Number Theory Reading Group

Thanic Nur Samin

Contents

1	Thursday, $9/12/2024$, Representation of $\mathfrak{sl}_2(\mathbb{F})$ by Hechi	1
2	Thursday, $9/19/2024$, Representation of $\mathfrak{sl}_2(\mathbb{F})$ by Hechi	4
3	Thursday, 9/26/2024, Root Systems by Zoia	7
4	Thursday, $10/3/2024$, Simple Roots by Zoia	9
5	Thursday, $10/17/2024$, Weyl Group, Irr. Root System by Zoia	10
6	Thursday, $10/24/2024$, Decomposing into Irr. by Hyeonmin	12
7	Thursday, 10/31/2024, Irr. rootot System by Hyeonmin 7.1 12.2 Automorphism	14 17
8	Thursday, $12/5/2024$, Cartan Subalgebras (CSA) by Rostyslav	18

1 Thursday, 9/12/2024, Representation of $\mathfrak{sl}_2(\mathbb{F})$ by Hechi

$$\mathfrak{sl}_2(\mathbb{F}) := \{ g \in \mathfrak{gl}_2(\mathbb{F}) \mid \mathrm{Tr}(g) = 0 \}$$

We assume $char(\mathbb{F}) = 0$ and \mathbb{F} is algebraically closed.

Theorem 1.1. $\mathfrak{sl}_2(\mathbb{F})$ is semisimple

Proof. Direct computation of the Killing Form.

Recall: if \mathfrak{L} is semisimple and $\phi: \mathfrak{L} \to \mathfrak{gl}(V)$ is a representation.

 $\mathfrak{L} \ni x = s + n$ abstract jordan decomposition.

 $\implies \phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x)$ in $\phi(\mathfrak{L})$.

From now on, $\mathfrak{L} = \mathfrak{sl}_2(\mathbb{F}) = \mathfrak{sl}(2,\mathbb{F}).$

 (V, ϕ) is a representation.

Basis of \mathfrak{L} :

$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Thus we have [h, x] = 2x, [h, y] = -2y, [x, y] = h.

Since h is diagonal, h is semisimple.

 $\implies \phi(h)$ is semisimple and thus diagonalizeable. $\in \text{End}(V)$.

We can decompose $V = \bigoplus_{\lambda} V_{\lambda}$ where $V_{\lambda} = \{v \in V \mid hv = \lambda v\}$ for all $\lambda \in \mathbb{F}$.

We say V_{λ} is a weight space with λ as its weight.

Lemma 1.2 (7.1). Suppose $v \in V_{\lambda}$. Then,

- 1) $xv \in V_{\lambda+2}$
- 2) $yv \in V_{\lambda-2}$

Proof. 1)
$$h(xv) = [h, x]v + x(hv) = 2xv + \lambda xv = (\lambda + 2)xv$$

2)
$$h(yv) = [h, y]v + y(hv) = -2yv + \lambda yv = (\lambda - 2)yv$$

Note that dim $V < \infty$

Thus, $\exists v \in V \text{ such that } x \cdot v = 0.$

Such a v is called a maximal vector.

For now, assume V is irreducible.

Let v_0 be a maximal vector with weight λ .

Definition. For i > 0 integer, $v_i = \frac{y^i \cdot v_0}{i!}$ Also, $v_{-1} = 0$.

Lemma 1.3 (7.2). 1) $h \cdot v_i = (\lambda - 2i)v_i$

- 2) $y \cdot v_i = (i+1)v_{i+1}$
- $3) x \cdot v_i = (\lambda i + 1)v_{i-1}$

Proof. 1) We use induction. Base case is clear.

Assume it is true for i-1.

$$v_{i-1} \in V_{\lambda - 2(i-1)}$$

Thus,
$$v_i = \frac{1}{i} \cdot y v_{i-1}$$

Lemma 7.1 implies $v_i \in V_{\lambda-2i}$.

- 2) $y \cdot v_i = (i+1)v_{i+1}$ by definition of v_i .
- 3) $ix \cdot v_i = x(yv_{i-1}) = [x, y]v_{i-1} + yxv_{i-1} = hv_{i-1} + yxv_{i-1} = (\lambda 2(i-1))v_{i-1} + (\lambda i + 2)yv_{i-2} = i(\lambda i + 1)v_{i-1}$

 $\dim V < \infty$ so it must end at some point.

So, at some point, it'll become 0. $v_0, \dots, v_m \neq 0, v_{m+1} = 0$.

Definition. m is the integer so that $v_m \neq 0, v_{m+1} = 0$.

By Lemma 7.2,

 $\operatorname{span}\{v_0,\cdots,v_m\}$ is a sub-representation of V.

Since V is irreducible,

 $V = \operatorname{span}\{v_0, \cdots, v_m\}$

Note: by 7.2(3),

 $0 = x \cdot v_{m+1} = (\lambda - m)v_m$

Since $v_m \neq 0$ we have $\lambda = m$.

Thus, dim $V = m + 1 = \lambda + 1$

Here m is the highest weight.

$$V = V_{-m} \oplus V_{-m+2} \oplus \cdots \oplus V_{m-2} \oplus V_m$$

$$\rho(x) = X \frac{\partial}{\partial Y}$$

$$\rho(y) = Y \frac{\partial}{\partial Y}$$

$$\rho(h) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$$

Construction. Suppose $L \curvearrowright \mathbb{F}[X,Y]$ [as a \mathbb{F} -space]. $\rho(x) = X \frac{\partial}{\partial Y}$ $\rho(y) = Y \frac{\partial}{\partial X}$ $\rho(h) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ Consider subrepresentations $\mathbb{F}[X,Y]_m$ [symmetric polynomials of degree m, dimension m + 1]

2 Thursday, 9/19/2024, Representation of $\mathfrak{sl}_2(\mathbb{F})$ by Hechi

Root Space Decomposition

Let \mathcal{L} be a non-zero semisimple lie algebra over \mathbb{F} with char $\mathbb{F} = 0$ and \mathbb{F} algebraically closed.

Definition (Toral Subalgebra). A subalgebra $\mathcal{H} \subseteq \mathcal{L}$ <u>toral</u> if it consists of semisimple elements.

Remark. If every element in \mathcal{L} is ad-nilpotent, then by Engel's Theorem \mathcal{L} is nilpotent. Thus it is not semisimple.

So, there exists a non-zero toral subalgebra.

Fix \mathcal{H} to be the <u>maximal toral subalgebra</u>. A maximal subalgebra exists since \mathcal{L} is finite dimensional.

Lemma 2.1 (8.1). A toral subalgebra \mathcal{T} is abelian.

Proof. Suppose $x \in \mathcal{T}$. We will prove that $\operatorname{ad}_{\mathcal{T}} x = 0$ [as a map].

 $\operatorname{ad}_T x$ is diagonalizeable. Assume some eigenvalue is non-zero. Then, we can find eigenvactor $y \in T$ with eigenvalue $a \neq 0$. So, [x, y] = ay.

Now, $\operatorname{ad}_T y(x) = [y, x] = -ay$. Since [y, y] = 0 we see that -ay is an eigenvector of $\operatorname{ad}_T y$ with eigenvalue 0.

 $\operatorname{ad}_T y$ is also diagonalizeable. Suppose v_1, \dots, v_n is the eigenbasis of $\operatorname{ad}_T y$ with eigenvalues $\lambda_1, \dots, \lambda_n$. Then $x = a_1 v_1 + \dots + a_n v_n$ for $a_i \in \mathbb{F}$. WLOG, $v_1 = y$.

$$[y,x] = a_1\lambda_1v_1 + \dots + a_n\lambda_nv_n = -ay$$

By comparing coefficients, $a_1\lambda_1=-a$. But $\lambda_1=0$. This is a contradiction.

Now, we fix \mathcal{H} to be a maximal toral subalgebra. It is not necessarily unique. Note that ad H is a <u>commuting family</u> in $\operatorname{End}(\mathcal{L})$. From linear algebra we know that ad H is simultaneously diagonalizeable.

Definition (Root Space Decomposition). Suppose \mathcal{H}^* is the dual space of \mathcal{H} . We can write:

$$\mathcal{L} = \bigoplus_{\alpha \in H^*} \{ x \in \mathcal{L} \mid [h, x] = \alpha(h)x \forall h \in H \}$$

$$=\mathcal{L}_0\oplus\bigoplus_{\alpha\in\Phi}\mathcal{L}\alpha$$

where $\Phi = \{\alpha \in H^* \setminus \{0\} \mid \mathcal{L}\alpha \neq 0\}$ and $\mathcal{L}_0 = C_{\mathcal{L}}(\mathcal{H})$ [the centralizer]. This is called the root space decomposition.

