Soal dan Solusi UAS Struktur Aljabar II 2023

Wildan Bagus Wicaksono

Matematika 2022

Question 1

Misalkan R adalah ring, J dan K masing-masing ideal di R, dengan $J \subseteq K$.

- (a). Tunjukkan $\frac{K}{J} \subseteq \frac{R}{J}$.
- (b). Tunjukkan $\frac{K}{J}$ ideal di $\frac{R}{J}$.
- (c). Tunjukkan $\frac{R/J}{K/J}$ merupakan ring faktor. Didefinisikan pemetaan

$$\theta: R/J \to R/K$$

$$a+J \mapsto \theta(a+J) = a+K.$$

- (d). Buktikan θ homomorfisma surjektif.
- (e). Buktikan $ker(\theta) = K/J$.

Penyelesaian.

Akan dibuktikan terlebih dahulu bahwa J ideal di K. Cukup dibuktikan bahwa untuk setiap $j \in J$ dan $k \in K$ berlaku $jk, kj \in J$. Ambil sebarang $j \in J$ dan $k \in K$. Karena $K \subseteq R$, maka $k \in R$. Karena J ideal di R, maka $jk, kj \in J$ seperti yang ingin dibuktikan.

- (a). Ambil sebarang $k+J\in \frac{K}{J}$ di mana $k\in K$. Karena $K\subseteq R$, maka $k\in R$ yang menunjukkan $k+J\in \frac{R}{J}$. Terbukti bahwa $\frac{K}{J}\subseteq \frac{R}{J}$.
- (b). Karena J ideal di K dan J ideal di R, maka $\frac{K}{J}$ dan $\frac{R}{J}$ masing-masing membentuk ring faktor. Jelas bahwa $\frac{K}{J}$ tak kosong berdasarkan definisi ring. Ambil sebarang $k_1 + J, k_2 + J \in \frac{K}{J}$ di mana $k_1, k_2 \in K$. Perhatikan bahwa

$$(k_1 + J) - (k_2 + J) = (k_1 - k_2) + J$$
 dan $(k_1 + J)(k_2 + J) = k_1k_2 + J$.

Karena K ideal di R, maka $k_1 - k_2 \in K$ dan $k_1 k_2 \in K$ yang menunjukkan $(k_1 + J) - (k_2 + J) \in \frac{K}{J}$ dan $(k_1 + J)(k_2 + J) \in \frac{K}{J}$. Jadi, $\frac{K}{J}$ subring dari $\frac{R}{J}$. Ambil sebarang $k + J \in \frac{K}{J}$ dan $r + J \in \frac{R}{J}$ di mana $k \in K$ dan $r \in R$. Maka

$$(k+J)(r+J) = kr + J$$
 dan $(r+J)(k+J) = rk + J$.

Karena K ideal di R, maka $kr, rk \in K$ yang menunjukkan $(k+J)(r+J) \in \frac{K}{J}$ dan $(r+J)(k+J) \in \frac{K}{J}$. Terbukti bahwa $\frac{K}{J}$ ideal di $\frac{R}{J}$.

- (c). Karena $\frac{K}{J}$ ideal di $\frac{R}{J}$, maka $\frac{R/J}{K/J}$ membentuk ring faktor, terbukti.
- (d). Akan dibuktikan θ well-defined. Ambil sebarang $x+J\in\frac{R}{j}$ dan $y+J\in\frac{R}{J}$ yang memenuhi x+J=y+J di mana $x,y\in R$. Ini berarti $x-y\in J$ dan karena $J\subseteq K$ memberikan $x-y\in K\iff x+K=y+K$. Dari sini diperoleh

$$\theta(x+J) = x + K = y + K = \theta(y+J) \implies \theta(x+J) = \theta(y+J)$$

seperti yang ingin dibuktikan.

Akan dibuktikan θ surjektif. Ambil sebarang $r+K \in \frac{R}{K}$ di mana $r \in R$, tinjau terdapat $r+J \in \frac{R}{J}$ sedemikian sehingga $\theta(r+J) = r+K$ sehingga terbukti bahwa θ surjektif.

