DengAl: Predicting Disease Spread

Group C: G.A Akila Shashith Ganegoda, M.L.N.Kaushalee, K. G. Inuka Manmitha, R Nilakshan, S.P.A.G.T Rajapaksha

Introduction

Using environmental data collected by U.S. Federal Government agencies, can you predict the number of dengue fever cases reported each week in San Juan, Puerto Rico and Iquitos, Peru?

- Dengue fever is a mosquito-borne disease in tropical and subtropical parts of the world.
- Symptoms of dengue fever can range from mild to severe, and in severe cases can lead to death.
- Climate change will likely produce distributional shifts with significant public health implications worldwide.
- Dengue fever has spread in recent years, with many cases occurring in Latin America.
- Predicting the number of dengue cases weekly in specific locations can help improve research initiatives and resource allocation to help fight life-threatening pandemics.

Problem Definition

Using environmental data to aid in public health initiatives, predict the number of dengue fever cases reported weekly in San Juan, Puerto Rico, and Iquitos, Peru.

Description of the Dataset

- The goal is to predict total cases for each (city, year, weekofyear) in the test set.
- The test set has data for two cities, San Juan and Iquitos, spanning 5 and 3 years, respectively.
- The test data are sequential and non-overlapping with any training data.
- The features include climate data, precipitation measurements, dew point temperature, air temperature, relative humidity, specific humidity, and vegetation index.
- city City abbreviations: sj for San Juan and iq for Iquitos
- week_start_date Date given in yyyy-mm-dd format
- station_max_temp_c Maximum temperature
- station_min_temp_c Minimum temperature
- station_avg_temp_c Average temperature
- station_precip_mm Total precipitation
- station_diur_temp_rng_c Diurnal temperature range
- precipitation_amt_mm Total precipitation
- ndvi_se Pixel southeast of city centroid
- ndvi_sw Pixel southwest of city centroid
- ndvi_ne Pixel northeast of city centroid
- ndvi nw Pixel northwest of city centroid

- reanalysis_sat_precip_amt_mm Total precipitation
- reanalysis_dew_point_temp_k Mean dew point temperature
- reanalysis_air_temp_k Mean air temperature
- reanalysis_relative_humidity_percent Mean relative humidity
- reanalysis_specific_humidity_g_per_kg Mean specific humidity
- reanalysis_precip_amt_kg_per_m2 Total precipitation
- reanalysis_max_air_temp_k Maximum air temperature
- reanalysis_min_air_temp_k Minimum air temperature
- reanalysis_avg_temp_k Average air temperature
- reanalysis_tdtr_k Diurnal temperature range

Proposed Solution

We propose to utilise the dataset for a predictive task, such as a regression task, to forecast the total cases of dengue fever predictions (city, year, week of year) and the predicted total cases.

Mapping the Problem: The solution involves mapping environmental factors to disease incidence, aiding resource allocation and research efforts to combat pandemics.

(Resource: https://www.drivendata.org/competitions/44/dengai-predicting-disease-spread/page/80/)