

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS -1963 - A

.

THE RESERVE OF THE PARTY OF THE

THE PROPERTY OF THE PROPERTY O

Task No. 056-681

Technical Report No. 11

COMPARISON OF AUTOIONIZATION AND PHOTOELECTRON SPECTRA OF CO

Ву

M. Yousif, D. E. Ramaker, and H. Sambe

Prepared for Publication

in

Chemical Physics Letters

SELECTE OCT 2 4 1983

George Washington University Department of Chemistry Washington, D.C. 20052

September 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

昌

303

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
No. 11 AD-A1339	0. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Substitle) COMPARISON OF AUTOIONIZATION AND PHOTOELECTRON SPECTRA OF CO.	Technical Report 6. PERFORMING ORG. REPORT NUMBER
M. Yousif, D. E. Ramaker, and H. Sambe	NO0014-80K-0852
PERFORMING ORGANIZATION NAME AND ADDRESS Chemistry Department George Washington University Washington, D.C. 20052	Program Element Project Task Area & Work Unit Numbers Prog. Elem. No. 61153N Task Area No. PP 013-08-01 Work Unit # NR 056-681
11. controlling office name and address Office of Naval Research, Dept. of Navy 800 N. Quincy Street Washington, D.C. 22237	12. REPORT DATE Sept. 1983 13. NUMBER OF PAGES 18
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	
This document has been approved for public releatis unlimited.	use and sale; its distribution

18. SUPPLEMENTARY NOTES

Submitted for publication in Chemical Physics Letters.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Photo-dissociation, Fragmentation, Autoionization, Auger electron spectroscopy Photelectron, Carbon monoxide.

Photoelectron specta and the autoionization portion of the Auger spectra are compared for CO. Eight final states of the photoelectron spectra coincide with those of the autoionization spectra: three of them are the well-know one-hole states and the other five are two-hole-one-electron states. A photoelectron band at 27.4eV is identified for the first time by its exact match to the strongest band of the autoionization spectra. The symmetries of these and other two-hole-one-electron states are induced by comparing the intensities of X-ray and UV photoelectron spectra.

DD 1 JAN 73 1473

EDITION OF 1 NOV 68 18 OBSOLETE 8/N 0102-014-6601 | Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1. Introduction

The two-hole-one-electron (2hle) states of the CO⁺ ion play a significant role in the dissociative photoionization of CO [1]. Photon stimulated desorption of CO⁺ and O⁺ ions from CO chemisorbed on metal surfaces has been found to proceed primarily through these states [2]. These 2hle states have been observed in the autoionization region of the Auger spectra [3,4] as well as in the photoelectron spectra of CO [5,6]. Careful analysis of the two spectra can lead to a better understanding of these 2hle states. In this letter we demonstrate how fruitful a comparison between autoionization spectra (AIS) and photoelectron spectra (PES) can be. The spectra used in this letter are reproduced from published literature. The spectra are scaled to the same energy with comparable intensities.

2. Autoionization Spectra

Figs.la and lb are portions of the Auger spectra obtained by Ungier and Thomas [3] and Siegbahn et al. [4] respectively. The two spectra are identical, we have included both of them to show that the small peaks and shoulders in each spectrum are indeed reproducible and result from physical processes. The band indicated by a dotted line in Fig.lb arises from the normal Auger transitions, namely the transitions from the C_{ls} -hole state to a two-hole state [4,7]. The A bands except the A3 band arise from autoionization initiating from the $C_{ls}^{-1}2\pi^*$ state. Ungier and Thomas [3] reached this conclusion by studying the decay of the $C_{ls}^{-1}2\pi^*$ state utilizing the (e. 2e) coincidence technique. Moddeman et al. [7] found that all the

A band originates from a discrete neutral state, including the A3 band. Combining the above two findings, we can conclude that the A3 band originates from the decay of a discrete neutral state other than the $C_{1s}^{-1}2\pi^*$ state. In Fig.1, we can further confirm these findings by comparing the binding energies of the final states, one obtained from the photoelectron spectrum and the other obtained from the autoionization spectrum assuming that the $C_{1s}^{-1}2\pi^*$ state is the initial state. Inversely, we can state that the final states of the photoelectron and autoionization spectra are the same for all A bands except the A3 band.

