- 1-5. (cancelled).
- 6. (currently amended): A stabilizer mixture according to claim 24, wherein one of the two different sterically hindered amine compounds of component (I) is selected from the class (β-1).
- 7. (currently amended): A stabilizer mixture according to claim $2\underline{4}$, wherein one of the two different sterically hindered amine compounds of component (I) is selected from the class (β -1), and the other of the two different sterically hindered amine compounds of component (I) is selected from the class (α -1) or (β -7).
- 8. (currently amended): A stabilizer mixture according to claim $2\underline{4}$, wherein one of the two different sterically hindered amine compounds of component (I) is selected from the class (β -7), and the other of the two different sterically hindered amine compounds of component (I) is selected from the class (β -2).
- **9.** (currently amended): A stabilizer mixture according to claim 24, wherein the two different sterically hindered amine compounds of component (I) are selected from different classes.
- 10. (currently amended): A stabilizer mixture according to claim $2\underline{4}$, wherein m_{+} is 1, 2 or 4, if m_{+} is 1, E_{2} is C_{12} - C_{20} alkyl, if m_{+} is 2, E_{2} is C_{2} - C_{10} alkylene or a group of the formula (a-l) E_{3} is C_{4} - C_{4} alkyl, E_{4} -is C_{4} - C_{6} alkylene, and E_{6} independently of one another are C_{4} - C_{4} alkyl, and if m_{+} is 4, E_{2} is C_{4} - C_{8} alkanetetrayl; two of the radicals E_{7} are a group of the formula (a-ll); E_{9} and E_{10} together form C_{9} - C_{10} alkylene, E_{11} is hydrogen or a group $-Z_{4}$ -COO- Z_{27}

09/899,438 - 2 - PP/1-22224/US/A

Z₁ is C₂-C₆alkylone, and

Z2 is C10-C16alkyl;

E₁₄ is hydrogen, and

E₁₅ is C₂-C₆alkylene or C₃-C₅alkylidene;

E17 is C10 C14 alkyl;

E24 is C1-C4alkoxy;

m₂ is 1, 2 or 3,

when m₂ is 1, E₂₆ is a group——CH₂CH₂ NH———,

when m2 is 2, E26 is C2-C6alkylene, and

when m2 is 3, E26 is a group of the formula (a-IV)

the radicals E22 independently of one another are C2-C6alkylene, and

the radicals E28 independently of one another are C1-C4alkyl or C5-C8cycloalkyl; and

E₂₀ is C₂-C₈alkylone;

R₁ and R₃ independently of one another are a group of the formula (b-I),

R₂ is C₂-C₈alkylene,

R₄ and R₅ independently of one another are hydrogen, C₁-C₁₂alkyl, C₅-C₈cycloalkyl or a group of the formula (b-I), or the radicals R₄ and R₅, together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring, and

b₁ is a number from 2 to 25;

R₇ and R₁₁ independently of one another are hydrogen or C₁-C₄alkyl,

R₈, R₉ and R₁₀ independently of one another are C₂-C₄alkylene, and

 X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 and X_8 independently of one another are a group of the formula (b-II),

R₁₂ is hydrogen, C₁-C₄alkyl, C₅-C₈cycloalkyl or a group of the formula (b-I);

R14 is C1-C4alkyl,

R₁₅ is C₃-C₆alkylene, and

b₂ is a number from 2 to 25;

R₁₇ and R₂₁ independently of one another are a direct bond or a group

-N(X₀)-CO-X₁₀-CO-N(X₁₁)-,

X₉ and X₁₁ independently of one another are hydrogen or C₁-C₄alkyl,

X₁₀-is-a-direct bond,

R₁₉ and R₂₃ are C₁-C₂₅alkyl or phonyl,

Ran and Rad are hydrogen or Ca-Calkyl,

R22 is C1-C25alkyl or a group of the formula (b-I), and

09/899,438 - 3 - PP/1-22224/US/A

b₂ is a number from 1 to 25;

 R_{26} , R_{26} , R_{27} , R_{28} and R_{29} independently of one another are a direct bond or C_4 - C_4 alkylene, and b_4 is a number from 1 to 25;

b'₅, b"₅ and b""₅ independently of one another are a number from 2 to 4, and R₃₁ is hydrogen, C₁-C₄alkyl, C₅-C₈cycloalkyl, phenyl or benzyl;

A₁ is hydrogen or methyl,

A2 is a direct bond or C2-C6alkylene, and

n₁ is a number from 2 to 25;

n₂ and n₂* are a number from 2 to 25;

 A_3 -and A_4 -independently of one another are hydrogen or C_4 - C_4 alkyl, or A_3 and A_4 together form a C_9 - C_{43} alkylene group, and

the variables na independently of one another are a number from 1 to 25;

n₄ is a number from 2 to 25,

A₆-and A₆-independently of one another are C₁-C₄alkyl, and

Az is C1-C4alkyl or a group of the formula (b-l)

with the provise that at least 50 % of the radicals A_z are a group of the formula (b-I).

