IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Ma	sakazu TAKAHASHI, et al.	GAU:
SERIAL NO: New Application		EXAMINER:
FILED: Herewith		
FOR: SOYBEAN CONT	TAINING HIGH LEVELS OF FREE A	MINO ACIDS
	REQUEST FOR PRIO	PRITY
COMMISSIONER FOR PATER ALEXANDRIA, VIRGINIA 2	•	
SIR:		
☐ Full benefit of the filing date provisions of 35 U.S.C. §12	e of U.S. Application Serial Number 0.	, filed , is claimed pursuant to the
☐ Full benefit of the filing date §119(e):	e(s) of U.S. Provisional Application(s) in Application No.	is claimed pursuant to the provisions of 35 U.S.C. <u>Date Filed</u>
Applicants claim any right t the provisions of 35 U.S.C.		tions to which they may be entitled pursuant to
In the matter of the above-identi	fied application for patent, notice is her	eby given that the applicants claim as priority:
COUNTRY Japan	<u>APPLICATION NUMBER</u> 2003-342020	MONTH/DAY/YEAR September 30, 2003
	nding Convention Application(s)	
are submitted herewith		
□ will be submitted prior to		
were filed in prior applic		
Receipt of the certified of	ternational Bureau in PCT Application copies by the International Bureau in a topies by the attached PCT/IB/304.	Number imely manner under PCT Rule 17.1(a) has been
☐ (A) Application Serial N	Io.(s) were filed in prior application Ser	ial No. filed ; and
☐ (B) Application Serial N	(o.(s)	
☐ are submitted here	ewith .	
☐ will be submitted	prior to payment of the Final Fee	
		Respectfully Submitted,
		OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.
		CMm W Erlind
Customer Number		Norman F. Oblon Registration No. 24,618
22850		C. Irvin McClelland

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 05/03)

Registration Number 21,124

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 9月30日

出 願 番 号 Application Number:

特願2003-342020

[ST. 10/C]:

[J P 2 0 0 3 - 3 4 2 0 2 0]

出 願 人
Applicant(s):

独立行政法人農業・生物系特定産業技術研究機構

2003年11月14日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願 【整理番号】 P02-0406 【特記事項】 特許法第30条第1項の規定の適用を受けようとする特許出願 【提出日】 平成15年 9月30日 【あて先】 特許庁長官 【国際特許分類】 A01H 1/02 A01H 5/10 【発明者】 【住所又は居所】 熊本県菊池郡西合志町大字須屋2391-2 農試宿舎RC-D 棟204号 【氏名】 高橋 将一 【発明者】 【住所又は居所】 広島県福山市西深津町6-11-5-403 【氏名】 石本 政男 【発明者】 【住所又は居所】 茨城県つくば市並木4-931-103 【氏名】 羽鹿 牧太 【発明者】 【住所又は居所】 茨城県つくば市吾妻4丁目5-1 203棟105号 【氏名】 松永 亮一 【発明者】 【住所又は居所】 熊本県菊池郡西合志町大字須屋2391-2 農試宿舎RC-E 棟502号 【氏名】 小松 邦彦 【発明者】 【住所又は居所】 北海道札幌市西区八軒三条西3丁目5-603-31 【氏名】 喜多村 啓介 【発明者】 【住所又は居所】 長野県松本市井川城3-3-24 【氏名】 矢ケ崎 和弘 【特許出願人】 【識別番号】 501203344 【氏名又は名称】 独立行政法人 農業技術研究機構 【代理人】 【識別番号】 100091096 【弁理士】 【氏名又は名称】 平木 祐輔 【選任した代理人】 【識別番号】 100096183 【弁理士】 【氏名又は名称】 石井 貞次 【選任した代理人】 【識別番号】 100118773 【弁理士】 【氏名又は名称】 藤田 節 【選任した代理人】 【識別番号】 100111741 【弁理士】

【氏名又は名称】

田中 夏夫

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】明細書 1【物件名】要約書 1【包括委任状番号】0110464

【書類名】特許請求の範囲

【請求項1】

子実中の総遊離アミノ酸含量が、同様の条件下で栽培された β -コングリシニンおよび グリシニンの全サブユニットを有しているフクユタカおよびタチユタカ、グリシニンサブ ユニットA5 A4 B3 のみを欠失するエンレイ、 β -コングリシニンの全サブユニットを欠失する九系305、ならびにグリシニンの全サブユニットを欠失するEnB1のいずれの子実中の該含量に比べて高いダイズ。

【請求項2】

子実中の総遊離アミノ酸含量が、同様の条件下で栽培された β-コングリシニンおよび グリシニンの全サブユニットを有しているフクユタカおよびタチユタカ、グリシニンサブ ユニットAs A4 B3 のみを欠失するエンレイ、β-コングリシニンの全サブユニットを欠失する九系305、ならびにグリシニンの全サブユニットを欠失するEnB1のいずれの子実中の該含量に比べて少なくとも2倍以上高いことを特徴とする、請求項1記載のダイズ。

【請求項3】

子実中の総遊離アミノ酸含量が、子実乾物重lg当たり8mg以上であることを特徴とする、請求項1記載のダイズ。

【請求項4】

子実中に含まれる各遊離アミノ酸のうち、アルギニン、アスパラギン、ヒスチジン、およびグルタミンからなる群より選択される少なくとも1種の遊離アミノ酸の含量が、同様の条件下で栽培された β -コングリシニンおよびグリシニンの全サブユニットを有しているフクユタカ、タチユタカおよびグリシニンサブユニットA5A4B3のみを欠失するエンレイ、 β -コングリシニンの全サブユニットを欠失する九系305、およびグリシニンの全サブユニットを欠失するEnB1のいずれの子実中に含まれるその含量に比べて高いことを特徴とする、請求項1記載のダイズ。

【請求項5】

子実中に含まれる各遊離アミノ酸のうち、アルギニン、アスパラギン、ヒスチジンおよびグルタミンの全ての遊離アミノ酸の含量が、同様の条件下で栽培された β -コングリシニンおよびグリシニンの全サブユニットを有しているフクユタカ、タチユタカおよびグリシニンサブユニットAs A4 B3 のみを欠失するエンレイ、 β -コングリシニンの全サブユニットを欠失するEnB1のいずれの子実中のそれぞれの含量に比べて高いことを特徴とする、請求項 4 記載のダイズ。

【請求項6】

 β -コングリシニンおよびグリシニンのサブユニットのうち、少なくとも β -コングリシニンの α 、 α 、および β サブユニット、ならびにグリシニンの $A_{1\,a}B_{2}$ 、 $A_{2\,B_{1\,a}}$ 、 $A_{1\,b}B_{1\,b}$ および $A_{5\,A_{4}\,B_{3}}$ サブユニットを遺伝的に欠失する、請求項 1 記載のダイズ。

【請求項7】

 β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失している、請求項 6 記載のダイズ。

【請求項8】

β-コングリシニンの α、α、および β サブユニット、ならびにグリシニンの $A_1 a B_2$ 、 $A_2 B_1 a$ 、 $A_1 b B_1 b$ および $A_5 A_4 B_3$ サブユニットからなる群より選択される1つ以上のサブユニットを欠失するダイズと、上記サブユニットのうち該ダイズが有するサブユニット全てを欠失しているダイズとを交雑させるか、または上記サブユニット全てを欠失するダイズとこれらの全てあるいは一部を有するダイズとを交雑させるかのいずれかの交雑ステップを含み、ここで交雑する両ダイズの少なくとも一方はグリニシンの $A_3 B_4$ サブユニットを有するものとする、請求項 6 記載のダイズを作出する方法。

【請求項9】

 β -コングリシニンの α 、 α 'および β サブユニット、ならびにグリシニンの $A_{1\,a}B_{2}$ 、 $A_{2\,B_{1\,a}}$ 、 $A_{1\,b}B_{1\,b}$ 、 $A_{5\,A_{4}\,B_{3}}$ および $A_{3\,B_{4}}$ サブユニットからなる群より選択される1つ以上のサブユニットを欠失するダイズと、上記サブユニットのうち該ダイズが有するサブユニットを全

て欠失しているダイズとを交雑させるか、または上記サブユニットを全て欠失するダイズ とこれらの全てあるいは一部を有するダイズとを交雑させるかのいずれかの交雑ステップ を含む、請求項7記載のダイズを作出する方法。

【請求項10】

β-コングリシニンの全サブユニットを欠失する九系305と、グリシニンの全サブユニットを欠失するEnB1とを交雑するステップを含む、請求項8または9記載の方法。

【請求項11】

交雑ステップの後、 β -コングリシニンおよびグリシニンのサブユニットのうちグリシニンサブユニット A_3B_4 のみを有する系統、または β -コングリシニンおよびグリシニンの全サブユニットを欠失した系統を選抜するステップをさらに含む、請求項 $8\sim 10$ のいずれか1項に記載の方法。

