,	ì.
5 / L V	١
へつい	1.3
2/24	100

Let's resume our discussion of the Green's function (from (35) and Aereabouts...)

We found that the Green's function can be used to calculate The ground state expectation value of (certain) observables. What else can me learn from it?

oble will explore this issue by examining the analytic structure of the Green's function considered as a function of frequency.

Revall the noninteracting Green's function

$$|G_{\omega\beta}(\overline{x}t,\overline{x}'t')| = S_{\alpha\beta} \sqrt{\xi} e^{i\vec{k}\cdot\vec{k}\cdot\vec{x}'} = \frac{i\omega_{\alpha}k+t'}{[o(t+')\alpha(\vec{k}+k_f)]} - o(t+')\alpha(\vec{k}+k_f)$$

$$= \int \frac{\partial k}{\partial n^{3}} \int_{-\infty}^{\infty} dn e^{i\vec{k}\cdot\vec{k}\cdot\vec{x}'} - i\omega(t+t')o(|\vec{k}|-k_f) + o(|\vec{k}|-|\vec{k}|) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial k}{\partial n^{3}} \int_{-\infty}^{\infty} e^{i\vec{k}\cdot\vec{k}\cdot\vec{x}'} - i\omega(t+t')o(|\vec{k}|-k_f) + o(|\vec{k}|-|\vec{k}|) \int_{-\infty}^{\infty} e^{i\vec{k}\cdot\vec{k}\cdot\vec{x}'} - i\omega(t+t')o(|\vec{k}|-k_f) + o(|\vec{k}|-|\vec{k}|) \int_{-\infty}^{\infty} e^{i\vec{k}\cdot\vec{k}\cdot\vec{x}'} - i\omega(t+t')o(|\vec{k}|-k_f) + o(|\vec{k}|-k_f) + o(|\vec{k$$

Thus, the fourier tonsform
$$(w_k^0 = \varepsilon_k^0 = \frac{1}{2m})$$

$$G_{ap}^0(k, \omega) = \frac{1}{\omega - \varepsilon_k^0 + i\eta} \frac{syn(k+k)}{syn(k+k)} \frac{syn(k+k)}{\omega + \varepsilon_k^0}$$

$$syn(k+k) = \frac{1}{\omega - \varepsilon_k^0 + i\eta} \frac{syn(k+k)}{\omega + \varepsilon_k^0} \frac{syn($$

has simple poles with unit residue at the "on-shell" frequencies w= Ex.

· How should ne interpret this and what is the generalization to the interacting Green's function, which for the spin-independent case take the form (from the solution to Dyson's quatron):

17
- To proceed, we'll return to the definition of G in terms of Heisenberg field operators:
$[G_{\alpha\beta}(\chi t, \chi t') = \langle \underline{T}_{\alpha}^{N} T[\hat{\mathbf{T}}_{\alpha}(\chi t) \hat{\mathbf{T}}_{\beta}^{\dagger} \chi(t') \underline{T}_{\alpha}^{N} \rangle]$
The "H" subscripts are a reminder that Rese are Heisenberg field operators with time dependence
24 (x't') = eiAt û (x') = eiAt û (x') = eiAt û p(x') ei
The eigenstates of \widehat{H} are labeled 17% where "N" is the number of particles (Fermions) and $n=0,1,2,$ labels the spectrum for a given N (with $n=0$ the ground state).
The insert a complete set of eigenstates between the operators, which will give a nonzero result? That is, how many particles can be in the intermediate states? We'll find out using the number operator N:
$\hat{N} = \sum_{x} \hat{y} \hat{x} \hat{x} \hat{y} \hat{y} \hat{x} \hat{y} \hat{y} \hat{x} \hat{y} \hat{x} \hat{y} \hat{x} \hat{y} \hat{y} \hat{x} \hat{y} \hat{y} \hat{x} \hat{y} \hat{y} \hat{x} \hat{y} \hat{y} \hat{y} \hat{x} \hat{y} \hat{y} \hat{y} \hat{y} \hat{x} \hat{y} \hat{y} \hat{y} \hat{y} \hat{y} \hat{y} \hat{y} y$
· So how many particles do the states (2+ (x/f) 170>) or (2+ (x/f) 170>) contain? · Let is first note that
942(2+) 140 = eift 4(x) = ift 140)
= oi(h-En)+1 12117n>

where we'll label the eigenvalues of A as (A 14N7 = EN 14N)

