PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:	1	(11) International Publication Number:	WO 91/03557
C12N 15/15, A61K 37/64 C07K 13/00, C12P 21/02	Al	(43) International Publication Date:	21 March 1991 (21.03.91)

DK

(21) International Application Number: PCT/DK90/00225
(22) International Filing Date: 29 August 1990 (29.08.90)

25 August 1990 (29.00.9)

4236/89 29 August 1989 (29.08.89) DK 4237/89 29 August 1989 (29.08.89) DK

29 August 1989 (29.08.89)

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Alle, DK-2880 Bags-værd (DK).

(72) Inventors; and
(75) Inventors/Applicants (for US only): ESPER, Boel [DK/DK]; Lyngbakkevej 25, Søllerød, DK-2840 Holte (DK). LARS, Sottrup-Jensen [DK/DK]; Johannes Evaldsvej 75, DK-8230 Åbyhøj (DK).

(74) Common Representative: NOVO NORDISK A/S; Patent Department, Novo Alle, DK-2880 Bagsvaerd (DK).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

(54) Title: EXPRESSION OF ALPHA-MACROGLOBULINS

(57) Abstract

(30) Priority data:

4235/89

 α -Macroglobulins, especially human α_2 -macroglobulin, variants, fragments or derivatives thereof is produced by recombinant technology. The products are useful as additives to growth media, as proteinase inhibitors, as carrier in enzyme replacement therapy, and as DNA carrier in gene therapy.

^{*} See back of page

DESIGNATIONS OF "DE"

**

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
ΑŲ	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
3F	Burkina Fasso	GB	United Kingdom	MW	Malawi
3G	Bulgaria	GR	Greece	NL	Netherlands
ม	Benin	HU	Hungary	NO	Norway
BR	Brazil	ľТ	Italy	PL	Poland
ZA.	Canada	JP	Japan	RO	Romania
F	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
:H	Switzerland	KR	Republic of Korea	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
DE	Germany	LK	Sri Lanka	TD	Chad
DK	Denmark	LU	Luxembourg	TG	Togo
			-	US	United States of America

1

Title: Expression of alpha-macroglobulins

FIELD OF THE INVENTION

The present invention relates to the expression of α -macroglobu-5 lins, derivatives and variants thereof, and especially the expression of the human α_2 -macroglobulin (α_2 M) in an active form in mammalian cells, and the expression of genetically engineered variants thereof. The use of such recombinant α -macroglobulins, especially recombinant α_2 M($r\alpha_2$ M) and variants is described with examples from the fields of medicine for therapeutic 10 purposes, and the development of novel defined growth media for propagation of mammalian cells in culture.

BACKGROUND OF THE INVENTION.

BIOCHEMISTRY OF α_2 -MACROGLOBULIN (α_2 M).

The proteinase binding glycoprotein $\alpha_2 M$, which is synthesized in the liver, constitute together with the complement proteins C3, C4 and C5 a separate class of structurally and functionally related large plasma proteins. For a recent review see (Sottrup-Jensen, L. (1987) in: The Plasma Proteins (Putnam, F.W., ed.) 2nd Ed., $\underline{5}$: 191-291, Academic Press, Orlando, 20 FL).

Apart from C5 these proteins contain an internal B-cysteinyl- γ -glutamyl thiol ester, which enables the proteolytically activated forms of $\alpha_2 M$, C3, and C4 to participate in characteristic covalent binding reactions (Sottrup-Jensen, L., et al., (1980) FEBS Lett. 121: 275-280; Salvesen, G.S. 25 and Barrett, A.J., (1981) Biochem. J. 187: 695-701). The thiol ester structure, which in the active proteins can be slowly cleaved by a number of small nitrogen nucleophiles, constitutes a unique type of postsynthetic modification of proteins, and plays a prominent role in the biological properties of $\alpha_2 M$. The presence of the active thiol esters in $\alpha_2 M$ is revealed 30 by a characteristic pattern of heat fragmentation (Harpel, P.C., et al., (1979) J. Biol. Chem. 254: 8869-8878).

Traditionally, $\alpha_2 M$ has been studied within the context of plasma proteinase inhibitors, although by several criteria it is unique. Whereas most plasma proteinase inhibitors are monomeric proteins of roughly similar 35 size, containing approximately 430-500 residues, $\alpha_2 M$ is a tetramer whose 180-kD subunits contain 1451 residues (Sottrup-Jensen et al., (1984) J. Biol. Chem. 259: 8318-8327).

Furthermore, in contrast to most other proteinase inhibitors, which form 1:1 complexes with serine proteinases engaging the active site

المراجع المراجع المراجع

Ē

1

of the proteinase and the reactive site of the inhibitor, $\alpha_2 M$ forms complexes with a broad spectrum of proteinases differing in their substrate specificity and catalytic mechanism e.g.: trypsin, leucocyte elastase, chymotrypsin, pancreatic elastase, cathepsin G, plasmin, plasma kallikrein and thrombin.

The second-order rate constant for association between these proteinases and $\alpha_2 M$ varies by several orders of magnitude. Both 1:1 and 2:1 proteinase- $\alpha_2 M$ complexes can be formed, and the disulfide-bridged dimer (360 kD) appears to be the functional unit of $\alpha_2 M$ (Sottrup-Jensen, L. (1987) in: The Plasma Proteins (Putnam, F.W., ed.) 2nd Ed., $\underline{5}$: 191-291, Academic Press, 10 Orlando, FL). Contrary to "classical" proteinase inhibitor complexes the $\alpha_2 M$ bound proteinase is still active, especially toward small synthetic substrates (Sottrup-Jensen, L. (1987) in: "The Plasma Proteins" (Putnam, F.W., ed.) 2nd Ed., $\underline{5}$: 191-291, Academic Press, Orlando, FL).

The mechanism of proteinase binding by $\alpha_2 M$ has been described by 15 the "trap" (Barrett, A.J. and Starkey, P.M. (1973) Biochem. J. 133: 709-724), where proteolytic cleavage of a particularly exposed peptide stretch near the middle of the 180-kD subunit (the "bait" region) results in a conformational change of the $\alpha_2 M$ tetramer, thereby entrapping the proteinase. The nature of the essentially irreversible proteinase complex formation 20 with $\alpha_2 M$ has long remained elusive. However, recent investigations show that a major fraction (typically > 80-90 % of the trapped proteinase is also covalently bound through epsilon-lysyl (proteinase)- γ -glutamyl ($\alpha_2 M$) bonds (Sottrup-Jensen, L. et al., (1981) FEBS Lett. 128: 127-132; Sand, O. et al., (1985) J. Biol. Chem. 260: 15723-15735; Pochon, F. et al., (1987) FEBS Lett. 217: 25 101-105).

PHYSIOLOGICAL ASPECTS OF PROTEINASE-α, M INTERACTIONS.

Since the α_2 M-proteinase complexes are rapidly cleared from the circulation (Ohlsson, K. (1971) Acta Physiol. Scand. <u>81</u>: 269-272; Imber, 30 M.J. and Pizzo, S.V. (1981) J. Biol. Chem. <u>256</u>: 8134-8139.) a general role as a "clearing vehicle" for plasma proteinases has been envisaged.

The main physiological targets may include proteinases of the coagulation and fibrinolysis systems and plasma kallikrein, and perhaps also proteinases like leucocyte elastase, cathepsin G and collagenases and other 35 proteinases released during cellular turnover (Sottrup-Jensen, L. and Birkedal-Hansen, H. (1989) J. Biol. Chem. <u>264</u>: 393-401).

Although $\alpha_2 M$ may be largely confined to the vasculature in healthy uninflamed tissues, the inhibitor and its proteinase complexes are found at near plasma levels in inflammatory exudates of rheumatoid joints and gingival

crevicular fluids (Tollefsen, T. and Saltved, E. (1980) J. Periodont. Res. <u>15</u>: 96-106; Borth, W., et al., (1983) Ann. N. Y. Acad. Sci. <u>421</u>: 377-381).

While plasma $\alpha_2 M$ appear to be synthesized in the liver (Schreiber, G. (1987) in: "The Plasma Proteins" (Putnam, F.W., ed) 2nd Ed., $\underline{5}$: 294-363, 5 Academic Press, Orlando, FL.) other sites of synthesis exist. Several cell strains in culture have been shown to produce $\alpha_2 M$ including fibroblasts (Mosher, D.F., et al., (1977) J. Clin. Invest. $\underline{60}$: 1036-1045) and monocytes-/macrophages (Hovi, T., et al., (1977) J. Exp. Med. $\underline{145}$: 1580-1589).

Whereas hepatocytes and Kupffer cells of the liver are most 10 important for clearance of α_2 M-proteinase complexes in plasma (Davidsen, O., et al., (1985) Biochim. Biophys. Acta <u>846</u>: 85-92), fibroblasts (Van Leuven, F., et al., (1979) J. Biol. Chem. <u>254</u>: 5155-5160; Mosher, D.F. and Vaheri, A. (1980) Biochim. Biophys. Acta <u>627</u>: 113-122) and macrophages (Debanne, M.T., et al., (1975) Biochim. Biophys. Acta <u>411</u>: 295-304; Kaplan, J. and 15 Nielsen, M.L. (1979) J. Biol. Chem. <u>254</u>: 7323-7328) also possess receptors for α_2 M-proteinase complexes.

These observations suggest that there may be a considerable extravascular turnover of α₂M perhaps primarily carrying proteinases functioning in the cellular micro environment (Sottrup-Jensen, L. and 20 Birkedal-Hansen, H. (1989) J. Biol. Chem. <u>264</u>: 393-401).

SUMMARY OF THE INVENTION

Briefly stated, the present invention discloses a method for the production of recombinant α -macroglobulins, and especially human $\alpha_2 M$, and 25 variants thereof in an active form.

Within a preferred embodiment, the cultured host cell is an eukaryotic cell such as a mammalian cell or cells derived from organisms such as insects, plants, yeast or other fungi, such as <u>Aspergillus</u>.

The invention further relates to DNA sequences comprising a gene 30 encoding for the expression of human $\alpha_2 M$ and variants thereof, vectors comprising such DNA sequences, and suitable hosts transformed with such vectors.

Yet another aspect of the invention is the use of recombinant $\alpha_2 M$ and variants thereof as a protein carrier in enzyme replacement therapy 35 (ERT).

Yet another aspect of the invention is the use of recombinant $\alpha_2 M$ and variants thereof as a DNA carrier in gene therapy.

Further aspects of the invention relates to the use of recombinant α -macroglobulins, especially human $\alpha_2 M$, and variants thereof as

constituents of growth media, either as an additive or co-expressed with a desired gene product.

DEFINITIONS

Prior to setting forth the invention it may be helpful for an understanding thereof to set forth definitions of certain terms to be used hereafter.

Complementary DNA or cDNA: A DNA molecule or sequence which have been 10 enzymatically synthesized from sequences present in a mRNA template.

DNA Construct: A DNA molecule, or a clone of such a molecule, either singleor double-stranded, which may be isolated in partial form from a naturally occurring gene or which has been modified to contain segments of DNA which 15 are combined and juxtaposed in a manner which would not otherwise exist in nature.

Plasmid or Vector: A DNA construct containing genetic information which may provide for its replication when inserted into a host cell. A plasmid 20 generally contains at least one gene sequence to be expressed in the host cell, as well as sequences encoding functions which facilitate such gene expression, including promoters and transcription initiation sites. It may be a linear or closed circular molecule.

25 Joined: DNA sequences are said to be joined when the 5' and 3' ends of one sequence are attached by phosphodiester bonds to the 3' and 5' ends, respectively, of an adjacent sequence. Joining may be achieved by such methods as ligation of blunt or cohesive termini, by synthesis of joined sequences through cDNA cloning, or by removal of intervening sequences 30 through a process of directed mutagenesis.

Variant: A peptide related to the original peptide, but wherein the amino acid sequence has been altered through mutation of the gene encoding the original peptide.

ABBREVIATIONS

AMINO ACIDS

Ala Alanine A Val Valine ٧ = = 5 L Leu Leucine = I Ile Isoleucine = = Proline P Pro = F Phe Phenylalanine = == W Trp Tryptophan = 10 M Met Methionine = G Gly Glycine = S Ser Serine = = T Thr Threonine = = C Cysteine Cys = = 15 Y Tyr Tyrosine = N Asn Asparagine = = Gln Q Glutamine = = D Asp Aspartic Acid = = Ε Glu Glutamic Acid = = 20 K Lys Lysine = R Arg Arginine = Н His Histidine =

=

NUCLEIC ACID BASES

25 A Adenine Guanine G Cytosine C Thymine(only in DNA) U Uracil (only in RNA)

BRIEF DESCRIPTION OF THE DRAWINGS

30

35

Figure la illustrates the construction of plasmid pl136. Figure 1b illustrates the construction of plasmid p1167. Figure 2 illustrates the structure of plasmid pl167.

Figure 3 illustrates a gel electrophoresis (10 - 20 % SDS-PAGE) of the thermal fragmentation products generated from $\alpha_2 M$ and $r\alpha_2 M$.

Figure 4 illustrates a gel electrophoresis of the thermal fragmentation products generated from methylamine treated $\alpha_2 M$ and $r\alpha_2 M$.

Ş

Figure 5 illustrates a gel electrophoresis (SDS-PAGE) of the reaction products generated from trypsin treatment of $\alpha_2 M$ and $r\alpha_2 M$.

Figure 6 illustrates a gel electrophoresis of the reaction products generated from trypsin treatment of methylamine-treated $\alpha_2 M$ and $r\alpha_2 M$.

Figure 7 illustrates a "rate gel" electrophoresis of unreacted native -and trypsin treated $\alpha_2 M$ and $r\alpha_2 M$.

Figure 8 illustrates a "rate gel" electrophoresis of unreacted native -and methylamine treated $\alpha_2 M$ and $r\alpha_2 M$.

Figure 9 illustrates the chromatograms of $\alpha_2 M$ and $r\alpha_2 M$ on a 10 Superose 6 column.

Figure 10 illustrates the gel electrophoresis (10 - 20 % reducing SDS-PAGE) of the reaction products from chymotrypsin treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP.

Figure 11 illustrates the gel electrophoresis (10 - 20 % reducing 15 SDS-PAGE) of the reaction products from elastase treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP.

Figure 12 illustrates the gel electrophoresis (10 - 20 % reducing SDS-PAGE) of the reaction products from trypsin treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP.

Figure 13 illustrates the gel electrophoresis (10 - 20 % reducing SDS-PAGE) of the reaction products from Staphylococcus aureus Glu-specific protease treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP.

25 DETAILED DESCRIPTION OF THE INVENTION

According to the invention there is provided a process for the production of α -macroglobulins, especially human α_2 -macroglobulin, or fragments or derivatives, including variants thereof, wherein a functionally operative expression vector comprising a gene encoding for the expression of 30 a α -macroglobulin, especially human α_2 -macroglobulin, or fragments or derivatives thereof, including variants, or alleles of such a gene, is introduced into a suitable host capable of expressing said gene, said host is cultured in a suitable nutrient medium containing sources of assimilable carbon and nitrogen and other essential nutrients, and the expressed α -35 macroglobulin, especially human α_2 -macroglobulin, or fragments or derivatives thereof is recovered.

Many proteins synthesized particularly in mammalian cells undergo post-translational modification (processing) of one kind or the other.

Depending on the final destination and on the specific function of a newly synthesized protein, it may go through a number of processing steps leading to covalent modifications such as e.g.: glycosylation, γ -carboxylation, β -hydroxylation, sulphatation, amidation, thiol ester formation, phosphory-5lation, proteolytic cleavage at precursor processing sites, fatty acylation (Rosner, M.R. (1986). in: "Mammalian Cell Technology", (Thilly, W.G. ed), Butterworth Publishers, Stoneham, MA.: 63-89).

Proteins of various sizes and with a variety of different post-translational modifications have been successfully expressed in transformed 10 heterologous mammalian host cells using recombinant DNA technology. A few examples: Human coagulation factors VIIa and IX have been expressed in transformed BHK (Syrian Baby Hamster Kidney) cells with correct post-translational modifications such as γ-carboxylation and glycosylation (Thim, L. et al., (1988) Biochemistry 27: 7785-7793; Busby, S. et al., (1985) Nature 316: 271-15 273). Human Platelet-derived Growth Factor AB heterodimer has been expressed in transformed CHO (Chinese Hamster Ovary) cells with correct processing of the A and B chain precursors and correct assembly of the AB heterodimer. Human coagulation factor VIII has been expressed in transformed CHO cells with correct processing of the precursor leading to a two chain molecule that 20 can be activated by thrombin and factor Xa (Kaufman, R.J. et al., (1988) J. Biol. Chem. 263: 6352-6362; Pittman, D.D. and Kaufman, R.J. (1988) Proc. Natl. Acad. Sci. USA 85: 2429-2433).

So far, there have been no reports on the heterologous expression of proteins in which the formation of an active thiol ester is a prominent 25 post-translational modification.

The biosynthesis of the internal thiol ester in the third component (C3) of complement from rabbit has been investigated (Iijima, M. et al., (1984) J. Biochem. 96: 1539-1546). Rabbit liver mRNA was translated in vitro in a rabbit reticulocyte lysate system, and the synthesized C3 specific 30 products did not incorporate radio labelled methylamine. On the other hand radio labelled iodoacetamide reacted with the synthesized C3 specific products; these results indicated the presence in the primary C3 specific translation product of a free thiol group instead of a reactive thiol ester. If a liver homogenate supernatant (S-13) including cytosol and microsomes was 35 included, the C3 specific product could now incorporate methylamine. By increasing the concentration of the S-13 component(s), the incorporation of methylamine in C3 specific products was increased, and at the same time incorporation of iodoacetamide decreased. If the S-13 fraction was treated at 65°C for 5 min, the activity was completely lost.

3

The results from this investigation strongly suggest an involvement of a transglutaminase-like or other type of enzyme in the posttranslational formation of an active thiol ester in rabbit C3. There are no similar investigations addressing the formation of the thiol ester in other α -macro-sglobulins, e.g. $\alpha_2 M$, but from analogy and homology considerations, it is expected that a similar mechanism is responsible for the formation of thiol esters in other α -macroglobulins synthesized in the mammalian liver.

Through this investigation a number of developments were done 10 which also are deemed to be encompassed of the present invention. These include DNA sequences comprising a gene encoding for the expression of α -macroglobulins, especially human α_2 -macroglobulin, or fragments or derivatives and variants thereof as exemplified in SEQ ID NO:1 and SEQ ID NO:3.

Another aspect of the invention relates to functionally operative 15 expression vectors comprising a gene encoding for the expression of at least one $\alpha\text{-macroglobulin}$, especially human $\alpha_2\text{-macroglobulin}$ or fragments or derivatives and variants thereof, or alleles of such a gene.

Such vectors preferably further comprise regulatory elements necessary for the stable maintenance of said vector in mammalian cells.

Also, such vectors may further include sequences providing for the processing and secretion of the expressed product.

In relation to the use of recombinant α -macroglobulins, and especially $r\alpha_2 M$, in growth media it may be co-expressed with another desired gene product, and consequently the vectors of the invention may further 25 comprise one or more other genes encoding for a desired gene product.

The invention further relates to transformed hosts comprising a functionally operative expression vector according to the invention comprising a gene encoding for the expression of human α_2 -macroglobulin or fragments 30 or derivatives and variants thereof, or alleles of such a gene.

The host may be selected from the group comprising a bacterial strain, a fungal strain, a mammalian cell line, or a mammal, especially a fungus, such as belonging to the genus <u>Aspergillus</u>, or a yeast strain, preferably belonging to the genus <u>Saccharomyces</u>.

Another preferred type of host is a mammalian cell line, preferably a Syrian Baby Hamster Kidney (BHK) cell line, and especially the one which is available from ATCC under No. CRL 1632.

The invention further relates to the recombinant human α_2 -macroglobulin or a variant thereof in an active form having the amino acid sequence of SEQ ID NO:2, or SEQ ID NO:4.

5 APPLICATIONS OF α -MACROGLOBULINS, ESPECIALLY $r\alpha_{\alpha}M$.

The present invention discloses applications of α -macroglobulins, and especially $r\alpha_2 M$. These should be regarded not as limitations but as a few examples among many for the use of recombinant derived α -macroglobulins.

10 α-MACROGLOBULINS AS CONSTITUENTS OF DEFINED GROWTH MEDIA.

