

DEPARTMENT OF MATHEMATICS

		UNIT –I Matrices	THE MAN WHO KNEW INFINITY
	Sl.No.	Tutorial Sheet -1	Answers
		Part – A	
1	If $A = \begin{pmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{pmatrix}$, find the eigenvalues of (i) A (ii) A^{-1} (iii) adj A (iv) A^{3}	(i) 3,4,1 (ii) 1/3, ¹ / ₄ , 1 (iii) 12, 4, 3 (iv) 27, 64, 1
2	Two of the eigo	envalues of $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ are 1 and 2. Find the eigenvalues of A^2 .	1, 4, 9
3	Find the sum a	and product of the eigenvalues of the matrix $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$	-1, 45
4	Find the eigenv	values and eigenvectors of the matrix $A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 1,5\\1\\-3 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}$
5	Find the chara	exercistic equation of $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$	$\lambda^3-11\lambda^2+36\lambda-36=0$
		Part – B	
6	Find the eigen	evalues and eigenvectors of $ \begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix} $	$ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} $
7	Find the eigen	values and eigenvectors of $ \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{pmatrix} $	$ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} $
8	Find the eigen	values and eigenvectors of $ \begin{pmatrix} 6 & -6 & 5 \\ 14 & -13 & 10 \\ 7 & -6 & 4 \end{pmatrix} $	$ \begin{array}{c} -1, -1, -1 \\ \begin{pmatrix} 0 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ -7 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \\ 0 \end{pmatrix} $
			<u> </u>

9	Find the eigenvalues and eigenvectors of $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$	$ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} $
10	Find the eigenvalues and eigenvectors of $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$	$ \begin{array}{c} \mathbf{8, 2, 2} \\ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} $

_

DEPARTMENT OF MATHEMATICS

18MAB101T Calculus and Linear Algebra

UNIT –I Matrices

		UNII –I Matrices			
Sl.No.		Tutorial Sheet -2	Answers		
	Part – A				
1	$A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$	j.	$A^4 = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$		
2		values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are equal Find the eigen values of A^{-1}	$A=1, 1, 5$ $A^{-1}=1, 1, 1/5$		
3	The matrix A^2	A is $\begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$. Find the eigen values of	$A=-1, 3, 2$ $A^2 = 1, 9, 4$		
4	Verify Cay $A = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$	ley Hamilton theorem and find A^{-1} when $\begin{bmatrix} 1 & 1 \\ 5 & -1 \\ -1 & 3 \end{bmatrix}$.	$A^{-1} = 1/20 \begin{bmatrix} 7 & -2 & -3 \\ 1 & 4 & 1 \\ -2 & 2 & 8 \end{bmatrix}$		
5	Verify Cay $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix}$	ley Hamilton theorem and find A^{-1} when $\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$	$A^{-1} = \begin{bmatrix} 3 & 3 & -1 \\ 0 & 1 & 0 \\ -2 & -2 & 1 \end{bmatrix}$		
6	$A=\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	-1 -1 3	Ans $\begin{bmatrix} -34 & 0 & -20 \\ -20 & -54 & 0 \\ 10 & 10 & -74 \end{bmatrix}$		
7	If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 2 \end{bmatrix}$ A^4 and A^{-1} .	2 2 2 7 1, Prove that $A^3 - 3A^2 - 9A - 5I = 0$. Hence find	[208 208 209]		
8	Diagonalise	e the matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$ when	$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$		

