一、填充題 (每題 5 分,共計 40 分)

- 1. 兩圓分別為 C_1 : $(x-1)^2 + (y-4)^2 = 1$ 及 C_2 : $(x-8)^2 + (y-20)^2 = 4$,若在圓 C_1 上找一點 P,在 C_2 上找一點 Q,在 x 軸上找一點 R, $\overline{PR} + \overline{RQ}$ 之最小值=_____。
- 2. 設 H 為銳角 $\triangle ABC$ 的垂心,已知 $\angle A=30^{\circ}$, $\overline{BC}=3$,則 $\overline{AH}=$ ______。
- 3. 求方程組 $\begin{cases} 3x + 3y 7\sqrt{x + y + 1} = 177 \\ x^2 + y^2 = 4000 \end{cases}$ 符合 $x \ge y$ 的實數解 $(x, y) = \underline{\hspace{1cm}}$ 。
- 4. 有大小形狀相同的 4 個紅球、4 個白球,將這 8 個球任意排成一列,並從左而右依序編號 1~8,則紅球編號之和超過白球編號之和的排法共有_____種。
- 5. 兩數列 $\langle a_n \rangle$, $\langle b_n \rangle$ 满足 $\begin{cases} a_{\scriptscriptstyle n+1} = 2a_{\scriptscriptstyle n} + b_{\scriptscriptstyle n} \\ b_{\scriptscriptstyle n+1} = a_{\scriptscriptstyle n} + b_{\scriptscriptstyle n} \end{cases}$, $a_0 = 0$, $b_0 = 2$,求 a_{2016} 的個位數為______。
- 6. 用紅、藍兩色任意塗在某正9邊形的9個頂點,問存在三個同色頂點能構成銳角三角形的機率為____。
- 7. a, b, c 為阿拉伯數字, $a \neq 0$,則滿足 100a + 10b + c = (a + 5)(b + 5)(c + 5)的所有可能的三位數 " $abc" = _______$ 。
- 8. 若正方形 ABCD 的邊長為 3 , A_1 , A_2 , ... , A_8 為各邊的三等分點,從 A_1 , A_2 , ... , A_8 中任取三點構成三角形,問所有可能的三角形面積之和為 ________。

二、計算證明題(沒有過程不予計分,部份過程給部份分數,每題12分,共計60分)

1. $\not \exists f: N \to R, f(1) = \frac{3}{2}, \forall x \in N, f(x+1) = (1+\frac{1}{x+1})f(x) + (1+\frac{x}{2})f(1) + x^2 + 2x$, $\not \exists f(100) = \underline{ }$

2. 如圖,三角形 ABC 中, $\angle A=90^\circ$, D 、 E 分別在 \overline{AB} 、 \overline{AC} 上, P 、 Q 、 R 、 S 分別為 A 在 \overline{BC} 、 \overline{BE} 、 \overline{CD} 、 \overline{DE} 上的垂足,試證: P 、 Q 、 R 、 S 四點共圓。

3. 求最大的常數 c,使得對於滿足 $x^2 + y^2 = 1$ 的正實數 x, y,恆有 $x^6 + y^6 \ge cxy$ 。

4. $x^2 = x^4 + x^3 + x^2 + x + 1$ 的所有整數解(x, y)。

5. S 為 $\{1,2,\cdots,105\}$ 的子集合,且S 中沒有一個元素是另一個元素的 3 倍,設S 的元素個數為m,找出m 的最大值,並證明你的結論。

國立台灣師範大學一〇五學年度 附屬高級中學第一學期 高中科學實驗能力競賽【第二階段】數學科作答卷 | P.03 |

20	1/1	00/0	-
- 70	16/1	09/2	, ,

題(每題5分,共		I		
	1.		2.	
	3.		4.	
	J.		4.	
	5.		6.	
	7.		8.	
證明題(沒有過程)	不予計分,部份過程給		<u>,共計 60 分)</u>	
		1.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		
		2.		

