IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

First Named

Inventor : Xuedong Huang et al.

Appln. No.: 09/685,534

Filed: October 10, 2000

For : METHOD AND APPARATUS USING

SPECTRAL ADDITION FOR SPEAKER

RECOGNITION

Docket No.: M61.12-0316

Group Art Unit: 2654

Examiner: Han

AMENDMENT

Mail Stop Amendment Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

23 PAYOF November, 20 UY Mush MM1 PATENT ATTORNEY

ALEXANDRIA, VA 22313-1450, THIS

I HEREBY CERTIFY THAT THIS PAPER IS BEING SENT BY U.S. MAIL, FIRST CLASS, TO THE COMMISSIONER FOR PATENTS, P.O. BOX 1450,

This is in response to the Office Action mailed on September 22, 2004 in which claims 1-22, 27, and 29 were rejected and claims 5, 7-14, 16-18, 20, and 23-28 were objected to. Please amend the above-identified application as follows.

AMENDMENT TO THE CLAIMS

1.(Currently Amended) A method of speaker recognition that generates a likelihood that the same speaker generated a training signal and a test signal, the method comprising:

generating a matched test signal and a matched training signal by performing steps for each of a plurality of frequency components, the steps comprising:

adding to the strength of the frequency component in one of the test signal or training signal as part of the production of the matched test signal and matched training signal so that the mean strength of the frequency component of noise in the matched test signal matches the mean strength of the frequency component of noise in the matched training signal;

determining the variance of the frequency

component of noise in the training signal;

determining the variance of the frequency

component of noise in the test signal; and

increasing the variance of the frequency component

in one of the test signal or the training
signal so that the variance of the frequency
component in the noise of the matched
training signal matches the variance of the
frequency component in the noise of the
matched test signal;

creating a model based on the matched training signal; $\quad \text{and} \quad$

applying the matched test signal to the model to produce the likelihood that a same speaker generated the training signal and the test signal.

2. The method of claim 1 wherein performing steps for each of a plurality of frequency components, further comprises the steps of:

determining the mean strength of the frequency component of noise in the training signal;

determining the mean strength of the frequency component of noise in the test signal, and

subtracting the mean strength of noise in the training signal from the mean strength of noise in the test signal to determine a value to add during the step of adding to the strength of the frequency component in one of the test signal or training signal.

- 3. The method of claim 1 wherein for each frequency component the step of adding to the strength of the frequency component in one of the test signal or training signal comprises adding to the strength of the frequency component in the test signal.
- 4. The method of claim 1 wherein for each frequency component the step of adding to the strength of the frequency component in one of the test signal or training signal comprises adding to the strength of the frequency component in the training signal.
- 5. The method of claim 1 wherein for some frequency components the step of adding to the strength of the frequency component in one of the test signal or training signal comprises adding to the strength of the frequency component in the training signal and for other frequency components the step of adding to the strength of the frequency component in one of the test signal

or training signal comprises adding to the strength of the frequency component in the test signal.

6. The method of claim 1 wherein adding to the strength of the frequency component in one of the test signal or training signal does not change the variances of the frequency component in the test signal and the training signal.

7. (Canceled)

8.(Currently Amended) The method of claim 7-1 wherein increasing the variance of the frequency component in one of the test signal or the training signal comprises:

deriving a variance pattern from a noise segment taken from one of the test signal or training signal; and

adding the variance pattern to all segments of one of the test signal or the training signal.

9. The method of claim 8 wherein deriving the variance pattern of the noise segment comprises:

determining the mean of the noise segment;

subtracting the mean of the noise segment from the noise segment to produce a zero-mean noise segment; and

multiplying the zero-mean noise segment by a gain factor to produce the variance pattern.

10. The method of claim 9 wherein adding the variance pattern to all segments of one of the test signal or training signal further comprises: after adding the variance pattern determining the most negative value for the frequency component in one of the test signal or the training signal; and adding a value equal to the magnitude of the most negative value to the frequency component of both

the test signal and the training signal.