=> we can isolate he time dependence trivially,

2/34/03 Since[[N,H]=0] (problem set #3), rester h nor gift changes the number of porticles, so he can simply ask about the number of porticles in AdXIIIO).
> What is n((4 xx 1/ 4" >)?
Just as in the homework,
$\left[\hat{N}\mathcal{A}_{\alpha}\vec{x}\right] = \hat{\mathcal{A}}_{\alpha}\hat{n} - \hat{\mathcal{A}}_{\alpha} \hat{x}\rangle \left(\sigma\left[\hat{N},\hat{\mathcal{A}}_{\alpha}\hat{x}\right] = -\hat{\mathcal{A}}_{\alpha} \hat{x}\rangle\right)$
a U(J/18/15/2) = J/18/(U-1)/J/n)
= (N-1)(4xx)(4°)
=>(2/21)/1502) is on eigenstate of the number operator
with N-1 particles. This does not mean it is equal to 150 7 or any of the other 150 7 or any of
· So now we can insert oppropriate into mediate states with each time ordering;
iG。(xt,x't)= 2[G(t-t')(王)(年)(年)(年)(年)(年)(年)(年)(年)(年)(年)(年)(年)(年)
-0(t'-t)〈中。)中成,) ei to HX (中)
= Z[Q(+t')eilen-en/+t') < In/12/12/12/12/12/14/24/14/14/24/14/14/24/14/24/14/24/14/24/14/24/14/24/14/24/14/24/24/14/24/24/14/24/24/14/24/24/24/24/24/24/24/24/24/24/24/24/24
-6(t-t)e((En-E))(4)(4)(1)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)
· · · · · · · · · · · · · · · · · · ·

. Note Plat we have made manifest that it depends on tot' > Fourier transform?

SIBHIO3

Fourier transforms' $G_{\alpha\beta}(\vec{x}t, \vec{x}'t') = \begin{pmatrix} G_{\alpha\omega} & -i\omega(t+t') \\ SH & e^{-i\omega(t+t')} \end{pmatrix} G_{\alpha\beta}(\vec{x}, x'; \omega)$ $G_{\alpha\beta}(\vec{x}, \vec{x}'; \omega) = \begin{pmatrix} G_{\alpha\beta}(t+t') & e^{-i\omega(t+t')} \\ G_{\alpha\beta}(\vec{x}t, \vec{x}'t') & e^{-i\omega(t+t')} \end{pmatrix}$

To carry this out, we'll use

[Solt-t) B(t-t') E(En+En)(-t') int(t') = int(En+En)+in

-out E(W(t-t')) and the analogous formula for B(t-t).

ラ (マス) (ル) = そ (エッリイズ) エットア (モッリーモッ) + ア (モッリイズ) エットア (モッリイズ) エットア (モッリーモッ) - ア (モッリートッ) - ア (モッリートッ) - ア (モッリートッ) - ア (エッリイズ) エット (

which reveals the analytic structure in the (complex) w plane:

For each eigenstate 17th) of the (N+1)-porticle system,

There is a pole in the lower half plane at

[W=En-En] with residue (To 19 (x) 17th X 7 (N+1) 17th X 7 (N+1)

· for each M-1 partile eigenstate 12m 7 the pole is at - (En-En)
poles of Gaplw)

We

N+1 ××××××

N+1

175
Now the chemical potential for the NHL system is: Not the chemical potential for the NHL system is: NH = EDIT - ED and EMI > EDIT , so the poles start
Now the chemical potential for the NHL system is: Not the Enrich En and Enro > Enro , so the poles start at unt and on to too in the lover half plane. Similarly, they go from un = En - En to -00 in the upper half plane.
· We define $E_n^{NT} = E_n^{NT} - E_n^{NT}$, which is the excitation energy of the (N-1) - particle system and $E_n^{NT} = E_n^{NT} - E_n^{NT}$ which is the excitation energy of the (N-1) - particle system
· For N large, put = pu = p up to of(n) corrections, so the poles are at:
$\omega = \mu + \varepsilon_{n}^{N+1} - i \gamma $ $\omega = \mu - \varepsilon_{n}^{N+1} + i \gamma $
50 if we identify the location of poles, we find the excitation energies of the system with one more or one less porticle.
Now let's restrict our aftention to uniform systems. Write the field operators in momentum representation:
$ \left[4 \right] = \frac{1}{\sqrt{2}} \sum_{k=1}^{\infty} e^{ik\cdot x} G_{kk} U_{k} $
The momentum operators P is
and [A,P]=0, which mens that the intermediate states ITm) and ITm) can be chosen as eigenstates of
total momentum.

