Also published as:

US5454347 (A

LASER ANNEALING EQUIPMENT

Patent number:

JP6017120

Publication date:

1994-01-25

Inventor:

SHIBATA HAJIME; MAKITA YUNOSUKE; YAMADA

KAWAKATSU; UCHIDA YUTAKA; SATO SABURO

Applicant:

AGENCY IND SCIENCE TECHN; TOKYO SHIBAURA

ELECTRIC CO

Classification:

- International:

C30B1/02; C30B33/00; H01L21/20; C30B1/00;

C30B33/00; H01L21/02; (IPC1-7): C21D1/34;

B23K26/00; H01L21/268; H01S3/00

- european:

C30B1/02; C30B33/00; H01L21/20D2

Application number: JP19920176738 19920703 Priority number(s): JP19920176738 19920703

Report a data error he

Abstract of JP6017120

PURPOSE:To provide laser annealing equipment capable of precisely controlling the strength of laser beam according to annealing conditions at the time of annealing a work by the laser beam. CONSTITUTION: This equipment has a laser generator 1, a chamber 3 In which a work 5 to be subjected to annealing treatment by the laser beam outputted from the laser generator is disposed, a beam-introducing passage 2 for introducing the laser beam outputted from the laser generator into the chamber, a control gas cylinder 9 for supplying a gas having the prescribed absorptivity with respect to the laser beam into the beam-introducing passage, a detection sensor 13 for detecting the concentration of the gas in the beam-introducing passage, and a controller 12 for controlling a second control valve 11 by the detection sygnal from the detection sensor and setting the concentration of the gas in the beam-introducing passage.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許汀(リド)

(1)公開特許公報 (A)

(11)特許川顧公園番号

特開平6-17120

(43)公閒日 平成6年(1994) 1月25日

(51) Int. Ct. " 識別記分 C21D 1/34 F. 7425-4E B23K 26/00 Z 8617-4M EIN11. 21/268 B 8934-4X HOIS 3/00

宮査請求 未請求 請求項の数1 (全4頁)

(21) 世團番号 吳與平1-176738

(22) (1) (22) 平成4年(1992)7月3日 (?1)出願人 000001144

FI

工業技術院長

東京都下代田区政が関1丁目3番1号

(74) 上記1名の指定代理人。工業技術院電子技術総合研 究所長 (外工名)

(71)出頭人 000003078

株式会社東芝

种奈川県川崎市幸区堀川町72番地

(74) 上記1名の代理人 弁理士 鈴江 武彦

(72) 発明者 柴田 肇

炎城県つくば市梅園1 1月1番4 工業技

術院電子技術総合研究所内

最終頁に続く

(54) 【発明の名称】レーザアニーリング装置

(57) 【要約】

【目的】この発明は、ワークをレーザ光によってアニー リングする際、そのシーザ光の強度をアニーリング条件 に応じて精変よく制御できるレーザアニ リング装置を 提供することにある。

【構成】レーザ発振器1と、このレーザ発振器から出力 されたレーザ光によってアニーリング処理されるワーク るが設置されたチャンパ3と、このチャンパに上記レー ザ発振器から出力されたレーザ光を導く導光路2と、こ の導光路に上記レーザ光に対して所定の吸収率を有する 気体を供給する制御用ガスポンペ9と、上記導光路にお ける上記気体の濃度を検出する検出センザ13と、この 検出センサからの検出信号によって上記供給手段を制御 し上記導光路における上記気体の濃度を設定するコント ローラ12上を具備したことを特徴とする。

【特許請求の範囲】

【請求項1】 シーザ発掘器と、このレーザ発振器から 出力されたレーザ光によってアニーリング処理されるワ ーケが設置されたチャンパと、このチャンパに上記レー ザ発振器から出力されたレーザ光を導く導光路と、この 導光路に上記レーザ光に対して所定の吸収率を有する気 体を供給する供給手段と、上記導光路における上記気体 の濃度を検出する検出センサミ、この検出センサからの 検出信号によって上記供給手段を制御し上記導光路にお ける上記気体の過度を設定する制御手段とを具備したこ 10 た。 とを特徴とするレーザアニーリング装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明はレーザ光によってワー クをアニーリングするレーザアニーリング装置に関す ۵.

[0002]

【従来の技術】たとえば、ワークとしてのイオン拡入後 の辛導体基板は、イオン往人時のイオンの衝突により、 表面の結晶構造が乱れ、アモルファス状になる。そこ で、イオン注入後にその表面をレーザ光で照射し、光エ ネルギを熱エネルギとして吸収させることで、上記表向 を再紡品化させる、アニーリング処理が行われている。 【0003】このようなアニ・リング処理においては、 半導体基板に入射するレーザ光のエネルギが弱いと、ア ニールが行われず、強すぎるとアブレーションといわれ る。基板の表面が気化する状態を引き起こし、この場合 もアニールが行われないことになる。そこで、アニーリ ング処理に際しては、レーザ光の強度を最適な状態に設 定する必要がある。