11. The method of claim 9 wherein adding the variance pattern to all segments of one of the test signal or training signal further comprises:

after adding the variance pattern and adding to the strength of the frequency component in one of the test signal or training signal, determining the most negative value for the frequency component in one of the test signal or the training signal; and adding a value equal to the magnitude of the most negative value to the frequency component of both the test signal and the training signal.

- 12. The method of claim 8 wherein adding to the strength of the frequency component in one of the test signal or training signal comprises adding to the strength of the variance pattern before adding the variance pattern to all segments of one of the test signal or training signal.
- 13. The method of claim 8 wherein deriving a variance pattern comprises deriving a variance pattern from a noise segment taken from the test signal and wherein adding the variance pattern comprises adding the variance pattern to all segments of the training signal.
- 14. The method of claim 8 wherein deriving a variance pattern comprises deriving a variance pattern from a noise

segment taken from the training signal and wherein adding the variance pattern comprises adding the variance pattern to all segments of the test signal.

15.(Currently Amended) A method of identifying a speaker comprising:

receiving a training speech signal; receiving a test speech signal;

for each of a plurality of frequency components adding to the variance of the frequency component in one of the training speech signal or test speech signal so that the variance of the frequency component of noise is matched in a matched training speech signal matches the variance of the frequency component of noise in and a matched test speech signal, wherein adding to the variance of the frequency component comprises:

identifying a series of strength values for the
 frequency component in a segment of noise
 taken from one of the training speech signal
 or the test speech signal;

finding the mean of the series of strength values;

subtracting the mean from each strength value in

the series of strength values to generate
zero-mean strength values;

adding the variance pattern to each segment of one
of the training speech signal or the test
speech signal;

comparing the matched test speech signal to the model to identify the speaker.

16. (Canceled)

- 17.(Currently Amended) The method of claim $\underline{1516}$ wherein after adding the variance pattern the method further comprises:
 - determining the most negative value for the strength of the frequency component in the one of the training speech signal or test speech signal to which the variance pattern was added; and
 - adding the absolute value of the most negative value to the strength of the frequency component over the entire training speech signal and the entire test speech signal.
- 18.(Currently Amended) The method of claim 15 further comprising for each of a plurality of frequency components adding to the frequency component of one of the test speech signal or the training speech signal so that the mean strength of the frequency component of the noise in the test speech signal is matched to the mean strength of the frequency component of the noise in the training speech signal.
- 19.(Currently Amendment) The method of claim <u>1516</u> further comprising before adding the variance pattern to each segment of one of the training speech signal or test speech signal:
 - adding a same value to each strength value of the variance pattern so that the mean strength of the frequency component of the noise in the matched test speech signal is matched to the mean strength of the frequency component of the noise in the matched training speech signal when the variance

pattern is added to each segment of one of the training speech signal or the test speech signal.

20. (Canceled)

21. (Currently Amended) A computer-readable medium having computer-executable instructions for performing speaker recognition, the instructions performing steps comprising:

receiving a training speech signal;
receiving a test speech signal;

adding to the strength of at least one frequency component across the entirety of one of the training speech signal or test speech signal in the production of a matched training speech signal and a matched test speech signal such that the mean strength of the frequency component in noise in the matched training speech signal is the same as the mean strength of the frequency component in noise in the matched test speech signal;

component in one of the training speech signal or the test speech signal in further production of the matched training speech signal and the matched test speech signal such that the variance of the strength of the frequency component of noise in the matched training speech signal is equal to the variance of the strength of the strength of the frequency component of noise in the matched training speech signal is equal to the variance of the strength of the frequency component of noise in the matched test speech signal;

generating a model from the matched training speech signal; and

comparing the matched test speech signal to the model to identify a speaker.

