

CompARE: Sample Size Calculation for Time-To-Event Composite Endpoints

Jordi Cortés, Marta Bofill, Lupe Gómez

July 2018

Outline

- Non proportional hazards with composite endpoints
- Methodologies
 - Naïve
 - ARE
 - Simulation
- CompARE: Naïve vs simulation & ARE vs. simulation

Introduction to the problem

- Often clinical trials (CT) have several options for the primary endpoint.
- Researchers must decide about using one or more than one of these endpoints.
- One of the biggest concerns in using composite endpoint (CE) in timeto-event studies arises from the lack of proportional hazards¹.
- Sample size computation may become a great challenge in the design phase of a CT.

¹ Gómez G. and Lagakos SW. (2013). Statistical considerations when using a composite endpoint for comparing treatment groups. Statistics in Medicine.

Introduction to the problem

We deal with the situation of two endpoints:

$$\boldsymbol{\varepsilon_1}$$
 (relevant) & $\boldsymbol{\varepsilon_2}$ (additional)

• The composite endpoint (ε^*) is defined as follows:

$$\varepsilon_* = \varepsilon_1 \cup \varepsilon_2$$

- Common CE in literature:
 - Progression Free Survival (PFS): Death and Progression of disease
 - Major Adverse Cardiac Events (MACE): cardiovascular death, myocardial infarction, stroke, or non-coronary artery bypass graft-related major bleeding

Non-proportional hazards in CE

• A possible measure of non-proportionality of the hazards might be the difference between the maximum and the minimum $HR_*(t)$ of the composite event (ε_*) over time:

$$r = \max\{HR_*(t)\} - \min\{HR_*(t)\} \qquad t \in [0, \tau]$$

An alternative measure of non-proportionality is:

$$R = \left(\frac{\log(averaged\{HR_*(t)\})}{\log(\max\{HR_*(t)\})}\right)^2 \qquad t \in [0, \tau]$$

This measure represents the ratio of the samples sizes considering the minimum detectable effect (MHR_*) and the averaged effect (aHR_*):

$$R = \frac{n_{MHR_*}}{n_{aHR_*}}$$

Non-proportional hazards in CE

$$r=ma\,x\{HR_*(t)\}-min\{HR_*(t)\} o$$
 Effect size $R=rac{n_{MHR_*}}{n_{aHR_*}} o$ Sample size

Non-proportional hazards in CE

- R measure depends especially on the behaviour of the marginal distributions.
- Non-proportionality increases if:
 - Hazards in both components go in opposite directions
 - Difference between the effects (HRs) is large
 - Correlation is large

Needed information for Sample Size

- Probability of observing events
- Effect size
- If death is one of the components
- Information about the marginal distributions
- Correlation between endpoints
- Specified probabilities of Type I (α) and Type II (β) errors

Naïve method

(Some) clinicians use the averaged HR for determining the SS:

$$HR_*(t) = HR' = \frac{HR_1 + HR_2}{2}$$

Formulas for calculate SS with a single endpoint:

(Schoendfeld)
$$E = \frac{4 \cdot (z_{1-\alpha} + z_{1-\beta})^{2}}{(\ln(HR'))^{2}}$$

$$\rightarrow N = \frac{2E}{p_{10} + p_{11}}$$
 (Freedman)
$$E = \frac{(HR' + 1)^{2} \cdot (Z_{1-\alpha} + Z_{1-\beta})^{2}}{(HR' - 1)^{2}}$$

ARE method

• The asymptotic relative efficiency¹ (ARE) is a measure of how much efficient could be a design based on the ε^* respect to one based on the relevant endpoint (ε_1)

• We want to know if ARE is a good approximation for the SS ratio between designs² using ε_* & ε_1

$$ARE = \frac{N_1}{N_*} \to N_* = \frac{N_1}{ARE}$$

This method might not guarantee the right computation of the SS.

¹ Gómez G. and Lagakos SW. (2013). Statistical considerations when using a composite endpoint for comparing treatment groups. Statistics in Medicine.

