CEERS Confirmation of Density-Dependent Redshift Shifts at $z \approx 9$

Leonardo Sales Seriacopi* Independent Research

Computational Intelligence Partners: DeepSeek-R1 & ChatGPT-40

(AI tools for theoretical development and numerical implementation)

June 2025

Abstract

We report a significant correlation ($\rho_s = 0.85$, p < 0.001) between local galaxy density and redshift residuals in the CEERS EGS field at $z \approx 9$. Using identical methodology to our previous JADES-GS analysis, we independently confirm that galaxies in overdense regions exhibit systematically higher redshifts than expected under the standard cosmological model.

Density Calculation Methodology

3D Density Estimation Framework

We implement a robust neighbor-counting approach in comoving space:

$$\rho_i = \frac{N_{\text{neigh}}(\langle R_{\text{max}})}{V_{\text{sphere}}} \times C_{\text{comp}} \times C_{\text{cosmic}}$$
(1)

where:

- N_{neigh} : Galaxy count within comoving radius R_{max}
- $V_{\text{sphere}} = \frac{4}{3}\pi R_{\text{max}}^3$
- C_{comp}: Completeness correction for survey edges
- C_{cosmic}: Cosmic variance correction

^{*}seriacopileonardo@gmail.com

Parameter Optimization

Table 1: Parameter Selection Justification

Parameter	Value	Tested Range	Optimization Criteria	
Radius (R_{max})	$2\mathrm{Mpc}$	1.0 - $3.0~{ m Mpc}$	Minimal variance in low- density regions	
Completeness model	${\bf Angular} + {\bf z}\text{-}{\bf dependent}$	Various	Residuals < 5% in mock catalogs	
Mass per galaxy	$1\times 10^{11} M_{\odot}$	$(0.5-2) \times 10^{11} M_{\odot}$	Consistency with dynamical mass estimates	

Comoving Distance Calculation

The fundamental distance metric:

$$d_c(z) = c \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$
 (2)

with $H_0=70\,\mathrm{km/s/Mpc},\,\Omega_m=0.3,\,\Omega_\Lambda=0.7.$

Analysis Pipeline

The data processing followed these steps:

- 1. Comoving coordinate conversion
- 2. Neighbor counting in 2 Mpc spheres
- 3. Physical density conversion (ρ_{phys})
- 4. CET redshift correction ($\Delta z = z_{\rm obs} z_{\rm CET}$)

Results

Table 2: Key Results for CEERS Protocluster

Parameter	Value
Galaxies analyzed	18
Mean density $(\rho/\rho_{\rm crit})$	0.58 ± 0.15
Correlation ρ vs Δz (Spearman)	0.85
Significance (p-value)	< 0.001
Maximum Δz	0.063

Figure 1: Redshift residuals vs. local density ($\rho_s = 0.85$, p < 0.001). The dashed line shows the best-fit relation $\Delta z = (0.42 \pm 0.05) \times \rho^{0.7}$.

Discussion

The CEERS results independently validate the density-redshift correlation first reported in JADES-GS [1]. The consistency in the correlation strength ($\rho_s = 0.85$ vs. 0.91 in JADES) suggests a universal physics mechanism operating across different cosmic environments.

Data Availability

Processed data and analysis scripts: $https://osf.io/ceers_cet$

References

[1] Seriacopi, L. (2025). Cosmic Elasticity in JADES-GS. OSF Repository.

Figure 2: 3D spatial distribution colored by Δz . Circle size scales with density. The core region (top-right) shows the strongest CET effects.

Appendix: CEERS Galaxy Sample

Table 3: Measured Parameters for 5 CEERS Galaxies

ID	$z_{ m phot}$	$\rho_{\rm phys}~({\rm g/cm^3})$	z_{CET}	Δz
CEERS-1001	8.71	1.58×10^{-26}	8.648	0.062
CEERS-0983	8.69	1.43×10^{-26}	8.632	0.058
CEERS-1022	8.72	1.35×10^{-26}	8.665	0.055
CEERS-0954	8.65	1.28×10^{-26}	8.599	0.051
CEERS-1010	8.74	1.20×10^{-26}	8.691	0.049