Topic 3

π -Excessive Heterocycles

3.1 Imidazoles, Pyrazoles, and Indoles

2/20: • Announcements.

- PSet 2 will not be posted yet because most of the material won't be covered until next Tuesday.
 - We'll still have it a week before the exam, and the exam will not be so indole focused.
- The practice exams are also still to come.
- Lots of material and esoteric reactions in these slides; Steve will not discuss it all, nor expect that
 we remember it all.

• Imidazole and benzimidazole.

- Important constituents in pharmaceuticals and biologically important substructures (e.g., histidine; nucleophile in salt bridges; constituent in DNA).
- Proteins are often purified on nickel columns that act on histidines (see "HisTags").

• Structure and reactivity.

- Often put into structures to increase water solubility (can completely hydrogen-bond; both donor and acceptor)!
- Combination of pyridine and pyrrole: One lone pair orthogonal to the π -system, and one pyrrole-like pair that does not typically react with electrophiles.
- Imidazole is less nucleophilic than pyrrole at carbon.
- Rapid tautomerization complicates reactivity; if you want to target a particular site, you might
 get a surprise. But there are ways to overcome this that we'll discuss.
- Imidazole is amphoteric: One H is moderately acidic (not super, but not like C-H either), and then can protonate. Much less acidic than oxazole or thiazole because of resonance.
- Alkylation at nitrogen occurs, followed by deprotonation, followed by more reactivivity.

• Reactions of imidazole.

- Deprotonation (with a strong base, e.g., NaH, LDA, NaHMDS) creates a strong base that monoalkylates.
- Selective alkylation at nitrogen?
 - Target N² with protection (acylation), **ethyl Meerwein's reagent**, and deacylation.
 - \blacksquare Target N¹ with Buchwald amination (Steve: "I hate the amination, should've gotten rid of the amination").
- EAS.

- Better than benzene, worse than pyrrole.
- Nitration breaks the symmetry of the molecule. Easier to put nitrogen group next to non-positively charged nitrogen.
- Polybromination is also possible.
- Selective bromination occurs analogously to with pyridine (see Figure ??); attack at nitrogen, then carbon, then rearomatization.
- More "trivial" reactions.
- $S_NAr.$
 - Moves the lone pair onto the nitrogen, as we've seen.
- Directed metallation.
 - SEM (popularized by Bruce Lipschutz at UC-Santa Barbara) is the best protecting group. Can be removed by fluoride, which induces a loss of ethylene and formaldehyde.
 - Selective deprotonation between the two nitrogens (fairly standard, steric factors considered).
 - Can then do again.
- Lithium-halogen exchange.
 - LiX exchange occurs faster than deprotonation, then deprotonation occurs.
 - To ensure that everything occurs in the right order, people will often add a strong base (e.g., LiHMDS) first; then add butyl lithium to do the LiX exchange.
- Radical chemistry, e.g., the Minisci reaction.
 - Photochemistry as well, but that would be a whole other course; Steve won't discuss, take 5.44 with Alison if you want to hear more.
 - Minisci (radical decarboxylation) predates photoredox catalysis for generation of carboncentered radicals.
 - Second example: Nucleophilic radical can add to electron-deficient (because of the aldehyde) carbon center.
- Quaternary imidazolium salts.
 - Subsequent base yields ylide, i.e., the NHC (NHCs ubiquitous in catalysis).
- Selected imidazole disconnections.
 - Some should look familiar, and some may not.
 - The first one to talk about individually is the **Debus-Radziszewski** (imidazole synthesis).
 - From a long, long time ago. First reported synthesis of imidazole.
 - Combines a 1,2-diketone, aldehyde, and ammonia.
 - Proposed mechanism has zero evidence, but some variation is probably correct.
 - ➤ Aldehyde is probably converted to imine *before* formation of the diimine on the 1,2-diketone.
 - ➤ Then condensation.
 - ➤ Then tautomerization.
 - Synthesis 1: Analogous to the Pinner reaction; very common.
 - Van Leusen: Analogous to the pyrrole synthesis of the same name.
 - Synthesis 4.
 - Aminoacetal an acetal for stability reasons.
 - Attack to imine and then cyclization.
 - Synthesis 6: Paal-Knorr type.
- Example synthesis: Conivaptan.

