PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 38/04, 48/00, C07K 7/08, C12N 15/11	A1	 (11) International Publication Number: WO 99/45944 (43) International Publication Date: 16 September 1999 (16.09.99)
(21) International Application Number: PCT/US9 (22) International Filing Date: 11 March 1999 (CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
 (30) Priority Data: 09/041,886 12 March 1998 (12.03.98) (71) Applicant: THE BURNHAM INSTITUTE [US/US North Torrey Pines Road, La Jolla, CA 92037 (US) (72) Inventors: BREDESEN, Dale, E.; P.O. Box 7045, Santa Fe, CA 92067 (US). RABIZADEH, Shahra Camino Del Mar, Del Mar, CA 92014 (US). (74) Agents: FAN, Calvin, A. et al.; Campbell & Flores LI 700, 4370 La Jolla Village Drive, San Diego, C (US). 	Ranch ooz; 52 LP, Sui	Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROAPOPTOTIC PEPTIDES, DEPENDENCE POLYPEPTIDES AND METHODS OF USE

(57) Abstract

The present invention provides substantially pure proapoptotic dependence peptides. The peptides consist substantially of the sequence of an active dependence domain selected from the group of dependence polypeptides consisting of p75^{NTR}, androgen receptor, DCC, huntingtin polypeptide, Machado-Joseph disease gene product, SCA1, SCA2, SCA6 and atrophin-1 polypeptide. Substantially pure proapoptotic dependence peptides include SATLDALLAALRRI (SEQ ID NO:3), Q14 (SEQ ID NO:7), SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID NO:5), SATLQALLAALRRI (SEQ ID NO:6), tat-GG-SATLDALLAALRRI (SEQ ID NO:37) and tat-GG-Q14 (SEQ ID NO:36). The invention also provides a method of increasing cell survival. The method consists of inhibiting the function of an active proapoptotic dependence domain. A method of increasing cell survival consisting of preventing or reducing the rate of formation of an active proapoptotic dependence domain is also provided. The invention further provides a method of identifying compounds which prevent or inhibit apoptosis. The method consists essentially of administering a test compound to a cell undergoing dependence domain mediated apoptosis, and determining whether the compound increases cell survival. A method of reducing the severity of a proapoptotic dependence domain mediated pathological condition is also provided. The method consists of inhibiting the function of an active dependence domain. Additionally provided is a method of reducing the severity of a pathological condition mediated by unregulated cell growth. The method consists of cytoplasmically administering a proapoptotic dependence peptide.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	ÜA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PROAPOPTOTIC PEPTIDES, DEPENDENCE POLYPEPTIDES AND METHODS OF USE

This invention was made with government support under grant number CA69381 awarded by the National

Institutes of Health. The United States Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

This invention relates to negative signal transduction and cell death signaling and, more

10 specifically to the particular amino acid sequences and structures which directly mediate cell death through negative signaling.

Apoptosis is a normal physiological process of cell death that plays a critical role in the regulation 15 of tissue homeostasis by ensuring that the rate of new cell accumulation produced by cell division is offset by a commensurate rate of cell loss due to death. now become clear that disturbances in apoptosis, also referred to as physiological cell death or programmed 20 cell death, that prevent or delay normal cell turnover can be just as important to the pathogenesis of diseases as are known abnormalities in the regulation of proliferation and the cell cycle. Like cell division, which is controlled through complex interactions between 25 cell cycle regulatory proteins, apoptosis is similarly regulated under normal circumstances by the interaction of gene products that either induce or inhibit cell death.

The stimuli which regulate the function of these apoptotic gene products include both extracellular and intracellular signals. Either the presence or the removal of a particular stimulus can be sufficient to evoke a positive or negative apoptotic signal. example, physiological stimuli that prevent or inhibit apoptosis include, for example, growth factors, extracellular matrix, CD40 ligand, viral gene products, zinc, estrogen and androgens. In contrast, stimuli which 10 promote apoptosis include growth factors such as tumor necrosis factor (TNF), Fas, and transforming growth factor β (TGF β), growth factor withdrawal, loss of extracellular matrix attachment, intracellular calcium and glucocorticoids, for example. Other stimuli, including those of environmental and pathogenetic 15 origins, also exist which can either induce or inhibit programmed cell death. Although apoptosis is mediated by diverse signals and complex interactions of cellular gene products, the results of these interactions is thought to 20 feed into a cell death pathway that is evolutionarily conserved between humans, other mammals and invertebrates.

Several gene products which modulate the apoptotic process have now been identified. These gene products include cell survival polypeptides such as Bc1-2, cell death polypeptides such as Bax, and cysteine aspartate proteases (caspases). The interaction and regulation of these gene products with cell surface or cytoplasmic receptors which transduce cell survival or death signals from outside the cell is as yet fairly uncharacterized. Additionally, it is unclear as to how many other genes exist which participate in apoptosis or what role they may play in the programmed cell death pathway. Finally, it also is unclear what the

physiological control mechanisms are which regulate programmed cell death or how the cell death pathways interact with other physiological processes within the organism.

Thus, there exists a need for the elucidation of cell death pathways and the identification of novel molecular components which mediate apoptosis. Such molecular components can be used for the treatment or diagnosis of cell death mediated diseases. The present invention satisfies this need and provides related advantages as well.

SUMMARY OF THE INVENTION

The present invention provides substantially pure proapoptotic dependence peptides. The peptides

15 consist substantially of the sequence of an active dependence domain selected from the group of dependence polypeptides consisting of p75NTR, androgen receptor, DCC, huntingtin polypeptide, Machado-Joseph disease gene product, SCA1, SCA2, SCA6 and atrophin-1 polypeptide.

- Substantially pure proapoptotic dependence peptides include SATLDALLAALRRI (SEQ ID NO:3), Q14 (SEQ ID NO:7), SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID NO:5), SATLQALLAALRRI (SEQ ID NO:6), tat-GG-SATLDALLAALRRI (SEQ ID NO:37) and tat-GG-Q14 (SEQ
- 25 ID NO:36). The invention also provide a method of increasing cell survival. The method consists of inhibiting the function of an active proapoptotic dependence domain. A method of increasing cell survival consisting of preventing or reducing the rate of
- formation of an active proapoptotic dependence domain is also provided. The invention further provides a method of identifying compounds which prevent or inhibit

4

apoptosis. The method consists essentially of administering a test compound to a cell undergoing dependence domain mediated apoptosis, and determining whether the compound increases cell survival. A method of reducing the severity of a proapoptotic dependence domain mediated pathological condition is also provided. The method consists of inhibiting the function of an active dependence domain. Additionally provided is a method of reducing the severity of a pathological condition mediated by unregulated cell growth. The method consists of cytoplasmically administering a proapoptotic dependence peptide.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the ability of $p75^{NTR}$, $p75^{NTR}$ 15 variants and $p75^{NTR}/TNFR$ I chimeras to stimulate apoptosis.

Figure 2 shows the ability of a proapoptotic dependence peptide and related peptides to stimulate apoptosis.

Figure 3 shows that the stimulation of 20 apoptosis by proapoptotic dependence peptides is accompanied by mitochondrial swelling (A), cytochrome c release (B), and caspase-3 cleavage (C).

DETAILED DESCRIPTION OF THE INVENTION

This invention is directed to proapoptotic

25 peptides, which are capable of inducing cell death, and methods of using proapoptotic peptides. The proapoptotic peptides, also termed proapoptotic dependence peptides, are generally derived from negative signaling

polypeptides or other molecules participating in cell death. Negative signaling polypeptides induce cell death when these polypeptides fail to interact with their respective ligands or are otherwise activated by some form of structural alteration. The proapoptotic dependence peptides of the invention are advantageous in that they can directly mediate cellular apoptosis. Thus, the peptides are useful for the treatment of various pathological conditions characterized by unregulated cell growth or survival such as cancer, autoimmune and fibrotic disorders. Moreover, proapoptotic dependence peptides derived from negative signaling polypeptides are advantageous in that they can be used for the identification of compounds which inhibit cell death mediated by negative signaling polypeptides.

In one embodiment, the invention is directed to a proapoptotic dependence peptide derived from or modeled after the dependence polypeptide $p75^{\text{NTR}}$ (SEQ ID NO:2). neurotrophin receptor, or $p75^{\text{NTR}}$, is a negative signaling 20 polypeptide that mediates apoptosis, neuronal atrophy and decreased neurite outgrowth in the absence of bound neurotrophin. The presence of the neurotrophin receptor $p75^{\text{NTR}}$ therefore creates a state of dependence on neurotrophin for the survival of neuronal cells. It is a region of the cytoplasmic domain of $p75^{NTR}$, the proapoptotic dependence domain, that directly induces apoptosis in the absence of neurotrophin. The region within the cytoplasmic domain which confers this dependent state and exhibits proapoptotic activity is a region of about fourteen amino acid residues having the 30 sequence SATLDALLAALRRI (SEQ ID NO:3).

In another embodiment, the invention is directed to proapoptotic dependence peptides derived from

or modeled after other dependence polypeptides such as the androgen receptor (SEQ ID NO:11), the Machado-Joseph disease polypeptide (SEQ ID NO:13), the huntingtin polypeptide (SEQ ID NO:15), and the SCA1 (SEQ ID NO:17), SCA2 (SEQ ID NO:19), SCA6 (SEQ ID NO:21) and atrophin-1 (DRPLA; SEQ ID NO:23) polypeptides. These dependence polypeptides contain a polyglutamine sequence of variable length that when synthesized as a peptide exhibits proapoptotic activity that directly induces programmed 10 cell death when introduced or expressed intracellularly. The region of the dependence polypeptide that confers this dependent state and exhibits proapoptotic activity is a polyglutamine region of about fourteen amino acids having the sequence QQQQQQQQQQQQ (SEQ ID NO:7). 15 invention is also directed to proapoptotic dependence peptides in which the polyglutamine sequence region is between about 6 to 100 amino acid residues, sometimes about 200 amino acid residues, generally about 14 to 40 amino acids.

20 As used herein, the term "proapoptotic" refers to a peptide that is capable in itself of inducing apoptosis or programmed cell death when expressed or introduced intracellularly. The induction of apoptosis by proapoptotic peptides does not depend upon normal 25 physiological stimuli such as the absence of growth or survival factors, or the presence of cell death stimuli. Although proapoptotic dependence peptides function in the absence of physiological stimuli, these peptides can additionally increase the rate or extent of apoptosis 30 when expressed or introduced into a cell which has been induced to undergo apoptosis by such physiological stimuli. Proapoptotic dependence peptides can also induce apoptosis at different rates, and at different points of the cell cycle, depending on the nature of the

peptide and the cells in which the dependence peptide is expressed.

As used herein, the term "dependence domain" when used in reference to a dependence polypeptide is intended to mean the portion or domain of a dependence polypeptide which can be induced to stimulate apoptosis. Dependence domains can exist in a range of apoptotically active states or be in an inactive state in the dependence polypeptide. To stimulate apoptosis, a 10 dependence domain is induced to the apoptotically active state and, once induced, the dependence domain can directly stimulate apoptosis. A dependence domain can be induced to an apoptotically active state by a conformational change of a dependence polypeptide or a 15 structural change mediated by altered or induced processing of the dependence polypeptide. A dependence domain therefore requires the induction of a conformational or structural change within the larger dependence polypeptide to enable its interaction with a component of the cellular apoptotic machinery to 20 stimulate apoptosis.

Conformational or structural changes can occur, for example, by the removal of a growth or survival factor from a dependence polypeptide which functions as a receptor for the growth or survival factor. In this situation removal of the growth factor ligand activates the dependence domain. Alternatively, addition of a ligand to a dependence polypeptide can induce a conformational or structural change which activates the dependence domain. Likewise, a dependence polypeptide other than a cell surface receptor, for example an intracellular protein, can undergo a conformational or

25

structural change induced by binding to a ligand or dissociation from a ligand.

A conformational or structural change also can be induced by processing of the dependence polypeptide. For example, proteolytic cleavage of the dependence polypeptide in vivo can liberate an apoptotically active dependence domain that is accessible to the cellular apoptotic machinery. Alternatively, cleavage of an apoptotically active dependence polypeptide can 10 inactivate the proapoptotic activity of the dependence domain.

A dependence domain also can be activated by association with another molecule, such as an effector molecule that induces a conformational or structural change upon a dependence domain. For example, a ligand other than a receptor agonist can bind to the dependence polypeptide and induce a conformational or structural change that activates the proapoptotic activity of the dependence domain. A conformational or .structural change 20 also can be induced by an effector molecule that, for example, phosphorylates the dependence polypeptide.

Specific examples of dependence domains include, for example, regions within the cytoplasmic domain of receptors which negatively signal cell death such as p75NTR (neurotrophin receptor; SEQ ID NO:2), DCC (deleted in colonic carcinoma; SEQ ID NO:25) and CD40 (SEQ ID NO:27). A dependence domain of p75NTR contains, for example, the sequence SATLDALLAALRRI (SEQ ID NO:3). Other examples of dependence domains include the polyglutamine regions of the androgen receptor (SEQ ID 30 NO:11), the Machado-Joseph polypeptide (SEQ ID NO:13), the huntingtin polypeptide (SEQ ID NO:15), the atrophin-1 polypeptide (SEQ ID NO:23), and the SCA1 (SEQ ID NO:17), SCA2 (SEQ ID NO:19) and SCA6 (SEQ ID NO:21) polypeptides. Dependence domains are known to exist in other dependence polypeptides, and can be identified by those skilled in the art using the methods described herein. The size of the dependence domain can vary as they are contained within the parent dependence polypeptide. Such size differences are to be included within the meaning of the term so long as the dependence domain retains the ability to be induced to an apoptotically active state.

As used herein, the term "active" or "apoptotically active" when used to describe the state of a dependence domain is intended to mean that the domain exhibits a conformation or structure which can directly 15 induce or stimulate apoptosis. It is the occurrence of a conformational or structural change within a dependence polypeptide which yields an active dependence domain capable of stimulating apoptosis. For example, when used in reference to a dependence polypeptide which is a 20 receptor for a cell survival or growth factor, such as $p75^{NTR}$, DCC or the estrogen receptor, the dependence domain of the receptor is active when the factor is removed from the receptor. In the particular example of $p75^{\text{NTR}}$, removal of a dependence domain from a larger 25 inhibitory context, for example, from an inactive dependence polypeptide, similarly yields an active dependence domain that is capable of directly stimulating apoptosis. Additional examples of active dependence domains are regions of the cytoplasmic domains of 30 unliganded receptors such as $p75^{NTR}$, DCC and CD40, an N-terminal apopain cleavage fragment of the huntingtin polypeptide (SEQ ID NOS:28-31), a polyglutamine region containing between about 10 to 25 glutamine residues (Q10; SEQ ID NO:8 and Q25; SEQ ID NO:9, for example) that

PCT/US99/05250

is a cleavage product of unliganded androgen receptor, and the polyglutamine regions from the Machado-Joseph, SCA1, SCA2, SCA6 and atrophin-1 polypeptides. Other examples of active dependence domains exist as well and are known or can be identified by those skilled in the art.

As used herein, the term "dependence peptide" when used in reference to a proapoptotic peptide is intended to mean a peptide having substantially the same amino acid sequence, or functional equivalent or fragment 10 thereof, as a dependence domain. A proapoptotic dependence peptide can directly stimulate apoptosis when expressed or introduced into a cell. A proapoptotic dependence peptide is therefore a constitutively active dependence domain, or functional fragment thereof, whose 15 proapoptotic activity is independent of a conformational or structural change. Dependence peptides can be as large or larger than the entire dependence domain or as small as 10 amino acids or less. Where the natural 20 dependence polypeptide is known to be processed by a protease such as a caspase, the dependence peptide can be less than the naturally occurring processed polypeptide. A specific example of a proapoptotic dependence peptide is that derived from a dependence domain of $p75^{NTR}$ having 25 the sequence SATLDALLAALRRI (SEQ ID NO:3). Another example is the polyglutamine peptide Q14 (SEQ ID NO:7) derived from a dependence domain of the androgen receptor, the Machado-Joseph polypeptide, the huntingtin polypeptide and the SCA1, SCA2 and atrophin-1 30 polypeptides. Additional examples include modified forms .of a $p75^{NTR}$ derived dependence peptide which have the sequences SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID NO:5) and SATLQALLAALRRI (SEQ ID NO:6). proapoptotic dependence peptides of the invention are

substantially pure proapoptotic peptides that are derived from or include dependence domains. It is intended that various lengths of polyglutamine-containing proapoptotic dependence peptides derived from or modeled after dependence polypeptides are within the scope of the invention.

As used herein, the term "functional equivalent" is intended to mean a peptide that has proapoptotic activity and is modeled after or derived 10 from a dependence peptide. Peptides modeled after or derived from dependence peptides refers to an amino acid sequence or chemical structure that is deduced or produced from the amino acid or encoding nucleotide sequence of the dependence peptide. Functionally 15 equivalent dependence peptides can be identified as those that stimulate apoptosis when introduced or expressed in cells. Specific examples of such functionally equivalent dependence peptides are described further below in Example III. A functionally equivalent dependence 20 peptide can have a relatively high or low apoptotic activity and can be essentially any sequence modeled after or derived from a dependence peptide so long as it induces apoptosis in one or more cell types.

include those substituted at the level of the primary sequence, for example amino acid substitutions that include natural and nonnatural amino acids, such as penicillamine, and their derivatives or analogs, or those modified at the level of secondary structure, for example changes in cyclization mediated by disulfide bond formation. A functionally equivalent dependence peptide can be artificial, for example it can be engineered or be a chimera, or naturally occurring, for example it can be

obtained from a dependence domain or fragment thereof, or be a peptidomimetic. Furthermore, a functional equivalent can be phosphorylated or otherwise modified by the addition of lipid and carbohydrate chains. Such substitutions and modifications of the proapoptotic dependence peptide are to be included within the meaning of the term so long as the peptide stimulates apoptosis in one or more cell types.

A "contingency peptide" as used herein, is

intended to refer to a particular type of dependence
peptide which corresponds substantially to the sequence
of a natural in vivo proteolytic cleavage product or
otherwise processed peptide or polypeptide that exhibits
proapoptotic activity. Specific examples of contingency

peptides include, for example, an amino-terminal apopain
cleavage fragment of the huntingtin polypeptide
(SEQ ID NOS:28-31) and the amino-terminal cleavage
product of an unliganded androgen receptor (SEQ ID
NO:32). It is noted that alternative cleavages can form
different contingency peptides derived from the same
dependence polypeptide.

As the term proapoptotic dependence peptide is used in reference to the compositions of the invention, the definition of this term is intended to exclude those isolated naturally occurring peptides that are known to possess inherent proapoptotic activity in the native peptide. Specific examples of known isolated naturally occurring proapoptotic peptides are the wasp venom peptide toxin mastoparan and the β -amyloid peptide. The definition however explicitly does not exclude the use of any of such compositions in the methods of the invention.

As used herein, terms which reference specific dependence polypeptides, unless stated to the contrary, are intended to maintain the meaning of these terms as they are commonly referred to in the art. Moreover, the nucleotide and amino acid sequences of each of these polypeptides are similarly intended to be substantially that which is known in the art. For example, the nucleotide and predicted amino acid sequence of the following dependence polypeptides can be found published in, for example, P75NTR (SEQ ID NO:1 and SEQ ID NO:2; 10 Johnson et al. <u>Cell</u> 47:545-554 (1986)), DCC (SEQ ID NO:24 and SEQ ID NO:25; Hedrick et al. Genes Dev. 8:1174-1183 (1994)), androgen receptor (SEQ ID NO:10 and SEQ ID NO:11; Chang et al. Proc. Natl Acad. Sci USA 85:7211-7215 15 (1988)), estrogen receptor (SEQ ID NO:34 and SEQ ID NO:35; Greene et al. <u>Science</u> 231:1150-1154 (1986)), huntingtin (SEQ ID NO:14 and SEQ ID NO:15; Trottier et al. <u>Nat. Genet.</u> 10:104-110 (1995)); Ambrose et al. <u>Somat.</u> Cell. Mol. Genet. 20:27-38 (1994)), CD40 (SEQ ID NO:26 and SEQ ID NO:27; Stamenkovic et al. EMBO J. 8:1403-1410 20 (1989)), SCA1 (SEQ ID NO:16 and SEQ ID NO:17; Banfi et al. Nat. Genet. 7:513-519 (1994)), SCA2 (SEQ ID NO:18 and SEQ ID NO:19; Sanpei et al. Nat. Genet. 14:277-291 (1996)), SCA6 (SEQ ID NO:20 and SEQ ID NO:21; Zhuchenko et al. Nat. Genet. 15:62-69 (1997)), atrophin-1 (SEQ ID 25 NO:22 and SEQ ID NO:23; Onodera et al. Am. J. Hum. Genet. 57:1050-1060 (1995)) and Machado-Joseph disease (SEQ ID NO:12 and SEQ ID NO:13; Kawaguchi et al. Nat. Genet. 8:221-228 (1994)). The sequences of the dependence 30 polypeptides listed above are of human origin, however, it is noted that the sequences of the dependence polypeptides from other species are known and are intended to be included within the meaning of the term as used herein. Likewise, other dependence polypeptides are known or can be identified by those skilled in the art 35

and are intended to be included within the meaning of the term as used herein.

As used herein, the term "peptide" when used in reference to the proapoptotic molecules of the invention 5 is intended to mean any string of two or more amino acids covalently joined through a peptide bond. proapoptotic peptides of the invention are generally less than about 250 residues, preferably the proapoptotic peptides are less than about 100 amino acids, and more 10 preferably the proapoptotic peptides are between about 5 and 50 amino acids in length. Specific dependence peptides exemplified herein have sizes of 14 amino acid residues. The peptides can be obtained by biochemical, recombinant or synthetic means known to those skilled in 15 the art. The term similarly includes natural and nonnatural amino acids as well as functionally alternative forms such as derivatives, analogs and mimetics thereof so long as the peptide or alternate form maintains its activity to directly stimulate apoptosis. 20 The synthesis, testing and function of such amino acid derivatives, analogs and mimetics is well known to those skilled in the art.

As used herein, the term "heterologous functional domain" is intended to mean a non-proapoptotic domain that imparts a second function onto the proapoptotic peptides of the invention. For example, a heterologous functional domain can impart targeting capabilities or facilitate cell entry, enhance apoptosis, or modulate the proapoptotic activity of the dependence peptide. Heterologous functional domains can consist of peptide and polypeptide domains as well as other domains consisting of small organic and inorganic molecules, nucleic acids, carbohydrates, lipids and combinations

thereof. Heterologous functional domains also can include chemical moieties such as a drug. Specific examples of heterologous functional domains include ligands to cell surface proteins or domains that 5 otherwise facilitate cell entry which therefore function to target the proapoptotic peptides to specific cells and tissues. The HIV tat protein is such a heterologous functional domain which facilitates cellular entry. Heterologous functional domains also include, for 10 example, cytotoxic and cytostatic chemical moieties that enhance apoptosis, or those that regulate activity, for example, modular derepressible motifs such as the glucocorticoid receptor hormone binding domain. Additional examples of heterologous functional domains 15 are known to those skilled in the art and are intended to be included within the meaning of the term so long as they impart a second function onto the proapoptotic peptides of the invention.

As used herein, the term "ligand" is intended to mean a molecule or molecules that selectively interacts with another molecule. A ligand can consist of virtually any chemical structure and have any biological function so long as its interaction with another molecule is selective. Examples include, but are not limited to, a hormone receptor interacting with its hormone ligand, an enzyme interacting with a substrate, any protein-protein interaction such as an antibody interacting with an antigen, or a protein-lipid or protein-DNA interaction.

The invention provides a substantially pure proapoptotic dependence peptide. The peptide consists essentially of the sequence of an active dependence domain selected from the group of dependence polypeptides

consisting of p75NTR, androgen receptor, huntingtin polypeptide, Machado-Joseph polypeptide, SCA1, SCA2, SCA6 and atrophin-1 (DRPLA) polypeptide. Also provided are substantially pure proapoptotic dependence peptides

5 consisting substantially of the amino acid sequence SATLDALLAALRRI (SEQ ID NO:3), SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRRI (SEQ ID NO:5) and SATLQALLAALRRI (SEQ ID NO:6), or functional equivalents thereof. A proapoptotic dependence peptide comprising a

10 polyglutamine region or functional equivalent thereof is also provided.

The cell surface neurotrophin receptor p75^{NTR} (SEQ ID NO:2) is a negative cell signaling polypeptide that can be induced to stimulate apoptosis. For example, in the presence of bound neurotrophin or other ligand agonist, p75^{NTR} is apoptotically inactive whereas in the absence of neurotrophin, unliganded p75^{NTR} stimulates cellular apoptosis. Apoptosis is therefore mediated by a conformational or structural modulation of P75^{NTR} induced by ligand release. The conformational or structural modulation of p75^{NTR} can be inhibited by dimerization or multimerization with a different protein indicating that a monomeric form of p75^{NTR} is the active form which can stimulate apoptosis.

25 A region of the cytoplasmic domain of p75^{NTR} that can mediate proapoptotic activity is included in an about fourteen amino acid region having substantially the sequence SATLDALLAALRRI (SEQ ID NO:3). When expressed or introduced into a cell, a peptide consisting essentially of the sequence SATLDALLAALRRI or functional equivalent thereof directly stimulates apoptosis. Thus, a region of p75^{NTR} which contains this sequence is a dependence domain and a peptide containing the sequence SATLDALLAALRRI is a

proapoptotic dependence peptide. This proapoptotic sequence is conserved across species and the identical sequence is found to be expressed in the human and rat p75 $^{\mathtt{NTR}}$ cytoplasmic domains. The proapoptotic peptide SATLDALLAALRRI further exhibits an $\alpha\text{-helical}$ secondary structure.

NO:25) also is a negative cell signaling polypeptide that can be induced to stimulate apoptosis. For example, in the presence of netrin or other ligand agonist, DCC is apoptotically inactive. The removal of netrin induces a conformational or structural change of the DCC receptor which results in a concomitant stimulation of apoptosis. A region of the amino-terminus of DCC (SEQ ID NO:33), which in intact cells is intracellular, can mediate proapoptotic activity of this dependence polypeptide.

The intracellular androgen receptor, or AR (SEQ ID NO:11), is another dependence polypeptide that can stimulate apoptosis. Apoptosis can be stimulated by the AR in response to a cell death signal. The apoptotic signal results in the induction of a structural or conformational change in the androgen receptor which stimulates the cell death pathway. One structural or conformational change that occurs in the AR is a proteolytic cleavage which liberates a contingency peptide of about 154 amino acids (SEQ ID NO:32). It is this contingency peptide that is capable of stimulating apoptosis.

In the above specific example, the contingency peptide released by caspase-3 mediated cleavage contains a dependence domain consisting of a polyglutamine containing sequence. A peptide containing this domain is

capable of directly stimulating apoptosis. The size of the polyglutamine domain ranges from about 11 to 66 amino acids and a peptide of about 14 polyglutamine amino acids when synthesized and introduced into cells (Q14; SEQ ID NO:7) also can induce apoptosis. This Q14 peptide or other polyglutamine-containing peptides modeled after the AR dependence domain exhibits proapoptotic activity and is therefore a proapoptotic dependence peptide.

Similarly, the cytoplasmic huntingtin 10 polypeptide (SEQ ID NO:15) is another dependence polypeptide that can be induced to stimulate apoptosis. Apoptosis can be stimulated by the huntingtin polypeptide in response to a cell death signal. As with the AR, the apoptotic signal induces a conformational or structural 15 change in the huntingtin polypeptide which activates the cell death pathway. A particular type of structural or conformational change that occurs is a proteolytic cleavage which liberates a contingency peptide and thereby stimulates apoptosis. Apopain-mediated cleavage 20 is one protease which can release an about 80 kDa contingency peptide which corresponds to an amino terminal peptide fragment of the huntingtin dependence polypeptide. The cleavage can occur at any of a cluster of four DXXD (SEQ ID NO:68) apopain cleavage-recognition 25 motifs that are present in the huntingtin polypeptide. These motifs include DSVD, DEED, DLND and DGTD (SEQ ID NOS:69-72, respectively) and can be found at residues 510-513, 527-530, 549-552 and 586-589, respectively. (Goldberg et al. Nat. Genet. 13:442-449 (1996)).

The 80 kDa contingency peptide derived from the huntingtin polypeptide includes a polyglutamine containing dependence domain. The number of polyglutamine residues within this domain can vary and

10

generally ranges from 7 to 28 amino acids in length but can exceed 36 amino acids in length. A peptide modeled after or derived from the polyglutamine-containing dependence domain of the huntingtin polypeptide exhibits 5 substantially the same proapoptotic activity as the active dependence domain. Additionally, a peptide having a polyglutamine sequence of any of the sizes exhibited by the huntingtin polypeptide also exhibits substantially the same proapoptotic activity as the active dependence Therefore, a peptide containing a polyglutamine region of huntingtin is one proapoptotic dependence peptide provided by the invention.

The intracellular Machado-Joseph polypeptide (SEQ ID NO:13) is another dependence polypeptide that can 15 be induced into an active proapoptotic state through a conformational or structural change within a dependence domain. As with the AR and the huntingtin polypeptide, the dependence domain within the polypeptide is a polyglutamine-containing region. This region is the 20 carboxy-terminal region of the Machado-Joseph protein and contains from about 13 to 36 or up to about 68 to 79 glutamine amino acids. Peptides containing this polyglutamine region sequence function as proapoptotic dependence peptides. Moreover, peptides consisting of 25 polyglutamine residues within any of these ranges exhibit proapoptotic activity. Therefore, a peptide modeled after or derived from the dependence domain or the polyglutamine containing region of this domain is another proapoptotic dependence peptide provided by the 30 invention.

Other dependence polypeptides which contain dependence domains that can be induced into an active state also are known to exist. These other polypeptides

30

include, for example, the polypeptides encoded by the SCA1, SCA2, SCA6, atrophin-1 and CD40 genes. particular, the SCA1, SCA2, SCA6 and atrophin-1 polypeptides include at least a polyglutamine-containing 5 dependence domain similar to that previously described. A peptide modeled after or derived from the polyglutamine-containing dependence domain from any of these gene products induces apoptosis and is therefore a proapoptotic dependence peptide. A peptide containing a 10 polyglutamine sequence within any of these polypeptides will similarly induce apoptosis and is therefore a proapoptotic dependence peptide. Thus, the invention provides proapoptotic dependence peptides selected from the group of dependence polypeptides SCA1, SCA2, SCA6 and 15 atrophin-1.

The invention further provides proapoptotic dependence peptides consisting of a polyglutamine sequence. The polyglutamine sequence can be a variety of lengths so long as the peptide maintains its activity to induce apoptosis. The lengths of such polyglutamine containing dependence peptides can be from about 6 to 100 amino acid residues, sometimes up to about 250 amino acids. Preferably the length is about 10 to 100 amino acids, more preferably about 14 to 40 amino acids.

25 Therefore, the invention provides dependence peptides of less than or equal to 40 amino acid residues.

Specific examples of dependence peptides that are derived from or modeled after dependence peptides are SATLDALLAALRRI (SEQ ID NO:3), SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID NO:5) and SATLQALLAALRRI (SEQ ID NO:6). These peptides were identified by generating variants of the p75^{NTR} dependence peptide

SATLDALLAALRRI and then testing for those which exhibit apoptotic activity.

Proapoptotic dependence peptides can be derived from or modeled after dependence domains. Dependence

5 domains can exhibit a low- or non-apoptotic activity or alternatively, exhibit a moderate or high activity depending on the amino acid sequence of the domain and its conformational or structural state. In contrast, the activity of proapoptotic dependence peptides is

10 independent of changes in conformation or structure and are therefore in a constitutively active state.

Factors that contribute to conformational and structural changes resulting in a dependence domain having more or less apoptotic activity can include, for example, the degree of ligand association. Specifically, 15 in the case of a negative signaling molecule, a high affinity ligand can associate with a dependence polypeptide for a longer period of time than a low affinity ligand. This association can result in a 20 dependence domain that is in an apoptotically active state for a comparatively longer period of time which prolongs the accessibility of the active dependence domain to the apoptotic machinery thereby enhancing apoptosis. In a cell, the apoptotic activity of the 25 dependence domain and therefore the induction of apoptosis also can be affected by the degree of ligand association with a dependence polypeptide that is intracellular.

A dependence polypeptide also can exhibit

30 different apoptotically active conformations and therefore different apoptotic activities by binding to a different ligand. For example, ligands with a similar

25

affinity can bind to different sites on a dependence polypeptide and induce a conformational change that is specific for that site. The site of ligand binding on a dependence polypeptide therefore determines a level of 5 apoptotic activity of a dependence domain. Multiple ligand-binding sites of a dependence polypeptide can result in a dependence domain that is capable of having a broad range of apoptotic activity.

Alternatively, a single binding site on a 10 dependence polypeptide can bind to different ligands having different structures. The structure of a ligand also can control a conformation of a dependence polypeptide thereby determining the apoptotic activity of a dependence domain. Thus, the structure of a cell death 15 or survival signal, such as a ligand, received by a dependence polypeptide can modulate its conformational state and therefore the proapoptotic activity of the dependence domain. In contrast, a contingency peptide of defined length produced by a structural change will 20 likely contain a dependence domain that exhibits only a few variations in conformation that affect its apoptotic activity.

Another way in which the activity of a dependence domain can vary or be modulated is through the reversal of the conformational change associated with dependence polypeptide activation. Such a reversal can occur by, for example, the removal of ligand or addition of an antagonist. However, the ability to prevent or reverse the apoptotic activity of the dependence domain 30 and therefore apoptosis after formation of an active dependence domain will be affected by the type of change required for dependence domain activation as described below.

In a cell, the level of apoptotic activity exhibited by a dependence domain is determined by, in part, the amount of a proapoptotic dependence domain that accumulates. The amount of active dependence domain that is needed for the stimulation of apoptosis in cells can be as few as a single proapoptotic dependence domain molecule or significantly more, for example, 10,000 molecules or greater. The amount needed to stimulate apoptosis can be highly variable among cell types and is largely determined by the apoptotic machinery within a particular cell and the interaction or regulation of the proapoptotic dependence domain with that apoptotic machinery.

Dependence polypeptides can be identified by a variety of methods known to those skilled in the art. 15 Briefly, all that is required is to test for the induction of apoptosis following a conformational or structural change in a polypeptide that is mediated by a stimulus. Alternatively, those skilled in the art know or can determine if a particular stimulus induces 20 programmed cell death and such stimuli can then be tested for the induction of a conformational or structural change in the polypeptide. Selection of the particular stimulus and corresponding polypeptide can be made by 25 those skilled in the art based on current knowledge and accepted interpretations of experimental results known in the art. Proapoptotic polypeptides that undergo a structural or conformational change are potential candidates for the dependence polypeptides of the 30 invention. Dependence polypeptides are identified as those polypeptides which yield proapoptotic peptides.

Selection of a polypeptide or stimulus to assess can be made by, for example, choosing molecules which are involved in programmed cell death or play a role in cell proliferation, differentiation, survival or 5 growth. For example, receptors for cell regulatory factors can be tested for a change in conformation or structure of a domain and a concomitant induction of apoptosis in the presence or absence of ligand. Similarly, cytoplasmic or nuclear proteins can also be 10 tested for a change in conformation or structure of a domain with a concomitant induction of apoptosis in the presence or absence of a stimulus. A specific example of such a cytoplasmic protein is where the stimulus is a growth factor. Other potential cellular dependence 15 polypeptides include, for example, steroid hormone receptors, signal transduction molecules such as JAK, JNK and STAT, SH2 and SH3 containing proteins and a variety of transcription factors. Such molecules can all be tested in the presence or absence of a ligand or stimulus 20 to determine the induction of a conformational or structural change which mediates apoptosis. A variety of methods exist for determining conformational or structural changes and the concomitant induction of apoptosis. For example, a selected molecule can be 25 introduced or expressed in a cellular background which enables the determination of the functional properties of the polypeptide, ligand or stimulus. Using cell regulatory factor receptors as a specific example, such polypeptides can be expressed in apoptotically competent 30 cells which normally do not express the receptors or in which the endogenous receptor can be selectively inhibited.

Cells that express or that are made to express, a candidate cell regulatory factor can then be tested for apoptosis in the presence or absence of the particular cell regulatory factor. Induction of apoptosis mediated through a change in conformation or structure of the receptor identifies that polypeptide as a potential candidate for a dependence polypeptide. Synthesis and testing for apoptotic activity of peptide fragments corresponding to different portions of the dependence polypeptide will confirm or refute that the potential candidate is a dependence polypeptide.

Alternatively, dependence polypeptides can be identified by first selecting ligands or polypeptides that are known or predicted to play a role in cell

15 growth, proliferation, differentiation or survival. Such ligands or polypeptides can be tested for their ability to induce a conformational or structural change in a cognate binding partner which can then mediate apoptosis.

The identification of a cognate binding partner 20 can be performed using methods well known to those skilled in the art. Such methods include, for example, affinity and immunoaffinity selection using ligands, antibodies and anti-idiotype antibodies, for example. Chromatography, affinity precipitation such as immunoaffinity precipitation, solid phase blotting 25 procedures and panning methods are applicable for the identification of ligand or polypeptide binding partners. Numerous formats of such methods are known to those skilled in the art and can be used or modified according 30 to the need and the particular type of binding partner to be identified. Additionally, biochemical purification methods and cloning procedures such as expression cloning with the ligand or polypeptide labeled so as to allow

detection of binding interactions. Alternatively, the binding partner can be determined by selection of cells from an expression library for survival or death in the presence or absence of the ligand or polypeptide.

Dependence polypeptides also can be identified by hybridization techniques using nucleic acid probes that encode a polyglutamine containing sequence or other sequences such as SATLDALLAALRRI (SEQ ID NO:3), SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID NO:5) or SATLQALLAALRRI (SEQ ID NO:6) to screen a nucleic acid library. Probes derived from or modeled after nucleotide or amino acid sequences from other dependence domains or proapoptotic peptides can similarly be used to screen libraries for the identification of dependence polypeptides. Additionally, such nucleotide sequences can be used to search for similar or related sequences in EST and other databases.

Dependence polypeptides also can be identified by having regions of amino acid sequence homology to 20 known dependence domains. For example, polypeptides having a polyglutamine region equal to or greater than an about 6 amino acid residue sequence can be selected and tested for dependence polypeptide function. Similarly, polypeptides identified as having a region of homology to 25 the SATLDALLAALRRI (SEQ ID NO:3) dependence domain or modified forms of a dependence domain, SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID NO:5) or SATLQALLAALRRI (SEQ ID NO:6) can be dependence polypeptides. These and other methods are well known to 30 those skilled in the art and can be used to identify dependence polypeptides.

WO 99/45944

10

Conformational or structural changes can also be determined by a variety of methods known to those skilled in the art. For example, if there is a structural change such as the cleavage of a domain 5 fragment from the intact polypeptide, such a cleavage can be assessed by assaying for the change in size of the intact polypeptide. Alternatively, such a cleavage can be assessed by assaying for the appearance of the cleaved fragment. Immunoaffinity and electrophoretic methods known to those skilled in the art are amenable for such determinations. Other well known methods also exist and can similarly be used to assess a change in structure of a candidate dependence polypeptide.

Conformational changes can similarly be 15 determined using a variety of methods known to those skilled in the art. For example, changes in conformation can be assessed by, for example, determining the binding of conformation-specific antibodies or other binding probes, construction and testing of methods known or 20 predicted to influence conformational changes or stability of a polypeptide or by biophysical methods known in the art. Such biophysical methods include, for example, nuclear magnetic resonance, (NMR) and x-ray crystallography. In addition, the importance of a 25 conformational change can be determined by altering its conformational state, for example, by examining the effect that multimerization with one or more additional proteins has on its apoptotic activity, as compared to the monomeric state.

30 Testing of the dependence domain in a candidate dependence polypeptide can be performed by, for example, recombinantly modifying the suspected dependence domain in the candidate polypeptide and testing whether the

modified polypeptide maintains its ability to undergo a conformational or structural change with concomitant stimulation of apoptosis. Loss of dependence domain mediated apoptosis localizes the dependence domain to the modified sequences. Such modifications can be made by, for example, deletions, insertions or mutation of selected regions of sequences within the candidate polypeptide.

Alternatively, testing of the dependence domain 10 in a candidate dependence polypeptide can be performed by, for example, synthesizing the domain and determining if it directly induces apoptosis. Such peptides can be made by a variety of methods known to those skilled in the art. For example, peptides can be obtained from 15 commercial vendors or be synthesized on an automated apparatus. Such chemical synthesis enables the introduction of nonnatural and derivatized amino acids as well as structural modifications thereof. Recombinant expression of a dependence domain encoding nucleic acid 20 also can be used to produce large quantities of protein. Mammalian, yeast, bacterial and insect cell systems are examples of expression systems well known in the art which can be used to recombinantly produce proapoptotic dependence domain peptides. Such synthesized or 25 recombinantly produced dependence domain peptides can then be introduced into cells to determine their ability to directly induce apoptosis.

Alternatively, a nucleic acid which encodes the dependence domain portion of the candidate dependence

30 polypeptide can be expressed in cells to determine if it directly induces apoptosis. Various expression systems are well known to those skilled in the art and can be used for constitutive or conditional expression of the

encoded dependence domain polypeptide. Such methods and modes of expression are described in, for example, Sambrook et al. Molecular Cloning: A Laboratory Manual, 2nd Ed, Vols 1 to 3, Cold Spring Harbor Laboratory Press, New York (1989).

Dependence domain peptides that directly induce apoptosis can be further analyzed to determine which portions, or the portion of the domain which is sufficient to induce cell death. All of such peptides 10 can be considered to be proapoptotic dependence peptides. The analysis can be performed by, for example, producing successively smaller fragments of the domain to identify those regions, or an individual sequence which still exhibits apoptotic activity. Additionally, site-directed 15 mutagenesis can be used to further define the portion of the domain or the amino acids that are required for the proapoptotic activity of the dependence peptides. addition, randomly generated mutations of a nucleic acid encoding a proapoptotic dependence peptide combined with 20 cell transfections and sequencing analysis of the peptides that have proapoptotic activity can collectively be used to formulate a consensus motif of a proapoptotic dependence peptide.

The apoptotic activity of the dependence

25 domains can be determined by a variety of methods known in the art. Such methods include, for example, induction of mitochondrial swelling, cytochrome c release and caspase-3 cleavage (Ellerby et al. J. Neurosci.

17:6165-6178 (1997)). Other methods known in the art exist and can similarly be used for determining the apoptotic activity of dependence polypeptides, domains or peptides.

The proapoptotic dependence peptides can be introduced into cells by methods well known to those skilled in the art. As described previously, a nucleic acid encoding a dependence peptide can be contained 5 within a suitable expression vector, for example, a retroviral vector, and introduced into cells. The viral vector can have a natural or engineered cell tropism which can be used to facilitate cell entry or provide targeting. The use of such a tropic vector can enhance 10 the transfection efficiency of cells. Proapoptotic dependence peptides themselves also can be introduced into cells by nonspecific endocytosis, or through the use of heterologous targeting domain. For example, in a particular embodiment described below, an HIV tat 15 protein, when linked to a dependence peptide, facilitates cellular entry. Lipid carriers also can be used to introduce the nucleic acids encoding proapoptotic dependence peptides, or the peptide itself, directly into cells. Other methods of expressing or introducing 20 proapoptotic dependence peptides into cells are known and can be used by those skilled in the art.

The invention provides a proapoptotic dependence peptide that contains a heterologous functional domain. The invention also provides a

25 heterologous functional domain consisting of a targeting domain or a domain which facilitates cellular entry. The invention additionally provides a heterologous functional domain consisting of a tat peptide. The invention also provides substantially pure proapoptotic dependence

30 peptides having a sequence consisting of SATLDALLAALRRI (SEQ ID NO:3), tat-GG-SATLDALLAALRRI (SEQ ID NO:37), Q14 (SEQ ID NO:7) and tat-GG-Q14 (SEQ ID NO:36). Also provided are substantially pure proapoptotic dependence peptides having a sequence consisting of

SATLDALLAALGGI (SEQ ID NO:4), tat-GG-SATLDALLAALGGI (SEQ ID NO:38), SATLDALLAALRGI (SEQ ID NO:5), tat-GG-SATLDALLAALRGI (SEQ ID NO:39), SATLQALLAALRRI (SEQ ID NO:6) and tat-GG-SATLQALLAALRRI (SEQ ID NO:40) or functional equivalents thereof.

The proapoptotic dependence peptides can be combined with one or more heterologous functional domains to impart distinct or complimentary functions onto the proapoptotic peptides of the invention. The distinct or complimentary function of the heterologous functional domain can provide targeting functions and additional apoptotic activity onto the proapoptotic peptides of the invention. Additionally, a heterologous functional domain can also function as a regulator of the apoptotic activity of the peptide, for example.

A heterologous functional domain can consist of a domain that facilitates entry of a proapoptotic dependence peptide. One example of such a heterologous functional domain that facilitates entry into a cell is 20 the HIV tat protein. This protein or functional equivalents thereof, when coupled to a proapoptotic dependence peptide increases the apoptotic activity of the peptide 30-fold compared to the peptide alone. Additional heterologous domains that provide a cell 25 targeting function or facilitate cellular entry also are known to those skilled in the art. Such domains include, for example, ligands to extracellular proteins or receptors, ligands to other cell surface receptors, antibodies, a natural or engineered viral protein with a 30 desired cell tropism, toxin subunits which facilitate toxin entry and functional fragments thereof.

A heterologous functional domain also can augment the cell death activity of the proapoptotic dependence peptide by linking one or more additional cell death or inhibitory activities onto the proapoptotic dependence peptide. Such cell death or inhibitory activities include, for example, domains which exhibit apoptotic, cytotoxic or cytostatic activity. Domains which exhibit apoptotic activity include, for example, ligands or agonists to receptors which induce programmed 10 cell death. Fas ligands or anti-Fas antibodies are two specific examples of such apoptotic domains. A domain which activates caspase protease activity is another example of a heterologous functional domain which exhibits apoptotic activity. Domains which exhibit cytotoxic or cytostatic activity include, for example, 15 toxins and chemotherapeutic agents such as doxorubicin, methotrexate, vincristine and cyclophosphamide can be conjugated to a dependence peptide. Other agents exist as well and are known to those skilled in the art and 20 can be linked to proapoptotic peptides to augment their cell death function.

