

Relatório

Sistemas Digitais

Máquina de Secar Roupa

Rodrigo Alves nº48681

Tomás Antunes nº48511

Tomás Cardoso nº48951

Fev 2021

Introdução

O objetivo deste trabalho é criar um sistema de controlo para uma máquina de secar roupa. A máquina de secar roupa é constituída por diversos componentes desde os que constituem a sua estrutura, como também aqueles que permitem o seu bom funcionamento.

Para descrevermos o seu modo de funcionamento, foram criados três modelos ASM, cada um destes mostra o que cada módulo faz (Módulo de controlo da máquina, Módulo de controlo da temperatura e o Módulo de controlo do motor), a partir dos quais foram construídas as respetivas tabelas de verdade e consequentemente os seus mapas de Karnaugh com o objetivo de conseguirmos as suas funções simplificadas. Através das equações obtidas nestes mapas foi construído um circuito usando o Logisim.

Decisões tomadas durante o trabalho

Em primeiro lugar, começámos por tentar perceber o que cada módulo fazia como também todos os sensores e componentes indicados. Depois deste processo tentámos construir os primeiros modelos ASM, após várias tentativas erradas no número de estados desenhados e de entradas conseguimos então definir corretamente todos os modelos ASM.

Seguidamente, construímos as tabelas de outputs, de código de estados e de excitação de cada flip-flop utilizado. Foram usados flip-flops JK, T e D no decorrer do trabalho e foram adicionados os valores destes às várias tabelas, para que posteriormente pudessem ser usados para melhorar o funcionamento do sistema de controlo da máquina de secar roupa.

Terminadas as tabelas foram construídos os mapas de Karnaugh necessários e a partir destes, forma simplificadas as expressões das saídas e dos flip-flops. Com as expressões determinadas, implementámos as mesmas no Logisim conforme foi pedido no trabalho.

No módulo de controlo da máquina decidimos usar o flip-flop JK, apesar de ser o flip-flop mais complexo, este gera circuitos lógicos mais simples, por isso a escolha deste tipo de flip-flop. Assim conseguimos obter expressões mais simples, num módulo no qual as suas saídas são entradas para os outros módulos.

No módulo de controlo da temperatura utilizamos o flip-flop T pois no início do trabalho achamos importante saber quando havia mudança de estado, e como o flip-flop T só é um quando o estado anterior é diferente do estado seguinte achamos que era o flip-flop ideal.

No módulo de controlo do motor optámos por escolher o flip-flop D pois considerámos ser o flip-flop mais simples de utilizar neste módulo, garantindo assim menor probabilidade de ocorrerem erros na sua estruturação.

Concluímos assim que é possível a utilização de três diferentes tipos de flip-flop com graus de complexidade diferentes. Comprovámos que é possível criar um circuito funcional que está dividido em três módulos nos quais foram utilizados diferentes flip-flops.

Módulo de controlo da máquina

Entradas do circuito:

- Botão de Inicio (BI);
- Sensor da porta aberta (SPA);
- Sensor da roupa seca (SRS);

Saídas do circuito:

- Módulo de controlo da temperatura (MT);
- Módulo de controlo do motor (MM);

Estados do circuito:

- E0- este estado indica que o Módulo do controlo da máquina encontra-se desligado (sistema desligado). Este estado não possui nenhuma saída;
- E1- este estado indica que o Módulo do controlo da máquina encontra-se ligado (sistema ligado). Este estado possui duas saídas, uma designada por MT (que é a saída que ativa o módulo de controlo da temperatura) outra designada por MM (que é a saída que ativa o módulo de controlo do motor);

Código de estados					
Estado	Código				
E0	0				
E1	1				

Tabela de outputs						
Estado	MT	MM				
0	0	0				
1	1	1				

Tabela de excitação FF J K						
Q*	Q	J	K			
0	0	0	-			
0	1	1	-			
1	0	ı	1			
1	1	ı	0			

Modelo ASM:

