Mordell-Weil groups of elliptic curves induced by Diophantine triples

Andrej Dujella

Department of Mathematics University of Zagreb, Croatia

e-mail: duje@math.hr

URL: http://web.math.hr/~duje/

Let E be an elliptic curve over \mathbb{Q} .

By Mordell's theorem, the group $E(\mathbb{Q})$ of rationals points on E is a finitely generated abelian group. Hence, it is the product of the torsion group and $r \geq 0$ copies of infinite cyclic group:

$$E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\mathsf{tors}} \times \mathbb{Z}^r$$
.

By Mazur's theorem, we know that $E(\mathbb{Q})_{tors}$ is one of the following 15 groups:

$$\mathbb{Z}/n\mathbb{Z}$$
 with $1 \le n \le 10$ or $n = 12$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2m\mathbb{Z}$ with $1 \le m \le 4$.

On the other hand, it is not know what values of rank r are possible for elliptic curves over \mathbb{Q} . The "folklore" conjecture is that a rank can be arbitrary large, but it seems to be very hard to find examples with large rank. The current record is an example of elliptic curve over \mathbb{Q} with rank \geq 28, found by Elkies in May 2006.

There is even a stronger conjecture that for any of 15 possible torsion groups T we have $B(T) = \infty$, where

 $B(T) = \sup\{ \operatorname{rank}(E(\mathbb{Q})) : \operatorname{torsion} \operatorname{group} \operatorname{of} E \operatorname{over} \mathbb{Q} \text{ is } T \}.$

Montgomery (1987): Proposed the use of elliptic curves with large torsion group and positive rank in factorization.

It follows from results of Montgomery, Suyama, Atkin & Morain (Finding suitable curves for the elliptic curve method of factorization, 1993), that $B(T) \geq 1$ for all torsion groups T.

Womack (2000): $B(T) \ge 2$ for all T

Dujella (2003): $B(T) \ge 3$ for all T

 $B(T) = \sup\{\operatorname{rank}(E(\mathbb{Q})) : E(\mathbb{Q})_{\operatorname{tors}} \simeq T\}.$

The best known lower bounds for B(T):

T	$B(T) \geq$	Author(s)
0	28	Elkies (06)
$\mathbb{Z}/2\mathbb{Z}$	18	Elkies (06)
$\mathbb{Z}/3\mathbb{Z}$	13	Eroshkin (07)
$\mathbb{Z}/4\mathbb{Z}$	12	Elkies (06)
$\mathbb{Z}^{'}/5\mathbb{Z}$	6	D. & Lecacheux (01)
$\mathbb{Z}^{'}\!/6\mathbb{Z}$	7	D. (01,06)
$\mathbb{Z}/7\mathbb{Z}$	5	D. & Kulesz (01), Elkies (06)
$\mathbb{Z}/8\mathbb{Z}$	6	Elkies (06)
$\mathbb{Z}/9\mathbb{Z}$	3	D. (01), MacLeod (04), Eroshkin (06)
$\mathbb{Z}/10\mathbb{Z}$	4	D. (05), Elkies (06)
$\mathbb{Z}/12\mathbb{Z}$	3	D. (01,05,06), Rathbun (03,06)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	14	Elkies (05)
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$	8	Elkies (05)
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$	6	Elkies (06)
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$	3	Connell (00), D. (00,01,06),
,		Campbell & Goins (03), Rathbun (03,06)

http://web.math.hr/~duje/tors/tors.html

Construction of high-rank curves

- 1. Find a parametric family of elliptic curves over \mathbb{Q} which contains curves with relatively high rank (i.e. an elliptic curve over $\mathbb{Q}(t)$ with large generic rank).
- 2. Choose in given family best candidates for higher rank. A curve is more likely to have large rank if $\#E(\mathbb{F}_p)$ is relatively large for many primes p.
- 3. Try to compute the rank (Cremona's program MWRANK very good for curves with rational points of order 2).

High-rank elliptic curves with some other additional properties:

- congruent numbers: $y^2 = x^3 n^2x$, r = 6, Rogers (2000)
- Mordell curves: $y^2 = x^3 + k$, r = 12, Quer (1987)
- curves with j = 1728: $y^2 = x^3 + dx$, r = 14, Elkies & Watkins (2002)
- taxicab problem: $x^3 + y^3 = m$, r = 11, Elkies & Rogers (2004)
- Diophantine triples: $y^2 = (ax + 1)(bx + 1)(cx + 1)$ r = 9, Dujella (2007)
- Diophantine quadruples: $y^2 = (ax+1)(bx+1)(cx+1)(dx+1)$ r=8, Dujella & Gibbs (2000)

A set $\{a_1, a_2, \ldots, a_m\}$ of m non-zero integers (rationals) is called a *(rational) Diophantine* m-tuple if $a_i \cdot a_j + 1$ is a perfect square for all $1 \le i < j \le m$.

