

Gaussian Processes

Useful references:

Gaussian Processes for Machine Learning by Rasmussen and Williams @ www.GaussianProcess.org/gpml

What are Gaussian Processes?

A *Gaussian process (GP)* is a *probability distribution* over possible *functions*; any combination of these functions jointly Gaussian distributed

Key Points:

- GPs can be used as models for both regression and classification
- Since the model is a probability distribution (over a function space that is Gaussian distributed), we can calculate <u>means AND variances</u>
- The *mean function* is calculated from the posterior (recall Baye's) distribution of possible functions → regression predictions
- The *variances* provide native uncertainty measures on these predictions, which are typically absent in other ML models (e.g., ANNs)
- The model, as a posterior, can be updated based on new observations

In "math" speak:

$$m{f}(m{x}) \sim \mathcal{N}(m{\mu}(m{x}), m{K}(m{x}, m{x}'))$$
 covariance/Kernel function that dictates model "smoothness"

Why should we use them?

- Our observations may be "noisy," and it is important to capture that behavior
- They allow you to incorporate prior knowledge
- They provide a reasonable framework to regulate model complexity and more reliably indicate model uncertainty

Suppose we have a random variable X_1 with distribution

$$P_{X_1}(x_1) \sim \mathcal{N}(\mu, \sigma^2)$$

We can generate samples from this distribution

and then project them onto a new axis

Suppose we have a random variable X_1 with distribution

$$P_{X_1}(x_1) \sim \mathcal{N}(\mu, \sigma^2)$$

We can generate samples from this distribution

and then project them onto a new axis

We can do this for another set of samples to obtain two independent Gaussian vectors

Then by connecting random points between the two vectors, we would get a set of linear functions

Suppose we have a random variable X_1 with distribution

$$P_{X_1}(x_1) \sim \mathcal{N}(\mu, \sigma^2)$$

We can generate samples from this distribution

and then project them onto a new axis

using more and more
Gaussian vectors, we could
represent more complex
functions (showing only ten),
but the resulting functions are
inherently noisy!

Why?

Suppose we have a random variable X_1 with distribution

$$P_{X_1}(x_1) \sim \mathcal{N}(\mu, \sigma^2)$$

We can generate samples from this distribution

and then project them onto a new axis

using more and more

Gaussian vectors, we could
represent more complex
functions (showing only ten),
but the resulting functions are
inherently noisy!

...because the Gaussian vectors are *independent*

using multivariate
Gaussians with true
covariance enables
more smoothly
varying functions

- If the dimensionality of the multivariate Gaussians
 (MVG) becomes infinite → a continuous function
- With an infinite number of such functions, we could make predictions at any point
- Functions as MVGs is our initial assumption (prior)
- The functions shown provide expected outputs as a function of inputs <u>without having observed any data</u>

- As data is collected, we can downselect from infinite functions to only the functions that describe the data/observations > posterior (kind of like wavefunctions in quantum mechanics, if that helps)
- As we add more data, the current posterior can be used as the prior to obtain a new posterior

A *Gaussian process (GP)* is a *probability distribution* over possible *functions*; any combination of these functions jointly Gaussian distributed

$$f(m{x}) \sim \mathcal{GP}(\mu(m{x}), k(m{x}, m{x}'))$$
 this is a stochastic function, i.e., a collection of random variables $\mu(m{x}) = \mathbb{E}\left[f(m{x})
ight]$ its distribution is characterized by its mean and covariance function $k(m{x}, m{x}') = \mathrm{Cov}\left[f(m{x}), f(m{x}')
ight] = \mathbb{E}\left[(f(m{x}) - \mu(m{x}))(f(m{x}') - \mu(m{x}'))\right]$

A simple example
$$f(\boldsymbol{x}) = \phi(\boldsymbol{x})^T \boldsymbol{w}$$
 weighting coefficients BUT $\boldsymbol{w} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_p)$ some vector field, e.g., $\phi(\boldsymbol{x})^T = (\sum_i x_i, \sum_i x_i^2, \dots, \sum_i x_i^m)$

for such a process, it is easy to show that $\mu(m{x})=0; \ k(m{x},m{x}')=\phi(m{x})^Tm{\Sigma}_p\phi(m{x}')$

that is just to say that f(x) and f(x') are indeed jointly Gaussian with the above mean and covariance \rightarrow any number of input points will be jointly Gaussian

Let's suppose we have a dataset now
$$\mathcal{D} := \{(m{x}_i, f_i = f(m{x}_i)) \text{ for } i = 1, \dots, n\}$$

$$oldsymbol{f}, oldsymbol{x} \qquad oldsymbol{f}_*, oldsymbol{x}_* \ ag{training} \qquad ag{test}$$

These two sets should be jointly distributed according to our Gaussian prior as

$$egin{bmatrix} m{f}_* \ m{f}_* \end{bmatrix} \sim \mathcal{N} \left(m{0}, egin{bmatrix} k(m{x}, m{x}) & k(m{x}, m{x}_*) \ k(m{x}_*, m{x}) & k(m{x}_*, m{x}_*) \end{bmatrix}
ight)$$
 prior distribution

