PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-270942

(43)Date of publication of application: 06.11.1990

(51)Int.C1.

C22C 38/00 B22D 11/00 C21D 8/00 C22C 38/44

(21)Application number: 01-233030

(22)Date of filing:

11.09.1989

(71)Applicant:

NIPPON STEEL CORP

(72)Inventor:

UEDA MASANORI

(54) HIGH-PURITY AND HIGH-CLEANLINESS STAINLESS STEEL EXCELLENT IN CREVICE CORROSION RESISTANCE AND RUST RESISTANCE AND ITS PRODUCTION

PURPOSE: To obtain a high-purity and high-cleanliness stainless steel excellent in crevice corrosion resistance and rust resistance by subjecting a molten steel which has a prescribed composition and in which cleanliness consisting of the sum of oxide-type inclusions and sulfide-type inclusions is regulated to a specific value or below to continuous casting under the prescribed temp. conditions and then to hot rolling.

CONSTITUTION: A molten steel which has a composition containing, by weight, 0.01-0.1% C, ≤3% Si, ≤2% Mn, 14-26% Cr, 0.005-0.2% N, ≤0.02% P. ◆0.001% S, 0.02-0.2% Al, ◆0.003% O, further one or more kinds among ≤3% Mo, ≤2% Cu, and ≤2% Ni, and ≤0.01% B and in which cleanliness consisting of the sum of oxide—type inclusions and sulfide—type inclusions is regulated to ≤0.02% is continuously cast under the temp. condition in which ▵ T is regulated to ≤45° C, and the resulting cast slab is heated to or held at ≤1230° C, followed by hot rolling. By this method, an inexpensive ferritic stainless steel having superior workability as well as the above properties can be obtained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision

of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

❷❷公告 平成4年(1992)10月19日

⑫特 許 公 報(B2) $\Psi 4 - 65141$

®Int. Cl. 5 識別配号 庁内整理番号 C 22 C 302 Z 7217-4K 38/00 B 22 D $\tilde{\mathbf{B}}$ 7362-4E G 8823-4E C 22 C

発明の数 5 (全11頁)

耐原間腐食性、耐銹性のすぐれた高純、高清浄ステンレス鋼とその 60発明の名称 製造方法

> 顧 平1-233030 创特

開 平2-270942 匈公

29出 顧 昭58(1983)3月8日 @平2(1990)11月6日

顧 昭58-37884の分割 62特

700発明者 上 田 全 紀

福岡県北九州市八幡東区枝光1-1-1 新日本製鐵株式

會社生産技術研究所内

新日本製鐵株式会社 の出 願 人 四代 理 人 弁理士 大関 和夫

客 査 官 影 山 秀 東京都千代田区大手町2丁目6番3号

1

の特許請求の範囲

1 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr:14~26%、N:0.005~0.2 %、P:0.02%以下、S:0.001%未満、AI:0.02 下、Cu: 2%以下、Ni: 2%以下の1種または 2種以上を含み、残部実質的にFeからなり、酸 化物系介在物と硫化物系介在物の和よりなる清浄 度が0.02以下であることを特徴とする耐隙間腐食

2 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr: 14~26%、N: 0.005~0.2 %、P:0.02%以下、S:0.001%未満、A1:0.02 下、Cu: 2%以下、Ni: 2%以下の1種または 2種以上、Ti:0.6%以下、V:0.02~0.5%、 Nb:0.02~0.2%の1種または2種以上を含み、 残部実質的にFeからなり、酸化物系介在物と硫 化物系介在物の和よりなる清浄度が0.02以下であ 20 レス鋼。 ることを特徴とする耐隙間腐食性、耐銹性のすぐ れた高純、高清浄ステンレス鋼。

3 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr: 14~26%、N: 0.005~0.2

%、P:0.02%以下、S:0.001%未満、AI:0.02 ~0.2%、O:0.003%未満、さらにMo:3%以 下、Cu: 2%以下、Ni: 2%以下の 1 種または 2種以上、およびB:0.01%以下を含み、残部実 ~0.2%、O:0.003%未満、さらにMo:3%以 5 質的にFeからなり、酸化物系介在物と硫化物系 介在物の和よりなる清浄度が0.02以下であること を特徴とする耐隙間腐食性、耐銹性のすぐれた高 純、高清浄ステンレス鋼。