Example. $\mathfrak{sl}_2(\mathbb{F})$ has basis:

$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Then the root space decomposition is:

$$\mathfrak{sl}_2(\mathbb{F}) = \mathcal{H} \oplus \mathcal{L}_{-2} \oplus \mathcal{L}_2$$

 \mathcal{L}_{-2} contains the linear form sending h to -2.

Proposition 2.2 (8.1). Let $\alpha, \beta \in \mathcal{H}^*$. Then,

1) $[L_{\alpha}, L_{\beta}] \subseteq L_{\alpha+\beta}$ [by Jacobi Identity]

- 2) $\alpha \neq 0 \implies \forall x \in L_{\alpha}$ is nilpotent [by 1]
- 3) $\alpha + \beta \neq 0 \implies L_{\alpha} \perp L_{\beta}$ w.r.t. the Killing Form.

Proof of 3. Find $h \in \mathcal{H}$ such that $(\alpha + \beta)(h) \neq 0$. Then,

$$\kappa([h,x],y) = -\kappa([x,h],y) = -\kappa(x,[h,y])$$

$$\implies (\alpha + \beta)(h)\kappa(x, y) = 0$$

In particular, $L_0 \perp L_\alpha$ when $\alpha \in \Phi$.

Corollary 2.3 (8.1). The Killing Form restricted to \mathcal{L}_0 , $\kappa|_{\mathcal{L}_0}$ is non-degenerate.

Proposition 2.4 (8.2). $\mathcal{H} = \mathcal{L}_0 = C_{\mathcal{L}}(\mathcal{H})$.

Proof. Tedious linear algebra

Corollary 2.5 (8.2). The Killing Form restricted to \mathcal{H} , $\kappa|_{\mathcal{H}}$ is non-degenerate.

This implies, the map $H \to H^*$ given by $x \mapsto \kappa(x, -)$ is an isomorphism. For each $\phi \in \mathcal{H}^*$ we can define $t_{\phi} \in \mathcal{H}$ to be the pre-image of this isomorphism. So it satisfies

$$\phi(h) = \kappa(t_{\phi}, h) \quad \forall h \in \mathcal{H}$$

Proposition 2.6 (8.3). 1) Φ spans \mathcal{H}^*

- 2) If $\alpha \in \Phi$ then $-\alpha \in \Phi$
- 3) $x \in \mathcal{L}_{\alpha}, y \in \mathcal{L}_{-\alpha} \implies [x, y] = \kappa(x, y)t_{\alpha}$
- 4) $\alpha(t_{\alpha}) = \kappa(t_{\alpha}, t_{\alpha}) \neq 0$
- 5) dim[$\mathcal{L}_{\alpha}, \mathcal{L}_{-\alpha}$] = 1, spanned by t_{α}
- 6) Pick any non-zero $x_{\alpha} \in L_{\alpha} \setminus \{0\}$. Then there exists $y_{\alpha} \in \mathcal{L}_{-\alpha}$ such that $x_{\alpha}, y_{\alpha}, h_{\alpha} := [x_{\alpha}, y_{\alpha}]$ spans a subalgebra isomorphic to $\mathfrak{sl}_2(\mathbb{F})$, with the isomorphism $x_{\alpha} \mapsto x, y_{\alpha} \mapsto y, h_{\alpha} \mapsto h$
- 7) $h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})}$.

If V is a $\mathfrak{sl}_2(\mathbb{F})$ -module, recalling that $h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$,

$$V = \bigoplus_{\lambda \in \mathbb{F}} V_{\lambda}$$
 eigenspaces of h

Recall that all $\mathfrak{sl}_2(\mathbb{F})$ -module is of the form:

$$\mathfrak{sl}_2(\mathbb{F}) \curvearrowright \mathbb{F}[X,Y]$$

$$\rho(x) = X \frac{\mathrm{d}}{\mathrm{d}Y}, \rho(y) = Y \frac{\mathrm{d}}{\mathrm{d}X}, \rho(h) = X \frac{\mathrm{d}}{\mathrm{d}X} - Y \frac{\mathrm{d}}{\mathrm{d}Y}$$

and $V = \mathbb{F}[X,Y]_m$ [homogeneous polynomials of degree m] is irreducible and give us all irreducible representations.

Then we have:

$$V = V_{-m} \oplus V_{-m+2} \oplus \cdots \oplus V_{m-2} \oplus V_m$$

Where V_m is generated by X^m and V_{-m} is generated by Y^m

If m even, $0 \neq V_0 \subseteq V$ If m odd, $0 \neq V_1 \subseteq V$

Corollary 2.7. V is a $\mathfrak{sl}_2(\mathbb{F})$ -module. Then dim $V_0 + \dim V$ gives the number of summands in the irreducible decomposition of V.

Consider $S_{\alpha} = \operatorname{span}\{x_{\alpha}, y_{\alpha}, h_{\alpha}\} \cong \mathfrak{sl}_{2}(\mathbb{F})$ and its adjoint representation (\mathcal{L} is an S_{α} module).

Fix $\alpha \in \Phi$ and let $\mathcal{M} = \mathcal{H} + \sum_{c \in \mathbb{F}^{\times}} \mathcal{L}_{c\alpha}$.

By proposition 8.1, \mathcal{M} is a submodule of \mathcal{L} [since $[\mathcal{L}_{c_1\alpha}, \mathcal{L}_{c_2\alpha}] \subseteq \mathcal{L}_{(c_1+c_2)\alpha}$].

If $0 \neq x \in \mathcal{L}_{c\alpha}$ we see that $[h_{\alpha}, x] = c\alpha(h_{\alpha}) \cdot x = 2cx$

 $\implies 2c \in \mathbb{Z}$ and a weight of h_{α} is 0 or an integer multiple of $\frac{1}{2}$.

 $\begin{array}{c} \underset{\text{eigenvalue}}{\ker \alpha} + \underset{\text{weight } 0,\pm 2}{\mathbb{F} \cdot h_{\alpha}} \\ \end{array}$ Then $\mathcal{M} =$

Therefore, \mathcal{M} contains vectors of weight only 0 or ± 2 .

Therefore, if $\alpha \in \Phi$ we have $c = \pm 1$.

 $\mathcal{M} = \mathcal{H} + \mathcal{S}_{\alpha}$. Suppose h_{α}^{c} is the complement of h_{α} in \mathcal{H} . Then, $\mathcal{H} + \mathcal{S}_{\alpha} = \underbrace{h_{\alpha}^{c}}_{\text{abelian}} + \underbrace{\mathcal{S}_{\alpha}}_{\text{irreducible}}$ has $\dim \mathcal{H} - 1 + 1 = \dim \mathcal{H} = \dim \mathcal{M} - 2$ irreducible

summands.

On the other hand, the number of irreducible summands of \mathcal{M} is $\underbrace{\dim \mathcal{M}_0}_{\dim \mathcal{M}-2} + \underbrace{\dim \mathcal{M}_1}_{0}$

Therefore, $\mathcal{H} + \mathcal{S}_{\alpha} \subseteq \mathcal{M}$ must be equal.

Therefore, dim $\mathcal{L}_{\alpha} = 1$.

Now, suppose $\beta \neq \pm \alpha \in \Phi$. Then, $\exists r, q$ such that $\beta - r\alpha, \beta - (r-1)\alpha, \cdots, \beta + q\alpha$ are roots and outside outside these, i.e. $\beta - (r+1)\alpha, \beta + (q+1)\alpha$ are not.

To see this, suppose $K = \sum_{i \in \mathbb{Z}} \mathcal{L}_{\beta+i\alpha} \subseteq \mathcal{L}$ is a \mathcal{S}_{α} -submodule. We know that $\beta + i\alpha \neq 0$.

Weights:

$$\beta(h_{\alpha}) + i\alpha(h_{\alpha}) = \beta(h_{\alpha}) + 2i$$

So, weights are either all even or all odd.

Therefore, K is irreducible.

Consider $\gamma, \delta \in \mathcal{H}^*$.

Define $(\gamma, \delta) = \kappa(t_{\gamma}, t_{\delta})$ on $E_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}}(\Phi)$ then (\cdot, \cdot) extends to $E = E_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$ is positive definite.

Then E is an Euclidean Space.

 (Φ, E) is called a root system.

