

TP3
SISTEMAS DE INTELIGENCIA ARTIFICIAL
1ER CUATRIMESTRE 2021

Grupo 3: Gonzalo Hirsch - 59089 Florencia Petrikovich - 58637 Juan Martin Oliva - 58664

01 RESUMEN

Resumen del trabajo realizado durante el TP

02 VIVIL ENFOQUE

Descripción de cómo se construyó el código y cómo enfocamos el trabajo 03 ····· RESULTADOS

Resultados obtenidos en diferentes pruebas

04 CONCLUSIONES

Conclusiones a partir de los resultados

RESUMEN DEL TRABAJO

Implementación

Implementación de un motor de perceptrones simples y multicapa para aprender diferentes tipos de problemas.

Problemas

Los **problemas** resueltos eran linealmente y no linealmente separables.

ENFOQUE 02

METODOLOGÍA

DECISIONES DE DISEÑO

ARQUITECTURA

INICIALIZACIÓN DE PESOS

OPTIMIZACIONES APLICADAS

Invertir más tiempo en diseñar arquitectura.

Se construyeron **clases** capaces de ser **combinadas fácilmente** en una **red**.

Se **abstrajo** el **problema** para poder **resolver todos** los **problemas** al mismo tiempo.

DECISIONES DE DISEÑO

ARQUITECTURA

INICIALIZACIÓN DE PESOS

OPTIMIZACIONES APLICADAS

Iniciar los pesos en valores pequeños ⇒ Mejores resultados¹

Fórmula usada (variación del link):

$$random(0, 1, N) \cdot \sqrt{\frac{1}{N}}$$

N = Cantidad de Pesos

random(0,1,N) = vector de N lugares random uniforme entre 0 y 1

DECISIONES DE DISEÑO

ARQUITECTURA

INICIALIZACIÓN DE PESOS

OPTIMIZACIONES APLICADAS

Momentum ⇒ Tiene un gran impacto en la velocidad para encontrar una solución

RESULTADOS 03

EJERCICIO

 $\sim \sim _{1}$

PROBLEMA 1 - AND

Tipo → Linealmente Separable

¿Solucionable? → Si por Perceptrón Simple

Solución Alcanzada

PROBLEMA 2 - XOR

Tipo → No Linealmente Separable

¿Solucionable? → No por Perceptrón Simple

Solución Alcanzada

EJERCICIO 2

MOMENTUM

Pruebas para determinar si era mejor activar momentum o no

¡El error es casi el **doble**! En todos los casos usa **todo** el **dataset**

Usan la **Activación Lineal**

Delta de Accuracy es **5**

LEARNING RATE

TODOS LOS DATOS

Análisis de Mejor Learning Rate En todos los casos usa **todo** el **dataset**

Mejores métricas: 0.001, 0.01 y 0.1

APRENDIZAJE

27.3%

Accuracy Activación Lineal (Delta = 5) (Desvío: 0.0076)

Accuracy Activación No Lineal (Delta = 0.01) (Desvío: 0.0042)

VALIDACIÓN CRUZADA - ACTIVACIÓN LINEAL

K = 5, 40 DATOS POR BLOQUE

Randomización del orden de los datos antes de cada corrida

VALIDACIÓN CRUZADA - ACTIVACIÓN LINEAL

K = 8, 25 DATOS POR BLOQUE

VALIDACIÓN CRUZADA - ACTIVACIÓN LINEAL

K = 10, 20 DATOS POR BLOQUE

Para cada corrida, siempre hay ciertos bloques que al excluirlos del entrenamiento y usarlos en las pruebas disminuye la capacidad de generalización.

VALIDACIÓN CRUZADA - ACTIVACIÓN NO LINEAL

K = 5, 40 DATOS POR BLOQUE

En mismas corridas, la elección de bloques afecta mucho el accuracy de la generalización.

En varios casos, el accuracy del testeo supera al del entrenamiento.

