	JOINTLY PISTRIBUTED RANDOM VARIABLES
Nu Nu	In some vandom experiments, we observe two merical random characteristics at the same time ext measure (height, weight) for a population of people ext measure (vainfall, temperature) over time or local
_I.1	DISCRETE RANDOM VARIABLES
	tor 2 discusts 1 1 1 1 11
	JOINT PROBABILITY V. A.
	J. J. J. PIR.
	Properties:
	DP(X=xi,Y=y;)>0 for all i and;
	$P(x=x_i, y=y_i) = 1$
T	all; all;
ę	x Let: X = # of jobs a college graduate holds in 5 yrs
	Of the active graduate has in Sur
	y Cafter a voduation
	1 2 3 4 - SOINT PROBABILITY
X	2 .05 .05 .12 .06 DISTRIBUTION 2 .05 .05 .00
	30.05
	3 . 64 ,02 ,14 ,10
)	Sar example,
111111111111111111111111111111111111111	

Marginal probability	: probabilities about X alone on Yalone
	1,4=2) +P(X=1,4=3)+P(X=1,4=4)=.43
P(X=2)=.27 P(X=3)=.30	MARGINAL PROBABILITY PLSTRIBUTION OF X
MARGINAL PROBABILITY	PISTRIBUTION OF 4.
P(Y=2) = 2Y $P(Y=3) = 36$	X=2, Y=1)+P(X=3, Y=1)=.19
In general:	
P(X=xi) = > F	P(X=Xi, y=yi) for each i
P(Y=yi) = Z	P(X=xi,y=yi) for each j
y 1 2 3 4	marginal totals(x)
X 2 .05 .07 .10 .05 3 .04 .02 .14 .10	130
(4) .19 .24 .36 .21	ZZ=1 -

Note: In the context of a JOINT pmf, Pxx (x, y He pmf's of X and 4 individually, Px(xi) and Py(si), are often referred to as marginal prob. distins. The use of the word "warqinal", Though, is used solely for emphasis and clarity there is absolutely no difference between a pmf and a marginal pmf.

CONDITIONAL PROBABILITY DISTRIBUT	Model
for ease of notation here we will use	Div. V D
for ease of notation here, we will use and P[X=xi] = Px(xi); P(Y=yi)=Px	(xi, y=y,)=y (xi, y
	for all i, j
P(X=x: Y=y:) = P(X=xi, 4=5)	
P(4=51)	y P(4=4;) x0
or, using our new notation	
(1) P. (xily;) = P. (xi, 5)	
	if P(4) +0
P. (5)	
$(2) P_{\lambda}(y_1 x_1) \rightarrow P_{\lambda}(x_1,y_1)$	
	y Px(xi) to
Px(x:)	0
ex (brevious ex)	
01	
$P(X=2 Y=3) = \frac{Y_{xy}(2,3)}{P_{x}(3)} = \frac{10}{36}$	- ,278
ex Find the conditional probability di	stribution.
35: 18 4	1=2
S(D(V)) 15	
Old (5) (X=114=5) = 154 - 1652	
XIFI P (X=2 Y=2) = 107 = 124 = 1292	
(P (X=3 Y=2) - 102 . 1083	
1	

From (1) and (2) on the previous page we have:
- Pry (xi, yi) = Py(yi) Priy (xilyi)
and Pxx (xinyi) = Px (xi) Pxx (yi)xi)
and recalling that
Py(y;) = Z Pxy(xi,y;) for each;
we have ** ** Py (s) = 7 Px (xi) Py (silxi) for each; which is a War County
which is another form of the Heaven of Total Probability; an example using this powerful result is on the next page:

Y= # jobs recidat A (perunit time, 5 X POISSON (X) B Z = # jobs recid at B (per unit time) perunit time Prob. Dist'n. of Y: P(Y=k) We seek P(Y=k)= \(P(Y=k | X=n) P(X=n) $= \sum_{n=k}^{\infty} {n \choose n} \phi^{k} (1-\beta)^{n-k} \frac{e^{-\lambda} \lambda^{n}}{n!}$ = (yb) e-y = [y(1-b)], r-k = (\(\lambda\beta\) \(\lambda\) \(\lambda\ $= \frac{(\lambda b)^{k} e^{-\lambda b}}{(\lambda b)^{k}}$ ~ POISSON (Ap) 1.

this vesult is sometimes stated as. He Poisson distribution is preserved under vandom selection.

