

Lecture: Machine Learning for Data Science

Winter semester 2021/22

Lectures 25 & 26: Velocity (stream clustering)

Prof. Dr. Eirini Ntoutsi

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

(recap from previous week) Data streams

"A data stream is a potentially unbounded, ordered sequence of data items, which arrive continuously at high-speeds"
 Springer Encyclopedia of Machine Leaning, 2017

- Key characteristics
 - Huge volumes of continuous data, possibly infinite: Random access is expensive or undesirable (due to e.g., privacy)
 - High arrival rate: response time matters
 - Non-stationary/ evolving data: Data evolve over time as new data arrive and old data become obsolete/irrelevant

(recap from previous week) Example: batch k-Means (see also lecture 10)

The complete dataset is given as input to the algorithm

The dataset is accessed multiple times during the iterations

(recap from previous week) Why the stationarity violation is problematic? Unsupervised learning case

- As data evolve with time, the clustering is becoming invalid/obsolete
- External changes: the relationship of a cluster to the other clusters might change, e.g., cluster survival, split, merge, appearance, disappearance
- Internal changes: the description of a cluster might change both externally (i.e., cluster members)
 and internally (cluster properties)

Source: The MONIC framework, Spiliopoulou et al, KDD06

(recap from previous week) Requirements for stream learning

- Need for new learning algorithms that
 - have the ability to incorporate new data (incremental models)
 - deal with non-stationary data generation processes
 - Ability to discard obsolete data (or, obsolete (parts of the) model) (data ageing/ forgetting)
- subject to:
 - resource constraints (processing time, memory)
 - single scan of the data (one look, no random access)

Clustering data streams

- Clustering is one of the core learning tasks
 - Used as either a standalone tool or as a preprocessing tool
- The (batch) clustering problem:
 - Given a set of data instances, the goal is to group the data into groups of similar data (clusters)
 - □ The dataset is available from the beginning to the algorithm
 - □ The algorithm is allowed to iterate over the dataset
- The data stream clustering problem:
 - Maintain a good clustering over the (non-stationary) stream, subject to resource constraints
 - No random access to the data (you only have a look at the data instances when they arrive)
 - The processing time per instance should be low

Challenges & Requirements for data stream clustering

- Traditional clustering methods require access upon the whole dataset
 - → work with summaries, rather than raw data
- The underlying population distribution might change:
 - → the clustering structure needs to be maintained/adapted online
 - → one clustering model might not be adequate to capture the evolution of the underlying population
- The role of outliers and clusters are often exchanged in a stream
 - → timely and accurate identification of outliers is necessary

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

Dealing with the efficiency requirements

- In the stream classification part, we mainly focused on the non-stationary aspect and we didn't directly address efficiency!
 - □ For the clustering part, many of the methods directly address efficiency (and of course aim at good quality clustering results)
- Efficiency challenge (not restricted to clustering): How can we learn from high volumes of data faster?
- Performance depends on
 - □ the volume of the data set (cardinality, dimensionality)
 - the scalability of the learning algorithms
- Solutions for speeding up learning
 - ☐ Use high-performance computing architectures
 - Parallel computing; Distributed computing; Cloud computing; ...
 - ☐ Reduce the number of objects being processed
 - Summarization/Compression: "compress" the data using "higher-level" descriptors (summaries) (the most relevant for our discussion on stream clustering)
 - Sampling: select a subset of the data to work on
 - Keep quality data (lately known as data-centric AI)
 - Andrew Ng is one of the supporters of this idea, listen e.g., "A Chat with Andrew on MLOps: From Model-centric to Data-centric Al"
 - ☐ Develop more efficient methods ☺

Summarization/Compression

- Summarization/Compression is one way to speed up learning
- Main idea:
 - Summarize/Compress the input data into a set of summaries. Original/ raw data are discarded.
 - Apply machine learning algorithms upon the summaries afterwards
- Why does summarization makes sense?
 - Summaries comprise lossy but still good representations of the original raw data
 - Having good summaries is of course critical!

