Xiang Ji, Ph.D.

Last Updated on 02/05/2025

Assistant Professor, Department of Mathematics Tulane University, New Orleans, LA, 70118

xji4@tulane.edu • GitHub @ xji3

Personal Website: http://xiang-ji-ncsu.github.io/

Google Scholar: https://scholar.google.com/citations?user=YH4BbIMAAAAJ&hl=en

Doctor of Philosophy in Bioinformatics and Statistics (Co-Major)

December

EDUCATION

North Carolina State University, Raleigh, NC Dissertation: Phylogenetic Approaches for Quantifying Interlocus Gene Conversion Committee: Jeffrey Thorne, Eric Stone, Nadia Singh, and Sujit Ghosh Master of Science in Material Science and Engineering North Carolina State University, Raleigh, NC 2013

Thesis: Laser Interference Lithography for Fabrication of Gas Sensors Committee: John Muth, Lew Reynolds, Michael Kudenov, and Jon-Paul Maria

Bachelor of Science in Economics (Double Major)

July 2011

Peking University, Beijing, China

Bachelor of Science in Physics

July 2011

Peking University, Beijing, China Advisor: Jia-sen Zhang

APPOINTMENTS

Faculty Investigator	November 2024 – Present
Tulane Biostatistics and Bioinformatics Core, Tulane University, New Orleans, LA	
Faculty Member	October 2021 – Present
Cancer Center, Tulane University, New Orleans, LA	
Assistant Professor	July 2020 – Present
Department of Mathematics, Tulane University, New Orleans, LA	
Postdoctoral Fellow	January 2018 – July 2020

RESEARCH INTERESTS

University of California, Los Angeles, CA

Multigene family evolution; cancer systems biology; phylogenetics with large data sets; development of statistical techniques and software

PUBLICATIONS

- 47. Baele, G., **Ji, X.**, Hassler, G. W., McCrone, J. T., Shao, Y., Holbrook, A. J., Lemey, P., Drummond, A., Rambaut, A., Suchard, M. A. (2025) BEAST X for Bayesian phylogenetic, phylodynamic and phylogeographic inference. *accepted at Nature Methods*
- 46. Pekar, J., et al., (2025) The recency and geographical origins of the bat viruses ancestral to SARS-CoV and SARS-CoV-2. Accepted at *Cell*
- 45. Jiang, Z., Yan, Z., Hou, Y., Tang, J., Zheng, M., Lu, M., **Ji, X.**, Gangavarapu, G., Li, X., and Su, S., (2025). The RodentGPOmics Atlas: a comprehensive database of rodent biology for genomes and pathogens. *Nucleic Acids Research*.
- 44. Kang, M., Wang, L.F., Sun, B.W., Wan, W.B., **Ji, X.**, Baele, G., Bi, Y.H., Suchard, M.A., Lai, A., Zhang, M., ... Su, S., (2024). Zoonotic infections by avian influenza virus: changing global epidemiology, investigation, and control. *The Lancet Infectious Diseases*.
- 43. Magee, A. F., Holbrook, A. J., Pekar, J. E., Caviedes-Solis, I. W., Matsen IV, F. A., Baele, G., Wertheim, J. O., **Ji, X.**, Lemey, P., and Suchard, M. A., (2024). Random-effects substitution models for phylogenetics via scalable gradient approximations. *Systemic Biology*.
- 42. Yang, J., Schuemie, M.J., **Ji, X.** and Suchard, M.A., (2024). Massive parallelization of massive sample-size survival analysis. *Journal of Computational and Graphical Statistics*, *33*(1), pp.289-302.
- 41. Gangavarapu, K., **Ji, X.**, Baele, G., Fourment, M., Lemey, P., Matsen IV, F.A. and Suchard, M.A., (2024). Many-core algorithms for high-dimensional gradients on phylogenetic trees. *Bioinformatics*, 40(2), p.btae030.
- Huang, S., He, J., Yu, L., Guo, J., Jiang, S., Sun, Z., Cheng, L., Chen, X., Ji, X. and Zhang, Y.,
 (2024). ASTK: A Machine Learning-Based Integrative Software for Alternative Splicing Analysis. Advanced Intelligent Systems, p.2300594.
- 39. Fisher, A., **Ji, X.**, Nishimura, A., & Suchard, M. A. (2023) Shrinkage-based random local clocks with scalable inference. *Molecular Biology and Evolution*, 40(11), msad242.
- 38. **Ji, X.,** Fisher, A. A., Su, S., Thorne, J. L., Potter, B., Lemey, P., Baele, G., & Suchard, M. A., (2023) Scalable Bayesian divergence time estimation with ratio transformations. *Systematic Biology*, syad039, arXiv preprint arXiv:2110.13298.
- 37. Yang, Y., Xu, T., Conant, G., Kishino, H., Thorne, J.L. and **Ji, X.**, (2023) Interlocus Gene Conversion, Natural Selection, and Paralog Homogenization. *Molecular Biology and Evolution*, msad198.
- 36. Matteson, N. L., et al., (2023) Genomic surveillance reveals dynamic shifts in the connectivity of COVID-19 epidemics. *Cell*, 186(26), pp.5690-5704.
- 35. He, W.T., Li, D., Baele, G., Zhao, J., Jiang, Z., **Ji, X.**, Veit, M., Suchard, M.A., Holmes, E.C., Lemey, P., Boni, M.F. and Su, S., (2023) Newly identified lineages of porcine hemagglutinating encephalomyelitis virus exhibit respiratory phenotype. *Virus Evolution*, 9(2), p.vead051.
- 34. Zhang, Z., Nishimura, A., Trovão, N.S., Cherry, J.L., Holbrook, A.J., **Ji, X.**, Lemey, P. and Suchard, M.A., (2023) Accelerating Bayesian inference of dependency between mixed-type biological traits. *PLOS Computational Biology*, *19*(8), p.e1011419.

