

ProSavageDDR P4M266A Chipset

VT8751A

Single-Chip SMA North Bridge for Pentium 4™ CPUs with 533 MHz FSB, External 4x AGP Bus and Integrated ProSavage8™ AGP Graphics Core plus Advanced ECC Memory Controller supporting DDR266 / DDR200 (PC2100 / PC1600) DDR SDRAM and PC133 / PC100 SDR SDRAM for Desktop PC Systems

> Revision 1.21 January 14, 2003

a joint development of VIA TECHNOLOGIES, INC. and S3 GRAPHICS, INC.

Copyright Notice:

Copyright © 1999, 2000, 2001, 2002, 2003, VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Copyright © 1999, 2000, 2001, 2002, 2003, S3 Graphics Incorporated. All rights reserved. If you have received this document from S3 Graphics Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Graphics Incorporated: one copy onto your computer for the purpose of on-line viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Graphics Incorporated. The material in this document is for information only and is subject to change without notice. S3 Graphics Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8233, VT8233C, VT8751, VT8751A, P4M266, and P4M266A may only be used to identify products of VIA Technologies.

The S3 Corporate Logo is a trademark of SONICblue Incorporated.

Savage™, Savage3D™, Savage4™, Savage/MX™, Savage2000™, ProSavage8™, and Twister™ are trademarks of S3 Graphics, Inc.

Intel™, Pentium™ and MMX™ are registered trademarks of Intel Corp.

Cyrix™, Cyrix6_x86™ and WinChip™ are registered trademarks of VIA Technologies

Athlon™, AMD5_K86™, AMD6_K86™, AMD-K5™, and AMD-K6™ are registered trademarks of Advanced Micro Devices Corp.

Windows XP^{\mathbb{M}}. Windows 2000 \mathbb{M} . Windows ME \mathbb{M} , Windows 98 \mathbb{M} , Windows 95 \mathbb{M} and Plug and Play \mathbb{M} are registered trademarks of Microsoft Corp. PCI \mathbb{M} is a registered trademark of the PCI Special Interest Group.

PS/2™ is a registered trademark of International Business Machines Corp.

VESA™ is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies or S3 Graphics. VIA Technologies and S3 Graphics make no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies and S3 Graphics assume no responsibility for any errors in this document. Furthermore, VIA Technologies and S3 Graphics assume no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office: 8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452

Fax: (886-2) 2218-5453

Home page: http://www.via.com.tw

VIA Technologies Incorporated USA Office: 940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: 510) 683-3301 or (510) 687-4654

Home Page: http://www.viatech.com

S3 Graphics Incorporated USA Office: 1045 Mission Court Fremont, CA 94539

USA

Tel: (510) 687-4900 Fax: (510) 687-4901

Home Page: http://www.s3graphics.com

REVISION HISTORY

Document Release	Date	Revision	Initials						
1.1	7/19/02	Initial external release based on VT8751 Data Sheet Rev 1.1 (P4M266)	DH						
		Updated legal page trademarks list							
		Increased size of figure 1 block diagram							
		Updated CPU FSB frequency to 533 MHz							
1.2	1/6/03	Updated VIA logos on cover page and page headers; Updated V-Link feature bullets							
		Removed misleading "strap" indication from VAD pin names							
		Updated VAD7-0 pin descriptions and added VAD7 strap function							
		Updated Rx51[7,0], 52[5], 54[7-6], 5B, B5-B7, D7, E6-E7							
1.21	1/14/03	Added "Hyperthreading support" feature bullet	DH						
		Fixed DDR memory notation on cover page and in feature bullets and overview							

TABLE OF CONTENTS

REVISION HISTORY]
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	4
HIGH-PERFORMANCE 3D ACCELERATOR	5
128-BIT 2D GRAPHICS ENGINE	5
DVD PLAYBACK AND VIDEO CONFERENCING	
FLAT PANEL MONITOR / TV OUT SUPPORT	6
HIGH SCREEN RESOLUTION CRT SUPPORT	6
PINOUTS	7
PIN DESCRIPTIONS	10
REGISTERS	10
REGISTERS	20
REGISTER OVERVIEW	
MISCELLANEOUS I/O	24
CONFIGURATION SPACE I/O	
DEVICE 0 REGISTER DESCRIPTIONS	25
Device 0 Host Bridge Header Registers	
Device 0 Host Bridge Device-Specific Registers	
V-Link Control	27
Host CPU Control	
DRAM Control	
PCI Bus Control	
GART / Graphics Aperture Control	
AGP Control	42
V-Link Control	
DRAM Interface Control	
Power Management.	
ECC Error Control	
Lowest Priority Mode Control	
AGTL+ I/O Control	
Frame Buffer and High Memory Control	
BIOS Scratch	48
DEVICE 1 REGISTER DESCRIPTIONS	49
Device 1 PCI-to-PCI Bridge Header Registers	
Device 1 PCI-to-PCI Bridge Device-Specific Registers	
AGP Bus Control	
FUNCTIONAL DESCRIPTION - INTEGRATED SAVAGE4 GRAPHICS	54
CONFIGURATION STRAPPING	

-
55
50
5
5′
5
50
55
55
60

LIST OF FIGURES

FIGURE 1. P4M266A CHIPSET SYSTEM BLOCK DIAGRAM	4
FIGURE 2. VT8751A / P4M266A BALL DIAGRAM (TOP VIEW)	7
FIGURE 3. REFERENCE COMPONENT PLACEMENT USING THE P4M266A CHIPSET	. 11
FIGURE 4. GRAPHICS APERTURE ADDRESS TRANSLATION	. 41
FIGURE 5. DVI INTERFACE	. 57
FIGURE 6. EXTERNAL TV ENCODER INTERFACE	. 58
FIGURE 7. MECHANICAL SPECIFICATIONS - 664-PIN HSBGA BALL GRID ARRAY PACKAGE WITH HEAT	
SPREADER	. 63

LIST OF TABLES

TABLE 1. SUPPORTED CRT SCREEN RESOLUTIONS	6
TABLE 2. PIN LIST (NUMERICAL ORDER)	8
TABLE 3. PIN LIST (ALPHABETICAL ORDER)	9
TABLE 4. VT8751A / P4M266A PIN DESCRIPTIONS	10
TABLE 5. VT8751A / P4M266A REGISTERS	20
TABLE 5. VT8751A / P4M266A REGISTERS	32
TABLE 7. DEVICE 0 RX58 MA MAP TYPE ENCODING	33
TABLE 8. MEMORY ADDRESS MAPPING TABLE	33
TABLE 9. DIMM MODULE CONFIGURATION	38
TABLE 10. VGA/MDA MEMORY/IO REDIRECTION	51
TABLE 11. DEFINITION OF STRAPPING BITS AT THE RISING EDGE OF RESET#	54
TABLE 12. PCI SUBSYSTEM ID AND SUBSYSTEM VENDOR ID REGISTERS	55
TABLE 13. SUPPORTED FRAME BUFFER MEMORY CONFIGURATIONS	56
TABLE 14. EXTERNAL TV ENCODER OUTPUT DATA FORMATS	
TABLE 15. ABSOLUTE MAXIMUM RATINGS	59
TABLE 16. DC CHARACTERISTICS	59
TABLE 17. PACKAGE WEIGHT SPECIFICATIONS	59
TABLE 18. POWER CHARACTERISTICS – INTERNAL AND INTERFACE DIGITAL LOGIC	60
TABLE 19. POWER CHARACTERISTICS – ANALOG AND REFERENCE VOLTAGES	
TABLE 20. AC TIMING MIN / MAX CONDITIONS	61
TABLE 21. AC TIMING – CPU INTERFACE	
TABLE 22. AC TIMING – MEMORY INTERFACE	
TABLE 23. AC TIMING – V-LINK INTERFACE	62
TABLE 24. AC TIMING – AGP INTERFACE	62

PROSAVAGEDDR P4M266A CHIPSET

VT8751A

Single-Chip SMA North Bridge
for Pentium 4 CPUs with 533 MHz Front Side Bus,
External 4x AGP Bus and
Integrated ProSavage8 AGP Graphics core
plus Advanced ECC Memory Controller
supporting DDR266 / DDR200 (PC2100 / PC1600) DDR SDRAM
and PC133 / PC100 SDR SDRAM
for Desktop PC Systems

PRODUCT FEATURES

• Defines Integrated Solutions for Value PC Desktop Designs

- VIA VT8751A High Performance SMA North Bridge: Integrated Pentium 4 DDR VIA North Bridge and S3
 Graphics ProSavage8 2D/3D Graphics Controller with equivalent 8x AGP performance in a single chip
- 64-bit Advanced ECC Memory controller supporting PC2100/PC1600 DDR and PC100/PC133 SDR SDRAM
- Combines with VIA VT8233 V-Link South Bridge for integrated LAN, Audio, ATA100 IDE, and 6 USB ports
- 2.5V Core and AGTL+ I/O
- 37.5 x 37.5mm HSBGA (Ball Grid Array with Heat Spreader) package with 664 balls

• High Performance CPU Interface

- Support for Intel[™] Pentium 4 processors with 533 MHz (133 MHz QDR) CPU Front Side Bus (FSB)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions
- Nine outstanding transactions (eight In-Order Queue (IOQ) plus one output latch)
- Dynamic deferred transaction support
- Hyperthreading support

High Bandwidth 266MB/S 8-bit V-Link Host Controller

- Supports 66MHz V-Link Host interface with total bandwidth of 266MB/S
- Operates at 2X or 4X modes
- Full duplex commands with separate command / strobe
- Request / Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer / Defer-Reply transactions
- Transaction assurance for V-Link Host to Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency
- All V-Link transactions for both Host and Client have a consistent view of transaction data depth and buffer size to avoid data overflow
- Highly efficient V-Link arbitration with minimum overhead
- All V-Link transactions have predictable cycle length with known command / data duration

Advanced High-Performance DDR / SDR DRAM Controller

- DRAM interface pseudo-synchronous with host CPU (133 or 100 MHz) for most flexible configuration
- DRAM interface may be faster than CPU by 33 MHz to allow use of 133 MHz memory with 100 MHz FSB clock
- Concurrent CPU, AGP, and V-Link access
- Supports SDR and DDR SDRAM memory types
- Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 16M / 32M / 64M x 8/16/32 DRAMs
- Supports 8 banks up to 4 GB DRAMs (512Mb x8/x16 DRAM technology)
- Flexible row and column addresses. 64-bit data width only
- LVTTL 3.3V DRAM interface with 5V-tolerant inputs for SDR SDRAM and 2.5V SSTL-2 DRAM interface for DDR SDRAM
- Programmable I/O drive capability for MA, MD, and command signals
- Dual copies of MA and control signals for improved drive
- Optional ECC (single-bit error correction and multi-bit error detection) or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mb, 128Mb, 256Mb, 512Mb SDRAM support
- Supports maximum 16-bank interleave (i.e., 16 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization
 - (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- Burst length 4 and 8 for SDR and DDR
- Supports DDR SDRAM CL 2/2.5/3 and 1T per command
- 1T and 2T command rate for SDR and DDR which can be specified bank by bank
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

• Full Featured Accelerated Graphics Port (AGP) Controller

- Supports 266 MHz 4x and 133 MHz 2x transfer modes for AD and SBA signaling
- AGP specification v2.0 compliant
- Pseudo-synchronous with the host CPU bus with optimal skew control
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- AGP pipelined split-transaction long-burst transfers up to 1GB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / 2000 miniport driver support

High Resolution CRT RGB Interface

- 250 MHz RAMDAC on chip with Gamma Correction
- Horizontal / Vertical Sync outputs compliant with Monitor Power Management protocols
- I²C Serial Bus for DDC Monitor Communications
- Simultaneous display of CRT with TV or DVI Flat Panel Monitor

Integrated ProSavage8 2D / 3D Graphics Controller and Video Accelerator

- Optimized Shared Memory Architecture (SMA)
- Equivalent 8x AGP internal performance
- 8 / 16 / 32 MB frame buffer using system memory
- Floating point triangle setup engine
- Single cycle 128-bit 3D architecture
- 8M triangles/second setup engine
- 140M pixels/second trilinear fill rate
- Microsoft DirectX texture compression
- Next generation, 128-bit 2D graphics engine
- High quality DVD video playback
- Flat panel monitor support
- 2D/3D resolutions up to 1920x1440

3D Rendering Features

- Single-pass multiple textures
- Anisotropic filtering
- 8-bit stencil buffer
- 32-bit true color rendering
- Specular lighting and diffuse shading
- Alpha blending modes
- Massive 2K x 2K textures
- MPEG-2 video textures
- Vertex and table fog
- 16 or 24-bit Z-buffering
- Reflection mapping, texture morphing, shadows, procedural textures and atmospheric effects

2D Hardware Acceleration Features

- ROP3 Ternary Raster Operation BitBLTs
- 8, 16, and 32 bpp mode acceleration

Motion Video Architecture

- High quality up/down scaler
- Planar to packed format conversion
- Motion compensation for full speed DVD playback
- Hardware subpicture blending and highlights
- Multiple video windows for video conferencing
- Contrast, hue, saturation, brightness and gamma controls

Flat Panel Monitor / TV Output Support

- Digital Visual Interface (DVI) 1.0 compliant
- Optional configuration of DVI outputs as digital output port for external NTSC/PAL TV encoder

Full Software Support

- Drivers for major operating systems and APIs: Windows[®] 9x/ME, Windows NT 4.0, Windows 2000, Windows XP,
 Direct3D™, DirectDraw™ and DirectShow™, and OpenGL™ ICD for Windows 9x/ME, NT, 2000, and XP
- North Bridge/Chipset and Video BIOS support

Advanced System Power Management Support

- Power down of SDRAM (CKE)
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and self-refresh power down
- Low-leakage I/O pads
- ACPI 1.0B and PCI Bus Power Management 1.1 compliant

OVERVIEW

The ProSavageDDR P4M266A (VT8751A North Bridge plus VT8233 South Bridge) is a high performance, cost-effective and energy efficient SMA chip set for the implementation of desktop personal computer systems with 533 MHz (133 MHz QDR) CPU host bus ("Front Side Bus") based on 64-bit Intel Pentium-4 super-scalar processors. This data sheet describes the VT8751A North Bridge portion of the P4M266A chipset (except for detailed register descriptions for the integrated graphics controller which are described in a separate document published by S3 Graphics). The VT8233 South Bridge is described in a separate data sheet.

Figure 1. P4M266A Chipset System Block Diagram

The ProSavageDDR P4M266A chipset consists of the VT8751A DDR SMA North Bridge (664 pin BGA) and the VT8233 V-Link South Bridge (376 pin BGA). The VT8751A (which may also be referred to as a "Host System Controller") integrates VIA's VT8653 Apollo Pro266T system controller with CPU bus extensions to support Pentium 4, S3 Graphics' 128-bit ProSavage8 2D/3D graphics accelerator and S3 Graphics' flat panel monitor and TV out interfaces into a single 664 BGA package. The VT8751A provides superior performance between the CPU, DRAM, V-Link bus and internal or external AGP 4x graphics controller bus with pipelined, burst, and concurrent operation. The VT8233 South Bridge (which may also be referred to as a "V-Link Client Controller") is a highly integrated PCI / LPC controller. Its internal bus structure is based on 66 MHz PCI bus that provides 2x bandwidth compare to previous generation PCI bridge chips. The VT8233 also provides a 266MB/sec bandwidth Host/Client V-Link interface with V-Link-PCI and V-Link-LPC controllers. It supports five PCI slots of arbitration and decoding for all integrated functions and LPC bus.

The VT8751A supports eight banks of SDR / DDR SDRAMs up to 4 GB. The DRAM controller supports DDR266 and DDR200 (PC2100 / PC1600) Double-Data-Rate (DDR) SDRAM but can also support standard PC133 / PC100 Synchronous DRAM (SDR SDRAM). The DDR / SDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 133 / 100 MHz. The different banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M x 8/16/32 DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The VT8751A host system controller supports a high speed 8-bit 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8233 South Bridge. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each

bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM/cache accesses. When combined the V-Link Host / Client controllers, it realizes a complete PCI sub-system and supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

P4M266A also integrates S3 Graphics' 128-bit ProSavage8™ graphics accelerator into a single chip. P4M266A brings mainstream graphics performance to the Value PC with leading-edge 2D, 3D and DVD video acceleration into a cost effective package. Based on its capabilities, P4M266A is an ideal solution for the consumer, corporate mobile users and entry level professionals.

The industry's first integrated Pentium 4 AGP solution to support DDR memory, P4M266A combines AGP 8x performance with Microsoft DirectX texture compression and massive 2Kx2K textures to deliver unprecedented 3D performance and image quality for the Value PC mobile market.

The 376-pin Ball Grid Array VT8233 Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT8233 integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pair can be configured as high-priority to better support a low latency PCI bus master device. The VT8233 integrated networking MAC controller with standard MII interface to an external PHY for 10/100Mb base-T Ethernet or 1/10Mb PNA home networking.

The VT8233 also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33/66/100 for 33/66/100 MB/sec transfer rate, integrated USB interface with root hubs and six functional ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, P4M266A provides independent clock stop control for the CPU / SDRAM and AGP bus plus Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8233 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

High-Performance 3D Accelerator

Featuring a new super-pipelined 128-bit engine, P4M266A utilizes a single cycle architecture that provides high performance along with superior image quality. Several new features enhance the 3D architecture, including single-pass multitexturing, anisotropic filtering, and an 8-bit stencil buffer. In addition with DDR266 (PC2100) system memory, the ProSavage8 graphics controller will achieve up to 8x AGP equivalent performance (2.1 MB/sec 3D data transfers). P4M266A also offers the industry's only simultaneous usage of single-pass multitexturing and single-cycle trilinear filtering – enabling stunning image quality without performance loss. P4M266A further enhances image quality with true 32-bit color rendering throughout the 3D pipeline to produce more vivid and realistic images. P4M266A's advanced triangle setup engine provides industry leading 3D performance for a realistic user experience in games and other interactive 3D applications. The 3D engine is optimized for AGP texturing from system memory.

128-bit 2D Graphics Engine

P4M266A's advanced 128-bit 2D graphics engine delivers high-speed 2D acceleration for productivity applications. Several enhancements have been made to the 2D architecture to optimize SMA performance and to provide acceleration in all color depths.

DVD Playback and Video Conferencing

P4M266A provides the ideal architecture for high quality MPEG-2 based DVD applications and video conferencing. For DVD playback, P4M266A's video accelerator offloads the CPU by performing the planar to packed format conversion and motion

compensation tasks, while its enhanced scaling algorithm delivers incredible full-screen video playback. For video conferencing, P4M266A's multiple video windows enable a cost effective solution.

Flat Panel Monitor / TV Out Support

The P4M266A can drive an external flat panel monitor via a 12-bit interface to a TMDS encoder. This interface is Digital Visual Interface (DVI) 1.0 compliant. All resolutions are supported up to 1280x1024. This interface can alternately be configured to drive an external TV encoder chip for driving a standard television set.

High Screen Resolution CRT Support

		m Memory Buffer Size
Resolutions Supported	8 MB	16/32 MB
640x480x8/16/32	~	V
800x600x8/16/32	~	V
1024x768x8/16/32	V 0	~
1280x1024x8	~	~
1280x1024x16	~ ~	~
1280x1024x32	V	· · ·
1600x1200x8	V)	V
1600x1200x16	~	~
1600x1200x32	~	~
1920x1440x8	V	~
1920x1440x16	~	~

