Tarea 5 - Consolidación del Aprendizaje

Autómatas y Lenguajes Formales

Entregado por:

Sneider Alexander Tovar Campos - Código: 1.010.237.739

Andres Fernando Herrera Mesa – Código 80049810

Alba Lilian Osorio Serna – Código

María Paula Castro Téllez – Código 1007443057

Grupo: 301405_9

Presentado a:

Tutor: Rafael Pérez Holguín

Universidad Nacional Abierta y a Distancia

Escuela de Ciencias Básicas, Tecnología e Ingeniería

16 mayo de 2021

Contenido

Ejercicios a desarrollar	3
Ejercicio 1- Conversión de AFND a AFD	4
Ejercicio a trabajar	4
Caracterización del autómata	4
Procedimiento	5
de conversión de AFND a un AFD	5
Autómata Final convertido	11
Practicar y verificar lo aprendido	11
Ejercicio 2- Minimización del Autómata Finito Determinista	13
Ejercicio a trabajar	13
Caracterización del autómata	13
Resultado del autómata minimizado	20
Caracterización del autómata minimizado	21
Practicar y verificar lo aprendido	21
Ejercicio 3- Autómata de Pila	22
Ejercicio a trabajar	22
Caracterización del autómata a pila	22
Procedimiento	24
Del recorrido de una cadena paso a paso	24
Practicar y verificar lo aprendido	30
Lenguaje regular	30
Ejercicio 4 - Maquina de Turing	31
Ejercicio a trabajar	31
Caracterización de la máquina de Turing	31
Procedimiento de paso a paso del recorrido de una cadena	33
Practicar y verificar lo aprendido	38
Bibliografía	40

A partir del siguiente ejercicio desarrollar los ejercicios propuestos:

Ejercicio 1- Conversión de AFND a AFD

$$\sum = [0,1]$$

$$S = q_0$$

$$F = \{q_3, q_4\}$$

Donde la función δ :

$$\delta(q_0,0)=q_1$$

$$\delta(q_0,1)=q_0$$

$$\delta(q_0,1)=q_2$$

$$\delta(q_1,0)=q_3$$

$$\delta(q_1,1)=q_3$$

$$\delta(q_2,0)=q_1$$

$$\delta(q_2,0)=q_3$$

$$\delta(q_2,1)=q_4$$

$$\delta(q_3,0)=q_3$$

$$\delta(q_3,1)=q_2$$

$$\delta(q_4,0)=q_3$$

$$\delta(q_4,1)=q_2$$

- Plasme la tabla de transición

Estado Astroal	Estado Siguiente		
Estado Actual	0	1	
$\rightarrow q_0$	$q_{\scriptscriptstyle 1}$	q_0, q_2	
$q_{\scriptscriptstyle 1}$	q_3	q_3	
q_2	q_1, q_3	q_4	
$^{\mathrel{\mathrel{\mathcal{L}}}} q_3$	q_3	q_2	
<u>់</u> q ₄	q_3	q_2	

- Identificación del Autómata Finito Determinista o Autómata Finito No Determinista

Es autómata Finito No Determinista

- Explicar las características del tipo de autómata

Cada combinación (estado, símbolo de entrada) puede estar en varios estados de

manera simultánea. E	ijemplo:
----------------------	----------

El estado inicial q0 con símbolo 1 se dirige q0 y q2.

Procedimiento de conversión de AFND a un AFD

Realice de manera detallada el procedimiento paso a paso de la conversión del autómata a expresión regular y según ejemplo revisado.

Paso 1: Transformamos el autómata

Estado Astrol	Estado Siguiente		
Estado Actual	0	1	
q_0	q_1	q_0, q_2	
q_1	q_3	q_3	
q_0, q_2	q_1, q_3	q_0, q_2, q_4	
q_3	q_3	q_2	
q_2	q_1, q_3	q_4	
q_1, q_3	q_3	q_3,q_2	
q_0, q_2, q_4	q_1, q_3	q_0, q_2, q_4	
q_4	q_3	q_2	
q_3, q_2	q_3, q_1	q_2,q_4	
q_2, q_4	q_3, q_1	q_4, q_2	

Paso 2: Renombramos los estados

A continuación, renombramos los estados con el objetivo de evitar confusiones y simplificar la tabla de transiciones.

