빅데이터 term project 보고서

2019147531 박윤정

전체적인 pipeline은 다음과 같습니다.

- Geographical clustering (using Meanshift clustering)
- Visual Clustering (extract features using VGG16 & Meanshift clustering)
- Using Tag information & additional input (landmark dictionary)

일단 guideline 대로 geographical matching -> visual matching -> using textual information을 하기로 했습니다. 이미지의 개수가 4851개로 양이 많아 geographical clustering으로 어느 정도 landmark들을 분류하는 게 낫다고 생각했기 때문입니다. 그런 다음, visual clustering을 통해 다른 landmark가 같은 geo-cluster에 있는 경우를 해결하고, 마지막으로 tag 정보를 사용해 visual clustering을 했음에도 다른 landmark가 같은 visual cluster에 있는 경우와, 같은 landmark가 다른 geo cluster에 있는 경우를 해결하고자 하였습니다.

Read Photo.csv file & Preprocessing

```
import os
from os.path import join
import matplotlib.pyplot as plt
from random import randint
import pickle
import re #pre-process tag data
import pandas as pd
import numpy as np

firstposition = os.getcwd()
print(os.getcwd())
```

C:\Users\dbw21\Desktop\jupyter-notebook

```
In [3]: photo_path = os.path.join(os.getcwd(),'Photos')
print(len(os.listdir(photo_path))) #4851 #127 = 4978
```

필요한 것들을 import해주고 Photos folder가 위치한 곳을 photo_path라고 하였습니다.

read CSV file

Pandas.read_csv를 통해 meta data를 읽어오고 이때 각 column을 photo_ID, user_ID, latitude, longtitude, datetime, -1로 읽어왔습니다.

Preprocessing csv file

- Photo_ID가 중복인 행을 제거
- Photos 폴더 안에 있는 사진들의 행만 남기기

Drop_duplicates를 사용하여 중복 행인 경우 처음의 행만 남기도록 하였습니다.

```
dictionary(photo_ID <-> index in dataframe)

In [9]:    photo_IDs = rmdup_metadata.photo_ID.values
    #print(type(photo_IDs))

#dictionary: index(key) --> photo_ID(value)
index_to_photoID = {}
for i in range(0, len(photo_IDs)):
    index_to_photoID[i] = photo_IDs[i]

#dictionary: index(value) <-- photo_ID(key)
photoID_to_index = {}
for i in range(0, len(photo_IDs)):
    photoID_to_index[photo_IDs[i]] = i</pre>
```

Photos 폴더안에 있는 이미지의 Photo_ID행만 남기기 위해, dataframe에서의 index가 key, photo_ID가 value인 "index_to_phtoID" 와 phto_ID가 key, index가 value인 "photoID_to_index" dictionary 2개를 만들었습니다.

Photos folder안에 있는 photo_ID만 남기기

```
In [10]: #Photos folder 안에 있는 것만 남기기

print(len(os.listdir(photo_path))) #4978
sub_photo_[D = []

# get photo_0 lo list in Photos folder
for index_filename in enumerate(os.listdir(photo_path)):
    if filename.endswith(".jpg"): #except folder. only image files
        file = filename.rstrip(".jpg")
        sub_photo_[D.append(Int(file))
    print(len(sub_photo_[D)) #4851

#Photos folder 안에 있는 photo_[D list를 dataframe에서 인덱스 list로
    sub_phto_[D_index = []
    for idx, i in enumerate(sub_photo_[D):
        index = photo[D_to_index[i]
        sub_phto_[D_index.append(index))

print(len(sub_phto_[D_index)) #4851

4978

4851

4851
```