Raw data Summaries

Summarization/Compression

- Examples of summaries
 - Cluster feature vectors [Zhang et al 1996]
 - Data bubbles [Breuning et al 2001]
- Again, the quality of the summaries is of paramount importance for the success of the learning task

Cluster-feature (CF) vectors/ BIRCH algorithm

- BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [Zhang et al 1996]
 - BIRCH is the first approach for clustering large scale data
- BIRCH introduced the idea of cluster feature vector summaries
 - also known as microclusters in the stream clustering domain
- BIRCH organizes the CF summaries into a tree structure
 - CF tree: A multi-level compression of the data that tries to preserve the inherent clustering structure of the data

Cluster feature vector (CF) summaries or micro-clusters

Given *N d*-dimensional points in a cluster *C*, the cluster feature (CF) vector of *C* is defined as a triple:

$$CF = (N, \overrightarrow{LS}, SS)$$

where

N = |C| is the number of points in C

LS stands for Linear Sum SS stands for Square Sum

- $\overrightarrow{LS} = \sum_{i=1}^{N} \overrightarrow{X}_{i}$ is the linear sum of the N data points
- $SS = \sum_{i=1}^{N} \vec{X}_{i}^{2} = \sum_{i=1}^{N} \langle X_{i}, X_{i} \rangle$ is the square sum of the N data points

CF vector example

CF vector properties 1/4

 $CF = (N, \overrightarrow{LS}, SS)$

$$\overrightarrow{LS} = \sum_{i=1}^{N} \vec{X}_{i}$$

$$SS = \sum_{i=1}^{N} \vec{X}_{i}^{2} = \sum_{i=1}^{N} \langle X_{i}, X_{i} \rangle$$

 The CF vector is not only efficient, as it compresses the input dataset, but also accurate, as it is sufficient to compute several measures we need for clustering.

• the centroid of C:

$$\vec{X0} = \frac{\sum_{i=1}^{N} \vec{X_i}}{N} \Longrightarrow \frac{\vec{LS}}{N}$$

• the radius of C (avg distance from cluster members to the centroid):

$$R = \left(\frac{\sum_{i=1}^{N} (\vec{X}_i - \vec{X}_0)^2}{N}\right)^{\frac{1}{2}} \qquad \Longrightarrow \qquad \sqrt{\frac{SS}{N} - \left(\frac{LS}{N}\right)^2}$$

Homework: Prove it!

the diameter of C (avg pairwise distance within a cluster)

$$D = \left(\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{X}_i - \vec{X}_j)^2}{N(N-1)}\right)^{\frac{1}{2}} \implies \text{Homework: express it in terms of CF statistics!}$$

CF vector properties 2/4

• CF additivity property: Let two disjoint clusters C_1 und C_2 . The CF vector of the cluster that is formed by merging the two disjoint clusters, is:

$$CF(C_1 \cup C_2) = CF(C_1) + CF(C_2) = (N_1 + N_2, LS_1 + LS_2, QS_1 + QS_2)$$

• What is the CF of the marked (in red) cluster? How is it related to the CF1, CF2?

CF vector properties 3/4

• CF incremental property: The updated CF of a cluster C_1 after the addition of a new point p, is:

$$CFT(C_1 \cup p) = CFT(C_1) + p$$

- What is the CFP of the marked (in red) set?
- How is it related to CF1?

CF vector properties 4/4

- Cluster feature (CF)
 - □ A summary of the statistics of the points in a cluster C
 - Utilizes storage efficiently
 - Keeps sufficient statistics for clustering
 - Allows for easy merge of clusters, based on the additivity property
 - Allows for easy addition of new points, based on the incremental property

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

A (non-complete) taxonomy of stream clustering approaches (& representative methods)

	Batch/Static clustering	Dynamic/Stream clustering
Partitioning methods	k-Meansk-Medoids	 Leader Simple single pass k-Means STREAM k-Means [O'Callaghan et al 2002] CluStream [Aggrawal et al 2003]
Density-based methods	• DBSCAN • OPTICS	• DenStream [Cao et al 2006] • incDBSCAN * • incOPTICS *
Grid-based methods (*) These meth	• STING nods require access to the raw data (this acc	• DStream [Chen & Tu 2007] ess might be limited though)

