Ion CRĂCIUN

ANALIZĂ MATEMATICĂ CALCUL INTEGRAL

EDITURA PIM IAŞI 2007

Cuprins

1	Inte	tegrale improprii		
1.1 Introducere			9	
	1.2	Definiția integralei improprii	10	
	1.3		18	
	1.4	Proprietăți ale integralelor improprii	19	
	1.5	Reducerea integralelor improprii la şiruri şi serii numerice	21	
1.6 Criteriul integral al lui Cauchy			25	
	1.7	Metode de calcul ale integralelor improprii	26	
		1.7.1 Schimbarea de variabilă în integrala improprie	26	
		1.7.2 Integrarea prin părți în integrala improprie	30	
	1.8	Testul lui Cauchy de convergență a integralelor improprii	33	
	1.9	Integrale improprii absolut convergente	35	
1.10 Criterii de comparație ale integralelor improprii			38	
1.11 Criterii de convergență ale integralelor improprii cu integrar				
		tul de semn variabil	49	
	1.12	Convergența în sensul valorii principale a unei integrale improprii	55	
2 Integrale depinzând de un parametru			61	
2.1 Integrale depinzand de un parametru 2.1 Integrale proprii depinzând de un parametru			61	
 2.1 Integrale proprii depinzand de un parametru			73	
			78	
		2.3.1 Definiția integralelor improprii depinzând de un para-	• •	
			78	
		2.3.2 Reducerea integralelor improprii depinzând de un pa-		
			81	
		2.3.3 Proprietățile integralelor improprii uniform convergen-		
			86	
		1 1		

	2.4	Criterii de convergență uniformă
	2.5	Integrale Cauchy–Frullani
	2.6	Integralele lui Euler
		2.6.1 Definițiile funcțiilor Beta și Gama 107
		2.6.2 Proprietăți ale funcției Gama
		2.6.3 Proprietăți ale funcției Beta
		2.6.4 Relație între funcțiile Beta și Gama
3	Inte	grale curbilinii 121
	3.1	Drum, drum rectificabil, curbă
	3.2	Definiția integralei curbilinii de primul tip
	3.3	Proprietățile integralelor curbilinii
	3.4	Aplicații ale integralelor curbilinii de primul tip
		3.4.1 Masa și centrul de greutate ale unui fir material 139
		3.4.2 Momente de inerție ale unui fir material 144
	3.5	Definiția integralei curbilinii de al doilea tip
		3.5.1 Lucrul mecanic al unui câmp de forțe 147
		3.5.2 Definiția integralei curbilinii de al doilea tip 150
	3.6	Legătura dintre cele două tipuri de integrale curbilinii 152
	3.7	Formula de calcul a integralei curbilinii de al doilea tip 154
	3.8	Proprietăți ale integralelor curbilinii de al doilea tip 158
	3.9	Integrale curbilinii de tipul al doilea pe curbe închise 158
	3.10	Independența de drum a integralei curbilinii de al doilea tip . 159
		3.10.1 Formularea problemei
		3.10.2 Cazul unui domeniu plan simplu conex 160
		3.10.3 Cazul unui domeniu în spațiu simplu conex 164
		3.10.4 Operatorul rotor
	3.11	Primitiva unei expresii diferențiale
4		grala dublă 171
	4.1	Elemente de topologie în \mathbb{R}^2
	4.2	Aria figurilor plane
	4.3	Definiția integralei duble
	4.4	Condiții de integrabilitate
	4.5	Clase de funcții integrabile
	4.6	Proprietățile integralei duble
	4.7	Evaluarea integralei duble
		4.7.1 Integrala dublă pe intervale bidimensionale închise 193

		4.7.2	Integrala dublă pe domenii simple în raport cu axa Oy	197			
		4.7.3	Integrala dublă pe domenii simple în raport cu axa Ox	200			
	4.8	Formu	la integrală Riemann–Green	203			
	4.9	Schim	oarea de variabile în integrala dublă	212			
	4.10	Aplica	ții ale integralei duble în mecanică și geometrie	220			
		4.10.1	Masa și centrul de greutate ale unei plăci	220			
		4.10.2	Momente de inerție ale unei plăci	224			
		4.10.3	Momente statice ale unei plăci	226			
		4.10.4	Flux luminos incident pe o placă	227			
		4.10.5	Debitul unui fluid prin secțiunea transversală a unui				
			canal	228			
		4.10.6	Volumul unui cilindroid	229			
	4.11	Integra	ale duble improprii	233			
			Domeniul de integrare nu este mărginit				
		4.11.2	Integrale duble din funcții nemărginite	244			
5	Inte	Integrale de suprafață 2					
	5.1	Elemen	nte de geometria diferențială a suprafețelor	247			
		5.1.1	Pânze parametrice netede	247			
		5.1.2	Semnificația geometrică a condiției de regularitate. Li-				
			nii parametrice	249			
		5.1.3	Interpretarea geometrică a diferențialei funcției vecto-				
			riale $\mathbf{r} = \mathbf{r}(u, v)$ în punctul $(u_0, v_0) \in A$. Plan tangent .	251			
		5.1.4	O altă definiție a planului tangent				
		5.1.5	Definiția suprafeței	257			
		5.1.6	Ecuația carteziană implicită a unei suprafețe	257			
		5.1.7	Vector normal unei suprafațe întrun punct regulat	258			
		5.1.8	Element de arie al unei suprafețe netede	261			
	5.2	Aria unei suprafețe netede					
	5.3	Integrala de suprafață de primul tip					
	5.4	Aplica	ții în inginerie ale integralelor de suprafață de primul tip	283			
	5.5	Integra	ale de suprafață de al doilea tip	288			
	5.6	Formu	la integrală a lui Stokes	298			
6	Integrala triplă 305						
	6.1	Elemen	nte de topologie în $I\!\!R^3$	305			
	6.2	Definiț	ia integralei triple	308			
	6.3	Condit	tii de existentă a unei integrale triple	309			

	6.4	Propr	ietățile integralei triple		
	6.5	Evalu	area integralei triple		
		6.5.1	Integrala triplă pe intervale tridimensionale închise 314		
		6.5.2	Integrala triplă pe un domeniu simplu în raport cu axa		
			Oz		
		6.5.3	Integrala triplă pe un domeniu simplu în raport cu axa		
			$Ox \dots \dots$		
		6.5.4	Integrala triplă pe un domeniu simplu în raport cu axa		
			Oy		
		6.5.5	Integrala triplă pe un domeniu oarecare		
	6.6		ıla integrală Gauss–Ostrogradski		
	6.7		barea de variabile în integrala triplă		
		6.7.1	Coordonatele cilindrice sau semi–polare în spațiu 338		
		6.7.2	Coordonatele sferice sau polare în spațiu		
		6.7.3	Coordonate polare (sferice) generalizate		
		6.7.4	Elementul de volum în coordonate curbilinii 342		
		6.7.5	Schimbarea de variabile în integrala triplă		
	6.8	-	ații ale integralei triple		
		6.8.1	Calculul volumelor		
		6.8.2	Masa şi centrul de greutate ale unui solid		
		6.8.3	Momente de inerție ale unui solid		
		6.8.4	Potențialul newtonian al unui solid		
		6.8.5	Atracția exercitată de către un solid		
7	Ecu	aţii di	ferențiale ordinare 357		
	7.1	Câtev	a generalități despre ecuații diferențiale ordinare 357		
	7.2				
		cuadra	aturi		
		7.2.1	Ecuații diferențiale cu variabile separate		
		7.2.2	Ecuația diferențială exactă		
		7.2.3	Ecuații diferențiale de ordinul întâi care admit factor		
			integrant		
		7.2.4	Ecuații diferențiale cu variabile separabile 374		
		7.2.5	Ecuația diferențială omogenă		
		7.2.6	Ecuații diferențiale reductibile la ecuații diferențiale		
			omogene		
		7.2.7	Ecuația diferențială liniară de ordinul întâi		

		7.2.8	Ecuații diferențiale de ordinul întâi reductibile la ecua- ții liniare	205			
	7.3	Fanati	,				
	7.3	3 3 0					
	, ,						
		0 /	egrabile prin metode elementare				
		7.4.1	Ecuația diferențială de forma $y = f(y')$				
		7.4.2	Ecuația diferențială de tipul $F(y, y') = 0$				
		7.4.3	Ecuația diferențială de forma $x = f(y')$				
		7.4.4	Ecuația diferențială de tipul $F(x, y') = 0 \dots \dots$				
		7.4.5	Ecuația diferențială de tip Lagrange 4				
		7.4.6	Ecuația diferențială de tip Clairaut 4				
		7.4.7	Ecuația diferențială de forma $y = f(x, y') \dots \dots$				
		7.4.8	Ecuația diferențială de tipul $x = f(y, y')$ 4	17			
8	Ecuații diferențiale ordinare de ordin n integrabile prin cua-						
	drat	turi	4	19			
	8.1	Ecuați	ii diferențiale de tipul $y^{(n)} = f(x)$ 4	119			
	8.2	Ecuația diferențială $F(x, y^{(n)}) = 0 \dots \dots$					
8.3 Ecuația diferențială $F(y^{(n-1)}, y^{(n)}) = 0$.			ia diferențială $F(y^{(n-1)}, y^{(n)}) = 0$	122			
	8.4	Ecuați	ia diferențială $F(y^{(n-2)}, y^{(n)}) = 0 \dots \dots \dots 4$	123			
9	Ecu	atii dif	ferențiale ordinare care admit micșorarea ordinului4	25			
J	9.1		ia $F(x, y^{(k)}, y^{(k+1)}, \cdots, y^{(n)}) = 0$				
	9.2		ia $F(y, y', y'', \cdots, y^{(n)}) = 0 \cdot \dots \cdot \dots \cdot \dots \cdot 4$				
	9.2 9.3	Equati	ia $F(x,y,y',y'',\dots,y^{(n)})=0$, omogenă în $y,y',\dots,y^{(n)}=0$	t⊿ / 120			
	9.5	Ecuaç	$\lim_{dx \to d^2x} F(x, y, y, y, \dots, y, y, $	£Z9			
	9.4	Ecuați	ia $F\left(x,y,\frac{dy}{dx},\frac{d^2y}{dx^2},\cdots,\frac{d^ny}{dx^n}\right)=0$, omogenă în x,y,dx ,				
		dy, d^2y	$y, \cdots, d^n y$ \ldots	130			
	9.5	Ecuați	$y, \dots, d^n y \dots $	133			
Bi	bliog	grafie	4	37			
		,	-				

Capitolul 1

Integrale improprii

1.1 Introducere

Definiția integrabilității Riemann a unei funcții reale de o variabilă reală, mărginită, $f:[a,b] \to I\!\!R$, ca limita finită a sumelor integrale Riemann

$$\sigma_{\Delta}(f, \xi_k) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}),$$

pentru lungimea celui mai mare interval $[x_{k-1}, x_k] \subset [a, b]$ tinzând la zero, nu înglobează cazul când integrantul f este o funcție nemărginită sau intervalul de integrare [a, b] este infinit.

Lungimea celui mai mare interval $[x_{k-1}, x_k]$ se notează cu $\|\Delta\|$ și se numește norma diviziunii

$$\Delta = \{x_0 = a, x_1, x_2, \dots, x_n = b\}, \ x_{k-1} < x_k, \ k = \overline{1, n}$$

iar $\xi_k \in [x_{k-1}, x_k]$ se numesc puncte intermediare.

Pentru ca funcția reală mărginită f să fie integrabilă Riemann pecompactul~[a,b] trebuie ca limita sumelor integrale Riemann pentru $\|\Delta\|\to 0$ să fie finită și să nu depindă de alegerea punctelor intermediare. Această limită se numește integrala~definită și se notează cu simbolul

$$\int_{a}^{b} f(x)dx,$$

deci putem scrie egalitatea

$$\int_{a}^{b} f(x)dx = \lim_{\|\Delta\| \to 0} \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}).$$

În fizica matematică se întâlnesc atât integrale din funcții nemărginite cât și integrale pe domenii de integrare nemărginite.

Astfel de integrale se numesc integrale improprii.

Pentru a defini aceste tipuri de integrale nu este suficient să aplicăm o trecere la limită întro sumă integrală Riemann ci este necesar să folosim o trecere la limită suplimentară care să implice domeniul de integrare.

Pentru aceasta, domeniul iniţial de integrare, unde definiţia integrabilităţii Riemann nu se poate aplica, se înlocuieşte cu un subdomeniu pe care funcţia să fie integrabilă Riemann. Apoi, acest subdomeniu se extinde până coincide cu domeniul iniţial de integrare. Limita integralei luată pe subdomeniu, când acest subdomeniu tinde să devină mulţimea iniţială de definiţie a funcţiei, se numeşte integrală improprie.

Aceasta este ideea generală pe care se bazează definiția integralelor improprii.

1.2 Definiția integralei improprii

Fie elementele $a, b \in \overline{\mathbb{R}}$ cu proprietățile $-\infty < a < b \le +\infty$ și

$$f:[a,b)\to IR,$$
 (1.1)

o funcție integrabilă Riemann pe orice interval compact $[a,t] \subset [a,b)$ și nemărginită întro vecinătate a lui b dacă $b \in \mathbb{R}$.

Definiția 1.2.1 Limita în punctul t = b a funcției

$$F:[a,b)\to \mathbb{R}, \quad F(t)=\int_a^t f(x)dx$$
 (1.2)

se numește integrală improprie cu limita superioară de integrare punct singular și se notează cu simbolul

$$\int_{a}^{b} f(x)dx. \tag{1.3}$$

Din această definiție rezultă

$$\int_{a}^{b} f(x)dx = \lim_{t \to b} F(t) = \lim_{t \to b} \int_{a}^{t} f(x)dx. \tag{1.4}$$

Definiția 1.2.2 Funcția f se numește integrabilă în sens generalizat dacă există și este finită limita funcției F pentru $t \to b$.

Definiția 1.2.3 Dacă funcția (1.1) este integrabilă în sens generalizat, spunem că integrala improprie (1.3) este **convergentă**; dacă limita pentru $t \to b$ a funcției (1.2) este infinită sau nu există, integrala improprie (1.3) se numește **divergentă**.

Definiția 1.2.4 Prin natura unei integrale improprii se înțelege proprietatea sa de a fi convergentă sau divergentă.

Observația 1.2.1 Fie $a_1 \in \mathbb{R}$ astfel încât $a < a_1 < b$. Egalitatea

$$\int_a^t f(x)dx = \int_a^{a_1} f(x)dx + \int_{a_1}^t f(x)dx$$

implică faptul că integralele improprii $\int_a^b f(x)dx$ şi $\int_{a_1}^b f(x)dx$ sunt simultan convergente sau divergente. Astfel, când testăm convergența integralei improprii (1.3), o putem înlocui prin integrala improprie

$$\int_{a_1}^b f(x)dx\tag{1.5}$$

 $\hat{I}n$ plus, dacă integrala improprie (1.3) este convergentă, legătura sa cu integrala improprie (1.5) este

$$\int_{a}^{b} f(x)dx = \int_{a}^{a_{1}} f(x)dx + \int_{a_{1}}^{b} f(x)dx, \qquad (1.6)$$

iar din (1.4) ii (1.6) deducem

$$\lim_{a_1 \to b} \int_{a_1}^b f(x) dx = 0. \tag{1.7}$$

Dacă f este o funcție continuă și nenegativă pe segmentul [a,b), atunci integralei improprii (1.3) i se poate da o interpretare geometrică. Considerăm regiunea Ω a planului Oxy limitată inferior de segmentul [a,b), superior de graficul funcției f și la stânga de segmentul închis paralel la axa Oy având extremitățile în punctele A(a,0) și A'(a,f(a)). Definiția măsurii sau a carabilității și noțiunea de arie a unei figuri plane este inaplicabilă mulțimii Ω deoarece aceasta este nemărginită. Un segment paralel cu extremitatea stângă a domeniului Ω cu extremitățile în punctele M(t,0) și M'(t,f(t)) taie din Ω trapezul curbiliniu AMM'A' situat în stânga liniei considerate a cărui arie este integrala definită (1.2). Este natural să extindem noțiunea de carabilitate la domenii nemărginite dacă aria trapezului AMM'A' tinde la o limită finită când $t \to b$. În acest caz spunem că Ω este carabil, iar limita de mai sus se numește aria domeniului Ω . Această arie se exprimă prin integrala improprie (1.3).

In mod analog se introduce integrala improprie cu limita inferioară punct singular.

Definiția 1.2.5 Simbolul

$$\int_{a}^{b} g(x)dx \tag{1.8}$$

reprezintă notația pentru integrala improprie cu limita inferioară punct singular dacă funcția

$$g: (a,b] \to \mathbb{R}, \quad -\infty \le a < b < +\infty$$
 (1.9)

este integrabilă Riemann pe orice compact $[t,b] \subset (a,b]$ şi nemărginită când $a \in \mathbb{R}$.

Definiția 1.2.6 Funcția (1.9) se numește integrabilă în sens generalizat sau, altfel spus, integrala improprie (1.8) este convergentă dacă există și este finită limita funcției

$$G:(a,b] \to \mathbb{R}, \quad G(t) = \int_{t}^{b} g(x)dx$$
 (1.10)

pentru $t \to a$. În acest caz, simbolul (1.8) reprezintă numărul real

$$\int_{a}^{b} g(x)dx = \lim_{t \to a} G(t) = \lim_{t \to a} \int_{t}^{b} g(x)dx.$$
 (1.11)

Dacă funcția (1.10) nu are limită în t = a, sau limita (1.11) este infinită sau nu există, integrala improprie (1.8) se numește **divergentă**.

Pentru integrala improprie cu limita inferioară punct singular au loc rezultate analoage celor din (1.6) şi (1.7), adică dacă (1.8) este convergentă, atunci integrala improprie $\int_a^{a_1} g(x)dx$ este convergentă oricare ar fi $a_1 \in (a, b]$ şi:

$$\int_{a}^{b} g(x)dx = \int_{a}^{a_{1}} g(x)dx + \int_{a_{1}}^{b} g(x)dx;$$
$$\lim_{a_{1} \to a} \int_{a}^{a_{1}} g(x)dx = 0.$$

Definiția 1.2.7 Simbolul matematic

$$\int_{a}^{b} h(x)dx \tag{1.12}$$

se numește integrală improprie cu ambele limite de integrare puncte singulare dacă funcția

$$h: (a,b) \to \mathbb{R}, \quad -\infty \le a < b \le +\infty$$
 (1.13)

este integrabilă Riemann pe orice compact $[u, v] \subset (a, b)$ şi nemărginită când cel puțin una din limitele de integrare este finită.

Definiția 1.2.8 Funcția h din (1.13) este integrabilă în sens generalizat sau, integrala improprie cu ambele limite de integrare puncte singulare (1.12) este convergentă, dacă pentru o alegere oarecare a punctului $c \in (a, b)$ integralele improprii:

$$\int_{a}^{c} h(x)dx; \quad \int_{c}^{b} h(x)dx, \tag{1.14}$$

sunt convergente și

$$\int_a^b h(x) = \int_a^c h(x)dx + \int_c^b h(x)dx.$$

Dacă cel puțin una din integralele improprii (1.14) este divergentă, atunci integrala improprie (1.12) este divergentă.

Teorema 1.2.1 Integrala improprie (1.12) este convergentă dacă și numai dacă limitele

$$\lim_{u \to a} \int_{u}^{c} h(x)dx, \quad \lim_{t \to b} \int_{c}^{t} h(x)dx \tag{1.15}$$

există și sunt finite. În acest caz, valoarea integralei improprii (1.12) este

$$\int_{a}^{b} h(x)dx = \lim_{\substack{u \to a \\ t \to b}} \int_{u}^{t} h(x)dx. \tag{1.16}$$

Demonstrație. Integralele improprii (1.14) sunt convergente dacă și numai dacă limitele (1.15) există și sunt finite. Pe de altă parte

$$\int_{u}^{t} h(x)dx = \int_{u}^{c} h(x)dx + \int_{c}^{t} h(x)dx.$$
 (1.17)

Trecând la limită în (1.17) pentru $u \to a$ și $t \to b$, din notația

$$\lim_{u \to a} \int_{u}^{c} h(x)dx + \lim_{t \to b} \int_{c}^{t} h(x)dx = \lim_{\substack{u \to a \\ t \to b}} \int_{u}^{t} h(x)dx$$

și Definiția 1.2.8 rezultă concluziile teoremei.

Observația 1.2.2 Studiul integralelor improprii cu limita inferioară punct singular se reduce la studiul celor cu limita superioară punct singular.

Într-adevăr, funcția

$$\tilde{f}: [-b, -a) \to I\!\!R, \qquad -\infty < -b < -a \le +\infty, \qquad \tilde{f}(x) \ = \ g(-x)$$

este integrabilă Riemann pe compactul $[-b, -t] \subset [-b, -a)$ și avem

$$\int_{t}^{b} g(x)dx = \int_{-b}^{-t} g(-u) du = \int_{-b}^{-t} \tilde{f}(u) du.$$
 (1.18)

Trecând la limită pentru $t \to a$ în (1.18), găsim relația

$$\int_{a}^{b} g(x)dx = \int_{-b}^{-a} \tilde{f}(x)dx,$$

care arată că integrala improprie cu limita inferioară punct singular din (1.8) este egală cu o integrală improprie având limita superioară punct singular.

Observația 1.2.3 Este posibil ca întro integrală improprie să existe și alte puncte singulare nesituate în una sau ambele limite de integrare. Astfel, simbolul

$$\int_{a}^{b} \varphi(x)dx \tag{1.19}$$

reprezintă o integrală improprie cu singularitățile în punctele $c_0, c_1, \dots, c_{n-1}, c_n$ unde

$$-\infty \le a = c_0 < c_1 < \dots < c_{n-1} < c_n = b \le +\infty,$$

15

dacă funcția reală de variabilă reală

$$\varphi:(a,b)\setminus\{c_1,c_2,\cdots,c_{n-1}\}\to \mathbb{R}$$

este integrabilă pe orice compact inclus în oricare din intervalele (c_{k-1}, c_k) , $k = \overline{1, n}$.

Dacă toate integralele improprii

$$\int_{c_{k-1}}^{c_k} \varphi(x) dx, \qquad k = \overline{1, n}$$

sunt convergente, atunci integrala improprie (1.19) este convergentă şi

$$\int_{a}^{b} \varphi(x)dx = \sum_{k=1}^{n} \int_{c_{k-1}}^{c_k} \varphi(x)dx.$$

Definiția 1.2.9 Următoarele integrale improprii din funcții mărginite definite pe intervale nemărginite:

$$\int_{a}^{+\infty} f(x)dx; \quad \int_{-\infty}^{a} f(x)dx; \quad \int_{-\infty}^{+\infty} f(x)dx \tag{1.20}$$

se numesc integrale improprii de prima speță sau de tipul întâi.

Conform Observației 1.2.2, oricare din ultimele două integrale improprii (1.20) se reduce la una în care limita superioară de integrare este $+\infty$.

Definiția 1.2.10 Integralele improprii ale funcțiilor nemărginite definite pe intervale mărginite se numesc integrale improprii de a doua speță sau de tipul al doilea.

Aceste integrale au singularități finite situate în una sau ambele limite de integrare. Singularitățile, în număr finit, pot fi situate de asemeni în intervalul finit de integrare (a, b).

Definiția 1.2.11 Integralele improprii de forma (1.12) în care $-\infty < a < b = +\infty$ sau $-\infty = a < b < +\infty$ se numesc integrale improprii de speța a treia.

Observația 1.2.4 O integrală improprie de speța a treia este egală cu suma dintre o integrală improprie de prima speță și o alta de speța a doua.

Exemplul 1.2.1 Integrala improprie de prima speță $\int_0^{+\infty} \sin x dx$ este divergentă.

Într-adevăr,

$$\int_{0}^{+\infty} \sin x dx = \lim_{t \to +\infty} \int_{0}^{t} \sin x dx = 1 - \lim_{t \to +\infty} \cos t$$

Deoarece funcția cosinus nu are limită în punctul de la infinit, rezultă că această integrală improprie de primul tip este divergentă.

Exemplul 1.2.2 Integrala improprie de primul tip cu ambele limite puncte singulare

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$$

este convergentă și valoarea sa este egală cu π .

Într-adevăr, limita din (1.16) există și este finită deoarece

$$\lim_{\substack{t \to +\infty \\ u \to -\infty}} \int_u^t \frac{1}{1+x^2} dx = \lim_{\substack{u \to -\infty \\ t \to +\infty}} (\operatorname{arctg} t - \operatorname{arctg} u) = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi.$$

Prin urmare, această integrală improprie este convergentă și valoarea sa este π .

Exemplul 1.2.3 Integrala improprie de speţa a doua cu ambele limite puncte singulare

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$$

este convergentă, iar valoarea sa este π .

Într-adevăr,

$$\lim_{\substack{u \to -1 \\ t \to 1}} (\arcsin t - \arcsin u) = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi.$$

Acest rezultat, împreună cu Teorema 1.2.1, demonstrează că integrala improprie considerată este convergentă și are valoarea π .

În exemplele următoare sunt prezentate integrale improprii utilizate în criteriile de comparație pentru testarea naturii unor integrale improprii.

Exemplul 1.2.4 Integrala improprie de prima speță

$$I(\alpha) = \int_{a}^{+\infty} \frac{C}{x^{\alpha}} dx,$$
 (1.21)

unde $C \in \mathbb{R}$ şi a > 0 sunt constante date, este convergentă pentru $\alpha > 1$ şi divergentă pentru $\alpha \leq 1$.

Într-adevăr, avem

$$\int_{a}^{t} \frac{C}{x^{\alpha}} dx = \begin{cases} C \ln \frac{t}{a}, & \text{pentru } \alpha = 1 \\ C \frac{t^{1-\alpha} - a^{1-\alpha}}{1-\alpha}, & \text{pentru } \alpha \neq 1 \end{cases}$$

și prin urmare,

$$I(\alpha) = \lim_{t \to +\infty} \int_a^t \frac{C}{x^{\alpha}} dx = \begin{cases} C \frac{a^{1-\alpha}}{\alpha - 1}, & \text{pentru } \alpha > 1 \\ +\infty, & \text{pentru } \alpha \le 1. \end{cases}$$

Rezultatele găsite arată că integrala improprie considerată este convergentă pentru $\alpha>1$ și divergentă pentru $\alpha\leq 1$, iar când este convergentă, valoarea integralei este $\frac{C}{(\alpha-1)a^{1-\alpha}}$.

Exemplul 1.2.5 Integralele improprii de speța a doua:

$$I_1(\alpha) = \int_a^b \frac{1}{(b-x)^{\alpha}} dx; \quad I_2(\alpha) = \int_a^b \frac{1}{(x-a)^{\alpha}} dx,$$
 (1.22)

prima cu limita superioară punct singular, iar a doua cu singularitatea în limita inferioară, sunt convergente pentru $\alpha < 1$ și divergente dacă $\alpha \geq 1$.

Într-adevăr, din

$$\int_{a}^{t} \frac{1}{(b-x)^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha} \left(\frac{1}{(b-a)^{\alpha-1}} - \frac{1}{(b-t)^{\alpha-1}} \right) & \text{dacă} \quad \alpha \neq 1 \\ -\ln(b-t) + \ln(b-a) & \text{dacă} \quad \alpha = 1, \end{cases}$$

prin trecere la limită pentru $t \to b$, obținem

$$\lim_{t \to b} \int_a^t \frac{1}{(b-x)^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha} \cdot \frac{1}{(b-a)^{\alpha-1}}, & \text{dacă} \quad \alpha < 1\\ +\infty, & \text{dacă} \quad \alpha \ge 1, \end{cases}$$

rezultat care demonstrează afirmațiile referitoare la prima integrală. În mod similar se deduce

$$\lim_{u \to a} \int_{u}^{b} \frac{1}{(x-a)^{\alpha}} dx = \begin{cases} +\infty, & \text{dacă} \quad \alpha \ge 1 \\ \frac{1}{1-\alpha} \cdot \frac{1}{(b-a)^{\alpha-1}}. & \text{dacă} \quad \alpha < 1 \end{cases}$$

Din cele deduse mai sus rezultă că în cazul $\alpha < 1$, ambele integrale (1.22) sunt convergente, iar valorile lor sunt

$$I_1(\alpha) = I_2(\alpha) = \frac{1}{1 - \alpha} \cdot \frac{1}{(b - a)^{\alpha - 1}}.$$

Pentru $\alpha \geq 1$, ambele integrale sunt divergente.

1.3 Formula Leibniz-Newton

Teorema 1.3.1 Dacă funcția $f:[a,b) \to \mathbb{R}$, integrabilă Riemann pe orice compact $[a,t] \subset [a,b)$, admite o primitivă continuă $\Phi:[a,b) \to \mathbb{R}$ pentru care există limita în t=b, atunci integrala improprie (1.3) este convergentă și valoarea sa este

$$\int_{a}^{b} f(x)dx = \lim_{t \to b} \Phi(t) - \Phi(a) = \Phi(b) - \Phi(a). \tag{1.23}$$

Demonstrație. Din ipotezele teoremei rezultă că pe orice compact $[a, t] \subset [a, b)$ are loc formula Leibniz-Newton de calcul a unei integrale definite

$$\int_{a}^{t} f(x)dx = \Phi(x)\Big|_{a}^{t} = \Phi(t) - \Phi(a), \quad t \in [a, b).$$
 (1.24)

Din (1.24) și (1.4) rezultă că integrala improprie (1.3) este convergentă dacă și numai dacă există și este finită limita în t=b a funcției Φ . Dacă se introduce notația

$$\lim_{t\to b}\Phi(t)=\Phi(b)=\left\{\begin{array}{ll}\Phi(b-0), & \mathrm{dac} b\in I\!\!R,\\\\ \Phi(+\infty), & \mathrm{dac} b=+\infty,\end{array}\right.$$

rezultă că pentru calculul unei integrale improprii cu limita superioară punct singular se poate utiliza formula (1.23) care se numește formula Leibniz-Newton pentru calculul integralelor improprii.

Formule analoage se pot scrie și pentru integralele improprii cu limita inferioară punct singular sau cu ambele limite de integrare puncte singulare.

Exercițiul 1.3.1 Să se studieze integrala improprie $\int_2^\infty \frac{dx}{x^2 - 2x + 2}$.

Soluție. O primitivă a funcției

$$f:[2,\infty)\to I\!\!R, \quad f(x)=rac{1}{x^2-2x+2}$$

este funcția

$$\Phi: [2,\infty) \to \mathbb{R}, \quad \Phi(x) = \operatorname{arctg}(x-1).$$

Această funcție are limită în $+\infty$ și limita $\Phi(\infty) = \frac{\pi}{2}$. Conform Teoremei 1.3.1, rezultă că valoarea integralei improprii este

$$\int_{2}^{\infty} \frac{dx}{x^{2} - 2x + 2} = \Phi(\infty) - \Phi(2) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

1.4 Proprietăți ale integralelor improprii

Având în vedere (1.4), deducem că proprietățile integralelor improprii decurg din cele ale integralelor definite.

Teorema 1.4.1 Mulțimea funcțiilor integrabile în sens generalizat pe [a, b) este un spațiu liniar real.

Demonstrație. Fie $f_1:[a,b)\to \mathbb{R}$ și $f_2:[a,b)\to \mathbb{R}$ funcții integrabile în sens generalizat și λ_1, λ_2 numere reale arbitrare. Pe compactul $[a,t]\subset [a,b)$ are loc egalitatea

$$\int_a^t (\lambda_1 f_1 + \lambda_2 f_2) dx = \lambda_1 \int_a^t f_1(x) dx + \lambda_2 \int_a^t f_2(x) dx.$$

Trecând la limită în această egalitate, constatăm că funcția $\lambda_1 f_1 + \lambda_2 f_2$: $[a,b) \to \mathbb{R}$ este integrabilă în sens generalizat și valoarea integralei improprii a acestei funcții pe intervalul [a,b) este

$$\int_a^b (\lambda_1 f_1 + \lambda_2 f_2) dx = \lambda_1 \int_a^b f_1(x) dx + \lambda_2 \int_a^b f_2(x) dx.$$

Acest rezultat demonstrează teorema.

Teorema 1.4.2 Dacă integralele improprii cu limita superioară punct singular

$$\int_{a}^{b} f_{1}(x)dx, \quad \int_{a}^{b} f_{2}(x)dx \tag{1.25}$$

sunt convergente și

$$f_1(x) \le f_2(x), \quad x \in [a, b),$$
 (1.26)

atunci are loc inegalitatea

$$\int_{a}^{b} f_1(x)dx \leq \int_{a}^{b} f_2(x)dx. \tag{1.27}$$

Demonstrație. Inegalitatea (1.26) și o proprietate a integralei definite implică

$$\int_{a}^{t} f_1(x)dx \le \int_{a}^{t} f_2(x)dx,$$

de unde, după trecerea la limită pentru $t \to b$ şi folosirea faptului că integralele improprii (1.25) sunt convergente, rezultă (1.27).

Teorema 1.4.3 Dacă una din integralele improprii (1.25) este convergentă și cealaltă este divergentă, suma lor este divergentă.

Demonstrație. Presupunând prin absurd că suma integralelor improprii (1.25) este integrală improprie convergentă, conform Teoremei 1.4.1, diferența dintre această sumă și integrala improprie convergentă este o integrală improprie convergentă, fapt ce contrazice ipoteza.

Observația 1.4.1 Dacă integralele improprii (1.25) sunt divergente, suma lor poate fi o integrală improprie divergentă sau convergentă.

Într-adevăr, integralele improprii de speța întâi:

$$\int_0^{+\infty} \frac{1}{x+1} dx; \quad \int_0^{+\infty} \frac{-1}{x+2} dx$$

sunt divergente dar suma lor

$$\int_0^{+\infty} \frac{1}{x^2 + 3x + 2} dx = \int_0^{+\infty} \frac{1}{x + 1} dx + \int_0^{+\infty} \frac{-1}{x + 2} dx$$

este convergentă căci

$$\int_0^{+\infty} \frac{1}{x^2 + 3x + 2} dx = \lim_{t \to +\infty} \left(\int_0^t \frac{1}{x + 1} dx + \int_0^t \frac{-1}{x + 2} dx \right) =$$

$$= \lim_{t \to +\infty} \left(\ln \frac{x + 1}{x + 2} \right) \Big|_0^t = \lim_{t \to +\infty} \ln \frac{t + 1}{t + 2} + \ln 2 = \ln 2,$$

valoarea sa fiind ln 2.

Considerând integralele improprii $\int_0^\infty \sin^2 x dx$ şi $\int_0^\infty \cos^2 x dx$, ambele divergente după cum se constată simplu folosind Definiția 1.2.2, suma lor, $\int_0^\infty dx$, este o integrală improprie divergentă.

Prin urmare, suma a două integrale improprii divergente poate fi sau o integrală improprie convergentă sau una divergentă.

1.5 Reducerea integralelor improprii la şiruri şi serii numerice

Convergența unei integrale improprii cu limita superioară punct singular se poate reduce la convergența unui șir numeric sau a unei serii de numere reale. Pentru aceasta este suficient să aplicăm definiția cu șiruri a limitei în punctul t=b a funcției

$$F(t) = \int_{a}^{t} f(x)dx \tag{1.28}$$

de a cărei valoare depinde natura integralei improprii cu limita superioară punct singular

$$\int_{a}^{b} f(x)dx. \tag{1.29}$$

Observația 1.5.1 Reamintim că funcția F(t) are limită finită în punctul t=b dacă și numai dacă oricare ar fi șirul de numere reale $(t_n)_{n\geq 0}$, cu proprietățile

$$t_0 = a, \quad a < t_n < b, \quad \lim_{n \to +\infty} t_n = b,$$
 (1.30)

şirul numeric $(F(t_n))$ are limită finită şi această limită nu depinde de alegerea şirului (t_n) .

Teorema 1.5.1 Integrala improprie (1.29) este convergentă dacă și numai dacă pentru orice șir de puncte $(t_n)_{n\geq 0}$, cu proprietățile (1.30), șirul numeric

$$\left(\int_{a}^{t_{n}} f(x)dx\right)_{n\geq 1} \tag{1.31}$$

este convergent la aceeași limită finită. Dacă integrala improprie (1.29) este convergentă, limita șirului de numere reale (1.31) este egală cu valoarea integralei improprii.

Demonstrație. Termenul general al șirului (1.31) este valoarea în t_n a funcției F din (1.28).

Concluziile teoremei rezultă din Observația 1.5.1.

Observația 1.5.2 Termenii șirului (1.30) sunt sumele parțiale ale seriei numerice

$$\sum_{n=1}^{+\infty} \int_{t_{n-1}}^{t_n} f(x) dx. \tag{1.32}$$

Teorema 1.5.2 Condiția necesară și suficientă ca integrala improprie cu limita superioară punct singular (1.29) să fie convergentă este ca pentru orice alegere a șirului de puncte (1.30), seria numerică (1.32) să fie convergentă, iar suma sa să fie independentă de alegerea particulară a șirului. Dacă integrala (1.29) este convergentă, atunci valoarea sa este suma seriei (1.32).

Observația 1.5.3 Dacă funcția f schimbă de semn de o infinitate de ori pe intervalul [a,b), convergența seriei numerice (1.32) pentru o anumită alegere a șirului de puncte (1.30) nu implică, în caz general, convergența integralei improprii (1.29) cu limita superioară punct singular.

23

Într-adevăr, integrala improprie de speța întâi din Exemplul 1.2.1 este divergentă deși seria

$$\sum_{n=0}^{+\infty} \int_{2\pi n}^{2\pi(n+1)} \sin x dx$$

este convergentă deoarece toți termenii sunt egali cu zero.

Teorema 1.5.3 Integrala improprie cu limita superioară punct singular a unei funcții $f:[a,b) \to \mathbb{R}$ care păstrează semn constant pe [a,b) este convergentă dacă și numai dacă seria numerică (1.32) converge pentru cel puțin o alegere a unui șir monoton crescător de tipul (1.30).

Demonstrație. Prima parte a teoremei rezultă din teorema precedentă.

Să demonstrăm că are loc și reciproca teoremei.

În acest sens să presupunem că $f(x) \ge 0$ pentru toate valorile lui $x \in [a, b)$ și că seria numerică (1.32) este convergentă pentru un șir de puncte monoton crescător de tipul (1.30). Atunci șirul sumelor parțiale al seriei este monoton crescător și tinde la o limită finită J care este suma seriei.

Vom demonstra că pentru orice altă alegere a șirului de puncte

$$(t'_m)_{m \ge 0}, \quad t'_0 = a, \quad a < t'_m < b, \quad \lim_{m \to +\infty} t'_m = b,$$

seria numerică corespunzătoare

$$\sum_{m=1}^{+\infty} \int_{t'_{m-1}}^{t'_{m}} f(x)dx \tag{1.33}$$

este convergentă și suma sa este egală cu J.

Pentru a demonstra aceasta vom folosi sumele parţiale ale seriilor (1.32) şi (1.33). Deoarece J este totodată limita superioară a şirului sumelor parţiale ale seriei (1.32), rezultă că pentru orice $\varepsilon > 0$ există t_{n_0} astfel încât să aibă loc inegalitatea

$$J - \varepsilon < \int_{a}^{t_{n_0}} f(x) dx < J.$$

Să alegem numărul natural m_0 astfel încât pentru toți $m \geq m_0$ să fie satisfăcută inegalitatea $t'_m \geq t_{n_0}$. Apoi, pentru orice t'_m există $t_{n_m} > t'_m$ și prin urmare, inegalitatea

$$J - \varepsilon < \int_{a}^{t_{n_0}} f(x)dx \le \int_{a}^{t'_m} f(x)dx \le \int_{a}^{t_{n_m}} f(x)dx \le J$$

are loc pentru toți $m \ge m_0$, deoarece f este funcție nenegativă. În consecință

$$\lim_{m \to +\infty} \int_{a}^{t'_{m}} f(x)dx = J,$$

care, în baza Teoremei 1.5.1, arată că integrala improprie cu limita superioară punct singular a unei funcții pozitive pe intervalul de integrare este convergentă.

Exemplul 1.5.1 Integrala improprie $\int_{1}^{\infty} f(x)dx$, unde

$$f(x) = \begin{cases} 2^n & pentru & n \le x \le n + \frac{1}{2^{2n}}, & n \in \mathbb{N}^* \\ 0 & pentru & n + \frac{1}{2^{2n}} < x < n + 1, & n \in \mathbb{N}^* \end{cases}$$
(1.34)

este convergentă și are valoarea 1.

Soluție. Aplicând Teorema 1.5.3 pentru alegerea lui $t_n = n$, găsim

$$\int_{1}^{+\infty} f(x)dx = \sum_{n=1}^{+\infty} \int_{n}^{n+1} f(x)dx = \sum_{n=1}^{+\infty} \frac{1}{2^{n}} = 1$$

ceea ce arată că integrala improprie de speța întâi

$$\int_{1}^{+\infty} f(x)dx,$$

unde f este funcția (1.34), este convergentă și are valoarea 1.

Observația 1.5.4 Exemplul de mai sus arată că chiar dacă funcția f este nenegativă faptul că integrala improprie de prima speță

$$\int_{a}^{+\infty} f(x)dx$$

este convergentă nu atrage că $f(x) \to 0$ când $x \to +\infty$.

Întradevăr, folosind criteriul de nonexistență a limitei unei funcții întrun punct, rezultă că că funcția definită prin (1.34) nu are limită în punctul de la infinit.

1.6 Criteriul integral al lui Cauchy

Teorema 1.6.1 Dacă funcția $f:[1,+\infty)\to I\!\!R$, integrabilă Riemann pe orice compact $[1,t]\subset [1,\infty)$, este pozitivă și descrescătoare, atunci seria $\sum_{n=1}^{+\infty} f(n)$ și integrala improprie de speța întâi $\int_1^{+\infty} f(x)dx$ au aceeași natură.

Demonstrație. Deoarece f este funcție descrescătoare pe intervalul $[1, +\infty)$ avem

$$f(k+1) \le f(x) \le f(k), \ x \in [k, k+1], \ k \in \mathbb{N}^*$$

și deci, după integrarea pe compactul [k, k+1],

$$f(k+1) \le \int_{k}^{k+1} f(x)dx \le f(k), \ k \in \mathbb{N}^*.$$
 (1.35)

Sumând inegalitățile (1.35) după $k = \overline{1, n}$, obținem

$$\sum_{k=1}^{n} f(k+1) \le \int_{1}^{n+1} f(x) dx \le \sum_{k=1}^{n} f(k),$$

adică,

$$s_{n+1} - f(1) \le \int_{1}^{n+1} f(x)dx \le s_n,$$
 (1.36)

unde $s_n = \sum_{k=1}^n f(k)$ este suma parțială de ordin n a seriei numerice

$$\sum_{n=1}^{+\infty} f(n). \tag{1.37}$$

Din (1.36) rezultă că șirul sumelor parțiale (s_n) a seriei (1.37) este mărginit dacă și numai dacă șirul de puncte

$$\left(\int_{1}^{n} f(x)dx\right) \tag{1.38}$$

este mărginit. Fiind și monoton crescător, rezultă că șirul (s_n) este convergent, adică seria numerică $\sum_{n=1}^{+\infty} f(n)$ este convergentă dacă și numai dacă șirul (1.38) este convergent, adică dacă și numai dacă integrala improprie de primul tip $\int_{1}^{+\infty} f(x)dx$ este convergentă.

Exemplul 1.6.1 Seria numerică cu termeni pozitivi

$$\sum_{n=2}^{+\infty} \frac{1}{n \ln^{\alpha} n}, \ \alpha > 0,$$

este convergentă pentru $\alpha > 1$ și divergentă pentru $\alpha \in (0,1]$.

Soluție. Se aplică criteriul integral al lui Cauchy, unde funcția f este

$$f(x) = \frac{1}{x \ln^{\alpha} x}, \ \alpha > 0, \ x \in [2, +\infty).$$

Integrala improprie de care avem nevoie pentru a aplica criteriul este

$$\int_{2}^{+\infty} \frac{dx}{x \ln^{\alpha} x} = \int_{2}^{+\infty} \frac{d(\ln x)}{\ln^{\alpha} x} = \int_{\ln 2}^{+\infty} \frac{du}{u^{\alpha}}.$$

Ultima integrală este de tipul (1.21) în care $a = \ln 2$ şi C = 1. Prin urmare, integrala este convergentă pentru $\alpha > 1$ şi divergentă când $\alpha \le 1$. Conform criteriului integral al lui Cauchy, seria este convergentă pentru $\alpha > 1$ şi divergentă pentru $\alpha \in (0,1]$.

1.7 Metode de calcul ale integralelor improprii

Plecând de la observația că o integrală improprie se definește ca limită a unei integrale definite și că pentru calculul acesteia din urmă se pot utiliza metode ca schimbarea de variabilă și integrarea prin părți, este natural să punem problema dacă aceste tehnici de calcul nu sunt aplicabile și integralelor improprii.

1.7.1 Schimbarea de variabilă în integrala improprie

Teorema 1.7.1 Dacă $f:[a,b) \to \mathbb{R}$, $-\infty < a < b \le +\infty$, este o funcție integrabilă Riemann pe orice compact $[a,t] \subset [a,b)$ și

$$\tau \mapsto x = \varphi(\tau) \in I\!\!R, \quad \tau \in [\alpha,\beta), \quad -\infty < \alpha < \beta \le +\infty,$$

27

este o funcție strict crescătoare cu derivată continuă pe $[\alpha, \beta)$ care satisface condițiile:

$$a = \varphi(\alpha); \quad \lim_{\tau \to \beta} \varphi(\tau) = b,$$
 (1.39)

atunci integralele improprii:

$$\int_{a}^{b} f(x)dx; \quad \int_{\alpha}^{\beta} f(\varphi(\tau)) \cdot \varphi'(\tau) d\tau$$

au aceeași natură. Dacă una din ele este convergentă, atunci are loc egalitatea

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(\tau)) \cdot \varphi'(\tau) d\tau$$

care se numește formula schimbării de variabilă în integrala improprie.

Demonstrație. Fie $t \in [a,b)$ și $u = \varphi^{-1}(t)$. Ținând cont că intervalul compact $[\alpha,u] \subset [\alpha,\beta)$ este corespondentul prin aplicația φ^{-1} a compactului $[a,t] \subset [a,b)$, prin aplicarea formulei schimbării de variabilă în integrala definită, obținem

$$\int_{a}^{t} f(x)dx = \int_{\alpha}^{u} f(\varphi(\tau)) \cdot \varphi'(\tau) d\tau. \tag{1.40}$$

Din proprietățile funcției φ rezultă că

$$\lim_{t \to b} \varphi^{-1}(t) = \beta. \tag{1.41}$$

Definiția integralei improprii și egalitățile (1.40), (1.41) demonstrează teorema.

Observația 1.7.1 Teorema se extinde ușor la celelalte tipuri de integrale improprii prezentate în primul paragraf.

Observația 1.7.2 Funcția φ care realizează schimbarea de variabilă întro integrală improprie poate fi strict descrescătoare, derivabilă și cu derivată continuă pe $(\alpha, \beta]$. În acest caz, condițiile (1.39) devin

$$a = \varphi(\beta); \quad \lim_{\tau \to \alpha} \varphi(\tau) = b,$$

iar formula schimbării de variabilă este

$$\int_{a}^{b} f(x)dx = -\int_{\alpha}^{\beta} f(\varphi(\tau)) \cdot \varphi'(\tau) d\tau.$$

Observația 1.7.3 Este posibil ca în urma unei schimbări de variabilă o integrală improprie să treacă întro integrală proprie și reciproc.

Exemplul 1.7.1 Să se calculeze integrala

$$I = \int_{-1}^{1} \frac{\cos(y \arcsin x)}{\sqrt{1 - x^2}} dx,$$

unde y este un număr real pozitiv.

Soluție. Pentru fiecare y > 0, funcția

$$f: (-1,1) \to IR, \quad f(x) = \frac{\cos(y \arcsin x)}{\sqrt{1-x^2}}, \quad x \in (-1,1),$$

este continuă, ca atare este integrabilă Riemann pe orice compact $[u,t] \subset (-1,1)$ și putem spune că I este o integrală improprie cu ambele limite de integrare puncte singulare. Funcția

$$\varphi: (-\pi/2, \pi/2) \to (-1, 1), \quad x = \varphi(\tau) = \sin \tau$$

satisface condițiile cerute de formula schimbării de variabilă în integrala improprie, iar

$$\lim_{\tau \to -\pi/2} \varphi(\tau) = -1, \quad \lim_{\tau \to \pi/2} \varphi(\tau) = 1.$$

Aplicarea formulei schimbării de variabilă conduce la

$$I = \int_{-1}^{1} \frac{\cos(y \arcsin x)}{\sqrt{1 - x^2}} dx = \int_{-\pi/2}^{\pi/2} \cos y\tau \, d\tau = \frac{1}{y} \sin y\tau \Big|_{-\pi/2}^{\pi/2} = \frac{2}{y} \sin \frac{\pi y}{2}.$$

Schimbarea de variabilă folosită a transformat integrala improprie cu ambele limite de integrare puncte singulare în integrală definită (proprie).

Exemplul 1.7.2 Să se calculeze integrala definită

$$J = \int_0^{2\pi} \frac{dx}{\sin^4 x + \cos^4 x}.$$

Soluție. Deoarece integrantul este funcție periodică de perioadă $\frac{\pi}{2}$, avem

$$J = 4 \int_0^{\frac{\pi}{2}} \frac{dx}{\sin^4 x + \cos^4 x} = \int_0^{\frac{\pi}{2}} f(x) dx.$$
 (1.42)

Efectuăm schimbarea de variabilă t
g $x=\tau.$ Prin urmare, funcțiile φ și
 φ' sunt

$$\varphi, \varphi' : [0, +\infty) \to \mathbb{R}, \quad \varphi(\tau) = \arctan \tau, \quad \varphi'(\tau) = \frac{1}{1 + \tau^2}.$$

Prin această schimbare de variabilă, intervalul finit de integrare $[0, \frac{\pi}{2}]$ se transformă în intervalul infinit $[0, +\infty)$ și

$$\cos^2 x = \frac{1}{1+\tau^2}; \quad \sin^2 x = \frac{\tau^2}{1+\tau^2}; \quad f(\varphi(\tau)) \varphi'(\tau) = 4\frac{1+\tau^2}{1+\tau^4}.$$

Folosind schimbarea de variabilă menționată, integrala proprie (1.42) devine integrala improprie de speța întâi dintr—o funcție rațională

$$J = 4 \int_0^{+\infty} \frac{1+\tau^2}{1+\tau^4} d\tau. \tag{1.43}$$

Funcția de integrat din (1.43) se descompune în fracțiile simple

$$\frac{4(1+\tau^2)}{1+\tau^4} = \frac{2}{\tau^2 + \tau\sqrt{2} + 1} + \frac{2}{\tau^2 - \tau\sqrt{2} + 1},$$

iar aceste fracții simple admit ca primitive funcțiile

$$2\sqrt{2} \operatorname{arctg} (\tau \sqrt{2} + 1), \quad 2\sqrt{2} \operatorname{arctg} (\tau \sqrt{2} - 1)$$

care au limite finite în $\tau = +\infty$ și fiecare din aceste limite este egală cu $\frac{\pi}{2}$.

Prin urmare aplicând formula Leibniz-Newton (1.23), se găseste că val

Prin urmare, aplicând formula Leibniz–Newton (1.23), se găsește că valoarea integralei proprii J este $J=\pi\sqrt{8}$.

Observația 1.7.4 Studiul naturii unei integrale improprii pe un interval mărginit dintr-o funcție nemărginită (integrală improprie de speța a doua) se reduce la studiul naturii unei integrale improprii pe un interval nemărginit.

Într-adevăr, schimbarea de variabilă

$$x = \varphi(\tau) = \frac{b\tau + a}{\tau + 1} \implies \tau = \varphi^{-1}(x) = \frac{x - a}{b - x},$$

efectuată în integrala improprie de speța a doua cu limita superioară punct singular din funcția f conduce la integrala improprie de speța întâi

$$\int_{a}^{b} f(x)dx = (b-a) \int_{0}^{+\infty} f\left(\frac{b\tau + a}{\tau + 1}\right) \frac{d\tau}{(\tau + 1)^{2}}$$

fapt care este evident.

Conform acestei observații, mai departe se pot studia doar integralele improprii de speța întâi.

1.7.2 Integrarea prin părți în integrala improprie

Teorema 1.7.2 Dacă funcțiile

$$u, v : [a, b) \to \mathbb{R}, \quad -\infty < a < b \le +\infty,$$

admit derivate continue pe [a,b), iar limita $\lim_{x\to b} u(x)v(x)$, notată cu

$$\lim_{x \to b} u(x)v(x) = u(b)v(b),$$

există și este finită, atunci integralele improprii

$$\int_{a}^{b} u(x)v'(x)dx, \quad \int_{a}^{b} u'(x)v(x)dx \tag{1.44}$$

au aceeași natură. Dacă una din integralele (1.44) este convergentă, atunci are loc egalitatea

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx, \tag{1.45}$$

care se numește formula integrării prin părți în integrala improprie.

Demonstrație. În ipotezele teoremei, are loc formula integrării prin părți pe compactul $[a, t] \subset [a, b)$

$$\int_{a}^{t} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{t} - \int_{a}^{t} u'(x)v(x)dx.$$
 (1.46)

Trecând la limită pentru $t \to b$ în (1.46), rezultă că integralele improprii (1.44) au aceeşi natură şi, în plus, are loc (1.45).

Exercițiul 1.7.1 Să se calculeze următoarele integrale improprii de speța a doua

$$I = \int_0^{\pi/2} \ln \sin x dx, \qquad J = \int_0^{\pi/2} \ln \cos x dx. \tag{1.47}$$

Soluţie. Prima integrală are limita inferioară punct singular iar cea de a doua are singularitatea în limita superioară, ambele singularități fiind înțelese în sensul că funcția de integrat este nemărginită în vecinătăți ale acestor limite de integrare.

Integrarea prin părți a primei integrale conduce la

$$\int_0^{\pi/2} \ln \sin x dx = -\int_0^{\pi/2} \frac{x}{\operatorname{tg} x} dx. \tag{1.48}$$

De remarcat că integrala din membrul doi al relației (1.48) este proprie căci funcția de integrat $\frac{x}{\operatorname{tg} x}$ este continuă pe intervalul $(0, \pi/2)$ și are limite finite în extremități, deci este prelungibilă prin continuuitate la compactul $[0, \pi/2]$. Acest rezultat arată că integrala improprie I este convergentă. La fel se demonstrează că și J este integrală improprie convergentă.

Integralele I și J sunt egale deoarece după efectuarea substituției $x = \pi/2 - t$ în prima integrală se obține cea de a doua integrală. Apoi,

$$2I = I + J = \int_0^{\pi/2} \ln \frac{\sin 2x}{2} = -\frac{\pi}{2} \ln 2 + \int_0^{\pi/2} \ln \sin 2x dx.$$
 (1.49)

Efectuând schimbarea de variabilă 2x = u în ultima integrală din (1.49), obținem

$$\int_0^{\pi/2} \ln \sin 2x dx = \frac{1}{2} \int_0^{\pi} \ln \sin u du.$$
 (1.50)

Pe de altă parte, proprietatea de aditivitate în raport cu intervalul de integrare a integralei definite conduce la

$$\int_0^{\pi} \ln \sin u du = \int_0^{\pi/2} \ln \sin u du + \int_{\pi/2}^{\pi} \ln \sin u du.$$
 (1.51)

Dacă în ultima integrală din (1.51) efectuăm schimbarea de variabilă $u = \pi - x$, găsim

$$\int_{\pi/2}^{\pi} \ln \sin u \, du = -\int_{\pi/2}^{0} \ln \sin x \, dx = \int_{0}^{\pi/2} \ln \sin x \, dx = I. \tag{1.52}$$

Din (1.49), (1.50) şi (1.52) deducem

$$2I = I - \frac{\pi}{2} \ln 2$$

din care, ținând cont și de faptul că I=J, avem în final

$$\int_0^{\pi/2} \ln \sin x dx = \int_0^{\pi/2} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$
 (1.53)

Aşadar, valoarea comună a celor două integrale considerate este $\frac{\pi}{2} \ln 2$.

Exercițiul 1.7.2 Pornind de la integrala I din (1.47) și folosind cele două metode de calcul ale integralelor improprii, să se determine valoarea integralei

$$\int_0^1 \frac{\arcsin x}{x} dx.$$

Soluție. Schimbarea de variabilă $\sin x = t$ în integrala I din (1.47) arataă că

$$\int_0^{\pi/2} \ln \sin x dx = \int_0^1 \frac{\ln t}{\sqrt{1 - t^2}} dt = \int_0^1 (\ln t) (\arcsin t)' dt,$$

iar integrarea prin părți în ultima integrală conduce la

$$\int_0^1 \frac{\ln t}{\sqrt{1-t^2}} dt = (\ln t)(\arcsin t)\Big|_0^1 - \int_0^1 \frac{\arcsin t}{t} dt.$$
 (1.54)

Folosind (1.53) şi (1.54) se găseşte

$$\int_0^1 \frac{\arcsin t}{t} \, dt = \frac{\pi}{2} \ln 2,$$

cu mențiunea că integrala a cărei valoare am determinat—o este proprie, singularitatea în origine fiind aparentă deoarece funcția continuă $t\mapsto \frac{\arcsin t}{t}$, $t\in(0,1]$ poate fi prelungită prin continuitate la compactul [0,1].

1.8 Testul lui Cauchy de convergență a integralelor improprii

Convergența unei integrale improprii cu limita superioară punct singular

$$\int_{a}^{b} f(x)dx = \lim_{t \to b} F(t) = \lim_{t \to b} \int_{a}^{t} f(x)dx$$
 (1.55)

este echivalentă cu existența limitei în punctul t=b a funcției F. Conform teoremei Bolzano–Cauchy, care asigură existența limitei finite într-un punct de acumulare a domeniului de definiție a unei funcții reale de variabilă reală, funcția F are limită finită în punctul t=b dacă și numai dacă pentru orice $\varepsilon>0$ există $b(\varepsilon)\in [a,b)$ astfel încât

$$|F(t') - F(t'')| < \varepsilon$$
 $(\forall) \ t' \in (b(\varepsilon), b)$ si $(\forall) \ t'' \in (b(\varepsilon), b)$. (1.56)

Teorema 1.8.1 (Testul lui Cauchy de convergență al unei integrale improprii cu limita superioară punct singular) Integrala improprie (1.55) este convergentă dacă și numai dacă pentru orice $\varepsilon > 0$ există $b(\varepsilon) \in [a,b)$ astfel încât inegalitatea

$$\left| \int_{t'}^{t''} f(x) dx \right| < \varepsilon \tag{1.57}$$

are loc pentru orice $t', t'' \in (b(\varepsilon), b)$.

Demonstrație. Convergența integralei improprii (1.55) este stabilită de comportarea valorilor funcției

$$F:[a,b)\to \mathbb{R}, \quad F(t)=\int_a^t f(x)dx$$
 (1.58)

în vecinătatea punctului t=b. Aplicând teorema lui Bolzano–Cauchy în care funcția F este (1.58), din (1.55) și (1.56) rezultă concluzia teoremei.

Observația 1.8.1 Inegalitatea (1.57) este echivalentă cu condiția

$$\lim_{\substack{t' \to b \\ t'' \to b}} \int_{t'}^{t''} f(x) dx = 0. \tag{1.59}$$

Exercițiul 1.8.1 Folosind testul de convergență al lui Cauchy să se demonstreze că integrala improprie de speța întâi cu limita superioară punct singular

$$I = \int_0^{+\infty} \frac{\sin x}{x} dx \tag{1.60}$$

este convergentă. Această integrală se numește integrala lui Dirichlet.

Soluţie. Să remarcăm întâi că singularitatea în limita inferioară a acestei integrale este aparentă căci funcția

$$f_1: (0, +\infty) \to \mathbb{R}, \quad f_1(x) = \frac{\sin x}{x}, \quad x > 0,$$
 (1.61)

poate fi prelungită prin continuitate luând pe 1 ca valoare în x = 0 a funcției f, prelungirea prin continuuitate a funcției f_1 . Valoarea în x = 0 a funcției f este limita în origine a funcției f_1 din (1.61).

Atunci funcția

$$f:[0,+\infty) \to I\!\!R, \quad f(x) = \left\{ egin{array}{ll} \dfrac{\sin x}{x} & {
m pentru} & x>0, \\ 1 & {
m pentru} & x=0. \end{array} \right.$$

este continuă pe întreg domeniu de definiție deci se poate vorbi de integrala improprie (1.60).

Evaluarea integralei de tipul (1.59) folosind metoda integrării prin părți conduce la

$$\int_{t'}^{t''} \frac{\sin x}{x} dx = \frac{\cos t'}{t'} - \frac{\cos t''}{t''} - \int_{t'}^{t''} \frac{\cos x}{x^2} dx.$$

Prin urmare,

$$\left| \int_{t'}^{t''} \frac{\sin x}{x} dx \right| \le \frac{1}{t'} + \frac{1}{t''} + \left| \int_{t'}^{t''} \frac{|\cos x|}{x^2} dx \right| \le \frac{1}{t'} + \frac{1}{t''} + \left| \int_{t'}^{t''} \frac{dx}{x^2} \right| \le \frac{2}{t'} + \frac{2}{t''} \to 0$$

pentru $t' \to +\infty$ şi $t'' \to +\infty$. Deci, în baza părții a doua a testului lui Cauchy de convergență a unei integrale improprii, integrala improprie de speța întâi (1.60) este convergentă. Mai târziu vom vedea că valoarea integralei lui Dirichlet este $\frac{\pi}{2}$.

De remarcat că aplicarea testului lui Cauchy la o integrală improprie concretă este laborioasă, în schimb, în multe aplicații, acest test este folosit pentru stabilirea unor condiții suficiente (criterii) de convergență.

Criteriile de convergență pe care le vom demonstra se vor referi la integrale improprii cu limita superioară punct singular, și aceasta pentru că studiul oricărui alt tip de integrală improprie, printr—o schimbare de variabilă adecvată, se reduce la studiul uneia cu singularitatea în limita superioară.

Înainte de a trece la prezentarea acestor criterii vom introduce noțiunea de *integrală improprie absolut convergentă* care este asemănătoare noțiunii de serie numerică absolut convergentă.

1.9 Integrale improprii absolut convergente

Definiția 1.9.1 Fie $f:[a,b) \to \mathbb{R}$ o funcție integrabilă în sens generalizat pe intervalul [a,b) și integrala improprie cu limita superioară punct singular

$$\int_{a}^{b} f(x)dx. \tag{1.62}$$

Integrala improprie (1.62) se numește absolut convergentă dacă integrala improprie

$$\int_{a}^{b} |f(x)| dx \tag{1.63}$$

este convergentă.

Teorema 1.9.1 Dacă integrala improprie (1.62) este absolut convergentă, atunci ea este convergentă.

Demonstrație. Într-adevăr, integrala (1.63) fiind convergentă, rezultă că pentru $\varepsilon > 0$ există $b(\varepsilon)$ astfel încât să avem

$$\left| \int_{t'}^{t''} |f(x)| dx \right| < \varepsilon, \ (\forall) \ t', t'' > b(\varepsilon). \tag{1.64}$$

Însă, întotdeauna avem

$$\left| \int_{t'}^{t''} f(x)dx \right| \le \left| \int_{t'}^{t''} |f(x)|dx \right|. \tag{1.65}$$

Inegalitățile (1.64) și (1.65) implică

$$\left| \int_{t'}^{t''} f(x) dx \right| \le \left| \int_{t'}^{t''} |f(x)| dx \right| < \varepsilon \ (\forall) \ t', t'' > b(\varepsilon).$$

Fiind îndeplinite condițiile testului lui Cauchy pentru integrala improprie (1.62), aceasta este convergentă și teorema este demonstrată.

Observația 1.9.1 Convergența integralei improprii (1.62) nu implică convergența absolută a sa, cu alte cuvinte reciproca Teoremei 1.9.1 nu este adevărată.

Pentru a justifica această afirmație este suficient să dăm un exemplu. Folosind testul de convergență al lui Cauchy s-a demonstrat că integrala improprie de speța întâi (1.60) este convergentă. Demonstrăm că integrala modulului

$$\int_0^{+\infty} \frac{|\sin x|}{x} dx$$

este divergentă. Pentru aceasta este suficient să arătăm că seria numerică

$$\sum_{n=0}^{+\infty} \int_{\pi n}^{\pi(n+1)} \frac{|\sin x|}{x} dx \tag{1.66}$$

este divergentă fapt ce se poate constata prin aplicarea criteriului de comparație pentru seriile numerice cu termeni pozitivi. Întradevăr, pentru $n \geq 1$, avem

$$\int_{\pi n}^{\pi(n+1)} \frac{|\sin x|}{x} dx \ge \frac{1}{\pi(n+1)} \Big| \int_{\pi n}^{\pi(n+1)} \sin x dx \Big| = \frac{2}{\pi(n+1)}, \tag{1.67}$$

iar seria numerică cu termeni pozitivi

$$\sum_{n=1}^{+\infty} \frac{2}{\pi n} = \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{n}$$
 (1.68)

este divergentă de
oarece diferă de seria armonică prin factorul constant
 $\frac{2}{\pi}.$

Divergența seriei numerice (1.68) și inegalitatea (1.67), împreună cu criteriul de comparație pentru seriile numerice cu termeni pozitivi, atrage divergența seriei numerice (1.66).

37

Definiția 1.9.2 Integrala improprie (1.62) se numește semiconvergentă sau simplu convergentă dacă ea este convergentă dar nu este absolut convergentă.

Observația 1.9.2 O integrală improprie se poate plasa în unul din cazurile: integrală improprie semiconvergentă; integrală improprie absolut convergentă; integrală improprie divergentă.

Observația 1.9.3 Integrala improprie cu limita superioară punct singular (1.62) este absolut convergentă dacă și numai dacă integrala improprie

$$\int_{a_1}^b f(x)dx,\tag{1.69}$$

unde $a < a_1 < b$, este absolut convergentă.

Într-adevăr, dacă una din integralele improprii (1.62) și (1.69) este absolut convergentă, în baza Definiției 1.9.1 și a testului de convergență al lui Cauchy, avem

$$\int_{t'}^{t''} |f(x)| dx \to 0 \quad \text{pentru} \quad t', t'' \to b. \tag{1.70}$$

Dar relația (1.70) este condiție necesară și suficientă de convergență și pentru cealaltă integrală improprie din cele două menționate mai sus.

Exemplul 1.9.1 (Un exemplu de integrală semiconvergentă) Pe segmentul $[n-1,n] \subset \mathbb{R}$ ca bază, se construiește triunghiul isoscel T_n , de arie $\frac{1}{n}$, cu vârful în sus sau în jos, după cum n este număr întreg pozitiv impar sau par. Mulțimea laturilor egale ale triunghiurilor

$$T_0, T_1, T_2, \cdots, T_n, \cdots$$

constituie graficul unei funcții f continue pentru x>0. Să se arate că integrale improprie de prima speță

$$\int_0^{+\infty} f(x)dx$$

este convergentă, în timp ce integrala

$$\int_0^{+\infty} |f(x)| dx$$

este divergentă.

Soluţie. Să considerăm un număr pozitiv x cu proprietatea că partea sa întreagă este n-1. Dacă n este par, putem scrie

$$\int_0^n f(t)dt \le \int_0^x f(t)dt \le \int_0^{n-1} f(t)dt.$$

Dacă n este impar, avem inegalitățile contrarii

$$\int_0^{n-1} f(t)dt \le \int_0^x f(t)dt \le \int_0^n f(t)dt.$$

Dar, din interpretarea geometrică a integralei Riemann, avem

$$\int_0^{n-1} f(t)dt = \sum_{k=1}^{n-1} (-1)^{k-1} \frac{1}{k}.$$

dacă $x \to +\infty$, atunci $n \to +\infty$, iar

$$\sum_{k=1}^{+\infty} (-1)^{k-1} \frac{1}{k} = \ln 2,$$

deci integrala improprie $\int_0^{+\infty} f(x)dx$ este convergentă și are valoarea ln 2. Pe de altă parte, este ușor de văzut că

$$\sum_{k=1}^{n-1} \frac{1}{k} \le \int_0^x f(t)dt \le \sum_{k=1}^n \frac{1}{k},$$

deci integrala $\int |f(x)| dx$ este divergentă deoarece seria numerică $\sum_{n=1}^{+\infty} \frac{1}{n}$ este divergentă.

Prin urmare, integrala improprie de speța întâi $\int_0^{+\infty} f(x)dx$ este semiconvergentă.

1.10 Criterii de comparație ale integralelor improprii

Pentru studiul convergenței absolute și divergenței unor integrale improprii de regulă se folosesc unele criterii în care sunt implicate două integrale improprii ale căror natură este comparată, motiv pentru care aceste criterii sunt numite criterii de comparație.

39

Teorema 1.10.1 (Criteriul general de comparație) Dacă funcțiile

$$f, g : [a, b) \to \mathbb{R}, -\infty < a < b \le +\infty$$

sunt integrabile Riemann pe orice segment $[a,t] \subset [a,b)$, atunci au loc următoarele afirmații:

1. dacă există $a_1 \in [a,b)$ astfel încât are loc inegalitatea

$$|f(x)| \le g(x), \ x \in [a_1, b),$$

și integrala improprie cu limita superioară punct singular

$$\int_{a}^{b} g(x)dx \tag{1.71}$$

este convergentă, atunci integrala improprie (1.62) este absolut convergentă;

2. $dac \breve{a} \ exist \breve{a} \ a_2 \in [a,b) \ astfel \ \hat{i} \ nc \hat{a} t$

$$f(x) \ge g(x) \ge 0, \ x \in [a_2, b)$$

și integrala improprie (1.71) este divergentă, atunci integrala improprie (1.62) este divergentă.

Demonstrație. Pentru a demonstra prima dintre afirmații să observăm că pe orice segment $[t', t''] \subset [a_1, b)$ avem

$$\left| \int_{t'}^{t''} |f(x)| dx \right| \le \left| \int_{t'}^{t''} g(x) dx \right|. \tag{1.72}$$

În baza inegalității (1.72) și a testului lui Cauchy de convergență a unei integrale improprii, rezultă că integrala improprie (1.63) este convergentă, deci în baza Definiției 1.9.1 integrala improprie (1.62) este absolut convergentă.

Demonstrația celei de a doua afirmații se face prin reducere la absurd. Presupunând prin absurd că integrala improprie (1.62) este convergentă, în baza primei afirmații a acestei teoreme rezultă că integrala improprie (1.71) este convergentă, ceea ce contrazice ipoteza.

Din această teoremă rezultă câteva consecințe care sunt foarte utile și ușor de manevrat în stabilirea naturii unor integrale improprii.

Corolarul 1.10.1 (Criteriul de comparație cu limită) Dacă în integralele improprii (1.62) şi (1.71), cu limita superioară punct singular, functiile f și g sunt nenegative pe segmentul [a,b) și există

$$\lim_{x \to b} \frac{f(x)}{g(x)} = k,$$

atunci au loc următoarele afirmații:

- 1. dacă integrala improprie (1.71) este convergentă și $0 \le k < +\infty$, atunci integrala improprie (1.62) este convergentă;
- 2. dacă integrala improprie (1.71) este divergentă și $0 < k \le +\infty$, atunci integrala improprie (1.62) este divergentă.

Demonstrație. Pentru a arăta că prima afirmație este adevărată să observăm că din definiția în limbajul " $\varepsilon - \delta$ " a limitei unei funcții reale de o variabilă realaă, într-un punct de acumulare a domeniului ei de definiție, rezultă că există $a_1 \in [a, b)$ astfel încât

$$\frac{f(x)}{g(x)} < k+1, \ x \in [a_1, b) \implies f(x) < (k+1)g(x), \ x \in [a_1, b).$$

Convergența integralei (1.71) implică convergența integralei

$$\int_{a}^{b} (k+1)g(x)dx$$

și în baza punctului **1** al Teoremei 1.10.1 rezultă afirmația **1** din acest corolar. Pentru a demonstra punctul **2** să considerăm $k' \in (0, k)$. Definiția limitei asigură existența lui $a_2 \in [a, b)$ astfel încât

$$\frac{f(x)}{g(x)} > k', \ x \in [a_2, b) \implies f(x) > k'g(x), \ x \in [a_2, b). \tag{1.73}$$

Inegalitățile (1.73), divergența integralei improprii (1.71) și ipoteza de la punctul **2** al Teoremei 1.10.1 conduc la divergența integralei (1.62).

Observația 1.10.1 Dacă $0 < k < +\infty$, atunci integralele (1.62) și (1.71) au aceeași natură.

Corolarul 1.10.2 (Criteriu special de comparație) Pentru integrala improprie de speța întâi cu limita superioară punct singular

$$\int_{a}^{+\infty} f(x)dx, \quad a > 0 \tag{1.74}$$

sunt adevărate următoarele afirmații:

1. dacă există $a_1 \in [a, +\infty)$, $\alpha > 1$ și $C \ge 0$ finit astfel încât

$$|f(x)| \le \frac{C}{r^{\alpha}}, \ x \in [a_1, +\infty),$$

atunci integrala improprie (1.74) este absolut convergentă;

2. dacă există $a_2 \in [a, +\infty), \ \alpha \leq 1 \ \text{si } C > 0 \ \text{astfel încât}$

$$|f(x)| \ge \frac{C}{x^{\alpha}}, \ x \in [a_2, +\infty),$$

iar funcția f are semn constant pe $[a_2, +\infty)$, atunci integrala improprie (1.74) este divergentă.

Demonstrație. Punând $g(x) = \frac{C}{x^{\alpha}}$ în criteriul general de comparație și ținând cont de faptul că integrala improprie

$$\int_{a}^{+\infty} \frac{C}{r^{\alpha}} dx$$

este convergentă pentru $\alpha > 1$ şi a > 0, deducem că integrala (1.74) este absolut convergentă. Să observăm că presupunerea a > 0 nu este restrictivă căci dacă se întâmplă ca în (1.74) limita inferioară de integrare să nu fie pozitivă, atunci a poate fi înlocuit prin c > 0, iar integralele improprii $\int_{a}^{+\infty} f(x)dx$ şi $\int_{a}^{+\infty} f(x)dx$ sunt simultan convergente sau divergente.

 $\int_{a}^{+\infty} f(x)dx \text{ si } \int_{c}^{+\infty} f(x)dx \text{ sunt simultan convergente sau divergente.}$ Pentru a demonstra cea de a doua afirmație, presupunem că există $a_{2} > a$, C > 0 și $\alpha \leq 1$ astfel încât $f(x) \geq \frac{C}{x^{\alpha}}$ pentru $x \in [a_{2}, +\infty)$. Dacă ținem cont că în acest caz integrala improprie $\int_{a_{2}}^{+\infty} \frac{C}{x^{\alpha}} dx$ este divergentă și aplicăm partea a doua a criteriului general de comparație, deducem că $\int_{a_{2}}^{+\infty} f(x)dx$ este divergentă rezultat care, împreună cu Observația 1.2.1, implică divergența integralei improprii (1.74).

În cazul în care valorile funcției f sunt negative pe $[a_2, +\infty)$, dacă $f(x) \le -\frac{C}{x^{\alpha}}$ pentru $x \ge a_2 \ge a > 0$, C > 0 și $\alpha \le 1$, putem pune $f^*(x) = -f(x)$.

Funcția f^* are proprietatea $f^*(x) \ge \frac{C}{x^{\alpha}}$ pentru orice $x \ge a_2 \ge a > 0$.

În consecință, integrala $\int_a^{+\infty} f^*(x) dx$ este divergentă, ceea ce atrage faptul că integrala

$$\int_{a}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{a}^{t} f(x)dx = -\lim_{t \to +\infty} \int_{a}^{t} f^{*}(x)dx$$

este de asemeni divergentă, pentru că ultima limită nu există.

Corolarul 1.10.3 (Criteriul de convergență în α cu limită) Dacă există limita

$$\lim_{x \to +\infty} |f(x)| \, x^{\alpha} = C,$$

atunci au loc următoarele afirmații:

- 1. $dacă \ 0 \le C < +\infty \ \text{și} \ \alpha > 1$, integrala improprie (1.74) este absolut convergentă;
- 2. $dacă \ 0 < C \le +\infty$, $\alpha \le 1$ şi funcția f păstrează același semn pentru $x \ge a_2$, unde $a_2 \ge a$, integrala improprie (1.74) este divergentă.

Demonstrație. Din definiția limitei cu vecinătăți rezultă că dacă $0 \le C < +\infty$, există $a_1 \ge a$ astfel încât au loc inegalitățile:

$$|f(x)| \, x^{\alpha} \leq 2C, \quad \text{pentru} \quad C > 0 \quad \text{si} \quad x \in [a_2, +\infty) \quad \Longrightarrow$$
$$|f(x)| \leq \frac{2C}{x^{\alpha}}, \quad x \in [a_2, +\infty);$$
$$|f(x)| \, x^{\alpha} \leq 1, \quad \text{pentru} \quad C = 0 \quad \text{si} \quad x \in [a_2, +\infty) \quad \Longrightarrow$$
$$|f(x)| \leq \frac{1}{x^{\alpha}}, \quad x \in [a_2, +\infty).$$

Prin urmare, în baza punctului 1 al Corolarului 1.10.2 integrala improprie de speța întâi (1.74) este absolut convergentă.

Pentru a doua afirmație, dacă $0 < C \le +\infty$ și $\alpha \le 1$, au loc următoarele inegalități

$$|f(x)| x^{\alpha} > \frac{C}{2}$$
, pentru $C < +\infty$ şi $x \in [a_2, +\infty)$ \Longrightarrow

$$|f(x)| > \frac{C}{2x^{\alpha}}, \quad x \in [a_2, +\infty);$$

$$|f(x)| x^{\alpha} > 1, \quad \text{pentru} \quad C = \infty \quad \text{si} \quad x \in [a_2, +\infty) \quad \Longrightarrow$$

$$|f(x)| > \frac{1}{x^{\alpha}}, \quad x \in [a_2, +\infty),$$

de unde, conform celei de a doua afirmații din Corolarul 1.10.2, rezultă că integrala improprie (1.74) este divergentă.

Exemplul 1.10.1 Integrala improprie

$$\int_{a}^{+\infty} \frac{P(x)}{Q(x)} dx, \tag{1.75}$$

unde $P(x) = \sum_{k=0}^{m} a_k x^k$ este un polinom de gradul m cu coeficienți reali, iar $Q(x) = \sum_{j=0}^{n} b_j x^j$ un polinom real de grad n, care nu are rădăcini reale în intervalul de integrare $[a, +\infty)$, este convergentă dacă n > m + 1.

Soluție. Într-adevăr, funcția de integrat se poate scrie

$$\frac{P(x)}{Q(x)} = \frac{1}{x^{n-m}} \frac{a_0 + \frac{a_1}{x} + \dots + \frac{a_m}{x^m}}{b_0 + \frac{b_1}{x} + \dots + \frac{b_n}{x^n}}.$$
 (1.76)

Efectuând produsul cu x^{n-m} în ambii membri ai relației (1.76) și trecând la limită pentru $x \to +\infty$, obținem

$$\lim_{x \to +\infty} x^{n-m} \frac{P(x)}{Q(x)} = \frac{a_0}{b_0},$$

care arată că dacă n-m>1, integrala improprie (1.75) este convergentă.

Exercițiul 1.10.1 Să se studieze natura integralelor improprii de prima speță:

$$I_1 = \int_1^{+\infty} \frac{dx}{\sqrt{1+x^2\sqrt[3]{1+x^3}}}, \qquad I_2 = \int_2^{+\infty} \frac{\sqrt[3]{1+x^2}}{\sqrt{x^2-1}} dx.$$

Soluție. Integrala I_1 este convergentă deoarece

$$\frac{1}{\sqrt{1+x^2}\sqrt[3]{1+x^3}} < \frac{1}{x^2}$$
, iar $\int_1^{+\infty} \frac{dx}{x^2}$ este convergentă.

A doua integrală improprie este divergentă pentru că

$$\frac{\sqrt[3]{1+x^2}}{\sqrt{x^2-1}} > \frac{x^{2/3}}{x} = \frac{1}{x^{1/3}}, \text{ iar integrala } \int_2^{+\infty} \frac{dx}{x^{1/3}} \text{ este convergentă.}$$

În studiul naturii ambelor integrale s—a folosit criteriul special de comparație din Corolarul 1.10.2.

Exemplul 1.10.2 Integralele improprii de prima speță:

$$\int_{a}^{+\infty} e^{-k^2x} \sin mx dx; \quad I_2 = \int_{a}^{+\infty} e^{-k^2x} \cos mx dx$$

sunt absolut convergente deoarece:

$$|e^{-k^2x}\sin mx| \le e^{-k^2x}; \quad |e^{-k^2x}\cos mx| \le e^{-k^2x},$$

iar integrala improprie de speța a doua

$$\int_{a}^{+\infty} e^{-k^2x} dx$$

este convergentă în baza definiției naturii unei integrale improprii.

Comparând integrala improprie de speța a doua

$$\int_{a}^{b} f(x)dx, \quad -\infty < a < b < +\infty, \tag{1.77}$$

cu punctul singular în limita superioară (respectiv în limita inferioară) cu integrala improprie deja studiată

$$\int_a^b \frac{dx}{(b-x)^{\alpha}} \quad \left(\text{respectiv} \quad \int_a^b \frac{dx}{(x-a)^{\alpha}}\right),$$

convergentă pentru $\alpha < 1$ și divergentă pentru $\alpha \geq 1$, obținem criterii de convergență în α ale integralelor improprii de speța a doua.

Corolarul 1.10.4 (Criteriu special de comparație pentru integrale improprii de speța doua) Pentru integrala improprie (1.77), cu limita superioară (respectiv limita inferioară) punct singular, au loc următoarele afirmații:

1. dacă există $a_1 \in [a,b)$, (respectiv $a_1 \in (a,b]$), $\alpha < 1$ și $0 \le C < +\infty$ astfel încât

$$|f(x)| \le \frac{C}{(b-x)^{\alpha}}, x \in [a_1, b)$$

$$\left(respectiv |f(x)| \le \frac{C}{(x-a)^{\alpha}}, x \in (a, a_1]\right),$$

atunci integrala improprie de speţa doua $\int_a^b f(x)dx$, cu limita superioară (respectiv limita inferioară) punct singular, este absolut convergentă;

2. dacă există $a_2 \in [a,b)$ (respectiv $a_2 \in (a,b]$), $\alpha \geq 1$ și C>0 astfel încât

$$|f(x)| > \frac{C}{(b-x)^{\alpha}}, x \in [a_2, b)$$

$$\left(respectiv |f(x)| > \frac{C}{(x-a)^{\alpha}}, x \in (a, a_2]\right),$$

iar funcția f are semn constant pe $[a_2,b)$ (respectiv pe $(a,a_2]$), atunci integrala improprie de speța doua $\int_a^b f(x)dx$, cu limita superioară (respectiv limita inferioară) punct singular, este divergentă.

Demonstrație. Punând $g(x) = \frac{C}{(b-x)^{\alpha}}$ (respectiv $g(x) = \frac{C}{(x-a)^{\alpha}}$) în criteriul general de comparație din Teorema 1.10.1 și ținând cont de faptul că integrala improprie

$$\int_{a}^{b} \frac{C}{(b-x)^{\alpha}} dx = \frac{C(b-a)^{1-\alpha}}{\alpha - 1},$$

$$\left(\text{respectiv } \int_{a}^{b} \frac{C}{(x-a)^{\alpha}} dx = \frac{C(b-a)^{1-\alpha}}{\alpha - 1}\right)$$

este convergentă pentru $\alpha < 1$ având valoarea scrisă alăturat, deducem că integrala improprie de speța doua $\int_a^b f(x) dx$, cu limita superioară (respectiv limita inferioară) punct singular, este absolut convergentă și deci prima afirmație este demonstrată.

Să presupunem că funcția f este nenegativă. Atunci avem

$$f(x) > \frac{C}{(b-x)^{\alpha}} \left(\text{respectiv } f(x) > \frac{C}{(x-a)^{\alpha}} \right)$$

și $\alpha \geq 1$ pentru toți $x \in [a_2, b) \subset [a, b)$ (respectiv $x \in (a, a_2] \subset (a, b]$). În acest caz integrala improprie de speța doua

$$\int_{a_2}^b \frac{C}{(b-x)^{\alpha}} dx \left(\text{respectiv } \int_a^{a_2} \frac{C}{(x-a)^{\alpha}} dx \right)$$

este divergentă. Aplicând partea a doua a criteriului general de comparație deducem că integrala improprie $\int_{a_2}^b f(x)dx$ (respectiv $\int_a^{a_2} f(x)dx$) este divergentă. Această ultimă integrală are aceeași natură cu integrala improprie de speța doua cu limita superioară (respectiv limita inferioară) finită punct singular din (1.77), rezultat care implică divergența acestora.

În cazul în care funcția f este negativă pe intervalul $[a_2, b) \subset [a, b)$ (respectiv $(a, a_2] \subset (a, b]$), dacă $f(x) < -\frac{C}{(b-x)^{\alpha}}$ (respectiv $f(x) < -\frac{C}{(x-a)^{\alpha}}$) pentru toți $x \in [a_2, b)$ (respectiv $x \in (a, a_2]$), C > 0 și $\alpha \ge 1$, introducem funcția f^* ale cărei valori se determină după legea $f^*(x) = -f(x)$. Rezultă că $f^*(x) > \frac{C}{(b-x)^{\alpha}}$ (respectiv $f^*(x) > \frac{C}{(x-a)^{\alpha}}$) pentru orice $x \in [a_2, b)$ (respectiv $x \in (a, a_2]$) și în consecință integrala $\int_a^b f^*(x) dx$ este divergentă. Prin urmare, integrala

$$\int_{a}^{b} f(x)dx = -\int_{a}^{b} f^{*}(x)dx$$

este divergentă cea ce arată că și cea de a doua afirmație din enunțul teoremei este adevărată.

Corolarul 1.10.5 (Criteriul de convergență în α cu limită a integralelor improprii de speța doua) $\hat{I}n$ ipoteza că există limita

$$\lim_{x \to b} |f(x)| (b - x)^{\alpha} = C,$$

au loc următoarele afirmații:

- 1. dacă există $a_1 \in [a,b)$, $\alpha < 1$ și $0 \leq C < +\infty$, atunci integrala improprie de speța doua cu limita superioară punct singular este absolut convergentă;
- 2. $dacă\ 0 < C \le +\infty$, $\alpha \le 1$ şi funcția f păstrează acelaşi semn pentru $x \in [a_2, b)$, unde $a \le a_2 < b$, atunci integrala improprie de speța doua cu limita superioară punct singular este divergentă.

Demonstrație. Din definiția limitei cu vecinătăți rezultă că dacă $0 \le C < +\infty$, există $a_1 \ge a$ astfel încât au loc inegalitățile:

$$|f(x)| (b-x)^{\alpha} \le 2C, \quad \text{pentru} \quad C > 0 \quad \text{si} \quad x \in [a_2, b) \implies$$

$$|f(x)| \le \frac{2C}{(b-x)^{\alpha}}, \quad x \in [a_2, b);$$

$$|f(x)| (b-x)^{\alpha} \le 1, \quad \text{pentru} \quad C = 0 \quad \text{si} \quad x \in [a_2, b) \implies$$

$$|f(x)| \le \frac{1}{(b-x)^{\alpha}}, \quad x \in [a_2, b).$$

Prin urmare, în baza punctului 1 al Teoremei 1.10.1 integrala improprie de speța doua cu limita superioară punct singular este absolut convergentă și deci prima afirmație este demonstrată.

Dacă
$$0 < C \le +\infty$$
 și $\alpha \le 1$, avem

$$|f(x)| (b-x)^{\alpha} > \frac{C}{2}, \quad \text{pentru} \quad C < +\infty \quad \text{si} \quad x \in [a_2, b) \implies$$

$$|f(x)| > \frac{C}{2(b-x)^{\alpha}}, \quad x \in [a_2, b);$$

$$|f(x)| (b-x)^{\alpha} > 1, \quad \text{pentru} \quad C = \infty \quad \text{si} \quad x \in [a_2, b) \implies$$

$$|f(x)| > \frac{1}{(b-x)^{\alpha}}, \quad x \in [a_2, b),$$

de unde, în baza punctului **2** al Teoremei 1.10.1, rezultă că integrala improprie de speța doua cu limita superioară punct singular este divergentă, ceea ce arată că și a doua afirmație este adevarată.

Observația 1.10.2 Se poate enunța criteriul în α cu limită de convergență a integralelor improprii de speța doua cu limita inferioară punct singular. Pentru aceasta, în Corolarul 1.10.5 și demonstrația lui, funcția $(b-x)^{\alpha}$, acolo unde apare, se trece în $(x-a)^{\alpha}$, iar segmentul $[a_2,b)$ se înlocuiește cu segmentul $(a,a_2] \subset (a,b]$.

Exercițiul 1.10.2 Să se calculeze integrala improprie

$$\int_0^{+\infty} \frac{dx}{(x+1)\sqrt{|x^2-1|}}.$$

Soluţie. Se observă că integrantul este nemărginit întro vecinătate a punctului x=1. Scriem integrala ca suma dintre o integrală improprie de speţa doua, cu limita superioară punct singular, şi o alta, de speţa treia, care are ambele limite de integrare puncte singulare. Avem:

$$\int_0^{+\infty} \frac{dx}{(x+1)\sqrt{|x^2-1|}} = \int_0^1 \frac{dx}{(x+1)\sqrt{1-x^2}} + \int_1^{+\infty} \frac{dx}{(x+1)\sqrt{x^2-1}} = I_1 + I_2.$$

Integrala I_1 este convergentă, de
oarece există $\alpha=1/2<1$ cu proprietatea

$$\lim_{\substack{x \to 1 \\ x \le 1}} (1 - x)^{\alpha} \frac{1}{(x+1)\sqrt{1 - x^2}} = \frac{1}{2\sqrt{2}}.$$

Integrala de speţa treia se descompune în două integrale, prima de speţa doua cu limita inferioară, finită, punct singular, iar a doua, integrală improprie de speţa întâi cu limita superioară punct singular. Ambele integrale sunt convergente în baza criteriului în α cu limită căci:

$$\lim_{x \to 1 \atop x > 1} (1 - x)^{\alpha} \frac{1}{(x+1)\sqrt{x^2 - 1}} = \frac{1}{2\sqrt{2}}, \text{ pentru } \alpha = \frac{1}{2};$$

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{(x+1)\sqrt{1-x^2}} = 1, \text{ pentru } \alpha = 2 > 1.$$

Fiind o sumă de integrale convergente rezultă că I_2 este convergentă. Prin urmare, integrala inițială este convergentă. Integrala I_1 se reduce la integrala

 I_2 prin schimbarea de variabilă $x = \frac{1}{y}$. Putem spune că integrala dată este egală cu de două ori integrala I_2 . Pentru calculul lui I_2 facem schimbarea de variabilă $x + 1 = \frac{1}{t}$. Găsim:

$$I_2 = -\int_{1/2}^{0} \frac{dt}{\sqrt{1-2t}} = \sqrt{1-2t}\Big|_{1/2}^{0} = 1.$$

Rezultatele stabilite arată că valoarea integralei date este 2.

1.11 Criterii de convergență ale integralelor improprii cu integrantul de semn variabil

Considerăm că funcțiile $f:[a,b)\to \mathbb{R}$ și $h:[a,b)\to \mathbb{R}$, unde $-\infty < a < b \le +\infty$, sunt alese astfel încât f și $f\cdot h$ sunt funcții integrabile Riemann pe orice compact $[a,t]\subset [a,b)$.

Teorema 1.11.1 (Criteriul lui Abel) Dacă integrala improprie cu limita superioară punct singular $\int_a^b f(x)dx$ este convergentă și funcția h este monotonă și mărginită pe [a,b), atunci integrala improprie

$$\int_{a}^{b} f(x)h(x)dx,\tag{1.78}$$

cu limita superioară punct singular, este convergentă.

Demonstrație. Fie $M = \sup\{|h(x)| : x \in [a,b)\} < +\infty$ și $\varepsilon > 0$ arbitrar. Primele două ipoteze ale teoremei referitoare la funcția f și testul general de convergență al lui Cauchy implică existența unui $b(\varepsilon) \in [a,b)$ astfel încât

$$\left| \int_{t'}^{t''} f(x)dx \right| < \frac{\varepsilon}{2M},\tag{1.79}$$

oricare ar fi $t',t''\in(b(\varepsilon),b).$ Se poate demonstra că există $\xi\in[t',t'']$ astfel încât

$$\int_{t'}^{t''} f(x)h(x)dx = h(t') \int_{t'}^{\xi} f(x)dx + h(t'') \int_{\xi}^{t''} f(x)dx.$$
 (1.80)

Luând modulul ambilor membri din (1.80) și folosind p
proprietățile acestuia, obținem

$$\left| \int_{t'}^{t''} f(x)h(x)dx \right| \le |h(t')| \left| \int_{t'}^{\xi} f(x)dx \right| + |h(t'')| \left| \int_{\xi}^{t''} f(x)dx \right|. \tag{1.81}$$

Deoarece $t',\xi,t''\in(b(\varepsilon),b),$ din (1.79), (1.80) și (1.81), deducem

$$\left| \int_{t'}^{t''} f(x)h(x)dx \right| < M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} = \varepsilon,$$

care, împreună cu testul de convergență al lui Cauchy, arată că integrala improprie (1.79) este convergentă.

Teorema 1.11.2 (Criteriul lui Dirichlet) Dacă funcția

$$t \mapsto F(t) = \int_a^t f(x)dx, \ t \in [a, b),$$

este mărginită, funcția h este monotonă și

$$\lim_{x \to b} h(x) = 0,$$

atunci integrala improprie (1.78), cu limita superioară punct singular, este convergentă.

Demonstrație. Din prima ipoteză rezultă existența constantei K>0 astfel încât

$$\left| \int_{a}^{t} f(x)dx \right| \le K, \quad t \in [a, b). \tag{1.82}$$

Din cea de a doua ipoteză rezultă că oricărui $\varepsilon > 0$ îi corespunde $b(\varepsilon) \in [a, b)$ astfel încât

$$|h(x)| < \frac{\varepsilon}{4K}, \quad x \in (b(\varepsilon), b).$$
 (1.83)

Din (1.82) obţinem

$$\left| \int_{t'}^{\xi} f(x)dx \right| = \left| \int_{a}^{\xi} f(x)dx - \int_{a}^{t'} f(x)dx \right| \le \left| \int_{a}^{\xi} f(x)dx \right| + \left| \int_{a}^{\xi} f(x)dx \right| \le 2K.$$

În mod asemănător demonstrăm mărginirea celelaltei integrale care intervine în membrul al doilea al relației (1.80).

Aşadar, avem:

$$\left| \int_{t'}^{\xi} f(x)dx \right| \le 2K; \quad \left| \int_{\xi}^{t''} f(x)dx \right| \le 2K. \tag{1.84}$$

Atunci, din (1.81), (1.83) și (1.84) rezultă

$$\left| \int_{t'}^{t''} f(x)h(x)dx \right| < \varepsilon, \quad (\forall) \quad t', t'' \in (b(\varepsilon), b). \tag{1.85}$$

Testul de convergență al lui Cauchy și (1.85) demonstrează teorema. ■

Exercițiul 1.11.1 Fie a > 0 și $b \in \mathbb{R}^*$, numere reale arbitrare. Să se arate că integralele improprii

$$I_1 = \int_0^{+\infty} e^{-ax} \cos bx dx, \quad I_2 = \int_0^{+\infty} e^{-ax} \sin bx dx$$

sunt convergente și să se determine valorile lor.

Soluție. Pentru studiul naturii integralelor, folosim criteriul lui Dirichlet. Pentru ambele integrale, $h(x) = e^{-ax}$. Deoarece a > 0, rezultă că funcția h este monoton descrescătoare și $\lim_{x \to +\infty} h(x) = 0$.

Pentru prima integrală, f(x) din criteriul lui Dirichlet este $\cos bx$, iar pentru a doua $f(x)=\sin bx$. Rezultă că funcțiile $F(x)=\int_0^x f(t)dt$ corespunzătoare sunt

$$F(x) = \int_0^x \cos bt dt = \frac{1}{b} \sin bx, \quad F(x) = \int_0^x \sin bt dt = \frac{1}{b} (1 - \cos bx).$$

Funcția |F|(x) este mărginită de $\frac{1}{|b|}$ în primul caz, iar în cel de al doilea este mărginită de $\frac{2}{|b|}$.

Conform criteriului lui Dirichlet, ambele integrale sunt convergente.

Pentru calculul acestor integrale, aplicăm de două ori formula integrării prin părți și obținem $I_1 = \frac{a}{a^2 + b^2}$, $I_2 = \frac{b}{a^2 + b^2}$.

Exemplul 1.11.1 Integrala $\int_{\pi}^{+\infty} \frac{\sin x}{x^{\alpha}} dx$ este convergentă pentru $\alpha > 0$ deoarece, dacă în criteriul lui Dirichlet luăm $f(x) = \sin x$ și $h(x) = \frac{1}{x^{\alpha}}$, avem

$$|F(t)| = \left| \int_{\pi}^{t} f(x)dx \right| = \left| \int_{\pi}^{t} \sin x dx \right| = |\cos \pi - \cos t| \le 2$$

 $\begin{array}{l} pentru \ \pi \leq t \leq +\infty, \ iar \ h(x) = \frac{1}{x^{\alpha}} \ este \ o \ funcție \ monoton \ descrescătoare \\ care \ tinde \ la \ zero \ pentru \ t \rightarrow +\infty \ \S{i} \ \alpha > 0. \end{array}$

Exercițiul 1.11.2 Să se cereceteze natura integralelor Fresnel¹

$$\int_0^{+\infty} \sin(x^2) dx, \qquad \int_0^{+\infty} \cos(x^2) dx,$$

care sunt utilizate în optică.

Soluție. Punând $x^2 = t$, obținem

$$\int_0^{+\infty} \sin(x^2) dx = \int_0^{+\infty} \frac{\sin t}{2\sqrt{t}} dt,$$

$$\int_0^{+\infty} \cos(x^2) dx = \int_0^{+\infty} \frac{\cos t}{2\sqrt{t}} dt.$$
(1.86)

În criteriul lui Dirichlet, aplicat integralei improprii $\int_0^{+\infty} f(t)h(t)dt$, luăm pe rând $f(t) = \sin t$ și $f(t) = \cos t$, iar în ambele cazuri din (1.86), funcția h o luăm de forma $h(t) = \frac{1}{2\sqrt{t}}$. Funcția h satisface ipotezele criteriului lui Dirichlet, iar un calcul simplu arată că valoarea absolută a funcției

$$u \mapsto F(u) = \int_0^u f(t) dt, \quad u \in (0, +\infty),$$

în ambele cazuri ale alegerii funcției f, este mărginită de K=2. Atunci, conform criteriului lui Dirichlet, ambele integrale sunt convergente.

 $^{^{1}}$ Fresnel, Augustin Jean (1788 – 1827), geometru şi optician francez

53

Exemplul 1.11.2 Considerând integrala improprie

$$\int_{c}^{+\infty} \frac{(\ln x) \sin x}{x},$$

unde c > 0, şi luând

$$f(x) = \sin x$$
, $h(x) = \frac{\ln x}{x}$,

în baza criteriului lui Dirichlet, constatăm convergența acesteia.

Exercițiul 1.11.3 Să se cereceteze natura integralelor

$$\int_0^{+\infty} \frac{\sin x}{x^{\alpha}} dx, \qquad \int_0^{+\infty} \frac{\cos x}{x^{\alpha}} dx, \qquad \alpha > 0.$$
 (1.87)

Soluție. Din criteriul lui Dirichlet rezultă că integralele

$$\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} dx, \qquad \int_{1}^{+\infty} \frac{\cos x}{x^{\alpha}} dx \tag{1.88}$$

sunt convergente pentru $\alpha>0$. Într-adevăr, considerând că $f(x)=\sin x$ și $g(x)=\frac{1}{x^{\alpha}}$, unde $x\in[1,+\infty)$, constatăm că aceste funcții satisfac ipotezele criteriului lui Dirichlet dacă $\alpha>0$, astfel că integrala improprie $\int_{1}^{+\infty}\frac{\sin x}{x^{\alpha}}dx$ este convergentă.

Analog se demonstrează că integrala improprie $\int_1^{+\infty} \frac{\cos x}{x^{\alpha}} dx$ este convergentă pentru $\alpha > 0$.

Pe de altă parte, deoarece pentru x > 1 avem

$$\left|\frac{\sin x}{x^{\alpha}}\right| \le \frac{1}{x^{\alpha}}, \ \left|\frac{\cos x}{x^{\alpha}}\right| \le \frac{1}{x^{\alpha}},$$

iar integrala improprie $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ este convergentă pentru $\alpha > 1$, rezultă că integralele improprii (1.88) sunt absolut convergente pentru $\alpha > 1$.

integralele improprii (1.88) sunt absolut convergente pentru $\alpha > 1$.

Deoarece $\int_1^{+\infty} \frac{dx}{x}$ este divergentă, iar $\int_1^{+\infty} \frac{\cos 2x}{x} dx$ este convergentă în baza criteriului lui Dirichlet, rezultă că integrala improprie

$$\int_{1}^{+\infty} \frac{\sin^{2} x}{x} dx = \frac{1}{2} \left(\int_{1}^{+\infty} \frac{dx}{x} - \int_{1}^{+\infty} \frac{\cos 2x}{x} dx \right)$$
 (1.89)

este divergentă. Dacă avem în vedere că $|\sin x| \ge \sin^2 x \, \dim (1.89)$ tragem concluzia că integrala improprie

$$\int_{1}^{+\infty} \frac{|\sin x|}{x} dx \tag{1.90}$$

este divergentă. La rezultatele de până acum adăugăm faptul că pentru orice $x \geq 1$ și $\alpha \in (0,1)$ are loc inegalitatea evidentă

$$\frac{|\sin x|}{x^{\alpha}} \ge \frac{|\sin x|}{x}.\tag{1.91}$$

Din (1.90), (1.91) și partea a doua a criteriului de comparație rezultă că integrala improprie $\int_{1}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx$ este divergentă pentru $\alpha \in (0,1)$.

Aşadar, prima integrală din (1.88) este simplu convergentă pemtru $\alpha \in$ (0, 1). Analog se arată că a doua integrală din (1.88) este simplu convergentă. Să ne ocupăm acum de integralele

$$\int_0^1 \frac{\sin x}{x^{\alpha}} dx, \quad \int_0^1 \frac{\cos x}{x^{\alpha}} dx. \tag{1.92}$$

Prima integrală din (1.92) este convergentă pentru $\alpha \in (0,1]$ deoarece

$$\lim_{x \to 0^+} \frac{\sin x}{x^\alpha} = \left\{ \begin{array}{ll} 0 & \mathrm{dac\breve{a}} & \alpha \in (0,1) \\ \\ 1 & \mathrm{dac\breve{a}} & \alpha = 1. \end{array} \right.$$

Din $\lim_{x\to 0^+} x^{\alpha-1} \Big(\frac{\sin x}{x^\alpha}\Big) = 1$ și criteriul în α cu limită rezultă că prima integrală din (1.92) este convergentă pentru $1 < \alpha < 2$ și divergentă pentru $\alpha \geq 2$.

Prin urmare, integrala improprie (1.87) este semiconvergentă pentru $\alpha \in$ (0,2) și divergentă pentru $\alpha > 2$.

(0,2) și divergentă pentru $\alpha \geq 2$. Deoarece pentru $\alpha > 0$ avem $\lim_{x \to 0^+} \frac{\cos x}{x^\alpha} = +\infty$, rezultă că a doua integrală din (1.92) este o integrală improprie cu limita inferioară punct singular pentru orice $\alpha > 0$. Apoi, din limta evidentă $\lim_{x \to 0^+} x^\alpha \left(\frac{\cos x}{x^\alpha}\right) = 1$ și Corolarul 1.10.3, rezultă că cea de a doua integrală din (1.92) este convergentă pentru orice $\alpha \in (0,1)$ și divergentă pentru orice $\alpha > 1$.

Ultimul rezultat arată că cea de a doua integrală improprie din (1.87) este semiconvergentă pentru $\alpha \in (0,1)$ și divergentă pentru $\alpha \geq 1$.

1.12 Convergența în sensul valorii principale a unei integrale improprii

Definiția 1.12.1 Dacă integrala improprie de speța întâi cu ambele limite de integrare puncte singulare

$$\int_{-\infty}^{+\infty} f(x)dx \tag{1.93}$$

este divergentă dar există și este finită

$$\lim_{t \to +\infty} \int_{-t}^{t} f(x)dx,\tag{1.94}$$

atunci spunem că funcția $f:(-\infty,+\infty)\to\mathbb{R}$ este integrabilă în sensul valorii principale sau că integrala (1.93) este convergentă în sensul valorii principale, iar

$$V.p. \int_{-\infty}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{-t}^{t} f(x)dx$$

se numește valoarea principală (în sens Cauchy) a integralei (1.93).

Fie funcția $f:[a,b]\setminus\{c\}\to I\!\!R$ integrabilă Riemann pe orice compact $[u,t]\subset [a,c)$ sau $[u,t]\subset (c,b]$. În acest caz se poate vorbi de integrala improprie

$$\int_{a}^{b} f(x)dx \tag{1.95}$$

având punctul singular $c \in (a,b)$. Din cele prezentate în primul paragraf al acestui capitol rezultă că integrala improprie (1.95) este convergentă dacă fiecare din integralele improprii $\int_a^c f(x)dx$ și $\int_c^b f(x)dx$ este convergentă. Aceasta înseamnă că limita de mai jos există și este finită

$$\lim_{\substack{\eta \to c \\ \eta < c}} \int_a^{\eta} f(x)dx + \lim_{\substack{\xi \to c \\ \xi > c}} \int_{\xi}^b f(x)dx =$$

$$\lim_{\substack{u \to 0^+ \\ v \to 0^+}} \left(\int_a^{c-u} f(x) dx + \int_{c+v}^b f(x) dx \right)$$

pentru ξ și η (respectiv u și v) tinzând independ
nt la limitele lor. În acest caz

$$\int_{a}^{b} f(x)dx = \lim_{\substack{u \to 0+\\ v \to 0+}} \Big(\int_{a}^{c-u} f(x)dx + \int_{c+v}^{b} f(x)dx \Big).$$

Definiția 1.12.2 Dacă integrala improprie (1.95), având punctul singular în $c \in (a, b)$ este divergentă, însă există și este finită

$$\lim_{u \to 0^+} \Big(\int_a^{c-u} f(x) dx + \int_{c+u}^b f(x) dx \Big),$$

atunci spunem că f este integrabilă pe [a,b] în sensul valorii principale a lui Cauchy sau că integrala improprie (1.95) este convergentă în sensul valorii principale a lui Cauchy iar

$$v.p. \int_{a}^{b} f(x)dx = \lim_{u \to 0^{+}} \left(\int_{a}^{c-u} f(x)dx + \int_{c+u}^{b} f(x)dx \right),$$

se numește valoarea principală în sens Cauchy a integralei (1.95).

Exercițiul 1.12.1 Să se arate că dacă $-\infty < a < c < b < +\infty$, integrala improprie $\int_a^b \frac{dx}{x-c}$ este divergentă, însă este convergentă în sensul valorii principale a lui Cauchy.

Soluție. Punctul singular al integralei improprii considerate este în interiorul intervalului de integrare și pentru a studia natura acesteia trebuie să determinăm limitele

$$\lim_{\lambda \to 0+0} \int_a^{c-\lambda} \frac{dx}{x-c} \quad \mathrm{si} \quad \lim_{\mu \to 0+0} \int_{c+\mu}^b \frac{dx}{x-c}.$$

Aceste două limite au respectiv valorile

$$-\ln\left(c-a\right) + \lim_{\lambda \to 0+0} \ln \lambda \quad \text{si} \quad \ln\left(b-c\right) - \lim_{\mu \to 0+0} \ln \mu.$$

Prin urmare, avem

$$\int_a^b \frac{dx}{x-c} = \ln \frac{b-c}{c-a} + \lim_{\substack{\lambda \to 0+0 \\ \mu \to 0+0}} \ln \frac{\lambda}{\mu}.$$

57

Însă limita de mai sus nu există ceea ce înseamnă că integrala improprie considerată este divergentă.

Considerând cazul particular $\lambda = \mu$, deducem că ultima limită este zero și deci integrala improprie considerată este convergentă în sensul valorii principale a lui Cauchy și v.p. $\int_a^b \frac{dx}{x-c} = \ln \frac{b-c}{c-a}$.

Exemplul 1.12.1 Integrala improprie de speţa a doua, cu ambele limite puncte singulare, a unei funcţii impare f este convergentă în sensul valorii principale a lui Cauchy şi $v.p. \int_{-\infty}^{+\infty} f(x) dx = 0$.

Soluţie. Într-adevăr, funcția f fiind impară avem că $\int_{-t}^{t} f(x)dx = 0$, oricare ar fi t > 0. În consecință există limita din (1.94), deci integrala improprie considerată este convergentă în sensul valorii principală a lui Cauchy și are valoarea principală egală cu 0.

Exemplul 1.12.2 Integrala improprie divergentă $\int_{-\infty}^{+\infty} f(x)dx$ a unei funcții pare $f:(-\infty,+\infty)\to I\!\!R$ nu este convergentă în sensul valorii principale a lui Cauchy.

Soluție. Într-adevăr, funcția f fiind pară și integrabilă Riemann pe orice compact de forma [-t, t], t > 0, avem

$$\int_{-t}^{t} f(x)dx = 2 \int_{0}^{t} f(x)dx = 2 \int_{-t}^{0} f(x)dx.$$

Cum integrala improprie $\int_{-\infty}^{+\infty} f(x)dx$ este divergentă, cel puțin una din integralele improprii $\int_{-\infty}^{+\infty} f(x)dx$ și $\int_{0}^{+\infty} f(x)dx$ este divergentă. Din această afirmație și din egalitatea precedentă rezultă că nu există v.p. $\int_{-\infty}^{+\infty} f(x)dx$.

Exemplul 1.12.3 Să se aplice noțiunea de valoare principală în sensul lui Cauchy a unei integrale improprii divergente pentru a se calcula valoarea integralei improprii

$$J = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^{2m}}{1 + x^{2n}} dx,$$
 (1.96)

unde m și n sunt întregi pozitivi cu 0 < m < n.

Soluție. Rădăcinile numitorului funcției de integrat, $f(x) = \frac{x^{2m}}{1+x^{2n}}$, sunt rădăcinile de ordinul 2n ale numărului complex -1. Având în vedere că forma trigonometrică a acestui număr complex este $-1 = \cos \pi + i \sin \pi$, rezultă că rădăcinile numitorului funcției f au expresiile

$$x_k = e^{i\frac{(2k+1)\pi}{2n}} = a_k + ib_k = \cos\frac{(2k+1)\pi}{2n} + i\sin\frac{(2k+1)\pi}{2n},$$

 $k = 0, 1, 2, \dots, 2n - 1.$

Prin urmare, cele 2n rădăcini ale ecuației $1 + x^{2n} = 0$ nu sunt reale și deci funcția de integrat este definită pe întreaga axă a numerelor reale.

Integrala improprie (1.96) este convergentă deoarece, în baza Exemplul 1.10.1, diferența gradelor polinoamelor de la numitorul și numărătorul funcției de integrat este mai mare decât 1, această diferență fiind cel puțin 2.

Cu mențiunea prealabilă că integrala Riemann a unei funcții complexe de variabilă reală u(x) + iv(x), unde u și v sunt funcții reale, este definită prin

$$\int_a^b [u(x)+iv(x)]dx = \int_a^b u(x)dx + i \int_a^b v(x)dx,$$

să calculăm integrala definită de la $-\ell$ la ℓ , unde $\ell > 0$, din funcția f. În acest scop vom folosi descompunerea numitorului funcției f în factori primi complexi și a funcției de integrat în suma de fracții $f(x) = \sum_{k=0}^{2n-1} \frac{A_k}{x-x_k}$, unde coeficienții A_k sunt dați de raportul dintre valoarea numărătorului funcției f în $x = x_k$ și valoarea, în același punct x_k , a derivatei polinomului de la numitor, adică $A_k = \frac{x_k^{2m}}{2nx_k^{2n-1}} = -\frac{1}{2n}x_k^{2m+1}$, $k = 0, 1, 2, \cdots, 2n-1$.

Avem

$$\int_{-\ell}^{\ell} \frac{x^{2m}}{1+x^{2n}} dx = \sum_{k=0}^{2n-1} A_k \int_{-\ell}^{\ell} \frac{dx}{x-x_k} = \sum_{k=0}^{2n-1} A_k \int_{-\ell}^{\ell} \frac{dx}{(x-a_k)-ib_k} =$$

$$= \sum_{k=0}^{2n-1} A_k \Big\{ \int_{-\ell}^{\ell} \frac{x-a_k}{(x-a_k)^2+b_k^2} dx + i \int_{-\ell}^{\ell} \frac{b_k}{(x-a_k)^2+b_k^2} dx \Big\} =$$

$$= \sum_{k=0}^{2n-1} A_k \Big\{ \ln \frac{(\ell-a_k)^2+b_k^2}{(\ell+a_k)^2+b_k^2} + i \Big[\arctan \frac{\ell-a_k}{b_k} + \arctan \frac{\ell+a_k}{b_k} \Big] \Big\}.$$

Trecând la limită pentru $\ell \to +\infty$, obținem

$$\int_{-\infty}^{+\infty} \frac{x^{2m}}{1 + x^{2n}} dx = \sum_{k=0}^{2n-1} \pm \pi i A_k,$$

unde semnul plus corespunde lui $b_k > 0$, iar semnul minus se ia când $b_k < 0$. Integralele improprii cu ambele limite de integrare puncte singulare

$$\int_{-\infty}^{+\infty} \frac{dx}{x - x_k} = \int_{-\infty}^{+\infty} \frac{x - a_k}{(x - a_k)^2 + b_k^2} dx + i \int_{-\infty}^{+\infty} \frac{b_k}{(x - a_k)^2 + b_k^2} dx,$$

unde k ia valori întregi de la zero până la 2n-1, sunt divergente, iar numerele

$$\lim_{\ell \to +\infty} \int_{-\ell}^{\ell} \frac{dx}{x - x_k} =$$

$$= \lim_{\ell \to +\infty} \Big\{ \ln \frac{(\ell - a_k)^2 + b_k^2}{(\ell + a_k)^2 + b_k^2} + i \Big[\operatorname{arctg} \frac{\ell - a_k}{b_k} + \operatorname{arctg} \frac{\ell + a_k}{b_k} \Big] \Big\},\,$$

egale cu $+\pi i$ sau $-\pi i$, după cum $b_k > 0$, respectiv $b_k < 0$, reprezintă valorile principale ale integralelor.

