GREAT LAKES NEARSHORE WATER QUALITY MONITORING AT WATER SUPPLY INTAKES

1976-1981

G.J. Hopkins

MOE GRE ANBZ Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

GREAT LAKE'S NEARSHORE WATER QUALITY

MONITORING AT WATER SUPPLY INTAKES

1976-1981

by

Gordon J. Hopkins
Ontario Ministry of the Environment
Limnology Section
Water Resources Branch
Box 213, Rexdale, Ontario, M9W 5L1

October 1983

Data Report DR83/101

MOE GRE ANBZ C.1

Data Report Series

The data presented in this unreviewed report were collected by staff formerly of the Water Resources Branch of the Ontario Ministry of the Environment as part of the study on nearshore Great Lakes water quality. Every possible effort was made to ensure the accuracy of the information contained in this publication. Verification of any suspect data may be obtained by contacting the author, Laboratory Services and Applied Research Branch, Toronto (416-248-3058).

TABLE OF CONTENTS

Pag	је
REFACEi	ii
BSTRACT	iv
NTRODUCTION	1
ETHODS	?
ESULTS AND DISCUSSION	
CKNOWLEDGEMENTS	8
EFERENCES	9
IST OF FIGURES AND TABLES	1
IST OF APPENDICES	6

PREFACE

A programme to enhance monitoring of nearshore Great Lakes water quality through the use of municipal water intakes was established in 1976. The programme was initiated at eleven Great Lakes locations for which biological monitoring of water quality using phytoplankton measurements was already in place. The main goal of this expanded programme was to monitor the nearshore water quality over a long term (ten years or more) with emphasis on selected trophic state indices. By 1980, an additional six locations had been added (for a total of seventeen) to the programme. This unpublished report provides a description of the programme operation and methodologies. Separate appendices provide a readily available source of basic data collected at each location for the period 1976 to 1981.

The data are periodically submitted to the Surveillance Work-group, International Joint Commission to aid in the assessment of the Great Lakes nearshore water quality. Funding of this study has been provided, in part, through the cost-shared programme of the Canada-Ontario Agreement and the Ontario Ministry of the Environment.

ABSTRACT

Great Lakes Nearshore Water Quality Monitoring at Water Supply Intakes. Data Report 1976-1981

A sampling programme, using eleven Great Lakes municipal water works intakes was established in 1976 for the purpose of measuring chemical and biological water quality of the nearshore waters. The programme was expanded in 1979 and now includes seventeen locations from Thunder Bay on Lake Superior to Brockville on the St. Lawrence River.

Data are available for samples which have been collected at each location on a weekly basis, all year-round. Analyses include twelve water quality parameters with emphasis on trophic state indices such as phosphorus, nitrogen, chlorophyll and phytoplankton. The main goal of the programme is to monitor the nearshore water quality for long term trend analysis. This report provides a description of the programme operation, methodologies and appendices.

The appendices (in five parts) include weekly raw data for all parameters, monthly means and graphics and have been edited further since previously published reports. No interpretation has been provided for the data presented in this report. The data collected to date have, however, indicated that water supply intakes can be used year-round as a cost-effective means of measuring nearshore Great Lakes water quality. The continuation of this programme will provide useful information, particularly for long term trend analyses.

Hopkins, G.J. 1983. Great Lakes Nearshore Water Quality Monitoring at Water Supply Intakes 1976-1981. Ont. Min. of Envir. Data Report DR83/101.

INTRODUCTION

In 1976, the Ontario Ministry of the Environment expanded its provincial phytoplankton monitoring programme at Great Lakes water supply locations to measure several chemical water quality parameters. The main goal of this expanded intake monitoring programme was to assess the nearshore water quality of the Great Lakes over a long term (ten years or more) with emphasis on selected trophic state indices such as phytoplankton, phosphorus, nitrogen, silica, chloride, conductivity and chlorophyll. Previous studies by Davis (1964), Schenk and Thompson (1965), Nicholls et al. (1980) and Nicholls (1981) have shown the usefulness of waterworks intake locations for monitoring changes in the nearshore quality of the Great Lakes. These studies have also indicated that water intakes were a cost-effective means of obtaining frequent nearshore water quality data on a year-round basis regardless of lake weather conditions.

Phytoplankton biomass measurements have been made at numerous municipal water supplies in Ontario since 1964. The addition of chemical analyses in 1976, enabled the Ministry to use the phytoplankton data as a means of assessing the effectiveness of phosphorus removal programmes (Nicholls et al. 1977). Reductions in P levels alone do not provide evidence for improved water quality. An associated decline in algal densities and a shift away from certain algal species implicated in the water quality problems of toxicity, odours and filter clogging are needed to show this effect.

The participants at eleven waterworks locations were requested to collect additional water samples on a weekly basis to complement the phytoplankton data already being collected. By 1981 this programme had been expanded to seventeen locations (Figure 1) from Thunder Bay on Lake Superior to Brockville on the St. Lawrence River (Table 1).

The purpose of this report is to provide an update to the previous reports (Hopkins 1977) and (Hopkins 1979), outlining changes in the operation of the programme, since its inception, and to edit and present the data collected to the end of 1981. No attempts have been made to analyse the data for trends at this time. Some long term trend analyses have been previously reported in the references cited above and in Hopkins (1983).

METHODS

Weekly raw water samples were collected from the water treatment plant intake pipes at a point prior to chlorination. sample was either collected from the low lift well or from a continuously flowing tap in the plant laboratory which was connected to the intake pipe. One litre samples for phytoplankton analyses were preserved, concentrated and counted at six locations (Table 2) by a qualified operator trained by Ministry staff using the Sedgewick-Rafter A.S.U. technique (A.P.H.A. 1975). At the remaining locations, a one litre sample was collected, preserved with 2 mL of Lugol's iodine solution (containing glacial acetic acid) and forwarded to Toronto for concentration and analyses of the phytoplankton with inverted microscopes using the Utermohl method (Utermohl 1958). Aliquots of the concentrated samples were settled in 5 mL Utermohl-type plankton counting chambers, where at least one half the chamber was scanned at 300X for the larger phytoplankters. One to several radii were examined at 600% for smaller forms which were identified to the genus level. Between 200 and 400 "pieces" (cells, filaments or colonies) were counted and measured for each sample, a number that Lund et al. (1968) considered to provide acceptable precision. Phytoplankton biomass at the waterworks locations have been expressed as Areal Standard Units per mL (one A.S.U. is equivalent to 400 square microns of algae) since the algal

related problems of filter clogging and taste and odours at water treatment plants have been historically defined in areal units. For comparison with data expressed as cell volume $(mm^3/L \text{ or } mg/m^3)$ an appropriate conversion for average values is found in the equations (A.S.U./mL = 476 mm³/L-55) (Nicholls 1981).

Raw water samples for chemical analyses were collected at the same time and place as the phytoplankton samples, placed in 500 mL polystyrene containers and shipped the same day to one of the Ministry's laboratories (Table 2) for analyses of total (unfiltered) P, soluble reactive P, ammonia-N, total Kjeldahl-N, nitrite-N, nitrate-N, chloride, conductivity and silica (unfiltered reactive silicate). One litre samples of raw water stabilized with 1 mL of a 0.5% magnesium carbonate solution were forwarded to the Ministry laboratories in Toronto or Thunder Bay (Table 2) for chlorophyll a and b analyses. Chemical samples were analyzed according to the methods described in "Outlines of Analytical Methods", (Anon 1975), Laboratory Services Branch, Ministry of the Environment and its subsequent revisions.

During the period 1976-1981 chemical methodology changes were of a minor nature and were implemented primarily to reduce sample analytical times. Inter-laboratory comparison studies completed on duplicate samples for the PLUARG programme during 1978 showed the average bias between laboratories was less than 2% for the above mentioned parameters (D. King, pers. comm.). A large block of chlorophyll data was rejected during the summer of 1977 due to laboratory analytical problems.

