Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 11 Musterlösung Abgabe auf Moodle bis zum 10. Juli

Bearbeiten Sie bitte nur vier Aufgaben. Jede Aufgabe ist vier Punkte wert. Für jedes Gebiet D bezeichne $\mathcal{O}(D)$ die Menge der holomorphen Funktionen $f:D\to\mathbb{C}$.

- **46.** Aufgabe: Wir sagen "das Produkt $\prod_{n=1}^{\infty} (1 + a_{\nu})$ konvergiert absolut" für eine Folge $(a_{\nu})_{\nu}$ komplexer Zahlen, falls die Reihe $\sum_{\nu} a_{\nu}$ absolut konvergiert. Zeigen Sie:
 - (a) Das Produkt $\prod_{n=1}^{\infty} \frac{1}{n}$ konvergiert nicht absolut, obwohl die Folge der Partialprodukte $(\prod_{n=1}^{N} \frac{1}{n})$ für $N \to \infty$ konvergiert.
 - (b) Das Produkt $\prod_{n=2}^{\infty} \frac{n^2-1}{n^2}$ konvergiert absolut. Berechnen Sie den Grenzwert.
 - (c) Das Produkt $\phi(z) = \prod_{n=1}^{\infty} (1-z^n)$ konvergiert absolut für $z \in \mathbb{C}$ genau dann wenn |z| < 1. Es definiert eine holomorphe Funktion ϕ in $E = \{z \in \mathbb{C} \mid |z| < 1\}$.

Lösung:

(a) Die Folge $(1/n)_n$ konvergiert gegen Null, also konvergiert die Folge $(a_n)_n$ für $a_n = \frac{1}{n} - 1$ gegen -1. Damit kann die Reihe $\sum_{n=1}^{\infty} a_n$ nicht konvergieren, insbesondere nicht absolut konvergieren. Nach Definition konvergiert das Produkt nicht absolut.

Die Partialprodukte $\prod_{n=1}^N \frac{1}{n} = \frac{1}{N!}$ konvergieren gegen Null für $N \to \infty$. Für jedes $\epsilon > 0$ gibt es eine natürliche Zahl N_0 mit $\epsilon^{-1} < N_0$ nach dem archimedischen Axiom. Für alle natürlichen Zahlen $N > N_0$ gilt also

$$|\prod_{n=1}^{N} \frac{1}{n} - 0| = |\frac{1}{N!} - 0| < \frac{1}{N} < \frac{1}{N_0} < \epsilon .$$

(b) In Analysis 1 zeigt man, dass $\sum_{n=2}^{\infty} \frac{1}{n^2}$ absolut konvergiert, also konvergiert nach Definition unser Produkt absolut. Das Partialprodukt

$$\prod_{n=2}^{N} \frac{n^2 - 1}{n^2} = \prod_{n=2}^{N} \frac{(n+1)(n-1)}{n^2} = \frac{N+1}{2N} = \frac{1}{2}(1 + \frac{1}{N}) \stackrel{N \to \infty}{\longrightarrow} \frac{1}{2} .$$

konvergiert für $N \to \infty$ gegen $\frac{1}{2}$.

(c) Die geometrische Reihe $\sum_{n=1}^{\infty} z^n$ konvergiert bekanntlich im Einheitskreis, also für $z \in E$. Genau dort konvergiert also auch unser Produkt absolut nach Definition. Für absolut konvergente Produkte liefert die Funktionalgleichung der Exponentialfunktion die Formel

$$\prod_{n=1}^{\infty} b_n = \exp(\sum_{n=1}^{\infty} \text{Log}(b_n)) \quad \text{falls } \forall n \text{ gilt } |b_n - 1| < 1.$$

In unserem Fall ist für $b_n(z)=(1-z^n)$ die Bedingung $|b_n-1|<1$ nach Voraussetzung erfüllt. Nach einem Satz aus der Vorlesung¹ konvergiert $\sum_{n=1}^{\infty} \text{Log}(b_n(z))$ kompakt absolut

 $^{^1}$ Im Skript Seite 68, Zeile 4. Beachte: Für jede reelle Zahl 0 < R < 1 gibt es eine reelle Konstante C sodass |Log(1+a)| < C|a| gilt für alle komplexen a mit |a| < R. Das zeigt man z.B. mit der Taylorentwicklung des Logarithmus.

in E, d.h. gleichmäßig absolut für z in einem Kompaktum in E. Nach dem Konvergenzsatz von Weierstraß ist der Grenzwert $\sum_{n=1}^{\infty} b_n(z)$ eine holomorphe Funktion in z. Insbesondere ist $\phi(z) = \exp(\sum_{n=1}^{\infty} b_n)$ eine holomorphe Funktion.

