

OBRADA PRIRODNOG JEZIKA (NLP)

Uvodno predavanje

2. listopada 2012.

Literatura

- Foundations of Statistical Natural Language Processing; Ch. D. Manning; H. Schütze; 1999; MIT Press
- Speech and Language Processing; D. Jurafsky;
 J.H. Martin; 2000; Prentice Hall
- Text to Speech Synthesis: New Paradigms and Advances; Sh. Narayanan; A. Alwan; 2004; Prentice Hall
- The Oxford Handbook of Computational Linguistics; R. Mitkov (ed.); 2005; Oxford University Press

Čemu služi NLP

OBRADA PRIRODNOG JEZIKA

- NLP je multidisciplinarno područje istraživanja i razvoja čiji je cilj produkcija aplikacija za svakodnevni život.
- Aplikacije su:
 - Pretraživanje informacija
 - Inteligentno pretraživanje Weba
 - Strojno sažimanje teksta
 - Spell checking
 - Grammar checking
 - Strojna pretvorba teksta u govor (TTS)
 - Strojna pretvorba govora u tekst (ASR)
 - Dijaloški sustavi zasnovani na razumijevanju prirodnog jezika
 - Strojno prevođenje (MT)

i još mnoge druge

www.itu.int/newsarchive/press/PP98/Documents/Statement_Gore.html

, Digitalna deklaracija međuovisnosti, Al Gore, 1998

Alati NLP-a

- Teorija vjerojatnosti
- Teorija informacije
- Algoritmi
- Strukture podataka
- Umjetna inteligencija
- Process Modeling

Hijerarhija u NLP-u

Elementi hijerarhije

- Morfologija: bavi se načinom na koji se tvore riječi
- <u>Sintaksa</u>: bavi se načinom na koji niz riječi tvori rečenicu i strukturalnom ulogom riječi u rečenici
- <u>Semantika</u>: bavi se značenjem riječi i kako ta značenja složena u rečenicu tvore smisao rečenice
- Pragmatika: bavi se uporabom rečenica u različitim situacijama, te kao uporaba utječe na interpretaciju rečenice
- <u>Diskurs</u>: bavi se pitanjem kako prethodna rečenica utječe na interpretaciju sljedeće rečenice

Važnost statističkih metoda u NLP-u

- Do otprilike 1990. godine NLP se temeljio na metodama zasnovanim na pravilima (rule-based approach)
- Međutim, ovakav pristup pokazao se "pretvrdim" za opis načinâ na koji ljudi koriste prirodni jezik
- Ljudi znaju "rastezati" i "svijati" pravila da bi zadovoljili svoje komunikacijske potrebe
- Stoga su se za potrebe modeliranja prirodnoga jezika počele rabiti statističke metode (SNLP), koje pokazale dovoljno fleksibilnim u nizu aplikacija

Hijerarhija u SNLP-u

- POS (Part-of-Speech) i morfologija: riječi, njihova uloga i redoslijed u rečenici i oblici koje poprimaju
- PS (Phrase Structure) i sintaksa: pravila i ograničenja u redanju riječi i struktura fraze kao dijela rečenice
- <u>Semantika</u>: istraživanje značenja riječi (leksička semantika) i kako se ono ostvaruje u rečenici
- Pragmatika: istraživanje kako znanje o riječima i jezičnim konvencijama utječe na interpretaciju rečenice (implicitno uključuje diskurs)

Zašto je NLP zahtjevan

- Višeznačnost riječi
- Složenost strukture rečenice
- Riječi mogu značiti više nego njihov zbroj ili dijelovi (Fakultet elektrotehnike i računarstva)
- Suvisle riječi mogu tvoriti nesuvislu rečenicu (zeleni tangens pjeva)
- Problem određivanja značenja (ljudi vole sladoled; znači li to da svi ljudi vole sladoled?)
- Kompleksni načini interakcije između različitih stupnjeva u hijerarhiji NLP-a, odnosno SNLP-a

Što je korpus?

- Korpus je skupina označenih ili neoznačenih tekstova nad kojom primjenjuju metode NLP-a, odnosno SNLP-a, sve u cilju otkrivanja novih teorija o prirodnom jeziku, odnosno zanimljivih i korisnih načina organizacije znanja o jeziku
- Bez korpusa je danas bilo koji oblik obrade prirodnoga jezika nezamisliv
- Hrvatski korpusi:
- http://riznica.ihjj.hr, Hrvatska jezična riznica
- http://www.hnk.ffzg.hr/korpus.html, Hrvatski nacionalni korpus

Što se iz korpusa dade ekstrahirati

- Na razini riječi
 - Učestalost pojavljivanje riječi
 - Kolokacije (slijed riječi koje se učestalo pojavljuju zajedno)
 - Značenje riječi
 - N-grami (pojavljivanje dvije, tri i više riječi u fiksnom poretku)
 - Akvizicija riječi
- Na razini rečenice
 - Gramatička funkcija riječi
 - Sintaktičke strukture
- Na razini teksta (potkorpusa)
 - Značenja rečenica
- Kao sredstva na višim razinama obrade rabe se HMM (skriveni Markovljevi modeli), POS Tagging i CFG (Context Free Grammars, uključujući i probabilističke) i drugo.

"Jednostavne" aplikacije

- Prebrajanje riječi (wc u Unix-u)
- Konkordancije
- Pravopisni provjernici (spell checkeri)
- Gramatički provjernici (grammar checkeri)
- Kontekstualni provjernici (contextual spell checking)
- Prediktori riječi na mobitelima (T9-like systems)
-

"Složene" aplikacije

- Inteligentni kompjutorski sustavi
- NLP sučelja prema bazama podataka
- Računalom potpomognuto poučavanje (CAI)
- Inteligentno pretraživanje Weba
- Data mining
- Strojna tvorba govora (TTS)
- Strojno prepoznavanje govora (ASR)
- Strojno prevođenje (MT, odnosno MAT, uključujuću Speech-to-Speech Translation (SST)
- Dijaloški sustavi
- **•** • •

Dijaloški sustav - primjer složene aplikacije

Ocjenjivanje na kolegiju

- Sudjelovanje u nastavi: 10 bodova
- Međuispiti: 2x15 bodova, svaki se međuispit sastoji od 15 teorijskih pitanja od 1 bod
- Projekt: 40 bodova
- Pretprojektni izvještaj: 20 bodova
- Za postići prolaznu ocjenu potrebno je skupiti
 50 bodova

- Prepoznavanje govora temeljeno na CMU Sphinxu
- Paralelno pretraživanje n-gramskih leksičkih baza
- Može i drugo, prema vlastitoj ideji

OBRADA PRIRODNOG JEZIKA (NLP)

Matematičke osnove NLP-a

9. listopada 2012.

