ME-2104 ENGINEERING MATERIALS LAB EXPERIMENT: 1

TENSILE TEST

SUBMITTED BY:

Name: Vinay Khedkar

Roll No.: 2301ME80

Group: G1-1

Date: 20/8/2024

TENSILE TEST

OBJECTIVE

To estimate the mechanical properties of materials (Aluminium) using a Universal Testing Machine.

APPARATUS REQUIRED

- 1. Universal Testing Machine (UTM): A tensile test on a UTM involves a hydraulic pump, oil sump, and load dial indicator. The machine has adjustable crossheads for gripping the specimen, which are moved by oil pressure through connecting pipes.
- 2. Strain gauge: A strain gauge measures an object's deformation by detecting changes in electrical resistance, which are used to calculate the strain when the object is stressed.
- 3. Vernier Calliper: A Vernier calliper is a tool for measuring dimensions with high accuracy using a primary and sliding scale.

• SOME BASIC FORMULAE

Engineering stress,
$$\sigma = \frac{F}{A_0}$$

Engineering strain,
$$\varepsilon = \frac{\Delta L}{L_0}$$

For Yield strength offset line 0.2 % of strain

True stress,
$$\sigma_t = \sigma (1 + \varepsilon)$$

True strain,
$$\varepsilon_t = ln (1 + \varepsilon)$$

Holloman's equation:

$$\varepsilon = \varepsilon_e + \varepsilon_p \qquad \sigma = K(\varepsilon_p)^n$$

Where,

 $\sigma = \text{stress}, \ \varepsilon = \text{strain}$

F= Load applied

$$A_0 = Initial area = \frac{\pi}{4} d_0^2$$

 ε_p = plastic strain

 ε_e = elastic strain

K =strength coefficient

n =strain hardening exponent

OBSERVATIONS

- Machine used (make and model) =
- Workpiece Materials =
- Cross-head velocity (mm/s) =
- Initial diameter of specimen d1/Thickness =
- The initial gauge length of specimen L1 =
- The initial cross-section area of specimen A1 =
- Load of yield point Ft =
- Ultimate load after specimen breaking F =
- Final length after specimen breaking L2 =
- Diameter Of specimen at breaking place d2 =
- Cross section area at breaking place A2 =

Mechanical Property	Aluminium
Young modulus (MPa)	
Yield stress (MPa)	
Ultimate Tensile Strength (MPa)	
Strain hardening exponent	
Toughness (J/mm3)	
Resilience (J/mm3)	

• GRAPHS

1) ENG STRESS vs ENG STRAIN

2) TRUE STRESS vs TRUE STRAIN

Yield Point: (0.0051, 409.15)

3) SLOPE DETERMINATION GRAPH

Slope = 132257

4) VALUE OF N

N = 0.1032