Teoria de Linguagem Equivalência entre AFDs e AFNs

Vinicius H. S. Durelli

⊠ durelli@ufsj.edu.br

Organização

- 1 Equivalência entre AFDs e AFNs
- 2 Demonstrando a equivalência entre AFDs e AFNs
 - Prova por construção
 - Prova por indução
- 3 Considerações finais

- 1 Equivalência entre AFDs e AFNs
- Demonstrando a equivalência entre AFDs e AFNs
 - Prova por construção
 - Prova por indução
- 3 Considerações finais

Então quer dizer que AFNs e AFDs são equivalentes?

Conforme mencionado na aula passada, a classe dos AFNs é equivalente à classe dos AFDs.

- O não determinismo NÃO aumenta o poder computacional dos autômatos (Sipser 2012).
- Conforme será mostrado, para cada AFN, é possível construir um AFD equivalente que realiza as mesmas computações.

Teorema

A classes dos AFNs é equivalente à classe dos AFDs

Então quer dizer que AFNs e AFDs são equivalentes?

Conforme mencionado na aula passada, a classe dos AFNs é equivalente à classe dos AFDs.

- O não determinismo NÃO aumenta o poder computacional dos autômatos (Sipser 2012).
- Conforme será mostrado, para cada AFN, é possível construir um AFD equivalente que realiza as mesmas computações.

Teorema

A classes dos AFNs é equivalente à classe dos AFDs.

- Equivalência entre AFDs e AFNs
- 2 Demonstrando a equivalência entre AFDs e AFNs
 - Prova por construção
 - Prova por indução
- Considerações finais

Prova (1)

Construção de subconjuntos

A prova a seguir envolve a "construção de subconjuntos" (Hopcroft et al. 2006): construção de subconjuntos a partir do conjunto de estados do AFN.

 $\mathcal{M}_N = (\Sigma, Q_N, \delta_N, q_0, F_N).$ A meta é construir um AFD $\mathcal{M}_D = (\Sigma, Q_D, \delta_D, \{q_0\}, F_D)$ tal que $L(\mathcal{M}_D) = L(\mathcal{M}_N)$.

Detalhes importantes

- O alfabeto dos dois autômatos é o mesmo.
- O estado inicial de M_D é o conjunto contendo somente o estado inicial de M_N.
- Essencialmente, a ideia é construir estados para \mathcal{M}_D que simulem as combinações de estados alternativos de \mathcal{M}_N (Menezes 2011).

- $ilde{\triangle}$ Os elementos de \mathcal{M}_D são construídos como a seguir:
 - Q_D é o conjunto de todos os subconjuntos de Q_N , i.e., conjunto das partes de Q_N .¹
 - F_D é o conjunto de subconjuntos S pertencentes a Q_N tal que $S \cap F_N \neq \emptyset$.
 - Para cada conjunto S ⊆ Q_N e cada símbolo de entrada a ∈ Σ:

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

- \bigtriangleup Os elementos de \mathcal{M}_D são construídos como a seguir:
 - Q_D é o conjunto de todos os subconjuntos de Q_N , i.e., conjunto das partes de Q_N .¹
 - F_D é o conjunto de subconjuntos S pertencentes a Q_N tal que $S \cap F_N \neq \emptyset$.
 - Para cada conjunto $S \subseteq Q_N$ e cada símbolo de entrada $a \in \Sigma$:

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

- A Para computar $\delta_D(S, a)$:
 - É preciso analisar $\forall p \in S$ e verificar para quais estados o autômato \mathcal{M}_N vai quando ele está em p e processa a.
 - Em seguida, calcular a união dos estados.

Note que se Q_N tem n estados, então Q_D terá 2^n estados.

Prova (3)

Demonstração construtiva

Considere o AFN a seguir:

Prova (3)

Demonstração construtiva

Considere o AFN a seguir:

Qual a linguagem aceita pelo AFN?

Prova (3)

Demonstração construtiva

Considere o AFN a seguir:

Qual a linguagem aceita pelo AFN?

$$L_e = \{ w \mid w \text{ possui } 01 \text{ como sufixo} \}$$

Conforme mencionado, Q_D é o conjunto de todos os subconjuntos de Q_N :

Prova (5)

Demonstração construtiva: computando δ_D

δ	0	1
Ø	Ø	Ø

Prova (5)

Demonstração construtiva: computando δ_D

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$egin{array}{c} \{q_0\} \ \{q_1\} \end{array}$	Ø	$\{q_f\}$

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_f\}$
$*\{q_f\}$	Ø	Ø

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_f\}$
$*\{q_f\}$	Ø	Ø
$\{q_0,q1\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_f\}$
$*\{q_f\}$	Ø	Ø
$\{q_0,q1\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$
$*\{q_0,q_f\}$	$\{q_0,q_1\}$	$\{q_0\}$

