rans X framework

Implementation Guide

Miroslav Mocák, Casey Meakin, Simon Campbell, Cyril Georgy, Maxime Viallet, Dave Arnett March 25, 2019

Contents

1	Introd	luction
2	Calcul	lation of ransX mean fields by hydrodynamic code
3		processing of ransX mean fields
4	Imple	mentation of ransX equations
	4.1	Continuity Equation with Mass FLux
	4.2	Continuity Equation with Favrian Dilatation
	4.3	Momentum Equation X
	4.4	Momentum Equation Y
	4.5	Momentum Equation Z
	4.6	Reynolds Stress XX
	4.7	Reynolds Stress YY
	4.8	Reynolds Stress ZZ
	4.9	Turbulent Kinetic Energy Equation
	4.10	Radial Turbulent Kinetic Energy Equation
	4.11	Horizontal Turbulent Kinetic Energy Equation
	4.12	Internal Energy Equation
	4.13	Internal Energy Flux Equation
	4.14	Internal Energy Variance Equation
	4.15	Kinetic Energy Equation
	4.16	Total Energy Equation
	4.17	Entropy Equation

CONTENTS

4.18	Entropy Flux Equation	5
4.19	Entropy Variance Equation	5
4.20	Pressure Equation	5
4.21	Pressure Flux Equation	5
4.22	Pressure Variance Equation	5
4.23	Temperature Equation	5
4.24	Temperature Flux Equation	5
4.25	Temperature Variance Equation	5
4.26	Enthalpy Equation	5
4.27	Enthalpy Flux Equation	5
4.28	Enthalpy Variance Equation	5
4.29	Density Variance Equation	5
4.30	Turbulent Mass Flux Equation	5
4.31	Density-specific Volume Covariance Equation	5
4.32	Composition Transport Equation	
4.33	Composition Flux Equation	5
4.34	Composition Variance Equation	7
4.35	Density-specific Volume Covariance	
4.36	Density Variance Equation	8
4.37	Internal Energy Variance Equation	
4.38	Mean Number of Nucleon per Isotope a.k.a Abar Equation	
4.39	Mean Number of Nucleon per Isotope Flux a.k.a Abar Flux Equation	
4.40	Mean Charge per Isotope a.k.a Zbar Equation	
4.41	Mean Charge per Isotope Flux a.k.a Zbar Flux Equation	10
4.42	Hydrodynamic Stellar Structure Equations	10
4.43	MLT Velocity	10
4.44	Usefull Identities	11
Defini	itions	11

1 Introduction

- present ransX as a framework with 3 main parts
 - 1. calc of running averages 2. calc of avarages over t avg 3. calc of terms for rans equations and their plotting
 - mean fields calculated at run-time

2 Calculation of ransX mean fields by hydrodynamic code

- describe running averages, rans avg.f90, implementation in PROMPI, and their connection to tseries ransX.py

3 Post-processing of ransX mean fields

- describe rans tseries.py

4 Implementation of ransX equations

- describe python post processing code

4.1 Continuity Equation with Mass FLux

ContinuityEquationWithMassFlux.py

4.2 Continuity Equation with Favrian Dilatation

Continuity Equation With Favrian Dil attaion. py

$$\widetilde{D}_t \overline{\rho} = -\overline{\rho} \widetilde{d} \tag{1}$$

$$\partial_t \overline{\rho} + \widetilde{u}_r \partial_r \overline{\rho} = -\overline{\rho} \widetilde{d} \tag{2}$$

$$\partial_t dd + ddux/dd \,\partial_r dd = -dd * \nabla_r \, ddux/dd \tag{3}$$

$$\partial_t dd + fht_{-}ux \ \partial_r dd = -dd * \nabla_r \ fht_{-}ux \tag{4}$$

(5)

