Projekt techniczny chwytaka typu P-(O-P-Op)

Automatyka i Robotyka EAIiIB gr. 5

Zadanie projektowe:

Zaprojektować chwytak do manipulatora przemysłowego o zadanym schemacie kinematycznym spełniający następujące wymagania:

- chwytak ma za zadanie uchwycić transportowany obiekt znajdujący się w położeniu początkowym, utrzymywać go w trakcie transportu, oraz wypuścić w położeniu docelowym,
- transportowanym obiektem są wałki stalowe o średnicy d = 70mm oraz długości maksymalnej I_{max} = 500 mm,
- siłownik chwytaka zasilany jest sprężonym powietrzem o ciśnieniu $p_n = 0.6$ MPa,
- należy uwzględnić transport wałków w pozycji pionowej.

Rys. 1. Zadany schemat kinematyczny

1. Obliczenie ruchliwości chwytaka

Jako, że elementy chwytaka mogą poruszać się tylko w jednej płaszczyźnie, to ruchliwość chwytaka w obliczam ze wzoru:

 $w=3\cdot n-p_4-2\cdot p_5$, gdzie n to ilość członów ruchomych, a p_x to ilość par kinematycznych klasy x.

W moim przypadku n = 5,
$$p_4$$
 = 0, p_5 = 7 – {(0,1),(1,2),(1,2'),(2,3),(2,3'),(0,3),(0,3')} $w = 3.5 - 0.2.7 = 1$

Można z tego wyniku wyciągnąć wniosek, że do pracy chwytak będzie wymagał jednego siłownika liniowego.

2. Schemat kinematyczny chwytaka

Schemat kinematyczny został wykonany w programie SAM, tam też odczytałem niezbędny skok siłownika potrzebny do osiągnięcia parametrów założonych na początku.

3. Obliczenie wymaganej siły chwytu

Maksymalny ciężar przenoszonego przedmiotu wyznaczam ze wzoru:

$$Q_{max} = rac{\pi d^2}{4} l_{max} \cdot \gamma$$
 , gdzie:

d – średnica transportowanego obiektu,

I_{max} – maksymalna długość obiektu,

 γ - ciężar właściwy materiału, z którego wykonany jest przedmiot.

$$Q_{max} = \frac{3,14 \cdot (0,07m)^2}{4} \cdot 0,5m \cdot 78500 \frac{N}{m^3} = 151N$$

Przystępuję do obliczenia wymaganej siły chwytu

Rys. 3. Układ sił działających na szczęki chwytaka

Jako, że obiekty mają być przenoszone w pozycji pionowej (jak na Rys. 3a), to musi zostać spełniony warunek:

 $4 \cdot T \geq Q_{max} \cdot n$, gdzie n – współczynnik przeciążenia.

Z zależności trygonometrycznych na podstawie Rys. 4b wyznaczam:

$$F_{ch} = 2N\cos(90^{\circ} - \gamma)$$

po przekształceniu: $N=rac{F_{ch}}{2sin(\gamma)}$

Korzystam teraz ze wzoru na tarcie statyczne: $\,T=N\cdot\mu\,$

Stąd otrzymujemy: $\frac{2 \cdot F_{ch} \cdot \mu}{sin(\gamma)} \geq Q_{max} \cdot n$

Ponownie przekształcamy wzór do ostatecznej postaci:

$$F_{ch} = \frac{Q_{max} \cdot n \cdot sin(\gamma)}{2\mu}$$

$$Q_{max}=151N$$
, $n=2$ (uznaję, że w momencie rozruchu chwytak doznaje przyspieszenia równego g), $2\gamma=120^\circ$, $\mu=0,15$ (współczynnik tarcia statycznego stal-stal),

Po podstawieniu do wzoru:

$$F_{ch} = \frac{151N \cdot 2 \cdot 0,87}{2 \cdot 0,15} = 872N$$

Od razu wyznaczam rozmiar szczęki e, jako: $e > e_{min}$ Aby wyznaczyć e_{min} korzystam z zależności:

$$e_{min}=rac{d}{2\cdot tg(\gamma)}=rac{70mm}{2\cdot 1,73}=20mm$$
 ,

a więc przyjmuję rozmiar e swoich szczęk = 25mm

4. Charakterystyka przemieszczeniowa chwytaka

Wykres charakterystyki przemieszczeniowej został wykonany w programie SAM dla węzła nr 8

Rys. 4. Charakterystyka przemieszczeniowa chwytaka

5. Charakterystyka prędkościowa f_v(x)

Charakterystyka prędkościowa została wykonana poprzez założenie prędkości członu napędowego v = 1 m/s i wyrysowanie wykresu v_x dla węzła nr 9.

