# CSCI 470: Greedy Algorithms: An activity-selection problem, Knapsack problem

Vijay Chaudhary

November 22, 2023

Department of Electrical Engineering and Computer Science Howard University

#### Overview

1. Greedy Algorithms

2. An activity Selection Problem

3. Knapsack problem

# Greedy Algorithms

# **Greedy Algorithms**

An activity Selection Problem

#### An activity Selection Problem

- Suppose we have a set  $S = \{a_1, a_2, ..., a_n\}$  of n proposed activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.
- Each activity  $a_i$  has a **start time**  $s_i$  and a **finish time**  $f_i$ , where  $0 \le s_i < f_i < \infty$ .
- If selected, activity  $a_i$  takes place during the half-open time interval  $[s_i, f_i)$ .

#### **Activity Selection**

- Activities  $a_i$  and  $a_i$  are **compatible** if the intervals  $[s_i, f_i)$  and  $[s_i, f_i]$  do not overlap. That is,  $a_i$  and  $a_i$  are compatible if  $s_i > f_i$ or  $s_i \geq f_i$ .
- in the *activity-selection problem*, we wish to select a maximum-size subset of mutually compatible activities.
- · We assume that the activities are sorted in monotonically increasing order of finish time:

$$f_1 \le f_2 \le f_3 \le ... f_{n-1} \le f_n$$
 (1)

# **Activity Selection: Example**

(We shall see later the advantage that this assumption provides.) For example, consider the following set S of activities:

- For this example, the subset  $\{a_3, a_9, a_{11}\}$  consists of mutually compatible activities.
- $\{a_1, a_4, a_8, a_{11}\}$  or  $\{a_2, a_4, a_9, a_{11}\}$  are the largest subset of mutually compatible activities.

• Let us denote that  $S_{ij}$  the set of activities that start after activity  $a_i$  finishes and that finish before activity  $a_j$  starts.

- Let us denote that  $S_{ij}$  the set of activities that start after activity  $a_i$  finishes and that finish before activity  $a_i$  starts.
- Let  $A_{ij}$  be a maximum set of mutually compatible activities in  $S_{ij}$ , which includes some activity  $a_k$ .

- Let us denote that  $S_{ii}$  the set of activities that start after activity  $a_i$  finishes and that finish before activity  $a_i$  starts.
- Let  $A_{ii}$  be a maximum set of mutually compatible activities in  $S_{ii}$ , which includes some activity  $a_k$ .
- With  $a_k$  in an optimal solution, we are left with two

- Let us denote that  $S_{ij}$  the set of activities that start after activity  $a_i$  finishes and that finish before activity  $a_i$  starts.
- Let  $A_{ii}$  be a maximum set of mutually compatible activities in  $S_{ii}$ , which includes some activity  $a_k$ .
- With  $a_k$  in an optimal solution, we are left with two subproblems:
  - finding mutually compatible activities in the set  $S_{ik}$  (activities that start after activity  $a_i$  finishes and that finish before activity  $a_k$

- Let us denote that  $S_{ij}$  the set of activities that start after activity  $a_i$  finishes and that finish before activity  $a_i$  starts.
- Let  $A_{ii}$  be a maximum set of mutually compatible activities in  $S_{ii}$ , which includes some activity  $a_k$ .
- With  $a_k$  in an optimal solution, we are left with two subproblems:
  - finding mutually compatible activities in the set  $S_{ik}$  (activities that start after activity  $a_i$  finishes and that finish before activity  $a_k$ starts)
  - and finding mutually compatible activities in the set  $S_{ki}$  (activities that start after activity  $a_k$  finishes and that finish before activity  $a_i$ starts).

#### Optimal substructure

• Let  $A_{ik} = A_{ij} \cap S_{ik}$  and  $A_{kj} = A_{ij} \cap S_{kj}$  so that  $A_{ik}$  contains the activities in  $A_{ij}$  that finish before  $a_k$  starts and  $A_{kj}$  contains the activities in  $A_{ij}$  that start after  $a_k$  finishes.

#### Optimal substructure

- Let  $A_{ik} = A_{ij} \cap S_{ik}$  and  $A_{kj} = A_{ij} \cap S_{kj}$  so that  $A_{ik}$  contains the activities in  $A_{ij}$  that finish before  $a_k$  starts and  $A_{kj}$  contains the activities in  $A_{ij}$  that start after  $a_k$  finishes.
- That gives us  $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$ , and so the maximum-size set  $A_{ij}$  of mutually compatible activities in  $S_{ij}$  consists of  $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$  activities.

#### Optimal substructure

- Let  $A_{ik} = A_{ii} \cap S_{ik}$  and  $A_{ki} = A_{ii} \cap S_{ki}$  so that  $A_{ik}$  contains the activities in  $A_{ii}$  that finish before  $a_k$  starts and  $A_{ki}$  contains the activities in  $A_{ii}$  that start after  $a_k$  finishes.
- That gives us  $A_{ii} = A_{ik} \cup \{a_k\} \cup A_{ki}$ , and so the maximum-size set Aii of mutually compatible activities in Sii consists of  $|A_{ii}| = |A_{ik}| + |A_{ki}| + 1$  activities.
- The optimal solution to Aii must also include optimal solutions to the two subproblems for  $S_{ik}$  and  $S_{ki}$ .

