Cache Memories

Model of Memory Hierarchy

• A memory system has a cache, a main memory, and a virtual memory. If the hit rate in the cache is 98% and the hit rate in the main memory is 99%, what is the average memory access time if it takes 2 cycles to access the cache, 150 cycles to fetch a line from main memory, and 100,000 cycles to access the virtual memory?

Four Central Questions in Designing a Cache

- P-I-R-W:
 - ✓ placement: where can a block of memory go?
 - ✓ identification: how do i find a block of memory?
 - ✓ replacement: how do i make space for new blocks?
 - ✓ write policy: how do i propagate changes?
- need to consider these for all levels of the memory hierarchy
 - ✓ L1/L2/L3 caches now
- main memory, disks have similar issues, addressed later

Types of Caches

type of cache	mapping of data from memory to cache	complexity of searching the cache
direct mapped (DM)	a memory value can be placed at a single corresponding location in the cache	fast indexing mechanism
set- associative (SA)	a memory value can be placed in any of a set of locations in the cache	slightly more involved search mechanism
fully- associative (FA)	a memory value can be placed in any location in the cache	extensive hardware resources required to search (CAM)

Direct Mapping

- Direct mapping:
 - A memory value can only be placed at a single corresponding location in the cache

Direct-Mapped: One cache location for each address Address

2/9/2024

Fully Associative Mapping

Fully-associative mapping:

Fully-Associative: Anything Can Go Anywhere

2/9/2024

Set Associative Mapping (2-Way)

- Set-associative mapping:
 - A memory value can be placed in any location of a set in the cache

Compromise: Set-Associative Caches

2/9/2024

Cache Organization -- Recap A typical cache has three dimensions

A 4-way set associative cache

Putting it all together

64 KB cache, direct-mapped, 32-byte cache block

A set associative cache

32 KB cache, 2-way set-associative, 16-byte blocks

Three Cs (Cache Miss Terms)

- Compulsory Misses:
 - Cold start misses (caches do not have valid data at the start of the program)

Three Cs (Cache Miss Terms)

- Capacity Misses:
 - Increase cache size

Three Cs (Cache Miss Terms)

- Conflict Misses:
 - Increase cache size and/or associativity.

Cache Parameters

```
Cache size = Number of sets * block size * associativity

128 blocks, 32-byte blocks, direct mapped, size
=?

128 KB cache, 64-byte blocks, 512 sets,
associativity = ?
```

Sample Problem

A cache has a capacity of 32 KB and 256-byte lines. On a machine with a 32-bit virtual address space, how many bits long are the tag, set, and offset fields for

- •A direct-mapped implementation?
- •A four-way set-associative implementation?
- •A fully-associative implementation?

Address