Photos folder안에 있는 photo들의 photoID들을 sub_photo_ID에 저장하고 photoID_to_index를 이용해 photos folder안에 있는 photo ID를 dataframe에서 index로 구해 sub_phto_ID_index에 저장했습니다.

```
In [11]: new_df = rmdup_metadata.loc[[i for idx, i in enumerate(sub_phto_ID_index)], :]
         new_df #4851 rows × 6 column
Out[11]:
                   photo_ID
                                  user_ID latitude longitude
                                                                          datetime -1
         9175 3286772707 24537256@N02 47.620483 -122.349286 2/17/2009 10:16:21 AM -1
            9177 3286773249 24537256@N02 47.620483 -122.349286 2/17/2009 10:16:51 AM -1
          9191 3287135921 61565201@N00 47.608535 -122.337666 2/17/2009 2:28:05 PM -1
            9193 3287136491 61565201@N00 47.608535 -122.337666 2/17/2009 2:28:22 PM -1
            9194 3287136871 61565201@N00 47.608535 -122.337666 2/17/2009 2:28:33 PM -1
          502199 8652137449 66356066@N02 47.607500 -122.343334 4/15/2013 7:10:22 PM -1
          502224 8653224746 66356066@N02 47.620500 -122.349000 4/15/2013 7:05:25 PM -1
          502247 8653225900 66356066@N02 47.620333 -122.349167 4/15/2013 7:05:51 PM -1
          502218 8653237196 66356066@N02 47.607500 -122.343334 4/15/2013 7:10:12 PM -1
          502190 8653238002 66356066@N02 47.607500 -122.343334 4/15/2013 7:10:32 PM -1
         4851 rows × 6 columns
```

```
[12]: #reset index in dataframe
new_df = new_df.reset_index(drop=True)
new_df
```

t[12]:

	photo_ID	user_ID	latitude	longitude	datetime	-1
0	3286772707	24537256@N02	47.620483	-122.349286	2/17/2009 10:16:21 AM	-1
1	3286773249	24537256@N02	47.620483	-122.349286	2/17/2009 10:16:51 AM	-1
2	3287135921	61565201@N00	47.608535	-122.337666	2/17/2009 2:28:05 PM	-1
3	3287136491	61565201@N00	47.608535	-122.337666	2/17/2009 2:28:22 PM	-1
4	3287136871	61565201@N00	47.608535	-122.337666	2/17/2009 2:28:33 PM	-1
4846	8652137449	66356066@N02	47.607500	-122.343334	4/15/2013 7:10:22 PM	-1
4847	8653224746	66356066@N02	47.620500	-122.349000	4/15/2013 7:05:25 PM	-1
4848	8653225900	66356066@N02	47.620333	-122.349167	4/15/2013 7:05:51 PM	-1
4849	8653237196	66356066@N02	47.607500	-122.343334	4/15/2013 7:10:12 PM	-1
4850	8653238002	66356066@N02	47.607500	-122.343334	4/15/2013 7:10:32 PM	-1

4851 rows × 6 columns

Photos folder안에 있는 photo_ID행만 남기기 위해 loc을 이용해 새로운 dataframe을 만들고 Index를 0부터 다시 정해주었습니다.

이전과 마찬가지로, 새로운 dataframe의 index와 photo_ID간의 dictionary2개를 만들었습니다.

dictionary (photo_ID <-> index in new_df)

```
n [13]: n_photo_IDs = new_df.photo_ID.values
#print(type(photo_IDs))

#dictionary: index(key) --> photo_ID(value)
n_index_to_photoID = {}
for i in range(0,len(n_photo_IDs)):
    n_index_to_photoID[i] = n_photo_IDs[i]

#dictionary: index(value) <-- photo_ID(key)
n_photoID_to_index = {}
for i in range(0, len(n_photo_IDs)):
    n_photoID_to_index[n_photo_IDs[i]] = i</pre>
```

Step1. Geo-clustering with meanshift clustering

Latitude와 longitude를 이용하여 geo-clustering을 하기 위해 matrix를 만들었습니다.

Matrix의 column[0]은 latitude, column[1]은 longitude이고 각 행은 한 photo의 latitude, longitude 입니다.

geo matrix 만들기 -> meanshift clustering

```
[
       [latitiude0,longitude0],
       [latitiude1,longitude1]
       ]
[14]: latitude = new_df.latitude.values
       longitude = new_df.longitude.values
       #print(latitude[0])
       # create 0 matrix
       X = [[0 \text{ for } x \text{ in } range(2)] \text{ for } x \text{ in } range(len(latitude))]
       #print(X.shape)
       for i in range(0, len(latitude)):
         X[i][0] = float(latitude[i])
         X[i][1] = float(longitude[i])
       X = np.array(X) # £ H 중요!
       print(X.shape)
       (4851.2)
```