2/24/	03	A. A	_								
1 his	KTD O	19 Plat	(Z, Z)	4417	< 12m	1/0/k	-, Eith	¥ Y	~~>	× {	(郑)
and	G(K)	(w), (k	15	a fu	nction) र्यु	Z -Z/	only	(05	ex e x	Fel)

· We can also derive this using
$$f(\vec{x}) = e^{i\vec{p}\cdot\vec{x}}\hat{q}_{x}\omega e^{i\vec{p}\cdot\vec{x}}$$

In any case, we fourer transform
$$G(Z=Z'; \omega)$$
 to get $G(Z, \omega) = \sum_{n=1}^{\infty} \frac{|Y_{n}^{n+1}| |Q_{z}^{z}| |Y_{n}^{n}|^{2}}{|W-\mu-\varepsilon_{n}^{n+1}| |Y_{n}^{n}|} + \frac{|\langle Y_{n}^{n+1}| Q_{z}| |Y_{n}^{n}|^{2}}{|W-\mu+\varepsilon_{n}^{n+1}| |Y_{n}^{n}|}$

where we see that the residues are now positive definite squares of matrix elements.

· We've suppressed the spin indices through all this', what is the matrix structure of Gop (R, w)?
· For spin-12, Gop is a two-by-two matrix, which has the general expension

Since Here is no preferred direction and R is the only variable available to combine with 5,

The property, but this means that $b \equiv 0$ and $C_{\alpha\beta} \propto S_{\alpha\beta}$ in general,

EDHELC

· Let's check that the special case of G(E, w) is reproduced.

In this case, ITO >= IF> and IT not) is just an about particle above the Fermi sea > O(IRI-Kg)

· So the matrix elements are

$$[(T_{n}^{n}|a_{k}|T_{0}^{n})|^{2} = O(k_{f}-k_{p})]$$
and $[(T_{n}^{n}|a_{k}|T_{0}^{n})|^{2} = O(k_{f}-k_{p})]$

Further, we have

which yields

$$G^{0}(E, \omega) = \left[\frac{g(k-k_{F})}{\omega-\epsilon_{F}^{0}+i\eta} + \frac{g(k_{F}-k)}{\omega-\epsilon_{F}^{0}-i\eta}\right]$$
 as before.

Side note: One often defines advanced and retarded functions that are analytic in the upper-half or lower-half planes, respectively by

AS our system cycles large (N=00), the poles in (6(km))
become orbitrarily closely spaced

The uncertainty priciple says that if our observation lasts
time T, we can only resolve DE & tilt

But the level spacing (pole spacing) DE « DE for large systems

instead of individual levels, we see a level density,
overaged over small energy intervals.

Define the spectral densities

ord [g(k,w) = 0 (w) f(k,w) + 8 (-w) p (k,-w))

· The Great's Function then takes the form:

$$G(\vec{k},\omega) = \int_{3\pi}^{\infty} \frac{g^{\dagger}(\vec{k},\omega')}{\omega - \mu - \omega' + i\eta} + \frac{g^{\dagger}(\vec{k},\omega')}{\omega - \mu + \omega' - i\eta}$$

which you can vicity by plugging in gt and gt.

· Note Not G now has a branch cut along the entire real axis in the complex w plane.

- We can write dispersion relations for G, G, and GR Isea Negele and Orland, Chap, S).

Can he measure the spectral density?

Suppose he do semi-inclusive experiments; such

as (e,e'p) without looking at the final state;

et and proton

et at proton

e of the final state

out proton

out proton

e of the final state

out proton

out proton

If the impulse approximation is valid, which means we can reglect the interactions of the knocked out fermion (needect "Final state interactions), then the removed proton must have had momentum it in the nucleus.

· The cross section o is

· By varying the kinematics and adding corrections to the impulse approximation, we can extract proceed: EFT shows a limit to what can be extracted without relying on models.)