Additionally, agents which enhance apoptosis through cell cycle regulation can be used as a heterologous functional domain. For example, genes that 25 are required for cell proliferation or cell cycle progression can be inhibited by a heterologous domain that is an antisense nucleic acid of that gene. Cell cycle progression also can be inhibited by a negative regulator of the cell cycle, for example, a suppressor gene such as Rb or p53 or active fragment thereof. Such an inhibitor of cell cycle progression can enhance apoptosis in cells.

Alternatively, in other cell types, the apoptotic machinery can be, for example, more prevalent or more receptive to initiation by an active dependence domain in actively growing cells than cells in stationary phase. In these cells, stimulation of apoptosis by the dependence peptide can be enhanced by a heterologous domain that stimulates proliferation.

A heterologous functional domain also can be a regulatable moiety that modulates the activity of a proapoptotic dependence peptide. When linked to a proapoptotic dependence peptide, a modular domain can impart ligand dependent activation or repression of its proapoptotic activity. For example, many different ligand-dependent transcription factors having inducible ligand-binding domains are known in the art.

A heterologous functional domain also can provide a variety of other useful functions known to those skilled in the art. For example, it can be a lipid-based agent to facilitate cell entry, or an agent that increases or decreases the stability of the proapoptotic dependence peptide either intra- or extra-cellularly. A heterologous functional domain also can provide an imaging and/or visualization function which is mediated by an isotopic, colorimetric or fluorometric agent. Such an imaging function is useful for screening an expression library for interacting proteins, or for detecting or localizing apoptosis in vivo.

A proapoptotic dependence peptide of the
invention also can contain more than one heterologous
functional domain. For example, a molecule containing a
proapoptotic dependence domain attached to two or more

25

identical domains or moieties or attached to two or more different domains or moieties. An example of such a molecule containing two or more different domains is a dependence peptide attached to a cell targeting domain 5 and a chemotherapeutic moiety. The exact chemical nature and structural organization of such a heterologous domain/dependence peptide construct will be known by those skilled in the art and can be determined based on the particular application.

34

10 A heterologous functional domain can consist of a variety of different types of moieties ranging from small molecules to large macromolecules. Such moieties can be, for example, nucleic acid, polypeptide or peptide, carbohydrate, lipid, or small molecule compounds. Both natural and non-naturally occurring 15 compounds and derivatives are similarly included.

The invention further provides a method of increasing cell survival. The method consists of 20 inhibiting the function of an active dependence domain.

Dependence domain mediated pathological conditions which are characterized by abnormal or enhanced cellular apoptosis can be treated by inhibiting the function of an active dependence domain. Inhibition can be achieved by, for example, inhibiting the apoptotic stimulus which induces the change. Alternatively, inhibiting the structural or conformational change associated with the formation of an active dependence domain or inhibiting the activity of the active 30 dependence domain or contingency peptide can inhibit the function of an active dependence domain. Depending on the apoptotic stimulus, a variety of different methods known in the art can be used to inhibit the stimulus and,

therefore, the induction of an active dependence domain. For example, if the apoptotic stimulus is removal of a cell growth or survival factor, addition of such a factor can be used to inhibit apoptosis. Alternatively, if the apoptotic stimulus is production of a cell death signal, removal of the signal can be used to inhibit apoptosis.

Methods of inhibiting a conformational or structural change in dependence polypeptides are similarly well known in the art and will depend on the type of change sought to be inhibited. Such methods include direct inhibition of active dependence domain formation by, for example, binding a ligand or other specifically reactive molecule to the dependence domain so as to prevent activation or revert it to an inactive conformation. Multimerization of p75^{NTR} inhibits the change in conformation associated with apoptotic activation and can therefore similarly be employed as a direct method of inhibition. An indirect method for inhibition can be, for example, binding a ligand or specifically reactive molecule to an adjacent domain which allosterically inhibits the change in conformation.

For the inhibition of a structural change such as a cleavage event which produces a contingency peptide, agents which bind to or near the cleavage site that mask its recognition motif can be used to prevent cleavage and formation of the apoptotic fragment. Alternatively, inhibitors of the protease which cleaves the dependence polypeptide can also be used to inhibit the structural change.

25

Finally, pathological conditions mediated by dependence polypeptides activated by a conformational or structural change induced by proteolytic cleavage can be

treated by inhibiting an association between a contingency peptide and the cellular apoptotic machinery. Such methods are described in greater detail below and, as with those described above, are similarly well known to those skilled in the art.

The invention further provides a method of increasing cell survival by inhibiting the function of an active dependence domain by selectively binding a ligand to a dependence polypeptide containing the active dependence domain.

The activity of a dependence domain in dependence polypeptides can be inhibited by selectively binding a ligand to the dependence polypeptide so as to prevent negative signaling and apoptosis. Ligand binding 15 can inhibit dependence domain function either indirectly or directly. For example, a ligand can bind to the dependence polypeptide and revert the dependence domain to an apoptotically inactive conformation. Alternatively, a ligand can bind, for example, to an 20 active dependence domain and directly inhibit its interaction with a component of the apoptotic machinery. Similarly, in the case of a dependence polypeptide activated by a structural change, direct inhibition by ligand binding at or near the active dependence domain 25 can prevent its interaction with a component of the cellular apoptotic machinery.

For dependence polypeptides that are activated to their proapoptotic state by ligand binding, antagonists also can be used to inhibit the function of a dependence domain. An antagonist can be in excess of a ligand or exhibit a higher affinity than the ligand in order to displace it from a dependence polypeptide and

inhibit a conformational or structural change associated with dependence domain activation.

Ligands that directly or indirectly inhibit the function of an active dependence domain can be identified and used by those skilled in the art. Such ligands can essentially be any compound or macromolecule.

Combinatorial libraries of such molecules can be used to identify suitable ligands having a desired property.

Once identified, those skilled in the art can determine by titration, for example, the amount to be used to inhibit the function of an active dependence domain to increase cell survival. It should be recognized that ligands, such as agonists, antagonists or those that directly inhibit interaction with the apoptotic machinery can have a high or low binding affinity. Those skilled in the art can select a ligand based on the characteristics desired and the particular application.

The invention further provides a method of inhibiting the function of a dependence domain by
20 inhibiting the association of an active dependence domain with an interacting molecule.

Inhibitors of an association between an active dependence domain and the apoptotic machinery can include, for example, molecules that selectively bind to an active dependence domain as well as those that otherwise bind and inhibit the association. Such molecules that otherwise inhibit an association can do so by, for example, steric hinderence when bound adjacent to an active dependence domain. For example, a peptide domain or mimetic of an interacting component of the apoptotic machinery, can bind to a dependence domain and inhibit its association with the component of the

apoptotic machinery to enhance cell survival. Such a mimetic can be derived from or modeled after an interacting component of the apoptotic machinery.

Alternatively, an inhibitor of an association

5 can selectively bind to a component of the apoptotic
machinery, for example, a peptide domain or mimetic of an
active dependence domain. Such a dependence domain
mimetic would mimic binding to a component of the
apoptotic machinery, but would not mimic induction of
10 apoptosis. The binding of such a non-apoptotic
dependence domain mimetic to a component of the apoptotic
machinery can prevent an association between an active
dependence domain and a component of apoptotic machinery.

It is noted that inhibition of an association

between an active dependence domain and a component of
the apoptotic machinery does not require that the binding
molecules described above be a peptide domain or mimetic.
Rather, any molecule that can bind selectively to an
active or inactive dependence domain or a component of
the apoptotic machinery can inhibit the association of an
active dependence domain with an interacting molecule. A
method of identifying selectively-binding molecules that
inhibit an association is further described below.

In a similar fashion, a repressor molecule also can directly or indirectly inhibit an association between an active dependence domain and a component of the apoptotic machinery. For example, the ligand-bound neurotrophin receptor p75^{NTR} is apoptotically inactive and forms a homodimer that represses the activity of a dependence domain. In contrast, in the absence of neurotrophin, p75^{NTR} is monomeric and stimulates apoptosis. Thus, a repressor molecule that directly or

indirectly promotes p75^{NTR} homodimer or multimer formation can inhibit an association with the apoptotic machinery. Formation of homodimers or multimers also can be induced by, for example, phosphorylation or other

5 post-translational modifications known to those skilled in the art.

The invention provides a method of increasing cell survival by preventing or reducing the rate of formation of an active proapoptotic dependence domain.

The invention provides a method of identifying compounds which prevent or inhibit apoptosis. The method consists of administering a test compound to a cell undergoing proapoptotic dependence domain mediated apoptosis and determining whether the compound increases cell survival. Further provided is a method wherein apoptosis is induced by unliganded p75^{NTR}.

Identifying compounds useful for treating pathologies mediated by inappropriate or unregulated proapoptotic dependence domain mediated apoptosis, can be performed using cells that express a dependence polypeptide. The cells are administered a test compound under conditions which allow the induction of apoptosis. An increase in cell survival can be determined by assaying for the ability of the cells to remain viable, proliferate or by measuring other apoptotic determinants known in the art. Viability can be measured by, for example, trypan blue exclusion, whereas proliferation can be determined by, for example, tritium incorporation.

In one embodiment, cells that express the $P75^{NTR}$ 30 neurotrophin receptor can be used to identify compounds that prevent or inhibit apoptosis. The cells can be

15 mediated apoptosis.

administered a test compound in the presence and absence of neurotrophin, and cells that survive or proliferate in the absence of neurotrophin can be counted and compared to control cells that were administered neurotrophin. A test compound that increases cell survival in the absence of neurotrophin can be further tested, for example, for the relative efficacy and the concentrations needed to inhibit apoptosis using titration experiments. The test compound also can be administered before, during, or after withdrawal of neurotrophin from the cells to determine the time of optimal efficacy. Such procedures are well known in the art and given the teachings provided herein, can be used to identify and optimize compounds which inhibit proapoptotic dependence domain

Additional cell-based assay systems using other dependence polypeptides and functional equivalents or fragments thereof can similarly identify compounds that increase cell survival by preventing or inhibiting 20 proapoptotic dependence domain mediated apoptosis. example, cells expressing a proapoptotic dependence peptide under the control of a regulatable promoter, such as an MMTV promoter, can be administered a test compound before, during, or after exposure of the cells to 25 glucocorticoid hormone to determine if the test compound can increase cell survival in the presence of the stimulus which induces active dependence domain formation. Regulatable expression of a dependence peptide in cells is advantageous in that different 30 dependence peptides can be expressed and test compounds administered. Test compounds found to increase cell survival can be tested against a variety of different dependence peptides to determine their range of efficacy. Compounds which display an ability to increase the

survival of cells expressing different dependence polypeptides or proapoptotic dependence peptides can be a broad spectrum inhibitor of apoptosis and be useful in the therapeutic methods of the invention.

5 Compounds that can be tested for their ability to increase cell survival can be small organic molecules, nucleic acids, carbohydrates, proteins or peptides, and mimetics or fragments thereof or combinations thereof. Large scale screening of combinatorial libraries of 10 biologically active substances are known in the art and can be administered as test compounds. The test compounds can be added to the culture media and directly interact with cell surface dependence polypeptides or, if hydrophobic, can directly enter cells. Alternatively, in the event that the dependence polypeptide or functional equivalent is intracellular, a test compound can be conjugated to a targeting moiety, for example, the HIV tat protein, to facilitate cell entry. Incorporation of the test compound into liposomes is another method which 20 can be used to facilitate cell entry. Those skilled in the art can readily determine the appropriate delivery method of a test compound depending on the particular system used.

Apoptosis participates in the maintenance of
tissue homeostasis in a number of physiological processes
such as embryonic development, hematopoietic cell
regulation and normal cell turnover. Recent advances
indicate that dysfunction, or loss of regulated
apoptosis, can lead to a variety of pathological disease
states. For example, the loss of apoptosis in cells can
lead to the pathological accumulation of self-reactive
lymphocytes, virally infected cells, hyperproliferative
cells such as neoplastic or tumor cells and cells that

diseases.

contribute to fibrotic conditions. Inappropriate activation of apoptosis also can contribute to a variety of pathological disease states including, for example, acquired immunodeficiency syndrome (AIDS),

5 neurodegenerative diseases and ischemic injury.

Treatments which are specifically designed to modulate the apoptotic pathways in these and other pathological conditions can alter the progression of many of these

The invention provides a method of reducing the severity of a proapoptotic dependence domain mediated pathological condition. The method consists of inhibiting the function of an active dependence domain. Further provided is a method of inhibiting the association of an active proapoptotic dependence domain with an interacting molecule. The invention also provides a method of reducing the severity of a dependence domain mediated pathological condition by inhibiting or reducing the rate of formation of an active proapoptotic dependence domain.

Dependence domain mediated pathological conditions that are characterized by cells that exhibit aberrant increases in cell death can be treated by inhibiting the function of an active dependence domain.

25 Dependence domain function can be inhibited by inhibiting the cell death stimulus which induces the conformational or structural change of a dependence polypeptide, as previously described. In addition, ligand agonists, antagonists and other inhibitory binding molecules can inhibit the conformation or structural change of a dependence polypeptide thereby reducing the severity of a dependence domain mediated pathological condition. Such ligands can revert a dependence polypeptide to an

apoptotically inactive state or directly or indirectly inhibit the function of the dependence domain by preventing its interaction with a component of the apoptotic machinery. The inhibition of apoptosis using these agents can reduce the severity of the dependence domain mediated pathology.

Methods that inhibit or reduce dependence domain formation by inhibiting a conformational or structural change to increase cell survival have been described previously. Such methods also can be used to reduce the severity of a dependence domain mediated pathological condition.

The severity of pathologies mediated by negative signaling dependence polypeptides can be reduced 15 by administering a therapeutic ligand, such as an agonist, antagonist, protease inhibitor, or other binding inhibitor, as previously described, to inhibit or reduce the rate of formation of an active dependence domain. individual exhibiting the pathology or an afflicted 20 tissue can be administered such a ligand in a pharmaceutically acceptable carrier. Therapeutic ligands can enter the tissue by passive diffusion, or alternatively, by a delivery vehicle. A lipid-based vessicle is one example of a delivery vehicle that can be used to facilitate entry of a peptide molecule. Additionally, a targeting domain can be associated with the therapeutic ligand or a lipid vessicle carrier which contains the therapeutic ligand. Alternatively, a nucleic acid can encode a peptide or polypeptide therapeutic 30 ligand which can be introduced and expressed into the appropriate cells or tissues by methods known in the art.

Such compositions can be administered by intravenous

injection into the bloodstream or directly injected into the afflicted region.

Dependence polypeptides containing polyglutamine sequence dependence domains have been identified as mediators of pathologies associated with abnormal induction of apoptosis. For example, a direct correlation exists between polyglutamine sequence expansion of a dependence polypeptide and clinical onset of a disease. In particular, expansion of a huntingtin 10 polypeptide polyglutamine sequence beyond 36 amino acids is associated with Huntingtin's disease (Macdonald et al. Cell 72:971-983 (1993)). Similarly, expansion of a polyglutamine sequence in AR from a normal range of about 11 to 33 to about 38 to 66 residues is associated with 15 the manifestation of Spinal and Bulbar muscular atrophy (LaSpada et al. Nature 352:77-79(1991)). Furthermore, expansion of a polyglutamine dependence domain of atrophin-1, Machado-Joseph, SCA1, SCA2 and SCA6 is associated with a manifestation of the respective 20 dentatorubropallidoluysian atrophy, Machado-Joseph disease, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2 and spinocerebellar ataxia type 6 pathologies (Koide et al. Nat. Genet. 6:9-13(1994)); Kawaguchi et al. Nat. Genet. 8:221-228 (1994); Orr et al. 25 Nat. Genet. 4:221-226 (1993); Sanpei et al. Nat. Genet. 14:277-284 (1996); Zhuchenko et al. Nat. Genet. 15:62-69 (1997)).

Diseases characterized by abnormal levels of cellular dependence domain mediated apoptosis can be

30 treated by using the previously described methods that inhibit dependence domain activation thereby altering the course of the disease. Such methods include, for example, inhibiting the apoptotic stimulus that induces a

conformational or structural change of a dependence polypeptide. Therapeutic ligands, antagonists and other inhibitory binding molecules can inhibit or prevent an association between an active dependence domain and a 5 component of the apoptotic machinery or inhibit proteolytic cleavage and contingent peptide formation thereby alleviating the pathology. Such therapeutic ligands and binding inhibitors can be administered to a subject at the site of the pathology. Alternatively, a 10 nucleic acid encoding an inhibitory peptide in a suitable expression vector, or an antisense nucleic acid derived from or modeled after a proapoptotic dependence domain can be contained in a lipid-based vessicle or a viral vector and can be administered to a subject to alleviate the pathology. Introduction of such therapeutic ligands, inhibitors and antisense molecules into a sufficient number of diseased cells can inhibit or decrease the rate of dependence-domain mediated apoptosis of these cells which can therefore alter the course of the pathology.

Thus, the invention also provides a method of reducing the severity of a dependence domain-mediated pathological condition of Huntingtin's disease, Alzheimer's disease, Kennedy's disease, Spinocerebellar atrophy, dentatorubropallidoluysian atrophy,

Machado-Joseph disease, stroke and head trauma.

The invention provides a method of reducing the severity of a pathological condition mediated by unregulated cell proliferation or cell survival consisting of cytoplasmically administering a

30 proapoptotic dependence peptide. Further provided is a method of reducing the severity of a pathological condition consisting of neoplastic, malignant, autoimmune

or fibrotic conditions by cytoplasmically administering a proapoptotic dependence peptide.

A proapoptotic dependence peptide can be administered into the afflicted region or regions 5 characterized by unregulated cell growth or survival to reduce the severity of the pathological condition. Proapoptotic dependence peptides can include, for example, Q14 (SEQ ID NO:7), SATLDALLAALRRI (SEQ ID NO:3), SATLDALLAALRGI (SEQ ID NO:5) or SATLQALLAALRRI (SEQ ID 10 NO:6), or a functional equivalent or fragment thereof. If desired, a dependence peptide that exhibits relatively less apoptotic activity as compared to SATLDALLAALRRI, such as SATLDALLAALGGI (SEQ ID NO:4), can be administered into the afflicted region. The peptides can be 15 introduced into the cell by, for example, a heterologous targeting domain or using a lipid based carrier. A formulation containing a proapoptotic dependence peptide that provides stability or resistance to serum proteases additionally can be used as well as other formulations 20 known in the art. For the treatment of a neoplastic or fibrotic condition, the proapoptotic dependence peptide can be administered by direct injection into a solid tumor mass or into a region of fibrosis. Additional modes of administration are known and can be determined 25 by those skilled in the art depending on the pathological condition to be treated.

The invention further provides a method of reducing the severity of a pathological condition mediated by unregulated cell proliferation or cell survival by cytoplasmically administering a nucleic acid encoding a proapoptotic dependence peptide.

A nucleic acid encoding a proapoptotic dependence peptide or functional equivalent or fragment thereof can be delivered into an appropriate tissue to alleviate the severity of a pathological condition 5 characterized by unregulated cell growth or survival. Expression of the nucleic acid can be provided by a constitutively active or regulatable promoter. For example, a tissue specific promoter can be used to restrict expression of a proapoptotic dependence peptide 10 to those cells and tissues that characterize the pathology. A regulatable promoter can be used to control the induction of apoptosis or to restrict apoptosis to cells exposed to an inducer. Such vectors, promoters and expression constructs for nucleic acids are known to 15 those skilled in the art. Viral vectors containing a natural or engineered envelope protein also can be used to target a nucleic acid encoding a proapoptotic dependence peptide to neoplastic, malignant or autoimmune tissues of cells expressing an appropriate cell surface protein. Thus, disorders characterized by cells that 20 abnormally proliferate can be selectively targeted for apoptosis.

It is understood that modifications which do not substantially affect the activity of the various embodiments of this invention are also included within the definition of the invention provided herein. Accordingly, the following examples are intended to illustrate but not limit the present invention.

EXAMPLE I

Restoration of Neurotrophin Dependence and Negative Apoptotic Signaling in Prostate Carcinoma Cells

This Example shows that the restoration of 5 p75^{NTR} expression in prostate carcinoma cells confers neurotrophin dependence and negative apoptotic signaling.

Prostrate carcinoma is characterized by a gradual decline in the level of p75^{NTR} expression from the development of benign prostatic hypertrophy to

10 progression into metastatic carcinoma. Human PC3
prostate carcinoma cells do not express p75^{NTR}, nor are they neurotrophin dependent. To determine if p75^{NTR}
expression confers a state of neurotrophin dependence in PC3 cells, p75^{NTR} was expressed in the PC3 cells and the viability of the transfected PC3 cells was determined in the presence and absence of neurotrophins.

Briefly, PC3 prostate carcinoma cells were grown in DMEM/F12 (50/50) supplemented with 5% fetal bovine serum (FBS) and seeded at a density of 50% on 10 cm tissue culture dishes. For transfections, 10 $\mu \mathrm{g}$ of 20 the pBabepuro-p75NTR expression vector or insert-less pBabepuro plasmid DNA (Morgenstern and Land Nucl. Acids Res. 18:1068 (1990)) was added to 50 μ l of the lipofection reagent DOTAP (Boehringer Mannheim 25 Biochemicals, Indianapolis, IN) in a polystyrene tube, mixed, and the volume was adjusted to 500 μl with HBS (20 mM Hepes, 150 mM NaCl). After 30 minutes, the DNA/lipofection solution was added directly to the PC3 cells. PC3 cell transfectants were selected by growing 30 the cells in 5 μ g/ml of puromycin. The cells also were incubated in the presence or absence of a 2 mM mixture of the following neurotrophins: nerve growth factor,

brain-derived neurotrophic factor, or neurotrophic factor 3. After puromycin selection and propagation of the transformed cells over the course of 15 to 18 days, the number of surviving cells were counted.

The results indicate that in the absence of exogenous neurotrophins, the viability of the p75^{NTR} transfected PC3 cells was approximately 50 to 80% less than control cells transfected with the insert-less pBabepuro plasmid. In addition, the p75^{NTR} transfected PC3 cells incubated in 2 mM of neurotrophin exhibited a significant improvement in colony number. These results show that a state of neurotrophin dependence was created by expressing p75^{NTR} in PC3 cells.

EXAMPLE II

Identification of a Dependence Domain in p75NTR

This Example shows that the stimulation of apoptosis by p75^{NTR} can be mediated by a domain near the carboxy-terminus and that mutating a region similar to the Fas/Apo-1 and TNFR I death domains in p75^{NTR} does not affect the apoptotic activity of p75^{NTR}. This Example also shows that multimerization of p75^{NTR} can inhibit proapoptotic activity.

Expression constructs containing wild type p75^{NTR}, p75^{NTR} variants and p75^{NTR}/TNFR II chimeras were constructed and are shown in Figure 1. The P75^{NTR} variants consisted of single point mutations, double point mutations, carboxy-terminal deletions and internal deletions. The p75^{NTR}/TNFR II chimeras consisted of the p75^{NTR} amino-terminal half fused to TNFR II

30 carboxy-terminal half, ECp75, and the TNFR II

amino-terminal half fused to the p75NTR carboxy-terminal half, ECp70. Each construct was expressed in NRA5 mutant PC12 neural cells, which do not normally express p75NTR, to determine the region of p75NTR that confers

5 neurotrophin dependence. The results are shown in Figure 1.

Briefly, cloning of the wild type p75NTR and the variant $p75^{NTR}$ cDNAs into the pBabepuro mammalian expression vector was performed as described (Rabizadeh 10 et al. <u>Science</u> 261:345-348 (1993)). $p75^{NTR}$ variants containing single point mutations at positions 348, 359 and 370, in which glutamic acid was replaced with alanine (E348A), tryptophan was replaced with glycine (W359G) and leucine was replaced with lysine (L370K), were generated using the Altered Sites II in vitro Mutagenesis System 15 (Promega, Madison, WI) with a single stranded template of p75^{NTR} cDNA. The primers used were 5'-CCTTTACCCACGCGGCCTGCCCAGT-3' (E348A; SEQ ID NO:57), 5'-CTGCTGGCCAGCGGGGGTGCCCAG-3' (W359G; SEQ ID NO:58), and 20 5'-ACGCTTGATGCCAAATTAGCCGCCCTGCGA-3' (L370K; SEQ ID NO:59).

The p75NTR carboxy-terminal deletion variants of 19 amino acids, p75 Δ C19, and 33 amino acids, p75 Δ C33, were generated by PCR amplification with the Pfu 25 polymerase enzyme (Stratagene, La Jolla, CA). The 5' PCR primer contains the unique Bam HI site located at 700 bp of the rat p75 cDNA and is 5'-ATGGATCCCAAGGTCTACGCC-3' (SEQ ID NO:60). Both 3' PCR primers contained Sal I sites which introduce a stop codon following isoleucine 377 or asparagine 363, and are 30 5'-CGCTGGTCGACTAGATGCGTCGCAG-3' (SEQ ID NO:61) for p75ΔC19 and 5'-CGCTGGTCGACTAGTCCTGGGCACC-3' (SEQ ID

NO:62) for p75 Δ C33. The pBabepuro-p75 Δ C19 and pBabepuro-p75ΔC33 expression vectors were constructed by replacing the Bam HI-Sal I fragment in pBabepuro-p75 with the corresponding PCR products. A third p75NTR 5 carboxy-terminal deletion variant of 38 amino acids, p75ΔC38, was produced by a partial Pvu II digestion of the $p75^{NTR}$ cDNA in a pUC18 cloning plasmid. The construct was then digested with Xba I and the restriction sites were filled in with the Klenow fragment of DNA Polymerase 10 I to generate blunt ends. The resulting 1.3 kb DNA fragment was agarose gel fractionated, purified and religated to create the pUC18-p75 Δ C38 plasmid. $p75\Delta C38$ cDNA was then excised from this plasmid and cloned into the pBabepuro expression vector as described 15 above.

The p75NTR variant M1 contained two point mutations in which both arginines at positions 375 and 376 were replaced with glycine. The p75NTR variant M2 contained two point mutations in which both leucines at 20 positions 370 and 371 were replaced with lysine and proline, respectively. The M1 and M2 variant $p75^{\text{NTR}}$ cDNAs were generated from a pUC18-p75 plasmid by first removing a Bam HI-Xba I fragment from the plasmid and then replacing it with two fragments generated by PCR 25 amplification using Pfu. The first PCR product spanned from the Bam HI site within the $p75^{\text{NTR}}$ open reading frame to a new Hind III site which contained the desired mutation. The second PCR product spanned from the same new Hind III site to the Xba I site in the pUC18 plasmid. 30 The PCR products were digested and ligated into the Bam H1 and Xba I digested pUC18-p75 plasmid to generate a cDNA encoding the M1 or M2 variant p75NTR. The oligonucleotides used to amplify the first PCR product were 5'-ATCCCTGGTCGATGGATCCCAA-3' (SEQ ID NO:63), which

contained the Bam HI site, and
5'-TCTCTGGATCCCTCCCAGGGCG-3' (SEQ ID NO:64) which
contained the Hind III site and the M1 mutation, or
5'-CTGGATCCGTCGCAGGGCGGCTGGTTTGG-3' (SEQ ID NO:65), which
contained the Hind III site and the M2 mutation. For the
second PCR product, the oligonucleotides were
5'-CTGCGACGGATCCAGAGAGCTG-3' (SEQ ID NO:66), which
contained the Hind III site and
5'-GCTCTAGAACATCAGTCGTCGGA-3' (SEQ ID NO:67), which
contained the Xba I site.

The p75^{NTR} internal deletion variant lacking a Fas/Apo-1 like region spanning amino acids 328 to 348 is denoted p75Δ328-48 and was constructed using a strategy similar to that described above. Briefly, PCR amplification was used to generate two fragments that flanked the desired deletion which contained either one of the restriction sites Bam HI or Xba I. After Bam HI or Xba I digestion, the two flanking sequence fragments were religated into a Bam HI and Xba I digested pUC18-p75 plasmid. The p75^{NTR} internal deletion variant cDNA was excised from this plasmid and cloned into the pBabepuro expression vector as described above.

The chimeric p75^{NTR}/TNFR II expression

25 constructs were obtained from E. Shooter (constructed as described by Rovelli et al. <u>Proc. Natl. Acad. Sci. USA</u>

90:8717-8721 (1993)) and then subcloned into the pBabepuro expression vector. For the chimeric constructs, the gray regions indicate p75^{NTR} and the white regions indicate TNFR II and are shown in Figure 1. The nucleotide sequence of all constructs was confirmed by DNA sequencing. The expression of p75^{NTR} protein was detected by flow cytometry using monoclonal antibody 192,

and immunoblotting using anti-p75 antiserum (Promega, Madison, WI).

The FKBP12-tagging vector MF1E/MF3E, which included an amino-terminal myristylation site for membrane insertion (Spencer et al. Science 262:1019-1024 (1993)), contains one and three repeats of the FK-binding protein (FKBP) sequence. The FKBP12 vector served as a PCR template and was amplified using primers flanked by Nhe I (5' primer) or Nde I (3' primer) sites to produce 10 DNA fragments consisting of one or three FK-binding domains (FKBP). The resulting PCR products contained either one or three FKBP sequence repeats and were subcloned into pcDNA3.1. A DNA fragment encoding an intracytoplasmic form of $p75^{\text{NTR}}$ was removed from the 15 pUC18-p75 plasmid by digestion with Nde I and Bam HI, and the DNA fragment was ligated to the carboxy-terminus of the FKBP sequences within the pcDNA3.1-FKBP construct. The resulting two expression vectors encoded FKBP/p75NTR chimeras comprising one or three FKBP repeats at the 20 amino-terminus fused to an intracytoplasmic form of $p75^{\text{NTR}}$ at the carboxy-terminus.

PC12 NRA5 cells were grown and maintained as described previously (Rabizadeh et al. <u>Science</u> 261:345-348 (1993)). For transfection, the cells were exposed to the cationic lipid DOTAP (Boehringer Mannheim Biochemicals, Indianapolis, IN) containing the particular p75^{NTR} expression vector using the manufacturer's protocol. To obtain stable transfectants, the cells were selected in 5 μg/ml puromycin, and pools of puromycin resistant cell transfectants were compared in the analysis (Zhong et al. <u>Proc. Natl. Acad. Sci. USA</u> 90:4533-4537 (1993)). The expression of p75^{NTR} protein in the transfected cells was detected by flow cytometry

using the monoclonal antibody 192 (Baldwin et al. <u>J.</u>

<u>Immunol.</u> 267:8352-8359 (1992)). Cell death was
quantitated by propidium iodide as previously described
(Rabizadeh et al. <u>Science</u> 261:345-348 (1993) and Kane et

al. <u>J. Neurosci. Res.</u> 40:269-275 (1995)).

The results shown in Figure 1 indicate the percentage of cell death stimulated by particular p75^{NTR} constructs after normalization to that stimulated by wild type p75^{NTR}. Each p75^{NTR} construct was analyzed in 3 to 7 separate transfections and the statistical significance was assessed by the two-tailed t-test with bars indicating standard error; p < 0.05 is indicated by *, and p < 0.01 by **. The asterisks over the constructs indicate mutation sites and the † symbol indicates

15 mutants that induced cell death at least as effectively as p75^{NTR}.

The results indicate that wild type p75^{NTR}, p75WT, stimulates apoptosis and has an EC₅₀ of about 10-50 μm. In contrast, a p75^{NTR}/TNFR II chimeric protein having an amino-terminal p75^{NTR} portion fused to a carboxy-terminal TNFR II portion, ECp75, failed to stimulate apoptosis in NRA 5 cells whereas a TNFR II/p75^{NTR} chimeric protein having an amino-terminal TNFR II portion fused to a carboxy-terminal p75^{NTR} portion, ECp70, stimulated apoptosis in NRA 5 cells. These findings indicate that a proapoptotic dependence domain is located in a carboxy-terminal region of p75^{NTR}. Therefore, additional mutations within the carboxy-terminal region of p75^{NTR} were analyzed.

The effect of amino acid deletions at or near the carboxy-terminus of $p75^{NTR}$ on the apoptotic activity was determined. Deletion of the carboxy-terminal 19 amino acids of $p75^{NTR}$, $p75\Delta C19$, did not diminish the 5 ability of this $p75^{NTR}$ variant to stimulate apoptosis; in fact, a slight increase in apoptosis was observed. However, extending the carboxy-terminal deletion an additional 14 residues for a total of 33 amino acids, $p75\Delta C33$, abolished the ability of this $p75^{NTR}$ variant to induce apoptosis in the absence of neurotrophin.

The 14 amino acid internal near the carboxy-terminus sequence of p75NTR that confers neurotrophin dependence lies just to the carboxyl side of a sequence region that exhibits sequence similarity to 15 the Fas/Apo-1 and TNFR I death domains. This Fas/Apo-1 and TNFR I like region was tested for its ability to confer neurotrophin dependence in p75NTR by deletion analysis and site directed mutagenesis. An internal deletion of 21 amino acids that removed the Fas/Apo-1 and 20 TNFR I like sequence region, $p75\Delta328-48$, did not inhibit the ability of this $p75^{\text{NTR}}$ variant to induce apoptosis. Similarly, point mutations of the native TNFR I protein which abolish TNFR I's ability to stimulate cellular apoptosis, when introduced into the Fas/Apo-1 and TNFR I like region of $p75^{NTR}$, had little or no effect on 25 neurotrophin dependence. Specifically, point mutations in which the tryptophan at position 359 was replaced with glycine, p75W359G, or the glutamic acid at position 369 was replaced with alanine, p75E348A, had little or no 30 effect on the ability of these $p75^{NTR}$ variants to stimulate apoptosis. Thus, a Fas/Apo-1 and TNFR like death domain located immediately to the aminyl side of

the 14 amino acid sequence region of $p75^{NTR}$ is not required for the stimulation of apoptosis.

To further confirm the importance of the . 14 amino acid domain, p75^{NTR} variants containing single or 5 double point mutations in the domain were analyzed for their ability to stimulate apoptosis. Specifically, replacing leucine with lysine at position 370 (L370K) of p75NTR abolished proapoptotic activity. Similarly, replacing the two arginines with glycine at positions 375 10 and 376 in p75^{NTR}, p75M1, or replacing the two leucines at positions 370 and 371 with lysine and proline in p75NTR, respectively, p75M2, decreased the apoptotic activity. Specifically, the p75NTR variants p75M1 and p75M2 exhibited a 75% and 60% decrease in the stimulation of apoptosis, 15 respectively, in comparison to wild type p75NTR. results demonstrate the importance of particular amino acids within the 14 amino acid proapoptotic dependence domain of $p75^{\text{NTR}}$ for the stimulation of apoptosis and further demonstrate that this domain confers neurotrophin 20 dependence.

The stimulation of cellular apoptosis by Fas and TNFR I is induced by ligand binding which triggers multimerization of Fas and TNFR I. The assembly of such a death-inducing signaling complex contributes to cellular apoptosis by activating caspase-8. The effect that dimerization or multimerization has on the ability of p75^{NTR} to stimulate apoptosis was analyzed. FKBP/p75^{NTR} protein chimeras containing one or three copies of an FKBP fused to an intracytoplasmic form of p75^{NTR} were expressed in cells. Cross-linking studies indicated that FKBP expressed in cells could be induced to form dimers or multimers by exposing the cells to the FK1012 agent.

Therefore, a single copy FKBP/p75^{NTR} protein chimera expressed in cells could be induced to form a dimer in the presence of the FK1012 dimerizing agent. Expression of a triple copy FKBP/p75^{NTR} protein chimera in cells could be induced to form a multimer in the presence of FK1012.

Briefly, 293T cells were grown and maintained in DMEM supplemented with 10% FBS at 37°C and plated at a density of 5 x 10⁵ cells into each well of a 6-well plate.

10 The cells were transiently transfected with 5 μg of plasmid DNA containing either a single copy or triple copy of the FKBP cDNA fused to intracytoplasmic p75^{NTR} in the presence or absence of 2 μM FK1012 using the calcium phosphate method (Sambrook et al. Molecular Cloning: A

15 Laboratory Manual Chapter 16 (1989)). After an 18 hour incubation, the cells were washed with DMEM and placed on DMEM supplemented with 3% FBS and 2 μM FK1012 as before. After an additional 18 hour incubation, transfected cells were placed on DMEM supplemented with 1.5% FBS, 2 μM

20 FK1012 as before, and 35 μM tamoxifen to induce apoptosis.

These studies indicated that expression of a monomeric intracytoplasmic form of p75^{NTR} in cells stimulates apoptosis. In contrast, apoptosis was blocked when cells containing the single copy or triple copy FKBP/p75^{NTR} protein chimera were exposed to FK1012. These results demonstrate that dimerization or multimerization of p75^{NTR} with a different protein can inhibit apoptosis and that a monomeric form of p75^{NTR} can stimulate 30 -apoptosis.

EXAMPLE III

Induction of Cell Death with Proapoptotic Peptides

This Example shows the induction of cell death by the p75^{NTR} dependence domain proapoptotic peptide

5 SATLDALLAALRRI (SEQ ID NO:3) and by the polyglutamine proapoptotic peptide Q14 (SEQ ID NO:7).

A region of a dependence polypeptide that mediates apoptosis in cells was analyzed for its ability to stimulate apoptosis in cells. Various cell types were 10 treated with peptide fragments modeled after a $p75^{NTR}$ dependence domain SATLDALLAALRRI (blue; SEQ ID NO:3, tat-blue; SEQ ID NO:37) and the polyglutamine-containing dependence domains tat-GG-Q14 (SEQ ID NO:36). The effect of replacing leucine with lysine at position 7 (purple, 15 SATLDAKLAALRRI; SEQ ID NO:41; tat-purple, tat-GG-SATLDAKLAALRRI; SEQ ID NO:42), removing the carboxy-terminal "RRI" sequence (gray, SATLDALLAAL; SEQ ID NO:43; tat-gray, tat-GG-SATLDALLAAL; SEQ ID NO:44) or amino-terminal "SATLD" sequence (green; ALLAALRRI; SEQ 20 ID NO:45) on the proapoptotic activity of a dependence peptide was examined. Negative control peptides, for example, the helicity controls (turquoise, KDRNLRRITRMVLV; SEQ ID NO:46; tat-turquoise, tat-GG-KDRNLRRITRMVLV; SEQ ID NO:47 and red, 25 LDENFKRCFREFCI; SEQ ID NO:48), scrambled sequence (tat-yellow, tat-GG-DLSLARLATARLAI; SEQ ID NO:50), and positive control peptides, for example, the mastoparan peptide (MP, INLKALAALAKKIL; SEQ ID NO:51) also were examined. The 12 amino acid HIV tat protein fragment 30 (GRKKRRQRRRPP; SEQ ID NO:52; hereinafter termed "tat"), which facilitates cellular entry, also was included on the amino terminus of some of the peptides tested. HIV tat sequence did not affect the function of the

peptide to which it was linked, as shown below. For convenience, the hyphen in the above amino acid sequences is a nomenclature intended to set apart the proapoptotic dependence peptides and variants thereof or control peptides from other amino acid residues contained in the peptide.

Briefly, NTera 2 human neuronal cells, R2 neural cells, CSM14.1 neural cells, LNCaP cells, SH-SY5Y human neuroblastoma cells and PC12 NRA5 cells were grown in DMEM/F12 (50/50) supplemented with 5% fetal bovine 10 serum and seeded onto 96-well plates. The peptides were synthesized and HPLC purified (Coast Scientific, San Diego, CA). The purified peptides were dissolved in tissue culture grade water and diluted to 50 μM and 15 100 μM in serum free medium and directly added to the cells in 96-well plates. The cells were incubated at $37\,^{\circ}\text{C}$ for 18 hours and 20 μM propidium iodide was added. Cell viability was determined using a fluorimeter as previously described (Kane et al. J. Neurosci. Res. 20 40:269-275 (1995)). The presence of the dependence peptides lacking the tat sequence in cells was confirmed by confocal microscopy.

The results of these studies shown in Table 1 reveal that cells treated with a SATLDALLAALRRI (blue;

SEQ ID NO:3) dependence peptide underwent apoptosis as did cells treated with the positive mastoparan peptide control (MP). Similarly, an all D-enantiomer of the dependence peptide stimulated apoptosis. In contrast, cells treated with either helicity control peptide

(turquoise or red) did not undergo apoptosis. The leucine to lysine point mutation at position 7 (purple), the carboxy-terminal "RRI" (gray) and the amino-terminal "SATLD" (green) sequences were critical to the apoptotic

function of SATLDALLAALRRI; these forms of the dependence peptide were incapable of stimulating apoptosis.

The proapoptotic dependence peptides containing the HIV tat sequence also stimulated apoptosis in cells.

5 These studies indicated that tat-GG-SATLDALLAALRRI exhibited a 30-fold increase in apoptosis compared to the SATLDALLAALRRI dependence peptide lacking the tat sequence. Similar results were obtained for tat-GG-Q14 in comparison to Q14. Specifically, the viability of cells treated with 50 µM tat-GG-SATLDALLAALRRI was 1.5% for COS-7, 4.2% for PC3, 0% for LNCaP, 1.3% for NTera 2, 0% for R2, and 0% for NRA 5 cells (100 µM peptide). However, cells exposed to the tat sequence alone did not undergo apoptosis.

15 Peptides which did not exhibit apoptotic activity without the amino-terminal tat sequence similarly did not exhibit apoptotic activity with the linked tat sequence. Specifically, cell viability after exposure to tat-purple was 97.8% for COS-7, 92.8% for PC3 and 69.3% for NTera 2 cells. For tat-gray, cell 20 viability was 97.1% for COS-7, 90.5% for PC3, 59.1% for LNCaP and 76.7% for NTera 2 cells. For tat-turquoise, cell viability was 87.9% for PC3, 46.7% for LNCaP, 67.6% for NTera 2, 92.6% for R2 and 95.7% for NRA 5 cells 25 (100 μM peptide). Similarly, for tat-yellow, PC3 cell viability was 97%. These findings indicate that the tat sequence itself could neither confer apoptotic activity upon a peptide lacking apoptotic activity or inhibit the inherent apoptotic activity of a proapoptotic dependence 30 _peptide.

Table 1: <u>Induction of Cell Death by Proapoptotic</u>
<u>Peptides</u>

	Peptide		Effect on
5	designation	Sequence	apoptosis
	Blue	SATL DALL AAL RRI	Apoptotic
	Purple	SATL DAKL AAL RRI	None
	Turquoise	KDRN LRRI TRM VLV	None
	Red	LDEN FKRC FRE FCI	None
10	MP	INLK ALAA LAK KIL	Apoptotic
	Gray	SATL DALL AAL	None
	Green	ALL AAL RRI	None
	tat-blue	tat-GG-SATL DALL AAL RRI	Apoptotic
	tat-purple	tat-GG-SATL DAKL AAL RRI	None
15	tat-gray	tat-GG-SATL DALL AAL	None
	tat-turquoise	tat-GG-KDRN LRRI TRM VLV	None
	tat-yellow	tat-GG-DLSL ARLA TAR LAI	None
	tat-GG-Q14	tat-GG-QQQQ QQQQ QQQ QQQ	Apoptotic
	tat	GRKK RRQR RRP P	None

The results in Table 1 show the identification of the dependence domains of several dependence polypeptides. In addition, Table 1 shows the effect of carboxy-terminal deletions, amino-terminal deletions and introducing a point mutation on the apoptotic activity of a dependence peptide modeled after a p75NTR dependence domain. The results also show that dependence peptides modeled after dependence domains stimulate apoptosis when introduced into every cell type examined. The stimulation of apoptosis in such diverse cell types indicates that the dependence peptides of the invention can be used to treat many different pathological conditions characterized by different cell types.

PCT/US99/05250

10

To further analyze the effect of particular point mutations on apoptosis, additional studies employing dependence peptides and mutated variants linked to tat were performed in SH-SY5Y cells. The results shown in Figure 2 are of studies in which quadruplicate samples were averaged, and the studies were repeated 2 to 10 times for each peptide. Each column represents the percentage cell death and the bars indicate the standard error. The amount of peptide added to the cells is indicated above each column.

These studies demonstrated that the presence or absence of apoptotic activity observed for particular peptides in SH-SY5Y cells is the same as that observed in the other cell lines described above indicating that

15 apoptotic activity is independent of cell line.

Specifically, tat-blue (tat-GG-SATLDALLAALRRI) exhibited apoptotic activity whereas tat-turgoise (tat-GG-KDRNLRRITRMVLV), tat-gray (tat-GG-SATLDALLAAL), tat-yellow (tat-GG-DLSLARLATARLAI) and tat-purple

20 (tat-GG-SATLDAKLAALRRI) did not.

These studies also demonstrate that particular amino acid residues are critical to the apoptotic activity of the dependence peptide SATLDALLAALRRI. For example, replacing two arginine residues at positions 12 and 13 with glutamic acid residues (tat-GG-SATLDALLAALEEI; SEQ ID NO:53) abolished the ability of the peptide to induce apoptosis. Similarly, replacing the arginine residues with glycine residues (tat-GG-SATLDALLAALGGI; SEQ ID NO:38) or glutamine residues (tat-GG-SATLDALLAALGQI; SEQ ID NO:54) at positions 12 and 13 decreased the ability of the peptides to stimulate SH-SY5Y cell death by 70% and 80%, respectively.

The results shown in Figure 2 also reveal that other amino acids were less critical to the apoptotic activity of the dependence peptide SATLDALLAALRRI. For example, replacing the arginine at position 13 with glycine (tat-GG-SATLDALLAALRGI; SEQ ID NO:39) had very little effect on the ability of the peptide to stimulate apoptosis. Similarly, replacing an aspartic acid at position 5 with glutamine (tat-GG-SATLQALLAALRRI; SEQ ID NO:40) resulted in a peptide that retained most of its apoptotic function; SH-SY5Y cells were 70% killed as compared to tat-GG-SATLDALLAALRRI.

The results shown in Figure 2 demonstrate that particular amino acids are extremely important for apoptotic activity whereas other amino acids appear less critical. Furthermore, the results in Figure 2, in conjunction with the results in Figure 1, indicate that mutating certain amino acids in a dependence peptide can be a means by which one can decrease (see, for example, tat-GG-SATLDALLAALGGI and tat-GG-SATLDALLAALQQI) or increase (see, for example, Figure 1, p75\(\text{\text{\text{C}}(19)}\) the ability of a dependence peptide to stimulate apoptosis. Such altered forms of dependence peptides can be useful for modulating the degree of apoptosis in cells.

