

# SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BBA 240 – QUANTITATIVE METHODS

#### FINAL EXAMINATION FORMLAE AND TABLES

# Formula Appendix

| Sample mean                                                                             | (n/2) - cf <sub>b</sub>                                                                      |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                         | Estimated Median = L + × w                                                                   |
| $\overline{x} = \frac{\sum x}{n}$                                                       | f <sub>m</sub>                                                                               |
| Population mean                                                                         | f <sub>m</sub> – f <sub>m-1</sub>                                                            |
| $\mu = \frac{\sum x}{N}$                                                                | Estimated Mode = $L \frac{I_m - I_{m-1}}{(f_m - f_{m-1}) + (f_m - \times W)}$<br>+ $f_{m+1}$ |
| Sample standard deviation                                                               |                                                                                              |
| $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$                                    | Range = Largest data value - smallest data value                                             |
| $s = \sqrt{\frac{SS_x}{n-1}}$ where $SS_x = \sum x^2 - \frac{\left(\sum x\right)^2}{n}$ |                                                                                              |
| Population standard deviation                                                           | Standard z value                                                                             |
| $\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$                                            | $z = \frac{x - \mu}{\sigma}$                                                                 |

### Sample mean for a frequency Original x value distribution

$$x = \mu + z\sigma$$

$$\bar{x} = \frac{\sum xf}{n}$$

Sample standard deviation for a Central limit theorem

frequency distribution

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$

 $z = \frac{\overline{x} - \mu}{\sigma \sqrt{n}}, \quad n \ge 30$ 

#### PROBABILITY FORMULAS

Probability of an event A

$$P(A) = \frac{f}{n}$$

General addition rule

where f = frequency of occurrence of event

n = sample size

P(A or B) = P(A) + P(B) - P(A and B)

Probability of the complement of Permutation rule

event A

$$P(A)^{c} = 1 - P(A)$$
 
$$P_{n,r} = \frac{n!}{(n-r)!}$$

Multiplication rule for independent Combination rule

events
$$C_{n,r} = \frac{n!}{r!(n-r)!}$$

 $P(A \text{ and } B) = P(A) \cdot P(B)$ 

General multiplication rules Mean of a discrete probability distribution

$$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$$

$$P(A \text{ and } B) = P(B) \cdot P(A \text{ given } B)$$

$$\mu = \sum_{A \in A} P(A \text{ and } B) = P(B) \cdot P(A \text{ given } B)$$

# Addition rule for mutually exclusive events

Standard deviation of a discrete probability distribution

$$P(A \text{ or } B) = P(A) + P(B)$$

$$\sigma = \sqrt{\sum (x - \mu)^2 P(x)}$$

#### **Conditional Probability**

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A_i|E) = \frac{P(E \cap A_i)}{P(E)}$$
$$= \frac{P(A_i) \cdot P(E|A_i)}{\sum_{j=1}^{n} P(A_j) \cdot P(E|A_j)}$$

#### **Binominal Distribution**

$$p(x = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$= \binom{n}{k} p^k (q)^{n-k}$$
Poisson of the poisson of the

$$p(x=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 Poisson distribution  $P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$ ,  $k = 0, 1, 2, 3, ...$ 

$$E(X) = np V(X) = nq(1 - P) = E(X) = \lambda V(X) = \lambda$$

$$npq$$

$$E(X) = \lambda$$
  $V(X) = \lambda$ 

#### **CONFIDENCE INTERVALS**

#### REGRESSION AND CORRELATION

# Confidence interval for a mean (large samples)

$$\bar{x} - z_c \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_c \frac{\sigma}{\sqrt{n}}$$

$$r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$

# Confidence interval for a mean (Small samples)

$$\overline{x} - t_c \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_c \frac{s}{\sqrt{n}}$$

$$\hat{y} = mx + b$$

Confidence interval for a proportion (where 
$$np > 5$$
 and  $nq > 5$ )

$$\left| \frac{r}{n} - z_{\varepsilon} \sqrt{\frac{r}{n} \left( 1 - \frac{r}{n} \right)} \right|$$