Rys. 5. Charakterystyka prędkościowa chwytaka

6. Charakterystyka siłowa chwytaka

Charakterystykę tą wykonałem poprzez obciążenie symetrycznie szczęk chwytaka siłami, których wartość jest równa uprzednio wyliczonej F_{ch} i odczytanie wartości siły w kierunku x na członie zasilającym.

Rys. 6. Charakterystyka siłowa chwytaka

Jak widać w chwili zaciśnięcia szczęk chwytaka siła, jaką musi dostarczyć siłownik aby utrzymać wałek w pozycji zamkniętej jest równa 1500N. Nie przewiduję możliwości transportowania nim wałków o innych średnicach, więc pomijam pozostałą część wykresu.

Jednak siła F=1500N jest jedynie teoretyczną wartością i należy uwzględnić pewien współczynnik przeciążenia k, który zazwyczaj przyjmuje się jako k = 1,2 ÷ 1,5. Jest to dodatkowa forma zabezpieczenia, która uwzględnia np. sytuacje uderzenia przenoszonym elementem w pewną przeszkodę.

Ja przyjmę współczynnik k = 1,5 ponieważ transportowane przez mój chwytak elementy będą posiadały maksymalną masę równą 15kg, przez co upuszczone mogą stanowić znaczne zagrożenie.

A więc siła, którą będę używał do dalszych obliczeń ma wartość F_s = 2250 N.

7. Dobór odpowiedniego siłownika pneumatycznego

Chwytak o zadanym schemacie kinematycznym zaciska swe szczęki przy ruchu członu napędowego w kierunku przeciwnym do reszty mechanizmu, a więc siłownik jaki wybiorę musi działać w trybie ciągnącym.

Kolejnym ważnym parametrem siłownika jest średnica jego tłoka, ponieważ to od niej zależy siła, którą będzie mógł on wygenerować.

Siłę siłownika wyraża się wzorem $F_s = \frac{\pi \cdot D^2}{4} p$,

stąd średnica tłoka
$$D = \sqrt{rac{4 \cdot F_s}{\pi \cdot p}}$$

Podstawiam dane uzyskane z charakterystyki siłowej, oraz podane w treści zadania ciśnienie nominalne powietrza zasilającego chwytak.

$$D_{min} = \sqrt{\frac{4 \cdot 2250N}{3,14 \cdot 0,6 \cdot 10^6 Pa}} = 69mm$$

Jako, że średnice siłowników należą do pewnego szeregu normalnego, to muszę wybrać pierwszą większą od D_{min}

Dostępne średnice:

12mm	16mm	20mm	25mm	32mm	40mm	50mm	63mm	80mm	100mm	125mm
------	------	------	------	------	------	------	------	------	-------	-------

Wybieram średnice D = 80mm.

Stosowny siłownik znalazłem w ofercie firmy Festo. Jest to model ADVULQ-80-10-P-A o średnicy tłoka 80mm, skoku 10mm oraz obustronnym trybie działania. Jak podaje producent przy ciśnieniu 0,6 MPa siła ciągnąca wynosi 2827 N.

