

Taller: Completitud en \mathbb{R} y finitud

10 de Agosto de 2022

Indicaciones generales

- o El taller es una evaluación, por lo tanto se debe entregar en físico y de manera presencial.
- o La fecha de entrega es el Miércoles 17 de Agosto al inicio de la clase.
 - 1. Considere el conjunto $A = \{\frac{1}{2^{n-1}} : n \in \mathbb{Z}^+\}$. Demuestre que Inf(A) = 0.
 - 2. Sea E un subconjunto no vacío y acotado superiormente de los números reales y considere el conjunto $U = \{x \in \mathbb{R} : x \text{ es cota superior de } E\}$. Demuestre que Sup(E) = Inf(U).
- 3. Sea $f:A\to B$ una función inyectiva. Muestre que si B es finito, entonces A es finito.
- 4. Sea A un conjunto no finito y B un subconjunto finito de A. Muestre que A-B no es finito y en consecuencia $A-B\neq\emptyset$.

Suproye que existe la cota inferior X y que esta es la mayor de las cotas interiores, adicuonalmente

inf (A)=2 ≠0, XEIR

(USO1) X>0 = x~f(A)>0

for prop argumediana dado que XEIR, Subenos que existe un nein

 $\chi > \frac{1}{\chi} > \frac{1}{2^{n-1}} \qquad (=) <=)$

esto es para valquer X70 jago yurantitudo que habrá un a EA jal que ±nf(A) = X7a.

Contradicción que surge de asumir que X 70.

(aso 2) $\chi < 0 = Inf(A) < 0$ No Sigurdo (a estrutura de) caso 1 con la prop. arguinediangi

$$-\chi > \frac{1}{\chi} > \frac{1}{2^{n-1}}$$

$$\chi \neq \frac{1}{\chi} = \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$\chi = \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} <$$

De la contenior se deduce que Inf(A) = x =0.

Ver que Sup(E) es Cota Superior de t
pero w es el infino del conjuto de les
Cotes superiores de E luego hay un elemento del conjunto () que es mús paque no que so infino (2) (2)
paye 70 4, Su (nfino (=) (2)
(onfruitation que Surge en aubos (asos de asonir Sup(E) \neq inf(U). Por \neq que $\text{Sup}(E) = inf(U)$.
asomir Sup(E) & inf(u). por 6 que
Sip(E) = inf(u)
S CANB.
S) Sea J. H. unu función inyectiva, muestre que
Sca fit MB. Si B es finito, entonces A es finito.
Suponga f: A -> B es inyectiva y B finito, por Absurdo Considere A Vinfinito
Dudo que f es injectiva saberos que
Dudo que f es injectiva saberros que Fodo alencato de A vu a on elemento
de B, pero como IAI> BI por
de B, pero como IAI) BI por principio de palomar existiva C, d tq.
$f(c) = f(d) \chi c + d$ 10 was niega el hecho de que f es inyectiva $(=) (=) $
lo coal niega el hecho de que t es inyectiva
(=) \(=)
Contradicción que surge de asunir que A es infinito, luego A debe ser finito
A es infinito, luego A debe ser finito

(A - B) U B,	dado que a	mpos 200	finite)
predo probor d	crear unas	functiones	
entonces	puedo crear or	na función	
•		> (()	c +

$$f(\omega)$$
: $g(\omega) \in A - B = f(\omega) \in \pm_{\infty}$
 $f(\omega) \in A - B = f(\omega) \in A$

As more presonant of function that que $\underbrace{\int (\phi): \int S: \quad \varphi \in I_n \Rightarrow g(\varphi)}_{} g(\varphi)$

es decir, existe una biyección de (A-B) UB en IX = Im UIn, pero note que (A-B) UB es A, loego existe una biyección de A en IX esto contradice el nevo de que A sea infinito.

(テ) イラ)

esto Sirge por asimir que A-B con B finito, es finito, lego A-B debe ser infinito y un ello es claro que A-B fiere almanos un elemento bego A-B FB. ejercicio 1 Cont. hacia fultu probur que $\Lambda \leq 2^{n-1}$, $\Lambda \in \mathbb{N} \subseteq \mathbb{Z}$ Por inducción: 1) Sea N=1 Note que $1 \le 2^{n-1}$ X.I) Asuma que K & 2 K-1 Ahora si tereno k +1: K Z 2 K-1)+1, KEIN K+1 & 2 K & 2 (K-1)+1 Puso buse) KH = 2K Puso industrio) K+1 +2 < 2x +2 (K+1)+1 = K+2 < K+3 < 2(K+1) / (K+1)+1 / 2 (K+1) W

Ejercicio 1 Versión 2
Considere el conjunto $A = g = \frac{1}{2^{n-1}} : n \in \mathbb{Z}^{\frac{1}{2}}$ Demestre que Inf(A) = 0.
Demestre que Inf(A) = 0.
$S = A \cap A$
Sea and A note que and IRT lugo por propo arguinediona
Jn ← N: 0 < 1 < 9 m
Vego Cero es Cola inferior de an 7 96A.
Supergu por abourdo que Wes una cota inf.
mus grande que 0, en euriconer w=inf(A)>0
Supergue por absurbo yue Wes una columnif. mus grande que O , en earticulur $w=\inf(A)>0$ note yue $w\in\mathbb{R}^+$
lueso for prop. arg. In t.g.
$\int_{\omega} -1 \leq \omega \leq \Lambda_{\omega}$
2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2 2 2 2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
luego existe un elemento de A mús grando
que su cota inferior.
Contradicción que surge de cosumer que
$i \wedge f(A) \neq 0$
•