An example of an incremental clustering method - incDBSCAN

- Goal of incremental methods: To update the old clustering based on the new data (point p), without reclustering the data from scratch.
 - Access to raw data is possible but unnecessary access should be avoided
 - It refers not only to adding a new point, but also to the removal of existing points
- incDBSCAN[Ester et al, 1998] exploits the locality of information in density-based clustering and reorganizes the information only locally (as required)
- In our example:
 - Only the affected cluster is re-organized,
 not everything is reclustered from scratch
 - Requires (limited) access to raw data
 (to the affected highlighted cluster in our example)

Figure 3: : Affected objects in a sample database

Incremental clustering methods vs stream clustering methods

- Incremental methods require random access to the raw data to update the old clustering based on new instances.
 - They typically result in exact solutions
- Stream clustering methods do not assume random access to the data
 - The results are typically approximate
- Incremental methods might be appropriate for dynamic data arriving at a low rate
 - For potentially infinite streams, however they are not appropriate, and therefore new solutions are needed that can deal with the amount and complexity of the data

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

Partitioning methods

- Goal: Construct a partition of a set of objects into k clusters so that some clustering criterion is optimized
 - □ e.g. *k*-Means, *k*-Medoids
- Two types of methods:
 - Adaptive methods:
 - Leader (Spath 1980)
 - Simple single pass k-Means (Farnstrom et al, 2000)
 - STREAM k-Means [OCaEtAl02]
 - Online summarization offline clustering methods:
 - 。 CluStream [Aggrwal et al, 2003]

Adaptive methods: Leader (Spath 1980)

- The simplest single-pass partitioning algorithm
- Whenever a new instance p arrives from the stream
 - \Box Find its closest cluster (leader), c_{clos}
 - ullet Assign p to c_{clos} if their distance is below the threshold $d_{threshol}$
 - ullet Otherwise, create a new cluster (leader) with p -

A cluster is "defined" by its first point

- Discussion
- + 1-pass and fast algorithm
- + No prior information on the number of clusters
- The number of clusters is not controllable
- It depends on the order of the examples
- It depends on a correct guess of d_{thresh}

- An extension of k-Means for streams
 - The iterative process of static k-Means cannot be applied to streams
 - Idea: Use a buffer that fits in memory and apply k-Means locally in the buffer
- Stream is processed in chunks $X_1, X_2...X_i...$, each fitting in memory
 - \Box For the current chunk X_i
 - \blacksquare Apply k-Means locally on X_i (retain only the k cluster centers from X_i)
 - X': the cluster centers seen thus far over the stream (# i*k centers)
 - □ Each center is treated as a point, weighted with the number of points it compresses
 - Apply k-Means on X' to obtain the current clustering result

For each batch

An <u>example of Stream k-Means in SPARK</u>

Discussion

- + The number of clusters is controllable (*k* on each batch)
- + Good results on each batch (via typical *k*-Means)
- The number of clusters is fixed over the stream (k)
- Only one clustering model is reported at each time point

Online-Offline methods: CluStream [Aggrawal et al, 2003]

- The stream clustering process is separated into two components:
 - an online micro-cluster component, that summarizes the stream locally as new data arrive over time
 - Micro-clusters are stored in disk at snapshots in time that follow a pyramidal time frame.
 - an offline macro-cluster component, that clusters these summaries into global clusters
 - Clustering is performed upon summaries instead of raw data

- The microcluster summaries are extensions of the cluster feature vector (CF) summary of BIRCH
- The micro-cluster summary for a set of d-dimensional points $(X_1, X_2, ..., X_n)$ arriving at time points $T_1, T_2, ..., T_n$ is defined as:

LS stands for Linear Sum SS stands for Square Sum

The micro-cluster summary for a set of d-dimensional points $(X_1, X_2, ..., X_n)$ arriving at time points $T_1, T_2, ..., T_n$ is defined as:

LS stands for Linear Sum SS stands for Square Sum

- Using the summaries, we can easily calculate basic measures to characterize a cluster:
 - Center: $\vec{X0} = \frac{\sum_{i=1}^{N} \vec{X_i}}{N} \implies \frac{\overrightarrow{LS}}{N}$
 - Radius: $R = \left(\frac{\sum_{i=1}^{N} (\vec{X}_i \vec{X}_0)^2}{N}\right)^{\frac{1}{2}} \implies \sqrt{\frac{SS}{n} \left(\frac{LS}{n}\right)^2}$

....