RESULTS AND DISCUSSION

Since 1981 all chemical samples submitted for analyses to the Toronto laboratory have been processed by the Laboratory Information System (L.I.S.). These data were subsequently transferred to the

Ministry's computerized Sample Information System (S.I.S.).

Original copies of the results of individual sample submissions have been forwarded to each of the participants in the Great Lakes Intake Monitoring Programme. A summary of the first years' data (Hopkins 1977) and a summary of data for the period 1976–1978 (Hopkins 1979) have been reported previously. Since that time the data have been reviewed and edited further and additional phytoplankton data have been added. Data analyzed at locations other than Toronto and all phytoplankton data were excluded from the L.I.S. and S.I.S. files but a mass transfer of all edited data from 1976 to July 1981 was made from the HP9825 system to S.I.S. in September, 1981.

The data have been summarized by location in several formats using an HP 9825 desk-top computer. The raw data (weekly analyses) for twelve parameters with the annual minimum, maximum, mean, standard deviation (±1 S.D.) and number of samples are available as a single page print-out in long or short form (Appendices 1 to 17, part A and B). These data have been converted to monthly means (Appendices 1 to 17, part C) and are available in graphical form as (Appendices 1 to 17, part D and E) with a maximum combination of five locations or parameters per page. Table 3 summarizes the parameter ranges, detection criterion and the maximum and minimum concentration from all 17 locations included in this study from 1976 to 1981.

No attempt has been made to provide an interpretation of the data in this report. The data are provided for the information of the participants in the programme and other agencies which may have use for the data. A brief comment was made on the parameters selected for this study in a presentation to the Chief Operators Conference in 1976 (Hopkins 1976) and this information is repeated here.

Total phosphorus occurs naturally in surface waters and is an element essential to all forms of life. Artificial inputs of phosphorus play a significant role in promoting over-abundance of algae and aquatic plants which may impair water quality. Phosphorus results are used in assessing a water's potential for biological productivity as well as the efficiency of nutrient removal at waste treatment plants. Values in excess of 25 μ g/L total P (Anon 1972) may be responsible for excessive algal growths. Although there is no firm criterion for phosphorus, Sawyer (1947) suggested that 300 μ g/L of inorganic nitrogen (N) and 10 μ g/L of soluble P at the start of the growing season could produce nuisance algal blooms – a quideline which has been substantiated by more recent work. At some of the Great Lakes intake sites there are periods when total P concentrations exceed the 25 μ g/L (0.025 mg/L) level.

Nitrogen determinations consist of four components separating the organic nitrogen from the inorganic nitrogen. Briefly, the nitrogen cycle includes a decomposition process from total organic compounds to free ammonia, nitrite, and nitrate, all inorganic forms. Through algal and other plant growth, free ammonia and nitrates may be utilized to regenerate more organic matter. In assessing nutrient parameters in relation to algal growths, a good rule of thumb is to compare the total Kjeldahl nitrogen to the total P. If the algae are utilizing all the nutrients, these two parameters will be present in the ratio of 10-20:1. If the ratio does not fall within this range then N will be in limited supply at higher ratios and P will be limiting at lower ratios. concentrations of phosphorus and nitrogen are usually minimal in natural run-off. In lakes receiving excessive inputs of sewage and/or agricultural run-off the ratio of N:P will be lower, as will be the ammonia and nitrate components during the summer growth period as a result of algal assimilation of all available inorganic nitrogen. Relative to nitrogen, phosphorus in sewage enriched lakes is often supplied in excess of the requirements for algae.

Conductivity and chloride are used together to measure the salinification of a lake system. These measurements are used to calculate the total dissolved solids which are an approximate measure of the dissolved "salts" in a lake. Chloride is a non-reactive conservative substance which reflects the influence of human activity on a water basin. Chloride concentrations increase as they move down through the Great Lakes system because of increasing road de-icing operations. Urban runoff often contains high concentrations of chloride in winter due to the application of road salt and these may affect readings obtained at waterworks locations. Conductivity is a measure of the ability of a water to carry an electric current and depends on the concentrations of ions in solution to conduct that current. It is so precise and accurate that it is often preferred to a dissolved solids test as an indicator of the dissolved solids content of a natural water sample (Anon 1981).

The element <u>silicon</u> is second only to oxygen in abundance and is present as silica or silicates in sand. The geological deposits in the drainage basin are the source of silicate in Great Lakes waters. Silicates are an essential nutrient for the growth of diatoms, the most common algal type in the Great Lakes and a silica depletion may cause a reduction in algal densities if diatoms are dominant, or perhaps a shift to other algae (e.g. greens or blue-green algae) not requiring SiO₂. Silicon concentrations are measured as the soluble reactive silicate ion expressed as mg Si/L.

Chlorophyll is the natural pigment component of all green plants and is used as an index of the lakes' biological productivity. Chlorophyll \underline{a} and chlorophyll \underline{b} are measured in $\underline{ug/L}$ quantities. Chlorophyll \underline{a} and \underline{b} are found in the green algae whereas the blue-greens contain only chlorophyll \underline{a} . The chrysophytes including the diatoms and the chrysomonads contain chlorophyll \underline{a} and \underline{c} . Chlorophyll \underline{c} is not measured in the Ministry

laboratory. Chlorophyll \underline{b} is often very small in relation to chlorophyll \underline{a} . High chlorophyll values cause greater analytical variability and interpretation of results showing values greater than 20 μ g/L should be examined with caution (Anon 1981).

Chlorophyll concentrations may be used as an indicator of eutrophy. Chlorophyll <u>a</u> concentrations less than 2 μ g/L will reflect low algal densities and unenriched conditions. Concentrations greater than 4 μ g/L will reflect moderately high algal densities and enriched conditions. A single high reading may only reflect a short-lived algal pulse. It should be emphasized that there are many factors which determine the chlorophyll content of algal cells and that chlorophyll measurements provide a simple but only approximate indication of algal biomass.

Phytoplankton biomass measurements and algal taxonomy are also used to provide assessments of water quality in the Great Lakes. The dominance of certain diatom species and low biomass in Lakes Superior and Huron are indicative of oligotrophic waters whereas high algal populations dominated in the summer by blue-green algal pulses reflect the more eutrophic conditions of Lake Erie. Chrysophycean algae are common to some Great Lakes locations and frequently dominate the algal populations in the late spring and early fall. Increases in this group as a percentage of the total biomass have been shown to reflect decreases in P concentrations (Nicholls 1976). With high biomass levels of diatoms in the spring silica concentrations can become a limiting factor thus leaving room for more eutrophic green and blue-green forms to develop later in the season. Diatom populations can be lost from the water quite rapidly by sedimentation but some of the blue-greens are transported great distances. For this reason populations of green and blue-green algae are more noticeable in late summer and early fall when silica levels are at a minimum (Hopkins 1983).

Many of the data collected to date have been used to provide input to individual papers, reports, presentations and summaries which are listed in Appendix 18. The data reported here cover the first six years of the study. Long term trend analyses have not been extensively applied to all the data but a detailed interpretative report has been prepared for the Lake Huron locations (Hopkins, 1983). Reports for locations on Lake Erie and Lake Ontario are in preparation.

ACKNOWLEDGEMENTS

I wish to acknowledge the co-operation of all the water supply personnel who have faithfully collected and submitted the water samples for this study, the laboratory staff for organizing the analyses and results, to Cathy Clarke for data manipulation and to Margaret Barclay for typing the manuscript.