22. The computer-readable medium of claim 21 wherein adding to the strength of a frequency component comprises:

determining the mean strength of the frequency component in noise in the training speech signal; determining the mean strength of the frequency

component in noise in the test speech signal;

determining the difference between the mean strength in noise in the training speech signal and the mean strength in noise in the test speech signal;

adding the difference to the strength of the frequency component in one of the training speech signal or test speech signal.

23. (Canceled)

24.(Currently Amended) The computer-readable medium of claim 2123 wherein selectively adding to the strength of the frequency component comprises:

selecting a noise segment from one of the training speech signal or the test speech signal;

identifying strength values of the frequency component
 in the noise segment;

determining the mean of the strength values;

subtracting the mean of the strength values from the strength values to produce a sequence of mean adjusted strength values;

multiplying the mean adjusted strength values by a gain factor to produce gain adjusted strength values;

adding the gain adjusted strength values to respective strength values of the frequency component in each of a plurality of segments that together

constitute one of the training speech signal or test speech signal.

- 25. The computer-readable medium of claim 24 wherein adding to the strength of at least one frequency component across the entirety of one of the training speech signal or test speech signal comprises adding the same value to all of the gain adjusted strength values before adding the gain adjusted strength values to the respective strength values.
- 26. The computer-readable medium of claim 25 wherein selectively adding to the strength of the frequency component further comprises:
 - identifying the most negative value produced by adding the gain adjusted strength values to the respective strength values of the frequency component in each of a plurality of segments that constitute one of the training speech signal and test speech signal; and
 - adding a value equal to the absolute magnitude of the most negative value to each strength value of the frequency component in both the training speech signal and the test speech signal.
- 27. (Currently Amended) The computer-readable medium of claim 24 wherein the computer-executable instructions perform further steps comprising:
 - determining the variance of strength values of the frequency component in the noise of the test speech signal;
 - determining the variance of strength values of the frequency component in the training speech signal;

determining the variance of the strength values of the frequency component in the noise segment; and

determining the gain factor by subtracting the variance of the strength values of the frequency component in the noise of the test speech signal from the variance of the strength values of the frequency component in the noise of the training speech signal and dividing the difference by the variance of the strength values of the frequency component in the noise segment.

28. The computer-readable medium of claim 24 wherein selectively adding to the strength of the frequency component further comprises:

identifying the most negative value produced by adding the gain adjusted strength values to the respective strength values of the frequency component in each of a plurality of segments that constitute one of the training speech signal and test speech signal; and

adding a value equal to the absolute magnitude of the most negative value to each strength value of the frequency component in both the training speech signal and the test speech signal.

29. (Canceled)

30. (New) A method of speaker recognition that generates a likelihood that the same speaker generated a training signal and a test signal, the method comprising:

generating a matched test signal and a matched training signal by performing a step for each of a plurality of frequency components, the step

comprising adding to the strength of the frequency component in one of the test signal or training signal so that the mean strength of the frequency component of noise in the matched test signal matches the mean strength of the frequency component of noise in the matched training signal. wherein for some frequency components the step of adding to the strength of the frequency component in one of the test signal or training signal comprises adding to the strength of the frequency component in the training signal and for other frequency components the step of adding to the strength of the frequency component in one of the test signal or training signal comprises adding to the strength of the frequency component in the test signal:

creating a model based on the matched training signal; $\quad \text{and} \quad$

applying the matched test signal to the model to produce the likelihood that a same speaker generated the training signal and the test signal.

31. (New) A method of identifying a speaker comprising: receiving a training speech signal; receiving a test speech signal;

> for each of a plurality of frequency components adding to the variance of the frequency component in one of the training speech signal or test speech signal so that the variance of the frequency component of noise in a matched training speech signal matches the variance of the frequency component of noise in a matched test speech signal;

for each of a plurality of frequency components adding
to the frequency component of one of the test
speech signal or the training speech signal so
that the mean strength of the frequency component
of the noise in the matched test speech signal
matches the mean strength of the frequency
component of the noise in the matched training
speech signal;

generating a model from the matched training speech signal; and

comparing the matched test speech signal to the model to identify the speaker.

