200 Barnes Street Apartment 16D Carrboro, NC 27510

Jonathan P Williams

EDUCATION

University of North Carolina, Chapel Hill, NC

2014 - (2019 expected)

Department of Statistics and Operations Research

PhD Statistics

New York University, New York, NY

2012 - 2014

Courant Institute of Mathematical Sciences

MS Mathematics

Thesis: Penalized Least Squares Estimation of the Linear Mixed Effect Model

Advisor: Dr. Ying Lu

Eastern Michigan University, Ypsilanti, MI

2008 - 2012

Honors College

BS double major in Economics and Mathematics, minor in Finance

GPA: 3.93/4.0

Thesis: Entropy and Related Principles

Advisor: Dr. Ovidiu Calin

PAPERS

- 1. J P Williams, C B Storlie (2017). A Bayesian approach to multi-state hidden Markov models: application to dementia progression. *In preparation*.
- 2. J P Williams, J Hannig (2017). Non-penalized variable selection in high-dimensional linear model settings via generalized fiducial inference. Submitted.
- **3.** J P Williams, Y Lu (2015). Covariance Selection in the Linear Mixed Effect Model, *Journal of Machine Learning Research:* Workshop and Conference Proceedings, 44, pp. 277–291.

PRESENTATIONS

- 1. Non-penalized variable selection in high-dimensional settings via generalized fiducial inference. 27th Nordic Conference in Mathematical Statistics, Tartu, Estonia, June 2018 (invited).
- 2. A Bayesian approach to multi-state hidden Markov models: application to dementia progression. *Graduate Seminar*, Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, September 2017.
- 3. Non-penalized variable selection in high-dimensional linear model settings via generalized fiducial inference. *Graduate Seminar*, Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, February 2017.
- **4.** A Bayesian approach to multi-state hidden Markov models: application to dementia progression. *Tea Time for Science*, Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, Rochester, MN, August 2016.

POSTER PRESENTATIONS

- 1. Generalized fiducial inference for high dimensional problems. *Invited Poster Session, Joint Statistical Meeting*, Baltimore, MD, July 2017 (invited poster with Jan Hannig).
- 2. Non-penalized variable selection in high-dimensional linear model settings via generalized fiducial inference. Fourth Bayesian, Fiducial, and Frequentist Conference, Harvard University, May 2017.
- **3.** Covariance Selection in the Linear Mixed Effect Model. Feature Extraction: Modern Questions and Challenges, NIPS, Montreal, Canada, December 2015.

AWARDS

Carl M. Erikson Mathematics Department Scholarship	2011 - 2012
Regents Scholarship	2009 - 2012
National Scholars Program Scholarship	2008 - 2012
Leader Award Scholarship	2009 - 2011

PROFESSIONAL ACTIVITIES

Referee for Journal of Computational and Graphical Statistics Referee for Stat

TEACHING

STOR-BIOS Dept. Boot Camp for incoming statistics and biostatistics graduate students

Summer 2017

· Manager of the two-week Boot Camp, and instructor of the real analysis section.

Teaching Fellow, UNC, Chapel Hill, NC

2014 - 2016

- · Introduction to Statistics (Full teaching responsibilities for a class of 46 and for a class of 80 students).
- · Introduction to Statistics (Teaching Assistant).
- · Undergraduate Regression Analysis (Teaching Assistant).

WORK EXPERIENCE

Research Collaborator, Mayo Clinic, Rochester, MN

2017 - Present

- · Work contributing PhD Thesis
- · Develop a statistical model for hemoglobin as it is affected by blood transfusion.
- · Continuation of Alzheimer's project from previous internship (see below).

Reference: Dr. Curt Storlie, Associate Professor of Biostatistics - Storlie.Curt@mayo.edu

Biostatistics Intern, Mayo Clinic, Rochester, MN

Summer 2016

- · Studied the progression to dementia from a cohort study data set of 4989 subjects.
- · Constructed a Hidden Markov Model within a Bayesian framework to model the transitions between developing states of dementia.
- · Implemented a Markov chain Monte Carlo algorithm to estimate the infinitesimal transition rates of the Hidden Markov Model.

Reference: Dr. Curt Storlie, Associate Professor of Biostatistics - Storlie.Curt@mayo.edu

Statistical Consultant, Caster Concepts, Inc, Albion, MI

2011 - 2014

- · Continuation and updating of a statistical sales forecasting model using a cointegrating equation for predicting future company sales, monthly and quarterly for multiple years into the future.
- · Analyzed company sales and quote data using regression tools to find potential customer leads based on location and SIC industry codes and to compare the performance of inside/outside sales broken down by direct/distributor sales.
- \cdot Developed a logit model to predict the likelihood of a sales quote being met.
- · Developed a sales forecasting model using a cointegrating equation. Experimented with VAR and VEC models.

Reference: Dr. Bill Dobbins, President and CEO - bdobbins@casterconcepts.com

Tutor, Eastern Michigan University, Ypsilanti, MI

2009 - 2012

Tutored students in Economics and Mathematics.

Reference: Dr. Kemper Moreland, Professor - kmoreland@emich.edu

OTHER ACTIVITIES

Fed Challenge Competition - Chicago Federal Reserve District March 2008, November 2008, 2009, 2010, 2011

ADDITIONAL REFERENCES

Dr. Jan Hannig

Professor of Statistics Department of Statistics and Operations Research University of North Carolina at Chapel Hill hannig@email.unc.edu

Dr. Curt Storlie

Associate Professor of Biostatistics Health Sciences Research Mayo Clinic Storlie.Curt@mayo.edu