

Visão geral

Tópico 04

Hugo Silva

Definições Preliminare

memória

Princípios da memória cach

Projeto de memória cach

Tópico 04 - Memória cache

Hugo Vinícius Leão e Silva

 $\verb|hugovlsilva@gmail.com|, \verb|hugo.vinicius.16@gmail.com|, \verb|hugovinicius@ifg.edu.br||$

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis Curso de Bacharelado em Ciência da Computação

15 de maio de 2023

Visão geral

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

- 1 Definições Preliminares
- 2 Hierarquia de memória
- 3 Princípios da memória cache
- 4 Projeto de memória cache

Definições preliminares

Tópico 04

Hugo Silva

Definições Preliminares

Hierarquia do memória

Princípios da memória cach

Projeto de memória cach As memórias são definidas por:

- **Localidade**: se é acessível diretamente pelo processador memória RAM, a **cache** e os registradores ou por meio de controladores de E/S;
- Capacidade: qual a capacidade de armazenamento da memória em palavras ou, como é normalmente, em bytes;
- Unidade de transferência: quantos bytes são transferidos de e para a memória de uma só vez. Pode ser uma unidade endereçável (UE)¹ ou um bloco muito maior do que uma UE;
- Tecnologia: memória semicondutora, magnética, óptica, magneto-óptica etc;
- Características físicas do armazenamento de dados: se a memória é ou não volátil.

¹Unidade endereçável é a menor unidade que possui endereços de memória. Pode ser uma palavra de máquina ou um byte.

Definições preliminares (cont'd)

Tópico 04

Hugo Silva

Definições Preliminares

Hierarquia de memória

Princípios da memória cach

Projeto de memória cach

As memórias são definidas por:

- **Tipo de acesso**: como os dados podem ser acessados:
 - Acesso sequencial: memória acessada linearmente e dividida em registros. Dados gravados na forma endereço linear-payload. Apenas um mecanismo de leitura-gravação utilizado que se mover para o registro desejado. Tempo de acesso altamente variável. Ex.: K7 e VHS;
 - Acesso direto: blocos/registros possuem um endereço físico exclusivo. Mecanismo de leitura-gravação único → tempo de acesso variável. Ex.: HD;
 - Acesso aleatório: unidades endereçáveis possuem um mecanismo de leitura-gravação exclusivo → tempo de acesso independente da sequência de acessos e é constante. Ex.: RAM e memória cache;
 - Associativo: memória de acesso aleatório que compara todas as suas palavras simultaneamente. Uma palavra é buscada de acordo com o seu conteúdo e não o seu endereço. Tempo de acesso constante. Ex.: memória cache;

Definições preliminares (cont'd)

Tópico 04

Hugo Silva

Definições Preliminares

Hierarquia d memória

Princípios da memória cach

Projeto de memória cach As memórias são avaliadas por:

- Capacidade de armazenamento;
- Desempenho:
 - Tempo de acesso/resposta (latência): tempo completo necessário para realizar uma operação de leitura/escrita;
 - **Tempo de ciclo**: tempo adicional (além da latência) entre duas operações consecutivas. Exemplo: tempo para dar uma "limpada" no barramento;
 - Taxa de transferência: taxa em que os dados são transferidos de ou para a memória.

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

- Um projetista de um computador deseja a maior quantidade da memória mais rápida possível a um custo razoável;
- Ele deseja que os programas e os datasets caibam na memória, que CPU não fique ociosa por muito tempo esperando pelos dados e instruções, nem que o computador seja caríssimo.
- Mas há as seguintes relações:
 - Mais rápida? Maior custo por bit.
 - Maior capacidade? Menor custo por bit, mas é mais lenta...

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

Projeto de memória cacho A alternativa é não usar apenas um tipo de memória, mas vários em um esquema de **hierarquia de memória**

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

Projeto de memória cach

- Em uma hierarquia de memória, um tipo de memória complementa a outra;
- Ex.: considere um PC com memória cache de 16 KB e tempo de acesso de 2 ns e uma memória RAM de 1 GB e tempo de acesso de 60 ns. Suponha que 95% dos acessos à memória esteja em cache. Qual o tempo médio para acessar uma palavra?

$$T_M = 0.95 \times (2 \text{ ns}) + 0.05 \times (2 \text{ ns} + 60 \text{ ns})$$
 $T_M = 0.95 \times (2 \times 10^{-9}) + 0.05 \times [(2 \times 10^{-9}) + (60 \times 10^{-9})]$
 $T_M = 5 \times 10^{-9}$
 $T_M = 5 \text{ns}$

Mas, dentre outros, um requisito é que deve haver uma hierarquia na frequência de acesso à memória pela CPU.

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

- Em outras palavras: o princípio da localidade de referência² afirma que: durante a execução de um programa, os acessos de memória pela CPU para dados e instruções tendem a se agrupar;
- Em um pequeno período, o programa ...
 - executa um único bloco de instruções: for, while, do...while, function;
 - opera sobre o mesmo grupo de dados: vetores, matrizes ou outro conjunto de palavras agrupadas.

