Combinatorial Games

and fun with Unicode

by Joël Faubert on April 1, 2021

Beamer Theme Nord by Junwei Wang of *CryptoExperts*

Intro

* Table, Nim

Categorizing Games

Graph games

- * Connectivity games
- * Searching games
- * Pursuit games

» Combinatorial games

Combinatorial games are (sequential, two-player) perfect information games.

Combinatorics: counting stuff, combinations, permutations.

Construction, existence and optimization of structures.

» Everything's on the table

Rules:

Two players take turns
Place 1-10 items on the table
Player to hit 100 wins

Take as many as you like from a single pile.

- * normal: last to pick up wins
- * misère: last to pick up loses

» Nim solution

In normal play, the winning strategy is to finish every move with a nim-sum of 0.

Binary digital sum of previous game

See Wikipedia entry on Nim for full details.

Use nim-sum calculator or table of winning positions to defeat children.

Change size/number of heaps to keep them bewildered.

» Game Theory

- * Analyzing, generating, and optimizing game objects
- * Levels, strategies, likelihoods, and outcomes.
- * Tic tac toe (9 r) possible moves left
- * Card games have hands
- * Labyrinths have paths

$$G = (V, E)$$
 $\min_{P \subset V \land \{P \text{ joins a to b}\}} |P|$

» Easy games

Tic Tac Toe 2nd player can force draw

Optimal tree for O: "A Fractal Guide to Tic Tac Toe", Ian Stewart

» Easy (?) games

Nim (with 6 pieces) 2nd player wins; algorithm for multiple heaps

War is finite (sketchy proof I dunno).

» Connect Four

1st player has a winning strategy

Did Obama use hacks?

» Difficult (?) games

Chess

* First automaton The Turk was a hoax (!)

Go

* reinforcement learning AI quite good

» How much is up to chance?

Is the game probabilistic or deterministic?

- * Pure luck; playing against against entropy
 - * lottery
 - * roulette
 - * dice
- * Mix of chance and strategy; other players
 - * poker
 - * monopoly
 - * dota
- * Deterministic; no luck at all
 - * Tic tac toe
 - * Connect Four
 - * Chess
 - * Conway's Game of Life

» Player Information

Perfect information

- * Tic tac toe
- * Chess
- * Pac-man

Imperfect information

- * Poker
- * Battleships
- * Liar's dice

» Sequential or Simultaneous

- * Sequential
 - * Chess, tic tac toe, checkers, monopoly
 - * every player gets a turn, constituting a round
- Simultaneous
 - * Bingo
 - * War
 - * 6 Nimmt
- * Real-time
 - * Dota 2
 - * Hungry-hungry hippos
 - * Pong

some of these last ones don't really fit; dexterity games; the challenge is in performing action

» Outcomes

- * Determined
 - * Win
 - * (or Lose)
- * Undetermined
 - * Possibility of draw
 - * Infinite play
 - * Loopy: possible to return to previous state

» Strategies and sequences

A players makes a choice, a play or a move. May allow pass/do nothing (passive).

Some games can be modeled as digraphs or state machines: move from one valid state to the next; strategies then are similar to outputs from Mealy or Moore machines

» Game graphs of Nim

Aviezri S. Fraenkel, Recent results and questions in combinatorial

» Progressively finite

- * if game digraph has no cycles
- * (cannot return to previous positions)
- * the game ends in finite turns.

» Kernel of a game

Let D be the game graph of a progressively finite game and $K \subset V(D)$. The set K is called the Kernel of D if it satisfies the following three properties:

- 1. all the winning vertices are in K
- 2. there is no edge from any vertex in *K* to any (other) vertex in *K*
- 3. from every vertex not in K, there is an edge to some vertex in K.

Kernel of the Table game:

$$K = \{100, 89, 78, 67, 56, 45, 34, 23, 12, 1\}$$

» Portable Game Notation


```
[Event "F/S Return Match"]
[Site "Belgrade, Serbia JUG"]
[Date "1992.11.04"]
[Round "29"]
[White "Fischer, Robert J."]
[Black "Spassky, Boris V."]
[Result "1/2—1/2"]
```

- 1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 {This opening is called the Ruy Lopez.} 4. Ba4 Nf6 5. O-O Be7 ...
- **A tournament match in Portable Game Notation**

» Winner/Gagnant

A strategy can be described by a sequence of moves. A winning strategy is a way for one player to win no matter what the opponent may do.

$$\exists k : \exists x_1 \forall y_1 \exists x_2 \forall y_2 \dots \forall y_{k-1} \exists x_k$$

such that x_k is a win for player x.