Let us now study the final states of the autoionization process. In autoionization, transitions involving three or more electron jumps are forbidden in first order, since the transition is governed by the two-electron operator, $1/r_{12}$. The only accessible final states from the initial state $C_{1s}^{-1}2\pi^*$ are then the singly ionized states $(5\sigma^{-1}, 1\pi^{-1}, 4\sigma^{-1}, 4\sigma^{-1})$ and the 2hle states with $1e=2\pi^*$. The singly ionized states can be identified by their binding energies obtained from photoelectron spectra, but none of them have a binding energy in the range 21-32eV. For this reason, we can state that the final states of all the A bands (except the A3 band) have a 2hle electronic configuration with $1e=2\pi^*$, i.e., the $2\pi^*$ electron remains as a spectator. This restriction on the final state electron configurations is very useful when attempting to make definite assignments for the A bands which we will do later.

The transition probabilities from the $C_{1s}^{-1}2^{\frac{1}{n}}$ to the (2h, $2^{\frac{1}{n}}$) states are approximately the same as those from the C_{1s}^{-1} state to the 2h states, since the probabilities are identical if the states involved are expressed by a single Slater determinant of identical molecular orbitals. Normal

Auger peaks are more intense than autoionization peaks simply because the C_{1s}^{-1} state is more populated than the $C_{1s}^{-1}2^{\pi}$ state. In a normal Auger spectra [4,7], three main peaks corresponding to transitions to the 2h states, $5\sigma^{-1}1^{\pi-1}$, $5\sigma^{-1}4\sigma^{-1}$, and $5\sigma^{-2}$, are observed [8]. In the autoionization spectra, we then expect that the configurations $5\sigma^{-1}1^{\pi-1}2^{\pi}$, $5\sigma^{-1}4\sigma^{-1}2^{\pi}$, and $5\sigma^{-2}2^{\pi}$ give similar intense peaks. Here, one must be aware that the (2h, 2^{π}) electronic configurations split into more terms than the 2h states. The total intensity of an electronic configuration (e.g., $5\sigma^{-1}1^{\pi-1}2^{\pi}$) will be distributed among the different states (e.g., two 2^{π} states). Other electronic configurations (e.g., $1^{\pi-2}2^{\pi}$) may gain intensity through configuration interaction (CI) mixing with these three configurations.

The equilibrium position of the $C_{1s}^{-1}2\pi^*$ state $(r_e \approx 1.15 \text{\AA} \text{ estimated from})$ NO utilizing the equivalent core approximation) is slightly shifted from the ground state $(r_e \approx 1.13 \text{\AA})$. In spite of the small shift, the first vibrational level (v=1) of the $C_{1s}^{-1}2\pi^*$ state gains a significant population via a Frank-Condon transition from the ground state. In their carbon AIS, Moddeman et al. [7] have identified the weak satellite of the $C_{1s}^{-1}2\pi^*-1\pi^{-1}$ resonant photoemission band as a "hot" band originating from the vibrationally excited state (v=1) of $C_{1s}^{-1}2\pi^*$. We identify the weak features just below the Al and A5 bands (shaded area of Fig.la and lb) as hot bands originating from the same vibrational state of $C_{1s}^{-1}2\pi^*$. The equilibrium position of the C_{1s}^{-1} state $(r_e \approx 1.06 \text{\AA})$ estimated from NO⁺) is far more shifted from the ground state. We would then expect the higher vibrational states of C_{1s}^{-1} to be populated even more and consequently the hot bands to be more visible. For this reason, we identify the band B (shaded area appearing just before the normal Auger band) as a hot band of the first normal Auger band original states.

orig- odes

inating from the vibrationally excited states of C_{1s}^{-1} . This B band is absent in the resonantly excited autoionization spectrum of the $C_{1s}^{-1}2\pi^*$ state (where the C_{1s}^{-1} normal Auger spectrum should be absent) [3]; however, such a band is present in the Auger spectrum excited via Al Ka light source which does excite the Auger spectrum, but not the AIS spectrum [7]. These two experiments imply that the B band originates from the C_{1s}^{-1} state supporting our identification.

