

Knots, Plethysms, and the Riordan Group

Minh-Tâm Quang Trinh

Howard University

1 Fruit

"You can't add together apples and oranges."

Well, not in real life.

But in mathematics, you can make up a new world where this is possible.

The free vector space on $X = \{\text{apple, orange, pear}\}:$

$$\mathbf{C}\langle X \rangle = \{a \cdot \text{apple} + b \cdot \text{orange} + c \cdot \text{pear} \mid a, b, c \in \mathbf{C}\}.$$

Natural ways to do addition and scalar multiplication on $\mathbf{C}\langle X \rangle$.

Too dumb? The vectors "apple" and "orange" just sum to "apple + orange".

But there's a vector space where it simplifies further.

- Start with some relations like
 pear ~ apple + orange, orange ~ 2 · apple.
- (2) Let Rel be the span of "pear apple orange" and "orange $2 \cdot$ apple".
- (3) Extend \sim to an equivalence relation on $\mathbf{C}\langle X \rangle$: $v \sim v' \iff v v' \in Rel.$

The set of equivalence classes is a new vector space $\mathbb{C}\langle X \rangle/Rel$, in which \sim defines equality.

2 Knots and Links I'm interested in knots and links. Knot diagrams:

Links allow multiple circles:

An *oriented link diagram* is a link diagram where we give each circle a direction/orientation.

Also interested in diagrams that are strictly inside a given region $\Omega \subseteq \mathbf{R}^2$.

Will mainly focus on $\Omega = \mathbf{R}^2$ and $\Omega = \mathbf{R}^2 \setminus \mathbf{0}$.

We will treat two diagrams in Ω as <u>equal</u> as long as they are *isotopic*:

That is, we can deform one into the other within Ω , without tearing any circles.

Let \mathcal{L}_{Ω} be the set of all oriented link diagrams in Ω , including the empty diagram.

 $\mathbb{C}\langle\mathcal{L}_{\Omega}\rangle = \{\text{finite linear combos of elements of } \mathcal{L}_{\Omega}\}$

is usually huge!

To study it, try to find equivalence relations on it that give us smaller, more tractable vector spaces.

This is called *skein theory*.

The interesting parts of links are the crossings.

One thing that we can do with links, which we could not do with fruit:

We can specify *local relations*, that relate diagrams whenever they differ at a single crossing.

E.g., we might have three diagrams that only differ at one crossing:

We will interpret a relation on these crossings as a relation on *every* such triple of oriented link diagrams.

Fix constants $a \neq 0$ and $q \neq 0, 1$.

It turns out that the following local $skein\ relations$ are especially interesting.

$$\left\langle \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \right) - \left(\sum_{j=1}^{n} \right) = \left(q - q^{-1} \right) \cdot \left(\sum_{j=1}^{n} \right) = -a^{-1} \cdot \left(\sum_{j=1}^{n} \right)$$

When $\Omega \neq \mathbf{R}^2$, we will be a bit more restrictive:

We will only apply the relations when the drawings take place inside an open disk inside Ω .

E.g., we will not simplify a circle using the bottom left relation when Ω has a hole inside the circle.

The relations give us a linear subspace $Rel_{\Omega} \subseteq \mathbf{C}(\mathcal{L}_{\Omega})$.

The HOMFLYPT skein module of Ω is

$$\operatorname{Sk}_{\Omega} = \mathbf{C} \langle \mathcal{L}_{\Omega} \rangle / Rel_{\Omega}.$$

Thm (\approx HOMFLYPT 1986)

$$\mathrm{Sk}_{\mathbf{R}^2} = \mathbf{C}.$$

That is, any diagram in \mathbb{R}^2 is a scalar multiple of the empty diagram modulo the skein relations.

The *HOMFLYPT invariant* of a link is the scalar that we get from any diagram of the link.

