

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-53897 (P2000-53897A)

(43)公開日 平成12年2月22日(2000.2.22)

(51) Int.Cl.<sup>7</sup> C 0 9 D 11/00 識別記号

FI C09D 11/00 テーマコート\*(参考) 4 J O 3 9

審査請求 未請求 請求項の数5 〇L (全 11 頁)

(21)出願番号 特願平10-224911

(22) 出願日 平成10年8月7日(1998.8.7)

(71)出願人 000000918

花王株式会社

東京都中央区日本橋茅場町1丁目14番10号

(72)発明者 水戸部 裕之

栃木県芳賀郡市貝町赤羽2606 花王株式会

社研究所内

(72)発明者 佐藤 伸一

栃木県芳賀郡市貝町赤羽2606 花王株式会

社研究所内

(74)代理人 100076532

弁理士 羽鳥 修 (外1名)

最終頁に続く

## (54) 【発明の名称】 インクジェット記録用水系インク

## (57)【要約】

【課題】 インク吐出不良が防止され、インク液滴の着 弾位置の精度及び印字濃度が向上したインクジェット記 録用インクを提供すること。

【解決手段】 ボリマー微粒子に色材を含浸させてなるボリマーエマルジョンからなり、尿素、アルキルグリシン及びグリシルベタインからなる群より選ばれる少なくとも一種の化合物Aと、R,COOMで表される化合物、R,OPQ,Mで表される化合物及びR,OR,OPQ,M(式中R及びR,は炭素数が7以上10以下のアルキル又はアルケニル基を表し、Mは一価イオンを表す)からなる群より選ばれる少なくとも一種の化合物Bとを含有することを特徴とするインクジェット記録用水系インク。

2

# 【特許請求の範囲】

【請求項1】 ボリマー微粒子に色材を含浸させてなるボリマーエマルジョンからなり、尿素、アルキルグリシン及びグリシルベタインからなる群より選ばれる少なくとも一種の化合物Aと、R,COOMで表される化合物、R,OPQ、M、で表される化合物及びR,OR、OPQ、M(式中、R,及びR、は炭素数が7以上10以下のアルキル又はアルケニル基を表し、Mは一価イオンを表す)からなる群より選ばれる少なくとも一種の化合物Bとを含有することを特徴とするインクジェット記録用水系インク。

1

【請求項2】 上記化合物Aが $1\sim50重量%$ 含有され、上記化合物Bが $0.01\sim5重量%$ 含有されることを特徴とする請求項1記載のインクジェット記録用水系インク。

【請求項3】 上記ポリマーエマルジョンが、ポリマー 微粒子に水不溶性または水難溶性色材を含浸させてなり、該ポリマーエマルジョンを形成するポリマーが、ビニル系ポリマー又はポリエステル系ポリマーであることを特徴とする請求項1又は2記載のインクジェット記録用水系インク。

【請求項4】 上記ポリマーが固形分として1~30重量%含有されることを特徴とする請求項1~3の何れか に記載のインクジェット記録用水系インク。

【請求項5】 上記ポリマーと上記化合物Aとの重量比(前者/後者)が1/5~5/1であり、上記ポリマーと上記化合物Bとの重量比(前者/後者)が2/1~500/1であることを特徴とする請求項1~4の何れかに記載のインクジェット記録用水系インク。

#### 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は、インク吐出不良が 防止され、インク液滴の着弾位置の精度及び印字濃度が 向上したインクジェット記録用インクに関する。

#### [0002]

【従来の技術及び発明が解決しようとする課題】耐水性が向上したインクジェット記録用インクには、ラテックスを配合したインク(特開昭55-18412号公報)や有色ポリマーラテックスを含有するインク(特開昭59-30873号公報)等のポリマーエマルジョンからなるインクがある。

[0003] しかしながら、ラテックスが配合されたインクは、ノズルの目詰まりを起こす。また、熱ジェット方式のブリンタで印字した場合には、吐出が安定せずにインク液滴の着弾位置の精度が低下する。更に、印字濃度が十分に高くならない。

【0004】従って、本発明の目的は、インク吐出不良が防止され、インク液滴の着弾位置の精度及び印字濃度が向上したインクジェット記録用インクを提供することにある。

# [0005]

【課題を解決するための手段】本発明は、特定のポリマーのエマルジョンからなる水系インクに、特定の化合物を組み合わせて含有させることにより上記目的を達成した。

【0006】即ち、本発明は、ボリマー微粒子に色材を含浸させてなるボリマーエマルジョンからなり、尿素、アルキルグリシン及びグリシルベタインからなる群より選ばれる少なくとも一種の化合物Aと、R,COOMで表される化合物、R,OPO,Mで表される化合物及びR,OR,OPO,M(式中、R,及びR,は炭素数が7以上10以下のアルキル又はアルケニル基を表し、Mは一価イオンを表す)からなる群より選ばれる少なくとも一種の化合物Bとを含有することを特徴とするインクジェット記録用水系インクを提供することにより上記目的を達成したものである。【0007】

【発明の実施の形態】本発明のインクジェット記録用水系インク(以下、単に「水系インク」という)には、尿素、アルキルグリシン及びグリシルベタインからなる群より選ばれる少なくとも一種の化合物Aと、R<sub>4</sub> COOMで表 される化合物〔以下、化合物(II) という〕、R<sub>4</sub> OPO<sub>3</sub> M<sub>4</sub> で表される化合物〔以下、化合物(III)という〕及びR<sub>4</sub> OR 4 OPO<sub>3</sub> Mで表される化合物〔以下、化合物(III)という〕からなる群より選ばれる少なくとも一種の化合物Bとの組み合わせが用いられる。

【0008】化合物Aのうち、アルキルグリシンとしては、一般式がR,R,NCH,COCM'で表されるものが用いられ、この一般式中、R,及びR,としては同一の又は異なる水素原子または炭素数1~5のアルキル基が好ましく用いられる(但し、R,及びR,は同時に水素原子とならない)。上記アルキル基の例としてはメチル基、エチル基、プロビル基およびイソプロビル基等が挙げられる。M'としては水素原子、アルカリ金属原子またはアルカリ土類金属原子が用いられ、水素原子またはアルカリ金属原子が好ましく用いられる。アルキルグリシンの具体例としてはNーメチルグリシン、N,Nージメチルグリシン及びNーエチルグリシン等が挙げられる。

