Organisatorisches

- Keine Aufzeichnung des Tutoriums
- Leute ohne ÜbungspartnerIn?

Zahlensysteme

Zahlensysteme (Decimal)

- Ziffern 0-9
- Ziffern sind Reste der Division durch 10
- $182_{10} = 1 * 100 + 8 * 10 + 2 * 1$ = $1 * 10^2 + 8 * 10^1 + 2 * 10^0$
- Summe aus Potenzen

Zahlensysteme (zur Basis b)

- Darstellung ist eindeutig!
- Erster einstelliger Wert immer 0
- Jede Stelle ver-b-facht die Anzahl der Werte
 - Bei i Stellen: bi Werte
- Größter Wert bei i Stellen: bi 1
- Voranstehende 0en ignorieren ($007_{10} = 7_{10}$)

Zahlensysteme (12er/Duodecimal)

- Gute Teilbarkeit des Zahlensystems
- Ziffern 0-B
 - 0, 1, 2, ..., 9, A, B
- $182_{12} = 1 * 12^{2} + 8 * 12^{1} + 2 * 12^{0}$ = $1 * 144 + 8 * 12 + 2 = 242_{10} \neq 182_{10}$
- $182_{10} = 1*144 + 3*12 + 2 = 132_{12}$
- Ausrechnen der Potenzen schwer (z.B. 115)

Zahlensystem umrechnen

- Teilen durch die neues Basis mit Rest
- Weiterteilen des Divisors, bis er 0 ist
- Reste vom letzten zum ersten ergeben Zahl von links nach rechts

Berechnung

$$15/12 = 1 \text{ Rest } 3$$

$$1/12 = 0 \text{ Rest } 1$$

Berechnung

Berechnungstrick

- Wenn eine Basis die Potenz der anderen ist
 - $-b_1 = b_2^i$
- Eine Ziffer in b₁ entspricht i Ziffern in b₂
- Umrechnen der Ziffern
- "Ersetze einen Ziffernbock vollständig mit einer Ziffer"

Berechnungstrick Bsp

- 182₉ ins 3er System:
 - 3² = 9 => 1 Ziffern im 9er-System entsprechen 2 Ziffern im 3er
- $2_9 = 02_3$
- $8_9 = 22_3$
- $1_9 = 01_3$

• Somit $182_9 = 012202_3$

Berechnungstrick Bsp

- 132₄ ins Hexadezimalsystem
 - $-4^2 = 16 = 2$ Ziffern im 4er-System entsprechen 1 im 16er
- $32_4 = E_h$
- $01_4 = 1_h$

• $132_4 = 1E_{16}$

Zahlensystem (Wichtig)

- Immer die Basis angeben!
 - Insbesondere beim Umrechnen
 - -10_d = dezimal, 10_b = binär, 10_h bzw. 0x... = hexadezimal
- Rechenwege angeben!!!
- 1MB sind 1 048 576 Byte (also eigentlich 1MiB)
- Wenn x Stellen gefordert sind, auch voranstellende 0en angeben

Übung: Zahlensysteme

• Stellen Sie mit 8 Bit die Zahlen 0_{17} , 17_9 , 17_8 , 333_{10} und G_{17} im Binärsystem dar (sofern dies möglich ist)

Boolsche Algebra

Boolsche Algebra/Schaltalgebra

- Zwei Wahrheitswerte:
 - Wahr: 1, True, —
 - Falsch: 0, False, [⊥]
 - [Don't Care: *, -]
- Variablen die Wahrheitswerte angeben
- Tautologie: Immer wahr
- Kontradiktion: Immer falsch

Boolsche Operatoren I

- UND/Konjunktion: ^, AND, &&, -, &
 - Wird i.d.R. weggelassen
- ODER/Disjunktion: ∨, OR, ||, +, ≥ 1
- NICHT/Negation: a [Überstreichung], NOT, !, ¬