- **47.** Aufgabe: Seien $D = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > -\epsilon\}$ für ein $\epsilon > 0$ und $f : D \to \mathbb{C} \cup \{\infty\}$ eine meromorphe Funktion mit endlich vielen Polstellen $s \in S$, die alle in der oberen Halbebene liegen, d.h. $\operatorname{Im}(s) > 0$. Außerdem gibt es reelle $\delta > 0$, c > 0 und C > 0 sodass die Abschätzung $|f(z)| < C|z|^{-1-\delta}$ für alle $z \in D$ mit |z| > c gilt.
 - (a) Zeigen Sie:

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{s \in S} \operatorname{Res}_{s}(f) .$$

(b) Berechnen Sie $\int_{-\infty}^{\infty} \frac{1}{x^2+1} dx$.

Hinweis zu a): Verwenden Sie den Weg

$$\gamma(t) = \begin{cases} -R + 2tR & 0 \le t < 1, \\ R \exp(2\pi i(t-1)) & 1 \le t \le 2, \end{cases}$$

und verwenden Sie den Residuensatz. Zeigen Sie, dass das Integral über den Kreisbogen (also $1 \le t \le 2$) für $R \to \infty$ gegen Null geht.

Lösung:

(a) Sei γ der Weg aus dem Hinweis. Die Umlaufzahl $N(s,\gamma)$ um $s\in S$ ist gleich Eins genau dann wenn |s|< R und $\mathrm{Im}(s)>0$ und ist Null sonst. Der Residuensatz und die Linearität des Integrals liefern

$$2\pi i \sum_{s \in S \text{ mit } |s| < R} \operatorname{Res}_{s}(f) = \oint_{\gamma} f(z) \, \mathrm{d}z = \underbrace{\int_{-R}^{R} f(x) \, \mathrm{d}x}_{I_{1}} + \underbrace{\int_{\gamma_{2}} f(z) \, \mathrm{d}z}_{I_{2}}$$

wobei $\gamma_2(t)=R\mathrm{e}^{2\pi it}$ für $1\leq t\leq 2$ ist. Das uneigentliche Riemann-Integral ist nach Definition $\int_{-\infty}^{\infty}f(x)\,\mathrm{d}x=\lim_{R\to\infty}I_1$. Das zweite Integral ist

$$I_2 = \oint_{\gamma_2} f(z) dz = \int_1^2 f(\gamma(t)) \gamma'(t) dz = 2\pi i \int_1^2 f(Re^{2\pi i t}) Re^{2\pi i t} dt.$$

Es bleibt nur noch zu zeigen, dass I_2 für $R\to\infty$ gegen Null konvergiert. Die Standardintegralabschätzung liefert

$$|I_2| \le 2\pi \int_1^2 |f(Re^{2\pi it})| R dt \le 2\pi R \int_1^2 CR^{-1-\delta} dt \le 2\pi CR^{-\delta}$$
.

Für $\delta > 0$ geht dieser Ausdruck gegen Null für $R \to \infty$. Also gilt $\lim_{R \to \infty} I_2 = 0$.

²Das zeigt man z.B. so wie in Aufgabe 43.

(b) Die Funktion $f(z) = \frac{1}{1+z^2}$ hat Pole bei $z = \pm i$. Nur ein Pol liegt in der oberen Halbebene, also ist $S = \{i\}$. Die Laurententwicklung von f im Kreisring $D_{0,1}(i)$ ist nach der geometrischen Reihe

$$f(z) = \frac{1}{1+z^2} = \frac{1}{(z+i)(z-i)} = \frac{1}{z-i} \frac{1}{((z-i)+2i)} = \frac{1}{2i(z-i)} \cdot \frac{1}{\frac{z-i}{2i}+1}$$
$$= \frac{1}{2i(z-i)} \sum_{n=0}^{\infty} (-2i)^{-n} (z-i)^n = -\sum_{n=0}^{\infty} (-2i)^{-n-1} (z-i)^{n-1} .$$

Das Residuum ist der Koeffizient zu n=0, also $\mathrm{Res}_i(f)=\frac{1}{2i}$. Nach a) ist das gesuchte Integral damit $\int_{\mathbb{R}} \frac{1}{1+x^2} = \frac{2\pi i}{2i} = \pi$.

Anmerkung: Es gibt natürlich eine Formel, um das Residuum auszurechnen. Damit kommt man schneller zum Ziel. Siehe Aufgabe 51.

