Generated on 2014-11-13 20:36:36 by gEcon version 0.8.0 (2014-11-13) Model name: home_production

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^{\rm m}, K_t^{\rm h}, C_t^{\rm m}, C_t^{\rm h}, N_t^{\rm m}, N_t^{\rm h}, I_t^{\rm m}, I_t^{\rm h}} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + \log \left(1 - N_t^{\rm m} - N_t^{\rm h} \right) (1 - b) + be^{-1} \log \left(a C_t^{\rm m} + (1 - a) C_t^{\rm h}^e \right)$$

$$(1.1)$$

s.t.

$$C_t^{\text{m}} + I_t^{\text{m}} + I_t^{\text{h}} = \pi_t + K_{t-1}^{\text{m}} r_t + N_t^{\text{m}} W_t \quad \left(\lambda_t^{\text{CONSUMER}^1}\right)$$
 (1.2)

$$K_t^{\mathrm{m}} = I_t^{\mathrm{m}} + K_{t-1}^{\mathrm{m}} \left(1 - \delta\right) \quad \left(\lambda_t^{\mathrm{CONSUMER}^2}\right)$$

$$\tag{1.3}$$

$$K_t^{\mathrm{h}} = I_t^{\mathrm{h}} + K_{t-1}^{\mathrm{h}} (1 - \delta) \quad \left(\lambda_t^{\mathrm{CONSUMER}^3}\right)$$

$$\tag{1.4}$$

$$C_t^{\rm h} = \Gamma Z_t^{\rm h} K_{t-1}^{\rm h} {\theta \choose t}^{\rm h} {1-\theta \choose t} \left(\lambda_t^{\rm CONSUMER^4} \right)$$
(1.5)

1.2 Identities

$$K_t = K_t^{\mathrm{m}} + K_t^{\mathrm{h}} \tag{1.6}$$

$$I_t = I_t^{\mathrm{m}} + I_t^{\mathrm{h}} \tag{1.7}$$

$$N_t = N_t^{\rm m} + N_t^{\rm h} \tag{1.8}$$

1.3 First order conditions

$$-\lambda_t^{\text{CONSUMER}^2} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} \right] + E_t \left[\lambda_{t+1}^{\text{CONSUMER}^1} r_{t+1} \right] \right) = 0 \quad (K_t^{\text{m}})$$

$$(1.9)$$

$$-\lambda_t^{\text{CONSUMER}^3} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^3} \right] + \theta \Gamma K_t^{\text{h}^{-1+\theta}} E_t \left[\lambda_{t+1}^{\text{CONSUMER}^4} Z_{t+1}^{\text{h}} N_{t+1}^{\text{h}^{-1-\theta}} \right] \right) = 0 \quad \left(K_t^{\text{h}} \right)$$

$$(1.10)$$

$$-\lambda_t^{\text{CONSUMER}^1} + ab \left(aC_t^{\text{m}e} + (1-a) C_t^{\text{h}e} \right)^{-1} C_t^{\text{m}-1+e} = 0 \quad (C_t^{\text{m}})$$
(1.11)

$$-\lambda_t^{\text{CONSUMER}^4} + b(1-a)\left(aC_t^{\text{m}e} + (1-a)C_t^{\text{h}e}\right)^{-1}C_t^{\text{h}-1+e} = 0 \quad (C_t^{\text{h}})$$
(1.12)

$$\lambda_t^{\text{CONSUMER}^1} W_t - (1-b) \left(1 - N_t^{\text{m}} - N_t^{\text{h}}\right)^{-1} = 0 \quad (N_t^{\text{m}})$$
 (1.13)

$$-(1-b)\left(1-N_{t}^{\rm m}-N_{t}^{\rm h}\right)^{-1}+\Gamma\lambda_{t}^{\rm CONSUMER^{4}}Z_{t}^{\rm h}\left(1-\theta\right)K_{t-1}^{\rm h}{}^{\theta}N_{t}^{\rm h-\theta}=0 \quad \left(N_{t}^{\rm h}\right)$$
(1.14)

$$-\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2} = 0 \quad (I_t^{\text{m}})$$
(1.15)

$$-\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^3} = 0 \quad (I_t^{\text{h}})$$
(1.16)