【請求項12】

請求項1~7のいずれか1項に記載のダイズの子実を原料の1つとして用いて製造される、総遊離アミノ酸含量が増加していることを特徴とする、機能性食品。

【請求項13】

請求項1~7のいずれか1項に記載のダイズの子実を原料の1つとして用いて、総遊離アミノ酸含量が増加している機能性食品を製造する方法。

【書類名】明細書

【発明の名称】高遊離アミノ酸含有ダイズ

【技術分野】

$[0\ 0\ 0\ 1]$

本発明は、従来の栽培ダイズより、子実中に遊離アミノ酸を高濃度に含有するダイズ、およびその作出方法に関する。

【背景技術】

[0002]

マメ科植物であるダイズの子実中には、多量の貯蔵蛋白質が蓄積されることは良く知られており、この子実中に含まれるアミノ酸のほとんどは結合型アミノ酸、即ち、貯蔵蛋白質または酵素蛋白質等の成分として保存されている。従って、ダイズ子実中にはアミノ酸が遊離した状態では多く存在していないため、公知の酵素法、化学的処理方法などで蛋白質を加水分解しない限り子実中から高濃度の遊離アミノ酸を得ることはできない。

[0003]

一方、ダイズ子実中には主要な貯蔵蛋白質として β -コングリシニンとグリシニンとがあり、全蛋白質の約70%を占めている。従って、ダイズ蛋白質の性質の大部分はこの両成分の性質が反映されたものであり、ダイズ貯蔵蛋白質の特性を改良するには、 β -コングリシニンならびにグリシニン含量を変化させることが有効である。その目的のために両蛋白質のサブユニットを遺伝的に欠失もしくは低減したダイズが作出され、例えば、 β -コングリシニンの α 、 α 'および β サブユニットのうち、 α 、 α 'を遺伝的に欠失させ、 β サブユニットを低減させることにより、補完的にグリシニン含量が高まり、その結果、ダイズ蛋白質の栄養価値を制限している含硫アミノ酸(シスチン、メチオニン)を高めることができるという知見が得られている(例えば0gawa et al.1989)。

[0004]

一方、グリシニンを構成する5つのサブユニットである $A_{1a}B_{2}$ 、 $A_{2}B_{1a}$ 、 $A_{1b}B_{1b}$ 、 $A_{5}A_{4}B_{3}$ および $A_{3}B_{4}$ についても、それらを合成する Gy_{1} 、 Gy_{2} 、 Gy_{3} 、 Gy_{4} 、 Gy_{5} の遺伝子の構造や発現機序について明らかにされている(例えばNielsen et al. 1988)。さらに、サブユニットの欠失変異ダイズである $A_{1a}B_{2}$ 、 $A_{2}B_{1a}$ 、 $A_{1b}B_{1b}$ ($Group\ I$)同時欠失型、 $A_{5}A_{4}B_{3}$ ($Group\ IIa$)欠失型、 $A_{3}B_{4}$ ($Group\ IIb$)欠失型の系統が作出され、それぞれの欠失型がそれぞれ劣性遺伝子により支配されていることがわかっている(例えばYagasaki et al. 1996)。これによって、これらを親とした交雑によりグリシニンの複数のサブユニットを遺伝的に欠失したダイズが作出できるようになり、グリシニン含量と加工適性、特に豆腐加工適性との関係について検討がなされるようになった(Yagasaki et al. 2000)。

[00005]

このように、これまでのダイズ子実の蛋白質ならびにアミノ酸に関する研究はその研究 対象がもっぱら貯蔵蛋白質そのものであり、ダイズ子実中の遊離アミノ酸に関する研究例 はほとんどなく、貯蔵蛋白質欠失ダイズを利用してダイズ子実中の遊離アミノ酸を高めよ うとする考えは全くなかった。

[0006]

しかし、近年、栄養生理学、食品学等の観点から、例えば疲労回復および/または脂肪 燃焼効率化などのためには遊離アミノ酸を摂取することが好ましいとされ、さまざまな遊 離アミノ酸を含有する機能性食品あるいはサプリメントが開発されてきている。

[0007]

ダイズは、人類の非常に有用な食用作物として、非常に多くの国々、地域で栽培されている植物であり、その子実は、油分および蛋白質含量も高い植物性食品として、多種多様な加工食品にも利用されている。

[0008]

特に、近年、各種遊離アミノ酸の摂取がヒトの健康によい影響を及ぼすという事実がかなり知られるところとなり、疲労回復、体内での脂肪燃焼効果などを利用したスポーツサプリメントやダイエットサプリメントが広く販売されるようになっている。本発明のダイ

ズにおいて特異的に多いアルギニンについては、その摂取が悪性腫瘍細胞の破壊を助けたり(例えば、Park et al. 1991)、ヒトの免疫機能の向上(例えばKirk et al. 1993)、成長ホルモンの分泌の増進(例えばKreider et al. 1993)に役立つことが報告されており、グルタミンについても、筋力増強(例えば、Rennie 1996)、免疫機能の向上(例えばNewsholme and Calder 1997)等が報告されており、遊離アミノ酸の様々な健康機能性について科学的な検証がなされている。

[0009]

【非特許文献 1】 Ogawa, T. 他、1989. Jpn. J. Breed. 39:137-147

【非特許文献 2 】 Yagasaki, K.他、2000. Breed. Sc. 50:101-107

【非特許文献 3】 Takahasi, M.他、2000. Proceedings of the Third International Soybean Processing and Utilization Conference. P45-46

【非特許文献 4】 植松芳彦 他、1999. 育種学研究 1(別 1): 154

【発明の開示】

【発明が解決しようとする課題】

[0010]

そこで、子実中の総遊離アミノ酸含量が高いダイズが作出できれば、この子実を原料に 用いることにより、総遊離アミノ酸含量の高い機能性ダイズ加工食品を得ることができる

[0011]

本発明は、ダイズ子実中の主要貯蔵蛋白質の生合成能力を遺伝的に抑止することによって、初期産物として生産されるアミノ酸を遊離状態のままで高濃度に子実中に蓄積するダイズ、およびその作出方法を提供することを目的とするものである。また、該方法により、種々の健康機能性を有する遊離アミノ酸を含有する機能性加工食品の原料としての遊離アミノ酸含量の高いダイズを提供する。

【課題を解決するための手段】

[0012]

本発明者等は上記課題を解決するため、鋭意研究する中で、貯蔵蛋白質のうち、 α 、 α 、 α 、 α および β サブユニットを全て欠失する β - コングリシニン欠失ツルマメQT2 (これは、独立行政法人、産業技術総合研究所 特許生物寄託センター (日本国茨城県つくば市東1丁目1番地 1 中央第 6) に受託番号FERM BP-8376として、2003年5月8日に寄託されている)を世界で初めて発見するに至った(Hajika et al. 1996)。さらに研究を進める中で、 β - コングリシニン欠失ツルマメQT2と β - コングリシニンを有する栽培ダイズとを交雑し、その β - コングリシニン欠失が一因子の優性遺伝子に支配されていることを見出し、この遺伝子をScgと命名した(Hajika et al. 1998)。

[0013]

さらに、 β -コングリシニン欠失ツルマメと栽培ダイズとの戻し交雑を進め、開花、成熟および生育状況等の農業特性が栽培ダイズに劣らない β -コングリシニン欠失ダイズである九系305を作出した(Takahashi et al. 2000)。

[0014]

本発明者等は、一方、グリシニンの主要サブユニットである $A_{1\,a}B_{2}$ 、 $A_{2}B_{1\,a}$ 、 $A_{1\,b}B_{1\,b}$ 、 $A_{5}A_{4}B_{3}$ および $A_{5}B_{4}$ 全てを遺伝的に欠失するダイズ(Yagasakai et al. 1996)に、栽培ダイズ(エンレイ)を交雑し、農業特性を一部改良したグリシニン欠失ダイズである $E_{1}B_{1}$ (これは、独立行政法人、産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1中央第6)に受託番号 $FE_{1}B_{2}P_{3}$ -8377として、2003年5月8日に寄託されている)を作出した。

[0015]

さらに、本発明者等は β -コングリシニン欠失ダイズとグリシニン欠失ダイズとの交雑により貯蔵蛋白質の約70%を占める β -コングリシニンとグリシニンを遺伝的に欠失したダイズが作出できることを世界で初めて見出した(植松ら1999)。

[0016]

 β -コングリシニン欠失ダイズとグリシニン欠失ダイズとの交雑後代から β -コングリシニンおよびグリシニンを同時に遺伝的に欠失したダイズを選抜し、これらの子実中の総遊離アミノ酸含量が特に増加していることを見出し、本発明を完成するに至った。