3. Photoelectron Spectra

Fig.lc is a reproduction of the HeII (304Å) photoelectron spectrum obtained by Asbrink et al. [6]. The original spectrum contained extra lines due to a light source impurity. We have removed those impurity lines according to the original author's interpretation except for the broad structure denoted A5. They have interpreted this band as arising from the N(III) doublet (451.87Å and 452.23Å) impurity lines in the light source. The same band, however, persists in the synchrotron-radiation PES (Fig.ld) which does not have such impurity in its light source. Furthermore, the A5 band appears also in the X-ray PES (Fig.le) and in the carbon autoionization spectra (Fig.la and lb). We therefore, interpret the broad structure of the A5 band in the HeII PES as a real CO⁺ band corresponding to a 2hle state. The shape of this band, i.e., the absence of vibrational structure, suggests that the A5 state is repulsive. The dissociation of CO through this and other 2hle states has been studied. We will publish the results elsewhere [9].

The first band in the He(II) spectrum, denoted as Al, was contaminated by a light source impurity. Because of this, the presence of the band Al

was not apparent as it now appears in Fig.lc. (Recall that we have removed the impurity lines.) The presence of this band is also not readily apparent in the PES with photon energy 50.3eV (Fig.ld). As a matter of fact, the first (Al) and the second (A2) peaks in Fig.ld have been interpreted [6] as a single band. Here we assert that the second strongest peak (Al) in the carbon autoionization spectrum (Fig.la and lb) is supporting evidence for the presence of the Al band in the photoelectron spectrum.

Table 1 compares the band intensities of three photoelectron spectra excited by different photon energies, hv=1487, 50, and 45eV. These intensities are normalized to the $3\sigma^{-1}$ intensity for each spectrum. Then the resultant relative band intensities are compared for each band with its own intensity at 1487eV. The numbers in parentheses give that ratio. In other words, we compare the photoelectron spectra keeping the $3\sigma^{-1}$ intensity constant. Photoelectron spectra using photon energies at 1487eV [10] and 45eV [11] are shown in Fig.2.

In PES, 2hle excitations derive most of their intensities from configuration interaction (CI) mixing with the one-hole (lh) excitations [12,13]. If a 2hle excitation mixes with only one lh excitation, then their relative intensities should remain the same regardless of the photon energy. The ratio of their intensities is equal to the square of the mixing coefficient. Theoretical calculations [12,13] have shown that the bands at 32eV (C_1 & C_2) borrow their intensity mainly from the $3\sigma^{-1}$ band. However, as seen from Table 1 and Fig.2, the relative intensity of the 32eV band to the $3\sigma^{-1}$ band is far from constant. In fact, the ratio increases more than twice, when the photon energy is reduced from x-ray (1487eV) to UV (50eV) energies. This increase in ratio indicates that the

bands at 32eV gain their intensity not only from the $3\sigma^{-1}$ band but also from the $5\sigma^{-1}$, $1x^{-1}$, and $4\sigma^{-1}$ bands.

とのです。

When the photon energy is reduced from 1487eV to 50eV, the $1\pi^{-1}$ band increases its intensity relative to the other one-hole bands: four times relative to the $5\sigma^{-1}$ band, five times relative to the $4\sigma^{-1}$ band, and nineteen times relative to the 30⁻¹ band. The relative intensity gained by the $l\pi^{-1}$ band is so enormous that we can distinguish the CI mixed ^{2}I states from the $2\Sigma^+$ states. Note that the 2Π states borrow their intensities from the $1\pi^{-1}$ state and the $2\tau^{+}$ states from the $3\sigma^{-1}$, $4\sigma^{-1}$, or $5\sigma^{-1}$ states. Figs.ld and le compare the photoelectron spectra having different photon energies, 50.3eV and 1487eV (Al Ka). In Fig.ld, the gained intensity is shown schematically by the shaded areas. We suggest that the shaded intensities originate from $^2\mathbb{I}$ electronic states, and assign the $^2\mathbb{I}$ symmetry to the final states of bands. Al. and A5; the ${}^{2}\Sigma^{+}$ symmetry to those of bands A2, A6, and C1; the ${}^{2}\Pi$ & ${}^{2}\Sigma^{+}$ to those of the multiple-bands C2. The symmetry of the A4 final state is not obvious. In the 50.3eV PES, it is hard to tell whether the intensity ratio A4: A2 is larger than that in the Al Ka spectra. But the He(II) PES clearly shows that this ratio is larger than that in the Al Ko spectra. Therefore we tentatively assign the II symmetry to the final states of the A4 band. Very recently Krummacher et al. [14] have identified the band around 27eV as a $^2\Pi$ state based on an intensity argument and a theoretical calculation. However, they have not recognized that two overlapping bands are present around 27eV, namely the A5 (27.4eV, $^{2}\Pi$) and the A6 band (27.9eV, $^{2}\Sigma^{+}$).