- 33. Zhao, J., Kang, M., Wu, H., Sun, B., Baele, G., He, W.T., Lu, M., Suchard, M.A., **Ji, X.**, He, N. and Su, S., (2023) Risk assessment of SARS-CoV-2 replicating and evolving in animals. *Trends in Microbiology*.
- 32. Zhao, J., Dellicour, S., Yan, Z., Veit, M., Gill, M.S., He, WT, Zhai, X., **Ji, X.**, Suchard, M.A., Lemey, P. and Su, S., (2023) Early Genomic Surveillance and Phylogeographic Analysis of Getah Virus, a Reemerging Arbovirus, in Livestock in China. *Journal of Virology*, 97(1), pp.e01091-22.
- 31. Tsui, L.H., et al., (2023) Genomic assessment of invasion dynamics of SARS-CoV-2 Omicron BA. 1. *Science*, 381(6655), pp.336-343.
- Hassler, G.W., Magee, A.F., Zhang, Z., Baele, G., Lemey, P., Ji, X., Fourment, M. and Suchard, M.A., (2023) Data Integration in Bayesian Phylogenetics. *Annual Review of Statistics and Its Application*, 10, pp.353-377.
- 29. Fisher, A. A., Hassler, G. W., **Ji, X.**, Baele, G., Suchard, M. A., & Lemey, P. (2022) Scalable Bayesian phylogenetics. *Philosophical Transactions of the Royal Society B*, 377.1861(2022): 20210242.
- 28. Zhao, J., Dellicour, S., Yan, Z., Veit, M., Gill, M.S., He, WT, Zhai, X., **Ji, X.**, Suchard, M.A., Lemey, P. and Su, S., (2022) Early Genomic Surveillance and Phylogeographic Analysis of Getah Virus, a Reemerging Arbovirus, in Livestock in China. *Journal of Virology*, pp.e01091-22.
- 27. Holbrook, A. J., **Ji, X.**, & Suchard, M. A. (2022) From viral evolution to spatial contagion: a biologically modulated Hawkes model. *Bioinformatics*, 38(7), pp.1846-1856. arXiv:2103.03348 [stat.ME]
- 26. McCrone, J.T., Hill, V., Bajaj, S. et al. (2022) Context-specific emergence and growth of the SARS-CoV-2 Delta variant. *Nature*, 610(7930), pp.154-160.
- 25. He, W., et al., (2022). Virome characterization of game animals in China reveals a spectrum of emerging pathogens. *Cell*, 185(7), 1117-1129.
- Tian, J., Sun, J., Li, D., Wang, N., Wang, L., Zhang, C., Meng, X., Ji, X., Suchard, M. A., Zhang, X., Lai, A., Su, S., & Veit, M. (2022) Emerging viruses: Cross-species transmission of Coronaviruses, Filoviruses, Henipaviruses and Rotaviruses from bats. *Cell Reports*
- 23. Zhao, J., Sun, J., Li, X., Xing, G., Zhang, Y., Lai, A., Baele, G.*, Ji, X.*, Su, S.* (2022). Divergent Viruses Discovered in Swine Alter the Understanding of Evolutionary History and Genetic Diversity of the Respirovirus Genus and Related Porcine Parainfluenza Viruses. *Microbiology Spectrum*, 10(3), pp.e00242-22. *Senior author
- 22. He, W., et al., (2022) Phylogeography reveals association between swine trade and the spread of porcine epidemic diarrhea virus in China and across the world. *Molecular Biology and Evolution*, 39(2), msab364
- 21. Fan, Y., et al. (2022). Systematic analysis of inflammation and pain pathways in a mouse model of gout. *Molecular Pain*, 18, 17448069221097760.
- 20. Xie, S., et al. (2022). Disrupted myelination network in the cingulate cortex of Parkinson's disease. *IET Systems Biology*, 16(3-4), pp.98-119.
- 19. Holbrook, A. J., **Ji, X.**, & Suchard, M. A. (2022) Bayesian mitigation of spatial coarsening for a fairly flexible spatiotemporal Hawkes model. *Annals of Applied Statistics*, 16 (1), 573-595.