Se constată simplu că b_0 , b_1 , b_2 , \cdots , b_{n-1} sunt numere pozitive, iar următoarele, adică b_n , b_{n+1} , \cdots , b_{2n-1} , sunt negative. Deci, putem scrie

$$\int_{-\infty}^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \pi i \Big\{ \sum_{k=0}^{n-1} A_k - \sum_{k=n}^{2n-1} A_k \Big\}.$$
 (1.97)

Prima sumă din membrul doi al relației (1.97) are expresia

$$\sum_{k=0}^{n-1} A_k = -\frac{1}{2n} \cdot \sum_{k=0}^{n-1} x_k^{2m+1} = -\frac{1}{2n} \cdot \sum_{k=0}^{n-1} e^{i\frac{(2m+1)(2k+1)}{2n}\pi}, \quad (1.98)$$

de unde constatăm că este suma a n termeni ai unei progresii geometrice cu rația $q=e^{i2\frac{2m+1}{2n}\pi}$ și primul termen egal cu $e^{i\frac{2m+1}{2n}\pi}$. Efectuând calculul sumei din (1.98), găsim

$$\sum_{k=0}^{n-1} A_k = -\frac{1}{2n} \cdot \frac{e^{i\frac{2m+1}{2n}\pi} - e^{i\frac{(2m+1)(2n+1)}{2n}\pi}}{1 - e^{i\frac{2m+1}{2n}\pi}} =$$

$$= -\frac{1}{2n} \cdot \frac{e^{i\frac{2m+1}{2n}\pi} - e^{i(2m+1)\left(1 + \frac{1}{2n}\right)\pi}}{1 - e^{i\frac{2m+1}{2n}\pi}} =$$

$$= -\frac{1}{2n} \cdot \frac{e^{i\frac{2m+1}{2n}\pi} - e^{i(2m+1)\pi} \cdot e^{i\frac{2m+1}{2n}\pi}}{1 - e^{i\frac{2m+1}{2n}\pi}}.$$

$$(1.99)$$

Însă factorul $e^{i(2m+1)\pi}$ de la numărătorul expresiei (1.99) a sumei $\sum_{k=0}^{n-1} A_k$ este -1. Ca urmare, suma devine

$$\sum_{k=0}^{n-1} A_k = -\frac{1}{2n} \cdot \frac{e^{i\frac{2m+1}{2n}\pi} + e^{i\frac{2m+1}{2n}\pi}}{1 - e^{i\frac{2m+1}{2n}\pi}} = -\frac{1}{n} \cdot \frac{e^{i\frac{2m+1}{2n}\pi}}{1 - e^{i\frac{2m+1}{2n}\pi}}.$$
 (1.100)

Să determinăm acum valorea celei de a doua sume. Avem

$$\sum_{k=n}^{2n-1} A_k = -\frac{1}{2n} \cdot \sum_{k=n}^{2n-1} x_k^{2m+1} = -\frac{1}{2n} \cdot \sum_{k=n}^{2n-1} e^{i\frac{(2m+1)(2k+1)}{2n}\pi}.$$

Indicele de sumare de aici se poate scrie în forma k = n + s, unde s va lua valori de la zero până la n - 1. Expresia celei de a doua sume devine acum

$$\sum_{k=n}^{2n-1} A_k = -\frac{1}{2n} \cdot e^{i(2m+1)\pi} \cdot \sum_{s=0}^{n-1} e^{i\frac{(2m+1)(2s+1)}{2n}\pi}.$$

Dacă se ține cont de faptul că $e^{i(2m+1)\pi} = -1$ și de rezultatul stabilit în (1.98), (1.99) și (1.100), rezultă că expresia finală a celei de a doua sume este

$$\sum_{k=n}^{2n-1} A_k = \frac{1}{2n} \cdot \sum_{s=0}^{n-1} e^{i\frac{(2m+1)(2s+1)}{2n}\pi} = \frac{1}{n} \cdot \frac{e^{i\frac{2m+1}{2n}\pi}}{1 - e^{i\frac{2m+1}{2n}\pi}}.$$
 (1.101)

Din (1.97), (1.100) și (1.101) rezultă

$$2J = \int_{-\infty}^{+\infty} \frac{x^{2m}}{1 + x^{2n}} dx = -\frac{2\pi i}{n} \cdot \frac{e^{i\frac{2m+1}{2n}\pi}}{1 - e^{i\frac{2m+1}{2n}\pi}} = \frac{\pi}{n} \cdot \frac{1}{\sin\frac{2m+1}{2n}\pi}.$$
 (1.102)

Integrantul din (1.102) fiind o funcție pară, rezultă valoarea unei alte integrale importante

$$J = \int_0^{+\infty} \frac{x^{2m}}{1 + x^{2n}} dx = \frac{\pi}{2n} \cdot \frac{1}{\sin\frac{2m+1}{2n}\pi}.$$
 (1.103)

care se va utiliza în calculul unei integrale improprii depinzând de un parametru. $\hfill\blacksquare$

Capitolul 2

Integrale depinzând de un parametru

2.1 Integrale proprii depinzând de un parametru

Fie f o funcție reală de două variabile reale definită pe intervalul bidimensional închis

$$\Pi = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, c \le y \le d\},\$$

cu proprietatea că restricția sa la segmentul de dreaptă paralel cu axa Ox care trece prin punctul (0, y)

$$f(\cdot, y) : [a, b] \to \mathbb{R}$$

este funcție integrabilă Riemann pentru orice valoare fixată a lui y din intervalul [c,d].

Definiția 2.1.1 Funcția reală de variabilă reală

$$J:[c,d] \to \mathbb{R}, \qquad J(y) = \int_a^b f(x,y)dx,$$
 (2.1)

se numește integrală proprie depinzând de un parametru. Variabila y se numește parametru.

Observația 2.1.1 Pot fi introduse și integrale proprii care depind de doi sau mai mulți parametri.

Definiția 2.1.2 O integrală proprie care depinde de mai mulți parametri $are\ forma$

$$\Phi(y_1, y_2, \dots, y_n) = \int_a^b f(x, y_1, y_2, \dots, y_n) dx.$$
 (2.2)

Parametrii y_1, y_2, \dots, y_n pot fi considerați coordonatele în baza canonică din \mathbb{R}^n ale vectorului **parametru y** care aparține intervalului n-dimensional închis

$$I_n = [c_1, d_1] \times [c_2, d_2] \times \cdots \times [c_n, d_n] \subset \mathbb{R}^n.$$

Observația 2.1.2 Integrala proprie care depinde de mai mulți parametri (2.2) poate fi prezentată ca o integrală depinzând de un parametru,

$$\Phi(\mathbf{y}) = \int_{a}^{b} f(x, \mathbf{y}) dx, \qquad (2.3)$$

cu mențiunea că parametrul este vectorul $\mathbf{y} \in I_n$.

Ne propunem să studiem proprietățile integralelor proprii care depind de un parametru.

Teorema 2.1.1 (Continuitatea integralelor proprii depinzând de parametru) Dacă funcția f este continuă pe intervalul bidimensional închis Π , atunci funcția $J:[c,d] \to \mathbb{R}$, definită de integrala (2.1), este uniform continuă.

Demonstrație. Deoarece funcția f(x,y) este continuă în intervalul bidimensional închis Π ea este uniform continuă. Deci, pentru orice $\varepsilon > 0$ există $\delta = \delta(\varepsilon)$ astfel încât inegalitățile

$$|x' - x''| < \delta(\varepsilon), \qquad |y' - y''| < \delta(\varepsilon)$$

implică inegalitatea

$$|f(x',y') - f(x'',y'')| < \frac{\varepsilon}{b-a}.$$
(2.4)

Numărul δ depinde numai de ε fiind independent de poziția ocupată de punctele (x', y') şi (x'', y'') în intervalul bidimensional închis Π .

În particular, luând x'=x''=x se constată că pentru orice y' și y''=y din intervalului [c,d] cu proprietatea

$$|y' - y| < \delta(\varepsilon) \tag{2.5}$$

și pentru orice $x \in [a, b]$, are loc inegalitatea

$$|f(x,y') - f(x,y)| < \frac{\varepsilon}{b-a}.$$
 (2.6)

Prin urmare, pentru orice y și y' aparținând intervalului [c,d] care satisfac (2.5), avem

$$|J(y') - J(y)| = \left| \int_{a}^{b} \left(f(x, y') - f(x, y) \right) dx \right| \le$$

$$\le \int_{a}^{b} |f(x, y') - f(x, y)| dx.$$
(2.7)

Din (2.6) și (2.7) rezultă că pentru orice $y, y' \in [c, d]$ cu proprietatea (2.5) are loc

$$|J(y') - J(y)| < \frac{\varepsilon}{b-a}(b-a) = \varepsilon.$$

Această inegalitate demonstrează că funcția J din (2.1) este uniform continuă.

Corolarul 2.1.1 În ipotezele teoremei precedente, funcția

$$F(u,v,y) = \int_{u}^{v} f(x,y)dx \tag{2.8}$$

este uniform continuă în intervalul închis tridimensional

$$\Pi^* = \{(u, v, y) \in \mathbb{R}^3 : a \le u \le b, a \le v \le b, c \le y \le d\}.$$

Demonstrație. Din continuitatea funcției f pe intervalul bidimensional închis Π , care este o mulțime compactă în \mathbb{R}^2 , deducem că f este mărginită și își atinge efectiv marginile, deci există constanta pozitivă și finită C astfel încât

$$|f(x,y)| \le C, \quad (x,y) \in \Pi.$$

Să evaluăm diferența valorilor funcției F în punctele

$$(u', v', y'), (u'', v'', y'') \in \Pi^*,$$

adică

$$\Delta F = F(u', v', y') - F(u'', v'', y''). \tag{2.9}$$

Mai întâi, ΔF este diferența integralelor

$$\Delta F = \int_{u'}^{v'} f(x, y') dx - \int_{u''}^{v''} f(x, y'') dx.$$

În membrul al doilea a acestei diferențe adunăm și scădem integralele

$$\int_{u'}^{u''} f(x, y'') dx; \qquad \int_{v'}^{v''} f(x, y'') dx.$$

Folosind proprietatea de aditivitate a integralei definite în raport cu intervalul de integrare, diferența de integrale din membrul doi al relației (2.9) se scrie

$$\Delta F = \int_{u'}^{v'} \left(f(x, y') - f(x, y'') \right) dx + \int_{u'}^{u''} f(x, y'') dx - \int_{v'}^{v''} f(x, y'') dx.$$

Luând modulul ambilor membri și folosind proprietățile integralelor definite, găsim

$$|\Delta F| \le \Big| \int_{u'}^{v'} \Big| \Delta f(x, \Delta y) \Big| dx \Big| + \Big| \int_{u'}^{u''} |f(x, y'')| dx \Big| + \Big| \int_{v'}^{v''} |f(x, y'')| dx \Big|$$

unde, pentru simplitatea scrierii, s-a făcut pentru moment notația

$$\Delta f(x, \Delta y) = f(x, y') - f(x, y'').$$

Prin urmare, o nouă evaluare pentru valoarea absolută a diferenței (2.9) este

$$|\Delta F| \le \left| \int_{u'}^{v'} \left| f(x, y') - f(x, y'') \right| dx \right| + C(|u'' - u'| + |v'' - v'|).$$

Funcţia f fiind continuă în intervalul bidimensional închis Π , este uniform continuă, prin urmare pentru orice $\varepsilon > 0$ există $\delta_1(\varepsilon) > 0$ astfel încât oricare ar fi $y', y'' \in [c, d]$ cu proprietatea

$$|y' - y''| < \delta_1(\varepsilon) \tag{2.10}$$

avem

$$|f(x,y') - f(x,y'')| < \frac{\varepsilon}{2(b-a)}.$$
(2.11)

Să observăm că oriunde ar fi situat punctul (u', v') în intervalul bidimensional $[a, b] \times [a, b]$, diferența $|u' - v'| \le b - a$ deci, folosind această observație și (2.11), rezultă că oricare ar fi punctele $y', y'' \in [c, d]$ care satisfac (2.10), modulul diferenței (2.9) se reevaluează după cum urmează

$$|\Delta F| < \frac{\varepsilon}{2} + C(|u'' - u'| + |v'' - v'|).$$

Analiza raționamentului de mai sus conduce la concluzia că pentru orice $\varepsilon>0$ există

$$\delta(\varepsilon) = \min\{\delta_1(\varepsilon), \frac{\varepsilon}{4C}\}\$$

astfel încât oricare ar fi punctele $(u',v',y'),(u'',v'',y'')\in\Pi^*$ ale căror coordonate satisfac inegalitățile

$$|u' - u''| < \delta(\varepsilon), \quad |v' - v''| < \delta(\varepsilon), \quad |y' - y''| < \delta(\varepsilon), \tag{2.12}$$

avem că

$$|F(u', v', y') - F(u'', v'', y'')| < \varepsilon.$$
 (2.13)

Din (2.12) și (2.13) și definiția uniformei continuități a unei funcții reale de trei variabile reale rezultă că funcția $F:\Pi^*\to I\!\!R$ ale cărei valori sunt date de (2.8) este uniform continuă.

Teorema 2.1.2 (Derivabilitatea unei integrale proprii care depinde de un parametru.) Dacă f si $\frac{\partial f}{\partial y}$ sunt funcții continue pe intervalul bidimensional închis Π , atunci funcția J definită de integrala depinzând de parametrul g (2.1) este derivabilă pe compactul [c,d] si are loc relația

$$\frac{dJ}{dy}(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx, \quad y \in [c, d]. \tag{2.14}$$

Demonstrație. Trebuie să demonstrăm că raportul incrementar al funcției J în punctul y are limită în y și această limită este chiar integrala din ultimul membru al lui (2.14), adică

$$\lim_{\Delta y \to 0} \frac{J(y + \Delta y) - J(y)}{\Delta y} = \int_a^b f_y'(x, y) dx.$$
 (2.15)

În acest scop vom demonstra că pentru $\Delta y \neq 0$ diferența

$$\frac{J(y+\Delta y)-J(y)}{\Delta y} - \int_a^b f_y'(x,y)dx$$

tinde la zero când $\Delta y \to 0$. Să remarcăm întâi că, în baza teoremei creşterilor finite a lui Lagrange, există numărul pozitiv şi subunitar θ astfel încât

$$\frac{J(y+\Delta y)-J(y)}{\Delta y} = \int_a^b \frac{f(x,y+\Delta y)-f(x,y)}{\Delta y} dx = \int_a^b f_y'(x,y+\theta \Delta y) dx.$$

În consecință, putem scrie

$$\frac{J(y+\Delta y)-J(y)}{\Delta y}-\int_a^b f_y'(x,y)dx=\int_a^b \left(f_y'(x,y+\theta\Delta y)-f_y'(x,y)\right)dx.$$

Să evaluăm diferența din membrul doi a acestei relații pentru valori suficient de mici ale lui $|\Delta y|$. Deoarece derivata $f_y'(x,y)$ este continuă în intervalul bidimensional închis Π ea este uniform continuă și deci pentru orice $\varepsilon>0$ există $\delta(\varepsilon)>0$ astfel încât, pentru orice creștere a lui y care satisface

$$|\Delta y| < \delta(\varepsilon) \tag{2.16}$$

este adevărată inegalitatea

$$|f_y'(x, y + \Delta y) - f_y'(x, y)| < \frac{\varepsilon}{b - a}, \tag{2.17}$$

 $(\forall) \ x \in [a,b]$ și $(\forall) \ y, \ y + \Delta y \in [c,d].$ Cum $0 < \theta < 1,$ din (2.16) avem și

$$|\theta \Delta y| < \delta(\varepsilon) \tag{2.18}$$

ceea ce, în baza lui (2.17), atrage

$$|f_y'(x, y + \theta \Delta y) - f_y'(x, y)| < \frac{\varepsilon}{b - a}.$$
 (2.19)

Atunci, luând în considerație relațiile stabilite mai sus, avem inegalitatea

$$\left| \frac{J(y + \Delta y) - J(y)}{\Delta y} - \int_{a}^{b} f_{y}'(x, y) dx \right| < \frac{\varepsilon}{b - a} (b - a) = \varepsilon, \tag{2.20}$$

adevărată pentru toate valorile lui Δy care satisfac (2.16). Rezultatul stabilit în (2.20) arată că are loc (2.15) și teorema este demonstrată.

Formula (2.14), cunoscută ca *regula lui Leibniz* de derivare a unei integrale depinzând de parametru, poate fi scrisă și în forma

$$\frac{d}{dy} \int_a^b f(x, y) dx = \int_a^b \frac{\partial f}{\partial y}(x, y) dx, \quad y \in [c, d].$$

Observația 2.1.3 Derivata unei integrale care depinde de un parametru este egală cu integrala derivatei parțiale a integrandului în raport cu variabila parametru.

Teorema 2.1.3 (Derivabilitatea unei integrale proprii depinzând de parametru a cărei limite de integrare depind de parametru) Dacă funcțiile f și $\frac{\partial f}{\partial y}$ sunt continue pe intervalul bidimensional închis Π , iar $x=x_1(y)$ și $x=x_2(y)$ sunt funcții derivabile pe intervalul [c,d] cu valori în intervalul [a,b], atunci integrala depinzând de parametrul y

$$J(y) = \int_{x_1(y)}^{x_2(y)} f(x, y) dx$$
 (2.21)

este o funcție derivabilă pe compactul [c, d] și are loc relația

$$\frac{dJ}{dy}(y) = \int_{x_1(y)}^{x_2(y)} \frac{\partial f}{\partial y}(x, y) dx + f\left(x_2(y), y\right) \cdot \frac{dx_2}{dy}(y) - f\left(x_1(y), y\right) \cdot \frac{dx_1}{dy}(y),$$

oricare ar fi parametrul $y \in [c, d]$.

Demonstrație. Avem

$$J(y) = F(x_1(y), x_2(y), y), (2.22)$$

unde funcția F, definită în relația (2.8), posedă derivate parțiale continue pe paralelipipedul Π^* și :

$$\begin{cases}
\frac{\partial F}{\partial u}(u, v, y) &= -f(u, y); \\
\frac{\partial F}{\partial v}(u, v, y) &= f(v, y); \\
\frac{\partial F}{\partial y}(u, v, y) &= \int_{u}^{v} \frac{\partial f}{\partial y}(x, y) dx.
\end{cases} (2.23)$$

Primele două relații din (2.23) există și sunt egale cu expresiile din membrul al doilea ale acestora în baza rezultatului cunoscut de la integrale definite care afirmă că dacă funcția $g:[a,b] \to \mathbb{R}$ este continuă, atunci funcțiile G_1 și G_2 definite pe [a,b] prin

$$G_1(t) = \int_a^t f(x)dx, \quad G_2(t) = \int_t^b g(x)dx$$

sunt derivabile și

$$G'_1(t) = f(t), G'_2(t) = -f(t), (\forall) t \in [a, b]. (2.24)$$

După Teorema 2.1.2 este adevărată și cea de-a treia egalitate din (2.23), iar din Corolarul 2.1.1 rezultă că toate derivatele parțiale din (2.23) sunt funcții continue pe paralelipipedul Π^* . Deoarece funcțiile $x = x_1(y)$ și $x = x_2(y)$ sunt derivabile, aplicând funcției $y \mapsto F(x_1(y), x_2(y), y)$ regula de derivare a funcțiilor compuse de o variabilă, obținem

$$\frac{d}{dy}F(x_1(y), x_2(y), y) = \frac{\partial F}{\partial u}(x_1(y), x_2(y), y) \cdot \frac{dx_1}{dy}(y) +
+ \frac{\partial F}{\partial v}(x_1(y), x_2(y), y) \cdot \frac{dx_2}{dy}(y) + \frac{\partial F}{\partial y}(x_1(y), x_2(y), y).$$
(2.25)

Însă, funcția J din (2.21) este astfel încât are loc egalitatea (2.22). Acum, din relațiile (2.23), (2.25) și (2.22) rezultă concluzia teoremei.

Exemplul 2.1.1 Folosind teorema de derivabilitate a integralelor depinzând de un parametru cu limitele de integrare variabile, să se evalueze integrala

$$J(y) = \int_0^y \frac{\ln(1+yx)}{1+x^2} dx. \tag{2.26}$$

Soluție. Suntem în ipotezele Teoremei 2.1.3 astfel că putem scrie

$$\frac{dJ}{dy}(y) = \frac{\ln(1+y^2)}{1+y^2} + \int_0^y \frac{x}{(1+yx)(1+x^2)} dx.$$

Integrala din membrul doi este o integrală dintr-o funcție rațională. Descompunând în fracții simple această funcție rațională, obținem

$$\frac{x}{(1+yx)(1+x^2)} = -\frac{y}{1+y^2} \cdot \frac{1}{1+yx} + \frac{1}{1+y^2} \cdot \frac{x+y}{1+x^2}.$$
 (2.27)

Deoarece, primitivele fracțiilor raționale din membrul doi al egalității (2.27) se exprimă prin funcții elementare, avem

$$\int_0^y \frac{x}{(1+yx)(1+x^2)} dx = -\frac{\ln(1+y^2)}{1+y^2} + \frac{\ln(1+y^2)}{2(1+y^2)} + \frac{y}{1+y^2} \cdot \operatorname{arctg} y.$$

În acest fel am obținut

$$\frac{dJ}{dy}(y) = \frac{\ln(1+y^2)}{2(1+y^2)} + \frac{y}{1+y^2} \cdot \arctan y.$$

Trecând aici pe y în t, integrând apoi între 0 şi y şi ţinând cont că din (2.26) rezultă J(0) = 0, obţinem

$$J(y) = \int_0^y \frac{\ln(1+t^2)}{2(1+t^2)} dt + \int_0^y \frac{t}{1+t^2} \cdot \operatorname{arctg} t dt.$$

Cea de a doua integrală de mai sus se calculează folosind metoda integrării prin părți. Avem

$$\int_0^y \frac{t}{1+t^2} \cdot \operatorname{arctg} t \, dt = \frac{1}{2} \int_0^y \operatorname{arctg} t \cdot \left(\ln(1+t^2) \right)' dt =$$

$$= \frac{1}{2} \left(\operatorname{arctg} t \cdot \ln(1+t^2) \right) \Big|_0^y - \int_0^y \frac{\ln(1+t^2)}{2(1+t^2)} \, dt.$$

Folosind acum ultimele două rezultate, deducem că expresia funcției ${\cal J}$ este

$$J(y) = \frac{1}{2} \operatorname{arctg} y \cdot \ln(1 + y^2).$$

Teorema 2.1.4 (Integrabilitatea unei integrale proprii depinzând de parametru) Dacă funcția f este continuă pe intervalul bidimensional închis Π , atunci

$$\int_{c}^{d} J(y)dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy.$$
 (2.28)

Demonstrație. În locul egalității (2.28) vom demonstra o alta mult mai generală, și anume

$$\int_{c}^{d} dy \int_{a}^{t} f(x, y) dx = \int_{a}^{t} dx \int_{c}^{d} f(x, y) dy, \quad (\forall) \ t \in [a, b].$$
 (2.29)

Pentru aceasta, introducem notațiile

$$\varphi(t) = \int_c^d dy \int_a^t f(x, y) dx, \quad \psi(t) = \int_a^t dx \int_c^d f(x, y) dy. \tag{2.30}$$

Atunci, relația (2.29), care o avem de demonstrat, este echivalentă cu relația

$$\varphi(t) = \psi(t), \quad (\forall) \ t \in [a, b]. \tag{2.31}$$

Pentru a demonstra (2.31) este suficient să arătăm că au loc egalitățile:

$$\varphi'(t) = \psi'(t), \quad (\forall) \ t \in [a, b]; \tag{2.32}$$

$$\varphi(a) = \psi(a). \tag{2.33}$$

Egalitatea (2.33) este evidentă deoarece din expresiile (2.30) constatăm că

$$\varphi(a) = 0, \qquad \psi(a) = 0.$$

Pentru demonstrația egalității (2.32) să introducem funcțiile F(t,y) și $\xi(x)$ prin:

$$F(t,y) = \int_{a}^{t} f(x,y)dx; \qquad \xi(x) = \int_{c}^{d} f(x,y)dy.$$
 (2.34)

Vedem acum că funcțiile φ și ψ se exprimă cu ajutorul funcțiilor nou introduse din (2.34) în modul:

$$\varphi(t) = \int_{c}^{d} F(t, y) dy; \qquad \psi(t) = \int_{a}^{t} \xi(x) dx.$$

Conform Corolarului 2.1.1, funcția F din (2.34) este continuă, iar derivata parțială a acesteia în punctul (t,y), față de variabila t este, în baza lui (2.24)₁, egală cu f(t,y) și această derivată este funcție continuă pentru $(t,y) \in [a,b] \times [c,d]$. Aplicând Teorema 2.1.3 deducem că avem

$$\varphi'(t) = \int_{c}^{d} \frac{\partial F}{\partial t}(t, y) dy = \int_{c}^{d} f(t, y) dy.$$
 (2.35)

Funcția $\xi = \xi(x)$ fiind uniform continuă pe compactul [a, b] în baza Teoremei 2.1.1, este continuă pe [a, b]. Fiind îndeplinite ipotezele Teoremei 2.1.3, prin aplicarea ei funcției ψ , găsim

$$\psi'(t) = \frac{d}{dt} \int_a^t \xi(x) dx = \xi(t) = \int_c^d f(t, y) dy.$$

Din această egalitate şi (2.35) rezultă că are loc (2.32) deci, în baza uneia din consecințele teoremei creșterilor finite a lui Lagrange, funcțiile φ şi ψ diferă printr-o constantă C, constantă care este diferența valorilor acestor două funcții în orice punct din domeniul lor de definiție. Luând acest punct să fie t=a și având în vedere (2.33), deducem că are loc relația (2.31) și drept urmare are loc și egalitatea (2.29). În particular, $\varphi(b) = \psi(b)$, adică are loc egalitatea (2.28), care este ceea ce trebuia demonstrat.

Observația 2.1.4 Egalitatea (2.28) arată că pentru a integra pe intervalul [c,d] integrala depinzând de un parametru (2.1), integrăm funcția f(x,y) în raport cu acest parametru pe același interval, iar rezultatul integrării, care va fi o funcție de x, se integrează pe compactul [a,b].

Exemplul 2.1.2 Folosind teorema de integrabilitate a integralelor depinzând de un parametru, să se calculeze integrala proprie depinzând de doi parametri

$$J(y_1, y_2) = \int_0^1 \frac{x^{y_1} - x^{y_2}}{\ln x} dx.$$

Soluție. Se observă că

$$\frac{x^{y_1} - x^{y_2}}{\ln x} = \int_{y_2}^{y_1} x^y dy. \tag{2.36}$$

Folosind această observație, rezultă

$$J(y_1, y_2) = \int_0^1 dx \int_{y_2}^{y_1} x^y dy.$$

În ultima iterație de integrale aplicăm teorema de integrabilitate a integralelor depinzând de parametrul y și obținem

$$J(y_1, y_2) = \int_{y_2}^{y_1} dy \int_0^1 x^y dx = \int_{y_2}^{y_1} \frac{x^{y+1}}{y+1} \Big|_{x=0}^{x=1} dy = \int_{y_2}^{y_1} \frac{dy}{1+y}.$$

Cum ultima integrală este imediată, avem în final

$$J(y_1, y_2) = \ln \frac{1 + y_1}{1 + y_2}.$$

Exemplul 2.1.3 Să se determine funcția J definită ca o integrală improprie depinzând de doi parametri a și b

$$J(a,b) = \int_0^1 \frac{x^b - x^a}{\ln x} \cdot \cos \ln \frac{1}{x} dx.$$

Soluție. Folosim mai întâi rezultatul (2.36) în care $y_1 = b$ și $y_2 = a$. Atunci, J(a, b) se scrie

$$J(a,b) = \int_0^1 \cos \ln \frac{1}{x} dx \int_a^b x^y dy.$$

În membrul doi al acestei relații aplicăm teorema de integrabilitate a integralelor depinzând de un parametru și obținem

$$J(a,b) = \int_{a}^{b} J_{1}(y)dy,$$
 (2.37)

unde am introdus notația

$$J_1(y) = \int_0^1 x^y \cos \ln \frac{1}{x} dx.$$
 (2.38)

Pentru calculul integralei (2.38), efectuăm schimbarea de variabilă

$$\ln x = t \implies x = e^t \implies dx = e^t dt, \quad t \in (-\infty, 0].$$

Folosind formula schimbării de variabilă întro integrală improprie, suntem conduși la

$$J_1(y) = \int_{-\infty}^0 e^{(y+1)t} \cos t \, dt.$$

Dacă în ultima integrală se aplică de două ori formula integrării prin părți, obținem

$$J_1(y) = y + 1 - (y+1)^2 J_1(y),$$

de unde deducem că valoarea lui $J_1(y)$ este

$$J_1(y) = \frac{y+1}{1+(y+1)^2}.$$

Folosind acum acest rezultat în (2.37), deducem

$$J(a,b) = \int_a^b \frac{y+1}{1+(y+1)^2} dy.$$

Ultima integrală este imediată și are valoarea

$$J(a,b) = \frac{1}{2} \ln \left(1 + (y+1)^2 \right) \Big|_a^b = \frac{1}{2} \ln \frac{b^2 + b + 2}{a^2 + a + 2}.$$

2.2 Integrale improprii simple depinzând de un parametru

Teoremele demonstrate în paragraful precedent pot fi extinse fără dificultate la integralele improprii de tipul particular

$$J(y) = \int_{a}^{b} f(x, y) g(x) dx,$$
 (2.39)

unde funcția $f:[a,b)\times[c,d]\to\mathbb{R}$ este continuă și mărginită, iar funcția $g:[a,b)\to\mathbb{R}$ poate fi discontinuă în caz general, însă integrala improprie $\int_a^b g(x)dx$, cu limita superioară punct singular, este absolut convergentă. Limita superioară poate fi finită sau infinită. Considerații analoage se pot face când a este punct singular.

Ipotezele pentru care teoremele din capitolul precedent sunt adevărate pentru integrale de tipul (2.39) le vom formula în teoremele care urmează. Aceste teoreme sunt folosite frecvent în fizica matematică și în teoria integralelor Fourier.

Teorema 2.2.1 (Teoremă generalizată de continuitate a unei integrale improprii simple depinzând de un parametru) Dacă funcția reală de două variabile reale

$$f: [a, +\infty) \times [c, d] \to \mathbb{R}$$
 (2.40)

este continuă și mărginită, iar integrala improprie de speța întâi

$$\int_{a}^{+\infty} |g(x)| dx \tag{2.41}$$

este convergentă, atunci integrala improprie de speța întâi depinzând de un parametru

$$J(y) = \int_{a}^{\infty} f(x, y) g(x) dx \qquad (2.42)$$

este functie uniform continuă de y pe intervalul [c, d].

Demonstrație. Fie C > 0 și K > 0 constante reale cu proprietățile:

$$|f(x,y)| < C, \ (\forall) \ (x,y) \in [a,+\infty) \times [c,d];$$

$$\int_{a}^{+\infty} |g(x)| dx = K < +\infty,$$
(2.43)

existența cărora rezultă din ipotezele teoremei. Fie acum $\varepsilon > 0$ luat arbitrar. Integrala improprie (2.41) fiind convergentă, există $\ell > a$, suficient de mare, astfel încât

$$2C \int_{\ell}^{+\infty} |g(x)| dx < \frac{\varepsilon}{2}. \tag{2.44}$$

Luând un astfel de ℓ încât să aibă loc inegalitatea (2.44) și alegând arbitrar pe y' și y'' din intervalul [c,d], putem reprezenta diferența J(y') - J(y'') în forma

$$J(y') - J(y'') = \int_{a}^{\ell} (f(x, y') - f(x, y'')) g(x) dx + \int_{\ell}^{+\infty} (f(x, y') - f(x, y'')) g(x) dx.$$

Deoarece funcția f este continuă în intervalul bidimensional închis $[a,\ell] \times [c,d]$, ea este uniform continuă. Prin urmare, pentru $\varepsilon > 0$, ales arbitrar mai sus, există $\delta = \delta(\varepsilon)$ astfel încât la orice alegere a lui y' și y'' din compactul [c,d] care să satisfacă inegalitatea

$$|y' - y''| < \delta(\varepsilon), \tag{2.45}$$

valorile corespunzătoare ale lui f în punctele (x, y') și (x, y'') satisfac inegalitatea

$$|f(x,y') - f(x,y'')| < \frac{\varepsilon}{2K}, \ (\forall) \ x \in [a,\ell].$$

Această egalitate, împreună cu (2.43), (2.44) și (2.45), implică relațiile

$$\begin{split} |J(y')-J(y'')| & \leq \int_a^\ell |f(x,y')-f(x,y'')| \cdot |g(x)| dx + \\ & + \int_\ell^{+\infty} \Big(|f(x,y')| + |f(x,y'')|\Big) |g(x)| dx < \\ & < \frac{\varepsilon}{2K} \int_a^\ell |g(x)| dx + 2 \, C \, \int_\ell^{+\infty} |g(x)| dx < \\ & < \frac{\varepsilon}{2K} \, K + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

care arată că integrala improprie depinzând de parametrul y din (2.39) este o funcție continuă pe compactul [c,d], deci și uniform continuă.

Teorema 2.2.2 (Derivabilitatea unei integrale improprii simple depinzând de un parametru) Dacă funcția (2.40) și derivata sa parțială în raport cu y

 $\frac{\partial f}{\partial u}: [a, +\infty) \times [c, d] \to IR$

sunt continue şi mărginite, iar integrala improprie de speţa întâi (2.41) este convergentă, atunci integrala improprie simplă (2.42), de speţa întâi şi depinzând de parametrul y, este o funcție derivabilă și

$$J'(y) = \int_{a}^{+\infty} \frac{\partial f}{\partial y}(x, y)g(x)dx.$$

Exercițiul 2.2.1 Folosind teorema de derivabilitate a integralelor improprii simple depinzând de un parametru, să se calculeze

$$J(y) = \int_0^1 \frac{\arctan yx}{x\sqrt{1-x^2}} dx.$$

Soluţie. Integrala improprie depinzând de un parametru din acest exemplu este de forma (2.39), unde:

$$f(x,y) = \frac{\arctan yx}{x}; \ g(x) = \frac{1}{\sqrt{1-x^2}}.$$

Constatăm că sunt îndeplinite ipotezele Teoremei 2.2.2 astfel că, putem scrie

$$J'(y) = \int_0^1 \frac{x}{x(1+y^2x^2)\sqrt{1-x^2}} dx = \int_0^1 \frac{dx}{(1+y^2x^2)\sqrt{1-x^2}}.$$

In ultima integrală efectuăm schimbarea de variabilă $x=\sin t$. Obținem integrala

$$J'(y) = \int_0^{\pi/2} \frac{dt}{1 + y^2 \sin^2 t}$$

care, după schimbarea de variabilă $u = \operatorname{tg} t$, devine

$$J'(y) = \int_0^{+\infty} \frac{du}{1 + (1 + y^2)u^2}.$$

O primitivă a funcției de integrat din ultima integrală improprie depinzând de un parametru este simplu de calculat. Prin urmare,

$$J'(y) = \frac{1}{\sqrt{1+y^2}} \arctan\left(u\sqrt{1+y^2}\right)\Big|_{u=0}^{u=+\infty} = \frac{\pi}{2} \frac{1}{\sqrt{1+y^2}}.$$

Deoarece valoarea în y = 0 a funcției J este zero, avem

$$J(y) = \int_0^y J'(t) dt = \frac{\pi}{2} \int_0^y \frac{dt}{\sqrt{1+t^2}}.$$

Cum primitiva ultimei funcții de integrat este $\ln{(t+\sqrt{1+t^2})}$, rezultă în final

$$J(y) = \frac{\pi}{2} \ln(y + \sqrt{1 + y^2}).$$

Exercițiul 2.2.2 Folosind teorema de derivabilitate a integralelor improprii simple depinzând de un parametru, să se calculeze

$$J(y) = \int_0^1 \frac{\ln(1 - x^2 y)}{\sqrt{1 - x^2}} dx,$$

unde parametrul y este astfel încât |y| < 1.

Soluție. La fel ca în exercițiul precedent, J(y) este de forma (2.39), unde

$$f(x,y) = \ln(1 - x^2y), \quad g(x) = \frac{1}{\sqrt{1 - x^2}}.$$

Constatăm că sunt îndeplinite ipotezele Teoremei 2.2.2, deci

$$J'(y) = -\int_0^1 \frac{x^2}{(1 - x^2 y)\sqrt{1 - x^2}} dx.$$

Efectuând în ultima integrală schimbarea de variabilă $x = \sin t$, obținem

$$J'(y) = -\int_0^{\pi/2} \frac{\sin^2 t dt}{1 - y \sin^2 t},$$

după care, dacă schimbăm variabila folosind $u = \operatorname{tg} t$, deducem

$$J'(y) = -\int_0^{+\infty} \frac{u^2 du}{(1+u^2)[1+(1-y)u^2]}.$$

Noua funcție de integrat se descompune în fracții simple și, după integrarea acestora, găsim

$$J'(y) = \frac{\pi}{2} \left(\frac{1}{y} - \frac{1}{y\sqrt{1-y}} \right).$$

Procedând asemănător ca la exercițiul precedent, găsim că valoarea lui J(y) este $J(y)=\pi\ln\frac{1+\sqrt{1-y}}{2}$.

Teorema 2.2.3 (Integrabilitatea unei integrale improprii simple depinzând de un parametru) Dacă funcția (2.40) este continuă și mărginită, iar integrala improprie de speța întâi (2.41) este convergentă, atunci integrala improprie simplă de speța întâi (2.42), depinzând de parametrul y, este o funcție de y integrabilă Riemann pe intervalul [c, d] și

$$\int_{c}^{d} J(y)dy = \int_{c}^{d} dy \int_{a}^{+\infty} f(x,y) g(x)dx =$$
$$= \int_{a}^{+\infty} \left(g(x) \int_{c}^{d} f(x,y)dy \right) dx.$$

Operațiile de derivare și integrare ale integralelor improprii depinzând de un parametru de forma specială (2.42) se aplică pentru a calcula valorile unor integrale proprii sau improprii care nu conțin neapărat parametri dar în care, în prealabil, se introduc unul sau mai mulți parametri.

Exemplul 2.2.1 Să se evalueze integrala improprie de prima speță depinzând de parametrul $y \in [-A, A]$

$$J(y) = \int_0^{+\infty} \frac{\sin xy}{x} e^{-\alpha x} dx, \qquad (2.46)$$

unde α este o constantă reală pozitivă fixată.

Soluție. Punând $f(x,y) = \frac{\sin xy}{x}$ și $g(x) = e^{-\alpha x}$ observăm că f(x,y) și $f'_y(x,y)$ sunt funcții continue și mărginite pe intervalul bidimensional nemărginit

$$[0, +\infty) \times [-A, A],$$

iar integrala

$$\int_0^{+\infty} |g(x)| dx = \int_0^{+\infty} e^{-\alpha x} dx = \frac{1}{\alpha}$$

este convergentă. Prin urmare, putem aplica Teorema 2.2.2. După derivarea sub semnul integrală în (2.46), obținem

$$J'(y) = \int_0^{+\infty} e^{-\alpha x} \cos xy dx. \tag{2.47}$$

Integrând prin părți de două ori în membrul al doilea al relației (2.47), găsim

$$J'(y) = \frac{\alpha}{\alpha^2 + y^2} \tag{2.48}$$

de unde, prin integrare de la 0 la y și J(0) = 0, obținem

$$J(y) = \int_0^y J'(t)dt = \int_0^y \frac{\alpha}{\alpha^2 + t^2} dt = \operatorname{arctg} \frac{y}{\alpha}.$$
 (2.49)

Există și o altă cale de calculare a integralei (2.46) pornind de la rezultatul intermediar (2.48) care constă mai întâi în determinarea unei primitive a funcției

$$y \mapsto \frac{\alpha}{\alpha^2 + y^2}.$$

O asemenea primitivă poate fi arctg $\frac{y}{\alpha}$ și prin urmare vom avea

$$J(y) = C + \arctan \frac{y}{\alpha},\tag{2.50}$$

unde C este o constantă arbitrară. Punând y = 0 în (2.50) şi ţinând cont că J(0) = 0 găsim că C = 0 şi din nou ajungem la (2.49).

Dacă în egalitatea (2.49) trecem la limită pentru $\alpha \to +0$ şi în rezultatul obținut punem y=1, găsim valoarea integralei improprii a lui Dirichlet, a cărei natură am studiat—o anterior,

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$
 (2.51)

Desigur, pornind de la integrala (2.46), a cărei valoare este dată în (2.49), putem să dăm valorile altor integrale improprii. Ca exemplu, avem

$$\int_0^{+\infty} \frac{\sin xy}{x} e^{-x} dx = \operatorname{arctg} y,$$

care se obține din (2.46) și (2.49) luând $\alpha = 1$.

2.3 Integrale improprii depinzând de un parametru, uniform convergente

2.3.1 Definiția integralelor improprii depinzând de un parametru, uniform convergente

Să considerăm o funcție reală de două variabile reale

$$f: [a, +\infty) \times [c, d] \to \mathbb{R} \tag{2.52}$$

cu proprietatea că restricția sa la orice paralelă la axa Ox care trece prin punctul (0,y), adică funcția $f(\cdot,y):[a,+\infty)\to I\!\!R$, este integrabilă în sens generalizat, ceea ce este echivalent cu a spune că integrala improprie de speța întâi depinzând de parametrul y

$$J(y) = \int_{a}^{+\infty} f(x, y)dx \tag{2.53}$$

este convergentă. În baza definiției convergenței unei integrale improprii, avem

$$J(y) = \int_{a}^{+\infty} f(x, y) dx = \lim_{t \to +\infty} \int_{a}^{t} f(x, y) dx.$$
 (2.54)

Integralele improprii de speţa a doua care depind de un parametru se definesc în mod asemănător. De exemplu, dacă

$$f: [a, b) \times [c, d] \subset \mathbb{R}^2 \to \mathbb{R}$$
 (2.55)

este o funcție reală de două variabile reale nemărginită în vecinătatea punctelor (b, y), iar integrala improprie

$$\int_{a}^{b} f(x,y)dx \tag{2.56}$$

este convergentă pentru orice valoare fixată a lui y din compactul [c, d], atunci

$$J^{*}(y) = \int_{a}^{b} f(x,y)dx = \lim_{\substack{\lambda \to 0 \\ \lambda > 0}} \int_{a}^{b-\lambda} f(x,y)dx$$
 (2.57)

este o funcție de y definită pe compactul [c,d] care se numește integrală improprie de speța a doua care depinde de un parametru.

În studiul integralelor improprii depinzând de un parametru (2.54) şi (2.57) un rol important îl are noțiunea de uniformă convergență.

Definiția 2.3.1 Spunem că integrala improprie de speța întâi (2.53), depinzând de parametrul y, este uniform convergentă în raport cu parametrul y pe intervalul [c,d], dacă pentru orice $\varepsilon > 0$ există $L = L(\varepsilon)$ astfel încât inegalitatea

$$\left|J(y) - \int_{a}^{\ell} f(x, y) dx\right| = \left|\int_{\ell}^{+\infty} f(x, y) dx\right| < \varepsilon$$

este satisfăcută simultan pentru toți $\ell > L(\varepsilon)$ și $y \in [c,d]$.

Uniforma convergență a unei integrale improprii de speța a doua, de forma (2.57), care depinde de parametrul $y \in [c, d]$, se definește asemănător.

Definiția 2.3.2 Integrala improprie de speța a doua (2.57), care depinde de parametrul $y \in [c,d]$, se numește uniform convergentă în raport cu parametrul y pe intervalul [c,d], dacă pentru orice $\varepsilon > 0$ există $\delta = \delta(\varepsilon) > 0$ astfel încât inegalitatea

$$\left|J^*(y) - \int_a^{b-\lambda} f(x,y)dx\right| = \left|\int_{b-\lambda}^b f(x,y)dx\right| < \varepsilon$$

are loc simultan pentru toţi $\lambda < b-a$ care satisfac condiţia $0 < \lambda < \delta(\varepsilon)$ şi pentru toţi $y \in [c,d]$.

Exemplul 2.3.1 Integrala improprie de speţa întâi depinzând de un parametru

$$J(y) = \int_0^{+\infty} y \, e^{-xy} dx \tag{2.58}$$

este convergentă pentru fiecare $y \in [0,1]$, însă nu este uniform convergentă în raport cu parametrul y pe compactul [0,1].

Într-adevăr, avem

$$\int_0^\ell y \, e^{-xy} dx = \int_0^{\ell y} e^{-u} \, du = -e^{-u} \Big|_0^{\ell y} = 1 - e^{-\ell y},$$

de unde deducem

$$\lim_{\ell \to +\infty} \int_0^{\ell y} e^{-xy} dx = \lim_{\ell \to +\infty} (1 - e^{-\ell y}) = 1$$

ceea ce arată că integrala improprie (2.58) este convergentă pentru fiecare $y \in [0, 1]$.

Conform Definiției 2.3.1, pentru studiul convergenței uniforme trebuie calculată diferența

$$J(y) - \int_0^\ell y \, e^{-xy} dx = \int_\ell^{+\infty} y \, e^{-xy} dx = \int_{\ell u}^{+\infty} e^{-u} \, du = e^{-\ell y}.$$

Pentru o valoare fixată și arbitrar de mare $\ell > 0$, această diferență întrece pe 1/2 pentru toate valorile lui y suficient de apropiate de zero și, în consecință,

pentru $\varepsilon=1/2$ nu există $L(\varepsilon)$ astfel încât, pentru $\ell>L(\varepsilon)$ și pentru toți $y\in[0,1]$, să fie satisfăcută inegalitatea

$$\left| \int_{t}^{+\infty} y \, e^{-xy} dx \right| < \varepsilon = \frac{1}{2}.$$

Acest rezultat arată că integrala improprie de speţa întâi (2.58) nu este uniform convergentă în raport cu parametrul y pe intervalul [0,1].

Exercițiul 2.3.1 Să se arate că integrala improprie (2.58) este uniform convergentă în raport cu parametrul y pe intervalul $[\delta, 1]$, cu $0 < \delta < 1$.

Soluție. Într-adevăr, avem

$$\int_{\ell}^{+\infty} y \, e^{-xy} dx = \int_{\ell y}^{+\infty} e^{-u} \, du = e^{-\ell y} \le e^{-\ell \delta}$$

pentru $0 < \delta \le y \le 1$ și prin urmare inegalitatea

$$\left| \int_{\ell}^{+\infty} y \, e^{-xy} dx \right| < \varepsilon$$

are loc pentru orice

$$\ell > \frac{\ln \frac{1}{\varepsilon}}{\delta}, \quad 0 < \varepsilon < 1, \tag{2.59}$$

și pentru toți $y \in [\delta, 1]$, unde $0 < \delta < 1$. În baza Definiției 2.3.1, rezultă că integrala improprie (2.58), de speța întâi și depinzând de parametrul y, este uniform convergentă în raport cu parametrul y pe compactul $[\delta, 1]$, cu $0 < \delta < 1$.

2.3.2 Reducerea integralelor improprii depinzând de un parametru la şiruri de funcţii

O integrală improprie depinzând de un parametru poate fi redusă la un şir de funcții, iar această reducere face posibilă demonstrația teoremelor fundamentale referitoare la astfel de integrale în baza teoremelor corespunzătoare ale şirurilor de funcții.

Dacă integrala (2.53) este convergentă pentru fiecare $y \in [c, d]$, atunci, pentru un şir numeric arbitrar, (ℓ_n) , cu limita egală cu $+\infty$ și termenii incluşi

în intervalul nemărginit $[a, +\infty)$, şirul de funcții (F_n) definite pe intervalul [c, d], cu termenul general

$$F_n(y) = \int_a^{\ell_k} f(x, y) dx, \quad n = 1, 2, \dots, \quad c \le y \le d$$

este evident convergent la J(y) pe intervalul [c,d].

Pentru a se urmări cu eficiență raționamentele de mai jos se impune să reamnitim definițiile convergenței și uniformei convergențe ale unui șir de funcții.

Definiția 2.3.3 Şirul de funcții (f_n) se numește **convergent** la funcția f(x) pe intervalul [a,b] dacă pentru orice valoare fixată $x \in [a,b]$ șirul numeric $(f_n(x))$ este convergent la numărul f(x), adică dacă pentru orice $\varepsilon > 0$ și orice $x \in [a,b]$ există un număr $N = N(\varepsilon,x)$ (care depinde de ε și în general și de x, care nu este neaparat număr natural) astfel încât

$$|f_n(x) - f(x)| < \varepsilon$$
 pentru orice $n > N(\varepsilon, x)$.

Dintre şirurile de funcții convergente de o importanță esențială sunt așa numitele șiruri uniform convergente.

Definiția 2.3.4 Şirul de funcții (f_n) se numește uniform convergent la funcția f(x) pe intervalul [a,b] dacă pentru orice $\varepsilon > 0$ există un număr $N = N(\varepsilon)$ (dependent de ε , însă independent de x și care nu este neaparat număr natural) astfel încât

$$|f_n(x) - f(x)| < \varepsilon$$
 pentru orice $n > N(\varepsilon)$

și pentru orice $x \in [a, b]$.

Pentru demonstrațiile teoremelor care formulează proprietățile integralelor improprii depinzând de un parametru, vom avea nevoie de trei rezultate stabilite la studiul șirurilor de funcții pe care le reamintim mai jos.

Teorema 2.3.1 Dacă șirul de funcții continue (f_n) definite pe compactul [a,b] este nedescrescător și convergent la funcția continuă f(x), atunci convergența este uniformă.

Teorema 2.3.2 Dacă șirul de funcții continuu diferențiabile (f_n) este convergent la funcția f pe [a,b], iar șirul derivatelor (f'_n) este uniform convergent la funcția $\varphi(x)$ pe [a,b], atunci funcția f este derivabilă pe [a,b] și

$$f'(x) = \varphi(x) = \lim_{n \to +\infty} f'_n(x). \tag{2.60}$$

Teorema 2.3.3 Dacă șirul de funcții continue (f_n) este uniform convergent pe intervalul [a,b] la funcția f(x), atunci șirul integralelor

$$\left(\int_{x_0}^x f_n(t)dt\right)$$

este uniform convergent pe intervalul [a,b] la funcția definită prin integrala $\int_{x_0}^x f(t)dt$, oricare ar fi $x_0 \in [a,b]$.

Teorema de mai jos are loc în condiția ca integrala (2.53) să fie convergentă pentru orice y aparținând compactului [c,d].

Teorema 2.3.4 Pentru ca integrala $J(y) = \int_a^{+\infty} f(x,y) dx$ să fie uniform convergentă în raport cu parametrul y pe compactul [c,d], este necesar şi suficient ca şirul de funcții

$$F_n(y) = \int_a^{\ell_n} f(x, y) dx, \quad n = 1, 2, \cdots$$
 (2.61)

să fie uniform convergent spre J(y) pe compactul [c,d] oricare ar fi alegerea șirului $\ell_1, \ell_2, \cdots, \ell_n, \cdots, cu \lim_{n \to +\infty} \ell_n = +\infty$ și $\ell_n \geq a$.

Demonstrație. Necesitatea. Presupunem că integrala (2.53) este uniform convergentă în raport cu parametrul y pe compactul [c,d]. Atunci, considerând $\varepsilon > 0$, arbitrar, există $L(\varepsilon) > a$, astfel încât pentru orice $\ell > L(\varepsilon)$ inegalitatea

$$|J(y) - \int_a^\ell f(x, y) dx| < \varepsilon$$

este satisfăcută simultan pentru toți $y \in [c, d]$.

Să considerăm şirul numeric (ℓ_n) , cu limita egală cu $+\infty$ şi termenii situați în intervalul $[a, +\infty)$. Considerându-l pe $L(\varepsilon)$ de mai sus, din teorema de caracterizare a limitei unui şir numeric, deducem că există $N(\varepsilon) \in \mathbb{N}^*$ astfel

încât $\ell_n > L(\varepsilon)$ pentru toți $n > N(\varepsilon)$. În consecință, pentru un astfel de n, inegalitatea

$$|J(y) - F_n(y)| = |J(y) - \int_a^{\ell_n} f(x, y) dx| < \varepsilon$$

are loc pentru orice $y \in [c, d]$. Aceasta înseamnă că șirul de funcții (F_n) , având termenul general dat de (2.61), este uniform convergent la funcția J(y), definită de (2.53), pe intervalul [c, d].

Suficiența. Să arătăm că dacă orice şir de funcții (F_n) , având termenul general dat de (2.61), unde $\ell_n \to +\infty$, $\ell_n \geq a$, este uniform convergent la funcția J(y), definită de (2.53), pe intervalul [c,d], atunci integrala (2.53) este uniform convergentă în raport cu parametrul y pe acest interval.

Într-adevăr, dacă presupunem că (2.53), care prin ipoteză este convergentă pentru orice $y \in [c, d]$ fixat, converge neuniform în raport cu parametrul y pe intervalul [c, d], atunci există ε_0 astfel încât pentru orice L arbitrar de mare există $\ell > L$ și $y \in [c, d]$ așa fel încât să avem

$$|J(y) - \int_a^\ell f(x, y) dx| \ge \varepsilon_0.$$

Presupunând că L ia valorile [a]+1, [a]+2, \cdots , [a]+n, \cdots , obţinem şirul numeric (ℓ_n) , cu $\ell_n > n$, şi un şir (y_n) , cu $y_n \in [c,d]$, pentru care

$$|J(y_n) - \int_a^{\ell_n} f(x, y_n) dx| = |J(y_n) - F_n(y_n)| \ge \varepsilon_0.$$

Aceasta înseamnă că şirul de funcții (F_n) , cu termenul general $F_n(y) = \int_a^{\ell_n} f(x,y) dx$, astfel construit, converge neuniform pe intervalul [c,d], ceea ce contrazice ipoteza.

Observația 2.3.1 Dacă funcția f nu schimbă de semn, atunci pentru ca integrala improprie (2.53) să fie uniform convergentă în raport cu parametrul $y \in [c,d]$ este suficient ca șirul de funcții (2.61) să fie convergent la integrala J(y) cel puțin pentru o alegere particulară a șirului numeric (ℓ_n) , cu elementele din intervalul $[a,+\infty)$ și cu limita $+\infty$.

Într-adevăr, presupunând f funcție nenegativă, avem

$$\int_{a}^{\ell} f(x, y) dx \ge \int_{a}^{\ell_n} f(x, y) dx$$

pentru orice $\ell \geq \ell_n$. În consecință,

$$|J(y) - \int_a^\ell f(x,y)dx| \le |J(y) - \int_a^{\ell_n} f(x,y)dx| < \varepsilon$$

pentru orice $\ell > \ell_n$ și pentru toți $y \in [c, d]$ și cu ℓ_n suficient de mare.

Observația 2.3.2 Dacă funcția f este continuă și nu schimbă de semn (de exemplu, este nenegativă) și integrala improprie (2.53) este funcție continuă de parametrul $y \in [c, d]$, această integrală este uniform convergentă în raport cu parametrul g pe intervalul g.

Într-adevăr, considerând şirul numeric crescător (ℓ_n) cu limita egală cu $+\infty$ şi termenii situați în intervalul $[a, +\infty)$ ajungem la şirul de funcții (F_n) având termenul general

$$F_n(y) = \int_a^{\ell_n} f(x, y) dx, \quad n = 1, 2, \cdots$$
 (2.62)

Funcția f fiind nenegativă, șirul de funcții (F_n) cu termenul general (2.62) este monoton nedescrescător, iar conform Teoremei 2.1.1, funcțiile $F_n(y)$ din (2.62) sunt continue. Mai mult, acest șir de funcții converge la funcția continuă

$$J(y) = \int_{a}^{+\infty} f(x, y)dx \tag{2.63}$$

pe intervalul [c,d]. Dar Teorema 2.3.1 implică convergența uniformă a șirului de funcții (2.62) la funcția limită (2.63) și, în consecință, după Observația 2.3.1 integrala $J(y) = \int_a^{+\infty} f(x,y)dx$ este uniform convergentă în raport cu parametrul y pe acest interval.

Observația 2.3.3 Integrala improprie de speța a doua

$$J^*(y) = \int_a^b f(x, y) dx = \lim_{\lambda \to 0+0} \int_a^{b-\lambda} f(x, y) dx$$

se poate reduce în mod asemănător la șirul de funcții (F_n^*) , unde

$$F_n^*(y) = \int_a^{b-\lambda_n} f(x, y) dx,$$

 $iar(\lambda_n)$ este un şir numeric convergent la zero având termenii cuprinşi în intervalul (0, b-a).

2.3.3 Proprietățile integralelor improprii uniform convergente în raport cu parametrul y

În continuare prezentăm unele proprietăți ale integralelor improprii de tipul (2.53) și (2.57) din care vom constata că ipoteza suplimentara a uniformei convergențe în raport cu parametrul y ale acestora implică continuitatea, derivabilitatea și integrabilitatea lor.

Teorema 2.3.5 (Continuitatea unei integrale improprii depinzând parametru) Dacă funcția $f:[a,+\infty)\times[c,d]\to I\!\!R$ este continuă și integrala (2.53) este uniform convergentă în raport cu parametrul y pe intervalul [c,d], atunci funcția J(y) din (2.53) este continuă pe acest interval.

Demonstrație. Considerăm șirul de funcții (F_n) cu termenul general (2.62), unde $y \in [c, d]$. După Teorema 2.1.1, funcțiile (2.62) sunt continue pe intervalul [c, d]. Mai departe, Teorema 2.3.4 implică că șirul considerat este uniform convergent la integrala J(y) din (2.53) și, în consecință, funcția J(y) este continuă pentru că este limita unui șir de funcții uniform convergent.

Teorema 2.3.6 (Derivabilitatea unei integrale improprii depinzând de parametru) Dacă funcțiile

$$f:[a,+\infty) \times [c,d] \to I\!\!R \quad {\it si} \quad \frac{\partial f}{\partial y}:[a,+\infty) \times [c,d] \to I\!\!R$$

sunt continue, integrala improprie (2.53) este convergentă, iar integrala improprie depinzând de parametrul y

$$\int_{a}^{+\infty} \frac{\partial f}{\partial y}(x, y) dx \tag{2.64}$$

este uniform convergentă în raport cu parametrul y pe intervalul [c,d], atunci funcția (2.53) este derivabilă pe [c,d] și

$$\frac{dJ}{dy}(y) = \int_{a}^{+\infty} \frac{\partial f}{\partial y}(x, y) dx, \quad y \in [c, d].$$
 (2.65)

Demonstrație. Considerăm din nou şirul de funcții (F_n) cu termenul general (2.62), unde $y \in [c, d]$, convergent la integrala (2.53) pe intervalul [c, d]. Conform Teoremei 2.1.2, funcțiile $F_n(y)$ sunt derivabile și are loc egalitatea

$$F'_{n}(y) = \frac{d}{dy} \int_{a}^{\ell_{n}} f(x, y) dx = \int_{a}^{\ell_{n}} f'_{y}(x, y) dx, \qquad (2.66)$$

unde $n = 1, 2, \dots, c \le y \le d$, iar funcțiile $F'_n(y)$ sunt continue pe [c, d].

Din ipoteze și Teorema 2.3.4 rezultă că șirul de funcții (F'_n) este uniform convergent la integrala improprie (2.64) și $F'_n(y)$ sunt funcții continue pe [c, d]. Constatăm că șirul de funcții (F_n) satisface ipotezele din Teorema 2.3.2, prin urmare, integrala improprie J(y) este o funcție continuu diferențiabilă pe [c, d] și relația

$$J'(y) = \int_{a}^{+\infty} f'_{y}(x, y) dx$$

are loc pentru orice $y \in [c, d]$, ceea ce trebuia de demonstrat.

Observația 2.3.4 Având în vedere expresia (2.53) a funcției J(y), rezultă că identitatea (2.65) se scrie

$$\frac{d}{dy} \int_{a}^{+\infty} f(x, y) dx = \int_{a}^{+\infty} \frac{\partial f}{\partial y}(x, y) dx,$$

de unde deducem că în ipotezele Teoremei 2.3.6 operațiile de derivare și integrare ale unei integrale improprii depinzând de un parametru sunt comutabile.

Teorema 2.3.7 (Integrabilitatea unei integrale improprii depinzând de un parametru) Dacă funcția f din (2.52) este continuă și integrala improprie depinzând de un parametru (2.53) este uniform convergentă în raport cu parametrul g pe intervalul g, atunci funcția g din (2.53) este integrabilă și

$$\int_{c}^{d} J(y)dy = \int_{c}^{d} dy \int_{a}^{+\infty} f(x,y)dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x,y)dy.$$
 (2.67)

Demonstrație. Pentru orice șir de numere

$$\ell_1, \ell_2, \cdots, \ell_n, \cdots, \quad (\ell_n \ge a, \lim_{n \to \infty} \ell_n = +\infty),$$

șirul de funcții corespunzător

$$F_n(y) = \int_a^{\ell_n} f(x, y) dx, \quad n = 1, 2, \cdots$$

este uniform convergent la funcția J(y) pe [c,d], aceasta rezultând din Teorema 2.3.4. După Teorema 2.1.1, toate funcțiile $F_n(y)$ sunt continue pe intervalul [c,d]. Fiindcă sunt îndeplinite ipotezele din Teorema 2.3.3, avem

$$\lim_{n \to +\infty} \int_{c}^{d} F_{n}(y) dy = \int_{c}^{d} J(y) dy.$$

Pe de altă parte, Teorema 2.1.4 implică egalitățile

$$\int_{c}^{d} F_n(y)dy = \int_{c}^{d} dy \int_{a}^{\ell_n} f(x,y)dx = \int_{a}^{\ell_n} dx \int_{c}^{d} f(x,y)dy.$$

În consecință, pentru orice alegere a șirului (ℓ_n) , cu limita egală cu $+\infty$ și termenii aparținând intervalului nemărginit $[a, +\infty)$, avem

$$\lim_{n \to +\infty} \int_a^{\ell_n} dx \int_c^d f(x, y) dy = \int_c^d J(y) dy.$$

Aceasta înseamnă că integrala improprie de speța întâi

$$\int_{a}^{+\infty} dx \int_{c}^{d} f(x,y) dy$$

este convergentă și egalitatea

$$\int_{a}^{+\infty} dx \int_{c}^{d} f(x,y)dy = \int_{c}^{d} dy \int_{a}^{+\infty} f(x,y)dx$$

este satisfăcută și astfel teorema este demonstrată.

Corolarul 2.3.1 Dacă f(x,y) este o funcție continuă care nu schimbă de semn pentru $a \le x < +\infty$, $c \le y \le d$ (de exemplu, f(x,y) este nenegativă), iar integrala

$$J(y) = \int_{a}^{+\infty} f(x,y)dx$$

este o funcție continuă de y pentru $c \leq y \leq d$, atunci relația (2.67) este adevărată.

Demonstrație. Într Observația 2.3.2 implică convergența uniformă a integralei improprii $J(y) = \int_a^{+\infty} f(x,y) dx$ pe intervalul $c \leq y \leq d$ și, în consecință, după Teorema 2.3.7, egalitatea (2.67) este adevărată.

Observația 2.3.5 Egalitatea (2.67) se mai poate scrie în forma

$$\int_{c}^{d} dy \int_{a}^{+\infty} f(x,y) dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x,y) dy,$$

din care deducem că în ipotezele Teoremei 2.3.7 cele două operații de integrare sunt comutabile.

Teorema 2.3.8 (Schimbarea ordinii de integrare întro integrală improprie iterată a unei funcții de semn constant) Dacă

$$f: [a, +\infty) \times [c, +\infty) \to \mathbb{R}$$
 (2.68)

este o funcție continuă de semn constant, integralele improprii depinzând de parametrul y

$$J(y) = \int_{a}^{+\infty} f(x,y)dx$$
 si $J^{*}(x) = \int_{c}^{+\infty} f(x,y)dy$

sunt funcții continue pe intervalele $[c, +\infty)$, respectiv $[a, +\infty)$, și cel puțin una din integralele improprii:

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y)dx; \quad \int_{a}^{+\infty} dx \int_{c}^{+\infty} f(x,y)dy \tag{2.69}$$

este convergentă, atunci cealaltă integrală improprie din (2.69) este convergentă și

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx = \int_{a}^{+\infty} dx \int_{c}^{+\infty} f(x,y) dy.$$

Demonstrație. Să considerăm că funcția f este nenegativă și că integrala improprie iterată

$$J = \int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x, y) dx \tag{2.70}$$

este convergentă. Trebuie să demonstrăm că

$$\lim_{\ell \to +\infty} \int_a^\ell dx \int_c^{+\infty} f(x, y) dy = J = \int_c^{+\infty} dy \int_a^{+\infty} f(x, y) dx.$$
 (2.71)

Pentru aceasta vom arăta că valoarea absolută a diferenței dintre cantitatea variabilă $\int_{c}^{\ell} dx \int_{c}^{+\infty} f(x,y) dy$ și cantitatea constantă

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx$$

poate fi făcută mai mică decât un $\varepsilon > 0$ ales arbitrar.

Conform Corolarului 2.3.1, are loc egalitatea

$$\int_{a}^{\ell} dx \int_{c}^{+\infty} f(x, y) dy = \int_{c}^{+\infty} dy \int_{a}^{\ell} f(x, y) dx.$$

Funcția f(x,y) fiind nenegativă, putem scrie

$$0 \leq \int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx - \int_{a}^{\ell} dx \int_{c}^{+\infty} f(x,y) dy =$$

$$= \int_{c}^{+\infty} dy \int_{\ell}^{+\infty} f(x,y) dx =$$

$$= \int_{c}^{c_{1}} dy \int_{\ell}^{+\infty} f(x,y) dx + \int_{c_{1}}^{+\infty} dy \int_{\ell}^{+\infty} f(x,y) dx \leq$$

$$\leq \int_{c}^{c_{1}} dy \int_{\ell}^{+\infty} f(x,y) dx + \int_{c_{1}}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx,$$

$$(2.72)$$

unde $c < c_1 < +\infty$.

De
oarece (2.70) este integrală improprie convergentă rezultă că pentr
u $\varepsilon>0$ există $c_1>c$ astfel încât

$$\int_{c_1}^{+\infty} dy \int_a^{+\infty} f(x, y) dx < \frac{\varepsilon}{2}.$$
 (2.73)

Din continuitaea integralei $\int_a^{+\infty} f(x,y) dx$ pe intervalul $c \leq y < +\infty$ (vezi ipoteza) și Observația 2.3.2 rezultă că integrala de mai sus este uniform convergentă în raport cu parametrul y pe orice compact $[c,c_1]$. Prin urmare, pentru $\varepsilon > 0$ ales arbitrar mai sus există $L(\varepsilon) > a$ astfel încât pentru orice $\ell > L(\varepsilon)$ și $y \in [c,c_1]$ are loc inegalitatea

$$\int_{\ell}^{+\infty} f(x, y) dx < \frac{\varepsilon}{2(c_1 - c)}.$$
 (2.74)

Folosind acest rezultat constatăm că inegalitatea

$$\int_{c}^{c_1} dy \int_{\ell}^{+\infty} f(x, y) dx < \frac{\varepsilon(c_1 - c)}{2(c_1 - c)} = \frac{\varepsilon}{2}$$

are loc pentru toți $\ell > L(\varepsilon)$. Acum, din (2.72), (2.73) și iterata (2.74) tragem concluzia că

$$0 \le \int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x, y) dx - \int_{a}^{\ell} dx \int_{c}^{+\infty} f(x, y) dy < \varepsilon$$

pentru toți $\ell > L(\varepsilon)$, ceea ce trebuia să demonstrăm pentru a fi adevarată concluzia teoremei.

Dacă f(x,y) din (2.68) nu are semn constant şi concluziile Teoremei 2.3.8 dorim să fie adevărate, atunci ipotezele Teoremei 2.3.8 trebuiesc modificate după cum urmează.

Teorema 2.3.9 (Schimbarea ordinii de integrare întro integrală improprie iterată din funcția f care schimbă de semn) Dacă f din (2.68) este o funcție care își schimbă semnul de o infinitate de ori și integralele improprii depinzând de un parametru:

$$J(y) = \int_{a}^{+\infty} f(x, y)dx; \quad J^{*}(x) = \int_{c}^{+\infty} f(x, y)dy$$

sunt uniform convergente pe orice interval finit $c \leq y \leq C$ și respectiv pe orice interval finit $a \leq x \leq A$, iar cel puțin una din integralele improprii iterate

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} |f(x,y)| dx; \qquad \int_{a}^{+\infty} dx \int_{c}^{+\infty} |f(x,y)| dy$$
 (2.75)

este convergentă, atunci integralele iterate

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx; \quad \int_{a}^{+\infty} dx \int_{c}^{+\infty} f(x,y) dy$$
 (2.76)

sunt convergente și

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx = \int_{a}^{+\infty} dx \int_{c}^{+\infty} f(x,y) dy.$$

Demonstrație. Pentru precizare, presupunem că cea de a doua integrală din (2.75) este convergentă. Aplicând criteriul de comparație funcțiilor f(x, y), |f(x, y)|, precum și funcțiilor

$$\int_{a}^{+\infty} f(x,y)dx, \quad \int_{a}^{+\infty} |f(x,y)|dx,$$

deducem că cea de a doua integrală improprie din (2.76) este convergentă. Mai avem de demonstrat că

$$\lim_{\ell \to +\infty} \int_a^\ell dx \int_c^{+\infty} f(x,y) dy = \int_c^{+\infty} dy \int_a^{+\infty} f(x,y) dx. \tag{2.77}$$

Integrala improprie $\int_{c}^{+\infty} f(x,y)dy$ fiind uniform convergentă, pe orice interval finit [a,A] și pentru orice număr finit $\ell > a$, avem

$$\int_{a}^{\ell} dx \int_{c}^{+\infty} f(x, y) dy = \int_{c}^{+\infty} dy \int_{a}^{\ell} f(x, y) dx.$$
 (2.78)

Să calculăm valoarea absolută a diferenței dintre cantitatea variabilă $\int_a^\ell dx \int_c^{+\infty} f(x,y) dy \text{ și numărul } \int_c^{+\infty} dy \int_a^{+\infty} f(x,y) dx \text{ care intră în relația } (2.77).$ Ținând cont și de (2.78), constatăm că au loc egalitățile și inegalitățile

$$\left| \int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx - \int_{a}^{\ell} dx \int_{c}^{+\infty} f(x,y) dy \right| =$$

$$= \left| \int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx - \int_{c}^{+\infty} dy \int_{a}^{\ell} f(x,y) dx \right| =$$

$$= \left| \int_{c}^{+\infty} dy \int_{\ell}^{+\infty} f(x,y) dx \right| =$$

$$= \left| \int_{c}^{c_{1}} dy \int_{\ell}^{+\infty} f(x,y) dx + \int_{c_{1}}^{+\infty} dy \int_{\ell}^{+\infty} f(x,y) dx \right| \leq$$

$$\leq \left| \int_{c}^{c_{1}} dy \int_{\ell}^{+\infty} f(x,y) dx \right| + \int_{c_{1}}^{+\infty} dy \int_{\ell}^{+\infty} |f(x,y)| dx \leq$$

$$\leq \left| \int_{c}^{c_{1}} dy \int_{\ell}^{+\infty} f(x,y) dx \right| + \int_{c_{1}}^{+\infty} dy \int_{\ell}^{+\infty} |f(x,y)| dx$$

oricare ar fi $c_1>c.$ Din convergența integralei iterate

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} |f(x,y)| dx$$

rezultă că pentru orice $\varepsilon > 0$ există $c_1 > c$ astfel încât

$$\int_{c_1}^{+\infty} dy \int_a^{+\infty} |f(x,y)| dx < \frac{\varepsilon}{2}.$$
 (2.80)

Acum, fixând o valoare a lui $c_1>c$ pentru care inegalitatea (2.80) are loc şi luând în considerație că integrala $\int_a^{+\infty}f(x,y)dx$ este uniform convergentă, alegem, la fel ca în demonstrația Teoremei 2.3.8, o cantitate $L(\varepsilon)$ astfel încât să fie satisfăcută inegalitatea

$$\left| \int_{\ell}^{+\infty} f(x,y) dx \right| < \frac{\varepsilon}{2(c_1 - c)} = \frac{\varepsilon}{2}$$

pentru orice $\ell > L(\varepsilon)$ și pentru toți $y \in [c, c_1]$. Atunci, avem

$$\left| \int_{c}^{c_1} dy \int_{\ell}^{+\infty} f(x, y) dx \right| < \frac{\varepsilon(c_1 - c)}{2(c_1 - c)} = \frac{\varepsilon}{2}$$
 (2.81)

pentru orice $\ell > L(\varepsilon)$ și, în consecință, în baza relațiilor (2.79) (2.80) și (2.81), se obține inegalitatea

$$\left| \int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x, y) dx - \int_{a}^{\ell} dx \int_{c}^{+\infty} f(x, y) dy \right| < \varepsilon$$

oricare ar fi $\ell > L(\varepsilon)$, ceea ce trebuia să demonstrăm.

Observația 2.3.6 Teoreme similare au loc pentru integrale improprii de speța a doua care depind de un parametru.

Exercițiul 2.3.2 Să se arate că integrala lui Poisson

$$I = \int_0^{+\infty} e^{-x^2} dx \tag{2.82}$$

are valoarea egală cu $\sqrt{\pi}/2$.

Soluție. În (2.82) facem substituția x=ut și apoi înmulțim în ambii membri cu e^{-u^2} . Obținem

$$I e^{-u^2} = \int_0^{+\infty} u e^{-(1+t^2)u^2} dt.$$

Integrând în raport cu u pe intervalul $[0, +\infty)$ ambii membri ai acestei egalități și ținând cont de definiția lui I, găsim

$$I^{2} = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} u \, e^{-(1+t^{2})u^{2}} dt \right) du. \tag{2.83}$$

În baza Teoremei 2.3.8 se poate schimba ordinea de integrare în (2.83) astfel că putem scrie

$$I^{2} = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} u \, e^{-(1+t^{2})u^{2}} du \right) dt. \tag{2.84}$$

Dar integrala din interior din membrul doi al relației (2.84) este imediată pentru că se cunoaște o primitivă a funcției de integrat și valoarea sa este

$$\int_0^{+\infty} u \, e^{-(1+t^2)u^2} du = \frac{1}{2} \frac{1}{1+t^2}.$$
 (2.85)

Din (2.84) şi (2.85) obtinem

$$I^{2} = \frac{1}{2} \int_{0}^{+\infty} \frac{dt}{1 + t^{2}} = \frac{\pi}{4},$$

de unde găsim în final că valoarea integralei lui Poisson este $\sqrt{\pi}/2$.

2.4 Criterii de convergență uniformă

Teorema 2.4.1 (Condiție necesară și suficientă de convergență uniformă a integralelor improprii de speța doua care depind de un parametru) *Integrala improprie*

$$\int_{a}^{+\infty} f(x,y)dx \tag{2.86}$$

este uniform convergentă în raport cu parametrul y pe intervalul [c,d] dacă și numai dacă pentru orice $\varepsilon > 0$ există $L = L(\varepsilon)$ astfel încât inegalitatea

$$\left| \int_{\ell'}^{\ell''} f(x, y) dx \right| < \varepsilon \tag{2.87}$$

are loc simultan pentru orice ℓ' , $\ell'' > L(\varepsilon)$ şi pentru orice $y \in [c, d]$.

Demonstrație. Necesitatea. În ipoteza că integrala (2.4.1) este uniform convergentă, atunci aplicând Definiția 2.3.1 rezultă că pentru orice $\varepsilon > 0$ există $L = L(\varepsilon)$ astfel încât pentru toți $\ell' > L(\varepsilon)$, $\ell'' > L(\varepsilon)$ și $y \in [c,d]$ inegalitățile:

$$\left| \int_{\ell'}^{+\infty} f(x,y) dx \right| < \frac{\varepsilon}{2}; \qquad \left| \int_{\ell''}^{+\infty} f(x,y) dx \right| < \frac{\varepsilon}{2}$$

sunt îndeplinite. Prin urmare, pentru orice ℓ' , $\ell'' > L(\varepsilon)$ și pentru orice $y \in [c,d]$ obținem inegalitatea

$$\left| \int_{\ell'}^{\ell''} f(x,y) dx \right| = \left| \int_{\ell'}^{+\infty} f(x,y) dx - \int_{\ell''}^{+\infty} f(x,y) dx \right| \le$$

$$\le \left| \int_{\ell'}^{+\infty} f(x,y) dx \right| + \left| \int_{\ell''}^{+\infty} f(x,y) dx \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Suficiența. Dacă inegalitatea (2.87) are loc pentru orice ℓ' , $\ell'' > L(\varepsilon)$ și pentru orice $y \in [c, d]$, conform criteriului general de convergență uniformă al lui Cauchy pentru integrale improprii, integrala improprie (2.86) este convergentă pentru orice $y \in [c, d]$. Prin urmare, trecând la limită pentru $\ell'' \to +\infty$ obținem, pentru toți $\ell' > L(\varepsilon)$, inegalitatea

$$\left| \int_{\ell'}^{+\infty} f(x, y) dx \right| \le \varepsilon < 2\varepsilon, \tag{2.88}$$

care are loc (\forall) $y \in [c, d]$. Dar, în (2.88) recunoaștem definiția uniformei convergențe în raport cu parametrul y pe compactul [c, d] a integralei improprii (2.86).

Teorema 2.4.1 este cunoscută sub numele de **criteriul general de convergență uniformă al lui Cauchy**.

Teorema 2.4.2 (Criteriul lui Weierstrass de convergență uniformă a unei integrale improprii depinzând de un parametru). Dacă

$$|f(x,y)| \le g(x), \quad (\forall) \ x \in [a, +\infty), \ y \in [c, d]$$

$$(2.89)$$

și integrala improprie de speța întâi

$$\int_{a}^{+\infty} g(x)dx \tag{2.90}$$

este convergentă, atunci integralele improprii

$$\int_{a}^{+\infty} f(x,y)dx \quad \xi i \quad \int_{a}^{+\infty} |f(x,y)|dx$$

sunt uniform convergente în raport cu parametrul y pe intervalul [c, d].

Demonstrație. Fie $\varepsilon > 0$ arbitrar. Din convergența integralei improprii (2.90) și criteriul general al lui Cauchy de convergență a integralelor improprii deducem existența lui $L = L(\varepsilon) > 0$ astfel încât condiția

$$\int_{\varrho'}^{\ell''} g(x)dx < \varepsilon \tag{2.91}$$

este satisfăcută pentru toți ℓ' , $\ell'' > L(\varepsilon)$ cu $\ell'' > \ell'$. Pe de altă parte din (2.89) și proprietățile integralelor definite, avem

$$\left| \int_{\ell'}^{\ell''} f(x, y) dx \right| \le \int_{\ell'}^{\ell''} |f(x, y)| dx \le \int_{\ell'}^{\ell''} g(x) dx.$$
 (2.92)

Atunci, din (2.91), (2.92) și Teorema 2.4.1 rezultă concluzia teoremei.

Criteriile corespunzătoare convergenței uniforme a integralelor improprii depinzând de parametru din funcții nemărginite și limite finite de integrare se formulează și se demonstrează întrun mod asemănător.

De exemplu, criteriul general al lui Cauchy de convergență uniformă a integralei improprii de speța doua depinzând de un parametru, cu limita superioară punct singular, are formularea care urmează.

Teorema 2.4.3 (Condiție necesară și suficientă de convergență uniformă a integralelor improprii din funcții nemărginite depinzând de un parametru). Integrala improprie de speța doua depinzând de un parametru

$$J^*(y) = \int_a^b f(x, y) dx = \lim_{\substack{\lambda \to 0 \\ \lambda > 0}} \int_a^{b - \lambda} f(x, y) dx, \quad c \le y \le d$$

este uniform convergentă în raport cu parametrul y pe intervalul [c,d] dacă şi numai dacă pentru orice $\varepsilon > 0$ există $\delta = \delta(\varepsilon) > 0$ astfel încât pentru orice λ' şi λ'' aparținând intervalului $(0, \min\{b-a, \delta(\varepsilon)\})$ inegalitatea

$$\left| \int_{b-\lambda''}^{b-\lambda''} f(x,y) dx \right| < \varepsilon$$

este satisfăcută pentru orice $y \in [c, d]$.

Exemplul 2.4.1 Să se evalueze funcția

$$J(\alpha, \beta) = \int_0^{+\infty} e^{-\alpha x^2} \cos \beta x dx, \quad \alpha > 0, \quad \beta \in \mathbb{R}.$$
 (2.93)

Soluție. Conform criteriului lui Weierstrass, integrala improprie depinzând de parametrii α și β , definită în (2.93), este uniform convergentă în raport cu parametrul β pe orice interval compact din IR deoarece

$$|e^{-\alpha x^2}\cos\beta x| < e^{-\alpha x^2}$$

şi $\int_0^\infty e^{-\alpha x^2} dx$ este convergentă. Este permisă derivarea în raport cu β sub semnul integrală în $J(\alpha, \beta)$ deoarece în baza aceluiași criteriu integrala

$$\int_0^{+\infty} \frac{\partial}{\partial \beta} \Big(e^{-\alpha x^2} \cos \beta x \Big) dx = -\int_0^{+\infty} x \, e^{-\alpha x^2} \sin \beta x dx$$

este uniform convergentă în raport cu parametrul β pe orice interval compact din \mathbb{R} . Avem deci

$$\frac{\partial J}{\partial \beta}(\alpha,\beta) = -\int_0^{+\infty} x \, e^{-\alpha x^2} \sin \beta x dx = \frac{1}{2\alpha} \int_0^{+\infty} \sin \beta x \, \frac{d}{dx} \Big(e^{-\alpha x^2} \Big) dx.$$

Integrarea prin părți în ultima integrală conduce la ecuația diferențială simplă

$$\frac{\partial J}{\partial \beta} = -\frac{\beta}{2\alpha} J,$$

din care obținem

$$J(\alpha, \beta) = C(\alpha) e^{-\frac{\beta^2}{4\alpha}}.$$
 (2.94)

Rămâne să determinăm funcția $\alpha \mapsto C(\alpha).$ Luând pentru β valoarea zero, găsim

$$C(\alpha) = J(\alpha, 0) = \int_0^{+\infty} e^{-\alpha x^2} dx. \tag{2.95}$$

Ultima integrală se obține din integrala lui Poisson după ce trecem pe x în $\sqrt{\alpha}x$:

$$J(\alpha,0) = \frac{1}{\sqrt{\alpha}} \int_0^{+\infty} e^{-(\sqrt{\alpha}x)^2} d(\sqrt{\alpha}x) = \frac{1}{\sqrt{\alpha}} \frac{\sqrt{\pi}}{2}.$$
 (2.96)

Din (2.94), (2.95) și (2.96) rezultă

$$J(\alpha, \beta) = \int_0^{+\infty} e^{-\alpha x^2} \cos \beta x dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\beta^2}{4\alpha}}.$$

Exemplul 2.4.2 Să se calculeze valorile integralelor lui Fresnel

$$\int_0^{+\infty} \sin{(x^2)} dx \qquad \sin{(x^2)} dx \qquad \int_0^{+\infty} \cos{(x^2)} dx.$$

Soluție. Punând $(x^2) = t$, obținem:

$$\begin{cases} \int_0^{+\infty} \sin(x^2) dx &= \frac{1}{2} \int_0^{+\infty} \frac{\sin t}{\sqrt{t}} dt; \\ \int_0^{+\infty} \cos(x^2) dx &= \frac{1}{2} \int_0^{+\infty} \frac{\cos t}{\sqrt{t}} dt. \end{cases}$$

Din relațiile (2.95) și (2.96), în care punem $\alpha = t$ și x = u, avem

$$\frac{1}{\sqrt{t}} = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} e^{-tu^2} du.$$
 (2.97)

Înmulțind (2.97) cu funcția $t\mapsto e^{-kt}\sin t,\ k>0,$ și integrând pe $[0,+\infty)$ găsim

$$\int_0^{+\infty} \frac{\sin t}{\sqrt{t}} e^{-kt} dt = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} \left(\int_0^{+\infty} e^{-(k+u^2)t} \sin t \, du \right) dt. \tag{2.98}$$

Dacă în (2.98) schimbăm ordinea de integrare și ținem cont de rezultatul

$$\int_0^{+\infty} e^{-(k+u^2)t} \sin t \, dt = \frac{1}{1 + (k+u^2)^2},$$

simplu de demonstrat folosind de două ori metoda integrării prin părți, ajungem la concluzia

$$\int_0^{+\infty} \frac{\sin t}{\sqrt{t}} e^{-kt} dt = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} \frac{1}{1 + (k + u^2)^2} dt.$$
 (2.99)

Trecând la limită în (2.99) pentru $k \to 0$ deducem

$$\int_0^{+\infty} \frac{\sin t}{\sqrt{t}} dt = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} \frac{1}{1 + u^4} dt = \frac{2}{\sqrt{\pi}} \frac{\pi}{2\sqrt{2}} = \sqrt{\frac{\pi}{2}}.$$
 (2.100)

$$\int_0^{+\infty} \sin{(x^2)} dx = \int_0^{+\infty} \cos{(x^2)} dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

După cum s−a mai afirmat, integralele lui Fressnel sunt utilizate în optică. ■

Exemplul 2.4.3 Pornind de la valoarea integralei improprii de prima speță studiată în Exemplul 1.12.3, să se demonstreze, în baza Teoremei 2.3.5, că pentru 0 are loc relația

$$\int_0^{+\infty} \frac{t^{p-1}}{1+t} dt = \frac{\pi}{\sin p\pi}.$$
 (2.101)

Soluţie. Din (1.103), avem $\int_0^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \frac{\pi}{2n} \cdot \frac{1}{\sin \frac{2m+1}{2n} \pi}$. Dacă în această integrală efectuam substituția $x=t^{\frac{1}{2n}}$, obținem

$$\int_0^{+\infty} \frac{t^{\frac{2m+1}{2n}-1}}{1+t} dt = \frac{\pi}{\sin\frac{2m+1}{2n}\pi}.$$
 (2.102)

Cu notația $p = \frac{2m+1}{2n}$ egalitatea precedentă devine

$$\int_0^{+\infty} \frac{t^{p-1}}{1+t} dt = \frac{\pi}{\sin p\pi},\tag{2.103}$$

în care deocamdată p este număr rațional. Să extindem valorile pe care le poate lua p între 0 și 1, considerând că $p \in \mathbb{R} \cap (0,1)$ și să observăm că funcția reală de două variabile reale $f(t) = \frac{t^{p-1}}{1+t}$ este continuă pe mulțimea $(0,+\infty)\times(0,1)$. Despărțind intervalul de integrare în subintervalele (0,1] și $[1,+\infty)$ și aplicând criteriul lui Weierstrass integralelor improprii depinzând de parametrul p

$$\int_0^1 \frac{t^{p-1}}{1+t} dt$$
 şi $\int_1^{+\infty} \frac{t^{p-1}}{1+t} dt$

în care funcțiile g(t) sunt respectiv egale cu

$$g(t) = \frac{t^{p_1-1}}{1+t}$$
 şi $g(t) = \frac{t^{p_2-1}}{1+t}$,

unde $0 < p_1 \le p_2 < 1$, vedem că integrala $\int_0^{+\infty} \frac{t^{p-1}}{1+t} dt$ este uniform convergentă în raport cu parametrul p pe orice interval compact $[p_1, p_2]$. În baza Teoremei 2.3.5, rezultă că integrala improprie $\int_0^{+\infty} \frac{t^{p-1}}{1+t} dt$ este o funcție continuă de paramatrul p pe intervalul (0,1). Cum orice număr real este limita unui şir de numere raționale putem afirma că $p \in (0,1)$ este limita pentru $m \to +\infty$ și $n \to +\infty$ a şirului numeric cu termenul general egal cu $\frac{2m+1}{2n}$, unde 0 < m < n. Trecând la limită în (2.102) pentru $m \to +\infty$ și $n \to +\infty$ ajungem la egalitatea (2.101), care trebuia să o demonstrăm.

2.5 Integrale Cauchy–Frullani

Definiția 2.5.1 Se numește integrală Cauchy-Frullani¹ integrala improprie de speța întâi depinzând de doi parametri

$$\int_0^{+\infty} \frac{f(bx) - f(ax)}{x} dx,\tag{2.104}$$

unde $0 < a < b < +\infty$.

 $^{^{1}}$ Frullani, Giuliano (1795 – 1834), matematician italian.

Teorema 2.5.1 Dacă $f \in C^1([0, +\infty))$, derivata f' este integrabilă în sens generalizat și f are limita finită $f(+\infty)$ când $x \to +\infty$, atunci

$$\int_{0}^{+\infty} \frac{f(bx) - f(ax)}{x} dx = \left[f(+\infty) - f(0) \right] \ln \frac{b}{a}.$$
 (2.105)

Demonstrație. Din ipotezele f' este integrabilă în sens generalizat și f are limită la infinit, în urma aplicării formulei Leibniz-Newton de calcul a unei integrale improprii de speța întâi convergente, deducem

$$\int_0^{+\infty} f'(x)dx = f(+\infty) - f(0). \tag{2.106}$$

În baza criteriului lui Cauchy, aceleași ipoteze asigură uniforma convergență a integralei improprii

$$J(u) = \int_0^{+\infty} f'(ux)dx \tag{2.107}$$

în raport cu parametrul u pe intervalul [a, b].

Într-adevăr, din Teorema Bolzano–Cauchy de existență a limitei finite a funcției f în punctul de la infinit rezultă că oricare ar fi $\varepsilon > 0$ există $N(\varepsilon) > 0$ astfel încât oricare ar fi $x', x'' > N(\varepsilon)$, avem

$$|f(x') - f(x'')| < a\varepsilon. \tag{2.108}$$

Schimbarea de variabilă ux = t în integrala definită $\int_{A'}^{A''} f'(ux)dx$, urmată de integrarea prin părți și utilizarea inegalității (2.108), conduce la

$$\left| \int_{A'}^{A''} f'(ux)dx \right| = \left| \frac{1}{u} \int_{A'u}^{A''u} f'(t)dt \right|$$

$$\left| \frac{f(A''u) - f(A'u)}{u} \right| \leq \frac{1}{a} |f(A''u) - f(A'u)| < \varepsilon$$
(2.109)

oricare ar fi $A',A''>\frac{1}{a}N(\varepsilon)$ și oricare ar fiu din intervalul [a,b].În baza criteriului lui Cauchy de convergență uniformă a unei integrale improprii depinzând de un parametru rezultă că integrala (2.107) este uniform convergentă în raport cu parametrul u pe intervalul [a,b], iar valoarea sa este

$$\int_0^{+\infty} f'(ux)dx = \frac{f(bx) - f(ax)}{x}.$$
 (2.110)

Având în vedere (2.110), rezultă că putem scrie

$$\int_0^{+\infty} \frac{f(bx) - f(ax)}{x} dx = \int_0^{+\infty} dx \int_a^b f'(ux) du.$$
 (2.111)

Aplicând Teorema 2.3.7 în ultima integrală din (2.111), obținem

$$\int_{0}^{+\infty} dx \int_{a}^{b} f'(ux) du = \int_{a}^{b} du \int_{0}^{+\infty} f'(ux) dx.$$
 (2.112)

În ultima integrală din (2.112) efectuăm schimbarea de variabilă ux=t și folosim (2.106). Obținem

$$\int_{a}^{b} du \int_{0}^{+\infty} f'(ux)dx = \int_{a}^{b} \frac{f(+\infty) - f(0)}{u} du =$$

$$= [f(+\infty) - f(0)] \ln \frac{b}{a}.$$
(2.113)

Relațiile (2.112) și (2.113) conduc la (2.105).

Teorema 2.5.2 Dacă funcția reală de variabilă reală $f:[0,+\infty) \to \mathbb{R}$ nu are limită finită în punctul de la infinit, însă integrala improprie de tipul întâi $\int_A^{+\infty} \frac{f(x)}{x} dx, \text{ unde } A > 0, \text{ este convergentă și } f \text{ este derivabilă în origine, atunci}$

$$\int_0^{+\infty} \frac{f(bx) - f(ax)}{x} dx = -f(0) \ln \frac{b}{a}.$$
 (2.114)

Demonstrație. Integralele depinzând de parametrul s :

$$\int_{0}^{as} \frac{f(t) - f(0)}{t} dt; \quad \int_{0}^{bs} \frac{f(t) - f(0)}{t} dt, \tag{2.115}$$

sunt proprii, singularitatea în origine fiind aparentă deoarece funcția de sub semnul integrală poate fi prelungită la toată semiaxa $[0, +\infty)$ atribuindu–i ca valoare în origine limita sa în origine care este f'(0), ce din ipoteză există. Efectuând schimbările de variabilă t = ax în prima integrală (2.115) și t = bx în cea de a doua, avem

$$\int_{0}^{as} \frac{f(t) - f(0)}{t} dt = \int_{0}^{s} \frac{f(ax) - f(0)}{x} dx,
\int_{0}^{bs} \frac{f(t) - f(0)}{t} dt = \int_{0}^{s} \frac{f(bx) - f(0)}{x} dx.$$
(2.116)

În consecință,

$$\int_{0}^{s} \frac{f(bx) - f(ax)}{x} dx = \int_{as}^{bs} \frac{f(t)}{t} dt - f(0) \int_{as}^{bs} \frac{dt}{t} =$$

$$= \int_{as}^{bs} \frac{f(t)}{t} dt - f(0) \ln \frac{b}{a}.$$
(2.117)

Ultima integrală din (2.117) poate fi facută oricât de mică de îndată ce s este foarte mare, ceea ce înseamnă că

$$\lim_{s \to +\infty} \int_0^s \frac{f(bx) - f(ax)}{x} dx = -f(0) \ln \frac{b}{a}.$$
 (2.118)

Definiția convergenței unei integrale improprii de speța întâi și relația (2.118) demonstrează egalitatea (2.114).

Exercițiul 2.5.1 Folosind eventual integralele Cauchy-Frullani, să se studieze următoarele integrale improprii depinzând de parametri și în caz de convergență să se precizeze valorile acestora:

a)
$$I_1(a,b) = \int_0^{+\infty} \frac{e^{-bx} - e^{-ax}}{x} dx$$
, $0 < a < b$;

b)
$$I_2(a, b, p, q) = \int_0^{+\infty} \frac{1}{x} \ln \frac{p + q e^{-bx}}{p + q e^{-ax}} dx, \ p, q > 0, \ 0 < a < b;$$

c)
$$I_3(a,b)$$
 = $\int_0^{+\infty} \frac{\arctan(bx) - \arctan(ax)}{x} dx$, $0 < a < b$;

d)
$$I_4(a,b) = \int_0^{+\infty} \frac{\cos(bx) - \cos(ax)}{x} dx$$
, $0 < a < b$;

e)
$$I_5(\alpha, \beta) = \int_0^{+\infty} \frac{\sin(\alpha x)\sin(\beta x)}{x} dx, \ \alpha \neq \pm \beta;$$

$$f) I_6(a,b) = \int_0^{+\infty} \frac{\cos(bx) - \cos(ax)}{x^2} dx, \quad 0 < a < b;$$

g)
$$I_7(a,b) = \int_0^{+\infty} \frac{e^{-b^2x^2} - e^{-a^2x^2}}{x^2} dx$$
, $0 < |a| < |b|$;

h)
$$I_8(a,b) = \int_0^{+\infty} \frac{\ln(1+b^2x^2) - \ln(1+a^2x^2)}{x^2} dx$$
, $0 < |a| < |b|$;

i)
$$I_9(a,b) = \int_0^{+\infty} \frac{a \ln(1+bx) - b \ln(1+ax)}{x^2} dx$$
, $0 < a < b$;

j)
$$I_{10}(a,b) = \int_a^b \frac{1-\cos(bx)}{x} \cos(ax) dx, \quad a \neq b;$$

k)
$$I_{11}(a,b) = \int_0^{+\infty} \frac{a\sin(bx) - b\sin(bx)}{x^2} dx$$
, $0 < a < b$;

$$I_{12}(a,b) = \int_0^{+\infty} \frac{e^{-bx^n} - e^{-ax^n}}{x} dx, \quad n > 0, a > 0, b > 0;$$

$$m)$$
 $I_{13}(a,b) = \int_0^{+\infty} \frac{(e^{-bx} - e^{-ax})^2}{x^2} dx, \quad 0 < a < b;$

n)
$$I_{14}(a,b) = \int_0^{+\infty} \frac{e^{-bx} - e^{-ax} + x(b-a)e^{-ax}}{r^2} dx$$
, $0 < a < b$;

o)
$$I_{15}(a,b) = \int_0^{+\infty} \frac{\sin(bx) - \sin(ax)}{x} dx$$
, $0 < a < b$.

Soluție. După cum vom constata, unele din integralele de mai sus ori sunt integrale Cauchy–Frullani de tipul celor descrise în Teorema 2.5.1 și Teorema 2.5.2, ori se reduc la una din acestea.

a) Fie $f:[a,+\infty)\to I\!\!R,\, f(x)=e^{-x}.$ Rezultă că această funcție satisface ipotezele Teoremei 2.5.1. Deci

$$I_1(a,b) = [f(+\infty) - f(0)] \ln \frac{b}{a} \implies I_1(a,b) = \ln \frac{a}{b};$$

b) Înlocuind logaritmul câtului cu diferenț logaritmilor numărătorului și numitorului se deduce că funcția f din Teorema 2.5.1 este $f(x) = \ln (p + q e^{-x})$. Deoarece $f(0) = \ln (p + q)$ și $f(+\infty) = \ln p$, rezultă că

$$I_2(p,q,a,b) = \ln\left(1 + \frac{q}{p}\right) \ln\frac{a}{b};$$

c)
$$f(x) = \arctan x$$
, $f(0) = 0$, $f(+\infty) = \frac{\pi}{2}$, $\det I_3(a, b) = \frac{\pi}{2} \ln \frac{b}{a}$;

- d) $f(x) = \cos x$, f(0) = 1. Nu există $\lim_{x \to +\infty} f(x)$, în schimb integrala improprie de speța întâi $\int_A^{+\infty} \frac{\cos x}{x} dx$, unde A > 0, este convergentă în baza criteriului lui Dirichlet (vezi Teorema 1.11.2)). Prin urmare, conform Teoremei 2.5.2, avem $I_4(a,b) = \ln \frac{a}{b}$.
- e) Deoarece $\sin(\alpha x)\sin(\beta x) = \frac{\cos|\alpha \beta|x \cos|\alpha + \beta|x}{2}$, rezultă că $f(x) = \frac{1}{2}\cos x$, $a = |\alpha + \beta|$ şi $b = |\alpha \beta|$. Prin urmare $I_5(a, b) = \frac{1}{2}\ln\left|\frac{\alpha + \beta}{\alpha \beta}\right|$.
- f) Scriind $\frac{1}{x^2} = \Big(-\frac{1}{x}\Big)'$ și aplicând metoda integrării prin părți, avem

$$I_{6}(a,b) = -\int_{0}^{+\infty} (\cos(bx) - \cos(ax)) (\frac{1}{x})' dx =$$

$$= -\frac{1}{x} (\cos(bx) - \cos(ax)) \Big|_{0}^{+\infty} +$$

$$+ \int_{0}^{+\infty} \frac{a \sin(ax) - b \sin(bx)}{x} dx = (a - b) \int_{0}^{+\infty} \frac{\sin t}{t} dt.$$

Integrala la care s–a ajuns este integrala lui Dirichlet, a cărei valoare, conform relației (2.51)), este $\frac{\pi}{2}$. Prin urmare, $I_6(a,b) = \frac{\pi}{2}(a-b)$.

g) Procedând ca la punctul precedent, obţinem

$$I_7(a,b) = -\frac{e^{-a^2x^2} - e^{-b^2x^2}}{x}\Big|_0^{+\infty} + 2\int_0^{+\infty} \frac{a^2xe^{-a^2x^2} - b^2xe^{-b^2x^2}}{x}dx =$$

$$= 2a^2 \int_0^{+\infty} e^{-a^2x^2} dx - 2b^2 \int_0^{+\infty} e^{-b^2x^2} dx =$$

$$= 2(a-b) \int_0^{+\infty} e^{-t^2} dt.$$

Ultima integrală este integrala Euler-Poisson (vezi Exemplul 2.3.2) a cărei valoare este $\frac{\sqrt{\pi}}{2}$. Deci, $I_7(a,b)=(a-b)\sqrt{\pi}$.

h) Se integrează prin părți și se găsește

$$I_8(a,b) = 2b^2 \int_0^{+\infty} \frac{1}{1+b^2 x^2} dx - 2a^2 \int_0^{+\infty} \frac{1}{1+a^2 x^2} dx =$$

$$= 2b \operatorname{arctg}(bx) \Big|_0^{+\infty} - 2a \operatorname{arctg}(ax) \Big|_0^{+\infty} = \pi(b-a).$$

i) Pentru calculul integralei $I_9(a,b)$ observăm că se poate scrie

$$I_9(a,b) = ab \int_0^{+\infty} \frac{\ln(1+bx)}{bx} - \frac{\ln(1+ax)}{ax} dx.$$

Funcția f(x) din Teorema 2.5.1 este

$$f(x) = \begin{cases} \frac{\ln(1+x)}{x}, & \text{dacă} \quad x \in [0, +\infty) \\ 1, & \text{dacă} \quad x = 0. \end{cases}$$

Avem $\lim_{x\to +\infty} f(x) = 0$ şi f(0) = 1. Prin urmare, $I_9(a,b) = ab \ln \frac{a}{b}$.

j) Integrala $I_{10}(a,b)$ se poate scrie în forma

$$I_{10}(a,b) = \frac{1}{2} \int_0^{+\infty} \frac{\cos(ax) - \cos(a+b)x}{x} dx + \frac{1}{2} \int_0^{+\infty} \frac{\cos(bx) - \cos|a-b|x}{x} dx.$$

Ambele integrale fiind integrale Cauchy–Frullani de tipul celei din Teorema 2.5.1, rezultă că

$$I_{10}(a,b) = \frac{1}{2} \ln \frac{a}{a+b} + \frac{1}{2} \ln \frac{a}{|a-b|} = \frac{1}{2} \ln \frac{a^2}{|a^2-b^2|}.$$

k) Mai întâi, avem

$$I_{11}(a,b) = ab \int_0^{+\infty} \frac{\sin(ax)}{ax} - \frac{\sin(bx)}{bx} dx.$$

Apoi, se vede că funcția f din Teorema 2.5.1 este

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{dacă} \quad x \in [0, +\infty) \\ 1, & \text{dacă} \quad x = 0, \end{cases}$$

iar $\lim_{x\to+\infty} = 0$. Prin urmare, $I_{11}(a,b) = ab \ln ab$.

l) Scriem întâi

$$I_{12}(a,b) = \int_0^{+\infty} \frac{e^{-bx^n} - e^{-ax^n}}{x} x^{n-1} dx$$

și apoi efectuăm schimbarea de variabilă $x^n = t$. Obținem

$$I_{12}(a,b) = \frac{1}{n} \int_0^{+\infty} \frac{e^{-bt} - e^{-at}}{t} dt.$$

Folosim acum $I_1(a,b)$. Prin urmare, $I_{12}(a,b) = \frac{1}{n} \ln \frac{a}{b}$.

m) Se aplică metoda integrării prin părți și obținem

$$I_{13}(a,b) = 2a \int_0^{+\infty} \frac{e^{-(a+b)x} - e^{-2ax}}{x} dx + 2b \int_0^{+\infty} \frac{e^{-(a+b)x} - e^{-2bx}}{x} dx.$$

Ambele integrale sunt integrale Cauchy–Frullani care se încadrează în Teorema 2.5.1. În acest mod valoarea integralei inițiale este

$$I_{13}(a,b) = \ln \frac{(2a)^{2a}(2b)^{2b}}{(a+b)^{2(a+b)}}.$$

n) Se integrează prin părți și se ajunge la

$$I_{14}(a,b) = b \int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx - a(b-a) \int_0^{+\infty} e^{-ax} dx.$$

Prima integrală este integrală Cauchy–Frullani, iar a doua este imediată. Se obține

$$I_{14}(a,b) = b \ln \frac{b}{a} + a - b.$$

o) $I_{15}(a,b)$ este diferența a două integrale Dirichlet. Într-adevăr,

$$I_{15}(a,b) = \int_0^{+\infty} \frac{\sin(bx)}{bx} d(bx) - \int_0^{+\infty} \frac{\sin(ax)}{ax} d(ax).$$

Fiecare integrală are valoarea $\frac{\pi}{2}$, deci $I_{15}(a,b)=0$. Această integrală este totodată integrală Cauchy–Frullani care se încadrează în Teorema 2.5.2, funcția f fiind $f(x)=\sin x$. Pentru că valoarea în x=0 a funcției f este nulă rezultă că $I_{15}(a,b)=0$.

2.6 Integralele lui Euler

2.6.1 Definițiile funcțiilor Beta și Gama

Definiția 2.6.1 Integrala depinzând de parametrii p și q,

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx, \qquad (2.119)$$

se numește integrala Euler de primul tip sau funcția Beta.

Definiția 2.6.2 Integrala improprie depinzând de parametrul p,

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx,$$
 (2.120)

se numește integrala Euler de tipul al doilea sau funcția Gama.

Funcțiile (2.119) și (2.120) joacă un rol important în diferite domenii ale matematicii și ale matematicii fizice. După cum se va arăta, funcția Beta se exprimă în funcție de funcția Gama și din acest motiv vom prezenta mai întâi proprietățile funcției Gama.

2.6.2 Proprietăți ale funcției Gama

Teorema 2.6.1 Integrala improprie (2.120) este convergentă pentru $0 , divergentă pentru <math>p \le 0$ și uniform convergentă în raport cu parametrul p pe orice compact $[p_0, P]$, unde $0 < p_0 < P < +\infty$.

Demonstrație. Dacă p-1 < 0, integrandul din (2.120) are un punct singular în limita inferioară. Să despărțim intervalul de integrare în două subintervale, de exemplu [0,1] și $[1,+\infty)$, prin intermediul punctului x=1. Avem

$$\int_0^{+\infty} x^{p-1} e^{-x} dx = \int_0^1 x^{p-1} e^{-x} dx + \int_1^{+\infty} x^{p-1} e^{-x} dx.$$
 (2.121)

Primul termen din membrul doi al egalității (2.121) este o integrală improprie de speța a doua dacă p-1<0, cu punctul singular în limita inferioară. Scriind această integrală în forma $\int_0^1 \frac{e^{-x}}{x^{1-p}} dx$ și aplicând criteriul de comparație în α , formularea cu limită, deducem că integrala este convergentă dacă 1-p<1, adică dacă p>0, și divergentă dacă $p\leq0$.

Cel de al doilea termen din membrul al doiea al egalității (2.121) este o integrală improprie de speța întâi convergentă pentru toate valorile reale ale lui p. Într-adevăr, pentru a arăta aceasta să remarcăm că egalitățile

$$\lim_{x \to +\infty} x^2 f(x) = \lim_{x \to +\infty} x^2 x^{p-1} e^{-x} = \lim_{x \to +\infty} \frac{x^{p+1}}{e^x} = (p+1) \lim_{x \to +\infty} \frac{x^{p+1}}{e^x} = 0$$

sunt satisfăcute pentru orice $p \in \mathbb{R}$.

În consecință, integrala improprie $\int_0^{+\infty} x^{p-1}e^{-x}dx$ este convergentă pentru orice p>0 și divergentă pentru $p\leq 0$.

Să demonstrăm că integrala improprie (2.120) este uniform convergentă în raport cu parametrul p pe orice interval finit $[p_0, P_0]$, unde $0 < p_0 \le P_0 < +\infty$. Ca și în cazul convergenței obișnuite a acestei integrale, scriem $[0, +\infty) = [0, 1] \cup [1, +\infty)$ și studiem convergența uniformă în raport cu parametrul p a integralelor improprii

$$\int_0^1 x^{p-1} e^{-x} dx \quad \text{si} \quad \int_1^{+\infty} x^{p-1} e^{-x} dx.$$

Când $p \geq p_0 > 0$ și $x \in [0,1]$, funcția de integrat satisface inegalitatea $x^{p-1}e^{-x} \leq x^{p_0-1}$, iar integrala $\int_0^1 x^{p_0-1} dx$ este convergentă dacă $p_0 > 0$ și are valoarea $1/p_0$.

Conform criteriului lui Weierstrass de convergență a integralelor improprii depinzând de un parametru, rezultă că integrala $\int_0^1 x^{p-1}e^{-x}dx$ este uniform convergentă în raport cu parametrul p pe intervalul $[p_0, +\infty)$, unde $p_0 > 0$.

Evaluând integrala $\int_0^\lambda x^{p-1}e^{-x}dx$ pentru $p\to 0+0$ și $\lambda={\rm const}>0$ se observă că

$$\int_0^\lambda x^{p-1}e^{-x}dx \ge e^{-1}\int_0^\lambda x^{p-1}dx = \frac{\lambda^p}{pe} \to +\infty$$

şi, în consecință, putem afirma că integrala $\int_0^1 x^{p-1}e^{-x}dx$ nu este uniform convergentă în raport cu parametrul p pe intervalul $(0, +\infty)$.

Tot datorită criteriului lui Weierstrass rezultă că integrala improprie de speța întâi $\int_1^{+\infty} x^{p-1} e^{-x} dx$ este uniform convergentă în raport cu parametrul p pe orice interval de forma $(-\infty, P_0]$, unde $P_0 < +\infty$, deoarece

$$x^{p-1}e^{-x} \le x^{P_0-1}e^{-x}$$
 pentru $1 \le x < +\infty$, $-\infty$

și integrala $\int_{1}^{+\infty} x^{P_0-1} e^{-x} dx$ este convergentă.

Integrala improprie $\int_1^{+\infty} x^{p-1}e^{-x}dx$ nu converge uniform în raport cu parametrul p pe intervalul $(-\infty, +\infty)$. Pentru a justifica această afirmație, evaluăm integrala $\int_{\ell}^{+\infty} x^{p-1}e^{-x}dx$ pentru $\ell > 1$ arbitrar, dar fixat și pentru valori mari ale lui p, deci pentru $p \to +\infty$. Pentru orice număr întreg N > 0 găsim valori ale lui p astfel încât p-1 > N, deoarece $p \to +\infty$. Prin urmare, pentru astfel de p se poate scrie

$$\int_{\ell}^{+\infty} x^{p-1} e^{-x} dx > \int_{\ell}^{+\infty} x^N e^{-x} dx = -e^{-x} x^N \Big|_{x=\ell}^{+\infty} + N \int_{\ell}^{+\infty} x^{N-1} e^{-x} dx.$$

Aplicând repetat integrarea prin părți pentru calculul integralei improprii $\int_{\ell}^{+\infty} x^{N-1} e^{-x} dx$ în final se găsește

$$\int_{\ell}^{+\infty} x^{p-1} e^{-x} dx > (\ell^N + N\ell^{N-1} + N(N-1)\ell^{N-2} + \dots + N!)e^{-1} \to +\infty$$

când $N \to +\infty$. În consecință,

$$\lim_{p \to +\infty} \int_{\ell}^{+\infty} x^{p-1} e^{-x} dx = +\infty, \quad (\forall) \ \ell > 0.$$

Astfel, integrala improprie $\int_0^1 x^{p-1} e^{-x} dx$ este uniform convergentă în raport cu parametrul p pe orice interval $[p_0, +\infty)$ cu $p_0 > 0$ arbitrar, dar fixat, iar integrala imroprie $\int_1^{+\infty} x^{p-1} e^{-x} dx$ este uniform convergentă pe orice interval $(-\infty, P_0]$, unde P_0 este un număr finit, arbitrar.

Aşadar, ambele integrale sunt simultan uniform convergente în raport cu parametrul p pe orice compact $[p_0, P_0]$, unde $0 < p_0 \le P_0 < +\infty$, ceea ce dovedeşte că integrala improprie (2.120) este uniform convergentă în raport cu parametrul p pe orice compact $[p_0, P_0]$, ceea ce trebuia de demonstrat.

Teorema 2.6.2 Funcția Γ definită în (2.120) este o funcție continuă pe intervalul $(0, +\infty)$.

Demonstrație. Funcția de integrat, $f(x,p) = x^{p-1}e^{-x}$, este continuă pe mulțimea $(0,+\infty) \times (0,+\infty)$, iar conform Teoremei 2.6.1 integrala improprie (2.120) este uniform convergentă în raport cu parametrul p pe orice interval finit $[p_0, P_0]$, unde $0 < p_0 \le P_0 < +\infty$. Prin urmare, conform Teoremei 2.3.5, rezultă că integrala $\Gamma(p) = \int_0^{+\infty} x^{p-1}e^{-x}dx$ este funcție continuă pe intervalul $(0,+\infty)$.

Teorema 2.6.3 Funcția Γ definită în (2.120) este infinit diferențiabilă, derivata de ordin k exprimându-se prin integrala improprie depinzând de parametrul p

$$\Gamma^{(k)}(p) = \int_0^{+\infty} x^{p-1} (\ln x)^k e^{-x} dx, \quad k = 1, 2, 3, \dots$$
 (2.122)

Demonstrație. Derivarea formală în raport cu parametrul p în (2.120) conduce la egalitatea

$$\Gamma'(p) = \int_0^{+\infty} x^{p-1} (\ln x) e^{-x} dx. \tag{2.123}$$

Egalitaea (2.123) poate fi justificată arătând că integrala improprie (2.123) este uniform convergentă în raport cu parametrul p pe orice interval finit $[p_0, P_0]$, unde $0 < p_0 \le P_0 < +\infty$, iar derivata parțială în raport cu variabila p a funcției de integrat $f(x, p) = x^{p-1}e^{-x}$ este o funcție continuă pe mulțimea $(0, +\infty) \times (0, +\infty)$. Faptul că integrala improprie (2.123) este uniform convergentă în raport cu parametrul p pe orice compact $[p_0, P_0]$ se demonstrează aplicând criteriul lui Weierstrass integralelor

$$\int_0^1 x^{p-1} (\ln x) e^{-x} dx \quad \text{si} \quad \int_1^{+\infty} x^{p-1} (\ln x) e^{-x} dx,$$

funcțiile g(x) din integralele $\int_0^1 g(x)dx$ și $\int_1^{+\infty} g(x)dx$ fiind date respectiv de

$$g(x) = x^{P_0 - 1} |\ln x|$$
 și $g(x) = x^{P_0 - 1} |\ln x| e^{-x}$.

Pentru obţinerea derivatei secunde a funcţiei $\Gamma(p)$ se aplică raţionamentul de mai sus funcţiei $\Gamma'(p)$ din (2.123). Din aproape în aproape se obţine (2.122) şi teorema este demonstrată.

Să stabilim acum o formulă de recurență pentru funcția Γ . Aplicând în (2.120) formula integrării prin părți, obținem

$$p\Gamma(p) = \lim_{x \to +\infty} x^p e^{-x} - \lim_{x \to 0+0} x^p e^{-x} + \int_0^{+\infty} x^p e^{-x} dx.$$

Însă, aplicând o teoremă de tip Hospital, obținem

$$\lim_{x \to +\infty} x^p e^{-x} = \lim_{x \to 0+0} x^p e^{-x} = 0,$$

deci

$$p\Gamma(p) = \int_0^{+\infty} x^p e^{-x} dx,$$

adică

$$\Gamma(p+1) = p\Gamma(p). \tag{2.124}$$

Aplicând în mod repetat această relație de recurență, obținem

$$\Gamma(p+n) = (p+n-1)(p+n-2)\cdots(p+1)p\Gamma(p). \tag{2.125}$$

Din (2.125) rezultă că este suficient să cunoaștem valorile funcției Γ pentru orice p pozitiv și subunitar pentru a obține valorile lui Γ pentru toate celelalte valori pozitive ale lui p. De exemplu

$$\Gamma\left(\frac{5}{2}\right) = \Gamma\left(\frac{1}{2} + 2\right) = \left(\frac{1}{2} + 2 - 1\right)\left(\frac{1}{2} + 2 - 2\right)\Gamma\left(\frac{1}{2}\right) = \frac{3}{4}\Gamma\left(\frac{1}{2}\right). \tag{2.126}$$

Pentru a finaliza relația (2.126) este necesar să știm valoarea lui $\Gamma(p)$ pentru $p=\frac{1}{2},$

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} x^{-1/2} e^{-x} dx.$$
 (2.127)

Punând în (2.127) $x=t^2$ și ținând cont de integrala Poisson, obținem

$$\Gamma\left(\frac{1}{2}\right) = 2\int_0^{+\infty} e^{-t^2} dt = 2\frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$
 (2.128)

Din (2.126) și (2.128) rezultă $\Gamma\left(\frac{5}{2}\right) = \frac{3}{4}\sqrt{\pi}$. Luând, în (2.125), p=1 și ținând seama că

$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = 1,$$
 (2.129)

rezultă

$$\Gamma(n+1) = n!. \tag{2.130}$$

Cu alte cuvinte, funcția Γ este, întrun anume sens, o generalizare a noțiunii de factorial; putem spune că prin intermediul funcției Γ noțiunea de factorial capătă sens pentru orice număr pozitiv.

Funcția Γ este de cea mai mare importanță în analiză. Ultima proprietate stabilită face să se întrevadă această importanță.

Teorema 2.6.4 Există o valoare p_0 a lui p, în intervalul (1,2), astfel încât funcția $\Gamma(p)$ este strict descrescătoare pe intervalul $(0,p_0)$ și strict crescătoare pe $(p_0,+\infty)$.

Demonstrație. Din expresia (2.119) a funcției $\Gamma(p)$ deducem că, pentru p > 0, valorile sale sunt pozitive. De asemenea, din (2.124) avem

$$\Gamma(p) = \frac{\Gamma(p+1)}{p}$$

pentru p > 0 și deci $\Gamma(p) \to +\infty$ pentru $p \to 0+0$ deoarece $\Gamma(p+1) \to \Gamma(1) = 1$ pentru $p \to 0+0$. Mai mult, se poate arăta că $\lim_{p \to +\infty} \Gamma(p) = +\infty$.

Observând că din relațiile (2.128) și (2.129) avem că $\Gamma(1) = \Gamma(2) = 1$ și folosind Teorema 2.6.1 și Teorema 2.6.2, constatăm că pe intervalul [1, 2] funcția Γ satisface ipotezele Teoremei lui Rolle. Conform acestei teoreme derivata $\Gamma'(p)$ se anulează întrun punct $p_0 \in (1,2)$. Deoarece $\Gamma''(p) = \int_0^{+\infty} x^{p-1} (\ln x)^2 e^{-x} dx > 0$ pentru orice p > 0 rezultă că derivata $\Gamma'(p)$ este o funcție monoton crescătoare pe intervalul $(0, +\infty)$. În consecință, derivata $\Gamma'(p)$ nu are alte rădăcini, în afară de p_0 , în intervalul $(0, +\infty)$. În plus, $\Gamma'(p) < 0$ pentru $p < p_0$ și $\Gamma'(p) > 0$ pentru $p > p_0$ deoarece $\Gamma'(p)$ este o funcție monoton crescătoare. Deci, funcția $\Gamma(p)$ are numai o valoare extremă pe intervalul $0 , și anume un minim în punctul <math>p = p_0$.

2.6.3 Proprietăți ale funcției Beta

Teorema 2.6.5 Integrala improprie de speța a doua (2.119) este convergentă pentru p > 0 și q > 0.

