Name_____ Student Number_____

Mid-Term #3

Show your work clearly. I will give partial credit in some cases, but *only* to the extent that I can clearly understand your work. The exam is marked out of 100 points.

You may use any non-internet-enabled calculator for the exam. You may not use any internet-enabled device (including e-readers, tablets, laptops, cellular phones, ...). You may not use any notes, books, or other materials.

7 questions @ 14 points each. [There are 2 "free points"] 2 Bonus questions worth 10 points each (see the last page).

Key integrals and identities:

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx$$

$$0 = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\frac{a^{2}}{4} = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x dx$$

$$\left(\frac{a}{2\pi n}\right)^{3} \left(\frac{4\pi^{3}n^{3}}{3} - 2\pi n\right) = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x^{2} dx$$

$$\frac{1}{2}\sqrt{\frac{\pi}{a}} = \int_{0}^{\infty} e^{-ax^{2}} dx$$

$$\left(\frac{1}{2}\sqrt{\frac{\pi}{a}}\right) \left(\frac{(2n-1)(2n-3)\cdots(3)(1)}{(2\alpha)^{n}}\right) = \int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx$$

$$n = 1, 2, 3, \dots$$

$$\left(\frac{1}{2}\right) \left(\frac{n!}{a^{n+1}}\right) = \int_{0}^{\infty} x^{2n+1} e^{-ax^{2}} dx$$

$$n = 0, 1, 2, \dots$$

$$\int x \sin(bx) dx = \frac{\sin(bx)}{b^{2}} - \frac{x \cos(bx)}{b} + \cosh t$$

$$\int x^{2} \sin(bx) dx = -\left(\frac{x^{2} \cos(bx)}{b} + \frac{2x \cos(bx + \frac{1}{2}\pi)}{b^{2}} + \frac{2\cos(bx + \pi)}{b^{3}}\right) + \cosh t$$

$$2 \sin(x) \sin(y) = \cos(x - y) - \cos(x + y) \rightarrow 2 \sin^{2} x = 1 - \cos(2x)$$

$$2 \cos(x) \cos(y) = \cos(x - y) + \cos(x + y) \rightarrow 2 \cos^{2} x = 1 + \cos(2x)$$

$$2 \sin(x) \cos(y) = \sin(\alpha + \beta) + \sin(\alpha - \beta) \rightarrow 2 \sin x \cos x = \sin(2x)$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \rightarrow \sin(2x) = 2 \sin x \cos x$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y \rightarrow \cos(2x) = \cos^{2} x - \sin^{2} x$$

