Project report

EE5780 VLSI CAD Chentao Zhao

Software package introduction

Where to find the code?

Path: All the code is put into the source folder: ...release\source

How to run the circuit solver?

- 1. Double click (open) the <main.m> file, click 'run' demand of matlab(F5 key);
- 2. Select the ckt file in the folder : ...release\ckt_files
- 3. After some indication, the results will be printed out in the command window, or plotted in new popped windows.
- 4. Enjoy ©

What the purpose of each function file?

The function sheet is listed as table below, among them, <main.m>, <DCanlysis.m>, <TRanlysis.m> and <ACanlysis.m> are most important.

	Responsibility	Manipulation
main.m	Entry of the software;Main control flow of the software	AWE or not switchingNR tolerant value settingGmin step setting
DCanlysis.m	 Linear DC analysis solver. Nonlinear DC analysis solver(gmin+NR method). Called by TRanlysis.m to perform transient analysis. 	
TRanlysis.m	 Transient analysis solver using Trapezoidal modals Time domain iteration Call DCanlysis.m to calculate at each time point 	
ACanlysis.m	 AC analysis solver using both LU method and AWE Output the stream for plotting Bode diagram LU method or AWE can be swithing by setting the global variant 'AWE' to true or false 	
ScanCKT.m	Parse the .ckt file into cells in matlab	
Outstream.m	Print the result or plotting the curve	
Loc.m	Some local function in programming	
FindDC.m	Some local function in programming	
Mat_size.m	Some local function in programming	

Results

DC and transient analysis

Clocktree.ckt

Result

nand3.ckt

result:

```
DC result:
```

```
DC response result
Steady voltage of node 102 in ckt <nand3.ckt> is 3 V
Steady voltage of node 103 in ckt <nand3.ckt> is 0 V
Steady voltage of node 104 in ckt <nand3.ckt> is 0 V
Steady voltage of node 107 in ckt <nand3.ckt> is 3 V
Steady voltage of node 108 in ckt <nand3.ckt> is 3 V
Steady voltage of node 109 in ckt <nand3.ckt> is 0 V
Steady voltage of node 110 in ckt <nand3.ckt> is 3 V
Steady current of element VDD
                               in ckt <nand3.ckt> is -3e-10 A
Steady current of element Vin1 in ckt <nand3.ckt> is -3e-10 A
Steady current of element Vin2 in ckt <nand3.ckt> is -3e-10 A
Steady current of element Vin3 in ckt <nand3.ckt> is -3e-10 A
Steady current of element M1
                               in ckt <nand3.ckt> is 0 A
Steady current of element M2
                               in ckt <nand3.ckt> is 0 A
                               in ckt <nand3.ckt> is 0 A
Steady current of element M3
Steady current of element M4
                               in ckt <nand3.ckt> is 0 A
Steady current of element M5
                               in ckt <nand3.ckt> is 0 A
Steady current of element M6
                               in ckt <nand3.ckt> is 0 A
        finished!
```


test_ind.ckt

Result:

DC response print out:

```
DC response result

Steady voltage of node 101 in ckt <test_inv.ckt> is 3 V

Steady voltage of node 102 in ckt <test_inv.ckt> is 3 V

Steady voltage of node 103 in ckt <test_inv.ckt> is 3 V

Steady voltage of node 104 in ckt <test_inv.ckt> is 0 V

Steady current of element Rin in ckt <test_inv.ckt> is 3e-10 A

Steady current of element VDD in ckt <test_inv.ckt> is -3e-10 A

Steady current of element Vin in ckt <test_inv.ckt> is -6e-10 A

Steady current of element M1 in ckt <test_inv.ckt> is 0 A

Steady current of element M2 in ckt <test_inv.ckt> is 0 A

finished!
```


transmux.ckt


```
DC response result
Steady voltage of node 99 in ckt <transmux.ckt> is 0 V
Steady voltage of node 100 in ckt <transmux.ckt> is 3 V
Steady voltage of node 101 in ckt <transmux.ckt> is 3 V
Steady voltage of node 102 in ckt <transmux.ckt> is 3 V
Steady voltage of node 103 in ckt <transmux.ckt> is 3 V
Steady voltage of node 104 in ckt <transmux.ckt> is 0 V
Steady voltage of node 107 in ckt <transmux.ckt> is 3 V
Steady voltage of node 108 in ckt <transmux.ckt> is 0 V
Steady current of element Rin in ckt <transmux.ckt> is 3e-10 A
Steady current of element VDD in ckt <transmux.ckt> is -6e-10 A
Steady current of element Vin in ckt <transmux.ckt> is -6e-10 A
Steady current of element Va in ckt <transmux.ckt> is -3e-10 A
Steady current of element Vb in ckt <transmux.ckt> is 3.0003e-19 A
Steady current of element M1
                              in ckt <transmux.ckt> is 0 A
Steady current of element M2 in ckt <transmux.ckt> is 0 A
Steady current of element Map in ckt <transmux.ckt> is 0 A
Steady current of element Man in ckt <transmux.ckt> is 0 A
Steady current of element Mbp in ckt <transmux.ckt> is 0 A
Steady current of element Mbn in ckt <transmux.ckt> is 0 A
Steady current of element M3 in ckt <transmux.ckt> is 0 A
Steady current of element M4 in ckt <transmux.ckt> is 0 A
       finished!
```


AC analysis

rcsimple.ckt

LU Method

AWE Method

angular frequent (rad/s) in logarithmic scale