SOIL AND AQUATIC CHEMISTRY

EXAMPLES CLASS - 2018-19

Acid-base equilibria – diprotic acids

- 1. Construct a plot of $-\log$ (species concentration) vs pH for a diprotic acid, H_2A , in water. Label the graph to show, p K_1 , p K_2 , C, and the equilibrium pH for solutions containing the acid (H_2A).
- 2.(a) Explain what is meant by a closed system for carbonic acid.
- (b) Write expressions for each dissolved inorganic carbon species ($H_2CO_3^*$, HCO_3^- , CO_3^2 -) in solution in terms of constants and [H⁺] only.
- (c) Write a charge balance expression for an aqueous solution of carbonic acid.
- (d) Sketch a plot of -log [] vs pH and annotate to show the equilibrium pH of the solution in (c).
- 3.(a) Write down the equations that are required to completely characterise the open carbonate system (assuming no solid phases).
- (b) Write an expression that defines the equilibrium pH of a solution containing sodium hydrogen carbonate in water. (Hint: $C = [Na^+]$)
- (c) Write an expression that defines the carbonate alkalinity of a natural water and explain why the addition or removal of carbon dioxide does not cause a change in alkalinity.
- 4.(a) Calculate the alkalinity of the following solutions (Hint: use only the appropriate part of the alkalinity expression):
 - (i) 10⁻³ M KOH
 - (ii) 10⁻³ M NaHCO₃
 - (iii) 5 x 10⁻⁴ M Na₂CO₃
 - (iv) 5 x 10⁻⁴ M MgO
- (b) Calculate the total concentration of dissolved inorganic carbon, C, where [Alk] $2.3x10^{-4}$ eq L^{-1} , $K_1 = 10^{-6.35}$, $K_2 = 10^{-10.35}$ and the pH of solution is 8.6.
- 5. For the water described below ($CaCO_{3(s)}$ - $CO_{2(aq)}$ - $H_2O_{(l)}$ system), calculate whether it is over- or undersaturated with respect to $CaCO_3$. Use the equilibrium constant data provided (Hint: start by calculating C...finally calculate the ion product $\{Ca^{2+}\}\{CO_3^{2-}\}\}$).

рН	7.5
[Ca ²⁺]	1.6 x 10 ⁻³ M
[Alk]	4 x 10 ⁻³ M
pK₁	6.52
pK ₂	10.56
log K _{SP} (CaCO ₃)	-8.35

Redox equilibria

- 6. Calculate the p ε of the following (assume I = 0 M):
- (i) a solution (pH = 2) containing 10^{-5} M Fe³⁺ and 10^{-3} M Fe²⁺ (log K = 13.0)
- (ii) a solution (pH = 7.5) in equilibrium with the atmosphere (p_{O2} = 0.21 atm; O_{2(g)} + 4H⁺ + 4e⁻ \rightleftharpoons 2H₂O log K = 83.1)
- (iii) a solution (pH = 8) containing 10^{-5} M Mn²⁺ in equilibrium with Mn(IV)O_{2(s)} (MnO_{2(s)} + 4H⁺ + 2e⁻ \implies Mn²⁺ + 2H₂O log K = 40.84)

Complexation equilbria

7. Write equilibria for the stepwise complexation of Cu(II) by Cl (K₁ = $10^{0.46}$, K₂ = $10^{0.16}$) Calculate the cumulative stability constants β_1 and β_2 .

Given $\Sigma Cu(II) = 2 \times 10^{-2} M$ and $\Sigma Cl(-I) = 2 M$, what is the main species of Cu(II) in solution?

Lectures - acid-base equilibria

- 1. Derive an expression which leads to the full numerical solution for {H+} for a dilute aqueous solution of a diprotic acid.
- 2. Given the following information for the open carbonate system (initial equilibrium pH = 8.13), calculate the new equilibrium pH of seawater if p_{CO2} increased from 3.5 x 10^{-4} atm to 7.1 x 10^{-4} atm.

```
[Alk] = 2.47 \times 10^{-3} \text{ eq } \text{ l}^{-1}

K_H = 4.8 \times 10^{-2} \text{ M atm}^{-1}

K_1 = 8.8 \times 10^{-7}

K_2 = 5.6 \times 10^{-10}
```

Hint: Use the approximation [Alk] ~ [HCO₃-] + 2 [CO₃²-] together with the information above NB for a quadratic equation: $x = [-b \pm \sqrt{(b^2-4ac)}]/2a$

3. As a result of photosynthesis with nitrate assimilation (see equilibrium below), a surface water with an initial alkalinity of 8.5 x 10^{-4} eq I^{-1} showed a pH variation from 9.0 to 9.5 over a 3 hour period. Calculate the rate of net CO₂ fixation assuming a closed system and no deposition of CaCO₃. Use pK₁ = 6.3 and pK₂ = 10.2. (Hint: use [Alk] at pH 9.0 in calculation; then write down two expressions for [Alk] at pH 9.5)

$$106 \text{ CO}_2 + 16 \text{ NO}_3^- + \text{HPO}_4^{2-} + 122 \text{ H}_2\text{O} + 18 \text{ H}^+ \leftrightarrow \{\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P}_1\} + 138 \text{ O}_2$$

4. Given the following information about a natural water:

$$\begin{array}{lll} Cd^{2+} + H_2O & \leftrightarrow Cd(OH)^{2+} + H^+ & log \ ^*\!\beta_1 = \text{-}10.1 \\ Cd^{2+} + CO_3^{2-} & \leftrightarrow CdCO_3^0 & log \ \beta_1 = 4.5 \\ \\ CdCO_{3(s)} & \leftrightarrow Cd^{2+} + CO_3^{2-} & log \ K_{sp} = \text{-}13.7 \\ Cd(OH)_{2(s)} & \leftrightarrow Cd^{2+} + 2OH^- & log \ K_{sp} = \text{-}14.3 \\ \end{array}$$

$$[CO_3^{2-}] = 3.65 \times 10^{-6} M$$
; pH =7.8; $\Sigma Cd(II) = 1 \times 10^{-9} M$

- (i) in which form does Cd(II) mainly occur?
- (ii) is there a possibility that $CdCO_{3(s)}$ or $Cd(OH)_{2(s)}$ will precipitate?

Paper to be Read

Remediation of groundwater contaminated with arsenic through enhanced natural attenuation: Batch and column studies. Hafeznezami et al. Water Research 122 (2017) 545-556. (Summary of main points will be given in the tutorial answers).