Topology Course Notes (KSM1C03)

Day 11: 16th September, 2025

sequential compactness -- limit point compactness -- first countability

11.1 Sequential and limit point compactness

Definition 11.1: (Sequentially compact)

A space X is called *sequentially compact* if every sequence $\{x_n\}$ has a convergent subsequence. A subset $Y \subset X$ is sequentially compact if every sequence $\{y_n\}$ in Y has a subsequence, that converges to some $y \in Y$.

Theorem 11.2: (Sequentially compact is equivalent to compact in metric space)

Suppose (X,d) is a metric space. Then, $Y\subset X$ is sequentially compact if and only if Y is compact.

Proof

Suppose Y is compact. Then, Y is closed and bounded. Consider a sequence $\{x_n\}$ in Y. If possible, suppose $\{x_n\}$ has no convergent subsequence in Y. Then, $\{x_n\}$ is an infinite sequence (i.e., there are infinitely many distinct elements). Now, for each $y \in Y$, there exists a ball $y \in B_y = B_d(y, \delta_y) \subset X$ such that B_y contains at most finitely many $\{x_n\}$ (as no subsequence of $\{x_n\}$ converge to y). We have $Y \subset \bigcup_{y \in Y} B_y$, which admits a finite subcover, say, $Y \subset \bigcup_{i=1}^n B_{y_i}$. But this implies Y contains at most finitely many $\{x_n\}$, which is a contradiction.

Conversely, suppose every sequence in Y has a subsequence converging in Y. Consider an open cover $\mathcal{U} = \{U_{\alpha}\}$ of Y by opens of X.

- Let us first show that for any $\delta>0$, the collection $\{B_d(a,\delta)\mid a\in A\}$ has a finite sub-cover. Suppose not. Then, there is $x_1\in A$ such that $A\not\subset B_d(x_1,\delta)$. Pick $x_2\in A\setminus B_d(x_1,\delta)$. Then, $A\not\subset B_d(x_1,\delta)\cup B_d(x_2,\delta)$. Inductively, we have a sequence $\{x_n\}$ in A. Now, by construction, $d(x_i,x_j)\geq \delta$ for all $i\neq j$. Consequently, $\{x_n\}$ has no convergent subsequence, a contradiction. Indeed, if $x_{n_k}\to x\in A$, then $d(x_{n_k},x)<\frac{\delta}{2}$ for all $k\geq N$. But then, $d(x_{n_{k_1}},x_{n_{k_2}})<\delta$ for any $k_1\neq k_2\geq N$.
- Next we claim that there exists a $\delta>0$ such that for any $y\in Y$, we have $B_d(y,\delta)\subset U_\alpha$ for some α . Suppose not. Then, for each $n\geq 1$, there exists some $y_n\in Y$ such that $B_d(y_n,\frac{1}{n})\not\subset U_\alpha$ for each α . Passing to a subsequence, we have $y_n\to y_0\in A$. Now, $y_0\in V_\alpha$ for some α , and so, $y_0\in B_d(y_0,\epsilon)\subset V_\alpha$. There exists some $N_1\geq 1$ such that $y_n\in B_d(y_0,\frac{\epsilon}{2})$

for all $n \ge N_1$. Also, there is $N_2 \ge 1$ such that $\frac{1}{N_2} < \frac{\epsilon}{2}$. Then, for any $n \ge \max\{N_1, N_2\}$, and for any $d(y_n, y) < \frac{1}{n}$ we have,

$$d(y_0, y) \le d(y_0, y_n) + d(y_n, y) < \epsilon.$$

Thus, $B_d(y_n, \frac{1}{n}) \subset B_d(y_0, \epsilon) \subset V_\alpha$ for all $n \geq \max\{N_1, N_2\}$, a contradiction.

■ Finally, pick the δ from the last step. Then, we have a cover $A \subset \bigcup_{i=1}^n B_d(x_i, \delta)$ with $x_i \in A$. But each of these balls are contained in some V_{α_i} . So, we have $A \subset \bigcup_{i=1}^n V_{\alpha_i}$.

