

10th International Workshop on Artificial Intelligence and Cognition, Bologna, 25-26 october 2025

Network-Specific Models for Multimodal Brain Response Prediction

Andrea Corsico, Giorgia Rigamonti, Simone Zini, Luigi Celona, Paolo Napoletano
University of Milano-Bicocca, viale Sarca 336, 69121 Milano, Italy
Intelligent Sensing Lab

Financial support from:

Motivation

Understanding how the brain integrates vision, sound, and language during naturalistic experiences remains a core challenge in cognitive neuroscience

We model brain activity evoked by movies using multimodal deep learning and functional brain network priors

What is fMRI?

- fMRI (functional Magnetic Resonance Imaging) measures blood-oxygen-level-dependent (BOLD) signals an *indirect marker* of neural activity.
- Each scan captures **3D brain volumes over time** (~1.49 s per sample).
- Signals are parcellated into 1,000 cortical regions using the Schaefer atlas.
- The BOLD signal **lags neural activity by ~4–6 seconds** due to vascular dynamics.

fMRI captures slow hemodynamic responses, whereas **EEG** records **fast electrical signals** from neurons

Dataset

Courtois NeuroMod Dataset

65 hours of movie stimuli and corresponding fMRI responses:

55 hours of seasons 1 to 6 of the sitcom Friends

10 hours for the following four movies: *The Bourne Supremacy, Hidden Figures, Life* (a BBC nature documentary), and *The Wolf of Wall Street*

~70h	4		1000
	Duration	Participants	Brain Parcels

Multimodal Stimuli

Visual frames Audio samples Language transcripts

Frame rate: ~ 30 FPSResolution: 720×480 px

Audio: 44.1 kHz sampling rate

Timestamped language transcripts

fMRI Data

- Recording sessions: 12-15 min (~ half episode each)
- Temporal resolution (TR) = 1.49 seconds
- MNI template projection for standardization
- Transformed to Schaefer-1000 functional atlas

The Algonauts 2025 challenge

Task: predict brain responses to movie clips.

Evaluation: Pearson correlation per voxel.

Goal: Achieve high accuracy on a new Friends season (in-domain, ID) and strong generalization to unseen movies (out-of-domain, OOD).

Proposed Model

Proposed Model - Feature Extraction

ViNET captures attentional saliency, highlighting **where humans focus visually** in each frame.

VideoMAE2 encodes spatiotemporal dynamics, modeling object motion, scene changes, and visual context over time.

Wav2Vec2.0 captures speech content and phonetic structure, reflecting *linguistic and prosodic information*.

AudioPANNs extract environmental and musical cues, encoding *non-speech sounds* like ambient noise or music.

openSMILE models low-level acoustic and emotional prosody, capturing intonation, rhythm, and affective tone.

Combined, they encode the **semantic**, **environmental**, **and emotional** dimensions of the auditory stream.

RoBERTa represents semantic and contextual meaning from subtitles aligned with the fMRI timeline.

Intermediate layer embeddings (layer 8) capture *conceptual and syntactic structure* most correlated with brain activity.

Reflects **high-level linguistic processing** in cortical language networks

Proposed Model - Dimensionality Reduction

Principal Component Analysis

applied uniformly across modalities, compressing each to a 250-dimensional feature vector

Proposed Model - Feature Vectorization & Regression

- Multimodal features are concatenated with a learned subject embedding derived from one-hot encoded subject IDs.
- A shared backbone network learns common representations across all participants.

 Subject-specific regression heads model individual variability in brain responses.

Proposed Model - Yeo Network-Specific Memory Dynamics

Hemodynamic Response Function

Models the **delayed BOLD response** to neural activity.

Peak \approx 4-6 s, return to baseline \approx 12-20 s. We found that **2** s works better.

Essential for accurate **temporal encoding** in fMRI models.

- Unique temporal profiles for each modality-network pair, highlighting memory-related effects.
- Visual and Dorsal Attention benefited from visual memory; Somatomotor from both visual and auditory.
- Four MLPs—one per network with distinct modality behavior, plus a fourth for the remaining four networks.

Results Overview

In-distribution

- Robust predictions in **auditory and language regions**.
- Stable patterns across subjects and stimulus domains.
- Performance drop in visual regions → domain gap (animated vs. live-action).
- Maintained **functional consistency** in temporal cortex.

Out-of-distribution

Challenge Leaderboard

Rank	Team	Score
1	NCG	0.320
2	sdascoli	0.319
3	SDA	0.313
4	angelneer926	0.296
5	CVIU-UARK	0.296
6	VIL	0.295
7	MedARC	0.288
8	ckadirt	0.273
9	corsi01	0.266
10	ICL_SNU	0.263
:	:	:
34	Baseline	0.203

Rank	ank Team	
1	sdascoli	0.215
2	NCG	0.210
3	SDA	0.209
4	ckadirt	0.209
5	CVIU-UARK	0.205
6	angelneer926	0.199
7	ICL_SNU	0.161
8	corsi01	0.158
9	alit	0.157
10	robertscholz	0.150
:	:	÷
21	Baseline	0.090

Ablation Study

Visual: ViNET saliency masking \rightarrow best performance (\uparrow focus on relevant regions).

Audio: Wav2Vec2.0 + AudioPANNs + openSMILE \rightarrow 0.202 (+0.087 vs MFCC).

Language: RoBERTa (L8 + attention) \rightarrow 0.170 (+0.067 vs baseline).

Cognitive Interpretation

Distinct networks show specialized multimodal integration.

Visual & Attention systems benefit from temporal memory → predictive processing.

Language regions align with semantic Transformer embeddings (RoBERTa L8).

Consistent spatial patterns across subjects \rightarrow shared neural coding principles.

Conclusions and Future Work

Main Contributions

- Network-specific multimodal model based on Yeo 7 networks.
- Rich visual, audio, and language features aligned with fMRI timing.
- Multi-subject MLP capturing shared and individual variability.
- Incorporating network-dependent temporal memory enhances sensory response prediction.
- Top-10 in Algonauts 2025, doubling baseline OOD accuracy.

Key Insights

- Brain networks show specialized multimodal integration.
- Supports predictive-processing and hierarchical cognition.

Future Work

- Add recurrent / transformer-based memory.
- Extend to EEG, MEG, and larger datasets.
- Align with multimodal foundation models.

Scan for GitHub repository

THANKS FOR YOUR ATTENTION!

https://islab.disco.unimib.it/