Table 1. Supported CRT Screen Resolutions

PINOUTS

Figure 2. VT8751A / P4M266A Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12		14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
A	NC	GCMP N0	GND QQ	VCC QQ	AG	R SET	XIN XDCK	V SYNC	INT A#	FPDET TV11	FPD11 TVBL#	FPD7 TVD7	FPD2 TVD2	HD61	HD58	HD56	HD62	HD48	HD47	HD44	HD35	HD40	HD32	HD36	HD16	HD18	HDS 1	HD22	HD27
В	G GNT#	GND	GCMP N1	GND	AB	AR	GND PLL1	H SYNC	BIST IN#	FPDE TVCKI	FPD10 TVD10	FPD8 TVD8	FPD1 TVD1	HD63	HD55	GND	HDS 3#	HD49	HD46	HD45	HD43	HDBI 2#	HD39	HD33	HD19	HD29	HDS 1#	GND	HD23
C	G REO#	SBA 1	SBA 0	GND	GND RGB	VCC DAC	VCC PLL1	DCLK I	SP CLK1	FPVS TVVS	GND	FPD6 TVD6	FPD0 TVD0	GND	HD59	GND	HDS 3	HD51	HD50	HD41	GND	GND	HD38	HD28	HDBI 1#	HD26	HD25	HD20	HD31
D	SBS#	SBS	SBA 4	SBA 3	GND	GND DAC	GND PLL2	DCLK O	SP DAT1	FPHS TVHS	GP OUT	FPD5 TVD5	FPD3 TVD3	HD 60	GND	HDBI 3#	HD54	GND	GND	HDS 2	GND	HD37	HD30	GND	HD21	GND	HD17	HD24	HD13
E	SBA 5	GND	SBA 6	SBA 2	ST0	VCC RGB	VCC	SP DAT2	SP	GPO0 XECK	FPCLK TVCK	FPD9 TVD9	FPD4	CPU RST#	HD57	VTT	HD53	HD52	GND TT	HDS 2#	HD42	HD34	VTT	GND	GND	GND	HD12	HD4	HD7
F	GD31	NC	SBA 7	GND	ST1	GND		GND	VCC 25	VCC 25	VCC 25	GND	GND	VCC 25	VCC 25	HD VREF	VTT	VTT	HD VREF	VCC 25	VCC 25	HD VREF	VTT	HD VREF	HR COMP	HD3	HD9	HD11	HD1
G	GD26	GD27	GD29	GD30	G PIPE#	AGP VREF	F7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	G23	HCMP VREF	HD14	GND	HDBI 0#	HDS 0	HDS 0#
Н	GD24	GND	GD25	GD28	G RBF#	VCC 25	Н	CRT	Pins		FPM	Pins				6							Н	VCC 25	HD5	HD15	GND	GND	HD10
J	GD23	GDS 1#	GDS 1	GND	ST2	VCC 25	J	<u> </u>	<u> </u>	ו ע	l .	<u> </u>	Ц		, <							CPU	J	VCC 25	HITM#	HD6	HD2	HD0	HD8
K	GD21	GD19	GD20	GD22	GBE 3#	VCC AGP	K		VCC AGP	GND	VCC FP	VCC FP	VCC FP	VTT	VTT	VTT	VTT	VTT	VTT	VTT		Pins	K	VTT	D BSY#	GND	RS2#	RS0#	RS1#
L	GD18	GND	GD17	G FRM#	G WBF#	VCC AGP	L	AGP	VCC AGP	VCC AGP	L11	12	13	14	15	16	17	18	L19	VTT			L	GTL VREF	H LOCK#	B REQ#	HIT#	GND	B PRI#
M	GI RDY#	GBE 2#	GD16	GND	NC	VCC AGP	M	Pins	VCC AGP	VCC AGP	M	GND	GND	GND	GND	GND	GND	GND	M	VTT			M	GND HCK	H CLK#	HT RDY#	DE FER#	D RDY#	BNR#
N	GD14	GD15	GBE 1#	G DSEL#	GD13	VCC 25	N		VCC AGP	VCC AGP	N	GND	GND	GND	GND	GND	GND	GND	N	VTT			N	VCC HCK	H CLK	GND	HREQ 2#	HA7	HA3
P	GD10	GND	GD11	GD12	GT RDY#	VCC 25	P		VCC AGP	VCC AGP	P	GND	GND	GND	GND	GND	GND	GND	P	VTT			P	GND TT	ADS#	HREQ 4#	HREQ 1#	GND	HREQ 3#
R	GBE 0#	GD9	GD8	GND	G STOP#	AGP VREF	R		VCC AGP	VCC AGP	R	GND	GND	GND	GND	GND	GND	GND	R	VTT			R	HA VREF	HREQ 0#	HA5	HA4	HA11	HA6
T	GD6	GD7	GD4	GDS 0	GDS 0#	VCC AGP	T		VCC AGP	VCC AGP	T	GND	GND	GND	GND	GND	GND	GND	T	VTT			T	VTT	HAS 0#	GND	HA9	HA15	HA8
U	GD2	GND	GD5	G PAR	G CLK	VCC AGP	U		VCC VL	VCC (U	GND	GND	GND	GND	GND	GND	GND	U	VTT			U	VTT	GND	HA16	GND	HA12	HA13
V	GD3	GD0	GD1	GND	VBE#	VCC AGP	\mathbf{V}		VCC VL	VCC VL	V	GND	GND	GND	GND	GND	GND	GND	V	VCC MEM			\mathbf{V}	HA VREF	HA10	HA14	HA19	HA18	HA17
W	VAD 3	VAD 5	VAD 1	GND	VAD 0	VCC 25	W		VCC VL	VCC MEM	W11	12) 13	14 (15	16	17	18	W19	VCC MEM			W	VCC 25	TEST IN#	GND	HA25	HA22	HA24
Y	UP CMD	GND	UP STB#	GND	VL VREF	VCC 25	Y	Vlink	VCC VL		VCC MEM			VCC MEM	- /		VCC MEM			VCC MEM			Y	VCC 25	VTT	HA30	HAS 1#	GND	HA29
AA	DN STB	DN CMD	DN STB#	UP STB	VAD 4	VCC 25	AA	Pins	VCC MEM		VCC MEM		VCC MEM		VCC MEM	VCC MEM	VCC MEM	VCC MEM		VCC MEM			AA	VTT	HA23	HA26	HA21	HA20	HA28
AB	VAD 6	VAD 7	VAD 2	VL COMP	VSUS 25	GND	AB	-				4		Mem	Pins						_		AB	VTT	GND	GND	HA33	HA31	HA27
AC	PWR OK	GND	RE SET#	SUS ST#	MD59	GND	AC7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	AC23	GND MCK	MCLK	GND	HA32	GND	MD0
AD	MD58	MD62	DQS 7#	DQM 7	MD63	GND	MEM VREF	NC	VCC 25	VCC 25	VCC 25	MEM VREF	VCC 25	VCC 25	GND MDLL	SCAS B#	SWE B#	MEM VREF	SRAS B#	VCC 25	VCC 25	VCC 25	MEM VREF	MCK	MCLK F	MD2	MD1	MD5	MD4
AE	MD57	MD61	MD56	GND	CS6#	CS7#	MD41	NC	CS0#	SCAS A#	MAB 10	CS4#	MECC 7	SWE A#	VCC MDLL	MAA 1	GND	GND	GND	MAA 6	MAA 5	MAA 7	MAB 8	MAB 7	MAA 13	MAB 13	MD6	DQM 0	DQS 0#
AF	MD51	GND	MD60	MD54	MD43	MD45	GND	CS1#	MD38	GND	CS5#	MAA 0	GND	1	MECC 0	GND	MAA 4	MD30	GND	MD25	MAB 5	GND	MD18	MD17	GND	MAA 9	MAB 9	GND	MD7
AG		MD50	MD52	MD49		MD40	CS3#			MD33	MD36	MAA 12	MECC 3	DQS 8#	MAB 1	SRAS A#	MAA 3	MD27	MAB 6	MD29	MAB 14	MAA 8	MD22		MD10	MD15	MD9	MD8	MD3
AH	DOS 6#	GND	MD48	GND	DQM 5	CS2#	GND	MAB 11	DOS 4#	GND	MD32	MAA 10	GND	2	MECC 4	GND	MAB 3	MD31	GND	DQS 3#	MD24	GND	MD19	DQS 2#	GND	MD11	DQM 1	GND	MD12
AJ	DQM 6	MD53	MD47	MD46	DQS 5#	MD44	MAA 11	MD35	DQM 4	MD37	MAB 12	MAB 0	MECC 6	DQM 8	MECC 5	MAB 2	MAA 2	MAB 4	MD26	DQM 3	MD28	MAA 14	MD23	DQM 2	MD16	MD20	MD14	DQS 1#	MD13

Table 2. Pin List (Numerical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01	-	NC	C25	IO	HDBI1#	G28	IO	HDS0	R26	Ю	HA05	AD03	Ю	DQS7# / CKE7	AG10	Ю	MD33
A02	ΑI	GCOMPN0	C26	Ю	HD26	G29	Ю	HDS0#	R27	Ю	HA04	AD04	О	DQM7 / CKE7	AG11	Ю	MD36
A03		GNDQQ	C27	Ю	HD25	H01	Ю	GD24	R28	IO	HA11	AD05	Ю	MD63	AG12	О	MAA12
A04	P	VCCQQ	C28	IO	HD20	H03	IO	GD25	R29	IO	HA06	AD07	P	MEMVREF	AG13	IO	MECC3 / CKE3
A05		AG	C29	IO	HD31	H04	IO	GD28	T01	IO	GD6	AD08	- D	NC MEMARDEE	AG14	IO	DQS8#
A06 A07	AI I	RSET XIN / XDCLK	D01 D02	I I	SBS# SBS	H05 H25	I IO	GRBF# HD05	T02 T03	IO	GD7 GD4	AD12 AD15	P P	MEMVREF GNDMDLL	AG15 AG16	0	MAB01 SRASA#
A07 A08	O	VSYNC	D02	I	SBA4	H26	IO	HD15	T04	IO	GDS0	AD16	0	SCASB#	AG17	o	MAA03
A09	ŏ	INTA#	D04	Ì	SBA3	H29	Ю	HD10	T05	IO	GDS0#	AD17	ŏ	SWEB#	AG18	IO	MD27
A10	IO	FPDET/TVD11	D06	P	GNDDAC	J01	Ю	GD23	T25	Ю	HAS0#	AD18	P	MEMVREF	AG19	О	MAB06
A11	O	FPD11/TVBL#	D07	P	GNDPLL2	J02	IO	GDS1#	T27	IO	HA09	AD19	O	SRASB#	AG20	IO	MD29
A12	0	FPD07/TVD7/str	D08	0	DCLKO	J03	IO	GDS1	T28		HA15	AD23	P	MEMVREF	AG21	0	MAB14
A13	O IO	FPD02/TVD2/str HD61	D09 D10	IO O	SPDAT1 FPHS / TVHS	J05 J25	O	ST2 HITM#	T29 U01	IO	HA08 GD2	AD24 AD25	P I	VCCMCK MCLKF	AG22 AG23	O IO	MAA08 MD22
A14 A15	IO	HD58	D10	Ö	GPOUT	J25 J26	IO	HD06	U03	IO	GD2 GD5	AD25 AD26	IO	MD02	AG23	IO	MD21
A16	IO	HD56	D12	ŏ	FPD05/TVD5/str	J27	Ю	HD02	U04	IO	GPAR	AD27	IO	MD01	AG25	Ю	MD10
A17	IO	HD62	D13	Õ	FPD03/TVD3/str	J28	Ю	HD00	U05	I	GCLK	AD28	IO	MD05	AG26	IO	MD15
A18	IO	HD48	D14	IO	HD60	J29	Ю	HD08	U26		HA16	AD29	Ю	MD04	AG27	Ю	MD09
A19	IO	HD47	D16	IO	HDBI3#	K01	IO	GD21	U28		HA12	AE01	IO	MD57	AG28	IO	MD08
A20	IO	HD44	D17	IO	HD54	K02	IO	GD19	U29		HA13	AE02	IO	MD61	AG29	IO	MD03
A21 A22	IO IO	HD35 HD40	D20 D22	IO IO	HDS2 HD37	K03 K04	IO IO	GD20 GD22	V01 V02	IO IO	GD3 GD0	AE03 AE05	IO	MD56 CS6#	AH01 AH03	IO IO	DQS6# / CKE6 MD48
A23		HD32	D23	IO	HD30	K05	Ю	GBE3#	V02	IO	GD0	AE06	ŏ	CS7#	AH05	O	DQM5 / CKE5
A24	IO	HD36	D25	IO	HD21	K25	Ю	DBSY#	V05	IO	VBE#	AE07	IO	MD41	AH06	ŏ	CS2#
A25	IO	HD16	D27	Ю	HD17	K27	Ю	RS2#	V24	P	HAVREF	AE08	-	NC	AH08	О	MAB11
A26	IO	HD18	D28	Ю	HD24	K28	Ю	RS0#	V25		HA10	AE09	О	CS0#	AH09	Ю	DQS4# / CKE4
A27	IO	HDS1	D29		HD13	K29	IO	RS1#	V26		HA14	AE10	O	SCASA#	AH11	IO	MD32
A28		HD22	E01 E03	I I	SBA5	L01	IO	GD18	V27		HA19	AE11	0	MAB10	AH12 AH14	O IO	MAA10
A29 B01		HD27 GGNT#	E03	I	SBA6 SBA2	L03 L04	IO IO	GD17 GFRM#	V28 V29		HA18 HA17	AE12 AE13	O IO	CS4# MECC7 / CKE7		IO	MECC2 / CKE2 MECC4 / CKE4
B03	-	GCOMPN1	E05	Ó	ST0	L05	I	GWBF#	W01	IO	VAD3	AE14	0	SWEA#	AH17	O	MAB03
B05		AB	E06	P	VCCRGB	L24	P	GTLVREF	W02	IO	VAD5	AE15	P	VCCMDLL	AH18	IO	MD31
B06	AO	AR	E07	P	VCCPLL2	L25	I	HLOCK#	W03	IO	VAD1	AE16	0	MAA01	AH20	Ю	DQS3# / CKE3
B07	P	GNDPLL1	E08	IO	SPDAT2	L26	0	BREQ#	W05	IO	VAD0	AE20	O	MAA06	AH21	IO	MD24
B08	-	HSYNC DISTINU	E09	IO	SPCLK2	L27	IO	HIT#	W25		TESTIN#	AE21	0	MAA05	AH23	IO	MD19
B09 B10	OI	BISTIN# FPDE/TVCKI	E10 E11	0	GPO0 FPCLK/TVCKO	L29 M01	IO	BPRI# GIRDY#	W27 W28		HA25 HA22	AE22 AE23	0	MAA07 MAB08	AH24 AH26	IO IO	DQS2# / CKE2 MD11
B10	O	FPD10/TVD10	E12	ŏ	FPD09/TVD9/str	M02	IO	GBE2#	W28 W29	IO	HA24	AE24	ő	MAB07	AH27	0	DQM1 / CKE1
B12	ŏ	FPD08/TVD8	E13	ŏ	FPD04/TVD4/str	M03	IO	GD16	Y01	I	UPCMD	AE25	ŏ	MAA13	AH29	IO	MD12
B13	O	FPD01/TVD1/str	E14	О	CPURST#	M05	-	NC	Y03	I	UPSTB#	AE26	О	MAB13	AJ01	О	DQM6 / CKE6
B14	IO	HD63	E15	IO	HD57	M24	P	GNDHCK	Y05	P	VLVREF	AE27	IO	MD06	AJ02	Ю	MD53
B15		HD55	E17	IO	HD53	M25	I	HCLK#	Y26		HA30	AE28	0	DQM0 / CKE0	AJ03	IO	MD47
B17 B18	IO IO	HDS3# HD49	E18 E19	IO P	HD52 GNDTT	M26 M27	IO	HTRDY# DEFER#	Y27 Y29		HAS1# HA29	AE29 AF01	IO	DQS0# / CKE0 MD51	AJ04 AJ05	IO IO	MD46 DQS5# / CKE5
B19	IO	HD49 HD46	E20	IO	HDS2#	M28	10	DRDY#	AA01	0	DNSTB	AF03	IO	MD60	AJ05 AJ06	IO	MD44
B20	IO	HD45	E21	OL	HD42	M29	IO	BNR#	AA02	Ö	DNCMD	AF04	IO	MD54	AJ07	o	MAA11
B21	IO	HD43	E22	IO	HD34	N01	Ю	GD14	AA03	О	DNSTB#	AF05	Ю	MD43	AJ08	Ю	MD35
B22	IO	HDBI2#	E27	Ю	HD12	N02	Ю	GD15	AA04	I	UPSTB	AF06	Ю	MD45	AJ09	О	DQM4 / CKE4
B23		HD39	E28		HD04	N03	IO	GBE1#	AA05	IO	VAD4	AF08	0	CS1#	AJ10	IO	MD37
B24		HD33	E29		HD07	N04	IO	GDEVSEL#	AA25		HA23	AF09	IO	MD38	AJ11	0	MAB12
B25 B26		HD19 HD29	F01 F02	IO -	GD31 NC	N05 N24	IO P	GD13 VCCHCK	AA26 AA27		HA26 HA21	AF11 AF12	0	CS5# MAA00	AJ12 AJ13	IO	MAB00 MECC6 / CKE6
B27		HDS1#	F03	I	SBA7	N25	À	HCLK	AA28		HA20	AF14	Ю	MECC1 / CKE1	AJ14	0	DQM8
B29		HD23	F05	Ó	ST1	N27	IO	HREQ2#	AA29		HA28	AF15	IO	MECC0 / CKE0	AJ15	Ю	MECC5 / CKE5
C01	I	GREQ#	F16		HDVREF	N28		HA07	AB01	IO	VAD6	AF17		MAA04	AJ16	О	MAB02
C02		SBA1	F19		HDVREF				AB02					MD30	AJ17		MAA02
C03		SBA0	F22		HDVREF	P01		GD10	AB03		VAD2	AF20		MD25	AJ18	0	MAB04
C05 C06		GNDRGB VCCDAC	F24 F25		HDVREF HRCOMP	P03 P04	IO	GD11 GD12	AB04 AB05		VLCOMP VSUS25	AF21 AF23		MAB05 MD18	AJ19 AJ20	IO O	MD26 DQM3 / CKE3
C07		VCCPLL1	F25 F26		HD03	P04 P05	IO	GTRDY#	AB05 AB27		HA33	AF24		MD17	AJ20 AJ21	Ю	MD28
C08		DCLKI	F27		HD09	P24	P	GNDTT	AB28		HA31	AF26	o	MAA09	AJ22	O	MAA14
C09	IO	SPCLK1	F28		HD11	P25	Ю	ADS#	AB29	IO	HA27	AF27	О	MAB09	AJ23	Ю	MD23
C10		FPVS / TVVS	F29		HD01	P26		HREQ4#	AC01		PWROK	AF29		MD07	AJ24	О	DQM2 / CKE2
C12	-	FPD06/TVD6/str	G01	IO	GD26	P27		HREQ1#	AC03		RESET#	AG01		MD55	AJ25	IO	MD16
C13	-	FPD00/TVD0/str	G02		GD27	P29		HREQ3#	AC04		SUSST#	AG02		MD50	AJ26	IO	MD20
C15 C17		HD59 HDS3	G03 G04	IO IO	GD29 GD30	R01 R02	IO IO	GBE0# GD9	AC05 AC24		MD59 GNDMCK	AG03 AG04		MD52 MD49	AJ27 AJ28	IO IO	MD14 DQS1# / CKE1
C17		HD53	G04 G05	I	GPIPE#	R02	IO	GD8	AC24 AC25		MCLK	AG04 AG05		MD49 MD42	AJ28 AJ29		MD13
C19		HD50	G05	P	AGPVREF	R05	IO	GSTOP#	AC27		HA32	AG06	IO		1.027	.0	
C20		HD41	G24		HCMPVREF	R06	P	AGPVREF	AC29		MD00	AG07	o	CS3#			1
C23	IO	HD38	G25	Ю	HD14	R24		HAVREF	AD01	IO	MD58	AG08		MD39			
C24	IO	HD28	G27	IO	HDBI0#	R25	IO	HREQ0#	AD02	IO	MD62	AG09	IO	MD34			

VCC25 Pins (26 pins): F9-11,14-15,20-21, H6,24, J6,24, N6, P6, W6,24, Y6,24, AA6, AD9-11,13-14,20-22

VCCMEM Pins (26 pins): V20, W10,20, Y10-20, AA9-20

 $VCCAGP \ Pins \ (19 \ pins): \quad K6,9, L6,9-10, M6,9-10, N9-10, P9-10, R9-10, T6,9-10, U6, V6$

VCCVL (4 pins): U9-10, V9-10, W9, Y9

VCCFP (3 pins): K11-13

VTT Pins (25 pins): E16, E23, F17-18,23, K14-20,24, L20, M20, N20, P20, R20,T20,24, U20,24, Y25, AA24, AB24

GND Pins (133 pins): B2,4,16,28, C4,11,14,16,21-22, D5,15,18-19,21,24,26, E2,24-26, F4,6-8,12-13, G26, H2,27-28, J4, K10,26, L2,28,

M4,12-18, N12-18,26, P2,12-18,28, R4,12-18, T12-18,26, U2,12-18,25,27, V4,12-18, W4,26, Y2,4,28, AB6,25-26,

AC2,6,26,28,AD6,AE4,17-19,AF2,7,10,13,16,19,22,25,28,AH2,4,7,10,13,16,19,22,25,28

Table 3. Pin List (Alphabetical Order)

