(3) Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{\lambda}{\sqrt{n}} e^n$$

La serie esté centrada en o. Utilizo el criterio del cociente para series de potencias:

Utilize di criterio del cociente para series de potencias.
$$\lim_{n\to\infty}\frac{C_{n+1}}{C_n}=\frac{1}{\sqrt{n_1}}\cdot\frac{1}{\sqrt{n}}=\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{n_1}}=\lim_{n\to\infty}\frac{1}{\sqrt{1+\sqrt{n}}}=\lim_{n\to\infty}\frac{1}{\sqrt{1+\sqrt{n}}}=1$$
, enconces $R=1$.

Ahors vermes los bordes;
• Si
$$\kappa = 1$$
, $\sum_{n=1}^{\infty} \frac{1^n}{\sqrt{n}}$ diverge (serie p).

Si
$$k=-1$$
, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converge (crit. de series alternantes)
Para concluir, $\sum_{n=1}^{\infty} \frac{k^n}{\sqrt{n}}$ converge $\forall k \in [-1,1)$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+1}$$
Le serie esté cenerade en o.

Utilize di criterio del cociente para series de potencias:
$$\lim_{N\to\infty}\frac{C_{n+1}}{C_n}=\lim_{N\to\infty}\frac{\left|\binom{-1}{n+1}\right|}{n+2}:\frac{\left|\binom{-1}{n}\right|^n}{n+1}=\lim_{N\to\infty}\frac{\left|\binom{-1}{n+1}\right|}{\left|\binom{-1}{n+2}\right|}=\lim_{N\to\infty}\frac{\left|\binom{-1}{n+1}\right|}{n+2}=1, \text{ entonces }\mathbb{R}=1.$$
Where vermes les bordes:
$$65i \ k=1, \sum_{n=1}^{\infty}\frac{\binom{-1}{n+1}}{n+1} \text{ converge por crit. de series alternames.}$$

• Si
$$K = -1$$
, $\sum_{n=1}^{\infty} \frac{(-1)^n (-1)^n}{n+1} = \sum_{n=1}^{\infty} \frac{1}{n+1}$ diverge, pues $\frac{1}{n+1} > \frac{1}{n}$ (cfr. de comparación para series)

Para concluir, $\sum_{n=1}^{\infty} \frac{(-1)^n \kappa^n}{n+1}$ converge $\forall \kappa \in (-1, 1]$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$$
Le serie esté centrade en o.

Utilizo el criterio del cociente para series de potencias:

$$\lim_{N \to pq} \frac{C_{n+1}}{C_n} = \lim_{N \to pq} \left| \frac{\binom{-1}{n}^n}{\binom{n+1}{2}} : \frac{\binom{-1}{n}^{n-1}}{\binom{n}{3}} \right| = \lim_{N \to pq} \left| \frac{\binom{-1}{n}^n}{\binom{-1}{n+1}^3} \right| = \lim_{N \to pq} \left| \frac{\binom{n}{n+1}}{\binom{n}{n+1}} \right|^3 = \lim_{N \to pq} \frac{\binom{n}{n+1}}{\binom{n}{n+1}} = 1, \text{ entonces } R = 1.$$

•Si $\kappa = 1$. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3}$ converge por crit. de series alternantes.

Mora veamos los bordes:

• Si
$$\kappa = -1$$
. $\sum_{N=1}^{\infty} \frac{(-1)^{N-1}(-1)^N}{N^3} = \sum_{N=1}^{\infty} \frac{-1}{N^3}$ converge (sene p).

(d)
$$\sum_{n=0}^{\infty} \sqrt{n} x^n$$

Pera concluir, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \kappa^n}{n^3}$ converge $\forall \kappa \in [-1,1]$

La serie esté centrada en o.

 $\lim_{n\to\infty}\frac{C_{n+1}}{C_n}=\lim_{n\to\infty}\frac{\sqrt{n+1}}{\sqrt{n}}=\lim_{n\to\infty}\frac{\sqrt{n}\sqrt{1+1/n}}{\sqrt{n}}=1, \text{ entonces } R=1.$

Si
$$E = -1$$
. $\sum_{n=1}^{\infty} \sqrt{n} (-1)^n$ diverge pues $\lim_{n \to \infty} \sqrt{n} (-1)^n \not\equiv 1$.
Para concluir, $\sum_{n=1}^{\infty} \sqrt{n} \, e^n$ converge $\forall k \in (-1,1)$

(e)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

La serie esté centrade en o.

