20030305062

# PERCENT POCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

rod-0188

# AD-A286 302

17. SECURITY CLASSIFICATION

OF REPORT UNCLASSIFIED is estimated to average 1 hour per response, including the time for reviewing instructions, searching entiring data source, ng and reviewing the collection of information. Send comments regarding this burden estimate or any other assect of this ing this burden, to Weshington Meadquarters Services, Directorate for information Operations and Reports, 1215 seffends 3 to the Office of Management and Budget, Peperwork Neduction Project (0704-0188), Washington, OC 20503.

REPORT DATE 3. REPORT TYPE AND DATES COVERED 02/00/86 S. FUNDING NUMBERS 4. TITLE AND SUBTITLE CONTINUED OFFPOST GROUNDWATER MONITORING PROGRAM (REVISION 111-360 DEGREE MONITORING PROGRAM) ROCKY MOUNTAIN ARSENAL & AUTHOR(S) AAK 11 83 0 007 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER ENVIRONMENTAL SCIENCE AND ENG! MEERING DENVER. CO 87016R05 10. SPONSORING / MONITORING 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADD AGENCY REPORT NUMBER ROCKY HOUNTAIN ARSENAL (CO.). PHRMA COMMERCE CITY, CO 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION CODE 124. DISTRIBUTION / AVAILABILITY STATEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) IN 1975 CDH D'ETECTED THE PRESENCE OF ORGANIC SOLVENTS AND PHTHALATE ESTERS IN ISOLATED WELL WATER SAMPLES, WHICH LEAD TO THE DEVELOPMENT OF A SERIES OF PROGRAMS TO HONITOR WATER WELL AND SURFACE WATER SITES INCLUDING THE RNA AND OFFPOST SITES TO THE NORTH AND WEST OF THE RMA PERIMETER. THE REVISION 360 DEGREE PROGRAM WAS INITIATED IN JANUARY 1976. ANOTHER REVISION OF THIS PROGRAL WAS INSTITUTED IN HOVEMBER 1976. THIS NEW PROGRAM, WAS IDENTIFIED AS REVISION II-360 DEGREE PROGRAM. THIS PROGRAM WAS NOT EFFICIENT. AS A RESULT A REVISED OFFPOST GROUNDWATER MONITORING PROGRAM WAS DEVELOPED, AND IS REFERRED TO AS THE REVISION III-360 DEGREE PROGRAM. 14. SUBJECT TERMS 15. NUMBER OF PAGES CONTAMINATION ASSESSMENT, MONITORING WELLS 16 PRICE CODE

SECURITY CLASSIFICATION

OF THIS PAGE

20 LIMITATION OF ABSTRACT

SECURITY CLASSIFICATION

OF ABSTRACT



3<sup>3</sup>/<sub>94-35042</sub>

LITIGATION TECHNICAL SUPPORT AND SERVICES

ROCKY HOUNTAIN ARSENAL

CONTINUED UPT-POST GROUND WATER MONITORING PROGRAM (REVISION III - 360° MONITORING PROGRAM)

PEBRUARY 1986

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. PROGRAM MANAGER'S OFFICE FOR ROCKY MOUNTAIN ARSENAL

A-1

87016ROS and long

# LITIGATION TECHNICAL SUPPORT AND SERVICES ROCKY MOUNTAIN ARSENAL

Rocky Mountain Arsenal Information Center Commerce City, Colorado

FILE COPY

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

REQUESTS FOR COPIES OF THIS DOCUMENT SHOULD BE REFERRED TO PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL CLEANUP, AMXRM-PM ABERDEEN PROVING GROUND, MARYLAND 21010

# PREPARED FOR



PROGRAM MANAGER'S OFFICE FOR ROCKY MOUNTAIN ARSENAL CLEANUP

Contract Number DAAK-11-83-D-007 Task Order 0006

# CONTINUED OFFFOST GROUND WATER MONITORING PROGRAM (REVISION III-360° MONITORING PROGRAM) BOCKY MOUNTAIN ARSEMAL

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 South Alton Way, Suite H Englewood, (Denver), Colorado 80112

February 1986

Distribution limited to U.S. Government Agencies only for protection of priviledged information evaluating another command: September 1984. Requests for this document must be referred to: Office of the Program Manager-RMA, Aberdeen Proving Ground, Maryland 21010-5401

Prepared for:

Office of the Program Manager RMA Contamination Cleanup Aberdeen Proving Ground, Maryland 21010 THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THIS REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

# RMAMISCF-D.4/GWMR TOC.1 02/19/86

# TABLE OF CONTENTS

| Section                                                      | Page |
|--------------------------------------------------------------|------|
| Historical 360° Program                                      | 1    |
| Revised Monitoring Program                                   | 3    |
| Army Offpost Monitoring Wells-(OP Series)                    | 11   |
| Army Offpost Monitoring Wells-(M-Series)                     | 11   |
| Privately Owned Consumptive Use Wells                        | 14   |
| Offpost Contamination Assessment Monitoring Wells-(E-Series) | 14   |
| Surface Water and Stream Sediment Sample Stations            | 20   |
| References                                                   | 23   |
| Appendix A                                                   | 24   |

# RMAMISCF-D.4/GWMR TOC.2 02/19/86

# LIST OF TABLES

| Table |                                                                                      | Page |
|-------|--------------------------------------------------------------------------------------|------|
| 1     | Original 360° Program Analytical Schedule                                            | 2    |
| 2     | Offpost Revision II-360° Program Wells                                               | 4    |
| 3     | Analytical Parameters-Revision III-360°<br>Monitoring Program                        | 10   |
| 4     | Revision III-360° Monitoring ProgramFormer Revision II-360° Monitoring Program Wells | 13   |
| 5     | Revision III-360° Program-Offpost Contamination Assessment Monitoring Wells          | 19   |

### LIST OF FIGURES

| Figure | ·                                                                                                          | Page |
|--------|------------------------------------------------------------------------------------------------------------|------|
| 1      | Ground Water Sampling Locations, Consumptive Use Phase I Program                                           | 7    |
| 2      | Locations of Wells Sampled, RMA Consumptive Use Phase II Program                                           | 9    |
| 3      | Revision II-360° Wells and Army M-Series Wells Selected for Continued Monitoring                           | 12   |
| 4      | Shallow (Alluvial) Monitor Well Construction                                                               | 16   |
| 5      | Deep (Denver Formation) Monitor Well Construction                                                          | 17   |
| 6      | Location of Offpost Contamination Assessment Monitoring Wells (E-Series)                                   | 18   |
| 7      | Offpost Surface Water Sampling Locations Revision II-360° Monitoring Program                               | 21   |
| 8      | Locations for Surface Water Sampling Offpost Contamination Assessment Revision III-360° Monitoring Program | 22   |
|        | LIST OF PLATES                                                                                             |      |
| Plate  | <u>P</u> 1                                                                                                 | ige  |
| 1      | Revision III-360° Monitoring Program Sampling Locations Po                                                 | cket |

# CONTINUED OFFPOST GROUND WATER MONITORING PROGRAM (REVISION III-360° MONITORING PROGRAM) ROCKY MOUNTAIN ARSENAL

### HISTORICAL 360° PROGRAM

In May of 1975, two water sampling plans were initiated at Rocky Mountain Arsenal (RMA). One plan was in response to a series of lawsuits against RMA and Shell Chemical Company (Shell) by residents north of RMA complaining of contaminated domestic water supplies. The other plan was in response to a Cease and Desist Order issued by the State of Colorado ordering that RMA and Shell stop contaminating Colorado state waters. Two months later, these two plans were consolidated into one, resulting in the establishment of 42 sampling sites on and off RMA. These combined sampling plans were designated the original 360° Program.

The design and implementation of this sampling scheme was carried out in coordination with the Project Manager Chemical Demilitarization

Installation Restoration (PM-CDIR) and with the cooperation of Shell and the Colorado Department of Health (CDH). It was intended that these 42 sites would be sampled on a monthly basis for the 15 parameters shown in Table 1.