- 18. Holbrook, A. J., Nishimura, A., **Ji, X.**, & Suchard, M. A. (2021). Computational Statistics and Data Science in the Twenty-first Century. *Wiley StatsRef: Statistics Reference Online*. arXiv preprint arXiv:2204.05530.
- 17. Lemey, P., et al., (2021) Untangling introductions and persistence in COVID-19 resurgence in Europe. *Nature*, 595 (7869), 713-717.
- 16. Landeros, A., **Ji, X.**, Lange, K., Stutz, T. C., Xu, J., Sehl, M. E., & Sinsheimer, J. S. (2021) An examination of school reopening strategies during the SARS-CoV-2 pandemic. *PloS One*, 16(5), e0251242.
- 15. Zhang, Z., Nishimura, A., Bastide, P., **Ji, X.**, Payne, R. P., Goulder, P., ... & Suchard, M. A. (2021). Large-scale inference of correlation among mixed-type biological traits with phylogenetic multivariate probit models. *The Annals of Applied Statistics*, 15(1), 230-251.
- 14. Lindelof, K., Lindo, J. A., Zhou, W., **Ji, X.**, & Xiang, Q. Y. J. (2020) Phylogenomics, biogeography, and evolution of the blue- or white-fruited dogwoods (Cornus) insights into morphological and ecological niche divergence following intercontinental geographic isolation. *Journal of Systematics and Evolution*, 58(5), pp.604-645.
- 13. Sun, J., He, W. T., Wang, L., Lai, A., **Ji, X.**, Zhai, X., ... & Veit, M. (2020). COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. *Trends in Molecular Medicine*, 26(5), pp.483-495.
- 12. He, W.*, **Ji**, **X.***, He, W. *, Dellicour, S. *, ..., & Su, S. (2020) Genomic epidemiology, evolutionary dynamics, and transmission patterns of porcine deltacoronavirus. *Molecular Biology and Evolution*, 37(9), pp.2641-2654. *equal contribution
- Ji, X., Zhang, Z., Holbrook, A., Nishimura, A., Baele, G., Rambaut, A., Lemey, P., & Suchard, M. A. (2020) Gradients do grow on trees: a linear-time O(N)-dimensional gradient for statistical phylogenetics. *Molecular Biology and Evolution*, 37(10), pp.3047-3060. arXiv:1905.12146 [stat.CO]
- 10. Fisher, A., **Ji, X.**, Zhang, Z., Lemey, P., & Suchard, M. A. (2020) Relaxed random walks at scale. *Systematic Biology*, 70(2), pp.258-267. arXiv:1906.04834[q-bio.PE]
- 9. Blestsa, M., Suchard, M. A., **Ji, X.**, Gryseels, S., Vrancken, B., Baele, G., Worobey, M., & Lemey, P. (2019) Divergence dating using mixed effects clock modelling: an application to HIV-1. *Virus Evolution*, 5(2), vez036.
- 8. Li, G., Zhang, W., Wang, R., Xing, G., Wang, S., **Ji, X.**, ... & Zhou, J. (2019). Genetic Analysis and Evolutionary Changes of the Torque teno sus Virus. *International journal of molecular sciences*, 20(12), 2881.
- 7. Zhou, W., **Ji, X.**, Obata, S., Pais, A., Dong, Y., Peet, R., & Xiang, Q., (2018) Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling. *Molecular Phylogenetic and Evolution*, 126, 1-16.
- 6. **Ji, X.** (2017). Phylogenetic approaches for quantifying interlocus gene conversion. Doctoral Dissertation
- 5. **Ji, X.**, Griffing, A., & Thorne, J. L. (2016). A phylogenetic approach finds abundant interlocus gene conversion in yeast. *Molecular Biology and Evolution*, 33(9), 2469-2476.