Demonstrație. Dacă $p \ge 1$ și $q \ge 1$, funcția de sub semnul integrală este continuă pe [0,1], deci integrala are sens chiar pe [0,1] ceea ce arată că (2.119)

este o integrală definită sau proprie. Dacă cel puțin unul din numerele p și q este mai mic decât 1, integrala (2.119) este una improprie de speța a doua și pentru studiul naturii acesteia vom descompune intervalul de integrare prin intermediul punctului 1/2.

Dacă p < 1, atunci din cele două integrale care rezultă după descompunerea intervalului [0,1], integrala

$$\int_0^{\frac{1}{2}} \frac{(1-x)^{q-1}}{x^{1-p}} dx$$

este improprie de speţa a doua cu limita inferioară punct singular. Aplicând criteriul de comparaţie în α , în varianta cu limită, constatăm că pentru 1-p < 1, deci pentru p > 0, această integrală este convergentă.

Dacă q < 1, atunci integrala

$$\int_{\frac{1}{2}}^{1} \frac{x^{p-1}}{(1-x)^{1-q}} dx$$

este improprie de speța a doua cu limita superioară punct singular. Aplicând același criteriu de comparație, deducem că integrala este convergentă pentru 1-q<1, deci pentru q>0.

Deci, pentru $p>0,\ q>0$, integrala (2.119) este convergentă. Prin urmare, putem spune că funcția B(p,q) este definită în porțiunea de plan cu ambele coordonate strict pozitive.

Teorema 2.6.6 Funcția Beta este simetrică în variabilele sale p și q, adică

$$B(p,q) = B(q,p).$$
 (2.131)

Demonstrație. În integrala (2.119) efectuăm schimbarea de variabilă x = 1 - t și constatăm că are loc (2.131).

Să aplicăm integralei (2.119) teorema de schimbare de variabilă pentru integrale pe interval necompact, punând

$$x = \varphi(u) = \frac{u}{1+u}. (2.132)$$

Funcţia φ este derivabilă, cu derivată continuă pe $(0, +\infty)$, şi aplică intervalul $(0, +\infty)$ pe intervalul (0, 1). Din faptul că derivata

$$\varphi'(u) = \frac{1}{(1+u)^2}$$

este pozitivă pe $(0, +\infty)$, rezultă că φ este funcție strict crescătoare pe $(0, +\infty)$, deci toate condițiile pentru aplicarea schimbării de variabilă definită de (2.132) sunt îndeplinite. Avem

$$\int_0^1 x^{p-1} (1-x)^{q-1} dx = \int_0^{+\infty} \frac{u^{p-1}}{(1+u)^{p-1} (1+u)^{q-1} (1+u)^2} du =$$

$$= \int_0^{+\infty} \frac{u^{p-1}}{(1+u)^{p+q}} du,$$

deci

$$B(p,q) = \int_0^{+\infty} \frac{u^{p-1}}{(1+u)^{p+q}} du.$$
 (2.133)

Integrala din membrul doi al relației (2.133) o scriem în forma

$$\int_0^{+\infty} \frac{u^{p-1}}{(1+u)^{p+q}} du = \int_0^1 \frac{u^{p-1}}{(1+u)^{p+q}} du + \int_1^{+\infty} \frac{u^{p-1}}{(1+u)^{p+q}} du, \qquad (2.134)$$

iar în cea de a doua integrală din membrul doi al acestei egalități efectuăm schimbarea de variabilă $u=\frac{1}{v}$. Obținem

$$\int_{1}^{+\infty} \frac{u^{p-1}}{(1+u)^{p+q}} du = \int_{0}^{1} \frac{y^{q-1}}{(1+y)^{p+q}} dy.$$
 (2.135)

Din (2.133), (2.134) și (2.135) deducem o nouă expresie pentru valorile funcției Beta, și anume

$$B(p,q) = \int_0^1 \frac{u^{p-1} + u^{q-1}}{(1+u)^{p+q}} du.$$

Această expresie arată că funcția Beta este de fapt o integrală improprie cu punctul singular doar în limita inferioară.

Teorema 2.6.7 Dacă q > 1, atunci funcția Beta satisface relația de recurență

$$B(p,q) = \frac{q-1}{p+q-1}B(p,q-1), \qquad (2.136)$$

 $iar\ dac\ p > 1,\ atunci$

$$B(p,q) = \frac{p-1}{p+q-1}B(p-1,q). \tag{2.137}$$

Demonstrație. Să presupunem întâi că q > 1. Scriind că $x^{p-1} = \left(\frac{x^p}{p}\right)'$ şi aplicând integralei (2.119) teorema de integrare prin părți pentru integrale improprii, obținem

$$B(p,q) = \frac{q-1}{p} \int_0^1 x^p (1-x)^{q-2} dx.$$
 (2.138)

Utilizând în (2.138) identitatea $x^p = x^{p-1} - x^{p-1}(1-x)$, deducem

$$B(p,q) = \frac{q-1}{p}B(p,q-1) - \frac{q-1}{p}B(p,q),$$

de unde rezultă (2.136).

Ținând seama de (2.136 și presupunând că p > 1, în baza relației de simetrie (2.131), avem (2.137) și teorema este demonstrată.

Aplicând în mod succesiv formula (2.136) pentru diferite valori naturale ale lui q, obținem

$$B(a,n) = \frac{n-1}{p+n-1} \cdot \frac{n-2}{p+n-2} \cdots \frac{1}{p+1} \cdot B(p,1).$$

Însă $B(p,1) = \int_0^1 x^{p-1} dx = 1/p$, deci, ținând seama de (2.131), obținem

$$B(p,n) = B(n,p) = \frac{(n-1)!}{p(p+1)(p+2)\cdots(p+n-1)}.$$
 (2.139)

Luând în rolul lui p un număr natural m, din (2.139) rezultă, multiplicând numărătorul și numitorul cu (m-1)!,

$$B(m,n) = B(n,m) = \frac{(n-1)!(m-1)!}{(m+n-1)!}.$$

2.6.4 Relație între funcțiile Beta și Gama

Să cercetăm acum dacă între funcțiile Beta și Gama există vreo relație. Pentru aceasta vom avea nevoie de o altă expresie a funcției Γ și în acest sens vom aplica integralei (2.120) teorema de schimbare de variabilă, punând $x = \varphi(u) = \ln \frac{1}{u}$. Această funcție aplică intervalul (0,1) pe intervalul (+\infty,0).

De asemeni, φ este strict monotonă pe (0,1), derivabilă, cu derivată continuă pe (0,1) şi $\varphi'(u) = -1/u$. Avem

$$\int_0^{+\infty} x^{p-1} e^{-x} dx = -\int_1^0 \left(\ln\frac{1}{u}\right)^{p-1} e^{-\frac{1}{u}} \frac{1}{u} du =$$
$$= -\int_1^0 \left(\ln\frac{1}{u}\right)^{p-1} du = \int_0^1 \left(\ln\frac{1}{u}\right)^{p-1} du,$$

de unde rezultă

$$\Gamma(p) = \int_0^1 \left(\ln \frac{1}{u} \right)^{p-1} du.$$
 (2.140)

Pe de altă parte, funcția $\ln \frac{1}{u}$ este limita unui șir de funcții reale (f_n) , cu termenul general funcția continuă $f_n = n(1 - u^{\frac{1}{n}})$, definită pe intervalul $(0, +\infty)$. Deci,

$$\lim_{n \to +\infty} f_n(u) = \lim_{n \to +\infty} n \left(1 - u^{\frac{1}{n}} \right) = \ln \frac{1}{u}.$$
 (2.141)

Şirul de funcţii (f_n) este strict crescător deoarece funcţia reală de variabila reală x definită pe intervalul $(0, +\infty)$, cu valorile date de $\frac{1-e^x}{x}$ este crescătoare, având derivata pozitivă. În plus, funcţia $\ln \frac{1}{u}$ este continuă şi prin urmare, conform Teoremei 2.3.1, convergenţa şirului de funcţii (f_n) este uniformă. Putem deci aplica teorema de trecere la limită sub semnul integrală şi obţinem, în baza relaţiilor (2.140) şi (2.141),

$$\Gamma(p) = \lim_{n \to +\infty} n^{p-1} \int_0^1 \left(1 - u^{\frac{1}{n}}\right) du.$$

Făcând în ultima integrală schimbarea de variabilă $u = y^n$, obținem

$$\Gamma(p) = \lim_{n \to +\infty} n^p \int_0^1 y^{n-1} (1-y)^{p-1} dy = \lim_{n \to +\infty} n^p B(n, p). \tag{2.142}$$

Tinând seama de relația (2.139), rezultă

$$\Gamma(p) = \lim_{n \to +\infty} n^p \frac{(n-1)!}{p(p+1)(p+2)\cdots(p+n-1)}.$$
 (2.143)

Relațiile (2.142) și (2.143) stabilesc, între funcțiile B și Γ , o legătură mijlocită de o trecere la limită.

Să stabilim o legătură mai simplă între aceste două funcții. În acest scop, aplicăm integralei (2.120) schimbarea de variabilă x=ty, unde $t\geq 0$. Obținem

$$\frac{\Gamma(p)}{t^p} = \int_0^{+\infty} y^{p-1} e^{-ty} dy. \tag{2.144}$$

Înlocuind în (2.144) pe p cu p+q, în care q>0, și pe t cu 1+t, găsim

$$\frac{\Gamma(p+q)}{(1+t)^{p+q}} = \int_0^{+\infty} y^{p+q-1} e^{-(1+t)y} dy.$$
 (2.145)

Înmulțind ambii membri ai acestei egalități cu t^{p-1} și integrând, în raport cu t, pe intervalul $(0, +\infty)$, obținem

$$\Gamma(p+q) \cdot \int_0^{+\infty} \frac{t^{p-1}}{(1+t)^{p+q}} dt =$$

$$= \int_0^{+\infty} dt \int_0^{+\infty} t^{p-1} y^{p+q-1} e^{-(1+t)y} dy.$$
(2.146)

Însă, în baza relației (2.133), integrala din primul membru al egalității (2.146) este egală cu B(p,q), astfel că putem scrie

$$\Gamma(p+q) \cdot B(p,q) = \int_0^{+\infty} dt \int_0^{+\infty} y^{p+q-1} t^{p-1} e^{-(1+t)y} dy. \tag{2.147}$$

Să demonstrăm acum că este permisă schimbarea ordinii de integrare în integrala din membrul al doilea al relației (2.147) pentru p > 1 și q > 1. Pentru aceasta trebuie să arătăm că cele cinci ipoteze ale Teoremei 2.3.8 asupra schimbării ordinii de integrare întro integrală iterată sunt îndeplinite. Întradevăr:

(a) funcția

$$f(y,t) = y^{p+q-1} t^{p-1} e^{-(1+t)y} \ge 0$$

este continuă pentru $0 \le y < +\infty$, $0 \le t < +\infty$;

- (b) dacă p > 1 și q > 1 integrala din membrul doi al relației (2.146) este convergentă;
- (c) integrala

$$\int_0^{+\infty} f(y,t) dy = \int_0^{+\infty} t^{p-1} y^{p+q-1} e^{-(1+t)y} dy$$

este o funcție continuă de variabila t pe intervalul $(0, +\infty)$ deoarece, în baza relației (2.145), avem

$$\int_0^{+\infty} y^{p+q-1} e^{-(1+t)y} dy = \Gamma(p+q) \frac{t^{p-1}}{(1+t)^{p+q}},$$

iar Γ, după Teorema 2.6.1, este funcție continuă;

(d) integrala

$$\int_0^{+\infty} f(y,t)dt = \int_0^{+\infty} t^{p-1} y^{p+q-1} e^{-(1+t)y} dt$$
 (2.148)

este de asemeni o funcție continuă pe intervalul $(0, +\infty)$ deoarece din (2.148) avem mai întâi

$$\int_0^{+\infty} f(y,t)dt = y^{p+q-1}e^{-y} \int_0^{+\infty} t^{p-1}e^{-ty}dt,$$

iar apoi, după schimbarea de variabilă u = ty,

$$\int_{0}^{+\infty} f(y,t)dt = y^{q-1}e^{-y} \cdot \Gamma(p), \qquad (2.149)$$

membrul doi al acestei relații fiind o funcție continuă de y pe intervalul $(0, +\infty)$;

(e) integrala improprie de prima speță

$$\int_0^{+\infty} dy \int_0^{+\infty} f(y,t)dt$$

este convergentă deoarece, conform egalității (2.149) și definiției (2.120) a funcției $\Gamma(q)$, avem

$$\int_0^{+\infty} dy \int_0^{+\infty} f(y,t)dt = \Gamma(p) \cdot \Gamma(q), \qquad (2.150)$$

iar membrul al doilea este număr real. În consecință, integrala iterată

$$\int_0^{+\infty} dt \int_0^{+\infty} f(y,t) dy = \int_0^{+\infty} dt \int_0^{+\infty} y^{p+q-1} t^{p-1} e^{-(1+t)y} dy \qquad (2.151)$$

este convergentă și egală cu integrala din primul membru al egalității (2.152). Așadar, din (2.147), (2.152) și (2.151) deducem că pentru p>1 și q>1 are loc identitatea

$$B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{\Gamma(p+q)},$$
(2.152)

numită formula lui Jacobi ce dă legătura între funcțiile B și Γ ale lui Euler.

Pentru a extinde relația (2.150) la toți p>0 și q>0 scriem din nou această relație pentru p>1 și q>1 și aplicăm apoi formulele de recurență (2.136) și (2.137) membrului său stâng și formula de recurență (2.124) membrului drept.

Dacă în relația (2.133) considerăm că q = 1 - p, atunci ea devine

$$B(p, 1-p) = \int_0^{+\infty} \frac{u^{p-1}}{1+u} du,$$
 (2.153)

unde $0 . În Exemplul 2.4.3 (vezi relația (2.101)) am arătat că integrala din (2.153) are valoarea <math>\frac{p}{\sin p\pi}$, prin urmare avem

$$B(p, 1-p) = \frac{p}{\sin p\pi}$$
 pentru $0 (2.154)$

Relația de recurență (2.152), împreună cu (2.129) și (2.152) conduc la relația importantă

$$\Gamma(p) \cdot \Gamma(1-p) = \frac{\pi}{\sin p\pi}$$
 pentru $0 (2.155)$

Exercițiul 2.6.1 Folosind funcțiile lui Euler, să se calculeze integrala

$$I = \int_0^{+\infty} \frac{\sqrt[4]{x}}{(1+x)^2} dx.$$

Soluţie. Se observă că $I = B\left(\frac{5}{4}, \frac{3}{4}\right)$, iar dacă folosim relația (2.152), obținem

$$I = \frac{\Gamma\left(\frac{5}{4}\right) \cdot \Gamma\left(\frac{3}{4}\right)}{\Gamma(2)}.$$
 (2.156)

Conform relației de recurență (2.124), avem:

$$\Gamma(2) = 1 \cdot \Gamma(1) = 1; \quad \Gamma\left(\frac{5}{4}\right) = \frac{1}{4} \cdot \Gamma\left(\frac{1}{4}\right).$$

Dacă introducem aceste valori în (2.156) și folosim (2.155), găsim

$$I = \frac{1}{4} \cdot \Gamma\left(\frac{1}{4}\right) \cdot \Gamma\left(\frac{3}{4}\right) = \frac{1}{4} \cdot \frac{\pi}{\sin\frac{\pi}{4}} = \frac{\pi\sqrt{2}}{4}.$$

Exercițiul 2.6.2 Să se calculeze integrala $J = \int_0^{2\pi} \sin^{\frac{5}{2}} x \cdot \cos^{\frac{3}{2}} x dx$.

Soluție. Cu substituția $\sin^2 x = z$ suntem conduși la relația $J = 2B\left(\frac{7}{4}, \frac{5}{4}\right)$ și procedând ca la calculul integralei precedente, găsim $J = \frac{3\pi\sqrt{2}}{16}$.

Exercițiul 2.6.3 Să se studieze integrala $I = \int_0^{\frac{\pi}{2}} \sin^{p-1} x \cos^{q-1} x dx$, unde p > 0 și q > 0.

Soluție. Efectuând schimbarea de variabilă $\sin^2 x = z$, obținem

$$\int_0^{\frac{\pi}{2}} \sin^{p-1} x \cos^{q-1} x dx = \frac{1}{2} \int_0^1 z^{\frac{p}{2}-1} (1-z)^{\frac{q}{2}-1} =$$

$$= \frac{1}{2} B\left(\frac{p}{2}, \frac{q}{2}\right) = \frac{1}{2} \cdot \frac{\Gamma\left(\frac{p}{2}\right) \cdot \Gamma\left(\frac{q}{2}\right)}{\Gamma\left(\frac{p+q}{2}\right)}.$$

În particular, pentru q=1, obținem formula

$$\int_0^{\frac{\pi}{2}} \sin^{p-1} x dx = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(\frac{p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right)}.$$

Capitolul 3

Integrale curbilinii

3.1 Drum, drum rectificabil, curbă

Fie xOy un reper cartezian în plan, \mathbf{i} și \mathbf{j} versorii acestuia și cercul de ecuație

$$x^2 + y^2 = 1. (3.1)$$

Un punct M(x,y) aparţinând acestui cerc poate fi considerat ca imaginea unui punct t prin funcția vectorială de argument real

$$\mathbf{r}(t) = \varphi(t)\,\mathbf{i} + \psi(t)\,\mathbf{j} \tag{3.2}$$

definită pe intervalul compact $[0, 2\pi] \subset \mathbb{R}$ cu valori în \mathbb{R}^2 , unde

$$\begin{cases} \varphi(t) = \cos t, \\ \psi(t) = \sin t, \end{cases} \quad t \in [0, 2\pi]. \tag{3.3}$$

În această situație spunem că aplicația vectorială $\mathbf{r}:[0,2\pi]\to\mathbb{R}^2$ ale cărei valori se determină după legea (3.2), unde funcțiile φ și ψ sunt date în (3.3), realizează o reprezentare parametrică a cercului (3.1), iar argumentul t se numește parametrul acestei reprezentări.

Acest exemplu simplu sugerează introducerea de reprezentări parametrice și pentru alte mulțimi de puncte din plan.

Definiția 3.1.1 Fie un interval compact $[a,b] \subset \mathbb{R}$. Se numește drum în plan o funcție vectorială de variabilă reală, continuă, $\mathbf{r}:[a,b] \to \mathbb{R}^2$.

Punctele A și B de vectori de poziție $\mathbf{r}(a)$ și $\mathbf{r}(b)$ se numesc capetele sau extremitățile drumului. Imaginea drumului (d) este submulțimea $I(d) \subset \mathbb{R}^2$ a tuturor punctelor M(x,y) ale căror vectori de poziție sunt valori ale funcției \mathbf{r} , adică

$$\overrightarrow{OM} = \mathbf{r}(t), \ t \in [a, b].$$

Dacă notăm cu \mathbf{r} vectorul de poziție al unui punct $M(x,y) \in I(d)$, atunci

$$(d): \mathbf{r} = \mathbf{r}(t), \quad t \in [a, b], \tag{3.4}$$

unde:

$$\mathbf{r} = x \,\mathbf{i} + y \,\mathbf{j}; \qquad \mathbf{r}(t) = \varphi(t) \,\mathbf{i} + \psi(t) \,\mathbf{j}.$$
 (3.5)

Din ecuația (3.4) și notațiile (3.5), obținem

$$(d): \begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} \quad t \in [a, b].$$
 (3.6)

Definiția 3.1.2 Când t parcurge intervalul [a,b] se spune că (3.6) constituie o reprezentare parametrică a imaginii drumului I(d) și a drumului (d), iar t se numește parametru. Relația (3.4) se numește ecuația vectorială a imaginii I(d) sau a drumului (d).

Definiția 3.1.3 Drumul (d) se numește **închis** dacă extremitățile sale coincid; dacă există $t_1, t_2 \in [a,b], cu t_1 \neq t_2, astfel încât <math>\mathbf{r}(t_1) = \mathbf{r}(t_2), spunem$ că punctul $M_1 \in I(d)$ (sau $M_2 \in I(d)$) de vector de poziție

$$\overrightarrow{OM_1} = \mathbf{r}(t_1)$$
 (sau $\overrightarrow{OM_2} = \mathbf{r}(t_2)$)

este punct multiplu al drumului. Un drum fără puncte multiple se numește simplu.

Definiția 3.1.4 Drumul (d) se numește neted dacă

$$\varphi, \psi \in C^1([a, b]), \quad \left(\frac{d\varphi}{dt}(t)\right)^2 + \left(\frac{d\psi}{dt}(t)\right)^2 > 0, \quad t \in [a, b].$$

Deoarece membrul întâi a inegalității din Definiția 3.1.4 este pătratul mărimii (normei) vectorului $\mathbf{r}'(t)$, definiția poate fi reformulată în limbaj vectorial.

Definiția 3.1.5 Drumul (d) se numește **neted** dacă funcțiia vectorială $\mathbf{r} \in C^1([a,b])$ și peste tot în compactul [a,b] este satisfăcută inegalitatea

$$\left\| \frac{d\mathbf{r}}{dt}(t) \right\| = \|\mathbf{r}'(t)\| > 0.$$

Definiția 3.1.6 Drumurile (d_1) și (d_2) definite de funcțiile vectoriale de variabilă reală $\mathbf{r}_1:[a_1,b_1]\to\mathbb{R}^2$ și $\mathbf{r}_2:[a_2,b_2]\to\mathbb{R}^2$ se numesc juxtapozabile dacă $b_1=a_2$ și $\mathbf{r}_1(b_1)=\mathbf{r}_2(a_2)$. În acest caz funcția

defineşte un nou drum numit **juxtapunerea** drumurilor (d_1) şi (d_2) şi este notat prin $(d_1 \cup d_2)$.

Definiția 3.1.7 Un drum (d) se numește **neted pe porțiuni** dacă se poate obține prin juxtapunerea unui număr finit de drumuri netede.

Fie (d) drumul parametrizat în plan definit de (3.4) și $\Delta \subset [a,b]$ mulțimea de puncte

$$\Delta = \{t_0, t_1, \dots, t_{n-1}, t_n\}. \tag{3.7}$$

Definiția 3.1.8 $\textit{Mulțimea}\ \Delta$ se numește diviziune a intervalului [a,b] dacă

$$a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$$

Totalitatea diviziunilor intervalulului [a, b] va fi notată cu $\mathcal{D}([a, b])$.

Definiția 3.1.9 Norma diviziunii Δ este numărul pozitiv

$$\nu(\Delta) = ||\Delta|| = \max\{t_1 - t_0, t_2 - t_1, \dots, t_n - t_{n-1}\}.$$

Definiția 3.1.10 Punctele

$$A(\varphi(a), \psi(a)) = A_0(\varphi(a), \psi(a)), \ A_1(\varphi(t_1), \psi(t_1)), \dots,$$

$$A_{n-1}(\varphi(t_{n-1}), \psi(t_{n-1})), \ B(\varphi(b), \psi(b)) = A_n(\varphi(b), \psi(b))$$
(3.8)

se spune că determină linia poligonală cu vârfurile în imaginea drumului.

Definiția 3.1.11 Prin lungimea drumului Δ se înțelege numărul nenegativ ℓ_{Δ} dat de

$$\ell_{\Delta} = \sum_{i=0}^{n-1} || A_i \overrightarrow{A}_{i+1} || =$$

$$= \sum_{i=1}^{n-1} \sqrt{\left(\varphi(t_{i+1}) - \varphi(t_i)\right)^2 + \left(\psi(t_{i+1}) - \psi(t_i)\right)^2}.$$
(3.9)

Definiția 3.1.12 Fie Δ și Δ' două diviziuni ale intervalului [a,b]. Spunem că diviziunea Δ' este **mai fină** decât diviziunea Δ , și scriem aceasta $\Delta \subset \Delta'$, dacă elementele mulțimii Δ din (3.7) sunt și elemente ale mulțimii Δ' .

Observația 3.1.1 Dacă diviziunea Δ' este mai fină decât diviziunea Δ , atunci între normele acestora are loc inegalitatea $\|\Delta'\| \leq \|\Delta\|$.

Fie
$$\mathcal{L} = \{\ell_{\Delta} : \Delta \in \mathcal{D}([a,b])\} \subset \mathbb{R}_{+}^{*}$$
.

Definiția 3.1.13 Drumul (d) se numește **rectificabil** dacă mulțimea \mathcal{L} este mărginită superior. Marginea superioara a mulțimii \mathcal{L} , dacă există, se numește **lungimea** drumului (d) și se notează cu $\ell(d)$. Deci,

$$\ell(d) = \sup \mathcal{L}.$$

Teorema 3.1.1 Fie (d) un drum neted din \mathbb{R}^2 a cărui imagine I(d) are reprezentarea parametrică (3.6). Atunci, (d) este rectificabil şi

$$\ell(d) = \int_{a}^{b} \sqrt{\left(\varphi'(t)\right)^{2} + \left(\psi'(t)\right)^{2}} dt =$$

$$= \int_{a}^{b} \left\| \frac{d\mathbf{r}}{dt}(t) \right\| dt = \int_{a}^{b} \|\mathbf{r}'(t)\| dt.$$
(3.10)

Demonstrație. Fie Δ diviziunea (3.7) și linia poligonală corespunzătoare (3.8) cu lungimea sa dată de (3.9). Deoarece φ și ψ sunt derivabile, aplicând teorema creșterilor finite a lui Lagrange, există

$$\alpha_i, \beta_i \in (t_i, t_{i+1}), i \in \{0, 1, \dots, n-1\}$$

astfel încât

$$\ell_{\Delta} = \sum_{i=0}^{n-1} \sqrt{\left(\varphi'(\alpha_i)\right)^2 + \left(\psi'(\beta_i)\right)^2} (t_{i+1} - t_i). \tag{3.11}$$

În membrul al doilea al egalității (3.11) adunăm și scădem termenul

$$\sum_{i=0}^{n-1} \sqrt{\left(\varphi'(\tau_i)\right)^2 + \left(\psi'(\tau_i)\right)^2} (t_{i+1} - t_i).$$

În felul acesta (3.11) devine

$$\ell_{\Delta} = \sum_{i=0}^{n-1} \sqrt{\left(\varphi'(\tau_{i})\right)^{2} + \left(\psi'(\tau_{i})\right)^{2}} (t_{i+1} - t_{i}) + \sum_{i=0}^{n-1} \left(\sqrt{\left(\varphi'(\alpha_{i})\right)^{2} + \left(\psi'(\beta_{i})\right)^{2}} - \sqrt{\left(\varphi'(\tau_{i})\right)^{2} + \left(\psi'(\tau_{i})\right)^{2}}\right) (t_{i+1} - t_{i}).$$
(3.12)

A doua sumă din membrul doi al egalității (3.12) poate fi făcută oricât de mică pentru Δ suficient de fină. Într-adevăr, funcția

$$h: [a, b] \times [a, b] \to \mathbb{R}, \quad h(x, y) = \sqrt{((\varphi'(x))^2 + (\psi'(y))^2},$$
 (3.13)

fiind continuă pe mulţimea compactă $[a,b] \times [a,b]$, este uniform continuă şi deci $(\forall) \ \varepsilon > 0$, $(\exists) \ \delta(\varepsilon) > 0$ astfel încât oricare ar fi punctele (x_1,y_1) şi (x_2,y_2) din intervalul bidimensional $[a,b] \times [a,b]$ cu

$$|x_1 - x_2| < \delta(\varepsilon), |y_1 - y_2| < \delta(\varepsilon)$$
 (3.14)

are loc inegalitatea

$$|h(x_1, y_1) - h(x_2, y_2)| < \frac{\varepsilon}{b-a}.$$
 (3.15)

Considerând că $(x_1, y_1) = (\alpha_i, \beta_i)$ și $(x_2, y_2) = (\tau_i, \tau_i)$ și alegând diviziunea Δ astfel încât

$$\|\Delta\| < \delta(\varepsilon), \tag{3.16}$$

 $\dim (3.14)$ și (3.15) rezultă

$$-\frac{\varepsilon}{b-a} < h(\alpha_i, \, \beta_i) - h(\tau_i, \, \tau_i) < \frac{\varepsilon}{b-a}. \tag{3.17}$$

Prin sumarea după i de la 0 până la n-1 în extremitatea dreaptă a inegalităților (3.17), obținem

$$\sum_{i=0}^{n-1} \left(\sqrt{\left(\varphi'(\alpha_i) \right)^2 + \left(\psi'(\beta_i) \right)^2} - \sqrt{\left(\varphi'(\tau_i) \right)^2 + \left(\psi'(\tau_i) \right)^2} \right) (t_{i+1} - t_i) < \varepsilon. \quad (3.18)$$

Prima sumă din (3.12) este o sumă Riemann corespunzătoare funcției integrabile (3.13), diviziunii Δ cu proprietatea (3.16) și punctelor intermediare

$$\tau_i \in [t_i, t_{i+1}], \ i = \overline{0, n-1}.$$

Fie subșirul de numere naturale $(k_n)_{n>0}$ și

$$\Delta_n = \{t_0^n = a, t_1^n, \dots, t_{k_{n-1}}^n, t_{k_n}^n = b\}$$

un șir de diviziuni cu proprietatea că șirul normelor este convergent la zero, adică

$$\lim_{n \to \infty} \|\Delta_n\| = 0. \tag{3.19}$$

Făcând în (3.12) pe $n \to \infty$, al doilea termen din membrul doi tinde la zero în baza lui (3.18) şi (3.19), iar primul termen are ca limită integrala Riemann

$$\int_{a}^{b} \sqrt{\left(\varphi'(t)\right)^{2} + \left(\psi'(t)\right)^{2}} dt = \int_{a}^{b} \left\| \frac{d\mathbf{r}}{dt}(t) \right\| dt = \int_{a}^{b} \left\| \mathbf{r}'(t) \right\| dt. \tag{3.20}$$

Din acest rezultat deducem că şirul (ℓ_{Δ_n}) , corespunzător şirului de diviziuni (Δ_n) , are limită finită și aceasta este integrala din (3.20), deci drumul (d) este rectificabil și are loc (3.10).

Definiția 3.1.14 Drumurile (d_1) și (d_2) definite de funcțiile vectoriale de variabilă reală $\mathbf{r}_1:[a_1,b_1]\to\mathbb{R}^2$ și $\mathbf{r}_2:[a_2,b_2]\to\mathbb{R}^2$ se numesc **echivalente** dacă există o funcție $\alpha:[a_1,b_1]\to[a_2,b_2]$ continuă, strict crescătoare și surjectivă, astfel încât

$$\mathbf{r}_1(t) = \mathbf{r}_2(\alpha(t)), \quad (\forall) \ t \in [a_1, b_1].$$
 (3.21)

Observația 3.1.2 Dacă drumul (d_1) este echivalent cu drumul (d_2) , atunci (d_2) este echivalent cu (d_1) , aplicația din Definiția 3.1.14 fiind funcția inversă α^{-1} .

Observația 3.1.3 Dacă (d_1) este echivalent cu (d_2) , atunci $I(d_1) = I(d_2)$, adică imaginea drumului este invariantă la relația de echivalență a drumurilor în plan. De asemenea, noțiunile de drum simplu și de drum închis sunt invariante la această relație.

Propoziția de mai jos va demonstra că noțiunea de drum rectificabil și lungimea unui drum sunt invariante la relația de echivalență în mulțimea drumurilor în plan.

Propoziția 3.1.1 Dacă drumurile în plan (d_1) şi (d_2) definite de funcțiile vectoriale de variabilă reală $\mathbf{r}_1 : [a_1, b_1] \to \mathbb{R}^2$ şi $\mathbf{r}_2 : [a_2, b_2] \to \mathbb{R}^2$ sunt echivalente, iar (d_1) este rectificabil, atunci (d_2) este rectificabil şi $\ell(d_1) = \ell(d_2)$.

Demonstrație. Să considerăm că cele două funcții care definesc respectiv cele două drumuri sunt:

$$\mathbf{r}_1(t) = \varphi_1(t)\mathbf{i} + \psi_1(t)\mathbf{j}, \quad t \in [a_1, b_1];$$

$$\mathbf{r}_2(\tau) = \varphi_2(\tau)\mathbf{i} + \psi_2(\tau)\mathbf{j}, \quad \tau \in [a_2, b_2].$$

Fie $\alpha:[a_1,b_1] \to [a_2,b_2]$ funcția continuă, strict crescătoare și surjectivă cu proprietatea (3.21). Dacă $\Delta' \in \mathcal{D}([a_2,b_2])$,

$$\Delta' = \{ a_2 = \tau_0, \, \tau_1, \, \cdots, \, \tau_{n-1}, \, \tau_n = b_2 \}, \quad \tau_i < \tau_{i+1}, \quad i = \overline{0, n-1}, \quad (3.22)$$

atunci există o diviziune $\Delta \in \mathcal{D}([a_1, b_1]),$

$$\Delta = \{a_2 = t_0, t_1, \dots, t_{n-1}, t_n = b_2\}, \quad t_i < t_{i+1}, \quad i = \overline{0, n-1}, \quad (3.23)$$

astfel încât

$$\alpha(t_i) = \tau_i, \quad i = \overline{0, n}.$$

Reciproc, dacă $\Delta \in \mathcal{D}([a_1, b_1])$ de forma (3.23), atunci imaginile prin funcția α ale punctelor lui $\Delta \in \mathcal{D}([a_2, b_2])$ de forma (3.22). Ținând cont de (3.21) și de cele deduse mai sus, avem

$$\ell_{\Delta} = \sum_{i=1}^{n-1} \sqrt{\left(\varphi_{1}(t_{i+1}) - \varphi_{1}(t_{i})\right)^{2} + \left(\psi_{1}(t_{i+1}) - \psi_{1}(t_{i})\right)^{2}} =$$

$$= \sum_{i=1}^{n-1} \sqrt{\left(\varphi_{2}(\tau_{i+1}) - \varphi_{2}(\tau_{i})\right)^{2} + \left(\psi_{2}(\tau_{i+1}) - \psi_{2}(\tau_{i})\right)^{2}} = \ell_{\Delta'}.$$
(3.24)

Din (3.24) rezultă că

$$\{\ell_{\Delta} \mid \Delta \in \mathcal{D}([a_1, b_1])\} = \{\ell_{\Delta'} \mid \Delta' \in \mathcal{D}([a_2, b_2])\}.$$
 (3.25)

Prin ipoteză (d_1) este drum rectificabil ceea ce înseamnă că mulțimea din membrul stâng al egalității (3.25) este mărginită superior. Va rezulta că și mulțimea din membrul al doilea al egalității (3.25) este mărginită superior, adică (d_2) este rectificabilă. În plus, marginile lor superioare lor coincid, deci $\ell(d_1) = \ell(d_2)$.

Observația 3.1.4 Relația de echivalență în mulțimea drumurilor din plan este reflexivă, simetrică și tranzitivă. Rezultă că această relație împarte mulțimea drumurilor în clase de echivalență. Vom spune că două drumuri aparțin aceleiași clase dacă și numai dacă sunt echivalente.

Definiția 3.1.15 Se numește curbă plană o clasă de drumuri în plan echivalente.

Observaţia 3.1.5 Deoarece următoarele noţiuni: drum simplu; drum închis; imaginea unui drum; drum neted; drum neted pe porţiuni; drum rectificabil şi lungimea unui drum sunt invariante la relaţia de echivalenţă, pentru curbele în plan vom introduce corespunzător noţiunile: curbă simplă sau arc simplu de curbă; curbă închisă; imaginea unei curbe; curbă netedă sau curbă regulată; curbă netedă pe porţiuni; curbă rectificabilă şi lungimea unei curbe sau lungimea unui arc de curbă rectificabilă.

De exemplu,

Definiția 3.1.16 Se numește imaginea curbei imaginea unui drum din clasa de echivalență care definește curba respectivă.

Definiția dată este corectă deoarece toate drumurile dintr-o clasă au aceeași imagine. În cele ce urmează o curbă se va nota fie prin C fie specificându-i extremitățile imaginii sale în cazul când nu este închisă, adică (AB).

Definiția 3.1.17 Prin ecuația vectorială a unei curbe în plan şi ecuații parametrice ale unei curbe în plan înțelegem ecuația vectorială respectiv ecuații parametrice ale oricărui drum din clasa de echivalență care defineste curba.

129

Definiția 3.1.18 Curbele C_1 și C_2 se numesc **juxtapozabile**, dacă există drumurile $(d_1) \in C_1$ și $(d_2) \in C_2$ cu (d_1) și (d_2) juxtapozabile. În acest caz, clasa de echivalență a drumului $(d_1 \cup d_2)$ se numește **juxtapusa** curbelor C_1 și C_2 și se notează cu $(C_1 \cup C_2)$. Curba C se numește **netedă pe porțiuni** dacă este juxtapunerea unui număr finit de curbe netede.

În cele ce urmează, identificând drumurile echivalente între ele, vom folosi termenul de *imaginea curbei* în aceeași accepțiune ca termenul *imaginea drumului*. Noțiunea de *drum* sau cea de *curbă* va fi desemnată de cel mai multe ori printr-o reprezentare parametrică. În loc de *imaginea curbei* vom spune tot *curbă* dacă acest lucru nu creează confuzii.

Observația 3.1.6 Toate considerațiile de mai sus se transpun fără dificultate pentru curbe în spațiul tridimensional sau curbe în spațiu cu modificările impuse de apariția celei de a treia coordonate. Spre exemplu, dacă

$$(d): \begin{cases} x = \varphi(t), \\ y = \psi(t), \\ z = \chi(t), \end{cases} t \in [a, b],$$

este reprezentarea parametrică a drumului neted (d) în spațiu, lungimea sa va fi

$$\ell(d) = \int_a^b \sqrt{\left(\varphi'(t)\right)^2 + \left(\psi'(t)\right)^2 + \left(\chi'(t)\right)^2} dt = \int_a^b \left\| \frac{d\mathbf{r}}{dt}(t) \right\| dt,$$

unde $\mathbf{r} = \mathbf{r}(t)$ este ecuația vectorială a drumului, $\mathbf{r}(t) = \varphi(t)\mathbf{i} + \psi(t)\mathbf{j} + \chi(t)\mathbf{k}$, iar \mathbf{k} este cel de al treilea versor al reperului cartezian Oxyz din \mathbb{R}^3 .

Observația 3.1.7 O curbă admite o infinitate de reprezentări parametrice.

În continuare vom pune în evidență o parametrizare importantă a curbelor rectificabile și anume parametrizarea naturală.

În acest sens fie $t \in [a, b]$ oarecare căruia îi corespunde punctul M pe imaginea curbei netede sau netede pe porțiuni C din spațiu. Presupunem că extremitățile A și B sunt corespunzătoare respectiv valorilor t = a și t = b și fie $\mathbf{r}(\tau)$ vectorul de poziție al unui punct curent P de pe imaginea curbei astfel încât P să se găsească între A și M. Aceasta înseamnă că $\tau \in [a, t]$. Putem vorbi de lungimea arcului de curbă (AM) pe care o notăm cu s și care este o

funcție $s:[a,b]\to [0,L],$ unde L este lungimea curbei considerate. Valorile funcției s=s(t) sunt date de

$$s(t) = \int_{a}^{t} \left\| \frac{d\mathbf{r}}{d\tau}(\tau) \right\| d\tau = \int_{a}^{t} \sqrt{\left(\varphi'(\tau)\right)^{2} + \left(\psi'(\tau)\right)^{2} + \left(\chi'(\tau)\right)^{2}} d\tau \qquad (3.26)$$

şi $s'(t) = \sqrt{\left(\varphi'(t)\right)^2 + \left(\psi'(t)\right)^2 + \left(\chi'(t)\right)^2}$, de unde deducem că funcția s este diferențiabilă, iar diferențiala sa, numită și element de arc al curbei, este

$$ds = \left\| \frac{d\mathbf{r}}{dt}(t) \right\| dt = \sqrt{\left(\varphi'(t)\right)^2 + \left(\psi'(t)\right)^2 + \left(\chi'(t)\right)^2} dt. \tag{3.27}$$

Se observă de asemeni că

$$ds = \sqrt{dx^2 + dy^2 + dz^2} = ||d\mathbf{r}||. \tag{3.28}$$

Deoarece s'(t) > 0, rezultă că funcția s = s(t) este strict crescătoare. Fiind injectivă, funcția s = s(t) este inversabilă.

Să notăm $\beta = \beta(s)$ inversa funcției s.

Atunci, funcția

$$\mathbf{r} = \mathbf{r}(\beta(s)) \tag{3.29}$$

caracterizează un drum din aceeași clasă care definește curba. Astfel, am introdus o nouă parametrizare a curbei care se numește parametrizarea naturală

Dacă $\mathbf{r}(\beta(s)) = x(s)\mathbf{i} + y(s)\mathbf{j} + z(s)\mathbf{k}$, atunci ecuațiile parametrice naturale ale unei curbe în spațiu C, rectificabilă și de lungime L, sunt

$$C: \begin{cases} x = x(s) \\ y = y(s) \\ z = z(s), \end{cases}$$
 $s \in [0, L].$ (3.30)

Dacă arcul de curbă rectificabil C este în planul xOy, atunci are ecuațiile parametrice naturale

$$C: \begin{cases} x = x(s) \\ y = y(s), \end{cases} \quad s \in [0, L], \tag{3.31}$$

iar elementul de arc al său este dat de

$$ds = \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2}} dt = \sqrt{dx^{2} + dy^{2}} = ||d\mathbf{r}||.$$
 (3.32)

Din expresiile (3.27), (3.28) și (3.32) rezultă $\left\| \frac{d\mathbf{r}}{ds} \right\| = 1$, ceea ce arată că vectorul

$$\tau(s) = \frac{d\mathbf{r}}{ds}(s)$$
 sau $\tau = \frac{d\mathbf{r}}{ds}$, (3.33)

al cărui reprezentant în punctul P al curbei are direcția și sensul tangentei în P la curbă, este un versor care se numește versorul tangentei la curbă în punctul P al curbei corespunzător valorii s a parametrului natural.

Exemplul 3.1.1 Să se determine elementul de arc și lungimea curbei plane

$$C: \begin{cases} x = \ln \operatorname{tg} \frac{t}{2}, \\ y = \ln \sqrt{\frac{1+\sin t}{1-\sin t}}, \end{cases} \quad t \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right].$$

Soluție. După un calcul simplu găsim $\varphi'(t) = \frac{1}{\sin t}$ și $\psi'(t) = \frac{1}{\cos t}$. Atunci, elementul de arc este

$$ds = \sqrt{\frac{1}{\sin^2 t} + \frac{1}{\cos^2 t}} dt = \frac{dt}{\sin t \cos t} = \frac{2dt}{\sin 2t}.$$

Lungimea L a curbei C este

$$L = \int_{\pi/6}^{\pi/3} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt = \int_{\pi/6}^{\pi/3} \frac{2dt}{\sin 2t} = \ln \operatorname{tg} t \Big|_{\pi/6}^{\pi/3} = \ln 3.$$

3.2 Definiția integralei curbilinii de primul tip

Fie (AB) o curbă plană netedă sau netedă pe porțiuni și f(M) o funcție definită pe un domeniu D din planul xOy care include imaginea curbei.

Considerăm o partiție Δ a curbei în subarcele (părțile) $(A_{i-1}A_i)$, $i = \overline{1, n}$, prin intermediul punctelor de diviziune

$$A = A_0, A_1, \dots, A_{n-1}, A_n = B$$

_

și alegem un punct arbitrar M_i pe fiecare din arcele $(A_{i-1}A_i)$. Cu aceste date formăm suma

$$\sum_{i=1}^{n} f(M_i) \Delta s_i, \tag{3.34}$$

unde Δs_i este lungimea arcului $(A_{i-1}A_i)$, numită sumă integrală a funcției f corespunzătoare diviziunii Δ și alegerii $M_i \in (A_{i-1}A_i)$ a punctelor intermediare.

Definiția 3.2.1 Funcția f se numește integrabilă în raport cu arcul pe curba (AB) dacă sumele integrale (3.34) admit limita finită I când cel mai mare dintre Δs_i tinde la zero și această limită nu depinde de alegerea punctelor intermediare $M_i \in (A_{i-1}A_i)$.

Definiția 3.2.2 Dacă funcția f este integrabilă în raport cu arcul pe curba (AB), limita I a sumelor integrale (3.34) când cel mai mare dintre Δs_i tinde la zero se numește integrala curbilinie de primul tip a funcției f(M) pe curba (AB) și se notează cu simbolul

$$I = \int_{(AB)} f(M)ds. \tag{3.35}$$

Punctele curbei (AB) fiind determinate de coordonatele (x, y) în reperul cartezian Oxy, valoarea f(M) a funcției f în punctul $M \in (AB)$ se poate nota prin f(x, y), astfel că integrala curbilinie de prima speță (3.35) se poate scrie în forma echivalentă

$$I = \int_{(AB)} f(x, y) ds.$$

Variabilele x şi y nu sunt independente; punctul M(x,y) aparţinând curbei (AB), coordonatele sale x şi y trebuie să satisfacă ecuația curbei.

Putem arăta că integrala curbilinie de primul tip sau integrala curbilinie de prima speță nu diferă în mod esențial de cea a integralei definite dintr-o funcție de o variabilă independentă și, mai mult, vom arăta că o integrală curbilinie de primul tip se reduce la o integrală definită. În acest sens să considerăm parametrizarea naturală a curbei (AB) cu originea de arc în A și având lungimea L. Această parametrizare naturală este dată de (3.31). Restricția funcției arbitrare f(x,y) în punctele arcului (AB) este o funcție compusă de o singură variabilă, și anume

$$f(x(s), y(s)), s \in [0, L].$$

Fie s_i^* valoarea parametrului s corespunzătoare punctului M_i , adică s_i^* este lungimea arcului (AM_i) . Suma integrală (3.34) se poate scrie acum în forma

$$\sum_{i=1}^{n} f(x(s_i^*), y(s_i^*)) \Delta s_i, \tag{3.36}$$

unde $\Delta s_i = s_i - s_{i-1}$, valoarea lui s_0 fiind zero deoarece considerăm că punctul A este originea de arc pe curbă. Constatăm că (3.36) este o sumă integrală corespunzătoare integralei definite $\int_0^L f(x(s), y(s)) ds$. Sumele integrale (3.34) și (3.36) fiind egale, integralele definite legate de acestea sunt egale, prin urmare

$$\int_{(AB)} f(M)ds = \int_0^L f(x(s), y(s))ds$$
(3.37)

ambele integrale existând sau neexistând simultan. În consecință, dacă funcția f(M) este continuă sau continuă pe porțiuni și mărginită de-a lungul curbei netede sau netedă pe porțiuni (AB), integrala curbilinie de primul tip (3.35) există deoarece integrala definită (Riemann) din membrul doi al relației (3.37) există.

Observația 3.2.1 Deși integrala curbilinie de prima speță se reduce direct la o integrală definită există o distincție netă între cele două noțiuni. Conținutul acestei distincții constă în aceea că lungimile Δs_i ale arcelor $(A_{i-1}A_i)$ sunt pozitive indiferent care din extremitățile A sau B a fost aleasă ca origine. Deci, orientarea curbei (AB), adică alegerea unui anumit sens de parcurs pe curbă începând de la origine către cealaltă extremitate, nu afectează valoarea integralei (3.35) și, în consecință, avem

$$\int_{(AB)} f(M)ds = \int_{(BA)} f(M)ds.$$

După cum se știe, integrala definită pe compactul $[a, b] \subset \mathbb{R}$ dintr-o funcție de variabila $x \in [a, b]$ schimbă de semn când limitele de integrare se schimbă între ele.

Când reducem o integrală curbilinie de primul tip la o integrală definită corespunzătoare putem folosi la fel de bine orice parametru al curbei în locul lungimii de arc s. Presupunem așadar că o curbă netedă (AB) este dată prin ecuațiile paramaetrice

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} \quad a \le t \le b, \tag{3.38}$$

unde funcțiile φ și ψ sunt astfel încât $\varphi, \psi \in C^1([a,b])$ și $(\varphi'(t))^2 + (\psi'(t))^2 > 0$. În aceste condiții, putem introduce ca parametru pe curbă lungimea de arc s măsurată de la punctul A al curbei corespunzător lui t=a și astfel arcul s crește odată cu parametrul t, aceasta însemnând că s este o funcție strict crescătoare de $t \in [a,b]$.

Pornind de la formula de calcul (3.37), efectuând în integrala definită din membrul al doilea al acestei formule schimbarea de variabilă

$$t \mapsto s = s(t), \ t \in [a, b], \ s(t) \in [0, L]$$
 (3.39)

şi având în vedere notațiile $x(s(t)) = \varphi(t), y(s(t)) = \psi(t)$, obținem

$$\int_{(AB)} f(M)ds = \int_0^L f(x(s), y(s))ds =$$

$$= \int_a^b f(\varphi(t), \psi(t)) \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt.$$

În acest mod am demonstrat

Teorema 3.2.1 Dacă (AB) este o curba netedă din domeniul $D \subset \mathbb{R}^2$, de ecuații parametrice (3.38), și $f: D \to \mathbb{R}$ o funcție reală de două variabile reale continuă în punctele M(x,y) ale curbei, atunci are loc egalitatea

$$\int_{(AB)} f(M)ds = \int_{a}^{b} f(\varphi(t), \psi(t)) \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2}} dt$$
 (3.40)

ori de câte ori integralele care intră în ea există; integrala curbilinie din membrul stâng există dacă și numai dacă integrala definită din membrul al doilea există.

Când curba (AB) este reprezentată prin ecuația carteziană explicită

$$y = y(x), \quad a < x < b,$$

se poate lua ca parametru pe curbă abscisa x și formula (3.40) devine

$$\int_{(AB)} f(M)ds = \int_{a}^{b} f(x, y(x)) \sqrt{1 + y'^{2}(x)} dx.$$
 (3.41)

Un reper polar în plan este ansamblul format de un punct O, numit pol, și o semidreaptă cu originea în pol, de direcție definită de versorul \mathbf{i} , numită

 $ax\Breve{a}$ polar \Breve{a} . Raza vectoare a unui punct M din plan este vectorul cu originea în pol şi extremitatea în M, iar unghiul polar al puctului M este unghiul dintre versorul ${\bf i}$ şi raza vectoare a acelui punct. Perechile (r,θ) se numesc coordonate polare în plan. Dacă polul reperului polar coincide cu originea reperului cartezian Oxy, iar axa sa polară este axa absciselor, legătura dintre coordonatele carteziene și cele polare ale unui punct este

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \end{cases} \quad r \in [0, +\infty), \ \theta \in [0, 2\pi).$$

Să presupunem că arcul de curbă (AB) este reprezentat în coordonate polare prin ecuația polară explicită

$$r = r(\theta), \quad \theta_1 < \theta < \theta_2,$$
 (3.42)

unde r este $m \ arimea \ razei \ vectoare$ iar θ este $unghiul \ polar$ măsurat în radiani și cuprins între 0 și 2π . În ipoteza că cele două repere sunt legate precum am menționat, putem scrie o reprezentare parametrică a arcului de curbă (AB) în care parametrul pe curbă să fie unghiul polar

$$\begin{cases} x = r(\theta)\cos\theta, \\ y = r(\theta)\sin\theta, \end{cases} \quad \theta \in [\theta_1, \theta_2]. \tag{3.43}$$

Pentru calculul integralei curbilinii de primul tip în plan când curba (AB) este dată de (3.43) vom folosi (3.40) în care în locul lui t avem acum θ , iar funcțiile φ și ψ sunt cele din membrii doi ai relațiilor (3.43). Calculând radicalul care apare în egalitatea (3.40) se găsește

$$\sqrt{\left(\varphi'(\theta)\right)^2 + \left(\psi'(\theta)\right)^2} = \sqrt{r^2(\theta) + r'^2(\theta)}.$$

Rezultă că în cazul când arcul de curbă plană netedă (AB) este reprezentat în coordonate polare, formula de calcul a integralei curbilinii de primul tip este

$$\int_{(AB)} f(M)ds = \int_{\theta_1}^{\theta_2} f(r(\theta)\cos\theta, r(\theta)\sin\theta) \sqrt{r^2(\theta) + r'^2(\theta)} d\theta.$$
 (3.44)

Integrala definită a unei funcții nenegative f pe compactul [a, b] are ca interpretare geometrică aria trapezului curbiliniu limitat de dreptele x = a, x = b, axa Ox și graficul arcului de curbă (AB) de ecuație y = f(x).

Observația 3.2.2 Plecând de la interpretarea geometrică dată integralei definite, putem afirma că integrala curbilinie de primul tip a unei funcții pozitive f(x,y) pe arcul (AB) este aria porțiunii din suprafața cilindrică cu generatoarele paralele cu axa Oz și curba directoare arcul (AB), porțiune limitată de arcul (AB) și de mulțimea de puncte de coordonate (x,y,f(x,y)), unde $M(x,y) \in (AB)$.

Observația 3.2.3 Definiția și formula de calcul a integralei curbilinii de primul tip pe o curbă plană se transpun direct la cazul când funcția f(M) este definită în punctele M(x,y,z) unui arc (AB) al curbei în spațiu sau curbei strâmbe reprezentat parametric prin

$$(AB): \begin{cases} x = \varphi(t), \\ y = \psi(t), & a \le t \le b, \\ z = \chi(t), \end{cases}$$
 (3.45)

integrala curbilinie de prima speță a funcției f(M) de-a lungul curbei (AB) se reduce la o integrala definită

$$\int_{(AB)} f(M)ds = \int_{a}^{b} f(\varphi(t), \, \psi(t), \, \chi(t)) \sqrt{\varphi'(t)^{2} + {\psi'}^{2}(t) + {\chi'}^{2}(t)} \, dt. \quad (3.46)$$

Observația 3.2.4 Rezultatele stabilite rămân adevărate când curba C este netedă pe porțiuni, iar funcția de integrat este continuă și mărginită pe fiecare porțiune netedă a curbei. În această situație, integrala curbilinie de primul tip este suma integralelor curbilinii de speța întâi pe porțiunile netede care prin juxtapunere dau curba C.

Exercițiul 3.2.1 Să se calculeze integrala curbilinie de primul tip

$$I = \int_C (x^2 + y^2) \ln z \, ds$$

unde curba C pe care se efectuează integrarea funcției $f(x,y,z)=(x^2+y^2)\ln z$ este reprezentată parametric de

$$C: \begin{cases} x = e^t \cos t, \\ y = e^t \sin t, \quad t \in [0, 1]. \\ z = e^t, \end{cases}$$

Soluţie. Vom aplica formula de calcul (3.46). Pentru aceasta trebuie calculate derivatele funcţiilor care definesc curba şi apoi radicalul sumei pătratelor acestor derivate. Găsim

$$\sqrt{\varphi'(t)^2 + \psi'^2(t) + \chi'^2(t)} = e^t \sqrt{3}.$$

Conform formulei de calcul (3.46), avem

$$I = \sqrt{3} \int_0^1 t \, e^{3t} \, dt.$$

Integrala definită la care s—a redus integrala curbilinie dată se calculează aplicând metoda integrării prin părți și se găsește

$$I = \frac{1 + 2e^3}{3\sqrt{3}}.$$

După prezentarea aplicațiilor integralelor curbilinii în mecanică, rezultatul găsit poate fi interpretat. Mai precis, valoarea integralei este momentul de inerție față de axa Oz al unui fir material care are configurația curbei (C) și a cărui densitate în fiecare punct M(x,y,z) al curbei este $\ln z$.

3.3 Proprietățile integralelor curbilinii

Proprietățile integralelor curbilinii de primul tip sunt analoage celor ale integralelor definite și sunt implicate direct de către acestea din urmă prin formulele de calcul (3.37) și (3.46) care dau legăturile integralelor curbilinii de primul tip în plan și respectiv în spațiu cu integrale definite.

1. (liniaritatea). Dacă funcțiile f(M) și g(M) sunt integrabile de–a lungul curbei (AB) și λ și μ sunt constante reale arbitrare, atunci funcția $(\lambda f + \mu g)(M)$ este integrabilă pe (AB) și are loc egalitatea

$$\int_{(AB)} (\lambda f + \mu g)(M) ds = \lambda \int_{(AB)} f(M) ds + \mu \int_{(AB)} g(M) ds.$$

2. (monotonia). Dacă f(M) este o funcție nenegativă integrabilă pe curba (AB), atunci

$$\int_{(AB)} f(M)ds \ge 0.$$

3. (aditivitatea). Dacă arcul (AB) este juxtapunerea a două arce netede sau netede pe porțiuni (AC) și (CB), egalitatea

$$\int_{(AB)} f(M)ds = \int_{(AC)} f(M)ds + \int_{(CB)} f(M)ds$$

are loc când integralele care apar există; integrala din membrul stâng există dacă și numai dacă ambele integrale din membrul drept există.

4. (evaluarea modulului integralei curbilinii). Dacă f(M) este integrabilă pe (AB), atunci funcția |f|(M) = |f(M)| este de asemenea integrabilă pe (AB) și

$$\left| \int_{(AB)} f(M) ds \right| \le \int_{(AB)} |f(M)| ds.$$

5. (teorema valorii medii). Dacă f(M) este funcție continuă pe o curbă netedă sau netedă pe porțiuni de lungime L, atunci există un punct $M^* \in (AB)$ astfel încât

$$\int_{(AB)} f(M)ds = f(M^*) L.$$

6. (independența integralei curbilinii de primul tip de orientarea arcului de curbă pe care se integrează). Alegerea sensului de parcurs pe arcul de curbă neted sau neted pe porțiuni (AB) nu influențează valoarea integralei curbilinii de primul tip pe (AB), în sensul că

$$\int_{(AB)} f(M)ds = \int_{(BA)} f(M)ds,$$

fapt ce a fost menționat și în paragraful precedent.

3.4 Aplicații ale integralelor curbilinii de primul tip

Vom pune în evidență unele probleme tipice ale căror rezolvări naturale implică integralele curbilinii de primul tip.

3.4.1 Masa şi centrul de greutate ale unui fir material

Definiția 3.4.1 Se numește fir material ansamblul dintre o curbă netedă sau netedă pe porțiuni (AB) și o funcție pozitivă și continuă ρ definită în punctele curbei. Curba (AB) se numește configurația firului material, iar funcția ρ se numește densitatea firului material, valoarea acesteia în punctul $M \in (AB)$ numindu-se densitatea de materie sau densitatea materială în punctul M. Firul material se numește omogen sau neomogen după cum densitatea este funcția constantă sau nu.

Este posibil să precizăm densitatea materială întrun punct fie prin $\rho(x,y)$, dacă curba (AB) se află în planul Oxy, fie prin $\rho(x,y,z)$ dacă (AB) este o curbă în spațiu.

Densitatea materială în punctul $M \in (AB)$ este limita raportului dintre masa Δm a arcului de curbă (MM') și lungimea Δs a acestuia când M' tinde la M pe curbă.

Împărțim arcul (AB) în n subarce cu ajutorul diviziunii Δ formată de punctele de diviziune $\Delta = \{A = A_0, A_1, A_2, \dots, A_{n-1}, A_n = B\}$) și pe fiecare arc $(A_{i-1}A_i)$, $i = \overline{1,n}$, luăm un punct M_i în care densitatea are valoarea $\rho(M_i)$. Dacă

$$\Delta s_i = s_i - s_{i-1} = \ell(AA_i) - \ell(AA_{i-1}), \ i = \overline{1, n}$$

reprezintă lungimea arcului $(A_{i-1}A_i)$, atunci masa firului material de configurație $(A_{i-1}A_i)$ poate fi aproximată prin $\rho(M_i) \Delta s_i$.

În acest mod, firul material continuu de configurație arcul (AB) și densitate $\rho(M)$ se poate înlocui cu n puncte materiale izolate, situate pe arc,

$$M_1, M_2, \ldots, M_n,$$

având masele

$$\rho(M_1) \Delta s_1, \quad \rho(M_2) \Delta s_2, \quad \cdots, \quad \rho(M_n) \Delta s_n.$$

Presupunând că punctele M_i au coordonatele $M_i(\xi_i,\eta_i,\zeta_i)$, rezultă că suma

$$\sum_{i=1}^{n} \rho(M_i) \Delta s_i = \sum_{i=1}^{n} \rho(\xi_i, \eta_i, \zeta_i) \Delta s_i$$

este o valoare aproximativă a masei firului material (AB) care corespunde diviziunii Δ a arcului (AB) şi alegerii arbitrare a punctelor $M_i \in (A_{i-1}A_i)$.

Dacă considerăm un șir de diviziuni (Δ_n) ale arcului (AB) cu proprietatea

$$\lim_{n\to\infty} \Delta_n = 0$$

si presupunem densitatea de materie funcție continuă pe arcul (AB), atunci

$$\lim_{\|\Delta_n\| \to 0} \sum_{i=1}^n \rho(M_i) \, \Delta s_i$$

există și reprezintă masa firului material cu configurația curba netedă sau netedă pe porțiuni (AB). Ținând seama de definiția integralei curbilinii de primul tip avem că masa totală \mathcal{M} a firului material considerat este

$$\mathcal{M} = \lim_{\|\Delta_n\| \to 0} \sum_{i=1}^n \rho(M_i) \, \Delta s_i = \int_{(AB)} \rho(M) ds = \int_{(AB)} \rho(x, y, z) ds.$$

În cazul în care arcul de curbă se află în planul Oxy, masa firului material de configurație (AB) și densitate $\rho(x,y)$ în punctul $M(x,y) \in (AB)$ este

$$\mathcal{M} = \int_{(AB)} \rho(M) ds = \int_{(AB)} \rho(x, y) ds.$$

Observația 3.4.1 Când firul material este omogen, cu densitatea constantă ρ_0 , masa firului material corespunzător este $\mathcal{M} = \rho_0 \int_{(AB)} ds$.

Pe de altă parte, când firul este omogen, $\mathcal{M} = \rho_0 L$, unde $L = \ell(AB)$ este lungimea firului. De aici deducem că lungimea unui arc de curbă netedă sau netedă pe porțiuni se poate prezenta ca integrala curbilinie de primul tip

$$\ell(AB) = \int_{(AB)} ds = \int_a^b \left\| \frac{d\mathbf{r}}{dt}(t) \right\| dt.$$

Din statică, se știe că date n puncte materiale

$$M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2), \cdots, M_n(x_n, y_n, z_n),$$

de mase corespunzătoare m_1, m_2, \dots, m_n , coordonatele centrului de greutate G al sistemului format de cele n puncte materiale sunt:

$$x_G = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i}; \quad y_G = \frac{\sum_{i=1}^n m_i y_i}{\sum_{i=1}^n m_i}; \quad z_G = \frac{\sum_{i=1}^n m_i z_i}{\sum_{i=1}^n m_i}.$$

Să considerăm din nou firul material (AB) căruia îi aplicăm o divizare prin punctele $A=A_0,\ A_1,\cdots,\ A_n=B.$ Atunci, firul se poate înlocui cu un sistem de n puncte materiale $M_i(\xi_i,\eta_i,\zeta_i)$, cu ponderile $m_i=\rho(\xi_i,\eta_i,\zeta_i)\Delta s_i$, unde $i=\overline{1,n}$. Ponderea reprezintă masa firului material omogen $(A_{i-1}A_i)$ a cărui densitate este valoarea funcției $\rho(x,y,z)$ în punctul $M_i^*(\xi_i,\eta_i,\zeta_i)$ ales arbitrar pe arcul $(A_{i-1}A_i)$. Coordonatele centrului de greutate pentru acest sistem de puncte materiale vor fi

$$\bar{x}_{G} = \frac{\sum_{i=1}^{n} \xi_{i} \rho(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta s_{i}}{\sum_{i=1}^{n} \rho(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta s_{i}}; \qquad \bar{y}_{G} = \frac{\sum_{i=1}^{n} \eta_{i} \rho(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta s_{i}}{\sum_{i=1}^{n} \rho(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta s_{i}};$$

$$\bar{z}_G = \frac{\sum_{i=1}^n \zeta_i \rho(\xi_i, \eta_i, \zeta_i) \, \Delta s_i}{\sum_{i=1}^n \rho(\xi_i, \eta_i, \zeta_i) \, \Delta s_i}.$$

În aceleași ipoteze asupra arcului (AB) și asupra densității de materie pe care le-am întâlnit la determinarea masei firului material, avem:

$$\begin{cases} \lim_{\|\Delta_n\|\to 0} \sum_{i=1}^n \xi_i \rho(\xi_i, \eta_i, \zeta_i) \, \Delta s_i = \int_{(AB)} x \, \rho(x, y, z) ds; \\ \lim_{\|\Delta_n\|\to 0} \sum_{i=1}^n \eta_i \rho(\xi_i, \eta_i, \zeta_i) \, \Delta s_i = \int_{(AB)} y \, \rho(x, y, z) ds; \\ \lim_{\|\Delta_n\|\to 0} \sum_{i=1}^n \zeta_i \rho(\xi_i, \eta_i, \zeta_i) \, \Delta s_i = \int_{(AB)} z \, \rho(x, y, z) ds; \end{cases}$$

Astfel, coordonatele centrului de greutate al firului material neomogen (AB) sunt:

$$x_G = \frac{\int_{(AB)} x \, \rho(x, y, z) ds}{\int_{(AB)} \rho(x, y, z) ds}; \qquad y_G = \frac{\int_{(AB)} y \, \rho(x, y, z) ds}{\int_{(AB)} \rho(x, y, z) ds};$$

$$z_G = \frac{\int_{(AB)} z \, \rho(x, y, z) ds}{\int_{(AB)} \rho(x, y, z) ds}.$$

Dacă firul material este omogen, atunci coordonatele centrului de greutate sunt:

$$x_G = \frac{1}{L} \int_{(AB)} x \, ds; \qquad y_G = \frac{1}{L} \int_{(AB)} y \, ds; \qquad z_G = \frac{1}{L} \int_{(AB)} z \, ds,$$

unde $L = \int_{(AB)} ds$ este lungimea arcului de curbă (AB).

În cazul în care arcul de curbă se află în planul Oxy, centru de greutate G va avea coordonatele:

$$x_G = \frac{\int_{(AB)} x \, \rho(x, y, z) ds}{\int_{(AB)} \rho(x, y, z) ds}; \quad y_G = \frac{\int_{(AB)} y \, \rho(x, y, z) ds}{\int_{(AB)} \rho(x, y, z) ds},$$

iar dacă firul este omogen coordonatele centrului de greutate sunt:

$$x_G = \frac{\int_{(AB)} x \, ds}{L}; \quad y_G = \frac{\int_{(AB)} y \, ds}{L}.$$
 (3.47)

Ultima relație din (3.47) se scrie în forma

$$y_G L = \int_{(AB)} y \, ds$$

sau în forma

$$2\pi y_G L = 2\pi \int_{(AB)} y \, ds. \tag{3.48}$$

Dacă avem în vedere că expresia ariei S a suprafeței de rotație generate prin rotirea arcului

$$(AB): y = y(x), x \in [a, b],$$

în jurul axei Ox este

$$S = 2\pi \int_{a}^{b} y(x)\sqrt{1 + y'^{2}(x)} dx = \int_{(AB)} y ds,$$

putem scrie relația (3.48) în forma

$$2\pi y_G L = S$$
.

În felul acesta rezultă prima teoremă a lui Guldin.

Teorema 3.4.1 Dacă se rotește un arc rectificabil plan (AB) în jurul unei drepte (D) din plan care nu intersectează arcul, aria suprafeței obținute este egală cu produsul dintre lungimea arcului (AB) și lungimea cercului descris prin rotația în jurul dreptei (D) de centrul de greutate al arcului (AB).

Exercițiul 3.4.1 Să se calculeze masa și centrul de greutate ale firului material omogen cu densitatea constantă egală cu unitatea și configurația imaginea curbei

$$C: \begin{cases} x = \sqrt{\pi^2 - t^2} \cos t, \\ y = \sqrt{\pi^2 - t^2} \sin t, \\ z = \sqrt{4\pi^2 - 1} \sqrt{\pi^2 - t^2}, \end{cases} t \in [-\pi, \pi].$$

Soluție. Analizând datele problemei constatăm că integralele curbilinii de primul tip care definesc masa \mathcal{M} și coordonatele centrului de greutate x_G , y_G , z_g există și avem

$$\mathcal{M} = \int_{C} \rho(x, y, z) ds = \int_{-\pi}^{\pi} \sqrt{\left(\varphi'(t)\right)^{2} + \left(\psi'(t)\right)^{2} + \left(\chi'(t)\right)^{2}} dt =$$

$$= \int_{-\pi}^{\pi} \frac{\pi^{2} + t^{2}}{\sqrt{\pi^{2} - t^{2}}} dt;$$

$$\begin{cases} x_{G} = \frac{1}{\mathcal{M}} \int_{C} x \, ds = \frac{1}{\mathcal{M}} \int_{-\pi}^{\pi} \varphi(t) \sqrt{\left(\varphi'(t)\right)^{2} + \left(\psi'(t)\right)^{2} + \left(\chi'(t)\right)^{2}} dt; \\ y_{G} = \frac{1}{\mathcal{M}} \int_{C} y \, ds = \frac{1}{\mathcal{M}} \int_{-\pi}^{\pi} \psi(t) \sqrt{\left(\varphi'(t)\right)^{2} + \left(\psi'(t)\right)^{2} + \left(\chi'(t)\right)^{2}} dt; \\ z_{G} = \frac{1}{\mathcal{M}} \int_{C} z \, ds = \frac{1}{\mathcal{M}} \int_{-\pi}^{\pi} \chi(t) \sqrt{\left(\varphi'(t)\right)^{2} + \left(\psi'(t)\right)^{2} + \left(\chi'(t)\right)^{2}} dt. \end{cases}$$

Înlocuind funcțiile care definesc reprezentarea parametrică a curbei C, găsim

$$\begin{cases} x_G = \frac{1}{\mathcal{M}} \int_{-\pi}^{\pi} (\pi^2 + t^2) \cos t \, dt; \\ y_G = \frac{1}{\mathcal{M}} \int_{-\pi}^{\pi} (\pi^2 + t^2) \sin t \, dt; \\ z_G = \frac{\sqrt{4\pi^2 - 1}}{\mathcal{M}} \int_{-\pi}^{\pi} (\pi^2 + t^2) \, dt. \end{cases}$$

Integrala care dă valoarea masei este una improprie, convergentă în baza criteriului de comparație în α . Mai mult, pentru că funcția de integrat este pară, putem scrie

$$\mathcal{M} = 2 \int_0^{\pi} \frac{\pi^2 + t^2}{\sqrt{\pi^2 - t^2}} dt$$

Această integrală devine o integrală definită dacă se efectuează schimbarea de variabilă $t=\pi\cos\tau$. Obținem

$$\mathcal{M} = 2\pi^2 \int_0^{\pi/2} (1 + \cos^2 \tau) \, d\tau = \frac{3\pi^3}{2}.$$

Cota centrului de greutate se determină simplu, ordonata este zero pentru că funcția de integrat din expresia sa este impară și intervalul de integrare este simetric față de origine, iar abscisa centrului de greutate se determină ușor dacă în integrala care dă expresia acestuia se integrează de două ori prin părți. Se găsește:

$$x_G = -\frac{8}{3\pi^2}$$
; $y_G = 0$; $z_G = \frac{16}{9}\sqrt{4\pi^2 - 1}$,

remarcând totodată că centrul de greutate G se află în planul Oxz.

3.4.2 Momente de inerție ale unui fir material

Definiția 3.4.2 Se numește moment de inerție față de un element geometric al spațiului al unui punct material $M_0(x_0, y_o, z_0)$, de masă m_0 , produsul dintre masa m_0 și pătratul distanței de la punctul M_0 la elementul respectiv.

Elementul geometric poate fi o dreaptă, un plan sau un punct și, de cele mai multe ori, acestea sunt legate de elementele reperului cartezian Oxyz. Vom avea deci momente de inerție axiale când se aleg ca drepte axele de coordonate ale reperului, momente de inerție planare când planele alese sunt planele de coordonate și moment de inerție central când se alege ca punct al spațiului originea reperului.

Definiția 3.4.3 Se numește moment de inerție față de un punct P (o dreaptă (D) sau un plan (Π)) al unui sistem de n puncte materiale

$$M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2), \cdots, M_n(x_n, y_n, z_n),$$

având masele m_1, m_2, \dots, m_n , suma tuturor momentelor de inerție corespunzătoare fiecărui punct față de punctul P (dreapta (D) sau planul (Π)). Din definițiile de mai sus rezultă că momentul de inerție al sistemului de puncte considerat față de originea axelor O(0, 0, 0) este

$$I_O = \sum_{k=1}^{n} (x_k^2 + y_k^2 + z_k^2) m_k.$$

Momentele de inerție al aceluiași sistem de puncte față de axele Ox, Oy, Oz sunt

$$I_{Ox} = \sum_{k=1}^{n} (y_k^2 + z_k^2) m_k$$
, $I_{Oy} = \sum_{k=1}^{n} (z_k^2 + y_k^2) m_k$, $I_{Oz} = \sum_{k=1}^{n} (x_k^2 + y_k^2) m_k$,

în timp ce momentele de inerție ale sistemului de puncte în discuție față de planele de coordonate Oxy, Oyz, Oxz au expresiile

$$I_{Oxy} = \sum_{k=1}^{n} z_k^2 m_k; \quad I_{Oyz} = \sum_{k=1}^{n} x_k^2 m_k; \quad I_{Oxz} = \sum_{k=1}^{n} y_k^2 m_k.$$

Firul material din spațiu, cu configurația (AB) și densitatea materială $\rho(x, y, z)$, poate fi înlocuit cu sistemul de puncte materiale M_k având masele

$$m_k = \rho(M_k)\Delta s_k, \quad k = 1, 2, \cdots, n.$$

Raţionând ca la determinarea masei firului material deducem că momentele de inerție ale firului material față de originea, axele și planele reperului de coordonate Oxyz sunt respectiv

$$I_{O} = \int_{(AB)} (x^2 + y^2 + z^2) \rho(x, y, z) ds,$$

$$I_{Ox} = \int_{(AB)} (y^2 + z^2) \rho(x, y, z) ds, \quad I_{Oy} = \int_{(AB)} (z^2 + x^2) \rho(x, y, z) ds,$$

$$I_{Oz} = \int_{(AB)} (x^2 + y^2) \rho(x, y, z) ds,$$

$$I_{Oxy} = \int_{(AB)} z^2 \rho(x, y, z) ds; \quad I_{Oyz} = \int_{(AB)} x^2 \rho(x, y, z) ds,$$

$$I_{Oxz} = \int_{(AB)} y^2 \rho(x, y, z) ds.$$

Dacă firul material se află în planul Oxy, vom putea vorbi doar de momentele de inerție axiale:

$$I_{Ox} = \int_{(AB)} y^2 \rho(x, y) ds, \quad I_{Oy} = \int_{(AB)} x^2 \rho(x, y) ds$$

și de momentul de inerție central

$$I_O = \int_{(AB)} (x^2 + y^2) \rho(x, y) ds.$$

Definiția 3.4.4 Mărimea infinitezimală $dm = \rho(M)ds$ se numește element de masă filiformă.

Observația 3.4.2 Formulele care dau masa, coordonatele centrului de greutate și momentele de inerție ale unui fir material se pot scrie astfel încât să se pună în evidență elementul de masă filiformă.

Observația 3.4.3 Formulele care dau coordonatele centrului de greutate ale unui fir material în plan și în spațiu se pot scrie întruna singură

$$\mathbf{r}_G = \frac{1}{\mathcal{M}} \int_{(AB)} \mathbf{r} \, dm,$$

unde \mathbf{r}_G este vectorul de poziție al centrului de greutate, iar \mathbf{r} este vectorul de poziție al unui punct care descrie configurația firului material.

Exemplul 3.4.1 Să se calculeze momentul de inerție în raport cu axa Oz a firului material neomogen având configurația curbei

$$C: x = t \cos t, y = t \sin t, z = t, t \in [0, 1]$$

și densitatea în fiecare punct egală cu cota acelui punct.

Soluție. Rezultă că densitatea este $\rho(x,y,z)=z$. Pentru calculul momentului de inerție I_{Oz} trebuie să calculăm integrala curbilinie de primul tip

$$I_{Oz} = \int_C (x^2 + y^2) \, \rho(x, y, z) ds = \int_C (x^2 + y^2) \, z \, ds.$$

Avem $\varphi(t) = t \cos t$, $\psi(t) = t \sin t$ şi $\chi(t) = t$. Calculând elementul de arc găsim $ds = \sqrt{2 + t^2} dt$. Atunci, momentul de inerție cerut este

$$I_{Oz} = \int_0^1 t^3 \sqrt{2 + t^2} \, dt.$$

Făcând substituția $\sqrt{2+t^2}=u$, obținem

$$I_{Oz} = \int_{\sqrt{2}}^{\sqrt{3}} u^2(u^2 - 2) \, du = \left(\frac{u^5}{5} - \frac{2u^3}{3}\right)\Big|_{\sqrt{2}}^{\sqrt{3}} = \frac{4\sqrt{3}}{5} + \frac{8\sqrt{2}}{15}.$$

3.5 Definiția integralei curbilinii de al doilea tip

Pentru o funcție reală f definită şi mărginită pe un interval compact [a,b] s-a introdus integrala Riemann $\int_a^b f(x) dx$. Vom vedea în continuare cum extinderea integralei definite conduce la integrala curbilinie de al doilea tip sau integrala curbilinie în raport cu coordonatele. Compactul [a,b] din integrala definită se va înlocui acum cu o curbă netedă sau netedă pe porțiuni, iar în locul funcției f va apare o funcție vectorială de argument vectorial definită pe un domeniu din planul xOy sau din spațiu care conține curba. Introducerea acestui tip de integrală a fost sugerată de probleme întâlnite în practică cum ar fi lucrul mecanic al unui câmp de forțe de-a lungul unei curbe sau circulația unui fluid pe o curbă.

3.5.1 Lucrul mecanic al unui câmp de forțe

Vom introduce integrala curbilinie de al doilea tip pornind de la o problemă practică, din fizică.

Să considerăm două puncte A și B ale spațiului, de vectori de poziție \mathbf{r}_1 și \mathbf{r}_2 ,

$$\mathbf{r}_1 = x_1 \,\mathbf{i} + y_1 \,\mathbf{j} + z_1 \,\mathbf{k}, \quad \mathbf{r}_2 = x_2 \,\mathbf{i} + y_2 \,\mathbf{j} + z_2 \,\mathbf{k}.$$

Aceste puncte, de coordonate $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$, definesc vectorul \overrightarrow{AB} a cărui expresie analitică în reperul Oxyz este

$$\overrightarrow{AB} = \mathbf{r}_2 - \mathbf{r}_1 = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}.$$

Considerăm de asemeni un vector constant \mathbf{F} de coordonate P, Q, R

$$\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k},$$

care din punct de vedere fizic poate fi interpretat ca o forță care acționează în fiecare punct M(x, y, z) al segmentului de dreaptă AB.

Lucrul mecanic \mathcal{L} efectuat de forța constantă \mathbf{F} care acționează asupra unui punct material pentru a–l deplasa din punctul A în punctul B pe segmentul de dreaptă AB este produsul dintre mărimea forței, lungimea segmentului AB și cosinusul unghiului θ dintre vectorii \mathbf{F} și \overrightarrow{AB}

$$\mathcal{L} = \|\mathbf{F}\| \cdot \|\overrightarrow{AB}\| \cdot \cos \theta.$$

Dar expresia din membrul al doilea este produsul scalar al vectorilor \mathbf{F} și \overrightarrow{AB}

$$\mathcal{L} = \mathbf{F} \cdot (\mathbf{r}_2 - \mathbf{r}_1)$$

și având în vedere că produsul scalar a doi vectori este suma produselor coordonatelor de același nume, rezultă că lucrul mecanic \mathcal{L} este

$$\mathcal{L} = (x_2 - x_1) P + (y_2 - y_1) Q + (z_2 - z_1) R.$$

Să găsim acum expresia lucrului mecanic în cazul general când forța \mathbf{F} este variabilă ca direcție, mărime și sens, iar traiectoria mișcării punctului M(x,y,z) este o curbă.

Considerăm în acest sens curba netedă C de ecuații parametrice

$$C: \begin{cases} x = \varphi(t), \\ y = \psi(t), & t \in [a, b] \\ z = \chi(t), \end{cases}$$
 (3.49)

sau de ecuație vectorial ă

$$\mathbf{r} = \mathbf{r}(t), \quad t \in [a, b], \tag{3.50}$$

unde $\mathbf{r}(t) = \varphi(t)\mathbf{i} + \psi(t)\mathbf{j} + \chi(t)\mathbf{k}$, și o forță

$$\mathbf{F}: D \subset \mathbb{R}^3 \to \mathbb{R}^3, \quad \mathbf{F}(M) = P(M)\mathbf{i} + Q(M)\mathbf{j} + R(M)\mathbf{k}$$
 (3.51)

ale cărei componente P, Q, R sunt funcții reale de variabilele reale x, y, z definite pe un domeniu $D \subset \mathbb{R}^3$ care conține imaginea curbei C și care sunt funcții continue în punctele imaginii curbei C.

Pentru a defini integrala curbilinie de al doilea tip introducem noțiunea de curbă orientată. Fie în acest sens $M(\varphi(t), \psi(t), \chi(t))$, sau $M(\mathbf{r}(t))$, punctul de pe imaginea curbei C corespunzător lui $t \in [a, b]$ prin (3.49), respectiv (3.50). Când t parcurge în mod continuu intervalul [a, b] de la a la b, punctul corespunzător parcurge imaginea I(C) a curbei C întrun sens pe care—l numim sens direct. Dacă valorii t = a îi corespunde punctul A de pe imaginea curbei C, iar lui t = b îi corespunde punctul $B \in I(C)$, atunci sensul direct este de la A către B, adică este sensul imprimat de creșterea parametrului t. Când t parcurge intervalul [a, b] de la b către a, punctul corespunzător M parcurge I(C) în sens indirect sau sens negativ.

Definiția 3.5.1 O curbă împreună cu unul din sensurile de parcurgere al imaginii sale se numește curbă orientată.

Curba C împreună cu sensul direct de parcurgere a lui I(C) se notează cu C^+ . În mod asemănător se definește C^- .

Observația 3.5.1 Dacă ținem seama de faptul că funcția α din definiția echivalenței a două drumuri este continuă și strict crescătoare, rezultă că sensul de parcurgere a lui I(C) nu depinde de alegerea drumului din clasa de echivalență care definește curba (C), ceea ce înseamnă că odată ales un sens de parcurs al curbei (C), trecerea la o altă parametrizare a ei nu modifică sensul de parcurs.

Împărțim arcul de curbă orientată C de extremități A și B în n subarce prin intermediul punctelor

$$A = A_0, A_1, \cdots, A_{n-1}, A_n = B$$
 (3.52)

şi considerăm linia poligonală cu vârfurile în aceste puncte. Putem considera că forța \mathbf{F} din (3.51) are o valoare constantă de-a lungul fiecărui segment orientat $A_{i-1}A_i$, egală cu $\mathbf{F}(M_i)$, unde M_i este un punct oarecare, dar fixat, de pe arcul de curbă $(A_{i-1}A_i)$. Calculăm acum lucrul mecanic corespunzător mişcării punctului material de-a lungul liniei poligonale, considerând că pe fiecare segment de extremități A_{i-1} și A_i , $i=\overline{1,n}$ acționează forța $\mathbf{F}(M_i)$. Dacă $M_i(\xi_i,\eta_i,\zeta_i)$, $A_i(x_i,y_i,z_i)$ și

$$\Delta x_i = x_i - x_{i-1}, \quad \Delta y_i = y_i - y_{i-1}, \quad \Delta z_i = z_i - z_{i-1},$$
 (3.53)

atunci lucrul mecanic corespunzător mișcării punctului material de–a lungul segmentului orientat cu originea în A_{i-1} și extremitatea A_i este

$$\Delta \mathcal{L}_i = \mathbf{F}(M_i) \cdot \overrightarrow{A_{i-1}} \overrightarrow{A_i} = P(M_i) \Delta x_i + Q(M_i) \Delta y_i + R(M_i) \Delta z_i,$$

iar lucrul mecanic total \mathcal{L}_{Δ} corespunzător deplasării de–a lungul liniei poligonale este

$$\mathcal{L}_{\Delta} = \sum_{i=1}^{n} P(M_i) \, \Delta x_i + Q(M_i) \, \Delta y_i + R(M_i) \, \Delta z_i. \tag{3.54}$$

Ultima sumă poate fi luată ca expresie aproximativă a lucrului mecanic efectuat de către câmpul de forțe $\mathbf{F}(M)$ de-a lungul curbei (AB). Pentru a obține valoarea exactă a lucrului mecanic trebuie să trecem la limită în suma (3.54) când lungimea celui mai mare dintre arcele $(A_{i-1}A_i)$ tinde la zero. O astfel de trecere la limită în formă generală conduce la un nou tip de integrală curbilinie.

3.5.2 Definiția integralei curbilinii de al doilea tip

Fie $C^+ = (AB)$ o curbă netedă sau netedă pe porțiuni de reprezentare parametrică (3.49) și câmpul vectorial \mathbf{F} din (3.51). Împărțim curba (AB) în n arce cu ajutorul punctelor de diviziune (3.52) și formăm suma integrală

$$T = \sum_{i=1}^{n} P(M_i) \, \Delta x_i + Q(M_i) \, \Delta y_i + R(M_i) \, \Delta z_i, \tag{3.55}$$

unde $M_i(\xi_i, \eta_i, \zeta_i) \in (A_{i-1}A_i)$, iar $\Delta x_i, \Delta y_i$ şi Δz_i sunt date în (3.53).

Definiția 3.5.2 Dacă sumele integrale (3.55) admit o limită finită I când cea mai mare lungime a arcelor $(A_{i-1}A_i)$ tinde la zero, funcția vectorială $\mathbf{F} = (P,Q,R)$ se numește integrabilă în raport cu coordonatele pe curba C = (AB), iar limita I se numește integrala curbilinie de tipul al doilea sau integrala curbilinie în raport cu coordonatele a funcției vectoriale \mathbf{F} și se notează

$$I = \int_{(AB)} P(M)dx + Q(M)dy + R(M)dz$$
 (3.56)

sau, folosind coordonatele punctului curent M,

$$I = \int_{(AB)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.$$
 (3.57)

De multe ori integrala curbilinie de al doilea tip se notează fără a mai menționa coordonatele funcțiilor componente ale câmpului vectorial \mathbf{F} , deci

$$I = \int_{(AB)} P \, dx + Q dy + R dz.$$

Având în vedere că expresia de sub semnul integrală din (3.56) este produsul scalar dintre câmpul vectorial (3.51) și vectorul $d\mathbf{r} = dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k}$, rezultă că integrala curbilinie de al doilea tip a funcției vectoriale $\mathbf{F}(M)$ de–a lungul curbei orientate direct $C^+ = (AB)$ poate fi notată și în forma

$$I = \int_{C^+} \mathbf{F}(M) \cdot d\mathbf{r}.$$

Observația 3.5.2 Integrala curbilinie de al doilea tip a funcției vectoriale de trei variabile reale $\mathbf{F} = (P, Q, R)$ de-a lungul curbei orientate C^+ este suma integralelor curbilinii de tipul al doilea

$$\int_{C^+} P(M)dx, \quad \int_{C^+} Q(M)dy, \quad \int_{C^+} R(M)dz,$$

corespunzătoare câmpurilor vectoriale

care sunt proiecțiile funcției vectorială ${f F}$ pe respectiv versorii ${f i}, {f j}$ și ${f k}$ ai reperului Oxyz.

Observația 3.5.3 Integrala curbilinie de al doilea tip nu trebuie confundată cu integrala unui câmp vectorial în raport cu una din variabilele sale pe un interval compact din IR situat pe axa variabilei.

Dacă domeniul D de definiție a funcției $\mathbf{F} = (P, Q, R)$ conține intervalul $[a, b] \subset Ox$, atunci

$$\int_a^b \mathbf{F}(x,y,z)dx = \mathbf{i} \int_a^b P(x,y,z)dx + \mathbf{j} \int_a^b Q(x,y,z)dx + \mathbf{k} \int_a^b R(x,y,z)dx.$$

Integrale
le din membrul doi sunt integrale proprii depinzând de doi parametri, i
ar rezultatul integrării este o funcție vectorială ce depinde de variabile
le y și z.

3.6 Legătura dintre cele două tipuri de integrale curbilinii

Integrala curbilinie de al doilea tip se poate reduce la integrala curbilinie de primul tip, legătura dintre ele fiind descrisă în teorema de mai jos.

Teorema 3.6.1 Fie $C^+ = (AB)$ curba netedă de ecuații parametrice (3.49) și câmpul vectorial (3.51) definit și mărginit pe un domeniu $D \subset \mathbb{R}^3$ care include curba C și continuu în punctele curbei. Atunci, avem egalitatea

$$\int_{C^{+}} \mathbf{F}(M) \cdot d\mathbf{r} = \int_{C} \mathbf{F}(M) \cdot \boldsymbol{\tau}(M) ds, \qquad (3.58)$$

unde $\tau(M)$ este versorul tangentei la curba orientată C^+ în punctul curent M(x,y,z) al curbei, cu condiția ca integralele curbilinii care apar să existe. Integrala curbilinie din primul membru al egalității (3.58) există dacă și numai dacă există integrala curbilinie de primul tip din membrul doi.

Demonstrație. Să demonstrăm mai întâi egalitatea

$$\int_{C^{+}} P(M)dx = \int_{C} P(M)\cos\alpha(M)ds, \qquad (3.59)$$

unde $\cos \alpha(M)$ este mărimea algebrică a proiecției versorului $\boldsymbol{\tau}(M)$ pe direcția versorului \mathbf{i} al axei Ox, adica $\cos \alpha(M) = \boldsymbol{\tau}(M) \cdot \mathbf{i}$. Integrala din primul membru al egalității (3.59) este, prin definiție, limita sumelor integrale de forma

$$T = \sum_{i=1}^{n} P(M_i) \, \Delta x_i. \tag{3.60}$$

Să considerăm că originea de arc pe curba C^+ coincide cu extremitatea A corespunzătoare valorii t=a și să comparăm suma integrală (3.60) cu suma integrală

$$T^* = \sum_{i=1}^n P(M_i) \cos \alpha(M_i) \Delta s_i,$$

unde s_i este lungimea arcului (AA_i) , $\Delta s_i = s_i - s_{i-1}$, iar $\alpha(M_i)$ este unghiul pe care îl face cu axa Ox tangenta în punctul $M_i \in (A_{i-1}A_i)$ la curba C^+ . Să considerăm că parametrizarea curbei (AB) este cea naturală

$$\begin{cases} x = x(s), \\ y = y(s), \quad t \in [0, L], \\ z = z(s), \end{cases}$$

unde L este lungimea arcului (AB). Versorul $\tau(M)$ este legat de parametrul natural s al curbei C^+ , unde s este lungimea arcului (AM), prin relația

$$\boldsymbol{\tau}(M) = \frac{d\mathbf{r}}{ds}(M),$$

unde vectorul \mathbf{r} care apare în exprimarea lui $\boldsymbol{\tau}(M)$ este vectorul de poziție al punctului curent M(x,y,z) al curbei

$$\mathbf{r} = \mathbf{r}(s) = x(s)\mathbf{i} + y(s)\mathbf{j} + z(s)\mathbf{k}.$$

Pe de altă parte, expresia analitică a oricărui versor se poate scrie în forma

$$\tau(M) = \cos \alpha(M) \mathbf{i} + \cos \beta(M) \mathbf{j} + \cos \gamma(M) \mathbf{k},$$

unde $\beta(M)$ şi $\gamma(M)$ sunt unghiurile dintre versorul tangentei $\tau(M)$ şi axele Oy, respectiv Oz. Atunci,

$$\Delta x_i = \int_{s_{i-1}}^{s_i} \frac{dx}{ds}(M)ds = \int_{s_{i-1}}^{s_i} \cos \alpha(M) \, ds. \tag{3.61}$$

Aplicând teorema valorii medii în integrala Riemann (3.61), găsim

$$\Delta x_i = \cos \alpha(M_i^*) \, \Delta s_i, \quad M_i^* \in (A_{i-1}A_i).$$

În aceste condiții, diferența dintre sumele T și T^* este

$$T - T^* = \sum_{i=1}^{n} P(M_i) [\cos \alpha(M_i^*) - \cos \alpha(M_i)] \Delta s_i.$$
 (3.62)

Luând valoarea absolută în ambii membri ai lui (3.62) şi folosind proprietățile funcției modul, obținem

$$\left|T - T^*\right| \le \sum_{i=1}^n \left|P(M_i)\right| \cdot \left|\cos\alpha(M_i^*) - \cos\alpha(M_i)\right| \Delta s_i. \tag{3.63}$$

Funcția $\cos \alpha(M)$ este continuă deoarece curba C^+ este netedă. Ca mulțime de puncte, curba C^+ este o mulțime mărginită și închisă, deci este o mulțime compactă în \mathbb{R}^3 . Cum o funcție continuă pe o mulțime compactă este uniform continuă, deducem că funcția $\cos \alpha(M)$ este uniform continuă și prin urmare, dat un $\varepsilon > 0$, inegalitatea

$$\left|\cos\alpha(M_i^*) - \cos\alpha(M_i)\right| < \frac{\varepsilon}{L\sup|P|}$$
 (3.64)

este satisfăcută pentru orice partiție a curbei $C^+ = (AB)$ a cărei normă (cel mai mare dintre numerele Δs_i) este destul de mică. Din (3.63) și (3.64) rezultă

$$\left|T - T^*\right| < \frac{\varepsilon}{L \sup |P|} \sup |P| \sum_{i=1}^n \Delta s_i = \varepsilon.$$
 (3.65)

Inegalitatea (3.65) demonstrează că sumele integrale T^* şi T au aceeaşi limită când norma diviziunii $\Delta = \{A_0 = A, A_1, \dots, A_{n-1}, A_n = B\}$ tinde la zero și ca urmare egalitatea (3.59) este demonstrată.

În mod asemănător se demonstrează egalitățile

$$\int_{C^{+}} Q(M)dy = \int_{C} Q(M)\cos\beta \, ds,$$

$$\int_{C^{+}} R(M)dy = \int_{C} R(M)\cos\gamma \, ds.$$
(3.66)

Sumând membru cu membru egalitățile (3.59) și (3.66) se obține (3.58) și teorema este demonstrată.

Observația 3.6.1 Când curba $C^+ = (AB)$ este în planul xOy legătura dintre cele două tipuri de integrale curbilinii este

$$\int_{C^{+}} P(x,y)dx + Q(x,y)dy = \int_{C} (P(x,y)\cos\alpha + Q(x,y)\sin\alpha)ds,$$

unde $\alpha = \alpha(M)$ este unghiul dintre direcția pozitivă a axei Ox și tangenta la curba (AB) în punctul M al ei.

3.7 Formula de calcul a integralei curbilinii de al doilea tip

Teorema care dă formula de calcul a integralei curbilinii de primul tip şi cea care dă legătura dintre integralele curbilinii de primul şi cel de al doilea tip implică următorul rezultat pe care, din motive de simplitate a scrierii formulelor, îl vom formula pentru cazul în care curba se află în planul Oxy.

Teorema 3.7.1 Fie $C^+ = (AB)$ o curbă netedă de ecuații parametrice

$$x = \varphi(t), \quad y = \psi(t), \quad t \in [a, b]$$

și $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ o funcție vectorială de două variabile reale definită întrun domeniu plan D care conține arcul C. Atunci, avem următoarea relație

$$\int_{C^{+}} P dx + Q dy =$$

$$= \int_{a}^{b} \left[P(\varphi(t), \psi(t)) \varphi'(t) + Q(\varphi(t), \psi(t)) \psi'(t) \right] dt,$$
(3.67)

dacă integralele care intră în componența ei există. Mai mult, integrala din membrul stâng a lui (3.67) există dacă integrala definită din membrul al doilea există.

Teorema de mai sus rămâne adevărată dacă arcul de curbă C^+ este neted pe porțiuni. Ea poate fi ușor transpusă la cazul în care curba (AB) este în spațiu și este reprezentată paramatric de ecuațiile (3.49) iar câmpul vectorial \mathbf{F} este (3.51). Avem

$$\int_{C^{+}} P dx + Q dy + R dz =$$

$$= \int_{a}^{b} \left[P(\varphi(t), \psi(t), \chi(t)) \varphi'(t) + Q(\varphi(t), \psi(t), \chi(t)) \psi'(t) + + R(\varphi(t), \psi(t), \chi(t)) \chi'(t) \right] dt.$$
(3.68)

Formulele de calcul (3.67) și (3.68) se pot scrie vectorial în forma

$$\int_{C^+} \mathbf{F}(M) \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt}(t) dt = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

cu mențiunea că în cazul integralei curbilinii în planul xOy, mărimile care intervin au expresiile

$$\begin{cases} \mathbf{F}(M) &= P(M)\mathbf{i} + Q(M)\mathbf{j}, \\ d\mathbf{r} &= dx\mathbf{i} + dy\mathbf{j}, \\ \mathbf{r}(t) &= \varphi(t)\mathbf{i} + \psi(t)\mathbf{j}, \\ \frac{d\mathbf{r}}{dt}(t) &= \mathbf{r}'(t) = \varphi'(t)\mathbf{i} + \psi'(t)\mathbf{j}, \end{cases}$$

iar în cazul integralei curbilinii în spațiu, aceleași mărimi au semnificațiile

$$\begin{cases} \mathbf{F}(M) &= P(M)\,\mathbf{i} + Q(M)\,\mathbf{j} + R(M)\,\mathbf{k}, \\ d\mathbf{r} &= dx\,\mathbf{i} + dy\,\mathbf{j} + dz\,\mathbf{k}, \\ \mathbf{r}(t) &= \varphi(t)\mathbf{i} + \psi(t)\mathbf{j} + \chi(t)\,\mathbf{k}, \\ \frac{d\mathbf{r}}{dt}(t) &= \mathbf{r}'(t) = \varphi'(t)\,\mathbf{i} + \psi'(t)\,\mathbf{j} + \chi'(t)\,\mathbf{k}. \end{cases}$$

Să considerăm unele cazuri particulare importante ale formulei de calcul a integralei curbilinii de tipul al doilea în plan.

Dacă curba $C^+ = (AB)$ din planul xOy este determinată de ecuația

$$y = y(x), \ x \in [a, b]$$

formula (3.68) devine

$$\int_{C^+} P dx + Q dy = \int_a^b [P(x, y(x)) + Q(x, y(x)) y'(x)] dx.$$

În particular, dacă (AB) este un segment de dreaptă paralelă cu axa Ox, deci de ecuație $y = y_0, x \in [a, b]$, fapt ce implică y'(x) = 0, atunci formula de calcul a integralei curbilinii de tipul al doilea este

$$\int_{(AB)} Pdx + Qdy = \int_a^b P(x, y_0) dx.$$

În mod similar, pentru o curbă plană determinată de ecuația

$$x=x(y),\ y\in [c,\,d],$$

formula corespunzătoare de calcul a integralei curbilinii este

$$\int_{C^{+}} Pdx + Qdy = \int_{c}^{d} [P(x(y), y) x'(y) + Q(x(y), y)] dy.$$
 (3.69)

Dacă (AB) este un segment de dreaptă paralel cu axa Oy, descris de ecuația

$$x = x_0, \ y \in [c, d],$$

avem x'(y) = 0 și formula de calcul (3.69) devine

$$\int_{C^+} Pdx + Qdy = \int_c^d Q(x_0, y)dy.$$

Exercițiul 3.7.1 Să se calculeze integrala curbilinie de al doilea tip în plan

$$I = \int_C xy dx - y^2 dy$$
, unde $C: x = t^2, y = t^3, t \in [0, 1].$

Soluție. Avem $\varphi(t)=t^2, \ \psi(t)=t^3 \ (0 \le t \le 1)$. Funcțiile φ și ψ sunt derivabile și cu derivată continuă și $\varphi'(t)=2t, \ \psi'(t)=3t^2$. Funcțiile P și Q sunt date de P(x,y)=xy și $Q(x,y)=-y^2$, deci sunt continue în tot planul. Putem deci aplica formula de calcul (3.67). Avem:

$$P(\varphi(t), \psi(t)) = t^5, \ Q(\varphi(t), \psi(t)) = -t^6;$$

$$I = \int_0^1 (2t^6 - 3t^8) dt = \left(\frac{2}{7}t^7 - \frac{1}{3}t^9\right)\Big|_0^1 = -\frac{1}{21}.$$

Exercițiul 3.7.2 Să se calculeze integrala curbilinie de al doilea tip în spațiu

$$I = \int_C z\sqrt{a^2 - x^2}dx + xzdy + (x^2 + y^2)dz$$
, unde

$$C: x = a \cos t, y = a \sin t, z = bt, t \in [0, \pi/2], a > 0, b > 0.$$

Soluție. Funcțiile care definesc reprezentarea parametrică a curbei sunt derivabile și admit derivată continuă pe intervalul de variație al parametrului t. Funcția P este definită și continuă pe porțiunea spațiului în care abscisele punctelor satisfac dubla inegalitate $-a \le x \le a$. Funcțiile Q și R sunt definite și continue pe întreg spațiul. Deoarece avem $-a \le \varphi(t) \le a$ pentru $t \in [0, \pi/2]$, rezultă că imaginea curbei C este conținută în domeniul comun de definiție al funcțiilor P, Q și R, deci integrala dată există. Aplicând formula de calcul (3.68), obținem

$$I = a^2 b \int_0^{\pi/2} (t \cos 2t + 1) dt = \frac{a^2 b}{2} (\pi - 1).$$

3.8 Proprietăți ale integralelor curbilinii de al doilea tip

Din modul cum a fost definită integrala curbilinie de al doilea tip

$$\int_{C^{+}} \mathbf{F}(M) \cdot d\mathbf{r} \tag{3.70}$$

deducem că un factor constant poate fi scos în afara semnului de integrală și că integrala unei sume de funcții vectoriale este suma integralelor funcțiilor termeni. Ambele proprietăți pot fi exprimate prin egalitatea

$$\int_{C^{+}} \left(\lambda \mathbf{F}(M) + \mu \mathbf{G}(M) \right) \cdot d\mathbf{r} = \lambda \int_{C^{+}} \mathbf{F}(M) \cdot d\mathbf{r} + \mu \int_{C^{+}} \mathbf{G}(M) \cdot d\mathbf{r}, \quad (3.71)$$

unde λ şi μ sunt constante reale arbitrare, iar \mathbf{F} şi \mathbf{G} sunt câmpuri vectoriale integrabile pe curba C^+ în raport cu coordonatele.

O altă proprietate importantă a integralei curbilinii de al doilea tip (3.70) este dependența sa de orientarea curbei, fapt care se exprimă prin egalitatea

$$\int_{C^{+}} \mathbf{F}(M) \cdot d\mathbf{r} = -\int_{C^{-}} \mathbf{F}(M) \cdot d\mathbf{r}$$
(3.72)

a cărei demonstrație este simplă. Într-adevăr, dacă schimbăm direcția în care curba $C^+ = (AB)$ este parcursă trebuie să înlocuim cantitățile Δx_i și Δy_i , care intră în suma integrală (3.55), prin $-\Delta x_i$ și respectiv $-\Delta y_i$. Această înlocuire schimbă semnul sumelor integrale (3.55) și, în consecință, semnul limitei lor ceea ce conduce la (3.72).

Dependență de orientarea curbei a integralei curbilinii de al doilea tip este în concordanță cu interpretarea fizică a acesteia care reprezintă lucrul mecanic al unui câmp de forțe de-a lungul unei curbe.

Întradevăr, lucrul mecanic efectuat de câmpul de forțe schimbă de semn dacă sensul de parcurs al curbei se schimbă.

3.9 Integrale curbilinii de tipul al doilea pe curbe închise

Pe o curbă simplă închisă C este esențial să specificăm sensul de parcurs al curbei deoarece, după cum s–a văzut, valoarea integralei curbilinii de al doilea

tip depinde de sensul de parcurs al curbei. Extremitățile unei asemenea curbe fiind identice, în general nu se poate desprinde din context care este sensul de parcurs al curbei. De regulă, sensul pozitiv de parcurs al unei curbe plane închise este sensul invers acelor de ceasornic, iar pentru integrala curbilinie de al doilea tip pe o astfel de curbă se folosește un simbol special și anume cel de integrală prevăzut cu un cerc la mijlocul ei, cerc pe care se figurează o săgeată reprezentând sensul de parcurs al curbei. Când nu se figurează săgeata pe cercul plasat pe semnul integrală, deci când aceasta se notează cu simbolul \oint , vom înțelege că integrarea se efectuează pe o curbă închisă parcursă în sens pozitiv.

3.10 Independența de drum a integralei curbilinii de al doilea tip

3.10.1 Formularea problemei

Fie D domeniul de definiție al câmpului vectorial \mathbf{F} și (AB) un arc de curbă, neted pe porțiuni, inclus în întregime în mulțimea D. Când se studiază integrala curbilinie de al doilea tip în plan sau în spațiu

$$I = \int_{(AB)} \mathbf{F}(M) \cdot d\mathbf{r} \tag{3.73}$$

este posibil ca în anumite cazuri valoarea sa fie independentă de forma drumului de integrare și să fie determinată doar de extremitățile A și B ale drumului. Cu alte cuvinte numărul real I exprimat prin (3.73) este același pentru toate căile de integrare care au originea în A și extremitatea în punctul B.

Definiția 3.10.1 Integrala curbilinie în raport cu coordonatele a câmpului vectorial **F** se numește **independentă de drum** în domeniul D dacă are loc egalitatea

$$\int_{\gamma_1} \mathbf{F}(M) \cdot d\mathbf{r} = \int_{\gamma_2} \mathbf{F}(M) \cdot d\mathbf{r}, \qquad (3.74)$$

oricare ar fi curbele netede pe porțiuni γ_1 și γ_2 , incluse în D, având origine comună în A și extremitate comună în B, punctele A și B fiind alese arbitrar în domeniul D.

Ne propunem să determinăm condiții care să implice independența de drum pe domeniul D a unei integrale curbilinii de tipul al doilea sub forma generală (3.73). Vom vedea că această problemă este legată de determinarea unei funcții U, diferențiabile pe domeniul D, a cărei diferențială să fie egală cu expresia diferențială de sub semnul integralei din (3.73), adică

$$dU(x,y) = P(x,y)dx + Q(x,y)dy. (3.75)$$

Pentru simplitatea scrierii formulelor şi relațiilor matematice vom considera cazul plan, transpunerea rezultatelor pentru cazul spațial fiind simplă. În acest caz funcția vectorială \mathbf{F} are două componente P şi Q, iar integrala din (3.73) se scrie

$$\int_{(AB)} \mathbf{F}(M) \cdot d\mathbf{r} = \int_{AB} P(x, y) dx + Q(x, y) dy$$
 (3.76)

sau, mai simplu,

$$\int_{(AB)} \mathbf{F}(M) \cdot d\mathbf{r} = \int_{AB} P dx + Q dy. \tag{3.77}$$

3.10.2 Cazul unui domeniu plan simplu conex

Definiția 3.10.2 Un domeniu plan D se numește **simplu conex** dacă orice curbă simplă închisă cu imaginea inclusă în interiorul lui D este frontiera unei submulțimi incluse în întregime în D.

Teorema 3.10.1 Dacă funcțiile P și Q și derivatele lor parțiale $\frac{\partial P}{\partial y}$ și $\frac{\partial Q}{\partial x}$ sunt continue pe domeniul simplu conex $D \subset \mathbb{R}^2$, atunci următoarele patru condiții sunt echivalente:

1. integrala curbilinie de tipul al doilea din câmpul vectorial $\mathbf{F} = (P, Q)$ de-a lungul oricărei curbe închise (C), netedă sau netedă pe porțiuni, inclusă în D este egală cu zero

$$\int_C Pdx + Qdy = 0;$$

2. integrala curbilinie de tipul al doilea (3.76) este independentă de alegerea căii de integrare de extremități A și B, puncte fixate dar alese arbitrar în D;

161

3. expresia diferențială

$$\omega = Pdx + Qdy \tag{3.78}$$

este diferențiala totală (exactă) a unei funcții reale de două variabile reale U definită și diferențiabilă pe D, adică avem (3.75);

4. relația

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y) \tag{3.79}$$

are loc în orice punct $M(x,y) \in D$.

Demonstrație. Vom arăta că prima condiție implică pe cea de a doua, a doua condiție implică cea de a treia condiție, a treia condiție implică condiția a patra și, la sfârșit, condiția a patra implică prima condiție. Atunci, echivalența celor patru condiții este stabilită.

Arătăm întâi că $\mathbf{1} \Longrightarrow \mathbf{2}$. Pentru aceasta considerăm două drumuri de integrare situate în domeniul D cu origine comună în A, punct fixat dar arbitrar din D, şi extremitate comună în punctul B, ales de asemenea arbitrar în D. Primul drum îl vom nota cu (ACB), iar cel de al doilea va fi notat cu (AEB). Juxtapunerea acestor drumuri este un drum închis pe care îl vom considera parcurs în sensul de la A către B prin C și apoi din B către A prin E și îl vom nota cu (ACBEA). Conform ipotezei, integrala curbilinie luată pe acest contur este egală cu zero și deci

$$\int_{ACBEA} Pdx + Qdy = 0.$$

Insă, folosind proprietățile integralei curbilinii de al doilea tip, avem

$$\int_{ACBEA} Pdx + Qdy = \int_{ACB} Pdx + Qdy + \int_{BEA} Pdx + Qdy =$$

$$= \int_{ACB} Pdx + Qdy - \int_{AEB} Pdx + Qdy$$

și, în consecință,

$$\int_{ACB} Pdx + Qdy = \int_{AEB} Pdx + Qdy,$$

ceea ce arată că implicația $1 \implies 2$ este demonstrată. Implicația rămâne adevărată și atunci când cele două căi de integrare au puncte în comun.

Să demonstrăm că $\mathbf{2} \Longrightarrow \mathbf{3}$. Presupunem că integrala curbilinie (3.76) nu depinde de calea de integrare situată în domeniul plan simplu conex D, ci doar de extremitățile A și B ale acesteia. Atunci, dacă fixăm punctul A, integrala poate fi considerată o funcție de coordonatele x și y ale punctului variabil B, aflat oriunde în domeniul D. Dacă notăm această funcție cu U, atunci valoarea sa U(x,y) în punctul B(x,y) este

$$U(x,y) = \int_{AB} Pdx + Qdy. \tag{3.80}$$

Să arătăm că funcția $U:D\to I\!\!R$ ale cărei valori se determină după legea (3.80) este diferențiabilă și că are loc (3.75). Pentru a demonstra aceasta este suficient să arătăm că funcția U din (3.80) este derivabilă parțial în D, iar valorile derivatelor parțiale în punctul B

$$\frac{\partial U}{\partial x}(x,y), \quad \frac{\partial U}{\partial y}(x,y)$$

sunt egale respectiv cu P(x,y) şi Q(x,y). Pentru derivabilitatea parţială a funcției U trebuie să cercetăm existența limitelor:

$$\lim_{t \to 0} \frac{U(x+t, y) - U(x, y)}{t}; \quad \lim_{t \to 0} \frac{U(x, y+t) - U(x, y)}{t}.$$
 (3.81)

Cantitatea de la numărătorul primei limite este egală cu integrala expresiei diferențiale Pdx+Qdy de-a lungul unui drum de integrare care leagă punctele B(x,y) și $B_1(x+t,y)$ drum care este paralel cu axa Ox. Folosind formulele de calcul ale integralelor curbilinii de al doilea tip în cazul în care calea de integrare este paralelă cu una din axele de coordonate, găsim:

$$\begin{cases}
U(x+t,y) - U(x,y) = \int_{x}^{x+t} P(\tau, y) d\tau; \\
U(x,y+t) - U(x,y) = \int_{y}^{y+t} Q(x, \tau) d\tau.
\end{cases} (3.82)$$

Funcțiile P și Q fiind continue, ele sunt în același timp parțial continue și ca atare integranții din (3.82) sunt funcții continue. Rezultă că integralelor din membrul doi a lui (3.82) li se poate aplica teorema valorii medii. Obținem

$$\begin{cases}
U(x+t,y) - U(x,y) = t P(x+\theta_1 t, y); \\
U(x,y+t) - U(x,y) = t Q(x, y+\theta_2 t).
\end{cases}$$
(3.83)

Din (3.83) și continuitatea funcțiilor P și Q deducem că limitele din (3.81) există, ceea ce atrage că funcția U este derivabilă parțial pe D și derivatele parțiale sunt date de

$$\frac{\partial U}{\partial x}(x,y) = P(x,y), \quad \frac{\partial U}{\partial y}(x,y) = Q(x,y).$$
 (3.84)

În baza faptului că funcțiile P și Q sunt continue deducem că derivatele parțiale de ordinul întâi ale funcției U sunt continue pe D. Ori, o funcție care posedă derivate parțiale continue pe domeniul D este diferențiabilă pe D. Având în vedere (3.84) rezultă că diferențiala funcției U în punctul B(x,y) este dată de (3.75).

Urmează să arătăm că $\mathbf{3} \Longrightarrow \mathbf{4}$. Dacă expresia diferențială (3.78) este diferențiala totală exactă a funcției U în punctul B(x,y), atunci din unicitatea expresiei diferențialei unei funcții avem (3.84). Din ipotezele acestei părți a teoremei avem că există derivatele parțiale mixte secunde ale funcției U în punctul B(x,y) și că acestea sunt continue pe domeniul D deoarece continue pe D sunt derivatele parțiale ale funcției Q în raport cu x și ale funcției P în raport cu y. Conform criteriului lui Schwarz, derivatele parțiale mixte de ordinul al doilea ale funcției U sunt egale oriunde în D ceea ce atrage că avem (3.79) în orice punct al domeniului D.

Rămâne să mai demonstrăm că $4 \implies 1$. Presupunem că egalitatea (3.79) este satisfăcută peste tot în domeniul D şi fie C o curbă închisă, arbitrară, netedă sau netedă pe porțiuni, inclusă în domeniul D. Domeniul D fiind unul conex, submulțimea D_1 a lui \mathbb{R}^2 care are ca frontieră curba închisă C este în același timp submulțime a domeniului D, iar pe această submulțime derivatele față de y a lui P și față de x a lui Q sunt definite și continue. Prin urmare, în baza formulei integrale a lui Green, care o vom demonstra în capitolul următor, integrala curbilinie

$$\int_{C} P(x,y)dx + Q(x,y)dy \tag{3.85}$$

poate fi transformată întro integrală dublă prin relația

$$\int_{C} P(x,y)dx + Q(x,y)dy = \int_{D_{1}} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dxdy.$$
 (3.86)

În baza ipotezei, exprimată prin egalitatea (3.79), integrala din membrul drept a relației (3.86) este egală cu zero. În consecință, integrala curbilinie

(3.85) este egală cu zero pe orice curbă închisă C, netedă sau netedă pe porțiuni, situată în întregime în domeniul D. Cu aceasta teorema enunțată este complet demonstrată.

3.10.3 Cazul unui domeniu în spațiu simplu conex

Rezultatele demonstrate în Teorema 3.10.1 pot fi transpuse şi în cazul spațial. Pentru aceasta ar trebui mai întâi să definim noțiunea de domeniu tridimensional simplu conex.

Definiția 3.10.3 Un domeniu $D \subset \mathbb{R}^3$ se numește **simplu conex** dacă orice suprafață S închisă, netedă sau netedă pe porțiuni, cu imaginea inclusă în interiorul lui D este frontiera unei submulțimi inclusă în întregime în D.

Dăm mai jos enunțul teoremei similare care transpune în spațiu rezultatele demonstrate în Teorema 3.10.1.

Teorema 3.10.2 Dacă funcțiile P, Q și R și derivatele lor parțiale:

$$\frac{\partial R}{\partial y}$$
; $\frac{\partial Q}{\partial z}$; $\frac{\partial P}{\partial z}$; $\frac{\partial R}{\partial x}$; $\frac{\partial Q}{\partial x}$; $\frac{\partial P}{\partial y}$

sunt definite $\dot{s}i$ continue pe domeniul tridimensional simplu conex D, atunci următoarele patru condiții sunt echivalente:

1. integrala curbilinie de tipul al doilea din câmpul $\mathbf{F} = (P, Q, R)$ de-a lungul oricărei curbe închise (C), netede sau netede pe porțiuni, inclusă în D, este egală cu zero

$$\int_C Pdx + Qdy + Rdz = 0.$$

- 2. integrala curbilinie de tipul al doilea din câmpul vectorial $\mathbf{F} = (P, Q, R)$ este independentă de alegerea căii de integrare de extremități A și B, puncte fixate dar alese arbitrar în D.
- 3. expresia diferențială

$$\omega = P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz$$

este diferențiala totală (exactă) a unei funcții reale de trei variabile reale U definită și diferențiabilă pe D, adică avem

$$dU(x,y,z) = P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz.$$

4. relațiile

$$\begin{cases}
\frac{\partial R}{\partial y}(x, y, z) &= \frac{\partial Q}{\partial z}(x, y, z), \\
\frac{\partial P}{\partial z}(x, y, z) &= \frac{\partial R}{\partial x}(x, y, z), \\
\frac{\partial Q}{\partial x}(x, y, z) &= \frac{\partial P}{\partial y}(x, y, z)
\end{cases} (3.87)$$

au loc în orice punct $M(x, y, z) \in D$.