或	立	台灣	蓼 師	範大	學	- (五	學生	F 度	E 高中科學實驗能力競賽【第二階段】數學科作答卷 	D 0 4
附	屬	高	新級	と 中	學	第	_	學	期	尚中科字真驗能力就套【布一階段】數字科作合 态 	<u>r. 0 4</u>

2	$\Lambda 1$	61	ഹ	/27

班級 座號 姓名				
世	rlr 417	는 PL	1.1 1	
	t)+ 公/2	W 21:	# 2,	

3.
4.
1.
5.

國立台灣師範大學一〇五學年度 叫 區 宫 級 中 學第 - 學 期 高中科學實驗能力競賽【第二階段】數學科參考答案

2016/09/27

班級 _座號_ _姓名

· 填充規 (母規 5 分 , 共計 40 分)	
1.	2.
22	$3\sqrt{3}$
3.	4.
(60, 20)	31
5.	6.
8	$\frac{247}{256}$
7.	8.
210, 450, 780	96

- 1. 作 P 對 x 軸的對稱點 P', 則 P' 在 C'_1 : $(x-1)^2 + (y+4)^2 = 1$ 上, $\Rightarrow \overline{PR} + \overline{RQ} = \overline{P'R} + \overline{RQ} \ge \overline{P'Q} \ge$ 圓 C_1' 與 C_2 圓心距 — 兩圓半徑和 = $\sqrt{(1-8)^2 + (-4-20)^2} - (1+2) = 22$ 。
- 2. 做平行四邊形 AHCD,則由 $\overline{AH} \perp \overline{BC}$ 知 $\overline{DC} \perp \overline{BC}$,同理有 $\overline{DA} \perp \overline{AB}$,故A,B,C,D共圓 $\Rightarrow \angle BDC = \angle BAC = 30^{\circ}$ $\Rightarrow \overline{AH} = \overline{DC} = \overline{BC} \cot 30^\circ = 3\sqrt{3}$
- 以 y = 80 - x 代入條件第二式得 $x^2 + (80 - x)^2 = 4000 \Rightarrow x = 60 \lor 20 (20 不合) \Rightarrow (x, y) = (60, 20)$ 。
- 4. 考慮紅白球編號和相同時,紅球編號 x>y>z>w 且 $x+y+z+w=\frac{1}{2}(1+2+\cdots+8)=18$

該相同,故皆為 $\frac{1}{2}(70-8)=31$ 種。

5. 由第一式得 $b_n = a_{n+1} - 2a_n$ 與 $b_{n+1} = a_{n+2} - 2a_{n+1}$ 代入第二式得 $a_{n+2} - 2a_{n+1} = a_n + (a_{n+1} - 2a_n)$, 整理得 $a_{n+2} = 3a_{n+1} - a_n$,又 $a_0 = 0$,
 n
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 ...

 an的個位數
 0
 2
 6
 6
 2
 0
 8
 4
 4
 8
 0
 2
 ...

 a_0, a_1 的個位數已與 a_{10}, a_{11} 的個位數對應重複,故知個位數 10 個一循環, a_{2016} 的個位數為 a_6 的個位數 = 8。

- 令此正九邊形 $A_1A_2\cdots A_9$,根據鴿籠原理,必有一種顏色塗了5個點以上(不妨設為藍色),而這些點在九個頂點的封閉 路徑 $A_1A_5A_9A_4A_8A_3A_7A_2A_6A_1$ 上,必有連續兩點塗藍色(不妨設為 A_1,A_5),易知若 A_6,A_7,A_8,A_9 中有任一點塗藍色,則會與 A_1,A_5 構成銳角三角形的藍色頂點,如此可推論,若不存在三色頂點構成三角形,只可能讓 A_6,A_7,A_8,A_9 全塗紅色,這 樣 A_2,A_3,A_4 須塗藍色,即為 5 個連續點塗一色,另 4 個連續點塗另一色,顏色有 2 種而位置有 9 種,共有 18 種塗法, 故所求為 $1-\frac{18}{2^9}=\frac{247}{256}$ 。
- 7. 模 5 可得 $c \equiv abc \pmod{5} \Rightarrow 5 \mid c$ 或 $ab \equiv 1 \pmod{5}$,原式整理得 $\frac{100a + 10b 5}{(a + 5)(b + 5) 1} = c + 5$,由於分子為奇數,所以分母必須 為奇數,得a,b至少有一數為奇數,且c為偶數。

