Logistic Regression

Week 05 - Day 01

Linear Regression

Lasso Regression

Ridge Regression

Elastic Net

Linear Regression - regression

Lasso Regression - regression

Ridge Regression - regression

Polynomial Regression - regression

Logistic Regression - ???

Linear Regression - regression

Lasso Regression - regression

Ridge Regression - regression

Polynomial Regression - regression

Logistic Regression - classification

Logistic Regression = binary classification

Binary Classification with 1 feature

tinder

tinder

Sean Rad, 29 o

Verified

♥ Like Me On Tinder

Rosette, 32

Vice President, Global Communications & Bra...

Uke Me On Tinder

score = hotness + 2*personality

#	Score	Date
1	8.2	yes
2	5.8	no
3	6.2	no
4	6.1	yes

Linear Regression

Problems?

Problem: values >1 or <0

Solution: ???

Problem: values >1 or <0

Solution: bound y to [0,1]

Problem: values between 0 and 1

Solution: ???

Problem: values between 0 and 1

Solution: use 0.5 as cutoff value

A new point

New regression line?

Solution: logistic function

Logistic Function

Notebook Plot_logit_function.ipynb

Coefficients Interpretation

$$Pr(Y = 1) = \frac{1}{1 + \exp(-[-3.92 + 0.014 \times (gender)])}$$

$$exp(a) = e^{**}a$$

What's the interpretation of this coefficient?

$$Pr(Y = 1) = \frac{1}{1 + \exp(-[-3.92 + 0.014 \times (gender)])}$$

can assert that the odds of your outcome for women are $e^{**}(0.014) = 1.01$ times that of the odds of your outcome in men

With "gender", if Female = 0 and Male = 1, you

Odds Ratios

Odds-ratio(p) = p/(1-p)

P = probability

р	1 -p	Odds ratio p/(1-p)
0.1	0.9	0.11
0.25	0.75	0.33
0.5	0.5	1
0.75	0.25	3
0.9	0.1	9

https://www.youtube.com/watch?v=5zPSD_e_N0

4

Find the best betal and beta0

No simple formula with derivation

Optimization process

Strange loss function

(logistic loss)

From p to class

Standard cutoff = 0.5

Another parameter to tune!

Why is it called Regression?

(between 0.0 and 1.0)

We're just predicting a number

Summary

Logistic regression = binary classification

- Logistic regression = binary classification
- Map all the points in the interval [0,1] with logistic function

- Logistic regression = binary classification
- Map all the points in the interval [0,1] with logistic function
- Use cutoff, usually 0.5

- Logistic regression = binary classification
- Map all the points in the interval [0,1] with logistic function
- Use cutoff, usually 0.5
- The cutoff can be tuned!

- Logistic regression = binary classification
- Map all the points in the interval [0,1] with logistic function
- Use cutoff, usually 0.5
- The cutoff can be tuned!
- Interpretation of coefficients = odds ratio