Markov Decision Processes

Chen-Yu Wei

Sequence of Actions

To win the game, the learner has to take a sequence of actions $a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_H$.

One option: view every sequence as a "meta-action": $\bar{a} = (a_1, a_2, \dots, a_H)$

Drawback:

- The number of actions is exponential in horizon
- In stochastic environments, this does not leverage intermediate observations

Solution idea: dynamic programming

Interaction Protocol: Fixed-Horizon Case

For **episode** t = 1, 2, ..., T:

For **step** h = 1, 2, ..., H:

Learner observes an observation $x_{t,h}$

Learner chooses an action $a_{t,h}$

Learner receives instantaneous reward $r_{t,h}$

General case:

$$\mathbb{E}[r_{t,h}] = R(x_{t,1}, a_{t,1}, \dots, x_{t,h}, a_{t,h}), \quad x_{t,h+1} \sim P(\cdot \mid x_{t,1}, a_{t,1}, \dots, x_{t,h}, a_{t,h})$$

 \Rightarrow Optimal decisions may depend on the entire history $\mathcal{H}_t = (x_{t,1}, a_{t,1}, \dots, x_{t,h})$

Interaction Protocol: Fixed-Horizon Case

For **episode** t = 1, 2, ..., T:

For **step** h = 1, 2, ..., H:

Learner observes an observation $x_{t,h}$

Learner chooses an action $a_{t,h}$

Learner receives instantaneous reward $r_{t,h}$

We assume that the history $\mathcal{H}_t = (x_{t,1}, a_{t,1}, \dots, x_{t,h})$ can be summarized as a **horizon-length-independent** representation $s_{t,h} = \Phi(x_{t,1}, a_{t,1}, \dots, x_{t,h}) \in \mathcal{S}$ so that

$$\mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h}), \quad x_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})$$

 $s_{t,h}$ is called the "state" at the step h of episode t.

From Observations to States

Stacking recent observations

Recurrent neural network

Hidden Markov model

Interaction Protocol: Fixed-Horizon Case

```
For episode t = 1, 2, ..., T:
   For step h = 1, 2, ..., H:
   Environment reveals state s_{t,h}
   Learner chooses an action a_{t,h}
   Learner observes instantaneous reward r_{t,h} with \mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h})
   Next state is generated as s_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})
```

This is called the Markov decision process.

MDP as Contextual Bandits?

Viewing states as contexts, and viewing the problem as a contextual bandit

problem with *TH* rounds (what's wrong?)

Regret (confextual band:
$$H$$
) = $\sum_{t=1}^{T} \sum_{h=1}^{H} \max_{A \in A} R(S_{t,h}, a_{t,h}) - \sum_{t=1}^{T} \sum_{h=1}^{H} R(S_{t,h}, a_{t,h})$
Regret (confextual band: H) = $\sum_{t=1}^{T} \sum_{h=1}^{H} \max_{A \in A} R(S_{t,h}, a_{t,h}) - \sum_{t=1}^{T} \sum_{h=1}^{H} R(S_{t,h}, a_{t,h})$

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon (Goal-Oriented)
 - Infinite-Horizon
- Performance Metric
 - Total Reward
 - Average Reward
 - Discounted Reward
- Policy
 - History-dependent policy
 - Markov policy
 - Stationary policy

Horizon = Length of an episode

Interaction Protocols (1/3): Fixed-Horizon

Horizon length is a fixed number *H*

```
h \leftarrow 1
```

Observe initial state s_1

While $h \leq H$:

Choose action a_h

Observe reward r_h with $\mathbb{E}[r_h] = R(s_h, a_h)$

Observe next state $s_{h+1} \sim P(\cdot | s_h, a_h)$

Examples: games with a fixed number of time

Interaction Protocols (2/3): Goal-Oriented

The learner interacts with the environment until reaching **terminal states** $\mathcal{T} \subset \mathcal{S}$

```
h \leftarrow 1
Observe initial state s_1
While s_h \notin \mathcal{T}:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

Examples: video games, robotics tasks, personalized recommendations, etc.

Interaction Protocols (3/3): Infinite-Horizon

The learner continuously interacts with the environment

```
h \leftarrow 1
Observe initial state s_1
Loop forever:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

Examples: network management, inventory management

Formulations for Markov Decision Processes

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon (Goal-Oriented)
 - Infinite-Horizon
- Performance Metric
 - Total Reward
 - Average Reward
 - Discounted Reward
- Policy
 - History-dependent policy
 - Markov policy
 - Stationary policy

Episodic setting

Performance Metric

Total Reward (for episodic setting):

$$\sum_{h=1}^{\tau} r_h$$

 $\sum r_h$ (τ : the step where the episode ends)

Average Reward (for infinite-horizon setting):

$$\lim_{T\to\infty}\frac{1}{T}\sum_{h=1}^T r_h$$

Discounted Total Reward (for episodic or infinite-horizon): $\sum_{h=1}^{\tau} \gamma^{h-1} r_h \leq \frac{1}{1-\gamma}$

$$\sum_{h=1}^{\tau} \gamma^{h-1} r_h \leq \frac{1}{1-\gamma}$$

 τ : the step where the episode ends, or ∞ in the infinite-horizon case

 $\gamma \in [0,1)$: discount factor

Interaction Protocols vs. Performance Metrics

Discounted Total Reward?

