Numerical Computing F'22		
Exam 2	Name:	

There are 7+ questions. You can use a crib sheet but no calculators or other notes are to be used. Make sure to show your work, any answer without supporting work will receive no credit.

- 1. Interpolation is going to be used to approximate the function $f(x) = x^3$ on the interval $-1 \le x \le 2$, using $x_1 = -1$, $x_2 = 0$, and $x_3 = 2$.
- a) Find the piecewise linear interpolation function.

b) Find the quadratic interpolation function.

2. Find $s_2(x)$ so s(x) is a natural cubic spline for $-1 \le x \le 1$.

$$s(x) = \begin{cases} -2 + x + 6x^2 + 2x^3 & \text{if } -1 \le x \le 0, \\ s_2(x) & \text{if } 0 \le x \le 1. \end{cases}$$

3. Suppose that $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, and

$$s(x) = B_1(x) - B_3(x) + B_4(x)$$
, for $-1 \le x \le 1$.

a) What data points (x_i, y_i) were used to produce this cubic spline?

b) Is this a natural cubic spline?

4. The second, f''(x), and fourth, f''''(x), derivative of a function f(x) are plotted in the figure below for $0 \le x \le 3$.

a) For piecewise linear interpolation of f(x), how many data points are needed to guarantee that the error is less than 10^{-8} ?

b) To compute $\int_0^3 f(x)dx$ using the composite Simpson's rule, how small does the step size h have to be to guarantee that the error is less than 10^{-9} ?

5. What is the principal reason that Lagrange interpolation should be used instead of the direct approach for polynomial interpolation?

6. The midpoint rule states that $\int_{x_i}^{x_{i+1}} f(x)dx \approx hf(c_i)$, where $c_i = x_i + \frac{1}{2}h$. Show that the error is $O(h^3)$. Do not use the theorem we derived for the error for the midpoint rule (you are being asked to derive that result in this problem).

7. The data for a function f(x) are given below. You are to use as many of the data points as possible to evaluate $\int_0^6 f(x)dx$ using the given method.

x	0	1	2	4	6
f(x)	-1	1	0	-2	1

a) Use the trapezoidal rule to evaluate the integral.

b) Use Simpson's rule to evaluate the integral.

8. Suppose an integration rule has the form

$$\int_{a}^{b} f(x)dx \approx w_1 f\left(a + \frac{1}{4}\ell\right) + w_2 f\left(b\right),$$

where $\ell = b - a$. Find the values of w_1 and w_2 that maximize the precision.

Extra Credit: With the derived values for w_1 and w_2 in Problem 8, it is found that

$$\int_{a}^{b} f(x)dx = w_1 f(a + \frac{1}{4}\ell) + w_2 f(b) + K\ell^3 f''(\eta),$$

for some η with $a < \eta < b$. Find K.

Worksheet