CS 412 Introduction to Machine Learning

Neural Networks

Instructor: Wei Tang

Department of Computer Science
University of Illinois at Chicago
Chicago IL 60607

https://tangw.people.uic.edu tangw@uic.edu

Announcements

- The final exam will be on Friday, 12/10 from 1-3:00 in TBH (Thomas Beckham Hall) 180F.
- In-person, no other option

1950s Age of the Perceptron

1957 The Perceptron (Rosenblatt)1969 Perceptrons (Minsky, Papert)

1980s Age of the Neural Network

1986 Back propagation (Hinton)

1990s Age of the Graphical Model 2000s Age of the Support Vector Machine

2010s Age of the Deep Network

deep learning = known algorithms + computing power + big data

Perceptron

The Perceptron

The Perceptron

Another way to draw it...

Neural networks

Neural Network

a collection of connected perceptrons

Neural Network

a collection of connected perceptrons

How many perceptrons in this neural network? (the bias is ignored for cleaness)

Neural Network

a collection of connected perceptrons

'one perceptron'

Neural Network

a collection of connected perceptrons

Neural Network

a collection of connected perceptrons

'three perceptrons'

Neural Network

a collection of connected perceptrons

'four perceptrons'

Neural Network

a collection of connected perceptrons

Neural Network

a collection of connected perceptrons

'six perceptrons'

Some terminology...

'input' layer

Some terminology...

...also called a **Multi-layer Perceptron** (MLP)

Some terminology...

all pairwise neurons between layers are connected

all pairwise neurons between layers are connected

How many weights (edges)?

4 + 2 = 6

How many weights (edges)?

$$4 + 2 = 6$$

How many weights (edges)?

$$(3 \times 4) + (4 \times 2) = 20$$

$$4 + 2 = 6$$

How many weights (edges)?

$$(3 \times 4) + (4 \times 2) = 20$$

$$20 + 4 + 2 = 26$$

performance usually tops out at 2-3 layers, deeper networks don't really improve performance...

...with the exception of **convolutional** networks for images

Training perceptrons

Let's start easy

world's smallest perceptron!

$$y = wx$$

What does this look like?

world's smallest perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i, y_i\}$$

 $y = f_{PER}(x; w)$

Estimate the parameters of the Perceptron

w

Given training data:

\boldsymbol{x}	y
10	10.1
2	1.9
3.5	3.4
1	1.1

What do you think the weight parameter is?

$$y = wx$$

Given training data:

x	y
10	10.1
2	1.9
3.5	3.4
1	1.1

What do you think the weight parameter is?

$$y = wx$$

not so obvious as the network gets more complicated so we use ...

An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that \hat{y} gets 'closer' to y

An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that \hat{y} gets 'closer' to y perceptron perceptron output label

An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that \hat{y} gets 'closer' to yperceptron parameter perceptron what does true label

Before diving into gradient descent, we need to understand ...

Loss Function defines what is means to be close to the true solution

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Squared Error (L2)

(a popular loss function) ((why?))

L1 Loss

$$\ell(\hat{y}, y) = |\hat{y} - y|$$

L2 Loss

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

Zero-One Loss

$$\ell(\hat{y}, y) = \mathbf{1}[\hat{y} = y]$$

back to the...

World's Smallest Perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

function of **ONE** parameter!

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i,y_i\}$$
 $y=f_{\mathrm{PER}}(x;w)$ what is this activation function?

Estimate the parameter of the Perceptron

w

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i,y_i\}$$
 $y=f_{ ext{PER}}(x;w)$ what is this activation function? Innear function! $f(x)=wx$

Estimate the parameter of the Perceptron

w

Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that \hat{y} gets 'closer' to y perceptron parameter perceptron output true label

Let's demystify this process first...

Code to train your perceptron:

for
$$n = 1 \dots N$$

$$w = w + (y_n - \hat{y})x_n;$$

just one line of code!

Gradient descent

(partial) derivatives tell us how much one variable affects the function

$$f'(a) = \lim_{h o 0} rac{f(a+h)-f(a)}{h}$$
 .

Slope of a function:

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[\frac{\partial f(\boldsymbol{x})}{\partial x}, \frac{\partial f(\boldsymbol{x})}{\partial y} \right]$$

describes the slope around a point

Saddle point

Backpropagation

back to the...

World's Smallest Perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

function of **ONE** parameter!