2 FIRM

 $^{\circ}$

2.1 Optimisation problem

$$\max_{K_t^{\text{md}}, N_t^{\text{md}}, Y_t, \pi_t} \Pi_t = \pi_t \tag{2.1}$$

s.t.:

$$\pi_t = Y_t - N_t^{\mathrm{m}^{\mathrm{d}}} W_t - r_t K_t^{\mathrm{m}^{\mathrm{d}}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

$$Y_t = \Gamma Z_t^{\mathbf{m}} K_t^{\mathbf{m}^{\mathbf{d}}} N_t^{\mathbf{m}^{\mathbf{d}}} \left(\lambda_t^{\text{FIRM}^2} \right)$$
 (2.3)

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^1} r_t + \alpha \Gamma \lambda_t^{\text{FIRM}^2} Z_t^{\text{m}} K_t^{\text{m}^{\text{d}}-1+\alpha} N_t^{\text{m}^{\text{d}}-1-\alpha} = 0 \quad \left(K_t^{\text{m}^{\text{d}}}\right)$$
(2.4)

$$-\lambda_t^{\text{FIRM}^1} W_t + \Gamma \lambda_t^{\text{FIRM}^2} Z_t^{\text{m}} (1 - \alpha) K_t^{\text{m}^{\text{d}}} N_t^{\text{m}^{\text{d}}} = 0 \quad \left(N_t^{\text{m}^{\text{d}}} \right)$$

$$(2.5)$$

$$\lambda_t^{\text{FIRM}^1} - \lambda_t^{\text{FIRM}^2} = 0 \quad (Y_t)$$
 (2.6)

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (\pi_t) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t + \alpha \Gamma Z_t^{\mathbf{m}} K_t^{\mathbf{m}^{\mathbf{d}-1+\alpha}} N_t^{\mathbf{m}^{\mathbf{d}-1-\alpha}} = 0 \quad \left(K_t^{\mathbf{m}^{\mathbf{d}}} \right)$$
 (2.8)

$$-W_t + \Gamma Z_t^{\mathbf{m}} (1 - \alpha) K_t^{\mathbf{m}^{\mathbf{d}}} N_t^{\mathbf{m}^{\mathbf{d}}} = 0 \quad \left(N_t^{\mathbf{m}^{\mathbf{d}}} \right)$$

$$(2.9)$$

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\mathbf{m}^{\mathbf{d}}} = K_{t-1}^{\mathbf{m}} \tag{3.1}$$

$$N_t^{\mathrm{m^d}} = N_t^{\mathrm{m}} \tag{3.2}$$

$4 \quad \text{EXOG}$

4.1 Identities

$$Z_t^{\mathbf{h}} = e^{\epsilon_t^{\mathbf{h}} + \psi \log Z_{t-1}^{\mathbf{h}}} \tag{4.1}$$

$$Z_t^{\mathbf{m}} = e^{\epsilon_t^{\mathbf{m}} + \phi \log Z_{t-1}^{\mathbf{m}}} \tag{4.2}$$

5 Equilibrium relationships (after reduction)

$$-r_t + \alpha \Gamma Z_t^{\rm m} K_{t-1}^{\rm m}^{-1+\alpha} N_t^{\rm m}^{1-\alpha} = 0$$
 (5.1)

$$-C_t^{h} + \Gamma Z_t^{h} K_{t-1}^{h} N_t^{h^{1-\theta}} = 0 (5.2)$$

$$-W_t + \Gamma Z_t^{\rm m} (1 - \alpha) K_{t-1}^{\rm m} {}^{\alpha} N_t^{\rm m-\alpha} = 0$$
 (5.3)

