

19 BUNDESREPUBLIK

Offenlegungsschrift DE 41 03 151 A 1

(5) Int. CI 5: G 01 M 13/04

DEUTSCHLAND

...

F 16 C 19/00 G 01 N 27/20 // B66C 23/84

DEUTSCHES

Aktenzeichen:
Anmeldetag.
Offenlegungstag:

P 41 03 151 2 2. 2. 91 13. 8. 92 DE 41 03 151 A

(1) Anmelder

Hoesch AG, 4600 Dortmund, DE

② Erfinder

Sinner, Karl-Helmut, Dipl.-Ing., 4600 Dortmund, DE

Prüfungsantrag gem § 44 PatG ist gestellt

- (S) Mittenfreies Großwälzlager

Beschreibung

Die Erfindung betrifft ein mittenfreies Großwälzlager mit wenigestens einem an die Lagerringe anbringbaren Pruikopf zum zerstörungsfreien Prüfen der Laufbahnen oder Laufbahnübergänge nach dem Oberbegriff des Anspruchs 1

Für verschiedene Einsatzfalle bei Großwalzlagern, inbesondere bei Großwalzlagern zum Einsatz von Kranen auf Offsboreplattormen is es sinnvoll, Privfoortichtungen vorzusehen, die zerstörungsfrei und ohne Zerlegung des Lagers in der Lage sind Fehler und Risse an der Laufbahn bzw. am Laufbahnübergang festzustellen.

Nach der EP 02 28 731 A1 wird vorgeschlagen, in wenigstens einem Lagerring wenigstens eine Öffnung an- 15 zuordnen, in die eine Ultraschallsonde eingesetzt werden kann. Über eine Koppelfläche am anderen Lagerring sollen dann Materialfehler in diesem anderen Lagerring erkannt werden. Nachteilig bei dieser Ausbildung können die Oberflächenfehler nur indirekt gemes- 20 sen werden, d. h. der an eine Koppelfläche angekoppelte Prufkopf der Ultraschallmeßeinrichtung muß erst einen Teil des Lagerringes durchstrahlen, um Oberflächenfehler im gefährdeten Bereich des Laufbandsystemes zu Messen. Dadurch kann es durch Materialeinschlüsse 25 oder Gefügeänderungen zu Fehlanzeigen kommen. Daruber hinaus ist das Meßfeld derartig eingeschränkt, daß die Tiefe eines aufgetretenen Risses nicht genau feststellbar ist.

Der Erfindung liegt die Aufgabe zugrunde, ein mittenfreies Großwalzlager in einfacher Weise mit einem Prüßopf zum zerstörungsfreien Prüfen von Ringoberflächen im Bereich der Laufbahnen oder Laufbahnübergange auszurüsten, wobei eine genaue Messung von Rißlange und Rißtiefedurchgefuhrt werden kann.

Diese Aufgabe wird Erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausund Weiterbildungen sind in den Ansprüchen 2 bis 9 beschrieben.

Die Erfindung weist den Vorteil auf, daß durch die 40 direkte Messung von der Oberfläche aus die genaue Ausdehnung eventueller Risse und Fehlstellen gemessen werden kann. Dabei ist es auch möglich bei mehrfachen Vergleichsmessungen über einen vorgegebenen Zeitraum einen Rißfortschritt zu erkennen. Bei der Aus- 45 bildung nach Anspruch 3 können in einem Gehäuse alle Meßköpfe angeordnet werden, die sämtliche gefährdeten Bereiche in einem Walzkörperraum zu überwachen in der Lage sind. Durch die Ausbildung nach Anspruch 4 wird vorteilhaft erreicht, daß der Prüfkopf die Lager- 50 ringoberfläche nur während der Prüfphase berührt. Während des normalen Betriebes des Lagers ist dadurch die Meßoberfläche keinem Verschleiß unterworfen. Als besonders vorteilhaft zum Einsatz zum zerstörungsfreien Prüfen der genannten Oberflächen eignet 55 sich ein Prüfkopf mit Elektroden, der geeignet ist nach dem Gleichstrompotentialsondenverfahren zu arbeiten.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben.

