Assignment 2 - authored by, KARTHIKEYAN R

1. Download the dataset from the source here (https://drive.google.com/file/d/1_HcM0K8wt4b7F usp=sharing).

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows

CustomerId - Unique identification of customer

Surname - Name of the customer

CreditScore - Cipil score of the customer

Geography - Location of the bank

Gender - Sex of the customer

Age - Age of the customer

Tenure - Repayment period for the credit amount

Balance - Current balance in thier creidt card

NumOfProducts - Products owned by the customer from the company

HasCrCard - Has credit card or not (0 - no , 1 - yes)

IsactiveMember - Is a active member or not

EstimatedSalary - Salary of the customer

Exited - Churn of the customer

In [2]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Load the dataset

In [3]:

```
df = pd.read_csv("Churn_Modelling.csv")
df.head()
```

Out[3]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	T
0	1	15634602	Hargrave	619	France	Female	42	_
1	2	15647311	Hill	608	Spain	Female	41	
2	3	15619304	Onio	502	France	Female	42	
3	4	15701354	Boni	699	France	Female	39	
4	5	15737888	Mitchell	850	Spain	Female	43	
4							•	•

In [4]:

```
df.tail()
```

Out[4]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Ag
9995	9996	15606229	Obijiaku	771	France	Male	3!
9996	9997	15569892	Johnstone	516	France	Male	3
9997	9998	15584532	Liu	709	France	Female	3
9998	9999	15682355	Sabbatini	772	Germany	Male	4:
9999	10000	15628319	Walker	792	France	Female	2
4							•

3 a). Univariate analysis

```
In [5]:
```

```
#checking for categorical variables
category = df.select_dtypes(include=[np.object])
print("Categorical Variables: ",category.shape[1])
#checking for numerical variables
numerical = df.select_dtypes(include=[np.int64,np.float64])
print("Numerical Variables: ",numerical.shape[1])
Categorical Variables: 3
Numerical Variables: 11
In [6]:
df.columns
Out[6]:
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geo
       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'H
asCrCard',
       'IsActiveMember', 'EstimatedSalary', 'Exited'],
      dtype='object')
In [7]:
df.shape
Out[7]:
(10000, 14)
```

In [8]:

```
credit = df['CreditScore']
credit.plot(kind="hist",figsize=(8,5))
```

Out[8]:

<AxesSubplot:ylabel='Frequency'>

In [9]:

```
geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))
```

Out[9]:

<AxesSubplot:ylabel='Geography'>

In [10]:

sns.countplot(df['Gender'])

Out[10]:

<AxesSubplot:xlabel='Gender', ylabel='count'>

In [11]:

sns.distplot(df['Age'],hist=False)

Out[11]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [12]:

```
plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])
```

Out[12]:

<AxesSubplot:xlabel='Tenure', ylabel='count'>

In [13]:

```
product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))
```

Out[13]:

<AxesSubplot:ylabel='NumOfProducts'>

In [14]:

```
cr = df['HasCrCard'].value_counts()
cr.plot(kind="pie",figsize=(10,8))
```

Out[14]:

<AxesSubplot:ylabel='HasCrCard'>

In [15]:

```
plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])
```

Out[15]:

<AxesSubplot:xlabel='IsActiveMember', ylabel='count'>

In [16]:

sns.distplot(df['EstimatedSalary'],hist=False)

Out[16]:

<AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>

In [17]:

```
plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])
```

Out[17]:

<AxesSubplot:xlabel='Exited', ylabel='count'>

Inference:

- 1. The data has 11 numerical variables and 3 categorical variables.
- 2. It has 10000 rows and 14 columns

- 3. The normalized credit score is around 700, More than 500 people have credit score greater than 800.
- 4. France occupies 50% of customers, where as Germany and Spain shared equal.
- 5. Dataset is dominated by Male Customers.
- 6. Median age is around 40 to 45.
- 7. Highest number of customer has thier tenure period for 2 years.
- 8. Credit company has maximum customers, who uses single product.
- 9. Most of the customer has credit card.
- 10. More than 40% of the population is not an active member.
- 11. The Churn is less compared to the satisfaction. **Dataset is imbalanced.**

3 b). Bivariate analysis

In [18]:

sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)

Out[18]:

<AxesSubplot:xlabel='Gender', ylabel='CreditScore'>

In [19]:

sns.violinplot(x='Geography',y='Balance',data=df)

Out[19]:

<AxesSubplot:xlabel='Geography', ylabel='Balance'>

In [20]:

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

Out[20]:

<AxesSubplot:xlabel='Geography', ylabel='EstimatedSalary'>

In [21]:

sns.violinplot(x='Gender',y='Balance',data=df)

Out[21]:

<AxesSubplot:xlabel='Gender', ylabel='Balance'>

In [22]:

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)

Out[22]:

<AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

In [23]:

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)

Out[23]:

<AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

In [24]:

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)

Out[24]:

<AxesSubplot:xlabel='IsActiveMember', ylabel='EstimatedSalary'>

In [25]:

sns.barplot(x='Exited',y='Tenure',data=df)

Out[25]:

<AxesSubplot:xlabel='Exited', ylabel='Tenure'>

Inference:

- 1. Credit score for Male is higher in Spain.
- 2. Average bank salary lies in the range of 100k to 150k.
- 3. Estimated salary is normalized and same for all country.
- 4. Credit score for churn is low.
- 5. Churn in Germany is higher compared to other countries.
- 6. Exited people tenure period is around 6 years.

3 c). Multivariate analysis

In [26]:

```
gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)
```

Gender	Geography	/
Female	France	2261
	Germany	1193
	Spain	1089
Male	France	2753
	Spain	1388
	Germany	1316
Nama. C		d+ in+.