SOME MATHEMATICAL FORMU $ \begin{array}{c} \sin \alpha \sin \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) - \frac{1}{2} \\ \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha (\alpha - \beta) + \frac{1}{2} \\ \sin \alpha \cos \beta = \frac{1}{2} \cos \alpha \cos \alpha \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha \cos \alpha \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha \cos \alpha \cos \alpha \cos \beta = \frac{1}{2} \cos \alpha \cos $	1 eV =1.602×10 ⁻¹⁹ 96.48 1 au =4.359×10 ⁻¹⁸ 2625 1 cm ⁻¹ 2625	1.602 × 10 ⁻¹⁹	1.602 × 10 ⁻¹⁹	.602 × 10 ⁻¹⁹	600 - 10-19			$= 1.661 \times 10^{-21}$	6.0ZZ × 10	1 joule 6.022 × 10 ²⁰	joule kJ·mol-1		CONVERSION FACTORS FOR ENERGY UNITS					Stefan-Boltzmann constant	Bohr magneton	First Bohr radius	Rydberg constant (infinite nuclear mass)	Permittivity of a vacuum	Molar gas constant	Boltzmann constant	Proton rest mass	Electron rest mass	Atomic mass unit	Speed of light in vacuum	Planck's constant	Proton charge	Avogadro's number	Constant	VALUES OF SOME PHYSICAL CONSTANTS	
$Value \\ Value \\ Valu$	1 74 () Y ()	1 240 - 10-4	27.21		1	-		1.036×10^{-2}	0.242×10	6.242 × 10 ¹⁸	eV		OR ENERGY					q	μ_B	a_0	R_{∞}	$\frac{\varepsilon_0}{4\pi\varepsilon_0}$	R	k_B	m_p	m _e	amu	c	<i>ከ</i> ከ	e	$N_{\rm o}$	Symbol	CAL CONSTA	
SOME MATHEMATICAL FORMITION Sin α sin $\beta = \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\sin(\alpha + \beta) + \frac{1}{2}\cos(\alpha + \beta) = \cos(\alpha + \beta) + \frac{1}{2}\cos(\alpha + \beta) = \cos(\alpha + \beta) = \cos(\alpha$		4 556 × 10 ⁻⁶	2.195×10 ⁵		0000	8065		83.60	5.035 × 10	5 035 × 10 ²²			UNITS					$5.67032 \times 10^{-8} \text{ J} \cdot \text{m}^{-2} \cdot \text{F}$	$9.27409 \times 10^{-24} \text{J} \cdot \text{T}^{-1}$	$5.29177 \times 10^{-11} \mathrm{m}$	$2.179914 \times 10^{-23} \text{ J}$ 1.097373 cm^{-1}	$8.854188 \times 10^{-12} \mathrm{C}^2 \cdot \mathrm{s}^2.$ $1.112650 \times 10^{-10} \mathrm{C}^2 \cdot \mathrm{s}^2.$	8.31441 J·K ⁻¹ ·mol ⁻¹	$1.38066 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ 0.69509 cm^{-1}	$1.67265 \times 10^{-27} \mathrm{kg}$	$9.10953 \times 10^{-31} \text{ kg}$	$1.66056 \times 10^{-27} \mathrm{kg}$	$2.997925 \times 10^8 \mathrm{m \cdot s^{-1}}$	$6.62618 \times 10^{-34} \text{ J} \cdot \text{s}$ $1.05459 \times 10^{-34} \text{ J} \cdot \text{s}$	$1.60219 \times 10^{-19} \mathrm{C}$	$6.02205 \times 10^{23} \text{mol}^{-1}$	Value	NTS	
SOME MATHEMATICAL FORMULAS $\sin \alpha \sin \beta = \frac{1}{2} \cos (\alpha - \beta) - \frac{1}{2} \cos (\alpha - \beta) + \frac{1}{2} \sin (\alpha - \beta) + \frac{1}{2} \cos (\alpha - \beta) + \frac{1}{2} \sin (\alpha - \beta) + \frac{1}{2} \cos (\alpha - \beta) + \frac{1}{2} \sin (\alpha - \beta) + \frac{1}{2$	2	×	× 1015		× IO	× 1014		× 1012	X	× 10 ³³	Iz							1				·m-3												
FICAL FORMULAS $\frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\sin(\alpha - \beta) = \frac{1}{2}\cos(\alpha - $)10																																
Pad $x + \beta$ $x + \beta$ β β β β β $m(n - 1)(n - 2)$ $3!$ $m(n - 1)(n - 2)$ $3!$ $m(n + 2)$ $m(n + 2)$ $3!$ $m(n + 2)$		010					Jo wa a war	$\int_{0}^{a} \cos \frac{n\pi x}{\cos x} \sin x$	$\int_0^{\infty} a$	$\int_{0}^{a} \sin \frac{n\pi x}{} \sin \frac{n\pi x}{$	$\int_0^\infty \chi^{2n+1} e^{-ax}$	To 3:+1 = 22	J-0	$\int_{0}^{\infty} x^{2n} e^{-ax^2} dx$	Jo c "	$\int_{-\infty}^{\infty} -ax^2 J_{-}$	$\int_0^\infty x^n e^{-\alpha x} dx$		$(1 \pm x)^n = 1$	1	×	cos x = 1 -		11	f(x) = f(a) +		$\sin \theta = \frac{1}{2i}$		$\cos \theta = \frac{e^{i\theta} + e^{i\theta}}{2}$	$e^{\pm i\theta} = \cos \theta \pm$	$\sin(\alpha \pm \beta) = \cos(\alpha \pm \beta) = 0$	$\sin \alpha \cos \beta =$	$\sin \alpha \sin \beta = \pm \cos \alpha \cos \cos \alpha \cos \alpha \cos \beta = \pm \cos \alpha \cos \alpha \cos \alpha \cos \alpha \cos \beta = \pm \cos \alpha \cos$	SOME MATHEMA