Meanshift clustering

```
[15]: from sklearn.cluster import MeanShift

geo_clustering = MeanShift(bandwidth=0.0015,bin_seeding = True)#, cluster_all = False) #,cluster_all = False) #bin_seeding = True, clus
#bandwidth=0.0015 -> 1277#

geo_clustering.fit(X)

geo_cluster_label = geo_clustering.labels_

labels_unique = np.unique(geo_cluster_label)

print(labels_unique)

n_cluster = len(labels_unique)

print("number of geo-clusters: ", n_cluster)

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

number of geo-clusters: 127
```

K-means clustering이 대표적인 clustering algorithm이지만 사전에 클러스터의 개수를 알거나 결정

해야한다는 문제가 있어 meanshift clustering을 사용하여 geo-clustering을 하기로 하였습니다.

이때, Bandwidth가 크면 한 cluster내에 여러 개의 landmark가 속하고, bandwidth가 작으면 같은 landmark가 다른 cluster에 속할 수 있기에 최대한 다른 landmark가 한 cluster안에 속하지 않게, 1개의 image만 갖는 cluster가 너무 많아지지 않게 geo-cluster결과를 각 폴더(= each geo_cluster) 안에 저장하고 확인하면서 empirical하게 정했습니다.

Geo Cluster 결과대로 폴더 만들어 copy한 후 눈으로 결과 확인하기

```
import shutil
photo_path = os.path.join(os.getcwd(), 'Photos')
count_num = 0 #count number of all contents of geo_clusters
# 폴더 만들기 + 해당하는 파일 찾아 카피
for idx, i in enumerate(labels_unique):
   #index_list = []
   folder_name = "geo_cluster"+ str(i) # /abe/ number
   print("folder_name is", folder_name)
   folder_path = os.path.join(photo_path, folder_name)
    if(os.path.isdir(folder_path) == False):
       os.mkdir(folder_path)
                                            ## 제출 시 주석 해제 # 폴더 생성 코드
     #폴더 지우는 코드
     #os.rmdir(folder_path)
    index_cluster_k = []
    for j in range(len(geo_cluster_label)):
       if geo_cluster_label[j] == i: #i = k (unique label)
           index_cluster_k.append(j)
   #photoID value
    labelmk_ID = []
    for index, j in enumerate(index_cluster_k):
       | Tabelmk_ID.append(n_index_to_photoID[j]) # 해당하는 포토 아이디 찾기 코드
   print(len(labelmk_ID))
   count num += len(labelmk ID)
```

Geographical clustering 결과 분석

결과를 살펴보면, 다음과 같은 경우가 있었습니다.

- 1) 한 geo_cluster안에 한 개의 landmark만 존재 (잘 geo-clustering된 경우)
- 2) 한 geo_cluster안에 여러 개의 landmark, outlier 존재
- 3) 한 geo_cluster안에 Outlier만 존재
- 4) 같은 landmark가 다른 geo_cluster에 존재

Geo_cluster0의 경우, space needle뿐만 아니라 monorail, outliers가 같이 속해 있었습니다.

Geo_cluster94의 경우, landmark가 아닌 outlier로만 이루어져있습니다.

Geo_cluster1의 경우, century link field만으로 잘 clustering되어 있음을 볼 수 있었습니다.

마찬가지로, geo_cluster4의 경우, 항공 박물관(aviation space museum) 사진만으로 잘 clustering되어 있음을 볼 수 있었습니다.

또, 같은 landmark가 다른 geo_cluster에 속하는 경우도 있었는데,

Space needle의 경우, 찍힌 위치가 달라서 다른 geo_cluster로 clustering되었습니다.

이처럼, 한 geo-cluster안에 한 개의 landmark만 있게 잘 clustering되기도 했지만, 하나의 geo-cluster안에 여러 개의 landmark와 outlier가 있거나 outlier만 있거나, 같은 landmark가 다른 geo-cluster에 속하는 경우가 있었습니다. 따라서, 한 geo-cluster에 대해 추가적으로 visual clustering을 함으로써 하나의 geo-cluster안에 여러 개의 landmark가 있거나 landmark와 outlier가 같이 있는 경우를 해결하려고 하였습니다.

