ME414 - Estatística para Experimentalistas Parte 7

Notas de aula produzidas pelos professores Samara Kiihl, Tatiana Benaglia e Benilton Carvalho e modificadas pela Profa. Larissa Avila Matos

Probabilidade Condicional e Independência

Probabilidade Condicional: encontrar a probabilidade de um evento quando você tem alguma outra informação sobre o evento.

Probabilidade Condicional: encontrar a probabilidade de um evento quando você tem alguma outra informação sobre o evento.

■ Considere o lançamento de dois dados. Espaço amostral:

- Considere que cada resultado tenha a mesma chance de ocorrer: 1/36.
- Suponha que você lance primeiro um dos dados e o resultado é 4.
- Qual a probabilidade de que a soma dos resultados dos dois dados seja 10?

$$\Omega_1 = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

■ Como saiu 4 no primeiro dado, há 6 resultados possíveis:

$$\Omega_1 = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

■ Cada resultado tem a mesma probabilidade de ocorrer: 1/6.

$$\Omega_1 = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

- Cada resultado tem a mesma probabilidade de ocorrer: 1/6.
- Dado que o primeiro dado teve resultado 4, então a probabilidade de cada evento em Ω_1 tem igual chance de ocorrer.

$$\Omega_1 = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

- Cada resultado tem a mesma probabilidade de ocorrer: 1/6.
- Dado que o primeiro dado teve resultado 4, então a probabilidade de cada evento em Ω₁ tem igual chance de ocorrer.
 - \blacksquare $B = \{ a \text{ soma dos dados \'e igual a 10} \}.$

$$\Omega_1 = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

- Cada resultado tem a mesma probabilidade de ocorrer: 1/6.
- Dado que o primeiro dado teve resultado 4, então a probabilidade de cada evento em Ω₁ tem igual chance de ocorrer.
 - $B = \{ a \text{ soma dos dados \'e igual a } 10 \}.$
 - $A = \{\text{no primeiro dado saiu } 4\}.$

$$\Omega_1 = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

- Cada resultado tem a mesma probabilidade de ocorrer: 1/6.
- Dado que o primeiro dado teve resultado 4, então a probabilidade de cada evento em Ω₁ tem igual chance de ocorrer.
 - \blacksquare $B = \{ a \text{ soma dos dados \'e igual a 10} \}.$
 - \blacksquare $A = \{\text{no primeiro dado saiu } 4\}.$
 - \blacksquare Probabilidade condicional de B dado A:

$$P(B \mid A)$$

 \blacksquare Suponha que o resultado do experimento esteja contido no evento A.

- Suponha que o resultado do experimento esteja contido no evento A.
- Para que o resultado esteja também no evento B, ele precisa necessariamente estar tanto em A quanto em B, ou seja, precisa estar em $A \cap B$.

- Suponha que o resultado do experimento esteja contido no evento A.
- Para que o resultado esteja também no evento B, ele precisa necessariamente estar tanto em A quanto em B, ou seja, precisa estar em $A \cap B$.
- Mas, como sabíamos desde o início que o resultado estava em A, nosso espaço amostral agora é reduzido para somente os elementos de A.

- Suponha que o resultado do experimento esteja contido no evento A.
- Para que o resultado esteja também no evento B, ele precisa necessariamente estar tanto em A quanto em B, ou seja, precisa estar em $A \cap B$.
- Mas, como sabíamos desde o início que o resultado estava em A, nosso espaço amostral agora é reduzido para somente os elementos de A.

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Voltando ao exemplo dos dois dados.

Voltando ao exemplo dos dois dados.

 \blacksquare A = no primeiro dado saiu 4.

Voltando ao exemplo dos dois dados.

 $\blacksquare A = \text{no primeiro dado saiu 4}.$

$$A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

Voltando ao exemplo dos dois dados.

 \blacksquare A = no primeiro dado saiu 4.

$$A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

 \blacksquare B = a soma dos dados é igual a 10.

Voltando ao exemplo dos dois dados.

 \blacksquare A = no primeiro dado saiu 4.

$$A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

 \blacksquare B = a soma dos dados é igual a 10.

$$B = \{(4,6), (5,5), (6,4)\}$$

Voltando ao exemplo dos dois dados.

