CareTracker

A win-win for Tahoe Health Solutions and its patients

Anthony Abercrombie

Find my detailed analysis on

Jupyter Notebook Viewer

Today's Presentation

- 1. Business Problem
- 2. Data Context
- 3. Solutions
- 4. Proposal
- 5. Next Steps

In [01]: Business Problem

- 20% of all hospitalized medicare patients are readmitted within 30 days. 34% within 90 days.
- National annual cost of hospital readmissions is \$17.4 billion.
- Hospital Readmissions Reduction Program (HRRP) penalizes hospitals for readmissions with a fine.
- HRRP is monitoring readmissions for AMI, HF, and pneumonia. more to come....
- * 18% of Tahoe Health System's (THS) medicare revenue comes from these three conditions. THS will lose \$8,000 per readmitted patient.

In [01]: Business Problem --- Last Year's Numbers

Assumptions:

- Per-patient readmission cost of \$8000.
- Patient data from the last year represents any given year (22.8% readmission rate).
- CareTracker reduces readmissions by 40%,
- ACA survives the current administration.
- **HRRP** expands list of conditions.

Implications:

* \$7,984,000 annual loss to HRRP fines if THS does not take action.

In [01]: Business Problem --- The Intervention

- Would cost \$5,258,400 if everyone got CareTracker.
- Combined cost of CareTracker for everyone + HRRP fines would be \$10,048,000.

In [01]: Business Problem --- A Saner Approach

Extend CareTracker intervention to patients who need it.

- Managerial Segmentation
- Machine Learning

Data Context

In [02]: Data Context --- State of Affairs

Many patients who are readmitted have high **comorbidity** and **severity** scores.

In [02]: Data Context --- State of Affairs

22.8% of the sample size was readmitted within 30 days of the initial visit.

40.8% of the sample size was admitted during flu season.

In [02]: Data Context --- State of Affairs

18.5% of the non-flu-season visitors were readmitted within 30 days of their initial visit.

28.9% of the flu-season visitors were readmitted within 30 days of their initial visit.

In [02]: Data Context --- Segmentation Opportunities

In [02]: Data Context --- The State of Affairs

Takeaways:

- Any patients who are readmitted have high comorbidity and severity scores.
- Patients who were admitted during flu season have greater readmission rates!
 - \rightarrow p-value = 6.81e⁻¹⁶
- ED admission is not a significant factor within flu season segments.
- We can use this information to target at-risk patients with CareTracker.

Solutions

In [03]: Solutions --- Managerial Segmentation

The Concept:

- Define thresholds for Comorbidity and Severity Scores.
- Assign CareTracker to patients who surpass either of the thresholds.
- Calculate savings.

In [03]: Solutions --- Managerial Segmentation

Performance:

	Targeted	Not Targeted
Readmitted	652 (15%)	346 (8%)
Not Readmitted	858 (19%)	2526 (58%)

- Comorbidity Threshold:
 - > 126.5
- Severity Threshold:
 - > 43.7
- ◆ 1510 Targeted Patients (34%)
- Total Cost:
 - > \$ 7,709,600.0
- F1 Score:
 - > 0.32
- Improvement From Base Case:
 - > \$ 274,400.0
 - **→** ↑ 3′

In [02]: Solutions --- Complexity at Play

In [03]: Solutions --- Machine Learning

The Concept:

- Deploy algorithms to teach computers to learn patterns in our data.
- Train models on subsets of our data and then evaluate on a holdout test-set.
- Fit our entire dataset to the best model and predict whether patients are going to be readmitted.
- Calculate savings.

In [03]: Solutions --- Logistic Regression?

