

Rapport d'analyse

SEC102 année 2022 semestre 1 Date d'examen :30/01/2023

Nom :Bitan Prénoms :Sarah

Nom second auditeur :Bitan

Prénoms second auditeur :Shmuel Nom troisieme auditeur :Assaban

Prénoms troisieme auditeur :Guil

Consignes

Note importante: ne pas modifier le format et la structure du fichier. Les réponses peuvent être multiples et devront être séparées par une virqule

Réponse aux incidents

Veuillez décrire les étapes de la réponse aux incidents que vous suivriez dans un cas concrêt et la procédure de réponse à l'incident.

n° | Etape | Description |

01-001|* * 00 - Analyse et choix de la procédure a adopter * |Mise en place de la reponse a incident mon equipe et moi nous sommes basés sur le DFIR Conçu pour répondre aux missions opérationnelles de l'ANSSI en matière d'investigation et de réponse à incident car le DFIR fournit une compréhension approfondie des incidents de cybersécurité grâce à un processus forsenic 01-002|* 01 - Préparation * | • Mettre en place un plan pour l analyse doccumenter les différentes etapes , • Répartir les taches entre les différents membres du groupe , • Mettre en place de la documentation pour repondre a l incident et détailler nos avancées durant l analyse , • Mettre en place un outil de suivis de l'incident, • Préparer du matériel dédié à l'analyse ou la reprise d'activité(machine virtuelle,. . .), • Installer des outils pour la collecte, la conservation et l'analyse (Principalement volatility 3.0 , Differentes commades linux (via tsurugui) ghirda et plaso)

01-003|* Detection • tout d abord il faut eviter la propagation donc debrancher la machine du reseau dans notre cas cette etape a deja etait réalisé on peut donc passer a la suite ,

- Chercher des signe precurseur ou indicateur d un incident,
- \bullet Consulter les systeme de detection et les antivirus pour voir si ils ont reprere une attaque ,
- Consulter les differents journaux du système d'exploitation, des services, des applications et des périphériques réseau,
- Collecter les détails de l'incident , Mettre en place une timeline de l incident quand la machine a été infécté ? comment? etc... 01-004|*Analyse Les données sont ensuite examinées et analysées grace a nos differents outils et il nous faut ensuite tirer des conclusions sur les preuves trouvées.

01-005|* Mise en quarantaine, éradication et restauration

• Dans notre cas la mise en quarantaine a déja etait fait et etant donné que nous devions juste réaliser une analyse l'éradication et la réstauration n etaient pas necéssaire mais nous détaillerons quand meme ici les différentes etapes , • Supprimer les moyens mis en œuvre par l'attaquant pour accéder aux systèmes d'information ,

- \bullet Mettre en place les actions visant à bloquer ou contenir l'attaque ,
- Prévoir la réinstallation complète

01-06|* Post-incident

- Mettre en place des bonnes pratiques pour eviter que l'incident se reproduise ,
- Analyser les différentes problematiques liées a cette attaque (par exemple fuite d information etc), Collecter et conserver les données relatives à l'incident ,
- Evaluer chaque incident
- Entamer des poursuites judiciaires

Analyse mémoire RAM

Synthèse de l'analyse

n°	Question	Réponses
02-001	Date de compromssion (eg.YYYYMMDD- HH:MM:SS)	20140429-20:57:08
02-002	Vecteur de compromssion	Faible mot de pass de l utilisateur admin
02-003	Vulnerabilités exploitées (eg. CVE- YYYY-XXXX)	CVE-2009-4324,CVE-2007-4528
02-004	Profile d'analyse	WinXPSP2x86
02-005	PID du processus vérolé	852 (explorer.exe)
02-006	$IP \ du \ CC$	169.254.154.85
02-007	Nom des fichiers illégitimes (sous la forme de name.exe ou name.dll)	wuauctl.exe, explorer.exe
02-008	Port utilisé par le malware	local :1103
02-009	$PID\ du\ parent\ du$ $malware$	660
02-010	Nombre de page RWX du malware	55 (nombre de page avec les droits d écriture lecture et d'éxécution trouvé grave a la commande vadinfo)

Méthodologie d'analyse

Veuillez décrire les étapes de vos analyses qui vous ont permis de trouver des preuves numériques.

Veuillez ne pas dépasser une page d'écriture.