The band corresponding to the Cl band of PES is missing in the C-AIS.

This implies that the electronic configuration of the Cl final state is

not $(2h, 2\pi^*)$ but $(2h, 6\sigma^*)$ or (2h, Rydberg). A definite assignment of the electronic configurations within the C2 band is difficult for two reasons: first, the presence of the C2 band in the C-AIS is difficult to verify, because all bands in this region are masked by the intense normal Auger bands; second, theoretical calculations indicate that many states are present in this region.

4. Theoretical Calculations.

Theoretical calculations [12,13,15] on the $^2\Sigma^+$ states of CO⁺ provide consistent results, especially on the lowest five $^2\Sigma^+$ states, which are identified by the electronic configurations, $5\sigma^{-1}$, $4\sigma^{-1}$, $5\sigma^{-1}1\pi^{-1}2\pi^*$, $5\sigma^{-1}1\pi^{-1}2\pi^*$, and $5\sigma^{-2}6\sigma^*$ in the order of increasing binding energy. Relying on these theoretical results, we assign electronic configurations to the $^2\Sigma^+$ states: $A2(5\sigma^{-1}1\pi^{-1}2\pi^*)$, $A6(5\sigma^{-1}1\pi^{-1}2\pi^*)$, and $C1(5\sigma^{-2}6\sigma^*)$. These assignments agree with previous conclusions that A2 and A6 correspond to $(2h, 2\pi^*)$ electronic configurations and C1 to a (2h, Rydberg) or $(2h, 6\sigma^*)$. The binding energies calculated by the theories also agree very well with the experimental binding energies of the A2, A6, and C1 bands, especially on their relative values.

In contrast with the $^2\Sigma^+$ states, theoretical calculations [12,16,17] on the $^2\Pi$ states disagree with each other widely. The predicted binding energy of the second lowest $^2\Pi$ state (the lowest state being that of $1\pi^{-1}$) differs widely, e.g., 20.3eV (INDO CI[16]), 22.2eV (Full-Valence CI[17]), 32.5eV (Polarization CI[12]), 36.0eV (Green's Function[12]), and 37.2eV (Single-Excitation CI[12]). Not only their predicted binding energies but

also the number of the states predicted to lie between 21 - 35eV is quite different. Furthermore, no electron configurations are available except the $1\pi^{-2}2\pi^*$ for the $^2\Pi$ at 20.3eV given in Ref.[16]. In such a circumstances, we can assign only in a general way; a combination of $5\sigma^{-2}2\pi^*$, $1\pi^{-2}2\pi^*$, and $5\sigma^{-1}4\sigma^{-1}2\pi^*$ configurations is assigned to the $^2\Pi$ bands, Al, A4, and A5.

Table 2 summarizes our conclusions on the 2hle states of CO⁺ reached by comparing the autoionization and photoelectron spectra of CO.