EXAMPLE IV

25 <u>Dependence Peptide Mediated Mitochondrial Swelling</u>, <u>Cytochrome c Release and Caspase-3 Cleavage</u>

This Example shows that dependence peptides increase mitochondrial swelling, stimulate the release of cytochrome c from mitochondria and activate caspase-3 in a cell free assay system.

Many molecules that stimulate cellular apoptosis such as actactyloside, Bax and mastoparan have been shown to stimulate mitochondrial swelling. Consistent with these observations, molecules such as 5 Bcl-2 which inhibit apoptosis inhibit mitochondrial swelling. The effect of a proapoptotic dependence peptide on mitochondrial swelling was determined and the results are shown in Figure 3A. Briefly, mitochondria were prepared as previously described (Ellerby et al. J. 10 <u>Neurosci.</u> 17:6165-6178 (1997)) except for the following modifications. The rats were sacrificed by ${\rm CO_2}$ inhalation without fasting and the mitochondria were isolated in MIB buffer (210 mM mannitol, 70 mM sucrose, .05% BSA, 1 mM EGTA, 5 mM Hepes-NaOH, pH 7.4). The mitochondrial pellet samples resuspended in MCB buffer (300 mM mannitol, 10 mM 15 $\mathrm{KH_{2}PO_{4}}$, 0.1% BSA, pH 7.2) and applied to a discontinuous sucrose gradient (1.6 M sucrose, 10 mM $\mbox{KH}_2\mbox{PO}_4$, pH 7.5; 1.2 M sucrose, 10 mM KH_2PO_4 , pH 7.5) were centrifuged at 48,500 g for 1 hour. Centrifugation resulted in the 20 fractionation of mitochondrial layers which were collected, resuspended in 4 volumes of MCB, and centrifuged at 12,000 g for 10 minutes. mitochondrial pellets were collected, resuspended in MSB, and stored on ice. After the addition of 50 $\mu \mathrm{M}$ of the 25 peptide, mitochondrial swelling was followed spectrophotometrically at 520 nm (Petronilli et al. J. Biol. Chem. 269:16638-16642 (1994)) in CFS (220 mM mannitol, 68 mM sucrose, 2 mM NaCl, 5 mM KH₂PO₄, 2 mM MgCl2, 5 mM succinate, 10 mM Hepes-NaOH, 2 mM ATP, 50 μ g/ml creatine kinase, 10 mM phosphocreatine, 0.75 μ g/ml rotenone, pH 7.4).

The results shown in Figure 3A indicate that the isolated mitochondria treated with the dependence peptide SATLDALLAALRRI (p $75_{364-377}$) underwent a rapid

increase in swelling as indicated by the decreased absorbance at 520 nm. Similarly, mitochondria treated with a 0.5 mM calcium chloride positive control underwent rapid swelling. In contrast, no swelling of mitochondria was observed in incubation buffer alone or after treatment with a scrambled peptide control (yellow, DLSLARLATARLAI; SEQ ID NO:49).

Apoptosis inducing molecules such as actactyloside, Bax and mastoparan also have been shown to stimulate cytochrome c release from mitochondria whereas 10 apoptotic inhibitors such as Bcl-2 inhibit cytochrome c release. The effect of a proapoptotic dependence peptide on cytochrome c release from mitochondria was determined and the results are shown in Figure 3B. Briefly, 15 cytochrome c release studies (1 hour, 37°C) were performed as described (Ellerby et al. J. Neurosci. 17:6165-6178 (1997)). The mitochondria were prepared as described above, washed and resuspended in CFS (50-10 mg/ml) and peptide was added to the mitochondria 20 at a final concentration of 385 μM . Western blot analysis using a cytochrome c specific antibody monitored the amount of cytochrome c released (Ellerby et al. <u>J. Neurosci.</u> 17:6165-6178 (1997)).

The results shown in Figure 3B indicate the

relative amount of cytochrome c, which was normalized to
a negative buffer control. Mitochondria treated with
Triton X-100 were used as a positive control. The
results demonstrate that cytochrome c release by
mitochondria was stimulated by 500 µM of the

SATLDALLAALRRI (p75₃₆₄₋₃₇₇;) and 385 µM of the
tat-GG-SATLDALLAALRRI (tat-p75₃₆₄₋₃₇₇) dependence peptides.
In contrast, mitochondria exposed to a helicity control
(turgoise, SEQ ID NO:46; helicity determined by Helical

PCT/US99/05250

66

Wheel program of GCG), tat-yellow control peptide (SEQ ID NO:56) and a peptide that lacks proapoptotic activity due to a point mutation, tat-purple (tat-p75₃₆₄₋₃₇₇ L370K; SEQ ID NO:42), did not stimulate cytochrome c release from mitochondria.

The activation of cellular apoptosis often results in caspase processing which leads to its activation, an event thought to contribute to the apoptotic cascade. For example, the activation of 10 caspase-8 can be triggered by a Fas or TNFR I multimeric death inducing signaling complex. The effect of a proapoptotic dependence peptide on caspase-3 cleavage therefore was determined using a cell free system. results are shown in Figure 3C. Briefly, neuronal CFS extracts were prepared and cell-free caspase activation studies were performed. For these studies (3 hour, $37\,^{\circ}\text{C})$, mitochondria were washed and resuspended in CFS (50-100 mg/ml) and the final peptide concentration was Western blot analyses using the caspase-3 20 specific antibody, CPP32, was performed as described (Ellerby et al. <u>J. Neurosci.</u> 17:6165-6178 (1997)).

The results shown in Figure 3C demonstrate that cleavage of caspase-3, indicated by the appearance of a prominent band below the 20 kDa marker, is stimulated by treatment of the CFS extracts with a proapoptotic dependence peptide SATLDALLAALRRI (p75₃₆₄₋₃₇₇) modeled after a p75^{NTR} dependence domain. In contrast, no cleavage of caspase-3 was observed in extracts treated with a scrambled control peptide DLSLARLATARLAI (SEQ ID NO:55).

These results demonstrate that the proapoptotic peptides of the invention stimulate mitochondrial swelling, cytochrome c release, and caspase-3 activation.

15

Similarly, an all D-enantiomer of the dependence peptide stimulated mitochondrial swelling, cytochrome c release, and caspase-3 activation indicating that stimulation of apoptosis by dependence peptides is not stereospecific. 5 The observed changes stimulated by proapoptotic dependence peptides may suggest a possible mechanism by which proapoptotic peptides stimulate apoptosis. addition, such detectable changes provide useful methods to identify dependence polypeptides and their dependence domains.

Throughout this application various publications have been referenced within parentheses. The disclosures of these publications in their entireties are hereby incorporated by reference in this application in order to more fully describe the state of the art to which this invention pertains.

Although the invention has been described with reference to the disclosed embodiments, those skilled in the art will readily appreciate that the specific 20 experiments detailed are only illustrative of the invention. It should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.

What is claimed is:

- 1. A substantially pure proapoptotic dependence peptide comprising substantially the sequence of an active dependence domain selected from the group of dependence polypeptides consisting of p75^{NTR}, androgen receptor, DCC, huntingtin polypeptide, Machado-Joseph disease gene product, SCA1, SCA2, SCA6 and atrophin-1 polypeptide.
- 2. The proapoptotic dependence peptide of

 10 claim 1, wherein the dependence polypeptide is p75NTR and
 the proapoptotic dependence peptide further comprises
 substantially the sequence selected from the group
 consisting of SATLDALLAALRRI (SEQ ID NO:3),
 SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID

 15 NO:5), and SATLQALLAALRRI (SEQ ID NO:6) or functional
 equivalent thereof.
- 3. The proapoptotic dependence peptide of claim 1, wherein the dependence polypeptide is the
 20 androgen receptor, huntingtin polypeptide, Machado-Joseph disease gene product, SCA1, SCA2, SCA6 or the atrophin-1 polypeptide and the dependence peptide further comprises a polyglutamine region sequence.
- 4. The proapoptotic dependence peptide of claim 3, wherein said polyglutamine region sequence is between about 6 to 250 amino acid residues, preferably about 10 to 100 amino acids, more preferably about 14 to 40 amino acids.
- 5. The proapoptotic dependence peptide of claim 1, further comprising less than about 40 amino acids.

- 6. The proapoptotic dependence peptide of claim 1, further comprising a heterologous functional domain.
- 7. The proapoptotic dependence peptide of claim 6, wherein said heterologous functional domain is a targeting domain or a domain which facilitates cellular entry.
- 8. The proapoptotic dependence peptide of claim 6, wherein said heterologous functional domain comprises a tat peptide.
- 9. A substantially pure proapoptotic dependence peptide having a sequence selected from the group consisting of SATLDALLAALRRI (SEQ ID NO:3), SATLDALLAALGGI (SEQ ID NO:4), SATLDALLAALRGI (SEQ ID NO:5), and SATLQALLAALRRI (SEQ ID NO:6), tat-GG-SATLDALLAALRRI (SEQ ID NO:37), Q14 (SEQ ID NO:7) and tat-GG-Q14 (SEQ ID NO:36).

- 10. A method of increasing cell survival, comprising inhibiting the function of an active proapoptotic dependence domain.
- 25 11. The method of claim 10, wherein said function is inhibited by selectively binding a ligand to said active proapoptotic dependence domain.
- 12. The method of claim 10, wherein said
 30 function is inhibited by inhibiting the association of an active proapoptotic dependence domain with an interacting molecule.

- 13. A method of increasing cell survival comprising preventing or reducing the rate of formation of an active proapoptotic dependence domain.
- 14. The method of claim 13, wherein said rate of formation is prevented or reduced by selectively binding a ligand to a dependence polypeptide containing said active proapoptotic dependence domain.
- 15. The method of claim 13, wherein said rate of formation is prevented or reduced by selectively binding a ligand to said active proapoptotic dependence domain.
- 16. The method of claim 13, wherein said rate of formation is prevented or reduced by preventing the association of a dependence polypeptide with an interacting molecule.
- 17. The method of claim 13, wherein said active proapoptotic dependence domain is a contingency20 peptide.
 - 18. A method of identifying compounds which prevent or inhibit apoptosis comprising administering a test compound to a cell undergoing proapoptotic
- dependence domain mediated apoptosis and determining whether said compound increases cell survival.
- 19. The method of claim 18, wherein said proapoptotic dependence domain-mediated apoptosis is induced by unliganded p75NTR.

PCT/US99/05250

20. A method of reducing the severity of a proapoptotic dependence domain mediated pathological condition, comprising inhibiting the function of an active dependence domain.

5

21. The method of claim 20, wherein said function is inhibited by inhibiting the association of an active proapoptotic dependence domain with an interacting molecule.

10

- 22. The method of claim 20, wherein said function is inhibited by inhibiting or reducing the rate of formation of an active proapoptotic dependence domain.
- 15 23. The method of claim 22, wherein said rate of formation is inhibited or reduced by specifically binding a ligand to a dependence polypeptide containing said active dependence domain.
- 24. The method of claim 22, wherein said rate 20 of formation is inhibited or reduced by specifically binding a ligand to said active dependence domain.
 - 25. The method of claim 22, wherein said rate of formation is inhibited or reduced by preventing the association of a dependence polypeptide with an interacting molecule.
 - 26. The method of claim 22, wherein said active proapoptotic dependence domain is a contingency peptide.

- 27. The method of claim 20, wherein said pathological condition is selected from the group consisting of Huntington's disease, Alzheimer's disease, Kennedy's disease, Spinocerebellar ataxias,

 5 dentatorubropallidoluysian atrophy, Machado-Joseph disease, stroke and head trauma.
- 28. A method of reducing the severity of a pathological condition mediated by unregulated cell proliferation or cell survival, comprising cytoplasmically administering a proapoptotic dependence peptide.
- 29. The method of claim 28, wherein said pathological condition comprises neoplastic, malignant, autoimmune or fibrotic conditions.
- 30. The method of claim 28, wherein said cytoplasmically administering further comprises expressing a nucleic acid encoding said proapoptotic dependence peptide.
 - 31. The method of claim 28, wherein said cytoplasmically administering further comprises a heterologous domain.

- 32. The method of claim 28, wherein said cytoplasmically administering further comprises a heterologous targeting domain.
- 33. The method of claim 32, wherein said heterologous targeting domain mediates cytoplasmic entry.

Figure 1

Figure 2A

Figure 2B

Figure 3A

Figure 3C

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: The Burnham Institute
 - (ii) TITLE OF INVENTION: Proapoptotic Peptides, Dependence Polypeptides and Methods of Use
 - (iii) NUMBER OF SEQUENCES: 72
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Campbell & Flores LLP
 - (B) STREET: 4370 La Jolla Village Drive, Suite 700
 - (C) CITY: San Diego
 - (D) STATE: California
 - (E) COUNTRY: United States
 - (F) ZIP: 92122
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/041,886
 - (B) FILING DATE: 12-MAR-1998
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Campbell, Cathryn A.
 - (B) REGISTRATION NUMBER: 31,815
 - (C) REFERENCE/DOCKET NUMBER: FP-LJ 3484
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (619) 535-9001
 - (B) TELEFAX: (619) 535-8949
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3386 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 114..1395
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

2	
GCCGCGGCCA GCTCCGGCGG GCAGGGGGGG CGCTGGAGCG CAGCCCCATC	60
AGTCCGCAAA GCGGACCGAG CTGGAAGTCG AGCGCTGCCG CGGGAGGCGG GCG ATG Met 1	116
GGG GCA GGT GCC ACC GGC CGC GCC ATG GAC GGG CCG CGC CTG CTG Gly Ala Gly Ala Thr Gly Arg Ala Met Asp Gly Pro Arg Leu Leu 5 10	164
TTG CTG CTT CTG GGG GTG TCC CTT GGA GGT GCC AAG GAG GCA TGC CCC Leu Leu Leu Gly Val Ser Leu Gly Gly Ala Lys Glu Ala Cys Pro 20 25 30	212
ACA GGC CTG TAC ACA CAC AGC GGT GAG TGC TGC AAA GCC TGC AAC CTG Thr Gly Leu Tyr Thr His Ser Gly Glu Cys Cys Lys Ala Cys Asn Leu 35 40 45	260
GGC GAG GGT GTG GCC CAG CCT TGT GGA GCC AAC CAG ACC GTG TGT GAG Gly Glu Gly Val Ala Gln Pro Cys Gly Ala Asn Gln Thr Val Cys Glu 50 65	308
CCC TGC CTG GAC AGC GTG ACG TTC TCC GAC GTG GTG AGC GCG ACC GAG Pro Cys Leu Asp Ser Val Thr Phe Ser Asp Val Val Ser Ala Thr Glu 70 75 80	356
CCG TGC AAG CCG TGC ACC GAG TGC GTG GGG CTC CAG AGC ATG TCG GCG Pro Cys Lys Pro Cys Thr Glu Cys Val Gly Leu Gln Ser Met Ser Ala 85 90 95	404
CCG TGC GTG GAG GCC GAC GCC GTG TGC CGC TGC GCC TAC GGC TAC Pro Cys Val Glu Ala Asp Asp Ala Val Cys Arg Cys Ala Tyr Gly Tyr 100 105 110	452
TAC CAG GAT GAG ACG ACT GGG CGC TGC GAG GCG TGC CGC GTG TGC GAG Tyr Gln Asp Glu Thr Thr Gly Arg Cys Glu Ala Cys Arg Val Cys Glu 115 120 125	500
GCG GGC TCG GGC CTC GTG TTC TCC TGC CAG GAC AAG CAG AAC ACC GTG Ala Gly Ser Gly Leu Val Phe Ser Cys Gln Asp Lys Gln Asn Thr Val 130 145	548
TGC GAG GAG TGC CCC GAC GGC ACG TAT TCC GAC GAG GCC AAC CAC GTG Cys Glu Glu Cys Pro Asp Gly Thr Tyr Ser Asp Glu Ala Asn His Val	596
GAC CCG TGC CTG CCC TGC ACC GTG TGC GAG GAC ACC GAG CGC CAG CTC Asp Pro Cys Leu Pro Cys Thr Val Cys Glu Asp Thr Glu Arg Gln Leu 165 170 175	644
CGC GAG TGC ACA CGC TGG GCC GAC GCC GAG TGC GAG GAG ATC CCT GGC Arg Glu Cys Thr Arg Trp Ala Asp Ala Glu Cys Glu Glu Ile Pro Gly 180 185 190	692
CGT TGG ATT ACA CGG TCC ACA CCC CCA GAG GGC TCG GAC AGC ACA GCC Arg Trp Ile Thr Arg Ser Thr Pro Pro Glu Gly Ser Asp Ser Thr Ala 195 200 205	740
CCC AGC ACC CAG GAG CCT GAG GCA CCT CCA GAA CAA GAC CTC ATA GCC Pro Ser Thr Gln Glu Pro Glu Ala Pro Pro Glu Gln Asp Leu Ile Ala 210 225	788

										3						
									GTG Val 235							836
									CTC Leu							884
									GTG Val							932
									CAA Gln							980
									GAA Glu							1028
									CAT His 315							1076
									GGT Gly							1124
									GTG Val							1172
									GCG Ala							1220
									GAG Glu							1268
									AGC Ser 395							1316
									GCC Ala						CTG Leu	1364
		GAG Glu 420							GTG Val	T GF	AGCCC	CAACC	GGG	GAGO	ccc	1415
CGCC	CCGC	ccc c	CACAT	TCCC	SA CA	AACC	SATGO	TCC	CAGCO	CAAC	CCCI	GTGG	SAG C	CCGC	CACCCC	1475
CAC	CTTI	rgg d	GGGG	GCCC	CG CC	CTGGC	CAGAZ	A CTO	SAGCI	CCT	CTGG	GCAG	GA C	CTCF	GAGTC	1535
CAGO	cccc	CAA A	ACCA	ACAGO	CC CI	GTC	AGTGO	AGC	CCGI	GTG	GCCC	СТТС	CAC I	TCT	SACCAC	1595
ACTI	CCT	STC C	CAGAC	SAGAC	SA AC	STGCC	ССТО	G CTC	CCTC	CCC	AACC	CTGC	cc c	TGCC	CCGTC	1655
ACC	ATCTO	CAG G	CCAC	CTG	cc cc	СТТС	CTCCC	ACF	CTGC	TAG	GTGG	GCCA	AGC C	CCTC	CCACC	1715
ACAC	CAG	STG I	CATA	TAT	G GC	GGCC	CAACA	A CCF	AGGGF	TGG	TACI	AGGG	GG A	AGTO	ACAAG	1775

GCCCCAGAGA	CTCAGAGGGA	GGAATCGAGG	AACCAGAGCC	ATGGACTCTA	CACTGTGAAC	1835
TTGGGGAACA	AGGGTGGCAT	CCCAGTGGCC	TCAACCCTCC	CTCAGCCCCT	CTTGCCCCCC	1895
ACCCCAGCCT	AAGATGAAGA	GGATCGGAGG	CTTGTCAGAG	CTGGGAGGGG	TTTTCGAAGC	1955
TCAGCCCACC	CCCCTCATTT	TGGATATAGG	TCAGTGAGGC	CCAGGGAGAG	GCCATGATTC	2015
GCCCAAAGCC	AGACAGCAAC	GGGGAGGCCA	AGTGCAGGCT	GGCACCGCCT	TCTCTAAATG	2075
AGGGGCCTCA	GGTTTGCCTG	AGGGCGAGGG	GAGGGTGGCA	GGTGACCTTC	TGGGAAATGG	2135
CTTGAAGCCA	AGTCAGCTTT	GCCTTCCACG	CTGTCTCCAG	ACCCCCACCC	CTTCCCCACT	2195
GCCTGCCCAC	CCGTGGAGAT	GGGATGCTTG	CCTAGGGCCT	GGTCCATGAT	GGAGTCAGGT	2255
TTGGGGTTCG	TGGAAAGGGT	GCTGCTTCCC	TCTGCCTGTC	CCTCTCAGGC	ATGCCTGTGT	2315
GACATCAGTG	GCATGGCTCC	AGTCTGCTGC	CCTCCATCCC	GACATGGACC	CGGAGCTAAC	2375
ACTGGCCCCT	AGAATCAGCC	TAGGGGTCAG	GGACCAAGGA	CCCCTCACCT	TGCAACACAC	2435
AGACACACGC	ACACACACAC	ACAGGAGGAG	AAATCTCACT	TTTCTCCATG	AGTTTTTTCT	2495
CTTGGGCTGA	GACTGGATAC	TGCCCGGGGC	AGCTGCCAGA	GAAGCATCGG	AGGGAATTGA	2555
GGTCTGCTCG	GCCGTCTTCA	CTCGCCCCCG	GGTTTGGCGG	GCCAAGGACT	GCCGACCGAG	2615
GCTGGAGCTG	GCGTCTGTCT	TCAAGGGCTT	ACACGTGGAG	GAATGCTCCC	CCATCCTCCC	2675
CTTCCCTGCA	AACATGGGGT	TGGCTGGGCC	CAGAAGGTTG	CGATGAAGAA	AAGCGGGCCA	2735
GTGTGGGAAT	GCGGCAAGAA	GGAATTGACT	TCGACTGTGA	CCTGTGGGGA	TTTCTCCCAG	2795
CTCTAGACAA	CCCTGCAAAG	GACTGTTTTT	TCCTGAGCTT	GGCCAGAAGG	GGGCCATGAG	2855
GCCTCAGTGG	ACTTTCCACC	CCCTCCCTGG	CCTGTTCTGT	TTTGCCTGAA	GTTGGAGTGA	2915
GTGTGGCTCC	CCTCTATTTA	GCATGACAAG	CCCCAGGCAG	GCTGTGCGCT	GACAACCACC	2975
GCTCCCCAGC	CCAGGGTTCC	CCCAGCCCTG	TGGAAGGGAC	TAGGAGCACT	GTAGTAAATG	3035
GCAATTCTTT	GACCTCAACC	TGTGATGAGG	GGAGGAAACT	CACCTGCTGG	CCCCTCACCT	3095
GGGCACCTGG	GGAGTGGGAC	AGAGTCTGGG	TGTATTTATT	TTCCTCCCCA	GCAGGTGGGG	3155
AGGGGGTTTG	GTGGCTTGCA	AGTATGTTTT	AGCATGTGTT	TGGTTCTGGG	GCCCCTTTTT	3215
ACTCCCCTTG	AGCTGAGATG	GAACCCTTTT	GGCCCCCAGC	TGGGGGCCAT	GAGCTCCAGA	3275
CCCCCAGCAA	CCCTCCTATC	ACCTCCCCTC	CTTGCCTCCT	GTGTAATCAT	TTCTTGGGCC	3335
CTCCTGAAAC	TTACACACAA	AACGTTAAGT	GATGAACATT	AAATAGCAAA	G	3386

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gly Ala Gly Ala Thr Gly Arg Ala Met Asp Gly Pro Arg Leu Leu Leu Leu Leu Leu Gly Val Ser Leu Gly Gly Ala Lys Glu Ala Cys Pro Thr Gly Leu Tyr Thr His Ser Gly Glu Cys Cys Lys Ala Cys Asn Leu Gly Glu Gly Val Ala Gln Pro Cys Gly Ala Asn Gln Thr Val Cys Glu Pro Cys Leu Asp Ser Val Thr Phe Ser Asp Val Val Ser Ala Thr Glu Pro Cys Lys Pro Cys Thr Glu Cys Val Gly Leu Gln Ser Met Ser Ala Pro Cys Val Glu Ala Asp Asp Ala Val Cys Arg Cys Ala Tyr Gly Tyr Tyr Gln Asp Glu Thr Thr Gly Arg Cys Glu Ala Cys Arg Val Cys Glu Ala Gly Ser Gly Leu Val Phe Ser Cys Gln Asp Lys Gln Asn Thr 135 Val Cys Glu Glu Cys Pro Asp Gly Thr Tyr Ser Asp Glu Ala Asn His Val Asp Pro Cys Leu Pro Cys Thr Val Cys Glu Asp Thr Glu Arg Gln Leu Arg Glu Cys Thr Arg Trp Ala Asp Ala Glu Cys Glu Glu Ile Pro 185 Gly Arg Trp Ile Thr Arg Ser Thr Pro Pro Glu Gly Ser Asp Ser Thr Ala Pro Ser Thr Gln Glu Pro Glu Ala Pro Pro Glu Gln Asp Leu Ile Ala Ser Thr Val Ala Gly Val Val Thr Thr Val Met Gly Ser Ser Gln 230 235 Pro Val Val Thr Arg Gly Thr Thr Asp Asn Leu Ile Pro Val Tyr Cys Ser Ile Leu Ala Ala Val Val Gly Leu Val Ala Tyr Ile Ala Phe 265 Lys Arg Trp Asn Ser Cys Lys Gln Asn Lys Gln Gly Ala Asn Ser Arg Pro Val Asn Gln Thr Pro Pro Pro Glu Gly Glu Lys Leu His Ser Asp 295 Ser Gly Ile Ser Val Asp Ser Gln Ser Leu His Asp Gln Gln Pro His Thr Gln Thr Ala Ser Gly Gln Ala Leu Lys Gly Asp Gly Gly Leu Tyr

325 330 335

Ser Ser Leu Pro Pro Ala Lys Arg Glu Glu Val Glu Lys Leu Leu Asn 345

- Gly Ser Ala Gly Asp Thr Trp Arg His Leu Ala Gly Glu Leu Gly Tyr
- Gln Pro Glu His Ile Asp Ser Phe Thr His Glu Ala Cys Pro Val Arg
- Ala Leu Leu Ala Ser Trp Ala Thr Gln Asp Ser Ala Thr Leu Asp Ala
- Leu Leu Ala Ala Leu Arg Arg Ile Gln Arg Ala Asp Leu Val Glu Ser 410

Leu Cys Ser Glu Ser Thr Ala Thr Ser Pro Val 420

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ser Ala Thr Leu Asp Ala Leu Leu Ala Ala Leu Arg Arg Ile

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ser Ala Thr Leu Asp Ala Leu Leu Ala Ala Leu Gly Gly Ile

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids(B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ser Ala Thr Leu Gln Ala Leu Leu Ala Ala Leu Arg Arg Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Gln Gln Gln Gln Gln Gln Gln Gln Gln 10

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ΙD	NO:9:

8

Gln Gln Gln Gln Gln Gln Gln 20

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3715 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 532..3286

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GAATTCCGGC GGAGAGAACC CTCTGTTTTC CCCCACTCTC TCTCCACCTC CTCCTGCCTT	60
CCCCACCCCG AGTGCGGAGC AGAGATCAAA AGATGAAAAG GCAGTCAGGT CTTCAGTAGC	120
CAAAAAACAA AACAAACAAA AACAAAAAAG CCGAAATAAA AGAAAAAGAT AATAACTCAG	180
TTCTTATTTG CACCTACTTC AGTGGACACT GAATTTGGAA GGTGGAGGAT TTTGTTTTTT	240
TCTTTTAAGA TCTGGGCATC TTTTGAATCT ACCCTTCAAG TATTAAGAGA CAGACTGTGA	300
GCCTAGCAGG GCAGATCTTG TCCACCGTGT GTCTTCTTCT GCACGAGACT TTGAGGCTGT	360
CAGAGCGCTT TTTGCGTGGT TGCTCCCGCA AGTTTCCTTC TCTGGAGCTT CCCGCAGGTG	420
GGCAGCTAGC TGCAGCGACT ACCGCATCAT CACAGCCTGT TGAACTCTTC TGAGCAAGAG	480
AAGGGGAGGC GGGGTAAGGG AAGTAGGTGG AAGATTCAGC CAAGCTCAAG G ATG GAA Met Glu 1	537
GTG CAG TTA GGG CTG GGA AGG GTC TAC CCT CGG CCG CCG TCC AAG ACC Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser Lys Thr 5 10 15	5 85
TAC CGA GGA GCT TTC CAG AAT CTG TTC CAG AGC GTG CGC GAA GTG ATC Tyr Arg Gly Ala Phe Gln Asn Leu Phe Gln Ser Val Arg Glu Val Ile 20 25 30	633
CAG AAC CCG GGC CCC AGG CAC CCA GAG GCC GCG AGC GCA GCA	681
GGC GCC AGT TTG CTG CTG CAG CAG CAG CAG CAG CAG CAG CAG CAG GLy Ala Ser Leu Leu Leu Gln Gln Gln Gln Gln Gln Gln Gln G55	729
CAG CAG CAG CAG CAG CAA GAG ACT AGC CCC AGG CAG CAG	777

										_						
Gln	Gln	Gln	Gln 70	Gln	Gln	Gln	Gln	Glu 75		Ser	Pro	Arg	Gln 80		Gln	
CAG Gln	CAG Gln	CAG Gln 85	GGT Gly	GAG Glu	GAT Asp	GGT Gly	TCT Ser 90	CCC Pro	CAA Gln	GCC Ala	CAT His	CGT Arg 95	Arg	GGC Gly	CCC	825
ACA Thr	GGC Gly 100	TAC Tyr	CTG Leu	GTC Val	CTG Leu	GAT Asp 105	GAG Glu	GAA Glu	CAG Gln	CAA Gln	CCT Pro 110	Ser	CAG Gln	CCG Pro	CAG Gln	873
TCG Ser 115	GCC Ala	CTG Leu	GAG Glu	TGC Cys	CAC His 120	CCC Pro	GAG Glu	AGA Arg	GGT Gly	TGC Cys 125	GTC Val	CCA Pro	GAG Glu	CCT Pro	GGA Gly 130	921
GCC Ala	GCC Ala	GTG Val	GCC Ala	GCC Ala 135	AGC Ser	AAG Lys	GGG Gly	CTG Leu	CCG Pro 140	CAG Gln	CAG Gln	CTG Leu	CCA Pro	GCA Ala 145	CCT Pro	969
CCG Pro	GAC Asp	GAG Glu	GAT Asp 150	GAC Asp	TCA Ser	GCT Ala	GCC Ala	CCA Pro 155	TCC Ser	ACG Thr	TTG Leu	TCC Ser	CTG Leu 160	CTG Leu	GGC Gly	1017
CCC Pro	ACT Thr	TTC Phe 165	CCC Pro	GGC Gly	TTA Leu	AGC Ser	AGC Ser 170	TGC Cys	TCC Ser	GCT Ala	GAC Asp	CTT Leu 175	AAA Lys	GAC Asp	ATC Ile	1065
CTG Leu	AGC Ser 180	GAG Glu	GCC Ala	AGC Ser	ACC Thr	ATG Met 185	CAA Gln	CTC Leu	CTT Leu	CAG Gln	CAA Gln 190	CAG Gln	CAG Gln	CAG Gln	GAA Glu	1113
GCA Ala 195	GTA Val	TCC Ser	GAA Glu	GGC Gly	AGC Ser 200	AGC Ser	AGC Ser	GGG Gly	AGA Arg	GCG Ala 205	AGG Arg	GAG Glu	GCC Ala	TCG Ser	GGG Gly 210	1161
GCT Ala	CCC Pro	ACT Thr	TCC Ser	TCC Ser 215	AAG Lys	GAC Asp	AAT Asn	TAC Tyr	TTA Leu 220	GGG Gly	GGC Gly	ACT Thr	TCG Ser	ACC Thr 225	ATT Ile	1209
TCT Ser	GAC Asp	AAC Asn	GCC Ala 230	AAG Lys	GAG Glu	TTG Leu	TGT Cys	AAG Lys 235	GCA Ala	GTG Val	TCG Ser	GTG Val	TCC Ser 240	ATG Met	GGC Gly	1257
CTG Leu	GGT Gly	GTG Val 245	GAG Glu	GCG Ala	TTG Leu	GAG Glu	CAT His 250	CTG Leu	AGT Ser	CCA Pro	GGG Gly	GAA Glu 255	CAG Gln	CTT Leu	CGG Arg	1305
GGG Gly	GAT Asp 260	TGC Cys	ATG Met	TAC Tyr	GCC Ala	CCA Pro 265	CTT Leu	TTG Leu	GGA Gly	GTT Val	CCA Pro 270	CCC Pro	GCT Ala	GTG Val	CGT Arg	1353
CCC Pro 275	ACT Thr	CCT Pro	TGT Cys	GCC Ala	CCA Pro 280	TTG Leu	GCC Ala	GAA Glu	Cys	AAA Lys 285	GGT Gly	TCT Ser	CTG Leu	CTA Leu	GAC Asp 290	1401
GAC Asp	AGC Ser	GCA Ala	GGC Gly	AAG Lys 295	AGC Ser	ACT Thr	GAA Glu	GAT Asp	ACT Thr 300	GCT Ala	GAG Glu	TAT Tyr	TCC Ser	CCT Pro 305	TTC Phe	1449
AAG Lys	GGA Gly	GGT Gly	TAC Tyr 310	ACC Thr	AAA Lys	GGG Gly	CTA Leu	GAA Glu 315	GGC Gly	GAG Glu	AGC Ser	CTA Leu	GGC Gly 320	TGC Cys	TCT Ser	1497

GGC Gly	AGC Ser	GCT Ala 325	GCA Ala	GCA Ala	GGG Gly	AGC Ser	TCC Ser 330	GGG Gly	ACA Thr	CTT Leu	GAA Glu	CTG Leu 335	CCG Pro	TCT Ser	ACC Thr	1545
													GCG Ala			1593
													CCG Pro			1641
													GAG Glu			1689
													TGC Cys 400			1737
													CCC Pro			1785
													CTC Leu			1833
													GGG Gly			1881
													GGC Gly			1929
													GGC Gly 480			1977
													ACC Thr			2025
GAT Asp	GTG Val 500	TGG Trp	TAC Tyr	CCT Pro	GGC Gly	GGC Gly 505	ATG Met	GTG Val	AGC Ser	AGA Arg	GTG Val 510	CCC Pro	TAT Tyr	CCC Pro	AGT Ser	2073
													AGC Ser			2121
													CAT His			2169
													ATC Ile 560			2217
													GGA Gly			2265

AAG Lys	GTC Val 580	Phe	TTC Phe	AAA Lys	AGA Arg	GCC Ala 585	GCT Ala	GAA Glu	GGG Gly	AAA Lys	CAG Gln 590	Lys	TAC Tyr	CTC Leu	TGC Cys		2313
GCC Ala 595	Ser	AGA Arg	AAT Asn	GAT Asp	TGC Cys 600	ACT Thr	ATT Ile	GAT Asp	AAA Lys	TTC Phe 605	Arg	AGG Arg	AAA Lys	AAT Asn	TGT Cys 610		2361
CCA Pro	TCT Ser	TGT Cys	CGT Arg	CTT Leu 615	CGG Arg	AAA Lys	TGT Cys	TAT Tyr	GAA Glu 620	GCA Ala	GGG Gly	ATG Met	ACT Thr	CTG Leu 625	GGA Gly		2409
GCC Ala	CGG Arg	AAG Lys	CTG Leu 630	AAG Lys	AAA Lys	CTT Leu	GGT Gly	AAT Asn 635	CTG Leu	AAA Lys	CTA Leu	CAG Gln	GAG Glu 640	GAA Glu	GGA Gly		2457
GAG Glu	GCT Ala	TCC Ser 645	AGC Ser	ACC Thr	ACC Thr	AGC Ser	CCC Pro 650	ACT Thr	GAG Glu	GAG Glu	ACA Thr	ACC Thr 655	CAG Gln	AAG Lys	CTG Leu		2505
ACA Thr	GTG Val 660	TCA Ser	CAC His	ATT Ile	GAA Glu	GGC Gly 665	TAT Tyr	GAA Glu	TGT Cys	CAG Gln	CCC Pro 670	ATC Ile	TTT Phe	CTG Leu	AAT Asn		2553
GTC Val 675	CTG Leu	GAA Glu	GCC Ala	ATT Ile	GAG Glu 680	CCA Pro	GGT Gly	GTA Val	GTG Val	TGT Cys 685	GCT Ala	GGA Gly	CAC His	GAC Asp	AAC Asn 690		2601
AAC Asn	CAG Gln	CCC Pro	GAC Asp	TCC Ser 695	TTT Phe	GCA Ala	GCC Ala	TTG Leu	CTC Leu 700	TCT Ser	AGC Ser	CTC Leu	AAT Asn	GAA Glu 705	CTG Leu		2649
GGA Gly	GAG Glu	AGA Arg	CAG Gln 710	CTT Leu	GTA Val	CAC His	GTG Val	GTC Val 715	AAG Lys	TGG Trp	GCC Ala	AAG Lys	GCC Ala 720	TTG Leu	CCT Pro		2697
GGC Gly	TTC Phe	CGC Arg 725	AAC Asn	TTA Leu	CAC His	GTG Val	GAC Asp 730	GAC Asp	CAG Gln	ATG Met	GCT Ala	GTC Val 735	ATT Ile	CAG Gln	TAC Tyr		2745
TCC Ser	TGG Trp 740	ATG Met	GGG Gly	CTC Leu	ATG Met	GTG Val 745	TTT Phe	GCC Ala	ATG Met	GGC Gly	TGG Trp 750	CGA Arg	TCC Ser	TTC Phe	ACC Thr		2793
AAT Asn 755	GTC Val	AAC Asn	TCC Ser	AGG Arg	ATG Met 760	CTC Leu	TAC Tyr	TTC Phe	GCC Ala	CCT Pro 765	GAT Asp	CTG Leu	GTT Val	TTC Phe	AAT Asn 770		2841
GAG Glu	TAC Tyr	CGC Arg	ATG Met	CAC His 775	AAG Lys	TCC Ser	CGG Arg	ATG Met	TAC Tyr 780	AGC Ser	CAG Gln	TGT Cys	GTC Val	CGA Arg 785	ATG Met	:	2889
AGG Arg	CAC His	CTC Leu	TCT Ser 790	CAA Gln	GAG Glu	TTT Phe	GGA Gly	TGG Trp 795	CTC Leu	CAA Gln	ATC Ile	ACC Thr	CCC Pro 800	CAG Gln	GAA Glu	;	2937
TTC Phe	CTG Leu	TGC Cys 805	ATG Met	AAA Lys	GCA Ala	CTG Leu	CTA Leu 810	CTC Leu	TTC Phe	AGC Ser	ATT Ile	ATT Ile 815	CCA Pro	GTG Val	GAT Asp	2	2985
GGG Gly	CTG Leu 820	AAA Lys	AAT Asn	CAA Gln	AAA Lys	TTC Phe 825	TTT Phe	GAT Asp	GAA Glu	CT T Leu	CGA Arg 830	ATG Met	AAC Asn	TAC Tyr	ATC Ile	3	3033

														ACA Thr		3081
														GTG Val 865		3129
														ATC Ile		3177
														ATC Ile		3225
														ATC Ile		3273
	CAC His			T GA	AAGC	ATTGO	S AAA	ACCC!	TATT	TCC	CCACO	CCC A	AGCTO	CATGO	CC	3326
CCC	TTC	AGA :	rgtc:	TTCT	GC C	GTT	AATA	C TC	rgcac	CTAC	TCCI	CTGC	CAG :	rgcci	TTGTTT	3386
AATI	TCCI	CT A	ATTG	ATGT!	AC A	STCTO	STCAT	r GG	TTA	CTAT	TTGO	CTGGC	GCT :	rttt1	TTTCT	3446
CTTI	CTC	rcc :	rttc:	rt t t:	rc T	стто	ССТ	c cc	CATC	TAAC	CCT	CCAT	rgg (CACCI	TTCAGA	3506
CTTI	GCT	rcc (CATT	GTGG	CT C	CTATO	CTGT	S TT	TTGA	ATGG	TGTT	GTAT	rgc (CTTTA	AAATCT	3566
GTG <i>I</i>	ATGAT	rcc :	CAT	ATGG	CC C	AGTGT	CAAC	G TT	STGCT	TGT	TTAC	CAGCA	ACT A	ACTCI	TGTGCC	3626
AGC	CACAC	CAA A	ACGT	TTAC'	rt A	CTT	ATGC	C ACC	GGA	AGTT	TAGA	AGAGO	CTA A	AGATT	TATCTG	3686
GGG	TAAL	CAA A	AACA	AAAP	CA CO	CCGA	ATTC									3715

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 918 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: prótein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Glu Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser 1 5 15

Lys Thr Tyr Arg Gly Ala Phe Gln Asn Leu Phe Gln Ser Val Arg Glu 20 25 30

Val Ile Gln Asn Pro Gly Pro Arg His Pro Glu Ala Ala Ser Ala Ala 35 40 45

Pro Pro Gly Ala Ser Leu Leu Leu Gln Gln Gln Gln Gln Gln Gln 50 55 60

Gln Gln Gln Gln Gln Gln Gln Gln Gln Glu Thr Ser Pro Arg Gln

65 70 75 80 Gln Gln Gln Gln Gly Glu Asp Gly Ser Pro Gln Ala His Arg Arg Gly Pro Thr Gly Tyr Leu Val Leu Asp Glu Glu Gln Gln Pro Ser Gln 105 Pro Gln Ser Ala Leu Glu Cys His Pro Glu Arg Gly Cys Val Pro Glu 120 Pro Gly Ala Ala Val Ala Ala Ser Lys Gly Leu Pro Gln Gln Leu Pro Ala Pro Pro Asp Glu Asp Asp Ser Ala Ala Pro Ser Thr Leu Ser Leu 150 Leu Gly Pro Thr Phe Pro Gly Leu Ser Ser Cys Ser Ala Asp Leu Lys Asp Ile Leu Ser Glu Ala Ser Thr Met Gln Leu Leu Gln Gln Gln 185 Gln Glu Ala Val Ser Glu Gly Ser Ser Ser Gly Arg Ala Arg Glu Ala Ser Gly Ala Pro Thr Ser Ser Lys Asp Asn Tyr Leu Gly Gly Thr Ser Thr Ile Ser Asp Asn Ala Lys Glu Leu Cys Lys Ala Val Ser Val Ser Met Gly Leu Gly Val Glu Ala Leu Glu His Leu Ser Pro Gly Glu Gln 250 Leu Arg Gly Asp Cys Met Tyr Ala Pro Leu Leu Gly Val Pro Pro Ala Val Arg Pro Thr Pro Cys Ala Pro Leu Ala Glu Cys Lys Gly Ser Leu Leu Asp Asp Ser Ala Gly Lys Ser Thr Glu Asp Thr Ala Glu Tyr Ser 300 Pro Phe Lys Gly Gly Tyr Thr Lys Gly Leu Glu Gly Glu Ser Leu Gly Cys Ser Gly Ser Ala Ala Gly Ser Ser Gly Thr Leu Glu Leu Pro Ser Thr Leu Ser Leu Tyr Lys Ser Gly Ala Leu Asp Glu Ala Ala Ala 345 Tyr Gln Ser Arg Asp Tyr Tyr Asn Phe Pro Leu Ala Leu Ala Gly Pro Pro Pro Pro Pro Pro Pro His Pro His Ala Arg Ile Lys Leu Glu Asn Pro Leu Asp Tyr Gly Ser Ala Trp Ala Ala Ala Ala Gln Cys 390 Arg Tyr Gly Asp Leu Ala Ser Leu His Gly Ala Gly Ala Gly Pro

				405					410					415	
Gly	Ser	Gly	Ser 420	Pro	Ser	Ala	Ala	Ala 425	Ser	Ser	Ser	Trp	His 430	Thr	Leu
Phe	Thr	Ala 435	Glu	Glu	Gly	Gln	Leu 440	Tyr	Gly	Pro	Cys	Gly 445	Gly	Gly	Gly
Gly	Gly 450	Gly	Gly	Gly	Gly	Gly 455	Gly	Gly	Gly	Gly	Gly 460	Gly	Gly	Gly	Gly
Gly 465	Gly	Gly	Gly	Gly	Gly 470	Gly	Glu	Ala	Glu	Ala 475	Val	Ala	Pro	Tyr	Gly 480
Tyr	Thr	Arg	Pro	Pro 485	Gln	Gly	Leu	Ala	Gly 490	Gln	Glu	Ser	Asp	Phe 495	Thr
Ala	Pro	Asp	Val 500	Trp	Tyr	Pro	Gly	Gly 505	Met	Val	Ser	Arg	Val 510	Pro	Tyr
Pro	Ser	Pro 515	Thr	Cys	Val	Lys	Ser 520	Glu	Met	Gly	Pro	Trp 525	Met	Asp	Ser
Tyr	Ser 530	Gly	Pro	Tyr	Gly	Asp 535	Met	Arg	Leu	Glu	Thr 540	Ala	Arg	Asp	His
Val 545	Leu	Pro	Ile	Asp	Tyr 550	Tyr	Phe	Pro	Pro	Gln 555	Lys	Thr	Cys	Leu	Ile 560
Cys	Gly	Asp	Glu	Ala 565	Ser	Gly	Cys	His	Tyr 570	Gly	Ala	Leu	Thr	Cys 575	Gly
Ser	Cys	Lys	Val 580	Phe	Phe	Lys	Arg	Ala 585	Ala	Glu	Gly	Lys	Gln 590	Lys	Tyr
Leu	Cys	Ala 595	Ser	Arg	Asn	Asp	Cys 600	Thr	Ile	Asp	Lys	Phe 605	Arg	Arg	Lys
Asn	Cys 610	Pro	Ser	Cys	Arg	Leu 615	Arg	Lys	Cys	Tyr	Glu 620	Ala	Gly	Met	Thr
Leu 625	Gly	Ala	Arg	Lys	Leu 630	Lys	Lys	Leu	Gly	Asn 635	Leu	Lys	Leu	Gln	Glu 640
Glu	Gly	Glu	Ala	Ser 645	Ser	Thr	Thr	Ser	Pro 650	Thr	Glu	Glu	Thr	Thr 655	Gln
Lys	Leu	Thr	Val 660	Ser	His	Ile	Glu	Gly 665	Tyr	Glu	Cys	Gln	Pro 670	Ile	Phe
Leu	Asn	Val 675	Leu	Glu	Ala	Ile	Glu 680	Pro	Gly	Val	Val	Cys 685	Ala	Gly	His
Asp	Asn 690	Asn	Gln	Pro	Asp	Ser 695	Phe	Ala	Ala	Leu	Leu 700	Ser	Ser	Leu	Asn
Glu 705	Leu	Gly	Glu	Arg	Gln 710	Leu	Val	His	Val	Val 715	Lys	Trp	Ala	Lys	Ala 720
Leu	Pro	Gly	Phe	Arg 725	Asn	Leu	His	Val	Asp 730	Asp	Gln	Met	Ala	Val 735	Ile

