Multinomial Processing Tree with JAGS

Joachim Vandekerckhove, Michael D. Lee

In an old/new recognition memory task, participants are asked whether stimuli are "old" or "new"

In an old/new recognition memory task, participants are asked whether stimuli are "old" or "new"

	Stimulus was old	Stimulus was new
Pp responds "old"	hit	false alarm
Pp responds "new"	miss	correct rejection

In an old/new recognition memory task, participants are asked whether stimuli are "old" or "new"

	Stimulus was old	Stimulus was new
Pp responds "old"	hit	false alarm
Pp responds "new"	miss	correct rejection

Probability of a hit = hit rate = θ^{h}

In an old/new recognition memory task, participants are asked whether stimuli are "old" or "new"

	Stimulus was old	Stimulus was new
Pp responds "old"	hit	false alarm
Pp responds "new"	miss	correct rejection

Probability of a hit = hit rate = θ^{h} Probability of a miss = miss rate = $1 - \theta^{h}$

In an old/new recognition memory task, participants are asked whether stimuli are "old" or "new"

	Stimulus was old	Stimulus was new
Pp responds "old"	hit	false alarm
Pp responds "new"	miss	correct rejection

Probability of a hit = hit rate = θ^{h}

Probability of a miss = miss rate = $1 - \theta^h$

Probability of a false alarm = false alarm rate = θ^{f}

In an old/new recognition memory task, participants are asked whether stimuli are "old" or "new"

	Stimulus was old	Stimulus was new
Pp responds "old"	hit	false alarm
Pp responds "new"	miss	correct rejection

Probability of a hit = hit rate = θ^{h}

Probability of a miss = miss rate = $1 - \theta^h$

Probability of a false alarm = false alarm rate = θ^{f}

Probability of a correct rejection = correct rejection rate = $1 - \theta^{\rm f}$

Recall that the one-high-threshold model has parameters ρ (probability of remembering) and γ (probability of guessing "old")

Recall that the one-high-threshold model has parameters ρ (probability of remembering) and γ (probability of guessing "old")

The tree representation shows the "flow" of the process

Recall that the one-high-threshold model has parameters ρ (probability of remembering) and γ (probability of guessing "old")

The tree representation shows the "flow" of the process

The parameters ρ and γ together determine the hit rate $\theta^{\rm h}$ and false alarm rate $\theta^{\rm f}$

$$\begin{array}{lcl} \theta^{\rm h} & = & \rho + (1 - \rho) \, \gamma \\ \\ \theta^{\rm f} & = & \gamma \end{array}$$

Recall that the one-high-threshold model has parameters ρ (probability of remembering) and γ (probability of guessing "old")

The tree representation shows the "flow" of the process

The parameters ρ and γ together determine the hit rate $\theta^{\rm h}$ and false alarm rate $\theta^{\rm f}$

$$\begin{array}{lcl} \theta^{\rm h} & = & {\color{red} \rho} + (1-\rho)\,\gamma \\ \\ \theta^{\rm f} & = & \gamma \end{array}$$

Recall that the one-high-threshold model has parameters ρ (probability of remembering) and γ (probability of guessing "old")

The tree representation shows the "flow" of the process

The parameters ρ and γ together determine the hit rate $\theta^{\rm h}$ and false alarm rate $\theta^{\rm f}$

$$\theta^{h} = \rho + (1 - \rho) \gamma$$

$$\theta^{f} = \gamma$$

Recall that the one-high-threshold model has parameters ρ (probability of remembering) and γ (probability of guessing "old")

The tree representation shows the "flow" of the process

The parameters ρ and γ together determine the hit rate $\theta^{\rm h}$ and false alarm rate $\theta^{\rm f}$

$$\theta^{h} = \rho + (1 - \rho) \gamma$$

$$\theta^{f} = \gamma$$

The remembering parameter ρ and the old-guessing parameter γ can both take any value with equal likelihood:

$$\rho \sim \text{uniform}(0,1)$$
 $\gamma \sim \text{uniform}(0,1)$

The remembering parameter ρ and the old-guessing parameter γ can both take any value with equal likelihood:

$$\rho \sim \text{uniform}(0,1)$$
 $\gamma \sim \text{uniform}(0,1)$

Those parameters can be transformed into hit rates and false alarm rates:

$$\begin{array}{lcl} \theta^{\rm h} & = & \rho + (1 - \rho) \, \gamma \\ \\ \theta^{\rm f} & = & \gamma \end{array}$$

The remembering parameter ρ and the old-guessing parameter γ can both take any value with equal likelihood:

$$\rho \sim \text{uniform}(0,1)$$
 $\gamma \sim \text{uniform}(0,1)$

Those parameters can be transformed into hit rates and false alarm rates:

$$\begin{array}{lcl} \theta^{\rm h} & = & \rho + (1 - \rho) \, \gamma \\ \\ \theta^{\rm f} & = & \gamma \end{array}$$