3.10.4 Operatorul rotor

Teorema 3.10.2 sugerează folosirea operatorului diferențial ∇ a lui Hamilton cu ajutorul căruia unele din concluziile teoremei se vor scrie mai simplu. Deși acest operator a fost introdus anterior, preferăm să reamintim și să prezentăm unele chestiuni care au legătură cu subiectul tratat și anume cu independența de drum a integralelor curbilinii.

Definiția 3.10.4 Se numește rotorul câmpului vectorial diferențiabil

$$\mathbf{F} = (P, Q, R) = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k} \in C^{1}(D),$$

vectorul notat cu simbolul rot ${\bf F}$ a cărui expresie analitică în baza $\{{\bf i},\ {\bf j},\ {\bf k}\}$ este

$$rot \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}.$$
 (3.88)

Observația 3.10.1 Expresia rotorului câmpului vectorial F poate fi scrisă convenabil ca determinantul simbolic

$$rot \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
 (3.89)

unde, în formula de calcul a determinantului după elementele primei linii, înmulțirea uneia din operațiile $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ și $\frac{\partial}{\partial z}$ cu o funcție înseamnă derivata parțială a acelei funcții în raport cu variabila corespunzătoare: de exemplu, $\frac{\partial}{\partial x}Q$ înseamnă derivata în raport cu x a funcției Q, adică $\frac{\partial Q}{\partial x}$.

Observația 3.10.2 Având în vedere că expresia analitică a operatorului vectorial ∇ este

 $\mathbf{\nabla} = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}$

şi ţinând cont de expresia produsului vectorial a doi vectori, deducem că rotorul unui câmp vectorial \mathbf{F} este produsul vectorial al operatorului ∇ cu vectorul \mathbf{F} . Prin urmare relațiile (3.88) și (3.89) se scriu în forma

rot
$$\mathbf{F} = \mathbf{\nabla} \times \mathbf{F}$$
.

Definiția 3.10.5 Câmpul vectorial $\mathbf{F} \in C^1(D)$ se numește irotațional dacă egalitatea $\nabla \times \mathbf{F} = \mathbf{0}$ are loc în toate punctele lui D.

Observația 3.10.3 Câmpul vectorial diferențiabil $\mathbf{F} = (P, Q, R)$ este irotațional pe domeniul tridimensional D dacă și numai dacă au loc relațiile (3.87).

Folosind rezultatele de mai sus, o parte a Teoremei 3.10.2 se poate reformula.

Teorema 3.10.3 Integrala curbilinie de tipul al doilea a câmpului vectorial

$$\mathbf{F} = (P, Q, R) \in C^1(D)$$

este independentă de drumul de integrare situat în domeniul simplu conex D dacă și numai dacă câmpul vectorial **F** este irotațional.

Aşadar, după ce verificăm dacă domeniul pe care este definit câmpul diferențiabil \mathbf{F} este simplu conex, independența de drum pe D a integralei curbilinii în raport cu coordonatele din câmpul vectorial \mathbf{F} este funcție de rotorul acestui câmp. Dacă \mathbf{F} este câmp irotațional și D este domeniu simplu conex, atunci integrala curbilinie (3.73) este independentă de drum pe D.

3.11 Primitiva unei expresii diferențiale

În demonstrația Teoremei 3.10.1 am rezolvat implicit următoarea problemă: dată expresia diferențială (3.78) să se găsească o funcție reală diferențiabilă U, de două variabile reale, a cărui diferențială totală să coincidă cu expresia (3.78), adică să avem (3.75). Odată găsită o astfel de funcție U, oricare alta cu aceeași proprietate diferă de U printr—o constantă.

Definiția 3.11.1 Fie $\mathbf{F} = (P, Q, R)$ un câmp vectorial definit pe domeniul $D \subset \mathbb{R}^3$ pentru care există rotorul $\nabla \times \mathbf{F}$ care să fie funcție continuă. Se numește **primitiva** expresiei diferențiale

$$\omega = P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz$$

funcția reală de trei variabile reale U definită și diferențiabilă pe D care are proprietatea

$$dU(x, y, z) = \omega.$$

Observația 3.11.1 Dacă domeniul tridimensional D este simplu conex și câmpul vectorial \mathbf{F} este irotațional, integrala curbilinie din expresia diferențială ω este independentă de drum pe D, iar funcția

$$U: D \to I\!\!R, \quad U(x, y, z) = \int_{(AB)} P dx + Q dy + R dz,$$
 (3.90)

unde A este un punct fixat din D şi B(x, y, z) este punct variabil al lui D, este o primitivă a expresiei diferențiale ω .

Observația 3.11.2 Fiindcă integrala din (3.90) nu depinde de calea de integrare, putem considera că (AB) este o linie poligonală paralelă cu axele de coordonate. Considerând că punctele A şi B au coordonatele $A(x_0, y_0, z_0)$ şi B(x, y, z), linia poligonală (ACDB) este paralelă cu axele de coordonate dacă $C(x, y_0, z_0)$ şi $D(x, y, z_0)$.

Să calculăm integrala curbilinie din expresia diferențială ω pe linia poligonală (ACDB). Avem

$$U(x, yz) = \int_{(AC)} \omega + \int_{(CD)} \omega + \int_{(DB)} \omega.$$
 (3.91)

Dar pe drumul (AC), $y = y_0$ (constant), $z = z_0$ (constant), deci dy = 0, dz = 0 și

$$\int_{(AC)} \omega = \int_{(AC)} Pdx + Qdy + Rdz = \int_{x_0}^x P(t, y_0, z_0) dt.$$
 (3.92)

Pe drumul (segmentul de dreaptă) (CD), x=x (constant), $z=z_0$ (constant), deci dx=0, dz=0 și

$$\int_{(CD)} \omega = \int_{(CD)} P dx + Q dy + R dz = \int_{y_0}^{y} Q(x, t, z_0) dt.$$

În sfârşit, pe ultima porţiune netedă de drum (DB), x=x (constant), y=y (constant), deci dx=0, dy=0 şi

$$\int_{(DB)} \omega = \int_{(DB)} Pdx + Qdy + Rdz = \int_{z_0}^{z} R(x, y, t) dt.$$
 (3.93)

Folosind (3.92) - (3.93) în (3.91), obținem că funcția

$$U(x,y,z) = \int_{x_0}^{x} P(t, y_0, z_0) dt + \int_{y_0}^{y} Q(x, t, z_0) dt + \int_{z_0}^{z} R(x, y, t) dt$$
 (3.94)

este o primitivă a expresiei diferențiale $\omega = Pdx + Qdy + Rdz$ și anume acea primitivă care se anulează în punctul $A(x_0, y_0, z_0)$.

Să remarcăm că o formulă analoagă formulei (3.94) se obține dacă se integrează expresia diferențială ω pe oricare alte trei muchii paralele cu axele de coordonate ale paralelipipedului cu două din vărfurile opuse $A(x_0, y_0, z_0)$ și B(x, y, z). De exemplu, dacă drumul de integrare este (AEFB), unde $E(x_0, y, z_0)$ și $F(x_0, y, z)$, primitiva din (3.94) se scrie în forma unei sume de trei integrale curbilinii pe segmente de drepte

$$U(x, y, z) = \int_{(AE)} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} + \int_{(EF)} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} + \int_{(FB)} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}.$$

Aplicând formula de calcul a unei integrale curbilinii în spațiu, găsim că o altă expresie a primitivei expresiei diferențiale $\omega = \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ este

$$U(x,y,z) = \int_{y_0}^{y} Q(x_0,t,z_0)dt + \int_{z_0}^{z} R(x_0,y,t)dt + \int_{x_0}^{x} P(t,y,z)dt.$$
 (3.95)

În cazul plan, două din primitivele expresiei diferențiale (3.78) sunt:

$$U(x, y, z) = \int_{x_0}^{x} P(t, y_0) dt + \int_{y_0}^{y} Q(x, t) dt;$$

$$U(x, y, z) = \int_{x_0}^{x} P(t, y) dt + \int_{y_0}^{y} Q(x_0, t) dt$$

și se obțin respectiv când integrăm ω pe linia poligonală (ACB) cu $C(x, y_0)$ și pe calea de integrare rezultată din reuniunea segmentelor de dreaptă (AD) și (DB), unde $D(x_0, y)$.

Exercițiul 3.11.1 Se dă expresia diferențială

$$\omega = \left(\frac{1}{x^2y} - \frac{1}{x^2 + z^2}\right)zdx + \frac{z}{xy^2}dy + \left(\frac{x}{x^2 + z^2} - \frac{1}{xy}\right)dz$$

definită pe orice domeniu tridimensional D, simplu conex, care nu intersectează planele de coordonate Oyz și Ozx. Să se arate că expresia de mai sus este o diferențială totală exactă și să se determine funcțiile primitive ale sale.

Soluție. Funcțiile P, Q și R au valorile

$$P(x,y,z) = \left(\frac{1}{x^2y} - \frac{1}{x^2 + z^2}\right)z, \quad Q(x,y,z) = \frac{z}{xy^2},$$

$$R(x,y,z) = \frac{x}{x^2 + z^2} - \frac{1}{xy}$$

şi, după cum se vede, sunt continue şi derivabile pe domeniul simplu conex D. Trebuie să mai verificăm că $\nabla \times \mathbf{F} = \mathbf{0}$, unde $\mathbf{F} = (P, Q, R)$. Efectuând derivatele parțiale ale funcțiilor coordonate P, Q, R, găsim

$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} = \frac{1}{xy^2},$$

$$\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = \frac{1}{x^2y} + \frac{z^2 - x^2}{(x^2 + z^2)^2},$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = -\frac{z}{x^2y^2},$$

deci câmpul vectorial \mathbf{F} este irotațional pe D. Pentru determinarea unei primitive vom lua $A(x_0, y_0, 0)$ cu $x_0 \cdot y_0 \neq 0$ și B(x, y, z) și aplicăm formula (3.95). Avem

$$U(x,y,z) = \int_{x_0}^x P(t, y_0, 0) dt + \int_{y_0}^y Q(x, t, 0) dt + \int_0^z R(x, y, t) dt.$$

Primele două integrale sunt nule pentru că în puncte ale planului xOy funcțiile P și Q au valori egale cu zero. Calculând cea de a treia integrală, găsim

$$U(x, y, z) = \int_0^z \left(\frac{x}{x^2 + t^2} - \frac{1}{xy}\right) dt.$$

Rezultă că primitiva expresiei diferențiale ω care se anulează în punctele domeniului D situate în planul xOy este

$$U(x, y, z) = \operatorname{arctg} \frac{z}{x} - \frac{z}{xy},$$

oricare altă primitivă fiind V(x,y,z)=U(x,y,z)+C, unde C este o constantă reală arbitrară.

Exercițiul 3.11.2 Fie expresia diferențială

$$\omega = \left(\frac{y}{x^2 + y^2} + 2y\right) dx + \left(2x - \frac{x}{x^2 + y^2}\right) dy$$

definită întrun domeniu plan simplu conex D care nu conține originea. Să se arate că ω este diferențială totală exactă pe D și să se determine funcția diferențiabilă $U:D\to I\!\!R$ cu proprietatea $dU(x,y)=\omega$.

Soluție. Funcțiile reale de două variabile reale P și Q au valorile date de:

$$P(x,y) = \frac{y}{x^2 + y^2} + 2y; \quad Q(x,y) = 2x - \frac{x}{x^2 + y^2}.$$

Derivatele parțiale $\frac{\partial Q}{\partial x}$ și $\frac{\partial P}{\partial y}$ au valorile egale, și anume

$$\frac{\partial Q}{\partial x}(x,y) = \frac{\partial P}{\partial y}(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} + 2,$$

deci integrala curbilinie de tipul al doilea din expresia diferențială ω nu depinde de drumul de integrare situat în D. Funcția U a cărei diferențială este ω și care se anulează în punctul A(a, b) are valorile:

$$U(x,y) = \int_{a}^{x} \left(\frac{b}{x^{2} + b^{2}} + 2b\right) dt + \int_{b}^{y} \left(2x - \frac{x}{x^{2} + t^{2}}\right) dt;$$

$$U(x,y) = \operatorname{arctg} \frac{t}{b}\Big|_{t=a}^{t=x} + 2bt\Big|_{t=a}^{t=x} + 2xt\Big|_{t=b}^{t=y} - \operatorname{arctg} \frac{t}{x}\Big|_{t=b}^{t=y};$$

$$U(x,y) = 2xy + \operatorname{arctg} \frac{x}{y} - 2ab - \operatorname{arctg} \frac{a}{b}.$$

Oricare altă primitivă V a expresiei diferențiale date este de forma

$$V(x,y) = 2xy + \operatorname{arctg} \frac{x}{y} + C,$$

unde C este o constantă reală arbitrară.

Capitolul 4

Integrala dublă

4.1 Elemente de topologie în \mathbb{R}^2

În acest paragraf vom reaminti unele noțiuni de topologie în spațiul euclidian \mathbb{R}^2 . Între punctele acestui spațiu și cele ale unui plan în care s–a ales o pereche de axe perpendiculare Ox și Oy, de versori $\mathbf{e}_1 = (1,0)$ și respectiv $\mathbf{e}_2 = (0,1)$, există o corespondență biunivocă.

Definiția 4.1.1 Se numește disc deschis cu centrul în ${\bf a}=(a,b)$ și rază $\varepsilon>0$ mulțimea

$$B(\mathbf{a}, \varepsilon) = {\mathbf{x} = (x, y) \in \mathbb{R}^2 : d(\mathbf{x}, \mathbf{a}) < \varepsilon},$$

unde d este metrica euclidiană pe \mathbb{R}^2 şi $d(\mathbf{x}, \mathbf{a}) = \sqrt{(x-a)^2 + (y-b)^2}$ este distanța dintre punctele \mathbf{x} și \mathbf{a} .

Pentru simplitatea expunerii, discului deschis îi vom spune simplu disc.

Definiția 4.1.2 Un punct $\mathbf{a} \in \mathbb{R}^2$ se numește punct interior al mulțimii $D \subset \mathbb{R}^2$ dacă există un $\varepsilon > 0$ astfel încât $B(\mathbf{a}, \varepsilon) \subset D$.

Observația 4.1.1 Un punct interior al mulțimii D aparține acesteia.

Definiția 4.1.3 Submulțimea $D \subset \mathbb{R}^2$ se numește mulțime deschisă dacă toate elementele sale sunt puncte interioare.

Definiția 4.1.4 Spunem că mulțimea $D \subset \mathbb{R}^2$ este **mulțime conexă** dacă oricare două puncte ale lui D pot fi unite printr-un arc de curbă conținut în întregime în D.

Definiția 4.1.5 O mulțime deschisă și conexă se numește domeniu.

De exemplu, discul cu centrul în origine şi rază 1, adică totalitatea punctelor (x,y) care satisfac inegalitatea $x^2+y^2<1$, este un domeniu, în timp ce mulțimea rezultată din reuniunea a două discuri

$$\{(x,y)\in I\!\!R^2\,|\,x^2+y^2<1\}\quad \cup\quad \{(x,y)\in I\!\!R^2\,|\,(x-3)^2+y^2<1\}$$

nu este un domeniu deoarece, deși este mulțime deschisă, nu este mulțime conexă întru–cât există perechi de puncte ale sale care nu pot fi unite printr– un arc de curbă conținut în întregime în această mulțime.

Definiția 4.1.6 Un punct $\mathbf{a} \in \mathbb{R}^2$ se numește **punct frontieră** al mulțimii D dacă orice vecinătate a sa conține atât puncte ale lui D cât și puncte care nu aparțin lui D. Totalitatea punctelor frontieră ale unei mulțimi se numește frontiera acelei mulțimi.

Observația 4.1.2 Un punct frontieră al unei mulțimi D poate să aparțină sau să nu aparțină lui D. În particular, o mulțime deschisă nu conține nici unul din punctele frontierei sale.

Definiția 4.1.7 O mulțime care își conține toate punctele frontieră se numește mulțime închisă.

Observația 4.1.3 Fiecărei mulțimi i se poate atașa o mulțime închisă, care se numește închiderea acelei mulțimi, care constă din toate punctele mulțimii la care se adaugă punctele sale frontieră.

În particular, când adăugăm unui domeniu D punctele sale frontieră obținem o mulțime închisă pe care putem să o numim **domeniu închis** sau **continuu**.

Definiția 4.1.8 Punctul $\mathbf{a} \in \mathbb{R}^2$ se numește punct limită sau punct de acumulare al mulțimii $D \subset \mathbb{R}^2$ dacă există un șir de puncte din D, cu termeni diferiți de \mathbf{a} , convergent la \mathbf{a} .

173

Observația 4.1.4 Un punct limită al unei mulțimi D poate să aparțină sau să nu aparțină mulțimii D.

Se știe că o mulțime este închisă dacă și numai dacă își conține toate punctele de acumulare.

Definiția 4.1.9 Mulțimea $D \subset \mathbb{R}^2$ se numește **mărginită** dacă poate fi inclusă întrun disc cu centrul întrun punct oarecare al spațiului \mathbb{R}^2 deci, indiferent de $\mathbf{x}_0 \in \mathbb{R}^2$, există r > 0 astfel încât

$$D \subset B(\mathbf{x}_0, r).$$

Definiția 4.1.10 O mulțime mărginită și închisă în \mathbb{R}^2 se numește mulțime compactă în \mathbb{R}^2 .

Dacă D este o mulțime mărginită în \mathbb{R}^2 , atunci mulțimea tuturor distanțelor $d(\mathbf{x}, \mathbf{y})$ între punctele arbitrare $\mathbf{x} \in D$ și $\mathbf{y} \in D$ este o mulțime de numere reale nenegative mărginită deoarece oricare din aceste distanțe nu poate fi mai mare decât diametrul discului în care este inclusă mulțimea D. Prin urmare, putem vorbi de marginea superioară a acestei mulțimi de numere.

Definiția 4.1.11 Se numește diametrul mulțimii mărginită $D \subset \mathbb{R}^2$ marginea superioară a mulțimii de numere nenegative $\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x} \in D, \ \mathbf{y} \in D\}$.

Definiția 4.1.12 Fie D și E două mulțimi arbitrare din \mathbb{R}^2 . Se numește distanța dintre mulțimile D și E marginea inferioară d(D, E) a mulțimii de numere reale nenegative $d(\mathbf{x}, \mathbf{y})$, unde $\mathbf{x} \in D$, iar $\mathbf{y} \in E$.

Dacă mulțimile D și E au cel puțin un punct în comun (au intersecție nevidă), atunci d(A,B)=0. Reciproca acestei afirmații nu are loc în general. De exemplu, distanța între hiperbola echilateră $x\cdot y=1$ și axa Ox este zero deși aceste două mulțimi de puncte nu au nici un punct comun deoarece axa Ox nu intersectează hiperbola, ea fiind însă asimptota hiperbolei. În legătură cu această afirmație avem următorul rezultat.

Teorema 4.1.1 (Separabilitatea mulţimilor închise) Dacă mulţimile D si E sunt compacte si disjuncte în \mathbb{R}^2 , atunci d(D, E) > 0.

Demonstrație. Presupunem contrariul, adică d(D, E) = 0. Din Definiția 4.1.12 și teorema de caracterizare a marginii inferioare a unei mulțimi, rezultă că pentru fiecare $n \in \mathbb{N}^*$ există punctele $\mathbf{x}_n \in D$ și $\mathbf{y}_n \in E$ astfel încât

$$d(\mathbf{x}_n, \mathbf{y}_n) < \frac{1}{n}. \tag{4.1}$$

Deoarece mulțimea D este mărginită rezultă că șirul de puncte (\mathbf{x}_n) este mărginit și, după lema lui Cesaro, admite un subșir

$$\mathbf{x}_{k_1}, \ \mathbf{x}_{k_2}, \ \cdots, \ \mathbf{x}_{k_n}, \ \cdots$$

convergent la un punct \mathbf{x}_0 . Corespunzător, şirul de puncte

$$\mathbf{y}_{k_1}, \ \mathbf{y}_{k_2}, \ \cdots, \ \mathbf{y}_{k_n}, \ \cdots,$$

subșir al șirului (\mathbf{y}_n) , este convergent conform lui (4.1) la același punct \mathbf{x}_0 .

Să demonstrăm că punctul \mathbf{x}_0 aparține mulțimii D. Într-adevăr, pot exista două posibilități. Ori subșirul (\mathbf{x}_{k_n}) conține o infinitate de puncte distincte, fapt care arată că \mathbf{x}_0 este punct limită al mulțimii D, prin urmare $\mathbf{x}_0 \in D$ deoarece D este o mulțime închisă ori, de la un rang înainte, toți termenii subșirului sunt egali cu \mathbf{x}_0 , caz în care limita este de asemeni \mathbf{x}_0 , care din nou aparține lui D. Limita celui de al doilea subșir este tot \mathbf{x}_0 și aparține lui E, deoarece și E este mulțime închisă. Atunci, D și E au un punct în comun ceea ce contrazice ipoteza teoremei.

4.2 Aria figurilor plane

Prin **mulțime poligonală** înțelegem mulțimea constituită dintr—un număr finit de submulțimi ale lui \mathbb{R}^2 ale căror frontiere sunt linii frânte închise. Noțiunea de **arie a unei mulțimi poligonale** este bine cunoscută din geometria elementară. Aria unei mulțimi poligonale este un număr nenegativ care posedă următoarele proprietăți:

1. (monotonie) Dacă P și Q sunt două mulțimi poligonale, iar $P\subset Q,$ atunci

aria
$$P < aria Q$$
;

2. (aditivitate) Dacă P_1 și P_2 sunt două mulțimi poligonale disjuncte și $P_1 \cup P_2$ este reuniunea acestora, atunci

aria
$$(P_1 \cup P_2) = \text{aria } P_1 + \text{aria } P_2;$$

3. (invarianță) Dacă două mulțimi poligonale P_1 și P_2 sunt congruente, atunci

aria
$$P_1$$
 = aria P_2 .

Să extindem noţiunea de arie, cu păstrarea celor trei proprietăţi, la o clasă mai amplă de mulţimi plane. În acest scop considerăm mulţimea F, o submulţime a mulţimii \mathbb{R}^2 . Vom considera de asemeni toate mulţimile poligonale P incluse în F şi toate mulţimile poligonale Q care includ mulţimea F. Primele mulţimi se vor numi **mulţimi scufundate** în mulţimea F, iar mulţimile din cea de a doua categorie formează ceea ce se numeşte **înfăşurătoarea** mulţimii F. Ariile mulţimilor scufundate în mulţimea F sunt mărginite superior, un majorant fiind aria oricărei mulţimi mărginite care face parte din înfăşurătoarea lui F. Mulţimea de numere reale nenegative care reprezintă ariile mulţimilor scufundate, fiind o mulţime majorată, admite o margine superioară

$$S_* = S_*(F) = \sup\{(\text{aria } P) : P \subset F\},\$$

iar mulțimea ariilor mulțimilor care constituie înfășurătoarea lui F posedă evident minoranți și ca atare admite margine inferioară

$$S^* = S^*(F) = \inf\{(\text{aria } Q) : Q \supset F\}.$$

Cantitatea S_* este cunoscută ca $m \breve{a} sura Jordan interioar \breve{a}$ a mulțimii F, iar numărul S^* se numește $m \breve{a} sura Jordan exterioar \breve{a}$ a aceleiași mulțimi. Aria oricărei mulțimi scufundate în F nu întrece aria oricărei mulțimi care înfășoar pe F și, ca urmare, avem

$$S_* \leq S^*$$
.

Dacă $S_* = S^* = S$, atunci valoarea comună S se numește măsura Jordan a mulțimii F. În acest caz mulțimea F se zice că este carabilă sau măsurabilă Jordan.

Astfel, am extins conceptul de arie de la o mulţime poligonală, care este evident o mulţime carabilă, la o mulţime mărginită oarecare din plan. Vom

demonstra că cele trei proprietăți ale ariilor mulțimilor poligonale se conservă și pentru ariile mulțimilor oarecare mărginite din plan.

Vom stabili acum o condiție necesară și suficientă ca o mulțime mărginită să fie carabilă.

Teorema 4.2.1 O figură plană mărginită F este carabilă dacă și numai dacă pentru orice $\varepsilon > 0$ există două mulțimi poligonale $P \subset F$ și $Q \supset F$ astfel \hat{n} cât

$$aria Q - aria P < \varepsilon. \tag{4.2}$$

Demonstrație. Într-adevăr, dacă aceste mulțimi P și Q există, atunci din (4.2) și din

aria
$$P < S_* < S^* <$$
aria Q

rezultă

$$0 < S^* - S_* < \varepsilon > 0$$

și fiind
că $\varepsilon>0$ este ales arbitrar rezultă că $S_*=S^*.$

Reciproc, dacă $S_* = S^*$, atunci după teoremele de caracterizare ale marginilor inferioară și superioară, pentru orice $\varepsilon > 0$ dat există o mulțime poligonală P, scufundată în F, și o mulțime Q din înfășurătoarea lui F, astfel încât

$$S_* - \frac{\varepsilon}{2} < \text{aria } P \le S_*, \quad S^* \le \text{aria } Q < S^* + \frac{\varepsilon}{2},$$

care implică (4.2), ceea ce completează demonstrația teoremei.

Mulţimea punctelor care aparţin unei mulţimi poligonale Q care înfăşoară mulţimea F şi nu aparţin mulţimii poligonale P, scufundată în F, este o mulţime poligonală având aria egală cu diferenţa dintre aria lui Q şi aria lui P. Această mulţime de puncte conţine frontiera mulţimii F. În consecinţă, condiţia din Teorema 4.2.1 implică că F este carabilă dacă şi numai dacă frontiera sa poate fi scufundată întro mulţime poligonală cu arie arbitrar de mică.

Cu ajutorul Teoremei 4.2.1 se poate stabili măsurabilitatea Jordan a unor mulțimi diferite de cele poligonale. O astfel de mulțime poate fi discul de rază r. Mulțimile P și Q pentru disc pot fi mulțimile mărginite de poligoane regulate înscrise și respectiv circumscrise discului, numărul n al laturilor acestor poligoane fiind suficient de mare. De altfel, acesta este modul în care, în geometria elementară, se obține formula ariei discului de rază r.

177

Definiția 4.2.1 O mulțime de puncte din \mathbb{R}^2 se numește mulțime de arie nulă dacă ea poate fi scufundată într-o mulțime poligonală de arie arbitrar de mică.

Observația 4.2.1 O curbă în planul Oxy este o mulțime de arie nulă.

Noțiunea din Definiția 4.2.1 face ca Teorema 4.2.1 să poată fi reformulată în următoarea formă echivalentă.

Teorema 4.2.2 Necesar și suficient pentru ca mulțimea F să fie măsurabilă Jordan este ca frontiera sa să fie de arie nulă.

Bazat pe această teoremă putem prezenta o clasă suficient de vastă de mulțimi carabile la care vom face referire în considerațiile ulterioare. Pentru aceasta să ne amintim că o curbă plană (C) reprezentată parametric prin ecuațiile

(C)
$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} \quad \alpha \le t \le \beta,$$

unde funcțiile $\varphi: [\alpha, \beta] \to \mathbb{R}$ și $\psi: [\alpha, \beta] \to \mathbb{R}$ sunt continue, derivabile, cu derivate continuie sau continuie pe porțiuni este o curbă rectificabilă, lungimea L a acesteia fiind dată de integrala definită

$$L = \int_{\alpha}^{\beta} \sqrt{\varphi'^{2}(t) + \psi'^{2}(t)} dt.$$

Lema 4.2.1 Orice curbă plană rectificabilă este o multime de arie nulă.

Demonstrație. Fie (C) o curbă plană rectificabilă de lungime L. Divizăm curba în n părți prin n+1 puncte astfel încât lungimea fiecărei părți să fie L/n și construim un pătrat de latură 2L/n cu centrul de simetrie în punctul de diviziune de ordin k, unde k ia toate valorile de la 1 până la n+1. Reuniunea acestor pătrate este o mulțime poligonală care înfășoară curba (C) și a cărei arie nu întrece suma ariilor pătrateleor construite, prin urmare nu este mai mare decât

$$\frac{4L^2}{n^2}(n+1).$$

Deoarece L este fixat și n poate lua valori numere naturale oricât de mari dorim, curba (L) poate fi scufundată întro mulțime poligonală de arie extrem de mică și ca atare aria lui (C) este egală cu zero.

Corolarul 4.2.1 Orice mulțime plană mărginită a cărei frontieră este o reuniune finită de curbe plane rectificabile este mulțime măsurabilă Jordan.

Aceasta este clasa de multimi care o vom considera în continuare.

Observația 4.2.2 Orice mulțime de puncte din plan, cu frontiera reprezentată ca o reuniune finită de curbe plane definite printr-o ecuație carteziană explicită de forma

$$y = f(x), \quad a \le x \le b,$$

sau printr-o ecuație carteziană explicită de forma

$$x = q(y), \quad c < x < d,$$

unde funcțiile f și g sunt funcții continue, cu derivate continue pe porțiuni, este o mulțime măsurabilă în sens Jordan.

Avem acum pregătite toate condițiile pentru a arăta că noțiunea de arie a unei mulțimi plane mărginită satisface proprietățile de monotonie, aditivitate și invarianță.

În ce privește monotonia aceasta este implicată de însăși definiția ariei, demonstrația sa putând fi ușor efectuată. Să stabilim aditivitatea.

Teorema 4.2.3 Fie F_1 şi F_2 două figuri măsurabile Jordan având interioarele disjuncte și fie F reuniunea lor. Atunci, F este carabilă și

$$aria F = aria F_1 + aria F_2. (4.3)$$

Demonstrație. Măsurabilitatea Jordan a mulțimii F rezultă din Teorema 4.2.2 și din faptul că frontiera lui F este o mulțime de arie nulă deoarece această frontieră este inclusă în reuniunea frontierelor mulțimilor F_1 și F_2 . Prin urmare, pentru a completa demonstrația, trebuie să deducem egalitatea (4.3). Pentru aceasta considerăm mulțimile poligonale P_1 și P_2 scufundate în respectiv mulțimile F_1 și F_2 și mulțimile poligonale Q_1 și Q_2 care înfășoară F_1 și F_2 respectiv. Deoarece mulțimile poligonale P_1 și P_2 nu se intersectează, aria mulțimii poligonale P rezultată din reuniunea acestora este egală cu suma ariilor lor. Reuniunea Q a mulțimilor Q_1 și Q_2 , care pot avea intersecție nevidă, are arie care nu întrece suma ariilor acestora. Prin urmare, avem:

aria
$$P = \text{aria } P_1 + \text{aria } P_2 \le \text{aria } F \le \text{aria } Q \le \text{aria } Q_1 + \text{aria } Q_2;$$

aria
$$P_1 + \text{aria } P_2 \leq \text{aria } F_1 + \text{aria } F_2 \leq \text{aria } Q_1 + \text{aria } Q_2.$$

Deoarece diferențele (aria Q_1 — aria P_1) și (aria Q_2 — aria P_2) pot fi făcute arbitrar de mici rezultă că are loc egalitatea (4.3). Astfel aditivitatea este demonstrată.

Proprietatea de invarianță a măsurabilității Jordan a unei mulțimi din \mathbb{R}^2 este de asemeni evidentă. În plus, remarcăm o altă proprietate a mulțimilor plane mărginite și măsurabile Jordan.

Teorema 4.2.4 Intersecția a două mulțimi din \mathbb{R}^2 , măsurabile în sensul lui Jordan, este o mulțime carabilă.

Demonstrație. Dacă F_1 şi F_2 sunt două mulțimi carabile şi F este intersecția lor, atunci fiecare punct frontieră este un punct frontieră al cel puțin uneia din frontierele mulțimilor F_1 şi F_2 . Afirmația teoremei rezultă din Teorema 4.2.2 şi din faptul că aria unei reuniuni de mulțimi de arie nulă este egală cu zero.

Noţiunea de arie a fost introdusă în conformitate cu ideea lui Jordan, deşi această introducere are unele dezavantaje. Într-adevăr, după cum s-a arătat, reuniunea a două mulţimi carabile este o mulţime carabilă. Aceasta implică imediat că reuniunea unui număr finit de mulţimi carabile este o mulţime carabilă. Proprietatea însă nu se mai păstrează dacă numărul mulţimilor măsurabile în sens Jordan este infinit. Această situaţie face necesară introducerea unei alte măsuri în care să se păstreze proprietatea de mai sus. O astfel de măsura poate fi măsura Lebesgue, pe care nu o vom prezenta aici deoarece în continuare vom considera doar integrabilitatea funcţiilor definite pe mulţimi măsurabile în sens Jordan.

4.3 Definiția integralei duble

Fie D o mulţime mărginită şi carabilă din planul cartezian raportat la reperul ortogonal xOy şi

$$f: D \to I \!\! R$$
 (4.4)

o funcție reală de două variabile reale definită și mărginită pe mulțimea D.

Definiția 4.3.1 Se numește partiție sau divizare a mulțimii D mulțimea

$$\Delta = \{ D_1, \quad D_2, \quad \cdots, \quad D_n \} \tag{4.5}$$

de submulțimi a lui D cu proprietățile:

- 1. interioarele oricăror două mulțimi distincte sunt disjuncte;
- 2. reuniunea tuturor mulțimilor partiției, numite elemente, în număr de $n \in \mathbb{N}^*$, este mulțimea D.

Observația 4.3.1 O partiție a mulțimii mărginite $D \subset \mathbb{R}^2$, măsurabilă în sens Jordan, se poate realiza cu ajutorul unor elemente a două familii uniparametrice de curbe plane. De exemplu, aceste curbe plane pot fi unele paralele la axele de coordonate Ox și Oy.

Deoarece mulțimea D este mărginită rezultă că fiecare din elementele partiției Δ este mărginită și ca atare mulțimea tuturor diametrelor $d(D_i)$ are un cel mai mare element.

Definiția 4.3.2 Fie mulțimea mărginită și carabilă D și Δ o partiție a acesteia. Se numește **norma** sau **finețea** divizării Δ numărul real $\nu(\Delta)$ sau $\|\Delta\|$ egal cu cel mai mare dintre diametrele elementelor partiției.

Considerăm o partiție Δ a mulțimii D și suma de forma

$$\sigma_{\Delta}(f, \xi_i, \eta_i) = \sum_{i=1}^n f(\xi_i, \eta_i) S_i, \tag{4.6}$$

unde S_i este aria lui D_i , iar (ξ_i, η_i) este un punct arbitrar aparținând lui D_i , numit **punct intermediar**.

Definiția 4.3.3 Sumele din relația (4.6) se numesc sume integrale asociate funcției f din (4.4), modului de divizare Δ de forma (4.5) al mulțimii D și sistemului de puncte intermediare $(\xi_i, \eta_i) \in D_i$ ales arbitrar.

Definiția 4.3.4 O partiție $\Delta' = \{D'_1, D'_2, \dots, D'_n\}$ a mulțimii D se spune că este o **rafinare** a divizării Δ din (4.5) dacă fiecare element D_i al partiției Δ este sau element al partiției Δ' sau reuniunea câtorva elemente D'_j din partiția Δ' .

Observația 4.3.2 Există o infinitate de sume integrale căci există o infinitate de moduri de a diviza mulțimea D și în cadrul fiecărei partiții există o infinitate de posibilități de a alege punctele intermediare.

Introducem următoarea definiție a limitei sumelor integrale (4.6).

Definiția 4.3.5 Numărul real J este limita sumelor integrale (4.6) când $\|\Delta\| \to 0$ dacă pentru orice $\varepsilon > 0$ există $\delta > 0$ astfel încât oricare ar fi partiția Δ a mulțimii D cu

$$\|\Delta\| < \delta \tag{4.7}$$

și oricare ar fi alegerea punctelor intermediare $(\xi_i, \eta_i) \in D_i$ să avem

$$|\sigma_{\Delta}(f, \xi_i, \eta_i) - J| < \varepsilon.$$
 (4.8)

Inegalitatea (4.8) trebuie să fie adevărată pentru toate sumele integrale $\sigma_{\Delta}(f, \xi_i, \eta_i)$ care corespund partiției Δ din (4.5) ce satisface condiția (4.7), indiferent de alegerea punctelor intermediare.

Definiția 4.3.6 Funcția (4.4) se numește **integrabilă** pe D dacă limita sumelor integrale (4.6) pentru $\|\Delta\| \to 0$ există și este finită.

Definiția 4.3.7 Dacă funcția (4.4) este integrabilă pe D, atunci numărul real

$$J = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) S_i$$
 (4.9)

se numește integrala dublă a funcției f pe mulțimea D și se notează cu unul din simbolurile

$$J = \iint_{D} f(x, y)d\omega; \quad J = \iint_{D} f(x, y)dxdy. \tag{4.10}$$

Funcția f se numește integrand, D se numește domeniu de integrare, iar expresiile $f(x,y)d\omega$ și f(x,y)dxdy se numesc elemente de integrare.

Să găsim condiții care, impuse funcției (4.4), asigură existența integralei duble (4.10). Aceste condiții le vom numi condiții de integrabilitate.

Pentru a stabili condiții de integrabilitate introducem sumele Darboux inferioară și superioară. În acest sens notăm prin M_i și m_i marginea superioară și respectiv marginea inferioară a valorilor restricției funcției f la elementul D_i al partiției Δ din (4.5).

Definiția 4.3.8 Sumele:

$$\Omega = S_{\Delta}(f) = \sum_{i=1}^{n} M_i S_i; \quad \omega = s_{\Delta}(f) = \sum_{i=1}^{n} m_i S_i$$
 (4.11)

se numesc respectiv suma Darboux superioară şi suma Darboux inferioară a funcției f corespunzătoare diviziunii Δ a mulțimii carabile D.

Observația 4.3.3 Din modul cum au fost definite sumele Darboux (4.11) rezultă că oricare ar fi divizarea Δ a mulțimii D, avem

$$\Omega \geq \omega$$
.

Să enumerăm proprietățile fundamentale ale sumelor Darboux.

1. Pentru orice divizare Δ a mulțimii D și pentru orice alegere a sistemului de puncte intermediare, suma integrală corespunzătoare se află cuprinsă între suma Darboux inferioară și suma Darboux superioară corespunzătoare partiției Δ ,

$$s_{\Delta}(f) \leq \sum_{i=1}^{n} f(\xi_i, \eta_i) S_i \leq S_{\Delta}(f).$$

2. În procesul de rafinare a divizării mulțimii D, sumele Darboux inferioare cresc, iar sumele Darboux superioare descresc. Aceasta înseamnă că dacă ω și Ω sunt sumele Darboux corespunzătoare modului de divizare Δ , iar ω' și Ω' sunt sumele Darboux corespunzătoare partiției Δ' , atunci

$$\omega \leq \omega' \leq \Omega' \leq \Omega.$$

3. Fie Δ' şi Δ'' două diviziuni arbitrare a mulțimii D şi fie ω' , Ω' şi ω'' , Ω'' , sumele Darboux corespunzătoare asociate acestor partiții. Atunci, avem

$$\omega' \le \Omega''$$
 şi $\omega'' \le \Omega'$

adică orice sumă Darboux inferioară asociată funcției f și corespunzătoare unui mod de divizare nu poate întrece suma Darboux superioară asociată aceleiași funcții și corespunzătoare oricărui alt mod de divizare a mulțimii D.

- 4. Mulţimea tuturor sumelor Darboux superioare corespunzătoare funcţiei (4.4) este mărginită inferior, un minorant al acesteia fiind oricare dintre sumele Darboux inferioare asociate aceleiaşi funcţii.
- 5. Mulţimea tuturor sumelor Darboux inferioare corespunzătoare funcţiei f din (4.4) este mărginită superior, un majorant al acestei mulţimi fiind oricare din sumele Darboux superioare asociate funcţiei f.

6. Dacă notăm cu \mathcal{D} mulțimea divizărilor mulțimii D, atunci există numerele reale:

$$\overline{J} = \inf\{S_{\Delta}(f) : \Delta \in \mathcal{D}\}; \quad \underline{J} = \sup\{s_{\Delta}(f) : \Delta \in \mathcal{D}\},$$

care se numesc integralele Darboux superioară și respectiv inferioară ale funcției $f: D \subset \mathbb{R}^2 \to \mathbb{R}$.

Teorema 4.3.1 Integralele Darboux inferioară și superioară ale funcției reale de două variabile reale f definită pe mulțimea carabilă $D \subset \mathbb{R}^2$ satisfac inegalitatea

$$\underline{J} \leq \overline{J}$$
.

Demonstrație. Presupunem contrariul și anume că $\underline{J}>\overline{J}$. Atunci, există un număr $\varepsilon>0$ astfel încât

$$\underline{J} - \overline{J} > \varepsilon > 0.$$
 (4.12)

Pe de altă parte, după teoremele de caracterizare ale marginilor inferioară şi superioară, putem spune că pentru $\varepsilon > 0$ de mai sus există o sumă Darboux superioară Ω_1 şi o sumă Darboux inferioară ω_2 astfel încât

$$\Omega_1 - \overline{J} < \frac{\varepsilon}{2}$$
 şi $\underline{J} - \omega_2 < \frac{\varepsilon}{2}$,

de unde deducem

$$\Omega_1 - \omega_2 + (\underline{J} - \overline{J}) < \varepsilon.$$

În consecință, în conformitate cu (4.12), avem

$$\Omega_1 - \omega_2 < 0$$

care contrazice proprietatea 3. a sumelor Darboux.

4.4 Condiții de integrabilitate

Proprietățile sumelor Darboux inferioare și superioare permit stabilirea unei condiții necesare și suficiente pentru integrabilitatea funcției reale f definită și mărginită pe o mulțime carabilă din \mathbb{R}^2 .

Lema 4.4.1 (Darboux) Integrala superioară \overline{J} (respectiv integrala inferioară \underline{J}) este limita pentru $\|\Delta\| \to 0$ a sumelor Darboux superioare (respectiv a sumelor Darboux inferioare).

Demonstrație. Introducem mai întâi noțiunea de **frontieră** a partiției Δ a mulțimii D. Dacă partiția $\Delta \in \mathcal{D}$ este compusă din submulțimile D_i , atunci reuniunea $\partial \Delta$ a frontierelor ∂D_i ale mulțimilor D_i se numește frontiera partiției Δ . Prin urmare,

$$\partial \Delta = \partial D_1 \cup \partial D_2 \cup \cdots \cup \partial D_n$$
.

Frontierele ∂D_i fiind de arie nulă oricare ar fi divizarea $\Delta \in \mathcal{D}$, rezultă că frontiera divizării $\partial \Delta$ este de arie nulă.

În plus, putem afirma că frontiera $\partial \Delta$ se poate prezenta în cele din urmă ca reuniune de curbe închise, care sunt mulțimi închise în \mathbb{R}^2 , și ca urmare $\partial \Delta$ este o mulțime închisă în \mathbb{R}^2 .

Având în vedere cine este \overline{J} rezultă că pentru orice $\varepsilon>0$ există o divizare Δ^* a mulțimii D cu proprietatea că suma Darboux superioară Ω^* satisface condiția

$$0 \ \leq \ \Omega^* \ - \ \overline{J} \ < \ \frac{\varepsilon}{2}.$$

Frontiera $\partial \Delta^*$ a divizării Δ^* poate fi scufundată întro mulțime poligonală Q de arie mai mică decât $\varepsilon/(2M)$, unde $M=\sup\{|f(x,y)|:(x,y)\in D\}$, incluziunea $\partial \Delta^*\subset Q$ fiind strictă. Frontiera $\partial \Delta^*$ și frontiera mulțimii poligonale Q sunt două mulțimi închise în \mathbb{R}^2 care nu au puncte comune. În consecință, distanța dintre aceste mulțimi este un număr pozitiv α . Considerăm acum o partiție arbitrară $\Delta\in\mathcal{D}$ cu proprietatea $\|\Delta\|<\alpha$. Elementele partiției Δ , deci mulțimile D_i , au următoarea proprietate evidentă: dacă D_i și $\partial \Delta^*$ au cel puțin un punct în comun, atunci mulțimea D_i este strict inclusă în interiorul mulțimii poligonale Q. Asemenea mulțimi componente ale partiției Δ vor fi numite elemente frontieră, iar toate celelalte elemente, care nu se încadrează în această categorie, le vom numi elemente interioare. Să arătăm acum că oricărei partiții $\Delta\in\mathcal{D}$ cu $\|\Delta\|<\alpha$, corespunde o sumă Darboux superioară Ω care diferă de integrala Darboux superioară \overline{J} cu mai puțin decât ε . Pentru aceasta împărțim termenii care intră în definiția sumei Ω în două grupe de termeni

$$\Omega = \sum_{i=1}^{n} M_i S_i = \sum' M'_i S'_i + \sum'' M''_i S''_i,$$

unde sumarea în penultima sumă se extinde la toate elementele interioare în timp ce, în ultima sumă, sumarea se referă la elementele frontieră. Să evaluăm separat fiecare din aceste sume. Fiecare element interior al partiției Δ este strict inclus întrun element al partiției Δ^* . Fiindcă marginea superioară M_i' a valorilor funcției f(x,y), pe un element interior al divizării Δ , nu depășește marginea superioară a aceleiași funcții pe elementul divizării Δ^* care conține elementul interior respectiv, rezultă că partea din suma Darboux superioară Ω referitoare la elementele interioare nu poate întrece pe Ω^* , adică

$$\sum' M_i' S_i' \leq \Omega^*.$$

Mai departe, avem inegalitățile evidente:

$$|M_i''| \le M$$
; $\sum_{i=1}^{n} S_i'' < \text{aria } Q < \frac{\varepsilon}{2M}$.

În consecință, vom avea satisfăcută inegalitatea

$$\left|\sum^{"}M_{i}^{"}S_{i}^{"}\right| < \frac{\varepsilon}{2}$$

și ca urmare,

$$\Omega = \sum' M_i' \, S_i' + \sum'' M_i'' \, S_i'' \quad \leq \quad \Omega^* + \frac{\varepsilon}{2} \quad < \quad \overline{J} + \varepsilon.$$

Aşadar am demonstrat că oricare ar fi $\varepsilon > 0$ există un număr α care depinde de ε încât oricare ar fi divizarea Δ cu $\|\Delta\| < \alpha$, avem

$$\Omega - \overline{J} < \varepsilon$$

rezultat care arată că limita, pentru norma divizărilor tinzând la zero, a sumelor Darboux superioare este integrala superioară Darboux. În mod asemănător se demonstrează și cealaltă afirmație a lemei.

Teorema 4.4.1 (Criteriul de integrabilitate a lui Darboux). O funcție mărginită f(x,y) definită pe o mulțime mărginită și carabilă $D \subset \mathbb{R}^2$ este integrabilă pe D dacă și numai dacă pentru orice $\varepsilon > 0$ există un număr $\delta(\varepsilon)$, astfel încât oricare ar fi partiția Δ a mulțimii D cu $||\Delta|| < \delta(\varepsilon)$, să avem

$$S_{\Delta}(f) - s_{\Delta}(f) < \varepsilon.$$
 (4.13)

Demonstrație. Condiția este necesară. Dacă f este o funcție mărginită și integrabilă pe mulțimea plană mărginită și carabilă D, atunci există numărul real J

 $J = \iint\limits_{D} f(x, y) \, dx dy,$

iar acest număr este limita sumelor integrale Riemann pentru $\|\Delta\| \to 0$, care nu depinde de alegerea punctelor intermediare $(\xi_i, \eta_i) \in D_i$, unde $\Delta = \{D_1, D_2, \dots, D_n\}$ este o divizare a mulțimii D. De aici rezultă că oricare ar fi $\varepsilon > 0$ există $\delta(\varepsilon) > 0$ astfel încât oricare ar fi divizarea $\Delta \in \mathcal{D}$ cu $\|\Delta\| < \delta(\varepsilon)$ și oricare ar fi alegerea punctelor intermediare $(\xi_i, \eta_i) \in D_i$ are loc inegalitatea

$$|\sigma_{\Delta}(f,\xi_i,\eta_i) - J| < \frac{\varepsilon}{2},$$

care poate fi scrisă și în forma echivalentă

$$J - \frac{\varepsilon}{2} < \sigma_{\Delta}(f, \xi_i, \eta_i) < J + \frac{\varepsilon}{2}. \tag{4.14}$$

De asemenea, ştim că sumele Darboux superioară şi inferioară corespunzătoare partiției $\Delta \in \mathcal{D}$ sunt respectiv marginea superioară şi marginea inferioară a sumelor integrale Riemann asociate acelei divizări. Prin urmare, putem lua o divizare fixată $\Delta \in \mathcal{D}$ şi să alegem punctele intermediare $(\xi_i', \eta_i') \in D_i$ şi $(\xi_i'', \eta_i'') \in D_i$ astfel încât să fie satisfăcute următoarele inegalități:

$$\Omega - \sum_{i=1}^{n} f(\xi_i', \eta_i') S_i < \frac{\varepsilon}{2}; \quad \sum_{i=1}^{n} f(\xi_i'', \eta_i'') S_i - \omega < \frac{\varepsilon}{2}.$$
 (4.15)

Fiecare din cele două sume integrale Riemann din (4.15) satisface condiția (4.14) și, ca urmare, din (4.15) obținem rezultatul dorit, adică (4.13). Condiția este suficientă. Dacă pentru orice $\varepsilon>0$ există $\delta(\varepsilon)>0$ astfel încât oricare ar fi divizarea $\Delta\in\mathcal{D}$ cu $\|\Delta\|<\delta(\varepsilon)$ să avem (4.13), atunci $\underline{J}=\overline{J}$.

Intr-adevăr, din proprietățile sumelor Darboux avem

$$s_{\Delta}(f) \leq \underline{J} \leq \overline{J} \leq S_{\Delta}(f)$$
 (4.16)

pentru orice diviziune Δ a lui D. Dacă $||\Delta|| < \delta(\varepsilon)$, din inegalitatea (4.16) și din condiția (4.13), obținem

$$0 \leq \overline{J} - \underline{J} \leq S_{\Delta}(f) - s_{\Delta}(f) < \varepsilon$$

adică $0 \le \overline{J} - \underline{J} < \varepsilon$. De
oarece $\varepsilon > 0$ a fost presupus arbitrar rezultă că
 $\underline{J} = \overline{J}$.

Să notăm valoarea comună a cantităților \underline{J} și \overline{J} cu J și să arătăm că J este limita pentru $\|\Delta\| \to 0$ a sumelor integrale Riemann asociate funcției f, adică este integrala dublă a funcției f pe domeniul de integrare D. După lema lui Darboux, J este limita comună pentru $\|\Delta\| \to 0$ a sumelor Darboux inferioare și superioare asociate funcției f și modurilor de divizare $\Delta \in \mathcal{D}$, adică

$$J = \lim_{\|\Delta\| \to 0} s_{\Delta}(f) = \lim_{\|\Delta\| \to 0} S_{\Delta}(f). \tag{4.17}$$

Pe de altă parte, avem

$$s_{\Delta}(f) \leq \sigma_{\Delta}(f, \xi_i, \eta_i) \leq S_{\Delta}(f)$$
 (4.18)

oricare ar fi divizarea $\Delta \in \mathcal{D}$ și oricare ar fi punctele intermediare $(\xi_i, \eta_i) \in D_i$.

Trecerea la limită în (4.18) pentru $\|\Delta\| \to 0$ și folosirea lui (4.17) conduce la rezultatul dorit.

Observația 4.4.1 Din criteriul de integrabiliate a lui Darboux rezultă că o funcție reală f, definită și mărginită pe o mulțime mărginită și carabilă din \mathbb{R}^2 , este integrabilă pe D, dacă și numai dacă integralele Darboux corespunzătoare, \underline{J} și \overline{J} sunt egale. Valoarea comună a celor două integrale $J = \underline{J} = \overline{J}$ este tocmai integrala lui f pe domeniul de integrare D.

4.5 Clase de funcții integrabile

În cele ce urmează vom considera funcții definite pe mulțimi mărginite și închise, deci mulțimi compacte în \mathbb{R}^2 , care sunt carabile.

Aplicând Teorema 4.4.1, vom stabili integrabilitatea unor clase importante de funcții prima dintre ele fiind clasa funcțiilor continue.

Teorema 4.5.1 Orice funcție continuă f definită pe mulțimea compactă $D \subset \mathbb{R}^2$ este integrabilă pe D.

Demonstrație. Fie $\Delta = \{D_1, D_2, \dots, D_n\}$ o divizare oarecare a lui D. Deoarece funcția f este continuă pe D, va fi funcție continuă pe fiecare domeniu compact D_i , $(i = 1, 2, \dots, n)$. Însă, o funcție continuă pe o mulțime

compactă este mărginită şi își atinge efectiv marginile. Prin urmare, funcția f este mărginită pe D_i şi își atinge marginile. Putem afirma că există două puncte $\mathbf{x}'_i = (x'_i, y'_i)$ şi $\mathbf{x}''_i = (x''_i, y''_i)$ din D_i astfel încât să avem:

$$m_i = f(x_i', y_i'); \quad M_i = f(x_i'', y_i'').$$

Rezultă

$$S_{\Delta}(f) - s_{\Delta}(f) = \sum_{i=1}^{n} (M_i - m_i) S_i = \sum_{i=1}^{n} (f(x_i'', y_i'') - f(x_i', y_i')) S_i.$$

Deoarece f este continuă pe o mulțime compactă ea este mărginită și uniform continuă pe acea mulțime. Uniforma continuitate a funcției f implică că pentru orice $\varepsilon > 0$ există $\delta(\varepsilon) > 0$ astfel încât pentru orice două puncte $\mathbf{x}' = (x', y')$ și $\mathbf{y} = (x'', y'')$ cu

$$d(\mathbf{x}, \mathbf{y}) < \delta(\varepsilon)$$

să avem

$$|f(x',y')| - |f(x'',y'')| < \frac{\varepsilon}{\text{aria } D}.$$

Pentru orice diviziune Δ a lui D, cu $\|\Delta\| < \delta(\varepsilon)$ avem

$$d(\mathbf{x}_i', \mathbf{x}_i'') < \delta(\varepsilon)$$

și deci

$$|f(x_i', y_i') - f(x_i'', y_i'')| < \frac{\varepsilon}{\text{aria } D}.$$

Aşadar, dacă $\|\Delta\| < \delta(\varepsilon)$, atunci

$$S_{\Delta}(f) - s_{\Delta}(f) \le \sum_{i=1}^{n} |f(x_i'', y_i'') - f(x_i', y_i')| S_i < \frac{\varepsilon}{\text{aria } D} \cdot \text{aria } D = \varepsilon$$

adică $S_{\Delta}(f) - s_{\Delta}(f) < \varepsilon$, (\forall) Δ , cu $||\Delta|| < \delta(\varepsilon)$. Deci f este integrabilă pe D.

Condiția de continuitate a integrantului este destul de restrictivă. De aceea, teorema următoare stabilește existența integralei duble pentru o clasă de funcții discontinue.

Teorema 4.5.2 Dacă funcția f(x,y) este mărginită pe mulțimea compactă D și este continuă peste tot în D cu excepția unei mulțimi de arie nulă, atunci ea este integrabilă pe D.

Demonstrație. Luăm un $\varepsilon > 0$ arbitrar. Din ipoteză, f(x,y) este mărginită, aceasta însemnând că există un număr real K astfel încât $|f(x,y)| \leq K$. Să scufundăm partea din mulțimea D, unde funcția f este discontinuă, întro mulțime poligonală Q de arie mai mică decât $\varepsilon/(4K)$, astfel încât această mulțime să fie strict inclusă în mulțimea poligonală Q. Notăm cu \widetilde{D} partea din domeniul de integrare D care nu este inclusă în interiorul lui Q. Punctele frontieră ale mulțimii poligonale Q care aparțin lui D sunt situate în \widetilde{D} și prin urmare \widetilde{D} este mulțime închisă și mărginită deci compactă. Restricția funcției f la mulțimea compactă \widetilde{D} este continuă prin urmare este uniform continuă. Alegem $\delta > 0$ astfel încât oscilația funcției f în orice parte a mulțimii \widetilde{D} , cu diametrul mai mic decât δ , să fie mai mică decât $\varepsilon/(2S)$, unde S este aria lui D. Considerăm acum o partiție $\Delta = \{D_i : i = \overline{1,n}\}$ a domeniului de integrare D cu proprietatea ca primul element D_1 să coincidă cu Q, iar toate celelalte element să aibă diametrele mai mici decât δ și să evaluăm diferența $\Omega - \omega$ pentru această divizare. Avem

$$\Omega - \omega = M_1 S_1 - m_1 S_1 + \sum_{i=2}^{n} (M_i - m_i) S_i < (M_1 - m_1) \frac{\varepsilon}{4K} + \sum_{i=2}^{n} \frac{\varepsilon}{2S} S_i.$$

Însă
$$M_1 - m_1 \leq 2K$$
 și $\sum_{i=2}^n \frac{\varepsilon}{2S} \, S_i < S$, astfel că

$$\Omega - \omega < 2K \frac{\varepsilon}{4K} + \frac{\varepsilon}{2S} S = \varepsilon.$$

Numărul $\varepsilon > 0$ fiind ales arbitrar, în baza Teoremei 4.4.1 funcția f este integrabilă pe submulțimea compactă D a lui \mathbb{R}^2 .

4.6 Proprietățile integralei duble

Proprietățile fundamentale ale integralei duble sunt complet analoage proprietăților integralei definite

$$\int_{a}^{b} f(x)dx$$

și de aceea vom enumera aceste proprietăți urmând a da demonstrația doar pentru una din ele.

1. Dacă funcțiile f și g sunt integrabile pe domeniul de integrare D, iar λ și μ sunt constante reale arbitrare, atunci funcția λ $f + \mu$ g este integrabilă pe D și

$$\iint\limits_{D} (\lambda f + \mu g)(x, y) dx dy = \lambda \iint\limits_{D} f(x, y) dx dy + \mu \iint\limits_{D} g(x, y) dx dy.$$

Aceasta este proprietatea de liniaritate a integralei duble.

2. Dacă $D=D_1\cup D_2$, unde D_1 , D_2 sunt mulțimi compacte în \mathbb{R}^2 care nu au puncte interioare comune și funcția $f:D\to\mathbb{R}$ este integrabilă pe D, atunci f este integrabilă pe fiecare din mulțimile D_1 și D_2 și are loc egalitatea

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D_{1}} f(x,y)dxdy + \iint\limits_{D_{2}} f(x,y)dxdy.$$

Aceasta este proprietatea de *aditivitate* a integralei duble ca funcție de domeniu de integrare.

3. Dacă f este integrabilă pe D și

$$f(x,y) \geq 0, (\forall) (x,y) \in D,$$

atunci integrala dublă din funcția f satisface inegalitatea

$$\iint\limits_{D} f(x,y)dxdy \geq 0.$$

4. Dacă f și D sunt integrabile pe D și

$$f(x,y) < g(x,y), (\forall) (x,y) \in D,$$

atunci între integralele celor două funcții avem inegalitatea

$$\iint\limits_{D} f(x,y)dxdy \leq \iint\limits_{D} g(x,y)dxdy.$$

Aceasta este proprietatea de *monotonie* a integralei duble. Ea implică următoarele două proprietăți.

5. (evaluarea valorii absolute a integralei duble). Dacă f este integrabilă pe D, atunci funcția valoarea absolută a lui f este integrabilă pe D și

$$\left| \iint\limits_{D} f(x,y) dx dy \right| \le \iint\limits_{D} |f(x,y)| dx dy.$$

6. (teorema valorii medii). Dacă o funcție f este integrabilă pe D și satisface inegalitatea

$$m \leq f(x,y) \leq M, (\forall) (x,y) \in D,$$

iar S este aria lui D, atunci

$$m S \le \iint\limits_D f(x,y) dx dy \le M S.$$

Dacă funcția f este în plus continuă pe D, atunci teorema valorii medii devine

7. Dacă f este funcție continuă pe domeniul compact de integrare D, atunci există un punct $(\xi, \eta) \in D$, astfel încât

$$\iint\limits_{D} f(x,y)dxdy = f(\xi,\eta) S.$$

8. Este evidentă egalitatea

$$\iint\limits_{D} dx dy = \text{aria } D = S.$$

Demonstrația teoremei valorii medii pentru funcții continue. Deoarece f este continuă pe domeniul compact D, rezultă că f este mărginită pe D și își atinge marginile. Prin urmare, există punctele $\mathbf{x}_1 = (x_1, y_1) \in D$, $\mathbf{x}_2 = (x_2, y_2) \in D$ astfel încât

$$m = f(x_1, y_1), \quad M = f(x_2, y_2),$$

unde m și M sunt marginile lui f. Pentru simplitate, să presupunem că ambele puncte sunt în interiorul domeniului de integrare D, demonstrația

fiind ceva mai complicată dacă unul sau ambele puncte \mathbf{x}_1 , \mathbf{x}_2 se situează pe frontiera lui D. În baza uneia din proprietățile de mai sus, avem

$$mS \le \iint\limits_{D} f(x,y) dx dy \le MS,$$

de unde rezultă

$$m \leq \frac{\iint\limits_{D} f(x,y)dxdy}{S} \leq M.$$

Notând

$$\mu = \frac{\iint\limits_{D} f(x, y) dx dy}{S}$$

avem evident inegalitățile

$$m \leq \mu \leq M$$
.

Fie Γ o curbă a cărei imagine este complet conținută în D și având capetele $A_1(x_1, x_2)$ și $A_2(x_2, y_2)$. Existența unei astfel de curbe rezultă chiar din definiția noțiunii de domeniu. Dacă

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} \quad t \in [a, b]$$

este o reprezentare parametrică a lui Γ , atunci funcția compusă

$$g: [a,b] \to \mathbb{R}, \quad g(t) = f(\varphi(t), \psi(t))$$

este continuă pe compactul [a, b]. Din $f(x_1, y_1) = m$ şi $f(x_2, y_2) = M$ rezultă g(a) = m şi g(b) = M.

Din proprietatea lui Darboux a funcțiilor continue deducem existența unei valori $t_0 \in [a, b]$ așa fel încât $g(t_0) = \mu$, adică

$$f(\varphi(t_0), \psi(t_0)) = \mu.$$

Dacă luăm $\xi = \varphi(t_0)$ și $\eta = \psi(t_0)$ avem $\mu = f(\xi, \eta)$ și teorema valorii medii pentru cazul când funcția de integrat este continuă este demonstrată.

4.7 Evaluarea integralei duble

4.7.1 Integrala dublă pe intervale bidimensionale închise

Teorema 4.7.1 Dacă funcția reală mărginită, de două variabile reale,

$$f: [a,b] \times [c,d] \to \mathbb{R}, -\infty < a < b < +\infty, -\infty < c < d < +\infty$$

este integrabilă pe intervalul bidimensional închis

$$I_2 = [a, b] \times [c, d]$$

şi pentru orice $x \in [a,b]$ există numărul real F(x) definit de integrala depinzând de parametrul x

$$F(x) = \int_{c}^{d} f(x, y) \, dy, \quad x \in [a, b], \tag{4.19}$$

atunci funcția $F:[a,b] \to \mathbb{R}$, ale cărei valori sunt date în (4.19), este integrabilă Riemann și are loc egalitatea

$$\iint\limits_{I_2} f(x,y)dxdy = \int_a^b F(x) dx = \int_a^b \left(\int_c^d f(x,y)dy \right) dx. \tag{4.20}$$

Demonstrație. Fie d' și d'' diviziuni ale respectiv intervalelor [a, b] și [c, d]

$$d' = \{x_0, x_1, \dots, x_i, x_{i+1}, \dots, x_n\},\$$

$$d'' = \{y_0, y_1, \dots, y_j, y_{j+1}, \dots, y_m\},$$

$$(4.21)$$

unde

$$a = x_0 < x_1 < \dots < x_i < x_{i+1} < \dots < x_n = b,$$

 $c = y_0 < y_1 < \dots < y_i < y_{i+1} < \dots < y_m = d.$

Aceste diviziuni definesc diviziune
a Δ a intervalului bidimensional închi
s I_2

$$\Delta = \{ I_{00}, I_{10}, \cdots I_{ij}, \cdots I_{nm} \}, \tag{4.22}$$

unde I_{ij} sunt intervalele bidimensionale închise

$$I_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}], \quad i = \overline{0, n-1}, \quad j = \overline{0, m-1}.$$

Notăm

$$m_{ij} = \inf\{f(x,y) : (x,y) \in I_{ij}\},$$

 $M_{ij} = \sup\{f(x,y) : (x,y) \in I_{ij}\}.$

Aceste cantități sunt numere reale deoarece funcția
$$f$$
 este mărginită pe fiecare

din intervalele bidimensioanle închise I_{ij} .

Deoarece se urmărește a se demonstra că funcția F definită de (4.19)

beoarece se urmarește a se demonstra ca funcția F definita de (4.19) este integrabilă Riemann va trebui să considerăm sumele integrale Riemann corespunzătoare tuturor diviziunilor d' de forma (4.20) ale intervalului [a, b], pentru alegeri arbitrare ale punctelor intermediare $\xi_i \in [x_i, x_{i+1}]$. Aceste sume au forma

$$\sigma_{d'}(F,\,\xi_i) = \sum_{i=1}^{n-1} F(\xi_i)(x_{i+1} - x_i). \tag{4.23}$$

Dacă ținem seama de modul cum este definită funcția F și de proprietatea de aditivitate în raport cu intervalul de integrare a integralei Riemann, avem

$$F(\xi_i) = \int_c^d f(\xi_i, y) dy = \sum_{i=0}^{m-1} \int_{y_j}^{y_{j+1}} f(\xi_i, y) dy.$$
 (4.24)

Aplicând formula de medie pentru integralele simple care intră în membrul al doilea din (4.24) deducem că există numerele reale μ_{ij} , cu $m_{ij} \leq \mu_{ij} < M_{ij}$, astfel încât

$$\int_{y_i}^{y_{j+1}} f(\xi_i, y) dy = \mu_{ij} (y_{j+1} - y_j). \tag{4.25}$$

Folosind acum (4.25) în (4.23) constatăm că suma Riemann $\sigma_{d'}(F, \xi_i)$ se scrie în final în forma

$$\sigma_{d'}(F, \xi_i) = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \mu_{ij}(x_{i+1} - x_i)(y_{j+1} - y_j).$$

Dacă ținem seama de inegalitățile

$$m_{ij} \le \mu_{ij} \le M_{ij}, \quad (i = \overline{0, n-1}, \quad j = \overline{0, m-1})$$

rezultă

$$\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} m_{ij} (x_{i+1} - x_i) (y_{j+1} - y_j) \le \sigma_{d'}(F, \, \xi_i) \le$$

$$\leq \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} M_{ij} (x_{i+1} - x_i) (y_{j+1} - y_j).$$

Dar prima sumă din aceste inegalități este tocmai suma Darboux superioară a funcției f relativă la diviziunea Δ din (4.22)

$$s_{\Delta}(f) = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} m_{ij}(x_{i+1} - x_i)(y_{j+1} - y_j).$$

Ultima sumă din inegalitățile de mai sus este tocmai suma Darboux superioară a funcției f relativă la aceeași diviziune Δ

$$S_{\Delta}(f) = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} M_{ij}(x_{i+1} - x_i)(y_{j+1} - y_j).$$

Avem deci inegalățile $s_{\Delta}(f) \leq \sigma_{d'}(F, \xi_i) \leq S_{\Delta}(f)$ pentru orice diviziune Δ de forma (4.22) și pentru orice alegere a punctelor intermediare ξ_i .

Fie acum $(d'_k)_{k\in\mathbb{N}^*}$ un şir oarecare de diviziuni ale intervalului [a,b] cu proprietatea că şirul normelor acestor diviziuni $(\|d''_k\|)_{k\in\mathbb{N}^*}$ este convergent la zero. Fie de asemeni $(d''_k)_{k\in\mathbb{N}^*}$ un şir de diviziuni ale lui [c,d] cu $\|d''_k\| \to 0$. Notăm cu Δ_k diviziunea intervalului bidimensional închis $I_2 = [a,b] \times [c,d]$ definită de diviziunile d'_k şi d''_k . Se vede imediat că din condițiile $\|d'_k\| \to 0$ şi $\|d''_k\| \to 0$ rezultă $\|\Delta_k\| \to 0$. Pentru fiecare k avem inegalitățile

$$s_{\Delta_k}(f) \le \sigma_{d'_{\bullet}}(F, \, \xi_i) \le S_{\Delta_k}(f). \tag{4.26}$$

Funcția f fiind presupusă integrabilă pe I_2 , aplicând criteriul de integrabilitate a lui Darboux, avem

$$\lim_{k \to \infty} S_{\Delta_k}(f) = \lim_{k \to \infty} s_{\Delta_k}(f) = \iint_{I_2} f(x, y) dx dy. \tag{4.27}$$

Trecând la limită în (4.26) pentru $k \to +\infty$ și ținând cont de (4.27) obținem

$$\lim_{k \to \infty} \sigma_{d'_k}(F, \, \xi_i) = \iint_{I_2} f(x, y) dx dy. \tag{4.28}$$

Dacă ținem seama de definiția integralei pentru funcțiile reale de o variabilă reală

$$\lim_{k \to \infty} \sigma_{d'_k}(F, \, \xi_i) = \int_a^b F(x) dx. \tag{4.29}$$

Din egalitățile (4.28) și (4.29) obținem (4.21). De obicei se folosește notația

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy.$$
 (4.30)

Folosind notația (4.30) constatăm că (4.21) se scrie în forma

$$\iint_{I_2} f(x,y)dxdy = \int_a^b dx \int_c^d f(x,y)dy. \tag{4.31}$$

Putem spune că (4.22) sau (4.31) reprezintă formula de calcul a integralei duble pe un interval bidimensional închis. Observăm că integrala dublă pe un interval bidimensional închis este o iterație de integrale simple adică un calcul succesiv a două integrale Riemann ale unor funcții reale de o variabilă reală, prima dintre ele fiind o integrală depinzând de parametru.

În mod asemănător se demonstrează

Teorema 4.7.2 Dacă funcția reală mărginită, de două variabile reale,

$$f: [a,b] \times [c,d] \to \mathbb{R}, \quad -\infty < a < b < +\infty, \quad -\infty < c < d < +\infty$$

este integrabilă pe intervalul bidimensional închis $I_2 = [a,b] \times [c,d]$ şi pentru orice $y \in [c,d]$ există numărul real G(y) definit de integrala depinzând de parametrul y

$$G(y) = \int_{a}^{b} f(x, y) dx,$$

atunci funcția

$$G: [c,d] \to IR, \quad G(y) = \int_a^b f(x,y) \, dx, \ y \in [c,d]$$

este integrabilă Riemann și are loc egalitatea

$$\iint\limits_{I_2} f(x,y)dxdy = \int_c^d G(y) dy = \int_c^d \left(\int_a^b f(x,y)dx \right) dy. \tag{4.32}$$

Folosind și aici o notație asemănătoare lui (4.30), și anume

$$\int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y) dx$$

vedem că relația (4.32) se scrie în forma

$$\iint_{D} f(x,y)dxdy = \int_{c}^{d} dy \int_{a}^{b} f(x,y)dx. \tag{4.33}$$

Relația (4.33) reprezintă de asemeni o formulă de calcul a integralei duble din funcția f pe intervalul bidimensional închis I_2 .

Observația 4.7.1 Când sunt satisfăcute ipotezele din ambele teoreme de mai sus, avem

$$\int_{a}^{b} dx \int_{c}^{d} f(x,y) dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \iint_{I_{2}} f(x,y) dx dy.$$
 (4.34)

Prima egalitate din (4.34) a fost demonstrată în teorema de integrabilitate a integralelor depinzând de un parametru.

Observația 4.7.2 Dacă $f(x,y) = g(x) \cdot h(y)$ și $g : [a,b] \to \mathbb{R}$, $h : [c,d] \to \mathbb{R}$ sunt integrabile Riemann, atunci f este integrabilă pe intervalul bidimensional închis $I_2 = [a,b] \times [c,d]$ și are loc egalitatea

$$\iint\limits_{I_{c}} f(x,y)dxdy = \int_{a}^{b} g(x)dx \cdot \int_{c}^{d} h(y)dy,$$

relație care arată că în acest caz particular integrala dublă este un produs de integrale simple.

4.7.2 Integrala dublă pe domenii simple în raport cu axa Oy

Definiția 4.7.1 Mulțimea $D_y \subset \mathbb{R}^2$ definită de

$$D_y = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x), (\forall) \ x \in [a, b]\}, (4.35)$$

unde φ_1 şi φ_2 sunt funcții continue pe [a,b], se numește domeniu simplu în raport cu axa Oy.

Observația 4.7.3 Frontiera domeniului simplu în raport cu axa Oy definit în relația (4.35) este curba netedă pe porțiuni (C^+) compusă din arcele (AB), (CD) și din segmentele de dreaptă \overline{BC} și \overline{DA} , unde

$$\begin{cases}
(AB) = \{(x,y) \in \mathbb{R}^2 : a \leq x \leq b, y = \varphi_1(x), x \in [a,b]\}, \\
\overline{BC} = \{(x,y) \in \mathbb{R}^2 : x = b, \varphi_1(b) \leq y \leq \varphi_2(b)\}, \\
(CD) = \{(x,y) \in \mathbb{R}^2 : x \in [b,a], y = \varphi_2(x), x \in [b,a]\}, \\
\overline{DA} = \{(x,y) \in \mathbb{R}^2 : x = a, y \in [\varphi_2(b), \varphi_1(a)]\}.
\end{cases}$$
(4.36)

Așa cum a fost definită în (4.36), frontiera (C^+) a domeniului simplu în raport cu axa Oy este o curbă orientată pozitiv căci un observator care parcurge această frontieră în sensul indicat de (4.36) vede mulțimea D_y mereu la stânga sa. Să menționăm în plus că este posibil ca unul sau ambele segmente de dreaptă din (4.36) să se reducă la un punct. Aceasta se va întâmpla când funcțiile φ_1 și φ_2 au valori egale în x = a sau (și) în x = b.

Observația 4.7.4 Dacă D_y este un domeniu simplu în raport cu axa Oy, atunci orice paralelă la axa Oy prin punctul M(x, 0), unde a < x < b, intersectează frontiera acestei mulțimi în două puncte distincte P și Q de coordonate: $P(x, \varphi_1(x))$; $Q(x, \varphi_2(x))$. Acestor puncte le vom spune: P- punct de intrare în D_y ; Q- punct de ieșire din D_y .

Regula de calcul a unei integrale duble pe un domeniu simplu în raport cu axa Oy este dată de teorema care urmează.

Teorema 4.7.3 Fie D_y un domeniu simplu în raport cu axa Oy definit de inegalitățile:

$$a \le x \le b; \quad \varphi_1(x) \le y \le \varphi_2(x),$$

şi f o funcţie reală mărginită definită pe mulţimea D_y . Dacă f este integrabilă pe D_y şi pentru orice $x \in [a,b]$, fixat, există integrala depinzând de parametrul x

$$J(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy,$$

atunci funcția $J:[a,b] \to \mathbb{R}$ este integrabilă și

$$\int_{a}^{b} J(x)dx = \iint_{D_{y}} f(x,y)dxdy.$$

Demonstrație. Înainte de a începe demonstrația propriuzisă să observăm că având în vedere expresia valorii în $x \in [a, b]$ a funcției J, integrala definită a acesteia se poate scrie în una din următoarele forme

$$\int_a^b J(x)dx = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)dy \right) dx = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)dy.$$

Concluzia teoremei devine

$$\iint\limits_{D_y} f(x,y)dxdy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)dy \tag{4.37}$$

care reprezintă formula de calcul a integralei duble pe un domeniu simplu în raport cu axa Oy.

Să procedăm acum la demonstrația teoremei.

Fie $c = \min\{\varphi_1(x); x \in [a, b]\}$ şi $d = \max\{\varphi_2(x); x \in [a, b]\}$ care sunt numere reale în baza faptului că funcțiile φ_1 şi φ_2 sunt continue pe mulțimea compacă [a, b]. După teorema lui Weierstrass, funcțiile φ_1 şi φ_2 sunt mărginite şi îşi ating efectiv marginile. Atunci, intervalul bidimensional $I_2 = [a, b] \times [c, d]$ include domeniul simplu D_y .

Funcția auxiliară

$$f^*: I_2 \to \mathbb{R}, \quad f^*(x,y) = \begin{cases} f(x,y), & \text{dacă} \quad (x,y) \in D_y \\ 0, & \text{dacă} \quad (x,y) \in I_2 \setminus D_y. \end{cases}$$
(4.38)

satisface ipotezele Teoremei 4.7.1. Într-adevăr, deoarece valorile sale coincid cu cele ale funcției f pe mulțimea D_y , rezultă că f^* este integrabilă pe D_y . Restricția lui f^* la mulțimea $I_2 \setminus D_y$ fiind funcția identic nulă, rezultă că este funcție integrabilă pe $I_2 \setminus D_y$. Dacă la aceste două rezultate adăugăm proprietatea de aditivitate a integralei duble, deducem că funcția f^* din (4.38) este integrabilă. Mai mult, avem

$$\iint_{D_y} f^*(x,y) dx dy = \iint_{D_y} f(x,y) dx dy$$

$$\iint_{I_2 \setminus D_y} f^*(x,y) dx dy = 0$$
(4.39)

În baza proprietății de aditivitate a integralei duble, din (4.39) rezultă

$$\iint_{I_2} f^*(x,y)dxdy = \iint_{D_y} f(x,y)dxdy. \tag{4.40}$$

Pentru fiecare valoare a lui x situat între a și b, are loc egalitatea

$$\int_{c}^{d} f^{*}(x,y)dy = \int_{c}^{\varphi_{1}(x)} f^{*}(x,y)dy +
+ \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f^{*}(x,y)dy + \int_{\varphi_{2}(x)}^{d} f^{*}(x,y)dy$$
(4.41)

deoarece fiecare din integralele din membrul doi există. Apoi, dat fiind faptul că pe segmentele de dreaptă incluse în I_2 și care unesc respectiv perechile de puncte (x, c), $(x, \varphi_1(x))$ și $(x, \varphi_2(x))$, (x, d), valorile funcției f^* sunt egale cu zero, deducem că prima și a treia integrală din membrul doi al relației (4.41) sunt nule, fapt ce conduce la egaliatatea

$$\int_{c}^{d} f^{*}(x,y) \, dy = \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) \, dy. \tag{4.42}$$

Funcția f^* definită pe intervalul bidimensional I_2 satisface ipotezele Teoremei 4.7.1 și, în consecință, integrala dublă din ea peste I_2 poate fi redusă la iterația de integrale simple

$$\iint_{I_2} f^*(x,y) dx dy = \int_a^b dx \int_c^d f^*(x,y) dy.$$
 (4.43)

Din (4.43), (4.40) şi (4.42), rezultă are loc relația (4.37).

4.7.3 Integrala dublă pe domenii simple în raport cu axa Ox

Definiția 4.7.2 Mulțimea $D_x \subset \mathbb{R}^2$ definită de

$$D_x = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y), \ (\forall) \ y \in [c, d] \},$$

unde ψ_1 şi ψ_2 sunt funcții continue pe [c,d] se numește domeniu simplu în raport cu axa Ox.

Observația 4.7.5 Dacă D_x este un domeniu simplu în raport cu axa Ox, atunci orice paralelă la axa Ox prin punctul M(0, y), unde c < y < d, intersectează frontiera acestei mulțimi în două puncte distincte P și Q de coordonate: $P(\psi_1(y), y)$; $Q(\psi_2(y), y)$. Ca și la domenii simple în raport cu cealaltă axă de coordonate, acestor puncte le vom spune: P- punct de intrare în D_x ; Q- punct de ieșire din D_x .

Regula de calcul a unei integrale duble pe un domeniu simplu în raport cu axa Ox este asemănătoare cu aceea prezentată în concluzia teoremei precedente și este dată de teorema care urmează.

Teorema 4.7.4 Fie D_x un domeniu simplu în raport cu axa Ox şi f o funcție reală mărginită definită pe mulțimea D_x . Dacă f este integrabilă pe D_x şi pentru orice $y \in [c,d]$ există integrala depinzând de parametrul y

$$I(y) = \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx,$$

atunci funcția $I:[a,b] \to \mathbb{R}$ este integrabilă și are loc egalitatea

$$\int_{c}^{d} I(y)dy = \iint_{D_{x}} f(x,y)dxdy. \tag{4.44}$$

Observația 4.7.6 Având în vefere că integrala definită din funcția I pe intervalul [c,d] se poate scrie în una din formele

$$\int_{c}^{d} I(y)dy = \int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y)dx \right) dy = \int_{c}^{d} dy \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y)dx$$

rezultă că egalitatea (4.44) se poate scrie în forma echivalentă

$$\iint_{D_x} f(x,y) dx dy = \int_c^d dy \int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx.$$
 (4.45)

care constituie formula de calcul a integralei duble pe un domeniu simplu $\hat{i}n$ raport cu axa Ox.

Observația 4.7.7 Dacă domeniul de integrare D nu este simplu în raport cu una din axele de coordonate, atunci descompunem pe D prin paralele la axele de coordonate întrun număr finit de subdomenii D_1, D_2, \dots, D_n , simple în raport cu aceeași axă de coordonate, astfel încât interioarele oricăror două astfel de domenii D_i și D_j , cu $i \neq j$, să fie disjuncte, iar reuniunea lor să fie mulțimea D. Folosind apoi proprietatea de aditivitate a integralei duble în raport cu domeniul de integrare, avem

$$\iint\limits_{D} f(x,y)dxdy = \sum_{i=1}^{n} \iint\limits_{D_{i}} f(x,y)dxdy, \tag{4.46}$$

urmând ca, pentru toate integralele duble din membrul doi al egalității (4.46), să se aplice una din formulele de calcul (4.37) sau (4.45).

Exercițiul 4.7.1 Să se scrie integrala dublă

$$\iint\limits_{D} f(x,y)dxdy,$$

unde D este domeniul mărginit de curbele

$$y = \sqrt{2ax - x^2}, \quad y = \sqrt{2ax}, \quad x = 2a, \quad a > 0,$$

ca o iterație de integrale simple, în ambele ordini de integrare.

Soluție. Domeniul D este mărginit de semicercul superior (aflat în semiplanul $y \geq 0$) al cercului de rază a cu centrul în punctul C(a,0), de un segment din parabola cu vârful în origine având axa de simetrie semiaxa pozitivă Ox și de un segment din dreapta de ecuație x = 2a, paralelă cu axa Oy. Constatăm că domeniul D este simplu în raport cu axa Oy deoarece putem scrie

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2a; \sqrt{2ax - x^2} \le y \le \sqrt{2ax} \}.$$

Prin urmare, folosind (4.37), avem

$$\iint\limits_{D} f(x,y)dxdy = \int_{0}^{2a} dx \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x,y) dy.$$

Domeniul D nu este simplu în raport cu axa Ox. Paralela y = a la axa Ox descompune D în trei domenii D_1 , D_2 , D_3 , simple în raport cu axa Ox, unde:

$$D_1 = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le a; \frac{y^2}{2a} \le x \le a - \sqrt{a^2 - y^2}\};$$

$$D_2 = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le a; a + \sqrt{a^2 - x^2} \le x \le 2a\};$$

$$D_3 = \{(x,y) \in \mathbb{R}^2 : a \le y \le 2a; \frac{y^2}{2a} \le x \le 2a\},$$

Ținând cont de (4.46), rezultă

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D_1} f(x,y)dxdy + \iint\limits_{D_2} f(x,y)dxdy + \iint\limits_{D_3} f(x,y)dxdy,$$

integralele din membrul al doilea scriindu—se ca iterații de integrale simple, după cum urmează:

$$\iint_{D_1} f(x,y) dx dy = \int_0^a dy \int_{\frac{y^2}{2a}}^{a - \sqrt{a^2 - y^2}} f(x,y) dx;$$

$$\iint_{D_2} f(x,y) dx dy = \int_0^a dy \int_{a + \sqrt{a^2 - x^2}}^{2a} f(x,y) dx;$$

$$\iint_{D_3} f(x,y) dx dy = \int_a^{2a} dy \int_{\frac{y^2}{2a}}^{2a} f(x,y) dx.$$

Astfel, am scris integrala dublă ca iterație de integrale simple în ambele ordini. De remarcat că prima scriere este mai simplă.

4.8 Formula integrală Riemann-Green

În anumite condiții există o legătură între integrala curbilinie și integrala dublă. Pentru a stabili această legătură introducem noțiunea de frontieră orientată a unui domeniu plan compact.

Definiția 4.8.1 Fie $D \subset \mathbb{R}^2$, un domeniu compact având frontiera $\Gamma = \partial D$ formată dintr-o curbă simplă închisă, netedă sau netedă pe porțiuni. Sensul dat pe Γ de un observator care prin deplasare pe această curbă lasă la stânga domeniul D se numește sensul direct sau pozitiv de parcurgere a lui Γ . Curba Γ împreună cu sensul direct de parcurgere se numește curbă orientată direct sau pozitiv și se notează cu Γ_+ sau cu Γ^+ . În mod asemănător se introduce si Γ_- .

Când pe curba $\Gamma = \partial D$ s
–a ales un sens de parcurs, curba devine orientată.

Definiția 4.8.2 Un domeniu plan a cărui frontieră este formată dintr-o singură curbă închisă netedă sau netedă pe porțiuni Γ se numește pozitiv orientat dacă curba Γ este pozitiv orientată. Dacă domeniul D este pozitiv orientat, atunci el se notează cu D_+ sau cu D^+ . Analog se definește domeniul negativ orientat notat cu D_- sau D^- .

Este posibil ca frontiera unui domeniu plan să fie formată din mai multe curbe plane închise netede sau netede pe porțiuni, disjuncte.

Definiția 4.8.3 Fie curbele plane simple, închise şi netede sau netede pe porțiuni $\Gamma_0, \Gamma_1, \dots, \Gamma_p$ cu proprietățile:

- 1. mulțimea din plan care are ca frontieră pe Γ_0 conține în interiorul ei toate celelalte curbe Γ_i , $i = \overline{1,p}$;
- 2. oricare două curbe Γ_i și Γ_j cu $i \neq j$, $i, j \in \overline{1, p}$, nu au puncte comune.

Se numește domeniu p+1 conex mulțimea D limitată de curba Γ_0 din care s-au scos mulțimile limitate de curbele $\Gamma_1, \Gamma_2, \dots, \Gamma_p$. Frontiera unui astfel de domeniu D este reuniunea tuturor curbelor $\Gamma_k, k \in \overline{0,n}$. Domeniul se numește în plus compact dacă își conține frontiera.

Definiția 4.8.4 Domeniul compact p+1 conex D se numește pozitiv orientat dacă observatorul care se deplasează pe frontiera lui D vede mereu pe D la stânga sa.

Un domeniu compact p+1 conex, pozitiv orientat, care se notează cu D_+ , are frontiera exterioară Γ_0 orientată în sens contrar acelor de ceasornic în timp ce toate celelalte curbe Γ_i , $i=\overline{1,p}$, sunt parcurse de observator în sensul acelor de ceasornic. Pentru a intui forma unui domeniu p+1 conex am putea să spunem că acesta prezintă găuri sau goluri. Dacă p=1, deci D are un gol, el se numește dublu conex, iar cel cu două goluri se va numi domeniu triplu conex. Domeniile simple în raport cu una din axele de coordonate sunt domenii simplu conexe. Un gol poate fi și un punct.

În scopul stabilirii formulei integrale Riemann—Green pentru un domeniu compact oarecare, vom prezenta două rezultate ajutătoare, valabile în cazul domeniilor simple în raport cu una din axele de coordonate.

Teorema 4.8.1 Fie P o funcție reală definită și continuă pe un domeniu compact pozitiv orientat D_y , simplu în raport cu axa Oy și având frontiera Γ_y . Dacă derivata parțială a funcției P în raport cu variabila y există și este continuă pe D_y , atunci are loc egalitatea

$$\int_{\Gamma_y^+} P(x, y) dx = \iint_{D_y^+} -\frac{\partial P}{\partial y} dx dy.$$
 (4.47)

Demonstrație. Deoarece domeniul D_y este simplu în raport cu axa Oy, frontiera acestuia Γ_y este formată mai întâi din curbele netede pe porțiuni:

$$y = \varphi_1(x), \quad x \in [a, b]; \tag{4.48}$$

$$y = \varphi_2(x), \quad x \in [b, a], \tag{4.49}$$

unde funcțiile φ_1 și φ_2 care definesc cele două porțiuni netede din frontiera Γ_y sunt continue, admit derivate continue pe porțiuni și sunt astfel încât

$$\varphi_1(x) \le \varphi_2(x), \quad x \in [a, b]. \tag{4.50}$$

Cealaltă parte a frontierei Γ_y este constituită din două segmente de dreaptă situate respectiv pe drepte paralele cu axa Oy:

$$x = a, \quad \varphi_1(a) \le y \le \varphi_2(a); \tag{4.51}$$

$$x = b, \quad \varphi_1(b) \le y \le \varphi_2(b). \tag{4.52}$$

Pentru primul segment de dreaptă, abscisele punctelor sale sunt egale cu a, iar ordonatele sale y au proprietatea $\varphi_1(a) \leq y \leq \varphi_2(a)$, în timp ce, pe cel de al doilea segment de dreaptă, abscisele punctelor sale sunt egale cu b, ordonatele fiind astfel încât $\varphi_1(b) \leq y \leq \varphi_2(b)$. Dacă introducem punctele:

$$A(a, \varphi_1(a)); B(b, \varphi_1(b)); C(b, \varphi_2(b)); D(a, \varphi_2(a)),$$
 (4.53)

atunci frontiera pozitiv orientată Γ_y^+ a domeniului D_y^+ se poate scrie evident sub forma

$$\Gamma_y^+ = ABCDA,$$

în care sensul de parcurs este de la A spre B, apoi spre C, de aici spre D și din nou la A.

Existența celor două integrale din (4.47) este asigurată de continuitatea funcțiilor de sub semnul integrală și de ipoteza făcută asupra lui D.

Să calculăm integrala din membrul al doilea din (4.47). Avem,

$$\iint_{D_y^+} -\frac{\partial P}{\partial y} dx dy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} -\frac{\partial P}{\partial y}(x, y) dy =$$

$$= \int_a^b -P(x, y) \Big|_{\varphi_1(x)}^{\varphi_2(x)} dx =$$

$$= \int_a^b \Big(P(x, \varphi_1(x)) - P(x, \varphi_2(x)) \Big) dx.$$
(4.54)

Pe de altă parte, avem

$$\int_{\Gamma_y^+} P(x, y) \, dx = \int_{AB} P(x, y) \, dx + \int_{\overline{BC}} P(x, y) \, dx +
+ \int_{CD} P(x, y) \, dx + \int_{\overline{DA}} P(x, y) \, dx,$$
(4.55)

unde sensul considerat pe fiecare curbă este cel specificat mai sus.

Integralele curbilinii de speţa a doua pe \overline{BC} şi pe \overline{DA} sunt nule, deoarece aici x este constant, fapt care se vede din (4.51) şi (4.52). Prin urmare, dx = 0.

O reprezentare parametrică a arcului de curbă plană AB este dată de ecuațiile

$$AB: \begin{cases} x = t, \\ y = \varphi_1(t), \end{cases} \quad t \in [a, b]. \tag{4.56}$$

Având în vedere reprezentarea parametrică (4.56) și formula de calcul a unei integrale curbilinii de a doua speță, deducem

$$\int_{AB} P(x, y) \, dx = \int_{a}^{b} P(t, \varphi_{1}(t)) \, dt. \tag{4.57}$$

Pentru porțiunea de frontieră formată din arcul de curbă CD, avem reprezentarea paramatrică

$$CD: \begin{cases} x = \tau, \\ y = \varphi_1(\tau), \end{cases} \quad \tau \in [b, a]. \tag{4.58}$$

Această reprezentare parametrică (4.58) și formula de calcul a unei integrale curbilinii de a doua speță conduc la

$$\int_{CD} P(x,y) \, dx = \int_{b}^{a} P(t,\varphi_{2}(t)) \, dt = -\int_{a}^{b} P(t,\varphi_{2}(t)) \, dt. \tag{4.59}$$

Prin urmare, valoarea integralei curbilinii din membrul întâi a relației de demonstrat (4.47) este

$$\int_{\Gamma_y^+} P(x, y) \, dx = \int_a^b \left(P(t, \varphi_1(t)) - P(t, \varphi_2(t)) \right) dt. \tag{4.60}$$

Din relațiile (4.54) și (4.60), rezultă (4.47) și în acest fel teorema este demonstrată.

Teorema 4.8.2 Fie Q o funcție reală definită și continuă pe un domeniu compact pozitiv orientat D_x , simplu în raport cu axa Ox a cărui frontieră este curba închisă pozitiv orientată Γ_x^+ . Dacă derivata parțială a funcției Q în raport cu variabila x există și este continuă pe D_x , atunci are loc egalitatea

$$\int_{\Gamma_x^+} Q(x, y) dx = \iint_{D_x^+} \frac{\partial Q}{\partial x} dx dy. \tag{4.61}$$

Demonstrație. Să considerăm întâi integrala dublă din membrul doi al egalității (4.61). După cum știm, un domeniu simplu în raport cu axa Ox poate fi prezentat astfel

$$D_x = \{(x, y) \in \mathbb{R}^2 : c \le y \le d; \ \psi_1(y) \le x \le \psi_2(y)\},\tag{4.62}$$

unde funcțiile ψ_1 și ψ_2 sunt continue și derivabile pe porțiuni. Dacă scriem domeniul de integrare în forma (4.62), atunci integrala dublă ce o avem de calculat este dată de

$$\iint_{D_{y}^{+}} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} dy \int_{\psi_{1}(y)}^{\psi_{2}(y)} \frac{\partial Q}{\partial x} dx = \int_{c}^{d} Q(x, y) \Big|_{\psi_{1}(y)}^{\psi_{2}(y)} dy =
= \int_{c}^{d} \left(Q(\psi_{2}(y), y) - Q(\psi_{1}(y), y) \right) dy.$$
(4.63)

Să notăm cu A_1 , B_1 , C_1 și D_1 punctele lui Γ_x^+ de coordonate:

$$A_1(c, \psi_1(c)); B_1(c, \psi_2(c)); C_1(d, \psi_2(d)); D_1(d, \psi_1(d)).$$
 (4.64)

Atunci, frontiera pozitiv orientată Γ_x^+ a domeniului D_x^+ se poate scrie sub forma

$$\Gamma_x^+ = A_1 B_1 C_1 D_1 A_1,$$

în care sensul de parcurs este de la A_1 spre B_1 , apoi spre C_1 , de aici spre D_1 şi din nou la A_1 . Porțiunile $\overline{A_1B_1}$ şi $\overline{C_1D_1}$ ale frontierei Γ_x^+ sunt segmente de drepte paralele cu axa Ox şi ca urmare pe aceste segmente avem dy=0 ceea ce atrage

$$\int_{\overline{A_1B_1}} Q(x,y) \, dy = \int_{\overline{C_1D_1}} Q(x,y) \, dy = 0.$$
 (4.65)

Integrala definită din membrul al doilea al relației (4.63) poate fi privită ca suma a două integrale curbilinii pe arce de curbă corespunzătoare, după

cum urmează

$$\int_{c}^{d} \left(Q(\psi_{2}(y), y) - Q(\psi_{1}(y), y) \right) dy = \int_{B_{1}C_{1}} Q(x, y) \, dy + \int_{D_{1}A_{1}} Q(x, y) \, dy.$$
(4.66)

Dacă la membrul doi al relației (4.66) adăugăm integralele curbilinii din (4.65), obținem

$$\int_{c}^{d} \left(Q(\psi_{2}(y), y) - Q(\psi_{1}(y), y) \right) dy = \int_{\overline{A_{1}B_{1}}} Q(x, y) dy +
+ \int_{B_{1}C_{1}} Q(x, y) dy + \int_{\overline{C_{1}D_{1}}} Q(x, y) dy +
+ \int_{D_{1}A_{1}} Q(x, y) dy = \int_{\Gamma_{x}^{+}} Q(x, y) dy.$$
(4.67)

Din relațiile (4.63) și (4.67) rezultă (4.61) și teorema este demonstrată.■

Egalitatea (4.47) a fost demonstrată pentru un domeniu de o formă specială, însă ea poate fi extinsă la un domeniu arbitrar care poate fi divizat întrun număr finit de domenii simple în raport cu axa Oy.

Astfel, dacă un domeniu oarecare D, cu frontiera Γ , este descompus în n subdomenii D_{iy} , $i = \overline{1,n}$, simple în raport cu axa Oy și cu interioarele oricăror două dintre ele disjuncte, conform Teoremei 4.8.1, pentru fiecare din domeniile D_{iy} are loc relația

$$\int_{\Gamma_{iy}^{+}} P(x,y) dx = \iint_{D_{iy}^{+}} -\frac{\partial P}{\partial y}(x,y) dx dy, \quad \Gamma_{iy} = \partial D_{iy}.$$
(4.68)

Putem suma acum de la 1 la n relaţiile (4.68) obţinându—se în membru drept o integrală dublă pe domeniul D din aceeaşi funcţie de integrat ca în (4.68), iar în membrul stâng o sumă de n integrale curbilinii de speţa a doua din expresia diferenţială P(x,y) dx. Însă fiecare contur Γ_{iy}^+ constă atât din anumite arce ale frontierei lui D^+ cât şi din porţiuni de curbe auxiliare care servesc pentru divizarea domeniului D în părţile D_{iy} , cu i de la 1 până la n. Fiecare arc al unei curbe auxiliare intră în exact două contururi de tipul D_{iy} şi este parcurs în sensuri contrare când ne raportăm la cele două contururi vecine. Prin urmare, când sumăm toate integralele curbilinii de forma

$$\int_{\Gamma_{in}^{+}} P(x,y) \, dx,\tag{4.69}$$

integralele curbilinii luate pe arcele auxiliare se anulează reciproc și deci va rămâne numai integrala pe frontiera Γ^+ a domeniului D^+ din expresia diferențială P(x,y) dx. Astfel, obținem egalitatea

$$\int_{\Gamma^{+}} P(x, y) dx = \iint_{D^{+}} -\frac{\partial P}{\partial y} dx dy, \quad \Gamma_{iy} = \partial D_{iy}. \tag{4.70}$$

Să observăm că divizarea lui D în domenii simple în raport cu axa Oy se poate efectua prin paralele la axa Oy care să fie eventual tangente în anumite puncte ale frontierei Γ sau să aibă în comun cu Γ doar un punct dacă acesta este punct unghiular.

Printr—un raționament asemănător celui efectuat pentru demonstrația relației (4.61), deducem că egalitatea

$$\int_{\Gamma^{+}} Q(x,y)dy = \iint_{D^{+}} \frac{\partial Q}{\partial x}(x,y)dxdy \tag{4.71}$$

are loc pentru orice domeniu compact care se reprezintă ca reuniune finită de domenii simple în raport cu axa Ox. Descompunerea unui domeniu compact în domenii simple în raport cu axa Ox este posibilă întotdeauna şi se poate efectua prin construcția unor paralele la axa Ox, paralele care, eventual, pot avea un punct comun cu frontiera domeniului.

Prin construcția descrisă mai sus cu ajutorul paralelelor la axele de coordonate, orice domeniu plan compact D^+ , simplu sau multiplu conex, pozitiv orientat, având frontiera Γ^+ o reuniune finită de curbe închise netede sau netede pe porțiuni care satisfac condițiile din Definiția 4.8.3, se poate scrie ca reuniune finită de domenii simple în raport cu una, oricare, din axele de coordonate. Pentru astfel de domenii, pe care prescurtat le vom numi mai departe domenii plane simple, au loc relațiile (4.70) și (4.71). Sumând aceste două relații, obținem formula integrală

$$\int_{\Gamma^{+}} P(x,y) dx + Q(x,y) dy = \iint_{D^{+}} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dx dy \tag{4.72}$$

cunoscută sub numele de formula integrală Riemann-Green. În acest fel am demonstrat

Teorema 4.8.3 Fie D un domeniu plan simplu conex și P, Q două funcții reale definite și continue pe compactul D. Dacă derivatele parțiale $\frac{\partial P}{\partial u}$ și $\frac{\partial Q}{\partial x}$

există și sunt continue pe D, atunci are loc formula integrală Riemann-Green (4.72).

Din modul cum s-a efectuat demonstrația Teoremei 4.8.3 rezultă câteva observații pe care le dăm în continuare.

Observația 4.8.1 Dacă frontiera Γ^+ a domeniului simplu D^+ este compusă dintr-un număr finit de contururi separate, ceea ce înseamnă că suntem în cazul unui domeniu multiplu conex, simbolul

$$\int_{\Gamma^+} P(x,y) \, dx + Q(x,y) dy \tag{4.73}$$

trebuie înțeles ca sumă de integrale curbilinii luate pe toate contururile care alcătuiesc frontiera domeniului, fiecare contur fiind parcurs în sensul în care un observator vede domeniul D^+ la stânga sa.

Observația 4.8.2 Când s-a demonstrat formula integrală Rieman- Green s-a presupus că funcțiile P și Q precum și derivatele parțiale ale lor $\frac{\partial P}{\partial y}$ și $\frac{\partial Q}{\partial x}$ sunt continue nu numai în interiorul domeniului D^+ dar și pe frontiera acestuia Γ^+ . Se constată însă că este suficient ca aceste funcții împreună cu derivatele menționate să fie continue și mărginite în interiorul lui D^+ .

Observația 4.8.3 Având în vedere că la schimbarea sensului de parcurs al unei curbe integrala curbiline de speța a doua schimbă de semn, rezultă că formula integrală Riemann-Green se poate scrie și în forma

$$\int_{\Gamma^{-}} P(x,y) dx + Q(x,y) dy = - \iint_{D^{+}} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dx dy.$$
 (4.74)

Când nu se precizează orientarea domeniului de integrare și nici a frontierei sale, formula integrală Riemann-Green trebuie scrisă astfel

$$\int_{\Gamma} P(x,y) dx + Q(x,y) dy = \pm \iint_{D} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dx dy, \quad (4.75)$$

urmând ca semnul din membrul al doilea să se stabilească în funcție de orientarea domeniului de integrare a integralei duble în raport cu orientarea

frontierei: semnul plus corespunde când $D=D^+$ şi $\Gamma=\Gamma^+$; semnul minus se ia când D şi Γ au orientări diferite. Evident, este posibil să întâlnim formula integrală Riemann–Green şi sub forma

$$\oint_{\Gamma} P(x,y) dx + Q(x,y) dy = \pm \iint_{D} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dx dy, \quad (4.76)$$

caz în care în membrul doi se alege semnul plus dacă $D=D^+$ sau semnul minus când D este negativ orientat.

Ca o aplicație a formulei integrale Riemann–Green să exprimăm aria S a unui domeniu plan simplu D, care știm că se calculează cu integrala dublă

$$S = \int_{D} dx dy, \tag{4.77}$$

cu ajutorul unei integrale curbilinii pe frontiera Γ a acestuia. Pentru aceasta să considerăm integrala curbilinie

$$\int_{\Gamma^+} x \, dy. \tag{4.78}$$

Aplicând formula integrală Riemann-Green, din (4.78) obținem

$$\int_{\Gamma^+} x \, dy = \int_D dx dy = S. \tag{4.79}$$

În mod asemător obținem formula

$$S = -\int_{\Gamma^+} y \, dx. \tag{4.80}$$

Combinând aceste formule deducem o altă formulă de calcul ariei unui domeniu plan simplu în care integrările în raport cu x și y sunt implicate simetric:

$$S = \frac{1}{2} \oint_{\Gamma} x \, dy - y \, dx. \tag{4.81}$$

Exemplul 4.8.1 Să se calculeze aria domeniului plan simplu delimitat de astroida cu brațe egale de ecuații parametrice

$$\begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t, \end{cases} \quad t \in [0, 2\pi]. \tag{4.82}$$

Soluție. Aplicând formula (4.81) obținem

$$S = \frac{3a^2}{2} \int_0^{2\pi} \sin^2 t \, \cos^2 t (\cos^2 t + \sin^2 t) dt =$$

$$\frac{3a^2}{8} \int_0^{2\pi} \sin^2 2t \, dt = \frac{3\pi a^2}{8}.$$
(4.83)

Exemplul 4.8.2 Folosind integrala curbilinie, să se calculeze aria domeniului plan limitat de elipsa de semiaxe a și b.

Soluție. Dacă centrul de simetrie al elipsei se află în originea reperului Oxy din plan și axele sale de simetrie coincid cu axele de coordonate ale reperului, atunci ecuația carteziană explicită a elipsei este

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0.$$

O reprezentare parametrică a acestei elipsei C, orientată pozitiv, poate fi

$$C: \begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases}$$

unde parametrul t parcurge intervalul $[0, 2\pi]$.

Domeniul plan D, delimitat de elipsă, este simplu în raport cu ambele axe, deci pentru calculul ariei lui D putem aplica formula

$$2\text{Aria}(D) = \int_{C} x dy - y dx = ab \int_{0}^{2\pi} (\cos^{2} t + \sin^{2} t) dt = 2\pi ab,$$

de unde deducem că aria elipsei este πab .

4.9 Schimbarea de variabile în integrala dublă

Fie Ω un domeniu plan simplu conex situat în planul O'uv având frontiera Γ' o curbă simplă închisă și netedă pe porțiuni. Dacă

$$T: \begin{cases} x = \varphi(u, v), \\ y = \psi(u, v), \end{cases} (u, v) \in \Omega$$
 (4.84)

este o transformare punctuală regulată (difeomorfism) de la planul O'uv la planul xOy, atunci $D = T(\Omega) = \operatorname{Im} T$ este un domeniu simplu conex din planul xOy, iar curba $\Gamma = T(\Gamma')$ este o curbă simplă închisă, netedă pe porțiuni și în plus $\partial D = \Gamma$.

Transformarea punctuală regulată T se numește directă, dacă un punct care se deplasează în sens invers acelor de ceasornic pe curba Γ' este transformat prin T, întrun punct care se deplasează pe Γ , tot în sensul invers acelor de ceasornic. Dacă cel de—al doilea sens de mișcare este cel al acelor de ceasornic, atunci transformarea punctuală regulată T se spune că este indirectă sau inversă.

Jacobianul transformării punctuale regulate T din (4.84) este funcția reală nenulă $\frac{D(\varphi,\psi)}{D(u,v)}$ ale cărei valori se determină după legea

$$\frac{D(\varphi,\psi)}{D(u,v)}(u,v) = \begin{vmatrix} \frac{\partial \varphi}{\partial u}(u,v) & \frac{\partial \varphi}{\partial v}(u,v) \\ \frac{\partial \psi}{\partial u}(u,v) & \frac{\partial \psi}{\partial v}(u,v) \end{vmatrix}.$$
(4.85)

Teorema 4.9.1 Dacă funcțiile $\varphi: \Omega \to \mathbb{R}$ și $\psi: \Omega \to \mathbb{R}$ care definesc difeomorfismul T sunt astfel încât admit derivate parțiale mixte de ordinul doi continue, iar jacobianul lui T este pozitiv pe Ω

$$\frac{D(\varphi, \psi)}{D(u, v)}(u, v) > 0, \quad (\forall) \ (u, v) \in \Omega, \tag{4.86}$$

atunci T este o transformare punctuală regulată directă.

Demonstrație. Să presupunem că o reprezentare parametrică a curbei orientate Γ' este

$$\Gamma': \begin{cases} u = u(t), \\ v = v(t), \end{cases} \quad t \in [a, b]. \tag{4.87}$$

Atunci, curba $\Gamma = T(\Gamma')$ va avea o reprezentare parametrică dată de

$$\Gamma: \begin{cases} x = \varphi(u(t), v(t)), \\ y = \psi(u(t), v(t)), \end{cases} \quad t \in [a, b].$$
 (4.88)

Convenim ca sensul direct sau pozitiv de parcurs al curbei închise Γ să fie sensul imprimat de creșterrea parametrului t. Atunci, folosind un rezultat din

paragraful precedent și formula de calcul a integralelor curbilinii de speța a doua, deducem

aria
$$D = \oint_{\Gamma} x \, dy = \int_{a}^{b} \varphi(u(t), v(t)) \, \frac{dy}{dt}(t) \, dt.$$
 (4.89)

Însă

$$\frac{dy}{dt}(t) = \frac{\partial \psi}{\partial u} \left(u(t), v(t) \right) \frac{du}{dt}(t) + \frac{\partial \psi}{\partial v} \left(u(t), v(t) \right) \frac{dv}{dt}(t) \tag{4.90}$$

Înlocuind (4.90) în (4.89) găsim o altă exprimare a ariei lui D

aria
$$D = \int_{a}^{b} \varphi(u(t), v(t)) \left(\frac{\partial \psi}{\partial u}(u(t), v(t))\right) \frac{du}{dt}(t) + \frac{\partial \psi}{\partial v}(u(t), v(t)) \frac{dv}{dt}(t) dt.$$
 (4.91)

Integrala din membrul al doilea din (4.91) este de fapt o integrală curbilinie pe Γ' , astfel că putem scrie

aria
$$D = \int_{\Gamma'} \varphi(u, v) \frac{\partial \psi}{\partial u}(u, v) du + \varphi(u, v) \frac{\partial \psi}{\partial v}(u, v) dv.$$
 (4.92)

Ultimei integrale îi aplicăm formula integrală Riemann–Green (4.75) adaptată la variabilele independente u și v

$$\int_{\Gamma'} P(u,v) du + Q(u,v) dv = \pm \iint_{\Omega} \left(\frac{\partial Q}{\partial u}(u,v) - \frac{\partial P}{\partial v}(u,v) \right) du dv, \quad (4.93)$$

unde semnul plus corespunde sensului direct pe Γ' , iar semnul minus corespunde sensului invers pe Γ' . Din relațiile (4.92) deducem că funcțiile P(u, v) și Q(u, v) din (4.93) au expresiile:

$$P(u,v) = \varphi(u,v) \frac{\partial \psi}{\partial u}(u,v); \quad Q(u,v) = \psi(u,v) \frac{\partial \varphi}{\partial v}(u,v)$$
 (4.94)

și deci expresia integrantului din membrul al doilea a egalității (4.93) va fi

$$\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} = \frac{\partial \varphi}{\partial u} \frac{\partial \psi}{\partial v} + \varphi \frac{\partial^2 \psi}{\partial v \partial u} - \frac{\partial \varphi}{\partial v} \frac{\partial \psi}{\partial u} - \varphi \frac{\partial^2 \psi}{\partial u \partial v}.$$
 (4.95)

În baza criteriului lui Schwarz, derivatele parțiale de ordinul al doilea mixte sunt egale și deci (4.95) devine

$$\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} = \frac{\partial \varphi}{\partial u} \frac{\partial \psi}{\partial v} - \frac{\partial \varphi}{\partial v} \frac{\partial \psi}{\partial u} = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \psi}{\partial u} & \frac{\partial \psi}{\partial v} \end{vmatrix} = \frac{D(\varphi, \psi)}{D(u, v)}. \tag{4.96}$$

În felul acesta, am obținut egalitatea

aria
$$D = \pm \iint_{\Omega} \frac{D(\varphi, \psi)}{D(u, v)}(u, v) du dv.$$
 (4.97)

Deoarece aria D > 0, în fața ultimei integrale trebuie luat semnul plus, adică în ultima integrală curbilinie pe curba închisă Γ' din șirul de egalități (4.92) trebuie luat sensul direct.

În mod asemănător se arată că dacă jacobianul transformării punctuale regulate T este negativ, atunci în cea de a doua integrală curbilinie din (4.92) trebuie luat sensul invers pe curba Γ' .

Observația 4.9.1 Din demonstrația teoremei precedente, rezultă că putem scrie egalitatea

$$aria D = \iint_{\Omega} \left| \frac{D(\varphi, \psi)}{D(u, v)} (u, v) \right| du dv$$
 (4.98)

indiferent dacă transformarea punctuală regulată T este directă sau inversă.

Funcția de sub semnul integrală din (4.98), fiind continuă, putem aplica teorema de medie pentru integrala dublă, de unde rezultă existența unui punct $(u_0, v_0) \in \Omega$ astfel încât

aria
$$D = \left| \frac{D(\varphi, \psi)}{D(u, v)} (u, v) \right|_{(u_0, v_0)} \cdot \operatorname{aria} \Omega.$$
 (4.99)

Observația 4.9.2 Egalitatea (4.99) are o analogie remarcabilă în cazul domeniilor unidimensionale. Dacă $f: [\alpha, \beta] \to [a, b]$ este o funcție Rolle cu derivata nenulă, atunci teorema creșterilor finite a lui Lagrange se poate transcrie în forma

$$l([a,b]) = |f'(\xi)| \cdot l([\alpha,\beta]),$$
 (4.100)

unde $\xi \in (\alpha, \beta)$, l([a, b]) este lungimea intervalului [a, b], $iar\ l([\alpha, \beta]) = \beta - \alpha$ este lungimea intervalului $[\alpha, \beta]$. Egalitatea (4.100) este analoaga unidimensională a egalității (4.99).

Teorema 4.9.2 Dacă T este transformarea punctuală regulată (4.84) și f este o funcție reală definită și continuă pe D, atunci are loc egalitatea

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{\Omega} f\Big(\varphi(u,v),\psi(u,v)\Big) \Big| \frac{D(\varphi,\psi)}{D(u,v)}(u,v) \Big| dudv \qquad (4.101)$$

numită formula schimbării de variabile în integrala dublă sau formula de transport.

Demonstrație. Existența integralelor din egalitatea (4.101) rezultă din faptul că funcția f este continuă pe D, iar T este transformare punctuală regulată în \mathbb{R}^2 . Fie acum

$$\Delta' = \{ D_1', D_2', \dots, D_n' \} \tag{4.102}$$

o diviziune a oarecare a domeniului Ω pe care este definită transformarea punctuală regulată T. Această transformare punctuală regulată duce D_i' în domeniul $D_i \subset D$ astfel încât

$$\Delta = \{ D_1, D_2, \cdots, D_n \} \tag{4.103}$$

este o diviziune a lui $D = T(\Omega)$.

Pentru fiecare domeniu D_i aplicăm formula (4.99). Rezultă în acest fel că pentru fiecare indice i cu valori de la 1 până la n putem scrie

aria
$$D_i = \left| \frac{D(\varphi, \psi)}{D(u, v)} (u, v) \right|_{(u_i, v_i)} \cdot \operatorname{aria} D_i'.$$
 (4.104)

Formăm acum suma integrală Riemann a funcției f corespunzătoare modului de divizare Δ și alegerii punctelor intermediare $(\xi_i, \eta_i) \in D_i$, unde

$$\xi_i = \varphi(u_i, v_i), \quad \eta_i = \psi(u_i, v_i). \tag{4.105}$$

Avem

$$\sigma_{\Delta}(f;\xi_i,\eta_i) = \sum_{i=1}^n f(\xi_i,\eta_i) \cdot \text{aria} D_i.$$
 (4.106)

Considerăm funcția

$$F: \Omega \to D, \quad F(u,v) = f\left(\varphi(u,v), \psi(u,v)\right) \left| \frac{D(\varphi,\psi)}{D(u,v)}(u,v) \right|. \tag{4.107}$$

Din (4.106) şi (4.107) deducem

$$\sigma_{\Delta}(f;\xi_i,\eta_i) = \sum_{i=1}^n F(u_i,v_i) \cdot \operatorname{aria} D_i' = \sigma_{\Delta'}(F;u_i,v_i). \tag{4.108}$$

Din (4.108) rezultă că suma integrală Riemann a funcției f relativă la modul de divizare Δ din (4.103), și pentru alegerea (4.105) a punctelor intermediare, este egală cu o suma integrală Riemann a funcției F din (4.107), corespunzătoare modului arbitrar Δ' de divizare a lui Ω și punctelor intermediare (u_i, v_i) care intră în relațiile (4.104).

Fie $(\Delta'_k)_{k\geq 1}$ un şir de diviziuni ale lui Ω cu proprietatea $\nu(\Delta'_k) \to 0$. Din continuitatea lui T pe mulţime compactă Ω rezultă uniforma continuitate a sa şi i deci condiţia $\nu(\Delta'_k) \to 0$ implică $\nu(\Delta_k) \to 0$, unde Δ_k este diviziunea lui D corespunzătoare diviziunii Δ'_k a lui Ω . Atunci, pentru fiecare număr natural $k \geq 1$, putem scrie egalitatea

$$\sigma_{\Delta_k}(f; \xi_i^k, \eta_i^k) = \sigma_{\Delta_k'}(F; u_i^k, v_i^k). \tag{4.109}$$

Din existența celor două integrale care intră în (4.101) și prin trecerea la limită în relația (4.109), obținem formula de transport (4.101) și teorema este demonstrată.

Observația 4.9.3 Formula schimbării de variabilă în integrala dublă se aplică ori de câte ori integrala dublă din membrul al doilea al relației (4.101) este mai simplă decât cea din membrul întâi.

Observația 4.9.4 Schimbarea de variabile (4.84) se alege astfel încât să se simplifice fie domeniul de integrare, fie funcția de integrat, fie ambele. Alegerea schimbării de variabile este sugerată de integrala din membrul stâng al egalității (4.101).

