Estatística e Informática

Aula 11 - Testes de Hipótese

Alan Rodrigo Panosso alan.panosso@unesp.br

Departamento de Ciências Exatas FCAV/UNESP

(23-05-2024)

Teste de Hipótese

Teste de Hipótese

Objetivo: decidir se uma afirmação, em geral, sobre **parâmetros** de uma ou mais populações é, ou não verdadeira, apoiado por evidências obtida de dados amostrais.

Tal afirmação é o que se chama **Hipótese Estatística** e a regra usada para decidir se ela é verdadeira ou não, é o **Teste de Hipóteses**.

Exemplo 1. Uma suinocultura usa uma ração A que propicia, da desmama até a idade de abate, um ganho em peso de 500g/dia/suíno ($\sigma=25g$). O fabricante de uma ração B afirma que nas mesmas condições, sua ração propicia um ganho de 510g/dia/suíno ($\sigma=25g/dia/su$ íno).

Considerando a amostra de 50 leitões, aos quais foi fornecida a nova ração (B), deve-se ou não adotar essa ração, admitindo-se como resultado um ganho em peso médio diário de 504g/dia/suíno (\bar{X}) , fixando-se $\alpha=5\%$.

Hipóteses estatísticas

Utilizadas em experimentos comparativos, nos quais um novo produto ou nova técnica é comparado com o padrão, para determinar se sua superioridade pode ser corroborada pela evidência experimental.

Hipótese nula (H_0) : é a hipótese de igualdade entre o novo e o produto padrão, ou seja, a designação "hipótese nula" decorre da suposição que a diferença entre eles é nula ou zero.

Hipótese alternativa (H_1) : deve ser tomada como verdadeira caso a hipótese da nulidade seja descartada.

```
H_0: \mu = 500 g/dia/suíno (a ração B não é melhor)
Em H_{0}, o valor do parâmetro tem de ser especificado.
```

 H_1 : μ = 510 g/dia/uíno (a ração B é melhor) Se uma hipótese estatística especifica o valor do parâmetro, ela é referida como hipótese **simples**; se não, é referida como **composta**.

Estatística teste

Para a tomada de decisão, deve-se extrair uma amostra aleatória (por exemplo, n=50). Calcula-se a média amostral \bar{x}_a do, no exemplo, ganho de peso diário no período.

Se \bar{x}_a estiver próxima de 500~g, **não se deve rejeitar** H_0 , e a **conclusão** será que a ração do tipo B é *estatisticamente* igual à ração do tipo A.

Se \bar{x}_a estiver próxima ou for superior à 500~g, rejeita-se H_0 em favor a H_1 e a **conclusão** será que a ração do tipo B é superior à do tipo A, tal resultado implica no fato de que a suinocultura poderá utilizá-la.

Critério de decisão

Para aceitar ou rejeitar H_0 , determina-se um valor k (ponto) entre 500 e 510~g, chamado valor crítico, \bar{x}_c .

"Se a média amostral estiver à direita de k, rejeita-se H_0 , caso contrário não se rejeita"

O procedimento do teste, então, divide os possíveis valores da estatística teste em dois subconjuntos: uma região de aceitação e uma de rejeição para H_0 , o que pode levar a dois tipos de erros.

Por exemplo, se o verdadeiro valor do parâmetro μ é 500~g e incorretamente concluímos que $\mu=510~g$, cometeremos um erro referido como **ERRO TIPO I** (falso positivo).

Por outro lado, se o verdadeiro valor de μ é 510~g e incorretamente concluímos que $\mu=500~g$, cometeremos uma segunda espécie de erro, referido como **ERRO TIPO II (falso negativo)**.

Erros tipo I e II

	Situação específica	na População
Conclusão do Teste	H_0 verdadeira	H_0 falsa
Não Rejeita H_0	Decisão correta	Erro tipo II (perdas potenciais)
Rejeitar H_0	Erro tipo I (perdas reais)	Decisão Correta

 $\alpha=P(ext{erro tipo I})$ = $P(ext{Rejeitar } H_0|H_0 ext{ é verdadeira})$ = $ext{nível de significância}$ (10%, 5% ou 1%).

