The Six Core Elements of Business Process Management

Michael Rosemann and Jan vom Brocke

Abstract The previous chapters gave an insightful introduction into the various facets of Business Process Management. We now share a rich understanding of the essential ideas behind designing, managing and changing processes for a variety of organizational purposes. We have also learned about the streams of research and development that have influenced contemporary BPM. As a result of more than two decades of inter-disciplinary research and a plethora of diverse BPM initiatives in corporations of all sizes and across all industries, BPM has become a holistic management discipline. Consequently, it requires that a number of complementary elements needs to be addressed for its successful und sustainable deployment. This chapter introduces a consolidating framework that provides structure and decomposes BPM into six essential elements. Drawing from research in the field of maturity models and its application in a number of organizations all over the globe, we suggest the following six core elements of BPM: strategic alignment, governance, methods, information technology, people, and culture. These six elements serve as the core structure for this BPM Handbook.

1 Why Looking for BPM Core Elements?

Despite the fact that BPM has disappeared as the top issue for CIOs (Gartner 2010), the interest in process-aware management and supporting methods and technologies remains very high (Gartner 2013). BPM is nowadays seen as being beyond the stage of inflated hype and the related expectations have become more realistic. Overall there is a much more matured understanding of how to approach BPM as a program of work or on a project-by-project base (vom Brocke et al. 2014). Nevertheless, new expectations are continuously being fuelled with emerging BPM

Information Systems School, Queensland University of Technology, Brisbane, QLD, Australia e-mail: m.rosemann@qut.edu.au

M. Rosemann (⋈)

solutions such as process mining, social BPM or cloud BPM. In this regard, BPM has increasingly been recognized a driver for innovation in a digital world (vom Brocke and Schmiedel 2014).

This context demands a robust frame of reference that helps decomposing the complexity of a holistic approach such as Business Process Management and allows accommodating new BPM capabilities. A framework highlighting essential building blocks of BPM can particularly serve the following purposes:

- Project and Program Management: How can all relevant issues within a BPM approach be safeguarded? When implementing a BPM initiative, either as a project or as a program, is it essential to individually adjust the scope and have different BPM flavors in different areas of the organization? What competencies are relevant? What approach fits best with the culture and strategic imperatives of the organization? How can BPM be best tailored to the specific corporate context? Michael Hammer has pointed in his previous chapter to the significance of appropriately motivated and skilled employees for the overall success of BPM. What might be further BPM elements of significance? In order to find answers to these questions, a framework articulating the core elements of BPM provides invaluable advice.
- Vendor Management: How can service and product offerings in the field of BPM be evaluated in terms of their overall contribution to successful BPM? What portfolio of solutions is required to address the key issues of BPM, and to what extent do these solutions need to be sourced from outside the organization? There is, for example, a large list of providers of process-aware information systems, process change experts, BPM training providers, and a variety of BPM consulting services. How can it be guaranteed that these offerings cover the required capabilities? In fact, the vast number of BPM offerings does not meet the requirements as distilled in this Handbook; see for example, Hammer (2014), Davenport (2014), Harmon (2014), and Rummler and Ramias (2014). It is also for the purpose of BPM make-or-buy decisions and the overall management of vendors and advisors that a framework structuring core elements of BPM is highly needed.
- Complexity Management: How can the complexity that results from the holistic and comprehensive nature of BPM be decomposed so that it becomes manageable? How can a number of coexisting BPM initiatives within one organization be synchronized? An overarching picture of BPM is needed in order to provide orientation for these initiatives. Following a "divide-and-conquer" approach, a shared understanding of the core elements can help to focus on special factors of BPM. For each element, a specific analysis could be carried out involving experts from the various fields. Such an assessment should be conducted by experts with the required technical, business and socio-cultural skills and knowledge.
- Standards Management: What elements of BPM need to be standardized across the organization? What BPM elements need to be mandated for every BPM initiative? What BPM elements can be configured individually within each

initiative? A comprehensive framework allows an element-by-element decision for the degrees of standardization that are required. For example, it might be decided that a company-wide process model repository will be "enforced" on all BPM initiatives, while performance management and cultural change will be decentralized activities.

• *Strategy Management*: What is the BPM strategy of the organization? How does this strategy materialize in a BPM roadmap? How will the naturally limited attention of all involved stakeholders be distributed across the various BPM elements? How do we measure progression in a BPM initiative ("BPM audit")?

A BPM framework that clearly outlines the different elements of BPM has the potential to become an essential tool for such strategy and road-mapping challenges as it facilitates the task of allocating priorities and timeframes to the progression of the various BPM elements.

Based on this demand for a BPM framework that can be used for project and program management, vendor management, complexity management, standards management, and strategy management, we propose a framework that can guide BPM decision makers in all of these challenges. In the following section, we outline how we identified these elements. We then introduce the six core elements by first giving an overview and second presenting each element and its subcomponents in more detail.

