Robótica Móvil un enfoque probabilístico

Filtro de Bayes – Filtro de Kalman Extendido (EKF)

Ignacio Mas

Repaso de Filtro de Bayes

$$bel(x_t) = \eta p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Predicción

$$\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Corrección

$$bel(x_t) = \eta \ p(z_t \mid x_t) \overline{bel}(x_t)$$

Filtro de Kalman Discreto

Estima el estado x de un proceso de tiempo discreto controlado

$$X_t = A_t X_{t-1} + B_t u_t + \mathcal{C}_t$$

Con una medición

$$z_t = C_t x_t + O_t$$

Componentes del filtro de Kalman

 A_t

Matriz $(n \times n)$ que describe cómo el estado evoluciona de t-1 a t sin control ni ruido.

 B_{t}

Matriz $(n \times l)$ que describe como el control u_t cambia el estado de t-1 a t.

 C_{t}

Matriz $(k \times n)$ que describe como mapear el estado x_t a una observación z_t .

 e_{t}

 O_t

Variables aleatorias que representan el ruido de proceso y de medición que se asumen independientes y normalmente distribuídas con covarianzas Q_t y R_t respectivamente.

Filtro de Kalman en 1D

Es un promedio ponderado

Filtro de Kalman en 1D

Algoritmo de filtro de Kalman

- 1. Algoritmo **Kalman_filter**(μ_{t-1} , Σ_{t-1} , u_t , z_t):
- 2. Predicción:

$$\overline{\mathcal{M}}_{t} = A_{t} \mathcal{M}_{t-1} + B_{t} u_{t}$$

$$\mathbf{4.} \qquad \overline{\mathbf{S}}_t = A_t \mathbf{S}_{t-1} A_t^T + Q_t$$

- 5. Corrección:
- $6. K_t = \overline{S}_t C_t^T (C_t \overline{S}_t C_t^T + R_t)^{-1}$
- $7. M_t = M_t + K_t(z_t C_t M_t)$
- $S_t = (I K_t C_t) \overline{S}_t$
- 9. Return μ_t , Σ_t

Sistema dinámico No-lineal

 La mayoría de los problemas reales de robótica incluyen funciones no lineales

Suposición de Linealidad

Función No-Lineal

Distribuciones No Gaussianas

- Funciones no lineales llevan a distribuciones No Gaussianas
- El filtro de Kalman ya no se puede usar!

Cómo se resuelve esto?

Distribuciones No Gaussianas

- Funciones no lineales llevan a distribuciones No Gaussianas
- El filtro de Kalman ya no se puede usar!

Cómo se resuelve esto?

Linealización local!

Linealización EKF: Expansión de Taylor de primer orden

Predicción:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t}(x_{t-1} - \mu_{t-1})$$

Corrección:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

Matrices Jacobianas

Repaso: Matriz Jacobiana

- En general, es una **matriz no cuadrada** de $n \times m$
- Dada una función vectorial

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

La matriz Jacobiana se define como

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Repaso: Matriz Jacobiana

 Es la orientación del plano tangente a una función vectorial en un punto dado

 Es la generalización del gradiente de una función escalar

Linealización EKF: Expansión de Taylor de primer orden

Predicción:

$$\begin{split} g(u_t, x_{t-1}) &\approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \\ g(u_t, x_{t-1}) &\approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1}) \end{split}$$

Corrección:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$

$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

Función Lineal!

Suposición de Linealidad

Función No Lineal

Linealización EKF (1)

Linealización EKF (2)

Linealización EKF (3)

Algoritmo EKF

1. Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

2. Predicción:

$$\overline{\mathcal{M}}_t = g(u_t, \mathcal{M}_{t-1}) \qquad \qquad \overline{\mathcal{M}}_t = A_t \mathcal{M}_{t-1} + B_t u_t$$

$$\overline{S}_t = G_t S_{t-1} G_t^T + Q_t \qquad \qquad \overline{S}_t = A_t S_{t-1} A_t^T + Q_t$$

5. Corrección:

$$K_t = \overline{S}_t H_t^T (H_t \overline{S}_t H_t^T + R_t)^{-1} \qquad \longleftarrow \qquad K_t = \overline{S}_t C_t^T (C_t \overline{S}_t C_t^T + R_t)^{-1}$$

7.
$$m_t = \overline{m}_t + K_t(z_t - h(\overline{m}_t))$$
 $m_t = \overline{m}_t + K_t(z_t - C_t \overline{m}_t)$

8.
$$S_t = (I - K_t H_t) \overline{S}_t$$
 \longleftarrow $S_t = (I - K_t C_t) \overline{S}_t$

