Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Основы теории надежности»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

«Анализ рисков»

Чу

(подпись)

Выполнили:

Содержание

Содержание	2
Введение	3
Задание	
Ход работы	
1. Термины и область рассмотрения	5
1.1. Описание анализируемой системы	
1.2. Основные понятия (термины)	5
1.3. Границы анализа (scope)	6
1.4. Цель и задачи анализа риска	6
1.5. Методология и исходные данные	7
2. Анализ частоты (Frequency Analysis)	7
2.1. Методика оценки частоты	7
2.2. Перечень опасностей и их частота	7
3. Анализ последствий	9
3.1. Шкала уровней последствий	9
3.2. Присвоение уровней последствий основным опасностям	10
3.3. Обзор распределения уровней последствий	11
4. Расчёт уровня риска	12
4.1. Основы методики расчёта риска	12
4.2. Таблица результатов с уровнем риска	
Заключение	14

Введение

В современных технических системах обеспечение надёжности и безопасности является одной из приоритетных задач. Особенно это актуально для систем жизнеобеспечения, таких как системы водоснабжения административных зданий, где сбои могут привести к серьёзным последствиям для здоровья людей и нарушению функционирования инфраструктуры.

Лабораторная работа №5 посвящена проведению анализа рисков, связанных с эксплуатацией системы хозяйственно-питьевого водоснабжения. Целью работы является выявление потенциальных опасностей и оценка их влияния на систему, а также определение вероятности возникновения негативных событий. Это позволяет определить уровни риска и принять обоснованные решения по минимизации угроз, обеспечивая тем самым безопасность эксплуатации.

Анализ рисков базируется на предварительных результатах предыдущих лабораторных работ, таких как построение дерева отказов (FTA) и идентификация опасностей, а также на экспертных оценках вероятности и тяжести последствий. Итогом работы является формирование матрицы рисков, позволяющей визуально и количественно оценить критичность каждого выявленного риска.

Полученные результаты и рекомендации могут быть использованы для разработки мероприятий по повышению надежности и безопасности системы, а также для дальнейшего совершенствования процессов управления и технического обслуживания.

Задание

Задачи анализа рисков в данной лабораторной работе:

- Определение возможных опасностей, возникающих в процессе работы системы.
- Оценка последствий и частоты возникновения данных опасностей.
- Разработка предложений по снижению или устранению рисков.

Ход работы

1. Термины и область рассмотрения

1.1. Описание анализируемой системы

- Объектом является система хозяйственно-питьевого водоснабжения административного здания. В состав входят:
 - Внешний источник городская водопроводная сеть (магистральный трубопровод, водозаборная станция).
 - Насосная станция с основным и резервным насосами.
 - Резервуар-накопитель / гидробак.
 - Распределительная трубо-проводная сеть по этажам (запорная арматура, обратные клапаны).
 - о Система управления и мониторинга (датчики уровня/давления, панель управления насосами, ПО).
 - Система электропитания (основная сеть + ИБП).
 - Персонал и диспетчерский пункт как элементы взаимодействия.

1.2. Основные понятия (термины)

Термин	Определение
Опасность	Потенциальный источник причинения ущерба (людям, оборудованию, инфраструктуре).
Опасное событие	Реализация опасности, приводящая к вреду.
Отказ	Любое нарушение работоспособности системы (аппаратное, программное, внешнее).
Критерий опасного отказа	Необнаруженная неисправность, способная привести к опасному событию.
Частота (вероятность)	Оценка частоты возникновения опасного события (6 градаций: Частое Маловероятное).

Последствия (тяжесть)	Степень ущерба от события (Катастрофический Незначительный).
Уровень риска	Комбинация частоты и последствий; определяется по матрице риска (Допустимый, Нежелательный, Недопустимый, Не принимаемый в расчёт).
Безопасное состояние	Состояние системы, при котором исключён вред людям/имуществу; достигается путём shutdown, перехода на резерв, оповещения.
Контрольная функция	Функция, обнаруживающая отказ и переводящая систему в безопасное состояние.
Нормирование риска	Подход к доказательству приемлемости риска (GAMAB, ALARP, MEM).