# Recurrence of optimal substructure

• 
$$c[i,j] = c[i,k] + c[k,j] + 1$$

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{\alpha_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

 We could then develop a recursive algorithm and memoize it, or we could work bottom-up and fill in table entries as we go along.

Howard University

CSCI 470 Lec 12

 What if we could choose an activity to add to our optimal solution without having to first solve all the subproblems?

- · What if we could choose an activity to add to our optimal solution without having to first solve all the subproblems?
- Intuition suggests that we should choose an activity that leaves the resource available for as many other activities as possible.

- What if we could choose an activity to add to our optimal solution without having to first solve all the subproblems?
- Intuition suggests that we should choose an activity that leaves the resource available for as many other activities as possible.
- · Now, of the activities we end up choosing, one of them must be the first one to finish

- · What if we could choose an activity to add to our optimal solution without having to first solve all the subproblems?
- Intuition suggests that we should choose an activity that leaves the resource available for as many other activities as possible.
- · Now, of the activities we end up choosing, one of them must be the first one to finish
- Our intuition tells us, therefore, to choose the activity in S with the earliest finish time, since that would leave the resource available for as many of the activities that follow it as possible.

• If we make the greedy choice, we have only one remaining subproblem to solve: finding activities that start after  $a_1$  finishes.

- · If we make the greedy choice, we have only one remaining subproblem to solve: finding activities that start after  $a_1$  finishes.
- Why don't we have to consider activities that finish before  $a_1$ starts?

- If we make the greedy choice, we have only one remaining subproblem to solve: finding activities that start after  $a_1$  finishes.
- Why don't we have to consider activities that finish before  $a_1$  starts?
- We have that  $s_1 < f_1$ , and  $f_1$  is the earliest finish time of any activity, and therefore no activity can have a finish time less than or equal to  $s_1$ .

- · If we make the greedy choice, we have only one remaining subproblem to solve: finding activities that start after  $a_1$  finishes.
- Why don't we have to consider activities that finish before  $a_1$ starts?
- We have that  $s_1 < f_1$ , and  $f_1$  is the earliest finish time of any activity, and therefore no activity can have a finish time less than or equal to  $s_1$ .
- Thus, all activities that are compatible with activity  $a_1$  must start after a₁ finishes.

- Let  $S_k = \{a_i \in S : s_i \ge f_k\}$  be the set of activities that start after activity  $a_k$  finishes.
- If we make the greedy choice of activity  $a_1$ , then  $S_1$  remains as the only subproblem to solve.
- Optimal substructure tells us that if  $a_1$  is in the opitmal solution, then an optimal solution to the original problem consists of activity  $a_1$  and all activities in an optimal solution to the subproblem S<sub>1</sub>.
- There is a proof that shows this intuition is actually true in the book pg. 418 (Theorem 16.1). Left to the readers to go over the proof.

#### A recursive greedy algorithm

```
RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)

1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

#### Illustration



# An iterative greedy algorithm

```
GREEDY-ACTIVITY-SELECTOR(s,f)

1 n = s.length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

#### iterative greedy algorithm

- The variable k indexes the most recent addition to A, corresponding to the activity ak in the recursive version.
- Since we consider the activities in order of monotonically increasing finish time,  $f_k$  is always the maximum finish time of any activity in A.

$$f_k = \max\{f_i : a_i \in A\}. \tag{2}$$

Howard University

# Elements of the greedy strategy

We design greedy algorithms according to the following sequence of steps:

- · Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- · Prove that there is always an optimal solution to the original problem that makes the greedy choice, so that the greedy choice is always safe.
- · Demonstrate optimal substructure by showing that, having made the greedy choice, what remains is a subproblem with the property that if we combine an optimal solution to the subproblem with the greedy choice we have made, we arrive at an optimal solution to the original problem.

# Greedy-choice property

- We can assemble a globally optimal solution by making locally optimal (greedy) choices. In other words, when we are considering which choice to make, we make the choice that looks best in the current problem, without considering results from subproblems.
- In dynamic programming, we make a choice at each step, but the choice usually depends on the solutions to subproblems. Consequently, we typically solve dynamic-programming problems in a bottom-up manner, progressing from smaller subproblems to larger subproblems.
- · In a greedy algorithm, we make whatever choice seems best at the moment and then solve the subproblem that remains. The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to subproblems.

#### **Greedy-choice property**

- Unlike dynamic programming, which solves the subproblems before making the first choice, a greedy algorithm makes its first choice before solving any subproblems.
- A dynamic programming algorithm proceeds bottom up, whereas a greedy strategy usually progresses in a top-down fashion, making one greedy choice after another, reducing each given problem instance to a smaller one.

Knapsack problem

#### 0-1 Knapsack problem vs Fractional Knapsack problem

- The 0-1 knapsack problem is the following. A thief robbing a store finds n items. The ith item is worth v<sub>i</sub> dollars and weighs w<sub>i</sub> pounds, where v<sub>i</sub> and w<sub>i</sub> are integers. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W.
- In the fractional knapsack problem, the setup is the same, but the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item.

#### Knapsack problem



**Figure 16.2** An example showing that the greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

#### Knapsack problem

 0-1 Knapsack problem cannot be solved using a greedy approach, while fractional knapsack problem can be solved greedily.