HOUSING Price Prediction

Group: 4

Advisor: Prof. Khoat Than

Subject: Introduction to Artificial Intelligence

contents

- 1. Problem statement
- 2. Exploratory data analysis
- 3. Approaches & Evaluation
- 4. Discussion

Problem statement

WHAT AFFECTS HOUSE PRICES?

People believe:

- The square foot area
- The number of bedrooms

Truth:

- Area outside the house
- Type of housing

HOW TO Predict House Prices?

Artificial Intelligence

- Machine learning
- Deep learning

Datasets: Boston Housing Prices

506 instances Missing Attribute Values: 0

Features: 13 numeric/ categorical

features

Target: MEDV (median value)

Exploratory data analysis

неастар

High correlation between features and target

Best:

- LSTAT: -0.74
- RM: 0.7

outliers

With small datasets, outliers become much dangerous

Drop outliers by features:

- "MEDV" == 50
- "RM" < 4
- "RM" > 8.4

outliers

With small datasets, outliers become much dangerous

Drop outliers by features:

- "MEDV" == 50
- "RM" < 4
- "RM" > 8.4

Metrics: R-squared

$$egin{aligned} \mathrm{R}^2 &= 1 - rac{\mathrm{Unexplained\ Variation}}{\mathrm{Total\ Variation}} = 1 - rac{SS_{\mathrm{res}}}{SS_{\mathrm{tot}}} \ SS_{\mathrm{res}} &= \sum_i (y_i - f_i)^2 = \sum_i e_i^2 \ SS_{\mathrm{tot}} &= \sum_i (y_i - ar{y})^2 \end{aligned}$$

R2: proportion of the variation in the dependent variable that is predictable from the independent variable(s)

Higher R2, better model

Random Forest

Gradient Boosting Tree

Gradient Boosting Tree

Residuals = MEDV - initial guess

Gradient Boosting Tree

Residuals' = (MEDV – initial guess) + (learning rate x Residuals)

Gradient Boosting Tree

Gradient Boosting Tree

GRADIENT BOOSTING TREE

700 n_estimators 0.05 learning_rate 8 min_samples_leaf

RANDOM FOREST

300 n_estimators 6 max_features

DECISION TREE

5 max_depth 5 max_features

Hyper Tunning

Create baseline

APPROACH 2

PHASE 1

EDA

PHASE 2

K-means

PHASE 3

Linear Regression

PHASE 4

Final Evaluation

APPROACH 2 K-means

K-means
Regression

Linear Regression

Loss:
$$L(y_i, x_i, \omega) = \sum_{i=1}^{N} (y_i - \omega x_i)^2$$

Prediction: $y_{i_pred} = \omega x_i$

