

Chemical Property Prediction via Graph Knowledge Transfer

Zhenbang Wu^{12*}, Haonan Wang^{2*}, Ziniu Hu³, Yizhou Sun³
¹ Zhejiang University
² University of Illinois at Urbana-Champaign

³ University of California, Los Angeles

* Equal Contribution

{zw12, haonan3}@illinois.edu, yzsun@cs.ucla.edu

CONTENT

- Introduction
- Related Work
 - Graph-Level Classification / Regression
 - Transfer Learning
 - Multi-Task Learning
- Method
 - Hypergraph Knowledge Transfer
- Experiment
- Next Step
- Conclusion

- Predicting molecular properties
 - A fundamental problem in Biomedicine and Chemistry
 - Expensive and time-consuming
- Use of deep learning (DL)
 - Speed-up the process
 - Better predict molecular properties

- Practical effect of DL is limited
 - Require large amounts of labeled data
- Usually, in Biomedicine and Chemistry
 - Fully labeling a dataset is unaffordable [1]
 - Label ratio between properties is imbalanced [2]

- Intuition: leverage task dependency
 - Knowledge extracted from fully labeled properties can enhance the prediction of properties with few labels

ToxCast dataset. x: no label.					
Property	ESRE	APR			
	BLA	HepG2			
Mol 1	1	X			
Mol 2	0	0			
Mol 3	0	X			
Mol 4	1	1			
Mol 5	1	X			
Mol 8597	0	X			
Mol 8598	1	X			
Label	0.04	0.12			
Ratio	0.84	0.12			
	Guide				

Related Work: Graph-Level Classification / Regression

Graph-Level Classification / Regression

- Molecule graph
 - Atoms -> nodes
 - Chemical bonds -> edges

- Molecule -> Graph-Level Prediction
 - o e.g. toxicity, solubility, side effect

Graph Classification / Regression Model

Suffer from the lack of labeled data

Related Work: Transfer Learning

Transfer Learning

- Pre-train the model on properties with abundant labels
- Fine-tune the model on properties with few labels

Related Work: Multi-Task Learning

Multi-Task Learning

- Train multiple tasks together
 - Time efficient
 - Leverate knowledge among tasks

Multi-Task Learning

- Imbalanced label ratio
- Imbalanced gradients
 - Tasks with abundant labels / larger gradients will dominate the model
- Neglect interaction among different tasks

Method: Hypergraph Knowledge Transfer

Normal GCN

Hypergraph GCN

Data-Dependent Task Dependency Graph

Hypergraph Knowledge Transfer

- Each task will have its own base model
- Calculate the data-dependent task dependency graph
- Aggregate representation from different task specific models

- Mutually enhance performance on all tasks
- Mining the task-level dependency

Base Model (Dual-Task)

Experiment

Experiment Setting

Dataset	Graph Meaning	#Graphs	#Tasks
TOX21	Qualitative Toxicity Measurements	7831	12
SIDER	Adverse Drug Reactions	1427	27

Target tasks (10% training): Helping tasks: (90% training)

- SR-ARE (TOX21)
- Investigations (SIDER)

- SR-MMP (TOX21)
- Vascular Disorders (SIDER)

Experiment Results

	TOX21		SIDER			
Model	Target Task	Helping Task	Target Task	Helping Task		
	(10% Training)	(90% Training)	(10% Training)	(90% Training)		
-		Single-task Model	200			
GCN [3]	0.6776	0.8638	0.5938	0.6266		
MoleculeNet [4]	0.7156	0.8315	0.6189	0.6294		
Our	0.7385	0.9096	0.6266	0.8212		
Multi-task Model						
MoleculeNet [4]	0.7298	0.8382	0.6315	0.6503		
Our	0.7762	0.9233	0.6569	0.8037		

- Score will decrease if we lower the ratio of training data
- Score will increase if we leverage knowledge between tasks

Next Step

Backbone Model (Multi-Task)

- Problems of dual-task model
 - \circ For every task pair (i, j), We need a transfer module $f_{i o j}$
 - O(k^2), k is #tasks -> not scalable
 - Ignore the tasks relation at a higher level
- Insight:
 - \circ Decompose the transfer module $f_{i \to j} = S_i T_j$
 - Each task i only need to store S_i and T_j
 - O(k), k is #tasks
 - Explicitly model task-level and graph-level relations

