select-k-best

August 21, 2024

```
[1]: #These all are function, it's in single cell
     import pandas as pd
     from sklearn.model_selection import train_test_split
     import time
     import numpy as np
     from sklearn.preprocessing import StandardScaler
     from sklearn.feature_selection import SelectKBest
     from sklearn.feature_selection import chi2
     from sklearn.feature_selection import RFE
     from sklearn.linear_model import LogisticRegression
     import pickle
     import matplotlib.pyplot as plt
     #All the required libraries loaded above
     def selectkbest(indep_X,dep_Y,n):
             test = SelectKBest(score_func=chi2, k=n)
             #formula load, Select K ALGORITHM we are using here, based on_
      \rightarrowchiSquare(chi=2 or Rsquare value) and k=n (which number we will give and try
      \hookrightarrow for k parameter)
             fit1= test.fit(indep_X,dep_Y)
             #once formula loaded full process come to test'. so test.fit loading_
      →input varaiable(indep X-27 COLUMNS) AND oUtput varaiable(dep Y- 1 COLUMN)
      →LOADED and Module ceate.
             #once fit1 method executed it'll create model.for example if we give
      \Rightarrow k=4 means it'll load best 4 value into selectk features varaiable.
             selectk_features = fit1.transform(indep_X)
             #for example if we give k=4 means it'll load best 4 value into
      →selectk_features varaiable.so that using fit1.transform(indep_X)-(4.
      ⇔transform(indep_X)) Giving 4 value to input as indep_X.
             return selectk_features
             #selectk_features RETURN the result.
             #SelectK best main rule, Suppose if we have 14 input columns in dataset ⊔
      \rightarrowmeans, we give only 4 columns as input. this 4 column(n) we will get as \Box
      →Select_feature using ChiSquare module.
             #ChiSquare same Rsquare evaluation matrix.
```

```
#We are going using IT foR many algorithms like Logistic, svm, RF, SO_{\sqcup}
 → THAT we have integrated transingset and testset pirkarathu StandardScaler()
 \rightarrow integrate panitom.
def split scalar(indep X,dep Y):
    #Suppose if we input and output here indep_X, dep_Y as input, finally(tain_
 and test pricity finally these 4 variables will execute) these X train,
 \hookrightarrow X_{test}, y_{train}, y_{test} values we will get.
        X train, X test, y train, y test = train_test_split(indep X, dep_Y, __
 stest_size = 0.25, random_state = 0)
        sc = StandardScaler()
        X_train = sc.fit_transform(X_train)
        X_test = sc.transform(X_test)
        return X_train, X_test, y_train, y_test
def cm_prediction(classifier, X_test):
    #its confusion matrix, if we give testset and classfier, all the above code
 →we given as seperate file, here created as functions.
     y_pred = classifier.predict(X_test)
        # Making the Confusion Matrix
     from sklearn.metrics import confusion_matrix
     cm = confusion_matrix(y_test, y_pred)
     from sklearn.metrics import accuracy_score
     from sklearn.metrics import classification_report
     Accuracy=accuracy_score(y_test, y_pred )
     report=classification_report(y_test, y_pred)
     return classifier,Accuracy,report,X_test,y_test,cm
    #once above function executed above we will get result as \square
 ⇔classifier, Accuracy, report, X_test, y_test, cm
def logistic(X_train,y_train,X_test):
        # Fitting K-NN to the Training set
        from sklearn.linear_model import LogisticRegression
        #Model load pandrom
        classifier = LogisticRegression(random_state = 0)
        classifier.fit(X_train, y_train)
        #fit panduvom
 →classifier,Accuracy,report,X_test,y_test,cm=cm_prediction(classifier,X_test)
        #training set and testset pirikarathu
```

```
return classifier,Accuracy,report,X_test,y_test,cm
    #here we called cm-prediction model.
def svm_linear(X_train,y_train,X_test):
        from sklearn.svm import SVC
        classifier = SVC(kernel = 'linear', random_state = 0)
        classifier.fit(X_train, y_train)
 ⇒classifier, Accuracy, report, X_test, y_test, cm=cm_prediction(classifier, X_test)
        return classifier,Accuracy,report,X_test,y_test,cm
def svm_NL(X_train,y_train,X_test):
        from sklearn.svm import SVC
        classifier = SVC(kernel = 'rbf', random_state = 0)
        classifier.fit(X_train, y_train)
 ⇒classifier, Accuracy, report, X_test, y_test, cm=cm_prediction(classifier, X_test)
        return classifier,Accuracy,report,X_test,y_test,cm
def Navie(X_train,y_train,X_test):
        # Fitting K-NN to the Training set
        from sklearn.naive_bayes import GaussianNB
        classifier = GaussianNB()
        classifier.fit(X_train, y_train)
 Graduation = classifier, Accuracy, report, X_test, y_test, cm = cm_prediction(classifier, X_test)
        return classifier,Accuracy,report,X_test,y_test,cm
def knn(X_train,y_train,X_test):
        # Fitting K-NN to the Training set
        from sklearn.neighbors import KNeighborsClassifier
        classifier = KNeighborsClassifier(n_neighbors = 5, metric =
 ⇔'minkowski', p = 2)
        classifier.fit(X_train, y_train)
 dclassifier,Accuracy,report,X_test,y_test,cm=cm_prediction(classifier,X_test)
        return classifier,Accuracy,report,X_test,y_test,cm
def Decision(X_train,y_train,X_test):
        # Fitting K-NN to the Training set
        from sklearn.tree import DecisionTreeClassifier
        classifier = DecisionTreeClassifier(criterion = 'entropy', random_state_
 ⇒= 0)
```

```
classifier,Accuracy,report,X_test,y_test,cm=cm_prediction(classifier,X_test)
            return classifier,Accuracy,report,X_test,y_test,cm
    def random(X_train,y_train,X_test):
             # Fitting K-NN to the Training set
            from sklearn.ensemble import RandomForestClassifier
             classifier = RandomForestClassifier(n_estimators = 10, criterion = ___
      classifier.fit(X_train, y_train)
      dclassifier,Accuracy,report,X_test,y_test,cm=cm_prediction(classifier,X_test)
            return classifier,Accuracy,report,X_test,y_test,cm
    def selectk Classification(acclog,accsvml,accsvmnl,accknn,accnav,accdes,accrf):
        dataframe=pd.
      →DataFrame(index=['ChiSquare'],columns=['Logistic','SVM1','SVMn1','KNN','Navie','Decision','
         for number,idex in enumerate(dataframe.index):
            dataframe['Logistic'][idex]=acclog[number]
            dataframe['SVMl'][idex]=accsvml[number]
            dataframe['SVMnl'][idex]=accsvmnl[number]
            dataframe['KNN'][idex]=accknn[number]
            dataframe['Navie'][idex]=accnav[number]
             dataframe['Decision'][idex]=accdes[number]
             dataframe['Random'][idex]=accrf[number]
        return dataframe
     #Here we are creating table.enumerate like range, it'll come with index(1,2,3).
      ⇒index helful for us the positoning.stilabove function load.
[2]: dataset1=pd.read_csv("prep.csv",index_col=None)
     #Loading preprocessed csv file.
    df2=dataset1
    #Hrer dataset1 created as backup, we are going to use df2(dataset2) furtherly.
    df2 = pd.get_dummies(df2, drop_first=True)
    #null value check and doing preprocessing
    indep_X=df2.drop('classification_yes', 1)
    \#classification\_yes is last column so delete classification\_yes values, if we 1\sqcup
     ⇔means column wise delete.
     #Now independent dependent varaiable pirkarathu.it's kidney cronic dataset.here
      ⇔classification_yes is output varaibale that WE DROPPED here
```

