BAB₁

EKSPONEN DAN LOGARITMA

CATATAN:

Untuk Pendalaman Materi, silahkan buka kembali pada materi EKSPONEN DAN LOGARITMA kelompok TKPA Matematika Dasar. Khusus pada bagian ini sifatnya hanya pengulangan dan memantapan dari materi yang sudah diberikan sebelumnya.

Persamaan Eksponen

1. Fungsi Eksponen (Pangkat)

Bilangan berpangkat yang pangkatnya berbentuk fungsi (memuat variabel), maka bentuk tersebut dinamakan fungsi eksponen.

Bentuk umum: $f(x) = a^{g(x)}$

dengan a = bilangan pokok, a> 0, dan $a \ne 1$, g(x) = pangkat atau eksponen.

Tidak menutup kemungkinan bilangan pokok dari fungsi eksponen juga berbentuk fungsi, sehingga bentuknya menjadi $f(x) = g(x)^{h(x)}$.

2 Persamaan Eksponen

- a. Jika $a^{f(x)} = a^p$ (a > 0 dan a \neq 1), maka f(x) = p
- b. Jika $a^{f(x)} = a^{g(x)}$ (a > 0 dan a \neq 1), maka f(x) = g(x)
- c. Jika $a^{f(x)} = b^{f(x)}$ (a > 0 dan a ≠ 1, b > 0 dan b ≠ 0), maka f(x) = 0
- d. Jika $\{h(x)\}^{f(x)} = \{h(x)\}^{g(x)}$, maka kemungkinannya adalah:
 - 1) f(x) = g(x)
 - 2) h(x) = 1
 - 3) h(x) = 0 jika f(x) dan g(x) keduanya positif
 - 4) h(x) = −1 jika f(x) dan g(x) keduanya ganjil atau f(x) dan g(x) keduanya genap.
- e. Jika A $\left\{a^{f(x)}\right\}^2 + B\left\{a^{f(x)}\right\} + C = 0$ (a > 0 dan a \neq 1, A,B,C \in real dan A \neq 0), maka ditentukan dengan mengubah persamaan eksponen ke dalam persamaan kuadrat.

3. Grafik Eksponen

Contoh grafik fungsi eksponen:

a. Untuk bilangan pokok a > 1

Fungsi $f(x) = 2^x$ dan $f(x) = 2^{-x}$ dengan bantuan tabel adalah:

Grafik fungsi $f(x) = 2^x dan f(x) = 2^{-x} adalah$:

b. Untuk bilangan pokok 0 < a < 1

Fungsi
$$f(x) = \left(\frac{1}{2}\right)^x dan f(x) = \left(\frac{1}{2}\right)^{-x} dengan bantuan$$

X	-4	-3	-2	-1	0	1	2	3	4	
$y = \left(\frac{1}{2}\right)^{x}$	16	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	1/16	
$y = \left(\frac{1}{2}\right)^{-x}$	1 16	$\frac{1}{8}$	1/4	$\frac{1}{2}$	1	2	4	8	16	

Grafik fungsi $f(x) = \left(\frac{1}{2}\right)^x dan f(x) = \left(\frac{1}{2}\right)^{-x} adalah:$

Sifat-sifat grafik fungsi eksponen adalah:

- Grafik selalu berada di atas sumbu X.
- Grafik eksponen $f(x) = a^x$ selalu melalui titik (0, 1).
- Grafik fungsi eksponen dengan bilangan dasar a >1 disebut fungsi monoton naik, karena untuk setiap $x_2 > x_1$ maka $f(x_2) > f(x_1)$, sedangkan untuk 0 < a < 1 disebut fungsi monoton turun karena untuk setiap $x_2 > x_1$ maka $f(x_2) < f(x_1)$.

- Fungsi eksponen merupakan fungsi satu-satu, sebab jika $f(x_1) = f(x_1)$ maka $x_2 = x_1$.
- Nilai fungsi eksponen selalu positif untuk setiap x bilangan real.
- Grafik $f(x) = a^x$ sama dengan grafik $f(x) = \frac{1}{a}^{-x}$ begitu juga grafik $f(x) = a^{-x}$ sama dengan grafik $f(x) = \frac{1}{a}^{x}$.

