

Supporting Online Material for

Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells

Megha Ghildiyal, Hervé Seitz, Michael D. Horwich, Chengjian Li, Tingting Du, Soohyun Lee, Jia Xu, Ellen L. W. Kittler, Maria L. Zapp, Zhiping Weng, Phillip D. Zamore*

*To whom correspondence should be addressed. E-mail: phillip.zamore@umassmed.edu

Published 10 April 2008 on *Science* Express DOI: 10.1126/science.1157396

This PDF file includes:

Materials and Methods Figs. S1 to S8 Tables S2 to S7 References

Other Supporting Online Material for this manuscript includes the following:

Table S1

Supporting Online Material

Materials and Methods

General Methods

RNA was isolated as described (*S1*) from heads of Oregon R flies or *white*-IR flies (*S2*) or from Schneider 2 (*S2*) cells, a phagocytic, cultured cell line derived from late-stage *Drosophila* embryos (*S3*). S2 cells were a clonal cell line containing a stably integrated GFP transgene, pKF63, transiently transfected with dsRNA targeting GFP (*S4*). dsRNA was prepared (*S5*) and transfected into S2 cells as described (*S6*).

High-throughput sequencing

High-throughput pyrosequencing was as described (*S1*). Libraries were constructed using a method that selects for RNAs bearing 5′ monophosphates (*S7*). For pyrosequencing, the total small RNA libraries yielded 63,315 (S2 cells) and 71,268 (heads) reads corresponding to 4,971 (S2 cells) and 1,884 (heads) unique sequences. High-throughput sequencing-by-synthesis (*G*enome Analyzer, Illumina, San Diego, CA, USA) was as for pyrosequencing except that RNA Ligase 2 [Rnl2(1-249)K227Q] (Addgene, Cambridge, MA, USA) was used for 3′ ligation. Linkers and primers for sequencing-by-synthesis were: 5′ adaptor, 5′-rGrUrU rCrArG rArGrU rUrCrU rArCrA rGrUrC rCrGrA rCrGrA rUrC-3′ (Dharmacon, Lafayette, CO, USA); 3′ preadenylated linkers, 5′-rAppdCdT dGdTdA dGdGdC dAdCdC dAdTdC dAdAdT ddC-3′.

After linker addition, the cDNA was synthesized using a reverse-transcriptase primer corresponding to the 3′ adapter and amplified by PCR using forward (5′-dAdAdT dGdAdT dAdCdG dGdCdG dAdCdC dAdCdC dGdAdC

dAdGdG dTdTdC dAdGdA dGdTdT dCdTdA dCdAdG dTdCdC dGdA -3′) and reverse (5′-dCdAdA dGdCdA dGdAdA dGdAdC dGdGdC dAdTdA dCdGdA dAdTdT dGdAdT dGdGdT dGdCdC dTdAdC dAdG-3′) primers. The PCR pool was gel purified (4% Metaphor Agarose, Cambrex, East Rutherford, NJ, USA) with Qiaex II (Qiagen, Valencia, CA, USA) then sequenced (Genome Analyzer, Illumina) according to the manufacturer's protocol.

Quantitative RT-PCR analysis

Two micrograms of total RNA was treated with RQ1 DNase (Promega, Madison, WI, USA) or Turbo DNase (Ambion, Austin, TX, USA) according to manufacturer's instructions and then reverse transcribed using oligo(dT) primer and Superscript III and Superscript III reverse transcriptases (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's directions. The resulting cDNA was analyzed by quantitative RT-PCR performed in a DNA Engine OPTICON 2 (MJ Research, Bio-Rad, Hercules, CA, USA) or an iQ5 (Bio-Rad, Hercules, CA, USA) instrument using a SYBR Green PCR kit (Qiagen or Bio-Rad) according to manufacturer's instructions. Relative steady-state mRNA levels were determined from the threshold cycle for amplification using the $\Delta\Delta C_T$ method (SS) or DART-PCR (SS9). Table S6 lists the PCR primer sequences.

Computational Analyses

For each transposon, reads mapping to at least one genomic copy of that transposon were aligned on the transposon consensus sequence using WU-BLAST (http://blast.wustl.edu/) at low stringency (word size, 1; expectancy threshold, 100). For each aligned read, the top-scoring segment pair was selected; if N segment pairs were equally high-scoring, they were all selected, and were

weighted by 1/N (especially true for LTR-matching reads). When the segment pair alignment did not reach the extremities of the read, the alignment was extended in order to cover the complete read. Where reads are reported normalized to sequencing depth, the number of genome-matching reads was used for normalization. Total small RNA data sets correspond to all reads matching the *Drosophila* genome after excluding annotated non-coding RNAs such as ribosomal RNA, snRNAs, snoRNAs, etc. Other computational methods were as described (*S10*). Programs are freely available upon request. Sequencing statistics are in Table S7.

Enrichment of endo-siRNAs in regions of overlapping transcripts

The annotated transcriptome (defined as the genomic regions of all annotated mRNAs, including exons and introns) was first divided into the regions that produced overlapping, complementary transcripts and regions that produce transcripts only from one strand. Then all allowable positions that can be the starting position of a non-transposon-overlapping 21-mer were separately determined for the plus and minus strands. The scope of double-stranded regions was defined as the union of the allowable positions for which the anti-sense positions are also allowable. The scope of single-stranded regions is defined as the union of the remaining allowable positions.

We then mapped the endo-siRNAs from wild-type fly heads or S2 cells onto the transcriptome and computed an enrichment score: [(total number of mapped endo-siRNAs whose 5´-end position falls in the scope of double-stranded regions)*(size of the scope of double-stranded regions + size of the scope of single-

stranded regions)]/[(total number of endo-siRNAs)*(size of the scope of double-stranded regions)].

To determine the statistical significance of the resulting enrichment scores, we randomly selected the same number of allowable positions as the number of endo-siRNAs in the sample and recomputed the enrichment score, 100 times per sample. The random distribution had a mean ~1, as expected. The *p*-values of the actual enrichment scores of the two libraries were determined with reference to the normal distribution. Results are summarized in Table 1.

Supplemental Discussion

The retrotransposon 297 (80 copies per haploid genome) is the second most abundant retroelement in flies. 297 entered *Drosophila* recently through the ancestor of the *melanogaster* species group 44 million years ago (*S11*). Compared to flies, 297 has expanded dramatically in S2 cells (*S12*). 297 matching siRNAs represent 29.2% of all endo-siRNAs in S2 cells, but only 3.3% of endo-siRNAs in heads (Table S2). Remarkably, many of the siRNAs that correspond to 297 in heads map to its LTRs (Fig. 2C). It is difficult to imagine that antisense transcription arising in an adjacent protein-coding gene or an adjacent transposon could produce a precursor dsRNA that would lead to the production of siRNAs so tightly constrained to the LTR sequences. The LTRs of retrotransposons are direct repeats, so intramolecular pairing between LTRs within an RNA transcript—as has been proposed for the terminal inverted repeats (TIRs) of the DNA transposon *TC1* in *C. elegans* (*S13*)—also cannot explain the peculiar pattern of siRNA production from 297. Perhaps endo-siRNAs arise from an orphaned 297 LTR sequence in flies, but from one or more complete 297 elements in S2 cells. Moreover, somatic

siRNAs are not generally confined to specific regions of the other transposons examined (Fig. 2C). (Notably, the endo-siRNAs derived from the DNA transposon, *S-element*, do not appear to arise from intramolecular base-pairing between the complementary 5′ and 3′ TIRs, as occurs for *TC1* in *C. elegans* (*S13*).)

The 1731 element has also expanded in S2 cells, from a single active copy in the fly to many highly active copies in the cultured cell line (S14). Our endo-siRNA data reflects this expansion: 1731 matching siRNAs represent 39% of all endo-siRNAs in S2 cells, but only 0.02% in fly heads, where we found only a single 1731-matching siRNA (p-value < 2.2 x 10^{-16} , chi-square test).

Supporting Online Figures

- Figure S1
- Figure S2
- Figure S3
- Figure S4
- Figure S5
- Figure S6
- Figure S7
- Figure S8

Supporting Online Tables

- Table S1
- Table S2
- Table S3
- Table S4
- Table S5
- Table S6
- Table 30
- Table S7

References for Supporting Online Materials

- S1. H. Seitz, M. Ghildiyal, P. D. Zamore, Curr. Biol. 18, 147 (2008).
- S2. Y. S. Lee, R. W. Carthew, Methods 30, 322 (2003).
- S3. http://flyrnai.org/cgi-bin/RNAi_FAQ_lines.pl
- S4. K. Förstemann, M. D. Horwich, L.-M. Wee, Y. Tomari, P. D. Zamore, *Cell* **130**, 287 (2007).
- S5. K. Förstemann et al., PLoS Biol. 3, e236 (2005).
- S6. M. D. Horwich *et al.*, *Curr. Biol.* **17**, 1265 (2007).
- S7. N. C. Lau, L. P. Lim, E. G. Weinstein, D. P. Bartel, Science 294, 858 (2001).
- S8. K. J. Livak, T. D. Schmittgen, *Methods* **25**, 402 (2001).
- S9. S. N. Peirson, J. N. Butler, R. G. Foster, Nucleic Acids Res. 31, e73 (2003).
- S10. J. Brennecke et al., Cell 128, 1089 (2007).
- S11. N. T. Takaesu et al., Genetics 174, 1299 (2006).
- S12. S. S. Potter, W. J. J. Brorein, P. Dunsmuir, G. M. Rubin, Cell 17, 415 (1979).