DEPARTMENT OF MATHEMATICS

	INSTITUTE OF SCIENCE & TECHNOLOGY (Deemed to be University u/s 3 of UGC Act, 1956)	Toma Division Calculus and Difficul singusta	RAMANUJAN
		UNIT –I Matrices	THE MAN WHO KNEW INFINITY
	Sl.No.	Tutorial Sheet -3	Answers
		Part – A	
1	Write the Quad	ratic form Q=x²-2y²+3z²-4xz+5yz+6xz as product of matrices.	Q=X ^T AX where X ^T =[x y z] A= $\begin{pmatrix} 1 & -2 & 3 \\ -2 & -2 & \frac{5}{2} \\ 3 & \frac{5}{2} & 3 \end{pmatrix}$
2	Write the Q.F w	where $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 9 \\ 3 & 9 & 3 \end{pmatrix}$	x ² +4y ² +3z ² +4xy+18yz+6xz
3	(i) $6x^2+3y^2+14z^2$ (ii) $2xy+2yz-2xz$	nature of the quadratic form +4yz+18xz+4xy ag into canonical form.	(i) D ₁ =6, D ₂ =14, D ₃ = -ve Q.F is indefinite. (ii) D ₁ =0, D ₂ =-1, D ₃ = -2 Q.F is indefinite.
		Part – B	
4		adratic form Q=3x ² +5y ² +3z ² -2xy-2yz+2xz to canonical form and hen rank, index and signature.	A= $\begin{bmatrix} -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ $\lambda^3 - 11\lambda^2 + 36\lambda - 36 = 0$ $\lambda = 2,3,6$ Q= $2y_1^2 + 3y_2^2 + 6y_3^2$ nature=positive definite index=3
			signature=3
5	rank, index and		λ =1,1,-1 $Q=y_1^2+y_2^2-y_3^2$ nature=indefinite index=2 signature=1 rank=3
6	Reduce the qua find its nature,	adratic form $Q={x_1}^2+2{x_2}^2+{x_3}^2-2{x_1}{x_2}+2{x_2}{x_3}$ to canonical form and hen rank, index and signature.	

DEPARTMENT OF MATHEMATICS 18MAB101T CALCULUS & LINEAR ALGEBRA

	UNIT-2 Functions of Several Variables	
Sl.No.	Tutorial Sheet-1	Answers
	PART – B	
1	If $u = x^2y^3$, $x = \log t$, $y = e^t$, find $\frac{du}{dt}$	$\frac{e^{3t}\log t(2+3t\log t)}{t}$
2	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ then prove that	
	$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$	
3	If $z = f(x + ct) + \phi(x - ct)$, prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$	
4	If $f(x,y) = x^2 \tan^{-1}\left(\frac{y}{x}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right)$, verify $f_{xy} = f_{yx}$.	$f_{xy} = \frac{x^2 - y^2}{x^2 + y^2}$
5	Obtain the Maclaurin's series of $e^x \cos y$.	$f_{xy} = \frac{x^2 - y^2}{x^2 + y^2}$ $1 + x + \frac{1}{2}(x^2 - y^2) + \frac{1}{6}(x^3 - 3xy^2) + \dots$
	PART – C	- J
6	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$. Using Taylor's series, verify that,	
7	Using Taylor's series, verify that, $\log(1+x+y) = (x+y) - \frac{1}{2}(x+y)^2 + \frac{1}{3}(x+y)^3 \dots$	
8	Let $\phi = \phi(u, v)$ where $u = e^x \cos y$ and $v = e^x \sin y$, show that $v \frac{\partial \phi}{\partial x} + u \frac{\partial \phi}{\partial v} = (u^2 + v^2) \frac{\partial \phi}{\partial v}$.	
9	Find the expansion for $f(x,y) = \tan^{-1}(xy)$ and hence compute the value of $f(0.9, -1.2)$.	0.8220
10	Hint.: Use the point $(1,-1)$ for the expansion. Expand $e^x \sin y$ in power of x and y near the point $\left(-1,\frac{\pi}{4}\right)$ as far as	-0.8229
	the terms of the third degree.	
	Ans.: $\frac{1}{e\sqrt{2}}\left\{1+(x+1)+\left(y-\frac{\pi}{4}\right)+\right.$	
	$\frac{1}{2} \left[(x+1)^2 + 2(x+1) \left(y - \frac{\pi}{4} \right) - \left(y - \frac{\pi}{4} \right)^2 \right] + \dots \right\}$	