Training the world's smallest perceptron

for $n = 1 \dots N$

This is just gradient descent, that means...

$$w = w + (y_n - \hat{y})x_n;$$

this should be the gradient of the loss function

$$\frac{d\mathcal{L}}{dw}$$

...is the rate at which this will change...

$$\mathcal{L} = \frac{1}{2}(y - \hat{y})^2$$

the loss function

... per unit change of this

$$y = wx$$

the weight parameter

Compute the derivative

$$egin{aligned} rac{d\mathcal{L}}{dw} &= rac{d}{dw}iggl\{rac{1}{2}(y-\hat{y})^2iggr\} \ &= -(y-\hat{y})rac{dwx}{dw} \ &= -(y-\hat{y})x =
abla w \ \end{aligned}$$
 just shorthand

That means the weight update for gradient descent is:

$$w=w-
abla w$$
 move in direction of negative gradient $=w+(y-\hat{y})x$

Gradient Descent (world's smallest perceptron)

For each sample

$$\{x_i, y_i\}$$

1. Predict

a. Forward pass

 $\hat{y} = wx_i$

b. Compute Loss

$$\mathcal{L}_i = \frac{1}{2} (y_i - \hat{y})^2$$

2. Update

a. Back Propagation

$$\frac{d\mathcal{L}_i}{dw} = -(y_i - \hat{y})x_i = \nabla w$$

b. Gradient update

$$w = w - \nabla w$$

Training the world's smallest perceptron

for
$$n = 1...N$$

$$w = w + (y_n - \hat{y})x_n;$$

world's (second) smallest perceptron!

Gradient Descent

For each sample

 $\{x_i, y_i\}$

- 1. Predict
 - a. Forward pass
 - b. Compute Loss

we just need to compute partial derivatives for this network

- 2. Update
 - a. Back Propagation
 - b. Gradient update

Derivative computation

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial}{\partial w_1} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \qquad \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial}{\partial w_2} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \\
= -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_2} \\
= -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \\
= -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_2 x_2}{\partial w_2} \\
= -(y - \hat{y}) x_1 = \nabla w_1 \qquad = -(y - \hat{y}) x_2 = \nabla w_2$$

Why do we have partial derivatives now?

Derivative computation

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial}{\partial w_1} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \qquad \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial}{\partial w_2} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \\
= -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_2} \\
= -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \\
= -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_2 x_2}{\partial w_2} \\
= -(y - \hat{y}) x_1 = \nabla w_1 \qquad = -(y - \hat{y}) x_2 = \nabla w_2$$

Gradient Update

$$w_1 = w_1 - \eta \nabla w_1$$

= $w_1 + \eta (y - \hat{y}) x_1$

$$w_2 = w_2 - \eta \nabla w_2$$
$$= w_2 + \eta (y - \hat{y}) x_2$$

Gradient Descent

For each sample

$$\{x_i, y_i\}$$

1. Predict

a. Forward pass

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

b. Compute Loss $\mathcal{L}_i = \frac{1}{2}(y_i - \hat{y})^2$

$$\mathcal{L}_i = \frac{1}{2}(y_i - \hat{y})^2$$

2. Update

a. Back Propagation

b. Gradient update

(adjustable step size)

two lines now

$$\nabla w_{1i} = -(y_i - \hat{y})x_{1i}$$

$$\nabla w_{2i} = -(y_i - \hat{y})x_{2i}$$

$$w_{1i} = w_{1i} + \eta (y - \hat{y}) x_{1i}$$

$$w_{2i} = w_{2i} + \eta(y - \hat{y})x_{2i}$$

We haven't seen a lot of 'propagation' yet because our perceptrons only had <u>one</u> layer...

multi-layer perceptron

function of FOUR parameters and FOUR layers!

Sigmoid function

$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}$$

$$\frac{ds(x)}{dx} = s(x)(1 - s(x))$$

$$a_1 = w_1 \cdot x + b_1$$

$$a_1 = w_1 \cdot x + b_1$$

$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$

$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$

$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$

$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$

$$a_1 = w_1 \cdot x + b_1$$

 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$
 $y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$

Entire network can be written out as one long equation

$$y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$$

We need to train the network:

What is known? What is unknown?

Entire network can be written out as a long equation

$$y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$$
known

We need to train the network:

What is known? What is unknown?

Entire network can be written out as a long equation

$$y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$$
unknown

We need to train the network:

What is known? What is unknown?

Learning an MLP

Given a set of samples and a MLP

$$\{x_i, y_i\}$$

 $y = f_{\text{MLP}}(x; \theta)$

Estimate the parameters of the MLP

$$\theta = \{w, b\}$$

Gradient Descent

For each ${ t random}$ sample $\{x_i,y_i\}$

1. Predict

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

b. Compute Loss

2. Update

- a. Back Propagation
- b. Gradient update

 $rac{\partial \mathcal{L}}{\partial heta}$

vector of parameter partial derivatives

$$\theta \leftarrow \theta - \eta \nabla \theta$$

vector of parameter update equations

So we need to compute the partial derivatives

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \left[\frac{\partial \mathcal{L}}{\partial w_3} \frac{\partial \mathcal{L}}{\partial w_2} \frac{\partial \mathcal{L}}{\partial w_1} \frac{\partial \mathcal{L}}{\partial b} \right]$$

Remember, $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial x}$ Partial derivative $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial x}$

So, how do you compute it?

THE CHAIN RULE

If we have y=f(u) and u=g(x) then the derivative of y w.r.t. x is

$$\frac{dy}{dx} = \frac{dy}{du} \, \frac{du}{dx}$$

According to the chain rule...