 \blacksquare A = no primeiro dado saiu 4.

$$A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

 \blacksquare B = a soma dos dados é igual a 10.

$$B = \{(4,6), (5,5), (6,4)\}$$

■ Então $A \cap B = \{(4,6)\}$. Portanto:

Voltando ao exemplo dos dois dados.

 $\blacksquare A = \text{no primeiro dado saiu 4}.$

$$A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

 \blacksquare B = a soma dos dados é igual a 10.

$$B = \{(4,6), (5,5), (6,4)\}$$

■ Então $A \cap B = \{(4,6)\}$. Portanto:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{1/36}{6/36} = \frac{1}{6}$$

80.2 milhões de declarações.

Table 1: Renda x Caiu na Malha Fina?

Sim	Não	Total
90	14010	14100
71	30629	30700
69	24631	24700
80	10620	10700
310	79890	80200
	90 71 69 80	90 14010 71 30629 69 24631 80 10620

Para simplificar, uma frequência de 90 representa 90.000.

Espaço amostral:

$$\Omega {=} \{ (A, sim), \, (A, \tilde{nao}), \, (B, sim), \, (B, \tilde{nao}), \, (C, sim), \, (C, \tilde{nao}), \, (D, \tilde{nao}) \}$$

Espaço amostral:

$$\Omega {=} \{ (A,\, sim),\, (A, \tilde{nao}),\, (B, \tilde{sim}),\, (B, \tilde{nao}),\, (C,\, sim),\, (C, \tilde{nao}),\, (D, \tilde{sim}),\\ (D, \tilde{nao}) \}$$

Qual a probabilidade de cair na malha fina se a renda for acima de 100.000?

Espaço amostral:

$$\Omega \!\!=\!\! \{ (A, sim), \, (A, \! n\tilde{a}o), \, (B, \! sim), \, (B, \! n\tilde{a}o), \, (C, sim), \, (C, \! n\tilde{a}o), \, (D, \! sim), \\ (D, \! n\tilde{a}o) \}$$

Qual a probabilidade de cair na malha fina se a renda for acima de 100.000?

 $\blacksquare A = \{ \text{caiu na malha fina} \} = \{ (A, \text{sim}), (B, \text{sim}), (C, \text{sim}), (D, \text{sim}) \}$

Espaço amostral:

$$\Omega {=} \{ (A,\, sim),\, (A, \tilde{nao}),\, (B, sim),\, (B, \tilde{nao}),\, (C,\, sim),\, (C, \tilde{nao}),\, (D, \tilde{sim}),\\ (D, \tilde{nao}) \}$$

Qual a probabilidade de cair na malha fina se a renda for acima de 100.000?

- $\mathcal{A} = \{\text{caiu na malha fina}\} = \{(A, \text{sim}), (B, \text{sim}), (C, \text{sim}), (D, \text{sim})\}$
- \blacksquare $\mathcal{B} = \{\text{renda acima de } 100.000\} = \{(A, \text{sim}), (A, \tilde{\text{nao}})\}$

Espaço amostral:

$$\Omega \!\!=\!\! \{ (A, sim), \, (A, \! n\tilde{a}o), \, (B, \! sim), \, (B, \! n\tilde{a}o), \, (C, sim), \, (C, \! n\tilde{a}o), \, (D, \! sim), \\ (D, \! n\tilde{a}o) \}$$

Qual a probabilidade de cair na malha fina se a renda for acima de 100.000?

- $\blacksquare \ \mathcal{A} = \{ \text{caiu na malha fina} \} = \{ (A, \text{sim}), (B, \text{sim}), (C, \text{sim}), (D, \text{sim}) \}$
- \blacksquare $\mathcal{B} = \{\text{renda acima de } 100.000\} = \{(A, \text{sim}), (A, \tilde{\text{nao}})\}$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\{(A, sim)\})}{P(\{(A, sim), (A, não)\})}$$
$$= \frac{80/8.02 \times 10^4}{1.07 \times 10^4/8.02 \times 10^4} = 0.007$$

Probabilidade condicional por faixa de renda em $2002\,$

Renda X Caiu na Malha Fina?	Sim	Não	Total
D - abaixo de 25.000	$90/1.41 \times 10^4$	$1.401 \times 10^4 / 1.41 \times 10^4$	$1.41 \times 10^4 / 1.41 \times 10^4$
C - 25.000 a 49.999	$71/3.07 \times 10^4$	$3.0629 \times 10^4 / 3.07 \times 10^4$	$3.07 \times 10^4 / 3.07 \times 10^4$
B - 50.000 a 99.999	$69/2.47 \times 10^4$	$2.4631 \times 10^4 / 2.47 \times 10^4$	$2.47 \times 10^4 / 2.47 \times 10^4$
A - acima de 100.000	$80/1.07 \times 10^4$	$1.062 \times 10^4 / 1.07 \times 10^4$	$1.07 \times 10^4 / 1.07 \times 10^4$

