SELECTIVE LASER SINTERING 3D PRINTER

ELEC 341 PROJECT LUFEI LIU - 14090154

MODEL OVERVIEW

I. Inverse Kinematics Convert X,Y coordinates to angles

2. Amplifier

Convert angles to voltages and amplify

3. Motor

Model motor behavior to convert voltages into resulting angles

4. Sensor

Use sensor to track progress and adjust as necessary

3D PRINTER

Input: Desired X,Y coordinates of object

Output: 3D printed object

DIRECT AND INVERSE KINEMATICS

MODELING COMPONENTS

POWER AMPLIFIER

Using nodal analysis with $V_P = V_N = V_1$ due to negative feedback:

$$\frac{V_{in} - V_1}{R_1} = (V_1 - V_{out}) \times sC$$

$$\frac{V_{in} - V_1}{sL} = \frac{V_1}{R_2}$$

Substituting for the transfer function:

$$\frac{V_{out}}{V_{in}} = \frac{CR_1R_2 - L}{CLR1s + CR_1R_2}$$

Set V_{SS} to motor nominal voltage to limit voltage into motor

STATIC FRICTION

Static friction for an object is described by:

$$F_{SF} = \mu_{SF} \times F_N = \mu_{SF} \times mg$$

Rotor mass is negligible in a DC motor.

Motor 0

Weight attached includes motor, counterweight, and link.

$$m = 2 \times m_{motor} + m_{link}$$

Motor I

Weight attached is negligible.

$$m = 0$$

DC MOTOR CIRCUIT

A DC motor can be modelled as a simply circuit with input voltage v, back-emf resulting from the rotations v_{emf} , and an armature impedance of R and L.

Relationships from the circuit:

$$\frac{v - v_{emf}}{R + sL} = I$$

$$v_{emf} = k_b \times \omega$$

$$\tau = k_{\tau} \times I$$

 The electrical transfer function relates current to the difference in voltage

$$\frac{I}{v - v_{emf}} = \frac{1}{R + sL} = \frac{Y(s)}{U(s)}$$

ullet k_b is represented by speed constant in the motor datasheet

$$k_b = \frac{1}{2\pi \times 60 \times speed\ constant}$$

• $k_{ au}$ is represented by torque constant in the motor datasheet

 The electrical transfer function relates current to the difference in voltage

$$\frac{I}{v - v_{emf}} = \frac{1}{R + sL} = \frac{Y(s)}{U(s)}$$

ullet k_b is represented by speed constant in the motor datasheet

$$k_b = \frac{1}{2\pi \times 60 \times speed\ constant}$$

• $k_{ au}$ is represented by $\emph{torque constant}$ in the motor datasheet

DC MOTOR MECHANICS

At the rotor, the forces can be modelled as a combination of inertia (J), spring (K), and friction (B). The effective torque is then:

$$\tau(t) = J\ddot{\theta} + B\dot{\theta} + K\theta$$

Or in terms of ω :

$$\tau(t) = J\dot{\omega} + B\omega + K\frac{1}{\omega}$$

with s representing the derivative:

$$\tau = \frac{1}{s} (Js^2 + Bs + K)$$

INERTIA

Motor and Counterweight

$$Inertia = J_{2(length+d)} - J_{2d}$$

$$m_x = \frac{m_{motor}}{volume_{motor}} \times volume_x$$

$$J = \frac{1}{12} m_{object} \times \left(3r^2 + (2 \operatorname{length} + 2d)^2\right)$$
$$-\frac{1}{12} m_{imaginary} \times \left(3r^2 + (2d)^2\right)$$

$$J_{system} = J_{motor+counterweight} + J_{link} + J_{rotor}$$

$$J_2 = \frac{\pi \rho h}{12} \left(3 \left(r_2^2 + r_1^2 \right) + h^2 \right)$$

With no load, the generated torque equates to the damping torque (or kinetic friction)

$$\tau_{generated} = \tau_{friction}$$

$$k_{\tau} \times I_{no \ load} = B \times \omega_{no \ load}$$

$$B = \frac{k_{\tau} I_{no \ load}}{\omega_{no \ load}}$$

KINETIC FRICTION

TESTING THE MODEL

Sensor Feedback Loop

Sensor converts angles of motors proportionally to a voltage using **sensor gain**

Confirming Direct and Inverse Kinematics

Desired

kinematic blocks should be an exact inverse of one another, effectively cancelling to generate identical actual plot

Actual

Step Response

Impulse Response

EVALUATING THE SYSTEM

Transfer Functions

49.138 -----(s+49.17)

2762.4 ------(s+1.489e04) 12161 s ------(s^2 + 0.002045s + 13.55) 2.2936e06 s -----s (s+0.3856)