Refrences

- [1] G. R. Wight, M. J. Van der Wiel and C. E. Brion, J. Phys. B9(1976)675.
- [2] D. E. Ramaker, J. Chem. Phys. 78(1983)2998.
- [3] L. Ungier and T. D. Thomas, Chem. Phys. Lett. 96(1983)247.
- [4] K. Siegbahn, C. Nording, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne and Y. Baer, ESCA Applied to Free Molecules (North Holland, Amsterdam, 1969).
- [5] S. Krummacher, V. Schmidt and F. Wuillemier cited in ref. [12].
- [6] L. Asbrink, C. Fridh, E. Lindholm and K. Coding, Physica Scripta 10(1974) 183.
- [7] W. E. Moddeman, T. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull and G. K. Schweitzer, J. Chem. Phys. <u>55</u>(1971)2317.
- [8] J. A. Kelber, D. R. Jennison and R. R. Rye, J. Chem. Phys. 75(1981)652.
- [9] H. Sambe, M. Yousif and D. E. Ramaker, to be published.
- [10] U. Gelius, E. Basilier, S. Svensson, T. Bergmark and K. Siegbahn, J. Electron Spectros. Related Phenomena 2(1974)405.
- [11] A. Hamnett, W. Stoll and C. E. Brion, J. Electron Spectros. Related Phenomena 8(1976)367.
- [12] P. W. Langhoff, S. R. Langhoff, T. N. Rescigno, J. Shirmer, L. S. Cederbaum, W. Domcke and W. Von Niessen, Chem. Phys. 58(1981)71.
- [13] P. S. Bagus and E. K. Viinikka, Phys. Rev. Al5(1977)1486.
- [14] S. Krummacher, V. Schmidt, F. Wuilleumier, J. M. Bizau and D. Ederer, J. Phys. <u>B16</u>(1983)1733.
- [15] J. Shirmer, L. S. Cederbaum, W. Domcke and W. Von Niessen, Chem. Phys. 26(1977)149.
- [16] M. Okuda and N. Jonathan, J. Electron Spectros. Related Phenomena 3(1974)19.
- [17] N. Honjou and F. Sasaki, Mole. Phys. 37(1979)1593.

Figure Captions

The state of the s

- Figure 1 Comparison between carbon autoionization spectra (C-AIS) and photoelectron spectra (PES) of CO.
 - (a) C-AIS by 2.5KeV electron impact (obtained from Ref.[3])
 - (b) C-AIS by 5KeV electron impact (obtained from Ref.[4])
 - (c) PES with He II (hv=40.8eV) (reconstructed from Ref.[6])
 - (d) Synchrotron-radiation PES with hv=50.3eV (obtained from Ref.[5])
 - (e) X-ray PES with Al Kα(hv=1487eV) (obtained from Ref.[10])
- Figure 2 Comparison of CO photoelectron spectra.
 - (Top) excited by UV photons of 45eV (Ref.[11])
 - (Bottom) excited by X-rays (Al Ka) of 1487eV (Ref.[10])

Table 1

Comparison between the relative intensities of photoelectron spectra obtained at photon energies of 1487eV, 50eV, and 45eV.

Band	Binding	Relative intensities			
	energy (eV)	hv=1487eV ^a)	hv=50eVb)	hv=45eVb)	
5σ ⁻¹	14.0	22 (1.0) ^{c)}	97 (4.4)	129 (5.9)	
lπ-1	16.9	16 (1.0)	296 (18.5)	360 (22.5)	
4σ ⁻¹	19.7	50 (1.0)	181 (3.6)	202 (4.0)	
Al & A2	≈23	5 (1.0)	21 (4.2)	25 (5.0)	
Cl & C2	≈32	25 (1.0)	52 (2.1)	61 (2.4)	
30 ⁻¹	38.3	100 (1.0)	100 (1.0)	100 (1.0)	
			•		

a) Measured from the spectrum of Ref. [10].

b) Data obtained from Ref. [11].

c) Numbers in parentheses give the ratio to the intensity at $h\nu=1487eV$.

Table 2
Initial and final states of bands appearing in the photoelectron and autoionization spectra of CO.

		Final state				
Band	Initial state	Binding d) energy(eV)	Symmetry	Electronic configuration	Comments	
Al)	22.6	2 П	a)		
A2	$C_{iS}^{-1} 2\pi * (^{1}\Pi)$	23.2	2 Σ +	50 ⁻¹ 1π ⁻¹ 2π*		
A4	for AIS or Ground state	25.5	2 П	a)	b)	
A5	for PES	27.4	² П	a)	Repulsive	
А6	J	27.9	2 Σ +	5σ ⁻¹ 1π ⁻¹ 2π*	· c)	
A3	Discrete neutral state	, e)	?	?	Absent in PES	
В	C _{is} (v≥1)	41.9 ^{f)}	ı II	5σ-1 1π-1	Hot band	
Cl	ground state	≈30	2 Σ ⁺	5σ ⁻² 6σ*	Absent in AIS	
C2	ground state	≈32	2 Π & 2 Σ +	?	Multiple band	

a) A combination of $5\sigma^{-2} 2\pi *$, $5\sigma^{-1} 4\sigma^{-1} 2\pi *$ and $1\pi^{-2} 2\pi *$ states.