» Finding the best move

Searching decision trees

$$\underline{
u_i} = \max_{a_i} \min_{a_{-i}}
u_i(a_i, a_{-i})$$

Minimax algorithm

» Uh oh factorial

Problem: Counting all possible choices explodes.

Factorial is bad; solving for many games is known to NP-Complete or EXPtime-Complete (chess, go).

Algorithms compensate by trying to explore decision trees intelligently, pruning bad moves.

» Shannon switching game

Distinguished vertices a and b.

Player short can reinforce edges.

Player cut can remove (non-reinforced) edges.

Game of Hex (similar to shortcut)

» Contagion and Fire

Some nodes start on fire maybe. 20 Deploy k firepeople to put out he fire.

Firepeople

- * cut links of the graph,
- * put out nodes,
- * or protect nodes from catching

Fire/virus power

- * ability to spread
- * eventually die out/recover

» Firefighter problem

- * Invented in 1995
- Fire starts at node s, every round firefighters added to protect non-fire nodes.
- * Goal is to contain 🊵 , maximizing saved nodes
- * NP-hard on bipartite graphs and trees with $\delta \leq 3$
- * Even aproximation is NP-hard.

» Searching the grid

» Searching on the line

Place a robot on the real line at zero.

The target is somewhere on the right (x > 0) or on the left (x < 0).

How far do you go in one direction before deciding to turn around?

Is there an optimal strategy? (yes)

» Cops and Robbers

Cop-number c(G) of a graph: How many cops do you need to guaranteed robber will be caught?

Aigner and Fromme showed that 3 cops have a winning strategy on a planar graph (genus 0).

For arbitrary *q*, it has been shown that:

$$c(G) \le \left| \frac{3}{2}g \right| + 3$$

If G has girth at least 5, then

$$c(G) \geq \delta(G)$$

where $\delta(G)$ is the minimum degree of G.

» allowframebreaks

Cop-win graph

» Zombies

What if cops were zombies instead?

» Gardner's Second Favourite Puzzle

» References

- Aviezri S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, Volume 249, Issue 2, 2000
- Hefetz, Dan, et al. Positional Games. Springer Basel, 2014.
- * Evgeny Lakshtanov, and Vera Roshchina. "On Finiteness in the Card Game of War." The American Mathematical Monthly, vol. 119, no. 4, 2012, pp. 318–323. JSTOR, www.jstor.org/stable/10.4169/amer.math.monthly.119.04.31 Accessed 26 Mar. 2021.
- Pierre Coupechoux, Marc Demange, David Ellison,
 Bertrand Jouve, Firefighting on trees, Theoretical
 Computer Science, Volume 794, 2019, Pages 69-84,

* Anthony Bonato, Margaret-Ellen Messinger, Paweł

» References (cont.)

- Prałat, Fighting constrained fires in graphs, Theoretical Computer Science, Volume 434, 2012, Pages 11-22, ISSN 0304-3975. https://doi.org/10.1016/j.tcs.2012.01.041. (https://www.sciencedirect.com/science/article/pii/S030439
- * Leizhen, C., & Weifan, W. (2009). The surviving rate of a graph for the firefighter problem. SIAM Journal on Discrete Mathematics, 23(4), 1814-13. doi:http://dx.doi.org.proxy.bib.uottawa.ca/10.1137/0707003
- * György Szabó, Gábor Fáth, Evolutionary games on graphs, Physics Reports, Volume 446, Issues 4-6, 2007, Pages 97-216, ISSN 0370-1573, https://doi.org/10.1016/j.physrep.2007.04.004.

» References (cont.)

- Lehman, Alfred. "A solution of the Shannon switching game." Journal of the Society for Industrial and Applied Mathematics 12.4 (1964): 687-725.
- * Sharad S. Sane, Combinatorial Techniques, 2013.
- Fedor V. Fomin, Pinar Heggernes, Erik Jan van Leeuwen,
 The Firefighter problem on graph classes, Theoretical
 Computer Science, Volume 613, 2016, Pages 38-50.
- Bose, Prosenjit, Jean-Lou De Carufel, and Stephane Durocher. "Searching on a Line: A Complete Characterization of the Optimal Solution." Theoretical computer science 569 (2015): 24-42. Web.