2 How to Identify Core Elements of BPM?

The framework to be identified has to comprehensively structure those elements of BPM that need to be addressed when following a holistic understanding of BPM, i. e., BPM as an organizational capability and not just as the execution of the tasks along an individual process lifecycle (identify, model, analyze, improve, implement, execute, monitor, and change). This requires an organization-wide perspective and the identification of the core capability areas that are relevant for successful BPM. We, thus, base our work on BPM maturity models that have been subject to former research (Roeglinger et al. 2012; van Looy 2014).

Recently, a number of models to decompose and measure the maturity of Business Process Management have been proposed as shown in Fig. 1.

The basis for the greater part of these maturity models has been the *Capability Maturity Model* (CMM) developed by the Software Engineering Institute at Carnegie Mellon University, Pittsburgh, PA. This model was originally developed in order to assess the maturity of software development processes and is based on the concept of immature and mature software organizations. The basis for applying the model is confirmed by Paulk et al. (1993) who stated that improved maturity results "in an increase in the process capability of the organization". CMM introduces the concept of five maturity levels defined by special requirements that are cumulative.

Model	Subject	Source
Process Condition Model	Effectiveness and efficiency measurement to rate a process' condition	DeToro and McCabe (1997)
Strategic Alignment Maturity Model	Maturity of strategic alignment	Luftman (2003)
BPR Maturity Model	Business Process Re- engineering Programmes	Maull et al. (2003)
Harmon's BPM Maturity Model	BPM maturity model based on the CMM	Harmon (2003, 2004)
Rummler-Brache Group's Process Maturity Model	Success factors for managing key business processes	Rummler-Brache (2004)
OMG's BPM Maturity Model	Practices applied to the management of discrete processes	Curtis et al., (2004); OMG (2008)
Rosemann and de Bruin's BPM Maturity Model	Maturity of Business Process Management capabilities	Rosemann; de Bruin (2005); de Bruin (2009)
Capability Maturity Model Integration (CMMI)	Maturity of software development processes	SEI (2006a, 2006b)
Hammer's BPM Maturity Model (Process Audit)	Defining process and enterprise competencies	Hammer (2007)

Fig. 1 Selected maturity models in BPM

Among others, Harmon (2004) developed a BPM maturity model based on the CMM (Harmon 2003). In a similar way, Fisher (2004) combines five "levels of change" with five states of maturity. Smith and Fingar (2004) argue that a CMM-based maturity model, which postulates well-organized and repeatable processes, cannot capture the need for business process innovation. Further, BPM maturity models have been designed by the Business Process Management Group (BPMG) and the TeraQuest/Borland Software (Curtis et al. 2004) that is now supported by the OMG (2008).

Curtis and Alden (2006) take a prescriptive approach to process management. This model combines a number of process areas by either applying a staged or a continuous approach. Progress through the stages is dependent on all requirements of preceding and completed stages. Some discretion is allowed at lower stages using the continuous approach but it largely evolves around the order in which the process areas are addressed. Hammer (2007), likewise, adopts a prescriptive approach (the "Process Audit") defining a number of process and enterprise competencies. Hammer also demands that all aspects of a stage are to be completed before progressing to higher stages of maturity.

One shortcoming of the universalistic approaches adopted by Curtis and Alden (2006) and Hammer (2007) is that they seem to be more appropriate for relatively narrow domains and do not capture various aspects of an organization sufficiently (Sabherwal et al. 2001). A further critique of these BPM maturity models has been the simplifying focus, the limited reliability in the assessment, and the lack of actual (and documented) applications of these models leading to limited empirical validations.

A proposal to divide organizations into groups with regard to their grade and progression of BPM implementation was made by Pritchard and Armistead (1999). The Rummler–Brache Group commissioned a study, which used ten success factors gaging how well an organization manages its key business processes (Rummler-Brache Group 2004). The results have been consolidated in a Process Performance Index. Pritchard and Armistead (1999) provide a proposal for how to divide organizations into groups depending on their grade and progression of BPM implementation.

In an attempt to define maturity of BPR programs, Maull et al. (2003) encountered problems in that they could not use objective measures. They define BPM by using two dimensions, an objective measure (time, team size, etc.) and a "weighting for readiness to change" (Maull et al. 2003). This approach, however, turned out to be too complex for measurement. Therefore, they chose a phenomenological approach assessing the organization's perception of their maturity, using objective measures as a guideline. Another example of how to define maturity (or in their case "process condition") is provided by DeToro and McCabe (1997), who used two dimensions (effectiveness and efficiency) to rate a process' condition. These models show that a clear distinction should be made between process maturity models ("How advanced are our processes?") and Business Process Management maturity models ("How advanced is the organization in managing its business processes?").

