Analysis Report

fix_errors1_warp_copy(char*, Param*)

Duration	2.545 s (2,545,054,175 ns)	
Grid Size	[256,1,1]	
Block Size	[256,1,1]	
Registers/Thread	72	
Shared Memory/Block	1.734 KiB	
Shared Memory Requested	48 KiB	
Shared Memory Executed	48 KiB	
Shared Memory Bank Size	4 B	

[0] Tesla K20m

[0] 103	a KZOIII
Compute Capability	3.5
Max. Threads per Block	1024
Max. Shared Memory per Block	48 KiB
Max. Registers per Block	65536
Max. Grid Dimensions	[2147483647, 65535, 65535]
Max. Block Dimensions	[1024, 1024, 64]
Max. Warps per Multiprocessor	64
Max. Blocks per Multiprocessor	16
Number of Multiprocessors	13
Multiprocessor Clock Rate	705.5 MHz
Concurrent Kernel	true
Max IPC	7
Threads per Warp	32
Global Memory Bandwidth	208 GB/s
Global Memory Size	4.687 GiB
Constant Memory Size	64 KiB
L2 Cache Size	1.25 MiB
Memcpy Engines	2
PCIe Generation	2
PCIe Link Rate	5 Gbit/s
PCIe Link Width	16

1. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "fix_errors1_warp_copy" is most likely limited by instruction and memory latency. You should first examine the information in the "Instruction And Memory Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla K20m". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency issues.

2. Instruction and Memory Latency

Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. Unfortunately, the device executing this kernel can not provide the profile data needed for this analysis.

3. Compute Resources

GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

3.1. Function Unit Utilization

Different types of instructions are executed on different function units within each SM. Performance can be limited if a function unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited by overuse of any function unit.

Load/Store - Load and store instructions for local, shared, global, constant, etc. memory.

Arithmetic - All arithmetic instructions including integer and floating-point add and multiply, logical and binary operations, etc. Control-Flow - Direct and indirect branches, jumps, and calls.

Texture - Texture operations.

3.2. Floating-Point Operation Counts

The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

4. Memory Bandwidth

Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate requested by the kernel.

4.1. Memory Bandwidth And Utilization

The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also shows the utilization of each memory type relative to the maximum throughput supported by the memory.