11. (currently amended): A stabilizer mixture according to claim-124, wherein

the two different sterically hindered amine compounds of component (I) are selected from the group consisting of the compounds of the formulae (A-1-a), (A-1-b), (A-1-c), (A-1-d), (A-2-a), (A-3-a), (A-3-b), (A-4-a), (A-4-b), (A-5), (A-6-a), (A-7), (A-8-a), (A-9-a), (A-9-b), (A-9-c), (A-10-a), (B-1-a), (B-1-b), (B-1-c), (B-1-d), (B-2-a), (B-3-a), (B-4-a), (B-4-b) and (B-4-c), a product (B-6-a) and the compounds of the formulae (B-7-a), (B-8-a), (B-8-b); (B-9-a) and (B-10-a);

$$\begin{array}{c|c} & & & \\ & & & \\ \hline E_{1} & N & O \\ \hline & & \\ & &$$

09/899.438 - 4 - PP/1-22224/US/A

wherein E_4 -is hydrogen, C_4 - C_8 alkyl, O', -OH, -CH $_2$ CN, C_4 - C_{48} alkoxy, C_6 - C_{42} cycloalkoxy, C_3 - C_6 alkenyl, C_2 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_4 - C_4 alkyl; or C_4 - C_8 acyl;

in which two of the radicals Ez are -COO-C13H27 and

two of the radicals
$$E_7$$
 are $COO \longrightarrow N \longrightarrow E_8$ and E_8 has one of the meanings of E_4 ; $H_3C \longrightarrow CH_3$

09/899,438 - 5 - PP/1-22224/US/A

$$\begin{array}{c|c} CH_2 \\ CH_2)_9 \\ CH_2 \\ O \\ C = O \\ \\ H_3C \\ CH_3 \\ CH_3 \\ \\ CH_3 \\ \end{array}$$

$$\begin{array}{c|c} CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2GH_2 & CH_2GH$$

wherein E12 has one of the meanings of E1;

wherein E13 has one of the meanings of E1;

wherein E16 has one of the meanings of E1:

wherein E₁₈ has one of the meanings of E₁₊

in which E₁₉, E₂₀ and E₂₄ independently of one another are a group of the formula (a-III)

wherein E22 has one of the meanings of E1+

wherein E23 has one of the meanings of E4;

09/899,438 - 7 - PP/1-22224/US/A

wherein E25 has one of the meanings of E4;

wherein E20 has one of the meanings of E1;

09/899,438 - 8 - PP/1-22224/US/A

wherein b_1 is a number from 2 to 20 and R_6 is hydrogen, C_1 - C_8 alkyl, O, -OH, -CH₂CN, C_1 - C_{18} alkoxy, C_5 - C_{12} cycloalkoxy, C_3 - C_6 alkenyl, C_7 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_8 acyl;

wherein R₁₃ has one of the meanings of R₆,

09/899,438 - 9 - PP/1-22224/US/A

wherein b2 is a number from 2 to 20 and R16 has one of the meanings of R6;

09/899,438 - 10 - PP/1-22224/US/A

wherein b₂ is a number from 1 to 20 and R₁₈ has one of the meanings of R₆;

wherein b4 is a number from 1 to 20 and R30 has one of the meanings of R6;

a product (B-6-a) obtainable by reacting a product, obtained by reaction of a polyamine of the formula (B-6-1-a) with cyanuric chloride, with a compound of the formula (B-6-2-a)

$$H_2N$$
 — $(CH_2)\frac{1}{3}$ — NH — $(CH_2)\frac{1}{3}$ — NH_2 (B-6-1-a)

 H — N — C_4H_9 — CH_3 —

in which R₃₂ has one of the meanings of R₆;

09/899,438 - 11 - PP/1-22224/US/A

wherein n₁ is a number from 2 to 20;

$$\begin{array}{c|c}
\hline
CH & CH_2 & O \\
\hline
CH_2 & O & O \\
\hline
CH_2 & O & O \\
\hline
H_3C & CH_3 & CH_3 \\
\hline
H_3C & CH_3 & O \\
\hline
H_3C & O & O \\
\hline
H$$

wherein n₂ and n₂* are a number from 2 to 20[[;]].

