No milk without meat: Dynamic implications of the biological link between milk and bovine meat production on nutrition guidelines

Supplementary material – technical documentation

This supplement describes the model structure and provides full documentation of the model. The simulation model is implemented in Stella Architect (© isee systems), version 2.1.5. The files needed to run the model and replicate the analyses are appended to this supplement and can be viewed and run with the isee Player, https://www.iseesystems.com/soft-wares/player/iseeplayer.aspx.

1 MODEL STRUCTURE	
2 MODEL EQUATIONS	,
Z INOULL EQUATIONS	
Table A 4 Cat of SA and a Francisco Charles	
Table A.1 List of Model Equations – Stocks	
Table A.3 List of Model Equations – Other Variables	6
Table A.4 List of Model Equations – Parameters, their Values an	nd SourcesS
Table A.5 List of Model Equations – Nonlinear Functions	
3 INFORMATION ON MODEL TESTING	<u>13</u>
4 INFORMATION ON THE VALIDITY OF THE SIMPLIFIED MOD	DEL
_	
to describe the set of the Pater transfer	4.5
Indirect structural validity tests	
Scenario runs	14
<u>5 REFERENCES</u>	1/
ILLI LILLIGES	

1 Model structure

Our model is a simplified version of the meat supply and demand policy model by [BLINDED FOR REVIEW], designed to specifically capture the biological link between milk and bovine meat production. It is based on the system dynamics simulation methodology (Sterman, 2000), using differential equation modeling and continuous time simulation.

Our model uses the same herd structure as the comprehensive model. Yet, different from it, our model is initialized to equilibrium, meaning that all model parameters and therefore also the behavior remain unchanged throughout the simulation horizon in the absence of shocks or stressors. This enables users to better analyze impacts on model behavior as changes in consumption patterns are not confounded by other processes. Effects on production are thus more clearly visible. To highlight production effects of consumption changes, we present simulation results of this study (in the manuscript, the accompanying STELLA model, and the freely accessible online simulator) as relative values where the reference or 2020 value of a variable is equal to 1. in the paper.

Similar to how (Willett et al. (2019)) calculated the planetary health diet, we also consider food demand an input parameter and food production and environmental impacts as outputs. For analytical clarity, we assume that milk and meat production react to recommended consumptions (converted into indicated production based on consideration of food waste and loss as well as consumption by animals in the case of milk) in a mechanistic way—i.e., without mitigation by economic mechanisms such as own- and cross-price elasticities.

Figure A-1: Structure of the model: Main herd structure with milk and bovine meat production

Figure A-2: Structure of the model: Meat demand

Figure A-3: Structure of the model: Milk demand

Figure A-4: Structure of the model: Emissions

Figure A-5: Structure of the model: Population

Figure A-6: Structure of the model: Initial values

2 Model equations

Table A.1 List of Model Equations – Stocks

Where to find	Variable Name	Equation	Units	Interpretation	Initial
Herd struc- ture	Calves	Calves(t) = Calves(t - dt) + (Calf_birth_rate - Calf_weaning_rate) * dt	animal	This is a stock variable that calculates the number of calves at each point in time based on the initial value of calves plus the integrated difference between calf birth rate and calf weaning rate over time.	INITIAL_CALVES
Herd struc- ture	Calves in Gestation	Calves_in_Gestation(t) = Calves_in_Gestation(t - dt) + (Calf_breed- ing_rate - Calf_birth_rate) * dt	animal	This is a stock variable that calculates the calves in gestation at each point in time based on the initial value of calves in gestation plus the integrated difference between calf breeding rate and calf birth rate over time.	INIT Calves_in_Gestation = initial_calves_in_gestation
Herd struc- ture	Feeder Cattle	Feeder_Cattle(t) = Feeder_Cattle(t - dt) + (calves_allo- cated_to_feeder_stock - slaughtering_rate) * dt	animal	The stock of cattle who are fattened and later slaughtered.	INIT Feeder_Cattle = INI- TIAL_FEEDER_CATTLE
Herd struc- ture	Heifers milk pro- duction	Heifers_milk_produc- tion(t) = Heif- ers_milk_production(t - dt) + (Calves_allo- cated_to_breeder_stock - Parturition_rate) * dt	animal	This is a stock variable that calculates the number of heifers at each point in time based on the initial value of heifers plus the integrated difference between the calves allocated to the breeder stock and the parturition rate over time.	INIT Heifers_milk_produc- tion = INITIAL_HEIF- ERS_MILK_PRODUCTION
Herd struc- ture	Milk cows	Milk_cows(t) = Milk_cows(t - dt) + (Par- turition_rate - Slaugh- tering_rate_milk_cows) * dt	animal	This is a stock variable that calculates the number of dairy cows at each point in time based on the initial value of milk cows plus the integrated difference between the parturition rate and the slaughtering rate over time.	INIT Milk_cows = INI- TIAL_MILK_COWS

