

CLASIFICACIÓN Y RECONOCIMIENTO DE PATRONES

JOHN W. BRANCH
CARLOS MADRIGAL

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN Y DE LA DECISIÓN

AGENDA

Sesion 1: Image Segmentation

1. ML Landscape.

Data Labelling Service

2. Unsupervised Learning Fundamentals

Definition

Taxonomy

Applications

3. Clustering

Partitioning-based clustering

K-Means Clustering.

Determining the Optimal K for K-Means

Density-based clustering

Mean-Shift.

DBScan

- 4. Python practice: Image Segmentation.
- 5. Conclusions.

ML LANDSCAPE

DATA LABELLING SERVICE

Human workforce for continuously better computer vision

Data Labeling Services

Power machine learning models with Lionbridge's end-to-end data labeling platform.

DESIRABLE FEATURES OF CLUSTERING KLEINBERG'S AXIOMS

1. Scale Invariance:

This simple axiom indicates that a clustering algorithm should not modify its results when all distances between points are scaled by the factor determined by a constant α .

Richness:

This means that the the clustering function must be flexible enough to produce any arbitrary partition/clustering of the input data set.

3. Consistency:

A clustering process is "consistent" when the clustering results do not change if the distances within clusters decrease and/or the distances between clusters increase.

K-Means Clustering

- 1. Input Data $X = x_1, x_2, \dots x_N$ and number of clusters K
- 2. Centroids $c_1, c_2, \dots c_K$ = random K points of X
- 3.foreach data point x_i
 - Compute distance $d_{ij} = d(x_i, c_j)$

$$i = \{1,...,N\}, j = \{1,...,K\}$$

- Assign x_i to the nearest centroid: $y_i = argmin_i(d_{ij})$
- 4. Compute the new centroids of each cluster

$$c_j^* = mean(x_i)$$
 for $y_i = j$

- 5. if $c_j^* \neq c_j$ then $c_j = c_j^*$ goto step 3
- 6.Output: $c_1^*, c_2^*, \dots c_K^*$ and y_i for $i = \{1,...,N\}$

Source: https://en.wikipedia.org/wiki/K-means_clustering

DETERMINING THE OPTIMAL K FOR K-MEANS

The Elbow Method

computes the sum of squared distances from each point to its assigned center for different values of k, and choose the k for which SSE becomes first starts to diminish.

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html

DETERMINING THE OPTIMAL K FOR K-MEANS

Calinski_harabas Score

Computes the ratio of dispersion between and within clusters

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html

DETERMINING THE OPTIMAL K FOR K-MEANS

The Silhouette Method

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html

The silhouette value measures how similar a point is to its own cluster (cohesion) compared to other clusters (separation). The range of the Silhouette value is between +1 and -1. A high value is desirable and indicates that the point is placed in the correct cluster. If many points have a negative Silhouette value, it may indicate that we have created too many or too few clusters.

MEAN SHIFT

- Convert the set of points into a continuous function using a gaussian kernel (pdf)
- 2. The mode in the probability density function correspond to the cluster in the data

https://elvex.ugr.es/idbis/dm/slides/43%20Clustering%20-%20Density.pdf

Agrupar los 8 puntos de la figura utilizando el algoritmo DBSCAN.

Número mínimo de puntos en el "vecindario":

MinPts = 2

Radio del "vecindario":

Epsilon $\sqrt{2} \Rightarrow \sqrt{10}$

Distancia euclídea

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	√36	$\sqrt{13}$	√50	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	√37	√18	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	√58
A8								0

A1, A2 y A7 no tienen vecinos en su vecindario, por lo que se consideran "outliers" (no están en zonas densas):

Al aumentar el valor del parámetro Epsilon, el vecindario de los puntos aumenta y todos quedan agrupados:

Epsilon =
$$\sqrt{10}$$

Ejemplos

Session 1 - Determining the Optimal K for K-Means

Clustering-SKLearn.ipynb

Image Segmentation.ipynb

Session 2 - Unsupervised Image Classification

PREGUNTAS