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_f\}$
$*\{q_f\}$	Ø	Ø
$\{q_0,q1\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$
$*\{q_0,q_f\}$	$\{q_0,q_1\}$	$\{q_0\}$
$*\{q_1,q_f\}$	Ø	$\{q_f\}$

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_f\}$
$*\{q_f\}$	Ø	Ø
$\{q_0,q1\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$
$*\{q_0,q_f\}$	$\{q_0,q_1\}$	$\{q_0\}$
$*\{q_1,q_f\}$	Ø	$\{q_f\}$
$*\{q_0,q_1,q_f\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$

δ	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_f\}$
$*\{q_f\}$	Ø	Ø
$\{q_0,q1\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$
$*\{q_0,q_f\}$	$\{q_0,q_1\}$	$\{q_0\}$
$*\{q_1,q_f\}$	Ø	$\{q_f\}$
$*\{q_0,q_1,q_f\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$

Note que a função programa na forma de tabela pertence a um AFD (embora os estados sejam conjuntos).

Prova (6)

Demonstração construtiva

Iniciando em $\{q_0\}$, somente 3 dos 8 estados (i.e., $\{q_0\}$, $\{q_0, q_1\}$ e $\{q_0, q_f\}$) são alcançáveis. Portanto, a criação de um AFD a partir dos estados alcançáveis e suas transições resulta no autômato abaixo:

- **+ Base**: O conjunto contendo somente o estado inicial de AFN (i.e., q_0) é acessível.
- + Passo de indução: Supondo-se que foi determinado que o conjunto de estados S é acessível. Então, para cada símbolo de entrada a, calcula-se $\delta_D(S,a)$; sabe-se que os conjuntos resultantes também serão acessíveis.

- **+ Base**: O conjunto contendo somente o estado inicial de AFN (i.e., q_0) é acessível.
- + Passo de indução: Supondo-se que foi determinado que o conjunto de estados S é acessível. Então, para cada símbolo de entrada a, calcula-se $\delta_D(S,a)$; sabe-se que os conjuntos resultantes também serão acessíveis.
- Considerando o exemplo anterior:

δ	0	1

- **+ Base**: O conjunto contendo somente o estado inicial de AFN (i.e., q_0) é acessível.
- + Passo de indução: Supondo-se que foi determinado que o conjunto de estados S é acessível. Então, para cada símbolo de entrada a, calcula-se $\delta_D(S,a)$; sabe-se que os conjuntos resultantes também serão acessíveis.
- Considerando o exemplo anterior:

δ	0	1
$\overline{\{q_0\}}$	$\{q_0, q_1\}$	$\{q_0\}$

- **+ Base**: O conjunto contendo somente o estado inicial de AFN (i.e., q_0) é acessível.
- + Passo de indução: Supondo-se que foi determinado que o conjunto de estados S é acessível. Então, para cada símbolo de entrada a, calcula-se $\delta_D(S,a)$; sabe-se que os conjuntos resultantes também serão acessíveis.
- Considerando o exemplo anterior:

δ	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q1\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$

- **+ Base**: O conjunto contendo somente o estado inicial de AFN (i.e., q_0) é acessível.
- + Passo de indução: Supondo-se que foi determinado que o conjunto de estados S é acessível. Então, para cada símbolo de entrada a, calcula-se $\delta_D(S,a)$; sabe-se que os conjuntos resultantes também serão acessíveis.
- Considerando o exemplo anterior:

δ	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q1\}$	$\{q_0,q_1\}$	$\{q_0,q_f\}$
$*\{q_0,q_f\}$	$\{q_0,q_1\}$	$\{q_0\}$

Exercício

Exercício ①: Converta para AFD o seguinte AFN:

δ	0	1
$ ightarrow q_0$	$\{q_{f_1},q_{f_2}\}$	$\{q_{f_1}\}$
$*q_{f_1}$	$\{q_1\}$	$\{q_{f_1},q_1\}$
q_1	$\{q_{f_2}\}$	$\{q_0\}$
$*q_{f_2}$	Ø	$\{q_0\}$

- Equivalência entre AFDs e AFNs
- 2 Demonstrando a equivalência entre AFDs e AFNs
 - Prova por construção
 - Prova por indução
- Considerações finais

Prova (7)

Por indução no tamanho da palavra

 $\acute{\text{E}}$ preciso mostrar formalmente que a abordagem de construção de subconjuntos funciona.

