GERMAN UNIVERSITY IN CAIRO

Laplace Summary

Math301

Fall 2020

Contents

1	Basi	ic Definition of Laplace Transform	1
2	Lap	lace Transform Properties	2
	2.1	Lineraty of Laplace Transform	2
	2.2	S- Shifiting property	2
	2.3	Laplace Transform of dervatives	2
	2.4	Laplace Transform of Integrals	2
	2.5	Dervative of Laplace Transform	2
	2.6	Integral of Laplace Transform	2
	2.7	Heaviside function (Unit step Function)	2
		2.7.1 Notes	4
	2.8	t-shifiting property	4
	2.9	Dirac's Delta Function	4
	2.10	Convolution Product	5
	2.11	Convolution Theorem	5

1 Basic Definition of Laplace Transform

- Converts integral equation & DE's into algebric equations.
- COVERSION FROM TIME-DOMAIN TO FREQUENCY-DOMAIN
- Applications of Laplace Transform: in ODE, PDE, integral equations, etc . . .

$$F(S) = \mathcal{L}f(t) = \int_0^\infty f(t).e^{-st}dt; \text{ for } t \ge 0$$
 (1)

Improper Integral

$$\int_0^\infty f(t)e^{-st}dt = \lim_{b \to \infty} \int_0^b f(t).e^{-st}dt \tag{2}$$

Note

- Laplace Transform is applicable to continuous and discontinuous functions.
- The Laplace Transform is used if f(t) is given without any integral, if given with interval use BASIC DEFINITION

2 Laplace Transform Properties

2.1 Lineraty of Laplace Transform

- $\mathcal{L}[f(t) \pm g(t)] = \mathcal{L}f(t) \pm \mathcal{L}g(t)$
- $\mathcal{L}[cf(t)] = c\mathcal{L}(f(t)) = cF(S)$

2.2 S- Shifiting property

$$\mathcal{L}(e^{at}f(t)) = F(S-a) \tag{3}$$

2.3 Laplace Transform of dervatives

- $\mathcal{L}[f'(t)] = S\mathcal{L}(f) F(0)$
- $\mathcal{L}[f''(t)] = S^2 \mathcal{L}[f] Sf(0) f'(0)$

• for
$$n \ge 1$$
; $\mathcal{L}[f^{(n)}] = S^{(n)}\mathcal{L}[f] - S^{(n-1)}f(0) - S^{(n-2)}f'(0) - \dots f^{(n-1)}(0)$

2.4 Laplace Transform of Integrals

$$\mathcal{L}\left[\int_{0}^{t} f(\tau)d\tau\right] = \frac{F(S)}{S} \tag{4}$$

2.5 Dervative of Laplace Transform

- $\mathcal{L}[tf(t)] = -F'(S)$
- $\mathcal{L}[t^2f(t)] = F''(S)$
- $\mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{dS^n} F(S)$

2.6 Integral of Laplace Transform

$$\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_{S}^{\infty} F(U)dU \tag{5}$$

2.7 Heaviside function (Unit step Function)

$$H(t-a) = \begin{cases} 0, & t < a \\ 1, & t > a \end{cases}$$

$$H(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

$$H(t-b) = \begin{cases} 0, & t < b \\ 1, & t > b \end{cases}$$

2.7.1 Notes

- $H(f(t)) = \square; a < t < b$
 - 1. by definition $F(S) = \int_a^b \Box e^{-st} dt$
 - 2. by unit step $f(t) = \square[H(t-a)H(t-b)]$
- $\bullet \ H(f(t)) = \square; t < b$
 - 1. by definition $F(S) = \int_b^\infty \Box e^{-st} dt$
 - 2. by unit step $f(t) = \square[H(t-b)]$

2.8 t-shifiting property

•
$$\mathcal{L}[H(t-a)] = \frac{1}{s}e^{-as}$$

•
$$\mathcal{L}[H(t-a)f(t-a)] = e^{-as}F(S)$$

•
$$\mathcal{L}[H(t-a)f(t)] = e^{-as}F(S+a)$$

2.9 Dirac's Delta Function

$$\delta(t-a) = \begin{cases} \infty, & t = 0\\ 0, & t \neq 0 \end{cases}$$

$$\mathcal{L}[\delta(t-a)] = e^{-as}$$

$$\mathcal{L}[\delta(t)] = 1$$

$$\mathcal{L}[f(t)\delta(t-a)] = f(a)e^{-as}$$

2.10 Convolution Product

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau;$$

2.11 Convolution Theorem

$$\mathcal{L}[f * g] = \mathcal{L}[f]\mathcal{L}[g]]$$