Exemplul 4.9.1 Să se calculeze aria domeniului plan D mărginit de curbele:

$$xy = a;$$
 $xy = b;$ $b > a > 0$
 $y = \alpha x;$ $y = \beta x,$ $\beta > \alpha > 0,$ (4.110)

situat în primul cadran al sistemului de coordonate xOy.

218 Ion Crăciun

Soluție. Aria domeniului D, calculată cu ajutorul integralei duble, este

$$\operatorname{aria} D = \iint_{D} dx dy. \tag{4.111}$$

Dacă scriem domeniul D în forma

$$D = \{(x, y) \in \mathbb{R}^2 : \ a \le x \, y \le b \, ; \ \alpha \le \frac{y}{x} \le \beta \}, \tag{4.112}$$

atunci pentru calculul integralei duble ni se sugerează transformarea punctuală

$$T^{-1}: \begin{cases} u = x y, \\ v = \frac{y}{x}, \end{cases} (u, v) \in [a, b] \times [\alpha, \beta], \quad (x, y) \in D, \tag{4.113}$$

care se vede că este inversa transformării punctuale

$$T: \begin{cases} x = \sqrt{\frac{u}{v}}, \\ y = \sqrt{uv}, \end{cases} (u, v) \in [a, b] \times [\alpha, \beta], (x, y) \in D. \tag{4.114}$$

Ambele transformări punctuale sunt regulate, iar difeomorfismul T transformă intervalul bidimensional $\Omega = [a,b] \times [\alpha,\beta]$ în domeniul D. Cum T și T^{-1} sunt transformări punctuale regulate inverse una alteia rezultă

$$\frac{D(x,y)}{D(u,v)} = \frac{1}{\frac{D(u,v)}{D(x,y)}} = \frac{1}{\begin{vmatrix} y & -\frac{y}{x^2} \\ x & \frac{1}{x} \end{vmatrix}} = \frac{1}{2\frac{y}{x}} = \frac{1}{2v}.$$
 (4.115)

Deci aria căutată va fi

$$\operatorname{aria} D = \iint\limits_{D} dx dy = \frac{1}{2} \iint\limits_{\Omega} \frac{du dv}{v} = \frac{1}{2} \int_{a}^{b} du \int_{\alpha}^{\beta} \frac{dv}{v} = \frac{b-a}{2} \cdot \ln \frac{\beta}{\alpha}. \quad (4.116)$$

Trecerea la coordonate polare este una dintre cele mai des utilizate schimbări de variabile și este definită de transformarea

$$T: \begin{cases} x = \rho \cos \theta, \\ y = \rho \sin \theta, \end{cases}$$
 (4.117)

unde $(\rho, \theta) \in \Omega \subset [0, +\infty) \times [0, 2\pi)$ şi $(x, y) \in D$.

Se constată simplu că transformarea (4.117) este o transformare punctuală regulată, iar

$$\frac{D(x,y)}{D(\rho,\theta)} = \begin{vmatrix} \cos\theta & \sin\theta \\ -\rho\sin\theta & \rho\cos\theta \end{vmatrix} = \rho \tag{4.118}$$

care este pozitiv în toate punctele din interiorul lui Ω .

Formula schimbării de variabile în integrala dublă când se trece de la coordonatele carteziene la variabilele polare date de relațiile (4.117) este

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{\Omega} f(\rho \cos \theta, \rho \sin \theta) \rho \, d\rho \, d\theta. \tag{4.119}$$

Exemplul 4.9.2 Să se calculeze integrala dublă

$$I(R) = \iint_{D} e^{-x^{2} - y^{2}} dx dy, \qquad (4.120)$$

unde D este discul închis cu centrul în origine de rază R. Folosind rezultatul stabilit să se arate că

$$\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$
 (4.121)

Soluție. Pentru calculul integralei duble efectuăm schimbarea de variabile (4.117). Se vede imediat că Ω este intervalul bidimensional $\Omega = [0, R] \times [0, 2\pi)$. Aplicând formula (4.119), obținem

$$I(R) = \iint_{\Omega} \rho e^{-\rho^2} d\rho d\theta = \int_0^{2\pi} d\theta \int_0^R \rho e^{-\rho^2} d\rho = \pi (1 - e^{-\rho^2}). \tag{4.122}$$

Din acest rezultat, prin trecere la limită pentru $R \to +\infty$, găsim

$$\iint_{\mathbb{R}^2} e^{-x^2 - y^2} \, dx dy = \pi. \tag{4.123}$$

Să considerăm acum intervalul bidimensional închis $\Omega = [-a,a] \times [-a,a]$, cu a>0, și integrala dublă

$$J(a) = \iint_{\Omega} e^{-x^2 - y^2} dx dy.$$
 (4.124)

Evident, Ω este intervalul bidimensional cu laturile egale cu 2a și cu centrul de simetrie în originea reperului xOy. Avem

$$J(a) = \int_{-a}^{a} e^{-x^{2}} dx \int_{-a}^{a} e^{-y^{2}} dy = \left(\int_{-a}^{a} e^{-t^{2}} dt \right)^{2} = \left(2 \int_{0}^{a} e^{-t^{2}} dt \right)^{2}.$$
 (4.125)

Trecând la limită pentru $a \to +\infty$ în egalitatea

$$J(a) = \left(2 \int_0^a e^{-t^2} dt\right)^2, \tag{4.126}$$

obţinem o altă evaluare a integralei duble pe întreg planul din funcţia $e^{-x^2-y^2}$ care, în analogie cu integralele improprii, putem să o numim integrală dublă improprie. După trecerea la limită, găsim

$$\iint_{\mathbb{R}^2} e^{-x^2 - y^2} dx dy = 4 \left(\int_0^{+\infty} e^{-x^2} dt \right)^2. \tag{4.127}$$

Din (4.123) şi (4.127) deducem (4.121), rezultat utilizat în teoria probabilităților.

4.10 Aplicații ale integralei duble în mecanică și geometrie

4.10.1 Masa și centrul de greutate ale unei plăci

Considerăm că întrun plan s-a ales reperul cartezian xOy și considerăm în acesta domenii simple despre care se știe că sunt mulțimi carabile.

Definiția 4.10.1 Se numește placă materială în planul xOy ansamblul \mathcal{P} dintre un domeniu simplu $D \subset \mathbb{R}^2$ și funcția reală ρ definită și continuă pe D. Mulțimea D se numește configurația plăcii iar funcția ρ este denumită densitatea de distribuție a materiei în placă. Placa materială se numește omogenă dacă ρ este funcția constantă pe D și neomogenă când densitatea acesteia este variabilă de la punct la punct.

Observația 4.10.1 Dacă placa \mathcal{P} este omogenă și are densitatea egală cu constanta ρ_0 , atunci masa $\mathcal{M}(\mathcal{P})$ a acesteia este produsul dintre densitatea constantă ρ_0 și aria domeniului D, deci

$$\mathcal{M}(\mathcal{P}) = \rho_0 \cdot \operatorname{aria} D. \tag{4.128}$$

Să determinăm masa unei plăci materiale neomogene $\mathcal{P} = \{D; \rho\}$. Pentru aceasta, să efectuăm o divizare a domeniului D și în fiecare parte componentă D_i a diviziunii alegem un punct de coordonate (ξ_i, η_i) . Masa fiecărei plăci componente $\mathcal{P}_i = \{D_i; \rho\}$ poate fi aproximată cu masa plăcii omogene care are configurația D_i și densitatea constantă egală cu $\rho(\xi_i, \eta_i)$. Atunci, o valoare aproximativă a masei întregii plăci poate fi

$$\mathcal{M}(\mathcal{P}) \approx \sum_{i=1}^{n} \rho(\xi_i, \eta_i) \operatorname{aria} D_i.$$
 (4.129)

Pentru a obține masa exactă a plăcii materiale este necesar să trecem la limită, pentru norma divizării lui D tinzând la zero, în suma integrală Riemann din (4.129). Deoarece ρ este funcție continuă, iar D este un domeniu simplu rezultă că în locul lui (4.129) vom avea

$$\mathcal{M}(\mathcal{P}) = \iint_{D} \rho(x, y) dx dy = \iint_{D} dm, \qquad (4.130)$$

unde

$$dm = \rho(x, y)dxdy \tag{4.131}$$

se numește element de masă al plăcii.

Să determinăm coordonatele centrului de greutate a plăcii \mathcal{P} . Pentru aceasta, divizăm iarăși domeniul D cu ajutorul divizării Δ care constă din domeniile D_1, D_2, \dots, D_n , alegem în fiecare domeniu component punctul $(\xi_i, \eta_i) \in D_i$ și notăm:

$$\boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_n); \quad \boldsymbol{\eta} = (\eta_1, \eta_2, \dots, \eta_n).$$

Considerînd că porțiunea D_i din placă este una omogenă cu densitatea constantă și egală cu $\rho(\xi_i, \eta_i)$, masa m_i a acestei plăci omogene va fi

$$m_i = \rho(\xi_i, \eta_i) \operatorname{aria} D_i. \tag{4.132}$$

Gândind aproximativ, putem asimila placa \mathcal{P} cu sistemul de puncte materiale

$$M_1, M_2, \ldots, M_n$$

care au respectiv ponderile m_1, m_2, \dots, m_n . Atunci, putem scrie expresiile bine cunoscute ale coordonatelor $x_G(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta})$ și $y_G(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta})$ ale centrului de

greutate al unui sistem de puncte materiale:

$$x_{G}(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}) = \frac{\sum_{i=1}^{n} \xi_{i} \, \rho(\xi_{i}, \eta_{i}) \operatorname{aria} D_{i}}{\sum_{i=1}^{n} \rho(\xi_{i}, \eta_{i}) \operatorname{aria} D_{i}}; \quad y_{G}(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}) = \frac{\sum_{i=1}^{n} \eta_{i} \, \rho(\xi_{i}, \eta_{i}) \operatorname{aria} D_{i}}{\sum_{i=1}^{n} \rho(\xi_{i}, \eta_{i}) \operatorname{aria} D_{i}}.$$

$$(4.133)$$

Pentru a obţine valorile exacte ale coordonatelor centrului de greutate a plăcii \mathcal{P} , trebuie să trecem la limită în relaţiile (4.133) când norma divizării Δ tinde la zero. Numitorii expresiilor din membrul drept al egalităţilor (4.133) sunt egali cu suma Riemann a funcţiei ρ corespunzătoare divizării Δ şi alegerii $(\xi_i, \eta_i) \in D_i$ a punctelor intermediare. Numărătorul primei expresii de mai sus este suma integrală Riemann $\sigma_{\Delta}(x \, \rho; \xi_i, \eta_i)$, iar cel de al doilea numărător este $\sigma_{\Delta}(y \, \rho; \xi_i, \eta_i)$. Deoarece funcţiile $\rho(x, y), x \, \rho(x, y)$ şi $y \, \rho(x, y)$ sunt continue, aceste expresii au limită pentru $\nu(\Delta) \to 0$ şi aceste limite sunt integralele duble ale funcţiilor de mai sus pe domeniul Δ . Notând cu x_G şi y_G valorile exacte ale coordonatelor centrului de greutate al plăcii, avem:

$$x_G = \lim_{\nu(\Delta) \to 0} x_G(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}); \quad y_G = \lim_{\nu(\Delta) \to 0} y_G(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}). \tag{4.134}$$

După trecerea la limită și folosirea relațiilor (4.130), (4.131) și (4.134) deducem că expresiile coordonatelor centrului de greutate G al plăcii \mathcal{P} sunt

$$x_G = \frac{1}{\mathcal{M}(\mathcal{P})} \iint_D x \, dm; \quad y_G = \frac{1}{\mathcal{M}(\mathcal{P})} \iint_D y \, dm. \tag{4.135}$$

Dacă placa materială este omogenă, formulele pentru coordonatele centrului de greutate se simplifică și devin

$$\begin{cases} x_G = \iint_D x \, dx \, dy \\ \iint_D dx \, dy = \frac{1}{\text{aria } D} \iint_D x \, dx \, dy, \\ y_G = \iint_D y \, dm \\ \iint_D dx \, dy = \frac{1}{\text{aria } D} \iint_D y \, dx \, dy. \end{cases}$$

$$(4.136)$$

Exemplul 4.10.1 Să se calculeze coordonatele centrului de greutate al plăcii omogene $\mathcal{P} = \{D, \rho\}$, cu densitatea constantă și egală cu unitatea, unde

$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le a^2, \ x^2 + y^2 \ge ax, \ y \ge 0\}, \ (a > 0). \ (4.137)$$

Soluție. Configurația plăcii \mathcal{P} este domeniul plan închis D inclus în semiplanul superior a cărui frontieră se compune din: semicercul superior al cercului cu centrul în origine și raza egală cu a; segmentul de dreaptă de pe Oxcu abscisele $-a \leq x \leq 0$; semicercul superior al cercului cu centrul în punctul (a/2,0) și rază a/2.

Prin trecerea la coordonate polare

$$T: x = \rho \cos \theta, \ y = \rho \sin \theta, \ 0 \le \theta \le 2\pi, \ \rho \ge 0 \tag{4.138}$$

domeniul D se transformă în domeniul $\Omega = D_1' \cup D_2'$ unde:

$$D_1' = \{(\rho, \theta) : 0 \le \theta \le \frac{\pi}{2}, \ a \cos \theta \le \rho \le a\};$$
 (4.139)

$$D_2' = \{(\rho, \theta) : \frac{\pi}{2} \le \theta \le \pi, \ 0 \le \rho \le a\}.$$
 (4.140)

Observăm că domeniul D'_1 este transformatul prin T din (4.138) a porțiunii D_1 a lui D aflată în primul cadran al reperului xOy, D'_2 este transformatul părții D_2 a lui D situată în cadranul al doilea și $D = D_1 \cup D_2$.

Pentru calculul integralelor duble care urmează vom efectua schimbarea de variabile (4.138).

Placa \mathcal{P} fiind omogenă, are masa \mathcal{M} dată de integrala dublă

$$\mathcal{M} = \iint_{D} dx \, dy = \iint_{\Omega} \rho \, d\rho d\theta =$$

$$= \int_{0}^{\pi/2} d\theta \int_{a\cos\theta}^{a} \rho \, d\rho + \int_{\pi/2}^{\pi} d\theta \int_{0}^{a} \rho \, d\rho =$$

$$= \frac{1}{2} \int_{0}^{\pi/2} (a^{2} - a^{2}\cos^{2}\theta) \, d\theta + \frac{1}{2} \int_{\pi/2}^{\pi} a^{2} \, d\theta = \frac{3\pi \, a^{2}}{8}.$$

Coordonatele centrului de greutate $G(x_G, y_G)$ sunt

$$x_{G} = \frac{1}{\mathcal{M}} \iint_{D} x \, dx \, dy = \frac{1}{\mathcal{M}} \iint_{\Omega} \rho^{2} \cos \theta \, d\rho d\theta =$$

$$= \frac{1}{\mathcal{M}} \int_{0}^{\pi/2} \cos \theta \, d\theta \int_{a\cos\theta}^{a} \rho^{2} \, d\rho +$$

$$+ \frac{1}{\mathcal{M}} \int_{\pi/2}^{\pi} \cos \theta \, d\theta \int_{0}^{a} \rho^{2} \, d\rho =$$

$$= \frac{a^{3}}{3\mathcal{M}} \int_{0}^{\pi/2} (1 - \cos^{3}\theta) \cos \theta \, d\theta + \frac{a^{3}}{3\mathcal{M}} \int_{\pi/2}^{\pi} \cos \theta \, d\theta = -\frac{a}{6},$$

$$y_{G} = \iint_{D} y \, dx \, dy = \iint_{\Omega} \rho^{2} \sin \theta \, d\rho d\theta = \iint_{D'_{1}} \rho^{2} \sin \theta \, d\rho d\theta =$$

$$\iint_{D'_{2}} \rho^{2} \sin \theta \, d\rho d\theta = \int_{0}^{\pi/2} \sin \theta \, d\theta \int_{a\cos\theta}^{a} \rho^{2} \, d\rho + \int_{\pi/2}^{\pi} \sin \theta \, d\theta \int_{0}^{a} \rho^{2} \, d\rho =$$

$$= \frac{a^{3}}{3\mathcal{M}} \int_{0}^{\pi/2} (1 - \cos^{3}\theta) \sin \theta \, d\theta + \frac{a^{3}}{3\mathcal{M}} \int_{\pi/2}^{\pi} \sin \theta \, d\theta = \frac{14 \, a}{9\pi}.$$

Prin urmare, centrul de greutate al plăcii consideratere coordonatele $(-a/6, 14 \, a/(9\pi))$.

4.10.2 Momente de inerție ale unei plăci

După cum bine se știe, momentul de inerție al unui punct material de pondere m față de un element geometric, care în plan poate fi o dreaptă sau un punct, este egal cu produsul dintre masa acestuia și pătratul distanței dintre punctul material și acel element. Momentul de inerție al unui sistem de puncte materiale față de un element geometric este suma momentelor fiecărui punct material în parte față de același element geometric.

Să determinăm momentele de inerție ale plăcii $\mathcal{P} = \{D; \rho\}$ față de elementele reperului cartezian xOy, adică față de axele sale și față de originea O.

În acest scop divizăm din nou placa \mathcal{P} în plăcile componente $\mathcal{P}_i = \{D_i, \rho\}$, unde $\Delta = \{D_1, D_2, \dots, D_n\}$ este o divizare a lui D, apoi fiecare dintre

aceste plăci o considerăm placă omogenă cu densitatea egală cu $\rho(\xi_i, \eta_i)$, unde $(\xi_i, \eta_i) \in D_i$, după care putem aproxima placa \mathcal{P}_i cu punctul material M_i având ponderea m_i dată în (4.132). Momentele de inerție ale acestui sistem de puncte materiale față de axele de coordonate Ox, Oy, conform celor stabilite mai sus, sunt

$$I_{x}(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}) = \sum_{i=1}^{n} \eta_{i}^{2} m_{i} = \sum_{i=1}^{n} \eta_{i}^{2} \rho(\xi_{i}, \eta_{i}) \operatorname{aria} D_{i},$$

$$I_{y}(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}) = \sum_{i=1}^{n} \xi_{i}^{2} m_{i} = \sum_{i=1}^{n} \xi_{i}^{2} \rho(\xi_{i}, \eta_{i}) \operatorname{aria} D_{i}.$$

$$(4.141)$$

Observăm că

$$I_x(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}) = \sigma_{\Delta}(y^2 \rho; \xi_i, \eta_i), \quad I_y(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}) = \sigma_{\Delta}(x^2 \rho; \xi_i, \eta_i).$$

Momentul de inerție al acelui
ași sistem de puncte materiale față de originea ${\cal O}$ a reperului este

$$I_{O}(\Delta; \boldsymbol{\xi}, \boldsymbol{\eta}) = \sum_{i=1}^{n} (\xi^{2} + \eta_{i}^{2}) m_{i} =$$

$$= \sum_{i=1}^{n} (\xi_{i}^{2} + \eta_{i}^{2}) \rho(\xi_{i}, \eta_{i}) \operatorname{aria} D_{i} =$$

$$= \sigma_{\Delta}((x^{2} + y^{2}) \rho; \xi_{i}, \eta_{i}).$$
(4.142)

Trecând la limită în (4.141) şi (4.142) când norma divizării Δ tinde la zero şi ținând cont că funcțiile $y^2\rho(x,y)$, $x^2\rho(x,y)$ şi $(x^2+y^2)\rho(x,y)$ sunt continue pe D, deci integrabile, constatăm că limitele din membrul doi există şi sunt integralele duble pe D din funcțiile indicate. Prin urmare, există şi limitele din membrul întâi ale relațiilor (4.141) şi (4.142), pe care le notăm cu I_x , I_y şi I_O şi care sunt momentele de inerție față de respectiv axele de coordonate și față de originea reperului. Avem

$$I_{x} = \iint_{D} y^{2} \rho(x, y) dx dy = \iint_{D} y^{2} dm, \quad I_{y} = \iint_{D} x^{2} \rho(x, y) dx dy = \iint_{D} x^{2} dm,$$
$$I_{O} = \iint_{D} (x^{2} + y^{2}) \rho(x, y) dx dy = \iint_{D} (x^{2} + y^{2}) dm.$$

Se observă că are loc relația

$$I_O = I_x + I_y. (4.143)$$

Exemplul 4.10.2 Să se determine momentele de inerție ale plăcii $\mathcal{P} = \{D, \rho\}$ în raport cu elementele reperului de coordonate xOy, unde

$$D = \{(x, y) \in \mathbb{R}^2 : x + y \le 1, \ x \ge 0, \ y \ge 0\}$$
 (4.144)

și densitatea este $\rho(x,y) = xy$.

Soluție. Configurația plăcii \mathcal{P} este domeniul închis D având frontiera triunghiul isoscel dreptunghic cu catetele de lungime 1 situate pe axele de coordonate în porțiunea lor pozitivă. Rezultă că D este simplu în raport cu ambele axe de coordonate. Prezentându-l ca domeniu simplu în raport cu Ox și respectiv în raport cu Oy, avem

$$D = D_x = \{(x, y) \in \mathbb{R}^2 : 0 < y < 1, 0 < x < 1 - y\}; \tag{4.145}$$

$$D = D_y = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 1 - x\}. \tag{4.146}$$

În calculul momentului de inerție I_x , în raport cu axa Ox, vom considera că D are forma (4.145), iar pentru calculul lui I_y vom lua pe D sub forma (4.146). Deci:

$$I_x = \iint_{D_x} y^2 \rho(x, y) dx dy = \int_0^1 dy \int_0^{1-y} xy^3 dx = \frac{1}{2} \int_0^1 (1 - y^2) y^3 dy = \frac{1}{120};$$

$$I_y = \iint_{D_y} x^2 \rho(x, y) dx dy = \int_0^1 dx \int_0^{1-x} x^3 y dx = \frac{1}{2} \int_0^1 (1 - x^2) x^3 dx = \frac{1}{120}.$$

Aşadar, momentele de inerţie în raport cu axele de coordonate sunt egale, iar cel în raport cu originea reperului, I_O , este suma $I_O = I_x + I_y = \frac{1}{60}$.

4.10.3 Momente statice ale unei plăci

Momentele statice M_x și M_y ale plăcii materiale $\mathcal{P} = \{D, \rho\}$ în raport cu axele de coordonate Ox și Oy, se exprimă prin formulele

$$M_x = \iint_D y \,\rho(x,y) dx dy, \quad M_y = \iint_D x \,\rho(x,y) dx dy. \tag{4.147}$$

Exemplul 4.10.3 Să se calculeze momentele statice în raport cu axele de coordonate ale plăcii $\mathcal{P} = \{D, \rho\}$, mărginită de dreapta x + y = 2 și de parabola $y = x^2$ știind că densitatea este $\rho(x, y) = y$.

Soluție. Domeniul D este simplu în raport cu Oy căci poate fi definit de inegalitățile

$$-2 < x < 1, \quad x^2 < y < 2 - x.$$
 (4.148)

Aplicând formulele (4.147) de calcul ale momentelor statice şi ţinând cont de inegalitățile (4.148), avem:

$$M_{x} = \iint_{D} y \,\rho(x,y) dx dy = \int_{-2}^{1} dx \int_{x^{2}}^{2-x} y^{2} \,dy =$$

$$= \frac{1}{3} \int_{-2}^{1} \left((2-x)^{3} - x^{6} \right) dx = -\frac{1}{3} \left(\frac{(x-2)^{4}}{4} + \frac{x^{7}}{7} \right) \Big|_{-2}^{1} = \frac{423}{28};$$
(4.149)

$$M_{y} = \iint_{D} x \,\rho(x,y) dx dy = \int_{-2}^{1} x \,dx \int_{x^{2}}^{2-x} y \,dy =$$

$$= \frac{1}{2} \int_{-2}^{1} x \left((2-x)^{2} - x^{4} \right) dx = \frac{1}{2} \int_{-2}^{1} (x^{3} - 4x^{2} + 4x - x^{5}) dx =$$

$$= \frac{1}{2} \left(\frac{x^{4}}{4} - \frac{4x^{3}}{3} + 2x^{2} - \frac{x^{6}}{6} \right) \Big|_{-2}^{1} = -\frac{45}{8}.$$

$$(4.150)$$

În cazul în care D s—ar considera domeniu simplu în raport cu Ox, volumul de calcul al integralelor duble pe $D = D_x$ este mai mare deoarece trebuie să scriem D_x ca o reuniune de două domenii, ambele simple în raport cu Ox.

4.10.4 Flux luminos incident pe o placă

Considerăm că placa $\mathcal{P} = \{D; \rho\}$ este situată în planul xOy a reperului spațial Oxyz și că în punctul $(0,0,z_0)$ de pa axa Oz se află o sursă luminoasă de intensitate constantă în toate direcțiile notată cu I. Ne propunem să calculăm fluxul luminos incident pe placa \mathcal{P} .

Fluxul luminos dF primit de placa elementară de arie ds este egal cu $I d\omega$, unde $d\omega$ este unghiul solid în punctul $(0,0,z_0)$ subântins de elementul de suprafață ds = dxdy asociat punctului plăcii de coordonate (x,y). Unghiul solid $d\omega$ este egal cu produsul raportului dintre aria ds a elementului de

suprafață și pătratul distanței de la acest element la sursa de lumină, și cosinusul unghiului φ dintre normala la elementul de suprafață și direcția spre care se află sursa. Avem evident

$$\cos \varphi = \frac{z_0}{\sqrt{x^2 + y^2 + z_0^2}}. (4.151)$$

Valoarea derivatei $\frac{dF}{ds}$ în punctul (x,y) al plăcii este cunoscută ca intensitatea de luminozitate în acest punct și este notată cu A(x,y). Rezultă că

$$A(x,y) = \frac{dF}{ds} = \frac{I d\omega}{ds} = \frac{I z_0}{\left(x^2 + y^2 + z_0^2\right)^{3/2}}.$$
 (4.152)

Procedând similar ca în cazul determinării masei plăcii constatăm că fluxul luminos total F primit de placă este integrala dublă pe D din funcția A(x, y)

$$F = \iint_{D} A(x,y)dxdy = Iz_{0} \iint_{D} \frac{dxdy}{\left(x^{2} + y^{2} + z_{0}^{2}\right)^{3/2}}.$$
 (4.153)

4.10.5 Debitul unui fluid prin secţiunea transversală a unui canal

Considerăm un fluid care curge întrun canal și o secțiune transversală a sa D, perpendiculară pe direcția de curgere a fluidului. Introducând sistemul de coordonate cartezian xOy în planul secțiunii transversale, putem privi viteza V a fluidului, în fiecare punct al secțiunii, ca fiind o funcție de x și y, coordonatele carteziene ale acelui punct.

Ne propunem să determinăm cantitatea de fluid care trece prin secțiune în unitatea de timp.

În acest scop, în punctul (x,y) al secțiunii transversale considerăm un element inmfinitezimal ds al acesteia de arie dxdy. Cantitatea de fluid care străbate elementul de plan ds în unitatea de timp este egală evident cu masa unui cilindru elementar, care conține fluid, cu baza egală cu ds și înălțimea egală cu viteza fluidului în punctul (x,y) al secțiunii transversale. Așadar, debitul elementar dQ al fluidului este

$$dQ = \rho(x, y)V(x, y)dxdy, \tag{4.154}$$

unde $\rho(x,y)$ este densitatea fluidului în punctul (x,y). Pentru a găsi debitul Q(D) prin secțiunea D ar trebui să sumăm toate debitele elementare, sumare care conduce la integrala dublă pe domeniul D din funcția ρV . Prin urmare,

$$Q(D) = \iint_{D} \rho(x, y)V(x, y)dxdy. \tag{4.155}$$

4.10.6 Volumul unui cilindroid

Definiția 4.10.2 Fie D un domeniu simplu aflat în planul xOy al reperului cartezian spațial Oxyz și $f: D \to \mathbb{R}^+$ o funcție reală, de două variabile reale, pozitivă și continuă pe D. Se numește **cilindroid** mulțimea C a punctelor din spațiu definită prin

$$C = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D; \ 0 \le z \le f(x, y)\}. \tag{4.156}$$

Mulţimile D şi $\mathcal{B}_s = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D; z = f(x, y)\}$ sunt prin definiție bazele cilindroidului.

Dacă considerăm o divizare $\Delta = \{D_1, D_2, \dots, D_n\}$ a domeniului D şi în fiecare domeniu component D_i al acesteia alegem un punct $(\xi_i, \eta_i) \in D_i$, atunci putem considera corpurile prismatice Π_i

$$\Pi_i = \{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in D_i; \ 0 \le z \le f(\xi_i, \eta_i) \}$$
(4.157)

care are baza D_i şi înălțimea h_i egală cu valoarea funcției f în punctul (ξ_i, η_i) . Volumul $\mathcal{V}(\Pi_i)$ a unui asemenea corp prismatic este

$$\mathcal{V}(\Pi_i) = f(\xi_i, \eta_i) \cdot \text{aria } D_i. \tag{4.158}$$

Suma

$$\sum_{i=1}^{n} \mathcal{V}(\Pi_i) \tag{4.159}$$

reprezintă o valoare aproximativă a volumului cilindroidului \mathcal{C} . O aproximare mai bună a volumului cilindroidului se va obține dacă se va considera o diviziune Δ' mai fină decât diviziunea Δ . Mai mult, analiză modului de abordare a celorlalte aplicații ale integralei duble conduce la observația următoare.

Observația 4.10.2 Valoarea exactă a volumului cilindroidului va fi limita sumei din (4.159) când norma divizării Δ tinde la zero, în cazul în care această limită există.

Din (4.158) și (4.159) constatăm că valoarea aproximativă a volumului $\mathcal{V}(\mathcal{C})$ al cilindroidului \mathcal{C} este suma integrală Riemann a funcției f corespunzătoare modului de divizare Δ și alegerii (ξ_i , η_i) a punctelor intermediare

$$\mathcal{V}(\mathcal{C}) \approx \sum_{i=1}^{n} f(\xi_i, \eta_i) \cdot \operatorname{aria} D_i = \sigma_{\Delta}(f; \xi_i, \eta_i).$$
 (4.160)

Din Observația 4.10.2, relația (4.160) și din faptul că f este funcție continuă deducem formula de calcul a volumului cilindroidului C

$$\mathcal{V}(\mathcal{C}) = \iint_{D} f(x, y) dx dy. \tag{4.161}$$

Observația 4.10.3 Funcția continuă f din Definiția 4.10.2 poate avea și valori negative, noțiunea de cilindroid păstrându-și sensul, acesta fiind o reunine de mulțimi de forma (4.156) în acele subdomenii ale lui D unde f are valori pozitive și de mulțimi de forma

$$C_{-} = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D_{-}; \ f(x, y) \le z \le 0\}$$
(4.162)

în acele părți D_{-} a lui D unde funcția f are valori negative.

Cu alte cuvinte întrun astfel de cilindroid baza \mathcal{B}_s este o reuniune de porțiuni de suprafețe situate atât în semispațiul superior z > 0 cât și în semispațiul inferior z < 0.

Înălțimea corpului prismatic atașat porțiunii de cilindroid (4.162) va fi

$$h_i = -f(\xi_i, \eta_i) = |f(\xi_i, \eta_i)|,$$
 (4.163)

iar o valoare aproximativă a volumului întregului cilindroid este

$$\mathcal{V}(\mathcal{C}) \approx \sum_{i=1}^{n} |f(\xi_i, \eta_i)| \cdot \operatorname{aria} D_i = \sigma_{\Delta}(|f|; \xi_i, \eta_i), \tag{4.164}$$

unde |f| este funcția valoare absolută a funcției f.

In acest mod, constatăm că volumul unui cilindroid cu o bază domeniul simplu $D \subset xOy$, iar cealaltă bază având porțiuni atât în semispațiul z > 0 cât și în semispațiul z < 0, este dat de integrala dublă

$$\mathcal{V}(\mathcal{C}) = \iint\limits_{D} |f|(x,y)dxdy = \iint\limits_{D} |f(x,y)| dxdy. \tag{4.165}$$

Exemplul 4.10.4 Să se determine volumul corpului ale cărui puncte au coordonatele (x, y, z) care satisfac inegalitățile

$$hz \ge x^2 + y^2, \ 0 \le z \le h.$$
 (4.166)

Soluție. Corpul căruia trebuie sa–i determinăm volumul este complementara cilindroidului C_2 față de cilindroidul C_1 . Acești doi cilindroizi au aceeași bază, situată în planul xOy, și anume discul închis cu centrul în origine de rază h

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le h^2\}. \tag{4.167}$$

Cilindroidul C_1 are baza superioară discul închis de rază h cu centrul în punctul $M_0(0,0,h)$ situat în planul paralel cu planul xOy care trece prin M_0 , plan care are ecuația z=h, în timp ce cilindroidul C_2 are baza superioară o porțiune din paraboloidul de revoluție de ecuație $z=\frac{1}{h}(x^2+y^2)$. Atunci, volumul \mathcal{V} al corpului considerat în enunț este

$$\mathcal{V} = \mathcal{V}(\mathcal{C}_1) - \mathcal{V}(\mathcal{C}_2) = \iint_D h \, dx dy - \iint_D \frac{1}{h} (x^2 + y^2) dx dy =$$

$$= h \cdot \operatorname{aria} D - \frac{1}{h} \iint_D (x^2 + y^2) dx dy.$$
(4.168)

Observăm că valoarea ultimei integrale se poate determina foarte simplu dacă se trece la coordonate polare

$$x = \rho \cos \theta$$
, $y = \rho \sin \theta$.

Pentru ca $(x,y) \in D$ trebuie ca punctul de coordonate (ρ,θ) să se afle în intervalul bidimensional $\Delta = [0,h] \times [0,2\pi)$. Aplicând formula schimbării de variabile, găsim

$$\iint\limits_{D} (x^2 + y^2) dx dy = \iint\limits_{\Delta} \rho^2 \cdot \rho \, d\rho d\theta =$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{h} \rho^3 \, d\rho = 2\pi \cdot \frac{\rho^4}{4} \Big|_{0}^{h} = \frac{\pi \, h^4}{2}.$$

Ținând cont că aria $D=\pi\,h^2$ și folosind rezultatele determinate mai sus constatăm că volumul corpului din enunț este

$$\mathcal{V} = \pi \, h^3 - \frac{\pi \, h^3}{2} = \frac{\pi \, h^3}{2},$$

rezultat care arată că volumul corpului este același cu volumul cilindroidului C_2 .

Exemplul 4.10.5 Să se calculeze volumul cilindroidului cu baza superioară pe suprafața de ecuație

$$z = x^2 + y^2,$$

iar baza inferioară, inclusă în planul xOy, domeniul compact

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > x, x^2 + y^2 < 2x\}.$$

Soluție. Volumul cilindroidului este

$$\mathcal{V}(\mathcal{C}) = \iint\limits_{D} (x^2 + y^2) dx dy.$$

Trecând la coordonate polare

232

$$x = \rho \cos \theta, \quad y = \rho \sin \theta \tag{4.169}$$

se constată că punctul $(x,y) \in D$ dacă $(\rho,\theta) \in \Omega$, unde

$$\Omega = \{(\rho, \theta) : -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \cos \theta \le \rho \le 2\cos \theta\}.$$

Aplicând formula schimbării de variabilă în integrala dublă, găsim:

$$\mathcal{V}(\mathcal{C}) = \int_{-\pi/2}^{\pi/2} d\theta \int_{\cos \theta}^{2\cos \theta} \rho^3 d\rho = \frac{15}{4} \int_{-\pi/2}^{\pi/2} \cos^4 \theta d\theta = \frac{45}{32} \pi.$$

Exemplul 4.10.6 Folosind integrala dublă, să se determine volumul V al corpului mărginit de suprafețele:

$$z = 6 - x^2 - y^2; \quad z = \sqrt{x^2 + y^2}.$$

Soluţie. Pentru a evalua volumul corpului dat, calculăm volumele a doi cilindroizi, primul cu baza superioară pe suprafaţa $z=6-x^2-y^2$, iar cel de al doilea cu baza superioară pe suprafaţa $z=\sqrt{x^2+y^2}$, ambii având aceeaşi bază inferioară, în planul xOy, definită de domeniul

$$D = \{(x, y) \in IR^2: x^2 + y^2 \le 4\}.$$

Volumul V este diferența volumelor celor doi cilindroizi. Avem:

$$\mathcal{V}(\mathcal{C}_1) = \iint\limits_{D} (6 - x^2 - y^2) dx dy; \quad \mathcal{V}(\mathcal{C}_2) = \iint\limits_{D} \sqrt{x^2 + y^2} dx dy.$$

Ambele integrale se calculează trecând la coordonatele polare (4.169) și se găsește în final că $V = \frac{32\pi}{3}$.

4.11 Integrale duble improprii

4.11.1 Domeniul de integrare nu este mărginit

Definiția 4.11.1 Se spune că un domeniu plan D este nemărginit dacă el conține puncte exterioare oricărui interval bidimensional închis și mărginit, sau echivalent, oricărui disc închis.

Vom presupune că orice parte mărginită a frontierei lui D este o curbă netedă sau netedă pe porțiuni. Un astfel de domeniu poate fi

- exteriorul unui domeniu mărginit sau a unui număr finit de domenii mărginite;
- porțiunea din plan limitată de o curbă de măsură Jordan nulă, care se întinde indefinit în ambele sensuri.

Să considerăm un șir infinit de discuri închise

$$K_1, K_2, \cdots, K_n, \cdots$$

cu centrul întrun punct oarecare C al planului raportat la reperul cartezian ortogonal Oxy și drept raze termenii șirului arbitrar strict crescător de numere pozitive

$$R_1, R_2, \cdots, R_n, \cdots$$

cu limita egală cu infinit. Fiecare din aceste discuri poate avea puncte comune cu un domeniu nemărginit dat D. Să notăm cu DK_n intersecția mulțimilor D şi K_n . Orice punct $P \in D$ va fi conținut, pentru n suficient de mare, în mulțimea corespunzătoare DK_n . Într-adevăr, este suficient să luăm pe n astfel încât să avem $R_n > d(P,C)$, unde d(P,C) este distanța euclidiană între punctele P şi O ale planului. Acest lucru este posibil întotdeauna

deoarece $\lim_{n\to+\infty} R_n = +\infty$. Proprietatea de mai sus poate fi exprimată echivalent spunând că șirul de mulţimi

$$DK_1, DK_2, \cdots, DK_n, \cdots$$

tinde către domeniul D și vom scrie, convențional

$$\lim_{n \to +\infty} DK_n = D.$$

În această situație se spune că domeniul nemărginit D admite o exhaustiune.

Definiția 4.11.2 Fie D o mulțime nemărginită din plan. Spunem că D admite o **exhaustiune** dacă există un şir (D_n) de mulțimi din plan, compacte, măsurabile Jordan astfel încât:

- $\operatorname{sirul}(D_n)$ este ascendent față de operația de incluziune, adică $D_n \subset D_{n+1} \operatorname{si} \cup_{n=1}^{+\infty} D_n = D;$
- orice multime compactă inclusă în D este conținută întrun D_n .

Pentru cele ce vor urma, este util să dăm definiția noțiunii de secțiune a unui domeniu nemărginit.

Definiția 4.11.3 Vom spune că un domeniu D' constituie o **secțiune** a domeniului nemărginit D, dacă există un disc închis K cu centrul în origine, conținând o porțiune din D și astfel încât să avem

$$DK \subset D' \subset D$$
.

Elementele unei exhaustiuni a domeniului nemărginit D constituie, cel puțin de la un anumit rang, secțiuni ale lui D.

Teorema 4.11.1 Din orice şir (D_n) de secțiuni ale domeniului nemărginit D, tinzând către D, se poate extrage un subşir (D_{k_n}) , astfel încât

$$D_{k_1} \subset D_{k_2} \subset \cdots \subset D_{k_n} \subset \cdots$$

 $\dot{s}i$

$$\lim_{n \to +\infty} D_{k_n} = D.$$

Demonstrație. Luăm $k_1 = 1$ și fie K_1 un disc închis care să conțină domeniul D_1 . Vom nota D_{k_2} , primul domeniu din șirul

$$D_2, D_3, \cdots,$$

pentru care $DK_1 \subset D_{k_2}$. Fie K_2 un disc închis care să conțină pe D_{k_2} . Vom numi D_{k_3} , primul domeniu din șirul care începe cu D_{k_2} , și pentru care $DK_2 \subset D_{k_3}$. Continuând, obținem un șir de secțiuni ale lui D care îndeplinește condiția cerută.

Definiția 4.11.4 Vom numi șir crescător de domenii orice șir de mulțimi în care fiecare domeniu este conținut în următorul.

Definiția 4.11.5 Fie f o funcție reală definită pe un domeniu nemărginit $D \subset \mathbb{R}^2$ și integrabilă pe orice subdomeniu compact care are arie, a lui D. Spunem că f este **integrabilă** pe D, dacă există un număr real J(D), astfel încât pentru orice exhaustiune (D_n) a lui D să avem

$$\lim_{n \to +\infty} \iint\limits_{D_n} f(x, y) dx dy = J(D)$$

și vom scrie

$$\iint\limits_{D} f(x,y)dxdy = J(D).$$

Despre integrala din membrul stång spunem că este convergentă pe mulțimea D

Unei integrale duble pe un domeniu nemărginit i se poate spune integrală improprie.

Exemplul 4.11.1 Funcția $f(x,y) = x^2y$ nu este integrabilă pe mulțimea $D = \mathbb{R}^2$.

Într-adevăr, dacă considerăm exhaustiunea (D_n) a mulțimii \mathbb{R}^2 , unde

$$D_n = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le n^2\},$$

iar n este un număr întreg pozitiv, atunci

$$\iint\limits_{D_n} f(x,y)dxdy = \iint\limits_{D_n} x^2ydxdy = \int_0^n d\rho \int_0^{2\pi} \rho^4 \sin\theta \cos^2\theta d\theta = 0.$$

Pe de altă parte, dacă considerăm exhaustiunea (D'_n) a lui \mathbb{R}^2 , unde D'_n este intervalul bidimensional închis $[-n, 2n] \times [-n, 2n]$, se vede imediat că

$$\iint_{D'_n} f(x,y) dx dy = \int_{-n}^{2n} x^2 dx \cdot \int_{-n}^{2n} y dy = \frac{7n^5}{2},$$

$$\operatorname{deci} \lim_{n \to +\infty} \iint_{D'_{x}} f(x, y) dx dy = 0.$$

Din Definiția 4.11.5 rezultă că funcția $f(x,y)=x^2y$ nu este integrabilă pe \mathbb{R}^2 sau că integrala improprie $\iint_{\mathbb{R}^2} f(x,y) dx dy$ este divergentă.

Teorema 4.11.2 Condiția necesară și suficientă pentru ca f să fie integrabilă pe domeniul nemărginit D este ca oricărui număr pozitiv ε să -i corespundă o secțiune $\overline{D} = \overline{D}(\varepsilon)$, astfel încât, pentru orice pereche de secțiuni D', D'', verificând relațiile

$$\overline{D} \subset D', \ \overline{D}'' \subset D$$
",

să avem

$$\Big| \iint\limits_{D''} f(x,y) dx dy - \iint\limits_{D'} f(x,y) dx dy \Big| < \varepsilon. \tag{4.170}$$

Demonstrație. Condiția este necesară. Într-adevăr, să presupunem funcția f integrabilă pe D și să notăm cu J(D) valoarea sa, adică

$$J(D) = \iint\limits_{D} f(x, y) dx dy.$$

Să arătăm că pentru un $\varepsilon > 0$ dat putem determina o secțiune \overline{D} în D, astfel încât, pentru orice altă secțiune D' a lui D cu proprietatea $\overline{D} \subset D'$, să avem

$$\left| J(D) - \iint\limits_{D'} f(x, y) dx dy \right| < \frac{\varepsilon}{2}.$$
 (4.171)

Într-adevăr, dacă acest lucru nu este posibil, atunci pentru orice disc K de rază R există cel puţin o secţiune D_R , verificând relaţia $DK \subset D_R$, astfel încât să avem

 $\left|J(D) - \iint\limits_{D_R} f(x, y) dx dy\right| \ge \frac{\varepsilon}{2}.$

Să considerăm un şir crescător divergent R_n şi să punem $D_n = D_{R_n}$. Avem, pe de o parte,

$$\lim_{n \to +\infty} D_n = D,$$

iar pe de altă parte,

$$\left| J(D) - \iint\limits_{D_n} f(x, y) dx dy \right| \ge \frac{\varepsilon}{2},$$

oricare ar fi $n \in \mathbb{N}$. Pe această cale se ajunge la concluzia absurdă că șirul numeric având termenul general

$$\iint\limits_{D_r} f(x,y) dx dy$$

nu are limita J(D).

Așadar, relația (4.171) este satisfăcută pentru orice secțiune D' a domeniului nemărginit D, cu proprietatea $\overline{D} \subset D'$. Fie D" o altă secțiune, astfel încât $\overline{D} \subset D$ ". Alături de relația (4.171), putem scrie relația

$$\left| J(D) - \iint\limits_{D''} f(x,y) dx dy \right| < \frac{\varepsilon}{2},$$
 (4.172)

iar din (4.171) şi (4.172) deducem imediat relația (4.170).

Condiția este suficientă. Fie $\varepsilon > 0$, \overline{D} o secțiune a domeniului nemărginit D și (D_n) un șir monoton crescător de secțiuni ale lui D. Există un număr naturala $N(\varepsilon) = N$, astfel încât, pentru n > N, să avem $\overline{D} \subset D_n$. Dar, potrivit relației (4.170), presupusă satisfăcută, vom avea

$$\Big| \iint\limits_{D_m} f(x,y) dx dy - \iint\limits_{D_n} f(x,y) dx dy \Big| < \varepsilon,$$

pentru orice pereche de indici (m, n), astfel încât m > N, n > N.

În baza criteriului generala al lui Cauchy pentru șiruri numerice, aceasta înseamnă că șirul numeric

$$\left(\int_{D_{x}} f(x,y) dx dy\right)$$

are o limită finită, deci f(P) este integrabilă pe D.

Corolarul 4.11.1 O condiție necesară și suficientă pentru ca funcția f să fie integrabilă pe domeniul nemărginit D este ca să existe un număr real J(D), astfel încât, pentru orice $\varepsilon > 0$, să avem

$$\left| J(D) - \iint\limits_{D'} f(x,y) dx dy \right| < \varepsilon,$$

îndată ce $\overline{D} \subset D'$, unde \overline{D} este o secțiune ce depinde de ε .

Justificarea acestui corolar nu prezintă nici o dificultate.

Integrala pe un domeniu nemărginit, așa cum a fost definită mai sus, păstrează principalele proprietăți ale integralei duble pe un domeniu mărginit. Astfel, aditivitatea în raport cu domeniul de integrare, liniaritatea, monotonia și formula schimbării de variabile sunt proprietăți adevărate și în cazul integralei duble pe un domeniu nemărginit.

În legătură cu integrabilitatea unei funcții pozitive f pe un domeniu nemărginit D are loc

Teorema 4.11.3 Dacă funcția pozitivă f definită pe un domeniu nemărginit $D \subset \mathbb{R}^2$ este integrabilă pe orice subdomeniu compact a lui D, care are arie, atunci f este integrabilă impropriu pe D dacă și numai dacă există o exhaustiune (D_n) a lui D astfel încât limita

$$\lim_{n \to +\infty} \iint\limits_{D_n} f(x, y) dx dy = I \tag{4.173}$$

să existe și să fie finită. În plus, are loc egalitatea

$$\iint\limits_{D} f(x,y)dxdy = \lim_{n \to +\infty} \iint\limits_{D_n} f(x,y)dxdy.$$

Demonstrație. Necesitatea este evidentă în baza Definiției 4.11.5.

Suficiența. Fie (D_n) o exhaustiune a lui D pentru care există și este finită limita (4.173) și (D'_n) o altă exhaustiune a lui D. Din Definiția 4.11.2 rezultă că există un indice k(n) astfel încât $D'_n \subset D_{k(n)}$. Din faptul că f are valori pozitive pe D, rezultă

$$\iint\limits_{D'_n} f(x,y) dx dy \le \iint\limits_{D_{k(n)}} f(x,y) dx dy \le I.$$

Tot din faptul că $f(x,y) \geq 0$ pe D rezultă că șirul $\Big(\iint\limits_{D'_n} f(x,y) dx dy \Big)$ este

monoton crescător și mărginit superior de I, prin urmare există și este finită limita

$$\lim_{n \to +\infty} \iint_{D'_n} f(x, y) dx dy = I'. \tag{4.174}$$

Între limitele (4.173) și (4.174) are loc inegalitatea $I' \leq I$. Dacă schimbăm rolul celor două exhaustiuni obținem că $I \leq I'$ și deci I' = I. Cum exhaustiunea (D'_n) a fost luată arbitrar, deducem că f este integrabilă impropriu pe D și are loc egalitatea

$$\iint\limits_{D} f(x,y)dxdy = I. \tag{4.175}$$

Exercițiul 4.11.1 Să se arate că funcția $f(x,y) = e^{-(x^2+y^2)}$ este integrabilă impropriu pe mulțimea $\mathbb{R}_+ \times \mathbb{R}_+$ și să se deducă apoi că valoarea integralei lui Poisson este

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$
 (4.176)

Soluție. Deoarece f este pozitivă pe domeniul nemărginit de integrare D, este suficient să considerăm o exhaustiune particulară a lui $D = \mathbb{R}_+ \times \mathbb{R}_+ = \mathbb{R}_+^2$. Luăm

$$D_n = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le n^2; x \ge 0, y \ge 0\}$$

și atunci

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dx dy = \lim_{n \to +\infty} \iint_{D_n} e^{-(x^2 + y^2)} dx dy.$$

Dacă trecem la coordonate polare în plan, obținem

$$I = \lim_{n \to +\infty} \int_0^n \rho \, e^{-\rho^2} d\rho \int_0^{\pi/2} d\theta =$$

$$-\frac{\pi}{4} \lim_{n \to +\infty} e^{-\rho^2} \Big|_0^n = \frac{\pi}{4} \lim_{n \to +\infty} (1 - e^{-n^2}) = \frac{\pi}{4},$$

ceea ce arată că f este integrabilă impropriu pe \mathbb{R}^2_+ și că valoarea integralei este $\frac{\pi}{4}$. Considerând orice altă exhaustiune (D'_n) a lui \mathbb{R}^2_+ , limita (4.174) are aceeași valoare, adică $\pi/4$.

Să considerăm exhaustiunea (D'_n) , unde $D'_n = [0, n] \times [0, n]$. Atunci,

$$\iint_{\mathbb{R}^2_+} e^{-(x^2+y^2)} dx dy = \lim_{n \to +\infty} \int_0^n dx \int_0^n e^{-(x^2+y^2)} dy =$$

$$\lim_{n \to +\infty} \left(\int_0^n e^{-x^2} \right)^2 = \left(\int_0^{+\infty} e^{-x^2} \right)^2.$$

Dacă ținem seama de Teorema 4.11.3, din confruntarea celor două rezultate deducem (4.176).

În continuare vom da, fromână demonstrație, unele rezultate în legătură cu integralele duble improprii.

Teorema 4.11.4 O condiție necesară și suficientă pentru ca f să fie funcție integrabilă pe domeniul nemărginit D este ca funcția |f| să fie integrabilă pe acest domeniu.

Această teorema confirmă faptul că definiția dată, în cazul domeniilor nemărginite, pentru simbolul $\iint\limits_D f(x,y)dxdy$, conduce la un mod de convergență foarte rapid pentru integralele respective, convergență care are ca urmare coincidența naturii integralelor improprii

$$\iint\limits_{D} f(x,y)dxdy \quad \text{si} \quad \iint\limits_{D} |f(x,y)|dxdy.$$

O asemenea echivalență nu are loc în cazul unei singure dimensiuni.

Din punct de vedere practic, teorema precedentă aduce o simplificare considerabilă în studiul convergenței integralelor duble improprii, întrucât noțiunea de integrală semiconvergentă din teoria integralelor improprii a unei funcții de o variabilă nu–și mai are corespondent în teoria integralelor duble. Divergența integralei $\iint_D |f(x,y)| dxdy$ atrage după sine totdeauna divergența

integralei
$$\iint_D f(x,y)dxdy$$
.

241

Cazurile în care se poate stabili convergența unei integrale duble pe baza celor două teoreme precedente sunt foarte rare. De aceea, în practică, ca și în orice problemă de convergență, se caută condiții suficiente (criterii) pe baza cărora să se poată stabili dacă o integrală dublă improprie este sau nu convergentă. Vom enunța aici câteva condiții de acest gen.

Teorema 4.11.5 Dacă g este funcție integrabilă pe domeniul nemărginit D i

$$|f(x,y)| \le |g(x,y)|, \quad (\forall) \ (x,y) \in D,$$

atunci f este funcție integrabilă pe D.

Teorema 4.11.6 Dacă funcția g este integrabilă pe domeniul nemărginit D și există M > 0 astfel încât

$$\left| \frac{f(x,y)}{g(x,y)} \right| < M, \quad (\forall) \ (x,y) \in D,$$

atunci f este funcție integrabilă pe D.

Teorema 4.11.7 Orice funcție f care se poate pune sub forma

$$f(P) = \frac{\varphi(P)}{\left(d(C, P)\right)^{\alpha}}, \quad (\forall) \ P \in D,$$

unde $\alpha > 2$, C este un punct fix al planului, iar φ o funcție mărginită pe domeniul nemărginit D, este integrabilă pe D.

Teorema 4.11.8 Dacă pentru un şir particular (D_n) de secțiuni ale domeniului nemărginit D tinzând către acest domeniu, şirul numeric corespunzător

$$\left(\iint\limits_{D_n}|f(x,y)|dxdy\right)$$

este convergent, atunci f este integrabilă pe domeniul D.

Teorema 4.11.9 Dacă integralele improprii de prima speță

$$\int_{-\infty}^{+\infty} f(x)dx \quad \xi i \quad \int_{-\infty}^{+\infty} g(y)dy$$

sunt absolut convergente, atunci funcția $f(x) \cdot g(y)$ este integrabilă pe \mathbb{R}^2 și are loc egalitatea

$$\iint\limits_{\mathbb{R}^2} f(x) \cdot g(y) dx dy = \int_{-\infty}^{+\infty} f(x) dx \cdot \int_{-\infty}^{+\infty} g(y) dy.$$

În particular, dacă f și g sunt funcții pare, absolut integrabile pe $[0,+\infty)$, atunci funcția $f(x)\cdot g(y)$, definită pentru $(x,y)\in [0,+\infty)\times [0,+\infty)$, este integrabilă pe $\mathbb{R}^2_+=[0,+\infty)\times [0,+\infty)$ și

$$\iint\limits_{\mathbb{R}^2_+} f(x) \cdot g(y) dx dy = \int_0^{+\infty} f(x) dx \cdot \int_0^{+\infty} g(y) dy.$$

Folosind ultima teoremă putem stabili formula lui Jacobi care dă legătura între funcțiile B și Γ ale lui Euler. Reamintim că

$$\Gamma(p) = \int_0^{+\infty} y^{p-1} e^{-y} dy, \quad B(p,q) = \int_0^1 v^{p-1} (1-v)^{q-1} dv.$$

Pe lângă numărul pozitiv p, să considerăm valoarea în q>0 a funcției Γ scrisă astfel

$$\Gamma(q) = \int_0^{+\infty} x^{q-1} e^{-x} dx$$

și să efectuăm produsul numerelor $\Gamma(p)$ și $\Gamma(q)$. Conform ultimei teoreme,

$$\Gamma(p) \cdot \Gamma(q) = \iint_{\mathbb{R}^2_+} e^{-(x+y)} x^{q-1} y^{p-1} dx dy.$$

Dacă în integrala dublă improprie facem schimbarea de variabilă

$$T: \begin{cases} x = u(1-v) \\ y = uv \end{cases}$$

atunci domeniul $D' = [0, +\infty) \times [0, 1]$ se transformă în \mathbb{R}^2_+ . Jacobianul transformării punctuale regulate T va fi

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} 1-v & v \\ -u & u \end{vmatrix} = u(1-v) + uv = u$$

și deci

$$\Gamma(p) \cdot \Gamma(q) = \int_0^1 dv \int_0^{+\infty} e^{-u} \cdot u^{p+q-1} \cdot v^{p-1} \cdot (1-v)^{q-1} du =$$

$$= \int_0^{+\infty} e^{-u} \cdot u^{p+q-1} du \cdot \int_0^{+\infty} v^{p-1} \cdot (1-v)^{q-1} dv = \Gamma(p+q) \cdot B(p,q).$$

Prin urmare,

$$B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{B(p+q)}.$$

Exercițiul 4.11.2 Să se studieze natura integralei duble improprii pe domeniu nemărginit

$$I = \iint\limits_{D} \exp\Big[-\Big(\frac{x^2}{a^2} + \frac{y^2}{b^2}\Big)\Big] dx dy,$$

unde
$$D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1\}.$$

Soluție. Domeniul de integrare este exteriorul mulțimii de puncte aflate în interiorul elipsei de semiaxe a și b ce are axele de coordonate drept axe de simetrie. Este deci un domeniu nemărginit închis.

Folosim coordonatele polare generalizate din plan. Prin urmare, efectuăm schimbarea de variabile

$$\begin{cases} x = a\rho\cos\theta \\ y = b\rho\sin\theta. \end{cases}$$

Pentru ca punctul M(x,y) să descrie domeniul D, perechea (ρ,θ) trebuie să fie astfel încât $\rho \in [0,+\infty)$ și $\theta \in [0,2\pi]$.

Ținând cont că jacobianul transformării punctuale regulate de mai sus este $J=ab\rho$, rezultă că integrala improprie de mai sus devine

$$I = ab \iint_{\Lambda} \rho \exp(-\rho^2) d\rho d\theta,$$

unde Δ este intervalul bidimensional nemărginit $\Delta = [1, +\infty) \times [0, 2\pi]$. Scriind noua integrală ca o iterație de integrale, obținem

$$I = ab \int_{1}^{+\infty} \rho \exp(-\rho^2) d\rho \int_{0}^{2\pi} = \frac{\pi ab}{\rho}.$$

4.11.2 Integrale duble din funcții nemărginite

Să considerăm cazul în care funcția reală f este definită pe domeniul $D \setminus \{M_0\} \subset \mathbb{R}^2$, unde M_0 este un punct din D cu proprietatea că f este nemărginită în orice mulțime $D \cup V$, mulțimea V fiind o vecinătate oarecare a lui M_0 . Atunci, se spune că f are o singularitate în punctul M_0 .

În continuare vom presupune că D şi V sunt mulțimi care au arie şi că f este integrabilă pe $D \setminus D \cap V$. Notăm cu d(V) diametrul lui V şi fie (V_n) un şir descendent $V_{n+1} \subset V_n$ de vecinătăți ale lui M_0 care să tindă la mulțimea formată doar din punctul M_0 . Ultima condiție are loc dacă $\lim_{n \to +\infty} d(V_n) = 0$.

Definiția 4.11.6 Spunem că f este integrabilă impropriu pe D dacă există un număr I, astfel încât pentru orice șir de vecinătăți (V_n) ale lui M_0 , $cu \lim_{n \to +\infty} d(V_n) = 0$, să avem

$$\lim_{n \to +\infty} \iint_{D \setminus D \cap V_n} f(x, y) dx dy = I$$

și vom scrie

$$\iint\limits_{D} f(x,y)dxdy = I.$$

Despre integrala din membrul stâng spunem că este convergentă. Rezultate asemănătoare celor de la integrala dublă pe domenii nemărginite pot fi stabilite și în acest caz. Presupunând pentru simplitate că punctul singular este originea reperului Oxy, se poate arăta că orice problemă privind integrabilitatea funcției f pe domeniul D, unde f este nemărginită în vecinătăți ale originii se reduce la problema integrabilității funcției

$$F(u,v) = \frac{1}{(u^2 + v^2)^2} \cdot f\left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right)$$

pe domeniul nemărginit Δ , imaginea lui D prin transformarea punctuală

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2}.$$

Intr-adevăr, transformarea punctuală de mai sus are inversa

$$x = \frac{u}{u^2 + v^2}, \quad y = \frac{v}{u^2 + v^2}$$
 (4.177)

care, în ipoteza $u^2 + v^2 > 0$, reprezintă o inversiune de pol O și de putere 1, al cărei determinant funcțional este

$$\frac{D(x,y)}{D(u,v)} = -\frac{1}{(u^2 + v^2)^2} < 0.$$

În urma acestei inversiuni, orice curbă rectificabilă închisă C din planul (x, y) se transformă întro curbă C_1 a planului (u, v), închisă sau cu ramuri infinite, după cum curba C conține sau nu polul de inversiune.

În primul caz, domeniului închis de curba C îi corespunde, în planul (u, v), domeniul nemărginit exterior curbei C_1 .

În cazul al doilea, domeniului limitat de curba C îi corespunde una din regiunile nemărginite ale planului (u, v) determinate de curba C_1 .

În ambele cazuri, oricărui şir de domenii $(C_n(O))$, tinzând către punctul singular O, îi corespunde în planul (u, v) un şir de secțiuni (Δ_n) ale domeniului transformat Δ , tinzând către acest domeniu şi reciproc.

Formula de schimbare a variabilelor

$$\iint\limits_{C_n(O)} f(x,y) dx dy = \iint\limits_{\Delta_n} F(u,v) du dv$$

justifică afirmația făcută la începutul comentariului.

Ca aplicație, vom transpune la cazul studiat criteriul formulat în Teorema 4.11.8.

Să presupunem că putem scrie funcția f sub forma

$$f(x,y) = \frac{\varphi(x,y)}{(\sqrt{x^2 + y^2})^{\alpha}}, \quad \alpha > 0,$$

unde φ este mărginită pe domeniul D. Cu schimbarea de variabilă (4.177), obținem

$$\iint\limits_{C_n(O)} \frac{\varphi(x,y)}{(\sqrt{x^2+y^2})^{\alpha}} dx dy = \iint\limits_{\Delta_n} \frac{\Phi(u,v)}{(u^2+v^2)^{2-\frac{\alpha}{2}}} du dv,$$

unde

$$\Phi(u,v) = \varphi\left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right).$$

Dar, potrivit criteriului din Teorema 4.11.7, funcția

$$F(u,v) = \frac{\Phi(u,v)}{(u^2 + v^2)^{2-\frac{\alpha}{2}}}$$

este integrabilă pe Δ dacă $4 - \alpha > 2$, adică $\alpha < 2$.

Aşadar, orice funcție f care se poate scrie sub forma

$$f(x,y) = \frac{\varphi(x,y)}{(d(O,P))^{\alpha}},$$

unde P(x,y), $\alpha < 2$, iar φ este integrabilă în sens obișnuit (deci mărginită) pe domeniul D, este integrabilă pe acest domeniu.

În cazul în care $\varphi(x,y) = 1$, valorile lui $\alpha > 0$ pentru care $f(x,y) = \frac{1}{(d(O,P))^{\alpha}}$ este integrabilă pe un disc de rază R cu centrul în punctul O se pot determina utilizând trecerea la coordonatele polare în plan. Este posibil ca punctul O să fie înlocuit cu un punct oarecare $M_0(x_0, y_0)$.

Exercițiul 4.11.3 Să se afle valorile lui $\alpha>0$ pentru care este convergentă integrala

$$\iint\limits_{D} \frac{1}{[(x-x_0)^2 + (y-y_0)^2]^{\alpha}} dx dy,$$

unde

$$D = \{(x, y) \in \mathbb{R}^2 : (x - x_0)^2 + (y - y_0)^2 \le \mathbb{R}^2\}.$$

Soluție. În acest caz $M_0 = (x_0, y_0)$. Considerăm

$$V_n = \{(x,y) \in \mathbb{R}^2 : (x-x_0)^2 + (y-y_0)^2 \le \frac{1}{n^2} \},$$

unde n este un număr natural suficient de mare astfel încât $V_n \subset D$, și integrala dublă

$$I_n = \iint\limits_{D \setminus V_n} \frac{1}{[(x-x_0)^2 + (y-y_0)^2]^{\alpha}} dx dy,$$

care o vom calcula trecând la coordonate polare în plan.

$$I_n = \int_0^{2\pi} d\theta \int_{1/n}^R \frac{\rho \, d\rho}{\rho^{2\alpha}} = 2\pi \int_{1/n}^R \rho^{1-2\alpha} d\rho =$$

$$= 2\pi \frac{\rho^{2-2\alpha}}{2-2\alpha}\Big|_{1/n}^R = \frac{\pi}{1-\alpha}\Big[R^{2-2\alpha} - \frac{1}{n^{2(1-\alpha)}}\Big].$$

Trecând la limită în rezultatul găsit, obținem că dacă $\alpha \in (0,1)$

$$\lim_{n \to +\infty} \int_{D \setminus V_n} \frac{1}{[(x-x_0)^2 + (y-y_0)^2]^{\alpha}} dx dy = \frac{\pi R^{2-2\alpha}}{1-\alpha}.$$

Aşadar, integrala studiată este convergentă doar dacă $\alpha \in (0,1)$.

Capitolul 5

Integrale de suprafață

5.1 Elemente de geometria diferențială a suprafețelor

În acest paragraf vom utiliza rezultate ale calculului diferențial pentru a studia unele noțiuni frecvent întâlnite în geometria diferențială a suprafețelor și teoria integrabilității pe suprafețe a funcțiilor reale de mai multe variabile reale.

5.1.1 Pânze parametrice netede

În spațiul afin euclidian tridimensional \mathcal{E}_3 , asociat spațiului liniar \mathbb{R}^3 , considerăm reperul cartezian Oxyz, a cărui bază \mathcal{B}' este constituită din versorii

$$\mathcal{B}' = \{ \mathbf{i} = (1, 0, 0), \mathbf{j} = (0, 1, 0), \mathbf{k} = (0, 0, 1) \} \subset \mathbb{R}^3.$$
 (5.1)

Un punct oarecare $M \in \mathcal{E}_3$ este determinat de coordonatele carteziene (x,y,z) sau de vectorul de poziție $\mathbf{r} = \overrightarrow{OM}$, unde $\mathbf{r} = x\,\mathbf{i} + y\,\mathbf{j} + z\,\mathbf{k}$, iar x,y,z sunt mărimile algebrice ale proiecțiilor ortogonale ale vectorului \mathbf{r} pe respectiv versorii $\mathbf{i},\mathbf{j},\mathbf{k}$.

Definiția 5.1.1 Se numește pânză parametrică netedă funcția vectorială de două variabile reale

$$(u,v) \mapsto \mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}, \quad (u,v) \in A \subset \mathbb{R}^2, \quad (5.2)$$

continuă pe mulțimea nevidă A și cu derivate parțiale continue pe $\overset{\circ}{A}$.

Funcția vectorială de două variabile reale (5.2) stabilește o corespondență între punctele $(u, v) \in A$ și punctele $M \in \mathcal{E}_3$ ale căror vectori de poziție sunt

$$\mathbf{r} = \mathbf{r}(u, v), \quad (u, v) \in A. \tag{5.3}$$

Observația 5.1.1 Având în vedere modurile de reprezentare ale unei funcții vectoriale de mai multe variabile reale, rezultă că în locul lui (5.2), pe lângă (5.3), putem considera și reprezentarea

$$\begin{cases} x = x(u, v), \\ y = y(u, v), \quad (u, v) \in A. \\ z = z(u, v), \end{cases}$$
 (5.4)

Definiția 5.1.2 Imaginea funcției (5.2), adică mulțimea $\mathbf{r}(A) \subset \mathbb{R}^3$, va fi numită de asemeni pânză netedă în \mathcal{E}_3 , iar (5.4) și (5.3) se numesc respectiv ecuații parametrice și ecuația vectorială ale pânzei netede.

Submulţimea de puncte $(S) \subset \mathcal{E}_3$ ale căror vectori de poziţie au forma (5.3) o vom numi , de asemenea, pânză netedă.

Observația 5.1.2 Deoarece $\mathbf{r} \in \mathcal{F}(A, \mathbb{R}^3)$ are derivate parțiale continue pe \mathring{A} , rezultă că este diferențiabilă pe \mathring{A} , deci în orice punct $(u_0, v_0) \in \mathring{A}$ se poate defini diferențiala sa $d\mathbf{r}((u_0, v_0)) \in L(\mathbb{R}^2, \mathbb{R}^3)$, unde $L(\mathbb{R}^2, \mathbb{R}^3)$ este spațiul vectorial al aplicațiilor liniare definite pe \mathbb{R}^2 cu valori în \mathbb{R}^3 .

Matricea aplicației liniare $d\mathbf{r}((u_0, v_0))$ în perechea de baze canonice

$$\mathcal{B} = {\mathbf{e}_1 = (1,0), \mathbf{e}_2 = (0,1)} \subset \mathbb{R}^2$$

și $\mathcal{B}' \subset I\!\!R^3$ din (5.1), este de tipul 3×2 și are elementele

$$J_{\mathbf{r}}((u_0, v_0)) = \begin{pmatrix} \frac{\partial x}{\partial u}(u_0, v_0) & \frac{\partial x}{\partial v}(u_0, v_0) \\ \frac{\partial y}{\partial u}(u_0, v_0) & \frac{\partial y}{\partial v}(u_0, v_0) \\ \frac{\partial z}{\partial u}(u_0, v_0) & \frac{\partial z}{\partial v}(u_0, v_0) \end{pmatrix}.$$

Observația 5.1.3 Coloanele matricei jacobiene $J_{\mathbf{r}}((u_0, v_0))$ sunt respectiv matricele coloană ale coordonatelor vectorilor:

$$\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0); \qquad \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$$

 $\hat{i}n$ baza canonică \mathcal{B}' .

În aplicațiile practice ale calculului integral, ale geometriei diferențiale, mecanicii, fizicii etc. în definiția pânzei parametrice se include încă o condiție de regulatitate care afirmă că rangul matricei $J_{\mathbf{r}}((u_0, v_0))$ este egal cu 2 în orice punct $(u_0, v_0) \in \mathring{A}$. Această condiție se scrie sub forma

$$\left(\frac{D(y,z)}{D(u,v)}(u_0,v_0)\right)^2 + \left(\frac{D(z,x)}{D(u,v)}(u_0,v_0)\right)^2 + \left(\frac{D(x,y)}{D(u,v)}(u_0,v_0)\right)^2 > 0.$$
 (5.5)

5.1.2 Semnificația geometrică a condiției de regularitate. Linii parametrice

Pentru a vedea semnificația geometrică a condiției de regularitate (5.5) să considerăm funcția

$$u \mapsto \mathbf{r}(u, v_0), \quad u \in I \subset \mathbb{R}, \quad I \times \{v_0\} \subset A,$$
 (5.6)

care este restricția funcției \mathbf{r} la segmentul de dreaptă $v=v_0$ paralel cu axa absciselor reperului cartezian din \mathcal{E}_2 . Acest segment trece prin punctul $M_0'(u_0, v_0)$ și este conținut în mulțimea A. Aplicația (5.6) este continuu diferențiabilă pe \mathring{I} , prin urmare reprezintă un drum parametrizat neted în \mathbb{R}^3 de ecuație vectorială

$$\mathbf{r} = \mathbf{r}(u, v_0), \quad u \in I. \tag{5.7}$$

Avem $\operatorname{Im} \mathbf{r}(\cdot, v_0) \subset \operatorname{Im} \mathbf{r}$, deci imaginea drumului (5.7) este o submulțime a pânzei netede de ecuație vectorială (5.3). După cum se știe,

$$\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0) = \frac{\partial x}{\partial u}(u_0, v_0) \,\mathbf{i} + \frac{\partial y}{\partial u}(u_0, v_0) \,\mathbf{j} + \frac{\partial z}{\partial u}(u_0, v_0) \,\mathbf{k}$$
 (5.8)

este vectorul director al tangentei la drumul de ecuație vectorială (5.7) în punctul $M_0 \in (S)$.

În mod similar, aplicația

$$v \mapsto \mathbf{r}(u_0, v), \ v \in J \subset \mathbb{R}, \ v \in J \subset \mathbb{R}, \ \{u_0\} \times J \subset A,$$
 (5.9)

este un drum parametrizat neted în $I\!\!R^3$ de ecuație vectorială

$$\mathbf{r} = \mathbf{r}(u_0, v), \quad v \in J, \tag{5.10}$$

a cărui imagine este tot o submulțime a lui Imr. Vectorul

$$\frac{\partial \mathbf{r}}{\partial v}(u_0, v_0) = \frac{\partial x}{\partial v}(u_0, v_0) \,\mathbf{i} + \frac{\partial y}{\partial v}(u_0, v_0) \,\mathbf{j} + \frac{\partial z}{\partial v}(u_0, v_0) \,\mathbf{k}$$
 (5.11)

este vector director al tangentei la drumul parametrizat neted (5.10) în punctul $M_0 \in (S)$.

Produsul vectorial al vectorilor (5.8) și (5.11) este vectorul

$$\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0) \times \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0) = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial u}(u_0, v_0) & \frac{\partial y}{\partial u}(u_0, v_0) & \frac{\partial z}{\partial u}(u_0, v_0) \\
\frac{\partial x}{\partial v}(u_0, v_0) & \frac{\partial y}{\partial v}(u_0, v_0) & \frac{\partial z}{\partial v}(u_0, v_0)
\end{vmatrix} (5.12)$$

care, după dezvoltarea determinantului din membrul al doilea după elementele primei linii, se scrie

$$\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0) \times \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0) = A \,\mathbf{i} + B \,\mathbf{j} + C \,\mathbf{k},\tag{5.13}$$

unde

$$A = \frac{D(y,z)}{D(u,v)}(u_0,v_0), \quad B = \frac{D(z,x)}{D(u,v)}(u_0,v_0), \quad C = \frac{D(x,y)}{D(u,v)}(u_0,v_0).$$

Vectorul (5.13) este ortogonal pe vectorul $\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)$ și pe vectorul $\frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$. Din cele prezentate mai sus rezultă că condiția de regularitate (5.5) este

Din cele prezentate mai sus rezultă că condiția de regularitate (5.5) este echivalentă cu

$$\left\| \frac{\partial \mathbf{r}}{\partial u}(u_0, v_0) \times \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0) \right\| = \sqrt{A^2 + B^2 + C^2} > 0$$
 (5.14)

şi exprimă faptul că vectorii $\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)$ şi $\frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$ sunt necoliniari sau liniar independenți. Din punct de vedere geometric, condiția (5.14) se traduce prin

aceea că imaginile drumurilor parametrizate (5.7) şi (5.10) au în punctul comun M_0 tangente distincte. Corespondența (5.4) fiind şi biunivocă, rezultă că în vecinătatea punctului $(u_0, v_0) \in \mathring{A}$ drumurile (5.7) şi (5.10) au în comun doar punctul $M_0 \in (S)$. Imaginile acestor drumuri se numesc linii parametrice. Prin fiecare punct $M_0 \in (S)$, corespunzător punctului $(u_0, v_0) \in \mathring{A}$, unde sunt satisfăcute condițiile de regularitate, trece un drum şi numai unul singur de forma (5.6) şi numai un drum de tipul (5.9).

5.1.3 Interpretarea geometrică a diferențialei funcției vectoriale $\mathbf{r}=\mathbf{r}(u,v)$ în punctul $(u_0,v_0)\in \mathring{A}$. Plan tangent

Să vedem acum ce interpretare geometrică are funcția afină

$$(u, v) \mapsto \mathbf{r}(u_0, v_0) + d\mathbf{r}((u_0, v_0); (u - u_0, v - v_0)), \quad (u, v) \in \mathbb{R}^2, \quad (5.15)$$

unde valoarea în perechea $(u-u_0,v-v_0)$ a diferențialei în punctul (u_0,v_0) a funcției ${\bf r}$ este

$$d\mathbf{r}((u_0, v_0); (u - u_0, v - v_0)) = \mathbf{e}'(J_{\mathbf{r}}(u_0, v_0)) \begin{pmatrix} u - u_0 \\ v - v_0 \end{pmatrix}.$$
 (5.16)

Vectorul \mathbf{e}' din relația (5.16) aparține spațiului liniar $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ și are expresia $\mathbf{e}' = (\mathbf{i}, \mathbf{j}, \mathbf{k})$.

Aplicația (5.15) definește o nouă pânză parametrică netedă de ecuație vectorială

$$\mathbf{r} = \mathbf{r}(u_0, v_0) + d\mathbf{r}((u_0, v_0); (u - u_0, v - v_0)), \quad (u, v) \in \mathbb{R}^2$$
 (5.17)

sau de ecuații parametrice

$$\begin{cases} x = x(u_0, v_0) + \frac{\partial x}{\partial u}(u_0, v_0)(u - u_0) + \frac{\partial x}{\partial v}(u_0, v_0)(v - v_0) \\ y = y(u_0, v_0) + \frac{\partial y}{\partial u}(u_0, v_0)(u - u_0) + \frac{\partial y}{\partial v}(u_0, v_0)(v - v_0) \\ z = z(u_0, v_0) + \frac{\partial z}{\partial u}(u_0, v_0)(u - u_0) + \frac{\partial z}{\partial v}(u_0, v_0)(v - v_0). \end{cases}$$
(5.18)

Eliminarea lui $u-u_0$ și $v-v_0$ din (5.18) conduce la ecuația

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0, (5.19)$$

unde $x_0 = x(u_0, v_0)$, $y_0 = y(u_0, v_0)$, $z_0 = z(u_0, v_0)$ sunt coordonatele punctului M_0 . Ecuația (5.19) arată că vectorul cu originea în M_0 și extremitatea întrun punct curent M al pânzei (5.17) este ortogonal pe vectorul (5.13).

Toate punctele M din spațiu cu proprietatea că vectorul M_0M este ortogonal pe vectorul $\mathbf{N} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ formează un plan.

Prin urmare, pânza parametrică de ecuație vectorială (5.17) sau de ecuații parametrice (5.18) are ca imagine un plan care se numește plan tangent în punctul M_0 la pânza parametrică netedă de ecuație vectorială (5.3). Acest plan are în comun cu Im \mathbf{r} , întro vecinătate a punctului M_0 , doar punctul M_0 . Diferența

$$\mathbf{r}(u,v) - \mathbf{r}(u_0,v_0) - d\mathbf{r}((u_0,v_0); (u-u_0,v-v_0)), (u,v) \in \mathring{A}$$
 (5.20)

caracterizează abaterea dintre coordonatele punctelor de pe imaginea pânzei netede de ecuație vectorială (5.3) și coordonatele punctelor corespunzătoare de pe planul (5.17) în vecinătatea punctului (u_0, v_0) căruia pe pânză îi corespunde punctul M_0 .

Deoarece diferențiabilitatea lui \mathbf{r} în punctul (u_0, v_0) implică faptul că abaterea (5.20) tinde la zero mai repede decât tinde la zero distanța euclidiană dintre punctele (u, v) și (u_0, v_0) când $(u, v) \rightarrow (u_0, v_0)$, rezultă că planul (5.17) aproximează satisfăcător Im \mathbf{r} întro vecinătate a punctului M_0 .

Exemplul 5.1.1 Să se arate că aplicația $\mathbf{r}:[0,2\pi)\times[0,\pi]\to I\!\!R^3$ definită prin

$$\mathbf{r}(u,v) = (a\cos u\sin v)\mathbf{i} + (a\sin u\sin v)\mathbf{j} + (a\cos v)\mathbf{k}, \quad a > 0,$$

reprezintă o pânză parametrică netedă și să se studieze această pânză.

Soluție. Aplicația dată este continuu diferențiabilă pe $\mathring{A}=(0,2\pi)\times(0,\pi)$ deoarece funcțiile coordonate $x,\ y,\ z$ sunt diferențiabile pe \mathring{A} .

Ecuațiile parametrice ale pânzei sunt

$$\begin{cases} x = a \cos u \sin v, \\ y = a \sin u \sin v, \quad u \in [0, 2\pi), v \in [0, \pi]. \\ z = a \cos v, \end{cases}$$

Calculând distanța euclidiană de la punctul M(x, y, z) al pânzei la originea reperului $\mathcal{R} = \{O; \mathbf{i}, \mathbf{j}, \mathbf{k}\}$, găsim

$$d^{2}(M, O) = x^{2} + y^{2} + z^{2} = a^{2} \sin^{2} v (\cos^{2} u + \sin^{2} u) + a^{2} \cos^{2} v =$$
$$= a^{2} (\sin^{2} v + \cos^{v}) = a^{2},$$

de unde rezultă d(M,O)=a, ceea ce arată că Im \mathbf{r} este frontiera bilei cu centrul în origine și raza egală cu a, adică sfera de rază a cu centrul în origine.

Matricea jacobiană $J_{\mathbf{r}}(u,v)$ a aplicației date este

$$J_{\mathbf{r}}(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(u,v) & \frac{\partial x}{\partial v}(u,v) \\ \frac{\partial y}{\partial u}(u,v) & \frac{\partial y}{\partial v}(u,v) \\ \frac{\partial z}{\partial u}(u,v) & \frac{\partial z}{\partial v}(u,v) \end{pmatrix} = \begin{pmatrix} -a\sin u\sin v & a\cos u\cos v \\ a\cos u\sin v & a\sin u\cos v \\ 0 & -a\sin v \end{pmatrix}.$$

Conform Observației 5.1.3, elementele coloanelor matricei $J_{\mathbf{r}}$ sunt coordonatele vectorilor $\frac{\partial \mathbf{r}}{\partial u}(u,v)$ și respectiv $\frac{\partial \mathbf{r}}{\partial v}(u,v)$, prin urmare

$$\begin{cases}
\frac{\partial \mathbf{r}}{\partial u}(u,v) = -(a\sin u\sin v)\mathbf{i} + (a\cos u\sin v)\mathbf{j} \\
\frac{\partial \mathbf{r}}{\partial v}(u,v) = (a\cos u\cos v)\mathbf{i} + \\
+ (a\sin u\cos v)\mathbf{j} - (a\sin v)\mathbf{k}.
\end{cases} (5.21)$$

Produsul vectorial al vectorilor (5.21) este

$$\frac{\partial \mathbf{r}}{\partial u}(u,v) \times \frac{\partial \mathbf{r}}{\partial v}(u,v) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a\sin u \sin v & a\cos u \sin v & 0 \\ a\cos u \cos v & a\sin u \sin v & -a\sin v \end{vmatrix} =$$

$$= -a\sin v \mathbf{r}(u, v),$$

oricare ar fi perechea $(u,v) \in (0,2\pi) \times (0,\pi)$. Deoarece pentru $v \in (0,\pi)$ avem $a \sin v > 0$ rezultă că vectorul $\frac{\partial \mathbf{r}}{\partial u}(u,v) \times \frac{\partial \mathbf{r}}{\partial v}(u,v)$, diferit de vectorul nul, este coliniar și de sens contrar vectorului de poziție $\mathbf{r}(u,v)$.

Tangentele la liniile parametrice care trec prin punctul M_0 de vector de poziție $\overrightarrow{OM_0} = \mathbf{r}(u_0, v_0)$, unde $(u_0, v_0) \in (0, 2\pi) \times (0, \pi)$, determină planul tangent la sferă în M_0 care are ecuația vectorială

$$\mathbf{r} = \mathbf{r}(u_0, v_0) + d\mathbf{r}((u_0, v_0); (t - u_0, s - v_0)), \quad (t, s) \in \mathbb{R}^2.$$

Pentru punctele (t,s)=(u,v) situate întro vecinătate a punctului (u_0,v_0) din mulțimea deschisă $(0,2\pi)\times(0,\pi)$, membrul doi din ultima ecuație aproximează satisfăcător punctele corespunzătoare de pe sferă.

Spre exemplu, dacă luăm $u_0 = v_0 = \frac{\pi}{4}$, atunci $M_0\left(\frac{a}{2}, \frac{a}{2}, a\frac{\sqrt{2}}{2}\right)$, matricea jacobiană $J_{\mathbf{r}}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ este

$$J_{\mathbf{r}}\left(\frac{\pi}{4}, \frac{\pi}{4}\right) = \begin{pmatrix} -\frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} \\ 0 & -\frac{a\sqrt{2}}{2} \end{pmatrix},$$

iar ecuațiile parametrice ale planului tangent la sferă în punctul M_0 sunt

$$\begin{cases} x & = \frac{a}{2} - \frac{a}{2}t + \frac{a}{2}s \\ y & = \frac{a(2-\pi)}{4} + \frac{a}{2}t + \frac{a}{2}s \\ z & = \frac{a\sqrt{2}(\pi+4)}{8} - \frac{a\sqrt{2}}{2}s, \quad (t,s) \in \mathbb{R}^2. \end{cases}$$

Eliminând t și s din aceste ecuații obținem ecuația explicită a planului tangent

$$x + y + z\sqrt{2} - 2a = 0.$$

Un vector normal acestui plan este $\mathbf{N} = \mathbf{i} + \mathbf{j} + \sqrt{2}\mathbf{k}$.

Este posibil ca funcțiile $x, y, z \dim (5.4)$ să fie astfel încât

$$x(u, v) = u, y(u, v) = v, z(u, v) = f(u, v),$$

unde $f \in \mathcal{F}(A)$ este o funcție continuă pe mulțimea A situată în planul Oxy, cu derivate parțiale continue pe mulțimea \mathring{A} , aceasta însemnând că u = x,

v=y, iar z este o funcție continuu diferențiabilă de x și y. În această situație, în locul ecuațiilor (5.4) putem considera doar ecuația

$$z = f(x, y), (x, y) \in A.$$
 (5.22)

Funcția reală f, continuă pe mulțimea $A \subset Oxy$ și diferențiabilă pe mulțimea \mathring{A} , definește explicit pânza netedă $\operatorname{Im} \mathbf{r}$, iar (5.22) se numește ecuația explicită a pânzei netede. Ecuația vectorială a pânzei, corespunzătoare acestui caz particular, este

$$\mathbf{r} = x \,\mathbf{i} + y \,\mathbf{j} + f(x, y) \,\mathbf{k}, \quad (x, y) \in A. \tag{5.23}$$

Vectorul tangent în $M_0(x_0, y_0, f(x_0, y_0))$ la drumul parametrizat

$$\mathbf{r} = x \,\mathbf{i} + y_0 \,\mathbf{j} + f(x, y_0) \,\mathbf{k}, \quad x \in I, \quad I \times \{y_0\} \subset \mathring{A}$$
 (5.24)

este

$$\frac{\partial \mathbf{r}}{\partial x}(x_0, y_0) = \mathbf{i} + \frac{\partial f}{\partial x}(x_0, y_0) \,\mathbf{k} = \mathbf{i} + p \,\mathbf{k},\tag{5.25}$$

iar vectorul tangent în M_0 la drumul parametrizat

$$\mathbf{r} = x_0 \,\mathbf{i} + y \,\mathbf{j} + f(x_0, y) \,\mathbf{k}, \quad y \in J, \quad \{x_0\} \times J \subset \mathring{A}$$
 (5.26)

este

$$\frac{\partial \mathbf{r}}{\partial y}(x_0, y_0) = \mathbf{j} + \frac{\partial f}{\partial y}(x_0, y_0) \,\mathbf{k} = \mathbf{j} + q \,\mathbf{k}. \tag{5.27}$$

Drumurile parametrizate (5.24) şi (5.26) sunt obţinute prin intersecţia pânzei netede (5.22) cu planele $y = y_0$ şi $x = x_0$ care sunt paralele respectiv cu planele Oxz şi Oyz. Coeficienţii A, B şi C sunt:

$$A = -\frac{\partial f}{\partial x}(x_0, y_0) = -p; \quad B = -\frac{\partial f}{\partial y}(x_0, y_0) = -q; \quad C = 1,$$
 (5.28)

astfel că ecuația planului tangent în $M_0(x_0, y_0, z_0)$ la pânza netedă (5.22) este

$$-(x-x_0)\frac{\partial f}{\partial x}(x_0,y_0) - (y-y_0)\frac{\partial f}{\partial y}(x_0,y_0) + (z-z_0) = 0.$$
 (5.29)

5.1.4 O altă definiție a planului tangent

Să considerăm acum pânza netedă de ecuație vectorială (5.3) și un drum parametrizat neted $\mathbf{f} \in \mathcal{F}(I, \mathbb{R}^3)$, unde I este interval din \mathbb{R} , cu proprietatea că există $t_0 \in I$ astfel încât

$$\mathbf{f}(t_0) = \mathbf{r}(u_0, v_0), \quad \text{si } \operatorname{Im} \mathbf{f} \subset \operatorname{Im} \mathbf{r}. \tag{5.30}$$

Aceste proprietăți arată că imaginea drumului parametrizat considerat este situat pe pânza parametrică netedă (5.3) și că această imagine trece prin punctul M_0 de pe pânză al cărui vector de poziție este $\overrightarrow{OM_0} = \mathbf{r}(u_0, v_0)$. Proprietățile de mai sus au loc dacă există un drum neted

$$\varphi = (\varphi_1, \varphi_2) : I \to A \text{ astfel încât } \mathbf{f} = \mathbf{r} \circ \varphi.$$
 (5.31)

Tangenta în M_0 la drumul parametrizat neted $\mathbf{r} = \mathbf{f}(t)$ are ecuația vectorială

$$\mathbf{r} = \mathbf{f}(t_0) + \mathbf{f}'(t_0) \, s, \quad s \in \mathbb{R}. \tag{5.32}$$

Pe de altă parte, după regula lanțului de derivare a unei funcții compuse, avem

$$\mathbf{f}'(t_0) = \frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)\varphi_1'(t_0) + \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)\varphi_2'(t_0). \tag{5.33}$$

Din (5.33) și valoarea în $\mathbf{h} = \boldsymbol{\varphi}'(t_0)$ a diferențialei funcției \mathbf{r} în punctul (u_0, v_0) rezultă

$$\mathbf{f}'(t_0) = d\mathbf{r}((u_0, v_0); \boldsymbol{\varphi}'(t_0)),$$

iar din liniaritatea diferențialei de ordinul întâi, avem

$$\mathbf{f}'(t_0) s = d \mathbf{r} \Big((u_0, v_0); s \boldsymbol{\varphi}'(t_0) \Big). \tag{5.34}$$

Folosind în (5.32) relațiile (5.34) și (5.30) și luând în calcul formula (5.17) deducem că tangenta (5.32) este inclusă în planul tangent (5.17) în punctul M_0 la pânza netedă (5.3). Acest rezultat conduce la o altă definiție a planului tangent într-un punct al unei pânze parametrice netede.

Definiția 5.1.3 Se numește plan tangent în punctul M_0 al unei pânze netede, locul geometric al tangentelor la respectiv toate drumurile netede care trec prin M_0 ale căror imagini se află pe imaginea pânzei.

5.1.5 Definiția suprafeței

Definiția 5.1.4 Pânzele netede $\mathbf{r} \in \mathcal{F}(A, \mathbb{R}^3)$ și $\tilde{\mathbf{r}} \in \mathcal{F}(\tilde{A}, \mathbb{R}^3)$, unde $A, \tilde{A} \subset \mathbb{R}^2$, se numesc **echivalente** dacă există un homeomorfism diferențiabil ψ : $A \to \tilde{A}$, cu jacobianul pozitiv în orice punct $(u, v) \in \mathring{A}$, astfel încât $\mathbf{r} = \tilde{\mathbf{r}} \circ \psi$.

Definiția 5.1.5 Se numește suprafață netedă o clasă de echivalență în mulțimea pânzelor parametrice netede.

O suprafață netedă poate fi reprezentată prin oricare pânză parametrică netedă care aparține clasei de echivalență respective. În concluzie, întro vecinătate a unui punct $M_0(x_0, y_0, z_0)$, o suprafață netedă care conține acest punct poate fi reprezentată fie vectorial prin ecuația vectorială (5.3), fie parametric prin ecuațiile parametrice (5.4), fie prin ecuația carteziană explicită (5.22). Reprezentarea (5.22) se obține din oricare reprezentare parametrică în baza teoremei de existență și unicitate a sistemelor de funcții reale de mai multe variabile reale definite implicit.

Observația 5.1.4 Analizând (5.31) constatăm că orice funcție diferențiabilă, depinzând de parametrii u și v ai unei suprafețe netede (\mathcal{S}), asociată ecuației sale vectoriale (5.3), definește o curbă situată (trasată) pe suprafață. Curbele particulare u = const. și respectiv v = const. se numesc curbe coordonate sau linii parametrice ale suprafeței netede (\mathcal{S}). O curbă trasată pe o suprafață poate avea ecuația explicită v = f(u) sau ecuația implicită F(u, v) = 0.

De exemplu, drumurile (5.24), (5.26) care reprezintă clase de echivalență în mulțimea drumurilor echivalente numite curbe, sunt linii parametrice ale suprafeței (S) reprezentată cartezian explicit prin (5.22).

5.1.6 Ecuația carteziană implicită a unei suprafețe

Fie aplicația reală diferențiabilă $F \in \mathcal{F}(A), A \subset \mathbb{R}^3$, cu proprietea că gradientul

$$(\nabla F)(x,y,z) = \frac{\partial F}{\partial x}(x,y,z)\mathbf{i} + \frac{\partial F}{\partial y}(x,y,z)\mathbf{j} + \frac{\partial F}{\partial z}(x,y,z)\mathbf{k}, \qquad (5.35)$$

este vector nenul pe mulțimea deschisă \mathring{A} , adică

$$\left(\frac{\partial F}{\partial x}(x,y,z)\right)^2 + \left(\frac{\partial F}{\partial y}(x,y,z)\right)^2 + \left(\frac{\partial F}{\partial z}(x,y,z)\right)^2 > 0, \ (x,y,z) \in \mathring{A} \ . \ (5.36)$$

Definiția 5.1.6 Mulțimea (S) a punctelor $M \in \mathcal{E}_3$ ale căror coordonate (x, y, z) verifică ecuația

$$(S): F(x, y, z) = 0,$$
 (5.37)

unde funcția diferențiabilă $F \in \mathcal{F}(A)$ satisface (5.36), se numește varietate bidimensională scufundată în \mathbb{R}^3 sau suprafață dată implicit. Ecuația (5.37) este prin definiție ecuația carteziană implicită a suprafeței (\mathcal{S}) .

5.1.7 Vector normal unei suprafațe întrun punct regulat

Fie I un interval din IR și aplicația vectorială de o variabilă reală diferențiabilă $\varphi = (\varphi_1, \varphi_2, \varphi_3) \in \mathcal{F}(I, A)$ cu proprietatea

$$F(\varphi(t)) = 0, t \in I,$$

fapt ce exprimă că imaginea drumului parametrizat neted de ecuație vectorială

$$\mathbf{r} = \boldsymbol{\varphi}(t), \ t \in I$$

se află pe varietatea bidimensională (5.37).

Datorită faptului că atât F cât și φ sunt funcții diferențiabile, rezultă că funcția compusă $F\circ\varphi$ este diferențiabilă, deci derivabilă pe I și ca atare vom avea

$$\frac{\partial F}{\partial x}(\varphi(t)) \cdot \varphi_1'(t) + \frac{\partial F}{\partial y}(\varphi(t)) \cdot \varphi_2'(t) + \frac{\partial F}{\partial z}(\varphi(t)) \cdot \varphi_3'(t) = 0, \quad t \in I. \quad (5.38)$$

Identitatea (5.38) arată că vectorul $(\nabla F)(\varphi(t))$ este ortogonal vectorului tangent $\varphi'(t)$ la drumul parametrizat φ în punctul $M \in \mathcal{E}_3$ corespunzător valorii t a parametrului. Pe de altă parte, toate tangentele în punctul M corespunzător valorii t a parametrului la respectiv toate drumurile parametrizate ce trec prin M și sunt situate pe varietatea diferențiabilă (\mathcal{S}) formează planul tangent în M la suprafață. Toate aceste rezultate conduc la următoarea definiție.

Definiția 5.1.7 Fie suprafața netedă (S) de ecuație carteziană implicită (5.37) și $M(x, y, z) \in (S)$. Vectorul

$$\mathbf{N} = (\nabla F)(x, y, z),\tag{5.39}$$

se numește **vectorul normal** la suprafață în punctul M.

Proprietatea de a fi ortogonal pe vectorul tangent la orice drum neted situat pe varietatea diferențiabilă (S) care conține punctul $M(x, y, z) \in S$ o are și vectorul

$$-\mathbf{N} = -(\nabla F)(x, y, z), \tag{5.40}$$

deci şi acesta poate fi numit vector normal în punctul M la suprafața netedă (S).

Observația 5.1.5 Dacă suprafața netedă (S) este reprezentată prin ecuația vectorială (5.3), atunci vectorul normal \mathbf{N} în punctul

$$M(x(u,v),y(u,v),z(u,v)) \in (\mathcal{S})$$

este, fie vectorul

$$\mathbf{N} = \frac{\partial \mathbf{r}}{\partial u}(u, v) \times \frac{\partial \mathbf{r}}{\partial v}(u, v), \tag{5.41}$$

fie opusul acestuia. Când suprafața netedă (S) este reprezentată cartezian explicit prin ecuația (5.22), din (5.29) deducem că vectorul normal în M(x,y,f(x,y)) este, fie

$$\mathbf{N} = -p\,\mathbf{i} - q\,\mathbf{j} + \mathbf{k},\tag{5.42}$$

fie opusul acestuia, p şi q fiind notațiile lui Monge pentru derivatele parțiale de ordinul întâi ale funcției f în punctul (x, y)

$$p = \frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial u}(u,v); \quad q = \frac{\partial f}{\partial u}(x,y) = \frac{\partial f}{\partial v}(u,v).$$

Putem defini versorul normal întrun punct al unei suprafețe netede ca fiind, după caz, versorul unuia din vectorii care apar în relațiile (5.39)-(5.42). Versorul normal poate fi, după caz:

$$\mathbf{n} = \pm \frac{(\mathbf{\nabla}F)(x, y, z)}{\|(\mathbf{\nabla}F)(x, y, z)\|} =$$

$$= \frac{\pm (F'_x(x, y, z) \mathbf{i} + F'_y(x, y, z) \mathbf{j} + F'_z(x, y, z) \mathbf{k})}{\sqrt{(F'_x(x, y, z))^2 + (F'_y(x, y, z))^2 + (F'_z(x, y, z))^2}};$$

$$\mathbf{n} = \pm \frac{\frac{\partial \mathbf{r}}{\partial u}(u, v) \times \frac{\partial \mathbf{r}}{\partial v}(u, v)}{\|\frac{\partial \mathbf{r}}{\partial u}(u, v) \times \frac{\partial \mathbf{r}}{\partial v}(u, v)\|} =$$

$$= \pm \frac{A(u, v) \mathbf{i} + B(u, v) \mathbf{j} + C(u, v) \mathbf{k}}{\sqrt{A^2(u, v) + B^2(u, v) + C^2(u, v)}};$$
(5.43)

$$\mathbf{n} = \pm \left(\frac{-p}{\sqrt{1+p^2+q^2}}\,\mathbf{i} + \frac{-q}{\sqrt{1+p^2+q^2}}\,\mathbf{j} + \frac{1}{\sqrt{1+p^2+q^2}}\,\mathbf{k}\right). \tag{5.45}$$

Observăm că pentru fiecare caz de reprezentare a unei suprafețe netede se pot defini doi versori normali care sunt coliniari și de sens contrar.

Definiția 5.1.8 Coordonatele versorului normal la o suprafeță netedă întrun punct al ei se numesc **cosini directori**.

Definiția 5.1.9 Se numește **normala** în punctul M al unei suprafețe netede (S), dreapta (N) determinată de punctul M și de unul din versorii normali ai suprafeței în acel punct.

Corespunzător celor doi versori normali întrun punct al unei suprafețe vom avea două orientări ale normalei pe care le vom numi orientarea pozitivă a normalei, când vectorul ei director este \mathbf{n} , și orientarea negativă a normalei când se alege drept direcție a normalei vectorul $-\mathbf{n}$. În loc de orientare pozitivă și respectiv orientare negativă a normalei se pot folosi și termenii sens pozitiv și respectiv sens negativ al normalei.

Definiția 5.1.10 Fie funcția reală diferențiabilă $F \in \mathcal{F}(A)$ care satisface (5.36) și punctul arbitrar $M_0(x_0, y_0, z_0) \in A$. Varietatea bidimensională de ecuatie carteziană explicită

$$F(x, y, z) = F(x_0, y_0, z_0)$$
(5.46)

se numește varietate de nivel sau suprafață de nivel a funcției F corespunzătoare nivelului $F(x_0, y_0, z_0)$.

Observația 5.1.6 Vectorul normal în punctul M(x, y, z) la suprafața de nivel (5.46) care trece prin punctul $M_0(x_0, y_0, z_0)$ este (5.35).

Observația 5.1.7 Pentru fiecare punct $M_1(x_1, y_1, z_1)$ aparținând vartietății de nivel (5.46) planul de ecuație

$$(x - x_1)\frac{\partial F}{\partial x}(x_1, y_1, z_1) + (y - y_1)\frac{\partial F}{\partial y}(x_1, y_1, z_1) + (z - z_1)\frac{\partial F}{\partial z}(x_1, y_1, z_1) = 0,$$

este planul tangent în punctul M_1 la varietatea de nivel (5.46).

Definiția 5.1.11 Dacă o suprafață S nu este netedă, însă poate fi scrisă ca reuniunea unui număr finit de suprafețe netede, spunem că S este suprafață netedă pe porțiuni.

5.1.8 Element de arie al unei suprafețe netede

Să considerăm o suprafață netedă (\mathcal{S}) reprezentată de pânza parametrică (5.3). Prin punctul M de vector de poziție $\mathbf{r}(u,v)$ de pe Im \mathbf{r} trece o curbă parametrică $\mathbf{r} = \mathbf{r}(u,v)$, v = const., al cărei vector tangent în M este $\frac{\partial \mathbf{r}}{\partial u}(u,v)$ și o curbă parametrică $\mathbf{r} = \mathbf{r}(u,v)$, u = const., al cărei vector tangent în M este $\frac{\partial \mathbf{r}}{\partial v}(u,v)$. Un vector de mărime infinitezimală, coliniar cu vectorul $\frac{\partial \mathbf{r}}{\partial u}(u,v)$ este $\frac{\partial \mathbf{r}}{\partial u}(u,v)\,du$, iar un vector coliniar cu $\frac{\partial \mathbf{r}}{\partial v}(u,v)$, de mărime infinitezimală, are forma $\frac{\partial \mathbf{r}}{\partial v}(u,v)\,dv$. Acești doi vectori determină un paralelogram infinitezimal inclus în planul tangent în M la suprafața (\mathcal{S}). Fie $d\sigma$ aria acestui paralelogram.

Ne propunem să calculăm expresia lui $d\sigma$ când suprafața (S) este reprezentată fie prin ecuația vectorială (5.3), fie prin ecuațiile parametrice (5.4) sau prin ecuația carteziană explicită (5.22).

Pentru aceasta ne folosim de interpretarea geometrică a mărimii produsului vectorial a doi vectori necoliniari $\mathbf{a} \in \mathbb{R}^3$ și $\mathbf{b} \in \mathbb{R}^3$ care, se știe, este aria paralelogramului din \mathcal{E}_3 ce are două din laturi reprezentanții celor doi vectori întrun punct oarecare al spațiului, adică

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \cdot \|\mathbf{b}\| \cdot \sin \tau$$

unde $\tau \in [0,\pi]$ este unghiul dintre cei doi vectori. Aplicând această formulă de calcul pentru $d\sigma$ găsim

$$(d\sigma)^{2} = \left\| \frac{\partial \mathbf{r}}{\partial u}(u, v) \right\|^{2} \left\| \frac{\partial \mathbf{r}}{\partial v}(u, v) \right\|^{2} \sin^{2} \tau (dudv)^{2} =$$

$$\left(\left\| \frac{\partial \mathbf{r}}{\partial u}(u, v) \right\|^{2} \left\| \frac{\partial \mathbf{r}}{\partial v}(u, v) \right\|^{2} -$$

$$- \left(\left\| \frac{\partial \mathbf{r}}{\partial u}(u, v) \right\| \left\| \frac{\partial \mathbf{r}}{\partial v}(u, v) \right\| \cos \tau \right)^{2} \right) (dudv)^{2},$$

în care am folosit identitatea $\sin^2 \tau + \cos^2 \tau = 1$. Dacă ținem cont că produsul scalar a doi vectori din \mathbb{R}^3 ește egal cu produsul dintre mărimile vectorilor și cosinusul unghiului dintre ei, iar pătratul normei (lungimii) unui vector este produsul scalar al acelui vector cu el însuși, egalitatea de mai sus se poate scrie sub forma

$$d\sigma = \sqrt{E(u,v)G(u,v) - F^2(u,v)} dudv, \qquad (5.47)$$

în care s-au făcut notațiile

$$E(u,v) = \left\| \frac{\partial \mathbf{r}}{\partial u}(u,v) \right\|^2 = \frac{\partial \mathbf{r}}{\partial u}(u,v) \cdot \frac{\partial \mathbf{r}}{\partial u}(u,v) =$$

$$= \left(\frac{\partial x}{\partial u}(u,v) \right)^2 + \left(\frac{\partial y}{\partial u}(u,v) \right)^2 + \left(\frac{\partial z}{\partial u}(u,v) \right)^2$$
(5.48)

$$F(u,v) = \left\| \frac{\partial \mathbf{r}}{\partial u}(u,v) \right\| \left\| \frac{\partial \mathbf{r}}{\partial v}(u,v) \right\| \cos \tau = \frac{\partial \mathbf{r}}{\partial u}(u,v) \cdot \frac{\partial \mathbf{r}}{\partial v}(u,v) =$$

$$= \frac{\partial x}{\partial u}(u,v) \frac{\partial x}{\partial v}(u,v) + \frac{\partial y}{\partial u}(u,v) \frac{\partial y}{\partial v}(u,v) + \frac{\partial z}{\partial u}(u,v) \frac{\partial z}{\partial v}(u,v)$$

$$G(u,v) = \left\| \frac{\partial \mathbf{r}}{\partial v}(u,v) \right\|^2 = \frac{\partial \mathbf{r}}{\partial u}(u,v) \cdot \frac{\partial \mathbf{r}}{\partial u}(u,v) =$$

$$= \left(\frac{\partial x}{\partial v}(u,v)\right)^2 + \left(\frac{\partial y}{\partial v}(u,v)\right)^2 + \left(\frac{\partial z}{\partial v}(u,v)\right)^2.$$
(5.49)

Observația 5.1.8 Pentru suprafața netedă de ecuație vectorială $\mathbf{r} = \mathbf{r}(u, v)$, mărimea E(u, v) este suma pătratelor elementelor primei coloane a matricei Jacobiene $J_{\mathbf{r}}(u, v)$, F(u, v) este suma produselor elementelor corespunzătoare celor două coloane din $J_{\mathbf{r}}(u, v)$, iar G(u, v) este suma pătratelor elementelor coloanei a doua a matricei $J_{\mathbf{r}}(u, v)$.

Observația 5.1.9 Dacă suprafața (\mathcal{S}) este reprezentată printr-o pânză netedă dată cartezian explicit prin (5.22) și ținem cont de (5.23), deducem că matricea jacobiană $J_{\mathbf{r}}(x,y)$ are elementele

$$J_{\mathbf{r}}(x,y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ p & q \end{pmatrix}.$$

Din Observațiile 5.1.8 și 5.1.9 rezultă:

$$E(x,y) = 1 + p^2; \quad F(x,y) = p \cdot q; \quad G(x,y) = 1 + q^2.$$
 (5.51)

Prin urmare, aria infinitezimală $d\sigma$ a unei suprafațe netede reprezentată cartezian explicit de ecuația (5.22) este

$$d\sigma = \sqrt{1 + p^2 + q^2} \, dx \, dy. \tag{5.52}$$

Definiția 5.1.12 Mărimea $d\sigma$ din expresia (5.47), respectiv (5.52), se numește element de arie al suprafețe (S) calculat în punctul M al ei reprezentată parametric prin ecuațiile (5.4), respectiv cartezian explicit prin ecuația (5.22).

Definiția 5.1.13 Funcțiile reale E, F, G, calculate după legea (5.48) când (\mathcal{S}) este reprezentată parametric, sau după legea (5.51) dacă (\mathcal{S}) este dată prin ecuația carteziană explicită, se numesc coeficienții lui Gauss sau coeficienții primei forme fundamentale a suprafeței netede (\mathcal{S}).

Pentru a vedea semnificația primei forme fundamentale a unei suprafețe netede, considerăm un drum oarecare (curbă) (γ) pe suprafață care trece prin punctul M(x,y,z) cu coordonatele date de (5.4), unde $(u,v)\in \mathring{A}$. Elementul de arc ds al acestei curbe în punctul M este

$$ds = ||d\mathbf{r}(u, v)|| = \sqrt{d\mathbf{r}(u, v) \cdot d\mathbf{r}(u, v)}.$$

Având în vedere expresia analitică a diferențialei

$$d\mathbf{r}(u,v) = \frac{\partial \mathbf{r}}{\partial u}(u,v)du + \frac{\partial \mathbf{r}}{\partial v}(u,v)dv,$$

calculând pătratul scalar al acesteia și ținând cont de notațiile (5.48)-(5.50), constatăm că

$$ds^{2} = E(u, v)du^{2} + 2F(u, v)dudv + G(u, v)dv^{2}.$$
 (5.53)

Definiția 5.1.14 Relația (5.53) se numește prima formă fundamentală a unei suprafețe.

Observația 5.1.10 Pătratul elementului de arc, ds^2 , este formă pătratică în variabilele du și dv, iar determinantul matricei coeficienților este

$$E(u,v) \cdot G(u,v) - F^{2}(u,v) = \left\| \frac{\partial \mathbf{r}}{\partial u}(u,v) \times \frac{\partial \mathbf{r}}{\partial v}(u,v) \right\|^{2}.$$
 (5.54)

Observația 5.1.11 Relația (5.54) și condiția de regularitate (5.5) arată că ds^2 este formă pătratică pozitiv definită.

Definiția 5.1.15 Fie o suprafață netedă (\mathcal{S}), $M_0 \in \mathcal{S}$, (γ_1), (γ_2) două curbe situate pe suprafață și τ_1 , τ_2 versorii tangentelor în punctul comun M_0 la respectiv curbele (γ_1) și (γ_2). Se numește unghiul dintre curbele (γ_1) și (γ_2), unghiul $\varphi \in [0, \pi]$ dintre τ_1 și τ_2 .

Cosinusul unghiului φ este dat de relația

$$\cos \varphi = \frac{d\mathbf{r}(u_0, v_0) \cdot \delta \mathbf{r}(u_0, v_0)}{\|d\mathbf{r}(u_0, v_0)\| \|\delta \mathbf{r}(u_0, v_0)\|},$$
(5.55)

unde diferențialele vectorului de poziție a punctului M_0 în lungul fiecăreia dintre cele două curbe sunt

$$\begin{cases}
d\mathbf{r}(u_0, v_0) = \frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)du + \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)dv, \\
\delta \mathbf{r}(u_0, v_0) = \frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)\delta u + \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)\delta v.
\end{cases} (5.56)$$

Înlocuind (5.56) în (5.55) şi folosindu—ne de expresiile coeficienților lui Gauss în punctul $M'_0(u_0, v_0)$, deducem

$$\cos \varphi = \frac{Edu\delta u + F(du\delta v + dv\delta u) + Gdv\delta v}{\sqrt{Edu^2 + 2Fdudv + Gdv^2}\sqrt{E\delta u^2 + 2F\delta u\delta v + G\delta v^2}}.$$
 (5.57)

Presupunem că cele două curbe în discuţie mai sus sunt liniile parametrice care trec prin M_0 . Atunci, pe prima linie avem dv = 0, iar pe cea de a doua $\delta v = 0$, încât din (5.57) deducem că unghiul dintre liniile parametrice este astfel încât

$$\cos \varphi = \frac{F(u_0, v_0)}{\sqrt{E(u_0, v_0) G(u_0, v_0)}}.$$
 (5.58)

Două curbe trasate pe suprafața (S) de ecuație vectorială (5.3), care trec prin punctul $M_0 \in (S)$, sunt ortogonale dacă

$$E(u_0, v_0)du\delta u + F(u_0, v_0)(du\delta v_0 + dv\delta u_0) + G(u_0, v_0)dv\delta v_0 = 0.$$
 (5.59)

Observația 5.1.12 Să considerăm pânza parametrică din Exemplul 5.1.1. Constatăm că

$$\frac{\partial \mathbf{r}}{\partial u}(u,v) \cdot \frac{\partial \mathbf{r}}{\partial v}(u,v) = 0,$$

ceea ce înseamnă că cel de al doilea coeficient al lui Gauss este nul în orice punct $(u,v) \in (0,2\pi) \times (0,\pi)$. Folosind (5.58) şi (5.59) deducem că liniile

parametrice ale sferei sunt ortogonale. Aceste linii parametrice sunt, pe de o parte, cercul paralel obținut când v = const. i, pe de altă parte, meridianul care se obține luând u = const.

Exercițiul 5.1.1 Fie suprafața (S) din \mathbb{R}^3 de ecuație vectorială

$$\mathbf{r} = \mathbf{r}(u, v) = (u\cos v + \sin v)\,\mathbf{i} + (u\sin v - \cos v)\,\mathbf{j} + (u - v)\,\mathbf{k}, \quad (u, v) \in \mathbb{R}^2.$$

Să se arate că în toate punctele suprafeței există un plan tangent unic și să se scrie ecuația vectorială, ecuațiile parametrice și ecuația carteziană implicită ale planului tangent la suprafață în punctul $M_0 \in (\mathcal{S})$ corespunzătoare valorilor $u = \frac{\pi}{3}$, v = 0 ale parametrilor u și v. Să se determine coeficienții lui Gauss și prima formă fundamentală întrun punct curent M al suprafeței.

Soluție. Funcția $\mathbf{r} \in \mathcal{F}(\mathbf{R}^2, \mathbf{R}^3)$ care definește suprafața (\mathcal{S}) este diferențiabilă, prin urmare (\mathcal{S}) este o suprafață netedă în \mathbb{R}^3 . Apoi, matricea jacobiană a aplicației \mathbf{r} este

$$J_{\mathbf{r}}(u,v) = \begin{pmatrix} \cos v & -u\sin v + \cos v \\ \sin v & u\cos v + \sin v \\ 1 & -1 \end{pmatrix}.$$

Dacă se calculează funcțiile $A,\ B,\ C,$ se găsește:

$$A = -u\cos v - 2\sin v; \quad B = -u\sin v - 2\cos v; \quad C = u.$$

Observăm că $A^2 + B^2 + C^2 = 2u^2 + 4 > 0$, (\forall) , $(u, v) \in \mathbb{R}^2$, deci în orice punct al suprafeței există un plan tangent unic determinat.

Ecuația vectorială a planului tangent în M_0 este

$$\mathbf{r} = \mathbf{r}(\frac{\pi}{3}, 0) + (\mathbf{i}, \ \mathbf{j}, \ \mathbf{k}) \left(J_{\mathbf{r}}(\frac{\pi}{3}, 0) \begin{pmatrix} t - \frac{\pi}{3} \\ s \end{pmatrix} \right).$$

Dacă se efectuează înlocuirile cerute se găsește

$$\mathbf{r} = \frac{\pi}{3}\mathbf{i} - \mathbf{j} + \frac{\pi}{3}\mathbf{k} + (\mathbf{i}, \mathbf{j}, \mathbf{k}) \begin{pmatrix} t - \frac{\pi}{3} + s \\ \frac{\pi}{3}s \\ t - s - \frac{\pi}{3} \end{pmatrix}.$$

Egalând coordonatele corespunzătoare ale vectorilor din cei doi membri ai ecuației vectoriale a planului tangent în punctul M_0 găsim că ecuațiile parametrice ale acestuia sunt

$$\begin{cases} x = t+s \\ y = \frac{\pi}{3} - 1 \\ z = t-s, \quad (t,s) \in \mathbb{R}^2. \end{cases}$$

Ecuația carteziană implicită a planului tangent în M_0 se obține eliminând parametrii t și s din ecuațiile parametrice de mai sus. Se găsește că această ecuație este

$$\pi \, x - 6 \, y - \pi \, z - 6 = 0.$$

Folosind Observația 5.1.8 constatăm că coeficienții lui Gauss sunt:

$$E(u,v) = 2; F(u,v) = 0; G(u,v) = 2 + u^2, (u,v) \in \mathbb{R}^2,$$

iar forma întâia fundamentală a suprafeței este

$$ds^2 = 2 du^2 + (2 + u^2) dv^2.$$

Exercițiul 5.1.2 Să se arate că planul tangent întrun punct curent al suprafeței

$$(\mathcal{S}) \ z = f(x, y) = x \varphi(\frac{y}{x}), \ x \neq 0,$$

unde φ este o funcție reală derivabilă pe un interval real, trece prin originea reperului din \mathcal{E}_3 .