REFERENCES

- AMERICAN PUBLIC HEALTH ASSOCIATION. 1975. Standard Methods for the examination of water and wastewater. 14th ed. Amer. Pub. Health Assoc. 1193p.
- ANON. 1972. Great Lakes Water Ouality Data. 1972. Niagara River, Lake Ontario, Bay of Ouinte, St. Lawrence River. Ontario Ministry of the Environment, Water Resources Branch, Toronto, Ontario. 238p.
- ANON. 1975. Outlines of Analytical Methods. A guide to the occurrence, significance, sampling and analysis of chemical and microbial parameters in water. Ontario Ministry of the Environment, Laboratory Services Branch, Toronto, Ontario.
- ANON. 1981. Outlines of Analytical Methods. A guide to the occurrence, significance, sampling and analysis of chemical and microbial parameters in water, sediment, soil, vegetation and air. Ontario Ministry of the Environment, Laboratory Services Branch, Toronto, Ontario.
- DAVIS, C.C. 1964. Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol. Oceanogr. 9:275-283.
- HOPKINS, G.J. 1976. Monitoring Phytoplankton in Ontario's Water Supplies. Water Resources Branch, Ontario Ministry of the Environment, Toronto, Ontario. 24p.
- Treatment Plants, 1976. A Summary Report to the Water Ouality Surveillance Subcommittee, International Joint Commission. Water Resources Branch, Ontario Ministry of the Environment, Toronto, Ontario. 5p.
- Treatment Plants, 1976-1978. A Summary Report to the Water Ouality Surveillance Subcommittee, International Joint Commission. Water Resources Branch, Ontario Ministry of the Environment, Toronto, Ontario. 5p + appendices.

- Huron, 1976-1981. A Summary Report to the Water Quality
 Surveillance Subcommittee, International Joint Commission.
 Water Resources Branch, Ontario Ministry of the Environment,
 Toronto, Ontario. 25p + appendices.
- LUND, J.W.G., C. KIPLING and E.D. LeCREW. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11:143-170.
- NICHOLLS, K.H. 1976. The phytoplankton of the Kawartha Lakes –
 Trent River system. Volume 3, Chapter 2 of "Kawartha Lakes
 Water Management Study". Ontario Ministry of the
 Environment, Toronto, Ontario. 17p.
- ______ 1981. Recent changes in the phytoplankton of Lakes
 Erie and Ontario. Bull. Buffalo Soc. Nat. Sci. 25(4): 41-88.
- NICHOLLS, K.H., D.W. STANDEN, G.J. HOPKINS and E.C. CARNEY. 1977.

 Declines in the nearshore phytoplankton of Lake Erie's western basin since 1971. J. Great Lakes Res., 3:72-78.
- NICHOLLS, K.H., D.W. STANDEN and G.J. HOPKINS. 1980. Recent changes in the nearshore phytoplankton of Lake Erie's western basin at Kingsville, Ontario. J. Great Lakes Res. 6(2):146-153.
- SAWYER, C.N. 1947. Fertilization of lakes by agricultural and urban drainage. In K.M. Mackenthun. "The Practice of Water Pollution Biology" 1969. United States Department of the Interior, Federal Water Pollution Control Administration, Washington. 281p.
- SCHENK, C.F., and R.E. THOMPSON. 1965. Long term changes in water chemistry and abundance of plankton at a single sampling location in Lake Ontario. Univ. Mich., Great Lakes Res. Div. Pub. 13:197-208.
- UTERMOHL, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. d. Internat. Vereinig. f. Limnologie. 9:1-39.

LIST OF FIGURES AND TABLES

- Figure 1: Location of 17 municipal waterworks on the Great Lakes participating in the Great Lakes Intake Monitoring Programme 1976-1981.
- Table 1: List of participant municipalities, lake location and initiation date into Great Lakes Intake Monitoring Programme.
- Table 2: List of plant locations, parameters and analytical locations for samples in the Great Lakes Intake
 Monitoring Programme 1976-1981.
- Table 3: Summary of parameters, their analytical ranges, detection criterion and minimum and maximum concentrations at 17 waterworks participating in the Great Lakes Intake Monitoring Programme from 1976-1981.

Figure 1: Great Lakes Water Works Intake Monitoring Locations 1976-1981.

Table 1: Participants in Water Intake Monitoring Programme (*MOE Plant)

Plant	Name	Lake I	nitiation Date
No.			
1.	Goderich W.W.*	Lake Huron	Jan./76
2.	Lake Huron W.S.S.*(Grand Bend)	Lake Huron	Jan./76
3.	Lambton Area W.S.S.* (Sarnia)	Lake Huron	Feb./76
4.	Amherstburg A.W.S.*	Detroit River	Jan./76
5.	Union W.S. (Kingsville)	Lake Erie	Jan./76
6.	Blenheim Area W.S.*	Lake Erie	Jan./76
7.	Elgin Area W.S.* (St. Thomas)	Lake Erie	Jan./76
8.	Dunnville Reg'l W.S.*	Lake Erie	Jan./76
9.	South Peel W.S.* (Lakeview)	Lake Ontario	Jan./76
10.	Kingston W.W.	Lake Ontario	Jan./76
11.	Brockville W.W.	St. Lawrence Rive	r Jan./76
12.	Bertie Twp. W.W.	Lake Erie	Sept./78
	(Rosehill Water Plant) Reg'l Mun.	of Niagara.	
13.	Terrace Bay W.W.	Lake Superior	May/79
	(Kimberly-Clark Paper Co.)		
14.	Thunder Bay W.W.	Lake Superior	July/79
	(Bare Point Intake)		
15.	Metro Toronto	Lake Ontario	Sept./79
	(R.L. Clark Plant)		
16.	Grimsby W.W.	Lake Ontario	Oct./80
	(Reg'l Mun. of Niagara)		
17.	Cobourg W.W.	Lake Ontario	Oct./80

Table 2: Water Treatment Plant Locations, parameters analyzed and locations of analyses from 1976-81. 1 = S.W. Region Lab. (London); 2 = Central Lab. (Toronto); 3 = S.E. Region Lab. (Kingston); 4 = in W.W. plant; 5 = N.W. Region Lab. (Thunder Bay).

Location				P	arameters			
		Р	N	Cl	Cond.	Si	Chloro	Phyto
Goderich	'76-'81	1	1	1	1	1	?	4
Grand Bend	'76-'81	1	1	1	1	1	2	4
Sarnia	'76-'81	1	1	1	1	1	2	4
Amherstburg	1976	1	1	1	1	1	?	4
n .	1977	2	?	2	2	2	2	4/2
n ·	'78-'81	2	2	2	?	2	2	2
Union	'76-'81	1	1	1	1	1	?	4
Blenheim	'76-'81	1	1	1	1	1	?	4
Elgin	'76-'81	1	1	1	1	1	2	?
Dunnville	'76-'80	2	2	2	2	2	2	4
н	1981	2	2	2	2	2	2	2
South Peel	'76-'81	2	2	2	2	2	2	4
Kingston	'76-'77	3	3	3	3	2	-	2
u .	'78-'81	3	3	3	3	2	2	2
Brockville	'76-'77	3	3	3	3	2	-	2
ii .	'78-'81	3	3	3	3	2	2	2
Bertie Twp.	'78-'81	2	2	2	2	2	2	_
Terrace Bay	'79-'81	5	5	5	5	5	5	2
Thunder Bay	'79-'81	5	5	5	5	5	5	2
Metro Toronto	'79-'81	2	2	2	2	2	2	2
Grimsby	'80-'81	2	2	2	2	2	2	?
Cobourg	'80-'81	2	2	2	2	2	2	2

Table 3: Summary of parameters, their analytical ranges and detection criterion, and their maximum and minimum concentrations to date in this study*.

Parameter	Range on Undiluted Sample**	Detection Criterion		tration -1981
			Max.	Min.
Total Phosphorus as P	0.004-0.2 mg/L	0.003 mg/L	0.850	<.001
Soluble Reactive Phosphorus as P	0.004-0.100 mg/L	0.0029 mg/L	0.220	<.001
Nitrogen - Free Ammonia	0.007-0.400 mg/L	0.006 mg/L	1.100	<.002
Nitrogen – Total Kjeldahl	0.04 -2.0 mg/L	.036 mg/L	2.450	0.010
Nitrogen - Nitrite (NO ₂)	0.001-0.1 mg/L	.002 mg/L	0.335	<.001
Nitrogen - Nitrate (NO ₃)	Calculated	-	5.500	<.01
Chloride	0.1 -10 mg/L	0.18 mg/L	49	1.0
Conductivity	<500 µmho/cm	0.3 µmho/cm	560	83
Reactive Silicon	0.09 -5.0 mg/L	0.08 mg/L	3.25	<.02
Chlorophyll <u>a</u> in ug/L	<20 µg/L	N.A.	20.6	<0.1
Chlorophyll \underline{b} in $\mu g/L$	<20 µg/L	N.A.	9.3	<0.1
Phytoplankton Biomass	A.S.U./mL	N.A.	22,569	<1.0

^{*}Great Lakes Intake Monitoring Programme

^{**}In "Outlines of Analytical Methods" Anon 1981.

