《统计计算与SAS软件》

实验十 线性回归

1907402030 熊雄 2021年12月24日

1 实验目的

掌握回归 PROC reg 过程。

2 实验内容

已知一组数据如下:

x_1	x_2	x_3	x_4	x_5	y
-0.3266	3.0424	2.4850	-0.7792	-1.0134	5.1372
-0.0221	0.7274	1.3963	8.3166	19.2436	40.5900
1.0417	-0.3599	1.6066	0.0375	-0.1340	3.6541
1.6703	1.0266	5.9368	5.6695	13.7614	34.9407
-0.1018	1.7781	1.2353	-1.3943	-2.7936	2.3227
0.1671	1.2308	2.6735	-0.3745	-1.6666	2.9883
0.3410	-0.6692	0.6314	3.7651	8.6915	21.0286
-0.2523	-0.1129	-0.3184	5.6556	13.0629	25.9300
-0.2910	0.3272	-0.4174	3.8557	9.3581	19.9263
-0.3385	-1.5787	-3.0940	-1.8342	-2.7995	-7.1717
1.1132	2.4489	4.4215	-1.0626	-2.2422	7.3373
-1.0690	1.8439	-2.1566	-2.7720	-6.8451	-9.8014
-1.1351	0.1507	-1.7046	8.1457	19.2128	36.3739
-1.3526	0.5871	-1.8082	6.3918	12.9771	28.0547
-0.2727	0.5776	-0.0080	-8.4728	-18.6298	-31.2190
-1.1824	2.5766	-1.3379	1.8826	4.8972	11.4541
-1.1303	1.5472	-1.8749	0.1608	0.8204	3.6461
0.0457	2.2283	1.0687	2.3181	4.6769	16.0320
-0.3314	1.7619	0.7072	4.0692	9.1147	23.2611
-1.6636	0.6891	-2.0524	4.1248	7.8462	17.8610
0.4596	2.5260	4.7945	-0.8341	-1.8395	6.4449
0.3149	2.0868	2.7935	4.0267	8.0134	24.0171
-0.3282	1.4317	0.1383	4.9181	10.8442	24.3683

x_1	x_2	x_3	x_4	x_5	y
1.8427	0.9875	3.5959	1.5075	4.7527	16.6028
-0.2687	0.4530	1.1492	-5.1177	-12.2972	-17.0680

请建立回归模型并进行回归分析,要求以下四个部分必须给出:

- 1. 请判断是否存在多重共线性, 若有则需要给出诊断;
- 2. 给出用逐步回归法和全子集法建立的线性回归模型;
- 3. 给出用主成分回归方程和岭回归方程;
- 4. 给出影响分析与残差分析的结果。

3 代码实现

3.1 建立数据集work.test

在SAS中输入以下代码并提交来建立数据集:

1	data test;					
2	input x	1 x2 x3 x4 x	5 y;			
3	cards;					
4	-0.3266	3.0424	2.4850	-0.7792	-1.0134	5.1372
5	-0.0221	0.7274	1.3963	8.3166	19.2436	40.5900
6	1.0417	-0.3599	1.6066	0.0375	-0.1340	3.6541
7	1.6703	1.0266	5.9368	5.6695	13.7614	34.9407
8	-0.1018	1.7781	1.2353	-1.3943	-2.7936	2.3227
9	0.1671	1.2308	2.6735	-0.3745	-1.6666	2.9883
10	0.3410	-0.6692	0.6314	3.7651	8.6915	21.0286
11	-0.2523	-0.1129	-0.3184	5.6556	13.0629	25.9300
12	-0.2910	0.3272	-0.4174	3.8557	9.3581	19.9263
13	-0.3385	-1.5787	-3.0940	-1.8342	-2.7995	-7.1717
14	1.1132	2.4489	4.4215	-1.0626	-2.2422	7.3373
15	-1.0690	1.8439	-2.1566	-2.7720	-6.8451	-9.8014
16	-1.1351	0.1507	-1.7046	8.1457	19.2128	36.3739
17	-1.3526	0.5871	-1.8082	6.3918	12.9771	28.0547
18	-0.2727	0.5776	-0.0080	-8.4728	-18.6298	
	-31.2190					
19	-1.1824	2.5766	-1.3379	1.8826	4.8972	11.4541

```
20 -1.1303
               1.5472
                           -1.8749
                                       0.1608
                                                   0.8204
                                                               3.6461
21 0.0457
               2.2283
                                                   4.6769
                                                               16.0320
                           1.0687
                                       2.3181
   -0.3314
               1.7619
                           0.7072
                                       4.0692
                                                   9.1147
                                                               23.2611
23
   -1.6636
               0.6891
                           -2.0524
                                                   7.8462
                                                               17.8610
                                       4.1248
24
   0.4596
               2.5260
                           4.7945
                                       -0.8341
                                                   -1.8395
                                                               6.4449
                           2.7935
25
   0.3149
               2.0868
                                       4.0267
                                                   8.0134
                                                               24.0171
26
   -0.3282
               1.4317
                           0.1383
                                       4.9181
                                                   10.8442
                                                               24.3683
27
   1.8427
               0.9875
                           3.5959
                                       1.5075
                                                   4.7527
                                                               16.6028
   -0.2687
                                                   -12.2972
28
               0.4530
                           1.1492
                                       -5.1177
   -17.0680
29
30
   run;
```

