Sitzung 20

Kenngrößen (3)

Sitzung Mathematik für Ingenieure C4: INF vom 6. Juli 2020

Wigand Rathmann

Lehrstuhl für Angewandte Analysis Department Mathematik Friedrich-Alexander-Universität Erlangen-Nünrberg (FAU)

Fragen

Kenngrößen

Ziel dieses Themas

- Sie kennen die Bedeutung und die Definitionen der wichtigsten Kenngrößen von Verteilungen.
- 2. Sie können die Definitionen auf beliebige Verteilungen anwenden.
- 3. Sie kennen den Unterschied zwischen Momenten und Zentralen Momenten.
- 4. Sie wissen, was die momenterzeugende Funktion ist.
- 5. Sie kennen den Zusammenhang zwischen st. Unabhängigkeit und Kovarianz und können beides analysieren.
- Sie können die mehrdimensionale Normalverteilung und deren besonderen Eigenschaften. Sie können normalverteilte Zufallsvektoren transformieren.

Anmerkung

Kleines Beispiel für Kenngrößen

https://www.studon.fau.de/pg743302_2897784.html

Definition 7.17 (Varianz und Streuung)

Ist $X:\Omega\to\Omega'\subset\mathbb{R}$ eine reellwertige ZV mit endlichem Erwartungswert, dann heißen

Var
$$X := E(X - EX)^2 = EX^2 - (EX)^2$$
 (1)

und

$$Str X := \sqrt{E(X - EX)^2} = \sqrt{Var X}$$
 (2)

die Varianz und die Streuung von X.

Selbststudium

Fragen

1. Wie verhält sich die Varianz bei Transformationen?

Satz 7.18

Es sei $a \in \mathbb{R}$.

(a) Eine Verschiebung hat keinen Einfluss auf die Varianz und die Streuung:

$$Var(X+a) = Var X$$
, $Str(X+a) = Str X$. (3)

(b) Ein Faktor verändert die Varianz quadratisch, die Streuung proportional (mit dem Betrag des Faktors):

$$Var(aX) = a^2 Var X, \quad Str(aX) = |a| Str X$$
 (4)

(c) Nützlich ist auch die folgende Formel

$$E(X-a)^2 = Var X + (EX-a)^2$$
, speziell $EX^2 = Var X + (EX)^2$. (5)

Satz 7.18

Es sei $a \in \mathbb{R}$.

(a) Eine Verschiebung hat keinen Einfluss auf die Varianz und die Streuung:

$$Var(X + a) = Var X$$
, $Str(X + a) = Str X$. (3)

(b) Ein Faktor verändert die Varianz quadratisch, die Streuung proportional (mit dem Betrag des Faktors):

$$Var(aX) = a^2 Var X, \quad Str(aX) = |a| Str X$$
 (4)

(c) Nützlich ist auch die folgende Formel

$$E(X - a)^2 = Var X + (E X - a)^2$$
, speziell $E X^2 = Var X + (E X)^2$. (5)

Satz 7.18

Es sei $a \in \mathbb{R}$.

(a) Eine Verschiebung hat keinen Einfluss auf die Varianz und die Streuung:

$$Var(X + a) = Var X$$
, $Str(X + a) = Str X$. (3)

(b) Ein Faktor verändert die Varianz quadratisch, die Streuung proportional (mit dem Betrag des Faktors):

$$Var(aX) = a^2 Var X, \quad Str(aX) = |a| Str X$$
 (4)

(c) Nützlich ist auch die folgende Formel

$$E(X - a)^2 = Var X + (EX - a)^2$$
, speziell $EX^2 = Var X + (EX)^2$. (5)

Anmerkung

Wie könnte eine zweidimensionale Stichprobe aussehen?

https://www.studon.fau.de/pg743303_2897784.html

Definition 7.21

Für die ZV $X:\Omega\to\mathbb{R}$ und $Y:\Omega\to\mathbb{R}$ mit E $X^2<\infty$ und E $Y^2<\infty$ heißt

$$Kov(X, Y) := EXY - EXEY = E[(X - EX)(Y - EY)]$$
 (6)

die Kovarianz von X und Y. Die normierte Kovarianz

$$korr(X, Y) := \frac{Kov(X, Y)}{Str X Str Y}$$
(7)

heißt Korrelationskoeffizient von X und Y, falls $\operatorname{Str} X \neq 0$ und $\operatorname{Str} Y \neq 0$. Anderenfalls sei $\operatorname{korr}(X,Y) = 0$.

