# Fiche d'Exercices Chapitre 2 : Réflexion et réfraction de la lumière

### Exercice n°1: Détermination d'un angle de réflexion:

Un rayon lumineux provenant d'un laser arrive à la surface d'un bloc de verre représenté en bleu.

- Lire la mesure de l'angle 0° d'incidence.
- 2. Déterminer l'angle de réflexion et tracer le rayon réfléchi.



#### Exercice n°2: Détermination d'un indice de réfraction:

Un rayon se réfracte à la surface de séparation air-huile. L'angle d'incidence  $i_1$  mesure 45,0° et celui de réfraction  $i_2$ =28,8°.

- 1) Faire un schéma de la situation
- 2) Rappeler la loi de Snell-Descartes sur la réfraction.
- 3) Déterminer l'indice de réfraction n<sub>2</sub> de l'huile.

#### Exercice n°3: Détermination graphique d'un indice de réfraction:

Des élèves éclairent un demi-cylindre de verre crown avec un faisceau laser se propageant dans l'air. Pour différentes valeurs de l'angle d'incidence i, ils mesurent l'angle de réfraction r. Ils représentent l'évolution de sin i en fonction de sin r.

 Déterminer, en justifiant, l'indice de réfraction du verre crown.



# Exercice n°4: Détermination d'un angle de réfraction

Un rayon lumineux traverse l'air et arrive à la surface de séparation air-eau sous un angle de 50° par rapport à la normale.

Déterminer la valeur de l'angle de réfraction.

## Exercice n°5 : La dispersion, un phénomène de réfraction?

Afin de déterminer les indices optiques  $n_{\text{rouge}}$  et  $n_{\text{bleu}}$  du verre d'un prisme pour deux longueurs d'onde,  $\lambda = 400$  nm (bleu) et  $\lambda = 750$  nm (rouge), on réalise l'expérience schématisée ci-contre.

#### On mesure:

- l'angle du prisme  $\widehat{A} = i = 35,0^{\circ}$ ;
- l'angle de réfraction pour le rayon rouge,  $i_{rouge}^* = 65.8^\circ$ ;





2. Déterminer  $n_{\text{rouge}}$  et  $n_{\text{bleu}}$ , et conclure sur la raison de la dispersion de la lumière blanche par un prisme.

## Exercice n°6: Le verre, un milieu dispersif?

Un rayon de lumière magenta, mélange de lumières monochromatiques bleue et rouge, se propageant dans l'air d'indice  $n_{air} = 1,00$ , arrive sur une surface de séparation air-verre.

#### Caractéristiques du verre utilisé

| Longueur d'onde λ (nm)         | 450 (bleu) | 700 (rouge) |
|--------------------------------|------------|-------------|
| Indice du verre n <sub>2</sub> | 1,68       | 1,60        |

- 1. a. Lire l'angle d'incidence i 1.
- Calculer les angles de réfraction pour chaque radiation monochromatique.
- 2. Recopier le schéma et le compléter en représentant :
- a. le rayon réfléchi;
- b. les deux rayons réfractés rouge et bleu en respectant leur position relative.
- Le verre est-il un milieu dispersif?

