Forgalom igény tudatos hálózat tervezés minimális torlódással és úthosszal

Tudáskezelő rendszerek II. labor összefoglaló

Szecsődi Imre

Tartalomjegyzék

1.	Bevezetés		2
	1.1.	Motiváció	2
		1.1.1. Hálózat tervezési stratégiák	2
		1.1.2. Adattárházak hálózati felépítése	3
		1.1.3. Újrakonfigurálás megvalósítása	3
	1.2.	Labor célja	3
	1.3.	Laborban megvalósított munka	3
2.	Mod	dell	4
	2.1.	Forgalom igény tudatos hálózat tervezés probléma	4
	2.2.	Formális felírás	4
		2.2.1. Torlódás	5
		2.2.2. Úthossz	5
		2.2.3. Skálázhatóság	5
	2.3.	EgoTree	5
	2.4.	cl-DAN algoritmus	5
3.	Meg	gvalósítás	6
4.	. Teszt eredmények		7
5.	. Összefoglalás		8
6.	Irod	lalomjegyzék	9

Bevezetés

A labor munka a Demand-Aware Network Design with Minimal Congestion and Route Lengths [3] cikk alapján készült.

1.1. Motiváció

- A technika előrehaladásával egyre nagyobb lett a feldolgozandó adatok mennyisége
- Adattárházakban a szerverek közötti kommunikáció is ezáltal megnövekedett
- A jelenlegi hálózatok a legrosszabb esetre vannak tervezve, azaz, hogy majdnem teljes sávszélességű, kétirányú kapcsolat álljon fent bármelyik két szerver között
- A valós kommunikáció nem ezt a sémát követi, hanem túlnyomó részt megadott párok között történik a legtöbb kommunikáció

Microsoft Research ProjecToR [4].

• Nézzünk meg pár valós példát, Microsoft adattárházában 250 ezer szervert 5 production klaszterben elosztva

1.1.1. Hálózat tervezési stratégiák

- A technika fejlődésével elérhetővé váltak eszközök arra, hogy egy adott hálózatot újra konfiguráljunk, attól függően milyen terhelés éri
 - pl, korábbi kommunikációs minták alapján
- Két fő optimalizációs lehetőség van, legyen rövid az út (a) vagy legyen minimális a torlódás (b)

• A cikk bemutat egy módszert arra, hogy lehet mindkettőre majdnem optimális megoldást adni egyszerre (c)

1.1.2. Adattárházak hálózati felépítése

- Core switch
- Aggregation Swtiches
- Top of Rack Switches
- In-Rack Switches

1.1.3. Újrakonfigurálás megvalósítása

- Átlag hálózatok statikusan vannak konfigurálva, nem sok lehetőséget adva annak, hogy változtassunk
 - pl. Ethernet switchek
- Optikai switchek már újra tudják konfigurálni magukat, de ezek "lassúak"
- Microsoft Research ProjecToR[4], lézer segítségével kiváltani az optikai swticheket
 - $-12 \mu s$ váltás idő (2500x gyorsabb mint egy optikai hálózati switch)

1.2. Labor célja

A labor célja a cikkben[3] bemutatott algoritmus implementálása, és annak alkalmazása különböző véletlenszerűen generált gráfokra. A kapott eredményeket össze lehet hasonlítani a megadott elméleti korlátokkal.

1.3. Laborban megvalósított munka

A labor ideje alatt elkészült egy keretrendszer, ami segítségével tesztelhető a szerzők által felvázolt algoritmus. A keretrendszer Python [2] nyelven íródott. Egy véletlen gráfok generálására egy külső csomag lett használva [1]

Modell

2.1. Forgalom igény tudatos hálózat tervezés probléma

- Vegyünk egy hálózatot meghatározott számú csomóponttal
- A hálózathoz tartozik egy demand mátrix, ami leírja a valószínűségét annak, hogy i forrásból mekkora eséllyel lesz adat küldve j célba
- A cél, hogy ezen adatból egy olyan hálózati séma készítése, ami kis torlódást és rövid utakat eredményez, ez mellett még skálázható is

2.2. Formális felírás

- Adott N darab csúcspont $V=\{1,...,N\},$ és egy kommunikációs séma M_D ami egy $N\times N$ mátrix
- A bemeneti mátrix ábrázolható egy irányított G_D gráfban, ahol az élsúlyok a két pont közötti kommunikációs valószínűség
- Az algoritmus feltétele, hogy a mátrix ritka legyen
- \bullet Egy Nhálózatra a torlódást és az úthosszt útválasztási sémával fogjuk definiálni
- Egy útválasztási séma az N hálózatra $\Gamma(N)$, ami Γ_{uv} utak halmaza, ahol (u, v) párok különböző utakat jelölnek
- Γ_{uv} egy útsorozat, ami összeköti az u pontot v ponttal

2.2.1. Torlódás

1. Definició. A torlós jó

2.2.2. Úthossz

2. Definició. Az úthossz is jó

2.2.3. Skálázhatóság

1. Tétel. Itt a kapitány tétel, vétel

2.3. EgoTree

2.4. cl-DAN algoritmus

Megvalósítás

Teszt eredmények

Összefoglalás

Irodalomjegyzék

- [1] NetworkX http://networkx.github.io/.
- [2] Python Python.org.
- [3] C. Avin, K. Mondal, and S. Schmid. Demand-Aware Network Design with Minimal Congestion and Route Lengths. page 9.
- [4] M. Ghobadi, D. Kilper, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar, and M. Glick. ProjecToR: Agile Reconfigurable Data Center Interconnect. In *Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference SIGCOMM '16*, pages 216–229, Florianopolis, Brazil, 2016. ACM Press.