Sadržaj

- Teorija vjerojatnosti i statistika
- Teorija informacije
- Poznavanje temeljnih postavki teorije vjerojatnosti i statistike nužno je kako za razumijevanje metoda koje se koriste u NLP-u tako i za uvođenje novih metoda i postupaka u područje
- Pored teorije vjerojatnosti matematičke osnove NLP-a obuhvaćaju i teoriju skupova, matematičku analizu (teorija funkcija, relacije), te matrični i vektorski račun
- Poznavanje temelja teorije informacija nužno je jer je prirodni jezik jedan od oblika komuniciranja s ciljem prijenosa ili pohranjivanja informacije

Zašto statistika

- Statistički pristup NLP-u jest način zaključivanja o nepoznatome
- Primjer zaključivanja: kako predvidjeti sljedeće slovo (ili sjedeću riječ) ako je poznato koja su mu slova (ili riječi) prethodili
- Da bismo to mogli napraviti potreban nam je odgovarajući jezični model
- Teorija vjerojatnosti nam pomaže da izgradimo takve modele
- Primjer: http://hacheck.tel.fer.hr/

Blok-shema Haschecka

Teorija vjerojatnosti

- Govori kolika je vjerojatnost da se nešto dogodi
- Skup Ω sadrži sve moguće ishode nekog eksperiment ili procesa (npr. sva slova nekog alfabeta ili sve riječi nekog jezika)
- Događaj A podskup je od Ω
- Nad događajem se definira vjerojatnosna funkcija
- Ona ne pretpostavlja da išta znamo o onome što je događaju A prethodilo

$$P:\Omega \to [0,1]$$

Uvjetna vjerojatnost

- Pretpostavlja izvjesno znanje o tomu što je prethodilo nekom događaju
- Neka je događaj B istinit (B se dogodio)
- Vjerojatnost da se A dogodi uz uvjet da se B dogodio piše se

$$P(A \mid B)$$

Vrijedi

$$P(A,B) = P(A | B)P(B) = P(B | A)P(A)$$

 Uvjetne vjerojatnosti opisuju se dvodimenzionalnom tablicom

Proširenje uvjetne vjerojatnosti

$$P(A,B) = P(A|B)P(B)$$
$$= P(B|A)P(A)$$

Može se proširiti na n događaja

$$P(A,B,C,D...) = P(A)P(B|A)P(C|A,B)P(D|A,B,C...)$$

Uvjetna neovisnost događaja

- Događaji A i B su neovisni ako vrijedi
 P(A) = P(A|B)
- Primjer neovisnih događaja: bacanje novčića
- Događaji A i B su uvjetno neovisni ako vrijedi
 P(A|C) = P(A|B,C)
 - tj. ako vjerojatnost događanja A uz uvjet C ne ovisi o događaju B koji je prethodio događaju C
- Uvjetna vjerojatnost česta je pretpostavka u NLP-u (Markovljevi modeli)

Bayesov teorem

Omogućuje da zamijenimo redoslijed ovisnosti

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

- Koristi se kada je traženu uvjetnu vjerojatnost teško odrediti
- Teorem je trivijalna posljedica definicije uvjetne vjerojatnosti
- Primjenjuje se vrlo često u NLP-u

Primjer primjene Bayesova teorema

- Događa S: ukočenost vrata
- Događaj M: meningitis
- Klinički podaci: P(S|M) =0.5, P(M) = 1/50000, P(S)=1/20
- Trebam li se bojati da imam meningitis ako mi je vrat ukočen?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)}$$
$$= \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Slučajna varijabla

- Prostor događaja Ω razlikuje se za svaki problem kojega možemo razmatrati
- Kako bismo "ujednačili" prostore mogućih događaja uvodimo slučajnu varijablu X:

$$X:\Omega\to R$$

Diskretna slučajna varijabla:

$$X:\Omega \to S$$

- (S je prebrojivi podskup od R)
- Binarna slučajna varijabla (BSV):

$$X: \Omega \rightarrow \{0,1\}$$

- http://hacheck.tel.fer.hr/
- BSV se još naziva i Bernoullijevim pokusom uz koji je povezana Bernoullijeva ili binomna razdioba

Notacija i parametri

$$p(x) = p(X = x) = p(A_x)$$

$$A_x = \{\omega \in \Omega : X(\omega) = x\}$$

$$\sum_{x} p(x) = 1 \qquad 0 \le p(x) \le 1$$

Očekivanje je srednja vrijednost slučajne varijable X

$$E(x) = \sum_{x} xp(x) = \mu$$

Varijanca

 Varijanca slučajne varijable kazuje koliko se događaju u nekom pokusu grupiraju, odnosno raspršuju

$$Var(X) = E((X - E(X))^{2})$$

= $E(X^{2}) - E^{2}(X) = \sigma^{2}$

- σ je standardna devijacija
- σ² je varijanca

Jezični modeli

- Općenito, ako je Ω skup događaja u prirodnom jeziku (npr. alfabet ili glasovi nekoga jezika, ili pak riječi u jeziku), razdioba P je nepoznata
- Zadaća modeliranja (dobivanje modela M), je određivanje neke razdiobe P
- Razdiobu ćemo dobiti nakon uvida u statističke zakonitosti sadržane u korpusu
- http://hacheck.tel.fer.hr/

Kako se radi modeliranje

OBRADA PRIRODNOG JEZIKA

 Statistika učestalosti (prebrajanje događaja, jednodimenzionalna)

- Bayesova statistika (matrica uvjetnih vjerojatnosti, minimalno dvodimenzionalna)
- Bayesova statistika uvijek je poduprta statistikom učestalosti

Statistika učestalosti

 Prebrajamo koliko se puta neki događaj u dogodio u korpusu i izračunavamo relativnu frekvenciju

$$f_u = \frac{C(u)}{N}$$

- C(u) je broj pojava događaja u u korpusu, dok je N broj svih događaja u korpusu
- Kada N pustimo da teži prema beskonačnosti (u praksi prema nekom velikom broju) uočavamo da se relativne frekvencije stabiliziraju
- Na ovaj način dobivamo razdiobu P (statistički model M) o događajima u korpusu

Pristupi modeliranju

 Postoje dva osnovna pristupa jezičnom modeliranju u slučaju modela temeljenog na statistici učestalosti:

Parametarsko modeliranje

Neparametarsko modeliranje (slobodne distribucije)

Parametarsko modeliranje

- Polazi od pretpostavke da se jezični fenomen koji istražujemo i želimo modelirati ravna po nekoj od poznatih razdioba, npr. prema binomnoj (Bernoullijevoj) ili normalnoj (Gaussovoj) razdiobi
- Kada nam je razdioba poznata (ili pretpostavljiva) iz jezičnih podataka (korpusa) trebamo dobiti samo parametre distribucije (u pravilu μ i σ)
- Parametarsko modeliranje u pravilu zahtijeva manji opseg podataka (manji korpus)

Neparametarsko modeliranje

- Rabi se kada radimo jezični model za kojega unaprijed ne znamo kakvu razdiobu u tome modelu možemo očekivati
- Razdioba P utvrđuje se prebrajanjem svih događaja u velikom korpusu jezičnih događaja
- Po dobivanju razdiobe P možemo pristupiti izračunu njezinih parametara
- Kod neparametarskog modeliranja, jer nemamo nikakvo prethodno znanje ili pretpostavku o jezičnom modelu, treba puno više empirijskih podataka nego u slučaju parametarskog modeliranja

Osnovne postavke TI-a

- Teoriju informacije utemeljio je Shannon prije sedamdesetak godina
- Osnovne zadaće:
- Maksimizirati količinu informacije koja se može prenijeti putem nesavršenog komunikacijskog kanala
- 2. Sažimanje (kompresija) podataka bez gubitka informacije
- 3. Određivanje moguće brzine prijenosa podataka po nesavršenom kanalu

Entropija

 Nužno je znati razdiobu slučajne varijable X, tj. p(x) za svaki x iz X. Tada se entropija izračunava ovako:

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

- Entropijom se mjeri količina informacije (u bitima ako je \log_2) potrebna za opis slučajne varijable X, odnosno njoj korespondentnog skupa slučajnih događaja Ω
- Praktički, entropija govori koliku najmanju količinu informacije u prosjeku treba prenijeti da bi nekomu priopćili da se dogodio slučajni događaj x iz X

Združena entropija

 U slučaju kada imamo dvije slučajne varijable X i Y opisane razdiobom P(X,Y) združena entropija je prosječna količina informacije potrebna da bi se nekomu priopćilo da su se dogodili i x i y iz (X,Y)