- 4. Wang, K., Yu, S., **Ji, X.**, Lakner, C., Griffing, A., & Thorne, J. L. (2015). Roles of Solvent Accessibility and Gene Expression in Modeling Protein Sequence Evolution. *Evolutionary Bioinformatics*, 11, 85.
- 3. Ji, X. (2013). Laser Interference Lithography for Fabrication of Gas Sensors. Master Thesis
- 2. Han, X., **Ji, X.**, Wen, H., & Zhang, J. (2012). H-shaped resonant optical antennas with slot coupling. *Plasmonics*, 7(1), 7-11.
- 1. Xiao, G., **Ji, X.**, Gao, L., Wang, X., & Zhou, Z. (2012). Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide. *Frontiers of Optoelectronics*, 5(1), 63-67.

Articles in Submission and Preparation

- 6. Baele, G., Carvalho, L. M., Brusselmans, M., Dudas, G., **Ji, X.**, McCrone, J. T., Lemey, P., Suchard, M. A. and Rambaut, A. (2024) HIPSTR: highest independent posterior subtree reconstruction in TreeAnnotator X. *In review with Bioinformatics*
- Cong, F., Bao, H., Wang, X., Tang, Y., Bao, Y., Poulton, J., Liu, X., Wong, A., Ji, X. and Deng, W. (2024) Gut Bacterial Translocation Promotes Tumor-Associated Mortality by Inducing Immune-Activated Renal Damage. *In review with Immunity*
- 4. Niu, Q., Jiang, Z., Wang, L., **Ji, X.**, Baele, G., Qin, Y., Lin, L., Lai, A., Chen, Y., Veit, M. and Su, S. (2024) Avian influenza virus: recent advances in diagnostics and mitigation strategies. *In revision with Nature Communications*
- 3. Bao, Y., Deng, W., Su, S., Lemey, P., Suchard, M. A., Glatt-Holtz, N.*, & **Ji, X.*** (2024) Reflection Hamiltonian Monte Carlo for divergence time estimations. *Senior author. *In preparation*
- 2. **Ji, X.**, Redelings, B., Su, S., Deng, W., Thorne, J. L., Lemey, P., & Suchard, M. A. (2024) Branch-specific substitution models for identifying natural selection differences via shrinkage priors. *In preparation*
- 1. **Ji, X.**, Thorne, J. L. (2024) A phylogenetic approach disentangles the tract length and initiation rate of interlocus gene conversions. *In wait/delay for submission*, arXiv:1908.08608 [q-bio.PE]

TEACHING EXPERIENCE

Assistant Professor

Department of Mathematics, Tulane University, New Orleans, LA

Summary: I regularly teach graduate-level Math 7260 (Linear Models) and Math 7360 (Data Analyses, a Tulane version of statistical learning), and undergraduate-level Math 3070 (Intro to Probability). Periodically, I teach Math 1230 Stats for Scientists, which is designed for students with non-math majors.

- Spring 2025
 - o Math 6040/7260 Linear Models (3 credits)

GitHub site: https://tulane-math-7260-2025.github.io/

Level: Graduate (Master + Ph.D.)

Topics: Simple and multiple linear regressions, hypothesis testing, analysis of variance, bootstrap, logistic regression

Enrollment: 7

• Fall 2024

o Math 1230 Stats for Scientists (3 credits)

Level: Undergraduate

Topics: Probability, random variable, discrete and continuous distributions, sampling distributions, one and two-sample estimations, hypothesis testing, simple linear regression

Enrollment: 62

o Math 3070/6070 Intro to Probability (3 credits)

GitHub site: https://tulane-math-3070-2024.github.io/

Level: Undergraduate, Graduate (Master)

Topics: Axioms of probability, discrete and continuous random variables, multivariate distributions, expectation, limit theorem

Enrollment: 33

Spring 2024

Teaching Relief

• Fall 2023

o Math 7360 Data Analysis (3 credits)

GitHub site: https://tulane-math-7360-2023.github.io/

Level: Graduate (Master + Ph.D.)

Topics: R, RMarkdown, Rcpp, git, data visualization using ggplot2, web scraping, linear models, generalized linear models, neural network, classification

Enrollment: 22

o Math 3070/6070 Intro to Probability (3 credits)

GitHub site: https://tulane-math-3070-2023.github.io/

Level: Undergraduate, Graduate (Master)

Topics: Axioms of probability, discrete and continuous random variables, multivariate distributions, expectation, limit theorem

Enrollment: 48

Spring 2023

o Math 6040/7260 Linear Models (3 credits)

GitHub site: https://tulane-math-7260-2023.github.io/

Level: Graduate (Master + Ph.D.)