Definition 11.3: (Limit point compactness)

A space X is called $limit\ point\ compact$ (or $weakly\ countably\ compact$) if every infinite set $A\subset X$ has a limit point in X

Exercise 11.4: (Sequential compact implies limit point compact)

Show that a sequentially compact space is limit point compact.

Proposition 11.5: (Compact implies limit point compact)

A compact space is limit point compact.

Proof

Suppose X is a compact space which is not limit point compact. Then, there exists an infinite set A which has no limit point. In particular, A is closed, as it contains all of its limit points (which are none). Also, for every $x \in X$, there is an open set $x \in U_x \subset X$ such that $A \cap (U_x \setminus \{x\}) = \emptyset$. Observe that we have a covering $X = (X \setminus A) \cup \bigcup_{x \in A} U_x$, which admits a finite subcover, say, $X = (X \setminus A) \cup \bigcup_{i=1}^n U_{x_i}$. Now, $A \subset \bigcup_{i=1}^n U_{x_i}$. But this implies A is finite, as $A \cap U_{x_i} \setminus \{x_i\} = \emptyset$. This is a contradiction.

Example 11.6: (Limit point comact but neither compact nor sequentially compact)

Consider the space $X=\mathbb{N}\times\{0,1\}$, where give \mathbb{N} the discrete topology, and $\{0,1\}$ the indiscrete topology. Consider the sequence $x_n=(n,0)$. Then, it does not have a convergent subsequence (otherwise, the first component projection will give convergent subsequence, as continuity implies sequential continuity). Also, X is not compact either, as the open cover $U_n=\{(n,0),(n,1)\}$ has no finite subcover. On the other hand, X is limit point compact. Indeed, say $A\subset X$ is infinite, and, without loss of generality, pick some $(a,0)\in A$. Then, check that (a,1) is a limit point of A. Indeed, any open set containing (a,1) contains the open set $\{(a,0),(a,1)\}$, which obviously intersects A in a different point (a,0).

Definition 11.7: (First countable)

Given $x \in X$, a neighborhood basis is a collection $\{U_{\alpha}\}$ of open neighborhoods of x such that given any open neighborhood $x \in U \subset X$, there exists some U_{α} such that $x \in U_{\alpha} \subset U$. We say X is first countable at x if there exists a countable neighborhood basis $\{U_i\}$ of x. The space X is called first countable if it is first countable at every point.

Remark 11.8: (Decreasing neighborhood basis)

Suppose $\{U_i\}$ is a countable neighborhood basis of $x \in X$. Set $V_1 = U_1, V_2 = U_1 \cap U_2, \dots, V_j = V_{j-1} \cap U_j = \bigcap_{i=1}^j U_j$. Clearly, we have

$$V_1 \supset V_2 \supset \cdots \ni x$$
.

We claim that $\{V_j\}$ is a neighborhood basis of x as well. Let $x \in U \subset X$ be an open neighborhood. Then, there is some $x \in U_j \subset U$. But then $x \in V_j \subset U_j \subset U$ as well. Thus, we can always assume that a countable neighborhood basis is decreasing. Note : in a discrete space $\{U_n = \{x\}\}$ is a non-strictly decreasing countable neighborhood basis of x.

Example 11.9: (Metric space is first countable)

Any metric space (X,d) is first countable. The converse is evidently not true, as any indiscrete space is also first countable.

Proposition 11.10: (Compact first countable is sequentially compact)

Suppose X is a first countable compact space. Then X is sequentially compact.

Proof

Let $\{x_n\}$ be a sequence in X with no convergent subsequence. Then $\{x_n\}$ must be an infinite set. Without loss of generality, assume each x_n are distinct (just extract such a subsequence). For each $x \in X$, fix some neighborhood basis \mathcal{U}_x . Now, since no subsequence of $\{x_n\}$ converges to x, there must be some $U_x \in \mathcal{U}_i^x$ such that only finitely many $\{x_n\}$ is contained in U_x . Otherwise, using the countability of \mathcal{U}_x , we can extract a subsequence converging to x. Now, we have a cover $X = \bigcup_{x \in X} U_x$, which admits a finite subcover, say, $X = \bigcup_{i=1}^n U_{x_i}$. But this implies the sequence $\{x_n\}$ is finite, a contradiction.