Tabela de transição de estados:

	Entradas		Esta	idos	Saí	das	FF	J K
BI	SPA	SRS	Q*	Q	MT	MM	J	K
0	0	0	0	0	0	0	0	-
0	0	1	0	0	0	0	0	-
0	1	0	0	0	0	0	0	-
0	1	1	0	0	0	0	0	-
1	0	0	0	1	0	0	1	-
1	0	1	0	0	0	0	0	-
1	1	0	0	0	0	0	0	-
1	1	1	0	0	0	0	0	-
0	0	0	1	0	1	1	1	1
0	0	1	1	0	1	1	-	1
0	1	0	1	0	1	1	-	1
0	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	ı	0
1	0	1	1	0	1	1	-	1
1	1	0	1	0	1	1	-	1
1	1	1	1	0	1	1	-	1

Mapas de Karnaugh do flip-flop JK

J BI Q* / SPA SRS

$$J=BI \overline{Q*} \overline{SPA} \overline{SRS}$$

$$K = \overline{BI} Q * \overline{SPA} + Q * SPA + Q * SRS$$

Mapas de Karnaugh das saídas MT e MM

MT/MM

BI Q* / SPA SR	_S 00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

Estas duas saidas apresentam mapas de karnaugh iguais, logo a expressão simplificada obtida é igual para as duas.

Logigrama:

Módulo de controlo da temperatura

Entradas do circuito:

- Sensor de temperatura (ST);
- Sensor da porta aberta (SPA);
- Sensor da roupa seca (SRS);
- Módulo de controlo da máquina (MMaq);

Saída do circuito:

• Elemento de aquecimento do ar (EA);

Estados do circuito:

- T0- este estado indica que o Módulo do controlo da temperatura encontra-se desligado (sistema desligado). Este estado não possui nenhuma saída;
- T1- este estado indica que o Módulo do controlo da temperatura encontra-se ligado (sistema ligado). Este estado possui uma saída, designada por EA (que é a saída que ativa o elemento de aquecimento do ar);

Código de estados				
Estado	Código			
TO	0			
T1	1			

Tabela de outputs						
Estado	EA					
0	0					
1	1					

Tabe	Tabela de excitação				
	FF T				
Q*	Q	Т			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Modelo ASM:

Tabela de transição de estados:

	Entr	adas		Esta	idos	Saída	FF T
MMaq	SPA	SRS	ST	Q*	Q	EA	Т
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0
0	0	0	0	1	0	1	1
0	0	0	1	1	0	1	1
0	0	1	0	1	0	1	1
0	0	1	1	1	0	1	1
0	1	0	0	1	0	1	1
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1
0	1	1	1	1	0	1	1
1	0	0	0	0	1	0	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	0
1	0	0	1	1	0	1	1
1	0	1	0	1	0	1	1
1	0	1	1	1	0	1	1
1	1	0	0	1	0	1	1
1	1	0	1	1	0	1	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	1

Mapas de Karnaugh do flip-flop T

Т

		Q*=	= 0				Q* =	= 1	
MMaq SPA / SRS S	T 00	01	11	10	MMaq SPA / SRS S	T 00	01	11	10
00	0	0	0	0	00	1	1	1	1
01	0	0	0	0	01	1	1	1	1
11	0	0	0	0	11	1	1	1	Î
10	1	0	0	0	10	0	1	1	1

 $\mathsf{T} = \mathsf{MMaq} \ \overline{\mathsf{SPA}} \ \overline{\mathsf{SRS}} \ \overline{\mathsf{ST}} \ \overline{\mathsf{Q}*} + \ \overline{\mathsf{MMaq}} \ \mathsf{Q}* + \ \mathsf{MMaq} \ \mathsf{SPA} \ \mathsf{Q}* + \ \mathsf{MMaq} \ \mathsf{SRS} \ \mathsf{Q}* + \ \mathsf{MMaq} \ \overline{\mathsf{SRS}} \ \mathsf{ST} \ \mathsf{Q}*$

