Particle spectrograph

Wave operator and propagator

-		
Source constraints SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$. 1
$\tau_0^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1
$t_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#1}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$ +	3
	$2 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}$) == $\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == 0$	e
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0$	$-2ik \sigma_{2+}^{\#1}\alpha\beta == 0 -i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}_{\chi} -$	5
	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial_{\lambda} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 \ \ i \ \ k^{\chi} \ \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\ \delta}$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 \overline{\imath} k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$	
	$6 \overline{\imath} k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6\ ar{\imath}\ k^{\chi}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$ -	
	$4 \bar{l} \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\epsilon \partial_\chi \sigma^{\delta\epsilon}{}_\delta) == 0$	
Total constraints/gauge generators:	ge generators:	19

Quadratic (free) action	action					
$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$	$^{\beta}+\mathcal{A}_{\alpha\beta\chi}$	$\sigma_{\alpha \beta \chi}$ +				
	$\frac{1}{6}t_1$ (2	$rac{1}{6}t_1(2\mathcal{A}^{lpha\prime}_{$	$\mathcal{A}_{\alpha}^{\ \ \ \ }\partial_{\beta}^{\ \ \ }\partial_{\beta}^{\ \ \ \ }$	+4 $\mathcal{A}_{,\theta}^{\theta}$	f^{α}_{α} -29	f^{θ}_{θ}
		$\partial' f^{\alpha}_{\alpha} - 2 \partial_i f$	$\partial' f^{\alpha}_{\ \alpha} - 2 \partial_i f^{\alpha i} \partial_{\theta} f^{\ \theta}_{\ \alpha} + 4 \partial^i f^{\alpha}_{\ \alpha} \partial_{\theta} f^{\ \theta}_{\ i} - 6 \partial_{\alpha} f_{i\theta} \partial^{\theta} f^{\alpha i} -$	$\partial' f^{\alpha}_{\ \alpha} \partial_{\theta} f^{\theta}_{\ r}$	$-6 \partial_{\alpha} f_{ l heta} \hat{c}$	$\partial_{\theta} f_{\alpha \prime}$ -
		$3 \partial_{\alpha} f_{\theta_l} \partial^{\theta} f^{\alpha l} + 3 \partial_{l} f_{\alpha \theta} \partial^{\theta} f^{\alpha l} + 3 \partial_{\theta} f_{\alpha l} \partial^{\theta} f^{\alpha l} +$	$+30, f_{\alpha\theta}\partial^{\theta}f$	$^{x\prime}$ + 3 $\partial_{\theta}f_{\alpha\prime}$	$\partial_{\theta} f^{\alpha \prime} +$	
		$3\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha\prime}+6\mathcal{A}_{\alpha\theta\prime}(\mathcal{A}^{\alpha\prime\theta}+2\partial^{\theta}f^{\alpha\prime}))$	۲6 ه _ه (ج	$^{\alpha\prime\theta}$ + 29 $^{\theta}$	α'))-	
	$4 r_3 (\partial_{\beta}$	$4 r_3 \left(\partial_{\beta} \mathcal{A}_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$+\partial_{lpha}\mathcal{A}^{lphaeta_{l}}\partial_{eta}\mathcal{S}_{l}$	q'θ'-		
		$2\partial'\mathcal{A}^{\alpha\beta}{}_{\alpha}\partial_{\theta}\mathcal{A}_{\beta}{}^{\theta}+\partial_{\beta}\mathcal{A}_{\beta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime})+$	$^{ heta}_{I}^{}+\partial_{eta}\mathcal{A}_{I}{}_{etalpha}$	$+(_{\prime g}\mathcal{B}_{\alpha g^{\prime }})+$		
	$\frac{1}{3} r_1 (9)$	$\frac{1}{3} r_1 (9 \partial_\beta \mathcal{A}_{\beta}^{\ \theta} \partial^\prime \mathcal{A}^{\alpha\beta}_{\alpha} + 3 \partial_\prime \mathcal{A}_{\beta}^{\ \theta} \partial^\prime \mathcal{A}^{\alpha\beta}_{\alpha} + 3 \partial_\alpha \mathcal{A}^{\alpha\beta\prime}$	$_{\alpha}$ + 3 $\partial_{\beta}\mathcal{A}_{\beta}^{\theta}$	$\partial' \mathcal{A}^{\alpha\beta} + 3$	$\partial_{\alpha}\mathcal{A}^{\alpha\beta}$	
		$\partial_{ heta}\mathcal{R}_{eta}^{\;\; heta}$, -60'	$\partial_{\theta}\mathcal{R}_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$^{\prime}_{\prime}+9\partial_{\alpha}\mathcal{A}^{\alpha_{\prime}}$	$^{eta \prime}_{eta} \mathcal{B}_{eta} \mathcal{B}_{eta}^{\ eta}$	ı
		$18\partial'\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\theta}\mathcal{A}^{}_{}$ - $4\partial_{\beta}\mathcal{A}_{\alpha\prime\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime}$ +	$A_{,\ eta}^{\ eta}$ - $4\partial_{eta}\mathcal{A}_{c}$	$+_{\alpha\beta}\mathcal{H}_{\alpha\beta}$		
		$2 \partial_{\beta} \mathcal{A}_{\alpha\theta_{l}} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}} + 4 \partial_{\beta} \mathcal{A}_{l\theta\alpha} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}}$	$^{\alpha eta_{l}} + 4 \partial_{eta} \mathcal{R}_{l,l}$	1		
		$2\partial_{i}\mathcal{R}_{\alpha\beta\theta}\partial^{\theta}\mathcal{R}^{\alpha\beta'}+2\partial_{\theta}\mathcal{R}_{\alpha\beta'}\partial^{\theta}\mathcal{R}^{\alpha\beta'}+$	$^{\alpha\beta\prime}$ + 2 $\partial_{\theta}\mathcal{A}_{\alpha}$	$_{eta'}\partial^{ heta}\mathcal{F}^{lphaeta'}+$		
		$2\partial_{\theta}\mathcal{A}_{\alpha\beta}\partial^{\theta}\mathcal{A}^{\alpha\beta}))[t,x,y,z]dzdydxdt$	$^{\alpha eta_{l}}))[t, \kappa, y,$	z]ďzďyď	x dlt	
$\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$	$\sigma_{1}^{\#2}$	${\mathfrak l}_{1}^{\#1}$	$\sigma_{1}^{\#1}$	$\sigma_{1-}^{#2}$ $\tau_{1-}^{#1}$	$t_{1}^{\#1}$	Z#2