(B-9-a)

wherein the variables n₃ independently of one-another-are a number from 1 to 20[[;]]

09/899,438 - 12 - PP/1-22224/US/A

wherein n₄ is a number from 2 to 20, and at least 50 % of the radicals A₂ are a group of the formula (b-l)

wherein R_6 is hydrogen, C_4 - C_8 alkyl, O'_7 - OH_7 - CH_2 CN, C_4 - C_{48} alkoxy, C_6 - C_{42} cycloalkoxy, C_3 - C_6 alkenyl, C_4 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_4 - C_4 alkyl; or C_4 - C_8 acyl, and the remaining radicals A_7 are ethyl.

12. (currently amended): A stabilizer mixture according to claim 11 wherein the two different sterically hindered amine compounds of component (I) are a compound of the formula (A-1-b) wherein E₁ is hydrogen, and a compound of the formula (B-1-a) wherein R₆ is hydrogen;

2+1) a compound of the formula (B-1-a) wherein R₆ is hydrogen, and a compound of the formula (B-7-a); or

<u>3)-2)</u> a compound of the formula (B-2-a) wherein R_{13} is methyl, and a compound of the formula (B-7-a).

- 13. (currently amended): A stabilizer mixture according to claim $2\underline{4}$ wherein $\underline{\mathsf{E}}_{17}$, $\underline{\mathsf{E}}_{18}$, $\underline{\mathsf{E}}_{12}$, $\underline{\mathsf{E}}_{18}$, $\underline{\mathsf{E}}_{18}$, $\underline{\mathsf{E}}_{18}$, $\underline{\mathsf{E}}_{22}$, $\underline{\mathsf{E}}_{23}$, $\underline{\mathsf{E}}_{26}$, $\underline{\mathsf{E}}_{29}$, $\underline{\mathsf{R}}_{6}$, $\underline{\mathsf{R}}_{13}$, $\underline{\mathsf{R}}_{16}$, $\underline{\mathsf{R}}_{18}$, $\underline{\mathsf{R}}_{30}$ and $\underline{\mathsf{R}}_{32}$ are hydrogen, $\underline{\mathsf{C}}_{1}$ - $\underline{\mathsf{C}}_{4}$ alkyl, $\underline{\mathsf{C}}_{1}$ - $\underline{\mathsf{C}}_{10}$ alkoxy, cyclohexyloxy, allyl, benzyl or acetyl.
- **14.** (currently amended): A stabilizer mixture according to claim **11** wherein \sqsubseteq_1 , \sqsubseteq_8 , \sqsubseteq_{12} , \sqsubseteq_{13} , \sqsubseteq_{16} , \sqsubseteq_{18} , \sqsubseteq_{22} , \sqsubseteq_{23} , \sqsubseteq_{26} , \sqsubseteq_{29} , \bowtie_6 , \bowtie_{13} , \bowtie_{16} , \bowtie_{18} , \bowtie_{29} and \bowtie_{32} are hydrogen or methyl and \bowtie_4 and \bowtie_6 additionally are is \bowtie_1 -C₈alkoxy.

09/899,438 - 13 - PP/1-22224/US/A

- 15. (currently amended): A stabilizer mixture according to claim—1_24, wherein the compound of component (II) is selected from the group consisting of Mg carboxylates, Zn carboxylates, Mg oxides, Zn oxides, Mg hydroxides, Zn hydroxides, Mg carbonates and Zn carbonates.
- **16.** (currently amended): A stabilizer mixture according to claim—1_24, which additionally contains as a further component
- (X-1) a pigment or
- (X-2) an UV absorber or
- (X-3) a pigment and an UV absorber.
- **17.** (currently amended): A stabilizer mixture according to claim-1_24, which additionally contains as a further component
- (XX) an organic salt of Ca, an inorganic salt of Ca, Ca oxide or Ca hydroxide.
- **18.** (currently amended): A composition comprising an organic material subject to degradation induced by light, heat or oxidation and a stabilizer mixture according to claim-1.24.
- **19.** (original): A composition according to claim **18** wherein the organic material is a synthetic polymer.
- 20. (original): A composition according to claim 18 wherein the organic material is a polyolefin.
- **21.** (original): A composition according to claim **18** wherein the organic material is polyethylene, polypropylene, a polyethylene copolymer or a polypropylene copolymer.
- 22. (original): Polypropylene containing a compound of the formula (B-1), a compound of the formula (B-7) and a Zn-carboxylate;