classifier.fit(X_train, y_train)

```
dep_Y=df2['classification_yes']
#Again classification_yes is our output parameter.
#
```

[3]: df2
#there is no categorical data here

[3]:		age	bp	al	su		bgr	bi	1	sc	\	
[0].	0	2.000000	76.459948	3.0	0.0	148.	112676	57.48210		77356	`	
	1	3.000000	76.459948	2.0	0.0		112676	22.00000		00000		
	2	4.000000	76.459948	1.0	0.0		000000	23.00000		00000		
	3	5.000000	76.459948	1.0	0.0		112676	16.00000		00000		
	4	5.000000	50.000000	0.0	0.0		112676	25.00000		00000		
		•••	•••	•••			•••	•••				
	394	51.492308	70.000000	0.0	0.0	219.	000000	36.00000	1.3	00000		
	395	51.492308	70.000000	0.0	2.0	220.	000000	68.00000	2.8	00000		
	396	51.492308	70.000000	3.0	0.0	110.	000000	115.00000	6.0	00000		
	397	51.492308	90.000000	0.0	0.0	207.	000000	80.00000	6.8	00000		
	398	51.492308	80.000000	0.0	0.0	100.	000000	49.00000	1.0	00000		
		sod	pot		hrmo		pc_norm	al pcc_pro	esent	ba_pre	esent	\
	0	137.528754	4.627244	12.5	18156	•••		0	0		0	
	1	137.528754	4.627244	10.7	00000	•••		1	0		0	
	2	138.000000	4.400000	12.0	00000	•••		1	0		0	
	3	138.000000	3.200000	8.1	.00000	•••		1	0		0	
	4	137.528754	4.627244	11.8	800000	•••		1	0		0	
		•••	•••	•••	•••		•••	•••				
	394	139.000000			00000	•••		1	0		0	
	395	137.528754			00000	•••		1	0		0	
	396	134.000000			.00000	•••		1	0		0	
	397	142.000000			00000	•••		1	0		0	
	398	140.000000	5.000000	16.3	800000	•••		1	0		0	
			,						,			
	^	•	m_yes cad_	•	appet_	•	pe_yes	•	class	ificati	.on_ye	
	0	0	0	0		1	1					1
	1 2	0	0 0	0		1	0					1
	3	0	0	0		1	0					1
	3 4	0	0	0		1	0					1
		U	U	U		T	U	U				1
	 394	0	0	0	•••	1	0	0	•••			1
	395	1	1	0		1	0					1
	396	1	1	0		0	0					1
	397	1	1	0		1	0					1
	398	0	0	0		1	0					0
	530	U	U	U		Т	U	U				U