Mapa de Karnaugh da saída EA

		Q*	= 1				Q* =	0	
MMaq SPA / SRS S	T 00	01	11	10	MMaq SPA / SRS S	T 00	01	11	10
00	1	1	1	1	00	0	0	0	0
01	1	1	1	1	01	0	0	0	0
11	1	1	1	1	11	0	0	0	0
10	1	1	1	1	10	1	0	0	0

EA = Q*

Logigrama:

Módulo de controlo do motor

Entradas do circuito:

- Sensor da porta aberta (SPA);
- Sensor da roupa seca (SRS);
- Módulo de controlo da máquina (MMaq);

Saídas do circuito:

- Motor roda para a direita (RD);
- Motor roda para a esquerda (RD);

Estados do circuito:

- M0- este estado indica que o Módulo do controlo do motor encontra-se desligado (sistema desligado);
- M1- este estado indica que o Módulo do controlo do motor encontra-se ligado (sistema ligado). Este estado possui uma saída, designada por RD (que faz rodar o motor para a direita);
- M2- este estado indica que o Módulo do controlo do motor encontra-se ligado (sistema ligado). Este estado possui uma saída, designada por RD (que faz rodar o motor para a direita);
- M3- este estado indica que o Módulo do controlo do motor encontra-se ligado (sistema ligado). Este estado possui uma saída, designada por RE (que faz rodar o motor para a esquerda);
- M4- este estado indica que o Módulo do controlo do motor encontra-se ligado (sistema ligado). Este estado possui uma saída, designada por RE (que faz rodar o motor para a esquerda);

Código de estados					
Estado	Código				
M0	000				
M1	001				
M2	010				
M3	011				
M4	100				

Tabela de outputs							
Estado	RD	RE					
000	0	0					
001	1	0					
010	1	0					
011	0	1					
100	0	1					

Tabela de excitação							
FF D							
Q*	Q	Т					
0	0	0					
0	1	1					
1	0	0					
1	1	1					

Modelo ASM:

Tabela de transição de estados:

	Entradas		Esta	dos	Saí	Saídas		
MMaq	SPA	SRS	Q*	Q	RD	RE	D	
			X2*X1*X0*	X2 X1 X0			D2 D1 D0	
0	0	0	000	000	0	0	000	
0	0	1	000	000	0	0	000	
0	1	0	000	000	0	0	000	
0	1	1	000	000	0	0	000	
1	0	0	000	001	1	0	001	
1	0	1	000	000	0	0	000	
1	1	0	000	000	0	0	000	
1	1	1	000	000	0	0	000	
0	0	0	001	000	0	0	000	
0	0	1	001	000	0	0	000	
0	1	0	001	000	0	0	000	
0	1	1	001	000	0	0	000	
1	0	0	001	010	1	0	010	
1	0	1	001	000	0	0	000	
1	1	0	001	000	0	0	000	
1	1	1	001	000	0	0	000	
0	0	0	010	000	0	0	000	
0	0	1	010	000	0	0	000	
0	1	0	010	000	0	0	000	
0	1	1	010	000	0	0	000	
1	0	0	010	011	1	0	011	
1	0	1	010	000	0	0	000	
1	1	0	010	000	0	0	000	
1	1	1	010	000	0	0	000	
0	0	0	011	000	0	0	000	
0	0	1	011	000	0	0	000	
0	1	0	011	000	0	0	000	
0	1	1	011	000	0	0	000	
1	0	0	011	100	0	1	100	
1	0	1	011	000	0	0	000	
1	1	0	011	000	0	0	000	
1	1	1	011	000	0	0	000	
0	0	0	100	000	0	0	000	
0	0	1	100	000	0	0	000	
0	1	0	100	000	0	0	000	
0	1	1	100	000	0	0	000	
1	0	0	100	001	0	1	001	
1	0	1	100	000	0	0	000	
1	1	0	100	000	0	0	000	
1	1	1	100	000	0	0	000	