Probabilidade condicional por faixa de renda em 2002

Sim	Não	Total
0.006	0.994	1
0.002	0.998	1
0.003	0.997	1
0.007	0.993	1
	0.006 0.002 0.003	SimNão0.0060.9940.0020.9980.0030.9970.0070.993

Independência

Vimos que:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Regra da multiplicação:

$$P(A \cap B) = P(A)P(B \mid A)$$

Quando $P(B \mid A) = P(B)$ (informação sobre A não altera a probabilidade do evento B), dizemos que B e A são **independentes**. Neste caso:

$$P(A \cap B) = P(A)P(B)$$

Considere o lançamento de dois dados "justos" (36 resultados possíveis têm a mesma probabilidade de ocorrer).

Considere os eventos:

- \blacksquare A: primeiro dado tem resultado 3.
- \blacksquare B: soma dos dados é igual a 8.
- \blacksquare C: soma dos dados é igual a 7.

$$P(A \cap B) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(A \cap B) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(A \cap B) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(B) = P(\{(2,6), (3,5), (4,4), (5,3), (6,2)\}) = \frac{5}{36}$$

Eventos A e B são independentes?

$$P(A \cap B) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(B) = P(\{(2,6), (3,5), (4,4), (5,3), (6,2)\}) = \frac{5}{36}$$

$$P(A \cap B) = \frac{1}{36} \neq P(A) \times P(B) = \frac{6}{36} \times \frac{5}{36}$$

Eventos A e B são independentes?

$$P(A \cap B) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(B) = P(\{(2,6), (3,5), (4,4), (5,3), (6,2)\}) = \frac{5}{36}$$

$$P(A \cap B) = \frac{1}{36} \neq P(A) \times P(B) = \frac{6}{36} \times \frac{5}{36}$$

Portanto, A e B não são eventos independentes.

$$P(A \cap C) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(A \cap C) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(A \cap C) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(C) = P(\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}) = \frac{6}{36}$$

$$\begin{split} P(A \cap C) &= P(\{(3,4)\}) = \frac{1}{36} \\ P(A) &= P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36} \\ P(C) &= P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}) = \frac{6}{36} \\ P(A \cap C) &= \frac{1}{36} = P(A) \times P(C) = \frac{6}{36} \times \frac{6}{36} \end{split}$$

Ainda no mesmo exemplo: os eventos A e C são independentes?

$$P(A \cap C) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(C) = P(\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}) = \frac{6}{36}$$

$$P(A \cap C) = \frac{1}{36} = P(A) \times P(C) = \frac{6}{36} \times \frac{6}{36}$$

Portanto, A e C são eventos independentes.

Suponha que A e B sejam dois eventos disjuntos.

Suponha que A e B sejam dois eventos disjuntos.

Suponha que P(A) > 0 e P(B) > 0.

Suponha que A e B sejam dois eventos disjuntos.

Suponha que P(A) > 0 e P(B) > 0.

A e B são independentes?

Suponha que A e B sejam dois eventos disjuntos.

Suponha que P(A) > 0 e P(B) > 0.

A e B são independentes?

A e B são disjuntos, então $A \cap B = \emptyset$ e $P(A \cap B) = 0$.

P(A) > 0 e P(B) > 0, portanto:

Suponha que A e B sejam dois eventos disjuntos.

Suponha que P(A) > 0 e P(B) > 0.

A e B são independentes?

Ae Bsão disjuntos, então $A\cap B=\varnothing$ e $P(A\cap B)=0.$ P(A)>0e P(B)>0, portanto:

$$P(A \cap B) = 0 \neq P(A)P(B).$$

A e B não são independentes.

Suponha que A e B sejam dois eventos disjuntos.

Suponha que P(A) > 0 e P(B) > 0.

A e B são independentes?

A e B são disjuntos, então $A \cap B = \emptyset$ e $P(A \cap B) = 0$. P(A) > 0 e P(B) > 0, portanto:

$$P(A \cap B) = 0 \neq P(A)P(B).$$

A e B não são independentes.

