SYSC 4507 Assignment 1

Jessica Morris 100882290

February 7th, 2017

1. (a)
$$\# \text{ of instructions} = \frac{\text{execution time}}{\text{CPI} \times \text{seconds/cycle}}$$

$$\# \text{ of instructions} = \frac{1.8 \, \text{s}}{1.6 \times \frac{1}{900 \, \text{MHz}}}$$

$$\# \text{ of instructions} = 1012500000$$
 (b)
$$\text{MIPS} = \frac{1012500000 \, \text{instructions}}{1.8 \, \text{s}}$$

$$\text{MIPS} = 562500000$$

- (c) Using a processor that has a faster MIPS rating should result in a positive percent speedup. Since a higher MIPS-rated processor will execute the program faster, $T_{new} < T_{old}$, resulting in $\frac{T_{old} T_{new}}{T_{new}}$ being positive.
- 2. Loop 1 executes n times. Loop 2 executes n times, loop 3 will execute $n \times (n-j)$ times, and loop 4 will execute $n \times (n-j) \times n$ times. The expression for the algorithm's run-time is then:

$$n+n^3-jn^2$$

The highest-order variable in this expression is n^3 , so this code fragment is of order $O(n^3)$.