Diophantus of Alexandria: $\left\{ \frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16} \right\}$

Fermat: $\{1, 3, 8, 120\}$

Baker and Davenport (1969): Fermat's set cannot be extended to a Diophantine quintuple.

D. (2004): There does not exist a Diophantine sextuple and there are only finitely many Diophantine quintuples. Let $\{a,b,c\}$ be a (rational) Diophantine triple. Define nonnegative rational numbers r,s,t by

$$ab + 1 = r^2$$
, $ac + 1 = s^2$, $bc + 1 = t^2$.

In order to extend this triple to a quadruple, we have to solve the system

$$ax + 1 = \square$$
, $bx + 1 = \square$, $cx + 1 = \square$.

It is natural idea to assign to this system the elliptic curve

E:
$$y^2 = (ax + 1)(bx + 1)(cx + 1)$$
.

Transformation $x \mapsto \frac{x}{abc}$, $y \mapsto \frac{y}{abc}$ leads to

$$E': y^2 = (x+bc)(x+ac)(x+ab).$$

Three rational points on E' of order 2:

$$T_1 = [-bc, 0], \quad T_2 = [-ac, 0], \quad T_3 = [-ab, 0],$$

and also other obvious rational points

$$P = [0, abc], \quad Q = [1, rst].$$

In general, we may expect that the points P and Q will be two independent points of infinite order, and therefore that $\operatorname{rank} E(\mathbb{Q}) \geq 2$. Thus, assuming various standard conjectures, we may expect that the most of elliptic curves induced by Diophantine triples with the above construction will have the Mordell-Weil group $E(\mathbb{Q})$ isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^2$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^3$.

Question: Which other groups are possible here?

Mazur's theorem: $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2m\mathbb{Z}$ with m = 1, 2, 3, 4.

D. (2001): If a, b, c are positive integers, then the cases m = 2 and m = 4 are not possible.

For each $1 \le r \le 9$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and the rank equal to r.

$$y^2 = ((k-1)x+1)((k+1)x+1)((16k^3-4k)x+1)$$

generic rank = 2

$$s(N) = \sum_{p \le N, p \text{ prime}} \frac{\#E(\mathbb{F}_p) + 1 - p}{\#E(\mathbb{F}_p)} \log(p)$$

 $s(523) > 22 \& s(1979) > 33 \& Selmer rank <math>\geq 8$

$$k = 3593/2323, r = 9$$

$$y^2 = ((k-1)x+1)(4kx+1)((16k^3-4k)x+1)$$

$$k = -2673/491$$
, $r = 9$

For each $0 \le r \le 7$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ and the rank equal to r.

Curves with torsion $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$ have the equation of the form

$$y^2 = x(x + \alpha^2)(x + \beta^2), \quad \alpha, \beta \in \mathbb{Q}.$$

Comparison with $y^2 = x(x+ac-ab)(x+bc-ab)$ lead to conditions $ac-ab = \Box$, $bc-ab = \Box$. A simple way to fulfill these conditions is to choose a and b such that ab = -1. Then $ac-ab = ac + 1 = s^2$ and $bc-ab = bc + 1 = t^2$. It remains to find c such that $\{a, -1/a, c\}$ is a Diophantine triple.

Parametric solution:

$$a = \frac{2T+1}{T-2}$$
, $c = \frac{8T}{(2T+1)(T-2)}$.

$$T = 7995/6562, \boxed{r = 7}$$

For each $1 \le r \le 4$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ and the rank equal to r.

General form of curves with the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ is

$$y^{2} = (x + \alpha^{2})(x + \beta^{2})\left(x + \frac{\alpha^{2}\beta^{2}}{(\alpha - \beta)^{2}}\right).$$

Comparison gives: $\alpha^2+1=bc+1=t^2$, $\beta^2+1=ac+1=s^2$, $\alpha^2\beta^2+(\alpha-\beta)^2=\square$. We have: $\alpha=\frac{2u}{u^2-1}$, $\beta=\frac{v^2-1}{2v}$, and inserting this in third condition we obtain the equation of the form $F(u,v)=z^2$,

Parametric solution: $u = \frac{v^3 + v}{v^2 - 1}$

$$v = 7, [r = 3]$$

$$u = 34/35$$
, $v = 8$, $r = 4$

For each $0 \le r \le 3$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ and the rank equal to r.

Every elliptic curve over \mathbb{Q} with torsion group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ is induced by a Diophantine triple (D., Campbell & Goins).

Connell, D. (2000):
$$r = 3$$

$$\left\{ \frac{408}{145}, -\frac{145}{408}, -\frac{145439}{59160} \right\}.$$

D. (2007):
$$r = 3$$
 (4-descent, MAGMA)
$$\left\{ \frac{451352}{974415}, -\frac{974415}{451352}, -\frac{745765964321}{439804159080} \right\}.$$