[0017]

本発明は、以下の態様:

- 1. 子実中の総遊離アミノ酸含量が、同様の条件下で栽培された β -コングリシニンおよびグリシニンの全サブユニットを有しているフクユタカおよびタチユタカ、グリシニンサブユニット A_5 A_4 B_3 のみを欠失するエンレイ、 β -コングリシニンの全サブユニットを欠失する九系 305、ならびにグリシニンの全サブユニットを欠失する EnB1 のいずれの子実中の該含量に比べて高いダイズ;
- 2. 子実中の総遊離アミノ酸含量が、同様の条件下で栽培された β-コングリシニンおよびグリシニンの全サブユニットを有しているフクユタカおよびタチユタカ、グリシニンサブユニットAs A4B3 のみを欠失するエンレイ、β-コングリシニンの全サブユニットを欠失する九系305、ならびにグリシニンの全サブユニットを欠失するEnB1のいずれの子実中の該含量に比べて少なくとも2倍以上高いことを特徴とする、上記1記載のダイズ:
- 3. 子実中の総遊離アミノ酸含量が、子実乾物重lg当たり8mg以上であることを特徴とする、上記1記載のダイズ;
- 4. 子実中に含まれる各遊離アミノ酸のうち、アルギニン、アスパラギン、ヒスチジン、およびグルタミンからなる群より選択される少なくとも1種の遊離アミノ酸の含量が、同様の条件下で栽培された β -コングリシニンおよびグリシニンの全サブユニットを有しているフクユタカ、タチユタカおよびグリシニンサブユニットA5 A4 B3 のみを欠失するエンレイ、 β -コングリシニンの全サブユニットを欠失する九系305、およびグリシニンの全サブユニットを欠失するため含量に比べて高いことを特徴とする、上記1記載のダイズ;
- 5. 子実中に含まれる各遊離アミノ酸のうち、アルギニン、アスパラギン、ヒスチジンおよびグルタミンの全ての遊離アミノ酸の含量が、同様の条件下で栽培された β -コングリシニンおよびグリシニンの全サブユニットを有しているフクユタカ、タチユタカおよびグリシニンサブユニットA5 A4 B3 のみを欠失するエンレイ、 β -コングリシニンの全サブユニットを欠失するLnB1のいずれの子実中のそれぞれの含量に比べて高いことを特徴とする、上記 4 記載のダイズ;
- 6. β -コングリシニンおよびグリシニンのサブユニットのうち、少なくとも β -コングリシニンの α 、 α 'および β サブユニット、ならびにグリシニンの $A_{1\,a}$ B_{2} 、 $A_{2\,B_{1\,a}}$ 、 $A_{1\,b}$ $B_{1\,b}$ および $A_{5\,A_{4}}$ $B_{3\,b}$ サブユニットを遺伝的に欠失する、上記 1 記載のダイズ;
- 7. β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失している、上記 6 記載のダイズ;
- 8. β -コングリシニンの α 、 α 、および β サブユニット、ならびにグリシニンの $A_{1\,a}B_{2}$ 、 $A_{2}B_{1\,a}$ 、 $A_{1\,b}B_{1\,b}$ および $A_{5}A_{4}B_{3}$ サブユニットからなる群より選択される1つ以上のサブユニットを欠失するダイズと、上記サブユニットのうち該ダイズが有するサブユニット全てを欠失しているダイズとを交雑させるか、または上記サブユニット全てを欠失するダイズとこれらの全てあるいは一部を有するダイズとを交雑させるかのいずれかの交雑ステップを含み、ここで交雑する両ダイズの少なくとも一方はグリニシンの $A_{3}B_{4}$ サブユニットを有するものとする、上記6記載のダイズを作出する方法;
- 9. β -コングリシニンの α 、 α 、および β サブユニット、ならびにグリシニンの $A_{1\,a}\,B_{2}$ 、 $A_{2}\,B_{1\,a}$ 、 $A_{1\,b}\,B_{1\,b}$ 、 $A_{5}\,A_{4}\,B_{3}$ および $A_{3}\,B_{4}$ サブユニットからなる群より選択される1つ以上のサブユニットを欠失するダイズと、上記サブユニットのうち該ダイズが有するサブユニットを全て欠失しているダイズとを交雑させるか、または上記サブユニットを全て欠失するダイズとこれらの全てあるいは一部を有するダイズとを交雑させるかのいずれかの交雑ステップを含む、上記7記載のダイズを作出する方法;
- 10. β-コングリシニンの全サブユニットを欠失する九系305と、グリシニンの全サブユ

ニットを欠失するEnB1とを交雑するステップを含む、上記8または9記載の方法;

- 11. 交雑ステップの後、 β -コングリシニンおよびグリシニンのサブユニットのうちグリシニンサブユニットA₃B₄のみを有する系統、または β -コングリシニンおよびグリシニンの全サブユニットを欠失した系統を選抜するステップをさらに含む、上記8~10のいずれかに記載の方法;
- 12.上記1~7のいずれかに記載のダイズの子実を原料の1つとして用いて製造される、総遊離アミノ酸含量が増加していることを特徴とする、機能性食品;
- 13.上記1~7のいずれかに記載のダイズの子実を原料の1つとして用いて、総遊離アミノ酸含量が増加している機能性食品を製造する方法; に関する。

【発明の効果】

[0018]

本発明により、子実中の総遊離アミノ酸含量が従来のダイズ品種もしくは系統より高いダイズ系統が作出された。該ダイズは、農業的利用に適した農業特性を有している。さらに、本発明で作出されたダイズは総遊離アミノ酸含量が従来の一般的栽培ダイズの3~5倍以上であり、遊離のアルギニン、アスパラギン、ヒスチジン、およびグルタミンの含量が高い。このため、ヒトが従来の栽培ダイズの代わりに本発明で得られるダイズを摂取することによって、より多くの遊離アミノ酸を直接体内へ効率良く吸収できるようになる。すなわち、本発明で得られるダイズは従来の栽培ダイズにはない遊離アミノ酸含量の高い機能性食品の食品素材として、有用性が非常に高い。

【発明を実施するための最良の形態】

[0019]

本明細書中の総遊離アミノ酸含量とは、各ダイズの子実中に検出される、蛋白質中に組込まれず遊離した状態にある各アミノ酸の総和を指す。各遊離アミノ酸の量の定量方法は当技術分野で公知であるが、例えば粉砕した子実からエタノール等の溶媒で抽出した遊離アミノ酸抽出液をアミノ酸分析に供し、天然に存在する20種全てのアミノ酸についてそれぞれ定量して、その総和を算出するとよい。

[0020]

本発明のダイズは、冬から春(1998年12月~1999年3月)の加温ガラス室内(平均気温2 5℃に調整、自然日長)でのポット栽培(培養土と腐植土を2:1に混合した培地)、夏か ら秋(2000年7月から10月)の一般圃場(黒ボク火山灰土壌、平均気温24.3℃、平均最高 気温29.3℃、平均最低気温19.7℃、降水量453.0mm)、再度、夏から秋(2001年7月~2001 年10月)の一般圃場(黒ボク火山灰土壌、平均気温24.1℃、平均最高気温29.2℃、平均最 低気温19.4℃、降水量682.5mm)での栽培など異なる環境条件下であっても、同様にして 栽培されたダイズ主要貯蔵蛋白質であるβ-コングリシニンおよびグリシニンのいずれの サブユニットも欠失していないフクユタカ、タチユタカおよびグリシニンサブユニットAs A₄B₃を遺伝的に欠失するエンレイなどのダイズ、β-コングリシニンの全サブユニットを 遺伝的に欠失する九系305などのダイズ、ならびにグリシニンの全サブユニットを遺伝的 に欠失するEnB1などのダイズからなる群より選択されるいずれかに比べて、その子実中に 含まれる総遊離アミノ酸含量が高いこと、好ましくは2倍以上、さらに好ましくは3倍以上 、最も好ましくは4倍以上高いことを特徴とする。通常の圃場での栽培では、上記栽培ダ イズの子実中の総遊離アミノ酸総含量は、その種および/または栽培条件によって異なる が、通常子実1gあたり1~3mgの範囲内であることが多いが、本発明のダイズのアミノ 酸総含量は、子実1gあたり5mg以上、好ましくは8mg以上、さらに好ましくは9mg以上、最 も好ましくは10mg以上であり、最も好ましい場合は30mg以上である。

[0021]

さらに、各アミノ酸別の含量に注目した場合、本発明のダイズは、遊離アミノ酸のうち、アルギニン、アスパラギン、ヒスチジン、およびグルタミンが、同様の条件下で栽培した栽培ダイズに比べて増加している。栽培ダイズにおいても、その品種もしくは系統によって各遊離アミノ酸の含量は異なるが、例えば、同様の条件下で栽培したフクユタカ、タ

