S.E. (Comp.) (Semester – III) (RC) Examination, November/December 2010 INTEGRATED ELECTRONICS

Duration: 3 Hours Total Marks: 1	100
Instructions: 1) Attempt 5 questions. 2) Attempt at least one question from each Module. 3) Assume suitable data if necessary.	
MODULE – I	
1. a) Draw the circuit diagram of voltage series feedback amplifier and derive an expression for	8
i) Voltage gain	
ii) Input impedance iii) Output impedance	
iv) Total output offset voltage.	
b) Explain the working of a non-inverting comparator.	6
	U
c) With the help of a diagram explain the working of an instrumentation amplifier and list the various applications.	6
2. a) Using op-amp implement $V_O = -\left[\frac{V_a + V_b + V_c}{3}\right]$ where V_a , V_b and V_c are the	
inputs.	6
b) Explain the electrical characteristics of an ideal op-amp. Also explain the ideal voltage transfer curve with the help of a diagram.	6
c) Explain the working of an integrator. What are the drawbacks and how are they overcome?	8
MODULE – II	
3. a) Draw a circuit of a voltage regulator based on IC 723 for a higher current rating and a higher output voltage (greater than 10 V).	6
b) Draw the internal diagram of IC 555 timer and explain the working of IC 555 as an astable multivibrator.	8
c) Explain the operating principle of PLL.	6
	O.1

4. a) Design a regulator for the following specification:

 $V_O = 5$ V, output current $I_O = 50$ mA, $V_{in} = 12$ V, short circuit current $I_{sc} = 75$ mA, $V_{sense} = 0.65$ V.

- b) Explain the various application of phase locked loop.
- c) Write a note on the following (any 2):
 - i) Phase detector
 - ii) Low pass filter
 - iii) Applications of Monostable Multivibrator.

MODULE – III

- 5. a) Define the following terms with respect to logic gates:
 - i) Fan-out
 - ii) Power supply requirement
 - iii) Power dissipation
 - iv) Noise margin of a logic gate.

b) Draw the circuit diagram of a 2 input TTL Nand gate and explain its operation.

Also verify that it performs Nand logic for all possible input combinations.

8

1

- c) Explain the working of Diode-Transistor Logic (DTL) circuit. State its advantages over Resistor Transistor Logic (RTL) circuit.
- 6. a) Discuss the advantages of Schottky TTL.

b) With the help of a neat diagram explain ECL OR/NOR gate. State the advantages and disadvantages of ECL gate.

- c) Compare the following logic families:
 - a) TTL (standard)
 - b) ECL
 - c) HTL
 - d) RTL.

MODULE – IV

7.	a)	Explain the following terms with respect to D/A converter	4
		i) Resolution ii) Setting time.	
	b)	Explain D/A converter with R and 2R resistors. What is the advantages of R and 2R D/A converter over binary weighted resistors D/A converter?	8
	c)	State the advantages of Dual Slope A/D converter.	2
	d)	Design a 4 bit weighted resistor DAC whose full scale output voltage is -5 V. The logic levels are logic $1 = +5$ V and logic $0 = 0$ V. What is the output voltage when the input is	6
		i) 1101	
		ii) 0110?	
8.	a)	Explain voltage to frequency converter. Derive the necessary expressions for the same.	8
	b)	With the help of a neat diagram explain the working of successive approximation A/D converter.	8
	c)	Explain the following specification of D/A converter i) Nonlinearity or linearity error ii) Gain error or offset error.	2
	d)	8 bit ADC output for all 1's is 5.1 volts. Determine its resolution.	2