Machine Learning Foundations

(機器學習基石)

Lecture 8: Noise and Error

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 7: The VC Dimension

learning happens if finite d_{VC} , large N, and low E_{in}

Lecture 8: Noise and Error

- Noise and Probabilistic Target
- Error Measure
- Algorithmic Error Measure
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

what if there is noise?

Noise

briefly introduced noise before pocket algorithm

age	23 years	
gender	female	
annual salary	NTD 1,000,000	
year in residence	1 year	
year in job	0.5 year	
current debt	200,000	

credit? $\{no(-1), yes(+1)\}$

but more!

- noise in y: good customer, 'mislabeled' as bad?
- noise in y: same customers, different labels?
- noise in x: inaccurate customer information?

does VC bound work under noise?

Probabilistic Marbles

one key of VC bound: marbles!

'deterministic' marbles

- marble $\mathbf{x} \sim P(\mathbf{x})$
- deterministic color

 [f(x) ≠ h(x)]

'probabilistic' (noisy) marbles

- marble x ~ P(x)
- probabilistic color $[y \neq h(\mathbf{x})]$ with $y \sim P(y|\mathbf{x})$

same nature: can estimate $\mathbb{P}[\text{orange}]$ if $\overset{i.i.d.}{\sim}$

VC holds for
$$\underbrace{\mathbf{x} \overset{i.i.d.}{\sim} P(\mathbf{x}), y \overset{i.i.d.}{\sim} P(y|\mathbf{x})}_{(\mathbf{x},y)^{i.i.d.}P(\mathbf{x},y)}$$

Target Distribution $P(y|\mathbf{x})$

characterizes behavior of 'mini-target' on one x

- can be viewed as 'ideal mini-target' + noise, e.g.
 - $P(\circ|\mathbf{x}) = 0.7, P(\times|\mathbf{x}) = 0.3$
 - ideal mini-target $f(\mathbf{x}) = 0$
 - 'flipping' noise level = 0.3
- deterministic target f: special case of target distribution
 - $P(y|\mathbf{x}) = 1 \text{ for } y = f(\mathbf{x})$
 - $P(y|\mathbf{x}) = 0$ for $y \neq f(\mathbf{x})$

goal of learning:

predict ideal mini-target (w.r.t. $P(y|\mathbf{x})$) on often-seen inputs (w.r.t. $P(\mathbf{x})$)

The New Learning Flow

VC still works, pocket algorithm explained :-)

Fun Time

Let's revisit PLA/pocket. Which of the following claim is true?

- 1 In practice, we should try to compute if \mathcal{D} is linear separable before deciding to use PLA.
- 2 If we know that \mathcal{D} is not linear separable, then the target function f must not be a linear function.
- 3 If we know that \mathcal{D} is linear separable, then the target function f must be a linear function.
- 4 None of the above

Reference Answer: 4

1) After computing if \mathcal{D} is linear separable, we shall know \mathbf{w}^* and then there is no need to use PLA. 2) What about noise? 3) What about 'sampling luck'? :-)

Noise and Error

Error Measure

final hypothesis $g \approx f$

how well? previously, considered out-of-sample measure

$$E_{\text{out}}(g) = \underset{\mathbf{x} \sim P}{\mathbb{E}} [g(\mathbf{x}) \neq f(\mathbf{x})]$$

- more generally, error measure E(g, f)
- naturally considered
 - out-of-sample: averaged over unknown x
 - pointwise: evaluated on one x
 - classification: [prediction ≠ target]

classification error [...]: often also called '0/1 error'

Pointwise Error Measure

can often express $E(g, f) = \text{averaged } err(g(\mathbf{x}), f(\mathbf{x}))$, like

$$E_{\mathsf{out}}(g) = \underbrace{\mathbb{E}_{\mathbf{x} \sim P} \underbrace{\llbracket g(\mathbf{x}) \neq f(\mathbf{x}) \rrbracket}_{\mathsf{err}(g(\mathbf{x}), f(\mathbf{x}))}$$

—err: called pointwise error measure

in-sample

$$E_{\text{in}}(g) = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(g(\mathbf{x}_n), f(\mathbf{x}_n))$$

out-of-sample

$$E_{\mathsf{out}}(g) = \underset{\mathbf{x} \sim P}{\mathbb{E}} \operatorname{err}(g(\mathbf{x}), f(\mathbf{x}))$$

will mainly consider pointwise err for simplicity

Two Important Pointwise Error Measures

$$\operatorname{err}\left(\underbrace{g(\mathbf{x})}_{\widetilde{y}},\underbrace{f(\mathbf{x})}_{y}\right)$$

0/1 error

$$\operatorname{err}(\tilde{y}, y) = [\![\tilde{y} \neq y]\!]$$

- correct or incorrect?
- often for classification

squared error

$$\operatorname{err}(\tilde{y}, y) = (\tilde{y} - y)^2$$

- how far is \(\tilde{\gamma} \) from \(\gamma \)?
- often for regression

how does err 'guide' learning?