2

4 重量%でC:0.01~0.1%、Si:3%以下、 性、耐銹性のすぐれた高純、高清浄ステンレス 10 Mn: 2%以下、Cr:14~26%、N:0.005~0.2 %、P:0.02%以下、S:0.001%未満、A1:0.02 ~0.2%、O:0.003%未満、さらにMo:3%以 下、Cu: 2%以下、Ni: 2%以下の1種または 2 種以上、Ti: 0.6%以下、V: 0.02~0.5%、 ~0.2%、O:0.003%未満、さらにMo:3%以 15 Nb:0.02~0.2%の1種または2種以上、および B:0.01%以下を含み、残部実質的にFeからな り、酸化物系介在物と硫化物系介在物の和よりな る清浄度が0.02以下であることを特徴とする耐隙 間腐食性、耐銹性のすぐれた高純、高清浄ステン

> 5 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr: 14~26%、N: 0.005~0.2 %、P:0.02%以下、S:0.001%未満、A1:0.02 ~0.2%、O:0.003%未満、さらにMo:3%以

下、Cu: 2%以下、Ni: 2%以下の1種または 2種以上を含み、残部実質的にFeからなり、酸 化物系介在物と硫化物系介在物の和よりなる清浄 度が0.02以下である溶鋼を、AT≦45℃の鋳造温 度条件下で連続鋳造し、得られた鋳片を1230℃を 5 超えない温度に加熱あるいは保熱した後、熱間圧 延することを特徴とする耐隙間腐食性、耐銹性の すぐれた高純、高清浄ステンレス鋼の製造方法。

ここでΔT=(連続鋳造時のタンデイツシユに

発明の詳細な説明

(産業上の利用分野)

本発明は、耐食性、就中耐隙間腐食性、耐銹性 に優れかつ、加工性に優れた高純、高清浄フエラ イト系ステンレス鋼およびそれを安価に製造する 15 (1) 重量%でC:0.01~0.1%、Si:3%以下、 方法に関するものである。

(従来の技術)

17%Cr鋼を主とするフエライト系ステンレス 鋼は、安価であるという利点を活かして、従来、 主として薄板として広く使用されてきたが、18% 20 Cr-8%Ni鋼に代表されるオーステナイト系ス テンレス鋼に比較して耐食性、加工性の点でかな り劣る。

わけても、耐食性の面では、大気中或は自然に かな条件下で使用される場合でも、溶接部や加工 を受けた部分では容易に発銹しまた、母材部でも 耐食性に難点がある。フエライト系ステンレス鋼 の用途を拡大するためには、耐食性を大幅に改善 することが要請される。また、加工性の面におい 30 ても、絞り性、張り出し性を改善する必要があ る。

従来、フエライト系ステンレス鋼の耐食性や加 工性を改善するために、多くの研究がなされた結 果、主として合金添加による方法によつて特性が 35 改善されてきた。

耐食性に関しては、使用環境によつてその要求 程度が異なり、一律に基準を決めることはできな い。従つて、用途によつてMo、Cu、Ni、Ti、 Nb等を選択添加することが知られており、実用 40 化されてきた。

一方、加工性の改善に関しては、Ti、B、Al の添加、C、Nの低減、熱間圧延条件、熱処理条 件およびこれらの組み合わせが検討されてきた。

しかしながら、合金添加によつて鋼の特性を改 善する従来技術によるときは、製造コストを高く するほか、製造プロセスの簡略化を阻害し製造日 数を長くし、この面からも製造コストを上昇させ

(発明が解決しようとする課題)

本発明は、従来技術における問題点を解決すべ く、高純、高清浄鋼精錬技術を活用して、耐食性 に優れかつ加工性に優れた安価なフェライト系ス おける溶鋼温度℃)-(溶鋼の凝固温度℃) 10 テンレス鋼およびその製造方法を提供することを 目的としてなされた。

(課題を解決するための手段)