BOS AO AB	G21 O C25 O	Pin Names MAB14	Pin#		Pin Name
P25			AJ15	IO	MECC5 /CKE5
A05 A0 AG AG AG AG AG Bo Bo A628 Bo HA20 C18 Bo HD52 AC R66 P AGPYREF T02 Bo GD7 W28 Bo HA22 E17 Bo HD52 AC AG Bo Bo AR		MCLK	AJ13	IO	MECC6 /CKE6
R06		MCLKF	AE13	IO	MECC7 /CKE7
R06	C29 IO	MD00	AD07	P	MEMVREF
B09	D27 IO	MD01	AD12	P	MEMVREF
BBSTIN#	D26 IO	MD02	AD18	P	MEMVREF
L29	.G29 IO	MD03	AD23	P	MEMVREF
L26	.D29 IO	MD04	A01	-	NC
REPO O CPURST#	D28 IO	MD05	F02	-	NC
AFB9 O CS0#		MD06	M05	-	NC
AF08 O CS1#		MD07	AD08	-	NC NC
ABB8 O HA31		MD08 MD09	AE08 AC01	- I	NC PWROK
AGD O CS3#		MD10	AC01	I	RESET#
AB12 O CS4#	H26 IO	MD11	K28	IO	RS0#
AFI	H29 IO	MD12	K29	IO	RS1#
ABO6 O CS7#	J29 IO	MD13	K27	IO	RS2#
No. Color	J27 IO	MD14	A06	ΑI	RSET
DOLKO	G26 IO	MD15	C03	I	SBA0
No. Color	AJ25 IO	MD16	C02	I	SBA1
MA27 IO DEFER# H03 IO GD25 I28 IO HD00 B20 IO HDS2# AJZ AAO1 O DNSTB GO2 IO GD26 I28 IO HD00 E20 IO HDS2# AJZ AAO1 O DNSTB H04 IO GD28 I27 IO HD01 E20 IO HDS2# AGZ AGZ O DQM0 / CKE0 GO3 IO GD29 F26 IO HD02 B17 IO HDS3# AJZ AJZ O DQM1 / CKE1 GO4 IO GD30 E28 IO HD04 F16 P HDVREF AJZ AJZ O DQM2 / CKE2 F01 IO GD31 H25 IO HD05 F19 P HDVREF AJZ AJZ O DQM3 / CKE3 T04 IO GDS0 E29 IO HD05 F19 P HDVREF AJZ	F24 IO	MD17	E04	I	SBA2
AA02	F23 IO	MD18	D04	I	SBA3
AA01 O DNSTB		MD19	D03	I	SBA4
AA03		MD20 MD21	E01 E03	I I	SBA5 SBA6
AE28		MD21 MD22	F03	Ţ	SBA7
AH27		MD23	D02	I	SBS
AJ24 O DQM2 / CKE2 F01 IO GD31 H25 IO HD05 F19 P HDVREF AJ3	H21 IO	MD24	D01	Ì	SBS#
AJ09	F20 IO	MD25	AE10	0	SCASA#
AH05	J19 IO	MD26	AD16	О	SCASB#
AJ01 O DQM6 CKE6 AD04 O DQM7 CKE7 N04 IO GDS1# H29 IO HD09 L25 I HITM# AG AD14 O DQM7 CKE7 AJ14 O DQM8 L04 IO GFRM# F28 IO HD11 F25 AJ HRCOMP AF AJ28 IO DQS1# CKE0 B01 O GGNT# E27 IO HD12 R25 IO HREQD# AG AH24 IO DQS2# CKE2 D06 P GNDDAC G25 IO HD13 P27 IO HREQ2# AG AH20 IO DQS3# CKE3 AM26 P GNDMCK A25 IO HD15 P29 IO HREQ2# AG AJ05 IO DQS4# CKE6 AD15 P GNDMCK A25 IO HD16 P26 IO HREQ2# AG AG AG AG AG AG AG A	G18 IO	MD27	C09	IO	SPCLK1
AD04 O DQM7 / CKE7 N04 IO GDEVSEL# H29 IO HD10 E25 I HLOCK# AF AJ14 O DQM8 L04 IO GFRM# F28 IO HD11 F25 AI HRCOMP AH AJ28 IO DQS0# / CKE0 M01 IO GIRDY# D29 IO HD13 P27 IO HREQ0# AH20 IO DQS3# / CKE3 M24 P GNDDAC G25 IO HD13 P27 IO HREQ2# AG AH20 IO DQS3# / CKE3 M24 P GNDMCK A25 IO HD15 P29 IO HREQ2# AG AJ05 IO DQS5# / CKE5 AD15 P GNDMCK A25 IO HD17 B08 O HSYNC AJ14 IO DQS7# / CKE7 AD15 P GNDMLL D27 IO HD17 B08 O HSYNC AJ14 IO DQS7# / CKE7 AD15 P GNDPLL1 A26 IO HD18 M26 IO HTRDY# AF AG AG14 IO DQS8# CKE6 AD15 P GNDPLL2 B25 IO HD19 AF AG AG AG AG AG AG AG	J21 IO	MD28	E09	IO	SPCLK2
AJ14 O DQM8	G20 IO	MD29	D09	IO	SPDAT1
AE29 IO DQS0# / CKE0 AJ28 IO DQS1# / CKE1 M01 IO GIRDY# D29 IO HD12 P27 IO HREQ0# AG AH24 IO DQS2# / CKE2 D06 P GNDDAC G25 IO HD14 N27 IO HREQ2# AG AH20 IO DQS3# / CKE3 M24 P GNDMCK H26 IO HD15 P29 IO HD15 P29 IO HREQ2# AG AG AG AG AG AG AG A		MD30	E08	IO	SPDAT2
AJ28 IO DQS1# / CKE1 M01 IO GIRDY# D29 IO HD13 P27 IO HREQ1# AG AH20 IO DQS2# / CKE2 M24 P GNDDAC G25 IO HD15 P29 IO HREQ2# AG AJ05 IO DQS3# / CKE3 AD15 P GNDMCK A25 IO HD16 P26 IO HREQ2# AG AJ05 IO DQS5# / CKE5 AD15 P GNDMDLL D27 IO HD16 P26 IO HREQ2# AG AJ05 IO DQS6# / CKE6 AD15 P GNDMDLL D27 IO HD17 B08 O HSYNC AJ10 AG AG AG AG AG AG AG A		MD31 MD32	AG16 AD19	0	SRASA# SRASB#
AH24 10 DQS2# / CKE2 M24 P GNDDAC H26 10 HD15 P29 10 HREQ2# AJG AJG H26		MD33	E05	0	STO
AH20 IO DQS3# / CKE3 AH24 P GNDHCK A25 IO HD15 P29 IO HREQ3# A40		MD34	F05	ŏ	ST1
AH09 IO DQS4# / CKE4 AJ05 IO DQS5# / CKE5 AD15 P GNDMCK D27 IO HD16 B08 O HSYNC AJ16 AJ16 AJ16 AJ16 AJ17 AJ17 O MAA00 AJ17 AJ17 O MAA02 AJ18 AJ18 AJ18 AJ19	J08 IO	MD35	J05	ŏ	ST2
AH01 IO DQS6# / CKE6 B07 P GNDPLL1 B25 IO HD18 M26 IO HTRDY# AF6 AG14 IO DQS7# / CKE7 D07 P GNDPLL2 B25 IO HD19 AF12 O MAA00 AG14 IO DQS8# C05 P GNDRGB D25 IO HD20 AF12 O MAA01 AF12 AG15 AG17 O MAA01 AF12 AG16 O MAA01 AF13 AG17 O MAA02 AG17 O MAA03 AF14 AG17 O MAA03 AF14 AG18 AG18 AG18 AG18 AG18 AG19 O AG18 AG18 AG19 O AG18 AG18 AG19 O AG19 AG19 AG19 O AG19 AG19 AG19 O AG19 AG19 AG19 O AG19 AG19 AG19 O AG19	G11 IO	MD36	AC04	I	SUSST#
AD03 IO DQS7# / CKE7 AG14 IO DQS8# A03 P GNDPLL2 GNDQQ C28 IO HD19 AD9 O INTA# AG14 IO DQS8# A03 P GNDQQ C28 IO HD20 AE12 O MAA00 AG15 AG12 O MAA01 AE16 O MAA02 AE16 O MAA03 AE16 O MAA04 AE16 O MAA04 AE16 O ME17 O MAA05 AE16 O ME17 O MAA05 AE16 O ME17 O MAA05 AE16 O ME17 O	J10 IO	MD37	AE14	О	SWEA#
AG14 IO DQS8# A03 P GNDQQ C28 IO HD20 AF12 O MAA00 AG12 AF12 O MAA00 AG2 AF12 O MAA01 AF12 O MAA01 AF12 O MAA01 AF12 O MAA01 AF13 O FPD00 / TVD0 / strap B13 O FPD01 / TVD1 / strap U04 IO GPAR D28 IO HD23 AG17 O MAA03 AF13 O FPD02 / TVD2 / strap G05 I GPIPE# C27 IO HD25 AF21 O MAA05 AF33 AF34	F09 IO	MD38	AD17	О	SWEB#
M28 IO DRDY# C05 P GNDRGB D25 IO HD21 AE16 O MAA01 AE16 O MAA01 AE16 O FPCLK/TVCKO E19 P GNDTT A28 IO HD22 AG17 O MAA02 AG17 O MAA02 AG17 O MAA02 AG18 O FPD01 / TVD1 / strap U04 IO GPAR D28 IO HD23 AG17 O MAA03 AF18 O FPD02 / TVD2 / strap G05 I GPIPE# C27 IO HD25 AE21 O MAA05 AF18 AF18 AF19 A	G08 IO	MD39	W25	I	TESTIN#
E11		MD40	Y01	I	UPCMD
C13		MD41 MD42	AA04 Y03	I I	UPSTB UPSTB#
B13 O FPD01 / TVD1 / strap U04 IO GPAR C27 IO HD24 AF17 O MAA04 AF18 AF18 AF18 AF19 O MAA05 AF18 AF19 O MAA05 AF19		MD43	W05	IO	VAD0
A13 O FPD02 / TVD2 / strap G05 I GPIPE# C27 IO HD25 AE21 O MAA05 AF0	J06 IO	MD44	W03	IO	VAD1
E13 O FPD04 / TVD4 / strap D11 O GPOUT A29 IO HD27 AE22 O MAA07 AJ0	F06 IO	MD45	AB03	IO	VAD2
D12 O FPD05 / TVD5 / strap H05 I GRBF# C24 IO HD28 AG22 O MAA08 AH2 C12 O FPD06 / TVD6 / strap C01 I GREQ# B26 IO HD29 AF26 O MAA09 AG3 AG412 O FPD07 / TVD7 / strap R05 IO GSTOP# D23 IO HD30 AH12 O MAA10 AG4 AG4 AG4 AG4 AG5 O FPD09 / TVD9 / strap B11 O FPD10 / TVD10 L05 I GWBF# B24 IO HD33 AE25 O MAA13 AJ5	J04 IO	MD46	W01	IO	VAD3
C12 O FPD06 / TVD6 / strap C01 I GREQ# B26 IO HD29 AF26 O MAA09 AG2 AG3 AG4 AG4 AG5 AG6	JO3 IO	MD47	AA05	IO	VAD4
A12 O FPD07 / TVD7 / strap R05 IO GSTOP# D23 IO HD30 AH12 O MAA10 AGE	H03 IO	MD48	W02	IO	VAD5
B12 O FPD08 / TVD8 L24 P GTLVREF C29 IO HD31 AG12 O MAA11 AG12 AG12 O MAA12 AG13 AG14 AG15 AG15		MD49	AB01	IO	VAD6
E12 O FPD09 / TVD9 / strap P05 IO GTRDY# A23 IO HD32 AG12 O MAA12 AG6 AG7		MD50	AB02	IO	VAD7
B11 O FPD10 / TVD10 L05 I GWBF# B24 IO HD33 AE25 O MAA13 AJ0		MD51 MD52	V05 C06		VBE# VCCDAC
		MD52 MD53	N24	P	VCCHCK
	F04 IO	MD54	AD24	P	VCCMCK
	.G01 IO	MD55	AE15	P	VCCMDLL
	E03 IO	MD56	C07	P	VCCPLL1
D10 O FPHS / TVHS R29 IO HA06 D22 IO HD37 AJ16 O MAB02 AE0	E01 IO	MD57	E07	P	VCCPLL2
	.D01 IO	MD58	A04	P	VCCQQ
	CO5 IO	MD59	E06	P	VCCRGB
		MD60	AB04		VLCOMP
	E02 IO D02 IO	MD61 MD62	Y05	P P	VLVREF VSUS25
			AB05 A08	0	VSYNC
		MECC0 /CKE0	A07	I	XIN / XDCLK
	F14 IO	MECCI /CKE1	1107	1	IIIII ADCER
	H14 IO	MECC2 /CKE2			
V03 IO GD1	.G13 IO	MECC3 /CKE3			
U01 IO GD2 V29 IO HA17 A18 IO HD48 AE26 O MAB13 AH	H15 IO	MECC4 /CKE4			

VCC25 Pins (26 pins): F9-11,14-15,20-21, H6,24, J6,24, N6, P6, W6,24, Y6,24, AA6, AD9-11,13-14,20-22

 $VCCMEM \ Pins \ (26 \ pins): \ V20, W10, 20, Y10-20, AA9-20$

 $VCCAGP \ Pins \ (19 \ pins): \quad K6,9, L6,9-10, M6,9-10, N9-10, P9-10, R9-10, T6,9-10, U6, V6$

VCCVL (4 pins): U9-10, V9-10, W9, Y9

VCCFP (3 pins): K11-13

VTT Pins (25 pins): E16, E23, F17-18,23, K14-20,24, L20, M20, N20, P20, R20,T20,24, U20,24, Y25, AA24, AB24

GND Pins (133 pins): B2,4,16,28, C4,11,14,16,21-22, D5,15,18-19,21,24,26, E2,24-26, F4,6-8,12-13, G26, H2,27-28, J4, K10,26, L2,28, M4,12-18, N12-18,26, P2,12-18,28, R4,12-18, T12-18,26, U2,12-18,25,27, V4,12-18, W4,26, Y2,4,28, AB6,25-26,

AC2,6,26,28,AD6,AE4,17-19,AF2,7,10,13,16,19,22,25,28,AH2,4,7,10,13,16,19,22,25,28

PIN DESCRIPTIONS

Table 4. VT8751A / P4M266A Pin Descriptions

	CPU Interface											
Signal Name	Pin #	<u>I/O</u>	Signal Description									
HA[33:3]#	(see pinout tables)	IO	Host CPU Address Bus. Connect to the address bus of the host CPU. Inputs during CPU cycles and driven by the P4M266A during cache snooping operations. HA[33:32] are reserved for future use in supporting up to 16 Gbytes of real memory.									
HAS[1:0]#	Y27, T25	IO	Host CPU Address Strobe. Source synchronous strobes used to transfer HA[31:3]# and HREQ[4:0]# at a 2x transfer rate. HAS1# is the strobe for HA[31:17]# and HAS0# is the strobe for HA[16:3] and HREQ[4:0]#.									
HD[63:0]#	(see pinout tables)	IO	Host CPU Data. These signals are connected to the CPU data bus.									
HDBI[3:0]#	D16, B22, C25, G27	IO	Host CPU Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data pin group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted such that the number of data bits driven low for the corresponding group does not exceed 8.									
HDS[3:0]	C17, D20, A27, G28	IO	Host CPU Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# and HDBI[3:0]# at a 4x transfer rate. HDS3 / HDS3# are the strobes for HD[63:48]# and HDBI3#; HDS2 / HDS2# are the strobes for HD[47:32]# and HDBI2#;									
HDS[3:0]#	B17, E20, B27, G29		HDS1 / HDS1# are the strobes for HD[31:16]# and HDBI1#; and HDS0 / HDS0# are the strobes for HD[15:0]# and HDBI0#.									
ADS#	P25	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.									
DBSY#	K25	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.									
DRDY#	M28	IO	Data Ready. Asserted for each cycle that data is transferred.									
HIT#	L27	Ю	Hit . Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.									
HITM#	J25	Ĭ	Hit Modified . Asserted by the CPU to indicate that the address is modified in the L1 cache and needs to be written back.									
HLOCK#	L25	I	Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS# until the									
]	negation of HLOCK# must be atomic. Request Command. Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the									
HREQ[4:0]#	P26, P29, N27, P27, R25	IO	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the									
HREQ[4:0]# HTRDY#	N27, P27,	IO	Request Command. Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type. Host Target Ready. Indicates that the target of the processor transaction is able to enter									
	N27, P27, R25		Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.									

Note: Clocking of the CPU interface is performed with HCLK and HCLK#.

Note: Internal pullup resistors are provided on all AGTL+ interface pins. If the CPU does not have internal pullups, these north bridge internal pullups may be enabled to allow the interface to meet AGTL+ bus interface specifications (see VAD3 strap).

CPU Interface (continued)										
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description							
BREQ#	L26	О	Bus Request. Bus request output to CPU.							
BPRI#	L29	Ю	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The P4M266A drives this signal to gain control of the processor bus.							
BNR#	M29	IO	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.							
DEFER#	M27	IO	Defer . The P4M266A uses a dynamic deferring policy to optimize system performance. The P4M266A also uses the DEFER# signal to indicate a processor retry response.							
CPURST#	E14	О	CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.							

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

Figure 3. Reference Component Placement Using the P4M266A Chipset

	DRAM	Inte	rface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(see pin lists)	Ю	Memory Data. These signals are connected to the DRAM data bus. Output drive strength may be set by Device 0 Rx6D[1-0].
MECC[7:0] / CKE[7:0]	AE13, AJ13, AJ15, AH15, AG13, AH14, AF14, AF15	IO	DRAM ECC or EC Data: when ECC is enabled. Clock Enables: For each DRAM bank for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control to reduce power usage and for reducing heat/temperature in high-speed memory systems.
MAA[14:0]	AJ22, AE25, AG12, AJ7, AH12, AF26, AG22, AE22, AE20, AE21, AF17, AG17, AJ17, AE16, AF12	О	Memory Address A. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[7-6].
MAB[14:0]	AG21, AE26, AJ11, AH8, AE11, AF27, AE23, AE24, AG19, AF21, AJ18, AH17, AJ16, AG15, AJ12	0	Memory Address B. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[5-4].
SRASA#, SCASA#, SWEA#	AG16, AE10, AE14	0	Row Address, Column Address and Write Enable Command Indicator Set A. (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[7-6].
SRASB#, SCASB#, SWEB#	AD19, AD16, AD17	0	Row Address, Column Address and Write Enable Command Indicator Set B. (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[5-4].
CS[7:0]#	AE6, AE5, AF11, AE12, AG7, AH6, AF8, AE9	0	Chip Select. Chip select of each bank. Output drive strength may be set by Device 0 Rx6D[3-2].
DQM[8], DQM[7:0] / CKE[7:0]	AJ14, AD4, AJ1, AH5, AJ9, AJ20, AJ24, AH27, AE28	0	Data Mask. Data mask of each byte lane plus DQM8 for ECC byte. Output drive strength may be set by Device 0 Rx6D[5-4].
DQS[8], DQS[7:0]# / CKE[7:0]	AG14, AD3, AH1, AJ5, AH9, AH20, AH24, AJ28, AE29	Ю	DDR Data Strobe. Data strobe of each byte lane plus DQS8# for ECC byte. Output drive strength may be set by Device 0 Rx6C[3-2].
CKE[7:0] / MECC[7:0] -or- CKE[7:0] / DQM[7:0] -or- CKE[7:0] / DQS[7:0]#	(see above)	O	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems. See Device 0 Rx78[0] for CKE function enable.

			AGP Bus Interface
Signal Name	Pin #	<u>I/O</u>	Signal Description
GD[31:0]	(see pin list)	Ю	Address / Data Bus. Address is driven with GDS assertion for AGP-style transfers and with GFRM# assertion for PCI-style transfers.
GBE[3:0]#	K5, M2, N3, R1	Ю	Command / Byte Enables. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using GPIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GPAR	U4	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].
GDS0, GDS0#	T4, T5	Ю	Bus Strobe 0. Source synchronous strobes for GD[15:0] (the agent that is providing the data drives these signals). GDS0 provides timing for 2x data transfer mode; GDS0 and GDS0# provide timing for 4x transfer mode.
GDS1, GDS1#	J3, J2	IO	Bus Strobe 1. Source synchronous strobes for GD[31:16] (i.e., the agent that is providing the data drives these signals). GDS1 provides timing for 2x data transfer mode; GDS1 and GDS1# provide timing for 4x transfer mode.
GFRM#	L4	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GIRDY#	M1	IO	Initiator Ready. AGP: For write operations, the assertion of this pin indicates that the master is ready to provide all write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is never allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	P5	Ю	Target Ready. AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfer for both read and write transactions. PCI: Asserted when the target is ready for data transfer.
GSTOP#	R5	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.
GDEVSEL#	N4	IO	Device Select (PCI transactions only). This signal is driven by the VT8753 when a PCI initiator is attempting to access main memory. It is an input when the VT8753 is acting as PCI initiator. Not used for AGP cycles.
GPIPE#	G5	I	Pipelined Request. Asserted by the master (the external graphics controller) to indicate that a full-width request is to be enqueued by the target VT8753. The master enqueues one request each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is deasserted no new requests are enqueued across the AD bus.

	AGP Bus Interface (continued)					
Signal Name	Pin#	<u>I/O</u>	Signal Description			
GRBF#	Н5	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted,			
			the VT8753 will not return low priority read data to the graphics controller.			
GWBF#	L5	I	Write Buffer Full.			
SBA[7:0]	F3, E3, E1, D3,	I	SideBand Address. Provides an additional bus to pass address and command			
	D4, E4, C2, C3		information from the master (graphics controller) to the target (VT8753 north bridge logic). These pins are ignored until enabled.			
SBS,	D2,	I	Sideband Strobe. Driven by the master to provide timing for SBA[7:0]. SBS			
SBS#	D1		is used for AGP 2x while SBS and SBS# are used together for AGP 4x.			
ST[2:0]	J5, F5, E5	0	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the target (north bridge logic) and inputs to the master (graphics controller). 			
GREQ#	C1	Ι	Request. Master (graphics controller) request for use of the AGP bus.			
GGNT#	B1	0	Grant. Permission is given to the master (graphics controller) to use the AGP bus.			

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the VT8753 has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

			V-Link Interfa	ace		
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
VAD7,	AB2	IO	Address / Data Bus. Also used to 1	receive strap information from the so	uth bridge	(the straps
VAD6,	AB1	IO	are not on the VAD pins but on the	indicated pin of the south bridge chip	o).	
VAD5,	W2	IO	_			8235 SB
VAD4,	AA5	IO	Pin Strap Name	Definition (L=strap low, H=high)	Register	Strap Pin
VAD3,	W1	IO	VAD7 Hyperthreading	L=Disable, H=Enable.	Rx52[5]	SDCS3#
VAD2,	AB3	IO	VAD6 Auto-Configure	L=Disable (use on-chip defaults)	Rx54[5]	SDA2
VAD1,	W3	IO	_	H=Enable (get from ROMSIP)		
VAD0	W5	IO	VAD5 AGTL+ Drive Strength 4x	L=1x, H=4x		SDA1
			VAD4 AGTL+ Drive Strength 2x	L=1x, H=2x		SDA0
			VAD3 AGTL+ Internal Pullups	L=Disable, H=Enable.	Rx50[6]	SA19
			VAD2 In Order Queue Depth	L=1-level, H=8-level.	Rx50[7]	SA18
			VAD1 CPU Clock Speed Msb	LL=66, LH=100, HL=Auto,	Rx54[7]	SA17
			VAD0 CPU Clock Speed Lsb	HH=133 MHz	Rx54[6]	SA16
VBE#	V5	IO	Byte Enable.			
UPCMD	Y1	I	Command from Client-to-Host.			
UPSTB	AA4	I	Strobe from Client-to-Host.			
UPSTB#	Y3	I	Complement Strobe from Client-t	o-Host.		
DNCMD	AA2	О	Command from Host-to-Client.	0,600		
DNSTB	AA1	О	Strobe from Host-to-Client.	K Y		
DNSTB#	AA3	О	Complement Strobe from Host-to	-Client.		

	CRT Interface					
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
AR	В6	AO	Analog Red. Analog red output to the CRT monitor.			
AB	B5	AO	Analog Blue. Analog blue output to the CRT monitor.			
AG	A5 _	AO	Analog Green. Analog green output to the CRT monitor.			
HSYNC	B8	0	Horizontal Sync. Output to CRT.			
VSYNC	A8	O	Vertical Sync. Output to CRT.			
RSET	A6	AI	Reference Resistor. Tie to GNDRGB through an external 140Ω resistor to control the RAMDAC full-scale current value.			

	SMB / I2C Interface					
Signal Name	Pin#	<u>I/O</u>	Signal Description			
SPCLK[2:1]	E9, C9	IO	Serial Port (SMB/I2C) Clocks. These are the clocks for serial data transfer. SPCLK1 is typically used for I^2C communications. As an output, it is programmed via CRA0[0]. As an input, its status is read via CRA0[2]. In either case the serial port must be enabled by CRA0[4] = 1. SPCLK2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[0]. As an input, its status is read via CRB1[2]. The port is enabled via CRB1[4] = 1.			
SPDAT[2:1]	E8, D9	IO	Serial Port (SMB/I2C) Data. These are the data signals used for serial data transfer. SPDAT1 is typically used for I^2C communications. As an output, it is programmed via CRA0[1]. As an input, its status is read via CRA0[3]. In either case the serial port must be enabled by CRA0[4] = 1. SPDAT2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[1]. As an input, its status is read via CRB1[3]. The port is enabled via CRB1[4] = 1.			

Flat Panel Monitor (DVI) Interface					
Signal Name	Pin#	<u>I/O</u>	Signal Description		
FPD11 / TVBL#,	A11	0	Panel Data. 8mA is the default. 16mA is selected via SR3D[6]=1. This function is		
FPD10 / TVD10,	B11		selected on these pins when $SR31[4] = 1$.		
FPD9 / TVD9 / strap,	E12				
FPD8 / TVD8,	B12				
FPD7 / TVD7 / strap,	A12				
FPD6 / TVD6 / strap,	C12				
FPD5 / TVD5 / strap,	D12				
FPD4 / TVD4 / strap,	E13				
FPD3 / TVD3 / strap,	D13				
FPD2 / TVD2 / strap,	A13				
FPD1 / TVD1 / strap,	B13				
FPD0 / TVD0 / strap	C13		Y Y		
FPCLK / TVCLKO	E11	О	Panel Clock. 8mA is the default. 16mA may also be selected.		
FPHS / TVHS	D10	О	Panel Horizontal Sync.		
FPVS / TVVS	C10	О	Panel Vertical Sync.		
FPDE / TVCLKI	B10	О	Panel Data Enable.		
FPDET / TVD11	A10	I	Panel Detect. If SR30[1]=0, SR30[2] will read 1 if a Flat Panel is appropriately		
			connected. Must be tied to ground if not used.		

