Fundamental Algorithms

Homework 5

Due: July 12th, 5:30 PM EST

Instructions

Please answer each **Problem** on a separate page. Submissions must be uploaded to your account on Gradescope by the due date and time above.

Problems To Submit

Problem 1 (25 points)

Recall that we designed a dynamic programming approach to solve the problem of making change for n cents using the least number of coins (refer to Problem 9 of the Additional Problems set). Now we want to solve this problem using a greedy approach.

- (a) Design a greedy algorithm to make change for n cents using the least number of coins among quarters (25), dimes (10), nickels (5), and pennies (1). Explain your algorithm.

 For example, if n = 91, your algorithm must return 6, since we can make change for 91 cents using 6 coins: Take 3 quarters, 1 dime, 1 nickel, and 1 penny. Also, we can show that it is not possible to make change for 91 cents using less than 6 coins.
- (b) Show that your algorithm in part (a) outputs a correct result for all positive integers n.
- (c) Provide an example of a set of coin denominations for which your greedy approach in part (a) does not output a correct result.
 - Note that your set of coin denominations must include a penny so that for every positive integer n, it is possible to make change for n cents using your set of coin denominations.

Problem 2 (25 points)

Recall the frog problem discussed in Homework 4 Problem 1:

Consider the array A[1...n] consisting of n non-negative integers. There is a frog on the last index of the array, i.e., the nth index of the array. In each step, if the frog is positioned on the ith index, then it can make a jump of size at most A[i] towards the beginning of the array. In other words, it can hop to any of the indices $i, \ldots, i - A[i]$.

- (a) Develop a Greedy algorithm to determine whether the frog can reach the first index of A.
- (b) Show the correctness of your algorithm in part (a) and find its running time.

Problem 3 (25 points)

You are given a set \mathcal{I} of n intervals on the real line. The starting and finishing times of these n intervals are given by the arrays s[1...n] and f[1...n], where s[i] and f[i] denote the starting time and the finishing time of the i^{th} interval in \mathcal{I} , respectively.

We want to color the intervals in \mathcal{I} so that no two overlapping intervals are assigned the same color.

- (a) Develop a Greedy algorithm to compute the minimum number of colors needed to color \mathcal{I} so that overlapping intervals are given different colors.
- (b) Show the correctness of your algorithm in part (a) and find its running time.

Problem 4 (25 points)

Let G be a directed graph on n vertices which is given as input by the adjacency matrix V[1...n][1...n]. Develop an O(n)-time algorithm to check if there is any vertex in G that has edges coming to it from all other vertices of G but no edges going out from it. Justify why your algorithm runs in O(n) time.