WO 99/45944

15

PCT/US99/05250

										15						
Gln	Tyr	Ser	Trp 740	Met	Gly	Leu	Met	Val 745	Phe	Ala	Met	Gly	Trp 750	Arg	Ser	
Phe	Thr	Asn 755	Val	Asn	Ser	Arg	Met 760	Leu	Tyr	Phe	Ala	Pro 765	Asp	Leu	Val	
Phe	Asn 770	Glu	Tyr	Arg	Met	His 775	Lys	Ser	Arg	Met	Tyr 780	Ser	Gln	Cys	Val	
Arg 785	Met	Arg	His	Leu	Ser 790	Gln	Glu	Phe	Gly	Trp 795	Leu	Gln	Ile	Thr	Pro 800	
Gln	Glu	Phe	Leu	Cys 805	Met	Lys	Ala	Leu	Leu 810	Leu	Phe	Ser	Ile	Ile 815	Pro	
Val	Asp	Gly	Leu 820	Lys	Asn	Gln	Lys	Phe 825	Phe	Asp	Glu	Leu	Arg 830	Met	Asn	
Tyr	Ile	Lys 835	Glu	Leu	Asp	Arg	Ile 840	Ile	Ala	Cys	Lys	Arg 845	Lys	Asn	Pro	
Thr	Ser 850	Cys	Ser	Arg	Arg	Phe 855	Tyr	Gln	Leu	Thr	Lys 860	Leu	Leu	Asp	Ser	
Val 865	Gln	Pro	Ile	Ala	Arg 870	Glu	Leu	His	Gln	Phe 875	Thr	Phe	Asp	Leu	Leu 880	
Ile	Lys	Ser	His	Met 885	Val	Ser	Val	Asp	Phe 890	Pro	Glu	Met	Met	Ala 895	Glu	
Ile	Ile	Ser	Val 900	Gln	Val	Pro	Lys	Ile 905	Leu	Ser	Gly	Lys	Val 910	Lys	Pro	
Ile	Tyr	Phe 915	His	Thr	Gln											
(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10:12	2:								
	(i)	(A (E	L) LE 3) TY 5) ST	NGTH PE: RAND	IARAC I: 17 nucl EDNE	76 b eic SS:	ase acid	pair l	·s							
	(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic	:)							
	(ix)) NA	ME/K	EY: ON:		1116	;								
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NC	:12:						
TCGG	CGTG	GG G	GCCG	TTGG	C TC	CAGA	.CAAA	TAA				CC A				53
GAG Glu	AAA Lys	CAA Gln	GAA Glu 10	GGC Gly	TCA Ser	CTT Leu	TGT Cys	GCT Ala 15	CAA Gln	CAT His	TGC Cys	CTG Leu	AAT Asn 20	AAC Asn	TTA Leu	101
TTG	CAA	GGA	GAA	TAT	TTT	AGC	CCT	GTG	GAA	TTA	TCC	TCA .	АТТ	GCA	CAT	149

Leu	Gln	Gly 25	Glu	Tyr	Phe	Ser	Pro 30	Val	Glu	Leu	Ser	Ser 35	Ile	Ala	His	
					GAG Glu											197
					ACG Thr 60											245
					TCT Ser											293
					ATC Ile											341
					AAT Asn											389
					AGA Arg											437
					CCA Pro 140											485
					CAA Gln											533
					TGC Cys											581
					CGA Arg											629
					GTC Val											677
					GGA Gly 220											725
					AGT Ser											773
					GCT Ala											821
					ATG Met											869

GAA Glu	GAG Glu 280	CTT Leu	CGG Arg	AAG Lys	AGA Arg	CGA Arg 285	GAA Glu	GCC Ala	TAC Tyr	TTT Phe	GAA Glu 290	AAA Lys	CAG Gln	CAG Gln	CAA Gln	917
AAG Lys 295	CAG Gln	CAA Gln	CAG Gln	CAG Gln	CAG Gln 300	CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 305	CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 310	965
CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 315	CAG Gln	CAG Gln	CGG Arg	GAC Asp	CTA Leu 320	TCA Ser	GGA Gly	CAG Gln	AGT Ser	TCA Ser 325	CAT His	1013
CCA Pro	TGT Cys	GAA Glu	AGG Arg 330	CCA Pro	GCC Ala	ACC Thr	AGT Ser	TCA Ser 335	GGA Gly	GCA Ala	CTT Leu	GGG Gly	AGT Ser 340	GAT Asp	CTA Leu	1061
GGT Gly	AAG Lys	GCC Ala 345	TGC Cys	TCA Ser	CCA Pro	TTC Phe	ATC Ile 350	ATG Met	TTC Phe	GCT Ala	ACC Thr	TTC Phe 355	ACA Thr	CTT Leu	TAT Tyr	1109
CTG Leu		T AA	\GAGC	CTCCA	TG1	GATT	'TTT	GCTI	'TACA	TT A	TTCI	TCA1	'T C0	CCTCT	TTAA	1166
TCAT	ATTA	AG A	CTCT	'TAAG	T AA	ATTT	GTAA	TCT	'ACTA	AAT	TTCC	CTGG	AT T	r A AGG	AGCAA	1226
GGTT	ACCA	AA A	AAAA	AAAA	A AA	AAAA	AAAG	CTA	GATG	TGG	TGGC	TCAC	AT C	CTGTA	ATCCC	1286
AGCA	CTTT	GG G	AAAC	CAAG	G CA	GGAG	AGGA	TTG	CTAG	AAC	ATTT	AATG	AA 1	TACTT	TAACA	1346
TAAT	AATT	TA A	ACTT	CACA	G TA	ATTT	GTAC	AGT	CTCC	AGA	AATT	CCTT	AG A	ACATO	ATGAA	1406
TATT	TTTC	TT T	TTTT	GGGG	T GA	CAGG	GCAA	AAC	TCTG	TCT	CAAA	AAAA	AA A	AAAA	AAAAA	1466
AAAG	GGCT	GG A	CACG	GTGG	C TT	'ACGC	CTGT	TAT	CCCG	GCA	CTTT	GGGA	.GG C	CAAG	GCCGA	1526
TGGA	TCAC	CT G	AGGT	CAGG	A GT	TCAA	GACC	AGC	CTGG	CCA	ACAT	GGTG	AA A	CCCC	ATCTC	1586
TACT	AAAA	AT A	.CAAA	AATT	T GC	TGGG	CATG	GTG	GTGG	GCA	CCTG	TAAT	cc c	CAGGA	GGCTG	1646
AGGC	AGGA	GA A	TCAC	TTGA	A CC	TGGG	AGCG	GAG	ATTG	CAG	TGAG	CCAA	GA I	TGTG	CCATT	1706
GAAC	TCCA	GC C	TGGG	TGAC	A AG	ACCA	AAAC	TCC	ATCT	CAA	AAAA	AAAA	AA A	AAAA	AAGCG	1766
ACAG	CAAC	GG														1776

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 360 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Glu Ser Ile Phe His Glu Lys Gln Glu Gly Ser Leu Cys Ala Gln

His Cys Leu Asn Asn Leu Leu Gln Gly Glu Tyr Phe Ser Pro Val Glu 20 25 30

Leu Ser Ser Ile Ala His Gln Leu Asp Glu Glu Arg Met Arg Met Ala Glu Gly Gly Val Thr Ser Glu Asp Tyr Arg Thr Phe Leu Gln Gln Pro Ser Gly Asn Met Asp Asp Ser Gly Phe Phe Ser Ile Gln Val Ile Ser Asn Ala Leu Lys Val Trp Gly Leu Glu Leu Ile Leu Phe Asn Ser Pro Glu Tyr Gln Arg Leu Arg Ile Asp Pro Ile Asn Glu Arg Ser Phe Ile Cys Asn Tyr Lys Glu His Trp Phe Thr Val Arg Lys Leu Gly Lys Gln Trp Phe Asn Leu Asn Ser Leu Leu Thr Gly Pro Glu Leu Ile Ser Asp Thr Tyr Leu Ala Leu Phe Leu Ala Gln Leu Gln Gln Glu Gly Tyr 150 Ser Ile Phe Val Val Lys Gly Asp Leu Pro Asp Cys Glu Ala Asp Gln Leu Leu Gln Met Ile Arg Val Gln Gln Met His Arg Pro Lys Leu Ile 185 Gly Glu Glu Leu Ala Gln Leu Lys Glu Gln Arg Val His Lys Thr Asp Leu Glu Arg Met Leu Glu Ala Asn Asp Gly Ser Gly Met Leu Asp Glu Asp Glu Glu Asp Leu Gln Arg Ala Leu Ala Leu Ser Arg Gln Glu Ile Asp Met Glu Asp Glu Glu Ala Asp Leu Arg Arg Ala Ile Gln Leu Ser Met Gln Gly Ser Ser Arg Asn Ile Ser Gln Asp Met Thr Gln Thr Ser 265 Gly Thr Asn Leu Thr Ser Glu Glu Leu Arg Lys Arg Arg Glu Ala Tyr Ser Gly Gln Ser Ser His Pro Cys Glu Arg Pro Ala Thr Ser Ser Gly 330 Ala Leu Gly Ser Asp Leu Gly Lys Ala Cys Ser Pro Phe Ile Met Phe Ala Thr Phe Thr Leu Tyr Leu Thr 355

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10348 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 316..9748

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TTGCTGTGT AGGCAGAACC TGCGGGGGCA GGGGCGGGCT GGTTCCCTGG CCAGCCATTG	60
GCAGAGTCCG CAGGCTAGGG CTGTCAATCA TGCTGGCCGG CGTGGCCCCG CCTCCGCCGG	120
CGCGGCCCCG CCTCCGCCGG CGCACGTCTG GGACGCAAGG CGCCGTGGGG GCTGCCGGGA	180
CGGGTCCAAG ATGGACGGCC GCTCAGGTTC TGCTTTTACC TGCGGCCCAG AGCCCCATTC	240
ATTGCCCCGG TGCTGAGCGG CGCCGCGAGT CGGCCCGAGG CCTCCGGGGA CTGCCGTGCC	300
GGGCGGGAGA CCGCC ATG GCG ACC CTG GAA AAG CTG ATG AAG GCC TTC GAG Met Ala Thr Leu Glu Lys Leu Met Lys Ala Phe Glu 1 5 10	351
TCC CTC AAG TCC TTC CAG CAG CAG CAG CAG CAG CAG CAG CAG CA	399
CAG	447
CCG CCG CCG CCG CCT CCT CAG CTT CCT CAG CCG CCG CCG CAG GCA Pro Pro Pro Pro Pro Pro Pro Gln Leu Pro Gln Pro Pro Pro Gln Ala 45 50 55 60	495
CAG CCG CTG CTG CCT CAG CCG CAG CCG CCC CCG CCG CCC CCG CCG	543
CCA CCC GGC CCG GCT GTG GCT GAG GAG CCG CTG CAC CGA CCA AAG AAA Pro Pro Gly Pro Ala Val Ala Glu Glu Pro Leu His Arg Pro Lys Lys 80 85 90	591
GAA CTT TCA GCT ACC AAG AAA GAC CGT GTG AAT CAT TGT CTG ACA ATA Glu Leu Ser Ala Thr Lys Lys Asp Arg Val Asn His Cys Leu Thr Ile 95 100 105	639
TGT GAA AAC ATA GTG GCA CAG TCT GTC AGA AAT TCT CCA GAA TTT CAG Cys Glu Asn Ile Val Ala Gln Ser Val Arg Asn Ser Pro Glu Phe Gln 110 115 120	687
AAA CTT CTG GGC ATC GCT ATG GAA CTT TTT CTG CTG TGC AGT GAT GAC Lys Leu Leu Gly Ile Ala Met Glu Leu Phe Leu Leu Cys Ser Asp Asp 135	735

GCA Ala	GAG Glu	TCA Ser	GAT Asp	GTC Val 145	Arg	ATG Met	GTG Val	GCT Ala	GAC Asp 150	Glu	TGC Cys	CTC Leu	AAC Asn	AAA Lys 155	GTT Val	783
ATC Ile	AAA Lys	GCT Ala	TTG Leu 160	ATG Met	GAT Asp	TCT Ser	AAT Asn	CTT Leu 165	CCA Pro	AGG Arg	TTA Leu	CAG Gln	CTC Leu 170	Glu	CTC Leu	831
TAT Tyr	AAG Lys	GAA Glu 175	ATT Ile	AAA Lys	AAG Lys	AAT Asn	GGT Gly 180	GCC Ala	CCT Pro	CGG Arg	AGT Ser	TTG Leu 185	CGT Arg	GCT Ala	GCC Ala	879
CTG Leu	TGG Trp 190	AGG Arg	TTT Phe	GCT Ala	GAG Glu	CTG Leu 195	GCT Ala	CAC His	CTG Leu	GTT Val	CGG Arg 200	CCT Pro	CAG Gln	AAA Lys	TGC Cys	927
AGG Arg 205	CCT Pro	TAC Tyr	CTG Leu	GTG Val	AAC Asn 210	CTT Leu	CTG Leu	CCG Pro	TGC Cys	CTG Leu 215	ACT Thr	CGA Arg	ACA Thr	AGC Ser	AAG Lys 220	975
AGA Arg	CCC Pro	GAA Glu	GAA Glu	TCA Ser 225	GTC Val	CAG Gln	GAG Glu	ACC Thr	TTG Leu 230	GCT Ala	GCA Ala	GCT Ala	GTT Val	CCC Pro 235	AAA Lys	1023
ATT Ile	ATG Met	GCT Ala	TCT Ser 240	TTT Phe	GGC Gly	AAT Asn	TTT Phe	GCA Ala 245	AAT Asn	GAC Asp	AAT Asn	GAA Glu	ATT Ile 250	AAG Lys	GTT Val	1071
TTG Leu	TTA Leu	AAG Lys 255	GCC Ala	TTC Phe	ATA Ile	GCG Ala	AAC Asn 260	CTG Leu	AAG Lys	TCA Ser	AGC Ser	TCC Ser 265	CCC Pro	ACC Thr	ATT Ile	1119
CGG Arg	CGG Arg 270	ACA Thr	GCG Ala	GCT Ala	GGA Gly	TCA Ser 275	GCA Ala	GTG Val	AGC Ser	ATC Ile	TGC Cys 280	CAG Gln	CAC His	TCA Ser	AGA Arg	1167
AGG Arg 285	ACA Thr	CAA Gln	TAT Tyr	TTC Phe	TAT Tyr 290	AGT Ser	TGG Trp	CTA Leu	CTA Leu	AAT Asn 295	GTG Val	CTC Leu	TTA Leu	GGC Gly	TTA Leu 300	1215
CTC Leu	GTT Val	CCT Pro	GTC Val	GAG Glu 305	GAT Asp	GAA Glu	CAC His	TCC Ser	ACT Thr 310	CTG Leu	CTG Leu	ATT Ile	CTT Leu	GGC Gly 315	GTG Val	1263
CTG Leu	CTC Leu	ACC Thr	CTG Leu 320	AGG Arg	TAT Tyr	TTG Leu	GTG Val	CCC Pro 325	TTG Leu	CTG Leu	CAG Gln	CAG Gln	CAG Gln 330	GTC Val	AAG Lys	1311
GAC Asp	ACA Thr	AGC Ser 335	CTG Leu	AAA Lys	GGC Gly	AGC Ser	TTC Phe 340	GGA Gly	GTG Val	ACA Thr	AGG Arg	AAA Lys 345	GAA Glu	ATG Met	GAA Glu	1359
GTC Val	TCT Ser 350	CCT Pro	TCT Ser	GCA Ala	GAG Glu	CAG Gln 355	CTT Leu	GTC Val	CAG Gln	GTT Val	TAT Tyr 360	GAA Glu	CTG Leu	ACG Thr	TTA Leu	1407
CAT His 365	CAT His	ACA Thr	CAG Gln	CAC His	CAA Gln 370	GAC Asp	CAC His	AAT Asn	GTT Val	GTG Val 375	ACC Thr	GGA Gly	GCC Ala	CTG Leu	GAG Glu 380	1455
CTG Leu	TTG Leu	CAG Gln	CAG Gln	CTC Leu 385	TTC Phe	AGA Arg	ACG Thr	CCT Pro	CCA Pro 390	CCC Pro	GAG Glu	CTT Leu	CTG Leu	CAA Gln 395	ACC Thr	1503

					21				
		GGC Gly							1551
		CGT Arg							1599
		AGC Ser							1647
		GAA Glu 450							1695
		TCT Ser							1743
		GCT Ala							1791
		ACA Thr							1839
		CTG Leu							1887
		GAT Asp 530							1935
		CCT Pro							1983
		GAC Asp							2031
		TCA Ser							2079
		GGC Gly							2127
		ATT Ile 610							2175
		CTT Leu							2223
		TCT Ser							2271

										22						
GAT Asp	GAA Glu	GCT Ala 655	ACT Thr	GAA Glu	CCG Pro	GGT Gly	GAT Asp 660	CAA Gln	GAA Glu	AAC Asn	AAG Lys	CCT Pro 665	TGC Cys	CGC Arg	ATC Ile	2319
													CCT Pro			2367
CAT His 685	TGT Cys	GTC Val	CGC Arg	CTT Leu	TTA Leu 690	TCT Ser	GCT Ala	TCG Ser	TTT Phe	TTG Leu 695	CTA Leu	ACA Thr	GGG Gly	GGA Gly	AAA Lys 700	2415
AAT Asn	GTG Val	CTG Leu	GTT Val	CCG Pro 705	GAC Asp	AGG Arg	GAT Asp	GTG Val	AGG Arg 710	GTC Val	AGC Ser	GTG Val	AAG Lys	GCC Ala 715	CTG Leu	2463
GCC Ala	CTC Leu	AGC Ser	TGT Cys 720	GTG Val	GGA Gly	GCA Ala	GCT Ala	GTG Val 725	GCC Ala	CTC Leu	CAC His	CCG Pro	GAA Glu 730	TCT Ser	TTC Phe	2511
													TAC Tyr			2559
GAA Glu	CAG Gln 750	TAT Tyr	GTC Val	TCA Ser	GAC Asp	ATC Ile 755	TTG Leu	AAC Asn	TAC Tyr	ATC Ile	GAT Asp 760	CAT His	GGA Gly	GAC Asp	CCA Pro	2607
CAG Gln 765	GTT Val	CGA Arg	GGA Gly	GCC Ala	ACT Thr 770	GCC Ala	ATT Ile	CTC Leu	TGT Cys	GGG Gly 775	ACC Thr	CTC Leu	ATC Ile	TGC Cys	TCC Ser 780	2655
													GGC Gly			2703
AGA Arg	ACC Thr	CTC Leu	ACA Thr 800	GGA Gly	AAT Asn	ACA Thr	TTT Phe	TCT Ser 805	TTG Leu	GCG Ala	GAT Asp	TGC Cys	ATT Ile 810	CCT Pro	TTG Leu	2751
													AAG Lys			2799
TGT Cys	ACA Thr 830	GCT Ala	GTG Val	AGG Arg	AAC Asn	TGT Cys 835	GTC Val	ATG Met	AGT Ser	CTC Leu	TGC Cys 840	AGC Ser	AGC Ser	AGC Ser	TAC Tyr	2847
AGT Ser 845	GAG Glu	TTA Leu	GGA Gly	CTG Leu	CAG Gln 850	CTG Leu	ATC Ile	ATC Ile	GAT Asp	GTG Val 855	CTG Leu	ACT Thr	CTG Leu	AGG Arg	AAC Asn 860	2895
													CTT Leu			2943
ATT Ile	GAC Asp	TTC Phe	AGG Arg 880	CTG Leu	GTG Val	AGC Ser	TTT Phe	TTG Leu 885	GAG Glu	GCA Ala	AAA Lys	GCA Ala	GAA Glu 890	AAC Asn	TTA Leu	2991
													CAA Gln			3039

PCT/US99/05250

									<i>43</i>						
					ATC Ile 915										3087
					GCA Ala										3135
					GGA Gly										3183
					TAC Tyr										3231
					GTC Val										3279
					ATA Ile 995						Glu				3327
Arg					GTT Val)					Ile					3375
				Gly	TGC Cys				Leu					Thr	3423
			Cys		TGG Trp			Gly					Val		3471
		Ala			GAG Glu		Arg					Val			3519
	Met				CTG Leu 1075	Leu				-	Phe				3567
Ser					GCT Ala					Gly					3615
				Ser	CTG Leu				Trp					Glu	3663
			Ala		AAG Lys			Glu					Leu		3711
		Leu			ATG Met		Glu					His			3759
	Ile				GCC Ala 1155	His					Val				3807

CCC Pro 116	Ala	ATA Ile	AAG Lys	GCA Ala	GCC Ala 117	Leu	CCT Pro	TCT Ser	CTA Leu	ACA Thr	Asn	CCC	CCT Pro	TCI Şer	CTA Leu 1180	3855
AGT Ser	CCC Pro	ATC	CGA Arg	CGA Arg 118	Lys	GGG Gly	AAG Lys	GAG Glu	AAA Lys 119	Glu	CCA Pro	GGA Gly	GAA Glu	CAA Gln 119	GCA Ala	3903
TCT Ser	GTA Val	CCG Pro	TTG Leu 120	Ser	CCC Pro	AAG Lys	AAA Lys	GGC Gly 120	Ser	GAG Glu	GCC Ala	AGT Ser	GCA Ala 121	Ala	TCT	3951
AGA Arg	CAA Gln	TCT Ser 121	Asp	ACC Thr	TCA Ser	GGT Gly	CCT Pro 122	Val	ACA Thr	ACA Thr	AGT Ser	AAA Lys 122	Ser	TCA Ser	TCA Ser	3999
CTG Leu	GGG Gly 123	Ser	TTC Phe	TAT Tyr	CAT His	CTT Leu 123	Pro	TCA Ser	TAC Tyr	CTC Leu	AAA Lys 124	Leu	CAT His	GAT Asp	GTC Val	4047
CTG Leu 124	Lys	GCT Ala	ACA Thr	CAC His	GCT Ala 1250	Asn	TAC Tyr	AAG Lys	GTC Val	ACG Thr 125	Leu	GAT Asp	CTT Leu	CAG Gln	AAC Asn 1260	4095
AGC Ser	ACG Thr	GAA Glu	AAG Lys	TTT Phe 126	Gly	GGG Gly	TTT Phe	CTC Leu	CGC Arg 127	Ser	GCC Ala	TTG Leu	GAT Asp	GTT Val 127	Leu	4143
TCT Ser	CAG Gln	ATA Ile	CTA Leu 1280	Glu	CTG Leu	GCC Ala	ACA Thr	CTG Leu 1285	Gln	GAC Asp	ATT Ile	GGG Gly	AAG Lys 129	Cys	GTT Val	4191
GAA Glu	GAG Glu	ATC Ile 129	CTA Leu 5	GGA Gly	TAC Tyr	CTG Leu	AAA Lys 1300	Ser	TGC Cys	TTT Phe	AGT Ser	CGA Arg 130	Glu	CCA Pro	ATG Met	4239
ATG Met	GCA Ala 1310	Thr	GTT Val	TGT Cys	GTT Val	CAA Gln 1315	Gln	TTG Leu	TTG Leu	AAG Lys	ACT Thr 1320	Leu	TTT Phe	GGC Gly	ACA Thr	4287
AAC Asn 1325	Leu	GCC Ala	TCC Ser	CAG Gln	TTT Phe 1330	Asp	GGC Gly	TTA Leu	TCT Ser	TCC Ser 1335	Asn	CCC Pro	AGC Ser	AAG Lys	TCA Ser 1340	4335
CAA Gln	GGC Gly	CGA Arg	GCA Ala	CAG Gln 1345	Arg	CTT Leu	GGC Gly	TCC Ser	TCC Ser 1350	Ser	GTG Val	AGG Arg	CCA Pro	GGC Gly 135	Leu	4383
TAC Tyr	CAC His	TAC Tyr	TGC Cys 1360	Phe	ATG Met	GCC Ala	CCG Pro	TAC Tyr 1365	Thr	CAC His	TTC Phe	ACC Thr	CAG Gln 1370	Ala	CTC Leu	4431
GCT Ala	GAC Asp	GCC Ala 1375	AGC Ser	CTG Leu	AGG Arg	Asn	ATG Met 1380	Val	CAG Gln	GCG Ala	GAG Glu	CAG Gln 1385	Glu	AAC Asn	GAC Asp	4479
ACC Thr	TCG Ser 1390	Gly	TGG Trp	TTT Phe	GAT Asp	GTC Val 1395	Leu	CAG Gln	AAA Lys	GTG Val	TCT Ser 1400	Thr	CAG Gln	TTG Leu	AAG Lys	4527
ACA Thr 1405	Asn	CTC Leu	ACG Thr	AGT Ser	GTC Val 1410	Thr	AAG Lys	AAC Asn	CGT Arg	GCA Ala 1415	Asp	AAG Lys	AAT Asn	GCT Ala	ATT Ile 1420	4575

CAT His	AAT Asn	CAC His	ATT Ile	CGT Arg 142	Leu	TTT Phe	GAA Glu	CCI Pro	CTT Leu 143	Val	' ATA Ile	AAA Lys	A GCT	TTTA Leu 143	A AAA 1 Lys 35	4623
CAG Gln	TAC Tyr	ACG Thr	ACT Thr 144	Thr	ACA Thr	TGT Cys	GTG Val	CAG Gln 144	Leu	CAG Gln	AAG Lys	CAG Gln	GTT Val 145	Let	A GAT Asp	4671
TTG Leu	CTG Leu	GCG Ala 145	Gln	CTG Leu	GTT Val	CAG Gln	TTA Leu 146	Arg	GTT Val	AAT Asn	TAC Tyr	TGT Cys 146	Leu	CTG	GAT Asp	4719
TCA Ser	GAT Asp 147	Gln	GTG Val	TTT Phe	ATT Ile	GGC Gly 147	Phe	GTA Val	TTG Leu	AAA Lys	CAG Gln 148	Phe	GAA Glu	TAC Tyr	ATT	4767
GAA Glu 148	Val	GGC Gly	CAG Gln	TTC Phe	AGG Arg 149	Glu	TCA Ser	GAG Glu	GCA Ala	ATC Ile 149	Ile	CCA Pro	AAC Asn	ATC Ile	TTT Phe 1500	4815
TTC Phe	TTC Phe	TTG Leu	GTA Val	TTA Leu 1509	Leu	TCT Ser	TAT Tyr	GAA Glu	CGC Arg 151	Tyr	CAT His	TCA Ser	AAA Lys	CAG Gln 151	Ile	4863
ATT Ile	GGA Gly	ATT Ile	CCT Pro 1520	Lys	ATC Ile	ATT Ile	CAG Gln	CTC Leu 152	TGT Cys 5	GAT Asp	GGC Gly	ATC Ile	ATG Met 153	Ala	AGT Ser	4911
GGA Gly	AGG Arg	AAG Lys 1535	Ala	GTG Val	ACA Thr	CAT His	GCC Ala 1540	Ile	CCG Pro	GCT Ala	CTG Leu	CAG Gln 154	Pro	ATA Ile	GTC Val	4959
CAC His	GAC Asp 1550	Leu	TTT Phe	GTA Val	TTA Leu	AGA Arg 1555	Gly	ACA Thr	AAT Asn	AAA Lys	GCT Ala 1560	Asp	GCA Ala	GGA Gly	AAA Lys	5007
GAG Glu 1565	Leu	GAA Glu	ACC Thr	CAA Gln	AAA Lys 1570	Glu	GTG Val	GTG Val	GTG Val	TCA Ser 1575	Met	TTA Leu	CTG Leu	AGA Arg	CTC Leu 1580	5055
ATC Ile	CAG Gln	TAC Tyr	CAT His	CAG Gln 1585	Val	TTG Leu	GAG Glu	ATG Met	TTC Phe 1590	Ile	CTT Leu	GTC Val	CTG Leu	CAG Gln 1595	Gln	5103
TGC Cys	CAC His	AAG Lys	GAG Glu 1600	Asn	GAA Glu	GAC Asp	Lys	TGG Trp 1605	AAG Lys	CGA Arg	CTG Leu	TCT Ser	CGA Arg 1610	Gln	ATA Ile	5151
GCT Ala	GAC Asp	ATC Ile 1615	Ile	CTC Leu	CCA Pro	ATG Met	TTA Leu 1620	Ala	AAA Lys	CAG Gln	CAG Gln	ATG Met 1625	His	ATT Ile	GAC Asp	5199
TCT Ser	CAT His 1 6 30	Glu	GCC Ala	CTT Leu	GGA Gly	GTG Val 1635	TTA . Leu .	AAT Asn	ACA Thr	TTA Leu	TTT Phe 1640	Glu	ATT Ile	TTG Leu	GCC Ala	5247
CCT Pro 1645	Ser	TCC Ser	CTC Leu	Arg	CCG Pro 1650	Val	GAC . Asp !	ATG Met	Leu	TTA Leu 1655	Arg	AGT Ser	ATG Met	TTC Phe	GTC Val 1660	5295
ACT Thr	CCA Pro	AAC . Asn	Thr	ATG Met 1665	GCG Ala	TCC Ser	GTG /	AGC Ser	ACT Thr 1670	Val	CAA Gln	CTG Leu	TGG Trp	ATA Ile 1675	Ser	5343

	ATT Ile			Ile					Ile					Glu		5391
	GTT Val		Ser					Leu					Tyr			5439
TCC Ser	TGT Cys 171	Thr	GTA Val	ATT Ile	AAT Asn	AGG Arg 171	Leu	AGA Arg	GAT Asp	GGG Gly	GAC Asp 172	Ser	ACT Thr	TCA Ser	ACG Thr	5487
CTA Leu 172	GAA Glu 5	GAA Glu	CAC His	AGT Ser	GAA Glu 173	Gly	AAA Lys	CAA Gln	ATA Ile	AAG Lys 173	Asn	TTG Leu	CCA Pro	GAA Glu	GAA Glu 1740	5535
	TTT Phe				Leu					Gly					Asp	5583
ATT Ile	GTT Val	ACA Thr	AAA Lys 176	Gln	CTG Leu	AAG Lys	GTG Val	GAA Glu 176	Met	AGT Ser	GAG Glu	CAG Gln	CAA Gln 1770	His	ACT Thr	5631
TTC Phe	TAT Tyr	TGC Cys 1775	Gln	GAA Glu	CTA Leu	GGC Gly	ACA Thr 1780	Leu	CTA Leu	ATG Met	TGT Cys	CTG Leu 1785	Ile	CAC His	ATC Ile	5679
TTC Phe	AAG Lys 1790	Ser	GGA Gly	ATG Met	TTC Phe	CGG Arg 1795	Arg	ATC Ile	ACA Thr	GCA Ala	GCT Ala 1800	Ala	ACT Thr	AGG Arg	CTG Leu	5727
	CGC Arg					Gly					Thr					5775
	TTG Leu				Ser					His					Leu	5823
	TGG Trp			Ile					Asn					Arg		5871
TGG Trp	GCA Ala	GAA Glu 1855	Val	CAG Gln	CAG Gln	ACC Thr	CCG Pro 1860	Lys	AGA Arg	CAC His	AGT Ser	CTG Leu 1865	Ser	AGC Ser	ACA Thr	5919
AAG Lys	TTA Leu 1870	Leu	AGT Ser	CCC Pro	CAG Gln	ATG Met 1875	Ser	GGA Gly	GAA Glu	GAG Glu	GAG Glu 1880	Asp	TCT Ser	GAC Asp	TTG Leu	5967
GCA Ala 1885	GCC Ala	AAA Lys	CTT Leu	GGA Gly	ATG Met 1890	Cys	AAT Asn	AGA Arg	GAA Glu	ATA Ile 1895	Val	CGA Arg	AGA Arg	GGG Gly	GCT Ala 1900	6015
CTC Leu	ATT Ile	CTC Leu	TTC Phe	TGT Cys 1905	Asp	TAT Tyr	GTC Val	TGT Cys	CAG Gln 1910	Asn	CTC Leu	CAT His	GAC Asp	TCC Ser 1915	Glu	6063
CAC His	TTA Leu	ACG Thr	TGG Trp 1920	Leu	ATT Ile	GTA Val	AAT Asn	CAC His 1925	Ile	CAA Gln	GAT Asp	CTG Leu	ATC Ile 1930	Ser	CTT Leu	6111

TCC Ser	CAC	GAG Glu 193	Pro	CCA Pro	GTA Val	CAG Gln	GAC Asp 194	Phe	ATC Ile	AGT Ser	GCC Ala	GTT Val 194	His	CGG Arg	AAC Asn	6159
TCT Ser	GCT Ala 195	Ala	AGC Ser	GGC Gly	CTG Leu	TTC Phe 195	Ile	CAG Gln	GCA Ala	ATT	CAG Gln 196	Ser	CGT Arg	TGT Cys	GAA Glu	6207
AAC Asn 1965	Leu	TCA Ser	ACT Thr	CCA Pro	ACC Thr 197	Met	CTG Leu	AAG Lys	AAA Lys	ACT Thr 197	Leu	CAG Gln	TGC Cys	TTG Leu	GAG Glu 1980	6255
GGG Gly	ATC Ile	CAT His	CTC Leu	AGC Ser 198	Gln	TCG Ser	GGA Gly	GCT Ala	GTG Val 199	Leu	ACG Thr	CTG Leu	TAT Tyr	GTG Val 199	GAC Asp 5	6303
AGG Arg	CTT Leu	CTG Leu	TGC Cys 2000	Thr	CCT Pro	TTC Phe	CGT Arg	GTG Val 2005	Leu	GCT Ala	CGC Arg	ATG Met	GTC Val 201	Asp	ATC Ile	6351
CTT Leu	GCT Ala	TGT Cys 201	CGC Arg 5	CGG Arg	GTA Val	GAA Glu	ATG Met 2020	Leu	CTG Leu	GCT Ala	GCA Ala	AAT Asn 202	Leu	CAG Gln	AGC Ser	6399
AGC Ser	ATG Met 203	Ala	CAG Gln	TTG Leu	CCA Pro	ATG Met 2035	Glu	GAA Glu	CTC Leu	AAC Asn	AGA Arg 204	Ile	CAG Gln	GAA Glu	TAC Tyr	6447
CTT Leu 2045	Gln	AGC Ser	AGC Ser	GGG Gly	CTC Leu 2050	Ala	CAG Gln	AGA Arg	CAC His	CAA Gln 205	Arg	CTC Leu	TAT Tyr	TCC Ser	CTG Leu 2060	6495
CTG Leu	GAC Asp	AGG Arg	TTT Phe	CGT Arg 2065	Leu	TCC Ser	ACC Thr	ATG Met	CAA Gln 2070	Asp	TCA Ser	CTT Leu	AGT Ser	CCC Pro 207	Ser	6543
CCT Pro	CCA Pro	GTC Val	TCT Ser 2080	Ser	CAC His	CCG Pro	CTG Leu	GAC Asp 2085	Gly	GAT Asp	GGG Gly	CAC His	GTG Val 209	Ser	CTG Leu	6591
			AGT Ser					Trp					Val			6639
CAG Gln	TGT Cys 2110	\mathtt{Trp}	ACC Thr	AGG Arg	TCA Ser	GAT Asp 2115	Ser	GCA Ala	CTG Leu	CTG Leu	GAA Glu 2120	Gly	GCA Ala	GAG Glu	CTG Leu	6687
GTG Val 2125	Asn	CGG Arg	ATT Ile	CCT Pro	GCT Ala 2130	Glu	GAT Asp	ATG Met	AAT Asn	GCC Ala 2135	Phe	ATG Met	ATG Met	AAC Asn	TCG Ser 2140	6735
GAG Glu	TTC Phe	AAC Asn	CTA Leu	AGC Ser 2145	Leu	CTA Leu	GCT Ala	CCA Pro	TGC Cys 2150	Leu	AGC Ser	CTA Leu	GGG Gly	ATG Met 2155	Ser	6783
GAA Glu	ATT Ile	TCT Ser	GGT Gly 2160	Gly	CAG Gln	AAG Lys	Ser	GCC Ala 2165	Leu	TTT Phe	GAA Glu	GCA Ala	GCC Ala 2170	Arg	GAG Glu	6831
GTG Val	ACT Thr	CTG Leu 2175	Ala	CGT Arg	GTG Val	AGC Ser	GGC Gly 2180	Thr	GTG Val	CAG Gln	CAG Gln	CTC Leu 2185	Pro	GCT Ala	GTC Val	6879

CAT CAT GTC T His His Val P 2190					6927
AGC AAG TTG A Ser Lys Leu A 2205	Phe Gly Asp		Leu Tyr Glr		6975
CCC ACT CTG G Pro Thr Leu A					7023
CTG CCC AGT C Leu Pro Ser H 2	 	Glu Lys		lle Val	7071
AAA TTC GTG G Lys Phe Val V 2255					7119
GAG CAG ATC C Glu Gln Ile P 2270					7167
TGC CTG GCC C Cys Leu Ala L 2285	Pro Gly Leu		Val Val Ser		7215
GAG TTT GTG A Glu Phe Val T					7263
CTG GAG GCC G Leu Glu Ala V 2		Glu Gln		Pro Glu	7311
AGA AGG ACA A Arg Arg Thr A 2335					7359
GAT CCA AAC A Asp Pro Asn T 2350					7407
GTG GCA GAA A Val Ala Glu M 2365	Ser Leu Gln		Leu Ala Leu		7455
AAA AGG AAT A Lys Arg Asn S					7503
ATC ATC ATC A Ile Ile Ile S 2		Leu Val		Thr Arg	7551
GTG CCC CCA C Val Pro Pro L 2415					7599
GAT TTT GGC A Asp Phe Gly T					7647

AAG Lys 244	Glu	GTC Val	TTT Phe	AAG Lys	GAG Glu 245	Phe	ATC Ile	TAC Tyr	CGC Arg	ATC Ile 245	Asn	ACA Thr	CTA Leu	GGC Gly	TGG Trp 2460	7695
ACC Thr	AGT Ser	CGT Arg	ACT Thr	CAG Gln 246	Phe	GAA Glu	GAA Glu	ACT Thr	TGG Trp 247	Ala	ACC Thr	CTC Leu	CTT Leu	GGT Gly 247		7743
CTG Leu	GTG Val	ACG Thr	CAG Gln 248	Pro	CTC Leu	GTG Val	ATG Met	GAG Glu 248	Gln	GAG Glu	GAG Glu	AGC Ser	CCA Pro 249	Pro	GAA Glu	7791
GAA Glu	GAC Asp	ACA Thr 249	Glu	AGG Arg	ACC Thr	CAG Gln	ATC Ile 2500	Asn	GTC Val	CTG Leu	GCC Ala	GTG Val 250	Gln	GCC Ala	ATC Ile	7839
ACC Thr	TCA Ser 251	Leu	GTG Val	CTC Leu	AGT Ser	GCA Ala 2515	Met	ACT Thr	GTG Val	CCT Pro	GTG Val 252	Ala	GGC Gly	AAC Asn	CCA Pro	7887
GCT Ala 2525	Val	AGC Ser	TGC Cys	TTG Leu	GAG Glu 2530	CAG Gln)	CAG Gln	CCC Pro	CGG Arg	AAC Asn 2535	Lys	CCT Pro	CTG Leu	AAA Lys	GCT Ala 2540	7935
CTC Leu	GAC Asp	ACC Thr	AGG Arg	TTT Phe 2545	Gly	AGG Arg	AAG Lys	CTG Leu	AGC Ser 2550	Ile	ATC Ile	AGA Arg	GGG Gly	ATT Ile 255	Val	7983
GAG Glu	CAA Gln	GAG Glu	ATT Ile 2560	Gln	GCA Ala	ATG Met	GTT Val	TCA Ser 2565	Lys	AGA Arg	GAG Glu	AAT Asn	ATT Ile 2570	Ala	ACC Thr	8031
CAT His	CAT His	TTA Leu 2575	Tyr	CAG Gln	GCA Ala	TGG Trp	GAT Asp 2580	Pro	GTC Val	CCT Pro	TCT Ser	CTG Leu 2585	Ser	CCG Pro	GCT Ala	8079
ACT Thr	ACA Thr 2590	Gly	GCC Ala	CTC Leu	ATC Ile	AGC Ser 2595	His	GAG Glu	AAG Lys	CTG Leu	CTG Leu 2600	Leu	CAG Gln	ATC Ile	AAC Asn	8127
CCC Pro 2605	Glu	CGG Arg	GAG Glu	CTG Leu	GGG Gly 2610	AGC Ser	ATG Met	AGC Ser	TAC Tyr	AAA Lys 2615	Leu	GGC Gly	CAG Glก	GTG Val	TCC Ser 2620	8175
ATA Ile	CAC His	TCC Ser	GTG Val	TGG Trp 2625	Leu	GGG Gly	AAC Asn	AGC Ser	ATC Ile 2630	Thr	CCC Pro	CTG Leu	AGG Arg	GAG Glu 2635	Glu	8223
GAA Glu	TGG Trp	GAC Asp	GAG Glu 2640	Glu	GAG Glu	GAG Glu	GAG Glu	GAG Glu 2645	Ala	GAC Asp	GCC Ala	CCT Pro	GCA Ala 2650	Pro	TCG Ser	8271
TCA Ser	CCA Pro	CCC Pro 2655	Thr	TCT Ser	CCA Pro	GTC Val	AAC Asn 2660	Ser	AGG Arg	AAA Lys	CAC His	CGG Arg 2665	Ala	GGA Gly	GTT Val	8319
GAC Asp	ATC Ile 2670	His	TCC Ser	TGT Cys	TCG Ser	CAG Gln 2675	Phe	TTG Leu	CTT Leu	GAG Glu	TTG Leu 2680	Tyr	AGC Ser	CGC Arg	TGG Trp	8367
ATC Ile 2685	Leu	CCG Pro	TCC Ser	AGC Ser	TCA Ser 2690	GCC Ala	AGG Arg	AGG Arg	ACC Thr	CCG Pro 2695	Ala	ATC Ile	CTG Leu	ATC Ile	AGT Ser 2700	8415.