チユタカ、エンレイ、九系305およびEnB1からなる群より選択される任意のものに比べて、本発明のダイズでは、アスパラギンおよびヒスチジンでは2倍以上、グルタミンでは5倍以上、ならびにアルギニンでは8倍以上である。

[0022]

[0023]

[0024]

ダイズの交雑は、当技術分野で周知の方法で実施することができる。

得られた交雑後代から β -コングリシニンおよびグリシニンを構成するサブユニットのうちの少なくとも1つのサブユニット、 A_3B_4 サブユニット以外の全てのサブユニット、または全てのサブユニットを遺伝的に欠失したダイズを選抜するとよい。この選抜のためのサブユニットを欠失するか否かの判定は、当業者であれば容易に行うことができる。例えば、交雑後代から得た子実の子葉部分を削り取り、Kitamuraら(1984)の方法にしたがってSDS-ポリアクリルアミドゲル電気泳動法により判定することができる。

[0025]

そして、 β -コングリシニンおよびグリシニンのサブユニットを欠失するダイズ系統を遺伝的に固定することができる。 β -コングリシニンおよびグリシニンを構成する全てのサブユニットを遺伝的に欠失するダイズ系統(以後、QF2と呼ぶ)あるいは β -コングリシニンのサブユニットの全てを遺伝的に欠失し、グリシニンのサブユニットのうちグループ I($A_{1a}B_{2}$ 、 $A_{2}B_{1a}$ 、 $A_{1b}B_{1b}$)ならびにIIa($A_{5}A_{4}B_{3}$)を遺伝的に欠失するダイズ系統(以後、QF3と呼ぶ)を選抜して固定することもできる。これらの方法は当業者には公知である

[0026]

したがって、本発明は、本発明のダイズを作出するこれらの方法も包含する。

このような方法で作出される本発明のダイズは農業特性が一般の栽培ダイズと比べて劣ることなく、野外の一般栽培において正常な栄養生長を行い、正常な子実を生産でき、栽培植物として事実上問題ない。

[0027]

本発明のダイズとの比較対象として、 β -コングリシニンの全サブユニットのみを遺伝 的に欠失するダイズの総遊離アミノ酸含量を測定したところ、栽培ダイズあるいは β-コ ングリシニンおよびグリシニンのいずれのサブユニットも欠失していないダイズに比べ遊 離アミノ酸の増加は認められず、これに対して、グリシニンの全サブユニットのみを遺伝 的に欠失するダイズの総遊離アミノ酸含量を栽培ダイズと比較したところ、一部の遊離ア ミノ酸についてその含量が増加しているが、QF2およびQF3ダイズに比べるとその増加量は 明らかに低い。β-コングリシニンの全サブユニットの遺伝的欠失に加えグリシニンのサ ブユニットを一部、遺伝的に欠失させることも子実の遊離アミノ酸含量の増加に効果的で あるが、その増加の程度は、QF2、QF3には及ばない。さらに、 β -コングリシニンのほと んどを遺伝的に欠失したダイズ、即ち、 α 、 α 'を遺伝的に欠失し、 β サブユニット生成 量が低減したβ-コングリシニン不完全欠失ダイズとグリシニン欠失ダイズの交雑後代か ら得られるβ-コングリシニン不完全欠失・グリシニン欠失ダイズでも子実中の総遊離ア ミノ酸含量はグリシニン欠失ダイズと同程度であった。したがって、本発明のβ-コング リシニンおよびグリシニンの全サブユニットのうち、少なくとも β-コングリシニンのサ ブユニットの全てとグリシニンのサブユニットのうちグループI (AlaB2、A2Bla、AlbB1b)およびIIa(A5 A4 B3)とを遺伝的に欠失するダイズ、すなわち、β-コングリシニンとグ リシニンとのサブユニットのうちグリシニンのグループIIb (A₃B₄) のみを有するダイズ 、またはβ-コングリシニンとグリシニンとの全サブユニットを遺伝的に欠失するダイズ の総遊離アミノ酸含量が、他の種に比べて特に高いという点で、食用作物として有利であ る。

[0028]

さらに、本発明は、本発明のダイズの子実を原料とする加工食品も包含する。かかる加工食品は、豆乳(調製豆乳、豆乳飲料を含む)、豆腐等を含むあらゆるダイズ加工食品を含む。これらは、原料とするダイズ子実の総遊離アミノ酸含量が高いために、従来のダイズの子実を原料とする同様の方法で製造される加工食品に比べて、総遊離アミノ酸含量が高く、特に、遊離のアルギニン、アスパラギン、ヒスチジン、およびグルタミン含量が高い。したがって、本発明のダイズを用いることにより、遊離アミノ酸を添加するなどの処理をすることなく、総遊離アミノ酸含量の高いダイズ加工食品が得られる。このことにより、本発明の加工食品は、アミノ酸の吸収効率がよく、栄養的に優れている。

【実施例】

[0029]

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらによって制限されるものではない。

[0030]

実施例1

まず、高遊離アミノ酸ダイズである β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失するダイズの作出方法について検証する。 β -コングリシニンの各サブユニットを遺伝的に欠失した九系305とグリシニンの各サブユニットを遺伝的に欠失した九系305とグリシニンの各サブユニットを遺伝的に欠失したEnB1を1997年12月から1998年3月の期間、加温ガラス室内(熊本県西合志町 最低気温22℃、最高気温32℃に調整、播種後 1 ヶ月間は毎日、蛍光灯照明を午後4時~午後 9 時、翌朝3時~8時の 2 回行い、18時間日長とする。以後、自然日長とする。)のポット土耕栽培(黒ボク火山灰土壌)にて約40~50日間養成後、交雑し、 F_1 子実を得る(全生育日数 約95日)。次に F_1 子実を1998年7月に一般圃場(熊本県西合志町 黒ボク火山灰土壌)に播種し、発芽した F_1 個体が成熟する1998年10月中旬まで養成し(平均気温24.9℃、平均最高気温30.4℃、平均最低気温20.3℃、総降水量301.5mm)、 F_2 子実を得る。得られた F_2 子実は子葉部分(約10mg)を削り取り、 β -コングリシニンおよびグリシニンの各サブユニッ

トグループの有無をKitamura et al.の方法 (1984) に準じSDS-ポリアクリルアミドゲル 電気泳動法により判定する。これによって、β-コングリシニンおよびグリシニンの全て のサブユニットを遺伝的に欠失するF2子実を選抜する。さらに、β-コングリシニンおよ びグリシニンの全てのサブユニットを遺伝的に欠失したF2子実を加温ガラス室内(広島県 福山市 平均気温25℃に調整、自然日長)のポット(培養土と腐植土を2:1に混合して充 填) に1998年12月に播種し、発芽したF2個体を養成後、F3子実を1999年3月に得る。各個 体から得られるF3子実のうち、約30粒をSDS-ポリアクリルアミドゲル電気泳動法により分 析し、全ての子実が β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠 失する F_3 系統を選抜する。即ち、 β -コングリシニンおよびグリシニンの全サブユニット の欠失性を遺伝的に固定している系統(QF2F3-1、QF2F3-2、QF2F3-3)を選抜する。これら 3つの系統のうち、2つの系統 (QF2F₃-1、QF2F₃-2) 子実を粉砕しその約500mgを精秤し て、遊離アミノ酸の定量に用いる。なお、比較のため、 β -コングリシニンならびにグリ シニンを構成するサブユニットを全て有する栽培ダイズ(タチユタカ)、交雑親に用いた β -コングリシニン欠失ダイズ (九系305) ならびにグリシニン欠失ダイズ (EnB1) を F_2 個体と同じ条件で栽培し、それらの子実を得る。これらの比較対照は、その子実を粉砕し て、それぞれ約500mgを精秤して、遊離アミノ酸の定量に用いる。

[0031]

遊離アミノ酸の定量のために、上記の精秤した粉砕子実に試料とする粉砕子実重量 $10 \, \mathrm{mg}$ あたり $200 \, \mu \, \mathrm{lo}$ 75%エタノールを、試験内で混ぜ合わせる。常温にて $2 \, \mathrm{fl}$ 間振とう後、 $5,00 \, \mathrm{lo}$ 0gで5分間遠心分離し、その上清みを遊離アミノ酸抽出液として得る。さらに沈殿させた子実残渣に試料とする粉砕子実重量 $10 \, \mathrm{mg}$ あたり $200 \, \mu \, \mathrm{lo}$ 75%エタノールを加え、同様に再度、遊離アミノ酸抽出液を得る。この $2 \, \mathrm{lo}$ 回の抽出液を合わせた後、その $20 \, \mathrm{fo}$ の $1 \, \mathrm{fo}$ 容量をとり、 $15,000 \, \mathrm{g}$ で $10 \, \mathrm{fl}$ 遺心し残渣を取り除き、蒸留水で $10 \, \mathrm{fl}$ に元の $10 \, \mathrm{fl}$ で $10 \, \mathrm{fl}$ で $10 \,$