DEPARTMENT OF MATHEMATICS

		UNIT –II	THE MAN WHO KNEW INFINITY
		Functions of Several Variables	
	Sl.No.	Tutorial Sheet -2	Answers
1	Find the ex	treme values of a function x ² +y ² +6x+12	(-3, 0) is the stationary point, minimum value = 3
2	Find the ma 15x ² -15y ² +	axima and minima of the function x^3+3xy^2-72x	Max. value is 112, when $x = 1$, $y = 2$
3		mensions of the rectangular box, open at the top m capacity whose surface is 432sq.cm.	X = 12, $y = 12$ and $z = 6$.
4	capacity. F	alar box, open at the top, is to have a given find the dimensions of the box requiring least r its construction.	
5	Find the min $x + y + z =$	inimum value of xy ² z ³ subject to = 24	The extreme points are $(4, 8, 12)$ and the minimum value is $4 \times 8^2 \times 12^3$.
6		olume of the largest rectangular parallelepiped inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	$V = \frac{8abc}{3\sqrt{3}} .$
7	Find the man ax + by + o	inimum value of $x^2 + y^2 + z^2$ given that $cz = p$.	$f = \frac{p^2}{a^2 + b^2 + c^2}$
8		e saddle point and extreme points of $-y^4 - 2x^2 + 2y^2$	 (i) The points (0, 1), (0, -1) are maximum point. (ii) The points (±1,0) are minimum point. (iii) The points (±1,±1) are saddle points.

DEPARTMENT OF MATHEMATICS 18MAB101T CALCULUS & LINEAR ALGEBRA UNIT-2 Functions of Several Variables

	ONTI-2 Functions of Several variables	
Sl.No.	Tutorial Sheet-3	Answers
	PART – B	
1	If $x = u(1-v)$, $y = uv$ verify that $\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = 1$.	
2	If $u = x^2$, $v = y^2$ find $J = \frac{\partial(u, v)}{\partial(x, y)}$.	J = 4xy
3	If $x = r \cos \theta$, $y = r \sin \theta$, $z = z$ find $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}$.	J = r
4	If $u = xyz$, $v = xy + yz + zx$, $w = x + y + z$ find $J = \left(\frac{\partial(u, v, w)}{\partial(x, y, z)}\right)$.	J = (x-y)(y-z)(z-x)
5	The temperature T at any point (x,y,z) in space is $T=400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2+y^2+z^2=1$.	50°C
	PART – C	
6	If $x = r \cos \theta$, $y = r \sin \theta$ verify that $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)} = 1$.	
7	If we transform from 3D-Cartesian co-ordinates (x, y, z) to spherical	
	polar co-ordinates (r, θ, ϕ) show that $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = r^2 \sin \theta$.	
8	Find the $J = \left(\frac{\partial(y_1, y_2, y_3)}{\partial(x_1, x_2, x_3)}\right)$ if $y_1 = \frac{x_2 x_3}{x_1}$; $y_2 = \frac{x_1 x_3}{x_2}$; $y_3 = \frac{x_2 x_1}{x_3}$.	J = 4
9	Examine the functional dependence of the functions $u = y + z$; $v = x + 2z^2$; $w = x - 4yz - 2y^2$. If so find the relationship.	$J=0,\ v-w=2u^2$
10	Find the shortest and longest distance from the point $(1,2,-1)$ to the sphere $x^2 + y^2 + z^2 = 24$, using Lagrange's method of constrained maxima and minima.	√ 6 and 3 √ 6

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T Calculus and Linear Algebra

