Analyzing the Effects of Surface Energy on Algae with Specialized Attachment Mechanisms

Marisa Rodriguez, Zahra Karimi, Dr. Virginia A. Davis, Dr. David Blersch

Davis Research Group

Department of Chemical Engineering

The Importance of Algae

- Algae potentials: Wastewater treatment, catching runoff fertilizer, animal feed, nutritional supplements, biofuel, and more
- Algae has recently been popularized by media due to its potential as a biofuel and ExxonMobil's commercials on their algal research

https://genetic literacy project.org/2018/01/15/new-generation-gmocrops-dramatically-boost-biofuel-production/

https://www.mnn.com/earth-matters/animals/stories/20-things-youdidnt-know-about-cows

The Importance of Algae

- One of the complications that come with algae are the inefficiency and cost of the harvesting process
- Most systems are designed for suspended growth of microalgae
- Research has been focused on microalgae rather than filamentous algae

Credit: Pacific Northwest National Laboratory

The Importance of Algae

- Filamentous algae preferable because they grow attached, can be mechanically harvested
- Much of filamentous algae's early stages of attachment are unknown
- Knowledge of attachment behavior can allow for manipulation of substrates to encourage or discourage growth

Micro Algae vs Filamentous (Macro) Algae

Micro algae attach to a surface that has been conditioned by bacteria and extracellular polymeric substance (EPS) and as the algae attach they form a biofilm on the surface

Limitations arise when the biofilm grows larger, it becomes difficult for algae near the growth material to receive light and nutrients

Grows more like a "normal plant" so the limitations that exist for microalgae do not apply

Filamentous algae as found naturally in rivers and creeks:

https://kymkemp.com/2017/07/21/officials-issue-cyanobacteria-blue-green-algae-warning/https://www.landcareresearch.co.nz/resources/identification/algae/identification-guide/identify/guide/filamentous/microscopic/unbranched/chloroplasts-green-yellow/wall-featureless/rhizoclonium

Current Work

- Previous research covered microalgae growth and attachment (*S. dimorphus*)
 - Developed protocol for microalgae culture growth, measurement, and attachment
- Filamentous algae respond best to flow environments
- Needed new protocol catered to filamentous macroalgae

Current Work- Cultivating

Tribonema and Stigeoclonium cultures with bubbling

- Filamentous algae used: Oedogonium,
 Tribonema, and Stigeoclonium
- Pure algae strains from University of Texas
- Started growth in vial, fed Bold 3N Medium
- Kept under a growth lamp 24/7

Oedogonium in a vial, very low concentration

- The van Oss contact angle method was used to obtain surface energy parameter values to fit in the modified Young's Equation below
- Used 3 probe fluids: hexadecane, ethylene glycol, water

Probe Fluid	Average Contact Angle
Water	73.0°
Ethylene glycol	48.9°
Hexadecane	17.2°

Surface Energy Parameters (mJ/m²)						
γ ^{LW}	γ -	γ +				
26.3	11.5	1.3				

- Substrates tested: glass, polylactic acid (PLA) disks
- PLA disks made via tortilla press
- Substrates were placed in glass containers filled with 20 mL ultra-pure water and 10 mL of undiluted algae, then left undisturbed for 24 and 48 hrs
- Distortion of the images occurred due to water film

This "star" formation is the specialized attachment mechanism for Stigeoclonium

Stigeoclonium on Glass

48 hrs

Stigeoclonium on PLA

Oedogonium specialized attachment mechanisms are holdfasts, small "hand"

Oedogonium on Glass

48 hrs

Oedogonium on PLA

Conclusions

- Filamentous macroalgae are more difficult to grow in a lab environment, a protocol for keeping a culture was made
- Successful attachment with Stigeoclonium to both glass and PLA
- No successful attachment yet with Oedogonium, likely due to filamentous strand length

Future Work

- Additional substrates, such as Teflon, for attachment tests
- Attachment tests varying light exposure
- Cutting Oedogonium filaments to see the affect on attachment

Acknowledgements

- The Virginia Davis Research Group
- The Undergraduate Research Fellowship Program of Auburn University

Questions?

Modified Young's Equation

$$cos\theta = -1 + \underbrace{\frac{2(\gamma_{sr}^{LW}\gamma_{l}^{LW})^{1/2}}{\gamma_{l}}}_{\gamma_{l}} + \underbrace{\frac{2(\gamma_{sr}^{+}\gamma_{l}^{-})^{1/2}}{\gamma_{l}}}_{\gamma_{l}} + \underbrace{\frac{2(\gamma_{sr}^{-}\gamma_{l}^{+})^{1/2}}{\gamma_{l}}}_{\gamma_{l}}$$

- Accounts for Lifshitz van der Waals forces
- VdW: dipole-dipole (polar), dispersion (nonpolar), and hydrogen bonding
- Lifshitz: no pairwise additivity, looks at bulk whole bodies

Attraction or repulsion based on polarity

Accounts for acid-base/polar interactions

$$G^{TOT}(d) = G^{AB}(d) + G^{LW}(d) + G^{EL}(d)$$
 G^{AB} Acid-base Interactions
 G^{LW} Lifshitz-van der Waals
Interactions
 G^{EL} Electrostatic Interactions

Three Liquids used:

Acid/base value of zero: Hexadecane

Polar: Water

Nonpolar: Ethylene Glycol

Bold 3N Medium

#	Component	Amount	Stock Solution Concentration	Final Concentration
1	NaNO ₃ (Fisher BP360-500)	30 mL/L	10 g/400mL dH ₂ O	8.82 mM
2	CaCl ₂ •2H ₂ O (Sigma C-3881)	10 mL/L	1 g/400mL dH ₂ O	0.17 mM
3	MgSO ₄ •7H ₂ O (Sigma 230391)	10 mL/L	3 g/400mL dH ₂ O	0.3 mM
4	K ₂ HPO ₄ (Sigma P 3786)	10 mL/L	3 g/400mL dH ₂ O	0.43 mM
5	KH ₂ PO ₄ (Sigma P 0662)	10 mL/L	7 g/400mL dH ₂ O	1.29 mM
6	NaCl (Fisher S271-500)	10 mL/L	1 g/400mL dH ₂ O	0.43 mM
7	P-IV Metal Solution	6 mL/L		
9	Soilwater: GR+ Medium	40 mL/L		
10	Vitamin B ₁₂ Solution	1 mL/L		