b) Vibrational progression observed in He II PES is similar to that of Al.

c) Vibrational progression observed in He II PES is similar to that of A2.

d) Vertical binding energies.

e) This binding energy cannot be calculated, because the initial state energy is not known.

f) This binding energy is different from that indicated in Fig.1, because the Fig.1a and 1b binding energy scale is appropriate only for the $C_{1s}^{-1}2\pi^*$ initial state.

Figure 1

Figure 2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No.		No.
	Copies		Copies
Office of Naval Research		Naval Ocean Systems Center	
Attn: Code 413		Attn: Mr. Joe McCartney	
800 North Quincy Street		San Diego, California 92152	1
Arlington, Virginia 22217	2		
		Naval Weapons Center	
ONR Pasadena Detachment		Attn: Dr. A. B. Amster,	
Attn: Dr. R. J. Marcus		Chemistry Division	
1030 East Green Street		China Lake, California 93555	. 1
Pasadena, California 91106	1		
. Called Market Provide	_	Naval Civil Engineering Laboratory	
Commander, Naval Air Systems Command		Attn: Dr. R. W. Drisko	
Attn: Code 310C (H. Rosenwasser)	'	Port Hueneme, California 93401	1
Department of the Navy		1010 11011010 101101	•
Washington, D.C. 20360	1	Dean William Tolles	
washington, proc 20300	-	Naval Postgraduate School	
Defense Technical Information Center		Monterey, California 93940	1
Building 5, Cameron Station		noncerey, carriornia ///	•
Alexandria, Virginia 22314	12	Scientific Advisor	
Viewendire, Aliente 71714	•=	Commandant of the Marine Corps	
Dr. Fred Saalfeld		(Code RD-1)	
		Washington, D.C. 20380	1
Chemistry Division, Code 6100		wasnington, D.C. 20000	•
Naval Research Laboratory	1	Naval Ship Research and Development	
Washington, D.C. 20375	•	Center Center	
II C. Army Bossensk Office			
U.S. Army Research Office		Attn: Dr. G. Bosmajian, Applied Chemistry Division	
Attn: CRD-AA-IP		Annapolis, Maryland 21401	1
P. O. Box 12211 Research Triangle Park, N.C. 27709	1	Annaports, marytand 21401	
Research Triangle Park, N.C. 27709	•	Mr. John Boule	
M. M. J. A.		Mr. John Boyle	
Mr. Vincent Schaper		Materials Branch	
DTNSRDC Code 2803	•	Naval Ship Engineering Center	•
Annapolis, Maryland 21402	1	Philadelphia, Pennsylvania 19112	1
Naval Ocean Systems Center		Mr. A. M. Anzelone	
Attn: Dr. S. Yamamoto		Administrative Librarian	
Marine Sciences Division		PLASTEC/ARRADCOM	
San Diego, California 91232	1	Bldg 3401	
- ·		Dover, New Jersey 07801	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