Similarly information on the cluster recency can be derived, e.g., avg cluster timestamp

- In other words, we summarize the stream via micro-clusters
 - Each microcluster is represented through its CFT summary

- Micro-clusters have very appealing properties for streams
 - □ Incrementality: $CFT(C_1 \cup p) = CFT(C_1) + p$
 - → we can easily add new points to a microcluster
 - Additivity: $CFT(C_1 \cup C_2) = CFT(C_1) + CFT(C_2)$
 - → we can easily merge two microclusters
 - □ Subtractivity: $CFT(C_1 C_2) = CFT(C_1) CFT(C_2)$, $C_1 \supseteq C_2$
 - → we can remove the effect of an old microcluster
- Recall the 2-directional learning in streams
 - Incrementality helps us to incorporate new information in the clustering model
 - Subtractivity helps us to remove outdated information from the clustering model

CluStream algorithm: overview

- Input:
 - The stream
 - q: #micro-clusters to be maintained over time (fixed)
 - t: radius factor
- 4 steps
 - Initialization: How we build the initial set of microclusters?
 - Online micro-cluster maintenance: How do we add new points from the stream?
 - Periodic storage: Decide when to store snapshots of micro-clusters on disk?
 - Offline macro-clustering: How to derive the final clusters?

CluStream: Initialization step

- Initialization: How we build the initial set of microclusters?
 - Done using an offline process in the beginning of the stream
 - Wait for the first *InitNumber* points to arrive
 - \square Apply a standard k-Means algorithm with k=q to create q clusters
 - □ For each discovered cluster, assign it a unique ID and create its micro-cluster summary.

- How should we set q?
 - much larger than the natural number of clusters
 - much smaller than the total number of points arrived

CluStream: Online step - How do we add new points from the stream?

- A fixed number of q micro-clusters is maintained over time
- Whenever a new point p arrives from the stream
 - \Box Compute distance between p and each of the q maintained micro-cluster centroids
 - \Box clu \leftarrow the closest micro-cluster to p
 - Find the max boundary of clu
 - It is defined as a factor of t of clu radius
 - ☐ If p falls within the maximum boundary of clu
 - p is absorbed by clu
 - Update clu statistics (incremental property of microclusters)
 - Else, create a new micro-cluster with p, assign it a new ID, initialize its statistics
 - To keep the total number of micro-clusters fixed (i.e., q):
 - Delete the most obsolete micro-cluster or
 - If it is safe based on its time statistics
 - Merge the two closest ones (Additivity property of microclusters)
 - When two micro-clusters are merged, a list of ids is created. This way, we can identify the component micro-clusters that comprise a micro-cluster.

The green point can be absorbed by the summary.

The green point cannot be absorbed by the summary.

CluStream: Periodic micro-cluster storage

Micro-clusters are stored as snapshots in time following the pyramidal pattern framework

CluStream: Offline step

- The offline step is applied on demand. The user specifies the time horizon h for clustering, e.g., h=10, so from S_T - S_{T-10} where T is the current timepoint.
 - □ Different clusterings are possible, if the horizon of clustering changes → allows the user can explore the history of the stream
- User input: time horizon h, # macro-clusters k to be detected, current time T
- Output: the clusters in (*T-h, T*)

2 steps

- Step 1: Find the active micro-clusters during h
- Step 2: Apply k-Means over the active micro-clusters in h to derive the k macro-clusters

CluStream: Offline step – step 1

Step 1: Find the active micro-clusters during horizon *h*:

- We exploit the subtractivity property to find the active micro-clusters during h
- Suppose current time is T. Let S(T) be the set of micro-clusters at T.
- Find the stored snapshot which occurs just before time T-h. Let S(T-h') be the set of micro-clusters.
- For each micro-cluster in the current set S(T), we find the list of its component micro-cluster ids. For each of the list of ids, find the corresponding micro-clusters in S(T-h').
- Subtract the CF vectors for the corresponding micro-clusters in S(T-h') (subtractivity property of microclusters)
- This ensures that the micro-clusters created before the user-specified horizon do not dominate the result of clustering process

