Chapter 4 (Section 4.3, ...) 2nd Edition or Chapter 4 (3rd Edition) Local Search and Optimization

Outline

- Local search techniques and optimization
 - Hill-climbing
 - Gradient methods
 - Simulated annealing
 - Genetic algorithms
 - Issues with local search

Local search and optimization

- Previously: systematic exploration of search space.
 - Path to goal is solution to problem
- YET, for some problems path is irrelevant.
 - E.g 8-queens
- Different algorithms can be used
 - Local search

Local search and optimization

- Local search
 - Keep track of single current state
 - Move only to neighboring states
 - Ignore paths
- Advantages:
 - Use very little memory
 - Can often find reasonable solutions in large or infinite (continuous) state spaces.
- "Pure optimization" problems
 - All states have an objective function
 - Goal is to find state with max (or min) objective value
 - Does not quite fit into path-cost/goal-state formulation
 - Local search can do quite well on these problems.

"Landscape" of search

Hill-climbing search

Hill-climbing search

- "a loop that continuously moves in the direction of increasing value"
 - terminates when a peak is reached
 - Aka greedy local search
- Value can be either
 - Objective function value
 - Heuristic function value (minimized)
- Hill climbing does not look ahead of the immediate neighbors of the current state.
- Can randomly choose among the set of best successors, if multiple have the best value

Characterized as "trying to find the top of Mount Everest while in a thick fog"

Hill climbing and local maxima

- When local maxima exist, hill climbing is suboptimal
- Simple (often effective) solution
 - Multiple random restarts

Hill-climbing example

- 8-queens problem, complete-state formulation
 - All 8 queens on the board in some configuration
- Successor function:
 - move a single queen to another square in the same column.
- Example of a heuristic function *h*(*n*):
 - the number of pairs of queens that are attacking each other (directly or indirectly)
 - (so we want to minimize this)

Hill-climbing example

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	₩	13	16	13	16
₩	14	17	15	业	14	16	16
17	₩	16	18	15	₩	15	业
18	14	业	15	15	14	₩	16
14	14	13	17	12	14	12	18

Current state: h=17

Shown is the h-value for each possible successor in each column

A local minimum for 8-queens

A local minimum in the 8-queens state space (h=1)

Other drawbacks

- Ridge = sequence of local maxima difficult for greedy algorithms to navigate
- Plateau = an area of the state space where the evaluation function is flat.

Performance of hill-climbing on 8-queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it get stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 - (for a state space with ~17 million states)

Possible solution...sideways moves

- If no downhill (uphill) moves, allow sideways moves in hope that algorithm can escape
 - Need to place a limit on the possible number of sideways moves to avoid infinite loops

- For 8-queens
 - Now allow sideways moves with a limit of 100
 - Raises percentage of problem instances solved from 14 to 94%
 - However....
 - 21 steps for every successful solution
 - 64 for each failure

Hill-climbing variations

Stochastic hill-climbing

- Random selection among the uphill moves.
- The selection probability can vary with the steepness of the uphill move.

First-choice hill-climbing

- stochastic hill climbing by generating successors randomly until a better one is found
- Useful when there are a very large number of successors

Random-restart hill-climbing

Tries to avoid getting stuck in local maxima.

Hill-climbing with random restarts

- Different variations
 - For each restart: run until termination v. run for a fixed time
 - Run a fixed number of restarts or run indefinitely
- Analysis
 - Say each search has probability p of success
 - E.g., for 8-queens, p = 0.14 with no sideways moves
 - Expected number of restarts?
 - Expected number of steps taken?

Expected number of restarts

- Probability of Success = p
- Number of restarts = 1 / p
- This means 1 successful iteration after (1/p 1) failed iterations
- Let avg. number of steps in a failure iteration = f
 and avg. number of steps in a successful iteration = s

Therefore, expected number of steps in random-restart hill climbing = 1 * s + (1/p - 1) f

```
So for 8-queens, p = 14\%, s = 4, f = 3,

Expected no of moves = 1 * 4 + (1/0.14 - 1) * 3 = 22
```

With sideways moves,
$$p = 94\%$$
, $s = 21$, $f = 64$
Expected no of moves = $1 * 21 + (1/0.94 - 1) * 64 = 25$

Local beam search

- Keep track of k states instead of one
 - Initially: *k* randomly selected states
 - Next: determine all successors of *k* states
 - If any of successors is goal → finished
 - Else select k best from successors and repeat.
- Major difference with random-restart search
 - Information is shared among *k* search threads.
- Can suffer from lack of diversity.
 - Stochastic beam search
 - choose k successors proportional to state quality.

Gradient Descent

Assume we have some cost-function: $C(\chi_1, ..., \chi_n)$ and we want minimize over continuous variables X1,X2,..,Xr

2. Take a small step downhill in the direction of the gradient:

$$\chi_{i} \rightarrow \chi_{i}' = \chi_{i} - \lambda \frac{\partial}{\partial \chi_{i}} C(\chi_{1}, ..., \chi_{n})$$
 $\forall i$

3. Check if
$$C(\chi_1,...,\chi_i',...,\chi_n) < C(\chi_1,...,\chi_i,...,\chi_n)$$

- 4. If true then accept move, if not reject.
- 5. Repeat.