3.2 判断是否存在多重共线性并给出诊断

在SAS中继续输入以下代码:

```
proc reg data = work.test;
model y = x1 x2 x3 x4 x5 / vif;
run;
```

	参数估计										
变量	自由度	参数 估计	标准 误差	t 值	Pr > t	方差 膨胀					
Intercept	1	3.53124	0.30017	11.76	<.0001	0					
x1	1	0.74839	0.62233	1.20	0.2439	8.02690					
x2	1	0.95588	0.26420	3.62	0.0018	2.31903					
х3	1	0.81099	0.24287	3.34	0.0034	8.71318					
х4	1	2.28351	0.64506	3.54	0.0022	179.84965					
х5	1	0.84674	0.28441	2.98	0.0077	178.16075					

	共线性诊断											
		条件			比例							
数目	特征值	索引	Intercept	x1	x2	х3	x4	х5				
1	2.59934	1.00000	0.03765	5.038069E-7	0.01512	0.00324	0.00045007	0.00045471				
2	1.83164	1.19127	0.00047976	0.02524	0.00546	0.02252	0.00023100	0.00021328				
3	1.22495	1.45671	0.05556	0.02219	0.05062	0.00117	0.00058413	0.00062011				
4	0.28412	3.02471	0.84745	0.02170	0.24076	0.01031	0.00019932	0.00008190				
5	0.05760	6.71754	0.00131	0.73102	0.66496	0.84198	0.00006831	0.00056675				
6	0.00235	33.26700	0.05756	0.19984	0.02309	0.12079	0.99847	0.99806				

若使用VIF选项, 当 $VIF_i > 10$ 时, 表示 X_i 可能和某些变量存在高度共线性;

若使用 COLLIN 选项,则其条件指数 (condition index) > 10表示有共线性, > 30表示有严重共线性;同一行两个变量的变异构成 (proportion of variation)同时 > 50%表示两者有共线性。

在本数据集中,通过参数估计可以看到 $VIF_4, VIF_5 > 10$,故变量 x_4, x_5 之间存在严重共线性。通过共线性诊断可以看到,最大的条件指数为33.26700 > 10, x_4, x_5 的偏差比例都超过了0.5。因此,如果一个模型中同时包含 x_4, x_5 这两个变量,则得到的结果就会很不稳定,甚至造成误导。

3.3 逐步回归法和全子集法建立的线性回归模型

3.3.1 逐步回归法

在SAS中继续输入以下代码:

```
proc reg data = work.test;
model y = x1 - x5 / SELECTION = stepwise;
run;
```

提交后可以得到如下输出:

	没有其他变量满足 0.1500 显著性水平,无法输入该模型。										
步	进入的 变量	删除的 变量	进入的 变量数	偏 R 方	模型 R 方	C(p)	F值	Pr > F			
1	x5		1	0.9657	0.9657	240.138	648.00	<.0001			
2	x3		2	0.0273	0.9930	34.2184	85.95	<.0001			
3	x2		3	0.0028	0.9958	14.6839	14.27	0.0011			
4	x4		4	0.0015	0.9973	5.4462	10.99	0.0035			