【0004】従来、このようなアニーリング処理に際 し、レーザ光の強度を最適な状態に設定するには、レー ザ発振器への入力を飼御することで、このレーザ発振器 から出力されるレーザ光の強度を制御する第1の方法。 光学系にフィルタを加え、レーザ光を上記フィルタを通 過させることで半導体基板を照射するレーザ光の強度を 制御する第2の方法、弱いパルスのレーザ光を多数回照 射することでアニーリング処理をするようにし、そのバ ルスの照射回数によって半導体基板を照射するレーザ光 の強度を制御する第3の方法などが採られている。

[0005] しかしながら、上記第1の方法によると、 レーザ発展器への入力の制御範囲が大きく変化した場 合、レーザ発振器自体の動作特性は影響を与え、その動 作が不安定になることがある。

【0006】上記第2の方法によると、フィルタによっ て定まるレーザ光の強度しか得られないから、そのレー ザ光による風射強度を連続的に制御することができない ということがある。また、その場合、F,レーザのよう に発掘波長が15~nmと短くなると、良質の光学素子が 得られずらく、しかも得られたとしても非常に高価にな。50 副真空ポンプ 6 によって減圧された上記簿光路2および

るということもある。

【0007】上記第3の方法によると、半導体基板を照 射するパルス数が多くなる場合、その半導体基板をアニ ーリング処理するための時間が長く掛かり、生産性の低 下を招くということになる。

[8000]

【発明が解決しようとする課題】このように、従来はア ニーリング処理に際し、ワークを照射するレーザ光の強 度を、確実がつ連続的に副御できないということがあっ

【0009】この発明は上記事情に基づきなされたもの で、その目的とするところは、リークを照射するレーザ 光の強度を確実かつ連続的に制御できるようにしたレー ザアニーリング装置を提供することにある。。

[0010]

【課題を解決するための手段】上記課題を解決するため にこの発明は、レーザ発展器と、このレーザ発展器から 出力されたレーザ光によってアニ・リング処理されるワ クが設置されたチャンバと、このチャンバに上記レー 20 ザ発振器から出力されたレーザ光を導く導光路と、この 導光路に上記レーザ光に対して所定の吸収率を有する気 体を供給する供給手段と、上記導光路における上記気体 の濃度を検出する検出センサと、この検出センサからの 検出信号によって上記供給手段を制御し上記導光路にお ける上記気体の濃度を設定する制御手段とを具備したこ とを特徴とする。

[0011]

【作用】上記構成によれば、レーザ光に対して所定の吸 収率を有する気体の濃度を制御することで、その気体の 、30 濃度に応じて導光路を通ってチャンパに導入される上記 レーザ光の強度を制御できる。

[0:0:12]

【実施例】以下、この発明の一実施例を閉面を参照して 説明する。図1に示すレーザアニーリング装置は、たと えばF、レーザなどのレーザ発展器!を備えている。こ のレーザ発展器主から出力されたレーザ光しは導光路ス にその一端側から導入される。この導光路との他端はチ ャンパ3に連通し、導光路2を通過した上記レーザ光し は上記チャンパ3に入射する。上記チャンパ3には集光 40 レンズからなる光学系 4 が設けられ、この光学系 4 は上 記チャンパ3に入射したレーザ光しを集束する。光学系 4によって集束されたレーザ光1.は、チャンパ3内に配 置されたワークとしてのたとえば半導体基板5を照射す るようになっている。

【0013】 上記簿光路2の一端部には真空ボンプ6 と、第1の制御かりを介してパージ用ポンペ8とがそれ ぞれ接続されている。上記真空ポンプ6は上記導光路2 およびこの導光路とに連通した上記チャンパ3内を減圧 するようになっている。上記パージ用ガスポンペ8は上 チャンパ3へパージガスを供給するようになっている。 パージガスとしてはレーザ光しを吸収することがなく、 しかもレーザ光しによって加熱された半導体基板5と化 学的に反応することがないガス、たとえばレーザ発展器 1がP。レーザの場合には、アルゴンや空素などの不活 性ガスが用いられる。

【0014】上記導光路2の他端部には制御用ボンベ9が第2の制御弁11を介して接続されている。この転御用ガスボンベ9から上記導光路2とチャンバ3には、上記レーザ光1に対して所定の吸収率を持つ気体。たとえ 10 は酸素などの制御ガスが供給されるようになっている。上記第1の制御弁7と第2の制御弁11とはコントロラ12からの制御信号によって開度が制御される。上記コントローラ12からの信号によって上記第1の制御弁7の開度は開閉(二位置)制御され、上記第2の制御弁11の開度は比例制御されるようになっている。

【0015】上記導光路2には、上部制御用ガスボンペ9から導光路2へ供給される制御ガスの濃度を検出する検出センサ13が設けられている。この検出センサ13からの検出信号は上記コントローラ12へ入力される。コントローラ12は、上記検出信号に応じて上記第2の制御弁11の開度を制御するようになっている。つまり、コントローラ12には予め所定の設定値が設定されていて、その設定値と上記検出信号とが比較され、その比較に基づいて上記第2の制御弁11の開度が制御されるようになっている。