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(X,Y)$$

Uvjetna entropija

tada uvjetna entropija govori koliko još u prosjeku dodatne informacije moramo prenijeti kako bi se nekomu priopćilo da se dogodio i y iz Y

$$H(Y \mid X) = \sum_{x \in X} p(x)H(Y \mid X = x)$$

$$= -\sum_{x \in X} p(x) \sum_{y \in Y} p(y \mid x) log p(y \mid x)$$

$$= -\sum_{x \in X} \sum_{y \in Y} p(x, y) log p(y \mid x) = -E(log p(Y \mid X))$$

$$H(X,Y) = H(X) + H(Y|X)$$

$$H(Y|X) \leq H(Y)$$

$$H(X_{1},...,X_{n}) = H(X_{1}) + H(X_{2} | X_{1}) + + H(X_{n} | X_{1},...X_{n-1})$$

Srednji uzajamni sadržaj informacije

 Srednji uzajamni sadržaj informacije označava se s I(X,Y) i definira se ovako:

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$$

 $H(X) - H(X|Y) = H(Y) - H(Y|X) = I(X,Y)$

- Može se interpretirati kao smanjenje neodređenosti jedne slučajne varijable zbog poznavanja druge
- Druga interpretacija je da je I(X,Y) količina informacije koju jedna slučajna varijabla posjeduje o drugoj

$$I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

- $I(X,Y) \leq H(X)$
- $I(X,Y) \leq H(Y)$
- I(X,Y) = 0 onda i samo onda ako su X i Y nezavisne varijable; tada je H(X|Y)=H(X), odnosno H(Y|X)=H(Y)
- H(X)=H(X)-H(X|X)=I(X,X), što znači da je entropija "samoinformacija"

Entropija u NLP-u

- Entropija je mjera neodređenosti, što znači da se s porastom našega znanja o fenomenu kojega istražujemo (jeziku) smanjuje entropija sustava
- Kako s primjerenim jezičnim modeliranjem povećavamo naše znanje o strukturi prirodnoga jezika tako pada entropija u jeziku
- Zbog toga entropiju možemo koristiti kao mjeru uspješnosti našega modeliranja prirodnoga jezika

OBRADA PRIRODNOG JEZIKA (NLP)

Lingvističke osnove NLP-a

16. listopada 2012.

Vrste riječi

- Imenice
- Pridjevi
- Zamjenice
- Glagoli
- Prilozi
- Prijedlozi
- Veznici
- ... i još mnogo toga (brojevi, vlastita imena, kratice, akronimi itd.)

Morfologija i POS

- Riječi podliježu morfološkim radnjama kao što su dekliniranje (imenice, pridjevi, zamjenice), konjugiranje (glagoli), tvorbi složenica, i drugima
- Part-of-Speech (POS) je učestali (kratki) slijed riječi u rečenici (npr. New York, Ustavni sud) koje funkcioniraju kao cjelina i u kojemu svi ili samo neki dijelovi podliježu morfološkim radnjama
- POS može biti i sama riječ, pa čak i "prazna" riječ
- Zadatak NLP-a je označiti (annotation, labeling, tagging) POS-ove, ali njihove članove

Označavanje POS-ova

 Children (NOUN) eat (VERB) sweet(ADJECTIVE) candy(NOUN)

The(ARTICLE) children(NOUN) ate(VERB)
 the(ARTICLE) cake(NOUN)

 The(ARTICLE) news(NOUN) has(AUXILIARY) been(MAIN VERB) quite(ADVERB) sad(ADJECTIVE) in(PREPOSITION) fact(NOUN) .(PERIOD)

Označavanje u hrvatskome

- Radi složenosti hrvatske morfologije označavanje u hrvatskome izuzetno je složeno
- Zato ćemo se zadržati na engleskim primjerima i njihovom konvencionalnom označavanja

Rečenično stablo (parsing)

ORRADA DRIBODNOG JEZIKA

CFG (Context Free Grammars)

FER

- Sastoje se od nezaključnih (non-terminal) i zaključnih (terminal) simbola
- Nezaključni simboli povezuju se slijednim pravilima, s time da je prvi nezaključni simbol takozvana "majka" (mother)
- Slijedno pravilo određuje odnos između jednog nezaključnog simbola i njemu "podređenih" nezaključnih simbola, s time da to pravilo ne smije ovisiti o prethodnim nezaključnim simbolima, niti o simbolima koji slijede nakon "podređenih"

Primjer jednostavne CF gramatike

- Gramatička pravila
- S -> NP V
- ◆ NP -> N
- S: rečenica, NP: imenska fraza, V:glagol, N: imenica
- S, NP, V i N su neterminalni simboli
- Rječnik
- N → N → John, Tom,
- V -> walks, talks, eats, went
- Na kraju se neterminalni simboli povezuju sa terminalnima, moji tvore sadržaj rječnika

Sustavi označavanja

- OBRADA PRIRODNOG JEZIKA
- U hrvatskome se, kako je već rečeno, koristi, MSD sustav, ali samo za označavanje neterminalnih simbola na najnižoj razini rečeničkog stabla; kompletna CF gramatika za hrvatski nije napravljena
- U engleskome se koristi nekoliko standardnih sustava označavanja: Brown Tag Set, Penn Treebank Tag Set
- Primjeri tagginga: NP: vlastito ime (alternativa je Noun Phrase), NN: imenica u jednini, NNS: imenica u množini, AT: član (a, an ili the) itd.

Stohastičke gramatike

OBRADA PRIRODNOG JEZIKA

- Dobivaju se dodavanjem vjerojatnosti na "algebarsku" gramatičku strukturu, npr. na CF gramatiku
- Stohastički dodatak gramatici izomorfan je njezinoj algebarskoj strukturi
- Ovo znači da je svako slijedno pravilo iz CF gramatike opisano i svojom vjerojatnošću
- Pored apriornih vjerojatnosti pridruženih pravilima mogu se dodati i uvjetne vjerojatnosti koje se odnose na nizove pravila

Svojstva stohastičkih gramatika

- Robusnost: ulazni podatci često su opterećeni "šumom", npr. pravopisnim i tipografskim pogreškama, nepredvidivim sintaksnim konstrukcijama i sličnim. Stohastičke gramatike znaju raditi s takvim šumom
- Prenosivost: stohastičke gramatike se mogu prenositi (kao modeli) s jezika na jezik, putem "učenja" na tekstovnim korpusima
- Sposobnost poopćavanja: mogu raditi i "zaključivati" nad podatcima koje nikada nisu prije vidjele, tj. koji nisu bili obuhvaćeni korpusom za učenje

Primjer stohastičke CF gramatike

- London walks
- 1. S -> NP V
- 2. S -> NP .3
- 3. NP -> N .6
- 4. NP -> N N .2
- 5. N -> London .6
- 6. N -> walks .4
- 7. V -> walks 1.0
- Ako se rečenica tretira kao "London šeta" primjenjuju se pravila 1, 3, 5, 7 i dobiva se "težina" (.7)(.8)(.6)(1.0)=.336
- Ako se tretira ka imenska fraza (Londonske šetnice) pravila su 2, 4, 5, 6, tako da je težina(.3)(.2)(.6)(.4) =0.0144

Prednosti stohastičkih gramatika

- Vjerojatnosti se pridružuju CFG pravilima, što znači da možemo pojednostaviti CFG strukturu, a da kroz vjerojatnosti dobijemo puno uporabljivih informacija o jeziku
- Stohastičke CF gramatike omogućuju npr. modeliranje učenja jezika, modeliranje promjena u jeziku, modeliranje pojava pogrešaka u pisanju i njihovo ispravljanje, a u slučaju paralelnih dvojezičnih korpusa temeljni su alat za stohastičko strojno prevođenje

