Problem 4.4:

To construct a strict inequality in Fatou's lemma (Capinski & Kopp, Theorem 4.7), we can consider the sequence of non-negative measurable functions defined on (0,1) by:

$$f_n(x) = n \mathbf{1}_{(0,1/n]}(x), \qquad n = 1, 2, \dots$$

Since each f_n is measurable (because the indicator function $\mathbf{1}_{(0,1/n]}$ is measurable) as in (Capinski & Kopp, Theorem 3.2), and scalar multiplication by n preserves measurability, then since $(0,1/n] \subset [0,1]$, and f_n is defined to vanish outside [0,1], the support of each f_n lies entirely within the unit interval.

To compute the integral of f_n , observe that f_n is a simple function taking the constant value n on the measurable set (0, 1/n], which has Lebesgue measure 1/n. By (Capinski & Kopp, Definition 4.2 and Theorem 4.2), this gives:

$$\int_0^1 f_n \, dm = n \cdot m((0, 1/n]) = n \cdot \frac{1}{n} = 1 \quad \text{for all } n$$

Next, if we examine the pointwise limit inferior, fix $x \in (0,1]$ and choose N > 1/x. Then for all $n \geq N$, we have 1/n < x, so $x \notin (0,1/n]$ and $f_n(x) = 0$. It follows that $\lim \inf_{n \to \infty} f_n(x) = 0$ for all $x \in (0,1]$. At x = 0, we may define $f_n(0) = 0$ for all n; since this single point has measure zero, it does not affect the integral. Therefore, $\lim \inf_{n \to \infty} f_n(x) = 0$ for m-almost every $x \in [0,1]$. Now, we can compute both sides of Fatou's inequality. For the left-hand side:

$$\int_{0}^{1} \liminf_{n \to \infty} f_n \, dm = \int_{0}^{1} 0 \, dm = 0$$

For the right-hand side:

$$\liminf_{n\to\infty} \int_0^1 f_n \, dm = \liminf_{n\to\infty} 1 = 1$$

Which yields the strict inequality as claimed:

$$\int_0^1 \liminf_{n \to \infty} f_n \, dm = 0 < 1 = \liminf_{n \to \infty} \int_0^1 f_n \, dm$$

So, this shows that Fatou's lemma may be strict even when each f_n is a simple function supported on a compact interval. The discrepancy arises because, although the functions maintain constant L^1 norm, their mass concentrates on sets whose measure shrinks to zero, illustrating the subtlety of limiting operations under the integral sign.

Problem 4.8:

To analyze the behavior of the sequence:

$$I_n = \int_0^\infty \left(1 + \frac{x}{n}\right)^n \cdot \frac{n}{\sqrt{x}} dx, \qquad n = 1, 2, \dots$$

We can begin by applying the substitution x = ny, so that dx = n, dy and $x^{-1/2} = (ny)^{-1/2}$. Substituting into the integral gives:

$$I_n = \int_0^\infty (1+y)^n \cdot \frac{n}{\sqrt{ny}} \cdot n \, dy = n^{3/2} \int_0^\infty (1+y)^n y^{-1/2} \, dy$$

For convergence of this integral, observe that for $y \ge 1$ we have $(1+y)^n \ge y^n$, so:

$$\int_0^\infty (1+y)^n y^{-1/2} \, dy \ge \int_1^\infty y^{n-1/2} \, dy$$

The right-hand side is an improper integral of a function behaving like y^{α} with exponent $\alpha = n - \frac{1}{2} > -1$. So, the integral diverges for all integers $n \geq 1$, and so the entire expression in (??) is infinite:

$$\int_0^\infty (1+y)^n y^{-1/2} \, dy = \infty \qquad n \ge 1$$

Then, since $n^{3/2}$ is finite for each n, we have:

$$I_n = \int_0^\infty \left(1 + \frac{x}{n}\right)^n \cdot \frac{n}{\sqrt{x}} dx = \infty$$
 for all $n \ge 1$

So, the sequence $I_{-}n$ does not converge; every term is already divergent. This shows the necessity of the domination hypothesis in the Dominated Convergence Theorem (Capinski & Kopp, Theorem 4.18). Since each $I_{-}n$ is infinite, there can be no integrable function g such that $|f_{-}n(x)| \leq g(x)$ on $(0, \infty)$, where $f_{-}n(x) = n(1+x/n)^n/\sqrt{x}$. The failure of the domination condition prevents any application of the theorem and highlights that even point-wise convergence or uniform bounds on compact subsets are insufficient for interchanging limit and integral in the absence of a globally integrable envelope.

Problem 4.11:

To evaluate the integral $\int_{-\infty}^{\infty} n(x) dx$, $n(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, we can first consider the standard normal case $\mu = 0$ and $\sigma = 1$. We can first define:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \qquad I = \int_{-\infty}^{\infty} \varphi(x) dx$$

To compute I, square it and apply Tonelli's (or Fubini's) theorem (Capinski & Kopp, Theorem 4.12) to obtain

$$I^{2} = \iint_{\mathbb{R}^{2}} \frac{1}{2\pi} e^{-(x^{2}+y^{2})/2} dx dy$$

Switching to polar coordinates via $x = r \cos \theta$, $y = r \sin \theta$, with $dx, dy = r, dr, d\theta$, transforms the integral into:

$$I^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}/2} r \, dr = \int_{0}^{\infty} e^{-r^{2}/2} r \, dr$$

Using the substitution $u=r^2/2$, so that du=r,dr, the inner integral becomes $\int 0^\infty e^{-u}$, du=1. Therefore, $I^2=1$, and since $\varphi(x)\geq 0$, it follows that I=1. For the general case, let $x=\mu+\sigma z$, so that $dx=\sigma,dz$. Applying the change-of-variables formula (Capinski & Kopp, Theorem 4.32), we have:

$$\int_{-\infty}^{\infty} n(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-z^2/2} \cdot \sigma dz = \int_{-\infty}^{\infty} \varphi(z) dz = 1$$

This confirms that the Gaussian density integrates to one for all $\mu \in \mathbb{R}$ and $\sigma > 0$.

Problem 4.14:

To prove that the distribution function $F_X(y) = P\{\omega \in \Omega : X(\omega) \leq y\}$ is continuous if and only if $P_X y = 0$ for all $y \in \mathbb{R}$, we may consider first the expression of jump size. Note that for any $y \in \mathbb{R}$, define the left limit $F_X(y^-) = \lim_{t \uparrow y} F_X(t)$, which exists by monotonicity. Since the sets $(-\infty, t]$ increase to $(-\infty, y)$ as $t \uparrow y$, continuity from below and countable additivity imply that:

$$F_X(y^-) = P_X((-\infty, y))$$

Subtracting yields:

$$F_X(y) - F_X(y^-) = P_X((-\infty, y]) - P_X((-\infty, y)) = P_X\{y\}$$

This shows that the jump of F_X at any point y equals the probability mass at y. From this, it follows from the right-continuity and monotonicity of F_X (Capinski & Kopp, Proposition 4.30). If F_X is continuous, then $F_X(y) = F_X(y^-)$ for all y, and relation (*) forces $P_X y = 0$ for all y. Conversely, if $P_X y = 0$ for every $y \in \mathbb{R}$, then (*) yields $F_X(y) = F_X(y^-)$ for all y, so F_X has no jumps, combined with right-continuity (Capinski & Kopp, Proposition 4.30), which implies that F_X is continuous everywhere. So, F_X is continuous if and only if the measure P_X assigns zero mass to all singleton sets.