 $\beta=P(ext{erro tipo II})$ = $P(ext{N\~ao} ext{ rejeitar } H_0|H_0 ext{ \'e falsa})$ = $ext{poder do teste}$ dado por $1-\beta$.

$$H_0$$
: $\mu = 500$ g/dia H_1 : $\mu = 510$ g/dia (unilateral)

fixemos α em 5%:

Quando H_0 é verdadeira \overline{X} tem distribuição aproximadamente

$$N(500g; 12,5g^{2})$$

$$P(erro I) = P[\overline{X} \ge \overline{x}_{c} \mid \overline{X} : N(500g; 12,5g^{2})] = 5\%$$

$$P[Z \ge \frac{\overline{x}_{c} - \mu_{0}}{\sigma/\sqrt{n}}] = P[Z \ge \frac{\overline{x}_{c} - 500}{3,5}] = 5\%$$

$$\overline{x}_{c} - 500$$

$$\overline{x}_{c} = k = (3,5.1,65) + 500 = 505,78g$$

Então, RC = $\{\overline{X} \in R \mid \overline{X} \ge 505,78 \text{ g}\}\ e \text{ a regra de decisão é: "se $\overline{X}_a \in RC$, rejeita-se H_0 e a conclusão é que a ração B é superior à A; se $\notin $, não se rejeita H_0, e a conclusão é que as rações são estatisticamente iguais".$

$$H_0$$
: $\mu = 500 \text{ g/dia}$

 H_1 : $\mu \neq \mu_0$ (teste bilateral)

regra de decisão deverá indicar dois pontos

fixemos α em 5%:

$$P(erro\ I) = P[\overline{X} \le \overline{x}_{c1} \ ou \ \overline{X} \ge \overline{x}_{c2} \ | \ \overline{X} : N(500\ g; 12, 5\ g^2)] = 5\%$$

$$P[Z \le -1.96 \text{ ou } Z \ge 1.96) = 5\%$$

$$-1,96 = \frac{\overline{x}_{c1} - 500}{3.5}$$
 \therefore $\overline{x}_{c1} = 493,1 \text{ g}$

$$1,96 = \frac{\overline{x}_{c2} - 500}{3.5}$$
 \therefore $\overline{x}_{c2} = 506,9 \text{ g}$

RC =
$$\{\overline{X} \in \mathbb{R} / \overline{X} \le 493.1g \text{ ou } \overline{X} \ge 506.9 \text{ g}\}$$

OBS: H_1 : $\mu < \mu_0$ (teste unilateral à esquerda)

"rejeita-se H_0 se $\overline{X} \leq \overline{x}_{c1}$ ou $\overline{X} \geq \overline{x}_{c2}$ "

Passos para a construção de um teste de hipóteses

- a) Fixe a hipótese H_0 a ser testada e a alternativa H_1 ;
- b) Use a teoria estatística e as informações disponíveis para decidir qual estatística (estimador) será usada para testar a hipótese H_0 , obtendo-se suas propriedades (distribuição, estimativa, erro padrão);
- c) Fixe a probabilidade α de cometer o **erro tipo I** e use este valor para construir a RC (região crítica). Lembre-se que a RC é construída para a estatística definida no passo (a), usando os valores hipotetizados por H_0 ;
- d) Use as informações da amostra para calcular o valor da estatística do teste;
- e) Se o valor da estatística calculado com os dados da amostra não pertencer à RC, não rejeitamos H_0 ; caso contrário, rejeita-se H_0 .

Exemplo 2. No caso da suinocultura, considerando a amostra de 50 leitões (n = 50), aos quais foi fornecida a nova ração (B), deve-se ou não adotar essa ração, admitindo-se como resultado um ganho em peso médio diário de 504 g ($\bar{x}_a = 504g$), fixando $\alpha = 5\%$?

H₀:
$$\mu = 500 \text{ g}$$

H₁: $\mu = 510 \text{ g}$
 $\bar{x}_a = 504g$ $n = 50$ $\alpha = 0.05$ $\sigma = 25 \text{ g}$
 $z_c = \frac{\bar{x}_c - \mu_0}{\sigma / \sqrt{n}}$ \Rightarrow $1.65 = \frac{\bar{x}_c - 500}{25 / \sqrt{50}}$ \therefore $\bar{X}_c = 505.78 \text{ g}$
RC = { $\bar{X}_c = 505.78 \text{ g}$ }

Conclusão:

Como $\bar{x}_a \notin RC$, não se rejeita H_0 ao nível de significância de 5%, ou seja, a ração B não é melhor do que a A. Portanto, a suinocultura não deve adotá-la.