本発明の要旨とするところは下記のとおりであ る。

- Mn: 2%以下、Cr: 14~26%、N: 0.005~ 0.2%、P:0.02%以下、S:0.001%未満、 A1:0.02~0.2%、O:0.003%未満、さらに Mo: 3%以下、Cu: 2%以下、Ni: 2%以下 の1種または2種以上を含み、残部実質的に Feからなり、酸化物系介在物と硫化物系介在 物の和よりなる清浄度が0.02以下であることを 特徴とする耐隙間腐食性、耐銹性のすぐれた高 純、高清浄ステンレス鋼。
- 存在する水、水道水若しくは温水等の比較的緩や 25 (2) 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr:14~26%、N:0.005~ 0.2%、P:0.02%以下、S:0.001%未満、 AI:0.02~0.2%、O:0.003%未満、さらに Mo: 3%以下、Cu: 2%以下、Ni: 2%以下 の1種または2種以上、Ti:0.6%以下、V: 0.02~0.5%、Nb:0.02~0.2%の1種または2 種以上を含み、残部実質的にFeからなり、酸 化物系介在物と硫化物系介在物の和よりなる滑 浄度が0.02以下であることを特徴とする耐隙間 腐食性、耐銹性のすぐれた高純、高清浄ステン レス鋼。
 - (3) 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr: 14~26%、N: 0.005~ 0.2%、P:0.02%以下、S:0.001%未満、 AI:0.02~0.2%、O:0.003%未満、さらに Mo: 3%以下、Cu: 2%以下、Ni: 2%以下 の1種または2種以上、およびB:0.01%以下 を含み、残部実質的にFeからなり、酸化物系 介在物と硫化物系介在物の和よりなる清浄度が

0.02以下であることを特徴とする耐隙間腐食 性、耐銹性のすぐれた高純、高清浄ステンレス 鑆。

(4) 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr: 14~26%、N: 0.005~ 5 は本発明の特徴である。 0.2%、P:0.02%以下、S:0.001%未満、 A1:0.02~0.2%、O:0.003%未満、さらに Mo: 3%以下、Cu: 2%以下、Ni: 2%以下 の1種または2種以上、Ti:0.6%以下、V: 0.02~0.5%、Nb: 0.02~0.2%の1種または2 10 Nの低減も既に工業的規模で実現されている。 種以上、およびB:0.01%以下を含み、残部実 質的にFeからなり、酸化物系介在物と硫化物 系介在物の和よりなる清浄度が0.02以下である ことを特徴とする耐隙間腐食性、耐銹性のすぐ れた高純、高清浄ステンレス鋼。

(5) 重量%でC:0.01~0.1%、Si:3%以下、 Mn: 2%以下、Cr: 14~26%、N: 0.005~ 0.2%、P:0.02%以下、S:0.001%未満、 A1:0.02~0.2%、O:0.003%未満、さらに の1種または2種以上を含み、残部実質的に Feからなり、酸化物系介在物と硫化物系介在 物の和よりなる清浄度が0.02以下である溶鋼 を、AT≦45℃の鋳造温度条件下で連続鋳造 し、得られた鋳片を1230℃を超えない温度に加 25 い鋼を得ることができる。 熱あるいは保熱した後、熱間圧延することを特 徴とする耐隙間腐食性、耐銹性のすぐれた高 純、高清浄ステンレス鋼の製造方法。

ここでΔT=(連続鋳造時のタンデイツシユに おける溶鋼温度℃)-(溶鋼の凝固温度℃) 30 以下に、本発明を詳細に説明する。

本発明者等は、鋼の精錬技術、就中S、P、O 等の含有量を極めて低くし得る高純化精錬技術に 注目し、合金添加量を極力少なくして、フェライ 製造プロセスを簡略化することを指向して多くの 研究を行つてきた。

その結果、フェライト系ステンレス鋼中のS、 P、Oを低減しさらに、酸化物系介在物および硫 化精錬技術が、上配の狙いに合致することを見出 し、本発明を完成させたものである。

フエライト系の高級ステンレス鋼を得るため に、不純物であるC、Nを低減する技術が進んで 6

おり、C+N量で0.01%程度のステンレス鋼が実 用化されているけれども、本発明者等は、C、N の役割を十分解明した上で、これらを有効に活用 する方向で成分系を検討したものであり、この点

高純化精錬技術は、CaC2+CaF2系のフラック ス等の溶鋼中への吹き込みにより、ステンレス鋼 でもS≦10ppm、P≦200ppmとすることを低コ スト下に可能ならしめる技術であり、さらにCや

本発明者等は、これらの高純化精錬技術に着目 しかつ、製造プロセスの検討を加えたわけである が、17%Cr系のフエライト系ステンレス鋼の耐 食性特に発銹性を電気化学的に検討した結果、 15 CL による不働態破壊に対する抵抗を強くするの に、Pを低減することが極めて有効であることを 見出した。一方、Sを低減すると、17%Cr系フ エライト系ステンレス鋼の不働態化特性を大幅に 改善し、さらに前記Pの低減化との相乗効果によ Mo: 3%以下、Cu: 2%以下、Ni: 2%以下 20 つて、Cl-による不働態破壊に対する抵抗を大幅 に向上させ得ることがわかつた。

