Assignment 1 Solution

Due: Tuesday, June 20, 2017, upload before 11:30pm

 $1)\ (5\ \mathrm{pts.})$ Graded by : Sneha Balasubramanian Housekeeping tasks

- 2) (20 pts.) Graded by : Sneha BalasubramanianDo Exercise 31 of Chapter 1.1 (page 15).Solution:
- **A)** $P \land \neg P$

р	$\neg p$	$p \land \neg p$
Т	F	F
F	Τ	F

B) $p \lor \neg p$

p	¬р	$p \wedge \neg p$
Т	F	Т
F	Т	Т

C) $(p \lor \neg q) \to q$

p	q	$\neg q$	$(p \lor \neg q)$	$(p \lor \neg q) \to q$
Т	Т	F	Т	T
Т	F	Τ	Τ	F
F	Т	F	F	T
F	F	Τ	Τ	F

 $\mathbf{D)}\ (p \lor q) \to (p \land q)$

p	q	$\mathbf{p} \vee \mathbf{q}$	(p∧q)	$(p \lor q) \to (p \land q)$
T	Τ	Τ	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	F	Т

E) $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

p	q	$\neg p$	$\neg q$	$(\mathbf{p} \rightarrow \mathbf{q})$	$(\neg q \to \neg p)$	$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
Т	Т	F	F	Т	Τ	T
Т	F	F	Т	F	F	T
F	Т	Τ	F	T	T	T
F	F	Т	Т	Т	T	Т

F) $(p\rightarrow q) \rightarrow (q\rightarrow p)$

p	q	$(p\rightarrow q)$	$(\mathbf{q} \mathbf{\rightarrow} \mathbf{p})$	$(p \rightarrow q) \rightarrow (q \rightarrow p)$
Т	Т	Т	Т	T
Т	F	F	Τ	Т
F	Т	Τ	F	F
F	F	Т	Т	Т

3) (25 pts.) Do Exercises 19, 21, and 23 of Chapter 1.2 (page 23).

Graded by: Ramya Vulimiri

Let p and q be the statements such that

p: A is a knight q: B is a knight

Then, $\neg p$: A is a knave $\neg q$: B is a knave

19) A: At least one of us is a knave B: Nothing

Let us first consider the possibility that A is a knight; this is the statement that p is true. If A is a knight, then he is telling the truth when he says at least one of them is a knave, so the statement $(p \land \neg q) \lor (\neg p \land \neg q)$ is true. The only possibility consistent with our assumption p is true is that $\neg q$ is true. So one conclusion we can draw is that A is a knight and B is a knave.

If A is a knave ($\neg p$ is true), then because everything a knave says is false, A's statement that at least one of them is a knave is false, which means that neither of them are knaves (the statement $(p \land q)$ is true). This is not consistent with our assumption.

21) A:
$$\neg p \lor q$$
 B: Nothing

Let us first consider the possibility that A is a knight; this is the statement that p is true. If A is a knight, then the statement $(\neg p \lor q)$ is true. That leads to 3 possibilities: (i) $\neg p$ is true, meaning A is a knave; inconsistent with assumption. (ii) q is true, meaning B is a knight. (iii) $\neg p$ is true and q is true: inconsistent from reasoning in (i).

If A is a knave, he lies and $\neg(\neg p \lor q)$ is true, implying $(p \land \neg q)$ is true, which means A is a knight and B is a knave, again inconsistent with our assumption that A is a knave.

From (ii), A is a knight and B is a knight.

23) A:
$$\neg p \land \neg q$$
 B: Nothing

Let us first consider the possibility that A is a knight; this is the statement that p is true. If A is a knight, then the statement $(\neg p \land \neg q)$ is true, which means $\neg p$ should be true. Inconsistent.

If A is a knave($\neg p$ is true), the negation of his statement is true, $\neg(\neg p \land \neg q)$ is true, that is, $(p \lor q)$ is true. Again we have 3 possibilities, (i) p is true: Inconsistent. (ii) q is true: A is a knave and B is a knight. (iii) Both p and q are true: Inconsistent as in (i).

Hence, A is a knave and B is a knight.

4) (25 pts.) Graded by Rashmi Soni

Do Exercises 50 and 51 of Chapter 1.3 (page 36).

Solution:

50)

a) $(p \downarrow p)$

р	$p \downarrow p$
Т	F
F	Т

And, $(\neg p)$

p	¬р
Т	F
F	Τ

Since, the truth values of the compound propositions $(p \downarrow p)$ and $(\neg p)$ agree for all possible combinations of the truth values of p, they are logically equivalent.

b)
$$(p \downarrow q) \downarrow (p \downarrow q)$$

р	q	$p \downarrow q$	$(p \downarrow q) \downarrow (p \downarrow q)$
Т	Т	F	T
Т	F	F	T
F	Т	F	T
F	F	Т	F

And, $(p \lor q)$

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	T	T
F	F	F

Since, the truth values of the compound propositions $((p \downarrow q) \downarrow (p \downarrow q))$ and $(p \lor q)$ agree for all possible combinations of the truth values of p and q, they are logically equivalent.

c) The set $\{\neg, \land\}$ is a functionally complete collection of logical operators. Similarly, the set (\neg, \lor) is a functionally complete collection because \land can be defined in terms of \lor as:

$$p\,\wedge\,q\equiv\neg\;(\neg p\,\vee\,\neg q)$$

From the results of parts (a), (b), and Exercise 49, both \neg and \lor can be represented by \downarrow because :

$$\neg \ p \equiv p \downarrow p$$

$$p \vee q \equiv (p \downarrow q) \downarrow (p \downarrow q)$$

Thus, we can conclude that the set $\{\downarrow\}$ is a functionally complete collection of logical operators.

p	q	$\mathrm{p} ightarrow \mathrm{q}$	$p \downarrow p$	$(p \downarrow p) \downarrow q$	$((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q)$
Т	Т	${f T}$	F	F	T
T	F	\mathbf{F}	F	Т	\mathbf{F}
F	Т	${f T}$	Т	F	${f T}$
F	F	${f T}$	Т	F	T

Thus, the truth values of the compound propositions $(p \to q)$ and $((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q)$ agree for all possible combinations of the truth values of p and q, they are logically equivalent.

Also using logical equivalences, we know that (p \rightarrow q) \equiv (¬p \vee q) \equiv ((p \downarrow p) \vee q) \equiv ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q)