Além disso: $P(B \mid A) = \frac{P(A \cap B)}{P(A)} = 0$, ou seja, dado que A ocorre, B não ocorre.

Em uma família com duas crianças, considere os eventos:

 $A{=}\{{\rm a~primeira~criança~\acute{e}~uma~menina}\}$ e $B{=}\{{\rm as~duas~crianças~s\~{a}o~meninas}\}.$

■ Mostre que $P(B \mid A) = 1/2$.

Em uma família com duas crianças, considere os eventos:

 $A{=}\{{\rm a~primeira~criança~\acute{e}~uma~menina}\}$ e $B{=}\{{\rm as~duas~crianças~s\~{a}o~meninas}\}.$

■ Mostre que $P(B \mid A) = 1/2$.

$$\Omega = \{FF, MM, FM, MF\}$$

$$A = \{FF, FM\}, \qquad B = \{FF\} \implies B \cap A = B$$

Portanto,

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(\{FF\})}{P(\{FF, FM\})} = \frac{1/4}{1/2} = 1/2$$

Em uma família com duas crianças, considere os eventos:

 $A{=}\{{\rm a}\ {\rm primeira}\ {\rm criança}\ {\rm \acute{e}}\ {\rm uma}\ {\rm menina}\}$ e $B{=}\{{\rm as}\ {\rm duas}\ {\rm crianças}\ {\rm s\~ao}\ {\rm meninas}\}.$

 \blacksquare A e B são eventos independentes?

Em uma família com duas crianças, considere os eventos:

 $A=\{$ a primeira criança é uma menina $\}$ e $B=\{$ as duas crianças são meninas $\}$.

 \blacksquare A e B são eventos independentes?

$$\Omega = \{FF, MM, FM, MF\}$$

$$A = \{FF, FM\} \qquad B = \{FF\} \qquad \Longrightarrow \qquad B \cap A = B$$
Então, $P(B \cap A) = P(B) = \frac{1}{4}$ e
$$P(A)P(B) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \neq P(B \cap A)$$

Portanto, A e B não são independentes.

Chutar: escolher as respostas ao acaso.

Prova com três questões de múltipla escolha.

Em cada questão há 5 alternativas, apenas 1 é correta.

Experimento: anotar o resultado do aluno na prova.

Chutar: escolher as respostas ao acaso.

Prova com três questões de múltipla escolha.

Em cada questão há 5 alternativas, apenas 1 é correta.

Experimento: anotar o resultado do aluno na prova.

 $\Omega = \{CCC, CCI, CIC, CII, ICC, ICI, IIC, III\}$

Quais as probabilidades dos eventos do espaço amostral?

Quais as probabilidades dos eventos do espaço amostral?

Para cada questão: P(C) = 0.2 e P(I) = 0.8

Quais as probabilidades dos eventos do espaço amostral?

Para cada questão:
$$P(C)=0.2$$
 e $P(I)=0.8$

$$P(CCC) = P(C) \times P(C) \times P(C) = 0.2^3 = 0.008$$

Quais as probabilidades dos eventos do espaço amostral?

Para cada questão:
$$P(C) = 0.2$$
 e $P(I) = 0.8$

$$P(CCC) = P(C) \times P(C) \times P(C) = 0.2^3 = 0.008$$

Qual a probabilidade do aluno acertar pelo menos duas questões?

Quais as probabilidades dos eventos do espaço amostral?

Para cada questão:
$$P(C) = 0.2$$
 e $P(I) = 0.8$

$$P(CCC) = P(C) \times P(C) \times P(C) = 0.2^3 = 0.008$$

Qual a probabilidade do aluno acertar pelo menos duas questões?

$$P(CCC) + P(CCI) + P(CIC) + P(ICC) = 0.008 + 3 \times 0.032 = 0.104$$

Uso de cinto / Sobreviveu	Sim (S)	Não (\bar{S})	Total
Sim (C)	414368	510	412878
Não (\bar{C})	162527	1601	164128
Total	574895	2111	577006

Qual a probabilidade de que a pessoa morreu no acidente?