1.3. Границы анализа (scope)

- Включены: все перечисленные подсистемы, их интерфейсы и питание; взаимодействие с городской сетью; действия ПО и операторов.
- Исключены: редкие форс-мажоры вне контроля (стихийные бедствия выше проектных нагрузок), системы пожаротушения, санитарно-техническое обслуживание, влияющее лишь на экономические параметры.
- Внешние взаимодействия: городские коммунальные службы (аварии, уведомления), энергоснабжение, службы МЧС.

1.4. Цель и задачи анализа риска

- Идентифицировать все опасности, выделенные из дерева отказов (FTA) Лаб 2 и перечня угроз (Лаб 4).
- Определить частоту и тяжесть последствий для каждой опасности.
- Оценить уровень риска с использованием матрицы.
- Решить, требуются ли дополнительные меры для снижения риска до Допустимого/Нежелательного уровня.

1.5. Методология и исходные данные

- Дерево отказов (FTA) основание для поиска первичных причин неисправностей.
- Экспертная оценка для классификации частоты.
- Классификатор последствий по критериям.
- Матрица риска комбинирование частоты × тяжести.
- Подходы к нормированию риска GAMAB/ALARP/MEM в зависимости от критичности.

2. Анализ частоты (Frequency Analysis)

2.1. Методика оценки частоты

Частота возникновения каждого опасного события оценивается экспертным методом и отнесена к одному из шести уровней:

Уровень частоты	Краткое описание	Обозначение, применяемое в таблицах	Ориентировочная оценка
Частое (Ч)	Опасность присутствует постоянно	Частое	≥ 1 раза в неделю
Вероятное (В)	Вероятное (B) Событие ожидается часто		несколько раз в год
Случайное (Сл) Возникает периодически, но не часто		Случайное	≈ 1 раз в год
Редкое (Р)	Случается изредка	Редкое	≈ 1 раз в 5 лет
Крайне редкое (КР)	Возможно лишь в исключительных случаях	Крайне редкое	≈ 1 раз в 10 лет
Маловероятное (MB)	Практически не проявляется	Маловероятное	< 1 раз в 20 лет

2.2. Перечень опасностей и их частота

№	Основная опасность (из Лаб. 4 / FTA)	Характерные причины	Класс частоты (экспертно)	Обоснование выбора
1	Авария городской магистрали — прекращение подачи воды	Разрыв трубы, выход из строя насосной станции водоканала	Редкое	Крупные аварии сети случаются реже одного раза в год для отдельно-взятого здания
2	Падение давления в сети → вода не поднимается на верхние этажи	Закрытие основного вентиля, засор, сезонные пики потребления	Случайное	Отмечается примерно раз в год, часто в периоды ремонтов
3	Отказ основного насоса (мех.)	Износ подшипников, заклинивание крыльчатки	Случайное	Срок службы 3-5 лет; вероятность 1 раз / год
4	Потеря электропитания насоса	Отключение в сети, разряд UPS	Вероятное	Отключения электроэнергии происходят несколько раз в год
5	Засорение трубопроводов	Коррозия, отложения	Вероятное	Без регулярной промывки осадки накапливаются за месяцы
6	Протечки внутренних труб	Старение, температурные перепады	Частое	Небольшие микротрещины фиксируются постоянно датчиками
7	Заклинивание/отказ арматуры	Коррозия, отсутствие смазки	Случайное	Проявляется при редком срабатывании вентилей
8	Отказ датчика уровня	Износ, помехи сигнала	Случайное	Срок службы 2-3 года; вероятность ~0,3 раза/год
9	Сбой ПЛК/панели управления (HW/SW)	Перегрев, сбой прошивки	Редкое	МТВГ высок; ошибки прошивки редки