N.A. - Not applicable

LIST OF APPENDICES

*in 5 parts (A, B, C, D, and E) for Appendices 1-17.

APPENDIX	1:	Goderich Water Works		1976-1981
APPENDIX	2:	Lake Huron Water Supply System	(Grand Bend)	1976-1981
APPENDIX	3:	Lambton Area Water Supply System	(Sarnia)	1976-1981
APPENDIX	4:	Amherstburg Area Water System	(Detroit R.)	1976-1981
APPENDIX	5:	Union Water System	(Kingsville)	1976-1981
APPENDIX	۴:	Blenheim Area Water System		1976-1981
APPENDIX	7:	Elgin Area Water System	(St. Thomas)	1976-1981
APPENDIX	8:	Dunnville Regional Water System		1976-1981
APPENDIX	9	South Peel Water System	(Lakeview)	1976-1981
APPENDIX	10:	Kingston Water Works		1976-1981
APPENDIX	11:	Brockville Water Works	(St. Lawrence R.)	1976-1981
APPENDIX	12:	Bertie Twp. (Rosehill) Water Work	ks	1978-1981
APPENDIX	13:	Terrace Bay Water Works		1979-1981
APPENDIX	14:	Thunder Bay Water Works	(Bare Point Intake)1979-1981
APPENDIX	15:	Metro Toronto	(R.L. Clark Plant)	1979-1981
APPENDIX	16:	Grimsby Water Works		1980-1981
APPENDIX	17:	Cobourg Water Works		1980-1981
APPENDIX	18:	Reports, papers and presentations	s prepared to date	based on
		data collected from Great Lakes V	Water Intake Monito	ring
		Programme.		

- Part A (Append. 1-17): Detailed annual summary of weekly raw water data for twelve parameters at each water treatment plant, 1976-1981.
- Part B (Append. 1-17): Short annual summary of weekly raw water data for twelve parameters at each water treatment plant, 1976-1981.
- Part C (Append. 1-17): Annual summary of weekly raw water data converted to monthly means (±1 S.D.) for twelve parameters at each water treatment plant, 1976-1981.
- Part D (Append. 1-17): Graphical presentation of data as monthly means (±1 S.D.) for five parameters at one location or one parameter for five locations, 1976-1981.
- Part E (Append. 1-17): Graphical presentation of data as monthly means (±1 S.D.) for three parameters at one location or one parameter for three locations, 1976-1981.

- Appendix 18: Reports, papers and presentations prepared to date based on data collected from the Great Lakes Intake Monitoring Programme.
- Brydges, T.G. 1978. The role of water quality objectives in management of the Great Lakes. Environment Canada. Water Quality Bulletin Vol. 3, No.3, July 1978 p.3-6.
- Phosphorus in Ontario Lakes and Rivers". <u>In</u>
 Phosphorus in the Environment: Its chemistry and biochemistry,
 Ciba Foundation Symposium 57 (new series). Excerpta Medica
 Elsevier Scientific Publishing Co., Amsterdam. p.217-228.
- Hopkins, G.J. 1976. Monitoring Phytoplankton in Ontario's Water Supplies Water Resources Branch, Ontario Ministry of the Environment, Toronto, Ontario. 24p.
- Treatment Plants, 1976. A Summary Report to the Water Quality
 Surveillance Subcommittee, International Joint Commission. Water
 Resources Branch, Ontario Ministry of the Environment, Toronto,
 Ontario. 5p.
- . 1979. Water Quality Monitoring at Great Lakes Water Treatment Plants, 1976-1978. A Summary Report to the Water Quality Surveillance Subcommittee, International Joint Commission. Water Resources Branch, Ontario Ministry of the Environment, Toronto, Ontario. 5p. + appendices.
 - . 1983a. Great Lakes Intake Monitoring Programme. Lake
 Huron, 1976-1981. A Summary Report to the Water Quality
 Surveillance Subcommittee, International Joint Commission. Water
 Resources Branch, Ontario Ministry of the Environment, Toronto,
 Ontario. 25p. + appendices.
- . 1983b. Lake Erie Surveillance Update based on Union
 Waterworks Data 1976-1982. Report to Water Quality Surveillance
 Subcommittee, International Joint Commission. Water Resources
 Branch, Ontario Ministry of the Environment, Toronto, Ontario.
 3p. + figures.
- Nicholls, K.H. 1977. Phytoplankton of the St. Lawrence River at Brockville, Ontario, 1967-1976. Summary Report to the International Joint Commission. Water Resources Branch, Ontario Ministry of the Environment, Toronto, Ontario. 11p. + 4 fig.

Appendix No. 1 for Report:

GREAT LAKES NEARSHORE WATER QUALITY

MONITORING AT WATER SUPPLY INTAKES

1976-1981

bу

Gordon J. Hopkins
Ontario Ministry of the Environment
Limnology Section
Water Resources Branch
Box 213, Rexdale, Ontario, M9W 5L1

October 1983

Plant #	1 -	CODEKI	CII W. I.	P. 197	J							
	rot.P	ř.r.P	11.13	T.Kjl	402	403	31	Cond	R.Sil	Chl a	Chl b	Phyto
1229121	17359937757193939957352173205 24010350455551175 9	01507773451726760143320704416334 4594175674535547 1 	50500055000555000555005050500000000000	55050500505555005500550055005500550055	37117513992371115623133384513123 7344553443133554444 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		00000000000000000000000000000000000000		50000055500500050505050505000000000000	688251128565001219154072 44195757101342222250505 5	67392946 	39357359995 184397211 09028422284 99 9101 7304 3 12 325863 739473724 312334457741 99 9101 7304 3
max. mean s.dev. #sample:	0.205 0.042 0.339 s 45	0.027 0.009 0.337 45	0.100 0.027 0.338 45	1:150 0:372 0:336 45	0:017 0:337 45	3:557 0:561 45	27:0 4:6 45	= 0	2:10 0:03 0:60 45	² 5:0 4:1 45	8.4 1.3 3.4	3572 445 556 43

	rot.P	r.r.P	VH3	т.к ј1	NO2	1103	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
JAM 124 JAM 124 JAM 124 JAM 124 FEB 124 FEB 27 141 FEB	1197975591 1001125521531475560 100112552525112001 10010100000000000000000000000000	0.000000000000000000000000000000000000	0.0455555555005 0.023232455500505055555005 0.0232324555005000000000000000000000000000	125000550000550005005005005000000000000	0.000 0.000	0.3000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	78013811415979949876667566866 11121111 1		50500505500550000055 787679667578899544444 322333324 0000000011000000000 0000000000000000	784945904845	0.2	14411919 9 4177754326 323446975 215624326 15241397152 222246 2223446975
AUG 8 1229 26 129 26 123 117 23 123 3 122 3 123 3 123 3 128 3 128	0.018 - 349 0.019 0.021 0.0570 0.0570 0.022 0.0317 0.0377 0.03575 0.0956 0.0956 0.09551	0.003 -0.004 0.002 0.003 0	0.015 	0.195 	0.003 	0.220 -210 0.300 0.250 0.290 0.1510 0.510 0.410 0.400 0.400 0.400 0.400 1.110 1.110 1.460	1360.005500055500	213493949952073124 2222323232233233	0.4 - 40 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0	3280636	- - - - - - - - - 1.3 1.2 1.0 4.4 4.4	3052 502696 1252230120655550 12522333222287550 1252333222287550 1252333222287550 1252333222287550
min. max. mean s.dev. #sample	0.006 0.208 0.052 0.047 s 44	0.000 0.113 0.014 0.020 44	0.005 0.625 0.054 0.105 44	0.120 1.360 0.404 0.268 45	0.001 0.025 0.005 0.004 44	0.000 3.520 0.616 0.648 44	5.5 21.5 9.6 3.8 45	216 379 275 52 16	0.20 1.75 0.63 0.33 44	0.4 7.6 2.1 2.3 19	0.1 4.4 1.3 1.3	2319 327 394 43