Uso de cinto / Sobreviveu	Sim (S)	Não (\bar{S})	Total
Sim (C)	414368	510	412878
Não (\bar{C})	162527	1601	164128
Total	574895	2111	577006

Qual a probabilidade de que a pessoa morreu no acidente?

$$P(\bar{S}) = \frac{2111}{577006} = 0.004$$

Qual a probabilidade de que a pessoa morreu dado que ela usava o cinto de segurança?

Uso de cinto / Sobreviveu	Sim (S)	Não (\bar{S})	Total
Sim (C)	414368	510	412878
Não (\bar{C})	162527	1601	164128
Total	574895	2111	577006

Qual a probabilidade de que a pessoa morreu no acidente?

$$P(\bar{S}) = \frac{2111}{577006} = 0.004$$

Qual a probabilidade de que a pessoa morreu dado que ela usava o cinto de segurança?

$$P(\bar{S} \mid C) = P(\bar{S} \cap C)/P(C) = \frac{510}{412878} = 0.001$$

Uso de cinto / Sobreviveu	Sim (S)	Não (\bar{S})	Total
Sim (C)	414368	510	414878
Não (\bar{C})	162527	1601	164128
Total	576895	2111	579006

Qual a probabilidade de que a pessoa morreu dado que ela não usava o cinto de segurança?

Uso de cinto / Sobreviveu	Sim (S)	Não (\bar{S})	Total
Sim (C)	414368	510	414878
Não (\bar{C})	162527	1601	164128
Total	576895	2111	579006

Qual a probabilidade de que a pessoa morreu dado que ela não usava o cinto de segurança?

$$P(\bar{S} \mid \bar{C}) = \frac{P(\bar{S} \cap \bar{C})}{P(\bar{C})} = \frac{1601}{164128} = 0.01$$

Morte e uso de cinto são eventos independentes?

Uso de cinto / Sobreviveu	Sim (S)	Não (\bar{S})	Total
Sim (C)	414368	510	414878
Não (\bar{C})	162527	1601	164128
Total	576895	2111	579006

Qual a probabilidade de que a pessoa morreu dado que ela não usava o cinto de segurança?

$$P(\bar{S} \mid \bar{C}) = \frac{P(\bar{S} \cap \bar{C})}{P(\bar{C})} = \frac{1601}{164128} = 0.01$$

Morte e uso de cinto são eventos independentes?

$$P(\bar{S} \mid \bar{C}) \neq P(\bar{S}) = \frac{2111}{579006} = 0.004$$

$$P(\bar{S} \mid C) \neq P(\bar{S})$$

Uma sacola contém 10 sementes de flores vermelhas e 5 de flores brancas. Selecionamos duas sementes ao acaso, uma a uma e sem reposição.

Qual é a probabilidade de que :

Uma sacola contém 10 sementes de flores vermelhas e 5 de flores brancas. Selecionamos duas sementes ao acaso, uma a uma e sem reposição.

Qual é a probabilidade de que :

- a primeira semente seja vermelha?
- a segunda seja branca se a primeira foi vermelha?

Uma sacola contém 10 sementes de flores vermelhas e 5 de flores brancas. Selecionamos duas sementes ao acaso, uma a uma e sem reposição.

Qual é a probabilidade de que :

- a primeira semente seja vermelha?
- a segunda seja branca se a primeira foi vermelha?

Defina os eventos:

A: a primeira semente é vermelha e B: a segunda semente é branca

Então:

$$P(A) = \frac{10}{15} = \frac{2}{3}$$
 e $P(B|A) = \frac{5}{14}$

Teorema de Bayes

Considere dois eventos quaisquer A e B.

Para que um elemento esteja em A, há duas possibilidades:

Teorema de Bayes

Considere dois eventos quaisquer A e B.

Para que um elemento esteja em A, há duas possibilidades:

- \blacksquare o elemento está em A e em B;
- \blacksquare o elemento está em A, mas não está em B.

