Theorem 3.1 (Decomposition of function into even and odd parts). Any arbitrary function x can be uniquely represented as the sum of the form

$$x(t) = x_{e}(t) + x_{o}(t),$$
 (3.7)

where x_e and x_o are even and odd, respectively, and given by

$$x_{\rm e}(t) = \frac{1}{2} [x(t) + x(-t)]$$
 and (3.8)

$$x_{o}(t) = \frac{1}{2} [x(t) - x(-t)]. \tag{3.9}$$

As a matter of terminology, x_e is called the **even part** of x and is denoted Even $\{x\}$, and x_o is called the **odd part** of x and is denoted $Odd\{x\}$.

Partial *Proof.* From (3.8) and (3.9), we can easily confirm that $x_e + x_e$

can easily confirm that
$$x_e + x_o = x$$
 as follows:
$$x_e(t) + x_o(t) = \frac{1}{2}[x(t) + x(-t)] + \frac{1}{2}[x(t) - x(-t)] \qquad \text{of xe and xo}$$

$$= \frac{1}{2}x(t) + \frac{1}{2}x(-t) + \frac{1}{2}x(t) - \frac{1}{2}x(-t)$$

$$= x(t).$$

Furthermore, we can easily verify that x_e is even and x_o is odd. From the definition of x_e in (3.8), we have

$$x_{e}(-t) = \frac{1}{2}[x(-t) + x(-[-t])]$$
 substitute -t for t
= $\frac{1}{2}[x(t) + x(-t)]$ in definition of x_{e} = $x_{e}(t)$.

Thus, x_e is even. From the definition of x_0 in (3.9), we have

y that
$$x_e$$
 is even and x_o is odd. From the definition of x_e in (3.8), we have
$$x_e(-t) = \frac{1}{2}[x(-t) + x(-[-t])] \qquad \text{substitute } -t \text{ for } t$$

$$= \frac{1}{2}[x(t) + x(-t)] \qquad \text{in definition of } x_e$$

$$= x_e(t).$$
tion of x_o in (3.9), we have
$$x_o(-t) = \frac{1}{2}[x(-t) - x(-[-t])] \qquad \text{substitute } -t \text{ for } t$$

$$= \frac{1}{2}[-x(t) + x(-t)] \qquad \text{in definition of } x_o$$

$$= -x_o(t).$$

Thus, x_0 is odd.