In addition to these dedicated process and BPM maturity models, a number of models have been proposed that study and structure the maturity of single elements of BPM. An example is Luftman's (2003) maturity model for strategic alignment which serves as a foundation of Strategic Alignment in BPM (Luftman 2014).

As our base for identifying the core elements of BPM, we have used Rosemann and de Bruin's (2005) BPM maturity model (de Bruin 2009). This BPM maturity model was selected for a number of reasons:

- First, it was developed on the contemporary understanding of BPM as a holistic management approach.
- Second, it is based on a sound academic development process. Starting with an
 in-depth and comprehensive literature review, the experiences and preliminary
 versions of three previous BPM maturity models have been consolidated. The
 model has been validated, refined, and specified through a series of international

Delphi studies involving global BPM thought leaders (de Bruin and Rosemann 2007). A number of detailed case studies in various industries further contributed to the validation and deeper understanding of the model (de Bruin 2009).

- Third, the model distinguishes factors and capability areas on two levels of abstraction. This hierarchical structure allows different types of granularity in the analysis. As a result, definitions of the factors and capability areas are available and provide a basis for consistent interpretation (Rosemann et al. 2006; de Bruin 2009).
- Fourth and finally, the model has been applied within a number of organizations by means of documented case studies including embedded surveys and workshops (Rosemann and de Bruin 2004; Rosemann et al. 2004; de Bruin and Rosemann 2006; de Bruin 2009). Hence, the core elements have been validated and proven to be of practical relevance in real life projects.

Using this maturity model to identify the six core elements of BPM, we do not explicitly elaborate on the maturity assessment process and the various maturity stages of this model. Rather we take a static view and discuss the six capability areas as core elements of BPM.

3 Introducing the Six Core Elements of BPM

3.1 Overview

The consolidation of related literature, the merger of three existing BPM maturity models, the subsequent international Delphi studies and the case studies led to a set of well-defined factors that together constitute a holistic understanding of BPM (de Bruin 2009). Each of the six core elements represents a critical success factor for Business Process Management. Therefore, each element, sooner or later, needs to be considered by organizations striving for success with BPM. For each of these six factors, the consensus finding Delphi studies (de Bruin and Rosemann 2007) provided a further level of detail, the so called *Capability Areas*. Both factors and capability areas are displayed in Fig. 2.

Our model distinguishes six core elements critical to BPM. These are strategic alignment, governance, methods, information technology, people, and culture.

Strategic Alignment: BPM needs to be aligned with the overall strategy of an
organization. Strategic alignment (or synchronization) is defined as the tight
linkage of organizational priorities and enterprise processes enabling continual
and effective action to improve business performance. Processes have to be
designed, executed, managed, and measured according to strategic priorities and
specific strategic situations (e.g., stage of a product lifecycle, position in a

Fig. 2 The six core elements of BPM

strategic portfolio; Burlton 2014). In return, specific process capabilities (e.g., competitive advantage in terms of time to execute or change a process) may offer opportunities to inform the strategy design leading to process-enabled strategies.

- Governance: BPM governance establishes appropriate and transparent accountability in terms of roles and responsibilities for different levels of BPM, including portfolio, program, project, and operations (Spanyi 2014). A further focus is on the design of decision-making and reward processes to guide process-related actions.
- Methods: Methods in the context of BPM are defined as the set of tools and techniques that support and enable activities along the process lifecycle and within enterprise-wide BPM initiatives. Examples are methods that facilitate process modeling or process analysis and process improvement techniques (Dumas et al. 2013). Six Sigma is an example for a BPM approach that has at its core a set of integrated BPM methods (Conger 2014).
- Information Technology: IT-based solutions are of significance for BPM initiatives. With a traditional focus on process analysis (e.g., statistical process control) and process modeling support, BPM-related IT solutions increasingly manifest themselves in the form of process-aware information systems (PAIS) (Dumas et al. 2005). Process-awareness means that the software has an explicit understanding of the process that needs to be executed. Such process awareness could be the result of input in the form of process models or could be more implicitly embedded in the form of hard-coded processes (like in traditional banking or insurance applications).
- *People*: People as a core element of BPM is defined as individuals and groups who continually enhance and apply their process and process management skills

- and knowledge in order to improve business performance. Consequently, this factor captures the BPM capabilities that are reflected in the human capital of an organization and its ecosystem.
- Culture: Culture incorporates the collective values of a group of people (Schein 2004) and comparative case studies clearly demonstrate the strong impact of culture on the success of BPM (de Bruin 2009). Culture is about creating a facilitating environment that complements the various BPM initiatives. Research has identified specific organizational values supportive for BPM as well as methods to measure and further develop a BPM-supportive organizational culture (Schmiedel et al. 2013). However, it needs to be recognized that the impact of culture-related activities tends to have a much longer time horizon than activities related to any of the other five factors.

