Theory of Computation HW2 Non-regular Languages Ryzeson Maravich

1

Claim: The language $A_2 = \{www|w \in \{a,b\}^*\}$ is not regular.

Proof: Suppose A_2 is regular. Let p be the pumping length given by the pumping lemma. Let $s = a^p b a^p b a^p b$. Because $s \in A_2$ and $|s| \ge p$, by the pumping lemma we can split s into three pieces s = xyz such that for $i \ge 0$ $xy^iz \in A_2$.

Because $|xy| \leq p$ by the pumping lemma, y must consist of all a's. The string xyyz would have too many a's, as there would be no way to divide the new string into three equal w's, and thus $s \notin A_2$. This violates the pumping lemma, therefore A_2 is not regular.

2

Claim: The language $B = \{w | w \in \{0,1\}^* \text{ is not a palindrome} \}$ is not regular.

Proof: First we will prove that $B_c = \{w | w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular. Suppose B_c is regular. Let p be the pumping length given by the pumping lemma. Let $s = 0^p 10^p$. Because $s \in B_c$ and $|s| \ge p$, by the pumping lemma we can split s into three pieces s = xyz such that for $i \ge 0$ $xy^iz \in B_c$.

Because $|xy| \leq p$ by the pumping lemma, y must consist of all 0s. The string xyyz would have more 0s before the 1 than after the 1, and therefore $s \notin B_c$. This violates the pumping lemma, therefore B_c is not regular.

Languages are closed under complement, so if B is regular, then B_c would also be regular. Because we proved B_c is not regular, B is not regular.

3

Claim: The language $B_2 = \{wtw|w, t \in \{0,1\}^+\}$ is not regular.

Proof: Suppose B_2 is regular. Let p be the pumping length given by the pumping lemma. Let $s = 1^p001^p0$. Because $s \in B_2$ and $|s| \ge p$, by the pumping lemma we can split s into three pieces s = xyz such that for $i \ge 0$ $xy^iz \in B_2$.

Because $|xy| \leq p$ by the pumping lemma, y must consist of all 1s. The string xyyz adds 1's to the first part of the string, so that for any t, there is no possible w that could exist for s to be in the language, therefore $s \notin B_2$. This violates the pumping lemma, therefore B_2 is not regular.

4

Let $\Sigma = \{1, \#\}.$

Claim: The language $Y = \{w | w = x_1 \# x_2 \# \cdots \# x_k \text{ for } k \geq 0, \text{ each } x \in 1^*, \text{ and } x_i \neq x_j \text{ for } i \neq j\}$ is not regular.

Proof: Suppose Y is regular. Let p be the pumping length given by the pumping lemma. Let $s = 1^p \# 1^{p+1} \# \cdots \# 1^{2p}$. Because $s \in Y$ and $|s| \ge p$, by the pumping lemma we can split s into three pieces s = xyz such that for $i \ge 0$ $xy^iz \in Y$.

Because $|xy| \le p$ and $|y| \ge 0$ by the pumping lemma, y must consist of between 1 and p ones. The string xyyz would generate between p+1 and 2p 1s before the first #. In each case, $s \notin Y$ because some $x_i = x_j$ for $i \ne j$. This violates the pumping lemma, therefore Y is not regular.

5

\mathbf{a}

Claim: The language $B = \{1^k y | y \in \{0,1\}^* \text{ and } d \text{ contains at least } k \text{ 1s, for } k \geq 1\}$ is regular.

Proof: The following is a DFA that recognizes B.

b

Claim: The language $C = \{1^k y | y \in \{0,1\}^* \text{ and } d \text{ contains at most } k \text{ 1s, for } k \geq 1\}$ is not regular. **Proof:** Suppose C is a regular language. Let p be the pumping length given by the pumping lemma. Let $s = 1^p 01^p$. Because $s \in C$ and $|s| \geq p$, by the pumping lemma we can split s into three pieces s = xyz such that for $i \geq 0$ $xy^iz \in C$.

Because $|xy| \le p$ and $|y| \ge 0$ by the pumping lemma, y must consist of 1s. The string xz results in fewer 1s before the 0 than after. Thus d will always have more than k 1s, so $s \notin C$. This violates the pumping lemma, therefore C is not regular.

6

The following NFA recognizes the regular expression $a^+ \cup (ab)^+$.

I affirm that I have upheld the highest principles of honesty and integrity in my academic work and have not witnessed a violation of the honor code.