Step2. Visual Clustering (extract features using VGG16 & Meanshift clusterig)

처음에 visual-clustering을 guideline을 따라 bundler를 사용하려고 했습니다. Bundler를 설치하고

32bit library가 없는 문제가 생겨 일일이 sudo apt get install로 설치하였고 RunBundler.sh에서 rm-rf pairwise_score.txt를 주석처리하고 그 외의 outputfile은 삭제하게 수정하여 번들러 실행 시 pairwise_score.txt만 생기게 하였습니다. 또, 대용량 파일을 vmware에 옮기기 위해 윈도우와 리눅스 공유 폴더를 만들었습니다.

다음과 같이 31장의 이미지를 갖는 한 geo-cluster에 대해 pairwise_score.txt가 생성되었고

Pairwise_score를 갖는 두 component가 같은 graph에 속하게 Pairwise_score.txt에 따라 graph를 만들고 한 graph의 components들이 같은 visual cluster에 존재하는 것으로 보고 visual clustering을 하려고 했으나 두가지 문제가 있었습니다.

첫 번째 문제는, 번들러를 돌리는 시간이 너무 오래 걸리는 것이었습니다. 31개의 이미지를 갖는 geo_cluster에 대해 번들러를 실행했을 때 2시간 이상이 걸렸고, 총 4851장의 이미지이기에 매우 많은 시간이 소요될 것으로 예상이 되는 문제가 있었습니다.

두 번째 문제는 이미지 크기와 관련하여 row+col< 8000이어야하는 조건이 있어 이미지 크기를 조정해야하는 문제가 있었습니다.

```
Finding keypoints...
21645 keypoints found.
Finding keypoints...
sift: util.c:361: ConvVertical: Assertion `rows + ksize < 8000' failed.
Aborted (core dumped)
Finding keypoints...
sift: util.c:361: ConvVertical: Assertion `rows + ksize < 8000' failed.
Aborted (core dumped)
Finding keypoints...
7677 keypoints found.
```

또, pairwise_score.txt의 결과가 이미지가 많은 cluster일 경우, 좋지 않았기에 bundler대신 다른 방식으로 visual clustering을 진행하기로 결정했습니다.

Visual clustering을 하는 방법에 대해 찾아보던 중, pretrained VGG16 모델을 사용해 output이 마지막 layer가 아닌 그 전 layer값이 되도록 하여 feature vector를 extract하여, extract한 feature vecotr를 PCA를 통해 차원을 축소한 후 k-mean clustering으로 visual-similarity에 따라 image를 clustering한 코드를 참고하여, 각 geo-cluster images를 pretrained VGG16을 사용해 feature vectors를 뽑아낸 다음, PCA를 통해 n_components로 차원을 축소하고 meanshift clustering으로 image를 clustering하였습니다. Geo clustering과 마찬가지로, cluster의 개수를 알 수 없기에 kmean 대신 meanshift algorithm을 사용했으며, 각 geo cluster안의 images 개수가 달라, PCA 시 n_components가 mean(n_samples, n_features)이기 때문에, n_components 값을 cluster image에 따라 다르게 해줘야한다는 문제가 있었습니다. 또, geo_cluster안의 image 개수(=n_samples)가 작아 n_componenets를 작게 한 경우 PCA 후 meanshift clustering을 할 때 bandwidth를 너무 크게 설정하면 구별이 어려워져 다른 landmark 이미지들이 같은 visual cluster에 속하는 문제가 있어, geo_cluster의 image개수에 따라 다른 for loop안에서 PCA시 n_components, meanshift clustering 시 bandwidth를 empirical하게 적절히 정해 visual clustering을 해주었습니다.

아래는 코드에 대한 설명입니다.

