EXERCICES — CHAPITRE 3

Exercice 1 $(\star\star)$ – Déterminer la nature des séries suivantes et préciser leur somme en cas de convergence.

 $1. \sum_{n \geqslant 0} \frac{1}{2^n}$

6. $\sum_{n \ge 0} \left(\frac{3}{2}\right)^n$

11. $\sum_{n \ge 0} \frac{-1}{3^n}$

2. $\sum_{n \ge 1} 2^n$

- 7. $\sum_{n\geq 0} \frac{1}{3^n}$
- 12. $\sum_{n>0} \frac{5}{4^{n+2}}$

- $3. \sum_{n \ge 1} \left(\frac{1}{2}\right)^n$
- $8. \sum_{n>0} \frac{5}{3^n}$

13. $\sum_{n \geqslant 2} \frac{3}{4^n}$

- 4. $\sum_{n\geqslant 0} n$
- 9. $\sum_{n\geqslant 0} \frac{5}{3^n} + \frac{3}{4^n}$ 14. $\sum_{n\geqslant 0} \left(\frac{2}{3}\right)^{2n}$

- 5. $\sum_{n \geq 0} 0.01$
- 10. $\sum_{n>0} \frac{1}{5^n}$

15. $\sum_{n \geq 0} \frac{2^n}{7^{n+1}}$

Exercice 2 $(\star \star \star)$ –

- 1. Le but de cette question est de montrer que la série $\sum_{n>1} \frac{1}{n} \frac{1}{n+1}$ converge et de déterminer sa somme.
 - a) Calculer $\sum_{k=1}^{3} \frac{1}{k} \frac{1}{k+1}$, $\sum_{k=1}^{4} \frac{1}{k} \frac{1}{k+1}$ et $\sum_{k=1}^{5} \frac{1}{k} \frac{1}{k+1}$.
 - b) Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = 1 - \frac{1}{n+1}.$$

- c) Conclure.
- 2. À l'aide d'un raisonnement similaire à celui effectué dans la question 1., démontrer que la série $\sum_{n\geq 1} \frac{1}{(n+1)(n+2)}$ converge et déterminer sa somme.

Indication: Commencer par vérifier qu'il existe deux réels a et b tels que $\forall n \in \mathbb{N}^*$,

$$\frac{1}{(n+1)(n+2)} = \frac{a}{n+1} + \frac{b}{n+2}.$$

3. À l'aide d'un raisonnement similaire à celui effectué dans la question 2., démontrer que la série $\sum_{n>1} \frac{1}{n(n+1)(n+2)}$ converge et déterminer sa somme.

Indication: Commencer par vérifier qu'il existe trois réels a, b et c tels que $\forall n \in \mathbb{N}^*$,

$$\frac{1}{n(n+1)(n+2)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}.$$

Exercice 3 $(\star \star \star)$ –

- 1. a) Montrer que pour tout $k \ge 2$, $\ln\left(1 \frac{1}{k}\right) = \ln(k-1) \ln(k)$.
 - b) En déduire que pour tout $n \ge 2$, $\sum_{k=2}^{n} \ln \left(1 \frac{1}{k} \right) = -\ln(n)$ puis donner la nature de la série $\sum_{n \ge 2} \ln \left(1 - \frac{1}{n} \right)$.
- 2. a) Montrer que pour tout $k \ge 2$, $\frac{\ln\left(1 + \frac{1}{k}\right)}{\ln(k)\ln(k+1)} = \frac{1}{\ln(k)} \frac{1}{\ln(k+1)}$
 - b) En déduire que pour tout $n \ge 2$, $\sum_{k=2}^{n} \frac{\ln\left(1 + \frac{1}{k}\right)}{\ln(k)\ln(k+1)} = \frac{1}{\ln(2)} \frac{1}{\ln(n+1)}$ puis donner la nature de la série $\sum_{n>2} \frac{\ln(1+\frac{1}{n})}{\ln(n)\ln(n+1)}$.
- 3. a) Montrer que pour tout $k \ge 2$, $\ln\left(1 \frac{1}{k^2}\right) = \ln(k-1) \ln(k) + \ln(k+1) \ln(k)$.
 - b) En déduire que pour tout $n \ge 2$, $\sum_{k=0}^{n} \ln \left(1 \frac{1}{k^2} \right) = \ln \left(1 + \frac{1}{n} \right) \ln(2)$ puis donner la nature de la série $\sum_{n \ge 2} \ln \left(1 - \frac{1}{n^2} \right)$