Topics: Simple and multiple linear regressions, hypothesis testing, analysis of variance, bootstrap, logistic regression

Enrollment: 13

o Math 7980 Independent Study (3 credits)

Level: Graduate (Master)

Topics: Item response theory models

Enrollment: 1

• Fall 2022

o Math 3070/6070 Intro to Probability (3 credits)

GitHub site: https://tulane-math-3070-2022.github.io/

Level: Undergraduate, Graduate (Master)

Topics: Axioms of probability, discrete and continuous random variables, multivariate distributions, expectation, limit theorem

Enrollment: 37

Math 1230 Stats for Scientists (3 credits)

Level: Undergraduate

Topics: Probability, random variable, discrete and continuous distributions, sampling distributions, one and two-sample estimations, hypothesis testing, simple linear regression

Enrollment: 66

Math 7980 Independent Study (3 credits)

Level: Graduate (Ph.D.)

Topics: Bayesian Phylogenetics

Enrollment: 1

Spring 2022

o Math 6040/7260 Linear Models (3 credits)

GitHub site: https://tulane-math-7260-2022.github.io/

Level: Graduate (Master + Ph.D.)

Topics: Simple and multiple linear regressions, hypothesis testing, analysis of variance, bootstrap, logistic regression

Enrollment: 16

Math 7980 Independent Study (3 credits)

Level: Graduate (Master)

Topics: Review of optimization methods

Enrollment: 1

• Fall 2021

o Math 7360 Data Analysis (3 credits)

GitHub sites: https://tulane-math-7360-2021.github.io/

Level: Graduate (Master + Ph.D.)

Topics: R, RMarkdown, Rcpp, git, data visualization using ggplot2, web scraping, linear models, generalized linear models, neural network, classification

Enrollment: 19

• Spring 2021

o Math 6040/7260 Linear Models (3 credits)

GitHub site: https://tulane-math-7260-2021.github.io/

Level: Graduate (Master + Ph.D.)

Topics: Simple and multiple linear regressions, hypothesis testing, analysis of variance, bootstrap, logistic regression

Enrollment: 17

• Fall 2020

o Math 7360 Data Analysis (3 credits)

GitHub site: https://tulane-math7360.github.io/

Level: Graduate (Master + Ph.D.)

Topics: R, RMarkdown, Rcpp, git, data visualization using ggplot2, web scraping, linear models, generalized linear models, neural network, classification

Enrollment: 12

STUDENT ADVISING

Co-Supervisor (Doctoral)	2024 –
Department of Microbiology and Immunology, The University of Melbourne	Present
Melbourne, Australia	
Student name: John Tay	
Supervisor: Sebastian Duchene	
Research Title: TBD	
Committee Chair (Doctoral)	2023 –
Department of Mathematics, Tulane University, New Orleans, LA	Present
Student name: Yufei Zou	
Research Title: Evolutionary inference with interlocus gene conversion	
Committee Chair (Doctoral)	2022 –
Department of Mathematics, Tulane University, New Orleans, LA	Present
Student name: Yuwei Bao	
Research Title: Reflective Hamiltonian Monte Carlo method	
Prospectus Exam Committee Chair (Doctoral)	2024
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Yuwei Bao	
Research title: Scalable Bayesian statistical phylogenetics models	
Dissertation Defense Committee Member (Doctoral)	2024
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Daniela A. Florez Pineda	
Chair: Ricardo Cortez	
Oral Exam Committee Member (Doctoral)	2024
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: John V. Argentino	
Chair: Michelle Lacey	
Prospectus Exam Committee Member (Doctoral)	2024
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Daniela A. Florez Pineda	
Chair: Ricardo Cortez	
• Research title: Mathematical models for transmission and control of mosquito-borne	
diseases	
Prospectus Exam Committee Member (Doctoral)	2023
Department of Mathematics, Tulane University, New Orleans, LA	
• Student name: Linh Do	
Chair: Scott McKinley	

• Research title: Statistical techniques for comparing populations of continuous	
piecewise-linear stochastic processes	
Oral Exam Committee Member (Doctoral)	2023
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Moslem Uddin	
Chair: Lisa Fauci	
Oral Exam Committee Chair (Doctoral)	2023
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Yuwei Bao	
Chair: Xiang Ji	
Oral Exam Committee Member (Doctoral)	2023
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Sinchita Lahiri	
Chair: Kyle Kun Zhao	
Oral Exam Committee Member (Doctoral)	2022
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Linh Do	
Chair: Scott McKinley	
Oral Exam Committee Member (Doctoral)	2022
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Daniela A. Florez Pineda	
Chair: Ricardo Cortez	
Independent Study Advisor (Master)	2022
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Paul Pluscht	
Project topic: Review of optimization methods	
Undergraduate Research Advisor (Undergraduate)	2020 –
Department of Statistics, North Carolina State University, Raleigh, NC	2022
Student name: Yixuan Yang	
Co-advisor: Jeffrey L. Thorne	
Research topic: Quantifying interlocus gene conversion and natural selection	
Undergraduate Research Advisor (Undergraduate)	2021
Department of Mathematics, Tulane University, New Orleans, LA	
Student name: Jiayun Ling	
Co-advisor: Xin Jiang	
• Research topic: Item response theory model, Add Health data, social science	
MENTEE ACHIEVEMENTS	
Megan (Jiayun) Ling (undergraduate research advisor)	2021
Oral presentation at ASA Louisiana Chapter meeting in 2021	
Graduated from master's program in Data Analytics of Duke University	

