

Statystyczna analiza danych SAD-2020/2021

Wykład 11

Parametryczne testy istotności

Schemat postępowania

- α ∈ (0,1) poziom istotności testu, mała liczba rzędu 0,01; 0,05; 0,1,
- Sformułowanie założeń o rozkładzie cechy w populacji (wybór modelu):
- Cecha X ma rozkład prawdopodobieństwa zależny od nieznanego parametru θ
- $\succ X_1, X_2, ..., X_n$ prosta próba losowa, $X_j \sim X$
- $\succ x_1, x_2, \dots, x_n$ próbka

Parametryczne testy istotności

1.
$$H_0$$
: $\theta = \theta_0$ przeciwko H_1 : $\theta > \theta_0$

lub:
$$H_1$$
: $\theta < \theta_0$ lub: H_1 : $\theta \neq \theta_0$

- 2. Statystyka testowa $G \coloneqq G(X_1, X_2, ..., X_n, \theta_0)$ ma znany rozkład, jeśli hipoteza zerowa prawdziwa
- 3. Zbiór krytyczny C = podzbiór zbioru wartości statystyki testowej taki, że

$$P(G \in C | H_0 - \text{prawdziwa}) = \alpha$$

4. Obliczenie wartości statystyki testowej

$$G_{obs} = G(x_1, x_2, \dots, x_n, \theta_0)$$

Parametryczne testy istotności

- 5. Podjęcie decyzji na podstawie 4. według reguły:

 - ullet Jeśli G_{obs} ∉ C, to nie mamy podstaw do odrzucenia H_0 (przyjęcia H_1) na poziomie istotności α

Uwaga: Modele parametrycznych testów istotności są na ftp/public/elaw/Informatyka dzienne2021 w testowanie hipotez – modele.pdf

- 1. Badana cecha jednostek populacji może przyjmować k różnych wartości (może należeć do k różnych klas, kategorii): c_1 , c_2 ,..., c_k . Niech zmienna losowa X oznacza kategorię (klasę) losowo wybranej jednostki.
- 2. $H_0: P(X = c_1) = p_1$, $P(X = c_2) = p_2$, ..., $P(X = c_k) = p_k$.
- 3. Dla próby losowej cech n losowo wybranych jednostek populacji niech $N_1, N_2, ..., N_k$ oznaczają liczności jednostek o cechach $c_1, c_2, ..., c_k$, odpowiednio.
- 4. Jeśli hipoteza zerowa jest prawdziwa to oczekiwane liczności wynoszą:

$$EN_1 = np_1, EN_2 = np_2, ..., EN_k = np_k.$$

5. Odstępstwo empirycznych liczności (z próby) od oczekiwanych liczności jest mierzone za pomocą statystyki chi-kwadrat χ^2 postaci:

$$\frac{(N_1 - EN_1)^2}{EN_1} + \frac{(N_2 - EN_2)^2}{EN_2} + \dots + \frac{(N_k - EN_k)^2}{EN_k}.$$

6. Jeśli wszystkie oczekiwane liczności są nie mniejsze niż 5, tzn $EN_j \geq 5$, j=1,2,...,k, to rozkład χ^2 można przybliżyć rozkładem chi-kwadrat. Jest k kategorii więc liczba stopni swobody rozkładu chi-kwadrat wynosi k-1.

7. Jeśli H_0 jest prawdziwa, to odstępstwo empirycznych liczności od oczekiwanych liczności powinno być małe. Stąd wartości statystyki χ^2 też powinny być małe. Z kolei jeśli występuje duża rozbieżność pomiędzy obserwowanymi licznościami kategorii a "teoretycznymi", to wątpimy o prawdziwości H_0 w przypadku dużych wartości statystyki χ^2 . Stąd zbiór krytyczny ma postać:

$$C = \left\{ \chi^2 \colon \chi^2 \ge \chi^2_{1-\alpha,k-1} \right\} = \left[\chi^2_{1-\alpha,k-1}, \infty \right).$$

8. Reguła decyzyjna: Odrzucenie H_0 , jeśli obliczona wartość $\chi^2 \geq \chi^2_{1-\alpha,k-1}$

Przykład. Przypuszcza się, że proporcje ludzi z grupami krwi: A, B, AB, i 0 wynoszą, odpowiednio: 0.4, 0.2, 0.1, 0.3. Wśród 400-tu losowo wybranych osób liczby osób o powyższych grupach krwi wyniosły: 148, 96, 50, 106. Czy na poziomie istotności 5% można zaprzeczyć powyższemu przypuszczeniu?