Visual clustering In [19]: # using VGG16 -> extract feature vectors # for loading/processing the images from keras.preprocessing.image import load_img from keras.applications.vgg16 import preprocess_input # models from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import PGG16 # clustering and dimension reduction # from sklearn.cluster import MeanShift from sklearn.cluster import MeanShift from sklearn.decomposition import PCA model = YGG16() model = Model(inputs = model.inputs, outputs = model.layers[-2].output) def extract_features(file, model): # load the image as a 224x224 array img = load_img(file, target_size=(224,224)) # convert from 'PLI. Image. Image' to numpy array img = np.array(img) # reshape the data for the model reshape(num_of_samples, dim 1, dim 2, channels) reshaped_img = img.reshape(1,224,224,3) # prepare image for model imgx = preprocess_input(reshaped_img) # get the feature vector features = model.predict(imgx, use_multiprocessing=True) return features

Pretrained VGG16 모델(Image classification model)을 불러오고, output이 마지막 layer전의 layer값 이어서 1000개의 class일 확률 값이 아닌 feature vectors를 추출합니다.

```
]: ### 0-12 geo clusters(which have more than 100 images)
    for i in range(13):
    # for i in range(2,n_cluster):
    geo_cluster_path = os.path.join(photo_path, 'geo_cluster'+ str(i))#'/content/drive/Myo
    print("geo_cluster_path is {}".format(geo_cluster_path))
          # # change the working directory to the path where the images are located
         os.chdir(geo_cluster_path)
          # this list holds all the image filename
          images = []
          # creates a ScandirIterator aliased as files
         with os.scandir(geo_cluster_path) as files:
# loops through each file in the directory
               for file in files:
                     if file.name.endswith('.jpg'):
# adds only the image files to the flowers list
images.append(file.name)
         print("len of image is {}".format(len(images)))
            print(images)
         tadd = {}
txt_file_name = 'geo'+str(i)+'_featurevectors.txt'
txt_file_path = os.path.join(photo_path, txt_file_name)
print("txt_file_path is {}".format(txt_file_path))
#r"CHANGE TO A LOCATION TO SAVE FEATURE VECTORS"
          # lop through each image in the dataset
          for image in images:
               # try to extract the features and update the dictionary
               try:
                     feat = extract_features(image,model)
                     data[image] = feat
                # if something fails, save the extracted features as a pickle file (optional)
               except:
```

```
with open(txt_file_path, 'wb') as file:
                    pickle.dump(data,file)
# get a list of the filenames
filenames = np.array(list(data.keys()))
feat = np.array(list(data.values()))
print(feat)
print("len of data is {}".format(len(data)))
# reduce the amount of dimensions in the feature vector
pca = PCA(n_components=100, random_state=22) #n_components = 100, random_state=22
pca.fit(feat)
x = pca.transform(feat)
# cluster feature vectors
visual_clustering = MeanShift(bandwidth=40,bin_seeding = True,cluster_all = True) #n_components = 100, bandwidth=40 -> 47# visual_clustering.fit(x)
visual_cluster_label = visual_clustering.labels_
# print(geo_cluster_label)
labels_unique = np.unique(visual_cluster_label)
#print(labels_unique)
vn_cluster = len(labels_unique)
print("number of {}th visual-clusters: {}".format(i, vn_cluster))
# holds the cluster id and the images { id: [images] } groups = {}
for file, cluster in zip(filenames, visual_cluster_label):
vn_cluster = len(labels_unique)
print("number of {}th visual-clusters: {}".format(i, vn_cluster))
#remove 주석됐리
# holds the cluster id and the images { id: [images] }
groups = {}
for file, cluster in zip(filenames, visual_cluster_label):
    if cluster not in groups keys():
        groups[cluster] = []
        groups[cluster] append(file)
    else:
            groups[cluster].append(file)
for i in groups.keys():
    print(len(list(groups[i])))
count num = 0 #count number of all contents of geo clusters
for i in groups.kevs():
   folder_name = "visual_cluster"+str(j)
print("folder_name is", folder_name)
folder_name = os.path.joln(peo_cluster_path, folder_name)
if(os.path.isdir(folder_path) == False):
    os.mkdir(folder_path)
jpglist = []
                                                                      ## 제출 시 주석 해제 # 폴더 생성 코드
   os.mkdir(folder_path) ## 제출 시 추석 해제 # 불단 생성 코드
jpglist = list(groups[])
jpglist = list(groups[])
print("num_of_photos is {}".format(len(jpglist)))
for jpg in jpglist:
src_dir = os.path.join(geo_cluster_path, jpg)
dst_dir = os.path.join(geo_cluster_path, folder_name, jpg)
shutil.copyfile(src_dir, dst_dir) # shutil.copyfile(src_dir, dst_dir) # 해당하는 포토 피일 영 찾아 풀다 안에 이동
```

