The IRS Compactification of Moduli Space

Yannick Krifka

NCNGT 2021

ETH zürich

Outline

Two parts:

- Part I: Introduction to IRSs and construction of the IRS compactification of moduli space
- Part II: Description of the IRS compactification of moduli space

Recap from Part I: Notation

- $G := \mathsf{Isom}^+(\mathbb{H}^2) \cong \mathsf{PSL}(2,\mathbb{R})$
- $IRS(G) = Prob(Sub(G))^G$ denotes space of invariant random subgroups of G
- ullet is an oriented topological surface possibly punctured with no boundary and negative Euler characteristic $\chi(\Sigma) < 0$
- $\mathcal{M}(\Sigma)$ denotes the moduli space of finite-area hyperbolic structures on Σ

Recap from Part I

- Any lattice $\Gamma \leq G$ amounts to an IRS μ_{Γ} .
- If ν_{Γ} is the unique invariant probability measure on $\Gamma \backslash G$ then $\mu_{\Gamma} \coloneqq (\varphi_{\Gamma})_*(\nu_{\Gamma})$ is the push-forward along

$$\varphi_{\Gamma} \colon (\Gamma \backslash G, \nu_{\Gamma}) \longrightarrow (\operatorname{\mathsf{Sub}}(G), \mu_{\Gamma}), \quad \Gamma g \longmapsto g^{-1} \Gamma g.$$

The map

$$\iota \colon \mathcal{M}(\Sigma) \longrightarrow \mathsf{IRS}(G), \quad X = \Gamma \backslash \mathbb{H}^2 \longmapsto \mu_{\Gamma},$$

is (well-defined and) a topological embedding.

ullet The IRS compactification of $\mathcal{M}(\Sigma)$ is defined as

$$\overline{\mathcal{M}}^{\mathsf{IRS}}(\Sigma) \coloneqq \overline{\iota(\mathcal{M}(\Sigma))} \subseteq \mathsf{IRS}(\mathit{G}).$$

What is the IRS compactification $\overline{\mathcal{M}}^{\text{\tiny IRS}}(\Sigma)$?

We will answer this question by relating $\overline{\mathcal{M}}^{\text{IRS}}(\Sigma)$ to the **augmented moduli space** a.k.a. the **Deligne–Mumford compactification** $\widehat{\mathcal{M}}(\Sigma)$.

Augmented Moduli Space

Idea: Allow curves to collapse to nodes as we go to ∞ in $\mathcal{M}(\Sigma)$!

Augmented Moduli Space

"Definition" (Augmented Moduli Space)

The **augmented moduli space** $\widehat{\mathcal{M}}(\Sigma)$ is the space of nodal surfaces. A **nodal surface** $\mathbb{X} \in \widehat{\mathcal{M}}(\Sigma)$ comprises the following data:

- a (possibly empty) family $\sigma\subset \Sigma$ of disjoint essential simple closed curves; and
- a finite-area hyperbolic structure $X^{(i)} \in \mathcal{M}(\Sigma^{(i)})$ for every connected component $\Sigma^{(i)} \subset \Sigma \setminus \sigma$.

Remark

- The family σ encodes how the $X^{(i)}$ fit together.
- The moduli space is a subset of the augmented moduli space and corresponds to those "nodal surfaces" with $\sigma = \emptyset$.

Augmented Moduli Space

Example:

From $\widehat{\mathcal{M}}(\Sigma)$ to $\overline{\mathcal{M}}^{\text{IRS}}(\Sigma)$

Let $\mathbb{X} \in \widehat{\mathcal{M}}(\Sigma)$ with components $X^{(i)} \in \mathcal{M}(\Sigma^{(i)}), i = 1, \dots, m$. There are lattices $\Gamma^{(i)} \leq G$ such that $X^{(i)} \cong \Gamma^{(i)} \backslash \mathbb{H}^2$.

We define

$$\mu_{\mathbb{X}} := \sum_{i=1}^{m} \underbrace{\frac{\chi(\Sigma^{(i)})}{\chi(\Sigma)}} \cdot \mu_{\Gamma^{(i)}}.$$

"proportion of area of $\Sigma^{(i)}$ in Σ "

Remark

Note that

$$\operatorname{vol}(X^{(i)}) = -2\pi \cdot \chi(\Sigma^{(i)}), \ ext{and}$$
 $\chi(\Sigma) = \sum_{i=1}^m \chi(\Sigma^{(i)}).$

Thus $\mu_{\mathbb{X}} \in IRS(G)$ is a convex combination of IRSs.

Description of the IRS compactification

Theorem (K [Kri20])

The map

$$\Phi \colon \widehat{\mathcal{M}}(\Sigma) \longrightarrow \overline{\mathcal{M}}^{\mathit{IRS}}(\Sigma), \quad \mathbb{X} \longmapsto \mu_{\mathbb{X}}.$$

is a finite-to-one continuous surjection extending the embedding $\iota \colon \mathcal{M}(\Sigma) \longrightarrow \overline{\mathcal{M}}^{\text{IRS}}(\Sigma)$.

Moreover, there is an upper bound $B(\Sigma) > 0$ on the cardinalities of its fibers $\#\Phi^{-1}(\mu) \leq B(\Sigma)$, $\forall \mu \in \overline{\mathcal{M}}^{^{IRS}}(\Sigma)$, given by

$$B(\Sigma) := \binom{3|\chi|}{p} \cdot \frac{\left(2\left(|\chi|+g-1\right)\right)!}{\left(|\chi|+g-1\right)! \cdot 2^{\left(|\chi|+g-1\right)}},$$

where $\chi = \chi(\Sigma)$, $g = g(\Sigma)$, and $p = p(\Sigma)$ denote the Euler characteristic, the number of punctures, and the genus of Σ , respectively.

Example: Two nodal surfaces with the same image

Consider the three-punctured sphere $\Sigma_{0,3}$ and recall that $\mathcal{M}(\Sigma_{0,3})=\{X_0=\Gamma_0\backslash\mathbb{H}^2\}$ has just one point.

Gluing two copies of X_0 in two different ways we obtain two different points $\mathbb{X}_1, \mathbb{X}_2 \in \widehat{\mathcal{M}}(\Sigma_2)$:

$$\chi_1 = \chi_0 \chi_0 \qquad \Rightarrow \qquad \chi_0 \qquad \chi_0 \qquad = \chi_0 \chi_0$$

However,

$$\Phi(\mathbb{X}_1) = \sum_{i=1}^2 \frac{\chi(\Sigma_{0,3})}{\chi(\Sigma_2)} \cdot \mu_{\Gamma_0} = \mu_{\Gamma_0} = \Phi(\mathbb{X}_2).$$

Thank you!

References

Y. Krifka. On the IRS compactification of moduli space. 2020.

arXiv: 2002.02279 [math.GT].