# Clustering of stock time series data and price prediction

YUHAO KANG 5/8/2018

### Predictability of stock markets

- Efficient market hypothesis (Fama, 1970)
- y(t)=g(t)+c(t) (Hodrick & Prescott, 1997)

  Trend component Cyclic component

If the short-range correlation of c(t) can be utilized? (Nair, 2017)

### Time series data

| ^  | Date <sup>‡</sup> | Open <sup>‡</sup> | High <sup>‡</sup> | Low <sup>‡</sup> | Close <sup>‡</sup> | Volume <sup>‡</sup> | OpenInt <sup>‡</sup> |
|----|-------------------|-------------------|-------------------|------------------|--------------------|---------------------|----------------------|
| 1  | 2012-12-13        | 15                | 15                | 15               | 15                 | 100                 | 0                    |
| 2  | 2012-12-14        | 19                | 30                | 19               | 30                 | 144600              | 0                    |
| 3  | 2012-12-17        | 31.5              | 65                | 31.5             | 65                 | 68600               | 0                    |
| 4  | 2012-12-18        | 65                | 89                | 65               | 80                 | 43600               | 0                    |
| 5  | 2012-12-19        | 80                | 84                | 78               | 84                 | 24000               | 0                    |
| 6  | 2012-12-20        | 84                | 84                | 80               | 80.25              | 33300               | 0                    |
| 7  | 2012-12-21        | 80.5              | 81.5              | 75               | 80                 | 20700               | 0                    |
| 8  | 2012-12-24        | 81                | 93.5              | 80               | 80                 | 3700                | 0                    |
| 9  | 2012-12-26        | 80                | 90                | 77               | 77                 | 56100               | 0                    |
| 10 | 2012-12-27        | 75                | 75.02             | 55               | 59                 | 54300               | 0                    |
| 11 | 2012-12-28        | 58.5              | 75                | 56.5             | 72.35              | 94400               | 0                    |
| 12 | 2012-12-31        | 72                | 90                | 72               | 82                 | 43500               | 0                    |
| 13 | 2013-01-02        | 83.5              | 85                | 75.75            | 76                 | 26000               | 0                    |
| 14 | 2013-01-03        | 75.5              | 83.9              | 73.5             | 81.25              | 80800               | 0                    |
| 15 | 2013-01-04        | 81.5              | 86                | 81.5             | 85                 | 26000               | 0                    |
| 16 | 2013-01-07        | 86                | 87.75             | 79.8             | 79.8               | 31800               | 0                    |
| 17 | 2013-01-08        | 79                | 83.99             | 78.25            | 80                 | 21800               | 0                    |
| 18 | 2013-01-09        | 80.75             | 86.25             | 80.75            | 84                 | 53100               | 0                    |
| 19 | 2013-01-10        | 86.8              | 99.49             | 86               | 98                 | 38900               | 0                    |
| 20 | 2013-01-11        | 100               | 107               | 97.15            | 106.5              | 37000               | 0                    |
| 21 | 2013-01-14        | 111               | 120               | 110              | 120                | 42000               | 0                    |
| 22 | 2013-01-15        | 117.05            | 129.49            | 108              | 110                | 97600               | 0                    |



**Fig. 1**. Time series data of AAMC. (Left panel) original data, here we only focus on the close column. (Right panel) run chart based on the data, time range is 2012/12/13—2017/11/10.

### Aim

▶ 30-days-ahead series p(t) = [y(t), y(t-1) ... y(t-29)]



▶ 5-days-after data r(t) = [y(t+1), y(t+2) ... y(t+5)]

# Training dataset



Problem: In real application, amount of input features may be huge!

### Regression trees

```
Regression Tree for Price
Call:
rpart(formula = V31 \sim V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 +
   V9 + V10 + V11 + V12 + V13 + V14 + V15 + V16 + V17 + V18 +
   V19 + V20 + V21 + V22 + V23 + V24 + V25 + V26 + V27 + V28 +
   V29 + V30, data = xt, method = "anova")
                                                                                                              n=30
 n=30
         CP nsplit rel error xerror
1 0.62179905
                 0 1.0000000 1.0972339 0.3162066
                 1 0.3782010 0.5438167 0.1511534
2 0.03983376
3 0.01000000
                 2 0.3383672 0.5446017 0.1501308
Variable importance
 V7 V8 V1 V6 V2 V5 V17 V18 V19 V9
 30 15 14 14 11 11 2 1 1
Node number 1: 30 observation
                                  complexity param=0.621799
 mean=2.542333, MSE=0.01068456
 left son=2 (22 obs) right son=3 (8 obs)
                                                                                                                                                           Principle inputs tt \subseteq \{V_1 \sim V_{30}\}
 Primary splits:
      V7 < 2.475 to the right, improve=0.6217990, (0 missing)
      V24 < 2.595 to the left, improve=0.4437202, (0 missing)
     V6 < 2.475 to the right, improve=0.4130582, (0 missing)
                                                                                   V17>=2.525
2.493
      V8 < 2.505 to the right, improve=0.3743746, (0 missing)
                                                                                                                                     2.678
      V5 < 2.475 to the right, improve=0.3675202, (0 missing)
  Surrogate splits:
                                                                                      n=22
                                                                                                                                      n=8
      V1 < 2.705 to the left, agree=0.867, adj=0.500, (0 split)
      V6 < 2.465 to the right, agree=0.867, adj=0.500, (0 split)
     V8 < 2.465 to the right, agree=0.867, adj=0.500, (0 split)
     V2 < 2.73 to the left, agree=0.833, adj=0.375, (0 split)
     V5 < 2.455 to the right, agree=0.833, adj=0.375, (0 split)
Node number 2: 22 observations,
                                  complexity param=0.03983376
  mean=2.493182, MSE=0.001548967
 left son=4 (11 obs) right son=5 (11 obs)
 Primary splits:
     V17 < 2.525 to the right, improve=0.3746832, (0 missing)
     V18 < 2.55 to the right, improve=0.2946512, (0 missing)
     V9 < 2.61 to the left, improve=0.2653112, (0 missing)
      V11 < 2.61 to the left, improve=0.2166822, (0 missing)
      V16 < 2.5825 to the right, improve=0.2042735, (0 missing)
 Surrogate splits:
      v9 < 2.61 to the left, agree=0.818, adj=0.636, (0 split)
      V18 < 2.55 to the right, agree=0.818, adj=0.636, (0 split)
     V19 < 2.55 to the right, agree=0.818, adj=0.636, (0 split)
                                                                      2.469
                                                                                                      2.517
      V7 < 2.595 to the left, agree=0.773, adj=0.545, (0 split)
      V8 < 2.595 to the left, agree=0.773, adj=0.545, (0 split)
                                                   Fig. 2. Regression trees
```