Anmerkung

Wie könnte eine zweidimensionale Stichprobe aussehen?

https://www.studon.fau.de/pg743303_2897784.html

Definition 7.21

Für die ZV $X:\Omega\to\mathbb{R}$ und $Y:\Omega\to\mathbb{R}$ mit E $X^2<\infty$ und E $Y^2<\infty$ heißt

$$Kov(X, Y) := EXY - EXEY = E[(X - EX)(Y - EY)]$$

die Kovarianz von X und Y. Die normierte Kovarianz

$$korr(X, Y) := \frac{Kov(X, Y)}{Str X Str Y}$$
 (7)

(6)

heißt Korrelationskoeffizient von X und Y, falls $\operatorname{Str} X \neq 0$ und $\operatorname{Str} Y \neq 0$. Anderenfalls sei $\operatorname{korr}(X,Y) = 0$.

X sei eine Zufallsvariable und $k \in \mathbb{N}$. Dann heißt der Erwartungswert der k-ten Potenz von X

$$m_k := \mathsf{E}\left(X^k\right) \tag{8}$$

Moment der Ordnung k **von** X oder kürzer k-tes Moment von X (sofern der Erwartungswert existiert).

Der Erwartungswert der k-ten Potenz des Absolutbetrages |X| von X

$$M_{k} := \mathsf{E}\left(\left|X\right|^{k}\right) \tag{9}$$

heißt k-tes absolutes Moment von X.

Darstellung

Ist X eine reelle ZV mit der Dichte f^X und Verteilungsfunktion F^X , dann folgt aus der Definition des Erwartungswertes

$$m_k^X = \int_{-\infty}^{\infty} x^k dF^X(x) = \int_{-\infty}^{\infty} x^k f^X(x) dx.$$
 (10)

X sei eine Zufallsvariable und $k \in \mathbb{N}$. Dann heißt der Erwartungswert der k-ten Potenz von X

$$m_k := \mathsf{E}\left(X^k\right) \tag{8}$$

Moment der Ordnung k **von** X oder kürzer k-tes Moment von X (sofern der Erwartungswert existiert).

Der Erwartungswert der k-ten Potenz des Absolutbetrages |X| von X

$$M_{k} := \mathsf{E}\left(\left|X\right|^{k}\right) \tag{9}$$

heißt k-tes absolutes Moment von X.

Darstellung

Ist X eine reelle ZV mit der Dichte f^X und Verteilungsfunktion F^X , dann folgt aus der Definition des Erwartungswertes

$$m_k^X = \int_0^\infty x^k \mathrm{d}F^X(x) = \int_0^\infty x^k f^X(x) \, \mathrm{d}x. \tag{10}$$

X sei eine Zufallsvariable mit $\mu=\operatorname{\mathsf{E}} X$ und $k\in\mathbb{N}$. Dann heißt $\mu_k:=\operatorname{\mathsf{E}}\left((X-\mu)^k
ight)$

(11)

(12)

zentrales Moment der Ordnung k von X und

$$\bar{\mu}_k := \mathsf{E}\left(\left|X - \mu\right|^k\right)$$

heißt *k*-tes absolutes zentrales Moment von *X*.

Bemerkung

Das dritte zentrale Moment heißt **Schiefe**, das normierte vierte zentrale Moment $\frac{\mu_4(X)}{\sigma^2}$ heißt **Wölbung**.

Definition 7.25 (Momenterzeugende Funktion)

Sei X eine ZV mit stetiger R-Dichte f(x), dann ist die **momenterzeugende** Funktion durch

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

$$= \int_{-\infty}^{\infty} \left(1 + tx + \frac{t^2}{2!} x^2 + \dots \right) f(x) dx$$

$$= 1 + t m_1^X + \frac{t^2}{2!} m_2^X + \dots$$

gegeben, wobei m_i^X das *i*-te Moment von X ist. Der Ausdruck $M_X(-t)$ ist die zweiseitige Laplacetransformation des durch X festgelegten Wahrscheinlichkeitsmaßes.