[0032]

【表1】

表1 ダイズ子実中の遊離アミノ酸分析結果-1

品種·系統名	タチユタカ	九系305	EnB1	QF2F ₃ -1	QF2F ₃ -2
β-コングリシニンの有無	+	_	+	_	
グリシニンの有無	+	+	_		_
遊離アミノ酸含量(mg/g seed)	4.18	4.64	4.86	25.48	22.55

注1) タチユタカは栽培ダイズ

注2) 九系305ならびにEnB1はQF2F3-1、QF2F3-2の母本と父本

[0033]

表 1 から明らかなように β - コングリシニン欠失ダイズ(九系305)ならびにグリシニン欠失ダイズ(EnB1)の総遊離アミノ酸含量は栽培ダイズ(タチユタカ)より高いが、その差は小さく、最も多いグリシニン欠失ダイズ(EnB1)が栽培ダイズ(タチユタカ)の1.16 倍程度であった。

[0034]

 β -コングリシニンおよびグリシニンの全てのサブユニットを遺伝的に欠失したQF2F₃-1、QF2F₃-2の子実中総遊離アミノ酸含量はそれぞれ、25.5、22.6mg/g、であり、栽培ダイズ(タチユタカ)の5倍以上であった。上記の実施例により、 β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失する高遊離アミノ酸ダイズを作出する方法を検

証できた。

[0035]

実施例2

次に、実施例1において実施した九系305(β -コングリシニン欠失ダイズ)とEnB1(グ リシニン欠失ダイズ)との交配組合せから作出可能な全ての系統、すなわち、β-コング リシニンならびにグリシニンのサブユニットの組成が異なる16種類系統を作出し、これら の系統のなかにβ-コングリシニンならびにグリシニンのサブユニットの全てを遺伝的に 欠失させて得られることのできる高遊離アミノ酸ダイズ (QF2) と同等のダイズが得られ るかを検証した。即ち、実施例 1 で得られたF2 集団から β-コングリシニンおよびグリシ ニンの全てのサブユニットを遺伝的に欠失するF2子実(QF2F2-1、QF2F2-2、QF2F2-3)を 選抜した残りのF2子実集団を1999年12月に、加温ガラス室(熊本県西合志町 最低気温22 ℃、最高気温32℃に調整、播種後1ヶ月間は毎日、蛍光灯照明を午後4時~午後9時、翌 朝3時~8時の2回行い、18時間日長とする。以後、自然日長とする。)にて養成し、2000 年3月にそのF3子実を得た。得られたF3子実についてSDS-ポリアクリルアミドゲル電気泳 動法において、表2に示した16種類のβ-コングリシニンならびにグリシニンのサブユニ ットの組成が異なるダイズ、即ち、 β -コングリシニンならびにグリシニンのサブユニッ トを全てを有するダイズ F_3 子実、 β -コングリシニンならびにグリシニンのサブユニット を部分的に遺伝的に欠失するダイズF3子実、β-コングリシニンならびにグリシニンのサ ブユニット全てを遺伝的に欠失するダイズF3子実をそれぞれ約10から20粒を得る。得られ た16種類のダイズF₃子実は、2000年7月から10月の期間(平均気温24.3℃、平均最高気温2 9.3℃、平均最低気温19.7℃、降水量453.0mm) 、野外の一般圃場(熊本県西合志町 黒ボ ク火山灰土壌)において栽培する。各F3個体から得られるF4子実約15粒についてβ-コン グリシニンならびにグリシニンのサブユニットの組成が親のF3個体と同じで、且つ固定し ているF4子実のみを生産したF3個体を選抜することによって、表2に示すようなβ-コン グリシニンならびにグリシニンのサブユニットの組成が異なる16種類のF4系統を得た。そ れら16種類のF4系統の子実は粉砕され、それぞれ約500mgを精秤して、実施例1で示した 同様の方法により遊離アミノ酸含量を分析し、その総量を算出する。その結果を表2に示

[0036]

長2 ダイズ子軍中の游離アミノ酸分析結果	_ 2

AC 210 吴中の班前757 联 F₄系統			1	2	3	4	5	6	7	8
β-コングリシニンのサブユニット	α		+	+	+	+	+	+	+	+
	α'		+	+	+	+	+	+	+	+
	β		+	+	+	+	+	. +	+ 1	+
グリシニンのサブユニット	I	A _{1a} B ₂ , A ₂ B _{1a} , A _{1b} B _{1b}	+	+	-		- 1	+	+	-
	II a	A ₅ A ₄ B ₃	+	_	+	-	+	-	+	_
	Πь	A ₃ B ₄	+	-	-	+	+	+	-	-
遊離アミノ酸	Asp	アスパラギン酸	0.388	0.456	0.465	0.365	0.270	0.260	0.369	0.813
mg/g DW	Glu	グルタミン酸	0.237	0.500	0.415	0.457	0.243	0.207	0.206	0.441
	Ser	セリン	0.021	0.021	0.028	0.025	0.021	0.024	0.015	0.030
	Asn	アスパラギン	0.107	0.152	1.245	0.344	0.402	0.397	0.035	0.622
	Gly	グリシン	0.013	0.018	0.024	0.018	0.016	0.015	0.010	0.020
	Gln	グルタミン	0.006	0.008	0.005	0.010	0.007	0.005	0.005	0.008
	His	ヒスチジン	0.072	0.165	0.236	0.127	0.066	0.086	0.018	0.178
	Thr	スレオニン	0.023	0.022	0.027	0.017	0.019	0.016	0.009	0.013
	Ala	アラニン	0.053	0.112	0.089	0.089	0.061	0.057	0.046	0.102
	Arg	アルギニン	0.266	0.183	0.462	0.542	0.281	0.317	0.101	0.691
	Pro	プロリン	0.027	0.041	0.040	0.038	0.032	0.035	0.033	0.032
	Tyr	チロシン	0.145	0.088	0.098	0.078	0.088	0.077	0.131	0.145
	Val	バリン	0.046	0.052	0.061	0.049	0.045	0.043	0.044	0.065
	Met	メチオニン	0.012	0.012	0.011	0.014	0.009	0.008	0.015	0.020
	Cys_	システイン	0.002	0.002	0.002	0.002	_ 0.002	0.002	0.002	0.003
	lle	イソロイシン	0.014	0.022	0.020	0.021	0.017	0.014	0.019	0.026
	Leu	ロイシン	0.024	0.033	0.019	0.027	0.016	0.023	0.024	0.023
	Phe	フェニルアラニン	0.064	0.062	0.036	0.035	0.047	0.059	0.066	0.052
	Trp	トリプトファン	0.130	0.139			0.141	0.144	0.103	0.228
	Lys	リジン	0.022	0.026			0.025		0.024	0.032
	合計		1.670	2.112	3.490	2.502	1.809	1.813	1.274	3.344

F₄系統			9	10	11	12	13	14	15	16
β-コングリシニンのサブユニット	α		-	-	-	-	-	-	-	_
	α'		-	-	-	-	-	-	-	-
	B				.				-	-
グリシニンのサブユニット	1	A1aB2, A2B1a, A1bB1b	+	+	_	-	-	+	+	- '
	II a	$A_5A_4B_3$	+	-	+	-	+	-	+	-
	Ιь	A ₃ B ₄	+	-	-	+	+	+	-	_
遊離アミノ酸	Asp	アスパラギン酸	0.420	0.751	0.549	1.106	0.650	0.582	0.706	1.105
mg/g DW	Glu	グルタミン酸	0.308	0.639	0.575	0.843	0.436	0.490	0.406	0.980
	Ser	セリン	0.021	0.054	0.049	0.087	0.031	0.050	0.035	0.080
	Asn	アスパラギン	0.153	1.325	0.915	2.929	0.528	1.218	1.267	1.587
	Gly	_ グリシン	0.012	0.024	0.074	_ 0.051	0.020	0.025	0.022	0.033
	Gln	グルタミン	0.007	0.016	0.014	0.047	0.012	0.017	0.014	0.060
	His	ヒスチジン	0.051	0.405	0.278	0.699	0.109	0.439	0.232	0.405
	Thr	スレオニン	0.013	0.024	0.028	0.057	0.025	0.024	0.019	0.037
	Ala	アラニン	0.051	0.108	0.140	0.149	0.086	0.094	0.088	0.116
	Aŗg	アルギニン	0.253	1.965	1.656	3.800	0.586	1.678	2.000	4.359
	Pro	プロリン	0.029	0.033			0.043	0.038	0.024	0.032
	Tyr	チロシン	0.117	0.121	0.125	0.137	0.114	0.108	0.097	0.148
	Val	パリン	0.063	0.086	0.106	0.140		0.096	0.132	0.143
	Met	メチオニン	0.015	0.012	0.009		0.018	0.012	0.011	0.015
	Cys_		0.001	0.004	0.003	0.002	0.004	0.002	0.002	0.001
	lle	イソロイシン	0.021	0.024	0.032	0.029	0.027	0.027	0.025	0.038
	Leu	ロイシン	0.022	0.029	0.025	0.025	0.020	0.033	0.027	0.031
	Phe	フェニルアラニン	0.064	0.067	0.077	0.060	0.043	0.064	0.035	0.052
	Trp	トリプトファン	0.072	0.150		0.170	0.083	0.070	0.058	0.050
	Lys		0.027	0.036			0.027		0.037	0.078
注)表中のF.系統はすべてカ系30	合計		1.718	5.872	4.876	10.447	2.931	5.104	5.240	9.353