- S13. T. Sijen, R. H. Plasterk, *Nature* **426**, 310 (2003).
- S14. C. Maisonhaute, D. Ogereau, A. Hua-Van, P. Capy, Gene 393, 116 (2007).

Figure S1. An unusual small RNA that maps to 17 (13 exact matches and 4 with one mismatch) stable hairpins on the X chromosome ($\Delta\Delta G = -22.90$ kcal/mol). The small RNA sequence was enriched in the oxidized, β-eliminated library, suggesting it is 2′-O-methylated in cultured S2 cells. (A) The sequence of the 13 identical hairpins containing the unusual small RNA. Their extraordinary conservation may indicate a recent series of gene duplication events. (B) The genomic locations of the sequence on the minus strand of the X chromosome.

Figure S2. An unusual small RNA derived from a stable hairpin ($\Delta\Delta G = -24.20$ kcal/mol) on chromosome 2L. The small RNA sequence was enriched in the oxidized, β-eliminated libraries, suggesting it is 2´-O-methylated in cultured S2 cells and adult fly heads.

Figure S3. Endogenous siRNAs from adult fly heads. Small RNAs mapping to more than one genomic location were attributed to each site to which they were complementary, but normalized for the number of sites. piRNA data are from Brennecke et al. (*Cell* 2007). The figure was drawn using pooled wild-type head data as indicated in Table S7.

Figure S4. Endogenous siRNAs from cultured S2 cells. Small RNAs mapping to more than one genomic location were attributed to each site to which they were complementary, but normalized for the number of sites. piRNA data are from Brennecke et al. (*Cell* 2007).

Chromosome 2 (millions of bp)

Figure S5. Uniquely mapping endogenous siRNAs from cultured S2 cells.

Figure S6. In cultured S2 cells, transposon-derived siRNAs generally mapped about equally to sense and antisense orientations. Only transposons with more than fifty 21-nt reads were analyzed.

Figure S8. The change (mean \pm SD, N=3) for transposon RNA expression in S2 cells was measured for cells treated twice with dsRNA to deplete Ago2 by RNAi, relative to a control dsRNA. Collectively, the transposons in this panel comprise > 88% of the transposon-derived siRNAs in S2 cells. Red, LTR retrotransposons; green, non-LTR retrotransposons, blue, DNA transposons.

Table S2. Endogenous siRNAs map to transposons. Percentages total more than 100, because some siRNAs map to more than one transposon. Red, LTR retrotransposons; green, non-LTR retrotransposons, blue, DNA transposons.

	Sense s	siRNAs	Antisense	Total number of	
Transposon	Number of siRNAs	% of total siRNAs	Number of siRNAs	% of total siRNAs	siRNAs
297	10,918	29.54	10,833	29.31	21,751
1731	7,887	21.34	6,490	17.56	14,377
mdg1	4,565	12.35	5,156	13.95	7,968
roo	3,101	8.39	4,023	10.89	6,745
Doc		4.85	1,999	5.41	3,793
blood	1,810	4.90	1,952	5.28	3,762
INE-1	1,194	3.23	1,306	3.53	2,476
diver	1,037	2.81	1,126	3.05	2,163
mdg3	569	1.54	914	2.47	1,483
Cr1a	804	2.18	402	1.09	1,183
jockey	593	1.60	565	1.53	1,158
S		1.33	518	1.40	999
Juan	508	1.37	480	1.30	988
copia	615	1.66	246	0.67	861
Tirant	308	0.83	380	1.03	688
17.6	237	0.64	400	1.08	637
Quasimodo	383	1.04	236	0.64	597
3S18		0.71	245	0.66	509
transib1	242	0.65	256	0.69	498
transior F	202	0.55	283	0.77	403
Stalker2	293	0.79	313	0.85	332
gypsy12	200	0.79	125	0.34	325
micropia	161	0.34	163	0.44	324
HB	144	0.44	167	0.44	311
пв Dm88	144	0.39	142	0.45	284
Stalker4	29	0.38	151	0.38	180
Rt1b	90	0.08	84	0.41	
					171
flea	63	0.17	59	0.16	122
Transpac		0.16	48	0.13	107
lvk		0.19	34	0.09	102
transib3	26	0.07	66	0.18	92
diver2	70	0.19	14	0.04	84
Burdock	45	0.12	35	0.09	80
rooA	24	0.06	50	0.14	74
gypsy2	48	0.13	25	0.07	73
invader1	73	0.20	73	0.20	73
Stalker		0.05	52	0.14	69
McClintock		0.00	62	0.17	63
NOF		0.04	48	0.13	62
gypsy8		0.12	13	0.04	57
1360	42	0.11	34	0.09	46
412	8	0.02	32	0.09	40
ninja-Dsim-like	19	0.05	21	0.06	40
jockey2		0.07	9	0.02	32
HMS-Beagle		0.06	5	0.01	29
Fw2	24	0.06	3	0.01	27
gypsy10		0.06	4	0.01	27
gypsy4		0.03	16	0.04	27
gypsy6	14	0.04	13	0.04	27

HeT-A	16	0.04	25	0.07	27
FB	23	0.06	10	0.03	23
gypsy	11	0.03	10	0.03	21
opus	21	0.06	17	0.05	21
G	18	0.05	2	0.01	20
G3	7	0.02	9	0.02	16
Rt1c	7	0.02	9	0.02	16
R1-element	2	0.01	12	0.03	14
Tabor	4	0.01	9	0.02	13
gypsy11	0	0.00	12	0.03	12
Fw3	9	0.02	7	0.02	11
Idefix	7	0.02	4	0.01	11
G4	4	0.01	6	0.02	10
Max	6	0.02	8	0.02	10
GATE	2	0.01	7	0.02	9
TART	7	0.02	1	0.00	8 7
baggins	7	0.02	0	0.00	7
G5A	2	0.01	4	0.01	6 5
S2	5	0.01	0	0.00	5
looper1	4	0.01	2	0.01	4
gypsy3	2	0.01	1	0.00	3
invader3		0.01	1	0.00	3 3 3 3 2 1
invader4	2	0.01	1	0.00	3
rover	0	0.00	3	0.01	3
springer	2	0.01	1	0.00	3
frogger	0	0.00	2	0.01	2
accord	1	0.00	0	0.00	
1	0	0.00	1	0.00	1
invader2	0	0.00	1	0.00	1
pogo	1	0.00	0	0.00	1

4.35 N/A

N/A 8.79 1,406 N/A

N/A 3,021

intergenic unannotated

mRNA not transposon mRNA & transposon

1,606 N/A

N/A

3,247

2,817 1,715 1,261 4,597

3.80 N/A

N/A 8.17

Fly Heads (5,600 reads excluding pre-miRNA matching)

Transpage	Sense s	siRNAs	Antisense siRNAs		Total number of
Transposon	Number of siRNAs	% of total siRNAs	Number of siRNAs	% of total siRNAs	siRNAs
mdg1	533	10.13	540	10.26	720
roo	350	6.65	338	6.42	571
297	185	3.52	189	3.59	374
jockey	72	1.37	112	2.13	184
F	92	1.75	89	1.69	137
Cr1a	64	1.22	58	1.10	119
INE-1	73	1.39	40	0.76	110
Stalker2	65	1.24	61	1.16	100
gypsy12	47	0.89	53	1.01	99
Doc	49	0.93	37	0.70	86
HB	41	0.78	44	0.84	85
lvk	39	0.74	61	1.16	81
Rt1b	34	0.65	45	0.86	78
Stalker4	40	0.76	31	0.59	71
opus	59	1.12	61	1.16	65
diver2	25	0.48	35	0.67	60
transib3	37	0.70	16	0.30	53
gypsy2	26	0.49	20	0.38	45
blood	17	0.32	26	0.49	43
invader1	41	0.78	41	0.78	43
gypsy6	21	0.40	16	0.30	37
gypsy	19	0.36	16	0.30	35
rooA	9	0.17	23	0.44	32
FB	30	0.57	29	0.55	30
accord2	17	0.32	12	0.23	29
jockey2	20	0.38	10	0.19	26
Stalker	5	0.10	19	0.36	24
NOF	5	0.10	18	0.34	23
gypsy8	14	0.27	4	0.08	18
1360 (hoppel)	7	0.13	13	0.25	16
Max	7	0.13	10	0.19	16
412	3	0.06	11	0.21	14
GATE	7	0.13	7	0.13	14
gypsy3	6	0.11	8	0.15	14
springer	6	0.11	8	0.15	14
Burdock	5	0.10	7	0.13	12
invader3	6	0.11	6	0.11	12
gypsy4	3	0.06	8	0.15	11
Quasimodo	6	0.11	5	0.10	10
R1	5	0.10	5	0.10	10
17.6	6	0.11	3	0.06	9
gypsy10	2	0.04 0.06	6	0.11	8
R1-element			5	0.10	8 7
HMS-Beagle	3 7	0.06	4	0.08	7
X Hot A		0.13	5	0.10	7
HeT-A	5 2	0.10 0.04	2 3	0.04 0.06	5 5 5
mdg3 S	1	0.04		0.06	5
		0.02	5 1	0.10	4
copia Tabor	3 3	0.06	1	0.02	
nabor Dm88	1	0.06		0.02	4
Dm88 HMS-Beagle2			2 2	0.04	3 3
rivio-beagie2	l l	0.02	2	0.04	اد

