GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA	
	Robótica

0.010		
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
	41004CA	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los conocimientos para el análisis, modelado, desarrollo y control de robots manipuladores, con la ayuda de herramientas de simulación.

TEMAS Y SUBTEMAS

- 1. Introducción
- 1.1. Introducción
- 1.2. Partes de un robot
- 1.3. Seguridad
- 1.4. Aplicaciones
- 1.5. Programación
- 2. Modelado cinemático de robots.
- 2.1. Introducción
- 2.2. Espacio articular y espacio Cartesiano
- 2.3. Problema cinemático directo e inverso
- 2.4. Cinemática diferencial
- 2.5. Matriz Jacobiana
- 2.6. Matriz Jacobiana inversa
- 2.7. Configuraciones singulares
- 2.8. Proyectos de simulación cinemática de robots
- Modelado dinámico de robots.
- 3.1. Introducción
- 3.2. Formulación de Lagrange
- 3.3. Formulación Newton-Euler
- 3.4. Modelado dinámico en variables de estado
- 3.5. Modelado dinámico en el espacio de trabajo
- 3.6. Proyectos de simulación dinámica de robots
- 4. Control de robots.
- 4.1. Control PD con compensación de gravedad
- 4.2. Control PID con compensación de gravedad
- 4.3. Controladores Saturados
- 4.4. Control por par calculado
- 5. Aplicaciones.
- 5.1. Generación de trayectorias
- 5.2. Interpolación de trayectorias
- 5.3. Trayectorias en el espacio articular
- 5.4. Trayectorias en el espacio Cartesiano
- 5.5. Control de travectorias

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, el cañón y el retroproyector. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

Desarrollar prácticas empleando los simuladores matemáticos Dymola, Simnon, Matlab, etc. Realizar prácticas con los brazos del laboratorio de control y/o fabricar algún robot educativo durante el curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales y una calificación final.

Para cada calificación parcial se deberá considerar un examen oral o escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen oral o escrito y un proyecto final de aplicación o de investigación, con temas estrictamente afines a la materia.

Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer día de clases, con la participación de los alumnos.

BIBLIOGRAFÍA

Libros básicos:

- Robótica. Craig, John J., España, Pearson Educación 2006, 3ª edición,
- Robot Dynamics and Control. Spong, Mark W y Vidyasagar, M., Wiley, 1989, 1a edición.
- Fundamentos de Robótica. Barrientos, A.; Peñín, F. L.; Balaguer, C. y Aracil, R., España: Ed. McGraw Hill/Interamericana, 1997, 2a edición.
- Robótica, Manipuladores y Robots Móviles. Ollero, A. B., España: Ed. Alfaomega, 2001, 1a edición.

Libros de consulta:

- Geometrical Fundations of Robotics, Selig, J. M., Singapur World Scientific Publishing, 2000.
- Robótica Industrial: Tecnología, Programación y Aplicaciones. Groover Miketl P., Weiss Mitchell, Nagel Rocjer N., Odrey Nicholas G. México: McGraw-Hill, 1990.
- Applied Nonlinear Control. Slotine, Jean-Jacques E. \ LI, WEIPING, Prentice Hall, 1991

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría o Doctorado en Control o Robótica.

