LAB 8

Consider the problem

$$\Delta u(x,y) = 0, \quad (x,y) \in \Omega$$

 $u(x,y) = \log((x-3)^2 + (y-2)^2), \quad (x,y) \in \Gamma = \partial\Omega,$

where Ω is a domain that does not contain the origin (3,2). Verify that $u(x,y) = \log((x-3)^2 + (y-2)^2)$ solves this Dirichlet boundary value problem exactly. To solve this problem numerically using the finite difference method, utilize the h-grid $\Omega_h = \Omega \cap \mathbb{R}_h^2$ where $\mathbb{R}_h^2 = \{(mh, nh) : m, n \in \mathbb{Z}\}.$

Write a functions lab8_exercise1 and lab8_exercise2 in the following formats

to implement its numerical solution using the five point finite difference approximation Δ_h of the Laplacian Δ , that is,

$$\Delta v(x,y) \approx \Delta_h v(x,y) = \frac{v(x+h,y) + v(x-h,y) + v(x,y+h) + v(x,y-h) - 4v(x,y)}{h^2},$$

where h = 1/(2N). The input parameter N is used to specify the grid spacing h = 1/(2N). The output vectors x, y are one dimensional arrays containing the x and y components of the grid Ω_h arranged linearly in an order of your choice, and the output array u contains approximate solution u_h on the h-grid Ω_h in the same order. In lab8_exercise1, take

$$\Omega = (-1, 1) \times (-1, 1),$$

while for lab8_exercise2, take the rotated L-shaped domain

$$\Omega = ((0,1) \times (0,1)) \setminus ((0,1/2] \times (0,1/2]).$$