主观题 HW2

HW2.1

将下列公式写为波兰式和逆波兰式。

- 1. $P \lor Q \to R \lor S$ (5分)
- 2. $\neg P \land R \leftrightarrow P \land Q$ (5分)
- 3. $\neg \neg P \lor (W \land R) \lor \neg Q$ (5分)
- 4. $P \wedge (Q
 ightarrow \neg R)$ (5分)

注意不能改变原有式子的计算顺序,一般同等优先级下从左到右计算。

解:

(1)

波兰表达式 $ightarrow \lor PQ \lor RS$

逆波兰表达式 $PQ \lor RS \lor \rightarrow$

(2)

波兰表达式 $\leftrightarrow \wedge \neg PR \wedge PQ$

逆波兰表达式 $P \neg R \wedge PQ \wedge \leftrightarrow$

(3)

波兰表达式 $\lor\lor\lnot\lnot P\land WR\lnot Q$ 逆波兰表达式 $P\lnot\lnot WR\land\lor Q\lnot\lor$

(4)

波兰表达式 $\land P \to Q \neg R$ 逆波兰表达式 $PQR \neg \to \land$

HW2.2

证明下列等值公式:

1.
$$P \rightarrow Q = \neg Q \rightarrow \neg P$$
 (5 分)

2.
$$((P \to \neg Q) \to (Q \to \neg P)) \land R = R$$
 (5分)
3. $(P \leftrightarrow Q) \leftrightarrow ((P \land \neg Q) \lor (Q \land \neg P)) = P \land \neg P$ (5分)
4. $P \to (Q \to R) = (P \land Q) \to R$ (5分)

请写明相应的基本等值定律,如结合律,分配律等教材上带有名字的公式。不能用自己的公式证明自己。 己。

证明:

1.

$$P \to Q = \neg P \lor Q$$
(蕴含等值式) = $Q \lor \neg P$ (交换律) = $\neg \neg Q \lor \neg P$ (双重否定律) = $\neg Q \to \neg P$ (蕴含等值式)

2.

$$\begin{split} P &\to \neg Q = \neg P \vee \neg Q (蕴含等值式) \\ Q &\to \neg P = \neg Q \vee \neg P (蕴含等值式) \\ \neg P \vee \neg Q = \neg Q \vee \neg P (交换律) \\ ((P \to \neg Q) \to (Q \to \neg P)) = ((\neg P \vee \neg Q) \to (\neg Q \vee \neg P)) = (\neg Q \vee \neg P) \to (\neg Q \vee \neg P) = S \to S (置换规则) = T (等幂律) \\ T \wedge R = (同一律) \\ \text{所以有} \left((P \to \neg Q) \to (Q \to \neg P) \right) \wedge R = R \end{split}$$

3.

$$(P \leftrightarrow Q) \leftrightarrow ((P \land \neg Q) \lor (Q \land \neg P)) = (P \leftrightarrow Q) \leftrightarrow (\neg (\neg P \lor \neg \neg Q) \lor \neg (\neg Q \lor \neg \neg P))$$
(德摩根律) = $(P \leftrightarrow Q) \leftrightarrow (\neg (\neg P \lor Q) \lor \neg (\neg Q \lor P))$ (双重否定律) = $(P \leftrightarrow Q) \leftrightarrow (\neg (P \to Q) \lor \neg (Q \to P))$ (德摩根律) = $(P \leftrightarrow Q) \leftrightarrow \neg (P \leftrightarrow Q) \leftrightarrow \neg (P \leftrightarrow Q)$ (等价等值式) = $S \leftrightarrow \neg S$ (置换规则) = $S \leftrightarrow \neg S$ (計余律)

4.

$$P \rightarrow (Q \rightarrow R) = \neg P \lor (Q \rightarrow R)$$
(蕴含等值式) = $\neg P \lor (\neg Q \lor R)$ (蕴含等值式) = $\neg P \lor \neg Q \lor R$ (结合律) = $\neg (P \land Q) \lor R$ (德摩根律) = $(P \land Q) \rightarrow R$ (蕴含等值式)

HW2.3

由下列真值表,分别从T和F来列写出A和B的表达式(20分)。

Р	Q	Α	В
F	F	Т	Т
F	Т	F	Т
Т	F	F	F
Т	Т	F	Т

解:

用T

$$A = \neg P \wedge \neg Q$$

用F

$$A = (P \vee \neg Q) \wedge (\neg P \vee Q) \wedge (\neg P \vee \neg Q)$$

(2)

用T

$$B = (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$

用F

$$B = \neg P \vee Q$$

HW2.4

分别用 ↑ 和 ↓ 表示出 ¬、 ∧、 \lor 和 → (总共 8 个式子,且式子中不可以使用 T 和 F ,使用尽量简单的表达。(40 分)

解:

利用
$$P \uparrow Q = \neg(P \land Q)$$
以及 $P \downarrow Q = \neg(P \lor Q)$

(1)

$$\neg P = \neg (P \land \neg P)($$
幂等律 $) = P \uparrow P$

(2)

$$\neg P = \neg (P \lor \neg P)($$
幂等律 $) = P \downarrow P$

(3)

$$P \wedge Q = \neg(\neg(P \wedge Q))($$
双重否定律 $) = \neg(P \uparrow Q) = (P \uparrow Q) \uparrow (P \uparrow Q)$

(4)

$$P \wedge Q = \neg (\neg P \vee \neg Q)$$
(德摩根律) = $(P \downarrow P) \downarrow (Q \downarrow Q)$

(5)

$$P \lor Q = \neg(\neg P \land \neg Q)$$
(德摩根律) = $(P \uparrow P) \uparrow (Q \uparrow Q)$

(6)
$$P \vee Q = \neg(\neg(P \vee Q))(双重否定律) = (P \downarrow Q) \downarrow (Q \downarrow P)$$
(7)
$$P \to Q = \neg P \vee Q(蕴含等值) = (P \uparrow P) \vee Q = ((P \uparrow P) \uparrow (P \uparrow P)) \uparrow (Q \uparrow Q) = \neg((P \uparrow P) \land (P \uparrow P)) \uparrow (Q \uparrow Q) = \neg((P \uparrow P) \land (P \uparrow P)) \uparrow (Q \uparrow Q) = \neg(P \land P) \uparrow (Q \uparrow Q) = \neg(P \land P) \uparrow (Q \uparrow Q) = (P \land P) \uparrow (Q \uparrow Q) = (P \land P) \uparrow (Q \uparrow Q)$$
(8)
$$P \to Q = \neg P \vee Q(蕴含等值) = (P \downarrow P) \vee Q = ((P \downarrow P) \downarrow Q) \downarrow ((P \downarrow P) \downarrow Q)$$