Zadanie 1.

W poniższej tabeli podane są wyniki pierwszych trzech lat działalności ubezpieczyciela majątkowego (w mln. ECU):

	1 rok	2 rok	3 rok
Przypis składki	30	72	110
Odszkodowania	7	30	50
Rezerwa składek	5	10	20
Rezerwa szkodowa	5	30	40

W trzecim roku działalności ubezpieczyciel zawarł umowę reasekuracyjną typu quota share obejmującą cały portfel ubezpieczeniowy. Składka reasekuracyjna w trzecim roku działalności wyniosła 20 mln ECU. Ile wynosi margines wypłacalności na koniec trzeciego roku działalności (w mln. ECU)?

- (A) 12.8
- (B) 14.6
- (C) 16.0
- (D) 17.5
- (E) za mało danych

Zadanie 2.

W pewnym portfelu ubezpieczeniowym łączna wartość szkód w ciągu roku ma złożony rozkład Poissona o średniej ilości szkód 10. Wartość pojedynczej szkody X_i ma rozkład o średniej 300. Zmienna $Y_i = X_i - 100$ ma rozkład wykładniczy. Ile wynosi oczekiwana wartość odpowiedzialności reasekuratora udzielającego pokrycia typu "excess of loss" o zachowku z pojedynczej szkody 200 i maksymalnej odpowiedzialności z pojedynczej szkody 1 000?

- (A) 1 205
- (B) 1 213
- (C) 1 427
- (D) 1 485
- (E) 1 540

Zadanie 3.W poniższej tabeli podane są wyniki pierwszych sześciu lat działalności ubezpieczyciela majątkowego (mln ECU) dotyczące jednej grupy ubezpieczeń:

	1 rok	2 rok	3 rok	4 rok	5 rok	6 rok
Składki	10	20	24	26	28	30
Udział	5	10	10	11	12	12
reasekuratora						
Odszkodowania	2	12	13	12	16	16
Udział	0	3	4	3	3	2
reasekuratora						
Rezerwa	5	6	7	8	8	8
Składki						
Rezerwa	5	8	10	10	13	17
Szkodowa						

W jakiej wysokości powinna zostać utworzona rezerwa na wyrównanie szkodowości (w mln ECU) na koniec szóstego roku?

- (A) 0
- (B) 0.1
- (C) 0.2
- (D) 0.3
- (E) 0.4

Zadanie 4.

Zmienna losowa X przyjmuje wartości nieujemne – tzn. $\Pr(X < 0) = 0$. Dla dwóch punktów d_1 i d_2 takich, że $0 < d_1 < d_2$ znamy wartości dystrybuanty $F_X\left(d_i\right)$ oraz wartości oczekiwane nadwyżki zmiennej X ponad odpowiednie d_i . Nasze dane zawarte są w tabeli:

i	d_{i}	$F_{X}(d_{i})$	$E[(X-d_i)_+]$
1	5	0.45	20
2	7	0.65	19

Warunkowa wartość oczekiwana $E(X|X \in (5,7])$ wynosi:

- (A) 5.50
- (B) 5.75
- (C) 6.00
- (D) 6.25
- (E) 6.50

Zadanie 5.

W pewnym ubezpieczeniu działa bardzo prosty system *No Claim Discount*. Taryfa składek określona jest dla trzech klas:

- w klasie 1 składka wynosi 132 zł,
- w klasie 2 wynosi 100 zł,
- w klasie 3 wynosi 80 zł.

Przejście z klasy do klasy następuje na koniec każdego roku, przy czym po roku bezszkodowym ubezpieczony z klasy 1 przechodzi do 2, z klasy 2 do 3, a jeśli był w klasie 3 – to dalej w niej pozostaje. Bez względu na klasę, w której ubezpieczony jest w roku danym, jeśli zgłosi szkodę (jedną lub więcej), to przechodzi do klasy 1.

Rozważmy ubezpieczonego, który generuje w kolejnych latach szkody zgodnie z procesem Poissona o częstotliwości $\lambda = (\ln 10 - \ln 9)$ rocznie. Załóżmy, że każdą szkodę zgłasza natychmiast po jej zajściu.

Wartość oczekiwana składki płaconej przez niego w n-tym roku ubezpieczenia dąży przy $n \to \infty$ do granicy równej:

- (A) 85 zł
- (B) 87 zł
- (C) 89 zł
- (D) 91 zł
- (E) 93 zł

Zadanie 6.

Rozważamy klasyczny proces nadwyżki ubezpieczyciela postaci:

$$U(t) = u + c \cdot t - S(t),$$

gdzie:

$$S(t) = \sum_{i=1}^{N(t)} Y_i ,$$

 Y_1, Y_2, \dots są wartościami kolejnych szkód (niezależnymi, o identycznych rozkładach danych dystrybuantą $F(\cdot)$

gdzie N(t) jest procesem Poissona z parametrem częstotliwości λ .

