Logique et Théorie des Ensembles Série 03-B

Automne 2024 Série 03-B Buff Mathias

Exercice 1. Montrer que $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

Exercice 2. Montrer que $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.

Exercice 3. (Lois de De Morgan généralisées).

Soient $I \neq \emptyset$ un ensemble et $(A_i)_{i \in I}$ une famille de parties de E et $A \subset E$. Montrer que

$$A \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} (A \cap A_i), \quad A \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (A \cap A_i)$$
$$A \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (A \setminus A_i), \quad A \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (A \setminus A_i)$$

Exercice 4. Soient A et B deux ensembles.

Trouver une condition nécessaire et suffisante pour que $A \times B = B \times A$