²Também podemos chamá-la de localidade temporal ou localidade espacial.

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

- Não pense em cache apenas como um hardware!
- O Sistema Operacional usa parte da RAM como buffer³ para armazenar temporariamente dados a serem gravados em memória externa;
- Pode melhorar o desempenho do computador ao agrupar as gravações em disco. Poucas gravações em blocos maiores são mais rápidas do que muitas gravações pequenas;
- Dados em buffer podem ser usados e não precisam ser lidos novamente do disco.

³Às vezes chamada de *cache* de disco.

Princípios da memória cache

Tópico 04

Hugo Silva

Definições Preliminares

Hierarquia de memória

Princípios da memória cache

Projeto de memória cach A memória cache se situa entre a CPU e a memória RAM:

E podem ser usados um ou mais níveis de cache, formando uma hierarquia de cache:

Princípios da memória cache

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cache

- A memória cache tem uma cópia de parte do conteúdo da memória RAM;
- Quando a CPU faz uma leitura uma palavra na memória RAM, a cache verifica se ela já a possui;
- Se tiver, entrega a palavra à CPU (cache hit). Senão, busca um bloco da memória RAM⁴ e entrega a palavra à CPU (cache miss).

 $^{^4}$ Esse bloco contém a palavra solicitada e (K-1) palavras vizinhas

Princípios da memória cache

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cache

- A memória RAM de $L = (2^N)$ UEs, onde $N \to \text{tam.}$ end. memória em bits, é dividida em M = (L/K) blocos de K palavras;
- A memória cache possui $C \ll M$ linhas formadas por bits de controle, uma tag e um bloco;
- A tag identifica o bloco. Usualmente é uma parte do endereço de memória armazenado naquela linha.

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

- Praticamente todo processador "comum" e alguns processadores embarcados suportam memória virtual;
- As instruções utilizam endereços virtuais/lógicos em vez de endereços físicos da RAM;
- O MMU (Memory Management Unit) traduz endereços virtuais em físicos;
- Então, pode existir um cache virtual (antes da MMU) ou "cache físico" (depois da MMU);
- Cache virtual é mais rápido que o físico, mas os endereços físicos são diferentes para cada processo (programa) em execução. Cada mudança de contexto exige esvaziar (flush) o cache virtual.

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

- Outra parte do projeto é a capacidade. Não pode ser grande demais (cara e lenta), nem pequena demais;
- Isso complica ainda mais, visto que cada aplicação reage de maneira diferente ao cache. O desempenho da cache varia muito dependendo da carga;
- Não tem um tamanho "ótimo" de memória cache;
- Outra variável é o algoritmo de mapeamento. Como já escrito, C ≪ M. Como os blocos da RAM são mapeados na cache?
- Existem o mapeamento direto, associativo e associativo em conjunto.

Projeto de memória cache – mapeamento direto

Tópico 04

Projeto de memória cache ■ É o mais simples de implementar. Cada bloco de memória é mapeado exclusivamente em uma linha da memória cache:

$$c = m \mod C$$
,

onde c é a linha, $0 \le m \le (M-1)$ é o número do bloco e C é o n.º linhas da cache.

■ Entretanto, pode haver *thrashing* se um programa acessar frequentemente dois blocos mapeados na mesma linha de cache

Projeto de memória cache - mapeamento direto

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

Projeto de memória cache Endereço de memória de N=20 bits; cache de dezesseis linhas $(C=16; R=\log_2 C=4)$; blocos de quatro UEs $(K=4; W=\log_2 K=2)$. Os S=(N-W) MSBits do endereço são usados para identificar o bloco, onde os (S-R) MSBits são a tag, os W LSBits são usados para identificar a palavra e os R restantes identificam a linha.

Em quais as linhas são mapeados os endereços de memória 0x15BE5, 0xFBC94, 0x8942A, 0x00024?

Projeto de memória cache - mapeamento direto

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

Projeto de memória cache Mapeamento direto dos blocos nas linhas da cache:

Linha da c	ache	Endereço inicial dos blocos de memória
	0	0, 2K, 3K, 4K···
	1	1, $(2K+1)$, $(3K+1)$, $(4K+1)\cdots$
	2	2, $(2K+2)$, $(3K+2)$, $(4K+2)\cdots$
	3	3, $(2K+3)$, $(3K+3)$, $(4K+3)\cdots$
	:	:
(C-1	C-1, $(2K+C-1)$, $(3K+C-1)$

Projeto da memória cache – mapeamento associativo

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

- Uma cache associativa mapeia um bloco de memória em qualquer linha;
- Em vez de usar o campo Linha para referenciar bloco em cache, utiliza-se o campo Tag;
- O campo Tag de todas as linhas é comparado simultaneamente com os S MSBits do endereço de memória acessado;
- Exige um algoritmo de substituição de blocos em cache;

Projeto da memória cache – mapeamento associativo

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

memória cach

Projeto de memória cache Endereço de memória de N=20 bits; cache com linhas que são blocos de quatro UEs (K=4; $W=\log_2 K=2$). Os S=(N-W) MSBits do endereço são usados para identificar o bloco (Tag) e os W LSBits são usados para identificar a palavra.