48. Aufgabe: Wir zeigen in mehreren Schritten die Gleichung

$$\frac{\pi^2}{\sin^2(\pi z)} \stackrel{!}{=} \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2} . \tag{*}$$

- (a) $\sum_{n\in\mathbb{Z}}\frac{1}{(z-n)^2}$ konvergiert in $D=\mathbb{C}\setminus\mathbb{Z}$ kompakt, stellt dort also eine holomorphe Funktion dar.
- (b) Die Differenz $g(z) = \frac{\pi^2}{\sin^2(\pi z)} \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$ hat hebbare Singularitäten in $z \in \mathbb{Z}$ und erfüllt g(z) = g(z+1).
- (c) |g(z)| konvergiert gleichmäßig gegen Null für $\mathrm{Im}(z) \to \infty$. Mit anderen Worten: Für jedes $\epsilon > 0$ gibt es C > 0 mit $|g(z)| < \epsilon$ für alle $z \in \mathbb{C}$ mit $|\mathrm{Im}(z)| > C$.
- (d) Zeigen Sie g = 0. Hinweis: Satz von Liouville.

Lösung: Wir schreiben $g = g_1 - g_2$ mit

$$g_1(z) = \frac{\pi^2}{\sin^2(\pi z)}$$
 und $g_2(z) = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$.

(a) Sei $K \subseteq \mathbb{C} \setminus \mathbb{Z}$ eine kompakte Teilmenge. Da K beschränkt ist, gibt es eine feste natürliche Zahl N mit -N < Re(z) < N für alle $z \in K$. Dann gilt für $z \in K$

$$g_2(z) = \sum_{-N \le n \le N} \frac{1}{(z-n)^2} + \sum_{n \ge N+1} \frac{1}{(z-n)^2} + \sum_{n \le -N-1} \frac{1}{(z-n)^2}.$$

Die erste Summe ist endlich. Für die zweite Summe beachte $|z-n|^2 \ge |n-\operatorname{Re}(z)|^2 \ge (n-N)^2$ für alle $z \in K$ und alle natürlichen n > N. Damit lässt sich die zweite Summe nach oben abschätzen durch

$$\sum_{n \ge N+1} \left| \frac{1}{(z-n)^2} \right| \le \sum_{n=N+1}^{\infty} \frac{1}{(N-n)^2} = \sum_{\nu=1}^{\infty} \nu^{-2} < \infty .$$

Die dritte Summe behandelt man ähnlich wie die zweite. Jeder der drei Summanden von g_2 konvergiert also gleichmäßig absolut in K.

(b) Die Z-Periodizität ist klar. Sinus hat in Null eine einfache Nullstelle, also hat $g_1(z)$ in Null einen Pol zweiter Ordnung mit Laurent-Entwicklung $g_1(z) = a_{-2}z^{-2} + a_{-1}z^{-1} + h(z)$ für eine in z=0 holomorphe Funktion h(z). Durch Cauchy-Faltung zeigt man $a_{-2}=1$ und $a_{-1}=0$. Für

$$g_2(z) = \frac{1}{z^2} + \sum_{0 \neq n \in \mathbb{Z}} \frac{1}{(z-n)^2}$$

ist die Reihe über $n \neq 0$ holomorph in z = 0 (Weierstraß-Konvergenzsatz). Daher ist der Hauptteil von g_2 gleich z^{-2} . Die Hauptteile von g_1 und g_2 für die Entwicklung in $D_{0,1}(0)$ stimmen also überein. Damit verschwindet der Hauptteil von $g = g_1 - g_2$ in z = 0 und die Singularität von g in z = 0 ist hebbar nach dem Riemannschen Hebbarkeitssatz. Wegen \mathbb{Z} -Periodizität sind alle Singularitäten von g hebbar. Wir bezeichnen die holomorphe Fortsetzung von g zu einer ganzen holomorphen Funktion wieder mit $g \in \mathcal{O}(\mathbb{C})$.

(c) Bekanntlich gilt $\sin(\pi z) = \frac{1}{2i}(e^{i\pi z} - e^{i\pi z})$. Für gegebenes $\epsilon > 0$ wähle $C > 4/\epsilon$. Für Im(z) > C gilt dann nach umgekehrter Dreiecksungleichung

$$|e^{\pi iz} - e^{-\pi iz}| \ge e^{\pi \text{Im}(z)} - e^{-\pi \text{Im}(z)} \ge e^{\pi C} - 1 > \pi C$$

und damit

$$|g_1(z)| = \frac{2\pi}{|e^{\pi iz} - e^{-\pi iz}|} < 2/C = \epsilon/2$$
.