0-12 geo_cluster들은 이미지가 100개 이상을 가지고 있습니다. 각 geo_cluster안의 image들을 images list에 저장하고 각 image에 대해 feature vector를 뽑은 다음 "data" dictionary에 key값을 image, value 값을 feature vector로 저장합니다. 그런 다음, 4096차원의 n_samples(= geo_cluster내의 image개수)에 대해 n_components = 100으로 하여 PCA를 진행해 차원을 축소 시킨 후, bandwidth=40으로 meanshift를 통해 visual clustering을 해주고 geo_cluster folder안에 visual cluster folder를 만들어 저장하였습니다.

13-31 geo_cluster들은 이미지가 100개 미만, 40개 이상 가지고 있어, n_components = 40, bandwidth = 40으로 위와 같이 visual clustering을 하여 결과를 저장하였습니다.

32-58 geo_cluster들은 40개 미만, 10개 이상의 이미지를 갖고 있어, n_components = 10, bandwidth = 70으로 위와 같이 visual clustering을 하여 결과를 저장하였습니다.

58-126 geo_cluster들은 10개 미만의 이미지를 갖고 있어, n_components = (이미지개수//3+1), bandwidth = 50으로 위와 같이 visual clustering을 하여 결과를 저장하였습니다.

아래 코드는, empirical하게 n_components, bandwidth값을 정했기에, visual clustering의 결과를 본후, 결과가 좋지 않은 경우, 만들어진 visual cluster folder를 삭제하는 코드입니다.

remove folders = wrong result of visual clustering

```
# # # # print(array126)
# # # # print(n_cluster)
# import os, glob

for i in range(59,127): #remove wrong result folder of visual clustering
    geo_cluster_path = os.path.join(photo_path, 'geo_cluster'+ str(i))#'/content/dri
    print("geo_cluster_path is {}".format(geo_cluster_path))
    # change the working directory to the path where the images are located
    os.chdir(geo_cluster_path)
    subfolderlist = list(filter(os.path.isdir, glob.glob('*')))
    print(subfolderlist)
    for j in subfolderlist:
        removepath = os.path.join(geo_cluster_path, j)
        print(removepath)
        shutil.rmtree(removepath)
```

Visual clustering 결과 분석

결과를 살펴보면, 다음과 같았습니다.

- 1) 다른 landmark인데 같은 geo_cluster였던 사진들이 visual clustering을 통해 잘 분리된 경우
- 2) 같은 landmark인데 다른 visual_cluster에 속하는 경우
- 3) Outlier가 landmark와 같은 visual cluster에 속하는 경우

1) Outlier와 landmark가 같은 geo_cluster51에 존재하였는 데, visual_cluster로 잘 분리된 모습입니다.

2) 같은 landmark(space needle)인데 다른 visual cluster에 속하는 경우입니다.

- 3) outlier와 landmark가 같은 visual cluster에 속하는 경우입니다.
- 2,3번의 경우뿐만 아니라 geo-clustering에서 같은 landmark가 다른 geo_cluster에 속하는 문제가 여전히 visual clustering으로 해결되지 않는 문제가 있었습니다.

따라서, bandwidth와 n_components를 조정하는 것만으로는 한계가 있다고 생각하여 tag information을 통해 geo-clustering, visual-clustering의 한계를 해결하고자 하였습니다.

Step3. Using Tag information & additional input (landmark dictionary)

Geo-clustering, visual-clustering 후에도 여전히 다음과 같은 문제가 있어 tag 정보를 사용하여 해결하려고 하였습니다.

- 1) 같은 landmark 이지만 geo_cluster 가 다름
- 2) 같은 landmark, geo_cluster 이지만 visual_cluster 가 다름
- 3) 다른 landmark 이지만 같은 visual_cluster
- 4) Outlier 와 landmark 가 같은 visual_cluster 에 속함
- 5) Landmark 와 outlier 구별

Landmark에 대한 추가적인 input없이는 outlier와 landmark를 구별하기 어렵다고 생각했기에, 인터넷에서 seattle의 landmark list를 찾고 landmark 각각이 dictionary의 key값인, 그리고 그 landmark가 가질 수 있는 해시태그 list를 dictionary의 value값으로 하는 landmark dictionary를 만들었습니다.