Es zeigen

Fig. I einen Schnitt durch eine Hälfte eines Großwälzlagers und

Fig. 2 die vergroßerte Darstellung eines Prüfkopfes zum Messen nach dem Gleichstrompotentialsondenverfahren in Verbindung mit den umgebenden Bereichen des Wälzkörperraumes.

Das Großwalzlager 1 besteht aus einem Außenring 2

und einem Innenring 3, zwischen denen auf Laufbahnen 4, 5, 6, 7, 8, 9 Wälzkörper 10, 11, 12 angeordnet sind. Im Ausführungsbeispiel handelt es sich bei dem Großwälzlager 1 um eine dreireihige Rollendrehverbindung, bei der der Innenring 3 aus zwei Einzelringen 13, 14 zusammengesetzt ist. Der Außenring 2 ist mit einer Nase 15 versehen, an der umlaufend alle drei Laufbahnen 4, 6, 8 des Außenringes angeordnet sind. Zwischen dieser Nase 15 und dem Innenring sind die Tragrollen 10. die Radialrollen 11 und die Halterrollen 12 angeordnet. Zwischen den sich über den Umfang des Großwalzlagers verteilenden vielen Rollen einer Rollenreihe sind, was in der Zeichnung nicht dargestellt ist, in üblicher Weise jeweils Distanzstücke oder Stege eines Führungskafigs angeordnet, um die Rollen zu führen und/oder einen erhöhten Verschleiß an den Rollenzylinderflächen zu verhindern. Das im Detail in Fig. 2 dargestellte Prüfelement 16 kann vorzugsweise an Stelle eines Distanzstücks zwi-

schen zwei Rollen einer Walzkorperreihe angeordnet werden Das Prüfelement kann jedoch in gleicher Weise anstatt einer oder mehrerer Rollen bzw. eines öder mehrerer Distanzstücke oder einer diesbezüglichen Kombination eingesetzt werden.

In Fig. 2 ist ein Prüfelement 16 zum Messen von 50 Oberflächenfelhern bzw. Rissen nach dem Gleichstrompotentialsondenverfahren für den Einsatz in einer axialen Rollenreihe eines dreireihigen Rollenlagers im Detail dargestellt. In einem Gehause 17 sind zwei Prüfköpfe 18,19 angeordnet.

Diese Prüfköpfe sind mittig mitenander verbunden und mit ihren Außenflächen an entsprechenden Führungsflächen des Gehäuses 17 verschiebbar. Die Prüfköpfe 18, 19 weisen jeweils vier Elektroden 20, 21, 22, 23 auf, wobei die äußeren Elektroden 20, 21 zum Außbrinsen des Stromputentals dienen und die inneren Elektroden 22, 23 den Meßtrom aufnehmen. Diese inneren Elektroden 22, 23 sind so angeordnet, daß der ritigefahrdete Bereich 34, 25, in diesem Fall der Übergang von der Halterröllenlaufbahn 4,5 zur seitlichen Anlagefläche 26, 27 von den Meßelektroden 22,2 eingefaß ist.

Die Elektroden 20, 21, 22, 23 sind federnd nachgiebig im Gehause 17 angeordnet und einzeln an elektrische Leitungen angebunden (nicht dargestellt). Im Bereich der Böden 28, 29 der Präfköpfe 18, 19 sind Taschen 30, 31 eingebracht. Diese Taschen stehen mit nach außen geführten, nicht dargestellten Bohrungen in Verbindung. Darüber hinaus sind hier Druckfedern 32, 33 angeordnet, die die miteinander verbundenen Prüfköpfe 18, 19 in einer Mittelstellung halten, wobei die Elektroden 20, 21, 22, 23 nicht an der Oberfläche von Außenring 2 oder Innenring 3 zur Anlage kommen. Bei Beaufschlagung der Tasche 30 mit Drucköl oder unter Druck stehendem Fett verschiebt sich der Prüfkopf 18 in Richtung auf den Innenring 3 und kommt mit seinen Elektroden an diesen zur Anlage, so daß hier die Rißmessung durchgeführt werden kann. Entsprechendes gilt für die Beaufschlagung der Tasche 31 für den Prüfkopf 19 am Außenring 2