Teorema → Equivalência entre AFD e AFN

Se $\mathcal{M}_D = (\Sigma, Q_D, \delta_D, \{q_0\}, F_D)$ é um AFD criado a partir de $\mathcal{M}_N = (\Sigma, Q_N, \delta_N, q_0, F_N)$ por meio da construção de subconjuntos, então $L(\mathcal{M}_D) = L(\mathcal{M}_N)$.

A demonstração é por indução no tamanho da palavra. Deve-se demonstrar que (suponha w uma palavra qualquer de Σ^*):

$$\delta_D^*(\{q_0\},w)=\delta_N^*(q_0,w)$$

Prova (8)

Por indução no tamanho da palavra

+ Base: Seja w tal que |w| = 0. Portanto, $w = \varepsilon$. De acordo com as bases das definições das funções programas estendidas para AFDs e AFNs:

$$\delta_D^*(\{q_0\},\varepsilon)=\{q_0\}$$
 se e somente se $\delta_N^*(q_0,\varepsilon)=\{q_0\}$ o que é verdadeiro por definição.²

²Veja definição das funções programa estendidas. <□ > <♂ > < ≧ > < ≧ > < ≥ < < <

Prova (8)

Por indução no tamanho da palavra

+ Base: Seja w tal que |w| = 0. Portanto, $w = \varepsilon$. De acordo com as bases das definições das funções programas estendidas para AFDs e AFNs:

$$\delta_D^*(\{q_0\},\varepsilon)=\{q_0\}$$
 se e somente se $\delta_N^*(q_0,\varepsilon)=\{q_0\}$ o que é verdadeiro por definição.²

+ Hipótese de indução: Seja w tal que |w| = n e $n \ge 1$. Suponha que o seguinte seja verdadeiro:

$$\delta_D^*ig(\{q_0\},wig)=\{p_1,p_2,\ldots,p_k\}$$
se e somente se

$$\delta_N^*(q_0, w) = \{p_1, p_2, \dots, p_k\}$$

²Veja definição das funções programa estendidas. ←□ → ←♂ → ←≧ → ←≧ → → ≧

Prova (9)

Por indução no tamanho da palavra

+ Passo de indução: Seja w = xa (onde a é o último símbolo de w), tal que |xa| = n + 1 e $n \ge 1$.

A parte indutiva da definição da função programa estendida para AFN é:

$$\delta_N^*(q_0, w) = \bigcup_{i=1}^k \delta_N(p_i, a)$$
 (1)

A construção de subconjuntos:

$$\delta_D^*(\{p_1, p_2, \dots, p_k\}, a) = \bigcup_{i=1}^k \delta_N(p_i, a)$$
 (2)

Prova (10)

Por indução no tamanho da palavra

Usando (2) e o fato que $\delta_D^*(\{q_0\},x) = \{p_1,p_2,\ldots,p_k\}$ (veja a parte indutiva da definição da função programa estendida para AFDs):

$$\delta_{D}^{*}(\{q_{0}\}, w) = \delta_{D}(\delta_{D}^{*}(\{q_{0}\}, x), a) =$$

$$\delta_{D}(\{p_{1}, p_{2}, \dots, p_{k}\}, a) = \bigcup_{i=1}^{k} \delta_{N}(p_{i}, a)$$
(3)

Portanto, equações (1) e (3) demonstram que $\delta_D^*(\{q_0\}, w) = \delta_N^*(q_0, w)$. É possível afirmar que \mathcal{M}_D e \mathcal{M}_N aceitam w se e somente se $\delta_D^*(\{q_0\}, w)$ e $\delta_N^*(q_0, w)$ contêm um estado em F_N . Portanto, $L(\mathcal{M}_D) = L(\mathcal{M}_N)$.

- Equivalência entre AFDs e AFNs
- Demonstrando a equivalência entre AFDs e AFNs
 - Prova por construção
 - Prova por indução
- 3 Considerações finais

Considerações finais. . .

Na aula de hoje nós vimos:

- Equivalência entre AFDs e AFNs;
 - Abordagem para construir um AFD a partir de um AFN.³
 - Prova (por indução).

Na próxima aula: autômatos finitos com movimentos vazios.

³A abordagem de construção de subconjuntos.

Referências

- Hopcroft, John E., Rajeev Motwani, & Jeffrey D. Ullman (2006). *Introduction to Automata Theory, Languages, and Computation*. 3rd ed. Pearson, p. 750.
- Menezes, Paulo Blauth (2011). Linguagens Formais e Autômatos. 6th ed. Livros Didáticos Informática da UFRGS. Bookman, p. 256.
- Sipser, Michael (2012). *Introduction to the Theory of Computation*. 3rd ed. Cengage Learning, p. 480.
- ©Próxima aula: exercício(s) sobre o conteúdo da aula de hoje! ☺