• Now working as Data Analyst at Blizzard Entertainment

Yuwei Bao (PhD thesis advisor)

2022 -

• Oral presentation at ASA Louisiana Chapter meeting in 2022

- Present
- Oral presentation at Tulane Math Graduate Student Colloquium in 2022
- Oral presentation at Evolution Meeting 2023
- Oral presentation at Scientific Computing Around Louisiana Meeting 2023
- Oral presentation at Math for All in Nola meeting 2023
- Poster presentation at New England Statistical Symposium 2024
- Poster presentation at Pharmaceutical Data Science Conference online 2024
- Poster presentation at ASA Conference on Statistical Practice 2024
- Tuition Scholarship & Travel Award at Summer Institute in Statistical Genetics 2023
- Travel Award from Society for Study of Evolution at Evolution Meeting 2023
- Summer Research Fund from Math Department at Tulane University 2023
- Travel Award from Graduate Studies Student Association at Tulane University 2023
 & 2024
- Student Poster Award at New England Statistical Symposium 2024
- FDA-OCE-ASA Oncology Educational Fellow 2024
- Internship at Moderna Spring 2025

Yufei Zou (undergraduate research & PhD thesis advisor)

2022 -

Tuition Scholarship & Travel Award at Summer Institute in Statistical Genetics 2023 Present

AWARDS

HPC Fund Research Cloud Allocation Award ¹	AMD Corporation	2023
NVIDIA Academic Hardware Grant ²	NVIDIA Corporation	2022
Tuition Scholarship	SISMID ³	2018
NIEHS Fellowship ⁴	North Carolina State University	2015
SAMSI Graduate Fellow	SAMSI ⁵	2014
Tuition Scholarship	${ m SISG^6}$	2013
University Graduate Fellowship	North Carolina State University	2011

FUNDED PROJECTS

External

Louisiana Board of Regents Research Competitiveness Subprogram

07/01/23 -

• Title: Molecular epidemiology through scalable statistical phylogenetic Modelling

06/30/26

¹ 1,080 node hours (targeting 4 MI100 GPUs/node)

² Donation of one A100 80Gb PCIE GPU card

³ SISMID: Summer Institute in Statistics and Modeling in Infectious Diseases at the University of Washington at Seattle

⁴ The funds were matched through North Carolina State University

⁵ SAMSI: The Statistical and Applied Mathematical Sciences Institute

⁶ SISG: Summer Institute in Statistical Genetics at the University of Washington at Seattle

Principle Investigator: Xiang Ji	
• Total Amount: \$159,000	
• Direct Cost: \$159,000	
National Science Foundation	05/01/23 -
• Title: Evolutionary inference with interlocus gene conversion	07/31/24
Principle Investigator: Jeffrey L. Thorne	
Co-Investigator: Xiang Ji	
• Award number: DEB1754142	
• Total Amount: \$564,338	
• Shared Amount: \$94,351	
National Institute of Health	07/01/22 -
• Title: Statistical innovation to integrate sequences and phenotypes for scalable	03/31/25
phylodynamic inference	
Principle Investigator: Marc A. Suchard	
Subaward Investigator: Xiang Ji	
• Award number: R01AI153044	
• Total Amount: \$2,321,335	
• Shared Amount: \$117,259	
National Institute of Health	04/01/22 -
• Title: Notch signaling and germline-soma interactions in <i>Drosophila</i> ovarian	03/31/27
model	
Principle Investigator: Wu-Min Deng	
Co-Investigator: Xiang Ji	
• Award number: R01GM072562	
• Total Amount: \$ 2,432,208	
• Shared Amount: \$86,460	
National Institute of Health	02/01/20 -
 Title: Consortium for viral systems biology (CViSB) 	01/31/22
Principle Investigator: Robert F. Garry	
Co-Investigator: Xiang Ji	
Award number: U19AI135995	
• Total Amount: \$1,143,554	
• Shared Amount: \$51,774	
Internal	
Tulane University CoR Research Fellowship	05/01/23 -
Title: Scalable molecular epidemiology models	05/31/24
Principle Investigator: Xiang Ji	
• Total Amount: \$5,500	