32. (New) A method of identifying a speaker comprising: receiving a training speech signal; receiving a test speech signal; receiving a second training speech signal;

for each of a plurality of frequency components adding to the variance of the frequency component in one of the training speech signal or test speech signal so that the variance of the frequency component of noise in a matched training speech signal matches the variance of the frequency component of noise in a matched test speech signal, wherein adding to the variance of a frequency component in one of the training speech signal or test speech signal comprises:

identifying the largest variance of the frequency component in the noise of the test speech signal, the noise of the training speech signal and the noise of the second training speech signal; and

adding to the variance of the frequency component in one of the training speech signal or test speech signal so that the variance of the frequency component in the noise of the matched test speech signal matches the variance of the frequency component in the noise of the matched training speech signal;

generating a model from the matched training speech signal; and

comparing the matched test speech signal to the model to identify the speaker.

AMENDMENT TO THE SPECIFICATION

On page 17, lines 12-23, please replace the following paragraph: .

Once the spectrum of the noise frames for the training signal and test signal have been stored at step 304 of FIG. 3, the process of FIG. 3 continues at step 306. In step 306, the means and variances of a plurality of frequency components in the noise of the training signal and in the noise of the test signal are adjusted so that the means and variances are the same in the noise of both signals. This is performed by a spectral adder 516, which accesses the noise segments stored in noise storage 510. The technique for adjusting the means and variances of the noise is discussed further below in connection with FIG. 7.

On page 17, line 24 to page 18, line 8, please replace the following paragraph:

Once the variances and the means of each frequency component of the noise have been matched, the matched training signal is output by spectral adder 516 to a feature extractor 410 of FIG. 4. Feature extractor 410 extracts one or more features from the training signal. Examples of possible feature extraction modules that can be used under the present invention include modules for performing linear predictive coding (LPC), LPC direct cepstrum, perceptive linear prediction (PLP), auditory model feature extraction, and Mel-frequency cepstrum coefficients feature extraction. Note that the invention is not limited to these feature extraction modules and that other modules may be used within the context of the present invention.

On page 19, line 23 to page 20, line 3, please replace the following paragraph:

Step 306 of FIG. 3, which shows the step of adjusting the variances and means of the noise in the training and test signals, represents a step of spectral addition that is performed in order to match the noise in the training signal to the noise in the test signal. Specifically, this step hopes to match the mean strength of each frequency in the noise of the test signal to the mean strength of each frequency in the noise of the training signal and to match the variance in the strength of each frequency component in the noise of these signals.

On page 20, lines 4-18, please replace the following paragraph:

Under most embodiments of the present invention, the matching is performed by first identifying which signal's noise has the higher mean strength for each frequency component and which signal's noise has the higher variance for each frequency component. The test signal and the training signals are then modified by adding properly adjusted noise segments to each signal so that the mean and variance of each frequency component of the noise in the modified signals are equal to the maximum mean and maximum variance found in the noise of either signal. Under one embodiment, a cross-condition is applied so that the noise segments that are added to the test signal come from the training signal and the noise segments that are added to the training signal come from the test signal.

The means and variances $\underline{\text{of the noise}}$ may be adjusted independently by adding two different respective signals to both

the test speech signal and training speech signal or at the same time by adding one respective signal to both the test speech signal and the training speech signal. In embodiments where two signals are used, the mean may be adjusted before the variance or after the variance. In addition, the means and variances do not have to both be adjusted, one may be adjusted without adjusting the other. In the discussion below, the embodiment in which two different signals are applied to both the test signal and the training signal is described. In this embodiment, signals to match the variances of the noise are first added to the speech signal and then signals to match the means of the noise are added to the speech signals.