3 Thursday, 9/26/2024, Root Systems by Zoia

Let E be an euclidean space. Suppose (α, β) is a symmetric bilinear form on E. Reflection in E fixes some hyperplane H. If α is perpendicular to H then the reflection sends α to $-\alpha$

Consider $\alpha \in E$ and $P_{\alpha} = \{\beta \in E \mid (\alpha, \beta) = 0\}$ the hyperplane perpendicular to α . Suppose σ_{α} is the reflection w.r.t. this hyperplane. Then,

$$\operatorname{proj}_{\alpha}(\beta) = \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha$$

$$\sigma_{\alpha}(\beta) = \beta - 2\operatorname{proj}_{\alpha}(\beta) = \beta - 2\frac{(\beta, \alpha)}{(\alpha, \alpha)}\alpha$$

Define:

$$\langle \beta, \alpha \rangle = 2 \frac{(\beta, \alpha)}{(\alpha, \alpha)}$$

Note that $\langle \beta, \alpha \rangle$ is linear only in β . Then,

$$\sigma_{\alpha}(\beta) = \beta - \langle \beta, \alpha \rangle \alpha$$

Lemma 3.1. Let Φ be a finite subset of E so that Φ spans E. Suppose all reflections $\sigma_{\alpha}(\alpha \in \Phi)$ leaves Φ invariant. If $\sigma \in GL(E)$ fixes hyperplane P of E and sends $0 \neq \alpha \in \Phi$ to $-\alpha$, then $\sigma = \sigma_{\alpha}$ and $P = P_{\alpha}$.

Proof. Suppose $\tau = \sigma \sigma_{\alpha} = \sigma \sigma_{\alpha}^{-1}$.

Then, $\tau(\Phi) = \Phi, \tau(\alpha) = \alpha$ and τ acts as id on $\mathbb{R} \cdot \alpha$ and $E/R \cdot \alpha$ eigenvalues are 1. So we have $(T-1)^L$ where $L = \dim E$.

 $\beta, \tau(\beta), \dots \tau^k(\beta) \; \exists k \text{ that fixes all } \beta \in \Phi$

 Φ spans E, so $\tau^k = 1$. So $T^k - 1 = 0$.

If m(T) is the minimal polynomial of τ , then:

$$m(T) \mid T^k - 1$$

$$m(T) | (T-1)^k$$

Therefore, m(T) = T - 1.

Therefore,
$$\tau = id$$
.
Thus $\sigma \sigma_{\alpha}^{-1} = id \implies \sigma = \sigma_{\alpha}$

Definition (Root Systems). A finite subset Φ of E is a root system in E if:

- 1R) Φ spans E, does not contain 0.
- 2R) If $\alpha \in \Phi$ then only multiples of α in Φ are $\pm \alpha$.
- 3R) If $\alpha \in \Phi$, then σ_{α} leaves Φ invariant. $[\forall \beta \in \Phi, \sigma_{\alpha}(\beta) \in \Phi]$

4R) If
$$\alpha, \beta \in \Phi$$
 then $\langle \beta, \alpha \rangle \in \mathbb{Z}$. $\left[\langle \beta, \alpha \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \right]$

Definition (Weyl Group). Let Φ be a root system in E. Denote by W the subgroup of GL(E) generated by $\sigma_{\alpha}(\alpha \in \Phi)$.

 $3R \implies \mathcal{W}$ is a symmetry group on Φ .

Lemma 3.2. Let Φ be a root system in E with Weyl group \mathcal{W} . If $\sigma \in GL(E)$ leaves Φ invariant, then $\sigma\sigma_{\alpha}\sigma^{-1} = \sigma_{\sigma(\alpha)} \forall \alpha \in \Phi$ and $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle \forall \alpha, \beta \in \Phi$.

Proof. $\sigma \sigma_{\alpha} \sigma^{-1}(\sigma(\beta)) = \sigma \sigma_{\alpha}(\beta) = \sigma(\beta - \langle \beta, \alpha \rangle \alpha) = \sigma(\beta) - \langle \beta, \alpha \rangle \sigma(\alpha)$.

 $\sigma(\beta)$ runs over Φ . $\sigma\sigma_{\alpha}\sigma^{-1}$ fixes $\sigma(P_{\alpha})$ pointwise and $\sigma(\alpha) \to -\sigma(\alpha)$. Therefore, $\sigma\sigma_{\alpha}\sigma^{-1} = \sigma_{\sigma(\alpha)}$ by the lemma.

 $\sigma_{\sigma(\alpha)}(\sigma(\beta)) = \sigma(\beta) - \langle \sigma(\beta), \sigma(\alpha) \rangle \sigma(\alpha)$

Therefore, we must have $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle$.

Definition (Isomorphisms). Suppose Φ, Φ' are root systems with Euclidean spaces E, E'.

 $(\Phi, E) \cong (\Phi', E')$ if there exists map $\varphi : E \to E'$ such that φ maps Φ to Φ' and $\forall \alpha, \beta \in \Phi$ we have $\langle \varphi(\beta), \varphi(\alpha) \rangle = \langle \beta, \alpha \rangle$.

Note that:

$$\sigma_{\varphi(\alpha)}(\varphi(\beta)) = \varphi(\beta) - \underbrace{\langle \varphi(\beta), \varphi(\alpha) \rangle}_{=\langle \beta, \alpha \rangle} \varphi(\alpha) = \varphi(\beta - \langle \beta, \alpha \rangle \alpha) = \varphi(\sigma_{\alpha}(\beta))$$

Note that, $\sigma \mapsto \varphi \sigma \varphi^{-1}$ is an isomorphism of Weyl groups.

Thus, W is a subgroup of $Aut(\Phi)$.

Now we consider root systems of different dimensions. Suppose $L = \dim E$.

 $\underline{L=1}$: In this case, we have $\alpha, \alpha \in \Phi$ only. This gives us A_1

$$\mathcal{W}(A_1) = \mathbb{Z}_2$$

 $\underline{L} = \underline{2}$:

$$\mathcal{W}(A_1 \times A_1) = \mathbb{Z}_2 \times \mathbb{Z}_2$$

$$\mathcal{W}(A_2) = S_3$$

$$\mathcal{W}(B_2) = D_4$$

$$\mathcal{W}(G_2) = D_6$$

These are the only possible cases for L=2, since:

$$\langle \beta, \alpha \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha)} = \frac{2\|\beta\| \|\alpha\| \cos \theta}{\|a\| \|a\|} = \frac{2\|\beta\|}{\|\alpha\|} \cos \theta \in \mathbb{Z}$$

Similarly, $\frac{2\|\alpha\|}{\|\beta\|}\cos\theta\in\mathbb{Z}$. Multiplying, $4\cos^2\theta\in\mathbb{Z}\Longrightarrow 4\cos^2\theta=0,1,2,3,4$ Thus, $\cos\theta=0,\pm\frac{1}{2},\pm\frac{1}{\sqrt{2}},\pm\frac{\sqrt{3}}{2}\Longrightarrow\theta=\frac{\pi}{2},\frac{\pi}{3},\frac{2\pi}{3},\frac{\pi}{4},\frac{3\pi}{4},\frac{\pi}{6},\frac{5\pi}{6}$.

$\langle \alpha, \beta \rangle$	$ \langle \beta, \alpha \rangle $	$\mid \theta \mid$	$ \ \ \beta\ ^2/\ \alpha\ ^2$
0	0	$\frac{\pi}{2}$	undefined
1	1	$\frac{\bar{\pi}}{3}$	1
-1	-1	$\frac{2\pi}{3}$	1
1	2	$\frac{\pi}{4}$	2
-1	-2	$\frac{3\pi}{4}$	2
1	3	$\frac{\pi}{2}$ $\frac{\pi}{3}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{4\pi}{6}$ $\frac{6\pi}{6}$	3
-1	-3	$\frac{5\pi}{6}$	3

Table 1: Angle Root System

Lemma 3.3. Suppose α, β are non-proportional root.

If $(\alpha, \beta) > 0$ then $\alpha - \beta$ is a root.

If $(\alpha, \beta) < 0$ then $\alpha + \beta$ is a root.

Proof.
$$\langle \alpha, \beta \rangle = 1 \implies \sigma_{\beta}(\alpha) = \alpha - 1\beta = \alpha - \beta \in \Phi$$

If $\langle \beta, \alpha \rangle = 1$ then $\sigma_{\alpha}(\beta) = \beta - 1\alpha = \beta - \alpha \in \Phi$.

$$\sigma_{\beta-\alpha}(\beta-\alpha) = (\beta-\alpha) - \langle \beta-\alpha, \beta-\alpha \rangle (\beta-\alpha) = \alpha - \beta \in \Phi$$

4 Thursday, 10/3/2024, Simple Roots by Zoia

A root system Φ of rank l, E-Euclidean Space, \mathcal{W} is the Weyl Group.

Definition. A subset Δ of Φ is called a base if:

- B1) Δ is a basis of $E[|\Delta| = l]$;
- B2) $\forall \beta \in \Phi, \beta = \sum_{\alpha \in \Delta} k_{\alpha} \cdot \alpha$, the expression is unique with k_{α} being integers and k_{α} are either all non-negative or all non-positive.

Definition. The roots from Δ are simple roots.