In October 1975, the CDH detected the presence of organic solvents and phthalate esters in isolated well water samples. The discovery of these organic compounds in well samples led to a major shift in the water quality monitoring program. It was felt that because these newly detected compounds are associated with materials available to the public, these contaminants detected in ground water from RMA could come from sources off RMA. The initial sampling program was restricted to the central and northen part of RMA, as well as offpost to the north. In order for RMA to unequivocally declare what had been contributed to ground water contamination, the antecedent water quality flowing on to RMA had to be determined. A program was developed to monitor water well and surface water sites including the RMA and offpost sites to the north and west of the RMA perimeter. This program is currently referred to as the Revison I-360° Program.

1

Table 1. Original 360° Program Analytical Schedule

| Analyte             | Reported Lower Level<br>or Range of Values | Units         |
|---------------------|--------------------------------------------|---------------|
| DIMP                | 10                                         | μ <b>g</b> /l |
| OCPD                | 30                                         | μ <b>g/</b> L |
| DBCP                | 0.2                                        | μ <b>g/</b> 1 |
| Calcium             | 0.2                                        | mg/l          |
| Chloride            | 20                                         | mg/l          |
| 'luoride            | 0.2                                        | mg/l          |
| ardness (Total)     | 20                                         | mg/l          |
| lkalinity (Total)   | 10                                         | mg/I          |
| otassium            | 2.0                                        | mg/l          |
| agnesium            | 0.5                                        | mg/l          |
| odium               | 20                                         | mg/l          |
| itrate (Total)      | 0.5                                        | mg/1          |
| Sulfate             | 50                                         | mg/l          |
| H                   | 0-14                                       | units         |
| pecific Conductance | 0-10,000                                   | umbos/cm      |

Source: ESE, 1984.

The Revision I-360° Program, initiated in January 1976, included 124 surface water sites and ground water monitoring wells on or adjacent to RMA, and 24 private wells and 5 offpost surface water sites selected by the Tri-County District Health Department (TCDHD). Water samples from onpost wells were collected monthly and analyses were performed by CDH and Shell, as well as RMA. The offpost samples were collected quarterly and analyzed by all three parties for the same parameters as onpost sites.

Another revision of this program was instituted in November 1976, after a project review indicated that the sampling methods used required better quality control (QC). For many of the wells in use under the original program, the bore logs were incomplete and in some cases wells were not properly maintained. In other instances, sampling wells were so close to each other as to be redundant.

This new program, identified as the Revision II-360° Program, required 55 well sites and 12 surface water sites on RMA to be sampled and analyzed by the Army on a quarterly basis. Eleven monitoring wells, designated the Army OP-series wells, are located outside the RMA boundary and were also sampled by the Army. The 24 privately-owned wells and offpost surface water sites sampled by TCDHD, and analyzed by CDH and the Army, remained the same. Wells included in the offpost portion of the Revision II-360° Program are listed in Table 2.

Since the closing of Shell's facilities at RMA, the Army, Shell, CDH, and TCDHD have assumed responsibility for carrying out the tasks of sampling and analysis. The Army has been responsible for program management, data management, program review and data evaluation.

### REVISED MONITORING PROGRAM

A consumptive use sampling program was implemented during the period of December 1984 through January 1985. This Consumptive Use-Phase I sampling effort involved collection of 117 samples from existing wells completed in both alluvial and bedrock aquifers, as shown in Figure 1. Subsequently, a Consumptive Use-Phase II Program was developed for the

Table 2. Offpost Revision II-360° Program Wells (Page 1 of 3)

| Identification<br>Number | Owner<br>Address                            | Location       |
|--------------------------|---------------------------------------------|----------------|
| IV                       | Gerald Sitzman<br>13990 E. 136th St.        | T1S, R66W, S19 |
| VI                       | Victor Amdahl<br>16291 E. 136th St.         | T1S, R66W, S20 |
| VIII                     | Tom Whitmill<br>12240 Peoria                | T1S, R67W, S36 |
| XII                      | Jack Salthouse<br>12201 E. 120th            | T15, R67W, S1  |
| xix                      | Paul Harrison<br>10371 E. 123rd Ave.        | T15, R67W, S34 |
| xx                       | Suburban Gravel<br>11721 Brighton           | T2S, R67W, S3  |
| xxI                      | G. P. Murray<br>11010 Havana                | T2S, R67W, S11 |
| XXIV                     | Robert Redding<br>12600 N. Sable            | T1S, R66W, S31 |
| XXVIII                   | Denver Products<br>Terminal<br>8581 E. 96th | T2S, R67W, S16 |
| XXXII                    | Sam Dean<br>8610 Verbena                    | T2S, R67W, S28 |
| LIIII-B                  | Thomas Smaldone<br>9610 Peoria              | T2S, R67W, S13 |
| LIV                      | Thomas Smaldone<br>9610 Peoria              | T2S, R67W, S13 |
| LV                       | Jessie Powers<br>9339 E. 96th               | T2S, R67W, S15 |
| LVII                     | DM & H Cattle<br>10700 Peoria #1            | T2S, R67W, S12 |
| LVIII                    | Wilbert Wagoner<br>11810 E. 136th           | T1S, R67W, S26 |

Table 2. Offpost Revision II-360° Program Wells (Page 2 of 3)

| Identification<br>Number | Owner<br>Address                        | Location                        |
|--------------------------|-----------------------------------------|---------------------------------|
| LVIX                     | Mr. Donate<br>12930 E. 104th            | T2S, R67W, S12                  |
| LXIII                    | Mr. Kallsen<br>11850 Chambers           | T2S, R67W, S5                   |
| TXIA                     | Mr. Murata<br>14151 Potomac             | T15, R67W, S4                   |
| С                        | S.A.C.W.S.D.<br>84th & Quebec           | T2S, R67W, S28                  |
| cī                       | Richard Strab<br>7711 E. 81st Ave       | T25, R67W, S28                  |
| CII                      | Albert Amador, Jr.<br>7425 E. 86th Ave. | T25, R67W, S28                  |
| CIII                     | Owner Unknown<br>8340 Pontiac           | T29, R67W, 829                  |
| CIV                      | Owner Unknown<br>8356 Syracuse          | T25, R67W, S28                  |
| BOLLER                   | Industrial Realty Corp.                 | T25, R67W, S12<br>105th & Hwy 2 |
| OP 304                   | Army<br>37304                           | T25, R67W, \$14                 |
| OP 305                   | Army<br>37305                           | T25, R67W, 514                  |
| OP 306                   | Army<br>37306                           | T2S, R67W, 814/2<br>Boundary    |
| OP 307                   | Army<br>37307                           | T2S, R67W, S14/22<br>Foundary   |
| OP 308                   | Army<br>37308                           | T28, R67W, S13                  |
| OP 309                   | Army<br>37309                           | T2S, R67W, S14/13<br>Boundary   |

Table 2. Offpost Revision II-360° Program Wells (Page 3 of 3)

| Identification<br>Number | Owner<br>Address | Location                      |
|--------------------------|------------------|-------------------------------|
| OP 310                   | Army<br>37310    | T2S, R67W, S14/13<br>Boundary |
| OP 311                   | Army<br>37311    | T2S, R67W, S13                |
| OP 312                   | Army<br>37312    | T25, R67W, S13/34             |
| OP 313                   | Army<br>31313    | T25, R67W, S14                |
| OP 58                    | Army<br>37058    | T2S, R67W, S14                |

3ource: ESE, 1985.



area determined to be most contaminated. Samples were collected from an additional 40 existing alluvial and bedrock wells during September and October 1985, as shown in Figure 2.

The Consumptive Use ground water sampling efforts have refined understanding of potential contaminant migration pathways and have emphasized a number of deficiencies in the earlier monitoring programs. Areal coverage hydraulically downgradient of RMA during the Revision II-360° Program was relatively sparse, and the private wells sampled often lacked appropriate well construction data. Well depth, screened interval, and squifer characteristics were unavailable for most private wells. In addition, the Consumptive Use sampling results have indicated the presence of compounds previously not determined during the earlier Revision II-360° Program.

