Variational Dropout Sparsifies Deep Neural Networks

Dmitry Molchanov dmitry.molchanov@skolkovotech.ru

Arseniy Ashuha ars.ashuha@phystech.edu

Dmitry Vetrov dvetrov@hse.ru

Key results

Sparse Variational Dropout: a New Method for DNN Sparsification

- Compression of DNNs through sparsification of weight matrices
- CIFAR-10 VGG: up to 70x compression
- MNIST LeNet-5: up to 280x compression
- No accuracy loss!
- Simple and easy-to-use:
 - Additive Gaussian noise on activations and a regularization term
 - Optimize w.r.t. **both** weights **and** noise variances (\approx dropout rates)

Dropout and Stochastic Variational Inference

Dropout training optimizes the cross-entropy loss under stochastic setting:

$$-\mathbb{E}_{\varepsilon} \log p(Y \mid X, W = W \odot \varepsilon) \to \min_{W} \quad \varepsilon \sim Bernoulli(p)$$

Gaussian Dropout is similar but puts Gaussian noise on the weights:

$$\widetilde{W} = W \odot \varepsilon \quad \varepsilon_{ij} \sim \mathcal{N}(1, \alpha) \quad q(\widetilde{w}_{ij}) = \mathcal{N}(w_{ij}, \alpha w_{ij}^2)$$

Noise over w_{ij} means that \widetilde{w}_{ij} is a random variable with distribution $q(\widetilde{w}_{ij})$

Stochastic Variational Inference:

$$\underbrace{-\mathbb{E}_{q(\widetilde{W}\,|\,W,\alpha)}\log p(Y\,|\,X,\widetilde{W})}_{\text{Data-term (e.g. cross-entropy loss)}} + \underbrace{\mathrm{D}_{\mathrm{KL}}(q(\widetilde{W}\,|\,W,\alpha)\,\|\,p_{prior}(\widetilde{W}))}_{\text{Regularizer}} \rightarrow \min_{W,\alpha}$$

- The true posterior distribution over weights \widetilde{W} is approximated by q $\mathrm{D_{KL}}(q(\widetilde{W}\,|\,W,\alpha)\,\|\,p(W\,|\,X,Y)) \to \min_{W\,\alpha}$
- Just a slightly different loss function; implementation is basically the same

Sparse Variational Dropout

Gaussian Dropout posterior distribution

$$\widetilde{W} = W \odot \varepsilon \quad \Leftrightarrow \quad \widetilde{w}_{ij} \sim \mathcal{N}(w_{ij}, \alpha_{ij} w_{ij}^2) \quad = \quad q(\widetilde{w}_{ij} \mid w_{ij}, \alpha_{ij})$$

Sparsity-inducing log-uniform prior [2] favors
 large dropout rates

$$p(\tilde{w}_{ij}) \propto \frac{1}{|\tilde{w}_{ij}|}$$

- Now we can optimize w.r.t **both** weights w_{ij} and dropout rates α_{ij}
- The KL divergence only depends on dropout rates α_{ij}
- The KL divergence is intractable, but can be accurately approximated

Approximation of the KL divergence:

Black the true value
Red our approximation

Intuition for Sparsity

The regularizer favors large dropout rates α_{ij}

$$D_{\mathrm{KL}}(q(\tilde{w}_{ij} \mid w_{ij}, \alpha_{ij}) \mid\mid p(\tilde{w}_{ij}))$$
 decreases when $\alpha_{ij} \to \infty$
Infinitely large dropout rate $(\alpha_{ij} \to \infty)$ means:

Infinitely large noise over the weight corrupts the data-term if $w_{ij} \neq 0$

$$\tilde{w}_{ij} = w_{ij} \cdot (1 + \sqrt{\alpha_{ij}} \cdot \varepsilon_{ij}) \big|_{\alpha_{ij} \to +\infty}$$

- Equivalent binary dropout rate $p = \frac{\alpha}{1+\alpha} \to 1$, so $\tilde{w}_{ij} = 0$ during training
- lacktriangle Data-term controls the accuracy and prohibits to set all lpha's to infinity