### Reduce Dimensionality

► 
$$[P R] = \begin{bmatrix} p(t) & r(t) \\ p(t-1) & r(t-1) \\ \vdots & \vdots \\ p(t-29) & r(t-29) \end{bmatrix}$$

$$P_{reduced} = \{V_i \text{ for } i \text{ in } tt\} \subseteq P$$

 $final = [P_{reduced} R]$ 

# SOM and k-means clustering

•  $final = [P_{reduced} R]$ , try 6 clusters

Mapping Type SOM



Fig.3. SOM mapping of dataset final



Fig.4. k-means clustering

### Centroids and prediction

- If  $\max(R_c) > mean(P_c)$ , price up
- ► Else, price down
- Input  $W(t = 30 \sim 1)$  Distance matrix  $W_{reduced}(t \subseteq tt)$  Closest  $P_{ci}$  Prediction

### Conclusion

- Results vary from various samples, performance is not stable
- ► SOM and k-means make no big difference
- Influence factors: cluster number, data size, time interval

|    |                         |                      |             |    | \          |
|----|-------------------------|----------------------|-------------|----|------------|
| _  | prediction <sup>‡</sup> | reality <sup>‡</sup> | correctness | ^  | prediction |
| 1  | 1                       | 1                    | TRUE        | 1  |            |
| 2  | 1                       | 1                    | TRUE        | 2  |            |
| 3  | 1                       | 1                    | TRUE        | 3  |            |
| 4  | 0                       | 1                    | FALSE       | 4  |            |
| 5  | 0                       | 1                    | FALSE       | 5  |            |
| 6  | 0                       | 1                    | FALSE       | 6  |            |
| 7  | 0                       | 1                    | FALSE       | 7  |            |
| 8  | 0                       | 1                    | FALSE       | 8  |            |
| 9  | 0                       | 1                    | FALSE       | 9  |            |
| 10 | 0                       | 1                    | FALSE       | 10 |            |
| 11 | 0                       | 1                    | FALSE       | 11 |            |
| 12 | 0                       | 1                    | FALSE       | 12 |            |
| 13 | 0                       | 1                    | FALSE       | 13 |            |
| 14 | 0                       | 1                    | FALSE       | 14 |            |
| 15 | 0                       | 1                    | FALSE       | 15 |            |
| 16 | 0                       | 0                    | TRUE        | 16 |            |
| 17 | 0                       | 0                    | TRUE        | 17 |            |
| 18 | 0                       | 0                    | TRUE        | 18 |            |
| 19 | 0                       | 0                    | TRUE        | 19 |            |
| 20 | 0                       | 0                    | TRUE        | 20 |            |
|    |                         |                      |             |    |            |

|    | \          |         |             |
|----|------------|---------|-------------|
| ^  | prediction | reality | correctness |
| 1  | 1          | 1       | TRUE        |
| 2  | 0          | 1       | FALSE       |
| 3  | 0          | 1       | FALSE       |
| 4  | 0          | 1       | FALSE       |
| 5  | 0          | 1       | FALSE       |
| 6  | 0          | 1       | FALSE       |
| 7  | 0          | 1       | FALSE       |
| 8  | 0          | 1       | FALSE       |
| 9  | 0          | 1       | FALSE       |
| 10 | 0          | 1       | FALSE       |
| 11 | 0          | 1       | FALSE       |
| 12 | 0          | 1       | FALSE       |
| 13 | 0          | 1       | FALSE       |
| 14 | 0          | 1       | FALSE       |
| 15 | 0          | 1       | FALSE       |
| 16 | 0          | 0       | TRUE        |
| 17 | 0          | 0       | TRUE        |
| 18 | 0          | 0       | TRUE        |
| 19 | 0          | 0       | TRUE        |
| 20 | 0          | 0       | TRUE        |

Fig.5. Prediction of AAPL. Left panel is k-means method; right panel is SOM

# Thanks!