	TV Encoder Interface					
Signal Name	Pin#	<u>I/O</u>	Signal Description			
TVD11 / FPDET,	A10	0	TV Encoder Output Data.			
TVD10 / FPD10,	B11					
TVD9 / FPD9 / strap,	E12					
TVD8 / FPD8,	B12					
TVD7 / FPD7 / strap,	A12					
TVD6 / FPD6 / strap,	C12	(
TVD5 / FPD5 / strap,	D12					
TVD4 / FPD4 / strap,	E13		<i>y</i>			
TVD3 / FPD3 / strap,	D13					
TVD2 / FPD2 / strap,	A13					
TVD1 / FPD1 / strap,	B13					
TVD0 / FPD0 / strap	C13		Y			
TVCLKI / FPDE	B10	I	TV Encoder Clock In. Input clock from encoder.			
TVCLKO / FPCLK	E11	О	TV Encoder Clock Out. Output clock to TV encoder.			
TVHS / FPHS	D10	О	TV Encoder HSYNC.			
TVVS / FPVS	C10	О	TV Encoder VSYNC.			
TVBL# / FPD11	A11	О	TV Encoder Blanking.			

	Clocks, Res	sets, P	Power Control, General Purpose I/O, Interrupts and Test
Signal Name	Pin#	<u>I/O</u>	Signal Description
HCLK	N25	I	Host Clock. This pin receives the host CPU clock (100 MHz). This clock is used by all P4M266A logic that is in the host CPU domain.
HCLK#	M25	I	Host Clock Complement. Used for Quad Data Transfer on host CPU bus.
MCLK	AC25	О	Memory (SDRAM) Clock. Output from internal clock generator to the external clock buffer.
MCLKF	AD25	I	Memory (SDRAM) Clock Feedback. Input from the external clock buffer.
DCLKI	C8	I	Dot Clock (Pixel Clock) In. Used for external EMI reduction circuit if used. Connect to GND if external EMI reduction circuit not implemented.
DCLKO	D8	О	Dot Clock (Pixel Clock) Out. Used for external EMI reduction circuit if used. NC if external EMI reduction circuit not implemented.
GCLK	U5	I	Graphics Clock. Clock for internal graphics controller logic.
XIN / XDCLK	A7	Ι	Reference Frequency Input. External 14.31818 MHz clock source. All internal graphics controller clocks are synthesized on chip using this frequency as a reference. This pin may also be used as a direct external pixel clock input for the internal graphics controller, bypassing the on-chip graphics clock synthesizers (for more information, see the FPD3 pin strap description, graphics controller register CR37[3], and Table 11 in the Functional Description section of this document).
RESET#	AC3	I	Reset. Input from the South Bridge chip. When asserted, this signal resets P4N266 and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options Internally puled up.
PWROK	AC1	I	Power OK. Connect to South Bridge and Power Good circuitry.
SUSST#	AC4	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable. Internally pulled up.
GPOUT	D11	0	General Purpose Output. This pin reflects the state of SRD[0].
GOP0 / XECLK	E10	0	General Output Port. When SR1A[4] is cleared, this pin reflects the state of CR5C[0]. This pin may also be used as a direct external clock input for the internal graphics controller (for more information, see the FPD3 pin strap description, graphics controller register CR37[3], and Table 11 in the Functional Description section of this document).
INTA#	A9	О	Interrupt. PCI interrupt output (handled by the interrupt controller in the South Bridge)
BISTIN#	В9	I	BIST In. This pin is used for testing and must be tied high (connected to 3.3V) on all board designs.
TESTIN#	W25	I	Test In. This pin is used for testing and must be left unconnected or tied high on all board designs.
XDCLK / XIN	A7	I	External DCLK. Used for test of the on-chip Graphics Controller subsystem.
XECLK / GOP0	E10	I	External ECLK. Used for test of the on-chip Graphics Controller subsystem.
NC	A1, F2, M5, AD8, AE8		No Connect.

Configuration Straps						
Signal Name	Pin#	<u>I/O</u>	Signal D	<u>Description</u>		
Strap / FPD9 / TVD9,	E12	I	Straps.			
Strap / FPD7 / TVD7,	A12		Strap	Strap Name	Definition (L=low, H=high)	Register
Strap / FPD6 / TVD6,	C12		FPD9	Graphics Test Mode	L=Disable, H=Enable	
Strap / FPD5 / TVD5,	D12		FPD7-4	Panel Type	OEM Defined	CRF0[3:0]
Strap / FPD4 / TVD4,	E13		FPD3	XDCLK clock input on XIN	L=Disable, H=Enable	CR37[3]
Strap / FPD3 / TVD3,	D13		FPD2	PCI Base Address Mapping	L=Map0, H=Map1	CRB0[7]
Strap / FPD2 / TVD2,	A13		FPD1	I/O Disable	L=Enable, H=Disable	CR36[4]
Strap / FPD1 / TVD1,	B13		FPD0	PCI Interrupt Disable	L=Enable, H=Disable	CR36[0]
Strap / FPD0 / TVD0	C13		(for mor	re information on straps, see Ta	able 11 in the Functional Descr	ription section
			of this de	ocument)	CZ	

	Reference Voltages				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
GTLVREF	L24	P	Host CPU Interface AGTL+ Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
HDVREF	F16, F19, F22, F24	P	Host CPU Data Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
HAVREF	R24, V24	P	Host CPU Address Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
HCMPVREF	G24	P	Host CPU Compensation Voltage Reference. 1/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
MEMVREF	AD7, AD12, AD18, AD23	P	Memory Voltage Reference. 1/2 VCC25 ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
VLVREF	Y5	P	V-Link Voltage Reference. 0.9V derived using a resistive voltage divider consisting of 2K Ω 1% to VCC25 and 1.13K Ω 1% to ground.		
AGPVREF	G6, R6	P	AGP Voltage Reference. 0.4 VCCQQ (1.32V) when VCCQQ is 3.3V and 0.5 VCCQQ (0.75V) when VCCQQ is 1.5V. Check the VT8751A Design Guide for additional information.		

Compensation				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description	
HRCOMP	F25	AI	Host CPU Compensation. Connect 20.5Ω 1% resistor to ground. Used for Host CPU interface I/O buffer calibration.	
VLCOMP	AB4	AI	Vlink P-Channel Compensation. Connect 70Ω 1% resistor to ground.	
GCOMPN0	A2	AI	AGP N-Channel Compensation 0.	
GCOMPN1	В3	AI	AGP N-Channel Compensation 1.	

	Analog Power / Ground					
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
VCCHCK	N24	P	Power for Host CPU Clock PLL (2.5V ±5%)			
GNDHCK	M24	P	Ground for Host CPU Clock Circuitry. Connect to main ground plane through a ferrite bead.			
VCCMCK	AD24	P	Power for Memory Clock PLL (2.5V ±5%)			
GNDMCK	AC24	P	Ground for Memory Clock Circuitry. Connect to main ground plane through a ferrite bead.			
VCCMDLL	AE15	P	Power for Memory Strobe DLL (2.5V ±5%)			
GNDMDLL	AD15	P	Ground for Memory Strobe DLL Circuitry. Connect to main ground plane through a ferrite			
			bead.			
VCCRGB	E6	P	Power for CRT RGB Outputs (2.5V ±5%).			
GNDRGB	C5	P	Connection Point for RGB Load Resistors. Connect to main ground plane.			
VCCDAC	C6	P	Power for DAC Digital Logic. (2.5V ±5%)			
GNDDAC	D6	P	Ground for DAC Analog Circuitry. Connect to main ground plane through a ferrite bead.			
VCCPLL1	C7	P	Power for PLL1 $(2.5V \pm 5\%)$.			
GNDPLL1	B7	P	Ground for PLL1. Connect to main ground plane through a ferrite bead.			
VCCPLL2	E7	P	Power for PLL2 (2.5V ±5%).			
GNDPLL2	D7	P	Ground for PLL2. Connect to main ground plane through a ferrite bead.			

	Digital Power / Ground				
Signal Name	Pin #	<u>I/O</u>	Signal Description		
VTT	E16,23, F17-18,23, K14-20,24, L20,	P .	Power for CPU I/O Interface Logic (25 Pins). 1.65V ±5%		
	M20, N20, P20, R20, T20,24,				
	U20,24, Y25, AA24, AB24				
GNDTT	E19, P24	P	Ground for CPU I/O Interface Logic (2 Pins).		
VCCMEM	V20, W10,20, Y10-20, AA9-20	P	Power for Memory I/O Interface Logic (26 Pins). 2.5 ±5%.		
VCCVL	U9-10, V9-10, W9, Y9	P	Power for V-Link I/O Interface Logic (6 Pins). 2.5V ±5%		
VCCFP	K11-13	P	Power for Flat Panel I/O Interface Logic (3 Pins). $3.3V \pm 5\%$		
VCCAGP	K6,9, L6,9-10, M6,9-10, N9-10, P9-	P	Power for AGP Bus I/O Interface Logic (19 Pins). 1.5 / 3.3V		
	10, R9-10, T6,9-10, U6, V6		\pm 5% (Device 0 RxB2[1] should be set to indicate the voltage).		
VCCQQ	A4	P	AGP Quiet Power. Connect to main AGP power (VCCAGP =		
			$1.5 / 3.3V \pm 5\%$) through a ferrite bead.		
GNDQQ	A3	P	Ground for AGP Quiet Power. Connect to main ground plane.		
VCC25	F9-11,14-15,20-21, H6,24, J6,24,	P	Power for Internal Logic (26 Pins). 2.5V ±5%		
	N6, P6, W6,24, Y6,24, AA6,				
	AD9-11,13-14,20-22				
VSUS25	AB5	P	Suspend Power. 2.5V ±5%		
GND	B2,4,16,28, C4,11,14,16,21-22,	P	Digital Ground (133 Pins)		
	D5,15,18-19,21,24,26, E2,24-26,				
	F4,6-8,12-13, G26, H2,27-28, J4,				
	K10,26, L2,28, M4,12-18,				
	N12-18,26, P2,12-18,28, R4,12-18,				
	T12-18,26, U2,12-18,25,27,				
	V4,12-18, W4,26, Y2,4,28,				
	AB6,25-26, AC2,6,26,28,				
	AD6, AE4,17-19,				
	AF2,7,10,13,16,19,22,25,28, AH2,4,7,10,13,16,19,22,25,28				
	A112,4,7,10,13,10,19,22,23,28				

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the P4M266A. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), RWC (or just WC) (Read / Write 1's to Clear individual bits), and W1 (Write Once then Read / Only after that). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

The graphics registers are described in a separate document.

Table 5. VT8751A / P4M266A Registers

P4M266A I/O Ports

Port #	I/O Port	Default	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

P4M266A Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3148	RO
5-4	Command	0006	RW
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
С	-reserved-	00	
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	
2D-2C	Subsystem Vendor ID	0000	W 1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	
37-34	Capability Pointer	0000 0 <u>0A</u> 0	RO
38-3F	-reserved-	00	_

Device-Specific Registers

Offset	V-Link Control	<u>Default</u>	Acc
40	V-Link Revision ID	00	RO
41	V-Link NB Capability	18	RO
42	V-Link NB Downlink Command	88	RW
44-43	V-Link NB Uplink Status	8280	RO
45	V-Link NB Bus Timer	44	RW
46	V-Link Misc NB Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	18	RO
4A	V-Link SB Downlink Status	88	RO
4C-4B	V-Link SB Uplink Command	8280	RW
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	Host CPU Protocol Control	Default	Acc
50	CPU Interface Request Phase Control	00	RW
51	CPU Interface Basic Control	00	RW
52	CPU Interface Advanced Control	00	RW
53	CPU Interface Arbitration Control	02	RW
54	CPU Frequency	00	RW

Device-Specific Registers (continued)

Offset	DRAM Control	<u>Default</u>	Acc
55	DRAM Control	00	RW
56-57	(see below)		
59-58	MA Map Type	2222	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	00	RW
67	DRAM DQS/SDR/MD Read Delay	00	RW
68	DRAM DDR Control	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	10	RW
6C	DRAM Drive Control 1	00	RW
6D	DRAM Drive Control 2	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	WC

Offset	PCI Bus Control	<u>Default</u>	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	WC
72	-reserved-	00	_
73	PCI Master Control	00	RW
74	-reserved-	00	_
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7D	-reserved-	00	
7E-7F	Reserved (do not program)	00	RW

Device 0 Device-Specific Registers (continued)

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85	Write Policy	00	RW
86-87	-reserved-	00	_
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
8C-9F	-reserved-	00	

Offset	AGP Control	<u>Default</u>	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	C0	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	
A7-A4	AGP Status	1F00 0207	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Miscelleneous Control	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	-reserved-	00	
В0	AGP Compensation Control / Status	8x	RW
B1	AGP Output Drive Strength	63	RW
B2	AGP Pad Drive & Delay Control	08	RW
В3	AGP Strobe Drive Strength	63	RW

Offset	V-Link Control	<u>Default</u>	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Drive Control	00	RW
В6	Read / Write Schedule Timer	00	RW
В7	Read / Write Schedule Control	00	RW
B8	V-Link SB Compensation Control	00	RW
В9	V-Link SB Drive Control	00	RW
BA-BD	-reserved-	00	\rightarrow

Offset	DRAM Interface Control	<u>Default</u>	Acc
BE	MECC Drive Strength	00	RW
BF	MA / SCMD Pad Toggle Reduction	00	RW

Offset	Power Mgt. &Misc. Control	Default	Acc
C0	Power Management Capability	01	RO
C1	Power Management Next Pointer	00	RO
C2	Power Management Capabilities I	02	RO
C3	Power Management Capabilities II	00	RO
C4	Power Management Control/Status	00	RW
C5	Power Management Status	00	RO
C6	PCI-to-PCI Bridge Support Extension	00	RO
C7	Power Management Data	00	RO
C8-CF	-reserved-	00	

Device 0 Device-Specific Registers (continued)

Offset	ECC Error Control	Default	Acc
D3-D0	ECC Error Address	XX	RO
D4	ECC Error Syndrome Bit	XX	RO
D5-D6	-reserved-	00	_

Offset	Lowest Priority Mode Control	Default	Acc
D7	Lowest Priority Mode Control	00	RW

Offset	AGTL+ I/O Control	Default	Acc
D8	Host Address (2x) Pullup Drive	00	RW
D9	Host Address (2x) Pulldown Drive	00	RW
DA	Host Data (4x) Pullup Drive	00	RW
DB	Host Data (4x) Pulldown Drive	00	RW
DC	AGTL+ Output Delay / Stagger Ctrl	00	RW
DD	AGTL+ I/O Control	00	RW
DE	AGTL+ Compensation Status	00	RW
DF	AGTL+ AutoCompensation Offset	00	RW

	Offset	Frame Buffer & High Memory Ctrl	<u>Default</u>	Acc
	E0 •	CPU Direct Access FB Base	00	RW
	E1	CPU Direct Access FB Size	00	RW
	E2	VGA Arbitration Timer 1	00	RW
	E3	SMA Control	00	RW
	E4	Low Top Address Low	00	RW
7	E5	Low Top Address High	FF	RW
	E6	SMM / APIC Decoding	01	RW
	E7	Process Index Reporter Delay Stages	00	RW
4	E8	VGA Arbitration Timer 2	00	RW
	E9-EF	-reserved-	00	_

,	Offset	Test, BIOS Scratch, Miscellaneous	Default	Acc
	F0-F2	Reserved (Do Not Program)	00	RW
	F3-F4	BIOS Scratch Registers	00	RW
	F5-FF	Reserved (Do Not Program)	00	RW

P4M266A Device 1 Registers - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc		Offset	AGP Bus Control
1-0	Vendor ID	1106	RO		40	CPU-to-AGP Flow (
3-2	Device ID	B091	RO		41	CPU-to-AGP Flow (
5-4	Command	0007	RW		42	AGP Master Control
7-6	Status	0230	WC		43	AGP Master Latency
8	Revision ID	nn	RO		44	Reserved (Do Not Pr
9	Program Interface	00	RO		45	Fast Write Control
A	Sub Class Code	04	RO		47-46	PCI-to-PCI Bridge D
В	Base Class Code	06	RO		48-7F	-reserved-
С	-reserved-	00			80	Capability ID
D	Latency Timer	00	RO		81	Next Pointer
Е	Header Type	01	RO		82	Power Management
F	Built In Self Test (BIST)	00	RO		83	Power Management
10-17	-reserved-	00			84	Power Management
18	Primary Bus Number	00	RW		85	Power Management
19	Secondary Bus Number	00	RW		86	PCI-PCI Bridge Sup
1A	Subordinate Bus Number	00	RW		87	Power Management
1B	Secondary Latency Timer	00	RO		88-FF	-reserved-
1C	I/O Base	F0	RW			
1D	I/O Limit	00	RW			0.4
1F-1E	Secondary Status	0000	RO		Z) Y	
21-20	Memory Base	FFF0	RW			
23-22	Memory Limit (Inclusive)	0000	RW			
25-24	Prefetchable Memory Base	FFF0	RW		6	
27-26	Prefetchable Memory Limit	0000	RW			
28-33	-reserved-	00				
34	Capability Pointer	80	RO			
35-3D	-reserved-	00	7			
3F-3E	PCI-to-PCI Bridge Control	00	RW	7		

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	43	RW
44	Reserved (Do Not Program)	00	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	_
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	

Miscellaneous I/O

One I/O port is defined in the P4M266A: Port 22.

of Device 0 Configuration Register 78.

Port 22	- PCI / AGP Arbiter DisableRW
7-2	Reserved always reads 0
1	AGP Arbiter Disable
	0 Respond to GREQ# signaldefault
	1 Do not respond to GREQ# signal
0	PCI Arbiter Disable
	0 Respond to all REQ# signalsdefault
	1 Do not respond to any REQ# signals,
	including PREQ#
This po	rt can be enabled for read/write access by setting bit-7

Configuration Space I/O

All registers in the P4M266A (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Do not respond to GREQ# signal		
I Arbiter Disable	D 4 C	
Respond to all REQ# signalsdefault	Port C	FB-CF8 - Configuration AddressRW
Do not respond to any REQ# signals,	31	Configuration Space Enable
including PREQ#		0 Disableddefault
be enabled for read/write access by setting bit-7		1 Convert configuration data port writes to
Configuration Register 78.		configuration cycles on the PCI bus
e oming with the growth you	30-24	Reserved always reads 0
	23-16	PCI Bus Number
		Used to choose a specific PCI bus in the system
	15-11	
	6 0	Used to choose a specific device in the system
		(devices 0 and 1 are defined for the P4M266A)
	10-8	Function Number
	100	Used to choose a specific function if the selected
	X	device supports multiple functions (only function 0 is
		defined for the P4M266A).
	7.2	Register Number (also called the "Offset")
	/-2	Used to select a specific DWORD in the P4M266A
	,	configuration space
	1.0	
	1-0	Fixedalways reads 0
600	Port Cl	FF-CFC - Configuration DataRW
		11 01 0 Comiguration Datasette
	Dafar to	o PCI Bus Specification Version 2.2 for further details
		*
	on oper	ration of the above configuration registers.
>		

Device 0 Register Descriptions

Device 0 Host Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device	0 Offs	et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device	n Offs	et 3-2 - Device ID (3148h)RO
15-0		ode (reads 3148h to identify the P4M266A)
		•
Device	0 Offs	et 5-4 –Command (0006h)RW
15-10	Rese	· · · · · · · · · · · · · · · · · · ·
9	Fast	Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agentdefault
	1	Fast back-to-back transactions allowed to
0	CEDI	different agents
8	SEKI 0	R# EnableRO SERR# driver disableddefault
	1	SERR# driver enabled
	_	R# is used to report ECC errors).
7	Addr	ress / Data SteppingRO
,	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5	VGA	Palette SnoopRO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette accesses on PCI bus
4		ory Write and Invalidate Command RO
	0	Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3	Speci	ial Cycle Monitoring RO
	0	Does not monitor special cyclesdefault Monitors special cycles
2	_	Bus MasterRO
2	0	Never behaves as a bus master
	1	Can behave as a bus master default
1	-	ory SpaceRO
_	0	Does not respond to memory space
	1	Responds to memory spacedefault
0	I/O S	
	0	Does not respond to I/O spacedefault
	1	Responds to I/O space

Device	0 Offset 7-6 – Status (0210h)RWC
15	Detected Parity Error
	0 No parity error detecteddefault
	1 Error detected in either address or data phase.
	This bit is set even if error response is disabled
	(command register bit-6) write one to clear
14	Signaled System Error (SERR# Asserted)
	always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master
	write one to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target
	write one to clear
11	Signaled Target Abortalways reads 0
	0 Target Abort never signaled
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected
	0 No data parity error detected default
	1 Error detected in data phase. Set only if error
1	response enabled via command bit- $6 = 1$ and
	P4M266A was initiator of the operation in
7	which the error occurredwrite one to clear
	Fast Back-to-Back Capablealways reads 0 User Definable Featuresalways reads 0
5	66MHz Capable always reads 0
4	Supports New Capability listalways reads 1
3-0	Reservedalways reads 0
3-0	Reservedarways reads 0
Device	0 Offset 8 - Revision ID (0nh)RO
7-0	Chip Revision Codealways reads 0nh
_	
Device	0 Offset 9 - Programming Interface (00h)RO
7-0	Interface Identifieralways reads 00h
Dovice	0 Offset A Sub Class Code (00h) PO
	0 Offset A - Sub Class Code (00h) RO
7-0	Sub Class Code reads 00 to indicate Host Bridge
Device	0 Offset B - Base Class Code (06h)RO
7-0	Base Class Code reads 06 to indicate Bridge Device
, 0	Dase class codereads to to maleate Bridge Bevice
Device	0 Offset D - Latency Timer (00h)RW
Specifie	es the latency timer value in PCI bus clocks.
7-3	Guaranteed Time Slice for CPUdefault=0
2-0	Reserved (fixed granularity of 8 clks) always read 0
	These bits are writeable but read 0 for PCI
	specification compatibility. The programmed value
	may be read back in Rx75[6-4] (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device 0 Offset E - Header Type (00h)RO				
7-0	Header Type Code reads 00: single function			
Device	0 Offset F - Built In Self Test (BIST) (00h)RO			
7	BIST Supportedreads 0: no supported functions			
6-0	Reserved always reads 0			

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 0 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (This Register) (Gr Aper Size) 3 2 1 RW RW RW RW RW RW RW 1M RWRWRWRWRWRW 0 2MRWRWRWRWRW 0 4M 0 8M RWRWRWRW 0 0 RWRWRWRW 0 16M RWRWRW 0 0 32M RWRW 0 0 0 64M 0 0 0 0 0 128M RW 0 0 0 0 0 256M

19-0 Reservedalways reads 00008

Note: The locations in the address range defined by this

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h)......R/W1

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

Device 0 Host Bridge Device-Specific Registers

These registers are normally programmed once at system initialization time.