CluStream: Offline step – step 1 - example

- **Example**: if we have a merged cluster with id list (C1,C2,C3) in S(T) and a cluster with ID C1 in S(T-h'), then we should remove C1 as it was created before the user horizon.
 - \Box To this end, we can use the subtractivity property: CFT(C1,C2,C3)-CFT(C1) = CFT(C2,C3)
 - The result is the active IDs during h

CluStream: Offline step – step 2

- Step 2: Apply k-Means over the active micro-clusters in h to derive the k macro-clusters
 - Initialization: centers are not picked up randomly, rather sampled with probability proportional to the number of points in a given micro-cluster
 - Distance is the centroid distance
 - New centers are defined as the weighted centroids of the micro-clusters in that micro-cluster partition

CluStream algorithm: overview

If no, create a new summary. But because of fixed q, you have to reduce

- Periodic storage of micro-clusters snapshots into disk
 - □ At different levels of granularity depending upon their recency
- Offline (on demand) macro-clustering

#microclusters by one

- lacktriangle Input: A user defined time horizon h and number of macro-clusters k to be detected
- \square Locate the valid micro-clusters during h
- \square Apply k-Means upon these micro-clusters \rightarrow k macro-clusters

CluStream: discussion

- One pass over the raw data
- + Views the stream as a changing process over time, rather than clustering the whole stream
- + Provides flexibility to an analyst in a real-time and changing environment
- + Can characterize clusters over different time horizons in a changing environment
- Fixed number of micro-clusters maintained over time
- Sensitive to outliers/ noise
 - We might delete a valid microcluster just because of an outlier point

Homework (could also be a potential example topic)

Data stream clustering: ageing/window model

- We discussed different forms of ageing in a stream environment: landmark windows, sliding windows, damped window models, ...
- Questions:
 - i) Please explain the ageing schema in the CluStream algorithm.
 - ii) Can it be categorized as sliding or landmark or damped window model?

Answer:

Landmark: Yes/No. Why?

Sliding: Yes/No. Why?

Damped: Yes/No. Why?

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

Density-based methods

- Clusters as regions of high density surrounded by regions of low density (noise)
 - \Box Density is measured locally, in the ε -neighborhood of each point
 - e.g. DBSCAN, OPTICS
- Very appealing for streams
 - □ No assumption on the number of clusters
 - Discovering clusters of arbitrary shapes
 - Ability to handle outliers and noise
- But, they miss a clustering model (or it is to complicated)
 - □ Clusters are represented by all their points!!!!
- Solution: Describe clusters as set of summaries
 - DenStream [Cao et al 2006]

DenStream [Cao et al 2006]

- The online-offline rationale is followed:
 - Online summarization as new data arrive over time
 - They distinguish between different types of summaries: Core, potential core and outlier micro-clusters
 - Offline clustering over the summaries to derive the final clusters
 - A modified version of DBSCAN over the summaries
- Data are subject to ageing according to the exponential ageing function (damped window model) recall previous lectures on streams

$$f(o,t) = e^{-\lambda(t-t_o)}$$

- $t-t_o$ is the time from point occurrence
- λ (λ >0) is the decay rate which determines the importance of historical data
- The higher the value of λ , the lower the importance of old data

DenStream: summarizing the stream

Note that the microcluster is now a temporal object

The micro-cluster summary at time t for a set of d-dimensional points $(p_1, p_2, ..., p_n)$ arriving at time points $T_1, T_2, ..., T_n$ is:

- Easy computation of basic measures, e.g., (see also discussion on micro-cluster summaries):
 - Center: $c = \frac{CF^1}{w}$ Radius: $r = \sqrt{\frac{CF^2}{w} \left(\frac{CF^1}{w}\right)^2}$
- A micro-cluster summary c_p can be maintained incrementally
 - \Box If a new point p is added to c_p :

$$c_p = (CF^1+p, CF^2+p^2, w+1)$$

$$c_p = (2^{-\lambda\delta t} * CF^1, 2^{-\lambda\delta t} * CF^2, 2^{-\lambda\delta t} * w)$$