Equivalentemente, os testes descritos podem ser baseados na estatística:

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 obtendo-se as regiões críticas na distribuição N (0,1).

Exemplo 2, o valor observado da estatística teste (Z_{obs}) é dado por:

$$z_{obs} = \frac{\overline{x}_a - \mu_0}{\sigma / \sqrt{n}} = \frac{504 - 500}{25 / \sqrt{50}} = 1,14$$

Como z_{obs} < z_{c} , não se rejeita H_0 ao nível de 5%.

Teste sobre a média de uma população com variância conhecida

1. Hipótese simples vs. alternativa simples

(a) Teste unilateral à direita

$$H_0: \mu = \mu_0$$

$$H_1: \mu = \mu_1 \quad (\mu_1 > \mu_0)$$

Com α fixado,

 $RC = \{\overline{X} \in R/\overline{X} \ge \overline{X}_c\}$, onde: \overline{X}_c é obtido a partir de $z_c = \frac{\overline{x}_c - \mu_0}{\sigma/\sqrt{n}}$,

sendo z_c : N(0,1), tal que $P(Z \ge z_c) = \alpha$

Equivalentemente,

RC =
$$\{Z \ge z_c\}$$
, onde: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

1. Hipótese simples vs. alternativa simples

(b) Teste unilateral à esquerda

$$H_0: \mu = \mu_0$$

$$H_1: \mu = \mu_1 \quad (\mu_1 < \mu_0)$$

$$RC = \{Z \le -z_c\}$$

2. Hipótese simples vs. alternativa composta

(i)	$H_0: \mu = \mu_0$	
	$H_1: \mu > \mu_0$	RC idêntica à de (a)

(ii)
$$H_0: \mu = \mu_0$$

 $H_1: \mu < \mu_0$ RC idêntica à de (b)

(iii)
$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

Teste bilateral da forma:

Tabela - Normal Padrão

TÁBUA III

Distribuição normal reduzida: N(0;1) Probabilidades p tais que p = P(0 < Z < Z_c)

parte in- teira e primeira decimal	SEGUNDA DECIMAL DE Z _C												
de Z _c	0	1	2	3	4	5	6	7	8	9	decima de Z		
	p = 0		,										
0,0	00000	00399	00798	01197	01595	01994	02392	02790	03188	03586	0.0		
0,1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07535	0,1		
0,2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409	0,2		
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173	0,3		
0,4	15542	15910	16276	16640	17003	17364	17724	18082	. 18439	18793	0,4		
0,5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240	0,5		
0,6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490	0,6		
0,7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524	0.7		
0,8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327	0.8		
0,9	31594	31859	32121	32381	32639	32894	33147	33398	33646	33891	0,9		
1,0	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214	1,0		
1,1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298	1,1		
1,2	38493	38686	38877	39065	39251	39435	39617	39796	39973	40147	1,2		
1,3	40320	40490	40658	40824	40988	41149	41309	41466	41621	41774	1,3		
1,4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189	1,4		
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408	1,5		
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449	1,6		
1,7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327	1,7		

Exemplo 2. Usando os dados do Exemplo 1, testar a hipótese de μ = 500 g contra a hipótese alternativa $\mu \neq$ 500 g, ao nível de significância de 5%.

Solução:

H₀:
$$\mu = 500 \text{ g}$$
 $\bar{x}_a = 504 \text{ g}$ $\alpha = 5\%$
H₁: $\mu \neq 500 \text{ g}$

RC = {
$$Z \ge 1.96$$
 ou $Z \le -1.96$ } $z_{obs} = \frac{\bar{x}_a - \mu_0}{\sigma / \sqrt{n}} = \frac{504 - 500}{25 / \sqrt{50}} = 1.14$

Conclusão:

Como $z_{obs} \notin RC$, não se rejeita H_0 ao nível de 5%, ou seja, a ração B não é estatisticamente melhor do que a A.

Teste para a Proporção binomial (p)

Considere uma população e uma hipótese sobre uma proporção **p** dessa população:

$$H_0: p = p_0$$

Quando n (tamanho da amostra) é grande,

$$Z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$

 \hat{p} é a proporção da amostra

$$z_{obs} = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

Exemplo 3. Um laboratório de vacinas contra febre aftosa afirmou que ela imuniza 90% dos animais. Em uma amostra de 200 animais, nos quais foram aplicados a vacina, 160 foram imunizados. Verificar se a declaração do fabricante é verdadeira ao nível de 5%.

$$H_0: p = 0.90 (p_0)$$

$$H_1: p < 0.90$$

$$n = 200$$
 $\hat{p} = \frac{160}{200} = 0.80$ $\alpha = 0.05$

$$z_{obs} = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} = \frac{0,80 - 0,90}{\sqrt{(0,90.0,10)/200}} = -4,72$$

$$RC = \{Z \le -1,65\}$$

Decisão:

Como $z_{obs} < z_c$, rejeita-se H_0 ao nível de 5%, ou seja, a proporção de imunização é menor do que 90%.