V-Link Control

Device	0 Offset 40 – V-Link Specification ID (00h)RO
7-0	Specification Revision always reads 00
Device	0 Offset 41 – NB V-Link Capability (18h)RO
7-6	Reserved always reads 0
5	16-bit Bus Width SupportedRO
	0 Not Supporteddefault
	1 Supported
4	8-Bit Bus Width SupportedRO
	0 Not Supported
	1 Supporteddefault
3	4x Rate SupportedRO
	0 Not Supported
	1 Supporteddefault
2	2x Rate SupportedRO
	0 Not Supporteddefault
	1 Supported
1-0	Reserved always reads 0
ъ.	0.000 440 NDD 11.1.0
	0 Offset 42 – NB Downlink Command (88h)RW
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8
3-0	DnCmd Write Buffer Size (doublewords) def = 8
Device	0 Offset 44-43 – NB Uplink Status (8280h)RO
	UpCmd P2C Write Buffer Size (max lines) def = 8
	•
11-8	· F · · · · · · · · · · · · · · · · · ·
7-4	UpCmd Max Request Depth (0=1 UpCmd) . def = 8
3-0	Reserved always reads 0

Device	0 Offset 45 -NB V-Link Bus Timer (44h)RW
7-4	Timer for Normal Priority Requests from SB
	0000 Immediate
	0001 1*4 VCLKs
	0010 2*4 VCLKs
	0011 3*4 VCLKs
	0100 4*4 VCLKsdefault
	0101 5*4 VCLKs
	0110 6*4 VCLKs
	0111 7*4 VCLKs
	1000 8*4 VCLKs
	1001 16*4 VCLKs
2 0	1010 32*4 VCLKs
	1011 64*4 VCLKs
	11xx Own the bus for as long as there is a request
3-0	Timer for High Priority Requests from SB
	0000 Immediate
	0001 1*2 VCLKs
	0010 2*2 VCLKs
	0011 3*2 VCLKs
1	0100 4*2 VCLKs default
	0101 5*2 VCLKs
	0110 6*2 VCLKs
	0111 7*2 VCLKs
	1000 8*2 VCLKs
7	1001 16*2 VCLKs
	1010 32*2 VCLKs
	1011 64*2 VCLKs
	11xx Own the bus for as long as there is a request

Device	0 Offset 46 - NB V-Link Misc Control (00h)RW	Device	0 Offset 48 – NB/SB V-Link Configuration (18h)RW
7	Downstream High Priority	7	Reserved always reads 0
	0 Disable High Priority Down Commandsdef	6	Rest Bus Width Supported
	1 Enable High Priority Down Commands		0 Not Supporteddefault
6	Downlink Priority		1 Supported
	0 Treat Downlink Cycles as Normal Priority.def	5	16-bit Bus Width Supported
	1 Treat Downlink Cycles as High Priority		0 Not Supporteddefault
5-4	Combine Multiple STPGNT Cycles Into One V-		1 Supported
	Link Command	4	8-Bit Bus Width Supported
	00 Compatible, 1 command per V-Link cmddef		0 Not Supported
	01 2 commands per V-Link command		1 Supporteddefault
	10 3 commands per V-Link command	3	4x Rate Supported
	11 4 commands per V-Link command		0 Not Supported
3-2	V-Link Master Access Ordering Rules		1 Supported default
	00 High priority read, pass normal read (not pass	2	2x Rate Supported
	write)default	•	0 Not Supported default
	01 Read (high/normal) pass write (HR>LR>W)		1 Supported
	1x Read / write in order	1-0	Reservedalways reads 0
1-0	Reserved always reads 0	Davisa	0 Offset 40 SD V Link Conshility (19h) DO
Dovido	0 Offcot 47 V Link Control (00h) DW		0 Offset 49 – SB V-Link Capability (18h)RO
	0 Offset 47 – V-Link Control (00h)RW		Reserved always reads 0
7-3	Reserved always reads 0	5	16-bit Bus Width SupportedRO
2	Auto-Disconnect	K	0 Not Supporteddefault
	0 Disabledefault		1 Supported
	1 Enable	4	8-Bit Bus Width SupportedRO
1	V-Link Disconnect Cycle for HALT cycle		0 Not Supported
	0 Disabledefault	7 2	1 Supported
0	1 Enable	3	4x Rate SupportedRO
0	V-Link Disconnect Cycle for STPGNT Cycle		0 Not Supported
	0 Disabledefault		1 Supported default
	1 Enable	1	2x Rate Supported RO
			0 Not Supported
			1 Supported

Device	O Offset 4A – SB Downlink Status (88h)RO DnCmd Max Request Depth (0=1 DnCmd) . def = 8	Device 7	<u>0 Offset</u> 1394 H
3-0	DnCmd Write Buffer Size (doublewords) def = 8		0 1
D	0 Official (C AD CD U.P.) Common d (02001) DW		1 1
	0 Offset 4C-4B – SB Uplink Command (8280h). RW	6	LAN /
15-12 11-8	UpCmd P2C Write Buffer Size (max lines) def = 8 UpCmd P2P Write Buffer Size (max lines) def = 2		0 1
7-4	UpCmd Max Request Depth (0=1 UpCmd). def = 8	_	1 1
3-0	Reservedalways reads 0	5 4	Reserv
3-0	aiways icaus o	4	USB H 0 1
Device	0 Offset 4D – SB V-Link Bus Timer (44h)RW		1 1
7-4	Timer for Normal Priority Requests from SB	3	Reserv
	0000 Immediate	2	IDE H
	0001 1*4 VCLKs	-	0 1
	0010 2*4 VCLKs		1
	0011 3*4 VCLKs	1	AC97-
	0100 4*4 VCLKsdefault		0 1
	0101 5*4 VCLKs		1 1
	0110 6*4 VCLKs	0	PCI Hi
	0111 7*4 VCLKs		0 1
	1000 8*4 VCLKs		1
	1001 16*4 VCLKs	•	
	1010 32*4 VCLKs	<u>Device</u>	0 Offset
	1011 64*4 VCLKs	7	Upstre
2.0	11xx Own the bus for as long as there is a request		0 1
3-0	Timer for High Priority Requests from SB		1 1
	0000 Immediate	6-1	Reserv
	0001 1*2 VCLKs 0010 2*2 VCLKs	0	Down
	0010 2*2 VCLKs 0011 3*2 VCLKs		(Excep
	0100 4*2 VCLKsdefault		0 1
	0100 4 2 VCLKsdefault 0101 5*2 VCLKs		1 1
	0110 6*2 VCLKs		
	0111 7*2 VCLKs		
	1000 8*2 VCLKs		
	1001 16*2 VCLKs		
	1010 32*2 VCLKs		
	1011 64*2 VCLKs		
	11xx Own the bus for as long as there is a request		
	<i>C</i>		

ovica	∩ ∩ffc	et 4E – CCA Master Priority (00h)RW
7		High Priority
,	0	•
	1	High priority
6	_	/ NIC High Priority
Ü	0	•
	1	High priority
5	Rese	
4	USB	High Priority
	0	Low prioritydefault
	1	High priority
3	Rese	rvedalways reads 0
2	IDE	High Priority
		Low prioritydefault
		High priority
1		7-ISA High Priority
		Low prioritydefault
	1	High priority
0		High Priority
,		Low prioritydefault
	1	High priority
evice	0 Offs	et 4F – SB V-Link Misc Control (00h) RW
7	Upst	ream Command High Priority
0	0	Disable high priority up commands default
	1	Enable high priority up commands
6-1	Rese	rvedalways reads 0
0	Dow	n Cycle Wait for Up Cycle Write Flush
	(Exc	ept Down Cycle Post Write)
6	0	Disabledefault
	1	Enable

Host CPU Control

Device 0 Offset 50 - Request Phase Control (00h)RW

- CPU Hardwired IOQ (In Order Queue) Size....RO Default set from the inverse of the VAD2 (south bridge SA18) strap. E.g., this bit can be strapped 0 (strap pin pulled high) to restrict the chip to one level of IOO.
 - 0 1-Level (strap pin pulled high)
 - 1 8-Level (strap pin pulled low)

AGTL+ Pullups

Default set from the inverse of the VAD3 (south bridge SA19) strap.

- 0 Disable (strap pulled high)
- 1 Enable (strap pulled low)
- **Fast DRAM Access** 5
 - 0 Disabledefault
 - 1 Enable

4-0 Dynamic Defer Snoop Stall Count

(granularity = 2T, normally set to 01000b)

7	CPU Read DRAM Ready Speed Msb (See Bit-0)		
	0	Slow / Very Slow Ready default	
	1	Medium / Fast Ready	

<u>Device 0 Offset 51 – CPU Interface Basic Control (00h)RW</u>

Read Around Write

0 Disable......default

1 Enable

5 **DRO Control**

0 Non pipelined similar to VT8633...... default

1 Pipelined

CPU to PCI Read Defer

0 Disable default

1 Enable

Two Defer / Retry Entries

0 Disable.....default

Enable

Two Defer / Retry Entries Shared

Each entry is dedicated to 1 CPU default

1 Each entry is shared by 2 CPUs

PCI Master Pipelined Access

0 Disable......default

Enable

Recommended Settings for Rx51[7,0]

	1 Enable		
Ġ	0 CPU Read D	RAM Ready Speed	Lsb (See Bit-7)
	7 0 Ready	Speed	
	0 0 Slow		default
	0 1 Very S	Slow	
	1 0 Mediu	m	
	1 1 Fast		
	See also Rx	54[7-6] (CPU Free	quency), Rx69[7-6]
	(CPU / DRA)	M Frequency Selecti	on), RxDE[1] (DBI
	Enable / Dis	sable) and recomme	nded settings table
	below:		
	Recommended Settings for Rx51[7,0]		
	CPU / DRAM Speed	DBI On	DBI Off
	133 / 266 (DDR)	Fast or Very Slow	Fast or Slow
Y	100 / 266 (DDR)	Fast, Slow	Fast or Slow
	100 / 200 (DDR)	Medium, Slow	Medium or Slow
	133 / 133 (SDR)	Fast or Very Slow	Fast or Very Slow
	100 / 133 (SDR)	Fast or Very Slow	Medium or Slow
	100 / 100 (SDR)	Fast or Very Slow	Fast or Very Slow

Device	0 Offset 52 – CPU Interface Advanced Ctrl (00h)RW	Device	0 Offset 54 – CPU Frequency (00h) RW
7	CPU RW DRAM 0WS for Back-to-Back Pipeline	7-6	CPU Clock FrequencySet from VAD1-0 Straps
	Access		00 66 MHz
	0 Disabledefault		01 100 MHz
	1 Enable		10 Auto
6	HREQ High Priority		11 133 MHz
	0 Disabledefault	5	Auto Configure (ROMSIP) . Set from VAD6 Strap
	1 Enable		0 Disable (strap pulled low). Chip configuration
5	CPU HyperthreadingSet from VAD7 Strap		settings per on-chip defaults.
	0 Disable		1 Enable (strap pulled high). AGTL+ Drive
	1 Enable		settings and other chip configuration settings
4	Dynamic Snoop Stall for CPU FIFO Full		are stored in ROM, transferred from the south
	0 Disabledefault		bridge (via the V-Link bus), and loaded into
	1 Enable		the VT8703 automatically after system reset.
3	Write Retire Policy After 2 Writes		Refer to the VT8703 BIOS Porting Guide for
	0 Disabledefault		layout of the AutoConfigure settings in ROM
	1 Enable		and for recommended bit settings.
2	133 / 100 DADS Fast Conversion	4	SDRAM Burst Length of 8
	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
1	Consecutive Speculative Read	3	Reservedalways reads 0
	0 Disabledefault	2	PCI Master 8QW Operation
	1 Enable	K	0 Disabledefault
0	Speculative Read		1 Enable
	0 Disabledefault	1	AGP Capability Header Support
	1 Enable		0 Disabledefault
Device	0 Offset 53 – CPU Arbitration Control (02h) RW	,	1 Enable
7-4	Host Timer	0	Reserved always reads 0
3-0	BPRI Timer (units of 4 HCLKs) default $= 2$		
3-0	Di Ri Timei (units of 4 fields) default 2		
		1	
		,	
	>		

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies VT8751A BIOS porting guide for details).

Table 6. System Memory Map

_						o Disabic
Space DOS	Start 0	<u>Size</u> 640K	Address Range 00000000-0009FFFF	<u>Comment</u> Cacheable	3	1 Enable DQM Remova
VGA	640K	128K	000A0000-000BFFFF	Used for SMM	3	0 Disable
BIOS BIOS BIOS BIOS BIOS BIOS BIOS BIOS	768K 784K 800K 816K 832K	16K 16K 16K 16K 16K 16K 16K 16K	000C0000-000C3FFF 000C4000-000C7FFF 000C8000-000CBFFF 000CC000-000CFFFF 000D0000-000D3FFF 000D4000-000D7FFF 000D8000-000DBFFF 000DC000-000DFFFF 000E0000-000EFFFF	Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 2 Shadow Ctrl 3	2 1 0	1 Enable DQS Output 0 Disable 1 Enable Auto Precharg 0 Disable 1 Enable Write Recover 0 1T
BIOS	960K	64K	000F0000-000FFFFF	Shadow Ctrl 3		1 2T
Sys Bus Init	1MB D Top 4G-64K	64K	00100000-DRAM Top DRAM Top-FFFEFFF FFFEFFF-FFFFFFFFF	Can have hole 000Fxxxx alias		

Dev	ice (Offs	et 55 – DRAM Control (00h)	RW
	7	0WS	Back-to-Back Write to Differ	ent DDR Bank
		0	Disable	default
		1	Enable	
	6	Rese		always reads 0
	5	DQS	Input DLL Adjustment	
		0	Disable	default
		1	Enable	
	4	DQS	Output DLL Adjustment	
		0	Disable	default
		1	Enable	
	3	DQN	I Removal (Always Perform 4-	-Burst RW)
		0	Disable	default
	4	1	Enable	
	2	DQS	Output	
		0	Disable	default
70		1	Enable	
	1	Auto	Precharge for TLB Read or C	CPU WriteBack
		0	Disable	default
		1	Enable	
	0	Writ	e Recovery Time	
		0	1T	default
< 9		1	2T	

Device 0 O	<u>ffset 59-58 - DR</u>	AM MA N	Iap Type (2222h).RW

Device (<u> 0 Offset 59-58 - DRAM MA Map Type (2222h).RW</u>
15-13	Bank 5/4 MA Map Type (see table below)
12	Bank 5/4 1T Command Rate
	0 2T Commanddefault
	1 1T Command
11-9	Bank 7/6 MA Map Type (see table below)
8	Bank 7/6 1T Command Rate
	0 2T Commanddefault
	1 1T Command
7-5	Bank 1/0 MA Map Type (see table below)
7-5	Bank 1/0 MA Map Type (see table below)

4	Bank	1/0	1T	Command Rate
	_			

0	2T Command	default

1 1T Command

3-1 Bank 3/2 MA Map Type (see table below)

0 Bank 3/2 1T Command Rat	0	Bank 3/2	1T	Command	Rate
---------------------------	---	----------	-----------	---------	------

0 2T Cor	manddefault
----------	-------------

1T Command

Table 7. Device 0 Rx58 MA Map Type Encoding

000	<u>16Mb</u>	8-bit, 9-bit, 10-bit Column Address
001	64/128Mb	8-bit Column Addressdefault
010	64/128Mb	9-bit Column Address
011	64/128Mb	10/11-bit Column Address
100		-reserved-
101	256Mb	8-bit Column Address
110	<u>256Mb</u>	9-bit Column Address
111	<u>256Mb</u>	10/11-bit Column Address

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A - Bank 0 Ending (HA[31:24]) (01h)	RW
Offset 5B - Bank 1 Ending (HA[31:24]) (01h)	RW
Offset 5C - Bank 2 Ending (HA[31:24]) (01h)	RW
Offset 5D – Bank 3 Ending (HA[31:24]) (01h)	RW
Offset 5E – Bank 4 Ending (HA[31:24]) (01h)	RW
Offset 5F – Bank 5 Ending (HA[31:24]) (01h)	RW
Offset 56 – Bank 6 Ending (HA[31:24]) (01h)	RW
Offset 57 – Bank 7 Ending (HA[31:24]) (01h)	

BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 – DRAM Type (00h)...... RW

7 (T	C	D 1-	710
/-0	DRAM	Type	ior	Бапк	//0

- 5-4 DRAM Type for Bank 5/4
- 3-2 DRAM Type for Bank 3/2

DRAM Type for Bank 1/0

- 00 SDR SDRAM......default
- 01 -reserved- (do not program)
- 10 DDR SDRAM
- 11 -reserved-

Table 8. Memory Address Mapping Table

SDR / DDR SDRAM (x4 DRAMs supported by SDR only)

MA:	<u>14</u>	13	12	11	<u>10</u>	9	8	7	<u>6</u>	<u>5</u>	4	<u>3</u>	2	1	0	
16Mb		24		13	12	11	14	22	21	20	19	18	17	16	15	12 row
(000)			P	13	PC	24	23	10	9	8	7	6	5	4	3	10,9,8 col
64/128Mb)															x16 (14,8)
2K page	14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,8)
001		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	x8 (14,9)
4K page	14	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (14,9)
010		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	x4 (14,10)
8K page	14	26	14	13		24	23	22	21	20	19	18	17	16	15	x8 (14,10)
011		27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,11)
256Mb																
2K page	25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,8)
101		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	
4K page	26	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (15,9)
110		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	
8K page	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (15,10)
111		28	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (15,11)

		et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offs	et 63 - Shadow R	AM Contr
7-6		00h-CFFFFh	7-6	E000	0h-EFFFFh	
		Read/write disabledefault		00	Read/write disab	le
		Write enable		01	Write enable	
		Read enable		10	Read enable	
		Read/write enable		11	Read/write enabl	e
5-4		0h-CBFFFh	5-4	F000	0h-FFFFFh	
	00	Read/write disabledefault		00	Read/write disab	le
		Write enable		01	Write enable	
	10	Read enable		10	Read enable	
		Read/write enable		11	Read/write enabl	e
3-2		0h-C7FFFh	3-2	Mem	ory Hole	
	00	Read/write disabledefault		00	None	
	01	Write enable		01	512K-640K	
	10	Read enable		10	15M-16M (1M)	
		Read/write enable		_ 11	14M-16M (2M)	
1-0	C000	0h-C3FFFh	1	A000	0 / B0000 SMRA	M Direct A
	00	Read/write disabledefault		0	Enable	
	01	Write enable		1	Disable	
		Read enable	0	A000	0 / B0000 DRAM	Access
	11	Read/write enable		0	Enable	
Device	0 Offs	et 62 - Shadow RAM Control 2 (00h)RW		1	Disable	
7-6		00h-DFFFFh			SMI Mapping Co	ontrol
	00	Read/write disabledefault			Sivil Mapping Co	<u>SHITOI</u>
	01	Write enable		Bits	SMM	<u>N</u>
	10	Read enable		1-0		
	11	Read/write enable		$\frac{10}{00}$	DRAM DRA	
5-4	D800	0h-DBFFFh		01	DRAM DRA	
	00	Read/write disabledefault		10	DRAM PC	
	01	Write enable		11	DRAM DRA	
	10	Read enable		- 11	Blutti Blut	avi Dia
	11	Read/write enable				
3-2	D400	0h-D7FFFh	/			
	00	Read/write disabledefault				
	01	Write enable				
	10	Read enable				
	11	Read/write enable				
1-0	D 000	0h-D3FFFh				
	00	Read/write disabledefault				
	01	Write enable				
	10	Read enable				
	11	Read/write enable				

Device	0 Offset 64 - DRAM Timing for All Banks (E4h)RW	Device	0 Offset 67 – DDR Stro
7	Precharge Command to Active Command Period		DDR:
	$0 T_{RP} = 2T$	7-6	CS Early Clock Select
	1 $T_{RP} = 3T$ default	5-0	DQS Input Delay
6	Active Command to Precharge Command Period		(if Rx66[7]=0, read DI
	$0 T_{RAS} = 5T$		
	1 $T_{RAS} = 6T$ default		
5-4	CAS Latency		SDR:
	<u>SDR</u> DDR	7-5	Reserved
	00 <u>1T</u> -	4	MD Latch Clock Selec
	01 2T 2T		0 Internal clock
	10 3T 2.5Tdefault		 External feedbac
	11 - 3T	3	Reserved
3	Reserved always reads 0	2-0	MD Latch Delay
2	ACTIVE to CMD		
_	0 2T	Davis	0 Offices (O DDD Care)
	1 3Tdefault		0 Offset 68 – DDR Stro
1-0	Bank Interleave	7-0	DDR DQS Output Del
	00 No Interleavedefault		
	01 2-way	2 6	
	10 4-way		
	11 Reserved		
	For 16Mb SDRAMs bank interleave is always 2-way		
Dovico	0 Offset 65 - DRAM Arbitration Timer (00h) RW		
7-4	AGP Timer (units of 4 MCLKs) default = 0		
3-0	CPU Timer (units of 4 MCLKs) default = 0	7	
3-0	CT C Timer (units of 4 WicERS) default 0		
Device	0 Offset 66 - DRAM Arbitration Control (00h)RW		
7	SDR – Feedback Clock Select		
	DDR - DQS Input Delay Setting		
	0 Auto (Rx67 reads DLL calibration result)def	7	
	1 Manual (Rx67 reads DQS input delay)	7	
6	DRAM Access Timing		
	0 2Tdefault		
	1 3T (Set this bit for 133 MHz DRAM clock)		
5-4	Arbitration Parking Policy		
	00 Park at last bus ownerdefault		
	01 Park at CPU		
	10 Park at AGP		
	11 1		

Device	<u> 0 Offset 67 – DDR Strobe Input Delay (00h) RW</u>
	DDR:
7-6	CS Early Clock Selectdefault = 0
5-0	DQS Input Delay default = 0
	(if Rx66[7]=0, read DLL calibration result)
	CDD.
	SDR:
7-5	Reserved always reads 0
4	MD Latch Clock Select
	0 Internal clockdefault
	1 External feedback clock
3	Reservedalways reads 0
2-0	MD Latch Delay
Device	0 Offset 68 - DDR Strobe Output Delay (00h) RW
7-0	DDR DQS Output Delay default = 0
	X .