【0016】上記導光路2に供給される制御ガスである酸素の分子は、真空紫外領域において強いSCHUMAN-RUNCE系列の吸収がある。レーザ発展器1がFェレーザで、そのレーザ光Lの設長が157mの場合、その吸収は0.125 cm 'air. である。したがって、Fェレーザを用いる場合、その導光路2中に空気が存在していると、空気中の酸素によって半導体基板5に到達するレーザ出力が吸収され、低下してしまう。したがって、通常は上記導光路2を空気が存在しないように減圧したり、アルゴンや空素などのF、レーザからのレーザ光Lを吸収しない不活性ガスを上記導光路2に満たすようにしている。一方、上記導光路2に酸素を適当な濃度に調整して供給すれば、そのときの吸収率aは、

a=(1 e⁻¹ ⁻¹ ⁻²) ×100% …(1)式 {0017}で示されるから、上記導光路2に供給された上記制御ガスは、一種のフィルタとして機能することになる。なお、上記(1)式において、1はレーザ発振器1から出力されたレーザ光上が半導体基板5に到達するまでの光路長であり、pは酸素分用である。

(0018) したがって、あるアニーリングの条件を得るために、たとえばレーザ光しの出力を50%減少させる必要がある場合には、導光路2中の検索濃度は、光路長が1mの場合、5、5%にすればよいことになる。

【0019】このような構成のレーザアニーリング装置 50 を照射するレーザ光の強度を広範囲にわたって精密に制

によれば、チャンパ3に設置された半導体基板5を照射 するレーザ光しの強度は、導光路2に導入する制御ガス の濃度によって制御することかできる。上記導光路2に おける制御ガスの濃度は、検出センザ13によって検出 される。上記輸出センザー3が検出した検出信号がコン トローラ12に入力されると、コントローラ12は、そ の検出信号を、コントローラ!2に予め設定された設定 値と比較し、その比較に基づいた制御信号を第2の制御 弁11人出力する。それによって、上記第2の制御弁1 1の胴度が上記設定値に応じて調整され、上記導光路2 に供給される制御ガスの濃度が制御されるから、この英 光路2を通過するレーザ光しの吸収率を変えることがで きる。つまり、レーザ発振器1から出力されて半導体基 板5に至るレーザ光しの強度を制御することができる。 それによって、上記半導体基板もに対するアニーリング の条件を変えることができる。

[0020] すなわち、このように導光路2における制御ガスの濃度を制御すれば、レーザ光しがレーザ発展器 1から100%の強度で出力されたとすると、そのシーザ光しが上記半導体基板5を照射する強度を0~100%の範囲で運続的に制御することができる。そのため、上記半導体基板5を最適な強度のレーザ光しによって高精度でアニーリング処理することが可能となる。

【0021】しかも、レーザ発展器しを常に最適な条件下で作動させることができるから、このレーザ発展器1から出力されるレーザ光しの強度にばらつきが生じずらく、それによって半導体基板5に対するアニーリング条件を一定、つまり半導体基板5を照射するレーザ光しの強度が変動するのを防止できる。

30 【0022】なお、上記アニーリング処理に際し、導光 路2およびチャンパ3の内部は、まず、真空ポンプ6に よって減圧される。ついで、第1の制御弁7が開放され、パージガスによって内部の雰囲気が置換されてから、制御ガスが所定の濃度になるよう供給されて上述したアニーリング処理が行われる。

【0023】この発明は上記・実施例に限定されず、種々変形可能である。たとえば、上記実施例ではレーザ光を吸収する判御ガスとして酸素を挙げたが、それに代わり二酸化炭素など他の物質であってもよく、要はレーザ40発掘器から出力されるレーザ光に対して所定の吸収係数を有する物質であればよい。

[0024]

【発明の効果】以上述べたようにこの発明は、ワークをレーザ光によってアニーリングする場合、上記レーザ光を上記ワークが設置されたチャンパに導く導光路に、上記レーザ光に対して所定の吸収率を有する気体を供給し、その気体の濃度を制御することで、上記ワークを照射するレーザ光の強度を制御するようにした。

【0025】そのため、上記気体の濃度に応じてワーク を照射するレーザ光の強度を広範囲とわたって特殊に制

御できるから、それに応じて上記ワークに対するアニー リング処理の精度を向上させることができる。

【図面の簡単な説明】

[図1] この発明の一実施例の全体構成を示す頻略図。 【符号の説明】 1 … レーザ発電器、2 … 導光路、3 … チャンバ、5 … 半導体基板(ワーク)、9 … 報御用ガスポンベ(供給手段)、11 …第1の制御弁(供給手段)、12 … コントローラ(制御手段)、13 … 検出センサ。

[图1]

フロントページの続き

(72) 楚明者 牧田 雄之助

茨城県つくば市梅園1丁目1番4 工業技

筛院電子技術総合研究所内

(72) 発明者 山田 家和游

茨城県つくば市梅園11目1番4 工業技

術院電子技術総合研究所內

(72) 発明者 内田 裕

神奈川県横浜市磯子区新磯子町33番地 株

式会社束芝生座技術研究所内

(72) 発明者 花藤 三郎

神奈川県横浜市磯子区新磯子町33番地 株

武会社束芝生并技術研究所内