

planetmath.org

Math for the people, by the people.

uniformly continuous

Canonical name Uniformly Continuous
Date of creation 2013-03-22 12:45:38
Last modified on 2013-03-22 12:45:38

Owner n3o (216) Last modified by n3o (216)

Numerical id 14

Author n3o (216) Entry type Definition Classification msc 26A15

Related topic UniformContinuity

Defines uniformly continuous function

Let $f:A\to\mathbb{R}$ be a real function defined on a subset A of the real line. We say that f is uniformly continuous if, given an arbitrary small positive ε , there exists a positive δ such that whenever two points in A differ by less than δ , they are mapped by f into points which differ by less than ε . In symbols:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Every uniformly continuous function is also continuous, while the converse does not always hold. For instance, the function $f:]0, +\infty[\to \mathbb{R}$ defined by f(x) = 1/x is continuous in its domain, but not uniformly.

A more general definition of uniform continuity applies to functions between metric spaces (there are even more general environments for uniformly continuous functions, i.e. uniform spaces). Given a function $f: X \to Y$, where X and Y are metric spaces with distances d_X and d_Y , we say that fis uniformly continuous if

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x, y \in X \; d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon.$$

Uniformly continuous functions have the property that they map Cauchy sequences to Cauchy sequences and that they preserve uniform convergence of sequences of functions.

Any continuous function defined on a compact space is uniformly continuous (see Heine-Cantor theorem).