11 -reserved-

AGP / CPU Priority (units of 4 MCLKs)

3-0

Device	0 Offset 69 – DRAM Clock Select (00h)RW	Device 0 Offset 6A - Refresh Counter (00h)RW
7	CPU Operating Frequency Faster Than DRAM	7-0 Refresh Counter (in units of 16 MCLKs)
	0 CPU Same As or Equal to DRAMdefault	00 DRAM Refresh Disabled default
	1 CPU Faster Than DRAM by 33 MHz	01 32 MCLKs
6	DRAM Operating Frequency Faster Than CPU	02 48 MCLKs
U	0 DRAM Same As or Equal to CPUdefault	03 64 MCLKs
	DRAM Faster Than CPU by 33 MHz	04 80 MCLKs
	1 DRAW Paster Than CTO by 33 WITZ	05 96 MCLKs
	<u>Bits</u>	03 90 MCLKS
	7-6 <u>CPU / DRAM</u>	The american develop is the desired assurb as of 16
	10 100 / 66	The programmed value is the desired number of 16-
	00 100 / 100default	MCLK units minus one.
	01 100 / 133	Device 0 Offset 6B - DRAM Arbitration Control (10h) RW
	01 100 / 133	7 Fast Read to Write Turn-around
5	S1 Resume	0 Disabledefault
3	0 Compatible default	
	1 Enhanced	1 Enable
4		6 Page Kept Active When Cross Bank
4	DRAM Controller Queue Not Equal to 4	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	5 Burst Refresh
3	DRAM 8K Page Enable	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	4 CKE Function
2	DRAM 4K Page Enable	0 Disable
	0 Disabledefault	1 Enabledefault
	1 Enable	3 HA14/HA22 Swap
1	DIMM Type	0 Normal default
	0 Unbuffereddefault	1 Swap to improve performance
	1 Registered	2-0 SDRAM Operation Mode Select
0	Multiple Page Mode	000 Normal SDRAM Mode
	0 Disabledefault	001 NOP Command Enable
	1 Enable	010 All-Banks-Precharge Command Enable
		(CPU-to-DRAM cycles are converted
		to All-Banks-Precharge commands).
		011 MSR Enable
		CPU-to-DRAM cycles are converted to
		commands and the commands are driven on
		MA[14:0]. The BIOS selects an appropriate
		host address for each row of memory such that
		the right commands are generated on
		MA[14:0].
		100 CBR Cycle Enable (if this code is selected,
		CAS-before-RAS refresh is used; if it is not
		selected, RAS-Only refresh is used)

101 Reserved11x Reserved

Device	0 Offse	et 6C - DRAM Drive Control 1 (00h)RW
7-6	SDR	AM A Drive – SRASA/SCASA/SWEA, MAA
	00	Lowestdefault
	01	
	10	
	11	Highest
5-4	SDR	AM B Drive – SRASB/SCASB/SWEB, MAB
	00	Lowestdefault
	01	
	10	
	11	Highest
3-2	DDR	DQS Drive
	00	Lowestdefault
	01	
	10	
	11	Highest
1-0	MD/I	MECC/DQM/CKE Early Clock Select
	00	Latestdefault
	01	
	10	
	11	Earliest

Note: Refer to the VT8751A BIOS Porting Guide for SDRAM configuration algorithms and recommended settings for these bits for typical memory system configurations.

Note: Refer SDRAM confi for these bits for the bits for th

Device	Offset 6D – DRAM Drive Control	2 (00h) RW
7-6	Early Clock Select for SCMD, MA	Output (for 1T
	Command)	
	00 Latest	default
	01	
	10	
	11 Earliest	
5-4	DQM Drive	
	00 Lowest	default
	01	
	10	
	11 Highest	
3-2	CS# Drive	
	00 Lowest	default
	01	
	10	
	11 Highest	
1-0	Memory Data Drive (MD, MECC)	
	00 Lowest	default
	01	
7	10	
	11 Highest	

Note: Refer to the VT8751A BIOS Porting Guide for SDRAM configuration algorithms and recommended settings for these bits for typical memory system configurations.

Device 0 Offset 6E - ECC Control (00h)RW

- 7 ECC / EC Mode Select
 - 0 ECC Checking and Reporting.....default
 - 1 ECC Checking, Reporting, and Correcting
- 6 Perform Read-Modify-Write for Partial Write
 - 0 Disabledefault
 - 1 Enable
- 5 Enable SERR# on ECC / EC Multi-Bit Error
 - 0 Don't assert SERR# for multi-bit errorsdef
 - 1 Assert SERR# for multi-bit errors
- 4 Enable SERR# on ECC / EC Single-Bit Error
 - 0 Don't assert SERR# for single-bit errorsdef
 - 1 Assert SERR# for single-bit errors
- 3 ECC / EC Enable Bank 7/6 (DIMM 3)
 - 0 Disable (no ECC or EC for banks 7/6)...default
 - 1 Enable (ECC or EC per bit-7)
- 2 ECC / EC Enable Bank 5/4 (DIMM 2)
 - 0 Disable (no ECC or EC for banks 5/4)...default
 - 1 Enable (ECC or EC per bit-7)
- 1 ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- 0 ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-3 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-3 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-3 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 3-0	$\underline{\mathbf{RMW}}$	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1_	Yes	Yes	Yes

Device	0 Offset 6F - ECC Status (00h)RWC
7	Multi-bit Error Detected write of '1' resets
6-4	Multi-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the multi-bit error.
3	Single-bit Error Detected write of '1' resets
2-0	Single-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the single-bit error.
en	

Table 9. DIMM Module Configuration

Rx6B	Rx6E	Rx6E	Rx55				
[4]	[3-0]	[6]	[3]	DIMM	MECC	DQM	DQS#
CKE	ECC	RMW	No	Module	[7-0]	[8-0]	[8-0]
<u>Ena</u>	<u>Ena</u>	<u>Ena</u>	<u>DQM</u>	Configuration	<u>Pins</u>	<u>Pins</u>	<u>Pins</u>
1	1	1	1	DDR Only x4 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
1	1	0	1	DDR Only x8 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
1	0	0	0	DDR Only x8 no ECC	CKE[7-0]	DQM[7-0]	DQS[7-0]#
0	0	0	0	184-Pin DDR/SDR Mix	CKE[7-0]	DQM[8-0]	DQS[8-0]#
1	1	X	0	168-Pin SDR Only	MECC[7-0]	DQM[8-0]	CKE[7-0]
1	0	0	1	2 DDR + 2 SDR (SDR Installed)	CKE[7-0]	-	DQS[7-0]#
1	0	0	0	2 DDR + 2 SDR (DDR Installed)	CKE[7-0]	DQM[7-0]	DQS[7-0]#

PCI Bus Control

These registers are normally programmed once at system initialization time.

Device	0 Offs	et 70 - PCI Buffer Control (00h)RW
7	CPU	to PCI Post-Write
	0	Disabledefault
	1	Enable
6	Rese	rvedalways reads 0
5-4		Master to DRAM Prefetch
	00	Always prefetchdefault
	x1	Never prefetch
	10	Prefetch only for Enhance command
3-2	Reser	-
1	Delay	Transaction
	0	Disabledefault
	1	Enable
0	Rese	rved always reads 0
Device	0 Offs	et 71 - CPU to PCI Flow Control (48h) RWC
7		StatusRWC
	0	No retry occurreddefault
	1	Retry occurred
6	Retry	Timeout Action
	0	Retry forever (record status only)
	1	Flush buffer or return FFFFFFFh for reads
		default
5-4	Retry	Count and Retry Backoff
	00	Retry 2 times, backoff CPUdefault
	01	Retry 16 times
	10	Retry 4 times
	11	Retry 64 times
3	PCI 1	Burst
	0	Disable
	1	Enabledefault
2	Rese	
1	Com	patible Type#1 Configuration Cycles
	0	Disable (fixed AD31)default
	1	Enable
0		L Control
	0	AD11, AD12default

RW	Device	0 Offse	et 73 - PCI Master Control (00h)RW
	7	Reser	
ault	6	PCI N	Master 1-Wait-State Write
		0	Zero wait state TRDY# response default
ls 0		1	One wait state TRDY# response
	5	PCI N	Master 1-Wait-State Read
ault		0	Zero wait state TRDY# response default
		1	One wait state TRDY# response
	4	WSC	#
ls 0		0	Disabledefault
	4	1	Enable
ault	3-1	Reser	
	0	PCI N	Master Broken Timer Enable
ls 0		0	Disabledefault
va		1	Enable. Force into arbitration when there is no
<u>VC</u>			FRAME# 16 PCICLK's after the grant.
VC	7	5	
ault	K		
		D	
			•.4
ault			
11.			
ault			
	7		

1 AD30, AD31

Device 0 Offset 75 - PCI Arbitration 1 (00h)RW **Arbitration Mode** 0 REQ-based (arbitrate at end of REQ#) ..default 1 Frame-based (arbitrate at FRAME# assertion) Latency Timer.....read only, reads Rx0D bits 2:0 6-4 Reserved always reads 0 2-0 **PCI Master Bus Time-Out** (force into arbitration after a period of time) 000 Disabledefault 001 1x16 PCICLKs 010 2x16 PCICLKs 011 3x16 PCICLKs 100 4x16 PCICLKs 111 7x16 PCICLKs

5 - PCI Arbitration 1 (00h)RW		0 Offset 76 - PCI Arbitration 2 (00h)RV
on Mode Q-based (arbitrate at end of REQ#)default	7	I/O Port 22 Access 0 CPU access to I/O address 22h is passed on t
rime-based (arbitrate at FRAME# assertion) Fimer read only, reads Rx0D bits 2:0 always reads 0		the PCI bus
ter Bus Time-Out	6	Reservedalways reads
o arbitration after a period of time)	5-4	Master Priority Rotation Control
sabledefault	J- 4	00 Disabledefau
16 PCICLKs		01 Grant to CPU after every PCI master grant
6 PCICLKs		10 Grant to CPU after every 2 PCI master grants
16 PCICLKs		11 Grant to CPU after every 3 PCI master grants
16 PCICLKs		Setting 01: the CPU will always be granted access
TO T CICERS		after the current bus master completes, no matter how
16 PCICLKs		many PCI masters are requesting.
TO T CICEIU		Setting 10: if other PCI masters are requesting durin
		the current PCI master grant, the highest priority
		master will get the bus after the current master
		completes, but the CPU will be guaranteed to get the
	2	bus after that master completes.
		Setting 11: if other PCI masters are requesting, the
		highest priority will get the bus next, then the next
3	X	highest priority will get the bus, then the CPU wi get the bus.
		In other words, with the above settings, even
		multiple PCI masters are continuously requesting th
		bus, the CPU is guaranteed to get access after ever
	7	master grant (01), after every other master grant (10
		or after every third master grant (11).
	3-2	Select REQn# to REQ4# mapping
	3-2	00 REQ4#defau
		01 REQ0#
		10 REQ1#
		11 REQ2#
	1	
	1 0	Reserved always reads
	U	REQ4# is High Priority Master 0 Disabledefau
		1 Enable
		1 Eliable

REQ4# is High Priority Master			
Reser	rvedalways re	eads 0	
11	REQ2#		
10	REQ1#		
01	REQ0#		
00	REQ4#d	efault	

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the P4M266A.

This scheme is shown in the figure below.

Figure 4. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the P4M266A contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device (<u>U Otts</u>	<u>et 83-8</u>	80 - GART/TL	<u> B Control (000000000h) Ry</u>
31-16	Rese	rved		always reads 0
15-8	Rese	rved (t	est mode statu	s)RO
7	Flush	Page	TLB	
	0	Disab	ole	default
	1	Enab	le	
6-0	Rese	rved		always reads 0
M E				C 1: - A 4

Note: For any master access to the Graphics Aperture range, snoop will not be performed.

Device 0 Offset 84 - Graphics Aperture Size (00h)...... RW

/-0	Graphics Apertur	e Size
	11111111 1M	1111000 16M
	11111110 2M	1110000 32M

11111100 4M 11000000 64M 11111000 8M 10000000 128M

00000000 256M

Offset 8	<u> 85 – Write Policy (00h)</u>	RW
7	Reserved	always reads 0
6-4	Write Request Limit	default = 0
3	Reserved	always reads 0
	Write Request Base	

Offset 8B-88 - GA Translation Table Base (00000000h) RW

31-12 Graphics Aperture Translation Table Base.

Pointer to the base of the translation table in system memory used to map addresses in the aperture range (the pointer to the base of the "Directory" table).

11-2 Reservedalways reads 0
1 Graphics Aperture Enable

0 Disable.....default

1 Enable

Note: To disable the Graphics Aperture, set this bit to 0 and set all bits of the Graphics Aperture Size to 0. To enable the Graphics Aperture, set this bit to 1 and program the Graphics Aperture Size to the desired aperture size.

0 DRAM Power Reduction

- 0 Disable......default
- 1 Enable (use only with 1 bank DRAM module)

AGP Control

Device	0 Offset A3-A0 - AGP Capability Identifier	Device	e 0 Offset AC - AGP Control (00h)RW
(0020C)		7	AGP DisableRO
31-24	Reservedalways reads 00	•	0 Disabledefault
	Major Specification Revision always reads 0010		1 Enable
20 20	Major rev # of AGP spec to which device conforms		This bit is latched from MA9 at the rising edge of
19-16	Minor Specification Revision always reads 0000		RESET#.
17-10	Minor rev # of AGP spec to which device conforms	6	AGP Read Synchronization
15_8	Pointer to Next Item always reads C0h (last item)	U	0 Disable
7-0	AGP ID (always reads 02 to indicate it is AGP)		1 Enable
7-0	(always leads 02 to indicate it is AOI)	5	AGP Read Snoop DRAM Post-Write Buffer
Device	0 Offset A7-A4 - AGP Status (1F000207h)RO	3	0 Disabledefault
	Maximum AGP Requestsalways reads 1F		1 Enable
01 21	Max # of AGP requests the device can manage (32)	4	
23-10	Reserved	4	GREQ# Priority Becomes Higher When Arbiter is
9	Supports SideBand Addressing always reads 1		Parked at AGP Master
8-6	Reserved always reads 0		0 Disabledefault
5	4G Supported		1 Enable
4	Fast Write Supported (can be written at RxAE[4]	3	2X Rate Supported
3	7 -		0 Disabledefault
_	Reserved always reads 0	7	1 Enable
2	4X Rate Supportedalways reads 1	2	Fence / Flush
1	2X Rate Supportedalways reads 1		0 Disable - low priority requests may be
0	1X Rate Supported always reads 1		executed out of orderdefault
			1 Enable – all normal priority AGP operations
			will be executed in order
Device	0 Offset AB-A8 - AGP Command (00000000h)RW	1	AGP Grant Parking Policy
_	Request Depth (reserved for target) always reads 0s		0 Non-Parking Grant – if GFRM# or GPIPE# is
	Reservedalways reads 0s		asserted, GGNT# is deasserted default
9	SideBand Addressing Enable		1 Parking Grant – if GFRM# or GPIPE# is
9			asserted, GGNT# is not de-asserted until
			GREQ# is deasserted or timeout
0	1 Enable	0	AGP to PCI Master or CPU to PCI Turnaround
8	AGP Enable		Cycle
	0 Disabledefault		0 2T or 3T Timingdefault
	1 Enable		1 1T Timing
7-6	Reservedalways reads 0s		C
5	4G Enable		
	0 Disabledefault		
	1 Enable		
4	Fast Write Enable		
	0 Disabledefault		
	1 Enable		
3	Reservedalways reads 0s		
2	4X Mode Enable		
	0 Disabledefault		
	1 Enable		
1	2X Mode Enable		
	0 Disabledefault		
	1 Enable		
0	1X Mode Enable		
	0 Disabledefault		
	1 Enable		

AGP Control (continued)

Device	0 Offset AD – AGP Miscellaneous Control (02h)RW	Device	0 Offset B1 – AGP Drive Strength (63h)RW
7	AGP Performance Improvement	7-4	AGP Output Buffer Drive Strength N Ctrldef=6
	0 Disabledefault	3-0	AGP Output Buffer Drive Strength P Ctrldef=3
	1 Enable		
6	Pipe Mode Performance Improvement		
	0 Disabledefault	Device	0 Offset B2 – AGP Pad Drive & Delay Ctrl (08h)RW
	1 Enable	7	GD/GDS/GDS#/GBE Pad Control default = 0
5	Input on AGP GD / GBE Pads		SA / SBS = GD / GBE / GDS
	0 Disabledefault		0 VDDQ=1.5V: Normal Normal
	1 Enable		VDDQ=3.3V: Delayed Normal
4	AGP Performance Improvement		1 VDDQ=1.5V: Normal Delayed
	0 Disabledefault		VDDQ=3.3V Delayed Delayed
	1 Enable	6	External AGP Pad Power Down
3-0	AGP Data Phase Latency Timer default = 02h		0 Disabledefault
	·		1 Enable
Device	0 Offset AE – AGP Miscellaneous Control (00h)RW	5	GDS/GDS# Skew Relative to GD/GBE#
7-6	Reserved always reads 0	200	(see bit-2)
5	4G Supported	4	GD[31:16] Output Stagger Delay
	0 4G not supporteddefault		0 No delay default
	1 4G supported	· .	1 Delay GD[31:16] by 1 ns
4	Fast Write Supported	3	GD/GBE#, GDS, GDS# Slew Rate Control
	0 Fast Write not supporteddefault		0 Disable
	1 Fast Write supported		1 Enabledefault
3	Reserved always reads 0	2	GDS/GDS# Skew Relative to GD/GBE#
2	4X Rate Supported		(part of a 2-bit field; this bit is lsb & bit-5 is msb)
	0 Disabledefault	,	00 GDS/GDS# early by 150 pS default
	1 Enable		01 GDS/GDS# center of GD
1-0	Reserved always reads 0		10 GDS/GDS# lags 150 pS from center of GD
ъ.	A Off A DO A CD D A C A A L (CA) A CO L DAY		10 GDS/GDS# lags 300 pS from center of GD
	0 Offset B0 – AGP Pad Control / Status (8xh) RW	1	AGP Bus Voltage
7	AGP 4x Strobe VREF Control		0 1.5Vdefault
	This bit is valid only when $RxA8[2] = 1$ (4x transfer		1 3.3V
	mode enabled), otherwise, STB VREF is AGPVREF.	0	GDS Output Delay
	0 STB VREF is STB# and vice versa		0 No delay default
	1 STB VREF is AGPVREFdefault		1 Delay GDS by 400 ps
	The reference voltage is also determined by setting of		(GDS & GDS# will be delayed 1 ns more if bit- $4 = 1$)
	RxB2[1] (AGP Bus Voltage):		
	AGP Voltage This Bit Strobe Reference Voltage		
	3.3V don't care AGPVREF = 0.4×3.3 V	Device	0 Offset B3 – AGP Strobe Drive Strength (63h) RW
	1.5V 1 AGPVREF = $0.5 \times 1.5 \text{V}$		
_	1.5V 0 STB / STB#	7-4 3-0	AGP Strobe Output Drive Strength N Ctrldef=6
6	AGP 4x Strobe & GD Pad Drive Strength	3-0	AGP Strobe Output Drive Strength P Ctrldef=3
	0 Drive strength set to compensation circuit		
	defaultdefault		
	1 Drive strength controlled by RxB1[7-0]		
5-3	AGP Compensation Circuit N Control Output.RO		
2-0	AGP Compensation Circuit P Control Output.RO		

V-Link Control

Dania	0 Officet D4 VI I in la ND Companyation Ctul (00k) DW	Darrias	Office DO VIII CD
	0 Offset B4 – V-Link NB Compensation Ctrl (00h)RW		Offset B8 – V-Link SB C
7-6	V-Link Autocomp Output Value always reads 0	7-6	V-Link Autocomp Outpu
5	Pullup Compensation Selection	5	Pullup Compensation Se
	0 Auto Comp (use values in bits 7-6)default		0 Auto Comp (use va
	1 Manual Comp (use values in bits 3-2)		1 Manual Comp (use
4	Pulldown Compensation Selection	4	Pulldown Compensation
	0 Auto Comp (use values in bits 7-6)default		0 Auto Comp (use va
	1 Manual Comp (use values in bits 1-0)		1 Manual Comp (use
3-2	Pullup Compensation Manual Setting $def = 0$	3-2	Pullup Compensation Ma
1-0	Pulldown Compensation Manual Setting $def = 0$	1-0	Pulldown Compensation
Device	0 Offset B5 – V-Link NB Drive Control (00h)RW	Device (Offset B9 – V-Link SB D
7-6	NB V-Link Strobe Pullup Manual Setting	7-6	SB V-Link Strobe Pullup
5-4	NB V-Link Strobe Pulldown Manual Setting	5-4	SB V-Link Strobe Pulldo
3	Reservedalways reads 0		Reserved
2	Reduce FIFO Depth	0	SB V-Link Slew Rate Co
-	0 Disabledefault		0 Disable
	1 Enable (use this setting for 133 FSB)		1 Enable
1	Assert HREQ to DRAMArbiter to Hold Bus	,	Tilable
1	0 Disabledefault		.60'
	1 Enable	lk'	
0	NB V-Link Slew Rate Control		
U	0 Disabledefault		
	1 Enable		
	1 Eliable		
Device	0 Offset B6 – Read / Write Schedule Timer (00h)RW	7	
7-4	Host CPU Bandwidth Timer def = 0		
3-0	DRAM Bandwidth Timer def = 0		
<u>Device</u>	0 Offset B7 – Read / Write Schedule Ctrl (00h).RW		
7	Fast Zero-Length and Read/Writeback Response	,	
	0 Disabledefault		
	1 Enable		
6	Reserved (Program to 1) default = 0		
5	North Bridge Snoop Stall		
	0 Enabledefault		
	1 Disable		
4	North Bridge BNR Assertion		
	0 Enabledefault		
	1 Disable		
3	Reserved (Program to 1) default = 0		
2	Host Bandwidth Limited (see RxB6[7-4])		
	0 Disabledefault		
	1 Enable		
1	DRAM Bandwidth Limit (see RxB6[3-0])		
	0 Disabledefault		
	1 Enable		
0	CPU-to-Memory Write to Read Speculative		
	0 Disabledefault		
	1 Enable		

evice	0 Offset B8 – V-Link SB Compensation Ctrl (00h)RW
7-6	V-Link Autocomp Output Value always reads 0
5	Pullup Compensation Selection
	0 Auto Comp (use values in bits 7-6) default
	1 Manual Comp (use values in bits 3-2)
4	Pulldown Compensation Selection
	0 Auto Comp (use values in bits 7-6) default
	1 Manual Comp (use values in bits 1-0)
3-2	Pullup Compensation Manual Setting def = 0
1-0	Pulldown Compensation Manual Setting $def = 0$
· • ·	O Office Poly V. Link CD Doing Control (001) DVV
evice	0 Offset B9 – V-Link SB Drive Control (00h) RW
7-6	SB V-Link Strobe Pullup Manual Setting
5-4	SB V-Link Strobe Pulldown Manual Setting
3-1	Reservedalways reads 0
0	SB V-Link Slew Rate Control
	0 Disabledefault
	1 Euchle