$$-Y_t + \Gamma Z_t^{m} K_{t-1}^{m} {}^{\alpha} N_t^{m1-\alpha} = 0$$
 (5.4)

$$Z_t^{\mathbf{h}} - e^{\epsilon_t^{\mathbf{h}} + \psi \log Z_{t-1}^{\mathbf{h}}} = 0 \tag{5.5}$$

$$Z_t^{\mathbf{m}} - e^{\epsilon_t^{\mathbf{m}} + \phi \log Z_{t-1}^{\mathbf{m}}} = 0 \tag{5.6}$$

$$\beta \left(ab \mathcal{E}_t \left[r_{t+1} \left(aC_{t+1}^{\mathrm{m}}{}^e + (1-a)C_{t+1}^{\mathrm{h}}{}^e \right)^{-1} C_{t+1}^{\mathrm{m}}{}^{-1+e} \right] + ab \left(1-\delta \right) \mathcal{E}_t \left[\left(aC_{t+1}^{\mathrm{m}}{}^e + (1-a)C_{t+1}^{\mathrm{h}}{}^e \right)^{-1} C_{t+1}^{\mathrm{m}}{}^{-1+e} \right] \right) - ab \left(aC_t^{\mathrm{m}}{}^e + (1-a)C_t^{\mathrm{h}}{}^e \right)^{-1} C_t^{\mathrm{m}}{}^{-1+e} = 0 \quad (5.7)$$

$$\beta \left(ab \left(1 - \delta \right) E_t \left[\left(a C_{t+1}^{\text{m } e} + \left(1 - a \right) C_{t+1}^{\text{h } e} \right)^{-1} C_{t+1}^{\text{m } - 1 + e} \right] + b\theta \Gamma \left(1 - a \right) K_t^{\text{h} - 1 + \theta} E_t \left[Z_{t+1}^{\text{h}} \left(a C_{t+1}^{\text{m } e} + \left(1 - a \right) C_{t+1}^{\text{h } e} \right)^{-1} C_{t+1}^{\text{h} - 1 + e} N_{t+1}^{\text{h} - 1 - \theta} \right] \right) - ab \left(a C_t^{\text{m } e} + \left(1 - a \right) C_t^{\text{h } e} \right)^{-1} C_t^{\text{m } - 1 + e} = (5.8)$$

$$-(1-b)\left(1-N_t^{\rm m}-N_t^{\rm h}\right)^{-1} + abW_t\left(aC_t^{\rm me} + (1-a)C_t^{\rm he}\right)^{-1}C_t^{\rm m-1+e} = 0$$
(5.9)

$$-(1-b)\left(1-N_{t}^{\mathrm{m}}-N_{t}^{\mathrm{h}}\right)^{-1}+b\Gamma Z_{t}^{\mathrm{h}}\left(1-a\right)\left(1-\theta\right)\left(aC_{t}^{\mathrm{m}e}+(1-a)C_{t}^{\mathrm{h}e}\right)^{-1}K_{t-1}^{\mathrm{h}}C_{t}^{\mathrm{h}-1+e}N_{t}^{\mathrm{h}-\theta}=0$$
(5.10)

$$I_t - I_t^{\rm m} - I_t^{\rm h} = 0 (5.11)$$

$$I_t^{\rm m} - K_t^{\rm m} + K_{t-1}^{\rm m} (1 - \delta) = 0 (5.12)$$

$$I_t^{\rm h} - K_t^{\rm h} + K_{t-1}^{\rm h} (1 - \delta) = 0 \tag{5.13}$$

$$K_t - K_t^{\rm m} - K_t^{\rm h} = 0 (5.14)$$

$$N_t - N_t^{\rm m} - N_t^{\rm h} = 0 (5.15)$$

$$-C_t^{\rm m} - I_t^{\rm m} - I_t^{\rm h} + Y_t = 0 (5.16)$$

$$U_t - \beta E_t [U_{t+1}] - \log (1 - N_t^{\text{m}} - N_t^{\text{h}}) (1 - b) - be^{-1} \log \left(a C_t^{\text{m}e} + (1 - a) C_t^{\text{h}e} \right) = 0$$
(5.17)