3. Pertidaksamaan Eksponen

Sifat Fungsi Eksponen	Keterangan				
Monoton naik (a > 1)	Jika $a^{f(x)} \ge a^{g(x)}$, maka $f(x) \ge g(x)$ Jika $a^{f(x)} \le a^{g(x)}$, maka $f(x) \le g(x)$				
Monoton turun (0 < a < 1)	Jika $a^{f(x)} \ge a^{g(x)}$, maka $f(x) \le g(x)$ Jika $a^{f(x)} \le a^{g(x)}$, maka $f(x) \ge g(x)$				

B Persamaan Logaritma

1. Fungsi Logaritma

Bentuk logaritma yang numerusnya adalah fungsi (memuat variabel), dinamakan fungsi logaritma.

Bentuk umum:
$${}^{a}log f(x)$$

dengan $a = bilangan pokok, a > 0, a \ne 1, f(x) = numerus, x = hasil logaritma, x > 0.$

Tidak menutup kemungkinan bilangan pokoknya juga mengandung variabel, sehingga bentuk fungsi logaritmanya:

$$f(x)\log g(x)$$

2. Persamaan Logaritma

- a. Jika $\log f(x) = \log p$, maka f(x) = p dengan
 - Jika ${}^{a}\log f(x) = {}^{b}\log f(x)$ (dengan a \neq b), maka
- b. f(x) = 1
 - Jika $\log f(x) = \log g(x)$, maka f(x) = g(x) dengan
- f(x) dan g(x) keduanya harus positif
- d. Jika $h(x) \log f(x) = h(x) \log g(x)$, maka f(x) = g(x) dengan f(x) dan g(x) keduanya harus positif serta h(x) > 1 dan $h(x) \neq 1$
- e. $A(^{a}\log x)^{2} + B(^{a}\log x) + C = 0$ (a>0 dan a ≠ 1,

A,B,C \in real dan A \neq 0), maka ditentukan dengan mengubah persamaan logaritma ke dalam persamaan kuadrat.

3. Grafik Fungsi Logaritma

Contoh grafik fungsi logaritma:

a) Untuk bilangan pokok a > 1

Fungsi $f(x) = {}^{2}\log dengan bantuan tabel adalah:$

$$x \frac{1}{16} \frac{1}{8} \frac{1}{4} \frac{1}{2} 1 2 4 8 16$$

$$y = {}^{2}\log x - 4 - 3 - 2 - 1 0 1 2 3 4$$

b) Untuk bilangan pokok 0 < a < 1

Fungsi $f(x) = \frac{1}{2} \log x$ dengan bantuan tabel adalah:

$$x \frac{1}{16} \frac{1}{8} \frac{1}{4} \frac{1}{2} 1 2 4 8 16$$

$$= \frac{1}{2} \log x 4 3 2 1 0 -1 -2 -3 -4$$

Grafik fungsi $f(x) = {}^{2}\log x \text{ dan } f(x) = {}^{\frac{1}{2}}\log x \text{ adalah:}$

Sifat-sifat grafik fungsi logaritma:

- Grafik selalu berada di sebelah kanan sumbu Y.
- Grafik selalu melalui titik (1.0).
- Grafik fungsi logaritma dengan bilangan dasar
 a > 1 disebut fungsi monoton naik, sedangkan
 untuk 0 < a < 1 disebut fungsi monoton turun
- Fungsi logaritma merupakan fungsi satu-satu.

4. Pertidaksamaan Logaritma

Sifat Fungsi Logaritma	Keterangan		
Monoton naik (a > 1)	Jika $a \log f(x) \ge a \log g(x)$, maka $f(x) \ge g(x)$; $f(x), g(x) > 0$ Jika $a \log f(x) \le a \log g(x)$, maka $f(x) \le g(x)$; $f(x), g(x) > 0$		
Monoton turun (0 < a < 1)	Jika $a \log f(x) \ge a \log g(x)$, maka $f(x) \le g(x)$; $f(x), g(x) > 0$ Jika $a \log f(x) \le a \log g(x)$, maka $f(x) \ge g(x)$; $f(x), g(x) > 0$		