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

Intuitively, the effect of weight on loss function : $\frac{\partial L}{\partial w_2}$

$$rac{\partial L}{\partial w_3} = rac{\partial L}{\partial f_3} rac{\partial f_3}{\partial a_3} rac{\partial a_3}{\partial w_3}$$
 Chain Rule!

rest of the network
$$f_2$$
 — w_3 — u_3 —

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$= - (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

Just the partial derivative of L2 loss

rest of the network
$$f_2$$
 — w_3 — a_3 f_3 — \hat{y} $L(y,\hat{y})$

$$\begin{split} \frac{\partial L}{\partial w_3} &= \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= - (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \end{split}$$

Let's use a Sigmoid function

$$\frac{ds(x)}{dx} = s(x)(1 - s(x))$$

$$\begin{split} \frac{\partial L}{\partial w_3} &= \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= - \ (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= - \ (y - \hat{y}) f_3 (1 - f_3) \frac{\partial a_3}{\partial w_3} \end{split}$$
 Let's use a Sigmoid function
$$\frac{ds(x)}{dx} = s(x)(1 - s(x))$$

rest of the network
$$f_2$$
 — w_3 — a_3 f_3 f_4 f_4 f_4 f_4 f_5 f_4 f_5 f_4 f_5 f_5 f_6 f_6 f_7 f_8 f_8

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$= - (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$= - (y - \hat{y}) f_3 (1 - f_3) \frac{\partial a_3}{\partial w_3}$$

$$= - (y - \hat{y}) f_3 (1 - f_3) f_2$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

$$\frac{\partial L}{\partial w_2} = \left[\frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \right] \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

already computed. re-use (propagate)!

THE CHAIN RULE

A.K.A. BACKPROPAGATION

The chain rule says...

$$x - w_1 - a_1 | f_1 - w_2 - a_2 | f_2 - w_3 - a_3 | f_3 - y$$
 depends on depends on depends on depends on

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

The chain rule says...

$$\frac{\partial L}{\partial w_1} = \left[\frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1} \frac{\partial a_1}{\partial w_1} \right]$$

already computed. re-use (propagate)!

$$\frac{\partial \mathcal{L}}{\partial w_3} = \begin{bmatrix}
\frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \\
\frac{\partial \mathcal{L}}{\partial w_2}
\end{bmatrix} \frac{\partial a_3}{\partial f_3} \frac{\partial a_3}{\partial a_3} \frac{\partial f_2}{\partial f_2} \frac{\partial a_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial b}$$

$$\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial a_2} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial b}$$

$$\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial b}$$

Gradient Descent

For each example sample $\{x_i,y_i\}$

1. Predict

a. Back Propagation

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

$$\mathcal{L}_i$$

$$\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}
\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}
\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}
\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial b}$$

$$w_3 = w_3 - \eta \nabla w_3$$

 $w_2 = w_2 - \eta \nabla w_2$
 $w_1 = w_1 - \eta \nabla w_1$
 $b = b - \eta \nabla b$

Gradient Descent

For each example sample
$$\{x_i,y_i\}$$

1. Predict

2. Update

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

$$\mathcal{L}_i$$

$$\frac{\partial \mathcal{L}}{\partial \theta}$$

vector of parameter partial derivatives

$$\theta \leftarrow \theta - \eta \frac{\partial \mathcal{L}}{\partial \theta}$$

Stochastic gradient descent

What we are truly minimizing:

$$\min_{\theta} \sum_{i=1}^{N} L(y_i, f_{MLP}(x_i))$$

The gradient is:

What we are truly minimizing:

$$\min_{\theta} \sum_{i=1}^{N} L(y_i, f_{MLP}(x_i))$$

The gradient is:

$$\sum_{i=1}^{N} \frac{\partial L(y_i, f_{MLP}(x_i))}{\partial \theta}$$

What we use for gradient update is:

What we are truly minimizing:

$$\min_{\theta} \sum_{i=1}^{N} L(y_i, f_{MLP}(x_i))$$

The gradient is:

$$\sum_{i=1}^{N} \frac{\partial L(y_i, f_{MLP}(x_i))}{\partial \theta}$$

What we use for gradient update is:

$$\frac{\partial L(y_i, f_{MLP}(x_i))}{\partial \theta}$$
 for some i

Select randomly!

Do we need to use only one sample?

Select randomly!

Do we need to use only one sample?

You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

Select randomly!

Do we need to use only one sample?

You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

It's very expensive when N is large (big data).

Do I lose anything by using stochastic GD?

Select randomly!

Do we need to use only one sample?

You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

It's very expensive when N is large (big data).

Do I lose anything by using stochastic GD?

- Same convergence guarantees and complexity!
- Better generalization.

Are back-propagation and (stochastic) gradient descent the same thing?

Iteration versus Epoch
How many iterations per epoch?