9. Return μ_t , Σ_t

$$H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

Ejemplo: Localización EKF

Localización EKF con landmarks

1. localización_EKF (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Predicción:

$$G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial \mu_{t-1}} = \begin{bmatrix} \frac{\partial x'}{\partial \mu_{t-1, x}} & \frac{\partial x'}{\partial \mu_{t-1, y}} & \frac{\partial x'}{\partial \mu_{t-1, \theta}} \\ \frac{\partial y'}{\partial \mu_{t-1, x}} & \frac{\partial y'}{\partial \mu_{t-1, y}} & \frac{\partial y'}{\partial \mu_{t-1, \theta}} \\ \frac{\partial \theta'}{\partial \mu_{t-1, x}} & \frac{\partial \theta'}{\partial \mu_{t-1, y}} & \frac{\partial \theta'}{\partial \mu_{t-1, \theta}} \end{bmatrix}$$
 Jacobiano de g con respecto a la p

respecto a la pose

$$V_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial u_{t}} = \begin{pmatrix} \frac{\partial x'}{\partial v_{t}} & \frac{\partial x'}{\partial \omega_{t}} \\ \frac{\partial y'}{\partial v_{t}} & \frac{\partial y'}{\partial \omega_{t}} \\ \frac{\partial \theta'}{\partial v_{t}} & \frac{\partial \theta'}{\partial \omega_{t}} \end{pmatrix}$$

Jacobiano de g con respecto al control

1.
$$Q_{t} = \begin{pmatrix} (\alpha_{1} | v_{t} | + \alpha_{2} | \omega_{t} |)^{2} & 0 \\ 0 & (\alpha_{3} | v_{t} | + \alpha_{4} | \omega_{t} |)^{2} \end{pmatrix}$$
 Ruido de movimiento

$$2. \quad \overline{m}_{t} = g(u_{t}, m_{t-1})$$

2.
$$\overline{M}_t = g(u_t, M_{t-1})$$

3. $\overline{S}_t = G_t S_{t-1} G_t^T + V_t Q_t V_t^T$

Predicción de media Predicción de covarianza (V mapea Q al espacio de estado)

1. localización_EKF (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Corrección:

3.
$$\hat{z}_{t} = \begin{pmatrix} \sqrt{(m_{x} - \overline{\mu}_{t,x})^{2} + (m_{y} - \overline{\mu}_{t,y})^{2}} \\ \tan 2(m_{y} - \overline{\mu}_{t,y}, m_{x} - \overline{\mu}_{t,x}) - \overline{\mu}_{t,\theta} \end{pmatrix}$$

3. $\hat{z}_t = \begin{pmatrix} \sqrt{(m_x - \overline{\mu}_{t,x})^2 + (m_y - \overline{\mu}_{t,y})^2} \\ \tan 2(m_x - \overline{\mu}_{t,x}) - \overline{\mu}_{t,x} \end{pmatrix}$ Predicción de media de la medición (depende del tipo de observación)

5.
$$H_{t} = \frac{\partial h(\overline{\mu}_{t}, m)}{\partial x_{t}} = \begin{pmatrix} \frac{\partial r_{t}}{\partial \overline{\mu}_{t, x}} & \frac{\partial r_{t}}{\partial \overline{\mu}_{t, y}} & \frac{\partial r_{t}}{\partial \overline{\mu}_{t, \theta}} \\ \frac{\partial \varphi_{t}}{\partial \overline{\mu}_{t, x}} & \frac{\partial \varphi_{t}}{\partial \overline{\mu}_{t, y}} & \frac{\partial \varphi_{t}}{\partial \overline{\mu}_{t, \theta}} \end{pmatrix}$$
 Jacobiano de h con respecto a la p

respecto a la pose

$$R_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_r^2 \end{pmatrix}$$

7.
$$S_t = H_t \overline{S}_t H_t^T + R_t$$

$$8. K_t = \overline{S}_t H_t^T S_t^{-1}$$

$$9. m_t = \overline{m}_t + K_t(z_t - \hat{z}_t)$$

10.
$$S_t = (I - K_t H_t) \overline{S}_t$$

Covarianza de innovación

Ganancia de Kalman

Media actualizada

Covarianza actualizada

Ejemplos paso de predicción EKF

Paso de observación EKF

Paso de corrección EKF

Secuencia de estimación (1)

Secuencia de estimación (2)

Resumen de filtro de Kalman Extendido

- Solución ad-hoc para tratar las nolinealidades
- Linealiza localmente en cada paso
- En la práctica, funciona bien para nolinealidades moderadas
- Ejemplo: localización de landmarks
- Hay otras maneras de tratar las nolinealidades (unscented Kalman Filter, UKF)