Soluție. Dacă notăm coordonatele punctului curent al planului tangent cu X, Y, Z, atunci ecuația planului tangent în punctul $M(x, y, x \varphi(\frac{y}{x}))$ al suprafeței date este

$$(X-x)\frac{\partial f}{\partial x}(x,y) + (Y-y)\frac{\partial f}{\partial y}(x,y) - (Z-f(x,y)) = 0.$$

Trebuiesc calculate derivatele parțiale ale funcției f care definește suprafața. Avem:

$$\frac{\partial f}{\partial x}(x,y) = \varphi\left(\frac{y}{x}\right) - \frac{y}{x}\varphi'\left(\frac{y}{x}\right); \quad \frac{\partial f}{\partial x}(x,y) = \varphi'\left(\frac{y}{x}\right).$$

Înlocuind aceste valori ale derivatelor parțiale în ecuația planului tangent găsim

 $\left(\varphi\left(\frac{y}{x}\right) - \frac{y}{x}\varphi'\left(\frac{y}{x}\right)\right)X + \varphi'\left(\frac{y}{x}\right)Y - Z = 0.$

Oricare din aceste plane trece prin originea reperului deoarece coordonatele acesteia (0,0,0) verifică ecuația planului indiferent de punctul M(x,y,z) al suprafeței.

Definiția 5.1.16 O porțiune (S) de suprafață netedă se numește suprafață orientabilă, dacă în fiecare punct al ei normala este bine determinată și, pornind dintr-un punct al suprafeței pe o curbă închisă cu o anumită orientare a normalei, ajungem în acel punct cu aceeași orientare a normalei. Fața care corespunde sensului pozitiv al normalei se numește fața pozitivă a suprafeței. O suprafață orientabilă se numește și suprafață cu două fețe sau suprafață bilateră.

Cea mai simplă suprafață cu două fețe este planul. Cuadricele (elipsoidul, hiperboloizii, paraboloizii, cilindri pătratici, conurile pătratice, perechile de plane) sunt suprafețe orientabile. Când suprafața este închisă, deci când este frontiera unui domeniu spațial mărginit, ea este orientabilă cele două fețe ale sale numindu—se fața exterioară și fața interioară. Dacă suprafața (\mathcal{S}) are reprezentarea carteziană explicită (5.22), prin definiție fața pozitivă a sa este aceea pentru care normala orientată întrun punct al ei face unghi ascuțit cu versorul \mathbf{k} . În acest caz feței pozitive i se spune și față superioară.

Există suprafețe cu o singură față care se mai numesc suprafețe neorientabile sau suprafețe unilatere; banda lui Möbius este un exemplu de suprafață cu o singură față.

5.2 Aria unei suprafețe netede

Din geometria elementară se cunosc ariile domeniilor plane cu frontiere poligoane, a cercului şi ariile unor figuri geometrice de rotație (con, cilindru, sferă, zonă sferică, calotă sferică). Cu ajutorul calculului integral am extins această noțiune şi am arătat cum se calculează aria oricărui domeniu determinat de curbe plane închise, care au arie. Pentru definirea ariei unei porțiuni de suprafață oarecare, pornind pe calea urmată la calculul lungimii unui arc regulat de curbă prin considerarea liniilor poligonale înscrise în curbă, ar trebui să considerăm suprafețe poliedrale înscrise în porțiunea de suprafață

dată. După cum a arătat Schwarz printr—un exemplu (cizma lui Schwarz), această cale nu duce întotdeauna la rezultat. De aceea, pentru introducerea noțiunii de arie a unei porțiuni de suprafață netedă procedăm după cum urmează.

Să considerăm o suprafață netedă pozitiv orientată (\mathcal{S}) dată cartezian explicit de ecuația (5.22) și să notăm cu (Γ) curba care mărginește (\mathcal{S}). Fie D interiorul domeniului de definiție al funcției f din (5.22) și γ frontiera acestuia. Mulțimile D și γ sunt proiecțiile ortogonale ale lui (\mathcal{S}) și respectiv Γ pe planul Oxy.

Să împărțim suprafața (\mathcal{S}) în patrulatere curbilinii (S_{ij}) cu ajutorul unor curbe coordonate de forma $x = x_i = \text{const.}$, $i = \overline{1, m}$, şi $y = y_j = \text{const.}$, j = 1, n. Aceste curbe sunt intersecțiile suprafeței cu plane paralele la planele de coordonate Oyz şi Oyz. Evident,

$$(S_{ij}) = \{(x, y, z) \in (\mathcal{S}) : x_i \le x \le x_{i+1}, y_i \le y \le y_{i+1}, z = f(x, y)\}.$$

Proiecția D_{ij} a porțiunii (S_{ij}) din suprafața (S) pe planul Oxy este

$$D_{ij} = \{(x,y) \in D : x_i \le x \le x_{i+1}, y_j \le y \le y_{j+1},$$

unde $1 \le i \le m - 1, 1 \le j \le n - 1$.

Fie $M_{ij}(\xi_i, \eta_j, f(\xi_i, \eta_j))$ un punct arbitrar aparţinând patrulaterului curbiliniu (S_{ij}) şi $M'_{ij}(\xi_i, \eta_j) \in D_{ij}$ proiecţia acestui punct pe planul Oxy. Notăm cu T_{ij} porţiunea din planul tangent la suprafaţă în punctul M_{ij} care se proiectează în planul Oxy pe dreptunghiul, eventual curbiliniu, D_{ij} . Din geometria elementară se cunoaște relaţia:

$$\operatorname{aria} D_{ij} = \operatorname{aria} T_{ij} \cos \gamma_{ij}, \tag{5.60}$$

unde $\gamma_{ij} \in [0, \pi/2)$ este unghiul dintre normala la fața pozitivă a suprafeței (S) în punctul M_{ij} și versorul \mathbf{k} al axei Oz. Am arătat în paragraful precedent că

$$\cos \gamma_{ij} = \frac{1}{\sqrt{1 + p^2(\xi_i, \eta_j) + q^2(\xi_i, \eta_j)}}$$
 (5.61)

unde, conform notațiilor lui Monge,

$$p(\xi_i, \eta_j) = \frac{\partial f}{\partial x}(\xi_i, \eta_j); \quad q(\xi_i, \eta_j) = \frac{\partial f}{\partial y}(\xi_i, \eta_j).$$

O valoare aproximativă a ariei porțiunii netede (S) de suprafață este

$$\Omega_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{aria} T_{ij}.$$
(5.62)

Folosind (5.60) în (5.62) constatăm că

$$\Omega_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{\cos \gamma_{ij}} \operatorname{aria} D_{ij}.$$
(5.63)

Având în vedere (5.61) rezultă că expresia lui Ω_{mn} din (5.63) se poate scrie în forma

$$\Omega_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} \sqrt{1 + p^2(\xi_i, \eta_j) + q^2(\xi_i, \eta_j)} \operatorname{aria} D_{ij}.$$
 (5.64)

Observația 5.2.1 Membrul doi al relației (5.64) este o sumă integrală Riemann a funcțiiei $F(x,y) = \sqrt{1 + p^2(x,y) + q^2(x,y)}$ corespunzătoare modului de divizare

$$\Delta_{mn} = \{D_{11}, D_{12}, \cdots, D_{ij}, \cdots, D_{mn}\}$$
 (5.65)

și alegerii punctelor intermediare $(\xi_i, \eta_i) \in D_{ij}$.

Definiția 5.2.1 Se numește aria suprafeței netede (S) numărul real

$$\operatorname{aria} S = \lim_{\nu_{mn} \to 0} \Omega_{mn}. \tag{5.66}$$

Teorema 5.2.1 Dacă suprafața (S) este netedă și este reprezentată cartezian explicit prin ecuația (5.22), atunci ea are arie și aria sa este dată de formula

aria
$$S = \iint_D \sqrt{1 + p^2(x, y) + q^2(x, y)} \, dx dy.$$
 (5.67)

Demonstrație. Deoarece am considerat că suprafața (S) este netedă, rezultă că funcția f din (5.22) este continuu diferențiabilă pe D ceea ce atrage că funcția

$$F(x,y) = \sqrt{1 + p^2(x,y) + q^2(x,y)}$$

este continuă pe D şi, drept urmare, limita din membrul al doilea al relației (5.66) este integrala dublă pe D din funcția F(x, y), astfel că vom putea scrie (5.67) și teorema este demonstrată.

Observația 5.2.2 Formula de calcul (5.67) a ariei suprafeței netede (S) poate fi scrisă și în forma

$$\operatorname{aria} \mathcal{S} = \iint_{D} \frac{dxdy}{\cos \gamma}.$$
 (5.68)

Exemplul 5.2.1 $S\ddot{a}$ se determine aria suprafeței tăiată din paraboloidul hiperbolic z=xy de cilindrul circular $x^2+y^2=R^2$.

Soluție. Funcția f care definește cartezian explicit porțiunea de suprafață decupată de cilindru în paraboloidul hiperbolic dat este f(x,y) = xy, domeniul ei de definiție D fiind discul închis de rază R cu centrul în origine, situat în planul Oxy. Așadar,

$$f: D \subset \mathbb{R}^2, \ f(x,y) = xy, \ (x,y) \in D,$$

unde domeniul D este definit de

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}.$$

Constatăm că porțiunea (S) din paraboloidul hiperbolic aflat în interiorul cilindrului $x^2 + y^2 - R^2 = 0$ este o suprafață netedă, prin urmare aria sa va fi calculată cu ajutorul formulei (5.67). Avem p = y, q = y astfel că aria lui (S) este

$$\operatorname{aria} \mathcal{S} = \iint_{\mathcal{D}} \sqrt{1 + x^2 + y^2} \, dx dy. \tag{5.69}$$

Pentru calculul acestei integrale duble, trecem la coordonate polare

$$\begin{cases} x = \rho \cos \theta, \\ y = \rho \sin \theta. \end{cases}$$
 (5.70)

Perechea (x,y) aparţine domeniului de integrare D dacă şi numai dacă perechea (ρ,θ) din (5.70) aparţine intervalului bidimensional $[0,R]\times[0,2\pi)$. Atunci, (5.70) stabileşte o transformare punctuală regulată între intervalul bidimensional $\Omega=[0,R]\times[0,2\pi)$ şi discul D. Ştiind că jacobianul transformării punctuale regulate (5.70) este egal cu ρ , prin aplicarea formulei schimbării de variabile în integrala dublă (5.69), găsim

aria
$$S = \iint_{\Omega} \rho \sqrt{1 + \rho^2} \, d\rho d\theta.$$

Integrala dublă pe un interval bidimensional se calculează simplu, astfel că

aria
$$S = \int_0^{2\pi} d\theta \int_0^R \rho \sqrt{1 + \rho^2} d\rho = \pi \int_0^R (1 + \rho^2)^{1/2} (1 + \rho^2)' d\rho =$$
$$= \frac{2\pi}{3} ((1 + R^2)^{3/2} - 1)$$

deoarece o primitivă a funcției $(1+\rho^2)^{1/2}(1+\rho^2)'$ este $\frac{2}{3}(1+\rho^2)^{3/2}$.

Teorema 5.2.2 Dacă (S) este o suprafața netedă reprezentată prin ecuația vectorială (5.3), sau prin ecuațiile parametrice (5.4), atunci (S) are arie și

$$\operatorname{aria} S = \iint_{A} \sqrt{E(u, v) G(u, v) - F^{2}(u, v)} \, du dv, \qquad (5.71)$$

unde E, F și G sunt coeficienții lui Gauss (5.48) - (5.50).

Demonstrație. Presupunem că normala la suprafața (S) este dată de (5.43), unde în membrul doi s-a luat semnul plus. Atunci,

$$\cos \gamma = \frac{C(u,v)}{\sqrt{A^2(u,v) + B^2(u,v) + C^2(u,v)}}.$$
 (5.72)

Să considerăm sistemul format de primele două ecuații ale sistemului (5.4), adică

$$\begin{cases} x = x(u, v), \\ y = y(u, v), \end{cases} (u, v) \in A.$$
 (5.73)

Presupunând că parametrizarea suprafeței netede (S) este astfel încât

$$C(u,v) = \frac{D(x,y)}{D(u,v)}(u,v) \neq 0, \quad (u,v) \in \mathring{A},$$
 (5.74)

deducem că (5.73) este o transformare punctuală regulată între mulțimea A și o mulțime $D \subset \mathbb{R}^2$ care este mulțimea perechilor $(x,y) \in \mathbb{R}^2$, unde x și y sunt dați de (5.73). Atunci, (5.73) poate constitui o schimbare de variabile în integrala dublă.

În formula de calcul (5.68) a ariei suprafeței efectuăm schimbarea de variabile (5.73). Folosind formula schimbării de variabile în integrala dublă găsim

$$\operatorname{aria} \mathcal{S} = \iint_{A} \frac{1}{\cos \gamma} \left| \frac{D(S_1, S_2)}{D(u, v)} (u, v) \right| du dv.$$
 (5.75)

Din (5.74) şi (5.72) în (5.75) rezultă că formula de calcul a ariei unei suprafețe netede date parametric este

aria
$$S = \iint_{A} \sqrt{A^{2}(u, v) + B^{2}(u, v) + C^{2}(u, v)} du dv =$$

$$= \iint_{A} \left\| \frac{\partial \mathbf{r}}{\partial u}(u, v) \times \frac{\partial \mathbf{r}}{\partial v}(u, v) \right\| du dv.$$
(5.76)

Pe de altă parte,

$$\sqrt{A^2(u,v) + B^2(u,v) + C^2(u,v)} = \sqrt{E(u,v)G(u,v) - F^2(u,v)}.$$
 (5.77)

Concluzia (5.71) a teoremei rezultă acum din (5.76) și (5.77).

Exemplul 5.2.2 Să se determine aria suprafeței de rotație

$$(S): x = u \cos v, y = u \sin v, z = f(u),$$
 (5.78)

unde $(u,v) \in D = [u_1,u_2] \times [0,2\pi)$ și f este o funcție derivabilă.

Soluție. Suprafața de rotație (\mathcal{S}) este o suprafață netedă. Pentru a aplica formula (5.71), calculăm coeficienții lui Gauss. Pentru aceasta, efectuăm derivatele funcțiilor din (5.78). Avem:

$$\begin{cases} x'_{u}(u,v) = \cos v; & x'_{v}(u,v) = -u \sin v; \\ y'_{u}(u,v) = \sin v; & y'_{v}(u,v) = u \cos v; \\ z'_{u}(u,v) = f'(u); & z'_{v}(u,v) = 0. \end{cases}$$
 (5.79)

Coeficienții E(u, v), F(u, v) și G(u, v) se calculează cu ajutorul derivatelor parțiale din (5.79). Se găsește

$$\begin{cases}
E(u,v) &= (x'_{u}(u,v))^{2} + (y'_{u}(u,v))^{2} + (z'_{u}(u,v))^{2} = \\
&= 1 + (f'(u))^{2}, \\
F(u,v) &= x'_{u}(u,v) x'_{v}(u,v) + y'_{u}(u,v) y'_{v}(u,v) + \\
&+ z'_{u}(u,v) z'_{v}(u,v) = 0, \\
G(u,v) &= (x'_{v}(u,v))^{2} + (y'_{v}(u,v))^{2} + (z'_{v}(u,v))^{2} = u^{2}.
\end{cases} (5.80)$$

Formula de calcul (5.71), în care folosim (5.80), conduce la

aria
$$S = \iint_D \sqrt{u^2(1 + f'^2(u))} du dv = 2\pi \int_{u_1}^{u_2} |u| \sqrt{1 + f'^2(u)} du.$$
 (5.81)

Presupunem că $[u_1, u_2] \subset (0, +\infty)$ și că funcția f are derivata pozitivă. Folosind ca variabilă cota z, vom avea

$$u = \varphi(z), z \in [z_1, z_2], \varphi'(z) = \frac{1}{f'(u)},$$

astfel că formula de calcul (5.81) a ariei suprafeței de rotație (5.78) devine

aria
$$S = 2\pi \int_{z_1}^{z_2} \varphi(z) \sqrt{1 + (\varphi'(z))^2} dz$$

și este aceeași cu cea dedusă la aplicațiile integralei definite.

Teorema 5.2.3 Aria unei suprafețe netede (S) nu depinde de reprezentarea sa parametrică.

Demonstrație. Fie suprafața (S) dată parametric de (5.4) și transformarea punctuală regulată bijectivă

$$\begin{cases} u = \lambda(u', v'), \\ v = \mu(u', v'), \end{cases} (u', v') \in D'$$
 (5.82)

de la mulțimea D' la mulțimea A, unde frontiera lui D' este o curbă netedă pe porțiuni, funcțiile λ și μ sunt continue și cu derivate parțiale continue, iar jacobianul

$$\frac{D(\lambda, \mu)}{D(u', v')}(u', v') \neq 0, \text{ pe } D'.$$

Obținem în acest fel o nouă reprezentare parametrică a lui (S) și anume

$$\begin{cases} x = \varphi(u', v') = x(\lambda(u', v'), \mu(u', v')), \\ y = \psi(u', v') = y(\lambda(u', v'), \mu(u', v')), \quad (u', v') \in D'. \\ z = \chi(u', v') = z(\lambda(u', v'), \mu(u', v')), \end{cases}$$
(5.83)

274 Ion Crăciun

Dacă notăm:

$$A' = \frac{D(\psi, \chi)}{D(u', v')}(u', v'); \quad B' = \frac{D(\chi, \varphi)}{D(u', v')}(u', v'); \quad C' = \frac{D(\varphi, \psi)}{D(u', v')}(u', v'),$$

atunci au loc următoarele egalități:

$$A' = A \frac{D(\lambda, \mu)}{D(u', v')}; \quad B' = B \frac{D(\lambda, \mu)}{D(u', v')}; \quad C' = C \frac{D(\lambda, \mu)}{D(u', v')}$$
(5.84)

și deci

$$\begin{split} \sqrt{A^2(u,v) + B^2(u,v) + C^2(u,v)} &= \\ &= \frac{\sqrt{A'^2(u',v') + B'^2(u',v') + C'^2(u',v')}}{\left|\frac{D(\lambda,\mu)}{D(u',v')}(u',v')\right|}. \end{split}$$

Folosind formula schimbării de variabile în integrala dublă, obținem

$$\operatorname{aria} \mathcal{S} = \iint_{A} \sqrt{A^{2}(u, v) + B^{2}(u, v) + C^{2}(u, v)} \, du dv =$$

$$\iint_{D'} \frac{\sqrt{A'^{2}(u', v') + B'^{2}(u', v') + C'^{2}(u', v')}}{\left| \frac{D(\lambda, \mu)}{D(u', v')} (u', v') \right|} \left| \frac{D(\lambda, \mu)}{D(u', v')} (u', v') \right| du' dv' =$$

$$= \iint_{D'} \sqrt{A'^{2}(u', v') + B'^{2}(u', v') + C'^{2}(u', v')} \, du' dv'$$

$$= \iint_{D'} \sqrt{A'^{2}(u', v') + B'^{2}(u', v') + C'^{2}(u', v')} \, du' dv'$$

și teorema este demonstrată.

5.3 Integrala de suprafață de primul tip

Fie (S) o suprafață netedă mărginită de o curbă netedă pe porțiuni L. Este posibil însă ca (S) să fie o suprafață închisă și deci nu are frontieră. Considerăm o funcție mărginită f(M) definită în punctele unui domeniu din spațiu care conține suprafața (S). Fie

$$\Delta = \{\mathcal{S}_1, \mathcal{S}_2, \cdots, \mathcal{S}_n\} \tag{5.86}$$

o partiție sau diviziune a suprafeței (\mathcal{S}) obținută prin trasarea pe suprafață a anumitor curbe din două familii de curbe distincte. Întrucât suprafața (\mathcal{S}) este netedă pe porțiuni, ea are arie. Fiecare din suprafețele componente ale partiției are arie și deci se poate vorbi de numărul real pozitiv $\nu(\Delta)$ sau $\|\Delta\|$, cel mai mare dintre numerele pozitive aria \mathcal{S}_i pe care îl vom numi norma partiției Δ . În fiecare parte \mathcal{S}_i alegem un punct M_i , numit punct intermediar, și formăm suma integrală

$$\sigma_{\Delta}(f; M_i) = \sum_{i=1}^{n} f(M_i) \operatorname{aria} S_i$$
 (5.87)

asociată funcției f, modului de divizare Δ și alegerii punctelor intermediare $M_i \in \mathcal{S}_i$.

Definiția 5.3.1 Funcția f este integrabilă pe suprafața netedă S dacă există un număr $I \in \mathbb{R}$ cu proprietatea că $(\forall) \varepsilon > 0$, $(\exists) \delta(\varepsilon) > 0$ astfel încât $(\forall) \Delta$ cu $\nu(\Delta) < \delta(\varepsilon)$ și $M_i \in S_i$,

$$|\sigma_{\Delta}(f, M_i) - I| < \varepsilon. \tag{5.88}$$

Numărul I se numește integrala de suprafață de primul tip din funcția f pe suprafața netedă (S) și se notează

$$I = \iint_{\mathcal{S}} f(M) \, d\sigma, \tag{5.89}$$

unde $d\sigma$ este elementul de arie al suprafeței S.

Poziția punctului curent $M \in \mathcal{S}$ poate fi determinată prin specificarea coordonatelor carteziene ale sale x, y și z. Atunci, valoarea f(M) a funcției f în punctul $M \in \mathcal{S}$ poate fi notată în forma f(x, y, z) și ca urmare integrala de suprafață de tipul întâi a funcției f pe suprafața netedă (\mathcal{S}) se poate scrie ca

$$I = \iint\limits_{S} f(x, y, z) d\sigma. \tag{5.90}$$

De menţionat că dacă folosim notaţia (5.90) pentru integrala de suprafaţă I, trebuie să avem în vedere că variabilele x, y şi z sunt legate între ele prin condiţia de apartenenţă la suprafaţa (\mathcal{S}) a punctului M(x,y,z). Integrala de suprafaţă de tipul întâi din funcţia f pe suprafaţa netedă (\mathcal{S}) poate fi numită simplu integrala funcției f pe suprafaţa \mathcal{S} .

Observația 5.3.1 Presupunând că (S) este o suprafață materială de densitate f(x, y, z), integrala funcției f pe suprafața (S), dacă există, este egală cu masa suprafeței sau pânzei materiale S. Dacă f reprezintă densitatea de repartiție a unei sarcini electrice, integrala lui f pe suprafața (S) este sarcina electrică totală distribuită pe S.

După definiția integralei de suprafață de tipul întâi se impune să studiem existența acesteia precum și modalitățile de calcul ale ei.

La ambele aspecte se poate răspunde dacă reducem integrala de suprafață de tipul întâi la o integrală dublă.

Pentru început, considerăm cazul când suprafața (S) este reprezentată cartezian explicit, iar proiecția sa pe planul Oxy este un domeniu închis şi mărginit.

Teorema 5.3.1 $Dac \breve{a}(S)$ este suprafața netedă

$$z = z(x, y), \quad (x, y) \in D,$$
 (5.91)

și f(x, y, z) este o funcție mărginită definită în punctele unui domeniu tridimensional care conține suprafața S, atunci are loc relația

$$\iint\limits_{\mathcal{S}} f(x, y, z) d\sigma = \iint\limits_{D} f(x, y, z(x, y)) \sqrt{1 + p^{2}(x, y) + q^{2}(x, y)} dxdy$$
(5.92)

oride câte ori integralele care apar în aceasta există. Integrala de suprafață din relația (5.92) există dacă integrala dublă din membrul drept al egalității există.

Demonstrație. Fie Δ o partiție a suprafeței de forma (5.86). Proiectând această partiție în planul Oxy obținem o partiție $\widetilde{\Delta}$ a domeniului D în părțile carabile D_1, D_2, \dots, D_n , fiecare din părțile D_i având o arie care nu o întrece pe cea a suprafeței \mathcal{S}_i corespunzătoare.

Considerăm suma integrală (5.87) în care punctul intermediar $M_i \in \mathcal{S}_i$ va avea coordonatele $M_i(\xi_i, \eta_i, z(\xi_i, \eta_i))$. Corespunzător punctului $M_i \in \mathcal{S}_i$ în planul Oxy vom avea punctul $M'_i(\xi_i, \eta_i)$ care va aparține domeniului D_i .

Din paragraful precedent știm că aria porțiunii \mathcal{S}_i de suprafață este dată de integrala dublă

aria
$$S_i = \iint\limits_{D_i} \sqrt{1 + p^2(x, y) + q^2(x, y)} dxdy,$$
 (5.93)

unde p și q sunt notațiile lui Monge pentru derivatele de ordinul întâi în raport cu x și respectiv y ale funcției z=z(x,y) din (5.91). Aplicând teorema de medie integralei duble din (5.93), obținem

aria
$$S_i = \sqrt{1 + p^2(\xi_i^*, \eta_i^*) + q^2(\xi_i^*, \eta_i^*)}$$
 aria D_i , (5.94)

unde (ξ_i^*, η_i^*) este un punct aparţinând domeniului D_i . În consecință, suma integrală (5.87) poate fi scrisă în forma

$$\sigma_{\Delta}(f; M_i) = \sum_{i=1}^{n} f(\xi_i, \eta_i, z(\xi_i, \eta_i)) \sqrt{1 + p^2(\xi_i^*, \eta_i^*) + q^2(\xi_i^*, \eta_i^*)} \operatorname{aria} D_i$$
(5.95)

care nu diferă cu mult de suma integrală Riemann a funcției reale de două variabile reale

$$F: D \to \mathbb{R}^2, \quad F(x,y) =$$

$$= f(x, y, z(x,y)) \sqrt{1 + p^2(x,y) + q^2(x,y)},$$
(5.96)

ceea ce o deosebeşte de o asemenea sumă integrală fiind faptul că în membrul doi din (5.95) nu apare peste tot aceleași puncte intermediare $(\xi_i, \eta_i) \in D_i$. Să punem în evidență suma integrală în care să apară aceleași puncte intermediare. Avem

$$\widetilde{\sigma}_{\widetilde{\Delta}}(f; M_i) = \sum_{i=1}^n f(\xi_i, \eta_i, z(\xi_i, \eta_i)) \sqrt{1 + p^2(\xi_i, \eta_i) + q^2(\xi_i, \eta_i)} \operatorname{aria} D_i.$$
(5.97)

Să arătăm că această sumă integrală, notată simplu cu \tilde{T} , diferă foarte puţin de suma integrală (5.95) pe care o vom renota cu T.

Datorită faptului că suprafața (S) este netedă, funcția reală de două variabile reale

$$(x,y) \mapsto \sqrt{1 + p^2(x,y) + q^2(x,y)}, \quad (x,y) \in D$$
 (5.98)

este continuă pe mulțimea compactă $D \subset \mathbb{R}^2$, deci va fi uniform continuă. În consecință, dat orice $\varepsilon > 0$, există $\delta_1 > 0$ astfel încât

$$\left| \sqrt{1 + p^2(x_1, y_1) + q^2(x_1, y_1)} - \sqrt{1 + p^2(x_2, y_2) + q^2(x_2, y_2)} \right| < \varepsilon$$
 (5.99)

dacă cel mai mare dintre diametrele subdomeniilor D_i este mai mic decât δ_1 . Prin ipoteză, funcția f(x, y, z) este mărginită, adică

$$|f(x, y, z)| \le K = \text{constant}$$
 (5.100)

și prin urmare relațiile (5.99) și (5.100) implică inegalitatea

$$|T - \tilde{T}| \le K \varepsilon \sum_{i=1}^{n} \operatorname{aria} S_i = K \varepsilon \operatorname{aria} \mathcal{S},$$
 (5.101)

unde $T = \sigma_{\Delta}(f; M_i)$, iar $\widetilde{\sigma}_{\widetilde{\Lambda}}(f; M_i)$.

Acum putem completa uşor demonstraţia teoremei. Dacă integrala din membrul drept al relaţiei (5.92) există, atunci pentru orice $\varepsilon > 0$ există $\delta_2 > 0$ astfel că pentru orice sumă integrală \tilde{T} corespunzătoare unei partiţii $\{D_i: i=\overline{1,n}\}$ a domeniului D ale cărei elemente au diametrele mai mici decât δ_2 avem egalitatea

$$\Big| \iint\limits_{D} f(x, y, z(x, y)) \sqrt{1 + p^{2}(x, y) + q^{2}(x, y)} \, dx dy - \widetilde{T} \Big| < \varepsilon.$$
 (5.102)

Să luăm numărul $\delta = \min(\delta_1, \delta_2)$ și să considerăm partițiile

$$\{\Sigma_i: i = 1, 2, \cdots, n\}$$

ale suprafeței (\mathcal{S}) pentru care diametrele tuturor elementelor Σ_i sunt mai mici decât δ . Notăm prin $\{D_i: i=1,2,\cdots,n\}$ partițiile domeniului D corespunzătoare partițiilor $\{\Sigma_i: i=1,2,\cdots,n\}$. Atunci, diametrul fiecărui subdomeniu D_i este mai mic decât δ și, în consecință, inegalitățile (5.101) și (5.102) sunt satisfăcute. Aceste inegalități implică

$$\left| \iint\limits_{D} f(x, y, z(x, y)) \sqrt{1 + p^{2}(x, y) + q^{2}(x, y)} dx dy - T \right| <$$

$$< \varepsilon (1 + K \operatorname{aria} S)$$
(5.103)

pentru orice partiție a suprafeței (S) a cărei finețe este suficient de mică.

Rezultă că limita sumelor integrale T există şi este egală cu integrala din relația (5.103).

Corolarul 5.3.1 Dacă suprafața (S) este netedă și funcția f(x, y, z) este continuă, există integrala de suprafață din membrul stâng al relației (5.92).

Demonstrație. Întradevăr, în ipotezele menționate, integrantul membrului drept al relației (5.92) este o funcție continuă, deci integrala dublă din acest membru există și astfel integrala de suprafață din membrul întâi există.

Observația 5.3.2 După cum se știe

$$\sqrt{1 + p^2(x, y) + q^2(x, y)} = \frac{1}{\cos(\mathbf{n}, \mathbf{k})},$$

unde \mathbf{n} este normala la fața superioară a suprafeței \mathcal{S} . Această relație face ca formula de calcul a unei integrale de suprafață de tipul întâi când suprafața este dată cartezian explicit prin ecuația

$$z = z(x, y), (x, y) \in D$$
 (5.104)

să se scrie în forma

$$\iint_{\mathcal{S}} f(x, y, z) d\sigma = \iint_{D} f(x, y, z(x, y)) \frac{dxdy}{\cos(\mathbf{n}, \mathbf{k})}.$$
 (5.105)

Dacă suprafața netedă (S) este reprezentată cartezian explicit prin ecuația

$$x = x(y, z), (y, z) \in D_1,$$
 (5.106)

putem schimba rolurile variabilelor x, y şi z şi să scriem relația

$$\iint_{\mathcal{S}} f(x, y, z) d\sigma = \iint_{D} f(x(y, z), y, z) \frac{dydz}{\cos(\mathbf{n}, \mathbf{i})}, \tag{5.107}$$

unde D_1 este proiecția suprafeței (S) pe planul Oyz. Similar, în cazul că suprafața netedă (S) este dată prin ecuația

$$y = y(z, x), (z, x) \in D_2,$$
 (5.108)

are loc egalitatea

$$\iint_{S} f(x, y, z) d\sigma = \iint_{D} f(x, y(z, x), z) \frac{dzdx}{\cos(\mathbf{n}, \mathbf{j})},$$
 (5.109)

unde D_2 este proiecția suprafeței (S) pe planul Ozx.

Observația 5.3.3 Presupunem că suprafața (\mathcal{S}) este reuniune finită de suprafețe netede de tipurile (5.104), (5.106) și (5.108). Atunci, integrala de suprafață de tipul întâi din funcția f pe suprafața (\mathcal{S}) se va scrie ca o sumă de integrale de suprafață de tipul întâi din f ale căror formule de calcul vor fi, după caz, (5.105), (5.107) și (5.109).

În cazul când suprafața (\mathcal{S}) este reprezentată parametric printr—o ecuație vectorială, putem aplica raționamentul din paragraful precedent și, prin schimbări adecvate de variabile, oricare din integralele duble (5.105), (5.107), (5.109) se transformă întro integrală dublă pe domeniul de variație al parametrilor curbilinii u și v ai suprafeței. Suntem conduși astfel la teorema care dă formula de calcul a integralei de suprafață dintr—o funcție continuă f pe o suprafață (\mathcal{S}) reprezentată parametric.

Teorema 5.3.2 Dacă(S) este o suprafață netedă reprezentată prin ecuația vectorială

$$\mathbf{r} = \mathbf{r}(u, v), \quad (u, v) \in \Delta \subset \mathbb{R}^2,$$
 (5.110)

unde $\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$, şi f o funcţie mărginită şi continuă pe un domeniu tridimensional care conţine suprafaţa \mathcal{S} , atunci f este integrabilă pe S în raport cu elementul de arie al suprafeţei şi are loc relaţia

$$\iint\limits_{\mathcal{S}} f(x,y,z) d\sigma =$$

$$= \iint\limits_{\Delta} f\Big(x(u,v),y(u,v),z(u,v))\Big) \sqrt{E(u,v)G(u,v) - F^2(u,v)} \, du dv. \tag{5.111}$$

În formula de calcul (5.111) Δ este domeniul plan de variație al parametrilor curbilinii ai suprafeței, iar E, F, G sunt coeficienții lui Gauss calculați pentru suprafața (\mathcal{S}) din (5.110). Știm că

$$d\sigma = \sqrt{E(u,v)G(u,v) - F^2(u,v)} dudv$$
 (5.112)

reprezintă elemntul de arie al suprafeți (\mathcal{S}) dată parametric și deci pentru a scrie formula de calcul (5.111) a integralei de suprafață din membrul întâi înlocuim mai întâi variabilele x, y, z ale funcției de integrat f cu expresiile lor ca funcții de parametri curbilinii ai suprafeței (\mathcal{S}) așa cum rezultă ele din (5.110), înmulțim apoi rezultatul cu radicalul care apare în elementul de

suprafață $d\sigma$, calculat după legea (5.112), și integrăm pe domeniul plan Δ funcția de variabilele u și v astfel obținută.

Formulei (5.92), (5.105), (5.107) și (5.109) sunt cazuri particulare ale formulei de calcul (5.111). Se poate arăta că aceste formule rămân valabile când suprafața nu este netedă dar este netedă pe porțiuni.

Exemplul 5.3.1 Să se calculeze integrala de suprafață de tipul întâi

$$I = \iint_{S} \sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}} \, d\sigma,$$

unde(S) este elipsoidul

$$(S): \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0.$$

Soluție. Pentru suprafața (S) avem reprezentarea parametrică:

$$x = a \sin \theta \cos \varphi$$
; $y = b \sin \theta \sin \varphi$; $x = a \cos \theta$,

unde parametrii curbilinii θ şi φ parcurg intervalele:

$$\theta \in [0,\pi]; \quad \varphi \in [0,2\pi).$$

Dacă se calculează coeficienții lui Gauss pentru elipsoidul scris parametric și apoi elementul de arie al acestuia se găsește

$$d\sigma = abc\sqrt{\frac{\sin^2\theta \cos^2\varphi}{a^2} + \frac{\sin^2\theta \sin^2\varphi}{b^2} + \frac{\cos^2\theta}{c^2}} \sin\theta \, d\theta \, d\varphi.$$

Valoarea funcției de integrat în punctele suprafeței este

$$\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^4}{c^2}} = \sqrt{\frac{\sin^2 \theta \, \cos^2 \varphi}{a^2} + \frac{\sin^2 \theta \, \sin^2 \varphi}{b^2} + \frac{\cos^2 \theta}{c^2}}.$$

Aceste calcule, împreună cu (5.111), conduc la

$$I = 8abc \iint_{\Lambda} \left(\frac{\sin^2 \theta \cos^2 \varphi}{a^2} + \frac{\sin^2 \theta \sin^2 \varphi}{b^2} + \frac{\cos^2 \theta}{c^2} \right) \sin \theta d\theta d\varphi,$$

unde $\Delta = [0, \pi] \times [0, 2\pi)$ adică Δ este un interval bidimensional. Aplicând formula de calcul a integralei duble pe un interval bidimensional, găsim

$$I = \frac{4}{3}\pi abc \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right).$$

Să observăm că dacă a=b=c=R, ceea ce este echivalent cu a spune că suprafața este acum sfera de rază R cu centrul în origine, valoarea integralei corespunzătoare devine $4\pi R$ funcția de integrat fiind funcția constantă egală cu inversul razei.

Exemplul 5.3.2 Evaluați integrala de suprafață de tipul întâi

$$I = \iint\limits_{S} (x^2 + y^2 + z) \, d\sigma,$$

unde (S) este porțiunea din suprafața $z=4-x^2-y^2$ situată în semispațiul superior.

Soluție. Suprafața (\mathcal{S}) este o porțiune din paraboloidul de revoluție obținut prin rotația în jurul axei Oz a parabolei de ecuații:

$$z = 4 - x^2; \quad y = 0$$

situată în planul Ozx, cu vârful V(0,0,4) punct de maxim. Cum textul problemei se referă la porțiunea din semispațiul superior a acestui paraboloid, deducem că ecuația suprafeței (S) este

$$(S): z = 4 - x^2 - y^2, (x, y) \in D,$$

unde D este discul închis cu centrul în origine de rază R=2 situat în planul Oxy, prin urmare

$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 - 4 \le 0\}.$$

Elementul de arie $d\sigma$ al suprafață date este

$$d\sigma = \sqrt{1 + 4x^2 + 4y^2} \, dx dy.$$

Urmează că integrala de suprafață se va calcula cu ajutorul formulei (5.92) astfel că avem:

$$I = \iint\limits_{D} (x^2 + y^2 + 4 - x^2 - y^2) \sqrt{1 + 4x^2 + 4y^2} dx dy =$$

$$= 4 \iint\limits_{D} \sqrt{1 + 4x^2 + 4y^2} dx dy.$$

Pentru a calcula ultima integrală dublă folosim coordonatele polare ρ şi θ , unde $x = \rho \cos \theta$ şi $y = \rho \sin \theta$. Se constată că $(x, y) \in D$ dacă şi numai dacă (ρ, θ) aparține intervalului bidimensional $[0, 2] \times [0, 2\pi)$. Ştiind că jacobianul transformării punctuale regulate folosite la schimbarea de variabile de acest tip este ρ , avem

$$I = 4 \int_0^{2\pi} d\theta \int_0^2 \rho \sqrt{1 + 4\rho^2} \, d\rho.$$

Evaluând integralele de mai sus determinăm I și găsim că valoarea integralei de suprafață date este $I = 2\pi(17\sqrt{17} - 1)/3$.

5.4 Aplicații în inginerie ale integralelor de suprafață de primul tip

Integralele de suprafață de primul tip sunt frecvent întâlnite în probleme ale fizicii. De exemplu, întâlnim astfel de integrale când ne ocupăm cu determinarea masei unei pânze materiale. O pânză materială este ansamblu dintre o suprafață (\mathcal{S}) netedă sau netedă pe porțiuni, numită configurația pânzei, și o funcție pozitivă ρ definită și continuă în punctele suprafeței (\mathcal{S}), care se numește densitatea de materie sau densitatea pânzei materiale. Tot cu ajutorul integralelor de suprafață de tipul întâi se exprimă centrul de greutate al pânzei materiale ca și momentele de inerție ale acesteia în raport cu elementele reperului Oxyz. O pânză materială poate fi notată prin $\{\mathcal{S}, \rho\}$ sau, atunci când densitatea materială se desprinde din context, se scrie doar configurația pânzei. O pânză materială se numește omogenă dacă densitatea sa este funcția constantă și neomogenă în caz contrar.

Intrucât procedeul care se aplică pentru a determina masa, centrul de greutate și momentele de inerție în raport cu elementele reperului ale pânzei materiale este asemănător cu cel aplicat firului material pentru determinarea acelorași mărimi, vom scrie direct rezultatele.

Masa $\mathcal{M}(\mathcal{S})$ a pânzei materiale $\{\mathcal{S}, \rho\}$ este

$$\mathcal{M}(\mathcal{S}) = \iint_{\mathcal{S}} \rho(x, y, z) \, d\sigma. \tag{5.113}$$

Cantitatea infinitezimală

$$dm = \rho(x, y, z)d\sigma. \tag{5.114}$$

se numește element de masă al pânzei materiale $\{S, \rho\}$ în $M(x, y, z) \in S$. Folosind elementul de masă, masa pânzei materiale se scrie

$$\mathcal{M}(\mathcal{S}) = \iint_{\mathcal{S}} dm.$$

Coordonatele centrului de greutate G sunt date de

$$x_{G} = \frac{\iint\limits_{\mathcal{S}} x \rho(x, y, z) d\sigma}{\iint\limits_{\mathcal{S}} \rho(x, y, z) d\sigma}, \qquad y_{G} = \frac{\iint\limits_{\mathcal{S}} y \rho(x, y, z) d\sigma}{\iint\limits_{\mathcal{S}} \rho(x, y, z) d\sigma},$$

$$z_G = \frac{\iint\limits_{\mathcal{S}} z\rho(x,y,z)d\sigma}{\iint\limits_{\mathcal{S}} \rho(x,y,z)d\sigma}.$$

Expresiile coordonatelor centrului de greutate al pânzei se pot scrie simplificat dacă folosim elementul de masă introdus în (5.114). Avem

$$x_G = \frac{\iint\limits_{\mathcal{S}} x \, dm}{\iint\limits_{\mathcal{S}} dm}; \quad y_G = \frac{\iint\limits_{\mathcal{S}} y \, dm}{\iint\limits_{\mathcal{S}} dm}; \quad z_G = \frac{\iint\limits_{\mathcal{S}} z \, dm}{\iint\limits_{\mathcal{S}} dm}. \tag{5.115}$$

În particular, pentru o pânză materială omogenă, vom avea

$$x_{G} = \frac{\iint_{\mathcal{S}} x \, d\sigma}{\iint_{\mathcal{S}} d\sigma}; \quad y_{G} = \frac{\iint_{\mathcal{S}} y \, d\sigma}{\iint_{\mathcal{S}} d\sigma}; \quad z_{G} = \frac{\iint_{\mathcal{S}} z \, d\sigma}{\iint_{\mathcal{S}} d\sigma}.$$
 (5.116)

Momentele de inerție ale pânzei materiale S în raport cu axele de coordonate Ox, Oy, Oz le vom nota respectiv prin I_x I_y și I_z și au expresiile:

$$I_x = \iint_{\mathcal{S}} (y^2 + z^2) dm; \quad I_y = \iint_{\mathcal{S}} (z^2 + x^2) dm; \quad I_z = \iint_{\mathcal{S}} (x^2 + y^2) dm.$$
 (5.117)

Când densitatea materială este constantă și egală cu $\rho_0>0,$ formulele de mai sus devin

$$I_{x} = \rho_{0} \iint_{\mathcal{S}} (y^{2} + z^{2}) d\sigma, \quad I_{y} = \rho_{0} \iint_{\mathcal{S}} (z^{2} + x^{2}) d\sigma;$$

$$I_{z} = \rho_{0} \iint_{\mathcal{S}} (x^{2} + y^{2}) d\sigma.$$

$$(5.118)$$

Momentele de inerție ale pânzei materiale S în raport cu planele de coordonate Oxy, Oyz, Ozx, notate corespunzător cu I_{xy} , I_{yz} și I_{zx} , au expresiile date de integralele de suprafață de tipul întâi

$$I_{xy} = \iint_{\mathcal{S}} z^2 dm, \quad I_{yz} = \iint_{\mathcal{S}} x^2 dm,$$

$$I_{xz} = \iint_{\mathcal{S}} y^2 dm.$$
(5.119)

Dacă pânza materială are densitatea constantă ρ_0 , în locul formulelor (5.119) avem

$$I_{xy} = \rho_0 \iint_{\mathcal{S}} z^2 d\sigma; \quad I_{yz} = \rho_0 \iint_{\mathcal{S}} x^2 d\sigma; \quad I_{xz} = \rho_0 \iint_{\mathcal{S}} y^2 d\sigma.$$
 (5.120)

În fine, momentul de inerție în raport cu originea reperului este

$$I_O = \iint_S (x^2 + y^2 + z^2) dm,$$
 (5.121)

când pânza materială este neomogenă, iar în cazul că ar fi omogenă același moment de inerție al pânzei va fi dat de expresia

$$I_O = \rho_0 \iint_{\mathcal{S}} (x^2 + y^2 + z^2) d\sigma.$$
 (5.122)

În scopul de a prezenta încă o aplicație a integralelor de suprafață de primul tip să introducem noțiunea de funcție vectorială integrabilă pe o suprafață. Fie în acest sens

$$\mathbf{F}(M) = P(M)\mathbf{i} + Q(M)\mathbf{j} + R(M)\mathbf{k}$$
 (5.123)

o funcție vectorială definită întrun domeniu tridimensional care conține suprafața \mathcal{S} . Prin definiție, vom spune că funcția \mathbf{F} este integrabilă pe \mathcal{S} dacă fiecare din componentele sale este funcție intyegrabilă pe \mathcal{S} . În această situație introducem integrala de suprafață de tipul întâi a funcției vectoriale \mathbf{F} pe suprafața \mathcal{S} prin

$$\iint\limits_{S} \mathbf{F}(M) d\sigma = \mathbf{i} \iint\limits_{S} P(M) d\sigma + \mathbf{j} \iint\limits_{S} Q(M) d\sigma + \mathbf{k} \iint\limits_{S} R(M) d\sigma. \quad (5.124)$$

Valoarea unei astfel de integrale este un vector. Existența integralei de suprafață de primul tip a unei funcții vectoriale **F**, reducerea ei la o integrală dublă dintr–o funcție vectorială precum și proprietățile unei integrale de tipul (5.124) sunt cercetate în strânsă legătură cu integralele de suprafață care apar în membrul al doilea al relației (5.124).

Ca aplicație a acestei noțiuni să găsim forța de atracție gravitațională cu care o pânză materială atrage un punct material.

Fie $\rho(x,y,z)$ densitatea pânzei materiale \mathcal{S} și μ_0 o masă concentrată în punctul $M_0(x_0,y_0,z_0)$ care nu aparține suprafeței. După legea atracției universale a lui Newton, forța elementară de atracție dintre elementul de masă dm al suprafeței \mathcal{S} și punctul material M_0 cu ponderea μ_0 este

$$d\mathbf{F} = \gamma \,\mu_0 \,dm \,\frac{\mathbf{r}}{r^3}.\tag{5.125}$$

În formula (5.125) γ este constanta gravitațională a cărei valoare numerică depinde de alegerea sistemului de unități de măsură, iar \mathbf{r} este vectorul $\overrightarrow{M_0M}$, unde M(x,y,z) reprezintă punctul curent al suprafeței de pondere egală cu masa elementară dm dată de (5.114). Forța rezultantă \mathbf{F} de atracție a punctului material M_0 de către întreaga suprafață \mathcal{S} este suma forțelor elementare (5.125), fapt care ne duce la concluzia că \mathbf{F} este integrala de suprafață

$$\mathbf{F} = \gamma \,\mu_0 \, \iint\limits_{\mathcal{S}} \, \rho(x, y, z) \frac{\mathbf{r}}{r^3} \, d\sigma. \tag{5.126}$$

Deoarece avem $\mathbf{r} = \overrightarrow{M_0 M} = (x - x_0) \mathbf{i} + (y - y_0) \mathbf{j} + (z - z_0) \mathbf{k}$, expresia forței de atracție poate fi scrisă în forma

$$\mathbf{F} = \gamma \,\mu_0 \Big(\mathbf{i} \, \iint_{\mathcal{S}} \rho(x, y, z) \frac{x - x_0}{r^3} \, d\sigma + \\
+ \mathbf{j} \, \iint_{\mathcal{S}} \rho(x, y, z) \frac{y - y_0}{r^3} \, d\sigma + \mathbf{k} \, \iint_{\mathcal{S}} \rho(x, y, z) \frac{z - z_0}{r^3} \, d\sigma \Big).$$
(5.127)

Integralele din (5.127) există dacă densitatea materială este funcție continuă, iar suprafața \mathcal{S} este netedă sau netedă pe porțiuni.

Analiza aplicațiilor de mai sus conduce la o concluzie importantă din care vom desprinde o proprietate specifică integralelor de suprafață de tipul întâi. Să pornim de la observația că elementul de integrare, înțelegând prin aceasta expresia

$$f(M) d\sigma$$

depinde numai de mărimea elementului de arie $d\sigma$ şi de valoarea funcției f în punctul curent M al suprafeței \mathcal{S} , însă este independentă de orientarea elementului de suprafață în raport cu spațiul înconjurător. Această observație se desprinde foarte bine din toate aplicațiile prezentate mai sus căci masa unui element din suprafața materială $\{\mathcal{S}, \rho\}$ sau forța cu care acest element de masă atrage un punct material nu se modifică dacă ne mutăm de pe o față a suprafeței pe cealaltă. În concluzie, putem afirma că integrala de suprafață de tipul întâi nu depinde de orientarea suprafeței fapt pe care îl putem exprima matematic prin

$$\iint_{S^{+}} f(x, y, z) d\sigma = \iint_{S^{-}} f(x, y, z) d\sigma.$$
 (5.128)

Există probleme de alt gen în care orientarea suprafeței și deci a elementului său de arie $d\sigma$ joacă un rol important. O astfel de problemă, pe care o vom analiza ulterior, este calculul debitului unui fluid printr—o suprafață dar, vom vedea că există și altele. Aceste probleme conduc la un alt gen de integrale de suprafață, așa numitele integrale de suprafață de tipul al doilea de care ne vom ocupa în paragraful următor.

Exemplul 5.4.1 Să se calculeze momentul de inerție față de axa Oz a pânzei materiale omogene având densitatea egală cu unitatea și configurația semisfera

$$(S): z = \sqrt{R^2 - x^2 - y^2}.$$

Soluţie. Conform celor prezentate mai sus, avem

$$I_z = \iint\limits_{S} (x^2 + y^2) \, d\sigma.$$

Pentru calculul acestei integrale de suprafață de tipul întâi putem utiliza o reprezentare parametrică a semisferei $\mathcal S$ și anume cea în care parametrii curbilinii ai suprafeței să fie colatitudinea θ și longitudinea φ :

$$x = R \sin \theta \cos \varphi$$
; $y = R \sin \theta \sin \varphi$; $z = R \cos \theta$,

unde parametrii (θ, φ) variază în intervalul bidimensional $[0, \pi/2] \times [0, 2\pi)$. Coeficienții lui Gauss pentru sfera reprezentată parametric ca mai sus sunt:

$$E(\theta, \varphi) = R^2$$
; $F(\theta, \varphi) = 0$; $G(\theta, \varphi) = R^2 \sin^2 \theta$.

Elementul de arie al suprafeței exprimat cu ajutorul parametrilor curbilinii θ și φ este

$$d\sigma = R^2 \sin\theta \, d\theta \, d\varphi.$$

Valorile pe semisferă ale funcției de integrat sunt date de

$$x^{2} + y^{2} = (R \sin \theta \cos \varphi)^{2} + (R \sin \theta \sin \varphi)^{2} = R^{2} \sin^{2} \theta,$$

astfel că momentul de inerție de determinat este

$$I_z = R^4 \int_0^{2\pi} d\varphi \int_0^{\pi/2} \sin^3 \theta \, d\theta = 2\pi R^4 \int_0^{\pi/2} \sin \theta (1 - \cos^2 \theta) \, d\theta.$$

Ultima integrală se scrie ca diferență de alte două care se calculează simplu și se găsește $I_z = 4 \pi R^4/3$.

5.5 Integrale de suprafață de al doilea tip

Să considerăm pentru început o problemă concretă care sugerează introducerea noțiunii de *integrală de suprafață de al doilea tip* și anume problema determinării cantității de fluid care străbate în unitatea de timp o suprafață orientată $\mathcal S$ a cărei normală este

$$\mathbf{n} = \mathbf{i} \cos(\mathbf{n}, \mathbf{i}) + \mathbf{j} \cos(\mathbf{n}, \mathbf{j}) + \mathbf{k} \cos(\mathbf{n}, \mathbf{k}) = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}.$$
 (5.129)

Fie că spațiul ambiant în care se află suprafața orientată \mathcal{S} este plin cu un fluid în mișcare. O particulă oarecare a fluidului, aflată la momentul t în poziția M(x,y,z), are viteza

$$\mathbf{V}(x,y,z) = P(x,y,z)\,\mathbf{i} + Q(x,y,z)\,\mathbf{j} + R(x,y,z)\,\mathbf{k},\tag{5.130}$$

unde P = P(x, y, z), Q = Q(x, y, z) și R = R(x, y, z) sunt mărimile algebrice ale proiecțiilor vectorului \mathbf{V} pe respectiv versorii \mathbf{i} , \mathbf{j} și \mathbf{k} .

Considerăm un element infinitezimal de arie $d\sigma$ de pe acea fața a suprafeței S care are normala \mathbf{n} . Cantitatea de fluid $d\Phi$ care trece prin $d\sigma$ în unitatea de timp, deci un flux, este egală cu $V_n d\sigma$ unde V_n este mărimea algebrică a proiecției vectorului viteză pe direcția normalei \mathbf{n} la $d\sigma$. Cum vectorul pe care se proiectează viteza este versor, rezultă că $V_n = \mathbf{V} \cdot \mathbf{n}$ astfel că fluxul elementar este

$$d\Phi = \mathbf{V} \cdot \mathbf{n} \, d\sigma = (P \, n_1 + Q \, n_2 + R \, n_3) d\sigma. \tag{5.131}$$

Formula (5.131) dă fluxul elementar de fluid prin elementul de suprafață de normală \mathbf{n} . Pentru a obține debitul total sau fluxul total, adică cantitatea de lichid care strabate suprafața \mathcal{S} în unitatea de timp, ar trebui să sumăm expresiile (5.131) relativ la toate elementele de suprafață $d\sigma$, fapt ce conduce la integrala

$$\Phi = \iint\limits_{S} \left(P \, n_1 + Q \, n_2 + R \, n_3 \right) d\sigma. \tag{5.132}$$

Dacă privim atent constatăm că ceea ce am obținut în (5.132) nu este altceva decât integrala de suprafață de primul tip a funcției

$$P(x, y, z) \cos(\mathbf{n}, \mathbf{i}) + Q(x, y, z) \cos(\mathbf{n}, \mathbf{j}) + R(x, y, z) \cos(\mathbf{n}, \mathbf{k})$$
 (5.133)

pe suprafața S. Imediat însă trebuie să precizăm faptul că integrantul depinde de funcția vectorială V din (5.130) și că , lucru foarte important, a fost implicată o anumită față a suprafeței, anume aceea care are normala \mathbf{n} dată în (5.129).

Putem trece acum să formulăm definiția generală a integralei de suprafață de tipul al doilea.

Fie în acest sens S o suprafață netedă cu două fețe. Fixăm o anumită parte a suprafeței echivalent cu a spune că alegem una din cele două posibilități de alegere a normalei \mathbf{n} în punctul M. În același punct M, dar pe

cealaltă parte a suprafeței, normala este $-\mathbf{n}$ Considerăm o funcție vectorială $\mathbf{F} = (P,Q,R)$ definită pe un domeniu tridimensional în care se află suprafața \mathcal{S} și continuă în punctele suprafeței. Notăm cu F_n mărimea algebrică a proiecției ortogonale a vectorului \mathbf{F} pe direcția normalei \mathbf{n} în punctul M. Avem

$$F_n = \mathbf{F} \cdot \mathbf{n} = P \cos(\mathbf{n}, \mathbf{i}) + Q \cos(\mathbf{n}, \mathbf{j}) + R \cos(\mathbf{n}, \mathbf{k}), \tag{5.134}$$

unde $\cos(\mathbf{n}, \mathbf{i})$, $\cos(\mathbf{n}, \mathbf{j})$, $\cos(\mathbf{n}, \mathbf{k})$ sunt coordonatele versorului normalei \mathbf{n} în punctul M(x, y, z) de pe fața aleasă a suprafeței \mathcal{S} .

Integrala

$$\iint_{S} \left(P \cos(\mathbf{n}, \mathbf{i}) + Q \cos(\mathbf{n}, \mathbf{j}) + R \cos(\mathbf{n}, \mathbf{k}) \right) d\sigma \tag{5.135}$$

se va numi integrala de suprafață de tipul al doilea a funcției vectoriale $\mathbf{F} = (P, Q, R)$ pe fața suprafaței \mathcal{S} de normală \mathbf{n} și va fi notată cu

$$\iint\limits_{\mathcal{S}} P \, dy dz + Q \, dz dx + R \, dx dy. \tag{5.136}$$

Astfel, prin definiție, avem relația

$$\iint_{S} P \, dy dz + Q \, dz dx + R \, dx dy =$$

$$= \iint_{S} \left(P \cos(\mathbf{n}, \mathbf{i}) + Q \cos(\mathbf{n}, \mathbf{j}) + R \cos(\mathbf{n}, \mathbf{k}) \right) d\sigma.$$
(5.137)

Dacă notăm cu \mathcal{S}^+ fața aleasă a suprafeței, evident cealaltă față a sa va avea normala $-\mathbf{n}$ și o putem nota cu \mathcal{S}^- . Din modul cum a fost introdusă integrala de suprafață de tipul al doilea rezultă că ea depinde de orientarea suprafeței și ca atare putem scrie

$$\iint_{S^{+}} P dy dz + Q dz dx + R dx dy =$$

$$= -\iint_{S^{-}} P dy dz + Q dz dx + R dx dy.$$
(5.138)

Observația 5.5.1 Dacă d σ este elementul infinitezimal de arie al suprafeței S^+ , expresiile

$$\cos(\mathbf{n}, \mathbf{i})d\sigma$$
, $\cos(\mathbf{n}, \mathbf{j})d\sigma$, $\cos(\mathbf{n}, \mathbf{k})d\sigma$

sunt, respectiv, proiecţiile elementului de arie $d\sigma$ pe planele de coordonate Oyz, Ozx, Oxy. Dacă considerăm că $d\sigma$ se proiectează pe planele de coordonate în intervale bidimensionale cu laturi infinitezimale, ariile acestora sunt respectiv dydz, dzdx şi dxdy, astfel că putem scrie egalitățile

$$\cos(\mathbf{n}, \mathbf{i})d\sigma = dydz, \quad \cos(\mathbf{n}, \mathbf{j})d\sigma = dzdx,$$

$$\cos(\mathbf{n}, \mathbf{k})d\sigma = dxdy$$
(5.139)

și totodată putem justifica notația (5.136) pentru integrala de suprafață de tipul întâi particulară (5.135).

Observația 5.5.2 Am definit integrala de suprafață de speța a doua cu ajutorul integralei de primul tip. Însă integrala de suprafață de tipul al doilea, la fel ca celelalte integrale, poate fi definită direct cu ajutorul sumelor integrale.

În cele ce urmează prezentăm formula de calcul a integralei de suprafață de tipul al doilea când suprafața este reprezentată prin ecuația vectorială

$$\mathbf{r} = \mathbf{r}(u, v) = x(u, v)\,\mathbf{i} + y(u, v)\,\mathbf{j} + z(u, v)\,\mathbf{k}, \quad (u, v) \in D, \tag{5.140}$$

unde D este un domeniu plan care are arie. Fie că fața aleasă a suprafeței este S^+ și că această față corespunde normalei

$$\mathbf{n} = \frac{\mathbf{r}_u(u, v) \times \mathbf{r}_v(u, v)}{\|\mathbf{r}_u(u, v) \times \mathbf{r}_v(u, v)\|} = \mathbf{i} \cos(\mathbf{n}, \mathbf{i}) + \mathbf{j} \cos(\mathbf{n}, \mathbf{j}) + \mathbf{k} \cos(\mathbf{n}, \mathbf{k}). \quad (5.141)$$

Conform celor prezentate mai sus avem mai întâi că integrala de suprafață pe fața \mathcal{S}^+ a suprafeței \mathcal{S} se calculează cu ajutorul integralei de suprafață de tipul întâi prin

$$\iint_{S^{+}} P \, dy dz + Q \, dz dx + R \, dx dy =$$

$$= \iint_{S} \left(P \cos \left(\mathbf{n}, \mathbf{i} \right) + Q \cos \left(\mathbf{n}, \mathbf{j} \right) + R \cos \left(\mathbf{n}, \mathbf{k} \right) \right) d\sigma.$$
(5.142)

Din expresia (5.141) rezultă că putem scrie versorul normalei \mathbf{n} și în forma

$$\mathbf{n} = \frac{A(u,v)\,\mathbf{i} + B(u,v)\,\mathbf{j} + C(u,v)\,\mathbf{k}}{\sqrt{A^2(u,v) + B^2(u,v) + C^2(u,v)}},$$
(5.143)

unde funcțiile A(u,v), B(u,v) și C(u,v) sunt jacobienii

$$A(u,v) = \frac{D(y,z)}{D(u,v)}(u,v), \ B(u,v) = \frac{D(z,x)}{D(u,v)}(u,v),$$

$$C(u,v) = \frac{D(x,y)}{D(u,v)}(u,v).$$
(5.144)

Dacă mai ținem cont și de faptul că elementul de arie are expresia

$$d\sigma = \|\mathbf{r}_{u}(u, v) \times \mathbf{r}_{v}(u, v)\| \, dudv = \sqrt{A^{2} + B^{2} + C^{2}} \, dudv, \tag{5.145}$$

în final rezultă că integrala de suprafață de tipul doi se determină prin formula de calcul

$$\iint\limits_{S^+} P \, dy dz + Q \, dz dx + R \, dx dy = \iint\limits_{D} \left(P \, A + Q \, B + R \, C \right) du dv, \qquad (5.146)$$

unde prin funcțiile P, Q și R din membrul al doilea înțelegem

$$\begin{cases}
P = P(x(u, v), y(u, v), z(u, v)), \\
Q = Q(x(u, v), y(u, v), z(u, v)), \\
R = R(x(u, v), y(u, v), z(u, v)),
\end{cases} (5.147)$$

iar A, B și C sunt funcțiile din (5.144).

Dacă folosim relațiile (5.134) și (5.141), integrala de suprafață de tipul al doilea se poate scrie vectorial după cum urmează

$$\iint_{S^{+}} P \, dy dz + Q \, dz dx + R \, dx dy = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, d\sigma, \tag{5.148}$$

unde în integrala a doua nu s–a mai scris \mathcal{S}^+ acest fapt subânțelegându–se odată cu precizarea normalei \mathbf{n} a suprafeței.

Dacă dorim să scriem formula de calcul a integralei de suprafață de tipul al doilea, pornind de la scrierea sa ca în membrul doi din (5.148), trebuie evaluată valoarea funcției de integrat în punctele suprafeței. Găsim

$$(\mathbf{F} \cdot \mathbf{n}) \Big|_{\mathcal{S}} = \frac{\mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v)}{\|\mathbf{r}_u \times \mathbf{r}_v\|} = \frac{(\mathbf{F}, \mathbf{r}_u, \mathbf{r}_v)}{\|\mathbf{r}_u \times \mathbf{r}_v\|}.$$
 (5.149)

În (5.149) intră produsul mixt al vectorilor $\mathbf{F} = (P, Q, R)$, \mathbf{r}_u şi \mathbf{r}_v , însă trebuie precizat că este vorba de valoarea pe \mathcal{S} a vectorului \mathbf{F} , ceea ce înseamnă că funcțiile P, Q și R sunt cele din (5.147).

Luând acum în calcul (5.149) și expresia (5.145) a elementului de arie $d\sigma$ al suprafeței \mathcal{S} , deducem că formula de calcul a integralei de suprafață de al doilea tip, scrisă în forma din membrul doi al relației (5.148), este

$$\iint\limits_{S} (\mathbf{F} \cdot \mathbf{n}) d\sigma = \iint\limits_{D} (\mathbf{F}, \mathbf{r}_{u}, \mathbf{r}_{v}) du dv.$$
 (5.150)

Dacă ținem cont de exprimarea analitică a unui produs mixt prin determinantul de ordinul trei care are pe linii coordonatele a respectiv celor trei vectori în ordinea în care apar în produs rezultă că formula de calcul (5.150) se poate scrie în forma finală

$$\iint_{\mathcal{S}} (\mathbf{F} \cdot \mathbf{n}) d\sigma = \iint_{D} \begin{vmatrix} P & Q & R \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v} \end{vmatrix} du dv.$$
 (5.151)

Pentru a scrie încă o formă a integralei de suprafață de al doilea tip, introducem noțiunea de element orientat de arie notat cu $d\sigma$ și exprimat prin

$$d\sigma = \mathbf{n} \, d\sigma. \tag{5.152}$$

Atunci, integrala de suprafață de tipul al doilea se poate scrie simplu

$$\iint_{S^+} P \, dy dz + Q \, dz dx + R \, dx dy = \iint_{S} \mathbf{F} \cdot d\boldsymbol{\sigma}. \tag{5.153}$$

În cazul în care suprafața netedă este reprezentată cartezian explicit prin ecuația

$$(\mathcal{S}): \quad z = f(x, y), \qquad (x, y) \in D \subset Oxy, \tag{5.154}$$

și considerăm că fața \mathcal{S}^+ a sa este cea superioară, versorul normalei este

$$\mathbf{n} = \frac{-p\,\mathbf{i} - q\,\mathbf{j} + \mathbf{k}}{\sqrt{1 + p^2 + q^2}},\tag{5.155}$$

unde p și q sunt notațiile lui Monge pentru derivatele parțiale de ordinul întâi ale lui f în punctul curent interior suprafeței (S^+) .

În acest caz, abscisa x și ordonata y ale oricărui punct de pe suprafață pot fi considerate drept parametri curbilinii ai suprafeței \mathcal{S}^+ astfel că se poate scrie ecuația sa vectorială

$$(\mathcal{S}^+): \quad \mathbf{r} = x \,\mathbf{i} + y \,\mathbf{j} + f(x,y) \,\mathbf{k}, \qquad (x,y) \in D. \tag{5.156}$$

Atunci, formula de calcul a integralei de suprafață de tipul al doilea din câmpul vectorila $\mathbf{F}=(P,Q,R)$ pe fața superioară a suprafeței (5.154) este ușor de obținut din cazul general (5.151) luând drept u pe x și drept v pe y. Avem în final

$$\iint_{S^{+}} \mathbf{F} \cdot d\boldsymbol{\sigma} = \iint_{S^{+}} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \iint_{D} \left(-pP(x, y, f(x, y)) - qQ(x, y, f(x, y)) + R(x, y, f(x, y)) \right) dx dy.$$
(5.157)

Dacă fața suprafeței S este cea inferioară S^- , formula de calcul este

$$\iint_{\mathcal{S}^{-}} \mathbf{F} \cdot d\boldsymbol{\sigma} =$$

$$\iint_{\mathcal{S}^{-}} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \iint_{D} \left(p P(x, y, f(x, y)) + q Q(x, y, f(x, y)) - R(x, y, f(x, y)) \right) dx dy.$$
(5.158)

Observația 5.5.3 Urmând un raționament asemănător celui care ne-a condus la formulele (5.157) și (5.158), se pot obține formulele de calcul ale integralei de suprafață de tipul al doilea din câmpul vectorial $\mathbf{F} = (P,Q,R)$ când suprafața $\mathcal S$ este reprezentată cartezian explicit fie prin ecuația x = g(y,z) fie prin ecuația y = h(z,x).

Spre exemplu, dacă S are ecuația x = g(y, z) și S^+ este fața dinspre partea pozitivă a axei Ox, formula de calcul a integralei de suprafață de tipul al doilea din câmpul $\mathbf{F} = (P, Q, R)$ pe suprafața S^+ este

$$\begin{split} \iint\limits_{\mathcal{S}^+} \mathbf{F} \cdot d\boldsymbol{\sigma} &= \\ = \iint\limits_{\mathcal{S}^+} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy &= \\ &= \iint\limits_{D_{yz}} \Big(P(g(y,z),y,z) - \frac{\partial g}{\partial y}(y,z) Q(g(y,z),y,z) - \\ &- \frac{\partial g}{\partial z}(y,z) R(g(y,z),y,z) \Big) dy dz, \end{split}$$

unde D_{yz} reprezintă proiecția suprafeței \mathcal{S}^+ pe planul Oyz fiind totodată și domeniul de definiție al funcției g.

Exemplul 5.5.1 Să se calculeze valoarea integralei de suprafață de tipul al doilea

$$I = \iint\limits_{S} x^2 \, dy dz + y^2 \, dz dx + z \, dx dy,$$

unde S este fața exterioară a sferei de rază R cu centrul în origine.

Soluție. Ecuația sferei de rază R cu centrul în origine este

$$(S): F(x, y, z) = x^2 + y^2 + z^2 - R^2 = 0.$$

Utilizând cunoștințele din primul paragraf al acestui capitol găsim că versorul normalei exterioare în punctul M(x, y, z) al sferei \mathcal{S} este

$$\mathbf{n} = \frac{(\nabla F)(x, y, z)}{\|\nabla F)(x, y, z)\|} = \frac{\mathbf{r}}{R} = \frac{x\,\mathbf{i} + y\,\mathbf{j} + z\,\mathbf{k}}{R}.$$

Atunci, integrala de tipul al doilea de calculat se transformă în integrala de suprafață de tipul întâi

$$I = \frac{1}{R} \iint\limits_{S} (x^3 + y^3 + z^2) d\sigma$$

iar pentru a reduce pe aceasta la o integrală dublă folosim reprezentarea parametrică a sferei în care parametri curbilinii sunt colatitudinea θ și longitudinea φ

$$x = R \sin \theta \cos \varphi$$
, $y = R \sin \theta \sin \varphi$, $z = R \cos \theta$.

Punctul M(x,y,z) descrie sfera de rază R cu centru în origine dacă perechea (θ,φ) aparține domeniului plan Δ care este intervalul bidimensional $[0,\pi]\times [0,2\pi)$. Coeficienții lui Gauss au fost calculați deja în alt exemplu și am găsit că aceștia sunt:

$$E(\theta, \varphi) = R^2; \quad F(\theta, \varphi) = 0; \quad G(\theta, \varphi) = R^2 \sin^2 \theta.$$

Elementul de arie al suprafeței exprimat cu ajutorul parametrilor curbilinii θ și φ este

$$d\sigma = R^2 \sin\theta \, d\theta \, d\varphi$$

iar valorile pe sferă ale funcției de integrat sunt date de

$$(x^3 + y^3 + z^2)\Big|_{\mathcal{S}} = R^2(R\sin^3\theta\cos^3\varphi + R\sin^3\theta\sin^3\varphi + \cos^2\theta).$$

Scriind formula de calcul a integralei de suprafață de tipul întâi și aplicând totodată formula de calcul a integralei duble pe intervalul bidimensional Δ , vom avea

$$I = R^4 \int_0^{\pi} d\theta \int_0^{2\pi} (R \sin^3 \theta \cos^3 \varphi + R \sin^3 \theta \sin^3 \varphi + \cos^2 \theta) \sin \theta \, d\varphi.$$

Integralele:

$$\int_0^{2\pi} \cos^3 \varphi \, d\varphi; \qquad \int_0^{2\pi} \sin^3 \varphi \, d\varphi$$

sunt nule, după cum se constată simplu, iar

$$\int_0^\pi \cos^2 \theta \, \sin \theta \, d\theta = -\frac{1}{3} \, \cos^3 \theta \Big|_0^\pi = \frac{2}{3}$$

astfel că integrala de suprafața dată are valoarea $4\pi R^4/3$.

Exemplul 5.5.2 Un fluid oarecare curge în spațiu cu viteza

$$\mathbf{V}(x, y, z) = 3x \,\mathbf{i} + 3y \,\mathbf{i} + z \,\mathbf{k}.$$

Să se găsească fluxul total Φ al fluidului prin fața superioară a paraboloidului

$$(S^+): z = 9 - x^2 - y^2$$

situată în semispațiul superior $z \geq 0$.

Soluție. Am văzut că fluxul total al unui fluid cu viteza V prin fața S^+ a suprafeței S este dat de integrala de suprafață de tipul al doilea

$$\Phi = \iint_{S^+} V_n \, d\sigma = \iint_{S^+} \mathbf{V} \cdot \mathbf{n} \, d\sigma = \iint_{S^+} \mathbf{V} \cdot d\boldsymbol{\sigma},$$

unde \mathbf{n} este normala la fața superioară a paraboloidului

$$\mathbf{n} = \frac{2x\,\mathbf{i} + 2y\,\mathbf{j} + \mathbf{k}}{\sqrt{1 + 4x^2 + 4y^2}}.$$

Aplicând formula de calcul a integralei de suprafață de tipul al doilea dată în (5.157), obținem

$$\Phi = \iint\limits_{D} \frac{6x^2 + 6y^2 + 9 - x^2 - y^2}{\sqrt{1 + 4x^2 + 4y^2}} \sqrt{1 + 4x^2 + 4y^2} dx dy =$$

$$= \iint\limits_{D} (5x^2 + 5y^2 + 9) dx dy,$$

unde D este proiecția suprafeței pe planul Oxy

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 9 \le 0\}.$$

Integrala dublă o calculăm folosind trecerea la coordonatele polare ρ și θ unde:

$$x = \rho \cos \theta; \quad y = \rho \sin \theta, \qquad (\rho, \theta) \in \Delta = [0, 3] \times [0, 2\pi).$$

Având în vedere că jacobianul transformării care se utilizează la schimbarea de variabile de mai sus este egal cu ρ , folosind formula schimbării de variabile în integrala dublă, obținem

$$\Phi = \iint_{\mathcal{A}} \rho (5 \rho^2 + 9) d\rho d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{3} \rho (5\rho^2 + 9) d\rho = \frac{567 \pi}{2}.$$

Valoarea pozitivă a rezultatului arată că fluidul iese din suprafață și aceasta se datorează faptului că în fiecare punct de pe fața \mathcal{S}^+ a suprafeței vectorul viteza fluidului face unghi ascuțit cu versorul normalei la suprafață, ca atare particula de fluid aflată instantaneu oriunde pe suprafață iese din domeniul spațial limitat de planul Oxy și de suprafața \mathcal{S} .

5.6 Formula integrală a lui Stokes

Formula integrală a lui Stokes stabilește o legătură între integrala de suprafață în raport cu coordonatele și integrala curbilinie de speța a doua. Ea generalizează formula integrală Riemann-Green, ultima fiind un caz particular a celei dintâi când suprafața în chestiune este o parte a planului Oxy. Ca și formula integrală Riemann-Green, formula integrală a lui Stokes este întâlnită în multe aplicații ale analizei matematice în inginerie.

Fie ${\mathcal S}$ o suprafață netedă, bilateră și orientată, dată de ecuația vectorială

$$(S): \mathbf{r} = \mathbf{r}(u, v) = \varphi(u, v)\mathbf{i} + \psi(u, v)\mathbf{j} + \chi(u, v)\mathbf{k}, \tag{5.159}$$

unde $(u,v) \in D$, iar D este un domeniu compact care are arie. Suprafața $\mathcal S$ fiind orientată, rezultă că versorul normalei $\mathbf n$ la suprafața $\mathcal S$ în punctul curent $(u,v) \in D$ este bine precizat. Fie că fața aleasă a suprafeței este cea care corespunde normalei (5.141). Mulțimea punctelor $(u,v) \in D$ este mulțimea punctelor din interiorul unei curbe închise γ și de pe această curbă. Presupunem că frontiera γ a mulțimii D este reprezentată parametric prin ecuațiile

$$(\gamma): u = u(t), v = v(t), t \in [\alpha, \beta].$$
 (5.160)

Frontiera Γ a suprafeței $\mathcal S$ dată prin (5.159) este tot o curbă închisă și are ecuația vectorială

$$(\Gamma): \mathbf{r} = \mathbf{r}(u(t), v(t)), \quad t \in [\alpha, \beta]. \tag{5.161}$$

Pe curba Γ introducem o orientare pe care o numim *compatibilă* cu orientarea suprafeței \mathcal{S} . În fiecare punct $M \in \Gamma$ considerăm versorul normalei la suprafață \mathbf{n} și, în același punct, considerăm vectorul $\boldsymbol{\nu}$ cu proprietatea că este perpendicular și pe \mathbf{n} și pe Γ și intră în \mathcal{S} .

Orientarea de pe curba Γ dată de vectorul $\boldsymbol{\nu} \times \mathbf{n}$ se numește *compatibilă* cu orientarea suprafeței \mathcal{S} . Într–un limbaj mai sugestiv, putem spune că orientarea pe Γ compatibilă cu orientarea suprafeței \mathcal{S} este dată de un observator care deplasându–se pe Γ are capul spre \mathbf{n} și lasă la stânga suprafața \mathcal{S} .

Fie funcția P(x,y,z) definită și continuă pe \mathcal{S} având derivate parțiale de ordinul întâi continue pe \mathcal{S} . În aceste condiții ne propunem să calculăm integrala curbilinie

$$I = \int_{\Gamma} P(x, y, z) dx. \tag{5.162}$$

Având în vedere că Γ are ecuația vectorială (5.161), din formula de calcul a integralei curbilinii de tipul al doilea în spațiu, deducem că integrala I din (5.162) se scrie în forma

$$I = \int_{\alpha}^{\beta} P(\varphi(u(t), v(t)), \psi(u(t), v(t)), \chi(u(t), v(t))) \frac{d\varphi}{dt}(u(t), v(t)) dt. \quad (5.163)$$

Dacă se calculează derivata funcției compuse $\varphi(u(t),v(t))$ și se înlocuiește în (5.163) constatăm că I este integrala curbilinie de tipul al doilea pe curba plană γ

$$I = \int_{\gamma} \widetilde{P}(u, v) \, du + \widetilde{Q}(u, v) \, dv, \tag{5.164}$$

unde am folosit notațiile:

$$\begin{cases}
\tilde{P}(u,v) = P(\varphi(u,v), \psi(u,v), \chi(u,v)) \frac{\partial \varphi}{\partial u}(u,v); \\
\tilde{Q}(u,v) = P(\varphi(u,v), \psi(u,v), \chi(u,v)) \frac{\partial \varphi}{\partial v}(u,v).
\end{cases} (5.165)$$

În planul O'uv aplicăm formula integrală Riemann–Green membrului al doilea al relației (5.164) și obținem

$$I = \iint\limits_{D} \left(\frac{\partial \widetilde{Q}}{\partial u}(u, v) - \frac{\partial \widetilde{P}}{\partial v}(u, v) \right) du dv.$$
 (5.166)

Folosind (5.165) și regulile de derivare ale funcțiilor compuse constatăm că derivatele care intră în (5.166) au expresiile:

$$\begin{cases}
\frac{\partial \tilde{Q}}{\partial u} = \left(\frac{\partial P}{\partial x}\frac{\partial \varphi}{\partial u} + \frac{\partial P}{\partial y}\frac{\partial \psi}{\partial u} + \frac{\partial P}{\partial z}\frac{\partial \chi}{\partial u}\right) + P\frac{\partial^{2}\varphi}{\partial u\partial v}; \\
\frac{\partial \tilde{P}}{\partial v} = \left(\frac{\partial P}{\partial x}\frac{\partial \varphi}{\partial v} + \frac{\partial P}{\partial y}\frac{\partial \psi}{\partial v} + \frac{\partial P}{\partial z}\frac{\partial \chi}{\partial v}\right) + P\frac{\partial^{2}\varphi}{\partial u\partial v}.
\end{cases} (5.167)$$

Diferența derivatelor din (5.167) conduce la expresia

$$\frac{\partial \widetilde{Q}}{\partial u}(u,v) - \frac{\partial \widetilde{P}}{\partial v}(u,v) = B \frac{\partial P}{\partial z} - C \frac{\partial P}{\partial y}, \tag{5.168}$$

unde B și C sunt jacobienii:

$$B = \frac{D(\chi, \varphi)}{D(u, v)}(u, v); \qquad C = \frac{D(\varphi, \psi)}{D(u, v)}(u, v), \tag{5.169}$$

iar funcția P care apare în (5.167) și în (5.168) trebuie înțeleasă ca

$$P = P(\varphi(u, v), \psi(u, v), \chi(u, v)). \tag{5.170}$$

În acest fel integrala I din (5.162) devine

$$\int_{\Gamma} P(x, y, z) dx = \iint_{D} \left(B \frac{\partial P}{\partial z} - C \frac{\partial P}{\partial y} \right) du dv, \tag{5.171}$$

cu mențiunea că funcția P din membrul al doilea este cea dată în (5.170). În mod analog se obțin:

$$\int_{\Gamma} Q(x, y, z) \, dy = \iint_{D} \left(C \, \frac{\partial Q}{\partial x} - A \, \frac{\partial Q}{\partial z} \right) du dv; \tag{5.172}$$

$$\int_{\Gamma} R(x, y, z) dz = \iint_{D} \left(A \frac{\partial R}{\partial y} - B \frac{\partial R}{\partial x} \right) du dv$$
 (5.173)

în care funcțiile Q și R din membrul doi al relației (5.172) și respectiv (5.173) sunt

$$Q = Q(\varphi(u, v), \psi(u, v), \chi(u, v)),$$

$$R = R(\varphi(u, v), \psi(u, v), \chi(u, v)),$$
(5.174)

iar A este jacobianul

$$A = \frac{D(\psi, \chi)}{D(u, v)}(u, v). \tag{5.175}$$

Observația 5.6.1 Jacobienii din relațiile (5.169) și (5.175) sunt cei care intră în expresia versorului normalei la suprafață care am convenit să fie

$$\mathbf{n} = \frac{A\,\mathbf{i} + B\,\mathbf{j} + C\,\mathbf{k}}{\sqrt{A^2 + B^2 + C^2}} = \frac{A\,\mathbf{i} + B\,\mathbf{j} + C\,\mathbf{k}}{\sqrt{E\,G - F^2}},\tag{5.176}$$

unde funcțiile E, F, G sunt coeficienții lui Gauss.

Adunând rezultatele (5.171) - (5.173), deducem relația

$$\int_{\Gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \iint_{D} \left(A \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + B \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) + C \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \right) du dv.$$
(5.177)

Pe de altă parte, integrala dublă din membrul al doilea al relației (5.177) este o integrală de suprafață de tipul al doilea pe fața suprafeței S de normală \mathbf{n} dată în (5.176), și anume

$$\iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy =$$

$$= \iint_{D} \left(A \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + B \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) + C \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \right) du dv.$$
(5.178)

De notat că funcțiile P, Q și R, din integralele duble de mai sus, sunt astfel cum au fost precizate prin relațiile (5.170) și (5.174).

Cuplând rezultatele din (5.177) și (5.178) deducem relația

$$\int_{\Gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$
(5.179)

care se numește formula integrală a lui Stokes sau simplu, formula lui Stokes. Ținând cont că avem relațiile:

$$dydz = \cos\alpha \, d\sigma; \quad dzdx = \cos\beta \, d\sigma; \quad dxdy = \cos\gamma \, dxdy,$$
 (5.180)

unde $\cos \alpha$, $\cos \beta$, $\cos \gamma$ sunt cosinii directori ai normalei **n**

$$\mathbf{n} = (\cos \alpha)\mathbf{i} + (\cos \beta)\mathbf{j} + (\cos \gamma)\mathbf{k}$$
 (5.181)

rezultă că formula integrală a lui Stokes (5.179) se scrie în forma echivalentă

$$\int_{\Gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \iint_{S} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right) d\sigma.$$
(5.182)

Fie funcția vectorială ${\bf F},$ de trei variabile reale, definită pe domeniul $V \subset {\cal E}_3$

$$\mathbf{F}: V \to \mathbb{R}^3, \quad \mathbf{F}(\mathbf{r}) = \mathbf{F}(x, y, z) =$$

$$= P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$$
(5.183)

care are proprietatea că funcția vectorială

$$\nabla \times \mathbf{F} = \operatorname{rot} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$
 (5.184)

există și este continuă cel puțin în punctele suprafeței S.

Observând că diferențiala vectorului de poziție ${\bf r}$ este

$$d\mathbf{r} = dx\,\mathbf{i} + dy\,\mathbf{j} + dz\,\mathbf{k} \tag{5.185}$$

și că produsul scalar al vectorilor $\mathbf{F}(\mathbf{r})$ și $d\mathbf{r}$ este dat de

$$\mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = P(x, y, z) \, dx + Q(x, y, z) \, dy + R(x, y, z) \, dz \tag{5.186}$$

deducem că formula integrală a lui Stokes (5.182) se poate scrie sub forma vectorială

$$\int_{\Gamma} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \iint_{S} \mathbf{n} \cdot \mathbf{\nabla} \times \mathbf{F} \, d\sigma. \tag{5.187}$$

Din punct de vedere fizic formula integrală a lui Stokes exprimată prin (5.187) arată că *circulația* câmpului vectorial \mathbf{F} pe frontiera Γ a unei suprafețe orientate \mathcal{S} este egală cu *fluxul rotorului* lui \mathbf{F} prin acea suprafață.

Observația 5.6.2 În cazul în care S este o porțiune D din planul Oxy, iar normala la S = D este versorul k, formula integrală a lui Stokes (5.177) devine formula integrală Riemann-Green.

Observația 5.6.3 Dacă câmpul vectorial \mathbf{F} este irotațional pe V, ceea ce înseamnă că $\nabla \times \mathbf{F} = \mathbf{0}$, din (5.187) deducem că integrala curbilinie de tipul al doilea din funcția vectorială \mathbf{F} pe orice curbă închisă din V este nulă și ca atare, expresia diferențială

$$\omega = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$
 (5.188)

este o difrențială totală pe V, adică există funcția diferențiabilă U astfel încât

$$dU(x, y, z) = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.$$
 (5.189)

Funcția U din (5.189) se numește primitivă a expresiei diferențiale ω . De asemenea, în acest caz integrala curbilinie de tipul al doilea din câmpul vectorial \mathbf{F} nu depinde de drumul de integrare.

Formula integrală a lui Stokes se folosește în calculul integralei curbilinii pe curba închisă Γ din câmpul vectorial $\mathbf{F} = (P, Q, R)$ când fluxul rotorului lui \mathbf{F} pe o suprafață mărginită de acea curbă se calculează mai ușor.

Exercițiul 5.6.1 Să se calculeze integrala curbilinie

$$I = \int_{\Gamma} (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz$$

de-a lungul curbei determinate de intersecția suprafețelor:

$$x^{2} + y^{2} + z^{2} = 2Rx; \quad x^{2} + y^{2} = 2rx, \quad R > r, \ z \ge 0,$$

sensul de parcurs al curbei Γ fiind cel al acelor de ceasornic dacă privim dinspre partea pozitivă a axei Ox.

Soluție. Pentru că integrala curbilinie este complicată, folosim formula integrală a lui Stokes luând ca suprafață S porțiunea din sfera

$$x^2 + y^2 + z^2 = 2Rx$$

situată în semispațiul superior $z \geq 0$, mărginită de curba Γ și care conține puncte M(x, y, z) cu abscisă cuprinsă între 0 și R.

Având în vedere orientarea curbei Γ , rezultă că normala \mathbf{n} la suprafața \mathcal{S} este cea exterioară sferei, această alegere a normalei \mathbf{n} fiind urmare a condiției ca Γ să fie orientată compatibil cu orientarea suprafeței \mathcal{S} . Suprafața \mathcal{S} fiind dată implicit rezultă că normala sa exterioară în punctul $M \in \mathcal{S}$ este , cu plus sau minus, versorul gradientului funcției

$$F(x, y, z) = x^{2} + y^{2} + z^{2} - 2Rx = (x - R)^{2} + y^{2} + z^{2} - R^{2}.$$

Se constată că trebuie luat semnul plus astfel că normala \mathbf{n} în punctul M al porțiunii \mathcal{S} din sfera de rază R și centru în punctul C(R,0,0) are cosinii directori:

$$\cos \alpha = \frac{x - R}{R}; \quad \cos \beta = \frac{y}{R}; \quad \cos \gamma = \frac{z}{R}.$$

Rotorul câmpului vectorial $\mathbf{F}(\mathbf{r}) = (y^2 + z^2)\mathbf{i} + (z^2 + x^2)\mathbf{j} + (x^2 + y^2)\mathbf{k}$ este

$$\nabla \times \mathbf{F} = 2(y-z)\mathbf{i} + 2(z-x)\mathbf{j} + 2(x-y)\mathbf{k}.$$

Aplicând acum formula integrală a lui Stokes, integrala curbilinie I devine

$$I = \frac{2}{R} \iint_{\mathcal{S}} ((y-z)(x-R) + y(z-x) + z(x-y)) d\sigma = 2 \iint_{\mathcal{S}} (z-y) d\sigma.$$

Porțiunea $\mathcal S$ din sfera de rază R cu centrul în punctul C(R,0,0) are ecuația carteziană explicită $z=\sqrt{R^2-(x-R)^2-y^2}$, se proiectează în planul Oxy după mulțimea $D=\{(x,y)\in I\!\!R^2: x^2+y^2-2rx\leq 0\}$ și are elementul de arie în punctul ei curent M(x,y,z) dat de $d\sigma=\frac{R}{\sqrt{R^2-(x-R)^2-y^2}}dxdy$.

Conform formulei de calcul a unei integrale de suprafață de tipul întâi, integrala de suprafață de mai sus se transformă în integrala dublă

$$\begin{split} I &= 2R \iint\limits_{D} \Big(1 - \frac{y}{\sqrt{R^2 - (x - R)^2 - y^2}}\Big) dx dy \\ &= 2R \iint\limits_{D} dx dy - 2R \iint\limits_{D} \frac{y}{\sqrt{R^2 - (x - R)^2 - y^2}} dx dy. \end{split}$$

A doua integrală dublă este egală cu zero deoarece funcția de integrat este impară în raport cu variabila y, iar doemniul D de integrare este simetric față de axa Ox. Prima integrală dublă este aria discului de rază R. Prin urmare, valoarea integralei I este $I=2R\iint\limits_{D}dxdy=2\pi\,r^2R$.

Exercițiul 5.6.2 Să se calculeze integrala curbilinie

$$I = \int_C (y^2 - z^2)dx + (z^2 - x^2)dy + (x^2 - y^2)dz,$$

C fiind curba de intersecție a frontierei cubului $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$ cu planul 2(x+y+z)-3a=0 parcursă în sens direct dacă privim dinspre partea pozitivă a axei Oz.

Soluție. Se aplică formula lui Stokes și se găsește

$$I = -2 \iint\limits_{S} (y+z)dydz + (z+x)dzdx + (x+y)dxdy,$$

unde S este partea de pe fața superioară a planului z=3a/2-x-y care se proiectează pe planul Oxy în hexagonul de vârfuri $M_1(a,0,0), M_2(a,a/2,0), M_3(a/2,a,0), M_4(0,a,0), M_5(0,a/2,0), M_6(a/2,0,0).$

Rezultă
$$I = -9a^3/2$$
.

Capitolul 6

Integrala triplă

În acest capitol vom defini noțiunea de integrabilitate a unei funcții reale de trei variabile reale independente și apoi, legat de aceasta, vom introduce conceptul de integrala triplă pe o anumită submulțime a spațiului aritmetic tridimensional a unei funcții reale de trei variabile reale definită pe acea mulțime.

Integralele triple sunt aplicate pe scară largă în diverse probleme de fizică, mecanică și inginerie. Câteva din aceste aplicații vor fi prezentate în ultimul paragraf al acestui capitol.

În multe privințe integralele triple sunt analoage integralelor duble şi, ca urmare, vom omite acele demonstrații care nu diferă esențial de demonstrațiile corespunzătoare din capitolul în care s—a studiat integrala dublă.

6.1 Elemente de topologie în \mathbb{R}^3

Mulţimile care vor fi considersate în acest capitol vor fi submulţimi ale spaţiului afin euclidian tri-dimensional \mathcal{E}_3 , raportat la un reper Cartezian ortogonal Oxyz şi asociat spaţiului liniar \mathbb{R}^3 . Definiţiile unor noţiuni topologice legate de aceste submulţimi precum: punct interior al unei mulţimi; frontiera unei mulţimi; mulţime deschisă; mulţime închisă; mulţime conexă; domeniu; domeniu închis; diametru unei mulţimi pot fi transpuse uşor mulţimilor incluse în \mathcal{E}_3 , pornind de la noţiunile topologice similare referitoare la submulţimi ale planului afin euclidian.

Când am introdus integrala dublă am folosit noțiunea de mulțime plană măsurabilă Jordan sau mulțime carabilă și de arie a acesteia. În mod simi-

lar, definiția integralei triple se bazează pe noțiunea de *mulțime cubabilă* sau *măsurabilă Jordan* și de *volumul* unei astfel de submulțimi a spațiului afin euclidian tridimensional. Pentru aceasta vom porni de la noțiunea de poliedru sau de mulțime poliesdrală și de volum al acestuia, cunoscute din geometria elementară. Extinderea acestor noțiuni la clase mai largi de mulțimi poate fi efectuată în același mod în care, plecând de la figuri plane poligonale, au fost introduse noțiunile de mulțime carabilă și de arie a unei asemenea mulțimi. Vom prezenta pe scurt această extindere.

Un domeniu poliedral sau solid poliedral este o submulţime a lui \mathcal{E}_3 a cărei frontieră este o reuniune finită de poligoane. Volumul V(P) a unui solid poliedral este un număr nenegativ care posedă următoarele proprietăți:

1. (monotonia). Dacă P și Q sunt două solide poliedrale, iar P este inclus în Q, atunci

$$V(P) < V(Q)$$
;

2. (aditivitatea). Dacă P și Q sunt două solide poliedrale fără puncte interioare comune, atunci

$$V(P \cup Q) = V(P) + V(Q);$$

3. (invarianța). Dacă solidele poliedrale P şi Q sunt congruente, volumele lor sunt egale.

Aceste trei proprietăți se pot păstra când noțiunea de volum se extinde la o clasă mai largă de mulțimi din \mathcal{E}_3 .

În acest sens, considerăm o mulțime mărginită arbitrară $\Phi \subset \mathcal{E}_3$ şi, totodată, toate corpurile poliedrale scufundate în Φ . Marginea superioară a volumelor solidelor poliedrale scufundate se numește **măsura interioară Jordan** a mulțimii Φ . În cazul în care nu există mulțimi poliedrale care să poată fi scufundate în Φ , prin definiție, atribuim mulțimii Φ măsură interioară Jordan nulă.

În mod similar, se introduce **măsura Jordan superioară** a mulțimii Φ ca fiind marginea inferioară a tuturor solidelor poliedrale cu proprietatea că mulțimea Φ este scufundată în oricare din ele.

Definiția 6.1.1 Spunem că o mulțime $\Phi \subset \mathcal{E}_3$ este măsurabilă Jordan sau cubabilă dacă măsurile Jordan interioară și exterioară ale acesteia sunt egale. Valoarea comună a acestor măsuri se numește volumul lui Φ și se notează cu $V(\Phi)$ sau cu $vol\Phi$.

307

Teorema următoare se demonstrează la fel cu cea similară pentru cazul mulțimilor plane prezentată în primul paragraf al capitolului în care s—a studiat integrala dublă.

Teorema 6.1.1 Condiția necesară și suficientă ca figura spațială Φ să fie măsurabilă Jordan sau cubabilă este ca pentru orice $\varepsilon > 0$ să existe figurile poliedrale $P \subset \Phi$ și $Q \supset \Phi$ astfel încât

$$V(Q) - V(P) < \varepsilon$$
.

Definiția 6.1.2 Spunem că o mulțime din spațiu are vloumul egal cu zero dacă ea poate fi scufundată întrun corp poliedral de volum arbitrar de mic.

Folosind noțiunea introdusă în definiția de mai sus, putem reformula Teorema 6.1.1 după cum urmează.

Teorema 6.1.2 Mulțimea $\Phi \subset \mathcal{E}_3$ are volum dacă și numai dacă frontiera sa are volumul egal cu zero.

Criteriul care rezultă din Teorema 6.1.2 stabileşte existența unor clase largi de submulțimi ale spațiului \mathcal{E}_3 care au volum. Spre exemplu, corpurile compuse dintr–un număr finit de cilindri, având interioare disjuncte două câte două, cu bazele inferioare mulțimi carabile din planul Oxy și bazele superioare suprafețe netede descrise de ecuații de forma z = f(x, y), formează o astfel de clasă. Volumul fiecărui cilindru component este egal cu integrala dublă

$$\iint\limits_{D} f(x,y) \, dx dy,$$

unde D este baza acelui cilindru.

O altă clasă importantă de mulțimi tridimensionale care au volum este alcătuită din mulțimile spațiului care sunt mărginite de un număr finit de suprafețe netede. Altfel spus, o mulțime din spațiu mărginită de o suprafață închisă netedă sau netedă pe porțiuni este o mulțime cubabilă. Această afirmație se demonstrează asemănător cu afirmația că o curbă plană netedă pe porțiuni are aria egală cu zero, dar aplicarea demonstrației la cazul corpurilor presupune detalieri complicate care nu au fost prezentate în această lucrare.

Procedând asemănător ca în capitolul în care am studiat integrala dublă putem stabili ușor valabilitatea următoarelor afirmații:

- 1. Reuniunea Φ a două mulțimi măsurabile Jordan Φ_1 și Φ_2 este o mulțime cubabilă și, dacă interioarele mulțimilor Φ_1 și Φ_2 sunt disjuncte, volumul lui Φ este suma volumelor mulțimilor Φ_1 și Φ_2 ;
- 2. Intersecța a două mulțimi măsurabile Jordan este o mulțime cubabilă.

6.2 Definiția integralei triple

Fie V un domeniu spaţial mărginit de o suprafaţă netedă sau netedă pe porţiuni şi f(P)=f(x,y,z) o funcţie reală definită şi mărginită pe închiderea mulţimii V. Descompunem domeniul V printr—o reţea de suprafeţe netede pe porţiuni în subdomeniile

$$V_1, V_2, \cdots, V_i, \cdots, V_n$$
 (6.1)

care nu au puncte interioare în comun și care satisfac condiția

$$V = V_1 \cup V_2 \cup \cdots \cup V_n. \tag{6.2}$$

Definiția 6.2.1 Fie V_i mulțimile din (6.1) care satisfac (6.2). Atunci, mulțimea

$$\Delta = \{V_1, V_2, \cdots, V_i, \cdots, V_n\} \tag{6.3}$$

se numește diviziune a domeniului V, iar mulțimile V_i se numesc elementele diviziunii.

Definiția 6.2.2 Fie diviziunea Δ din (6.3). Se numește norma sau finețea diviziunii Δ numărul pozitiv $\nu(\Delta)$, sau $\|\Delta\|$, egal cu cel mai mare dintre diametrele elementelor diviziunii Δ .

Frontiera unui element al diviziunii Δ fiind o suprafață închisă netedă pe porțiuni este măsurabilă Jordan. Să notăm cu τ_i volumul elementului V_i și cu $\mathcal V$ volumul lui V. Avem

$$\mathcal{V} = \sum_{i=1}^{n} \tau_i.$$

În fiecare element V_i al diviziunii Δ alegem câte un punct $P_i(\xi_i, \eta_i, \zeta_i)$, numit punct intermediar, apoi alcătuim suma integrală a funcției f

$$\sigma_{\Delta}(f, P_i) = \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \, \tau_i \tag{6.4}$$

corespunzătoare diviziunii Δ și punctelor intermediare $P_i \in V_i$.

Definiția 6.2.3 Spunem că funcția f este **integrabilă** pe mulțimea măsurabilă Jordan V dacă există și este finită limita I a sumelor integrale (6.4), iar I nu depinde de alegerea punctelor intermediare.

Definiția 6.2.4 $Dacă f: \overline{V} \to \mathbb{R}$ este integrabilă pe $V \subset \mathcal{E}_3$, numărul

$$I = \lim_{\nu(\Delta) \to 0} \sigma_{\Delta}(f, P_i)$$

se numește integrala triplă pe domeniul V a funcției f și se notează cu unul din simbolurile

$$I = \iiint\limits_V f(x,y,z) \, dx dy dz = \iiint\limits_V f(x,y,z) \, dv = \iiint\limits_V f(P) \, dv.$$

Având în vedere definiția limitei rezultă că putem da o definiție echivalentă a integrabilității funcției $f: \overline{V} \to I\!\!R$.

Definiția 6.2.5 Funcția $f: \overline{V} \to \mathbb{R}$ se numește **integrabilă** pe $V \subset \mathcal{E}_3$ dacă există numărul real I cu proprietatea că oricare ar $f: \varepsilon > 0$ există $\delta(\varepsilon) > 0$ astfel încât să avem

$$|\sigma_{\Delta}(f, P_i) - I| < \varepsilon$$

pentru orice diviziune Δ cu $\nu(\Delta) < \delta(\varepsilon)$ și pentru orice alegere a punctelor intermediare $P_i \in V_i$.

6.3 Condiții de existență a unei integrale triple

Ca și în cazul funcțiilor reale de una sau două variabile independente, o funcție f arbitrară dar mărginită, de trei variabilele independente x,y și z, nu este întotdeauna integrabilă pe mulțimea ei de definiție. Pentru a stabili condiții suficiente de existența a integralei triple pe mulțimea V din funcția reală f definită pe \overline{V} , vom folosi sumele Darboux inferioară și superioară corespunzătoare diviziunii Δ din (6.3).

Fie f(x, y, z) o funcție mărginită definită pe o mulțime măsurabilă Jordan V. Notăm cu \mathcal{D} totalitatea diviziunilor mulțimii V și fie Δ o diviziune a lui V. Funcția f fiind mărginită pe V va fi mărginită pe elementul V_i al diviziunii

 $\Delta \in \mathcal{D}$ și deci există numerele reale M_i și m_i marginea superioară și respectiv marginea inferioară a valorilor funcției f pe elementul V_i a diviziunii Δ , iar cu τ_i volumul lui V_i . Expresiile:

$$S_{\Delta}(f) = \sum_{i=1}^{n} M_i \tau_i; \quad s_{\Delta}(f) = \sum_{i=1}^{n} m_i \tau_i$$
 (6.5)

se numesc suma Darboux superioară și respectiv suma Darboux inferioară pentru funcția f corespunzătoare partiției Δ .

Proprietățile sumelor Darboux introduse în (6.5) sunt asemănătoare sumelor Darboux introduse la integrala dublă motiv pentru care ne vom limita doar la enumerarea acestora.

1. Pentru orice diviziune $\Delta \in \mathcal{D}$ și pentru orice alegere a sistemului de puncte intermediare $P_i(\xi_i, \eta_i, \zeta_i) \in V_i$, suma integrală asociată funcției f este cuprinsă între suma Darboux inferioară și suma Darboux superioară ale funcției f corespunzătoare diviziunii Δ

$$s_{\Delta}(f) \leq \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) S_i \leq S_{\Delta}(f).$$

2. În procesul de rafinare a divizării mulțimii V sumele Darboux inferioare cresc, iar sumele Darboux superioare descresc. Prin urmare, dacă $s_{\Delta}(f)$ și $S_{\Delta}(f)$ sunt sumele Darboux ale funcției f corespunzătoare modului de divizare $\Delta \in \mathcal{D}$, iar $s_{\Delta'}(f)$ și $S_{\Delta'}(f)$ sunt sumele Darboux ale funcției f corespunzătoare unei alte partiții $\Delta' \in \mathcal{D}$, mai fină decât diviziunea Δ , avem

$$s_{\Delta}(f) \le s_{\Delta'}(f) \le S_{\Delta'}(f) \le S_{\Delta}(f)$$
.

3. Fie Δ' și Δ'' două diviziuni arbitrare ale mulțimii V și fie $s_{\Delta'}(f)$, $S_{\Delta'}(f)$ și $s_{\Delta''}(f)$, $S_{\Delta''}(f)$, sumele Darboux asociate funcției f corespunzătoare acestor partiții. Atunci, avem

$$s_{\Delta'}(f) \le S_{\Delta''}(f)$$
 şi $s_{\Delta''}(f) \le S_{\Delta'}(f)$

adică orice sumă Darboux inferioară a funcției f corespunzătoare unui mod arbitrar de divizare, nu poate întrece suma Darboux superioară asociată aceleiași funcții corespunzătoare oricărui alt mod de divizare a mulțimii V.

- 4. Mulţimea sumelor Darboux superioare ale funcţiei f definită pe mulţimea carabilă $V \subset \mathcal{E}_3$ corespunzătoare modurilor de diviziune $\Delta \in \mathcal{D}$ este mărginită inferior. Un minorant al acestei mulţimi este oricare sumă Darboux inferioară a funcţiei f corespunzătoare unui mod de divizare $\Delta \in \mathcal{D}$.
- 5. Mulțimea sumelor Darboux inferioare ale funcției $f:V\to \mathbb{R}^3$ corespunzătoare mulțimii modurilor de divizare \mathcal{D} este mărginită superior. Un majorant al acestei mulțimi este desigur oricare sumă Darboux superioară a funcției f corespunzătoare oricărui mod de divizare a mulțimii V.
- 6. Dată funcția $f: V \subset \mathcal{E}_3 \to \mathbb{R}$ există numerele reale:

$$\overline{J} = \inf\{S_{\Delta}(f) : \Delta \in \mathcal{D}\}; \qquad \underline{J} = \sup\{s_{\Delta}(f) : \Delta \in \mathcal{D}\},$$

numite integrala Darboux superioară și integrala Darboux inferioară ale funcției $f: V \to \mathbb{R}$.

Teorema 6.3.1 Integralele Darboux inferioară şi superioară ale funcției reale de trei variabile reale f definită pe mulțimea măsurabilă Jordan $V \subset \mathbb{R}^3$ satisfac inegalitatea

$$\underline{J} \leq \overline{J}$$
.

Demonstrație. Presupunem contrariul și anume că $\underline{J}>\overline{J}$. Atunci, există un număr $\varepsilon>0$ astfel încât

$$\underline{J} - \overline{J} > \varepsilon > 0.$$
 (6.6)

Pe de altă parte, după teoremele de caracterizare ale marginilor inferioară și superioară, putem spune că pentru $\varepsilon>0$ de mai sus există o sumă Darboux superioară Ω_1 și o sumă Darboux inferioară ω_2 astfel încât

$$\Omega_1 - \overline{J} < \frac{\varepsilon}{2} \quad \text{si} \quad \underline{J} - \omega_2 < \frac{\varepsilon}{2}, ,$$

de unde deducem

$$\Omega_1 - \omega_2 + (\underline{J} - \overline{J}) < \varepsilon.$$

În consecință, în conformitate cu (6.6), avem

$$\Omega_1 - \omega_2 < 0$$

care contrazice una din proprietatățile sumelor Darboux.

Următoarea teoremă de existența a unei integrale triple se demonstrează aplicând argumente similare celor din demonstrația teoremei de existență a unei integrale duble.

Teorema 6.3.2 Orice funcție continuă f definită pe mulțimea cubabilă compactă $V \subset \mathbb{R}^3$ este integrabilă pe V.

Ca și la integrala dublă, condiția de continuitate a integrantului este destul de restrictivă. De aceea, teorema următoare stabilește existența integralei triple pentru o clasă de funcții discontinue.

Teorema 6.3.3 Dacă funcția reală f(x, y, z), mărginită pe mulțimea cubabilă compactă V, este continuă peste tot în V cu excepția unei mulțimi de volum egal cu zero, atunci ea este integrabilă pe V.

6.4 Proprietățile integralei triple

Proprietățile integralei triple sunt analoage celor ale integralei duble și de aceea ne vom limita doar să le enumerăm.

1. (liniaritate). Dacă funcțiile reale de trei variabile reale f și g sunt integrabile pe mulțimea măsurabilă Jordan V, iar λ și μ sunt constante reale arbitrare, atunci funcția $\lambda f + \mu g$ ale cărei valori se calculează după legea

$$(\lambda f + \mu g)(x, y, z) = \lambda f(x, y, z) + \mu g(x, y, z), \ (\forall) \ (x, y, z) \in V,$$

este integrabilă pe V și

$$\iiint\limits_{V} (\lambda f + \mu g)(x, y, z) dv =$$

$$= \lambda \iiint\limits_{V} f(x, y, z) dv + \mu \iiint\limits_{V} g(x, y, z) dv.$$

2. (aditivitate). Dacă $V=V_1\cup V_2$, unde V_1 și V_2 sunt mulțimi cubabile compacte, iar $V_1\subset I\!\!R^3$ și $V_2\subset I\!\!R^3$ nu au puncte interioare comune și

funcția $f:V\to I\!\!R$ este integrabilă pe V, atunci f este integrabilă pe fiecare din mulțimile V_1 și V_2 și are loc egalitatea

$$\iiint\limits_V f(x,y,z)\,dxdydz =$$

$$= \iiint\limits_{V_1} f(x,y,z)\,dxdydz + \iiint\limits_{V_2} f(x,y,z)\,dxdydz.$$

3. (monotonie). Dacă f este integrabilă pe V și

$$f(x, y, z) \ge 0, \quad (\forall) \ (x, y, z) \in V,$$

integrala triplă din funcția f satisface inegalitatea

$$\iiint\limits_V f(x,y,z) \, dx dy dz \geq 0.$$

4. (monotonie). Dacă f și g sunt integrabile pe mulțimea măsurabilă Jordan V și

$$f(x,y,z) \ \leq \ g(x,y,z), \quad (\forall) \ (x,y,z) \in V,$$

între integralele celor două funcții avem inegalitatea

$$\iiint\limits_V f(x,y,z)\,dxdydz \ \leq \ \iiint\limits_V g(x,y,z)\,dxdydz.$$

Această proprietate a integralei triple implică următoarele două proprietăți.

5. (evaluarea valorii absolute a integralei triple). Dacă f este integrabilă pe mulțimea măsurabilă Jordan V, atunci funcția valoarea absolută a lui f este integrabilă pe V și

$$\Big| \iiint\limits_V f(x,y,z) \, dx dy dz \Big| \, \leq \, \, \iiint\limits_V |f(x,y,z)| dx dy dz.$$

6. (teorema valorii medii). Dacă funcția reală de trei variabile reale f este integrabilă pe mulțimea măsurabilă Jordan V și satisface inegalitatea

$$m \leq f(x, y, z) \leq M, \quad (\forall) (x, y, z) \in V,$$

iar volV este volumul lui V, atunci

$$m \operatorname{vol} V \le \iiint\limits_V f(x, y, z) \, dx dy dz \le M \operatorname{vol} V.$$

Dacă funcția f este în plus continuă pe V, teorema valorii medii devine

7. Dacă f este funcție continuă pe mulțimea cubabilă compactă V, există un punct $(\xi, \eta, \zeta) \in V$, astfel încât

$$\iiint\limits_V f(x,y,z) \, dx dy dz = f(\xi,\eta,\zeta) \operatorname{vol} V.$$

8. Este evidentă egalitatea

$$\iiint\limits_V dxdydz = \operatorname{vol} V.$$

6.5 Evaluarea integralei triple

6.5.1 Integrala triplă pe intervale tridimensionale închise

Teorema 6.5.1 Dacă funcția reală mărginită, de trei variabile reale,

$$\begin{split} f:[a,b]\times[c,d]\times[u,v]\to I\!\!R,\\ -\infty < a < b < +\infty, \quad -\infty < c < d < +\infty, \quad -\infty < u < v < +\infty \end{split}$$

este integrabilă pe intervalul tridimensional închis

$$I_3 = [a, b] \times [c, d] \times [u, v]$$

şi pentru orice $(x,y) \in I_2 = [a,b] \times [c,d]$ există numărul real F(x,y) definit de integrala depinzând de parametrii x şi y

$$F(x,y) = \int_{u}^{v} f(x,y,z) dz, \qquad (6.7)$$

atunci funcția

$$F: I_2 \to I\!\!R, \ F(x,y) = \int_u^v f(x,y,z) \, dz, \ (\forall) \ (x,y) \in I_2$$

este integrabilă pe intervalul bidimensional I_2 și are loc egalitatea

$$\iiint\limits_{I_3} f(x,y,z) dxdydz = \iint\limits_{I_2} F(x,y) dxdy = \iint\limits_{I_2} \left(\int_u^v f(x,y,z)dz \right) dxdy. \tag{6.8}$$

Demonstrație. Fie d', d'' și d''' diviziuni ale respectiv intervalelor reale compacte [a, b], [c, d] și [u, v]:

$$\begin{cases}
d' = \{x_0, x_1, \dots, x_i, x_{i+1}, \dots, x_m\}; \\
d'' = \{y_0, y_1, \dots, y_i, y_{i+1}, \dots, y_n\}; \\
d''' = \{z_0, z_1, \dots, z_k, z_{k+1}, \dots, z_p\},
\end{cases} (6.9)$$

unde

$$\begin{cases} a = x_0 < x_1 < \dots < x_i < x_{i+1} < \dots < x_m = b, \\ c = y_0 < y_1 < \dots < y_i < y_{i+1} < \dots < y_n = d, \\ u = z_0 < z_1 < \dots < z_k < z_{k+1} < \dots < z_p = v. \end{cases}$$

Cu ajutorul diviziunilor d', d'', d''' putem defini o diviziune Δ a intervalului tridimensional închis I_3

$$\Delta = \{I_{000}, I_{100}, \cdots I_{ijk}, \cdots I_{mnp}\}, \tag{6.10}$$

unde elemntele I_{ijk} ale acesteia sunt intervalele tridimensionale închise

$$I_{ijk} = [x_i, x_{i+1}] \times [y_j, y_{j+1}] \times [z_k, z_{k+1}],$$

 $i = 0, 1, \dots, m-1, \quad j = 0, 1, \dots, n-1, \quad k = 0, 1, \dots, p-1,$

iar cu ajutorul diviziunilor d' și d'' definim o diviziune Δ' a lui I_2 , unde elementele lui Δ' sunt intervalele bidimensionale închise

$$I'_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

$$(i = 0, 1, \dots m - 1, j = 0, 1, \dots, n - 1).$$
(6.11)

Notăm

$$m_{ijk} = \inf\{f(x, y, z) : (x, y, z) \in I_{ijk}\},\$$

$$M_{ijk} = \sup\{f(x, y, z) : (x, y, z) \in I_{ijk}\}.$$

Aceste cantități sunt numere reale deoarece funcția f este mărginită pe fiecare din intervalele tridimensioanle închise I_{ijk} .

Deoarece urmărim să demonstrăm că funcția F definită de (6.7) este integrabilă pe intervalul bidimensional închis I_2 va trebui să considerăm sumele integrale ale funcției F corespunzătoare tuturor diviziunilor Δ' ale intervalului bidimensional I_2 , ale căror elemente au forma (6.11), pentru alegeri arbitrare ale punctelor intermediare $(\xi_i, \eta_j) \in I'_{ij}$. Aceste sume au forma

$$\sigma_{D'}(F,(\xi_i,\eta_j)) = \sum_{i=1}^{m-1} \sum_{j=1}^n F(\xi_i,\eta_j)(x_{i+1} - x_i)(y_{j+1} - y_j). \tag{6.12}$$

Dacă ținem seama de modul cum a fost definită funcția F și de proprietatea de aditivitate în raport cu intervalul de integrare a integralei Riemann, avem

$$F(\xi_i, \eta_j) = \int_u^v f(\xi_i, \eta_j, z) dz = \sum_{k=0}^{p-1} \int_{z_k}^{z_{k+1}} f(\xi_i, \eta_j, z) dz.$$

Aplicând formula de medie integralelor simple

$$\int_{z_k}^{z_{k+1}} f(\xi_i, \eta_j, z) dz$$

deducem că există numerele reale μ_{ijk} cu $m_{ijk} \leq \mu_{ijk} < M_{ijk}$, astfel încât

$$\int_{z_k}^{z_{k+1}} f(\xi_i, \eta_j, z) dz = \mu_{ijk}(z_{k+1} - z_k).$$

Deci, pentru sumele integrale (6.12) asociate funcției F definită pe intervalul bidimensional I_2 , corespunzătoare modului de divizare Δ' și alegerii punctelor intermediare $(\xi_i, \eta_i) \in I_{ij}$, avem

$$\sigma_{\Delta'}(F,(\xi_i,\eta_j)) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{k=0}^{p-1} \mu_{ijk}(x_{i+1} - x_i)(y_{j+1} - y_j)(z_{k+1} - z_k).$$

Dacă ținem seama de inegalitățile

$$m_{ijk} \le \mu_{ijk} \le M_{ijk},$$

 $(i = 0, 1, \dots, m-1, j = 0, 1, \dots, n-1, k = 0, 1, \dots, p-1)$

rezultă

$$\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{k=0}^{p-1} m_{ijk} \, v_{ijk} \leq \sigma_{\Delta'}(F, (\xi_i, \eta_j)) \leq \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{k=0}^{p-1} M_{ijk} \, v_{ijk}, \qquad (6.13)$$

unde v_{ijk} este volumul intervalului tridimensional I_{ijk}

$$v_{ijk} = \text{vol } I_{ijk} = (x_{i+1} - x_i)(y_{j+1} - y_j)(z_{k+1} - z_k).$$

Prima sumă din inegalitățile (6.13) este suma Darboux inferioară a funcției f relativă la diviziunea Δ a lui I_3

$$s_{\Delta}(f) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{k=0}^{p-1} m_{ijk} v_{ijk}.$$

Ultima sumă din inegalitățile (6.13) este suma Darboux superioară a funcției f relativă la aceeași diviziune Δ a intervalului tridimensional I_3

$$S_{\Delta}(f) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{k=0}^{p-1} M_{ijk} v_{ijk}.$$

Avem deci inegalățile

$$s_{\Delta}(f) \leq \sigma_{\Delta'}(F,(\xi_i,\eta_j)) \leq S_{\Delta}(f)$$

pentru orice diviziune Δ de forma (6.10) a intervalului tridimensional I_3 și pentru orice alegere a punctelor intermediare $(\xi_i, \eta_j) \in I_2$.