> 低S鋼ではさらに、溶鋼をAI或いはTi等によ つて脱酸することにより、硫化物系介在物や酸化 物系介在物の浮上を容易にし、極めて清浄度の高

> こうして得られたフエライト系ステンレス鋼 は、耐食性全般、耐隙間腐食性、さらには曲げ性 等が改善されたものであることが明らかになつ た。

叙上の技術的知見を得た実験事実を、以下に述

本発明者等は、17%Cr系フエライト系ステン レス鋼を中心に、真空溶解炉で低O、低P、低S に注目した合金を溶製するとともに、熱間圧延に ト系ステンレス鋼の耐食性、加工性を向上させ、 35 おける材料加熱温度、熱間圧条件、熱延板焼鈍条 件、冷間圧延条件、最終焼鈍条件等を加味して、 製品の耐食性、加工性について検討した。製品板 厚は、0.7mである。

耐食性に関しては、得られたこれらの製品につ 化物系介在物を極めて低い水準に低減できる高純 40 いて、電気化学的測定はもとより各種浸漬試験を 行つた。その結果、耐食性に対しては、プロセス 条件の影響は顕著ではなく、合金組成の影響が大 きいことが明らかになつた。特に、第1図に示す ように、Pを200ppm以下、Sを10ppm未満とす

ることによつて、この種の合金の不働態化特性な らびにQ1-による不働態破壊に対する抵抗を大幅 に向上させ得ることを見出した。

第1図において

曲線2の鋼中、P:30ppm、S:9ppm 曲線3の鋼中、P:50ppm、S:60ppm 曲線4の鋼中、P:50ppm、S:140ppm

第1図b:曲線1の鋼中、P:50ppm、S: 10 8ppm

曲線2の鋼中、P:100ppm、S:8ppm 曲線3の鋼中、P:150ppm、S:8ppm 曲線4の鋼中、P:250ppm、S:8ppm 曲線5の鋼中、P:340ppm、S:8ppm

であり、Sが10ppm以上の第1図a、曲線3, 4、Pが200ppm以上の第1図b曲線4,5の結 果からQ~による不働態破壊電位Vが負側になつ ており、不働態特性が劣ることが分る。これらの すように、S:10ppm未満、P:200ppm以下で 顕著な効果を示す。

第2図は、17%Cr系ステンレス鋼板間に発生 する隙間腐食試験における、低S化、低P化の効 10ppm Cu²⁺、80℃×14日、空気吹き込みで行 い、隙間内の深い所 5 箇所の平均深さを隙間腐食 最大深さ (xxx) としてプロットしたものである。 P:300ppmでは、Sが10ppm未満でも隙間腐食 が深いことがわかる。

Sを低減するにつれて、鋼中の非金属介在物は 顕著に減少し、S:10ppmを境にして熱間圧延鋼 材中にA系の介在物(硫化物系、硫化物+酸化物 系介在物)は認められなくなり、Alおよび/ま 系、C系介在物(何れも酸化物系介在物)も浮上 し易くなるとともに鋼中のOは低くなり、非金属 介在物の極めて少ない清浄度0.02以下の鋼材とな る。清浄度の測定は、JISに依つた。この挙動に 対応して、3.5%NaCl溶液中での孔食電位も大幅 40 ての要請に関しては、曲げ性さらには冷間加工後 に貴となる。

叙上の現象を図示したのが第3図であり、17% Cr系ステンレス鋼の低S化による介在物清浄度 (第3図の下図) と孔食電位 (第3図の上図) の 変化を示している。

第3図の下図は、17%Cr系ステンレス鋼の50 図鋼塊のSと介在物清浄度の関係を示しており、 A系介在物(●印)とB、C系介在物(口印)の 第1図a:曲線1の鋼中、P:50ppm、S: 5 合成清浄度を点線で表している。また、第3図の 上図は、17%Cr系ステンレス鋼製品板を#600研 摩面で測定した孔食転位VとSの関係を示してお り、S:10ppm未満で大幅に貴になつていること がわかる。

8

第4図に、17%Cr系ステンレス孔の発銹抵抗 に対するS、PおよびOの影響を示す。Oが 30ppm未満であると、P:200ppm以下、S: 10ppm未満の条件下で、清浄度を0.02以下にした 場合に発銹ランクが急激に上昇することがわか 15 Jo

即ち、かかる高純、高清浄度フエライト系ステ ・ンレス鋼は、活性溶解挙動や耐孔食性、耐隙間腐 食性等の基本的な耐食性を向上させ、大気中での 発銹をシミユレートした改良塩水テスト結果を良 結果は、隙間腐食試験に顕著に現れ、第2図に示 20 好ならしめる。なお、第4図は、0.5%NaCl+0.2 %H₂O₂の30℃溶液による改良塩水テスト結果を 示すものである。

