Root Finding

Part-12

MA2103 - 2023

Root's are very interesting

we have to find x such that f(x) = 0.

Which is not possible analytically except for a very few special case. Here numerical methods are important

Tip of Iceberg vs ship

we have to find x such that f(x) = 0.

Which is not possible analytically except for a very few special case. Here numerical methods are important

Floating Sphere

Archimedes's principle: Buoyancy force is equal to the weight of the replaced liquid.

Floating Iceberg

What portion

First we assum

Floating Iceberg

What portion iceberg is above water?

Archimedes's principle: Buoyancy force is equal to the weight of the replaced liquid.

Volume of the sphere be
$$V_{\bigcirc} = \frac{4}{3}\pi r^3$$

Let the Volume of water displaced be V_{\sim}

Case 1

 $V_{\bigcirc} \gg V_{\sim}$

Case 2

$$V_{\bigcirc} \approx V_{\sim}$$

Case 3

$$V_{\bigcirc} \ll V_{\sim}$$

Case 1

Case 2

Case 3

$$V_{\bigcirc} \gg V_{\sim}$$

$$V_{\bigcirc} \approx V_{\sim}$$

$$V_{\bigcirc} \ll V_{\sim}$$

The force acting is gravity and buoyancy of water

At static equilibrium $\rho_{s}gV_{\bigcirc}=\rho_{\sim}gV_{\sim}$

 $ho_{\scriptscriptstyle S}$ density of sphere $ho_{\scriptscriptstyle \sim}$ density of water

The volume V_h of water displaced when a sphere is submerged to a depth h is

$$V_h = \frac{\pi}{3}h^2 \left(3 r - h\right)$$

The volume V_h of water displaced when a sphere is submerged to a depth h is

Applying Archimedes's principle, we get condition for h as:

$$h^3 - 3rh^2 + 4\frac{\rho_s}{\rho_{\sim}}r^3 = 0$$

Density of water 1 in what ever unit.

Density of Ice 0.92 in the same unit.

let r=1 in the same what ever unit.

what is the height of h in the same unit?

we need solution for h with $h^3 - 3h^2 + 4 \times 0.95 = 0$ $h \in [0, 2]$

We need a root finding method.

Graphical method

Bisection method

For a function f(x) continuous in the interval [a,b], there exists at least one root in the interval (a,b) if f(a)f(b) < 0

a and b such that f(a)f(b) < 0

$$c = \frac{1}{2} \left(a + b \right)$$

If f(a)f(c) < 0 then replace b by c

If f(c)f(b) < 0 then replace a by c

Repeat the process till you are happy

a and b such that f(a)f(b) < 0

$$a$$
 and b such that $f(a)f(b) < 0$
$$c = \frac{1}{2}(a+b)$$

a and b such that f(a)f(b) < 0

a and b such that f(a)f(b) < 0

Algorithm

- 1. start with interval $[a_0, b_0]$ such that $f(a_0) * f(b_0) < 0$
- 2. n th iteration is compute using:
- 3. mid point for each iteration is $c = \frac{1}{2} (a_n + b_n)$
- **4.** if $f(a_n)f(c) < 0$ then $a_{n+1} = a_n$ and $b_{n+1} = c$ else $a_{n+1} = c$ and $b_{n+1} = b_n$
- 5. Repeat 3 to 4 till $\left|a_n b_n\right| < \epsilon$ or n reached ITMAX
- 6. ϵ the error in the root.