T.D. IX - Variables aléatoires à densité

I - Lois usuelles

Exercice 1. Soit $U \hookrightarrow \mathcal{U}([0,1])$. Déterminer la fonction de répartition, une densité, puis identifier, lorsque c'est possible, la loi des variables aléatoires suivantes :

1.
$$X = 3U$$
.

2.
$$Y = U + 1$$
.

3.
$$Z = \frac{1}{2}U + 1$$
.

4. $W = U^2$. **5.** $H = \ln(U)$. **6.** $E = -\ln(U)$.

Exercice 2. Un archer lance deux flèches en direction d'une cible de rayon d'un mètre. On suppose qu'il atteint systématiquement la cible et que ses lancers sont indépendants. Pour tout $i \in \{1, 2\}$, on note R_i la variable aléatoire égale à la distance (en mètres) de la flèche numéro i au centre de la cible et on suppose que $R_i \hookrightarrow \mathcal{U}([0,1])$. On note également $R = \min\{R_1, R_2\}.$

- **1.** Soit $x \in \mathbb{R}$. Justifier que $\mathbf{P}([R > x]) = \mathbf{P}([R_1 > x] \cap [R_2 > x])$.
- **2.** En déduire, pour tout x réel, la fonction de répartition F de R.
- 3. Calculer la probabilité que la flèche la mieux lancée par l'archer soit située à moins de 50cm de la cible.

Exercice 3. Soit X une variable aléatoire suivant une loi exponentielle de paramètre $\lambda > 0$. Pour tout x réel, on note |x| sa partie entière, i.e. le plus grand réel inférieur ou égal à x.

- **1.** On pose Y = |X| + 1. Déterminer la loi de Y.
- 2. On pose $Z = \sqrt{X}$. Déterminer la loi de Z, son espérance et sa variance.
- 3. On pose $W=X^2$. Déterminer la fonction de répartition et l'espérance de W.

Exercice 4. On note Φ la fonction définie pour tout x réel par

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

1. Montrer que Φ réalise une bijection de \mathbb{R} sur]0,1[.

2. Soit X une variable aléatoire qui suit une loi normale centrée réduite. Montrer qu'il existe un unique réel t_0 strictement positif tel que $\mathbf{P}(-t_0 < X < t_0) = 0.95.$

3. Soit $X \hookrightarrow \mathcal{N}(8,4)$. En utilisant la table de la loi normale, déterminer des valeurs approchées de :

a)
$$P(X < 7.5)$$
.

c) $\mathbf{P}(6,5 < X < 10)$. d) $\mathbf{P}_{[X>5]}(X < 6)$.

b)
$$P(X > 8,5)$$
.

d)
$$P_{[X>5]}(X<6)$$
.

II - Densités

Exercice 5. On définit la fonction f pour tout t réel positif par

$$f(t) = \begin{cases} 1 - |t| & \text{si } t \in [-1, 1] \\ 0 & \text{sinon} \end{cases}$$

1. Montrer que f est une densité de probabilité.

2. Soit X une variable aléatoire de densité f. Montrer que X admet une espérance et une variance et les déterminer.

Exercice 6. Soit f la fonction définie pour tout x réel par $f(x) = \frac{e^{-x}}{(1+e^{-x})^2}$.

1. Montrer que f est une densité de probabilité.

Soit X une variable aléatoire de densité f.

2. Déterminer la fonction de répartition F de X.

Soit φ la fonction définie pour tout x réel par $\varphi(x) = \frac{e^x - 1}{e^x + 1}$.

- **3.** Montrer que φ réalise une bijection de \mathbb{R} sur]-1,1[.
- **4.** Déterminer l'expression de φ^{-1} .
- 5. On pose $Y = \varphi(X)$. Montrer que Y est une variable aléatoire dont on précisera la fonction de répartition G et une densité g.

Exercice 7. (Lois de Pareto) Soit $\alpha > 0$ et f_{α} la fonction définie pour tout t réel par

 $f_{\alpha}(x) = \begin{cases} \frac{C}{t^{\alpha+1}} & \text{si } t \geqslant 1\\ 0 & \text{sinon} \end{cases}$

1. Déterminer la constante C telle que f soit une densité de probabilité. Soit X une variable aléatoire de densité f_{α} .

2. Déterminer la fonction de répartition F de X.

3. Déterminer l'espérance et la variance de X en discutant selon les valeurs de α .

4. Soit $Y=X^2$. Déterminer une densité puis l'espérance (si elle existe) de Y.

5. Soit $T = \sqrt{X}$. Déterminer une densité puis l'espérance (si elle existe) de Y.

III - Estimation

Exercice 8. Soit $\theta > 0$ et X une variable aléatoire suivant une loi uniforme sur l'intervalle $[0,2\theta]$. Pour estimer θ , on considère un 4-échantillon (X_1,X_2,X_3,X_4) de X et on propose les estimateurs suivants :

$$T_1 = \frac{X_1 + X_2 + X_3 + X_4}{4}$$
 et $T_2 = \frac{X_1 + 2X_2 + 3X_3 + 4X_4}{10}$.

1. Calculer l'espérance de chacun de ces estimateurs.

2. Calculer le risque quadratique de chacun de ces estimateurs.

3. Lequel de ces deux estimateurs vous semble préférable?

Exercice 9. Soit $\theta > 0$ et X une variable aléatoire de loi uniforme sur $[0, 2\theta]$. Soit $n \ge 1$ et (X_1, \ldots, X_n) un n-échantillon de X. On pose $M_n = \max\{X_1, \ldots, X_n\}$.

1. Déterminer la loi de M_n , calculer son espérance et sa variance.

2. En déduire que $U_n = \frac{n+1}{2n} M_n$ est un estimateur sans biais de θ .

3. On pose $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$. Montrer que \overline{X}_n est un estimateur sans biais de θ .

4. Quel estimateur choisir entre U_n et \overline{X}_n ?

Exercice 10. Soit θ un réel strictement positif et f la fonction définie par $f(t) = e^{-(t-\theta)}$ lorsque $\theta \le t$ et f(t) = 0 sinon.

1. Vérifier que f est une densité de probabilité.

Soit T une variable aléatoire de densité $f, n \ge 2$ et (T_1, \ldots, T_n) un n-échantillon de T.

2. Calculer l'espérance et la variance de T.

On pose $Y_n = \frac{1}{n} \sum_{i=1}^n T_i$.

3. Montrer que Y_n admet une espérance et une variance et les déterminer.

4. Montrer que $\widehat{Y}_n = Y_n - 1$ est un estimateur sans biais de θ .

5. Déterminer le risque quadratique de \widehat{Y}_n .

On pose $Z_n = \min_{1 \le i \le n} T_i$.

6. Exprimer la fonction de répartition F_n de Z_n en fonction de celle, notée F, de T.

7. En déduire que Z_n est une variable à densité.

8. Déterminer l'espérance et la variance de Z_n .

9. En déduire que $\widehat{Z}_n = Z_n - \frac{1}{n}$ est un estimateur sans biais de θ .

10. Déterminer le risque quadratique de \widehat{Z}_n .

11. Comparer les risques quadratiques de \hat{Y}_n et \hat{Z}_n .