SUBMITTED PROPOSALS

National Institute of Health	
 Title: Statistical innovation to integrate sequences and phenotypes for 	
scalable phylodynamic inference	
 Principle Investigator: Marc A. Suchard 	
 Subaward Investigators: Xiang Ji 	
• Total Amount: \$1,833,000	
• Shared Amount: \$204,805	
Status: In preparation	
National Institute of Health	2025
• Title: COBRE for Basic and Translational Research in Cancer (BATRIC)	
Principle Investigator: Wu-Min Deng	
Core Co-Director: Xiang Ji	
• Total Amount: \$11,420,264	
• Shared Amount: \$86,460	
Status: Pending	
National Science Foundation	2025
• Title: FEC: Identifying factors that mitigate the effect of poverty on child	
brain development using computational neural fingerprinting techniques	
 Principle Investigator: Yu-ping Wang 	
Co-Investigators: Xiang Ji	
• Total Amount: \$4,000,000	
• Shared Amount: \$20,000	
Status: Pending	
National Institute of Health	2025
Title: Scalable statistical advances to quantify interlocus gene conversion	
in multigene family evolution	
Principle Investigator: Xiang Ji	
Co-Investigators: None	
• Total Amount: \$1,833,000	
• Status: Pending	
National Science Foundation	2024
Title: Scalable phylogenomic inference through massively parallelized	
action-based BEAGLE library	
 Principle Investigator: Xiang Ji 	
 Co-Investigators: Robert F. Garry and Marc A. Suchard 	
• Total Amount: \$1,600,775	
Status: Pending	
National Institute of Health	2024

- Title: Tracking and controlling viral outbreaks through scalable biologically realistic phylodynamic integrations
- Principle Investigator: Xiang Ji
- Co-Investigators: Robert F. Garry and Marc A. Suchard
- Total Amount: \$2,693,909
- Status: Pending

National Institute of Health

2024

- Title: Characterizing intra- and inter-host Nov evolution using human challenge study samples
- Principle Investigator: Pengbo LiuSubaward Investigators: Xiang Ji
- Shared Amount: \$120,018
- Status: Pending

CONFERENCE PRESENTATIONS

Oral Presentations

- 6 **Ji, X.** (2023, June) Scalable phylogenetic inference with Hamiltonian Monte Carlo method. Evolution 2023 meeting, Albuquerque, NM
- 5 **Ji, X.** (2023, March) *Scalable phylogenetic inference*. SCALA 2023: Scientific Computing Around Louisiana, Tulane University, New Orleans, LA
- 4 **Ji, X.** (2021, August) *Divergence time estimation with Hamiltonian Monte Carlo sampling and ratio transform.* Invited speaker at 2nd AsiaEvo Conference, Online
- 3 **Ji, X.** (2021, July) *Divergence time estimation with Hamiltonian Monte Carlo sampling and ratio transform.* Society of Molecular Biology and Evolution Meeting, Online
- 2 **Ji, X.** (2018, September) *Large-scale molecular epidemiology for viruses: efficient algorithms and new models*. Oral session presented at the Taishan Forum on Viral Infectious Diseases, Taishan Medical University, Tai'an, Shandong Province, China
- 1 **Ji, X.** (2017, August) *Phylogenetic approaches for quantifying interlocus gene conversion.* Quest for Ortholog 5 Meeting, University of Southern California, Los Angeles, CA

Poster Presentations

- 2 **Ji, X.** (2017, July). *Phylogenetic approaches for quantifying interlocus gene conversion*. Society of Molecular Biology and Evolution Meeting, Austin, TX
- 1 **Ji, X.** (2014, June). A Phylogenetic approach for quantifying interlocus gene conversion. Evolution Meeting, Raleigh, NC