									30							
GTG Val				Leu					Asp					Arg		8463
CAG Gln			Leu					Leu					Arg			8511
CCT Pro		Glu					Ala					Pro				8559
AAG Lys 2750	Ala					Gly					Val					8607
AGC Ser					Ser					Ser						8655
GTT Val				His					Val					Leu		8703
GAC Asp			Ala					Pro					Tyr			8751
TCC Ser		Leu					His					His				8799
CAC His 2830	Val					Ala					Leu					8847
CCT Pro					Pro					Ser						8895
GGG Gly				Ser					Ser					Ile		8943
CAC His			Leu					Arg					Glu		;	8991
TCC Ser		Leu					Leu					Val				9039
AAC Asn 2910	Val					Arg					Leu					9087
ACC Thr					Gly					Ser						9135
GAC Asp				Ala					Glu					Ala	:	9183

ATG GAG CGG GTA TCT GTT CTT TTT GAT AGG ATG Met Glu Arg Val Ser Val Leu Phe Asp Arg Ilo 2960 2965		1
TGT GAA GCC AGA GTG GTG GCC AGG ATC CTG CCC Cys Glu Ala Arg Val Val Ala Arg Ile Leu Pro 2975 2980		Э
TTC TTC CCA CCC CAG GAC ATC ATG AAC AAA GTC Phe Phe Pro Pro Gln Asp Ile Met Asn Lys Val 2990 2995		7
TCC AAC CAG CAG CCA TAC CCC CAG TTC ATG GCC Ser Asn Gln Gln Pro Tyr Pro Gln Phe Met Ala 3005 3010 300	a Thr Val Val Tyr Lys	5
GTG TTT CAG ACT CTG CAC AGC ACC GGG CAG TCG Val Phe Gln Thr Leu His Ser Thr Gly Gln Ser 3025 3030		3
TGG GTC ATG CTG TCC CTC TCC AAC TTC ACG CAC Trp Val Met Leu Ser Leu Ser Asn Phe Thr Glr 3040		
ATG GCC ACG TGG AGC CTC TCC TGC TTC TTT GTC Met Ala Thr Trp Ser Leu Ser Cys Phe Phe Val 3055		•
CCG TGG GTC GCG GCG ATC CTC CCA CAT GTC ATC Pro Trp Val Ala Ala Ile Leu Pro His Val Ile 3070 3075		,
CTG GAG CAG GTG GAC GTG AAC CTT TTC TGC CTC Leu Glu Gln Val Asp Val Asn Leu Phe Cys Leu 3085 3090 309	u Val Ala Thr Asp Phe)
TAC AGA CAC CAG ATA GAG GAG GAG CTC GAC CGC Tyr Arg His Gln Ile Glu Glu Glu Leu Asp Arg 3105 3110		}
GTG CTT GAG GTG GTT GCA GCC CCA GGA AGC CCA Val Leu Glu Val Val Ala Ala Pro Gly Ser Pro 3120 3125		•
ACT TGT TTA CGA AAT GTC CAC AAG GTC ACC ACC Thr Cys Leu Arg Asn Val His Lys Val Thr Thr 3135		;
GTGGGAGAGA CTGTGAGGCG GCAGCTGGGG CCGGAGCCTT	T TGGAAGTCTG TGCCCTTGTG 9818	ţ
CCCTGCCTCC ACCGAGCCAG CTTGGTCCCT ATGGGCTTCC	C GCACATGCCG CGGGCGGCCA 9878	;
GGCAACGTGC GTGTCTCTGC CATGTGGCAG AAGTGCTCTT	T TGTGGCAGTG GCCAGGCAGG 9938	1
GAGTGTCTGC AGTCCTGGTG GGGCTGAGCC TGAGGCCTTC	C CAGAAAGCAG GAGCAGCTGT 9998	í
GCTGÇACCCC ATGTGGGTGA CCAGGTCCTT TCTCCTGATA	A GTCACCTGCT GGTTGTTGCC 10058	į
AGGTTGCAGC TGCTCTTGCA TCTGGGCCAG AAGTCCTCCC	C TCCTGCAGGC TGGCTGTTGG 10118	;
CCCCTCTGCT GTCCTGCAGT AGAAGGTGCC GTGAGCAGGC	C TTTGGGAACA CTGGCCTGGG 10178	
TCTCCCTGGT GGGGTGTGCA TGCCACGCCC CGTGTCTGGA	A TGCACAGATG CCATGGCCTG 10238	

TGCTGGGCCA GTGGCTGGGG GTGCTAGACA CCCGGCACCA TTCTCCCTTC TCTCTTTCT 10298

TCTCAGGATT TAAAATTTAA TTATATCAGT AAAGAGATTA ATTTTAACGT 10348

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3144 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Ala Thr Leu Glu Lys Leu Met Lys Ala Phe Glu Ser Leu Lys Ser 1 5 10 15

Gln Gln Gln Gln Gln Gln Gln Pro Pro Pro Pro Pro Pro Pro Pro A5

Pro Pro Pro Gln Leu Pro Gln Pro Pro Gln Ala Gln Pro Leu Leu 50 55 60

Ala Val Ala Glu Glu Pro Leu His Arg Pro Lys Lys Glu Leu Ser Ala 85 90 95

Thr Lys Lys Asp Arg Val Asn His Cys Leu Thr Ile Cys Glu Asn Ile 100 105 110

Val Ala Gln Ser Val Arg Asn Ser Pro Glu Phe Gln Lys Leu Leu Gly
115 120 125

Ile Ala Met Glu Leu Phe Leu Leu Cys Ser Asp Asp Ala Glu Ser Asp 130 135 140

Val Arg Met Val Ala Asp Glu Cys Leu Asn Lys Val Ile Lys Ala Leu 145 150 155 160

Met Asp Ser Asn Leu Pro Arg Leu Gln Leu Glu Leu Tyr Lys Glu Ile 165 170 175

Lys Lys Asn Gly Ala Pro Arg Ser Leu Arg Ala Ala Leu Trp Arg Phe 180 185 190

Ala Glu Leu Ala His Leu Val Arg Pro Gln Lys Cys Arg Pro Tyr Leu 195 200 205

Val Asn Leu Leu Pro Cys Leu Thr Arg Thr Ser Lys Arg Pro Glu Glu 210 215 220

Ser Val Gln Glu Thr Leu Ala Ala Ala Val Pro Lys Ile Met Ala Ser 225 230 235 240

Phe Gly Asn Phe Ala Asn Asp Asn Glu Ile Lys Val Leu Leu Lys Ala

245 250 255 Phe Ile Ala Asn Leu Lys Ser Ser Pro Thr Ile Arg Arg Thr Ala 265 Ala Gly Ser Ala Val Ser Ile Cys Gln His Ser Arg Arg Thr Gln Tyr Phe Tyr Ser Trp Leu Leu Asn Val Leu Leu Gly Leu Leu Val Pro Val 295 Glu Asp Glu His Ser Thr Leu Leu Ile Leu Gly Val Leu Leu Thr Leu Arg Tyr Leu Val Pro Leu Leu Gln Gln Gln Val Lys Asp Thr Ser Leu Lys Gly Ser Phe Gly Val Thr Arg Lys Glu Met Glu Val Ser Pro Ser Ala Glu Gln Leu Val Gln Val Tyr Glu Leu Thr Leu His His Thr Gln His Gln Asp His Asn Val Val Thr Gly Ala Leu Glu Leu Leu Gln Gln 375 Leu Phe Arg Thr Pro Pro Pro Glu Leu Leu Gln Thr Leu Thr Ala Val Gly Gly Ile Gly Gln Leu Thr Ala Ala Lys Glu Glu Ser Gly Gly Arg Ser Arg Ser Gly Ser Ile Val Glu Leu Ile Ala Gly Gly Ser Ser Cys Ser Pro Val Leu Ser Arg Lys Gln Lys Gly Lys Val Leu Leu Gly Glu Glu Glu Ala Leu Glu Asp Asp Ser Glu Ser Arg Ser Asp Val Ser Ser Ser Ala Leu Thr Ala Ser Val Lys Asp Glu Ile Ser Gly Glu Leu 475 Ala Ala Ser Ser Gly Val Ser Thr Pro Gly Ser Ala Gly His Asp Ile Ile Thr Glu Gln Pro Arg Ser Gln His Thr Leu Gln Ala Asp Ser Val Asp Leu Ala Ser Cys Asp Leu Thr Ser Ser Ala Thr Asp Gly Asp Glu Glu Asp Ile Leu Ser His Ser Ser Ser Gln Val Ser Ala Val Pro Ser 535 Asp Pro Ala Met Asp Leu Asn Asp Gly Thr Gln Ala Ser Ser Pro Ile Ser Asp Ser Ser Gln Thr Thr Glu Gly Pro Asp Ser Ala Val Thr 570

WO 99/45944 PCT/US99/05250

35

Val Val Ile His Leu Leu Gly Asp Glu Asp Pro Arg Val Arg His Val Ala Ala Ala Ser Leu Ile Arg Leu Val Pro Lys Leu Phe Tyr Lys Cys

Asp Gln Gly Gln Ala Asp Pro Val Val Ala Val Ala Arg Asp Gln Ser

Ser Val Tyr Leu Lys Leu Leu Met His Glu Thr Gln Pro Pro Ser His

Phe Ser Val Ser Thr Ile Thr Arg Ile Tyr Arg Gly Tyr Asn Leu Leu

Pro Ser Ile Thr Asp Val Thr Met Glu Asn Asn Leu Ser Arg Val Ile 1000

Ala Ala Val Ser His Glu Leu Ile Thr Ser Thr Thr Arg Ala Leu Thr 1015

Phe Gly Cys Cys Glu Ala Leu Cys Leu Leu Ser Thr Ala Phe Pro Val 1030

Cys Ile Trp Ser Leu Gly Trp His Cys Gly Val Pro Pro Leu Ser Ala 1045 1050

Ser Asp Glu Ser Arg Lys Ser Cys Thr Val Gly Met Ala Thr Met Ile 1065

Leu Thr Leu Leu Ser Ser Ala Trp Phe Pro Leu Asp Leu Ser Ala His

Gln Asp Ala Leu Ile Leu Ala Gly Asn Leu Leu Ala Ala Ser Ala Pro 1095

Lys Ser Leu Arg Ser Ser Trp Ala Ser Glu Glu Ala Asn Pro Ala 1110 1115

Ala Thr Lys Gln Glu Glu Val Trp Pro Ala Leu Gly Asp Arg Ala Leu

Val Pro Met Val Glu Gln Leu Phe Ser His Leu Leu Lys Val Ile Asn 1145

Ile Cys Ala His Val Leu Asp Asp Val Ala Pro Gly Pro Ala Ile Lys

Ala Ala Leu Pro Ser Leu Thr Asn Pro Pro Ser Leu Ser Pro Ile Arg 1175

Arg Lys Gly Lys Glu Lys Glu Pro Gly Glu Gln Ala Ser Val Pro Leu 1185 1195

Ser Pro Lys Lys Gly Ser Glu Ala Ser Ala Ala Ser Arg Gln Ser Asp 1210 1205

Thr Ser Gly Pro Val Thr Thr Ser Lys Ser Ser Ser Leu Gly Ser Phe 1225

Tyr His Leu Pro Ser Tyr Leu Lys Leu His Asp Val Leu Lys Ala Thr 1235 1240 1245

- His Ala Asn Tyr Lys Val Thr Leu Asp Leu Gln Asn Ser Thr Glu Lys 1250 1255 1260
- Phe Gly Gly Phe Leu Arg Ser Ala Leu Asp Val Leu Ser Gln Ile Leu 1265 1270 1275 1280
- Glu Leu Ala Thr Leu Gln Asp Ile Gly Lys Cys Val Glu Glu Ile Leu 1285 1290 1295
- Gly Tyr Leu Lys Ser Cys Phe Ser Arg Glu Pro Met Met Ala Thr Val 1300 1305 1310
- Cys Val Gln Gln Leu Leu Lys Thr Leu Phe Gly Thr Asn Leu Ala Ser 1315 1320 1325
- Gln Phe Asp Gly Leu Ser Ser Asn Pro Ser Lys Ser Gln Gly Arg Ala 1330 1335 1340
- Gln Arg Leu Gly Ser Ser Ser Val Arg Pro Gly Leu Tyr His Tyr Cys 1345 1350 1355 1360
- Phe Met Ala Pro Tyr Thr His Phe Thr Gln Ala Leu Ala Asp Ala Ser 1365 1370 1375
- Leu Arg Asn Met Val Gln Ala Glu Gln Glu Asn Asp Thr Ser Gly Trp 1380 1385 1390
- Phe Asp Val Leu Gln Lys Val Ser Thr Gln Leu Lys Thr Asn Leu Thr 1395 1400 1405
- Ser Val Thr Lys Asn Arg Ala Asp Lys Asn Ala Ile His Asn His Ile 1410 1415 1420
- Arg Leu Phe Glu Pro Leu Val Ile Lys Ala Leu Lys Gln Tyr Thr Thr 1425 1430 1435 1440
- Thr Thr Cys Val Gln Leu Gln Lys Gln Val Leu Asp Leu Leu Ala Gln 1445 1450 1455
- Leu Val Gln Leu Arg Val Asn Tyr Cys Leu Leu Asp Ser Asp Gln Val 1460 1465 1470
- Phe Ile Gly Phe Val Leu Lys Gln Phe Glu Tyr Ile Glu Val Gly Gln 1475 1480 1485
- Phe Arg Glu Ser Glu Ala Ile Ile Pro Asn Ile Phe Phe Leu Val 1490 1495 1500
- Leu Leu Ser Tyr Glu Arg Tyr His Ser Lys Gln Ile Ile Gly Ile Pro 1505 1510 1515 1520
- Lys Ile Ile Gln Leu Cys Asp Gly Ile Met Ala Ser Gly Arg Lys Ala 1525 1530 1535
- Val Thr His Ala Ile Pro Ala Leu Gln Pro Ile Val His Asp Leu Phe 1540 1545 1550
- Val Leu Arg Gly Thr Asn Lys Ala Asp Ala Gly Lys Glu Leu Glu Thr 1555 1560 1565
- Gln Lys Glu Val Val Val Ser Met Leu Leu Arg Leu Ile Gln Tyr His 1570 1575 1580

Gln Val Leu Glu Met Phe Ile Leu Val Leu Gln Gln Cys His Lys Glu 1585 1590 1595 1600

Asn Glu Asp Lys Trp Lys Arg Leu Ser Arg Gln Ile Ala Asp Ile Ile 1605 1610 1615

Leu Pro Met Leu Ala Lys Gln Gln Met His Ile Asp Ser His Glu Ala 1620 1630

Leu Gly Val Leu Asn Thr Leu Phe Glu Ile Leu Ala Pro Ser Ser Leu 1635 1640 1645

Arg Pro Val Asp Met Leu Leu Arg Ser Met Phe Val Thr Pro Asn Thr 1650 1660

Met Ala Ser Val Ser Thr Val Gln Leu Trp Ile Ser Gly Ile Leu Ala 1665 1670 1675 1680

Ile Leu Arg Val Leu Ile Ser Gln Ser Thr Glu Asp Ile Val Leu Ser 1685 1690 1695

Arg Ile Gln Glu Leu Ser Phe Ser Pro Tyr Leu Ile Ser Cys Thr Val 1700 1705 1710

Ile Asn Arg Leu Arg Asp Gly Asp Ser Thr Ser Thr Leu Glu Glu His
1715 1720 1725

Ser Glu Gly Lys Gln Ile Lys Asn Leu Pro Glu Glu Thr Phe Ser Arg 1730 1735 1740

Phe Leu Leu Gln Leu Val Gly Ile Leu Leu Glu Asp Ile Val Thr Lys 1745 1750 1755 1760

Gln Leu Lys Val Glu Met Ser Glu Gln Gln His Thr Phe Tyr Cys Gln 1765 1770 1775

Glu Leu Gly Thr Leu Leu Met Cys Leu Ile His Ile Phe Lys Ser Gly
1780 1785 1790

Met Phe Arg Arg Ile Thr Ala Ala Ala Thr Arg Leu Phe Arg Ser Asp 1795 1800 1805

Gly Cys Gly Gly Ser Phe Tyr Thr Leu Asp Ser Leu Asn Leu Arg Ala 1810 1815 1820

Arg Ser Met Ile Thr Thr His Pro Ala Leu Val Leu Leu Trp Cys Gln 1825 1830 1835 1840

Ile Leu Leu Val Asn His Thr Asp Tyr Arg Trp Trp Ala Glu Val 1845 1850 1855

Gln Gln Thr Pro Lys Arg His Ser Leu Ser Ser Thr Lys Leu Leu Ser 1860 1865 1870

Pro Gln Met Ser Gly Glu Glu Glu Asp Ser Asp Leu Ala Ala Lys Leu 1875 1880 1885

Gly Met Cys Asn Arg Glu Ile Val Arg Arg Gly Ala Leu Ile Leu Phe 1890 1895 1900

Cys Asp Tyr Val Cys Gln Asn Leu His Asp Ser Glu His Leu Thr Trp 1905 1910 1915 1920

- Leu Ile Val Asn His Ile Gln Asp Leu Ile Ser Leu Ser His Glu Pro 1925 1930 1935
- Pro Val Gln Asp Phe Ile Ser Ala Val His Arg Asn Ser Ala Ala Ser 1940 1945 1950
- Gly Leu Phe Ile Gln Ala Ile Gln Ser Arg Cys Glu Asn Leu Ser Thr 1955 1960 1965
- Pro Thr Met Leu Lys Lys Thr Leu Gln Cys Leu Glu Gly Ile His Leu 1970 1980
- Ser Gln Ser Gly Ala Val Leu Thr Leu Tyr Val Asp Arg Leu Leu Cys 1985 1990 1995 2000
- Thr Pro Phe Arg Val Leu Ala Arg Met Val Asp Ile Leu Ala Cys Arg 2005 2010 2015
- Arg Val Glu Met Leu Leu Ala Ala Asn Leu Gln Ser Ser Met Ala Gln 2020 2025 2030
- Leu Pro Met Glu Glu Leu Asn Arg Ile Gln Glu Tyr Leu Gln Ser Ser 2035 2040 2045
- Gly Leu Ala Gln Arg His Gln Arg Leu Tyr Ser Leu Leu Asp Arg Phe 2050 2060
- Arg Leu Ser Thr Met Gln Asp Ser Leu Ser Pro Ser Pro Pro Val Ser 2065 2070 2075 2080
- Ser His Pro Leu Asp Gly Asp Gly His Val Ser Leu Glu Thr Val Ser 2085 2090 2095
- Pro Asp Lys Asp Trp Tyr Val His Leu Val Lys Ser Gln Cys Trp Thr 2100 2105 2110
- Arg Ser Asp Ser Ala Leu Leu Glu Gly Ala Glu Leu Val Asn Arg Ile 2115 2120 2125
- Pro Ala Glu Asp Met Asn Ala Phe Met Met Asn Ser Glu Phe Asn Leu 2130 2135 2140
- Ser Leu Leu Ala Pro Cys Leu Ser Leu Gly Met Ser Glu Ile Ser Gly 2145 2150 2155 2160
- Gly Gln Lys Ser Ala Leu Phe Glu Ala Ala Arg Glu Val Thr Leu Ala 2165 2170 2175
- Arg Val Ser Gly Thr Val Gln Gln Leu Pro Ala Val His His Val Phe 2180 2185 2190
- Gln Pro Glu Leu Pro Ala Glu Pro Ala Ala Tyr Trp Ser Lys Leu Asn 2195 2200 2205
- Asp Leu Phe Gly Asp Ala Ala Leu Tyr Gln Ser Leu Pro Thr Leu Ala 2210 2215 2220
- Arg Ala Leu Ala Gln Tyr Leu Val Val Val Ser Lys Leu Pro Ser His 2225 2230 2235 2240
- Leu His Leu Pro Pro Glu Lys Glu Lys Asp Ile Val Lys Phe Val Val 2245 2250 2255

Ala Thr Leu Glu Ala Leu Ser Trp His Leu Ile His Glu Gln Ile Pro 2260 2265 2270

Leu Ser Leu Asp Leu Gln Ala Gly Leu Asp Cys Cys Cys Leu Ala Leu 2275 2280 2285

Gln Leu Pro Gly Leu Trp Ser Val Val Ser Ser Thr Glu Phe Val Thr 2290 2295 2300

His Ala Cys Ser Leu Ile Tyr Cys Val His Phe Ile Leu Glu Ala Val 2305 2310 2315 2320

Ala Val Gln Pro Gly Glu Gln Leu Leu Ser Pro Glu Arg Arg Thr Asn 2325 2330 2335

Thr Pro Lys Ala Ile Ser Glu Glu Glu Glu Glu Val Asp Pro Asn Thr 2340 2345 2350

Gln Asn Pro Lys Tyr Ile Thr Ala Ala Cys Glu Met Val Ala Glu Met 2355 2360 2365

Val Glu Ser Leu Gln Ser Val Leu Ala Leu Gly His Lys Arg Asn Ser 2370 2380

Gly Val Pro Ala Phe Leu Thr Pro Leu Leu Arg Asn Ile Ile Ile Ser 2385 2390 2395 2400

Leu Ala Arg Leu Pro Leu Val Asn Ser Tyr Thr Arg Val Pro Pro Leu 2405 2410 2415

Val Trp Lys Leu Gly Trp Ser Pro Lys Pro Gly Gly Asp Phe Gly Thr 2420 2430

Ala Phe Pro Glu Ile Pro Val Glu Phe Leu Gln Glu Lys Glu Val Phe 2435 2440 2445

Lys Glu Phe Ile Tyr Arg Ile Asn Thr Leu Gly Trp Thr Ser Arg Thr 2450 2455 2460

Gln Phe Glu Glu Thr Trp Ala Thr Leu Leu Gly Val Leu Val Thr Gln 2465 2470 2475 2480

Pro Leu Val Met Glu Glu Glu Glu Ser Pro Pro Glu Glu Asp Thr Glu 2485 2490 2495

Arg Thr Gln Ile Asn Val Leu Ala Val Gln Ala Ile Thr Ser Leu Val 2500 2510

Leu Ser Ala Met Thr Val Pro Val Ala Gly Asn Pro Ala Val Ser Cys 2515 2520 2525

Leu Glu Gln Gln Pro Arg Asn Lys Pro Leu Lys Ala Leu Asp Thr Arg 2530 2535 2540

Phe Gly Arg Lys Leu Ser Ile Ile Arg Gly Ile Val Glu Gln Glu Ile 2545 2550 2555 2560

Gln Ala Met Val Ser Lys Arg Glu Asn Ile Ala Thr His His Leu Tyr 2565 2570 2575

Gln Ala Trp Asp Pro Val Pro Ser Leu Ser Pro Ala Thr Thr Gly Ala 2580 2585 2590

- Leu Ile Ser His Glu Lys Leu Leu Gln Ile Asn Pro Glu Arg Glu 2595 2600 2605
- Leu Gly Ser Met Ser Tyr Lys Leu Gly Gln Val Ser Ile His Ser Val 2610 2615 2620
- Trp Leu Gly Asn Ser Ile Thr Pro Leu Arg Glu Glu Glu Trp Asp Glu 2625 2630 2635 2640
- Glu Glu Glu Glu Ala Asp Ala Pro Ala Pro Ser Ser Pro Pro Thr 2645 2650 2655
- Ser Pro Val Asn Ser Arg Lys His Arg Ala Gly Val Asp Ile His Ser 2660 2670
- Cys Ser Gln Phe Leu Leu Glu Leu Tyr Ser Arg Trp Ile Leu Pro Ser 2675 2680 2685
- Ser Ser Ala Arg Arg Thr Pro Ala Ile Leu Ile Ser Glu Val Val Arg 2690 2695 2700
- Ser Leu Leu Val Val Ser Asp Leu Phe Thr Glu Arg Asn Gln Phe Glu 2705 2710 2715 2720
- Leu Met Tyr Val Thr Leu Thr Glu Leu Arg Arg Val His Pro Ser Glu 2725 2730 2735
- Asp Glu Ile Leu Ala Gln Tyr Leu Val Pro Ala Thr Cys Lys Ala Ala 2740 2745 2750
- Ala Val Leu Gly Met Asp Lys Ala Val Ala Glu Pro Val Ser Arg Leu 2755 2760 2765
- Leu Glu Ser Thr Leu Arg Ser Ser His Leu Pro Ser Arg Val Gly Ala 2770 2775 2780
- Leu His Gly Val Leu Tyr Val Leu Glu Cys Asp Leu Leu Asp Asp Thr 2785 2790 2795 2800
- Ala Lys Gln Leu Ile Pro Val Ile Ser Asp Tyr Leu Leu Ser Asn Leu 2805 2810 2815
- Lys Gly Ile Ala His Cys Val Asn Ile His Ser Gln Gln His Val Leu 2820 2825 2830
- Val Met Cys Ala Thr Ala Phe Tyr Leu Ile Glu Asn Tyr Pro Leu Asp 2835 2840 2845
- Val Gly Pro Glu Phe Ser Ala Ser Ile Ile Gln Met Cys Gly Val Met 2850 2855 2860
- Leu Ser Gly Ser Glu Glu Ser Thr Pro Ser Ile Ile Tyr His Cys Ala 2865 2870 2875 2880
- Leu Arg Gly Leu Glu Arg Leu Leu Ser Glu Gln Leu Ser Arg Leu 2885 2890 2895
- Asp Ala Glu Ser Leu Val Lys Leu Ser Val Asp Arg Val Asn Val His 2900 2905 2910
- Ser Pro His Arg Ala Met Ala Ala Leu Gly Leu Met Leu Thr Cys Met 2915 2920 2925

Tyr Thr Gly Lys Glu Lys Val Ser Pro Gly Arg Thr Ser Asp Pro Asn 2930 2935 2940

Pro Ala Ala Pro Asp Ser Glu Ser Val Ile Val Ala Met Glu Arg Val 2945 2950 2955 2960

Ser Val Leu Phe Asp Arg Ile Arg Lys Gly Phe Pro Cys Glu Ala Arg 2965 2970 2975

Val Val Ala Arg Ile Leu Pro Gln Phe Leu Asp Asp Phe Phe Pro Pro 2980 2985 2990

Gln Asp Ile Met Asn Lys Val Ile Gly Glu Phe Leu Ser Asn Gln Gln 2995 3000 3005

Pro Tyr Pro Gln Phe Met Ala Thr Val Val Tyr Lys Val Phe Gln Thr 3010 3015 3020

Leu His Ser Thr Gly Gln Ser Ser Met Val Arg Asp Trp Val Met Leu 3025 3030 3035 3040

Ser Leu Ser Asn Phe Thr Gln Arg Ala Pro Val Ala Met Ala Thr Trp 3045 3050 3055

Ser Leu Ser Cys Phe Phe Val Ser Ala Ser Thr Ser Pro Trp Val Ala 3060 3065 3070

Ala Ile Leu Pro His Val Ile Ser Arg Met Gly Lys Leu Glu Gln Val

Asp Val Asn Leu Phe Cys Leu Val Ala Thr Asp Phe Tyr Arg His Gln 3090 3095 3100

Ile Glu Glu Glu Leu Asp Arg Arg Ala Phe Gln Ser Val Leu Glu Val 3105 3110 3115 3120

Val Ala Ala Pro Gly Ser Pro Tyr His Arg Leu Leu Thr Cys Leu Arg 3125 3130 3135

Asn Val His Lys Val Thr Thr Cys 3140

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10660 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 936..3384
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GTGGAGCAAC AGCCAGAG	CA ACAGCAGCTO	G CAAGACATTG	TTTCTCTCCC TCTGCCCCCC	120
CTTCCCCACG CAACCCCA	GA TCCATTTACA	A CTTTACAGTT	TTACCTCACA AAAACTACTA	180
CAAGCACCAA GCTCCCTG	AT GGAAAGGAG	C ATCGTGCATC	AAGTCACCAG GGTGGTCCAT	240
TCAAGCTGCA GATTTGTT	TG TCATCCTTG	ACAGCAATCT	CCTCCTCCAC TGCCACTACA	300
GGGAAGTGCA TCACATGT	CA GCATACTGG	A GCATAGTGAA	AGAGTCTATT TTGAAGCTTC	360
AAACTTAGTG CTGCTGCA	GA CCAGGAACAA	A GAGAGAAAGA	GTGGATTTCA GCCTGCACGG	420
ATGGTCTTGA AACACAAA	TG GTTTTTGGTC	TAGGCGTTTT	ACACTGAGAT TCTCCACTGO	480
CACCCTTTCT ACTCAAGC	AA AATCTTCGT	AAAAGATCTG	CTGCAAGGAA CTGATAGCTT	540
ATGGTTCTCC ATTGTGAT	GA AAGCACATGO	TACAGTTTTC	CAAAGAAATT AGACCATTTI	600
CTTCGTGAGA AAGAAATC	GA CGTGCTGTTI	TCATAGGGTA	TTTCTCACTT CTCTGTGAAA	660
GGAAGAAAGA ACACGCCT	GA GCCCAAGAGC	CCTCAGGAGC	CCTCCAGAGC CTGTGGGAAG	720
TCTCCATGGT GAAGTATA	GG CTGAGGCTAC	CTGTGAACAG	TACGCAGTGA ATGTTCATCO	780
AGAGCTGCTG TTGGCGGA	TT GTACCCACGG	GGAGATGATT	CCTCATGAAG AGCCTGGATC	840
CCCTACAGAA ATCAAATG	TG ACTTTCCGTT	TATCAGACTA	AAATCAGAGC CATCCAGACA	900
GTGAAACAGT CACCGTGG	AG GGGGGACGGC		AA TCC AAC CAA GAG ys Ser Asn Gln Glu 5	953
CGG AGC AAC GAA TGC Arg Ser Asn Glu Cys 10	CTG CCT CCC Leu Pro Pro	AAG AAG CGC (Lys Lys Arg (15	GAG ATC CCC GCC ACC Glu Ile Pro Ala Thr 20	1001
AGC CGG TCC TCC GAG Ser Arg Ser Ser Glu 25	GAG AAG GCC Glu Lys Ala 30	CCT ACC CTG (Pro Thr Leu)	CCC AGC GAC AAC CAC Pro Ser Asp Asn His 35	1049
CGG GTG GAG GGC ACA Arg Val Glu Gly Thr 40	GCA TGG CTC Ala Trp Leu 45	CCG GGC AAC (Pro Gly Asn 1	CCT GGT GGC CGG GGC Pro Gly Gly Arg Gly 50	1097
CAC GGG GGC GGG AGG His Gly Gly Gly Arg 55	CAT GGG CCG His Gly Pro 60	GCA GGG ACC : Ala Gly Thr : 65	TCG GTG GAG CTT GGT Ser Val Glu Leu Gly 70	1145
TTA CAA CAG GGA ATA Leu Gln Gln Gly Ile 75	GGT TTA CAC	AAA GCA TTG 1 Lys Ala Leu S 80	ICC ACA GGG CTG GAC Ser Thr Gly Leu Asp 85	1193
TAC TCC CCG CCC AGC Tyr Ser Pro Pro Ser 90	GCT CCC AGG	TCT GTC CCC (Ser Val Pro V 95	GTG GCC ACC ACG CTG Val Ala Thr Thr Leu 100	1241
CCT GCC GCG TAC GCC Pro Ala Ala Tyr Ala 105	ACC CCG CAG Thr Pro Gln	CCA GGG ACC (Pro Gly Thr E	CCG GTG TCC CCC GTG Pro Val Ser Pro Val 115	1289
CAG TAC GCT CAC CTG Gln Tyr Ala His Leu 120	CCG CAC ACC Pro His Thr 125	Phe Gln Phe I	ATT GGG TCC TCC CAA lle Gly Ser Ser Gln 130	1337

TAC Tyr 135	AGT Ser	GGA Gly	ACC Thr	TAT Tyr	GCC Ala 140	AGC Ser	TTC Phe	ATC Ile	CCA Pro	TCA Ser 145	CAG Gln	CTG Leu	ATC Ile	CCC Pro	CCA Pro 150	1385
ACC Thr	GCC Ala	AAC Asn	CCC Pro	GTC Val 155	ACC Thr	AGT Ser	GCA Ala	GTG Val	GCC Ala 160	TCG Ser	GCC Ala	GCA Ala	GGG Gly	GCC Ala 165	ACC Thr	1433
ACT Thr	CCA Pro	TCC Ser	CAG Gln 170	CGC Arg	TCC Ser	CAG Gln	CTG Leu	GAG Glu 175	GCC Ala	TAT Tyr	TCC Ser	ACT Thr	CTG Leu 180	CTG Leu	GCC Ala	1481
AAC Asn	ATG Met	GGC Gly 185	AGT Ser	CTG Leu	AGC Ser	CAG Gln	ACG Thr 190	CCG Pro	GGA Gly	CAC His	AAG Lys	GCT Ala 195	GAG Glu	CAG Gln	CAG Gln	1529
CAG Gln	CAG Gln 200	CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 205	CAG Gln	CAG Gln	CAG Gln	CAT His	CAG Gln 210	CAT His	CAG Gln	CAG Gln	CAG Gln	1577
CAG Gln 215	CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 220	CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 225	CAG Gln	CAC His	CTC Leu	AGC Ser	AGG Arg 230	1625
GCT Ala	CCG Pro	GGG Gly	CTC Leu	ATC Ile 235	ACC Thr	CCG Pro	GGG Gly	TCC Ser	CCC Pro 240	CCA Pro	CCA Pro	GCC Ala	CAG Gln	CAG Gln 245	AAC Asn	1673
CAG Gln	TAC Tyr	GTC Val	CAC His 250	ATT Ile	TCC Ser	AGT Ser	TCT Ser	CCG Pro 255	CAG Gln	AAC Asn	ACC Thr	GGC Gly	CGC Arg 260	ACC Thr	GCC Ala	1721
TCT Ser	CCT Pro	CCG Pro 265	GCC Ala	ATC Ile	CCC Pro	GTC Val	CAC His 270	CTC Leu	CAC His	CCC Pro	CAC His	CAG Gln 275	ACG Thr	ATG Met	ATC Ile	1769
CCA Pro	CAC His 280	ACG Thr	CTC Leu	ACC Thr	CTG Leu	GGG Gly 285	CCC Pro	CCC Pro	TCC Ser	CAG Gln	GTC Val 290	GTC Val	ATG Met	CAA Gln	TAC Tyr	1817
Ala	GAC Asp	Ser	Gly	Ser	His	Phe	Val	Pro	Arg	Glu	GCC Ala	ACC Thr	AAG Lys	AAA Lys	GCT Ala 310	1865
GAG Glu	AGC Ser	AGC Ser	CGG Arg	CTG Leu 315	CAG Gln	CAG Gln	GCC Ala	ATC Ile	CAG Gln 320	GCC Ala	AAG Lys	GAG Glu	GTC Val	CTG Leu 325	AAC Asn	1913
GGT Gly	GAG Glu	ATG Met	GAG Glu 330	AAG Lys	AGC Ser	CGG Arg	CGG Arg	TAC Tyr 335	GGG Gly	GCC Ala	CCG Pro	TCC Ser	TCA Ser 340	GCC Ala	GAC Asp	1961
CTG Leu	GGC Gly	CTG Leu 345	Gly	AAG Lys	GCA Ala	GGC Gly	GGC Gly 350	AAG Lys	TCG Ser	GTT Val	CCT Pro	CAC His 355	CCG Pro	TAC Tyr	GAG Glu	2009
TCC Ser	ĀGG Arg 360	CAC His	GTG Val	GTG Val	GTC Val	CAC His 365	CCG Pro	AGC Ser	CCC Pro	TCA Ser	GAC Asp 370	TAC Tyr	AGC Ser	AGT Ser	CGT Arg	2057
GAT Asp	CCT Pro	TCG Ser	GGG Gly	GTC Val	CGG Arg	GCC Ala	TCT Ser	GTG Val	ATG Met	GTC Val	CTG Leu	CCC Pro	AAC Asn	AGC Ser	AAC Asn	2105

PCT/US99/05250

375	i				380)				385	ō				390	
ACG Thr	CCC Pro	GCA Ala	GCI Ala	GAC Asp 395	Leu	G GAG	GTO Val	G CAA	A CAC n Glr 400	n Ala	C AC	r CA'	r CGT	GAA Glu Glu Glu	A GCC 1 Ala	2153
TCC Ser	CCT Pro	TCT Ser	ACC Thr 410	Leu	AAC Asn	GAC Asp	AAA Lys	AGT Ser 415	: Gly	CTC Leu	G CAT	TTI S Lei	A GGG 1 Gly 420	/ Lys	G CCT	2201
GGC Gly	CAC	CGG Arg 425	Ser	TAC Tyr	GCG Ala	CTC Leu	TCA Ser 430	Pro	C CAC	ACC Thr	GT(ATT 1116 435	e Gln	ACC Thr	ACA Thr	2249
CAC His	AGT Ser 440	Ala	TCA Ser	GAG Glu	CCA Pro	CTC Leu 445	Pro	GTG Val	GGA Gly	CTG Leu	CCA Pro 450	Ala	ACG Thr	GCC Ala	TTC Phe	2297
TAC Tyr 455	GCA Ala	GGG Gly	ACT Thr	CAA Gln	CCC Pro 460	Pro	GTC Val	ATC Ile	GGC Gly	TAC Tyr 465	Leu	AGC Ser	GGC Gly	CAG Gln	CAG Gln 470	2345
CAA Gln	GCA Ala	ATC Ile	ACC Thr	TAC Tyr 475	GCC Ala	GGC Gly	AGC Ser	CTG Leu	CCC Pro 480	Gln	CAC His	CTG Leu	GTG Val	ATC Ile 485	CCC Pro	2393
GGC Gly	ACA Thr	CAG Gln	CCC Pro 490	CTG Leu	CTC Leu	ATC Ile	CCG Pro	GTC Val 495	GGC Gly	AGC Ser	ACT Thr	GAC Asp	ATG Met 500	GAA Glu	GCG Ala	2441
TCG Ser	GGG Gly	GCA Ala 505	GCC Ala	CCG Pro	GCC Ala	ATA Ile	GTC Val 510	ACG Thr	TCA Ser	TCC Ser	CCC Pro	CAG Gln 515	TTT Phe	GCT Ala	GCA Ala	2489
GTG Val	CCT Pro 520	CAC His	ACG Thr	TTC Phe	GTC Val	ACC Thr 525	ACC Thr	GCC Ala	CTT Leu	CCC Pro	AAG Lys 530	AGC Ser	GAG Glu	AAC Asn	TTC Phe	2537
AAC Asn 535	CCT Pro	GAG Glu	GCC Ala	CTG Leu	GTC Val 540	ACC Thr	CAG Gln	GCC Ala	GCC Ala	TAC Tyr 545	CCA Pro	GCC Ala	ATG Met	GTG Val	CAG Gln 550	2585
GCC Ala	CAG Gln	ATC Ile	CAC His	CTG Leu 555	CCT Pro	GTG Val	GTG Val	CAG Gln	TCC Ser 560	GTG Val	GCC Ala	TCC Ser	CCG Pro	GCG Ala 565	GCG Ala	2633
GCT Ala	CCC Pro	CCT Pro	ACG Thr 570	CTG Leu	CCT Pro	CCC Pro	TAC Tyr	TTC Phe 575	ATG Met	AAA Lys	GGC Gly	TCC Ser	ATC Ile 580	ATC Ile	CAG Gln	2681
TTG Leu	GCC Ala	AAC Asn 585	GGG Gly	GAG Glu	CTA Leu	AAG Lys	AAG Lys 590	GTG Val	GAA Glu	GAC Asp	TTA Leu	AAA Lys 595	ACA Thr	GAA Glu	GAT Asp	2729
TTC Phe	ATC Ile 600	CAG Gln	AGT Ser	GCA Ala	GAG Glu	ATA Ile 605	AGC Ser	AAC Asn	GAC Asp	CTG Leu	AAG Lys 610	ATC Ile	GAC Asp	TCC Ser	AGC Ser	2777
ACC Thr 615	GTA Val	GAG Glu	AGG Arg	ATT Ile	GAA Glu 620	GAC Asp	AGC Ser	CAT His	AGC Ser	CCG Pro 625	GGC Gly	GTG Val	GCC Ala	GTG Val	ATA Ile 630	2825
CAG	TTC	GCC	GTC	GGG	GAG	CAC	CGA	GCC	CAG	GTC	AGC	GTT	GAA	GTT	TTG	2873

Gln Phe	Ala Val	Gly Glu 635	His Arg	Ala	Gln 640	Val	Ser	Val	Glu	Val 645	Leu	
GTA GAG Val Glu												2921
CCG GAG . Pro Glu .				Asp								2969
GTT GGG Val Gly . 680												3017
TCT GTT . Ser Val 695	AAA AAG Lys Lys	GGC CAG Gly Gln 700	Pro Val	GAT Asp	CCC Pro	GCC Ala 705	AGC Ser	GTC Val	CTG Leu	CTG Leu	AAG Lys 710	3065
CAC TCA . His Ser												3113
CAG GAA Gln Glu												3161
GGC GAA Gly Glu				Met								3209
CTC ACC Leu Thr 760												3257
TGG TCG Trp Ser 775	GCG CCA Ala Pro	GAG AGC Glu Ser 780	Arg Lys	CTG Leu	GAG Glu	AAG Lys 785	TCA Ser	GAA Glu	GAC Asp	GAA Glu	CCA Pro 790	3305
CCT TTG Pro Leu												3353
TGC ATT Cys Ile						T AC	GAGG	CAGC	G TG(GGGG2	AAAG	3404
GAAACGTG	GC TCTC	CCTTAT C	ATTTGTAT	C CAC	SATTA	ACTG	TAC	rgta	GGC !	raaa1	ATAACA	3464
CAGTATTT	AC ATGT	TATCTT C	TTAATTT	'A GG	rttci	rgtt	CTA	ACCT:	rgt (CATTA	AGAGTT	3524
ACAGCAGG	TG TGTC	GCAGGA G	ACTGGTG	CA TA	rgcti	TTT	CCA	CGAG	rgr (CTGT	CAGTGA	3584
GCGGGCGG	GA GGAA	GGGCAC A	GCAGGAG	G GT	CAGG	GCTC	CAG	GCAT	ccc (CGGG	GAAGAA	3644
AGGAACGG	GG CTTC	ACAGTG C	CTGCCTT	CT CT	AGCG(GCAC	AGA	AGCA	GCC (GGGG	GCGCTG	3704
ACTCCCGC	TA GTGT	CAGGAG A	AAAGTCC	G TG	GGAA	SAGT	CCT	GCAG	GGG 1	rgca	GGGTTG	3764
CACGCATG	TG GGGG	TGCACA G	GCGCTGT	G CG	GCGA	STGA	GGG'	rctc'	TTT :	TTCT	CTGCCT	3824
CCCTCTGC	CT CACT	CTCTTG C	TATCGGC	AT GG	GCCG	GGGG	GGT'	rcaga	AGC A	AGTG	rcctcc	3884

TGGGGTTCCC	ACGTGCAAAA	TCAACATCAG	GAACCCAGCT	TCAGGGCATC	GCGGAGACGC	3944
GTCAGATGGC	AGATTTGGAA	AGTTAACCAI	TTAAAAGAAC	ATTTTTCTCT	CCAACATATT	4004
TTACAATAAA	AGCAACTTTT	AATTGTATAG	ATATATATTT	CCCCCTATGG	GGCCTGACTG	4064
CACTGATATA	TATTTTTTT	AAAGAGCAAC	TGCCACATGC	GGGATTTCAT	TTCTGCTTTT	4124
TACTAGTGCA	GCGATGTCAC	CAGGGTGTTG	TGGTGGACAG	GGAAGCCCCT	GCTGTCATGG	4184
CCCCACATGG	GGTAAGGGGG	GTTGGGGGTG	GGGGAGAGGG	AGAGAGCGAA	CACCCACGCT	4244
GGTTTCTGTG	CAGTGTTAGG	AAAACCAATC	AGGTTATTGC	ATTGACTTCA	CTCCCAAGAG	4304
GTAGATGCAA	ACTGCCCTTC	AGTGAGAGCA	ACAGAAGCTC	TTCACGTTGA	GTTTGCGAAA	4364
TCTTTTTGTC	TTTGAACTCT	AGTACTGTTT	ATAGTTCATG	ACTATGGACA	ACTCGGGTGC	4424
CACTTTTTT	TTTTTCAGAT	TCCAGTGTGA	CATGAGGAAT	TAGATTTTGA	AGATGAGCAT	4484
ATATTACTAT	CTTTAAGCAT	TTAAAAATAC	TGTTCACACT	TTATTACCAA	GCATCTTGGT	4544
CTCTCATTCA	ACAAGTACTG	TATCTCACTT	TAAACTCTTT	GGGGAAAAA	САААААСААА	4604
AAAAACTAAG	TTGCTTTCTT	TTTTTCAACA	CTGTAACTAC	ATTTCAGCTC	TGCAGAATTG	4664
CTGAAGAGCA	AGATATTGAA	AGTTTCAATG	TGGTTTAAAG	GGATGAATGT	GAATTATGAA	4724
CTAGTATGTG	ACAATAAATG	ACCACCAAGT	ACTACCTGAC	GGGAGGCACT	TTTCACTTTG	4784
ATGTCTGAGA	ATCAGTTCAA	GGCATATGCA	GAGTTGGCAG	AGAAACTGAG	AGAAAAGGGA	4844
TGGAGAAGAG	AATACTCATT	TTTGTCCAGT	GTTTTTCTTT	TTAAGATGAA	CTTTTAAAGA	4904
ACCTTGCGAT	TTGCACATAT	TGAGTTTATA	ACTTGTGTGA	TATTCCTGCA	GTTTTTATCC	4964
AATAACATTG	TGGGAAAGGT	TTGGGGGACT	GAACGAGCAT	AAATAAATGT	AGCAAAATTT	5024
CTTTCTAACC	TGCCTAAACT	CTAGGCCATT	TTATAAGGTT	ATGTTCCTTT	GAAAATTCAT	5084
TTTGGTCTTT	TTACCACATC	TGTCACAAAA	AGCCAGGTCT	TAGCGGGCTC	TTAGAAACTC	5144
TGAGAATTTT	CTTCAGATTC	ATTGAGAGAG	TTTTCCATAA	AGACATTTAT	ATATGTGAGC	5204
AAGATTTTT	TTAAACAATT	ACTTTATTAT	TGTTGTTATT	AATGTTATTT	TCAGAATGGC	5264
TTTTTTTTC	TATTCAAAAT	CAAATCGAGA	TTTAATGTTT	GGTACAAACC	CAGAAAGGGT	5324
ATTTCATAGT	TTTTAAACCT	TTCATTCCCA	GAGATCCGAA	ATATCATTTG	TGGGTTTTGA	5384
ATGCATCTTT .	AAAGTGCTTT	AAAAAAAAGT	TTTATAAGTA	GGGAGAAATT	TTTAAATATT	5444
CTTACTTGGA	TGGCTGCAAC	TAAACTGAAC	AAATACCTGA	CTTTTCTTTT	ACCCCATTGA	5504
AAATAGTACT	TTCTTCGTTT	CACAAATTAA	АААААААТС	TGGTATCAAC	CCACATTTTG	5564
GCTGTCTAGT	ATTCATTTAC	ATTTAGGGTT	CACCAGGACT	AATGATTTTT	ATAAACCGTT	5624
TTCTGGGGTG	TACCAAAAAC	ATTTGAATAG	GTTTAGAATA	GCTAGAATAG	TTCCTTGACT	5684
TTCCTCGAAT	TTCATTACCC	TCTCAGCATG	CTTGCAGAGA	GCTGGGTGGG	CTCATTCTTG	5744
CAGTCATACT	GCTTATTTAG	TGCTGTATTT	TTTAAACGTT	TCTGTTCAGA	GAACTTGCTT	5804

AATCTTCCAT	ATATTCTGCT	CAGGGCACTT	GCAATTATTA	GGTTTTGTTT	TTCTTTTTGT	5864
TTTTTAGCCT	TTGATGGTAA	GAGGAATACG	GGCTGCCACA	TAGACTTTGT	TCTCATTAAT	5924
·ATCACTATTT	ACAACTCATG	TGGACTCAGA	AAAACACACA	CCACCTTTTG	GCTTACTTCG	5984
AGTATTGAAT	TGACTGGATC	CACTAAACCA	ACACTAAGAT	GGGAAAACAC	ACATGGTTTG	6044
GAGCAATAGG	AACATCATCA	TAATTTTTGT	GGTTCTATTT	CAGGTATAGG	AAATTATAAA	6104
TAATTGGTTC	TTTCTAAACA	CTTGTCCCAT	TTCATTCTCT	TGCTTTTTTA	GCATGTGCAA	6164
TACTTTCTGT	GCCAATAGAG	TCTGACCAGT	GTGCTATATA	GTTAAAGCTC	ATTCCCTTTT	6224
GGCTTTTTCC	TTGTTTGGTT	GATCTTCCCC	ATTCTGGCCA	GAGCAGGGCT	GGAGGGAAGG	6284
AGCCAGGAGG	GAGAGAGCCT	CCCACCTTTC	CCCTGCTGCG	GATGCTGAGT	GCTGGGGCGG	6344
GGAGCCTTCA	GGAGCCCCGT	GCGTCTGCCG	CCACGTTGCA	GAAAGAGCCA	GCCAAGGAGA	6404
CCCGGGGGAG	GAACCGCAGT	GTCCCCTGTC	ACCACACGGA	ATAGTGAATG	TGGAGTGTGG	6464
AGAGGAAGGA	GGCAGATTCA	TTTCTAAGAC	GCACTCTGGA	GCCATGTAGC	CTGGAGTCAA	6524
CCCATTTTCC	ACGGTCTTTT	CTGCAAGTGG	GCAGGCCCCT	CCTCGGGGTC	TGTGTCCTTG	6584
AGACTTGGAG	CCCTGCCTCT	GAGCCTGGAC	GGGAAGTGTG	GCCTGTTGTG	TGTGTGCGTT	6644
CTGAGCGTGT	TGGCCAGTGG	CTGTGGAGGG	GACCACCTGC	CACCCACGGT	CACCACTCCC	6704
TTGTGGCAGC	TTTCTCTTCA	AATAGGAAGA	ACGCACAGAG	GGCAGGAGCC	TCCTGTTTGC	6764
AGACGTTGGC	GGGCCCCGAG	GCTCCCAGAG	CAGCCTCTGT	CACCGCTTCT	GTGTAGCAAA	6824
CATTAACGAT	GACAGGGGTA	GAAATTCTTC	GGTGCCGTTC	AGCTTACAAG	GATCAGCCAT	6884
GTGCCTCTGT	ACTATGTCCA	CTTTGCAATA	TTTACCGACA	GCCGTCTTTT	GTTCTTTCTT	6944
TCCTGTTTTC	CATTTTTAAA	CTAGTAACAG	CAGGCCTTTT	GCGTTTACAA	TGGAACACAA	7004
TCACCAAGAA	ATTAGTCAGG	GCGAAAAGAA	AAAAATAATA	CTATTAATAA	GAAACCAACA	7064
AACAAGAACC	TCTCTTTCTA	GGGATTTCTA	AATATATAAA	ATGACTGTTC	CTTAGAATGT	7124
TTAACTTAAG	AATTATTTCA	GTTTGTCTGG	GCCACACTGG	GGCAGAGGGG	GGAGGGAGGG	7184
ATACAGAGAT	GGATGCCACT	TACCTCAGAT	CTTTTAAAGT	GGAAATCCAA	ATTGAATTTT	7244
CATTTGGACT	TTCAGGATAA	TTTTCTATGT	TGGTCAACTT	TTCGTTTTCC	CTAACTCACC	7304
CAGTTTAGTT	TGGGATGATT	TGATTTCTGT	TGTTGTTGAT	CCCATTTCTA	ACTTGGAATT	7364
GTGAGCCTCT	ATGTTTTCTG	TTAGGTGAGT	GTGTTGGGTT	TTTTCCCCCC	ACCAGGAAGT	7424
GGCAGCATCC	CTCCTTCTCC	CCTAAAGGGA	CTCTGCGGAA	CCTTTCACAC	CTCTTTCTCA	7484
GGGACGGGC	AGGTGTGTGT	GTGGTACACT	GACGTGTCCA	GAAGCAGCAC	TTTGACTGCT	7544
CTGGAGTAGG	GTTGTACAAT	TTCAAGGAAT	GTTTGGATTT	CCTGCATCTT	GTGGATTACT	7604
CCTTAGATAC	CGCATAGATT	GCAATATAAT	GCTGCATGTT	CAAGATGAAC	AGTAGCTCCT	7664
AGTAATCATA	AAATCCACTC	TTTGCACAGT	TTGATCTTTA	CTGAAATATG	TTGCCAAAAT	7724