Those rates tell us how often old items lead to hits (the data are $k^{\rm h}$ hits out of n_o old items) and how often new items lead to false alarms ($k^{\rm f}$ false alarms out of n_n new items):

$$k^{\rm h} \sim {\rm binomial}\left(\theta^{\rm h}, n_o\right)$$

 $k^{\rm f} \sim {\rm binomial}\left(\theta^{\rm f}, n_n\right)$

```
\begin{array}{lll} \rho & \sim & \mathrm{uniform} \left( 0, 1 \right) \\ \gamma & \sim & \mathrm{uniform} \left( 0, 1 \right) \\ \theta^{\mathrm{h}} & = & \rho + \left( 1 - \rho \right) \gamma \\ \theta^{\mathrm{f}} & = & \gamma \\ k^{\mathrm{h}} & \sim & \mathrm{binomial} \left( \theta^{\mathrm{h}}, n_o \right) \\ k^{\mathrm{f}} & \sim & \mathrm{binomial} \left( \theta^{\mathrm{f}}, n_n \right) \end{array}
```

			Λ
ρ	\sim	uniform $(0,1)$	_
γ	\sim	$\mathrm{uniform}(0,1)$	
$\theta^{\rm h}$	=	$\rho + (1 - \rho) \gamma$	
$ heta^{ m f}$	=	γ	
$k^{\rm h}$	\sim	binomial $(\theta^{\rm h}, n_o)$	
k^{f}	\sim	binomial (θ^{f}, n_n)	

Amyloid Status	Hits	False Alarms
negative	13	0
positive	8	4
negative	12	1
negative	14	0
positive	9	4

ρ	\sim	$\mathrm{uniform}(0,1)$
γ	\sim	$\mathrm{uniform}(0,1)$
$ heta^{ m h}$	=	$\rho + (1 - \rho) \gamma$
$ heta^{ ext{f}}$	=	γ
k^{h}	\sim	binomial $(\theta^{\rm h}, n_o)$
k^{f}	\sim	binomial $(\theta^{\mathrm{f}}, n_n)$

Amyloid Status	Hits	False Alarms
negative	13	0
positive	8	4
negative	12	1
negative	14	0
positive	9	4

			Δ
ρ	\sim	uniform $(0,1)$	
γ	\sim	uniform $(0,1)$	
$ heta^{ m h}$	=	$\rho + (1 - \rho) \gamma$	
θ^{f}	=	γ	
k^{h}	\sim	binomial $(\theta^{\rm h}, n_o)$	
k^{f}	\sim	binomial $(\theta^{\mathrm{f}}, n_n)$	

Amyloid Status	Hits	False Alarms
positive	8	4
positive	9	4
positive	14	0
positive	14	1
positive	13	2

```
\begin{array}{lll} & \operatorname{model}\{ \\ \rho & \sim & \operatorname{uniform}\left(0,1\right) \\ \gamma & \sim & \operatorname{uniform}\left(0,1\right) \\ \theta^{\mathrm{h}} & = & \rho + (1-\rho)\gamma \\ \theta^{\mathrm{f}} & = & \gamma \\ & & \forall p \in (1,\dots,P) \\ k_p^{\mathrm{h}} & \sim & \operatorname{binomial}\left(\theta^{\mathrm{h}}, n_o\right) \\ k_p^{\mathrm{f}} & \sim & \operatorname{binomial}\left(\theta^{\mathrm{f}}, n_n\right) \\ k_p^{\mathrm{f}} & \sim & \operatorname{binomial}\left(\theta^{\mathrm{f}}, n_n\right) \\ \end{array} \right. \left. \begin{array}{ll} \operatorname{model}\{ \\ \text{rho} & \tilde{} & \operatorname{dunif}(0, 1) \\ \\ \operatorname{dunif}(0, 1) \\ \\ \operatorname{thetaHit} & = \operatorname{rho} + (1-\operatorname{rho}) * \operatorname{gamma} \\ \\ \operatorname{thetaFA} & = \operatorname{gamma} \\ \\ \operatorname{for} & (\operatorname{p in 1:nPeople}) \{ \\ \\ \operatorname{hit}[\operatorname{p}] & \tilde{} & \operatorname{dbin}(\operatorname{thetaHit}, \operatorname{nOld}) \\ \\ \operatorname{fa[p]} & \tilde{} & \operatorname{dbin}(\operatorname{thetaFA}, \operatorname{nNew}) \\ \\ \} \\ \end{array} \right. \right\}
```

Patients remember around 60-70% of the items, and guess "old" 5-10% of the time when they do not remember

	Posterior			95% Cr	red. Int.
Parameter	Mean	Median	SD	Lower	Upper
gamma	0.075	0.074	0.012	0.053	0.100
rho	0.665	0.665	0.023	0.619	0.709

Patients remember around 60-70% of the items, and guess "old" 5-10% of the time when they do not remember

	Posterior			95% Cred. Int.	
Parameter	Mean	Median	SD	Lower	Upper
gamma rho	0.075 0.665	0.074 0.665	0.012 0.023	0.053 0.619	0.100 0.709

"Convergence of the MCMC procedure was good, with all $\hat{R} < 1.01$."

	Posterior			95% Cred. Int.	
Parameter	Mean	Median	SD	Lower	Upper
gamma	0.075	0.074	0.012	0.053	0.100
rho	0.665	0.665	0.023	0.619	0.709

	Posterior			95% Cred. Int.	
Parameter	Mean	Median	SD	Lower	Upper
gamma	0.075	0.074	0.012	0.053	0.100
rho	0.665	0.665	0.023	0.619	0.709