Plane a	1 -	SSSERE	CI1 W. 1.	P. 197	3							
	rot.P	r.r.P	:1:13	т.кј1	:102	1103	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
JAN 3 JAN 9	-	-	_	-	=	_	_	-	-	2.5	3.4	$\frac{334}{252}$
JAN 16	J.J29 J.J23	0.020	0.060	0.310	0.008	0.300	11.5 13.0	255 334	0.30	0.9	0.2	120
JAH 33 FEB 5	0.020	0.011	0.025	0.240	0.005	$0.510 \\ 0.500$	7.3 9.5 3.0	259 253	0.70	2.0	2.0	52 27
FEB 13 FEB 20	0.013	0.015	0.065	$0.640 \\ 0.190$	0.005	0.480	3.0 8.0	20.7	0.65	1.2 0.6 0.3 0.4	0.4	50 59
FEB 27 MAR 5	0.009	0.004	0.055	$0.215 \\ 0.185$	0.005 0.003 0.003 0.005 0.005	0.433	7.5 7.5	265 265 245 264	0.70	0.4	0.3 0.2 0.1	52 27 50 50 14 48
.1AR 14 HAR 25	0.013 0.011	0.013	0.040	0.235	0.003	0.460	9.5	297	0.70 0.65	0.7	0.4	45
MAR 28 APR 3	0.039 0.064 0.081	0.026 0.032 0.027	0.045555555 0.04216555555 0.025455 0.025455 0.02545 0.02545 0.025	0.310 0.640 0.12185 0.1283 0.2335 0.5535 0.750 0.450 0.750	0.003 0.019 0.019	3.320 2.690 1.770	36.00555005550 25.005550	510 392 313	1.45 1.20 1.30	1.1 2.6 1.9	0.6	$119 \\ 107$
APR 10 APR 17 APR 24	0.033	3.025 3.011	0.035	0.450	0.016 0.013 0.010	2:103 1:520	13.5	441	1.20	1.4	0.5	123 1222 635
MAY 1 MAY 8	-	Ξ	_	_	=	_	_	=	_	_	=	-
MAY 15	0.019	0.005	0.010 0.015 0.010 0.015	0.300 0.190 0.185	0.005	0.560	10.5	291 220 226	0.35	2.9 1.5 0.9 3.2	0.3	934 354
MAY 29 JUN 5 JUN 12	0.010	0.001	0.015	0.105	0.003	0.350	6.5	221 217	0.30	3.2	0.4	241 534
JUN 19 JUN 26	0.044 0.014 0.025	0.001	0.020	0.205 0.275 0.170 0.300	0.003 0.003 0.008	0.310 0.250 0.004	5.0 6.0	217 207	0.25 0.40 0.35	1.9	0.6 0.7 0.7	685 398 265
JUL 4 JUL 10	0.315 0.376	0.003	0.020 0.030 0.0035 0.015 0.020 0.035 0.025 0.025 0.025 0.025 0.015	0.300 0.190 0.55550 0.2450 0.222255 0.222255 0.222255 0.222060	0.003	0.120 0.230	000550050 00065856	215 227	0.45	10.0	ö . 3	571 1867 1341
JUL 17 JUL 24	0.021	0.002	0.020	0.255	0.003 0.003 0.003 0.003 0.004 0.003	0.270 0.240	5.0	$\frac{257}{217}$	0.65	2.0	$0.0 \\ 0.2$	401
AUG 1 AUG 8	0.020	0.005	0.030	0.250	0.003	0.230	9.0	212226851377624413 2222222222222222222222222222222222	0.55	1.8 2.7 1.1	0.4	1461
AUG 15 AUG 21	$0.010 \\ 0.023$	0.005	0.025	$0.130 \\ 0.235$	0.004	0.240	13.0 13.5	216 248	0.45	1.17 2.23 1.08 1.30 1.53 1.4	0.6	244 576
AUG 29 SLP 5 SLP 11	0.024	0.004	0.025	0.225	0.001 0.005 0.003	0.210	7.5	2/5	0.60	1.0	0.2	145
32P 11 32P 18 52P 26	0.013 0.005 0.007	0.005	0.015	0.165	0.003	0.250 0.230 0.330	137.61.65.5500.500.500.500.500.500.500.500.500	267	0.60 0.65 0.80	1.5	0.3 1.2 1.7	173 283 345
557 3 557 15	0.014	0.003	0.025	0.100 0.190 0.225 0.225 0.525 0.195	0.004	0.580	9.0	216	0.75	1.4	0.4	345 130 129
OCT 16	0.012	0.003	0.015 0.025 0.015 0.010	0.220	0.006	0.720	3.5 11.0	$\frac{254}{254}$	0.70	0.9 3.5	0.9	98 128
NOV 6	0.027	0.011	0.015	$0.225 \\ 0.195$	0.005 0.005 0.003	0.440	10.0	261 213	0.58 0.58	1.5 1.6	0.7	350 214
NOV 14 NOV 25	0.043	0.004	0.015	0.450	0.003	0.240	12.0	219 304	0.56	9556117630	0.9	335
NOV 27 DEC 4 DEC 11	0.018	$0.004 \\ 0.004$	0.015	0.275	0.007	1.300	5.5	386 225 255 237	1.30	1:6	0.9	332 1599 273 469
DEC 11 DEC 18 DEC 25	0.063	0.009	0.015	0.390	0.003	0.930	13.0	237	0.48	4.0	1:3	469
min.	0 - 0.05	0.001	0.003	0.165	0.001	0.004		207				
max. mean	0.005	0.001 0.010 0.010 0.016	$ \begin{array}{c} 0.033 \\ 0.031 \end{array} $	8:725	$8:89\frac{1}{5}$	3:320 0:621 0:667	25:0 9:2 3:3 47	207 264	0.05 0.45 0.28 0.28	18:3 2:0 1:3 48	0200	1993 440
s.dev. #sample	0.023 3 47	0.016	0.031 0.023 46	0.357 0.150 47	0.011	0.667 46	3.3	264 67 47	0.28 45	1.3	48	440 496 49

r ranc n		OODEMI	C	1. 177	,							
	rot.r	f.r.P	4113	т.кј1	452	NO3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
2312261296 297 633 729 285 630 307 074 529 396 076 23123 5123 5122 5122 5122 5122 5122 512	1759330355331933226533093559634103 75115114223755 6 89 2110301134352335539412141401201111 111001272426225 3 41 00000000000000000000000000000000 000000	355376153436335801325410251211112 41011214635442 6 03 0000000000000000000000000000000000	00000000000000000000000000000000000000	\$4000000000000000000000000000000000000	0.000000000000000000000000000000000000	1.000000000000000000000000000000000000	13922244819466280489207777678688655566-777056487161716-7-12	78718984955435323831873700201395693157378057465 0 22 25801365684989780405322213231211111311526517382 5 07 32233222223422323333222222222222222222	22260602222804842808288868686852222006 25424046502325 4 08 29011189888800021856644434345444444 5447555433573655 7 97 10111100000121111100000000000000000000	4 7 1444446 9433368572333039088295 689433905341405 313 1.0.1000001011421211211231210001114011120211311211316	7 5 1452 3 549036635945183535275 174734364609635 569 01011000101010311100000001000000000000	39441193533038 1085879351545454233377597253576530809 9424443555329-767444344494938797274625104733087559062 11 312340696599321 47 122112212 11322 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2
min. max. mean s.dev. # samples	0.001 0.252 0.037 0.045 49	0.000 0.043 0.008 0.010 49	0.000 0.195 0.026 0.034	0:120 0:313 0:203 49	0:001 0:090 0:006 0:013 49	9:210 9:357 9:357 9:360 49	32:5 10:0 4.5 49	210 494 264 55 50	0.36 2.04 0.73 0.37 49	0:2 1:7 1:2 47	0.3 0.3 0.5 46	2037 335 399 51