【0009】化合物Aは、一種以上を用いることができる。特に好ましく用いられるものは、尿素、Nーメチルグリシン、N,N,Nートリメチルグリシン、グリシル40 ベタインである。化合物Aは本発明の水系インク中に好ましくは1~50重量%、更に好ましくは2~35重量%、一層好ましくは5~25重量%含有される。化合物Aの含有量が1重量%に満たないとエマルジョンがヘッドに焦げつき易く、そのためにインク液滴の着弾位置精度が低下することがあり、50重量%を超えるとインク粘度が高くなってインクの吐出性が低下し易く、その為に記録紙への印字品質が悪化したり、印字部の乾燥性、耐擦過性が低下するおそれがある。

【0010】化合物Bとして用いられる上記の化合物

50 (I) はカルボン酸塩であり、また化合物 (II) 及び(I

II) はそれぞれリン酸モノエステル塩及びリン酸ジエス テル塩である。上記の化合物(I) 、(II)及び(III) にお いて、R. 及びR. で表されるアルキル基としては、好まし くはn-ヘプチル基、2-エチルヘキシル基、n-ノチ ル基、n-オクチル基、n-デシル基、1-メチルヘキ シル基、1-エチルペンチル基、1-メチルヘプチル 基、3,5,5-トリメチル-1-ヘキシル基等が用い られる。一方、R<sub>1</sub>及びR<sub>2</sub>で表されるアルケニル基として は、好ましくは1-ヘプテン基、1-オクテン基、1-ノネン基、1-デセン基等が用いられる。MとしてはN a、K等のアルカリ金属イオン、NH, \* やN(CH, CH, OH), \* 等の四級アンモニウムイオン等が用いられる。化合物 (I) として好ましいものの例としてはn-オクタン酸 塩、3-エチルヘプタン酸塩、n-デカン酸塩等が挙げ られる。一方、化合物(II)及び(III) として好ましいも のの例としては、モノ又はジn-ヘプチルリン酸エステ ル塩、モノ又はジ2-エチルヘキシルリン酸エステル 塩、モノ又はジn-ノニルリン酸エステル塩等が挙げら れる。

【0011】化合物Bは、化合物(I)、(II)及び(III)の何れか一種を又は二種以上を組み合わせて用いることができる。化合物Bは本発明の水系インク中に好ましくは0.01~5重量%、更に好ましくは0.05~5重量%、一層好ましくは0.1~2重量%含有される。化合物Bの含有量が0.01重量%に満たないとエマルジョンがヘッドに焦げ付き易く、そのためにインク液滴の着弾位置精度が低下することがあり、5重量%を超えるとインクの紙への浸透力が促進され、十分な印字濃度が得られないことがある。

【0012】本発明の水系インクは、上記の化合物A及び化合物Bがボリマーエマルジョンに含有されてなる水系分散液である。該ボリマーエマルジョンとしては、色材により着色された有色ボリマー微粒子のエマルジョンが用いられ、特に、水不溶性または水難溶性色材を含浸させたボリマー微粒子のエマルジョンが用いられることが好ましい。本明細書において、「色材を含浸させた」とは、ボリマー微粒子中に色材を封入した状態およびボリマー微粒子の表面に色材を吸着させた状態の何れか又は双方を意味する。この場合、本発明の水系インクに配合される色材はすべてボリマー微粒子に封入または吸着されている必要はなく、本発明の効果が損なわれない範囲において、該色材がエマルジョン中に分散していてもよい。本発明の好ましい態様においては、上記水系イン

4

クは、水不溶性または水難溶性色材が含浸されたボリマー微粒子のエマルジョンからなり、且つ上記の化合物A 及び化合物Bを含んでいる。

【0013】上記色材としては、水不溶性若しくは水難溶性であって、上記ポリマーによって吸着され得る色材であれば特に制限なく用いられる。本明細書において、水不溶性若しくは水難溶性とは、20℃で水100重量部に対して、色材が10重量部以上溶解しないことをいい、溶解するとは、目視で水溶液表層または下層に色材の分離や沈降が認められないことをいう。上記色材としては、例えば、油溶性染料、分散染料等の染料や、顔料等が挙げられる。特に、良好な吸着・封入性の観点から油溶性染料及び分散染料が好ましい。

【0014】本発明に用いられる上記の各染料は、ポリマー微粒子に効率的に含浸される観点から、有機溶剤、例えば、ケトン系溶剤に2g/リットル以上溶解することが好ましく、20~600g/リットル溶解することが更に好ましい。

【0015】上記色材は、本発明の水系インク中に1~30重量%配合されることが好ましく、1.5~25重量%配合されることが更に好ましい。上記色材の配合量が1重量%に満たないと印字濃度が十分でないことがあり、30重量%を超えて使用すると、ボリマー微粒子の経時安定性が低下し、その粒径が増大して、エマルジョン自身の分散安定性が低下する傾向がある。また、上記色材の配合量は、ボリマーの配合量との関係において、該ボリマーの重量に対して約10~200重量%、特に約25~150重量%であることが好ましい。

【0016】上記ポリマーエマルジョンを形成するポリマーとしては、例えば、ビニル系ポリマー、ポリエステル系ポリマー及びポリウレタン系ポリマー等を用いることが出来る。特に好ましく用いられるポリマーはビニル系ポリマー及びポリエステル系ポリマーである。

【0017】ビニル系ポリマーとしては、下記式(1)で表されるシリコーンマクロマー並びにアクリルアミド系及びメタクリルアミド系モノマー(但し、塩生成基を有するものは除く)からなる群から選ばれる一種以上の重合性モノマー(a)と、塩生成基を有する重合性不飽和モノマー(b)と、これらモノマーと共重合可能なモノマー(c)とをラジカル重合開始剤の存在下に共重合させて得られるビニル系ポリマーを用いることが好ましい。

[0018]

