电磁波知识点汇总

问题类型	电磁波的无		电磁波的反射与透射(折射)		电磁波的导行传输	电磁波的辐射
主要知识	电磁波的传播	电磁波的极化	垂直入射情况	斜入射情况	波导	天线
	周期 T 频率 $f = \frac{1}{T}$ 1	角频率 $\omega = 2\pi f$ 波长 λ	反射系数:	入射角 θ_i 反射角 θ_r 透射角 θ_t	$k = \omega \sqrt{\mu \varepsilon}$ 截止波数 k_c	辐射功率 P,
	复电容率 $\varepsilon_c = \varepsilon - j\frac{\sigma}{c}$	波数 $k_c = \omega \sqrt{\mu \varepsilon_c}$	$\Gamma = \frac{E_{m}}{E_{im}} = \frac{\eta_{2c} - \eta_{1c}}{\eta_{2c} + \eta_{1c}}$	斯奈尔反射定律和折射定律:	与 γ 关系 $k_c^2 = \gamma^2 + k^2$	辐射电阻 $R_r = 2P_r/I^2$
	w w	+ <i>jβ</i> 衰减常数 α	透射系数: $\tau = \frac{E_{tm}}{E_{im}} = \frac{2\eta_{2c}}{\eta_{2c} + \eta_{1c}}$	$\theta_r = \theta_i$ $\frac{\sin \theta_i}{\sin \theta_i} = \frac{k_1}{k_2} = \frac{n_1}{n_2} = \frac{\sqrt{\mu_1 \varepsilon_1}}{\sqrt{\mu_2 \varepsilon_2}}$	截止角频率 $\omega_c = \frac{k_c}{\sqrt{\mu \varepsilon}}$	主瓣宽度 2 $\theta_{0.5}$ 或 2 $\phi_{0.5}$
基本参数和	相位常数β 相速度 v	$ \rho_p = \frac{\omega}{\beta} $ 波阻抗 $ \eta_c = \sqrt{\frac{\mu}{\varepsilon_c}} $	E_{im} $\eta_{2c} + \eta_{1c}$ 反射与透射的关系: $\tau = 1 + \Gamma$	垂直极化波反射系数与透射系数: $\Gamma_{\perp} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_i}$	截止频率 $f_c = \omega_c / 2\pi$	副瓣电平 <i>SLL</i> 前后比 <i>FB</i> 方向性系数 <i>D</i>
基本关系	平均电场能量密度:	$w_{eav} = \frac{\mathcal{E}}{4} E_{xm}^2 e^{-2\alpha z} \le w_{mav}$	驻波比与反射系数:	$\tau_{\perp} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$	截止波长 $\lambda_c = 2\pi/k_c$	天线效率 $\eta_{\rm A} = P_{\rm r}/P_{\rm in}$
	平均磁场能量密度:	$w_{mav} = w_{eav} \left[1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2 \right]^{1/2}$	$S = \frac{\left \vec{E}_{1}\right _{\text{max}}}{\left \vec{E}_{1}\right _{\text{min}}} = \frac{1 + \left \Gamma\right }{1 - \left \Gamma\right }$	平行极化波反射系数与透射系数: $\Gamma_{\parallel} = \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_i}$	相位常数 $\beta = \sqrt{k^2 - k_c^2}$	增益系数 $G=\eta_{A}D$
	平均能流密度矢量:	$\vec{S}_{av} = \vec{e}_z \frac{1}{2 \eta_c } \vec{E} ^2 \cos \phi$	$\left \Gamma\right = \frac{S-1}{S+1}$	$ au_{\parallel} = rac{\eta_1 \cos heta_i + \eta_2 \cos heta_t}{\eta_1 \cos heta_i + \eta_2 \cos heta_t}$	波导波长 $\lambda_g = 2\pi/\beta$ 相速度 $v_p = \omega/\beta$	输入阻抗 $Z_{\rm in} = U_{\rm in} / I_{\rm in}$ 有效长度 $l_{\rm e}$
