Transshipment Problem

Yuan Luo, Yidan Sun, Jinhu Qi, Zhiwei Li

TABLE OF CONTENTS

01

Background

Misson, Goal, and Data

03

Benders Decomposition

Master problem, Sub-problem, Build Cut

02

All-In-One LP

Two-stage stochastic problem, All-in-one

04

Results Comparison

All-in-one v.s. Bender's, All-in-one LP v.s. IP

01

Background

Misson, Goal, and Data

Background

Mission

To meet customer demand and reduce expected long-run average cost by replenishment (order-up-to S) policy and transshipment policy.

Given an order-up-to S policy, we show how to determine an optimal transshipment policy, using a all-in-one linear programming and a benders decomposition model.

Background

Goal

Solve and report **objective** and **first stage decisions: order-up-to quantities**

Background: Data

Demand (Independent & Normally Distributed)

Location	1	2	3	4	5	6	7
Mean	100	200	150	170	180	170	170
Std Dev	20	50	30	50	40	30	50

Discretize the Normal distribution

- Low Medium High
- Normal density → 3 intervals with equal probability
- [1/6, 3/6, 5/6] quantile

Equal probability for each of the 3^7 scenarios.

Background: Data

Cost (Uniform)

Symbol	Unit	Meaning	Value
h	dollar/unit	Per unit holding cost when there is excess inventory at one location	1.0
С	dollar/unit	Per unit transshipment cost to move inventory from one location to satisfy demand at another location	0.5
р	dollar/unit	Per unit shortage cost when demand cannot be met at one location	4.0

Assumption

 Transshipment cost, holding cost and shortage cost are uniform across all locations

02

All-In-One LP

Two-stage stochastic, All-in-one model

All-In-One LP

Two-stage Stochastic Problem

Stage 1: Find optimal order-up-to quantity

$$\min \quad c^{\top} x + E[h(x, \tilde{\omega})]$$

s.t. $Ax < b$

Decision Variable: x

Stage 2: Find transshipment quantity to minimize COST

$$h(x, \omega) = \min g^{\top} y$$

s.t. $Wy = r(\omega) - Tx$
 $y \ge 0$

Decision Variable: y Random Variable: ω

1. Parameters

- 1. $\mathbf{d_{37}_{\times 7}}$: Demand for 7 locations with low, medium, high scenarios
- 2. h: Per unit holding cost when there is excess inventory for all locations
- 3. p: Per unit transshipment cost from one location to satisfy demand at another location
- 4. c: Per unit shortage cost when demand cannot be met for all locations

2. Decision Variables

- 1. $\mathbf{s}_{[1\times7]}$: Order-up-to quantity for each of the 7 locations
- 2. $\mathbf{e}_{[3^7 \times 7]}$: Ending inventory held at retailer i for scenario s
- 3. $\mathbf{f}_{[3^7 \times 7]}$: Stock at retailer i used to satisfy demand at retailer i for scenario s
- 4. $\mathbf{q}_{[3^7 \times 7]}$: Inventory at retailer i increased through replenishment for scenario s
- 5. $\mathbf{r}_{[3^7 \times 7]}$: Amount of shortage met after replenishment at retailer i for scenario s
- 6. $\mathbf{t}_{[3^7 \times 7 \times 7]}$: Stock at retailer i used to meet demand at retailer j for scenario s

3. Objective

$$\begin{array}{c|c} \min & \sum_{s} Prob_{s} \times (\sum_{i} \underline{h \times e_{si}} + \sum_{i \neq j} \underline{c \times t_{sij}} + \sum_{i} \underline{p \times r_{si}}) \\ & \underline{\text{Holding Cost}} & \underline{\text{Shipment Cost}} & \underline{\text{Shortage Cost}} \end{array}$$

Based on the equal probability of each scenarios

$$E[h(S, \tilde{D})] = \sum_{s} (\sum_{i} h \times e_{si} + \sum_{i \neq j} c \times t_{sij} + \sum_{i} p \times r_{si})/M$$
 $M = 3^7$