Herd struc- ture	Weaned calves	Weaned_Calves(t) = Weaned_Calves(t - dt) + (Calf_weaning_rate - Calves_allo- cated_to_breeder_stock - calves_allo- cated_to_feeder_stock) * dt	animal	This is a stock variable that calculates the number of weaned calves at each point in time based on the initial value of weaned calves plus the integrated difference between calf weaning rate and calf maturation rate over time.	INIT Weaned_Calves = INITIAL_WEANED_CALVES
------------------------	------------------	--	--------	---	--

Table A.2 List of Model Equations - Flows

Where to find Variable Equation Name		Equation	Units	Interpretation	
Herd structure	Calf birth rate	Calf_birth_rate = DELAY3(Calf_breed- ing_rate, PARTURITION_TIME)	animal/Year	The number of calves born each year after a delay equal to the average parturition time.	
Herd structure	Calf weaning rate	Calf_weaning_rate = DE- LAY3(Calf_birth_rate, WEANING_TIME)	animal/Year	The number of calves weaned each year after a delay equal to the average weaning time.	
Herd structure	Calf breeding rate	Calf_breeding_rate = (Milk_cows+Heif- ers_milk_produc- tion)*Calves_per_cow_or_heifer_per_year	animal/Year	The number of calves that are born each year depends on the size of the stocks of cows and heifers and on the number of calves that each cow and heifer produce per year.	
Herd structure	Calf birth rate	Calf_birth_rate = DELAY3(Calf_breed- ing_rate, PARTURITION_TIME)	animal/Year	The number of calves born each year after a delay equal to the average parturition time.	
Herd structure	cated to cated_to_feeder_stock = cated to cated_to_breeder_stock cated_to_breeder_stock		animal/Year	The number of matured calves each year that are allocated to the feeder stock. the number is calculated from the total number of weaned calves.	
Herd structure	Slaughtering rate	slaughtering_rate = Feeder_Cattle/aver- age_fattening_time_feeder_cattle	animal/Year	This is the outflow to the stock of feeder cattle. Feeder cattle are slaughtered when they reach the average fattening time. The average fattening time is not constant but depends on the profitability of meat. In this simplified model, we equate profitability with demand (desired meat consumption).	
Herd structure	Calves allo- cated to breeder stock	ted to MIN(Desired_new_heifers_milk_produc-		The desired number of calves that are allocated to the breeding stock can be higher than the maximum possible number of new breeder calves given the existing herd structure. Under such extreme conditions, the minimum function makes sure that not more calves are allocated to the breeding stock than are physically available (the "maximum number of new heifers milk cows").	
Herd structure	Parturition rate	ition Parturition_rate = Heifers_milk_produc- tion/PARTURITION_TIME		This flow describes the process of heifers becoming dairy cows after having their first calf.	
Herd structure	Slaughtering rate milk cows	Slaughtering_rate_milk_cows = Milk_cows/AVERAGE_LIFE- TIME_MILK_COWS	animal/Year	This is the outflow from the stock of dairy cows. Dairy cows are slaughtered when they reach their average lifetime.	
Herd structure	Calf matura- tion rate	calf_maturation_rate = Weaned_Calves/CALF_MATURING_TIME	animal/Year	This is the outflow from the stock of weaned calves. Calves are weaned	

				when they reach the average calf maturing time. The number of weaned calves each year is subsequently allocated to either the breeder or the feeder stock.
Herd structure	Calf weaning rate	Calf_weaning_rate = DE- LAY3(Calf_birth_rate, WEANING_TIME)	animal/Year	The number of calves weaned each year after a delay equal to the average weaning time.
Herd structure	Calves allo- cated to breeder stock	Calves_allocated_to_breeder_stock = MIN(Desired_new_heifers_milk_production, Max_#_of_new_heifers_milk_cows)	animal/Year	The desired number of calves that are allocated to the breeding stock can be higher than the maximum possible number of new breeder calves given the existing herd structure. Under such extreme conditions, the minimum function makes sure that not more calves are allocated to the breeding stock than are physically available (the "maximum number of new heifers milk cows").
Herd structure	Calves allo- cated to feeder stock	calves_allocated_to_feeder_stock = calf_maturation_rate-Calves_allo-cated_to_breeder_stock	animal/Year	The number of matured calves each year that are allocated to the feeder stock. the number is calculated from the total number of weaned calves.