- 1. $M_X(0) = 1$, $M'_X(0) = E X$, $M''_X(0) = E X^2$.
- 2. $M_{aX+b}(t) = M_X(at)e^{tb}, \ a > 0, b \in \mathbb{R}$
- 3. $M_{X+Y}(t) = M_X(t)M_Y(t)$, falls X, Y stoch.unabh.
- 4. $M_{X_n}(t) \to M_X(t) \Leftrightarrow X_n \xrightarrow{V} X \text{ für } n \to \infty$
- 5. $Y \sim \mathcal{N}(0,1) \Leftrightarrow M_Y(t) = e^{\frac{t^2}{2}}$.

- 1. $M_X(0) = 1$, $M'_X(0) = E X$, $M''_X(0) = E X^2$.
- 2. $M_{aX+b}(t) = M_X(at)e^{tb}, \ a > 0, b \in \mathbb{R}.$
- 3. $M_{X+Y}(t) = M_X(t)M_Y(t)$, falls X, Y stoch.unabh.
- 4. $M_{X_n}(t) \to M_X(t) \Leftrightarrow X_n \xrightarrow{V} X \text{ für } n \to \infty.$
- 5. $Y \sim \mathcal{N}(0,1) \Leftrightarrow M_Y(t) = e^{\frac{t^2}{2}}$.

- 1. $M_X(0) = 1$, $M'_X(0) = E X$, $M''_X(0) = E X^2$.
- 2. $M_{aX+b}(t) = M_X(at)e^{tb}, \ a > 0, b \in \mathbb{R}.$
- 3. $M_{X+Y}(t) = M_X(t)M_Y(t)$, falls X, Y stoch.unabh.
- 4. $M_{X_n}(t) \to M_X(t) \Leftrightarrow X_n \stackrel{V}{\longrightarrow} X \text{ für } n \to \infty$
- 5. $Y \sim \mathcal{N}(0,1) \Leftrightarrow M_Y(t) = e^{\frac{t^2}{2}}$.

- 1. $M_X(0) = 1$, $M'_X(0) = E X$, $M''_X(0) = E X^2$.
- 2. $M_{aX+b}(t) = M_X(at)e^{tb}, \ a > 0, b \in \mathbb{R}.$
- 3. $M_{X+Y}(t) = M_X(t)M_Y(t)$, falls X, Y stoch.unabh.
- **4.** $M_{X_n}(t) \to M_X(t) \Leftrightarrow X_n \stackrel{V}{\longrightarrow} X \text{ für } n \to \infty.$
- 5. $Y \sim \mathcal{N}(0,1) \Leftrightarrow M_Y(t) = e^{\frac{t^2}{2}}$.

- 1. $M_X(0) = 1$, $M'_X(0) = EX$, $M''_X(0) = EX^2$.
- 2. $M_{aX+b}(t) = M_X(at)e^{tb}, \ a > 0, b \in \mathbb{R}.$
- 3. $M_{X+Y}(t) = M_X(t)M_Y(t)$, falls X, Y stoch.unabh.
- **4.** $M_{X_n}(t) \to M_X(t) \Leftrightarrow X_n \xrightarrow{V} X \text{ für } n \to \infty.$
- 5. $Y \sim \mathcal{N}(0,1) \Leftrightarrow M_Y(t) = e^{\frac{t^2}{2}}$.

Standardnormalverteilung im \mathbb{R}^n

Ist $X:\Omega\to\mathbb{R}^n$ standard-normal verteilt, dann besitzt X die Produkt-R-Dichte

$$f^{X}(x_{1},...,x_{n}) = \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}\left(x_{1}^{2}+...x_{n}^{2}\right)} = \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}\mathbf{x}^{T}\mathbf{x}}$$
(13)

mit $\mathbf{x} \in \mathbb{R}^n$.

Anmerkung

Die mehrdimensionale Normalverteilung im Bild

https://www.studon.fau.de/pg636998_2897784.html

Gegeben sei die Funktion $g: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto \mathbf{a} + \mathbf{A}\mathbf{x}$ mit $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ und det $A \neq 0$. X sei eine standardnormalverteilte ZV, die mittels g in die ZV Y transformiert wird:

$$Y = g(X) = \mathbf{a} + \mathbf{A}X. \tag{14}$$

Anmerkung

Die affin-lineare Abbildung zum Spielen

https://www.studon.fau.de/pg743307_2897784.html

https://www.studon.fau.de/pg636998_2897784.html

Eigenschaften

Es gilt

- 1. $EY_i = a_i$
 - 2. Für die Kovarianz gilt mit $EX_i^2 = 1$ und $EX_k X_l = 0$, $(k \neq l)$ Folgendes

$$Kov(Y_i, Y_j) = E(Y_i - EY_i)(Y_j - EY_j)$$

Gegeben sei die Funktion $g: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto \mathbf{a} + \mathbf{A}\mathbf{x}$ mit $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ und det $A \neq 0$. X sei eine standardnormalverteilte ZV, die mittels g in die ZV Y transformiert wird:

$$Y = g(X) = \mathbf{a} + \mathbf{A}X. \tag{14}$$

Anmerkung

Die affin-lineare Abbildung zum Spielen

https://www.studon.fau.de/pg743307_2897784.html

https://www.studon.fau.de/pg636998_2897784.html

Eigenschaften

Es ailt:

