cdot \overline{m}_{7}}$$

$$= M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{7}$$

$$= (x_{1} + x_{2} + x_{3})(x_{1} + \overline{x}_{2} + x_{3})(x_{1} + \overline{x}_{2} + \overline{x}_{3})(\overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3})$$

$$f(x_{1}, x_{2}, x_{3}) = \Pi(M_{0}, M_{2}, M_{3}, M_{7})$$

NAND and NOR Networks

• Considering CMOS implementation technology, NAND and NOR attractive as they are implemented with simpler electronic circuits than AND and OR

DeMorgan's Theorem

$$x_1 \longrightarrow x_1 \longrightarrow x_2 \longrightarrow x_2$$

$$x_1 \longrightarrow x_2 \longrightarrow x_2$$

(b)
$$\overline{X_1 + X_2} = \overline{X_1 X_2}$$

NAND for a SoP Network

NOR for a PoS Network

Number Display Logic Function Example

(a) Logic circuit and 7-segment display

Logic circuit
$$\begin{bmatrix} c & f & b \\ d & e & g \\ \hline f & g & d \end{bmatrix}$$
 b $a=d=e=\overline{s}_0$ $b=1$ $c=\overline{s}_1$ Logic circuit and 7-segment display $f=\overline{s}_1\overline{s}_0$ $g=s_1\overline{s}_0$ $g=s_1\overline{s}_0$

(b) Truth table

Karnaugh Map: A Method to Minimize Logic Circuits

x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

(b) Karnaugh map

(a) Truth table

Karnaugh Map: A Method to Minimize Logic Circuits

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Incompletely Specified Function

$$f(x_1, ..., x_4) = \sum m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)$$

- Certain input conditions can never occur
- We can set the outputs of such input conditions for the given logic function f to *don't care*'s (DCs)
- A logic function definition w/ don't care's

Strategy for General Logic Minimization

Literal: a <u>variable</u> (x) or <u>its complement</u> (x')

Product: an "AND" of literals (e.g. xy'z, a'bcd')

Cube: a product (another equivalent name)

Minterm: a product including a literal for <u>every</u> input of the function

Example: If a function has 3 inputs, A/B/C, then A'BC' is a minterm, but A'C is not.

A minterm is also an input vector or combination (i.e. corresponds to a single row in the truth table)

ON-set minterm: minterm where the function is 1
OFF-set minterm: minterm where the function is 0
DC-set minterm: minterm where the function is DC (-)

Implicant: a cube/product which contains no OFF-set minterm (i.e. 0 value)

Prime Implicant (PI, prime): a maximal implicant (i.e. it is contained in no larger implicant); it cannot be combined into another implicant that has fewer literals.

Essential Prime Implicant (essential): a prime which contains at least one ON-set minterm (i.e. 1 value) which is <u>not</u> contained by any other prime

Sum-of-products (SOP, disjunctive normal form):

a sum of products ("AND-OR" 2-level circuit)

Cover: a set of primes (SOP) containing all the ON-set minterms (1 points) of a function

Complete Sum: a cover containing all possible prime implicants of the function

2-Level Logic Minimization Problem

The 2-Level Logic Minimization Problem: given a Boolean function f

(i) Find a <u>minimum-cost set of prime implicants</u> which "covers" (i.e. contains) all ON-set minterms -- (... and possibly some DC-set minterms)

Or, equivalently:

(ii) Find a minimum-cost cover F of function f

Cost is defined as:

e.g., the number of gates + the total number of inputs to all gates in the circuits. What are the costs of the following functions?

$$f = x_1 \overline{x}_2 + x_3 \overline{x}_4$$

$$g = \left(\overline{x_1}\overline{x_2} + x_3\right)(\overline{x_4} + x_5)$$

CD	AB 00	01	11	10
CD 00	1	1	0	0
01	0	1	1	0
11	0	0	1	1
10	0	0	0	0

Solution #1: All Primes = 5 Products (AND gates)

"Complete Sum" = cover containing all prime implicants

Solution #2: Subset of Primes = 4 Products (AND gates)

Locally sub-optimal solution

"Redundant Cover" = can remove a product and still have legal cover

Solution #3: Subset of Primes = 4 Products (AND gates)

Locally optimal solution

"Irredundant Cover" (but still globally sub-optimal!)
= cannot remove any product and still have legal cover

Solution #4: Subset of Primes = 3 Products (AND gates)

Globally optimal solution

OPTIMAL SOLUTION (also irredundant)

Quine-McCluskey Method

- A systematic method for logic minimization
- Steps
 - Generate all prime implicants for the given function f
 - Find the set of essential prime implicants
 - If the set of essential prime implicants covers all valuations for which f=1, then this set is the desired cover of f. Otherwise, determine the nonessential prime implicants that should be added to form a complete minimum-cost cover
- The last step follows heuristic rules and cost comparisons
- https://en.wikipedia.org/wiki/Quine%E2%80%93McClusk ey_algorithm

Example #1: f(A,B,C,D) = m(0,4,5,11,15) + d(2,6,9)[m = ON-set minterms, d = DC-set minterms]

CD	AB 00	01	11	10
CD 00	1	1	0	0
01	0	1	0	-
11	0	0	1	1
10	-	-	0	0

Example #1 (cont.)

Generate all prime implicants

Example #1 (cont.)

🕏 = distinguished minterm

Prime Implicant Table

Approach: remove & save essentials {p1, p2, p3}, and delete intersecting rows ... empty table: nothing left to cover. #42

Example #2:
$$f(A,B,C) = m(0,1,2,6) + d(5)$$

[m = ON-set minterms, d = DC-set minterms]

D.C.	A O	1
BC 00	1	0
01	1	-
11	0	0
10	1	1

More complex example: illustrates

"table reduction step" using column dominance

Example #2: f(A,B,C) = m(0,1,2,6) + d(5)

[m = ON-set minterms, d = DC-set minterms]

🕸 = distinguished minterm

Prime Implicant Table

prime implicants

		P1	P2)	Р3	P4
ON-set minterms	0	X		X	
	1	X			X
	2		X	X	
	⊗		X		

= essential prime

Initial PI Table

Example #2: f(A,B,C) = m(0,1,2,6) + d(5)

[m = ON-set minterms, d = DC-set minterms]

DN-set minterms
O X X X
X X

prime implicants

Reduced PI Table (a)

= essential prime

Initial PI Table

Approach: remove & save essential p2, and delete intersecting rows.

Example #2: f(A,B,C) = m(0,1,2,6) + d(5)

[m = ON-set minterms, d = DC-set minterms]

prime implicants

P1 P3 P4

X X X

Reduced PI Table (a)

prime implicants

P1
O X
1 X

Reduced PI Table (b)

"Column Dominance":

- column p1 'column-dominates' column p3
- column p1 'column-dominates' column p4...delete dominated columns {p3,p4}

Example #2: f(A,B,C) = m(0,1,2,6) + d(5)

[m = ON-set minterms, d = DC-set minterms]

prime implicants

= secondary essential prime

"Secondary Essential Primes":

- column p1 has now become 'essential

Approach: remove & save secondary essential p1, and delete intersecting rows.

... empty table: nothing left to cover.

Reduced PI Table (b)

Final solution: {p1,p2}