Definition. The height of a root β [relative to the base Δ] is:

$$\operatorname{ht}(\beta) = \sum_{\alpha \in \Delta} k_{\alpha}$$

Definition. We have positive roots Φ^+ and negative roots Φ^- from the sign of k_{α} . Furthermore $\Phi^- = -\overline{\Phi}^+$.

Also, we define:

$$\Phi^+(\gamma) = \{ \alpha \in \Phi \mid (\gamma, \alpha) > 0 \}$$

Definition. $\gamma \in E$ is regular if:

$$\gamma \in E \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$$

Otherwise it is called singular.

Recall that $P_{\alpha} = \{ \beta \in E \mid (\alpha, \beta) = 0 \}$

Definition. $\alpha \in \Phi^+(\gamma)$ is decomposable if $\alpha = \beta_1 + \beta_2$ with $\beta_1, \beta_2 \in \Phi^+(\gamma)$. α is indecomposable otherwise.

Definition. We define $\Delta(\gamma)$ to be the set of all indecomposable roots in $\Phi^+(\gamma)$.

Theorem 4.1. Any root system Φ has a base. Let $\gamma \in E$ be a regular.

Then, the set $\Delta(\gamma)$ of all the indecomposable roots in $\Phi^+(\gamma)$ is a base of Φ .

Conversely, every base of Φ is of the form $\Delta(\gamma)$ for some γ .

Proof. We follow the following steps.

Step 1: Each root in $\Phi^+(\gamma)$ is a non-negative \mathbb{Z} -linear combination of $\Delta(\gamma)$.

Step 2: If $\alpha, \beta \in \Delta(\gamma)$ then $(\alpha, \beta) \leq 0$ unless $\alpha = \beta$.

Step 3: $\Delta(\gamma)$ is a linearly independent set.

 $\overline{\text{Step 4}}$: $\Delta(\gamma)$ is a base of Φ .

Step 5: Each base Δ of Φ has the form $\Delta(\gamma)$ for some regular $\gamma \in E$.

<u>Proof of Step 1</u>: Suppose otherwise. Then $\exists \alpha \in \Phi^+(\gamma)$ that cannot be expessed as a non-negative \mathbb{Z} linear combination of $\Delta(\gamma)$.

We can have multiple such α 's. We pick the α with the smallest (γ, α) .

Note that $\alpha \notin \Delta(\gamma)$, since if $\alpha \in \Delta(\gamma)$ then $\alpha = 1 \cdot \alpha$, which violates the assumption. Thus, α can be written as sum of two elements in $\Phi^+(\gamma)$. Suppose $\alpha = \beta_1 + \beta_2$ so that $\beta_1, \beta_2 \in \Phi^+(\gamma)$. Then, $(\gamma, \alpha) = (\gamma, \beta_1) + (\gamma, \beta_2)$. Due to the minimality of (γ, α) , they are both non-negative \mathbb{Z} -linear conbination of $\Delta(\gamma)$ which means so is α , a contradiction.

<u>Proof of Step 2</u>: Suppose otherwise. Then, $(\alpha, \beta) > 0$. β cannot be $-\alpha$, thus $\alpha - \beta$ is a root. Then either $\alpha - \beta$ or $\beta - \alpha$ is in $\Phi^+(\gamma)$. WLOG $\alpha - \beta \in \Phi^+(\gamma)$. Then $\alpha = \beta + (\alpha - \beta)$. Then α is decomposable, which is a contradiction since $\Delta(\gamma)$ consists of all indecomposable roots.

Proof of Step 3: Suppose $\sum_{\alpha \in \Delta(\gamma), r_{\alpha} \in \mathbb{R}} r_{\alpha} \cdot \alpha = 0$. r_{α} can be positive or negative. We redistribute so that both sides have positive coefficient:

$$\varepsilon := \sum_{\alpha} s_{\alpha} \alpha = \sum_{\beta} t_{\beta} \beta$$

Then,

$$0 \le (\varepsilon, \varepsilon) = \sum_{\alpha, \beta} \underbrace{s_{\alpha} t_{\beta}}_{\ge 0} \underbrace{(\alpha, \beta)}_{\le 0} \le 0$$

Thus, $\varepsilon = 0$. Now,

$$0 = (\gamma, \varepsilon) = \sum_{\alpha} \underbrace{s_{\alpha}}_{\geq 0} \underbrace{(\gamma, \alpha)}_{> 0} \geq 0$$

Thus, $s_{\alpha} = 0$ for all $\alpha \in \Delta(\gamma)$. This implies linear independence.

Proof of Step 4: Note that $\Phi = \Phi^+(\gamma) \cup -\Phi^+(\gamma)$.

B2 is satisfied because of Step 1.

Then $\Delta(\gamma)$ spans E. Step 3 implies $\Delta(\gamma)$ is a basis of E. Thus we have B1.

Proof of Step 5: Given Δ , we select $\gamma \in E : (\alpha, \gamma) > 0 \forall \alpha \in \Delta$. B2 $\Longrightarrow \gamma$ is regular and $\Phi^+ \subseteq \Phi^+(\gamma)$. Also, $\Phi^- \subseteq -\Phi^+(\gamma)$.

Therefore, $\Phi^+ = \Phi^+(\gamma)$. Δ consists of indecomposable elements, that is $\Delta \subseteq \Delta(\gamma)$. Coordinates are equal, therefore $\Delta = \Delta(\gamma)$.

Definition (Weyl Chambers). The connected components of $E \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$ are called the (open) Weyl Chambers of E.

The fundamental Weyl chamber associated to γ is the open Weyl chamber containing γ . It is denoted by $C(\gamma)$.

Furthermore, $C(\gamma) = C(\gamma')$ implies γ and γ' are on the same side of each hyperplane P_{α} . This also means $\Delta(\gamma) = \Delta(\gamma')$, so the Weyl chambers are in 1-1 correspondence with the bases.

For example: here is an open Weyl Chamber for A_2 :

 $\mathcal{C}(\Delta)$ -fundamental Weyl chamber relative to the base $\{\alpha_1, \alpha_2\}$.

The Weyl group acts on the Weyl chambers by $\sigma(\mathcal{C}(\gamma)) = \mathcal{C}(\sigma(\gamma))$.

If $\sigma \in \mathcal{W}$ and γ is regular.

Also, W permutes bases. σ sends Δ to $\sigma(\Delta)$ which is another base.

Since $\sigma(\Delta(\gamma)) = \Delta(\sigma(\gamma))$ because $(\sigma\gamma, \sigma\alpha) = (\gamma, \alpha)$.

5 Thursday, 10/17/2024, Weyl Group, Irr. Root System by Zoia

Lemma 5.1. Let α be simple. Then σ_{α} permutes the positive roots other than α .

Corollary 5.2. Set $\delta = \frac{1}{2} \sum_{\beta \prec 0} \beta$. Then,

$$\sigma_{\alpha}(\delta) = \delta - \alpha \, \forall \alpha \in \Delta$$

Lemma 5.3. Let $\alpha_1, \dots, \alpha_n \in \Delta$ [not necessarily distinct]. Write $\sigma_i := \sigma_{\alpha_i}$. If $\sigma_1, \dots, \sigma_{t-1}(\alpha_t)$ is negative, then

$$\exists s: 1 \leq s \leq t: \sigma_1 \cdots \sigma_t = \sigma_1 \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}$$

Corollary 5.4. If $\sigma = \sigma_1 \cdots \sigma_t$ is an exp for $\sigma \in \mathcal{W}$, t is as small as possible theen $\sigma(\alpha_t) \prec 0$.

Proof. Suppose $\sigma(\alpha_t) > 0$. Then,

$$\underbrace{\sigma_1 \cdots \sigma_t}_{t \text{ factors}} = \underbrace{\sigma_1 \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}}_{t-2 \text{ factors}}$$

which contradicts minimality.

The Weyl Group

Definition. W is the subgroup of GL(E) generated by the reflection $(\sigma_{\alpha})_{\alpha \in \Phi}$.

Theorem 5.5. Let Δ be a base of Φ .

- a) If $\gamma \in E$, γ is regular, $\exists \sigma \in \mathcal{W} : (\sigma(\gamma), \alpha) > 0 \, \forall \alpha \in \Delta$.
- b) If Δ' is another base of Φ , then $\sigma(\Delta') = \Delta$ for some $\sigma \in \mathcal{W}$.
- c) If α is any root $\implies \exists \sigma \in \mathcal{W} : \sigma(\alpha) \in \Delta$.
- d) W generated by σ_{α} ($\alpha \in \Delta$).
- e) If $\sigma(\Delta) = \Delta, \sigma \in \mathcal{W}$ then $\sigma = id$.