Table A.3 List of Model Equations – Other Variables

Where to find	Variable Name	Equation	Units	Interpretation
Herd structure	Average fatten- ing time feeder cattle	average_fattening_time_feeder_cat- tle = initial_fatten- ing_time_feeder_cat- tle*change_in_bovine_meat_con- sumption	Year	The average fattening time of feeder cattle depends on the demand for bovine meat. if demand increases, cattle are fattened for longer than if demand decreases.
Herd structure	Bovine meat production	"Bovine_meat_production_(with- out_suckler_cows)" = slaughter- ing_rate*meat_per_slaugh- tered_feeder_cattle	ton/Year	Tons per year produced by the slaugh- tered feeder cattle withing the bovine livestock but excluding the suckler cow line.
Herd structure	Change in bo- vine meat con- sumption	change_in_bovine_meat_consump- tion = current_pc_consump- tion_of_bovine_meat/base- line_pc_consumption_of_bo- vine_meat	Dmnl	The change in demand, i.e., the current demand relative to the baseline demand. in this simplified model, we assume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environmental regulations.
Herd structure	Change in milk consumption	change_in_milk_consumption = cur- rent_pc_consumption_of_milk/refer- ence_pc_consumption_of_milk	Dmnl	The change in demand, i.e., the current demand relative to the reference demand. in this simplified model, we assume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environmental regulations.
Emissions	CO2e emissions from bovine meat produc- tion	CO2e_emissions_from_bo- vine_meat_production = CO2_emis- sions_per_ton_of_bovine_meat*To- tal_bovine_meat_production	ton co2/Year	The total number of tons of CO ₂ equivalents per year resulting from bovine meat production.

Emissions	CO2e emissions from milk pro- duction	CO2e_emissions_from_milk_production = CO2_emissions_per_ton_of_milk*Milk_production	ton co2/Year	The total number of tons of CO_2 equivalents per year resulting from milk production.	
ita consumption vine_meat of bovine meat mand_charbase-line_vine_mea tion_recortions_0_o sumption_mended_vine_mea		current_pc_consumption_of_bo- vine_meat = (IF TIME < de- mand_change_start_year THEN base-line_pc_consumption_of_bo- vine_meat ELSE (1-switch_consump- tion_recommenda- tions_0_off_1_on)*baseline_pc_con- sumption_of_bovine_meat+recom- mended_pc_consumption_of_bo- vine_meat*switch_consump- tion_recommendations_0_off_1_on)	ton/(per- son*Year)	The per capita consumption of bovine meat per year in the activated scenario.	
Milk demand	Current per capita consumption of milk	current_pc_consumption_of_milk = (IF TIME < de- mand_change_start_year THEN base-line_pc_consumption_of_milk ELSE (1-switch_consumption_recom- mendations_0_off_1_on)*base- line_pc_consumption_of_milk+rec- ommended_pc_consump- tion_of_milk*switch_consump- tion_recommendations_0_off_1_on)	ton/(per- son*Year)	The per capita consumption of milk per year in the activated scenario.	
Herd structure	Dairy cows meat produc- tion	Dairy_cows_meat_production = Meat_per_slaugh- tered_dairy_cow*Slaughter- ing_rate_milk_cows	ton/Year	Tons of bovine meat per year produced by the slaughtered dairy cows.	
Herd structure	Desired number of milk cows	Desired_#_milk_cows = Milk_cows*change_in_milk_con- sumption	animal	The desired number of milk cows is calculated by adjusting the current number of milk cows upward if the demand for milk products increases and downward if the demand for milk products decreases. in this simplified model, we assume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environmental regulations.	
Herd structure	Desired adjust- ment milk cow stock	Desired_adjust- ment_milk_cow_stock = (De- sired_#_milk_cows-Milk_cows)/Cat- tle_livestock_adjustment_time	animal/Year	The desired adjustment of the milk cow stock compares desired and available numbers of milk cows and adjusts this difference not immediately, but over the cattle livestock adjustment time.	
Herd structure	De- sired_new_heif- ers milk produc- tion	Desired_new_heifers_milk_produc- tion = MAX(0, De-sired_adjust- ment_milk_cow_stock+Replace- ment_of_milk_cows)	animal/Year	The desired new heifers are the sum of the calves needed for replacing the current milk cow stuck plus the desired adjustment of the milk cow stock.	
Meat demand Indicated bo- vine meat pro- duction vine_meat_consump- tion*MEAT_LOSS_AND_WASTE_FAC- TOR		ton/Year	indicated bovine meat production represents demand. in this simplified model, price does not mitigate desired consumption. total demand is the domestic consumption, adjusted for the meat loss and waste along the entire value chains. net exports in the case of bovine meat are negligible, especially compared to net milk exports.		