1 On commence par le telechargement de la copie de la memoire vive, 2 l'installation de volatility , 3image info pour trouver le profile, 4conscan pour trouver le pid , 5 pstree pour trouver le pid parent , 6 analyse sur total virus qui detecte un virus poison ivy, 7 commande vad info pour trouver le nombre de pages générées , 8 utilisation des commandes comme pslist qui nous montre que explorer.exe n'a pas de ppid dans la liste et qu'il y'a de nombreux fichiers ou encore csrss.exe,pstree, psxview, dlllist, connscan, et cmdscan pour avoir plus d'informations sur le malware.

Analyse dump disque dur

Synthèse de l'analyse

\mathbf{n}°	Question	Réponses
03-001	Date de compromssion (eg.YYYYMMDD- HH:MM:SS)	2013-06-30 14:56:02
03-002	Vecteur de compromission	faible mot de passe (IEUser cad le nom d'utilisateur)
03-003	$egin{array}{ll} Nom \; du \; compte \ ill\'egitime \end{array}$	Hacker , Daily
03-004	Type de partition	vol2 (NTFS)
03-005	Chemins du malware (eg: C:\Users\temp	C:\WINDOWS\system32\wuauctl.exe
03-006	Clés de registre modifiées :	HKEY_CLASSES_ROOT\CLSID\{C523F39F-9C83-11D3-9094-00104BD0D535}
03-007	$\stackrel{\circ}{Adresse}\ Ip\ de\ la \ Machine$	192.168.10.22
03-008	Numéro du volume de stockage de la provenance du malware (de type xxxxxxxxx-xxxx- xxxx-xxxx-	
03-009	Nom du fichier source du malware	Special Documentation.pdf
03-010	Nom et numero de série des supports amovibles connectées	CRMPXVOL_EN

Méthodologie d'analyse

Veuillez décrire les étapes de vos analyses qui vous ont permis de trouver des preuves numériques.

Veuillez ne pas dépasser une page d'écriture.

1 Téléchargement de la copie physique du disque dur vmdk , 2 Test du disque dur sur une machine virtuelle windows XP , 3 naviguation à travers les fichiers diiférents fichiers mais aucune piste concrètes a part l'utilisateur hacker et le mot de passe de IEuser , 4 utilisation de avast ce qui n'a rien donné, 5 Conversion du fichier vmdk en raw avec qemu-utils , 6 installation de plaso pour analyser la

machine et son contenu et nous générer un fichier c
sv avec la timeline, 7 analyse de la timeline qui montre : 8 la création de 2 utilisateurs Daily et hacker , 9 L'ouverture du fichier Special Documentation.
pdf , 10~l IP de la machine, 10~le chemin du malware

Analyse du malware

Synthèse de l'analyse

n°	Question	Réponses
04-001	Nom du malware	Poison Ivy
04-002	$Nom\ du\ fichier \\ malveillant$	wuauctl.exe
04-003	Classification	Cheval de Troie famille RAT
04-004	Système d'exploitation (eg. Windows 8, Windows 2000,)	Windows XP
04-005	Architecture (x86, x86_64, arm32, arm64)	x86
04-006	Méthode de persistence	Il fait appel au malware a chaque connexion d un utilisateur , il utilise diverses techniques pour être exécutées par l'utilisateur ou par d'autres logiciels sur le système affecté (recherche sur internet sur le fonctionnement de poison ivy).
04-007	$Password\ de\ connexion$	admin
04-008	$MD5\ hash$	69c5f02ada419c6d7927bc8b1e660f5f
04-009	Date de compilation (format YYYYMMDD- HH:MM:SS)	20080106-14:51:31
04-010	Fonctionalités	Selon la façon dont l'attaquant le configure, le code réseau lance un navigateur Web caché (le navigateur par

défaut du système) et s'injecte dans ce processus. Le code réseau télécharge alors à distance (depuis le PIVY de l'attaquant client en tant que shellcode) le reste du code et les données nécessaires pour le malware. Il possède à son actif de multiples attaques, telles la compromission des données de la société de sécurité américaine RSA, l'agression « Nitro » contre les fabricants de produits chimiques, l'intrusion dans des entreprises de la défense américaines, etc.

Méthodologie d'analyse

Veuillez décrire les étapes de vos analyses qui vous ont permis de comprendre le fonctionnement du malware.

Veuillez ne pas dépasser une page d'écriture.