Semantika

- Semantika se bavi značenjima riječi, POS-ova i iskaza
- U NLP-u semantika se dijeli na leksičku semantiku i kombinacijsku semantiku
- Leksička semantika se bavi hiperonimijom, hiponimijom, antonimijom, meronimijom, holonimijom, sinonimijom, homonimijom, polisemijom i homofonijom
- Kombinacijska se semantika bavi značenjima cjeline i dijelova s naglaskom na one leksičke kombinacije koje su značenjski pomaknute od "prostog zbroja" značenja njezinih djelova

Leksička semantika

- Hiperonimija/hiponimija: nadređeni i podređeni pojmovi (motorno vozilo, automobil)
- Antonimija: suprotni pojmovi (naprijed, natrag)
- Meronimija/holonimija: odnos dijela i cjeline (automobil, automobilski motor)
- Sinonimija: istoznačni pojmovi (automobil, auto)
- Homonimija: raznoznačni pojmovi (kosa na glavi, kosa za kositi travu)
- Polisemija: višeznačni pojmovi (matica)
- Homofonija: pojmovi koji se isto izgovaraju a različito pišu (knight, night; rijetka u hrvatskome)

WordNet

 WordNet je računalno pohranjena leksičkosemantička mreža koja je razvijena za engleski jezik na Sveučilištu Princeton u Sjedinjenim Državama prije 20-tak godina http://wordnet.princeton.edu/

- EuroWordNet je projekt EU s ciljem da s slične mreže naprave za sve europske jezike http://www.illc.uva.nl/EuroWordNet/
- Hrvatski WordNet je tek u začetku http://rmjt.ffzg.hr/p3.html

Semantičko parsiranje rečenice

- Rečenica se može predstaviti i putem svojih semantičkih dijelova (agenta, pacijenta, instrumenta, cilja itd.)
- Dječak (AGENT) nas (PACIJENT) je pogodio s loptom (INSTRUMENT)
- Semantički dijelovi često se preklapaju sa sintaksnim dijelovima rečenice (subjekt, objekt ...)
- Međutim, nastupaju komplikacije radi postojanja izravnog i neizravnog objekta, zatim u slučaju aktivne i pasivne rečenice, itd.

Pragmatika

- Pragmatika nadilazi istraživanje značenja rečenice i istražuje što je govornik cjelinom htio da iskaže
- Bavi se kako se iste rečenice koriste u različitim situacijama
- Predmeti istraživanja: prirodnost, prihvatljivost, primjernost, određenost, izravnost itd.
- Bavi se i anaforama radi izdvajanja informacije:

I nema sestre ni brata

I nema oca ni majke

I nema drage ni druga

(Tin Ujević: "Svakidašnja jadikovka")

Kreiranje hrvatske digramske baze

OBRADA PRIRODNOG JEZIKA

- Izvedena je iz korpusa od od 533,057.697 pojavnica (srpanj 2007. - rujan 2011.);
- Zahtijevala je 61 obradu ukupnoga trajanja 5:57:29;

•	BAZA-DIGRAMA	45,398.790	426,750.330
•	===========		=======================================
•	BAZA-DIGRAMA2	8,419.686	16,839.372
•	BAZA-DIGRAMA1	19,165.975	19,165.975
•	BAZA-DIGRAMA-0	1,885.611	12,212.693
•	BAZA-DIGRAMA+	15,927.518	378,532.290

- PRVI-BD (prvi članovi BD-a) s 1,411.638 riječi
- DRUGI-BD (drugi članovi BD-a) s 1,298.968 riječi

OBRADA PRIRODNOG JEZIKA (NLP)

O korpusima u NLP-u

23. listopada 2012.

Što su korpusi

- Velike baze podataka čiji je sadržaj tekst ili govor, ili paralelno tekst i govor
- Najznačajnije vrste tekstualnih korpusa: "plain text" korpusi, označeni (tagged) korpusi, "domain specific" korpusi, paralelni bilingvalni korpusi...
- Korpus mora biti reprezentativan da bi se na njemu mogle primijeniti statističke tehnike u cilju dobivanja pouzdanih razdioba, odnosno statističkih modela jezika

Problemi formatiranja

- Čišćenje: iz korpusa treba odstraniti primjerice HTML oznake, slike, tablice i slične sadržaje
- Veliko/malo slovo: treba li zadržati "case sensitive" pisanje? Primjerice, je li AKO identično s "ako"? Nadalje, kako razlučiti "Ivana Vlak" (ime i prezime) i "vlak za Ivana"
- Tokenizacija: što su graničnici koji određuju pojavnicu (token)
- Rečenica: što ograničava rečenicu (kratice tipa dr., dipl. ing. i slične mogu unositi zabunu)

Problemi formatiranja (2)

- Skraćenice: treba li "dr." proširiti u "doktor"?
- Lematizacija: treba li od pojavnica ostaviti samo lemu (korijen) i odbaciti nastavke? Važno za pretraživanje korpusa (http://www.google.hr/), ali vrlo problematično u hrvatskome
- Pitanje naslova: treba li zadržati informaciju o fontu, jer naslovi i podnaslovi se obično pišu drugom fontom od ostatka teksta, tako da je font ponekad važan pri pretraživanju
- Ravnanje (alignment): izuzetno važno kod bilingvalnih korpusa

Korištenje korpusa

- U svakom dobrom korpusa velika je količina informacije o odnosu između riječi
- SNLP teži da se iz korpusa nauče ti odnosi na razini leksičkih i strukturnih preferencija koje postoje na razini pojavnica u svakom jeziku
- Kolokacije (n-grami riječi koje se učestalo pojavljuju zajedno) mogu poslu kao dobar primjer
- Primjeri: bit će uzeti iz engleskoga, jer hrvatski, radi morfološkoga bogatstva, prethodno traži lematizaciju

Kolokacije

$C(w^1 \ w^2)$	w^1	w^2
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Osim digrama *New York*, svi učestali digrami tzv. "funkcijske riječi"

Filtriranje kolokacija

Tag	Pattern	Example

A N linear function

N N regression coefficients

A A N Gaussian random variable

A N N cumulative distribution function

NAN mean squared error

N N N class probability function

N P N degrees of freedom

POS tagging je preduvjet za uspješno filtriranje kolokacija

Rezultat filtriranja

OBRADA PRIRODNOG JEZIKA

$C(w^1 \ w^2)$	w^1	w^2	tag patte	ern
11487	New	York	ΑN	
7261	United	States	ΑN	
5412	Los	Angeles	ΝN	
3301	last	year	ΑN	
3191	Saudi	Arabia	ΝN	Pregled
2699	last	week	ΑN	
2514	vice	president	ΑN	najučestalijih digramskih kolokacija nakon primjene sintaksnog filtriranja
2378	Persian	Gulf	ΑN	
2161	San	Francisco	ΝN	
2106	President	Bush	NN	
2001	Middle	East	AN	
1942	Saddam	Hussein	NN	
1867	Soviet	Union	ΑN	
1850	White	House	ΑN	
1633	United	Nations	ΑN	
1337	York	City	ΝN	
1328	oil	prices	ΝN	
1210	next	year	AN	
1074	chief	executive	ΑN	
1073	real	estate	ΑN	