09/899,438 - 14 - PP/1-22224/US/A

in which

R₁, R₃, R₄ and R₅ independently of one another are hydrogen, C₁-C₁₂alkyl, C₅-C₁₂cycloalkyl, C₁-C₄-alkyl-substituted C₅-C₁₂cycloalkyl, phenyl, phenyl which is substituted by -OH and/or C₁-C₁₀alkyl; C₇-C₉phenylalkyl, C₇-C₉phenylalkyl which is substituted on the phenyl radical by -OH and/or C₁-C₁₀alkyl; or a group of the formula (b-l)

$$H_3C$$
 N
 R_6
 H_3C
 CH_3
 CH_3
 R_6
 R_6

 R_2 is C_2 - C_{18} alkylene, C_5 - C_7 cycloalkylene or C_1 - C_4 alkylenedi(B_5 - C_7 cycloalkylene), or the radicals R_1 , R_2 and R_3 , together with the nitrogen atoms to which they are bonded, perform a 5- to 10-membered heterocyclic ring, or

R₄ and R₅, together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring,

 R_6 is hydrogen, C_1 - C_8 alkyl, O° , -OH, -CH₂CN, C_1 - C_{18} alkoxy, C_5 - C_{12} cycloalkoxy, C_3 - C_6 alkenyl, C_7 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_8 acyl, and b_1 is a number from 2 to 50,

with the proviso that at least one of the radicals R_1 , R_3 , R_4 and R_5 is a group of the formula (b-I);

wherein A₁ is hydrogen or C₁-C₄alkyl,

09/899,438 - 15 - PP/1-22224/US/A

 A_2 is a direct bond or C_1 - C_{10} alkylene, and n_1 is a number from 2 to 50.

- **23.** (currently amended): A method for stabilizing an organic material against degradation induced by light, heat or oxidation, which comprises incorporating into the organic material a stabilizer mixture according to claim—1_24.
- 24. (new): A stabilizer mixture containing
- (I) two different sterically hindered amine compounds selected from the group consisting of the classes.
- $(\beta-1)$ a compound of the formula (B-1)

in which

 R_1 , R_3 , R_4 and R_5 independently of one another are hydrogen, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, C_1 - C_4 -alkyl-substituted C_5 - C_{12} cycloalkyl, phenyl, phenyl which is substituted by -OH and/or C_1 - C_{10} alkyl; C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkyl which is substituted on the phenyl radical by -OH and/or C_1 - C_{10} alkyl; or a group of the formula (b-l)

 R_2 is C_2 - C_{18} alkylene, C_5 - C_7 cycloalkylene or C_1 - C_4 alkylenedi(B_5 - C_7 cycloalkylene), or the radicals R_1 , R_2 and R_3 , together with the nitrogen atoms to which they are bonded, perform a 5- to 10-membered heterocyclic ring, or

R₄ and R₅, together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring,

09/899,438 - 16 - PP/1-22224/US/A

 R_6 is hydrogen, C_1 - C_8 alkyl, O° , -OH, -CH₂CN, C_1 - C_{18} alkoxy, C_5 - C_{12} cycloalkoxy, C_3 - C_6 alkenyl, C_7 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_8 acyl, and b_1 is a number from 2 to 50,

with the proviso that at least one of the radicals R_1 , R_3 , R_4 and R_5 is a group of the formula (b-I);

 $(\beta-2)$ a compound of the formula (B-2)

wherein

R₇ and R₁₁ independently of one another are hydrogen or C₁-C₁₂alkyl,

 R_8 , R_9 and R_{10} independently of one another are C_2 - C_{10} alkylene, and

 X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 and X_8 independently of one another are a group of the formula (b-II),

$$\begin{array}{c|c} & H_3C & CH_3 \\ \hline & N & R_{13} \\ \hline & R_{12} & H_3C & CH_3 \end{array} \tag{b-II)}$$

in which R₁₂ is hydrogen, C₁-C₁₂alkyl, C₅-C₁₂cycloalkyl, C₁-C₄alkyl-substituted

C₅-C₁₂cycloalkyl, phenyl, -OH- and/or C₁-C₁₀alkyl-substituted phenyl, C₇-C₉phenylalkyl,

