Istituzioni di Geometria 2023/2024

Francesco Minnocci

8 giugno 2024

Quarta Consegna

Esercizio 10.7 Sia G un gruppo di Lie. Mostra che esiste sempre una metrica riemanniana su G invariante a sinistra, cioè tale che $L_g: G \to G$ sia un'isometria per ogni $g \in G$.

Dimostrazione. Sia n la dimensione di G. Possiamo identificare $\mathfrak{g} = T_e G$ con \mathbb{R}^n fissandone una base, ed usare la metrica euclidea standard su \mathbb{R}^n per definire un prodotto scalare $\langle \cdot, \cdot \rangle_e$ su $T_e G$.

Se poi $g \in G$ e $v, w \in T_gG$, possiamo estendere il prodotto scalare definito su T_eG per traslazione, cioè ponendo

$$\langle v, w \rangle_g = \langle (dL_{g^{-1}})_g(v), (dL_{g^{-1}})_g(w) \rangle_e$$

Per costruzione, $\langle \cdot, \cdot \rangle_g$ è invariante a sinistra:

$$\langle (dL_q)_h(v), (dL_q)_h(w) \rangle_{qh} = \langle v, w \rangle_h$$

per ogni $g, h \in G$ e $v, w \in T_hG$.

Esercizio 10.2

Considera il piano iperbolico nel modello del semipiano:

$$H^2 = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}, \quad g = \frac{1}{y^2} g_E$$

Calcola l'area del dominio

$$[-a,a] \times [b,\infty)$$

per ogni a, b > 0. L'area è ovviamente quella indotta dalla forma volume della varietà riemanniana H^2 .

Dimostrazione. La forma volume indotta dalla metrica g sul piano iperbolico è

$$\omega = \frac{1}{u^2} \, dx \wedge dy.$$

L'area di $A := [-a, a] \times [b, \infty)$ è quindi

$$\int_A \omega = \int_A \frac{1}{y^2} \, dx \wedge dy \int_b^\infty \int_{-a}^a \frac{1}{y^2} \, dx \, dy = 2a \cdot \int_b^\infty \frac{1}{y^2} \, dy = 2a \left[-\frac{1}{y} \right]_b^\infty = \frac{2a}{b}.$$