UNIT -3 Ordinary Differential Equations

		Equations	
	Sl.No.	Tutorial Sheet -1	Answers
		Part – A	·
1	Solve $(D^2 - C)$	(7D+12)y=0	$y = Ae^{3x} + Be^{4x}$
2	Solve $(D^2 - 2)$	2D+4)y=0	$y = (Ax + B)e^{2x}$
3	Solve $(3D^2 +$	+D-14)y=0	$y = Ae^{-(7/3)x} + Be^{2x}$
4	Solve $(D^2 + 2)$	2D+5)y=0	$y = e^{-x} (A\cos 2x + B\sin 2x)$
5	Solve $(D^2 + 1)$	16) y = 0	$y = (A\cos 4x + B\sin 4x)$
6	Solve $(D^2 + 2)$	$(2D+2)y = e^{-2x} + \cos 2x$	$y = e^{-x} (A\cos x + B\sin x) + \frac{1}{2}e^{-2x} + \frac{1}{5}\sin 2x - \frac{1}{10}\cos 2x$
7	Solve (D ² - :	$5D+6) y = x^2 + 3x - 1$	$y = Ae^{2x} + Be^{3x} + \frac{1}{6} \left[x^2 + \frac{14}{3} x + \frac{26}{9} \right]$
8	Solve $(D^2 + 1)$	$(D+1)y = x^2 e^{-x}$	$y = e^{-\frac{1}{2}x} (A\cos\frac{\sqrt{3}}{2}x + B\sin\frac{\sqrt{3}}{2}x) + e^{-x} (x^2 + 2x)$
9	Solve $(D^2 + 4)$	$4) y = x \sin x$	$y = (A\cos 2x + B\sin 2x)$ $+ \frac{x}{3}\sin x - \frac{2}{9}\cos x$
10	(D^2-2D+1)	$1) y = e^x \sin x$	$y = (Ax + B)e^x - e^x \sin x$

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T Calculus and Linear Algebra

UNIT –III – Ordinary Differential

		Equations	
	Sl.No.	Tutorial Sheet -2	Answers
1	Solve $(x^2D^2 -$	-xD+1)y=0	$y = x(A\log x + B)$
2	Solve $(x^2D^2 -$	+4xD+2)y=0	$y = \frac{A}{x} + \frac{B}{x^2}$
3	Solve $(x^2D^2 -$	+1)y=0	$y = \sqrt{x} \left[A \cos\left(\frac{\sqrt{3}}{2}\log x\right) + B \sin\left(\frac{\sqrt{3}}{2}\log x\right) \right]$
4	Solve $(x+2)$	$\int_{0}^{2} D^{2} + 4(x+2)D + 1 y = 0$	$y = (A\log(x+2) + B)(x+2)$
5	Solve $(2x+1)$	$(x)^{2}D^{2} - 2(2x+1)D - 12)y = 6x + 5$	$y = A(2x+1)^{3} + \frac{B}{2x+1} - \frac{3(2x+1)}{16} - \frac{1}{6}$
6	Solve $(x^2D^2 -$	$+xD-9)y = \frac{5}{x^2}$	$y = Ax^3 + \frac{B}{x^3} - \frac{1}{x^2}$
7	Solve (x^2D^2)	$+xD+1)y = 4\sin(\log x)$	$y = (A\cos(\log x)x + B\sin(\log x))$ $-2\log x(\cos(\log x))$
8	Solve $(x^2D^2 -$	$-4xD+6)y = x^2 + \log x$	$y = (Ax^{2} + Bx^{3}) - x^{2} \log x$ $+ \frac{\log x}{6} + \frac{5}{36}$
9	Solve $(x^2D^2 -$	$-xD+1\big)y = \frac{\log x}{x}$	$y = x(A \log x + B) + \frac{1}{27x^2} \left[3(\log x)^2 + 4(\log x) + 2 \right]$

