Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО)

Факультет программной инженерии и компьютерной техники
Кафедра вычислительной техники

Отчет по полупрактике «OpenCL»

Выполнил студент 2 курса, группы Р3200 Сапожников Борис Константинович Руководитель: кандидат технических наук Перминов Илья Валентинович

1. Реализация кернелов.

Первые три варианта кернела показались мне довольно тривиальными.

```
_kernel void MatrixMultiply0( __global float* a, __global float* b, __global float* c, int Wa, int Wb) {
       int row = get_global_id(0);
       for (int col = 0; col < Wb; col++)</pre>
              float sum= 0.0f;
              for (int i = 0; i < Wa; i++) {
                     sum +=a[row*Wa + i] * b[i*Wb + col];
              c[row*Wb + col] = sum;
       }
 _kernel void MatrixMultiply1(__global float* a, __global float* b, __global float* c, int Wa, int Wb,
int La) {
       int col = get_global_id(0);
       for (int row = 0; row < La; row++)</pre>
              float sum = 0.0f;
              for (int i = 0; i < Wa; i++) {
                     sum +=a[row*Wa + i] * b[i*Wb + col];
              c[row*Wb + col] = sum;
       }
 _kernel void MatrixMultiply2( __global float* a, __global float* b, __global float* c, int Wa, int Wb) {
       int row = get_global_id(0);
       int col = get_global_id(1);
       float sum = 0.0f;
       for (int i = 0; i < Wa; i++) {</pre>
              sum += a[row*Wa + i] * b[i*Wb + col];
       c[row*Wb + col] = sum;
}
```

А вот четвертый вызвал некоторые затруднения. Сначала я реализовал его самым очевидным способом, с помощью цикла for, таким образом, что каждый запуск кернела прибавляет к каждому элементу итоговой матрицы очередное слагаемое.

```
size_t global_work_size3[2] = { row1, col2 };
for (int i = 0; i < col1; i++)
{
  ret = clSetKernelArg(kernels[3], 5, sizeof(cl_int), (void *)&i);
  ret = clEnqueueNDRangeKernel(command_queue, kernels[3], 2, NULL, global_work_size3, NULL, 0, NULL);
}
__kernel void MatrixMultiply3( __global float* a, __global float* b, __global float* c, int Wa,
int Wb, int ray) {
        int row = get_global_id(0);
        int col = get_global_id(1);
        c[row*Wb + col] += a[row*Wa + ray] * b[ray*Wb + col];
}</pre>
```

Данный алгоритм показался мне недостаточно эффективным из-за большого количества вызовов кернела, и производительность показалась мне недостаточной, поэтому я стал искать способ как обойтись одним вызовом кернела. Как альтернативу я решил создать метод использующий Atomic-переменную. Я разбил все work-item'ы на work-group'ы так, чтобы одна work-group'a была ответственная за один элемент в итоговой матрице, а каждый work-item внутри work-group'ы отвечает за свое слагаемое. Сумма накапливается в локальной Atomic-переменной.

Сам кернел выглядит так:

```
_kernel void MatrixMultiply3(__global float* a, __global float* b, __global float* c, int Wa, int Wb)
{
    int row = get_global_id(0);
    int col = get_global_id(1);
    int ray = get_global_id(2);
    local float *value;
    *value = 0.0f;
    float res = a[row*Wa + ray] * b[ray*Wb + col];

    AtomicAdd(value, res);
    barrier(CLK_LOCAL_MEM_FENCE);
    c[row*Wb + col] += *value;
}
```

Где AtomicAdd — функция, которая увеличивает Atomic Float переменную на значение, передаваемое вторым параметром. Но из-за того, что один из мои «девайсов» (Nvidia GeForce GT 730M) имеет NDRange = (1024, 1024, **64**), а числа которыми мне приходится оперировать в разы больше значения 64, то пришлось все-таки разбивать мой кернел на части и исполнять их по отдельности. Но все же, я добился сокращения числа запусков кернелов в разы.

Таким образом, код исполнения кернела выглядит следующим образом:

Где NDRange — это массив, в котором хранятся числа, обозначающие максимально возможные количества work-item'ов в каждом из измерений (dimension), для девайса, выбранного пользователем.

Посмотрев на результаты профилирования, можно заметить, что производительность второго алгоритма, как ни странно, оказалась еще хуже, чем та, которую показал первый алгоритм.

2. Профилирование.

1. Использование цикла for.

2. Использование Atomic-переменной.

3. Выводы

- 1. Самыми эффективными по производительности оказались кернелы 2 и 3. При том, третий кернел показал лучшие результаты при меньших значениях, когда как при больших значениях более эффективным оказался второй кернел.
- 2. Среди двух вариантов реализации четвертого кернела, самым эффективным оказался метод с использованием цикла, а не с применением Atomic-переменной.