Fie acum $(d'_r)_{r\in\mathbb{N}^*}$ un şir oarecare de diviziuni ale intervalului [a,b] cu proprietatea că şirul normelor acestor diviziuni $(\|d'_r\|)_{r\in\mathbb{N}^*}$ este convergent la zero, $(d''_r)_{r\in\mathbb{N}^*}$ un şir oarecare de diviziuni ale intervalului [c,d] cu proprietatea $\|d''_r\| \to 0$ şi $(d'''_r)_{r\in\mathbb{N}^*}$ un şir oarecare de diviziuni ale lui [u,v] cu $\|d'''_k\| \to 0$. Notăm cu Δ_r diviziunea intervalului tridimensional închis $I_3 = [a,b] \times [c,d] \times [u,v]$ definită de diviziunile d'_r , d''_r , d'''_r ale respectiv intervalelor închise [a,b], [c,d], [u,v] şi cu Δ'_r diviziunea intervalului bidimensional închis $I_2 = [a,b] \times [c,d]$ definită de diviziunile d'_r şi d''_r . Se vede că

$$||d'_r|| \to 0, ||d''_r|| \to 0 \implies ||\Delta_r|| \to 0 \text{ si } ||\Delta'_r|| \to 0.$$

Pentru fiecare r avem inegalitățile

$$s_{\Delta_r}(f) \le \sigma_{\Delta'_r}(F,(\xi_i,\eta_j)) \le S_{\Delta_r}(f). \tag{6.14}$$

Funcția f fiind integrabilă pe I_3 , aplicând criteriul de integrabilitate a lui Darboux, avem

$$\lim_{r \to \infty} S_{\Delta_r}(f) = \lim_{r \to \infty} s_{\Delta_r}(f) = \iiint_{I_3} f(x, y, z) \, dx dy dz. \tag{6.15}$$

Trecând la limită în (6.14) și ținând cont de (6.15), obținem

$$\lim_{r \to \infty} \sigma_{\Delta_r'}(F, (\xi_i, \eta_j)) = \iiint_{I_3} f(x, y, z) \, dx \, dy \, dz. \tag{6.16}$$

Dacă ținem seama de definiția integralei duble a unei funcții reale de două variabile reale se vede imediat că

$$\lim_{r \to \infty} \sigma_{\Delta'_r}(F, (\xi_i, \eta_j)) = \iint_{I_2} F(x, y) \, dx dy. \tag{6.17}$$

Din egalitățile (6.16) și (6.17) obținem (6.8) și teorema este demonstrată. ■ De obicei se folosește notația

$$\iiint_{I_2} f(x, y, z) dxdydz = \iint_{I_2} dxdy \int_u^v f(x, y, z)dz.$$
 (6.18)

In cazul integralelor duble am utilizat notația

$$\iint\limits_{I_0} F(x,y) \, dx dy = \int_a^b dx \int_c^d F(x,y) dy. \tag{6.19}$$

Ținând cont de faptul că avem egalitatea

$$\int_{c}^{d} F(x,y)dy = \int_{c}^{d} dy \int_{v}^{v} f(x,y,z) dz,$$
(6.20)

folosind (6.19) și (6.20) constatăm că (6.8) se scrie în forma

$$\iiint\limits_{I_2} f(x,y,z) \, dx dy dz = \int_a^b dx \int_c^d dy \int_u^v f(x,y,z) \, dz. \tag{6.21}$$

Putem spune că (6.8), (6.18) și (6.21) reprezintă formule de calcul a integralei triple pe un interval tridimensional închis.

Observația 6.5.1 Integrala triplă pe un interval tridimensional închis este o iterație de integrale simple, deci un calcul succesiv a trei integrale Riemann ale unor funcții reale. Prima integrală din membrul doi a relației (6.21), efectuată în raport cu variabila z pe intervalul [u, v], este o integrală depinzând de doi parametri, a doua integrală simplă, calculată în raport cu y pe compactul [c, d], este o integrală depinzând de parametrul x. Ultima integrală, efectuată între limitele a și b, este tocmai integrala triplă a funcției f pe intervalul tridimensional I_3 .

Observația 6.5.2 Dacă presupunem că funcția $f: I_3 \to \mathbb{R}$ este integrabilă și integralele:

$$G(y,z) = \int_a^b f(x,y,z) dx; \qquad H(z,x) = \int_c^d f(x,y,z) dy$$

există pentru orice $(y,z) \in [c,d] \times [u,v]$ şi respectiv pentru orice $(z,x) \in [u,v] \times [a,b]$, atunci procedând ca în teorema de mai sus putem deduce următoarele două formule de calcul ale integralei triple pe intervalul tridimensional închis $I_3 = [a,b] \times [c,d] \times [u,v]$:

$$\iiint\limits_{I_2} f(x,y,z) \, dx dy dz \, = \, \int_c^d dy \, \int_u^v dz \, \int_a^b f(x,y,z) \, dx;$$

$$\iiint\limits_{I_2} f(x,y,z) \, dx dy dz \, = \, \int_u^v dz \, \int_a^b dx \, \int_c^d f(x,y,z) \, dy.$$

Observația 6.5.3 Dacă $f(x,y,z) = g(x) \cdot h(y) \cdot k(z)$ și funcțiile reale de o variabilă reală $g:[a,b] \to \mathbb{R}$, $h:[c,d] \to \mathbb{R}$, $k:[u,v] \to \mathbb{R}$ sunt integrabile Riemann, atunci f este integrabilă pe intervalul tridimensional închis $I_3 = [a,b] \times [c,d] \times [u,v]$ și are loc egalitatea

$$\iiint\limits_{I_3} f(x,y,z) \, dx dy \, = \, \int_a^b g(x) dx \cdot \int_c^d h(y) dy \cdot \int_u^v k(z) dz,$$

relație care arată că în acest caz particular integrala triplă este un produs de trei integrale simple.

6.5.2 Integrala triplă pe un domeniu simplu în raport cu axa Oz

Pentru a da regula de calcul a unei integrale triple în cazul în care domeniul de integrare V nu mai este un interval tridimensional închis este necesară noțiunea de domeniu simplu în raport cu una din axele reperului cartezian rectangular Oxyz.

Definiția 6.5.1 Se numește domeniu simplu în raport cu axa Oz submulțimea V_z a lui \mathbb{R}^3

$$V_z = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D_{xy} \subset Oxy, \, \varphi_1(x, y) \le z \le \varphi_2(x, y)\},\$$

unde φ_1 , φ_2 sunt funcții reale continue pe submulțimea D_{xy} a lui \mathbb{R}^2 .

Analizând definiția domeniului simplu în raport cu axa Oz, constatăm că frontiera acestuia este alcătuită din suprafețele:

$$(S_1): z = \varphi_1(x, y), (x, y) \in D_{xy}; (S_2): z = \varphi_2(x, y), (x, y) \in D_{xy},$$

pe care le putem numi baza inferioară și respectiv baza superioară a domeniului de integrare V_z , și din porțiunea de suprafață cilindrică

$$(S_{\ell}) = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in \partial D_{xy}, \varphi_1(x, y) \le z \le \varphi_2(x, y)\},\$$

unde ∂D_{xy} este frontiera mulțimi D_{xy} , curbă închisă netedă pe porțiuni.

Mulţimea plană D_{xy} din definiţia domeniului simplu în raport cu axa Oz este proiecţia ortogonală a mulţimii V_z pe planul Oxy. Suprafaţa cilindrică S_ℓ are generatoarele paralele cu Oz şi curba directoare frontiera domeniului D_{xy} .

Un domeniu simplu în raport cu axa Oz are proprietatea că orice paralelă la axa Oz printr-un punct (x,y) din interiorul domeniului D_{xy} , orientată la fel cu axa Oz, pătrunde în domeniul V_z prin punctul $P(x,y,\varphi_1(x,y))$ pe care putem să-l numim punct de intrare în domeniu şi iese din V_z prin punctul $Q(x,y,\varphi_2(x,y))$ care poate fi denumit punct de ieșire din domeniul V_z .

Procedând exact ca în cazul teoremei de la integrala dublă avem:

Teorema 6.5.2 Fie V_z un domeniu simplu în raport cu axa Oz și f o funcție reală mărginită definită și integrabilă pe mulțimea V_z . Dacă pentru orice $(x,y) \in D_{xy}$, fixat, există integrala depinzând de parametrii x și y

$$J(x,y) = \int_{\varphi_1(x,y)}^{\varphi_2(x,y)} f(x,y,z)dz,$$

atunci funcția $J:D_{xy}\to I\!\!R$ este integrabilă și

$$\iint\limits_{D_{xy}} J(x,y) \, dxdy = \iiint\limits_{V_z} f(x,y,z) \, dxdydz.$$

Demonstrație. Înainte de a începe demonstrația, să observăm că având în vedere expresia valorii în $(x, y) \in D_{xy}$ a funcției J, integrala dublă pe D_{xy} a acesteia se poate scrie în una din următoarele forme

$$\iint_{D_{xy}} J(x,y) \, dxdy = \iint_{D_{xy}} \left(\int_{\varphi_1(x,y)}^{\varphi_2(x,y)} f(x,y,z) dz \right) dxdy =$$

$$= \iint_{D_{xy}} dxdy \int_{\varphi_1(x,y)}^{\varphi_2(x,y)} f(x,y,y) dz.$$

Atunci, concluzia teoremei devine

$$\iiint\limits_{V_z} f(x,y,z) \, dx dy dz = \iint\limits_{D_{xy}} dx dy \int_{\varphi_1(x,y)}^{\varphi_2(x,y)} f(x,y,z) dz \tag{6.22}$$

și reprezintă formula de calcul a integralei triple pe un domeniu simplu în raport cu axa Oz.

Să procedăm acum la demonstrația teoremei.

Fie $u = \min\{\varphi_1(x,y); (x,y) \in D_{xy}\}$ şi $v = \max\{\varphi_2(x,y); (x,y) \in D_{xy}\}$ care sunt numere reale în baza faptului că funcțiile φ_1 şi φ_2 sunt continue pe mulțimea compacă D_{xy} şi, după teorema lui Weierstrass, sunt funcții mărginite şi îşi ating efectiv marginile. Atunci, cilindrul $\mathcal{C} = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in D_{xy}, u \leq z \leq v\}$ include domeniul simplu în raport cu axa Oz la care se referă enunțul teoremei.

Considerăm funcția reală auxiliară f^* , definită pe cilindrul \mathcal{C} ,

$$f^*(x, y, z) = \begin{cases} f(x, y, z), & \text{dacă} \quad (x, y, z) \in V_z \\ 0, & \text{dacă} \quad (x, y, z) \in \mathcal{C} \setminus V_z. \end{cases}$$
(6.23)

Această funcție satisface ipotezele Teoremei 6.3.3. Într-adevăr, deoarece valorile sale coincid cu cele ale funcției f pe mulțimea V_z putem afirma că f^* este integrabilă pe V_z . Restricția lui f^* la mulțimea $\mathcal{C} \setminus V_z$ fiind funcția identic nulă rezultă că este integrabilă. Dacă la aceste două rezultate adăugăm

și proprietatea de aditivitate a integralei triple deducem că funcția f^* din (6.23) este integrabilă. Mai mult, avem evident:

$$\iiint\limits_{V_{z}} f^{*}(x,y,z) \, dx dy dz = \iiint\limits_{V_{z}} f(x,y,z) \, dx dy dz; \tag{6.24}$$

$$\iiint\limits_{C \setminus V_z} f^*(x, y, z) \, dx dy dz = 0, \tag{6.25}$$

deci

$$\iiint\limits_{\mathcal{C}} f^*(x,y,z)\,dxdydz = \iiint\limits_{V_z} f(x,y,z)\,dxdydz.$$

În afară de aceasta, pentru fiecare pereche (x,y) situată în D_{xy} are loc egalitatea

$$\int_{u}^{v} f^{*}(x, y, z) dz =$$

$$\int_{u}^{\varphi_{1}(x, y)} f^{*}(x, y, z) dz + \int_{\varphi_{1}(x, y)}^{\varphi_{2}(x, y)} f^{*}(x, y, z) dz + \int_{\varphi_{2}(x, y)}^{v} f^{*}(x, y, z) dz$$
(6.26)

din motiv că fiecare din integralele din membrul doi există. Apoi, dat fiind faptul că pe segmentele de dreaptă incluse în $\mathcal C$ care unesc respectiv perechile de puncte

$$(x, y, u), (x, y, \varphi_1(x, y))$$
 si $(x, y, \varphi_2(x, y)), (x, y, v),$

valorile funcției f^* sunt egale cu zero, deducem că prima și a treia integrală din membrul doi al relației (6.26) sunt nule, fapt care conduce la egaliatatea

$$\int_{u}^{v} f^{*}(x, y, z) dz = \int_{\varphi_{1}(x, y)}^{\varphi_{2}(x, y)} f(x, y, z) dz.$$

Integrala triplă din funcția f^* pe mulțimea $\mathcal C$ poate fi redusă la iterația de integrale

$$\iiint\limits_{\mathcal{C}} f^*(x, y, z) \, dx dy dz = \iint\limits_{D_{xy}} dx dy \int_u^v f^*(x, y, z) \, dz. \tag{6.27}$$

Relațiile stabilite mai sus conduc la concluzia teoremei.

Exercițiul 6.5.1 Să se calculeze integrala triplă

$$I = \iiint\limits_{\Omega} \frac{dxdydz}{(1+x+y+z)^3},$$

unde Ω este tetraedrul delimitat de planele de coordonate $x=0,\,y=0,\,z=0$ şi de planul x+y+z-1=0.

Soluție. Proiecția domeniului de integrare pe planul Oxy este triunghiul dreptunghic isoscel cu unghiul drept în origine și unghiurile de 45^{0} în punctele A(1,0,0) și B(0,1,0).

Domeniul Ω este simplu în raport cu axa Oz deoarece orice paralelă la axa Oz dusă printr-un punct din interiorul triunghiului mai sus menționat pătrunde în domeniul Ω în punctul P(x,y,0) și iese din domeniu în punctul Q(x,y,1-x-y). Prin urmare avem că $\varphi_1(x,y)=0$ și $\varphi_2(x,y)=1-x-y$.

Proiecția domeniului Ω pe planul Oxy este

$$D_{xy} = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 1 - x\}. \tag{6.28}$$

Dacă aplicăm formula (6.22), avem

$$I = \frac{1}{2} \iint_{D_{xy}} \left[\frac{1}{(1+x+y)^2} - \frac{1}{4} \right] dx dy.$$
 (6.29)

Analizând (6.28) constatăm că domeniul D_{xy} este simplu în raport cu axa Oy. Prin urmare, pentru calculul integralei duble (6.29) se poate aplica formula (4.37). Avem

$$I = \frac{1}{2} \int_0^1 dx \int_0^{1-x} \left[\frac{1}{(1+x+y)^2} - \frac{1}{4} \right] dy = -\frac{1}{2} \int_0^1 \left(\frac{1}{1+x+y} + \frac{y}{4} \right) \Big|_0^{1-x} dx.$$

După efectuarea diferenței valorilor primitivei în cele două limite de integrare, găsim

$$I = \frac{1}{2} \int_0^1 \left(\frac{1}{1+x} + \frac{x-3}{4} \right) dx.$$

Integralele definite la care s-a ajuns sunt imediate și prin urmare

$$I = \left(\ln\sqrt{1+x} + \frac{(x-3)^2}{16}\right)\Big|_0^1 = \ln\sqrt{2} - \frac{5}{16}.$$

6.5.3 Integrala triplă pe un domeniu simplu în raport cu axa Ox

Definiția 6.5.2 Se numește domeniu simplu în raport cu axa Ox submulțimea V_x a lui \mathbb{R}^3

$$V_x = \{(x, y, z) \in \mathbb{R}^3 : (y, z) \in D_{yz} \subset Oyz, \ \psi_1(y, z) \le x \le \psi_2(y, z)\},\$$

unde funcțiile reale ψ_1 și ψ_2 sunt definite și continue pe submulțimea D_{yz} a lui \mathbb{R}^2 , situată în planul Oyz, valorile acestora fiind astfel încât $\psi_1(y,z) \leq \psi_2(y,z)$ oricare ar fi $(y,z) \in D_{yz}$.

Frontiera unui domeniu simplu în raport cu axa Ox este alcătuită din suprafețele:

$$(\Sigma_1): x = \psi_1(y, z), (y, z) \in D_{yz}; (\Sigma_2): x = \psi_2(y, z), (y, z) \in D_{yz},$$

numite baze și suprafață cilindrică

$$(\Sigma_{\ell}) = \{(x, y, z) \in \mathbb{R}^3 : (y, z) \in \partial D_{yz}, \ \psi_1(x, y) \le z \le \psi_2(x, y)\},\$$

unde ∂D_{yz} este frontiera mulțimi D_{yz} , curbă închisă netedă pe porțiuni.

Mulţimea plană D_{yz} este proiecţia ortogonală a mulţimii V_x pe planul Oyz. Suprafaţa cilindrică Σ_ℓ are generatoarele paralele cu Ox şi curba directoare frontiera domeniului D_{yz} .

Un domeniu simplu în raport cu axa Ox are proprietatea că orice paralelă la axa Ox printr-un punct (y, z) din interiorul domeniului D_{yz} , având orientarea axei Ox, pătrunde în domeniul V_x prin punctul $P(\psi_1(y, z), y, z)$ şi iese din V_x prin punctul $Q(\psi_2(y, z), y, z)$.

Teorema 6.5.3 Dacă funcția reală f este integrabilă pe domeniul V_x , simplu în raport cu axa absciselor și pentru orice $(y, z) \in D_{yz}$, fixat, există integrala depinzând de parametrii y și z

$$U(y,z) = \int_{\psi_1(y,z)}^{\psi_2(y,z)} f(x,y,z) dx,$$

atunci funcția

$$U: D_{yz} \to IR, \quad U(y,z) = \int_{\psi_1(y,z)}^{\psi_2(y,z)} f(x,y,z) dx$$

este integrabilă și

$$\iint_{D_{yz}} U(y,z) \, dydz = \iiint_{V_x} f(x,y,z) \, dxdydz. \tag{6.30}$$

Integrala dublă pe domeniul D_{yz} din funcția U se mai poate scrie ca

$$\iint_{D_{yz}} U(y,z) \, dydz = \iint_{D_{yz}} \left(\int_{\psi_1(y,z)}^{\psi_2(y,z)} f(x,y,z) dx \right) dydz =$$

$$= \iint_{D_{yz}} dydz \int_{\psi_1(y,z)}^{\psi_2(y,z)} f(x,y,y) dx.$$

Ținând cont de ultimele egalități deducem că (6.30) poate fi scrisă în forma

$$\iiint\limits_{V_x} f(x,y,z) \, dx dy dz = \iint\limits_{D_{yz}} dy dz \int_{\psi_1(y,z)}^{\psi_2(y,z)} f(x,y,z) dx \tag{6.31}$$

care reprezintă formula de calcul a integralei triple pe un domeniu simplu în raport cu axa Ox.

6.5.4 Integrala triplă pe un domeniu simplu în raport cu axa Oy

Definiția 6.5.3 Submulțimea V_y a lui \mathbb{R}^3

$$V_y = \{(x, x, z) \in \mathbb{R}^3 : (x, z) \in D_{xz} \subset Oxz, \chi_1(x, z) \le y \le \chi_2(x, z)\},\$$

unde funcțiile reale χ_1 și χ_2 sunt definite și continue pe submulțimea D_{xz} a lui \mathbb{R}^2 , situată în planul Oxz, valorile acestora fiind astfel încât $\chi_1(x,z) \leq \chi_2(x,z)$ oricare ar fi $(x,z) \in D_{xz}$, se numește domeniu simplu în raport cu axa Oy.

Suprafetele care mărginesc un domeniu simplu în raport cu axa Oy sunt:

$$(S_1): y = \chi_1(x, z), (x, z) \in D_{xz}; (S_2): y = \chi_2(x, z), (x, z) \in D_{xz},$$

numite baze și suprafață cilindrică S_{ℓ}

$$(S_{\ell}) = \{(x, y, z) \in \mathbb{R}^3 : (x, z) \in \partial D_{xz}, \ \chi_1(x, y) \le z \le \chi_2(x, y)\},\$$

unde ∂D_{xz} este frontiera mulțimi D_{xz} , curbă închisă netedă pe porțiuni.

Mulţimea plană D_{xz} este proiecţia ortogonală a mulţimii V_y pe planul Oxz. Suprafaţa cilindrică (S_ℓ) are generatoarele paralele cu Oy şi curba directoare frontiera domeniului D_{xz} .

Un domeniu simplu în raport cu axa Oy are proprietatea că orice paralelă la axa Oy printr-un punct (x, z) din interiorul domeniului D_{xz} , având orientarea axei Oy, pătrunde în domeniul V_y prin punctul $P(x, \chi_1(x, z), z)$ şi iese din V_y prin punctul $Q(x, \chi_2(x, z), z)$.

Teorema 6.5.4 Dacă funcția reală mărginită f este integrabilă pe domeniul V_y , simplu în raport cu axa Oy, și pentru orice $(x, z) \in D_{xz}$, fixat, există integrala depinzând de parametrii x și z

$$W(x,z) = \int_{\chi_1(x,z)}^{\chi_2(x,z)} f(x,y,z) dy,$$

atunci funcția

$$W: D_{xz} \to IR, \quad W(x,z) = \int_{\chi_1(x,z)}^{\chi_2(x,z)} f(x,y,z)dy$$

este integrabilă și

$$\iint_{D_{xz}} W(x,z) dxdz = \iiint_{V_y} f(x,y,z) dxdydz.$$
 (6.32)

Integrala dublă pe domeniul D_{xz} din funcția W se poate scrie în una din următoarele forme:

$$\iint\limits_{D_{xz}} W(x,z) \, dxdz = \iint\limits_{D_{xz}} \left(\int_{\chi_1(x,z)}^{\chi_2(x,z)} f(x,y,z) dy \right) dxdz;$$

$$\iint\limits_{D_{xz}} W(x,z) \, dxdz = \iint\limits_{D_{xz}} dxdz \int_{\chi_1(x,z)}^{\chi_2(x,z)} f(x,y,y)dy.$$

Ținând cont de aceste egalități deducem că formula de calcul a integralei triple pe un domeniu simplu în raport cu axa Oy este

$$\iiint\limits_{V_y} f(x,y,z) \, dx dy dz = \iint\limits_{D_{xz}} dx dz \int_{\chi_1(x,z)}^{\chi_2(x,z)} f(x,y,z) dy. \tag{6.33}$$

6.5.5 Integrala triplă pe un domeniu oarecare

Dacă domeniul de integrare V nu este simplu în raport cu nici una din axe, prin plane paralele la unul din planele de coordonate poate fi descompus întrun număr finit de subdomenii,

$$V_1, V_2, \cdots, V_p$$
 cu $V = V_1 \cup V_2 \cup \cdots \cup V_p$

și fiecare din domeniile V_i $(i=1,2,\cdots,p)$ să fie simplu în raport cu una din axe.

Folosind apoi proprietatea de aditivitate a integralei triple ca funcție de domeniu, avem

$$\iiint\limits_{V} f(x,y,z)\,dxdydz = \sum\limits_{i=1}^{p} \iiint\limits_{V_{i}} f(x,y,z)\,dxdydz,$$

unde pentru calculul integralelor din membrul drept se aplică una din formulele de calcul stabilite mai sus.

Exercițiul 6.5.2 Să se calculeze integrala triplă

$$I = \iiint_{I_3} \frac{dxdydz}{(x+y+z)^2},$$

unde I_3 este intervalul tridimensional închis $I_3 = [1,3] \times [0,1] \times [0,2]$.

Soluție. Avem

$$I = \int_1^3 dx \int_0^1 dy \int_0^2 \frac{dy}{(x+y+z)^2} = \int_1^3 dx \int_0^1 \left(\frac{1}{x+y} - \frac{1}{x+y+2}\right) dy.$$

Calculând cele două integrale depinzând de parametrul x, obținem

$$I = \int_{1}^{3} (\ln(x+1) + \ln(x+2) - \ln x - \ln(x+3)) dx.$$

Integralele definite la care s-a ajuns sunt de forma integralei

$$J(a) = \int_{1}^{3} \ln(x+a) \, dx$$

căreia i se poate afla valoarea dacă se integrează prin părți. Avem:

$$J(a) = x \ln(x+a) \Big|_{1}^{3} - \int_{1}^{3} \frac{x}{x+a} dx;$$

 $J(a) = (x+a) \ln(x+a) \Big|_{1}^{3} - x \Big|_{1}^{3} = (3+a) \ln(3+a) - (1+a) \ln(1+a) - 2.$ Atunci, valoarea integralei triple este

$$I = J(1) + J(2) - J(0) - J(3) = 5 \ln 5 + 8 \ln 2 - 12 \ln 3.$$

Funcția de integrat fiind pozitivă, valoarea lui I este un număr pozitiv căruia i se poate da o interpretare mecanică.

Exercițiul 6.5.3 Să se calculeze integrala triplă

$$I = \iiint\limits_V y \, dx dy dz,$$

unde V este tetraedrul din primul octant limitat de planele de coordonate şi de planul x + y + z - 2 = 0.

Soluție. Domeniul de integrare este simplu în raport cu axa Oz căci putem scrie

$$V = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D_{xy}, \ 0 \le z \le 2 - x - y\},\$$

unde D_{xy} este proiecția lui V pe planul Oxy

$$D_{xy} = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2, 0 \le y \le 2 - x\}.$$

Mulţimea D_{xy} este domeniu plan simplu în raport cu axa Oy. Aplicând formula de calcul a unei integrale triple pe un domeniu simplu în raport cu axa cotelor şi apoi formula de calcul a unei integrale duble când domeniul este simplu în raport cu axa ordonatelor, obţinem

$$I = \int_0^2 dx \int_0^{2-x} dy \int_0^{2-x-y} y \, dz = \int_0^2 dx \int_0^{2-x} y (2-x-y) \, dy.$$

După calcularea integralei din interior, avem

$$I = \int_0^2 \left(y^2 - x \frac{y^2}{2} - \frac{y^3}{3} \right) \Big|_0^{2-x} dx.$$

Luând expresia de sub semnul integrală între limitele indicate, găsim

$$I = \frac{1}{6} \int_0^2 (2-x)^3 dx = -\frac{1}{24} (x-2)^4 \Big|_0^2 = \frac{2}{3}.$$

De observat că domeniul de integrare este simplu şi în raport cu axa Ox sau axa Oy astfel că pentru calculul integralei triple s—ar fi putut utiliza fie formula (6.31) fie formula (6.33).

Exercițiul 6.5.4 Să se calculeze integrala triplă

$$I = \iiint\limits_{V} (x^2 + y^2) z \, dx dy dz,$$

unde domeniul V este mărginit de paraboloidul $z = x^2 + y^2$ și de sfera $x^2 + y^2 + z^2 = 6$ și conține o parte din porțiunea nenegativă a axei Oz.

Soluție. La fel ca în exemplul precedent și aici domeniul de integrare este simplu în raport cu axa Oz căci el se poate scrie în forma

$$V = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D_{xy}, \ x^2 + y^2 \le z \le \sqrt{6 - x^2 - y^2} \},$$

unde D_{xy} este proiecția lui V pe planul Oxy

$$D_{xy} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}.$$

Mulțimea D_{xy} este discul închis cu centrul în origine și raza $\sqrt{2}$, această afirmație deducându–se din faptul că intersecția sferei $x^2 + y^2 + z^2 = 6$ cu paraboloidul $z = x^2 + y^2$ este cercul de rază $\sqrt{2}$ cu centrul în punctul (0,0,2) aflat în planul paralel cu planul Oxy de ecuație z = 2.

Aplicând formula de calcul a unei integrale triple pe un domeniu simplu în raport cu axa cotelor, obținem

$$I = \iint\limits_{D_{xy}} dx dy \int_{x^2 + y^2}^{\sqrt{6 - x^2 - y^2}} (x^2 + y^2) z dz = \frac{1}{2} \iint\limits_{D_{xy}} (x^2 + y^2) z^2 \Big|_{x^2 + y^2}^{\sqrt{6 - x^2 - y^2}} dx dy.$$

Luând expresia de integrat între limitele de integrare precizate, găsim

$$I = \frac{1}{2} \iint_{D_{xy}} (x^2 + y^2) \left(6 - x^2 - y^2 - (x^2 + y^2)^2 \right) dx dy.$$

Dacă trecem la coordonate polare, avem

$$x = \rho \cos \theta, \ y = \rho \sin \theta, \ \theta \in [0, 2\pi), \ \rho \in [0, \sqrt{2}]$$

și deci

$$I = \frac{1}{2} \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} \rho^3 (6 - \rho^2 - \rho^4), d\rho = \frac{8\pi}{3}.$$

6.6 Formula integrală Gauss-Ostrogradski

Vom deduce o legătură între integrala de suprafață de tipul al doilea și integrala triplă. În acest sens, fie $V \subset \mathbb{R}^3$ un domeniu cubabil compact, având frontiera o suprafață \mathcal{S} simplă, închisă, bilateră, netedă sau netedă pe porțiuni, cu \mathcal{S}_e fața sa exterioară. Versorul \mathbf{n} al normalei exterioare întrun punct al suprafeței \mathcal{S}_e are expresia

$$\mathbf{n} = \cos \alpha \,\mathbf{i} + \cos \beta \,\mathbf{j} + \cos \gamma \,\mathbf{k},\tag{6.34}$$

unde α , β şi γ sunt unghiurile pe care acest versor îl face cu versorii **i**, **j**, **k** ai reperului Oxyz.

Considerăm că P, Q, R sunt funcții reale de trei variabile reale definite și continue pe domeniul V. Presupunem că aceste funcții sunt astfel încât divergența câmpului vectorial

$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$$
(6.35)

există și este funcție continuă pe interiorul mulțimi V.

Teorema 6.6.1 În ipotezele de mai sus, are loc egalitatea

$$\iint\limits_{S_{z}} P \, dy dz + Q \, dz dx + R \, dx dy = \iiint\limits_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz, \quad (6.36)$$

numită formula integrală Gauss-Ostrogradski.

Demonstrație. Presupunem că domeniul V este descompus întrun număr finit de subdomenii simple în raport cu axa Oz. Dacă aplicăm proprietatea de aditivitate în raport cu domeniul de integrare pentru integrala de suprafață și pentru integrala triplă putem presupune că V este simplu în raport cu axa Oz și că proiecția sa pe planul Oxy este domeniul plan compact D_{xy} având frontiera ∂D_{xy} o curbă simplă închisă netedă sau netedă pe porțiuni. Atunci, frontiera S a domeniului V este o reuniune de trei suprafețe netede sau netede pe porțiuni $S = S_1 \cup S_2 \cup S_\ell$, unde:

$$(S_1): z = z_1(x, y), (x, y) \in D_{xy};$$

 $(S_2): z = z_2(x, y), (x, y) \in D_{xy};$

$$(6.37)$$

$$S_{\ell} = \{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in \partial D_{xy}, \ z_1(x, y) \le z \le z_2(x, y) \}.$$
 (6.38)

Suprafața S_1 , baza inferioară a domeniului V, are normala

$$\mathbf{n}_1 = \cos \alpha_1 \,\mathbf{i} + \cos \beta_1 \,\mathbf{j} + \cos \gamma_1 \,\mathbf{k}. \tag{6.39}$$

Deoarece unghiul γ_1 dintre această normală și versorul ${\bf k}$ este obtuz, urmează că

$$\cos \gamma_1 = -\frac{1}{\sqrt{1 + p_1^2 + q_1^2}},$$

unde
$$p_1(x,y) = \frac{\partial z_1}{\partial x}(x,y), q_1(x,y) = \frac{\partial z_1}{\partial y}(x,y).$$

Suprafața S_2 , baza superioară a domeniului V, are normala

$$\mathbf{n}_2 = \cos \alpha_2 \,\mathbf{i} + \cos \beta_2 \,\mathbf{j} + \cos \gamma_2 \,\mathbf{k} \tag{6.40}$$

și pentru că unghiul γ_2 dintre \mathbf{n}_2 și \mathbf{k} este ascuțit, avem

$$\cos \gamma_2 = \frac{1}{\sqrt{1 + p_2^2 + q_2^2}},$$

unde
$$p_2(x,y) = \frac{\partial z_2}{\partial x}(x,y), q_2(x,y) = \frac{\partial z_2}{\partial y}(x,y).$$

În sfârşit, S_{ℓ} este suprafaţa laterală a domeniului V care, fiind o porţiune dintr-o suprafaţă cilindrică cu generatoarele paralele cu axa Oz şi curba directoare frontiera ∂D_{xy} a domeniului D_{xy} , are normala \mathbf{n}_{ℓ} de forma

$$\mathbf{n}_{\ell} = \cos \alpha_{\ell} \,\mathbf{i} + \cos \beta_{\ell} \,\mathbf{j} \tag{6.41}$$

întrucât unghiul γ_{ℓ} dintre \mathbf{n}_{ℓ} și \mathbf{k} este egal cu $\pi/2$.

După aceste precizări în privința domeniului V să procedăm la calculul integralei triple

$$I = \iiint_{V} \frac{\partial R}{\partial z}(x, y, z) \, dx dy dz. \tag{6.42}$$

Aplicând formula de calcul a integralei triple pe un domeniu simplu în raport cu axa Oz, găsim

$$I = \iint_{D_{xy}} dxdy \int_{z_1(x,y)}^{z_2(x,y)} \frac{\partial R}{\partial z}(x,y,z) dz = \iint_{D_{xy}} R(x,y,z) \Big|_{z_1(x,y)}^{z_2(x,y)} dxdy.$$
 (6.43)

Luând valoarea primitivei în limitele indicate, obținem

$$I = \iint_{D_{xy}} R(x, y, z_2(x, y)) dx dy - \iint_{D_{xy}} R(x, y, z_1(x, y)) dx dy.$$
 (6.44)

Dar:

$$\iint_{D_{xy}} R(x, y, z_2(x, y)) dxdy = \iint_{S_2} R(x, y, z) dxdy;$$

$$-\iint_{D_{xy}} R(x, y, z_1(x, y)) dxdy = \iint_{S_1} R(x, y, z) dxdy,$$
(6.45)

unde pentru prima integrală de suprafață am luat fața superioară care coimcide cu fața exterioară a lui \mathcal{S} , iar pentru cea de a doua integrală de suprafață am considerat fața inferioară care de asemeni coincide cu fața exterioară a lui \mathcal{S} , normalele la aceste fețe fiind precizate în relațiile (6.39) și (6.40). Pe suprafața laterală \mathcal{S}_{ℓ} avem

$$\iint_{S_{\ell}} R(x, y, z) \, dx dy = \iint_{S_{\ell}} R(x, y, z) \, \cos \gamma_{\ell} \, d\sigma = 0 \qquad (6.46)$$

în baza legăturii dintre integrala de suprafață de al doilea tip și cea de primul tip și a relației (6.41).

Dacă ținem seama de relațiile (6.44) - (6.46), deducem

$$\iiint\limits_{V} \frac{\partial R}{\partial z}(x, y, z) \, dx dy dz = \iint\limits_{S} R(x, y, z) \, dx dy, \tag{6.47}$$

unde integrala de suprafață de tipul al doilea din membrul doi este luată pe fața exterioară a lui S. În baza observației făcută privitor la domeniu putem afirma că (6.47) este adevărată pentru orice domeniu cubabil compact V.

Pornind cu un domeniu simplu în raport cu axa Ox, apoi cu unul simplu în raport cu axa Oy, și repetând raționamentele care ne—au condus la (6.47) se demonstrează egalitățile:

$$\iiint\limits_{V} \frac{\partial P}{\partial x}(x, y, z) \, dx dy dz = \iint\limits_{S_{z}} P(x, y, z) \, dy dz \tag{6.48}$$

$$\iiint\limits_{V} \frac{\partial Q}{\partial y}(x, y, z) \, dx dy dz = \iint\limits_{\mathcal{S}_e} Q(x, y, z) \, dz dx \tag{6.49}$$

care şi în aceste cazuri rămân adevărate oricare ar fi domeniul cubabil compact V.

Însumarea egalităților (6.47) - (6.49) conduce la (6.36) și teorema este complet demonstrată.

Observația 6.6.1 Având în vedere legătura între cele două tipuri de integrale de suprafață rezultă că formula integrală Gauss-Ostrogradski se poate scrie în forma echivalentă

$$\iint\limits_{S} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) d\sigma = \iiint\limits_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz \quad (6.50)$$

Folosind expresia divergenței $\nabla \cdot \mathbf{F}$ a câmpului vectorial (6.35)

$$\nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial P}{\partial x}(x, y, z) + \frac{\partial Q}{\partial y}(x, y, z) + \frac{\partial R}{\partial z}(x, y, z)$$

şi expresia normalei exterioare (6.34), deducem că formula integrală Gauss-Ostrogradski se poate scrie în forma vectorială

$$\iiint\limits_{V} \mathbf{\nabla} \cdot \mathbf{F}(x, y, z) \, dx dy dz = \iint\limits_{\mathcal{S}_e} \mathbf{F}(x, y, z) \cdot \mathbf{n} \, d\sigma. \tag{6.51}$$

Datorită scrierii vectoriale a formulei integrale Gauss-Ostrogradski, Teoremei 6.6.1 i se mai spune *Teorema divergenței*.

Forma vectorială a formulei integrale Gauss–Ostrogradski sugerează şi interpretarea fizică a acesteia: ea afirmă că fluxul câmpului vectorial V prin suprafața închisă \mathcal{S} , după normala sa exterioară \mathbf{n} , este egal cu integrala triplă a divergenței lui \mathbf{F} pe domeniul V limitat de \mathcal{S} .

Observația 6.6.2 Dacă în formula integrală Gauss-Ostrogradski se ia P = 0, Q = 0, R = z, se obține o evaluare a volumului domeniului V cu ajutorul unei integrale de suprafață de tipul al doilea

$$volV = \iint_{S_e} z \, dx dy. \tag{6.52}$$

Exemplul 6.6.1 Fie V regiunea mărginită de emisfera

$$x^{2} + y^{2} + (z - 1)^{2} - 9 = 0,$$
 1 < z < 3

si planul z = 1. $S \ddot{a} se verifice teorema divergentei dac <math>\ddot{a}$

$$\mathbf{F}(x, y, z) = x \,\mathbf{i} + y \,\mathbf{j} + (z - 1) \,\mathbf{k}.$$

Soluţie. Calculăm mai întâi integrala triplă din divergenţa câmpului vectorial \mathbf{F} . Avem $\nabla \cdot \mathbf{F}(x, y, z) = 3$ şi deci

$$\iiint\limits_V \mathbf{\nabla} \cdot \mathbf{F}(x,y,z) \, dx dy dz = 3 \iiint\limits_V dx dy dz = 54\pi.$$

În ultimul calcul am folosit faptul că integrala triplă din membrul secund este volumul emisferei de rază R=3 care este egal cu $2\pi R^3/3$.

Să calculăm acum direct integrala de suprafață care intră în formula integrală a lui Gauss-Ostrogradski. Să observăm mai întâi că

$$\iint_{S_r} \mathbf{F}(x, y, z) \cdot \mathbf{n} \, d\sigma = \iint_{S_1} \mathbf{F}(x, y, z) \cdot \mathbf{n}_1 \, d\sigma + \iint_{S_2} \mathbf{F}(x, y, z) \cdot \mathbf{n}_2 \, d\sigma,$$

unde S_1 este fața superioară a emisferei de rază 3 situată deasupra planului z=1, iar S_2 este fața inferioară a porțiunii din planul z=1 limitată de cercul de rază 3 cu centrul în punctul (0,0,1) aflat în acest plan.

Normala unitară la fața S_1 este

$$\mathbf{n}_1 = \frac{x\,\mathbf{i} + y\,\mathbf{j} + (z-1)\,\mathbf{k}}{\sqrt{x^2 + y^2 + (z-1)^2}} = \frac{x}{3}\,\mathbf{i} + \frac{y}{3}\,\mathbf{j} + \frac{z-1}{3}\,\mathbf{k}.$$

Produsul scalar dintre câmpul vectorial \mathbf{F} și normala \mathbf{n}_1 este

$$\mathbf{F} \cdot \mathbf{n}_1 = \frac{x^2}{3} + \frac{y^2}{3} + \frac{(z-1)^2}{3} = 3$$

și, prin urmare, prima integrală de suprafață devine

$$\iint_{S_1} \mathbf{F}(x, y, z) \cdot \mathbf{n}_1 d\sigma = \iint_{S_1} 3 d\sigma = 3 \iint_{S_1} d\sigma = 3 \operatorname{aria} S_1 = 3 \cdot 2\pi R^2 = 54\pi.$$

Pe suprafața S_2 , avem $\mathbf{n}_2 = -\mathbf{k}$, iar $\mathbf{F} \cdot \mathbf{n}_2 = -z + 1$ și deci

$$\iint_{S_2} \mathbf{F}(x, y, z) \cdot \mathbf{n}_2 d\sigma = \iint_{S_2} (-z + 1) d\sigma = 0$$

deoarece pe suprafața pe care efectuăm integrarea z este egal cu 1 și deci integrantul este nul și ca atare și rezultatul integrării este nul. Prin urmare,

$$\iint\limits_{S_{\bullet}} \mathbf{F}(x, y, z) \cdot \mathbf{n} \, d\sigma = 54 \, \pi,$$

ceea ce arată că formula integrală Gauss-Ostrogradski se verifică.

Exercițiul 6.6.1 Să se calculeze integrala de suprafață de tipul al doilea

$$I = \iint\limits_{S} x^3 y^2 \, dy dz + x^2 y^3 \, dz dx + 3z \, dx dy,$$

unde S este fața exterioară a domeniului V mărginit de paraboloizii:

$$(\Sigma_1): z = x^2 + y^2; (\Sigma_2): z = 6 - x^2 - y^2.$$

Soluţie. Aplicând formula integrală Gauss-Ostrogradski, obţinem

$$I = \iiint\limits_{V} (3x^{2}y^{2} + 3x^{2}y^{2} + 3) dxdydz = 3 \iiint\limits_{V} (2x^{2}y^{2} + 1) dxdydz.$$

Domeniul V este simplu în raport cu axa Oz căci se poate scrie ca

$$V = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D_{xy}, \ x^2 + y^2 \le z \le 6 - x^2 - y^2\},\$$

unde D_{xy} este proiecția lui V pe planul Oxy

$$D_{xy} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 3\}.$$

Se vede că D_{xy} este discul închis de rază $\sqrt{3}$ cu centrul în origine situat în planul Oxy. Făcând uz de formula de calcul a unei integrale triple pe un domeniu simplu în raport cu axa Oz, găsim

$$I = 3 \iint_{D_{xx}} dx dy \int_{x^2 + y^2}^{6 - x^2 - y^2} (2x^2y^2 + 1) dz = 3 \iint_{D_{xx}} (2x^2y^2 + 1)z \Big|_{x^2 + y^2}^{6 - x^2 - y^2} dx dy.$$

După ce se ia z între limitele de integrare, deducem

$$I = 6 \iint\limits_{D_{\text{even}}} (2x^2y^2 + 1)(3 - x^2 - y^2) \, dx \, dy.$$

Această integrală dublă la care s–a ajuns o vom calcula folosind coordonatele polare

$$x = \rho \cos \theta$$
, $y = \rho \sin \theta$.

Pentru ca $(x,y) \in D_{xy}$ trebuia ca $\rho \in [0,\sqrt{3}]$ şi $\theta \in [0,2\pi)$. Aplicând formula schimbării de variabile în integrala dublă, obţinem pe rând

$$I = 6 \int_0^{2\pi} d\theta \int_0^{\sqrt{3}} (2\rho^2 \sin^2 \theta \cos^2 \theta + 1)(3 - \rho^2)\rho \, d\rho,$$

$$I = 12 \int_0^{2\pi} \sin^2 \theta \cos^2 \theta d\theta \int_0^{\sqrt{3}} (3\rho^5 - \rho^7) d\rho + 12\pi \int_0^{\sqrt{3}} (3\rho - \rho^3) d\rho,$$

$$I = \frac{297\pi}{8}.$$

Rezultatul obţinut reprezintă fluxul câmpului vectorial

$$\mathbf{F} = x^3 y^2 \,\mathbf{i} + x^2 y^3 \,\mathbf{j} + 3z \,\mathbf{k}$$

prin suprafața care delimitează V după normala exterioară.

6.7 Schimbarea de variabile în integrala triplă

Teorema de schimbare de variabile în integrala triplă se enunță asemănător cu teorema de schimbare de variabile în integrala dublă, de aceea nu vom da detalii de calcul care pot fi refăcute de cititor.

Considerăm două specimene de spații tridimensionale. Introducem sistemul de coordonate carteziene x, y, z în unul din ele și u, v, w în celălalt. Apoi, fie V și Ω domenii aparținând la câte un spațiu, frontierele lor fiind respectiv suprafețele închise netede pe porțiuni \mathcal{S} și Σ . Presupunem că există o corespondență biunivocă între punctele celor două domenii care să fie continuă în ambele sensuri. Corespondența poate fi exprimată prin intermediul funcțiilor

$$\begin{cases} x = \varphi(u, v, w), \\ y = \psi(u, v, w), \qquad (u, v, w) \in \Omega, \\ z = \chi(u, v, w), \end{cases}$$
 (6.53)

sau prin intermediul funcțiilor

$$\begin{cases} u = u(x, y, z), \\ v = v(x, y, z), \\ w = w(x, y, z), \end{cases} (x, y, z) \in V.$$
 (6.54)

Vom considera că funcțiile din (6.53) și (6.54) sunt mai mult decât continue și anume vom presupune că ele posedă derivate parțiale de ordinul întâi continue pe interioarele mulțimilor de definiție. Atunci, Jacobienii:

$$\frac{D(x,y,z)}{D(u,v,w)};$$
 $\frac{D(u,v,w)}{D(x,y,z)}$

există și sunt funcții continue pe interioarele celor două mulțimi de definiție. Vom presupune mai mult că fiecare jacobian este diferit de zero. Aceste condiții implică relația

$$\frac{D(x, y, z)}{D(u, v, w)} \cdot \frac{D(u, v, w)}{D(x, y, z)} = 1.$$
 (6.55)

Dacă toate condițiile de mai sus sunt îndeplinite, spunem că (6.53) este o transformare punctuală regulată între domeniile Ω și V, iar (6.54) este transformarea punctuală regulată inversă a transformării punctuale regulate (6.54). Ca și în cazul bidimensional, se poate arăta că dată fiind transformarea punctuală regulată (6.53) sau (6.54), punctele interioare domeniului de definiție sunt duse în puncte interioare celuilalt domeniu, iar punctele frontierei unuia din domenii sunt corespunzătoare punctelor de pe frontiera celuilat domeniu.

Transformarea punctuală regulată (6.53) transformă domeniul Ω în domeniul V. În consecință, specificarea unui punct (u, v, w) aparținând lui Ω determină în mod unic punctul corespunzător (x, y, z) a lui V. Cu alte cuvinte, cantitățile u, v și w pot fi privite drept coordonate, diferite de cele carteziene, ale punctelor domeniului V. Ele sunt numite coordonate curbilinii.

Considerăm, în domeniul Ω , un plan determinat de relația $u=u_0$, adica un plan paralel cu planul de coordonate v, w. Prin transformarea punctuală regulată (6.53), planul considerat este dus întro suprafață inclusă în domeniul V. Coordonatele carteziene ale punctelor acestei suprafețe sunt exprimate prin formulele

$$\begin{cases} x = x(u_0, v, w), \\ y = y(u_0, v, w), \\ z = z(u_0, v, w), \end{cases} (v, w) \in \Delta,$$
 (6.56)

unde Δ este porțiunea din planul $u=u_0$ situată în domeniul Ω . Expresiile (6.56) sunt ecuațiile parametrice ale suprafeței. Presupunând că u_0 ia toate

valorile posibile vom avea o familie uniparametrică de suprafețe de forma (6.56), parametrul familiei fiind u. Aceste suprafețe sunt corespondentele prin transformarea punctuală regulată (6.53) a tuturor porțiunilor de plane paralele cu planul v, w din domeniul Ω .

Similar, planele $v={\rm const}$ și $w={\rm const}$ sunt transformate în două familii uniparametrice de suprafețe situate în domeniul V. Aceste trei familii de suprafețe formează așa zisa mulțime a suprafețelor coordonate.

Deoarece (6.53) este transformare punctuală regulată putem afirma că prin fiecare punct al domeniului V trece câte o singură suprafață de coordonate din respectiv fiecare familie. Cele trei suprafețe coordonate care trec printr—un punct se intersectează două câte două după trei curbe care se numesc $curbe\ coordonate$.

Vom considera două sisteme de coordonate curbilinii în spațiu care sunt utilizate cel mai frecvent, și anume, coordonatele cilindrice și coordonatele sferice.

6.7.1 Coordonatele cilindrice sau semi-polare în spațiu

Să specificăm poziția unui punct arbitrar M din spațiu prin intermediul coordonatei carteziene z și coordonatele polare r și φ ale proiecției M_1 a punctului M pe planul Oxy. Cantitățile r, φ și z se numesc coordonatele cilindrice ale punctului M. Legătura dintre coordonatele cilindrice și cele carteziene este ușor de stabilit și constatăm că este

$$x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = z.$$
 (6.57)

Avem următoarele trei familii de suprafețe coordonate corespunzătoare coordonatelor cilindrice:

- (α) cilindrii circulari coaxiali cu axa de rotație axa cotelor având ecuațiile de forma $r = \text{const} \ (0 \le r < +\infty)$,
 - (β) semiplane verticale limitate de axa $Oz \varphi = \text{const } (0 \le \varphi < 2π),$
 - (γ) plane orizontale $z = \text{const} (-\infty < z < +\infty)$.

Analizând suprafețele coordonate în acest caz constatăm că liniile coordonate în cazul coordonatelor cilindrice sunt: drepte paralele cu axa Oz; semidrepte perpendiculare pe Oz având una din extremități pe această axă; cercuri cu centrele pe Oz situate în plane paralele cu planul Oxy.

Jacobianul transformării de la coordonate cilindrice la cele cilindrice este egal cu

$$\frac{D(x,y,z)}{D(r,\varphi,z)} = \begin{vmatrix}
\cos\varphi & \sin\varphi & 0 \\
-r\sin\varphi & r\cos\varphi & 0 \\
0 & 0 & 1
\end{vmatrix} = r.$$
(6.58)

Formulele (6.57) care exprimă legătura dintre coordonatele carteziene şi cele cilindrice determină o transformare a domeniului

$$0 \le r < +\infty, \qquad 0 \le \varphi < 2\pi, \qquad -\infty < z < +\infty \tag{6.59}$$

situat în spațiul r, φ , z în întreg spațiul Oxyz. Prin această transformare, fiecare punct de coordonate carteziene $(0,0,z_0)$ corespunde unui întreg segment semi–deschis de forma

$$r = 0, 0 < \varphi < 2\pi, z = z_0$$

care aparține domeniului (6.59). Prin urmare, transformarea (6.57) nu este biunivocă în punctele situate pe axa cotelor Oz. Exceptând punctele axei Oz, în toate celelalte puncte ale spațiului Oxyz corespondența (6.57) este biunivocă. În concluzie putem afirma că (6.57) stabilește o transformare punctuală regulată între domeniul

$$0 < r < +\infty, \qquad 0 \le \varphi < 2\pi, \qquad -\infty < z < +\infty \tag{6.60}$$

situat în spațiul r, φ, z , în mulțimea obținută prin scoaterea din spațiul Oxyz a punctelor situate pe axa cotelor.

6.7.2 Coordonatele sferice sau polare în spațiu

Să fixăm poziția unui punct oarecare M din spațiul raportat la reperul cartezian ortogonal Oxyz prin următoarele trei cantități:

- (α) distanța ρ de la origine la punctul M,
- (β) unghiul θ dintre raza vectoare \overrightarrow{OM} şi versorul \mathbf{k} al axei Oz,
- (γ) unghiul φ format de proiecția $\overrightarrow{OM_1}$ a razei vectoare \overrightarrow{OM} pe planul Oxy și versorul **i** al axei Ox.

Cantitățile ρ , θ și φ se numesc coordonate sferice ale punctului M. Încercând să determinăm legătura dintre coordonatele carteziene ale punctului M și cele sferice al aceluiași punct, găsim

$$x = \rho \sin \theta \cos \varphi, \quad y = \rho \sin \theta \sin \varphi, \quad z = \rho \cos \theta.$$
 (6.61)

Cele trei familii de ale suprafețelor coordonate corespunzătoare coordonatelor sferice sunt:

- (α) sferele concentrice cu centrul în origine $\rho = \text{const} \ (0 \le \rho < +\infty)$,
- (β) semi–conuri circulare cu vârful în origine și axa de simetrie $Oz \theta =$ const $(0 \le \theta \le \pi)$,
 - (γ) semiplane verticale $\varphi = \text{const } (0 \le \varphi < 2\pi)$.

Analizând şi aici suprafețele coordonate, se constată că liniile coordonate în cazul coordonatelor sferice sunt: cercuri cu centrele pe Oz situate în plane paralele cu planul Oxy, numite cercuri paralele; semidrepte cu una din extremități în originea O a reperului Oxyz, numite raze vectoare; semicercuri cu centrele în originea O având diametrele segmente situate pe Oz care se numesc meridiane.

Jacobianul transformării coordonatelor carteziene în coordonate sferice este determinantul

$$\frac{D(x,y,z)}{D(\rho,\theta,\varphi)} = \begin{vmatrix}
\sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\
\rho\cos\theta\cos\varphi & \rho\cos\theta\sin\varphi & -\rho\sin\theta \\
-\rho\sin\theta\sin\varphi & \rho\sin\theta\cos\varphi & 0
\end{vmatrix}, (6.62)$$

a cărui valoare este $\rho^2 \sin \theta$.

Formulele (6.61) determină o transformare a domeniului

$$0 \le \rho < +\infty, \qquad 0 \le \theta \le \pi, \qquad 0 \le \varphi < 2\pi \tag{6.63}$$

(o bandă paralelipipedică semi-infinită) din spațiul ρ , θ , φ în întreg spațiul Oxyz. Ca și transformarea corespunzătoare coordonatelor cilindrice, relațiile (6.61) determină o transformare punctuală biunivocă în toate punctele spațiului cu excepția punctelor de pe axa cotelor Oz. Fiecare punct $(0,0,z_0)$ situat pe axa Oz este imaginea prin transformarea (6.61) a segmentului semi-deschis

$$\rho = z_0, \quad \theta = 0, \quad 0 \le \varphi < 2\pi, \quad \text{pentru} \quad z_0 > 0$$

și a segmentului semi-deschis

$$\rho = z_0, \quad \theta = \pi, \quad 0 \le \varphi < 2\pi, \quad \text{pentru} \quad z_0 < 0.$$

Originea (0,0,0) a reperului Oxyz este imaginea prin transformarea (6.61) a intervalului bidimensional

$$\rho = 0$$
, $0 \le \theta \le \pi$, $0 \le \varphi < 2\pi$, pentru $z_0 < 0$.

Dacă exceptăm punctele axei Oz, relațiile (6.61) constituie o transformare punctuală regulată care transformă semi-banda paralelipipedică infinită

$$0 < r < +\infty, \qquad 0 < \theta < \pi, \qquad 0 \le \varphi < 2\pi \tag{6.64}$$

în domeniul obținut prin scoaterea axei cotelor din spațiul Oxyz.

6.7.3 Coordonate polare (sferice) generalizate

Există şi alte schimbări de variabile, expresiile acestora fiind dictate de contextul în care este formulată problema calculării unei integrale triple.

Alegerea schimbării de variabile întro integrală triplă urmărește atât simplificarea domeniului de integrare V (dacă este posibil, Ω să fie un interval tridimensional) cât și simplificarea funcției de integrat sau măcar unul din aceste două obiective. De exemplu, dacă domeniul V este legat în vreun fel de interiorul elipsoidului

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0,$$

atunci se trece la coordonate polare generalizate numite și coordonate sferice generalizate

$$\begin{cases} x = a \rho \sin \theta \cos \varphi, \\ y = b \rho \sin \theta \sin \varphi, \\ z = c \rho \cos \theta. \end{cases}$$
 (6.65)

Relaţiile (6.65) constituie o transformare punctuală regulată de la submulțimea Ω a intervalului tridimensional nemărginit (6.72) la o mulțime măsurabilă Jordan V din spaţiul Oxyz. Jacobianul transformării punctuale regulate (6.65) are valoarea

$$\frac{D(x, y, z)}{D(\rho, \theta, \varphi)} = abc \,\rho^2 \sin \theta,$$

astfel că formula schimbării de variabile întro integrală triplă care folosește transformarea punctuală regulată (6.65) este

$$\iiint\limits_{V} f(x,y,z) \, dx dy dz =$$

$$= abc \iiint\limits_{\Omega} f(a \, \rho \, \sin \theta \, \sin \varphi, b \, \rho \, \sin \theta \, \sin \varphi, c \, \rho \, \cos \theta) \, \rho^2 \, \sin \theta \, d\rho d\theta d\varphi. \tag{6.66}$$

6.7.4 Elementul de volum în coordonate curbilinii

Să găsim expresia elementului de volum în coordonate curbilinii. Considerăm iarăși mulțimea măsurabilă Jordan V în care am introdus un sistem de coordonate curbilinii prin relațiile (6.53). Fie $\mathcal S$ frontiera lui V, Σ frontiera domeniului Ω și

$$\begin{cases} u = u(s,t), \\ v = v(s,t), \\ w = w(s,t), \end{cases} (s,t) \in D,$$
 (6.67)

o reprezentare parametrică a suprafeței Σ , mulțimea de variație a parametrilor curbilinii s și t fiind compactă în \mathbb{R}^2 . Atunci, suprafața $\mathcal S$ va fi dată parametric prin

$$\begin{cases} x = x(s,t) = \varphi(u(s,t), v(s,t), w(s,t)), \\ y = y(s,t) = \psi(u(s,t), v(s,t), w(s,t)), \\ z = z(s,t) = \chi(u(s,t), v(s,t), w(s,t)), \end{cases}$$
 (6.68)

Dacă folosim expresia volumului mulțimii cubabile V cu ajutorul unei integrale de suprafață de al doilea tip și ținem cont de formula de calcul a acestei integrale de suprafață, avem

$$\operatorname{vol} V = \iint_{S} z \, dx dy = \pm \iint_{D} z(s, t) \, \frac{D(x, y)}{D(s, t)}(s, t) \, ds dt. \tag{6.69}$$

Folosind regula de derivare a funcțiilor compuse (6.68), se poate verifica prin calcul direct că

$$\frac{D(x,y)}{D(s,t)} = \frac{D(x,y)}{D(u,v)} \cdot \frac{D(u,v)}{D(s,t)} + \frac{D(x,y)}{D(v,w)} \cdot \frac{D(v,w)}{D(s,t)} + \frac{D(x,y)}{D(w,u)} \cdot \frac{D(w,u)}{D(s,t)}$$

și deci expresia volumului mulțimii V devine

$$\operatorname{vol} V = \pm \iint_{D} z \left(\frac{D(x,y)}{D(u,v)} \cdot \frac{D(u,v)}{D(s,t)} + \frac{D(x,y)}{D(v,w)} \cdot \frac{D(v,w)}{D(s,t)} + \frac{D(x,y)}{D(w,u)} \cdot \frac{D(w,u)}{D(s,t)} \right) (s,t) \, ds dt.$$

Dacă ținem cont de regula de calcul a integralei de suprafață de al doilea tip obținem că

$$\operatorname{vol} V = \pm \iint\limits_{\Sigma} z \, \frac{D(x,y)}{D(u,v)} \, du dv + z \, \frac{D(x,y)}{D(v,w)} \, dv dw + z \, \frac{D(x,y)}{D(w,u)} \, dw du.$$

Aplicând formula integrală a Gauss–Ostrogradski, se găsește că expresia volumului mulțimii V este integrala triplă

$$vol V = \pm \iiint_{\Omega} \frac{D(x, y, z)}{D(u, v, w)} (u, v, w) du dv dw$$

sau, echivalent,

$$\operatorname{vol} V = \iiint_{\Omega} \left| \frac{D(x, y, z)}{D(u, v, w)} \right| (u, v, w) \, du \, dv \, dw$$

Folosind formula de medie pentru integrala triplă, obținem

$$\operatorname{vol} V = \left| \frac{D(x, y, z)}{D(u, v, w)} \right| (u_0, v_0, w_0) \operatorname{vol} \Omega$$

Acest rezultat împreună cu procedeul utilizat la demonstrația formulei de schimbare de variabile în integrala dublă ne conduce la demonstrația teoremei care dă formula schimbării de variabile în integrala triplă.

6.7.5 Schimbarea de variabile în integrala triplă

Teorema 6.7.1 Fie domeniul compact Ω , inclus în spațiul (u, v, w), cu frontiera o suprafață închisă, netedă pe porțiuni și

$$T: \begin{cases} x = \varphi(u, v, w), \\ y = \psi(u, v, w), \\ z = \chi(u, v, w), \end{cases}$$

o transformare punctuală regulată care transportă domeniul Ω în domeniul V. Dacă $f:V \to \mathbb{R}$ este o funcție continuă, are loc egalitatea

$$\iiint\limits_V f(x,y,z)\,dxdydz =$$

$$=\iiint\limits_{\Omega} f\Big(\varphi(u,v,w),\psi(u,v,w),\chi(u,v,w)\Big)\,\Big|\frac{D(x,y,z)}{D(u,v,w)}\Big|(u,v,w)dudvdw$$

numită formula schimbării de variabile în integrala triplă sau formula de transport.

Dacă se folosesc coordonatele cilindrice, formula schimbării de variabile devine

$$\iiint\limits_{V} f(x,y,z) \, dx dy dz = \iiint\limits_{\Omega} f(r \, \cos \varphi, r \, \sin \varphi, z) \, r \, dr d\varphi dz, \tag{6.70}$$

unde Ω este o submulțime a intervalului tridimensional nemărginit

$$[0, +\infty) \times [0, 2\pi) \times (-\infty, +\infty).$$

Dacă întro integrală triplă implicăm schimbarea de variabile care utilizează coordonatele sferice, formula schimbării de variabile devine

$$\iiint\limits_{V} f(x, y, z) \, dx dy dz =$$

$$= \iiint\limits_{\Omega} f(\rho \sin \theta \cos \varphi, \rho \sin \theta \sin \varphi, \rho \cos \theta) \, \rho^{2} \sin \theta \, d\rho d\theta d\varphi, \tag{6.71}$$

unde Ω este o submultime a intervalului tridimensional nemărginit

$$[0, +\infty) \times [0, 2\pi) \times [0, \pi].$$
 (6.72)

Exercițiul 6.7.1 Folosind metoda schimbării de variabile în integrala triplă să se calculeze

$$I = \iiint\limits_V (x^2 + y^2 + z^2) \, dx dy dz,$$

unde V este bila închisă de rază R cu centrul în origine.

Soluție. Mulțimea punctelor aparținând domeniului de integrare au coordonatele carteziene $x,\,y,\,z$ astfel încât

$$x^2 + y^2 + z^2 - R^2 \le 0.$$

Forma domeniului cât și expresia integrantului sugerează folosirea coordonatelor sferice (6.61). Transformarea punctuală definită cu ajutorul coordonatelor sferice are jacobianul (6.62) astfel că , utilizând formula (6.71), integrala I devine

$$I = \iiint\limits_{\Omega} \rho^4 \sin\theta \, d\rho d\theta d\varphi,$$

unde noul domeniu de integrare se vede simplu că este intervalul tridimensional

$$\Omega = [0,R] \times [0,\pi] \times [0,2\pi).$$

Aplicând formula de calcul a unei integrale triple pe un interval tridimensional, obținem

$$I = \int_0^R \rho^4 d\rho \cdot \int_0^{\pi} \sin\theta \, d\theta \cdot \int_0^{2\pi} d\varphi = \frac{4\pi R^5}{5}.$$

De remarcat că, folosind schimbarea de variabile în integrala triplă, valoarea integralei I s—a determinat foarte ușor.

Exercițiul 6.7.2 Să se calculeze integrala triplă

$$I = \iiint\limits_V \frac{dxdydz}{\sqrt{x^2 + y^2 + z^2}},$$

unde V este mulțimea situată în semispațiul superior $z \ge 0$, conține o porțiune din semiaxa pozitivă Oz și este delimitată de sferele $x^2 + y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 9$ și de conul $z = \sqrt{x^2 + y^2}$.

Soluție. Utilizăm din nou coordonatele sferice. De data aceasta mulțimea V este intervalul tridimensional

$$\Omega = [1, 3] \times [0, \pi/4] \times [0, 2\pi).$$

Aplicând formula schimbării de variabile în integrala triplă în cazul când se utilizează coordonatele sferice, găsim

$$I = \iiint_{\Omega} \rho \sin \theta \, d\rho d\theta d\varphi = \int_{1}^{3} \rho \, d\rho \cdot \int_{0}^{\pi/4} \sin \theta \, d\theta \cdot \int_{0}^{2\pi} d\varphi =$$
$$= \frac{\rho^{2}}{2} \Big|_{1}^{3} \cdot (-\cos \theta) \Big|_{0}^{\pi/4} \cdot \varphi \Big|_{0}^{2\pi}.$$

Efectuând calculele finale, constatăm că $I = 4\pi(2 - \sqrt{2})$.

Exercițiul 6.7.3 Să se calculeze integrala triplă

$$I = \iiint\limits_{V} (x^2 + y^2) \, dx \, dy \, dz,$$

unde V este porțiunea din coroana cilindrică mărginită de cilindrii circulari coaxiali $x^2+y^2=4,\ x^2+y^2=9$ și de planele z=0 și z=1.

Soluție. Atât expresia integrantului cât și forma domeniului V sugerează utilizarea coordonatelor cilindrice (6.57). Noul domeniu de integrare va fi

$$\Omega = [2,3] \times [0,2\pi) \times [0,1].$$

Aplicând formula (6.70), obţinem

$$I = \iiint\limits_{\Omega} r^3 \, dr \, d\varphi \, dz = \int_2^3 r^3 \, dr \, \cdot \int_0^{2\pi} d\varphi \, \cdot \int_0^1 dz = 40\pi.$$

Şi în acest exemplu valoarea integralei s-a determinat foarte uşor.

Exercițiul 6.7.4 Să se calculeze integrala triplă

$$I = \iiint\limits_{V} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) dx dy dz,$$

unde mulțimea de integrare V este

$$V = \{(x, y, z) \in \mathbb{R}^3 : 1 \le \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 4\}.$$

Soluție. În acest caz se folosesc coordonatele polare generalizate definite de (6.65). Mulțimea Ω care, prin transformarea punctuală regulată (6.65), este dusă în mulțimea V din enunțul exemplului este intervalul tridimensional

$$\Omega = \{ (\rho, \theta, \varphi) \in \mathbb{R}^3 : 1 \le \rho \le 2, 0 \le \theta \le \pi, 0 \le \varphi < 2\pi \}$$

din spațiul (ρ, θ, φ) . Folosind formula (6.66) deducem că I se calculează cu ajutorul integralei triple

$$I = abc \iiint_{\Omega} \rho^4 \sin\theta \, d\rho d\theta d\varphi$$

a cărei valoare se constată simplu că este $I = 4\pi abc/5$.

Exercițiul 6.7.5 Să se calculeze integrala triplă

$$I = \iiint\limits_{V} x^2 \, dx \, dy \, dz,$$

unde V este domeniul mărginit de suprafețele:

$$z = ay^2, \quad z = by^2, \quad (0 < a < b);$$

 $z = \alpha x, \quad z = \beta x, \quad (0 < \alpha < \beta);$
 $z = 0, \quad z = h,$

situat în semispațiul y > 0.

Soluție. Analiza enunțului sugerează schimbarea de variabile

$$u = \frac{z}{y^2}, \quad v = \frac{z}{x}, \quad w = z,$$

domeniile de variație ale noilor coordonate fiind

$$u \in [a, b], v \in [\alpha, \beta], z \in [0, h].$$

Rezolvând pe x, y și z în funcție de u, v și w, găsim

$$x = \frac{w}{v}, \quad y = \sqrt{\frac{w}{u}}, \quad z = w.$$

Avem două posibilități de a calcula jacobianul care intră în formula schimbării de variabile în integrala triplă. Pe oricare cale se găsește

$$\frac{D(x,y,z)}{D(u,v,w)}(u,v,w) = -\frac{1}{2}\frac{w\sqrt{w}}{v^2u\sqrt{u}}.$$

Teorema schimbării de variabile în integrala triplă și formula de evaluare a integralei triple pe un interval tridimensional închis conduc la concluzia că valoarea integralei I este egală cu produsul integralelor simple de mai jos

$$I = \frac{1}{2} \int_a^b \frac{du}{u\sqrt{u}} \cdot \int_\alpha^\beta \frac{dv}{v^4} \cdot \int_0^h w^3 \sqrt{w} \, dw.$$

Calculând integrale
le definite obținem în final că valoarea integralei triple I este

$$I = \frac{2}{27} \left(\frac{1}{\alpha^3} - \frac{1}{\beta^3} \right) \left(\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{b}} \right) h^4 \sqrt{h}.$$

Din nou se remarcă simplificarea evidentă a calculelor când se alege o schimbare de variabile adecvată.

6.8 Aplicații ale integralei triple

Considerăm acum unele probleme tipice care implică calculul unor integrale triple.

6.8.1 Calculul volumelor

Dacă o figură spațială V are volum, valoarea integralei triple

$$\iiint\limits_{V} dx dy dz \tag{6.73}$$

se constată că este volumul lui V. Întradevăr, această afirmație rezultă fie din proprietățile integralei triple fie analizând sumele integrale corespunzătoare unei diviziuni oarecare ocazie cu care se constată că oricare din aceste sume este egală cu volumul lui V și ca atare limita pentru norma diviziunii tinzând la zero a unui șir de sume integrale corespunzătoare este volumul lui V. Integrala triplă este mai convenabil de folosit decât integrala dublă,

când se pune problema calculării volumului unei figuri spațiale cubabile căci, după cum se vede din (6.73), cu ajutorul ei se poate determina volumul oricărei mulțimi cubabile, pe când, cu integrala dublă se poate determina doar volumul unui cilindroid.

6.8.2 Masa și centrul de greutate ale unui solid

În același mod cum am introdus unele corpuri materiale putem introduce și aici noțiunea de solid. Prin solid se înțelege ansamblul dintre o mulțime măsurabilă Jordan V numită configurația solidului și o funcție ρ reală, cu valori pozitive, continuă pe V, care se numește $densitatea \ de \ volum$ a solidului.

Dacă funcția ρ este constantă, solidul se numește omogen. În cazul solidului omogen masa sa este dată de produsul dintre valoarea constantă ρ_0 a densității și volumul lui V.

Produsul dintre valoarea densității întrun punct $M(x,y,z) \in V$ și elementul de volum al lui V se numește element de masă și se notează cu dm. Deci

$$dm = \rho(x, y, z) \, dx dy dz. \tag{6.74}$$

Procedând asemănător ca la firul material, placa materială sau pânza materială constatăm că masa solidului definit mai sus este dată de egalitatea

$$\max V = \iiint_{V} \rho(x, y, z) \, dx dy dz \tag{6.75}$$

sau de egalitatea

$$\max V = \iiint_V dm. \tag{6.76}$$

Coordonatele x_G , y_G și z_G ale centrului de greutate G al unui solid de configurație V și densitatea de volum ρ sunt date de egalitățile

$$x_{G} = \frac{1}{\text{masa } V} \iiint_{V} x \, dm, \quad y_{G} = \frac{1}{\text{masa } V} \iiint_{V} y \, dm,$$

$$z_{G} = \frac{1}{\text{masa } V} \iiint_{V} z \, dm.$$

$$(6.77)$$

Dacă notăm cu \mathbf{r}_G vectorul de poziție a centrului de greutate și cu \mathbf{r} vectorul de poziție al unui punct curent $M(x,y,z) \in V$, constatăm că relațiile (6.77) se pot scrie în forma vectorială

$$\mathbf{r}_G = \frac{1}{\text{masa } V} \iiint_V \mathbf{r} \, dm. \tag{6.78}$$

În cazul solidului omogen expresiile coordonatelor centrului de greutate sunt mai simple căci fracțiile de mai sus se pot simplifica prin valoarea constantă ρ_0 a densității. Avem

$$x_{G} = \frac{1}{\operatorname{vol} V} \iiint_{V} x dv, \quad y_{G} = \frac{1}{\operatorname{vol} V} \iiint_{V} y dv,$$

$$z_{G} = \frac{1}{\operatorname{vol} V} \iiint_{V} z dv,$$

$$(6.79)$$

unde dv = dxdydz este elementul de volum al lui V. Forma vectorială a acestor egalităților (6.79) este

$$\mathbf{r}_G = \frac{1}{\text{vol } V} \iiint_V \mathbf{r} \, dv. \tag{6.80}$$

6.8.3 Momente de inerție ale unui solid

Momentele de inerție față de axele Ox, Oy, Oz ale solidului de configurație V și densitate de volum ρ , se vor nota cu aceleași simboluri ca la pânze materiale și sunt date de egalitățile:

$$\begin{cases}
I_{x} = \iiint_{V} (y^{2} + z^{2})\rho(x, y, z) dv = \iiint_{V} (y^{2} + z^{2}) dm; \\
I_{y} = \iiint_{V} (z^{2} + x^{2})\rho(x, y, z) dv = \iiint_{V} (z^{2} + x^{2}) dm; \\
I_{z} = \iiint_{V} (x^{2} + y^{2})\rho(x, y, z) dv = \iiint_{V} (x^{2} + y^{2}) dm.
\end{cases} (6.81)$$

Când densitatea de volum este constantă și egală cu $\rho_0 > 0$, formulele de

mai sus devin

$$I_x = \rho_0 \iiint_V (y^2 + z^2) dv; \quad I_y = \rho_0 \iiint_V (z^2 + x^2) dv;$$

$$I_z = \rho_0 \iiint_V (x^2 + y^2) dv.$$

Momentele de inerție ale solidului neomogen de configurație V și densitate de volum în raport cu planele de coordonate Oxy, Oyz, Ozx, notate corespunzător cu I_{xy} , I_{yz} și I_{zx} , au expresiile date de integralele triple:

$$\begin{cases}
I_{xy} = \iiint\limits_{V} \rho z^2 dv = \iiint\limits_{V} z^2 dm; \\
I_{yz} = \iiint\limits_{V} \rho x^2 dv = \iiint\limits_{V} x^2 dm; \\
I_{xz} = \iiint\limits_{V} \rho y^2 dv = \iiint\limits_{V} y^2 dm.
\end{cases} (6.82)$$

Dacă solidul este omogen cu densitatea constantă ρ_0 , în locul formulelor (6.82) avem

$$I_{xy} = \rho_0 \iiint_V z^2 dv; \quad I_{yz} = \rho_0 \iiint_V x^2 dv; \quad I_{xz} = \rho_0 \iiint_V y^2 dv.$$

În fine, momentul de inerție în raport cu originea reperului este

$$I_O = \iiint\limits_{V} (x^2 + y^2 + z^2) dm,$$
 (6.83)

când solidul este neomogen, iar în cazul că ar fi omogen același moment de inerție al solidului va fi dat de expresia

$$I_O = \rho_0 \iiint\limits_V (x^2 + y^2 + z^2) dv.$$

6.8.4 Potențialul newtonian al unui solid

Potențialul newtonian sau gravitațional al unui punct material de masă m se definește prin formula

 $U = \frac{m}{r},$

unde r este distanța de la punctul material până la punctul din spațiu în care se consideră potențialul. În cazul unui solid de configurație V și densitate de volum ρ , potențialul newtonian în punctul $M_0(x_0, y_0, z_0)$ va fi dat de formula:

$$U(x_0, y_0, z_0) = \iiint_V \frac{\rho(x, y, z) \, dx \, dy \, dz}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}}.$$

6.8.5 Atracția exercitată de către un solid

Se știe din fizică că fiind date două puncte materiale M_1 și M_2 de ponderi m_1 și m_2 și vectori de poziție \mathbf{r}_1 și respectiv \mathbf{r}_2 , mărimea forței de atracție dintre cele două puncte materiale este dată de formula

$$F = \lambda \frac{m_1 m_2}{\|\mathbf{r}_1 - \mathbf{r}_2\|^2},$$

unde λ este o constantă, iar

$$\|\mathbf{r}_1 - \mathbf{r}_2\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

este distanța euclidiană dintre punctele $M_1(x_1, y_1, z_1)$ și $M_2(x_2, y_2, z_2)$.

Forța \mathbf{F}_{12} cu care punctul material M_1 este atras de către punctul material M_2 este dată de formula

$$\mathbf{F}_{12} = \lambda \frac{m_1 m_2}{\|\mathbf{r}_1 - \mathbf{r}_2\|^3} (\mathbf{r}_1 - \mathbf{r}_2).$$

Dacă X_{12} , Y_{12} , Z_{12} sunt coordonatele forței de atracție, expresiile acestora sunt date de

$$X_{12} = \lambda \frac{m_1 m_2}{\|\mathbf{r}_1 - \mathbf{r}_2\|^3} (x_2 - x_1), \ Y_{12} = \lambda \frac{m_1 m_2}{\|\mathbf{r}_1 - \mathbf{r}_2\|^3} (y_2 - y_1),$$
$$Z_{12} = \lambda \frac{m_1 m_2}{\|\mathbf{r}_1 - \mathbf{r}_2\|^3} (z_2 - z_1).$$

Să considerăm acum un punct material $M_0(x_0, y_0, z_0)$ de masă m și un solid de configurație V și densitate de volum ρ . Având la dispoziție cazul particular prezentat mai sus și cunoscând mecanismul introducerii noțiunii de integrală triplă ajungem la concluzia că forța \mathbf{F} cu care M_0 este atras de către solid este dată de integrala triplă

$$\mathbf{F} = \lambda m \iiint_{V} \frac{\rho(x, y, z)}{\|\mathbf{r} - \mathbf{r}_{0}\|^{3}} (\mathbf{r} - \mathbf{r}_{0}) dx dy dz,$$

unde

$$\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}, \quad \mathbf{r}_0 = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k},$$

iar $\|\mathbf{r} - \mathbf{r}_0\|$ este norma euclidiană a vectorului $\mathbf{r} - \mathbf{r}_0$

$$\|\mathbf{r} - \mathbf{r}_0\| = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}.$$

Coordonatele F_x , F_y și F_z ale vectorului \mathbf{F} sunt

$$\begin{cases}
F_x = \lambda m \iiint_V \frac{\rho(x, y, z)}{\|\mathbf{r} - \mathbf{r}_0\|^3} (x - x_0) \, dx dy dz, \\
F_y = \lambda m \iiint_V \frac{\rho(x, y, z)}{\|\mathbf{r} - \mathbf{r}_0\|^3} (y - y_0) \, dx dy dz, \\
F_z = \lambda m \iiint_V \frac{\rho(x, y, z)}{\|\mathbf{r} - \mathbf{r}_0\|^3} (z - z_0) \, dx dy dz.
\end{cases}$$

Exercițiul 6.8.1 Să se calculeze cu ajutorul integralei triple, volumul figurii spațiale V situată în semispațiul superior $z \geq 0$ și mărginită de suprafețele:

$$x^2 + y^2 + z^2 = a^2$$
; $x^2 + y^2 + z^2 = b^2$; $x^2 + y^2 = z^2$,

 $unde \ 0 < a < b.$

Soluţie. Cele trei suprafeţe care mărginesc figura spaţială V sunt: primele două, sfere concentrice cu centrul în origine, de raze a şi b; iar a treia, con circular cu vârful în origine şi axa de rotaţie axa Oz, având generatoarele înclinate cu 45 de grade faţă de axa Oz. Corpul este porţiunea din coroana sferică limitată de cele două sfere conţinută în pânza superioară a conului. Volumul acestei figuri este $\operatorname{Vol} V = \iiint_V dx dy dz$, iar pentru calculul integralei

triple folosim coordonatele sferice. Terna ordonată (ρ, θ, φ) ia valori în intervalul tridimensional închis $\Omega = [a, b] \times [0, \pi/4] \times [0, 2\pi]$, iar jacobianul transformării este $J = \rho^2 \sin \theta$. Prin urmare, avem

$$\operatorname{Vol} V = \iiint\limits_{\Omega} \rho^2 \sin\theta d\rho d\theta d\varphi = \int_a^b \rho^2 d\rho \cdot \int_0^{\pi/4} \sin\theta d\theta \cdot \int_0^{2\pi} d\varphi = \frac{\pi (2 - \sqrt{2})(b^3 - a^3)}{3}.$$

Exercițiul 6.8.2 Să se afle coordonatele centrului de greutate al unui solid omogen mărginit de pânza unui con circular drept, având unghiul de la vârf egal cu 2α și de o sferă de rază R cu centrul în vârful conului.

Soluție. Alegem originea sistemului de axe în vârful conului și axa Oz după axa de simetrie a conului.

Trebuie determinată mai întâi masa solidului V. Fiind omogen și considerând că densitatea este egală cu unitatea, masa solidului va fi egală cu volumul său. Pentru calculul volumului folosim coordonatele sferice în care terna (ρ, θ, φ) ia valori în intervalul tridimensional închis $\Omega = [0, R] \times [0, \alpha] \times [0, 2\pi]$. Avem

$$Vol V = \iiint_{\Omega} \rho^2 \sin \theta d\rho d\theta d\varphi = \int_0^R \rho^2 d\rho \cdot \int_0^{\alpha} \sin \theta d\theta \cdot \int_0^{2\pi} d\varphi =$$
$$= \frac{4\pi R^3}{3} \sin^2 \frac{\alpha}{2}.$$

Coordonatele x_G , y_G și z_G ale centrului de greutate G al solidului sunt date de integralele triple:

$$x_G = \frac{1}{\operatorname{Vol} V} \iiint\limits_V x dx dy dz, \quad y_G = \frac{1}{\operatorname{Vol} V} \iiint\limits_V y dx dy dz,$$

$$z_G = \frac{1}{\operatorname{Vol} V} \iiint\limits_V z dx dy dz.$$

Solidul fiind omogen și având planele de coordonate Oxz și Oyz ca plane de simetrie, rezultă că $x_G=y_G=0$. Pentru calculul integralei triple de la

numărătorul cotei centrului de greutate trecem la coordonate sferice. Avem

$$\iiint\limits_{V}zdxdydz=\int_{0}^{R}\rho^{3}d\rho\int_{0}^{\alpha}\sin\theta\cos\theta d\theta\int_{0}^{2\pi}d\varphi=\pi R^{4}\sin^{2}\frac{\alpha}{2}\cos^{2}\frac{\alpha}{2}.$$

Prin urmare,
$$z_G = \frac{3R}{4} \cos^2 \frac{\alpha}{2}$$
.

Exercițiul 6.8.3 Să se găsească momentul de inerție în raport cu axa Oz a solidului de configurație bila de rază a cu centrul în origine V și densitatea de volum

$$\rho(x, y, z) = x^2 + y^2 + z^2.$$

Soluție. Momentul de inerție de determinat este în acest caz

$$I_z = \iiint_{\mathcal{U}} (x^2 + y^2)(x^2 + y^2 + z^2) dx dy dz.$$

Pentru calculul integralei triple trecem la coordonate sferice și găsim

$$I_z = \iiint_{\Omega} \rho^6 \sin^3 \theta \, d\rho d\theta d\varphi,$$

unde Ω este intervalul tridimensional $[0, a] \times [0, \pi] \times [0, 2\pi)$. Scriind ultima integrală triplă ca o iterație de integrale simple, obținem

$$I_z = \int_0^a \rho^6 \, d\rho \, \cdot \int_0^\pi \sin^3 \theta \, \cdot \int_0^{2\pi} d\varphi.$$

Efectuând integralele simple de mai sus găsim $I_z = 8\pi a^7/21$.

Exercițiul 6.8.4 Să se determine momentele de inerție în raport cu planele de coordonate ale solidului omogen având configurația domeniului V mărginit de suprafețele de ecuații z=c>0 și $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}$, situat în semispațiul $z\geq 0$.

Soluție. Considerând că $\rho_0 = 1$, cele trei momente de inerție cerute sunt:

$$I_{yz} = \iiint\limits_{V} x^2 dx dy dz; \quad I_{zx} = \iiint\limits_{V} y^2 dx dy dz; \quad I_{xy} = \iiint\limits_{V} z^2 dx dy dz,$$

unde domeniul de integrare este porţiunea din interiorul pânzei superioare a conului de ecuaţie $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$, situat sub planul z = c.

Pentru calculul fiecărei din cele trei integrale vom folosi faptul că domeniul de integrare este simplu în raport cu axa Oz, deoarece el se poate scrie ca

$$V = \left\{ (x, y, z) \in \mathbb{R}^3 : c\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}} \le z \le c, (x, y) \in D_{xy} \right\},\,$$

unde D_{xy} este proiecția lui V pe planul Oxy, care se poate reprezenta ca

$$D_{xy} = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}.$$

Cu alte cuvinte, D_{xy} este domeniul plan mărginit de elipsa din planul Oxy, cu centrul de simetrie în originea reperului Oxyz și semiaxele egale cu a și b. Vom scrie integralele triple care dau momentele de inerție față de planele de coordonate ca iterații de integrale, prima simplă, în raport cu z, între limitele $c\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}$ și c, iar a doua, dublă, pe domeniul D_{xy} . Avem:

$$I_{yz} = \iint_{D_{xy}} x^2 dx dy \int_{c\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}}^c dz = c \iint_{D_{xy}} x^2 \left(1 - \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}\right) dx dy;$$

$$I_{zx} = \iint_{D_{xy}} y^2 dx dy \int_{c\sqrt{\frac{y^2}{a^2} + \frac{y^2}{b^2}}}^c dz = c \iint_{D_{xy}} y^2 \left(1 - \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}\right) dx dy;$$

$$I_{xy} = \iint_{D_{xy}} dx dy \int_{c\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}}^c z^2 dz = \frac{c^3}{3} \iint_{D_{xy}} \left(1 - \sqrt{\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^3}\right) dx dy.$$

Aceste integrale duble se calculează utilizând coordonatele polare generalizate în plan și găsim:

$$I_{yz} = \frac{\pi a^3 bc}{20}; \quad I_{zx} = \frac{\pi ab^3 c}{20}; \quad I_{xy} = \frac{\pi abc^3}{5}.$$

Capitolul 7

Ecuații diferențiale ordinare

7.1 Câteva generalități despre ecuații diferențiale ordinare

În cele ce urmează I este un interval din mulţimea \mathbb{R} a numerelor reale, Y este o mulţime oarecare a spaţiului \mathbb{R}^{n+1} , $n \in \mathbb{N}^*$, şi

$$F: I \times Y \to I \mathbb{R}$$

este o funcție reală continuă, de n+2 variabile reale, având ca argumente variabila reală $x \in I$, funcția reală $y: I \to \mathbb{R}$ și derivatele sale până la ordinul n inclusiv $y', y'', \dots, y^{(n)}$.

Definiția 7.1.1 Relația

$$F(x, y, y', \dots, y^{(n)}) = 0 (7.1)$$

se numește ecuație diferențială ordinară, de ordinul n, dacă se cere să se determine funcțiiile

$$\varphi: I \to I\!\!R, \tag{7.2}$$

derivabile până la ordinul n inclusiv, astfel încât

$$F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) = 0, \quad (\forall) \ x \in I.$$
 (7.3)

Definiția 7.1.2 Funcția reală de variabila reală (7.2), de n ori derivabilă, care satisface identitatea (7.3) se numește **soluție** a ecuații diferențiale (7.1).

Presupunând că este posibilă rezolvarea în raport cu derivata de ordinul n, ecuația (7.1) se poate reduce la $forma\ explicită$ sau $forma\ normală$

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}). \tag{7.4}$$

Definiția 7.1.3 Ecuația diferențială corespunzătoare cazului n = 1 se numește ecuație diferențială ordinară de ordinul întâi.

Observația 7.1.1 Forma implicită a unei ecuații diferențiale ordinare de ordinul întâi este

$$F(x, y, y') = 0, (7.5)$$

iar forma normală sau forma explicită a sa este

$$y' = f(x, y). \tag{7.6}$$

Deoarece ecuațiile diferențiale reprezintă în multe situații modelarea matematică a unor fenomene evolutive şi că aceste fenomene sunt în general continue, vom presupune că funcția F din ecuațiile (7.1) şi (7.5) precum şi funcția f din (7.4) şi (7.6) sunt continue pe domeniile lor de definiție.

Exemplul 7.1.1 Ecuația

$$y' = \sin x$$

are familia de soluții

$$y = \varphi(x, C) = -\cos x + C, \quad x \in \mathbb{R},$$

unde C este o constantă arbitrară.

Exemplul 7.1.2 Fie f o funcție reală de variabilă reală, definită și continuă pe un interval $I \subset \mathbb{R}$. Toate soluțiile ecuației diferențiale ordinare de ordinul \hat{i} ntâi

$$y' = f(x) \tag{7.7}$$

sunt de forma

$$\varphi(\cdot, C): I \to \mathbb{R}, \quad \varphi(x, C) = C + \int_{x_0}^x f(t)dt.$$
(7.8)

Într-adevăr, f fiind funcție continuă pe I, este integrabilă și admite primitive pe I. A determina primitivele funcției f înseamnă a găsi toate funcțiile y, definite și derivabile pe I, care satisfac egalitatea (7.7). Cu alte cuvinte, primitivele funcției f sunt soluțiile ecuației diferențiale (7.7).

Se știe că funcția

$$F: I \to \mathbb{R}, \quad F(x) = \int_{x_0}^x f(t)dt, \quad (\forall) \ x \in I, \quad x_0 \in I, \text{ fixat},$$
 (7.9)

este o primitivă pe I a funcției f și că orice două primitive ale lui f diferă printr-o constantă arbitrară C. De aici deducem că toate primitivele funcției f se pot scrie în forma

$$y = C + \int_{x_0}^{x} f(t)dt. (7.10)$$

În acest caz, funcțiile (7.8), deduse din (7.10) pentru fiecare valoare a constantei arbitrare C, reprezintă toate soluțiile ecuației diferențiale (7.7).

Exemplul 7.1.3 Ecuația diferențială ordinară de ordinul întâi

$$y = xy' + y'^{2} (7.11)$$

are ca soluții funcțiile

$$y = Cx + C^2, \quad x \in \mathbb{R}, \tag{7.12}$$

unde C este o constantă arbitrară.

Intr-adevăr, prin verificare directă se constată că, oricare ar fi valoaraea constantei C, funcția din membrul al doilea al relației (7.12) verifică identic ecuația diferențială (7.11).

Din punct de vedere geometric, relația (7.12) reprezintă o familie de drepte cu panta variabilă C și ordonata la origine egală cu C^2 . Pentru C=1, din (7.12) obținem soluția

$$y = x + 1 \tag{7.13}$$

care în reperul Oxy este o dreaptă paralelă cu prima bisectoare.

Exemplele de mai sus conduc la introducerea unei alte noțiuni.

Definiția 7.1.4 Dacă soluțiile ecuației (7.5) sau (7.6) se pot pune sub forma

$$y = \varphi(x, C), \quad x \in I, \tag{7.14}$$

unde C este o constantă arbitrară, atunci (7.14) se numește soluția generală a ecuației diferențiale corespunzătoare.

Definiția 7.1.5 Se numește soluție particulară a ecuației diferențiale ordinare (7.5) sau (7.6) funcția

$$y = \varphi(x, C_0), \quad x \in I, \tag{7.15}$$

obținută din soluția generală (7.14) prin atribuirea valorii concrete C_0 constantei arbitrare C.

Observația 7.1.2 Ecuația (7.7) are soluția generală (7.10). Soluția generală a ecuației diferențiale (7.11) este (7.12), iar (7.13) reprezintă o soluție particulară a acesteia. Funcția

$$y = -\frac{1}{4}x^2, \quad x \in I\!\!R,$$

este , de asemenea, soluție a ecuației diferențiale (7.11) care nu se poate obține din soluția generală.

Definiția 7.1.6 O soluție a ecuației diferențiale (7.5) sau (7.6) care nu se poate obține din soluția generală a acesteia prin particularizarea constantei arbitrare se numește soluție singulară.

O soluție a unei ecuații diferențiale de ordinul întâi are drept grafic o curbă plană numită *curbă integrală*. Soluția generală a unei ecuații diferențiale este o familie uniparametrică de curbe integrale.

Este posibil ca soluția generală a ecuației diferențiale (7.5) să se scrie în forma

$$\Phi(x, y, C) = 0. \tag{7.16}$$

Relația (7.16) se numește *integrala generală* a ecuației diferențiale (7.5) sau (7.6).

Soluția generală a unei ecuații diferențiale poate fi dată și *parametric*, printr—un sistem de forma

$$\begin{cases} x = \varphi(t, C), \\ y = \psi(t, C). \end{cases}$$
 (7.17)

Observația 7.1.3 Ecuația diferențială (7.5) poate avea mai multe soluții generale. De exemplu, ecuația diferențială

$$y'^2 = f(x),$$

unde f este continuă și nenegativă pe un interval real I, are două soluții generale

$$y = C_1 + \int_{x_0}^x \sqrt{f(t)} dt$$
 $\sin y = C_2 - \int_{x_0}^x \sqrt{f(t)} dt$.

Presupunem că $Q:D\subset \mathbb{R}^2\to \mathbb{R}\setminus\{0\}$ este o funcție continuă. Dacă înmulțim ambii membri ai ecuației diferențiale (7.6) cu factorul nenul Q(x,y) găsim ecuația diferențială echivalentă

$$Q(x,y)y' - Q(x,y) f(x,y) = 0. (7.18)$$

Notând

$$P(x,y) = -Q(x,y) f(x,y)$$
 (7.19)

și utilizând pentru derivata unei funcții notația lui Leibniz

$$y' = \frac{dy}{dx} \tag{7.20}$$

ecuația diferențială se transcrie în forma

$$P(x,y) dx + Q(x,y) dy = 0, P, Q \in C^{0}(D).$$
 (7.21)

Când expresia din membrul întâi a ecuației (7.21) este diferențiala unei funcții reale de două variabile, pe mulțimea deschisă $D \subset \mathbb{R}^2$, acesteia i se spune expresie diferențială exactă. Se poate afirma că (7.21) este o alternativă de prezentare a ecuației diferențiale ordinare de ordinul întâi sub formă normală (7.6) care, cu notația (7.20), se poate prezenta sub forma echivalentă

$$\frac{dy}{dx} = f(x,y). (7.22)$$

Alternativa mai sus prezentată are avantajul că, la nevoie, putem considera y ca variabila independentă, caz în care ecuația diferențială corespunzătoare se scrie

$$\frac{dx}{dy} = g(y, x), \text{ unde } g(y, x) = \frac{1}{f(x, y)},$$
(7.23)

funcția necunoscută fiind x.

Fiecărui punct $(x_0, y_0) \in D$ îi corespunde o direcție de coeficient unghiular

$$y_0' = f(x_0, y_0);$$

fiecărei direcții îi corespunde o dreaptă

$$y - y_0 = y_0'(x - x_0)$$

care trece prin punctul (x_0, y_0) și are panta $m = y'_0$; prin urmare, ecuația (7.22) asociază fiecărui punct din D o direcție (dreaptă); avem astfel în D definit un câmp f de direcții.

Să presupunem că $y = \varphi(x)$, $(x,y) \in D$ este o soluție a ecuației (7.6). Graficul funcției φ este o curbă integrală în D care are proprietatea că, în fiecare punct al ei, tangenta are ca direcție valoarea câmpului f în punctul considerat.

Definiția 7.1.7 Problema determinării soluției (7.2) a ecuației diferențiale (7.6) care pentru $x = x_0$ ia valoarea dată y_0 , se numește **problema Cauchy**, iar condiția

$$\varphi(x_0) = y_0, \tag{7.24}$$

se numește condiție inițială sau dată inițială.

Observația 7.1.4 Din punct de vedere geometric, problema Cauchy pentru ecuația diferențială (7.6), cu condiția inițială (7.24), înseamnă determinarea acelei curbe integrale a ecuației diferențiale (7.6) care trece prin punctul de coordonate (x_0, y_0) .

Exemplul 7.1.4 Soluția problemei Cauchy pentru ecuația diferențială (7.7) cu condiția inițială (7.24), este

$$y = y_0 + \int_{x_0}^x f(t)dt (7.25)$$

Într-adevăr, soluția generală a ecuației diferențiale (7.7) am văzut că este (7.10). Dacă vom căuta soluția care pentru $x = x_0$ ia valoarea y_0 , vom obține

$$y_0 = C + \int_{x_0}^{x_0} f(t)dt = C, \tag{7.26}$$

$$\operatorname{deci} C = y_0.$$

Observația 7.1.5 Formula (7.25) arată că (\forall) $(x_0, y_0) \in I \times \mathbb{R}$ există o soluție unică a ecuației (7.7) care satisface condiția inițială $y(x_0) = y_0$. Cu alte cuvinte, prin orice punct din intervalul nemărginit bidimensional $I \times \mathbb{R}$ trece o curbă integrală și numai una.

Teorema de mai jos arată în ce condiții soluția problemei Cauchy pentru ecuația diferențială (7.6) cu condiția inițială (7.24) există și este unică.

Teorema 7.1.1 Presupunem verificate următoarele condiții:

• funcția reală f este definită și continuă pe intervalul închis bidimensional

$$I_2 = \{(x, y) \in \mathbb{R}^2 : |x - x_0| \le a, |y - y_0| \le b\};$$

• funcția f este lipschitziană ca funcție de y pe mulțimea I₂, adică există o constantă pozitivă L astfel încât

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|, \ (\forall) \ (x, y_1), \ (x, y_2) \in I_2.$$
 (7.27)

În aceste condiții, există o soluție unică y = y(x) a problemei Cauchy pentru ecuația diferențială (7.6) cu condiția inițială (7.24), definită pe intervalul $|x - x_0| \le \delta$, unde

$$\delta = \inf \left\{ a, \frac{b}{M} \right\}; \ M = \sup \{ |f(x, y)| : \ (x, y) \in I_2 \}.$$

Desigur, soluția problemei Cauchy pentru ecuația (7.6), cu condiția inițială (7.24), este o soluție particulară a ecuației diferențiale ordinare de ordinul întâi sub formă normală (7.6).

Așadar, mulțimea soluțiilor tuturor problemelor Cauchy ale ecuației diferențiale (7.6) constituie soluția generală a ecuației (7.6) în domeniul D.

Totalitatea soluțiilor particulare ale unei ecuații diferențiale ordinare de ordinul întâi sub forma normală depinde de o constantă arbitrară. Putem arăta că, invers, orice familie de curbe plane

$$g(x, y, C) = 0, \quad (x, y) \in D,$$
 (7.28)

cu g continuă și derivabilă parțial în D, verifică în D o ecuație diferențială ordinară de ordinul întâi. Într-adevăr, considerând că în (7.28) y este funcție car e depinde de x și derivând în raport cu variabila x, avem

$$\frac{\partial g}{\partial x}(x, y, C) + y' \frac{\partial g}{\partial y}(x, y, C) = 0. \tag{7.29}$$

Eliminarea constantei C din relațiile (7.28) și (7.29) conduce la o ecuație diferențială de forma (7.5).

Exercițiul 7.1.1 Să se determine ecuația diferențială a familiei de curbe

$$y = Cx + f(C). (7.30)$$

Soluție. Derivând în raport cu x în (7.30), găsim y' = C. Eliminând constanta C între acest rezultat și (7.30) obținem ecuația diferențială de ordinul întâi

$$y = xy' + f(y'),$$
 (7.31)

care se numește ecuație diferențială de tip Clairaut.

Definiția 7.1.8 Prin problemă Cauchy asociată ecuației diferențiale de ordinul n (7.4) se înțelege determinarea unei funcții $y = \varphi(x)$ care satisface ecuația

$$\varphi^{(n)}(x) = f(x, \varphi(x), \varphi'(x), \cdots, \varphi^{(n-1)}(x)), \quad (\forall) \ x \in I \subset \mathbb{R}$$
 (7.32)

și verifică condițiile inițiale

$$\varphi(x_0) = y_1^0, \ \varphi'(x_0) = y_2^0, \ \cdots, \ \varphi^{(n-1)}(x_0) = y_n^0,$$
 (7.33)

unde $x_0 \in I$ şi $y_1^0, y_2^0, \dots, y_n^0$ sunt fixate.

Să considerăm ecuația diferențială de ordinul n sub formă normală (7.4) și să presupunem că s-a obținut o soluție

$$y = \varphi(x, C_1, C_2, \cdots, C_n) \tag{7.34}$$

care depinde de n constante C_1, C_2, \dots, C_n .

Definiția 7.1.9 Dacă funcția (7.34) are următoarele proprietăți:

- 1. este soluție a ecuației diferențiale (7.4) oricare ar fi punctul de coordonate (C_1, C_2, \dots, C_n) luat dintr-un anumit domeniu $\Delta \subset \mathbb{R}^n$;
- 2. există și este unică n-upla $(C_1^0,C_2^0,\cdots,C_n^0)\in\Delta$ astfel încât

$$y = \varphi(x, C_1^0, C_2^0, \dots, C_n^0)$$

să fie soluția problemei Cauchy a ecuației diferențiale (7.4), cu conditiile inițiale (7.33), unde

$$(x_0, y_1^0, y_2^0, \cdots, y_n^0)$$

este un punct oarecare din mulțimea $D \subset \mathbb{R}^{n+1}$, domeniul de definiție al funcției f din membrul doi a ecuației diferențiale (7.4),

atunci (7.34) se numește soluția generală a ecuației diferențiale (7.4) în domeniul D.

Definiția 7.1.10 A **integra** o ecuație diferențială înseamnă a determina toate soluțiile sale.

7.2 Ecuații diferențiale ordinare, de ordinul întâi, integrabile prin cuadraturi

În cele ce urmează vom prezenta câteva tipuri de ecuații diferențiale ordinare de ordinul întâi ale căror soluții generale se pot determina prin operații de integrare sau cuadrare.

7.2.1 Ecuații diferențiale cu variabile separate

Definiția 7.2.1 O ecuație diferențială de tipul

$$P(x)dx + Q(y)dy = 0, (7.35)$$

unde $P: I_1 \to \mathbb{R}$ şi $Q: I_2 \to \mathbb{R}$ sunt funcţii reale continue date pe intervalele reale I_1 şi I_2 , se numeşte ecuaţie diferenţială ordinară, de ordinul întâi, cu variabile separate.

Teorema 7.2.1 Funcția $F: I_1 \times I_2 \to \mathbb{R}$, cu valorile date de

$$F(x,y) = \int_{x_0}^{x} P(t)dt + \int_{y_0}^{y} Q(t)dt, \quad (x_0, y_0) \in I_1 \times I_2, \tag{7.36}$$

este diferențiabilă pe interiorul mulțimii $I_1 \times I_2$ și are proprietatea

$$dF(x,y) = P(x)dx + Q(y)dy. (7.37)$$

Demonstrație. Existența lui F este asigurată de continuitatea funcțiilor P și Q. În plus,

$$\frac{\partial F}{\partial x}(x,y) = \frac{d}{dx} \int_{x_0}^x P(t)dt = P(x),$$

$$\frac{\partial F}{\partial y}(x,y) = \frac{d}{dy} \int_{y_0}^y Q(t)dt = Q(y).$$
(7.38)

Având în vedere că

$$dF(x,y) = \frac{\partial F}{\partial x}(x,y)dx + \frac{\partial F}{\partial y}(x,y)dy,$$
(7.39)

 $\dim (7.38)$ şi (7.39) rezultă (7.37).

Teorema 7.2.2 Fiecare soluție

$$y = \varphi(x), \tag{7.40}$$

a ecuației diferențiale cu variabile separate (7.35), cu graficul cuprins în $I_1 \times I_2$, satisface relația

$$F(x,\varphi(x)) = C \tag{7.41}$$

pentru o anumită constantă C. Reciproc, dacă ecuația F(x,y) = C definește pe y ca funcție implicită diferențiabilă de variabila x, atunci această funcție este o soluție a ecuației diferențiale cu variabile separate (7.35).

Demonstrație. Presupunem că

$$y = \varphi(x), \quad x \in (a, b) \subset I_1 \tag{7.42}$$

este o soluție a ecuației diferențiale cu variabile separate (7.35) astfel încât să avem

$$(x, \varphi(x)) \in I_1 \times I_2, \quad (\forall) \ x \in (a, b).$$
 (7.43)

Să arătăm că

$$F(x,\varphi(x)) = C, \quad (\forall) \ x \in (a,b). \tag{7.44}$$

Pentru aceasta considerăm funcția compusă

$$g:(a,b)\to IR, \quad g(x)=F(x,\varphi(x))$$
 (7.45)

și derivata ei

$$g'(x) = \frac{\partial F}{\partial x}(x, \varphi(x)) + \frac{\partial F}{\partial y}(x, \varphi(x))\varphi'(x). \tag{7.46}$$

Folosind acum în (7.46) rezultatul (7.38) precum şi varianta

$$P(x) + Q(\varphi(x))\varphi'(x) = 0, \quad (\forall) \ x \in (a, b)$$
 (7.47)

a faptului că (7.42) este o soluție a ecuației (7.35), deducem

$$g'(x) = P(x) + Q(\varphi(x))\varphi'(x) = 0, \quad (\forall) \ x \in (a, b).$$
 (7.48)

Relația (2.13) arată că funcția g este o constantă pe intervalul (a, b). Astfel, orice soluție y a ecuației diferențiale cu variabile separate (7.35) satisface ecuația carteziană implicită (7.44).

Să presupunem acum că ecuația F(x,y) = C definește pe y ca funcție implicită diferențiabilă de x pe $(a,b) \in I_1$. Ecuația (7.44) implică faptul că funcția g din (7.45) este constantă pe (a,b). Rezultă

$$0 = g'(x) = P(x) + Q(y)y'. (7.49)$$

Dând deoparte pe g'(x) din (7.49) deducem că y este o soluție a ecuației diferențiale cu variabile separate (7.35).

Teoremele precedente sugerează un procedeu practic de găsire a soluției generale a ecuației diferențiale cu variabile separate (7.35).

Familia de ecuații carteziene implicite

$$\int_{x_0}^{x} P(t)dt + \int_{y_0}^{y} Q(t)dt = C, \ (\forall) \ (x,y) \in I_1 \times I_2, \tag{7.50}$$

unde (x_0, y_0) este un punct fixat din intervalul bidimensional $I_1 \times I_2$, descrie curbele integrale ale ecuației diferențiale cu variabile separate (7.35). Dacă impunem ca valorii $x = x_0$ să –i corespundă $y = y_0$, din (7.50) rezultă C = 0 și deci soluția problemei Cauchy a ecuației diferențiale (7.35), cu condiția inițială $y(x_0) = y_0$, există și este unică. Această soluție este funcția definită implicit de ecuația

$$\int_{x_0}^x P(t)dt + \int_{y_0}^y Q(t)dt = 0.$$
 (7.51)

Exercițiul 7.2.1 Să se integreze ecuația diferențială

$$\frac{dx}{\sqrt{1-x^2}} + \frac{dy}{y+1} = 0, \quad (x,y) \in (-1,1) \times (-1,+\infty). \tag{7.52}$$

Soluție. Aplicând rezultatele de mai sus avem că soluția generală a ecuației (7.52) este

$$\arcsin x + \ln (y+1) = C. \tag{7.53}$$

Să observăm că ecuația are și soluția y=-1; ea se obține din integrala generală (7.53) pentru $C\to -\infty$.

7.2.2 Ecuația diferențială exactă

Fie $D \subset \mathbb{R}^2$ un domeniu plan simplu conex, și $P:D \to \mathbb{R}, \, Q:D \to \mathbb{R}$ două funcții continue derivabile parțial, prima în raport cu y, iar a doua în raport cu variabila x.

Definiția 7.2.2 O ecuație diferențială de tipul

$$P(x,y)dx + Q(x,y)dy = 0, (7.54)$$

se numește ecuație diferențială exactă dacă funcțiile P și Q satisfac în D condiția

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y), \quad (\forall) (x,y) \in D.$$
 (7.55)

Teorema 7.2.3 Ecuația diferențială exactă (7.54) are soluția generală

$$\int_{x_0}^x P(t, y_0)dt + \int_{y_0}^y Q(x, t)dt = C.$$
 (7.56)

Demonstrație. Fie $A(x_0, y_0) \in D$, fixat astfel încât luând un punct oarecare M(x, y) al domeniului și notând cu B punctul de coordonate (x, y_0) , segmentele de dreaptă AB și BM să fie incluse în D. Să considerăm funcția $F: D \to I\!\!R$ ale cărei valori se calculează după regula

$$F(x,y) = \int_{x_0}^{x} P(t,y_0)dt + \int_{y_0}^{y} Q(x,t)dt.$$
 (7.57)

Folosind regula lui Leibniz de derivare a unei integrale depinzând de un parametru constatăm

$$\frac{\partial F}{\partial x}(x,y) = P(x,y), \quad \frac{\partial F}{\partial y}(x,y) = Q(x,y), \quad (\forall) \ (x,y) \in D. \tag{7.58}$$

Deoarece funcțiile P și Q sunt continue, deducem că F are derivate parțiale continue și deci este funcție diferențială pe D. Ținând cont de expresia diferențialei de ordinul întâi și de (7.58), deducem

$$dF(x,y) = P(x,y)dx + Q(x,y)dy, \quad (\forall) (x,y) \in D. \tag{7.59}$$

Aşadar, membrul întâi al ecuației (7.55) este diferențiala funcției F din (7.57). Din acest motiv denumirea ecuației diferențiale (7.54) este acea de ecuației diferențială exactă.

Folosind acum (7.54) şi (7.59), avem

$$dF(x,y) = 0, \ \ (\forall) \ (x,y) \in D,$$

de unde

$$F(x,y) = C, \quad (\forall) \ (x,y) \in D. \tag{7.60}$$

Ținând seama de (7.57) și (7.60) deducem că soluția generală a ecuației diferențiale exacte (7.54) este (7.56).

Corolarul 7.2.1 Soluția problemei lui Cauchy pentru ecuația diferențială exactă (7.54), cu condiția inițială $y(x_0) = y_0$, unde $(x_0, y_0) \in D$, este

$$\int_{x_0}^x P(t, y_0)dt + \int_{y_0}^y Q(x, t)dt = 0.$$
 (7.61)

Demonstrație. Într-adevăr, alegând ca datele inițiale x_0 și y_0 să fie coordonatele punctului A, și impunând condiția ca pentru $x = x_0$ să avem $y = y_0$, din (7.56) deducem C = 0. Ca urmare, soluția căutată este funcția $y = \varphi(x)$ definită implicit de ecuația (7.61).

Exercițiul 7.2.2 Să se integreze ecuația diferențială

$$(3x^2y + \sin x)dx + (x^3 - \cos y)dy = 0.$$

Soluție. Aici $P(x,y) = 3x^2y + \sin x$, $Q(x,y) = x^3 - \cos y$, $(x,y) \in \mathbb{R}^2$. Aceste funcții sunt derivabile și

$$\frac{\partial P}{\partial y}(x,y) = 3x^2, \quad \frac{\partial Q}{\partial x}(x,y) = 3x^2.$$

Derivatele parțiale de mai sus fiind egale, ecuația dată este ecuație diferențială exactă. Luând drept punct $A(x_0, y_0)$ originea reperului cartezian Oxy, deci $x_0 = 0$, $y_0 = 0$, și aplicând (7.56), deducem că soluția generală a ecuației date este

$$\int_0^x \sin t \, dt + \int_0^y (x^3 - \cos t) \, dt = C.$$

Efectuând integrările care se impun mai sus, găsim că soluția generală a ecuației date este

$$\cos x + \sin y - x^3 y + C - 1 = 0$$
, $(\forall) (x, y) \in \mathbb{R}^2$.

Din punct de vedere geometric, soluția generală este o familie de curbe plane care umple tot planul. Prin fiecare punct al planului trece o curbă integrală și numai una. De exemplu, dacă dorim să rezolvăm problema Cauchy a ecuației date cu condițiinițială y(0) = 0, adică să determinăm curba integrală care trece prin origine, găsim C = 0 și deci soluția căutată este

$$\cos x + \sin y - x^3 y - 1 = 0.$$

Funcția reală definită implicit, în vecinătatea originii, de această ecuație este o soluție particulară a ecuației diferențiale căci a fost obținută din cea generală luând pentru constanta C valoarea C=0.

7.2.3 Ecuații diferențiale de ordinul întâi care admit factor integrant

Fie ecuația diferențială

$$P(x,y)dx + Q(x,y)dy = 0,$$
 (7.62)

unde $P:D\to \mathbb{R},\ Q:D\to \mathbb{R}$ sunt două funcții reale diferențiabile pe un domeniu plan $D\subset \mathbb{R}^2$. Dacă expresia diferențială Pdx+Qdy nu este o diferențială exactă, adică nu este îndeplinită condiția

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y), \quad (\forall) \ (x,y) \in D, \tag{7.63}$$

atunci ne propunem să căutăm o funcție $\mu:D\to I\!\!R^2$ astfel încât expresia diferențială

$$\omega = \mu(x, y)P(x, y)dx + \mu(x, y)Q(x, y)dy$$

să fie o diferențială totală exactă a unei funcții reale de două variabile reale. Pentru aceasta, conform lui (7.63), ar trebui să fie îndeplinită condiția

$$\frac{\partial}{\partial x} \Big(\mu(x, y) Q(x, y) \Big) = \frac{\partial}{\partial y} \Big(\mu(x, y) P(x, y) \Big), \quad (\forall) \ (x, y) \in D. \tag{7.64}$$

Definiția 7.2.3 Funcția $\mu: D \to \mathbb{R}^2$, diferențiabilă pe $D \subset \mathbb{R}^2$, care verifică ecuația (7.64), se numește factor integrant al ecuației (7.62).

Prin înmulțirea ecuației (7.62) cu factorul integrant μ care satisface (7.64), ecuația (7.62) devine

$$\mu(x,y)P(x,y)dx + \mu(x,y)Q(x,y)dy = 0.$$
 (7.65)

Pentru ca (7.65) să fie o ecuație diferențială cu diferențială totală exactă trebuie să fie îndeplinită relația (7.64), care, după efectuarea derivatelor parțiale, devine

$$Q(x,y)\frac{\partial\mu}{\partial x} - P(x,y)\frac{\partial\mu}{\partial y} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mu(x,y) = 0.$$
 (7.66)

Relaţia (7.66) este o ecuaţie cu derivate parţiale de ordinul întâi, liniară şi neomogenă, căreia, în anumite cazuri, i se poate determina o soluţie particulară.

De exemplu, dacă o să căutăm un factor integrant care să fie funcție numai de x, adică $\mu = \mu(x)$, deoarece $\frac{\partial \mu}{\partial y} = 0$, ecuația (7.65) se reduce la

$$\frac{1}{\mu} \cdot \frac{d\mu}{dx} = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) \tag{7.67}$$

și determinarea lui μ este posibilă dacă $\frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$ este funcție numai de x. Într-adevăr, în (7.67) variabilele se separă și obținem pe μ printr–o operație de integrare

$$\ln \mu(x) = \int \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx. \tag{7.68}$$

După determinarea factorului integrant $\mu = \mu(x)$ (numai dacă acest lucru este posibil) se înmulţesc ambii membri ai ecuaţiei (7.62) cu factorul integrant (7.68) şi ecuaţia devine una cu diferenţială exactă a cărei soluţie generală ştim că este

$$\int_{x_0}^{x} \mu(t) P(t, y_0) dt + \mu(x) \int_{y_0}^{y} Q(x, t) dt = C.$$

În mod asemănător, dacă se căută un factor integrant $\mu=\mu(y)$ funcție numai de y, din (7.65) avem

$$\frac{1}{\mu} \cdot \frac{d\mu}{dy} = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

și determinarea lui $\mu=\mu(y)$ este posibilă dacă

$$\frac{1}{P} \Big(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \Big)$$

este funcție numai de y. Dacă această condiție este îndeplinită obținem pe $\mu=\mu(y)$ printr–o cuadratură

$$\ln \mu(y) = \int \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dy.$$

Este posibil să existe și alte situații în care ecuația cu derivate parțiale de ordinul întâi (7.65), care determină factorul integrant, să se poată rezolva și să se i se găsească o soluție particulară.