- 4.3 Momentum Equation X
- 4.4 Momentum Equation Y
- 4.5 Momentum Equation Z
- 4.6 Reynolds Stress XX
- 4.7 Reynolds Stress YY
- 4.8 Reynolds Stress ZZ
- 4.9 Turbulent Kinetic Energy Equation
- 4.10 Radial Turbulent Kinetic Energy Equation
- 4.11 Horizontal Turbulent Kinetic Energy Equation
- 4.12 Internal Energy Equation
- 4.13 Internal Energy Flux Equation
- 4.14 Internal Energy Variance Equation
- 4.15 Kinetic Energy Equation
- 4.16 Total Energy Equation
- 4.17 Entropy Equation
- 4.18 Entropy Flux Equation
- 4.19 Entropy Variance Equation
- 4.20 Pressure Equation
- 4.21 Pressure Flux Equation
- 4.22 Pressure Variance Equation
- 4.23 Temperature Equation
- 4.24 Temperature Flux Equation
- 4.25 Temperature Variance Equation
- 4.26 Enthalpy Equation
- 4.27 Enthalpy Flux Equation

$$\overline{\rho}\widetilde{D}_{t}\widetilde{X}_{i} = -\nabla_{r}f_{i} + \overline{\rho}\widetilde{X}_{i}^{\text{nuc}}$$

$$\overline{\rho}\partial_{t}\widetilde{X}_{i} + \overline{\rho}\widetilde{u}_{r}\partial_{r}\widetilde{X}_{i} = -\nabla_{r}\overline{\rho}\widetilde{X}_{i}^{"u}_{r}^{"} + \overline{\rho}\widetilde{X}_{i}^{\text{nuc}}$$

$$\overline{\rho}\partial_{t}\widetilde{X}_{i} + \overline{\rho}\widetilde{u}_{r}\partial_{r}\widetilde{X}_{i} = -\nabla_{r}\overline{\rho}(\widetilde{X}_{i}u_{r} - \widetilde{X}_{i}\widetilde{u}_{r}) + \overline{\rho}\widetilde{X}_{i}^{\text{nuc}}$$

$$\overline{\rho}\partial_{t}\overline{\rho}\overline{X}_{i}/\overline{\rho} + \overline{\rho}\overline{u}_{r}\partial_{r}\overline{\rho}\overline{X}_{i}/\overline{\rho} = -\nabla_{r}\left(\overline{\rho}\overline{X}_{i}u_{r} - \overline{\rho}\overline{X}_{i}\overline{\rho}\overline{u}_{r}/\overline{\rho}\right) + \overline{\rho}\overline{X}_{i}^{\text{nuc}}$$

$$dd \partial_{t} ddxi/dd + ddux \partial_{r} ddxi/dd = -\nabla_{r} (ddxiux - ddxi * ddux/dd) + ddxidot$$

```
 dd \ \partial_t (ddxiux/dd - ddxi* ddux/dd* dd) + ddux \ \partial_r (ddxiux/dd - ddxi* ddux/dd* dd) = \\ -\nabla_r (ddxiuxux - ddxi/dd* dduxux - 2* ddux/dd* ddxiux + 2* ddxi* ddux* ddux/dd* dd) \\ -(ddxiux - ddxi* ddux/dd)* \partial_r ddux/dd - (dduxux - ddux* ddux/dd)* \partial_r ddxi/dd \\ -(xi \ \partial_r \ pp - ddxi/dd \ \partial_r \ pp) - (xigradxpp - xi \ \partial_r \ pp) + (ddxidotux - ddux/dd* ddxidot) \\ -(ddxiuyuy - ddxi/dd* dduyuy - 2* dduy/dd* ddxiuy + 2* ddxi* dduy* dduy/dd* dd)/r \\ -(ddxiuzuz - ddxi/dd* dduzuz - 2* dduz/dd* ddxiuz + 2* ddxi* dduz* dduz/dd* dd)/r \\ + (ddxiuyuy - ddxi/dd* dduyuy)/r \\ + (ddxiuzuz - ddxi/dd* dduzuz)/r
```