Rozwiązanie.

$$H_0$$
: $p_A = 0.4$, $p_B = 0.2$, $p_{AB} = 0.1$, $p_0 = 0.3$.

Obliczenie wartości χ^2 :

Grupa krwi	Liczności z próbki N	1:	(N – EN)	$(N - EN)^2$	$(N - EN)^2/EN$
Α	148	160	- 12	144	0.90
В	96	80	16	256	3.20
AB	50	40	10	196	2.50
0	106	120	-14	100	1.63
suma	400	400	0		8.23

Liczba stopni swobody: k-1=4-1=3Poziom istotności testu $\alpha=0,05$, stąd $1-\alpha=0,95$ Kwantyl $\chi^2_{0.95,3}=7,81$.

Wartość statystyki chi-kwadrat 8,23 > 7,81, więc odrzucamy hipotezę zerową.

Przykład. Załóżmy, że prawdopodobieństwo urodzenia chłopca wynosi ½.

- (a) Znaleźć rozkład prawdopodobieństwa liczby chłopców w rodzinie z czwórką dzieci.
- (b) Wylosowano 160 rodzin z czwórką dzieci. Niech N_i będzie liczbą rodzin, które mają i chłopców, i=0,1,2,3,4. Znaleźć wartość oczekiwaną liczby rodzin, w których jest i chłopców: $E(N_i)$.
- (c) Dla 160 wylosowanych rodzin otrzymano następujące dane:

Liczba chłopców	0	1	2	3	4
Liczba rodzin	12	35	53	44	16

Przyjmując 5 – procentowy poziom ufności przetestować hipotezę, że prawdopodobieństwo urodzenia chłopca wynosi ½.

(a) rozkład prawdopodobieństwa liczby chłopców w rodzinie z 4 dzieci.

$$X \sim Binomial(4; 0,5)$$

$$p_k = P(X = k) = {4 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{4-k} = {4 \choose k} \left(\frac{1}{2}\right)^4, k = 0,1,2,3,4$$

$$p_0 = P(X = 0) = \frac{1}{16}, \quad P(X = 1) = {4 \choose 1} \left(\frac{1}{2}\right)^4 = \frac{4}{16}$$

$$p_2 = P(X = 2) = {4 \choose 2} \left(\frac{1}{2}\right)^4 = \frac{4!}{2! \ 2!} \frac{1}{16} = \frac{2 \cdot 3 \cdot 4}{4} \frac{1}{16} = \frac{6}{16}$$

$$p_3 = P(X = 3) = {4 \choose 3} \left(\frac{1}{2}\right)^4 = \frac{4!}{3! \ 1!} \frac{1}{16} = \frac{4}{16}$$

$$p_4 = P(X = 4) = {4 \choose 4} \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

(b) Wylosowano 160 rodzin z czwórką dzieci. Niech N_i będzie liczbą rodzin, które mają i chłopców, i=0,1,2,3,4. Znaleźć wartość oczekiwaną liczby rodzin, w których jest i chłopców: $E(N_i)$.

$$E(N_0) = 160p_0 = 160\frac{1}{16} = 10,$$
 $E(N_1) = 160p_1 = 160\frac{4}{16} = 40$
 $E(N_2) = 160p_2 = 160\frac{6}{16} = 60,$ $E(N_3) = 160p_3 = 160\frac{4}{16} = 40$
 $E(N_4) = 160p_4 = 160\frac{1}{16} = 10$

(c) Dla 160 wylosowanych rodzin otrzymano następujące dane:

Liczba chłopców	0	1	2	3	4
Liczba rodzin	12	35	53	44	16

Przyjmując 5 – procentowy poziom ufności przetestować hipotezę, że prawdopodobieństwo urodzenia chłopca wynosi ½.