 $J(oule) = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 1 \text{ C}(oulomb) \cdot \text{V}(olt)$

1.	Write the molecular Hamiltonian for P-atom N-electron molecule, including the dependence on constants like $\hbar, e, \varepsilon_0, m_e, \ldots$
2,3.	Write the electronic and nuclear Schrödinger equations for the LiH ⁺ molecular cation You can use atomic units.
4.	Suppose that one chooses to neglect electron-electron repulsion in the Boron atom. What is the momentum of the photon associated with the transition from the $1s^22s^23d^1$ excited state to the $1s^22s^22p^1$ ground state, in $\frac{kg \cdot m}{s}$? A conversion factor from page 2 may be helpful.

5. The ground state of the Vanadium atom has total orbital angular momentum quantum number L=3 and total spin quantum number S=3/2. List all possible choices for the eigenvalues of the following operators (you can use atomic units).

$$\begin{split} \hat{L}_z \Psi_{L=3;S=\frac{3}{2}} &= & \Psi_{L=3;S=\frac{3}{2}} \\ \hat{S}_z \Psi_{L=3;S=\frac{3}{2}} &= & \Psi_{L=3;S=\frac{3}{2}} \\ \hat{J}^2 \Psi_{L=3;S=\frac{3}{2}} &= & \Psi_{L=3;S=\frac{3}{2}} \end{split}$$

6. Consider the ground state of the Carbon atom, specificially the state with $L = M_L = S = M_S = 1$. Use the Heisenberg Uncertainty Principle to provide a lower bound for the product of the angular momenta uncertainty for the atoms in the other directions. You can use atomic units.

$$\sigma_{\hat{L}_x}^2 \sigma_{\hat{L}_y}^2 \ge$$

7. When one integrates a spherical function in 3 dimensions, integration has the form

$$\int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} f(r, \theta, \phi) r^2 \sin \theta dr d\theta d\phi$$

Recall that the orthonormalization convention for spherical harmonics is

$$\int_{0}^{2\pi} \int_{0}^{\pi} \left(Y_{l}^{m} \left(\theta, \phi \right) \right)^{*} Y_{l'}^{m'} \left(\theta, \phi \right) \sin \theta d\theta d\phi = \delta_{ll'} \delta_{mm'}$$

What is the average distance of an electron from the nucleus in the 3d¹ excited state of the Hydrogen atom? Integral(s) provided on the data sheet will be helpful.

Bonus: A nearly exact measurement of the energy of the Lithium cation, Li⁺, gives the lower bound $E_{\text{Li}^+} > -7.280$ a.u.. Give a lower bound to the energy of the neutral Lithium atom (the tighter your bound, the more points you get).

Name_____ Student Number_____

Mid-Term #3

Show your work clearly. I will give partial credit in some cases, but *only* to the extent that I can clearly understand your work. The exam is marked out of 100 points.

You may use any non-internet-enabled calculator for the exam. You may not use any internet-enabled device (including e-readers, tablets, laptops, cellular phones, ...). You may not use any notes, books, or other materials.

7 questions @ 14 points each. [There are 2 "free points"] 2 Bonus questions worth 10 points each (see the last page).

Key integrals and identities:

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx$$

$$0 = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\frac{a^{2}}{4} = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x dx$$

$$\left(\frac{a}{2\pi n}\right)^{3} \left(\frac{4\pi^{3}n^{3}}{3} - 2\pi n\right) = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x^{2} dx$$

$$\frac{1}{2}\sqrt{\frac{\pi}{a}} = \int_{0}^{\infty} e^{-ax^{2}} dx$$

$$\left(\frac{1}{2}\sqrt{\frac{\pi}{a}}\right) \left(\frac{(2n-1)(2n-3)\cdots(3)(1)}{(2\alpha)^{n}}\right) = \int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx$$

$$n = 1, 2, 3, \dots$$

$$\left(\frac{1}{2}\right) \left(\frac{n!}{a^{n+1}}\right) = \int_{0}^{\infty} x^{2n+1} e^{-ax^{2}} dx$$