留在模型中的所有变量的显著性水平都为 0.1500。

因此应该选择 x_2, x_3, x_4, x_5 来建立线性回归模型。

3.3.2 全子集法

在SAS中继续输入以下代码:

```
proc reg data = work.test;
model y = x1 - x5 / SELECTION = adjrsq cp bic;
run;
```

提交后可以得到如下输出:

模型中 的数目	调整 R 方	R方	C(p)	BIC	模型中的变量
5	0.9968	0.9975	6.0000	8.6057	x1 x2 x3 x4 x5
4	0.9968	0.9973	5.4462	6.9776	x2 x3 x4 x5
4	0.9956	0.9963	12.8633	11.5387	x1 x2 x3 x4
4	0.9953	0.9960	15.1505	12.7931	x1 x2 x4 x5
3	0.9952	0.9958	14.6839	12.0233	x2 x3 x5
4	0.9950	0.9959	16.5318	13.5223	x1 x2 x3 x5

因此应该选择x2, x3, x4, x5来建立线性回归模型。

3.4 岭回归方程和主成分回归方程

3.4.1 岭回归

在SAS中继续输入以下代码:

```
proc reg data = work.test outest = work.rghald outvif graphics corr;
model y = x1 - x5 / ridge = 0 to 1 by 0.05;
plot / ridgeplot;
run;
proc print data = work.rghald;
run;
```

其中 outest = work.rghald 表示将 PROC REG 过程将结果保存在work.rghald 数据集中,选项 outvif 要求输出方差膨胀因子,选项 graphics 要求在高分辨率方式下作图, corr则要求计算相关系数。plot 语句后加上参数 ridgeplot,要求作出岭迹图。

因此可以选择k=0.05的岭回归估计,得到如下岭回归模型:

 $y = 3.79288 + 0.73945x_1 + 0.90090x_2 + 0.77507x_3 + 2.057x_4 + 0.9000x_5.$

3.4.2 主成分回归

在SAS中继续输入以下代码:

```
proc reg data = work.test outest = pchald outvif;
model y = x1 - x5 / pcomit = 1, 2;
run;
proc print data = work.pchald;
run;
```

pcomit = 1,2 表示分别求出在删除最后1个和2个主成分后所得到的回归方程。

观测	_MODEL_	_TYPE_	_DEPVAR_	_RIDGE_	_PCOMIT_	_RMSE_	Intercept	x1	x2	х3	x4	х5	у
1	MODEL1	PARMS	у			0.95842	3.53124	0.74839	0.95588	0.81099	2.28351	0.84674	-1
2	MODEL1	IPCVIF	У		1			6.41542	2.26468	7.65465	0.27219	0.36189	-1
3	MODEL1	IPC	у		1	0.93612	3.51097	0.66957	0.94445	0.83492	2.10131	0.92705	-1
4	MODEL1	IPCVIF	у		2			0.39772	0.87422	0.26203	0.25467	0.25240	-1
5	MODEL1	IPC	у		2	0.91632	3.51227	0.85298	1.01408	0.75878	2.09914	0.92945	-1

因此, 删除最后1个主成分后所得到的回归方程为:

$$y = 3.51097 + 0.66957x_1 + 0.94445x_2 + 0.83492x_3 + 2.10131x_4 + 0.92705x_5.$$

删除最后2个主成分后所得到的回归方程为:

$$y = 3.51227 + 0.85298x_1 + 1.01408x_2 + 0.75878x_3 + 2.09914x_4 + 0.92945x_5.$$

3.5 残差分析与影响分析

在SAS中继续输入以下代码:

```
proc reg data = work.test;
model y = x1 - x5 / r;
plot student.*p.;
run;
```

选项 \mathbf{r} 要求给出残差及COOKD值, \mathbf{plot} student.* \mathbf{p} . 语句要求打印残差图,student和 \mathbf{p} 后的点号(.)不可省略,分别表示调用程序输出中的学生化残差和预测值。

从学生化残差图可以看出,模型关于误差正态性条件得到满足。

一般认为 $COOK\ D$ 值的临界值为 $\frac{4}{n} = 0.16$ 知,有一个D值比此值小(图中蓝紫色部分),所以该观测对模型的影响是不合理的,因此这一模型不可用于实际工作。

