

Analisi e sviluppo di un componente Java per la generazione automatica di modelli NetLogo

Candidato: Aurel Pjetri

Relatore: Prof. Enrico Vicario

Co-Relatore: Dott. Sandro Mehic

Simulazione delle folle

Gli approcci più diffusi si dividono in due categorie:

• Microscopico:

rappresenta ogni persona come un agente, particella o macchina a stati finiti.

Macroscopico:

studia caratteristiche macroscopiche come densità media e velocità della folla.

Simulazione di evacuazione tramite social force model

Simulazione tramite approccio *fluid dynamics*

Approccio gerarchico

Utilizza tre livelli di scala per dare una soluzione analitica indipendente dal numero di agenti.

Microscopico Mesoscopico Macroscopico

NetLogo

Ambiente di modellazione di sistemi complessi e linguaggio di programmazione agent-based

- Gli agenti hanno uno stato proprio e agiscono in modo indipendente e concorrenziale.
- Il mondo è suddiviso in **patches** interamente programmabili.
- · Ampiamente accettato dalla comunità.
- É lo strumento più diffuso per la modellazione agent-based.
- Linguaggio di programmazione procedurale poco flessibile e di difficile gestione.

Obiettivo

Automatizzare il processo di scrittura del codice NetLogo che esegue le simulazioni

Logica di dominio

Builder

- XMLParser analizza il documento ed estrae le informazioni di interesse.
- NetLogoGraphBuilder costruisce e compone gli oggetti della struttura.

Visitor

- Usano le interfacce degli oggetti della struttura per estrarre le informazioni.
- Scrivono il codice NetLogo.

Workflow

Modelli NetLogo

Modellazione dell'ambiente

Modellazione del movimento degli attori e raccolta dei dati

Esperimenti

Simuliamo l'evacuazione su un modello ispirato alla città di Firenze

Per gli scenari A e D:

- Due modalità di simulazione: con densità costante e transitoria.
- Tre stati iniziali diversi: alta, media e bassa densità di affollamento.

Risultati

- Grande differenza di tempi tra modelli a densità costante e i transitori
- Lo scenario A impiega più tempo del monolitico, mentre lo scenario D la metà
- In caso di modifiche possiamo simulare solo le regioni interessate
- Nel modello monolitico impiego sempre lo stesso tempo

Scenario		densità costante	transitorio
Monolitic	O		9:19:40
\mathbf{A}		21:33:36	0:21:51
D		4:49:27	0:23:13

Tempi totali di simulazione

Regione	Densità costante	Transitorio
A 1	3:16:25	0:03:06
A2	2:13:11	0:02:40
A3	5:12:48	0:03:40
A4	6:20:39	0:06:08
A 5	2:36:25	0:03:29
A6	1:46:20	0:02:46

Scenario A

Regione	Densità costante	Transitorio
D1	0:27:26	0:01:56
D2	0:29:15	0:02:03
D3	0:49:46	0:01:58
D4	0:29:48	0:02:00
D5	0:42:43	0:01:51
D6	0:37:23	0:01:40
D7	0:12:58	0:01:58
D8	0:11:20	0:02:07
D9	0:23:57	0:01:58
D10	0:21:52	0:02:06
D11	0:02:08	0:01:43
D12	0:0:52	0:01:48

Scenario D

Conclusioni e sviluppi futuri

Abbiamo illustrato il funzionamento del componente Java sviluppato e il contesto di ricerca in cui questo viene utilizzato.

Possibili sviluppi futuri potrebbero essere:

- Estendere la logica di rappresentazione dei comportamenti includendo anche aspetti sociali degli agenti come altruismo e conformismo
- Implementare una interfaccia che faciliti l'utilizzo
- Implementare nuovi parsers per formati come il CSV