$$n = 0, 1, 2, \dots$$

$$\int x \sin(bx) dx = \frac{\sin(bx)}{b^{2}} - \frac{x \cos(bx)}{b} + \cosh t$$

$$\int x^{2} \sin(bx) dx = -\left(\frac{x^{2} \cos(bx)}{b} + \frac{2x \cos(bx + \frac{1}{2}\pi)}{b^{2}} + \frac{2\cos(bx + \pi)}{b^{3}}\right) + \cosh t$$

$$2 \sin(x) \sin(y) = \cos(x - y) - \cos(x + y) \rightarrow 2 \sin^{2} x = 1 - \cos(2x)$$

$$2 \cos(x) \cos(y) = \cos(x - y) + \cos(x + y) \rightarrow 2 \cos^{2} x = 1 + \cos(2x)$$

$$2 \sin(x) \cos(y) = \sin(\alpha + \beta) + \sin(\alpha - \beta) \rightarrow 2 \sin x \cos x = \sin(2x)$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \rightarrow \sin(2x) = 2 \sin x \cos x$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y \rightarrow \cos(2x) = \cos^{2} x - \sin^{2} x$$

VALUES OF SOME PHYSICAL CONSTANTS	SICAL CONSTA	NTS	$\sin \alpha \sin \beta = \frac{1}{2} \cos (\alpha - \beta) - \frac{1}{2} \cos (\alpha + \beta)$
Constant	Symbol	Value	$\sin \alpha \cos \beta = \frac{1}{2} \sin (\alpha + \beta) + \frac{1}{2} \sin (\alpha - \beta)$
Avogadro's number	No	$6.02205 \times 10^{23} \text{mol}^{-1}$	$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$ $\cos(\alpha + \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$
Proton charge	e	$1.60219 \times 10^{-19} \mathrm{C}$	$e^{\pm i\theta} = \cos \theta \pm i \sin \theta$
Planck's constant	<i>ከ</i>	$6.62618 \times 10^{-34} \text{ J} \cdot \text{s}$ $1.05459 \times 10^{-34} \text{ J} \cdot \text{s}$	$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$
Speed of light in vacuum	c	$2.997925 \times 10^{8} \mathrm{m \cdot s^{-1}}$	0 - 0 - i0
Atomic mass unit	amu	$1.66056 \times 10^{-27} \mathrm{kg}$	$\sin \theta = \frac{\epsilon - \epsilon}{2i}$
Electron rest mass	m_e	$9.10953 \times 10^{-31} \text{ kg}$	
Proton rest mass	m_p	$1.67265 \times 10^{-27} \mathrm{kg}$	$f(x) = f(a) + f'(a)(x - a) + \frac{1}{2!}f''(a)(x - a)^2 + \frac{1}{3!}f'''(a)(x - a)^3 + \cdots$
Boltzmann constant	k_B	$1.38066 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ 0.69509 cm^{-1}	$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$
Molar gas constant	R	8.31441 J·K ⁻¹ ·mol ⁻¹	$x^2 + x^4 + x^6$
Permittivity of a vacuum	$\frac{\varepsilon_0}{4\pi\varepsilon_0}$	$8.854188 \times 10^{-12} \text{ C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3}$ $1.112650 \times 10^{-10} \text{ C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3}$	
Rydberg constant (infinite nuclear mass)	R_{∞}	$2.179914 \times 10^{-23} \text{ J}$ 1.097373 cm^{-1}	$-\frac{x}{3!} + \frac{x}{5!} - \frac{x}{7!} + \cdots$
First Bohr radius	a_0	$5.29177 \times 10^{-11} \text{ m}$	$\frac{1-x}{1-x} = 1 + x + x^{*} + x^{*} + x^{*} + \cdots x^{*} < 1$
Bohr magneton	μ_B	$9.27409 \times 10^{-24} \text{J} \cdot \text{T}^{-1}$	$(1+x)^n = 1+nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{2}x^3 + \cdots$
Stefan-Boltzmann constant	q	$5.67032 \times 10^{-8} \mathrm{J \cdot m^{-2} \cdot K^{-4} \cdot s^{-1}}$	* ± * · · · · · ± 2!
CONVERSION FACTORS FOR ENERGY UNITS	FOR ENERGY	SLIND	- : Po
joule kJ·mol-1	1 eV	au cm ⁻¹ Hz	$\int_0^\infty x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}} \qquad (n \text{ positive integer})$
1 joule 6.022 × 10 ²⁰	o 6.242 × 10 ¹⁸	2.2939×10^{17} 5.035×10^{22} 1.509×10^{33}	$\int_0^a \sin \frac{n\pi x}{a} \sin \frac{n\pi x}{a} dx = \int_0^a \cos \frac{n\pi x}{a} \cos \frac{n\pi x}{a} dx = \frac{a}{2} \delta_{nm}$
1 kJ·mol ⁻¹ =1.661×10 ⁻²¹ 1	1.036×10^{-2}	3.089×10^{-4} 83.60 2.506×10^{12}	$\int_0^a \cos \frac{n\pi x}{a} \sin \frac{n\pi x}{a} dx = 0 (m \text{ and } n \text{ integers})$
$=1.602 \times 10^{-19}$ 96.48	-	3.675×10^{-2} 8065 2.418×10^{14}	
= 4.359 × 10 ⁻¹⁸ 2625	27.21	1 2.195×10^5 6.580×10^{15}	
	2 1 240 × 10-4	4.556 × 10 ⁻⁶ 1 2.998 × 10 ¹⁰	
=1.986×10 -5 1.196×10 -			