Projeto da memória cache – mapeamento associativo em conjunto

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia d memória

Princípios da memória cach

- Quanto maior a cache associativa, mais lenta ela é:
- É um meio-termo entre cache com mapeamento direto e com mapeamento associativo;
- É formado por uma série de T conjuntos de Q linhas (associatividade Q-way) ($C = T \times Q$);
- Pode ser implementado utilizando caches em paralelo com mapeamento direto (para T pequeno) (como?) ou associativo (para T grande) (próx. slide).

Projeto da memória cache – mapeamento associativo em conjunto

Tópico 04

Hugo Silva

Definições Preliminares

Hierarquia de memória

Princípios da memória cach

Figura: Cache de oito linhas com mapeamento associativo 4-way

Projeto da memória cache – mapeamento associativo em conjunto

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

Projeto de memória cache Endereço de memória de N=20 bits; cache com C=128 linhas e associatividade 8-way (Q=8). Assim, T=128/8=16; $R=\log_2 T=4$; blocos de quatro UEs (K=4; $W=\log_2 K=2$). Os S=(N-W) MSBits do endereço são usados para identificar o bloco, onde os (S-R) MSBits são a tag, os W LSBits são usados para identificar a palavra enquanto os R restantes identificam o set.

Em quais *sets* são mapeados os endereços de memória 0x15BE5, 0xFBC94, 0x8942A, 0x00024? E se considerássemos mapeamento direto *8-way*? Como seriam os

campos?

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Principios da memória cach

- Algoritmo de substituição: no caso de caches associativas, qual linha será evicted para dar espaço à outra linha?
 - LRU (Least Recently Used): a linha que está a mais tempo na cache sem referência nenhuma;
 - **FIFO** (*First-in, first-out*): a linha mais antiga na cache;
 - **LFU** (*Least Frequently Used*): a linha menos usada na cache;
 - **Aleatório**: qualquer linha.
- Política de escrita: se um bloco a ser substituído não foi alterado, simplesmente é descartado; senão, tem que atualizar a memória RAM.
- Mas e no caso de DMA ou várias CPUs? Outros dispositivos acessam a memória: o bloco pode estar inválido;
- A política mais simples é: write-through: memória sempre válida, mas pode ser um gargalo;
- A outra, mais complexa é: write-back: escrita somente na cache → memória inválida, mas minimiza o tráfego. Circuitos mais complexos e também pode ser um gargalo.

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

memória cach

Projeto de memória cache

Política de escrita:

- $lue{}$ Circuitos mais complexos ightarrow coerência de cache:
 - Cada cache monitora o tráfego com a RAM e invalida os blocos alterados, mas todas as caches devem usar write-through;
 - Uma camada de abstração (um hardware adicional) garante que todas as caches estejam atualizadas;
 - Memória não-cacheável: partes compartilhadas da RAM não são mantidas em cache.
- Tamanho do bloco: até certo ponto, quanto maior o bloco, maior a taxa de acerto (cache hit); por outro lado, menos blocos cabem em uma cache e as palavras do fim do bloco ficam muito distantes e talvez não sejam utilizadas. Normalmente: de oito a 64 bytes;
- N.º de caches multinível: com transístores menores surgiram os cache on die/on chip. Mas compensa ter uma cache fora da CPU? Normalmente sim. Antigamente: on chip L1 (level/nível 1) e as outras off chip. L2 do tipo SRAM é mais rápida do que DRAM mesmo estando na placa-mãe;

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia d memória

Princípios da memória cache

Projeto de memória cache Figura: Taxa de acerto em função do tamanho da cache e da associatividade

Tópico 04

Hugo Silva

Definições Preliminares

Hierarquia de memória

Princípios da memória cach

Projeto de memória cache Figura: Taxa de acerto em função do tamanho das caches L1 e L2

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia d memória

Princípios da memória cach

Projeto de memória cache

Caches unificadas vs. caches separadas:

- Caches unificadas armazenam dados e instruções;
- Caches separadas armazenam um ou outro;
- Normalmente caches L1 são separadas;
- Unidade de busca de instruções (cache de instruções) não compete pelo cache com a unidade de execução (cache de dados);
- É muito importante para CPUs superescalares, superpipelined e as que realizam pre-fetch;
- Caches grandes e unificados possuem taxas de acerto maiores pois são mais flexíveis no armazenamento de dados e instruções: L2 e principalmente a LLC (*Last Level Cache*) (L3 ou L4) normalmente são unificadas, ainda mais em CPUs multicore.

Exercícios

Tópico 04

Hugo Silva

Definições Preliminare

Hierarquia de memória

Princípios da memória cach

Projeto de memória cache Capítulo abordado: 4