Example Consider the following element in $\mathbf{C}\langle \mathcal{L}_{\mathbf{R}^2} \rangle$:

$$L = \bigcirc$$

Modulo the "crossing" rule,

$$L = + (q - q^{-1})$$

Modulo
$$\bigcirc = \frac{a-a^{-1}}{q-q^{-1}} \cdot \emptyset,$$

$$L \,=\, \left(\frac{a-a^{-1}}{q-q^{-1}}\right)^2 \cdot \emptyset \,+\, (a-a^{-1}) \cdot \emptyset.$$

So the scalar is
$$\left(\frac{a-a^{-1}}{q-q^{-1}}\right)^2 + a - a^{-1}$$
.

For $\Omega = \mathbf{R}^2 \setminus \mathbf{0}$, what happens?

Cannot simplify circles in $\mathbb{R}^2 \setminus \mathbf{0}$ that go around $\mathbf{0}$. In fact: pairwise distinct diagrams p_n for all $n \in \mathbb{Z}$.

(n > 0 is counterclockwise, n < 0 clockwise.) We set $p_0 = \emptyset$ as a matter of convention. There are even more diagrams in $\mathbf{R}^2 \setminus \mathbf{0}$ that we cannot simplify.

If we have two diagrams L and L', then we can put L around L' to get a new diagram

$$L \cdot L'$$
.

Note that $L \cdot L'$ and $L' \cdot L$ are isotopic.

Extend this to a binary operation on $\text{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$, by making it distribute over addition.

Think of this as a multiplication law, which turns $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$ into a *ring*.

Monomials in the p_n 's, like $p_1p_2p_3$ or p_{-1}^2 , do not simplify further.

Thm (Turaev 1988)

The collection of all monomials in the p_n 's is a basis for $\operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$ as a vector space.

Corollary As a ring,

$$\operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}} = \mathbf{C}[p_0, p_{\pm 1}, p_{\pm 2}, \ldots].$$

Remark

The subring generated by p_0, p_1, p_2, \ldots is isomorphic to a very famous ring in combinatorics, called the *ring* of symmetric functions.

3 Plethysm Another operation on $Sk_{\mathbf{R}^2\setminus\mathbf{0}}$:

The first diagram above is p_2 . Call the middle one L. The last diagram is the $plethysm\ L\circ p_2$.

If L had multiple knot components, then we would form $L \circ p_2$ by inserting p_2 into each component, following their orientations.

For any n, we define $L \circ p_n$ analogously.

It can be fun to check that:

(1) $p_m \circ p_n = p_{mn}$ for any m, n.

How to define $L \circ K$ for any K and L?

Every element of $\operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$ is a polynomial in the p_n 's, so it is enough to declare:

- (2) $-\circ K$ distributes over + and \cdot , for all K.
- (3) $p_n \circ -$ distributes over + and \cdot , for all n.

Thm (1)–(3) define a binary operation on $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$. This operation is associative, non-commutative, and has identity element p_1 :

$$L \circ p_1 = L = p_1 \circ L$$
 for any L .

Let $\mathbf{C}[t]$ be the ring of polynomials in t.

$$\begin{array}{c|c} \operatorname{Sk}_{\mathbf{R}^2 \backslash \mathbf{0}} & p_1 & \operatorname{plethysm} \\ \mathbf{C}[t] & t & \operatorname{composition of polynomials} \end{array}$$

By comparison, the composition operation

$$(g \circ f)(t) = g(f(t))$$

on $\mathbf{C}[t]$ is characterized by:

- (1) $f(t) \circ t = f(t) = t \circ f(t)$ for any f.
- (2) $-\circ f(t)$ distributes over + and \cdot , for any f.

Remark t^n is analogous to p_1^n , not to p_n :

E.g.,
$$t^n \circ (f_1(t) + f_2(t)) \neq t^n \circ f_1(t) + t^n \circ f_2(t)$$
.