- Pinner-type synthesis.
- Example synthesis: Estrogen receptor.
 - N⁻ adds to nitrile.
 - Workup to amidine.
 - Condense with α -bromoacetaldehyde to form the imidazole.
- Example synthesis: Obesity.
 - $-\alpha$ -bromopyruvate.
- Van Leusen.
 - TosMIC: Stabilized isocyanide.
 - Easily deprotonated, add to the imine, attack at carbene, proton transfer, losing the sulfonate.
- COX-2 inhibitors.
 - Historically important chemistry.
 - Merck billion-dollar molecule.
 - Has to do with pain.
 - Aspirin (but disrupts stomach) \rightarrow NSAIDs (ibuprofen, endoproxin) \rightarrow tylenol (but dissolves liver) \rightarrow opioids (but addictive).
 - Most things inhibit both pathways (COX-1 and COX-2), but this drug was selective for COX-2, specifically. But this (Vioxx) causes heart-valve problems (and Merck had to pull it from the market at great loss).
 - Celebrex as well, but the company died and had to be sold to Pfizer.
- Example synthesis: Like Lipitor, another statin compound.
 - Glycine benzyl ester is a fairly standard protected amino acid.
 - Treat it to form something, which after cleavage can be acylated.
 - Ester to benzylamine.
 - Cyclize with a primary amine to stitch in the nitrogen.
 - Cyclize (fairly typical with statins).
- Example synthesis: Debus-Radziszewski chemistry.
 - Microwave chemistry was huge, but the bubble has burst at this point. You still see it here and there, but not much.
 - Get to the asymmetric α -diketone with a SeO₂ oxidation.
 - What method you'll use commonly depends on what you have and what you have successfully been able to do previously.
 - Ester, cross-Claisen, hydrolysis/decarboxyliation could also allow you to make a series of different imidazoles.
- Example synthesis: pan-JAK inhibitor.
 - Lab synthesis.
 - Buy the phenol and protect it as the SEM.
 - Miyaura borylation, Suzuki-Miyaura coupling, Pinner salt formation, convert to the imidium system.
 - Cleave with acid to liberate the carbonyl and do the intramolecular cyclization.

- Scale synthesis.
 - Removed Miyaura borylation with Grignard, etc.
 - Gets a byproduct, but it's inactive.
 - Many telescoped steps.
 - You need to worry about the form of the crystal that recrystallizes (there is a whole field of **crystal engineering**); is it too big, too small, etc.?
- Example synthesis: P13K β -Sparing.
 - No lateral deprotonation, despite intuition!
 - Weinreb amide (for adding carbanions to carbonyl derivatives).
 - Alkylate on nitrogen, do S_NAr (could also be benzyne).
 - Palladium catalyst for final Suzuki-Miyaura cross-coupling.
 - \blacksquare Can do it in the presence of a lot of basic functional groups.
 - More evidence why this chemistry won the Nobel prize.
- 1,2-azoles.
 - We'll talk mostly about pyrazole, but there's also isothiazole and isoxazole.
 - Dimeric structure in solution.
 - Also has tautomerization.
- A few reactions (similar again).
 - N lone pair in and out of the aromatic system.
 - Acylation \rightarrow deprotonation again.
 - Selective halogenation can be rationalized based on arrow-pushing and charges.
 - Can acylate on carbon by sterically blocking the site that will typically react first; thus, more engineered and less useful.
 - Under neutral conditions, alkylation occurs at the lone pair.
 - Under basic conditions, we form the thermodynamic product.
 - Lots of companies have wanted to N-arylate at the thermodynamically unfavored nitrogen recently, and have needed catalysts to do that.
 - Lithiation.
- Pyrazole syntheses.
 - More condensation chemistry.
 - Always look for bisnucleophiles and biselectrophiles!
 - This is a very common disconnection.
 - Dipolar cycloadditions can also be employed (not as common, but occur on occasion).
 - Knorr gets his own synthesis.
 - This is good for symmetric pyrazoles.
 - Propynyl ketones act as the synthetic equivalent of a β -dicarbonyl.
 - Cyclopropane thing synthesis.
 - Take the diketone, halogenate in between, nucleophilic displacement. α -aryloxy ketone could feed into a cross-Claisen condensation.
 - Aside: Whenever you see a structure, think about whether you can get to it using chemistry that
 you learned in first-year organic; that's what people want to use.