耐食性の大幅な向上は、上述の高純、高清浄度 化と、各種耐食性に有効な元素の少量添加で一層 果をみたもので、試験条件として、600ppm Cl^- 、 25 確実なものとなる。本発明者等は各種の用途を想 定して、Cr、Ni、Mo、Cu、Ti、Al、Nb、Si、 V等の元素の添加効果を検討し、さらに、C、N は添加元素として有効活用の方向で検討した。

中性に近い腐食環境下での加速テストとして、 30 4%NaCl+0.2%H₂O₂、60℃での浸漬試験を実 施した。これらの結果から、Cr量(第5図)、 Mo、Cu、Ni、V、Ti等の添加効果(第6図) が、低S、低P、低Oの合金で一層顕著に現れる ことが判明した。こうして低P、低S、低Oの高 たはTi等による脱酸と組合せることにより、B 35 純化鋼は、それ自体で耐食性に効果を示すが、 Mo、Cu、Ni等の合金元素添加の効果を一層顕著 なものとし、これら高価な合金元素の添加量を低 減し得ることが始めて明らかとなつた。

> フエライト系ステンレス鋼製品の加工性につい の曲げ性ならびに用途によっては深紋り性および 紋り時のリッジング特性について検討した。先 ず、曲げ性については、プロセス条件の影響は小 さく、合金組成の影響が大きい。特に、製品板に

30%程度の冷間加工を加えた後、圧延方向に直角 な方向の密着曲げをする加工C曲げテストにおい て、合金によつて割れが発生した。明らかに、 S: 0.001% (10ppm) 未満、O: 0.003% 下の合金には、圧延方向に直角な方向の密着曲げ をする加工C曲げテストにおいて、割れは全く発 生しなかつた。

フエライト系ステンレス鋼製品の深紋り特性 板から、それぞれ圧延方向、圧延方向に直角な方 向、圧延方向に45°方向の規定の引張試験片を採 取し、r値を測定しr値を求めた。

また、圧延方向の規定の引張試験片に20%の引 張歪を与えた後、発生したリッジングの高さを粗 15 とができる。 度計によつて測定した。

フエライト系ステンレス鋼板におけるリツジン グ、「値に対して、合金組成はもとより、熱間圧 延条件やその後の熱処理の影響が大きいことは、 熱延板焼鈍の影響は大きく、850~1050℃の温度 域へストリップを急速加熱する連続焼鈍法による 場合、従来のベル型焼鈍炉による場合、熱延板焼 鈍を省略した場合について、リツジング、ェ値に 対する影響を検討した。

その結果、基本的には従来の知見と同じ結果が 得られ、C、Nは適量の活用が有効であることが 明らかとなつた。かくして、高純、高清浄度綱に おいても、リッジング、「値に対して、合成組 成、熱間圧延条件、熱延板焼鈍が影響することが 30 判明した。

深紋り特性に優れた製品を得るには、AI、Ti を添加することや熱延板焼鈍の効果を活用すべき である。

時の細粒化、熱間圧延における材料の加熱温度の 適正化が、製品のリッジング、工値にとつて重要 な管理ポイントであることが判明した。これは、 高純度合金においては、粒が成長し易く租大化す 鋼においては、鋳造組織を微細化するために、鋳 造時の溶鋼の過熱度ΔT(℃) (ΔT=タンデイツ シュにおける溶鋼温度-溶鋼の凝固温度(計算 値)) を小さくする必要がある。具体的には、 **ΔT(℃)≤45℃**が必要である。一方、熱間圧延に おける材料加熱温度は、粒の粗大化防止の観点か ら、1230℃以下とする必要がある。

上に述べたように、特に、製品特性にとつて有 (30ppm) 未満でかつ、P:0.02% (200ppm) 以 5 客な不純物であるPとSを、CaC₄系のフラック スによつて従来水準よりも大幅に低減し得る進歩 した精錬技術をベースに、さらに口を低減し高 純、高清浄度化することによつて製品の不働態化 能力を向上せしめるとともに優れた耐食性を有せ は、「値を求めてこの値によつて評価した。製品 10 しめることができた。また、高純、高清浄度化す ることによって、Mo、Ca、Ni等の元素の添加効 果を顕著なものとすることができ、添加量を少な くすることができる。さらに、低S化、低O化に よつて、厳しい曲げ加工に十分耐える鋼とするこ