【化1】

 $X(Y)_n S i (R_1)_{3-n} (Z)_n$ 

(1)

(式中、

X:重合可能な不飽和基を示す。

Y:二価の結合基を示す。

Ra: 水素原子、低級アルキル基、アリール基又はアルコキシ基を示し、複数個 の尺。は同一でも異なっていてもよい。

2:少なくとも約500の数平均分子量を有する一価シロキサンポリマー部分 を示す。

n: 0又は1を示す。

m:1~3の整数を示す。)

【0019】上記式(1) で表されるシリコーンマクロマ ーにおいて、Xは重合可能な不飽和基を示し、具体的に はCH、=CH-及びCH、=C(CH。) -等の基が 挙げられる。Yは二価の結合基を示し、具体的には-C OO-、-COOC<sub>b</sub>  $H_{zb}-$ ( CCでbは1~5の数を 示す)及びフェニレン基等が挙げられ、-COOC,H 。 - が好ましい。 R、 は水素原子: メチル基やエチル基 等の低級アルキル基;フェニル基等のアリール基;メト キシ基等のアルコキシ基を示し、メチル基であることが 20 れるものが好ましい。 好ましい。 Zは少なくとも約500の数平均分子量〔ゲ ルパーミェーションクロマトグラフィー(以下、GPC という)でポリスチレン換算する。以下同じ。〕を有す\*

\* る一価シロキサンポリマー部分を示し、好ましくは数平 均分子量800~5000の一価のジメチルシロキサン ポリマーである。nは0又は1であり、好ましくは1で ある。mは1~3の整数であり、好ましくは1である。 【0020】シリコーンマクロマーとしては、下記式(1 -1) ~(1-4) で表されるものが挙げられる。この中で も、式(1-1) で表されるものが好ましく、特に下記式(1 -1-1) 〔チッソ(株)製のFM-0711 (商品名)〕で表さ

[0021] [12]

$$CH_{2}=CR_{5}-COOC_{3}H_{6}-\begin{cases}R_{5}\\|S_{1}-O\rangle\\|R_{5}\end{cases}CR_{5}$$

$$(1-1)$$

$$CH_2 = CR_6 - COO \longrightarrow \begin{bmatrix} R_6 \\ | \\ Si - O \\ | \\ R_5 \end{bmatrix} \longrightarrow \begin{bmatrix} R_6 \\ | \\ Si - R_6 \end{bmatrix}$$
 (1-2)

$$CH_2 = CR_6 \longrightarrow \begin{bmatrix} R_5 \\ \vdots \\ S_i - O \end{bmatrix} \xrightarrow{R_5} \begin{bmatrix} R_5 \\ \vdots \\ R_5 \end{bmatrix}$$
 (1-3)

$$CH_2 = CR_6 - COO - C_3H_6 - Si (OE)_3$$
 (1-4)

(式中、Reは水素原子又はメチル基を示し、Reは前記の意味を示し、複数値の R。は同一でも異なっていてもよい。 Eは下記式で示される基を示し、aは5~ 65の数を示す。)

$$\begin{array}{c|c}
R_i \\
\vdots \\
S_i - O \\
R_i \\
R_i \\
C \\
R_i
\end{array}$$

【化3】

[0022]

7
$$CH_{2} = C - C O C_{3}H_{6} - \begin{bmatrix} CH_{4} \\ I \\ S & I - O \\ CH_{3} \end{bmatrix} CH_{5}$$

$$(1-1-1)$$

(式中、a'は、重量平均分子量が1、000となる数である。)

【0023】上記アクリルアミド系またはメタアクリル アミド系モノマーとしては、例えば特開平9-2869 39号公報の第5欄40行~第7欄22行に記載のモノ マーが挙げられる。

【0024】塩生成基を有する上記重合性不飽和モノマ -(b) としては、例えば特開平9-286939号公報 の第7欄23行〜第8欄29行に記載のモノマーが挙げ られる。

【0025】上記のモノマー(a) 及び(b) と共重合可能 なモノマー(c) としては、例えば特開平9-28693 9号公報の第8欄30行~第9欄1行に記載のモノマー が挙げられる。これらの中でも特に、アクリル酸メチ \* CH.

\*ル、アクリル酸t - ブチル、アクリル酸2 - エチルヘキ シル、メタクリル酸メチル、メタクリル酸2-エチルへ キシル、2 -メチルスチレン、2 -ヒドロキシエチルメ 10 タクリレートを用いることが好ましい。

【0026】上記モノマーと共重合可能なモノマー(c) は、上記のものに限定されず、市販のラジカル共重合性 モノマーを用いることもできる。特に、下記式(2-1)~ (2-4) で表されるモノマーを一種以上使用することが、 エマルジョンの保存安定性の点から好ましい。

[0027] 【化4】

$$CH_{2}=C-COO + CH_{2}-CH + CH_{2}-CH - H + C$$

(式中、xおよびyは、x/y=6/4~10/0で、重量平均分子量が1,000 ~10.000となる数を示す。)

$$CH_{2}=C-COO - CH_{2} - CH_{3} - CH_{3} - CH_{3} - CH_{3} - COOCH_{3} - COOCH_{4} - COOC$$

$$CH_3$$
 $CH_2 = \overset{!}{C} - COO + CH_2CH_2O \xrightarrow{Q} CH_3$ 
(2-3)

$$CH_{3}$$

$$CH_{2} = \overset{1}{C} - COOC_{2}H_{4}O \xrightarrow{\qquad \qquad } C-C_{5}H_{10}O \xrightarrow{\qquad \qquad } CH_{3} \quad (2-4)$$

(式中、p、q、rは、重量平均分子量が500~10,000となる数を示す。)

【0028】上記モノマー(c) の市販品としては片末端 にメタクリロイルオキシ基を有するスチレン及び/又は アクリロニトリル共重合体マクロマー〔東亜合成(株) 製、AN-6、AS-6(商品名)]、片末端にメタクリロイル オキシ基を有するメタクリル酸メチル重合体マクロマー 〔東亜合成(株)製、AA-6(商品名)〕、片末端にメタ クリロイルオキシ基を有するポリオキシエチレンマクロ 50 は、上記モノマー(a)をモノマー全量に対して1~40