Proof. We consider the subgroup \mathcal{W}' generated by $\sigma_{\alpha}(\alpha \in \Delta)$. For a, b, c we prove the theorem for \mathcal{W}' and for d, e we prove that $\mathcal{W}' = \mathcal{W}$.

$$\delta \coloneqq \frac{1}{2} \sum_{\alpha \preceq 0} \alpha$$

Choose $\sigma \in \mathcal{W}'$ such that $(\sigma(\gamma), \delta)$ is as big as possible.

If α is simple then $\sigma_{\alpha}\sigma \in \mathcal{W}' \Longrightarrow (\sigma(\gamma), \delta) \geq (\sigma_{\alpha}\sigma(\gamma), \delta) = (\sigma(\gamma), \sigma_{\alpha}(\delta)) = (\sigma(\gamma), \delta - \alpha) = (\sigma(\gamma), \delta) - (\sigma(\gamma), \alpha).$

Therefore, $(\sigma(\gamma), \alpha) \geq 0$.

Furthermore, $(\sigma(\gamma), \alpha) \neq 0$ so we have strict inequality. Therefore,

$$\forall \alpha \in \Delta, (\sigma(\gamma), \alpha) > 0$$

Therefore, $\sigma(\gamma)$ is in the fundamental Weyl chamber of Δ and σ sends $\mathfrak{C}(\gamma)$ to $\mathfrak{C}(\Delta)$.

- b) Since W' permutes the Weyl chambers by a, it also permutes the bases of Φ .
- c) Hyperplanes P_{β} ($\beta \neq \pm \alpha$) are distinct from hyperplane $P_{\alpha} \implies \exists \gamma : \gamma \in P_{\alpha}, \gamma \notin P_{\beta}$. Lets choose γ' so that γ' is close to γ such that $(\gamma', \alpha) = \varepsilon > 0$ while $|(\gamma', \beta)| > \varepsilon$ for any $\beta \neq \pm \alpha$.

Then $\alpha \in \Delta(\gamma')$.

d) We want to show that W' = W. It is enough to show that each reflection $\sigma_{\alpha}(\alpha \in \Phi)$ is in W'.

Find $\sigma \in \mathcal{W}'$ such that $\beta = \sigma(\alpha) \in \Delta$ using c. Then,

$$\sigma_{\beta} = \sigma_{\sigma(\alpha)} = \sigma \sigma_{\alpha} \sigma^{-1} \implies \sigma_{\alpha} = \sigma^{-1} \sigma_{\beta} \sigma \in \mathcal{W}'$$

e) Let $\sigma(\Delta) = \Delta$ but $\sigma \neq id$. If σ is written minimally as a product of simple reflections then we have contradiction from corollary 5.4.

П

Irreducible Root System

 Φ is irreducible if it cannot be partitioned into the union of two proper subsets in the following way: each root in one set is orthogonal to each root in the other subset.

Exmaple: A_1, A_2, B_2, G_2 are irreducible. $A_1 \times A_1$ is not irreducible.

<u>Claim</u>: Φ is irreducible $\iff \Delta$ cannot be partitioned.

Proof. \Leftarrow : Suppose $\Phi = \Phi_1 \cup \Phi_2$ with $(\Phi_1, \Phi_2) = 0$.

If Δ is not wholly contained in Φ_1 or Φ_2 then it induces the partition in Δ .

Now WLOG suppose $\Delta \subset \Phi_1$. Then, $(\Delta, \Phi_2) = 0$. Since Δ spans E.

 \Longrightarrow : Let Φ be irreducible but suppose $\Delta = \Delta_1 \cup \Delta_2$ with $(\Delta_1, \Delta_2) = 0$.

Each root is conjugate to a simple root (by theorem). Then,

$$\Phi = \Phi_1 \cup \Phi_2$$

where Φ_i is the set of roots that are conjugates with those in Δ_i .

Since W is generated by the σ_{α} where $\alpha \in \Delta$, it follows that each root in Φ_i can be obtained from obtained from Δ_i by + or - elements of Δ_i .

Therefore, Φ_i lies in the subspace E_i of E spanned by Δ_i .

Then, $(\Phi_1, \Phi_2) = 0$.

Since Φ is irreducible, it follows that $\Phi_1 = \emptyset$ or $\Phi_2 = \emptyset$.

Therefore, $\Delta_1 = \emptyset$ or $\Delta_2 = \emptyset$.

Lemma 5.6. Let Φ be irreducible. Then relative to the partial ordering \prec , there exists a unique maximal root β .

П

If $\beta = \sum_{\alpha} k_{\alpha} \alpha \ (\alpha \in \Delta)$ then all $k_{\alpha} > 0$.

Lemma 5.7. Let Φ be irreducible. Then W acts irreducibly on E. In particular, the W-orbit of a root α spans E.

Lemma 5.8. Let Φ be irreducible. Then at most two root lengths occur in Φ and all roots of this length are conjugates under W.

Lemma 5.9. Suppose Φ is irreducible with two distinct root lengths. Then the maximal root β of lemma 5.6 is long.

6 Thursday, 10/24/2024, Decomposing into Irr. by Hyeonmin

Facts:

- 1) Lemma 9.2 and (R3): $\forall \alpha, \beta \in \Phi, \forall \sigma \in \mathcal{W}, \langle \beta, \alpha \rangle = \langle \sigma\beta, \sigma\alpha \rangle$.
- 2) Table 1 in 9.4: $\forall \alpha, \beta \in E, \alpha \neq \beta, \langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = 0, 1, 2, 3.$
- 3) Lemma 10.1: $\forall \alpha, \beta \in \Delta, \alpha \neq \beta, \langle \alpha, \beta \rangle \leq 0$.
- 4) Theorem 10.3b: W acts transitively on the bases. 10.3c: $\forall \alpha \in \Phi, \exists \sigma \in W$ such that $\sigma(\alpha) \in \Delta$. 10.3d: W is generated by $\sigma_{\alpha}(\alpha \in \Delta)$.
- 5) Claim 10.4: Φ : irreducible $\iff \Delta$ canot be partitioned into proper $\Delta_1 \cup \Delta_2$ such that $(\Delta_1, \Delta_2) = 0$.

Classification

Fix $\Delta \subseteq \Phi$ and let $l = \dim_{\mathbb{R}} E$.

Definition. Fix an ordering $(\alpha_1, \dots, \alpha_l)$ of Δ .

Then $(\langle \alpha_i, \alpha_j \rangle)_{ij}$ is called the <u>cartan matrix of Φ </u>.

The entries are called the Cartan integers.

Example. In B_2 the Cartan matrix is:

$$\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}$$

Remark. 1) The Cartan matrix depends on the chosen ordering.

- 2) The Cartan matrix is independent of the choice of Δ . This is because, if Δ' is another base, since σ acts transitively, there exists $\sigma \in \mathcal{W}$ such that $\sigma \Delta = \Delta'$. Using the fact $\langle \alpha_i, \alpha_i \rangle = \langle \sigma \alpha_i, \sigma \alpha_i \rangle$ we see that the matrices are the same.
- 3) The Cartan Matrix is nonsingular. This is because:

$$(\langle \alpha_i, \alpha_j \rangle)_{i,j} \cdot \operatorname{diag}\left(\frac{(\alpha_i, \alpha_i)}{2}, \cdots, \frac{(\alpha_l, \alpha_l)}{2}\right) = \underbrace{((\alpha_i, \alpha_j))_{ij}}_{\text{nonsingular since inner product of basis}}$$

Proposition 6.1 (11.1). Let (Φ', E') be another root system. Suppose it has base $\Delta' = \{\alpha'_1, \cdots, \alpha'_s\}$ such that $\langle \alpha_i, \alpha_j \rangle = \langle \alpha'_i, \alpha'_j \rangle$.

Then the bijection $\Delta \to \Delta'$ extends unique to a root system isomorphism $\phi: (\Phi, E) \to \alpha'$

Therefore, the Cartan matrix of Φ determines Φ upto isomorphism.

Proof. Δ, Δ' are both basis $\implies \exists$ vector space isomorphism $\phi: E \to E'$ such that $\alpha_a \to \alpha'_a$.

 $\forall i, j \, \sigma_{\phi(\alpha_i)}(\phi(\alpha_j)) = \phi(\alpha_j) - \frac{\langle \phi(\alpha_j), \phi(\alpha_i) \rangle}{\langle \alpha_j, \alpha_i \rangle} \phi(\alpha_i) = \phi(\alpha_j - \langle \alpha_j, \alpha_i \rangle \alpha_i) = \phi(\sigma_{\alpha_i}(\alpha_j))$ Therefore, we have the commutative diagram:

$$E \xrightarrow{\phi} E'$$

$$\downarrow^{\sigma_{\alpha}} \qquad \downarrow^{\sigma_{\alpha'}} \qquad (A)$$

$$E \xrightarrow{\phi} E'$$

 $\alpha \in \Delta$ and $\forall x \in E, \langle x, \alpha \rangle = \langle \phi(x), \phi(\alpha) \rangle (B)$

A and since W is generated by σ_{α} we have for all $\sigma \in W$ we have:

$$E \xrightarrow{\phi} E'$$

$$\downarrow^{\sigma} \qquad \downarrow^{\sigma'}$$

$$E \xrightarrow{\phi} E'$$

Where $\sigma = \sigma_{\alpha_{l_1}} \cdots \sigma_{\alpha_{l_k}}$ and $\sigma' = \sigma_{\alpha_{l'_1}} \cdots \sigma_{\alpha_{l'_k}}$.