低P、低S、低O化された高純、高清浄度フェ ライト系ステンレス鋼においては、薄板製品の加 工性を向上させるためのAI、Tiの添加効果が顕 著であり、C、Nの適量添加の効果と併せ、少量 よく知られている。高清浄度鋼に対しても、特に 20 の添加で大幅な特性改善効果をもたらすことが明 らかとなつた。

> 次に、本発明の高純、高清浄フエライト系ステ ンレス鋼の成分限定理由を説明する。

- C:Cは、低P、低S、低O化された鋼において 25 は耐食性、加工性の向上に有効であり、この観 点から0.01~0.1%の範囲で添加する。0.01%未 満では製品の加工性が劣化し、0.1%を超えて 添加すると、製品の耐食性を損なう。
 - Si:Siは、低P、低S、低O化された鋼において は耐食性を若干改善し、加工性には影響しな い。3%を超えて添加すると、鋼を硬化させ る。従つて、3%以下とした。
 - Mn: Mnは、鋼の耐食性にとつて低い含有量が 望ましく、この観点から20%以下とした。
- また、高純、高清浄度鋼においては、特に鋳造 35 Cr:Crは、フエライト系ステンレス鋼に不可欠 の元素であり、14~26%の添加によつて、耐食 性を大幅に向上させる。14%未満では添加効果 が不十分であり、26%を超えて添加すると、加 工性を劣化させる。
- る傾向が強いためである。即ち、高純、高清浄度 40 N:Nは、高純、高清浄度フエライト系ステンレ ス鋼の耐食性を向上させる。しかし、鋼の加工 性の観点からは0.2%以下の添加量であること が望ましい。従つて、0.005~0.2%とした。
 - P:Pは、フエライト系ステンレス鋼の不働態特

性、特にCITによる不働態破壊に対する抵抗特 性を害するから、その含有量は可及的に低いほ ど良い。この観点から、0.02% (200ppm) 以 下でなければならない。

S:Sは、フエライト系ステンレス鋼の不働態特 5 性を害するから、その含有量は可及的に低いほ と好ましい。この観点から、0.001%未満でな ければならない。

AI: AIは、低P、低S、低O化されたフェライ ト系ステンレス鋼において、0.02~0.2%の含 10 有量で製品の工館を大幅に改善しかつ、鋼の滑 **浄度を良好ならしめる。0.02%に満たない添加** 量では添加効果が不十分であり、0.2%を超え て添加すると、製品のリツジング性を劣化させ

O:Oは、S:0.001(10ppm) 未満の鍋において は酸化物系介在物を形成し、製品の耐銹性、耐 孔食性を劣化させるから、その含有量は可及的 に低いことが望ましい。従つて、0.003% おいては、硫化物がなくなり酸化物の浮上性が 良好となる。

Mo、Cu、Ni、Mo、Cu、Niは、低P、低 S、低口化された高純、高清浄度フエライト系 の耐食性を顕著に改善する。しかしながら、 Mo、Cu、Niはそれぞれ3%、2%、2%で効 果が飽和し、これらの値を超える量を添加する とコスト面で不利となる。

素であつて、低P、低S、低O化された高純、 高清浄度フェライト系ステンレス鋼において、 それぞれ0.6%以下、0.02%~0.2%、0.02%~ 0.5%の添加により微細な炭窒化物を析出せし め、それによつて鋼の耐食性を向上させる。わ 35 けてもTiは、加工性をも改善しさらに、清浄 度を向上させる。

B:Bは、低P、低S、低O化された高純、高清 **浄度フェライト系ステンレス鋼において、少量** 点から0.01%以下の範囲で添加する。0.01%を 超えて添加すると、鋼の耐食性を劣化させる。

鋼の清浄度について:硫化物系或は酸化物系の非 金属介在物は、製品の用途において孔食の起点

となりまた、発銹を加速する。さらに、曲げ性 を劣化させるから、清浄度は可及的に低い(ク リーンにする)ことが望ましい。低S化したフ エライト系ステンレス鋼を溶製した後、AIや Tiによる脱酸を行い、酸化物が浮上する時間 をとることによつて、熱延板での清浄度を0.02 以下とする必要がある。

鋳造時の溶鋼の過熱度∆T(℃):溶鋼の鋳造温度 は、低S、低P、低O化した鋼においては、 **ΔT(℃)≤45℃とする必要がある。ΔT(℃) が** 45℃を超えると、粒が粗大化し易く、所期の加 工性をもつ製品が得られない。

(実施例)

