# Sound Source Localization using TDOA

December 8, 2021 Heath McCabe

#### **Project Overview**

- Use arduino and electret microphones to do low-cost sound source localization
- Sample analog 'loudness' signal from the electret microphone on the Arduino
- Assess the data in Matlab
- Hardware:
  - Arduino Uno R3
  - o 3 x Sparkfun SEN-12642
  - Laptop w/ Matlab installed





#### **Equations and Methods**

If  $r_1$  and  $r_2$  are the ranges from the sensors to the target as shown in the figure below, then

$$c \cdot \text{TDOA} = r_1 - r_2$$

where c is the speed of light.



- Instead of c, use
  Vs=344 m/s
- I refer to this difference in ranges as delta-range

### **Equations and Methods**

#### ILS Equations:

For this reason, we'll treat TDOA as a range difference. The measurement function is

TDOA 
$$\propto h(x) = r_1 - r_2 = ||x - a_1|| - ||x - a_2||$$

The linearized model matrix is computed as follows

$$\underline{\underline{H}} = \frac{\partial h}{\partial x} = \left(\frac{1}{r_1}\right) (x - a_1)^T - \left(\frac{1}{r_2}\right) (x - a_2)^T = u_1^T - u_2^T$$

where  $u_1$  and  $u_2$  are unit vectors from the sensors to the target.

# Block Diagram



# Arduino Code



#### Matlab Code



#### Operation

#### Generating Samples

- Sample the sound sensors at 2550 Hz
- Read each sensor, buffer the value, repeat until buffer is full
- Flush the buffer over serial to the Matlab client

#### **Deriving TDOA measurements**

- Start with 220 samples recorded at 2550 Hz for each sensor
- Determine the lag between signals using xcorr method
- Tau\_21 = (delay in samples) \* Tsa
- DR\_21 = Tau\_21 \* Vs

# Operation





Dist S1 to S2 = 0.443 m = 3.28 Sa resolution Dist S1 to S3 = 0.438 m = 3.25 Sa resolution

### Operation: Real Data

Signals & 1 set of dr vals



#### Result



#### **Issues Overview**

- Sampling rate is relatively slow
- Sensor geometry
- Sensor sensitivity is low

#### Issues: Low Sampling Rate

- Fairly low sampling rate of ~2550 Hz means low resolution.
  - Vs \* Tsa = 344 m/s \* (1/2550) s = 0.1349 m = 134.9 mm
- To achieve a v\*tau resolution of 1 cm requires
  - Fsa = v / d = 344/0.01 = 34,400 Hz
  - Not possible with hardware being used
- Effect of a 1-sample error
  - ILS may not converge
  - Solution may be roughly 125 cm away from true position

# Issues: Low Sampling Rate

#### Nominal solution:



| Vs:              | 344       | m/s            |                |             |
|------------------|-----------|----------------|----------------|-------------|
| Fsa:             | 2550      | Hz             |                |             |
| dr (Vs*tau) res. | 0.1349    | m              |                |             |
| Speaker Pos x    | 0.600     | m              |                |             |
| Speaker Pos y    | 0.200     | m              |                |             |
| dr_21            | -0.41     | m              |                |             |
| dr_31            | -0.35     | m              |                |             |
| dr_21 (m)        | dr_31 (m) | Solution x (m) | Solution y (m) | Pos Err (m) |
| -0.5449          | -0.4849   | -              | -              | 17.0        |
| -0.5449          | -0.3500   | -              | 12             | 121         |
| -0.5449          | -0.2151   | -              | 15-1           | 10.0        |
| -0.4100          | -0.4849   | 2              | 1/27           | 82%         |
| -0.4100          | -0.3500   | 0.6            | 0.2            | 0           |
| -0.4100          | -0.2151   | 0.4907         | 0.2623         | 0.1258      |
| -0.2751          | -0.4849   | 2              | 72)            | -           |
| -0.2751          | -0.3500   | 0.5034         | 0.1156         | 0.1283      |
| -0.2751          | -0.2151   | -              | 95             | -           |

#### Issues: Sensor Geometry

 Due to sensor laydown, I have unfavorable geometry when the sound source is off in the +x direction of the setup.



# Issues: Sensor Geometry



- Illustrating where the ILS fails
- Ran ILS using canned data over a 2m x 2m grid in 50 mm steps
- Ran ILS 50 times at each point, with a small, random initial error each time
- Colorbar:
  - 1 = no runs failed to converge
  - 0 = all runs failed to converge

### Issues: Low Sensor Sensitivity

- Had issues during testing finding a sound source around the house loud enough to trigger all 3 sensors
- Resorted to clapping as a simple solution
- This results in variation because my hands weren't perfectly still from one clap to the next
- Two subsequent claps in the same location, but at different volumes, yield different delta-ranges

#### Conclusions

- Using low-grade computer resulted in low-resolution position solution
- Despite the issues presented, the localization worked under certain conditions