Milk demand	Indicated milk production	Indicated_milk_production = (to-tal_domestic_milk_consump-tion+NET_MILK_EXPORTS+milk_consumption_by_ani-mals)*MILK_LOSS_AND_WASTE_FACTOR	ton/Year	indicated milk production represents demand. in this simplified model, price does not mitigate desired consumption. total demand is the sum of domestic consumption, consumption by animals and exports, adjusted for the milk loss and waste along the entire value chains.
Initial values	Initial calves in gestation	initial_calves_in_gestation = Calf_birth_rate*PARTURITION_TIME	animal	The initial value of calves in gestation, calculated to initialize the model in equilibrium.
Herd structure	Maximum num- ber of new heif- ers milk cows	Max_#_of_new_heifers_milk_cows = calf_maturation_rate*FRACTION_FE-MALE_CALVES	animal/Year	The maximum number of new heifers is the number of female weaned calves each year.
Herd structure	Meat per slaughtered feeder cattle	meat_per_slaughtered_feeder_cat- tle = LOOKUP(effect_of_fatten- ing_time_on_meat_yield, aver- age_fattening_time_feeder_cattle)	ton/animal	The meat per slaughtered feeder cattle depends on the age of the animal and the value of meat per animal is read from the table "effect of fattening time on meat yield".
Milk demand	Milk consump- tion by animals	milk_consumption_by_animals = (Calves+Weaned_Calves)*MILK_CON SUMPTION_PER_CALV_PER_YEAR	ton/Year	The amount of milk consumed by calves every year. in the more elaborate model, also pigs are fed with milk from dairy cows.
Herd structure	Milk production	Milk_production = Milk_cows*MILK_PRODUC- TION_PER_COW_PER_YEAR	ton/Year	This variable calculates milk production per year as a function of both, the number of milk cows and the average milk production per cow per year.
bovine meat due production and tal_		Ratio_between_bovine_meat_pro- duction_and_consumption = To- tal_bovine_meat_production/indi- cated_bovine_meat_production	Dmnl	this ratio compares supply and demand. the total demand is adjusted for the bovine meat loss and waste along the entire value chains. net exports in the case of bovine meat are negligible, especially compared to net milk exports.
Milk demand	Ratio between milk production and consump- tion	Ratio_between_milk_produc- tion_and_consumption = Milk_pro- duction/Indicated_milk_production	Dmnl	this ratio compares supply and demand. the total demand is the sum of domestic consumption, consumption by animals and exports, adjusted for the milk loss and waste along the entire value chains.
Meat demand	Recommended per capita con- sumption of bo- vine meat	recommended_pc_consump- tion_of_bovine_meat = recommend- ed_pc_consumption_of_bo- vine_meat_SFP*(1- switch_0_sfp_1_phd)+switch_0_sfp_ 1_phd*recommended_pc_consump- tion_of_bovine_meat_phd	ton/(Year*per- son)	The recommended per capita consumption of bovine meat for one of the two nutrition recommendation scenarios: Swiss Food Pyramid or Planetary Health Diet.
Milk demand	tion_of_bovine_meat_phd mand Recommended recommended_pc_consump- tion_of_milk = recom- sumption of mended_pc_consump- tion_of_milk_SFP*(1- switch_0_sfp_1_phd)+recommmend ed_pc_consump- tion_of_milk_PHD*switch_0_sfp_1_ phd		ton/(per- son*Year)	The recommended per capita consumption of milk for one of the two nutrition recommendation scenarios: Swiss Food Pyramid or Planetary Health Diet.
Meat demand	Reference per capita con- sumption of bo- vine meat	reference_pc_consumption_of_bo- vine_meat = SMTH3(current_pc_con- sumption_of_bovine_meat, TIME_TO_REACT_TO_CONSUMP- TION_CHANGES_MEAT, base- line_pc_consumption_of_bo- vine_meat)	ton/(per- son*Year)	The reference demand represents the per capita demand of bovine meat in the recent past. the time horizon over which demand changes are taken into consideration for adjusting pro-duction is indicated by the parameter "time to react to consumption changes meat".
Milk demand	Reference per capita con- sumption of milk	reference_pc_consumption_of_milk = SMTH3(current_pc_consump- tion_of_milk, TIME_TO_REACT_CON- SUMPTION_CHANGES_MILK, base- line_pc_consumption_of_milk)	ton/(per- son*Year)	The reference demand represents the per capita demand of milk in the recent past. the time horizon over which demand changes are taken into consideration for adjusting production is indicated