6 Steady state relationships (after reduction)

$$-r_{\rm ss} + \alpha \Gamma Z_{\rm ss}^{\rm m} K_{\rm ss}^{\rm m-1+\alpha} N_{\rm ss}^{\rm m1-\alpha} = 0 \tag{6.1}$$

$$-C_{ss}^{h} + \Gamma Z_{ss}^{h} K_{ss}^{h}^{\theta} N_{ss}^{h^{1-\theta}} = 0$$
(6.2)

$$-W_{\rm ss} + \Gamma Z_{\rm ss}^{\rm m} \left(1 - \alpha\right) K_{\rm ss}^{\rm m\alpha} N_{\rm ss}^{\rm m-\alpha} = 0 \tag{6.3}$$

$$-Y_{\rm ss} + \Gamma Z_{\rm ss}^{\rm m} K_{\rm ss}^{\rm m\alpha} N_{\rm ss}^{\rm m1-\alpha} = 0 \tag{6.4}$$

$$Z_{\rm ss}^{\rm h} - e^{\psi \log Z_{\rm ss}^{\rm h}} = 0$$
 (6.5)

$$Z_{\rm ss}^{\rm m} - e^{\phi \log Z_{\rm ss}^{\rm m}} = 0 \tag{6.6}$$

$$\beta \left(abr_{\rm ss} \left(aC_{\rm ss}^{\rm me} + (1-a)C_{\rm ss}^{\rm he} \right)^{-1} C_{\rm ss}^{\rm m-1+e} + ab\left(1-\delta \right) \left(aC_{\rm ss}^{\rm me} + (1-a)C_{\rm ss}^{\rm he} \right)^{-1} C_{\rm ss}^{\rm m-1+e} \right) - ab \left(aC_{\rm ss}^{\rm me} + (1-a)C_{\rm ss}^{\rm he} \right)^{-1} C_{\rm ss}^{\rm m-1+e} = 0$$
 (6.7)

$$\beta \left(ab \left(1 - \delta \right) \left(aC_{\rm ss}^{\rm me} + \left(1 - a \right) C_{\rm ss}^{\rm he} \right)^{-1} C_{\rm ss}^{\rm m-1+e} + b\theta \Gamma Z_{\rm ss}^{\rm h} \left(1 - a \right) \left(aC_{\rm ss}^{\rm me} + \left(1 - a \right) C_{\rm ss}^{\rm he} \right)^{-1} C_{\rm ss}^{\rm he-1+e} K_{\rm ss}^{\rm he-1+e} K_{\rm ss}^{\rm he-1+e} N_{\rm ss}^{\rm he-1+e} N_{\rm ss}^{\rm he-1+e} \right) - ab \left(aC_{\rm ss}^{\rm me} + \left(1 - a \right) C_{\rm ss}^{\rm he} \right)^{-1} C_{\rm ss}^{\rm me-1+e} = 0$$

$$(6.8)$$

$$-(1-b)\left(1-N_{\rm ss}^{\rm m}-N_{\rm ss}^{\rm h}\right)^{-1}+abW_{\rm ss}\left(aC_{\rm ss}^{\rm me}+(1-a)C_{\rm ss}^{\rm he}\right)^{-1}C_{\rm ss}^{\rm m-1+e}=0$$
(6.9)

$$-(1-b)\left(1-N_{\rm ss}^{\rm m}-N_{\rm ss}^{\rm h}\right)^{-1}+b\Gamma Z_{\rm ss}^{\rm h}\left(1-a\right)\left(1-\theta\right)\left(aC_{\rm ss}^{\rm m}{}^{e}+\left(1-a\right)C_{\rm ss}^{\rm h}{}^{e}\right)^{-1}C_{\rm ss}^{\rm h}{}^{-1+e}K_{\rm ss}^{\rm h}{}^{\theta}N_{\rm ss}^{\rm h}{}^{-\theta}=0$$
(6.10)

