Class 5: Data visualization with ggplot2

Jie

```
ggplot(mtcars) + aes(x=mpg, y=disp) + geom_point()
```


ggplot(mtcars, aes(mpg, disp)) + geom_point()

cars

	speed	dist
1	4	2
2	4	10
3	7	4
4	7	22
5	8	16
6	9	10
7	10	18
8	10	26
9	10	34
10	11	17
11	11	28
12	12	14
13	12	20
14	12	24
15	12	28
16	13	26
17	13	34
18	13	34
19	13	46
20	14	26
21	14	36
22	14	60
23	14	80
24	15	20
25	15	26
26	15	54
27	16	32
28	16	40
29	17	32
30	17	40
31	17	50
32	18	42
33	18	56
34	18	76
35	18	84
36	19	36
37	19	46
38	19	68
39	20	32
40	20	48
41	20	52
42	20	56

```
43
      20
            64
44
      22
            66
45
      23
            54
46
      24
            70
47
      24
            92
      24
            93
48
      24
49
           120
50
      25
            85
```

head(cars)

speed dist

3 layers of ggplot - Data - Aes - Geoms

```
ggplot(data=cars) + aes(x=speed,y=dist) + geom_point()
```


ggplot(data=cars) + aes(x=speed,y=dist) + geom_point() + geom_line()

ggplot(data=cars) + aes(x=speed,y=dist) + geom_point() + geom_smooth(method=lm, se=FALSE)

[`]geom_smooth()` using formula 'y ~ x'

`geom_smooth()` using formula 'y ~ x'

Speed and Stopping Distances of Cars

Your informative subtitle text here

url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
gene_graph <- ggplot(genes) +
   aes(x=Condition1, y=Condition2) +
   geom_point(color = "blue")
gene_graph</pre>
```



```
gene_graph <- ggplot(genes) +
   aes(x=Condition1, y=Condition2, col=State,alpha=0.3) +
   geom_point()+labs(title = "Gene experssion changes")
gene_graph</pre>
```

Gene experssion changes

Gene experssion changes

library(RColorBrewer)
display.brewer.all()


```
gene_graph <- ggplot(genes) +
   aes(x=Condition1, y=Condition2, col=State) +
   geom_point()+labs(title = "Gene experssion changes", x="Control (no drug) ",
        y="Drug Treatment")
gene_graph + scale_color_manual(values = brewer.pal(3,"Pastel1") )</pre>
```

Gene experssion changes


```
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
gapminder <- read.delim(url)
library(dplyr)</pre>
```

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
   filter, lag

The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union

gapminder_2007 <- gapminder %>% filter(year==2007)
```

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point()
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp,color=continent) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp,color=continent,size=pop) +
  geom_point(alpha=0.5) +
  scale_size_area(max_size = 10)
```



```
ggplot(gapminder_2007) +
aes(x = gdpPercap, y = lifeExp, color = pop) +
geom_point(alpha=0.8)
```



```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                            pop gdpPercap
1
         China
                    Asia 2007 72.961 1318683096 4959.115
2
         India
                    Asia 2007 64.698 1110396331
                                                 2452.210
3 United States
                Americas 2007 78.242 301139947 42951.653
                    Asia 2007 70.650
                                                 3540.652
4
     Indonesia
                                       223547000
5
        Brazil Americas 2007 72.390 190010647
                                                 9065.801
```

```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill=continent))
```



```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
aes(x=reorder(State,Murder), y=Murder) +</pre>
```

geom_col() +
coord_flip()