[399 rows x 28 columns]

```
[17]: kbest=selectkbest(indep_X,dep_Y,4)
      #Here we are passing indep_X=df2.drop('classification_yes', 1) and__
       -dep Y=df2['classification yes'] values input passing as parameter.
      acclog=[]
      accsvml=[]
      accsvmnl=[]
      accknn=[]
      accnav=[]
      accdes=[]
      accrf=[]
      #Now we got accuracy of log, svn, knn like that as list.
      #Now we are finding best 5 values.
      #feature selection using select best 5 or 4 columns.
[18]: kbest
[18]: array([[1.48112676e+02, 5.74821053e+01, 3.07735602e+00, 8.40819113e+03],
             [1.48112676e+02, 2.20000000e+01, 7.00000000e-01, 1.23000000e+04],
             [9.90000000e+01, 2.30000000e+01, 6.00000000e-01, 8.40819113e+03],
             [1.10000000e+02, 1.15000000e+02, 6.00000000e+00, 9.20000000e+03],
             [2.07000000e+02, 8.00000000e+01, 6.80000000e+00, 8.40819113e+03],
             [1.00000000e+02, 4.90000000e+01, 1.00000000e+00, 8.50000000e+03]])
[19]: #Program calling count, itll create table.
      X_train, X_test, y_train, y_test=split_scalar(kbest,dep_Y)
      #ontetime, here we are calling split scalar (kbest, dep_Y) function and getting
      classifier,Accuracy,report,X_test,y_test,cm=logistic(X_train,y_train,X_test)
      acclog.append(Accuracy)
      #while running above it'll create logistic model and show that's
       →classifier, Accuracy, report, X_test, y_test, cm, but here we need only Accuracy.
      #we are appending Accuracy with acclog.
      classifier,Accuracy,report,X_test,y_test,cm=svm_linear(X_train,y_train,X_test)
      accsvml.append(Accuracy)
      classifier,Accuracy,report,X_test,y_test,cm=svm_NL(X_train,y_train,X_test)
      accsvmnl.append(Accuracy)
      classifier,Accuracy,report,X_test,y_test,cm=knn(X_train,y_train,X_test)
      accknn.append(Accuracy)
      classifier,Accuracy,report,X_test,y_test,cm=Navie(X_train,y_train,X_test)
      accnav.append(Accuracy)
```

```
classifier,Accuracy,report,X_test,y_test,cm=Decision(X_train,y_train,X_test)
     accdes.append(Accuracy)
     classifier,Accuracy,report,X_test,y_test,cm=random(X_train,y_train,X_test)
     accrf.append(Accuracy)
     result=selectk_Classification(acclog,accsvml,accsvmnl,accknn,accnav,accdes,accrf)
      #Finally in this classification if we give all the above result and run means
       →it'll create one table and show as result.
     C:\Users\Kathirvel\Anaconda3\envs\aiml\lib\site-
     packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver
     will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
       FutureWarning)
     C:\Users\Kathirvel\Anaconda3\envs\aiml\lib\site-
     packages\sklearn\neighbors\base.py:441: DeprecationWarning: distutils Version
     classes are deprecated. Use packaging.version instead.
       old_joblib = LooseVersion(joblib_version) < LooseVersion('0.12')</pre>
     C:\Users\Kathirvel\Anaconda3\envs\aiml\lib\site-
     packages\sklearn\neighbors\base.py:441: DeprecationWarning: distutils Version
     classes are deprecated. Use packaging.version instead.
       old_joblib = LooseVersion(joblib_version) < LooseVersion('0.12')</pre>
     C:\Users\Kathirvel\Anaconda3\envs\aiml\lib\site-
     packages\sklearn\utils\fixes.py:230: DeprecationWarning: distutils Version
     classes are deprecated. Use packaging.version instead.
       if _joblib.__version__ >= LooseVersion('0.12'):
     C:\Users\Kathirvel\Anaconda3\envs\aiml\lib\site-
     packages\sklearn\utils\fixes.py:230: DeprecationWarning: distutils Version
     classes are deprecated. Use packaging.version instead.
       if _joblib.__version__ >= LooseVersion('0.12'):
[7]: result
      #5
[7]:
               Logistic SVMl SVMnl
                                      KNN Navie Decision Random
                   0.96 0.96 0.96 0.93 0.89
     ChiSquare
                                                     0.97
                                                            0.97
[8]: result
      #3
      #above good
[8]:
                Logistic SVMl SVMnl
                                       KNN Navie Decision Random
     ChiSquare
                   0.96 0.96 0.96 0.93 0.89
                                                     0.97
[20]: result
      #4
```

- [20]: Logistic SVM1 SVMn1 KNN Navie Decision Random ChiSquare 0.85 0.82 0.83 0.86 0.79 0.89 0.89
- [16]: result #6 #It's best
- [16]: Logistic SVM1 SVMnl KNN Navie Decision Random ChiSquare 0.96 0.96 0.96 0.93 0.89 0.97 0.97