Logit Regression Results

Dep. Variable:	readmit30	No. Observations:	4382
Model:	Logit	Df Residuals:	4377
Method:	MLE	Df Model:	4
Date:	Sat, 04 Mar 2017	Pseudo R-squ.:	0.1847
Time:	20:55:48	Log-Likelihood:	-1916.8
converged:	True	LL-Null:	-2351.1
		LLR p-value:	1.046e-186

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-3.9849	0.128	-31.195	0.000	-4.235	-3.735
female	0.1840	0.081	2.264	0.024	0.025	0.343
flu_season	0.7439	0.082	9.081	0.000	0.583	0.904
severity_score	0.0259	0.002	11.993	0.000	0.022	0.030
comorbidity_score	0.0158	0.001	21.504	0.000	0.014	0.017

"One bit of advice: it is important to view knowledge as sort of a semantic tree -- make sure you understand the fundamental principles, ie the trunk and big branches, before you get into the leaves/details or there is nothing for them to hang on to."

Elon Musk, Reddit AMA

Decision Surface Of Decision Tree Trained On Comorbidity and Severity Score Features

Performance:

	Targeted	Not Targeted
Readmitted	470 (11%)	528 (12%)
Not Readmitted	209 (5%)	3175 (72%)

- 1510 Targeted Patients (34%)
- Total Cost:
 - > \$7,294,800
- F1 Score:
 - \rightarrow 0.56
- Improvement From Base Case:
 - **>>** \$ 689,200
 - **>** ↑ 9%

Proposal

In [04]: Proposal

Policy	Cost	Savings	% Savings
Do Nothing	\$ 7,984,000	\$ O	0 %
CareTracker For All	\$ 10,048,800	-\$2,064,800	-0.26
Managerial Segmentation	\$ 7,709,600	\$ 274,400	3 %
Decision Tree	\$ 7,294,800	\$ 689,200	9 %

In [04]: Proposal

Impact:

"The journey of a thousand miles begins with a single step."

- Lao Tzu

- Saves THS ~ \$689,200 a year.
- Improves patient experience and well-being.
- Improves our reputation.
- Transition to data-driven precision medicine.

In [04]: Proposal

Limitations:

- Geographic context
 - Piloted in Seattle
 - Temporal context
 - No longitudinal study
 - 40% readmission reduction claim is a broad generalization.

- ➤ Best F1 score: 0.56
 - Health care regulations will change, this model will not endure.
- Issues of overfitting and regularization.
- The model was trained solely on AMI cases.
 - Every medical condition has its own readmission patterns.

Human Element

- "Targeted."
- Demands on practitioners and infrastructure.
- Ethical issues around patient confidentiality.

Patients may react adversely to being

Next Steps

In [05]: Next Steps

- Begin "online" targeting of at-risk patients for CareTracker.
 - Retrain readmission model iteratively by comparing predictions with outcomes.
- Implement CareTracker in hospitals with high readmission rates.
 - Monitor readmission reduction rates over time.
 - Bayesian A/B testing
- Develop and implement models for all major conditions.
- Collect more patient data and engineer better features for each condition.
 - Hospital locations
 - > Admission and readmission dates
 - Medical history

In [06]:

```
C:\Users\Scott\Anaconda2\lib\site-packages\scipy\signal\filter_design.py in <module>()
    12 from numpy import mintypecode
    13 import numpy as np
---> 14 from scipy import special, optimize
    15 from scipy.special import comb
    16
C:\Users\Scott\Anaconda2\lib\site-packages\scipy\optimize\ init .py in <module>()
   220
    221 from .optimize import *
--> 222 from . minimize import *
    223 from . root import *
    224 from .minpack import *
C:\Users\Scott\Anaconda2\lib\site-packages\scipy\optimize\_minimize.py in <module>()
     29 # constrained minimization
     30 from .lbfgsb import _minimize_lbfgsb
---> 31 from .tnc import minimize tnc
     32 from .cobyla import minimize cobyla
    33 from .slsqp import minimize slsqp
C:\Users\Scott\Anaconda2\lib\site-packages\scipy\optimize\tnc.py in <module>()
    35 from future import division, print function, absolute import
---> 37 from scipy. antimize impact modulaTMC approx fprime
     38 from .optim
                                              mizeResult, _check_unknown_options
    39 from numpy import int, array, zeros, asfarray
ImportError: cannot import name moduleTNC
```

Questions?