DenStream: core, potential core & outlier summaries

- Core (or dense) micro-clusters
 - $\square \quad (w \ge \mu) \& (r \le \varepsilon)$
- But, in an evolving stream, the role of clusters and outliers often interchange:
 - □ Should provide opportunity for the gradual growth of new clusters
 - Should promptly get rid of the outliers
- Potential core micro-clusters
 - \square $(w \ge \beta^* \mu) \& (r \le \varepsilon), 0 < \beta \le 1$
- Outlier micro-clusters
 - \square (w < $\beta * \mu$) & (r $\leq \epsilon$), 0 < $\beta \leq 1$

User-defined parameters:

μ: the density threshold for core-microclusters (similar to DBSCAN)

ε: the radius threshold (similar to DBSCAN)

 β : $\beta*\mu$ the density threshold for potential-core mictoclusters

DenStream: the algorithm

- The algorithm consists of 4 main components:
 - Initialize: apply DBSCAN over initPoints \rightarrow the core points are the p-micro-clusters
 - Online step: Maintain the micro-clusters as new points arrive from the stream
 - □ 2 lists of p-micro-clusters and o-micro-clusters are maintained over time
 - Periodic micro-cluster maintenance due to data ageing
 - Offline macro-clustering: upon user request, extract the final clusters

DenStream: online step

- 2 lists of p-micro-clusters and o-micro-clusters are maintained over time
- When a new point d arrives
 - Find its closest p-micro-cluster pclu
 - If the updated radius of pclu ≤ ε, merge d to pclu
 - otherwise find its closest o-micro-cluster oclu
 - □ If the updated radius of oclu ≤ ε, merge d to oclu
 - □ Check if oclu can be upgraded to a p-micro-cluster (if now $w \ge \beta^* \mu$)
 - o.w., create a new o-micro-cluster with d (keep also the creation time t_o for the microcluster)

DenStream: periodic microcluster maintenance 1/2

- DenStream maintains 2 separate memories: i) for p-micro-clusters and ii) o-micro-clusters
- How to ensure that the memory is bounded?
 - General principle: delete outdated information
- For p-micro-clusters memory, the idea is to delete p-micro-clusters that turn into o-micro-clusters.
 - This means, checking the weight of each p-micro-cluster and delete those with weight < β*μ
- The question is how often should we check the weight (so, efficiency).
 - \square Recall that $\beta^*\mu$ is the minimum weight of a p-micro-cluster.
 - □ Therefore the minimum time for a p-micro-cluster to fade into an o-micro-cluster is given by:

$$2^{-\lambda Tp*} \beta * \mu = \beta * \mu - 1$$
 \Rightarrow $T_p = \lceil \frac{1}{\lambda} \log(\frac{\beta \mu}{\beta \mu - 1}) \rceil,$

- So, we need to check for deletion of p-micro-clusters every T_p time periods
- This checking strategy also ensures that the p-microclusters memory is bounded by $W/\theta^*\mu$ where the constant W is the overall weight of the datastream (proof omitted, see paper)

DenStream: periodic microcluster maintenance 2/2

- DenStream maintains two separate memories: i) for p-micro-clusters and ii) o-micro-clusters
- How to ensure that the memory is bounded? General principle: delete outdated information
- For o-micro-clusters memory, the problem is that their number might continuously grow. We need to keep them as an o-micro-cluster might be the beginning of a p-micro-cluster. But we cannot keep them forever.
- So the idea is to delete those o-micro-clusters that are not promising anymore.
- How promising a microcluster is depends on its current weight w vs its expected weight ξ :

$$\xi(t_c, t_o) = \frac{2^{-\lambda(t_c - t_o + T_p)} - 1}{2^{-\lambda T_p} - 1}$$

- Intuitively, the longer a microcluster exists (larger (t_c-t_o)), the higher its weight is expected to be.
- If w< ξ , the o-micro-cluster might not grow into a p-micro-cluster and can be safely deleted.
- The authors prove that the number of o-micro-clusters is bounded (proof omitted, see paper)

