Distribution	PDF	Mean	Variance	MGF
Binomial	$p(y) = \binom{n}{y} p^y (1-p)^{n-y}, y = 0, 1,, n$	np	np(1-p)	$[pe^t + (1-p)]^n$
Geometric	$p(y) = p(1-p)^{y-1}, y = 1, 2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y}\binom{N-r}{N-y}}{Nn}, y = 0, 1, \dots$	$\frac{nr}{N}$	$n\frac{r}{N}\frac{N-r}{N}\frac{N-n}{N-1}$	DNE in closed form
Poisson	$p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!}, y = 0, 1, 2, \dots$	λ	λ	$e^{\lambda(e^t-1)}$
Negative Binomial	$p(y) = {\binom{y-1}{r-1}} p^r (1-p)^{y-r}, y = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^t$
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}$	$\frac{\theta_1 + \theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(y-\mu)^2}{2\sigma^2}}$ $f(y) = \frac{1}{\beta}e^{-y/\beta}$	μ	σ^2	$e^{\mu t + \frac{t^2 \sigma^2}{2}}$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}$	β	eta^2	$(1-\beta t)^{-1}$
Gamma	$f(y) = \frac{y^{\alpha - 1}e^{-y/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$ $f(y) = \frac{y^{\nu/2 - 1}e^{-y/2}}{2^{\nu/2}\Gamma(\nu/2)}$	$\alpha\beta$	$\alpha \beta^2$	$(1-\beta t)^{-\alpha}$
Chi-square	$f(y) = \frac{y^{v/2-1}e^{-y/2}}{2^{v/2}\Gamma(v/2)}$	v	2v	$(1-2t)^{-v/2}$
Beta	$f(y) = \left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y^{\alpha-1} (1-y)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	DNE in closed form

Some Relevant Distribution Relationships Assume Y_i are i.i.d, i = 1, 2, ..., n, and $Y_i \sim \text{Normal}(\mu, \sigma^2)$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i, \qquad Z = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim \text{Normal}(0, 1), \qquad \sum_{i=1}^{n} \left(\frac{Y_i - \mu}{\sigma}\right)^2 \sim \chi_{(n)}^2, \qquad \chi_{(n)}^2 = \text{Gamma}(n / 2, 2)$$

$$\frac{(n - 1)S^2}{\sigma^2} = \sum_{i=1}^{n} \frac{(Y_i - \overline{Y})^2}{\sigma^2} \sim \chi_{(n-1)}^2, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

$$t_v = \frac{Z}{\sqrt{W/v}} \text{ where } Z \sim \text{Normal}(0, 1), W \sim \chi_{(v)}^2, \text{ and } Z, W \text{ are independent}$$

$$F_{v1,v2} = \frac{W_1/v_1}{W_2/v_2}$$
 where $W_1 \sim \chi^2_{(v_1)}, W_2 \sim \chi^2_{(v_2)}$ and W_1, W_2 are independent, $F_{n_1-1,n_2-1} \sim \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$

$$\operatorname{Exp}(\beta) = \operatorname{Gamma}(\alpha = 1, \beta), \qquad (\operatorname{Normal}(0, 1))^2 = \chi_{(1)}^2 = \operatorname{Gamma}(1/2, 2)$$

$$\mu = np, \sigma = \sqrt{np(1-p)}$$

$$Y_{(1)} = \min(Y_1, Y_2, ..., Y_n) \quad f_{Y_{(1)}}(y) = n[1 - F_{Y_i}(y)]^{n-1} f_{Y_i}(y), \qquad Y_{(n)} = \max(Y_1, Y_2, ..., Y_n) \quad f_{Y_{(n)}}(y) = n[F_{Y_i}(y)]^{n-1} f_{Y_i}(y)$$

Derived Confidence Intervals

Large Sample C.I for p and μ :

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \qquad \overline{Y} \pm Z_{\alpha/2} \frac{S}{\sqrt{n}}$$

Large Sample C.I for $\mu_1 - \mu_2$ and $p_1 - p_2$:

$$\overline{Y_1} - \overline{Y_2} \pm Z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}, \qquad (\hat{p}_1 - \hat{p}_2) \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Small Sample C.I for μ :

$$\overline{Y} \pm t_{\alpha/2} \left(\frac{S}{\sqrt{n}} \right)$$
 where t has $(n-1)$ df

Small Sample C.I for $\mu_1 - \mu_2$:

$$(\overline{Y}_1 - \overline{Y}_2) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
 where t has $(n_1 + n_2 - 2)$ df $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

C.I for σ^2 :

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2}\right)$$
 where χ^2 has $(n-1)$ df

Large-Sample Test for Mean:
$$Z = \frac{\overline{Y} - \mu_0}{S/\sqrt{n}}$$

	Alternative Hypothesis	Reject Region for Level α Test (Related to Standard Normal)
Upper-Tailed Test	$H_a: \mu > \mu_0$	$Z \ge Z_{lpha}$
Lower-Tailed Test	$H_a: \mu < \mu_0$	$Z \le -Z_{\alpha}$
Two-Tailed Test	$H_a: \mu \neq \mu_0$	$Z \ge Z_{\alpha/2}$ or $Z \le -Z_{\alpha/2}$