As a result, a revised offpost ground water monitoring program has been developed, and is referred to as the Revision III-360° Program. Sampling locations for the Revision III-360° Program are presented in Plate 1. Twenty-nine new monitoring wells have been installed throughout the study area. Special emphasis has been placed on delineating contaminant migration pathways associated with zones of enhanced permeability (coarse paleochannels) within the alluvial aquifer. These monitoring wells will provide additional stratigraphic and hydrologic characterization of the alluvial and bedrock aquifers, and will serve as the nucleus of the revised ground water quality monitoring program. An expanded suite of analytical parameters has also been developed to further delineate contaminant distributions.

In order to provide continuity with historical monitoring programs, ten Revision II-360° Program wells (Privately-owned and OP-Series) and four Army Offpost monitor wells (M-Series) were selected to supplement the 29 Offpost Contamination Assessment Program (Offpost CA E-Series) monitoring wells recently completed in the offpost study area (Plate 1). Together, these 43 wells will comprise a ground water monitoring network to be sampled on a quarterly basis and analyzed for the parameters listed in Table 3.



Table 3. Analytical Parameters-Revision III 360° Monitoring Program

Aldrin Endrin Dieldrin Isodrin HCCPD\* p,p'-DDT\* p,p'-DDE\* DBCP DCPD MIBK\* DIMP DMMP\* **PCPMS PCPMSO** PCPMSO2 Dithiane Oxathiane Toluene Benzene Xylene (o-,p-) Xylene (m-) Ethylbenzene\* Chlorobenzene Methylene chloride\* Chloroform Carbon Tetrachloride 1,2-Dichloroethylene Trichloroethylene (TCE) Tetrachloroethylene 1,1-Dichloroethylene\* 1,1-Dichloroethane\* 1,2-Dichloroethane\*

Chloride Fluoride Cadmium\* Chromium\* Copper\* Lead\* Zinc\* Mercury\* Arsenic\* Calcium\* Magnes ium\* Sodium\* Potassium\* Nitrate\* Nitrite\* Sulfate\* Alkalinity\* Conductivity pН

1,1,1-Trichloroethane\*
1,1,2-Trichloroethane\*

Source: ESE, 1985.

<sup>\*</sup> Parameters added after First Quarter Sampling.

The Revision III-360° Program wells were selected on the basis of:

- o Areal distribution;
- Well completion;
- o Lithology;
- o Observed contamination; and
- o Historical record.

Further discussion of the selection criteria for incorporating 14 wells from previous programs is provided below. The locations of these wells are plotted in Figure 3. Existing well construction details are provided in Table 4. Historical data for the 360° Program wells included in the monitoring network are listed in Appendix A.

### ARMY OFFPOST MONITORING WELLS - (OP SERIES)

Army wells OP305, OP307, OP308, OP309, OP312, and OP313 were selected for incorporation into the Revision III-360° Program to allow characterization of variable ground water quality along a primary migration pathway. These wells are completed in the alluvial aquifer and have exhibited varying degrees of contamination during past sampling efforts. Well construction and lithologic details are available and are presented in Table 4. Six of the ten OP Series wells sampled during the Phase I Consumptive Use Study will be included in the Revision III monitoring network. These six CP wells were selected on the basis of their areal distribution with respect to Offpost CA monitoring wells and the contaminant concentrations detected during the Consumptive Use-Phase I sampling program.

#### ARMY OFFPOST MONITORING WELLS - (M-SERIES)

Although the Army well M-Series were not sampled historically as part of the 360° Program, four wells were selected for inclusion in the Revision III Monitoring Program based on areal location and construction. These wells are located in areas of insufficient data, and are required to further characterize migration of contaminants in Sections 12, 13, and 22. Well 37320 is completed in the alluvial aquifer along a channel in the bedrock surface which is suspected to provide a primary pathway



Table 4. Ravision III-360° Monitoring Program--Former Ravision II-360° Monitoring Program Wells

| Sire<br>1D<br>Number | Nell<br>Mumber | Location Coordinates<br>UTN Zone 13<br>North East | oordinates<br>ne 13<br>East | Aquifer  | Ground<br>Level<br>Elevation | Well Campletion<br>Depth<br>(ft BCL)* | Screened<br>Interval<br>(ft BGL)* | Depth to<br>Bedrock<br>(ft BGL)# |
|----------------------|----------------|---------------------------------------------------|-----------------------------|----------|------------------------------|---------------------------------------|-----------------------------------|----------------------------------|
| 37305                | OP 305         | 4413560                                           | \$12600                     | Alluvial | 5116.43                      | 9 52                                  |                                   |                                  |
| 17307                | 00307          | 4413210                                           | 512900                      | Alluvial | 5147.65                      | -                                     | ľ                                 | 27.0                             |
| 37308                | 0P 108         | 4413320                                           | 513170                      | Alluvial | 5127.60                      | 21.5                                  | ! ¦                               | 20.5                             |
| 17309                | 06309          | 4413570                                           | 513200                      | Alluvial | 5123.11                      | 24.0                                  | <b>:</b>                          | 20.5                             |
| 17312                | OP312          | 4413190                                           | 513340                      | Alluvial | 5138.33                      | ? ?                                   | 1                                 | 23.0                             |
| 1313                 | 08313          | 4413940                                           | \$12330                     | Alluvial | \$106.94                     |                                       | i                                 | 13.5                             |
| 7320                 | N-40A          | 9181119                                           | \$13618                     | Alluvial | 25123.00                     | 2 2                                   | i                                 | 28.2                             |
| 7332                 | 08332          | 4412300                                           | \$10750                     | Allevial | 5133.6                       | 3 -                                   | 0.26-0.22                         | - ·                              |
| 7333                 | 06333          | 4412100                                           | \$10550                     | Alluvial | 3124.0                       | : 3                                   | 4.1c-7.44                         | 30.9                             |
| 7335                 | 00335          | 4412050                                           | \$09900                     | Alluvial | -5123-0                      |                                       | 7.79-0-00                         | 1.74                             |
| OLLER                | BOLZER         | 4415200                                           | 513460                      | Alluvial | -5118.00                     |                                       | 9.26-2.86                         | 20.7                             |
| 11x                  | 11X            | 4418000                                           | \$13240                     | Alluvial | ~\$060.00                    | 1 4                                   | ;                                 | <b>1</b>                         |
| XX                   | IXX            | 4419380                                           | 511670                      | Alluvial | -\$0#0 00                    |                                       | **-                               | ₫ .                              |
| 1111                 | 1111           | 0990144                                           | 508170                      | Alluvial | -5130.00                     | 65.00                                 | <br>40-65                         | 1 1                              |

\* BGL - Below Ground Lavel.

Source: ESE, 1986.

for migrating contaminants. Wells 37332, 37333, and 37335 are completed in a similar channel which has historically been reported as a migration pathway.

#### PRIVATELY OWNED CONSUMPTIVE USE WELLS

Well CIII was selected to provide supplemental data to assist in identifying potential contamination from chlorinated aliphatic solvents in the Irondale area. Samples collected from this well during the Consumptive Use-Phase I sampling effort contained a concentration of trichloroethylene slightly above the detection limit (3 µg/l). Construction details and lithology were obtained from the Colorado State Engineer's Office.

Well XII was selected in order to extend the area of monitoring coverage to the north. Samples collected from this well during the Consumptive Use-Phase I sampling effort indicated the absence of organic contaminants. Construction details were obtained from the Colorado State Engineer's Office.

Wells XXI and Boller were selected in order to continue their historical water quality data base. Information on construction of these two wells is unavailable, although they appear to be completed in the alluival aquifer. Both wells, XXI and Boller, are located near Offpost CA monitoring wells. A large historical data base exists for these two wells, and continued monitoring will allow comparison of future analytical data to historic sampling data obtained during the previous  $360^{\circ}$  Program.

OFFPOST CONTAMINATION ASSESSMENT MONITORING WELLS - (E-SERIES)

Of the 29 new monitoring wells, 28 were installed between September 1985\*

and November 1985. The final well, E-24 will be installed in January

1986. Installation was performed according to the Offpost Contamination

Assessment Technical Plan (ESE, 1985b).