1. $EY_i = a_i$

2. Für die Kovarianz gilt mit $EX_l^2=1$ und $EX_kX_l=0$, $(k\neq l)$ Folgendes:

 $Kov(Y_i, Y_j) = E(Y_i - EY_i)(Y_j - EY_j)$

Gegeben sei die Funktion $g: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto \mathbf{a} + \mathbf{A}\mathbf{x}$ mit $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ und det $A \neq 0$. X sei eine standardnormalverteilte ZV, die mittels g in die ZV Y transformiert wird:

$$Y = g(X) = \mathbf{a} + \mathbf{A}X. \tag{14}$$

Anmerkung

Die affin-lineare Abbildung zum Spielen

https://www.studon.fau.de/pg743307_2897784.html

https://www.studon.fau.de/pg636998_2897784.html

Eigenschaften

Es gilt:

- 1. $EY_i = a_i$.
- 2. Für die Kovarianz gilt mit $EX_i^2 = 1$ und $EX_k X_l = 0$, $(k \neq l)$ Folgendes:

$$Kov(Y_i, Y_j) = E(Y_i - EY_i)(Y_j - EY_j)$$

Gegeben sei die Funktion $g: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto \mathbf{a} + \mathbf{A}\mathbf{x}$ mit $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ und det $A \neq 0$. X sei eine standardnormalverteilte ZV, die mittels g in die ZV Y transformiert wird:

$$Y = g(X) = \mathbf{a} + \mathbf{A}X. \tag{14}$$

Anmerkung

Die affin-lineare Abbildung zum Spielen

Eigenschaften

Es gilt:

- 1. $EY_i = a_i$.
- 2. Für die Kovarianz gilt mit $EX_i^2 = 1$ und $EX_k X_l = 0$, $(k \neq l)$ Folgendes:

$$\mathsf{Kov}(Y_i, Y_j) = \mathsf{E}(Y_i - \mathsf{E}Y_i)(Y_j - \mathsf{E}Y_j)$$

Notation

Mit $k_{ij} := \text{Kov}(Y_i, Y_i)$ und $k_{ii} := \text{Var } Y_i$ gilt

$$K = \Delta \Delta^T$$

Dichte für $Y = \mathbf{a} + \mathbf{A}X$

$$f^{Y}(y_{1},\ldots,y_{n}) = \frac{1}{|\det \mathbf{A}|} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}(\mathbf{y}-\mathbf{a})^{T}(A^{-1})^{T}(A^{-1})(\mathbf{y}-\mathbf{a})}$$
(16)

bzw.
$$f^{Y}(\mathbf{y}) = \frac{1}{\sqrt{|\det \mathbf{K}|}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{a})^{T} \left(K^{-1}\right)(\mathbf{y} - \mathbf{a})}, \quad \mathbf{y} \in \mathbb{R}^{n}. \tag{17}$$

Notation

Mit $k_{ii} := \text{Kov}(Y_i, Y_i) \text{ und } k_{ii} := \text{Var } Y_i \text{ gilt}$

$$K = AA^T$$
.

Dichte für $Y = \mathbf{a} + \mathbf{A}X$

Dichte für
$$Y = \mathbf{a} + \mathbf{A}X$$

$$f^{\gamma}(y_1,...$$

$$f^{Y}(y_{1},...,y_{n}) = \frac{1}{1+1+1} \left(\frac{1}{\sqrt{2}}\right)^{n} e^{-\frac{1}{2}(y-a)^{T}(A^{-1})^{T}(A^{-1})(y-a)}$$

$$f^{Y}(y_1,\ldots$$

$$f^{\mathsf{Y}}(y_1,\ldots,y_n) = \frac{1}{|\det \mathbf{A}|} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}(\mathbf{y}-\mathbf{a})^T \left(A^{-1}\right)^T \left(A^{-1}\right)(\mathbf{y}-\mathbf{a})}$$