Degradation of specific heterologous products produced in either transformed or non-transformed mammalian cells is a potential problem in the production of recombinant products. This is due to the fact that many host cells secretes one or more different proteinases.

When a production cell line is grown in the presence of e.g. 10 % fetal calf serum, such proteolytic degradation of secreted recombinant or native protein products is a minor problem due to a buffering effect of the added serum proteins.

However, the use of fetal calf serum in the large scale growth 20 (fermentation) of mammalian production cell lines is not a desirable situation for a number of reasons. First of all fetal calf serum is a very costly constituent of complex growth media; second, the demand for fetal calf serum from a growing biopharmaceutical industry might not be easily fulfilled in the future, and third, the use of fetal calf serum constitutes 25 a potential quality control problem in the production of pharmaceuticals intended for use in humans.

To circumvent these problems, efforts can be expected in the field of development of defined growth media for use with mammalian cells.

Addition of various proteinase inhibitors to such new defined 30 growth media will be required to ensure the integrity of the secreted products. Alternatively, the producer cell line might, through genetic engineering, be endowed with the capacity to produce and secrete proteinase inhibitors along with the desired product(s).

 α -Macroglobulins, and especially Human $\alpha_2 M$, are proteinase 35 inhibitors of broad specificity, and they are therefore according to the invention used as constituents of defined growth media for mammalian cells, either as a medium additive or as a product co-produced with the desired product.

*

ŧ

The target sites for a number of different proteinases, e.g. bovine trypsin, Streptomyces griseus trypsin, papain, porcine elastase, bovine chymosin, bovine chymotrypsin, Staphylococcus aureus strain V8 proteinase, human plasmin, bovine thrombin, thermolysin, subtilisin Novo and 5 Streptomyces griseus proteinase B have been mapped in the bait region of human α_2 M (Mortensen, S.B., et al., (1981) FEBS Lett. 135: 295-300) and other α -macroglobulins (Sottrup-Jensen, L., Sand, O., Kristensen, L. and Fey, G.H. J.Biol.Chem. 264,15781-15789, 1989). It is evident that α_2 M and the other α -macroglobulins as proteinase inhibitors have broad specificities.

In those situations, where the proteinase inhibitory spectrum of a α -macroglobulin, such as $\alpha_2 M$, is not sufficient for the prevention of product degradation, it is possible through site specific mutation, protein engineering, etc. to change the proteinase inhibitor specificity of the α -macroglobulin, such as $\alpha_2 M$. Incorporation of desirable specific proteinase 15 target sites in the bait region of recombinant $\alpha_2 M$ will change the inhibitor specificity of the mutated $\alpha_2 M$. Furthermore it is possible through genetic engineering to construct novel specific or general proteinase target sites in the bait region of a α -macroglobulin in order to enhance its versatility as a proteinase inhibitor of specific or broad inhibitory spectrum. 20 Furthermore it is possible to remove specific target sites in an α -macroglobulin in order to avoid degradation of the variant in question by certain proteases in the circulation that will already be inhibited through the action of naturally present proteinase inhibitors.

The production of recombinant products in fungi, such as species 25 and strains of e.g. Aspergillus and Saccharomyces also meets with potential problems of product degradation. In some cases it is possible to isolate proteinase negative mutants of desirable production strains. This might not always be the case, and co-expression of α -macroglobulins, such as $\alpha_2 M$ or $\alpha_2 M$ -mutants together with a desirable product may inhibit proteolysis of the 30 product in question.

α-MACROGLOBULIN MUTANTS AS SPECIFIC PROTEINASE INHIBITORS.

The amino acid sequence of the bait region of α -macroglobulins defines the specificity of the α -macroglobulin towards different proteina-35 ses. A comparison of cleavage patterns for different proteinases and bait region sequences in five mammalian α -macroglobulins has recently been published (Sottrup-Jensen, L., Sand, O., Kristensen, L. and Fey, G.H. The α -macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian α -macroglobulins. J. Biol. Chem. 264,

15781-15789, 1989). It has previously been clearly demonstrated that the bait region in each species of α -macroglobulin is the major determinant of proteinase inhibitor specificity. The present invention demonstrates the possibility of modulating the inhibitor specificity of human $\alpha_2 M$ by 5 alterations of proteinase target sites in the bait region.

In the present invention it is demonstrated that the bait region of human $\alpha_2 M$ (residues 690 to 730 in SEQ ID NO:2) can be mutated at will to obtain a new proteinase inhibitor profile of this macroglobulin. The example presented in the present invention describes the construction of a hybrid 10 macroglobulin. In this hybrid the bait region from human pregnancy zone protein (PZP) was introduced into human $\alpha_2 M$, from which the native bait region had been removed. The hybrid molecule, which was constructed by the use of recombinant DNA technology, revealed a proteinase inhibitor profile similar to the inhibitor profile of PZP.

The invention thus demonstrates the possibility to design and produce proteinase inhibitors with altered and new inhibitor specificities at will.

This finding is important for the design of new proteinase inhibitors. Due to the low antigenicity the bait region in macroglobulins 20 (Van Leuven, F., Marynen, P., Cassiman, J.-J. and Van den Berghe, H. Mapping of structure-function relationships in proteins with a panel of monoclonal antibodies. A study on human alpha-2-macroglobulin. J. Immunol. Methods 111, 39-49, 1988, and Delain, E., Barray, M., Tapon-Bretaudiere, J., Pochon, F., Marynen, P., Cassiman, J.-J., Van den Berghe, H. and Van Leuven, F. The 25 Molecular Organization of Human alpha2-Macroglobulin. An Immunoelectron microscopic study with monoclonal antibodies. J. Biol. Chem. 263, 2981-2989, 1988) it is now possible, by the use of the technology described in the present invention, to design non-immunogenic new proteinase inhibitors that can be used e.g. in the treatment of any disease, where aggressive proteina-30 ses constitute a threat to the health of man.

In the present specification the production of $\alpha_2 M$ variants is described by the construction of a hybrid macroglobulin. It is clear to the skilled person in the art that changes also could be obtained through other genetic engineering methods, such as described in International Publication 35 No. WO 89/06279 (NOVO INDUSTRI A/S). Also it is clear that other α -macroglobulins could be employed instead of the human $\alpha_2 M$, such as those mentioned in Sottrup-Jensen, L. et al. (1989), supra.

4

ra, M AS A PROTEIN CARRIER IN ENZYME REPLACEMENT THERAPY.

A different application of $\alpha_2 M$ is its use as a carrier of macromolecules such as proteins and nucleic acids. When $\alpha_2 M$ reacts with and forms a complex with a proteinase in solution, $\alpha_2 M$ may bind other proteins (also 5 non-proteinase proteins) present in that solution (Salvesen, G.S. et al., (1981) Biochem. J. 195: 453-461). In the case of Fabry's disease, which is an X-chromosome linked disorder of glycosphingolipid metabolism, it has recently been demonstrated that $\alpha_2 M$ can function as a carrier in an in vitro model of enzyme replacement therapy (ERT) (Osada, T., et al., (1987) Biochem. 10 Biophys. Res. Commu. 142: 100-106). $\alpha_2 M$ was conjugated to coffee bean $\alpha_2 M$ galactosidase through the action of trypsin, and the formed complex was internalized through $\alpha_2 M$ -receptor specific (Van Leuven, F., et al., (1981) J. Biol. Chem. 256: 9016-9022) endocytosis and delivered to the lysosomes, which is the target organelle for $\alpha_2 M$ -receptor mediated internalization of $\alpha_2 M$ -15 proteinase complexes (Willingham, M.C. and Pastan, I., (1980) Cell 21: 67-77).

Such a scheme in ERT provides a method of internalization to the lysosome of the enzyme in question and at the same time it might alleviate potential antigenicity problems arising from the use of heterologous enzymes 20 in therapy. One limitation in this type of ERT (Osada, T., et al., (1987) Biochem. Biophys. Res. Commu. 142: 100-106) would be the types of potential target cells that could be treated by this protocol. Obviously, they would have to express the α_2 M-receptor. In a future development of the system, the possibility might exist to redesign the cell specificity of α_2 M internaliza-25 tion by exchanging the receptor binding domain of α_2 M with other receptor ligands. Hereby α_2 M-mutants could be designed to enter any cell type known to express a specific internalizable receptor.

This type of development would of course require a system for the production of recombinant derived $\alpha_2 M$. The use of native human $\alpha_2 M$ as a 30 carrier in ERT (as described above) is undesirable due to the now well known risks of the employment of blood derived products in the treatment of human disease.

The production of recombinant $\alpha_2 M$ in accordance with the present invention alleviates this problem by providing for large scale production 35 of $r\alpha_2 M$.

ra, M AS A DNA CARRIER IN GENE THERAPY.

Advances in gene transfer into mammalian cells have opened for the possibility of the treatment of a number of genetic disorders through gene therapy. A major problem in gene therapy will be the specific targeting of genes into the appropriate cells within the body. (Williamson, B., (1982) Nature 298: 416-418; Anderson, W.F., (1984) Science 226: 401-409; Parkman, R., (1986) Science 232: 1373-1378).

It was recently described that a constructed foreign gene containing the chloramphenical acetyltransferase (CAT) on a bacterial plasmid could be targeted to the liver of rats by specific receptor directed internalization (Wu, G.Y. and Wu, C.H. (1988) J. Biol. Chem. <u>263</u>: 14621-14624). The DNA carrier consisted of a galactose-terminal (asialo)glyco-10 protein and asialoorosomucoid covalently linked to poly-L-lysine. The polycation poly-L-lysine can bind DNA in a strong non-covalent and nondamaging interaction. It was demonstrated that complex bound DNA was internalized by cell-surface asialoglycoprotein receptors that are unique to hepatocytes. The complex was injected intravenously, and upon analysis only the liver 15 expressed the CAT activity.

In the present invention the use of $r\alpha_2M$ as a carrier of DNA in gene therapy is suggested. Reaction of $r\alpha_2M$ with a proteinase such as trypsin or with methylamine in the presence of covalently closed circular plasmid DNA is likely to result in partial or total entrapment of DNA within the 20 complexing α_2M molecule. After intravenous injection of such complexes with exposed receptor binding domains, the complex will be rapidly cleared from the blood and internalized in specific target cells, such as hepatocytes and Kupffer cells. Through protein engineering on the receptor binding domain of $r\alpha_2M$ it will be possible to design a DNA carrier specific for other cell 25 types. The advantage in this system as compared to the above described system using the asialoglycoprotein receptor is, that it will not be necessary to identify different DNA carrier systems for each new cell type.

30 EXAMPLES

<u>Materials and methods:</u>

Microorganisms and cell lines

E. coli K12 (MC1061) is available from e.g. Stratagene Inc., 35 11099 North Torrey Pines Rd., La Jolla, California 92037.

HepG2 (Human hepatoblastoma cell line) is freely available from American Type Culture Collection, under No. HB 8065.

BHK (Syrian Hamster Kidney cell line, thymidine kinase mutant line tk⁴s13, (Waechter and Baserga (1982) Proc. Natl. Acad. Sci. USA <u>79</u>:

1106-1110); is freely available from American Type Culture Collection, under No. CRL 1632.

Plasmids and vectors

5

Plasmids pCDVI-PL and pSP62-K2 are available from Dr. Tasuku Honjo, Faculty of Medicine, Kyoto University, Kyoto 606, Japan. pSP62-K2 was derived from the plasmid pSP62-PL (available from New England Nuclear/Du Pont (U.K.) Ltd., Wedgwood Way, Stevenage, Hertfordshire, SG14QN) as 10 described (Noma et al., (1986) Nature, 319: 640-646). pCDVI-PL was derived from pcDV1 (Okayama, H. and Berg, P. (1983) Molec. cell. Biol. 3: 280-289) as described (Noma et al., (1986) Nature, 319: 640-646).

M13mp18 is available from Pharmacia LKB Biotechnology (catalog # 27-1552-01) (Norrander, J., Kempe, T. and Messing, J. <u>Gene</u> 26: 101-106, 15 1983).

M13mp19 is available from e.g. International Biotechnologies, Inc., P.O. Box 9558, 275 Winchester Avenue, New Haven, Connecticut 06535, USA.

pDHFR-I is available from Dr. K.L.Berkner, ZymoGenetics Inc., 20 4225 Roosevelt Way NE, Seattle, Washington 98105. (The construction of this plasmid is given in detail in: Berkner, K.L. and Sharp, P.A. (1984) Nucleic Acids Res. 12: 1925-1941). The molecular cloning of the DHFR cDNA present in this plasmid, and its sub-cloning in mammalian expression vectors under the control of adenovirus derived promoters has previously been described 25 in detail (Chang, A.C.Y., et al., Nature 275: 617-624 and Kaufman, R.J. and Sharp, P.A. (1982) Mol. Cell. Biol. 2: 1304-1319). The backbone plasmid in pDHFR-I is pBR322 (Sutcliffe, J.G. (1979) Cold Spring Harbor Symp. Quant. Biol. 43: 77-90; Sutcliffe, J.G. (1978) Nucleic. Acids Res. 5: 2721-2728). pUC13 is described in: Vieira, J. and Messing, J.: 1982, Gene 19:

30 259-268 and available from Pharmacia LKB Biotechnology (catalog # 27-4954-01).

pUC19 is described in: Yanisch-Perron, C. and Messing, J., 1985, Gene 33:103-119 and available from Pharmacia LKB Biotechnology (catalog # 27-4951-01).

15

Growth media

LB-broth:

Mix

227 g Bacto Tryptone, Difco 0123-01

113.5 g Yeast extract, Difco 0127-01, and

5

227 g NaCl in a sealable plastic container.

Add 12.5 g mix to 500 ml water in a 1000 ml bottle, shake well and sterilize in an autoclave.

Dulbeccos Modified Eagle Medium is available from e.g. Gibco Ltd. 10 P.O. Box 35, Trident House, Renfrew Road, Paisley PA34EF, Renfrewshire, Scotland. Cat.# 042-250 1M (10 * concentrate).

Antibodies

Anti- α_2 M A033 and peroxidase conjugated anti- α_2 M PE326 were from DAKOPATTS A/S, Copenhagen, Denmark.

EXAMPLE 1.

CLONING AND SEQUENCE DETERMINATION OF HUMAN @M

20

¢

Preparation of messenger RNA from the human cell line HepG2.

The human hepatoblastoma cell line HepG2 (American Type Culture Collection No. HB 8065, freely available) was used as a source for mRNA preparation. HepG2 cells were grown to a total cell number of 15×10^7 in 25 Dulbecco's Modified Eagle medium containing 10% fetal calf serum and antibiotics.

Total RNA was isolated by the guanidinium thiocyanate method (Chirgwin et al., (1979) Biochemistry 18: 5293-5299) and purified by CsCl gradient centrifugation. A total of 3000 μ g RNA was obtained. mRNA was 30 isolated by use of an oligo(dT)-cellulose column (Aviv & Leder (1972) Proc. Natl. Acad. Sci. USA 69: 1408-1412). 60 μ g of mRNA was obtained after one cycle of affinity chromatography. After ethanol precipitation, this preparation of mRNA was resuspended in 10 mM Tris-HCl pH 7.5, 0.1 mM EDTA-Na₂ at a final concentration of 1 μ g/ μ l and stored at -80°C for subsequent 35 use in the construction of a cDNA library.

Construction of a cDNA library from HepG2 mRNA.

A cDNA library was constructed in the pCDVI-PL/pSP62-K2 vectors (Noma et al., (1986) Nature, 319: 640-646. Available from Dr. Tasuku Honjo,

Ş

Faculty of Medicine, Kyoto University, Kyoto 606, Japan) by use of the methods described by Okayama & Berg (Mol. Cell. Biol. $\underline{2}$: 161-170 (1982); Mol. Cell. Biol. $\underline{3}$: 280-289 (1983)).

E. coli K12 (MC1061) (Casadaban & Cohen (1980) J. Mol. Biol. $5\,138$: 179-207) was used for transformation. MC1061 were grown in L-broth at 37°C to $0D_{eeo}=0.5$. Twenty ml were centrifuged, and the pellet was resuspended in 7 ml of ice-cold sterile 0.1 M CaCl₂, incubated on ice for 30 minutes, centrifuged briefly, and finally kept in the cold room overnight.

Ninety-five μ l suspension of transformation-competent <u>E. coli</u> 10 MC1061 were added per 10 μ l of cDNA preparation. The mixture was incubated on ice for 30 minutes, heat-shocked at 43,5°C for 45 seconds, and finally, after addition of L-broth, incubated at 37°C for 30 minutes.

After resuspension, the cells were plated onto L-broth plates containing ampicillin (50 μ g/ml) and grown for 8 hrs at 37°C. A total of 2.9 $15*10^5$ individual colonies could be obtained from this library.

Screening of the HepG2 library for cDNA clones encoding human α_2M .

5 * 10' individual colonies were screened by standard colony hybridization technique using nitrocellulose filters (Maniatis et al., (1982) 20 Molecular Cloning - A Laboratory Manual, Cold Spring Harbor, New York).

A 20-mer oligonucleotide mixture

5' CC(T/C)TTCAT(G/A)TC(T/C)TC(T/C)TG(T/C)TT 3'

where the notation (X/Y) means that either of the nucleic acids X or Y may be used, complementary to the human $\alpha_2 M$ mRNA in the region encoding amino 25 acid residues Lys-Gln-Glu-Asp-Met-Lys-Gly (residues number 493 - 499 in Sottrup-Jensen et al., J. Biol. Chem. <u>259</u>: 8318-8327 (1984) was synthesized (on a DNA synthesizer from Applied Biosystems, USA), labelled with ³²P (using T₄ polynucleotide kinase and γ -³²P-ATP) to a specific activity of 3 * 10⁸ cpm/pmol oligonucleotide. The labelled oligonucleotides were purified by gel 30 chromatography and subsequently used in the screening of the cDNA library.

The hybridization solution contained 6 * SSC, 5 * Denhardt's solution, 0.05% SDS (Maniatis et al., (1982) Molecular Cloning - A Laboratory Manual, Cold Spring Harbor, New York) and 10⁶ cpm/ml of labelled oligonucleotide mix.

Hybridization was performed for 3 hrs at 45°C. Then the filters were washed in 6 * SSC, 0.05% SDS at 45°C for 3 * 10 minutes. After autoradiography the filters were washed under the same conditions, but this time at 52°C. A colony that still showed hybridization at this temperature was isolated and the cDNA insert of the corresponding plasmid (designated $p\alpha_2M$)

from this isolate was sequenced (Tabor & Richardson (1987) Proc. Natl. Acad. Sci. USA <u>84</u>: 4767-4771). The sequence of the cDNA and the derived encoded amino acid sequence are shown in the appended sequence listings, SEQ ID NO:1:, and SEQ ID NO:2:.

5

Characterization of $p\alpha_{2}M$.

 $p\alpha_{z}M$ had a cDNA insert of approximately 4.6 kb. Its sequence is given in Table I above.

The sequence in Table I demonstrates that the entire coding region of $\alpha_2 M$ including the signal peptide is found in the insert.

In addition to the coding region, the insert contains sequences derived from the 5'- and 3' untranslated regions of the α_2M mRNA molecule.

The amino acid sequence of the human $\alpha_2 M$ as deduced from the cDNA 15 in $p\alpha_2 M$ is in total agreement with the published sequence (Sottrup-Jensen et al., (1984) J. Biol. Chem. <u>259</u>: 8318-8327). Codon number 1000 (numbered from the initiating methionine codon in the signal peptide) was found to be ATC encoding an isoleucine and not GTC (encoding a valine) as found in an $\alpha_2 M$ cDNA synthesized from human liver mRNA (Kan et al., (1985) Proc. Natl. Acad. Sci.

20 USA. <u>82</u>: 2282-2286). In the α_2M cDNA sequence from the HepG2 library we have further identified ten silent changes as compared to the sequence from the liver library, see the following Table I:

TABLE I

5	Codon	Liver	HepG2
	413 (Asn)	AAC	AAT
	495 (Phe)	TTT	TTC
10	750 (Gly)	GGG	GGT
	796 (Leu)	CTT	СТС
15	835 (Leu)	CTT	СТА
	1266 (Ala)	GCC	GCA
	1296 (Asn)	AAT	AAC
20	1326 (Thr)	ACC	ACA
	1442 (Leu)	стс	CTG
25	1460 (Ile)	ATC	ATT
			· · · · · · · · · · · · · · · · · · ·

The position of the oligonucleotide mixture used as a hybridization probe in the colony screenings was from position 1574 to position 1594, 30 and the position of the reactive thiol ester is from position 2939 to 2953 in SEQ ID NO:1.

