Tutorial 3 (Limits & Continuity)

(You should practise writing proper steps.)

A) Limits

1. Evaluate the following limits:

(a)
$$\lim_{x\to 2} \frac{-4}{(-x^2+x-2)}$$
 (b) $\lim_{x\to 4} 2(x-3)(x-5)$ (c) $\lim_{x\to 2} \frac{x^2-2}{x-1}$ (d) $\lim_{x\to 1} \frac{2x^2-x-3}{x+1}$ (2x-3)(x+1)

x-3 x+4 (e) $\lim_{x\to 3} \frac{x^2+x-12}{2x-6}$ (f) $\lim_{x\to -1} \frac{x^3+1}{x+1}$ 1 [Do you know how to factorise x^3+1 ?] 7/2

(g)
$$\lim_{x\to 3} \frac{\sqrt{x}-1}{x-1}$$
 1/3 (h) $\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$ DNE 1/2 (1/(/x + 1)

(i)
$$\lim_{x\to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x}$$
 [The expression $\sqrt{3+x} + \sqrt{3}$ may be useful.] $\frac{1}{(3+3)} \frac{1}{2(3)}$

-1/4 (j)
$$\lim_{x\to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x}$$
 [Simplify the expression first.] (k) $\lim_{x\to 3} \left[\frac{x^2 - 9}{x - 3} - \frac{x^2 - 1}{x + 1} \right]$ 4

$$\frac{1/(\cos x) * \sin x/ x}{= 1} \quad \text{(l)} \quad \lim_{x \to 0} \frac{\tan x}{x} \quad \text{[Hint: } \tan x = \frac{\sin x}{\cos x} \text{]} \quad \text{(m)} \quad \lim_{x \to 2} \frac{|x - 1|}{|x - 1|} \quad \text{(n)} \quad \lim_{x \to 2.5} |x| \quad \text{2}$$

- 2. (a) Given that $\lim_{x\to 0} \frac{x}{\sin x} = L$, what is the value of L?
 - (b) Evaluate the following limits:

(i)
$$\lim_{u\to 0} \frac{\sin u}{u}$$
 1 (ii) $\lim_{x\to 0} \frac{\sin 3x}{x}$ 3 (iii) $\lim_{x\to 0} \frac{\sin x^3}{x^3}$

(i)
$$\lim_{u\to 0} \frac{\sin u}{u}$$
 1 (ii) $\lim_{x\to 0} \frac{\sin 3x}{x}$ 3 (iii) $\lim_{x\to 0} \frac{\sin x^3}{x^3}$ 1
 $\frac{2x(x+1) / \sin 3x}{\sin 3x/3x}$ (iv) $\lim_{x\to 0} \frac{2x(x+1)}{\sin 3x}$ [The expression $\frac{3x}{\sin 3x}$ may be useful.] (v) $\lim_{x\to 0} x^3 \sin \frac{1}{x^3}$ (v) $\lim_{x\to 0} x^3 \sin \frac{1}{x^3}$

3. (a) Determine $\lim_{x\to 3^+} \begin{bmatrix} x \\ 3 \end{bmatrix}$ and $\lim_{x\to 3^-} \begin{bmatrix} x \\ 3 \end{bmatrix}$. Does $\lim_{x\to 3} \begin{bmatrix} x \\ 3 \end{bmatrix}$ exist? Why?

(b) Determine
$$\lim_{x\to 2^+} \frac{|x-2|}{x-23}$$
, and $\lim_{x\to 2^-} \frac{|x-2|}{x-21}$. Does $\lim_{x\to 2} \frac{|x-2|}{x-2}$ exist? Why? DNE, not same Undefined, both undefined

4. (a) Given that
$$1 - \frac{x^2}{4} \le f(x) \le 1 + \frac{x^2}{2}$$
 for all $x \ne 0$, find $\lim_{x \to 0} f(x)$.

[Which theorem do you use?]

(b) Prove that $\lim_{x\to 0} x \cos \frac{1}{x} = 0$. [Try to sandwich $x \cos \frac{1}{x}$]

between two appropriate expressions.]

(c) Given that
$$3x-5 \le f(x) \le x^2 - 3x + 4$$
 for $x \ge 0$, find $\lim_{x \to 3} f(x) = 4$

(d) Find
$$\lim_{x\to 0} x^4 \sin \frac{1}{x^3}$$
. 0

TMA1101 Calculus, T1, 2017/18

5. Determine whether the limit exists by considering the corresponding one-sided limits. Give the value of the limit if it exists.

(a)
$$\lim_{\substack{x \to 2 \\ \text{DNE}}} f(x), f(x) = \begin{cases} \frac{x+2}{2}, & 1, \frac{3}{2} \\ \frac{12-2x}{3}, & x \ge 2 \\ \frac{3, 2}{3, 2} \end{cases}$$
 (c) $\lim_{\substack{x \to 2 \\ \text{DNE}}} f(x), f(x) = \begin{cases} 1, 2 & 2, 1 \\ 3-x & , x < 2 \\ 2 & , x = 2 \end{cases}$ (b) $\lim_{\substack{x \to 2 \\ \text{DNE}}} f(x), f(x) = \begin{cases} 3x-2 & x < 21, 1 \\ \frac{6}{x}+1 & x \ge 2 \\ 4, \text{cont} \end{cases}$ 2, 4

For each of the above, is f continuous at 2?