The six identified factors in this BPM maturity model are heavily grounded in literature. A sample summary of literature supporting these factors is shown in Fig. 3.

In the following, we will elaborate on the capability areas that further decompose each of these six factors. Here, we particularly draw from the results of a set of international Delphi Studies that involved BPM experts from the US, Australasia, and Europe (de Bruin and Rosemann 2007). We can only provide a brief overview about each of the six factors in the following sections and refer to the chapters in this Handbook for deeper insights per factor.

Factor	Source	
Strategic Alignment	Elzinga et al., 1995; Hammer, 2001; Hung, 2006; Jarrar et al., 2000; Pritchard and Armistead, 1999; Puah K.Y. and Tang K.H, 2000; Zairi, 1997; Zairi and Sinclair, 1995	
Government	Braganza and Lambert, 2000; Gulledge and Sommer, 2002; Harmon, 2005; Jarrar et al., 2000; Pritchard and Armistead, 1999	
Methods	Adesola and Baines, 2005; Harrington, 1991; Kettinger et al. 1997; Pritchard and Armistead, 1999; Zairi, 1997	
Information Technology	Gulledge and Sommer, 2002; Hammer and Champy, 1993; McDaniel, 2001	
People	Elzinga et al., 1995; Hung, 2006; Llewellyn and Armistead, 2000; Pritchard and Armistead, 1999; Zairi and Sinclair, 1995; Zairi, 1997	
Culture	Elzinga et al., 1995; Llewellyn and Armistead, 2000; Pritchard and Armistead, 1999; Spanyi, 2003, Zairi, 1997; Zairi and Sinclair, 1995	

Fig. 3 The six BPM core elements in the literature

3.2 Strategic Alignment

Strategic alignment is defined as the tight linkage of organizational priorities and enterprise processes enabling continual and effective action to improve business performance. Five distinct capability areas have been identified as part of an assessment of strategic alignment in BPM.

- A strategy-driven *process improvement plan* captures the organization's overall approach towards BPM. The process improvement plan should be directly derived from the organization's strategy, and outline how process improvement initiatives are going to meet strategically prioritized goals. This allows a clear articulation of the corporate benefits of BPM initiatives. The process improvement plan also provides information related to how the BPM initiative relates to underlying projects such as the implementation of an Enterprise System.
- A core element of strategic alignment, in the context of BPM, is the bidirectional *linkage between strategy and business processes*. Do the business processes directly contribute to the strategy? Do organizational strategies explicitly incorporate process capabilities? By way of example, do we know which processes are impacted by a change of the strategy? Which processes could become a bottleneck in the execution of the strategy? Is the strategy designed and continually reviewed in light of current and emerging process capabilities? How should scarce resources be allocated to competing processes? Which processes are core to the organization and should be executed in-house (core competency)? Which processes are candidates for process outsourcing or off-shoring (Bhat et al. 2014)? Common methodologies such as Strategy Maps (Kaplan and Norton 2004) play an important role in linking strategy and process design.
- An enterprise process architecture is the highest level abstraction of the actual hierarchy of value-driven and enabling business processes (Aitken et al. 2014; Spanyi 2014). A well-defined enterprise process architecture clearly depicts which major business processes exist, describes the industry-/company-specific value chain, and captures the enabling processes that support this value chain, for example, finance, human capital management, or IT services. A well-designed process architecture provides a high level visualization from a process view and complements, and not replicates, organizational structures. In addition, it serves as the main process landscape and provides a starting point for more detailed process analyses and models. Reference models (vom Brocke 2006) can provide domain-oriented knowledge for deriving a company-specific process architecture (Houy 2014).
- In order to be able to evaluate actual process performance, it is important to have a clear and shared understanding of *process outputs* and related key performance indicators (KPIs). A hierarchy of cascading, process-oriented, and cost-effectively measured KPIs provides a valuable source for the translation of strategic objectives to process-specific goals and facilitates effective process control. Relevant KPIs can differ in their nature, including financial, quantitative, qualitative, or time-based data, and will be dependent on the strategic

drivers for the specific enterprise process (vom Brocke et al. 2014; Franz et al. 2011). As far as possible, such KPIs should be standardized across the various processes and in particular across the different process variants (e.g., in different countries). Only such a process performance standardization allows consistent cross-process performance analysis (e.g., what processes can explain a drop in the overall customer satisfaction?). Often equally important, but more difficult to measure, are those KPIs related to characteristics of an entire process, such as flexibility, reliability or compliance.