Estado Original	Estado Renombrado
q_0	q_0
q_1	q_1
q_0, q_2	q_2
q_3	q_3
q_2	q_4
q_1,q_3	$q_{\scriptscriptstyle 5}$
q_0, q_2, q_4	q_6
$q_{\scriptscriptstyle 4}$	q_7
q_3, q_2	q_8

 q_2, q_4 q_9

Paso 3: Simplificamos la tabla de transiciones

Estado Astrol	Estado Siguiente		
Estado Actual	0	1	
$\rightarrow q_0$	q_1	q_2	
q_1	q_3	q_3	
q_2	$q_{\scriptscriptstyle 5}$	q_6	
iq_3	q_3	q_4	
q_4	$q_{\scriptscriptstyle 5}$	q_7	
¿ q₅	q_3	q_8	
iq_6	$q_{\scriptscriptstyle 5}$	q_6	
់ q ₇	q_3	q_4	
# q ₈	$q_{\scriptscriptstyle 5}$	q_9	
<i>ن</i> و ₉	$q_{\scriptscriptstyle 5}$	q_9	

Paso 4: Graficamos

Paso 4.1

Paso 4.2

Paso 4.3

Paso 4.4

Final

convertido

Practicar y verificar lo aprendido

Ejercicio 2- Minimización del Autómata Finito Determinista

Caracterizació n del autómata

Paso 1 – Caracterización del autómata

- Identificación de la quíntupla del autómata

$$M = (\{ q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9 \}, [0,1], \delta, q_0, \{q_3, q_5, q_6, q_7, q_8, q_9 \} \dot{c}$$

Nuestro conjunto de estados está conformado por:

$$K = \{ q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9 \}$$

Alfabeto de entrada:

$$\Sigma = \{0,1\}$$

Estado Inicial:

$$S = q_0$$

Estados Finales:

$$F = \{q_3, q_5, q_6, q_7, q_8, q_9\}$$

Donde la función δ :

$$\delta(q_0,0)=q_1$$

$$\delta(q_0,1)=q_2$$

$$\delta(q_1,0)=q_3$$

$$\delta(q_1,1)=q_3$$

$$\delta(q_2,0)=q_5$$

$$\delta(q_2,1)=q_6$$

$$\delta(q_3,0)=q_3$$

$$\delta(q_3,1)=q_4$$

$$\delta(q_4,0)=q_5$$

$$\delta(q_4,1)=q_7$$

$$\delta(q_5,0)=q_3$$

$$\delta(q_5,1)=q_8$$

$$\delta(q_6,0)=q_5$$

$$\delta(q_6,1)=q_6$$

$$\delta(q_7,0)=q_3$$

$$\delta(q_7,0) = q_3$$

$$\delta(q_7,1) = q_4$$

$$\delta(q_8,0)=q_8$$

$$\delta(q_8,0)=q_5$$

 $\delta(q_8,1)=q_9$

$$\delta(q_9,0)=q_5$$

$$\delta(q_9,0)=q_5$$

 $\delta(q_9,1)=q_9$

- Tabla de transición

Estado Astrial	Estado Siguiente		
Estado Actual	0	1	
$\rightarrow q_0$	q_1	q_2	
q_1	q_3	q_3	
q_2	$q_{\scriptscriptstyle 5}$	$q_{\scriptscriptstyle 6}$	
iq_3	q_3	q_4	
$q_{\scriptscriptstyle 4}$	$q_{\scriptscriptstyle 5}$	q_7	
់ q ₅	q_3	q_8	
់ q ₆	q_5	q_6	
¿ q ₇	q_3	q_4	
$\# q_8$	q_5	q_9	
¿ q ₉	q_5	q_9	