Therefore $\phi \circ \sigma \circ \phi^{-1} = \sigma' \in \mathcal{W}$ (D).

Claim 1: $\phi(\Phi) \subset \Phi'$

Claim 1:
$$\phi(\Phi) \subseteq \Phi$$

Let $\beta \in \Phi \implies \exists \sigma \in \mathcal{W}, \exists \alpha \in \Delta \text{ such that } \sigma\alpha = \beta$
Also, $\phi(\beta) = \underbrace{(\phi \circ \sigma \circ \phi^{-1})}_{\in \mathcal{W}'} \underbrace{(\phi(\alpha))}_{\in \Phi'} \in \Phi'$
Claim 2: $\forall \beta, \gamma \in \Phi, \langle \gamma, \beta \rangle = \langle \phi(\gamma), \phi(\beta) \rangle$.

Since W is generated by reflections $\exists \sigma \in \mathcal{W}, \exists \alpha \in \Delta \text{ such that } \sigma\alpha = \beta$. Then,

$$\langle \gamma, \beta \rangle = \langle \sigma^{-1} \gamma, \alpha \rangle \underset{B}{=} \langle \phi \circ \sigma^{-1} (\gamma), \phi (\alpha) \rangle = \langle \sigma' \circ \phi \circ \sigma^{-1} (\gamma), \sigma' \circ \phi (\alpha) \rangle = \langle \phi (\gamma), \phi (\beta) \rangle$$

Definition. Fix $\Delta = \langle \alpha_1, \dots, \alpha_l \rangle$ a base. The Coxeter graph of Φ consists of lvertices correlated to Δ and $\langle \alpha_i, \alpha_j \rangle \langle \alpha_j, \alpha_i \rangle$ edges between the i'th and j'th vertices $(i \neq j)$.

Remark. This graph is independent of Δ . Since Δ' another base $\Longrightarrow \exists \sigma \in \mathcal{W}$ such that $\sigma\Delta = \Delta' \Longrightarrow \langle \alpha_i, \alpha_i \rangle = \langle \sigma\alpha_i, \sigma\alpha_i \rangle$.

Also, we have $\langle \alpha_i, \alpha_j \rangle \langle \alpha_j, \alpha_i \rangle = 0, 1, 2, 3$.

e.g. [insert fig table]

We need more information to recover Cartan integer.

We cannot recover $\langle \alpha_i, \alpha_j \rangle$ when $\langle \rangle = 2, 3$.

Definition. The Dynkin diagram of Φ is the Coxeter graph adding an arrow pointing to the shorter length root.

e.g [insert picture and matrix for B2 fig]

Proposition 6.2 (11.3). Φ decomposes uniquely as the union of irreducible root system Φ_i in subspaces $E_i \subset E$ such that $E = E_1 \oplus \cdots \oplus E_t$ [orthogonal direct sum].

Proposition 6.3 (Ex 9.1). $E' \subset E$: a subspace. If $\sigma_{\alpha}(E') \subseteq E'$ then either $\alpha \in E'$ or $E' \subset P_{\alpha}$

Proof. Suppose $E' \subsetneq P_{\alpha}$. Then $\exists \beta \in E'$ such that $(\alpha, \beta) \neq 0$. $\sigma_{\alpha}(\beta) = \beta - \langle \beta, \alpha \rangle \alpha \in E' \implies \alpha \in E'$.

Proof. (Of 11.3)

 Δ cannot be partitioned into proper $\Delta_1 \cup \Delta_2$ such that $(\Delta_1, \Delta_2) = 0 \iff$ the coxeter graph of Φ is connected (A).

[insert picture fig]

Assume that the coxeter graph consists of connected components C_1, \dots, C_t .

Let $\Delta = \Delta_1 \cup \cdots \cup \Delta_t$ be the partition so that Δ_i correlates to C_i .

 $A \implies \Delta_i$ are mutually orthogonal. Define $E_i = \operatorname{span}_{\mathbb{R}}(\Delta_i)$.

Therefore, $E = E_1 \oplus \cdots \oplus E_t$ [orthogonal]. (B)

Define $\Phi_i = \{ \alpha \in \Phi \mid \alpha : \text{a } \mathbb{Z}\text{-linear combination of } \Delta_i \}.$

Then, (Φ_i, E_i) is a root system [by checking the axioms].

 $\Delta_i \subseteq \Phi_i$ is a base (again checking the axioms).

Therefore, Φ_i are irreduible.

Finally, we want to check $\Phi = \Phi_1 \cup \cdots \cup \Phi_t$.

The Weyl group W_i corresponding to Φ_i is the subgroup of W generated by σ_{α} where $\alpha \in \Delta_i$.

B $\Longrightarrow \sigma_{\alpha}$ acts trivially on E_i for any $\alpha \in \Delta_j, i \neq j$. (C)

 E_i is W_i invariant, so $\sigma_{\alpha}(E_i) \subseteq E_i \forall \alpha \in \Delta_i \stackrel{C}{\Longrightarrow} E_i$ is W-invariant.

Thus, $\sigma(E_i) \subseteq E_i$ for any $\sigma \in \mathcal{W}$

Now we use Exercise 9.1.

 \supseteq is trivial by definition.

 $\subseteq \alpha \in \Phi \stackrel{\longrightarrow}{\Longrightarrow} \sigma_{\alpha}(E_i) \subseteq E_i \stackrel{\text{Ex } 9.1}{\Longrightarrow} \exists 1 \leq j \leq t \text{ such that } \alpha \in E_j \text{ but } \alpha \notin E_i \forall i \neq j.$

Thus, $\alpha \in \operatorname{span}_{\mathbb{R}}(\Delta_i) \cap \Phi \implies \alpha$ is a \mathbb{Z} -linear combination of Δ in $\operatorname{span}(\Delta_i)$.

Therefore, α is a \mathbb{Z} -linear combination of Δ_i .

This is the definition of Φ_i .

Therefore, $\alpha \in \Phi_i$.

Theorem 6.4 (Classification Theorem). Let Φ be an irreducible root system. Then, Φ can only have A-G type Dynkin diagrams.

7 Thursday, 10/31/2024, Irr. rootot System by Hyeonmin

Theorem 7.1 (11.4). If Φ is an irreducible root system, its Dynkin diagram is one of the following:

Figure 1: Dynkin Diagrams

Proof. Suffices to Show: Coxeter graph is one of the following:

$$A_l, B_l (= C_l), D_l, E_{6,7,8}, F_4, G_2$$

So we can ignore the length of the roots. We work with unit vectors.

Definition. Let E be euclidean space of dimension m and let $\mathfrak{A} = \{\varepsilon_1, \dots, \varepsilon_n\} \subseteq E$ be admissible if:

- 1) Vectors are linearly independent.
- 2) Vectors are unit vectors.
- 3) $(\varepsilon_i, \varepsilon_j) \leq 0$ if $i \neq j$.
- 4) $4(\varepsilon_i, \varepsilon_i)^2 = 0, 1, 2 \text{ or } 3.$

Then, The graph Γ of $\mathfrak{A}[\text{coxeter graph}]$ has n vertices and $4(\varepsilon_i, \varepsilon_j)^2$ as edges. Existence:

$$\Delta \supseteq \{\alpha_1, \cdots, \alpha_n\} \implies \left\{ \frac{\alpha_1}{\sqrt{(\alpha_1, \alpha_1)}}, \cdots, \frac{\alpha_n}{\sqrt{(\alpha_n, \alpha_n)}} \right\} \coloneqq \{\varepsilon_1, \cdots, \varepsilon_n\} \text{ admissible.}$$

$$4(\varepsilon_i, \varepsilon_j)^2 = \frac{4(\alpha_i, \alpha_j)^2}{(\alpha_i, \alpha_j)(\alpha_j, \alpha_i)} = \langle \alpha_i, \alpha_j \rangle \langle \alpha_j, \alpha_i \rangle$$

1) A subset $\mathfrak{A}' \subseteq \mathfrak{A}$ is still admissible.

2) #{pairs of vertices in Γ connected by each other} < n.