Rationale for each of the 29 monitoring wells is discussed in detail in Section 3.2.1 of the Technical Plan. Several program adjustments were

made to the proposed plan as a result of conditions encountered during drilling. Two planned wells, E-2 and E-14, were abandoned because saturated alluvium was not present overlying local bedrock highs at the planned locations. One additional well, E-31, was installed in order to compensate for the two wells not completed. In addition, minor adjustments were made in the planned locations of many of the wells as a result of site access problems, utility rights-of-way considerations, and additional information provided by the SACWSD.

Boreholes for well installation in the alluvial aquifer were drilled using hollow-stem auger drilling techniques. Split-spoon soil samples were collected continuously from the surface to a depth of 3 meters (m), and subsequently at 1.5 m intervals or at major lithologic changes until bedrock refusal. In the boreholes for Wells E-23 and E-26, the presence of cobbles and formation collapse made hollow-stem drilling techniques impossible. Boreholes were advanced by rotary drilling and driving 8-inch (in) ID welded steel casing to prevent the borehole from collapsing. Soil samples were collected in these boreholes as described above for the hollow-stem auger borings.

For monitoring Well E-24, which was installed in the Denver Formation, the borehole was advanced to bedrock by rotary drilling and driving casing. The bedrock was drilled with a diamond-bit core barrel to provide continuous core samples of the Denver Formation, after which the borehole was reamed to a diameter of 8-in to the completion depth.

Offpost CA monitoring wells were constructed using 4-in ID Schedule 40 PVC screen and casing. Screened intervals of alluvial wells extended through the entire saturated thickness above bedrock. The screened interval of Well E-24 encompasses the entire saturated thickness of the first transmissive water bearing unit encountered in the Denver Formation. Well construction details are illustrated on Figures 4 and 5. Wells were constructed using PVC screens with 0.020-in slots (20-slot). The annular space surrounding the screen was sand-packed with 10 to 20 mesh silica sand. Locations of the Offpost CA monitoring wells are plotted in Figure 6, and construction details for individual wells are listed in Table 5.







Table 5. Extratos III-360" Program-Offpest Cantamination Assessment Monitoring Wells

| \$11¢   | :            | - TOTAL 18           | it to the table |                  |                    | -               |                      |                     |
|---------|--------------|----------------------|-----------------|------------------|--------------------|-----------------|----------------------|---------------------|
| Laber   | ) Age        | OTH Zone 13<br>Botth |                 | Aquitar          | Level<br>Elevation | Depth (fr Bote) | Interval<br>(fr BCL) | Medrock<br>(fr MGL) |
| 3733    | 10-3         | 4,415,624.447        | 310,919.504     | Alleria          | \$072.98           | <b>18.3</b>     | 12.9-38.3            | 37.9                |
| 37340   | (0-J         | 4,415,152.914        | \$14,754.525    | Allunia          | \$135.34           | X               | 23.5-34.1            | 32.0                |
| 37350   | \$-5         | 4,416,434.983        | \$12,257,154    | Alluvium         | \$017.63           | 52.3            | 26.9-52.3            | \$2.3               |
| 11,51   | £-0\$        | 4,410,045.177        | 311,395.404     | Alleria          | 5021.74            | 19.7            | 4.5-19.3             | 19.0                |
| 1 × 1   | 8-1          | 4,416,040.041        | 513,133.480     | Alluvia          | \$100.28           | 50.7            | 20.3-50.7            | 48.7                |
| 37334   | 10-3         | 4,413,223.465        | \$13,945.326    | Allurium         | 2. X.S             | 27.6            | 6.8-27.8             | 23.5                |
| 33333   | 5-1          | 4,413,221.309        | \$14,260.636    | Alleries         | 5147.87            | 45.2            | 34.5-45.2            | 42.5                |
| 37339   | E-09         | 4,413,318.374        | \$12,347.435    | Alluvia          | \$135.34           | 22.3            | 11.7-22.3            | 20.0                |
| 33743   | <b>C</b> -10 | 4,414,476.569        | \$12,712.364    | Allovian         | 5116.98            | 29.0            | 12.9-29.0            | 27.5                |
| 11111   | <b>L-11</b>  | 4.414,030.554        | 512,315.467     | Allusian         | \$110.90           | 35.1            | 3.7-35.1             | 35.5                |
| 1747    | Z1-3         | 4,414,830.448        | 311,940.141     | Allusia          | 5101.97            | 33.8            | 23.2-33.8            | 33.5                |
| 33.43   | <b>C-1</b>   | 4,413,216.888        | \$10,686.394    | Allevies         | \$101.97           | 17.0            | 16.4-37.1            | 37.5                |
| 37.76   | <b>1</b> -15 | 4,414,309.649        | \$11,547.478    | Alleria          | \$096.26           | 24.1            | 8.6-24.1             | 24.0                |
| 17353   | 91-3         | 4,416,418.972        | \$11,143.555    | Allevia          | \$069.78           | 42.4            | 27.1-42.4            | o. ‡                |
| 17.84   | <b>[-1]</b>  | 4,414,628.379        | \$10,841.788    | Alluvium         | 5042.22            | 42.0            | 16.4-42.0            | 41.0                |
| 37354   | <b>1</b> -1  | 4,414,833.638        | 311,665.461     | Allevie          | 5055.91            | 49.1            | 13.6-49.1            | 49.0                |
| 37.24   | 61-3         | 4,415,612.480        | 311,345.044     | Allevien         | \$041.63           | 43.6            | 13.2-43.6            | 44.0                |
| 37344   | E-20         | 4,410,952.602        | \$11,239.294    | Allevium         | \$004.68           | 27.3            | 6.8-27.3             | 28.9                |
| 13331   | <b>L-</b> 31 | 4,414,828.199        | \$10,402.033    | Allevia          | \$074.25           | 38.5            | 17.9-38.5            | 36.0                |
| 37354   | <b>t-11</b>  | 4,417,320.224        | \$10,477.032    | Allusium         | \$025.09           | 38.4            | 8.3-38.4             | 34.5                |
| 37355   | £-33         | 4,415,224.012        | 509,644.009     | Alluvium         | 5053.22            | 11.7            | 11.1-71.7            | 70.0                |
| 33365   | E-24         | 4,414,023.470        | \$12,309.183    | Desver formation | \$110.37           | 59.7            | 49.1-59.7            | 33.5                |
| 17.83   | <b>L</b> -25 | 4,414,810.415        | \$00,011.737    | Alluvium         | 5043.85            | 31.2            | 6.9-32.2             | 32.0                |
| 37341   | £-26         | 4,413,149.269        | 504, 309.927    | Alluvium         | 5090.55            | 92.3            | 21.7-92.3            | 92.0                |
| 27.70   | £-33         | 4,411,832.708        | 504,635.422     | Allerian         | \$114.60           | 6.101           | 26.4-101.9           | 9.101               |
| 37.35\$ | E-28         | 4,410,788.985        | 102.210,700     | Alluvia          | 5114.71            | 43.7            | 23.2-43.7            | 43.0                |
| 37354   | 62-3         | 4,410,207.599        | 506,116.343     | Allevian         | \$1.40.25          | 59.9            | 44.3-59.9            | 59.0                |
| 37366   | Q( - 3       | 4,465,950.547        | \$17.930.211    | Allevia          | \$302.64           | 17.71           | 2.7-11.7             | 20.0                |
| 2014    | £-31         | 4,415,195.194        | \$13,358.005    | Alluvia          | \$112.53           | 40.9            | 15.5-40.9            | 42.0                |

ACL - Below Ground Level Source: ESE, 1986. In order to further characterize the aquifers in the offpost area, a program of borehole geophysics and aquifer testing will be undertaken at each Offpost CA monitoring well. Geophysical logs will be run in each of the Offpost CA monitoring wells. Natural gamma, neutron, and resistivity logs will provide important stratigraphic information regarding the locations of sands and clays, saturated horizons and porous intervals.