1	2	0.04	1	0.02	3
rover	1	0.02	2	0.04	3
3S18	2	0.04	0	0.00	2
flea	1	0.02	1	0.02	2
G	1	0.02	1	0.02	2
BS	1	0.02	0	0.00	1
Circe	1	0.02	0	0.00	1
Doc2	1	0.02	0	0.00	1
Doc4	1	0.02	0	0.00	1
G2	1	0.02	0	0.00	1
G3	1	0.02	0	0.00	1
G6	1	0.02	0	0.00	1
hopper2	1	0.02	0	0.00	1
invader2	1	0.02	0	0.00	1
invader6	1	0.02	0	0.00	1
looper1	1	0.02	0	0.00	1
McClintock	1	0.02	0	0.00	1
micropia	1	0.02	0	0.00	1
Rt1a	1	0.02	0	0.00	1
Rt1c		0.02	0	0.00	1
transib4	1	0.02	0	0.00	1

intergenic	1,727	32.81	1,487	28.25	2,144
unannotated	N/A	N/A	N/A	N/A	1,779
mRNA not transposon	N/A	N/A	N/A	N/A	2,443
mRNA & transposon	2,006	38.12	1,768	33.59	2,441

Table S3A. Enodogenous siRNAs from S2 cells were clustered as described by Brennecke et al. (2007), using Drosophila *melanogaster* genome release R5.5 (http://flybase.bio.indiana.edu/).

S2 cells

Cluster ID	Chromosome	Start	End	Cluster length (kb)	Number of reads mapping uniquely to cluster	Number of reads mapping to cluster	piRNA cluster I.D. (Brennecke et al., 2007)	Cytogenetic location
1	2L	9,782,623	9,795,136	13	517	517		30C9-30D1
2	3RHet	782,889	796,491	14	159	897		
3	2L	2,898,870	2,913,985	15	128	128		23C2
4	2L	22,752,903	22,780,367	27	65	619		
5	2L	1,655,404	1,717,432	62	50	4845		22A6-22B1
6	2L	21,079,751	21,094,168	14	50	50		39A1
7	3L	15,547,096	15,559,889	13	45	53		71E1
8	U	5,762,659	5,775,688	13	42	106	cluster #10	
9	2L	13,178,621	13,215,680	37	41	41		34A8-34A10
10	3L	645,955	657,148	11	40	40		61C8
11	2L	7,967,622	7,988,787	21	39	4930		28D3
12	2R	8,459,176	8,469,174	10	37	37		49B5-49B6
13	2L	7,073,818	7,084,359	11	36	36		27E1
14	2L	103,176	123,592	20	35	35		21B2
16	3L	3,192,342	3,242,225	50	35	35		63B11-63C1
15	2R	7,478,837	7,491,292	12	35	35		48A3
17	Х	17,983,251	17,995,197	12	32	32		16F6
18	2L	447,944	482,135	34	31	31		21C2-21D1
19	2L	1,153,981	1,164,214	10	31	31		21F1
20	3R	26,182,009	26,195,088	13	30	30		99F1-99F2
21	U	9,199,049	9,230,523	31	29	2917		
22	3L	824,291	870,587	46	28	958		61D2
23	2R	2,229,785	2,243,731	14	27	15206	cluster #1	42A15-42A16
24	3R	19,551,888	19,606,927	55	26	26		95B1-95B5
25	3R	16,891,416	16,901,947	11	24	24		93B9-93B10
26	2L	8,195,702	8,225,201	30	23	23		28F1-28F4
27	2R	12,892,015	12,902,518	11	23	23		53E4
28	2R	1,897,692	1,907,690	10	22	22		42A7-42A8
29	3R	5,591,241	5,634,025	43	22	22		85E8-85E10
31	Х	1,346,902	1,378,364	31	21	21		2A3-2B1

30 3R 11,159,014 11,191,374 32 21 21 33 X 1,956,119 1,972,769 17 20 20 32 3L 22,860,546 22,871,373 11 20 20 34 2L 3,014,084 3,028,983 15 19 19 39 3R 12,063,559 12,099,214 36 19 19 35 2L 18,675,544 18,705,832 30 19 19 37 3L 20,378,235 20,389,706 11 19 19 38 3L 20,473,055 20,511,399 38 19 20 36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 </th <th>88F1 2C8-2C10 80B1-80B2 23C4 89B9 36F10-37A1 77B9-77C1 77C4-77C6 60D13 70C12-70D1</th>	88F1 2C8-2C10 80B1-80B2 23C4 89B9 36F10-37A1 77B9-77C1 77C4-77C6 60D13 70C12-70D1
32 3L 22,860,546 22,871,373 11 20 20 34 2L 3,014,084 3,028,983 15 19 19 39 3R 12,063,559 12,099,214 36 19 19 35 2L 18,675,544 18,705,832 30 19 19 37 3L 20,378,235 20,389,706 11 19 19 38 3L 20,473,055 20,511,399 38 19 20 36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	80B1-80B2 23C4 89B9 36F10-37A1 77B9-77C1 77C4-77C6 60D13 70C12-70D1
34 2L 3,014,084 3,028,983 15 19 19 39 3R 12,063,559 12,099,214 36 19 19 35 2L 18,675,544 18,705,832 30 19 19 37 3L 20,378,235 20,389,706 11 19 19 38 3L 20,473,055 20,511,399 38 19 20 36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	23C4 89B9 36F10-37A1 77B9-77C1 77C4-77C6 60D13 70C12-70D1
34 2L 3,014,084 3,028,983 15 19 19 39 3R 12,063,559 12,099,214 36 19 19 35 2L 18,675,544 18,705,832 30 19 19 37 3L 20,378,235 20,389,706 11 19 19 38 3L 20,473,055 20,511,399 38 19 20 36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	89B9 36F10-37A1 77B9-77C1 77C4-77C6 60D13 70C12-70D1
35 2L 18,675,544 18,705,832 30 19 19 37 3L 20,378,235 20,389,706 11 19 19 38 3L 20,473,055 20,511,399 38 19 20 36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	36F10-37A1 77B9-77C1 77C4-77C6 60D13 70C12-70D1
37 3L 20,378,235 20,389,706 11 19 19 38 3L 20,473,055 20,511,399 38 19 20 36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	77B9-77C1 77C4-77C6 60D13 70C12-70D1
38 3L 20,473,055 20,511,399 38 19 20 36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	77C4-77C6 60D13 70C12-70D1
36 2R 20,554,111 20,563,855 10 19 19 40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	60D13 70C12-70D1
40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	70C12-70D1
40 3L 14,008,142 14,049,713 42 18 18 44 U 4,011,232 4,031,670 20 17 96 cluster #7 43 3R 5,378,423 5,391,934 14 17 17	
43 3R 5,378,423 5,391,934 14 17 17	
43 3R 5,378,423 5,391,934 14 17 17	
41 2B 7 162 904 7 177 380 14 17 17	85D24-85D25
L	47E5-47F1
42 2R 11,876,244 11,887,693 11 17 17	52D9-52D11
46 3R 27,620 57,331 30 16 621	81F6-82A1
48 X 2,491,408 2,503,866 12 16 16	3A6-3A7
45 2R 17,026,606 17,037,555 11 16 16	57C3-57C4
47 3R 17,091,519 17,102,609 11 16 16	93D2
49 3L 3,317,306 3,327,304 10 15 15	63D1
54 U 1,130,212 1,149,062 19 14 11543	
50 3L 4,246,406 4,256,404 10 14 14	64A11-64A12
51 3L 5,798,359 5,808,357 10 14 14	64E11-64E13
53 3R 17,042,277 17,052,592 10 14 14	93C6-93C7
52 3L 21,615,234 21,625,232 10 14 14	78E1
56 3L 2,592,932 2,603,319 10 13 13	62E7
55 2L 4,914,510 4,954,666 40 13 671	25B3-25B4
59 X 6,179,215 6,191,365 12 13 13	5E5-5E6
60 X 9,084,020 9,094,018 10 13 13	8C17-8D1
57 3R 9,500,740 9,510,738 10 13 13	87F7-87F10
58 3R 25,568,106 25,586,472 18 13 14	99B9-99B10
63 3L 1,502,401 1,521,931 20 12 690	62A3
67 X 1,558,009 1,575,576 18 12 12	2B5-2B6
64 3L 9,619,817 9,631,371 12 12 12	67C2-67C3
66 U 9,763,582 9,778,881 15 12 4825	
61 2L 10,200,298 10,210,296 10 12 12	31B1
62 2L 22,127,508 22,137,506 10 12 16	40E4-40E5
65 3R 25,621,570 25,634,567 13 12 12	99C1-99C2
72 3L Het 780,345 791,575 11 11 3535	
68 2L 5,520,595 5,530,593 10 11 11	25E5
70 3L 6,164,197 6,176,924 13 11 11	65A7

