

CD4504BMS

CMOS Hex Voltage Level Shifter for TTL-to-CMOS or CMOS-to-CMOS Operation

FN3336 Rev 0.00 December 1992

Features

- High Voltage Type (20V Rating)
- Independence of Power Supply Sequence Considerations
 - VCC can Exceed VDD
 - Input Signals can Exceed Both VCC and VDD
- Up and Down Level Shifting Capability
- Shiftable Input Threshold for Either CMOS or TTL Compatibility
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Description

CD4504BMS hex voltage level shifter consists of six circuits which shift input signals from the VCC logic level to the VDD logic level. To shift TTL signals to CMOS logic levels, the SELECT input is at the VCC HIGH logic state. When the SELECT input is at a LOW logic state, each circuit translates signals from one CMOS level to another.

The CD4504BMS is supplied in these 16-lead outline packages:

Frit Seal DIP H1F Ceramic Flatpack H6W

Pinout

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) ... -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs ... -0.5V to VDD +0.5V DC Input Current, Any One Input ... ± 10 mA Operating Temperature Range ... -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) ... -65°C to +150°C Lead Temperature (During Soldering) ... ± 265 °C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	$\theta_{\sf jc}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD)) at +125°C	;
For TA = -55°C to +100°C (Package Type		
For TA = +100°C to +125°C (Package T	ype D, F, K) Derate
Linear	ity at 12mW	/OC to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rai	nge (All Pac	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (N	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	2	μΑ
				2	+125°C	-	200	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0).5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 4.5V, VCC = 2 VIN = VDD or GND	.8,	7	+25°C	VOH > VDD/2	VOL < VDD/2	٧
		VDD = 4.5V, VCC = 3 VIN = VDD or GND	.0,	8B	-55°C			
		VDD = 18V, VCC = 18 VIN = GND or VCC	BV,	8A	+125°C			
		VDD = 18V, VCC = 4. VIN = VCC or GND	5V,	8A	+125°C			
		VDD = 4.5V, VCC = 10 VIN = VCC or GND	8V,	8A	+125°C			
		VDD = 20V, VCC = 20 VIN = GND or VCC)V,	7	+25°C			
		VDD = 20V, VCC = 4. VIN = VCC or GND	5V,	7	+25°C			
		VDD = 4.5V, VCC = 2 VIN = VCC or GND	0V,	7	+25°C			

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

			GROUP A		LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Voltage Low (Note 2) TTL-CMOS	VIL	VDD = 15V, VOH > 13.5V, VOL < 1V VCC = 5V	1, 2, 3	+25°C, +125°C, -55°C	-	0.8	V
Input Voltage High (Note 2) TTL-CMOS	VIH	VDD = 15V, VOH > 13.5V, VOL < 1V VCC = 5V	1, 2, 3	+25°C, +125°C, -55°C	2	-	V
Input Voltage Low (Note 2) CMOS-CMOS	VIL	VDD = 10V, VOH > 9V, VOL < 1V VCC = 5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)CMOS-CMOS	VIH	VDD = 10V, VOH > 9V, VOL < 1V VCC = 5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2) CMOS-CMOS	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V, VCC = 10V	1, 2, 3	+25°C, +125°C, -55°C	-	3	V
Input Voltage High (Note 2) CMOS-CMOS	VIH	VDD = 15V, VOH > 13.5V, VOL < 1.5V, VCC = 10V	1, 2, 3	+25°C, +125°C, -55°C	7	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	280	ns
TTL to CMOS VDD > VCC		VCC = 5V	10, 11	+125°C, -55°C	-	378	ns
Propagation Delay	TPHL2	VDD = 10V, VIN = VCC or GND	9	+25°C	-	240	ns
CMOS to CMOS VDD > VCC		VCC = 5V	10, 11	+125°C, -55°C	-	324	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VCC or GND	9	+25°C	-	550	ns
CMOS to CMOS VCC > VDD		VCC = 10V	10, 11	+125°C, -55°C	-	743	ns
Propagation Delay	TPLH1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	280	ns
TTL to CMOS VDD > VCC		VCC = 5V	10, 11	+125°C, -55°C	-	378	ns
Propagation Delay	TPLH2	VDD = 10V, VIN = VCC or GND	9	+25°C	-	240	ns
CMOS to CMOS VDD > VCC		VCC = 5V	10, 11	+125°C, -55°C	-	324	ns
Propagation Delay	TPLH3	VDD = 5V, VIN = VCC or GND	9	+25°C	-	400	ns
CMOS to CMOS VCC > VDD		VCC = 10V	10, 11	+125°C, -55°C	-	540	ns
Transition Time	TTHL	All Modes	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

