Centurion UNIVERSITY Supporting Communities.	School:			Campus:		
	Academic Year:	Subject Name:		Subject Code:		
	Semester:	. Program:	Branch:	Specialization:		
	Date: Applied and Action Learning					

(Learning by Doing and Discovery)

Name of the Experiement:

Coding Phase: Pseudo Code / Flow Chart / Algorithm

ECDSA Workshop – Digital Signatures Demo:

The tool demonstrates Elliptic Curve Digital Signature Algorithm (ECDSA) - the same cryptography used by Bitcoin, Ethereum, and most blockchain networks. It shows how digital signatures provide authentication, integrity, and non-repudiation.

Key Components:

- 1. Elliptic Curve Cryptography (secp256k1)
 - Uses the same curve as Bitcoin/Ethereum (secp256k1)
 - Private key: A random 256-bit number (64 hex characters)
 - Public key: Derived from private key using elliptic curve multiplication
 - One-way function: Easy to generate public key from private key, but impossible to reverse
- 2. SHA-256 Hashing
 - Converts any message into a fixed 256-bit fingerprint
 - Ensures message integrity any change in message changes the hash completely
- 3. Digital Signature Process
 - Signing: Private key + Message hash = Signature
 - Verification: Public key + Message hash + Signature = Valid/Invalid

Step-by-Step Workflow

Phase 1: Key Generation User clicks "Generate New Key Pair"

elliptic.ec('secp256k1').genKeyPair()

Private Key: 64-character hex (e.g., "2f4...c3a")

Public Key: 130-character hex (derived from private key)

Phase 2: Message Signing

Message: "Hello, Blockchain World!"

SHA-256 Hash: "a591a6...b64b4" (64-character hex)

Private Key signs the hash using ECDSA algorithm

Digital Signature: "3044...022100...0220..." (DER format)

Coding Phase: Pseudo Code / Flow Chart / Algorithm

* Softwares used

- VSCode
- Node.js
- React
- Elliptic.js, crypto.js
- Curve- secp256k1
- SHA256
- HTML, CSS, Javascript

Applied and Action Learning * Testing Phase: Compilation of Code (error detection) export 'generateRandomMessage' (imported as 'generateRandomMessage') was not found in '../utils/ecdsaHelpers' (possible exports: formatKey, generateKeyPair, isValidHex, signMessage, verifySignature)

' Implementation Phase: Final Output (no error)

Implementation Phase: Final Output (no error)

Implementation Phase: Final Output (no error)

Page No.....

* Implementation Phase: Final Output (no error)

Applied and Action Learning

* Observations

- 1. Authentication
 - Only the holder of the private key can create a valid signature
 - Verifier can confirm the signer's identity using the public key
- 2. Integrity
 - Any change to the message invalidates the signature
 - SHA-256 ensures even a single character change produces completely different hash
- 3. Non-Repudiation
 - Signer cannot deny having signed the message
 - · Signature is mathematically tied to their private key

ASSESMENT

Rubrics	Full Mark	Marks Obtained	Remarks
Concept	10		
Planning and Execution/	10		
Practical Simulation/ Programming			
Result and Interpretation	10		
Record of Applied and Action Learning	10		
Viva	10		
Total	50		

Signature	of the	Student	Ŀ
-----------	--------	---------	---

Name:

Signature of the Faculty:

Regn. No. :

Page No.....