INVITED TALKS

14 Scalable phylogenetic Hamiltonian Monte Carlo method and its application in divergence time estimations

08/29/2024

Southeastern Louisiana University, Hammond, LA

13	Phylogenetic approach for estimating amounts of interlocus gene conversion in duplications	12/06/2023
	AMS/AWM at Tulane University, New Orleans, LA	
12	Scalable phylogenetic inference via Hamiltonian Monte Carlo method	02/03/2023
	Indiana University, Bloomington, IN	
11	Scalable phylogenetic algorithm, modeling, and inference	10/10/2022
	North Carolina State University, Raleigh, NC	
10	Smooth non-parametric coalescent priors for scalable divergence time estimations	10/05/2022
	AMS/AWM at Tulane University, New Orleans, LA	
9	Scalable modeling and inference for phylogenetics – from interlocus gene	12/04/2019
	conversion to evolving pathogens	
	Tulane University, New Orleans, LA	
8	Scalable modeling and inference for phylogenetics – from interlocus gene	11/04/2019
	conversion to evolving pathogens	
	Louisiana State University, Baton Rouge, LA	
7	Large-scale molecular epidemiology for viruses	11/08/2018
	University of California, Los Angeles, CA	
6	Phylogenetic approaches for quantifying interlocus gene conversion	09/18/2018
	Zhejiang University, Hangzhou, China	
5	Phylogenetic approaches for quantifying interlocus gene conversion	09/04/2018
	Chinese Academy of Sciences, Beijing, China	
4	Phylogenetic approaches for quantifying interlocus gene conversion	05/30/2018
	CGM Online	
3	Phylogenetic approaches for quantifying interlocus gene conversion	02/15/2018
	Duke University, Durham, NC	
2	Phylogenetic approaches for quantifying interlocus gene conversion	04/25/2017
	Temple University, Philadelphia, PA	
1	Phylogenetic approaches for quantifying interlocus gene conversion	03/24/2017
	North Carolina State University, Raleigh, NC	

SOFTWARE

IGCexpansion

- My software for studying interlocus gene conversion.
- Available at https://github.com/xji3/IGCexpansion.

IGC BEAST Tutorial

- A tutorial for the Bayesian method (under development) of quantifying interlocus gene conversion in BEAST.
- Available at https://github.com/xji3/IGC_BEAST_Tutorial.

BEAST

- I am a <u>developer</u> of the BEAST software.
- Available at https://github.com/beast-dev/beast-mcmc.

BEAGLE

- I am a <u>developer</u> of the BEAGLE library.
- Available at https://github.com/beagle-dev/beagle-lib.

bito

- I collaborate with a group of statisticians and programmers to help them use my linear-time gradient algorithm implementations for their variational Bayesian phylogenetics development.
- Available at https://github.com/phylovi/bito.

SYNERGISTIC ACTIVITIES

Grant Panelist

• I served as a guest panel member for the UK MRC Better Methods, Better Research (BMBR) Panel in 2023.

Professional service

- I serve as an Editorial Board member for *Discover Viruses* by *Springer Nature*.
- I serve as a Review Editor for Frontiers in Statistical Genetics and Methodology.
- I have reviewed manuscripts for
 - o Nature Medicine (2)
 - o Proceedings of National Academy of Sciences (2)
 - o Molecular Biology and Evolution (9)
 - Annals of Applied Statistics (2)
 - o Journal of Computational and Graphical Statistics (1)
 - o Theoretical Population Biology (1)
 - o Plos Pathogens (1)
 - o Microbiology Spectrum (1)
 - o IEEE/ACM Transactions on Computational Biology and Bioinformatics (1)
 - o Frontiers in Public Health (2)
 - o Frontiers in Virology (2)
 - o BMC Ecology and Evolution (1)
 - o Evolutionary Bioinformatics (2)
 - o International Journal of Data Mining and Bioinformatics (1)
 - o Rapid Reviews: COVID-19 (1)
 - Open Veterinary Journal (1)

Departmental service

- I led the development and establishment of a new Master of Science in Data Science program jointly hosted by the Math and Computer Science Departments at Tulane University.
- I served as the Director of Master Programs of the Math Department at Tulane University from Fall 2021 to Spring 2024.
- I served on the Graduate Study Committee of the Math Department at Tulane University from Fall 2021 to Spring 2024.

Outreach

- I participated in the LA FIRST Lego League State Championship as a volunteer judge in January 2023.
- I participated in Boys at Tulane in STEM (BATS) and Girls in STEM at Tulane (GIST), organized by Tulane Center for K-12 System Education
 - o Volunteer, Boys at Tulane in STEM (BATS), 03/18/2023
 - O Volunteer, Boys at Tulane in STEM (BATS), 09/16/2023
 - o Volunteer, Girls in STEM at Tulane (GiST), 11/04/2023
 - o Volunteer, Girls in STEM at Tulane (GiST), 03/09/2024
 - o Volunteer, Boys at Tulane in STEM (BATS), 04/13/2024
 - o Volunteer, Boys at Tulane in STEM (BATS), 09/21/2024
 - o Volunteer, Girls in STEM at Tulane (GiST), 10/26/2024
 - o Volunteer, Boys at Tulane in STEM (BATS), 02/01/2025
- I served as treasurer of the ASSIST⁷ Student Leadership Council in 2012 and 2013. I participated in the Magnet Fair at South Raleigh Magnet High School as an ASSIST center graduate representative in 2012.

⁷ ASSIST: The NSF Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies at NC State University