

Übungsblatt 8: Wärmeleitung in 2D (Robin RBn)

Aufgabe 1: Robin-Randbedingungen

1.1 Implementieren Sie die Funktionen

```
function keFunc = robinKe(h) ...
function reFunc = robinRe(h, ts) ...
```

zur Berücksichtigung von Robin-Randbedingungen. Dabei ist h der Wärmeübergangskoeffizient h=1/R (mit dem Wärmeübergangswiderstand R) und ts die vorgegebene Temperatur θ^* . Kontrollieren Sie Ihre Funktionen mithilfe der auf Moodle bereitgestellten Tests.

1.2 Überprüfen Sie ihr Programm für unterschiedliche Materialparameter und Robin-Randbedingungen anhand des Rechenbeispiels

Beispiel	ür den nachfolgend beschriebenen Aufbau einer Außenwand wird für die Lufttemperaturen $_{\rm i}=20$ C und $\theta_{\rm e}=-10$ C die Temperaturverteilung berechnet. Die wärmeschutztechnischen ennwerte der Wärmeübergangswiderstände und der Wärmeleitzahlen sind den Abschnitten .1 und 8.3 entnommen.:	
	Wandaufbau:	
	15 mm Innenputz 300 mm Porenbeton-Mauerwerk 20 mm Außenputz	$\begin{array}{l} \lambda = \ 0.7 \ \text{W/(m} \cdot \text{K)} \\ \lambda = 0.24 \ \text{W/(m} \cdot \text{K)} \\ \lambda = 0.87 \ \text{W/(m} \cdot \text{K)} \end{array}$
	Wärmewiderstände:	
	Wärmeübergangswiderstand an der Innenseite: Wärmedurchlasswiderstand des Innenputzes: Wärmedurchlasswiderstand des Mauerwerks: Wärmedurchlasswiderstand des Außenputzes: Wärmeübergangswiderstand an der Außenseite:	$\begin{array}{ll} R_{si} &= 0,13 \ m^2 \cdot \text{K/W} \\ R_1 = & 0,015/0,7 = 0,02 \ m^2 \cdot \text{K/W} \\ R_2 = & 0,030/0,24 = 1,25 \ m^2 \cdot \text{K/W} \\ R_3 = & 0,02/0,87 = 0,02 \ m^2 \cdot \text{K/W} \\ R_{se} &= 0,04 \ m^2 \cdot \text{K/W} \end{array}$
	Wärmedurchgangswiderstand	$R_{\rm T} = 1,46 \text{ m}^2 \cdot \text{K/W}$
	Wärmestromdichte:	$q = \frac{(20,0+10,0)}{1,46} = 20,55 \text{ W/m}^2$
	Temperaturen:	
	$\begin{array}{l} \theta_i = 20.0 \text{ °C} \\ \theta_{si} = 20.0 - 0.13 \cdot 20.55 = 17.3 \text{ °C} \\ \theta_1 = 17.3 - 0.02 - 20.55 = 16.9 \text{ °C} \end{array}$	$\begin{array}{l} \theta_2 = 16.9 - 1.25 \cdot 20.55 = -8.8 \text{ °C} \\ \theta_{se} = -8.8 - 0.02 \cdot 20.55 = -9.2 \text{ °C} \\ \theta_{e} = -9.2 - 0.04 \cdot 20.55 = -10.0 \text{ °C} \end{array}$

aus Fischer et al. (2008): Lehrbuch der Bauphysik.

Tipp: Verwenden Sie die Methode m.findNodeAt(x1, x2), um die Nummer eines Knotens an der Position (x_1, x_2) herauszusuchen.

1.3 Berechnen Sie die Temperaturverteilung für eine praxisnahe Wärmebrücke.

1.4 Zusatzaufgabe (nicht einfach): Implementieren Sie eine Funktion

```
function uh = interpolant(nodes, elements, uHat)
```

mit der die Näherungslösung als Funktion bestimmt wird. Hier eine mögliche Anwendung für die Kreisplatte (plottet den Verlauf der Näherungslösung entlang der x-Achse):

```
n = 50;
uh = interpolant(m.nodes, m.elements, thetaHat);
x1 = linspace(-2.2, 2.2, n);
x2 = zeros(1, n);
plot(x1, uh(x1, x2))
```

Vorschlag für Hilfsfunktionen

Testen, ob der Punkt ${\tt p}$ im Dreieck mit den Eckpunkten ${\tt x}$ liegt:

```
function b = isInsideTriangle(p, x)
```

Nummer des Elements herauszusuchen, das den Punkt p enthält:

```
function e = findElement(p, nodes, elements)
```

Elementfunktionen des Dreiecks mit den Eckpunkten \mathbf{x} an der Stelle \mathbf{p} auswerten:

```
function v = elementFunctions(p, x)
```