<u> </u>	No. Copies		No. Copies
Dr. G. A. Somorjai		Dr. W. Kohn	
Department of Chemistry		Department of Physics	
University of California		University of California	
Berkeley, California 94720	1	(San Diego)	
	_	La Jolla, California 92037	1
Dr. J. Murday			
Naval Research Laboratory		Dr. R. L. Park	
Surface Chemistry Division (6170)		Director, Center of Materials	
455 Overlook Avenue, S.W.		Research	
Washington, D.C. 20375	1	University of Maryland	
		College Park, Maryland 20742	1
Dr. J. B. Hudson			
Materials Division		Dr. W. T. Pería	
Rensselser Polytechnic Institute		Electrical Engineering Department	
Troy, New York 12181	1	University of Minnesota	
		Minneapolis, Minnesota 55455	1
Dr. Theodore E. Madey			
Surface Chemistry Section		Dr. Chia-wei Woo	
Department of Commerce		Department of Physics	
National Bureau of Standards		Northwestern University	
Washington, D.C. 20234	1	Evanston, Illinois 60201	1
Dr. J. M. White		Dr. Robert M. Hexter	
Department of Chemistry		Department of Chemistry	
University of Texas		University of Minnesota	
Austin, Texas 78712	1	Minneapolis, Minnesota 55455	1
Dr. Keith H. Johnson		Dr. R. P. Van Duyne	
Department of Metallurgy and		Chemistry Department	
Materials Science		Northwestern University	
Massachusetts Institute of Technology	_	Evanston, Illinois 60201	1
Cambridge, Massachusetts 02139	1		
		Dr. S. Sibener	
Dr. J. E. Demuth		Department of Chemistry	
IBM Corporation		James Franck Institute	
Thomas J. Watson Research Center		5640 Ellis Avenue	
P. O. Box 218	_	Chicago, Illinois 60637	1
Yorktown Heights, New York 10598	1		
		Dr. M. G. Lagally	
Dr. C. P. Flynn		Department of Metallurgical	
Department of Physics		and Mining Engineering	
University of Illinois		University of Wisconsin	
Urbana, Illinois 61801	1	Madison, Wisconsin 53706	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

	No. Copies		No. Copies
Dr. Robert Gomer		Dr. K. G. Spears	
Department of Chemistry		Chemistry Department	
James Franck Institute		Northwestern University	_
5640 Ellis Avenue		Evanston, Illinois 60201	1
Chicago, Illinois 60637	1		
		Dr. R. W. Plummer	
Dr. R. G. Wallis		University of Pennsylvania	
Department of Physics		Department of Physics	•
University of California, Irvine	_	Philadelphia, Pennsylvania 19104	1
Irvine, California 92664	1		
_		Dr. E. Yeager	
Dr. D. Ramaker		Department of Chemistry	
Chemistry Department		Case Western Reserve University	_
George Washington University	_	Cleveland, Ohio 41106	1
Washington, D.C. 20052	1	_	
		Professor D. Hercules	
Dr. P. Hansma		University of Pittsburgh	
Physics Department		Chemistry Department	_
University of California, Santa Barbara		Pittsburgh, Pennsylvania 15260	1
Santa Barbara, California 93106	1	Professor N. Winograd	
• • • • • • • • • • • • • • • • • • • •		The Pennsylvania State University	
Dr. J. C. Hemminger		Department of Chemistry	
Chemistry Department		University Park, Pennsylvania 16802	2 1
University of California, Irvine		•	
Irvine, California 92717	1	Professor T. F. George	
•		The University of Rochester	
Dr. Martin Fleischmann		Chemistry Department	
Department of Chemistry		Rochester, New York 14627	
Southampton University			
Southampton 509 5NH		Professor Dudley R. Herschbach	
Hampshire, England	1	Harvard College	
		Office for Research Contracts	
Dr. G. Rubloff		1350 Massachusetts Avenue	
IBM		Cambridge, Massachusetts 02138	1
Thomas J. Watson Research Center			
P. O. Box 218		Professor Horia Metiu	
Yorktown Heights, New York 10598	1	University of California, Santa Barbara	
Dr. J. A. Gardner		Chemistry Department	
Department of Physics		Santa Barbara, California 93106	
Oregon State University			
Corvallis, Oregon 97331	1	Professor A. Steckl	
COTASTITE! ATERNI 3/33I	•	Rensselser Polytechnic Institute	
Dr. G. D. Stein		Department of Electrical and	
Mechanical Engineering Department		Systems Engineering	
Northwestern University		Integrated Circuits Laboratories	
Evanston, Illinois 60201	1	Troy, New York 12181	
CARRETORS TITINGTS AATAT	•	aboy 1 NOW AVER 46104	

The second of th

TECHNICAL REPORT DISTRIBUTION LIST, 056

No. Copies No. Copies

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Professor G. H. Morrison Department of Chemistry Cornell University Ithaca, New York 14853

Captain Lee Myers
AFOSR/NC
Bolling AFB
Washington, D.C. 20332

Dr. David Squire
Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

Professor Ronald Hoffman Department of Chemistry Cornell University Ithaca, New York 14853

