Eigenvalues and eigenvectors

Introduction to dynamical systems #2

Hiroaki Sakamoto

§ Contents

- 1 Eigenvalues and eigenvectors
 - 1.1 Definition
 - 1.2 Characteristic polynomials
 - 1.3 Solving for eigenvectors
- 2 Diagonalization
 - 2.1 Definition
 - 2.2 Examples

1 Eigenvalues and eigenvectors

1.1 Definition

- Definition of eigenvalues and eigenvectors
- Let $A \in \mathbb{R}^{n \times n}$ be a square matrix.
- If a real value $\lambda \in \mathbb{R}$ and a non-zero vector $v \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ jointly satisfy

$$Av = \lambda v$$
,

we say that λ is an *eigenvalue* of A and v is an *eigenvector* of A associated with λ (and we also call (λ, v) an *eigenpair* of A)

- Notice:
 - If v_1 and v_2 are both eigenvectors associated with the same eigenvalue λ of A, then so is their linear combination $\alpha_1v_2 + \alpha_2v_2$ because

$$A(\alpha_1 v_1 + \alpha_2 v_2) = (\alpha_1 A v_1 + \alpha_2 A v_2) = (\alpha_1 \lambda v_1 + \alpha_2 \lambda v_2) = \lambda(\alpha_1 v_1 + \alpha_2 v_2)$$

- If (λ, v) is an eigenpair of A, then (λ^k, v) is an eigenpair of A^k for any $k \in \mathbb{N}$ because $A^k v = A^{k-1} A v = \lambda A^{k-1} v = \lambda^2 A^{k-2} v = \cdots = \lambda^k A^{k-k} v = \lambda^k v$
- Provided that *A* is non-singular (which is the case if and only if 0 is not an eigenvalue of *A*; See below),

$$(\lambda, v)$$
 is an eigenpair of $A \iff (\lambda^{-1}, v)$ is an eigenpair of A^{-1}

- If $A \in \mathbb{R}^{m \times m}$ has eigenpairs $(\lambda_1, v_1), (\lambda_2, v_2), \ldots, (\lambda_m, v_m)$ and $B \in \mathbb{R}^{p \times p}$ has eigenpairs $(\mu_1, u_1), (\mu_2, u_2), \ldots, (\mu_p, u_p)$, then, for any $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, p$,

$$(\mathbf{A}\otimes\mathbf{B})(\mathbf{v}_i\otimes\mathbf{u}_j)=(\mathbf{A}\mathbf{v}_i\otimes\mathbf{B}\mathbf{u}_j)=(\lambda_i\mathbf{v}_i\otimes\mu_j\mathbf{u}_j)=\lambda_i\mu_j(\mathbf{v}_i\otimes\mathbf{u}_j),$$

meaning that $(\lambda_i \mu_j, v_i \otimes u_j)$ is an eigenpair of $A \otimes B$, which implies that $A \otimes B \in \mathbb{R}^{mp \times mp}$ has the following mp eigenvalues

$$\lambda_i \mu_j \quad \forall i = 1, 2, \dots, m, \quad \forall j = 1, 2, \dots, p$$

• Example

Consider a square matrix

$$A := \begin{bmatrix} 5/2 & -1 \\ 1 & 0 \end{bmatrix}$$

• Then $\lambda_1 := 2$ is an eigenvalue of A and $v_1 := (2,1)^{\top}$ is an eigenvector of A associated with λ_1 because

$$Av_1 = egin{bmatrix} 5/2 & -1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 2 \ 1 \end{bmatrix} = egin{bmatrix} 4 \ 2 \end{bmatrix} = 2 egin{bmatrix} 2 \ 1 \end{bmatrix} = \lambda_1 v_1$$

• Also, $\lambda_2 := 1/2$ is another eigenvalue of A and $v_2 := (1,2)^{\top}$ is an eigenvector of A associated with λ_2 because

$$Av_2 = egin{bmatrix} 5/2 & -1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 1 \ 2 \end{bmatrix} = egin{bmatrix} 1/2 \ 1 \end{bmatrix} = rac{1}{2} egin{bmatrix} 1 \ 2 \end{bmatrix} = \lambda_2 v_2$$