INVER	ENTENT RANDOM VARIABLES
DF:	
X	and I are independent v.v.'s iff
* *	Pxxx (xi, y) = Px(xi). Px(y) foralliand
**	P(x=xi, Y=yi) = P(x=xi) P(Y=yi) for all i and i
	is, X and Y are independent off Prin (xilsi) = Pr(xi) and Prin (yilxi) = Pr (yi) for all i and i
note: One not Tha	(i,i) pair such that the above is true is enough to make X and Y dependent. I's what the "all" means.
lx/	Y
0	1 12 12 Px(X)
X 1	1.04 .08 .08 .2 => X and Y are indep.
Pr(y)	1.06 12 .12 .3
ex tron	r page 2, bottom: X and Y are NOT indep.

JOINTLY DISTRIBUTED RANDOM VARIABLES CONTINUOUS RANDOM VARIABLES function of several vandom variables, and we begin by looking at the joint density function two random variables: bivariate densi ex observations on adult males measure: X: height phoemations in U.S. ates X: Temperature and Y: a range R ting (x,y) = joint pdf o a surface : 2 = roperties of +(x,y): > 0 for all (x,y) in R flaglandy = 1 3. P ((x,y) ∈ A) = { f(x,y) dx dy

Notes: flany) DX Dy = P(x = X Extox, dopt the convention that (1x,y) = 0 f (x,y) & R. Herefore f(x,y) is defined all (x,y) in the plane, and 55 f(x,y) dxdy =

0 = x = 1,0 = y = 2 aded region So we integrate the surface over this vegion PIXTY = dx du 1 x=1 dy =) (1 - 5) dy = 5 - 5 ½ dydx $\int_0^1 \frac{y}{2} \int_0^{1/2} dx = \int_0^1 \frac{x}{2} dx = \frac{x^2}{4}$

5

ex/ X, Y uniform over 5,000 L X 1,000 + 4,000 L 4,000 c p. 9,000 = for x and Y as above

FIND P(X>Y)

 $w/f_{x,y}(x,y) = x^2 + \frac{xy}{3}$; $0 \le x \le 1$

FIND P(X+Y>1)

P(x+y>1) = \(\int \left(\times^2 + \times \times \right) \dxdy + \int \left(\times^2 + \times \times \right) \dxdy

MARGINAL POF'A If fxx(x,y) is our joint pdf fx (x) is the marginal dist. of X fy (y) is the marginal dist. of Y fx(x) = [= fx,4(x,y)dy
fx(y) = [= fx,4(x,y)dx check if density: 50 50 xy drdy =

INDEPENDENT R.V.'s
X and Y are independent R.V.'s. IFF
fx,y(x,y)=fx(x)fy(y)
Hote: Factoring fx,4/x,4) who glx) Who is not enough they must factor who the marginals
the defin. implies frig(xly) = frig(xig) = fx(x) fy(y) = fx(x) fy(y) = fy(y)
and similarly
Note: Knowledge of the joint pidit is always enough for us to find the manginals, but the converse is NOT TRUE.
ex In a previous example, we had, for $f_{x,y}(x,y) = xy$ $0 \le x \le 2$ $0 \le y \le 1$ Hat $f_{x}(x) = \frac{1}{2}$ $0 \le x \le 2$ and
- fy(y)= 2y 0 = y = 1
which implies that X and Y are independent