TTATTTTTGT	TGTTGTAGCT	CTGGATTTTG	TTTTGTTTTG	TTTTTTAAG	AAACGATTGA	7784
CAATACCCTT	TAACATCTGT	GACTACTAAG	GAAACCTATT	TCTTTCATAG	G AGAGAAAAT	7844
CTCCAATGCT	TTTGAAGACA	CTAATACCGT	GCTATTTCAG	ATATGGGTGA	GGAAGCAGAG	7904
CTCTCGGTAC	CGAAGGCCGG	GCTTCTTGAG	CTGTGTTGGT	TGTCATGGCT	ACTGTTTCAT	7964
GAACCACAAG	CAGCTCAACA	GACTGGTCTG	TTGCCTTCTG	AAACCCTTTG	CACTTCAATT	8024
TGCACCAGGT	GAAAACAGGG	CCAGCAGACT	CCATGGCCCA	ATTCGGTTTC	TTCGGTGGTG	8084
ATGTGAAAGG	AGAGAATTAC	ACTTTTTTT	TTTTTAAGTG	GCGTGGAGGC	CTTTGCTTCC	8144
ACATTTGTTT	TTAACCCAGA	ATTTCTGAAA	TAGAGAATTT	AAGAACACAT	CAAGTAATAA	8204
ATATACAGAG	AATATACTTT	TTTATAAAGC	ACATGCATCT	GCTATTGTGT	TGGGTTGGTT	8264
TCCTCTCTTT	TCCACGGACA	GTGTTGTGTT	TCTGGCATAG	GGAAACTCCA	AACAACTTGC	8324
ACACCTCTAC	TCCGGAGCTG	AGATTTCTTT	TACATAGATG	ACCTCGCTTC	AAATACGTTA	8384
CCTTACTGAT	GATAGGATCT	TTTCTTGTAG	CACTATACCT	TGTGGGAATT	TTTTTTTAAA	8444
TGTACACCTG	ATTTGAGAAG	CTGAAGAAAA	CAAAATTTTG	AAGCACTCAC	TTTGAGGAGT	8504
ACAGGTAATG	TTTTAAAAAA	TTGCACAAAA	GAAAAATGAA	TGTCGAAATG	ATTCATTCAG	8564
TGTTTGAAAG	ATATGGCTCT	GTTGAAACAA	TGAGTTTCAT	ACTTTGTTTG	TAAAAAAAA	8624
AAGCAGAGAA	GGGTTGAAAG	TTACATGTTT	TTTTGTATAT	AGAAATTTGT	CATGTCTAAA	8684
TGATCAGATT	TGTATGGTTA	TGGCCTGGAA	GAATTACTAC	GTAAAAGGCT	CTTAAACTAT	8744
ACCTATGCTT	ATTGTTATTT	TTGTTACATA	TAGCCCTCGT	CTGAGGGAGG	GGAACTCGGT	8804
ATTCTGCGAT	TTGAGAATAC	TGTTCATTCC	TATGCTGAAA	GTACTTCTCT	GAGCTCCCTT	8864
CTTAGTCTAA	ACTCTTAAGC	CATTGCAACT	TCTTTTTCTT	CAGAGATGAT	GTTTGACATT	8924
TTCAGCACTT	CCTGTTCCTA	TAAACCCAAA	GAATATAATC	TTGAACACGA	AGTGTTTGTA	8984
ACAAGGGATC	CAGGCTACCA	ATCAAACAGG	ACTCATTATG	GGGACAAAAA	ТААААААА	9044
TATTTCACCT	TCTTTCCCCC	CACACCTCAT	TTAAATGGGG	GGAGTAAAAA	CATGATTTCA	9104
ATGTAAATGC	CTCATTTTAT	TTTAGTTTTA	TTTTGATTTT	TATTTAATAT	AAAGAGGCCA	9164
GAATAAATAC	GGAGCATCTT	CTCAGAATAG	TATTCCTGTC	САААААТСАА	GCCGGACAGT	9224
GGAAACTGGA	CAGCTGTGGG	GATATTAAGC	ACCCCCACTT	ACAATTCTTA	AATTCAGAAT	9284
CTCGTCCCCT	CCCTTCTCGT	TGAAGGCAAC	TGTTCTGGTA	GCTAACTTTC	TCCTGTGTAA	9344
TGGCGGGAGG	GAACACCGGC	TTCAGTTTTT	CATGTCCCCA	TGACTTGCAT	ACAAATGGTT	9404
CAACTGTATT	AAAATTAAGT	GCATTTGGCC	AATAGGTAGT	АТСТАТАСАА	TAACAACAAT	9464
CTCTAAGAAT	TTCCATAACT	TTTCTTATCT	GAAAGGACTC	AAGTCTTCCA	CTGCAGATAC	9524
ATTGGAGGCT	TCACCCACGT	TTTCTTTCCC	TTTAGTTTGT	TTGCTGTCTG	GATGGCCAAT	9584
GAGCCTGTCT	CCTTTTCTGT	GGCCAATCTG	AAGGCCTTCG	TTGGAAGTGT	TGTTCACAGT	9644

AATCCTTACC	AAGATAACAT	ACTGTCCTCC	AGAATACCAA	GTATTAGGTG	ACACTAGCTC	9704
AAGCTGTTGT	CTTCAGAGCA	GTTACCAAGA	AGCTCGGTGC	ACAGGTTTTC	TCTGGTTCTT	9764
ACAGGAACCA	CCTACTCTTT	CAGTTTTCTG	GCCCAGGAGT	GGGGTAAATC	CTTTAGTTAG	9824
TGCATTTGAA	CTTGGTACCT	GTGCATTCAG	TTCTGTGAAT	ACTGCCCTTT	TTGGCGGGGT	9884
TTCCTCATCT	CCCCAGCCTG	AACTGCTCAA	CTCTAAACCC	AAATTAGTGT	CAGCCGAAAG	9944
GAGGTTTCAA	GATAGTCCTG	TCAGTATTTG	TGGTGACCTT	CAGATTAGAC	AGTCTTCATT	10004
TCCAGCCAGT	GGAGTCCTGG	CTCCAGAGCC	ATCTCTGAGA	CTCCGTACTA	CTGGATGTTT	10064
TAATATCAGA	TCATTACCCA	CCATATGCCT	CCCACAGGCC	AAGGGAAAAC	AGACACCAGA	10124
ACTTGGGTTG	AGGGCACTAC	CAGACTGACA	TGGCCAGTAC	AGAGGAGAAC	TAGGGAAGGA	10184
ATGATGTTTT	GCACCTTATT	GAAAAGAAAA	TTTTAAGTGC	ATACATAATA	GTTAAGAGCT	10244
TTTATTGTGA	CAGGAGAACT	TTTTTCCATA	TGCGTGCATA	CTCTCTGTAA	TTCCAGTGTA	10304
AAATATTGTA	CTTGCACTAG	CTTTTTTAAA	CAAATATTAA	AAAATGGAAG	AATTCATATT	10364
CTATTTTCTA	ATCGTGGTGT	GTCTATTTGT	AGGATACACT	CGAGTCTGTT	TATTGAATTT	10424
TATGGTCCCT	TTCTTTGATG	GTGCTTGCAG	GTTTTCTAGG	TAGAAATTAT	TTCATTATTA	10484
TAATAAAACA	ATGTTTGATT	CAAAATTTGA	ACAAAATTGT	ТТТАААТААА	TTGTCTGTAT	10544
ACCAGTACAA	GTTTATTGTT	TCAGTATACT	CGTACTAATA	AAATAACAGT	GCCAATTGCA	10604
ААААААААА	AAAAAAAAA	ААААААААА	AAAAAAAAA	АААААААА	AAAAAA	10660

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 816 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Lys Ser Asn Gln Glu Arg Ser Asn Glu Cys Leu Pro Pro Lys Lys 1 5 10 15

Arg Glu Ile Pro Ala Thr Ser Arg Ser Ser Glu Glu Lys Ala Pro Thr 20 25 30

Leu Pro Ser Asp Asn His Arg Val Glu Gly Thr Ala Trp Leu Pro Gly 35 40 45

Asn Pro Gly Gly Arg Gly His Gly Gly Gly Arg His Gly Pro Ala Gly
50 60

Thr Ser Val Glu Leu Gly Leu Gln Gln Gly Ile Gly Leu His Lys Ala 65 70 75 80

Leu Ser Thr Gly Leu Asp Tyr Ser Pro Pro Ser Ala Pro Arg Ser Val 85 90 95

										50					
Pro	Val	Ala	Thr 100	Thr	Leu	Pro	Ala	Ala 105	Tyr	Ala	Thr	Pro	Gln 110	Pro	Gly
Thr	Pro	Val 115	Ser	Pro	Val	Gln	Tyr 120	Ala	His	Leu	Pro	His 125	Thr	Phe	Gln
Phe	Ile 130	Gly	Ser	Ser	Gln	Туг 135	Ser	Gly	Thr	Tyr	Ala 140	Ser	Phe	Ile	Pro
Ser 145	Gln	Leu	Ile	Pro	Pro 150	Thr	Ala	Asn	Pro	Val 155	Thr	Ser	Ala	Val	Ala 160
Ser	Ala	Ala	Gly	Ala 165	Thr	Thr	Pro	Ser	Gln 170	Arg	Ser	Gln	Leu	Glu 175	Ala
Tyr	Ser	Thr	Leu 180	Leu	Ala	Asn	Met	Gly 185	Ser	Leu	Ser	Gln	Thr 190	Pro	Gly
His	Lys	Ala 195	Glu	Gln	Gln	Gln	Gln 200	Gln	Gln	Gln	Gln	Gln 205	Gln	Gln	Gln
His	Gln 210	His	Gln	Gln	Gln	Gln 215	Gln	Gln	Gln	Gln	Gln 220	Gln	Gln	Gln	Gln
Gln 225	Gln	His	Leu	Ser	Arg 230	Ala	Pro	Gly	Leu	Ile 235	Thr	Pro	Gly	Ser	Pro 240
Pro	Pro	Ala	Gln	Gln 245	Asn	Gln	Tyr	Val	His 250	Ile	Ser	Ser	Ser	Pro 255	Gln
Asn	Thr	Gly	Arg 260	Thr	Ala	Ser	Pro	Pro 265	Ala	Ile	Pro	Val	His 270	Leu	His
Pro	His	Gln 275	Thr	Met	Ile	Pro	His 280	Thr	Leu	Thr	Leu	Gly 285	Pro	Pro	Ser
Gln	Val 290	Val	Met	Gln	Tyr	Ala 295	Asp	Ser	Gly	Ser	His 300	Phe	Val	Pro	Arg
Glu 305	Ala	Thr	Lys	Lys	Ala 310	Glu	Ser	Ser	Arg	Leu 315	Gln	Gln	Ala	Ile	Gln 320
Ala	Lys	Glu	Val	Leu 325	Asn	Gly	Glu	Met	Glu 330	Lys	Ser	Arg	Arg	Tyr 335	Gly
Ala	Pro	Ser	Ser 340	Ala	Asp	Leu	Gly	Leu 345	Gly	Lys	Ala	Gly	Gly 350	Lys	Ser
Val	Pro	His 355	Pro	Tyr	Glu	Ser	Arg 360	His	Val	Val	Val	His 365	Pro	Ser	Pro
Ser	Asp 370	Tyr	Ser	Ser	Arg	Asp 375	Pro	Ser	Gly	Val	Arg 380	Ala	Ser	Val	Met
Val 385	Leu	Pro	Asn	Ser	Asn 390	Thr	Pro	Ala	Ala	Asp 395	Leu	Glu	Val	Gln	Gln 400
Ala	Thr	His	Arg	Glu 405	Ala	Ser	Pro	Ser	Thr 410	Leu	Asn	Asp	Lys	Ser 415	Gly
Leu	His	Leu	Gly 420	Lys	Pro	Gly	His	Arg 425	Ser	Tyr	Ala	Leu	Ser 430	Pro	His

Thr	Val	Ile 435	Gln	Thr	Thr	His	Ser 440	Ala	Ser	Glu	Pro	Leu 445		Val	Gly
Leu	Pro 450	Ala	Thr	Ala	Phe	Tyr 455	Ala	Gly	Thr	Gln	Pro 460	Pro	Val	Ile	Gly
Tyr 465	Leu	Ser	Gly	Gln	Gln 470	Gln	Ala	Ile	Thr	Tyr 475	Ala	Gly	Ser	Leu	Pro 480
Gln	His	Leu	Val	Ile 485	Pro	Gly	Thr	Gln	Pro 490	Leu	Leu	Ile	Pro	Val 495	Gly
Ser	Thr	Asp	Met 500	Glu	Ala	Ser	Gly	Ala 505	Ala	Pro	Ala	Ile	Val 510	Thr	Ser
Ser	Pro	Gln 515	Phe	Ala	Ala	Val	Pro 520	His	Thr	Phe	Val	Thr 525	Thr	Ala	Leu
Pro	Lys 530	Ser	Glu	Asn	Phe	Asn 535	Pro	Glu	Ala	Leu	Val 540	Thr	Gln	Ala	Ala
Tyr 545	Pro	Ala	Met	Val	Gln 550	Ala	Gln	Ile	His	Leu 555	Pro	Val	Val	Gln	Ser 560
Val	Ala	Ser	Pro	Ala 565	Ala	Ala	Pro	Pro	Thr 570	Leu	Pro	Pro	Tyr	Phe 575	Met
Lys	Gly	Ser	Ile 580	Ile	Gln	Leu	Ala	Asn 585	Gly	Glu	Leu	Lys	Lys 590	Val	Glu
Asp	Leu	Lys 595	Thr	Glu	Asp	Phe	Ile 600	Gln	Ser	Ala	Glu	Ile 605	Ser	Asn	Asp
Leu	Lys 610	Ile	Asp	Ser	Ser	Thr 615	Val	Glu	Arg	Ile	Glu 620	Asp	Ser	His	Ser
Pro 625	Gly	Val	Ala	Val	Ile 630	Gln	Phe	Ala	Val	Gly 635	Glu	His	Arg	Ala	Gln 640
Val	Ser	Val	Glu	Val 645	Leu	Val	Glu	Tyr	Pro 650	Phe	Phe	Val	Phe	Gly 655	Gln
Gly	Trp	Ser	Ser 660	Cys	Cys	Pro	Glu	Arg 665	Thr	Ser	Gln	Leu	Phe 670	Asp	Leu
Pro	Cys	Ser 675	Lys	Leu	Ser	Val	Gly 680	Asp	Val	Cys	Ile	Ser 685	Leu	Thr	Leu
Lys	Asn 690	Leu	Lys	Asn	Gly	Ser 695	Val	Lys	Lys	Gly	Gln 700	Pro	Val	Asp	Pro
Ala 705	Ser	Val	Leu	Leu	Lys 710	His	Ser	Lys	Ala	Asp 715	Gly	Leu	Ala	Gly	Ser 720
Arg	His	Arg	Tyr	Ala 725	Glu	Gln	Glu	Asn	Gly 730	Ile	Asn	Gln	Gly	Ser 735	Ala
Gln	Met	Leu	Ser 740	Glu	Asn	Gly	Glu	Leu 745	Lys	Phe	Pro	Glu	Lys 750	Met	Gly
Leu	Pro	Ala 755	Ala	Pro	Phe	Leu	Thr 760	Lys	Ile	Glu	Pro	Ser 765	Lys	Pro	Ala

Ala Thr Arg Lys Arg Arg Trp Ser Ala Pro Glu Ser Arg Lys Leu Glu 775 Lys Ser Glu Asp Glu Pro Pro Leu Thr Leu Pro Lys Pro Ser Leu Ile Pro Gln Glu Val Lys Ile Cys Ile Glu Gly Arg Ser Asn Val Gly Lys 805 810

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4481 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS

(B) LOCATION: 163..4099

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

ACC	CCCGA	AGA A	AAGC	AACC	CA GO	CGCG	CCGC	C CG	CTCC:	TCAC	GTG:	rccc'	rcc (CGGC	CCCGGG	60
GCC	ACCT(CAC (GTTC:	rgct:	rc co	STCT	GACC	CTC	CCGA	CTTC	CGG	raaa(GAG '	rccc'	ratccg	120
CAC	CTCC	GCT (CCCA	CCGG	GC G(CCTC	GCG	C GC(CCGC	CCTC		ATG (Met 1				174
										ACC Thr 15						222
										CTC Leu						270
										CCG Pro						318
										CCT Pro						366
										AGC Ser						414
										CTT Leu 95						462
										CTC Leu						510

CCT Pro	CCG Pro	GCC Ala	GCG Ala 120	CCA Pro	ACC Thr	CGC Arg	GCC Ala	TCC Ser 125	CCG Pro	CTC Leu	GGC Gly	GCC Ala	CGT Arg 130	GCG Ala	TCC Ser	558
CCG Pro	CCG Pro	CGT Arg 135	TCC Ser	GGC Gly	GTC Val	TCC Ser	TTG Leu 140	GCG Ala	CGC Arg	CCG Pro	GCT Ala	CCC Pro 145	GGC Gly	TG T Cys	CCC Pro	606
CGC Arg	CCG Pro 150	GCG Ala	TGC Cys	GAG Glu	CCG Pro	GTG Val 155	TAT Tyr	GGG Gly	CCC Pro	CTC Leu	ACC Thr 160	ATG Met	TCG Ser	CTG Leu	AAG Lys	654
CCC Pro 165	CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 170	CAG Gln	CAG Gln	CAG Gln	CAA Gln	CAG Gln 175	CAG Gln	CAG Gln	CAG Gln	CAA Gln	CAG Gln 180	702
CAG Gln	CAG Gln	CAG Gln	CAG Gln	CAG Gln 185	CAG Gln	CAG Gln	CCG Pro	CCG Pro	CCC Pro 190	GCG Ala	GCT Ala	GCC Ala	AAT Asn	GTC Val 195	CGC Arg	750
AAG Lys	CCC Pro	GGC Gly	GGC Gly 200	AGC Ser	GGC Gly	CTT Leu	CTA Leu	GCG Ala 205	TCG Ser	CCC Pro	GCC Ala	GCC Ala	GCG Ala 210	CCT Pro	TCG Ser	798
												GCT Ala 225				846
GTG Val	GTC Val 230	GCG Ala	GCG Ala	ACC Thr	TCC Ser	GGC Gly 235	GGC Gly	GGG Gly	AGG Arg	CCC Pro	GGC Gly 240	CTG Leu	GGC Gly	AGA Arg	GGT Gly	894
CGA Arg 245	AAC Asn	AGT Ser	AAC Asn	AAA Lys	GGA Gly 250	CTG Leu	CCT Pro	CAG Gln	TCT Ser	ACG Thr 255	ATT Ile	TCT Ser	TTT Phe	GAT Asp	GGA Gly 260	942
ATC Ile	TAT Tyr	GCA Ala	AAT Asn	ATG Met 265	AGG Arg	ATG Met	GTT Val	CAT His	ATA Ile 270	CTT Leu	ACA Thr	TCA Ser	GTT Val	GTT Val 275	GGC Gly	990
												TAT Tyr				1038
TTT Phe	AAA Lys	ACT Thr 295	TAC Tyr	AGT Ser	CCG Pro	AAG Lys	TGT Cys 300	GAT Asp	TTG Leu	GTA Val	CTT Leu	GAT Asp 305	GCC Ala	GCA Ala	CAT His	1086
												GAA Glu				1134
												GTA Val				1182
												ACT Thr				1230
ATC Ile	AGT Ser	GCT Ala	AAA Lys 360	GTG Val	AAT Asn	GGC Gly	GAA Glu	CAC His 365	AAA Lys	GAG Glu	AAG Lys	GAC Asp	CTG Leu 370	GAG Glu	CCC Pro	1278

										54						
									GAG Glu							1326
									AAT Asn							1374
									TAT Tyr							1422
									TCA Ser 430							1470
									GAA Glu							1518
TAC Tyr	AAA Lys	GCT Ala 455	CGA Arg	GTG Val	GCC Ala	CTG Leu	GAA Glu 460	AAT Asn	GAT Asp	GAT Asp	AGG Arg	AGT Ser 465	GAG Glu	GAA Glu	GAA Glu	1566
									AGT Ser							1614
									CCT Pro							1662
GAA Glu	GTC Val	ATA Ile	TCC Ser	TGG Trp 505	GGA Gly	AGT Ser	GGG Gly	AGA Arg	CAG Gln 510	AAT Asn	TCA Ser	CCG Pro	CGT Arg	ATG Met 515	GGC Gly	1710
									AGA Arg							1758
									CAA Gln							1806
									CCT Pro							1854
									CCA Pro							1902
									CGG Arg 590							1950
									CCT Pro							1998
									ATG Met							2046

					-				
		AGA Arg							2094
		TCC Ser 650							2142
		AGT Ser							2190
		TTA Leu							2238
		GGA Gly							2286
		ATT Ile							2334
		CCT Pro 730							2382
		AAA Lys							2430
		AAA Lys							2478
		GAA Glu							2526
		GAT Asp							2574
		ACT Thr 810							2622
		AAA Lys							2670
		TCT Ser							2718
		CCG Pro							2766
		AAG Lys							2814

CAG ACT TC Gln Thr Se 885	C AGC CCA r Ser Pro	A GCA TGT Ala Cys 890	AAA CA Lys Gli	A GAG AA n Glu Ly 89	s Asp As	T AAG GAA p Lys Glu	A GAG Glu 900	2862
AAG AAA GA Lys Lys Asp	C GCA GCC Ala Ala 905	a Glu Gln	GTT AGO Val Arg	G AAA TC g Lys Se 910	A ACA TT r Thr Le	G AAT CCC u Asn Pro 915	Asn	2910
GCA AAG GAG Ala Lys Glu	FTTC AAC Phe Asr 920	C CCA CGT n Pro Arg	TCC TTC Ser Phe 925	e Ser Gl	G CCA AA n Pro Ly	G CCT TCT s Pro Ser 930	ACT Thr	2958
ACC CCA ACT Thr Pro Thr 935	Ser Pro	CGG CCT Arg Pro	CAA GCA Gln Ala 940	A CAA CC a Gln Pr	T AGC CC. o Ser Pro 94	o Ser Met	GTG Val	3006
GGT CAT CAP Gly His Glr 950	A CAG CCA n Gln Pro	A ACT CCA Thr Pro 955	GTT TAT Val Tyr	ACT CAG	G CCT GT n Pro Vai 960	T TGT TTT L Cys Phe	GCA Ala	3054
CCA AAT ATO Pro Asn Met 965	ATG TAT Met Tyr	CCA GTC Pro Val 970	CCA GTG Pro Val	AGC CC Ser Pro	o Gly Vai	G CAA CCT l Gln Pro	TTA Leu 980	3102
TAC CCA ATA Tyr Pro Ile	CCT ATG Pro Met 985	Thr Pro	ATG CCA Met Pro	GTG AAT Val Asi 990	r CAA GCC n Gln Ala	C AAG ACA Lys Thr 995	TAT Tyr	3150
AGA GCA GTA Arg Ala Val	CCA AAT Pro Asn 1000	ATG CCC Met Pro	CAA CAG Gln Gln 100	Arg Glr	A GAC CAC n Asp Glr	G CAT CAT His His 1010	CAG Gln	3198
AGT GCC ATG Ser Ala Met 101	Met His	CCA GCG Pro Ala	TCA GCA Ser Ala 1020	GCG GGC Ala Gly	C CCA CCG y Pro Pro 102	Ile Ala	GCC Ala	3246
ACC CCA CCA Thr Pro Pro 1030	GCT TAC Ala Tyr	TCC ACG Ser Thr 1035	Gln Tyr	GTT GCC Val Ala	TAC AGT Tyr Ser 1040	CCT CAG Pro Gln	CAG Gln	3294
TTC CCA AAT Phe Pro Asn 1045	CAG CCC Gln Pro	CTT GTT Leu Val 1050	CAG CAT Gln His	GTG CCA Val Pro 105	His Tyr	CAG TCT Gln Ser	CAG Gln 1060	3342
CAT CCT CAT His Pro His	GTC TAT Val Tyr 106	Ser Pro	GTA ATA Val Ile	CAG GGT Gln Gly 1070	AAT GCT Asn Ala	AGA ATG Arg Met 1075	Met	3390
GCA CCA CCA Ala Pro Pro	ACA CAC Thr His 1080	GCC CAG Ala Gln	CCT GGT Pro Gly 108	Leu Val	TCT TCT Ser Ser	TCA GCA Ser Ala 1090	ACT Thr	3438
CAG TAC GGG Gln Tyr Gly 109	Ala His	GAG CAG Glu Gln	ACG CAT Thr His 1100	GCG ATG Ala Met	TAT GCA Tyr Ala 110	Cys Pro	AAA Lys	3486
TTA CCA TAC Leu Pro Tyr 1110	AAC AAG Asn Lys	GAG ACA Glu Thr 1115	Ser Pro	TCT TTC Ser Phe	TAC TTT Tyr Phe 1120	GCC ATT Ala Ile	TCC Ser	3534
ACG GGC TCC Thr Gly Ser 1125	CTT GCT Leu Ala	CAG CAG Gln Gln 1130	TAT GCG Tyr Ala	CAC CCT His Pro 113	Asn Ala	ACC CTG Thr Leu	CAC His 1140	3582

<u>-</u> ,	
CCA CAT ACT CCA CAC CCT CAG CCT TCA GCT ACC CCC ACT GGA CAG CAG Pro His Thr Pro His Pro Gln Pro Ser Ala Thr Pro Thr Gly Gln Gln 1145 1150 1155	3630
CAA AGC CAA CAT GGT GGA AGT CAT CCT GCA CCC AGT CCT GTT CAG CAC Gln Ser Gln His Gly Gly Ser His Pro Ala Pro Ser Pro Val Gln His 1160 1165 1170	3678
CAT CAG CAC CAG GCC GCC CAG GCT CTC CAT CTG GCC AGT CCA CAG CAG His Gln His Gln Ala Ala Gln Ala Leu His Leu Ala Ser Pro Gln Gln 1175 1180 1185	3726
CAG TCA GCC ATT TAC CAC GCG GGG CTT GCG CCA ACT CCA CCC TCC ATG Gln Ser Ala Ile Tyr His Ala Gly Leu Ala Pro Thr Pro Pro Ser Met 1190 1195 1200	3774
ACA CCT GCC TCC AAC ACG CAG TCG CCA CAG AAT AGT TTC CCA GCA GCA Thr Pro Ala Ser Asn Thr Gln Ser Pro Gln Asn Ser Phe Pro Ala Ala 1205 1210 1215 1220	3822
CAA CAG ACT GTC TTT ACG ATC CAT CCT TCT CAC GTT CAG CCG GCG TAT Gln Gln Thr Val Phe Thr Ile His Pro Ser His Val Gln Pro Ala Tyr 1225 1230 1235	3870
ACC AAC CCA CCC CAC ATG GCC CAC GTA CCT CAG GCT CAT GTA CAG TCA Thr Asn Pro Pro His Met Ala His Val Pro Gln Ala His Val Gln Ser 1240 1245 1250	3918
GGA ATG GTT CCT TCT CAT CCA ACT GCC CAT GCG CCA ATG ATG CTA ATG Gly Met Val Pro Ser His Pro Thr Ala His Ala Pro Met Met Leu Met 1255 1260 1265	3966
ACG ACA CAG CCA CCC GGC GGT CCC CAG GCC GCC CTC GCT CAA AGT GCA Thr Thr Gln Pro Pro Gly Gly Pro Gln Ala Ala Leu Ala Gln Ser Ala 1270 1280	4014
CTA CAG CCC ATT CCA GTC TCG ACA ACA GCG CAT TTC CCC TAT ATG ACG Leu Gln Pro Ile Pro Val Ser Thr Thr Ala His Phe Pro Tyr Met Thr 1285 1290 1295 1300	4062
CAC CCT TCA GTA CAA GCC CAC CAC CAA CAG CAG TTG T AAGGCTGCCC His Pro Ser Val Gln Ala His His Gln Gln Leu 1305 1310	4109
TGGAGGAACC GAAAGGCCAA ATTCCCTCCT CCCTTCTACT GCTTCTACCA ACTGGAAGCA	4169
CAGAAAACTA GAATTTCATT TATTTTGTTT TTAAAATATA TATGTTGATT TCTTGTAACA	4229
TCCAATAGGA ATGCTAACAG TTCACTTGCA GTGGAAGATA CTTGGACCGA GTAGAGGCAT	4289
TTAGGAACTT GGGGGCTATT CCATAATTCC ATATGCTGTT TCAGAGTCCC GCAGGTACCC	4349
CAGCTCTGCT TGCCGAAACT GGAAGTTATT TATTTTTTAA TAACCCTTGA AAGTCATGAA	4409
CACATCAGCT AGCAAAAGAA GTAACAAGAG TGATTCTTGC TGCTATTACT GCTAAAAAAA	4469
AAAAAAAA AA	4481

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1312 amino acids

- (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met Arg Ser Ala Ala Ala Ala Pro Arg Ser Pro Ala Val Ala Thr Glu
1 5 10 15

Ser Arg Arg Phe Ala Ala Ala Arg Trp Pro Gly Trp Arg Ser Leu Gln
20 25 30

Arg Pro Ala Arg Arg Ser Gly Arg Gly Gly Gly Gly Ala Ala Pro Gly 35 40 45

Pro Tyr Pro Ser Ala Ala Pro Pro Pro Pro Gly Pro Gly Pro Pro Pro 50 55 60

Ser Arg Gln Ser Ser Pro Pro Ser Ala Ser Asp Cys Phe Gly Ser Asn 65 70 75 80

Gly Asn Gly Gly Gly Ala Phe Arg Pro Gly Ser Arg Arg Leu Leu Gly
85 90 95

Leu Gly Gly Pro Pro Arg Pro Phe Val Val Val Leu Leu Pro Leu Ala 100 105 110

Ser Pro Gly Ala Pro Pro Ala Ala Pro Thr Arg Ala Ser Pro Leu Gly 115 120 125

Ala Arg Ala Ser Pro Pro Arg Ser Gly Val Ser Leu Ala Arg Pro Ala 130 135 140

Pro Gly Cys Pro Arg Pro Ala Cys Glu Pro Val Tyr Gly Pro Leu Thr 145 150 155 160

Ala Asn Val Arg Lys Pro Gly Gly Ser Gly Leu Leu Ala Ser Pro Ala 195 200 205

Ala Ala Pro Ser Pro Ser Ser Ser Ser Val Ser Ser Ser Ser Ala Thr 210 215 220

Ala Pro Ser Ser Val Val Ala Ala Thr Ser Gly Gly Gly Arg Pro Gly 225 230 235 240

Leu Gly Arg Gly Arg Asn Ser Asn Lys Gly Leu Pro Gln Ser Thr Ile 245 250 255

Ser Phe Asp Gly Ile Tyr Ala Asn Met Arg Met Val His Ile Leu Thr 260 265 270

Ser Val Val Gly Ser Lys Cys Glu Val Gln Val Lys Asn Gly Gly Ile 275 280 285

Tyr Glu Gly Val Phe Lys Thr Tyr Ser Pro Lys Cys Asp Leu Val Leu 290 295 300

Asp 305	Ala	Ala	His	Glu	Lys 310	Ser	Thr	Glu	Ser	Ser 315	Ser	Gly	Pro	Lys	Arg 320
Glu	Glu	Ile	Met	Glu 325	Ser	Ile	Leu	Phe	Lys 330	Cys	Ser	Asp	Phe	Val 335	Val
Val	Gln	Phe	Lys 340	Asp	Met	Asp	Ser	Ser 345	Tyr	Ala	Lys	Arg	Asp 350	Ala	Phe
Thr	Asp	Ser 355	Ala	Ile	Ser	Ala	Lys 360	Val	Asn	Gly	Glu	His 365	Lys	Glu	Lys
Asp	Leu 370	Glu	Pro	Trp	Asp	Ala 375	Gly	Glu	Leu	Thr	Ala 380	Asn	Glu	Glu	Leu
Glu 385	Ala	Leu	Glu	Asn	Asp 390	Val	Ser	Asn	Gly	Trp 395	Asp	Pro	Asn	Asp	Met 400
Phe	Arg	Tyr	Asn	Glu 405	Glu	Asn	Tyr	Gly	Val 410	Val	Ser	Thr	Tyr	Asp 415	Ser
Ser	Leu	Ser	Ser 420	Tyr	Thr	Val	Pro	Leu 425	Glu	Arg	Asp	Asn	Ser 430	Glu	Glu
Phe	Leu	Lys 435	Arg	Glu	Ala	Arg	Ala 440	Asn	Gln	Leu	Ala	Glu 445	Glu	Ile	Glu
Ser	Ser 450	Ala	Gln	Tyr	Lys	Ala 455	Arg	Val	Ala	Leu	Glu 460	Asn	Asp	Asp	Arg
Ser 465	Glu	Glu	Glu	Lys	Tyr 470	Thr	Ala	Val	Gln	Arg 475	Asn	Ser	Ser	Glu	Arg 480
Glu	Gly	His	Ser	Ile 485	Asn	Thr	Arg	Glu	Asn 490	Lys	Tyr	Ile	Pro	Pro 495	Gly
Gln	Arg	Asn	Arg 500	Glu	Val	Ile	Ser	Trp 505	Gly	Ser	Gly	Arg	Gln 510	Asn	Ser
Pro	Arg	Met 515	Gly	Gln	Pro	Gly	Ser 520	Gly	Ser	Met	Pro	Ser 525	Arg	Ser	Thr
Ser	His 530	Thr	Ser	Asp	Phe	Asn 535	Pro	Asn	Ser	Gly	Ser 540	Asp	Gln	Arg	Val
Val 545	Asn	Gly	Gly	Val	Pro 550	Trp	Pro	Ser	Pro	Cys 555	Pro	Ser	Pro	Ser	Ser 560
Arg	Pro	Pro	Ser	Arg 565	Tyr	Gln	Ser	Gly	Pro 570	Asn	Ser	Leu	Pro	Pro 575	Arg
Ala	Ala	Thr	Pro 580	Thr	Arg	Pro	Pro	Ser 585	Arg	Pro	Pro	Ser	Arg 590	Pro	Ser
Arg	Pro	Pro 595	Ser	His	Pro	Ser	Ala 600	His	Gly	Ser	Pro	Ala 605	Pro	Val	Ser
Thr	Met 610	Pro	Lys	Arg	Met	Ser 615	Ser	Glu	Gly	Pro	Pro 620	Arg	Met	Ser	Pro
Lys 625	Ala	Gln	Arg	His	Pro 630	Arg	Asn	His	Arg	Val 635	Ser	Ala	Gly	Arg	Gly 640

WO 99/45944

- Val Gln Pro Leu Tyr Pro Ile Pro Met Thr Pro Met Pro Val Asn Gln 980

 Ala Lys Thr Tyr Arg Ala Val Pro Asn Met Pro Gln Gln Arg Gln Asp 995
- Gln His His Gln Ser Ala Met Met His Pro Ala Ser Ala Ala Gly Pro
- Pro Ile Ala Ala Thr Pro Pro Ala Tyr Ser Thr Gln Tyr Val Ala Tyr 1025 1030 1035 1040
- Ser Pro Gln Gln Phe Pro Asn Gln Pro Leu Val Gln His Val Pro His 1045 1050 1055
- Tyr Gln Ser Gln His Pro His Val Tyr Ser Pro Val Ile Gln Gly Asn 1060 1065 1070
- Ala Arg Met Met Ala Pro Pro Thr His Ala Gln Pro Gly Leu Val Ser 1075 1080 1085
- Ser Ser Ala Thr Gln Tyr Gly Ala His Glu Gln Thr His Ala Met Tyr 1090 1095
- Ala Cys Pro Lys Leu Pro Tyr Asn Lys Glu Thr Ser Pro Ser Phe Tyr 1105 1110 1115 1120
- Phe Ala Ile Ser Thr Gly Ser Leu Ala Gln Gln Tyr Ala His Pro Asn 1125 1130 1135
- Ala Thr Leu His Pro His Thr Pro His Pro Gln Pro Ser Ala Thr Pro 1140 1145 1150
- Thr Gly Gln Gln Ser Gln His Gly Gly Ser His Pro Ala Pro Ser 1155 1160 1165
- Pro Val Gln His His Gln His Gln Ala Gln Ala Leu His Leu Ala 1170 1175 1180
- Ser Pro Gln Gln Gln Ser Ala Ile Tyr His Ala Gly Leu Ala Pro Thr 1185 1190 1195 1200
- Pro Pro Ser Met Thr Pro Ala Ser Asn Thr Gln Ser Pro Gln Asn Ser 1205 1210 1215
- Phe Pro Ala Ala Gln Gln Thr Val Phe Thr Ile His Pro Ser His Val 1220 1225 1230
- Gln Pro Ala Tyr Thr Asn Pro Pro His Met Ala His Val Pro Gln Ala 1235 1240 1245
- His Val Gln Ser Gly Met Val Pro Ser His Pro Thr Ala His Ala Pro 1250 1255 1260
- Met Met Leu Met Thr Thr Gln Pro Pro Gly Gly Pro Gln Ala Ala Leu 1265 1270 1275 1280
- Ala Gln Ser Ala Leu Gln Pro Ile Pro Val Ser Thr Thr Ala His Phe 1285 1290 1295
- Pro Tyr Met Thr His Pro Ser Val Gln Ala His His Gln Gln Gln Leu 1300 1305 1310

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3563 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3..3550

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GA .	ATT Ile 1	CTT Leu	CCA Pro	CTC Leu	GAC Asp 5	TTC Phe	ATA Ile	GTG Val	GTC Val	AGT Ser 10	GGG Gly	GCC Ala	CTG Leu	GTA Val	GCC Ala 15	47
TTT Phe	GCC Ala	TTC Phe	ACT Thr	GGC Gly 20	AAT Asn	AGC Ser	AAA Lys	GGA Gly	AAA Lys 25	GAC Asp	ATC	AAC Asn	ACG Thr	ATT Ile 30	AAA Lys	95
TCC Ser	CTC Leu	CGA Arg	GTC Val 35	CTC Leu	CGG Arg	GTG Val	CTA Leu	CGA Arg 40	CCT Pro	CTT Leu	AAA Lys	ACC Thr	ATC Ile 45	AAG Lys	CGG Arg	143
								Asp				AAC Asn 60				191
AAC Asn	GTC Val 65	TTC Phe	AAC Asn	ATC Ile	CTC Leu	ATC Ile 70	GTC Val	TAC Tyr	ATG Met	CTA Leu	TTC Phe 75	ATG Met	TTC Phe	ATC Ile	TTC Phe	239
GCC Ala 80	GTG Val	GTG Val	GCT Ala	GTG Val	CAG Gln 85	CTC Leu	TTC Phe	AAG Lys	GGG Gly	AAA Lys 90	TTC Phe	TTC Phe	CAC His	TGC Cys	ACT Thr 95	287
GAC Asp	GAG Glu	TCC Ser	AAA Lys	GAG Glu 100	TTT Phe	GAG Glu	AAA Lys	GAT Asp	TGT Cys 105	CGA Arg	GGC Gly	AAA Lys	TAC Tyr	CTC Leu 110	CTC Leu	335
TAC Tyr	GAG Glu	AAG Lys	AAT Asn 115	GAG Glu	GTG Val	AAG Lys	GCG Ala	CGA Arg 120	GAC Asp	CGG Arg	GAG Glu	TGG Trp	AAG Lys 125	AAG Lys	TAT Tyr	383
GAA Glu	TTC Phe	CAT His 130	TAC Tyr	GAC Asp	AAT Asn	GTG Val	CTG Leu 135	TGG Trp	GCT Ala	CTG Leu	CTG Leu	ACC Thr 140	CTC Leu	TTC Phe	ACC Thr	431
GTG Val	TCC Ser 145	ACG Thr	GGA Gly	GAA Glu	GGC Gly	TGG Trp 150	CCA Pro	CAG Gln	GTC Val	CTC Leu	AAG Lys 155	CAT His	TCG Ser	GTG Val	GAC Asp	479
GCC Ala 160	ACC Thr	TTT Phe	GAG Glu	AAC Asn	CAG Gln 165	GGC Gly	CCC Pro	AGC Ser	CCC Pro	GGG Gly 170	TAC Tyr	CGC Arg	ATG Met	GAG Glu	ATG Met 175	527

TCC Ser	ATT Ile	TTC Phe	TAC Tyr	GTC Val 180	Val	TAC Tyr	TTT Phe	GTG Val	GTG Val 185	Phe	CCC Pro	TTC Phe	TTC Phe	TT1 Phe 190	GTC Val	575
AAT Asn	ATC Ile	TTT Phe	GTG Val 195	Ala	TTG Leu	ATC Ile	ATC Ile	ATC Ile 200	Thr	TTC Phe	CAG Gln	GAG Glu	CAA Gln 205	Gly	GAC Asp	623
AAG Lys	ATG Met	ATG Met 210	GAG Glu	GAA Glu	TAC Tyr	AGC Ser	CTG Leu 215	GAG Glu	AAA Lys	AAT Asn	GAG Glu	AGG Arg 220	GCC Ala	TGC Cys	ATT	671
GAT Asp	TTC Phe 225	GCC Ala	ATC Ile	AGC Ser	GCC Ala	AAG Lys 230	CCG Pro	CTG Leu	ACC Thr	CGA Arg	CAC His 235	ATG Met	CCG Pro	CAG Gln	AAC Asn	719
AAG Lys 240	CAG Gln	AGC Ser	TTC Phe	CAG Gln	TAC Tyr 245	CGC Arg	ATG Met	TGG Trp	CAG Gln	TTC Phe 250	GTG Val	GTG Val	TCT Ser	CCG Pro	CCT Pro 255	767
TTC Phe	GAG Glu	TAC Tyr	ACG Thr	ATC Ile 260	ATG Met	GCC Ala	ATG Met	ATC Ile	GCC Ala 265	CTC Leu	AAC Asn	ACC Thr	ATC Ile	GTG Val 270	CTT Leu	815
ATG Met	ATG Met	AAG Lys	TTC Phe 275	TAT Tyr	GGG Gly	GCT Ala	TCT Ser	GTT Val 280	GCT Ala	TAT Tyr	GAA Glu	AAT Asn	GCC Ala 285	CTG Leu	CGG Arg	863
GTG Val	TTC Phe	AAC Asn 290	ATC Ile	GTC Val	TTC Phe	ACC Thr	TCC Ser 295	CTC Leu	TTC Phe	TCT Ser	CTG Leu	GAA Glu 300	TGT Cys	GTG Val	CTG Leu	911
AAA Lys	GTC Val 305	ATG Met	GCT Ala	TTT Phe	GGG Gly	ATT Ile 310	CTG Leu	AAT Asn	TAT Tyr	TTC Phe	CGC Arg 315	GAT Asp	GCC Ala	TGG Trp	AAC Asn	959
ATC Ile 320	TTC Phe	GAC Asp	TTT Phe	GTG Val	ACT Thr 325	GTT Val	CTG Leu	GGC Gly	AGC Ser	ATC Ile 330	ACC Thr	GAT Asp	ATC Ile	CTC Leu	GTG Val 335	1007
ACT Thr	GAG Glu	TTT Phe	GGG Gly	AAT Asn 340	AAC Asn	TTC Phe	ATC Ile	AAC Asn	CTG Leu 345	AGC Ser	TTT Phe	CTC Leu	CGC Arg	CTC Leu 350	TTC Phe	1055
CGA Arg	GCT Ala	GCC Ala	CGG Arg 355	CTC Leu	ATC Ile	AAA Lys	CTT Leu	CTC Leu 360	CGT Arg	CAG Gln	GGT Gly	TAC Tyr	ACC Thr 365	ATC Ile	CGC Arg	1103
ATT Ile	CTT Leu	CTC Leu 370	TGG Trp	ACC Thr	TTT Phe	GTG Val	CAG Gln 375	TCC Ser	TTC Phe	AAG Lys	GCC Ala	CTG Leu 380	CCT Pro	TAT Tyr	GTC Val	1151
TGT Cys	CTG Leu 385	CTG Leu	ATC Ile	GCC Ala	ATG Met	CTC Leu 390	TTC Phe	TTC Phe	ATC Ile	TAT Tyr	GCC Ala 395	ATC Ile	ATT Ile	GGG Gly	ATG Met	1199
CAG Gln 400	GTG Val	TTT Phe	GGT Gly	AAC Asn	ATT Ile 405	GGC Gly	ATC Ile	GAC Asp	GTG Val	GAG Glu 410	GAC Asp	GAG Glu	GAC Asp	AGT Ser	GAT Asp 415	1247
GAA Glu	GAT Asp	GAG Glu	TTC Phe	CAA Gln 420	ATC Ile	ACT Thr	GAG Glu	CAC His	AAT Asn 425	AAC Asn	TTC Phe	CGG Arg	ACC Thr	TTC Phe 430	TTC Phe	1295