マー [新中村化学(株)製、NKエステルM-90Gnew、同M-40Gnew、同M-20Gnew(商品名))、片末端にメタクリロ イルオキシ基を有するポリエステルマクロマー〔ダイセ ル化学工業(株)製、FM4DX (商品名)〕等が挙げられ

【0029】上記ビニル系ポリマーを合成する場合に

,

重量%、上記モノマー(b) をモノマー全量に対して1~25重量%、上記モノマー(c) をモノマー全量に対して35~96重量%の割合で用いて共重合させることが好ましい。

9

【0030】上記ビニル系ポリマーは、特開平9-286939号公報の第9欄10~23行に記載の重合方法により得ることができ、特に溶液重合法により製造されることが好ましい。

【0031】共重合の際にはラジカル重合開始剤が用い られ、その例としては特開平9-286939号公報の 第9欄247~367に記載のものが挙げられる。とれ らの中でも特に、アゾ化合物を用いることが好ましい。 これらのラジカル重合開始剤を、モノマー全量に対して 0.001~2.0 モル%、特に0.01~1.0 モル%用いること が好ましい。

【0032】共重合の際には、更に重合連鎖移動剤を添加しても良い。その具体例としては、特開平9-286 939号公報の第9欄37行~第10 欄10行に記載のものが挙げられる。これらの中でも、メルカプトエタノール、n-ドデシルメルカプタン、t-ドデシルメルカプタン、t-ドデシルメルカプタン、t-ドデシルメルカプタン、t-ドデシルメルカプタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-ドデシルメルカガタン、t-中の一点の一点の一点が表現を表現を表現している。そのかずがあれる。特別がより、t-中の大学がある。特別が表現を表現していることが好ましい。

【0033】具体的な共重合の方法は、例えば特開平9 -286939号公報の第10欄11~19行に記載されている。共重合により得られるビニル系ポリマーの重★30

\* 量平均分子量(GPCでポリスチレン換算する。以下同じ。)は、3,000~50,000であることが好ましい。

【0034】ボリエステル系ボリマーとしては、JISK00034】ボリエステル系ボリマーとしては、JISK00070に基づく酸価が $3\sim100$  KOHmg/gのものが好ましく用いられる。上記酸価が3 KOHmg/gに満たないと、色材を安定に含浸させたボリマーエマルジョンが得られない場合があり、100 KOHmg/gを超えると、インクの耐水性が劣る場合がある。上記酸価は、より好ましくは $3\sim90$  KOHmg/g、特に好ましくは $30\sim80$  KOHmg/g、特に好ましくは $50\sim70$  KOHmg/gであることが、エマルジョン形成性及び安定性が向上する点で良好な結果をもたらす。

【0035】上記ポリエステル系ポリマーは、その数平均分子量が好ましくは500~10000、更に好ましくは1000~5000、一層好ましくは1500~3000、更に一層好ましくは2000~15000であることが、プリンタヘッドへの焦げ付きや印刷後のインクの耐水性及び耐擦過性、並びにエマルジョン形成性の点から好ましい。

[0036]上述の好ましい物性を有するポリエステル系ポリマーとしては、例えば下記式(3)で表されるジオール成分から誘導される単位をポリエステル鎖中に含むものが挙げられる。特に、下記式(3)で表されるジオール成分[以下、(a)成分という]と、多価カルボン酸及び/又はその誘導体[以下、(b)成分という]とを共縮重合して得られたものが好ましい。

[0037] [化5]

$$H \longrightarrow 0A \xrightarrow{5} 0 \longrightarrow C \xrightarrow{R_1} C \longrightarrow 0 \longrightarrow A0 \xrightarrow{t} H \qquad (3)$$

(式中、 $R_1$ は、炭素数  $1\sim 4$  のアルキル基を示し、Aは炭素数  $2\sim 4$  のアルキレン基を示し、s 及び t は同一の又は異なる 1 以上の整数を示し、かつs+t の平均値は  $2\sim 1$  0 である。)

【0038】上記(a) 成分である上記式(3) で表される ジオール成分は、ビスフェノールAのアルキレンオキシ ド付加物、特にビスフェノールAのエチレンオキシド又 40 はプロビレンオキシド付加物が好ましい。

【0039】上記(b) 成分である多価カルボン酸及び/ 又は誘導体は、例えば多価カルボン酸、その酸無水物及 びその低級アルキルエステルからなる群から選ばれる一 種以上が用いられる。

【0040】上記多価カルボン酸としては、二価以上のカルボン酸が用いられる。また、これら多価カルボン酸の低級アルキルエステルとしては、炭素数1~4のアルキルエステルが用いられる。就中、上記多価カルボン酸として、マレイン酸、フマール酸、イタコン酸、フタル 50

酸、イソフタル酸、テレフタル酸、コハク酸、ダイマー酸等の二価のカルボン酸、又は1,2,4-ベンゼントリカルボン酸、無水トリメリット酸を用いることが好ましい

【0041】上記ポリエステルは、上記ジオール成分と、多価カルボン酸及び/又はその誘導体とを共縮重合して得られ、この共縮重合方法に特に制限はなく公知の方法が用いられる。上記(a)成分と上記(b)成分とのモル比は、上記(a)成分1モルに対して上記(b)成分が0.01~1.4モル、特に0.1~1.2モルが好ました。

【0042】上記ポリエステルのうち、上記式(3) で表されるジオール成分〔上記(a) 成分〕と、無水トリメリ

ット酸〔以下、(b) '成分ともいう〕と、無水トリメリッ ト酸以外の多価カルボン酸及び/又はその誘導体〔以 下、(b)"ともいう〕とを共縮重合して得られたポリエス テル(以下、ポリエステルAという)が好ましい。 【0043】上記(b)'成分を用いることにより、エマル ジョンの形成性、安定性及び色材の吸着量が向上する。 上記ポリエステルA中での無水トリメリット酸の結合形 態は、無水トリメリット酸中の環状無水部位が開環し、 ポリエステル鎖中に組みこまれている状態である。トリ メリット酸そのものではなく、その酸無水物を用いると 10 こる場合がある。なお、Tgは示差走査熱量計(以下、 とにより、特にポリエステル合成時の高反応性及びエマ ルジョンの高形成性という効果が奏されるために好まし 64