$$I_{\rm ss} - I_{\rm ss}^{\rm m} - I_{\rm ss}^{\rm h} = 0 ag{6.11}$$

$$I_{\rm ss}^{\rm m} - K_{\rm ss}^{\rm m} + K_{\rm ss}^{\rm m} (1 - \delta) = 0 \tag{6.12}$$

$$I_{\rm ss}^{\rm h} - K_{\rm ss}^{\rm h} + K_{\rm ss}^{\rm h} (1 - \delta) = 0$$
 (6.13)

$$K_{\rm ss} - K_{\rm ss}^{\rm m} - K_{\rm ss}^{\rm h} = 0$$
 (6.14)

$$N_{\rm ss} - N_{\rm ss}^{\rm m} - N_{\rm ss}^{\rm h} = 0 \tag{6.15}$$

$$-C_{\rm ss}^{\rm m} - I_{\rm ss}^{\rm m} - I_{\rm ss}^{\rm h} + Y_{\rm ss} = 0 \tag{6.16}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \log \left(1 - N_{\rm ss}^{\rm m} - N_{\rm ss}^{\rm h} \right) (1 - b) - be^{-1} \log \left(a C_{\rm ss}^{\rm m} e^{+} + (1 - a) C_{\rm ss}^{\rm h} e^{-} \right) = 0$$
 (6.17)

7 Parameter settings

a = 0.337	(7.1)
$\alpha = 0.36$	(7.2)
b = 0.63	(7.3)
$\beta = 0.99$	(7.4)
$\delta = 0.025$	(7.5)
e = 0.8	(7.6)
$\phi = 0.95$	(7.7)
$\psi = 0.95$	(7.8)
$\theta = 0.08$	(7.9)
$\Gamma = 1$	(7.10)

8 Steady-state values

	Steady-state values
r	0.0351
C^{m}	0.7224
C^{h}	0.3805
I	0.3143
I^{m}	0.2658
$I^{ m h}$	0.0485
K	12.5726
K^{m}	10.6329
K^{h}	1.9397
N	0.6102
N^{m}	0.2799
N^{h}	0.3303
U	-79.6929
W	2.3706
Y	1.0367
Z^{h}	1
Z^{m}	1

9 The solution of the perturbation

9.1 P

9.2 Q

$$\begin{array}{ccc} \epsilon^{\rm h} & \epsilon^{\rm m} \\ K^{\rm m} & \begin{pmatrix} -0.3926 & 0.6584 \\ K^{\rm h} & 2.1393 & -2.7792 \\ Z^{\rm h} & 1 & 0 \\ Z^{\rm m} & 0 & 1 \\ \end{pmatrix}$$

9.3 R

9.4 S

10 Statistics of the model

10.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
r	0.0351	1.5572	2.4248	Y
C^{m}	0.7224	0.9767	0.954	Y
I	0.3143	4.828	23.3092	Y
I^{m}	0.2658	12.888	166.0993	Y
$I^{ m h}$	0.0485	57.2629	3279.0405	Y
K	12.5726	0.4326	0.1871	Y
N	0.6102	0.2513	0.0632	Y
N^{m}	0.2799	1.3761	1.8936	Y
$N^{ m h}$	0.3303	0.9286	0.8623	Y
W	2.3706	0.6601	0.4358	Y
Y	1.0367	1.7868	3.1926	Y

