Sensitivity of Coastal Adaptation Costs and Decisions to Sea Level and Socioeconomic Uncertainties

Institute of

First-order

GIS TE CLI

..driven by climatic

factors (e.g., climate

Socioeconomic uncertainties (relocation costs and

abandoned dryland value) are second-largest driver

(12% Galveston; 5% NYC)

sensitivity)

Technology

Tony Wong¹ Lisa Rennels² Frank Errickson³ Vivek Srikrishnan⁴ David Anthoff² Klaus Keller⁵

tony.wong@rit.edu

¹School of Mathematical Sciences, Rochester Institute of Technology

²Energy and Resources Group, University of California Berkeley ³School of Public and International Affairs, Princeton University

- ⁴Department of Biological and Environmental Engineering, Cornell University
- ⁵Thayer School of Engineering, Dartmouth College

Introduction

- Sea-level rise and coastal flooding pose significant risks to coastal communities
- · Efficacy of strategies to manage these risks depends on:
- uncertainty in future emissions pathways
- uncertainty in future socioeconomic change
- uncertainty in geophysical factors (e.g., climate sensitivity)
- Greater model detail can constrain these uncertainties, but also introduces new uncertainties to represent added processes
- · So, we use Galveston, TX and New York City as case studies to ask:
- 1. As we increase model complexity, are we gaining information? Or are we awash in uncertainty?
- 2. Which uncertain predictions & parameters most strongly influence coastal risk?

Workflow

Sea-level projections using MimiBRICK1

Antarctic & Greenland ice sheets, thermal expansion, glaciers and ice caps, and land water storage contributions to local sea levels

Deep uncertainties

3 model configurations (BRICK, DOECLIM-BRICK, SNEASY-BRICK) 4 SSP-RCP pathways (SSP1-2.6, SSP2-4.5, SSP4-6.0, SSP5-8.5)

Calibration to observational data

CO₂, temperature, ocean heat uptake, and sea level contributions

Local coastal impacts using MimiCIAM²

Mimi Coastal Impact and Adaptation Model to estimate net present value (NPV) of total adaptation costs from protection or retreat, and damages from inundation, wetland loss, and flooding

Global sensitivity analysis

Run model many times, varying uncertain parameters How much variance in total adaptation costs is attributable to each uncertainty?

Results

Total costs (millions 2010 US\$)

Take-aways

- Distributions tighten as model detail added information gained!
- Predictions/parameters most strongly influencing coastal risk:
- Antarctic ice sheet Socioeconomic (dryland value, relocation costs) Climate sensitivity
- · Role of major ice sheets varies by proximity to site, gravitational effects
- For U.S. Gulf Coast site, CO2, climatic, and temperature-driven factors important
- This open source framework is readily incorporated into cost-benefit integrated assessment models to represent deeply uncertain sea-level impacts and adaptation responses in policy relevant metrics such as the social cost of carbon4

Model and analysis codes available from: https://github.com/raddleverse

Digital version of this poster:

References

- 1. Wong et al. 2022a, doi: 10.21105/joss.04556
- Wong et al. 2022b, arxiv.org/abs/2211.16460 (accepted, Earth's Future)
- 3. Doss-Gollin & Keller 2022, doi: 10.1002/essoar.10511798.2
- 4. Rennert et al. 2022, doi: 10.1038/s41586-022-05224-9

Acknowledgements

This material is based upon work supported by the National Science Foundation under Award No. DMS-2213432. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