若 $5 \mid c$,則 c = 0,代入整理得 $(15 - b)(a + 3) = 70 \Rightarrow (a, b) = (2, 1), (4, 5), (7, 8)$ 。否則 $ab \equiv 1 \pmod{5}$,列表如下

a	1	1	6	2	7	7	3	3	8	4	9	9	
\overline{b}	1	6	1	3	3	8	2	7	7	9	9	4	, 符合的只有(a, b, c)
$\frac{100a + 10b - 5}{(a+5)(b+5) - 1}$	3	$\frac{31}{13}$	$\frac{121}{13}$	$\frac{45}{11}$	$\frac{145}{19}$	5	$\frac{63}{11}$	$\frac{73}{19}$	$\frac{173}{31}$	$\frac{97}{25}$	$\frac{197}{39}$	$\frac{158}{25}$	

 $c) = (7, 8, 0) \circ$

故得所有解 "abc" = 210, 450, 780。

8. 設正方形周邊上各點順序依次為 $A, A_1, A_2, B, A_3, A_4, C, A_5, A_6, D, A_7, A_8$,則 56 種三角形(C_3^8)中,分為七類(每類 8 個),依序為 $\Delta A_1 A_2 A_3$, $\Delta A_1 A_2 A_4$, $\Delta A_1 A_2 A_5$, $\Delta A_1 A_3 A_5$, $\Delta A_1 A_3 A_6$, $\Delta A_1 A_4 A_5$, $\Delta A_1 A_6 A_7$,面積總和為 $8 \times \frac{1}{2} \times (1 \times 1 + 1 \times 2 + 1 \times 3 + \sqrt{5} \times \sqrt{5} + 3 \times 2 + \sqrt{2} \times 2\sqrt{2} + 3 \times 1) = 96$ 。

二、計算證明題(沒有過程不予計分,部份過程給部份分數,每題12分,共計60分)

答:507525。

原式同除以
$$x+2$$
,得 $\frac{f(x)}{x+1} = \frac{f(x-1)}{x} + \frac{f(1)}{2} + x - 1$
$$\begin{cases} \frac{f(x)}{x+1} = \frac{f(x-1)}{x} + \frac{f(1)}{2} + x - 1 \\ \frac{f(x-1)}{x} = \frac{f(x-2)}{x-1} + \frac{f(1)}{2} + x - 2 \\ \vdots \\ \frac{f(2)}{3} = \frac{f(1)}{2} + \frac{f(1)}{2} + 1 \end{cases}$$
,即 $f(x) = \frac{x(x+1)(2x+1)}{4}$,
$$\frac{f(x)}{x+1} = x \frac{f(1)}{2} + \frac{x(x-1)}{2}$$

故
$$f(100) = \frac{100 \times 101 \times 201}{4} = 507525$$
。

2.

設由垂直條件可知 E, Q, S, A 四點共圓、D, R, S, A 四點共圓,故 $\angle QSR = \angle QEA + \angle RDA$ …①,

同理,A,Q,P,B 四點共圓、A,R,P,C 四點共圓、A,Q,M,R 四點共圓,故 $\angle QPC + \angle RPB = \angle QAB + \angle RAC = 90^\circ + \angle QAR = 90^\circ + 180^\circ - \angle QMR$ = $\angle QEA + \angle RDA = \angle QSR$,即 $180^\circ - \angle QPR = \angle QSR$,得證。

3.