D2

		X2*= 0 e	X1*= 0		2	X2*= 1 e	X1*= 0		
X0* MMaq/ SPA SI	RS 00	01	11	X0* MMaq/ SPA SI	RS 00	01	11	10	
00	0	0	0	0	00	0	0	0	0
01	0	0	0	0	01	0	0	0	0
11	0	0	0	0	11	-	-	-	-
10	0	0	0	0	10	-	-	-	-
		X2*= 0 e	X1*= 1			2	X2*= 1 e	X1*= 1	
X0* MMaq/ SPA SI	_{RS} 00	01	11	10	X0* MMaq/ SPA SI	_{RS} 00	01	11	10
00	0	0	0	0	00	-	-	-	-
01	0	0	0	0	01	-	-	-	-
11	1	0	0	0	11	-	-	-	-
10	0	0	0	0	10	-	-	-	-

 $D2 = \overline{X2*} X1 * X0 * MMaq \overline{SPA} \overline{SRS}$

D1

X2*= 0 e X1*= 0							X2*= 1 e	X1*= 0	
X0* MMaq/ SPA SI	RS 00	01	11	10	X0* MMaq/ SPA SF	RS 00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	0	0	0	0	01	0	0	0	0
11	1	0	0	0	11	-	-	-	-
10	0	0	0	0	10	-	-	-	-

		X2*= 0 e	X1*= 1			X	(2*= 1 e)	X1*= 1	
X0* MMaq/ SPA SI	RS 00	01	11	10	X0* MMaq/ SPA SF	RS 00	01	11	10
00	0	0	0	0	00	-	-	-	-
01	1	0	0	0	01	-	-	-	-
11	0	0	0	0	11	-	-	-	-
10	0	0	0	0	10	-	-	-	-
	•				<u>.</u>				

D1= $\overline{X2*}$ $\overline{X1*}$ X0 * MMaq \overline{SPA} \overline{SRS} + $\overline{X2*}$ X1 * $\overline{X0*}$ MMaq \overline{SPA} \overline{SRS}

D0

		X2*= 0 €	5 XT= 0			X2*= 1 €	5 XT= O		
X0* MMaq/ SPA S	_{RS} 00	01	11	10	X0* MMaq/ SPA SI	RS 00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	1	0	0	0	01	1	0	0	0
11	0	0	0	0	11	-	-	-	-
10	0	0	0	0	10	-	-	-	-
			X2*= 1 e	X1*= 1					
						00	0.4	4.4	4.0
X0* MMaq/ SPA S	_{RS} 00	01	11	10	X0* MMaq/ SPA SI	RS 00	01	11	10
X0* MMaq/ SPA S 00	00 0	01	11 0	10	X0* MMaq/ SPA SI 00	- 00	01	11	10
		ı				- -		11 - -	10 - -
00	0	0	0	0	00	- - -		- -	10 - - -
00 01	0	0	0	0	00 01		01	11 - - -	10 - - -

D0=MMaq $\overline{SPA} \overline{SRS} \overline{X2*} \overline{X0*} + MMaq \overline{SPA} \overline{SRS} \overline{X1*} \overline{X0*}$

RD X2* / X1* X0* 00 01 11

 $\mathsf{RD} = \overline{\mathsf{X2}} \ast \ \overline{\mathsf{X1}} \ast \ \mathsf{X0} \ast + \overline{\mathsf{X2}} \ast \ \mathsf{X1} \ast \ \overline{\mathsf{X0}} \ast \\ \\ \mathsf{RE} = \mathsf{X2} \ast \ \overline{\mathsf{X1}} \ast \ \overline{\mathsf{X0}} \ast + \ \overline{\mathsf{X2}} \ast \ \mathsf{X1} \ast \mathsf{X0} \ast \\$

RE X2* / X1* X0* 00 01 11 10

Logigrama:

Circuito completo:

