洲沙大学实验报告

姓名:

专业: 电子信息工程

学号:

指导老师: 张伟_

同组学生:

地点: 紫金港东三 406

日期: 2024年7月2日

电路与电子技术实验 II

实验目的

课程名称:

1

1. 掌握组合集成电路元件的功能检查方法。

实验名称: 全加器与奇偶位检验电路

2. 熟悉全加器和奇偶位判断电路的工作原理。

3. 掌握组合逻辑电路的功能测试方法及设计方法。

实验内容 2

1. 测试与非门 74LS00 和与或非门 74LS55 的逻辑功能。

2. 用与非门 74LS00 和与或非门 74LS55 设计一个全加器电路,并进行功能测试。

3. 用与非门 74LS00 和与或非门 74LS55 设计四位数奇偶位判断电路,并进行功能测试。

实验准备 3

- 1. 写出与非门 74LS00 和与或非门 74LS55 的逻辑功能检查方法。
- 2. 用与非门 74LS00 和与或非门 74LS55 设计一个全加器电路, 画出电路图。
- 3. 用与非门 74LS00 和与或非门 74LS55 设计四位数奇偶位判断电路, 画出电路图。

实验原理 4

4.1 74LS55 与或非门

通过 74LS55 与或非门,可以连接成异或门;亦可以连接成同或 门。

图 1: 74LS55 与或非门

同或门

$$Y = \overline{AB} + \overline{AB} = \overline{A \oplus B}$$

图 2: 同或门连接示意图

图 3: 异或门连接示意图

异或门

$$Y = \overline{AB + \bar{A}\bar{B}} = A \oplus B$$

4.2 全加器

图 4: 全加器示意图

Index	A	В	C_{i-1}	S_i	C_i
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

图 5: 全加器真值表

绘制卡诺图 卡诺图的显示结果如下:

$\setminus A, C_{i-1}$							
B	\	00	01	11	10		
(0	0	0	1	0		
:	1	0	1	1	1		

逻辑表达式 逻辑表达式如下:

$$S_{i} = A\bar{B}\bar{C}_{i-1} + \bar{A}\bar{B}C_{i-1} + \bar{A}B\bar{C}_{i-1} + ABC_{i-1}$$

$$= (A\bar{B} + \bar{A}B)\bar{C}_{i-1} + (AB + \bar{A}\bar{B})C_{i-1}$$

$$= (A \oplus B) \oplus C_{i-1}$$

$$C_{i} = AB + \bar{A}C_{i-1} + \bar{B}C_{i-1} = AB + (A \oplus B)C_{i-1}$$

电路连接

$$S'_{i} = A \oplus B$$

$$S_{i} = S'_{i} \oplus C_{i-1} = \bar{S}'_{i}C_{i-1} + S'_{i}\bar{C}_{i-1}$$

$$C_{i} = \overline{A}\bar{B} + (A \oplus B)\bar{C}_{i-1}$$

$$= \overline{A}\bar{B} + S_{i}\bar{C}_{i-1}$$

图 6: 全加器电路连接示意图

4.3 奇偶判断电路

序号	输	输出			
	A	В	С	D	Z
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

卡诺图结果如下:

逻辑表达式

$$Z = A \oplus B \oplus C \oplus D = (A \oplus B) \oplus (C \oplus D)$$

电路连接 电路连接为下图:

图 7: 奇偶检验电路连接示意图

5 实验过程与结果

5.1 与非门 74LS00 和与或非门 74LS55 的逻辑功能测试

- 1. 将 74LS00 与非门的各个输入脚接入逻辑输入输出,将输出接入 LED 灯,观察输出结果。
- 2. 如先将下图中 1 脚接逻辑输入, 2 脚悬空(TTL 悬空可算高电平), 3 脚接 LED 灯。

图 8: 74LS00 与非门引脚示意图

- 3. 观察得到输入高电平, Led 灯灭; 低电平时, Led 灯亮。重复上述测试, 若输出正常, 可见非门成立, 00 芯片功能完好。
- 4. 与或非门 74LS55 的逻辑功能, 1-4, 或 11-13, 中各选一个脚输入低电平, 若 Led 灯能够被点亮, 说明 55 芯片功能完好。

5.2 全加器连接

- 1. 按照理论中的全加器电路图连接,其中芯片中多余引脚可以悬空;
- 2. 按照真值表测试输出结果:

Index	A	В	C_{i-1}	S_i	C_i
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

3. 测试结果符合预期。可见悬空引脚在此实验中受到的干扰很小,可视为高电平,不会影响输出 结果。

5.3 奇偶检验电路

- 1. 按照理论中的全加器电路图连接, 其中芯片中多余引脚可以悬空;
- 2. 根据真值表测试输出结果。

序号	输	输出			
	A	В	C	D	Z
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

3. 测试结果符合预期。

6 实验感想

实验中碰到的问题 实验中,一开始的结果并不符合实验预期,怀疑悬空的引脚受到了外界干扰。后 检查电路发现,是有电线连接错位置,导致最后结果有误。

实验感想 数字电路的实验虽然连线较多,但是由于逻辑简单,电路中的电平只有高/低之分,因此结果比较理想。本次实验也教会了我使用与非门作非门、与或非门作异或门等使用方法,并且学会了使用 74LS00,74LS55 芯片,为日后搭建更为复杂的数字电路奠定了基础。