CAG Gln	GCC Ala	CTC Leu	ATG Met 435	CTT Leu	CTC Leu	TTC Phe	CGG Arg	AGT Ser 440	GCC Ala	ACC Thr	GGG Gly	GAA Glu	GCT Ala 445	TGG Trp	CAC His	1343
AAC Asn	ATC Ile	ATG Met 450	CTT Leu	TCC Ser	TGC Cys	CTC Leu	AGC Ser 455	GGG Gly	AAA Lys	CCG Pro	TGT Cys	GAT Asp 460	AAG Lys	AAC Asn	TCT Ser	1391
									GAA Glu							1439
									CTG Leu							1487
GCC Ala	GTC Val	ATC Ile	ATG Met	GAC Asp 500	AAC Asn	TTT Phe	GAG Glu	TAC Tyr	CTC Leu 505	ACC Thr	CGA Arg	GAC Asp	TCC Ser	TCC Ser 510	ATC Ile	1535
CTG Leu	GGC Gly	CCC Pro	CAC His 515	CAC His	CTG Leu	GAT Asp	GAG Glu	TAC Tyr 520	GTG Val	CGT Arg	GTC Val	TGG Trp	GCC Ala 525	GAG Glu	TAT Tyr	1583
GAC Asp	CCC Pro	GCA Ala 530	GCT Ala	TGG Trp	GGC Gly	CGC Arg	ATG Met 535	CCT Pro	TAC Tyr	CTG Leu	GAC Asp	ATG Met 540	TAT Tyr	CAG Gln	ATG Met	1631
CTG Leu	AGA Arg 545	CAC His	ATG Met	TCT Ser	CCG Pro	CCC Pro 550	CTG Leu	GGT Gly	CTG Leu	GGG Gly	AAG Lys 555	AAG Lys	TGT Cys	CCG Pro	GCC Ala	1679
AGA Arg 560	GTG Val	GCT Ala	TAC Tyr	AAG Lys	CGG Arg 565	CTT Leu	CTG Leu	CGG Arg	ATG Met	GAC Asp 570	CTG Leu	CCC Pro	GTC Val	GCA Ala	GAT Asp 575	1727
GAC Asp	AAC Asn	ACC Thr	GTC Val	CAC His 580	TTC Phe	AAT Asn	TCC Ser	ACC Thr	CTC Leu 585	ATG Met	GCT Ala	CTG Leu	ATC Ile	CGC Arg 590	ACA Thr	1775
									GGA Gly							1823
GAC Asp	GCT Ala	GAG Glu 610	CTG Leu	CGG Arg	AAG Lys	GAG Glu	ATG Met 615	ATG Met	GCG Ala	ATT Ile	TGG Trp	CCC Pro 620	AAT Asn	CTG Leu	TCC Ser	1871
CAG Gln	AAG Lys 625	ACG Thr	CTA Leu	GAC Asp	CTG Leu	CTG Leu 630	GTC Val	ACA Thr	CCT Pro	CAC His	AAG Lys 635	TCC Ser	ACG Thr	GAC Asp	CTC Leu	1919
ACC Thr 640	GTG Val	GGG Gly	AAG Lys	ATC Ile	TAC Tyr 645	GCA Ala	GCC Ala	ATG Met	ATG Met	ATC Ile 650	ATG Met	GAG Glu	TAC Tyr	TAC Tyr	CGG Arg 655	1967
CAG Gln	AGC Ser	AAG Lys	GCC Ala	AAG Lys 660	AAG Lys	CTG Leu	CAG Gln	GCC Ala	ATG Met 665	CGC Arg	GAG Glu	GAG Glu	CAG Gln	GAC Asp 670	CGG Arg	2015
ACA Thr	CCC Pro	CTC Leu	ATG Met 675	TTC Phe	CAG Gln	CGC Arg	ATG Met	GAG Glu 680	CCC Pro	CCG Pro	TCC Ser	CCA Pro	ACG Thr 685	CAG Gln	GAA Glu	2063

GGG Gly	GGA Gly	CCT Pro 690	Gly	CAG Gln	AAC Asn	GCC Ala	CTC Leu 695	CCC Pro	TCC Ser	ACC Thr	CAG Gln	CTG Leu 700	Asp	CCA Pro	GGA Gly	2111
GGA Gly	GCC Ala 705	CTG Leu	ATG Met	GCT Ala	CAC His	GAA Glu 710	AGC Ser	GGC Gly	CTC Leu	AAG Lys	GAG Glu 715	AGC Ser	CCG Pro	TCC Ser	TGG Trp	2159
GTG Val 720	ACC Thr	CAG Gln	CGT Arg	GCC Ala	CAG Gln 725	GAG Glu	ATG Met	TTC Phe	CAG Gln	AAG Lys 730	ACG Thr	GGC Gly	ACA Thr	TGG Trp	AGT Ser 735	2207
CCG Pro	GAA Glu	CAA Gln	GGC Gly	CCC Pro 740	CCT Pro	ACC Thr	GAC Asp	ATG Met	CCC Pro 745	AAC Asn	AGC Ser	CAG Gln	CCT Pro	AAC Asn 750	TCT Ser	2255
CAG Gln	TCC Ser	GTG Val	GAG Glu 755	ATG Met	CGA Arg	GAG Glu	ATG Met	GGC Gly 760	AGA Arg	GAT Asp	GGC Gly	TAC Tyr	TCC Ser 765	GAC Asp	AGC Ser	2303
GAG Glu	CAC His	TAC Tyr 770	CTC Leu	CCC Pro	ATG Met	GAA Glu	GGC Gly 775	CAG Gln	GGC Gly	CGG Arg	GCT Ala	GCC Ala 780	TCC Ser	ATG Met	CCC Pro	2351
CGC Arg	CTC Leu 785	CCT Pro	GCA Ala	GAG Glu	AAC Asn	CAG Gln 790	ACC Thr	ATC Ile	TCA Ser	GAC Asp	ACC Thr 795	AGC Ser	CCC Pro	ATG Met	AAG Lys	2399
CGT Arg 800	TCA Ser	GCC Ala	TCC Ser	GTG Val	CTG Leu 805	GGC Gly	CCC Pro	AAG Lys	GCC Ala	CGA Arg 810	CGC Arg	CTG Leu	GAC Asp	GAT Asp	TAC Tyr 815	2447
TCG Ser	CTG Leu	GAG Glu	CGG Arg	GTC Val 820	CCG Pro	CCC Pro	GAG Glu	GAG Glu	AAC Asn 825	CAG Gln	CGG Arg	CAC His	CAC His	CAG Gln 830	CGG Arg	2495
CGC Arg	CGC Arg	GAC Asp	CGC Arg 835	AGC Ser	CAC His	CGC Arg	GCC Ala	TCT Ser 840	GAG Glu	CGC Arg	TCC Ser	CTG Leu	GGC Gly 845	CGC Arg	TAC Tyr	2543
ACC Thr	GAT Asp	GTG Val 850	GAC Asp	ACA Thr	GGC Gly	TTG Leu	GGG Gly 855	ACA Thr	GAC Asp	CTG Leu	AGC Ser	ATG Met 860	ACC Thr	ACC Thr	CAA Gln	2591
TCC Ser	GGG Gly 865	GAC Asp	CTG Leu	CCG Pro	TCG Ser	AAG Lys 870	GAG Glu	CGG Arg	GAC Asp	CAG Gln	GAG Glu 875	CGG Arg	GGC Gly	CGG Arg	CCC Pro	2639
AAG Lys 880	GAT Asp	CGG Arg	AAG Lys	CAT His	CGA Arg 885	CAG Gln	CAC His	CAC His	CAC His	CAC His 890	CAC His	CAC His	CAC His	CAC His	CAC His 895	2687
CAT His	CCC Pro	CCG Pro	CCC Pro	CCC Pro 900	GAC Asp	AAG Lys	GAC Asp	CGC Arg	TAT Tyr 905	GCC Ala	CAG Gln	GAA Glu	CGG Arg	CCG Pro 910	GAC Asp	2735
CAC His	GGC Gly	CGG Arg	GCA Ala 915	CGG Arg	GCT Ala	CGG Arg	GAC Asp	CAG Gln 920	CGC Arg	TGG Trp	TCC Ser	CGC Arg	TCG Ser 925	CCC Pro	AGC Ser	2783
GAG Glu	GGC Gly	CGA Arg 930	GAG Glu	CAC His	ATG Met	GCG Ala	CAC His 935	CGG Arg	CAG Gln	GGC Gly	AGT Ser	AGT Ser 940	TCC Ser	GTA Val	AGT Ser	2831

						ACA Thr 950										2879
						ACC Thr										2927
						AAG Lys										2975
						CAG Gln			Gln					Pro		3023
			Thr			CCT Pro		Arg					Thr			3071
		Ala				CCG Pro 1030	Pro					Ser				3119
	Pro					CGG Arg					Ala					3167
					His	GGC Gly				Trp					Pro	3215
				Gly		CCG Pro			Arg					Tyr		3263
			Tyr			GCC Ala		Gly					Gly			3311
		Met				TAC Tyr 1110	Asp					Val				3359
	Ser					CGC Arg					Pro					3407
					Pro	TCT Ser				Arg					Gly	3455
				His		CTG Leu			Pro					Ser		3503
			His			TAC Tyr		Glu					Trp		TA	3550
AGC	CCGGG	GCG F	AGG													3563

WO 99/45944

67

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1182 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
- Ile Leu Pro Leu Asp Phe Ile Val Val Ser Gly Ala Leu Val Ala Phe
 1 5 10 15
- Ala Phe Thr Gly Asn Ser Lys Gly Lys Asp Ile Asn Thr Ile Lys Ser 20 25 30
- Leu Arg Val Leu Arg Val Leu Arg Pro Leu Lys Thr Ile Lys Arg Leu 35 40 45
- Pro Lys Leu Lys Ala Val Phe Asp Cys Val Val Asn Ser Leu Lys Asn 50 55 60
- Val Phe Asn Ile Leu Ile Val Tyr Met Leu Phe Met Phe Ile Phe Ala 65 70 75 80
- Val Val Ala Val Gln Leu Phe Lys Gly Lys Phe Phe His Cys Thr Asp 85 90 95
- Glu Ser Lys Glu Phe Glu Lys Asp Cys Arg Gly Lys Tyr Leu Leu Tyr 100 105 110
- Glu Lys Asn Glu Val Lys Ala Arg Asp Arg Glu Trp Lys Lys Tyr Glu 115 120 125
- Phe His Tyr Asp Asn Val Leu Trp Ala Leu Leu Thr Leu Phe Thr Val 130 135 140
- Ser Thr Gly Glu Gly Trp Pro Gln Val Leu Lys His Ser Val Asp Ala 145 150 155 160
- Thr Phe Glu Asn Gln Gly Pro Ser Pro Gly Tyr Arg Met Glu Met Ser 165 170 175
- Ile Phe Tyr Val Val Tyr Phe Val Val Phe Pro Phe Phe Val Asn 180 185 190
- Ile Phe Val Ala Leu Ile Ile Ile Thr Phe Gln Glu Gln Gly Asp Lys 195 200 205
- Met Met Glu Glu Tyr Ser Leu Glu Lys Asn Glu Arg Ala Cys Ile Asp 210 215 220
- Phe Ala Ile Ser Ala Lys Pro Leu Thr Arg His Met Pro Gln Asn Lys 225 230 235 240
- Gln Ser Phe Gln Tyr Arg Met Trp Gln Phe Val Val Ser Pro Phe 245 250 255
- Glu Tyr Thr Ile Met Ala Met Ile Ala Leu Asn Thr Ile Val Leu Met 260 265 270
- Met Lys Phe Tyr Gly Ala Ser Val Ala Tyr Glu Asn Ala Leu Arg Val

		275					280					285			
Phe	Asn 290	Ile	Val	Phe	Thr	Ser 295	Leu	Phe	Ser	Leu	Glu 300	Cys	Val	Leu	Lys
Val 305	Met	Ala	Phe	Gly	Ile 310	Leu	Asn	Tyr	Phe	Arg 315	Asp	Ala	Trp	Asn	Ile 320
Phe	Asp	Phe	Val	Thr 325	Val	Leu	Gly	Ser	Ile 330	Thr	Asp	Ile	Leu	Val 335	Thr
Glu	Phe	Gly	Asn 340	Asn	Phe	Ile	Asn	Leu 345		Phe	Leu	Arg	Leu 350	Phe	Arg
Ala	Ala	Arg 355	Leu	Ile	Lys	Leu	Leu 360	Arg	Gln	Gly	Tyr	Thr 365	Ile	Arg	Ile
Leu	Leu 370	Trp	Thr	Phe	Val	Gln 375	Ser	Phe	Lys	Ala	Leu 380	Pro	Tyr	Val	Cys
Leu 385	Leu	Ile	Ala	Met	Leu 390	Phe	Phe	Ile	Tyr	Ala 395	Ile	Ile	Gly	Met	Gln 400
Val	Phe	Gly	Asn	Ile 405	Gly	Ile	Asp	Val	Glu 410	Asp	Glu	Asp	Ser	Asp 415	Glu
Asp	Glu	Phe	Gln 420	Ile	Thr	Glu	His	Asn 425	Asn	Phe	Arg	Thr	Phe 430	Phe	Gln
Ala	Leu	Met 435	Leu	Leu	Phe	Arg	Ser 440	Ala	Thr	Gly	Glu	Ala 445	Trp	His	Asn
Ile	Met 450	Leu	Ser	Cys	Leu	Ser 455	Gly	Lys	Pro	Cys	Asp 460	Lys	Asn	Ser	Gly
Ile 465	Leu	Thr	Arg	Glu	Cys 470	Gly	Asn	Glu	Phe	Ala 475	Tyr	Phe	Tyr	Phe	Val 480
Ser	Phe	Ile	Phe	Leu 485	Cys	Ser	Phe	Leu	Met 490	Leu	Asn	Leu	Phe	Val 495	Ala
Val	Ile	Met	Asp 500	Asn	Phe	Glu	Tyr	Leu 505	Thr	Arg	Asp	Ser	Ser 510	Ile	Leu
Gly	Pro	His 515	His	Leu	Asp	Glu	Tyr 520	Val	Arg	Val	Trp	Ala 525	Glu	Tyr	Asp
Pro	Ala 530	Ala	Trp	Gly	Arg	Met 535	Pro	Tyr	Leu	Asp	Met 540	Tyr	Gln	Met	Leu
Arg 545	His	Met	Ser	Pro	Pro 550	Leu	Gly	Leu	Gly	Lys 555	Lys	Cys	Pro	Ala	Arg 560
Val	Ala	Tyr	Lys	Arg 565	Leu	Leu	Arg	Met	Asp 570	Leu	Pro	Val	Ala	Asp 575	Asp
Asn	Thr	Val	His 580	Phe	Asn	Ser	Thr	Leu 585	Met	Ala	Leu	Ile	Arg 590	Thr	Ala
Leu	Asp	Ile 595	Lys	Ile	Ala	Lys	Gly 600	Gly	Ala	Asp	Lys	Gln 605	Gln	Met	Asp

Ser Pro Ala Pro Ser Thr Ser Gly Thr Ser Thr Pro Arg Arg Gly Arg 945 950 955 960

Arg Gln Leu Pro Gln Thr Pro Ser Thr Pro Arg Pro His Val Ser Tyr
965 970

Ser Pro Val Ile Arg Lys Ala Gly Gly Ser Gly Pro Pro Gln Gln Gln 980 985 990

Gln Gln Gln Gln Gln Gln Gln Ala Val Ala Arg Pro Gly Arg 995 1000 1005

Ala Ala Thr Ser Gly Pro Arg Arg Tyr Pro Gly Pro Thr Ala Glu Pro 1010 1015 1020

Leu Ala Gly Asp Arg Pro Pro Thr Gly Gly His Ser Ser Gly Arg Ser 1025 1030 1035 1040

Pro Arg Met Glu Arg Arg Val Pro Gly Pro Ala Arg Ser Glu Ser Pro 1045 1050 1055

Arg Ala Cys Arg His Gly Gly Ala Arg Trp Pro Ala Ser Gly Pro His
1060 1065 1070

Val Ser Glu Gly Pro Pro Gly Pro Arg His His Gly Tyr Tyr Arg Gly 1075 1080 1085

Ser Asp Tyr Asp Glu Ala Asp Gly Pro Gly Ser Gly Gly Glu Glu 1090 1095 1100

Ala Met Ala Gly Ala Tyr Asp Ala Pro Pro Pro Val Arg His Ala Ser 1105 1110 1115 1120

Ser Gly Ala Thr Gly Arg Ser Pro Arg Thr Pro Arg Ala Ser Gly Pro 1125 1130 1135

Ala Cys Ala Ser Pro Ser Arg His Gly Arg Arg Leu Pro Asn Gly Tyr
1140 1145 1150

Tyr Pro Ala His Gly Leu Ala Arg Pro Arg Gly Pro Gly Ser Arg Lys 1155 1160 1165

Gly Leu His Glu Pro Tyr Ser Glu Ser Asp Asp Trp Cys 1170 1180

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4279 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 239..3794
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GAATTCCGCC	CCCCTCAGAG	GCGCCGGAGC CO	CGGAATCCC	GCTCGGAGCC	AGCCAGCCGT	60
CCCGAGCTAC	CAGCAGGTTT	CATTGAAAAC AG	GATCCTGCA	AAAGTTCCAG	GTGCCCACAC 1	120
TGGAAACTTG	GAGATCCTGC	TTCCCAGACC AC	CAGCTGTGG	GGAACTTGGG	GTGGAGCAGA 1	180
GAAGTTTCTG	TATTCAGCTG	CCAGGCAGA GO	GAGAATGGG	GTCTCCACAG	CCTGAAGA 2	238
		T AAA GAC TCC n Lys Asp Sen				86
		G CCC CGG GAA / Pro Arg Glu 25	u Glu Leu			34
	Gly Gly Va	C AGC ACG TCC Ser Thr Ser 40				82
		C AAG AAG GCC A Lys Lys Ala 55				30
		GGT CGG AGT Gly Arg Ser				78
		CCA AAA AAG Pro Lys Lys				26
		TCC GAT CTG Ser Asp Leu 105	ı Asp Ser			74
	Asp Gly Ser	AGC GAC CCT Ser Asp Pro 120				22
		ATC TAC AGC Ile Tyr Ser 135	r Pro Gly			70
		CTG TCC CAG Leu Ser Gln				18
		CCT TCC CCT Pro Ser Pro				66
		TTT GAA CCC Phe Glu Pro 185	His Pro			14
	Ala Pro Met	GAG CCC CCC Glu Pro Pro 200				62
		CCT CAC CCA Pro His Pro 215	Gln Leu			10

GGT Gly 225	Gly	GTT Val	TTG Leu	TCT Ser	GGA Gly 230	Pro	CCA Pro	ATG Met	GGT Gly	CCC Pro 235	Lys	GGG Gly	GGA Gly	GGG Gly	GCT Ala 240	958
GCC Ala	TCA Ser	TCA Ser	GTG Val	GGG Gly 245	GGC Gly	CCT Pro	AAT Asn	GGG Gly	GGT Gly 250	AAG Lys	CAG Gln	CAC His	CCC Pro	CCA Pro 255	CCC Pro	1006
ACT Thr	ACT Thr	CCC Pro	ATT Ile 260	TCA Ser	GTA Val	TCA Ser	AGC Ser	TCT Ser 265	GGG Gly	GCT Ala	AGT Ser	GGT Gly	GCT Ala 270	CCC Pro	CCA Pro	1054
ACA Thr	AAG Lys	CCG Pro 275	CCT Pro	ACC Thr	ACT Thr	CCA Pro	GTG Val 280	GGT Gly	GGT Gly	GGG Gly	AAC Asn	CTA Leu 285	CCT Pro	TCT Ser	GCT Ala	1102
CCA Pro	CCA Pro 290	CCA Pro	GCC Ala	AAC Asn	TTC Phe	CCC Pro 295	CAT His	GTG Val	ACA Thr	CCG Pro	AAC Asn 300	CTG Leu	CCT Pro	CCC Pro	CCA Pro	1150
CCT Pro 305	GCC Ala	CTG Leu	AGA Arg	CCC Pro	CTC Leu 310	AAC Asn	AAT Asn	GCA Ala	TCA Ser	GCC Ala 315	TCT Ser	CCC Pro	CCT Pro	GGC Gly	CTG Leu 320	1198
GGG Gly	GCC Ala	CAA Gln	CCA Pro	CTA Leu 325	CCT Pro	GGT Gly	CAT His	CTG Leu	CCC Pro 330	TCT Ser	CCC Pro	TAC Tyr	GCC Ala	ATG Met 335	GGA Gly	1246
CAG Gln	GGT Gly	ATG Met	GGT Gly 340	GGA Gly	CTT Leu	CCT Pro	CCT Pro	GGC Gly 345	CCA Pro	GAG Glu	AAG Lys	GGC Gly	CCA Pro 350	ACT Thr	CTG Leu	1294
GCT Ala	CCT Pro	TCA Ser 355	CCC Pro	CAC His	TCT Ser	CTG Leu	CCT Pro 360	CCT Pro	GCT Ala	TCC Ser	TCT Ser	TCT Ser 365	GCT Ala	CCA Pro	GCG Ala	1342
CCC Pro	CCC Pro 370	ATG Met	AGG Arg	TTT Phe	CCT Pro	TAT Tyr 375	TCA Ser	TCC Ser	TCT Ser	AGT Ser	AGT Ser 380	AGC Ser	TCT Ser	GCA Ala	GCA Ala	1390
GCC Ala 385	TCC Ser	TCT Ser	TCC Ser	AGT Ser	TCT Ser 390	TCC Ser	TCC Ser	TCT Ser	TCC Ser	TCT Ser 395	GCC Ala	TCC Ser	CCC Pro	TTC Phe	CCA Pro 400	1438
GCT Ala	TCC Ser	CAG Gln	GCA Ala	TTG Leu 405	CCC Pro	AGC Ser	TAC Tyr	CCC Pro	CAC His 410	TCT Ser	TTC Phe	CCT Pro	CCC Pro	CCA Pro 415	ACA Thr	1486
AGC Ser	CTC Leu	TCT Ser	GTC Val 420	TCC Ser	AAT Asn	CAG Gln	CCC Pro	CCC Pro 425	AAG Lys	TAT Tyr	ACT Thr	CAG Gln	CCT Pro 430	TCT Ser	CTC Leu	1534
CCA Pro	TCC Ser	CAG Gln 435	GCT Ala	GTG Val	TGG Trp	AGC Ser	CAG Gln 440	GGT Gly	CCC Pro	CCA Pro	CCA Pro	CCT Pro 445	CCT Pro	CCC Pro	TAT Tyr	1582
GGC Gly	CGC Arg 450	CTC Leu	TTA Leu	GCC Ala	AAC Asn	AGC Ser 455	AAT Asn	GCC Ala	CAT His	CCA Pro	GGC Gly 460	CCC Pro	TTC Phe	CCT Pro	CCC Pro	1630
TCT Ser 465	ACT Thr	GGG Gly	GCC Ala	CAG Gln	TCC Ser 470	ACC Thr	GCC Ala	CAC His	CCA Pro	CCA Pro 475	GTC Val	TCA Ser	ACA Thr	CAT His	CAC His 480	1678

WO 99/45944

													CAG Gln		CAG Gln	1726
													TTT Phe 510			1774
CCA Pro	CTG Leu	GAG Glu 515	GGC Gly	GGT Gly	AGC Ser	TCC Ser	CAC His 520	CAC His	GCA Ala	CAC His	CCT Pro	TAC Tyr 525	GCC Ala	ATG Met	TCT Ser	1822
CCC Pro	TCC Ser 530	CTG Leu	GGG Gly	TCT Ser	CTG Leu	AGG Arg 535	CCC Pro	TAC Tyr	CCA Pro	CCA Pro	GGG Gly 540	CCA Pro	GCA Ala	CAC His	CTG Leu	1870
CCC Pro 545	CCA Pro	CCT Pro	CAC His	AGC Ser	CAG Gln 550	GTG Val	TCC Ser	TAC Tyr	AGC Ser	CAA Gln 555	GCA Ala	GGC Gly	CCC Pro	AAT Asn	GGC Gly 560	1918
CCT Pro	CCA Pro	GTC Val	TCT Ser	TCC Ser 565	TCT Ser	TCC Ser	AAC Asn	TCT Ser	TCC Ser 570	TCT Ser	TCC Ser	ACT Thr	TCT Ser	CAA Gln 575	GGG Gly	1966
TCC Ser	TAC Tyr	CCA Pro	TGT Cys 580	TCA Ser	CAC His	CCC Pro	TCC Ser	CCT Pro 585	TCC Ser	CAG Gln	GGC Gly	CCT Pro	CAA Gln 590	GGG Gly	GCG Ala	2014
													TCG Ser			2062
CTT Leu	TCC Ser 610	ACG Thr	GTC Val	ATT Ile	GCC Ala	ACC Thr 615	GTG Val	GCT Ala	TCC Ser	TCG Ser	CCA Pro 620	GCA Ala	GGC Gly	TAC Tyr	AAA Lys	2110
ACG Thr 625	GCC Ala	TCC Ser	CCA Pro	CCT Pro	GGG Gly 630	CCC Pro	CCA Pro	CCG Pro	TAC Tyr	GGA Gly 635	AAG Lys	AGA Arg	GCC Ala	CCG Pro	TCC Ser 640	2158
CCG Pro	GGG Gly	GCC Ala	TAC Tyr	AAG Lys 645	ACA Thr	GCC Ala	ACC Thr	CCA Pro	CCC Pro 650	GGA Gly	TAC Tyr	AAA Lys	CCC Pro	GGG Gly 655	TCG Ser	2206
CCT Pro	CCC Pro	TCC Ser	TTC Phe 660	CGA Arg	ACG Thr	GGG Gly	ACC Thr	CCA Pro 665	CCG Pro	GGC Gly	TAT Tyr	CGA Arg	GGA Gly 670	ACC Thr	TCG Ser	2254
CCA Pro	CCT Pro	GCA Ala 675	GGC Gly	CCA Pro	GGG Gly	ACC Thr	TTC Phe 680	AAG Lys	CCG Pro	GGC Gly	TCG Ser	CCC Pro 685	ACC Thr	GTG Val	GGA Gly	2302
CCT Pro	GGG Gly 690	CCC Pro	CTG Leu	CCA Pro	CCT Pro	GCG Ala 695	GGG Gly	CCC Pro	TCA Ser	GGC Gly	CTG Leu 700	CCA Pro	TCG Ser	CTG Leu	CCA Pro	2350
CCA Pro 705	CCA Pro	CCT Pro	GCG Ala	GCC Ala	CCT Pro 710	GCC Ala	TCA Ser	GGG Gly	CCG Pro	CCC Pro 715	CTG Leu	AGC Ser	GCC Ala	ACG Thr	CAG Gln 720	2398
ATC Ile	AAA Lys	CAG Gln	GAG Glu	CCG Pro 725	GCT Ala	GAG Glu	GAG Glu	TAT Tyr	GAG Glu 730	ACC Thr	CCC Pro	GAG Glu	AGC Ser	CCG Pro 735	GTG Val	2446

						TCG Ser										2494
						GCC Ala										2542
						AGC Ser 775										2590
						CGG Arg										2638
						CGC Arg										2686
GAA Glu	CGC Arg	GAG Glu	AAA Lys 820	GAG Glu	CGC Arg	GAG Glu	CGC Arg	GAG Glu 825	AAG Lys	GAG Glu	CGC Arg	GAG Glu	CTT Leu 830	GAA Glu	CGC Arg	2734
						GAG Glu										2782
						CGC Arg 855										2830
						CTG Leu										2878
						CCT Pro										2926
						CTG Leu										2974
						TAC Tyr										3022
GAA Glu	CGG Arg 930	GAA Glu	GCC Ala	CGT Arg	GAA Glu	CGA Arg 935	GAC Asp	CTC Leu	CGT Arg	GAC Asp	CGC Arg 940	CTC Leu	AAG Lys	CCT Pro	GGC Gly	3070
TTT Phe 945	GAG Glu	GTG Val	AAG Lys	CCT Pro	AGT Ser 950	GAG Glu	CTG Leu	GAA Glu	CCC Pro	CTA Leu 955	CAT His	GGG Gly	GTC Val	CCT Pro	GGG Gly 960	3118
CCG Pro	GGC Gly	TTG Leu	GAT Asp	CCC Pro 965	TTT Phe	CCC Pro	CGA Arg	CAT His	GGG Gly 970	GGC Gly	CTG Leu	GCT Ala	CTG Leu	CAG Gln 975	CCT Pro	3166
GGC Gly	CCA Pro	CCT Pro	GGC Gly 980	CTG Leu	CAC His	CCT Pro	TTC Phe	CCC Pro 985	TTT Phe	CAT His	CCG Pro	AGC Ser	CTG Leu 990	GGG Gly	CCC Pro	3214

PCT/US99/05250

			, 5			
CTG GAG CGA GAA Leu Glu Arg Glu 995						3262
GAC ATG TCC TAT Asp Met Ser Tyr 1010		g Leu Ala	Ala Glu			3310
AGG GTG GCG GGC Arg Val Ala Gly 1025				Arg Leu Gln		3358
AAT GTG ACT CCC Asn Val Thr Pro						3406
CAC CTG CAC CAG His Leu His Gln 106	Gln Asp Ala		Ala Ala		Val His	3454
CCT CTC ATT GAC Pro Leu Ile Asp 1075						3502
TAC CCA GCT GGA Tyr Pro Ala Gly 1090		Asn Pro	Leu Leu			3550
GAG AAC GAA GTT Glu Asn Glu Val 1105						3598
CTG CCG GCC TCC Leu Pro Ala Ser		a Pro Met				3646
GCC ATG CAC GCA Ala Met His Ala 1140	Gln Ser Ala		Gln Arg 1		Glu Gln	3694
CAG CAG TGG CTG Gln Gln Trp Leu 1155						3742
GCC CAG GAG GAC Ala Gln Glu Asp 1170		His Leu	Lys Lys (3790
CTG T AGAACCTGCC Leu 118	G ATCAAGAGAG	G CACCATGG	CT CCTAC	ATTGG ACCTTG	GAGC	3844
ACCCCCACCC TCCCC	CCCACC GTGC	CTTGG CCT	GCCACCC A	AGAGCCAAGA G	GGTACTGCT	3904
CAGTTGCAGG GCCT	CCGCAG CTGGA	ACAGAG AGT	GGGGGAG (GGAGGGACAG A	CAGAAGGCC	3964
AAGGCCCGAT GTGG	rgtgca gaggi	GGGGA GGT	GGCGAGG A	ATGGGGACAG A	AAGGGAACA	4024
GAATCTTGGA CCAG	GTCTCT CTTC	CTTGTC CCC	CCTGCTT :	TTCTCCTCCC C	CATGCCCAA	4084
CCCCTGTGGC CGCCC	GCCCCT CCCCT	GCCCC GTT	GGTGTGA	ттатттсатс т	GTTAGATGT	4144
GGCTGTTTTG CGTA	GCATCG TGTG	CCACCC CTG	CCCCTCC (CCGATCCCTG T	GTGCGCGCC	4204

CCCTCTGCAA TGTATGCCCC TTGCCCCTTC CCCACACTAA TAATTTATAT ATATAAATAT 4264 CTATATGACG CTCTT 4279

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1185 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Lys Thr Arg Gln Asn Lys Asp Ser Met Ser Met Arg Ser Gly Arg

Lys Lys Glu Ala Pro Gly Pro Arg Glu Glu Leu Arg Ser Arg Gly Arg 25

Ala Ser Pro Gly Gly Val Ser Thr Ser Ser Ser Asp Gly Lys Ala Glu

Lys Ser Arg Gln Thr Ala Lys Lys Ala Arg Val Glu Glu Ala Ser Thr

Pro Lys Val Asn Lys Gln Gly Arg Ser Glu Glu Ile Ser Glu Ser Glu

Ser Glu Glu Thr Asn Ala Pro Lys Lys Thr Lys Thr Glu Gln Glu Leu

Pro Arg Pro Gln Ser Pro Ser Asp Leu Asp Ser Leu Asp Gly Arg Ser

Leu Asn Asp Asp Gly Ser Ser Asp Pro Arg Asp Ile Asp Gln Asp Asn

Arg Ser Thr Ser Pro Ser Ile Tyr Ser Pro Gly Ser Val Glu Asn Asp 135

Ser Asp Ser Ser Ser Gly Leu Ser Gln Gly Pro Ala Arg Pro Tyr His

Pro Pro Pro Leu Phe Pro Pro Ser Pro Gln Pro Pro Asp Ser Thr Pro

Arg Gln Pro Glu Ala Ser Phe Glu Pro His Pro Ser Val Thr Pro Thr 185

Gly Tyr His Ala Pro Met Glu Pro Pro Thr Ser Arg Met Phe Gln Ala 205

Pro Pro Gly Ala Pro Pro Pro His Pro Gln Leu Tyr Pro Gly Gly Thr 215

Gly Gly Val Leu Ser Gly Pro Pro Met Gly Pro Lys Gly Gly Ala

Ala Ser Ser Val Gly Gly Pro Asn Gly Gly Lys Gln His Pro Pro Pro 250

Thr	Thr	Pro	Ile 260		Val	Ser	Ser	Ser 265		⁄ Ala	Ser	Gly	Ala 270		Pro
Thr	Lys	Pro 275		Thr	Thr	Pro	Val 280		Gly	Gly	Asn	Leu 285		Ser	Ala
Pro	Pro 290		Ala	Asn	Phe	Pro 295		Val	Thr	Pro	Asn 300		Pro	Pro	Pro
Pro 305	Ala	Leu	Arg	Pro	Leu 310	Asn	Asn	Ala	Ser	Ala 315	Ser	Pro	Pro	Gly	Leu 320
Gly	Ala	Gln	Pro	Leu 325	Pro	Gly	His	Leu	Pro 330		Pro	Tyr	Ala	Met 335	Gly
Gln	Gly	Met	Gly 340	Gly	Leu	Pro	Pro	Gly 345	Pro	Glu	Lys	Gly	Pro 350	Thr	Leu
Ala	Pro	Ser 355	Pro	His	Ser	Leu	Pro 360	Pro	Ala	Ser	Ser	Ser 365	Ala	Pro	Ala
Pro	Pro 370	Met	Arg	Phe	Pro	Tyr 375	Ser	Ser	Ser	Ser	Ser 380	Ser	Ser	Ala	Ala
Ala 385	Ser	Ser	Ser	Ser	Ser 390	Ser	Ser	Ser	Ser	Ser 395	Ala	Ser	Pro	Phe	Pro 400
Ala	Ser	Gln	Ala	Leu 405	Pro	Ser	Tyr	Pro	His 410	Ser	Phe	Pro	Pro	Pro 415	Thr
Ser	Leu	Ser	Val 420	Ser	Asn	Gln	Pro	Pro 425	Lys	Tyr	Thr	Gln	Pro 430	Ser	Leu
Pro	Ser	Gln 435	Ala	Val	Trp	Ser	Gln 440	Gly	Pro	Pro	Pro	Pro 445	Pro	Pro	Tyr
Gly	Arg 450	Leu	Leu	Ala	Asn	Ser 455	Asn	Ala	His	Pro	Gly 460	Pro	Phe	Pro	Pro
Ser 465	Thr	Gly	Ala	Gln	Ser 470	Thr	Ala	His	Pro	Pro 475	Val	Ser	Thr	His	His 480
His	His	His	Gln	Gln 485	Gln	Gln	Gln	Gln	Gln 490	Gln	Gln	Gln	Gln	Gln 495	Gln
Gln	His	His	Gly 500	Asn	Ser	Gly	Pro	Pro 505	Pro	Pro	Gly	Ala	Phe 510	Pro	His
Pro	Leu	Glu 515	Gly	Gly	Ser	Ser	His 520	His	Ala	His	Pro	Tyr 525	Ala	Met	Ser
Pro	Ser 530	Leu	Gly	Ser	Leu	Arg 535	Pro	Tyr	Pro	Pro	Gly 540	Pro	Ala	His	Leu
Pro 545	Pro	Pro	His	Ser	Gln 550	Val	Ser	Tyr	Ser	Gln 555	Ala	Gly	Pro	Asn	Gly 560
Pro	Pro	Val	Ser	Ser 565	Ser	Ser	Asn	Ser	Ser 570	Ser	Ser	Thr	Ser	Gln 575	Gly
Ser	Tyr	Pro	Cys 580	Ser	His	Pro	Ser	Pro 585	Ser	Gln	Gly	Pro	Gln 590	Gly	Ala

Pro	Tyr	Pro 595	Phe	Pro	Pro	Val	Pro 600	Thr	Val	Thr	Thr	Ser 605	Ser	Ala	Thr
Leu	Ser 610	Thr	Val	Ile	Ala	Thr 615	Val	Ala	Ser	Ser	Pro 620	Ala	Gly	Tyr	Lys
Thr 625	Ala	Ser	Pro	Pro	Gly 630	Pro	Pro	Pro	Tyr	Gly 635	Lys	Arg	Ala	Pro	Ser 640
Pro	Gly	Ala	Tyr	Lys 645	Thr	Ala	Thr	Pro	Pro 650	Gly	Tyr	Lys	Pro	Gly 655	Ser
Pro	Pro	Ser	Phe 660	Arg	Thr	Gly	Thr	Pro 665	Pro	Gly	Tyr	Arg	Gly 670	Thr	Ser
Pro	Pro	Ala 675	Gly	Pro	Gly	Thr	Phe 680	Lys	Pro	Gly	Ser	Pro 685	Thr	Val	Gly
Pro	Gly 690	Pro	Leu	Pro	Pro	Ala 695	Gly	Pro	Ser	Gly	Leu 700	Pro	Ser	Leu	Pro
Pro 705	Pro	Pro	Ala	Ala	Pro 710	Ala	Ser	Gly	Pro	Pro 715	Leu	Ser	Ala	Thr	Gln 720
Ile	Lys	Gln	Glu	Pro 725	Ala	Glu	Glu	Tyr	Glu 730	Thr	Pro	Glu	Ser	Pro 735	Val
Pro	Pro	Ala	Arg 740	Ser	Pro	Ser	Pro	Pro 745	Pro	Lys	Val	Val	Asp 750	Val	Pro
Ser	His	Ala 755	Ser	Gln	Ser	Ala	Arg 760	Phe	Asn	Lys	His	Leu 765	Asp	Arg	Gly
Phe	Asn 770	Ser	Cys	Ala	Arg	Ser 775	Asp	Leu	Tyr	Phe	Val 780	Pro	Leu	Glu	Gly
Ser 785	Lys	Leu	Ala	Lys	Lys 790	Arg	Ala	qsA	Leu	Val 795	Glu	Lys	Val	Arg	Arg 800
Glu	Ala	Glu	Gln	Arg 805	Ala	Arg	Glu	Glu	Lys 810	Glu	Arg	Glu	Arg	Glu 815	Arg
Glu	Arg	Glu	Lys 820	Glu	Arg	Glu	Arg	Glu 825	Lys	Glu	Arg	Glu	Leu 830	Glu	Arg
Ser	Val	Lys 835	Leu	Ala	Gln	Glu	Gly 840	Arg	Ala	Pro	Val	Glu 845	Cys	Pro	Ser
Leu	Gly 850	Pro	Val	Pro	His	Arg 855	Pro	Pro	Phe	Glu	Pro 860	Gly	Ser	Ala	Val
Ala 865	Thr	Val	Pro	Pro	Tyr 870	Leu	Gly	Pro	Asp	Thr 875	Pro	Ala	Leu	Arg	Thr 880
Leu	Ser	Glu	Tyr	Ala 885	Arg	Pro	His	Val	Met 890	Ser	Pro	Gly	Asn	Arg 895	Asn
His	Pro	Phe	Tyr 900	Val	Pro	Leu	Gly	Ala 905	Val	Asp	Pro	Gly	Leu 910	Leu	Gly
Tyr	Asn	Val 915	Pro	Ala	Leu	Tyr	Ser 920	Ser	Asp	Pro	Ala	Ala 925	Arg	Glu	Arg

Glu Arg Glu Ala Arg Glu Arg Asp Leu Arg Asp Arg Leu Lys Pro Gly Phe Glu Val Lys Pro Ser Glu Leu Glu Pro Leu His Gly Val Pro Gly 950 Pro Gly Leu Asp Pro Phe Pro Arg His Gly Gly Leu Ala Leu Gln Pro Gly Pro Pro Gly Leu His Pro Phe Pro Phe His Pro Ser Leu Gly Pro Leu Glu Arg Glu Arg Leu Ala Leu Ala Gly Pro Ala Leu Arg Pro 1000 Asp Met Ser Tyr Ala Glu Arg Leu Ala Ala Glu Arg Gln His Ala Glu Arg Val Ala Gly Leu Gly Asn Asp Pro Leu Ala Arg Leu Gln Met Leu 1030 1035 Asn Val Thr Pro His His His Gln His Ser His Ile His Ser His Leu 1045 1050 His Leu His Gln Gln Asp Ala Ile His Ala Ala Ser Ala Ser Val His 1065 Pro Leu Ile Asp Pro Leu Ala Ser Gly Ser His Leu Thr Arg Ile Pro Tyr Pro Ala Gly Thr Leu Pro Asn Pro Leu Leu Pro His Pro Leu His 1095 1100 Glu Asn Glu Val Leu Arg His Gln Leu Phe Ala Ala Pro Tyr Arg Asp 1110 1120 Leu Pro Ala Ser Leu Ser Ala Pro Met Ser Ala Ala His Gln Leu Gln 1125 1130 Ala Met His Ala Gln Ser Ala Glu Leu Gln Arg Leu Ala Leu Glu Gln 1140 1145 Gln Gln Trp Leu His Ala His His Pro Leu His Ser Val Pro Leu Pro 1155

Ala Gln Glu Asp Tyr Tyr Ser His Leu Lys Lys Glu Ser Asp Lys Pro

1180

Leu 1185

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4608 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..4342

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

												CTG Leu				48
												GTA Val				96
												GAA Glu 45				144
												TGC Cys				192
TCC Ser 65	GAC Asp	CGA Arg	GGA Gly	GTT Val	CCA Pro 70	GTG Val	ATC Ile	AAG Lys	TGG Trp	AAG Lys 75	AAA Lys	GAT Asp	GGC Gly	ATT Ile	CAT His 80	240
												TCA Ser				288
												AAG Lys				336
												GGC Gly 125				384
												AGG Arg				432
												GTG Val				480
												TGG Trp				528
												GTG Val				576
												GGG Gly 205				624
ATT Ile	TAC Tyr 210	CGA Arg	TGC Cys	TCA Ser	GCT Ala	CGA Arg 215	AAT Asn	CCA Pro	GCC Ala	AGC Ser	TCA Ser 220	AGA Arg	ACA Thr	GGA Gly	AAT Asn	672

GAA Glu 225	GCA Ala	GAA Glu	GTC Val	AGA Arg	ATT Ile 230	Leu	TCA Ser	GAT Asp	CCA Pro	GGA Gly 235	CTG Leu	CAT His	AGA Arg	CAG Gln	CTG Leu 240	720
TAT Tyr	TTT Phe	CTG Leu	CAA Gln	AGA Arg 245	CCA Pro	TCC Ser	AAT Asn	GTA Val	GTA Val 250	GCC Ala	ATT Ile	GAA Glu	GGA Gly	AAA Lys 255	GAT Asp	768
GCT Ala	GTC Val	CTG Leu	GAA Glu 260	TGT Cys	TGT Cys	GTT Val	TCT Ser	GGC Gly 265	TAT Tyr	CCT Pro	CCA Pro	CCA Pro	AGT Ser 270	Phe	ACC Thr	816
TGG Trp	TTA Leu	CGA Arg 275	GGC Gly	GAG Glu	GAA Glu	GTC Val	ATC Ile 280	CAA Gln	CTC Leu	AGG Arg	TCT Ser	AAA Lys 285	AAG Lys	TAT Tyr	TCT Ser	864
TTA Leu	TTG Leu 290	GGT Gly	GGA Gly	AGC Ser	AAC Asn	TTG Leu 295	CTT Leu	ATC Ile	TCC Ser	AAT Asn	GTG Val 300	ACA Thr	GAT Asp	GAT Asp	GAC Asp	912
AGT Ser 305	GGA Gly	ATG Met	TAT Tyr	ACC Thr	TGT Cys 310	GTT Val	GTC Val	ACA Thr	TAT Tyr	AAA Lys 315	AAT Asn	GAG Glu	AAT Asn	ATT Ile	AGT Ser 320	960
GCC Ala	TCT Ser	GCA Ala	GAG Glu	CTC Leu 325	ACA Thr	GTC Val	TTG Leu	GTT Val	CCG Pro 330	CCA Pro	TGG Trp	TTT Phe	TTA Leu	AAT Asn 335	CAT His	1008
CCT Pro	TCC Ser	AAC Asn	CTG Leu 340	TAT Tyr	GCC Ala	TAT Tyr	GAA Glu	AGC Ser 345	ATG Met	GAT Asp	ATT Ile	GAG Glu	TTT Phe 350	GAA Glu	TGT Cys	1056
ACA Thr	GTC Val	TCT Ser 355	GGA Gly	AAG Lys	CCT Pro	GTG Val	CCC Pro 360	ACT Thr	GTG Val	AAT Asn	TGG Trp	ATG Met 365	AAG Lys	AAT Asn	GGA Gly	1104
GAT Asp	GTG Val 370	GTC Val	ATT Ile	CCT Pro	AGT Ser	GAT Asp 375	TAT Tyr	TTT Phe	CAG Gln	ATA Ile	GTG Val 380	GGA Gly	GGA Gly	AGC Ser	AAC Asn	1152
TTA Leu 385	CGG Arg	ATA Ile	CTT Leu	GGG Gly	GTG Val 390	GTG Val	AAG Lys	TCA Ser	GAT Asp	GAA Glu 395	GGC Gly	TTT Phe	TAT Tyr	CAA Gln	TGT Cys 400	1200
GTG Val	GCT Ala	GAA Glu	AAT Asn	GAG Glu 405	GCT Ala	GGA Gly	AAT Asn	GCC Ala	CAG Gln 410	ACC Thr	AGT Ser	GCA Ala	CAG Gln	CTC Leu 415	ATT Ile	1248
GTC Val	CCT Pro	AAG Lys	CCT Pro 420	GCA Ala	ATC Ile	CCA Pro	AGC Ser	TCC Ser 425	AGT Ser	GTC Val	CTC Leu	CCT Pro	TCG Ser 430	GCT Ala	CCC Pro	1296
AGA Arg	GAT Asp	GTG Val 435	GTC Val	CCT Pro	GTC Val	TTG Leu	GTT Val 440	TCC Ser	AGC Ser	CGA Arg	TTT Phe	GTC Val 445	CGT Arg	CTC Leu	AGC Ser	1344
TGG Trp	CGC Arg 450	CCA Pro	CCT Pro	GCA Ala	GAA Glu	GCG Ala 455	AAA Lys	GGG Gly	AAC Asn	ATT Ile	CAA Gln 460	ACT Thr	TTC Phe	ACG Thr	GTC Val	1392
TTT Phe 465	TTC Phe	TCC Ser	AGA Arg	GAA Glu	GGT Gly 470	GAC Asp	AAC Asn	AGG Arg	GAA Glu	CGA Arg 475	GCA Ala	TTG Leu	AAT Asn	ACA Thr	ACA Thr 480	1440