1.2 Characteristic polynomials

- Definition of characteristic polynomials
 - Let $A \in \mathbb{R}^{n \times n}$ be a square matrix.
 - \circ Define a function $\phi_A: \mathbb{R} \to \mathbb{R}$ by

$$\phi_A(t) := |A - tI| \quad \forall t \in \mathbb{R},$$

where $I \in \mathbb{R}^{n \times n}$ is the identity matrix. We call ϕ_A the *characteristic polynomial* of A

• Useful results

- Note that λ is an eigenvalue of A if and only if $\phi_A(\lambda) = 0$ because:
 - $-|A \lambda I| = 0$ iff $(A \lambda I)$ is singular (i.e., not invertible)
 - $(A \lambda I)$ is singular iff column vectors of $(A \lambda I)$ are linearly dependent
 - column vectors of $(\pmb{A} \lambda \pmb{I})$ are linearly dependent iff $(\pmb{A} \lambda \pmb{I}) \pmb{v} = \pmb{0}$ for some $\pmb{v} \neq \pmb{0}$
- In general, $A \in \mathbb{R}^{n \times n}$ has $m \le n$ distinct eigenvalues $\lambda_1, \ldots, \lambda_m$ if and only if

$$\phi_A(t) = (\lambda_1 - t)^{k_1} (\lambda_2 - t)^{k_2} \cdots (\lambda_m - t)^{k_m},$$

where $k_i \in \mathbb{N}$ is called the *algebraic multiplicity* of λ_i , satisfying $k_1 + k_2 + \ldots + k_m = n$

• An immediate consequence:

A is singular
$$\iff$$
 $|A| = 0 \iff \phi_A(0) = 0 \iff 0$ is an eigenvalue of A

o If *A* is a triangle matrix, the eigenvalues of *A* are the diagonal elements of *A* because

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \implies \phi_A(t) = (a_{11} - t)(a_{22} - t) \cdots (a_{nn} - t)$$

• The determinant of A equals the product of all eigenvalues of A (including duplicates):

2

$$|A| = |A - 0I| = \phi_A(0) = (\lambda_1 - 0)^{k_1} (\lambda_2 - 0)^{k_2} \cdots (\lambda_m - 0)^{k_m} = \lambda_1^{k_1} \lambda_2^{k_2} \cdots \lambda_m^{k_m}$$

Examples

Consider a square matrix

$$A := \begin{bmatrix} 5/2 & -1 \\ 1 & 0 \end{bmatrix},$$

whose characteristic polynomial is

$$\phi_A(t) := \left| \begin{bmatrix} 5/2 & -1 \\ 1 & 0 \end{bmatrix} - t \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right| = \left| \begin{matrix} 5/2 - t & -1 \\ 1 & -t \end{matrix} \right| = - \left(\frac{5}{2} - t \right) t + 1 = (t-2) \left(t - \frac{1}{2} \right),$$

meaning that $\lambda_1 := 2$ and $\lambda_1 := 1/2$ are two eigenvalues of A and their algebraic multiplicity is 1

Consider another square matrix

$$A := \begin{bmatrix} 5 & 4 \\ -1 & 1 \end{bmatrix}$$
,

whose characteristic polynomial is

$$\phi_A(t) = \begin{vmatrix} 5-t & 4 \\ -1 & 1-t \end{vmatrix} = (t-3)^2,$$

which means that $\lambda_1 := 3$ is the unique eigenvalue of A and its algebraic multiplicity is 2

1.3 Solving for eigenvectors

Procedure

- 1. Given a square matrix $A \in \mathbb{R}^{n \times n}$, find eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ of A by solving $\phi_A(\lambda) = 0$ for λ
- 2. For each λ_i , solve the linear system of equations $Av = \lambda_i v$ for $v \in \mathbb{R}^n \setminus \{0\}$, i.e.,

$$(A - \lambda_i I) v = 0 \iff v = \ldots,$$

which is an eigenvector of A associated with λ_i

• Example

Consider a square matrix

$$A := \begin{bmatrix} 5/2 & -1 \\ 1 & 0 \end{bmatrix}$$

We know that

$$\phi_A(\lambda) = 0 \iff \lambda = 2, \frac{1}{2}$$

so let $\lambda_1 := 2, \lambda_2 := 1/2$

• Solve $(A - \lambda_1 I)v = \mathbf{0}$ for v, i.e.,

$$egin{bmatrix} \left[egin{array}{ccc} 5/2-2 & -1 \ 1 & -2 \end{matrix}
ight] \left[egin{array}{ccc} v_1 \ v_2 \end{matrix}
ight] = \left[egin{array}{ccc} 0 \ 0 \end{matrix}
ight] &\iff v_1 = 2v_2 &\iff \left[egin{array}{ccc} v_1 \ v_2 \end{matrix}
ight] = lpha \left[egin{array}{ccc} 2 \ 1 \end{matrix}
ight] &orall lpha \in \mathbb{R}, \end{array}$$

