Junyan Su

sujy@berkeley.edu/sujy@shanghaitech.edu.cn
https://sujunyan.github.io/

EDUCATION

Sept.2015-Jun.2019 ShanghaiTech University

Shanghai, China

B.E. Candidate in Computer Science and Technology

GPA: 3.81 /4.0 Ranking: 3/95

Aug.2018-May 2019 University of California,

Berkeley, CA, USA

Concurrent Enrollment Student at College of Engineering

RESEARCH INTERESTS

Control Theory Optimal Control Optimization

PUBLICATIONS

J. Su, Y. Zha, K. Wang, M.E. Villanueva, R. Paulen, B. Houska.
 Interval Superposition Arithmetic for Guaranteed Parameter Estimation
 Dynamics and Control of Process Systems, including Biosystems, 2019 [pdf]

HONORS & AWARDS

2016,2017 Scholarship for Academic Excellence, Shanghai Tech University

Oct.13 2017 Most Innovative Robot in Rescue Robot Competition,

IEEE International Symposium on Safety, Security and Rescue Robotics

RESEARCH EXPERIENCE

Jun.2018-Aug.2018 Carnegie Mellon University

Pittsburgh, PA, USA

Robotics Institute Summer Scholars Program Advisors: Prof. Howie Choset & Lu Li

To design one logic-circuit-level layout with Verilog to fetch data from multiple sensors and reduce

CPU intervention time.

Sept.2017-May 2018 Robomasters 2018

Nanjing, China

Advisor: Prof. Andre Rosendo

RoboMaster is one international robotics competition. The competition is like multiplayer online battle arena (MOBA) video game. Each team will build their own robots that serve different functionality.

May 2018-Jan.2019 A Software for Interval Superposition Model

Shanghai, China

Advisor: Prof. Boris Houska

Our software package provides a tool to construct enclosures of the image set of nonlinear functions easily and efficiently, which is needed by a wide variety of numerical computing and control algorithms.

COURSE PROJECTS

- Lego Pick & Place Assembler [website].
- Turtlebot with Robotic Arm Delivery [website].
- A Don't-Touch-Me Robot [website]
- Completed and passed all the points in the [Pintos project]

Optimal 800MHz 6-Bit "Absolute-value Detector"
 In this project, I and my teammate implemented a CMOS level circuit "Absolute-value Detector" with Cadence Virtuoso. We achieved the minimum delay compared with other teams in the course.

TECHNICAL SKILLS

Programming Languages: C/C++, Python

Scientific Tools: MATLAB, Mathematica, Julia, ROS

Hardware Design:pSoC, STM32xx, Verilog, Cadence Virtuoso

Office Applications: LATEX

TEACHING

Feb.2017-Jun.2017 Teaching Assistant of Introduction to Information Science and Technology

Sept.2017-Jan.2018 Teaching Assistant of Electric Circuits