The steps for adjusting the variance for a single frequency component of the noise are shown in FIG. 7. The method of FIG. 7 begins at step 700 where the variance of the noise in the training signal is determined. To determine the variance of a particular frequency component in the noise of the training signal, the method tracks strength values (i.e. amplitude values or energy values) of this frequency component in different noise segments stored in noise storage 510 of FIG. 5. Methods for determining the variance of such values are well known.

On page 22, lines 23-30, please replace the following paragraph:

To calculate the complete variance in the noise of the training signal, the strength of the frequency component is measured at each noise frame in the entire training corpus. For example, if the user repeated the identification phrase three

times during training, the variance <u>in the noise</u> would be determined by looking at all of the noise frames found in the three repetitions of the training phrase.

On page 23, lines 10-24, please replace the following paragraph:

Once the variances of the frequency component <u>in the noise</u> have been determined for the training signal and the test signal, the present invention determines which signal has the greater variance <u>in the noise</u> and then adds a noise segment to the other signal to increase the variance of the frequency component in the signal that has the lesser variance <u>in the noise</u> so that its variance <u>in the noise</u> matches the <u>variance in the noise</u> of the other signal. For example, if the variance of the frequency component in the noise of the training signal were less than the variance of the frequency component in the noise of the test signal, a modified noise segment from the test signal would be added to the training signal so that the variance <u>in the noise</u> in the test signal.

On page 23, line 25 to page 24, line 9, please replace the following paragraph:

Under one embodiment, the noise segments are not added directly to the signals to change their variance. Instead the mean strength of the frequency component is set to zero across the noise segment and the variance of the noise segment is scaled. These changes limit the size of the strength values that

are added to the test signal or training signal so that the variances in the noise in the test signal and training signal match but the mean strength in the two signals is not increased any more than is necessary. The process of selecting a noise segment, setting the mean of the noise segment's frequency component to zero, and scaling the variance of the noise segment's frequency component are shown as steps 704, 706, 708 and 710 in FIG. 7.

On page 25, lines 15-23, please replace the following paragraph: $\ \, . \ \,$

The mean strength of the frequency component <u>in the noise</u> <u>segment</u> is subtracted from the frequency component's strength values in order to generate a set of strength values that have zero mean but still maintain the variance found in the original noise segment. Thus, in FIG. 10, the strength of the frequency component continues to vary as it did in the original noise segment, however, its mean has now been adjusted to zero.

In step 710, once the values of the frequency component's strength have been adjusted so that they have zero mean, the values are scaled so that they provide a proper amount of variance. This scaling factor is produced by multiplying each of the strength values by a variance gain factor. The variance gain factor, G, is determined by the following equation:

$$G = \frac{\left|\sigma_{\textit{TRAIN}}^2 - \sigma_{\textit{TEST}}^2\right|}{\sigma_{\textit{NOISE}}^2}$$
 Eq. 1

where G is the variance gain factor, σ^2_{RMD} is the variance in the noise of the training signal, σ^2_{LSD} is the variance in the noise

of the test signal, and σ^2_{NOISE} is the variance of the values in the zero-mean noise segment produced at step 708.

On page 26, line 16 to page 27, line 7, please replace the following paragraph:

After step 710, the modified frequency component values of the noise segment have zero mean and a variance that is equal to the difference between the variance of the training signal and the variance of the test signal. Thus, the modified values can be thought of as a variance pattern. When added to the signal with the lesser variance in the noise, the strength values of this variance pattern cause the signal with the lesser variance in the noise to have a new variance in the noise that matches the variance in the noise of the signal with the larger variance in the noise. For example, if the test signal had a lower variance in its noise than the training signal, adding the variance pattern from the training noise segment to each of a set of equally sized segments in the test signal would generate a test signal with a variance due to noise that matches the higher variance in the noise of the training signal. The step of adding the variance pattern to the strength values of the test signal or training signal is shown as step 712.