meaning that $v_1 := (2,1)^{\top}$ is an eigenvector of A associated with $\lambda_1 = 2$

• Similarly, solve $(A - \lambda_2 I)v = \mathbf{0}$ for v, i.e.,

$$\begin{bmatrix} 5/2 - 1/2 & -1 \\ 1 & -1/2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff v_1 = \frac{1}{2}v_2 \iff \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \forall \alpha \in \mathbb{R},$$

3

meaning that $v_2 := (1,2)^{\top}$ is an eigenvector of A associated with $\lambda_2 = 1/2$

2 Diagonalization

2.1 Definition

• Definition of diagonalizable matrices

• A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be *diagonalizable* if there exists a nonsingular (i.e., invertible) matrix $V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ such that

$$A = V\Lambda V^{-1}$$

• Λ is the 'simplest' matrix that is *similar* to A

Remark

- Let $\lambda_1, \lambda_2, ..., \lambda_n$ be (arbitrarily chosen) n eigenvalues of A and let $v_1, v_2, ..., v_n$ be the associated eigenvectors
- Let $\Lambda := \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^{n \times n}$ and $V := [v_1 \ldots v_n] \in \mathbb{R}^{n \times n}$
- Since $Av_i = \lambda_i v_i$ for i = 1, 2, ..., n, we have

$$Aegin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \dots & oldsymbol{v}_n \end{bmatrix} = egin{bmatrix} Av_1 & oldsymbol{v}_2 & \dots & oldsymbol{v}_n \end{bmatrix} = egin{bmatrix} \lambda_1 & 0 & \dots & 0 \ 0 & \lambda_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

or
$$AV = V\Lambda$$

- \circ Thus, A is diagonalizable whenever V is non-singular
- V is non-singular if and only if its column vectors are linearly independent
- \circ A is diagonalizable whenever one can find n linearly independent eigenvectors of A

· A sufficient condition for diagonalization

- A square matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if it has n distinct eigenvalues¹
- Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the n distinct eigenvalues of A and let v_1, v_2, \dots, v_n be the associated eigenvectors so that

$$AV = V\Lambda$$

- Since $\lambda_1, \ldots, \lambda_n$ are distinct from each other, v_1, \ldots, v_n are linearly independent:
 - If v_i and v_i are linearly dependent, there exists $c \neq 0$ such that $cv_i = v_i$ and thus

$$c(\lambda_i v_i) = c(Av_i) = A(cv_i) = Av_j = \lambda_j v_j = \lambda_j (cv_i) = c(\lambda_j v_i),$$

which, because $c \neq 0$ and $v_i \neq 0$, implies $\lambda_i = \lambda_i$, a contradiction

- By induction, one can conclude v_1, \ldots, v_n are linearly independent
- \circ Since v_1, \ldots, v_n are linearly independent, the matrix $V = [v_1 \ldots v_n]$ is nonsingular
- Then there exists the inverse V^{-1} and therefore

$$A = AVV^{-1} = V\Lambda V^{-1},$$

meaning that *A* is diagonalizable

¹This is a sufficient, but not necessary, condition for a matrix to be diagonalizable.

