Introduction to Machine Learning

Introduction: Losses & Risk Minimization

Learning goals

- Know the concept of loss
- Understand the relationship between loss and risk
- Understand the relationship between risk minimization and finding the best model

HOW TO EVALUATE MODELS

• In the training, we want to optimize θ . To score θ , we have to compare the actual output with the predicted output:

Features x			Target y		Prediction \hat{y}	
People in Office (Feature 1) x_1	Salary (Feature 2) x_2		Worked Minutes Week (Target Variable)		Worked Minutes Week (Target Variable)	
4	4300 €		2220	? ≈	2588	
12	2700 €		1800	~	1644	
5	3100 €		1920		1870	
\mathcal{D}_{train}						

- We need to define a suitable criterion, e.g.:
 - Absolute error |2588 − 2220| = 368
 - Squared error: $(2588 2220)^2 = 135,424$
- The choice of this metric has a major influence on the final model, as it determines what a *good* model is.
- It will determine the ranking of the different models $f \in \mathcal{H}$.
- The metric we use is called the loss function.

LOSS

The **loss function** $L(y, f(\mathbf{x}))$ quantifies the "quality" of the prediction $f(\mathbf{x})$ of a single observation \mathbf{x} :

$$L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}$$
.

How "close" $f(\mathbf{x})$ is to y can be quantified e. g. by the absolute loss $L(y, f(\mathbf{x})) = |f(\mathbf{x}) - y|$.

LOSS

Often, we use the L2-loss $L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$:

RISK

The **risk function** quantifies the "quality" of the whole model.

The ability of a model f to reproduce the association between \mathbf{x} and y that is present in the data \mathcal{D} can be measured by the **summed loss**, also called **"empirical risk"**:

$$\mathcal{R}_{\mathsf{emp}}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$
 $\mathcal{R}: \mathcal{H} \to \mathbb{R}.$

RISK

Notes:

• The risk is often denoted as empirical mean over $L(y, f(\mathbf{x}))$

$$\bar{\mathcal{R}}_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$

The factor $\frac{1}{n}$ does not make a difference in optimization, so we will consider $\mathcal{R}_{emp}(f)$ most of the time.

• Since the model f is usually defined by **parameters** θ in a parameter space Θ , this becomes:

$$\mathcal{R}: \mathbb{R}^d \to \mathbb{R}$$
.

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,min}} \mathcal{R}_{emp}(\boldsymbol{\theta})$$

The best model is the model with the smallest risk.

If we have a finite number of models f, we can compare the risk $\mathcal{R}_{\text{emp}}(\theta)$ of all models:

Model	$oldsymbol{ heta}_{ extit{intercept}}$	$\mid heta_{ extit{slope}} \mid$	$\mathcal{R}_{emp}(heta)$
$\overline{f_1}$	2	3	194.62
f_2	3	2	127.12
f_3	6	-1	95.81
f_4	1	1.5	57.96

But: Normally, the hypothesis space ${\cal H}$ is infinitely large.

As the the mapping of the hypothesis space to its parameters is bijective, we can consider the error surface depending on the parameters θ :

\mathcal{D}		\mathbb{R}^d	(ΤD
\mathcal{R}	:	\mathbb{R}^{-}	\rightarrow	\mathbb{R} .

Model	$oldsymbol{ heta}_{ extit{intercept}}$	$ heta_{ extit{slope}}$	$\mathcal{R}_{emp}(oldsymbol{ heta})$
f_1	2	3	194.62
f_2	3	2	127.12
f_3	6	-1	95.81
f ₄	1	1.5	57.96

The process of finding the best model is called **empirical risk minimization** (ERM).

$$\hat{oldsymbol{ heta}} = rg\min_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{ ext{emp}}(oldsymbol{ heta}).$$

Most learners in ML try to solve the above *optimization problem*, which implies a tight connection between ML and optimization.

FURTHER REMARKS

- For regression tasks, the loss often only depends on the residual $L(y, f(\mathbf{x})) = L(y f(\mathbf{x})) = L(\epsilon)$.
- The choice of loss implies which kinds of errors are important or not – requires domain knowledge!
- For learners that correspond to probabilistic models, the loss determines / is equivalent to distributional assumptions.
- Since learning can be re-phrased as minimizing the loss, the choice of loss strongly affects the computational difficulty of learning:
 - How smooth is $\mathcal{R}_{emp}(\theta)$ in θ ?
 - Is $\mathcal{R}_{\text{emp}}(\theta)$ differentiable so that we can use gradient-based methods?
 - Does $\mathcal{R}_{\text{emp}}(\theta)$ have multiple local minima or saddlepoints over Θ ?