Focusing more on the **recent** reward

There is a potential mismatch between our ultimate goal and what we optimized.

Our Focus

In most of the following lectures, we focus on the **goal-oriented / infinite-horizon** setting with **discount total reward** as the performance metric.

Policy

A mapping from observations/contexts/states to (distribution over) actions

Contextual bandits

$$a \sim \pi(\cdot \mid x)$$
 (randomized/stochastic)
or $a = \pi(x)$ (deterministic)

Multi-armed bandits

$$a \sim \pi$$
 or $a = a^*$

Policy for MDPs

History-dependent Policy

$$a_h \sim \pi(\cdot \mid s_1, a_1, r_1, s_2, a_2, r_2, ..., s_h)$$

 $a_h = \pi(s_1, a_1, r_1, s_2, a_2, r_2, ..., s_h)$

Markov Policy

$$a_h \sim \pi(\cdot \mid s_h, h)$$

 $a_h = \pi(s_h, h)$

there exists an optimal policy in this class

Stationary Policy

$$a_h \sim \pi(\cdot \mid s_h)$$
 $a_h = \pi(s_h)$

For infinite-horizon/goal-oriented + discounted total reward setting, there exists an optimal policy in this class

Fixed-Horizon + Total Reward

Dynamic Programming

Goal: Calculate the expected total reward of a policy

A (Markov) policy is a mapping from (state, step index) to action distribution, written as

$$\pi_h(\cdot | s) \in \Delta(\mathcal{A})$$
 for $s \in \mathcal{S}$ and $h \in \{1, 2, ..., H\}$

Dynamic Programming

State transition: P(s'|s,a)

Reward: R(s, a)

Key quantity: $V_h^{\pi}(s) =$ the expected total reward of policy π starting from state s at step h.

Backward calculation:

$$V_H^{\pi}(s) = \sum_{\alpha} \pi_H(\alpha|s) R(s, \alpha) \quad \forall s$$

For
$$h = H - 1, ... 1$$
: for all *s*

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) \, V_{h+1}^{\pi}(s') \right)$$

Expected total reward from step h + 1

Bellman Equation

$$V_{H+1}^{\pi}(s) = 0$$

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s') \right)$$
 for $h = H, ..., 1$

$$Q_h^{\pi}(s,a)$$

$$V_h^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_h(a|s) Q_h^{\pi}(s,a)$$

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

Occupancy Measures

 $d_{\rho}^{\pi}(s)$: the expected number of times state s is visited, under policy π and initial state distribution ρ

Key quantity: $d_{\rho,h}^{\pi}(s)$ = the probability of state s being visited **at step** h, under policy π and initial state distribution ρ

Forward calculation:

$$d_{\rho,1}^{\pi}(s) = \rho(s) \quad \forall s$$

For h = 2, ... H:

$$d_{\rho,h}^{\pi}(s) = \sum_{s'} d_{\rho,h-1}^{\pi}(s') \sum_{a'} \pi_{h-1}(a'|s') P(s|s',a') \quad \forall s$$

Reverse Bellman Equation

$$d_{\rho,1}^{\pi}(s) = \rho(s)$$

$$d_{\rho,h}^{\pi}(s) = \sum_{s',a'} d_{\rho,h-1}^{\pi}(s') \pi_{h-1}(a'|s') P(s|s',a') \qquad \text{for } h = 2, ..., H$$

$$d_{\rho,h-1}^{\pi}(s',a')$$

$$d_{\rho,h}^{\pi}(s) = \sum_{s',a'} d_{\rho,h-1}^{\pi}(s',a') P(s|s',a')$$
$$d_{\rho,h}^{\pi}(s,a) = d_{\rho,h}^{\pi}(s) \pi_h(a|s)$$

Dynamic Programming

Goal: Find the optimal policy

Key quantity: $V_h^{\star}(s)$ = the optimal expected total reward starting from state s at step h.

