Week 12. Misspecification

May 26, 2024

Misspecified Models and Projection 1

Let \mathcal{M} be any convex set of curves and μ be any curve outright.

Exercise 1 Show that the model's closest curve to μ ,

$$\mu^{\star} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|m - \mu\|_{L_2(\mathbf{P_n})}^2$$

satisfies

$$\langle \mu^* - \mu, m - \mu^* \rangle_{L_2(\mathbf{P_n})} \ge 0 \quad \text{for all curves} \quad m \in \mathcal{M}.$$
 (1)

And draw a diagram or two to illustrate how your argument works and help you remember the result.

Hint. Focus on what goes on in a small neighborhood of μ^* . Instead of looking at the inner product $\langle \mu^{\star} - \mu, m - \mu^{\star} \rangle_{L_2(\mathrm{P_n})}$ for $m \in \mathcal{M}$, look at $\langle \mu^{\star} - \mu, m_{\lambda} - \mu^{\star} \rangle_{L_2(\mathrm{P_n})}$ for a curve $m_{\lambda} = \mu^{\star} + \lambda (m - \mu^{\star})$ and take $\lambda \to 0$. **Hint.** We know that $\|\mu^{\star} - \mu\|_{L_2(\mathrm{P_n})}^2 \leq \|m_{\lambda} - \mu\|_{L_2(\mathrm{P_n})}^2$. Why? And why is

convexity important?

Hint. Recall that $||u||_{L_2(\mathbf{P_n})}^2 = \langle u, u \rangle_{L_2(\mathbf{P_n})}$. If we expand $||m_\lambda - \mu||_{L_2(\mathbf{P_n})}^2$ into a quadratic $a\lambda^2 + b\lambda + c$, $\langle \mu^* - \mu, m - \mu^* \rangle_{L_2(P_n)}$ will show up.

Exercise 2 Explain why our least squares estimator estimator,

$$\hat{\mu} = \operatorname*{argmin}_{m \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^{n} \{Y_i - m(X_i)\}^2,$$

will converge to μ^* , even if our model is misspecified in the sense that $\mu \notin \mathcal{M}$. In particular, explain the role the property (1) plays.

Exercise 3 Why is it not necessarily the case that (1) is true when \mathcal{M} isn't convex? Think about how this affects our least squares estimator $\hat{\mu}$. Can you think of a case — a curve μ and a non-convex model \mathcal{M} — in which $\hat{\mu}$ doesn't converge to anything at all? It may help to draw some pictures.

Exercise 4 See if you can generalize (1) and subsequent arguments to say something about the weighted least squares estimator, $\operatorname{argmin}_{m \in \mathcal{M}}(1/n) \sum_{i=1}^n w(X_i) \{Y_i - m(X_i)\}^2$. Why might we want to use weighted least squares? If you like, think about the case that we're estimating a treatment effect using a regression discontinuity design.

Hint. Is (1) specific to the inner product $\langle u,v\rangle_{L_2(\mathbf{P_n})}$ and the corresponding norm $\|v\|_{L_2(\mathbf{P_n})}$ or does it work for all inner products $\langle u,v\rangle$ and closest points in terms of corresponding norm $\|v\|=\sqrt{\langle v,v\rangle}$?