Amplifier

Electrical System

Mechanical System

Root Locus

CONTROL OVERVIEW

3D PRINTER

Input: Desired X,Y coordinates of object

Output: 3D printed object

CHOOSING MOTORS

MOTOR 0

Motor 0 holds a large weight, so choose most powerful motor

Choose largest stall torque

Motor	AMAX12 p75W SB	AMAX16 2W SB	AMAX19 2p5W SB	AMAX22 5W SB	AMAX22 6W SB
Stall Torque	1.52	4.84	9.47	24.3	23.7
					/

MOTOR I

Evaluate step responses with set motor 0 to determine most fitting motor I

Choose shortest rise time, least overshoot and fastest peak time

Motor	AMAX12 p75W SB	AMAX16 2W SB	AMAX19 2p5W SB	AMAX22 5W SB	AMAX22 6W SB
Rise Time	0.12	0.16	0.23	0.29	0.29
Overshoot	71.34	79.04	85.21	88.25	88.25
Peak Time	0.35	0.46	0.66	0.84	0.84

AMAX22 6W

AMAXI9 2p5W

AMAXI62W

THE SYSTEM

Linearized for Evaluation

$$TF = TF_{amp} \cdot \frac{TF_{elec} \cdot K_{\tau} \cdot TF_{mech}}{1 + TF_{elec} \cdot K_{\tau} \cdot TF_{mech} \cdot K_{B}} \cdot \frac{1}{s}$$

TF = 1

NOTE: Until values are determined

 $TF = K_{gain} \cdot K_{FB \, gain} = 1$

NOTE: Set FB Gain to achieve this

OPEN LOOP (KGH)

1.2843e+08

(s+1.489e04) (s+49.17) $(s^2 + 1.945s + 96.72)$

MOTOR 0

MOTOR I

 $1.4146e10 (s^2 + 0.02919s + 96.7)$

 $s (s+4.049e04) (s+49.17) (s+1.347) (s^2 + 0.1308s + 96.7)$

SELECT INITIAL POSITION

MOTOR 0

Choose to eliminate complex poles closest to positive plane

MOTOR I

Must eliminate pole at 0 to remain stable Choose to eliminate next closest pole (-1.35)

PID CONTROLLER

 k_p Proportional Gain k_i Integral Gain

 k_d Derivative Gain

$$TF_{PID} = k_d \frac{s^2 + \frac{k_P}{k_d}s + \frac{k_i}{k_d}}{s}$$

Set zeros at:

$$s^2 + 1.945s + 96.72$$

k_p	$1.945 k_d$
k_i	96.72 k_d
k_d	K_0

Set zeros at:

$$s(s+1.35) = s^2 + 1.35s$$

k_p	$1.35 k_d$
k_i	0
k_d	K_1

MOTOR 0

Choose K such that poles are critically damped

- \rightarrow measure K at breakpoint and apply to previous equations
- → minimizes rise time, minimizes settle time, avoids oscillations

STARTING PID VALUES

K_0	k_p	k_i	k_d
0.07	0.135	6.77	0.07

K_1	k_p	k_i	k_d
0.0017	0.0023	0	0.0017

TUNING PROCESS

Slowly iterate through PID values to minimize build error

Gain Increased	Rise Time	Overshoot	Settle Time	SS Error
K _p	Decrease	Increase	Increase	Decrease
K _i	Decrease	Increase	Increase	0
K _d	Increase	Decrease	Decrease	N/A

STEP RESPONSES

Initial PID Values

- M0 rise time can be improved, increase K_d
- MI initial peak very low, increase K_d

MOTOR 0

MOTOR I

MOTOR 0

MOTOR I

Improve M0 settle time, decrease K_p , increase K_i k_d 0.1

Continue to decrease K_p , increase K_i

MOTOR 0

Continue to decrease K_p , increase K_i

Improve MI rise time, increase K_p

Continue to increase K_p

MOTOR I

Continue to increase K_p

RESULT

Final PID values

- → Optimized for 125ms step interval
- → Minimized position error

MOTOR 0

MOTOR I

COMPARISON

Hand Tuned PID Values VS Auto Tuned PID Values

	k_p	k_i	k_d
Hand Tuned	0.045	9.69	0.1
Auto Tuned	0	0.398	0

	Rise Time	Settle Time	Overshoot
Hand Tuned	0.078	0.47	3.83%
Auto Tuned	2.78	5.45	0

Step Plot: Reference tracking

1.2

— Tuned response
— 'Block response
— 'Block response

0.4

0.2

Time (seconds)

	k_p	k _i	k_d
Hand Tuned	0.145	0	0.0033
Auto Tuned	0.35	1.43	0.015

	Rise Time	Settle Time	Overshoot
Hand Tuned	0.061	0.099	0.91%
Auto Tuned	0.025	0.42	9.1%

Less overshoot, slower rise time, not ideal

Fast rise time, larger overshoot, not ideal

THANK YOU