

Artificial Neural Networks

[2500WETANN]

José Oramas

Convolutional Neural Networks

[Part 3 - Use Case Discussion]

José Oramas

Recap: Supervised Image Recognition Task

Given: an input image *x*

Do: predict a label y

(out of a set of class labels)

ILSVRC

flamingo cock ruffed grouse quail partridge ...

Egyptian cat Persian cat Siamese cat tabby lynx ...

miniature schnauzer standard schnauzer giant schnauzer

- Data

$$\{x,y\}_i$$

Model

$$\hat{y} \approx f_{\theta}(x)$$

- Loss

$$L(\theta) = \sum_{i=1}^{N} l(f_{\theta}(x_i), \hat{y}_i)$$

- Optimization

$$\theta^* = arg \ min_{\theta} \ L(\theta)$$

Let's Consider the Object Detection Task

Given: an input image *x*

How to provide a localization output?

Localized Predictions

[Use Case: Object Detection]

Given: an input image *x*

Do: predict a label y (out of a set of class labels) & location (bounding box)

Text

- Role labelling

Audio

- Speech-command detection
- profanity detection

Given: an input image *x*

Do: predict a label y (out of a set of class labels) & location (bounding box)

Given: an input image *x*

Do: predict a label y (out of a set of class labels) & location (bounding box)

Challenges

Changes in Viewpoint

Objects at low scale

High Occlusions

Changes in Illumination

How was it classically done?

- Scan the input image
- Evaluate the scanned regions with a classifier

How was it classically done?

- Scan the input image
- Evaluate the scanned regions with a classifier

Sliding Window

How was it classically done?

- Scan the input image
- Evaluate the scanned regions with a classifier

Sliding Window

Does it addresses the challenges?

[How? What would be needed?]

Changes in Viewpoint

High Occlusions

Objects at low scale

Changes in Illumination

Task-1: Object Detection: R-CNN

How was it done? (at least the first time)

- Generate object proposals
- Evaluate the proposals with a classifier

R-CNN: Regions with CNN features

[Girshick et al., 2014]

Task-1: Object Detection: R-CNN

How was it done? (at least the first time)

- Generate object proposals
- Evaluate the proposals with a classifier

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute **CNN** features

4. Classify regions

[Girshick et al., 2014]

Task-1: Object Detection: Fast R-CNN

How was it done?

- Extract the Region Proposals from a Feature Map
- Evaluate the proposal with the FC layers (classifier)

[Girshick et al., 2015]

Task-1: Object Detection: Fast R-CNN

- Extract the Region Proposals from a Feature Map
- Evaluate the proposal with the FC layers (classifier)

Task-1: Object Detection: Fast R-CNN

- Extract the Region Proposals from a Feature Map
- Evaluate the proposal with the FC layers (classifier)

Task-1: Object Detection: Faster R-CNN

- Use a network (RPN) to detect proposals from the feature map
- Evaluate the proposal with the FC layers

Task-1: Object Detection: Faster R-CNN

- Use a network (RPN) to detect proposals from the feature map
- Evaluate the proposal with the FC layers

Task-1: Object Detection: Faster R-CNN

- Use a network (RPN) to detect proposals from the feature map
- Evaluate the proposal with the FC layers

Task-1: Object Detection: YOLO

- Integrating the two stages
 - Divide an image into a grid
 - Predict: bbox with confidence and class probabilities

Task-1: Object Detection: YOLO

How was it done?

- Integrating the two stages
 - Divide an image into a grid
 - Predict: bbox with confidence and class probabilities

23

Task-1: Object Detection: YOLO

How was it done?

- Integrating the two stages
 - Divide an image into a grid
 - Predict: bbox with confidence and class probabilities

Limitations

- Only 2 boxes per cell
- Only 1 class per cell

Dense Predictions

[Use Case: Semantic Segmentation]

Task-2: Image Segmentation

Given: an input image *x*

Do: predict a label y for every pixel in the image

Text

- Part of Speech tagging

Audio

- Source labelling

How was it done? (at least the first time)

[Long et al., 2015]

How was it done? (at least the first time)

- Formulate FC-layers as Conv-layers → deep-filter / FCN
- Upsampling: backwards strided convolution

[Long et al., 2015]

How was it done? (at least the first time)

Formulate FC-layers as Conv-layers → deep-filter / FCN

How was it done? (at least the first time)

Upsampling: backwards strided convolution

forward/inference

backward/learning

How was it done? (at least the first time)

Upsampling: backwards strided convolution

How was it done? (at least the first time)

Upsampling: backwards strided convolution

Output

How was it done? (at least the first time)

Upsampling: backwards strided convolution

			_			
0	2		Ť		0	3
4	6				6	9

0	0	0	1
0	0	2	3
0	2	0	3
4	6	6	9

Output

=

How was it done? (at least the first time)

Further Improvements

How was it done? (at least the first time)

Further Improvements

Ground truth

[Long et al., 2015]

How was it done? (at least the first time)

Further Improvements

[Long et al., 2015]

Dense-Sparse Predictions

Task-3: Just a Simple Cue

Can you guess what we will be talking about?

Task-3: Just a Simple Cue

Can you guess what we will be talking about?

Convolutional Pose Machines [Wei et al., 2016]

Convolutional Pose Machines (T-stage)

Pooling

Convolution

Convolutional Pose Machines [Wei et al., 2016]

Convolutional Pose Machines (T-stage)

C Convolution

Convolutional Pose Machines [Wei et al., 2016]

Convolutional Pose Machines (T-stage)

C Convolution

Convolutional Pose Machines [Wei et al., 2016]

Convolutional Pose Machines [Wei et al., 2016]

Convolutional Pose Machines [Wei et al., 2016]

Spatial Context induced by depth.

Elbow Prediction

- Correct

- Incorrect

[Different Tasks, Same Components]

Convolutions go beyond simple classification

localization | dense prediction

Convolutions go beyond simple classification

localization | dense prediction

Additional use of convolutions

Transpose → **Useful for upscaling operations**

FC Layers as Convolutions → useful for resolution invariance

Convolutions go beyond simple classification

localization | dense prediction

Additional use of convolutions

Transpose → **Useful for upscaling operations**

FC Layers as Convolutions → useful for resolution invariance

Suitable designs → better performance

time invested at design-time eventually pays off

References

- Dive into Deep Learning (D2L)
 - Chapter 13.10: Transposed Convolutions https://d2l.ai/chapter_computer-vision/transposed-conv.html
 - Chapter 13.11: Fully Convolutional Layers https://d2l.ai/chapter_computer-vision/fcn.html
- R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014
- R. Girshick, Fast R-CNN. ICCV 2015
- S. Ren, K. He, R. Girshick J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NeurIPS 2015
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection, NeurIPS 2015
- J. Long, E. Shelhamer, T. Darrell, **Fully Convolutional Networks for Semantic Segmentation**, CVPR 2015
- S. Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, Convolutional Pose Machines, CVPR 2016.

Artificial Neural Networks

[2500WETANN]

José Oramas