EXAMPLE 2. Construction of a mammalian expression vector for α_2M .

 $p\alpha_2 M$ was digested (fig. 1a) with <u>Xba</u>I and <u>Eco</u>RI, and a 1.2 kb fragment containing the 5' part of the $\alpha_2 M$ cDNA together with the multiple cloning site of pSP62-K2 was isolated on an agarose gel and cloned in an <u>Xba</u>I/<u>Eco</u>RI digested M13mp19 vector to generate M13mp19A. To facilitate further subclonings of the $\alpha_2 M$ cDNA, a unique <u>Eco</u>RV site was introduced in 40 the 1.2 kb fragment 10 nucleotides 5' to the initiating ATG (methionine) codon through site directed mutagenesis (Kunkel et al., (1987) Methods Enzymol. <u>154</u>: 367-382). In the same mutagenesis experiment, in which the mutagenic oligonucleotide NOR593:

5'(TTCTTCCCCATGGTGGATATCGAAGGAGCTG)3'

45 was used, the 5 nucleotides 5' to the methionine codon was changed to CCACCATG; this mutation creates a new NcoI site spanning the ATG codon. A

correct mutant M13mp19B was identified through restriction enzyme digestion and DNA sequencing.

The mutated 5' end of $\alpha_2 M$ cDNA was isolated from M13mp19A replicative form through digestion with <u>Hin</u>dIII and <u>Eco</u>RI and agarose gel electro-5 phoresis. The isolated DNA fragment was then joined to <u>Hin</u>dIII/<u>Eco</u>RI digested p $\alpha_2 M$ through ligation to generate pl136. In this plasmid the $\alpha_2 M$ cDNA is reassembled in its total length, but now with a unique <u>Eco</u>RV site at the 5' end. pl136 was digested with <u>Eco</u>RV/<u>Dra</u>I, and the $\alpha_2 M$ fragment was isolated on an agarose gel and cloned in a mammalian expression vector under control of 10 the adenovirus 2 major late promoter (Ad 2 MLP).

The adenovirus-promoter based vector was constructed by K.L.Berkner (ZymoGenetics Inc., Seattle, WA.), and a detailed description of the functional elements in the mammalian expression vector is given in: Powell, J.S. et al., (1986) Proc. Natl. Acad. Sci. USA <u>83</u>: 6465-6469 and in: Boel 15 et al., (1987) FEBS Lett. <u>219</u>: 181-188).

The expression vector used for expression of human $\alpha_2 M$ was generated from the mammalian expression vector pPP (Boel, E. et al., (1987) FEBS Lett. 219: 181-188), in which human pancreatic polypeptide cDNA was cloned under control of Ad 2 MLP.

pPP was digested (fig. 1b) with <u>Bam</u>HI and the resulting staggered ends were repaired with DNA polymerase (Klenow fragment and the four deoxynucleotide triphosphates). The 4.5 kb <u>EcoRV/DraI</u> α_2 M cDNA fragment was joined to this vector through ligation, and correct recombinants were characterized through restriction enzyme analysis on isolated miniprep. 25 plasmids.

The α_2 M-mRNA transcribed from the resulting 8.76 kb plasmid (designated pl167 (fig. 2)) has the adenovirus 2 late tripartite leader (L1-3) at its 5' end together with an mRNA splice signal (SS). At the 3' end of the construct the transcript is terminated with the SV40 late termination - 30 and polyadenylation signal. 5' to the Ad 2 MLP the construct includes the SV40 enhancer (ENH) and the 0 to 1 (0 - 1) map units from adenovirus 5.

Expression of $\alpha_{>}M$ in mammalian cells.

For expression of human α₂M in cultured BHK cells (Syrian Hamster 35 Kidney, thymidine kinase mutant line tk⁴s13, (Waechter and Baserga (1982) Proc. Natl. Acad. Sci. USA <u>79</u>: 1106-1110); American Type Culture Collection CRL 1632) the expression vector pl167 was co-transfected with pDHFR-I (Berkner, K.L. and Sharp, P.A. (1984) Nucleic Acids Res. <u>12</u>: 1925-1941. Available from K.L.Berkner, ZymoGenetics Inc. Seattle) into subconfluent cells by the

calcium phosphate mediated transfection procedure (Graham and Van der Eb (1973) Virology <u>52</u>: 456-467). In the transfection experiment the molar ratio between pl167 and pDHFR-I was 10:1. Cells were grown in Dulbeccos Modified Eagle Medium supplemented with 10% fetal calf serum (FCS).

Forty-eight hours after transfection, cells were trypsinized and diluted into medium containing 400 nM methotrexate (MTX). After 10 to 12 days, individual colonies were cloned out and expanded separately. The expanded cultures were propagated for 24 hours as described above, and producer clones were identified using an enzyme linked immunosorbent assays 10 (ELISA) (Munck Petersen C., et al., (1985) Scand. J. Clin. Lab. Invest. $\underline{45}$: 735-740) against human $\alpha_2 M$ secreted to the growth medium.

Description of the α_2M ELISA assay.

The materials used in the ELISA were:

15 Catching antibody A033 anti- $\alpha_2 M$,

Peroxidase-conjugated anti- α_2 M antibody PE326,

1,2-Phenylenediamine, dihydrochloride (OPD)

all from DAKOPATTS A/S, Copenhagen, Denmark.

Urea peroxide, 125 mg, was from Organon Teknika.

20 96 well ELISA plates were from NUNC, Copenhagen.

Coating buffer:

100 mM carbonate buffer pH 9.6 was made up as follows: Add 3.18 g Na_2CO_3 and 5.96 g $NaHCO_3$ to 1000 ml water.

25

Standard and sample buffer:

To 100 ml of 150 mM phosphate buffer pH 7.2 was added:

50 μ l Tween 20

2 g Bovine Serum Albumin (Sigma A 7030).

30

Washing buffer:

10 mM sodium phosphate pH 7.4 145 mM sodium chloride 0.1 % Tween 20.

35

Citric acid-phosphate buffer, pH 4.9:

The following reagents were added to 1000 ml of water 7.3 g citric acid

23.88 g Na₂HPO₄, 12 H₂O

21

0.5 ml Tween 20

The buffer was used for a maximum of 14 days, stored at 4°C.

Urea peroxide solution:

125 mg urea peroxide was dissolved in 8.93 ml water. The solution was kept in the dark at 4°C.

Coating of the plates for assay:

The 96 well plate was coated with 175 μ l of the DAKO A033 10 antibody diluted 1:1000 in the coating buffer. The plate was incubated over night at 4°C. Before use the plate was washed 4 times in washing buffer.

Application of standards and samples:

15 purified human $\alpha_2 M$, 2 mg/ml (prepared as described in: Sottrup-Jensen et al., (1983) Ann. N.Y. Acad. Sci. <u>421</u>: 41-60) was used. The standard curve included the following serial dilutions: 1:4000, 1:8000, 1:16000 etc. down to 1:1024000, corresponding to final concentrations from 500 μ g/l down to 1.95 μ g/l. All dilutions were done in the Standard and sample buffer. The plate 20 was incubated over night at 4°C and then washed 4 times with wash buffer before the next step.

Addition of conjugated antibody:

 $100~\mu$ l of PE326, which had been diluted 1:6000 in the Standard 25 and sample buffer, was added to each well. The plate was incubated for 2 h at 20°C, and then washed 4 times with wash buffer.

Enzyme activation:

8 mg of OPD was dissolved in 12 ml of Citric acid- phosphate 30 buffer. To this solution 500 μ l Urea peroxide solution was added and the mixture was used immediately. 100 μ l of the final solution was added to each well, and the plate was incubated in the dark for 6 min. Then 100 μ l of 2 M H_2SO_4 was added to each well and the A_{492} was read in an automated ELISA plate reader.

35

*

The above described ELISA did not give any background on medium supplemented with 10% FCS, nor did it give any background in BHK cell conditioned medium. Of 24 isolated MTX resistant clones, 16 produced detectable amounts of recombinant $\alpha_2 M$.

×

Selected cell lines that secreted 12.3 mg/l (K16-6) and 19.1 mg/l (K17-6) in the supernatant (grown in a 6 well NUNC-plate) over a 48 hour period were expanded for large scale production of recombinant human $\alpha_2 M$ ($r\alpha_2 M$).

5

Purification of recombinant human α_2M .

Cell lines K16-6 and K17-6 were each expanded into one tendouble tray (NUNC, Denmark) with a growth surface of 6000 cm². At 80% confluency the medium on the cells was changed from containing the 10% fetal 10 calf serum (FCS) down to 2%. After 48 hours of growth in medium with only 2% (FCS), the medium was removed, and the cells were washed twice with serum free medium. Cells were then grown serum free for 4 to 5 days with change of serum free medium every two days. Conditioned medium was pooled and analyzed for rayM by ELISA.

The pooled conditioned medium from K16-6 and from K17-6 contained 7.15 mg/l and 21.5 mg/l of $r\alpha_2 M$, respectively.

The $r\alpha_2$ M was purified according to published procedures (Sottrup-Jensen et al., (1983) Ann. N. Y. Acad. Sci. <u>421</u>: 41-60). Briefly the conditioned medium was loaded onto a 10 ml Zn-Chelate column (Zn²⁺-20 iminodiacetic acid Sepharose 4B (Porath, J. et al., (1975) Nature <u>258</u>: 598-599) equilibrated with 25 mM Tris-HCl pH 8.0, and washed with 100 ml phosphate buffered saline (PBS) pH 7.2 until $A_{280} < 0.036$. A second wash with 20 mM sodium phosphate, 500 mM NaCl pH 6.2 was performed until $A_{280} < 0.033$. The flow rate was 100 ml/hr and 3 ml fractions were collected. $r\alpha_2$ M was eluted 25 with 100 mM EDTA pH 7.0 at a flow rate of 40 ml/hr. During elution 1 ml fractions were collected.

Recovery of $r\alpha_2M$ was 44%. The $r\alpha_2M$ containing fractions were concentrated to 1 ml on an Amicon devise equipped with a PM 10 membrane and then loaded onto a Superose 12 gelfiltration column (25 mM Tris-HCl, 150 mM 30 NaCl pH 8.0). The $r\alpha_2M$ containing fractions were pooled and stored at -20°C until analysis.

EXAMPLE 3.

Characterization of recombinant human ra.M.

35

A. Chemical reactions at the thiol ester: thermal fragmentation and methylamine induced cleavage.

*

A number of different analyses were performed to evaluate the structural and biological characteristics of the human $r\alpha_2M$ as compared to a preparation of human plasma derived α_2M , designated preparation LSJ39.

An important structural feature of $\alpha_2 M$ is the presence of the 5 thiol ester. When heated to 95°C for 15 min, the thiol ester will induce a peptide bond cleavage in the backbone of $\alpha_2 M$ at the position of the thiol esterified Glx-residue. This results in the fragmentation of the 180 kD $\alpha_2 M$ monomer into two polypeptides of 120 kD and 60 kD. Fig. 3 shows an analysis of both the purified $r\alpha_2 M$ (from two transformed BHK cell lines) and the 10 purified human plasma derived preparation LSJ39 on a 10-20% SDS polyacrylamide gel. The different preparations, either native human or BHK cell derived recombinant $\alpha_2 M$ were all heat treated to induce thermal fragmentation before loading onto the gel. Molecular weight markers (from top to bottom: 180, 120, 92, 60, 43, 26, 14 and 6 kD) were applied to lanes 1 and 15 8. Samples in lanes 2, 3 and 4 were not reduced before electrophoresis, while samples in lanes 5, 6 and 7 were reduced. Preparation LSJ39 was applied to lanes 2 and 5. $r\alpha_2 M$ K16-6 was applied to lanes 3 and 6, and $r\alpha_2 M$ K17-6 was applied to lanes 4 and 7.

It was clear from the patterns of protein fragments on the gel, 20 that both human $\alpha_2 M$ and the two $r\alpha_2 M$ preparations showed a considerable degree of thermal fragmentation. As expected, only the reduced samples displayed this fragmentation. In the nonreduced samples, the molecules migrated as the 360 kD dimer.

In the human plasma derived preparation LSJ39 (lane 5) a fragment 25 migrating slightly faster than the 60 kD fragment could be observed. Lanes 6 and 7 indicated the presence in the recombinant material of a similar faster migrating fragment. It is possible that this fragment represented a slightly underglycosylated variant of the 60 kD fragment.

Methylamine (MA) and other small nitrogen containing nucleo-30 philes will cleave the thiol ester and thereby inactivate the ester (Sottrup-Jensen, L., et al., (1980) FEBS Lett. 121: 275-280; Salvesen, G.S. et al., (1981) Biochem. J. 195: 453-461). After MA induced inactivation of the thiol ester, thermal fragmentation of α_2 M can no longer be observed.

Fig. 4 shows a SDS-PAGE run similar to that shown in Fig. 3 (with 35 respect to loaded samples), in which applied $\alpha_2 M$ and $r\alpha_2 M$ had been pretreated with MA. From this gel it was concluded, that the thiol ester of $r\alpha_2 M$ was just as susceptible to cleavage with MA as the thiol ester of native $\alpha_2 M$. Upon reduction MA-treated $\alpha_2 M$ and $r\alpha_2 M$ migrated as a single 180 kD monomer species.

ાં ૅ્રૉ

Lanes 5 of both Fig. 3 and 4 shoved an additional band of approximately 85 kD. When $\alpha_2 M$ is cleaved in the bait region by proteinases present in the blood, it generates two fragments, each with a molecular weight of 85 kD. The human $\alpha_2 M$ preparation LSJ39 (purified from serum) 5 contained these cleavage products, while they could not be detected on this gel in the two $r\alpha_2 M$ preparations. This indicated that the material secreted from the transformed BHK cell lines was largely native uncomplexed $\alpha_2 M$. Any $\alpha_2 M$ molecules, that have reacted with proteinases are inactivated and can not form additional complexes with other proteinases. Since the BHK cell 10 does not produce any proteinases that forms complexes with the $r\alpha_2 M$ product, this cell is therefore well suited for production of recombinant human $\alpha_2 M$.

B. Reaction with trypsin.

Reaction with trypsin is a standard way of analyzing the proteinase-complex 15 formation ability of $\alpha_2 M$ (Sottrup-Jensen, L. (1987) in: "The Plasma Proteins" (Putnam, F.W., ed.) 2nd Ed., $\underline{5}$: 191-291, Academic Press, Orlando, FL; Harpel, P.C. (1973) J. Exp. Med. $\underline{138}$: 508-521; Harpel, P.C., et al., (1979) J. Biol. Chem. $\underline{254}$: 8869-8878; Swenson, R.P. and Howard, J.B. (1979) J. Biol. Chem. $\underline{254}$: 4452-4456). In this reaction trypsin will cleave at its target site(s) 20 in the bait region of $\alpha_2 M$, and the resulting reduced cleavage products (85 kD) will migrate as a double band. Under nonreducing conditions the trypsin- $\alpha_2 M$ complexes will migrate as high molecular weight products.

Fig. 5 shows the result of such an analysis (performed as described (Sottrup-Jensen, L. (1987) in: "The Plasma Proteins" (Putnam, F.W., 25 ed.) 2nd Ed., <u>5</u>: 191-291, Academic Press, Orlando, FL; Harpel, P.C. (1973) J. Exp. Med. 138: 508-521; Harpel, P.C., et al., (1979) J. Biol. Chem. 254: 8869-8878; Swenson, R.P. and Howard, J.B. (1979) J. Biol. Chem. 254: 4452-4456)) on the native human $\alpha_2 M$ preparation LSJ39 (lanes 2 and 5) and on $r\alpha_2 M$ from cell lines K16-6 (lanes 3 and 6) and K17-6 (lanes 4 and 7). The samples 30 in lanes 2, 3 and 4 were not reduced before electrophoresis, while the samples in lanes 5, 6 and 7 were. Lane 5 shows that almost all of the human native $\alpha_2 M$ was cleaved with trypsin, while the two preparations of $r\alpha_2 M$ were cleaved with an efficiency of approximately 80% or more. Without reduction of the complexes no low molecular weight products from the reaction between 35 trypsin and the native $\alpha_2 M$ or the BHK cell derived $r\alpha_2 M$ were seen on the gel. The 85 kD fragments derived from the recombinant material migrated somewhat faster than the human standard; as mentioned above the recombinant material might be slightly underglycosylated.

*

When $\alpha_2 M$ is reacted with methylamine, the thiol ester will be inactivated, and $\alpha_2 M$ changes conformation from the "slow" form to the "fast" form (Sottrup-Jensen, L. (1987) in: The Plasma Proteins (Putnam, F.W., ed.) 2nd Ed., $\underline{5}$: 191-291, Academic Press, Orlando, FL; Van Leuven, F., Cassiman, 5 J.-J. and Van Den Berghe, H. (1981) J. Biol. Chem. $\underline{256}$: 9016-9022). In this conformation it can no longer react rapidly with or form complexes with proteinases such as e.g. trypsin.

Fig. 6 shows the results of a set of experiments that were run in parallel to the experiments described above and shown in Fig. 5. However, 10 before reaction with trypsin the native human $\alpha_2 M$ and the $r\alpha_2 M$ used in this experiment had been treated with methylamine (Sottrup-Jensen, L., et al., (1980) FEBS Lett. 121: 275-280). Under these conditions both the native $\alpha_2 M$ and the $r\alpha_2 M$ show a marked decrease in reactivity towards trypsin (80% or more of the $\alpha_2 M$ and $r\alpha_2 M$ monomers were migrating as a 180 kD polypeptide). 15 This indicates that trypsin does not rapidly cleave at the bait region in methylamine treated human $\alpha_2 M$ or in BHK cell derived $r\alpha_2 M$.

In these types of experiments BHK cell derived $r\alpha_2M$ has shown characteristics similar to those of native human α_2M .

20 C. Trypsin and methylamine induced conformational change in $\alpha_0 M$.

As mentioned above the $\alpha_2 M$ molecule will undergo a conformational change both through complex formation with proteinases and through methylamine induced cleavage of the thiol ester. The change in structure results in an altered mobility on rate gels (Sottrup-Jensen, L. (1987) in: The Plasma 25 Proteins (Putnam, F.W., ed.) 2nd Ed., $\underline{5}$: 191-291, Academic Press, Orlando, FL; Van Leuven, F., Cassiman, J.-J. and Van Den Berghe, H. (1981) J. Biol. Chem. $\underline{256}$: 9016-9022); unreacted $\alpha_2 M$ will migrate as a "slow" form, while reacted $\alpha_2 M$ will migrate as a "fast" form.

Fig. 7 and Fig. 8 show these conformational changes, as they 30 appear after reaction with trypsin and methylamine, respectively (analyzed on 5-10% rate gels).

Lanes 1 on both gels contain purified human pregnancy zone protein (PZP) (Sand, O. et al., (1985) J. Biol. Chem. <u>260</u>: 15723-15735), which is known to appear in both a dimeric (D) and a tetrameric (T) 35 configuration.

Lanes 2 on both gels contain unreacted human $\alpha_2 M$ preparation LSJ39. Lanes 3 on both gels show the fast migrating form, resulting from reaction with trypsin and methylamine, respectively. Lanes 4 on both gels show the unreacted $r\alpha_2 M$ preparation K16-6, and lanes 5 show the corresponding

fast forms. Lanes 6 on both gels show the unreacted $r\alpha_2M$ preparation K17-6, and lanes 7 show the corresponding fast forms.

It can be concluded that both complex formation between $r\alpha_z M$ and trypsin and reaction of $r\alpha_z M$ with methylamine result in the appearance of 5 fast migrating structures. These structures appear (as analyzed on rate gels) to be very similar to the structures obtained when human $\alpha_z M$ was allowed to react with trypsin and methylamine. It is also evident from these figures that the $r\alpha_z M$ proteins showed a migration, which, when compared to the migration of dimeric and tetrameric PZP on the gels, is in agreement with the 10 finding that these molecules are produced and secreted from the BHK cells in the active tetrameric conformation.