VALIDACIÓN CRUZADA - ACTIVACIÓN NO LINEAL

K = 8, 25 DATOS POR BLOQUE

VALIDACIÓN CRUZADA - ACTIVACIÓN NO LINEAL

K = 10, 20 DATOS POR BLOQUE

Randomización del orden de los datos antes de cada corrida

APRENDIZAJE Y GENERALIZACIÓN

Train: % del dataset Test: % del dataset Learning Rate: 0.001

Puede **generalizar bien** el Perceptrón, tiene accuracy similar al entrenamiento

APRENDIZAJE Y GENERALIZACIÓN

Train: 9/10 del dataset Test: 1/10 del dataset Learning Rate: 0.001

LLega a **overfitting** el perceptrón, tiene mucha mejor accuracy en entrenamiento

CONCLUSIONES

APRENDIZAJE

Depende mucho del dataset, en este caso parece tener mucho ruido

Activación Lineal

Activación No Lineal

GENERALIZACIÓN

El Perceptrón puede generalizar acorde a su entrenamiento (depende de subconjunto)

ENTRENAMIENTO

Validación Cruzada para ver mejores subconjuntos + pruebas de distintos tamaños

EJERCICIO

PROBLEMA 1 - XOR

Tipo → No Linealmente Separable

¿Solucionable? → Si por Perceptrón Multicapa

Configuración Usada

2 Perceptrones,
Activación Step

1 Perceptron,
Activación Step

Momentum $(\alpha=0.8)$

Learning Rate 0.01

PROBLEMA 2 - PARIDAD DE NÚMEROS

LEARNING RATE MOMENTUM

Efectos de la tasa de aprendizaje y momentum sobre las iteraciones.

CONFIGURACIÓN

Efectos de la configuración de la red sobre una subdivisión del conjunto de datos.

VALIDACIÓN CRUZADA

Efectos del dataset de entrenamiento y testeo sobre la cap de generalizacion.

MOMENTUM

Pruebas para determinar si era mejor activar momentum o no

En todos los casos usa todo el dataset

Problema 2 -Clasificación de Números

Usa Activación Step

¡Tarda hasta **15.5** veces menos!

LEARNING RATE

TODOS LOS DATOS

Análisis de Mejor Learning Rate

En todos los casos usa **todo** el **dataset**

Mejores métricas: 0.01, 0.05 y 0.1

ANÁLISIS DE LA CONFIGURACIÓN

DATOS DE ENTRENAMIENTO

Mitad del dataset para **entrenar** y la otra para **pruebas**

Épocas por configuración

Error por configuración

ANÁLISIS DE LA CONFIGURACIÓN

DATOS DE PRUEBAS

Mitad del dataset para **entrenar** y la otra para **pruebas**

MENOR ERROR

Configuraciones:

ANÁLISIS DE LA CONFIGURACIÓN

DATOS DE PRUEBAS

Métricas por configuración Accuracy Precision 1 0.600 F1 score -1 0.400 8-2-8-1 8-4-8-1 16-2-16-1 8-8-1 Configuración de capas

Mitad del dataset para **entrenar** y la otra para **pruebas**

MEJORES MÉTRICAS

Configuraciones:

VALIDACIÓN CRUZADA

K = 2 / K = 5

Randomización del orden de los datos antes de cada corrida

VALIDACIÓN CRUZADA

K = 10

Sin randomización de orden, cada barra es un promedio de aciertos al usar dicho dígito para pruebas.

APRENDIZAJE Y GENERALIZACIÓN

Train: ½ del dataset Test: ½ del dataset Learning Rate: 0.01

Hay **overfitting** a medida que aprende más, la generalización baja

APRENDIZAJE Y PERCEPTRÓN SIMPLE

Corriendo el dataset con un **Perceptrón Simple**, lo aprende al

100%

Es **linealmente separable**, y en generalización se comporta como la red

CONCLUSIONES DE EJERCICIO 3

OVERFITTING

Con el dataset de dígitos se llegó a overfitting

GENERALIZACIÓN

Con Validación Cruzada generaliza bien el ≈50% independientemente de los bloques usados, y con 2 clases es muy azaroso

L. SEPARABLE

El dataset del problema 2 puede ser aprendido 100% con un Perceptrón Simple

CONCLUSIONES 04

CONCLUSIONES ALCANZADAS

OPTIMIZACIONES

Momentum no conviene usarlo siempre

PROBLEMAS

Importante ver los tipos de problemas

VALIDACIÓN CRUZADA

En el EJ2 mejora la accuracy en la generalización, pero en el EJ3 no mejora

MÉTRICAS

Las métricas permiten evaluar diferentes configuraciones

¿Preguntas?

ghirsch@itba.edu.ar fpetrikovich@itba.edu.ar juoliva@itba.edu.ar