DEPARTMENT OF MATHEMATICS

18MAB101T Calculus and Linear Algebra

UNIT –III – Ordinary Differential Equations

		Lquations	
		Tutorial Sheet -3	Answers
1	Solve $(D^2 + a)$	$y = \tan ax$ by the method of variation of parameter	$y = (c_1 \cos ax + c_2 \sin ax)$
	,		$-\frac{1}{a^2}\cos ax \log \left[\sec ax + \tan ax\right]$
2	Solve (D^2+1)	$y = \sec ax$ by the method of variation of parameter	$y = (c_1 \cos x + c_2 \sin x)$
			$-\cos x \log(\cos x) + x \sin x$
3	Solve (D^2+1)	$y = \cos ecx$ by the method of variation of parameter	$y = (c_1 \cos x + c_2 \sin x)$
			$+\sin x \log (\sin x) - x \cos x$
4	Solve $(D^2 + 2)$	$(D+5)y=e^{-x}\tan x$ by the method of variation of parameter	$y = e^{-x}(c_1\cos 2x + c_2\sin 2x)$
	, ,		$+\left[-\frac{1}{2}x + \frac{\sin 2x}{4}\right]e^{-x}\cos 2x$
			$+\left[-\frac{-\cos 2x}{2} + \frac{1}{2}\log(\cos x)\right]e^{-x}\sin 2x$
5	Solve $\frac{dx}{}-y=$	$=0; \frac{dy}{dt} + x = 0$	$x = A\cos t + B\sin t$
	dt	dt	$y = -A\sin t + B\cos t$
6	Solve $\frac{dx}{dt} + y =$	$=e^{t}; x - \frac{dy}{dt} = t$	$x = -A\sin t + B\cos t + \frac{1}{2}e^t + t$
			$y = A\cos t + B\sin t + \frac{1}{2}e^t - 1$
7	$\left \frac{dx}{dt} + 2x - 3y \right $	$=t; \frac{dy}{dt} - 3x + 2y = e^{2t}$	$x = Ae^{t} - Be^{-5t} - \frac{2}{5}t + \frac{3}{7}e^{2t} - \frac{13}{25}$
			$x = Ae^{t} + Be^{-5t} - \frac{3}{5}t + \frac{4}{7}e^{2t} - \frac{12}{25}$

DEPARTMENT OF MATHEMATICS

UNIT	_	IV
------	---	----

		UNII - IV	
		Tutorial Sheet -1	Answers
1.	Find the radio	us of the curve $y = e^x$ at $(0, 1)$	$ \rho = 2\sqrt{2} $
2.	Find the rad $\sqrt{x} + \sqrt{y} = 1.$	ius of curvature at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ on the curve	$ \rho = 1/\sqrt{2} $
3.		the radius of curvature at any point of the catenary (c) is y^2/c . Also find ρ at $(0, c)$.	$\rho = C$
4.	Find the radio	as of curvature at the point (c, c) on the curve $xy = c^2$	$ \rho = c\sqrt{2} $
5.	Find ρ at an	y point $P(at^2, 2at)$ on the parabola $y^2 = 4ax$.	$\rho = 2a(1+t^2)^{3/2}$
6.		as of curvature at any point $x = a\cos^3 \theta$, $y = a\sin^3 \theta$ of $y = a\sin^3 \theta$ of $y = a\sin^3 \theta$. Also show that $\rho^3 = 27axy$.	$\rho = 3a\sin 2\theta/2$
7.	$x = ae^{\theta} (\sin \theta)$	the radius of curvature at any point of the curve $(-\cos\theta)$, $y = ae^{\theta}(\sin\theta + \cos\theta)$ is twice the redistance of the tangent at the point from the origin.	
8.		ne radius of curvature at any point of the cycloid θ), $y = a(1 - \cos \theta)$ is $4a \cos \frac{\theta}{2}$.	
9.	by the line y	θ), $y = a(1 - \cos \theta)$ to its centre of curvature is bisected = 2a.	
10.	Find the circle point $\left(\frac{a}{4}, \frac{a}{4}\right)$	the of curvature of the curvature $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the .	$\left(x - \frac{3a}{4}\right)^2 + \left(y - \frac{3a}{4}\right)^2 = \frac{a^2}{2}$