Für Im(z) < -C gilt die Abschätzung entsprechend wegen $g_1(-z) = -g_1(z)$. Also folgt

$$\sup_{|\mathrm{Im}(z)|>C}|g_1(z)|<\epsilon/2\ .$$

Für $g_2(z)$ argumentiert so: Wegen Periodizität können wir annehmen $0 \le \text{Re}(z) \le 1$. Für $|Im(z)| \ge C$ und $n \ne 0$ gilt dann

$$|n-z|^2 = |n-x|^2 + |y|^2 \ge |(|n|-|x|)^2 + y^2 = (|n|-1)^2 + y^2$$
.

Wähle jetzt eine natürliche Zahl N_1 sodass $\sum_{n\geq N_1} n^{-2} < \epsilon/4$. Für $|{\rm Im}(z)| \geq C$ gilt

$$|g_2(z)| \le \sum_{n \in \mathbb{Z}} \frac{1}{|n-z|^2} \le \sum_{|n| \le N_1} \frac{1}{y^2} + \sum_{|n| > N_1} \frac{1}{(|n|-1)^2} \le \sum_{|n| \le N_1} \frac{1}{C^2} + \sum_{|n| > N_1} \frac{1}{(|n|-1)^2}$$

Durch eventuelles Vergrößern von C können wir annehmen $C > \sqrt{8N_1/\epsilon}$, dann sind beide Summanden auf der rechten Seite kleiner als $\epsilon/4$. Mit der Dreiecksungleichung folgt die Aussage.

- (d) Die Funktion g(z) ist für $|\mathrm{Im}(z)| > C$ wie oben gezeigt beschränkt durch ϵ . Der Quader $\{z \in \mathbb{C} \mid |\mathrm{Re}(z)| \leq 1 \ , \ |\mathrm{Im}(z)| \leq C\}$ ist kompakt, dort ist g also beschränkt. Wegen Perioduizität ist g beschränkt im Horizontalstreifen $|\mathrm{Im}(z)| \leq C$. Also ist g beschränkt und nach Satz von Liouville konstant. Diese Konstante kann aber nur Null sein, weil g(z) für $\mathrm{Im}(z) \to \infty$ gegen Null konvergiert. Also ist g = 0.
- 49. Aufgabe: Wir zeigen in mehreren Schritten die Gleichung

$$\pi \cot(\pi z) \stackrel{!}{=} \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{2z}{z^2 - n^2}\right) .$$
 (**)

(a) Zeigen Sie, dass die rechte Seite kompakt konvergiert in $\mathbb{C} \setminus \mathbb{Z}$.

- (b) Sei h(z) die Differenz beider Seiten in (**). Zeigen Sie h'=0 wegen (*).
- (c) Zeigen Sie h = 0, indem Sie h(z) für ein festes z explizit berechnen.

Lösung: Sei $h(z) = h_1(z) - h_2(z)$ mit

$$h_1(z) = \pi \cot(\pi z)$$
 und $h_2(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{2z}{z^2 - n^2}\right)$

(a) h_2 konvergiert kompakt (ähnlich wie in der vorigen Aufgabe). Sei $K \subseteq \mathbb{C} \setminus \mathbb{Z}$ ein Kompaktum und wähle N sodass |z| < N für alle $z \in K$. Dann gilt für alle $n > \sqrt{2}N$

$$\left|\frac{2z}{z^2 - n^2}\right| \le \frac{2N}{|n^2| - |z^2|} \le \frac{2N}{|n^2| - N^2} \le \frac{2N}{|n^2/2|} = \text{const} \cdot \frac{1}{n^2}$$
.

Nach dem Majorantenkriterium konvergiert $h_2(z)$ absolut und gleichmäßig in K.

(b) Nach Quotientenregel gilt

$$h'_1 = \pi^2 \cot'(\pi z) = -\pi^2 \frac{\sin^2(\pi z) + \cos^2(\pi z)}{\sin^2(\pi z)} = \frac{-\pi^2}{\sin^2(\pi z)} = -g_1(z)$$

mit g_1 aus der vorigen Aufgabe. Da h_2 kompakt konvergiert, können wir gliedweise differenzieren. Also

$$h_2'(z) = -\frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}z} (\frac{2z}{z^2 - n^2})$$

$$= -\frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}z} (\frac{1}{z - n} + \frac{1}{z + n})$$

$$= -\frac{1}{z^2} + \sum_{n=1}^{\infty} (-\frac{1}{(z - n)^2} - \frac{1}{(z + n)^2}) = -g_2(z) .$$

Wegen (*) folgt h'(z) = -g(z) = 0. Damit ist h(z) lokalkonstant.