4 Riordan Revisited

In combinatorics, we like to study number sequences c_0, c_1, c_2, \dots through *generating functions*

$$c(t) = c_0 + c_1 t + c_2 t^2 + \dots,$$

a.k.a. formal power series. They form a ring $\mathbb{C}[t]$.

The word "formal" means we don't worry about whether c(t) converges at any given value of t.

Any polynomial is a power series: $\mathbf{C}[t] \subseteq \mathbf{C}[\![t]\!]$.

But \circ does <u>not</u> extend to a binary operation on $\mathbf{C}[\![t]\!]$.

Example If $c(t) = 1 + t + t^2 + ...$, then c(1) diverges.

Similarly, c(1 + blah(t)) will never work. By contrast:

$$c(t+t^2) = 1 + (t+t^2) + (t+t^2)^2 + (t+t^2)^3 + \dots$$

$$= \begin{cases} 1 \\ +t+t^2 \\ +t^2 + 2t^3 + t^4 \\ +t^3 + 3t^4 + \dots \\ +t^4 + \dots \end{cases}$$

$$= 1 + t + 2t^2 + 3t^3 + 5t^4 + \dots$$

In general, we can form $g \circ f$ as long as f has zero constant term.

Let $\mathbb{C}[\![t]\!]^{\circ}$ be the further subset of power series with zero constant term and nonzero linear term.

Thm Any element of $\mathbb{C}[\![t]\!]^{\circ}$ has an inverse under \circ .

In other words:

 $\mathbf{C}[\![t]\!]^{\circ}$ forms a group under $\circ,$ with identity t.

If you think about what I've covered, you'll realize: There is an analogous group where we replace

$$\mathbf{C}[t] \supseteq \mathbf{C}[t]$$

with a certain containment

$$\widehat{\operatorname{Sk}}_{\mathbf{R}^2 \backslash \mathbf{0}} \supseteq \operatorname{Sk}_{\mathbf{R}^2 \backslash \mathbf{0}}$$

and replace composition with plethysm.

Maybe interesting for symmetric functions.

Thm Any element of $\mathbf{C}[t]^{\circ}$ has an inverse under \circ .

Proof sketch For any $f \in \mathbb{C}[\![t]\!]^{\circ}$, let M_f be the infinite matrix whose columns record the powers of f:

$$M_f = \begin{pmatrix} 1 & & & \\ 0 & c_{1,1} & & \\ 0 & c_{2,1} & c_{2,2} & \\ \vdots & \vdots & & \ddots \end{pmatrix},$$

where the $c_{i,j}$ are given by $f(t)^j = \sum_{i>0} c_{i,j} t^i$.

For example, $M_t = I$, the identity matrix.

In general, we can recover f from M_f by looking at the second column.

Since M_f is lower-triangular with nonzero diagonal entries, it is *invertible*.

Now check the following facts:

- (1) M_f^{-1} takes the form M_g for some $g \in \mathbf{C}[\![t]\!]^{\circ}$.
- (2) $M_{f_1 \circ f_2} = M_{f_1} \cdot M_{f_2}$.

We deduce that for any f, there's some g s.t.

$$M_{g \circ f} = M_g \cdot M_f = M_f^{-1} \cdot M_f = I = M_t.$$

Thus
$$g(t) \circ f(t) = t$$
. \square

This proof shows that the group $\mathbf{C}[\![t]\!]^{\circ}$ embeds into the group of invertible infinite matrices \mathbf{GL}_{∞} .

Recall that the set $\mathbb{C}[\![t]\!]^{\times}$ of power series with *nonzero* constant term forms a group under \times .

The map $f \mapsto M_f$ can be extended to an embedding

$$\mathbf{C}[\![t]\!]^{\times} \rtimes \mathbf{C}[\![t]\!]^{\circ} \hookrightarrow \mathrm{GL}_{\infty},$$

$$(u, f) \mapsto M_{u, f}.$$

Shapiro's $Riordan\ group$ is the image.

This also has an analogue in the world of plethysm.

Thank you for listening.