D. Chromatography of α₂M on a Superose 6 column.

A Superose 6 column can partially resolve $\alpha_2 M$ molecules in the 15 dimeric configuration from molecules in the tetrameric configuration (Sottrup-Jensen, L. unpublished). Human standard $\alpha_2 M$ and $r\alpha_2 M$ was analyzed on a 24 ml Superose 6 column (buffer: 25 mM Tris-HCl, 125 mM NaCl pH 8.0; flow rate: 1 ml/min; fraction size: 1 ml). Fig. 9 shows the diagrams obtained from the chromatography of purified human standard $\alpha_2 M$ and $r\alpha_2 M$ from the K17-20 6 and the K16-6 BHK cell lines. Tetrameric $\alpha_2 M$ (Sottrup-Jensen, unpublished observation) will elute in fraction 12 on this type of column. It is evident from the chromatograms that both of the $r\alpha_2 M$ preparations eluted in fraction 12, as did the human standard $\alpha_2 M$. On this type of column, dimeric $\alpha_2 M$ molecules will elute in fraction 14 and 15 (Sottrup-Jensen, unpublished 25 observation). This type of analysis supported the results obtained from the rate gels (Figs. 7 and 8), that $r\alpha_2 M$ was secreted from BHK cells in a tetrameric configuration.

E. Trypsin protection analysis.

When trypsin is trapped inside the $\alpha_2 M$ molecule, it retains its catalytic capacity towards low molecular weight substrates such as S-2222 (N-benzoyl-L-Ile-L-Glu-Gly-L-Arg-p-nitroanilide). If trypsin is efficiently complexed with $\alpha_2 M$, it will be protected against high molecular weight inhibitors such as Soybean Trypsin Inhibitor (STI) (Sottrup-Jensen, L. (1987) 35 in: The Plasma Proteins (Putnam, F.W., ed.) 2nd Ed., $\underline{5}$: 191-291, Academic Press, Orlando, FL; Ganrot, P.O. (1966) Clin. Chim. Acta. $\underline{14}$: 493-501; Sottrup-Jensen, L. et al., (1981) FEBS Lett. $\underline{128}$: 127-132).

K16-6 and K17-6 derived $r\alpha_2 M$ was compared with human plasma $\alpha_2 M$ in such a protection assay. 100 μ l $\alpha_2 M$ (in 25 mM Tris-HCl, 125 mM NaCl, pH

8.0) was mixed with 30 μ l trypsin (0.5 mg/ml in 20 mM sodium acetate pH 5.0). After incubating for 2 min. 30 μ l l mg/ml STI (in PBS) was added. 10 μ l aliquots were removed after 2 and 4 min. and each mixed with 750 μ l 0.12 mM S-2222 (dissolved 0.1 M sodiumphosphate pH 8.0, 5% dimethylsulfoxide).

The change in absorbance at 405 nm was recorded for 2 min. The results of the assay are given in the following Table II:

TABLE II

Prep. of α ₂ M.	α _z M	Activity.	
	A ₄₀₅ /min	μg	$A_{405}/\text{min}/\mu g$
Human LSJ39	0.140	5.00	0.028
K16-6	0.111	4.62	0.024
K17-6	0.119	4.87	0.024
	K16-6	A ₄₀₅ /min Human LSJ39 0.140 K16-6 0.111	A_{405}/min μg Human LSJ39 0.140 5.00 K16-6 0.111 4.62

20

From these results it can be concluded that $r\alpha_2M$ had essentially the same protection capacity for trypsin against STI as compared with the protection capacity of human plasma α_2M .

If $\alpha_2 M$ is treated with methylamine before the protection assay, 25 the protection capacity drops dramatically. In a similar assay as that described above, methylamine treated human plasma $\alpha_2 M$ only retained 17% of its protection capacity, while K16-6 and K17-6 $r\alpha_2 M$ retained 16% and 14% respectively. It can be concluded that $r\alpha_2 M$ protected trypsin against STI with almost the same efficiency as did human plasma $\alpha_2 M$.

30

E. Amino terminal amino acid sequencing of rα₂M.

Theoretically, the $\alpha_2 M$ characterized in the present investigation could only be either bovine (contaminant from serum), from hamster (endogenous product from the BHK cell) or derived from expression of the 35 transfected plasmid pl167. The ELISA assay used never recognized any $\alpha_2 M$ in BHK cell conditioned medium, whether with or without added fetal calf serum. To make sure that the investigated $\alpha_2 M$ was human $\alpha_2 M$, and to characterize the amino terminal processing of the recombinant product, amino terminal amino acid sequence determination was carried on out K16-6 and K17-6 $r\alpha_2 M$ as 40 described (Sottrup-Jensen, L. et al., (1984) J. Biol. Chem. <u>259</u>: 8293-8303). The Edman degradation was repeated for 12 cycles, and the identity of the detected amino acid derivative in each cycle, was in total agreement with the

amino terminal sequence of human $\alpha_2 M$: Ser-Val-Ser-Gly-Lys-Pro-Gln-Tyr-Met-Val-Leu-Val-, whereas bovine $\alpha_2 M$ has the following amino terminal sequence: Ala-Val-Asp-Gly-Lys-Pro-Gln-Tyr-Met-Val-Leu-Val- (unpublished, Dr. Torsten Kristensen, Department of Molecular Biology, University of Aarhus, Denmark.)

EXAMPLE 4.

Construction and expression of a bait region mutant of human $\alpha_2 M$.

In the present example it is demonstrated that the bait region of human $\alpha_2 M$ can be substituted by the bait region of human pregnancy zone 10 protein (PZP) (Sottrup Jensen, L., Folkersen, J., Kristensen, T. and Tack, B.F. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin. Proc. Natl. Acad. Sci. U.S.A. 81, 7353-7357, 1984; Sand, O., Folkersen, J., Westergaard, J.G. and Sottrup Jensen, L. Characterization of human pregnancy zone protein. 15 Comparison with human alpha 2-macroglobulin. J.Biol.Chem. 260, 15723-15735, 1985). The resulting $\alpha_2 M$ bait region mutant exhibited a proteinase inhibitor profile similar to that of human pregnancy zone protein.

To facilitate substitution of DNA fragments encoding the bait region of human $\alpha_2 M$ cDNA, target sites for the restriction enzymes <u>PstI</u> and 20 <u>SacII</u> were introduced at the 5' and at the 3' end of the cDNA region encoding the bait region.

The human $\alpha_2 M$ expression plasmid pl167 was digested with <u>Bam</u>HI and <u>Cla</u>I, and a 2660 bp fragment, which carried the central part of the human $\alpha_2 M$ cDNA, was subcloned in the <u>Bam</u>HI and <u>Cla</u>I digested vector pSX191.

This vector, which had previously been constructed, is a derivative of pUC19. It was constructed as described: pUC19 was digested with EcoRI and HindIII, and a synthetic linker with the following sequence

KpnI PstI EcoRI Hind3 ClaI SphI BamHI
30 AATTGGTACCCTGCAGGAATTCAAGCTTATCGATGGCATGCGGATCC - NOR781
CCATGGGACGTCCTTAAGTTCGAATAGCTACCGTACGCCTAGGTCGA - NOR782

was cloned in the digested pUC19 vector. The linker, which was an annealing product from the two synthetic oligonucleotides NOR781 and NOR782, has 35 cohesive ends that will ligate to the EcoRI and the HindIII sites of pUC19 in such a way that these ligation sites are not regenerated in the pSX191 vector. Thus pSX191 carried sites for KpnI, PstI, EcoRI, HindIII, ClaI, SphI and BamHI.

The resulting plasmid pSX191 α_2 M was digested with <u>Bam</u>HI and 40 <u>Hin</u>dIII, and a purified 2.6 kb <u>Bam</u>HI/<u>Hin</u>dIII α_2 M fragment was cloned in

SUBSTITUTE SHEET

M13mp18 to generate M13mp18 α_2 M for mutagenesis by described methods. A synthetic oligonucleotide NOR973, with the following sequence:

5'(TTCATACTGCTGCAGCTGTGGACAC)3'

was used to introduce a <u>Pst</u>I site at position 2102 (SEQ ID NO:1) in the cDNA 5 sequence, and a oligonucleotide (NOR974) with the following sequence:

5' (AGCCACCCCCGCGGAGTTTACCAC)3'

was used to introduce a SacII site at position 2271 (SEQ ID NO:1) in the cDNA sequence. These sites were chosen because they did not introduce alterations in the encoded amino acid sequence, and they were within a 10 convenient distance of the bait region in human $\alpha_2 M$ cDNA. Both primers were used in the same mutagenesis experiment (Kunkel, T.A., Roberts, J.D. and Zakour, R.A. Rapid and Efficient Site-Specific Mutagenesis without Phenotypic Selection. Methods in Enzymol. 154, 367-382, 1987); dsDNA was isolated from mutated M13mp18 α_2 M plaques, and the DNA was digested with the restriction 15 enzymes PstI and SacII. Correctly mutated recombinants, which had an insert of 160 bp, were further analyzed by DNA sequencing (Tabor, S. and Richardson, C.C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 84, 4767-4771, 1987). A 2.6 kb BamHI/HindIII fragment from a correct $\alpha_2 M$ cDNA mutant (M13mp18 $\alpha_2 M$ #212.1) was subcloned in 20 a BamHI/HindIII digested pUC13 vector, and a correct subclone p1308 was isolated and characterized with <u>BamHI/HindIII</u> and <u>PstI/SacII</u> double digestions and DNA electrophoresis.

The <u>PstI/SacII</u> fragment in p1308 can be excised and replaced with a different DNA fragment, which encodes bait region variants. The 25 resulting new variants (bait region mutants or analogs) of $\alpha_2 M$ cDNA can be isolated as <u>BamHI/ClaI</u> fragments and subcloned back into <u>BamHI/ClaI</u> digested expression vector p1167.

In the present example DNA encoding the amino acids of the bait region for human PZP (Sottrup-Jensen et al. 1989, <u>supra</u>) was obtained from 30 ligation, annealing and cloning of 8 synthetic oligonucleotides.

The DNA sequence of the synthetic fragment and the encoded amino acids as inserted into the α_2M clone are given in SEQ ID NO:3, and comprises positions 2107 to 2305 and the corresponding amino acids. A <u>PstI</u> site was introduced at the 5' end in the synthetic fragment, and <u>SacII</u> and <u>Bam</u>HI sites 35 were introduced at the 3' end.

This synthetic 0.2 kb DNA fragment was cloned in a $\underline{PstI}/\underline{Bam}HI$ digested M13mp18 vector for DNA sequencing. DNA from a clone containing the correct sequence was digested with \underline{PstI} and $\underline{Sac}II$, and the purified 0.2 kb fragment was cloned in a $\underline{PstI}/\underline{Sac}II$ digested and gel purified p1308 vector.

A correct recombinant, p267PZP, was characterized with restriction enzyme digestions, and from this plasmid, bait region mutated ($\alpha_2 M \rightarrow PZP$) cDNA was isolated as a 2.7 kb <u>BamHI/ClaI</u> fragment and subcloned in a <u>BamHI/ClaI</u> digested $\alpha_2 M$ expression vector p1167. The resulting plasmid, designated p1365, 5 was grown as a large scale plasmid preparation, purified by CsCl centrifugation, and cotransfected with pDHFR-I into BHK cells.

Through this procedure the nucleotides 2102 to 2275 in SEQ ID NO:1 was removed and replaced with nucleotides 2102 to 2305 in SEQ ID NO:3.

The procedures for transfection, selection of bait region mutated $10\,\alpha_2 M$ (designated $r\alpha_2 M$ -PZP) recombinants (with an $\alpha_2 M$ specific ELISA), large scale production and purification of mutated $\alpha_2 M$ were as described elsewhere (EXAMPLE 2) in this application.

Characterization of the proteinase inhibitor specificity of a bait region 15 mutant of human $\alpha_2 M$.

The purified recombinant $\alpha_z M$ mutant, $r\alpha_z M$ -PZP, was characterized with respect to its inhibitor specificity profile against various proteinases by the use of previously described methods (Sand et al.1985). For comparison human plasma derived $\alpha_z M$ and PZP were treated with the same set 20 of proteinases in parallel reactions. The proteinases used were chymotrypsin, elastase, trypsin and <u>Staphylococcus aureus</u> Glu-specific proteinase. It has been reported (Sand et al.1985) that chymotrypsin and elastase show a rapid reaction with both PZP and $\alpha_z M$, while the reaction between the two proteinase inhibitors and trypsin and <u>Staphylococcus aureus</u> Glu-specific 25 proteinase is quite dissimilar for PZP and $\alpha_z M$: both proteinases react rapidly with $\alpha_z M$, while the reaction with PZP is slow (Sand et al.1985). The reason for this difference in reaction rate with the different proteinases is believed to be due to the fact that the bait region in PZP contains strong specificity determinant for chymotrypsin and elastase, but none for trypsin 30 and <u>Staphylococcus aureus</u> Glu-specific proteinase.

The results of the analysis is presented in figures 10 to 13. Figure 10 illustrates the gel electrophoresis (10 - 20% reducing SDS-PAGE) of the reaction products from chymotrypsin treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP. Molecular weight markers (from top to bottom: 180, 120, 92, 35 60, 43, 26, 14 and 6 kD) were applied to lanes 1 and 8. All samples were reduced. Lanes 2, 3 and 4 show the cleavage products obtained from reaction of chymotrypsin with human plasma derived PZP, $r\alpha_2 M$ -PZP and human plasma derived $\alpha_2 M$, respectively. The ratio of proteinase to inhibitor was 1:1. Lanes 5, 6 and 7 show cleavage products from similar reactions at a ratio of 2:1

between proteinase and the three tested inhibitors. In all 6 lanes cleavage products (85 kD) could be identified. This indicated that $r\alpha_2M$ -PZP reacted with chymotrypsin with similar characteristics as did human plasma derived α_2M and PZP.

Figure 11 illustrates the gel electrophoresis (10 - 20 % reducing SDS-PAGE) of the reaction products from elastase treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP. Molecular weight markers were the same as applied on the gel in Fig. 2. All samples were reduced. Lanes 2, 3 and 4 show the cleavage products obtained from reaction of elastase with human plasma derived PZP, $10 \, r\alpha_2 M$ -PZP and human plasma derived $\alpha_2 M$, respectively. The ratio of proteinase to inhibitor was 1:1. Lanes 5, 6 and 7 show cleavage products from similar reactions at a ratio of 2:1 between proteinase and the three tested inhibitors. In all 6 lanes cleavage products (85 kD) could be identified. This indicated that $r\alpha_2 M$ -PZP reacted with elastase with similar characteristics as did human plasma derived $\alpha_2 M$ and PZP.

Figure 12 illustrates the gel electrophoresis (10 - 20% reducing SDS-PAGE) of the reaction products from trypsin treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP. Molecular weight markers were the same as applied on the gel in Fig. 2. All samples were reduced. Lanes 2, 3 and 4 show the cleavage 20 products obtained from reaction of trypsin with human plasma derived PZP, human plasma derived $\alpha_2 M$ and $r\alpha_2 M$ -PZP, respectively. The ratio of proteinase to inhibitor was 1:1. Lanes 5, 6 and 7 show cleavage products from similar reactions at a ratio of 2:1 between proteinase and the three tested inhibitors. In lanes 3 and 6 cleavage products (85 kD) could be identified 25 from the reaction between trypsin and $\alpha_2 M$. In lanes 2, 4, 5 and 7 no cleavage products were observed from the reaction of trypsin with PZP and $r\alpha_2 M$ -PZP. This result demonstrated that $r\alpha_2 M$ -PZP reacted poorly with trypsin as did human plasma derived PZP, while $\alpha_2 M$ was cleaved in the reaction with trypsin.

Figure 13 illustrates the gel electrophoresis (10 - 20 % reducing 30 SDS-PAGE) of the reaction products from Staphylococcus aureus Glu-specific protease treated human $\alpha_2 M$, human PZP and $r\alpha_2 M$ -PZP. Molecular weight markers were the same as applied on the gel in Fig. 2. All samples were reduced. Lanes 2, 3 and 4 show the cleavage products obtained from reaction of Staphylococcus aureus Glu-specific protease with human plasma derived PZP, 35 $r\alpha_2 M$ -PZP and human plasma derived $\alpha_2 M$, respectively. The ratio of proteinase to inhibitor was 1:1. Lanes 5, 6 and 7 show cleavage products from similar reactions at a ratio of 2:1 between proteinase and the three tested inhibitors. In lanes 4 and 7 cleavage products (85 kD) could be identified from the reaction between Staphylococcus aureus Glu-specific protease and

3

 $\alpha_2 M$. In lanes 2, 3, 5 and 6 much less cleavage product could be identified from the reaction of this proteinase with PZP and $r\alpha_2 M$ -PZP. This result demonstrated that $r\alpha_2 M$ -PZP reacted poorly with the <u>Staphylococcus aureus</u> proteinase as did human plasma derived PZP, while $\alpha_2 M$ was cleaved in the 5 reaction with this proteinase.

It can be concluded that $r\alpha_2M$ -PZP showed the same pattern of reaction with four proteinases as did human plasma derived PZP. This pattern of reaction was different from the corresponding pattern obtained from reaction with α_2M . Thus $r\alpha_2M$ -PZP has been demonstrated to have a proteinase 10 inhibitor profile similar to native PZP and dissimilar to α_2M . Thus it has been demonstrated that the proteinase inhibitor profile of α_2M can be modulated by substitution of DNA fragments encoding the bait region.

The substitution as described in this invention did not destroy the activity of the proteinase inhibitor, and it is therefore demonstrated 15 that functional macroglobulin hybrids can be constructed by substitutions (mutations) in the bait region. The finding will lead to the design of $\alpha_{\rm 2} M$ -derivatives with new desired proteinase specificities. No doubt, these results could be extended to other macroglobulin based hybrids, in which the bait region can be modified at will to obtain new inhibitor specificities.

Aggressive activity of proteinases is often a problem in relation 20 to various diseases (e.g. the activity of elastase and cathepsin G in severe inflammation leads to tissue and organ destruction and failure). Inhibitors of such proteinases will be useful in drug design. In situations where the target site for the proteinase is known, but no inhibitor can be identified, $25\,\alpha_2 M$ can be engineered (mutated in the bait region) to obtain the desired specificity. In a situation where the target specificity of the proteinase in question is unknown, saturation mutagenesis or random synthesis of the bait region will lead to an indefinite number of target sequences that can be introduced and expressed in hybrid macroglobulins. These hybrids can be 30 screened for proteinase inhibition, and the target sequence(s) can be identified. The resulting $\alpha_2 M$ analog can be produced and purified as described elsewhere in this invention. Upon injection into the circulation such $\alpha_2 M$ analogs will inhibit and clear from the blood any proteinase of the given specificity.

Introduction of protein analogs or mutants in the human body always raises the possibility for antigenicity. The generation of a panel of 45 mouse monoclonal antibodies against human $\alpha_2 M$ has been described (Van Leuven et al.1988; Delain et al.1988). None of these antibodies were directed against the bait region. This indicates that the bait region is not highly

antigenic and that mutants in this region of the molecule can be generated and used for therapeutical uses without risk for antibody development.

