UNIVERSIDADE DE UBERABA – UNIUBE – CAMPUS VIA CENTRO CURSOS DE ENGENHARIA ELÉTRICA E ENGENHARIA DE COMPUTAÇÃO DISCIPLINA: SISTEMAS DIGITAIS – PROF. JOÃO PAULO SENO

AULAS PRÁTICAS 9 e 10 – Contadores Assíncronos

I. Objetivo da prática:

Implementar um contador assíncrono de 4 bits, com display 7 segmentos, utilizando flip-flops J-K. Explorar condições de reset.

II. Apresentação teórica:

No início da aula.

III. Material e equipamentos necessários (para cada bancada):

1 protoboard (pequeno);

1 fonte DC ajustável, ou fixa de 5V, 1,5º (para alimentação dos Cis);

2 CI 7473 (2X J-K Flip-flop);

1 CI 7447 (Decodificador para display de 7 segmentos);

1 display de 7 segmentos;

7 resistores de 330 Ω ;

1 resistor de 1 k Ω ;

1 Osciloscópio de dois canais;

2 ponteiras para osciloscópio (atenuação 1X – 10X).

1 gerador de função analógico, com cabos de força e sinal;

2 cabos com garra jacaré para ligar a fonte de alimentação à protoboard;

Cabinhos diversos para as ligações na protoboard;

1 multímetro digital.

IV. Roteiro

- 1. Montar o experimento em duas etapas: primeiro fazer o contador funcionar. Depois implementar o decodificador BCD para apresentar a contagem.
- 2. Usar o gerador de funções para gerar um sinal de clock de 1 Hz. Ajuste o gerador de funções, juntamente com o osciloscópio, uma forma de onda retangular, com amplitude de 0V e 5 V e frequência em 1KHz. AJUSTAR OFFSET. Deve-se verificar o sinal com o canal 1 osciloscópio. NÃO LIGAR ANTES DE CONFERIR SE AS TENSÕES E LIGAÇÕES ESTÃO CORRETAS.
- 3. Montar o circuito abaixo:

- 4. Utilizando o osciloscópio de dois canais, verifique as saídas Q₀, Q₁, Q₂ e Q₃. Mantenha o sinal de clock no canal 1 para comparar o resultado obtido com o diagrama de tempo apresentado na figura anterior.
- 5. Após verificar o funcionamento, passar para a próxima fase do experimento, conectando as saídas a um decodificador e display, conforme o circuito abaixo. Caso o display LED 7 segmentos for do tipo Catodo-Comum, usar portas inversoras em série, entre a saída do CI 7447 e os resistores de 330 Ω , para inverter a lógica de funcionamento. Siga o que JÁ foi feito em aula prática anterior.

V. Relatório

Entregar o relatório, com o passo a passo das montagens e resultados obtidos até a próxima aula.

Anexos - Pinagem dos Cls

Order Number DM7473N		Package Number			er	Package Description								
		N14A				14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide								
Connec	ioi	n Di	ag	ram				Functi	on Tab	le				
J.1	ōt	O1 GND K2				2 02 02		Inputs				Outputs		
14	١,	3	12	11	10	9	8	CLR	CLK	J	K	Q	Q	
	+					1	\neg	12 L	X	X	X	1	Н	
	rt				_	ካ		н	JTL	L	L	Q ₀	\overline{Q}_{D}	
11	-	\neg			1	54	-	н	JL	H	L	Н	L	

- H HIGH Logic Level

Н H

- L = LOW Logic Level X = Either LOW or HIGH Logic Level
- Positive pulse data, the J and K inputs must be held constant while the clock is HIGH. Data is transferred to the outputs on the failing edge of the clock pulse.

Toggle

Q₀ - The output logic level before the indicated input conditions were established.

Toggle - Each output changes to the complement of its previous level on each HIGH level clock pulse.

V_{CC}

CLK 2 CLR 2

CLK 1 CLR 1

Cátodo Comun

