

planetmath.org

Math for the people, by the people.

alternative proof that a finite integral domain is a field

 ${\bf Canonical\ name} \quad {\bf Alternative Proof That AF in ite Integral Domain Is AF ield}$

Date of creation 2013-03-22 16:21:54
Last modified on 2013-03-22 16:21:54

Whit: 70 (1962)

Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 6

Author Wkbj79 (1863)

Entry type Proof

Classification msc 13G05

Proof. Let R be a finite integral domain and $a \in R$ with $a \neq 0$. Since R is finite, there exist positive integers j and k with j < k such that $a^j = a^k$. Thus, $a^k - a^j = 0$. Since j < k and j and k are positive integers, k - j is a positive integer. Therefore, $a^j(a^{k-j}-1)=0$. Since $a \neq 0$ and R is an integral domain, $a^j \neq 0$. Thus, $a^{k-j}-1=0$. Hence, $a^{k-j}=1$. Since k-j is a positive integer, k-j-1 is a nonnegative integer. Thus, $a^{k-j-1} \in R$. Note that $a \cdot a^{k-j-1} = a^{k-j} = 1$. Hence, a has a multiplicative inverse in R. It follows that R is a field.