is 0.050V max.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μА	
				+125°C	-	30	μА	
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μА	
				+125°C	-	60	μА	
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ	
				+125°C	-	120	μА	
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV	
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV	
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V	
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V	
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA	
				-55°C	0.64	-	mA	
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA	
				-55°C	1.6	-	mA	
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA	
				-55°C	4.2	-	mA	
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	ı	-0.36	mA	
				-55°C	ı	-0.64	mA	
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	ı	-1.15	mA	
				-55°C	ı	-2.0	mA	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	ı	-0.9	mA	
				-55°C	ı	-1.6	mA	
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	ı	-2.4	mA	
				-55°C	ı	-4.2	mA	
Input Voltage Low TTL - CMOS	VIL	VDD = 10V, VOH > 9V, VOL < 1V, VCC = 5V	1, 2	+25°C, +125°C, -55°C	1	0.8	V	
Input Voltage High TTL - CMOS	VIH	VDD = 10V, VOH > 9V, VOL < 1V, VCC = 5V	1, 2	+25°C, +125°C, -55°C	2	-	V	
Input Voltage Low CMOS - CMOS	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V, VCC = 5V	1, 2	+25°C, +125°C, -55°C	1	1.5	V	
Input Voltage High CMOS - CMOS	VIH	VDD = 15V, VOH > 13.5V, VOL < 1.5V, VCC = 5V	1, 2	+25°C, +125°C, -55°C	3.5	-	V	
Propagation Delay TTL - CMOS, VDD > VCC	TPHL1	VDD = 15V, VCC = 5V	1, 2, 3	+25°C	-	280	ns	
Propagation Delay	TPHL2	VDD = 15V, VCC = 5V	1, 2, 3	+25°C	-	240	ns	
CMOS - CMOS, VDD > VCC		VDD = 15V, VCC = 10V	1, 2, 3	+25°C	-	140	ns	
Propagation Delay	TPHL3	VDD = 5V, VCC = 15V	1, 2, 3	+25°C	ı	550	ns	
CMOS - CMOS, VCC > VDD		VDD = 10V, VCC = 15V	1, 2, 3	+25°C	1	140	ns	
Propagation Delay TTL - CMOS, VDD > VCC	TPLH1	VDD = 15V, VCC = 5V	1, 2, 3	+25°C	-	280	ns	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPLH2	VDD = 15V, VCC = 5V	1, 2, 3	+25°C	-	240	ns
CMOS - CMOS, VDD > VCC		VDD = 15V, VCC = 10V	1, 2, 3	+25°C	-	140	ns
Propagation Delay	TPLH3	VDD = 5V, VCC = 15V	1, 2, 3	+25°C	-	400	ns
CMOS - CMOS VCC > VDD		VDD = 10V, VCC = 15V	1, 2, 3	+25°C	-	120	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	$\pm 0.2 \mu A$
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFO	CONFORMANCE GROUP		GROUP A SUBGROUPS	READ AND RECORD
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D	Group D		1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9 Table 4		1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	2, 4, 6, 10, 12, 15	3, 5, 7-9, 11, 14	16	1, 13		
Static Burn-In 2 (Note 1)	2, 4, 6, 10, 12, 15	8	16	1, 3, 5, 7, 9, 11, 13, 14		
Dynamic Burn- In (Note 1, 3)	-	8	16	1, 2, 4, 6, 10, 12, 15	3, 5, 7, 9, 11, 14	
Irradiation (Note 2)	2, 4, 6, 10, 12, 15	8	1, 3, 5, 7, 9, 11, 13, 14, 16			

NOTES:

- 1. Each pin except VCC, VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VCC, VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$
- 3. Oscillator output to be VDD/2.

Typical Performance Characteristics

FIGURE 1. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 5. TYPICAL INPUT SWITCHING AS A FUNCTION OF HIGH LEVEL SUPPLY VOLTAGE (SELECT AT VCC-CMOS MODE)

FIGURE 2. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL INPUT SWITCHING AS A FUNCTION OF HIGH LEVEL SUPPLY VOLTAGE (SELECT AT VSS-TTL MODE)

Typical Performance Characteristics (Continued)

FIGURE 7. HIGH LEVEL SUPPLY VOLTAGE vs LOW LEVEL SUPPLY VOLTAGE

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