[0037]

表 2 からわかるように、 β -コングリシニンおよびグリシニンの全てのサブユニットを有する F_4 系統(No. 1)の子実中の総遊離アミノ酸含量は、低レベルであった。また、ダイズ子実中の β -コングリシニンおよびグリシニンのサブユニットいずれかを遺伝的に欠失させることがダイズ子実中の遊離アミノ酸含量を一定量増加させる効果のあることがわかる。さらに、 β -コングリシニンのサブユニットの遺伝的欠失に加えグリシニンのいずれかのサブユニットを遺伝的に欠失させることがより効果的であり、特に β -コングリシニンの全サブユニットを遺伝的に欠失した F_4 系統(No. 16)だけでなく、 β -コングリシニンのサブユニットの遺伝的欠失に加えグリシニンのグループI($A_{1\,a}$ $B_{2\,a}$ 、 $A_{1\,b}$ $B_{1\,b}$)ならびにIIa($A_{5\,A_4\,B_3}$)を遺伝的に欠失する $A_{5\,A_4\,B_3}$ を遺伝的に欠失する $A_{5\,A_4\,B_5}$ が高遊離アミノ酸ダイズの特徴を有することが明らかとなった。遊離アミノ酸のうち、特に増加が顕著

であった遊離アミノ酸はアルギニン、アスパラギン、ヒスチジン、およびグルタミンであった。

[0038]

上記の実施例により、実施例 1 で検証した β - コングリシニンならびにグリシニンの全サブユニットを遺伝的に欠失したダイズが高遊離アミノ酸ダイズであることが再度検証され、さらに、 β - コングリシニンのサブユニットの全てを遺伝的に欠失させ、グリシニンのサブユニットのうちグループI (A_1 a B_2 、 A_2 B_1 a 、 A_1 b B_1 b)ならびにII a (A_5 A_4 B_3)を遺伝的に欠失するダイズ、すなわちグリシニンのサブユニットII b (A_3 B_4) のみを有するダイズが高遊離アミノ酸ダイズであることが新たに判明した。

[0039]

実施例3

次に高遊離アミノ酸ダイズが遺伝的に安定して高い遊離アミノ酸を子実に含有することを証明するために、以下の実験を行った。即ち、実施例 1 で得られた β - α -

[0040]

それぞれのダイズの粉砕子実を用いた以外は上記実施例1と同様にして得られる遊離アミノ酸抽出液のアミノ酸含量を測定し、総遊離アミノ酸含量を算出する。結果を表3に示す。

[0041]

【表3】

β-コングリンニンのサブユニット α α' α' β β β β β β β β β β β β β β β β		パメナバ	アグイトグ	- 7	ん赤らりつ		9 2 2 2	7 9 17 18	9
β α		+	+	+	1	+	I	ı	1
П Пв		+	+	+	1	+	ı	ı	ı
П П В		+	+	+	I	+	I	1	١
	A14B2. A2B14. A16B1	+	+	+	+	1	ł	ł	ı
	A ₅ A ₄ B ₃	+	+	i	+	ı	ı	ı	ı
	A ₃ B ₄	+	+	+	+	1	1	1	ı
	アスパラギン酸	0.297	0.293		0.521	0.282			
Glu	グラケミン製	0.238	0.400		0.253	0.331			
Ser	センソ	0.024	0.025		0.021	0.015			
Asn	アスパジギン	0.056	0.111		090.0	0.213			
Si-	グラシン	0.015	0.023		0.014	0.022			
Gln	グルタミン	0.007	0.005		0.003	0.003			
His	ヒスチジン	0.024	0.068		0.018	0.091			
Thr	メフギニン	0.024	0.021		0.016	0.013			
Ala	アラニン	0.054	0.087		090'0	0.104			
Arg	アルギニン	0.116	0.354		0.163	0.520			
Pro	プロリン	0.039	0.062	090'0	0.033	0.053	0.046	3 0.054	0.056
Tyr	ルロシン	0.094	0.099		0.078	0.098			
Val	ふう	0.038	0.048		0.040	0.044			
Met	メナイニン	0.038	0.051		0.036	0.039			
Cys	システイン	0.001	0.001		0.00	0.001			
Ile	インロイツソ	0.022	0.029		0.022	0.024			
Leu	ロンソン	0.023	0.030		0.025	0.024			
Phe	フェニルアラニン	0.055	0.061		0.049	0.068			
Trp	トリプトファン	0.188	0.238		0.096	0.197			
Lys	シジ	0.023	0.026		0.020	0.026			
40		1.377	2.033		1.530	2.167			_

[0042]

表3から明らかなように栽培ダイズ(フクユタカ、タチユタカ、エンレイ)の総遊離アミノ酸含量は1.38~2.44mg/gの範囲内でさまざまであるが、最も総遊離アミノ酸含量が高いエンレイ(グリシニンサブユニットAs A4 B3 を欠失)では、特にアスパラギン、ヒスチジ

ンの含量が高い。これに対して、交雑親である九系305とEnB1ではそれぞれ1.53、2.17mg/gと総含量では栽培ダイズと大差がないが、EnB1のアルギニン含量は栽培ダイズより高い

[0043]

一般圃場で栽培したダイズQF2F6-1、QF2F6-2、QF2F6-3の総遊離アミノ酸含量は8.02~10.78mg/gで、ガラス室内で栽培して得られたQF2F3子実(表 1)の半分以下となったが、同じ条件で栽培された栽培ダイズ(フクユタカ、タチユタカ、エンレイ)、交雑親(九系305、EnB1)より明らかに高い。特に増加が顕著であった遊離アミノ酸はアルギニン、アスパラギン、ヒスチジン、およびグルタミンであり、実施例2で検証した高遊離アミノ酸ダイズにおいて認められたアミノ酸の増加と一致している。

[0044]

以上要するに、 β -コングリシニンならびにグリシニンの主要サブユニットを欠失させた F_3 子実(実施例 1 参照)、 F_6 子実(実施例 3)ともに栽培ダイズの少なくとも 2 倍または約 $3\sim 5$ 倍以上の遊離アミノ酸を含有しており、高遊離アミノ酸という特性が遺伝的に安定して維持されることが明らかとなり、 β -コングリシニン欠失性とグリシニンの各サブユニットの欠失性を全て組み合わせる手法が、高遊離アミノ酸含量のダイズを作出することに有効な手法であることが検証できる。

[0045]

実施例4

次に、本発明の高遊離アミノ酸ダイズが異なる分析方法においても、高濃度に遊離アミノ酸を子実に含有することを検証した。 β -コングリシニンおよびグリシニンの全てのサブユニットを遺伝的に欠失したQF2F6-4の子実を加温ガラス室内(広島県福山市 平均気温25℃に調整、自然日長)のポット(培養土と腐植土を2:1に混合して充填)に2002年12月に播種し、子実を2003年3月に得る。この子実を粉砕しその約250mgを精秤して、遊離アミノ酸の定量に用いる。なお、比較のため、 β -コングリシニンならびにグリシニンを構成するサブユニットを全て有する栽培ダイズ(Jack)をQF2F6-4と同じ条件で栽培し子実を得る。この比較子実も粉砕し、約250mgを精秤して、遊離アミノ酸の定量に用いる。

[0046]

遊離アミノ酸の定量のために、上記の精秤した粉砕子実250mgに8%TCA(トリクロロ酢酸)を含む50mMリン酸カリウム緩衝液(pH5.6)を2ml加え、常温にて1時間攪拌後、10,000gで10分間遠心分離し、上清を得る。上清は0.45mmのフィルターで濾過し、そのうち10mlを日立L-8500型高速アミノ酸分析計で分析を行い、その総和を総遊離アミノ酸含量として算出する。結果を表4に示す。