6. Determine the value of each of the following limits if it exists. If it does not exist, explain why.

B) **Continuity**

1. Determine whether the following functions are continuous at x = 3.

(a)
$$f(x) = \begin{cases} 2x^2 - 4 & (x > 3) \\ x + 11 & (x \le 3) \end{cases}$$
 Yes

(b)
$$f(x) = \frac{2x}{3x^2 - 9x}$$
 No

(b)
$$f(x) = \frac{2x}{3x^2 - 9x}$$
 No
(c) $f(x) = \begin{cases} 3x - 2 & x < 2 \\ \frac{6}{x} + 1 & x \ge 2 \end{cases}$ No

For each of the functions graphed below, explain why the function is not continuous at x = a.

3. (a) If you look at the graph of $y = \tan x$, where are the points of discontinuity?

$$x=n pi /2$$
 (2n+1)pi/2, n (Z

TMA1101 Calculus, T1, 2017/18

$$(2n+1) pi/6 + 2/3$$

Find the discontinuities of $f(x) = \tan(3x - 2)$.

(b) Determine the discontinuities, if any, of the following function.

$$f(x) = \begin{cases} 2x+1, & x \le 0 & 0-=1 \\ 0+=1 & 1-=1 \\ 1, & 0 < x \le 1 & 1+=2 \\ x^2+1, & x > 1 & \text{discontinuous at x>1, limit x-> 1 DNE} \end{cases}$$

- 4. Evaluate each of the following limits by observing that each expression involved is a composition of continuous functions.
 - (a) $\lim_{x \to \pi} \cos(x + \sin x)$ (b) $\lim_{x \to 2} e^{x^2 1}$ e^3
- 5. At what points are the functions continuous?

(a)
$$f(x) = \frac{x+1}{x^2 - 3x + 2}$$

 $x \neq 2, 1, \frac{x+3}{x+3}$

(b)
$$g(x) = \begin{cases} 3 - x & \text{if } x < 3 \\ 2x + 1 & \text{if } x \ge 3 \end{cases}$$

- (a) $f(x) = \frac{x+1}{x^2-3x+2}$ (b) $g(x) = \begin{cases} 3-x & \text{if } x < 3\\ 2x+1 & \text{if } x \ge 3 \end{cases}$ Explain where 6. (a) Explain why $g(x) = \begin{cases} 3-x & \text{if } x < 3 \\ 2x+1 & \text{if } x \ge 3 \end{cases}$ is a continuous function on the interval
 - (0,3) but not a continuous function on the interval [0,3]
 - (b) Explain why $g(x) = \frac{x}{x-2}$ is not a continuous function on the interval [0,3]
- 7. (a) State the intermediate value theorem (i.e. the full statement including the hypothesis and the conclusion).
 - (b) Show that there is a root of the equation $x \cos x = 0$ in the interval $[0, \frac{\pi}{2}]$. [Let $f(x) = x - \cos x$. Then apply Intermediate Value Theorem.]
- 8. (a) If $f(x) = x^3 8x + 10$, show that there is a value of c in the interval (0,1) for which $f(c) = \pi$. f(1) < f(c) < f(0)
 - (b) Show that there is a root of the equation $4x^3 6x^2 + 3x 3 = 0$ in the interval [1,2].-2 < 0 < 9

TMA1101 Calculus, T1, 2017/18

C) Limits involving infinity

1. Show that $\lim_{x\to 0^+} \left(\frac{1}{|x|} - \frac{1}{x}\right)$ exists but $\lim_{x\to 0^-} \left(\frac{1}{|x|} - \frac{1}{x}\right)$ does not. inf -(-inf) = inf

what can you conclude about $\lim_{x\to 0} \left(\frac{1}{|x|} - \frac{1}{x}\right)$? [Reminder: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$]

2. (a) Determine the vertical and/or horizontal asymptote(s) for the graph of each function defined as follows.

[Consider $\lim_{x\to\infty} f(x)$, $\lim_{x\to\infty} f(x)$, $\lim_{x\to\infty} f(x)$ and/or $\lim_{x\to\infty} f(x)$ for appropriate a.]

(i)
$$f(x) = \frac{2x+1}{2x^2 - 5x + 2}$$

(ii)
$$f(x) = \frac{3x^2 - 2x + 4}{2x^2 - 5x + 2}$$
 [Factoring $2x^2 - 5x + 2$ may help.]

(iii)
$$f(x) = \frac{x+3}{\sqrt{x^2 + 2x - 8}}$$

(b) The graph of $f(x) = \frac{4x+8}{x^2-4}$ has a horizontal asymptote. Give the equation of this asymptote.

Show that x = -2 is NOT a vertical asymptote for the graph of $f(x) = \frac{4x + 8}{x^2 - 4}$.

- 3. For each of the following limits, determine if it exists. If it does not exist, could you write as $\lim_{x \to a} f(x) = \infty$ or $\lim_{x \to a} f(x) = -\infty$. Show steps to justify your answers.

- (a) $\lim_{x \to +\infty} \frac{2x^3 4x}{5x^3 + 2}$ (b) $\lim_{x \to +\infty} \frac{5x^5 3}{3x^3 2}$ (c) $\lim_{x \to \infty} \left(\frac{8x^2 + 7}{2x^2} \frac{9x^3 + 27}{3x^3 3} \right)$
- (d) $\lim_{x \to \infty} \left(\sqrt{x(x+2)} x \right)$ (e) $\lim_{x \to 2} \frac{2x+3}{3x^2 4x 4}$ (f) $\lim_{x \to \infty} \frac{2x+3}{3x^2 4x 4}$

- (g) $\lim_{x\to 0} \frac{\cos x}{x^4}$ (h) $\lim_{x\to 0} \frac{\sin x}{x^4}$
- (i) $\lim_{x \to 0} \frac{x^2 + 1}{x^4}$ (j) $\lim_{x \to \infty} \frac{x^2 + 1}{x^4}$

(nby, Jun 2017)