그런 다음, 각 visual cluster에 속하는 image들의 tag 값들을 중복 없이(set) list로 구해, dictionary 의 value값이 list 안에 있다면, 해당 visual cluster안의 image들의 tag list에 dictionary의 value값이 있는 지 확인하고 있다면 해당 image들을 landmark folder를 생성하고 그 안의 해당 landmark 이름의 폴더안으로 복사해주었습니다. 이럴 경우, 단점으로 제가 만든 landmark dictionary의 value값 이외의 해시태그를 가진 landmark image인 경우, landmark folder로 복사되지 않는 문제가 있어, 한 visual cluster의 tag list에 dictionary value값이 있다면, 그 visual cluster에 속하는 모든 image를 landmark folder로 복사하는 방식을 먼저 시도했으나, 이럴 경우, visual clustering이 제대로 되지 않았으면(3,4번의 경우), outlier도 같이 landmark folder로 복사되는 문제가 있어, image tag 별로 한 번 더 걸러내는 과정을 추가하였습니다.

코드는 다음과 같습니다.

Tag Matching

read csv file

먼저, tag.csv file을 읽어온 다음, 영어, 숫자만 남게 전처리하고 모두 영어의 경우 모두 소문자로 변경합니다.

```
In [89]: #tag_data['tag'].map(/ambda x: print(type(x)))
print(tag_data.loc[103])
photo_ID 6248446723
num 103, dtype: object

In [90]: # 모두 소문자로 변경
tag_data['tag'] = tag_data['tag'].str.lower()
# 얼어, 完자만 남기가
tag_data['tag'] = tag_data['tag'].map(lambda x: (preprocessing(str(x))))

In [91]: print(tag_data.loc[103])
photo_ID 6248446723
num 5
tag uploadedbyInstagram
Name: 103, dtype: object
```

그러면, 다음과 같이 ':'은 제거가 됩니다.

tag에서 가장 빈도수 높은 것 출력

• park, westseattle, bellevue, lake (이런 거 말고 다른 몇개 단어 stopwords로 정의하기)

```
[96]: tagwords = tag_data['tag'].value_counts()
# print(type(tagwords))
# print(tagwords.head(50))
          #convert value_counts() output into a data frame
d_tagwords = tag_data['tag'].value_counts().reset_index()
df_tagwords.columns = ['word', 'word_count']
          print(df_tagwords)
                           word word_count
seattle 7564
                                                  7564
                                                 2958
785
                      washington
                           usa
                      convent ion
           11098 cloudycloud
                     raincity
           11099
           11100
                    sigma50mm
           11101
          [11102 rows x 2 columns]
```

tag에서 가장 빈도수 높은 것들을 출력하여 확인하고

define stopwords

상위 50개의 빈도수 높은 단어 중, park, art, lakeunion, bellevue와 같이 중요한 단어를 제외한 46 개의 단어를 stopwords(불용어)로 지정합니다.

tag에서 아까 정의한 46개의 stopwords 제거하기

```
def removingSW(tag):
    if tag in stopwords:
        tag = ""
    return tag
tag_data['tag'] = tag_data['tag'].map(lambda x: (removingSW(str(x))))
```

dictionary(photo_ID -> array of tag values)

```
#dictionary: key(photol0) --> value(array of tag values)
photolD_to_tags = {}
# for i in range(0, len(photo_l0s)):
# index_to_photol0[i] = photo_l0s[i]

for idx, i in enumerate(tag_photo_lDs):
    condition = (tag_data['photo_lD'] == i)
    photolD_to_tags[i] = tag_data[condition].tag.values

# # tags_wo_stopwords = []
# for i in range(len(tag_data[condition].tag.values)): #remove stopwords
# word = tag_data[condition].tag.values[i]
# if word not in stopwords:
# tags_wo_stopwords.append(word)
# photolD_to_tags[i] = tags_wo_stopwords
print(photolD_to_tags)
```