DenStream: offline step

- Upon request, apply a variant of DBSCAN over the set of online maintained p-micro-clusters
 - **Each** p-micro-cluster c_p is treated as a virtual point located at the center of c_p with weight w.
- Core-micro-clusters (redefined)
- Directly density reachable (redefined)
 - c_p is directly density reachable from c_q if:
 - \Box c_q is a c-micro-cluster and
 - □ dist(c_p,c_q) ≤ 2ε (i.e. they are tangent or intersecting)
- Density reachable (redefined)
 - A p-micro-cluster c_p is density reachable from a c-micro-cluster c_q if there is a chain of c-micro-clusters $c_{p1}=c_q$, cp_2 , ..., $c_{pn}=c_p$.
- Density connected (redefined)
- A cluster is a maximum set of density connected points

DenStream: overview

- + DenStream clusters large evolving data streams
- + Discover clusters of arbitrary shapes, following the density-based paradigm
- + No assumption on the number of clusters
- Noise/ outlier handling
- The choice of the parameters ε, β , μ
- Constant parameters over time, what about clusters with different density

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

Grid based methods

- A grid structure is used to capture the density of the dataset.
 - □ A cluster is a set of connected dense cells
 - □ e.g. STING
- Appealing features for streams
 - □ No assumption on the number of clusters
 - Discovering clusters of arbitrary shapes
 - Ability to handle outliers
- In case of streams
 - ☐ The grid cells "constitute" the summary structure
 - □ Update the grid structure as the stream proceeds
 - DStream [Chen & Tu 2007]

DStream [Chen & Tu 2007]

- Resembles the online-offline rationale of CluStream/DenStream but there is no real offline part, rather a final clustering structure is maintained online.
 - Online mapping of the new data into the grid (so summarization)
 - Periodic final clustering maintenance

DStream: Summarizing the stream into the grid

Note that the cell-summary is a temporal object

- Data ageing (damped window model):
 - $D(x,t) = \lambda^{t-tc}$, t_c is the arrival time for point x, t is the current timepoint
 - λ in (0,1) is the *decay factor*
- The density of a grid cell g at time t: $D(g,t) = \sum_{x \in E(g,t)} D(x,t)$
- The characteristic vector of a grid cell g is defined as:

The grid density can be updated incrementally

$$D(g, t_n) = \lambda^{t_n - t_l} D(g, t_l) + 1$$

t_n: the new record arrival time; t_l: the last record arrival

DStream: Dense, Sparse and Transitional grid cells

- The density of a grid is constantly changing over time.
- Dense grid cells

$$D(g,t) \ge \frac{C_m}{N(1-\lambda)} = D_m \qquad C_m > 1$$

Transitional grid cells

$$D(g,t) \le \frac{C_l}{N(1-\lambda)} = D_l \qquad 0 < C_l < 1$$

Sparse grid cells

$$\frac{C_l}{N(1-\lambda)} \le D(g,t) \le \frac{C_m}{N(1-\lambda)}$$

DStream: the algorithm

```
procedure D-Stream
       t_c = 0;
3.
       initialize an empty hash table grid_list;
       while data stream is active do
          read record x = (x_1, x_2, \cdots, x_d);
5.
                                                                 Grid update
6.
          determine the density grid g that contains x;
          if (g \text{ not in } grid\_list) insert g \text{ to } grid\_list;
8.
          update the characteristic vector of g;
9.
          if t_c == gap then
10.
              call initial_clustering(grid\_list);
                                                  Initialization
11.
          end if
12.
          if t_c \mod gap == 0 then
13.
              detect and remove sporadic grids from grid_list;
                                                                         Clustering
14.
              call adjust_clustering(grid\_list);
15.
          end if
16.
          t_c = t_c + 1;
17.
       end while
18. end_procedure
```

DStream: overview

- + DStream clusters large evolving data stream
- + It can discover clusters of arbitrary shapes
- + No assumption on the number of clusters
- Distinguishes noise and outliers
- + The grid provides a level of abstraction over the data
- The choice of the grid parameters
- Fixed grid parameters