Akan dibuktikan θ homomorfisma. Ambil sebarang $a+J, b+J \in \frac{R}{J}$ di mana $a,b \in R$. Ini berarti

$$\theta\Big((a+J)+(b+J)\Big)=\theta\Big((a+b)+J\Big)=(a+b)+K=(a+K)+(b+K)=\theta(a+J)+\theta(b+J).$$

Di sisi lain,

$$\theta\Big((a+J)(b+J)\Big) = \theta(ab+J) = ab+K = (a+K)(b+K) = \theta(a+J)\theta(b+J).$$

Terbukti bahwa θ homomorfisma.

Jadi, terbukti bahwa θ merupakan homomorfisma surjektif.

(e). Ambil sebarang $x + J \in \ker(\theta)$ di mana $x \in R$. Tinjau bahwa $0_R + K$ merupakan elemen nol di $\frac{R}{K}$, ini berarti

$$0_R + K = \theta(x+J) = x+K \implies 0_R + K = x+K \iff x-0_R \in K \iff x \in K.$$

Ini berarti $x+J\in \frac{K}{J}$ sehingga diperoleh $\ker(\theta)\subseteq \frac{K}{J}.$

Ambil sebarang $k+J\in \frac{K}{J}$ di mana $k\in K$. Ini berarti $\theta(k+J)=k+K=0_R+K$ yang menunjukkan bahwa $k+J\in \ker(\theta)$. Jadi, $\frac{K}{J}\subseteq \ker(\theta)$.

Dari sini, terbukti bahwa $\ker(\theta) = \frac{K}{J}$.

▼

Question 2

Diberikan ring $(\mathbb{Z}_6 \times \mathbb{Z}_2, +, \cdot)$.

- (a). Tentukan semua ideal di $\mathbb{Z}_6 \times \mathbb{Z}_2$.
- (b). Tentukan semua ideal maksimal di $\mathbb{Z}_6 \times \mathbb{Z}_2$. Jelaskan.
- (c). Tentukan dua ideal yang bukan ideal prima di $\mathbb{Z}_6 \times \mathbb{Z}_2$. Jelaskan.

Penyelesaian.

Teorema. Misalkan A dan B masing-masing merupakan ring dengan elemen satuan. Maka semua ideal dari $A \times B$ berbentuk $I \times J$ di mana I ideal dari A dan J ideal dari B.

Teorema. Semua ideal dari \mathbb{Z}_n berbentuk $k\mathbb{Z}_n$ di mana k merupakan faktor positif dari n.

(a). Perhatikan bahwa \mathbb{Z}_6 dan \mathbb{Z}_2 merupakan ring dengan elemen satuan, yaitu $1_{\mathbb{Z}_6} = \overline{1}$ dan $1_{\mathbb{Z}_2} = \overline{1}$ sehingga teorema di atas dapat diterapkan. Perhatikan bahwa ideal dari \mathbb{Z}_6 adalah

$$A_1 = 1\mathbb{Z}_6 = \mathbb{Z}_6, \quad A_2 = 2\mathbb{Z}_6 = \{\overline{0}, \overline{2}, \overline{4}\}, \quad A_3 = 3\mathbb{Z}_6 = \{\overline{0}, \overline{3}\}, \quad A_4 = 6\mathbb{Z}_6 = \{\overline{0}\}.$$

Semua ideal dari \mathbb{Z}_2 adalah $B_1 = 1\mathbb{Z}_2 = \mathbb{Z}_2$ dan $B_2 = 2\mathbb{Z}_2 = \{\overline{0}\}$. Maka semua ideal dari $\mathbb{Z}_6 \times \mathbb{Z}_2$ berbentuk $A_i \times B_j$ di mana $i \in \{1, 2, 3\}$ dan $j \in \{1, 2\}$, yaitu:

$$S_{1} = A_{1} \times B_{1} = \mathbb{Z}_{6} \times \mathbb{Z}_{2}$$

$$S_{2} = A_{1} \times B_{2} = \mathbb{Z}_{6} \times \left\{ \overline{0} \right\} = \left\{ \left(\overline{0}, \overline{0} \right), \left(\overline{1}, \overline{0} \right), \left(\overline{2}, \overline{0} \right), \left(\overline{3}, \overline{0} \right), \left(\overline{4}, \overline{0} \right), \left(\overline{5}, \overline{0} \right) \right\}$$