[0047]

【表4】

品種・系統名			Jack	QF2F6-4
β-コングリシニンのサブユニ			+	_
	α'		+	_
	β		+	
グリシニンのサブユニット	I	$A_{1a}B_{2}, A_{2}B_{1a}, A_{1b}B_{1b}$	+	
	II a	$A_5A_4B_3$	+	
	II Ь	A ₃ B ₄	+	
遊離アミノ酸	Asp	アスパラギン酸	0.385	1.512
(mg/g seed)	Glu	グルタミン酸	0.295	0.959
	Ser	セリン	0.015	0.021
	Asn	アスパラギン	0.112	2.885
	Gly	グリシン	0.111	0.236
	Gln	グルタミン	ND	0.144
	His	ヒスチジン	0.226	0.516
	Thr	スレオニン	0.017	0.046
	Ala	アラニン	0.044	0.103
	Arg	アルギニン	0.486	28.385
	Pro	プロリン	0.015	0.022
	Tyr	チロシン	0.007	0.017
	Val	バリン	0.028	0.071
	Met	メチオニン	0.008	0.015
	Cys	システイン	0.037	0.077
	Ile	イソロイシン	0.014	0.044
	Leu	ロイシン	0.019	0.061
	Phe	フェニルアラニン	0.017	0.016
	Trp	トリプトファン	0.141	0.040
	Lys	リジン	0.051	0.170
注1) Jackは栽培ダイズ	合計		2.028	35.340

注1) Jackは栽培ダイズ

[0048]

表 4 の β - コングリシニンならびにグリシニンを構成するサブユニットを全て有する栽培ダイズ(Jack)の子実中の総遊離アミノ酸含量は2.23mg/gであり、分析方法が異なる表3の栽培ダイズ(フクユタカ、タチユタカ、エンレイ)や交雑親(九系305、EnB1)と同程度であるが、 β - コングリシニンおよびグリシニンの全てのサブユニットを遺伝的に欠失したQF2F6 - 4の子実中総遊離アミノ酸含量は35.3mg/gであり、表3のQF2F6 - 1、QF2F6 - 2、QF2F6 - 3の総遊離アミノ酸含量の3倍以上含有していた。また、QF2F6 - 4と同一条件下で栽培された栽培ダイズ(Jack)と比較すると17倍以上であった。また、増加が顕著であった遊離アミノ酸はアルギニン、アスパラギン、ヒスチジン、およびグルタミンであり、実施例2、3で検証した高遊離アミノ酸ダイズ認められたアミノ酸の増加と一致している。特にアルギニンは栽培ダイズ(Jack)の58倍以上含まれていた。

[0049]

以上を要約するに、2種の異なるアミノ酸の測定法(実施例 3 および 4)においても栽培ダイズの総遊離アミノ酸含量はほぼ同等であるが、 β -コングリシニンならびにグリシニンの全サブユニットを遺伝的に欠失したダイズの子実には遊離アミノ酸が栽培ダイズの約 $3\sim17$ 倍含有されており、異なるアミノ酸分析法でも高遊離アミノ酸という特性が維持されることが明らかとなり、 β -コングリシニン欠失性とグリシニンの各サブユニットの欠失性を全て組み合わせる手法が、高遊離アミノ酸含量のダイズを作出することに有効な手法であることが検証できる。

[0050]

実施例5

高遊離アミノ酸ダイズを作出するためには β -コングリシニンのサブユニットの全てを遺伝的に欠失させることが重要であることを β -コングリシニンのサブユニットのうち、 α 、 α 、 α ・サブユニットを遺伝的に欠失しさらに β -サブユニットを低減することで、 β -コングリシニンのほとんどを遺伝的に欠失する栽培ダイズ(以後、 β -コングリシニン不完全欠失ダイズと呼ぶ)を九系305(β -コングリシニンサブユニット完全欠失ダイズ)の代わりに交雑親として使用して検証する。即ち、 β -コングリシニン不完全欠失ダイズであるゆめみのりをグリシンの全サブユニットを遺伝的に欠失するEnB1と交雑し、その後代をから β -コングリシニン不完全欠失・グリシニン欠失ダイズ(以後、FF2と呼ぶ)を得、その遊離アミノ酸含量を実施例 1 と同様に測定する。

[0051]

本実施例は実施例1および3で示した実施例と同時に同条件で実施する。即ち、β-コ ングリシニン不完全欠失ダイズ(ゆめみのり)とグリシニン欠失ダイズ(EnB1)を1997年 12月から1998年3月の期間、加温ガラス室内のポット栽培にて養成後、交雑し、F1子実を 得る。次にF1子実を1998年7月に一般圃場に播種し、発芽したF1個体が成熟する1998年10 月上旬まで養成し F_2 子実を得る。得られた F_2 子実は子葉部分(約10mg)を削り取り、 β -コングリシニンおよびグリシニンの各サブユニットグループの有無をKitamura et al.の 方法(1984)に準じSDS-ポリアクリルアミドゲル電気泳動法により判定する。これによっ てグリシニンの全てのサブユニットを遺伝的に欠失し、かつβ-コングリシニンのサブユ ニットのうちα、α'サブユニットを遺伝的に欠失しβ-サブユニットを低減したTF2を選 抜する。さらに、このF2子実を加温ガラス室内のポットに1998年12月に播種し、発芽した F2個体を養成後、F3子実を1999年3月に得る。これらのF3子実について、得られた約10粒 を用いてβ-コングリシニンおよびグリシニンの各サブユニットの有無をSDS-ポリアクリ ルアミドゲル電気泳動法により再度判定する。これによって、グリシニンの全てのサブユ ニットを遺伝的に欠失し、かつ β-コングリシニンのサブユニットのうち α、 α' サブユ ニットを遺伝的に欠失しβ-サブユニットを低減したβ-コングリシニン不完全欠失・グリ シニン欠失系統を選抜する。この選抜したβ-コングリシニン不完全欠失・グリシニン欠 失系統は、β-コングリシニン不完全欠失品種ゆめみのりとともに、上記実施例2で示し たと同じ条件で1999年から2001年の3年間一般圃場で栽培し、それらの子実を得る。

[0052]

上記選抜したTF2F₆-1系統ならびに β -コングリシニン不完全欠失品種ゆめみのりから得た粉砕子実を用いて、上記実施例 1 と同様の方法により総遊離アミノ酸含量を算出する。結果を表 5 に示す。

[0053]

【表 5】

表5 ダイズ子実中の遊離アミノ配	设分析結果	<u>-5</u>		
品種·系統名			ゆめみのり	TF2F ₆ -1
β-コングリシニンのサブユニット	α			
•	α '		_	_
	β低減		+	+
グリシニンのサブユニット	I		+	_
	II a		+	
	Пь		+	
遊離アミノ酸	Asp	アスパラギン酸	0.257	0.334
(mg/g seed)	Glu	グルタミン酸	0.480	0.660
	Ser	セリン	0.030	0.022
	Asn	アスパラギン	0.146	0.359
	Gly	グリシン	0.026	0.025
	Gln	グルタミン	0.011	0.006
	His	ヒスチジン	0.056	0.107
	Thr	スレオニン	0.021	0.019
	Ala	アラニン	0.091	0.155
	Arg	アルギニン	0.393	1.150
	Pro	プロリン	0.053	0.061
	Tyr	チロシン	0.095	0.112
	Val	バリン	0.047	0.055
	Met	メチオニン	0.056	0.035
	Cys	システイン	0.001	0.000
	Ile	イソロイシン	0.025	0.029
	Leu	ロイシン	0.028	0.029
	Phe	フェニルアラニン	0.063	0.075
	Trp	トリプトファン	0.162	0.152
	Lys	リジン	0.030	0.028
	合計		2.071	3.411

注1) ゆめみのりは栽培ダイズであり、TF2F₆-1の母本。TF2F₆-1の父本はEnB1

注2) ゆめみのりとTF2F6-1の子実の生産条件は表3と同じ。

[0054]

表 5 から明らかなように、 β -コングリシニン不完全欠失品種ゆめみのりの総遊離アミノ酸含量は2.07mg/gで、同じ条件で栽培した栽培ダイズ(表 3)と大差ないが、グルタミン酸、アルギニン含量がやや高い。

[0055]

また、 $TF2F_6-1$ 系統の総遊離アミノ酸含量は、同じ条件で栽培した栽培ダイズ(表 3) に比べやや高いが、実施例 3 で得た 3 つの系統($QF2F_6-1$ 、 $QF2QF_6-2$ 、 $QF2F_6-3$)に比べると(表 3 参照)、その増加量は明らかに少ない。

[0056]