Osnovni oblici korištenja korpusa

- Prebrajanje riječi:
- 1. Učestalost riječi
- Odnos pojavnica (tokens) i različnica (types) u korpusu
- 3. Razvrstavanje riječi u klase (općejezični fond, imenski fond, brojevi, kratice itd.)
- 4. Izračun relativne učestalosti riječi po klasama

• • • • • • • •

Primjer: http://riznica.ihjj.hr/

Zipfov zakon

- Zipfov zakon tvrdi da je: $f \propto 1/r$
- Zipfov zakon tvrdi da je učestalost riječi (f)
 obrnuto proporcionalna njezinom rankingu (r);
 ranking je redno mjesto pojavljivanja riječi na
 listi svih različnica u korpusu
- Mandelbrot je matematički doradio Zipfov zakon, tako da je on poznat i pod nazivom Zipf-Mandelbrotov zakon (Zipf-Mandelbrot law)
- Posljedica Zipfova zakona: za većinu riječi naše znanje o njima bit će vrlo skromno; 50-60% različnica i u opsežnim korpusima su tzv. hapax legomene

Zipfov zakon u log-log prikazu

OBRADA PRIRODNOG JEZIKA

Zipfov zakon za visoke frekvencije

OBRADA PRIRODNOG JEZIKA

Heapsov zakon - Wikipedia

• In linguistics, Heaps' law is an empirical law which describes the portion of a vocabulary which is represented by an instance document (or set of instance documents) consisting of words chosen from the vocabulary. This can be formulated as

$$q_V = at^c$$

- Where q_V is the subset of the vocabulary V represented by the instance text of size t [tokens]. a and c are free parameters determined empirically.
- With English text corpora, typically a is between 10 and 100, and c is between 0.4 and 0.6.

Heapsov zakon -komentar

OBRADA PRIRODNOG JEZIKA

- Heapsov zakon nije empirički zakon kako tvrdi Wikipedija
- Heapsov zakon je matematička posljedica Zipfova zakona
- Dokaz: A. Kornai: "How many words are there?", <u>http://www.metacarta.com/Collateral/Documents/English-US/how-many-words-are-there-Kornai.pdf</u>
- Heapsov zakon je integralni oblik Zipfova zakona
- Prednost: robusniji je od Zipfova zakona

$$V_i(t) = \alpha_i \cdot (t - K_i)^{\beta i}$$

$$VWT(t) + VNT(t) = V(t)$$

Područje A: početni desetomilijunski korpus;

Područje B: ukupni korpus u rasponu od 50 do 100

milijuna pojavnica;

Područje C: ukupni korpus iznad 100 milijuna pojavnica.

Modeliranje Heapsova zakona

- Heapsov zakon stalno podliježe promjeni, odnosno izračunu optimalnih parametara za željeni opseg korpusa
- Kod modeliranja je moguće olabaviti drugi uvjet s prethodnog slidea, tj. zadovoljiti se s

$$VWT(t)+VNT(t)\cong V(t)$$

 Tada se svaka komponenta može modelirati neovisno o drugim komponentama i dobiti optimalni parametri za pojedinu funkciju

Heapsov zakon za hrvatski

OBRADA PRIRODNOG JEZIKA

	Heapsov zakon	α	β	K
Područje A	V	207,24	0,4578	-778.825
	V_{WT}	662 , 67	0,3716	-766.928
	V_{NT}	0,4310	0,7467	123.821
Područje B	V	145,13	0,4791	
	V_{WT}	4.281,1	0,2722	
	V_{NT}	0,006014	0,9701	
Područje C	V	819,9	0,3852	
	V_{WT}	5.398,1	0,2592	
	V_{NT}	6 , 8616	0,5885	

Heapsov zakon primijenjen na digrame

Primjena Heapsova zakona

Indeks učenja

$$LIi(t) = 100 \cdot \frac{dVi}{dt}$$

 Na početku korpusa treba voditi računa o eksponencijalnom karakteru Zipfova zakona

$$LI(t) = 100 \cdot \left[a + (1-a) \cdot e^{-\frac{t-T}{\tau}} \right]$$

 Indeks učenja se na početku ponaša kao kapacitivna struja

Model učenja temeljen na Heapsovu zakonu

Kognoelektrička analogija

 Omogućava energetsko bilanciranje učenja; daje zapanjujuće dobre rezultate

LI = struja, TC = napon

$$li(t) = a + (1 - a) \cdot e^{-\frac{t - T}{\tau}}$$

$$tc(t) = b \cdot \left(1 - e^{-\frac{t - T}{\tau}}\right)$$

$$PoL(t) = \begin{bmatrix} a + (1-a) \cdot e^{-\frac{t-T}{\tau}} \end{bmatrix} \cdot b \cdot \begin{pmatrix} -\frac{t-T}{\tau} \\ 1-e^{-\frac{t-T}{\tau}} \end{pmatrix}$$

a = 0.025855; b = 0.952595; $\tau = 2.035.042$; T = -4.774.792

Snaga učenja

$$W(t) = \int_{T}^{t} PoL(t) \cdot dt = \tau \cdot b \cdot \left[p \cdot a + (1 - 2a) \cdot (1 - e^{-p}) - \frac{1 - a}{2} \cdot (1 - e^{-2p}) \right]$$

$$p = (t - T)/\tau; \qquad W_{\text{šrafirano}} = 750.000 \text{ različnica}$$

Prikaz W(t-K) i V(t) funkcije u podučju A

OBRADA PRIRODNOG JEZIKA

Ponašanje W(t-K)-V(t) funkcije u podučju A

OBRADA PRIRODNOG JEZIKA

Empirijski podaci i funkcija LI

Empirijski podaci i funkcija Ll_{WT}

Empirijski podaci i funkcija LI_{NT}

0,1

Ukupni korpus

Zaključak

- Prometni modeli i Zipfov, odnosno Heapsov zakon omogućuju planiranje rada nad korpusom
- Sredstvo su predviđanja, jer u NLP-u svaki novi radni zahvat traži i pripremu u programiranju, odnosno reprogramiranju, što iziskuje vrijeme, kako u zahvatima nad programskom podrškom tako i u testiranju novih rješenja
- Važno je pratiti promjene kako prometnih tako i prirodnojezičnih parametara u funkciji "vremena" (opseg obrađenoga korpusa) da bi planiranje bilo dovoljno precizno, time i pouzdano

OBRADA PRIRODNOG JEZIKA (NLP)

Hidden Markov Models (HMM)

30. listopada 2012.

What is an HMM?

- Graphical Model
- Circles indicate states
- Arrows indicate probabilistic dependencies between states

What is an HMM?

- Green circles are hidden states
- Dependent only on the previous state
- "The past is independent of the future given the present."

What is an HMM?

- Purple nodes are observed states
- Dependent only on their corresponding hidden state

HMM Formalism

- $\{S, K, \Pi, A, B\}$
- S: {s₁...s_N} are the values for the hidden states
- $K: \{k_1...k_M\}$ are the values for the observations

HMM Formalism

- $\{S, K, \Pi, A, B\}$
- $\Pi = \{\pi_i\}$ are the initial state probabilities
- $A = \{a_{ii}\}$ are the state transition probabilities
- $B = \{b_{ik}\}$ are the observation state probabilities

- Compute the probability of a given observation sequence
- Given an observation sequence, compute the most likely hidden state sequence
- Given an observation sequence and set of possible models, which model most closely fits the data?