• Similar matrices

• We say that two matrices, A and B, are similar if there exits a non-singular C such that

$$A = CBC^{-1}$$

- If *A* and *B* are similar, then
 - -|A|=|B| because

$$|A| = |CBC^{-1}| = |C||B||C^{-1}| = |C||B||C|^{-1} = |B|$$

- A and B have the same characteristic polynomial because

$$\phi_{A}(t) = |A - tI| = |CBC^{-1} - tI| = |C||B - tI||C^{-1}| = |B - tI| = \phi_{B}(t) \quad \forall t \in \mathbb{R}$$

- *A* and *B* have the same set of eigenvalues
- -A is diagonalizable if and only if B is diagonalizable

2.2 Examples

• Example 1

Consider a square matrix

$$A:=\begin{bmatrix} 5/2 & -1\\ 1 & 0 \end{bmatrix},$$

which we know has $\lambda_1 = 2, \lambda_2 = 1/2$ as eigenvalues and $v_1 = (2,1)^\top, v_2 = (1,2)^\top$ as associated eigenvectors

Define

$$m{V} := egin{bmatrix} m{v}_1 & m{v}_2 \end{bmatrix} = egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}, \quad m{\Lambda} := egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} = egin{bmatrix} 2 & 0 \ 0 & 1/2 \end{bmatrix}$$

Then

$$|V| = 3$$
, $V^{-1} = \frac{1}{|V|} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{bmatrix}$

and therefore

$$V\Lambda V^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{bmatrix} = \begin{bmatrix} 5/2 & -1 \\ 1 & 0 \end{bmatrix} = A$$

• Example 2

Consider a square matrix

$$A := \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

The characteristic polynomial is

$$\phi_A(t) = \begin{vmatrix} 1-t & 0 & -1 \\ 1 & 2-t & 1 \\ 2 & 2 & 3-t \end{vmatrix} = (1-t)(2-t)(3-t),$$

5

which means that $\lambda_1 := 1$, $\lambda_2 := 2$, $\lambda_3 := 3$ are the eigenvalues of A

• Solving $Av = \lambda_1 v$ for v yields

$$\begin{bmatrix} 1-1 & 0 & -1 \\ 1 & 2-1 & 1 \\ 2 & 2 & 3-1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{0} \iff \begin{bmatrix} v_2 = -v_1 \\ v_3 = 0 \end{bmatrix} \iff \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \forall \alpha \in \mathbb{R}$$

so we choose the following v_1 as an eigenvector associated with λ_1 :

$$v_1 := egin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}$$

• Solving $Av = \lambda_2 v$ for v yields

$$\begin{bmatrix} 1-2 & 0 & -1 \\ 1 & 2-2 & 1 \\ 2 & 2 & 3-2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{0} \iff v_1 = -2v_2 \\ v_3 = -v_1 \iff \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \alpha \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \quad \forall \alpha \in \mathbb{R}$$

so we choose the following v_2 as an eigenvector associated with λ_2 :

$$v_2 := egin{bmatrix} -2 \ 1 \ 2 \end{bmatrix}$$

• Solving $Av = \lambda_3 v$ for v yields

$$\begin{bmatrix} 1-3 & 0 & -1 \\ 1 & 2-3 & 1 \\ 2 & 2 & 3-3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{0} \iff \begin{aligned} v_2 &= -v_1 \\ v_3 &= -2v_1 \end{aligned} \iff \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \forall \alpha \in \mathbb{R} \end{aligned}$$

so we choose the following v_3 as an eigenvector associated with λ_3 :

$$v_3 := \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$

Define

$$m{V} := egin{bmatrix} m{v}_1 & m{v}_2 & m{v}_3 \end{bmatrix} = egin{bmatrix} 1 & -2 & 1 \ -1 & 1 & -1 \ 0 & 2 & -2 \end{bmatrix}, \quad m{\Lambda} := egin{bmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{bmatrix}$$

Then

$$V^{-1} = \begin{bmatrix} 0 & -1 & 1/2 \\ -1 & -1 & 0 \\ -1 & -1 & -1/2 \end{bmatrix}$$

and therefore

$$V\Lambda V^{-1} = \begin{bmatrix} 1 & -2 & 1 \\ -1 & 1 & -1 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1/2 \\ -1 & -1 & 0 \\ -1 & -1 & -1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix} = A$$