上記の実施例により、グリシニンの全サブユニットを遺伝的に欠失させ、さらに β -コングリシニンのほとんどを遺伝的に欠失させるが、 β -コングリシニンサブユニットの一部を含有すれば、高遊離アミノ酸含量ダイズとはならないことが検証できる。

[0057]

実施例6

次に上述の実施例 1、 2 、 3 で示した β – コングリシニンの各サブユニットを遺伝的に 欠失した九系305とグリシニンの各サブユニットを遺伝的に欠失したEnB1との交配組合せ

出証特2003-3094533

以外においても、 β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失するダイズを作出できることを検証する。すなわち、上述、実施例 3 で得られた β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失するダイズQF2F $_3$ -1と、 β -コングリシニンおよびグリシニンの全サブユニットを有する栽培ダイズであるフクユタカとを交雑することによっても、 β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失するダイズを作出できることを実証する。

[0058]

[0059]

実施例7

さらに、本発明の高遊離アミノ酸ダイズが野外の一般圃場においても正常に生育し、正常な子実を生産でき、事実上支障のないこと検証する。先述の実施例で2001年に野外の一般圃場に栽培した3系統(QF2F5-1、QF2F5-2、QF2F5-3)、および栽培ダイズ(フクユタカ、エンレイ、タチユタカ)、および上記系統の交配親である β -コングリシニン欠失ダイズ(九系305)、グリシニン欠失ダイズ(EnB1)について調べる。

[0060]

上記のそれぞれの系統を、野外の一般圃場で栽培した個体のうち、半数以上が開花始めとなった日を開花期とし、さらに80%以上が成熟に達した日を成熟期として判定する。成熟期には20株を抜き取り、主茎長、主茎節数、分枝数、百粒重、子実重について種苗特性分類調査報告書(日本特産農作物種苗協会 1995年3月)の記載にしたがって測定する。その結果を表6に示す。

[0061]

表6 高遊離アミノ酸大	大豆の基本農業特性	案特性						
品種·系統名	フクユタカ	タチュタカ	エンレイ	九系305	EnB1	QF2F ₅ -1	QF2F ₅ -2	QF2F ₅ -3
8-コングリンニンの有	+ ##	+	+	1	+	ı	1	1
グンシーンの有無	+	+	*+	+	1	ı	ı	1
開花期	8月18日			8月18日	8月11日	8月11日	8月13日	8月14日
成熟期	10月31日	10月18日	10月15日	10月31日	10月15日	10月15日		
中基本	58.0		38.7	58.1	41.1	30.5		
主基節数	15.6			16.1	13.1	12.4	12.2	14.0
分枝数	3.6					4.0		
15%百粒重	32.2		36.1	31.2		19.6		
子奥重kg/a	40.6					28.9	28.8	
注1) フクユタカ、タチュ	・ユタカ、エンレイは栽培ダイズ	イは栽培ダイ	イズ					
8	シーンのうち、グノ	グループロジ	ループロaを欠失している。	<u>چ</u>				
<u>ε</u>	۳	を調査してい	8					

[0062]

表6から明らかなようにQF2F5-1の開花期ならびに成熟期はEnB1とほぼ同じで、一方の 交雑親である九系305よりかなり早い。これに対して、QF2F5-2、QF2F5-3の開花期ならび に成熟期はやや遅く、EnB1と九系305の中間的な期日となった。栄養生長に関する特性の うち主茎長については、いずれの高遊離アミノ酸系統とも交雑親に比べ低いが、主茎節数 についてはQF2F5-3がEnB1よりやや多く、分枝数ついてはいずれの高遊離アミノ酸系統と

も九系305より少ないものの、EnB1とほぼ同じがやや多かった。栽培ダイズとの比較では、主茎長を除き、開花期、成熟期が近かったエンレイ、タチユタカに大きく劣るものではない。

[0063]

子実の大きさを表す百粒重は、 $QF2F_5-1$ 、 $QF2F_5-2$ 、 $QF2F_5-3$ とも九系305に比べ小さいが、EnB1に比べると $QF2F_5-2$ 、 $QF2F_5-3$ はやや大きい。子実重についても、 $QF2F_5-1$ 、 $QF2F_5-2$ 、 $QF2F_5-3$ とも九系305に比べると明らかに少ないが、EnB1とは大きな差はなかった。栽培ダイズとの比較では、開花期、成熟期が近かったエンレイとタチユタカの中間的な値をとった。さらに、子実重が最も高かった $QF2F_5-3$ から得られる $QF2F_6-3$ 子実の総遊離アミノ酸含量は3つの系統の中で、最も高かった(表3参照)。

[0064]

以上より、QF2F₅-1、QF2F₅-2、QF2F₅-3の3つの系統とも、その一般農業特性は、開花期、成熟期が近かった栽培ダイズに比べ大きく劣るものではなく、農業的利用性には差し支えないダイズ系統であるといえる。

[0065]

引用文献

Nielsen, N. C., Dickinson, C. D., Cho, T.-J Thanh, V.H., Scallon, B.J., Fischeer, R. L., Sims, T. L., Drews, G. N. and Goldberg. 1989. Characterization of the gylcin in geno family in soybean. Plant Cell. 1:313-328.

Ogawa, T. Tayama, E., Kitamura, K. and Kaizuma, N. 1989. Genetic improvement of seed storage prteins using three variant, alleles of 7S goblin subunits in soyb ean (Glycine max L.) Jpn. J. Breed. 39:137-147.

Yagasaki, K., Kaizuma, K. and Kitamura, K. 1996. Inheritance of glycinin molecules lacking the subunits in soybean (Glycine max (L.) Merr.). Brccding Sci. 46: 11-15.

Yagasaki, K., Kousaka, F. and Kitamura, K. 2000. Potential improvement of soym ilk gelation properties by using soybeans with modified protein subunit compositions. Breed. Sc. 50: 101-107.

Hajika, M., Takahashi, M., Sakai, S. and Igita, K. 1996. A new genotype of a 7 S globulin (b-conglycinin) detected in wild soybean (Glycine soja Sieb. et.Zucc.). Jpn J. Breed . 46:385-386.

Hajika, M., Takahashi, M., Sakai, S. and Matsunaga., R. 1998. Dominant inherit ane of a trait lacking b-conglycinin detected in a wild soybean line. Breed. Sci. 48:383-386.

Takahashi, M., Hajika, M., Matsunaga, R. Komatsu, K., Obata, A. and Kanegai, R. 2000. Breeding of soybean variety lacking b-conglycinin by the introduction of Scg gene from wild soybean. Proceedings of the Third International Soybean Processing and Utilization Conference. P45-46.

植松芳彦・羽鹿牧太・高橋将一・矢ヶ崎和弘・寺石政義・丹波勝・石本政男. 1999. ダイズ 7 S 及び11S グロブリン欠失系統における蛋白質含量と組成. 育種学研究1 (別1): 154

Kitamura, K. 1984. Biochemical characterization of lipoxygenase lacking mutant, L-1less, L-2 less and L-3 less soybean. Agric. Biol. Chem. 48: 2339-2346.

Park, K.G.M., Hays, P.D., Garlick, P.J., Swell, H., and Eremin, O. 1991. Stimulation of lymphocyte natural cytotoxicity by L-arginine. The Lancet 337: 645-646

Kirk S.J., Hurson M., Regan M.C.1993. Arginine stimulates wound healing and im mune function in elderly human beings. Surgery 114:155-60.

Kreider R.B., Miriel V., and Bertun. E. 1993. Amino acid supplementation and e xercise performance: proposed ergogenic value. Sports Medicine 16:190-209.

Rennie, M. J. 1996. Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance. Journal of Nutrition 126(4): 1142-1149.

Newsholme, E.A. and Calder P.C. 1997. The proposed role of glutamine in some c ells of the immune system and speculative consequences for the whole animal. Nut rition 13: 728-730.

【書類名】要約書

【要約】

【課題】 本発明は、遊離アミノ酸含有食品への加工が容易である、子実中の総遊離アミノ酸含量が高いダイズおよびその作出方法に関する。

【解決手段】 β -コングリシニンおよびグリシニンの全サブユニットを遺伝的に欠失すること、もしくは β -コングリシニンおよびグリシニンのサブユニットのうちグリシニンサブユニットである A_3B_4 のみを有することを特徴とするダイズを提供することにより、一般栽培種のダイズに比べて子実中の総遊離アミノ酸含量が高いダイズが提供される。

【選択図】 なし

特願2003-342020

出願人履歴情報

識別番号

[501203344]

1. 変更年月日 [変更理由] 2001年 5月22日

新規登録

住 所 氏 名

茨城県つくば市観音台3-1-1 独立行政法人 農業技術研究機構

2. 変更年月日

2003年10月 1日

[変更理由]

名称変更

住 所

茨城県つくば市観音台3-1-1

氏 名

独立行政法人農業・生物系特定産業技術研究機構