ZW.
$$f^{Y}(\mathbf{y}) = \frac{1}{\sqrt{|\det \mathbf{K}|}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}(\mathbf{y}-\mathbf{a})^{T}(\mathcal{K}^{-1})(\mathbf{y}-\mathbf{a})}, \ \ \mathbf{y} \in \mathbb{R}^{n}.$$

$$\left(\frac{1}{\sqrt{2\pi}}\right) e^{-2(\mathbf{y}-\mathbf{u})} (1 + \mathbf{y}) (1 + \mathbf{y}) (1 + \mathbf{y})$$

(16)

(17)

Definition 7.18 (n-dimensionale Normalverteilung)

Das W-Maß über $(\mathbb{R}^n, \mathbb{B}^n)$, definiert mit $\mathbf{a} \in \mathbb{R}^n$ und $K \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit durch die R-Dichte

$$f^{Y}(\mathbf{y}) = \frac{1}{\sqrt{|\det \mathbf{K}|}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{a})^{T} \left(K^{-1}\right)(\mathbf{y} - \mathbf{a})}, \ \mathbf{y} \in \mathbb{R}^{n},$$
 (18)

heißt **n-dimensionale Normalverteilung** und wird mit $\mathcal{N}(\mathbf{a}, \mathbf{K})$ bezeichnet. **a** bezeichnet den **Erwartungsvektor** und **K** die Kovarianzmatrix. Die *n*-dimensionale Standardnormalverteilung wird mit $\mathcal{N}(0, I_n)$ bezeichnet, wobei I_n die n-dimensionale Einheitsmatrix ist.

Definition 7.18 (*n***-dimensionale Normalverteilung)**

Das W-Maß über $(\mathbb{R}^n, \mathbb{B}^n)$, definiert mit $\mathbf{a} \in \mathbb{R}^n$ und $K \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit durch die R-Dichte

$$f^{Y}(\mathbf{y}) = \frac{1}{\sqrt{|\det \mathbf{K}|}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{a})^{T} \left(K^{-1}\right)(\mathbf{y} - \mathbf{a})}, \ \mathbf{y} \in \mathbb{R}^{n},$$
 (18)

heißt **n-dimensionale Normalverteilung** und wird mit $\mathcal{N}(\mathbf{a}, \mathbf{K})$ bezeichnet. **a** bezeichnet den **Erwartungsvektor** und **K** die Kovarianzmatrix. Die *n*-dimensionale Standardnormalverteilung wird mit $\mathcal{N}(0, I_n)$ bezeichnet, wobei I_n die n-dimensionale Einheitsmatrix ist.

Definition 7.18 (*n***-dimensionale Normalverteilung)**

Das W-Maß über $(\mathbb{R}^n, \mathbb{B}^n)$, definiert mit $\mathbf{a} \in \mathbb{R}^n$ und $K \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit durch die R-Dichte

$$f^{Y}(\mathbf{y}) = \frac{1}{\sqrt{|\det \mathbf{K}|}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{a})^{T} \left(K^{-1}\right)(\mathbf{y} - \mathbf{a})}, \quad \mathbf{y} \in \mathbb{R}^{n}, \tag{18}$$

heißt **n-dimensionale Normalverteilung** und wird mit $\mathcal{N}(\mathbf{a}, \mathbf{K})$ bezeichnet. **a** bezeichnet den **Erwartungsvektor** und **K** die Kovarianzmatrix. Die *n*-dimensionale Standardnormalverteilung wird mit $\mathcal{N}(0, I_n)$ bezeichnet, wobei I_n die n-dimensionale Einheitsmatrix ist.

Definition 7.19 (Zufällige Summen)

Es sei Y eine ZV mit Werten in \mathbb{N}_0 . X_1, X_2, \ldots seien reellwertige ZV, identisch verteilt und stochastisch unabhängig, auch von Y. Dann heißt die ZV

$$S = \sum_{i=1}^{Y} X_i$$

mit zufälliger oberer Grenze eine zufällige Summe.