$$S_{3} = A_{2} \times B_{1} = 2\mathbb{Z}_{6} \times \mathbb{Z}_{2} = \left\{ \left(\overline{0}, \overline{0} \right), \left(\overline{0}, \overline{1} \right), \left(\overline{2}, \overline{0} \right), \left(\overline{2}, \overline{1} \right), \left(\overline{4}, \overline{0} \right), \left(\overline{4}, \overline{1} \right) \right\}$$

$$S_{4} = A_{2} \times B_{2} = 2\mathbb{Z}_{6} \times \left\{ \overline{0} \right\} = \left\{ \left(\overline{0}, \overline{0} \right), \left(\overline{2}, \overline{0} \right), \left(\overline{4}, \overline{0} \right) \right\}$$

$$S_{5} = A_{3} \times B_{1} = 3\mathbb{Z}_{6} \times \mathbb{Z}_{2} = \left\{ \left(\overline{0}, \overline{0} \right), \left(\overline{0}, \overline{1} \right), \left(\overline{3}, \overline{0} \right), \left(\overline{0}, \overline{1} \right) \right\}$$

$$S_{6} = A_{3} \times B_{2} = 3\mathbb{Z}_{6} \times \left\{ \overline{0} \right\} = \left\{ \left(\overline{0}, \overline{0} \right), \left(\overline{0}, \overline{1} \right) \right\}$$

$$S_{7} = A_{4} \times B_{1} = \left\{ \overline{0} \right\} \times \mathbb{Z}_{2} = \left\{ \left(\overline{0}, \overline{0} \right), \left(\overline{0}, \overline{1} \right) \right\}$$

$$S_{8} = A_{4} \times B_{2} = \left\{ \overline{0} \right\} \times \left\{ \overline{0} \right\} = \left\{ \left(\overline{0}, \overline{0} \right) \right\}$$

- (b). Jelas S₆, S₇, S₈ bukan ideal maksimal karena S₆, S₇, S₈ ⊂ S₅ ⊂ Z₆ × Z₂.
 Jelas S₄ bukan ideal maksimal kanrea S₄ ⊂ S₃ ⊂ Z₆ × Z₂.
 Sisanya, S₂, S₃, S₅ tidak termuat dalam subhimpunan sejati lain dari Z₆ × Z₂. Jadi, S₂, S₃, S₅ merupakan ideal maksimal.
- (c). Tinjau S_8 bukan ideal prima karena $(\overline{0}, \overline{0}) = (\overline{2}, \overline{0})$ $(\overline{3}, \overline{0})$, namun $(\overline{2}, \overline{0})$, $(\overline{3}, \overline{0}) \notin S_8$. Tinjau S_7 bukan ideal prima karena $(\overline{0}, \overline{0}) = (\overline{2}, \overline{0})$ $(\overline{3}, \overline{0})$, namun $(\overline{2}, \overline{0})$, $(\overline{3}, \overline{0}) \notin S_7$.

V

Question 3

Buktikan bahwa setiap field merupakan ring Euclid.

Penyelesaian.

Misalkan F merupakan field dan $f: F - \{0_F\} \to \mathbb{N} \cup \{0\}$ dengan f(x) = 1 untuk setiap $x \in F$.

Akan dibuktikan f well-defined. Ambil sebarang $x, y \in F$ dengan x = y, tinjau $d(x) = 1 = d(y) \implies d(x) = d(y)$, terbukti.

Ambil sebarang $a, b \in F - \{0_F\}$, tinjau $d(ab) = 1 \ge 1 = d(a) \implies d(ab) \ge d(a)$.

Ambil sebarang $a \in F$ dan $b \in F - \{0_F\}$. Karena $b \neq 0_F$, maka b merupakan unit sehingga b^{-1} ada di F. Tinjau bahwa

$$a = 1_F a = (bb^{-1}) a + 0_F = b (b^{-1}a) + 0_F.$$

Ini membuktikan bahwa terdapat $q, r \in F$ dengan $q = b^{-1}a$ dan $r = 0_F$ yang memenuhi a = bq + r. Jadi, terbukti F merupakan ruang Euclid.