Exercice 4 $(\star \star \star)$ – Soit $(u_n)_{n \ge 2}$ la suite définie pour tout $n \ge 2$ par

$$u_n = \frac{n}{n^2 - 1}.$$

- 1. Montrer que pour tout $n \ge 2$, $u_n \ge \frac{1}{n}$.
- 2. En déduire que la série $\sum_{n\geq 2} u_n$ diverge. (<u>Rappel</u>: la série harmonique $\sum_{n\geq 1} \frac{1}{n}$ diverge.)

Exercice 5 $(\star \star \star)$ – Pour tout $n \ge 3$, on pose $S_n = \sum_{k=3}^n \frac{5}{4^k \ln(k)}$.

1. Montrer que pour tout $n \ge 3$,

$$0 \leqslant \frac{5}{4^n \ln(n)} \leqslant \frac{5}{4^n}.$$

2. En déduire que pour tout $n \ge 3$,

$$0 \le \sum_{k=3}^{n} \frac{5}{4^k \ln(k)} \le \frac{5}{48} \left(1 - \frac{1}{4^{n-2}} \right).$$

- 3. En déduire que la suite $(S_n)_{n\geqslant 3}$ est majorée.
- 4. Étudier la monotonie de la suite $(S_n)_{n \ge 3}$.
- 5. En déduire que la série $\sum_{n\geqslant 3} \frac{5}{4^n \ln(n)}$ converge et que

$$0 \leqslant \sum_{k=3}^{+\infty} \frac{5}{4^k \ln(k)} \leqslant \frac{5}{48}.$$

Exercice 6 $(\star \star \star)$ – Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

1. Vérifier que pour tout $k \ge 2$,

$$\frac{1}{k} - \frac{1}{k+1} \leqslant \frac{1}{k^2} \leqslant \frac{1}{k-1} - \frac{1}{k}.$$

2. En déduire que pour tout $n \ge 2$,

$$\frac{3}{2} - \frac{1}{n+1} \leqslant S_n \leqslant 2 - \frac{1}{n}.$$

- 3. En déduire que la suite $(S_n)_{n\geqslant 1}$ est majorée.
- 4. Étudier la monotonie de la suite $(S_n)_{n \ge 1}$.
- 5. En déduire que la série $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge et que

$$\frac{3}{2} \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^2} \leqslant 2.$$

Exercice 7 $(\star \star \star)$ – On considère la série numérique $\sum_{n \geq 1} \frac{1}{\sqrt{n}}$ et pour tout entier $n \in \mathbb{N}$, on note S_n sa somme partielle d'indice n.

1. Montrer que

$$\forall k \in \mathbb{N}^*, \quad \sqrt{k+1} - \sqrt{k} \leqslant \frac{1}{\sqrt{k}}.$$

Indication : Multiplier par l'expression conjuguée $\sqrt{k+1} + \sqrt{k}$.

2. En déduire que

$$\forall n \in \mathbb{N}^*, \quad \sqrt{n+1} - 1 \leqslant S_n.$$

3. La série $\sum_{n \ge 1} \frac{1}{\sqrt{n}}$ est-elle convergente?

Exercice 8 (* * *) – Pour $n \ge 1$, on pose $S_n = \sum_{k=1}^n \frac{4k^3}{3k^4 - 1}$.

- 1. Montrer que pour tout $k \geqslant 1$, $\frac{4k^3}{3k^4 1} \geqslant \frac{4}{3k}$.
- 2. En déduire que la série $\sum_{n\geqslant 1} \frac{4n^3}{3n^4-1}$ est divergente.