Now, to get the posterior distribution, we must restrict our prior distribution to only the set of functions that "agree" with our observations/training data (i.e., we should make our prior distribution conditional on our observations)

Let's suppose we have a dataset now

$$\mathcal{D} := \{ (\boldsymbol{x}_i, f_i = f(\boldsymbol{x}_i)) \text{ for } i = 1, \dots, n \}$$

$$oldsymbol{f}, oldsymbol{x} \qquad oldsymbol{f}_*, oldsymbol{x}_* \ ag{training} \qquad ag{test}$$

These two sets should be jointly distributed according to our Gaussian prior as

$$egin{bmatrix} m{f}_* \ m{f}_* \end{bmatrix} \sim \mathcal{N} \left(m{0}, egin{bmatrix} k(m{x}, m{x}) & k(m{x}, m{x}_*) \ k(m{x}_*, m{x}) & k(m{x}_*, m{x}_*) \end{bmatrix}
ight)$$

prior distribution

from math review

$$p(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{y} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}\right)$$
 $p(\boldsymbol{x} \mid \boldsymbol{y}) = \mathcal{N}\left(\boldsymbol{\mu}_{x \mid y}, \boldsymbol{\Sigma}_{x \mid y}\right)$
 $\boldsymbol{\mu}_{x \mid y} = \boldsymbol{\mu}_{x} + \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}_{y})$
 $\boldsymbol{\Sigma}_{x \mid y} = \boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1} \boldsymbol{\Sigma}_{yx}$

$$p(x, y) = \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}\right)$$

$$\left[f_*|f, x, x_*| \sim \mathcal{N}\left(k(x_*, x)k(x, x)^{-1}f\right), k(x_*, x_*) - k(x_*, x)k(x, x)^{-1}k(x, x_*)\right)$$

easy to just sample function values from the posterior by computing the mean and covariance in the above!

Let's suppose we have a dataset now
$$\mathcal{D}:=\{(m{x}_i,f_i=f(m{x}_i)) \ ext{for} \ i=1,\ldots,n\}$$

$$oldsymbol{f}, oldsymbol{x} \qquad oldsymbol{f}_*, oldsymbol{x}_* \ ag{training} \qquad ag{test}$$

In the prior example, our observations were treated as Noise-free; otherwise...

$$y = f(\boldsymbol{x}) + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(0, \sigma_n^2)$ $\operatorname{cov}(\boldsymbol{y}, \boldsymbol{y}) = k(\boldsymbol{x}, \boldsymbol{x}) + \sigma_n^2 \boldsymbol{I}$

This would slightly modify our joint distribution as

$$egin{bmatrix} m{y} \ m{f}_* \end{bmatrix} \sim \mathcal{N} \left(m{0}, egin{bmatrix} k(m{x},m{x}) + \sigma_n^2 m{I} & k(m{x},m{x}_*) \ k(m{x}_*,m{x}) & k(m{x}_*,m{x}_*) \end{bmatrix}
ight)$$

Then, the posterior is obtained by again conditioning on our observations

these are governing
$$egin{aligned} & m{f}_*|m{y}, m{x}, m{x}_* \sim \mathcal{N}(m{f}_*, \cos(m{f}_*, m{f}_*)) \ & ar{m{f}}_* := \mathbb{E}\left[m{f}_*|m{y}, m{x}, m{x}_*\right] = k(m{x}_*, m{x}) \left[k(m{x}, m{x}) + \sigma_n^2 m{I}\right]^{-1} m{y} \ & \text{equations} \end{aligned}$$
 $\mathbb{V}\left[m{f}_*\right] = \cos(m{f}_*, m{f}_*) = k(m{x}_*, m{x}_*) - k(m{x}_*, m{x}) \left[k(m{x}, m{x}) + \sigma_n^2 m{I}\right]^{-1} k(m{x}, m{x}_*) \end{aligned}$

Log Marginal Likelihood

"marginal likelihood" or "evidence"

$$p(oldsymbol{y}|oldsymbol{x}) = \int p(oldsymbol{y}|oldsymbol{f},oldsymbol{x})p(oldsymbol{f}|oldsymbol{x})doldsymbol{f}$$

 \rightarrow how likely would we observe the data that we have given the data originates from f(x)

Assuming a Gaussian process, we can show that

$$\log p(\boldsymbol{y}|\boldsymbol{x}) = -\frac{1}{2}\boldsymbol{y}^T(\boldsymbol{K} + \sigma_n^2\boldsymbol{I})^{-1}\boldsymbol{y} - \frac{1}{2}\log|\boldsymbol{K} + \sigma_n^2\boldsymbol{I}| - \frac{n}{2}\log 2\pi$$

"log marginal likelihood""

- All the terms necessary to evaluate this are also used to obtain the mean function
- Useful metric for evaluating different models
- Hyperparameter optimization based on minimizing log likelihood