Paso 2 – Identificación de estados de aceptación

Identificamos los estados de aceptación y los estados de no aceptación

Estados de aceptación

$$X = \{ q_3, q_5, q_6, q_7, q_8, q_9 \}$$

Estados de no aceptación

$$Y = \{ q_0, q_1, q_2, q_4 \}$$

validamos los estados del conjunto x

Conjunto X	0	1
q_3	X	Y
$q_{\scriptscriptstyle 5}$	X	X
q_6	X	X
q_{7}	X	Y
q_8	X	X
q_9	X	X

Validamos los estados del conjunto y

Conjunto Y	0	1
$q_{_0}$	Y	Y
$q_{\scriptscriptstyle 1}$	X	X
q_2	X	X
q_4	X	X

Identificar los estados equivalentes y no equivalentes

$$\{q_3,q_7\} = Son equivalentes$$

$$\{q_5,q_6,q_8,q_9\}$$
 = Son equivalentes

$$\{q_1, q_2, q_4\}$$
=Son equivalentes

$$\{q_0\}$$
=No es equivalente

Paso 3 – Creación de conjuntos

Generar nuevos conjuntos

$$A = \{ q_3, q_7 \}$$

$$B = \{ q_5, q_6, q_8, q_9 \}$$

$$M = \{ q_1, q_2, q_4 \}$$

$$Z = \{ q_0 \}$$

Validamos los nuevos conjuntos

Conjunto A	0	1
q_3	A	M
q_7	A	M

Conjunto B	0	1
$q_{\scriptscriptstyle 5}$	A	В
q_6	В	В
q_8	В	В
q_9	В	В

Conjunto M	0	1
q_1	M	M
q_2	В	В
q_4	В	A

Conjunto Z	0	1
q_0	M	M

Identificar los estados equivalentes y no equivalentes

$$\{q_3,q_7\}$$
=Son equivalentes

$$\{q_6,q_8,q_9\}$$
 = Son equivalentes

 $\{q_5\}$ = No es equivalente

 $\{q_1, q_2, q_4\} = No son equivalentes$

Paso 4 – Creación de nuevos conjuntos

Generar nuevos conjuntos

$$A=\{q_3,q_7\}$$

$$B=\{q_5\}$$

$$J=\{q_6,q_8,q_9\}$$

$$H=\{q_1\}$$

$$W = \{q_2\}$$

$$Z= \{q_4\}$$

$$F = \{q_0\}$$

Validamos los nuevos conjuntos

Conjunto A	0	1
q_3	A	Z
q_7	A	Z

Conjunto B	0	1
$q_{\scriptscriptstyle 5}$	A	J

Conjunto J	0	1
q_6	В	J
q_8	В	J
q_9	В	J

Conjunto H	0	1
$q_{_1}$	A	A

Conjunto W	0	1	
------------	---	---	--

П	B	T	
\mathbf{q}_2	D	J	

19

Conjunto Z	0	1
q_4	В	A

Conjunto F	0	1
q_0	Н	W

Identificar los estados equivalentes y no equivalentes

 $\{q_3,q_7\}$ =Son equivalentes

 $\{q_6,q_8,q_9\}$ = Son equivalentes

Paso 6 - Construcción de tabla de transiciones

Construir tabla de transición a partir de los conjuntos obtenidos anteriormente

Estado Actual	Estado Siguiente	
	0	1
→ F	Н	W
Н	A	A
W	В	J
#A	A	Z
Z	В	A
#B	A	J
#J	В	J

Paso 7 – Graficar el autómata

Graficar el autómata a partir de la tabla de transiciones

Paso 8- Comparar cadenas

Comprobar que el autómata minimizado acepta y rechaza las mismas cadenas que el autómata inicial.

Autómata inicial

Autómata minimizado

De acuerdo a las pruebas realizadas es posible evidenciar que el autómata minimizado acepta el mismo lenguaje que el autómata inicial, por lo cual el autómata minimizado es correcto.