$$\overline{\rho} \widetilde{D}_{t} \sigma_{i} = -\nabla_{r} f_{i}^{r} - 2 f_{i} \partial_{r} \widetilde{X}_{i} + 2 \overline{X}_{i}^{\prime \prime} \rho \dot{X}_{i}^{\text{nuc}}$$

$$\overline{\rho} \widetilde{D}_{t} \widetilde{X}_{i}^{\prime \prime} X_{i}^{\prime \prime} = -\nabla_{r} (\overline{\rho} X_{i}^{\prime \prime} X_{i}^{\prime \prime} u_{r}^{\prime \prime}) - 2 \overline{\rho} \widetilde{X}_{i}^{\prime \prime} u_{r}^{\prime \prime} \partial_{r} \widetilde{X}_{i} + 2 \overline{X}_{i}^{\prime \prime} \rho \dot{X}_{i}^{\text{nuc}}$$

$$\overline{\rho} \partial_{t} (\widetilde{X}_{i} \widetilde{X}_{i}) + \overline{\rho} \widetilde{u}_{r} \partial_{r} (\widetilde{X}_{i} \widetilde{X}_{i} - \widetilde{X}_{i} \widetilde{X}_{i}) = -\nabla_{r} (\overline{\rho} X_{i} X_{i} u_{r} - 2 \widetilde{X}_{i} \overline{\rho} X_{i} u_{r} - \overline{u}_{r} \overline{\rho} X_{i} X_{i} + 2 \widetilde{X}_{i} \widetilde{X}_{i} \overline{\rho} u_{r})$$

$$- 2 \overline{\rho} (\widetilde{X}_{i} u_{r} - \widetilde{X}_{i} \widetilde{u}_{r}) \partial_{r} \widetilde{X}_{i} + (\overline{X}_{i} \rho \dot{X}_{i} - \widetilde{X}_{i} \overline{\rho} \dot{X}_{i})$$

$$dd \ \partial_{t} \ (ddx i s q / dd - ddx i * ddx i / dd * dd)$$

$$+ ddux \ \partial_{r} \ (ddx i s q / dd - ddx i * ddx i / dd * dd) = -\nabla_{r} (ddx i s q ux - 2 * ddx i / dd * ddx i ux - ddux / dd * ddx i ddx i * ddx i * ddx i * ddx i / dd * dd)$$

$$- 2 * dd \ (ddx i ux / dd - ddx i * ddux / dd * dd) * \partial_{r} \ ddx i / dd$$

$$+ 2 * (ddx i x i dot - ddx i / dd * ddx i dot)$$

$$(8)$$

4.34 Composition Variance Equation

4.35 Density-specific Volume Covariance

$$\overline{D}_t b = + \overline{v} \nabla_r \overline{\rho} \overline{u_r''} - \overline{\rho} \nabla_r (\overline{u_r' v'}) + 2 \overline{\rho} \overline{v' d'}$$

$$\tag{9}$$

$$\partial_t b + \overline{u}_r \partial_r b = \overline{v} \nabla_r \overline{\rho} (\overline{u}_r - \widetilde{u}_r) - \overline{\rho} \nabla_r (\overline{u}_r \overline{v} - \overline{u}_r \overline{v}) + 2\overline{\rho} (\overline{v} \overline{d} - \overline{v} \overline{d})$$

$$\tag{10}$$

$$\partial_t \overline{v'\rho'} + \overline{u}_r \partial_r (\overline{v'\rho'}) = \overline{v} \nabla_r \overline{\rho} (\overline{u}_r - \widetilde{u}_r) - \overline{\rho} \nabla_r (\overline{u}_r \overline{v} - \overline{u}_r \overline{v}) + 2\overline{\rho} (\overline{vd} - \overline{vd})$$

