

2. Regressão múltipla: Testes de hipótese e avaliadores da qualidade do ajuste

Alcinei Mistico Azevedo

Professor Adjunto de Estatística e experimentação agrícola.

- A análise de variância (ANOVA) é um dos testes estatísticos mais utilizados para a avaliação de experimentos em todas as áreas do conhecimento.
- Esta análise e vários fundamentos para a estatística moderna foi desenvolvido por **Ronald Fisher**.

Fonte: Science Photo Library www.hamhigh.co.uk

Figura1: Fotografia de Ronald Fisher.

- A análise de variância tem como principal finalidade a decomposição da variação total em parte conhecida e desconhecida.
 - A variação total corresponde a variância dos dados experimentais.
 - A parte conhecida corresponde a variância dos efeitos controlados pelo pesquisador:
 - Neste contexto é a variação explicada pelo modelo de regressão.
 - Controle local (blocos, linhas e colunas) em casos onde há delineamento estatístico.
 - A parte desconhecida refere-se à variação não controlada pelo pesquisador (resíduo). No contexto da análise de regressão é toda variação que não é explicada pelo modelo de regressão.

> A análise de variância para regressão (sem uso de delineamento)

FV	GL	SQ	QM	$\overline{F_c}$
Regressão	p	SQ_{Reg}	$QM_{Reg} = SQ_{Reg}/p$	QM_{Reg}/QM_{Res}
Resíduo	N-p-1	SQ_{Res}	$QM_{Res} SQ_{Res} / (N-P-1)$	
Total	N-1	SQ_{Total}		

> Onde:

- » p é o número de parâmetros do modelo (o intercepto não é contado como parâmetro)
- » N é o número de observações (tamanho amostral) utilizado no ajuste da regressão

2.5.1 Raciocínio lógico para a obtenção das somas de quadrado:

Sendo a soma de quadrados total (SQtotal) a variação dos dados experimentais (dados observados, basta fazermos:

$$SQtotal = \sum_{i=1}^{N} (Y_i - \overline{Y})^2$$

$$SQtotal = \sum_{i=1}^{N} Y_i^2 - \frac{\left(\sum_{i=1}^{N} Y_i\right)^2}{N}$$

$$SQtotal = Y'Y - C$$

2.5.1 Raciocínio lógico para a obtenção das somas de quadrado:

Sendo a soma de quadrados da Regressao (SQreg) a variação explicada pelo modelo de regressão, basta obter a SQ com os valores preditos pelo modelo (Y_p):

$$SQreg = \sum_{i=1}^{N} (\widehat{Y}_{pi} - \overline{Y})^{2}$$

$$\hat{Y}_p = X\hat{B}$$

$$SOreg = \hat{Y}_p '\hat{Y}_p - C$$

$$SQreg = B'X'XB - C = B'X'Y - C$$

2.5.1 Raciocínio lógico para a obtenção das somas de quadrado:

A soma de quadrados do resíduo (*SQres*) é a parte da variação total que não pode ser explicada pela regressão. Logo pode ser obtido por diferença (SQres=SQtotal-SQreg).

$$SQres = SQtotal - SQreg$$

$$SQres = Y'Y - C - (B'X'Y - C)$$

$$SQres = Y'Y - B'X'Y$$

2.5.1 Raciocínio lógico para a obtenção das somas de quadrado:

FV	GL	SQ	QM	$\overline{F_{ m c}}$
Regressão	p	\hat{Y}_p ' $\hat{Y}_p - C$	QM_{Reg}	QM_{Reg}/QM_{Res}
Resíduo	N-P-1	X'X - B'X'Y	QM_{Res}	
Total	N-1	Y'Y - C		

- > Teste de hipótese (teste F):
 - > Ho: A regressão é não significativa (A variação explicada pelo modelo de regressão deve-se ao acaso)
 - Ha: A regressão é significativa (A variação explicada pelo modelo de regressão não se deve ao acaso)