M Gehause 17 ist ein Steg 34 angebracht, der sicht in dem Lagerspal 13 zwischen Außernng 2 und Innenring 3 erstreckt. Dieser Steg 34 nimmt die Druckbolmengen zu den Taschen 30.31 und die Verbindungsleiten den Elektroden 20.21, 22.23 auf, was in der Zeichnung nicht gesondert dargestellt is: Die räumliche Anorden und Steg und der Steg 13.25 auf 1

mit den Meßgeräten oder den sonstigen Apparaturen zum Betrieb der Prüfköpfe 18, 19 verbunden werden.

Zur einfachen Definition der Lage eines Ringes auf dem Umfang konnen Sixalen oder Markierungen 38, 39, 40 am Lageraußenring 2 Lagerinnenring 3 und Steg 34 3 angeordnet werden. Die Skalen und Steckverbindungen werden vorteilnahl in dem Bereich angeordnet, der durch eine Dichtung 41 während des Betriebes geschützt ist. Zum Messen muß dann lediglich die Dichtung 41 entfernt werden.

Patentansprüche

- kennzeichnet, daß der Prüfkopf 18, 19) im Wälzkörperraum angeordnet ist und seine Prüf- und Versorgungsleitungen in dem zwischen Innenring (3) und Außenring (2) befindlichen Lagerspalt (35) 25 aus dem Lagerinnenraum herausgeführt werden. 2. Großwalzlager nach Anspruch 1, dadurch ge-
- kennzeichnet, daß der Prüfkopf (18, 19) und die Meß- und/oder Versorgungsleitungen in einem gemeinsamen Gehause (17) angeordnet sind.
- Großwälzlager nach Anspruch 2, dadurch gekennzeichnet, daß das Gehäuse (17) mehrere Prüfköpfe (18, 19) aufnimmt.
- 4. Großwalziager nach einem oder mehreren der Ansprüche 1–3, dadurch gekennzeichnet, daß der 15 Prufkopf (18, 19) während des MeBvorganges durch eine von außen zugeführte Energiequelle aus einer Ruhseitellung, in der ein Eugerringe (2, 3) nicht berührt in eine Meßstellung, mit Berührung der Lagerringe (2, 3) verschoben wird.
- Großwälzlager nach Anspruch 4, dadurch gekennzeichnet, daß als Energiequelle unter Druck zugeführtes Schmieröl oder Schmierfett verwendet wird.
- Großwälzlager nach Anspruch 4 oder Anspruch 5, dadurch gekennzeichnet, daß der Prüfkopf (18, 19) nach Abschalten der Energiezufuhr über Federelemente (32, 33) in die Ruhestellung verschoben wird.
- Großwälzlager nach einem der Ansprüche 4-6, 50 dadurch gekennzeichnet, daß mehrere Prüfköpfe (18, 19) an einem Schieber angeordnet gemeinsam verschoben werden.
- 8. Großwälzlager nach einem oder mehreren der Ansprüche 1 – 7. dadurch gekennzeichnet, daß der 55 Prüfkopf (IR, 19) mit Elektvoden (20, 21, 22, 23) zum festellen und Messen von Oberflächenfehlern nach dem Gleichstrom-Potentialsondenverfahren ausgebildetist.
- Großwälzlager nach Anspruch 8, dadurch gekennzeichnet, daß die Meßelektroden (22, 23) am Lagerring den Übergang zur Laufbahn übergreifen.

Hierzu 2 Seite(n) Zeichnungen

-Leerseite -

Nummer. Int CI ⁵ Offenlegungstag DE 41 03 151 A1 G 01 M 13/04 13 August 1992

Nummer Int Cl ⁵ Offenlegungstag DE 41 03 151 A1 G 01 M 13/04 13 August 1992

Fig. 2