Backward calculation:

$$V_H^{\star}(s) = \max_{a} \ R(s,a) \quad \forall s$$
 For $h = H-1, \dots 1$:
$$V_h^{\star}(s) = \max_{a} \ R(s,a) + \sum_{s'} P(s'|s,a) \ V_{h+1}^{\star}(s') \quad \forall s$$
 Value Iteration

$$\pi_h^*(s) = \underset{a}{\operatorname{argmax}} \ R(s, a) + \sum_{s'} P(s'|s, a) \ V_{h+1}^*(s')$$

Bellman Optimality Equation

$$V_{H+1}^{\star}(s) = 0$$

$$V_{h}^{\star}(s) = \max_{a} \left(R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^{\star}(s') \right) \qquad \text{for } h = H, ..., 1$$

$$Q_{h}^{\star}(s, a)$$

$$V_h^*(s) = \max_{a} Q_h^*(s, a)$$

$$Q_h^*(s, a) = R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^*(s')$$

$$\pi_h^{\star}(s) = \underset{a}{\operatorname{argmax}} \ Q_h^{\star}(s, a)$$

Recap

$$V_h^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_h(a|s) Q_h^{\pi}(s,a)$$

$$Q_h^{\pi}(s, a) = R(s, a) + \sum_{s' \in \mathcal{S}} P(s'|s, a) V_{h+1}^{\pi}(s')$$

Bellman Equation

$$d_{\rho,h}^{\pi}(s,a) = d_{\rho,h}^{\pi}(s)\pi_h(a|s)$$

$$d_{\rho,h}^{\pi}(s) = \sum_{s',a'} d_{\rho,h-1}^{\pi}(s',a') P(s|s',a')$$

Reverse Bellman Equation

$$V_h^{\star}(s) = \max_{a} Q_h^{\star}(s, a)$$

$$Q_h^{\star}(s,a) = R(s,a) + \sum_{s' \in \mathcal{S}} P(s'|s,a) \, V_{h+1}^{\star}(s')$$

Bellman Optimality Equation (Value Iteration)

Infinite-Horizon / Goal-Oriented + Discounted Total Reward

Equivalent Views

deterministic and zero-reward

Converting goal-oriented to infinite-horizon

$$\mathbb{E}^{\text{new}}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h\right] = \mathbb{E}^{\text{old}}\left[\sum_{h=1}^{\tau} \gamma^{h-1} r_h\right] \qquad \qquad \mathbb{E}^{\text{new}}\left[\sum_{h=1}^{\infty} r_h\right] = \mathbb{E}^{\text{old}}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h\right]$$

Scale down all transitions by a factor of γ and add probability $1 - \gamma$ transitioning to z

Converting discounted total reward to total reward

$$\mathbb{E}^{ ext{new}} \left[\sum_{h=1}^{\infty} r_h
ight] = \mathbb{E}^{ ext{old}} \left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h
ight]$$

Dynamic Programming

Goal: Calculate the expected discounted total reward of a stationary policy π $V^{\pi}(s)$ = the expected discounted total reward starting from state s

Key quantity: $V_i^{\pi}(s)$ = the expected discounted total reward starting from state s supposed that i more steps can be executed

$$V_0^{\pi}(s) = 0 \quad \forall s$$

For
$$i = 1, 2, 3 ...$$

$$V_i^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i-1}^{\pi}(s') \right) \quad \forall s$$

$$V^{\pi}(s) = \lim_{i \to \infty} V_i^{\pi}(s)$$
 (need to prove that the algorithm converges)

Proof of Convergence

We prove the following statement:

For any $\epsilon > 0$, there exists a large enough N such that

$$\left|V_i^{\pi}(s) - V_j^{\pi}(s)\right| \le \epsilon$$

for any $i, j \geq N$.

Proof of Convergence

For any $\epsilon > 0$, there exists a large enough N such that

$$\left|V_i^{\pi}(s) - V_j^{\pi}(s)\right| \le \epsilon$$

for any $i, j \geq N$.

$$\widehat{V}(s) = \lim_{i \to \infty} \inf \{ V_j^{\pi}(s) : j \ge i \}$$

For any $\epsilon > 0$, there exists a large enough N such that

$$\left|V_i^{\pi}(s) - \hat{V}(s)\right| \le \epsilon$$

for any $i \geq N$.

Remark. This convergence theorem holds for any initial values of $V_0^{\pi}(s)$

Proof of Uniqueness

Bellman Equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

$$Q^{\pi}(s,a)$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

Occupancy Measures

 $d_{\rho}^{\pi}(s)$: the expected number of times state s is visited, under policy π and initial state distribution ρ

Key quantity: $d_{\rho,h}^{\pi}(s)$ = the probability of state s being visited at step h, under policy π and initial state distribution ρ

Forward calculation:

$$d_{\rho,1}^{\pi}(s) = \rho(s) \quad \forall s$$

For h = 2, 3, ...

$$d_{\rho,h}^{\pi}(s) = \gamma \sum_{s'} d_{\rho,h-1}^{\pi}(s') \sum_{a'} \pi(a'|s') P(s|s',a') \quad \forall s$$