	~	0000	· · · · · · ·		•							
	rot.P	f.r.p	3113	r.Kjl	.102 -	NO3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
JAA 2 JAA 14 JAA 21 JAA 221 JAA 223 FEE 3 11 FEE 3 25 FEE 3 3 FEE 3 14 FEE 3 14 FE	0.000000000000000000000000000000000000	0.012 0.013 0.013 0.015 0.005	0.000550555555555555555555555555555555	0.350 0.420 0.270 0.480 0.250 0.250 0.170 0.170 0.130 0.130 0.1560 0.220	0.035 0.003 0.003 0.004 0.003 0.0002 0.0001 0.0001 0.0001 0.0014 0.0014 0.0014	1.600 0.500 1.0500 1.2900 0.2970 0.5540 0.5540 0.55500 0.35200 0.35500 0.7000 0.7000 0.7000	9.55.05.05.00.00.00.55.05.11.05.50.50.50.50.50.50.50.50.50.50.50.50.	23047 235227 23527 235756425 232222223333 23222222222222222222222	1.22420 2.8820 2	121000000000000000000000000000000000	1.29953222345452499 00000000000000000000000000000000000	1537 15474 16202 11203 12114 16130 16130 16130 16130
APRYYY 1225 1418 387 0549 406 084 52 APRYYY 1225 1422 1122 1122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 1124 122 122	25976165760597607293004620293534466 3311010340110000001032442134565123373 0000000000000000000000000000000000	00000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.35100000000000000000000000000000000000	0.000000000000000000000000000000000000	1.000000000000000000000000000000000000	98877767776868707566657354426515408091 1111111111111111111111111111111111	1951352184234442322111463423412248407 2653312212222222222222222222222222222222	00000000000000000000000000000000000000	32222332212002110081214111021201101130	995275565 61337723123640453395066765237	120138309286881845362336461400813734 3632231612141 86 722 222313412 2 111 1 1 1
min. max. mean s.cev. #sample:	0.006 0.182 0.035 0.040 51	0.001 0.036 0.003 0.012 51	0.005 0.265 0.023 0.023 0.037	0.140 1.300 0.329 0.249 51	0.001 0.017 0.004 0.003	0.210 2.700 0.726 0.533 51	17.5 9.7 3.3 51	211 354 255 38 51	0.26 1.43 0.66 0.23	3:1 1:7 1:3 51	0.1 2.2 0.6 0.4 51	1874 376 403 52

Plant #	1 -	GODERI	CH W.T.	P. 198	1							
	Tot.P	f.r.P	NH3	T.Kjl	NO2	NO3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
JUJJJFFFFFMMMAAAAAMMMMMJJJJJJJJJJJJAAAAASSSSSOOOOONNNNNDDDDD mm	9460999905203010125853821540000603026448 122622446 99900 25 0000000000000000000000000000000000	946443726724610673661211130212232321222232 719756557 8160 050000000000000000000000000000000000	0.0430055055000500005555000505555005 0.04300500000000000000000000000000000000	1226900000000000000000000000000000000000	2221132225377554445247770311220222232221233222 414877334 6250 0000000000000000000000000000000000	00000000000000000000000000000000000000	\$0.855.500.5500.550.550.500.500.500.500.5	23558265447808480326874972553668100915 74930800 8245 07 22222223422223233222222222222222222222	886898808987665654554554344443354447555067 63657557 0898 0800000000100000000000000000000000	64468666450034529157803701403945486773 3850 2 92269 36	532342302535576 6292558742983634739831 6235 5 80835 19	91361148863404946820597896078697658593 2476021950665 15 11 31 21463479951243293419 71 7 2 112412112 2
mean s.dev. #samples	0:002 0:055 0:055 0:121 50	0:000 0:056 0:006 0:009	0:005 0:013 0:012 50	0:140 0:372 0:260 50	8:839 0:004 0:005 50	0:240 0:500 0:989 1:062 50	21:5 9:9 3:9 50	200 473 266 60 50	9:06 0:71 0:36 50	9:3 1:7 1:8 48	0.6 0.6 47	2715 389 498 51

Plant # 1 -	GODERICH W.T.	P. 197	6							
rot.P	f.r.P NII3	T.Kjl	NO2	NO3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
min. 0.009 max. 0.205 mean 0.042 s.dev. 0.035 #samples 45	0.001 0.000 0.027 0.100 0.009 0.027 0.007 0.020 45 45	0.185 1.150 0.372 0.187 45	0.001 0.017 0.006 0.004 45	0.000 2.600 0.567 0.569 45	27.0 9.4 4.5 45	- - - 0	0.25 2.40 0.88 0.50 45	0.5 25.0 3.6 4.1 45	0.6 8.4 1.8 2.5	30 3572 445 556 43
Plant # 1 -	GODERICH W.T.	P. 197	7							
Tot.P	f.r.P NH3	r.Kjl	1102	NO3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
min. 0.006 max. 0.208 mean 0.052 s.dev. 0.047 # samples 44	0.000 0.005 0.113 0.625 0.014 0.054 0.020 0.105 44 44	0.120 1.360 0.404 0.268 45	0.001 0.025 0.005 0.004 44	0.000 3.520 0.616 0.648 44	5.5 21.5 9.6 3.8 45	216 379 275 52 16	0.20 1.75 0.63 0.33 44	0.4 7.6 2.1 2.3	0.1 4.4 1.3 1.3	2319 327 394 43
Plant # 1 -	GODERICH W.T.	.P. 197	8							
Tot.P	f.r.P NH3	r.Kjl	NO2	NO3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
min. 0.005 max. 0.098 mean 0.028 s.dev. 0.023 #samples 47	0.001 0.003 0.100 0.120 0.010 0.031 0.016 0.028 46 46	0.165 0.720 0.307 0.150 47	0.001 0.071 0.007 0.007 0.011 46	0.004 3.320 0.621 0.667 46	25.0 25.0 9.2 3.8 47	207 510 264 67 47	0.05 1.45 0.66 0.28 45	10.3 10.0 2.0 1.8 48	0.0 2.5 0.6 0.5 48	1993 440 496 49
Plant # 1 -	GODERICH W.T.	.P. 197	9							
Tot.P	f.r.P NH3	T.Kjl	NO2	NO3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
min. 0.001 max. 0.252 mean 0.037 s.dev. 0.045 #samples 49	0.000 0.000 0.043 0.195 0.008 0.026 0.010 0.034 49	0.120 1.100 0.313 0.203 49	0.001 0.090 0.006 0.013 49	0.210 4.200 0.357 0.860 49	32.0 10.0 4.5 49	210 494 264 55 50	0.36 2.04 0.73 0.37 49	0.2 6.3 1.7 1.2 47	0.2 3.0 0.8 0.5 46	23 2037 335 399 51
Plant # 1 -	GODERICH W.T	.P. 198	0							
Tot.P	f.r.P NH3	T.Kjl	NO2	NO3	· Cl	Cond	R.Sil	Chl a	Chl b	Phyto
min. 0.006 max. 0.182 mean 0.035 s.dev. 0.040 #samples 51	0.001 0.005 0.086 0.265 0.008 0.023 0.012 0.037 51 51	0.140 1.300 0.329 0.249 51	0.001 0.017 0.004 0.003 51	0.210 2.700 0.726 0.583 51	17.5 17.5 9.7 3.3	211 354 255 38 51	0.26 1.48 0.66 0.28	0.1 8.1 1.7 1.3 51	0.1 2.2 0.6 0.4 51	1874 376 408 52

