SIEMENS

Seven Segment Display 13 mm (0.59") Low Current Version

HDN 1131 O HDN 1133 O

Features

- Excellent character appearance
- · Evenly lighted segments
- Wide viewing angle 2φ = 50 °
- · Mitred corners on segments
- · Grey package provides optimum contrast
- Low power consumption
- IC-compatible
- · Right hand decimal

Туре	Polarity	Color of emission	Luminous intensity/ Segment IF = 2 mA Iv (µcd)	Ordering code		
HDN 1131 O	common an- ode	super-red	260 (typ.)	Q68000-A6433		
HDN 1133 O	common cathode	super-red	260 (typ)	Q68000-A6434		

Maximum Ratings (TA = 25 °C)

Description	Symbol	Value	Unit	
Operating temperature range	Тор	0 + 85	°C	
Storage temperature range	T stg	- 40 + 85	°C	
Lead soldering temperature, 2 mm from base	Ts	260	°C for 3 s	
Forward surge current per segment or DP 1) t _P ≤ 10 μs	I FM	100	mA	
DC forward current per segment or DP 2)	IF	15	mA	
Reverse voltage per segment or DP	V _B	6	V	
Total power dissipation per segment or DP 2)	P tot 320		mW	

- 1) Do not exceed maximum average current per segment (see graph of the peak forward current)
- 2) Derate maximum average current above TA = 75 °C at 0.5 mA/°C per segment

Characteristics (TA = 25 °C)

Parameter	Symbol	Values			Unit
		min	typ.	ma	
Luminous intensity per segment (Digit average) 2 mA 5 mA 20 mA PK,1:4 Duty factor	Iv Iv Iv	180 - -	260 100 0	-	μcd μcd μcd
Peak wavelength	λpeak	=	635	1	nm
Dominant wavelength (Digit average)	λdom	612	-	625	nm
Forward voltage per segment or DP I = 2 mA	VF	7.	1.8	-	V
Break down voltage per Segment I = 10 μA	VBR	6	15	=	V
Thermal resistance LED junction-to-pin	R thy PIN	-		180	°C/W/Seg

SIEMENS

Relative spectral emission $I_{rel} = f(\lambda)$

 $V(\lambda)$ = Standard eye response curve

Peak forward current $I_{FM} = f(V_{FM})$ $t_P/T = 0.001$, $t_P = 10 \mu s$, $T_A = 25 ^{\circ}C$

Rel. luminous intensity $I \lor I \lor (25 \degree C) = f(T \land)$ I = 2 mA

Max. permissible forward current $I_F = f_-(T_A)$

Luminous intensity $I_V = f(I_F)$ $T_A = 25 \, ^{\circ}\text{C}$

Relative efficiency $I \lor /I \lor (2 \text{ mA}) = f (I \text{ FM})$ $T \land -25 \text{ °C}$

Total power dissipation per segment $P_{\text{tot}} = f (T_A)$

Package Outlines