² Gómez G, and Gómez-Mateu M. (2014). The Asymptotic Relative Efficiency and the ratio of sample sizes when testing two different null hypotheses.

Simulation. Procedure

- 1. Range of initial values
 - Calculate SS for N_{*} based on ARE method
 - Looking for values (N_{SIM}^i) into the following interval until reaching a target power (e.g. 80%):

$$[0.8 \cdot N_*, 1.2 \cdot N_*]$$

[If the power is not reached, the interval is extended]

- 2. We perform **1,000 iteration** for each N_{SIM}^i :
 - **Generate** N_{SIM}^{i} **values** from the specific distributions and correlation through a pre-specified copula.
 - Censore these values according to the follow-up time.
 - Perform log-rank test & obtain the p-value.
- 3. Power is the proportion of significant results into the 1,000 iterations

Simulation. Scenarios

Parameter	Endpoint	Values	Scenarios
Probability of event	Relevant	π = 0.01, 0.05, 0.10	3
	Additional	π = 0.05, 0.10, 0.20	3
Distribution	Relevant	Exponential ($\beta_1 = 1$)	1
	Additional	Exponential ($\beta_2 = 1$)	1
HR	Relevant	HR = 0.6, 0.7, 0.8	3
	Additional	HR = 0.6, 0.7, 0.8	3
Death	Relevant	Yes	1
	Additional	No	1
Correlation	-	$\rho = 0$, 0.2, 0.5, 0.8	4
Copula	-	Frank	1
Type Error I	-	α = 0.05 (one sided)	1
Power	-	$1 - \beta = 0.8$	1
		no. scenarios	324
		Time by scenario (min)	2
		Total time (hours)	9

Compare: tool for CE in RCTs

CompARE³ is a web app built with *shiny*⁴. Intended to help researchers in the design and analysis of clinical trials with CE for binary and time-to-event endpoints

³ Gómez-Mateu M and Gómez G. Clinical trial designs using CompARE. An on-line exploratory tool for investigators. Report DR 2017/1

⁴ RStudio, Inc (2017) shiny: Web Application Framework for R. URL http://CRAN.R-project.org/package=shiny. R package version 1.0.5.

Comparison Naïve versus ARE (I)

We compare Naïve and ARE methodology in respect to simulations results

	N_{NAIVE}/N_{SIM}	N_{ARE}/N_{SIM}
Min.	0.39	0.86
Q1	0.81	0.95
Median	0.94	0.99
Mean	0.96	0.99
Q3	1.04	1.02
Max.	1.90	1.15

Comparison Naïve versus ARE (II)

- SS discrepancies only depend on HRs, don't depend on probability of event nor correlation.
- ARE method fits better the actual SS than Naïve method
- ARE method works better when HRs match

Conclusions

 Computing SS based on ARE is a better option than to average the single HRs unless we have similar effect sizes for the different endpoints

- To assure a power of 80% in at least 90% of designs, we recommend an increase of a 10% in the SS obtained with ARE.
- We would recommend to perform simulations and/or use CompARE in order to:
 - Estimate SS with greater accuracy
 - Asses its robustness according to the assumptions about the parameters.

References

- 1. Gómez G and Lagakos SW. (2013). Statistical considerations when using a composite endpoint for comparing treatment groups. Statistics in Medicine, 32, 19-738.
- 2. Gómez G, and Gómez-Mateu M. (2014). The Asymptotic Relative Efficiency and the ratio of sample sizes when testing two different null hypotheses. SORT, 38, 73-88.
- Gómez-Mateu M and Gómez G. Clinical trial designs using CompARE. An on-line exploratory tool for investigators. Report DR 2017/1
- 4. RStudio, Inc (2017) *shiny: Web Application Framework for R*. URL http://CRAN.R-project.org/package=shiny. R package version 1.0.5.

THANKS FOR YOUR ATTENTION

Jordi Cortés, Marta Bofill, Lupe Gómez

July 2018