Plant #	1 -	GODERI	CH W.T.	P. 198	1							
	rot.v	f.r.p	11113	T.Kjl	14.)2	403	C1	Cond	R.Sil	Chl a	Chl b	Phyto
min. max. mean s.dev. #sample	0.002 0.350 0.055 0.235	0.000 0.056 0.006 0.202 50	0.000 0.065 0.013 0.202 50	0.140 1.430 0.372 0.329 50	0.000 0.035 0.004 0.202 50	0.240 5.500 0.989 1.031	5.5 21.5 9.9 3.9	200 473 256 60 50	0.00 2.06 0.71 0.42 50	0.3 3.6 1.7 1.3 43	0.1 1.9 0.6 0.6 47	2715 389 498 51
Plant #	1 -	GODERI	CH W.T.	P. 198	2							
	Tot.P	f.r.P	ин3	T.Kjl	102	:103	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
min. max. mean s.dev. #sample	0.006 0.304 0.040 0.296 43	0.001 0.043 0.008 0.292 48	0.005 0.075 0.018 0.292 48	0.150 1.090 0.361 0.364 48	0.000 0.032 0.005 0.292 48	0.250 3.400 0.792 0.744 48	5.0 18.5 9.3 3.3 48	211 444 259 46 48	0.38 1.76 0.77 0.43 48	0.3 5.3 1.7 1.3 43	0.0 2.5 0.6 0.6 43	19 4573 452 745 52

I I CITTO		00011100		17.0								
	Pot.P	F.c.P	мн3	r.Kjl	ND2	.403	01	Cond	R.Bil	Chl a	Chl b	Payto
JA 1 JA 1 JO		- -		- -		- -		- -		- -	-	4 143 101
.10 233 n 33	0.030		0.063	0.433	0.014	3 1.390 0.652	22.3	-	2.15	0.73	-	3 50 20
E. SEC.	J. U.S.L	5 J.J22 0.J04	0.052	9.494	0.013	5 1.252 0.393	9.3	- -	1.49 0.33	1.34	0.1	227
APA m	0.335	$\begin{smallmatrix} 4\\0.014\\0.006\end{smallmatrix}$	0.025	0.601	0.008	0.975 0.455	8.9	-	0.33	9.75 10.33	3.3	3 325 513
AAY m	$\begin{array}{c} 4 \\ 0.041 \\ 0.024 \end{array}$	0.015	0.015	4 0.413 0.192	0.008 0.003	4 0.413 0.344	4 7.5 2.4	- -	0.56	4 6.03 4.47	- -	1 513 215
No Jün a SS	4 0.013 0.003	0.003 0.001	4 0.026 0.010	4 0.221 0.029	4 0.002 0.001	4 0.208 0.052	5.4 0.3	- -	0.53	2.15 1.39	- -	3 171 253
JUL m			0.021			0.143 0.115		- -			- -	3 253 71
30 M 5UA		0.004	0.013	5 0.260 0.082	5 0.002 0.001	5 0.174 0.015	3.3	-	5 0.91 0.39	2.95	- -	1029 1423
SEP m			0.017	3 0.263 0.045	3 0.005 0.002	3 0.183 0.021	9.2	-		1.63	1.0	
	0.038	0.004		0.313	0.005	0.193 0.043					- -	
CS VOL	5 0.062 0.035	5 0.005 0.002	5 0.017 0.007	5 0.526 0.243	5 0.003 0.001	5 0.360 0.106	5 9.3 2.4	- -	5 0.70 0.20	5 3.96 0.79	- -	4 25 7 126
A O DEC in SO	4 0.027 0.013	4 0.003 0.006	4 0.035 0.043	4 0.280 0.076	4 0.004 0.001	4 0.653 0.105	8.3 1.3	- -	4 0.70 0.32	1.08 0.38	- -	3 266 122

		TOU.P	r.r.P	м113	T.Kjl	NJ2	103	01	Cond	R.Sil	Chl a	Ch1 b	Phyto
794	100 100 100	4 0.012 0.005	0.005 0.002	4 0.035 0.008	4 0.204 0.069	0.003 0.003	4 0.293 0.197	9.1 2.0	- -	4 0.73 0.09	4 0.70 0.22	0.2	1 114 45
	N O	4	4 0.063	4 0.310	4 0.550	4	4 0.455	4 17.3	0	4 0.73 0.16	4 0.70 0.29	4 0.6 0.3	2 15 6
AAR.		0.090	0.030	0.091	0.526	0.013	1.858	12.5	- -	1.20	1.73 2.63	0.7 0.9	38 23
APR	m SD	0.060	0.014	0.035	0.458	0.009	1.013 0.220	8.3	- -	0.73 0.21	-	-	143 72
MAY	m 3 D	0.041	0.005	0.037	0.348	0.005	0.620	9.5 3.1	- -	0.43	-	- -	4 389 189
JUN	M	0.014		0.011	0.193	0.002	0.240	6.5	- -	0.33	_		3 183 30
JUL	m	0.062	0.005	0.016	0.450	0.003	0.225	6.4	- -	0.31	-		756 1053
AUG	:n	0.016		0.012	0.195	0.002	0.210	6.3	- -	0.35	-	- -	5 340 166
			3 0.002 0.001				3 0.280 0.026	8.3 4.0	4 236 24	3 0.47 0.12		- -	4 540 531
UUT	iñ	0.049	0.003	0.015	0.432	0.005	0.623	11.1	309 61	0.73	-	-	272 81
MOV	NO A SD		0.008	0.020	4 0.375 0.164	0.004 0.001	4 0.403 0.005	7.1 1.0	4 241 12	4 0.48 0.10	2.83 1.13	1.1 0.3	4 404 278
DEC	m M	3 0.100 0.052	3 0.011 0.002	0.032	3 0.838 0.474	3 0.008 0.002	3 1.233 0.197	3 10.5 1.3	3 316 22	3 0.92 0.08	3 5.50 2.59	3 3.5 1.5	2 540 57

Plail	L H	1 - 3	OBERICA	W. I. P.	1973								
		Tot.P	ë.r.P	Ni13	r.Kjl	NO2	NO3	Cl	Cond	R.311	Chl a	Chl 5	Phyto
JA.1		3 0.026 0.005	3 0.015 0.005	3 0.043 0.013	3 0.283 0.033	3 0.007 0.002	3 0.723 0.137	3 10.5 3.1	3 283 45	3 0.73 0.03	1.93 0.75	1.3 1.1	5 177 115
res	.73	0.019 0.012	4 0.013 0.009	0.065	0.339	0.005	4 0.433 0.045	8.3	250	4 0.74 0.03	0.70		4 39 13
			4 0.013 0.010	0.064			1.213	12.9		0.35 0.40	0.63 0.36	0.3	17
APR	m	0.070 0.025	0.023 0.009	0.064 0.043	0.603	0.015	4 2.020 0.506	12.3	392	1.06 0.34		4 0.7 0.6	
HAY		3 0.016 0.005	3 0.003 0.002	0.012	3 0.225 0.065	3 0.004 0.001	0.407	3 7.7 2.5	245	3 0.35 0.05	3 1.77 1.03		4 566 310
JUN	\mathbf{m}	0.024 0.015	4 0.027 0.049	0.017	0.233	0.004	0.214 0.142	6.1	216	0.33	1.33 1.02		
					0.284	0.003	4 0.215 0.066	6.3					1060 635
AUG		5 0.019 0.006	5 0.004 0.001			5 0.003 0.001		5 9.9 3.2	5 238 24	5 0.54 0.07	5 1.60 0.82		4 615 591
SEP	No m 30	0.003 0.003	4 0.004 0.002	4 0.015 0.007	4 0.199 0.025	4 0.004 0.001	4 0.253 0.050	7.8 2.3	232 24	0.65 0.11	2.90 3.61	0.9	4 238 95
ocr		5 0.027 0.019					5 0.534 0.124		5 245 18	0.52 0.32	1.74 1.01	0.6 0.2	5 177 101
40V	МО М ЗО	0.037 0.024	4 0.005 0.003			4 0.005 0.002	4 0.610 0.498	4 10.6 5.6	4 232 30	0.81 0.34	2.13 0.58	0.8 0.1	4 3 4 4 8 12
DEC	M o M		2 0.007 0.004		3 0.397 0.160	2 0.003 0.000		3 9.0 3.8	3 239 15	3 0.64 0.17	3 2.47 1.33	3 1.0 0.4	3 780 716