tag값들에서 46개의 stopwords를 제거하고 Photo_ID로 tag를 접근할 수 있도록 photoID_to_tags dictionary를 생성합니다.

```
Seattle landmark dictionary 만들기

# space needle, safecofield, pikeplacemarket, seattleaquarium,
# centurylinktield(umen field), safeseattleartsmuseum), volunteerpark, ballardlocks,
# virginiav, newsastlebeachpark, spacemuseum...
# urbaniliphistudios

dict_landmarks = { "space needle": ["spaceneedle", "space", "needle"], "safeco field": ["safecofield", "safeco"], "pike place market": ["s
"centurylink field":["centurylinkfield", "centurylinkstadium", "stadium", "stadiums", "instagramvenuenamecenturylinkfield"],
# print(dict_landmarks]
# print(dict_landmarks]
# print(dict_landmarks]
# print(dict_landmarks["space needle"])

keys = list(dict_landmarks["space needle"])

keys = list(dict_landmarks, "space needle"))

# print(idx, values in enumerate(dict_landmarks.values()):
# # print(idx, values)
# print(idx values)
# print(idx, values)
# print
```

Seattle landmark dictionary를 만들고, photos folder안에 landmark folder를 생성하고 dictionary의 key값이 이름인 folder들을 생성했습니다.

```
| landmark 찾고 폴더에 모으고 폴더 이름 그에 맞게... + 각 폴더 위치를 photos안에 | landmarks 폴더 안으로...?
| 한국 geo_cluster folder인의 visual_cluster folder의 tag=주문서 landmark dictionary의 values에 있는 지(용권 결지 않아도 유시원지) 해항...;
| # 한국 생물산인의 1 tag를 갖는 사진이 속하는 visual_cluster를(OLID 사건은...?)
| # 기 dictionary heys한 folder apply | landmark olicitorary heysite folder 3 photosid 항공 경우 만들기
| # visual cluster의 tag set 구하기
| # in in in range(0.127) * Mescellaters
| geo_cluster_path = so, path_join(photo_path, 'geo_cluster' + str(1))
| print('geo_cluster_path is 1)'.format(peo_cluster_path))
| # if change the working directory to the path where the images are located on.chaft(reo_cluster_path)
| subfolder ist = ist(filter (os.path.isdir, glob.glob(*)))
| # in individual first in enumerate(subfolder list): # Mescal Clusters | globals() it is geof_vel): format(|.index|) = [ # in int (visual clusters) | for index, visual clusters) | for index, visual clusters) | for index, visual clusters | for index intermated (subfolder list) | format(|.index|) = [ # in intermated (subfolder list) | format(|.index|) = [ # in intermated (subfolder list) | format(|.index|) | format(|.index|) | filte | in photolog_cluster_path, visual clusters) | filte | in cluster(visual clusters) | filte | in photolog_cluster(visual clusters) | filte | in photolog_cluster(visual clusters) | filte | in cluster(visual clusters) | filte | in photolog_cluster(visual clusters) | filte | in photolog_cluster(visual clusters) | filte | in cluster(visual clusters) | filte | in photolog_cluster(visual clusters) | filte | in photolog_cluster(visual clusters) | filter(visual clusters) | filter(
```

각 visual cluster의 tag들을 중복없이 list로 구하는 코드입니다.

Tag_geo{geo_cluster_index}_vc{visual_cluster_index}에 저장이 됩니다.

그런 다음, 각 visual cluster에 속하는 image들의 tag 값들을 중복 없이(set) list로 구해, dictionary 의 value값이 list 안에 있다면, 해당 visual cluster안의 image들의 tag list에 dictionary의 value값이 있는 지 확인하고 있다면 해당 image들을 landmark folder를 생성하고 그 안의 해당 landmark 이름의 폴더안으로 복사해주었습니다.

최종 결과

최종 결과는 다음과 같습니다.

Photos folder 안에 각 landmark folder 가 생성되고 각 landmark folder 안에 해당하는 이미지가 들어 있습니다.

Aviation space museum

Centurylink field

Monorail

Newcastle beach park

Pike place market

Safeco field

Sam = seattle art museum

• Seattle aquarium

Space needle

Volunteerpark

Photos안의 이미지가 전체 이미지가 아닌 부분 이미지라 virginia V, ballard locks의 경우 tag information은 있었으나 해당 ID의 이미지가 없어 빈 폴더로 나타났습니다.