Name: Geography, dtype: int64

In [27]:

```
gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)
```

Gender

Female 39.238389 Male 38.658237

Name: Age, dtype: float64

In [28]:

```
gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)
```

```
Gender Geography
```

Female France 4.950022
Germany 4.965633
Spain 5.000000
Male France 5.049401
Germany 5.050152
Spain 5.057637

Name: Tenure, dtype: float64

In [29]:

```
gp4 = df.groupby('Geography')['HasCrCard','IsActiveMember'].value_counts()
gp4.plot(kind="bar",figsize=(8,5))
print(gp4)
```

Geography	HasCrCard	IsActiveMember	
France	1	1	1826
		0	1717
	0	1	765
		0	706
Germany	1	0	918
		1	873
	0	1	375
		0	343
Spain	1	1	908
		0	813
	0	1	404
		0	352

dtype: int64

In [30]:

```
gp5 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].me
gp5.plot(kind="line",figsize=(10,8))
print(gp5)
```

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64

In [31]:

```
gp6 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
gp6.plot(kind='bar',figsize=(10,8))
print(gp6)
```

Gender	IsActiveMember	Exited	
Female	0	0	1534
		1	725
	1	0	1870
		1	414
Male	0	0	2013
		1	577
	1	0	2546
		1	321

Name: Exited, dtype: int64

In [32]:

```
gp7 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp7)
```

Balance EstimatedSalary d

Exited

0 72745.296779 99738.391772 1 91108.539337 101465.677531

In [33]:

```
gp8 = df.groupby('Gender')['Geography','Exited'].value_counts()
gp8.plot(kind='bar',figsize=(10,8))
print (gp8)
```

Gender	Geography	Exited	
Female	France	0	1801
	Spain	0	858
	Germany	0	745
	France	1	460
	Germany	1	448
	Spain	1	231
Male	France	0	2403
	Spain	0	1206
	Germany	0	950
		1	366
	France	1	350
	Spain	1	182

dtype: int64

Inference:

- 1. Germany has more female customers compared to male customers.
- 2. Average age of Male is 38, whereas average age of Female is 39.
- 3. Tenure period for both male and female is high in Spain.
- 4. It is observed that, those who have credit card are very active member in the company.
- 5. The estimated salary for a person who is not having credit card is high when compared to those having them.
- 6. Churn for inactive member is high compared to active member.
- 7. Those who churn has thier estimated salary very low.
- 8. France has the more churn rate.

4. Descriptive statistics

In [34]:

df.describe().T

Out[34]:

	count	mean	std	min	25%
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00
Age	10000.0	3.892180e+01	10.487806	18.00	32.00
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00

5. Handling the missing values

In [35]:

```
df.isnull().sum()
```

Out[35]:

RowNumber 0 CustomerId 0 Surname 0 CreditScore 0 Geography 0 Gender 0 Age Tenure 0 Balance NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited dtype: int64

There is no missing value in the dataset

6. Finding outliers

In [36]:

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)</pre>
```

In [37]:

```
plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'CreditScore')
sns.boxplot(df['CreditScore'])
plt.show()
```

Before removing outliers

In [38]:

```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
sns.boxplot(df['Age'])
plt.show()
```

Before removing outliers

After removing outliers

In [39]:

```
sns.boxplot(df['Balance'])
```

Out[39]:

<AxesSubplot:xlabel='Balance'>

In [40]:

```
sns.boxplot(df['EstimatedSalary'])
```

Out[40]:

<AxesSubplot:xlabel='EstimatedSalary'>

Outliers from Age and Credit Score columns are removed

7. Check for categorical column and perform encoding.

In [41]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
```

In [42]:

```
df['Gender'] = le.fit_transform(df['Gender'])
df['Geography'] = le.fit_transform(df['Geography'])
```

In [43]:

df.head()

Out[43]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	7
0	1	15634602	Hargrave	619.0	0	0	42.0	
1	2	15647311	Hill	608.0	2	0	41.0	
2	3	15619304	Onio	502.0	0	0	42.0	
3	4	15701354	Boni	699.0	0	0	39.0	
4	5	15737888	Mitchell	850.0	2	0	43.0	
4							•	

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

In [44]:

```
df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)
```

In [45]:

df.head()

Out[45]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	F
0	619.0	0	0	42.0	2	0.00	1	
1	608.0	2	0	41.0	1	83807.86	1	
2	502.0	0	0	42.0	8	159660.80	3	
3	699.0	0	0	39.0	1	0.00	2	
4	850.0	2	0	43.0	2	125510.82	1	
4								>

In [46]:

```
plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```

Out[46]:

<AxesSubplot:>

- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

8. Data Splitting

In [47]:

```
target = df['Exited']
data = df.drop(['Exited'],axis=1)
```

In [48]:

```
print(data.shape)
print(target.shape)

(10000, 10)
(10000,)
```

9. Scaling the independent values

In [49]:

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()
```

In [50]:

```
data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary'])
```

In [51]:

```
data.head()
```

Out[51]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProduct
0	-0.326878	0	0	0.342615	2	-1.225848	
1	-0.440804	2	0	0.240011	1	0.117350	
2	-1.538636	0	0	0.342615	8	1.333053	
3	0.501675	0	0	0.034803	1	-1.225848	
4	2.065569	2	0	0.445219	2	0.785728	
4							•

10. Train test split

In [52]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.25,ran
```

In [53]:

```
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)

(7500, 10)
(2500, 10)
(7500,)
(2500,)
```

Conclusion:

- 1. The model is scaled using StandarScaler method.
- 2. The train and test split ratio is 15:5.
- 3. As it is a classification problem, basic algorithms can be used to build ML models.