Test t de Student

Teste para a média de uma população normal com σ^2 desconhecido

Hipóteses:

$$H_0$$
: $\mu = \mu_0$

 H_1 : $\mu \neq \mu_0$ [ou $\mu > \mu_0$ ou $\mu < \mu_0$], onde μ_0 é um valor conhecido.

Estatística teste:

$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

que tem distribuição t de Student com n-1 graus de liberdade (t_{n-1}) .

$$RC: t_{n-1} < -t_{\alpha/2, n-1}$$
 ou $t_{n-1} > t_{\alpha/2, n-1}$

Resultado da amostra:

$$t_{obs} = \frac{\overline{x}_a - \mu_0}{s_a / \sqrt{n}}$$

Análise do resultado: Se $t_{obs} \in RC$, rejeita-se H_0 ; caso contrário, não se rejeita

Exemplo 4. As especificações de uma dada droga veterinária exigem 23,2 g de álcool etílico. Uma amostra de 10 análises do produto apresentou um teor médio de álcool de 23,5 g com desvio padrão de 0,24 g. Pode-se concluir ao nível de significância de 1% que o produto satisfaz as condições exigidas $(\mu=23,2$ g)?

Tabela - Distribuição t-Student

de liberdace	TÁBUA V Distribuição de Student: St(n)										p/2 1 - p p/2					
Graus de	Valores críticos de t tais que $P(-t_C < t < t_C) = 1 - p$															us de liberdade
ő	p = 90%	80%	70%	60%	50%	40%	30%	20%	10%.	5%	4%	2%	1%	0,2%	0,1%	Graus
1 2 3 4 5	0,158 0,142 0,137 0,134 0,132	0,325 0,289 0,277 0,271 0,267	0.510 0.445 0.424 0.414 0.408	0.727 0.617 0.584 0.569 0.559	1,000 0,816 0,765 0,741 0,727	1,376 1,061 0,978 0,941 0,920	1,963 1,386 1,250 1,190 1,156	3,078 1,886 1,638 1,533 1,476	6,314 2,920 2,353 2,132 2,015	12,706 4,303 3,182 2,776 2,571	15.894 4,849 3.482 2.998 2.756	31,821 6,965 4,541 3,747 3,365	63,657 9,925 5,841 4,604 4,032	318,309 22,327 10,214 7,173 5,893	636,619 31,598 12,924 8,610 6,869	1 2 3 4 5
6 7 8 9	0,131 0,130 0,130 0,129 0,129	0,265 0,263 0,262 0,261 0,260	0.404 0.402 0.399 0.398 0,397	0.553 0.549 0.546 0.543 0,542	0.718 0.711 0.706 0.703 0.700	0,906 0,896 0,889 0,883 0,879	1,134 1,119 1,108 1,100 1,093	1,440 1,415 1,397 1,383 1,372	1,943 1,895 1,860 1,833 1,812	2,447 2,365 2,306 2,262 2,228	2.612 2.517 2.449 2,398 2,359	3,143 2,998 2,896 2,821 2,764	3,707 3,499 3,355 3,250 3,169	5.208 4.785 4,501 4,297 4,144	5.959 5.408 5.041 4,781 4.587	6 7 8 9 10
11 12 13 14 15	0,129 0,128 0,128 0,128 0,128	0.260 0.259 0.259 0.258 0.258	0,396 0,395 0,394 0,393 0,393	0.540 0.539 0.538 0.537 0.536	0,697 0,695 0,694 0,692 0,691	0,876 0.873 0.870 0,868 0,866	1.088 1.083 1.079 1.076 1.074	1,363 1,356 1,350 1,345 1,341	1,796 1,782 1,771 1,761 1,753	2,201 2,179 2,160 2,145 2,131	2,328 2,303 2,282 2,264 2,248	2,718 2,681 2,650 2,624 2,602	3.106 3.055 3.012 2.977 2.947	3,025 3,930 3,852 3,787 3,733	4,437 4,318 4,221 4,140 4,073	11 12 13 14 15