(c) Da $\mathbb{C} \setminus \mathbb{Z}$ zusammenhängend und h lokalkonstant ist, ist h konstant. Wir bestimmen die Laurententwicklung von h_1 und h_2 in $D_{0,1}(0)$. Sei $h_1(z) = \sum_{\nu=-1}^{\infty} a_{\nu} z^{\nu}$ für gewisse a_{ν} . Dann gilt $\sin(\pi z) \cdot h_1(z) = \pi \cos(\pi z)$. Die Taylorreihe von Sinus und Cosinus ist bekannt. Setzt man diese ein, erhält man durch Cauchy-Faltung die Gleichungen $0 \cdot a_0 + \pi \cdot a_{-1} = \pi$ für den konstanten Term und $0 \cdot a_1 + \pi \cdot a_0 + 0 \cdot a_{-1} = \pi \cdot 1$ für den linearen Term. Daraus folgt $a_{-1} = 1$ und $a_0 = 0$. Die Funktion h_2 ist per Definition schon in Laurentzerlegung also ist

$$h_2(z) = \sum_{\nu=-1}^{\infty} b_{\nu} z^{\nu} = b_{-1} z^{-1} + b_0 \cdot 1 + O(z)$$

mit $b_{-1} = 1$ und der konstante Term b_0 ist der Wert der Reihe $\sum_{n=1}^{\infty} \left(\frac{2z}{z^2 - n^2}\right)$ bei z = 0, also $b_0 = 0$. Die Laurentreihe von h(z) beginnt mit $0 \cdot z^{-1} + 0 \cdot 1 + O(z)$. Also ist h(0) = 0. Da h konstant ist, folgt h(z) = 0 für alle z. Das zeigt die Aussage.

50. Aufgabe: Zeigen Sie

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \ .$$

Hinweis: Berechnen Sie für beide Seiten von (*) die Laurentkoeffizienten a_{-2}, a_{-1}, a_0 für die Laurententwicklung in $D_{0,1}(0) = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$. Verwenden Sie zum Beispiel die Cauchy-Faltung.

Lösung: In Aufgabe 48 haben wir gezeigt, dass g_1 in z=0 einen Pol zweiter Ordnung hat. Die Laurententwicklung von g_1 sei

$$g_1(z) = \sum_{\nu = -2}^{\infty} a_{\nu} z^{\nu}$$

 $g_1(z)$ gerade, weil $\sin^2(\pi z) = \sin^2(-\pi z)$. Für die Taylorreihe

$$\frac{1}{g_1(z)} = \sin^2(\pi z)\pi^{-2} = \sum_{\nu=2}^{\infty} b_{\nu} z^{\nu}$$

verschwinden also die Koeffizienten zu ungeraden Indizes $b_3 = b_5 = \cdots = 0$ und $a_{-1} = a_1 = a_3 = a_5 = \cdots = 0$. Durch Cauchy-Faltung zeigt man $b_2 = 1$ und $b_4 = -\frac{2}{3!}\pi^2 = -\pi^2/3$. Dann gilt

$$1 = g_1(z) \cdot \frac{1}{g_1(z)} = \left(\sum_{\nu = -2}^{\infty} a_{\nu} z^{\nu} \right) \cdot \left(\sum_{\nu = 2}^{\infty} b_{\nu} z^{\nu} \right) .$$

Durch Cauchy-Faltung erhält man die Gleichungen

$$a_{-2} \cdot b_2 = 1$$

$$a_{-2} \cdot b_3 + a_{-1} \cdot b_2 = 0$$

$$a_{-2} \cdot b_4 + a_{-1} \cdot b_3 + a_0 \cdot b_2 = 0$$

und daraus folgt $a_{-2}=1$ und $a_{-1}=0$ und $a_0=\frac{-a_{-2}b_4}{b_2}=\frac{1}{3}\pi^2$. Die Laurentzerlegung von g_2 ist per Definition

$$g_2(z) = \frac{1}{z^2} + f(z)$$

für $f(z) = \sum_{n \neq 0} \frac{1}{(z-n)^2}$. Die Funktion f(z) ist holomorph fortsetzbar nach 0 und nimmt dort den Wert $f(0) = 2\sum_{n=1}^{\infty} \frac{1}{n^2}$ an. Der Vergleich der Laurentkoeffizienten von g_1 und g_2 zeigt

$$\pi^2/3 = a_0 = f(0) = 2\sum_{n=1}^{\infty} \frac{1}{n^2}$$
.

Teilen durch zwei liefert die Aussage.