【0044】上記ポリエステルAに用いられる上記(b)" 成分としては、上述した上記ポリエステルに用いられる 上記(b) 成分から、無水トリメリット酸を除いたものを 用いるのが好ましい。

【0045】上記ポリエステルAにおける共縮重合成分 である、上記(a) 成分と上記(b) '成分と上記(b) "成分と のモル比は、(a) 成分1モルに対して、(b) '成分が0. 05~0.7モル、特に0.1~0.5モルが好まし い。上記(b)"成分は0.3~1.2モル、特に0.5~ 1. 1モルが好ましい。

【0046】上記ポリエステルA成分に、更にダイマー 酸を加えて共縮重合して得られたポリエステルも好まし い。上記ダイマー酸は、不飽和脂肪酸2分子の重合反応 により合成された物質であり、例えば、非環式ダイマー 酸、単環式ダイマー酸、二環式ダイマー酸があり、これ ら一種以上を適宜組合せて用いられる。市販品ではユニ ダイム22 (商品名、ユニオンキャップ社製)、ハリダ 30 イマー(商品名、播磨化成社製)が使用できる。上記ダ イマー酸を用いることにより、エマルションの形成性、 安定性が向上し、色材が含浸され易くなる。エマルジョ ンの形成性、安定性の更なる向上の点から非環式ダイマ ー酸が特に好ましい。

【0047】上記ダイマー酸は、上記(a) 成分1モルに 対して0.001~0.7モル、特に0.01~0.5 モルが好ましい。他の好ましい成分比率は上記した通り である。

【0048】上記ポリエステルのJIS K 0070 に基づく酸価は、3~100KOHmg/gが好まし い。3KOHmg/gに満たないと、色材を含浸させた エマルションの安定性が低下する場合があり、100K OHmg/gを超えると、インクの耐水性が劣る場合が ある。上記酸価は更に好ましくは3~70KOHmg/ g、一層好ましくは10~60KOHmg/g、特に好 ましくは25~50KOHmg/gである。上記酸価 は、例えば、上記ジオール成分と上記多価カルボン酸及 び/又はその誘導体との添加比率を変えたり、カルボン 酸エステルを用いたり、一価のアルコールで酸を封鎖し 50 ~2重量%、特に0.001~2重量%、とりわけ0.

12

反応を制御すること等で調整できる。

【0049】また、上記ポリエステルは、ガラス転移点 (以下、Tgという) が20℃以上が好ましく、特に、 50~150℃が好ましい。また、圧電素子を用いたイ ンクジェット方式では20°C以上、熱エネルギーを用い たインクジェット記録方式では30℃以上が好ましい。 これらの好ましい範囲を外れると、上記ポリエステルが プリンタのノズルで固化し易く、ノズルが詰まる場合が ある。また、印字した紙を重ねるとインクの紙写りが起 DSCという)で測定される。

【0050】上述した各種ポリマーは、十分な印字濃度 を確保し、またインク蒸発に伴うインクの増粘やポリマ 一微粒子の凝集に起因するプリンタヘッドの目詰まりを 防止する点から、本発明の水系インク中に固形分として 1~30重量%、特に2~20重量%配合されることが 好ましい。

【0051】本発明の水系インクにおける上記ポリマー の含有量は、上記の化合物A及び化合物Bの含有量との 20 関係において、該ポリマーと化合物Aとの重量比(前者 /後者) が1/5~5/1、特に1/3~3/1である ことが好ましく、該ポリマーと化合物Bとの重量比(前 者/後者) が2/1~500/1、特に4/1~100 /1 であることが好ましい。

【0052】本発明の水系インクは水(望ましくはイオ ン交換水)を媒体とする水系エマルジョンである。水の 配合量は、好ましくは50~98重量%、更に好ましく は55~95重量%、一層好ましくは60~90重量% である。

【0053】本発明の水系インクには更に、多価アルコ ール類等の湿潤剤を、インクジェット記録用インクとし ての好ましい粘度を超えない範囲で配合することもでき る。その好ましい配合量は、本発明の水系インク中に 0.1~50重量%、特に1~30重量%である。

【0054】本発明の水系インクには、上述の成分の他 に、カチオン、アニオン又はノニオン系の各種界面活性 剤等の分散剤、シリコーン系等の消泡剤、前述の各種界 面活性剤等の表面張力調整剤、ベンゾトリアゾール、ベ ンゾフェノン、サリチル酸エステル及びシアノアクリレ ート等の紫外線吸収剤、クロロメチルフェノール系等の 防黴剤、EDTA等のキレート剤、亜硫酸塩等の酸素吸 収剤等の従来公知の各種添加剤を配合させてもよい。

【0055】ポリマー微粒子の小粒径化やエマルジョン の安定性等の点から、上記分散剤は、本発明の水系イン ク中に通常0.01~10重量%配合されることが望ま しく、0.05~5重量%配合されることが更に望まし く、0.1~1重量%配合されることが更に一層望まし

【0056】上記消泡剤は、本発明の水系インク中に0

005~0.5重量%配合されることが好ましい。消泡 剤の量が2重量%を超えると泡の発生は抑えられるもの の、印字の際、インク内ではじきが発生し、印字品質の 低下が起とる場合がある。

【0057】上記表面張力調整剤としては、上述のシリ コーン系消泡剤や、カチオン、アニオン或いはノニオン 系の各種界面活性剤を使用することができる。特に、シ リコーン系消泡剤や、アルキルフェノールのエチレンオ キサイド化合物、アセチレングリコールのエチレンオキ サイド付加物を用いることが泡の発生の抑制、インクの 10 表面張力の調整のしやすさ、及びインク吐出性、にじみ が少ない、印字濃度ムラがない等の点で好ましい。

【0058】上記表面張力調整剤の使用に際しては、こ れらの化合物の一種以上を用いることができる。これら 表面張力調整剤の配合量は、印字品質やインクの液安定 性等の点から、本発明の水系インク中に0.005~1 5重量%であることが望ましい。

