Tarefa 15: Otimização de Comunicação em MPI Escondendo Latência com Sobreposição de Computação

Werbert Arles de Souza Barradas

DCA3703 - Programação Paralela UFRN - Universidade Federal do Rio Grande do Norte

Setembro de 2025

Objetivo e Estratégia do Experimento

Tese Central

Provar que a **Latência** (τ) da rede pode ser completamente mitigada realizando trabalho útil (computação) simultaneamente.

Metodologia:

- Problema: Difusão 1D (Troca de Halos a cada passo).
- Configuração: $N_{Global} = 10.000$, STEPS = 10.000.
- Otimização: Comparar V1 (Bloqueante) com V3 (MPI_Test) em cenários de alta concorrência (P=2,4,8).

As Três Estratégias de Comunicação

V1 & V2: Bloqueio Total ou Parcial

- V1 (Baseline): MPI_Send / MPI_Recv. Processo espera a rede.
- V2 (Wait): MPI_Isend/Irecv + MPI_Wait.
 Overhead de requisição, mas

ainda espera bloqueando.

V3: Sobreposição Otimizada

- Primitivas: MPI_Isend/Irecv+ MPI_Test.
- Mecanismo: Inicia comunicação e imediatamente computa os pontos não dependentes dos halos, usando o tempo de latência da rede de forma produtiva.

Análise: Início da Eficiência (P=2 vs. P=4)

Figura: Grafico P=2

• P=2: A V3 não é a mais rápida. O $T_{\rm comp}$ é muito longo, e a Latência é insignificante, resultando em *overhead*.

Análise: Início da Eficiência (P=2 vs. P=4)

Figura: Grafico P=4

• P=4: A V3 (0.0555 s) se torna, marginalmente, a melhor. A redução da carga local permite o início da **sobreposição efetiva**.

Prova Final: Domínio da Latência (P = 8)

Figura: Desempenho no Cenário de Máxima Concorrência (P=8)

Ganho Máximo da Sobreposição

• **V1 (Baseline):** 0.0473 s

• V3 (Otimizada): 0.0298 s

Ganho Total: $\approx 36.88\%$

Conclusão Final

- Princípio Validado: O ganho de 37% demonstra que, para otimizar a escalabilidade, é preciso fazer a latência da rede coincidir com o tempo de computação útil.
- Condição Crítica: A otimização máxima (V3) só se manifestou no cenário de Latência Dominante (P=8), onde o trabalho de computação local é baixo e o custo da comunicação é alto.