•

SEQUENCE LISTING	
(1) GENERAL INFORMATION:	
(i) APPLICANT: Novo Nordisk A/S	
(ii) TITLE OF INVENTION: Expression of Plasma Glycoproteins	
(iii) NUMBER OF SEQUENCES: 4	
 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Novo Nordisk A/S, Patent Department (B) STREET: Novo Alle (C) CITY: Bagsvaerd (E) COUNTRY: DENMARK (F) ZIP: DK-2880 	
(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: DK 4235/89, DK 4236/89, DK 4237/89 (B) FILING DATE: 29-AUG-1989	
(2) INFORMATION FOR SEQ ID NO:1:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4569 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: N	
 (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (F) TISSUE TYPE: Hepatic (G) CELL TYPE: Hepatoblastoma (H) CELL LINE: HepG2 	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 294450 (D) OTHER INFORMATION:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
GTCTCCTCCA GCTCCTTCTT TCTGCAAC ATG GGG AAG AAC AAA CTC CTT CAT Met Gly Lys Asn Lys Leu His 1 5	52
CCA AGT CTG GTT CTC CTC TTG GTC CTC CTG CCC ACA GAC GCC TCA	100

Pro Ser Leu Val Leu Leu Leu Leu Val Leu Leu Pro Thr Asp Ala Ser 10 15 20

			AAA Lys													148
			ACT Thr													196
ACA Thr	GTG Val	ACT Thr	GTA Val 60	AGT Ser	GCT Ala	TCC Ser	TTG Leu	GAG Glu 65	TCT Ser	GTC Val	AGG Arg	GGA Gly	AAC Asn 70	AGG Arg	AGC Ser	244
CTC Leu	TTC Phe	ACT Thr 75	GAC Asp	CTG Leu	GAG Glu	GCG Ala	GAG Glu 80	AAT Asn	GAC Asp	GTA Val	CTC Leu	CAC His 85	TGT Cys	GTC Val	GCC Ala	292
TTC Phe	GCT Ala 90	GTC Val	CCA Pro	AAG Lys	TCT Ser	TCA Ser 95	TCC Ser	AAT Asn	GAG Glu	GAG Glu	GTA Val 100	ATG Met	TTC Phe	CTC Leu	ACT Thr	340
GTC Val 105	CAA Gln	GTG Val	AAA Lys	GGA Gly	CCA Pro 110	ACC Thr	CAA Gln	GAA Glu	TTT Phe	AAG Lys 115	AAG Lys	CGG Arg	ACC Thr	ACA Thr	GTG Val 120	388
ATG Met	GTT Val	AAG Lys	AAC Asn	GAG Glu 125	GAC Asp	AGT Ser	CTG Leu	GTC Val	TTT Phe 130	GTC Val	CAG Gln	ACA Thr	GAC Asp	AAA Lys 135	TCA Ser	436
			CCA Pro 140													484
GAA Glu	AAC Asn	TTT Phe 155	CAC His	CCC Pro	CTG Leu	AAT Asn	GAG Glu 160	TTG Leu	ATT Ile	CCA Pro	CTA Leu	GTA Val 165	TAC Tyr	ATT Ile	CAG Gln	532
GAT Asp	CCC Pro 170	AAA Lys	GGA Gly	AAT Asn	CGC Arg	ATC Ile 175	GCA Ala	CAA Gln	TGG Trp	CAG Gln	AGT Ser 180	TTC Phe	CAG Gln	TTA Leu	GAG Glu	580
			AAG Lys													628
GGC Gly	TCC Ser	TAC Tyr	AAG Lys	GTG Val 205	GTG Val	GTA Val	CAG Gln	AAG Lys	AAA Lys 210	TCA Ser	GGT Gly	GGA Gly	AGG Arg	ACA Thr 215	GAG Glu	676
			ACC Thr 220													724
			CCA Pro													772

Ser	GTG Val 250	TGT Cys	GGC Gly	CTA Leu	Tyr	ACA Thr 255	TAT Tyr	GGG Gly	AAG Lys	CCT Pro	GTC Val 260	CCT Pro	GGA Gly	CAT His	GTG Val	820
ACT Thr 265	GTG Val	AGC Ser	ATT Ile	TGC Cys	AGA Arg 270	AAG Lys	TAT Tyr	AGT Ser	GAC Asp	GCT Ala 275	TCC Ser	GAC Asp	TGC Cys	CAC His	GGT Gly 280	868
GAA Glu	GAT Asp	TCA Ser	CAG Gln	GCT Ala 285	TTC Phe	TGT Cys	GAG Glu	AAA Lys	TTC Phe 290	AGT Ser	GGA Gly	CAG Gln	CTA Leu	AAC Asn 295	AGC Ser	916
CAT His	GGC Gly	TGC Cys	TTC Phe 300	TAT Tyr	CAG Gln	CAA Gln	GTA Val	AAA Lys 305	ACC Thr	AAG Lys	GTC Val	TTC Phe	CAG Gln 310	CTG Leu	AAG Lys	964
AGG Arg	AAG Lys	GAG Glu 315	TAT Tyr	GAA Glu	ATG Met	AAA Lys	CTT Leu 320	CAC His	ACT Thr	GAG Glu	GCC Ala	CAG Gln 325	ATC Ile	CAA Gln	GAA Glu	1012
GAA Glu	GGA Gly 330	Thr	GTG Val	GTG Val	GAA Glu	TTG Leu 335	ACT Thr	GGA Gly	AGG Arg	CAG Gln	TCC Ser 340	AGT Ser	GAA Glu	ATC Ile	ACA Thr	1060
AGA Arg 345	Thr	ATA Ile	ACC Thr	AAA Lys	CTC Leu 350	TCA Ser	TTT Phe	GTG Val	AAA Lys	GTG Val 355	Asp	TCA Ser	CAC His	TTT Phe	CGA Arg 360	1108
CAG Gln	GGA Gly	ATT	CCC Pro	TTC Phe 365	Phe	GGG Gly	CAG Gln	GTG Val	CGC Arg 370	Leu	GTA Val	GAT Asp	GGG Gly	AAA Lys 375	GGC Gly	1156
GTC Val	CCT Pro	ATA Ile	CCA Pro 380	Asn	AAA Lys	GTC Val	ATA Ile	TTC Phe 385	Ile	AGA Arg	GGA Gly	AAT Asn	GAA Glu 390	Ala	AAC Asn	1204
TAT Tyr	TAC Tyr	TCC Ser 395	Asn	GCT Ala	ACC Thr	ACG Thr	GAT Asp 400	Glu	CAT His	GGC Gly	CTT Leu	GTA Val 405	Gln	TTC Phe	TCT Ser	1252
ATC Ile	AAC Asn 410	Thr	ACC Thr	AAT Asn	GTT Val	ATG Met 415	Gly	ACC Thr	TCT Ser	CTT Leu	ACT Thr 420	Val	AGG Arg	GTC Val	AAT Asn	1300
TAC Tyr 425	Lys	GAT Asp	CGT Arg	AGT Ser	CCC Pro 430	Cys	TAC	GGC Gly	TAC Tyr	CAG Gln 435	Trp	GTG Val	TCA Ser	GAA Glu	GAA Glu 440	1348
CAC His	GAA Glu	GA0	G GCA 1 Ala	CAT His 445	His	ACT Thr	GCT Ala	TAT Tyr	CTT Leu 450	ı Val	TTC Phe	TCC Ser	CCA Pro	AGC Ser 455	AAG Lys	1396
AG(Ser	TTT Phe	GT(C CAC His 460	Lei	GAG Glu	CCC Pro	ATO Met	Ser 465	His	GAA Glu	A CTA I Leu	A CCC a Pro	TGT Cys 470	Gly	CAT His	. 1444

ACT Thr	CAG Gln	ACA Thr 475	GTC Val	CAG G1n	GCA Ala	CAT His	TAT Tyr 480	ATT Ile	CTG Leu	AAT Asn	GGA Gly	GGC Gly 485	ACC Thr	CTG Leu	CTG Leu	1492
GGG Gly	CTG Leu 490	AAG Lys	AAG Lys	CTC Leu	TCC Ser	TTC Phe 495	TAT Tyr	TAT Tyr	CTG Leu	ATA Ile	ATG Met 500	GCA Ala	AAG Lys	GGA Gly	GGC Gly	1540
ATT Ile 505	GTC Val	CGA Arg	ACT Thr	GGG Gly	ACT Thr 510	CAT His	GGA Gly	CTG Leu	CTT Leu	GTG Val 515	AAG Lys	CAG Gln	GAA Glu	GAL Asp	ATG Met 520	1588
AAG Lys	GGC Gly	CAT His	TTT Phe	TCC Ser 525	ATC Ile	TCA Ser	ATC Ile	CCT Pro	GTG Val 530	AAG Lys	TCA Ser	GAC Asp	ATT Ile	GCT Ala 535	CCT Pro	1636
GTC Val	GCT Ala	CGG Arg	TTG Leu 540	CTC Leu	ATC Ile	TAT Tyr	GCT Ala	GTT Val 545	TTA Leu	CCT Pro	ACC Thr	GGG Gly	GAC Asp 550	GTG Val	ATT Ile	1684
GGG Gly	GAT Asp	TCT Ser 555	GCA Ala	AAA Lys	TAT Tyr	GAT Asp	GTT Val 560	GAA Glu	AAT Asn	TGT Cys	CTG Leu	GCC Ala 565	AAC Asn	AAG Lys	GTG Val	1732
GAT Asp	TTG Leu 570	AGC Ser	TTC Phe	AGC Ser	CCA Pro	TCA Ser 575	CAA Gln	AGT Ser	CTC Leu	CCA Pro	GCC Ala 580	TCA Ser	CAC His	GCC Ala	CAC His	1780
CTG Leu 585	CGA Arg	GTC Val	ACA Thr	GCG Ala	GCT Ala 590	CCT Pro	CAG Gln	TCC Ser	GTC Val	TGC Cys 595	GCC Ala	CTC Leu	CGT Arg	GCT Ala	GTG Val 600	1828
GAC Asp	CAA Gln	AGC Ser	GTG Val	CTG Leu 605	CTC Leu	ATG Met	AAG Lys	CCT Pro	GAT Asp 610	GCT Ala	GAG Glu	CTC Leu	TCG Ser	GCG Ala 615	TCC Ser	1876
TCG Ser	GTT Val	TAC Tyr	A10 A20 620	CTG Leu	CTA Leu	CCA Pro	GAA Glu	AAG Lys 625	GAC Asp	CTC Leu	ACT Thr	GGC Gly	TTC Phe 630	CCT Pro	GGG Gly	1924
CCT Pro	TTG Leu	AAT Asn 635	GAC Asp	CAG Gln	GAC Asp	GAT Asp	GAA Glu 640	GAC Asp	TGC Cys	ATC Ile	AAT Asn	CGT Arg 645	CAT His	AAT Asn	GTC Val	1972
TAT Tyr	ATT Ile 650	AAT Asn	GGA Gly	ATC Ile	ACA Thr	TAT Tyr 655	ACT Thr	CCA Pro	GTA Val	TCA Ser	AGT Ser 660	ACA Thr	AAT Asn	GAA Glu	AAG Lys	2020
GAT Asp 665	ATG Met	TAC Tyr	AGC Ser	TTC Phe	CTA Leu 670	GAG Glu	GAC Asp	ATG Met	GGC Gly	TTA Leu 675	AAG Lys	GCA Ala	TTC Phe	ACC Thr	AAC Asn 680	2068
TCA Ser	AAG Lys	ATT Ile	CGT Arg	AAA Lys 685	CCC Pro	AAA Lys	ATG Met	TGT Cys	CCA Pro 690	CAG Gln	CTT Leu	CAA Gln	CAG Gln	TAT Tyr 695	GAA Glu	2116

ATG Met	CAT His	GGA Gly	CCT Pro 700	GAA Glu	GGT Gly	CTA Leu	CGT Arg	GTA Val 705	GGT Gly	TTT Phe	TAT Tyr	GAG Glu	TCA Ser 710	GAT Asp	GTA Val	2164	
ATG Met	GGA Gly	AGA Arg 715	GGC Gly	CAT His	GCA Ala	CGC Arg	CTG Leu 720	GTG Val	CAT His	GTT Val	GAA G1u	GAG Glu 725	CCT Pro	CAC His	ACG Thr	2212	4
GAG Glu	ACC Thr 730	GTA Val	CGA Arg	AAG Lys	TAC Tyr	TTC Phe 735	CCT Pro	GAG Glu	ACA Thr	TGG Trp	ATC Ile 740	TGG Trp	GAT Asp	TTG Leu	GTG Val	2260	3
GTG Val 745	GTA Val	AAC Asn	TCA Ser	GCA Ala	GGT Gly 750	GTG Val	GCT Ala	GAG G1u	GTA Val	GGA Gly 755	GTA Val	ACA Thr	GTC Val	CCT Pro	GAC Asp 760	2308	
ACC Thr	ATC Ile	ACC Thr	GAG Glu	TGG Trp 765	AAG Lys	GCA Ala	GGG Gly	GCC Ala	TTC Phe 770	TGC Cys	CTG Leu	TCT Ser	GAA Glu	GAT Asp 775	GCT Ala	2356	
GGA Gly	CTT Leu	GGT Gly	ATC Ile 780	Ser	TCC Ser	ACT Thr	GCC Ala	TCT Ser 785	CTC Leu	CGA Arg	GCC Ala	TTC Phe	CAG Gln 790	CCC Pro	TTC Phe	2404	
TTT Phe	GTG Val	GAG Glu 795	Leu	ACA Thr	ATG Met	CCT Pro	TAC Tyr 800	TCT Ser	GTG Val	ATT	CGT Arg	GGA Gly 805	Glu	GCC Ala	TTC Phe	2452	
ACA Thr	CTC Leu 810	Lys	GCC Ala	ACG Thr	GTC Val	CTA Leu 815	AAC Asn	TAC Tyr	CTT Leu	CCC Pro	AAA Lys 820	Cys	ATC Ile	CGG Arg	GTC Val	2500	
AGT Ser 825	Val	CAG G1n	CTG Leu	GAA Glu	GCC Ala 830	Ser	CCC Pro	GCC Ala	TTC Phe	CTA Leu 835	GCT Ala	GTC Val	CCA Pro	GTG Val	GAG Glu 840	2548	
AAG Lys	GAA Glu	CAA Gln	GCG Ala	CCT Pro 845	His	TGC Cys	ATC Ile	TGT Cys	GCA Ala 850	Asn	GGG Gly	CGG Arg	CAA Gln	ACT Thr 855	Val	2596	
TCC Ser	TGG Trp	GCA Ala	GTA Val 860	Thr	CCA Pro	AAG Lys	TCA Ser	TTA Leu 865	Gly	AAT Asn	GTG Val	AAT Asn	Phe 870	ACT Thr	GTG Val	2644	
AGC Ser	GCA Ala	GAG Glu 875	Ala	CTA Leu	GAG Glu	TCT Ser	CAA G1n 880	Glu	CTG Leu	TGT Cys	GGG Gly	ACT Thr 885	Glu	GTG Val	CCT Pro	2692	3 °
TCA Ser	GTT Val 890	Pro	GAA Glu	CAC His	GGA Gly	AGG Arg 895	Lys	GAC Asp	ACA Thr	GTC Val	ATC 11e 900	Lys	CCT Pro	CTG Leu	TTG Leu	2740	Ĉ
GTT Val 905	Glu	CCT Pro	GAA Glu	GGA Gly	CTA Leu 910	Glu	AAG Lys	GAA Glu	ACA Thr	ACA Thr 915	Phe	AAC Asr	C TCC Ser	CTA Leu	CTT Leu 920	2788	

*

		CA GGT Ser Gly													2836
		TG GTA al Val 940	Glu												2884
	Ile L	TA GGO eu Gly 955													2932
Pro T	TAT G Tyr G 970	GC TGT	GGA Gly	GAG Glu	CAG Gln 975	AAT Asn	ATG Met	GTC Val	CTC Leu	TTT Phe 980	GCT Ala	CCT Pro	AAC Asn	ATC Ile	2980
		CTG GAT .eu Asp													3028
AAG T Lys S	TCC A Ser L	AG GC(.ys Ala	ATT Ile 100	Gly	TAT Tyr	CTC Leu	AAC Asn	ACT Thr 1010	Gly	TAC Tyr	CAG Gln	AGA Arg	CAG Gln 1015	Leu	3076
		AA CAC ys His 102	Tyr					Ser					Arg		3124
	Arg A	AC CAC Asn Glr .035					Leu					Leu			3172
Phe A		CAA GCT													3220
CAAC					1055		1110	116	Ash	1060		HIS	lie	Thr	
Gln A 1065	GCC C Ala L	CTC ATA	TGG Trp	CTC Leu 1070	TCC Ser	CAG	AGG	CAG	AAG	GAC Asp) AAT	GGC	TGT	TTC	3268
Gln A 1065 AGG A	Ala L AGC T	CTC ATA	Trp	Leu 1070 CTG Leu	TCC Ser)	CAG G1n	AGG Arg	CAG Gln GCC	AAG Lys 1075 ATA Ile	GAC Asp	AAT Asn GGA	GGC Gly GGA	TGT Cys	TTC Phe 1080 GAA Glu	3268 3316
GIN A 1065 AGG A Arg S	Ala L AGC T Ser S	eu Ile CT GGO	TCA Ser 108:	Leu 1070 CTG Leu 5	TCC Ser) CTC Leu	CAG Gln AAC Asn	AGG Arg AAT Asn	CAG Gln GCC Ala 1090 ACC Thr	AAG Lys 1075 ATA Ile	GAC Asp AAG Lys	AAT Asn GGA Gly	GGC Gly GGA Gly	TGT Cys GTA Val 1095 GAG Glu	TTC Phe 1080 GAA Glu	
GIN A 1065 AGG A Arg S GAT G Asp G	AGC T Ser S GAA G Glu V	CT GGG Ser Gly	TCA Ser 108: CTC Leu	Leu 1070 CTG Leu 5 TCC Ser	TCC Ser CTC Leu GCC Ala	CAG Gln AAC Asn TAT Tyr	AGG Arg AAT Asn ATC Ile 1105 GTC Val	CAG Gln GCC Ala 1090 ACC Thr	AAG Lys 1075 ATA Ile ATC Ile	GAC Asp AAG Lys GCC Ala	AAT Asn GGA Gly CTT Leu	GGC Gly GGA Gly CTG Leu 1110	TGT Cys GTA Val 1095 GAG Glu	TTC Phe 1080 GAA Glu ATT Ile	3316

TAT ACC AAA GCA Tyr Thr Lys Ala 1145	CTG CTG GCC Leu Leu Ala 1150	TAT GCT TTT Tyr Ala Phe	GCC CTG GCA Ala Leu Ala 1155	GGT AAC CAG Gly Asn Gln 1160	3508
GAC AAG AGG AAG Asp Lys Arg Lys	GAA GTA CTC Glu Val Leu 1165	AAG TCA CTT Lys Ser Leu 1170	Asn Glu Glu	GCT GTG AAG Ala Val Lys 1175	3556
AAA GAC AAC TCT Lys Asp Asn Ser 118	Val His Trp	GAG CGC CCT Glu Arg Pro 1185	CAG AAA CCC Gln Lys Pro	AAG GCA CCA Lys Ala Pro 1190	3604
GTG GGG CAT TTT Val Gly His Phe 1195	TAC GAA CCC Tyr Glu Pro	CAG GCT CCC Gln Ala Pro 1200	TCT GCT GAG Ser Ala Glu 120	Val Glu Met	3652
ACA TCC TAT GTG Thr Ser Tyr Val 1210		Tyr Leu Thr			3700
TCG GAG GAC CTG Ser Glu Asp Leu 1225	ACC TCT GCA Thr Ser Ala 1230	ACC AAC ATC Thr Asn Ile	GTG AAG TGG Val Lys Trp 1235	ATC ACG AAG 11e Thr Lys 1240	3748
CAG CAG AAT GCC Gln Gln Asn Ala			Thr Gln His		3796
GCT CTC CAT GCT Ala Leu His Ala 126	Leu Ser Lys				3844
GGG AAG GCT GCA Gly Lys Ala Ala 1275				Phe Ser Ser	3892
AAA TTC CAA GTG Lys Phe Gln Val 1290	GAC AAC AAC Asp Asn Asn 129	Asn Arg Leu	TTA CTG CAG Leu Leu Glr 1300	G CAG GTC TCA n Gln Val Ser	3940
TTG CCA GAG CTG Leu Pro Glu Leu 1305					3988
TGT GTC TAC CTC Cys Val Tyr Leu			Asn Ile Let		4036
GAA GAG TTC CCC Glu Glu Phe Pro 134	Phe Ala Leu				4084
GAT GAA CCC AAA Asp Glu Pro Lys 1355				u Ser Val Ser	4132

