The Machine Warehouse

Tomasz Siudalski

Mikotaj Gatkowski

Wiktor Jakubowski

Agenda of presentation

- problem description
- preprocessing
- model selection
- hyperparameters optimisation
- model evaluation
- intepretability
- business approach

Problem description

- Predicting rent prices for holiday stay in properties located in six cities in USA
- Dataset:
 - about 74 000 observations
 - nearly 30 features
 - categorical, numerical and datetime
 variables

Visualisation

Map of property holiday rent in New York City

log_price

6

5

3

- Data visualization based on coordinates
- Six separate areas (New York, Los Angeles, Chicago, Boston, San Francisco, Washington D.C.)
- Strong difference between prices in city centre and suburbs

Creating datetime columns and filling NaN's

Amenities transformation

Imputing NaN's (KNN, Iterative)

One-hot and ordinal encoding categorical variables

Metrics used for evaluating models performance

- MAE: mean absolute error
- RMSE : root-mean-square error
- ightharpoonup R^2

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

Model selection

Default model	RMSE train	RMSE valid	MAE train	MAE valid	R ² train	R ² valid
XGBoost	0.314	0.375	0.231	0.273	0.807	0.729
Random Forest	0.145	0.382	0.104	0.276	0.959	0.719
Linear Regression	0.457	0.454	0.343	0.343	0.592	0.602
CatBoost	0.351	0.369	0.254	0.268	0.76	0.737

Hyperparameters optimisation

Optimising number of iterations

```
4190:
        learn: 0.3439488
                                test: 0.3742710 best: 0.3742702
        learn: 0.3439429
                                test: 0.3742715 best: 0.3742702
4191:
                                test: 0.3742739 best: 0.3742702
4192:
        learn: 0.3439384
                                test: 0.3742746 best: 0.3742702
4193:
        learn: 0.3439337
4194:
        learn: 0.3439261
                                test: 0.3742718 best: 0.3742702
       learn: 0.3439260
                                test: 0.3742718 best: 0.3742702
4195:
4196:
       learn: 0.3439172
                                test: 0.3742750 best: 0.3742702
4197:
       learn: 0.3439092
                                test: 0.3742763 best: 0.3742702
4198:
       learn: 0.3439084
                                test: 0.3742762 best: 0.3742702
        learn: 0.3438976
                                test: 0.3742734 best: 0.3742702
4199:
Stopped by overfitting detector (10 iterations wait)
```

bestTest = 0.3742701525 bestIteration = 4189

Shrink model to first 4190 iterations.

Optimising learning rate

Model evaluation

Values on independent test dataset:

♦ MAE: 0.268

RMSE: 0.376

• R² score: 0.727

 Metrics outcome slightly vary over different datasets

Feature importances

- Most important features:
 - Is the entire property for rent
 - Longitude and latitude
 - Number of accommodates
 - Number of bedrooms

- Least important features:
 - Ground floor access
 - Roll in shower with chair
 They were removed during feature engineering

Interpretability

Features values impact on shifting of model's expected value

Thank you for your attention