【0059】また、本発明の水系インクは、その20℃ における表面張力が、被印字物への浸透性の点から、2 5~65mN/mであることが好ましく、更に好ましく は25~55mN/m、一層好ましくは28~50mN /mである。上記表面張力が25mN/mに満たないと インクの滲み及び印字品質の低下が発生し、またインク ジェットプリンターのプリントヘッドノズルからインク 漏れが発生する場合がある。尚、上記表面張力は、協和 界面科学(株)製の自動表面張力計(CBVP- Z型) により測定することができる。

【0060】本発明の水系インクは、吐出の安定性の点 から、その20°Cにおける粘度が、0.5~8mPa・ secであることが好ましく、更に好ましくは0.5~ 30 5mPa·sec、一層好ましくは1~5mPa·se c、更に一層好ましくは $1 \sim 3 \text{ mPa} \cdot \text{sec}$ である。 上記粘度が0.5mPa・secに満たないとインクの にじみが顕著になり、またインクジェットプリンターの プリントヘッドノズルからインク漏れが発生したりする おそれがある。一方、8mPa・secを超えると、イ ンクジェット用インクとしての粘度が高くなりすぎ、プ リントヘッドへのインク供給が伴わず、吐出不良が発生 し、かすれや印字品質の低下の問題が発生するおそれが ある。尚、上記粘度は、(株)東京計器製のE型粘度計 40 (VISCONIC ELD) 又は、(株) ニッカトー 東京支社製の回転振動式粘度計(ビスコメイト VM-100) により測定することができる。

【0061】本発明の水系インクの製造においては、先 ず、上記ポリマーエマルジョンを調製する。即ち、有機 溶媒中に上記ポリマーと上記色材とを添加し、次いで、 得られた溶液または分散液に、中和剤および必要に応じ て界面活性剤を加え、上記ポリマー中の塩生成基をイオ ン化する。次いで、得られた混合物に水を加える際に、 公知の乳化方法、例えば、転相乳化法、強制乳化法を用 50 ビス(2,4-ジメチルバレロニトリル)0.2部とを

14

いて乳化する。エマルジョンの安定性の点から、ポリエ ステル系エマルジョンの場合は転相乳化法、ビニル系エ マルジョンの場合は強制乳化法が好ましい。その後、系 を減圧下に加熱することにより該乳化物から上記有機溶 媒を留去させる。これにより、上記色材を含浸させたポ リマーの微粒子の水系エマルジョンが得られる。

【0062】上記エマルジョン調製の際に、色材と共に 各種の疎水性の安定化剤を上記水不溶性有機溶媒に溶解 させておくことで、上記ポリマー中に該安定化剤を封入 させることも出来る。安定化剤としては、上述したベン ゾトリアゾール、ベンゾフェノン、サリチル酸エステル 及びシアノアクリレート等の紫外線吸収剤:ヒンダード フェノール系、アミン系等の1次酸化防止剤;リン系、 硫黄系等の2次酸化防止剤;ヒンダードアミン系等の紫 外線安定化剤等が好ましい。

【0063】とのようにして色材を含浸させたポリマー 微粒子の水系エマルジョンを得た後、該エマルジョン に、上記の化合物A及び化合物Bと、必要に応じてその 他の成分とを添加することによって、本発明の水系イン 20 クが得られる。

【0064】本発明の水系インクの調製に際しては、イ ンク中の粗大粒子を除去することが好ましい。例えば、 調製後のインクをフィルターにより加圧濾過したり或い は遠心分離器で処理して、好ましくは2000nm以 上、更に好ましくは1000nm以上、一層好ましくは 500nm以上の粒子を除去することにより、目詰まり のないインクが得られる。

【0065】とのようにして得られたポリマーエマルジ ョン及び最終的な水系インクのpHは、エマルジョンの 安定性を確保する為にpH=5~12、好ましくは5. 5~10となるように調整することが好ましい。例え は、ボリマーエマルジョンの乳化工程又は最終的な水系 インクに水酸化ナトリウムを加えて中和することでpH 調整する。

【0066】本発明のインクジェット記録用インクは、 主にインクジェット記録用に使用されるが、その他、例 えば、一般の万年筆、ボールペン、サインペン等の筆記 具用のインクとしても使用可能である。

[0067]

【実施例】以下、実施例を説明する。尚、例中の「%」 及び「部」は特記しない限り重量基準である。

【0068】〔製造例1〕反応器に、重合溶媒としてメ チルエチルケトン20部、重合性不飽和モノマーとし て、表1の初期仕込みモノマーの欄に記載されているモ ノマー及び重合連鎖移動剤を仕込み、窒素ガス置換を充 分行った。窒素雰囲気下、反応容器内の混合液を撹拌し ながら65℃まで昇温させた。これとは別に、表1の滴 下モノマーの欄に記載されているモノマー及び重合連鎖 移動剤とメチルエチルケトン60部と、2,2'ーアゾ

混合し、充分窒素置換して得られた混合液を3時間かけ て反応容器内に徐々に滴下した。滴下が終了して2時間 後、2、2'-アゾビス(2、4-ジメチルバレロニト リル) 0. 1部をメチルエチルケトン5部に溶解した溶 液を加え、更に65℃で2時間、70℃で2時間熟成さ せることによりビニル系ポリマー溶液を得た。

15

【0069】得られたビニル系ポリマー溶液の一部を、 減圧下、105℃で2時間乾燥させ、完全に溶媒を除去 することによって単離した。溶媒としてテトラヒドロフ 平均分子量は約10,000であり、DSCによるTg が180°Cであった。