甘木坛士程	电场 $\vec{E} = \vec{e}_x E_{xm} e^{-\gamma z}$	电场 $\vec{E} = \vec{e}_x E_x + \vec{e}_y E_y$	$\vec{E}_1 = \vec{E}_i + \vec{E}_r \vec{E}_2 = \vec{E}_t$	$\vec{E}_1 = \vec{E}_i + \vec{E}_r$ $\vec{E}_2 = \vec{E}_t$ (考虑波矢量)	无源麦克斯韦方程组 $ abla imes ec{E} = -j\omega\muec{H}$	由滞后位求 $\vec{B} = \nabla \times \vec{A}$
基本场方程	磁场 $\vec{H} = \frac{1}{\eta_c} \vec{e}_z \times \vec{E}$	$E_x = E_{xm} \cos(\omega t - kz + \phi_x)$ $E_y = E_{ym} \cos(\omega t - kz + \phi_y)$	电场在分界面连续	电场的切向分量在分界面连续	$\nabla \times \vec{H} = j\omega \varepsilon \vec{E}$	由 $j\omega\varepsilon\vec{E} = \nabla \times \vec{H} \ \vec{x} \ \vec{E}$
特例情况1	理想介质: $\alpha = \sigma = 0$ $\beta = \omega \sqrt{\mu \varepsilon} \eta = \sqrt{\frac{\mu}{\varepsilon}}$	线极化波: $\phi_y - \phi_x = 0, \pm \pi$ $\alpha = \pm \arctan(\frac{E_y}{E_x}) = const$	理想导体分界面: $\Gamma = -1$, $\tau = 0$ 驻波有波腹和波节点	理想介质分界面全反射 : 两种极化 $\varepsilon_1 > \varepsilon_2$ 时临界角 $\theta_c = \arcsin(\sqrt{\varepsilon_2/\varepsilon_1})$	TEM 波: 与无界空间相同 $k_c=0$ $\gamma_{TEM}=j\omega\sqrt{\mu\varepsilon}$ 波阻抗 $Z_{TEM}=\sqrt{\mu/\varepsilon}=\eta$	电偶极子辐射: 远场 $E_{ heta} = rac{jIl\eta_0\sin heta}{2\lambda r}e^{-jkr}$
特例情况 2		圆极化波 : $E_{xm} = E_{ym} = E_{m}$ $\phi_{y} - \phi_{x} = \pm \pi/2$,左右旋 合成波电场强度为常数	理想介质分界面: Γ和τ皆为实数 行驻波振幅周期分布	理想介质分界面全透射 : 平行极化 布儒斯特角 θ_b = $\arctan(\sqrt{\varepsilon_2/\varepsilon_1})$	\mathbf{TM} 波: $Z_{TM} = \gamma/(j\omega\varepsilon)$ $k_c = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$	$H_{\phi} = rac{jIl\sin heta}{2\lambda r}e^{-jkr} = rac{E_{ heta}}{\eta_0}$ 用于绘制天线方向图
特例情况 3	良导体: $\frac{\sigma}{\omega\varepsilon} \gg 1$ $\alpha \approx \beta \approx \sqrt{\pi f \mu \sigma}$	椭圆极化波: $E_{xm} \neq E_{ym}$ $\phi_y - \phi_x \neq 0, \pm \pi$,一般情况	导电媒质分界面: Γ和τ皆为复数 传播过程伴随着衰减	理想导体分界面斜入射:两种极化 合成波沿平行于分界面方向传播 在垂直于导体表面方向呈驻波分布	TE 波: $Z_{TE} = j\omega\mu/\gamma$ k_c 同上(矩形波导)	$P_r = 40\pi^2 I^2 \left(\frac{l}{\lambda}\right)^2$

完成人:周俊、崔克楠、李一萌、闫华睿