- X liczba chłopców w rodzinie z 4 dzieci
- $P(X = i) = p_i$, i 0,1,2,3,4
- 1. H_0 : X ma rozkład prawdopodobieństwa

i	0	1	2	3	4
p_i	1	4	6	4	1
	16	16	<u>16</u>	16	16

przeciwko H_1 : X ma inny rozkład prawdopodobieństwa

2. Statystyka testowa

$$\chi^2 = \sum_{i=0}^4 \frac{(N_i - 160p_i)^2}{160p_i}$$

jeśli hipoteza zerowa prawdziwa, ma rozkład chi-kwadrat o 5-1=4 stopniach swobody

3.
$$\alpha = 0.05$$
, $1 - \alpha = 0.95$, $\chi^2_{1-\alpha,k-1} = \chi^2_{0.95;4} = 9.488$

$$C = [9,488; \infty)$$
 - zbiór krytyczny

4. Wartość statystyki testowej

i	n_i	$160p_i$	$n_i - 160p_i$	$\frac{(n_i - 160p_i)^2}{160p_i}$		
0	12	10	2	0,4		
1	35	40	- 5	25/40=0,625		
2	53	60	- 7	49/60=0,817		
3	44	40	4	16/40=0,4		
4	16	10	6	36/10=3,6		
χ^2_{obs}	$\chi_{obs}^2 = 0.4 + 0.625 + 0.4 + 3.6 = 5.842$					

5.

 $5,842 < 9,488 \equiv 5,842 \notin [9,488; \infty) \Rightarrow$ nie ma podstaw do odrzucenia hipotezy zerowej

Odp. Na poziomie istotności 0,05, nie można przyjąć, że prawdopodobieństwo urodzenia chłopca jest różne od ½.

Test dla proporcji

Przykład. Wylosowano 160 rodzin z czwórką dzieci. Niech N_i będzie liczbą rodzin, które mają i chłopcow, i=0,1,2,3,4. Otrzymane wartości N_i podaje tabela

Liczba chłopców	0	1	2	3	4
Liczba rodzin	12	35	53	44	16

Przyjmując 5 – procentowy poziom ufności przetestować hipotezę, że prawdopodobieństwo urodzenia chłopca wynosi ½.

- $n = 160 \cdot 4 = 640$ ogólna liczba dzieci w zbadanych rodzinach
- $k = 0 + 35 + 2 \cdot 53 + 3 \cdot 44 + 4 \cdot 16 = 337 liczba$ chłopców

Test dla proporcji

 $^*X \sim Binomial(1,p), p$ — prawdopodobieństwo, że dziecko w rodzinie jest chłopcem

- $n = 160 \cdot 4 = 640$ ogólna liczba dzieci w zbadanych rodzinach
- $k = 0 + 35 + 2 \cdot 53 + 3 \cdot 44 + 4 \cdot 16 = 337 liczba chłopców$
- 1. $H_0: p = \frac{1}{2}$ przeciw $H_1: p \neq \frac{1}{2}$
- 2. Statystyka testowa

$$Z = \frac{\hat{p} - 1/2}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim N(0,1), jeśli H_0 prawdziwa$$

$$\hat{p} = \frac{K}{n} - proporcja\ empiryczna$$

K — liczba chłopców wśród n losowo wybranych dzieci

Test dla proporcji

3. Zbiór krytyczny

$$C = \left(-\infty, -z_{1-\frac{\alpha}{2}}\right] \cup \left[z_{1-\frac{\alpha}{2}}, \infty\right) = \left(-\infty, -1, 96\right] \cup \left[1, 96; \infty\right)$$

$$\alpha = 0.05$$
, $1 - \frac{\alpha}{2} = 0.975$, $z_{0.975} = 1.96$

4. z danych:
$$n = 640$$
, $k = 337$, $więc$ $\hat{p} = \frac{337}{640} = 0,527$

$$Z_{obs} = z = \frac{\hat{p} - 1/2}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} = \frac{0,527 - 0,5}{\sqrt{\frac{0,527 \cdot 0,473}{640}}} = -0,043$$

