ESPRIT(LS)

Hello

May 4, 2018

1 Problem Formulation

There are D signal sources, 2 subarrays with elements. Note:D<m.

The signal is far away from the arrays.

Meanwhile, the 2 subarrays are same totally except their location.

Then, we can go!

2 Deducing

$$X = AS + N_x \tag{1}$$

X is the data on each element of the first subarray. It is a $m \cdot n$ matrix. m is the number of the elements in each subarray, while n is the number of snapshots. A is the array maifold of the first subarray.

 N_x is the noise on the first subarray. Similarly.

$$Y = A\phi S + N_y \tag{2}$$

Y is the data on each element of the second subarray.

 $\mathbf{A}\phi$ is the arraymainifold of the second subarray. Note: the second arraymanifold is just a rotation of the first arraymanifold. So, ϕ is the rotation operator. N_u is the noise on the second subarraymanifold.

Looking at the ϕ in more details:

$$\phi = diaq\{e^{j\gamma_1} e^{j\gamma_2} e^{j\gamma_3} \dots e^{j\gamma_D}\}$$
(3)

In this equation, $\gamma_k = \omega_i \Delta \sin \theta_k / c$, and ω_i is the central frequency of the i-th signal source. θ_k is the angle of incidence of the i-th source. Let's simplify it. Assuming

$$\bar{\mathbf{A}} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A}\phi \end{bmatrix}, \mathbf{N}_{\mathbf{z}} = \begin{bmatrix} \mathbf{N}_{\mathbf{x}} \\ \mathbf{N}_{\mathbf{y}} \end{bmatrix}, \mathbf{Z} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
 (4)

Thus, we can denote this:

$$\mathbf{Z} = \bar{\mathbf{A}}\mathbf{S} + \mathbf{N}_{\mathbf{z}} \tag{5}$$

Then, to find the correlation matrix.

$$\mathbf{R}_{zz} = \bar{\mathbf{A}} \mathbf{R}_{ss} \bar{\mathbf{A}}^H + \sigma^2 \mathbf{I} \tag{6}$$

 \mathbf{R}_{zz} is the correlation matrix of \mathbf{Z} .

 \mathbf{R}_{ss} is the correlation matrix of \mathbf{S} .

 σ^2 is the square error of the noise.(Here we assume that all the noise are guassian)

I is the identity matrix.

With all the given information, next step is to find the feature vectors of

 \mathbf{R}_{zz} . And the linear subspace of the signal is available. Find the D biggest feature numbers and their feature vectors accordingly.

$$\mathbf{U}_s = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_D]$$

Since \mathbf{U}_s is equivlent to the linear subspace expanded by $\bar{\mathbf{A}}$, There must be full-order matrix \mathbf{T} satisfying: $\mathbf{U}_s = \bar{\mathbf{A}}\mathbf{T}$

which means:

$$\mathbf{U}_{s} = \begin{bmatrix} \mathbf{U}_{x} \\ \mathbf{U}_{y} \end{bmatrix} = \begin{bmatrix} \mathbf{AT} \\ \mathbf{A}\boldsymbol{\phi}\mathbf{T} \end{bmatrix}$$
 (7)

Note: **A** is a m×D matrix. \bar{A} is a 2m×D matrix. $R\{E_x\},R\{E_y\}$ and $R\{A\}$ are the same.

Then we can denote $\mathbf{U}_{xy} = [\mathbf{U}_x, \mathbf{U}_y]$

It's a d·2d matrix with d order. Then, there must be a 2d·d matrix $F=[F_x, F_y]$ satisfying:

$$\mathbf{0} = \mathbf{U}_{s}^{\mathbf{T}} \mathbf{F} = \mathbf{U}_{x} \cdot \mathbf{F}_{x} + \mathbf{U}_{y} \cdot \mathbf{F}_{y} = \mathbf{A} \mathbf{T} \mathbf{F}_{x} + \mathbf{A} \boldsymbol{\phi} \mathbf{T} \mathbf{F}_{y}$$
(8)

Then we can denote $\psi = -\mathbf{F}_x \mathbf{F}_y^{-1}$

The equation above is equal to the following:

$$\mathbf{A}\mathbf{T}\boldsymbol{\psi} = \mathbf{A}\boldsymbol{\phi}\mathbf{T}$$

$$\rightarrow \mathbf{A}\mathbf{T}\boldsymbol{\psi}\mathbf{T}^{-1} = \mathbf{A}\boldsymbol{\phi}$$

$$\rightarrow \mathbf{U}_{s}\boldsymbol{\psi} = \mathbf{U}_{u}$$
(9)

Then if **A** is full-order, it will be like this:

$$\mathbf{T}\boldsymbol{\psi}\mathbf{T}^{-1} = \boldsymbol{\phi} \tag{10}$$

All we have to do is to find a ψ that fits the above equation best.

3 Solving

3.1 What we know

Well, to solve the issue, first figure out what we know.

We have the data on every element. Use that, we can esitimate the $R\{E_s\}$

. Where E_s is the matrix made by feature vectors of received data.

Note: E_s is an estimation, not true E_s . As a consequence, we use $\widehat{E_s}$ to denote it.

Thus, we got the \widehat{E}_x and \widehat{E}_y .

They are the matrixes made by feature vectors of the singal subspace and noise subspace respectively.

3.2 step1

We have data about X, and we can use it to calculate \hat{U}

3.3 step2

With \mathbf{U} , we can select two subarrays. After that, we can have our \mathbf{U}_x and \mathbf{U}_y

3.4 step3

In practice, we have the estimates for $\mathbf{U}_x, \mathbf{U}_y$.

We can denote them as $\widehat{\mathbf{U}}_x$ and $\widehat{\mathbf{U}}_y$

The rule for the best estimate of ψ is that:!!!!It minimizes the difference between \mathbf{U}_y and $\mathbf{U}_s\psi$

$$\hat{\boldsymbol{\psi}}_{LS} = \arg\min \left\{ ||\mathbf{U}_{y} - \mathbf{U}_{s}\boldsymbol{\psi}|| \right\}
= \arg\min \left\{ tr \left\{ [\mathbf{U}_{y} - \mathbf{U}_{s}\boldsymbol{\psi}]^{\mathbf{H}} [\mathbf{U}_{y} - \mathbf{U}_{s}\boldsymbol{\psi}] \right\} \right\}$$
(11)

Note Here:tr means the sum fo the elements in the diagonal.

To be detailed , the result is that :

$$\hat{\boldsymbol{\psi}}_{LS} = \left[\hat{\mathbf{U}}_x^{\mathbf{H}} \hat{\mathbf{U}}_x\right]^{-1} \hat{\mathbf{U}}_x^{\mathbf{H}} \hat{\mathbf{U}}_y \tag{12}$$

3.5 step4

Find eigenvalues of $\hat{\psi}_{LS}$, and we can denote them as $\hat{\lambda_1}, \hat{\lambda_2}, \hat{\lambda_3}, \dots, \hat{\lambda_D}$

3.6 step5

Like MUSIC, we can estimate DOA.