Exemplo com os dados da Acerola: Modelo 9 $(z_i=a+bx_i+cy_i+dx_iy_i+e_i)$

$$Y = X \qquad B + e$$

$$\begin{bmatrix}
13,39 \\
12,52 \\
8,78 \\
9,60 \\
\vdots \\
8,23
\end{bmatrix} = \begin{bmatrix}
1 & 6,00 & 3,20 & 6,00*3,20 \\
1 & 5,50 & 3,20 & 5,50*3,20 \\
1 & 5,00 & 2,50 & 5,00*2,50 \\
1 & 5,00 & 2,70 & 5,00*2,70 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 4,30 & 2,20 & 4,30*2,20
\end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ \vdots \\ e_{300} \end{bmatrix}$$

$$\hat{\mathcal{B}} = (X'X)^{-1}X'Y = \begin{bmatrix} 0,2811 \\ -0.3494 \\ 0,2092 \\ 0,6350 \end{bmatrix}$$

$$\hat{g} = (X 'X)^{-1}X'Y = \begin{bmatrix} 0.2811 \\ -0.3494 \\ 0.2092 \\ 0.6350 \end{bmatrix}$$

$$SQreg = \hat{g}'X'Y - C = 16722.05 - 14162.73 = 4582.56$$

$$SQres = \hat{Y}'\hat{Y} - \hat{g}'X'Y = 16861.02 - 16722.05 = 138.98$$

$$SQtotal = \hat{Y}'Y - C = 16861.02 - 14162.73 = 4721.54$$

> Análise de variância para a regressão

FV	GL	SQ	QM	$\overline{F_{c}}$	pValor
Regressão	<i>p</i> =3	4582.56	1527.52	3802.86	$2.2x10^{-16}$
Resíduo	<i>N-p-1=346</i>	138.98	0,40		
Total	N-1=349	4721.54		pValor=	=1-pf(3802.863,3,346)

- > Teste de hipótese (teste F):
 - > Ho: A regressão é não significativa (A variação explicada pelo modelo de regressão deve-se ao acaso)
 - Ha: A regressão é significativa (A variação explicada pelo modelo de regressão não se deve ao acaso)

O teste para significância da regressão é um teste para determinar se há uma relação linear entre a variável resposta Y e algumas das variáveis regressora x_1, x_2, \ldots, x_p . Consideremos as hipóteses

$$\begin{cases} H_0: & \beta_1 = \beta_2 = \ldots = \beta_p = 0 \\ H_1: & \beta_j \neq 0 \text{ para qualquer } j = 1, \cdots, p \end{cases}$$

Se rejeitamos H_0 , temos que ao menos uma variável explicativa x_1, x_2, \ldots, x_p contribui significativamente para o modelo.

Dbservação: Esta ANAVA é para um modelo global. Porém informações adicionais podem ser obtidas decompondo os GL e SQ da regressão por meio de um procedimento sequencial.

- Solutione de liberdade e a SQ da regressão pode ser decompostos, obtendo-se uma fonte de variação referente à cada parâmetro do modelo estatístico. Para isso deve-se:
 - > Obter a soma de regressão considerando apenas o primeiro parâmetro considerado do modelo de regressão.
 - > Posteriormente, deve-se ir adicionando um parâmetro de regressão por vez, e a sua soma de quadrado será a subtração da SQreg atual com a SQreg obtida anteriormente.
 - > A fonte de variação de cada parâmetro do modelo de regressão sempre terá apenas 1 grau de liberdade na ANAVA.

Metodologia para a decomposição dos graus de liberdade e soma de quadrado da regressão em cada um dos efeitos dos modelos de regressão. **Modelo 9** (**z**_i=**a**+**bx**_i+**cy**_i+**dx**_i**y**_i+**e**_i)

- ➤ Obter SQ da regressão considerando no modelo apenas o primeiro coeficiente de regressão (Z_i =a+b x_i +e $_i$). $SQreg_{lcoef}$ = B'X'Y-C = 4180.69
- > Obter SQ da regressão considerando no modelo apenas os dois primeiros coeficientes de regressão (Z_i =a+b x_i +c y_i +e $_i$). $SQreg_{2coef}$ = B'X'Y-C = 4423.777
- Obter SQ da regressão considerando no modelo apenas os três primeiros coeficientes de regressão (neste caso, o modelo completo $-> Z_i = a + bx_i + cy_i + dx_iy_i + e_i$). $SQreg_{3coef} = B'X'Y C = 16722.05-14162.73=4582.56$

	GL dos efeitos é	FV	GL	SQ	QM	F_c	pValor
	1	Regressão	3	4582.56	1527.52	3802.86	
	$\mathrm{SQreg}_{\mathrm{1coef}}$	X	1	4180.69	4180.7	10408.21	$<2.2x10^{-16}$
	$\mathrm{SQreg}_{\mathrm{2coef}}$ $\mathrm{SQreg}_{\mathrm{1coef}}$	у-	1	243.09	243.1	605.16	$<2.2x10^{-16}$
	$\overline{ m SQreg_{3coef-}SQreg_{2coef-}}$	xy	1	158.78	158.8	395.31	$<2.2x10^{-16}$
	$\mathrm{SQreg}_{1\mathrm{coef}}$	Resíduo	346	138.98	0,40		
ı		Total	N-1=349	4721.54			
						_	

