支流电桥	
1元为:	
直流:	H: 电源稳度 电路简单 是主要测量电路.
	缺: 直流 放大器 复采 有 零 深 工 频 干 扰
交流.	伤: 放大简单, 无零)等, 不复干扰·
	缺:需专用叫量仪器,或 得取高精度
	() () () () () () () () () ()
	7. – 7.2
$U_0 = U \frac{1}{(Z_1)}$	$\frac{Z_5 - Z_5 Z_4}{Z_5 \cdot (Z_5 + Z_4)} \qquad Z_1 \cdot Z_5 - Z_5 Z_4 = 0$
	$\begin{cases} \varphi_1 + \varphi_3 = \varphi_2 + \varphi_4 \end{cases}$
$ \downarrow $	$ \frac{z_{1}}{z_{1}} = u \cdot \frac{z_{2}}{z_{4}} \frac{\Delta z_{2}}{z_{1}} $ $ \frac{z_{2}}{z_{4}} = \frac{z_{2}}{z_{3}} = z_{4}, \frac{z_{2}}{z_{1}} = \frac{1}{4} u k \varepsilon $
يد ا	$(H^{\Delta \overline{z}_{1}}/\overline{z}_{1} + \frac{\overline{z}_{2}}{\overline{z}_{3}})(H^{2})$
平桥:	$\exists \ \exists \$
CI NA	c_{r}
R. U. R.	$Z_{i} = \frac{R_{i}}{H_{j}WR_{i}C_{i}} \qquad \Delta Z_{i} = \frac{\Delta R_{i}}{(H_{j}WRC_{i})^{*}}$
To go	(Hjwrc)
+	$\dot{u}_{0} = \frac{1}{2} \dot{u} \frac{\Delta \vec{z}_{1}}{\vec{z}_{1}} = \frac{1}{2} \dot{u} k \xi$
	证要满足电客干衡条件.
	$R_1 C_1 = R_2 C_2$
\cup \cup	$s_0 = \frac{1}{2} \dot{\mathcal{U}} \frac{1}{1 + \omega^2 R^2 C^2} \frac{\Delta R}{R} - j \cdot \frac{1}{2} \dot{\mathcal{U}} \frac{\omega C}{1 + \omega^2 R^2 C^2} \Delta R$
全村	1. Usc = 4 K(E1+E3-EL-E4) Usr.
	$\begin{cases} \xi_2 = \xi_4 = -\xi \\ \xi_1 = \xi_3 = \xi \end{cases}$ Use $= k \in Usr$
	想要应受效果叠加,相邻电阻 △凡方向市政(一增一减)
≥用.	
	111
	sc = 姜·KE Um sinwt (拉伸左章)
Us	sc = - d KE Umshwt (拉伸成發)
若	$\xi_n = \xi_m \sin \Omega t$
И	Isc= = = KEm sin \Omega t \cdot Um sin wt.
	= 1 KEmUm (cos(w-n)t - cos (w+n)t)

書をn= をf Em SinJlT'											
Usc= # f	<eum +<="" sin="" th="" wt=""><th>1 FEWUM (COS</th><th>(w-n)t - cos</th><th>lw+N)t)</th><th></th><th></th><th></th><th></th><th></th></eum>	1 FEWUM (COS	(w-n)t - cos	lw+N)t)							