

CHƯƠNG 5

CÂY KHUNG CỰC TIỂU CỦA ĐỒ THỊ

Nội dung

- Bài toán cây khung cực tiểu MST
- 2 Khái niệm cây và cây khung đồ thị
- Thuật toán Prim
- 4 Thuật toán Kruskal
- Thảo luận & Bài tập

Bài toán cây khung cực tiểu (1/3) (MST – Minimum spanning tree)

Các bài toán đặt ra:

- Làm sao xây dựng mạng giao thông nối các thành phố với chi phí xây dựng và vận hành thấp nhất?
- Trong lý thuyết mạch, làm thế nào để xây dựng một mạch điện tử có kích thước, chi phí thấp nhất và tốc độ truyền tín hiệu nhanh nhất?
- Trong mạng máy tính, đòi hỏi xây dựng hệ thống mạng có chi phí kết nối thấp nhất và tốc độ truyền dữ liệu cao nhất?
- •

Bài toán cây khung cực tiểu (2/3)

Bài toán cây khung cực tiểu (3/3)

Phát biểu

• Cho đồ thị vô hướng, có trọng số G(V,E,C)

Yêu cầu

- Tìm cây khung của đồ thị thỏa mãn điều kiện:
- Tổng trọng số của nó → MIN

Cây và cây khung cực tiểu (1/4)

Định nghĩa

• Cây là đơn đồ thị liên thông và không có chu trình

Cây và cây khung cực tiểu (2/4)

Cây và cây khung cực tiểu (3/4)

- Định nghĩa cây khung:
 - Giả sử G(V,E) là đồ thị vô hướng liên thông, khi đó:
 - Cây dung T(V,E') của G là đồ thị con của G, sao cho:
 - T liên thông
 - · và không có chu trình.
 - Tức là E' là tập con của E.

Cây và cây khung cực tiểu (4/4)

Các cây khung T(V,E')

Thuật toán Prim tìm cây khung cực tiểu (1/11)

• Đầu vào: Đồ thị vô hướng, có trọng số G(V,E).

• Đầu ra: Cây khung cực tiểu T(V,E') của G

Thuật toán Prim tìm cây khung cực tiểu (2/11)

Khởi tạo từ 1 đỉnh bất kỳ, nạp đỉnh đó vào MST rỗng.

❖ Bước 2:

$$| \vee | = | \wedge |$$

- Lặp lại đến khi mọi đỉnh của G đều được nạp vào MST:
 - Tìm tất cả các cạnh nối đỉnh mới nhất trong *MST* với các đỉnh không thuộc *MST*, và đặt vào 1 hàng đợi (ưu tiên). Nếu có nhiều hơn 1 cạnh nối với cùng đỉnh đích thì chọn cạnh có trọng số nhỏ nhất.
 - Chọn cạnh có trọng số nhỏ nhất trong hàng đợi, và bổ sung cạnh này cùng với đỉnh đích tương ứng vào *MST*.

Thuật toán Prim tìm cây khung cực tiểu (3/11)

Thuật toán Prim tìm cây khung cực tiểu (4/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	

Thuật toán Prim tìm cây khung cực tiểu (5/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	

Thuật toán Prim tìm cây khung cực tiểu (6/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	
2		3,3		8,3		

Thuật toán Prim tìm cây khung cực tiểu (7/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞,1	1,1
1			4,6		6,6	
2		3,3		8,3		

Thuật toán Prim tìm cây khung cực tiểu (8/11)

	1	2	3	4	5	6
0	0,1	5,1	∞,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	
2		3,3		8,3		
3						

Thuật toán Prim tìm cây khung cực tiểu (9/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	
2		3,3		8,3		
3						
4				2,5		

Thuật toán Prim tìm cây khung cực tiểu (10/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	
2		3,3		8,3		
3						
4				2,5		

Thuật toán Prim tìm cây khung cực tiểu (11/11)

Thuật toán Kruskal (1/10)

Bước 1:

- Sắp xếp danh sách các cạnh E của G theo trọng số tăng dần.
- Khởi tạo cây khung T rỗng.
- Bước 2: Lặp lại cho đến khi tìm được cây khung cực tiểu hoặc E rỗng
 - Chọn cạnh (u,v) thỏa điều kiện:
 - c(u,v) là trọng số nhỏ nhất trong {c(E)} Cạnh (u,v) hợp với T không tạo ra chu trình
 - Nap (u,v) vào T
 - Loại cạnh (u,v) ra khỏi E

Thuật toán Kruskal (2/10)

Chọn cạnh

• Làm thế nào để biết việc bổ sung cạnh (u,v) vào cây T có tạo ra chu trình hay không?

Giải pháp gán nhãn (make-set)

- Nhãn là một số nguyên được gán cho các đỉnh.
- Các đỉnh thuộc cùng thành phần liên thông trong T sẽ có cùng nhãn.
- Mỗi thành phần liên thông của T có 1 nhãn khác nhau.

Thuật toán Kruskal (3/10)

Đỉnh	1	2	3	4	5	6
Nhãn	1	2	3	4	5	6

Cạnh	Trọng số	Chọn
(1,6)	1	
(2,6)	1	
(5,6)	1	
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (4/10)

1	2	3	4	5	6
1	2	3	4	5	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	
(5,6)	1	
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (5/10)

1	2	3	4	5	6
1	1	3	4	5	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (6/10)

1	2	3	4	5	6
1	1	3	4	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (7/10)

_ 1	2	3	4	5	6
1	1	3	4	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (8/10)

1	2	3	4	5	6
1	1	3	4	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	tạo chu trình
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (9/10)

1	2	3	4	5	6
1	1	1	4	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	tạo chu trình
(2,3)	3	X
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (10/10)

1	2	3	4	5	6
1	1	1	1	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	tạo chu trình
(2,3)	3	X
(4,5)	3	X
(3,4)	4	
(3,5)	5	

Thảo luận & bài tập (1/1)

* Một số bài toán:

- 1. Thuật toán Kruskal có thể sử dụng để kiểm tra tính liên thông hay không?
- 2. Làm thế nào để tìm cây khung cực tiểu với điều kiện nó phải chứa (các) cạnh cho trước nào đó?
- 3. Nên biểu diễn đồ thị dưới dạng nào (ma trận trọng số, danh sách kề, danh sách cạnh) để hỗ trợ tốt cho các thuật toán Prim và Kruskal?
- 4. Độ phức tạp tính toán của 2 thuật toán này?
- 5. Xây dựng thuật toán kiểm tra đồ thị có chứa chu trình (đơn) hay không?
- 6. Cài đặt các thuật toán trên máy tính?