Aplikasi Fungsi Eksponen dan Logaritma

1. Aplikasi Fungsi Eksponen

a) Fungsi pertumbuhan

$$\left[M_{n} = M_{0} \left(1 + \frac{i}{100} \right)^{t} \right]$$

b) Fungsi peluruhan

$$M_n = M_0 \left(1 - \frac{i}{100} \right)^t$$

 $M_n = total jumlah uang di akhir tahun$

 $M_n = modal awal$

t = periode waktu

i = bunga

2 Aplikasi Fungsi Logaritma

Menentukan taraf intensitas bunyi:

$$D = 10.\log \frac{I}{I_0}$$

dengan:

D = taraf intensitas bunvi (skala desibel)

I = intensitas bunyi (satuan watt/m²)

I_o = intensitas bunyi minimum yang bisa didengar orang sehat, yaitu 1,0×10⁻¹²

- Rumus Praktis (i) $\sqrt{(a+b)\pm 2\sqrt{a \cdot b}} = \sqrt{a\pm \sqrt{b}}$ $(ii) p^{ax+b} + p^{c-ax} \Rightarrow x_1 + x_2 = \frac{c-b}{a}$ (iii) $a \cdot p^{2x} + b \cdot p^{x} + c = 0 \Rightarrow x_1 + x_2 = \frac{p \log c}{a}$ (iv) $a(p^{mx})^2 + b(p^{mx}) + c = 0 \Rightarrow x_1 + x_2 = \frac{p \log \frac{c}{a}}{a}$

CONTOH SOAL DAN PEMBAHASAN

1. Grafik
$$y = 3^{x+1} - \left(\frac{1}{9}\right)^x$$
 berada di bawah grafik

$$y = 3^x + 1$$
 jika

A.
$$0 < x < 1$$

D.
$$x > 3$$

B.
$$x > 1$$

E.
$$1 < x < 3$$

Pembahasan SMART:

$$y_1 = 3^{x+1} - \left(\frac{1}{9}\right)^x$$
 di bawah $y_2 = 3^x + 1$

Artinya:

$$y_2 - y_1 > 0$$

$$\Rightarrow (3^x + 1) - (3^{x+1} - (\frac{1}{9})^x) > 0$$

$$\Rightarrow (3^x + 1) - (3.3^x - \frac{1}{(3^x)^2}) > 0$$

$$\Rightarrow 3^{x} + 1 - 3 \cdot 3^{x} + \frac{1}{\left(3^{x}\right)^{2}} > 0 \quad \left[\text{Misalkan } 3^{x} = p \right]$$
$$\Rightarrow p + 1 - 3p + \frac{1}{p^{2}} > 0$$
$$\Rightarrow -2p + 1 + \frac{1}{p^{2}} > 0$$

Kedua ruas dikalikan dengan $(-p^2)$, diperoleh:

$$\Rightarrow 2p^3 - p - < 0$$

$$\Rightarrow (p-1)\underbrace{(2p^2+p+1)}_{\text{Definition}} < 0$$

$$\Rightarrow p-1<0$$

$$\Rightarrow$$
 p < 1 [kembalikan 3^x = p]

$$\Rightarrow$$
 3 x < 1

$$\Rightarrow$$
 x < 0

Jawaban: C

Jika diketahui: 2.

$$A = \frac{1}{6} \left({}^{2} \log 3^{3} - {}^{2} \log 6^{3} - {}^{2} \log 12^{3} + {}^{2} \log 24^{3} \right),$$

$$A = \frac{1}{6} \left[{}^{2}\log 3^{3} - {}^{2}\log 6^{3} - {}^{2}\log 12^{3} + {}^{2}\log 24^{3} \right]$$

$$= \frac{1}{6} \left[3.^{2}\log 3 - 3.^{2}\log 6 - 3.^{2}\log 12 + 3.^{2}\log 24 \right]$$

$$= \frac{1}{2} \left[{}^{2}\log 3 - {}^{2}\log 6 - {}^{2}\log 12 + {}^{2}\log 24 \right]$$

$$= \frac{1}{2} \left[{}^{2}\log 3 - {}^{2}\log 6 - {}^{2}\log 12 + {}^{2}\log 24 \right]$$

$$= \frac{1}{2} \left[{}^{2} \log \left(\frac{3.24}{6.12} \right) \right] = \frac{1}{2} \left[{}^{2} \log 1 \right] = \frac{1}{2} \left[0 \right] = 0$$

Jadi,
$$2^A = 2^0 = 1$$

Jawaban: B

3. Jika
$$x_1$$
 dan x_2 merupakan akar-akar persamaan $5^{x+1} + 5^{2-x} = 126$, maka $x_1 + x_2 =$ (SOAL SIMAK UI)

С.