DRAM Interface Control

Device	0 Offset BE	- MECC Drive Strength (00h)RW
7-6	MECC Di	rive Strength default = 0
5-0		always reads 0
Device	0 Offset BF	- DRAM Pad Toggle Reduction (00h)RW
7	MA / SCN	ID Pin Toggle Reduction
	0 Disa	abledefault
	1 Ena	ble (MA and S command pins won't
	togg	gle if not accessed)
6	Slew Rate	Control for MA / SCMD Group A
	0 Disa	abledefault
	1 Ena	ble
5	Slew Rate	Control for MA / SCMD Group B
	0 Disa	abledefault
	1 Ena	ble
4	Reserved	always reads 0
3	DIMM #3	MAA / MAB Select
	0 MA	Adefault
	1 MA	В
2	DIMM #2	MAA / MAB Select
	0 MA	Adefault
	1 MA	В
1	DIMM #1	MAA / MAB Select
	0 MA	Adefault
	1 MA	В
0	DIMM #0	MAA / MAB Select
	0 MA	Adefault
	1 MA	В

Power Management

Device	<u> 0 Offset C0 – Power Management Capability IDRO</u>
7-0	Capability IDalways reads 01h
Device	0 Offset C1 – Power Management New Pointer . RO
7-0	Next Pointer
Device	0 Offset C2 – Power Mgmt Capabilities IRO
7-0	Power Management Capabilities always reads 02h
Device	0 Offset C3 – Power Mgmt Capabilities II RO
7-0	Power Management Capabilities always reads 00h
Device	0 Offset C4 - Power Mgmt Control / Status RW
7-2	Reservedalways reads 0
1-0	Power State
	00 D0default
-67	01 -reserved-
	10 -reserved-
	11 D3 Hot
Device	0 Offset C5 – Power Management StatusRO
7-0	Power Management Statusalways reads 00h
Device	0 Offset C6 - PCI-to-PCI Bridge Support Ext RO
7-0	P2P Bridge Support Extensions always reads 00h
Device	0 Offset C7 – Power Management DataRO
7-0	Power Management Data always reads 00h

ECC Error Control

Device 0 Offset D3-D0 – ECC Error Address ((xxh) RO
Device 0 Offset D4 – ECC Error Syndrome (x	xh)RO

Lowest Priority Mode Control

Device	0 Offset D7 -	- Lowest Priority Mode Ctrl (00h). RW
7-4	Reserved	always reads 0
3	Lowest Pric	ority Mode
	0 Disal	oledefault
	1 Enab	le (set when supporting hyperthreading)
2-0	Encoded La	owest-Priority-CPII LDR

AGTL+ I/O Control

Device	0 Offset D8 – Host Address (2x) Pullup DriveRW	Device	0 Offset DD – AGTL+ I/O Control (00h) RW
7	Reserved always reads 0	7	AGTL+ 4x Input Increase Delay to Filter Noise
6-4	Strobe Pullup Drive (HAS#) default = 0		0 Disabledefault
3	Reserved always reads 0		1 Enable
2-0	Address Pullup Drive (HA,HREQ#) default = 0	6	AGTL+ 2x Input Increase Delay to Filter Noise
			0 Disabledefault
Device	0 Offset D9 – Host Address (2x) Pulldown DriveRW		1 Enable
7	Reserved always reads 0	5	AGTL+ Slew Rate Control
6-4	Strobe Pulldown Drive (HAS#) default = 0		0 Disabledefault
3	Reserved always reads 0		1 Enable
2-0	Address Pulldown Drive (HA,HREQ#) . $default = 0$	4	Reserved always reads 0
Dovico	A Offset DA Host Data (Av) Pullup Drive DW	3	Input Pullup
	0 Offset DA – Host Data (4x) Pullup DriveRW		0 Disabledefault
7	Reserved always reads 0		1 Enable
6-4	Strobe Pullup Drive (HDS,HDS#) default = 0	2	AGTL+ Strobe Internal Termination Pullups
3 2-0	Reserved always reads 0 Address Pullup Drive (HD,HDBI#) default = 0		0 Disabledefault
2-0	Address Punup Drive (HD, HDB1#) deraunt = 0	2	1 Enable
Device	0 Offset DB - Host Data (4x) Pulldown Drive RW	1	AGTL+ Data Internal Termination Pullups
7	Reservedalways reads 0		0 Disabledefault
6-4	Strobe Pulldown Drive (HDS,HDS#) default = 0		1 Enable
3	Reserved	0	AGTL+ Dynamic Compensation
2-0	Address Pulldown Drive (HD,HDBI#) default = 0		0 Disabledefault
			1 Enable
Note:	Refer to the VT8751A BIOS Porting Guide for	Device	0 Offset DE – AGTL+ Comp Status (00h) RW
	nended settings for these bits for typical system	7	Select AutoCompensation Drive
configu	rations.	,	Select AutoCombensation Drive
Device	0 Offset DC – Output Delay / Stagger Control RW	0	0 Disabledefault
	0 Offset DC – Output Delay / Stagger ControlRW		0 Disable
Device 7-6	Data / Strobe Relative Delay	6-4	0 Disable
	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault	6-4	0 Disable
	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay	6-4	0 Disable
	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec	/	0 Disable
7-6	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay − 150 psec 11 Data delay = strobe delay − 300 psec	/	0 Disable
	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger	3	0 Disable
7-6	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault	3	0 Disable
7-6	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay − 150 psec 11 Data delay = strobe delay − 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	3	0 Disable
7-6	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault	2	0 Disable
7-6	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	2	0 Disable
7-6	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	2	0 Disable
7-6 5 4	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delaydefault 1 1 nsec delay	3 2 1 0	0 Disable
7-6 5 4	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delaydefault 1 1 nsec delay HDS / HDS# Output Extra Delay	3 2 1 0 Device	0 Disable
7-6 5 4	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	3 2 1 0 Device	0 Disable
7-6 5 4	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	3 2 1 0 Device 7-4	0 Disable
7-6 5 4	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delay	3 2 1 0 Device	0 Disable
7-6 5 4 3-2	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delaydefault 1 1 nsec delay HDS / HDS# Output Extra Delay 00 No delaydefault 01 150 psec delay 10 300 psec delay 11 450 psec delay HAS # Output Extra Delay 00 No delay	3 2 1 0 Device 7-4	0 Disable
7-6 5 4 3-2	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delay	3 2 1 0 Device 7-4	0 Disable
7-6 5 4 3-2	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	3 2 1 0 Device 7-4	0 Disable
7-6 5 4 3-2	Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delay	3 2 1 0 Device 7-4	0 Disable

Frame Buffer and High Memory Control

Device	0 Offset E0 – CPU Direct Access FB Base (00h) RW
7-1	CPU Direct Access FB Base Address[27:21] . def=0
0	CPU Direct Access Frame Buffer
	0 Disabledefault
	1 Enable
Device	0 Offset E1 – CPU Direct Access FB Size (00h) RW
7	Internal VGA
	0 Disabledefault
	1 Enable
6-4	Frame Buffer Size
	000 Nonedefault
	001 Reserved
	010 Reserved
	011 8MB
	100 16MB
	101 32MB
	11x -reserved-
3-0	CPU Direct Access FB Base Address[31:28] . def=0
Device	0 Offset E2 – VGA Arbitration Timer 1 (00h) RW
7-4	Timer to Promote High Priority Display def = 0
3-0	Timer for Promoted High Priority Display, $def = 0$
The fiel	ds above are defined in units of 16 MCLKs.
See note	e under VGA Timer 2 description).
Device	0 Offset E3 – SMA Control (00h)RW
7-5	Reservedalways reads 0
4	Frame Buffer Address Conversion
	0 Disabledefault
	1 Enable
	Setting this bit further optimizes the MA table for
	VGA frame buffer accesses according to the DRAM
	page size in use. Setting this bit should improve
	VGA performance especially in tiling address mode.
	This but cannot be used at the same time as CPU
	Direct Access FB mode. If used, this bit must be set
	before enabling the internal VGA to prevent display
	corruption.
3	Frame Buffer Page Close Prediction in Tiling
	Address Mode
	0 Disabledefault
	1 Enable
	This feature automatically closes the FB DRAM
	pages that are no longer needed in tiling address
	mode. This bit can be set / cleared any time. This
	feature will show maximum performance increase if
	frame buffer address conversion is also enabled.

Device	0 Offs	<u>et E4 – I</u>	Low Top Address Low (00h) RW
7-4	Low	Top Add	dress Lowdefault = 0
3-0	DRA	M Gran	ularity
	0	16M	Total DRAM less than 4G default
	1	32M	Total DRAM less than 8G
	2	64M	Total DRAM less than 16G
	3	128M	Total DRAM less than 32G
	4	256M	Total DRAM less than 64G
	5-7	-reserv	ed-
ъ.	0.000		
		7 T	Low Top Address High (FFh) RW
7-0	Low	Top Ado	dress Highdefault = FFh
Device			SMM / APIC Decoding (01h) RW
7			Reporter Status default = 0
6	Proce		x Reporter Status
	7	-	t to GGNT default = 0
5			Reporter Enable default = 0
4		PIC De	8
	0		xxx accesses go to PCIdefault
K	1		000 to FEC7FFFF accesses go to PCI
			000 to FECFFFFF accesses go to AGP
3		•	sor Message) Support
	0		e (master access to FEExxxxx will go to
1		- · ·	default
	1		(master access to FEExxxxx will be
			to host side to do snoop)
2		SMM	
	0		edefault
	1	Enable	
1	_	SMM	
	0		edefault
	1	Enable	N. 63.5
0		patible S	
	0	Disable	
	1	Enable	default
Device	0 Offs	et E7 – 1	Process Index Reporter Delay Stages

Device 0 Offset E8 - VGA Arbitration Timer 2 (00h)... RW

- 7-4 Timer to Promote Low Priority Display def = 0
- **3-0** Timer for Promoted Low Priority Display ..def = 0

The fields above are defined in units of 16 MCLKs.

VGA timers 1 and 2 are access arbitration timers between the display engine and the graphics engine. Normally the display engine has lower priority than the graphics engine unless the display buffer is below the threshold level where display requests become high priority. The VGA Timers provide the ability to override this deault behavior. These bits should be set prior to turning on the VGA.

Frame Buffer Bank

BIOS Scratch

Device (<u> 0 Offset F3-F4 – BIOS S</u>	cratch Registers	RW
7-0	No hardware function	def	ault = 0

Device 1 Register Descriptions

Dev	ice i PC	1-10-	PCI Bri	ag	е не	ader Registers		
All	registers	are	located	in	PCI	configuration	space.	T

hey should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and device number equal to one.

Device	1 Offs	et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device	1 Offs	et 3-2 - Device ID (B091h)RO
15-0		Code (reads B091h to identify the P4M266A
		o-PCI Bridge device)
Device	1 Offs	et 5-4 – Command (0007h)RW
15-10		
9		Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agent default
	1	Fast back-to-back transactions allowed to
		different agents
8	SER	R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report ECC errors).
7		ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6		y Error ResponseRW
	0	Ignore parity errors & continuedefault
_	1	Take normal action on detected parity errors
5 4	Rese	
4	Mem 0	ory Write and Invalidate Command RO Bus masters must use Mem Writedefault
	1	Bus masters must use Mem Write & Inval
3	-	ial Cycle MonitoringRO
3	opeci 0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	-	MasterRW
_	0	Never behaves as a bus master
	1	Enable to operate as a bus master on the
		primary interface on behalf of a master on the
		secondary interfacedefault
1	Mem	ory SpaceRW
	0	Does not respond to memory space
	1	Enable memory space accessdefault
0	I/O S	
	0	Does not respond to I/O space
	1	Enable I/O space accessdefault

		et 7-6 - Status (Primary Bus) (0230h)RWC
15		cted Parity Erroralways reads 0
14	_	aled System Error (SERR#)always reads 0
13	Signa ()	Aled Master Abort No abort receiveddefault
	1	Transaction aborted by the master with
	1	Master-Abort (except Special Cycles)
		write 1 to clear
12	Rece	ived Target Abort
	0	No abort received default
	1	Transaction aborted by the target with Target-
	0	Abort write 1 to clear
11	Signa	aled Target Abortalways reads 0
10-9		SEL# Timing
	00	- 410 -
	01	Mediumalways reads 01
2 0	10	Slow Reserved
8		Parity Error Detectedalways reads 0
7		Back-to-Back Capablealways reads 0
6		Definable Features always reads 0
5		Hz Capablealways reads 1
4		oorts New Capability listalways reads 1
3-0		rvedalways reads 0
Device	1 Offs	
		et 8 - Revision ID (00h)RO
7-0	P4M	et 8 - Revision ID (00h)RO 266A Chip Revision Code (00=First Silicon)
7-0 <u>Device</u>	P4M 1 Offs	et 8 - Revision ID (00h)RO 266A Chip Revision Code (00=First Silicon) et 9 - Programming Interface (00h)RO
7-0 Device This re	P4M 1 Offs gister i	et 8 - Revision ID (00h)
7-0 Device This re	P4M 1 Offs gister i	et 8 - Revision ID (00h)RO 266A Chip Revision Code (00=First Silicon) et 9 - Programming Interface (00h)RO
7-0 Device This re	P4M 1 Offs gister is ode va	et 8 - Revision ID (00h)
7-0 Device This reclass Class C 7-0	P4M 1 Offs gister i lode va Inter	et 8 - Revision ID (00h)
7-0 Device This reclass Class C 7-0	P4M 1 Offs gister if ode va Inter	et 8 - Revision ID (00h)
7-0 Device This re Class C 7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub 0	et 8 - Revision ID (00h)
7-0 Device This re Class C 7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub 0	et 8 - Revision ID (00h)RO 266A Chip Revision Code (00=First Silicon) et 9 - Programming Interface (00h)RO is defined in different ways for each Base/Sub- lue and is undefined for this type of device. face Identifieralways reads 00 et A - Sub Class Code (04h)RO Class Code reads 04 to indicate PCI-PCI Bridge
7-0 Device This re Class C 7-0 Device 7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub 0 1 Offs Base	et 8 - Revision ID (00h)
7-0 Device This re Class C 7-0 Device 7-0 Device 7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub 0 1 Offs Base	et 8 - Revision ID (00h)
7-0 Device This re Class C 7-0 Device 7-0 Device 7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub (1 Offs) Base 1 Offs Rese	et 8 - Revision ID (00h)
7-0 Device This re Class C 7-0 Device 7-0 Device 7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub (1 Offs) Base 1 Offs Rese	et 8 - Revision ID (00h)
7-0 Device This re Class C 7-0 Device 7-0 Device 7-0 Device 7-0	P4M 1 Offs gister if ode va Inter 1 Offs Sub 0 1 Offs Base 1 Offs Reset	et 8 - Revision ID (00h)
7-0 Device This re Class C 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	P4M 1 Offs gister if ode va Inter 1 Offs Sub 0 1 Offs Base 1 Offs Reset 1 Offs Head	et 8 - Revision ID (00h)RO 266A Chip Revision Code (00=First Silicon) et 9 - Programming Interface (00h)RO is defined in different ways for each Base/Sub- lue and is undefined for this type of device. face Identifieralways reads 00 et A - Sub Class Code (04h)RO Class Code .reads 04 to indicate PCI-PCI Bridge et B - Base Class Code (06h)RO Class Code reads 06 to indicate Bridge Device et D - Latency Timer (00h)RO rvedalways reads 0 et E - Header Type (01h)RO
7-0 Device This re Class C 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	P4M 1 Offs gister if ode va Inter 1 Offs Sub 0 1 Offs Base 1 Offs Reset 1 Offs Head 1 Offs BIST	et 8 - Revision ID (00h)
7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub 0 1 Offs Base 1 Offs Rese 1 Offs Head 1 Offs Head 1 Offs	et 8 - Revision ID (00h)
7-0 Device 7-0	P4M 1 Offs gister i ode va Inter 1 Offs Sub (1 Offs Base 1 Offs Reser 1 Offs Head 1 Offs BIST Start Reser	et 8 - Revision ID (00h)

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device 1 Offset 3F-3E – PCI-to-PCI Bridge Control
7-0 Primary Bus Number default = 0	(0000h)RW
This register is read write, but internally the chip always uses	15-4 Reserved always reads 0
bus 0 as the primary.	3 VGA-Present on AGP
	0 Forward VGA accesses to PCI Bus default
Device 1 Offset 19 - Secondary Bus Number (00h)RW	1 Forward VGA accesses to AGP Bus
7-0 Secondary Bus Number default = 0	Note: VGA addresses are memory A0000-BFFFFh
Note: AGP must use these bits to convert Type 1 to Type 0.	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
	3DFh (10-bit decode). "Mono" text mode uses
Device 1 Offset 1A - Subordinate Bus Number (00h) RW	B0000-B7FFFh and "Color" Text Mode uses B8000-
7-0 Primary Bus Number default = 0	BFFFFh. Graphics modes use Axxxxh. Mono VGA
Note: AGP must use these bits to decide if Type 1 to Type 1	uses I/O addresses 3Bx-3Cxh and Color VGA uses
command passing is allowed.	3Cx-3Dxh. If an MDA is present, a VGA will not
1 0	use the 3Bxh I/O addresses and B0000-B7FFFh
Device 1 Offset 1B - Secondary Latency Timer (00h) RO	memory space; if not, the VGA will use those
7-0 Reservedalways reads 0	addresses to emulate MDA modes.
7 V Iteser ved	2 Block / Forward ISA I/O Addresses
Device 1 Offset 1C - I/O Base (f0h)RW	0 Forward all I/O accesses to the AGP bus if
7-4 I/O Base AD[15:12] default = 1111b	they are in the range defined by the I/O Base
3-0 I/O Addressing Capability default = 0	and I/O Limit registers (device 1 offset 1C-
	1D)
Device 1 Offset 1D - I/O Limit (00h)RW	default
7-4 I/O Limit AD[15:12] default = 0	1 Do not forward I/O accesses to the AGP bus
3-0 I/O Addressing Capability default = 0	that are in the 100-3FFh address range even if
	they are in the range defined by the I/O Base
Desire 1 Officet 1E 1E Construction States	
Device 1 Offset 1F-1E - Secondary StatusRO	and I/O Limit registers.
15-0 Secondary Status	
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h	and I/O Limit registers.
15-0 Secondary Status	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)RW	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)RW 15-4 Memory Base AD[31:20]default = FFFh	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)RW	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)RW 15-4 Memory Base AD[31:20]	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)RW 15-4 Memory Base AD[31:20]	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.
15-0 Secondary Status Rx44[4] = 0: these bits read back 0000h Rx44[4] = 1: these bits read back same as Rx7-6 Device 1 Offset 21-20 - Memory Base (fff0h)	and I/O Limit registers.