• Strategies are typically closely linked to individuals and influential stakeholder groups. Thus, a strategic assessment of BPM has to evaluate the actual priorities of key customers and other stakeholders such as senior management, shareholders, government bodies, etc. For example, it can be observed that a change of a CEO often will have significant impact on the popularity (or not) of BPM even if the official strategy remains the same. The consideration of stakeholders also includes an investigation of how well processes with touch-points ("moments of truth") to external parties are managed, how well external viewpoints have been considered in the process design, and what influence external stakeholders have on the process design. Such a view can go so far that organizations consciously design processes the way they are perceived by their business partners, and then start to position their services in these processes.

3.3 Governance

BPM governance is dedicated to appropriate and transparent accountability in terms of roles and responsibilities for different levels of BPM (portfolio, program, project, and operations). Furthermore, it is tasked with the design of decision-making and reward processes to guide process-related actions.

- The clear definition and consistent execution of related BPM *decision-making processes* that guide actions in both anticipated and unanticipated circumstances is a critical challenge for BPM governance (Markus and Jacobson 2014). In addition to *who* can make *which* decision, the speed of decision-making and the ability to influence resource allocation and organizational responses to process change is important. This requires alignment with related governance processes such as IT change management or Business Continuity Management.
- A core element of BPM governance is the definition of process roles and responsibilities. This covers the entire range of BPM-related roles, from business process analysts to process owners up to potential chief process officers (CPO). It also encompasses all related committees and involved decision boards, such as Process Councils and Process Steering Committees (Spanyi 2014). The duties and responsibilities of each role need to be clearly specified, and precise reporting structures must be defined.

- Processes must exist to ensure the direct linkage of process performance with strategic goals. While the actual process output is measured and evaluated as part of the factor strategic alignment, accountabilities and the process for collecting the required metrics and linking them to performance criteria is regarded as being a part of BPM governance (Scheer and Hoffmann 2014).
- *Process management standards* must be well-defined and documented. This includes among others the coordination of process management initiatives across the organization, and guidelines for the establishment and management process measures, issue resolution, reward, and remuneration structures.
- Process management controls as part of BPM governance cover regular review cycles to maintain the quality and currency of process management principles (e. g., "process reuse before process development; "exception-based process execution"). Finding the right level of standardizing these principles is a major success factor of BPM initiatives (Tregear 2014). Appropriate compliance management forms another key component of process management controls (Spanyi 2014).

3.4 Methods

Methods, in the context of BPM, have been defined as the tools and techniques that support and enable consistent activities on all levels of BPM (portfolio, program, project, and operations). Distinct methods can be applied to major, discrete stages of the process lifecycle. This characteristic, which is unique to the "methods" and "information technology" factors, has resulted in capability areas that reflect the process lifecycle stages rather than specific capabilities of BPM methods or information technology. An advantage of associating the method capability with a specific process lifecycle stage is that a method can be assessed with regards to a specific purpose. For example, it is possible to assess the specific methods used for designing processes as distinct from those used for improving processes. Therefore, the methods dimension focuses on the specific needs of each process lifecycle, and considers elements such as the integration of process lifecycle methods with each other and with other management methods, the support for methods provided by information technology, and the sophistication, suitability, accessibility, and actual usage of methods within each stage.

- *Process design and modeling* is related to the methods used to identify and conceptualize current (as-is) business processes and future (to-be) processes. The core of such methods is not only to process modeling techniques but also to process analysis methods (Dumas et al. 2013; Sharp and McDermott 2009).
- Process implementation and execution covers the next stages in the lifecycle.
 Related methods help to transform process models into executable business process specifications. Methods related to the communication of these models and escalation methods facilitate the process execution.

- The *process control and measurement* stage of the process lifecycle is related to methods that provide guidance for the collection and consolidation of process-related data. These data can be related to process control (e.g., risks), or could be process performance measures (e.g., time, cost, and quality).
- The *process improvement and innovation* stage includes all methods which facilitate the development of improved business processes. This includes approaches that support the activities of process enhancement (e.g., re-sequencing steps in a process), process innovation (e.g., design-led process innovation techniques), process utilization (better use of existing resources such as people, data, or systems), and process derivation (reference models, benchmarking, etc.).
- The assessment component *process project management and program management* evaluates the methods that are used for the overall enterprise-wide management of BPM and for specific BPM projects. The latter requires a sound integration of BPM methods with specific project management approaches (e.g., PMBOK, PRINCE 2).

3.5 Information Technology

Information technology (IT) refers to the software, hardware, and information systems that enable and support process activities. As indicated, the assessment of IT as one of the BPM core elements is structured in a similar way to that of BPM methods, and also refers to the process lifecycle stages. Similar to the methods dimension, the IT components focus on the specific needs of each process lifecycle stage and are evaluated from viewpoints such as customizability, appropriateness of automation, and integration with complementary IT solutions (e.g., social computing, mobile application, cloud computing, business rules engines). An overview of IT solutions for BPM is provided by Sidorova et al. (2014). Further evaluation criteria capture the sophistication, suitability, accessibility, and usage of such IT within each stage.