Basic Algorithm Outline

1. Define data/models:

$$oldsymbol{x},oldsymbol{y},k,\sigma_n^2,oldsymbol{x}_*$$

2. Perform Cholesky decomposition

$$\boldsymbol{L} := \operatorname{cholesky}(k(\boldsymbol{x}, \boldsymbol{x}) + \sigma_n^2 \boldsymbol{I})$$

3. Compute predictive mean function $oldsymbol{lpha} := oldsymbol{L}^T ackslash (oldsymbol{L} ackslash oldsymbol{y})$

$$ar{f}_* := k(oldsymbol{x}, oldsymbol{x}_*)^T oldsymbol{lpha}$$

4. Compute predictive variance

$$oldsymbol{v} := oldsymbol{L} ackslash k(oldsymbol{x}, oldsymbol{x}_*)$$

$$\mathbb{V}\left[f_*\right] = k(\boldsymbol{x}_*, \boldsymbol{x}_*) - \boldsymbol{v}^T \boldsymbol{v}$$

5. Compute log marginal likelihood

$$\log p(\boldsymbol{y}|\boldsymbol{x}) = -\frac{1}{2}\boldsymbol{y}^T\boldsymbol{\alpha} - \sum_{i} \log L_{ii} - \frac{n}{2} \log 2\pi$$

6. Return mean, variance, log marginal likelihood

Basic Algorithm Outline

1. Define data/models:

$$oldsymbol{x},oldsymbol{y},k,\sigma_n^2,oldsymbol{x}_*$$

2. Perform Cholesky decomposition
$$m{L} := ext{cholesky}(k(m{x},m{x}) + \sigma_n^2 m{I})$$

Go to Jupyter Notebook

5. Compute log marginal likelihood

$$\log p(oldsymbol{y}|oldsymbol{x}) = -rac{1}{2}oldsymbol{y}^Toldsymbol{lpha} - \sum_i \log L_{ii} - rac{n}{2}\log 2\pi$$

6. Return mean, variance, log marginal likelihood

Gaussian Distribution

Gaussian distribution is the most well-studied distribution in science, engineering, and ML

- ubiquity (often stemming from central limit theorem)
- computationally convenient

$\frac{\text{univariate}}{p(x|\mu,\sigma^2)} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \quad p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{m/2}} |\boldsymbol{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{\sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$ $p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) \quad \text{for short}$

standard normal distribution $\rightarrow \mathbf{0}$ mean and \mathbf{I}_n as the covariance matrix

Basic tenant of Gaussian distributions: doing things with Gaussians results in Gaussians

Gaussian Distribution

Consider the joint distribution over *X* and *Y*:

$$p(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}\right)$$

Marginals over Gaussians are Gaussians

$$p(\boldsymbol{x}) = \int p(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{xx})$$

• Conditionals of Gaussians are Gaussians

$$egin{align} p(oldsymbol{x} \,|\, oldsymbol{y}) &= \mathcal{N}ig(oldsymbol{\mu}_{x \,|\, y}, \, oldsymbol{\Sigma}_{x \,|\, y}ig) \ oldsymbol{\mu}_{x \,|\, y} &= oldsymbol{\mu}_{x} + oldsymbol{\Sigma}_{xy} oldsymbol{\Sigma}_{yy}^{-1} (oldsymbol{y} - oldsymbol{\mu}_{y}) \ oldsymbol{\Sigma}_{x \,|\, y} &= oldsymbol{\Sigma}_{xx} - oldsymbol{\Sigma}_{xy} oldsymbol{\Sigma}_{yy}^{-1} oldsymbol{\Sigma}_{yx} \end{split}$$

• The product of Gaussians is Gaussian

$$egin{aligned} \mathcal{N}(oldsymbol{x}|oldsymbol{a},oldsymbol{A})\mathcal{N}(oldsymbol{x}|oldsymbol{b},oldsymbol{B}) &
ightarrow c\mathcal{N}(oldsymbol{x}|oldsymbol{c},oldsymbol{C}) \ oldsymbol{C} &= (oldsymbol{A}^{-1}+oldsymbol{B}^{-1})^{-1} \ oldsymbol{c} &= oldsymbol{C}(oldsymbol{A}^{-1}oldsymbol{a}+oldsymbol{B}^{-1}oldsymbol{b}) & c &= \mathcal{N}(oldsymbol{a}|oldsymbol{b},oldsymbol{A}+oldsymbol{B}) \end{aligned}$$

The sum over independent Gaussian variables is... Gaussian $p(m{x}, m{y}) = p(m{x}) p(m{y})$

$$p(\boldsymbol{x} + \boldsymbol{y}) = \mathcal{N}(\boldsymbol{\mu}_x + \boldsymbol{\mu}_y, \boldsymbol{\Sigma}_x + \boldsymbol{\Sigma}_y)$$

• Any linear transformation of Gaussians is Gaussian $p(am{x}+bm{y})=\mathcal{N}(am{\mu}_x+bm{\mu}_y,\,a^2m{\Sigma}_x+b^2m{\Sigma}_y)$