Reverse Bellman Equation

$$d_{\rho}^{\pi}(s) = \rho(s) + \gamma \sum_{s',a'} d_{\rho}^{\pi}(s') \pi(a'|s') P(s|s',a')$$
$$d_{\rho}^{\pi}(s',a')$$

$$d_{\rho}^{\pi}(s) = \rho(s) + \gamma \sum_{s',a'} d_{\rho}^{\pi}(s',a') P(s|s',a')$$
$$d_{\rho}^{\pi}(s,a) = d_{\rho}^{\pi}(s)\pi(a|s)$$

Another version makes $d_{\rho}^{\pi}(s)$ a distribution over s

 \rightarrow Just change the $\rho(s)$ in the first equation by $(1-\gamma)\rho(s)$

Dynamic Programming

Goal: find optimal policy

Key quantity: $V_i^*(s)$ = the optimal discounted total reward starting from state s supposed that i more steps can be executed

$$V_0^{\star}(s) = 0 \quad \forall s$$

For
$$i = 1, 2, 3 ...$$

$$V_i^*(s) = \max_a R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_{i-1}^*(s') \quad \forall s$$

Value Iteration

$$V^{\star}(s) = \lim_{i \to \infty} V_i^{\star}(s) \qquad \pi^{\star}(s) = \underset{a}{\operatorname{argmax}} \ R(s, a) + \gamma \sum_{s'} P(s'|s, a) \ V^{\star}(s')$$

Bellman Optimality Equation

$$V^{\star}(s) = \max_{a} \left(R(s, a) + \sum_{s'} P(s'|s, a) V^{\star}(s') \right)$$

$$Q^{\star}(s, a)$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = R(s, a) + \sum_{s'} P(s'|s, a) V^{*}(s')$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

Recap

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q^{\pi}(s,a)$$

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V^{\pi}(s')$$

Bellman Equation

$$d^{\pi}_{\rho}(s,a) = d^{\pi}_{\rho}(s)\pi(a|s)$$

$$d_{\rho}^{\pi}(s) = (1 - \gamma)\rho(s) + \gamma \sum_{s',a'} d_{\rho}^{\pi}(s',a')P(s|s',a')$$

Reverse Bellman Equation

$$V^{\star}(s) = \max_{a} Q^{\star}(s, a)$$

$$Q^{\star}(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V^{\star}(s')$$

Bellman Optimality Equation (Value Iteration)

If Bellman Equations Only Hold Approximately

If
$$\left| \hat{V}(s) - \max_{a} \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | S, a)} [\hat{V}(s')] \right) \right| \le \epsilon \quad \forall s$$

then $\left| \hat{V}(s) - V^*(s) \right| \le \frac{\epsilon}{1 - \gamma} \quad \forall s$

Policy Iteration

Policy Iteration

Policy Iteration

For
$$k = 1, 2, ...$$

$$\forall s, \qquad \pi^{(k+1)}(s) \leftarrow \operatorname*{argmax}_{a} Q^{\pi^{(k)}}(s, a)$$

Theorem (monotonic improvement). Policy Iteration ensures

$$\forall s, \qquad V^{\pi^{(k+1)}}(s) \ge V^{\pi^{(k)}}(s)$$

Single-Step Policy Modification

Assume $\pi'_h(\cdot|s) = \pi_h(\cdot|s)$ for all $h \neq h^*$

$$\mathbb{E}_{s \sim \rho} \left[V_1^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[V_1^{\pi}(s) \right] = ?$$

All-Step Policy Modification

Let $\pi^{(h)}$ be a Markov policy such that it is

same as π' in steps 1 to h-1 same as π in steps h to H

$$\pi' = \pi^{(H+1)}$$
 and $\pi = \pi^{(1)}$

Discounted Total Reward Setting

Performance / Value Difference Lemma

For any two stationary policies π' and π in the discounted total reward setting,

$$\mathbb{E}_{s \sim \rho} \left[V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[V^{\pi}(s) \right] = \sum_{s, a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s, a)$$

$$= \sum_{s, a} d_{\rho}^{\pi'}(s, a) \left(Q^{\pi}(s, a) - V^{\pi}(s) \right)$$

Summary for the Basics of MDPs

- MDPs model decision-making problems where the return depends on sequences of actions.
- "State" summarizes all the information needed to make decisions (in the fixed-horizon setting, the step index is also important).
- While the number of action sequence is exponential in the horizon length, the optimal policy can be computed in poly(#state, #actions, horizon length) time using dynamic programming techniques (Value Iteration, Bellman optimality equation).
- Interaction Protocols: fixed-horizon, goal-oriented, infinite-horizon
- Performance Metrics: total reward, average reward, discounted total reward
- Policies: history-dependent, Markov, stationary
- Bellman equation, Reverse Bellman equation, Bellman optimality equation
- Policy Iteration and Performance Difference Lemma