La serie esté centrada en o.

Utilizo el criterio del comente para series de potencias: $l_{m} \frac{C_{n+1}}{C_{n}} = l_{m \to \infty} \frac{1}{(n+1)!} : \frac{1}{n!} = l_{m} \frac{n!}{(n+1)!} = l_{m \to \infty} \frac{1}{(n+1)!} = 0$, entonces $R = \infty$.

(f) $\sum_{n=1}^{\infty} n^n x^n$

Utilizo el criterio del cociente però series de potencios:
$$\lim_{n\to\infty} \frac{C_{n+1}}{C_n} = \lim_{n\to\infty} \frac{(n+1)^{n+1}}{n^n} = \lim_{n\to\infty} \frac{(n+1)^n}{n} (n+1) = \lim_{n\to\infty} (n+1)^n (n+1) = \lim_{n\to\infty} (n+2+1)^n = \infty, \text{ entonces } R = 0.$$

Pora concluir,
$$\sum_{n=1}^{M} n^n n^n$$
 converge en $k=0$.

 $(g) \sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$

Utilizo el criterio del comente para series de potencias:

There we was los bordes;

Si
$$k=2$$
, $\sum_{n=1}^{\infty} \left(-1\right)^n \frac{2^n}{2^n} = \sum_{n=1}^{\infty} \left(-1\right)^n 2^n$ que diverge por criterio de la divergencia.

$$Si \quad k = -2, \quad \sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2(-2)^n}{2^n} = \sum_{n=1}^{\infty} \left(-1\right)^n \left(-1\right)^n \cdot \frac{n^2 \frac{\pi^2}{2^n}}{2^n} = \sum_{n=1}^{\infty} n^2 \text{ que diverge por crit. de la divergencia.}$$

$$Si \quad k = -2, \quad \sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2 \left(-1\right)^n}{2^n} = \sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2 \frac{\pi^2}{2^n}}{2^n} = \sum_{n=1}^{\infty} n^2 \text{ que diverge por crit. de la divergencia.}$$

$$Si \quad k = -2, \quad \sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2 \left(-2\right)^n}{2^n} = \sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2 \frac{\pi^2}{2^n}}{2^n} = \sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2 \frac{\pi^2}{2^n}}{2$$

$$\sum_{n=0}^{\infty} 10^n x^n$$

(h)
$$\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$$
Le serie esté centrade en o.

Thora veames los bordes:
• S;
$$\kappa = \frac{1}{10}$$
, $\sum_{n=1}^{\infty} \frac{40^n (\frac{n}{10})^n}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^3}$ que converge (serie p)

• Si
$$\kappa = -\frac{1}{10}$$
, $\sum_{n=1}^{\infty} \frac{b^n (-\frac{1}{10})^n}{n^3} = \sum_{n=1}^{\infty} (-1)^n \frac{b^n (\frac{1}{10})^n}{n^3}$ que converge por crit. de series alternantes.

Bis concluir, $\sum_{n=1}^{\infty} \frac{b^n \kappa^n}{n^3}$ converge $\forall \kappa \in [-\frac{1}{10}, \frac{1}{10}]$

(i) $\sum_{n=0}^{\infty} \frac{1+5^n}{n!} x^n$

 $\lim_{N\to\infty}\frac{C_{n+1}}{C_n}=\lim_{N\to\infty}\frac{1+5^{n+1}}{(n+1)!}\cdot\frac{1+5^n}{n!}=\lim_{N\to\infty}\frac{(1+5^{n+1})^n!}{(1+5^n)(n+1)!}=\lim_{N\to\infty}\frac{(1+5^{n+1})^n}{(1+5^n)(n+1)!}=\lim_{N\to\infty}\frac{1+5^{n+1}}{(1+5^n)(n+1)!}=\lim_{N\to\infty}\frac{1+5^{n+1}}{(1+5^n)(n+1)!}=0, \text{ entonces } \mathbb{R}=\infty.$ Para concluir, $\sum_{n=0}^{\infty} \frac{1+5^n}{n!} \kappa^n$ converge $\forall \kappa \in (-\infty,\infty)$