73	3R	7,458,172	7,468,170	10	11	11		86E13
71	3L	8,184,373	8,194,371	10	11	11		66B11-66B12
69	2L	12,103,912	12,113,910	10	11	11		33C4
74	3R	12,908,322	12,924,213	16	11	11		89E12-89E13
75	3L	686,750	696,889	10	10	10		61C8
78	3R	1,293,230	1,303,419	10	10	10		83A4-83A5
79	3R	14,481,371	14,491,369	10	10	10		91B8
81	Χ	19,512,463	19,522,461	10	10	10		18D7-18D8
76	3L	19,596,487	19,606,485	10	10	10		76B9
77	3L	22,056,871	22,066,869	10	10	10		79B2
82	Χ	22,345,871	22,392,860	47	10	1258		20F2-20F3
80	3R	25,303,931	25,313,929	10	10	10		99B1
83	2L	192,335	202,333	10	9	9		21B4
96	3L Het	248,455	258,453	10	9	249	cluster #15	
84	2L	1,975,628	1,985,626	10	9	9		22B8
91	3L	3,147,736	3,157,734	10	9	9		63B6-63B7
87	2R	4,046,783	4,056,781	10	9	9		44B5-44B8
98	Χ	5,207,694	5,217,692	10	9	12		4F4-4F5
92	3L	5,748,568	5,758,566	10	9	9		64E5-64E6
93	3L	11,698,935	11,708,933	10	9	9		68D2-68D3
88	2R	11,817,707	11,827,705	10	9	9		52D2-52D3
89	2R	13,120,411	13,131,234	11	9	1004		54B1
90	2R	15,369,295	15,379,293	10	9	9		56D11-56D13
94	3L	15,598,077	15,608,075	10	9	9		71E2-71E3
85	2L	20,059,341	20,069,339	10	9	9		38B1-38B2
86	2L	20,652,091	20,662,089	10	9	9		38D2-38D3
95	3L	22,933,272	22,943,270	10	9	9		80C1
97	3R	26,028,924	26,038,922	10	9	9		99E2
109	X	831,709	841,707	10	8	8		1D2-1D3
108	4	1,218,726	1,228,724	10	8	8		102F8
103	3R	1,403,421	1,413,419	10	8	8		83B2-83B3
110	X	1,809,962	1,819,960	10	8	8		2B15-2B16
100	2R	3,685,613	3,693,468	8	8	8		43E17-43E18
111	Χ	4,810,933	4,826,291	15	8	7978		4D5-4D7
99	2L	5,041,556	5,051,554	10	8	8		25C1-25C3
104	3R	5,508,105	5,524,570	16	8	22		85E4
101	2R	7,780,030	7,790,028	10	8	8		48C5
105	3R	12,008,921	12,018,919	10	8	8		89B7
106	3R	16,927,742	16,937,740	10	8	8		93B12-93B13
102	3L	20,821,682	20,831,680	10	8	8		77F1

107 3R 21,149,905 21,159,903 10 8 98 112 2L 146,778 156,776 10 7 7 113 2L 2,560,743 2,586,937 26 7 4649 116 3R 4,058,120 4,068,025 10 7 7 115 3L 7,708,825 7,718,481 10 7 7 120 X 7,838,431 7,844,562 6 7 7 117 3R 10,142,716 10,152,714 10 7 13 114 2R 13,424,091 13,434,089 10 7 7 121 X 19,632,553 19,642,551 10 7 7 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	96D1 21B3 22F4-23A1 84F4-84F5 66A10 7C9-7D1 88B3-88B4 54C3 18E5-18F1 98C3
113 2L 2,560,743 2,586,937 26 7 4649 116 3R 4,058,120 4,068,025 10 7 7 115 3L 7,708,825 7,718,481 10 7 7 120 X 7,838,431 7,844,562 6 7 7 117 3R 10,142,716 10,152,714 10 7 13 114 2R 13,424,091 13,434,089 10 7 7 121 X 19,632,553 19,642,551 10 7 7 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	22F4-23A1 84F4-84F5 66A10 7C9-7D1 88B3-88B4 54C3 18E5-18F1
116 3R 4,058,120 4,068,025 10 7 7 115 3L 7,708,825 7,718,481 10 7 7 120 X 7,838,431 7,844,562 6 7 7 117 3R 10,142,716 10,152,714 10 7 13 114 2R 13,424,091 13,434,089 10 7 7 121 X 19,632,553 19,642,551 10 7 10 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	84F4-84F5 66A10 7C9-7D1 88B3-88B4 54C3 18E5-18F1
115 3L 7,708,825 7,718,481 10 7 7 120 X 7,838,431 7,844,562 6 7 7 117 3R 10,142,716 10,152,714 10 7 13 114 2R 13,424,091 13,434,089 10 7 7 121 X 19,632,553 19,642,551 10 7 10 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	66A10 7C9-7D1 88B3-88B4 54C3 18E5-18F1
120 X 7,838,431 7,844,562 6 7 7 117 3R 10,142,716 10,152,714 10 7 13 114 2R 13,424,091 13,434,089 10 7 7 121 X 19,632,553 19,642,551 10 7 10 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	7C9-7D1 88B3-88B4 54C3 18E5-18F1
117 3R 10,142,716 10,152,714 10 7 13 114 2R 13,424,091 13,434,089 10 7 7 121 X 19,632,553 19,642,551 10 7 10 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	88B3-88B4 54C3 18E5-18F1
114 2R 13,424,091 13,434,089 10 7 7 121 X 19,632,553 19,642,551 10 7 10 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	54C3 18E5-18F1
121 X 19,632,553 19,642,551 10 7 10 118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	18E5-18F1
118 3R 24,141,329 24,151,327 10 7 7 119 3R 24,710,511 24,720,509 10 7 7	
119 3R 24,710,511 24,720,509 10 7 7	98C3
	0000
107 00 000 000 000 000 000	98F1-98F2
135 3R 229,824 261,348 32 6 983	82A6-82B1
122 2L 542,059 552,057 10 6 6	21E2
134 3L Het 563,098 600,561 37 6 879	
127 2R 666,812 675,630 9 6 6	41C2
136 3R 1,459,740 1,467,999 8 6 6	83B7
123 2L 4,986,739 4,996,737 10 6 6	25B9-25B10
137 3R 5,805,160 5,815,158 10 6 6	85F4
124 2L 6,043,300 6,053,298 10 6	26B3
138 3R 7,231,157 7,241,155 10 6 6	86E4
130 3L 7,316,278 7,325,381 9 6 6	65F4
131 3L 9,078,428 9,086,564 8 6 6	66F5
125 2L 10,389,264 10,399,262 10 6 6	31D11-31E1
139 3R 11,092,595 11,099,452 7 6 6	88E9-88E10
126 2L 16,307,231 16,317,229 10 6 6	35F1
132 3L 16,450,201 16,460,199 10 6 6	73A1
128 2R 16,549,517 16,559,515 10 6 6	57A9-57A10
140 3R 19,016,516 19,022,739 6 6 6	94E5-94E6
145 X 20,061,920 20,069,591 8 6 6	19C1
129 2R 20,663,857 20,673,855 10 6	60E1
141 3R 20,869,191 20,879,189 10 6 6	96B17-96B19
133 3L 20,986,085 21,020,979 35 6 969	78A2
142 3R 22,405,317 22,415,315 10 6 6	97C1
143 3R 22,687,952 22,697,947 10 6 6	97D3
144 3R 27,568,150 27,577,970 10 6 6	100D2
173 3R Het 31,087 74,992 44 5 10922	
174 4 551,915 561,913 10 5 5	102C4
146 2L 2,132,930 2,142,928 10 5 5	22D1
161 3R 2,479,803 2,486,260 6 5 5	84A1
147 2L 2,764,639 2,783,911 19 5 4784	23A5-23A6