 $\sigma_{1}^{\#_1} \dagger^\alpha$

 $\tau_1^{\#1} +^{\alpha}$

 $i \sqrt{2} kt_1$ 0 $\frac{2k^2t_1}{2}$

0 0

 $0 \\ \sqrt{2} kt_1$

0 0

0 0 0

0 0 0

 $\mathcal{A}_{1}^{#2} + \alpha$ $f_{1}^{#1} + \alpha$ $f_{1}^{#2} + \alpha$

 $\mathcal{A}_{0}^{\#1} \dagger \begin{bmatrix} 6 k^2 (-r_1 + r_3) & 0 & 0 \end{bmatrix}$

 $\frac{2}{(1+2k^2)^2t_1}$

 $\begin{array}{|c|c|c|c|c|c|}\hline 2 i \sqrt{2} k & 4 k^2 \\\hline (1+2 k^2)^2 t_1 & (1+2 k^2)^2 t_1 \end{array}$

 $\tau_{2}^{\#1}{}_{\alpha\beta}$

 $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\sigma_{2^- \alpha \beta \chi}^{\# 1}$

 $\frac{2}{2 k^2 r_1 + t_1}$

 $f_{2}^{\#1} +^{\alpha\beta}$ $\mathcal{A}_{2}^{\#1} +^{\alpha\beta\chi}$

 $\begin{array}{c|c}
0 & 0 \\
\hline
0 & \frac{t_1}{3} \\
\hline
3 & \sqrt{2} \\
\hline
3 & \frac{t_1}{3}
\end{array}$

 $\mathcal{A}_{1}^{\#1} \, {\dagger}^{\alpha}$

 $\mathcal{A}_1^{\#2} \dagger^{lphaeta}$

Massive and massless spectra

1	r_1	<	0	&8	ιt_1	>