Churnflix: Bank Churn Prediction App

This presentation will introduce Churnflix, a machine learning powered application designed to predict and mitigate customer churn for financial institutions.

Al detials matat gefiecls perfence ont cuistomen seteriiganor, rescarn.

Key Features

Modern Ul

Netflix-inspired darkthemed interface for user-friendliness

Predictive Analytics

Al-driven customer churn prediction using XGBoost

Custom Reports

Dynamic reports for analyzing business insights

FastAPI Backend

Efficient backend for handling ML predictions

How It Works

1

Step 1: User Input

The user provides key financial details (e.g., Credit Score, Age, Balance)

2

Step 2: Model Prediction

The backend processes the input using a trained XGBoost model

3

Step 3: Churn Forecast

The system predicts whether the customer is likely to churn

4

Step 4: Feature Importance

XGBoost explains which features had the most impact

Business Impact

Reduce Customer Loss

Identify at-risk customers early to minimize churn

Increase Retention

Enable personalized marketing campaigns & offers

Explainable Al

Use XGBoost feature importance to understand churn drivers

Customer Distribution and Churn Analysis

Customer Retention

The majority of customers (80%) remained with the bank.

Churn Rate

Only 20% of customers (2,000 individuals) churned.

Key Insights

This suggests a high level of customer satisfaction among those who stayed.

Machine Learning Approach

- Gender Distribution: 54% male, 46% female. This indicates a relatively balanced customer base.
- Age Groups: Customers aged 35-55 have the highest churn rate. This highlights a potential area for targeted retention efforts.
- **Product Holdings:** Customers with fewer products exhibit higher churn probabilities. This suggests a need to incentivize product diversification.

Machine Learning Approach

- Data preprocessing:
 Removed outliers using
 IsolationForest, scaled
 numeric features with
 StandardScaler, encoded
 categorical data via one-hot
 encoding, and selected the
 top 10 important features
 using SelectKBest.
- Model training: Used an XGBoost Classifier, optimized via Grid Search, applied SMOTE to handle class imbalance, and tuned hyperparameters for best performance.

Feature explanation: Used XGBoost's built-in feature importance, permutation feature importance, and partial dependence plots (PDP) to visualize the influence of individual features on predictions.

Project Contributors

Vangelis Diaskoufis

George Birmpakos

Kostas Kalentzis

Vasilis Katsikas

Final Deliverables

Functional Web App

Live predictions for churn probability

Trained XGBoost Model

High accuracy for churn prediction

Data-Driven Insights

Actionable intelligence for financial institutions

Feature Explanations

Churn probability and key feature explanations