Portanto, podemos escrever:

$$A = (A \cap B) \cup (A \cap B^c)$$

Portanto, podemos escrever:

$$A = (A \cap B) \cup (A \cap B^c)$$

As duas possibilidades são disjuntas, então:

Portanto, podemos escrever:

$$A = (A \cap B) \cup (A \cap B^c)$$

As duas possibilidades são disjuntas, então:

$$P(A) = P(A \cap B) + P(A \cap B^c)$$

Temos que:

$$P(A \cap B) = P(A \mid B)P(B)$$

$$P(A\cap B^c)=P(A\mid B^c)P(B^c)$$

Temos que:

$$P(A \cap B) = P(A \mid B)P(B)$$

$$P(A \cap B^c) = P(A \mid B^c)P(B^c)$$

Então reescrevemos:

$$P(A) = P(A \mid B)P(B) + P(A \mid B^c)P(B^c)$$

Temos que:

$$P(A \cap B) = P(A \mid B)P(B)$$

$$P(A \cap B^c) = P(A \mid B^c)P(B^c)$$

Então reescrevemos:

$$P(A) = P(A \mid B)P(B) + P(A \mid B^c)P(B^c)$$

Interpretação: a probabilidade do evento A é uma média ponderada da probabilidade condicional do evento A dado que B ocorre e da probabilidade condicional do evento A dado que B não ocorre. O peso de cada probabilidade condicional é a probabilidade do evento que está sendo levado em conta ao calcular a probabilidade condicional de A.

Dizemos que os eventos $\{B_1, B_2, \dots, B_n\}$ formam uma partição do espaço amostral Ω se são mutuamente exclusivos e a união desses eventos é Ω .

Dizemos que os eventos $\{B_1, B_2, \dots, B_n\}$ formam uma partição do espaço amostral Ω se são mutuamente exclusivos e a união desses eventos é Ω .

Então,

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

Se considerarmos a partição B e B^c do espaço amostral Ω e A um evento em Ω . Então:

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid B^c)P(B^c)}$$

Se considerarmos a partição B e B^c do espaço amostral Ω e A um evento em Ω . Então:

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid B^c)P(B^c)}$$

No caso geral, seja $\{B_1, \ldots, B_n\}$ uma partição de eventos de Ω e A um evento em Ω :

$$P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{\sum_{i=1}^{n} P(A \mid B_i)P(B_i)}$$

Exemplo: Teste de diagnóstico

Um exame de sangue é 99% efetivo em detectar uma certa doença quando esta está presente. No entanto, 2% são falso-positivos. Suponha que 0.5% da população tem a doença.

Qual a probabilidade condicional de que um indivíduo testado aleatoriamente tenha a doença dado que o teste deu positivo?

Exemplo: Teste de diagnóstico

Um exame de sangue é 99% efetivo em detectar uma certa doença quando esta está presente. No entanto, 2% são falso-positivos. Suponha que 0.5% da população tem a doença.

Qual a probabilidade condicional de que um indivíduo testado aleatoriamente tenha a doença dado que o teste deu positivo?

Considere os eventos: $D = \{\text{estar doente}\}\ e\ TP = \{\text{testar positivo}\}$

Exemplo: Teste de diagnóstico

Um exame de sangue é 99% efetivo em detectar uma certa doença quando esta está presente. No entanto, 2% são falso-positivos. Suponha que 0.5% da população tem a doença.

Qual a probabilidade condicional de que um indivíduo testado aleatoriamente tenha a doença dado que o teste deu positivo?

Considere os eventos: $D = \{\text{estar doente}\}\ e\ TP = \{\text{testar positivo}\}$

$$P(TP \mid D) = 0.99$$
 $P(TP \mid D^c) = 0.02$ e $P(D) = 0.005$

$$P(D \mid TP) = \frac{P(TP \mid D)P(D)}{P(TP \mid D)P(D) + P(TP \mid D^c)P(D^c)}$$
$$= \frac{0.99 \times 0.005}{0.99 \times 0.005 + 0.02 \times 0.995} = 0.20$$

Câncer de Mama

Câncer de mama afeta 1% das mulheres.

Mamografia é o teste padrão para detectar câncer de mama. Mas sabe-se que não é um teste perfeito.

Estatísticas mostram que a mamografia é 80% efetiva em detectar o câncer quando este realmente existe. E 9.6% das mamografias resultam em falsos positivos (teste positivo quando o câncer não existe).

Suponha que sua mãe faz uma mamografia e o resultado é positivo.

Qual é a probabilidade dela realmente estar com câncer de mama?

Uma companhia de seguros acredita que as pessoas podem ser divididas em duas categorias:

- 1 aquelas que estão mais sujeitas a acidentes.
- 2 aquelas que não estão mais sujeitas a acidentes.

Os dados indicam que uma pessoa da categoria 1 terá um acidente durante o período de um ano com probabilidade 0.1. A probabilidade para todas as outras pessoas é 0.05.