				by the parameter "time to react to consumption changes milk".
Herd structure	Replacement of milk cows	Replacement_of_milk_cows = Slaughtering_rate_milk_cows	animal/Year	This variable calculates the number of dairy cows needed to replace the dairy cows that are slaughtered.
Meat demand, Milk demand	Switch between Swiss Food Pyr- amid and Plane- tary Health Diet	switch_0_sfp_1_phd = 0	Dmnl	This is a scenario switch that allows alternating between the Swiss Food Pyramid recommendations (switch = 0) and the recommendations of the Planetary Health Diet (switch = 1).
Meat demand, Milk demand	Switch between consumption recommendations	switch_consumption_recommenda- tions_0_off_1_on = 0	Dmnl	This is a switch that allows alternating between current and recommended consumption pat-terns. 0 means current consumption patterns, 1 means recommended consumption patterns.
Population	Switch between population growth and no growth	switch_popula- tion_growth_0_off_1_on = 0	Dmnl	This is a switch that allows alternating between a constant population size and a time-dependent population size. O means constant population, 1 takes population from historical and projected data.
Herd structure	Total bovine meat produc- tion	Total_bovine_meat_production = "Bo-vine_meat_production_(with- out_suck- ler_cows)"+Dairy_cows_meat_pro- duction	ton/Year	The total amount of bovine meat produced in one year. this variable only calculates bovine meat production from the dual-purpose meat/dairy stock but excludes bovine meat from the suckler cow line.
Emissions	Total CO2e emissions	total_CO2e_emissions = CO2_emissions_from_bovine_meat_production+CO2_emissions_from_milk_production	ton co2/Year	The total number of tons of CO_2 equivalents per year resulting from milk and bovine meat pro-duction.
Meat demand	Total domestic bovine meat consumption	total_domestic_bovine_meat_con- sumption = to-tal_population*cur- rent_pc_consumption_of_bo- vine_meat	ton/Year	The total amount of bovine meat consumed per year by the Swiss population.
Milk demand	Total domestic milk consump- tion	total_domestic_milk_consumption = total_population*current_pc_consumption_of_milk	ton/Year	the total amount of milk consumed per year by the Swiss population
Population Total population tion Total population = (1-switch_population_growth_0_off_1_on)*population_2020+switch_population_growth_0_off_1_on*population		person	The total population of Switzerland, used to calculate total milk and bovine meat consumption.	

Table A.4 List of Model Equations – Parameters, their Values and Sources

Where to find	Parameter name	Name in model	Value	Units	Interpretation	Source
Herd structure	Average life- time of milk cows	AVERAGE_LIFE- TIME_MILK_CO WS	4	Year	The number of years, on average, that a milk cow is kept on lactation	Agridea/FiBL, 2019, section Tierhaltung
Meat de- mand	Baseline per capita con- sumption of bo- vine meat	BASE- LINE_PC_CON- SUMP- TION_OF_BO- VINE_MEAT	0.01044	ton/(per- son*Year)	Per capita consumption under baseline conditions.	SBV, 2021
Milk de- mand	Baseline per capita con- sumption of milk	BASE- LINE_PC_CON- SUMP- TION_OF_MILK	0.3189	ton/(per- son*Year)	Per capita consumption under baseline conditions.	SBV, 2021