On page 27, lines 8-12, please replace the following paragraph:

Note that for the signal with the higher variance \underline{in} $\underline{the \ noise}$, the variance gain factor is set to zero. When multiplied by the strength values of the noise segment, this causes the modified noise segment to have a mean of zero and a variance of zero.

On page 27, line 13 to page 28, line 5, please replace the following paragraph:

Note that because of the subtraction performed in step 708, the test signal or training signal produced after step 712 may have a negative strength for one or more frequency components. For example, FIG. 12 shows strength values for the frequency component of either the test signal or training signal. with time shown along horizontal axis 1200 and strength shown along vertical axis 1202. Since the strength values in FIG. 12 are taken from an actual test signal or training signal, all of the strength values in graph 1204 are positive. However, FIG. 13 shows the result of the addition performed in step 712 where the strength values in segments of the test signal are added to respective strength values of the variance pattern shown in FIG. In FIG. 13, time is shown along horizontal axis 1300 and strength is shown along vertical axis 1302. Graph 1304 of FIG. 13 represents the addition of graph 1104 of FIG. 11 with graph 1204 of FIG. 12. As shown in FIG. 13, graph 1304 includes negative values for some strengths of the frequency component because the variance pattern included some negative values after the mean of the noise segment was subtracted in step 708.

On page 28, lines 6-13, please replace the following paragraph:

Since a negative strength (either amplitude or energy) for a frequency component cannot be realized in a real system, the strength values for the frequency component in the test signal and training signal must be increased so all of the values are greater than or equal to zero. In addition, the strength values must be increased uniformly so that the variance of the noise in the two signals is unaffected.

On page 28, line 23 to page 29, line 2, please replace the following paragraph:

FIG. 14 provides a graph 1404 of the signal of FIG. 13 after this addition, showing that the strength for the frequency component now has a minimum of zero. In FIG. 14, time is shown along horizontal axis 1400 and strength is shown along vertical axis 1402. Since the strength value added to each of the strength values is the same, the variance of the noise in the test signal and training signal are unchanged.

Note that the strength value must be added to both the test signal and the training signal regardless of which signal had its variance increased. If this were not done, the mean of the noise in one of the signals would increase while the mean of the noise in the other signal would remain the same. This would cause the means of the noise to become mismatched.

On page 29, lines 10-20, please replace the following paragraph:

In FIG. 7, the step of adjusting the modified test signal and training signal to avoid having negative values in those signals has been shown as occurring before the means of the noise of the two signals have been matched. In other embodiments, this step is performed after the means of the noise have matched. One benefit of waiting to adjust the signals for negative values until after the means of the noise have been matched is that the step of matching the means of the noise may cause the signals to be increased to the point where they do not include any negative values.

On page 29, lines 21-24, please replace the following paragraph:

After step 716, the variances of the noise of the test signal and the training signal are matched and each signal only has positive strength values for each frequency component.

On page 29, line 25 to page 30, line 5, please replace the following paragraph:

Note that the steps of FIG. 7 are repeated for each desired frequency component in the test signal and training signal. Also note that the variance of the noise for some frequency components will be higher in the test signal than in the training signal, while for other frequency components, the variance of the noise in the test signal will be lower than in the training signal. Thus, at some frequencies, a variance pattern formed from a of the noise segment will be added to the test signal, while at other frequencies, a variance pattern formed from the a noise segment will be added to the training signal.

On page 30, lines 6-17, please replace the following paragraph:

Once the variances in the noise of the training signal and test signal have been matched, the means of the strength values in the noise of the two signals are matched. This is shown as step 308 in FIG. 3 and is shown in detail in the flow diagram of FIG. 15. As in the method of FIG. 7, the steps for matching a mean strength of the noise shown in FIG. 15 are repeated for each frequency component of interest in the noise of the test signal and training signal. Consistent with the discussion above, the mean strength of the noise can either be the mean amplitude or the mean energy, depending on the particular embodiment.