TAC ACA GGG AGC CGC TCT GCC TCC AAC ATG GCG ATC GTT GAT GTG AAG Tyr Thr Gly Ser Arg Ser Ala Ser Asn Met Ala Ile Val Asp Val Lys 1370 1375 1380	4180
ATG GTC TCT GGC TTC ATT CCC CTG AAG CCA ACA GTG AAA ATG CTT GAA Met /al Ser Gly Phe Ile Pro Leu Lys Pro Thr Val Lys Met Leu Glu 1385 1390 1395 1400	4228
AGA TCT AAC CAT GTG AGC CGG ACA GAA GTC AGC AGC AAC CAT GTC TTG Arg Ser Asn His Val Ser Arg Thr Glu Val Ser Ser Asn His Val Leu 1405 1410 1415	4276
ATT TAC CTT GAT AAG GTG TCA AAT CAG ACA CTG AGC TTG TTC TTC ACG Ile Tyr Leu Asp Lys Val Ser Asn Gln Thr Leu Ser Leu Phe Phe Thr 1420 1430	4324
GTT CTG CAA GAT GTC CCA GTA AGA GAT CTC AAA CCA GCC ATA GTG AAA Val Leu Gln Asp Val Pro Val Arg Asp Leu Lys Pro Ala Ile Val Lys 1435 1440 1445	4372
GTC TAT GAT TAC TAC GAG ACG GAT GAG TTT GCA ATT GCT GAG TAC AAT Val Tyr Asp Tyr Tyr Glu Thr Asp Glu Phe Ala Ile Ala Glu Tyr Asn 1450 1455 1460	4420
GCT CCT TGC AGC AAA GAT CTT GGA AAT GCT TGAAGACCAC AAGGCTGAAA Ala Pro Cys Ser Lys Asp Leu Gly Asn Ala 1465 1470	4470
AGTGCTTTGC TGGAGTCCTG TTCTCTGAGC TCCACAGAAG ACACGTGTTT TTGTATCTT	T 4530
AAAGACTTGA TGAATAAACA CTTTTTCTGG TCAAAAAAA	4569
(2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1474 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(E) FEATURES: bait region: 690-730 (ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
Met Gly Lys Asn Lys Leu Leu His Pro Ser Leu Val Leu Leu Leu 1 15	
Val Leu Leu Pro Thr Asp Ala Ser Val Ser Gly Lys Pro Gln Tyr Met 20 25 30	
Val Leu Val Pro Ser Leu Leu His Thr Glu Thr Thr Glu Lys Gly Cys 35 40 45	
Val Leu Leu Ser Tyr Leu Asn Glu Thr Val Thr Val Ser Ala Ser Leu 50 60	
Glu Ser Val Arg Gly Asn Arg Ser Leu Phe Thr Asp Leu Glu Ala Glu 65 70 75 80	

Asn	Asp	Val	Leu	His 85	Cys	Val	Ala	Phe	A1 a 90	Val	Pro	Lys	Ser	Ser 95	Ser
Asn	G1u	G lu	Val 100	Met	Phe	Leu	Thr	Val 105	Gln	Val	Lys	Gly	Pro 110	Thr	Gln
Glu	Phe	Lys 115	Lys	Arg	Thr	Thr	Val 120	Met	Val	Lys	Asn	Glu 125	Asp	Ser	Leu
Val	Phe 130	Val	Gln	Thr	Asp	Lys 135	Ser	Ile	Tyr	Lys	Pro 140	G1y	Gln	Thr	Val
Lys 145	Phe	Arg	Val	Val	Ser 150	Met	Asp	Glu	Asn	Phe 155	His	Pro	Leu	Asn	G1u 160
Leu	Ile	Pro	Leu	Val 165	Tyr	Ile	Gln	Asp	Pro 170	Lys	Gly	Asn	Arg	11e 175	Ala
Gln	Trp	Gln	Ser 180	Phe	Gln	Leu	G1u	Gly 185	Gly	Leu	Lys	Gln	Phe 190	Ser	Phe
Pro	Leu	Ser 195		Glu	Pro	Phe	Gln 200	Gly	Ser	Tyr	Lys	Val 205	Val	Val	Gln
Lys	Lys 210		Gly	G1y	Arg	Thr 215	Glu	His	Pro	Phe	Thr 220	Val	Glu	Glu	Phe
Val 225		Pro	Lys	Phe	Glu 230		Gln	Val	Thr	Val 235	Pro	Lys	Ile	Ile	Thr 240
Ile	Leu	Glu	Glu	G1u 245		Asn	Val	Ser	Val 250	Cys	Gly	Leu	Tyr	Thr 255	
Gly	Lys	Pro	Val 260	Pro	Gly	His	Val	Thr 265		Ser	Ile	Cys	Arg 270		Tyr
Ser	Asp	A1 a 275		Asp	Cys	His	Gly 280		Asp	Ser	Gln	Ala 285		Cys	Glu
Lys	Phe 290		Gly	Gln	Leu	Asn 295		His	Gly	Cys	Phe 300		Gln	Gln	Val
Lys 305		Lys	Val	Phe	Gln 310		Lys	Arg	Lys	Glu 315		Glu	Met	Lys	Leu 320
His	Thr	Glu	ıAla	Gln 325		Gln	Glu	Glu	Gly 330		Val	Val	Glu	Leu 335	Thr
Gly	/ Arg	G]r	Ser 340		Glu	Ile	Thr	Arg 345		Ile	Thr	Lys	Leu 350		Phe
Val	Lys	Val 355	_ *) Ser	His	Phe	Arg 360		Gly	Ile	Pro	Phe 365		Gly	Gln
Va	Arg 370		ı Val	l Asp	Gly	Lys 375		/ Val	Pro	Ile	Pro 380		Lys	Val	Ile

ŧ

~

Ph 38	e Ile 5	e Arg	Gly	Asn	G1u 390	Ala	Asn	Tyr	Tyr	Ser 395		Ala	Thr	Thr	Asp 400
Gl	u His	s Gly	/ Leu	Val 405	Gln	Phe	Ser	Ile	Asn 410	Thr	Thr	Asn	Val	Met 415	Gly
Th	r Sei	· Leu	Thr 420	Val	Arg	Val	Asn	Tyr 425	Lys	Asp	Arg	Ser	Pro 430	Cys	Tyr
G1	у Туі	Glr 435	Trp	Val	Ser	Glu	Glu 440	His	Glu	Glu	Ala	His 445	His	Thr	Ala
Ту	r Lei 450	ı Val	Phe	Ser	Pro	Ser 455	Lys	Ser	Phe	Val	His 460	Leu	Ğlu	Pro	Met
Se:	r His 5	s Glu	Leu	Pro	Cys 470	Gly	His	Thr	Gln	Thr 475	Val	Gln	Ala	His	Tyr 480
11	e Lei	ı Asn	Gly	Gly 485	Thr	Leu	Leu	Gly	Leu 490	Lys	Lys	Leu	Ser	Phe 495	Tyr
Ту	r Lei	ı Ile	Met 500	Ala	Lys	Gly	Gly	Ile 505	Val	Arg	Thr	Gly	Thr 510	His	Gly
Le	ı Lei	Val 515	Lys	Gln	G1 u	Asp	Met 520	Lys	Gly	His	Phe	Ser 525	Ile	Ser	Ile
Pro	530	Lys)	Ser	Asp	Ile	Ala 535	Pro	Val	Ala	Arg	Leu 540	Leu	Ile	Tyr	Ala
Va: 54!	l Leu 5	ı Pro	Thr	Gly	Asp 550	Val	Ile	Gly	Asp	Ser 555	Ala	Lys	Tyr	Asp	Val 560
Gli	ı Asr	Cys	Leu	Ala 565	Asn	Lys	Val	Asp	Leu 570	Ser	Phe	Ser	Pro	Ser 575	Gln
Sei	^ Leu	Pro	A1 a 580	Ser	His	Ala	His	Leu 585	Arg	Val	Thr	Ala	Ala 590	Pro	Gln
Sei	^ Val	Cys 595	Ala	Leu	Arg	Ala	Val 600	Asp	Gln	Ser	Va]	Leu 605	Leu	Met	Lys
Pro	610	Ala	Glu	Leu	Ser	Ala 615	Ser	Ser	Val	Tyr	Asn 620	Leu	Leu	Pro	Glu
Ly: 62!	s Asp	Leu	Thr	Gly	Phe 630	Pro	Gly	Pro	Leu	Asn 635	Asp	Gln	Asp	Asp	Glu 640
Ası	Cys	Ile	Asn	Arg 645	His	Asn	Val	Tyr	Ile 650	Asn	Gly	Ile	Thr	Tyr 655	Thr
Pro	Val	Ser	Ser 660	Thr	Asn	Glu	Lys	Asp 665	Met	Tyr	Ser	Phe	Leu 670	Glu	Asp
Met	: Gly	Leu 675	Lys	Ala	Phe	Thr	Asn 680	Ser	Lys	Ile	Arg	Lys 685	Pro	Lys	Met

Cys	Pro 690	Gln	Leu	Gln	Gln	Tyr 695	Glu	Met	His	Gly	Pro 700	Glu	Gly	Leu	Arg
Va1 705	Gly	Phe	Tyr	G 1u	Ser 710	Asp	Val	Met	Gly	Arg 715	Gly	His	Ala	Arg	Leu 720
Val	His	Val	G1 u	G1u 725	Pro	His	Thr	Glu	Thr 730	Val	Arg	Lys	Tyr	Phe 735	Pro
Glu	Thr	Trp	Ile 740	Trp	Asp	Leu	Val	Val 745	Val	Asn	Ser	Ala	Gly 750	Val	Ala
Glu	Val	Gly 755	Val	Thr	Val	Pro	Asp 760	Thr	Ile	Thr	Glu	Trp 765	Lys	Ala	Gly
Ala	Phe 770	Cys	Leu	Ser	Glu	Asp 775	Ala	Gly	Leu	Gly	Ile 780	Ser	Ser	Thr	Ala
Ser 785	Leu	Arg	Ala	Phe	Gln 790	Pro	Phe	Phe	Val	G1u 795	Leu	Thr	Met	Pro	Tyr 800
Ser	Val	Ile	Arg	G1y 805		Ala	Phe	Thr	Leu 810	Lys	Ala	Thr	Val	Leu 815	Asn
Tyr	Leu	Pro	Lys 820		Ile	Arg	Val	Ser 825	Val	Gln	Leu	Glu	A1 a 830	Ser	Pro
Ala	Phe	Leu 835		Val	Pro	Val	G1u 840		Glu	Gln	Ala	Pro 845	His	Cys	Ile
Cys	Ala 850		Gly	Arg	Gln	Thr 855		Ser	Trp	Ala	Val 860	Thr	Pro	Lys	Ser
Leu 865	_	Asn	Val	Asn	Phe 870		Val	Ser	Ala	G1u 875		Leu	Glu	Ser	G]n 880
Glu	Leu	Cys	Gly	Thr 885		Val	Pro	Ser	Val 890		Glu	His	Gly	Arg 895	Lys
Asp	Thr	Val	Ile 900		Pro	Leu	Leu	Val 905		Pro	Glu	Gly	Leu 910	Glu	Lys
Glu	Thr	Thr 915	_	. Asn	Ser	Leu	Leu 920		Pro	Ser	Gly	Gly 925		Val	Ser
Glu	Glu 930		ı Ser	. Lei	ı Lys	Leu 935		Pro	Asn	Val	Val 940	Glu	Glu	Ser	Ala
Arg 945		Ser	· Val	Ser	Val 950		ı Gly	' Asp	Ile	Leu 955	Gly	Ser	Ala	Met	Gln 960
Asr	1 Thr	Glr	n Asr	1 Let 965	-	ı G1r	Met	. Pro	Tyr 970		' Cys	Gly	Glu	G1n 975	Asn
Met	: Val	Lei	J Phe 980		a Pro	Asr	ı Ile	Tyr 985		Leu	Asp	Tyr	Leu 990	Asn	Glu

Ç

•

1

Ť

- Thr Gln Gln Leu Thr Pro Glu Ile Lys Ser Lys Ala Ile Gly Tyr Leu 995 1000 1005
- Asn Thr Gly Tyr Gln Arg Gln Leu Asn Tyr Lys His Tyr Asp Gly Ser 1010 1015 1020
- Tyr Ser Thr Phe Gly Glu Arg Tyr Gly Arg Asn Gln Gly Asn Thr Trp 1025 1030 1035 1040
- Leu Thr Ala Phe Val Leu Lys Thr Phe Ala Gln Ala Arg Ala Tyr Ile 1045 1050 1055
- Phe Ile Asp Glu Ala His Ile Thr Gln Ala Leu Ile Trp Leu Ser Gln 1060 1065 1070
- Arg Gln Lys Asp Asn Gly Cys Phe Arg Ser Ser Gly Ser Leu Leu Asn 1075 1080 1085
- Asn Ala Ile Lys Gly Gly Val Glu Asp Glu Val Thr Leu Ser Ala Tyr 1090 1095 1100
- Ile Thr Ile Ala Leu Leu Glu Ile Pro Leu Thr Val Thr His Pro Val 1105 1110 1115 1120
- Val Arg Asn Ala Leu Phe Cys Leu Glu Ser Ala Trp Lys Thr Ala Gln 1125 1130 1135
- Glu Gly Asp His Gly Ser His Val Tyr Thr Lys Ala Leu Leu Ala Tyr 1140 1145 1150
- Ala Phe Ala Leu Ala Gly Asn Gln Asp Lys Arg Lys Glu Val Leu Lys 1155 1160 1165
- Ser Leu Asn Glu Glu Ala Val Lys Lys Asp Asn Ser Val His Trp Glu 1170 1175 1180
- Arg Pro Gln Lys Pro Lys Ala Pro Val Gly His Phe Tyr Glu Pro Gln 1185 1190 1195 1200
- Ala Pro Ser Ala Glu Val Glu Met Thr Ser Tyr Val Leu Leu Ala Tyr 1205 1210 1215
- Leu Thr Ala Gln Pro Ala Pro Thr Ser Glu Asp Leu Thr Ser Ala Thr 1220 1225 1230
- Asn Ile Val Lys Trp Ile Thr Lys Gln Gln Asn Ala Gln Gly Gly Phe 1235 1240 1245
- Ser Ser Thr Gln His Thr Val Val Ala Leu His Ala Leu Ser Lys Tyr 1250 1255 1260
- Gly Ala Ala Thr Phe Thr Arg Thr Gly Lys Ala Ala Gln Val Thr Ile 1265 1270 1275 1280
- Gln Ser Ser Gly Thr Phe Ser Ser Lys Phe Gln Val Asp Asn Asn Asn 1285 1290 1295

*

3

3

7

Arg Leu Leu Gln Gln Val Ser Leu Pro Glu Leu Pro Gly Glu Tyr 1300 1305 1310

Ser Met Lys Val Thr Gly Glu Gly Cys Val Tyr Leu Gln Thr Ser Leu 1315 1320 1325

Lys Tyr Asn Ile Leu Pro Glu Lys Glu Glu Phe Pro Phe Ala Leu Gly 1330 1335 1340

Val Gln Thr Leu Pro Gln Thr Cys Asp Glu Pro Lys Ala His Thr Ser 1345 1350 1355 1360

Phe Gln Ile Ser Leu Ser Val Ser Tyr Thr Gly Ser Arg Ser Ala Ser 1365 1370 1375

Asn Met Ala Ile Val Asp Val Lys Met Val Ser Gly Phe Ile Pro Leu 1380 1385 1390

Lys Pro Thr Val Lys Met Leu Glu Arg Ser Asn His Val Ser Arg Thr 1395 1400 1405

Glu Val Ser Ser Asn His Val Leu Ile Tyr Leu Asp Lys Val Ser Asn 1410 1415 1420

Gln Thr Leu Ser Leu Phe Phe Thr Val Leu Gln Asp Val Pro Val Arg 1425 1430 1435 1440

Asp Leu Lys Pro Ala Ile Val Lys Val Tyr Asp Tyr Tyr Glu Thr Asp 1445 1450 1455

Glu Phe Ala Ile Ala Glu Tyr Asn Ala Pro Cys Ser Lys Asp Leu Gly 1460 1465 1470

Asn Ala

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4599 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: Y
- (iv) ANTI-SENSE: N
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 29..4480
 - (D) OTHER INFORMATION:

Ç

(ix) FEATURE:
 (A) NAME/KEY: insertion_seq
 (B) LOCATION: 2102..2305
 (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

(XI) SEQUENCE DESCRIPTION. SEQ ID NO.S.	
GTCTCCTCCA GCTCCTTCTT TCTGCAAC ATG GGG AAG AAC AAA CTC CTT CAT Met Gly Lys Asn Lys Leu Leu His 1 5	52
CCA AGT CTG GTT CTC CTC TTG GTC CTC CTG CCC ACA GAC GCC TCA Pro Ser Leu Val Leu Leu Leu Val Leu Leu Pro Thr Asp Ala Ser 10 15 20	100
GTC TCT GGA AAA CCG CAG TAT ATG GTT CTG GTC CCC TCC CTG CTC CAC Val Ser Gly Lys Pro Gln Tyr Met Val Leu Val Pro Ser Leu Leu His 30 35 40	148
ACT GAG ACC ACT GAG AAG GGC TGT GTC CTT CTG AGC TAC CTG AAT GAG Thr Glu Thr Thr Glu Lys Gly Cys Val Leu Leu Ser Tyr Leu Asn Glu 45 50 55	196
ACA GTG ACT GTA AGT GCT TCC TTG GAG TCT GTC AGG GGA AAC AGG AGC Thr Val Thr Val Ser Ala Ser Leu Glu Ser Val Arg Gly Asn Arg Ser 60 65 70	244
CTC TTC ACT GAC CTG GAG GCG GAG AAT GAC GTA CTC CAC TGT GTC GCC Leu Phe Thr Asp Leu Glu Ala Glu Asn Asp Val Leu His Cys Val Ala 75 80 85	292
TTC GCT GTC CCA AAG TCT TCA TCC AAT GAG GAG GTA ATG TTC CTC ACT Phe Ala Val Pro Lys Ser Ser Ser Asn Glu Glu Val Met Phe Leu Thr 90 95 100	340
GTC CAA GTG AAA GGA CCA ACC CAA GAA TTT AAG AAG CGG ACC ACA GTG Val Gln Val Lys Gly Pro Thr Gln Glu Phe Lys Lys Arg Thr Thr Val 105 110 115	388
ATG GTT AAG AAC GAG GAC AGT CTG GTC TTT GTC CAG ACA GAC AAA TCA Met Val Lys Asn Glu Asp Ser Leu Val Phe Val Gln Thr Asp Lys Ser 125 130 135	436
ATC TAC AAA CCA GGG CAG ACA GTG AAA TTT CGT GTT GTC TCC ATG GAT Ile Tyr Lys Pro Gly Gln Thr Val Lys Phe Arg Val Val Ser Met Asp 140 145 150	484
GAA AAC TTT CAC CCC CTG AAT GAG TTG ATT CCA CTA GTA TAC ATT CAG Glu Asn Phe His Pro Leu Asn Glu Leu Ile Pro Leu Val Tyr Ile Gln 155 160 165	532
GAT CCC AAA GGA AAT CGC ATC GCA CAA TGG CAG AGT TTC CAG TTA GAG Asp Pro Lys Gly Asn Arg Ile Ala Gln Trp Gln Ser Phe Gln Leu Glu 170 175 180	580

GGT Gly 185	GGC Gly	CTC Leu	AAG Lys	CAA Gln	TTT Phe 190	TCT Ser	TTT Phe	CCC Pro	CTC Leu	TCA Ser 195	TCA Ser	GAG Glu	CCC Pro	TTC Phe	CAG Gln 200	628
GGC Gly	TCC Ser	TAC Tyr	AAG Lys	GTG Val 205	GTG Val	GTA Val	CAG Gln	AAG Lys	AAA Lys 210	TCA Ser	GGT Gly	GGA Gly	AGG Arg	ACA Thr 215	GAG Glu	676
CAC His	CCT Pro	TTC Phe	ACC Thr 220	GTG Val	GAG Glu	GAA Glu	TTT Phe	GTT Val 225	CTT Leu	CCC Pro	AAG Lys	TTT Phe	GAA Glu 230	GTA Val	CAA Gln	724
GTA Val	ACA Thr	GTG Val 235	CCA Pro	AAG Lys	ATA Ile	ATC Ile	ACC Thr 240	ATC Ile	TTG Leu	GAA G1u	GAA Glu	GAG Glu 245	ATG Met	AAT Asn	GTA Val	772
TCA Ser	GTG Val 250	TGT Cys	GGC Gly	CTA Leu	TAC Tyr	ACA Thr 255	TAT Tyr	GGG Gly	AAG Lys	CCT Pro	GTC Val 260	CCT Pro	GGA Gly	CAT His	GTG Val	820
ACT Thr 265	GTG Val	AGC Ser	ATT Ile	TGC Cys	AGA Arg 270	AAG Lys	TAT Tyr	AGT Ser	GAC Asp	GCT Ala 275	TCC Ser	GAC Asp	TGC Cys	CAC His	GGT Gly 280	868
GAA Glu	GAT Asp	TCA Ser	CAG Gln	GCT Ala 285	Phe	TGT Cys	GAG Glu	AAA Lys	TTC Phe 290	AGT Ser	GGA Gly	CAG Gln	CTA Leu	AAC Asn 295	AGC Ser	916
CAT His	GGC Gly	TGC Cys	TTC Phe 300	Tyr	CAG Gln	CAA Gln	GTA Val	AAA Lys 305	Thr	AAG Lys	GTC Val	TTC Phe	CAG Gln 310	CTG Leu	AAG Lys	964
AGG Arg	AAG Lys	GAG Glu 315	Tyr	GAA Glu	ATG Met	AAA Lys	CTT Leu 320	His	ACT Thr	GAG Glu	GCC Ala	CAG Gln 325	ATC Ile	CAA Gln	GAA Glu	1012
GAA G1u	GGA Gly 330	Thr	GTG Val	GTG Val	GAA Glu	TTG Leu 335	Thr	GGA Gly	AGG Arg	CAG Gln	TCC Ser 340	Ser	GAA Glu	ATC Ile	ACA Thr	1060
AGA Arg 345	Thr	ATA Ile	ACC Thr	AAA Lys	CTC Leu 350	Ser	TTT Phe	GTG Val	AAA Lys	GTG Val 355	Asp	TCA Ser	CAC His	TTT Phe	CGA Arg 360	1108
					Phe					Leu					GGC Gly	1156
GTC Val	CCT	ATA Ile	CCA Pro 380	Asn	AAA Lys	GTC Val	ATA Ile	TTC Phe 385	Ile	AGA Arg	GGA Gly	AAT Asn	GAA Glu 390	Ala	AAC Asn	1204
TAT Tyr	TAC Tyr	TC0 Ser 395	Asr	GCT Ala	ACC Thr	ACG Thr	GAT Asp 400	Glu	CAT His	GGC Gly	CTT Leu	GTA Val 405	Gln	TTC Phe	TCT Ser	1 252

j

\$

					GTT Val											1300
					CCC Pro 430											1348
					CAC His											1396
AGC Ser	TTT Phe	GTC Val	CAC His 460	CTT Leu	GAG Glu	CCC Pro	ATG Met	TCT Ser 465	CAT His	GAA Glu	CTA Leu	CCC Pro	TGT Cys 470	GGC Gly	CAT His	1444
					GCA Ala											1492
					TCC Ser											1540
					ACT Thr 510											1588
					ATC Ile											1636
					ATC Ile											1684
	_				TAT Tyr											1732
					CCA Pro											1780
					GCT Ala 590											1828
					CTC Leu											1876
					CTA Leu											1924

?