5. $-0.043 \notin C \implies$ poziomie istotności 0,05 nie można odrzucić hipotezy zerowej, nie można twierdzić, że prawdopodobieństwo urodzenia chłopca jest różne niż dziewczynki.

Cel: testowanie hipotezy, że dwie cechy jednostek populacji są niezależne.

Przykłady:

Grupa krwi i kolor oczu

Wiek i zapatrywania polityczne

Kolor oczu i kolor włosów

Picie alkoholu i palenie papiersów

Dochód i wykształcenie

Podatki i PKB

Niezawodność systemu i producent

Tablica kontyngencyjna

	d_1	d_2	d _j	d _r	
<i>C</i> ₁	n_{11}	<i>n</i> ₁₂	n_{1i}	n_{1r}	n ₁ .
<i>C</i> ₂	<i>n</i> ₂₁	<i>n</i> ₂₂	<i>n</i> _{2i}	n_{2r}	n _{2•}
<i>C</i> i	n _{i1}	n _{i2}	n _{ij}	n _{ir}	n _{i•}
Ck	n_{k1}	n_{k2}	n _{kj}	n _{kr}	n _{k•}
	n •1	n.2	n.j	n _• r	n

Założenia oraz test

- 1. Jednostka populacji scharakteryzowana jest parą cech (atrybutów). Niech (X,Y) będzie parą atrybutów wybranej losowo jednostki populacji. Możliwe wartości X należą do k różnych klas (kategorii): c_1 , c_2 ,..., c_k możliwe wartości cechy Y należą do Y różnych klas (kategorii): d_1 , d_2 ,..., d_r .
- 2. H_0 : X, Y są niezależnymi zmiennymi losowymi:

$$H_0: P(X = c_1, Y = d_1) = P(X = c_1)P(Y = d_1),...,$$

 $P(X = c_k, Y = d_r) = P(X = c_k)P(Y = d_r).$

W skrócie H_0 : $p_{ij} = p_i.p._j$, i = 1,2...,k; j = 1,2,...,r

Założenia oraz test (kont.)

3. Niech N_{ij} będzie liczbą elementów prostej próby losowej o liczności n(próbki) z tej populacji, dla których cechą pierwszą jest klasa i, a drugą klasa j. Niech dla próbki: n_{ij} = liczba elementów próbki o charakterystykach

$$c_i, d_j, i = 1, 2, ..., k, j = 1, 2, ..., r.$$

4. Jeśli H_0 prawdziwa, to oczekiwane liczby obserwacji o charakterystykach (c_i, d_j) wynoszą:

$$np_{ij}=np_{i\cdot}p_{\cdot j}$$
, gdzie $p_{i\cdot}=P(X=c_i)$, $p_{\cdot j}=Pig(Y=d_jig)$.

Uzasadnienie:
$$N_{ij} \sim Bin(n, p_{ij}) \Longrightarrow E(N_{ij}) = np_i.p_{.j}$$
, $X, Y - niezależne \Longrightarrow p_{ij} = p_i.p_{.j}$

5. Odstępstwo empirycznych liczebności klas N_{ij} od oczekiwanych liczebności klas $E(N_{ij})$, przy założeniu, że hipoteza zerowa jest prawdziwa, wyraża statystyka chikwadrat:

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^r \frac{\left(N_{ij} - \widehat{N_{ij}}\right)^2}{\widehat{N_{ij}}},$$

gdzie $\widehat{N_{ij}} = \frac{N_i \cdot N_{\cdot j}}{n}$ jest estymatorem $E(N_{ij})$.