Given an observation sequence and a model, compute the probability of the observation sequence

$$O = (o_1...o_T), \mu = (A, B, \Pi)$$

Compute $P(O | \mu)$

$$P(O | X, \mu) = b_{x_1 o_1} b_{x_2 o_2} ... b_{x_T o_T}$$

$$P(O | X, \mu) = b_{x_1 o_1} b_{x_2 o_2} ... b_{x_T o_T}$$

$$P(X \mid \mu) = \pi_{x_1} a_{x_1 x_2} a_{x_2 x_3} ... a_{x_{T-1} x_T}$$

$$P(O | X, \mu) = b_{x_1 o_1} b_{x_2 o_2} ... b_{x_T o_T}$$

$$P(X \mid \mu) = \pi_{x_1} a_{x_1 x_2} a_{x_2 x_3} ... a_{x_{T-1} x_T}$$

$$P(O, X \mid \mu) = P(O \mid X, \mu)P(X \mid \mu)$$

$$P(O \mid X, \mu) = b_{x_1 o_1} b_{x_2 o_2} ... b_{x_T o_T}$$

$$P(X \mid \mu) = \pi_{x_1} a_{x_1 x_2} a_{x_2 x_3} ... a_{x_{T-1} x_T}$$

$$P(O, X \mid \mu) = P(O \mid X, \mu) P(X \mid \mu)$$

$$P(O \mid \mu) = \sum_{X} P(O \mid X, \mu) P(X \mid \mu)$$

$$P(O \mid \mu) = \sum_{\{x_1 \dots x_T\}} \pi_{x_1} b_{x_1 o_1} \prod_{t=1}^{T-1} a_{x_t x_{t+1}} b_{x_{t+1} o_{t+1}}$$

- Special structure gives us an efficient solution using dynamic programming.
- Intuition: Probability of the first t
 observations is the same for all possible
 t+1 length state sequences.
- Define: $\alpha_i(t) = P(o_1...o_t, x_t = i \mid \mu)$

$$\alpha_{j}(t+1)$$

$$= P(o_{1}...o_{t+1}, x_{t+1} = j)$$

$$= P(o_{1}...o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

$$= P(o_{1}...o_{t} | x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

$$= P(o_{1}...o_{t}, x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)$$

$$\alpha_j(t+1)$$

$$= P(o_1...o_{t+1}, x_{t+1} = j)$$

=
$$P(o_1...o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

=
$$P(o_1...o_t | x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

$$= P(o_1...o_t, x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)$$

$$\alpha_j(t+1)$$

$$= P(o_1...o_{t+1}, x_{t+1} = j)$$

$$= P(o_1...o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

=
$$P(o_1...o_t | x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

$$= P(o_1...o_t, x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)$$

$$\alpha_j(t+1)$$

$$= P(o_1...o_{t+1}, x_{t+1} = j)$$

$$= P(o_1...o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

$$= P(o_1...o_t | x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)P(x_{t+1} = j)$$

=
$$P(o_1...o_t, x_{t+1} = j)P(o_{t+1} | x_{t+1} = j)$$

$$= \sum_{i=1...N} P(o_1...o_t, x_t = i, x_{t+1} = j) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1...N} P(o_1...o_t, x_{t+1} = j \mid x_t = i) P(x_t = i) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1}^{N} P(o_1...o_t, x_t = i) P(x_{t+1} = j \mid x_t = i) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum \alpha_i(t) a_{ij} b_{jo_{t+1}}$$

i=1...N

$$= \sum_{i=1...N} P(o_1...o_t, x_t = i, x_{t+1} = j) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1...N} P(o_1...o_t, x_{t+1} = j \mid x_t = i) P(x_t = i) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1}^{N} P(o_1...o_t, x_t = i) P(x_{t+1} = j \mid x_t = i) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum \alpha_i(t) a_{ij} b_{jo_{t+1}}$$

i=1...N

$$= \sum_{i=1...N} P(o_1...o_t, x_t = i, x_{t+1} = j) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1...N} P(o_1...o_t, x_{t+1} = j \mid x_t = i) P(x_t = i) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1...N} P(o_1...o_t, x_t = i)P(x_{t+1} = j \mid x_t = i)P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum \alpha_i(t) a_{ij} b_{jo_{t+1}}$$

$$= \sum_{i=1...N} P(o_1...o_t, x_t = i, x_{t+1} = j) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1}^{N} P(o_1...o_t, x_{t+1} = j \mid x_t = i) P(x_t = i) P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1...N} P(o_1...o_t, x_t = i)P(x_{t+1} = j \mid x_t = i)P(o_{t+1} \mid x_{t+1} = j)$$

$$= \sum_{i=1...N} \alpha_{i}(t) a_{ij} b_{jo_{t+1}}$$

Backward Procedure

$$\beta_{i}(T+1) = 1$$

$$\beta_{i}(t) = P(o_{t}...o_{T} | x_{t} = i)$$

$$\beta_{i}(t) = \sum_{j=1...N} a_{ij}b_{io_{t}}\beta_{j}(t+1)$$

Probability of the rest of the states given the first state

Decoding Solution

$$P(O \mid \mu) = \sum_{i=1}^{N} \alpha_i(T)$$

Forward Procedure

$$P(O | \mu) = \sum_{i=1}^{N} \pi_i \beta_i(1)$$

Backward Procedure

$$P(O | \mu) = \sum_{i} \alpha_{i}(t)\beta_{i}(t)$$
 Combination

Best State Sequence

OBRADA PRIRODNOG JEZIKA

Find the state sequence that best explains the observations

Viterbi algorithm

$$arg \max_{v} P(X \mid O)$$

Viterbi Algorithm

$$\delta_{j}(t) = \max_{x_{1}...x_{t-1}} P(x_{1}...x_{t-1}, o_{1}...o_{t-1}, x_{t} = j, o_{t})$$

The state sequence which maximizes the probability of seeing the observations to time t-1, landing in state j, and seeing the observation at time t

Viterbi Algorithm

$$\delta_{j}(t) = \max_{x_{1}...x_{t-1}} P(x_{1}...x_{t-1}, o_{1}...o_{t-1}, x_{t} = j, o_{t})$$

$$\delta_{j}(t+1) = \max_{i} \delta_{i}(t) a_{ij} b_{jo_{t+1}}$$

$$\psi_{j}(t+1) = \arg\max \delta_{i}(t) a_{ij} b_{jo_{t+1}}$$

Recursive Computation

Viterbi Algorithm

$$\hat{X}_{T} = \arg \max_{i} \delta_{i}(T)$$

$$\hat{X}_{t} = \psi_{\hat{X}_{t+1}}(t+1)$$

$$P(\hat{X}) = \arg \max_{i} \delta_{i}(T)$$

Compute the most likely state sequence by working backwards

Parameter Estimation

- Given an observation sequence, find the model that is most likely to produce that sequence.
- No analytic method
- Given a model and observation sequence, update the model parameters to better fit the observations.

Parameter Estimation

$$p_{t}(i,j) = \frac{\alpha_{i}(t)a_{ij}b_{jo_{t+1}}\beta_{j}(t+1)}{\sum_{m=1...N}\alpha_{m}(t)\beta_{m}(t)}$$

Probability of traversing an arc

$$\gamma_i(t) = \sum_{j=1...N} p_t(i,j)$$

Probability of being in state

Parameter Estimation

$$\hat{\pi}_i = \gamma_i(1)$$

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T} p_{t}(i, j)}{\sum_{t=1}^{T} \gamma_{i}(t)}$$

$$\hat{b}_{ik} = \frac{\sum_{\{t:o_t=k\}} \gamma_t(i)}{\sum_{t=1}^{T} \gamma_i(t)}$$

Now we can compute the new estimates of the model parameters.

HMM Applications

- Generating parameters for n-gram models
- Tagging speech
- Speech recognition

The Most Important Thing

We can use the special structure of this model to do a lot of neat math and solve problems that are otherwise not solvable.