AGP Capability List Pointer..... always reads 80h

Device 1 PCI-to-PCI Bridge Device-Specific Registers

AGP Bus Control

Device 7	1 Offset 40 - CPU-to-AGP Flow Control 1 (00h) RW CPU-AGP Post Write
,	0 Disabledefault
	1 Enable
	1 Enwore
6	Reserved always reads 0
5	CPU-AGP One Wait State Burst Write
	0 Disabledefault
	1 Enable
4-3	Read Prefetch Control
	00 Always prefetchdefault
	x1 Never prefetch
	10 Prefetch only for Enhance command
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA
	accesses are forwarded to the PCI bus).
1	AGP Master Read Caching
	0 Disabledefault
	1 Enable
0	AGP Delay Transaction
ŭ	0 Disabledefault
	1 Enable
	I Elitore

Table 10. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	VGA	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	3Dx	3Bx
<u>Pres.</u>	Pres.	<u>on</u>	<u>on</u>	Access	Access	I/O	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

	1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
Ů	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
5 1	00 Retry 2, backoff CPU default
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	CPU-to-AGP Bursting Timeout
	0 Disable
	1 Enabledefault
2	Reservedalways reads 0
1	CPU-to-PCI/AGP Cycles Invalidate PCI/AGP
1	Buffered Read Data
K	0 Disable default
0	
0	Reserved always reads 0
Device	1 Offset 42 - AGP Master Control (00h)RW
7	Reservedalways reads 0
6	AGP Master One Wait State Write
	0 Disabledefault
	1 Enable
5	
	AGP Master One Wait State Read
	AGP Master One Wait State Read 0 Disabledefault
4	0 Disabledefault
4	0 Disable default1 Enable
4	 0 Disable
4	 0 Disable
-	 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable
3	 0 Disable
3	0 Disable
3	 0 Disable
3 2	0 Disable
3 2	0 Disable
3 2	0 Disable
3 2	0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable
3 2	0 Disable
3 2	0 Disable

Device	Offset 43 - AGP Master Latency Timer (22h) RW
7-4	Host to AGP Time slot
	0 Disable (no timer)
	1 16 GCLKs
	2 32 GCLKsdefault
	F 128 GCLKs
3-0	AGP Master Time Slot
	0 Disable (no timer)
	1 16 GCLKs
	2 32 GCLKsdefault
	F 128 GCLKs

ffset 43 - AGP Master Latency Timer (22h)	RW Device	Offset 45	– Fast Writ	e Control (72h) RW
ost to AGP Time slot	7	Force Fas	t Write Cyc	le to be QW Aligned
0 Disable (no timer)		(if Rx45[6]=0)	
1 16 GCLKs		0 Dis	able	default
2 32 GCLKsde	efault	1 Ena	ble	
	6	Merge M	ultiple CPU	Transactions Into One Fast
F 128 GCLKs		Write Bu	rst Transact	ion
GP Master Time Slot		0 Disa	able	
0 Disable (no timer)		1 Ena	ble	default
1 16 GCLKs	5	Merge M	ultiple CPU	Write Cycles To Memory
2 32 GCLKsde	efault	Offset 23-	20 Into Fast	Write Burst Cycles
		(if Rx45[6]=0)	
F 128 GCLKs		0 Dis	able	
		1 Ena	ble	default
	4	Merge	Multiple (CPU Write Cycles To
	A	Prefetcha	ble Memor	y Offset 27-24 Into Fast
		Write Bu	rst Cycles (if	FRx45[6] = 0)
		0 Dis	able	
	67	1 Ena	ble	default
	3	Reserved		always reads 0
	2	Fast Writ	e Burst 4T N	Max (No Slave Flow Control)
		0 Dis	able	default
	K.	1 Ena	ble	
	1		e Fast Back	to Back
		0 Dis		
				default
	0			ck 1 Wait State
				default
		1 Ena	ble	
600				
			CPU Write	
	Bits	Address	Address	
	7-4	in Mem1	in Mem2	Fast Write Cycle Alignment
	x1xx	-	-	QW aligned, burstable
	0000	-	-	DW aligned, nonburstable
	x010	0	0	n/a
,	0010	0	1	DW aligned, non-burstable
	x010	1	-	QW aligned, burstable
Y	x001	0	0	n/a
	x001	-	1	QW aligned, burstable

Bits	Address	Address	
<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment
x1xx	-	-	QW aligned, burstable
0000	-	-	DW aligned, nonburstable
x010	0	0	n/a
0010	0	1	DW aligned, non-burstable
x010	1	-	QW aligned, burstable
x001	0	0	n/a
x001	-	1	QW aligned, burstable
0001	1	0	DW aligned, non-burstable
x011	0	0	n/a
x011	1	-	QW aligned, burstable
x011	0	1	QW aligned, burstable
1000	-	-	QW aligned, non-burstable
1010	0	1	QW aligned, non-burstable
1001	1	0	QW aligned, non-burstable

Device	1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW	Device 1 Offset 84 – Power Mgmt
15-0	PCI-to-PCI Bridge Device ID default = 0000	7-2 Reserved 1-0 Power State 00 D0
Device 7-0	1 Offset 80 – Capability ID (01h)RO Capability IDalways reads 01h	01 -reserved- 10 -reserved-
		11 D3 Hot
Device 7-0	1 Offset 81 – Next Pointer (00h)RO Next Pointer: Nullalways reads 00h	Device 1 Offset 85 – Power Mgmt 5 7-0 Power Mgmt Status
Device	1 Offset 82 – Power Mgmt Capabilities 1 (02h)RO	Device 1 Offset 86 – P2P Br. Support7-0 P2P Bridge Support Extensi
7-0	Power Mgmt Capabilitiesalways reads 02h	Device 1 Offset 87 – Power Manag
Device	1 Offset 83 – Power Mgmt Capabilities 2 (00h)RO	7-0 Power Management Data
7-0	Power Mgmt Capabilities always reads 00h	
	On	X A
	A 0 Y	
		,
	>	

Device	1 Offset 84	- Power Mgmt Ctrl/Status (00h) RV
7-2	Reserved	always reads
1-0	Power Sta	ite
	00 D0	defaul
	01 -res	erved-
	10 -res	erved-
	11 D3	Hot
Device	1 Offset 85	– Power Mgmt Status (00h)RC
7-0	Power Mg	mt Status default = 0
Device	1 Offset 86	- P2P Br. Support Extensions (00h). RC
7-0	P2P Bridge	e Support Extensionsdefault = 0
Device	1 Offset 87	Power Management Data (00h) RO
7-0	Power Mar	nagement Datadefault = 0

FUNCTIONAL DESCRIPTION - INTEGRATED SAVAGE4 GRAPHICS

Configuration Strapping

Certain P4M266A graphics functions have options that must be selected and fixed at reset (before the register bits controlling these functions can be programmed by software). This is accomplished via power-on configuration strapping.

All strapping pins must be individually pulled high or low through 10 KOhm resistors. These pull-ups and pull-downs do not affect normal operation of the pins, but they do force the pins to a definite state during reset. At the rising edge of the reset signal, this state is sampled, the result is inverted and the data loaded into the CR36, CR37, CRB0 and CRF0 registers. The data is used for system configuration. The definitions of the graphics controller strapping bits at the rising edge of the reset signal are shown in Table 11. Nongraphics straps are described in the pinouts section of this document (see the VAD pin descriptions).

	ı		
Pin <u>Name</u>	Ball #	CR Bit(s) <u>Value</u>	<u>Description</u>
FPD9	E12	(n/a)	Graphics Test Mode
		1	Enable
		0	Disable
FPD7	A12	CRF0[3]	OEM-Defined Panel Type
FPD6	C12	CRF0[2]	
FPD5	D12	CRF0[1]	
FPD4	E13	CRF0[0]	
FPD3	P4	CR37[3]	External XDCLK Input on XIN
		1	Enable (use clock from XIN)
		0	Disable (generate clock internally)
FPD2	A13	CRB0[7]	PCI Base Address Mapping
		1	Address Mapping 1
		0	Address Mapping 0 (PCI10, 14) (16M
			assigned to PCI0; 128M assigned to
			PCI14)
FPD1	B13	CR36[4]	IO Disable
		1	Disable I/O access PCI04[0] ignored
		0	Enable I/O access via PCI04[0] = 1.
FPD0	C13	CR36[0]	PCI Interrupt
		1	Disable INTA# claim (00H in PCI3D)
		0	Enable INTA# claim (01H in PCI3D)

Table 11. Definition of Strapping Bits at the Rising Edge of RESET#

PCI Configuration and Integrated AGP

PCI Configuration

The P4M266A graphics Vendor ID register (Index 00H) in the PCI Configuration space is hardwired to 5333H to specify S3 Graphics Incorporated as the vendor. The Device ID register is hardwired to 8D04H.

Bits 10-9 of the Status register (Index 06H) are hardwired to 01b to specify medium DEVSEL timing. The Class Code register (Index 08H) is hardwired to 30000xxH to specify that the P4M266A is a VGA compatible device.

There are two MMIO address mappings, as determined by the state of CRB0[7]. By default, CRB0[7] = 1, which selects Mapping 0. This uses the PCI base addresses specified by PCI10 and PCI14. 16 Mbytes of address space is claimed by PCI10 and 128 Mbytes of address space is claimed by PCI14. If the MA4 pin is strapped high at reset, a 0 is latched in CRB0[7] and selects Mapping 1. This uses base addresses PCI10 (same as Mapping 0), PCI14 (redefined from Mapping 0 to claim 16 Mbytes) and adds PCI18, PCI1C, PCI20 and PCI24, each claiming 16 Mbytes. Thus, Mapping 1 allows the address space claimed to be broken up into smaller blocks, as required by some operating systems. The Base Address 0 register (Index 10H) defaults to address 7000 0000H. This is the relocatable base address for memory-mapped I/O register accessing.

PCI06[4] is hardwired to 1 to indicate a capabilities list is available. PCI34[7-0] point to the PCI power management registers starting at offset DC. The basic power states (D0-D3) are supported as explained by the PCI Bus Power Management Interface Specification, Revision 1.1.

PCI Subsystem ID

The Subsystem ID and Subsystem Vendor ID are located in a 32-bit read only register at PCI Configuration Space Index 2C. These registers reflect the content of 4 read/write CR registers as follows:

	CR	PCI Configuration
Register	Space	Space
Subsystem Vendor ID Low Byte	CR81	Index 2CH
Subsystem Vendor ID High	CR82	Index 2DH
Byte		
Subsystem ID Low Byte	CR83	Index 2EH
Subsystem ID High Byte	CR84	Index 2FH

Table 12. PCI Subsystem ID and Subsystem Vendor ID Registers

These registers allow identification of particular vendors using the same graphics chip. The following design allows the subsystem identification to be handled by software (no hardwiring).

All P4M266A motherboard designs will incorporate the video BIOS into the system BIOS ROM. The system BIOS must load the subsystem ID information in the P4M266A before any ID scanning takes place. To do this, it must turn on the P4M266A, enable I/O accesses in the PCI configuration space, unlock the CR registers, program the subsystem ID information in the registers described above, then turn off the P4M266A.

Integrated AGP

P4M266A graphics conform with the requirements of Revision 2.0 of the AGP Interface Specification. Internal AGP P4M266A graphics are enabled by default, but the internal graphics controller may be disabled in order to enable the external AGP bus instead.

For the most part, AGP configuration is identical to PCI (V-Link) configuration. PCI04[4] is hardwired to 1 to indicate that P4M266A graphics implements a list of capabilities. PCI34[7-0] point to the location of this list, which is at offset 80H. PCI80, PCI84 and PCI88 implement the register bits required by the AGP specification. PCI88[2-0] select the data rate. PCI88[8] = 1 enables AGP bus master operations. PCI88[9] =1 enables sideband addressing. This is indicated by PCI84[9] (1 = sideband addressing supported). The state of PCI84[9] is determined by the state of CR70[7].

Display Memory

The P4M266A north bridge utilizes a Shared Memory Architecture (SMA) for Frame Buffer Memory. SMA allows system memory to be efficiently shared by the host CPU and the P4M266A north bridge graphics controller. By default, no system memory is allocated for the graphics frame buffer, but up to 32 Mbytes may be allocated depending on user preference, application requirements, and the total size of system memory.

Note: Frame buffer memory is allocated from system memory at bootup time. Changing the display settings to a resolution requiring additional frame buffer memory will require a system reboot to be performed.

Frame Buffer Size	Dev 0 RxFB[6-4] Register Setting	CR36[7-5] † Register Setting		
0 Mbytes	000	000		
8 Mbytes	011	011		
16 Mbytes	100	100		
32 Mbytes	101	101		

[†] For driver information only (not connected to hardware)

Table 13. Supported Frame Buffer Memory Configurations

AP COURT PEO

Interrupt Generation

Whatever the mode of operation (VGA or Enhanced), bit 4 of CR32 must be set to 1 to enable interrupt generation. When an enabled interrupt is generated, INTA# is pulled low unless CR36[0] = 0 (MA2 pulled high at reset), for which case no PCI interrupt line is claimed during PCI configuration.

When P4M266A graphics are being operated in VGA mode (CR66[0] = 0), only vertical retrace can generate an interrupt. This is enabled when CR11[5] = 0 and CR11[4] = 1. When an interrupt occurs, it is cleared by writing a 0 to CR11[4]. The interrupt must then be re-enabled by writing a 1 to the same bit. Note that the BIOS clears both bit 4 and bit 5 of CR11 during power-on, a mode set, or a reset. Thus, interrupt generation is disabled until bit 4 is set to 1.

In Enhanced mode (CR66[0] = 1 or 3D operation), interrupts can be generated by vertical retrace, command or bus FIFO overflow, command or bus FIFO empty, or by a BCI command. These interrupts are enabled and cleared and their status reported via MM8504. Serial port interrupts are controlled via MMFF08. If interrupts are used, they should be cleared before they are enabled.

Multiple interrupts can be enabled at the same time in Enhanced mode. The interrupt pin will remain asserted until all interrupt status bits are cleared.

Display Interfaces

TFT Flat Panel DVI Interface

Figure 5 shows the hardware connections to a transceiver conforming to the DVI 1.0 standard. This interface allows the P4N266 to drive a TFT flat panel over considerable distance and is active when CRB0[3] = 1 and CRB0[4] = 1. Panel power sequencing is controlled by the receiver components.

Figure 5. DVI Interface

P4M266A provides the following panel detection capability. If SR30[1] = 0 and the FPDET pin is properly connected to a voltage source indicating the presence/absence of a panel, SR30[1] will reflect the high/low state of this input. A read of 1 indicates that a powered-up panel is connected.

For proper flat panel output with a standard VGA primary screen and the Streams Processor active, the following special register settings are required:

CR3A[4] = 1

CR67[3-2] = 01b (Streams Processor secondary and VGA primary

CR67[7-4] = desired bits/pixel mode

CR90[3] = 1 (CR0 must be programmed before this is set to 1. Setting this bit is not required for 8 bit/pixel modes)

CR90[6] = 1 (this bit must also be set to 1 for 8 bit/pixel modes)

MM8180 = 000000000h

These settings are required for correct automatic centering and expansion with Streams Processor operation.

CRT Interface

P4M266A provides the following CRT interface signals:

- RED (analog red)
- GREEN (analog green)
- BLUE (analog blue)
- HSYNC (horizontal sync)
- VSYNC (vertical sync)

In addition, DDC2 monitor communications can be implemented via the serial communications port controlled by CRB1[4:0]. These bits control two-way communications over the SPCLK2 (clock) and SPDAT2 (data) lines. The operation is the same as described for the I²C serial communications port section except that interrupts and wait states are not supported.

External TV Encoder Interface

Figure 6 shows the interface to an external TV encoder (BT868/869, VIA VT1621, or compatible device). The TV outputs are generated whenever the clock input from the decoder is present on the TVCLK pin, CRB0[3] = 1, and CRB0[4] = 0. The encoder is controlled via the $\rm I^2C$ interface. TV monitor detection is also done via this interface. The TV encoder interface and the flat panel interface are multiplexed on common pins, so only one of the two (either the TV interface or the flat panel interface) can be enabled at any given time

Figure 6. External TV Encoder Interface

The P4M266A chipset VT8751A north bridge chip supports three output formats as shown in Table 14. As shown in Figure 6, P[11:0] on the encoder connect to TVD[11:0] on the VT8751A chip. The CLKI pin on the encoder connects to the TVCLKR pin on the VT8751A chip.

	SR35[5	-4] = 00	SR35[5-4] = 01		SR35[5	-4] = 10
	CLK1	CLKI	CLK1	CLKI	CLK1	CLKI
<u>Pin</u>	Rising	Falling	Rising	<u>Falling</u>	Rising	<u>Falling</u>
P11	G4	R7	B7	G3	R7	G3
P10	G3	R6	В6	G2	R6	G2
P9	G2	R5	B5	G1	R5	G1
P8	В7	R4	B4	G0	R4	G0
P7	В6	R3	В3	R7	R3	B7
P6	B5	G7	B2	R6	R2	B6
P5	B4	G6	B1	R5	R1	B5
P4	В3	G5	B0	R4	R0	B4
P3	G0	R2	G7	R3	G7	В3
P2	B2	R1	G6	R2	G6	B2
P1	B1	R0	G5	R1	G5	B1
P0	В0	G1	G4	R0	G4	В0

Table 14. External TV Encoder Output Data Formats

I²C Serial Communications Port

One serial communications port is implemented in a register that can be accessed either via MMFF20 or CRA0. Bit 4 is set to 1 to enable the interface. The clock is written to bit 0 (= 0) and data to bit 1 (= 0), driving the SPCLK1 and SPDAT1 pins low respectively. The state of the SPCLK1 pin can be read via bit 2 and the state of the SPDAT1 pins can be read via bit 3. The SPCLK1 and SPDAT1 pins are tri-stated when their corresponding control bits are reset to 0, allowing other devices to drive the serial bus.

This serial port is typically used for I2C interfacing. When SPCLK1 and SPDAT1 are tri-stated, the P4M266A can detect an I2C start condition (SPDAT1 driven low while SPCLK1 is not driven low). This condition is generated by another I2C master that wants control of the I2C bus. If bit 19 of MMFF08 is set to 1, detection of a start condition generates an interrupt and sets bit 3 of MMFF08 to 1. If bit 24 of MMFF08 is set to 1, the P4M266A drives SPCLK1 low to generate I2C wait states until the Host can clear the interrupt and service the I2C bus.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 15. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
$T_{\rm C}$	Case operating temperature	0	85	оС	1
T_{S}	Storage temperature	-55	125	oC	1
V_{IN}	Input voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V_{OUT}	Output voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface can be 3.3V or 2.5V. Memory can be 3.3V only. PCI can be 3.3V or 5.0V. Video can be 3.3V or 5.0V. Flat Panel can be 3.3V only. AGP can be 1.5V (4x transfer mode) or 3.3V (2x transfer mode).

DC Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC}$ +/- 5%, $V_{CORE} = 2.5V$ +/- 5%, GND=0V

Table 16. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$V_{ m IL}$	Input Low Voltage	-0.50	0.8	V	
V _{IH}	Input High Voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output Low Voltage	-	0.55	V	I _{OL} =4.0mA
V_{OH}	Output High Voltage	2,4	١	V	I _{OH} =-1.0mA
$I_{\rm IL}$	Input Leakage Current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I _{OZ}	Tristate Leakage Current		+/-20	uA	$0.55 < V_{OUT} < V_{CC}$

Package Weight Specifications

Table 17. Package Weight Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Condition
W_{P}	Package Weight	7.99	8.00	8.02	grams	Standard earth gravity

Power Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC}$ +/- 5%, $V_{CORE} = 2.5V$ +/- 5%, GND=0V

Table 18. Power Characteristics – Internal and Interface Digital Logic

Symbol	Parameter	Тур	Max	Unit	Condition
I_{TT}	Power Supply Current – VTT	46		mA	Full-On Operation
I_{TTPOS}	Power Supply Current – VTT	54.5		mA	POS
I_{TTSTR}	Power Supply Current – VTT	0.002		mA	STR
I_{TTSOF}	Power Supply Current – VTT	0.002		mA	Soft-Off
I_{CCG}	Power Supply Current – VCCAGP	1.38		mA	Full-On Operation
I_{CCGPOS}	Power Supply Current – VCCAGP	1.1		mA	POS
I_{CCGSTR}	Power Supply Current – VCCAGP	0.002		mA	STR
I_{CCGSOF}	Power Supply Current – VCCAGP	0.002		mA	Soft-Off
I_{CCV}	Power Supply Current – VCCVL			mA	Full-On Operation
I_{CCVPOS}	Power Supply Current – VCCVL		>	mA	POS
I _{CCVSTR}	Power Supply Current – VCCVL			mA	STR
I_{CCVSOF}	Power Supply Current – VCCVL			mA	Soft-Off
I_{CCM}	Power Supply Current – VCCMEM			mA	Full-On Operation
I _{CCMPOS}	Power Supply Current – VCCMEM		J 7	mA	POS
I_{CCMSTR}	Power Supply Current – VCCMEM			mA	STR
I_{CCMSOF}	Power Supply Current – VCCMEM)		mA	Soft-Off
I_{CCF}	Power Supply Current – VCCFP		7	mA	Full-On Operation
I _{CCFPOS}	Power Supply Current – VCCFP	C		mA	POS
I_{CCFSTR}	Power Supply Current – VCCFP	3		mA	STR
I_{CCFSOF}	Power Supply Current – VCCFP			mA	Soft-Off
I_{CC25}	Power Supply Current – VCC25	1920		mA	Full-On Operation
I _{CC25POS}	Power Supply Current – VCC25	52.8		mA	POS
I _{CC25STR}	Power Supply Current – VCC25	0.003		mA	STR
I _{CC25SOF}	Power Supply Current – VCC25	0.003		mA	Soft-Off
I_{SUS25}	Power Supply Current – VSUS25	3.3		mA	Full-On Operation
I _{SUS25POS}	Power Supply Current – VSUS25	0.95		mA	POS
I _{SUS25STR}	Power Supply Current – VSUS25	0.016		mA	STR
I _{SUS25SOF}	Power Supply Current – VSUS25	0.016		mA	Soft-Off
I_{CCQQ}	Power Supply Current – VCCQQ			mA	Max operating frequency
I_{CCDAC}	Power Supply Current – VCCDAC			mA	Max operating frequency
P_{D}	Power Dissipation	4.84		W	Max operating frequency

Table 19. Power Characteristics - Analog and Reference Voltages

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CCGTL}	Power Supply Current – GTLVREF			mA	Max operating frequency
I _{CCHAREF}	Power Supply Current – HAVREF			mA	Max operating frequency
I _{CCHDREF}	Power Supply Current – HDVREF			mA	Max operating frequency
I _{CCHCREF}	Power Supply Current – HCMPVREF			mA	Max operating frequency
I _{CCMREF}	Power Supply Current – MEMVREF			mA	Max operating frequency
I _{CCGREF}	Power Supply Current – AGPVREF			mA	Max operating frequency
I _{CCVLREF}	Power Supply Current – VLVREF			mA	Max operating frequency
I_{CCHCK}	Power Supply Current – VCCHCK			mA	Max operating frequency
I _{CCMCK}	Power Supply Current – VCCMCK		2	mA	Max operating frequency
I _{CCMDLL}	Power Supply Current – VCCMDLL	A		mA	Max operating frequency
I_{CCRGB}	Power Supply Current – VCCRGB		7	mA	Max operating frequency
I _{CCPLL1}	Power Supply Current – VCCPLL1		K	mA	Max operating frequency
I _{CCPLL2}	Power Supply Current – VCCPLL2	20		mA	Max operating frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 20. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
3.3V Power (I/O Pads, VCCQ for 2x transfer mode)	3.135	3.465	Volts
2.5V Power (Internal Logic)	2.375	2.625	Volts
1.5V Power (VCCQ for 4x transfer mode)	1.425	1.575	Volts
Case Temperature	0	85	оС

Drive strength for selected output pins is programmable. See Rx6D for details.

Table 21. AC Timing – CPU Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
HD Bus	HDS[3:0]#	0.55	0.55	0.85	0.80	ns
HA Bus	HAS[1:0]#	0.50	0.55	1.6	1.6	ns
HREQ[4:0]#	HAS0#	0.50	0.55	1.6	1.6	ns
ADS#	HCLK	2.4	-0.20			ns
DBSY#	HCLK	2.4	-0.20			ns
DRDY#	HCLK	2.4	-0.20			ns
HIT#	HCLK	2.4	-0.20			ns
HITM#	HCLK	2.4	-0.20	Ġ		ns
HLOCK#	HCLK	2.4	-0.20	•. C		ns

Table 22. AC Timing – Memory Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
MD Bus	DQS[7:0]#	-1.2	2	1.10	1.05	ns
MA Bus	_	-	—			ns
SRAS# Bus	_	-(_			ns
SCAS# Bus	_	3 -	- K			ns
SWE# Bus	- 6	7-	7			ns
CS# Bus		7 -				ns
DQM Bus	- 2	- 3	_			ns

Table 23. AC Timing – V-Link Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
VAD Bus	Strobes	0.45	0.45	1.1	1.1	ns

Table 24. AC Timing – AGP Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
GD Bus	GDS[1:0]#			0.90	0.85	ns

MECHANICAL SPECIFICATIONS

Figure 7. Mechanical Specifications - 664-Pin HSBGA Ball Grid Array Package with Heat Spreader