- IT solutions for process design and modeling cover the (semi-)automated support that enables derivation of process models from log files (process mining) (van der Aalst 2011), and tool-support for business process modeling and analysis (e.g., process animation, process simulation) (van der Aalst 2014).
- IT-enabled process implementation and execution focuses on the automated transformation of process models into executable specifications and the subsequent workflow-based process execution, (Ouyang et al. 2014). This also includes related solutions such as business rules engines or case management systems. This entire category of software is often labeled "process-aware information systems" (Dumas et al. 2005). Recent increases in the information processing capacity of PAIS, for example through in-memory-databases

(Plattner and Krüger 2014), enable new principles of process design, including context-aware and real-time process management (vom Brocke et al. 2013).

- *Process control and measurement* solutions facilitate (semi-)automated process escalation management, exception handling, performance visualization (e.g., dashboards), and process controlling. There is a high demand for these type of solutions to be integrated in the corporate landscape (e.g., via Balanced Scorecard systems).
- Tools for *process improvement and innovation* provide (semi-)automated support for the generation of improved business processes. These could be solutions that provide agile (i.e., self-learning) tools that continuously adjust business processes based on contextual changes.
- Process project management and program management tools facilitate the overall management of different types of BPM initiatives. They provide among others decision support systems for process owners.

3.6 People

While the information technology factor covered IT-related resources, the factor "people" comprises human resources. This factor is defined as the individuals and groups who continually enhance and apply their process and process management skills and knowledge to improve business performance.

- Process skills and expertise is concentrated on the comprehensiveness and depth
 of the capabilities of the involved stakeholders in light of the specific requirements of a process. This is an important capability area for process owners and
 all stakeholders involved in the management and operations of a process. Apart
 from technical and methodological skills, social and communicative skills are
 key to the skillset of successful BPM professionals (Bergener et al. 2012).
- Process management knowledge consolidates the explicit and tacit knowledge
 about BPM principles and practices. It evaluates the level of understanding of
 BPM, including the knowledge of process management methods and information technology, and the impact these have on business process outcomes
 (Karagiannis and Woitsch 2014). In particular, business process analysts and
 the extent to which they can apply their process management knowledge to a
 variety of processes are assessed within this capability area.
- Process education and learning measures the commitment of the organization to
 the ongoing development and maintenance of the relevant process and process
 management skills and knowledge. The assessment covers the existence, extent,
 appropriateness, scope of roll-out, and actual success (as measured by the level
 of learning) of BPM education programs. Further items are devoted to the
 qualification of the BPM educators and BPM certification programs.
- Process collaboration and communication considers the ways in which individuals and groups work together in order to achieve desired process outcomes.

- This includes the related evaluation of the communication patterns between process stakeholders, and the manner in which related process knowledge is discovered, explored, and disseminated.
- The final "people" capability area is dedicated to *process management leaders*. The assessment according to this element evaluates the willingness to lead, take responsibility, and be accountable for business processes. Among others, this capability area also captures the degree to which desired process leadership skills and management styles are actually practiced.

3.7 Culture

Culture, the sixth and final BPM core element, refers to the collective values and beliefs that shape process-related attitudes and behavior to improve business performance. Despite its proven relevance, culture has been under-researched in BPM over years (vom Brocke and Sinnl 2011). Only more recently, significant progress has been made in understanding the role of culture in BPM. Specific values have been identified, that are essential for meeting BPM objectives, namely the CERT values customer-orientation, excellence, responsibility and teamwork (Schmiedel et al. 2013). Measurement instruments are available to evaluate an organization's cultural fitness according to these values and measures have been studied to further develop an organization's culture accordingly (Schmiedel et al. 2014). Based on the maturity model, the following related capabilities have been identified:

- Responsiveness to process change is about the overall receptiveness of the organization to process change, the propensity of the organization to accept process change, and adaptation. It also includes the ability for process change to cross-functional boundaries seamlessly and for people to act in the best interest of the process.
- Process values and beliefs investigates the broad process thinking within the
 organization. For example, do members of the organization naturally see processes as the way things get done? Do "processes" play a prominent role in the
 corporate vision, mission, value statements? (vom Brocke et al. 2010). Furthermore, this capability area concentrates on the commonly held beliefs and values
 of the key BPM stakeholders. Among them is the longevity of BPM, expressed
 by the depth and breadth of the ongoing commitment to BPM.
- The *process attitudes and behavior* of those who are involved in and those who are affected by BPM form a further assessment item in the "culture" factor. This includes, among others, the willingness to question existing BPM practices in the light of potential process improvements. It also captures actual process-related behavior (e.g., willingness to comply with the process design or extent to which processes get priority over resources).