【0070】上記で得られたビニル系ポリマー溶液を減 圧乾燥させて得られたビニル系ポリマー5gに、トルエ\*

\*ン25gおよび疎水性染料である商品名 Vail Fast Bl ue 2606 〔オリエント化学(株)製〕5gを加えて完全 に溶解させ、水酸化ナトリウム水溶液を2g加えてビニ ル系ポリマーの塩生成基を一部中和した。次いで、イオ ン交換水300gを加え、撹拌した後、乳化装置である 商品名 マイクロフルイダイザー(マイクロフルイダイ ザー社製)を用いて、30分間乳化した。得られた乳化 物を減圧下60℃でトルエンを完全に除去し、更に一部 の水を除去することにより濃縮し、疎水性染料を含浸さ ランを用いたGPCによるこのビニル系ポリマーの重量 10 せたビニル系ポリマー微粒子のエマルジョン(平均粒 径:98nm、固形分濃度:10%)を得た。

[0071]

【表1】

|                        | 製 造 例 1                                                                                             | 部                                |
|------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|
| 初期仕込みモノマー<br>及び重合連鎖移動剤 | メチルメタクリレート<br>ヒドロキシエチルメタクリレート<br>メタクリル酸<br>シリコーンマクロマーFM-0711<br>スチレンアクリロニトリルマクロマーAN-6<br>メルカプトエタノール | 1 3<br>1<br>3<br>2<br>1<br>0.3   |
| 満下モノマー及び<br>重合連鎖移動剤    | メチルメタクリレート<br>ヒドロキシエチルメタクリレート<br>メタクリル酸<br>シリコーンマクロマーFM-0711<br>スチレンアクリロニトリルマクロマーAN-6<br>メルカプトエタノール | 5 2<br>4<br>1 2<br>8<br>4<br>1.2 |

【0072】 [実施例1] 製造例1で得られたビニル系 合し、得られた分散液を0.2 μmのフィルターによっ て濾過し、ゴミ及び粗大粒子を除去して水系インクを得 た。このインクを用い、市販のキャノン製カラーバブル※

- 製造例1で得られたエマルジョン
- ・尿素(化合物A)
- n オクタン酸Na(化合物B)
- ・エチレングリコール
- ・グリセリン
- ・イオン交換水

ク液滴の着弾位置の正確性の評価>インクジェット用高 画質専用紙(キャノン製HR101)にベタ印字を10 0枚、文字印字を3000枚したときのインク着弾位置 の正確性および印字終了後の印字ヘッドのフェイス面の 汚れを観察し、下記の基準で評価した。

<インク着弾位置>

- ◎;ベタ、文字印字とも正常。
- 〇;文字印字での着弾位置は正常、ベタ印字では着弾位 置のずれによりスジが見られる。
- △;ベタ、文字印字とも着弾位置に乱れが見られる。

※ジェットプリンター(型番BJC-420J)で印字 ボリマー微粒子のエマルジョンを下記配合で各成分を混 30 し、印字ヘッドのフェイス面の汚れ、インク液滴の着弾 位置の正確性、及び印字濃度を下記の方法で評価した。 その結果を表2に示す。

[0073]

60g 5 g 0.5g 5 g 5 g 24.5g

- 【0074】<印字ヘッドのフェイス面の汚れ及びイン 40 ×;印字途中で印字カスレ発生。文字の判別不可能。 <フェイス面汚れ>
  - ◎;ベタ、文字印字ともフェイス面に汚れなし。
  - 〇;文字印字ではフェイス面に汚れはないが、ベタ印字 ではフェイス面に汚れが見られる。但しノズルは閉塞し ていない。

△:ベタ、文字印字ともにフェイス面に汚れが見られ

×: 印字途中でノズル閉塞。

る。但しノズルは閉塞していない。

【0075】<印字濃度>PPC用再生紙〔日本加工製 50 紙(株)社製] にベタ印字を行い、室内にて24時間自

然乾燥させた後、その光学濃度をマクベス濃度計RD9 18 (マクベス社製)で測定した。尚、印字濃度はその 値が1.40以上あれば品質上の問題はない。

【0076】〔実施例2~9及び比較例1~6〕実施例 1で用いた化合物A及び化合物Bに代えて、表2に示す\* \*ものをそれぞれ用いる以外は実施例1と同様にして水系 インクを製造した。得られた水系インクについて、実施 例1と同様の評価をした。その結果を表2に示す。

[0077]

【表2】

|   |   | 化合物A              | 化合物B           | 734/面 汚れ | インク液液<br>着弾位量<br>の正確性 | 印字濃度 |
|---|---|-------------------|----------------|----------|-----------------------|------|
|   | 1 | 尿素                | nーオクタン酸Na      | 0        | 0                     | 1.61 |
| 実 | 2 | Nーメチルグリシン         | nーデカン酸Na       | 0        | 0                     | 1.56 |
|   | 3 | N, N, Nートリメチルグリシン | 3-エチルヘプタン酸Na   | 0        | 0                     | 1.61 |
|   | 4 | 尿薬                | nーヘプチルリン酸Na    | 0        | ٥                     | 1.62 |
| 施 | 5 | Nーメチルグリシン         | nーノニルリン酸Na     | 0        | 0                     | 1.58 |
|   | 6 | N, N, Nートリメチルグリシン | 2-エチルヘキシルリン酸Va | 0        | 0                     | 1.59 |
| 例 | 7 | 尿素                | ジn ーヘプチルリン酸N a | 0        | 0                     | 1.63 |
|   | 8 | Nーメチルグリシン         | ジnーノニルリン酸Na    | Ø        | 0                     | 1.60 |
|   | 9 | N. N. N-Fリメチルグリシン | ジ2-エチルヘキシルリン酸セ | 0        | 0                     | 1.60 |
| - | 1 | 尿素                | n-ヘキサン酸Na      | ×        | ×                     | 0.50 |
| 比 | 2 | Nーメチルグリシン         | nーラウリン酸Na      | ×        | ×                     | 0.68 |
|   | 3 | N. N. N-10xf44997 | nーペンチルリン酸Na    | 0        | 0                     | 0.99 |
| 較 | 4 | 尿紊                | nーウンデカニルリン酸Na  | 0        | 0                     | 0.85 |
| 例 | 5 | Nーメチルグリシン         | ジベンチルリン酸Na     | 0        | 0                     | 0.95 |
|   | 6 | 尿素                | ジーnウンデカニルリン酸ね  | 0        | 0                     | 0.88 |