riam	- 17	1 - 3	JUENICH	W. I. F.	1919								
		rot.P	P.r.P	9113	T.Kjl	NO2	403	Cl	Cond	R.Sil	Chl a	Chl b	Pnyto
JAN			5 0.006 0.002		5 0.263 0.033	5 0.003 0.001	5 0.940 0.037	12.2 2.0	5 298 27	1.09 0.11	3 1.07 0.35	3 0.3 0.3	5 130 63
FE3	SO	0.017	0.010 0.010	0.045	0.206	0.001	0.513 0.067	10.5	258 14	0.34		0.2	4 63 15
AAR		0.042 0.010	4 0.028 0.012	0.105 0.066	4 0.424 0.067		4 2.033 1.530	18.1 10.0	4 352 99	1.33 0.51	3 0.97 0.40	3 0.7 0.6	1 102 73
APR			0.021 0.013		4 0.581 0.373		4 1.398 0.390	10.6 2.4	313 41	1.06 0.19		1.7	3 270 105
MAY		0.050	5 0.008 0.007	5 0.011 0.005	5 0.334 0.203	5 0.005 0.002	0.333	8.3 2.1	5 273 51	5 0.54 0.10	2.00 0.51	0.6 0.2	5 1035 630
JUN	133	0.030	4 0.002 0.002	0.009	4 0.215 0.068	0.003	4 0.320 0.037	6.9	223	0.42		0.3 0.2	205
	m		0.001 0.000		5 0.168 0.041		0.344	6.2	219 9	5 0.43 0.05	5 1.14 0.75	5 0.4 0.2	5 192 111
AUG	m	0.015	3 0.002 0.002	0.013	3 0.173 0.025	0.002	3 0.230 0.010	6.3	217	3 0.43 0.03		3 0.3 0.3	1 325 345
SEP		0.010	0.001 0.001	0.010	4 0.190 0.045	0.002	4 0.240 0.022	9.3	229	0.55	1.35 0.37	0.6	1 177 71
150	on m CS	0.044	5 0.004 0.002	0.016	0.374	5 0.007 0.010	0.322	5 10.3 4.2	5 247 26	5 0.43 0.15	5 1.32 0.97	5 0.6 0.3	5 199 57
VCN	.n .n .vo	3 0.034 0.014	0.007		3 0.377 0.240	3 0.003 0.001		3 3.4 2.7	3 248 33	3 0.52 0.12	1.50 0.37	0.8 0.4	93 44
O EC		0.068	3 0.016 0.015	0.013		3 0.034 0.048		3 10.2 2.4	3 308 61	3 1.14 0.56	3 3.57 2.61	1.0 0.5	4 497 491

I Idile #	1 3	JDBKI CII	W. I. I.	1700								
	rot.P	F.r.P	Nil 3	r.Kjl	1132	1103	C1	Cond	R.311	Chl a	chl 5	Phyto
	0.025	0.002	0.007	0.098	0.001	0.405	2.1	28	0.15	0.56	9.4	5 115 74
.10 EE3 m 50												141 45
30	0.054	0.035	0.103	0.406	0.008	1.172	4.5	44	0.40		0.6	5 124 57
Jo m RPA SO	3 0.031 0.005	3 0.009 0.002	3 0.023 0.013	3 0.297 0.071	3 0.007 0.002	3 1.377 0.399	3 8.0 1.5	3 274 45	3 0.72 0.07	2.18 1.02	0.9	343
οι, π γΑι. CS	0.014 0.005	0.002 0.001	0.010 0.000	4 0.223 0.036	0.003 0.002	4 0.530 0.264	7.4 0.9	2 34 16	0.35 0.37	3.13 0.40	0.3	4 1155 221
JUN n		0.003	0.011	0.213	4 0.003 0.002	4 0.330 0.049	7.3	4 221 3	0.31	1.60	3 0.4 0.3	4 591 422
JUL m			0.017		5 0.002 0.000	5 0.254 0.027	7.9	5 219 5	5 0.39 0.04	5 1.36 0.75	0.4	5 403 415
AJG m	0.051	4 0.033 0.002	0.003	0.403	4 0.002 0.001		6.1	212 1	0.43	3.08 3.51	0.3	4 560 355
SEP m		0.004		0.253		5 0.294 0.102	11.3	5 242 27	0.67	1.73	0.6	5 234 270
OCT m	0.075 0.074	0.005	0.015 0.034	0.623	4 0.004 0.001	0.903	14.5 1.6	295 51	4 0.75 0.35		0.7 0.3	
OL m VCL C2	4 0.043 J.025	0.007 0.002	0.009 0.005	4 0.403 0.245	$\begin{array}{c} 4 \\ 0.004 \\ 0.001 \end{array}$	4 0.393 0.185	12.9 2.5	4 290 29	4 0.72 0.06	4 0.90 0.58	4 0.6 0.1	4 275 181
No DEC m SO		0.014 0.005		4 0.283 0.072	4 0.005 0.002	4 0.320 0.391	9.5 1.3	255 25	0.35 0.16	1.75 1.32	0.9 0.4	154 131

Flanc	и т	3	ODLKICH	W. I. I.	1 701								
		rot.P	F.r.P	N113	T.Kjl	0.02	8O3	Cl	Cond	R.Sil	Chl a	Chl b	Phyto
JAN	do m SD	4 0.020 0.008	4 0.003 0.004	0.025 0.015	4 0.245 0.058	4 0.002 0.001	4 0.595 0.107	3.9 0.3	254 10	0.31 0.10	0.50 0.12	0.3 0.1	4 37 22
FEB .	ທ ວ່)	0.222 0.419	4 0.017 0.026	0.018	0.508 0.516	0.011	1.330 2.416	12.3	298 49	1.19 0.59	1.15	0.1	4 171 110
9	SD	0.013	5 0.010 0.010	0.024	0.137	0.004	1.463	5.0	33	1.00	5 0.84 0.33	0.4	5 223 137
	30	0.024	0.007 0.003	0.006	0.145	0.001	0.341	3.4	37	0.04	1.50	3 1.0 0.6	4 586 173
,	SD	0.045	0.003	0.007	0.240	0.003	0.540	5.0	57	0.07	3.53 3.35	1.0	4 626 383
JUN	n SO	5 0.030 0.042	5 0.001 0.001	5 0.007 0.003	5 0.360 0.234	5 0.001 0.001	5 0.322 0.042	5 6.2 0.3	5 214 5	5 0.44 0.03	5 1.22 0.54	0.7	5 455 290
	m SD	0.063	0.002 0.001	0.014	0.470 0.413	0.002 0.001	0.350 0.154	6.4 0.5	217 5	0.45	1.15 0.68	0.7	979 366
AUG	m	5 0.013 0.011	0.002 0.001	0.011	0.202	5 0.002 0.001	0.256	5 6.7 0.8	211	5 0.53 0.11	2.74	0.7	5 217 237
	m	3 0.063 0.073	3 0.002 0.001	0.010	0.423	3 0.002 0.001	0.353	3 8.2 2.3	235	3 0.45 0.39		0.7	3 1005 1432
OCT	m	4 0.035 0.027	0.006	0.010 0.008	4 0.420 0.150	0.004	1.775 1.585	12.5 5.5	4 331 115	1.04 0.47	1.40 0.67	0.4 0.2	150 63
VCN		4 0.061 0.048	0.006 0.001	0.008 0.005	4 0.478 0.275	0.004 0.002	1.120 0.685	12.3 4.2	4 297 62	0.65 0.13	3 2.77 0.51	0.8 0.3	5 249 137
DEC		4 0.050 0.018	4 0.009 0.007	4 0.010 0.008	4 0.350 0.077	4 0.006 0.003	4 1.075 0.386	9.6 1.1	4 275 24	0.91 0.11	3 0.90 0.30	3 0.5 0.3	4 207 58

DATE		

MOE/GRE/ANBZ
Hopkins, G. J.
Great Lakes
nearshore water anbz