10	Потеря связи системы SCADA	Падение сервера, отказ сетевого оборудования	Редкое	Система имеет резервирование; ~1 инцидент/5 лет
11	Опустошение резервуара из-за останова насоса	Отказ насоса/управления	Вероятное	При простое насоса > 30 мин в часы пик бак быстро пустеет
12	Перелив резервуара	Зависший датчик уровня, непрерывная работа насоса	Случайное	Комбинация отказов встречается ~1 раз/год
13	Неравномерное распределение воды	Неправильная регулировка вентилей, ошибки персонала	Случайное	Обычно выявляется по жалобам пользователей 1-2 раза/год

3. Анализ последствий

3.1. Шкала уровней последствий

Уровень последствий	Русское обозначение	Качественное описание (в контексте системы водоснабжения здания)
Катастрофический	Катастрофический	Гибель более одного человека или повреждение оборудования/объекта до степени выведения из эксплуатации (например, обрушение магистрального трубопровода, нарушение конструкции здания).
Критический	Критический	Гибель одного человека или серьёзные травмы нескольких людей; оборудование требует капитального ремонта или замены (например, полное повреждение основного насоса, разрушение резервуара).
Несущественный	Несущественный	Тяжелая травма одного человека или повреждения, требующие среднего ремонта (замена узла насоса, ремонт 20–30% трубопровода).

Незначительный	Незначительный	Легкие	травмы,	падения	или
		незначитель	ные повре	ждения,	быстро
		устранимые	(местные	протечки,	замена
		уплотнителе	ей клапанов).		

3.2. Присвоение уровней последствий основным опасностям

№	Основная опасность (из раздела 2)	Возможные последствия	Уровень последствий	Обоснование классификации
1	Авария магистрального водопровода технических помещений, серьёзные повреждения труб и резервуара; возможное разрушение конструкций		Критический	Требуются капитальный ремонт/замена труб, высокая стоимость; возможны травмы из-за давления воды
2	Снижение давления в городской сети	ния в прекращение подачи		Не приводит к травмам или повреждениям оборудования, только временное неудобство
3	Отказ основного насоса по механической части	Перебои в подаче воды; необходимость ремонта или замены насоса	Критический	Высокая стоимость насоса, требует серьёзного вмешательства
4	Отключение электроэнергии для насоса	Остановка подачи воды; отсутствие воды для жильцов	Незначительный	Не повреждает оборудование; устраняется при восстановлении питания
5	Засорение всасывающей линии/трубопро вода	Повышенное давление → риск трещин, протечек, переливов	Несущественный	Требуется ремонт участка труб, низкий риск гибели людей
6	Протечка трубопровода в здании	Затопление пола, риск падений, повреждение интерьера	Несущественный	Возможны травмы и необходимость ремонта труб и отделки

7	Заклинивание запорного клапана	Невозможность локализовать утечку; потери воды	Незначительный	Небольшие потери, замена клапана решает проблему
8	Отказ датчика уровня воды	Перелив резервуара (затопление) или работа насоса вхолостую (перегрев)	Несущественный	Может привести к средним повреждениям оборудования; редкая причина травм
9	Отказ панели управления (аппаратный/пр ограммный)	Неправильная работа насоса (постоянная работа или остановка); повреждение мотора	Критический	Основное оборудование требует капитального ремонта или замены
10	Потеря сигнала мониторинга	Отсутствие своевременного обнаружения протечек/аварий	Незначительный	Не вызывает прямых повреждений, увеличивает косвенный риск
11	Опустошение резервуара	Отсутствие воды для питья, гигиены; риск санитарных проблем	Незначительный	Влияет на комфорт и санитарные условия; не вызывает прямых травм
12	Перелив резервуара	Затопление технических помещений; незначительные повреждения электрооборудования	Несущественный	Требуется ремонт датчика и оборудования, устранение последствий
13	Неравномерное распределение воды	Отсутствие воды на верхних этажах; жалобы жильцов	Незначительный	Не приводит к повреждениям или травмам; устраняется регулировкой

3.3. Обзор распределения уровней последствий

• 3 из 13 опасностей отнесены к уровню Критический — требуют жестких мер защиты (резервные насосы, дублирующие датчики, контроль давления).