Modelo 9 ($z_i=a+bx_i+cy_i+dx_iy_i+e_i$)

FV	GL		SQ	QM	F_c	pValor
Regressão	3		4582.56	1527.52	3802.86	
X		1	4180.69	4180.7	10408.21	$<2.2 \times 10^{-16}$
y		1	243.09	243.1	605.16	$<2.2x10^{-16}$
ху		1	158.78	158.8	395.31	$<2.2x10^{-16}$
Resíduo	346		138.98	0,40		
Total	N-1=349		4721.54	-		

Curiosidade: Vamos fazer a mesma análise de variância, porém com os parâmetros com outra ordem -> $z_i=a+by_i+cx_i+dx_iy_i+e_i$)

FV	GL		SQ	QM	F_c	pValor
Regressão	3		4582.56	1527.52	3802.86	
y		1	4240.9	4240.9	10558.00	$<2.2x10^{-16}$
X		1	182.9	182.9	455.37	$<2.2x10^{-16}$
ху		1	158.78	158.8	395.31	$<2.2x10^{-16}$
Resíduo	346		138.98	0,40		
Total	N-1=349		4721.54			

Deserve que o valor de F mudou, e que consequentemente a significância para cada fonte de variação muda também.

Isso não é muito estranho???

- A ANOVA anterior é obtida por um procedimento sequencial, quando parâmetros vão sendo adicionados nos modelos um a um.
- Nesta tabela avalia-se o ganho na predição pela inclusão de variáveis independentes.
- ➤ Logo após a adição de cada parâmetro pode-se responder:
 - > y (largura) sozinha prediz a z (área foliar)?
 - > A inclusão da variável x (comprimento) contribui significativamente para a predição de z (área foliar) após incluir y (Largura)?
 - A inclusão da interação xy (comprimento*Largura) contribui significativamente para a predição de z (área foliar) após incluir y (Largura) e x (comprimento)?
- Essas perguntas são importantes e permite que se obtenham modelos contendo apenas parâmetros que realmente contribuam para a predição.
- ➤ Isso é importante para que se tenha modelos parcimoniosos. Para isso, pode-se também estudar a significância de cada parâmetro do modelo de regressão pelo teste t.

2.7 Teste t para significância dos coeficientes de regressão

- > Por pressuposição do modelo matemático, admitimos que os coeficientes de regressão seguem distribuição normal.
- Logo, podemos testar a significância dos coeficientes por meio do teste t, para situações em que o tamanho amostral não é muito grande.

É válido lembrar que o formato distribuição t depende do número de graus de liberdade, e que para a despadronização é preciso obter as variâncias associadas aos coeficientes.

Como o número de graus de liberdade já é obtido na ANAVA (Glerro), é necessário obter as variâncias associadas à cada coeficiente de regressão, para posteriormente realizar-se o teste de hipótese (t).

2.7 Teste t para significância dos coeficientes de regressão

- Obtendo as variâncias dos estimadores dos coeficientes de regressão:
 - Sabe-se que \widehat{B} é um estimador de B (Vetor com os coeficientes dos modelos de regressão. Logo, a estimativa destes coeficiente é influenciado por erros oriundos da variável dependente. Portanto, pode dizer que:

$$\hat{B} = (X'X)^{-1}X'Y$$

$$\hat{B} = B + (X'X)^{-1}X'e \quad \text{Logo: } \hat{B} - B = (X'X)^{-1}X'e$$

> Podemos obter a variância associada a qualquer estimador por meio das propriedades da esperança matemática. $Var(\hat{\theta}) = E[(\theta - \hat{\theta})^2]$

$$Var(\hat{B}) = E[(\hat{B} - B)'(\hat{B} - B)] = E[(X'X)^{-1}X'ee'X(X'X)^{-1}]$$

$$ee' = \sigma^2 \quad \text{Logo:}$$

$$Var(\hat{B}) = (X'X)^{-1}X'\sigma^2X(X'X)^{-1}$$

$$Var(\hat{B}) = (X'X)^{-1}\sigma^2$$

> Onde σ^2 =QMR obtido na ANAVA.

