Assignment Lecture 4: Normal forms

https://tutorcs.com

WeChat: cstutorcs

Complete sets of connectives

A set of connectives is said to be **complete** if we can represent every truth function $\{T, F\}^n \to \{T, F\}$ using only these connectives (there are 2^{2^n}

Assignment Project Exam Help

Example: Is $\{\neg, \land, \lor\}$ complete?

WeChat: cstutorcs

This is not too difficult:

$$f_1 = \top$$

$$f_2 = p$$

$$f_3 = \neg p$$

$$f_4 = \bot$$

What about binary functions?

For n = 2 there are 16 possible functions:

WeChat: cstutorcs

But there is still plenty to do and then there are the cases n=3, n=4, etc.

Proof by construction

To create a formula that is logically equivalent to any function f on variables $x_1, \ldots x_n$ given by its truth table, do the following:

Street the triple $L_1 \land L_n$ where L_j is x_j if x_j is assigned T under the valuation L_i is $\neg x_i$ if x_i is assigned F under the valuation

- take the disjunction of all conjunctions from the previous step
- for the function that is everywhere P, by convention take \perp

This shows that $\{\neg \land, \lor\}$ is indeed complete.

WeChat: cstutorcs
The resulting formula is called a disjunctive normal form (DNF) of f.

Example

The disjunctive normal form of a function f is **not unique**.

Conjunctive normal form

A formula in **disjunctive normal form (DNF)** is a disjunction of conjunctions of literals. A **literal** is a variable or its negation, or \bot or \top .

Assignment Project, Exam. Help disjunctions of literals.

Example https://tutorcs.com

CNF: $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r)$

(these are two different functions)

CSTUTOTCS

Theorem: Every Boolean function has a DNF.

Theorem: Every Boolean function has a CNF.

First theorem follows from our construction before. Proof of second theorem in the exercises.

Further questions (see the exercises)

What other sets of connectives are complete?

How can you tell/prove that a set of connectives is not complete?

ASSIGNMENT Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Normal form algorithms

Problem: Given a formula, can we derive its DNF or CNF in a systematic way, other than by writing down the entire truth table?

Assignment Project Exam Help

The input is any propositional formula, the output is a semantically equivalent formula in DNF or CNF.

In every start the agorithment is read every first ule given by one of the laws of Boolean algebra.

WeChat: cstutorcs