$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$

$$b = \bar{y} - m\bar{x} = \frac{\sum y}{n} - m\frac{\sum x}{n}$$

#### Chi Square

#### **Analysis of Variance**

#### **Expected Frequencies**

$$E_{r,c} = \frac{(Sum \ of \ row \ r) \times (Sum \ of \ column \ c)}{Sample \ Size}$$

#### Between-samples sum of squares

$$SSB = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{\bar{x}})^2$$

#### **Degrees of freedom**

$$d.f = (r-1)(c-1)$$

#### Within-samples sum of squares

$$SSW = \sum_{i=1}^{k} \sum_{j=1}^{n_j} (x_{ij} - \overline{x}_i)^2$$

#### Test statistic

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

#### **Test statistic**

$$F = \frac{MSB}{MSW} \qquad df._N = k - 1 \qquad df._D =$$

$$df_{\cdot N} = k - 1$$

$$df._D =$$

$$MSB = \frac{SSB}{I}$$

N-k

$$MSB = \frac{SSB}{k-1}$$
  $MSW = \frac{SSW}{n-k}$ 

| Source of<br>Variation | Degrees of<br>Freedom | Sum of<br>Squares | Mean<br>Square | Value of the<br>Test Statistic      |
|------------------------|-----------------------|-------------------|----------------|-------------------------------------|
| Between                | k - 1                 | SSB               | MSB            | MCD                                 |
| Within                 | n-k                   | SSW               | MSW            | $F = \frac{\text{MSB}}{\text{MSW}}$ |
| Total                  | n - 1                 | SST               |                | 1115 **                             |

#### **Cumulative Standardized Normal Distribution**



A(z) is the integral of the standardized normal distribution from  $-\infty$  to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

| Z     | A(z)   |                                 |
|-------|--------|---------------------------------|
| 1.645 | 0.9500 | Lower limit of right 5% tail    |
| 1.960 | 0.9750 | Lower limit of right 2.5% tail  |
| 2.326 | 0.9900 | Lower limit of right 1% tail    |
| 2.576 | 0.9950 | Lower limit of right 0.5% tail  |
| 3.090 | 0.9990 | Lower limit of right 0.1% tail  |
| 3.291 | 0.9995 | Lower limit of right 0.05% tail |

| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9013 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.917' |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.944  |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.954: |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9700 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.976  |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.981  |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.985  |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9930 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9983 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.999  |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.999  |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
| 3.5 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 |
| 3.6 | 0.9998 | 0.9998 | 0.9999 |        |        |        |        |        |        |        |

# Table A. 2

# T Distribution Table

Table entry for p and C is the critical value  $t^*$  with probability p lying to its right and probability C lying between  $-t^*$  and  $t^*$ .



