(a)
$$h[n] = \{\frac{1}{2}, 0, -1, 0, 2\} = 2 \{[n] - \{[n-2] + 2 \}[n-4]$$

frequency response, H(w) = 2 - e-j-2w +2e-j-4w -

magnitude response: |H(w)| = $\sqrt{(2-e^{-2j^{w}}+2e^{-4j^{w}})(2-e^{2j^{w}}+2e^{4j^{w}})}$ = $\sqrt{f}+4(e^{-4j^{w}}+e^{4j^{w}})-4(e^{-2j^{w}}+e^{2j^{w}})$

 $= \sqrt{1 + 3 \cos 4w - 3 \cos 2w} = |4 \cos 2w - 1|$ phase response: $2 \cos -1 \cos 2w - 1$ $\cos -1 \cos 2w - 1$ $\cos -1 \cos 2w - 1$ = tan-1 (stn (-2w))

magnitude response: (Hiw) =
$$\sqrt{\frac{1}{1}}$$
 Hiw) H⁴(w)

= $\sqrt{(1-e^{-\frac{1}{2}}w+e^{-2\frac{1}{2}w}-e^{-\frac{1}{2}\frac{1}{2}w})}$ (1- $e^{\frac{1}{2}w}+e^{2\frac{1}{2}w}-e^{\frac{1}{2}\frac{1}{2}w}$)

= $\sqrt{1+-e^{\frac{1}{2}w}+e^{2\frac{1}{2}w}-e^{4\frac{1}{2}w}-e^{-\frac{1}{2}w}-e^{-\frac{1}{2}w}+e^{2\frac{1}{2}w}-e^{-\frac{$

[2]. HIW)=j, TSWS2T

(a) due to the 21 periodicity. H(w-21)=H(w)=j.

so when - TEWEO, HIW) = j, [HIW] = 1

real-valued LTI => H*(w) = H(-w) => when o < w < π, H(w) = H*(-w) = -j, |H(w)|

(b) LHIW) = tan ([m(HIW))) not exist for we[-1.0] => LHIW) = 2

ZH(w) = tan' (-j) not exist for we (o. t] => ∠H(w) = - E

(c)
$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{j} \cdot e^{j\omega n} d\omega + \frac{1}{2\pi} \int_{0}^{\pi} (-\hat{j}) e^{j\omega n} d\omega$$