Resultado del autómata minimizado

Caracterizació n del autómata minimizado

- Identificación de la quíntupla del autómata

 $M = (\{ J, H, Z, A, B, W, F \}, [0,1], \delta, F, [A, B, J] \dot{\iota}$

Nuestro conjunto de estados está conformado por:

 $K = \{ J, H, Z, A, B, W, F \}$

Alfabeto de entrada:

 $\Sigma = \{0,1\}$

Estado Inicial:

S = F

Estado Final:

 $F = \{A, B, J\}$

Donde la función δ

$$\delta(F,0)=H$$

$$\delta(F,1)=W$$

$$\delta(H,1)=A$$

$$\delta(H,0)=A$$

$$\delta(W,0)=B$$

$$\delta(W,1)=J$$

$$\delta(J,1)=J$$

$$\delta(J,0)=B$$

$$\delta(B,1)=J$$

$$\delta(B,0)=A$$

$$\delta(A,0)=A$$

$$\delta(A,1)=Z$$

$$\delta(Z,1)=A$$

$$\delta(Z,0)=B$$

-Tabla de transiciones

Para que el autómata funcione, requiere de unos símbolos de entrada, en este ejercicio corresponde a 1 y 0, dicho autómata inicia en el estado F, evidenciando otros estados adicionales como lo es el Z, H, W, A, B, J. A continuación, relacionamos las respectivas transiciones entre estos estados:

Estado Actual	Estado Siguiente	
	0	1
→ F	Н	W
Н	A	A
W	В	J
#A	A	Z
Z	В	A
#B	A	J
#J	В	J

	- Identifique 5 cadenas aceptadas y cinco cadenas rechazadas
Practicar y	
verificar lo	
aprendido	<u>Cadenas aceptadas</u>
	•Autómata Inicial
	•Autómata Minimizado
	<u>Cadenas rechazadas</u>
	•Autómata Inicial
	◆Automata Iniciai
	•Autómata Minimizado

Ejercicio 3- Autómata de Pila

Ejercicio a		
trabajar		

Caracterizació n del autómata a pila

- Identificación de la séptupla del autómata

$$AP = (\{ q_0, q_1, q_2, q_3\}, [0,1], \delta, q_0, Z, \{q_3\} \&$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

 Σ = Alfabeto de entrada

$$\Sigma = \{0,1\}$$

Г, =Alfabeto de Pila

$$\Gamma$$
, = { A , B , λ }

A0 = Símbolo inicial de Pila

$$A 0 = Z$$

q0 = Estado inicial del autómata

$$q0 \in Q=q_0$$

F=Conjunto de estados finales

$$F \subseteq Q = \{q_3\}$$

f=función de transición del autómata

$$\delta(q_0,1,\lambda),(q_1,A)$$

$$\delta(q_1,1,A),(q_2,AA)$$

$$\delta(q_2,0,A),(q_0,B)$$

$$\deltaig(q_0,0,Big),ig(q_3,Aig)$$

$$\delta(q_0,1,B),(q_3,\lambda)$$

- Realizar la tabla de transición

Estad	Estado siguiente				
o	$(1, \lambda)$	(0,A)	(1, A)	(0, B)	(1, B)
actual					
$\rightarrow q_0$	q (¿¿1,,,	-ċ	-¿	$(A, \mathcal{E} \ \mathcal{S} \ \mathcal{S})$	(q_3,λ)
$q_{\scriptscriptstyle 1}$	-¿	-i	(q_2, AA)	-i	-¿
q_2	-د	-¿	-i	(q_0, B)	-i
<i>i</i> , q₃	-¿	-¿	-i	-¿	-¿

Procedimiento Del recorrido de una cadena paso a paso

Para realizar el procedimiento del recorrido de la cadena en el autómata se utilizará la **Cadena = 1101101**

Paso 1

El autómata inicia con el símbolo Z en la cima de la pila.

