Mục tiêu:

- Khái niệm
- Đặc trưng kỹ thuật
- Phân loại
- Chuẩn hóa
- Mô hình phân tầng
- Nguyên tắc truyền thông

Khái niệm:

- Là tập hợp các máy tính được kết nối với nhau thông qua các môi trường truyền thông và tuân theo các quy ước truyền thông.
- Môi trường truyền thông: có thể hữu tuyến và vô tuyến.
- Các quy ước truyền thông: các kiến trúc mạng và giao thức. Cơ sở các máy tính có thể kết nối và giao tiếp được với nhau.

Đặc trưng kỹ thuật

- Đường truyền: dùng để truyền các tín hiệu điện tử giữa các máy tính. Các thông tin, dữ liệu được biểu thị dưới dạng các xung nhị phân (ON_OFF).
- Kỹ thuật chuyển mạch: chuyển tín hiệu giữa các nút mạng, bao gồm có:
 - Kỹ thuật chuyển mạch điện (chuyển mạch kênh)
 - Kỹ thuật chuyển mạch thông báo
 - Kỹ thuật chuyển mạch gói

Đặc trưng kỹ thuật (tt)

Kiến trúc mạng: thể hiện cách nối các máy tính với nhau và tập hợp các quy tắc mà các thực thể tham gia truyền thông trên mạng phải tuân theo.

Hệ điều hành mạng:

- Quản lý tài nguyên của hệ
- Quản lý tài khoản người dùng và công việc tương ứng.
- Cung cấp các dịch vụ và tiện ích mạng dùng chung.

Phân loại mạng máy tính

- Theo khoảng cách địa lý: mạng cục bộ (LAN), mạng đô thị (MAN), mạng diện rộng (WAN), mạng Internet.
- Theo kiến trúc mạng sử dụng:
 - Hình trạng mạng (network topology): hình sao, hình vòng trong, hình trục tuyến tính (bus).
 - Giao thức mạng: TCP/IP, mạng NetBios.
- Theo kỹ thuật chuyển mạch: mạng chuyển mạch kênh, chuyển mạch thông báo, chuyển mạch gói.
- Theo hệ điều hành mạng: mạng ngang hàng, mạng client/Server, tên hệ điều hành mạng,..

Chuẩn hóa mạng máy tính

- Các nhà thiết kế tự do lựa chọn kiến trúc riêng dẫn đến trở ngại sự tương thích và tương tác giữa các giao thức.
- Nhu cầu trao đổi thông tin lớn cần xây dựng chuẩn kiến trúc mạng để làm căn cứ cho các nhà thiết kế và chế tạo thiết bị mạng.
- Tổ chức tiêu chuẩn hóa quốc tế ISO (International Organization for Standardization) đã xây dựng mô hình tham chiếu OSI.

Mô hình OSI

- Tầng vật lý
 - Tầng truyền thông thấp nhất giữa 2 nút mạng
 - Truyền dãy các bit giữa 2 nút
 - Có thể xảy ra lỗi trong quá trình truyền dữ liệu do điện áp và nhiều đường truyền.
 - Thiết bị: card mạng và cáp mạng
 - Lập trình mạng không làm việc ở tầng này.

- Tầng liên kết dữ liệu
 - Dữ liệu ở dạng các frames
 - Frames có trường kiểm tra lỗi truyền (checksums, TTL,..)
 - Chịu trách nhiệm truyền dữ liệu: độ an toàn và tin cậy.

Mô hình OSI (tt)

Tầng mạng

- Dữ liệu ở dạng các packets.
- Packets được gửi qua lại giữa các nút mạng.
- Phần header chứa các thông tin quan trọng: địa chỉ mạng và định tuyến mạng.
- Ở tầng này, ít khi lập trình mạng được yêu cầu lập trình dịch vụ.

- Tầng vận chuyển
 - Dữ liệu ở dạng các segments.
 - Chịu trách nhiệm: xử lý việc kết nối, phát hiện lỗi một cách chủ động, điều khiển lường dữ liệu.

- Tầng phiên
 - Quản lý phiên truyền thông giữa các ứng dụng:
 - Thiết lập một phiên và đồng bộ phiên
 - Thiết lập hai phiên nếu một phiên có vấn đề
 - Tùy theo yêu cầu mà sử dụng giao thức có kết nối.

- Mô hình OSI (tt)
 - Tầng trình bày
 - Có chức năng đảm bảo hiển thị và chuyển đổi dữ liệu:
 - Có thể sử dụng các kiểu biểu diễn dữ liệu khác nhau
 - Nén và mã hóa dữ liệu

- Tầng ứng dụng
 - Tầng cao nhất trong mô hình mạng, các ứng dụng mạng được lập trình ở tầng này.

- Các giao thức các tầng
 - Tầng ứng dụng: HTTP, FTP, SMTP, NSF, Telnet, SSH,...
 - Tầng trình bày: SMB, NCP
 - Tầng phiên: SSH, NetBios, RPC
 - Tầng vận chuyển: TCP, UDP,...
 - Tầng mạng: IP, ICMP, IPX
 - Tầng liên kết dữ liệu: Ethernet, Token Ring, ISDN,...
 - Tầng vật lý: 100BASE-T, 1000BASE-T, 802.11

Đóng gói dữ liệu

Nguyên tắc truyền thông

- Các máy tính phải được kết nối nhau theo một cấu trúc .
- Phải thống nhất các giao thức mạng trong việc chuyển dữ liệu.
- Phân chia hoạt động truyền thông thành nhiều lớp theo nguyên tắc nhất định.
- Mỗi hệ thống được xây dựng như một cấu trúc nhiều tầng và có cấu trúc giống nhau.