

Chapter Title: CORRECTION AND ADDITIONS

Book Title: The Calculi of Lambda Conversion. (AM-6)

Book Author(s): ALONZO CHURCH

Published by: Princeton University Press. (1941)

Stable URL: http://www.jstor.org/stable/j.ctt1b9x12d.10

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

Princeton University Press is collaborating with JSTOR to digitize, preserve and extend access to The Calculi of Lambda Conversion. (AM-6)

82 BIBLIOGRAPHY

- 118. Ernst Specker, <u>Nicht konstruktiv beweisbare Sätze der</u>
 <u>Analysis</u>, The journal of symbolic logic, vol. 14 (1949),
 pp. 145-158.
- 119. Alfred Tarski, Andrzej Mostowski and Alfred Tarski, Julia Robinson, abstracts in The journal of symbolic logic, vol. 14 (1949), pp. 75-78.

CORRECTION AND ADDITIONS

Page 75, line 12. For "Jaques," read "Jacques."

On page 46 the amendment should also be taken into account which is suggested by Rosser [109]. The following simpler expression for W is available:

We onv B(T(B(BDB)T))(BBT).

Hence replace line 9 on page 46 by this.

In §15, pages 49-51, the combinatory equivalent of conversion which is given can be simplified by the method of Rosser [110], and in particular the proof of the equivalence to conversion can be greatly shortened. Details of this, including the proof of equivalence, may be obtained from Rosser's paper; and the formula 0 of §16, and the formula do of §20, may then be modified correspondingly.

For a combinatory equivalent of λ -K-conversion, and also of λ -K-conversion with the addition of a rule by which BI and I are interchangeable, see [70] -- where Curry employs Rosser's method in order to simplify his earlier treatments of the theory of combinators (which are referred to at the end of §15).