- Leadership attention to process management covers the level of commitment and attention to processes and process management shown by senior executives, the degree of attention paid to process on all levels, and the quality of process leadership. For example, do "processes" regularly appear as a term in presentations of the senior executives of the organization?
- Finally, *process management social networks* comprise the existence and influence of BPM communities of practice, the usage of social network techniques (e. g., Yammer), and the recognition and use of informal BPM networks.

4 Conclusion and Outlook

This chapter aimed at providing a brief overview of a framework for BPM comprising of six core elements. Each element represents a key success factor for implementing BPM in practice. We referred to a well-established and empirically validated BPM maturity model in order to identify the six core elements of BPM: strategic alignment, governance, methods, information technology, people, and culture.

These grounded elements provide the primary structure of the BPM Handbook at hand. The following chapters present contributions to each of these elements and have been provided by the most recognized thought leaders in these areas. While focusing on a specific element each contribution also considers relations to the other elements. We are presenting contributions from academics as well as case studies from practitioners. Some are more technical in nature, some more business oriented. Some look more at the behavioral side of BPM while others study the conceptual details of advanced methodologies. By proposing this structure, the reader may grasp what they consider most appropriate for their individual background. We trust that the discussion of these six core elements and the corresponding capability areas helps to make the holistic view on Business Process Management more tangible.

References

Aitken C, Stephenson C, Brinkworth R (2014) Process classification frameworks. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 177–202

Bergener K, vom Brocke J, Hofmann S, Stein A, vom Brocke C (2012) On the importance of agile communication skills in BPM education: design principles for international seminars. Knowl Manag E-Learn: Int J 4(4):415–434

Bhat JM, Fernandez J, Kumar M, Goel S (2014) Business process outsourcing. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 443–470

- Burlton RT (2014) Delivering business strategy through process management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 45–77
- Conger S (2014) Six sigma and business process management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 127–146
- Curtis B, Alden J (2006) BPM and organizational maturity. BPTrends
- Curtis B, Alden J, Weber CV (2004) The use of process maturity models in business process management. Borland Software Corporation, Austin, White Paper
- Davenport TH (2014) Process management for knowledge work. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 17–35
- de Bruin T (2009) Business process management: theory on progression and maturity. Ph.D. Thesis, Queensland University of Technology, Brisbane
- de Bruin T, Rosemann M (2006) Towards understanding strategic alignment of business process management. In: Proceedings of the 17th Australasian conference on information systems, Adelaide, 6–8 Dec 2006
- de Bruin T, Rosemann M (2007) Using the Delphi technique to identify BPM capability areas. In: Proceedings of the 18th Australasian conference on information systems, Toowoomba, 5–7 Dec 2007
- DeToro I, McCabe T (1997) How to stay flexible and elude fads. Qual Progr 30(3):55-60
- Dumas M, van der Aalst WM, ter Hofstede AH (2005) Process-aware information systems: bridging people and software through process technology. Wiley, New York
- Dumas M, La Rosa M, Mendling J, Reijers HA (2013) Fundamentals of business process management. Springer, Berlin
- Fisher DM (2004) The business process maturity model. A practical approach for identifying opportunities for optimization. BPTrends. http://www.bptrends.com/resources_publications.cfm. Accessed 26 Aug 2009
- Franz PH, Kirchmer M, Rosemann M (2011) Value-driven business process management. Which values matter for BPM. Accenture report. London, Philadelphia
- Gartner (2010) Leading in times of transition. The 2010 CIO Agenda. Stamford
- Gartner (2013) Hunting and harvesting in a digital world: the 2013 CIO Agenda, Stamford
- Hammer M (2007) The process audit. Harv Bus Rev 85:111-143
- Hammer M (2014) What is business process management? In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 3–16
- Harmon P (2003) Business process change: a manager's guide to improving, redesigning, and automating processes. Morgan Kaufmann, Amsterdam/Boston
- Harmon P (2004) Evaluating an organization's business process maturity. http://www.bptrends.com/resources_publications.cfm. Accessed 26 Aug 2009
- Harmon P (2014) The scope and evolution of business process management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 37–80
- Houy C, Fettke P, Loos P (2014) Business process frameworks. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 153–176
- Kaplan RS, Norton DP (2004) Strategy maps: converting intangible assets into tangible outcomes. Harvard Business Press, Boston
- Karagiannis D, Woitsch R (2014) Knowledge engineering in business process management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 623–648
- Luftman JN (2003) Assessing strategic alignment maturity. In: Luftman JN (ed) Competing in the information age: align in the sand, 2nd edn. Oxford University Press, Oxford, pp 15–48