154	2R	4,779,425	4,789,423	10	5	5	44F3
148	2L	5,986,382	5,996,380	10	5	5	26B2
162	3R	7,039,531	7,049,529	10	5	5	86D8
163	3R	8,839,679	8,847,105	7	5	5	87D8-87D9
175	Χ	9,452,424	9,462,422	10	5	5	8E7-8E10
164	3R	9,855,890	9,865,888	10	5	5	88A4
155	2R	10,145,197	10,155,195	10	5	5	5.00E+07
176	X	10,731,645	10,741,643	10	5	5	9F4-9F5
149	2L	11,092,188	11,100,393	8	5	5	32D2-32D3
157	3L	12,131,399	12,140,545	9	5	5	68F5-68F6
158	3L	12,759,827	12,768,208	8	5	5	69E2
165	3R	13,512,031	13,521,424	9	5	9	90C1
150	2L	16,249,303	16,259,301	10	5	5	35F1
159	3L	16,984,985	16,994,983	10	5	5	73E1-73E3
166	3R	18,407,620	18,413,515	6	5	5	94B5
167	3R	18,559,695	18,569,011	9	5	5	94C4
151	2L	19,000,410	19,010,408	10	5	5	37B9
152	2L	19,142,575	19,174,358	32	5	4890	37C1-37C6
156	2R	19,833,985	19,843,983	10	5	5	60A13
160	3L	19,874,250	19,884,248	10	5	5	76D3
177	Χ	20,257,850	20,267,821	10	5	5	19C5-19C6
168	3R	20,704,520	20,714,518	10	5	5	96B2-96B3
153	2L	21,660,567	21,669,076	9	5	5	39E3-39E6
169	3R	23,765,906	23,775,904	10	5	5	98B6
170	3R	25,507,490	25,515,528	8	5	5	99B7
171	3R	25,816,869	25,826,867	10	5	5	99D1
172	3R	26,303,191	26,319,848	17	5	128	99F6

Table S3B. siRNAs from fly heads were clustered as described by Brennecke et al. (2007), using *Drosophila melanogaster* genome release R5.5.

WT Heads

Cluster ID	Chromosome	Start	End	Cluster length (kb)	Number of reads map uniquely to cluster	Number of reads mapping to cluster	piRNA cluster I.D. (Brennecke et al., 2007)	Cytogenetic location
1	2L	9783876	9795136	11.3	478	478		30C9-30D1
173	3L	886,261	896,260	10.0	14	14		61D3-61D4
174	2L	6,855	17,067	10.2	11	11		21A5
175	Х	9,940,973	9,953,050	12.1	10	11		9A5-9B1
176	3R	113,708	123,706	10.0	9	9		82A1
49	3L	3,317,197	3,327,189	10.0	8	8		63D1
111	X	4,811,216	4,826,291	15.1	8	1,771		4D5-4D7
177	2L	7,706,540	7,716,536	10.0	8	8		28C1
7	3L	15,549,041	15,558,952	9.9	8	13		71E1
178	2L	16,784,804	16,794,788	10.0	8	8		36B1
179	3R	6,665	15,118	8.5	7	8		81F6
180	2R	14,267,508	14,277,167	9.7	6	6		55C4
181	Х	21,604,591	21,614,589	10.0	6	72	cluster #8	20B1
80	3R	25,305,992	25,315,848	9.9	6	6		99B1
182	3R	1,048,181	1,058,035	9.9	5	5		82F6
183	2L	9,817,453	9,827,451	10.0	5	156		30D1
184	3L	10,687,581	10,697,585	10.0	5	926		67E7

Table S3C. piRNA data from Brennecke et al. (2007) were clustered according using Drosophila melanogaster genome

piRNAs (from Brennecke et al., 2007)										
Chromosome	Start	End	Cluster length (kb)	Number of reads mapping uniquely to cluster	Number of reads mapping to cluster	Cytogenetic location				
2R	2,140,512	2,389,335	249	1,460	19,441	42A14-42B1				
X	21,388,081	21,432,231	44	994	7,351	20A1-20A3				
2L	20,143,634	20,232,517	89	445	2,540	38C2-38C3				
3L	23,269,813	23,313,601	44	224	1,169	80E3-80F1				
4	1,255,371	1,351,506	96	202	5,079	102F8				
U	4,010,984	4,077,966	67	162	822					
X	21,501,319	21,548,357	47	122	2,827	20A5-20B1				
U	5,743,150	5,797,646	54	115	3,694					
2R	12,713,990	12,723,988	10	109	109	53D11-53D12				
X	15,398,513	15,408,511	10	80	80	13C5-13C7				
3LHet	2,008,276	2,212,278	204	70	15,385					
3RHet	2,070,375	2,106,781	36	67	1,066					
3LHet	237,482	330,926	93	61	3,703					
U	7,497,140	7,584,470	87	61	8,578					
3R	6,228,871	6,238,915	10	46	46	86B4				
X	21,756,108	21,841,785	86	43	3,377	20B3-20C1				
4	807,233	867,379	60	41	464	102E1-102E3				
2L	20,100,366	20,123,183	23	40	261	38C1-38C2				
2L	22,342,790	22,421,219	78	35	3,508	40F7				
2L	1	11,667	12	33	20,448	21A5				
3LHet	148,660	204,731	56	33	1,701					
3L	24,088,523	24,134,591	46	33	2,113					
3RHet	2,309,480	2,373,211	64	32	2,425					
X	2,061	26,029	24	31	387	1A1				

Х	11,076,431	11,099,456	23	31	215	10A10-10B1
Х	21,580,417	21,687,831	107	31	2,671	20B1
3L	23,449,678	23,478,214	29	30	601	80F6-80F7
3LHet	493,948	685,925	192	29	10,795	
3R	21,467,283	21,482,178	15	29	29	96E6-96E7
2LHet	121,252	266,568	145	27	6,692	
3LHet	285	32,970	33	26	1,164	
2R	742,942	782,203	39	26	2,423	41C4-41C5
U	2,433,298	2,478,920	46	26	1,155	
2L	22,945,885	22,989,803	44	26	1,179	
3L	23,940,894	24,045,838	105	26	6,737	
3R	1,279	23,416	22	25	58	81F6
3RHet	1,607,736	1,674,464	67	25	2,263	
2RHet	1,857,936	1,913,095	55	24	966	
3L	19,845,140	19,864,685	20	23	1,530	76D1-76D3
3RHet	104,786	191,198	86	21	2,505	
3LHet	1,402,112	1,458,965	57	21	1,332	
2L	22,486,772	22,547,558	61	21	3,167	40F7
3L	24,465,528	24,543,475	78	21	1,399	
3RHet	617,618	656,530	39	20	1,197	
2RHet	1,412,742	1,489,780	77	20	824	
3RHet	1,746,563	1,797,611	51	20	3,429	
3RHet	532,053	575,335	43	19	1,169	
3RHet	849,568	921,355	72	19	1,662	
U	2,056,878	2,098,213	41	19	2,277	
U	889,267	1,061,441	172	18	6,217	
3RHet	1,111,034	1,223,916	113	18	3,403	
2R	1,253,143	1,284,240	31	18	1,040	41E5-41E6
2L	19,564,519	19,574,923	10	17	32	37F1-37F2
2L	22,254,319	22,281,479	27	17	701	40F7
3L	23,612,866	23,636,896	24	17	752	80F9

X	8,368,544	8,381,781	13	16	16	7F1
3LHet	770,628	819,852	49	15	2,636	
2R	16,466,415	16,476,583	10	15	15	57A6
3LHet	840,924	895,679	55	14	2,243	01110
3RHet	1,383,668	1,470,543	87	14	2,624	
3LHet	1,479,139	1,528,684	50	14	4,505	
2R	7,777,083	7,787,544	10	14	14	48C5
2L	8,450,213	8,490,832	41	14	2,178	29C5-29D1
2L	16,693,456	16,703,757	10	14	14	36A10-36A11
X	22,369,187	22,403,875	35	14	1,688	20F3
2R	109,239	149,540	40	13	884	
U	141,712	210,336	69	13	2,023	
3LHet	362,237	394,074	32	13	326	
2R	1,216,294	1,227,635	11	13	39	41E5
3LHet	1,844,970	1,901,261	56	13	2,843	
3L	24,350,206	24,375,909	26	13	819	
3R	27,892,332	27,909,797	17	13	11,215	10E4
U	40,427	117,442	77	12	4,287	
4	1,015,921	1,026,279	10	12	55	102F5
2RHet	2,204,696	2,287,166	82	12	1,695	
2RHet	2,788,079	2,857,172	69	12	2,226	
U	5,625,604	5,649,537	24	12	476	
2L	5,954,935	5,984,574	30	12	12	26A3-26B2
2R	3,316,801	3,331,740	15	11	96	43C1
U	3,519,704	3,551,702	32	11	768	
3R	5,921,675	5,931,673	10	11	11	85F10-85F11
U	9,170,572	9,298,799	128	11	7,794	
2RHet	1,679,952	1,715,467	36	10	730	
2R	9,211,947	9,221,945	10	10	10	50A1-50A3
Х	10,164,447	10,174,445	10	10	1,391	9B5-9B6
2R	185,439	225,778	40	9	1,909	