Herd structure	Calf maturing time	CALF_MATU- RING_TIME	0.56	Year	The time it takes for calves to fully mature. the constant assumes the value of the remaining 205 days until calves reach the age of 1 year, where the female animals destined for milk production get inseminated for the first time	SBV, 2021
Herd structure	Calves per cow or heifer per year	CALVES_PER_C OW_OR_HEIFER _PER_YEAR	1.02	1/Year	The number of calves that, on average, each cow and heifer produce per year.	Agridea/FiBL, 2019, section Tierhaltung
Herd structure	Cattle livestock adjustment time	CATTLE_LIVE- STOCK_ADJUST- MENT_TIME	10	Year	The long adjustment time is rooted in the long lifetime of cattle livestock buildings and related infrastructure, which limit the flexibility with which farmers enter and exit the cattle sector.	[BLINDED FOR REVIEW]
Emissions	CO2e emissions per ton of bo- vine meat	CO2E_EMIS- SIONS_PER_TO N_OF_BO- VINE_MEAT	13	ton co2/ton	tons of CO2 equiva- lents produced per ton of bovine meat.	FAOSTAT, Climate Change, Emission Intensities: https://www.fao.org/fao-stat/en/#data/El
Emissions	CO2e emissions per ton of milk	CO2E_EMIS- SIONS_PER_TO N_OF_MILK	0.6	ton co2/ton	tons of CO2 equiva- lents produced per ton of milk.	FAOSTAT, Climate Change, Emission Intensities: https://www.fao.org/fao-stat/en/#data/El
Meat de- mand, Milk de- mand	Demand change start year	DE- MAND_CHANG E_START_YEAR	2022	Year	this is a scenario vari- able that allows de- fining the year in which consumption changes start.	User choice.
Herd structure	Fraction of fe- male calves	FRACTION_FE- MALE_CALVES	0.5	Dmnl	The fraction, on average, of calves that are female.	Agridea/FiBL, 2019, section "Tierhaltung".
Initial val- ues	Initial number of calves	INITIAL_CALVES	304353	animal	The initial value of calves	Calculated to initialize the model in equilibrium
Herd structure	Initial fattening time feeder cat- tle	INITIAL_FAT- TEN- ING_TIME_FEED ER_CATTLE	0.43	Year	An average of the average fattening time for veal fattening and bull fattening, weighted by the livestock units of calves and bulls in the initial year of the simulation and estimated to keep the model in equilibrium	Agridea/FiBL, 2019, section "Tierhaltung".
Initial val- ues	Initial feeder cattle	INI- TIAL_FEEDER_C ATTLE	240197	animal	The initial number of feeder cattle	SBV, 2021 Cattle aged 365-730 days
Initial val- ues	Initial heifers milk production	INITIAL_HEIF- ERS_MILK_PRO- DUCTION	135005	animal	The initial value of heifers.	Milk production per dairy cow (7 ton/year; SBV, 2020) and livestock numbers (total of 677863 cows - of which 542857 must be dairy cows and the rest heifers for milk production; SBV, 2021).

Initial val- ues	Initial number of milk cows	INI- TIAL_MILK_CO WS	542857	animal	The initial value of milk cows	SBV, 2021
Initial val- ues	Initial number of weaned calves	INI- TIAL_WEANED_ CALVES	391800	animal	The initial value of weaned calves	Calculated to initialize the model in equilibrium
Meat de- mand	Meat loss and waste factor	MEAT_LOSS_AN D_WASTE_FAC- TOR	1.1	Dmnl	calculated from SBV. (2021).	SBV, 2021 total production (incl. net exports) vs. total consumption 2020.
Herd structure	Meat per slaughtered dairy cow	MEAT_PER_SLA UGH- TERED_DAIRY_C OW	0.3	ton/ani- mal	Meat yield is set at 38% of the live weight (700kg).	Agridea/FiBL, 2019, section "Tierhaltung".
Milk de- mand	Milk consump- tion per calf per year	MILK_CON- SUMP- TION_PER_CALF _PER_YEAR	0.6	ton/(ani- mal*Year)	calculated from SBV (2021)	SBV, 2021 Kälber bis 160 Tage, Jungvieh 160- 365 Tage; total milk consumption by calves and weaned calves: 400'000 ton/year.
Milk de- mand	Milk loss and waste factor	MILK_LOSS_AN D_WASTE_FAC- TOR	1.13		calculated from SBV (2021)	SBV, 2021
Milk de- mand	Milk production per cow per year	MILK_PRODUC- TION_PER_COW _PER_YEAR	7	ton/(ani- mal*Year)	The amount of milk produced, on average, per cow and year	SBV, 2020
Milk de- mand	Net milk ex- ports	NET_MILK_EX- PORTS	189000	ton/Year	the net amount of milk exported per year.	SBV, 2020
Herd structure	Parturition time	PARTURI- TION_TIME	1	Year	The parturition time is 9 months but heifers and cows only get inseminated once per year.	Agridea/FiBL, 2019
Popula- tion	Population	POPULA- TION_2020	8.67054 e+06	person	the population in Switzerland in 2020	BfS, 2021
Meat de- mand	Recommended per capita con- sumption of bo- vine meat (Planetary Health Diet)	RECOM- MENDED_PC_C ONSUMP- TION_OF_BO- VINE_MEAT_PH D	0.006	ton/(per- son*Year)	recommended per capita consumption of bovine meat according to the planetary health diet (feed no food configuration).	The data is from the integrated model developed in the NRP69 project, described in [BLINDED FOR REVIEW].
Meat de- mand	Recommended per capita con- sumption of bo- vine meat (Swiss Food Pyramid)	RECOM- MENDED_PC_C ONSUMP- TION_OF_BO- VINE_MEAT_SF P	0.00544	ton/(per- son*Year)	per capita consump- tion in the Swiss Food Pyramid Scenario	The data is from the integrated model developed in the NRP69 project, described in [BLINDED FOR REVIEW].
Milk de- mand	Recommended per capita con- sumption of milk (Swiss Food Pyramid)	RECOM- MENDED_PC_C ONSUMP- TION_OF_MILK SFP	0.2788	ton/(per- son*Year)	per capita consump- tion in the Swiss Food Pyramid Scenario	The data is from the integrated model developed in the NRP69 project, described in [BLINDED FOR REVIEW].
Milk de- mand	Recommended per capita con- sumption of milk (Planetary Health Diet)	RECOMMMEND ED_PC_CON- SUMP- TION_OF_MILK _PHD	0.1818	ton/(per- son*Year)	recommended per capita consumption of milk according to the planetary health diet (feed no food configuration)	The data is from the integrated model developed in the NRP69 project, described in [BLINDED FOR REVIEW].
Milk de- mand	Time to react to consumption change - milk	TIME_TO_RE- ACT_CON- SUMP- TION_CHANGES _MILK	10	year	the time horizon over which demand changes are taken into consideration for adjusting pro-duction. The lower value for	[BLINDED FOR REVIEW]Kopainsky et al., 2020.

