Identifying Underwater Trash Using Neural Networks and Natural Language Processing

Project 5
Julian Cheng

The Problem:

Can we develop a model that can help clean up the ocean floor of sunken debris?

My Answer:

I wanted to develop a model that could assist autonomous robots in cleaning up ocean debris from the sea floor. This system would be driven by a neural network, with the goal of consistently differentiating trash from organisms living in the vicinity. Additionally, I wanted to leverage natural language processing to identify the most prevalently predicted images.

Process - CNN

Seafloor images

Standardize dimensions

Convert grayscale

Label classification

Example "Object" Images

Example "Biology" Images

Performance - CNN

Accuracy

0.969

Precision

0.963

Recall

0.998

F1 Score

0.980

Transfer Learning & NLP - Motivation

Many autonomous robots use broad strokes which are erroneous and limited

Advanced robots limited by the transportable tools

I want to predict the most commonly encountered objects and prepare robots accordingly

Transfer Learning & NLP - Process

Image Dataset

Mobilenet Predictor

Corpus

Transfer Learning & NLP - Results

Trash Groupings/"Topics"

0: book_jacket binder envelope

1: stage dishwasher monitor

2: monitor screen television

3: electric_ray dugong hammerhead

4: plastic_bag shower_cap packet

5: nematode isopod scorpion

6: menu washer dishwasher

7: water_bottle pop_bottle beaker

8: wreck scuba_diver coral_reef

9: jellyfish hammerhead digital_clock

Organism Groupings/"Topics"

0: tiger_shark great_white_shark dugong

1: barn_spider rock_crab king_crab

2: water snake sea snake thunder snake

3: gar coho sturgeon

4: monitor television screen

5: axolotl banded_gecko eel

6: fiddler_crab scorpion hair_slide

7: tailed_frog fiddler_crab eel

8: electric_ray dugong stingray

9: quill nematode ladle

Conclusion

In this project, I developed:

An accurate convolutional neural network

A prediction list of the most commonly encountered objects

Looking forwards

- KNN Classifier
- Treatment Priority List

Appendix

Sources: https://conservancy.umn.edu/handle/11299/214366

NMF Groupings

Trash Groupings/"Topics"

0: book_jacket binder envelope

1: stage dishwasher monitor

2: monitor screen television

3: electric_ray dugong hammerhead

4: plastic_bag shower_cap packet

5: nematode isopod scorpion

6: menu washer dishwasher

7: water_bottle pop_bottle beaker

8: wreck scuba_diver coral_reef

9: jellyfish hammerhead digital_clock

Organism Groupings/"Topics"

0: tiger_shark great_white_shark dugong

1: barn_spider rock_crab king_crab

2: water_snake sea_snake thunder_snake

3: gar coho sturgeon

4: monitor television screen

5: axolotl banded_gecko eel

6: fiddler_crab scorpion hair_slide

7: tailed_frog fiddler_crab eel

8: electric_ray dugong stingray

9: quill nematode ladle

Appendix

test precision: 0.9634551495016611

test recall: 0.9977064220183486

test F1: 0.980281690140845

Erroneous Classifications

Appendix

NN Summary

Layer (type)	Output	Shape	Param #
conv2d_3 (Conv2D)	(None,	300, 400, 5)	50
max_pooling2d_3 (MaxPooling2	(None,	100, 133, 5)	0
conv2d_4 (Conv2D)	(None,	100, 133, 10)	460
max_pooling2d_4 (MaxPooling2	(None,	33, 44, 10)	0
conv2d_5 (Conv2D)	(None,	33, 44, 20)	1820
max_pooling2d_5 (MaxPooling2	(None,	11, 15, 20)	0
flatten_1 (Flatten)	(None,	3300)	0
dense_3 (Dense)	(None,	30)	99030
dense_4 (Dense)	(None,	10)	310
dense 5 (Dense)	(None,	2)	22