Paso 2

Cuando el autómata se encuentra en transición desde el estado q_0 al estado q_1 lee el símbolo de estrada 1, no desapila nada y apila en la cima de la pila el símbolo A.

Paso 3

Cuando el autómata se encuentra en transición desde el estado q_1 al estado q_2 lee el símbolo de estrada 1, desapila el símbolo A y apila en la cima de la pila los símbolos A y A.

Paso 4

Cuando el autómata se encuentra en transición desde el estado q_2 al estado q_0 lee el símbolo de estrada 0, desapila el símbolo A y apila en la cima de la pila el símbolo B.

Paso 5

Cuando el autómata se encuentra en transición desde el estado q_0 al estado q_1 , lee el símbolo de estrada 1, no desapila nada y apila en la cima de la pila el símbolo A.

Paso 5.1

Ejercicio 4 – Maquina de Turing

Caracterizaci ón de la máquina de Turing

- Identificación de la séptupla de la máquina de Turing

$$MT = (\{ q_0, q_1, q_2, q_3 \}, [0,1], [0,1], \delta, q_0, b, q_3 \dot{c}$$

Q =Conjunto finito de estados de control

$$Q = \{q_0, q_1, q_2, q_3\}$$

 Σ = Conjunto finito de símbolos de entrada

$$\Sigma = \{0,1\}$$

 Γ = Conjunto finito de símbolos de la cinta

$$\Gamma = \{0,1\}$$

q0 = Estado inicial del autómata

$$S = q_0$$

F=Conjunto de estados finales

$$F = q_3$$

b = Símbolo de espacio en blanco

$$b = \square$$

 δ = función de transición del autómata

$$\delta(q_0,1)=(q_1,0,R)$$

 $\delta(q_0,1)=(q_3,1,L)$
 $\delta(q_0,0)=(q_3,1,L)$

$$\delta(q_1,1)=(q_2,0,R)$$

$$\delta(q_2,0)=(q_0,1,R)$$

35

- Realizar la tabla de transición

Estado actual	Estado siguiente		
	0	1	
$\rightarrow q_0$	$\begin{pmatrix} q \\ (\ddot{\iota} \ddot{\iota} 3, 1, L) \\ \ddot{\iota} \end{pmatrix}$	q q ;), ;) ; ; ;	
q_1	-i	$(q_2,0,R)$	
q_2	$(q_0,1,R)$	-i	
$\dot{c}q_3$	-i	-i	

Procedimient o de paso a paso del recorrido de una cadena Para realizar el procedimiento del recorrido de la cadena en la máquina de Turing se utilizará la **Cadena = 1101101100**

Paso 1

La Máquina de Turing inicia en el estado q0, por lo que la cabeza de la MT señala en la cinta el símbolo 1.

Paso 2

Estando en el estado q0, la cabeza de la MT remplaza en la cinta el símbolo *1* por el símbolo *0* y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo *1*. Por lo cual la MT se traslada al estado q1.

$$\delta(q_0,1)=(q_1,0,R)$$

Paso 3

Estando en el estado q1, la cabeza de la MT remplaza en la cinta el símbolo *1* por el símbolo *0* y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo *0*. Por lo cual la MT se traslada al estado q2.

$$\delta(q_1,1)=(q_2,0,R)$$

Paso 4

Estando en el estado q2, la cabeza de la MT remplaza en la cinta el símbolo *0* por el símbolo *1* y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo *1*. Por lo cual la MT se traslada al estado q0.

$$\delta(q_2,0) = (q_0,1,R)$$

Estando en el estado q0, la cabeza de la MT remplaza en la cinta el símbolo *1* por el símbolo *0* y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo *1*. Por lo cual la MT se traslada al estado q1.

$$\delta(q_0,1)=(q_1,0,R)$$

Paso 6

Estando en el estado q2, la cabeza de la MT remplaza en la cinta el símbolo *1* por el símbolo *0* y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo *0*. Por lo cual la MT se traslada al estado q0.