					meat than for milk re- flects the capital in- tensity of bovine meat production compared to milk production (stables and milking equip- ment)	
Meat de- mand	Time to react to consumption change – meat	TIME_TO_RE- ACT_TO_CON- SUMP- TION_CHANGES _MEAT	5	Year	the time horizon over which demand changes are taken into consideration for adjusting pro-duction.	[BLINDED FOR REVIEW].
Herd structure	Weaning time	WEAN- ING_TIME	0.44	Year	The time it takes to wean calves	SBV, 2021 Calves aged up to 160 days.

Table A.5 List of Model Equations – Nonlinear Functions

Where	Parameter	Name in model	Points	Units	Interpretation	Source
to find	name					
Herd	Effect of	effect_of_fatten-	(0.3400, 0.0800),	ton/ani-	Meat yield is set at 38%	Agridea/FiBL, 2019,
struc-	fattening	ing_time_on_meat_yield	(0.4300, 0.1050),	mal	of the live weight of an-	section "Tierhaltung".
ture	time on	= GRAPH(0+0)	(1.2000, 0.1970)		imals. The low value is	
	meat yield				for veal fattening and	
					the high value for bull	
					fattening.	
Popu-	Population	population=	(2000.00, 7164440),	person	the total population in	Historical data: BfS,
lation		GRAPH(TIME)	(2001.00, 7197640),		Switzerland	2021
			(2002.00, 7255650),			Future projections:
			(2003.00, 7313850),			BfS, 2015; Refer-
			(2004.00, 7364150),			enzszenario A-00-
			(2005.00, 7415100),			2015.
			(2006.00, 7459130),			
			(2007.00, 7508740),			
			(2008.00, 7508740),			
			(2009.00, 7701860),			
			(2010.00, 7785810),			
			(2011.00, 7870130),			
			(2012.00, 7954660),			
			(2013.00, 8039060),			
			(2014.00, 8139630),			
			(2015.00, 8339510),			
			(2020.00, 8757650),			
			(2025.00, 9159870),			
			(2030.00, 9541470),			
			(2035.00, 9856970),			
			(2040.00, 10044300),			
			(2045.00, 10176100)			

3 Information on model testing

Given that we initialize the model in equilibrium, we work with constant parameter values for consumption, livestock numbers—that translate into production quantities—, and population size throughout the simulation period.

For testing the model, we followed the standard procedure for assessing model structure and behavior (Sterman, 2000). We calculated analytically (e.g., in the case of initial calves in gestation) and/or numerically the initial values of those animal stocks for which no statistical data is available such that for each stock the inflow is equal to the outflow and thus ensures dynamic equilibrium.