Large-Sample Test for Proportion: $Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$

	Alternative Hypothesis	Reject Region for Level α Test (Related to Standard Normal)
Upper-Tailed Test	$H_a: p > p_0$	$Z \ge Z_{\alpha}$
Lower-Tailed Test	$H_a: p < p_0$	$Z \leq -Z_{\alpha}$
Two-Tailed Test	$H_a: p \neq p_0$	$Z \ge Z_{\alpha/2}$ or $Z \le -Z_{\alpha/2}$

Small-Sample Test for Mean:
$$T = \frac{\overline{Y} - \mu_0}{s/\sqrt{n}}$$

	Alternative Hypothesis	Reject Region for Level α Test (Related to T-Distribution)
Upper-Tailed Test	$H_a: \mu > \mu_0$	$T \ge t_{\alpha, n-1}$
Lower-Tailed Test	$H_a: \mu < \mu_0$	$T \le -t_{\alpha,n-1}$
Two-Tailed Test	$H_a: \mu \neq \mu_0$	$T \ge t_{\alpha/2,n-1}$ or $T \le -t_{\alpha/2,n-1}$

Small-Sample Test Between 2 Means:
$$T = \frac{\overline{Y_1} - \overline{Y_2} - D_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \qquad S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

	Alternative Hypothesis	Reject Region for Level α Test (Related to T-Distribution)
Upper-Tailed Test	$H_a: \mu_1 - \mu_2 > D_0$	$T \ge t_{\alpha, n_1 + n_2 - 2}$
Lower-Tailed Test	$H_a: \mu_1 - \mu_2 < D_0$	$T \le -t_{\alpha, n_1 + n_2 - 2}$
Two-Tailed Test	$H_a: \mu_1 - \mu_2 \neq D_0$	$T \ge t_{\alpha/2, n_1 + n_2 - 2}$ or $T \le -t_{\alpha/2, n_1 + n_2 - 2}$

Test for Variance:
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

	Alternative Hypothesis	Reject Region for Level α Test (Related to χ^2 -Distribution)
Upper-Tailed Test	$H_a:\sigma^2>\sigma_0^2$	$\chi^2 > \chi^2_{\alpha, n-1}$
Lower-Tailed Test	$H_a: \sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{1-\alpha,n-1}$
Two-Tailed Test	$H_a:\sigma^2\neq\sigma_0^2$	$\chi^2 > \chi^2_{\alpha/2, n-1}$ or $\chi^2 < \chi^2_{1-\alpha/2, n-1}$

Test for Equal Variances: $F = \frac{S_1^2}{S_2^2}$

	Alternative Hypothesis	Reject Region for Level α Test (Related to F-Distribution)
Upper-Tailed Test		$F > F_{\alpha, n_1 - 1, n_2 - 1}$
Lower-Tailed Test	$H_a: \sigma^2 < \sigma_0^2$	$F < F_{1-\alpha,n_1-1,n_2-1}$
Two-Tailed Test	$H_a:\sigma^2\neq\sigma_0^2$	$F > F_{\alpha/2, n_1 - 1, n_2 - 1}$ or $F < F_{1 - \alpha/2, n_1 - 1, n_2 - 1}$

Least-Squares Estimators for the Simple Linear Regression Model:

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}, \quad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}, \quad S_{xy} = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^n x_i y_i - n(\overline{x})(\overline{y}) \quad S_{xx} = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - n\overline{x}^2,$$

$$V(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}, \quad V(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right)$$

Linear Regression: Total Sum of Squares, Sum of Squares Error, Sum of Squares Regression

$$SSY = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n\overline{Y}^2, \quad SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = SSY - SS_{reg}, \quad SS_{reg} = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 = \hat{\beta}_1 S_{xy} = \hat{\beta}_1^2 S_{xx}$$

One Way ANOVA: Total Sum of Squares, Sum of Squares for Error, Sum of Squares for Treatments

$$n = \sum_{i=1}^{k} n_{i}, \quad \overline{Y_{i\bullet}} = \frac{1}{n_{i}} \sum_{i=1}^{n_{i}} Y_{ij} \quad \overline{Y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} Y_{ij}, \quad \text{Total } SS = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} Y_{ij}^{2} - n \overline{Y}^{2},$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y_{i\bullet}})^{2} = \sum_{i=1}^{k} (n_{i} - 1)S_{i}^{2} = \text{Total } SS - SST, \quad SST = \sum_{i=1}^{k} n_{i} (\overline{Y_{i\bullet}} - \overline{Y})^{2} = \sum_{i=1}^{k} n_{i} \overline{Y_{i\bullet}}^{2} - n \overline{Y}^{2}$$

$$MST = \frac{SST}{k-1}, \quad MSE = \frac{SSE}{n-k}, \quad F = \frac{MST}{MSE}$$