Contents

1	Optimisation Models	2
	1.1 Unconstrained Non-linear Programs	2

1

Optimisation Models

Definition 1.0.1 ▶ **Optimal Solution**

Consider an optimisation problem with respect to f(x) subject to constraint $x \in S \subseteq \mathbb{R}^n$. A feasible solution x^* is called an **optimal solution** if $f(x^*) \leq f(x)$ for all $x \in S$.

1.1 Unconstrained Non-linear Programs

Definition 1.1.1 ▶ Open Set

Let $S \subseteq \mathbb{R}^n$ be a set. S is called **open** if for all $\mathbf{x} \in S$ there exists $\epsilon > 0$ such that the ball

$$B(\mathbf{x}, \epsilon) = \{ \mathbf{y} \in \mathbf{R}^n : \|\mathbf{y} - \mathbf{x}\| < \epsilon \}$$

is a subset of *S*.

Definition 1.1.2 ► Closed Set

Let $S \subseteq \mathbb{R}^n$ be a non-empty set. S is said to be **closed** if for all convergent sequences $\{x_i\}_{i=1}^{\infty}$ with $x_i \in S$ for $i = 1, 2, \dots$, the limit $\lim_{i \to \infty} x_i \in S$.

The empty set is both open and closed.

Remark. A set is open if and only if its complement is closed.

Theorem 1.1.3 ► **Intersection of Closed Sets**

If C_1 *and* C_2 *are both closed, then* $C_1 \cap C_2$ *is closed.*

Theorem 1.1.4