2R	845,724	885,372	40	9	1,552	41C6
2RHet	867,578	909,826	42	9	3,623	
U	5,446,117	5,477,034	31	9	2,751	
2L	7,420,980	7,430,978	10	9	9	27F3-27F4
2R	21,136,534	21,151,342	15	9	1,898	60F5
2L	21,891,204	21,901,202	10	9	9	40B3
3L	24,309,487	24,328,647	19	9	415	
3RHet	9,020	19,018	10	8	71	
3LHet	2,376,347	2,446,273	70	8	2,166	
2RHet	2,878,674	2,939,749	61	8	2,021	
2RHet	2,988,025	3,049,062	61	8	1,036	
U	3,876,652	3,943,760	67	8	1,823	
2L	20,631,611	20,640,251	9	8	18	38D1
XHet	169,257	192,176	23	7	919	
2LHet	302,772	369,442	67	7	3,621	
U	339,589	384,771	45	7	1,130	
3LHet	714,299	741,348	27	7	702	
X	1,371,374	1,381,268	10	7	7	2B1
X	4,017,313	4,027,311	10	7	12	4B1
X	5,201,679	5,211,408	10	7	7	4F4-4F5
U	6,643,127	6,660,684	18	7	1,684	
3R	7,044,221	7,053,379	9	7	7	86D8
3L	8,716,961	8,726,803	10	7	7	66D12
2L	9,891,561	9,901,336	10	7	7	30E1
X	12,660,975	12,670,600	10	7	116	11B16-11C1
X	22,096,745	22,116,991	20	7	129	20D2
3R	27,415,958	27,425,954	10	7	7	100C7
2R	410,424	423,625	13	6	536	41A2
X	652,829	662,184	9	6	6	1C4
4	985,305	995,476	10	6	37	102F4
3LHet	989,120	1,049,237	60	6	4,049	

3RHet	1,252,983	1,338,766	86	6	2,064	
U	1,379,079	1,450,515	71	6	3,660	
2RHet	1,597,675	1,641,429	44	6	2,648	
U	1,962,353	1,972,720	10	6	90	
U	3,109,090	3,139,633	31	6	1,015	
U	5,852,441	6,059,636	207	6	14,423	
U	7,836,590	7,882,892	46	6	6,453	
2L	17,968,726	17,978,719	10	6	6	36E3
3L	23,187,909	23,220,679	33	6	562	80D5-80E1
2RHet	483,216	517,466	34	5	258	
2R	514,257	524,320	10	5	202	41B2
4	609,263	619,456	10	5	1,194	102C6-102D1
3L	825,510	833,058	8	5	5	61D2
2RHet	1,087,648	1,133,687	46	5	1,120	
2RHet	1,339,078	1,389,974	51	5	3,038	
3RHet	2,482,651	2,492,649	10	5	62	
3R	2,909,142	2,918,466	9	5	6	84B2-84B6
X	3,435,144	3,445,036	10	5	7	3D5
U	6,191,840	6,261,703	70	5	6,969	
U	7,020,670	7,055,172	35	5	4,662	
2L	7,825,754	7,830,915	5	5	5	28D1-28D2
3L	10,353,382	10,363,380	10	5	5	67E1-67E2
X	11,787,892	11,794,120	6	5	5	10F4
2L	13,405,034	13,416,223	11	5	646	34B10-34B11
Х	19,487,663	19,497,511	10	5	5	18D3
X	21,183,210	21,188,753	6	5	12	19F3-19F4
3L	24,169,238	24,179,236	10	5	95	
3L	24,220,571	24,229,777	9	5	17	

Ghildiyal et al.

Table S4. Endogenous siRNAs matching transposons are depleted in *dcr-2* null mutant fly heads. Percentages total more than 100, because some siRNAs map to more than one transposon. Red, LTR retrotransposons; green, non-LTR retrotransposons, blue, DNA transposons. "Fold decrease" was calculated by normalizing the total number of siRNAs matching the transposon in each genotype to the total number of 18–29 nt RNA reads, excluding pre-miRNA-matching reads, a measure of the small RNA sequencing depth. "Fold decrease*" was calculated by normalizing to the total number of small RNA reads, including pre-miRNA-matching reads. Some siRNAs match more than one transposon, so the sum of the total number of siRNAs for each transposon is greater than the actual number so 21 nt small RNA reads: 2,524 for *dcr-2*/CyO and 263 for *dcr-2* homozygotes. *p*-value was calculated using Fisher's exact test.

nt small RNA reads: 2,524 for <i>dcr-2</i> /CyO and 263 for <i>dcr-2</i> homozygotes. <i>p</i> -value was calculated using Fisher's exact test.						
dcr-2 ^{L811fsX} /CyO	dcr-2 ^{L811fsX}					
(25,822 reads, excluding pre-miRNA-matching reads)	(16,917 reads, excluding pre-miRNA-matching reads)					

	Sense si	RNAs	Antisense	siRNAs	Total number		Sense s	iRNAs	Antisense	e siRNAs	Total			
Transposon	Number of siRNAs	% of total siRNAs	Number of siRNAs	% of total siRNAs	of siRNAs	Transposon	Number of siRNAs	% of total siRNAs	Number of siRNAs	% of total siRNAs	number of siRNAs	fold decrease	p-value	fold decrease*
roo	802	71%	897	80%	1,126	roo	56	64%	64	74%	87	8.5	0.000	10.4
jockey	351	47%	400	53%	751	jockey	30	63%	18	38%	48	10.3	0.000	12.5
mdg1	297	43%	396	58%	687	mdg1	35	60%	27	47%	58	7.8	0.000	9.5
297	288	45%	354	55%	642	297	43	55%	35	45%	78	5.4	0.000	6.6
Cr1a	295	60%	202	41%	490	Cr1a	26	58%	19	42%	45	7.1	0.000	8.7
blood	202	42%	281	58%	483	blood	20	54%	17	46%	37	8.6	0.000	10.5
HB	180	40%	270	60%	450	HB	11	44%	14	56%	25	11.8	0.000	14.4
springer	189	42%	256	58%	445	springer	16	64%	9	36%	25	11.7	0.000	14.3
gypsy3	162	42%	221	58%	383	gypsy3	14	64%	8	36%	22	11.4	0.000	13.9
invader3	162	42%	221	58%	383	invader3	14	64%	8	36%	22	11.4	0.000	13.9
Stalker4	118	32%	246	68%	364	Stalker4	11	37%	19	63%	30	7.9	0.000	9.7
Stalker2	228	68%	265	79%	337	Stalker2	7	58%	11	92%	12	18.4	0.000	22.5
F	115	43%	181	68%	268	F	7	41%	13	76%	17	10.3	0.000	12.6
Doc	85	33%	170	66%	258	Doc	6	21%	21	75%	28	6.0	0.000	7.4
gypsy12	156	62%	97	38%	253	gypsy12	8	73%	3	27%	11	15.1	0.000	18.4
lvk	186	74%	118	47%	251	lvk	14	88%	3	19%	16	10.3	0.000	12.6
INE-1	78	38%	133	65%	204	INE-1	5	25%	16	80%	20	6.7	0.000	8.2
Stalker	61	32%	128	68%	189	Stalker	3	43%	4	57%	7	17.7	0.000	21.6
transib3	57	31%	125	69%	182	transib3	2	13%	13	87%	15	7.9	0.000	9.7
rooA	59	33%	122	67%	181	rooA	2	25%	6	75%	8	14.8	0.000	18.1
NOF	58	33%	116	66%	176	NOF	2	33%	4	67%	6	19.2	0.000	23.5
Rt1b	56	42%	77	58%	133	Rt1b	4	31%	9	69%	13	6.7	0.000	8.2
FB	105	81%	112	87%	129	FB	2	50%	3	75%	4	21.1	0.000	25.8
412	39	37%	66	63%	105	412	0	0%	1	100%	1	68.8	0.000	84.1
jockey2	69	68%	36	35%	102	jockey2	2	67%	0	0%	3	22.3	0.000	27.2
gypsy8	44	67%	22	33%	66	gypsy8	0	0%	1	100%	1	43.2	0.000	52.9
opus	39	89%	39	89%	44	opus	4	57%	7	100%	7	4.1	0.000	5.0
diver2	24	57%	18	43%	42	diver2	3	33%	6	67%	9	3.1	0.001	3.7
invader1	31	82%	32	84%	38	invader1	2	100%	2	100%	2	12.4	0.000	15.2
Burdock	13	37%	22	63%	35	Burdock	5	100%	0	0%	5	4.6	0.000	5.6
1360	25	76%	17	52%	33	1360	7	70%	4	40%	10	2.2	0.029	2.6
Quasimodo	20	61%	17	52%	33	Quasimodo	5	50%	5	50%	10	2.2	0.029	2.6
gypsy	13	42%	18	58%	31	gypsy	2	50%	2	50%	4	5.1	0.000	6.2
HMS-Beagle	7	24%	22	76%	29	HMS-Beagle	3	43%	4	57%	7	2.7	0.016	3.3
gypsy2	16	67%	8	33%	24	gypsy2	1	33%	2	67%	3	5.2	0.002	6.4
gypsy6	11	46%	13	54%	24	gypsy6	0	0%	2	100%	2	7.9	0.000	9.6
Transpac	12	55%	10	45%	22	Transpac	5	100%	0	0%	5	2.9	0.029	3.5
gypsy4	7	33%	14	67%	21									
17.6	4	20%	16	80%	20	17.6	1	25%	3	75%	4	3.3	0.022	4.0
GATE	8	47%	12	71%	17	GATE	2	50%	2	50%	4	2.8	0.072	3.4