16 17 18 19 20	0,128 0,128 0,127 0,127 0,127	0.258 0.257 0.257 0.257 0.257	0,392 0,392 0,392 0,391 0,391	0.535 0.534 0.534 0.533 0.533	0,690 0,689 0 ,688 0,688 0,687	0.865 0.863 0.862 0.861 0.860	1.071 1.069 1.067 1.066 1.064	1,337 1,333 1,330 1,328 1,325	1,748 1,740 1,734 1,729 1,725	2,120 2,110 2,101 2,093 2,086	2.235 2.224 2.214 2.205 2.197	2,583 2,567 2,552 2,539 2,528	2.921 2.898 2.878 2.861 2,845	3,686 3,646 3,610 3,579 3,552	4,015 3,965 3,922 3,883 3,850	16 17 18 19 20
21 22 23 24 25	0,127 0,127 0,127 0,127 0,127	0,257 0,256 0,256 0,256 0,256	0,391 0,390 0,390 0,390 0,390	0,532 0,532 0,532 0,531 0,531	0,686 0,686 0,685 0,685 0,684	0,859 0,858 0,858 0,857 0,856	1,063 1,061 1,060 1,059 1,058	1,323 1,321 1,319 1,318 1,316	1,721 1,717 1,714 1,711 1,708	2,080 2,074 2,069 2,064 2,060	2,189 2,183 2,177 2,172 2,166	2,518 2,508 2,500 2,492 2,485	2,831 2,819 2,807 2,797 2,787	3,527 3,505 3,485 3,467 3,450	3,819 3,792 3,768 3,745 3,725	21 22 23 24 25
26 27 28 29 30	0.127 0.127 0.127 0.127 0.127	0.256 0.256 0.256 0.256 0.256	0,390 0,389 0,389 0,389 0,389	0,531 0,531 0,530 0,530 0,530	0,684 0,684 0,684 0,683 0,683	0.856 0.855 0.855 0.854 0.854	1.058 1.057 1.056 1.055 1.055	1,315 1,314 1,313 1,311 1,310	1,706 1,703 1,701 1,699 1,697	2,056 2,052 2,048 2,045 2,042	2,162 2,158 2,154 2,150 2,147	2,479 2,473 2,467 2,462 2,457	2,7791 2,771 2,763 2,756 2,750	3,435 3,421 3,408 3,396 3,385	3,707 3,690 3,674 3,659 3,646	26 27 28 29 30
35 40 50 60 120	0,126 0,126 0,126 0,126 0,126	0,255 0,255 0,254 0,254 0,254	0.388 0.388 0.387 0.387 0.386	0,529 0,529 0,528 0,527 0,526	0.682 0.681 0.679 0.679 0.677	0,852 0,851 0,849 0,848 0,845	1.052 1.050 1.047 1.045	1,306 1,303 1,299 1,296 1,289	1.690 1.684 1.676 1.671 1.658	2.030 2.021 2.009 2.000 1,980	2.133 2,123 2,109 2.099 2.076	2,438 2,423 2,403 2,390 2,358	2,724 2,704 2,678 2,660 2,617	3,340 3,307 3,261 3,232 3,160	3,591 3,551 3,496 3,460 3,373	35 40 50 60 120
∞	0,126 p = 90%	0,253 80%	0,385 70%	0,524	50%	0,842 40%	30%	1,282	1,645	1,960	2,054	2,326	2,576	0,2%	3,291	**

H₀:
$$\mu = 23.2 \text{ g}$$

H₁: $\mu \neq 23.2 \text{ g}$

$$\alpha = 0.01$$
 $\overline{x}_a = 23.5 g$ $s_a = 0.24$ $n = 10$

Consultando a Tabela 4, $t_{c(0,01;9)} = 3,25$, de modo que

$$RC = \{t < -3,25 \text{ ou } t > 3,25\}$$

$$t_{obs} = \frac{\overline{x}_a - \mu_0}{\frac{s_a}{\sqrt{n}}} = \frac{23,5 \, g - 23,2 \, g}{\frac{0,24}{\sqrt{10}}} = 3,95$$

Conclusão: como $t_{obs} \in RC$, rejeita-se H_0 ao nível de 1%, ou seja, o teste indica que o produto não satisfaz as condições exigidas.