$$\delta(q_2,0)=(q_0,1,R)$$

Paso 7

Estando en el estado q0, la cabeza de la MT remplaza en la cinta el símbolo 0 por el símbolo 1 y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo 1. Por lo cual la MT se traslada al estado q1.

$$\delta(q_0,1) = (q_1,0,R)$$

Paso 8

Estando en el estado q1, la cabeza de la MT remplaza en la cinta el símbolo 0 por el símbolo 1 y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo 1. Por lo cual la MT se traslada al estado q2.

$$\delta(q_1,1)=(q_2,0,R)$$

Paso 9

Estando en el estado q2, la cabeza de la MT remplaza en la cinta el símbolo 1 por el símbolo 0 y se desplaza a la derecha, señalando la siguiente casilla que contiene el símbolo 0. Por lo cual la MT se traslada al estado q0.

$$\delta(q_2,0)=(q_0,1,R)$$

Paso 10

Estando en el estado q0, la cabeza de la MT remplaza en la cinta el símbolo 0 por el símbolo 0 y se desplaza a la izquierda, señalando la siguiente casilla que contiene el símbolo 1. Por lo cual la MT se traslada al estado q3.

$$\delta(q_0,0)=(q_3,1,L)$$

Paso 11

Estando en el estado q3, la cabeza de la MT remplaza en la cinta el símbolo 0 por el símbolo 1 y se desplaza a la izquierda, señalando la siguiente casilla que contiene el símbolo 1. Por lo cual la MT se traslada al estado q3.

$$\delta(q_0,1)=(q_3,1,L)$$

Cadenas validas

Practicar y verificar lo aprendido

Cadenas invalidas

Bibliografía

Carrasco, R., Calera, J., & Forcada, M. (2000). Teoría de lenguajes, gramáticas y autómatas para informáticos. Recuperado de: https://bibliotecavirtual.unad.edu.co/login?url=https://search-

- ebscohost-com.bibliotecavirtual.unad.edu.co/login.aspx? direct=true&db=nlebk&AN=318032&lang=es&site=ehost-live&ebv=EB&ppid=pp_Cover
- González, A. (2020). *Lenguajes Regulares*. [Archivo web]. Recuperado de: https://campus113.unad.edu.co/ecbti84/mod/hvp/view.php?id=72
- González, A. (2018). *Lenguajes Regulares*. [Archivo web]. Recuperado de: http://hdl.handle.net/10596/18315
- González, A. (2018). Expresiones regulares. [Video]. Recuperado de: https://youtu.be/65B5QUNHfaM
- González, A. (2017). *Autómatas Finitos*. [Video]. Recuperado de: http://hdl.handle.net/10596/10470
- González, A. (2016). *Conversión de AFN a AFD 2 ejemplo*. [Video]. Recuperado de: https://www.youtube.com/watch?v=uLOXjZUTYyc
- González, A. (2020). *Máquina de Turing 1*. [Video]. Recuperado de: https://youtu.be/0bm3ZGWLHNQ
- González, A. (2020). Máquina de Turing 2. [Video]. Recuperado de: https://youtu.be/LnKaEcag0jM
- González, A. (2020). Autómatas de pila. Recuperado de: https://youtu.be/o9eUECLgQno
- Rodrigo, C. (2015). *Autómata de pila (AP)*. Recuperado de: https://es.slideshare.net/rodrigogc2/autmata-de-pila-ap
- Piñero, M. (2019). *Cómo obtener la expresión regular del lenguaje que reconoce un autómata*. [Video]. Recuperado de: https://www.youtube.com/watch?v=6AP5p8r5XsY
- Universidad Nacional del Sur. (2013). *Minimización de autómatas finitos*. Recuperado de: http://cs.uns.edu.ar/~td/lfya2013/downloads/TEORICAS/t05B.2013.minimizacion%20de %20automatas%20finitos-color.pdf