2020年普通高等学校招生全国统一考试 文科数学

注意事项:

- 1. 答卷前, 考生务必将自己的姓名和准考证号填写在答题卡上.
- 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.

关注公食号"一个高中僧"获取更多高种资料

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

符合题目要求的.					
$1.$ 已知集合 $A \square \square 1,235,7,11 \square$, $B \square \square x 3 \square x \square 15 \square$, 则 $A \cap B$ 中元素的个数为()					
A. 2	B. 3	C. 4	D. 5		
2.若 z □1 □ i □ □ 1 □ i ,则	z= ()				
A. 1- <i>i</i>	B. 1+ <i>i</i>	C. –i	D. <i>i</i>		
3.设一组样本数据x ₁ , x ₂ ,	, <i>x</i> _n 的方差为0.01, 则数	据 $10x_1$, $10x_2$,, $10x_n$ 的	方差为()		
A. 0.01	B. 0.1	<i>C</i> . 1	D. 10		
4.Logistic模型是常用数学	模型之一,可应用于流行病	学领城,有学者根据公布	数据建立了某地区新冠肺炎		
K 累计确诊病例数 $I(t)(t$ 的单位:天)的 $Logistic$ 模型: ()= $_{1\squaree}^{0.23(_{_t}s_3)}$, 其中 K 为最大确诊病例数 . 当 $I(t$ *					
)=0.95K时,标志着已初步遏制疫情,则 <i>t</i> *约为()(ln19≈3)					
A. 60	B. 63	C. 66	D. 69		
5.已知sin sin = 1	□ □ π □ () sin □ = 6				
1		2	2		
A. 2	3 B.	C.	D. 2		
2	3	3			
6.在平面内, A , B 是两个定点, C 是动点,若 $AC \square BC=1$,则点 C 的轨迹为()					

C. 抛物线

D. 直线

7.设O为坐标原点,直线x=2与抛物线C: $y^2=2px(p>0)$ 交于D, E两点,若 $OD\perp OE$,则C的焦点坐标为()

- A. $\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ B. $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ C. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ D. $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

二、填空题:本题共4小题,每小题5分,共20分.

2 2
14.设双曲线*C*: 2 2 1 (*a*>0, *b*>0)的一条渐近线为*y*= *x*,则*C*的离心率为______
□ □ □

		e		
e				
	$f\Box$			
$\Box f(x) \Box$	v			
(1)				
15.设函数	. 若	, 仄	$\ a\ =$	
$x \square a$!	4		
16.已知圆锥的底面半征	조为1, 母线-	长为3,	则该圆锥内半径最大的球的体积为	

三、解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.

(一) 必考题: 共60分.

17.设等比数列 $\{a_n\}$ 满足 $a_1 \square a_2 \square 4$, 3 1 8.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 记 S_n 为数列 $\{\log_3 a_n\}$ 的前n项和 . 若 $S_n \cup S_n \cup S_n$, 求m .

18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得

到下表(单位:天):			
锻炼人次	[0, 200]	(200, 400]	(400, 600]
空气质量等级	[0, 200]	(200, 100]	(100, 000]
I (优)	2	16	25
2 (良)	5	10	12
3(轻度污染)	6	7	8
4 (中度污染)	<u> </u>	2	

- (1) 分别估计该市一天的空气质量等级为1, 2, 3, 4的概率;
- (2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
- (3) 若某天的空气质量等级为1或2,则称这天"空气质量好";若某天的空气质量等级为3或4,则称这天"空气质量不好".根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天

中到该公园锻炼的人次与该市当天的空气质量有关?					
	人次≤400	人次>400			
空气质量好					

 $p(K^2 \ge k)$ $p(A \square b) = 0.050$ $p(A \square c) = 0.001$ $p(K^2 \ge k)$ $p(K^2 \ge k)$ p(K

- (1) 求| AB |:
- (2) 以坐标原点为极点, x轴正半轴为极轴建立极坐标系, 求直线AB的极坐标方程.

关注人选择4.5个不管或选进多高中资料

23.设a, b, $c \square R$, a+b+c=0, abc=1.

- (1) 证明: ab+bc+ca<0;
- (2) 用 $\max\{a, b, c\}$ 表示a, b, c中的最大值,证明: $\max\{a, b, c\} \ge 34$.