- Luftman JN (2014) Strategic alignment maturity. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 5–44
- Markus ML, Jacobson D (2014) The governance of business processes. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 311–332
- Maull RS, Tranfield DR, Maull W (2003) Factors characterising the maturity of BPR programmes. Int J Oper Prod Manag 23(6):596–624
- OMG (2008) Business process maturity model (BPMM), Version 1.0, Standard document. http://www.omg.org/spec/BPMM/1.0/PDF. Accessed 28 May 2013
- Ouyang C, Adams M, Wynn MT, ter Hofstede AHM (2014) Workflow management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 475–506
- Paulk MC, Curtis B, Chrissis MB, Weber CV (1993) The capability maturity model for software, Version 1.1 (No. CMU/SEI-93-TR-24). Software Engineering Institute, Pittsburgh
- Plattner H, Krüger J (2014) In-memory data management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 445–461
- Pritchard J-P, Armistead C (1999) Business process management lessons from European business. Bus Process Manag J 5(1):10–32
- Roeglinger M, Poeppelbuss J, Becker J (2012) Maturity models in business process management. Bus Process Manag J 18(2):328–346
- Rosemann M, de Bruin T (2004) Application of a holistic model for determining BPM maturity. In: Akoka J, Comyn-Wattiau I, Favier M (eds) Proceedings of the AIM Pre-ICIS workshop on process management and information systems, pp 46–60. (Actes du 3e colloque Pre-ICIS de l'AIM), Washington, DC, 12 Dec 2004
- Rosemann M, de Bruin T (2005) Towards a business process management maturity model. In: Proceedings of the 13th European conference on information systems, Regensburg, May 2005
- Rosemann M, de Bruin T, Hueffner T (2004) Testing a model for business process management maturity with two case studies. In: Proceedings of the 15th Australasian conference on information systems. Hobart, 1–3 Dec 2004
- Rosemann M, de Bruin T, Power B (2006) A model to measure business process management and improve performance. In: Jeston J, Nelis J (eds) Business process management. Butterworth-Heinemann, London, Chapter 27
- Rummler-Brache Group (2004) Business process management in US firms today. A study commissioned by Rummler-Brache Group, Mar 2004
- Rummler GA, Ramias AJ (2014) A framework for defining and designing the structure of work. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 81–104
- Sabherwal R, Hirschheim R, Goles T (2001) The dynamics of alignment: insights from a punctuated equilibrium model. Org Sci 12(2):179–197
- Scheer A-W, Hoffmann M (2014) The process of business process management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 351–398
- Schein EH (2004) Organizational culture and leadership, 3rd edn. Jossey-Bass, San Francisco
- Schmiedel T, vom Brocke J, Recker J (2013) Which cultural values matter to business process management? Results from a global Delphi study. Bus Process Manag J 19(2):292–317
- Schmiedel T, vom Brocke J, Recker J (2014) Culture in business process management. How cultural values determine BPM success. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 649–665
- Sharp A, McDermott P (2009) Workflow modeling. Tools for process improvement and application development, 2nd edn. Artech House, Norwood
- Sidorova A, Torres R, Beayeyz AA (2014) The role of information and ICT in business process management. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 333–350

- Smith H, Fingar P (2004) Process management maturity models. BPTrends. http://www.bptrends.com/resources/publications.cfm. Accessed 26 Aug 2009
- Spanyi A (2014) Business process management governance. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 333–350
- Tregear R (2014) Business process standardization. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 421–442
- van der Aalst WMP (2011) Process mining. Discovery, conformance and enhancement of business processes. Springer, Heidelberg
- van der Aalst WMP (2014) Business process simulation survival guide. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp 337–370
- van Looy A (2014) Business process management maturity models, Springerbriefs in business process management. Springer, Heidelberg
- vom Brocke J (2006) Design principles for reference modelling. Reusing information models by means of aggregation, specialisation, instantiation, and analogy. In: Fettke P, Loos P (eds) Reference modelling for business systems analysis. Idea Group Publishing, Hershey, pp 47–75
- vom Brocke J, Schmiedel T (eds) (2014) Business process management. Driving innovation in a digital world. Springer, Heidelberg
- vom Brocke J, Sinnl T (2011) Culture in business process management. A literature review. Bus Process Manag J 17(2):357–377
- vom Brocke J, Recker J, Mendling J (2010) Value-oriented process modeling: integrating financial perspectives into business process re-design. Bus Process Manag J 16(2):333–356
- vom Brocke J, Debortoli S, Müller O, Reuter N (2013) How in-memory technology can create business value: insights from the Hilti case. Commun AIS, (Forthcoming)
- vom Brocke J, Schmiedel T, Recker J, Trkman P, Mertens W, Viaene S (2014) Ten principles of good business process management. Bus Process Manage J (BPMJ) 20(4)
- vom Brocke J, Petry M, Schmiedel T, Sonnenberg C (2014) How organizational culture facilitates a global BPM project: the case of Hilti. In: vom Brocke J, Rosemann M (eds) Handbook on business process management, vol 2, 2nd edn. Springer, Heidelberg, pp 693–714