$$\tag{11}$$

$$\partial_t (\underbrace{\overline{v}\rho}_{} - \overline{v} \ \overline{\rho}) + \overline{u}_r \partial_r (\underbrace{\overline{v}\rho}_{} - \overline{v} \ \overline{\rho}) = \overline{v} \nabla_r \overline{\rho} (\overline{u}_r - \widetilde{u}_r) - \overline{\rho} \nabla_r (\overline{u}_r \overline{v} - \overline{u}_r \overline{v}) + 2\overline{\rho} (\overline{v} \overline{d} - \overline{v} \overline{d})$$

$$\tag{12}$$

$$-\partial_t(\overline{v}\ \overline{\rho}) - \overline{u}_r \partial_r(\overline{v}\ \overline{\rho}) = \overline{v} \nabla_r \overline{\rho}(\overline{u}_r - \widetilde{u}_r) - \overline{\rho} \nabla_r (\overline{u}_r \overline{v} - \overline{u}_r \overline{v}) + 2\overline{\rho}(\overline{v} \overline{d} - \overline{v} \overline{d})$$

$$\tag{13}$$

$$-\partial_t(sv*dd) - ux\partial_r(sv*dd) = sv*\nabla_r(dd*ux - ddux/dd) - dd\nabla_r(svux - sv*ux) + 2*dd(svdivu - sv*divu)$$
 (14)

4.36 Density Variance Equation

$$\begin{split} \widetilde{D}_{t}\sigma_{\rho} &= -\nabla_{r}\overline{(\rho'\rho'u''_{r})} - 2\overline{\rho}\ \overline{\rho'd''} - 2\overline{\rho'u''_{r}}\partial_{r}\overline{\rho} - 2\widetilde{d}\ \sigma_{\rho} - \overline{\rho'\rho'd''} \\ \partial_{t}\overline{\rho'\rho'} + \widetilde{u}_{r}\partial_{r}\overline{\rho'\rho'} &= -\nabla_{r}\overline{(\rho'\rho'u''_{r})} - 2\overline{\rho}\ \overline{\rho'd''} - 2\overline{\rho'u''_{r}}\partial_{r}\overline{\rho} - 2\widetilde{d}\rho'\rho' - \overline{\rho'\rho'd''} \\ \partial_{t}(\overline{\rho\rho} - \overline{\rho}\ \overline{\rho}) + \widetilde{u}_{r}\partial_{r}(\overline{\rho\rho} - \overline{\rho}\ \overline{\rho}) &= -\nabla_{r}(\overline{\rho\rho\nu u_{r}} - 2\overline{\rho u_{r}}\ \overline{\rho} + \overline{\rho}\overline{\rho}\ \overline{u_{r}} - \overline{\rho}\overline{\rho}\widetilde{u_{r}} + \overline{\rho}\ \overline{\rho}\widetilde{d}) \\ &- 2\overline{\rho}(\overline{\rho d} - \overline{\rho}\ \overline{d} + \overline{\rho}\widetilde{d}) \\ &- 2\overline{\rho}(\overline{\rho d} - \overline{\rho}\ \overline{d} - \overline{\rho}\ \overline{d} + \overline{\rho}\widetilde{d}) \\ &- 2(\overline{\rho u_{r}} - \overline{\rho}\widetilde{u_{r}} - \overline{\rho}\ \overline{u_{r}} + \overline{\rho}\widetilde{u_{r}})\partial_{r}\overline{\rho} \\ &- 2\widetilde{d}(\overline{\rho\rho} - \overline{\rho}\ \overline{\rho}) - (\overline{\rho\rho\overline{u_{r}}} - 2\overline{\rho\overline{u_{r}}}\ \overline{\rho} + \overline{\rho}\ \overline{\rho}\overline{u_{r}} - \overline{\rho}\overline{\rho}\widetilde{u_{r}} + \overline{\rho}\ \overline{\rho}\widetilde{d}) \\ \partial_{t}(ddsq - dd*dd) \\ &+ ddux/dd\partial_{r}(ddsq - dd*dd) \\ &+ ddux/dd\partial_{r}(ddsq - dd*dd) = \\ &- \nabla_{r}(ddddux - 2*ddux*dd + ddsq*ux - ddsq*ddux/dd + dd*dd*ud) \\ &- 2*dd*(-dd*divu + dddivu) - 2*(-dd*ux + ddux)\partial_{r}dd \\ &- 2*dddivu/dd*(ddsq - dd*dd) \\ &- (dddddivu - 2*dddivu*dd + ddsq*divu - ddsq*ddivu/dd + dd*ddivu) \end{split}$$