- Diazomethane can be generated in flow now, so it can be used on scale.
 - Explosive and toxic; precursors are also nasty (mutagenic), so bad on lab scale, too.
- What if the condensation has 2:1 selectivity in the wrong direction?
 - Try a dipolar cycloaddition.
 - Treat a thing with base to do a 1,3-elimination. Then do this with an aryl acetylene (looks good, but hard to handle and explosive, so use an equivalent).
 - As an equivalent, use the enamine, which is an elimination away from the acetylene.
 - They did this chemistry on a huge scale, which is wild to Steve.
- In process chemistry, they will do almost anything (as long as its legal), even using brutal conditions, if necessary.

• DGAT-2.

- Cyclopropanated benzimidazole derivative.
- Reduce to the 1,2-diamino derivative. Then other piece for condensation.
- Other piece: α -alkylation twice. Can't do S_N2 with cyclopropanes because the transition state wants to be 120°, but the cyclopropane is 60°.
- GMP (General Manufacturing Procedure) synthesis (control access to the reactors, everyone is in clean suits, etc.). Very expensive, but makes sense if the compound is going into a person.
- Got starting material from γ -bromocarboxylic acid via Hell-Volhard-Zelinsky reaction, in Steve's guess.
- Cleave the ester under acidic conditions; in basic, you would have competitive S_NAr?? (easier to control the quality of acetyl chloride and methanol than gaseous chloride, so as to generate HCl in situ).
- Do this in the presence of Boc-anhydride to form the Boc-amide.
- Use T3P (a reagent to make amides).
- Then cleave the Boc.

• Indoles.

- Jeremy Knowles (Steve's doctoral advisor) used to make fun of people who made indoles, yet
 Steve ended up making them regardless.
- Most widely occurring ones: (S)-tryptophan and seratonin (responsible for sleep, depression, anxiety, etc.).
- SSRIs: Selective seraton in uptake inhibitors.
 - Triptans are antimigrane drugs, very structurally related to seratonin.
 - Migraines are financially huge to pharmaceutical companies. No generally successful solutions yet.
- LSD.
- Reactions of indoles.
 - 5-membered ring is always the most reactive part.
 - 6 M sulfuric acid reveals that protonation at C3 is most favorable.
 - \blacksquare pK_a = -3.5, so does not protonate easily.
 - React with electrophiles at C3.
 - Example: Halogenation occurs at C3.
 - Acylation.
 - Acidic conditions: C3.

- Basic conditions: At the nitrogen.
- C3-blocking leads to C2 reactivity next.
- Excess of methyl iodide and heat leads to tetramethylated isoindole structure. Write how this forms!!
 - Skatole (one of the worst smelling compounds in the world) is the product; look it up!
- BF₃-etherate.
 - Proceeds through spirocyclic intermediate (very common chemistry for indoles), as proven by isotopic labeling.
 - Aside: On mechanisms.
 - > You used to have cumulative exams and 2 foreign languages as PhD requirements.
 - > Frank Westheimer (famous guy who invented chemical biology) was one of Steve's "cumes." One question he gave was "cite the original experimental evidence for these 20 famous findings;" Steve had no idea.
- Mannich-type reactions.
 - \blacksquare pH = 6 is the Goldilocks range.
 - Pictet-Spengler type transformation, historically used in alkaloid synthesis.
- With base.
 - NaH is fine, but not great on scale (usually shipped as mineral oil dispersion).
 - EtMgI is shipped around in tank cars and it forms a base just fine.
- Directed metallation.
 - BOC is DMG, then deprotonate at C2, then electrophile.
 - Cooler way: Throw dry ice in (CO₂ source). Treat with more to form dianion, then deprotect.
- Reactions of gramine.
 - Tryptophan.
 - Put something on that isn't a great leaving group.
 - Put on an electron conduit that allows you to push out bad leaving groups.
 - This is a way to make racemic tryptophan.
 - N-methylation.
 - TIPS (big) allows for C4 lithiation.
 - This is important because the **Fischer indole syntehsis** (typical) is not good at making 4-substituted indoles.
- We'll start with indole synthesis next time.
- Next Tuesday, after class: PSet 2 and previous years' exams.