2.6 Teste t para significância dos coeficientes de regressão

Logo, para o modelo em questão ($\mathbf{z_i} = \mathbf{a} + \mathbf{b} \mathbf{x_i} + \mathbf{c} \mathbf{y_i} + \mathbf{d} \mathbf{x_i} \mathbf{y_i} + \mathbf{e_i}$), se fizermos: $Var(\hat{B}) = (X'X)^{-1}\sigma^2$

Onde:

e:
$$\sigma^2$$
=QMresiduo

$$X = \begin{bmatrix} 1 & 6,00 & 3,20 & 6,00*3,20 \\ 1 & 5,50 & 3,20 & 5,50*3,20 \\ 1 & 5,00 & 2,50 & 5,00*2,50 \\ 1 & 5,00 & 2,70 & 5,00*2,70 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 4,30 & 2,20 & 4,30*2,20 \end{bmatrix}$$

> teremos:

$$\begin{split} Var\big(\hat{B}\big) &= (X'X)^{-1}QMres \\ &= \begin{bmatrix} \hat{V}(\hat{a}) & C\hat{o}v(\hat{a},\hat{b}) & C\hat{o}v(\hat{a},\hat{c}) & C\hat{o}v(\hat{a},\hat{d}) \\ C\hat{o}v(\hat{a},\hat{b}) & \hat{V}(\hat{b}) & C\hat{o}v(\hat{b},\hat{c}) & C\hat{o}v(\hat{b},\hat{d}) \\ C\hat{o}v(\hat{a},\hat{c}) & C\hat{o}v(\hat{b},\hat{c}) & \hat{V}(\hat{c}) & C\hat{o}v(\hat{c},\hat{d}) \\ C\hat{o}v(\hat{a},\hat{d}) & C\hat{o}v(\hat{b},\hat{d}) & C\hat{o}v(\hat{c},\hat{d}) & \hat{V}(\hat{d}) \end{bmatrix} \end{split}$$

2.7 Teste t para significância dos coeficientes de regressão

 \triangleright De posse das variâncias associadas a cada parâmetro (diagonal principal da matriz $Var(\hat{B})$) podemos fazer o teste t:

$$t_{calc(a)} = \frac{\hat{a} - 0}{\sqrt{\hat{V}(\hat{a})}} \qquad t_{calc(b)} = \frac{\hat{b} - 0}{\sqrt{\hat{V}(\hat{b})}}$$

$$t_{calc(c)} = \frac{\hat{c}-0}{\sqrt{\hat{V}(\hat{c})}}$$
 $t_{calc(d)} = \frac{\hat{d}-0}{\sqrt{\hat{V}(\hat{d})}}$

Após obter as estimativas de t_{calc} , pode-se fazer o teste de hipótese comparando esta estimativa com o valor de t crítico (tabelado). Para isso, precisa-se apenas considerar o nível de significância desejado e o número de graus de liberdade dos resíduos.

2.8 Avaliadores da qualidade do ajuste de regressão

> Coeficiente de determinação:

$$R^2 = \frac{SQregress\~ao}{SQtotal}$$

- > Representa a proporção da variação total que é explicada pelo modelo de regressão.
- > Pode variar de 0 até 1, sendo que quanto mais próximo de 1 melhor é o ajuste.
- > Quanto maior é o número de parâmetros no modelo maior tende a ser o R².
- Logo, não é indicado como critério para a comparação de modelos, pois geralmente leva à seleção de modelos mais complexos.
- Coeficiente de determinação ajustado

$$R^{2}_{aj} = \frac{R^{2}(n-p) - p}{n-p-1}$$

- > Este coeficiente leva em consideração o número de parâmetros do modelo estatístico.
- > É mais indicado para a seleção de modelos parcimoniosos

2.8 Avaliadores da qualidade do ajuste de regressão

Critério de informatividade de Akaike (AIC):

$$AIC = -2\log L\left(\widehat{\boldsymbol{\theta}}\right) + 2\left(p\right)$$

- > Onde:
 - > L é o estimador de máxima verossimilhança do modelo de regressão.
 - » p é o número de parâmetros no modelo de regressão.
- > Quanto menor sua estimativa, melhor é o modelo de regressão.
- > Leva em consideração o número de parâmetros do modelo.
- É indicado para a seleção de modelos parcimoniosos.
- Critério de informatividade bayesiano (BIC)

$$BIC = -2\log f(x_n|\boldsymbol{\theta}) + p\log n$$

- > Onde:
 - L é o estimador de máxima verossimilhança do modelo de regressão.
 - » p é o número de parâmetros no modelo de regressão.
 - > n é o número de observações (tamanho amostral)
- > Quanto menor sua estimativa, melhor é o modelo de regressão.
- > Leva em consideração o número de parâmetros do modelo.
- É indicado para a seleção de modelos parcimoniosos

Stepwise

Obrigado