Sparse Variational Dropout Training

Variance Reduction 1: Additive Noise Parameterization

Optimize the loss \mathcal{L} w.r.t. w_{ij} and $\sigma_{ij}^2 = \alpha_{ij} w_{ij}^2$

$$\frac{\partial \mathcal{L}}{\partial w_{ij}} = \frac{\partial \mathcal{L}}{\partial \tilde{w}_{ij}} \cdot \frac{\partial \tilde{w}_{ij}}{\partial w_{ij}}$$

Before: $\tilde{w}_{ij} = w_{ij}(1 + \sqrt{\alpha_{ij}}\varepsilon_{ij})$ After: $\tilde{w}_{ij} = w_{ij} + \sigma_{ij}\varepsilon_{ij}$

$$\frac{\partial w_{ij}}{\partial w_{ij}} = 1 + \sqrt{\alpha_{ij}} \varepsilon_{ij} \leftarrow \text{noisy!}$$
 $\frac{\partial \tilde{w}_{ij}}{\partial w_{ij}} = 1 \leftarrow \text{no noise!}$

Variance Reduction 2: Sample activations instead of weights (LRT [1, 2])

Before: $B = A\widetilde{W}$ $\widetilde{W} = W + \sigma \odot \varepsilon$ $\varepsilon_{ij} \sim \mathcal{N}(0,1)$ After: $B \sim q(B)$ $B = AW + \sqrt{A^2\sigma^2} \odot \varepsilon$ $\varepsilon_{ij} \sim \mathcal{N}(0,1)$ (all $\sqrt{\cdot}$ and \cdot^2 operations are element-wise)

Experiments: MNIST LeNet-5

Method	Error %	Sparsity per Layer %	$\frac{ \mathbf{W} }{ \mathbf{W}_{\neq 0} }$
Original	0.80		1
Pruning [3]	0.77	34 - 88 - 92.0 - 81	12
DNS [4]	0.91	86 - 97 - 99.3 - 96	111
SWS [5]	0.97		200
Sparse VD	0.75	67 - 98 - 99.8 - 95	280

Comparison of different sparsity inducing techniques on the LeNet-5 architecture.

Our method provides the highest level of sparsity with a similar accuracy.

Experiments: VGG-like on CIFAR-10 and CIFAR-100

(a) Results on the CIFAR-10 dataset

(b) Results on the CIFAR-100 dataset

Accuracy and sparsity level for VGG-like architectures of different sizes. The number of neurons and filters scales as k. Green: Binary Dropout. Blue: Sparse VD

Neuron-wise compression per layer for k = 1.5 (only whole neurons removed):

$$1x-1x-1x-1x-2x-3x-14x-9x-10x-85x-6x-8x-2x-2x-1x$$

The model is so sparse it even has neuron-wise sparsity!

Experiments: Random Labels [6]

Dataset	Architecture	Train Acc.	Test Acc.	Sparsity
MNIST	FC + BD	100%	10%	
MNIST	FC + Sparse VD	10%	10%	100%
CIFAR-10	VGG + BD	100%	10%	
CIFAR-10	VGG + Sparse VD	10%	10%	100%

Unlike Binary Dropout (BD), Sparse VD does not overfit on randomly labeled data and yields an empty network. It is an optimal architecture for this task!

Follow-up Papers

Bayesian Sparsification of Recurrent Neural Networks

arXiv link: goo.gl/uL94q1

- Up to 200x compression!
- Visit the poster on "Bayesian Sparsification of RNNs" at the Learning to Generate Natural Language, Workshop, ICML'17

Structured Bayesian Pruning via Log-N Multiplicative Noise

arXiv link: goo.gl/CzVBWP

- Compression and acceleration via group-wise sparsity
- Arbitrary pattern of structured sparsity

Links and References

Project Page: goo.gl/2D4tFW

- Wang Sida and Christopher Manning. Fast dropout training, 2013
 Diederik Kingma, Tim Salimans and Max Welling. Variational
- dropout and the local reparameterizationtrick, 2015

 3. Song Han et al. Deep Compression: Compressing DNNs with
- Pruning, Trained Quantization and Huffman Coding, 2016

 Vivon Cua. Aphang Yao and Yurong Chap. Dynamic Network
- Yiwen Guo, Anbang Yao and Yurong Chen. Dynamic Network Surgery for Efficient DNNs, 2016
- Karen Ullrich, Edward Meeds and Max Welling. Soft Weight-Sharing for Neural Network Compression, 2017
- 6. Chiyuan Zhang et al. Understanding deep learning requires rethinking generalization, 2017