4.37 Internal Energy Variance Equation

$$\overline{\rho}\widetilde{D}_{t}\sigma_{\epsilon I} = -\nabla_{r}(\overline{\rho\epsilon_{I}''\epsilon_{I}''u_{r}''}) - 2f_{I}\partial_{r}\widetilde{\epsilon_{I}} - 2\overline{\epsilon_{I}''}\ \overline{P}\ \widetilde{d} - 2\overline{P}\ \overline{\epsilon_{I}''d''} - 2\widetilde{d}\ \overline{\epsilon_{I}''P'} - 2\overline{\epsilon_{I}''P'd''} + 2\overline{\epsilon_{I}''S}$$

$$(22)$$

$$\overline{\rho}\widetilde{D}_{t}\widetilde{\epsilon_{I}''}\widetilde{\epsilon_{I}''} = -\nabla_{r}(\overline{\rho\epsilon_{I}''\epsilon_{I}''u_{r}''}) - 2\overline{\rho}\widetilde{\epsilon_{I}''u_{r}''}\partial_{r}\widetilde{\epsilon_{I}} - 2\overline{\epsilon_{I}''}\ \overline{P}\ \widetilde{d} - 2\overline{P}\ \overline{\epsilon_{I}''d''} - 2\widetilde{d}\ \overline{\epsilon_{I}''P'} - 2\overline{\epsilon_{I}''P'd''} + 2\overline{\epsilon_{I}''\rho\epsilon_{nuc}}$$
(23)

$$\overline{\rho}\partial_{t}\widetilde{\epsilon_{I}''}\widetilde{\epsilon_{I}''} + \overline{\rho}\widetilde{u_{r}}\nabla_{r}(\widetilde{\epsilon_{I}''}\underline{\epsilon_{I}''}) = -\nabla_{r}(\overline{\rho}\widetilde{\epsilon_{I}''}\underline{\epsilon_{I}''}\underline{u_{r}''}) - 2\overline{\rho}\widetilde{\epsilon_{I}''}\underline{u_{r}''}\partial_{r}\widetilde{\epsilon_{I}} - 2\overline{\epsilon_{I}''}\ \overline{P}\ \widetilde{d} - 2\overline{P}\ \overline{\epsilon_{I}''}\underline{d''} - 2\widetilde{d}\ \overline{\epsilon_{I}''}\underline{P'} - 2\overline{\epsilon_{I}''}\underline{P'}\underline{d''} + 2\overline{\epsilon_{I}''}\underline{\rho}\varepsilon_{nuc}$$

$$(24)$$

```
dd* \partial_t (ddeiei/dd - ddei* ddei/(dd* dd)) + \\ ddux* \nabla_r (ddeiei/dd - ddei* ddei/(dd* dd)) = \\ - \nabla_r (ddeieiux/dd - 2* ddei/dd* ddeiux/dd - ddux/dd* ddeiei/dd \\ + 2* ddei* ddei* ddux/(dd* dd* dd)) \\ - 2* dd* (ddeiux/dd - ddei* ddux/(dd* dd)) \partial_r ddei/dd \\ - 2* (ei - ddei/dd)* pp* dddivu/dd \\ - 2* pp* (eidd - ei* dddivu/dd - ddei/dd* divu + ddei* dddivu/dd) \\ - 2* dddivu/dd* (eippdivu - eidivu* pp - ddei/dd* ppdivu \\ + ddei/dd* pp* dd - eipp* dddivu/dd + ei* pp* dddivu/dd) \\ + 2* (eiddenuc - ddei/dd* (ddenuc1 + ddenuc2))  (25)
```