- 5 из 13 Несущественный требуют регулярного технического обслуживания и оперативного реагирования.
- 5 из 13 Незначительный управляются регламентом эксплуатации и информированием жильцов.
- Нет опасностей, отнесённых к уровню Катастрофический, однако необходимо подтвердить невозможность эскалации до этого уровня.

4. Расчёт уровня риска

4.1. Основы методики расчёта риска

Уровень риска определяется путём сопоставления двух факторов:

- Частоты возникновения опасного события
- Тяжести последствий

Используется матрица рисков 6×4 (6 уровней частоты \times 4 уровня последствий), где каждая ячейка соответствует категории риска:

- Допустимый (зелёный) риск низкий, не требует дополнительных мер
- Нежелательный (жёлтый) риск средний, возможны дополнительные меры
- Недопустимый (красный) риск высокий, необходимы меры по снижению
- Не принимаемый в расчёт (белый) событие настолько маловероятно, что можно не учитывать

4.2. Таблица результатов с уровнем риска

№	Опасность (кратко)	Частота (уровень)	Последствия (уровень)	Уровень риска (цвет)	Рекомендации
1	Авария магистрального водопровода	Редкое	Критический	Жёлтый (Нежелательный)	Усилить мониторинг и профилактику
2	Снижение давления	Случайное	Незначительный	Зелёный (Допустимый)	Регулярное техобслуживание
3	Отказ основного насоса	Случайное	Критический	Красный (Недопустимый)	Ввести резервные насосы

4	Отключение электроэнергии	Вероятное	Незначительный	Жёлтый (Нежелательный)	Улучшить источники питания (ИБП)
5	Засорение трубопровода	Вероятное	Несущественный	Жёлтый (Нежелательный)	Регулярная очистка труб
6	Протечка труб в здании	Частое	Несущественный	Красный (Недопустимый)	Установить датчики протечки
7	Заклинивание клапана	Случайное	Незначительный	Зелёный (Допустимый)	Профилактический осмотр
8	Отказ датчика уровня	Случайное	Несущественный	Жёлтый (Нежелательный)	Резервные датчики
9	Отказ панели управления	Редкое	Критический	Жёлтый (Нежелательный)	Обеспечить дублирование систем
10	Потеря сигнала мониторинга	Редкое	Незначительный	Зелёный (Допустимый)	Резервные каналы связи
11	Опустошение резервуара	Вероятное	Незначительный	Жёлтый (Нежелательный)	Контроль уровня воды
12	Перелив резервуара	Случайное	Несущественный	Жёлтый (Нежелательный)	Автоматизация контроля уровня
13	Неравномерное распределение воды	Случайное	Незначительный	Зелёный (Допустимый)	Регулярная балансировка

Заключение

В ходе выполнения лабораторной работы №5 был проведён комплексный анализ рисков системы хозяйственно-питьевого водоснабжения административного здания. На основе выявленных опасностей и результатов экспертизы оценены частоты возникновения и тяжесть последствий потенциальных отказов и аварий.

Использование матрицы рисков позволило классифицировать риски по уровням: допустимые, нежелательные и недопустимые. Для последних разработаны рекомендации по внедрению дополнительных мер, направленных на снижение вероятности и минимизацию негативных последствий.

Полученные результаты обеспечивают объективную основу для принятия управленческих решений и разработки программ технического обслуживания, что способствует повышению надёжности и безопасности эксплуатации системы. Данный подход может быть применён к другим техническим системам для системного управления рисками и предотвращения аварий.