Exercițiul 7.2.3 Să se integreze ecuația diferențială

$$(x \sin y + y \cos y)dx + (x \cos y - y \sin y)dy = 0.$$

Soluţie. Avem:

$$P(x,y) = x \sin y + y \cos y, \quad Q(x,y) = x \cos y - y \sin y;$$

$$\frac{\partial P}{\partial y} = x \cos y + \cos y - y \sin y, \quad \frac{\partial Q}{\partial x} = \cos y;$$

$$\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}; \quad \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = 1.$$

Așadar, ecuația dată nu este o ecuație cu diferențială totală exactă dar admite factor integrant funcție numai de x. Factorul integrant se găsește rezolvând ecuația cu variabile separate

$$\frac{d\mu}{\mu} = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx = dx \implies \ln \mu = x \implies \mu(x) = e^x.$$

Înmulțind ecuația dată cu factorul e^x , obținem ecuația

$$e^{x}(x \sin y + y \cos y)dx + e^{x}(x \cos y - y \sin y)dy = 0.$$

Ecuația obținută are forma $P_1(x,y)dx + Q_1(x,y) = 0$, unde

$$P_1(x,y) = e^x(x \sin y + y \cos y), \quad Q_1(x,y) = e^x(x \cos y - y \sin y).$$

373

Efectuând derivatele care se impun, avem:

$$\begin{cases} \frac{\partial P_1}{\partial y} = e^x (x \cos y + \cos y - y \sin y), \\ \frac{\partial Q_1}{\partial x} = e^x (x \cos y + \cos y - y \sin y). \end{cases}$$

Aceste derivate parțiale sunt egale și, prin urmare, membrul stâng al ecuației diferențiale obținută după înmulțirea cu factorul integrant este o diferențială totală exactă.

Soluția generală a ecuației date este

$$e^x \int_0^y (x\cos t - t\sin t)dt = C \Longrightarrow e^x (x\sin y + y\cos y - \sin y) = C$$

și este reprezentată în forma implicită.

Exercițiul 7.2.4 Să se integreze ecuația diferențială

$$2xy\,dx + (3y^2 - x^2 + 3)dy = 0.$$

Soluție. Deoarece $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, ecuația dată nu este o ecuație care provine din anularea unei diferențiale exactă. În schimb,

$$\frac{1}{P} \Big(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \Big) = -\frac{2}{y},$$

ceea ce arată că ecuația diferențială considerată admite factor integrant care depinde numai de y.

Se găsește că factorul integrant este $\mu(y)=1/y^2.$

Înmulțind ambii membri ai ecuației cu factorul integrant, obținem ecuația cu diferențială totală exactă

$$\frac{2x}{y}\,dx + \frac{3y^2 - x^2 + 3}{y^2}\,dy = 0,$$

care are soluția generală

$$\frac{x^2}{y} + 3y - \frac{3}{y} = C.$$

După eliminarea numitorului, din soluția generală obținem

$$x^2 + 3y^2 - 3 - Cy = 0,$$

căreia putem să–i spunem integrala generală a ecuației diferențiale considerate.

Curbele integrale ale acestei ecuații diferențiale constituie o familie de conice sau curbe algebrice de ordinul al doilea.

7.2.4 Ecuații diferențiale cu variabile separabile

Definiția 7.2.4 O ecuație diferențială de tipul

$$P_1(x)Q_2(y)dx + P_2(x)Q_1(y)dy = 0, (7.69)$$

 $unde\ P_1, P_2 \in C^0(I_1),\ Q_1, Q_2 \in C^0(I_2),\ se\ numește\ ecuație\ diferențială\ cu variabile\ separabile.$

Observația 7.2.1 Dacă ne limităm numai la subintervalele lui I_1 respectiv I_2 pe care funcțiile P_2 respectiv Q_2 nu se anulează, ecuația diferențială cu variabile separabile (7.69) se reduce la o ecuația diferențială cu variabile separate

$$\frac{P_1(x)}{P_2(x)}dx + \frac{Q_1(y)}{Q_2(y)}dy = 0.$$

Observația 7.2.2 Folosind observația precedentă precum și rezultatele stabilitite la ecuații diferențiale cu variabile separate deducem că soluția generală a ecuației diferențiale cu variabile separabile (7.69) este

$$\int_{a}^{x} \frac{P_1(t)}{P_2(t)} dt + \int_{b}^{y} \frac{Q_1(t)}{Q_2(t)} dt = C,$$
(7.70)

unde C este o constantă arbitrară iar $a \in I_1, P_2(a) \neq 0$ și $b \in I_2, Q_2(b) \neq 0$.

Observația 7.2.3 Dacă x_0 şi y_0 sunt astfel încât

$$P_2(x_0) = 0, \quad Q_2(y_0) = 0,$$

se constată că $x=x_0$ și $y=y_0$ sunt soluții ale ecuației diferențiale cu variabile separabile care nu se pot obține din soluția generală (7.70) și ca atare putem spune că

$$x = x_0$$
 si $y = y_0$

sunt soluții singulare ale ecuației (7.69).

375

Observația 7.2.4 Soluțiile singulare ale unei ecuații diferențiale cu variabile separabile, dacă există, sunt drepte paralele cu axele de coordonate, sau segmente ale acestora.

Exercițiul 7.2.5 Să se determine soluțiile generale ale următoarelor ecuații diferențiale cu variabile separabile:

$$\mathbf{1}^{0}. \quad (x^{2} + a^{2})(y^{2} + b^{2}) dx + (x^{2} - a^{2})(y^{2} - b^{2}) dy = 0, \quad a > 0, b > 0;$$

$$2^{0}$$
. $3 e^{x} \operatorname{tg} y dx + (1 + e^{x}) \operatorname{sec}^{2} y dy = 0$.

Pentru cea de a doua ecuație să se determine acea soluție cu proprietatea că graficul ei trece prin punctul $(0, \pi/4)$.

Soluţie. $\mathbf{1}^0$. Considerând că $x \in I$, unde I este un interval inclus în unul din intervalele $(-\infty, -a)$, (-a, a) sau $(a, +\infty)$, constatăm că se pot separa variabilele, pe intervalul I, prin împărţirea ambilor membri ai ecuaţiei cu $(x^2 - a^2)(y^2 + b^2)$. Obţinem:

$$\frac{x^2 + a^2}{x^2 - a^2} dx + \frac{y^2 - b^2}{y^2 + b^2} dy = 0$$

sau

$$\left(1 + \frac{2a^2}{x^2 - a^2}\right)dx + \left(1 - \frac{2b^2}{y^2 + b^2}\right)dy = 0.$$

Soluția generală a acestei ecuații diferențiale cu variabile separate este

$$\frac{x+y}{a} + \ln\left|\frac{x-a}{x+a}\right| - \frac{2b}{a} \arctan \frac{y}{b} = C.$$

Dreptele x=-a și x=a, paralele cu axa Oy, sunt soluții singulare ale ecuației date.

 2^{0} . După separarea variabilelor ecuația devine

$$\frac{3e^x}{1+e^x} dx + \frac{\sec^2 y}{\operatorname{tg} y} dy = 0.$$

Separarea variabilelor a fost posibilă pentru $x \in \mathbb{R}$ şi $y \in I$, unde intervalul I nu conține puncte de forma $y = k\pi/2, \ k \in \mathbb{Z}$.

Soluția generală se obține integrând primul termen între x_0 și x, cel de al doilea termen între $y_0 \in I$ și $y \in I$, adunând rezultatele și egalându—le apoi cu logaritmul natural al unei constante pozitive arbitrară. Luând $x_0 = 0$, $y_0 = \frac{\pi}{4}$ și efectuând calculele, avem

$$(1+e^x)^3 \cdot \operatorname{tg} y = 8C.$$

Impunând condiția ca punctul de coordonate $(0, \frac{\pi}{4})$ să aparțină unei curbe integrale găsim C=1 și prin urmare soluția problemei Cauchy este

$$(1+e^x)^3 \cdot \operatorname{tg} y = 8.$$

Funcțiile $y=k\pi,\ k\in \mathbf{Z}$, sunt soluții singulare ale ecuației date; curbele integrale corespunzătoare soluțiilor singulare sunt paralele echidistante la axa Ox.

7.2.5 Ecuația diferențială omogenă

Definiția 7.2.5 Ecuația diferențială ordinară de ordinul întâi

$$\frac{dy}{dx} = \frac{P(x,y)}{Q(x,y)},\tag{7.71}$$

unde P și Q sunt funcții continue omogene de aceslași grad m, se numește ecuație diferențială omogenă.

Exprimând că funcțiile P și Q sunt omogene, avem

$$P(tx, ty) = t^m P(x, y), \quad Q(tx, ty) = t^m Q(x, y).$$
 (7.72)

Dacă în (7.72) luăm $t = \frac{1}{x}$, deducem

$$P(x,y) = x^m P(1, \frac{y}{x}), \quad Q(x,y) = x^m Q(1, \frac{y}{x}).$$
 (7.73)

Pentru simplificarea formei ecuației diferențiale (7.71), efectuăm notația

$$\frac{P\left(1, \frac{y}{x}\right)}{Q\left(1, \frac{y}{x}\right)} = f\left(\frac{y}{x}\right). \tag{7.74}$$

377

Folosind acum (7.73) și (7.74) în (7.71) constatăm că ecuațiile diferențiale omogene au forma generală

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right). \tag{7.75}$$

Teorema 7.2.4 Schimbarea de funcție necunoscută

$$y = z \cdot x \iff \frac{y}{x} = z \tag{7.76}$$

în ecuația diferențială omogenă (7.75) transformă ecuația întro ecuație diferențială cu variabile separabile a cărei integrală generală este

$$ln |x| + C = \Phi\left(\frac{y}{x}\right),$$
(7.77)

unde C este o constantă arbitrară, iar Φ este o primitivă a funcției $\frac{1}{f(z)-z}$ pe un interval $I \subset \mathbb{R}$ cu proprietataea că ecuația

$$f(z) - z = 0 \tag{7.78}$$

nu are nici o soluție.

Demonstrație. Efectuând derivarea în cea de a doua relație din (7.76) şi ținând cont că z = z(x), obținem

$$\frac{dy}{dx} = x \cdot \frac{dz}{dx} + z \,. \tag{7.79}$$

Înlocuind (7.76) și (7.79) în (7.75), găsim

$$x \cdot \frac{dz}{dx} + z = f(z). \tag{7.80}$$

Pe intervalul I, după separarea variabilelor, obținem

$$\frac{dz}{f(z) - z} = \frac{dx}{x}. (7.81)$$

Integrala generală a ecuației diferențiale cu variabile separate (7.81) este

$$ln |x| + C = \Phi(z), \tag{7.82}$$

unde am notat prin $\Phi(z)$ o primitivă a funcției $\frac{1}{f(z)-z}$. Revenind la funcția y, prin folosirea notației (7.76), din (7.82) obținem (7.77).

Observația 7.2.5 Dacă z_0 este o rădăcină a ecuației (7.78), atunci $z = z_0$ (constant) este soluție și pentru ecuația (7.80), deoarece $\frac{dz}{dx} = 0$. De aici și din (7.76) rezultă că funcția

$$y = z_0 \cdot x \tag{7.83}$$

este o soluție a ecuației diferențiale (7.75), anume o soluție singulară. Curba integrală corespunzătoare soluției (7.83) este o dreaptă care trece prin origine și are panta z_0 .

Observația 7.2.6 Dacă în (7.77) înlocuim pe C cu $-\ln C$, integrala generală (7.77) se scrie

$$x = C\Psi\left(\frac{y}{r}\right),\tag{7.84}$$

unde am notat

$$\Psi\left(\frac{y}{x}\right) = e^{\Phi\left(\frac{y}{x}\right)}. (7.85)$$

Observația 7.2.7 O familie de curbe plane de ecuație (7.84) verifică o ecuație diferențială omogenă.

Într-adevăr, derivând în ambii membri în (7.84), obținem

$$1 = C\left(\frac{y'}{x} - \frac{y}{x^2}\right)\Psi'\left(\frac{y}{x}\right). \tag{7.86}$$

Eliminând constanta C din ecuațiile (7.84) și (7.86), deducem

$$x \cdot \left(\frac{y'}{x} - \frac{y}{x^2}\right) = \frac{\Psi\left(\frac{y}{x}\right)}{\Psi'\left(\frac{y}{x}\right)}.$$
 (7.87)

Rezolvând ecuația (7.87) în privința lui y', găsim o ecuație diferențială omogenă de forma (7.75), în care membrul al doilea este

$$f\left(\frac{y}{x}\right) = \frac{\Psi\left(\frac{y}{x}\right)}{\Psi'\left(\frac{y}{x}\right)} + \frac{y}{x}.$$
 (7.88)

Putem spune deci că o ecuație diferențială este omogenă dacă și numai dacă soluția sa generală este (7.84).

379

Exercițiul 7.2.6 Să se integreze ecuațiile diferențiale omogene:

10.
$$y' = \frac{y}{x} + e^{\frac{y}{x}};$$

20. $xyy' = y^2 + 2x^2;$
30. $xy' + x \cos \frac{y}{x} - y + x = 0;$
40. $xy' - y = \frac{x}{\arctan \frac{y}{x}};$
50. $xy' \ln \frac{y}{x} = x + y \ln \frac{y}{x}.$

Soluție. 1⁰. După efectuarea schimbării de funcție (7.76), ecuația devine

$$xz' + z = z + e^z,$$

care este o ecuație diferențială cu variabile separabile. Separând variabilele, obținem

$$e^{-z} dz = \frac{dx}{x}.$$

Souția generală a acestei ecuații este

$$\ln|x| = -e^z + C.$$

Revenind la funcția inițială, găsim că soluția generală a ecuației este

$$\ln|x| = -e^{\frac{y}{x}} + C.$$

Această ecuație diferențială nu are soluții singulare.

 2^{0} . Împărțind ambii membri ai ecuației prin x^{2} , obținem

$$\frac{y}{x}y' = \left(\frac{y}{x}\right)^2 + 2. \tag{7.89}$$

După efectuarea schimbării de funcție (7.76), ecuația (7.89) se scrie

$$z(xz'+z) = z^2 + 2$$
.

380

Separarea variabilelor în această din urmă ecuație diferențială conduce la ecuația diferențială cu variabile separate

$$z \, dz = \frac{2 \, dx}{r} \, .$$

Integrând, obținem

$$z^2 = 4 \ln C|x|.$$

Revenind la funcția inițială deducem că soluția generală a ecuației date este

$$y^2 = 4 x^2 \ln C|x|.$$

Nici această ecuație diferențială nu are soluții singulare.

3^0 . Avem pe rând:

$$\begin{split} y' + \cos\frac{y}{x} - \frac{y}{x} + 1 &= 0 \,; \\ x \, z' + z + \cos z - z + 1 &= 0 \,; \\ \frac{dz}{1 + \cos z} &= -\frac{dx}{x} \,; \\ \frac{dz}{2 \, \cos^2\frac{z}{2}} &= -\frac{dx}{x} \,; \\ \operatorname{tg} \frac{z}{2} &= \ln\frac{C}{|x|} \,; \\ z &= 2 \arctan \ln\frac{C}{|x|} \,. \end{split}$$

Revenind la variabila dependentă inițială, găsim că soluția generală a ecuației este

$$y = 2 x \arctan \frac{C}{|x|}.$$

Această ecuație are o infinitate de soluții singulare de forma

$$y = (2k+1)\pi x, k \in \mathbf{Z}$$

deoarece ecuația f(z) - z = 0, adică ecuația $1 + \cos z = 0$, are o infinitate de soluții și anume $z = (2k+1)\pi$, $k \in \mathbb{Z}$.

 ${\bf 4}^0$. Procedând în mod analog ca la celelalte trei ecuații diferențiale găsim că soluția generală a ecuației este

$$y \cdot \operatorname{arctg} \frac{y}{x} = x \cdot \ln (C \cdot \sqrt{x^2 + y^2}).$$

Nu are soluții singulare.

5⁰. Urmând prezentarea teoretică, avem:

$$y' \ln \frac{y}{x} = 1 + \frac{y}{x} \ln \frac{y}{x};$$

$$(xz' + z) \ln z = 1 + z \ln z;$$

$$\ln z dz = \frac{dx}{x};$$

$$z \ln z - z = \ln C|x|$$

după care, reîntorcându-ne la funcția y, găsim că soluția generală este

$$y \ln \left| \frac{y}{x} \right| = y + x \ln C|x|.$$

Nu are soluții singulare.

7.2.6 Ecuații diferențiale reductibile la ecuații diferențiale omogene

O ecuație diferențială reductibilă la una omogenă este

$$y' = f\left(\frac{a_1x + b_1y}{a_2x + b_2y}\right),\tag{7.90}$$

unde $a_1,\ b_1,\ a_2,\ b_2$ sunt constante reale care satisfac condiția

$$a_1 b_2 - a_2 b_1 \neq 0$$
,

iar f este o funcție reală de variabilă reală definită pe un interval. Ea este evident o ecuație diferențială omogenă deoarece se poate scrie în forma

$$y' = f\left(\frac{a_1 + b_1 \frac{y}{x}}{a_2 + b_2 \frac{y}{x}}\right).$$

Cu substituţia

$$y = xz \iff z = \frac{y}{x} \tag{7.91}$$

se separă variabilele.

Exercițiul 7.2.7 Să se integreze ecuația diferențială

$$(2x - y)dx + (2y - x)dy = 0. (7.92)$$

Soluție. Dacă punctul $(x,y) \in \mathbb{R}^2$ este astfel încât nu este verificată ecuația

$$x - 2y = 0, (7.93)$$

(7.92) se scrie în forma

$$\frac{dy}{dx} = \frac{y - 2x}{2y - x}. (7.94)$$

Facând schimbarea de funcție y = xz, constatăm că (7.94), care este o ecuație de forma (7.90), devine:

$$xz' + z = \frac{z-2}{2z-1}.$$

Separând variabilele, obţinem:

$$-\frac{2z-1}{2(z^2-z+1)}dz = \frac{dx}{x}.$$

Integrând această ecuație, se găsește:

$$x^2(z^2 - z + 1) = C^2.$$

Soluția generală a ecuației date este

$$x^2 - xy + y^2 = C^2$$

și, din punct de vedere geometric, reprezintă o familie de elipse cu centrul de simetrie în originea axelor din care se scot punctele de intersecție cu dreapta (7.93).

O altă ecuație diferențială reductibilă la o ecuație omogenă este

$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right),\tag{7.95}$$

unde $a_1, b_1, c_1, a_2, b_2, c_2$ sunt constante care satisfac condițiile:

$$c_1^2 + c_2^2 \neq 0$$
; $a_1 b_2 - a_2 b_1 \neq 0$. (7.96)

În situația (7.96) mulțimile (D_1) și (D_2) ale punctelor de coordonate (x, y) care satisfac respectiv ecuațiile:

$$(D_1): a_1x + b_1y + c_1 = 0; (D_2): a_2x + b_2y + c_2 = 0,$$

reprezintă două drepte concurente în punctul (x_0, y_0) .

Efectuând schimbarea de variabilă independentă și de funcție (o translație)

$$\begin{cases} u = x - x_0, \\ v = y - y_0, \end{cases}$$

în ecuația (7.95), constatăm că aceasta devine

$$\frac{dv}{du} = f\left(\frac{a_1u + b_1v}{a_2u + b_2v}\right). (7.97)$$

Ecuația (7.97) este de tipul (7.90), deci cu schimbarea de funcție

$$v = uz$$

se separă variabilele.

Exercițiul 7.2.8 Să se arate că prin schimbări de funcție și de variabilă convenabile, următoarele ecuații se reduc la ecuații diferențiale de tip omogen și apoi să se integreze:

a)
$$(2x+y+1)dx + (x+2y-1)dy = 0$$
;

b)
$$(2x+y-1)dx + (x-2y+3)dy = 0;$$

c)
$$(x+y-2)dx + (x-y+4)dy = 0.$$

Soluție. Determinând raportul dy/dx constatăm că fiecare din cele trei ecuații aparține tipului de ecuație diferențială (7.95) prezentat mai sus.

a) Dreptele (D_1) : 2x + y + 1 = 0 și (D_2) : x + 2y - 1 = 0 se intersectează în punctul (-1, 1). Efectuând schimbarea de variabilă și de funcție

$$\begin{cases} x = u - 1, \\ y = v + 1, \end{cases}$$

ecuația dată se transformă în:

$$(2u + v)du + (u + 2v)dv = 0.$$

În ecuația omogenă obținută punem v = uw, w = w(u), de unde dv = u dw + w du și ajungem la ecuația cu variabile separabile

$$2(w^2 + w + 1)u du + u^2(1 + 2w) dw = 0,$$

a cărei integrală generală este

$$u\sqrt{w^2 + w + 1} = C,$$

sau, după revenirea la funcția v prin înlocuirea lui w cu v/u și ridicarea la pătrat,

$$u^2 + uv + v^2 = C^2$$
.

Trecând la variabile le inițiale prin u=x+1 și v=y-1, după transformări elementare găsim că integrala generală a ecuației date este familia de curbe algebrice de ordinul al doilea de gen eliptic cu centru în punctul de intersecție al celor drepte

$$x^2 + xy + y^2 + x - y = C_1,$$

unde noua constantă C_1 este $C_1 = C^2 - 1$.

b) Punctul de concurență al celor două drepte aici este (-1/5, 7/5). Efectuând schimbarea de variabile

$$\begin{cases} x = u - 1/5, \\ y = v + 7/5, \end{cases}$$

ecuația devine

$$(2u + v) du + (u - 2v) dv = 0. (7.98)$$

Această ecuație este omogenă, drept pentru care facem schimbarea de funcție

$$v = u w, \quad w = w(u)$$

și ajungem la ecuația diferențială cu variabile separabile

$$u\,w' = \frac{2(1+w-w^2)}{2w-1}$$

a cărei soluție generală este

$$2|w^2 - w - 1| = C^2.$$

Revenind la funcția v, obținem

$$2 - uv - u^2 = \pm C.$$

Înlocuind în acest ultim rezultat pe u cu x+1/5 și pe v cu y-7/5, după calcule elementare, găsim că soluția generală a ecuației considerate la acest punct este

$$x^2 + xy - y^2 - x + 3y = C_1.$$

Folosind teoria curbelor algebrice de ordinul al doilea se constată că această familie de curbe plane este formată fie din hiperbole, fie din perechi de drepte concurente reale, caz în care vom spune ca aceste curbe integrale sunt curbe algebrice de ordinul al doilea (conice) de gen hiperbolic.

c) Se procedează în mod asemănător ca la celelalte două ecuații diferențiale și se găsește că soluția generală este

$$x^2 + 2xy - y^2 - 4x + 8y = C$$

care, din punct de vedere geometric, reprezintă o familie de curbe algebrice de ordinul al doilea de gen hiperbolic.

Cel de al treilea tip de ecuații diferențiale reductibile la ecuații omogene este acela de forma (7.95), în care constantele care apar la variabila funcției f satisfac relațiile

$$c_1^2 + c_2^2 \neq 0, \quad a_1 b_2 - a_2 b_1 = 0.$$
 (7.99)

În acest caz dreptele (D_1) și (D_2) din (7.96) sunt paralele. Din (7.99) rezultă

$$\frac{a_2}{a_1} = \frac{b_2}{b_1} = k,$$

deci ecuația (7.95) devine

$$y' = f\left(\frac{a_1x + b_1y + c_1}{k(a_1x + b_1y) + c_2}\right). \tag{7.100}$$

Cu schimbarea de funcție dată de relația

$$a_1x + b_1y = z$$
, $z = z(x)$,

care implică

$$\frac{dy}{dx} = \frac{1}{b_1} \left(\frac{dz}{dx} - a_1 \right)$$

ecuația (7.100) capătă forma

$$\frac{1}{b_1} \left(\frac{dz}{dx} - a_1 \right) = f\left(\frac{z + c_1}{kz + c_2} \right). \tag{7.101}$$

Ecuația diferențială (7.101) este cu variabile separabile. Efectuând separarea variabilelor, găsim că pe intervalul real J, unde ecuația

$$b_1 f\left(\frac{z+c_1}{kz+c_2}\right) + a = 0$$

nu are nici o soluție, (7.101) se transformă în

$$\frac{dz}{b_1 f(\frac{z+c_1}{kz+c_2}) + a} = dx.$$
 (7.102)

Soluția generală a ecuației (7.102) este

$$x + C = \Phi(z),$$

unde funcția Φ este o primitivă pe J a funcției

$$\frac{1}{b_1 f\left(\frac{z+c_1}{kz+c_2}\right)+a}.$$

Revenind la variabile inițiale, integrala generală a ecuației (7.100) este

$$x + C = \Phi(a_1x + b_1y).$$

Exercițiul 7.2.9 Să se integreze ecuația diferențială

$$(x-2y+9) dx - (3x-6y+19) dy = 0.$$

Soluție. Dreptele (D_1) : x-2y+9=0 și (D_2) : 3x-6y+19=0 sunt paralele. În acest caz facem schimbarea de funcție

$$x - 2y = z \implies \frac{dy}{dx} = \frac{1}{2} - \frac{1}{2}\frac{dz}{dx}.$$

Ecuația dată devine

$$z + 9 - (3z + 19)\left(\frac{1}{2} - \frac{1}{2}\frac{dz}{dx}\right) = 0.$$

Aceasta din urmă este o ecuație cu variabile separabile care, după separarea lor în cazul $z+1 \neq 0$, devine

$$\frac{3z+19}{z+1}\,dz = dx.$$

Integrala generală este dată de

$$8\ln|x - 2y + 1| + x - 3y = C.$$

Egalitatea z+1=0 ne dă soluția x-2y+1=0, care verifică ecuația dată inițial. Această ultimă soluție se obține din integrala generală pentru $C\to -\infty$.

7.2.7 Ecuația diferențială liniară de ordinul întâi

Definiția 7.2.6 O ecuație diferențială de forma

$$y' + P(x)y = Q(x), (7.103)$$

unde P şi Q sunt funcții continue pe un interval $I \subset \mathbb{R}$, se numește ecuație diferențială liniară de ordinul întâi, neomogenă.

Definiția 7.2.7 Ecuația diferențială

$$y' + P(x)y = 0 (7.104)$$

se numește ecuație diferențială liniară de ordinul întai, omogenă.

Observația 7.2.8 Cuvântul omogenă are aici altă semnificație decât cea întâlnită în unul din paragrafele anterioare. Aici, cuvântul omogenă semnifică faptul că membrul doi din (7.103) este nul. Dacă în (7.104) funcția P este aceeași ca cea din (7.103), atunci (7.104) este numită ecuația diferențială liniară de ordinul întâi asociată ecuației (7.103).

Teorema 7.2.5 Soluția generală a ecuației (7.103) este dată de

$$y = e^{-\int P(x)dx} \left[C + \int Q(x)e^{\int P(x)dx} dx \right], \quad x \in I.$$
 (7.105)

Demonstrație. Presupunem că ecuația diferențială (7.103) are soluții pe intervalul I și fie $y=y(x),\ x\in I,$ o soluție arbitrară a acesteia. Atunci, avem

$$y'(x) + P(x)y(x) = Q(x), \ (\forall) \ x \in I.$$
 (7.106)

Înmulțind ambii membri ai identității (7.106) cu $e^{\int P(x)dx},\ x\in I,$ aceasta devine

$$\frac{d}{dx}\left(y(x)e^{\int P(x)dx}\right) = Q(x)e^{\int P(x)dx}, \quad x \in I. \tag{7.107}$$

Integrând în ambii membri ai lui (7.107), obținem

$$y(x)e^{\int P(x)dx} = C + \int Q(x)e^{\int P(x)dx}dx. \tag{7.108}$$

Prin înmulțirea în ambii membri ai lui (7.108) cu factorul $e^{-\int P(x)dx}$, se obține că soluția

$$y = y(x), \quad x \in I, \tag{7.109}$$

a ecuației diferențiale liniare de ordinul întâi, neomogenă, are forma (7.105).

Reciproc, să considerăm o funcție de forma (7.105), în care C este o constantă arbitrară. Derivata acestei funcții este

$$y'(x) = -P(x)e^{-\int P(x)dx} \left(C + \int Q(x)e^{\int P(x)dx}dx\right) + e^{-\int P(x)dx}Q(x)e^{\int P(x)dx}.$$

$$(7.110)$$

Având în vedere că cel de-al doilea factor al primului termen din membrul doi al relației (7.110) este tocmai funcția y=y(x) din (7.105), deducem că (7.110) se scrie în forma

$$y'(x) = -P(x)y(x) + e^{-\int P(x)dx}Q(x)e^{\int P(x)dx}.$$
 (7.111)

Cum cel de al doilea termen din membrul al doilea al relației (7.111) este Q(x), rezultă că această relație se scrie în forma

$$y'(x) = -P(x)y(x) + Q(x). (7.112)$$

Egalitatea (7.112) exprimă faptul că funcția y = y(x) din (7.105) este o soluție a ecuației (7.103).

Teorema 7.2.6 Ecuația diferențială liniară de ordinul întâi omogenă, de forma (7.104), are soluția generală

$$y = C e^{-\int P(x)dx},$$
 (7.113)

unde C este o constantă arbitrară.

Demonstrație. Ecuația (7.104) este cu variabile separabile. Separând variabilele obținem

$$\frac{dy}{y} = -P(x)dx. (7.114)$$

Integrând în ambii membri ai lui (7.114) se găsește (7.113).

Teorema 7.2.7 Fie $x_0 \in I$, arbitrar dar fixat şi $y_0 \in \mathbb{R}$, oarecare. Soluţia problemei Cauchy

$$\begin{cases} y' + P(x)y = Q(x), \\ y(x_0) = y_0, \end{cases}$$
 (7.115)

este

$$y = e^{-\int_{x_0}^x P(t)dt} \left(y_0 + \int_{x_0}^x Q(t)e^{\int_{x_0}^t P(s)ds} dt \right), \quad x \in I.$$
 (7.116)

Demonstrație. În ipoteza că soluția problemei Cauchy (7.115) există, fie aceasta de forma (7.109), în care variabila independentă se va nota cu t. Înmulțind ambii membri ai lui (7.103) cu $e^{\int_{x_0}^t P(s)ds}$, se obține

$$\frac{d}{dt}\left(y(t)e^{\int_{x_0}^t P(s)ds}\right) = Q(t)e^{\int_{x_0}^t P(s)ds}, \quad x \in I. \tag{7.117}$$

Integrarea lui (7.117) între limitele x_0 şi x, urmată de înmulțirea ambilor membri cu $e^{-\int_{x_0}^x P(t)dt}$, conduce la afirmația că soluția problemei Cauchy (7.115) este (7.116).

Reciproc, funcția (7.116) are proprietatea a doua din (7.115). Prin calcul direct se constată că această funcție satisface prima ecuație din (7.115).

Observația 7.2.9 Soluția generală (7.105) a ecuației diferențiale liniară de ordinul întâi, neomogenă, (7.103), se scrie

$$y = C e^{-\int P(x)dx} + e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx}dx, \quad x \in I.$$
 (7.118)

Scrisă astfel, se vede că este egală cu suma dintre integrala generală y_o a ecuației omogene asociate (7.104) și funcția

$$y_p: I \to IR$$
, $y_p(x) = e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx}dx$,

care este o soluție particulară a ecuației neomogene (7.103) deoarece se obține din (7.105) dând constantei arbitrare C valoarea zero. Așadar,

$$y = y_o + y_p$$
.

Teorema 7.2.8 Soluția generală a ecuației diferențiale liniare de ordinul întâi este o funcție de forma

$$y = \varphi(x) + C\psi(x), \quad x \in I. \tag{7.119}$$

Reciproc, orice familie de curbe plane care depinde liniar de o constantă arbitrară verifică o ecuație liniară de ordinul înti.

Demonstrație. Prima parte a teoremei rezultă din (7.118).

Pentru a demonstra reciproca, să observăm mai întâi că

$$y' = \varphi'(x) + C\psi'(x), \quad x \in I.$$
 (7.120)

Eliminând constanta C între (7.119) şi (7.120), obținem ecuația

$$\frac{y - \varphi(x)}{\psi(x)} = \frac{y' - \varphi'(x)}{\psi'(x)},\tag{7.121}$$

care este o ecuație diferențială liniară de ordinul întâi.

Teorema 7.2.9 Dacă y_1 este o soluție particulară a ecuației liniare (7.103), soluția sa generală se obține printr-o cuadratură.

Demonstrație. Efectuăm schimbarea de funcție $y = z + y_1$ și obținem

$$z' + y_1' + P(x)z + P(x)y_1 - Q(x) = 0. (7.122)$$

Deoarece y_1 este o soluție particulară a ecuației (7.103), avem

$$y_1' + P(x)y_1 - Q(x) = 0. (7.123)$$

Folosind (7.123) în (7.122) găsim că z este soluția ecuației liniare omogene (7.104) care se obține doar printr—o operație de integrare și anume

$$z = Ce^{-\int P(x)dx}.$$

Din cele de mai sus rezultă că soluția generală a ecuației (7.103) este

$$y = y_1 + Ce^{-\int P(x)dx}$$

și pentru determinarea ei s—a eefectuat doar o operație de integrare sau, cum se mai spune, o cuadratură.

Corolarul 7.2.2 Dacă y_1 și y_2 sunt două soluții particulare ale ecuației (7.103), soluția generală a sa este dată de

$$y = y_2 + A(y_1 - y_2)$$
 (A = constantă arbitrară). (7.124)

Demonstrație. Fie soluția generală a ecuației (7.103) scrisă în forma (7.119) și y_1, y_2, y_3 , trei soluții particulare corespunzătoare la trei valori C_1, C_2, C_3 , ale constantei arbitrare C

$$y_1 = \varphi(x) + C_1 \psi(x), \quad y_2 = \varphi(x) + C_2 \psi(x), \quad y_3 = \varphi(x) + C_3 \psi(x). \quad (7.125)$$

Eliminând funcțiile φ și ψ din relațiile (7.125), obținem relația

$$\frac{y_3 - y_2}{y_1 - y_2} = \frac{C_3 - C_2}{C_1 - C_2} = A \quad \text{(constant)}.$$
 (7.126)

Dacă considerăm că cea de a treia soluție y_3 este soluția generală, din relația (7.126) se obține (7.124).

Observația 7.2.10 Dacă se cunosc două soluții particulare ale ecuației diferențiale liniare de ordinul întâi, neomogenă, soluția generală a sa se obține fără nici o cuadratură.

Observația 7.2.11 Fie Γ_1 , Γ_2 două curbe integrale date pe intervalul [a,b] și M_1 , M'_1 , M_2 , M'_2 , intersecțiile lor cu două paralele la axa Oy. Putem construi prin puncte orice altă curbă integrală Γ , definită pe [a,b], deoarece, în baza

egalității (7.126), punctele M, M' de intersecție ale curbei Γ cu cele două drepte verifică relația

$$\frac{MM_2}{M_1M_2} = \frac{M'M_2}{M_1'M_2},$$

relație care arată că dreptele $M_1M'_1$, $M_2M'_2$ și MM' sunt concurente. Luând punctul $M(a, y_0)$ fix, ceea ce înseamnă a rezolva problema Cauchy (7.115), unde în loc de x_0 este a, prin procedeul descris mai sus obținem curba integrală ce trece prin acest punct.

Exercițiul 7.2.10 Să se integreze ecuațiile diferențiale liniare de ordinul întâi

$$\mathbf{1}^0) \qquad y' + y \operatorname{tg} x = \sec x;$$

$$2^{0}$$
) $tx' = 2x + t^{3}\cos t$, $x(\pi/2) = \pi^{2}/4$;

$$y'\cos^2 x + y = \operatorname{tg} x;$$

$$4^{0}$$
) $y' + 3y \operatorname{tg} 3x = \sin 6x$, $y(0) = 1/3$;

$$\mathbf{5}^{0}$$
) $(\sin x + t \cot x)x' = 1, \quad t(\pi/2) = 1;$

6⁰)
$$(2e^y - x)y' = 1,$$
 $y(0) = -1,$

iar unde se specifică, să se rezolve problema Cauchy cu data inițială menționată alăturat.

Soluție. Ecuațiile diferențiale $\mathbf{1}^0)-\mathbf{4}^0$) sunt liniare și neomogene, iar soluțiile lor generale se determină utilizând formula (7.105). Avem:

 $\mathbf{1}^0$) Funcțiile P și Q din această ecuație sunt definite pe un interval I_k inclus în intervalul $(-\pi/2 + k\pi, \pi/2 + k\pi)$ și au valorile date de

$$P(x) = \operatorname{tg} x, \ Q(x) = \frac{1}{\cos x}, \ x \in I_k, \ k \in \mathbf{Z}.$$

Soluția generală a ecuației este

$$y = e^{-\int \operatorname{tg} x dx} \left(C + \int \frac{1}{\cos x} e^{\int \operatorname{tg} x dx} dx \right), \quad x \in I_k.$$

Prin urmare, soluția generală este dată de

$$y = \sin x + C \cos x, \quad C \in \mathbb{R}, \quad x \in I_k.$$

 ${\bf 2}^0$) Să observăm că variabila independentă a acestei ecuații diferențiale este t, iar funcția necunoscută este x=x(t). Intervalul pe care sunt definite funcțiile P și Q este inclus sau în intervalul $(-\infty,0)$ sau în $(0,+\infty)$. Pentru că se cere rezolvarea ulterioară a unei probleme Cauchy în care $t_0=\pi/2\in(0,+\infty)$, vom considera de la început că $I=(0,+\infty)$. Avem

$$P(t) = -\frac{2}{t}$$
, $Q(t) = t^2 \cos t$, $t \in (0, +\infty)$.

Soluția generală este

$$x = e^{2\int \frac{dt}{t}} \left(C + \int t^2 \cos t e^{-2\int \frac{dt}{t}} \right), \quad t \in (0, +\infty).$$

După efectuarea cuadraturilor, se găsește

$$x = t^{2}(C + \sin t), t \in (0, +\infty), C \in \mathbb{R}.$$

Impunând ca să fie satisfăcută condiția inițială $x(\pi/2) = \pi^2/4$, se ajunge la concluzia că C = 0 și prin urmare soluția problemei Cauchy este $x = t^2 \sin t$.

 ${\bf 3}^0$) Integrăm această ecuație liniară utilizând Observația 7.2.9. Aici, funcțiile P și Q sunt definite pe un interval $I \subset I\!\!R$ în care ecuația $\cos x = 0$ nu are soluții, valorile lor fiind date de

$$P(x) = \frac{1}{\cos^2 x}, \quad Q(x) = \frac{\operatorname{tg} x}{\cos^2 x}, \quad x \in I.$$

Trebuie să integrăm întâi ecuația omogenă asociată ecuației considerate

$$y' + \frac{1}{\cos^2 x}y = 0.$$

Aceasta este o ecuație cu variabile separabile și are soluția generală

$$y_o = Ce^{-\operatorname{tg} x}, \ x \in I.$$

Vom arăta cum se poate determina o soluție particulară din soluția generală a ecuației omogene asociate folosind metoda variației constantei de integrare C, denumită și metoda lui Lagrange.

Se caută o soluție particulară în forma

$$y_p(x) = C(x)e^{-\operatorname{tg} x}, \ x \in I.$$

Punând condiția ca y_p să verifice ecuația inițială, obținem:

$$C'(x)\cos^2 x e^{-\operatorname{tg} x} = \operatorname{tg} x, \ x \in I,$$

de unde

$$C(x) = \int \frac{\operatorname{tg} x \, e^{\operatorname{tg} x}}{\cos^2 x} dx = (\operatorname{tg} x - 1) e^{\operatorname{tg} x}.$$

Prin urmare, soluția particulară este

$$y_p(x) = \operatorname{tg} x - 1, \quad x \in I.$$

Soluția generală a ecuației date va fi

$$y = y_o + y_p = Ce^{-\lg x} + \lg x - 1, \ x \in I.$$

 ${\bf 4}^0$) Avem $P(x)=3 \operatorname{tg} 3x, \ Q(x)=\sin 6x$ și le vom considera definite pe un interval $I\in I\!\!R$ care conține originea.

Soluţia generală este

$$y = e^{-3\int \operatorname{tg} 3x dx} \left(C + \int \sin 6x e^{3\int \operatorname{tg} 3x dx} dx \right), \Longrightarrow$$

$$\Longrightarrow y = e^{\ln \cos 3x} \left(C + \int \sin 6x e^{-\ln \cos 3x} dx \right) = \Longrightarrow$$

$$\Longrightarrow = \cos 3x \left(C + \int \frac{\sin 6x}{\cos 3x} dx \right) \Longrightarrow y = \cos 3x \left(C - \frac{2}{3} \cos 3x \right).$$

Impunând condiția ca în $x_0=0$ valoarea funcției y de mai sus să fie 1/3 găsim C=1 și deci soluția problemei Cauchy este

$$y = \cos 3x \left(1 - \frac{2}{3}\cos 3x\right), \quad x \in I.$$

 ${\bf 5}^0)$ Ecuația este neliniară în funcția x=x(t). Ea este însă liniară în tcăci se poate scrie

$$\frac{dt}{dx} - t \operatorname{ctg} x = \sin x.$$

Aceasta din urmă are soluția generală

$$t = (C+x)\sin x, \quad x \in I_k, \quad k \in \mathbb{Z}, \quad I_k \subset (k\pi, (k+1)\pi).$$

Pentru ecuația inițială, soluția generală este funcția $x=\varphi(t,C)$ definită implicit de ecuația

$$(C+x)\sin x - t = 0$$
, $(t,x) \in \mathbb{R} \times I_k$, $k \in \mathbb{Z}$, $I_k \subset (k\pi, (k+1)\pi)$.

Încercând rezolvarea problemei Cauchy considerate, se găsește C=0.

Deci, soluția problemei Cauchy este funcția x=x(t) definită implicit de ecuația

$$t - x\sin x = 0, (7.127)$$

întro vecinătate a punctului $t = \pi/2$.

 $\mathbf{6}^0$) Ecuația este liniară în x. Procedând ca la exercițiul precedent găsim că această ecuație diferențială admite integrala generală

$$x - e^y - Ce^{-y} = 0.$$

Soluția problemei Cauchy se determină din integrala generală luând C=-1. Avem

$$x = e^y - e^{-y} \Longrightarrow \operatorname{sh} y = \frac{x}{2} \Longrightarrow y = \operatorname{argsh} \frac{x}{2},$$

unde $\operatorname{argsh}(\cdot)$ este funcția inversă a funcției $\operatorname{sh}(\cdot)$.

7.2.8 Ecuații diferențiale de ordinul întâi reductibile la ecuații liniare

Ecuația diferențială de tip Bernoulli

Definiția 7.2.8 Ecuația diferențială ordinară de ordinul întâi

$$y' + P(x)y = Q(x)y^{\alpha}, \quad \alpha \in \mathbb{R} \setminus \{0, 1\}, \quad P, \ Q \in C^{0}(I), \quad I \subset \mathbb{R}, \quad (7.128)$$

se numește ecuație diferențială de tip Bernoulli.

Teorema 7.2.10 Cu schimbarea de funcție

$$y^{1-\alpha} = z, (7.129)$$

ecuația Bernoulli (7.128) se transformă întro ecuație diferențială liniară de ordinul întâi neomogenă.

Demonstrație. Dacă împărțim cu y^{α} în (7.128) avem

$$\frac{y'}{y^{\alpha}} + P(x) y^{1-\alpha} = Q(x). \tag{7.130}$$

Folosind (7.129) și consecința acesteia

$$\frac{y'}{y^{\alpha}} = \frac{1}{1 - \alpha} z'$$

în (7.130), ecuația (7.128) se transformă în

$$z' + (1 - \alpha) P(x) z = (1 - \alpha) Q(x), \tag{7.131}$$

care este o ecuație diferențială liniară de ordinul întâi neomogenă.

Corolarul 7.2.3 Soluția generală a ecuației Bernoulli (7.128) este

$$y = z^{\frac{1}{1-\alpha}},$$
 (7.132)

unde funcția z = z(x, C) este dată de

$$z = e^{-(1-\alpha)\int P(x)dx} \left[C + (1-\alpha)\int Q(x) e^{(1-\alpha)\int P(x)dx} \right].$$
 (7.133)

Demonstrație. Ecuația diferențială (7.131), fiind liniară, de ordinul întâi și neomogenă, are soluția generală (7.133). După determinarea funcției z, funcția y, soluția generală a ecuației Bernoulli, se găsește din (7.129), fiind astfel conduși la (7.132).

Exercițiul 7.2.11 Să se integreze ecuațiile diferențiale:

a)
$$y' + \frac{1}{x}y = x^2y^4;$$

b)
$$y' + \frac{1}{x}y = \frac{1}{x^2}y^{-2};$$

c)
$$y' - \frac{2x}{1+x^2}y = 4\frac{\arctan x}{\sqrt{1+x^2}}\sqrt{y}$$
.

397

Soluție. Toate ecuațiile diferențiale de mai sus sunt de tip Bernoulli.

a) Constanta α are valoarea 4 și ecuația este echivalentă cu

$$\frac{y'}{y^4} + \frac{1}{x}y^{-3} = x^2.$$

Facem schimbarea de funcție

$$z = y^{-3} \implies \frac{y'}{y^4} = -\frac{1}{3}z'$$
 (7.134)

și ecuația inițială devine

$$z' - \frac{3}{x}z = -3x^2,$$

care este o ecuație diferențială liniară de ordinul întâi neomogenă. Cu mențiunea că punând $\ln C$ în loc de C, soluția generală a acestei ecuații liniare este

$$z = e^{3\int \frac{dx}{x}} \left(\ln C - 3 \int x^2 e^{-3\int \frac{1}{x} dx} dx \right) \implies z = |x|^3 \ln \frac{C}{|x|^3}.$$

Soluția ecuației Bernoulli este

$$z = \frac{1}{|x|\sqrt[3]{\ln\frac{C}{|x|^3}}}.$$

b) Schimbarea de funcție $z=y^3$ conduce la ecuația liniară

$$z' + \frac{3}{r}z = \frac{3}{r^2}$$

cu soluția generală

$$z = \frac{C}{|x|^3} + \frac{3}{2|x|}.$$

Soluția generală a ecuației date este

$$y = \frac{1}{|x|} \sqrt[3]{\frac{3x^2 + 2C}{2}}.$$

 $\mathbf{c})$ Procedând în mod asemănător ca la cele
lalte două exemple, găsim că soluția generală a ecuației este

$$y = (1 + x^2)(\arctan^2 x + C)^2$$
.

Ecuația diferențială de tip Riccati

Definiția 7.2.9 Ecuația diferențială ordinară de ordinul întâi

$$y' = P(x) y^2 + Q(x) y + R(x), P, Q, R \in C^0(I), I \subset \mathbb{R}$$
 (7.135)

se numește ecuație diferențială de tip Riccati.

În general ecuația Riccati nu poate fi integrată prin cuadraturi. Avem însă

Teorema 7.2.11 Dacă se cunoaște o soluție particulară y_1 a ecuației Riccati, prin schimbarea de funcție

$$y = y_1 + \frac{1}{z},\tag{7.136}$$

ecuația se transformă întro ecuație liniară.

Demonstrație. Fie y o soluție a ecuației (7.135) și z o funcție legată de y prin relația (7.136). Atunci, derivatele acestor funcții sunt în relația

$$y' = y_1' - \frac{z'}{z^2}. (7.137)$$

Înlocuind (7.136) şi (7.137) în (7.135), obţinem

$$y_1' - \frac{z'}{z^2} = P(x)\left(y_1 + \frac{1}{z}\right)^2 + Q(x)\left(y_1 + \frac{1}{z}\right) + R(x).$$
 (7.138)

După efectuarea operațiilor indicate și luarea în calcul a faptului că y_1 este o soluție particulară a ecuației Riccati, din (7.138) obținem

$$z' + (2y_1P(x) + Q(x))z = -P(x), (7.139)$$

care este o ecuație diferențială liniară de ordinul întâi neomogenă.

Teorema 7.2.12 Dacă y_1 este o soluție particulară a ecuației Riccati și z este o soluție a ecuației liniare (7.139), funcția y definită de (7.136) este o soluție a ecuației (7.135).

Demonstrație. Din (7.136) avem

$$z = \frac{1}{y - y_1}, \implies z' = \frac{y' - y_1'}{(y - y_1)^2}.$$
 (7.140)

Înlocuind relațiile din (7.140) în (7.139) şi ținând cont de faptul că y_1 este soluție particulară a ecuației Riccati deducem că y este soluție a ecuației (7.135).

Observația 7.2.12 Integrala generală a unei ecuații Riccati este funcție omografică de constanta arbitrară.

Într-adevăr, z fiind soluția unei ecuații liniare, ea este funcție liniară de o constantă arbitrară C

$$z = \varphi(x) + C\,\psi(x),$$

deci,

$$y = y_1 + \frac{1}{\varphi(x) + C \psi(x)} = \frac{y_1 \varphi(x) + 1 + C y_1 \psi(x)}{\varphi(x) + C \psi(x)},$$

de unde rezultă că y este de forma

$$y = \frac{\varphi_1(x) + C \psi_1(x)}{\varphi(x) + C \psi(x)},$$

care este o transformare omografică de constanta arbitrară C.

Reciproc, o familie de curbe plane care depinde omografic de o constantă arbitrară verifică o ecuație de tip Riccati.

Observația 7.2.13 Dacă y_1, y_2, y_3, y_4 sunt patru soluții particulare corespunzătoare la patru valori arbitrare C_1 , C_2 , C_3 , C_4 ale constantei arbitrare C, atunci are loc relația

$$\frac{y_4 - y_1}{y_4 - y_2} : \frac{y_3 - y_1}{y_3 - y_2} = \frac{C_4 - C_1}{C_4 - C_2} : \frac{C_3 - C_1}{C_3 - C_2} = A \quad (constant).$$

Membrul întâi al ultimei relații se numește raport anarmonic al funcțiilor y_1, y_2, y_3 și y_4 . Proprietatea are loc datorită faptului că o transformare omografică păstrează raportul anarmonic.

Observația 7.2.14 Dacă se cunosc trei soluții particulare y_1, y_2, y_3 ale unei ecuații Riccati, din relația scrisă la observația precedentă, soluția generală rezultă din

$$\frac{y-y_1}{y-y_2}: \frac{y_3-y_1}{y_3-y_2} = C$$

fără a efectua nici o cuadratură.

Exercițiul 7.2.12 Să se integreze ecuațiile diferențiale de tip Riccati de mai jos știind că admit soluțiile particulare indicate alăturat:

$$\mathbf{1}^{0}$$
. $y' = -2xy^{2} + y + \frac{x-1}{x^{2}}$, $y_{1} = \frac{1}{x}$;

2⁰.
$$y' = -\frac{1}{x}y^2 + \frac{4}{x}y + \frac{3}{x}$$
, $y_1 = 1$.

Soluție. 1^0 . Facem schimbarea de funcție

$$y = \frac{1}{x} + \frac{1}{z}, \quad y' = -\frac{1}{x^2} - \frac{z'}{z^2}.$$

Folosind aceste rezultate în ecuație, găsim că funcția z satisface ecuația liniară

$$z' - 3z = 2x.$$

Aflăm mai întâi soluția generală a ecuației omogene asociate ecuației liniare de mai sus, adică a ecuației cu variabile separabile

$$z' - 3z = 0.$$

Soluția generală a ultimei ecuației este

$$z_o = C e^{3x}.$$

Pentru determinarea unei soluții particulare a ecuației liniare neomogene utilizăm metoda lui Lagrange, luând deci pe z_p în forma

$$z_p(x) = C(x)e^{3x}.$$

Funcția necunoscută C(x) se va determina din condiția ca z_p să satisfacă ecuația

$$z'_p(x) - 3 z_p(x) = 2 x.$$

401

Se găsește că derivata funcției C(x) este

$$C'(x) = 2 x e^{3x}.$$

Integrând ultima ecuație cu variabile separate, găsim

$$C(x) = -\frac{2(3x+1)}{9}e^{3x}.$$

Rezultă așadar că soluția particulară căutată este

$$z_p = -\frac{2(3x+1)}{9}.$$

Soluția generală a ecuației liniare în z este $z=z_o+z_p$. Înlocuind rezultatele determinate deducem în cele din urmă că

$$y = \frac{1}{x} + \frac{1}{C e^{3x} - \frac{2(3x+1)}{9}}$$

este soluția generală a ecuației date.

2⁰. Facem substituţia

$$y = 1 + \frac{1}{z} \implies y' = -\frac{z'}{z^2}$$

și ecuația se transformă în

$$-\frac{z'}{z^2} = -\frac{1}{x}\left(1 + \frac{1}{z}\right)^2 + \frac{4}{x}\left(1 + \frac{1}{z}\right) - \frac{3}{x}$$

sau

$$z' + \frac{2}{x}z = \frac{1}{x}$$

cu soluția generală

$$z = e^{-\int \frac{2}{x} dx} \left(C + \int \frac{1}{x} e^{\int \frac{2}{x} dx} dx \right) = 0.$$

Soluția generală a ecuației date este deci

$$y = 1 + \frac{2x^2}{2C + x^2}, \quad x \in \mathbb{R}.$$

Dacă, de exemplu, se dorește determinarea acelei curbe integrale care să treacă prin punctul (1,2), avem

$$2 = 1 + \frac{2}{2C+1} \implies C = \frac{1}{2}$$

și ca urmare soluția căutată este $y = 1 + \frac{2x^2}{1 + x^2}, \ x \in I\!\!R.$

Exemplul 7.2.1 Să se integreze ecuația diferențială Riccati

$$y' = \frac{1}{1+x^3}y^2 + \frac{x^2}{1+x^3}y + \frac{2x}{1+x^3}$$

ştiind că are soluțiile particulare

$$y_1 = x^2$$
, $y_2 = x - 1$, $y_3 = -\frac{1}{x}$

SoluțiConform ultimei observații, soluția generală este dată de

$$\frac{y-x^3}{y-x+1} : \frac{x^3+1}{x^2-x+1} = C \text{ sau } y = \frac{C(1-x^2)+x^2}{1-C(x+1)},$$

de unde vedem că soluția generală este transformare omografică de constanta arbitrară C.

7.3 Ecuații diferențiale algebrice în y'.

Fie ecuația diferențială ordinară de ordinul întâi

$$A_0(x,y)(y')^n + A_1(x,y)(y')^{n-1} + \dots + A_{n-1}(x,y)y' + A_n(x,y) = 0, (7.141)$$

care provine din anularea unui polinom în y' cu coeficienții $A_k(x,y)$ funcții continue de x și y întrun domeniu $D \subset \mathbb{R}^2$ și cu $A_0(x,y) \neq 0$ în D.

Considerată ca o ecuație în y', ecuația dată are n rădăcini de forma

$$f_k(x,y), k = 1, 2, \cdots, n,$$

care sunt funcții de x și y. Fiecărei rădăcini reale îi corespunde ecuația diferențială ordinară de ordinul întâi

$$y' = f(x, y). (7.142)$$

O soluție a ecuației (7.142) este soluție a ecuației (7.141).

Exemplul 7.3.1 Să se afle soluțiile ecuației diferențiale

$$yy'^2 - (1+2xy)y' + 2x = 0.$$

Soluți Ecuația diferențială dată este o ecuație algebrică de gradul doi în variabila y'. Rezolvată în raport cu y' ne dă următoarele două ecuații:

$$y' = \frac{1}{y}; \quad y' = 2x,$$

care au respectiv soluțiile:

$$y^2 = 2x + C_1; \quad y = x^2 + C_2,$$

în care C_1 și C_2 sunt constante arbitrare.

7.4 Ecuații diferențiale de ordinul întâi, nerezolvate în raport cu y', integrabile prin metode elementare

7.4.1 Ecuația diferențială de forma y = f(y')

Teorema 7.4.1 Soluția generală a ecuației diferențiale

$$y = f(y') \tag{7.143}$$

este dată de

$$\begin{cases} x = \int \frac{1}{p} f'(p) dp + C, \\ y = f(p). \end{cases}$$
 (7.144)

Demonstrație. Să punem

$$y' = p \tag{7.145}$$

și să luăm p drept variabilă independentă. Avem:

$$y = f(p) \implies dy = f'(p) dp; \tag{7.146}$$

$$\frac{dy}{dx} = p, \implies dx = \frac{1}{p} dy. \tag{7.147}$$

Din (7.146) şi (7.147) deducem

$$dx = -\frac{1}{p}f'(p)\,dp,\tag{7.148}$$

de unde printr-o cuadratură se obține prima din relațiile (7.144). Cea de a doua relație din (7.144) rezultă din (7.143) și (7.145).

Soluția generală a ecuației diferențiale este dată parametric prin relațiile (7.144) și, din punct de vedere geometric, reprezintă o famile uniparametrică de curbe plane.

Exercițiul 7.4.1 Să se integreze ecuația diferențială

$$y = y'^2 + \ln y', \quad y' > 0.$$

Soluție. Punem y' = p și ecuația devine

$$y = p^2 + \ln p \implies dy = \left(2p + \frac{1}{p}\right)dp.$$

Avem apoi

$$\frac{dy}{dx} = p \implies dx = \frac{1}{p}dy \implies dx = \frac{1}{p}\left(2p + \frac{1}{p}\right)dp.$$

Integrând ultima egalitate, în care considerăm că p > 0, obținem

$$x = \int \left(2 + \frac{1}{p^2}\right) dp = 2p - \frac{1}{p} + C.$$

Din cele deduse constatăm că soluția generală este

$$\begin{cases} x = 2p - \frac{1}{p} + C, \\ y = p^2 + \ln p, \ p > 0. \end{cases}$$

Prin urmare, prin această metodă soluția generală a ecuației diferențiale date se exprimă parametric.

7.4.2 Ecuația diferențială de tipul F(y, y') = 0

Integrarea acestui tip de ecuație diferențială se face cu o cuadratură dacă se cunoaște o reprezentare parametrică a curbei plane F(u, v) = 0. Să presupunem că o asemenea reprezenatre este

$$\left\{ \begin{array}{l} u = \varphi(t), \\ \\ v = \psi(t), \quad t \in [a, b] \subset I\!\!R, \end{array} \right.$$

în care funcțiile φ și ψ le considerăm continue, iar φ să aibă derivata continuă. Având în vedere cine sunt variabilele u și v, avem

$$y = \varphi(t), \quad y' = \psi(t) \implies dx = \frac{1}{\psi(t)}\varphi'(t).$$

Din ultima relație, prin integrare în ambii membri, obținem

$$x = \int \frac{\varphi'(t)}{\psi(t)} dt + C.$$

Prin urmare, soluția generală, reprezentată parametric de

$$\begin{cases} x = \int \frac{\varphi'(t)}{\psi(t)} dt + C, \\ y = \varphi(t), \end{cases}$$

este definită pe orice interval real $[\alpha, \beta] \subset [a, b]$ pe care integrala $\int \frac{\varphi'(t)}{\psi(t)} dt$ are sens.

Exercițiul 7.4.2 Să se integreze ecuația diferențială

$$y^2 + {y'}^2 = 1.$$

Soluție. Reprezentarea parametrică despre care se vorbește în teorie este

$$\begin{cases} y = \sin t, \\ y' = \cos t, \ t \in \mathbb{R}. \end{cases}$$

Din cea de a doua ecuație de mai sus se obține

$$\frac{dy}{dx} = \cos t \implies dx = \frac{1}{\cos t}dy = \frac{1}{\cos t} \cdot \cos tdt = dt \implies x = t + C.$$

Soluția generală a ecuației diferențiale date este

$$\begin{cases} x = t + C, \\ y = \sin t, \ t \in \mathbb{R} \end{cases} \iff y = \sin(x - C), \ x \in \mathbb{R}.$$

În acest exemplu, eliminarea parametrului s-a efectuat simplu.

7.4.3 Ecuația diferențială de forma x = f(y')

Teorema 7.4.2 Soluția generală a ecuației

$$x = f(y'),$$

unde f este o funcție cu derivata continuă întrun interval [a, b], este dată de

$$\begin{cases} x = f(p), \\ y = \int p f'(p) dp + C, p \in [a, b]. \end{cases}$$

Demonstrație. Să punem y'=p și să luăm p ca variabilă independentă. Avem

$$x = f(p) \implies dx = f'(p) dp.$$

Pe de altă parte din y' = p avem pe rând

$$\frac{dy}{dx} = p \implies dy = p \, dx = p \, f'(p) \, dp,$$

de unde obținem pe y printr-o cuadratură

$$y = \int p f'(p) dp + C.$$

Reunind rezultatele de mai sus constatăm că soluția generală a ecuației x = f(y') este dată în forma parametrică din enunțul teoremei.

Exercițiul 7.4.3 Să se integreze ecuația diferențială $x = y' + e^{y'}$.

Soluție. Dacă punem y' = p, din ecuație obținem

$$x = p + e^p \implies dx = (1 + e^p)dp$$
.

Pornind din nou de la notația y'=p și utilizând rezultatul stabilit mai sus, avem

$$\frac{dy}{dx} = p \implies dy = p dx \implies dy = p(1 + e^p)dp.$$

Prin integrarea ultimei egalități, obținem

$$y = \int (p + pe^p)dp = \frac{1}{2}p^2 + (p - 1)e^p + C, \quad p \in \mathbb{R}.$$

Soluția generală a ecuației date este dată parametric de

$$\left\{ \begin{array}{lcl} x & = & p + e^p, \\ \\ y & = & \frac{1}{2}p^2 + (p-1)e^p + C, & p \in I\!\!R. \end{array} \right.$$

Eliminarea parametrului p presupune rezolvarea unei ecuații transcendente.

7.4.4 Ecuația diferențială de tipul F(x, y') = 0

Integrarea aceastei ecuații diferențiale se reduce la o cuadratură dacă se cunoaște o reprezentare parametrică a curbei plane F(u, v) = 0.

Să presupunem că o reprezenatre parametrică a curbei F(u,v)=0 este

$$\begin{cases} u = \varphi(t), \\ v = \psi(t), & t \in [a, b] \subset \mathbb{R}, \end{cases}$$

în care funcțiile φ și ψ sunt continue și φ are derivată continuă. Având în vedere semnificația variabilelor u și v, avem

$$\begin{cases} x = \varphi(t) \Longrightarrow dx = \varphi'(t)dt, \\ y' = \psi(t) \Longrightarrow \frac{dy}{dx} = \psi(t) \Longrightarrow dy = \psi(t)\varphi'(t)dt. \end{cases}$$

Din ultima egalitate, prin integrare, obținem

$$y = \int \psi(t)\varphi'(t)dt + C.$$

Rezultă că soluția generală a ecuației diferențiale este dată de familia de curbe plane

$$\begin{cases} x = \varphi(t), \\ y = \int \psi(t)\varphi'(t)dt + C, & t \in [a, b], \end{cases}$$

unde C este o constantă reală arbitrară.

Soluția generală este definită pe orice interval $[\alpha,\beta]\subset [a,b]$ pe care integrala

$$\int \psi(t)\varphi'(t)dt$$

are sens.

Exercițiul 7.4.4 Să se integreze ecuația diferențială $x^3 + y'^3 - 3xy' = 0$.

Soluție. Trebuie să determinăm o reprezentare parametrică a curbei definită implicit de ecuația

$$u^3 + v^3 - 3uv = 0.$$

Vom căuta o reprezentare parametrică $u=u(t),\,v=v(t)$ cu proprietatea v=tu. Mergând cu această valoare a lui v în ecuație, după simplificare cu u^2 , găsim $u=\frac{3t}{1+t^3}$ și prin urmare $v=\frac{3t^2}{1+t^3}$.

Pentru aflarea soluției generale a ecuației diferențiale date pornim de la $x=\frac{3t}{1+t^3} \text{ și } y'=\frac{3t^2}{1+t^3}.$

Penultima relație rămâne definitivă, în timp din cea de a doua obținem

$$dy = \frac{3t^2}{1+t^3}dx = \frac{3t^2}{1+t^3} \cdot \frac{3(1+t^3)-9t^3}{(1+t^3)^2}dt = \frac{9(1-2t^3)}{(1+t^3)^3} \cdot t^2 dt.$$

Funcția y se determină prin integrare și obținem

$$y = \int \frac{9(1-t^3)}{(1+t^3)^3} \cdot t^2 dt = 9 \int \frac{d(t^3+1)}{(t^3+1)^3} - 6 \int \frac{d(t^3+1)}{(t^3+1)^2}.$$

Astfel, găsim că y are expresia

$$y = -\frac{9}{2} \frac{1}{(1+t^3)^2} + \frac{6}{1+t^3} + C.$$

409

Prin urmare, soluția generală este dată parametric prin

$$\begin{cases} x = \frac{3t}{1+t^3}, \\ y = -\frac{9}{2(1+t^3)^2} + \frac{6}{1+t^3} + C, & t \neq -1. \end{cases}$$

7.4.5 Ecuația diferențială de tip Lagrange

Definiția 7.4.1 O ecuație diferențială de ordinul întâi de forma

$$y = x \varphi(y') + \psi(y'), \tag{7.149}$$

în care membrul al doilea este o funcție liniară de x, cu coeficienți funcții de clasă $C^1(I)$, $I \subset \mathbb{R}$, se numește ecuație diferențială de tip Lagrange sau ecuație Lagrange.

Teorema 7.4.3 Integrarea unei ecuații Lagrange se reduce la integrarea unei ecuații diferențiale liniare de ordinul întâi.

Demonstrație. În (7.149) efectuăm înlocuirea

$$y' = p, \quad p = p(x).$$
 (7.150)

Cu notația (7.150), ecuația (7.149) devine

$$y = x \varphi(p) + \psi(p). \tag{7.151}$$

Derivând (7.97) în raport cu x și ținând seama de partea a doua a relației (7.97), avem

$$\frac{dy}{dx} = \varphi(p) + x\,\varphi'(p)\,\frac{dp}{dx} + \psi'(p)\,\frac{dp}{dx}.\tag{7.152}$$

În ecuația (7.152) înlocuim membrul întâi cu p și avem

$$p = \varphi(p) + x \varphi'(p) \frac{dp}{dx} + \psi'(p) \frac{dp}{dx}$$
 (7.153)

sau

$$\left(x\,\varphi'(p) + \psi'(p)\right)\frac{dp}{dx} + \varphi(p) - p = 0. \tag{7.154}$$

Dacă considerăm p ca variabilă independentă și x ca funcție necunoscută, ecuația (7.154) se scrie în forma

$$\left(\varphi(p) - p\right) \frac{dx}{dp} + x \,\varphi'(p) + \psi'(p) = 0,\tag{7.155}$$

care este o ecuație diferențială liniară de ordinul întâi în x = x(p).

Considerăm întâi că funcția φ este definită pe un subinterval al intervalului I în care ecuația

$$\varphi(p) - p = 0 \tag{7.156}$$

nu are nici o soluție. În acest caz ecuația (7.155) se scrie în forma

$$\frac{dx}{dp} + \frac{\varphi'(p)}{\varphi(p) - p} x = -\frac{\psi'(p)}{\varphi(p) - p}.$$
 (7.157)

Folosind formula de integrare a unei ecuații diferențiale liniare de ordinul întâi, vom avea

$$x = f(p, C). \tag{7.158}$$

Dacă ținem seama de ecuațiile (7.152) și (7.158) obținem soluția generală a ecuației Lagrange sub formă parametrică

$$\begin{cases} x = f(p, C), \\ y = f(p, C) \varphi(p) + \psi(p). \end{cases}$$
 (7.159)

Să studiem acum cazul în care p_0 este o rădăcină reală a ecuației (7.156). În acest caz, ecuația (7.154) admite soluția $p = p_0$. Dacă înlocuim în (7.97) pe p cu p_0 , și ținem cont de (7.156), obținem

$$y = p_0 x + \psi(p_0), \tag{7.160}$$

care este o soluție a ecuației Lagrange (7.149) care nu este conținută în soluția generală (7.159) și deci este soluție singulară.

În legătură cu comportarea curbelor integrale ale ecuației diferențiale de tip Lagrange față de dreapta (7.160) putem avea două situații:

• dacă $\lim_{p\to p_0}|x|=\lim_{p\to p_0}|f(p,C)|=+\infty$, dreapta (7.160) este o direcție asimptotică a curbelor integrale (7.159).

• dacă $\lim_{p\to p_0}|x|=\lim_{p\to p_0}|f(p,C)|=$ finit, (7.160) este soluție singulară a ecuației (7.149).

Exercițiul 7.4.5 Să se integreze ecuația diferențială de tip Lagrange

$$y = x y'^2 + y'^3$$
.

Soluţie. Notăm y' = p, deci $y = xp^2 + p^3$; derivăm în raport cu x,

$$p = 2xp\frac{dp}{dx} + p^2 + 3p^2\frac{dp}{dx}$$

și, în ipoteza $p^2-p\neq 0$, obținem ecuația liniară

$$\frac{dx}{dp} + \frac{2}{p-1}x = -\frac{3p}{p-1},$$

care are soluția generală

$$x = e^{-\int \frac{2}{p-1} dp} \left(C - \int \frac{3p}{p-1} e^{\int \frac{2}{p-1} dp} dp \right).$$

Efectuând integrările, găsim

$$x = \frac{1}{(p-1)^2} (C - p^3 + \frac{3}{2}p^2).$$

Înlocuind expresia lui x ca funcție de p în $y = xp^2 + p^3$ determinăm y ca funcție de p. După calcule elementare, găsim

$$y = \frac{p^2}{(p-1)^2} \left(C - \frac{1}{2}p^2 + p\right).$$

Prin urmare, soluția generală a ecuației date, reprezentată parametric, este

$$\begin{cases} x = \frac{1}{(p-1)^2} \left(C - p^3 + \frac{3}{2} p^2 \right), \\ y = \frac{p^2}{(p-1)^2} \left(C - \frac{1}{2} p^2 + p \right). \end{cases}$$

Ecuația $p^2 - p = 0$ are rădăcinile p = 0 și p = 1, care conduc la soluțiile singulare y = 0, respectiv y = x + 1.

Deoarece pentru $p \to 1$ și $C \neq -\frac{1}{3}$ avem $|x| \to +\infty$, rezultă că dreapta y = x + 1 este direcție asimptotică a curbelor integrale care au $C \neq -\frac{1}{3}$. Dacă $C = -\frac{1}{3}$, curba integrală corespunzătoare se descompune în dreapta y = x + 1 și o curbă algebrică de ordinul al doilea (conică).

Exercițiul 7.4.6 Să se integreze ecuația diferențială

$$y = x y'^2 + y'^2.$$

Soluție. Notând y' = p, ecuația devine $y = x p^2 + p^2$. Derivând în ambii membri în raport cu x și ținând seama că y' = p, obținem

$$p = p^2 + 2xp\frac{dp}{dx} + 2p\frac{dp}{dx}.$$

Pentru $p \neq 0$, ecuația diferențială corespunzătoare este cu variabile separabile. După separarea variabilelor, ecuația devine

$$\frac{dx}{x+1} = \frac{2dp}{1-p},$$

iar integrarea acesteia conduce la

$$x + 1 = \frac{C}{(p-1)^2},$$

de unde rezultă x ca funcție de p.

Înlocuind această valoare a lui x în expresia lui y ca funcție de x și p, găsim

$$y = \frac{Cp^2}{(p-1)^2}.$$

Astfel, soluția generală a ecuației diferențiale date se reprezintă parametric în forma

$$\begin{cases} x = \frac{C}{(p-1)^2} - 1, \\ y = \frac{Cp^2}{(p-1)^2}. \end{cases}$$

Dacă p=0, din ecuația inițială deducem y=0 care este soluție singulară deoarece

$$\lim_{p \to 0} |x| = \lim_{p \to 0} |f(p, C)| = \lim_{p \to 0} \frac{C}{(p-1)^2} - 1 = C - 1 = \text{ finit.}$$

Curba integrală corespunzătoare soluției singulare este axa Ox.

7.4.6 Ecuația diferențială de tip Clairaut

Definiția 7.4.2 O ecuație diferențială de ordinul întâi de forma

$$y = xy' + \psi(y'), \tag{7.161}$$

în care ψ este o funcție de variabila reală y', de clasă $C^1(I)$, $I \subset \mathbb{R}$, se numește ecuație diferențială de tip Clairaut sau ecuație Clairaut.

Teorema 7.4.4 Ecuația Clairaut (7.161) are soluția generală

$$y = Cx + \psi(C) \tag{7.162}$$

și admite o soluție singulară reprezentată parametric de

$$\begin{cases} x = -\psi'(p), \\ y = -p\psi'(p) + \psi(p) \end{cases}$$

$$(7.163)$$

care, din punct de vedere geometric, este înfășurătoarea dreptelor din (7.162).

Demonstrație. După cum se vede o ecuație Clairaut este o ecuație Lagrange particulară, anume când $\varphi(p) = p$. Pentru integrarea ei procedăm la fel ca pentru ecuația diferențială de tip Lagrange. Înlocuim pe y' cu p

$$y = xp + \psi(p),$$

apoi derivăm în raport cu x și ținem seama că p este funcție de x. Avem

$$p = p + x \frac{dp}{dx} + \psi'(p) \frac{dp}{dx} \implies (x + \psi'(p)) \frac{dp}{dx} = 0.$$

Din ultima egalitate desprindem două posibiltăți:

- $\frac{dp}{dx} = 0$, adică p = C. Înlocuind p = C în (7.161), obţinem soluţia generală (7.162). Aşadar, soluţia generală a ecuaţiei Clairaut reprezintă geometric o familie de drepte a cărei ecuaţie se obţine înlocuind în ecuaţia diferenţială (7.161) pe y' cu o constantă C;
- $x + \psi'(p) = 0$, de unde $x = -\psi'(p)$ și dacă înlocuim în (7.161) acest rezultat, obținem o curbă integrală a ecuației (7.161) reprezentată parametric de (7.163). Din punct de vedere geometric, curba integrală (7.163) este înfășurătoarea familiei de drepte (7.162) deoarece ecuațiile ei se obținprin eliminarea constantei C între (7.162) și derivata în raport cu C a lui (7.162).

Exercițiul 7.4.7 Să se integreze ecuația diferențială de tip Clairaut

$$y = xy' - e^{y'}.$$

Soluți Punem y'=p și rescriem ecuația dată în forma $y=x\,p-e^p$. Diferențiind–o, obținem

$$dy = pdx + xdp - e^p dp.$$

Cum dy = pdx, din ultimul rezultat se deduce $(x - e^p)dp = 0$. În acest fel, sau dp = 0, sau $x = e^p$. Dacă luăm dp = 0, atunci p = C; înlocuind această valoare a lui p în egalitatea $y = px - e^p$, obținem soluția generală în forma

$$y = Cx - e^C.$$

Dacă luăm $x=e^p$, atunci $y=p\,e^p-e^p=(p-1)e^p$ și ajungem la soluția singulară

$$\begin{cases} x = e^p, \\ y = (p-1)e^p, p \in \mathbb{R}. \end{cases}$$

Prin eliminarea parametrului p din soluția singulară, care are valoarea $p = \ln x$, găsim că ecuația carteziană explicită a soluției singulare este

$$y = x(\ln x - 1).$$

Să demonstrăm că soluția singulară este înfășurătoarea familei de drepte ce reprezintă soluția generală a ecuației date, adică ar trebui să demonstrăm că tangenta la soluția singulară, întrun punct (x_0, y_0) al ei, are forma

415

unei drepte identice cu cea din soluția generală a ecuației diferențiale date. Ecuația tangentei este

$$y - y_0 = y_0'(x - x_0)$$
, sau $y - x_0(\ln x_0 - 1) = (x - x_0) \ln x_0$

care, după reducerea termenilor asemenea, devine $y = x \ln x_0 - x_0$. Dacă aici punem $\ln x_0 = C$, ecuația tangentei la curba integrală ce provine din soluția singulară, întrun punct (x_0, y_0) al ei, este $y = Cx - e^C$, adică tocmai curba integrală ce provine din soluția generală.

7.4.7 Ecuația diferențială de forma y = f(x, y')

Ne propunem să arătăm cum se integrează ecuațiile diferențiale de forma

$$y = f(x, y'),$$
 (7.164)

unde f este o funcție diferențiabilă pe un domeniu plan. Dacă notăm y'=p ecuația devine

$$y = f(x, p)$$

care, derivată în raport cu x, unde se ține cont de faptul că p=p(x), conduce la

$$p = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{dp}{dx} \tag{7.165}$$

adică la o ecuație rezolvată în raport cu $\frac{dp}{dx}$.

Dacă putem integra (7.165) avem

$$p = \varphi(x, C)$$

care, introdusă în (7.164), ne conduce la soluția generală căutată

$$y = f(x, \varphi(x, C)).$$

Exercițiul 7.4.8 Să se integreze ecuația diferențială

$$y = y'^2 - y'x + \frac{x^2}{2}.$$

Soluţie. Punem y' = p, deci $y = p^2 - px + \frac{x^2}{2}$, derivăm în raport cu x şi ţinem seama că p = p(x):

$$p = 2p \frac{dp}{dx} - x \frac{dp}{dx} - p + x \implies (2p - x)(1 - \frac{dp}{dx}) = 0.$$

Dacă $\frac{dp}{dx}=1$, atunci avem p=x+C care introdus în ecuația $y=p^2-px+\frac{x^2}{2}$ conduce la soluția generală

$$y = C^2 + C x + \frac{1}{2} x^2, \quad x \in \mathbb{R}.$$

Dacă x=2p, din aceeași ecuație folosită mai sus deducem $y=p^2$. Prin urmare, obținem soluția reprezentată parametric

$$\begin{cases} x = 2p, \\ y = p^2, p \in \mathbb{R}, \end{cases}$$

care, nefiind obţinută din soluţia generală de mai sus pentru nici o valoare a lui C, este soluţie singulară. Se observă că soluţia singulară, care este o parabolă, este înfăşurătoarea familiei de curbe integrale din soluţia generală care sunt tot parabole cu axa de simetrie paralelă cu axa Oy.

Exercițiul 7.4.9 Să se integreze ecuația diferențială

$$xy'^2 + (y - 3x)y' + y = 0.$$

Soluție. Ecuația diferențială dată se poate scrie în forma

$$y = x \cdot \frac{3y' - y'^2}{1 + y'}$$

și se încadrează în tipul studiat mai sus.

Inlocuind y' = p, obtinem

$$y = x \cdot \frac{3p - p^2}{1 + p}. (7.166)$$

Derivând (7.166) în raport cu x, obținem ecuația

$$(p+1)\left(\frac{2}{x} + \frac{p+3}{p(p+1)} \cdot \frac{dp}{dx}\right) = 0,$$

din care rezultă p=1 precum și ecuația

$$\frac{p+3}{p(p+1)}dp + \frac{2}{x}dx = 0, (7.167)$$

care este o ecuație diferențială cu variabile separate.

Integrând, obținem

$$x^2 = C\frac{(p+1)^2}{p^3}. (7.168)$$

Înlocuind (7.168) în ceea ce se obține din (7.166) prin ridicare la pătrat, găsim

$$y^2 = C\frac{(p-3)^2}{p}. (7.169)$$

Eliminând pe p între (7.168) și (7.169), determinăm soluția generală sub formă implicită

$$(xy^{2} + Cy + 3Cx)(y^{3} + 15Cy - 27Cx) + C^{2}(y - 9x)^{2} = 0.$$
 (7.170)

Considerând acum p=1 și mergând cu această valoare a lui p în ecuația (7.166), găsim că y=x este soluție a ecuației diferențiale inițiale. Această soluție nu se poate obține din soluția generală și prin urmare este soluție singulară.

7.4.8 Ecuația diferențială de tipul x = f(y, y')

La fel ca la celelalte ecuații diferențiale studiate în acest paragraf, se face notația y' = p, deci ecuația dată devine

$$x = f(y, p). \tag{7.171}$$

Derivând, de data aceasta în raport cu y, în ambii membri ai lui (7.171) și ținând cont că x și p pot fi considerate funcții de y, găsim

$$\frac{1}{p} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial p} \frac{dp}{dy}.$$
 (7.172)

Dacă putem integra (7.172), care este o ecuație diferențială în funcția necunoscută p, cu variabila independentă y, obținem

$$p = \varphi(y, C). \tag{7.173}$$

Introducerea lui (7.173) în (7.171) conduce la soluția generală

$$x = f(y, \varphi(y, C)). \tag{7.174}$$

Exercițiul 7.4.10 Să se integreze ecuația diferențială

$$y'^3 - 4xyy' + 8y^2 = 0. (7.175)$$

Soluţie. Se observă că

$$x = \frac{{y'}^2}{4y} + \frac{2y}{y'} \tag{7.176}$$

și deci ecuația este de tipul celei studiată la acest punct.

Înlocuind y' = p și derivând în raport cu y, după reducerea termenilor asemenea și grupări convenabile se ajunge la

$$(p^3 - 4y^2)\left(2y\frac{dp}{dy} - p\right) = 0. (7.177)$$

Dacă considerăm cazul când se anulează cel de al doilea factor, adică $2y\frac{dp}{du}-p=0$, integrând ecuația corespunzătoare găsim

$$p = C\sqrt{y}. (7.178)$$

Înlocuind această valoare a lui p în ecuația x=f(y,p), deducem

$$C^3 - 4Cx + 8\sqrt{y} = 0 \implies y^2 = C_1(x - C_1)^2, \quad (4C_1 = C^2).$$
 (7.179)

Celălalt factor egalat cu zero conduce în cele din urmă la parabola cubică $y=\frac{4}{27}x^3$, care este o soluție singulară.

Capitolul 8

Ecuații diferențiale ordinare de ordin n integrabile prin cuadraturi

În acest capitol vom prezenta tipuri de ecuații diferențiale ordinare de ordin superior cărora li se pot reduce ordinul și care apoi pot fi integrate prin operații de cuadrare.

8.1 Ecuații diferențiale de tipul $y^{(n)} = f(x)$

Considerăm ecuație diferențială de ordinul n simplă

$$y^{(n)} = f(x), \tag{8.1}$$

unde f este o funcție continuă pe un interval I.

Ea se integrează ușor prin cuadraturi. Într-adevăr, din ecuația (8.1) obținem prin integrări succesive

$$y = \frac{1}{(n-1)!} \int_{x_0}^x (x-t)^{n-1} f(t) dt + \sum_{k=0}^{n-1} \frac{C_k}{k!} (x-x_0)^k, \ x \in I,$$
 (8.2)

unde C_0 , C_1 , \cdots , C_{n-1} sunt constante arbitrare, iar x_0 este un punct oarecare, însă fix din intervalul I.

Exercițiul 8.1.1 Să se afle soluția ecuației diferențiale y''' = 24x care satisface condițiile inițiale y(0) = 1, y'(0) = -1, y''(0) = 2.

Soluție. Prin integrări succesive, obținem soluția generală

$$y = x^4 + C_1 \frac{x^2}{2} + C_2 x + C_3. (8.3)$$

Impunând soluției (8.3) să satisfacă condițiile inițiale, găsim $C_3=1,$ $C_2=-1$ și $C_1=1.$

Prin urmare, soluția problemei Cauchy pentru ecuația diferențială dată este $y=x^4+x^2-x+1$.

8.2 Ecuația diferențială $F(x, y^{(n)}) = 0$

Teorema 8.2.1 Fie ecuația diferențială

$$F(x, y^{(n)}) = 0. (8.4)$$

Dacă se cunoaște o reprezentare parametrică a curbei plane F(u,v)=0,

$$\begin{cases}
 u = \varphi(t), \\
 v = \psi(t),
\end{cases}$$
(8.5)

cu φ şi ψ funcții continue cu derivate continue pe un interval I, integrala generală pe I a ecuației diferențiale (8.4) se obține prin n cuadraturi.

Demonstrație. Din reprezentarea parametrică (8.5), deducem mai întâi

$$\begin{cases} x = \varphi(t), \\ y^{(n)} = \psi(t), \end{cases}$$
(8.6)

și apoi

$$d(y^{(n-1)}) = y^{(n)}dx = \varphi'(t)\psi(t)dt.$$

Din ultima relație, printr-o cuadratură, obținem

$$y^{(n-1)} = \int \varphi'(t)\psi(t)dt + C_0 = \Phi_1(t) + C_0.$$
 (8.7)

Relația (8.7) poate fi scrisă în forma

$$d(y^{(n-2)}) = (\Phi_1(t) + C_0)\varphi'(t)dt$$
(8.8)

Capitolul 8 – Ecuații diferențiale de ordin n integrabile prin cuadraturi 421

și după integrare aceasta ne dă

$$y^{(n-2)} = \int \Phi_1(t)\varphi'(t)dt + C_0\varphi(t) + C_1.$$

Repetând operația de n ori obținem pe y ca funcție de t

$$y = \Phi(t) + P_{n-1}(\varphi(t)), \quad t \in I, \tag{8.9}$$

unde P_{n-1} este un polinom de grad n-1, cu coeficienți reali arbitrari, având variabila funcția φ . Relația (8.9) împreună cu prima relație din (8.6) ne dă integrala generală sub formă parametrică.

Observația 8.2.1 Dacă ecuația (8.4) definește implicit pe x prin relația

$$x = f(y^{(n)}), (8.10)$$

atunci o reprezentare parametrică este dată de

$$\begin{cases} y^{(n)} = t, \\ x = f(t). \end{cases}$$
(8.11)

Din prima relație (8.11), găsim

$$y = \frac{t^{n+1}}{(n+1)!} + C_1 \frac{t^{n-1}}{(n-1)!} + C_2 \frac{t^{n-2}}{(n-2)!} + \cdots, + C_{n-1}t + C_n.$$
 (8.12)

Cea de a doua relație din (8.11) și cu (8.12) dau o reprezentare parametrică pentru soluția generală a ecuației diferențiale (8.4) în cazul particular când din ecuația F(u, v) = 0 se poate explicita v ca funcție de u.

Exercițiul 8.2.1 Să se integreze ecuația diferențială

$$x = y'' + \ln y'', \quad y'' > 0.$$
 (8.13)

Soluție. Ecuația dată se încadrează în Observația 8.2.1. Cu notația y'' = t avem că $x = t + \ln t$. Apoi:

$$y' = \int y'' dx = \int t(1 + \frac{1}{t}) dt = \frac{1}{2}t^2 + t + C_1;$$

$$y = \int y' dx = \int \left(\frac{1}{2}t^2 + t + C_1\right) \left(1 + \frac{1}{t}\right) dt + C_2.$$

Din cele deduse mai sus rezultă că soluția generală a ecuației diferențiale (8.13) este dată parametric de

$$\begin{cases} x = t + \ln t, \\ y = \frac{1}{6}t^3 + \frac{3}{4}t^2 + C_1(t + \ln t) + t + C_2, & t > 0, \end{cases}$$

de unde vedem că ea depinde de două constante arbitrare. Dacă din prima ecuație se poate determina în mod unic t ca funcție de x, înlocuind rezultatul în expresia lui y ca funcție de t se poate obține soluția generală în forma $y = g(x, C_1, C_2)$.

8.3 Ecuația diferențială $F(y^{(n-1)}, y^{(n)}) = 0$

Teorema 8.3.1 Fie ecuația diferențială

$$F(y^{(n-1)}, y^{(n)}) = 0. (8.14)$$

Dacă se cunoaște o reprezentare parametrică a curbei plane F(u, v) = 0,

$$\begin{cases} u = \varphi(t), \\ v = \psi(t), \end{cases}$$
(8.15)

 $cu \varphi, \psi \ si \varphi' \ funcții \ continue, \ iar \psi(t) \neq 0 \ pe \ un \ interval \ I, \ integrala \ generală pe I \ a \ ecuației \ diferențiale (8.14) se \ obține prin n \ cuadraturi.$

Demonstrație. Din reprezentarea parametrică (8.15) putem scrie:

$$y^{(n-1)} = \varphi(t), \quad y^{(n)} = \psi(t), \quad t \in I;$$

 $y^{(n-1)} = \varphi(t), \quad d(y^{(n-1)}) = \psi(t)dx, \quad t \in I;$
 $dx = \frac{\varphi'(t)}{\psi(t)}dt.$

Din ultima relație, printr-o cuadratură, obținem

$$x = \int \frac{\varphi'(t)}{\psi(t)} dt + C_0 = \Phi(t) + C_0.$$
 (8.16)

Capitolul 8 – Ecuații diferențiale de ordin n integrabile prin cuadraturi 423

Avem aşadar

$$\begin{cases} x = \Phi(t) + C_0, \\ y^{(n-1)} = \varphi(t), \end{cases}$$

și am redus problema integrării la acea rezolvată la punctul precedent. Mai precis, avem

$$d(y^{(n-2)}) = \varphi(t)dx = \frac{\varphi(t)\varphi'(t)}{\psi(t)}dt,$$

de unde, printr-o cuadratură, găsim

$$y^{(n-2)} = \int \frac{\varphi(t)\varphi'(t)}{\psi(t)} dt + C_1.$$

Procedeul continuă și după n-2 cuadraturi se obține integrala generală sub formă parametrică.

Exercițiul 8.3.1 Să se integreze ecuația diferențială de ordinul trei

$$y'''^2 + y''^2 = 1.$$

Soluţie. O reprezentare parametrică a ecuaţiei $u^2+v^2=1$ este $u=\sin t,\ v=\cos t$, de unde deducem $y''=\sin t,\ y'''=\cos t$. Avem d(y'')=y'''dx, sau $\cos t \, dt=\cos t \, dx$, deci $dx=dt\implies x=t+C_1$. Din $y''=\sin t$ şi $x=t+C_1$ obţinem pe rând

$$y'' = \sin(x - C_1),$$

$$y' = -\cos(x - C_1) + C_2,$$

$$y = -\sin(x - C_1) + C_2x + C_3, x \in \mathbb{R}.$$

Ultima funcție de mai sus reprezintă soluția generală a ecuației date.

8.4 Ecuația diferențială $F(y^{(n-2)}, y^{(n)}) = 0$

Teorema 8.4.1 Fie ecuația diferențială de ordinul n de forma particulară

$$F(y^{(n-2)}, y^{(n)}) = 0. (8.17)$$

Dacă se cunoaște o reprezentare parametrică a curbei plane F(u, v) = 0,

$$\begin{cases} u = \varphi(t), \\ v = \psi(t), \end{cases}$$
(8.18)

unde φ , ψ şi φ' sunt funcții continue pe un interval $I \subset \mathbb{R}$, atunci integrala generală a ecuației diferențiale (8.17) se obține prin n cuadraturi.

Demonstrație. Din ecuațiile parametrice (8.18) avem

$$y^{(n-2)} = \varphi(t), \quad y^{(n)} = \psi(t)$$
 (8.19)

sau

$$d(y^{(n-1)}) = y^{(n)}dx, \quad d(y^{(n-2)}) = y^{(n-1)}dx,$$
 (8.20)

din care, evaluând pe dx și egalând rezultatele, deducem

$$\frac{d(y^{(n-1)})}{y^{(n)}} = \frac{d(y^{(n-2)})}{y^{(n-1)}}. (8.21)$$

Folosind (8.19) în (8.21), avem $y^{(n-1)}d(y^{(n-1)})=\psi(t)\varphi'(t)dt$. Integrând această ecuație diferențială, obținem $[y^{(n-1)}]^2=2\int \psi(t)\varphi'(t)dt+C_1$, din care, mai departe, găsim

$$y^{(n-1)} = \pm \sqrt{2 \int \psi(t) \varphi'(t) dt + C_1}.$$
 (8.22)

Relația (8.22) împreună cu prima relație din (8.19) arată că ecuația dată s-a redus la tipul studiat la punctul precedent.

Exercițiul 8.4.1 Să se determine soluțiile ecuației diferențiale

$$y'''y' = y''^2.$$

Soluție. Se observă că ecuația dată se mai scrie în forma

$$\frac{y'''}{y''} = \frac{y''}{y'} \Longrightarrow \ln y'' = \ln y' + \ln C_1 \Longrightarrow y'' = C_1 y' \Longrightarrow d(y') = d(C_1 y),$$

din care rezultă ecuația diferențială cu variabile separabile $y' = C_1 y + C_2$. După separarea variabilelor, obținem

$$\frac{dy}{C_1 y + C_2} = dx \Longrightarrow \ln(C_1 y + C_2) = C_1(x + C_3) \Longrightarrow C_1 y + C_2 = e^{C_1(x + C_3)}$$

și în acest mod s—a obținut soluția generală a ecuației date sub formă explicită în care intervin trei constante arbitrare.

Capitolul 9

Ecuații diferențiale ordinare care admit micșorarea ordinului

9.1 Ecuația $F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0$

Teorema 9.1.1 Ecuația diferențială ordinară de ordinul n

$$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0, \tag{9.1}$$

 \hat{n} care lipsesc funcția necunoscută y și derivatele sale până la ordinul k-1, prin schimbarea de funcție

$$y^{(k)} = u (9.2)$$

se transformă în ecuația diferențială de ordinul n-k

$$F(x, u, u', \dots, u^{(n-k)}) = 0.$$
 (9.3)

Demonstrație. Dacă punem $y^{(k)}=u$, obținem relațiile

$$y^{(k+1)} = u', \ y^{(k+2)} = u'', \dots, \ y^{(n)} = u^{(n-k)},$$

pe care dacă le înlocuim în (9.1) obținem (9.3). Dacă reuşim să integrăm pe (9.3), deci să obținem soluția generală

$$u(x) = \varphi(x, C_1, C_2, \cdots, C_{n-k}),$$

integrarea ecuației (9.1) se reduce la integrarea ecuației de ordinul k

$$y^{(k)} = \varphi(x, C_1, C_2, \cdots, C_{n-k}),$$

care este de tipul uneia studiate anterior.

Exercițiul 9.1.1 Să se găsească soluția generală a ecuației

$$x y^{(4)} - y^{(3)} = 2 x^3 (9.4)$$

și apoi să se determine acea soluție care satisface condițiile:

$$y(1) = 1; y'(1) = 1; y''(1) = 0; y^{(3)}(1) = 0.$$

Soluție. Dacă punem $y^{(3)} = u$, se obține ecuația în u

$$x u' - u = 2 x^3,$$

care este o ecuație diferențială liniară de ordinul întâi neomogenă cu soluția generală

$$u = C_1 x + x^3.$$

Revenind la funcția inițială, obținem ecuația diferențială de ordinul trei

$$y^{(3)} = C_1 x + x^3.$$

Integrând succesiv ultima ecuație, avem:

$$y'' = \frac{1}{2}C_1x^2 + \frac{1}{4}x^4 + C_2;$$

$$y' = \frac{1}{6}C_1x^3 + \frac{1}{20}x^5 + C_2x + C_3;$$

$$y = \frac{1}{24}C_1x^4 + \frac{1}{120}x^6 + \frac{1}{2}C_2x^2 + C_3x + C_4, \quad x \in \mathbb{R}.$$

Ultima relație este soluția generală a ecuației din enunț.

Impunând condițiile inițiale, obținem un sistem liniar, neomogen de 4 ecuații cu necunoscutele C_1 , C_2 , C_3 , C_4 . Rezolvând acest sistem, găsim

$$C_1 = -1 = 0$$
, $C_2 = \frac{1}{4}$, $C_3 = \frac{13}{15}$, $C_4 = \frac{1}{24}$.

Prin urmare, soluția care îndeplinește condițiile inițiale este

$$y(x) = \frac{1}{120}x^6 - \frac{1}{24}x^4 + \frac{1}{8}x^2 + \frac{13}{15}x + \frac{1}{24}.$$

9.2 Ecuația $F(y, y', y'', \dots, y^{(n)}) = 0$

Teorema 9.2.1 Fie ecuația diferențială de ordinul n de forma

$$F(y, y', y'', \dots, y^{(n)}) = 0.$$
 (9.5)

Prin transformarea y' = p și luând pe y ca variabilă independentă, ecuației date i se paote reduce ordinul cu o unitate.

Demonstrație. Transformarea care urmează să o efectuăm se poate scrie $\frac{dy}{dx} = p$. Derivând această egalitate în raport cu x obţinem succesiv:

$$\begin{split} \frac{d^2y}{dx^2} &= \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p \cdot \frac{dp}{dy}; \\ \frac{d^3y}{dx^3} &= \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d}{dx} \left(p \cdot \frac{dp}{dy} \right) = \frac{d}{dy} \left(p \cdot \frac{dp}{dy} \right) \cdot \frac{dy}{dx} = \\ &= p \cdot \left(\frac{dp}{dy} \right)^2 + p^2 \cdot \frac{d^2p}{dy^2}. \end{split}$$

Derivatele de ordin 4 și mai mare se calculează în mod asemănător.

Analizând aceste derivate, constatăm că derivata de ordinul k a funcției y în raport cu x de k—ori se obține cu ajutorul funcției p și ale derivatelor acesteia în raport cu variabila y până la ordinul k-1.

Inlocuirea în (9.5) a tuturor derivatelor astfel calculate conduce la o ecuație diferențială de ordin n-1 în funcția necunoscută p=p(y).

Exercițiul 9.2.1 Să se integreze ecuația diferențială

$$yy'' + y'^2 + y^2 = 0.$$

Soluție. Procedăm conform demonstrației de mai sus. Avem $y'=p, y''=p\frac{dp}{dy}$. Înlocuind aceste derivate în ecuație, obținem

$$y p \frac{dp}{du} + p^2 + y^2 = 0,$$

care este o ecuație diferențială omogenă pentru că se poate scrie în forma

$$\frac{dp}{dy} = -\frac{1 + \left(\frac{p}{y}\right)^2}{\frac{p}{y}}.$$

După efectuarea schimbării $p=yz \implies \frac{dp}{dy}=y\frac{dz}{dy}+z$ în ultima ecuație diferențială, urmată de separarea variabilelor, aceasta devine

$$\frac{dy}{y} = -\frac{z\,dz}{1+2z^2}.$$

Soluția generală a ultimei ecuații diferențiale este

$$y^4 = \frac{C_1}{1 + 2z^2}.$$

Revenind la p, soluția de mai sus se poate scrie

$$y^2 = \frac{C_1}{1 + 2\,p^2}$$

din care deducem

$$p^2 = \frac{1}{2} \cdot \frac{C_1 - y^4}{y^2}$$

care mai departe implică

$$\frac{dy}{dx} = \pm \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{C_1 - y^4}}{y}.$$

Ultimele ecuații obținute sunt cu variabile separabile. Efectuând separarea variabilelor, obținem

$$\frac{y\,dy}{\sqrt{C_1-y^4}} = \pm\,\frac{dx}{\sqrt{2}},$$

care integrate dau soluțiile

$$\pm \frac{x}{\sqrt{2}} + C_2 = \frac{1}{2} \cdot \arcsin \frac{y^2}{\sqrt{C_1}}.$$

Soluția generală depinde de două constante arbitrare deoarece ecuația diferențială ordinară dată este de ordinul al doilea.

9.3 Ecuaţia $F(x, y, y', y'', \dots, y^{(n)}) = 0$, omogenă în $y, y', \dots, y^{(n)}$

Teorema 9.3.1 Fie ecuatia diferentială de ordinul n de forma

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$
(9.6)

omogenă în variabilele $y, y', \dots, y^{(n)}$. Prin schimbarea de funcție $\frac{y'}{y} = u$ ordinul ecuației se reduce cu o unitate.

Demonstrație. Din faptul că ecuația diferențială (9.6) este omogenă în variabilele $y, y', \dots, y^{(n)}$ rezultă că ea se poate scrie în forma

$$G\left(x, \frac{y'}{y}, \frac{y''}{y}, \cdots, \frac{y^{(n)}}{y}\right) = 0.$$
 (9.7)

Făcând substituția y' = y u, obținem succesiv:

$$y'' = (yu)' = y'u + yu' = y(u^2 + u');$$

$$y''' = (y(u^2 + u'))' = y'(u^2 + u') + y(2uu' + u'') = y(u^3 + 3uu' + u'').$$

Derivatele următoare ale funcției y se calculează asemănător.

Din aceste calcule deducem că raportul dintre derivata de ordinul k a funcției y și funcția y este o expresie în care apar funcția u și derivatele până la ordinul k-1, deci dacă înlocuim aceste rapoarte în (9.7) obținem o ecuație diferențială de ordinul n-1 în funcția necunoscută u care depinde de aceeași variabilă x.

Exercițiul 9.3.1 Să se integreze ecuația diferențială

$$x^2yy'' = (y - xy')^2.$$

Soluție. Tipul acestei ecuații se încadrează în cel studiat mai sus pentru că funcția $x^2yy'' - (y - xy')^2$ este un polinom omogen de gradul al doilea în variabilele y, y' și y''. Dacă facem schimbarea de funcție y' = uy obținem $y'' = y(u^2 + u')$ și ecuația se transformă în

$$x^{2}(u^{2} + u') = (1 - xu)^{2} \implies x^{2}u' + 2xu = 1,$$

care este o ecuație liniară cu soluția generală

$$u = \frac{1}{x} + \frac{C_1}{x^2}.$$

Amintindu—ne cine este funcția u, din ultimul rezultat obținem ecuația diferențială

$$\frac{y'}{y} = \frac{1}{x} + \frac{C_1}{x^2},$$

care este o ecuație cu variabile separate. Integrarea ei conduce la

$$\ln y = \ln x - \frac{C_1}{x} + C_2 \implies y = x e^{C_2 - C_1/x},$$

unde x aparține unui interval I cuprins în intervalul $(0, +\infty)$.

9.4 Ecuația $F(x,y,\frac{dy}{dx},\frac{d^2y}{dx^2},\cdots,\frac{d^ny}{dx^n})=0,$ omogenă în $x,y,dx,dy,d^2y,\cdots,d^ny$

Teorema 9.4.1 Fie ecuația diferențială de ordinul n de forma

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \cdots, \frac{d^ny}{dx^n}\right) = 0$$
(9.8)

omogenă în variabilele $x,y,dx,dy,d^2y,\cdots,d^ny$. Prin schimbarea de variabilă și de funcție

$$|x| = e^t, \quad \frac{y}{x} = u \tag{9.9}$$

ordinul ecuației se reduce cu o unitate.

Demonstrație. Din faptul că ecuația dată este omogenă rezultă că ea se poate scrie în forma

$$G\left(\frac{y}{x}, y', xy'', x^2y''', \cdots, x^{n-1}y^{(n)}\right) = 0.$$
 (9.10)

În ipoteza că intervalul I pe care se caută soluțiile ecuației (9.8) este inclus în intervalul $(0, +\infty)$, facem schimbarea de variabilă și de funcție

$$x = e^t, \quad \frac{y}{x} = u, \quad t \in J \subset \mathbb{R}, \quad u = u(t).$$
 (9.11)

Constatăm prin calcul că obținem succesiv:

Constatant prin carcui ca obţinem succesiv:
$$\begin{cases}
y' = \frac{dy}{dx} = \frac{d}{dx}(ux) = x\frac{du}{dx} + u = x\frac{du}{dt}\frac{dt}{dx} + u = \frac{du}{dt} + u; \\
xy'' = x\frac{d}{dx}\left(\frac{du}{dt} + u\right) = x\frac{d}{dt}\left(\frac{du}{dt} + u\right)\frac{dt}{dx} = \frac{d^2u}{dt^2} + \frac{du}{dt}; \\
x^2y''' = \frac{d^3u}{dt^3} - \frac{du}{dt}.
\end{cases} (9.12)$$

Continuând calculele pentru a determina expresia $x^k y^{(k+1)}$, $k \ge 3$, ajungem la concluzia că aceasta se exprimă în funcție numai de derivatele până la ordinul k+1 ale funcției u. Folosind (9.11) și expresiile (9.12) ale termenilor de forma $x^s y^{(s+1)}$, $s \in \overline{1, n-1}$, constatăm că (9.10) devine o ecuație de forma

$$H\left(u, \frac{du}{dt}, \frac{d^2u}{dt^2}, \cdots, \frac{d^nu}{dt^n}\right) = 0, \tag{9.13}$$

care este o ecuație de forma (9.6) despre care știm că, cu schimbarea $\frac{du}{dt} = p$, admite o reducere a ordinului cu o unitate.

Dacă intervalul $I \subset (-\infty, 0)$, se fac schimbările

$$x = -e^t$$
, $\frac{y}{x} = u$, $t \in J \subset \mathbb{R}$, $u = u(t)$

și raționamentul decurge asemănător, în final ajungând tot la o ecuație de forma (9.13).

Exercițiul 9.4.1 Să se integreze ecuatia diferențială

$$x^3y'' + xyy' - y^2 = 0$$

pe un interval I cuprins în intervalul $(0, +\infty)$.

Soluție. Dacă folosim notațiile lui Leibniz pentru derivatele unei funcții reale de o variabilă reală constatăm că ecuația dată se scrie sub forma echivalentă

$$x^3 d^2y + x y dx dy - y^2 dx^2 = 0,$$

de unde se observă că ecuația este polinom omogen de grad 4 în variabilele x, y, dx, dy și d^2y . Conform teoriei prezentată la acest punct, efectuând înlocuirile

$$x = e^t$$
, $y = x u$, $u = u(t)$,

deducem că derivata y' și termenul xy'' se exprimă prin

$$y = u + u', \quad xy'' = u' + u''.$$

Înlocuind în ecuație, obținem

$$e^{2t}(u' + u'') + e^{2t}u(u + u') - e^{2t}u^2 = 0,$$

de unde, după simplificarea cu e^{2t} , deducem ecuația diferențială

$$u'' + u' + uu' = 0.$$

Trecând la funcția p prinu'=p deducem că $u''=p\,p'$ și ecuația diferențială dată se transformă în

$$p(p'+1+u) = 0. (9.14)$$

Considerând că p = 0 obținem u' = 0, deci $u = C_1$ și de aici rezultă că $y = C_1 x$ este o primă famile de soluții ale ecuației.

Anularea celui de al doilea factor din (9.14) conduce la

$$p'+1+u=0 \Longrightarrow \frac{dp}{du}+1+u=0 \Longrightarrow p=-u^2-u-A_1.$$

Punând în ultimul rezultat $p = \frac{du}{dx}$, constatăm că acesta devine

$$\frac{du}{dx} = -u^2 - u - A_1,$$

care este o ecuație diferențială de tip Riccati cu soluția particulară u=k, unde k este o constantă reală, rădăcină a ecuației algebrice $k^2+k+A_1=0$.

În cazul $1-4A_1>0$ ecuația Riccati admite două soluții reale $u_1=k_1$ și $u_2=k_2$. Dacă efectuăm schimbarea de funcție

$$v = \frac{u - k_1}{u - k_2},$$

ecuația Riccati devine

$$(k_1 - k_2)v' = (4A_1 - 1)v,$$

care este o ecuație cu variabile separabile cu soluția generală

$$v = A_2 e^{\frac{4A_1 - 1}{k_1 - k_2}x}.$$

Dacă avem în vedere că $\frac{4A_1-1}{k_1-k_2}=-(k_1-k_2)$ rezultă că putem scrie

$$ve^{(k_1-k_2)x} = A_2 \Longrightarrow \frac{u-k_1}{u-k_2}e^{(k_1-k_2)x} = A_2 \Longrightarrow \frac{ux-k_1x}{ux-k_2x}e^{(k_1-k_2)x} = A_2.$$

Însă ux = y, astfel că ultima egalitate se scrie

$$\frac{y - k_1 x}{y - k_2 x} \cdot e^{(k_1 - k_2)x} = A_2$$

din care, după operații simple, se ajunge că soluția generală a ecuației diferențiale inițiale este

$$y = \frac{k_1 \cdot e^{(k_1 - k_2)x} - A_2 k_2}{e^{(k_1 - k_2)x} - A_2} x.$$

Dacă $1-4A_1=0$ ecuația Riccati devine $\dfrac{du}{dx}=-u^2-u-\dfrac{1}{4}$ și are soluția particulară $u=-\dfrac{1}{2}.$ Cu substituția $u=-\dfrac{1}{2}+\dfrac{1}{z}$ ea se transformă în ecuația liniară z'-1=0, cu soluția generală $z=x+\overset{\circ}{C_3},$ de unde găsim

$$u = -\frac{1}{2} + \frac{1}{x + C_3} \implies y = (\frac{1}{2} + \frac{1}{x + C_3})x.$$

9.5 Ecuația $F(y, xy', x^2y'', \dots, x^ny^{(n)}) = 0$

Teorema 9.5.1 Fie ecuația diferențială ordinară, de ordinul n, de forma

$$F(y, xy', x^2y'', \dots, x^ny^{(n)}) = 0.$$
(9.15)

Prin schimbarea de variabilă $|x|=e^t$, $t\in\mathbb{R}$ în (9.15), ordinul ecuației diferențiale se reduce cu o unitate.

Demonstrație. Dacă intervalul I pe care este definită funcția necunoscută y este inclus în semiaxa reală pozitivă, efectuăm schimbarea de variabilă independentă $x=e^t,\ t\in J\subset I\!\!R$ și constatăm că variabilele ecuației (9.15) se exprimă după cum urmează

$$\begin{cases} y' = \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = e^{-t} \frac{dy}{dt} \implies x \frac{dy}{dx} = \frac{dy}{dt}; \\ \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = e^{-t} \frac{d}{dt} \left(e^{-t} \frac{dy}{dt}\right) = e^{-2t} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right); \\ y''' = e^{-3t} \left(\frac{d^3u}{dt^3} - 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt}\right), \end{cases}$$
(9.16)

Din relațiile (9.16), deducem:

$$\begin{cases} x \frac{dy}{dx} &= \frac{dy}{dt}; \\ x^2 \frac{d^2y}{dx^2} &= \frac{d^2y}{dt^2} - \frac{dy}{dt}; \\ x^3 y''' &= \frac{d^3u}{dt^3} - 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt}, \dots \end{cases}$$
(9.17)

Se observă că $x^k \frac{d^k y}{dx^k}$ se exprimă numai cu primele k derivate în raport cu t ale funcției necunoscute y, acum funcție de t. Prin urmare, utilizând (9.17), ecuația (9.15) se transformă întro ecuație diferențială de forma

$$G\left(y, \frac{dy}{dt}, \frac{d^2y}{dt^2}, \cdots, \frac{d^ny}{dt^n}\right) = 0, \tag{9.18}$$

unde nu apare noua variabilă independentă t. Punând $\frac{dy}{dt} = p$ şi luând pe y drept variabilă independentă, ecuației (9.18) i se poate reduce ordinul cu o unitate.

Exercițiul 9.5.1 Să se integreze ecuația diferențială

$$x^3y''^2 + 2x^2y'y'' + 2yy' = 0,$$

pe un interval $I \subset (0, +\infty)$.

Soluție. Prin înmulțirea cu x, ecuația devine

$$(x^2y'')^2 + 2(xy')(x^2y'') + 2y(') + 2y(xy') = 0.$$

Noua ecuație diferențială fiind de forma studiată mai sus, facem schimbarea de variabilă independentă $x=e^t$. Pentru ca raționamentul să fie mai clar, vom nota rezultatul compunerii funcției y cu funcția $x=e^t$ prin η , adică $y(x(t))=y(e^t)=\eta(t)$. Derivatele funcției y, calculate în funcție de derivatele funcției η , sunt:

$$\begin{cases} y' = \frac{dy}{dx} = \frac{d\eta}{dt} \cdot \frac{dt}{dx} = e^{-t} \cdot \frac{d\eta}{dt}; \\ y'' = \frac{d}{dt} \left(e^{-t} \eta' \right) e^{-t} = \left(e^{-t} \frac{d^2 \eta}{dt^2} - e^{-t} \frac{d\eta}{dt} \right) = e^{-2t} \left(\frac{d^2 \eta}{dt^2} - \frac{d\eta}{dt} \right). \end{cases}$$

De aici deducem

$$\begin{cases} xy' &= \frac{d\eta}{dt}; \\ x^2y'' &= \frac{d^2\eta}{dt^2} - \frac{d\eta}{dt}. \end{cases}$$

În acest fel ecuația inițială devine $\left(\frac{d^2\eta}{dt^2}\right)^2 + 2\,\eta\,\frac{d^2\eta}{dt^2} - \left(\frac{d\eta}{dt}\right)^2 = 0.$ Deoarece în ultima ecuație diferențială nu intră variabila independentă t,

Deoarece în ultima ecuație diferențială nu intră variabila independentă t, luăm pe $\frac{d\eta}{dt}$ ca funcție necunoscută și pe η ca variabilă independentă. Avem:

$$\frac{d\eta}{dt} = p; \quad \frac{d^2\eta}{dt^2} = p\,\frac{dp}{d\eta}$$

și ultima formă a ecuației se poate scrie

$$\left(p\frac{dp}{d\eta}\right)^2 + 2\eta p\frac{dp}{d\eta} - p^2 = 0.$$

Cu schimbarea de funcție $p^2 = u$, ajungem la ecuația Clairaut

$$u = \eta \, u' + \frac{1}{4} \, u'^2$$

a cărei soluție generală este

$$u = C \eta + \frac{1}{4} C^2.$$

Luând $C=4\,C_1$ și $u=p^2,$ constatăm că

$$p^2 = 4 C_1 \eta + 4 C_1^2.$$

Pe de altă parte,

$$p = \frac{d\eta}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = y' \cdot x.$$

Prin urmare,

$$x \cdot y' = \pm 2\sqrt{C_1 y + C_1^2}.$$

Soluția generală a ecuației diferențiale date este

$$\pm 2\sqrt{C_1y + C_1^2} = C_1 \ln x + C_2 \implies 4(C_1y + C_1^2) = (C_1 \ln x + C_2)^2,$$

iar din ultima expresie se poate obține forma sa explicită.

Bibliografie

- [1] Adams, Robert, A. Calculus. A complete Course, Forth ed., Addison—Wesley, 1999
- [2] Bermant, A. F., Aramanovich, I. G., Mathematical Analysis, A Brief Course for Engineering Students, Mir Publishers, Moscow 1986
- [3] Bucur, Gh. Câmpu, E., Găină, S. Culegere de probleme de calcul diferențial și integral Vol. III, Editura Tehnică, București 1967
- [4] Crstici, B. (coordonator) *Matematici speciale*, Editura Didactică și Pedagogică, București, 1981
- [5] Calistru, N., Ciobanu, Gh. Curs de analiză matematică. Vol. I, Institutul Politehnic Iași, Rotaprint, 1988
- [6] Chiriță, S. Probleme de matematici superioare, Editura Academiei Române, București 1989
- [7] Colojoară, I. *Analiză matematică*, Editura Didactică și Pedagogică, București 1983
- [8] Craiu, M., Tănase, V. *Analiză matematică*, Editura Didactică și Pedagogică, București 1980
- [9] Crăciun, I. Calcul diferențial, Editura Lumina, București, 1997
- [10] Crăciun, I., Procopiuc, Gh., Neagu, Al., Fetecău, C. Algebră liniară, geometrie analitică și diferențială și programare liniară. Institutul Politehnic Iași, Rotaprint, 1984
- [11] Cruceanu, V. Algebră liniară și geometrie, Editura Didactică și Pedagogică, București 1973

438 Ion Crăciun

[12] Dieudonné, J. Fondements de l'analyse moderne. Gauthier-Villars, Paris 1963

- [13] Dixon, C. Advanced Calculus, John Wiley & Sons, Chichester New York Brisbane Toronto 1981
- [14] Donciu, N., Flondor, D., Simionescu, Gh. Algebră și analiză matematică. Vol I, Vol II. Culegere de probleme. Editura Didactică și Pedagogică, Bucuresști 1964
- [15] Evgrafov, M., Béjanov, K., Sidorov, Y., Fédoruk, M., Chabounine, M. Recueil de problèmes sur la theorie des fonctions analytiques, Deuxième édition, Éditions Mir, Moscou 1974
- [16] Flondor, P., Stănăşilă, O. Lecții de analiză matematică și exerciții rezolvate, Ediția a II-a, Editura ALL, București 1996
- [17] Fulks, W. Advanced Calculus. An introduction to analysis, third edition, John Wiley & Sons, New York Santa Barbara Chichester Brisbane Toronto 1978
- [18] Găină, S., Câmpu, E., Bucur, Gh. Culegere de probleme de calcul diferențial și integral Vol. II, Editura Tehnică, București 1966
- [19] Gheorghiu, N., Precupanu, T. *Analiză matematică*, Editura Didactică și Pedagogică, București 1979
- [20] Hewitt, E., Stromberg, K. Real and Abstract Analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag Berlin Heidelberg New York 1965
- [21] Marinescu, Gh. Analiză matematică, vol. I, Ediția a V-a, Editura Didactică și Pedagogică, București 1980
- [22] Nicolescu, M., Dinculeanu, N., Marcus, S. Analiză matematică, vol I, ediția a patra, Editura Didactică și Pedagogică, București 1971
- [23] Olariu, V. Analiză matematică, Editura Didactică și Pedagogică, București 1981
- [24] Olariu, V., Halanay, A., Turbatu, S. *Analiză matematică*, Editura Didactică și Pedagogică, București 1983

Bibliografie 439

[25] Precupanu, A. Bazele analizei matematice, Editura Universitții Al. I. Cuza, Iași 1993

- [26] Sburlan, S. *Principiile fundamentale ale analizei matematice*, Editura Academiei Române, București 1991
- [27] Sireţchi, G. Calcul diferențial și integral. Vol. I, II, Editura Științifică și Enciclopedică, București 1985
- [28] Radu, C., Drăguşin, C., Drăguşin, L. Aplicații de algebră, geometrie și matematici speciale, Editura Didactică și Pedagogică, București 1991
- [29] Smirnov, V. Cours de mathématiques supérieures, tome I, Deuxième édition, tome II, tome III, Deuxième partie, Éditions Mir, Moscou 1972
- [30] Stănăşilă, O. *Analiză matematică*, Editura Didactică și Pedagogică, București 1981
- [31] Sykorski, R. Advanced Calculus. Functions of several variables, PWN–Polish Scientific Publishers, Warszawa 1969
- [32] Thomas, Jr., G. B., Finney, R. L. Calculus and Analytic Geometry, 7th Edition, Addison-Wesley Publishing Company, 1988
- [33] Zeldovitch, I., Mychkis, A. Éléments de mathématiques appliquées, Éditions Mir, Moscou 1974