Since set
$$\varepsilon := \sum_{i=1}^n \varepsilon_i \neq 0$$
. Thus $0 < (\varepsilon, \varepsilon) = \underbrace{n}_{=\sum_i (\varepsilon_i, \varepsilon_i)} + \sum_{i < j} 2(\varepsilon_i, \varepsilon_j)$.

Suppose
$$(\varepsilon_i, \varepsilon_j) < 0$$
.

$$4(\varepsilon_i, \varepsilon_i)^2 = 1, 2, 3 \implies 2(\varepsilon_i, \varepsilon_i) \le -1.$$

3) Γ contains no cycles.

Let $\Gamma' \subseteq \Gamma$ be a vertix on k vertices.

Then $\#\{\text{such pairs from }(2) \text{ in } \Gamma'\} \geq k$. Contradiction by 2.

4) #{edges originated at a vertex (ε) of Γ } ≤ 3

Let $\varepsilon, \eta_1, \dots, \eta_k \in \mathfrak{A}$ be distinct such that $(\varepsilon, \eta_i) \neq 0$.

(3)
$$\implies$$
 $(\eta_i, \eta_j) = 0 \forall i \neq j.$

Set $\eta'_0 := \epsilon - \sum_{i=1}^k (\varepsilon, \eta_i) \eta_i$ and $\eta_0 := \frac{\eta'_0}{(\eta'_0, \eta'_0)}$. Then,

- $(\eta'_0, \eta_i) = (\varepsilon, \eta_i) (\varepsilon, \eta_i)(\eta_i, \eta_i) = 0 \implies (\eta_0, \eta_i) = 0.$
- $\eta_0 \in \operatorname{span}\{\varepsilon, \eta_1, \cdots, \eta_k\} \implies (\eta_0, \varepsilon) \neq 0.$
- $\bullet \ (\eta'_0, \eta'_0) = (\varepsilon, \eta'_0) \implies \sum_{i=0}^k (\varepsilon, \eta_i) \eta_i = (\varepsilon, \eta_0) \eta_0 + \sum_{i=1}^k (\varepsilon, \eta_i) \eta_i$ $= \frac{(\varepsilon, \eta'_0)}{(\eta'_0, \eta'_0)} \eta'_0 + \sum_{i=1}^k (\varepsilon, \eta_i) \varepsilon_i = \varepsilon.$ $\implies 1 = (\varepsilon, \varepsilon) = \sum_{i=0}^k (\varepsilon, \eta_i)^2 > \sum_{i=1}^k (\varepsilon, \eta_i)^2 \implies 4 > \sum_{i=1}^k 4(\varepsilon, \eta_i)^2.$
- 5) The only graph Γ containing a triple edges is G_2 .
- 6) Let $\{\varepsilon_1, \dots, \varepsilon_k\} \subseteq \mathfrak{A}$ have a subgraph

[insert pic like A1 with veps 1, ..., veps k]

$$\mathfrak{A}' = (\mathfrak{A} \setminus \{\varepsilon_1, \dots, \varepsilon_k\}) \cup \{\varepsilon\}$$
 is admissible where $\varepsilon = \sum_{i=1}^k \varepsilon_i$.

Condition 1 is satisfied automatically.

Condition 2: ε is a unit: $2(\varepsilon_i, \varepsilon_{i+1}) = -1 \implies (\varepsilon, \varepsilon) = k + \sum_{i=1}^{k-1} (\varepsilon_i, \varepsilon_{i+1}) = 1$ so it holds.

Condition 3: $\eta \in \mathfrak{U} \setminus \{\varepsilon_1, \dots, \varepsilon_k\}$ can be connected to at most one of $\varepsilon_1, \dots, \varepsilon_k$. $3 \implies (\eta, \varepsilon) = 0 \text{ or } (\eta, \varepsilon) = (\eta, \varepsilon_j) \leq 0 \implies (\eta, \varepsilon) \leq 0$.

Condition 4: $4(\eta, \varepsilon)^2 = 0$ or $4(\eta, \varepsilon_i)^2 = 0, 1, 2$ or 3

7) Γ contains no subgraph of the form:

[insert figure]

8) Any connected Γ of an admissible set has one of the following forms:

[insert figure]

9) The second type in 8: $B_l (= C_l), F_4$.

Set
$$\varepsilon := \sum_{i=1}^{p} i\varepsilon_i, \eta := \sum_{i=1}^{q} i\eta_i$$
.

Then
$$2(\varepsilon_i, \varepsilon_{i+1}) = -1 = 2(\eta_i, \eta_{i+1}).$$

Then,
$$(\varepsilon, \varepsilon) = \sum_{i=1}^{p} i^2 - \sum_{i=1}^{p-1} i(i+1) = \frac{p(p+1)}{2}$$
, and $(\eta, \eta) = \frac{q(q+1)}{2}$. (A)

$$4(\varepsilon_p, \eta_q)^2 = 2 \implies (\varepsilon, \eta)^2 = (p\varepsilon_p, q\eta_q)^2 = \frac{p^2q^2}{2}$$
 (B).

The Schwarz inequality of linear independent $\varepsilon \cdot \eta : (\varepsilon, \eta)^2 < (\varepsilon, \varepsilon)(\eta, \eta)$.

A and B
$$\Longrightarrow \frac{2p^2q^2}{2} < \frac{pq(p+1)(q+1)}{4} \Longrightarrow pq-p-q-1 < 0 \Longrightarrow (p-1)(q-1) < 2$$
 $\Longrightarrow \underbrace{p=q=2}_{F_s}$ or $\underbrace{p=1 \text{ or } q=1}_{B_s}$.

10) The 3rd type in 8: D_l, E_6, E_7, E_8 .

Set up
$$\eta^i := \sum_i \eta^i_i \implies (\eta^i, \eta^j) = 0, (\varepsilon, \eta^i) \neq 0.$$

Applying the method in the proof of (4),

$$\eta^{0i} := \varepsilon - \sum_{i=1}^{3} \frac{(\varepsilon, \eta^{i})}{(\eta^{i}, \eta^{i})} \eta^{i} \text{ and } \eta^{0} := \frac{\eta^{0i}}{\sqrt{(\eta'_{0}, \eta'_{0})}}$$

It is easy to show that:

•
$$(\eta^0, \eta^i) = 0$$

•
$$(\varepsilon, \eta^0) \neq 0$$

•
$$\varepsilon = (\varepsilon, \eta^0)\eta^0 + \sum_{i=1}^3 \frac{(\varepsilon, \eta^i)}{(\eta^i, \eta^i)} \eta^i$$

Then $1 = (\varepsilon, \varepsilon) > \sum_{i=1}^{3} \frac{(\varepsilon, \eta^{i})^{2}}{(\eta^{i}, \eta^{i})}$ by the same reason in (4).

$$(\eta',\eta') = \frac{p(p-1)}{2} \implies \frac{(\varepsilon,\eta')^2}{(\eta',\eta')} = \frac{p-1}{2p} = \frac{1}{2}\left(1-\frac{1}{p}\right)$$
. Apply η^2,η^3 .

$$\implies 1 > \sum \frac{(\varepsilon, \eta_i)^2}{(\eta^i, \eta^i)} = \frac{1}{2} \left(3 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r} \right) \implies \frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$$
 (C).

WLOG assume $\frac{1}{n} \leq \frac{1}{n} \leq \frac{1}{r} \leq \frac{1}{2}$ (D) [if one of them is 1 graph is A_l].

C, D
$$\Longrightarrow \frac{1}{3} < \frac{1}{r} \le \frac{1}{2} \Longrightarrow r = 2 \Longrightarrow \frac{1}{p} + \frac{1}{q} > \frac{1}{2}$$
 (E).

D, E
$$\Longrightarrow \frac{1}{4} < \frac{1}{q} \le \frac{1}{2} \Longrightarrow q = 2, 2 \le p \Longrightarrow D_l \text{ or } q = 3, q = 3, 4, 5 \Longrightarrow E_6, E_7, E_8.$$

Construction:

[matrices for A_l, B_l, C_l, D_l]

Let $E = \mathbb{R}^n$ with the usual inner product and standard basis $\{\varepsilon_1, \dots, \varepsilon_n\}$. Let I = $\{\mathbb{Z}\text{-linear combination of }\{\varepsilon_1,\cdots,\varepsilon_n\}\}.$

 $A_l(l \geq 1)E$: a l-subspace of \mathbb{R}^{l+1} orthogonal to $\varepsilon_1 + \cdots + \varepsilon_{l+1}$.

$$I' = I \cap E$$
.

$$\Phi = \{ \alpha \in I' \mid (\alpha, \alpha) = 2 \} = \{ (\varepsilon_i - \varepsilon_j), i \neq j \}.$$

Root system:
$$\Delta = \{\varepsilon_1 - \varepsilon_2, \cdots, \varepsilon_l - \varepsilon_{l+1}\}$$

Weyl Group:
$$\sigma_{\varepsilon_i-\varepsilon_{i+1}}: \frac{\varepsilon_i \mapsto \varepsilon_{i+1}}{\varepsilon_{i+1} \mapsto \varepsilon_i} \leftrightarrow (i, i+1).$$

Thus, $W \cong S_{l+1}$.

$$B_l(l \ge 2)E = \mathbb{R}^l$$

$$\Phi_B = \{ \alpha \in I \mid (\alpha, \alpha) = 1 \text{ or } 2 \} = \{ \pm \varepsilon_i, \pm (\varepsilon_i \pm \varepsilon_j), i \neq j \}.$$

$$\Delta = \{\varepsilon_1 - \varepsilon_2, \cdots, \varepsilon_{l-1} - \varepsilon_l, \varepsilon_l\}$$
 a base.