- 4.38 Mean Number of Nucleon per Isotope a.k.a Abar Equation
- 4.39 Mean Number of Nucleon per Isotope Flux a.k.a Abar Flux Equation
- 4.40 Mean Charge per Isotope a.k.a Zbar Equation
- 4.41 Mean Charge per Isotope Flux a.k.a Zbar Flux Equation
- 4.42 Hydrodynamic Stellar Structure Equations

Continuity Equation

Momentum Equation

Luminosity Equation

Temperature Equation

Composition Equation

4.43 MLT Velocity

$$u_{MLT} \equiv (u'_{rms}) = \frac{F_c}{\alpha_E c_P(T'_{rms})} = \frac{\overline{\rho} \widetilde{h''} u''_r}{\alpha_E \widetilde{c_P} (\widetilde{TT} - \widetilde{TT})^{1/2}} \sim \frac{\overline{\rho} \overline{h'} u'_r}{\alpha_E \overline{c_P} (\overline{TT} - \overline{T})^{1/2}}?$$

$$u_{MLT} \equiv (u'_{rms}) = \frac{\overline{\rho} (\widetilde{h} u_r - \widetilde{h} \widetilde{u_r})}{\alpha_E \widetilde{c_P} (\widetilde{TT} - \widetilde{TT})^{1/2}} \sim \frac{\overline{\rho} (\overline{h} u_r - \overline{h} \overline{u_r})}{\alpha_E \overline{c_P} (\overline{TT} - \overline{T})^{1/2}}$$

$$u_{MLT} \equiv (u'_{rms}) = \frac{ddhhux - ddhh * ddux/dd}{\alpha_E * ddcp/dd (ddttsq/dd - ddtt * ddtt/dd * dd)^{1/2}} \sim \frac{dd * hhux - dd * hh * ux}{\alpha_E * c_P (ttsq - tt * tt)^{1/2}}$$

4.44 Usefull Identities

$$\overline{a''} = \overline{a - \widetilde{a}} = \overline{a} - \widetilde{a} \tag{27}$$

$$\widetilde{a''b''} = (a - \widetilde{a}) * (b - \widetilde{b}) = \widetilde{ab} - \widetilde{ab}$$
(28)

$$\overline{a'b'} = \overline{(a-\overline{a})*(b-\overline{b})} = \overline{ab} - \overline{a}\overline{b} = \overline{a'b''}$$
(29)

$$\widetilde{a''b''c''} = (a - \widetilde{a}) * (\widetilde{b - b}) * (c - \widetilde{c}) = \widetilde{abc} - \widetilde{abc}$$

$$(30)$$

$$\overline{a'b'c''} = \overline{(a-\overline{a})*(b-\overline{b})*(c-\widetilde{c})} = \overline{abc} - \overline{ac}\ \overline{b} - \overline{a}\ \overline{bc} + \overline{a}\ \overline{b}\ \overline{c} - \overline{ab}\ \widetilde{c} + \overline{a}\ \overline{b}\widetilde{c}$$
(31)

$$\overline{a''b'c''} = \overline{(a-\widetilde{a})*(b-\overline{b})*(c-\widetilde{c})} = \overline{abc} - \overline{ac}\overline{b} - \overline{a}\overline{bc} + \overline{a}\overline{b}\overline{c} - \overline{ab}\widetilde{c} + \overline{a}\overline{b}\widetilde{c}$$

$$(32)$$

$$\overline{a''bc} = \overline{(a-\widetilde{a})bc} = \overline{abc} - \widetilde{a}\overline{bc} \tag{33}$$

$$\overline{a''\partial_r b'} = \overline{(a-\widetilde{a})\partial_r b'} = \overline{a\partial_r b'} - \widetilde{a}\partial_r \overline{b'} = \overline{a\partial_r b} - \overline{a}\partial_r \overline{b}$$

$$(34)$$

5 Definitions

- only for basic quantities, without overbar e.g dd is density, ux is x velocity, ei internal energy etc.