 $J(\text{oule}) = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 1 \text{ C(oulomb)} \cdot \text{V(olt)}$

1. Write the molecular Hamiltonian for P-atom N-electron molecule, including the dependence on constants like $\hbar, e, \varepsilon_0, m_e, \dots$

$$\sum_{i=1}^{N} -\frac{\hbar^2}{2} \nabla_i^2 + \sum_{\alpha=1}^{P} -\frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2 + \sum_{\alpha=2}^{P} \sum_{\beta=1}^{\alpha-1} \frac{Z_{\alpha} Z_{\beta} e^2}{4\pi \varepsilon_0 \left|\mathbf{R}_{\alpha} - \mathbf{R}_{\beta}\right|} + \sum_{i=2}^{P} \sum_{j=1}^{i-1} \frac{e^2}{4\pi \varepsilon_0 \left|\mathbf{r}_i - \mathbf{r}_j\right|} + \sum_{\alpha=1}^{P} \sum_{i=1}^{N} \frac{-Z_{\alpha} e^2}{4\pi \varepsilon_0 \left|\mathbf{r}_i - \mathbf{R}_{\alpha}\right|}$$

2,3. Write the electronic and nuclear Schrödinger equations for the LiH⁺ molecular cation. You can use atomic units.

$$\left(-\frac{1}{2}\nabla_{1}^{2}-\frac{1}{2}\nabla_{2}^{2}-\frac{1}{2}\nabla_{3}^{2}-\frac{3}{r_{1}}-\frac{3}{r_{2}}-\frac{3}{r_{3}}-\frac{1}{r_{1}}-\frac{1}{r_{2}}-\frac{1}{r_{3}}+\frac{1}{|\mathbf{r}_{1}-\mathbf{r}_{2}|}+\frac{1}{|\mathbf{r}_{1}-\mathbf{r}_{3}|}+\frac{1}{|\mathbf{r}_{2}-\mathbf{r}_{3}|}+\frac{3}{|\mathbf{R}_{H}-\mathbf{R}_{Li}|}\right)\psi_{e}\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}|\mathbf{R}_{H},\mathbf{R}_{Li}\right)$$

$$=U\left(\mathbf{R}_{H},\mathbf{R}_{Li}\right)\psi_{e}\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}|\mathbf{R}_{H},\mathbf{R}_{Li}\right)$$

$$\left(-\frac{1}{2M_{H}}\nabla_{H}^{2}-\frac{1}{2M_{Li}}\nabla_{Li}^{2}+U\left(\mathbf{R}_{H},\mathbf{R}_{Li}\right)\right)\chi\left(\mathbf{R}_{H},\mathbf{R}_{Li}\right)=E_{\text{mol}}\chi\left(\mathbf{R}_{H},\mathbf{R}_{Li}\right)$$

4. Suppose that one chooses to neglect electron-electron repulsion in the Boron atom. What is the momentum of the photon associated with the transition from the 1s²2s²3d¹ excited state to the 1s²2s²2p¹ ground state, in \(\frac{\kappa_g \cdot m}{s}\)? A conversion factor from page 2 may be helpful.