gypsy10	5 29%	12 71%	17	gypsy10	2	50%	2	50%	4	2.8	0.072	3.4
mdg3	5 29%	12 71%	17	mdg3	1	8%	12	92%	13	0.9	0.711	1.0
Dm88	5 31%	11 69%	16	Dm88	1	25%	3	75%	4	2.6	0.107	3.2
S	7 50%	11 79%	14	S	4	57%	3	43%	7	1.3	0.659	1.6
copia	9 69%	4 31%	13	copia	10	83%	2	17%	12	0.7	0.417	0.9
Мах	8 62%	8 62%	13	ооріа		0070	-	1770		0.1	0.417	0.0
accord2	3 30%	7 70%	10	accord2	0	0%	1	100%	1	6.6	0.059	8.0
rover	4 40%	6 60%	10	4000.42	-	0,0	-	.0070		0.0	0.000	0.0
flea	6 67%	3 33%	9	flea	3	100%	0	0%	3	2.0	0.385	2.4
1	5 63%	3 38%	8	7700	-	.00,0	,	0,0			0.000	
HeT-A	4 67%	5 83%	6	HeT-A	2	40%	3	60%	5	0.8	0.762	1.0
R1-element	4 67%	2 33%	6	R1-element	3	50%	3	50%	6	0.7	0.558	0.8
X	5 83%	6 100%	6	X	1	100%	1	100%	1	3.9	0.256	4.8
baggins	1 20%	4 80%	5	baggins	0	0%	2	100%	2	1.6	0.711	2.0
G	2 40%	3 60%	5	G	1	17%	5	83%	6	0.5	0.362	0.7
ninja-Dsim-like	2 40%	3 60%	5		- 1	17.70		3070		0.0	0.002	V.,
1731	1 25%	3 75%	4	1731	9	56%	7	44%	16	0.2	0.000	0.2
Idefix	1 25%	3 75%	4	Idefix	0	0%	1	100%	1	2.6	0.654	3.2
Rt1a	0 0%	4 100%	4	Rt1a	0	0%	1	100%	1	2.6	0.654	3.2
Tabor	3 75%	1 25%	4	Tirant	3	75%	1	25%	1	0.7	0.720	0.8
frogger	1 33%	2 67%	3	Tirani	3	1370	- '	2370		0.1	0.720	0.6
Juan	2 67%	1 33%	3	Juan	0	0%	4	100%	4	0.5	0.446	0.6
3S18	1 50%	1 50%	2	Juan	U	070	4	100%		0.5	0.446	0.0
Circe	1 50%	1 50%	2									
diver	1 50%	1 50%	2	diver	2	67%	1	33%	3	0.4	0.201	0.5
Fw2	2 100%	0 0%	2	uivei		07 70	- '	3376		0.4	0.391	0.5
Fw3	1 50%	1 50%	2									
G3	1 50%	1 50%	2									
gypsy9	0 0%	2 100%	2									
hopper2	0 0%	2 100%	2	hopper2	0	0%	3	100%	3	0.4	0.391	0.5
invader4	1 50%	1 50%	2	invader4	0	0%	3	100%	3	0.4	0.391	0.5
micropia	0 0%	2 100%	2	micropia	0	0%	1	100%	1	1.3	1.000	1.6
Rt1c	1 50%	1 50%	2	Пісторіа	U	0 /0		10070		1.0	1.000	1.0
transib1	0 0%	2 100%	2	transib1	0	0%	2	100%	2	0.7	0.651	0.8
accord	0 0%	1 100%	1	ti ai isib i	U	0 /0	2	10070		0.7	0.001	0.0
BS3	1 100%	0 0%	1				+					
G2	0 0%	1 100%	1	G2	0	0%	3	100%	3	0.2	0.308	0.3
G2 G4	1 100%	0 0%	1	GZ.	U	0 70	3	10070		0.2	0.500	0.0
G5	1 100%	0 0%	1				+					
G6	0 0%	1 100%	1									
HMS-Beagle2	0 0%	1 100%	1									
invader2	0 0%	1 100%	1	invader2	1	50%	1	50%	2	0.3	0.567	0.4
invader6	0 0%	1 100%	1	invader6	0	0%	2	100%	2	0.3	0.567	0.4
McClintock	0 0%	1 100%	1	""Vadoro	U	0,0	-	.0070		0.0	0.507	V1
transib4	0 0%	1 100%		transib4	0	0%	2	100%	2	0.3	0.567	0.4
uansion	0 0/0	1 10070		pogo	1	100%	0	0%	1	0.0	0.507	0.7
				ροgo S2	0	0%	1	100%	1			
				32	U	U 70	I	10070	1		L L	

Ghildiyal et al.

Table S5. The abundance of miRNA-matching reads was unchanged in *dcr-2^{L811fsX}* heads, compared to their heterozygous siblings. Fold change was calculated by normalizing the total number of miRNAs in each genotype to small RNA sequencing depth, i.e., the total number of 18–29 nt RNA reads (688,323 for *dcr-2* homozygotes; 859,436 for heterozygotes).

	Total number of reads					
miRNA	dcr2 ^{L811fsX} /CyO	dcr2 ^{L811fsX}				
miR-14	172,360	101,066				
miR-276a	141,107	99,817				
miR-8	84,901	56,233				
miR-317	47,027	41,865				
miR-277	40,372	36,318				
miR-34	34,350	59,032				
miR-276b	21,520	13,092				
bantam	17,977	13,336				
miR-274	16,754	20,625				
miR-210	16,142	18,754				
miR-1	14,885	13,926				
miR-133	12,532	9,555				
miR-999	12,065	8,549				
miR-7	11,707	7,085				
miR-184	11,679	15,992				
let-7	11,192	14,617				
miR-33	10,529	6,842				
miR-9a	10,101	6,985				
miR-125	9,397	8,268				
miR-278	6,942	7,849				
miR-11	6,562	4,849				
miR-284	5,486	4,089				
miR-252	5,188	3,911				
miR-124	4,181	7,615				
miR-305	3,398	5,428				
miR-279	3,395	3,441				
miR-285	3,198	1,781				
miR-13a	3,111	1,596				
miR-996	3,012	1,766				
miR-987	2,915	2,148				
miR-981	2,682	2,759				
miR-932	2,593	1,514				
miR-307	2,496	2,426				
miR-12	2,386	1,410				

Fold change (homozygotes vs heterozygotes)	p-value
0.73	0.000
0.88	0.000
0.83	0.000
1.11	0.000
1.12	0.000
2.15	0.000
0.76	0.000
0.93	0.000
1.54	0.169
1.45	1.2E-11
1.17	8.9E-135
0.95	1.6E-296
0.88	0.000
0.76	0.000
1.71	1.8E-14
1.63	3.0E-04
0.81	0.000
0.86	0.000
1.10	8.1E-121
1.41	1.5E-09
0.92	1.5E-172
0.93	2.2E-140
0.94	8.9E-128
2.27	6.2E-89
1.99	5.4E-30
1.27	6.1E-18
0.70	3.5E-173
0.64	3.0E-196
0.73	8.3E-147
0.92	4.5E-78 9.4E-13
1.28	9.4E-13 1.0E-127
0.73	
1.21	1.5E-18 1.1E-114
0.74	1.1E-114

