Virtualization on TrustZone-enabled Microcontrollers? Voilà

S. Pinto, H. Araujo, D. Oliveira, J. Martins, A. Tavares

Presented by: Álvaro Albero Gran

Problem domain and motivation

- An increase of IoT devices, applications and functionality
- Demand for strong isolation
- Available in high-end embedded devices, not in low-cost systems
- Traditional implementation was to physically separate the systems, but this
 does not scale in size and cost

Contributions

- A virtualization solution for low cost embedded systems
- Use of TrustZone technology on a modern Arm microcontroller
- Lightweight hypervisor
 - Strong isolation
 - Low memory footprint
 - High efficiency
 - Strict timing predictability

Arm TrustZone

- Hardware security-oriented technology
- Secure and non-secure worlds
- Already used in high-end devices (Cortex-A processors)
- TrustZone-M, version for MCUs (Cortex-M MCUs)
- There are a set of challenges

More Arm TrustZone

TrustZone

- Non-Secure bit
- Secure Monitor
- TZASC and TZPC

TrustZone-M

- Similar high level, but differences
- Partitioned physical address space
- Secure Attribution Unit (SAU)
- Nested Vectored Interrupt Controller (NVIC)

(a) TrustZone for Cortex-A

(b) TrustZone for Cortex-M

TrustZone Assisted Virtualization

- Hardware-assisted virtualization
- Achieves time and spatial isolation
- Dual-guest and multi-guest configurations

Challenges switching to TrustZone-M

- TrustZone-M excludes Non-Secure bit
- TrustZone-M excludes SMC
- TrustZone-M excludes TZASC and TZPC
- NVIC does not provide FIQ

TrustZone-M Hypervisor

- Dual-OS configuration
- Hypervisor decoupled from secure OS
- The figure shows the high level architecture for single-core
- The implementation details are
 - CPU virtualization
 - Memory and device partitioning
 - Interrupt and time management
- AMP Configuration

TrustZone-M Hypervisor

- Interrupt Management
 - Configure IRQs as secure or non-secure
 - Each VM is able to handle their own interrupts
- Time Management
 - Temporal isolation is required for virtualization
 - Leverate TrustZone-M timing facilities
 - SysTick
 - S-VM SysTick has privileges
 - AMP overcomes time limitations

TrustZone-M Hypervisor

AMP Configuration

Scalability

- They do not provide support for multiple guests
- But existing resources make it possible
- They plan to implement this architecture

Predictable shared resources management

- Embedded virtualization has benefits but is full of challenges
- AMP hypervisors remove part of this contention
 - Some System wide resources are still subject to contention
- Approaches to solve this are not available on MCUs
- But many of these resources are not used in low-end platforms
- With these ideas in mind, the authors believe they can achieve high determinism on AMP virtualization through an informed and thoughtful layout of VM memory

Predictable shared resources management

The Arm Musca-A memory subsystem

iSRAM 0-3 eSRAM QSPI Flash

- Contention-Aware memory layout
 - Memory layout to minimize contention of shared resources
 - Start with ideal scenario and iterate over it
 - They envision an automated tool
 - Peripheral assignment is out of scope and may result in contention

Evaluation - Setup

- Arm Musca-A chip
- Both cores at 50 MHz
- Single and multi-core configuration (AMP)
- FreeRTOS as guest OS for both S-VM and NS-VM
- The evaluation focuses on performance, interrupt latency and contention
- Runtime overhead of the hypervisor on VM execution
- Interrupt latency, additional jitter at the VM level
- Contention, how the memory layout can lead the NS-VM to create contention on shared buses and affect time predictability on S-VM

Evaluation - Performance Overhead

SysTick Overhead

Starvation

- Starvation in NS-VM
- Task in S-VM with workloads of 0-75%
- Single core performance decreases linearly, complete starvation at 100%.
- AMP overcomes starvation

Evaluation - Interrupt Latency

The time from the moment an interrupt is triggered till the moment the handler starts to execute, it is critical in real time systems

Timer triggers every 10ms

Conclusions

- Lightweight virtualization infrastructure for low-end systems
- Using TrustZone-M technology
- Use a low-end Arm multi-core platform
- Reduced memory footprint, high efficiency and determinism
- First virtualization infrastructure for TrustZone enabled MCUs

Critiques

- @nikorev: "TrustZone-M will be a game-changer for low-end virtualization. However, as of this writing, existing TrustZone-assisted hypervisor have no support for Arm8-M."
- @nikorev and @tuhinadasgupta: single-core performance using virtualization goes down drastically
- @nikorev: single-core solution opens up opportunity for a denial-of-service through contention
- @tuhinadasgupta: worried about compatibility as not all MCU implement
 TrustZone-M

Appendix

Fig. 9: Musca-A chip memory and interconnect block diagram. Adapted from [27].

Fig. 10: Path of memory configurations in Musca-A. Green line for data and red line for code.