Because electron-electron repulsion is neglected, this is equal to the energy of the transition between the n=3 and n=2 states of the 1-electron atom with Z=5. They have not

$$\Delta E = -\frac{Z^2}{2(n=3)^2} - \left(-\frac{Z^2}{2(n=2)^2}\right) = \frac{-Z^2}{18} + \frac{Z^2}{8} = \left(Z = 5\right)^2 \left(\frac{1}{8} - \frac{1}{18}\right) = 1.736 \text{ Hartree}$$

$$= 1.736 \text{ Hartree} \cdot \left(2.2939 \cdot 10^{17} \frac{\text{Hartree}}{\text{Joules}}\right)^{-1}$$

$$= 7.568 \cdot 10^{-18} \text{ J}$$

The momentum is related to the wavelength by $p=h\lambda^{-1}$ and then using the link between wavelength and frequency and the link between frequency and energy, $p=h\left(cv^{-1}\right)^{-1}=hvc^{-1}=Ec^{-1}$. So

$$p = \frac{7.568 \cdot 10^{-18} \,\mathrm{J}}{2.998 \cdot 10^8 \,\frac{\mathrm{m}}{\mathrm{s}}} = 2.524 \cdot 10^{-26} \,\frac{\mathrm{kg \cdot m}}{\mathrm{s}}$$

5. The ground state of the Vanadium atom has total orbital angular momentum quantum number L=3 and total spin quantum number S=3/2. List all possible choices for the eigenvalues of the following operators (you can use atomic units).

$$\begin{split} \hat{L}_z \Psi_{L=3;S=\frac{3}{2}} &= \left\{-3,-2,-1,0,1,2,3\right\} \Psi_{L=3;S=\frac{3}{2}} \\ \hat{S}_z \Psi_{L=3;S=\frac{3}{2}} &= \left\{-\frac{3}{2},\frac{-1}{2},\frac{1}{2},\frac{3}{2}\right\} \Psi_{L=3;S=\frac{3}{2}} \\ \hat{J}^2 \Psi_{L=3;S=\frac{3}{2}} &= \left\{\left(\frac{9}{2}\right)\left(\frac{11}{2}\right);\left(\frac{7}{2}\right)\left(\frac{9}{2}\right);\left(\frac{5}{2}\right)\left(\frac{7}{2}\right);\left(\frac{3}{2}\right)\left(\frac{5}{2}\right)\right\} \Psi_{L=3;S=\frac{3}{2}} \\ &= \left\{\frac{99}{4};\frac{63}{4};\frac{35}{4};\frac{15}{4}\right\} \Psi_{L=3;S=\frac{3}{2}} \\ &\left(\text{because } J = \left|L-S\right|,\left|L-S\right|+1,\dots,L+S-1,L+S=\frac{3}{2},\frac{5}{2},\frac{7}{2},\frac{9}{2}\right) \end{split}$$

6. Consider the ground state of the Carbon atom, specificially the state with $L = M_L = S = M_S = 1$. Use the Heisenberg Uncertainty Principle to provide a lower bound for the product of the angular momenta uncertainty for the atoms in the other directions. You can use atomic units.

$$\begin{aligned} \sigma_{\hat{L}_x}^2 \sigma_{\hat{L}_y}^2 &\geq \frac{1}{4} \left| \left\langle \left[\hat{L}_x, \hat{L}_y \right] \right\rangle \right|^2 = \frac{1}{4} \left| \left\langle \hat{L}_z \right\rangle \right|^2 = \frac{1}{4} M_L^2 = \frac{1}{4} (1) \\ \sigma_{\hat{L}_x}^2 \sigma_{\hat{L}_y}^2 &\geq \frac{1}{4} \end{aligned}$$

7. When one integrates a spherical function in 3 dimensions, integration has the form

$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} f(r,\theta,\phi) r^{2} \sin\theta dr d\theta d\phi$$

Recall that the orthonormalization convention for spherical harmonics is

$$\int_{0}^{2\pi} \int_{0}^{\pi} \left(Y_{l}^{m} \left(\theta, \phi \right) \right)^{*} Y_{l'}^{m'} \left(\theta, \phi \right) \sin \theta d\theta d\phi = \delta_{ll'} \delta_{mm'}$$

What is the average distance of an electron from the nucleus in the 3d¹ excited state of the Hydrogen atom? Integral(s) provided on the data sheet will be helpful.