DEPARTMENT OF MATHEMATICS

		UNIT - IV	
		Tutorial Sheet -2	Answers
1.	State two pro	perties of the evolute of the curve.	
2.	Find the env	velope of the family of straight lines $y = mx + am^2$, parameter	$Ans: x^2 + 4ay = 0$
3.	Define envel	ope of a family of curves.	
4.	Find the $x\cos\alpha + y\sin^2\alpha$	envelope of the family of straight lines $\alpha = a \sec \alpha$, α being the parameters.	$Ans: y^2 - 4a(a-x) = 0$
5.	Define involu	ites and evolutes.	
6.	Find the equ	ation of the circle of curvature at (c, c) on $xy = c^2$.	Ans: $(x-2c)^2 + (y-2c)^2 = (\sqrt{2}c)^2$
7.	a) parabolac) hyperbola	$y^{2} = 4ax; \text{ b) ellipse } \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;$ $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1; \text{ d) rectangular hyperbola } xy = c^{2}$	Ans: a) $27ay^2 = 4(x - 2a)^3$ b) $(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 - b^2)^{\frac{2}{3}}$ c) $(ax)^{\frac{2}{3}} - (by)^{\frac{2}{3}} = (a^2 + b^2)^{\frac{2}{3}}$ d) $(x + y)^{\frac{2}{3}} - (x - y)^{\frac{2}{3}} = (4c)^{\frac{2}{3}}$ e) $(x + y)^{\frac{2}{3}} + (x - y)^{\frac{2}{3}} = 2a^{\frac{2}{3}}$
8.		the evolute of the cycloid an θ), $y = a(1 - \cos \theta)$ is another equal cycloid.	
9.	(For the function $\left(\frac{t}{2}\right)$, $y = a \sin t$.	Ans: $y = a \cosh \frac{x}{a}$
10.		that the evolute of the curve $\theta \sin \theta$, $y = a(\sin \theta - \theta \cos \theta)$ is a circle.	

DEPARTMENT OF MATHEMATICS

Ī	JΝ	Τ	Т	_	T	V

		OINTI - IV	
		Tutorial Sheet −3	Answers
1.	Show that Γ	$\left(\frac{1}{2}\right) = \sqrt{\pi}$	
2.	Evaluate $\int_{0}^{1} x^{6}$		6! 9! 16!
3.	Evaluate $\int_{0}^{\pi/2} S$	$\sin^6 heta\cos^{10} heta d heta$	$\frac{1}{512} \frac{225*63}{8!} \pi$
4	Evaluate $\int\limits_0^{\pi/2}$	$\sqrt{\cot heta} d heta$	$\frac{\pi}{\sqrt{2}}$
5.	Evaluate $\int_{0}^{\infty} e^{-}$	$-x\sqrt{x}dx$	$\frac{\sqrt{\pi}}{2}$
6.	Evaluate $\int_{0}^{\infty} e^{-}$	$x^{4x}x^{16}dx$	$\frac{16!}{4^{17}}$
7.	Evaluate $\int_{0}^{1} \frac{1}{\sqrt{1}}$	$\frac{dx}{-x^4}$	$\frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}$
8.	Evaluate $\int_{0}^{\infty} e^{-}$	$-x^4x^4dx$	$\frac{1}{4}\Gamma\left(\frac{5}{4}\right)$

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T -CALCULUS AND LINEAR ALGEBRA