Learning as optimization

- Many machine learning problems can be cast as optimization
- Example:
 - Training data D = $\{(\underline{x}_1, c_1),(\underline{x}_n, c_n)\}$ where \underline{x}_i = feature or attribute vector and c_i = class label (say binary-valued)
 - We have a model (a function or classifier) that maps from x to c e.g., sign(\underline{w} . \underline{x}') = {-1, +1}
 - We can measure the error E(w) for any settig of the weights w, and given a training data set D
 - Optimization problem: find the weight vector that minimizes <u>E(w)</u>

(general idea is "empirical error minimization")

Learning a minimum error decision boundary

Search using Simulated Annealing

- Simulated Annealing = hill-climbing with non-deterministic search
- Basic ideas:
 - like hill-climbing identify the quality of the local improvements
 - instead of picking the best move, pick one randomly
 - say the change in objective function is δ
 - if δ is positive, then move to that state
 - otherwise:
 - move to this state with probability proportional to δ
 - thus: worse moves (very large negative δ) are executed less often
 - however, there is always a chance of escaping from local maxima
 - over time, make it less likely to accept locally bad moves
 - (Can also make the size of the move random as well, i.e., allow "large" steps in state space)

Physical Interpretation of Simulated Annealing

- A Physical Analogy:
 - imagine letting a ball roll downhill on the function surface
 - this is like hill-climbing (for minimization)
 - now imagine shaking the surface, while the ball rolls, gradually reducing the amount of shaking
 - this is like simulated annealing
- Annealing = physical process of cooling a liquid or metal until particles achieve a certain frozen crystal state
 - simulated annealing:
 - free variables are like particles
 - seek "low energy" (high quality) configuration
 - get this by slowly reducing temperature T, which particles move around randomly

Simulated annealing

```
function SIMULATED-ANNEALING( problem, schedule) return a solution state
    input: problem, a problem
                 schedule, a mapping from time to temperature
    local variables: current, a node.
                              next, a node.
                             T, a "temperature" controlling the probability of downward steps
    current ← MAKE-NODE(INITIAL-STATE[problem])
    for t \leftarrow 1 to \infty do
                 T \leftarrow schedule[t]
                 if T = 0 then return current
                 next ← a randomly selected successor of current
                 \Delta E \leftarrow VALUE[next] - VALUE[current]
                 if \Delta F > 0 then current \leftarrow next
                 else current \leftarrow next only with probability e^{\Delta E/T}
```

More Details on Simulated Annealing

- Lets say there are 3 moves available, with changes in the objective function of d1 = -0.1, d2 = 0.5, d3 = -5. (Let T = 1).
- pick a move randomly:
 - if d2 is picked, move there.
 - if d1 or d3 are picked, probability of move = exp(d/T)
 - move 1: prob1 = exp(-0.1) = 0.9,
 - i.e., 90% of the time we will accept this move
 - move 3: prob3 = exp(-5) = 0.05
 - i.e., 5% of the time we will accept this move
- T = "temperature" parameter
 - high T => probability of "locally bad" move is higher
 - low T => probability of "locally bad" move is lower
 - typically, T is decreased as the algorithm runs longer
 - i.e., there is a "temperature schedule"

Simulated Annealing in Practice

- method proposed in 1983 by IBM researchers for solving VLSI layout problems (Kirkpatrick et al, *Science*, 220:671-680, 1983).
 - theoretically will always find the global optimum (the best solution)
- useful for some problems, but can be very slow
 - slowness comes about because T must be decreased very gradually to retain optimality
 - In practice how do we decide the rate at which to decrease T? (this is a practical problem with this method)

Genetic algorithms

- Different approach to other search algorithms
 - A successor state is generated by combining two parent states
- A state is represented as a string over a finite alphabet (e.g. binary)
 - 8-queens
 - State = position of 8 queens each in a column
 8 x log(8) bits = 24 bits (for binary representation)
- Start with k randomly generated states (population)
- Evaluation function (fitness function).
 - Higher values for better states.
 - Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens
- Produce the next generation of states by "simulated evolution"
 - Random selection
 - Crossover
 - Random mutation

Local Search 27

Genetic algorithms

Genetic algorithms

Has the effect of "jumping" to a completely different new part of the search space (quite non-local)

Genetic algorithm pseudocode

```
function GENETIC_ALGORITHM( population, FITNESS-FN) return an individual input: population, a set of individuals

FITNESS-FN, a function which determines the quality of the individual repeat

new_population ← empty set
loop for i from 1 to SIZE(population) do

x ← RANDOM_SELECTION(population, FITNESS_FN)

y ← RANDOM_SELECTION(population, FITNESS_FN)

child ← REPRODUCE(x,y)

if (small random probability) then child ← MUTATE(child) add child to new_population

population ← new_population

until some individual is fit enough or enough time has elapsed

return the best individual
```

Comments on genetic algorithms

- Positive points
 - Random exploration can find solutions that local search can't
 - (via crossover primarily)
 - Appealing connection to human evolution
 - E.g., see related area of genetic programming
- Negative points
 - Large number of "tunable" parameters
 - Difficult to replicate performance from one problem to another
 - Lack of good empirical studies comparing to simpler methods
 - Useful on some (small?) set of problems but no convincing evidence that GAs are better than hill-climbing w/random restarts in general

Summary

- Local search techniques and optimization
 - Hill-climbing
 - Gradient methods
 - Simulated annealing
 - Genetic algorithms
 - Issues with local search