Satz 7 20

Für die zufällige Summe $S = \sum_{i=1}^{Y} X_i$ gilt, falls $E Y < \infty$ und $E X_i < \infty$,

$$FS = FY \cdot FX_1. \tag{19}$$

$$Var S = E Y \cdot Var X_1 + Var Y \cdot (E X_1)^2.$$
 (20)

$$Var S = E Y \cdot Var X_1 + Var Y \cdot (E X_1) . \tag{2}$$

Definition 7.19 (Zufällige Summen)

Es sei Y eine ZV mit Werten in \mathbb{N}_0 . X_1, X_2, \ldots seien reellwertige ZV, identisch verteilt und stochastisch unabhängig, auch von Y. Dann heißt die ZV

$$S = \sum_{i=1}^{\gamma} X_i$$

mit zufälliger oberer Grenze eine **zufällige Summe**.

Satz 7.20

Für die zufällige Summe
$$S = \sum_{i=1}^{Y} X_i$$
 gilt, falls E $Y < \infty$ und E $X_i < \infty$,

$$\mathsf{E}\,\mathcal{S}=\mathsf{E}\,\mathsf{Y}\cdot\mathsf{E}\,\mathsf{X}_1,\tag{19}$$

$$Var S = E Y \cdot Var X_1 + Var Y \cdot (E X_1)^2.$$
 (20)

Bedingte Verteilung $P(X \in B|Y = y)$

Die Formel für die bedingte Wahrscheinlichkeit lautet:

$$P^{X|Y}(B|y) = P(X \in B|Y = y) = \frac{P[(X \in B) \cap (Y = y)]}{P(Y = y)}.$$
 (21)

Der Erwartungswert

$$\mathsf{E}(X|Y=y) = \int x P^{X|Y}(\mathrm{d}\,x|y)$$

der bedingten Verteilung von X unter Y bzw. die Zufallsvariable $\mathrm{E}(X|Y)$

$$\omega \longmapsto \int x P^{X|Y}(\mathrm{d}\,x|\,Y(\omega))$$

heißen der **bedingte Erwartungswert** von X unter der Bedingung Y.

Sind $S:\Omega\to\Omega'\subset\mathbb{R}$ und $Y:\Omega\to\Omega''$ diskrete Zufallsvariablen und existiert der Erwartungswert ES, dann heißt

$$E(S|Y=n) := \sum_{k \in \Omega'} k \cdot P(S=k|Y=n)$$
 (22)

der **bedingte Erwartungswert von** S **unter** Y = n. Es gilt die Formel vom **iterierten Erwartungswert**

$$E S = \sum_{n \in \Omega''} P(Y = n) E(S|Y = n).$$
 (23)

Selbststudium

Quellen

- Kopien Buch: Hübner, G. Stochastik. Vieweg. Kapitel 6.6-6.7
- Skript Kapitel 7.1-7.5

Fragen

- 1. Welche Eigenschaften besitzt die Kovarianz? Welcher Zusammenhang besteht zwischen der Kovarianz und der stochastischen Unabhängigkeit?
- 2. Sei X ein n-dimensionaler standardnormalverteilter Zufallsvektor und $Y = AX + \mathbf{b}$ ergebe sich aus X mit einer linear-affinen Transformation mit $A \in \mathbf{R}^{n \times n}$ und $\mathbf{b} \in \mathbf{R}^{n}$. Wie ist Y verteilt?
- 3. Y sei ein beliebig normalverteilter Zufallsvektor, $Y \sim \mathcal{N}(a, K)$. Was können Sie über die Kovarianzen und die stochastische Unabhängigkeit zwischen den Randverteilungen aussagen?
- 4. Lässt sich jeder normalverteilter Zufallsvektor Z auf einen geeigneten standardnormalverteilten Zufallsvektor X transformieren?

Ihre Fragen

... stellen, Fragen haben keine Pause.

- in den Online-Sitzungen (Vorlesungen, Übungen),
- per Mail an wigand.rathmann@fau.de oder marius.yamakou@fau.de,
- im Forum https://www.studon.fau.de/frm2897793.html, Die Fragen, die bis Donnerstag gestellt wurden, werden am Freitag in der Online-Runde diskutiert.
- per Telefon (zu den Sprechzeiten sind wir auch im Büro)

```
Wigand Rathmann 09131/85-67129 Mi 11-12 Uhr
Marius Yamakou 09131/85-67127 Di 14-15 Uhr
```

Sprechstunde zur Mathematik für Ingenieure

Wann: dienstags 09:00 - 16:30 Uhr und donnerstags 09:00-17:00 Uhr, Wo:

```
https://webconf.vc.dfn.de/ssim/ (Adobe Connect) und
https://fau.zoom.us/j/91308761442 (Zoom)
```