実施例及び比較例においては、インクの表面張力は、32~48mN/m(20℃)であり、 粘度は1.2~5.0mPa·sec (20°C) であった。

【0078】〔製造例2〕ポリオキシプロピレン(2. 2)-2.2-ビス(4-ヒドロキシフェニル)プロバ ン1050g、非環式ダイマー酸化合物30%及び単環 式ダイマー酸化合物 10%を含有するダイマー酸混合物 90g、フマール酸270g、無水トリメリット酸12 0g、ハイドロキノン1、5gを反応器に入れ、窒素気 流下にて210℃にて攪拌しつつ反応せしめた。重合度 はASTM E28-67に準ずる軟化点より追跡を行 い、軟化点が100℃に達した時反応を終了した。得ら れたポリエステルは淡黄色の固体であり、DSCによる 基づく該ポリエステルの酸価は53KOHmg/gであ り、数平均分子量は5、500であった。次に、上記ポ リエステル150g、油溶性染料(オリエント化学製、 OIL BLACK 860) 70 g 及びテトラヒドロフラン500 g を反応器に入れ、窒素置換後、攪拌して上記ポリエステ ル及び油溶性染料をテトラヒドロフランに完全溶解させ※

粒径;20nm、固形分濃度;20%)を得た。 【0079】〔実施例10〕製造例2で得られたエマル Tgは58℃であった。また、JIS K 0070に 40 ジョンを用いて下記配合で各成分を混合し、得られた分 散液を0.2μmのフィルターによって濾過し、ゴミ及 び粗大粒子を除去して水系インクを得た。得られたイン クについて実施例1と同様の評価をした。その結果を表

30※た。引き続き、ジメチルエタノールアミン13.90g

及び水酸化ナトリウム1. 13gを加えて上記ポリエス

テル中のカルボキシル基をイオン化した。更に、イオン

交換水960g及びナフタレンスルホン酸のホルマリン

縮合物塩(HLB値8.51)3gの混合水溶液を滴下

して撹拌した後、減圧下で40℃に加熱してテトラヒド

ロフラン及び一部の水を除去して、色材(油溶性染料)

を含浸させたポリエステル微粒子のエマルジョン(平均

3に示す。 [0080]

製造例2で得られたエマルジョン

・尿素(化合物A)

60g

n -ヘプチルリン酸エステルNa(化合物B)

5 g

0.5g

・エチレングリコール

5 g

・グリセリン

・イオン交換水

5 g

24.5g

【0081】〔実施例11~18及び比較例7~12〕 実施例10で用いた化合物A及び化合物Bに代えて、表 3に示すものをそれぞれ用いる以外は実施例10と同様 にして水系インクを製造した。得られた水系インクにつ\*

\*いて、実施例1と同様の評価をした。その結果を表3に 示す。

[0082]

【表3】

|   |    | 化合物A              | 化合物B           | フェイス面<br>汚れ | インク液滴<br>着弾位量<br>の正确性 | 印字濃度   |
|---|----|-------------------|----------------|-------------|-----------------------|--------|
|   | 10 | 尿素                | nーオクタン酸Na      | 0           | 0                     | 1.52   |
| 実 | 11 | N-メチルグリシン         | nーデカン酸N a      | 0           | 0                     | 1.50   |
|   | 12 | N. N. Nートリメナルグリシン | 3-エチルヘプタン酸Na   | 0           | 0                     | 1.55   |
|   | 13 | 尿素                | nーヘプチルリン酸Na    | 0           | 0                     | 1. 5 4 |
| 施 | 14 | N-メチルグリシン         | nーノニルリン酸Na     | 0           | 0                     | 1.51   |
|   | 15 | N, N. N-トリメチルグリシン | 2-エチルヘキシルリン酸da | 0           | 0                     | 1.43   |
| 例 | 16 | 尿素                | ジn ーヘプチルリン酸Na  | 0           | 0                     | 1.55   |
|   | 17 | Nーメチルグリシン         | ジnーノニルリン酸Na    | 0           | 0                     | 1.52   |
|   | 18 | N. N. Nートリメチルグリシン | ジ2-エチルヘキシルリン酸物 | 0           | 0                     | 1.45   |
|   | 7  | 尿素                | nーヘキサン酸Na      | ×           | ×                     | 0.53   |
| 比 | 8  | N-メチルグリシン         | nーラウリン酸Na      | ×           | ×                     | 0. 6 4 |
|   | 9  | N, N, N-トリメチルグリシン | nーペンチルリン酸Na    | 0           | 0                     | 0.88   |
| 較 | 10 | 尿素                | nーウンデカニルリン酸Na  | 0           | 0                     | 0.80   |
| 例 | 11 | Nーメチルグリシン         | ジー nペンチルリン酸Na  | 0           | 0                     | 0.90   |
|   | 12 | 尿業                | ジーnウンデカニルリン酸wa | 0           | <b>©</b>              | 0.82   |

実施例及び比較例においては、インクの表面張力は、 $32~4~8\,\mathrm{mN/m}$ ( $2~0~\mathrm{C}$ )であり、粘度は $1.2~5.0\,\mathrm{mPa}$ ・sec( $2~0~\mathrm{C}$ )であった。

【0083】表2及び表3に示す結果から明らかなように、色材を含浸させたポリマー微粒子のエマルジョンからなり且つ特定の化合物を含有する実施例の水系インクでは、印字ヘッドのフェイス面の汚れが防止され、インク液滴の着弾位置の精度が高く、且つ十分な印字濃度を有するものであることが判る。また、表には示していないが、実施例の水系インクは液安定性が高く、また耐水性および耐擦過性に優れるものであった。 ※

# % [0084]

【発明の効果】本発明の水系インクによれば、印字へッドのフェイス面の汚れに起因するインク吐出不良が防止され、インク液滴の着弾位置の精度が向上し、且つ普通紙での印字濃度が向上する。また、本発明の水系インクは液安定性が高く、耐水性および耐擦過性に優れるものである。

フロントページの続き

F ターム(参考) 4J039 AD08 AE06 AE11 BC19 BC20 BC33 BC34 BC37 BC56 BC57 BE33 CA06 EA21 EA41 EA46 GA24