

ASSIGNMENT

MACHINE LEARNING 1

Python

REPORT ?

Pillar1-e

Prepared By

William C. Phiri

PG Dip in Data Science Student No. 4295158639

+353-87-3502102

chenechoz@gmail.com

Athlone, IRELAND (?)

BACKGROUND:

The data is a marketing campaign data of a skin care clinic associated with its success.

Description of variables-

Success: Response to marketing campaign of Skin Care Clinic which offers both products and services. (1: email Opened, 0: email not opened)

AGE: Age Group of Customer

Recency_Service: Number of days since last service purchase

Recency_Product: Number of days since last product purchase

Bill_Service: Total bill amount for service in last 3 months

Bill_Product: Total bill amount for products in last 3 months

Gender (1: Male, 2: Female)

Note: Answer following questions using entire data and do not create test data.

QUESTIONS

- 1. Import Email Campaign data. Perform binary logistic regression to model "Success". Interpret sign of each significant variable in the model.
- 2. Compare performance of Binary Logistic Regression (significant variables) and Naïve Bayes Method (all variables) using area under the ROC curve.
- 3. Implement binary logistic regression and Support Vector Machines by combining service and product variables.

ASSIGNMENT SUMMARY OVERVIEW:

This project implements a comprehensive machine learning pipeline to predict email campaign success for a skin care clinic marketing campaign. The analysis utilizes proper train/test splitting, extensive visualizations, and compares four different classification algorithms to identify which customers are most likely to open marketing emails.

Key Features:

- Train/Test Split (80/20) for robust model evaluation
- Statistical Significance Testing using statsmodels
- Multiple Classification Algorithms (Logistic Regression, Naive Bayes, SVM)
- Comprehensive Visualizations (EDA, ROC Curves, Confusion Matrices)
- ROC-AUC Analysis for model comparison
- Production-Ready Models with persistence and metadata tracking

Dataset: 683 customer records with demographics, purchase recency, billing history, and email response data.

PROJECT STRUCTURE:

```
email-campaign-prediction/
   data/
       raw/
       └─ Email Campaign.csv
           email_campaign_processed.csv
      predictions/
   models/
      logistic_regression_significant.pkl
      - naive_bayes_model.pkl
      logistic_regression_combined.pkl
      svm_model.pkl
      age_label_encoder.pkl
      significant_variables.pkl
    └─ model_metadata.json
   reports/
       figures/
          01_exploratory_data_analysis.png
         — 02_correlation_matrix.png
          03_train_test_split.png
           04_logistic_regression_coefficients.png
           05_comprehensive_model_comparison.png
          - 06_confusion_matrices.png
       model_performance_summary.csv
   notebooks/
      - 01_complete_analysis.ipynb
   environment/

    requirements.txt

     environment.yml
   main.py
   load_and_predict.py
    .gitignore
   README.md
```

QUESTION 1: Import Email Campaign data. Perform binary logistic regression to model "Success". Interpret sign of each significant variable in the model.

Exploratory Data Analysis & Visualizations

Binary Logistic Regression:

QUESTION 1: Binary Logistic Regression with Statistical Testing								
Optimization terminated successfully.								
Current function value: 0.384373								
Iterations 7								
Logit Regression Results								
Dep. Variable:	Dep. Variable: Success No. Observations: 546							
Model:	Logit		Df Residuals:		539			
Method:	MLE		Df Model:		6			
Date:	Sat, 04 Oct 2025		Pseudo R-squ.:		0.3338			
Time:	12:50:38		Log-Likelihood:		-209.87			
converged:	True		LL-Null:		-315.00			
Covariance Type:	nonrobust		LLR p-value:		1.233e-42			
	coef	std err	z	P> z	[0.025	0.975]		
const	-1.1513	0.481	-2.393	0.017	-2.094	-0.208		
Gender	-0.1127	0.245	-0.460	0.646	-0.593	0.368		
AGE_Encoded	0.3538	0.206	1.720	0.086	-0.049	0.757		
Recency_Service	-0.2671	0.035	-7.654	0.000	-0.336	-0.199		
Recency_Product	-0.0980	0.026	-3.836	0.000	-0.148	-0.048		
Bill_Service	0.1003	0.021	4.804	0.000	0.059	0.141		
Bill_Product	0.5617	0.090	6.223	0.000	0.385	0.739		