We know that the wavefunction form for the 3d orbital is, up to a normalization factor,

$$\psi_{3d}(r,\theta,\phi) = r^{l-2}e^{-\left(\frac{Z-1}{n-3}\right)r}Y_l^m(\theta,\phi)$$
 $m = -2, -1, 0, 1, 2$

The average distance of the electron from the nucleus is then

$$\langle r \rangle = \frac{\int \psi_{3d}^{*}(\mathbf{r}) r \psi_{3d}(\mathbf{r}) d\mathbf{r}}{\int \psi_{3d}^{*}(\mathbf{r}) r \psi_{3d}(\mathbf{r}) d\mathbf{r}} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} r^{2} e^{-\left(\frac{1}{3}\right)r} \left(Y_{l}^{m}(\theta,\phi)\right)^{*} \cdot r \cdot r^{2} e^{-\left(\frac{1}{3}\right)r} \left(Y_{l}^{m}(\theta,\phi)\right) r^{2} \sin \theta dr d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} r^{2} e^{-\left(\frac{1}{3}\right)r} \left(Y_{l}^{m}(\theta,\phi)\right)^{*} r^{2} e^{-\left(\frac{1}{3}\right)r} \left(Y_{l}^{m}(\theta,\phi)\right) r^{2} \sin \theta dr d\theta d\phi}$$

$$= \frac{\int_{0}^{\infty} r^{7} e^{-\frac{2}{3}r} dr}{\int_{0}^{\infty} r^{6} e^{-\frac{2}{3}r} dr} = \frac{\frac{7!}{\left(\frac{2}{3}\right)^{8}}}{\frac{6!}{\left(\frac{2}{3}\right)^{7}}} = \frac{21}{2} = 10.5$$

Bonus: A nearly exact measurement of the energy of the Lithium cation, Li⁺, gives the lower bound $E_{\text{Li}^+} > -7.280$ a.u.. Give a lower bound to the energy of the neutral Lithium atom (the tighter your bound, the more points you get).

Consider the Hamiltonian for the problem,

$$\hat{H}_{\text{Li}} = -\frac{1}{2}\nabla_{1}^{2} - \frac{1}{2}\nabla_{2}^{2} - \frac{1}{2}\nabla_{3}^{2} - 3\mathbf{r}_{1}^{-1} - 3\mathbf{r}_{2}^{-1} - 3\mathbf{r}_{3}^{-1} + \left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|^{-1} + \left|\mathbf{r}_{1} - \mathbf{r}_{3}\right|^{-1} + \left|\mathbf{r}_{2} - \mathbf{r}_{3}\right|^{-1}$$

$$= \hat{H}_{\text{Li}^{+}} - \frac{1}{2}\nabla_{3}^{2} - \frac{Z}{r_{3}} + \left|\mathbf{r}_{1} - \mathbf{r}_{3}\right|^{-1} + \left|\mathbf{r}_{2} - \mathbf{r}_{3}\right|^{-1}$$

Now if I neglect the electron-electron repulsion between the first two electrons and the third electron, I have a lower bound to the energy. That is, the Hamiltonian of the Lithium atom is greater than the sum of the Hamiltonians of the Lithium cation and the Lithium dication,

$$\hat{H}_{\text{Li}} \ge \hat{H}_{\text{Li}^+} + \hat{H}_{\text{Li}^{+2}}$$

So its energy must be greater than the sum of the energies of these two systems, which is

$$E_{\text{Li}} > E_{\text{Li}^+} + E_{\text{Li}^{+2}} = -7.280 - \frac{3^2}{2} = -11.780 \text{ a.u.}$$

A slightly more intelligent (but less rigorous) bound is to consider that the third electron is in a 2s orbital. so you have

$$E_{\text{Li}} > E_{\text{Li}^+} + E_{\text{Li}^{+2}} \left(2s^1\right) = -7.280 - \frac{3^2}{2.4} = -8.405 \text{ a.u.}$$

This is still not very good compared to the true answer $E_{1i} \approx -7.478$ a.u., but lower bounds are hard....