|       | Upper-tail probability $p$ |       |       |       |       |       |       |       |       |       |       |      |
|-------|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| df    | .25                        | .20   | .15   | .10   | .05   | .025  | .02   | .01   | .005  | .0025 | .001  | .000 |
| 1     | 1.000                      | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 15.89 | 31.82 | 63.66 | 127.3 | 318.3 | 636  |
| 2     | 0.816                      | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 4.849 | 6.965 | 9.925 | 14.09 | 22.33 | 31.6 |
| 3     | 0.765                      | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.21 | 12.9 |
| 4     | 0.741                      | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.61 |
| 5     | 0.727                      | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 2.757 | 3.365 | 4.032 | 4.773 | 5.893 | 6.86 |
| 6     | 0.718                      | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.95 |
| 7     | 0.711                      | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.40 |
| 8     | 0.706                      | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501 | 5.04 |
| 9     | 0.703                      | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297 | 4.78 |
| 10    | 0.700                      | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144 | 4.58 |
| 11    | 0.697                      | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025 | 4.43 |
| 12    | 0.695                      | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930 | 4.31 |
| 13    | 0.694                      | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852 | 4.22 |
| 14    | 0.692                      | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787 | 4.14 |
| 15    | 0.691                      | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733 | 4.07 |
| 16    | 0.690                      | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686 | 4.01 |
| 17    | 0.689                      | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.224 | 2.567 | 2.898 | 3.222 | 3.646 | 3.96 |
| 18    | 0.688                      | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.214 | 2.552 | 2.878 | 3.197 | 3.611 | 3.92 |
| 19    | 0.688                      | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.88 |
| 20    | 0.687                      | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3.85 |
| 21    | 0.686                      | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.81 |
| 22    | 0.686                      | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.79 |
| 23    | 0.685                      | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.76 |
| 24    | 0.685                      | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467 | 3.74 |
| 25    | 0.684                      | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.72 |
| 26    | 0.684                      | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435 | 3.70 |
| 27    | 0.684                      | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3.69 |
| 28    | 0.683                      | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.154 | 2.467 | 2.763 | 3.047 | 3.408 | 3.67 |
| 29    | 0.683                      | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.150 | 2.462 | 2.756 | 3.038 | 3.396 | 3.65 |
| 30    | 0.683                      | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.64 |
| 40    | 0.681                      | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.55 |
| 50    | 0.679                      | 0.849 | 1.047 | 1.299 | 1.676 | 2.009 | 2.109 | 2.403 | 2.678 | 2.937 | 3.261 | 3.49 |
| 60    | 0.679                      | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3.46 |
| 80    | 0.678                      | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.41 |
| 100   | 0.677                      | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.39 |
| 000   | 0.675                      | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.056 | 2.330 | 2.581 | 2.813 | 3.098 | 3.30 |
| $z^*$ | 0.674                      | 0.841 | 1.036 | 1.282 | 1.645 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.091 | 3.29 |
|       | 50%                        | 60%   | 70%   | 80%   | 90%   | 95%   | 96%   | 98%   | 99%   | 99.5% | 99.8% | 99.9 |