HMM Tools (1)

- http://www-a2k.is.tokushimau.ac.jp/member/kita/NLP/nlp_tools.html
- i unutar toga
- http://www.kanungo.com/software/software.ht ml#umdhmm
- http://people.cs.ubc.ca/~murphyk/Software/HM M/hmm.html
- http://metameme.sdsc.edu/

HMM Tools (2)

OBRADA PRIRODNOG JEZIKA

- http://ccg.cc.gt.atl.ga.us/~anjiro/gt2k/html_bo ok/node18.html
- http://www.cs.ualberta.ca/~sergey/MVNHMM/in dex.html
- http://cslu.cse.ogi.edu/HLTsurvey/ch1node7.ht ml
- http://htk.eng.cam.ac.uk/

Zaključak

- Potrebno je imati osnovnu ideju što HMM mogu, kakve podatke traže, koja su ograničenja o kojima treba voditi računa
- Kada znamo što nam treba i zašto nam treba, tada biramo primjereni alat (toolkit) za svoj posao
- Dublji uvid u HMM dobit koristeći očigledne pogreške u našem radu s alatom

Obrada prirodnog jezika

Dr.sc.Mladen Sokele

Modeliranje indikatora obrade prirodnog jezika

Ak.g. 2012./2013.

Modeliranje vremenskih nizova:

$$y(t) = f(t; a_1, a_2, ..., a_k)$$

k slobodnih parametara – minimalno k poznatih točaka: $(t_i, N(t_i))$

1. Poznato točno k eksperimentalnih točaka

Sustav jednadžbi:
$$N(t_i) - f(t_i; a_1, a_2, ..., a_k) = 0, i = 1, ..., k$$

Za složene modele rasta – u pravilu nelinearan i eksplicitno nerješiv Potrebno koristiti numeričke metode (npr. Newtonova iterativna metoda) ili *solver* aplikacije.

♦

Modeli rasta

OBRADA PRIRODNOG JEZIKA

2. Poznato n, n > k eksperimentalnih točaka

Metoda najmanjih kvadrata

Vrijednosti parametara modela određuju se tako da je suma kvadrata razlika između mjerenih vrijednosti i izračunatih vrijednosti (s pomoću modela) minimalna: $S = \sum_{i=1}^{n} w_i \cdot [f(t_i; a_1, a_2, ..., a_k) - N(t_i)]^2$

gdje su w_i težine. Za w_i = 1 => obična metoda najmanjih kvadrata (OLS).

Za minimizaciju sume S i time određivanje optimalnih vrijednosti parametara a_i mogu se koristiti solver aplikacije.

Analitički izgazi za optimalne parametre dobivaju se iz sustava jednadžb $\overline{\dot{b}a_j}^{=0, j=1,\dots,k}$

OBRADA PRIRODNOG JEZIKA

Obična metoda najmanjih kvadrata (MNK) Ordinary least squares method (OLS)

$$\min_{\{a_1...a_k\}} \sum_{i=1}^n [f(t_i; a_1, ..., a_k) - N(t_i)]^2$$

Određivanje parametara a_j je provedeno statističkim izglađivanje pogreške sadržane u (izmjerenoj) zavisnoj varijabli N(t)

Metoda najmanjih kvadrata s težinama Weighted least squares method

$$\min_{\{a_1...a_k\}} \sum_{i=1}^n w_i \cdot [f(t_i; a_1, ..., a_k) - N(t_i)]^2$$

Ovisno o težinama w_i model ima manje odstupanje za odabrane točke (npr. za točke u bližoj prošlosti)

OBRADA PRIRODNOG JEZIKA

Metoda najmanjih kvadrata s modelom kroz fiksnu točku $(t_f, N(t_f))$

$$\min_{\{a_1...a_{k-1}\}} \sum_{i=1}^{n} \left[f(t_i; a_1, ..., a_{k-1}; t_f, N(t_f)) - N(t_i) \right]^2$$

Model prolazi kroz fiksnu točku $(t_f, N(t_f))$, a ostale točke se koriste za statističko izglađivanje pogreške sadržane u zavisnoj varijabli N(t)

Metoda najmanjih kvadrata s fiksiranom vrijednošću parametra a_k

$$\min_{\{a_1...a_{k-1}\}} \sum_{i=1}^n [f(t_i; a_1, ..., a_k) - N(t_i)]^2$$

Vrijednost parametra a_k ulazi izravno u model. Ostali parametri se određuju s ciljem statističkog izglađivanja pogreške sadržane u (izmjerenoj) zavisnoj varijabli N(t)

OBRADA PRIRODNOG JEZIKA

Metoda najmanjih kvadrata s inverznim modelom

$$\min_{\{a_1...a_k\}} \sum_{i=1}^n \left[f^{-1}(N(t_i); a_1, ..., a_k) - t_i \right]^2$$

Statističko izglađivanje pogreške sadržane u (izmjerenoj) nezavisnoj varijabli *t*

Metoda potpunih najmanjih kvadrata Total least squares method (TLS)

Statističko izglađivanje pogreške sadržane u nezavisnoj t i zavisnoj varijabli N(t)

Vidjeti npr:

http://www.mathos.hr/rp2/seminar6.pdf http://en.wikipedia.org/wiki/Total least squares

Modeli rasta - prilagodba za predviđanje

OBRADA PRIRODNOG JEZIKA

Mogućnost prihvata rezultata predviđanja temeljem procjena i izravno dobivenih eksplanatornih parametara

Pomoćni parametri – prilagodba specifičnim praktičnim potrebama

Prilagodba modela rasta - fiksne točke

OBRADA PRIRODNOG JEZIKA

Poznato n, n > k eksperimentalnih točaka, model prolazi kroz jednu zadanu (fiksnu) točku (t_f , $N(t_f)$)

Vrijednost jednog parametra modela npr. a_k može se izračunati iz jednadžbe: $N(t_f) - f(t_f; a_1, a_2, ..., a_k) = 0$

Modificirani model ima jedan parametar manje za odrediti metodom najmanjih kvadrata (MNK), te poprima oblik: $a_{k-1}, t_{\ell}, N(t_{\ell})$

Primjer uporabe:

• Model u sebi "uključuje" vrijednost zadnje izmjerene točke $(t_e, N(t_e))$

Modeli rasta u praktičnoj primjeni imaju do dvije fiksne točke – npr. početnu i završnu $(t_s, N(t_s))$ i $(t_e, N(t_e)) \Rightarrow$ do dva slobodna parametra manje za MNK.

Prilagodba modela rasta - težine

Pretpostavka:

Točke u bliskoj prošlosti su važnije za predviđanje

Metoda najmanjih kvadrata s težinama:

$$S = \sum_{i=1}^{n} w_i \cdot [f(t_i; a_1, a_2, ..., a_k) - N(t_i)]^2$$

gdje su težine w_i veće za točke iz bliže prošlosti (t.j. za zadnje poznate točke).

Na primjer:
$$w_i = \frac{1}{q^{n-i}}, q > 1$$

Npr. za q = 2, težine su:

$$W_{\rm n} = 1$$
, $W_{\rm n-1} = 0.5$, $W_{\rm n-2} = 0.25$, $W_{\rm n-3} = 0.125$, ...