COEFFICIENT INTERPRETATION								
======================================		=======						
Variable	Coefficient	Std Error	P-value	Significant				
const	-1.151264	0.481185	1.673126e-02	True				
Gender	-0.112690	0.245107	6.456908e-01	False				
AGE_Encoded	0.353776	0.205732	8.550599e-02	False				
Recency_Service	-0.267145	0.034901	1.942249e-14	True				
Recency_Product	-0.098002	0.025551	1.252809e-04	True				
Bill_Service	0.100338	0.020886	1.553778e-06	True				
Bill_Product	0.561742	0.090267	4.873945e-10	True				

The significant variables (p < 0.05) include the following below:

- Recency_Service,
- Recency_Product,
- Bill_Service,
- Bill_Product

Logistic Regression Coefficients (Green = Significant, Gray = Not Significant)

Model Performance:

MODEL PERFORMANCE - LOGISTIC REGRESSION (Significant Variables)								
TRAINING SET PERFORMANCE: precision recall f1-score support								
Not Opened Opened	0.86 0.74	0.93 0.56	0.89 0.64	402 144				
accuracy macro avg weighted avg	0.80 0.83	0.75 0.83	0.83 0.77 0.83	546 546 546				
TEST SET PERFORMANCE: precision recall f1-score support								
Not Opened Opened	0.78 0.59	0.93 0.28	0.85 0.38	101 36				
accuracy macro avg weighted avg	0.69 0.73	0.60 0.76	0.76 0.61 0.73	137 137 137				

When we look at this models performance analysis we can conclude the following, the Logistic Regression model achieves **76**% overall accuracy on the test set but shows imbalanced performance across classes. While it excels at identifying customers who won't open emails (**93**% recall, **78**% precision), it struggles with the target class of email openers, achieving only 28% recall and 59% precision. This means the model is highly conservative, correctly identifying fewer than 1 in 3 actual email openers while minimizing false positives. The **7**% drop in accuracy from training (**83**%) to test (**76**%) suggests mild overfitting. For business deployment, the model is currently best suited for exclusion campaigns (identifying who NOT to target) rather than positive targeting (identifying who WILL engage).

QUESTION 2: Compare performance of Binary Logistic Regression (significant variables) and Naïve Bayes Method (all variables) using area under the ROC curve.

QUESTION 2: Naive Bayes Classification									
TRAINING	SET PERFORM	ANCE:							
	precision	recall	f1-score	support					
Not Opened	0.80	0.92	0.86	402					
Opened	0.63	0.36	0.46	144					
accuracy			0.77	546					
macro avg	0.71	0.64	0.66	546					
weighted avg	0.76	0.77	0.75	546					
TEST SET	TEST SET PERFORMANCE:								
	precision	recall	f1-score	support					
Not Opened	0.78	0.92	0.85	101					
Opened	0.56	0.28	0.37	36					
accuracy			0.75	137					
macro avg	0.67	0.60	0.61	137					
weighted avg	0.72	0.75	0.72	137					

QUESTION 3: Implement binary logistic regression and Support Vector Machines by combining service and product variables.

```
_____
QUESTION 3: Support Vector Machine with Combined Features
Creating Combined Features...
   Total_Recency = Recency_Service + Recency_Product
   ▼ Total Bill = Bill Service + Bill Product
   Recency_Ratio = Recency_Service / (Recency_Product + 1)
   Bill_Ratio = Bill_Service / (Bill_Product + 1)
Training Logistic Regression (Combined Features)...
📊 Logistic Regression (Combined) - TEST SET PERFORMANCE:
             precision recall f1-score support

        Opened
        0.79
        0.94
        0.86
        101

        Opened
        0.65
        0.31
        0.42
        36

 Not Opened
  accuracy 0.77 137 macro avg 0.72 0.62 0.64 137
weighted avg
                0.75
                                    0.74
                          0.77
                                               137
Training Support Vector Machine (RBF Kernel)...
```

SVM - TEST	「SET PERFORM precision		f1-score	support	
Not Opened Opened	0.79 0.67	0.95 0.28	0.86 0.39	101 36	
accuracy macro avg	0.73	0.61	0.77 0.63	137 137	
weighted avg	0.76	0.77	0.74	137	

COMPREHENSIVE MODEL COMPARISON WITH ROC CURVES

From the ROC curves and AUC scores we can deduce the following outcome across the models.

Model	Features	AUC	Accuracy	Precision	Recall	F1- Score	Rank
Logistic Regression (Significant)	4	0.81	0.76	0.59	0.28	0.38	1
Logistic Regression (Combined)	6	0.79	0.77	0.65	0.31	0.42	2
Naive Bayes (All Variables)	6	0.77	0.75	0.56	0.28	0.37	3
SVM (RBF Kernel)	6	0.74	0.77	0.67	0.28	0.39	4

The best performing model is clearly the **Logistic Regression** retaining the significant variables seeing as it has the highest AUC score.