In-situ hydraulic conductivity tests (slug tests) will be performed in all Offpost CA monitoring wells. In a slug test, the water level in a well is lowered or raised essentially instantaneously by adding or removing a known volume of water or inserting or removing a cylinder of known volume. Changes of water level with time are then measured as the well recovers to equilibrium. Water levels will be recorded by use of electronic instrumentation to accurately measure rapid changes. Data from the slug tests will be evaluated using analytical procedures that allow the field conditions to be approximated to the maximum possible extent. These conditions are discussed in detail in the Technical Plan. Hydraulic conductivities calculated from slug test data will be compared to the values determined from grain size analyses and laboratory permeability tests.

#### SURFACE WATER AND STREAM SEDIMENT SAMPLE STATIONS

During the Revision II-360° Program, offpost surface water samples were collected north of RMA at four locations on First Creek and one location on Second Creek as shown in Figure 7. The network of surface water sampling stations has been expanded to provide a comprehensive assessment of potential contaminants within the offpost study area. Locations of the 11 Revision III-360° Program surface water and stream sediment sample stations are shown in Figure 8. The Revision III sample locations and rationale for selecting these stations are discussed in Section 5.1 of the Technical Plan (ESE, 1985). Flow measurement and sample collection techniques are described in Sections 5.2 and 5.3 of the Technical Plan.





#### REFERENCES

- ESE, Inc., 1985a, Rocky Mountain Arsenal Offpost Assessment-Ground Water Quality Report for Sampling Period December 1984 through January 1985.
- ESE, Inc., 1985b, Rocky Mountain Arsenal Offpost Contamination Assessment Technical Plan.
- ESE, Inc., 1986, Rocky Mountain Arsenal Offpost Assessment-Ground Water Quality Report (Consumptive Use-Phase II) for Sampling Period September 1985 through October 1985.

APPENDIX A

Appendix A. Selected Historical Date—260° Unitoring Program (Page 1 of 6)

| Site<br>Identification<br>Number |        | ä         | 000<br>(18/34) |              | Aldrin<br>(ue/e) | Dieldria<br>(ue/e) | Endrin      | 0.00  | Isodria     | Ocathians  | Dithiene | 862   | NO-RECO    | 13960,     |
|----------------------------------|--------|-----------|----------------|--------------|------------------|--------------------|-------------|-------|-------------|------------|----------|-------|------------|------------|
|                                  |        |           |                |              | - 1              |                    |             |       | 3           | (3/3)      | (a/a)    | (a/a) | (**/**)    | (2/2)      |
| \$007.0                          | 906.40 | 07/12/83  | 3              | <b>7</b> 03  | 9                | 1.36               | 6.2         | 1     | <b>7</b> 9  | 1          | ı        | ,     |            |            |
| 100.10                           | 06303  | 07/12/83  | 167            | 6.2          | 6.3              | <b>?</b> :         | 6.2         | ı     | 6.2         | I          | į        | 1     | I,         | 1          |
| 37308                            | 00.308 | 02/28/60  | 35             |              | . 1              | ı                  | ı           | i     | ı           |            |          |       |            |            |
|                                  |        | 07/13/83  | **             | 6.2          | 4.0              | 7.0                | 10.0        | i     | 6.0         | 1 1        | 1        | ł     | ı          | ı          |
|                                  |        | 04/13/84  | 38             | <b>6</b> 0.2 | 60.2             | \$0.0              | 6.2         | 35.0  | 9           | 1 8        | ΙĘ       | Ιį    | 1 ;        | 1          |
|                                  |        | 78/61/10  | 175            | 7.9          | 6.2              | 6.2                | 40.2        | 47.0  | 6.2         | 3 8        | 3 8      | 3 8   | <b>3</b> 8 | 8 ;        |
|                                  |        | 11/11/84  | <b>8</b>       | <b>60.2</b>  | <b>40.2</b>      | 0.06               | 6.2         | 143.0 | 9           | 8          | 3 8      | 3 8   | 3 3        | <b>3</b> ; |
|                                  |        | 01/11/85  | 33             | <b>6.2</b>   | 6.2              | 0.95               | 2.0         | i     | 6.2         | 8          | 8        | 3 8   | * *        | 8 8        |
|                                  |        | 04/23/85  | <b>2</b> 00    | 6.2          | <b>6.2</b>       | 0.52               | 40.2        | ı     | <b>60.2</b> | 8          | 8        | 8     |            | 3 8        |
|                                  |        | 0// XQ/85 | <b>9</b> 2     | <b>6.2</b>   | <b>6</b> .2      | 0.52               | . 7.0       | ļ     | 6.2         | ļ          | 1        | 1     | ; ;        | ; i        |
| 37309                            | 606.40 | 03/38/83  | Ź              | ı            | į                | ı                  | ı           | ı     | 1           |            |          |       |            |            |
|                                  |        | 07/13/83  | 1110           | 0.69         | 2.0              | 0.0                | 0.0         | i     | ,           | f I        | l        | 1     | 1          | ı          |
|                                  |        | 04/12/84  | £              | 6.2          | 6.2              | 60.2               | _           | 0.86  | ; ;         | ΙĘ         | 1 ;      | 1 ;   | ı          | ı          |
|                                  |        | 07/19/84  | æ              | o. %         | 6.2              | 52.0               |             | 940   | • •         | 3 :        | 3        | 8     | 8          | 89         |
|                                  |        | 11/13/85  | 1010           | 6.2          | 6.2              | 5                  | •           | 2.7.6 | 7. 6        | 3          | 8        | 8     | 8          | <b>6.2</b> |
|                                  |        | 01/11/85  | 22             | 60.2         | 9                |                    | _           | 3     | 7.          | 8          | 8        | 8     | 8          | 37.5       |
|                                  |        | 04/23/85  | 9              | . 9          | ; ;              | ; ;                | <b>7</b> .  | ı     | <b>?</b> :9 | ş          | 8        | 8     | 620        | 30.0       |
|                                  |        |           | ł              | į            | <b>7</b>         | 7.9                | <b>7</b> .9 | ţ     | 6.2         | 8          | 8        | 8     | 8          | 30.8       |
| 37311 a                          | 06311  | 07/12/83  | <b>8</b> 21    | 6.2          | 6.2              | 1                  | ŀ           | j     | 6.2         | <b>.</b>   | I        | ı     | 1          | ı          |
| 37312 06                         | CF312  | 07/12/83  | 061            | <b>S</b> F . | 6.2              | 60.2               | 60.2        | i     | 7.09        | i          | 1        | t     | 1          | i          |
| 37313 08                         | OP)13  | 58/16/20  | 0659           | 6.2          | 22.0             | 6.2                |             | ı     | 6.2         | ı          | ١        |       |            |            |
|                                  | _      | 04/12/84  | <b>§</b>       | <0.2         | 6.2              | 7.0                | 7.0         | <1.0  | 6.2         | S          | 8        | ١٤    |            | 1 ;        |
|                                  | -      | 07/19/P4  | 21.70          | <b>40.2</b>  | 60.2             | <b>2.0</b> 3       |             | ı     | 6.2         | 8 8        | 3 8      |       |            | 8          |
|                                  |        | 10/17/84  | 1820           | 60.2         | 6.2              |                    |             | 0.15  | . 9         | 3 8        | 3 8      |       |            | ş          |
|                                  | -      | 58/21/10  | 7800           | 6.2          | 6.2              |                    |             |       | 7 5         | 3 8        | 3 8      |       |            | S<br>S     |
|                                  | _      | 04/23/85  | 2360           | 40.2         | 7.0              |                    |             | (1.0  | . 5         | 3 8        | 3 8      |       |            | ş          |
|                                  | )      | 01/30/85  | 23.9           | 40.2         | 7.0              | 60.2               | 0.7         |       | . e         | <b>3</b> 1 | 3 1      | 8     | 8          | <b>7</b> 0 |
|                                  |        |           |                |              |                  |                    |             |       | •           |            | ı.       |       | ı          |            |