Modeli rasta - mjera uspješnosti modeliranja

Koeficijent korelacije r – mjera statističke povezanosti (jakost veze) izmjerenih i modeliranih vrijednosti:

$$r = \sqrt{1 - \frac{\left[\sum_{i=1}^{n} \left[f(t_i) - N(t_i)\right]^2\right]}{\sum_{i=1}^{n} \left[\overline{N} - N(t_i)\right]^2}}; \quad 0 \le r \le 1$$

Gdje su:

 $N(t_i)$ eksperimentalne (izmjerene) vrijednosti za broj korisnika u vremenskom trenutku t_i

 $f(t_i)$ modelirane vrijednosti za broj $\sqrt[N]{k}$ \overline{o}_{i} \overline{k} \overline{o}_{i} $\overline{o$

prosjek izmjerene vrijednosti za broj korisnika:

Što je vrijednost *r* bliža 1, to je veza jača t.j. modeliranje uspješnije

Mjere uspješnosti predviđanja

OBRADA PRIRODNOG JEZIKA

Usporedba broja korisnika dobivenim iz modela $f(t_i)$ s izmjerenim vrijednostima $N(t_i)$ s ciljem ocjene efikasnosti odabranog modela

- 1. Predviđanje koje je provedeno u prošlosti nakon što su postale poznate sve vrijednosti koje su bile predmet predviđanja (t.j. nakon što je "budućnost postala sadašnjost"):
 - → Prosječno apsolutno odstupanje (Mean Absolute Error) MAE:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |f(t_i) - N(t_i)|$$

- ⇒ Prosječno apsolutno postotno odstupanje $MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|f(t_i) N(t_i)|}{N(t_i)}$ (Mean Absolute Percentage Error) MAPE [%]:
- → Korijen prosječnih kvadrata odstupanja (Root Mean Squared Error) RMSE:

$$RMSE = \sqrt{\frac{1}{n!} \sum_{i=1}^{n} [f(t_i) - N(t_i)]^2}$$

Mjere uspješnosti predviđanja

- 2. Predviđanja temeljem ograničenog skupa poznatih točaka $(t_i, N(t_i))$, i=1,2,...,m; m < n i usporedba sa svim poznatim točkama $(t_i, N(t_i))$, i=1,2,...,n:
 - → <u>Na primjer:</u> Odrediti parametre metodom najmanjih kvadrata iz *m=n-*1 poznate točke

Postupak:

- Odrediti parametre $\{\alpha^*_i\}$ metodom najmanjih kvadrata iz n-1 poznate točke $(t_i, N(t_i))$, i=1,2,...,n-1 za sve modele koji se ocjenjuju;
- Na temelju $\{\alpha_i^*\}$, $\{\beta_i\}$ i $\{\gamma_i\}$ izračunati $f(t_n)$ putem svakog modela, te dobivene vrijednosti za $f(t_n)$ određivanjem $MAE \mid MAPE \mid RMSE$ usporediti s poznatom vrijednošću za $N(t_n)$;
- Odabrati model koji daje najmanji *MAE | MAPE | RMSE*;
- Za odabrani model odrediti parametre $\{\alpha_i\}$ putem MNK iz svih n poznatih točaka, te uz iste $\{\beta_i\}$ i $\{\gamma_i\}$ izvršiti predviđanje za traženi vremenski interval u (stvarnoj) budućnosti.

Eksponencijalni:
$$f(x) = e^{\frac{x-\Delta t}{\tau}} \implies f(\Delta t) = 1; \quad \frac{f(x+\tau)}{f(x)} = e^{\frac{x-\Delta t}{\tau}}$$

Eksponencijalni s fiksnom točkom:
$$f(x) = N(t_0) \cdot e^{\frac{x-t_0}{\tau}} \implies f(t_0) = N(t_0); \quad \frac{f(x+\tau)}{f(x)} = e$$

Primjer eksponencijalnog modela: početak vremenskog intervala rasta ukupnog obrađenog korpusa

Logistički:
$$f(x) = \frac{M}{1 + e^{-k\frac{x - \Delta t}{\tau}}} \Rightarrow \lim_{x \to -\infty} f(x) = 0; \quad \lim_{x \to +\infty} f(x) = M; \quad f(\Delta t) = \frac{M}{2}$$

$$k = 2\ln\left(\frac{1}{u} - 1\right); \quad f(\Delta t - \frac{\tau}{2}) = uM; \quad f(\Delta t + \frac{\tau}{2}) = (1 - u)M$$

 $u = 10\% \Rightarrow k = 4.3944$ $\tau = 5,1$ $\Delta t = 2011.3$ (u travnju 2012.)

OBRADA PRIRODNOG JEZII

Bassov model:

Ispravlja nedostatak logističkog modela - omogućuje modeliranje početka životnog vijeka usluga

Diferencijalni oblik:
$$\frac{dB(t)}{dt} = qB(t) \left(1 - \frac{B(t)}{M}\right) + p\left(M - B(t)\right)$$
Effect of imitators (Logistic growth)

Effect of innovators

Analitički oblik:
$$B(t; M, p, q, t_{s}) = B(t) = M \frac{1 - e^{-(p+q)(t-t_{s})}}{1 + \frac{q}{p} e^{-(p+q)(t-t_{s})}}$$

M - asimptota (ukupni kapacitet tržišta)

p - koeficijent inovacije, p > 0

q - koeficijent imitacije, $q \ge 0$

 t_s - vrijeme kada je usluga lansirana na tržište, $B(t_s)=0$

Ima 4 slobodna parametra

Krivulja je identična logističkoj ali je pomaknuta dolje po ordinati

Ovisnost oblika S-krivulje o parametrima Bassovog modela:

OBRADA PRIRODNOG JEZI

Eksponencijalni saturacijski:

$$f(x) = M \left[1 - e^{-\frac{x - \Delta t}{\tau}} \right] \implies f(\Delta t) = 0; \quad \lim_{x \to \infty} f(x) = M$$

Primjer: Modeliranje indeksa prekrivanja teksta *TC*

Neovisna varijabla nije vrijeme već obim korpusa

$$TC = 100 \cdot \left[1 - \frac{BrojNeprepoznatihPojavnica}{OpsegTeksta} \right]$$

M = 100

OBRADA PRIRODNOG JEZIK

Eksponencijalna asocijacija*:

$$f(x) = L + (H - L) \cdot e^{-\frac{x - \Delta t}{\tau}} \implies f(\Delta t) = H; \quad \lim_{x \to \infty} f(x) = L$$

^{*}CurveExpert Software http://www.curveexpert.net/

Primjer: Modeliranje indeksa učenja *LI*

$$LI = 100 \cdot \frac{BrojNau\check{c}roihRazlicni ca}{OpsegTeksta}$$

Neovisna varijabla nije vrijeme već obim korpusa

$$H = 1$$

 $L = a, a > 0$

$$li(t) = a + (1 - a) \cdot e^{-\frac{t - T}{\tau}}$$

Kognoelektrička analogija

OBRADA PRIRODNOG JEZIK

$$i(t) = k \cdot \left[a' + (1 - a') \cdot e^{-\frac{t}{\tau}} \right] \sim \text{indeks učenja } LI$$

$$u \in (t) = k \cdot b' \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

$uc(t) = k \cdot b' \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$ ~ indeks prekrivanja teksta *TC*

Electrical Equivalence of

Word Learning

Modeliranje prometa usluge strojne provjere pravopisa*

OBRADA PRIRODNOG JEZIKA

Mjesečno obrađen korpus:

^{*} Kristina Mrvelj, diplomski rad, 2012.

Modeliranje prometa usluge strojne provjere pravopisa

Modeliranje prometa usluge strojne provjere pravopisa

OBRADA PRIRODNOG JEZIKA

Modeliranje veličine korpusa (kumulativ mjesečno obrađenog korpusa)

Bassov model s fiksnom vrijednošću zadnje točke

Modeliranje prometa usluge strojne provjere pravopisa

OBRADA PRIRODNOG JEZIKA

Broj novonaučenih različnica