10.2 Correlation matrix

	r	C^{m}	I	$I^{ m m}$	$I^{ m h}$	K	N	N^{m}	N^{h}	W	Y
r	1	0.3865	0.9644	0.7077	-0.3461	0.1003	0.9227	0.873	-0.635	0.7172	0.9373
C^{m}	0.3865	1	0.2945	0.1137	0.0207	0.5653	0.0949	0.7811	-0.9335	0.0558	0.6222
C^{h}	-0.1576	-0.8433	0.0411	-0.0502	0.0844	-0.0964	0.2217	-0.5751	0.8331	0.4206	-0.2875
I	0.9644	0.2945	1	0.6087	-0.2045	0.228	0.9793	0.7912	-0.5039	0.8717	0.9314
$I^{ m m}$	0.7077	0.1137	0.6087	1	-0.9011	-0.0558	0.6099	0.5076	-0.3325	0.4088	0.542
$I^{ m h}$	-0.3461	0.0207	-0.2045	-0.9011	1	0.1935	-0.2173	-0.1939	0.1348	-0.028	-0.1597
K	0.1003	0.5653	0.228	-0.0558	0.1935	1	0.118	0.3068	-0.3263	0.4488	0.4021
K^{m}	0.5408	0.8422	0.5593	0.3028	-0.0679	0.8367	0.4043	0.7663	-0.7602	0.5111	0.779
K^{h}	-0.8383	-0.7036	-0.6843	-0.6343	0.4086	-0.0538	-0.5635	-0.9457	0.9058	-0.2714	-0.8286
N	0.9227	0.0949	0.9793	0.6099	-0.2173	0.118	1	0.6585	-0.327	0.8964	0.8384
N^{m}	0.873	0.7811	0.7912	0.5076	-0.1939	0.3068	0.6585	1	-0.9265	0.4751	0.9457
$N^{ m h}$	-0.635	-0.9335	-0.5039	-0.3325	0.1348	-0.3263	-0.327	-0.9265	1	-0.1484	-0.7684
U	-0.7291	-0.0588	-0.8795	-0.4261	0.0451	-0.4398	-0.9038	-0.4849	0.157	-0.9998	-0.7428
W	0.7172	0.0558	0.8717	0.4088	-0.028	0.4488	0.8964	0.4751	-0.1484	1	0.7353
Y	0.9373	0.6222	0.9314	0.542	-0.1597	0.4021	0.8384	0.9457	-0.7684	0.7353	1
$Z^{ m h}$	0.431	-0.4075	0.6312	0.2203	0.0732	0.1791	0.7441	0.0465	0.3136	0.8825	0.3619
Z^{m}	0.9465	0.2633	0.9962	0.6241	-0.2256	0.2694	0.982	0.7563	-0.4588	0.9037	0.9164

10.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
r	0.7052	0.4611	0.2605	0.0998	-0.025
C^{m}	0.8516	0.6216	0.4176	0.2412	0.0924
I	0.7333	0.4818	0.2747	0.1084	-0.0212
I^{m}	0.0756	0.0316	-0.0029	-0.0291	-0.048
$I^{ m h}$	-0.078	-0.0735	-0.0678	-0.0612	-0.0543
K	0.9604	0.8629	0.7274	0.5705	0.4053
N	0.7125	0.466	0.2634	0.1011	-0.025
N^{m}	0.8032	0.5369	0.3157	0.1364	-0.0048
$N^{\rm h}$	0.8197	0.555	0.3334	0.1522	0.0083
W	0.7395	0.5114	0.3175	0.1563	0.026
Y	0.7874	0.5333	0.3205	0.1464	0.0079

10.4 Variance decomposition

	$\epsilon^{ m h}$	ϵ^{m}
r	0.1955	0.8045
C^{m}	0.2383	0.7617
I	0.3999	0.6001
I^{m}	0.0535	0.9465
$I^{ m h}$	0.0146	0.9854
K	0.3874	0.6126
N	0.563	0.437
N^{m}	0.0032	0.9968
$N^{\rm h}$	0.1058	0.8942
\overline{W}	0.796	0.204
Y	0.1361	0.8639