			CTC Leu					1488
			GTG Val					1536
			GTG Val					1584
			CAA Gln 535					1632
			CCT Pro					1680
			GAG Glu					1728
			TAT Tyr					1776
			TTA Leu					1824
			GTG Val 615					1872
			CTG Leu					1920
			CCA Pro					1968
			AGA Arg					2016
			CTC Leu					2064
			CAG Gln 695					2112
			TAT Tyr					2160
			GAT Asp					2208

			ATG Met					2256
			ATT Ile					2304
			GAC Asp 775					2352
			CAT His					2400
			CCT Pro					2448
			CCA Pro					2496
			GAT Asp					2544
			CTT Leu 855					2592
			AAG Lys					2640
			ACC Thr					2688
			CTA Leu					2736
			TCG Ser					2784
			GCA Ala 935					2832
			TTT Phe					2880
			TGG Trp					2928
			TTT Phe					2976

WO 99/45944

										84						
GAT Asp	GAC Asp	TGG Trp 995	Ile	ATG Met	GAA Glu	ACA Thr	ATC Ile 100	Ser	GGT Gly	GAT Asp	AGG Arg	CTT Leu 100	Thr	CAT His	CAA Gln	3024
ATC Ile	ATG Met 101	Asp	CTC Leu	AAC Asn	CTT Leu	GAT Asp 101	Thr	ATG Met	TAT Tyr	TAC Tyr	TTT Phe 102	Arg	ATT Ile	CAA Gln	GCA Ala	3072
CGA Arg 102	Asn	TCA Ser	AAA Lys	GGA Gly	GTG Val 103	Gly	CCA Pro	CTC Leu	TCT Ser	GAT Asp 103	Pro	ATC Ile	CTC Leu	TTC Phe	AGG Arg 1040	3120
ACT Thr	CTG Leu	AAA Lys	GTG Val	GAA Glu 104	His	CCT Pro	GAC Asp	AAA Lys	ATG Met 105	Ala	AAT Asn	GAC Asp	CAA Gln	GGT Gly 105	Arg	3168
CAT His	GGA Gly	GAT Asp	GGA Gly 1060	Gly	TAT Tyr	TGG Trp	CCA Pro	GTT Val 106	Asp	ACT Thr	AAT Asn	TTG Leu	ATT Ile 107	Asp	AGA Arg	3216
AGC Ser	ACC Thr	CTA Leu 1075	Asn	GAG Glu	CCG Pro	CCA Pro	ATT Ile 1080	Gly	CAA Gln	ATG Met	CAC His	CCC Pro 108	Pro	CAT His	GGC Gly	3264
AGT Ser	GTC Val 109	ACT Thr 0	CCT Pro	CAG Gln	AAG Lys	AAC Asn 1095	Ser	AAC Asn	CTG Leu	CTT Leu	GTG Val 110	Ile	ATT Ile	GTG Val	GTC Val	3312
ACC Thr 1105	Val	GGT Gly	GTC Val	ATC Ile	ACA Thr 1110	Val	CTG Leu	GTA Val	GTG Val	GTC Val 1115	Ile	GTG Val	GCT Ala	GTG Val	ATT Ile 1120	3360
TGC Cys	ACC Thr	CGA Arg	CGC Arg	TCT Ser 1125	Ser	GCC Ala	CAG Gln	CAG Gln	AGA Arg 1130	Lys	AAA Lys	CGG Arg	GCC Ala	ACC Thr 1135	His	3408
AGT Ser	GCT Ala	GGC Gly	AAA Lys 1140	Arg	AAG Lys	GGC Gly	AGC Ser	CAG Gln 1145	Lys	GAC Asp	CTC Leu	CGA Arg	CCC Pro 1150	Pro	GAT Asp	3456
CTT Leu	TGG Trp	ATC Ile 1155	His	CAT His	GAA Glu	GAA Glu	ATG Met 1160	Glu	ATG Met	AAA Lys	AAT Asn	ATT Ile 1165	Glu	AAG Lys	CCA Pro	3504
TCT Ser	GGC Gly 1170	ACT Thr)	GAC Asp	CCT Pro	GCA Ala	GGA Gly 1175	Arg	GAC Asp	TCT Ser	CCC Pro	ATC Ile 1180	Gln	AGT Ser	TGC Cys	CAA Gln	3552
GAC Asp 1185	Leu	ACA Thr	CCA Pro	GTC Val	AGC Ser 1190	His	AGC Ser	CAG Gln	TCA Ser	GAA Glu 1195	Thr	CAA Gln	CTG Leu	GGA Gly	AGC Ser 1200	3600
AAA Lys	AGC Ser	ACC Thr	TCT Ser	CAT His 1205	Ser	GGT Gly	CAA Gln	GAC Asp	ACT Thr 1210	Glu	GAA Glu	GCA Ala	GGG Gly	AGC Ser 1215	Ser	3648
ATG Met	TCC Ser	ACT Thr	CTG Leu 1220	Glu	AGG Arg	TCG Ser	Leu	GCT Ala 1225	Ala	CGC Arg	CGA Arg	GCC Ala	CCC Pro 1230	Arg	GCC Ala	3696
AAG Lys	CTC Leu	ATG Met 1235	Ile	CCC Pro	ATG Met	GAT Asp	GCC Ala 1240	Gln	TCC Ser	AAC Asn	AAT Asn	CCT Pro 1245	Ala	GTC Val	GTG Val	3744

AGC GCC ATC	CCG GTG	CCA ACG	CTA GAA	AGT GC	C CAG TAC	CCA GGA	ATC	3792
Ser Ala Ile 1250	Pro Val	Pro Thr 125		Ser Ala	Gln Tyr 1260	Pro Gly	Ile	
CTC CCG TCT Leu Pro Ser 1265					Gln Phe			3840
CCT GTG CCA Pro Val Pro		Thr Leu					Gly	3888
AGA AGT CAG Arg Ser Gln				Thr Thi				3936
CTG CCC CCA Leu Pro Pro 1315	Ser Gln					Ala Pro		3984
AGA ACC ATC Arg Thr Ile 1330			Val Arg					4032
TTT GCT AAT Phe Ala Asn 1345					Ala Ile			4080
GTC CCT TAC Val Pro Tyr		Leu Leu					Lys	4128
ACC CAT GTG Thr His Val				Leu Ala				1176
CCT TTG CTT Pro Leu Leu 1395	Pro Val					Ser Glu		1224
AGC CAC AAA Ser His Lys 1410			Ser Ala					1272
CTG AGT GAA Leu Ser Glu 1425					Met Lys			1320
GCC ATC ACA Ala Ile Thr	GGC TCA Gly Ser 1445	Ala Phe	T AACAT	GTATT TO	TGAATGGA	TGAGGTGA	AAT 4	1372
TTTCCGGGAA (CTTTGCAG	CA TACCAA	TTAC CC	ATAAACAG	CACACCTO	STG TCCA	AGAACT 4	1432
CTAACCAGTG 1	TACAGGTC	AC CCATCA	GGAC CA	CTCAGTTA	AGGAAGAT	CC TGAA	SCAGTT 4	1492
CAGAAGGAAT A	AAGCATTC	CT TCTTTC	CACAG GC	ATCAGGAA	TTGTCAA	ATG ATGAT	TTATGA 4	1552
GTTCCCTAAA C	CAAAAGCA	AA GATGCA	TTTT CA	CTGCAATG	TCAAAGTT	TA GCTGC	CT 4	1608

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1447 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Gln Ile Lys Ala Phe Thr Ala Leu Arg Phe Leu Ser Glu Pro Ser Asp

Ala Val Thr Met Arg Gly Gly Asn Val Leu Leu Asp Cys Ser Ala Glu 50 60

Ser Asp Arg Gly Val Pro Val Ile Lys Trp Lys Lys Asp Gly Ile His 65 70 75 80

Leu Ala Leu Gly Met Asp Glu Arg Lys Gln Gln Leu Ser Asn Gly Ser 85 90 95

Leu Leu Ile Gln Asn Ile Leu His Ser Arg His His Lys Pro Asp Glu 100 105 110

Gly Leu Tyr Gln Cys Glu Ala Ser Leu Gly Asp Ser Gly Ser Ile Ile 115 120 125

Ser Arg Thr Ala Lys Val Ala Val Ala Gly Pro Leu Arg Phe Leu Ser 130 140

Gln Thr Glu Ser Val Thr Ala Phe Met Gly Asp Thr Val Leu Leu Lys 145 150 155 160

Cys Glu Val Ile Gly Glu Pro Met Pro Thr Ile His Trp Gln Lys Asn 165 170 175

Gln Gln Asp Leu Thr Pro Ile Pro Gly Asp Ser Arg Val Val Leu 180 185 190

Pro Ser Gly Ala Leu Gln Ile Ser Arg Leu Gln Pro Gly Asp Ile Gly 195 200 205

Ile Tyr Arg Cys Ser Ala Arg Asn Pro Ala Ser Ser Arg Thr Gly Asn 210 215 220

Glu Ala Glu Val Arg Ile Leu Ser Asp Pro Gly Leu His Arg Gln Leu 225 230 235 240

Tyr Phe Leu Gln Arg Pro Ser Asn Val Val Ala Ile Glu Gly Lys Asp 245 250 255

Ala Val Leu Glu Cys Cys Val Ser Gly Tyr Pro Pro Pro Ser Phe Thr 260 265 270

Trp Leu Arg Gly Glu Glu Val Ile Gln Leu Arg Ser Lys Lys Tyr Ser 275 280 285

Leu	Leu 290	Gly	Gly	Ser	Asn	Leu 295	Leu	Ile	Ser	Asn	Val 300	Thr	Asp	Asp	Asp
Ser 305	Gly	Met	Tyr	Thr	Cys 310	Val	Val	Thr	Tyr	Lys 315	Asn	Glu	Asn	Ile	Ser 320
Ala	Ser	Ala	Glu	Leu 325	Thr	Val	Leu	Val	Pro 330	Pro	Trp	Phe	Leu	Asn 335	His
Pro	Ser	Asn	Leu 340	Tyr	Ala	Tyr	Glu	Ser 345	Met	Asp	Ile	Glu	Phe 350	Glu	Cys
Thr	Val	Ser 355	Gly	Lys	Pro	Val	Pro 360	Thr	Val	Asn	Trp	Met 365	Lys	Asn	Gly
Asp	Val 370	Val	Ile	Pro	Ser	Asp 375	Tyr	Phe	Gln	Ile	Val 380	Gly	Gly	Ser	Asn
Leu 385	Arg	Ile	Leu	Gly	Val 390	Val	Lys	Ser	Asp	Glu 395	Gly	Phe	Tyr	Gln	Cys 400
Val	Ala	Glu	Asn	Glu 405	Ala	Gly	Asn	Ala	Gln 410	Thr	Ser	Ala	Gln	Leu 415	Ile
Val	Pro	Lys	Pro 420	Ala	Ile	Pro	Ser	Ser 425	Ser	Val	Leu	Pro	Ser 430	Ala	Pro
Arg	Asp	Val 435	Val	Pro	Val	Leu	Val 440	Ser	Ser	Arg	Phe	Val 445	Arg	Leu	Ser
Trp	Arg 4 50	Pro	Pro	Ala	Glu	Ala 455	Lys	Gly	Asn	Ile	Gln 460	Thr	Phe	Thr	Val
Phe 465	Phe	Ser	Arg	Glu	Gly 470	Asp	Asn	Arg	Glu	Arg 475	Ala	Leu	Asn	Thr	Thr 480
Gln	Pro	Gly	Ser	Leu 485	Gln	Leu	Thr	Val	Gly 490	Asn	Leu	Lys	Pro	Glu 495	Ala
Met	Tyr	Thr	Phe 500	Arg	Val	Val	Ala	Tyr 505	Asn	Glu	Trp	Gly	Pro 510	Gly	Glu
Ser	Ser	Gln 515	Pro	Ile	Lys	Val	Ala 520	Thr	Gln	Pro	Glu	Leu 525	Gln	Val	Pro
Gly	Pro 530	Val	Glu	Asn	Leu	Gln 535	Ala	Val	Ser	Thr	Ser 540	Pro	Thr	Ser	Ile
Leu 545	Ile	Thr	Trp	Glu	Pro 550	Pro	Ala	Tyr	Ala	Asn 555	Gly	Pro	Val	Gln	Gly 560
Tyr	Arg	Leu	Phe	Cys 565	Thr	Glu	Val	Ser	Thr 570	Gly	Lys	Glu	Gln	Asn 575	Ile
Glu	Val	Asp	Gly 580	Leu	Ser	Tyr	Lys	Leu 585	Glu	Gly	Leu	Lys	Lys 590	Phe	Thr
Glu	Tyr	Ser 595	Leu	Arg	Phe	Leu	Ala 600	Tyr	Asn	Arg	Tyr	Gly 605	Pro	Gly	Val
Ser	Thr 610	Asp	Asp	Ile	Thr	Val 615	Val	Thr	Leu	Ser	Asp 620	Val	Pro	Ser	Ala

Pro Pro Gln Asn Val Ser Leu Glu Val Val Asn Ser Arg Ser Ile Lys Val Ser Trp Leu Pro Pro Pro Ser Gly Thr Gln Asn Gly Phe Ile Thr Gly Tyr Lys Ile Arg His Arg Lys Thr Thr Arg Arg Gly Glu Met Glu Thr Leu Glu Pro Asn Asn Leu Trp Tyr Leu Phe Thr Gly Leu Glu Lys Gly Ser Gln Tyr Ser Phe Gln Val Ser Ala Met Thr Val Asn Gly Thr Gly Pro Pro Ser Asn Trp Tyr Thr Ala Glu Thr Pro Glu Asn Asp Leu Asp Glu Ser Gln Val Pro Asp Gln Pro Ser Ser Leu His Val Arg Pro Gln Thr Asn Cys Ile Ile Met Ser Trp Thr Pro Pro Leu Asn Pro Asn Ile Val Val Arg Gly Tyr Ile Ile Gly Tyr Gly Val Gly Ser Pro Tyr Ala Glu Thr Val Arg Val Asp Ser Lys Gln Arg Tyr Tyr Ser Ile Glu Arg Leu Glu Ser Ser Ser His Tyr Val Ile Ser Leu Lys Ala Phe Asn Asn Ala Gly Glu Gly Val Pro Leu Tyr Glu Ser Ala Thr Thr Arg Ser 810 Ile Thr Asp Pro Thr Asp Pro Val Asp Tyr Tyr Pro Leu Leu Asp Asp Phe Pro Thr Ser Val Pro Asp Leu Ser Thr Pro Met Leu Pro Pro Val Gly Val Gln Ala Val Ala Leu Thr His Asp Ala Val Arg Val Ser Trp 855 Ala Asp Asn Ser Val Pro Lys Asn Gln Lys Thr Ser Glu Val Arg Leu Tyr Thr Val Arg Trp Arg Thr Ser Phe Ser Ala Ser Ala Lys Tyr Lys Ser Glu Asp Thr Thr Ser Leu Ser Tyr Thr Ala Thr Gly Leu Lys Pro Asn Thr Met Tyr Glu Phe Ser Val Met Val Thr Lys Asn Arg Arg Ser 920 Ser Thr Trp Ser Met Thr Ala His Ala Thr Thr Tyr Glu Ala Ala Pro Thr Ser Ala Pro Lys Asp Phe Thr Val Ile Thr Arg Glu Gly Lys Pro 955

Arg Ala Val Ile Val Ser Trp Gln Pro Pro Leu Glu Ala Asn Gly Lys 970 Ile Thr Ala Tyr Ile Leu Phe Tyr Thr Leu Asp Lys Asn Ile Pro Ile 985 Asp Asp Trp Ile Met Glu Thr Ile Ser Gly Asp Arg Leu Thr His Gln Ile Met Asp Leu Asn Leu Asp Thr Met Tyr Tyr Phe Arg Ile Gln Ala Arg Asn Ser Lys Gly Val Gly Pro Leu Ser Asp Pro Ile Leu Phe Arg 1035 Thr Leu Lys Val Glu His Pro Asp Lys Met Ala Asn Asp Gln Gly Arg 1045 1050 His Gly Asp Gly Gly Tyr Trp Pro Val Asp Thr Asn Leu Ile Asp Arg 1065 Ser Thr Leu Asn Glu Pro Pro Ile Gly Gln Met His Pro Pro His Gly 1080 Ser Val Thr Pro Gln Lys Asn Ser Asn Leu Leu Val Ile Ile Val Val Thr Val Gly Val Ile Thr Val Leu Val Val Val Ile Val Ala Val Ile 1110 1115 Cys Thr Arg Arg Ser Ser Ala Gln Gln Arg Lys Lys Arg Ala Thr His 1125 1130 Ser Ala Gly Lys Arg Lys Gly Ser Gln Lys Asp Leu Arg Pro Pro Asp 1145 Leu Trp Ile His His Glu Glu Met Glu Met Lys Asn Ile Glu Lys Pro 1160 Ser Gly Thr Asp Pro Ala Gly Arg Asp Ser Pro Ile Gln Ser Cys Gln 1170 1175 1180 Asp Leu Thr Pro Val Ser His Ser Gln Ser Glu Thr Gln Leu Gly Ser Lys Ser Thr Ser His Ser Gly Gln Asp Thr Glu Glu Ala Gly Ser Ser 1205 Met Ser Thr Leu Glu Arg Ser Leu Ala Ala Arg Arg Ala Pro Arg Ala 1225 Lys Leu Met Ile Pro Met Asp Ala Gln Ser Asn Asn Pro Ala Val Val 1235 1240 Ser Ala Ile Pro Val Pro Thr Leu Glu Ser Ala Gln Tyr Pro Gly Ile 1255 Leu Pro Ser Pro Thr Cys Gly Tyr Pro His Pro Gln Phe Thr Leu Arg 1265

Pro Val Pro Phe Pro Thr Leu Ser Val Asp Arg Gly Phe Gly Ala Gly

1285

WO 99/45944

90
Arg Ser Gln Ser Val Ser Glu Gly Pro Thr Thr Gln Gln Pro Pro Met 1300 1305 1310
Leu Pro Pro Ser Gln Pro Glu His Ser Ser Ser Glu Glu Ala Pro Ser 1315 1320 1325
Arg Thr Ile Pro Thr Ala Cys Val Arg Pro Thr His Pro Leu Arg Ser 1330 1335 1340
Phe Ala Asn Pro Leu Pro Pro Pro Met Ser Ala Ile Glu Pro Lys 1345 1350 1355 1360
Val Pro Tyr Thr Pro Leu Leu Ser Gln Pro Gly Pro Thr Leu Pro Lys 1365 1370 1375
Thr His Val Lys Thr Ala Ser Leu Gly Leu Ala Gly Lys Ala Arg Ser 1380 1385 1390
Pro Leu Leu Pro Val Ser Val Pro Thr Ala Pro Glu Val Ser Glu Glu 1395 1400 1405
Ser His Lys Pro Thr Glu Asp Ser Ala Asn Val Tyr Glu Gln Asp Asp 1410 1415 1420
Leu Ser Glu Gln Met Ala Ser Leu Glu Gly Leu Met Lys Gln Leu Asn 1425 1430 1435 1440
Ala Ile Thr Gly Ser Ala Phe 1445
(2) INFORMATION FOR SEQ ID NO:26:
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1004 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 48876
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
GCCTCGCTCG GGCGCCCAGT GGTCCTGCCG CCTGGTCTCA CCTCGCC ATG GTT CGT Met Val Arg 1
CTG CCT CTG CAG TGC GTC CTC TGG GGC TGC TTG CTG ACC GCT GTC CAT Leu Pro Leu Gln Cys Val Leu Trp Gly Cys Leu Leu Thr Ala Val His 5 10 15
CCA GAA CCA CCC ACT GCA TGC AGA GAA AAA CAG TAC CTA ATA AAC AGT Pro Glu Pro Pro Thr Ala Cys Arg Glu Lys Gln Tyr Leu Ile Asn Ser 20 25 30 35
CAG TGC TGT TCT TTG TGC CAG CCA GGA CAG AAA CTG GTG AGT GAC TGC Gln Cys Cys Ser Leu Cys Gln Pro Gly Gln Lys Leu Val Ser Asp Cys 40 45 50

								CTT Leu 60								248
								CAC His								296
GAC Asp	CCC Pro 85	AAC Asn	CTA Leu	GGG Gly	CTT Leu	CGG Arg 90	GTC Val	CAG Gln	CAG Gln	AAG Lys	GGC Gly 95	ACC Thr	TCA Ser	GAA Glu	ACA Thr	344
								GGC Gly								392
								TCA Ser								440
								GAT Asp 140								488
								TCT Ser								536
TGG Trp	ACA Thr 165	AGC Ser	TGT Cys	GAG Glu	ACC Thr	AAA Lys 170	GAC Asp	CTG Leu	GTT Val	GTG Val	CAA Gln 175	CAG Gln	GCA Ala	GGC Gly	ACA Thr	584
AAC Asn 180	AAG Lys	ACT Thr	GAT Asp	GTT Val	GTC Val 185	TGT Cys	GGT Gly	CCC Pro	CAG Gln	GAT Asp 190	CGG Arg	CTG Leu	AGA Arg	GCC Ala	CTG Leu 195	632
								ATC Ile								680
								AAG Lys 220								728
CAC His	CCC Pro	AAG Lys 230	CAG Gln	GAA Glu	CCC Pro	CAG Gln	GAG Glu 235	ATC Ile	AAT Asn	TTT Phe	CCC Pro	GAC Asp 240	GAT Asp	CTT Leu	CCT Pro	776
GGC Gly	TCC Ser 245	AAC Asn	ACT Thr	GCT Ala	GCT Ala	CCA Pro 250	GTG Val	CAG Gln	GAG Glu	ACT Thr	TTA Leu 255	CAT His	GGA Gly	TGC Cys	CAA Gln	824
CCG Pro 260	GTC Val	ACC Thr	CAG Gln	GAG Glu	GAT Asp 265	GGC Gly	AAA Lys	GAG Glu	AGT Ser	CGC Arg 270	ATC Ile	TCA Ser	GTG Val	CAG Gln	GAG Glu 275	872
AGA Arg	C AG	TGAG	GCTG	CAC	CCAC	CCA	GGAG	TGTG	igc c	ACGT	GGGC	A AA	.CAGG	CAGT	,	926
TGGC	CAGA	GA G	CCTG	GTGC	T GC	TGCT	GCAG	GGG	TGCA	.GGC	AGAA	GCGG	GG A	GCTA	TGCCC	986
AGTC	AGTG	CC A	GCCC	CTC												1004

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Met Val Arg Leu Pro Leu Gln Cys Val Leu Trp Gly Cys Leu Leu Thr
1 5 10 15

Ala Val His Pro Glu Pro Pro Thr Ala Cys Arg Glu Lys Gln Tyr Leu 20 25 30

Ile Asn Ser Gln Cys Cys Ser Leu Cys Gln Pro Gly Gln Lys Leu Val

Ser Asp Cys Thr Glu Phe Thr Glu Thr Glu Cys Leu Pro Cys Gly Glu 50 55 60

Ser Glu Phe Leu Asp Thr Trp Asn Arg Glu Thr His Cys His Gln His 65 70 75 80

Lys Tyr Cys Asp Pro Asn Leu Gly Leu Arg Val Gln Gln Lys Gly Thr 85 90 95

Ser Glu Thr Asp Thr Ile Cys Thr Cys Glu Glu Gly Trp His Cys Thr 100 105 110

Ser Glu Ala Cys Glu Ser Cys Val Leu His Arg Ser Cys Ser Pro Gly 115 120 125

Phe Gly Val Lys Gln Ile Ala Thr Gly Val Ser Asp Thr Ile Cys Glu 130 135 140

Pro Cys Pro Val Gly Phe Phe Ser Asn Val Ser Ser Ala Phe Glu Lys 145 150 155 160

Cys His Pro Trp Thr Ser Cys Glu Thr Lys Asp Leu Val Val Gln Gln 175

Ala Gly Thr Asn Lys Thr Asp Val Val Cys Gly Pro Gln Asp Arg Leu 180 185 190

Arg Ala Leu Val Val Ile Pro Ile Ile Phe Gly Ile Leu Phe Ala Ile 195 200 205

Leu Leu Val Leu Val Phe Ile Lys Lys Val Ala Lys Lys Pro Thr Asn 210 215 220

Lys Ala Pro His Pro Lys Gln Glu Pro Gln Glu Ile Asn Phe Pro Asp 225 230 235 240

Asp Leu Pro Gly Ser Asn Thr Ala Ala Pro Val Gln Glu Thr Leu His 245 250 255

Gly Cys Gln Pro Val Thr Gln Glu Asp Gly Lys Glu Ser Arg Ile Ser 260 265 270

Val Gln Glu Arg 275

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Ala Thr Leu Glu Lys Leu Met Lys Ala Phe Glu Ser Leu Lys Ser 1 5 10 15

Pro Pro Pro Gln Leu Pro Gln Pro Pro Pro Gln Ala Gln Pro Leu Leu 50 55 60

Ala Val Ala Glu Glu Pro Leu His Arg Pro Lys Lys Glu Leu Ser Ala 85 90 95

Thr Lys Lys Asp Arg Val Asn His Cys Leu Thr Ile Cys Glu Asn Ile
100 105 110

Val Ala Gln Ser Val Arg Asn Ser Pro Glu Phe Gln Lys Leu Leu Gly 115 120 125

Ile Ala Met Glu Leu Phe Leu Leu Cys Ser Asp Asp Ala Glu Ser Asp 130 135 140

Val Arg Met Val Ala Asp Glu Cys Leu Asn Lys Val Ile Lys Ala Leu 145 150 155 160

Met Asp Ser Asn Leu Pro Arg Leu Gln Leu Glu Leu Tyr Lys Glu Ile 165 170 175

Lys Lys Asn Gly Ala Pro Arg Ser Leu Arg Ala Ala Leu Trp Arg Phe 180 185 190

Ala Glu Leu Ala His Leu Val Arg Pro Gln Lys Cys Arg Pro Tyr Leu 195 200 205

Val Asn Leu Leu Pro Cys Leu Thr Arg Thr Ser Lys Arg Pro Glu Glu 210 215 220

Ser Val Gln Glu Thr Leu Ala Ala Ala Val Pro Lys Ile Met Ala Ser 225 230 235 240

Phe Gly Asn Phe Ala Asn Asp Asn Glu Ile Lys Val Leu Leu Lys Ala 245 250 255

Phe	Ile	Ala	Asn 260	Leu	Lys	Ser	Ser	Ser 265	Pro	Thr	Ile	Arg	Arg 270	Thr	Ala
Ala	Gly	Ser 275	Ala	Val	Ser	Ile	Cys 280	Gln	His	Ser	Arg	Arg 285	Thr	Gln	Tyr
Phe	Туг 290	Ser	Trp	Leu	Leu	Asn 295	Val	Leu	Leu	Gly	Leu 300	Leu	Val	Pro	Val
Glu 305	Asp	Glu	His	Ser	Thr 310	Leu	Leu	Ile	Leu	Gly 315	Val	Leu	Leu	Thr	Leu 320
Arg	Tyr	Leu	Val	Pro 325	Leu	Leu	Gln	Gln	Gln 330	Val	Lys	Asp	Thr	Ser 335	Leu
Lys	Gly	Ser	Phe 340	Gly	Val	Thr	Arg	Lys 345	Glu	Met	Glu	Val	Ser 350	Pro	Ser
Ala	Glu	Gln 355	Leu	Val	Gln	Val	Tyr 360	Glu	Leu	Thr	Leu	His 365	His	Thr	Gln
His	Gln 370	Asp	His	Asn	Val	Val 375	Thr	Gly	Ala	Leu	Glu 380	Leu	Leu	Gln	Gln
Leu 385	Phe	Arg	Thr	Pro	Pro 390	Pro	Glu	Leu	Leu	Gln 395	Thr	Leu	Thr	Ala	Val 400
Gly	Gly	Ile	Gly	Gln 405	Leu	Thr	Ala	Ala	Lys 410	Glu	Glu	Ser	Gly	Gly 415	Arg
Ser	Arg	Ser	Gly 420	Ser	Ile	Val	Glu	Leu 425	Ile	Ala	Gly	Gly	Gly 430	Ser	Ser
Cys	Ser	Pro 435	Val	Leu	Ser	Arg	Lys 440	Gln	Lys	Gly	Lys	Val 445	Leu	Leu	Gly
Glu	Glu 450	Glu	Ala	Leu	Glu	Asp 455	Asp	Ser	Glu	Ser	Arg 460	Ser	Asp	Val	Ser
Ser 465	Ser	Ala	Leu	Thr	Ala 470	Ser	Val	Lys	Asp	Glu 475	Ile	Ser	Gly	Glu	Leu 480
Ala	Ala	Ser	Ser	Gly 485	Val	Ser	Thr	Pro	Gly 490	Ser	Ala	Gly	His	Asp 495	Ile
Ile	Thr	Glu	Gln 500	Pro	Arg	Ser	Gln	His 505	Thr	Leu	Gln	Ala	Asp 510	Ser	Val
Asp															

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 530 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

WO 99/45944 PCT/US99/05250

95 Met Ala Thr Leu Glu Lys Leu Met Lys Ala Phe Glu Ser Leu Lys Ser Gln Gln Gln Gln Gln Gln Pro Gln Leu Pro Gln Pro Pro Pro Gln Ala Gln Pro Leu Leu Ala Val Ala Glu Glu Pro Leu His Arg Pro Lys Lys Glu Leu Ser Ala Thr Lys Lys Asp Arg Val Asn His Cys Leu Thr Ile Cys Glu Asn Ile Val Ala Gln Ser Val Arg Asn Ser Pro Glu Phe Gln Lys Leu Leu Gly 120 Ile Ala Met Glu Leu Phe Leu Leu Cys Ser Asp Asp Ala Glu Ser Asp Val Arg Met Val Ala Asp Glu Cys Leu Asn Lys Val Ile Lys Ala Leu 150 Met Asp Ser Asn Leu Pro Arg Leu Gln Leu Glu Leu Tyr Lys Glu Ile 165 170 Lys Lys Asn Gly Ala Pro Arg Ser Leu Arg Ala Ala Leu Trp Arg Phe Ala Glu Leu Ala His Leu Val Arg Pro Gln Lys Cys Arg Pro Tyr Leu Val Asn Leu Leu Pro Cys Leu Thr Arg Thr Ser Lys Arg Pro Glu Glu 215 Ser Val Gln Glu Thr Leu Ala Ala Ala Val Pro Lys Ile Met Ala Ser Phe Gly Asn Phe Ala Asn Asp Asn Glu Ile Lys Val Leu Leu Lys Ala Phe Ile Ala Asn Leu Lys Ser Ser Ser Pro Thr Ile Arg Arg Thr Ala 265 Ala Gly Ser Ala Val Ser Ile Cys Gln His Ser Arg Arg Thr Gln Tyr Phe Tyr Ser Trp Leu Leu Asn Val Leu Leu Gly Leu Leu Val Pro Val Glu Asp Glu His Ser Thr Leu Leu Ile Leu Gly Val Leu Leu Thr Leu Arg Tyr Leu Val Pro Leu Leu Gln Gln Gln Val Lys Asp Thr Ser Leu 325 330

Lys Gly Ser Phe Gly Val Thr Arg Lys Glu Met Glu Val Ser Pro Ser 345 Ala Glu Gln Leu Val Gln Val Tyr Glu Leu Thr Leu His His Thr Gln His Gln Asp His Asn Val Val Thr Gly Ala Leu Glu Leu Gln Gln Leu Phe Arg Thr Pro Pro Pro Glu Leu Leu Gln Thr Leu Thr Ala Val Gly Gly Ile Gly Gln Leu Thr Ala Ala Lys Glu Glu Ser Gly Gly Arg Ser Arg Ser Gly Ser Ile Val Glu Leu Ile Ala Gly Gly Ser Ser Cys Ser Pro Val Leu Ser Arg Lys Gln Lys Gly Lys Val Leu Leu Gly Glu Glu Glu Ala Leu Glu Asp Asp Ser Glu Ser Arg Ser Asp Val Ser 455 Ser Ser Ala Leu Thr Ala Ser Val Lys Asp Glu Ile Ser Gly Glu Leu Ala Ala Ser Ser Gly Val Ser Thr Pro Gly Ser Ala Gly His Asp Ile Ile Thr Glu Gln Pro Arg Ser Gln His Thr Leu Gln Ala Asp Ser Val 505 Asp Leu Ala Ser Cys Asp Leu Thr Ser Ser Ala Thr Asp Gly Asp Glu 520

Glu Asp 530

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 552 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Met Ala Thr Leu Glu Lys Leu Met Lys Ala Phe Glu Ser Leu Lys Ser

Gln Gln Gln Gln Gln Gln Fro Pro Pro Pro Pro Pro Pro Pro

Pro Pro Pro Gln Leu Pro Gln Pro Pro Pro Gln Ala Gln Pro Leu Leu

50 55 60 Pro Gln Pro Gln Pro Pro Pro Pro Pro Pro Pro Pro Pro Gly Pro Ala Val Ala Glu Glu Pro Leu His Arg Pro Lys Lys Glu Leu Ser Ala Thr Lys Lys Asp Arg Val Asn His Cys Leu Thr Ile Cys Glu Asn Ile Val Ala Gln Ser Val Arg Asn Ser Pro Glu Phe Gln Lys Leu Leu Gly Ile Ala Met Glu Leu Phe Leu Leu Cys Ser Asp Asp Ala Glu Ser Asp 135 Val Arg Met Val Ala Asp Glu Cys Leu Asn Lys Val Ile Lys Ala Leu Met Asp Ser Asn Leu Pro Arg Leu Gln Leu Glu Leu Tyr Lys Glu Ile Lys Lys Asn Gly Ala Pro Arg Ser Leu Arg Ala Ala Leu Trp Arg Phe 185 Ala Glu Leu Ala His Leu Val Arg Pro Gln Lys Cys Arg Pro Tyr Leu Val Asn Leu Leu Pro Cys Leu Thr Arg Thr Ser Lys Arg Pro Glu Glu Ser Val Gln Glu Thr Leu Ala Ala Ala Val Pro Lys Ile Met Ala Ser Phe Gly Asn Phe Ala Asn Asp Asn Glu Ile Lys Val Leu Leu Lys Ala Phe Ile Ala Asn Leu Lys Ser Ser Ser Pro Thr Ile Arg Arg Thr Ala Ala Gly Ser Ala Val Ser Ile Cys Gln His Ser Arg Arg Thr Gln Tyr Phe Tyr Ser Trp Leu Leu Asn Val Leu Leu Gly Leu Leu Val Pro Val 295 Glu Asp Glu His Ser Thr Leu Leu Ile Leu Gly Val Leu Leu Thr Leu Arg Tyr Leu Val Pro Leu Leu Gln Gln Gln Val Lys Asp Thr Ser Leu 325 330 Lys Gly Ser Phe Gly Val Thr Arg Lys Glu Met Glu Val Ser Pro Ser Ala Glu Gln Leu Val Gln Val Tyr Glu Leu Thr Leu His His Thr Gln His Gln Asp His Asn Val Val Thr Gly Ala Leu Glu Leu Gln Gln Leu Phe Arg Thr Pro Pro Pro Glu Leu Leu Gln Thr Leu Thr Ala Val

385 390 395 400 Gly Gly Ile Gly Gln Leu Thr Ala Ala Lys Glu Glu Ser Gly Gly Arg Ser Arg Ser Gly Ser Ile Val Glu Leu Ile Ala Gly Gly Ser Ser 425 Cys Ser Pro Val Leu Ser Arg Lys Gln Lys Gly Lys Val Leu Leu Gly Glu Glu Glu Ala Leu Glu Asp Asp Ser Glu Ser Arg Ser Asp Val Ser Ser Ser Ala Leu Thr Ala Ser Val Lys Asp Glu Ile Ser Gly Glu Leu 470 475 Ala Ala Ser Ser Gly Val Ser Thr Pro Gly Ser Ala Gly His Asp Ile Ile Thr Glu Gln Pro Arg Ser Gln His Thr Leu Gln Ala Asp Ser Val 505 Asp Leu Ala Ser Cys Asp Leu Thr Ser Ser Ala Thr Asp Gly Asp Glu 520 Glu Asp Ile Leu Ser His Ser Ser Ser Gln Val Ser Ala Val Pro Ser 535 Asp Pro Ala Met Asp Leu Asn Asp

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 589 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Gln Gln Gln Gln Gln Gln Gln Pro Pro Pro Pro Pro Pro Pro

35 40 45

Pro Pro Pro Gln Leu Pro Gln Pro Pro Pro Gln Ala Gln Pro Leu Leu 50 55 60

Ala Val Ala Glu Glu Pro Leu His Arg Pro Lys Lys Glu Leu Ser Ala 85 90 95

Cys Ser Pro Val Leu Ser Arg Lys Gln Lys Gly Lys Val Leu Leu Gly 435 440 445

Glu Glu Glu Ala Leu Glu Asp Asp Ser Glu Ser Arg Ser Asp Val Ser 450 455 460

Ser Ser Ala Leu Thr Ala Ser Val Lys Asp Glu Ile Ser Gly Glu Leu 465 470 480

Ala Ala Ser Ser Gly Val Ser Thr Pro Gly Ser Ala Gly His Asp Ile 485 490 495

Ile Thr Glu Gln Pro Arg Ser Gln His Thr Leu Gln Ala Asp Ser Val $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$

Asp Leu Ala Ser Cys Asp Leu Thr Ser Ser Ala Thr Asp Gly Asp Glu 515 520 525

Glu Asp Ile Leu Ser His Ser Ser Ser Gln Val Ser Ala Val Pro Ser 530 540

Asp Pro Ala Met Asp Leu Asn Asp Gly Thr Gln Ala Ser Ser Pro Ile 545 550 555 560

Ser Asp Ser Ser Gln Thr Thr Glu Gly Pro Asp Ser Ala Val Thr 565 570 575

Pro Ser Asp Ser Ser Glu Ile Val Leu Asp Gly Thr Asp 580 585

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 154 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Glu Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser 1 5 10 15

Lys Thr Tyr Arg Gly Ala Phe Gln Asn Leu Phe Gln Ser Val Arg Glu 20 25 30

Val Ile Gln Asn Pro Gly Pro Arg His Pro Glu Ala Ala Ser Ala Ala 35 40 45

Pro Pro Gly Ala Ser Leu Leu Leu Gln Gln Gln Gln Gln Gln Gln 50 55 60

Gln Gln Gln Gln Gly Glu Asp Gly Ser Pro Gln Ala His Arg Arg 85 90 95

Gly Pro Thr Gly Tyr Leu Val Leu Asp Glu Glu Gln Gln Pro Ser Gln

100

105

110

Pro Gln Ser Ala Leu Glu Cys His Pro Glu Arg Gly Cys Val Pro Glu 115 120 125

Pro Gly Ala Ala Val Ala Ala Ser Lys Gly Leu Pro Gln Gln Leu Pro 130 135 140

Ala Pro Pro Asp Glu Asp Asp Ser Ala Ala 145

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 325 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Arg Arg Ser Ser Ala Gln Gln Arg Lys Lys Arg Ala Thr His Ser Ala 1 5 10

Gly Lys Arg Lys Gly Ser Gln Lys Asp Leu Arg Pro Pro Asp Leu Trp 20 25 30

Ile His His Glu Glu Met Glu Met Lys Asn Ile Glu Lys Pro Ser Gly 35 40 45

Thr Asp Pro Ala Gly Arg Asp Ser Pro Ile Gln Ser Cys Gln Asp Leu 50 55 60

Thr Pro Val Ser His Ser Gln Ser Glu Thr Gln Leu Gly Ser Lys Ser 65 70 75 80

Thr Ser His Ser Gly Gln Asp Thr Glu Glu Ala Gly Ser Ser Met Ser 85 90 95

Thr Leu Glu Arg Ser Leu Ala Ala Arg Arg Ala Pro Arg Ala Lys Leu 100 105 110

Met Ile Pro Met Asp Ala Gln Ser Asn Asn Pro Ala Val Val Ser Ala 115 120 125

Ile Pro Val Pro Thr Leu Glu Ser Ala Gln Tyr Pro Gly Ile Leu Pro 130 135 140

Ser Pro Thr Cys Gly Tyr Pro His Pro Gln Phe Thr Leu Arg Pro Val 145 150 155 160

Pro Phe Pro Thr Leu Ser Val Asp Arg Gly Phe Gly Ala Gly Arg Ser 165 170 175

Gln Ser Val Ser Glu Gly Pro Thr Thr Gln Gln Pro Pro Met Leu Pro 180 185 190

Pro Ser Gln Pro Glu His Ser Ser Ser Glu Glu Ala Pro Ser Arg Thr 195 200 205

Ile	Pro 210	Thr	Ala	Cys	Val	Arg 215	Pro	Thr	His	Pro	Leu 220	Arg	Ser	Phe	Ala
Asn 225	Pro	Leu	Leu	Pro	Pro 230	Pro	Met	Ser	Ala	Ile 235	Glu	Pro	Lys	Val	Pro 240
Tyr	Thr	Pro	Leu	Leu 245	Ser	Gln	Pro	Gly	Pro 250	Thr	Leu	Pro	Lys	Thr 255	His
Val	Lys	Thr	Ala 260	Ser	Leu	Gly	Leu	Ala 265	Gly	Lys	Ala	Arg	Ser 270	Pro	Leu
Leu	Pro	Val 275	Ser	Val	Pro	Thr	Ala 280	Pro	Glu	Val	Ser	Glu 285	Glu	Ser	His
Lys	Pro 290	Thr	Glu	Asp	Ser	Ala 295	Asn	Val	Tyr	Glu	Gln 300	Asp	Asp	Leu	Ser
Glu 305	Gln	Met	Ala	Ser	Leu 310	Glu	Gly	Leu	Met	Lys 315	Gln	Leu	Asn	Ala	Ile 320
Thr	Gly	Ser	Ala	Phe 325											

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6450 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 361..2146
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GAGTTGTGCC TGGAGTGATG TTTAAGCCAA TGTCAGGGCA AGGCAACAGT CCCTGGCCGT	60
CCTCCAGCAC CTTTGTAATG CATATGAGCT CGGGAGACCA GTACTTAAAG TTGGAGGCCC	120
GGGAGCCCAG GAGCTGGCGG AGGGCGTTCG TCCTGGGAGC TGCACTTGCT CCGTCGGGTC	180
GCCGGCTTCA CCGGACCGCA GGCTCCCGGG GCAGGGCCGG GGCCAGAGCT CGCGTGTCGG	240
CGGGACATGC GCTGCGTCGC CTCTAACCTC GGGCTGTGCT CTTTTTCCAG GTGGCCCGCC	300
GGTTTCTGAG CCTTCTGCCC TGCGGGGACA CGGTCTGCAC CCTGCCCGCG GCCACGGACC	360
ATG ACC ATG ACC CTC CAC ACC AAA GCA TCT GGG ATG GCC CTA CTG CAT Met Thr Met Thr Leu His Thr Lys Ala Ser Gly Met Ala Leu Leu His 1 5 10 15	408
CAG ATC CAA GGG AAC GAG CTG GAG CCC CTG AAC CGT CCG CAG CTC AAG Gln Ile Gln Gly Asn Glu Leu Glu Pro Leu Asn Arg Pro Gln Leu Lys 20 25 30	456
ATC CCC CTG GAG CGG CCC CTG GGC GAG GTG TAC CTG GAC AGC AGC AAG	504

INTERNATIONAL SEARCH REPORT

Information patent family members

International Application No
P A 01/00495

	ent document in search report		Publication date		atent family nember(s)	Publication date
WO S	9960986	Α	02-12-1999	US	6235879 B	22-05-2001
				AU	4212199 A	13-12-1999
				EP	1082336 A	14-03-2001
EP (0614977	Α	14-09-1994	AU	676001 B	27-02-1997
				AU	5642994 A	08-09-1994
				CA	2116280 A	06-09-1994
				JP	7067661 A	14-03-1995
				US	5686288 A	11-11-1997
				US	5693757 A	02-12-1997
WO S	 9945944	 А	16-09-1999	US	6235872 B	22-05-2001
				AU	3076599 A	27-09-1999
				EP	1061935 A	27-12-2000
WO S	9906545	Α	11-02-1999	EP	1001987 A	2 4- 05-2000
WO	0078813	Α	28-12-2000	AU	5625500 A	09-01-2001
WO	0106989	Α	01-02-2001	AU	6234700 A	13-02-2001
1.10	0109613	Α	08-02-2001	FR	2797055 A	02-02-2001