Appendix A. Selected Historical Dats-360° Monitoring Program (One inuse, Page 2 of 6)

| (a) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Site<br>Identification to | =        | •                  |                             |            |            | Mapusius | Sodia   | Pressie |                      |     |                |              |            |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|--------------------|-----------------------------|------------|------------|----------|---------|---------|----------------------|-----|----------------|--------------|------------|-------|
| 0/12/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         |          | - 1                | Conduct ivity<br>(perio/cm) | <b>3.</b>  | <u> </u>   | Ê        | (Se (3) | 33      | Alkalinity<br>(mg/1) |     |                | 16.3<br>16.3 |            | . (2) |
| 9 0/11/81 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94.35 275.0 94 | 8                         |          | 2/83               | 1                           | 1          | 1          | 1        | ı       |         | ,                    |     | 0.141          | 97.6         |            | ,   ' |
| 0/11/81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ş                         |          | 2/83               | 1                           | 1          | ı          | ı        | 1       | ı       | 1                    | ı   | 275.0          | A.           | 1          | l .   |
| 0/11/9/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ş                         |          | 7,83               | ı                           | . 4        | 1          | ı        | ,       | 1       | i                    | i   | į              |              |            | ) ·   |
| 0/11/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 37/20    | <b>38</b> / 38 / 3 | 1                           | 1          | 1          | i        | ı       | ı       | 1                    | 1 1 | 267.0<br>266.0 | 2.88         | 1 1        | 1     |
| 0/17/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          | 8 a                | i i                         | ļ          | ı          | 1        | ı       | ı       | 1                    | ı   | 166.0          | 3.10         | ) <b>,</b> | 1 1   |
| 0/12/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | (1/10    | <b>E</b>           | 1 1                         | 1          | ı          | 1        | i       | 1       | 1                    | ı   | 286.0          | 2.00         | ļ          | li    |
| 0/11/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 64/23    | V85                | 1                           |            | i          | ı        | ı       | 1       | ı                    | 1   | 260.0          | 3.20         | ı          | •     |
| 0/11/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |                    |                             |            | l          | ;        | 1       | 1       | ı                    | ŧ   | 185.00         | 3.00         | ı          | ı     |
| 0/19/44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06.30                     |          | 82 (8              | 1                           | 1          | 1          | ı        | 1       | t       | 1                    | ı   | <b>68.</b> 0   | •            | i          |       |
| 01/13/84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 61/20    | 3 3                | 1 1                         | 1 (        | ı          | ı        | .1      | ı       | 1                    | i   | 687.00         | 3.5          |            | 1 1   |
| 01/12/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 11/11    | <b>3</b>           | i                           | i <b>i</b> | 1 1        | ı        | t       | ı       | i                    | 1   | 436.00         | 0.9          | ı          | ı     |
| 0/12/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 01/17    | 89                 | 1                           | 1          | ! <b>!</b> | i        | 1       | I       | ı                    | ı   | 853.00         | 5.0          | ı          | ı     |
| 0/12/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 04/23/   | /85                | ı                           | ı          | · •        | 1        | ı       | ı       | ı                    | 1   | <b>364.00</b>  | 5.0          | 1          | ı     |
| 07/12/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | ωc/το    | 8                  | ı                           | ŀ          | 1          | 1 1      | ı       | ı       | i                    | 1   | 684.00         | 0.9          | ı          | ì     |
| 07/12/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |          |                    |                             |            |            |          | ì       | ı       | 1                    | i   | 1              | i            | 1          | . 1   |
| 07/12/81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>9</u> 2                |          | (8)                | 1                           | i          | 1          | 1        | ı       | I       | I                    | ı   | 271.00         | 2.46         | t          | i     |
| 07/31/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OP312                     |          | 8                  | i                           | 1          | ı          | 1        | ı       | 1       | ı                    | ı   | 87.78          | 20,00        | 1          | 1     |
| 1430   0.78<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 07313                     |          | 83                 | I                           | 1          | ı          | ı        | 1       |         |                      |     |                |              |            | l     |
| 1,10<br>1,10<br>1,10<br>1,10<br>1,10<br>1,10<br>1,10<br>1,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 04/13/   | 3                  | .                           | i          | 1          |          | ı       | 1       | ı                    | ı   | 1430           | 0.%          | 1          | i     |
| 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 1/61/20  | <b>3</b> 5         | ı                           | ì          | . 1        |          | 1       | ;       | 1                    | ı   | 014            | 1.12         | 1          | ı     |
| 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 10/11/01 | <b>3</b>           | ı                           |            | ı          | ,        | ı       | ı       | 1                    | ı   | 95             | 1.10         | ı          | 1     |
| 1.30 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 01/17/8  | · ×                |                             | ı          | ı          |          | ı       | 1       | 1                    | ı   | 23             | 0.0          | i          |       |
| 0.11 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 04/23/8  | )<br>}             | ۱                           | 1          | i          | 1        | ı       | 1       | ì                    | ı   | 1290           | 97.1         | 1          | ۱ ا   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |          | }                  | !                           | ı          | 1          |          | ł       | 1       | 1                    | 1   | 221            |              | ı          | 1 1   |

Appendix A. Selected Historical Data-360° Monitoring Program (Continued, Page 3 of 6)

Appendix A. Selected Historical Data-360° Monitoring Program (Continued, Page 4 of 6)

