Hemodynamic Simulation with Lattice Boltzmann

Harvard IACS AC 290R

Michael S. Emanuel

Jonathan Guillotte-Blouin

Yue Sun

Module II in Context of AC 290R

- Goals of AC 290R: learn techniques in Extreme Computing applied to application domain of Fluid Dynamics
- Module I covered the continuum description and Navier Stokes; we simulated Rayleigh-Bénard Convection using the CPU-centric Drekar Code
- Module II shifted to the mesoscale description, which is well suited to the life sciences in particular
- We tackled a prototypical problem: a hemodynamics simulation
- We also learned about GPU computing
- While MUPHY can make good use of GPUs, our simulation ran on 1024 CPUs only

Problem Statement & Motivation

- We simulated the release of a therapeutic drug to treat a stenotic artery
- Stenosis is a narrowing of the artery, often caused by atherosclerosis
- We used an idealized geometry, modeling the artery as a cylinder with a narrowing in the stenotic region
- We wanted to model the dispersal of the drug agent into the stenotic region over a time scale in the range of 1-4 seconds (1 second is roughly 1 heartbeat)
- We attempted two simulations
- Baseline Reynolds number 10, 0% hematocrit (red blood cell content)
- More Realistic Same geometry and Re as baseline, but with 30% hematocrit

Overview of Numerical Methods Used

- triumph of classical thermodynamics and statistical physics The Boltzmann Equation (Ludwig Boltzmann, 1872) is a
- The Lattice Boltzmann Method (LBM) is a CFD simulation technique based on the Boltmann Equation
- The fluid is modeled as a distribution of populations of particles on a grid; each grid point tracks ho counts of particles with different discrete velocities
- We used the common D3Q19 approach; 3D space is discretized into cubes
- Each cube has 19 neighbors: 1 at distance 0, 6 at distance 1, 12 at distance 2

Equations of Lattice Boltzmann

Bhatnagar-Gross-Krook Update Rule:

$$f_p(x+hc_{p,t}+h)=f_p(x,t)+\omega(x,t)h\left[f_p^{eq}(\rho,\mathbf{u}-f_p)(x,t)+w_p\frac{c_p\cdot\mathbf{g}}{c_s^2}\right]$$

Equilibrium Population:

$$f_p^{eq}(\rho,\mathbf{u}) = w_p \rho \left[1 + \frac{\mathbf{u} \cdot c_p}{c_2^2} + \frac{(\mathbf{u} \cdot c_p)^2 - c_s^2 u^2}{2c_2^4} \right]$$
• u is the velocity
• c is the displace
• c_p is the relaxation frequency, related to viscosity by $v = c_s^2 \left(\frac{1}{\omega} - \frac{1}{2} \right)$

 ρ is the density at this grid point, the sum of the $f_{_{\scriptscriptstyle D}}$

 \mathbf{w}_{s} are the LBM weights; $\frac{1}{3}$, $\frac{1}{8}$ and $\frac{1}{18}$ for 0th, 1st and 2nd neighbors $\frac{1}{3}$ is the lattice speed of sound, $\frac{1}{3}$ 3

Description of Code

- Workhorse is the back end fluid simulator MUPHY/MOEBIUS
- MUPHY is a ~10 year old multi-physics simulator using LBM with an emphasis on biological applications; guest lecturer Simone Melchionna was a lead developer
- MOEBIUS is a commercial code developed by Dr. Melchionna's company Lexma
- MUPHY simulation engine written in C/C++ and Fortran for maximum speed
- Front end is in Python for convenience in specifying and running simulations
- ShapePainter.py generated the geometry for our problem; 8.6m points, 7.0m cells
- run2.py invokes the simulation in MUPHY, using MPI to run in parallel
- runrbc.sh is a shell script that runs our job on Odyssey with suitable parameters

Post-Processing: Visualization & Analysis

- Performance intensive visualization (e.g. Paraview) was run remotely on Odyssey due to huge size of simulation output (~2GB \prime frame)
- Analysis and plots carried out on a handful of frames were performed locally on frames downloaded every 100 ms from 0.1 to 1.0 seconds
- VTK outputs (.vtu and .pvtu) were converted to numpy using vtki library
 - Drug volume was computing by summing concentration in cells
- Plots of velocity were made using points data with matplotlib

Refactoring

- MUPHY/MAGIC: Backend library
- BUFFY: Each subdirectory represents each simulation with different RBC and Re
- Workflow: Create shapes in ShapePainter, copy the output files into their respective RBC_X_ReX folder, submit batch scripts
- Simulation attempts:
- \circ Re = 10: 0% RBC, 5% RBC ($\overset{\bigstar}{\mathbf{X}}$), 30% RBC ($\overset{\bigstar}{\mathbf{X}}$)
- \circ Re = 5: 5% RBC, 10% RBC ($ilde{X}$)

Parameters of the Simulation

Simulation 1:

Dimensions: Re=10.0, Pe=10.0, Length L=1000.0, Radius =50.0

Red Blood Cells: 0%

Drug Release Time: 100000
Simulation 2:
Dimensions: Re=5.0, Pe=10.0, Length L=500.0, Radius =25.0

Red Blood Cells: 5%

Drug Release Time: 50000 Blood Unfreeze Time: 2000 (3000)

Density $\rho_0 = 1.0$ Viscosity: U = 0.1

Average Velocity: $\vec{\mathbf{u}} = 0.01$

The "Odyssey"

Job Name	Run Time	Run Time Exit Code Count	Count	Diagnostic
RBC30RE10			2	MPI communications error.
RBC30RE10	10:30:32	-	-	Equilibration was not sufficiently long.
RBC10RE10	03:49:42	-	-	Segmentation fault (Address not mapped).
RBC10RE10		137	2	Segmentation fault (Address not mapped).
RBC30RE10	01:33:09	0	-	Node fail.
RBC10RE10	01:34:41	137	2	Releasing the cells is too abrupt.
RBC5RE10	02:56:34	-	2	Releasing the cells is too abrupt.
RBC5RE5		137	14	(MPI) InfiniBand retry count exceeded.
RBC5RE5		139	22	Segmentation fault when loading modules
RBC5RE5	02:08:38	1	, - 1	Adjusted cell release is still abrupt.
RBC5RE5	01:56:47		,-	Corrupted double-linked list.

- Always run smaller test cases before launching the actual full-scale simulation
- Some errors are unexpected, and submitting jobs repeatedly may help

Drug Delivery Over Time

Contour Plots of Speed

Streamlines

Contour Plot of Drug Density

Longitudinal Drug Profile

•

Conclusions: Hemodynamic System

- Baseline simulation suggests that the drug diffuses to equilibrium levels rapidly (~1 second) and specific geometry not too important
- Since the RBC runs failed, we couldn't learn about their effect on the simplified system, though we expect it to be small in a large artery
- To refine the simulation, we need a more accurate geometry, ideally a scan of a patient; probably more important than RBC for accuracy
- Suggested directions for future work:
- More accurate geometry; replace period boundaries with heart & veins
 - Shift from CPU to GPU computing
- More accurate biochemistry model

Conclusions: Extreme Computing

Grazie Mille, Grazie Ragazzi