Nous avons réalisé en premier lieu l'analyse de la mémoire vive de la machine Windows XP Service Pack 2 , lors de cette analyse nous avons constaté qu'elle était infecté par le malware Poison Ivy en utilisant les différentes commandes de volatility nous avos vu que ce malware s'était introduit sous forme de cheval de troie dans le fichier wuauctl.exe. Après ces constatations, nous sommes passé à l'analyse du disque dur de la deuxième machine Windows XP Service Pack 3. Nous avons tout d'abord créé une machine virtuelle Windows XP à laquelle nous avons attribué le disque dur , puis lors du démarrage de la machine , nous nous sommes rendus compte que l'utilisateur IEUser avait pour mot de passe son nom d'utilisateur donc une très faible sécurité (idem pour le compte Hacker qui ne nécessitait pas de mot de passe), nous avons fait tourner avast qui n'a détécté aucun malware. Pour obtenir plus d'informations sur cette machine, nous avons installé gemu-utils et convertit le fichier vmdk en raw après cela nous avons installé plaso pour connaître les processus en cours ainsi que la timeline de la machine et d'autres informations. Pour finir, nous avons installé ghidra pour analyser le fichier raw et nous avons réalisé une analyse manuelle des fichiers via virustotal pour récupérer les informations complémentaires. .

TimeLine and conclusion

Timeline

n°	Question	Réponses
05-001	Date de dépose du malware	2013-06-30 14:56:02
05 - 002	Date de la première execution du malware	2013-06-30 14:58:44
05-003	Date d'exécution du processus vérolé	2013-06-30 14:58:54

Conclusion

n°	Question	Réponses
06-001	Sévérité (faible, moyenne, élevée)	élevée
06-002	$egin{aligned} Nombre \ de \ machine(s) \ infect\'ee(s) \end{aligned}$	2
06-003	Système d'exploitation affecté	Windows XP SP2 et SP3
06-004	Type de malware (eg:keylogger)	Backdoor
06-005	$Type\ d'attaque\ (eg:phishing)$	Une évasion(attaque informatique qui va détourner les équipements de détection d'intrusion pour effectuer un exploit informatique ou installer un logiciel malveillant sur une machine ou un système du réseau sans se faire détecter)
06-006	Nom de la souche du malware	Poison Ivy
06-007	IOC	Des requetes DNS ont été produites par les 2 machines

Veuillez décrire les recommandations que vous proposeriez Veuillez ne pas dépasser une page d'écriture.

avant tout il faudrait analyser tout le reseau car il est toujours possible que d autre machines soeint infecté . Il faudrait restaurer les information des 2 postes analysées (apres les avoir réinitialisé). Une fois l'incident resolu il serait conseillé d'avoir des programmes antivirus ou anti-malware pour faire en sorte qu'il n'y ait pas de virus et les désinstaller , faire attention aux mails reçus et aux mises à jour , ne pas ouvrir n'importe quels fichiers , choisir des mots de passe complexes ou utiliser des génerateurs de mots de passe pour encore plus de compléxité et nettoyer la base de registre (cf copie d'écran).

Annexes

Figure 1: Utilisation des commandes pstree et psxview

Figure 2: Utilisation de la commande pslist

Figure 3: Utilisation de la commande dlllist

Figure 4: Création d'une machine virtuelle Windows XP pour analyser le disque dur

Figure 5: Utilisaon de Task Manager pour connaître les processus en cours

Figure 6: Utilisation d'UFS Explorer pour analyser csrss.exe

Figure 7: Recherche du numéro de volume de stockage de la provenance du malware

Figure 8: Informations sur le disque

Figure 9: Type de partition

Figure 10: Supports amovble connectés

Figure 11: Installation de plaso

Figure 12: Création d'un fichier timeline.csv

Figure 13: Détéction de virus avec virus total (ici il n'en trouve pas)

Figure 14: Installation de ghidra pour analyser le fichier vmdk convertie en raw

Figure 15: Analyse avec ghidra

Figure 16: Analyse des fichiers de system32 avec virustotal

Figure 17: Analyse des fichiers de system32 avec virustotal

Figure 18: Analyse des fichiers de system32 avec virustotal

Figure 19: Analyse des fichiers de system32 avec virustotal

Figure 20: Analyse des fichiers de system32 avec virustotal

Figure 21: Analyse des fichiers de system32 avec virustotal

Figure 22: Chemin du malware

```
(base) sarah@sarah-ThinkPad-L412:~/Downloads$ md5sum SEC102.vmdk
69c5f02ada419c6d7927bc8b1e660f5f SEC102.vmdk
(base) sarah@sarah-ThinkPad-L412:~/Downloads$
```

Figure 23: MD5 Hash