On page 30, line 27 to page 31, line 2, please replace the following paragraph:

In step 1504 of FIG. 15, the difference between the means in the noise of the test signal and the training signal are determined. This involves simply subtracting the mean strength of the noise of one signal from the mean strength of the noise in the other signal and taking the absolute value of the result.

In step 1506, the signal with the lower mean in the noise has all of its strength values for the frequency component increased by an amount equal to the difference between the means of the noise in the test signal and the noise in the training signal. This can be seen by comparing FIGS. 16 and 17. In FIG. 16, graph 1604 shows the strength of a frequency component of the test signal or training signal as a function of time. 16, time is shown along horizontal axis 1600 and strength is shown along vertical axis 1602. FIG. 17 shows the same frequency component for the same signal after the difference between the means in the noise of the test signal and training signal has been added to the signal of FIG. 16. Thus, graph 1704 of FIG. 17 has the same shape of graph 1604 of FIG. 16 but is simply shifted upward. This upward shift does not change the variance in the noise, but simply shifts the mean of the frequency component across the signal. Thus, the variances in the noise continue to be matched after the steps of FIG. 15.

Note that for some frequency components, the mean of the frequency component in the noise in the test signal is

greater than the mean of the frequency component <u>in the noise</u> in the training signal while at other frequencies the reverse is true. Thus, at some frequencies, the difference between the means <u>of the noise</u> is added to the test signal while at other frequencies the difference between the means <u>of the noise</u> is added to the training signal.

As mentioned above, in alternative embodiments, only one respective noise signal is added to each of the training signal and test signal in order to match both the variance and means of the noise of those signals. Thus, one noise signal generated from a training noise segment would be added to the test signal and one noise signal generated from a test noise segment would be added to the training signal. Under one embodiment, the one noise signal to be added to each speech signal is formed by adding the difference between the means of the noise to all of the values of the variance pattern of the signal with the lower mean in the noise. The resulting mean adjusted variance pattern is then added to its respective signal as described above.

Multiple training signals can be dealt with in several ways. Two primary ways are discussed here. First, if all the training signals are considered to have been generated in the same noisy environment, they can be considered to be one training signal for the above description. If they might have come from separate noisy environments, such as would occur if they were recorded at separate times, the above description would simply be extended to multiple signals. The mean and variance of each

frequency of the noise of all signals would be appropriately adjusted (through adding noise from the other conditions) to have the maximum mean and variance at each frequency $\underline{\text{in the noise}}$ of any of the multiple signals.

REMARKS

The specification was objected to in several places because Applicants had inconsistently used the terms "variance" and "mean." In particular, Applicants were not consistent in identifying whether the variance or mean applied to an entire test signal or training signal, or to the noise portion of the test signal or training signal, or to a segment of the noise in the test signal or training signal. With the above amendments, Applicants have attempted to more clearly indicate which variances and means are being referred to in the specification. Applicants appreciate the Examiner's detailed review of the application to find these inconsistencies. If there are further inconsistencies that the Examiner identifies, Applicants would appreciate a telephone call so that these inconsistencies can be corrected through an Examiner's Amendment.

Claims 15, 18, 19, 20, and 27 were rejected for similar reasons as the specification. In the amendments to the claims above, Applicants have included further wording to more clearly indicate which portion of the test signal and training signal the variance and means refer to.

Independent claim 1 was rejected under 35 U.S.C. § 112 as being indefinite because it referred to a plurality of steps but only included a single step. In addition, the phrase "as part of the production of the matched test signal and matched training signal" is said to be unclear and/or logically conflict with the phrase "adding to the strength ... in one of the test signal or training signal." With the present amendment, these errors in claim 1 have been corrected.