CCT Pro	Leu	AAT Asn 635	GAC Asp	CAG Gln	GAC Asp	GAT Asp	GAA Glu 640	GAC Asp	TGC Cys	ATC Ile	AAT Asn	CGT Arg 645	CAT His	AAT Asn	GTC Val	1972
TAT Tyr	ATT Ile 650	AAT Asn	GGA Gly	ATC Ile	ACA Thr	TAT Tyr 655	ACT Thr	CCA Pro	GTA Val	TCA Ser	AGT Ser 660	ACA Thr	AAT Asn	GAA Glu	AAG Lys	2020
GAT Asp 665	ATG Met	TAC Tyr	AGC Ser	TTC Phe	CTA Leu 670	GAG Glu	GAC Asp	ATG Met	GGC Gly	TTA Leu 675	AAG Lys	GCA Ala	TTC Phe	ACC Thr	AAC Asn 680	2068
TCA Ser	AAG Lys	ATT Ile	CGT Arg	AAA Lys 685	CCC Pro	AAA Lys	ATG Met	TGT Cys	CCA Pro 690	CAG Gln	CTG Leu	CAG Gln	TCA Ser	GTG Val 695	TCA Ser	2116
GCC Ala	GGC Gly	GCC Ala	GTG Val 700	GGA Gly	CAG Gln	GGA Gly	TAT Tyr	TAT Tyr 705	GGA Gly	GCC Ala	GGA Gly	CTG Leu	GGA Gly 710	GTG Val	GTG Val	2164
GAG Glu	AGG Arg	CCT Pro 715	Tyr	GTG Val	CCT Pro	CAG Gln	CTG Leu 720	Gly	ACC Thr	TAT Tyr	AAT Asn	GTG Val 725	ATC Ile	CCT Pro	CTG Leu	2212
AAT Asn	AAT Asn 730	GAG Glu	CAG Gln	AGC Ser	TCA Ser	GGA Gly 735	CCT Pro	GTG Val	CCT Pro	GAG Glu	ACA Thr 740	GTG Val	AGG Arg	AAG Lys	TAT Tyr	2260
TTC Phe 745	Pro	GAG Glu	ACA Thr	TGG Trp	ATC Ile 750	Trp	GAT Asp	CTG Leu	GTG Val	GTG Val 755	Val	AAT Asn	TCC Ser	GCG Ala	GGT Gly 760	2308
GTG Val	GCT Ala	GAG Glu	GTA Val	GGA Gly 765	Val	ACA Thr	GTC Val	CCT Pro	GAC Asp 770	Thr	ATC Ile	ACC Thr	GAG Glu	TGG Trp 775	Lys	2356
GCA Ala	GGG Gly	GCC Ala	TTC Phe 780	Cys	CTG Leu	TCT Ser	GAA G1 u	GAT Asp 785	Ala	GGA Gly	CTT Leu	GGT Gly	ATC Ile 790	Ser	TCC Ser	2404
ACT Thr	GCC Ala	TCT Ser 795	Leu	CGA Arg	GCC Ala	TTC Phe	CAG Gln 800	Pro	TTC Phe	TTT Phe	GTG Val	GAG G1u 805	Leu	ACA Thr	ATG Met	2452
CCT Pro	TAC Tyr 810	Ser	GTG Val	ATT	CGT Arg	GGA Gly 815	Glu	GCC Ala	TTC Phe	ACA Thr	CTC Leu 820	Lys	GCC Ala	ACG Thr	GTC Val	2500
CTA Leu 825	Asn	TAC Tyr	CTT Leu	CCC Pro	AAA Lys 830	Cys	ATC Ile	CGG Arg	GTC Val	AGT Ser 835	· Val	CAG Gln	CTG Leu	GAA Glu	GCC Ala 840	2548
TCT Ser	CCC Pro	GCC Ala	TTC Phe	CTA Leu 845	ı Ala	GTC Val	CCA Pro	GTG Val	GAG Glu 850	ı Lys	GAA Glu	CAA Gln	GCG Ala	CCT Pro 855	CAC	2596

TGC ATC TGT Cys Ile Cys				Val							2644
AAG TCA TTA Lys Ser Leu 875	GGA AAT Gly Asn	GTG AAT Val Asn	TTC ACT Phe Thr 880	GTG Val	AGC Ser	GCA Ala	GAG Glu 885	GCA Ala	CTA Leu	GAG Glu	2692
TCT CAA GAG Ser Gln Glu 890	CTG TGT Leu Cys	GGG ACT Gly Thr 895	GAG GTG Glu Val	CCT Pro	TCA Ser	GTT Val 900	CCT Pro	GAA Glu	CAC His	GGA Gly	2740
AGG AAA GAC Arg Lys Asp 905	ACA GTC Thr Val	ATC AAG Ile Lys 910	CCT CTG Pro Leu	TTG Leu	GTT Val 915	GAA G1u	CCT Pro	GAA Glu	GGA Gly	CTA Leu 920	2788
GAG AAG GAA Glu Lys Glu											2836
GTT TCT GAA Val Ser Glu	GAA TTA Glu Leu 940	TCC CTG Ser Leu	AAA CTG Lys Leu 945	Pro	CCA Pro	AAT Asn	GTG Val	GTA Val 950	GAA Glu	GAA Glu	2884
TCT GCC CGA Ser Ala Arg 955	GCT TCT Ala Ser	GTC TCA Val Ser	GTT TTG Val Leu 960	GGA Gly	GAC Asp	ATA Ile	TTA Leu 965	GGC Gly	TCT Ser	GCC Ala	2932
ATG CAA AAC Met Gln Asn 970											2980
CAG AAT ATG Gln Asn Met 985	GTC CTC Val Leu	TTT GCT Phe Ala 990	CCT AAC Pro Asn	ATC Ile	TAT Tyr 995	GTA Val	CTG Leu	GAT Asp	TAT Tyr	CTA Leu 1000	3028
AAT GAA ACA Asn Glu Thr	CAG CAG Gln Gln 1005	Leu Thr	CCA GAG Pro Glu	ATC Ile 1010	Lys	TCC Ser	AAG Lys	GCC Ala	ATT Ile 1015	Gly	3076
TAT CTC AAC Tyr Leu Asn	ACT GGT Thr Gly 1020	TAC CAG Tyr Gln	AGA CAG Arg Gln 102	Leu	AAC Asn	TAC Tyr	AAA Lys	CAC His 1030	Tyr	GAT Asp	3124
GGC TCC TAC Gly Ser Tyr 103	Ser Thr	TTT GGG Phe Gly	GAG CGA Glu Arg 1040	TAT Tyr	GGC Gly	AGG Arg	AAC Asn 1045	Gln	GGC Gly	AAC Asn	3172
ACC TGG CTC Thr Trp Leu 1050	ACA GCC Thr Ala	TTT GTT Phe Val 1055	Leu Lys	ACT Thr	TTT Phe	GCC Ala 1060	Gln	GCT Ala	CGA Arg	GCC Ala	3220
TAC ATC TTC Tyr Ile Phe 1065	ATC GAT Ile Asp	GAA GCA Glu Ala 1070	CAC ATT His Ile	ACC Thr	CAA Gln 1075	Ala	CTC Leu	ATA Ile	TGG Trp	CTC Leu 1080	3268

Ŧ

TCC CAG AGG CAG AAG GAC AAT GGC TGT TTC AGG AGC TCT GGG TCA CTG Ser Gln Arg Gln Lys Asp Asn Gly Cys Phe Arg Ser Ser Gly Ser Leu 1085 1090 1095	3316
CTC AAC AAT GCC ATA AAG GGA GGA GTA GAA GAT GAA GTG ACC CTC TCC Leu Asn Asn Ala Ile Lys Gly Gly Val Glu Asp Glu Val Thr Leu Ser 1100 1105 1110	3364
GCC TAT ATC ACC ATC GCC CTT CTG GAG ATT CCT CTC ACA GTC ACT CAC Ala Tyr Ile Thr Ile Ala Leu Leu Glu Ile Pro Leu Thr Val Thr His 1115 1120 1125	3412
CCT GTT GTC CGC AAT GCC CTG TTT TGC CTG GAG TCA GCC TGG AAG ACA Pro Val Val Arg Asn Ala Leu Phe Cys Leu Glu Ser Ala Trp Lys Thr 1130 1135 1140	3460
GCA CAA GAA GGG GAC CAT GGC AGC CAT GTA TAT ACC AAA GCA CTG CTG Ala Gln Glu Gly Asp His Gly Ser His Val Tyr Thr Lys Ala Leu Leu 1145 1150 1155 116	
GCC TAT GCT TTT GCC CTG GCA GGT AAC CAG GAC AAG AGG AAG GAA GTA Ala Tyr Ala Phe Ala Leu Ala Gly Asn Gln Asp Lys Arg Lys Glu Val 1165 1170 1175	3 5 56
CTC AAG TCA CTT AAT GAG GAA GCT GTG AAG AAA GAC AAC TCT GTC CAT Leu Lys Ser Leu Asn Glu Glu Ala Val Lys Lys Asp Asn Ser Val His 1180 1185 1190	3604 S
TGG GAG CGC CCT CAG AAA CCC AAG GCA CCA GTG GGG CAT TTT TAC GAA Trp Glu Arg Pro Gln Lys Pro Lys Ala Pro Val Gly His Phe Tyr Glu 1195 1200 1205	A 3652 u
CCC CAG GCT CCC TCT GCT GAG GTG GAG ATG ACA TCC TAT GTG CTC CTC Pro Gln Ala Pro Ser Ala Glu Val Glu Met Thr Ser Tyr Val Leu Leu 1210 1215 1220	C 3700 u
GCT TAT CTC ACG GCC CAG CCA GCC CCA ACC TCG GAG GAC CTG ACC TCT Ala Tyr Leu Thr Ala Gln Pro Ala Pro Thr Ser Glu Asp Leu Thr Ser 1225 1230 1235 124	r
GCA ACC AAC ATC GTG AAG TGG ATC ACG AAG CAG CAG AAT GCC CAG GGG Ala Thr Asn Ile Val Lys Trp Ile Thr Lys Gln Gln Asn Ala Gln Gl 1245 1250 1255	C 3796 y
GGT TTC TCC TCC ACC CAG CAC ACA GTG GTG GCT CTC CAT GCT CTG TCG Gly Phe Ser Ser Thr Gln His Thr Val Val Ala Leu His Ala Leu Ser 1260 1265 1270	C 3844 r
AAA TAT GGA GCA GCC ACA TTT ACC AGG ACT GGG AAG GCT GCA CAG GT Lys Tyr Gly Ala Ala Thr Phe Thr Arg Thr Gly Lys Ala Ala Gln Va 1275 1280 1285	
ACT ATC CAG TCT TCA GGG ACA TTT TCC AGC AAA TTC CAA GTG GAC AA Thr Ile Gln Ser Ser Gly Thr Phe Ser Ser Lys Phe Gln Val Asp As 1290 1295 1300	

AAC Asn 1305	Asn	CGC Arg	CTG Leu	TTA Leu	CTG Leu 1310	Gln	CAG Gln	GTC Val	TCA Ser	TTG Leu 131	Pro	GAG Glu	CTG Leu	CCT Pro	GGG Gly 1320	3988
GAA G1 u	TAC Tyr	AGC Ser	ATG Met	AAA Lys 1325	Val	ACA Thr	GGA Gly	GAA Glu	GGA Gly 1330	Cys	GTC Val	TAC Tyr	CTC Leu	CAG Gln 133!	Thr	4036
TCC Ser	TTG Leu	AAA Lys	TAC Tyr 1340	AAT Asn	ATT Ile	CTC Leu	CCA Pro	GAA Glu 1345	Lys	GAA Glu	GAG Glu	TTC Phe	CCC Pro 1350	Phe	GCT Ala	4084
TTA Leu	GGA Gly	GTG Val 1355	Gln	ACT Thr	CTG Leu	CCT Pro	CAA Gln 1360	Thr	TGT Cys	GAT Asp	GAA Glu	CCC Pro 1365	Lys	GCC Ala	CAC His	4132
ACC Thr	AGC Ser 1370	Phe	CAA Gln	ATC Ile	TCC Ser	CTA Leu 1375	Ser	GTC Val	AGT Ser	TAC Tyr	ACA Thr 1380	Gly	AGC Ser	CGC Arg	TCT Ser	4180
GCC Ala 1385	Ser	AAC Asn	ATG Met	GCG Ala	ATC Ile 1390	Val	GAT Asp	GTG Val	AAG Lys	ATG Met 1395	Val	TCT Ser	GGC Gly	TTC Phe	ATT Ile 1400	4228
CCC Pro	CTG Leu	AAG Lys	CCA Pro	ACA Thr 1405	Val	AAA Lys	ATG Met	CTT Leu	GAA Glu 1410	Arg	TCT Ser	AAC Asn	CAT His	GTG Val 1415	Ser	4276
CGG Arg	ACA Thr	GAA Glu	GTC Val 1420	AGC Ser	AGC Ser	AAC Asn	CAT His	GTC Val 1425	Leu	ATT Ile	TAC Tyr	CTT Leu	GAT Asp 1430	Lys	GTG Val	4324
TCA Ser	AAT Asn	CAG Gln 1435	Thr	CTG Leu	AGC Ser	TTG Leu	TTC Phe 1440	Phe	ACG Thr	GTT Val	CTG Leu	CAA Gln 1445	Asp	GTC Val	CCA Pro	4372
GTA Val	AGA Arg 1450	Asp	CTG Leu	AAA Lys	CCA Pro	GCC Ala 1455	Ile	GTG Val	AAA Lys	GTC Val	TAT Tyr 1460	Asp	TAC Tyr	TAC Tyr	GAG Glu	4420
ACG Thr 1465	Asp	GAG G1u	TTT Phe	GCA Ala	ATT Ile 1470	Ala	GAG Glu	TAC Tyr	AAT Asn	GCT Ala 1475	Pro	TGC Cys	AGC Ser	AAA Lys	GAT Asp 1480	4468
CTT Leu	GGA Gly	AAT Asn	GCT Ala	TGAA	\GAC(CAC A	AGGC	TGAA	AA AG	TGCT	TTGC	T G G	AGTO	CTG		4520
TTCT	CTGA	IGC T	CCAC	CAGAA	AG AC	CACGT	GTTT	TTG	TATO	TTT	AAAG	ACTT	GA T	GAAT	'AAACA	4580
СТТТ	ттст	GG T	CAAA	\AAAA	1											4599

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1484 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear (E) FEATURES: bait region: 690-740 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Met Gly Lys Asn Lys Leu Leu His Pro Ser Leu Val Leu Leu Leu Leu Val Leu Leu Pro Thr Asp Ala Ser Val Ser Gly Lys Pro Gln Tyr Met Val Leu Val Pro Ser Leu Leu His Thr Glu Thr Thr Glu Lys Gly Cys Val Leu Leu Ser Tyr Leu Asn Glu Thr Val Thr Val Ser Ala Ser Leu Glu Ser Val Arg Gly Asn Arg Ser Leu Phe Thr Asp Leu Glu Ala Glu Asn Asp Val Leu His Cys Val Ala Phe Ala Val Pro Lys Ser Ser Ser Asn Glu Glu Val Met Phe Leu Thr Val Gln Val Lys Gly Pro Thr Gln Glu Phe Lys Lys Arg Thr Thr Val Met Val Lys Asn Glu Asp Ser Leu Val Phe Val Gln Thr Asp Lys Ser Ile Tyr Lys Pro Gly Gln Thr Val Lys Phe Arg Val Val Ser Met Asp Glu Asn Phe His Pro Leu Asn Glu Leu Ile Pro Leu Val Tyr Ile Gln Asp Pro Lys Gly Asn Arg Ile Ala Gln Trp Gln Ser Phe Gln Leu Glu Gly Gly Leu Lys Gln Phe Ser Phe Pro Leu Ser Ser Glu Pro Phe Gln Gly Ser Tyr Lys Val Val Gln Lys Lys Ser Gly Gly Arg Thr Glu His Pro Phe Thr Val Glu Glu Phe Val Leu Pro Lys Phe Glu Val Gln Val Thr Val Pro Lys Ile Ile Thr Ile Leu Glu Glu Glu Met Asn Val Ser Val Cys Gly Leu Tyr Thr Tyr

Gly Lys Pro Val Pro Gly His Val Thr Val Ser Ile Cys Arg Lys Tyr

Ser	Asp	A1a 275	Ser	Asp	Cys	His	G1y 280	G1u	Asp	Ser	Gln	Ala 285	Phe	Cys	Glu
Lys	Phe 290	Ser	Gly	Gln	Leu	Asn 295	Ser	His	Gly	Cys	Phe 300	Tyr	Gln	Gln	Val
Lys 305	Thr	Lys	Val	Phe	Gln 310	Leu	Lys	Arg	Lys	Glu 315	Tyr	Glu	Met	Lys	Leu 320
His	Thr	Glu	Ala	G1n 325	Ile	Gln	G1u	G1u	Gly 330	Thr	Val	Val	Glu	Leu 335	Thr
Gly	Arg	Gln	Ser 340	Ser	Glu	Ile	Thr	Arg 345	Thr	Ile	Thr	Lys	Leu 350	Ser	Phe
Val	Lys	Val 355	Asp	Ser	His	Phe	Arg 360	Gln	Gly	Ile	Pro	Phe 365	Phe	Gly	Gln
Val	Arg 370	Leu	Val	Asp	Gly	Lys 375	Gly	Val	Pro	Ile	Pro 380	Asn	Lys	Val	Ile
Phe 385	Ile	Arg	Gly	Asn	Glu 390	Ala	Asn	Tyr	Tyr	Ser 395	Asn	Ala	Thr	Thr	Asp 400
Glu	His	Gly	Leu	Val 405	Gln	Phe	Ser	Ile	Asn 410	Thr	Thr	Asn	Val	Met 415	Gly
Thr	Ser	Leu	Thr 420	Val	Arg	Val	Asn	Tyr 425	Lys	Asp	Arg	Ser	Pro 430	Cys	Tyr
Gly	Tyr	G1n 435	Trp	Val	Ser	Glu	G1u 440	His	Glu	Glu	Ala	His 445	His	Thr	Ala
Tyr	Leu 450	Val	Phe	Ser	Pro	Ser 455	Lys	Ser	Phe	Val	His 460	Leu	Glu	Pro	Met
Ser 465	His	Glu	Leu	Pro	Cys 470	Gly	His	Thr	Gln	Thr 475	Val	Gln	Ala	His	Tyr 480
Ile	Leu	Asn	Gly	Gly 485	Thr	Leu	Leu	Gly	Leu 490	Lys	Lys	Leu	Ser	Phe 495	Tyr
Tyr	Leu	Ile	Met 500	Ala	Lys	Gly	-	Ile 505	Val	Arg	Thr	Gly	Thr 510	His	Gly
Leu	Leu	Val 515	Lys	Gln	Glu	Asp	Met 520	Lys	Gly	His	Phe	Ser 525	Ile	Ser	Ile
Pro	Val 530	Lys	Ser	Asp	Ile	A1a 535	Pro	Val	Ala	Arg	Leu 540	Leu	Ile	Tyr	Ala
Val 545	Leu	Pro	Thr	Gly	Asp 550	Val	Ile	Gly	Asp	Ser 555	Ala	Lys	Tyr	Asp	Val 560
Glu	Asn	Cys	Leu	Ala 565	Asn	Lys	Val	Asp	Leu 570	Ser	Phe	Ser	Pro	Ser 575	Gln