Ideal Mini-Target

interplay between noise and error:

 $P(y|\mathbf{x})$ and err define ideal mini-target $f(\mathbf{x})$

$$P(y = 1|\mathbf{x}) = 0.2, P(y = 2|\mathbf{x}) = 0.7, P(y = 3|\mathbf{x}) = 0.1$$

$$\operatorname{err}(\tilde{y}, y) = [\![\tilde{y} \neq y]\!]$$

$$\tilde{y} = \begin{cases} 1 & \text{avg. err } 0.8 \\ 2 & \text{avg. err } 0.3(*) \\ 3 & \text{avg. err } 0.9 \\ 1.9 & \text{avg. err } 1.0(\text{really? :-})) \end{cases}$$

$$f(\mathbf{x}) = \operatorname*{argmax}_{y \in \mathcal{Y}} P(y|\mathbf{x})$$

$$\operatorname{err}(\tilde{y}, y) = (\tilde{y} - y)^2$$

$$f(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}} \mathbf{y} \cdot P(\mathbf{y}|\mathbf{x})$$

Learning Flow with Error Measure

extended VC theory/'philosophy'
works for most \mathcal{H} and err

Fun Time

Consider the following $P(y|\mathbf{x})$ and $err(\tilde{y}, y) = |\tilde{y} - y|$. Which of the following is the ideal mini-target $f(\mathbf{x})$?

$$P(y = 1|\mathbf{x}) = 0.10, P(y = 2|\mathbf{x}) = 0.35,$$

 $P(y = 3|\mathbf{x}) = 0.15, P(y = 4|\mathbf{x}) = 0.40.$

- **1** 2.5 = average within $\mathcal{Y} = \{1, 2, 3, 4\}$
- 2 2.85 = weighted mean from $P(y|\mathbf{x})$
- 3 3 = weighted median from $P(y|\mathbf{x})$
- 4 = $\operatorname{argmax} P(y|\mathbf{x})$

Reference Answer: (3)

For the 'absolute error', the weighted median provably results in the minimum average err.

Choice of Error Measure

Fingerprint Verification

two types of error: false accept and false reject

0/1 error penalizes both types equally

Fingerprint Verification for Supermarket

Fingerprint Verification

two types of error: false accept and false reject

		g	
		+1	-1
	+1	no error	false reject
′	-1	false accept	no error

		g		
		+1	-1	
f	+1	0	10	
'	-1	1	0	

- · supermarket: fingerprint for discount
- false reject: very unhappy customer, lose future business
- false accept: give away a minor discount, intruder left fingerprint :-)

Fingerprint Verification for CIA

Fingerprint Verification

two types of error: false accept and false reject

		g	
		+1	-1
f	+1	no error	false reject
'	-1	false accept	no error

		g	
		+1	-1
f	+1	0	1
1	-1	1000	0

- CIA: fingerprint for entrance
- false accept: very serious consequences!
- false reject: unhappy employee, but so what? :-)

Take-home Message for Now

err is application/user-dependent

Algorithmic Error Measures err

- true: just err
- plausible:
 - 0/1: minimum 'flipping noise'—NP-hard to optimize, remember? :-)
 - squared: minimum Gaussian noise
- friendly: easy to optimize for A
 - closed-form solution
 - convex objective function

err: more in next lectures

Learning Flow with Algorithmic Error Measure

err: application goal;

 $\widehat{\operatorname{err}}$: a key part of many ${\mathcal A}$

Fun Time

Consider err below for CIA. What is $E_{in}(g)$ when using this err?

Reference Answer: (2)

When $y_n = -1$, the false positive made on such (\mathbf{x}_n, y_n) is penalized 1000 times more!

Summary

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 7: The VC Dimension

Lecture 8: Noise and Error

- Noise and Probabilistic Target can replace f(x) by P(y|x)
- Error Measure affect 'ideal' target
- ◆ Algorithmic Error Measure user-dependent ⇒ plausible or friendly
- next: more algorithms, please? :-)
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?