Uzasadnienie: $E(N_{ij}) = np_{i\cdot}p_{\cdot j} \Longrightarrow$

$$E(\widehat{N_{ij}}) = n\widehat{p_{i\cdot}} \cdot \widehat{p_{\cdot j}} = n\frac{N_{i\cdot}}{n}\frac{N_{\cdot j}}{n} = \widehat{N_{ij}}$$

 N_{i} ., $N_{.j}$ — liczby elementów próby, dla których, odpowiednio, cecha X ma i-tą wartość, a cecha Y j-tą

- 6. Jeśli wszystkie $\widehat{N}_{ij} \geq 5$, to można przyjąć, że rozkład statystyki chi-kwadrat jest bliski rozkładowi chi-kwadrat o liczbie stopni swobody (k-1)(r-1).
- 7. Jeśli H_0 jest prawdziwa, to odstępstwo empirycznych liczności od oczekiwanych liczności powinno być małe. Stąd wartości statystyki chi-kwadrat też powinny być małe. Z kolei jeśli występuje duża rozbieżność pomiędzy obserwowanymi licznościami kategorii a "teoretycznymi", to wątpimy o prawdziwości H_0 w przypadku dużych wartości statystyki chi-kwadrat. Stąd zbiór krytyczny ma postać:

$$C = \left[\chi^2_{1-\alpha,(k-1)(r-1)}, \infty\right)$$

8. Reguła decyzyjna: Odrzucenie hipotezy o niezależności cech, tzn. stwierdzenie zależności cech, na poziomie istotności α , jeśli

$$\chi_{obs}^2 \ge \chi_{1-\alpha,(k-1)(r-1)}^2$$
.

Jeśli zachodzi nierówność przeciwna, to nie możemy odrzucić hipotezy, że cechy X, Y są niezależne.

Przykład. W celu zbadania, czy istnieje związek między kolorem oczu i kolorem włosów przeprowadzono badanie na losowej grupie osób i otrzymano następujące wyniki:

	niebieski kolor	inny kolor
	oczu	oczu
włosy jasne	67	32
włosy ciemne	53	68

Zweryfikować hipotezę na poziomie istotności 0,01.

Rozw. Interesuje nas, czy istnieje związek między dwiema cechami: kolorem włosów i kolorem oczu.

- 1. H_0 : kolor oczu i kolor włosów są cechami niezależnymi **przeciw** H_1 : kolor oczu i kolor włosów są cechami zależnymi
- 2. Statystyka testowa

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(N_{ij} - \widehat{N_{ij}}\right)^{2}}{\widehat{N_{ij}}}, \quad gdzie \ \widehat{N_{ij}} = \frac{N_{i}.N_{.j}}{n}$$

ma rozkład chi kwadrat o liczbie stopni swobody (2 - 1)(2 - 1)=1, jeśli hipoteza zerowa jest prawdziwa.

3. Zbiór krytyczny ma postać:
$$C = [\chi^2_{1-\alpha,1}, \infty)$$

Dla $\alpha = 0.01, \ 1-\alpha = 0.99, \ \chi^2_{0.99;1} = 6.635 \Longrightarrow$
 $C = [6.635; \infty)$

4. Wartość statystyki testowej obliczamy z

(kolor oczu) Y	1	2	
X (kolor włosów)			n_i .
1	67	32	99
2	53	68	121
$n_{\cdot j}$	120	100	220

$$\chi_{obs}^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{\left(n_{ij} - n_{i.} n_{.j} / 220\right)^2}{n_{i.} n_{.j} / 220}$$

(i,j)	n_{ij}	$n_i.nj$	$\left(n_{ij} - \frac{n_{i}.n_{.j}}{220}\right)^2 / \left(\frac{n_{i}.n_{.j}}{220}\right)$			
(1,1)	67	99x120	$\frac{(67 - 52,91)^2}{52,91} = 3,13$			
(1,2)	32	99x100	$\frac{(32-45)^2}{45} = 3,76$			
(2,1)	53	121x120	$\frac{(53-66)^2}{66} = 2,56$			
(2,2)	68	121x100	$\frac{(68-55)^2}{55} = 3,07$			
	$\chi^2_{obs} = 3,13 + 3,76 + 2,56 + 3,07 = 12,52$					