Table S5

miR-927	2,365	1,563	0.83	3.4E-8
miR-306	2,299	2,341	1.27	3.8E-1
miR-282	2,167	2,426	1.40	0.0002
miR-957	1,775	1,998	1.41	1.5E-0
miR-965	1,775	685	0.48	4.2E-170
miR-275	1,647	2,493	1.89	1.1E-09
miR-1000	1,493	1,841	1.54	0.72
miR-79	1,421	1,082	0.95	5.6E-3
miR-304	1,382	770	0.70	1.1E-7
miR-1010	1,300	899	0.86	3.6E-4
miR-263b	1,298	761	0.73	2.9E-6
miR-31a	1,227	1,303	1.33	4.8E-0
miR-970	1,188	1,338	1.41	0.009
miR-219	980	946	1.21	1.8E-0
miR-1003	917	513	0.70	2.5E-50
miR-315	861	591	0.86	1.2E-29
miR-137	851	729	1.07	8.2E-1
miR-9b	844	473	0.70	2.1E-4
miR-1006	813	533	0.82	1.2E-3
miR-986	714	1,053	1.84	0.000
miR-316	589	657	1.39	0.049
miR-995	570	690	1.51	0.590
miR-263a	562	872	1.94	5.9E-0
miR-1012	543	377	0.87	1.1E-18
miR-1001	531	392	0.92	2.2E-1
miR-998	526	513	1.22	7.2E-0
miR-1017	497	304	0.76	2.4E-2
miR-9c	478	588	1.54	0.829
miR-993	449	395	1.10	4.0E-0
miR-1009	414	234	0.71	3.2E-2
miR-980	336	276	1.03	2.7E-0
miR-929	335	287	1.07	2.7E-0
miR-190	319	518	2.03	0.0002
miR-2a-2	316	348		0.109
miR-87	266	139	0.65	1.0E-1
miR-1008	248	200	1.01	4.6E-0
miR-375	243	199	1.02	1.0E-0
miR-100	241	224	1.16	0.001
miR-988	223	150	0.84	3.1E-09
miR-1004	182	135	0.93	4.2E-0
miR-308	166	281	2.11	0.0019
miR-193	116	126	1.36	0.30
miR-2b-2	87	102	1.46	0.71
miR-2b-1	86	90	1.31	0.25
miR-283	85	92	1.35	0.364
miR-2c	81	117	1.80	0.318
miR-1005	62	40	0.81	0.001

Table S5

miR-1007 62 51 1.03 miR-2a-1 60 63 1.31 miR-958 58 112 2.41 miR-10 53 61 1.44 miR-971 48 56 1.46	0.029 0.365 0.0068
miR-958 58 112 miR-10 53 61 1.44	0.0068
miR-10 53 61 1.44	
	0.706
miR-971 48 56 1.46	0.706
	0.768
miR-956 34 78 2.86	0.0030
miR-969 34 36 1.32	0.548
miR-311 30 11 0.46	0.0002
miR-314 21 38 2.26	0.191
miR-3 17 15 1.10	0.375
miR-954 17 27 1.98	0.453
miR-310 16 8 0.62	0.038
miR-312 16 13 1.01	0.266
miR-31b 13 17 1.63	1.000
miR-1016 11 16 1.82	0.847
miR-286 10 1 0.12	0.0035
miR-990 10 24 3.00	0.086
miR-318 7 6 1.07	0.582
miR-92b 7 19 3.39	0.078
miR-960 7 2 0.36	0.088
miR-982 7 5 0.89	0.391
miR-966 6 4 0.83	0.356
miR-991 6 2 0.42	0.151
miR-1013 5 6 1.50	1.000
miR-92a 5 1.25	0.759
miR-1011 4 4 1.25	1.000
miR-984 4 5 1.56	1.000
miR-309 3 1.25	1.000
miR-313 2 1 0.62	0.589
miR-976 2 4 2.50	0.699
miR-977 2 2 1.25	1.000
miR-303 1 6 7.49	0.141
miR-4 1 2 2.50	1.000
miR-959 1 1 1.25	1.000
miR-961 1 3 3.75	0.634
miR-964 1 2 2.50	1.000
miR-973 1 1 1.25	1.000
miR-989 1 2 2.50	1.000
miR-iab4as 1 4 4.99	0.390

Table S6. Probes and Primers

Primers for quantitative RT-PCR

Detects	Forward primer, reverse primer
Gypsy	CCAGGTCGGGCTGTTATAGG, GAACCGGTGTACTCAAGAGC
297	AAAGGGCGCTCATACAAATG, TGTGCACATAAAATGGTTCG
roo	CGTCTGCAATGTACTGGCTCT, CGGCACTCCACTAACTTCTCC
I-element	TGAAATACGGCATACTGCCCCCA, GCTGATAGGGAGTCGGAGCAGATA
mdg1	CACATGTTCTCATTCCCAACC, TTCGCTTTTTATATTTGCGCTAC
jockey	TGCAGTTGTTTCCCCTAACC, AGTTGGGCAAATGCTAGTGG
INE-1	GGCCATGTCCGTCTGTCC, AGCTAGTGTGAATGCGAACG
blood	TGCCACAGTACCTGATTTCG, GATTCGCCTTTTACGTTTGC
S-element	TGAAAAGCGTCATTCATTCG, TGTTTCTAGCGCACTCAACG
Doc	GGGTGACTATAACGCCAAGC, GCAAAATCGATCAGGTCTGG
1731	AGCAAACGTCTGTTGGAAGG, CGACAGCAAAACAACACTGC
F-element	GCTGGTAGATACCGCTGAGG, GTAGTCGTCCTCCGTTTTCG
412	CACCGGTTTGGTCGAAAG, GGACATGCCTGGTATTTTGG
NOF	AGTTGGACCTGGAATTGTGG, AATGCACACGGAAGAGGAAC
Idefix	AACAAAATCGTGGCAGGAAG, TCCATTTTTCGCGTTTACTG
Het-A	CGCGCGGAACCCATCTTCAGA, CGCCGCAGTCGTTTGGTGAGT
dcr-1	GCTAACGATGGCATCAATCTG, GCTTGGAGCGCAGGTGACTTA
dcr-2	GAGCTGCTCCATCAGTTTCA, TCCCAGTCAAAGCATTTCTGT
ago2	CAAGAAAGGAGGACAGGATAGC, TTGTTGCTGATGCGGTTG

Table S7. Sequencing statistics. "Small RNA reads" correspond to genome matching reads after excluding annotated non-coding RNAs. 454, pyrosequencing; Solexa/Illumina, sequencing-by-synthesis. An asterisk indicates data that was pooled as described in the legend to Figure 2. Ambiguous: the reads map to the indicated category and another category or in both orientations within a single category.

Genotype	Enriched for modified 3' ends?	Sequencing method	Genome- matching reads	annotated ncRNAs	Total Small RNA reads	All pre-miRNA- matching reads	Annotated miRNAs only
S2 cells	no	454	81,226	16,921	64,207	56,463	47,599
	yes	454	72,012	5,875	66,056	11,014	7,476
IR-wild-type heads*	no	454	94,772	23,206	71,268	68,596	61,688
	yes	454	30,250	1,526	22,690	11,089	8,740
	no	Illumina	1,245,354	33,429	1,187,572	1,152,293	949,190
	yes	Illumina	33,558	2,219	28,344	10,792	8,849
wild-type male heads*	no	Illumina	387,855	15,671	357,300	347,089	304,740
	yes	Illumina	4,928	422	4,208	3,261	2,856
wild-type female heads*	no	Illumina	916,026	43,081	790,126	754,602	673,105
	yes	Illumina	61,748	2,214	54,495	47,231	41,598
dcr-2 ^{L811fsX} /CyO heads	no	Illumina	908,508	2,683	859,436	833,614	638,085
dcr-2 ^{L811fsX} heads	no	Illumina	734,343	7,105	688,323	671,408	549,508
untreated ago2 heads	no	Illumina	749,674	27,908	684,388	649,398	1,094,293
oxidized ago2 heads	yes	Illumina	228,112	871	183,572	73,518	17,327

Ghildiyal et al., Table S7, continued.

matching coding genes (unambiguous)		matching coding genes (ambiguous)		matching transposons (unambiguous)		matching transposons (ambiguous)					
sense	antisense	sense	antisense	sense	antisense	sense	antisense	matching only <i>white</i> IR trigger		matching white IR trigger and others	
1,394	670	21,742	20,290	4	15	2,821	2,950				
6,586	4,995	44,670	42,945	23	61	24,442	24,148	sense	antisense	sense	antisense
1,163	927	23,752	22,362	1	12	171	224	708	834	0	12
4,068	5,503	9,197	8,841	9	8	703	792	3,102	5,283	0	19
14,518	8,326	64,396	34,109	26	59	2,873	3,411	7,149	7,229	0	5
1,556	1,522	11,506	9,860	4	4	306	294	904	1,165	0	0
5,078	215	33,053	12,706	2	2	438	753		•		
114	13	1,150	686	0	0	18	22				
16,312	851	132,279	59,124	20	85	1,751	2,874				
1,258	279	10,398	5,969	5	17	550	664				
5,066	1,458	56,057	32,819	40	107	3,430	4,164				
3,476	876	49,723	33,036	20	52	1,510	1,686				
7,188	1,146	71,620	39,516	103	136	13,106	13,179				
323	93	5,532	4,228	4	12	336	440				