Pembahasan SMART:

$$5^{x+1} + 5^{2-x} = 126$$

$$\Rightarrow 5^{x}.5+5^{2}.5^{-x}=126$$

$$\Rightarrow 5.5^{x} + \frac{25}{5^{x}} = 126$$
 (dikalikan 5^{x})

$$\Rightarrow$$
 5.5^{2x} + 25 = 126.5^x

Misalkan $5^x = p$, maka:

$$5p^2 + 25 = 126p$$

$$\Rightarrow 5p^2 - 126p + 25 = 0$$

$$\Rightarrow (5p-1)(p-25)=0$$

diperoleh
$$p = \frac{1}{5}$$
 atau $p = 25$

Ketika
$$p = \frac{1}{5}$$
, maka: $5^x = \frac{1}{5} \Rightarrow 5^x = 5^{-1}$

Ketika
$$p = 25$$
, maka: $5^x = 25 \Rightarrow 5^x = 5^2$

Jadi, nilai dari
$$x_1 + x_2 = -1 + 2 = 1$$

$-p^{ax+b}+p^{c-ax}$	dengan	akar-akar	x ₁ dan x ₂ ,
maka: v ± v	c-b		

— Dari persamaan
$$5^{x+1} + 5^{2-x} = 126$$
, maka:

$$x_1 + x_2 = \frac{2-1}{1} = 1$$

Jawaban: C

- Jika nilai x yang memenuhi ² log16
- c. $\frac{1}{2}$

Jawaban: A

Pembahasan SMART:

$${}^{2}\log 16^{\left(\frac{8x-\frac{1}{2}}{2}\right)} = 8 \Rightarrow {}^{2}\log 2^{4\left(\frac{8x-\frac{1}{2}}{2}\right)} = 8$$

$${}^{2}\log 2^{16x-1} = 8$$

$$(16x-1)^{2}\log 2 = 8$$

$$(16x-1)\cdot 1 = 8$$

$$16x-1 = 8$$

$$16x = 9$$

$$x = \frac{9}{16}$$

Jadi,
$$\frac{4}{3} \log x = \frac{4}{3} \log \frac{9}{16} = \frac{4}{3} \log \left(\frac{3}{4}\right)^2$$
$$= \frac{4}{3} \log \left(\frac{4}{3}\right)^{-2} = -2 \cdot \frac{4}{3} \log \left(\frac{4}{3}\right) = -2 \cdot 1 = -2$$

5. Nilai dari
$$\left(\frac{\log(x\sqrt[4]{x}) + \log y + \log(xy\sqrt[4]{y})}{\log x + \log y}\right)^{\frac{3}{2}}$$
 adalah

A. $\frac{27}{8}$ C. $\frac{2}{3}$ E. $\frac{8}{27}$

Pembahasan SMART:

$$\frac{\log(x\sqrt[4]{x}) + \log y + \log(xy\sqrt[4]{y})}{\log x + \log y} = \frac{\log(x\sqrt[4]{x})(y)(xy\sqrt[4]{y})}{\log(xy)}$$

$$= \frac{\log x^2 y^2 \sqrt[4]{xy}}{\log(xy)} = \frac{\log(xy)^{\frac{9}{4}}}{\log(xy)} = \frac{\frac{9}{4} \log(xy)}{\log(xy)} = \frac{9}{4}$$

Jadi,
$$\left(\frac{\log(x\sqrt[4]{x}) + \log y + \log(xy\sqrt[4]{y})}{\log x + \log y} \right)^{\frac{3}{2}}$$
$$= \left(\frac{9}{4} \right)^{\frac{3}{2}} = \left(\frac{4}{9} \right)^{\frac{3}{2}} = \frac{2^3}{3^3} = \frac{8}{27}$$

Jawaban: E