	INSTITUTE OF SCIENCE & TECHNOLOGY		THE MAN WHO KNEW INFINIT
	(Deemed to be University u/s 3 of UGC Act, 1956)	UNIT V: SEQUENCE & SERIES	
		Tutorial Sheet -1	
Sl.No	0.	Questions	Answer
	,	Part – A	
1	Show that the	sequence $\left\{\frac{n+1}{2n+7}\right\}$ is convergent.	
2	Examine the n	ature of the sequence: $\{2^n\}$	Divergent.
3	Examine the n	ature of the sequence: $\left\{3+\left(-1\right)^n\right\}$	Oscillatory.
4		rgence of the series: $\frac{9}{13} + \frac{9}{10.13.16} + \dots \infty$	Divergent.
5		rgence of the series: $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$	Convergent.
	•	Part – B	
6	Test for conve	ergence of the series: $\sum_{n=1}^{\infty} \frac{n^3 + 1}{2^n + 1}$	Convergent.
7		rgence of the series: $\frac{3}{4} \cdot \frac{x^3}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^5}{7} + \dots \infty, x > 0$	Convergent for $0 < x < 1$. Divergent for $x > 0$.
8	Test for conve	ergence of the series: $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}} x^n, x > 0.$	Convergent for $0 < x < 1$. Divergent for $x \ge 0$.
9	Test for conve	rgence of the series: $\sum \frac{x^n}{n!}$	Convergent for all x.
10	Test for conve	rgence of the series: $\sum \frac{x^n}{1+x^n}$	Convergent for $0 < x < 1$. Divergent for $x \ge 0$.

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T -CALCULUS AND LINEAR ALGEBRA

UNIT V: SEQUENCE & SERIES

		Tutorial Sheet -2	
Sl.N	0.	Questions	Answer
		Part – A	
1	Test for conve	ergence of the series: $\sum \frac{n^3}{3^n}$.	Convergent.
2	Test for conve	ergence of the series: $\sum (\log n)^{-2n}$.	Convergent.
3		ergence of the series: $ \left(\frac{3^{3}}{2^{3}} - \frac{3}{2}\right)^{-2} + \left(\frac{4^{4}}{3^{4}} - \frac{4}{3}\right)^{-3} + \dots \infty $	Convergent.
4	Test for conve	ergence of the series: $\sum \left(\frac{n+1}{2n+7}\right)^n$	Convergent.
5	Test for conve	ergence of the series: $1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \dots, \infty, x > 0$	Convergent.
		Part – B	
6		ergence of the series: $\frac{2.4.6}{3.5.7.8} + \frac{2.4.6.8}{3.5.7.9.10} + \dots \infty$	Convergent.
7		ergence of the series: $\frac{x^{2}}{4.7.10} \cdot \frac{x^{3}}{11} + \dots \infty, x > 0$	Convergent for $0 < x \le 1$. Divergent for $x > 0$.
8	Test for conve	ergence of the series: $\sum \frac{1.3.5(2n-1)}{2.4.62n} x^n$.	Convergent for $0 < x < 1$. Divergent for $x \ge 0$.
9	Test for conve	ergence of the series: $\sum \frac{(n!)^2}{(2n)!} x^n$.	Convergent for $x^2 < 4$. Divergent for $x^2 \ge 4$.
10	Test for conve	ergence of the series: $\frac{x}{1} + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \dots$	Convergent for $x < \frac{1}{e}$. Divergent for $x \ge \frac{1}{e}$
	J		

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T -CALCULUS AND LINEAR ALGEBRA

SRINIVASA RAMANUJAN THE MAN WHO KNEW INFINITY

Module V: SEQUENCE & SERIES

	(Deemed to be University 4/8 3 of Out. Act, 1956)	Module V: SEQUENCE & SERIES		
		Tutorial Sheet -3		
Sl.No.		Questions	Answer	
		Part – A		
1	Define absolu	tely convergent with an example.		
2	Define conditi	onally convergent with an example.		
3	Test for conve	Convergent.		
4	Test for conve	Oscillatory		
5	Test whether t	he series is absolutely convergent or not: $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{2n-1}$.	Conditionally convergent	
		Part – B		
6	Test for convergence of the series: $\sum_{n=2}^{\infty} \frac{\left(-1\right)^{n-1} x^n}{n(n-1)}, 0 < x < 1.$		Convergent.	
7	State the v $\frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^3}{3}$	$-1 < x \le 1$		
8		e exponential series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$ is absolutely d convergent for all values of x .		
9	Discuss the if $0 < x < 1$.	convergence of the series $\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - \dots \infty$,	Convergent.	
10	Prove that the	series $\frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \dots \infty$ converges absolutely.		