# **NEGATIVE** *z* **Scores**



| TABLE A-2 | 2 Stan | dard Norn | nal (z) Dis | tribution: | Cumulativ | e Area fror | n the LEFT | -     |         |       |
|-----------|--------|-----------|-------------|------------|-----------|-------------|------------|-------|---------|-------|
| z         | .00    | .01       | .02         | .03        | .04       | .05         | .06        | .07   | .08     | .09   |
| -3.50     |        |           |             |            |           |             |            |       |         |       |
| and       |        |           |             |            |           |             |            |       |         |       |
| lower     | .0001  |           |             |            |           |             |            |       |         |       |
| -3.4      | .0003  | .0003     | .0003       | .0003      | .0003     | .0003       | .0003      | .0003 | .0003   | .0002 |
| -3.3      | .0005  | .0005     | .0005       | .0004      | .0004     | .0004       | .0004      | .0004 | .0004   | .0003 |
| -3.2      | .0007  | .0007     | .0006       | .0006      | .0006     | .0006       | .0006      | .0005 | .0005   | .0005 |
| -3.1      | .0010  | .0009     | .0009       | .0009      | .0008     | .0008       | .0008      | .0008 | .0007   | .0007 |
| -3.0      | .0013  | .0013     | .0013       | .0012      | .0012     | .0011       | .0011      | .0011 | .0010   | .0010 |
| -2.9      | .0019  | .0018     | .0018       | .0017      | .0016     | .0016       | .0015      | .0015 | .0014   | .0014 |
| -2.8      | .0026  | .0025     | .0024       | .0023      | .0023     | .0022       | .0021      | .0021 | .0020   | .0019 |
| -2.7      | .0035  | .0034     | .0033       | .0032      | .0031     | .0030       | .0029      | .0028 | .0027   | .0026 |
| -2.6      | .0047  | .0045     | .0044       | .0043      | .0041     | .0040       | .0039      | .0038 | .0037   | .0036 |
| -2.5      | .0062  | .0060     | .0059       | .0057      | .0055     | .0054       | .0052      | .0001 | * .0049 | .0048 |
| -2.4      | .0082  | .0080     | .0078       | .0075      | .0073     | .0071       | .0069      | .0068 | .0066   | .0064 |
| -2.3      | .0107  | .0104     | .0102       | .0099      | .0096     | .0094       | .0091      | .0089 | .0087   | .0084 |
| -2.2      | .0139  | .0136     | .0132       | .0129      | .0125     | .0122       | .0119      | .0116 | .0113   | .0110 |
| -2.1      | .0179  | .0174     | .0170       | .0166      | .0162     | .0158       | .0154      | .0150 | .0146   | .0143 |
| -2.0      | .0228  | .0222     | .0217       | .0212      | .0207     | .0202       | .0197      | .0192 | .0188   | .0183 |
| -1.9      | .0287  | .0281     | .0274       | .0268      | .0262     | .0256       | .0250      | .0244 | .0239   | .0233 |
| -1.8      | .0359  | .0351     | .0344       | .0336      | .0329     | .0322       | .0314      | .0307 | .0301   | .0294 |
| -1.7      | .0446  | .0436     | .0427       | .0418      | .0409     | .0401       | .0392      | .0384 | .0375   | .0367 |
| -1.6      | .0548  | .0537     | .0526       | .0516      | .0505     | * .0495     | .0485      | .0475 | .0465   | .0455 |
| -1.5      | .0668  | .0655     | .0643       | .0630      | .0618     | .0606       | .0594      | .0582 | .0571   | .0559 |
| -1.4      | .0808  | .0793     | .0778       | .0764      | .0749     | .0735       | .0721      | .0708 | .0694   | .0681 |
| -1.3      | .0968  | .0951     | .0934       | .0918      | .0901     | .0885       | .0869      | .0853 | .0838   | .0823 |
| -1.2      | .1151  | .1131     | .1112       | .1093      | .1075     | .1056       | .1038      | .1020 | .1003   | .0985 |
| -1.1      | .1357  | .1335     | .1314       | .1292      | .1271     | .1251       | .1230      | .1210 | .1190   | .1170 |
| -1.0      | .1587  | .1562     | .1539       | .1515      | .1492     | .1469       | .1446      | .1423 | .1401   | .1379 |
| -0.9      | .1841  | .1814     | .1788       | .1762      | .1736     | .1711       | .1685      | .1660 | .1635   | .1611 |
| -0.8      | .2119  | .2090     | .2061       | .2033      | .2005     | .1977       | .1949      | .1922 | .1894   | .1867 |
| -0.7      | .2420  | .2389     | .2358       | .2327      | .2296     | .2266       | .2236      | .2206 | .2177   | .2148 |
| -0.6      | .2743  | .2709     | .2676       | .2643      | .2611     | .2578       | .2546      | .2514 | .2483   | .2451 |
| -0.5      | .3085  | .3050     | .3015       | .2981      | .2946     | .2912       | .2877      | .2843 | .2810   | .2776 |
| -0.4      | .3446  | .3409     | .3372       | .3336      | .3300     | .3264       | .3228      | .3192 | .3156   | .3121 |
| -0.3      | .3821  | .3783     | .3745       | .3707      | .3669     | .3632       | .3594      | .3557 | .3520   | .3483 |
| -0.2      | .4207  | .4168     | .4129       | .4090      | .4052     | .4013       | .3974      | .3936 | .3897   | .3859 |
| -0.1      | .4602  | .4562     | .4522       | .4483      | .4443     | .4404       | .4364      | .4325 | .4286   | .4247 |
| -0.0      | .5000  | .4960     | .4920       | .4880      | .4840     | .4801       | .4761      | .4721 | .4681   | .4641 |

*NOTE:* For values of z below -3.49, use 0.0001 for the area.

<sup>\*</sup>Use these common values that result from interpolation:

| z score | Area   |
|---------|--------|
| -1.645  | 0.0500 |
| -2.575  | 0.0050 |