Backbone Model (Multi-Task)

$$\hat{oldsymbol{X}}_j = \Sigma_{i=1}^k [\operatorname{Softmax}(D_{i o j} oldsymbol{A}_{i o j}) \cdot oldsymbol{X}_{i o j}]$$

$$m{X}_{i o j} = m{X}_im{S}_im{T}_j^T$$
 , where $m{S}_i,m{T}_j\in R^{d imes d'}$, $m{X}_{i o j}\in R^{n imes d}$

$$m{A}_{i o j} = m{X}_{i o j}m{Q}_i(m{X}_jm{K}_j)^T$$
 , where $m{Q}_i,m{K}_j\in R^{d imes d''}$, $m{A}_{i o j}\in R^{n imes n}$

Some Results

Conclusion

Conclusion

- Lack of labeled data and imbalanced label ratio limits the effect of DL in Chemistry and Biomedicine
- Contribution of our work: transfer + fusion
 - Introduce hypergraph to transfer knowledge between properties
 - Introduce novel attention mechanism to fuse transferred knowledge
 - Explore the hidden dependency structure between tasks
 - Improve dual-task's AUC-ROC score by 6.9%

Q&A

- Introduction
- Related Work
 - Graph-Level Classification / Regression
 - Transfer Learning
 - Multi-Task Learning
- Method
 - Hypergraph Knowledge Transfer
- Experiment
- Next Step
- Conclusion

MODEL DETAIL

Stage I: Node Embedding

$$\operatorname{Conv}(A,X) = \hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}X\Theta$$

$$BN(X) = \frac{X - E[X]}{\sqrt{Var[X] + \epsilon}} * \gamma + \beta$$

 $Pool(v) = \max\{\max_{(u,v) \in E} \{u, v\}\}\$

Stage II: Knowledge Transfer

Two linear layers with ReLU activation transfer the node embeddings from helping task to target task.

Neural Tensor Network models the node-level interaction and decides the transfer weights.

Stage III: Graph Embedding

Original and weighted transferred embeddings are concatenated and fed into Set2Set module to get the graph-level representation.

$$\mathbf{q}_{t} = \text{LSTM}(\mathbf{q}_{t-1}^{*})$$

$$\alpha_{i,t} = \operatorname{softmax}(\mathbf{x}_{i} \cdot \mathbf{q}_{t})$$

$$\mathbf{r}_{t} = \sum_{i=1}^{N} \alpha_{i,t} \mathbf{x}_{i}$$

$$\mathbf{q}_{t}^{*} = \mathbf{q}_{t} \| \mathbf{r}_{t},$$

Predicted Target

Task Score

Assume T_i is the target task.

Transfer the embeddings from T_i to T_j ($i \neq j$):

$$X_{i o j} = X_i W_{Si} W_{Tj}^T$$
 , where $W_{Si}, W_{Tj} \in R^{d imes d'}$, $X_{i o j} \in R^{n imes d}$.

Calculate the node-level attention:

$$ext{ATT}_{i o j}=X_{i o j}W_{Qi}(X_iW_{Kj})^T$$
 , where $W_{Qi},W_{Kj}\in R^{d imes d''}$, $ext{ATT}_{i o j}\in R^{n imes n}$.

$$\widetilde{\operatorname{ATT}}_{i \to j} = \operatorname{Softmax}(\operatorname{ATT}_{i \to j}, \dim = -1) \in R^{n \times n}.$$

Combine embeddings from all tasks w.r.t. node-level attention

$$\hat{X}_{i o j} = \widetilde{ ext{ATT}}_{i o j} \cdot X_{i o j}$$
 where $\hat{X}_{i o j} \in R^{n imes d}$.

$$X_i^{ ext{comb}} = ext{cat}([X_j, \hat{X}_{: o j}]) \in R^{k imes n imes d}.$$

$$\widetilde{X_{i}^{ ext{comb}}} = ext{Norm}(X_{i}^{ ext{comb}}) \in R^{k imes n imes d}.$$

Merge the embeddings w.r.t. task dependency:

$$\hat{X}_j = W_{Dj} \widetilde{X_j^{ ext{comb}}}$$
 , where $W_{Dj} \in R^{1 imes k}, \hat{X}_j \in R^{n imes d}$.

Finally, calculate graph-level embedding:

$$G_j = \operatorname{Readout}(\hat{X}_j) \in R^{1 \times d}.$$

Tox21 Data Challenge