 C_7 - C_9 phenylalkyl which is substituted on the phenyl radical by -OH and/or C_1 - C_{10} alkyl; or a group of the formula (b-I) as defined above, and

R₁₃ has one of the meanings of R₆;

 $(\beta-6)$ a product (B-6) obtainable by reacting a product, obtained by reaction of a polyamine of the formula (B-6-1) with cyanuric chloride, with a compound of the formula (B-6-2)

$$H_2N - (CH_2) \frac{1}{b_5} NH - (CH_2) \frac{1}{b_5} NH - (CH_2) \frac{1}{b_5} NH_2$$
 (B-6-1)

09/899,438 - 17 - PP/1-22224/US/A

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3
 CH_3
 CH_3

in which

 b_5' , b_5'' and b_5''' independently of one another are a number from 2 to 12, R_{31} is hydrogen, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, phenyl or C_7 - C_9 phenylalkyl, and R_{32} has one of the meanings of R_6 ;

$(\beta-7)$ a compound of the formula (B-7)

wherein A_1 is hydrogen or C_1 - C_4 alkyl, A_2 is a direct bond or C_1 - C_{10} alkylene, and n_1 is a number from 2 to 50; and

$(\beta-8)$ at least one compound of the formulae (B-8-a) or (B-8-b)

09/899,438 - 18 - PP/1-22224/US/A

$$\begin{array}{c|c}
CH & CH_2 & O \\
CH_2 & O & O \\
CH_2 & O & O \\
CH_3 & CH_3 & CH_3 \\
H_3C & N & CH_3 \\
H_3C & N & CH_3
\end{array}$$
(B-8-b)

wherein n₂ and n₂* are a number from 2 to 50; and

(II) at least one compound selected from the group consisting of an organic salt of Zn, an inorganic salt of Zn, Zn oxide, Zn hydroxide, an organic salt of Mg, an inorganic salt of Mg, Mg oxide and Mg hydroxide;

with the proviso that component (I) is different from the combination of the compounds (B-8-a) and (B-, 8-b)

$$\begin{array}{c|c}
\hline
CH & CH_2 & O \\
\hline
CH_2 & O & O \\
\hline
CH_2 & O & O \\
\hline
H_3C & CH_3 & CH_3 \\
\hline
H_3C & CH_3 & CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_2 & O & O \\
\hline
CH_3 & CH_3 & O \\
\hline
CH_3 & CH_3 & O \\
\hline
CH_3 & O & O \\
\hline
CH_2 & O & O \\
\hline
CH_3 & O & O \\
\hline
CH_3 & O & O \\
\hline
CH_2 & O & O \\
\hline
CH_3 & O & O \\
\hline
CH_3 & O & O \\
\hline
CH_2 & O & O \\
\hline
CH_3 & O & O \\
\hline
CH_2 & O & O \\
\hline
CH_3 & O & O \\
\hline
CH_3 & O & O \\
\hline
CH_2 & O & O \\
\hline
CH_3 & O & O \\
\hline$$

wherein n_2 and n_2 * are a number from 2 to 50; and with the proviso that, when component (I) is the combination of the compounds (B-1-a-1) and (B-7-a);

09/899,438 - 19 - PP/1-22224/US/A

wherein b₁ is a number from 2 to 50,

wherein n₁ is a number from 2 to 50; and,

at the same time, component (II) is a Zn carboxylate;

the stabilizer mixture additionally contains as a further component

(X-1) a pigment or

(X-2) an UV absorber or

(X-3) a pigment and an UV absorber.

25. (new): A stabilizer mixture according to claim 24, wherein

the product (B-6) is represented by a compound of the formula (B-6- α), (B-6- β) or (B-6- γ), or a mixture thereof

a)

09/899,438 - 20 - PP/1-22224/US/A

wherein

 R_{31} and R_{32} are as defined in claim **24** and b_5 is a number from 2 to 20.

09/899,438 - 21 - PP/1-22224/US/A

26. (new): A stabilizer mixture according to claim **24** wherein the class (β -6) relates to a compound of the formula

with b₅ being a number from 2 to 20.

09/899,438 - 22 - PP/1-22224/US/A