| Berdress                                                                         | Ê |          | 1        | I,         | ł        |    | i      | ł        | ı   |          | ı        | ŧ        | 1           | 1        |          |          | ı        | ı           |          | 1        | 1          | I        | ı           | i        | ı        | ı    |         | ı        | t        | .        | ì    | ı        | ŀ          | 1        | ļ              |
|----------------------------------------------------------------------------------|---|----------|----------|------------|----------|----|--------|----------|-----|----------|----------|----------|-------------|----------|----------|----------|----------|-------------|----------|----------|------------|----------|-------------|----------|----------|------|---------|----------|----------|----------|------|----------|------------|----------|----------------|
| Micrate<br>(NO <sub>3</sub> )                                                    | Î |          | ŧ        | 1          | ı        | ı  | )      | ı        | i   |          | 1        | ı        | 1           | 1        |          |          | ł        | ı           |          | ı        | 1          | J        | ı           | 1        | 1        | ı    |         | 1        | ı        | ı        |      | 1        | ı          | 1        | ı              |
| # 12 S                                                                           | ŝ |          | 19:0     | 1.20       | 0.1      | 2  | } }    | 8. 5     | 3.  | ,        | 9.0      | 3.6      | <b>6.</b> 0 | 6.30     | 3.00     |          | R 8      | <b>X</b> .7 |          | 0.3Q     | 0.65       | 0.60     | 60.20       | 8:1      | 0.80     | 0.30 |         | 0.30     | 6.73     | 0.80     |      | 3        | -70<br>-70 | 90.1     | 0.00           |
| Ottoride<br>(C)                                                                  |   |          | ₹        | <b>2</b> 2 | Ξ        | 25 | 2      | 9 9      | 3   | ş        | ą        | ŝ        | 238         | 68       | 83       | 2        | 9 3      | Ì           | ;        | 8        | <b>3</b> 6 | 38       | <b>8</b> 33 | 077      | 621      | 433  |         | 90.0     | ==       | 91       | 5    | 3 :      | 2          | <u> </u> | <del>.</del> . |
| SO.)                                                                             |   |          | ı        | ı          | ł        | i  | ı      | <b> </b> | ì   |          | I        | i        | i           | 1        | 1        | ı        | 1        |             | 4        | ı        | ı          | i        | 1           | ı        | ı        | 1    |         | ı        |          |          |      |          |            |          |                |
| Alkalinity                                                                       |   |          | ł        | 1          | ł        | i  | ı      | 1        |     | ı        |          | I        | 1           | ı        | ı        | i        | ı        |             | ;        | ł        | ı          | ı        | ł           | ı        | ı        | j    |         | 1        | ŀ        | 1        | ļ    | i        | ĺ          | ı        | ŧ              |
| Potensius<br>(E)                                                                 |   | I        | i        | ı          | ı        | 1  | ı      | ı        |     | ŧ        |          | ı        | ı           | ı        | ı        | 1        | i        |             | 1        |          | ı          | ſ        | ı           | j        | 1        | i    |         | ı        | ı        | ı        | ł    | ı        | ļ          | l        | ľ              |
| Sodium<br>(Na)                                                                   |   | ı        |          | į          | 1        | i  | 1      | 1        |     | 1        | i        | ì        | ı           | ı        | ı        | ı        | i        |             | i        | i        | ľ          | ţ        | ı           | ı        | ı        | ı    |         | j        | į        | ı        | 1    | 1        | 1          |          | I              |
| (Ca) (Mg) (Mg) (Ca) (Mg) (Mg/1) (Mg/1) (Mg/1) (Mg/1) (Mg/1) (Mg/1) (Mg/1) (Mg/1) |   | į        | ł        |            | ı        | i  | 1      | ı        |     | ļ        | ١        | ı        | ı           | 1        | ı        | i        | ı        |             | ı        | 1        |            | 1        | ı           | i        | ı        | ı    |         | ľ        | ł        | ł        |      | 1        | ı          | 1        | ı              |
| Olcie<br>(S)                                                                     |   | 1        | ŧ        |            | 1        | ı  | ı      | i        |     | 1        | į        | ı        | j           | ì        | ı        | ı        | 1        |             | i        | 1        | ı          | l        | l           | ı        | Į        | i    |         | ' i      | ı        | ŀ        | ı    | ,        | 1          | ı        |                |
| <b>1</b> .                                                                       |   | i        | ı        | i          | }        | i  | 1      | ı        |     | ,        | 1        | ļ        | ı           | <b>!</b> | ì        | 1        | ,        |             | 1        | 1        | ı          | 1        | 1           | ı        | l        | ı    | ,       |          |          | ì        | !    |          | 1          |          |                |
| Conductivity . pH<br>(pmto/on)                                                   |   | 1        | ļ        | ı          |          | ı  | ı      | ı        |     | 1        | ı        | ı        |             |          | 1        |          | ı        |             | ı        | 1        | ı          | J        | ı           | •        | ·<br>I   |      | i       |          |          |          |      |          |            |          |                |
| ž                                                                                |   | 03/11/60 | 04/12/84 | 78/61/0    | 10/17/04 |    | G/11/5 | 04/12/85 |     | 08/52/90 | 09/21/83 | 12/13/83 | 03/27/84    | 06/06/84 | 70/13/66 | # 77 (C) | 12/14/84 |             | 06/28/83 | 09/21/83 | 12/13/83   | 03/23/84 | 78/90/90    | 09/12/86 | 12/16/86 |      | :/28/83 | 09/20/83 | 12/11/81 | /0/11/00 | 6/17 | 06/05/84 | 09/10/84   | 12/14/84 |                |
| Net 1                                                                            |   | #40A     |          |            |          |    |        |          |     | OF 312   |          |          |             |          |          |          |          |             | 07333    |          |            |          |             | •        |          |      | OP335   | •        | -        |          |      | _        | J          | -        |                |
| Site<br>Identification<br>Number                                                 |   | 37320    |          |            |          |    |        |          | . ! | 37322    |          |          |             |          |          |          |          |             | 37333    |          |            |          |             |          |          |      | 37335   |          |          |          |      |          |            |          |                |

Appendix A. Selected Historical Data-360° Monitoring Program (Continued, Page 5 of 6)

| Neather Date (1119/g) (1119/g) (1119/g) (1119/g) (1119/g) (1119/g) (1119/g) (1119/g) (1119/g) | DBCP Aldrin Dieldrin Endrin DCPD<br>(119/2) (119/2) (119/2) (119/2) | Aldrin Dieldrin Endrin DOPD<br>(112/2) (112/2) (112/2) | Dieldrin Endrin DOD<br>(119/2) (119/2) (119/2) | Endrin DOPD<br>(ug/g) (ug/g) | (8/m)<br>0.00 | ] } | 30 | Lankrin<br>(ug/g) | Ocathians<br>(vg/g) | Dithians<br>(ug/g) | 2 (3/3m) | PCRED<br>(ug/g) | PCR602 (we/g) |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------|---------------|-----|----|-------------------|---------------------|--------------------|----------|-----------------|---------------|
| 45.8                                                                                          | Q.2 Q.2 45.8 25.7                                                   | 45.8 25.7                                              | 45.8 25.7                                      | 25.7                         | •             | 1   |    | 0.X               | ı                   | i                  | ì        | ı               |               |
| <b>40.2 40.2</b>                                                                              | <b>40.2 40.2</b>                                                    | <b>6.1 60.2</b>                                        | 6.2                                            |                              | 6.2           | ;   |    | 6.2               | ,                   | 1                  | J        | ı               | : 1           |
| <10 <0.2 G.2 <0.2                                                                             | <b>40.2 40.2</b>                                                    | <b>.0.2 .0.2</b>                                       | 6.2                                            |                              | - 7:0>        | ļ   |    | <b>7</b> .9       | ı                   | 1                  | i        | 1               | ı             |
| <10 <0.2 <0.2 <0.2                                                                            | <b>6.2 60.2 60.2</b>                                                | <b>40.2 40.2</b>                                       | 6.2                                            |                              | 40.1          | ı   |    | 6.2               | ı                   | ı                  | j        | ı               | 1             |
| <10 <0.2 <0.2 70.0                                                                            | <b>60.2 60.2</b> 70.0                                               | CO.2 70.0                                              | 0.00                                           |                              |               | 1   |    | 6.2               | ı                   | 1                  | ı        | l               | 1             |
| (10 40.2 40.2 40.2                                                                            | <b>60.2 60.2 60.2</b>                                               | 40.2                                                   | 6.2                                            |                              | 40.2          | ı   |    | 6.2               | ı                   | ı                  | ٠ (      | l               | ı             |
|                                                                                               | <b>40.2 40.2 40.2</b>                                               | <b>60.2 60.2</b>                                       | 6.2                                            |                              | 6.2           | 1   |    | 6.2               | ı                   | ! <b> </b>         | 1 1      | ļ               | ŀ             |
| 4U 40.2 40.2 40.2                                                                             | 40.2 40.2                                                           | <b>40.2 40.2</b>                                       | 6.2                                            |                              | 6.2           | ı   |    | 6.2               | ı                   | ł                  | 1        | 1               | 1 1           |
| 01/25/83 <10 <0.2                                                                             | 6.3                                                                 | i<br>!                                                 | ı                                              | ı                            |               | 1   |    | ı                 | 1                   | ı                  | 1        | 1               | i             |
| 1 1 5.0                                                                                       | 1 1 5.0                                                             | ;                                                      | 1                                              | ı                            |               | ı   |    | i                 | 1                   |                    |          |                 |               |
| 3 69.2 0.44                                                                                   | 0.44                                                                | 1                                                      | 1                                              | 1                            |               | 0.0 |    | 1                 | 1                   | į į                | t .      | ı               | ı             |
| 70.0 0.53                                                                                     | 0.53                                                                | 1                                                      | 1                                              | i                            |               | ,   |    | ı                 |                     |                    | <b>;</b> | i               | ı             |
| 65.2 0.43                                                                                     | 0.43                                                                | 1                                                      | 1                                              | ı                            |               | ı   |    | ı                 | ı                   | : 1                | }        | ŀ               | ı             |
| B2.4 0.43                                                                                     | 0.43                                                                | 1                                                      | 1                                              | ı                            |               | ı   |    | 1                 | J                   | î I                | ļ        | ł               | ı             |
|                                                                                               | 0.50                                                                | 1                                                      | i                                              | i                            |               | i   |    | ı                 | ı                   | 1                  |          | 1 1             | 1 1           |
| 100000                                                                                        | 1                                                                   | i                                                      | I                                              |                              |               |     |    |                   |                     |                    |          |                 |               |
| i                                                                                             |                                                                     |                                                        | i                                              | i                            | •             | ı   |    | 1                 | 1                   | 1                  | ı        | ı               | ı             |
| 17.5                                                                                          | 40.2                                                                | 1 1                                                    | 1                                              | 1                            |               | ı   |    | 1                 | ı                   | ı                  | i        | ı               | ı             |
| 9                                                                                             | 9                                                                   | •                                                      | ı                                              |                              |               |     |    |                   |                     |                    |          |                 |               |
| 1 1 1 21 21                                                                                   |                                                                     | !                                                      | 1                                              | 1                            | •             | ı   |    | ı                 | 1                   | ı                  | 1        | ı               | ı             |
| 70 70.2                                                                                       | G.2 1                                                               | 1                                                      | 1                                              | ı                            | ·             | 1   |    | 1                 | 1                   | ł                  | ı        | 1               | ı             |