Suponha que a probabilidade de um novo cliente pertencer à categoria $1 \ {\rm seja} \ 0.2.$

Pergunta: Qual a probabilidade de que o novo cliente tenha um acidente durante o primeiro ano?

Pergunta: Qual a probabilidade de que o novo cliente tenha um acidente durante o primeiro ano?

Considere os eventos:

A: o novo cliente tem um acidente durante o primeiro ano

 $B{:}$ o novo cliente pertence à categoria 1

 B^c : o novo cliente pertence à categoria 2

Pergunta: Qual a probabilidade de que o novo cliente tenha um acidente durante o primeiro ano?

Considere os eventos:

A: o novo cliente tem um acidente durante o primeiro ano

 $B{:}$ o novo cliente pertence à categoria 1

 B^c : o novo cliente pertence à categoria 2

Pelo Teorema das Probabilidades Totais:

$$P(A) = P(A \mid B)P(B) + P(A \mid B^{c})P(B^{c})$$

= 0.1 \times 0.2 + 0.05 \times 0.8 = 0.06

Pergunta: Se um novo cliente tem um acidente durante o primeiro ano, qual é a probabilidade de que ele pertença à categoria 1?

Pergunta: Se um novo cliente tem um acidente durante o primeiro ano, qual é a probabilidade de que ele pertença à categoria 1?

A: o novo cliente tem um acidente durante o primeiro ano

 $B{:}$ o novo cliente pertence à categoria 1

Pelo Teorema de Bayes

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \mid B)P(B)}{P(A)}$$
$$= \frac{0.1 \times 0.2}{0.06} = \frac{1}{3}$$

Dado que o réu é inocente (I), suponha que a probabilidade do DNA dele ser compatível (C) com o DNA encontrado na cena do crime seja 1 em um milhão.

$$P(C \mid I) = 0.000001$$

Dado que o réu é culpado (\bar{I}) , suponha que a probabilidade do DNA dele ser compatível com o DNA da cena do crime seja 0.99.

$$P(C \mid \bar{I}) = 0.99$$

O DNA do réu é compatível com o DNA da cena do crime.

Encontre a probabilidade do réu ser inocente dado que o DNA é compatível, sendo que a probabilidade incondicional dele ser inocente, P(I), é 0.5.

Encontre a probabilidade do réu ser inocente dado que o DNA é compatível, sendo que a probabilidade incondicional dele ser inocente, P(I), é 0.5.

Queremos $P(I\mid C),$ sendo que $P(I)=P(\bar{I})=0.5$

Encontre a probabilidade do réu ser inocente dado que o DNA é compatível, sendo que a probabilidade incondicional dele ser inocente, P(I), é 0.5.

Queremos
$$P(I \mid C)$$
, sendo que $P(I) = P(\bar{I}) = 0.5$

Pelo Teorema de Bayes:

$$\begin{split} P(I \mid C) &= \frac{P(I \cap C)}{P(C)} = \frac{P(C \mid I)P(I)}{P(C)} \\ &= \frac{P(C \mid I)P(I)}{P(C \mid I)P(I) + P(C \mid \bar{I})P(\bar{I})} \\ &= \frac{0.000001 \times 0.50}{0.000001 \times 0.5 + 0.99 \times 0.5} = 0.000001 \end{split}$$

A chance de ser inocente dado que houve compatibilidade de DNA é 1 em 1 milhão.

Encontre a probabilidade do réu ser inocente dado que o DNA é compatível, sendo que a probabilidade incondicional dele ser inocente, P(I), é 0.99.

Encontre a probabilidade do réu ser inocente dado que o DNA é compatível, sendo que a probabilidade incondicional dele ser inocente, P(I), é 0.99.

$$P(I \mid C) = \frac{P(I \cap C)}{P(C)} = \frac{P(C \mid I)P(I)}{P(C)}$$

$$= \frac{P(C \mid I)P(I)}{P(C \mid I)P(I) + P(C \mid \bar{I})P(\bar{I})}$$

$$= \frac{0.000001 \times 0.99}{0.000001 \times 0.99 + 0.99 \times 0.01} = 0.00001$$

A chance de ser inocente dado que houve compatibilidade de DNA é 1 em 100 mil.

Leituras

■ OpenIntro: seção 2.2.

 \blacksquare Ross: seções 4.5, 4.6

 \blacksquare Magalhães: capítulo 2