4 代码展示

```
1
    data test;
 2
        input x1 x2 x3 x4 x5 y;
 3
        cards;
   -0.3266
                3.0424
                                          -0.7792
 4
                             2.4850
                                                      -1.0134
                                                                   5.1372
    -0.0221
                0.7274
                             1.3963
                                          8.3166
                                                      19.2436
                                                                   40.5900
   1.0417
                -0.3599
                                          0.0375
                                                      -0.1340
                                                                   3.6541
 6
                             1.6066
    1.6703
                1.0266
                             5.9368
                                          5.6695
                                                      13.7614
                                                                   34.9407
 7
    -0.1018
                1.7781
                             1.2353
                                          -1.3943
                                                      -2.7936
                                                                   2.3227
 9
   0.1671
                1.2308
                             2.6735
                                          -0.3745
                                                      -1.6666
                                                                   2.9883
   0.3410
                -0.6692
                             0.6314
                                          3.7651
                                                      8.6915
                                                                   21,0286
10
11
   -0.2523
                -0.1129
                             -0.3184
                                          5.6556
                                                      13.0629
                                                                   25.9300
```

```
12 -0.2910
               0.3272
                           -0.4174
                                       3.8557
                                                  9.3581
                                                              19.9263
13
   -0.3385
               -1.5787
                           -3.0940
                                      -1.8342
                                                  -2.7995
                                                              -7.1717
   1.1132
               2.4489
                           4.4215
                                       -1.0626
                                                  -2.2422
                                                              7.3373
   -1.0690
               1.8439
                           -2.1566
                                       -2.7720
                                                  -6.8451
                                                              -9.8014
15
                           -1.7046
                                       8.1457
16
   -1.1351
               0.1507
                                                  19.2128
                                                              36.3739
   -1.3526
                           -1.8082
                                       6.3918
17
               0.5871
                                                  12.9771
                                                              28.0547
   -0.2727
               0.5776
                           -0.0080
                                                  -18.6298
                                       -8.4728
18
    -31.2190
                                                              11.4541
   -1.1824
               2.5766
                           -1.3379
                                       1.8826
                                                  4.8972
19
20
   -1.1303
               1.5472
                           -1.8749
                                       0.1608
                                                  0.8204
                                                              3.6461
21
   0.0457
               2.2283
                           1.0687
                                       2.3181
                                                  4.6769
                                                              16.0320
22
   -0.3314
               1.7619
                           0.7072
                                       4.0692
                                                  9.1147
                                                              23.2611
23
   -1.6636
               0.6891
                           -2.0524
                                       4.1248
                                                  7.8462
                                                              17.8610
24
   0.4596
               2.5260
                           4.7945
                                       -0.8341
                                                  -1.8395
                                                              6.4449
                                                  8.0134
25
   0.3149
               2.0868
                           2.7935
                                       4.0267
                                                              24.0171
                           0.1383
26
   -0.3282
               1.4317
                                       4.9181
                                                  10.8442
                                                              24.3683
27
   1.8427
               0.9875
                           3.5959
                                       1.5075
                                                  4.7527
                                                              16.6028
28
   -0.2687
               0.4530
                           1.1492
                                      -5.1177
                                                  -12.2972
    -17.0680;
29
   run;
30
    proc reg data = work.test;
31
       model y = x1 x2 x3 x4 x5 / VIF COLLIN;
32
33
    run;
34
    proc reg data = work.test;
35
36
       model y = x1 - x5 / SELECTION = stepwise;
37
    run;
38
    proc reg data = work.test outest = work.rghald outvif graphics
39
    corr;
40
        model y = x1 - x5 / ridge = 0 to 1 by 0.05;
       plot / ridgeplot;
41
42
    run;
43
    proc print data = work.rghald;
    run;
44
45
```

```
proc reg data = work.test outest = pchald outvif;
46
       model y = x1 - x5 / pcomit = 1,2;
47
48
   run;
49
    proc print data = work.pchald;
50
    run;
51
52
    proc reg data = work.test;
53
       model y = x1 - x5 / SELECTION = adjrsq cp bic;
54
    run;
55
   proc reg data = work.test;
56
57
        model y = x1 - x5 / r;
        plot student.*p.;
58
59
   run;
```