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

Stream clustering evaluation 1/3

- Similar to what we discussed for batch clustering, but in streams we are interested also in the overtime performance monitoring of the clustering
- Two clustering quality categories (similarly to batch evaluation, see corresponding lectures)
 - □ Internal measures of similarity, e.g., SSE measuring the goodness of a clustering structure
 - External measures of similarity, e.g., entropy, measuring the extent to which cluster labels match externally supplied class labels.
- The difference is that those measures are evaluated over a future horizon

Figure 4: Quality comparison (Charitable Donation dataset, horizon=16, stream_speed=200)

Stream clustering evaluation 2/3

- Except for the quality, other important aspects
 - Time (how fast the points are processed)

Figure 14: Execution time vs. length of stream(Network Intrusion data set)

Stream clustering evaluation 3/3

- Except for the quality, other important aspects
 - Memory
 - For example, for methods that not assume a fixed number of summaries, plotting this number over time is very informative about the underlying population distribution

Figure 5: Number of (micro) clusters (Network Intrusion dataset, window size w=1000)

Outline

- Data stream clustering basics
- Summarization
- Overview of stream clustering methods
- Partitioning methods
- Density-based methods
- Grid-based methods
- Data stream clustering: evaluation aspects
- Things you should know from this lecture & reading material

Stream clustering overview

- A very important task given the availability of streams nowadays
- Stream clustering algorithm maintain a valid clustering of the evolving stream population over time
- Two generic approaches
 - Online maintenance of a final clustering model
 - Online summarization of the stream and offline clustering
 - Summaries!
- Different window models
- Handling outliers (or, potential future clusters) is very important
- Specialized approaches for text streams, high-dimensional streams.
- Evaluation is not straightforward

Hands on experience

- Familiarize yourself with popular frameworks for stream learning
 - MOA: the most popular open source framework for data stream mining https://moa.cms.waikato.ac.nz/ (in Java)
 - "Machine Learning for Data Streams with Practical Examples in MOA" book
 - Scikit-multiflow "A machine learning package for streaming data in Python"
 - https://scikit-multiflow.github.io/

Related Open Source Software

- RIVER, a new framework for stream mining in Python.
- streamDM for Spark Streaming, a new framework for Spark.
- Apache SAMOA, a new framework for distributed stream mining, can be easily used with Apache Flink, Apache Storm, S4, or Samza.
- streamDM C++, a framework in C++ for data stream mining.
- ADAMS, a novel, flexible workflow engine, is the perfect tool for maintaining MOA real-world, complex knowledge workflows.
- The MEKA project provides an open source implementation of methods for multi-label classification and evaluation.

Source: https://moa.cms.waikato.ac.nz/

82

Reading material

- Book: Knowledge discovery from data streams, J. Gamma
- Book: Data streams Models and Algorithms, C. Aggrawal
- [Zhang et al 1996] <u>BIRCH: an efficient data clustering method for very large databases</u>
- [Breuning et al 2001] <u>Data Bubbles: Quality Preserving Performance Boosting for Hierarchical Clustering</u>
- [Aggrawal et al 2003] <u>A framework for clustering evolving data streams</u>
- [Cao et al 2006] <u>Density-Based Clustering over an Evolving Data Stream with Noise</u>
- [Chen & Tu 2007] Density-Based Clustering for Real-Time Stream Data
- F. Farnstrom, J. Lewis, C. Elkan: Scalability for clustering algorithms revisited. ACM SIGKDD Explorations Ne 2000.
- S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. O' Callaghan: Clustering data streams: Theory and practic 15(3):515–528, 2003.
- [O'Callaghan et al 2002] L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani: Streaming-Data Algo
 Quality Clustering. ICDE, 2002.
- [Ester et al 1998] Ester et al, Incremental Clustering for Mining in a Data Warehousing Environment, VLDB 1998.

Thank you

Questions/Feedback/Wishes?

Acknowledgements

- The slides are based on
 - DM2 lecture@LUH(@Eirini Ntoutsi), KDD2/SS16 lecture@LMU Munich (@Eirini Ntoutsi, Matthias Schubert, Arthur Zimek)