Appendix A. Selected Historical Date-360° Manitoring Program (Ontinued, Page 6 of 6)

| Site<br>Identification<br>Marber | Nather<br>Mather | ž          | Conduct lvity<br>(umho/cm) | Æ    | Obletius<br>(Ca)<br>(mg/1) | (0.0)<br>(0.0)<br>(1) | Sodie<br>(%) | Passius<br>(r) | Altalinity<br>(mg/1) | Sulface<br>(SO <sub>L</sub> ) | 0) (3) (4) | Muorida<br>(F) | E So.       |           |
|----------------------------------|------------------|------------|----------------------------|------|----------------------------|-----------------------|--------------|----------------|----------------------|-------------------------------|------------|----------------|-------------|-----------|
|                                  |                  |            |                            |      |                            |                       |              |                |                      |                               |            |                |             |           |
| /17/                             | <b>8</b>         | 06/29/83   | ı                          | ı    | ı                          | ı                     | ı            | ı              | 1                    | ı                             | 9          | 8              | į           |           |
|                                  |                  | 09/21/83   | ı                          | 1    | i                          | 1                     | ı            | ı              | ı                    | 1                             | 8          | 2 :            | I           | i         |
|                                  |                  | 12/13/83   | ı                          | ı    | i                          | i                     | i            |                |                      | I                             | 46         | 1.19           | ı           | I,        |
|                                  |                  | 03/23/84   | ı                          | ı    | 1                          |                       | ı            | ı              | 1                    | 1                             | 9.09       | 1.30           | i           | t         |
|                                  |                  | 06/06/04   |                            | ļ .  | 1                          | ţ                     | f            | 1              | 1                    | i                             | 8.0        | 04.            | 1           | i         |
|                                  |                  |            | i                          | ı    | ı                          | ı                     | 1            | 1              | 1                    | ı                             | 3.1        | 97.1           | i           | Į         |
|                                  |                  | 09/12/84   | 1                          | ı    | 1                          | ţ                     | ı            | ı              | ı                    | ı                             | ,          |                |             | ì         |
|                                  |                  | 12/11/84   | 1                          | ı    | ł                          | i                     | Į            |                |                      | •                             | 4.00       | <b>R</b> :-    | 1           | ı         |
|                                  |                  | 03/13/85   | ١                          | 1    | İ                          | ı                     | I            | ı              | i                    | ı                             | 55.5       | 02.1           | ı           |           |
|                                  |                  | 0K/17/BS   |                            | l    | 1                          | ı                     | ı            | ı              | ł                    | i                             | 63.7       | 2.1            | ı           | 1         |
|                                  |                  |            | l                          | i    | i                          | ı                     | 1            | i              | ı                    | 1                             | ¥.9        | 6.1            | ı           | i         |
|                                  | E                | 69/36/10   |                            | i    |                            |                       |              |                |                      |                               |            |                |             |           |
| ļ                                | į                | C0/C7/In   | 1230                       | £.7  | ı                          | ı                     | ı            | ı              | 348                  | ă                             | 8          | 0.55           | •           | ×         |
|                                  |                  | 07/25/83   | 1230                       | 6.92 | Ħ                          | ឧ                     | 3.6          | 4.45           | 193                  | 211                           | ×          |                | : :         | \$ 5      |
|                                  |                  | 10/04/83   | 1060                       | 6.83 | 103                        | 18.5                  | 3.1          | 3.4            | 196                  | ź                             | : :        | 3 3            | ? :         | 3         |
|                                  |                  | 01/24/84   | 1060                       | 6.8  | ×                          | 21.6                  | 87.6         | 9              | ; ;                  | <b>5</b> 5                    | •          | ۶<br>څ         | 3           | ŝ         |
|                                  |                  | 04/34/84   | 1070                       | 2.0  | 150                        | 2                     | ? .          | Ŗ              | 8                    | <u>\$</u>                     | ?          | <b>X</b> .0    | 0.X         | 970       |
|                                  |                  |            | •                          | !    | :                          | 2                     | ë            | 8.8            | 233                  | <b>3</b> 2                    | <b>8</b>   | 0.60           | <b>9</b> .0 | ន៍        |
| BOLLER                           | BOLLER           | 01/25/83   | 066                        | 7.63 | i                          |                       |              |                |                      |                               |            |                |             |           |
|                                  |                  | FX/36/83   | }                          |      | l                          | ı                     | ł            | ı              | ឆ្ន                  | <b>3</b> 8                    | 21         | 67.            | 2.8         | 3         |
|                                  |                  | 20,30,60   | i ;                        | 7.   | ı                          | ı                     | ı            | 1              | ı                    | i                             | į          | 1              | ì           |           |
|                                  |                  | 18/57/10   | 2190                       | 7.22 | 8                          | 2.0                   | 239          | 1.1            | 245                  | 8                             | 9          | 8              | -           | ۶         |
|                                  |                  | 10/04/83   | 0%1                        | 7.18 | 121                        | 51.8                  | 374          | 3.83           | 308                  | 9                             | 2          | , p            | ? ;         | 3         |
|                                  |                  | 01/24/84   | 2080                       | 7.08 | 022                        | 64.0                  | <b>528</b>   | 3.1            | 280                  | 5                             | 2          | •              | 9 1         | 9 :       |
|                                  |                  | 04/24/84   | 2060                       | 1.01 | 192                        | 90.0                  | ž            | 5              | ! }                  |                               | 71         | 1.78           | 2.78        | 632       |
|                                  |                  |            |                            |      |                            | <u>:</u>              | 5            | ş              | Ę                    | 3                             | 3          | <b>8:</b>      | 2.20        | ¥         |
| ΙX                               | 100              | 02/18/83   | 0%                         | 7.16 | 1                          | ı                     | ı            | ı              | Ş                    | Ş                             | 1          | ;              |             |           |
|                                  |                  | 05/25/83   | 10%                        | 7.19 | ı                          | ı                     | 1            | ı              | ? ;                  | 3 :                           | 2          | R:             | <b>.</b> .3 | <b>98</b> |
|                                  |                  | 08/26/83   | 2390                       | 8    | 8                          | ş                     | ! !          | )              | S.                   | 2                             | 7.90       | 1.42           | 3.9         | 900       |
|                                  |                  | 11/08/83   |                            | 3 :  | 9 :                        | 7.7                   | 3            | 8.6            | 223                  | 3                             | 3          | 95.1           | 8.0         | 22        |
|                                  |                  | (0/10/10)  | ) (CT                      | 6.53 | <b>3</b> 2.6               | 43.7                  | 721          | 3.74           | 338                  | 981                           | 5:901      | 9.1            | 0.0         | <b>Ş</b>  |
|                                  |                  | ÷ /17/co   | 9101                       | 7.72 | 73.1                       | 36.0                  | <u>5</u>     | 3.09           | 247.                 | 95                            | 71.3       | 9:1            | 0.9         | £         |
| XII                              | XII              | 28/22/00   | 9                          | 7    | ,                          | ;                     |              |                |                      |                               |            |                |             | }         |
|                                  |                  | OK (2) (0) | 3                          | 7    | 9.0                        | 57.0                  | 011          | 3.8¢           | 247                  | 191                           | 2.7        | 98:3           | 10.0        | Ŕ         |
|                                  |                  | \$0/17/co  | 020                        | 7.17 | ¥.3                        | 36.0                  | 107          | 4.21           | 267                  | 75                            | 419        | 07.1           | 0           | <b>,</b>  |
|                                  |                  |            |                            |      |                            |                       |              |                |                      |                               |            |                | }           | ŧ.        |

Source: USATIWM 1983-1985