5.
$$12,52 \in [6,635; ∞)$$
 ⇒

Na poziomie istotności 0,01 można stwierdzić, że kolor oczu i kolor włosów są cechami zależnymi

Przykład Na pewnej uczelni technicznej mającej 3 wydziały A,B,C przeprowadzono egzamin semestralny ze statystyki. Niech X oznacza przynależność losowo wybranego studenta do wydziału (1 = A, 2 = B, 3 = C), a wartość Y wynosi 1, jeśli student zdał egzamin, 0 w przypadku przeciwnym.

Wyniki badania

У	1	0	
X			
1	350	50	400
2	450	150	600
3	200	100	300
	1000	300	1300

Obliczona wartość statystyki chi-kwadrat wynosi 44,2.

Niech poziom istotności $\alpha = 0.01$.

Liczba stopni swobody (3-1)(2-1) = 2

Kwantyl $\chi^2_{0.99} = 9,210$

Zbiór krytyczny $C = [9.210, \infty), 44, 2 \in C$

Decyzja: Wynik egzaminu zależy od wydziału, przy założonym poziomie istotności 0,01.

Test niezależności cech

У	1-zdany	0-	n_i .
x - wydział		niezdany	
1- A	350	50	400
2- B	450	150	600
3- C	200	100	300
$n_{\cdot j}$	1000	300	1300

$$\chi_{obs}^{2} = \sum_{i=1}^{3} \sum_{j=1}^{2} \frac{\left(n_{ij} - \frac{n_{i} \cdot n_{\cdot j}}{n}\right)^{2}}{\frac{n_{i} \cdot n_{\cdot j}}{n}} = 1300 \frac{\left(350 - \frac{400 \cdot 1000}{1300}\right)^{2}}{400 \cdot 1000} + 1300 \frac{\left(50 - \frac{400 \cdot 300}{1300}\right)^{2}}{400 \cdot 300} + 1300 \frac{\left(450 - \frac{600 \cdot 1000}{1300}\right)^{2}}{600 \cdot 1000} + \cdots$$

情本 ^{日下} y	1-zdany	0-	n_i .
x - wydział		niezdany	ı
1- A	350	50	400
2- B	450	150	600
3- C	200	100	300
$n_{\cdot j}$	1000	300	1300

$$\chi_{obs}^{2} = 1300 \frac{\left(350 - \frac{400 \cdot 1000}{1300}\right)^{2}}{400 \cdot 1000} + 1300 \frac{\left(50 - \frac{400 \cdot 300}{1300}\right)^{2}}{400 \cdot 300} + 1300 \frac{\left(450 - \frac{600 \cdot 1000}{1300}\right)^{2}}{600 \cdot 1000} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{600 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{1300}\right)^{2}}{6000 \cdot 300} + 1300 \frac{\left(150 - \frac{600 \cdot 300}{$$

$$+1300 \frac{\left(200 - \frac{300 \cdot 1000}{1300}\right)^2}{300 \cdot 1000} + 1300 \frac{\left(100 - \frac{300 \cdot 300}{1300}\right)^2}{300 \cdot 300}$$

Wyniki badania

У	1	0	
X			
1	350	50	400
2	450	150	600
3	200	100	300
	1000	300	1300

Obliczona wartość statystyki chi-kwadrat wynosi 44,2.

Niech poziom istotności $\alpha = 0.01$.

Liczba stopni swobody (3-1)(2-1) = 2

Kwantyl $\chi^2_{0.99} = 9,210$

Zbiór krytyczny $C = [9.210, \infty), 44, 2 \in C$

Decyzja: Wynik egzaminu zależy od wydziału, przy założonym poziomie istotności 0,01.

Dziękuję za uwagę