高純ステンレス合金の溶製は、溶銑予備処理さ 15 れた溶銑を使用し、Fe-Cr合金を添加して150T 転炉で溶製し、Cレベルが0.2%程度で出鋼し、 取鍋にてCaCa系のフラツクスを吹込み、Pを 0.015%未満、Sを0.001%未満とした後、VOD炉 で仕上脱炭した。その後更に脱硫フラツクスで脱 (30ppm) 未満とした。S:0.001%未満の鋼に 20 硫した後、AlあるいはTiを吹込み脱酸し、介在 物を浮上させた後、連続鋳造して200mm厚CCスラ ブとし、一部はインゴットとした。連続鋳造の場 合、鋳造条件はAT≤45℃を満たすように注入し スラブとした。インゴットは分塊圧延しスラブと ステンレス鋼において、少量の添加によつて鋼 25 した。このスラブの熱延加熱温度は1100℃とし、 熱延条件は仕上圧延開始温度を900℃以下に制御 する低温圧延とし、3㎜厚のホツトコイルとし た。その後連続焼鈍で1000℃に急速加熱すること からなる熱延板焼鈍を施し、連続酸洗した。冷間 Ti、Nb、V: Ti、Nb、Vは、炭窒化物形成元 30 圧延はすべて 1 回冷延で0.7 mmまで圧延し、850℃ の最終焼鈍をし、酸洗し、製品板を得た。比較材 としては通常条件で製造されているステンレス薄 板を使用した。

得られた製品の結果は表1の通りである。

本発明鋼はCaC2系の高純化処理により、すべ てS:0.001%未満、P:0.02%以下、O:0.003 %未満を満たしている。更に熱延板で測定した介 在物清浄度もきわめてすぐれている。これらの製 品の特性試験結果は表2の通りで耐食特性、加工 の添加によって鋼の加工性を改善する。この観 40 性を中心に、すぐれた使用性能が得られ、本発明 の効果が確認された。

> 以上の如く、本発明鋼は基本特性である耐食性 を主とした使用特性に対する合金の高純化、高清 **浄度化の影響を明らかにし、更に有効な少量の添**

加元素と組合せた結果得られたものであり、更に その製造方法については連続鋳造に際しての鋳造 条件及び鋳片の加熱温度条件を規制することを要 件とするものであるが、本発明以外の製造条件、 例えば連続鋳造と熱間圧延を直結するCC-DRプ ロセスあるいはCCーホットチャージプロセスに より製造されても、本発明鋼の基本特性は変らず 所期の特性を発揮しうることは明らかである。又 光輝焼鈍等の製品においてもすぐれた特性を示 す。

表1. 本発明鋼の実施例と従来鋼の化学成分、清浄度(熱延板)

区分		化学成分(wt%)											
		C	Si	Mn	P	S	Сг	N	AI	0	Mo	Cr	
本発明	0	0.066	0.59	0.06	0.011	0,0005	15, 1	0,013	0.035	0.0019	_	_	
鋼	2	0.072	1.88	0,62	0.014	0.0007	16, 9	0,009	0.031	0.0022	-	-	
	3	0.017	0.16	0.13	0.017	0.0007	19,3	0.011	0,029	0.0016	l –		
	4	0.056	0.22	0.17	0.010	0.0009	16,7	0.026	0.096	0.0018	0.91	_	
	⑤	0.055	0.26	0,22	0.010	0,0004	24,9	0,14	0.18	0,0010	1,33	0.91	
	6	0.010	0.11	0.08	0,009	0.0009	18.9	0.009	0.062	0,0019	2.1	0.3	
	Ø	0,044	0.22	0.08	0.016	0,0008	17.2	0.018	0.030	0,0020	-	-	
	8	0.050	0.32	0.11	0.018	0.0008	17.4	0.022	0.022	0,0026	-	_	
	9	0.036	0.41	0, 20	0.011	0.0003	18.2	0,036	0,026	0.0019	_	1.3	
	®	0.010	0.11	0.08	0.009	0,0009	18.9	0.009	0.062	0.0019	2.1	0.3	
従来鋼	1	0.033	0.69	0.33	0.022	0.0053	16.4	0.022	0.061	0,0042	_	-	
	2	0.009	0.16	0.07	0,026	0,0081	18.9	0.009	0.032	0.0055	_	_	
	3	0.058	0.37	0,22	0.027	0.0044	16, 1	0.019	0,031	0.0048	0.99	_	