Boolsche Operatoren II

- NAND($\overline{\wedge}$) und NOR($\overline{\vee}$):
 - Wie AND/OR aber hinterher zusätzlich negiert
- Exclusives OR: ⊕, XOR, <u>∨</u>, =1
- Implikation: \Rightarrow , \rightarrow
- Äquivalenz: ⇔, ≡
- Weitere... und Foliensatz 2: Folie 25

Rechenregeln

- Ähnlich zu Multiplikation(=AND) und Addition(=OR)
- Distributiv-, Absorptionsgesetz
- Idempotenzgesetz: a ∧ a = a ∨ a = a
- DeMorgan: $\overline{a \wedge b} = \overline{a} \vee \overline{b}$ und $\overline{a \vee b} = \overline{a} \wedge \overline{b}$
 - Tauscht AND und OR und negiert dabei a und b

Funktionen

- Eine Reihe von (Eingabe-)Variablen
- Notation: y(a, b, ...)
- Entweder Werte(-tabelle) gegeben oder
- beschreibende Funktion

Wertetabelle aufstellen

- 2{Anzahl Variablen der Funktion} mögliche Belegungen
- Einheitliche Darstellung/Reihenfolge der Belegungen
 - Variablen ordnen: $x_n, ..., x_1$ bzw. z, x, ..., b, a
 - Binär durchzählen!
- 2i-Blöcke von 0en und 1en abwechseln

Wertetabelle: Drei Variablen

00 DI# ala	#	С	b	a	У	
2º Blöck	ke:			0	y ₀	
	1			1	y ₁	
	2			0	y ₂	
	3			1	у ₃	
	4			0	y ₄	
	5			1	y ₅	
	6			0	y ₆	
	7			1	y ₇	

Wertetabelle: Drei Variablen

2¹ Blöcke:

#	С	b	a	У
0		0	0	y ₀
1		0	1	y ₁
2		1	0	y ₂
3		1	1	y ₃
4		0	0	y ₄
5		0	1	y ₅
6		1	0	y ₆
7		1	1	y ₇

Wertetabelle: Drei Variablen

2² Blöcke:

#	С	b	a	У
0	0	0	0	y ₀
1	0	0	1	y ₁
2	0	1	0	y ₂
3	0	1	1	y ₃
4	1	0	0	y ₄
5	1	0	1	y ₅
6	1	1	0	y ₆
7	1	1	1	y ₇

Normalisierung

- Produktterm
 - (Ausschließliche) Konjunktion von Literalen
- Implikant
 - Produktterm ist immer wahr, wenn es auch f ist
- Minterm
 - Implikant mit einem Literal für alle Variablen aus f

Normalisierung

- Disjunktionsterm
 - (Ausschließliche) Disjunktion von Literalen
- Implikat
 - Disjunktionsterm ist immer falsch, wenn es auch f ist
- Maxterm
 - Implikat mit einem Literal für alle Variablen aus f
 - Bilde <u>"Minterme"</u> für f=0 und negiere diese

Normalenformen

- Keine Doppelten Min-/Maxterme
- Disjunktive Normalenform
 - Disjungiere alle Minterme
- Konjunktive Normalenform
 - Konjungiere alle Maxterme
- Nachteil: Lang!

Vollständiges Operatorensystem

- Menge aus Operatoren
 - Minimal
 - Kann durch Verknüpfung alle Operationen ersetzen
- Beispiel: ¬, ∧,∨
 - $a \oplus b = (a \lor b) \land (a \land b)$
- Beweise, dass {...} ein vollst. Operatorensystem ist:
 - Bilde bekanntes Operatorensystem

Boolsche Algebra (Wichtig)

- Nutzt Notation aus der Vorlesung!
- Rechenregeln & -weg angeben
- Ordnen der Variablen Min-/Maxterme

Übung: Normalenformen

- Tragen Sie die Werte der Funktion $y(a; b; c) = a \lor (b \land \overline{c})$ in eine Tabelle ein
- Bilden Sie Min-/Maxterme
- Geben Sie die DNF und KNF an

#	С	b	a	У	Maxterme	Minterme
0	0	0	0			
1	0	0	1			
2	0	1	0			
3	0	1	1			
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			