In the Office Action, dependent claim 7 was indicated as being allowable if rewritten in independent form and if rewritten to fix all of the 35 U.S.C. § 112 problems associated

with claim 1. With the present amendment, claim 1 has been amended to include the limitations of claim 7 and to correct the \$112 problems. In particular, by adding the steps of claim 7 to claim 1, there are now multiple steps associated with generating a matched test signal and matched training signal. In addition, the phrase "as part of the production of the matched test signal and matched training signal" has been deleted to remove its inconsistency with other portions of the claim. Note that claim 7 included a similar phrase, and this phrase has been deleted from the limitations added to claim 1 from claim 7.

Since the Office Action indicated that claim 7 would be allowable if rewritten in independent form, amended claim 1 and claims 2-6 and 8-14, which depend therefrom, are patentable over the cited references and are in form for allowance.

The Office Action also indicated that claim 5 would be allowable if rewritten in independent form and if rewritten to overcome the \$112 rejections. With the present amendment, new claim 30 has been added which represents claim 5 rewritten in independent form and rewritten to overcome the \$112 rejections of claim 1. In particular, in new claim 30, the problem of having multiple steps in the generating step has been cured by referring to a single step instead of multiple steps and the limitation of claim 5 has been placed in the generating step of claim 1 to form claim 30. In addition, the phrase "as part of the production of the matched test signal and matched training signal" has been removed and is not present in new claim 30. As such, claim 30 represents claim 5 rewritten in independent form and rewritten to overcome the \$112 rejections of claim 1. As such, claim 30 is in form for allowance.

The Office Action indicated that claim 16 would be allowable if rewritten in independent form and if rewritten to overcome the rejections of claim 15 under 35 U.S.C. § 112. With the present amendment, claim 15 has been amended to include the

limitations of claim 16 and to overcome the \$112 rejections. Claim 15 and claims 17-19, which depend therefrom, are thus now in form for allowance. Since claim 16 has been placed in claim 15, claim 16 has been cancelled.

The Office Action also indicated that claim 18 would be allowable if rewritten in independent form and if rewritten to overcome \$112 rejections of claim 15 and claim 18. With the present amendment, new claim 31 has been added which represents claim 18 rewritten in independent form and rewritten to overcome the \$112 rejections of claims 15 and 18. As such, claim 31 is in form for allowance.

The Office Action indicated that claim 20 would also be allowable if rewritten in independent form and if rewritten to overcome the \$112 rejections of claims 15 and 20. With the present amendment, new claim 32 has been added which represents claim 20 rewritten in independent form and rewritten to overcome the \$112 rejections. As such, claim 32 is in form for allowance.

The Office Action also indicated that claim 23 would be allowable if rewritten in independent form. With the present amendment, claim 23 has been cancelled and its limitations have been placed in independent claim 21. Thus, independent claim 21 represents claim 23 rewritten in independent form. As such, claim 21 and claims 22 and 24-28, which depend therefrom, are in form for allowance.

Dependent claim 27 was rejected under 35 U.S.C. § 112 because it was not clear which portion of the signals the word "variance" was referring to. With the present amendment, claim 27 has been amended to more clearly indicate that the variance is the variance of the noise of the test speech signal and the noise of the training speech signal. As such, claim 27 is now in form for allowance.

With the above amendments, each of the pending independent claims represents a claim that was objected to in the

Office Action but that was indicated as being allowable if rewritten in independent form. The remaining claims that do not depend from an allowable claim have been cancelled. As such, all of the claims remaining in the application are in form for allowance. Should the Examiner find other errors that need correction, Applicants request an Examiner Interview so that those errors may be corrected through an Examiner's Amendment.

The Director is authorized to charge any fee deficiency required by this paper or credit any overpayment to Deposit Account No. 23-1123.

Respectfully submitted,

WESTMAN, CHAMPLIN & KELLY, P.A.

Bv:

Theodore M. Magee, Reg. No. 39,758 Suite 1600 - International Centre

Suite 1600 - International Centre 900 Second Avenue South

Minneapolis, Minnesota 55402-3319

Phone: (612) 334-3222 Fax: (612) 334-3312

TMM:sew