Przykłady modelowania i analizy systemów współbieżnych z wykorzystaniem sieci Petri.

Jakub Myśliwiec 07 Styczeń 2020

1 Symulacja i analiza własnego przykładu

- 1.1 Symulacja
- 1.2 Graf osiągalności
- 1.3 Analiza niezmienników przejść

2 Symulacja sieci z rysunku

Rysunek 1: Sieć do analizy

2.1 Analiza niezmienników przejść

Petri net invariant analysis results

T-Invariants

T0 T1 T2

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

P0 P1 P2 P3

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

M(P0) + M(P1) + M(P2) = 1

Analysis time: 0.0s

Rysunek 2: Analiza sieci

Odwracalność cechuje się możliwością wrócenia do stanu początkowego. W analizie niezmienników zauważmy, że nie ma żadnych niezmienników tranzycji (T-invariants). Wynika z tego że nie możemy odpalić tranzycji w taki sposób by wrócić do markowania początkowego, czyli sieć nie jest odwracalna.

2.2 Graf osiągalności

Rysunek 3: Graf osiągalności

Sieć jest żywa, gdyż począwszy od stanu początkowego zostanie uruchomione każde przejśćie. Nie występuje żadne martwe przejście. Sieć nie jest ograniczona gdyż miejsce ${\bf P3}$ nie jest ograniczone. Jak widać w grafie sieć wpada w nieskończony cykl między stanami ${\bf S3}, {\bf S4}, {\bf S5}$ i liczba tokenów w ${\bf P3}$ będzie rosła w nieskończoność.

3 Wzajemne wykluczanie dwóch procesów na wspólnym zasobie

Rysunek 4: Sieć wykluczających się procesów dla wspólnego zasobu

3.1 Symulacja

Rysunek 5: Symulacja działania sieci

Jak widać procesy wzajemnie wykluczają dostęp do zasobu i raz w sekcji krytycznej znajduję się proces po lewej stronie a raz po prawej.

3.2 Analiza niezmienników

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	Р1	P2	Р3	Р4
1	1	0	0	0
0	1	1	1	0
0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) = 1$$

 $M(P1) + M(P2) + M(P3) = 1$
 $M(P3) + M(P4) = 1$

Rysunek 6: Analiza sieci

Równanie M(P0) + M(P1) = 1 świadczy o tym, że proces po lewej stronie nie możę być 2 dwóch stanach równocześnie, albo będzie posiadał zasób albo nie.

Analogiczna sytuacja zachodzi dla drugiego procesu (po prawej stronie) M(P3) + M(P4) = 1.

Równaniem ukazującym działanie sekcji krytycznej jest M(P1) + M(P2) + M(P3) = 1. Pokazuje to, że w danym momencie tylko jedno z miejsc może posiadać token więc 2 procesy nie znajdą się w tym samym momencie w sekcji krytycznej.

4 Problem konsumenta i producenta

Rysunek 7: Sieć dla problemu producenta i konsumenta

4.1 Analiza niezmienników

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	Р1	P2	РЗ	Р4	P5	P6	Р7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Rysunek 8: Analiza sieci

Sieć jest zachowawcza gdyż liczba tokenów w sieci jest stała, nie zmienia się. Zawsze są 3 tokeny w buforze i po jednym w procesie producenta i konsumenta. O rozmiarze bufora świadczy ostatnie równanie $\mathbf{M}(\mathbf{P6}) + \mathbf{M}(\mathbf{P7}) = 3$ i wynosi on 3.

5 Problem producentów i konsumentów z nieskończonym buforem

Rysunek 9: Sieć dla problemu z nieskończonym buforem

5.1 Analiza niezmienników

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$

Rysunek 10: Analiza sieci

Jak widać z analizy niezmienników zawsze w procesach producenta i konsumenta będzię po jednym tokenie. Natomiast w buforze **P6** nie ma takiego ograniczenia (0 w wektorach P-Invariants), czyli mogą się tam gromadzić tokeny w nieskończoność, co oznacza że poprawnie skonstruowałem sieć z buforem nieograniczonym.

6 Problem zastoju meksykańskiego

Rysunek 11: Sieć dla problemu z zastoju meksykańskiego

- 6.1 Graf osiągalności
- 6.2 State Space Analysis

7 Zakleszczenie

Rysunek 12: Mój projekt sieci prezentujący zakleszczenie

7.1 Graf osiągalności

Rysunek 13: Graf osiągalności

Jak widzimy sieć zakleszcza się po przejściu T1. Wynika to z tego, że tranzycja T0 wymaga pobrania 2 tokenów od miejsca P0 oraz jednego tokenu od P1, natomiast do obu miejsc po tranzycji T1 dotrze po jednym tokenie.

7.2 State space analysis

Petri net state space analysis results

Bounded true
Safe false
Deadlock true

Shortest path to deadlock: T0 T1

Rysunek 14: Analiza stanów

Jak widzimy State space analysis wykazało, że w sieci jest zakleszczenie.

8 Problem 5 filozofów

Rysunek 15: Sieć dla problemu 5 filozofów