区分			化	学成分(■	清浄度(JIS 60×400)				
		Ni	Ti	V	Мъ	В	硫化物	酸化物	Total
本発明	1	0.11	0.21	0.022	_	_	0	0.016	0.016
鋼	2	0.44	-	_	0, 15	_	0	0.015	0.015
	3	0.10	0.42		-	0.003	0	0.011	0.011
	4		-	0.088	_	_	0	0.004	0.004
	⑤	-	0.02	0,26	-	_	0	0,008	0.008
	6	_	_	- ·	_	0.002	0	0.014	0.014
	⑦	1.4	-	_	-	_	0	0.014	0.014
	8	0.11	_	-	0.06	_	0	0.016	0.016
	9	- '	-	0.35	-	-	0	0.018	0.018
	®	-	-	_	0. 10	0.002	0	0.014	0.014
従来鋼	1	_	_	-	_	_	0,025	0.015	0.040
	2	-	_	_	_	-	0.052	0,030	0.082
	3						0,033	0.026	0.059

表 2. 本発明鋼薄板及び従来鋼の特性試験結果

区分		耐食性の評価	加工曲げ性			r值	リッジング特性
		4%NaCl +0,2%H2O260°C× 24hrテストg/nthr	30%冷間圧延 後C方向密着 曲げ			圧延方向、90°、45° 方向の平均r値	圧延方向20%引張 変形後のリッジン グ平均高さ(μ)
本発明鋼	①	0.22	0(1	別れな	(L)	1, 40	9
	2	0,29	0(")	1. 18	7
	3	0,20	0(")	1.66	13
	④	0, 17	0(")	1,20	15
	⑤	0,0	0(")	1, 10	14
	6	0.06	0(")	1.0	13
	0	0.22	0(")	1,08	14
	8	0.27	0(")	1, 12	15
	9	0.09	00	")	1,22	12
	6	0.06	0(")	1.0	13
従来鋼	1	0.95	0(//)	0, 90	18
	2	0.55	△ (8	数小割	れ)	0.81	22
	3	0.54	Δ(")	0.96	26

図面の簡単な説明

第1図a, bは17%Cr系ステンレス鋼のCIで 含む液(3 %NaCl+5 %H₂SO₄、30℃、Ar脱 気)中での陽分極曲線に対するP、S量の影響を 発生する隙間腐食試験に対する低S化、低P化の 効果を示す図、第3図は17%Cr系ステンレス鋼 の低S化による介在物清浄度及び孔食電位の変化 を示す図、第4図は17%Cr系ステンレス鋼の発 銹抵抗に対するS、P、Oの影響を示す図、第5 30

図はFe-Cr合金の4%NaCI+0.2%H₂O₂、60℃ 中での耐食性に対するCr量及び高純合金の効果 を示す図、第6図は17%Cr系ステンレス鋼 (C0.03%、N0.01%) での各種添加元素の効果に 示す図、第2図は17%Cr系ステンレス鋼板間に 25 対する実用合金と高純合金の腐食速度 (4% NaCl+0.2%H₂O₂、60℃中) の差を示す図であ る。第8図において、 実用合金 (P0.03%、 S0.005%、O0.005%) 画画 高純合金 (P0.014 % S0.0007% O0.0018%)

第 4 図

第 5 図

POWERED BY Dialog

Basic Patent (Number, Kind, Date): JP 59166655 A2 840920

PATENT FAMILY:

Japan (JP)

Patent (Number, Kind, Date): JP 59166655 A2 840920

HIGH PURITY AND HIGH CLEANLINESS STAINLESS STEEL EXCELLENT IN GAP CORROSION RESISTANCE AND ANTI-RUST PROPERTY AND PREPARATION THEREOF (English)

Patent Assignee: NIPPON STEEL CORP Author (Inventor): UEDA MASANORI

Priority (Number, Kind, Date): JP 8337884 A 830308 Applic (Number, Kind, Date): JP 8337884 A 830308 IPC: * C22C-038/34; B22D-011/10; C22C-038/54

CA Abstract No: * 102(04)029793W Derwent WPI Acc No: * C 84-272472 JAPIO Reference No: * 090017C000126

Language of Document: Japanese

Patent (Number, Kind, Date): JP 90018379 B4 900425

Patent Assignee: NIPPON STEEL CORP Author (Inventor): UEDA MASANORI

Priority (Number, Kind, Date): JP 8337884 A 830308 Applic (Number, Kind, Date): JP 8337884 A 830308

IPC: * C22C-038/00; B22D-011/10; C21D-009/46; C22C-038/18

Language of Document: Japanese

INPADOC/Family and Legal Status

© 2006 European Patent Office. All rights reserved.

Dialog® File Number 345 Accession Number 9577978