

Word embeddings CNN for texts

Sidorov Nikita

MLE (NLP) in Sber

Word embeddings CNN for texts

What task is solving Word2vec

What task is solving Word2vec

Cross-entropy

Cross-entropy

$$CCE(p,t) = -\sum_{c=1}^{C} t_{o,c} \log(p_{o,c})$$

Distributional semantics

- 1. A bottle of ____ is on the table.
- 2. Everybody likes _____.
- 3. Don't have _____ before you drive.
- 4. We make ____ out of corn.

example from <u>Jacob Eisenstein's NLP notes</u>

How to measure distances between vectors?

What we want from word embeddings?

What we want from word embeddings?

Word2vec
CNN for texts

Word2vec

How to get probabilities for occurrence of words?

Word2vec approaches for training

CBOW

CBOW

... I saw a cute grey cat playing in the garden ...

Word2vec CNN for texts

Skip-gram

... I saw a cute grey cat playing in the garden ...

- 1) For each word we would have vector of context
- 2) Represent each context as a *d* dimensional vector
- 3) Initialize all vectors to random weights
- 4) Arrange vectors in two matrices W and C

$$\log p(c|w;\theta) = \frac{\exp v_c \cdot v_w}{\sum_{c' \in C} \exp v_{c'} \cdot v_w}$$

- predict context word(s)
- from word w

... I saw a cute grey cat playing in the garden ...

... I saw a cute grey cat playing in the garden ...

4. get loss (for this one step)

5. evaluate the gradient, make an update

$$J_{t,j}(\theta) = -u_{cute}^T v_{cat} + \log \sum_{w \in V} \exp(u_w^T v_{cat})$$

 $v_{cat} := v_{cat} - \alpha \frac{\partial J_{t,j}(\theta)}{\partial v_{cat}}$

(1

2

 $u_w := u_w - \alpha \frac{\partial J_{t,j}(\theta)}{\partial u_w} \ \forall \ w \in V$

What's the problem?

Negative sampling

Dot product of v_{cat} :

- with u_{cute} increase,
- with all other *u* decrease

Dot product of v_{cat} :

- with u_{cute} increase,
- with a subset of other u decrease

Negative samples: randomly selected K words $\begin{bmatrix} u^T_{w_{l1}}v_{cat} \\ u^T_{w_{l2}}v_{cat} \\ u^T_{w_{l2}}v_{cat} \end{bmatrix} \text{ decrease } \\ u^T_{w_{lk-1}}v_{cat} \\ u^T_{w_{lk}}v_{cat} \end{bmatrix} \text{ decrease }$

Parameters to be updated:

- · vcat
- u_w for all w in the vocabulary

|V| + 1 vectors

Parameters to be updated:

- v_{cat}
- u_{cute} and u_w for w in K negative examples

K + 2 vectors

Word2vec
CNN for texts

OOV words

Fasttext

- Take not only words, but n-grams in this words
- harder to compute
- longer to train
- bigger models
- well works for morphologically rich languages

Fasttext

- Skip-gram model as base model
- take each word and n-grams for it (from 3 to 6)
- for reducing space we use hashing trick
- negative sampling is our everything

Word2vec CNN for texts

Convolutions

In deep learning, a convolutional neural network (CNN) is a class of artificial neural network, most commonly applied to analyze visual imagery. They are also known as artificial neural networks that slide along input features and provide translation equivariant responses known as feature maps. Counter-intuitively, most convolutional neural networks are only equivariant, as opposed to invariant, to translation.

Convolutions

Edge detection

Kernel

Sharpen

$$\begin{vmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & 1 & 0 \end{vmatrix}$$

Convolutions

Text

10/10				
<pad></pad>	0.3	0.4	-0.2	-0.6
ı	0.5	0.1	-0.3	0.4
like	-0.1	0.5	0.8	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Text

ICAL				
<pad></pad>	0.3	0.4	-0.2	-0.6
ı	0.5	0.1	-0.3	0.4
like	-0.1	0.5	0.8	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Apply filters of size 3 and that have 4 channels

3	2	1	-1
1	0	2	1
-1 ////	1	1	-2

Text

TOAL				
<pad></pad>	0.3	0.4	-0.2	-0.6
ı	0.5	0.1	-0.3	0.4
like	-0.1	0.5	0.8	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Apply filters of size 3 and that have 4 channels

3	2	1	-1
1	0	2	1
-1 ////	1////	1	-2

<il< th=""><th></th></il<>	
ILT	
LTS	
TS<	
S<<	

Text

<pad></pad>	0.3	0.4	-0.2	-0.6
I	0.5	0.1	-0.3	0.4
like	-0.1	0.5	8.0	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Apply filters of size 3 and that have 4 channels

3	2	1	-1
1	0	2	1
-1 ////	1////	1	-2

<il< th=""><th>4.2</th><th></th></il<>	4.2	
ILT		
LTS		
TS<		
S<<		

Text

ΙΟΛί				
<pad></pad>	0.3	0.4	-0.2	-0.6
- 1	0.5	0.1	-0.3	0.4
like	-0.1	0.5	8.0	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Apply filters of size 3 and that have 4 channels

3	2	1	-1
1	0	2	1
-1 ////	1/////	1	-2

<il< th=""><th>4.2</th></il<>	4.2
	2.4
LTS	
TS<	
S<<	

Text

TOAL				
<pad></pad>	0.3	0.4	-0.2	-0.6
ı	0.5	0.1	-0.3	0.4
like	-0.1	0.5	8.0	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Apply filters of size 3 and that have 4 channels

3	2	1	-1
1	0	2	1
-1 ////	1////	1	-2

<il< th=""><th>4.2</th></il<>	4.2
ILT	2.4
LTS	2.5
TS<	
S<<	

Text

10/10				
<pad></pad>	0.3	0.4	-0.2	-0.6
- 1	0.5	0.1	-0.3	0.4
like	-0.1	0.5	0.8	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Apply filters of size 3 and that have 4 channels

3	2	1/////	-1
1	0	2	1
-1 ////	1	1	-2

<il< th=""><th>4.2</th></il<>	4.2
ILT	2.4
LTS	2.5
TS<	3.2
S<<	

Text

ICAL				
<pad></pad>	0.3	0.4	-0.2	-0.6
ı	0.5	0.1	-0.3	0.4
like	-0.1	0.5	0.8	-0.2
to	0.2	-0.3	-0.4	-0.5
swim.	-0.7	0.5	0.9	0.1
<eos></eos>	-0.4	0.4	0.1	-0.5
<pad></pad>	0.3	0.4	-0.2	-0.6

Apply filter of size 3, that have 4 channels

3	2	1////	-1
1	0	2	1
-1	1////	1	-2

<il< th=""><th>4.2</th><th></th></il<>	4.2	
ILT	2.4	
LTS	2.5	
TS<	3.2	
S<<	0.1	

Pooling for convolutions

example from Lena Voita NLP course