4 Information on the validity of the simplified model

As stated in section 1, our model is a simplified version of the meat supply and demand policy model by [BLINDED FOR REVIEW], designed to specifically capture the biological link between milk and bovine meat production. Food demand is an input parameter and food production and environmental impacts are model outputs. For analytical clarity, we assume that milk and meat production react to recommended consumptions (converted into indicated production based on consideration of food waste and loss as well as consumption by animals in the case of milk) in a mechanistic way—i.e., without mitigation by economic mechanisms such as own- and cross-price elasticities.

Here, we elaborate on the validity of the simplified model. Following Saysel and Barlas (2006), we define model simplification as the process of distilling essential model structures that cause selected problems and of increasing understanding of models. This process is based on extensive experimentation with the simplified and the original models. Like Saysel and Barlas (2006), our simplified model-also has a-narrower model boundary and higher level of aggregation than the comprehensive model. We assess the usefulness of the simplification through indirect structural validity and scenario testing.

Indirect structural validity tests

We start by applying an extreme condition test (as one example of an indirect structure test; Barlas, 1996; Forrester & Senge, 1980) in which milk demand is set twice as high as under reference condition whereas meat demand is reduced to zero (Table 1). Table 1 lists the final values (year 2050) for milk and meat production as percentages of the 2050 value in the reference scenario. A comparison between the comprehensive and the simplified model reveals that bovine meat production does not deviate considerably from the reference values (98% in the case of the comprehensive model and 104% in the case of the simplified model) while milk production increases by some 20% in both models. This extreme condition test demonstrates two things. First, that the two models generate very similar results and second, that the biological link between milk and meat production prevents meat production from declining when milk production increases.

Table 1: Extreme conditions: twice as much milk, no meat. Percentages under extreme conditions relative to reference in the year 2050 (reference = 100%)

	Comprehensive model	Simplified model
bovine meat	98%	104%

milk	124%	121%

Scenario runs

Further, we compare the results of the Swiss Food Pyramid scenario from the two models (Table 2). The simulation results from the two models differ from each other numerically (e.g., 85% of bovine meat production in the comprehensive model vs. 77% in the simplified model). However, the direction of change is identical and the absolute results lie within reasonably similar boundaries.

Table 2: Swiss Food Pyramid values relative to reference values in 2050 (reference = 100%)

	Comprehensive model	Simplified model
bovine meat	85%	77%
milk	92%	90%

Based on the analyses reported here, we conclude that the simplified model is a valid and useful simplification of the original one for the purposes reported in the manuscript.

5 References

- Agridea/FiBL. (2019). Deckungsbeiträge. Ausgabe 2019. Lindau & Frick, Switzerland: Agridea and Forschunginstitut für biologischen Landbau FiBL.
- Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. *System Dynamics Review*, 12(3), 183-210.
- BfS. (2015). Szenarien zur Bevölkerungsentwicklung der Schweiz 2015-2045. Neuchâtel, Switzerland: Bundesamt für Statistik (BfS).
- BfS. (2021). Die Bevölkerung der Schweiz im Jahr 2020. In B. f. S. (BfS) (Ed.). Neuchâtel, Switzerland.
- Forrester, J. W., & Senge, P. M. (1980). Tests for building confidence in system dynamics models. In A. Legasto, J. W. Forrester & J. W. Lyneis (Eds.), *TIMS Studies in Management Sciences* (pp. 209-228). New York: North-Holland.
- Kopainsky, B., Frehner, A., & Müller, A. (2020). Sustainable and healthy diets: Synergies and tradeoffs in Switzerland. *Systems Research and Behavioral Science*, *37*(6), 908-927. doi: https://doi.org/10.1002/sres.2761
- Saysel, A. K., & Barlas, Y. (2006). Model simplification and validation with indirect structure validity tests. *System Dynamics Review*, *22*(3), 241-262.
- SBV. (2020). Milchstatistik der Schweiz, 2020. Brugg, Switzerland: Schweizerischer Bauernverband (SBV).
- SBV. (2021). Statistische Erhebungen und Schätzungen 2020 über Landwirtschaft und Ernährung. Brugg, Switzerland: Schweizerischer Bauernverband (SBV).
- Sterman, J. D. (2000). *Business Dynamics. Systems Thinking and Modeling for a Complex World*. Boston et. al.: Irwin McGraw-Hill.
- Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., . . . Murray, C. J. L. (2019). Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. *The Lancet*. doi: 10.1016/S0140-6736(18)31788-4