11 Statistics of the model

11.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
r	0.0339	0.8715	0.7595	Y
C^{m}	0.6968	0.5466	0.2988	Y
C^{h}	0.3671	0.8507	0.7237	Y
I	0.3032	2.7021	7.3011	Y
I^{m}	0.2564	7.213	52.027	Y
$I^{ m h}$	0.0468	32.0482	1027.0892	Y
K	12.1271	0.2421	0.0586	Y
K^{m}	10.2561	0.3547	0.1258	Y
K^{h}	1.8709	1.0662	1.1369	Y
N	0.5886	0.1407	0.0198	Y
N^{m}	0.27	0.7702	0.5931	Y
$N^{ m h}$	0.3186	0.5197	0.2701	Y
U	-76.8688	0.0761	0.0058	Y
W	2.2866	0.3695	0.1365	Y
Y	1	1	1	Y
Z^{h}	0.9646	0.5106	0.2608	Y
Z^{m}	0.9646	0.5106	0.2608	Y

11.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
r	0.1526	0.278	0.4282	0.6043	0.8064	0.9373	0.5864	0.3062	0.0862	-0.0805	-0.2011
C^{m}	-0.1938	-0.0979	0.0332	0.2043	0.4199	0.6222	0.6796	0.5837	0.4832	0.383	0.2869
C^{h}	0.0441	-0.0009	-0.0602	-0.1357	-0.229	-0.2875	-0.318	-0.238	-0.1678	-0.1076	-0.057
I	0.0997	0.2242	0.3758	0.556	0.7659	0.9314	0.6451	0.3796	0.1665	0.0006	-0.1238
$I^{ m m}$	0.1445	0.2261	0.3222	0.433	0.5582	0.542	-0.0161	-0.0804	-0.1258	-0.1553	-0.1716
$I^{ m h}$	-0.1238	-0.1565	-0.1921	-0.2303	-0.2702	-0.1597	0.3725	0.3066	0.2462	0.1919	0.144
K	-0.4168	-0.3439	-0.2304	-0.0695	0.1459	0.4021	0.5721	0.6637	0.6935	0.6763	0.6249
K^{m}	-0.2704	-0.1487	0.0188	0.2385	0.5164	0.779	0.7513	0.6917	0.6104	0.5162	0.4161
K^{h}	-0.1204	-0.2349	-0.3735	-0.5372	-0.7268	-0.8286	-0.528	-0.2844	-0.0923	0.0542	0.1611
N	0.1448	0.2541	0.3843	0.5358	0.7088	0.8384	0.5281	0.2718	0.0712	-0.0804	-0.1896
N^{m}	0.0258	0.1572	0.3216	0.5219	0.7601	0.9457	0.7497	0.4934	0.2814	0.1102	-0.0239
N^{h}	0.04	-0.0704	-0.2118	-0.3875	-0.6001	-0.7684	-0.6774	-0.4837	-0.3177	-0.1786	-0.0648
U	0.0268	-0.0751	-0.2046	-0.3643	-0.5562	-0.7428	-0.5653	-0.4095	-0.274	-0.1588	-0.0632
W	-0.0324	0.0684	0.1969	0.3556	0.5466	0.7353	0.5683	0.4149	0.2809	0.1664	0.071
Y	0.0079	0.1464	0.3205	0.5333	0.7874	1	0.7874	0.5333	0.3205	0.1464	0.0079
$Z^{ m h}$	0.0406	0.0846	0.1373	0.1992	0.2702	0.3619	0.243	0.1447	0.0655	0.0035	-0.0434
Z^{m}	0.0787	0.2025	0.3543	0.5359	0.7486	0.9164	0.6234	0.3802	0.183	0.0276	-0.0906

12 Impulse response functions

12.1 Shock ϵ^{h}

Figure 1: Impulse response function for $\epsilon^{\rm h}$ shock

Figure 2: Impulse response function for $\epsilon^{\rm h}$ shock

12.2 Shock ϵ^{m}

Figure 3: Impulse response function for ϵ^{m} shock

Figure 4: Impulse response function for ϵ^{m} shock