6

• Example 3

Consider a square matrix

$$A := \begin{bmatrix} 5 & 4 \\ -1 & 1 \end{bmatrix}$$

The characteristic polynomial is

$$\phi_A(t) = \begin{vmatrix} 5 - t & 4 \\ -1 & 1 - t \end{vmatrix} = (3 - t)^2$$

which means that $\lambda_1 := 3$ is the unique eigenvalue of A

• Solving $Av = \lambda_1 v$ for v yields

$$\begin{bmatrix} 5-3 & 4 \\ -1 & 1-3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \mathbf{0} \iff v_1 = -2v_2 \iff \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \alpha \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \forall \alpha \in \mathbb{R},$$

meaning that we can only choose one linearly independent eigenvector

• Matrix *A* is not diagonalizable

• Example 4

Consider a square matrix

$$A := \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 5 \end{bmatrix}$$

The characteristic polynomial is

$$\phi_A(t) = \begin{vmatrix} 1 - t & 3 & 0 \\ 0 & 1 - t & 0 \\ 2 & 1 & 5 - t \end{vmatrix} = (1 - t)^2 (5 - t)$$

which means that $\lambda_1 := 1$, $\lambda_2 := 5$ are the eigenvalues of A

• Solving $Av = \lambda_1 v$ for v yields

$$\begin{bmatrix} 1-1 & 3 & 0 \\ 0 & 1-1 & 0 \\ 2 & 1 & 5-1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{0} \iff v_2 = 0 \\ v_1 = -2v_3 \iff \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \alpha \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \quad \forall \alpha \in \mathbb{R}$$

so we choose the following v_1 as an eigenvector associated with λ_1 :

$$oldsymbol{v}_1 := egin{bmatrix} 2 \ 0 \ -1 \end{bmatrix}$$

• Solving $Av = \lambda_2 v$ for v yields

$$\begin{bmatrix} 1-5 & 3 & 0 \\ 0 & 1-5 & 0 \\ 2 & 1 & 5-5 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{0} \iff \frac{4v_1 = 3v_2}{v_2 = 0} \iff \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \alpha \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \forall \alpha \in \mathbb{R}$$

so we choose the following v_2 as an eigenvector associated with λ_1 :

$$v_2 := \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

7

Matrix A is not diagonalizable

• Example 5

Consider a square matrix

$$A := \begin{bmatrix} 1 & 0 & 0 \\ 6 & -2 & -6 \\ -2 & 1 & 3 \end{bmatrix}$$

The characteristic polynomial is

$$\phi_A(t) = \begin{vmatrix} 1-t & 0 & 0 \\ 6 & -2-t & -6 \\ -2 & 1 & 3-t \end{vmatrix} = -t(1-t)^2$$

which means that $\lambda_1 := 0$, $\lambda_2 := 1$ are the eigenvalues of A

• Solving $Av = \lambda_1 v$ for v yields

$$\begin{bmatrix} 1 - 0 & 0 & 0 \\ 6 & -2 - 0 & -6 \\ -2 & 1 & 3 - 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{0} \iff v_1 = 0 \\ v_2 = -3v_3 \iff \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \alpha \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}, \quad \forall \alpha \in \mathbb{R}$$

so we choose the following v_1 as an eigenvector associated with λ_1 :

$$v_1 := \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}$$

• Solving $Av = \lambda_2 v$ for v yields

$$\begin{bmatrix} 1 - 1 & 0 & 0 \\ 6 & -2 - 1 & -6 \\ -2 & 1 & 3 - 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{0} \iff v_1 = \frac{1}{2}v_2 + v_3 \iff \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \forall \alpha, \beta$$

so we choose the following as two linearly independent eigenvectors associated with λ_2 :

$$v_2 := egin{bmatrix} 1 \ 2 \ 0 \end{bmatrix}$$
 , $v_3 := egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}$

- Note that
 - A does not have 3 distinct eigenvalues
 - yet A has 3 linearly independent eigenvectors (one for λ_1 , two for λ_2)
 - we say that λ_1 and λ_2 has geometric multiplicity of 1 and 2, respectively
- In fact, *A* is diagonalizable by defining

$$m{V} := egin{bmatrix} m{v}_1 & m{v}_2 & m{v}_3 \end{bmatrix} = egin{bmatrix} 0 & 1 & 1 \ -3 & 2 & 0 \ 1 & 0 & 1 \end{bmatrix}, \quad m{\Lambda} := egin{bmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_2 \end{bmatrix} = egin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Then

$$V^{-1} = \begin{bmatrix} 2 & -1 & -2 \\ 3 & -1 & -3 \\ -2 & 1 & 3 \end{bmatrix}$$

and therefore

$$V\Lambda V^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ -3 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 3 & -1 & -3 \\ -2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 6 & -2 & -6 \\ -2 & 1 & 3 \end{bmatrix} = A$$

8