Weyl Group W:

$$\sigma_{\varepsilon_i-\varepsilon_{i+1}} \leftrightarrow (i,i+1)$$

$$\sigma_{\varepsilon_l}\varepsilon_l\mapsto -\varepsilon_l$$

$$\mathcal{W} \cong (\mathbb{Z}/2\mathbb{Z})^l \rtimes S_l$$
.

$$D_l(l \ge 4)E = \mathbb{R}^l, \Phi = \{\alpha \in I \mid (\alpha, \alpha) = 2\} = \{\pm(\varepsilon_i \pm \varepsilon_j)\}.$$

$$\Delta = \{\varepsilon_1 - \varepsilon_2, \cdots, \varepsilon_{l-1} - \varepsilon_l, \varepsilon_{l-1} + \varepsilon_l\}$$

$$\sigma_{\varepsilon_i-\varepsilon_{i+1}}:(i,i+1)$$

$$\sigma_{\varepsilon_{l-1}+\varepsilon_l} \colon \varepsilon_{l-1} \mapsto -\varepsilon_l, \varepsilon_l \mapsto -\varepsilon_{l-1}.$$

$$\mathcal{W} \cong (\mathbb{Z}/2\mathbb{Z})^{l-1} \rtimes S_l.$$

$$\mathcal{W} \cong (\mathbb{Z}/2\mathbb{Z})^{l-1} \rtimes S_l$$

12.2 Automorphism 7.1

Claim 1: Aut $\Phi \cong \Gamma \rtimes \mathcal{W}$ where $\Gamma = \{ \tau \in \operatorname{Aut} \Phi \mid \tau(\Delta)\Delta \}$.

Claim 2: Γ may be identified with automorphims of its dynkin diagram of Φ .

8 Thursday, 12/5/2024, Cartan Subalgebras (CSA) by Rostyslav

2+2 Definitions.

General Lie Algebra:

- i) In terms of a normalizer
- ii) In terms of Engel subalgebra

Semisimple Lie Algebra:

- i) Maximal toral subalgebras
- ii) Maximal centralizer

If $x \in \text{End}(V)$, $V = \bigoplus V_a(x)$, $V_a(x) = \ker(x - a \operatorname{id})^m$ where m is a multiplicity of root of char. poly.

We have
$$x|_{v_a(x)} = \underbrace{a}_{\text{scalar}} + \underbrace{n}_{\text{nilpotent}}$$
.

Then, $L = \sqcup_{a \in F} L_a(\operatorname{ad} x) = L_u(\operatorname{ad} x) \oplus L_n(\operatorname{ad} x)$

Lemma 8.1. If $a, b \in F$ then,

$$[L_a(\operatorname{ad} x), L_b(\operatorname{ad} x)] \subset L_{a+b}(\operatorname{ad} x)$$

In particular, when $L_t(\operatorname{ad} x)$ is a subalgebra of L, char $F = 0, a \neq 0$ then,

$$\forall l \in L_a(\operatorname{ad} x) l \text{ is nilpotent}$$

Fact: (simple) adjoints are derivations

$$(\operatorname{ad} x - (a+b))^m [yz] = \sum_{i=0}^m \binom{m}{i} [(\operatorname{ad} x - a)^i(y), (\operatorname{ad} x - b)^{m-i}(z)]$$

For m sufficiently large all elements on the right well vanish.

Definition (Engel Subalgebra). is $L_0(\operatorname{ad} x)$.

Lemma 8.2 (15.2.A). Let $K \subset L$ -subalgebra. Choose $z \in K$ such that $L_0(\operatorname{ad} z)$ is minimal among $L_0(\operatorname{ad} x)$ for all $x \in K$. Suppose $K \subset L_0(\operatorname{ad} z)$. Then $L_0(\operatorname{ad} z) \subset L_0(\operatorname{ad} x) \, \forall x \in K$.

Let $x \in K$ fixed, but arbitrary. Consider a family of endomorphisms of $L\{\operatorname{ad}(z + cx) \mid c \in F\}$. $K_0 = L_0(\operatorname{ad} z)$ is a subalgebra of L including K therefore these endomorphisms will stabilize $K_0(=L_0(\operatorname{ad} z))$.

Can induce endomorphism of $L|_{K_0(=L_0(\operatorname{ad} z))}$.

Endomorphism is ad(z + cx). Let f, g be char. poly in K_0 over L/K and let $n = \dim K_0, n - \dim L$.

$$f(T,c) = T^r + f_1(c)T^{n-1} + \dots + f_n(c)$$

$$g(T,c) = T^{n-r} + g_1(c) + T^{n-r-1} + \cdots + g_{n-r}(c)$$

 f_i, g_i are polynomials.

By definition, eigenvalue 0 appears only in K_0 when $T=0, g_{n-r}$ is not identically zero on F. Lets take c_1, \dots, c_{r+1} not zeros of g_{n-r} . To say $g_{n-r}(0)=0 \iff 0$ is not an eigenvalue of $\operatorname{ad}(z+cx)$ on the quotient space.

 $\implies \forall L_0(\operatorname{ad}(z+cx))$ lie in the subspace of K_0 .

But K_0 is minimal.

 $K_0 = L_0(\operatorname{ad} z) = L_0(z + c_i x) \, 1 \le i \le r + 1.$

The only eigenvalues ad(z + cx) has is 0.

 $\implies f(T, c_i) = T^r, f_i = f(T, c_i).$

 $\forall f_i \text{ has } r + n \text{ distinct zeros } \Longrightarrow \forall f_i \text{ are identically zero.}$

 $L_0(\operatorname{ad}(z+cx))\supset K_0\forall c\in F.$

Replace x with x - z, c = 1.

 $L_0(\operatorname{ad} x) \supset K_0 = L_0(\operatorname{ad} x)$ so we're done.

Lemma 8.3 (15.2.B). If $K \subset L$ subalgebra and $L_0(\operatorname{ad} x) \subset K \implies K$ is self normalizing. In particular, Engel subalgebras are self-normalizing.

 $L_0(\operatorname{ad} x) \subset K \implies \operatorname{ad} x \text{ acts on } N_L(K)/K \text{ without an eigenvalue } 0 \text{ in ker} = 0.$ $x \in K[N_L(K)x] \subset K \implies \text{ad } x \text{ acts trivially on } N_L(K)/K \implies N_L(K) = K.$

Definition (Cartan Subalgebra). Cartan Subalgebra is a nilpotent subalgebra of Lthat is self-normalizing.

Theorem 8.4 (15.3). Let H-subalgebra of L. H is a CSA \iff H is a minimal Engel subalgebra.

 \iff : Assume it is a minimal Engel subalgebra. Then, $H=L_0(\operatorname{ad} z) \stackrel{15.2,B}{\Longrightarrow} H$ is self-normalizing. $\stackrel{15.2.A}{\Longrightarrow} L_0(\operatorname{ad} z) \subset L_0(\operatorname{ad} x)$.

We apply Engel's Theorem which states if $\forall x \in L \text{ ad } x$ is nilpotent then L is nilpotent. $\forall x \in H \text{ in particular } \operatorname{ad}_H x \text{ is nilpotent so } H \text{ is nilpotent.}$

 \Longrightarrow : Let H be CSA, H is nilpotent by defintion. $H \subset L_0(\operatorname{ad} x)$. We want to prove $\exists z \text{ such that } H = L_0(\operatorname{ad} z).$

Lets assume that is not the case. Take $L_0(\operatorname{ad} z)$ smallest, $\stackrel{15.2.4}{\Longrightarrow} L_0(\operatorname{ad} z) \subset L_0(\operatorname{ad} x)$.

 $L_0(\operatorname{ad} z)/H$ here $x \in H$ will act as a nilpotent.

H annihilates some y + H where $y \neq 0$.

 $\exists y \in H \text{ such that } [Hy] \subset H.$ But H is self normalizing. Contradiction! So we're done.