Oznaczmy przez Ψ prawdopodobieństwo ruiny:

 $\Psi = \Pr(T < \infty)$, gdzie T oznacza moment zajścia ruiny:

$$T = \inf \{ t : \quad t \ge 0, \quad U(t) < 0 \}$$

Rozważmy dwa warianty procesu, różniące się parametrami:

	С	λ	и	$F(\cdot)$
Wariant 1	2	5	1	$F_1(\cdot)$
Wariant 2	8	10	2	$F_2(\cdot)$

Relacja dystrybuanty F_2 do dystrybuanty F_1 jest postaci:

$$\forall x \in R \quad F_2(x) = F_1\left(\frac{1}{2} \cdot x\right)$$

O procesie w wariancie 1 wiemy, że:

$$\{\Psi, E(T|T < \infty), E(U(T)|T < \infty)\} = \{0.5, 7, -0.5\}.$$

Wobec tego, w wariancie 2 trójka $\{\Psi, E(T|T < \infty), E(U(T)|T < \infty)\}$ wyniesie:

(A)
$$\{0.5, 7, -0.5\}$$

(B)
$$\{0.5, 3.5, -0.5\}$$

(C)
$$\{0.5, 7, -1\}$$

(D)
$$\{0.5, 3.5, -1\}$$

(E) żadna z odpowiedzi A, B, C, D nie jest prawidłowa

Zadanie 7.

Łączna wartość szkód S w portfelu ryzyk jest sumą łącznej wartości szkód S_1 w subportfelu 1 i łącznej wartości szkód S_2 w subportfelu 2. S_1 i S_2 są niezależnymi zmiennymi losowymi. W tabeli podane są ich wartości oczekiwane, wariancje i momenty centralne trzeciego rzędu:

	μ	σ^2	$\mu_{\scriptscriptstyle 3}$
S_1	200	500	4000
S_2	150	350	2800

Rozważmy dwie alternatywne metody aproksymacji rozkładu zmiennej S:

- metoda 1: aproksymujemy rozkład zmiennej S za pomocą rozkładu przesuniętego Gamma (c, α, β) (gdzie c jest parametrem przesunięcia)
- metoda 2: aproksymujemy osobno rozkład zmiennej S_1 za pomocą rozkładu przesuniętego Gamma (c_1, α_1, β_1) i rozkład zmiennej S_2 za pomocą rozkładu przesuniętego Gamma (c_2, α_2, β_2) , a następnie splot otrzymanych rozkładów traktujemy jako aproksymację rozkładu zmiennej S.

Różnica: $c - (c_1 + c_2)$ wynosi:

- (A) -2.5
- (B) 0
- (C) 2.5
- (D) 5
- (E) 7.5

Zadanie 8.

W pewnym ubezpieczeniu może zajść co najwyżej jedna szkoda (z jednej polisy) w ciągu roku. Pojedynczy ubezpieczony generuje szkody w kolejnych latach niezależnie, ciągle z tym samym prawdopodobieństwem q. Dla losowo wybranego ubezpieczonego z populacji "jego q" jest realizacją zmiennej losowej Q. Znamy pierwsze dwa momenty zmiennej Q:

$$EQ = 0.2$$
, $VAR(Q) = 0.02$.

Niech N oznacza zmienną losową wyrażającą ilość szkód wygenerowaną przez (losowo wybranego z populacji) ubezpieczonego w ciągu trzech kolejnych lat ubezpieczenia. Prawdopodobieństwo przyjęcia wartości skrajnych: Pr(N=0) + Pr(N=3) wynosi:

- (A) 0.84
- (B) 0.66
- (C) 0.58
- (D) 0.52
- (E) za mało danych

Zadanie 9.

Pewne ryzyko generuje szkody zgodnie z procesem Poissona z częstotliwością $\lambda=1$ rocznie. Wartości poszczególnych szkód są niezależnymi zmiennymi losowymi o rozkładzie:

Wartość szkody	1	2	3	4
prawdopodobieństwo	0.48	0.24	0.16	0.12

Niech X oznacza łączną wartość szkód w okresie 25 miesięcy (dokładnie: dwadzieścia pięć dwunastych roku).

 $Pr(X \le 5)$ wynosi:

(A)
$$4.8 \cdot \exp(-2\frac{1}{12})$$

(B)
$$5.2 \cdot \exp(-2\frac{1}{12})$$

(C)
$$5.5 \cdot \exp(-2\frac{1}{12})$$

(D)
$$5.8 \cdot \exp(-2\frac{1}{12})$$

(E)
$$6.0 \cdot \exp(-2\frac{1}{12})$$

Zadanie 10.

Rozważmy proces nadwyżki ubezpieczyciela z kontrolą wypłacalności raz do roku:

$$U_n = u + c \cdot n - S_n,$$

gdzie:

$$S_n = \sum_{i=1}^n W_i ,$$

 W_1,W_2,\dots są łącznymi wartościami szkód za rok pierwszy, drugi,... .

 W_i to niezależne zmienne losowe o identycznym rozkładzie Gamma o wartości oczekiwanej równej 3 i wariancji równej także 3.

Roczna składka wynosi: $c = \ln 64$.

Współczynnik przystosowania (adjustment coefficient) R dla tego procesu wynosi:

- (A) 0.667
- (B) 0.586
- (C) 0.500
- (D) 0.442
- (E) 0.333

Egzamin dla Aktuariuszy z 15 stycznia 2000 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	. KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	Е	
2	A	
3	Е	
4	Е	
5	В	
6	D	
7	В	
8	С	
9	D	
10	С	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.