由算幾不等式,
$$xy = \sqrt{x^2y^2} \le \frac{x^2 + y^2}{2} = \frac{1}{2}$$
,又 $x^6 + y^6 = (x^2 + y^2)^3 - 3x^2y^2(x^2 + y^2) = 1 - 3x^2y^2$,

故
$$x^6 + y^6 \ge cxy$$
 等價於 $1 - 3x^2y^2 \ge cxy \Leftrightarrow \frac{1 - 3(xy)^2}{xy} \ge c$,

而
$$\frac{1-3(xy)^2}{xy}$$
 為 xy 的遞減函數且 $xy \le \frac{1}{2}$,所以當 $x = y = \frac{1}{\sqrt{2}}$ 時, $\frac{1-3(xy)^2}{xy}$ 有最小值 $\frac{1}{2}$,故 c 的最大值為 $\frac{1}{2}$ 。

4

答:(0, 1), (0, -1), (3, 11), (3, -11), (-1, 1), (-1, -1)。

x=0 時, $y=\pm 1$ 。以下討論 $x\neq 0$ 的情形,

$$(2y)^2 = 4x^4 + 4x^3 + 4x^2 + 4x + 4 = (2x^2 + x + 2)^2 - 5x^2 < (2x^2 + x + 2)^2$$

又
$$(2y)^2 = 4x^4 + 4x^3 + 4x^2 + 4x + 4 = (2x^2 + x)^2 + 3x^2 + 4x + 4 > (2x^2 + x)^2$$
 (因為 $3x^2 + 4x + 4$ 恆正),

故
$$(2y)^2 = 4x^4 + 4x^3 + 4x^2 + 4x + 4 = (2x^2 + x + 1)^2$$
,解得 $x = 3, -1$,對應 $y = \pm 11, \pm 1$ 。

5

答:79個。

給定任意正整數,皆能唯一表示為 $a\cdot 3^k$,其中 $(a,3)=1,a\in\mathbb{N},k\in\mathbb{N}\cup\{0\}$,

定義 $S_a = \{a \cdot 3^0, a \cdot 3^1, \cdots, a \cdot 3^{k_a}\}$,其中 $a \cdot 3^{k_a} \le 105 < a \cdot 3^{k_{a+1}}$,即 $\frac{105}{3^{k_a}} < a \le \frac{105}{3^{k_a+1}}$ 。由前述知,這些 S_a 彼此互斥,且聯集為

 $\{1,2,\cdots,105\}$ 。而由於 $3^{k_a} \le 105$,有 $k_a \le 4$,考慮 S 中的元素在 S_a 的分布:

當 k_a 為偶數時,S 最多只能有 S_a 中 $\frac{k_a+2}{2}$ 數(即 $a\cdot 3^0$, $a\cdot 3^2$, ..., $a\cdot 3^{k_a}$),否則 S 中會有兩數 $a\cdot 3^{t+1}$ 是 $a\cdot 3^t$ 的 3 倍,不合;

當 k_a 為奇數時,同理 S 最多只能有 S_a 中 $\frac{k_a+1}{2}$ 數 $(a\cdot 3^1, a\cdot 3^3, \cdots, a\cdot 3^{k_a}$ 為其中一種可能)。

- ① $k_a = 0$ 時, $35 < a \le 105$,(a, 3) = 1,這樣的 a 有 46 個,S 最多只能有 S_a 中 1 個數;
- ② $k_a = 1$ 時, $11 < a \le 35$,(a, 3) = 1,這樣的 a 有 16 個,S 最多只能有 S_a 中 1 個數;
- ③ $k_a = 2$ 時, $3 < a \le 11$,(a, 3) = 1,這樣的 a 有 6 個,S 最多只能有 S_a 中 2 個數;
- ④ $k_a = 3$ 時, $1 < a \le 3$,(a, 3) = 1,這樣的 a 有 1 個,S 最多只能有 S_a 中 2 個數;
- ⑤ $k_a = 4$ 時,a = 1,這樣的 a 有 1 個,S 最多只能有 S_a 中 3 個數。

綜合①~⑤知, S 中最多只有 46×1 +16×1 + 6×2 + 1×2 + 1×3 = 79 個元素, 而{1, 4, 5, ···, 11, 36, 37···, 105}為其中一解。