Siłownik kompaktowy ADVULQ-80-10-P-A

Karta danych

FESTO

Cecha	Wartość				
Skok	10 mm				
Średnica tłoka	80 mm				
Amortyzacja	P: Elastyczne pierścienie / płytki amortyzacyjne z obu stron				
Tryb pracy	Dwustronnego działania				
Zakończenie tłoczyska	Gwint wewnętrzny				
Warianty	Jednostronne tłoczysko				
Zabezpieczenie przed obrotem/prowadzenie	Kwadratowe tłoczysko				
Ciśnienie robocze	0.6 10 bar				
Medium robocze	Sprężone powietrze wg ISO8573-1:2010 [7:4:4]				
Temperatura otoczenia	-20 80 °C				
Maks. energia uderzenia w położeniach końcowych	0.75 J				
Siła teoretyczna przy 6 bar, skok powrotny	2 827 N				
Siła teoretyczna przy 6 bar, wysuw	3 016 N				
Przyłącza pneumatyczne	G1/8				
Materiał śrub	Stal ocynkowana				
Materiał pokrywy	Stop aluminium				
Materiał tłoczyska	Stal wysokostopowa				
Materiał rury siłownika	Stop aluminium				

8. Obliczenia wytrzymałościowe – warunek wytrzymałości na ścinanie sworznia

Przy zadanym schemacie kinematycznym tylko 2 symetryczne względem siebie pary kinematyczne posiadają połączenia sworzniowe (węzły 5 i 6 (Rys. 2.)), a więc wystarczy sprawdzić warunek wytrzymałości na ścinanie dla tylko jednego sworznia.

Warunek wytrzymałościowy na ścinanie ma postać: $au_{max} = rac{F_{t\,max}}{A} < k_t$, gdzie:

F_t – siła działająca na sworzeń,

A – pole powierzchni, na które działa siła,

k_t – naprężenie dopuszczalne na ścinanie.

W przypadku sposobu zaprojektowania tego połączenia sworzeń będzie ścinany w 2 płaszczyznach, więc za A przyjmujemy podwojone pole przekroju sworznia $A=2\cdot\pi\frac{d^2}{4}$.

Stal, z której planuję wykonać sworznie to stal konstrukcyjna niestopowa E360 o naprężeniu dopuszczalnym na ścinanie k_t = 115 MPa.

Maksymalna siła jaka działa na sworzeń jest równa F_t = R = 2419 N.

Obliczam minimalną średnicę sworznia ze wzoru:

$$d_{min} = \sqrt{\frac{2 \cdot F_{t \, max}}{\pi \cdot_{t}}} = \sqrt{\frac{2 \cdot 2419N}{3,14 \cdot 115 \, MPa}} = 3,66mm$$

9. Obliczenia wytrzymałościowe – warunek wytrzymałościowy na zginanie ramion chwytaka

Rys. 7. Chwytak i przekrój w punkcie największego momentu gnącego

Warunek wytrzymałościowy na zginanie wyraża się wzorem:

$$\sigma_{g\,max} = rac{\dot{M}_{g\,max}}{W_g} < k_g$$
 , gdzie:

W_g – wskaźnik wytrzymałości przekroju na zginanie,

M_g – moment gnący,

k_g – wytrzymałość materiału na zginanie,

Ramię chwytaka wykonane zostanie ze stali konstrukcyjnej E360 o k_g = 210 MPa.

Największy moment gnący będzie występował w przekroju D-D i jego wartość jest równa:

$$M_q = F_{ch} \cdot l = 872N \cdot 0,055m = 47,96Nm$$
 ,

zgadza się to z wynikiem uzyskanym w Autodesk ForceEffect

Jak widać na Rys. 7. przekrój nie jest symetryczny, lecz jeśli policzymy wartość wskaźnika wytrzymałości na zginanie zakładając, że część zaznaczona na czerwono ma tylko 6mm szerokości i pozostałe 2,02mm nie przenosi żadnych obciążeń, to:

$$W_g = \frac{b(H^3 - h^3)}{6H}$$

Jako, że ramie składa się z dwóch elementów, to wielkość b może zostać pomnożona razy 2.

$$W_g = \frac{0,02m(0,02m^3 - 0,008m^3)}{6 \cdot 0,02m} = 1,25 \cdot 10^{-6} \, m^3$$

$$\sigma_g = \frac{47,96Nm}{1,25 \cdot 10^{-6} \, m^3} = 38,43 \, MPa$$

Czyli jest to zdecydowanie mniej niż dopuszczone dla tego materiału 210 MPa.

10. Projekt konstrukcyjny chwytaka

Załączniki:

- 1. Rysunek złożeniowy chwytaka,
- 2. Rysunek wykonawczy ramienia chwytaka.