Problem: $f: \mathbb{R} \to \mathbb{R}$, $f(x+f(y)) = y+f(x) \forall x, y \in \mathbb{R}$ and $S = \left\{ \frac{x}{f(x)} | x \in \mathbb{R} \right\}$ is finite.

Solution: Let P(x,y) denote the functional equation.

$$P(0, y) \Longrightarrow f(f(y)) = y + f(0) \Longrightarrow f$$
 is bijective.
 $\Longrightarrow f(f(0)) = f(0) \Longrightarrow f(0) = 0 \Longrightarrow f(f(y)) = y$
 $P(f(x), y) \Longrightarrow f(f(x) + f(y)) = y + x$
 $\Longrightarrow f(x + y) = f(f(f(x) + f(y))) = f(x) + f(y)$

Let |S| = k and $S = \{c_1, c_2, ..., c_k\}$. Also let $a_i = \frac{1}{c_i}$.

We know for every non-zero $x \in \mathbb{R}$, there exists a c_r such that

$$\frac{x}{f(x)} = c_r \Longrightarrow f(x) = \frac{1}{c_r} x = a_r x$$

Now let $Q(x, y) \Longrightarrow f(x+y) = f(x) + f(y)$

Let $U = \{a_i \mid \exists x > 0 \text{ with } f(x) = a_i x\}$. We claim |U| = 1.

Proof:

We proceed indirectly. Suppose |U| > 1. So there are at least two distinct elements in U. Suppose a_m is the largest element of U and a_n is the second largest element of U. (I mean it is only smaller than a_m . If there are more than two elements in U, it is larger than all of them, only except a_m)

Consider x, y > 0 Such that $f(x) = a_m x$ and $f(y) = a_n y$.

So there exists a_z (not necessarily equal to a_m or a_n) such that

$$f(x+y) = a_z(x+y)$$

Also notice that

$$f(x+y) = f(x) + f(y) \Longrightarrow a_z(x+y) = a_m x + a_n y$$
$$\Longrightarrow (a_m - a_z)x + (a_n - a_z)y = 0 \tag{1}$$

If $a_n \ge a_z$, then LHS of (1) is positive. If $a_m = a_z$, then LHS of (1) is negative. In both cases we get a contradiction. So such a_m and a_n can not exist. Therefore |U| = 1. So f(x) = ax for some sonstant a and for all positive real x.

Obviously f is odd because $Q(x, -x) \Longrightarrow 0 = f(x) + f(-x)$

So f(-x) = -ax for all negative x. Therefore $f(x) = ax \forall x \in \mathbb{R}$. Now checking shows $a \in \{1, -1\}$. So all the functions are f(x) = x and f(x) = -x.