4. Constraint

s.t.
$$f_i + \sum_{j \neq i} t_{sij} + e_{si} = s_i, \forall i, s$$

$$f_i + \sum_{j \neq i} t_{sji} + r_{si} = d_i, \forall i, s$$

$$\sum_i r_{si} + \sum_i q_{si} = \sum_i d_{si}, \forall s$$

$$e_{si} + q_{si} = s_i, \forall i, s$$

$$e_{si}, f_{si}, q_{si}, r_{si}, s_i, t_{sij} \ge 0, \forall i, j, s$$

03

Benders Decomposition

Master problem, Sub-problem, Build Cut

1. Objective

Master problem:

 $\min_S \eta$

Sub-problem:

 $\min h(S, \tilde{D})$

$$E[h(S, \tilde{D})] = \sum_{i} h \times e_i + \sum_{i \neq j} c \times t_{ij} + \sum_{i} p \times r_i$$

The parameters and variable used in this model are the same as the all-in-one model.

2. Constraints

Master problem

Add one more constraint (cut) in each iteration k

$$\eta \ge \alpha_k + \beta_k \times S^k$$

$$\alpha = \sum_{i} d_{i} * (\underline{\pi_{Mi}} + \underline{\pi_{Ri}})$$

 $\beta = \pi_B + \pi_E$

 π : The dual variables of the constraints In the sub-problems

Sub-problem

Constraint B

Constraint M

Constraint R

Constraint E

$$f_i + \sum_{j \neq i} t_{ij} + e_i = s_i, \forall i$$
$$f_i + \sum_{j \neq i} t_{ji} + r_i = d_i, \forall i$$

$$f_i + \sum_{j \neq i} t_{ji} + r_i = d_i, \forall i$$

$$\sum_{i} r_i + \sum_{i} q_i = \sum_{i} d_i$$

$$e_i + q_i = s_i, \forall i$$

$$e_i, f_i, q_i, r_i, t_{ij} \ge 0, \forall i, j$$

3. Algorithm

In the k-th iteration:

- Solve the master problem to get a lower bound LB_k and a first stage decision S_k.
- Use the new first stage decision to solve the sub-problem and get the coefficients (α_k , β_k) of the new cut, and upper bound UB_k.
- Add a new cut (constraint) $\eta \ge \alpha_k + \beta_k * S_k$ to the master problem.
- If **UB_k LB_k <=** Stopping Criteria, then stop; else, go on to the next iteration.

Stopping Criteria: Upper Bound-Lower Bound<=1e-6

04

Results Comparison

All-in-one v.s. Bender's, All-in-one LP v.s. IP

Results Comparison All-In-One v.s. Benders

Model	Time (second)	Objective Value	Value of s
All-In-One	6.598277	144.5956842831869	Location 1: 107.2557 Location 2: 213.3020 Location 3: 158.4650 Location 4: 183.3020 Location 5: 190.8835 Location 6: 180.8835 Location 7: 183.3020
Benders	99.032718 (52 iterations)	144.59568428320085	Location 1: 99.9999 Location 2: 219.3484 Location 3: 179.0226 Location 4: 169.9999 Location 5: 180.0000 Location 6: 199.0226 Location 7: 169.9999

Results Comparison w/wo integer restriction

Model	Time (second)	Objective Value	Value of s
All-In-One	6.598277	144.5956842831869	Location 1: 107.2557 Location 2: 213.3020 Location 3: 158.4650 Location 4: 183.3020 Location 5: 190.8835 Location 6: 180.8835 Location 7: 183.3020
All-In-One (Int) * Decision variables are integers; Demands are rounded to integers	8.608392	143.93209876543145	Location 1: 103 Location 2: 210 Location 3: 159 Location 4: 188 Location 5: 190 Location 6: 179 Location 7: 188

Plan

1. 4-level scenarios: Very Low - Low - High - Very High

[1/8, 3/8, 5/8, 7/8] quantile

Model	Time (second)	Objective Value	Value of s
All-In-One (4-level of scenarios)	\	150.56341192779723	Location 1: 106.3728 Location 2: 215.9320 Location 3: 159.5592 Location 4: 185.9320 Location 5: 192.7456 Location 6: 179.5592 Location 7: 185.9320

2. Compare the second stage decisions of Bender's method and all-in-one model.

3. Holding cost, transshipment cost, shortage cost could vary at different locations.

Code

Link:

https://github.com/YuanLuo/Transship ment.git

THANKS!

Team 2