Ser	Leu	Pro	Ala 580	Ser	His	Ala	His	Leu 585	Arg	Val	Thr	Ala	Ala 590	Pro	Gln
Ser	Val	Cys 595	Ala	Leu	Arg	Ala	Val 600	Asp	Gln	Ser	Val	Leu 605	Leu	Met	Lys
Pro	Asp 610	Ala	Glu	Leu	Ser	Ala 615	Ser	Ser	Val	Tyr	Asn 620	Leu	Leu	Pro	G1u
Lys 625	Asp	Leu	Thr	Gly	Phe 630	Pro	Gly	Pro	Leu	Asn 635	Asp	Gln	Asp	Asp	G1u 640
Asp	Cys	Ile	Asn	Arg 645	His	Asn	Val	Tyr	Ile 650	Asn	Gly	Ile	Thr	Tyr 655	Thr
Pro	Val	Ser	Ser 660	Thr	Asn	Glu	Lys	Asp 665	Met	Tyr	Ser	Phe	Leu 670	Glu	Asp
Met	Gly	Leu 675	Lys	Ala	Phe	Thr	Asn 680	Ser	Lys	Ile	Arg	Lys 685	Pro	Lys	Met
Cys	Pro 690	Gln	Leu	Gln	Ser	Val 695	Ser	Ala	Gly	Ala	Val 700	Gly	Gln	Gly	Tyr
Tyr 705	-	Ala	Gly	Leu	Gly 710	Val	Val	Glu	Arg	Pro 715		Val	Pro	Gln	Leu 720
Gly	Thr	Tyr	Asn	Val 725		Pro	Leu	Asn	Asn 730		Gln	Ser	Ser	Gly 735	Pro
Val	Pro	Glu	Thr 740		Arg	Lys	Tyr	Phe 745	Pro	Glu	Thr	Trp	11e 750	Trp	Asp
Leu	Val	Val 755	Val	Asn	Ser	Ala	Gly 760		Ala	Glu	Val	Gly 765	Val	Thr	Val
Pro	Asp 770		·Ile	Thr	G1u	Trp 775		Ala	Gly	Ala	Phe 780	Cys	Leu	Ser	Glu
Asp 785		Gly	/ Leu	Gly	11e 790		Ser	Thr	· Ala	Ser 795		Arg	Ala	Phe	G1r 800
Pro	Phe	Phe	e Val	G1u 805			· Met				Val	Ile	. Arg	Gly 815	Glu
Ala	. Phe	. Thr	Leu 820		Ala	Thr	· Val	Leu 825		ı Tyr	Leu	Pro	830	Cys	Ιle
Arg	y Val	Ser 83	r Val	Glr	Leu	ı Glu	Ala 840		· Pro	Ala	. Phe	Leu 845	ı Ala	\Val	Pro
۷a٦	G] G] G 850		s Glu	ı Glr	n Ala	Pro 855		Cys	i Ile	e Cys	860		1 Gly	/ Arg	G G 1
Th: 865	_	l Sei	r Trp	Ala	a Val 870		r Pro	Lys	s Ser	^ Leu 875	ı Gly	/ Asr	val	Asr	Pho 880

\$

- Thr Val Ser Ala Glu Ala Leu Glu Ser Gln Glu Leu Cys Gly Thr Glu 885 890 895
- Val Pro Ser Val Pro Glu His Gly Arg Lys Asp Thr Val Ile Lys Pro 900 905 910
- Leu Leu Val Glu Pro Glu Gly Leu Glu Lys Glu Thr Thr Phe Asn Ser 915 920 925
- Leu Leu Cys Pro Ser Gly Gly Glu Val Ser Glu Glu Leu Ser Leu Lys 930 935 940
- Leu Pro Pro Asn Val Val Glu Glu Ser Ala Arg Ala Ser Val Ser Val 945 950 955 960
- Leu Gly Asp Ile Leu Gly Ser Ala Met Gln Asn Thr Gln Asn Leu Leu 965 970 975
- Gln Met Pro Tyr Gly Cys Gly Glu Gln Asn Met Val Leu Phe Ala Pro 980 985 990
- Asn Ile Tyr Val Leu Asp Tyr Leu Asn Glu Thr Gln Gln Leu Thr Pro 995 1000 1005
- Glu Ile Lys Ser Lys Ala Ile Gly Tyr Leu Asn Thr Gly Tyr Gln Arg 1010 1015 1020
- Gln Leu Asn Tyr Lys His Tyr Asp Gly Ser Tyr Ser Thr Phe Gly Glu 1025 1030 1035 1040
- Arg Tyr Gly Arg Asn Gln Gly Asn Thr Trp Leu Thr Ala Phe Val Leu 1045 1050 1055
- Lys Thr Phe Ala Gln Ala Arg Ala Tyr Ile Phe Ile Asp Glu Ala His 1060 1065 1070
- Ile Thr Gln Ala Leu Ile Trp Leu Ser Gln Arg Gln Lys Asp Asn Gly 1075 1080 1085
- Cys Phe Arg Ser Ser Gly Ser Leu Leu Asn Asn Ala Ile Lys Gly Gly 1090 1095 1100
- Val Glu Asp Glu Val Thr Leu Ser Ala Tyr Ile Thr Ile Ala Leu Leu 1105 1110 1115 1120
- Glu Ile Pro Leu Thr Val Thr His Pro Val Val Arg Asn Ala Leu Phe 1125 1130 1135
- Cys Leu Glu Ser Ala Trp Lys Thr Ala Gln Glu Gly Asp His Gly Ser 1140 1145 1150
- His Val Tyr Thr Lys Ala Leu Leu Ala Tyr Ala Phe Ala Leu Ala Gly 1155 1160 1165
- Asn Gln Asp Lys Arg Lys Glu Val Leu Lys Ser Leu Asn Glu Glu Ala 1170 1175 1180

Val 1185		Lys	Asp	Asn	Ser 1190	Val	His	Trp	Glu	Arg 1195	Pro	Gln	Lys	Pro	Lys 1200
Ala	Pro	Va1	Gly	His 1205		Tyr	Glu	Pro	Gln 1210	Ala	Pro	Ser	Ala	Glu 1215	Val
Glu	Met	Thr	Ser 1220		Val	Leu	Leu	Ala 1225	Tyr	Leu	Thr	Ala	Gln 1230	Pro	Ala
Pro	Thr	Ser 1235		Asp	Leu	Thr	Ser 1240		Thr	Asn	Ile	Val 1245	Lys	Trp	Ile
Thr	Lys 1250		Gln	Asn	Ala	G1n 1255	Gly 5	Gly	Phe	Ser	Ser 1260	Thr	Gln	His	Thr
Val 1265	_	Ala	Leu	His	Ala 1270		Ser	Lys	Tyr	Gly 1275	Ala	Ala	Thr	Phe	Thr 1280
Arg	Thr	Gly	Lys	Ala 128		Gln	Val	Thr	Ile 1290		Ser	Ser	Gly	Thr 129	Phe
Ser	Ser	Lys	Phe 130		Val	Asp	Asn	Asn 130	Asn 5	Arg	Leu	Leu	Leu 1310	G1n	Gln
Val	Ser	Leu 131		Glu	Leu	Pro	Gly 1320		Tyr	Ser	Met	Lys 132	Val	Thr	Gly
G 1u	Gly 133		Val	Tyr	Leu	Gln 133	Thr 5	Ser	Leu	Lys	Tyr 1340		Ile	Leu	Pro
Glu 134	_	Glu	Glu	Phe	Pro 135		Ala	Leu	Gly	Val 135		Thr	Leu	Pro	Gln 1360
Thr	Cys	Asp	Glu	Pro 136		Ala	His	Thr	Ser 137		Gln	Ile	Ser	Leu 137	Ser 5
Val	Ser	Tyr	Thr 138		Ser	Arg	Ser	Ala 138		Asn	Met	Ala	Ile 139	Val 0	Asp
Val	Lys	Met 139	_	Ser	Gly	Phe	Ile 140		Leu	Lys	Pro	Thr 140	Val 5	Lys	Met
Leu	Glu 141	_	Ser	Asn	His	Val 141		Arg	Thr	Glu	Val 142		Ser	Asn	His
Val 142		ı Ile	. Tyr	Leu	Asp 143		Val	Ser	Asn	Gln 143	Thr 5	Leu	Ser	Leu	Phe 1440
Phe	. Thr	· Val	Leu	Gln 144		Val	Pro	Val	Arg 145	Asp 0	Leu	Lys	Pro	Ala 145	Ile 5
Val	Lys	s Val	Tyr 146	_	Tyr	Tyr	· Glu	Thr 146		Glu	Phe	Ala	Ile 147	Ala 0	Glu
Туг	Asr	n Ala 147		Cys	Ser	Lys	Asp 148		ı Gly	' Asn	Ala				

PATENT CLAIMS

1. A process for the production of recombinant α -macroglobulin, variants, fragments or derivatives thereof, wherein a functionally operative expression vector comprising a gene encoding for the expression of α -macroglobulin, variants, fragments or derivatives thereof, or alleles of such a gene, is introduced into a suitable host capable of expressing said gene, said host is cultured in a suitable nutrient medium containing sources of assimilable carbon and nitrogen and other essential nutrients, and the expressed α -macroglobulin or fragments or derivatives thereof is recovered.

10

- The process of claim 1, wherein said gene encodes for the expression of human α_2 -macroglobulin, variants, fragments or derivatives thereof.
- 15 3. The process of claim 2, wherein said gene encodes for the expression of human α_2 -macroglobulin having the amino acid sequence of SEQ ID NO:2, or a fragment or derivative thereof.
- 4. The process of claim 2 or 3, wherein said gene comprises the DNA sequence of SEQ ID NO:1, or a fragment thereof.
 - 5. The process of claim 1 or 2, wherein said gene encodes for a variant α -macroglobulin, in which the amino acid sequence of the bait region has been altered.

25

- The process of claim 5, wherein the bait region has been altered by incorporation of further proteinase target sites.
- 7. The process of claim 5, wherein the bait region has been altered by removal of proteinase target sites.
 - 8. The process of claim 5, wherein the bait region has been altered by replacing one or more specific proteinase target sites with one or more other specific proteinase target sites.

35

į

The process of claim 8, wherein said proteinase target sites are specific for bovine trypsin, <u>Streptomyces griseus</u> trypsin, papain, porcine elastase, bovine chymosin, bovine chymotrypsin, <u>Staphylococcus aureus</u> strain

7

15

V8 proteinase, human plasmin, bovine thrombin, thermolysin, subtilisin Novo and/or <u>Streptomyces griseus</u> proteinase B.

- 10. The process of claim 5, wherein wherein the bait region has been altered by replacing said bait region or part thereof with a bait region or a part thereof from another α -macroglobulin.
- 11. The process of claim 10, wherein said bait regions originate from human $\alpha_2 M$, Pregnancy Zone Protein (PZP), rat $\alpha_1 M$, rat $\alpha_2 M$, rat $\alpha_1 I_3$ variant 10 1, or rat $\alpha_1 I_3$ variant 2 ($\alpha_1 I_3 = \alpha_1$ -inhibitor 3), especially PZP.
 - 12. The process of any of claims 5 to 11, wherein said gene encodes for the expression of human a α_2 -macroglobulin variant having the amino acid sequence of SEQ ID NO:4, or a fragment or derivative thereof.
 - 13. The process of any of claims 5 to 12, wherein said gene comprises the DNA sequence of SEQ ID NO:3, or a fragment thereof.
- 14. The process of any of the claims 1 to 13, wherein said gene is 20 a synthetic gene.
 - 15. The process of any of the claims 1 to 14, wherein said α -macroglobulin, variant, fragment or derivative thereof is co-expressed with a desired gene product.
 - 16. The process of any of the claims 1 to 15, wherein said gene is, or is derived from, a human gene.
- The process of any of the claims 1 to 16, wherein said host is a bacterial strain, a fungal strain, a mammalian cell line, or a mammal.
 - 18. The process of claim 17, wherein said host is a fungus.
- 19. The process of claim 18, wherein said fungus belongs to the genus 35 Aspergillus.
 - The process of claim 18, wherein said host is a yeast.

څ

1

- The process of claim 20, wherein said yeast belongs to the genus Saccharomyces.
- The process of claim 17, wherein said host is a mammalian cell line.
 - The process of claim 22, wherein said mammalian cell line is a Syrian Baby Hamster Kidney (BKH) cell line.
- The process of claim 23, wherein said cell line is available from ATCC under No. CRL 1632.
 - 25. A DNA sequence comprising a gene encoding for the expression of an α -macroglobulin, variants, fragments or derivatives thereof.

The DNA sequence of claim 25, wherei

- The DNA sequence of claim 25, wherein said gene encodes for human α_2 -macroglobulin.
- 27. The DNA sequence of claim 25, wherein said gene encodes for the amino 20 acid sequence of SEQ ID NO:2 or a fragment or derivative thereof.
 - The DNA sequence of claim 26 or 27, wherein said gene has the nucleotide sequence of SEQ ID NO:1 or a fragment thereof.
- 25 29. The DNA sequence of claim 25 or 26, wherein said gene encodes for a variant α -macroglobulin, in which the amino acid sequence of the bait region has been altered.
- 30. The DNA sequence of claim 29, wherein said bait region has been altered by incorporation of further proteinase target sites.
 - The DNA sequence of claim 29, wherein said bait region has been altered by removal of proteinase target sites.
- 35 32. The DNA sequence of claim 29, wherein said bait region has been altered by replacing one or more specific proteinase target sites with one or more other specific proteinase target sites.

PCT/DK90/00225

- The DNA sequence of claim 29, wherein, wherein said proteinase target sites are specific for bovine trypsin, <u>Streptomyces griseus</u> trypsin, papain, porcine elastase, bovine chymosin, bovine chymotrypsin, <u>Staphylococcus aureus</u> strain V8 proteinase, human plasmin, bovine thrombin, thermolysin, subtilisin Novo and/or <u>Streptomyces griseus</u> proteinase B.
- 34. The DNA sequence of claim 29, wherein the bait region has been altered by replacing said bait region or part thereof with a bait region or a part thereof from another α -macroglobulin.
- The DNA sequence of claim 34, wherein said bait region originates from human $\alpha_2 M$, Pregnancy Zone Protein (PZP), rat $\alpha_1 M$, rat $\alpha_2 M$, rat $\alpha_1 I_3$ variant 1, or rat $\alpha_1 I_3$ variant 2, especially PZP.
- 15 36. A functionally operative expression vector comprising a gene in accordance with any of the claims 25 to 35 for the expression of human α_2 -macroglobulin, variants, fragments or derivatives thereof, or alleles of such a gene.
- The vector of claim 36, further comprising regulatory elements necessary for the stable maintenance of said vector in mammalian cells.
 - The vector of claim 36 or 37, further comprising sequences providing for the processing and secretion of the expressed product.
 - The vector of any of the claims 36 to 38, further comprising one or more other genes encoding for a desired gene product.
- 40. A functionally operative expression vector comprising a gene encoding for the expression of an α -macroglobulin, variants, fragments or derivatives thereof, or alleles of such a gene, essentially as described.
- 41. A transformed host comprising a functionally operative expression vector comprising a gene encoding for the expression of human α_2 -macroglobulin or fragments or derivatives thereof, or alleles of such a gene.
 - The host of claim 41, wherein said vector is the vector of any of the claims 36 to 40.

- The host of claim 41 or 42, wherein said host is a bacterial strain, a fungal strain, a mammalian cell line, or a mammal.
- The host of claim 43, wherein said host is a fungus.

I

\$

- The host of claim 44, wherein said fungus belongs to the genus Aspergillus.
- 46. The host of claim 44, wherein said host is a yeast.

10

- The host of claim 46, wherein said host belongs to the genus <u>Sac-charomyces</u>.
- 48. The host of claim 43, wherein said host is a mammalian cell line.

- The host of claim 48, wherein said host is a Syrian Baby Hamster Kidney (BHK) cell line.
- The host of claim 49, wherein said cell line is available from ATCC under No. CRL 1632.
 - Recombinant human α_2 -macroglobulin of SEQ ID NO:2 or SEQ ID NO:4 in an active form.
- 25 52. Recombinant α -macroglobulin, variants, fragments or derivatives thereof produced by a process of any of the claims 1 to 24.
- 53. Recombinant α -macroglobulin, variants, fragments or derivatives thereof of claim 52 produced by the use of a vector of any of the claims 36 to 40.
 - Recombinant α -macroglobulin, variants, fragments or derivatives thereof essentially as described.
- 35 55. Recombinant human α_2 -macroglobulin, variants, fragments or derivatives thereof essentially as described.
 - 56. A growth medium comprising one or more α -macroglobulins.

PCT/DK90/00225

3

*

- 57. A growth medium comprising recombinant α -macroglobulin, variants, fragments or derivatives thereof according to any of the claims 51 to 55.
- 58. Use of recombinant α -macroglobulin, variants, fragments or derivatives thereof according to any of the claims 51 to 55 as a protein carrier in enzyme replacement therapy.
- 59. Use of recombinant α -macroglobulin, variants, fragments or derivatives thereof according to any of the claims 51 to 55 as a DNA carrier in gene therapy.

--- ACCUPATONEET

Fig. 1A

Fig. 1B

Ť

Fig. 2

4/9

Fig. 3

Fig. 4

*

5/9

Fig. 5

Fig. 6

¥

6/9

Fig. 7

Fig. 8

7/9

Fig. 9

Ť

Fig. 11

ÿ

Frg. 12

Fig. 13

INTERNATIONAL SEARCH REPORT

International Application No PCT/DK 90/00225

1 0146	CITIOATION OF CURITOR HATTER HE	international Application NO C1/	
	SIFICATION OF SUBJECT MATTER (if several class g to International Patent Classification (IPC) or to both		
	C 12 N 15/15, A 61 K 37/64, C 0		
II. FIELD	S SEARCHED		
	Minimum Docum	entation Searched 7	
Classificati	ion System	Classification Symbols	
IPC5	A 61 K; C 12 N; C 07 K		
		er than Minimum Documentation	
	to the Extent that such Documer	nts are Included in Fields Searched®	
SE,DK,	FI,NO classes as above		
III. DOCU	MENTS CONSIDERED TO BE RELEVANT 9		
Category *	Citation of Document,11 with indication, where a	ppropriate, of the relevant passages 12	Relevant to Claim No. ¹³
Υ	Proc Natl Acad Sci USA, Vol. 82 Chen Chen et al.: "Nucleot encoding human alpha-2-macrassignment of the chromosor see page 2282 - page 2286	ide sequence of cDNA roglobulin and	1,2,4, 14-28, 36-50, 52-59 5-10,29- 34
Y	Chemical Abstracts, volume 96, 1982, (Columbus, Ohio, US) Bet al.: "Primary and secon in the bait region of alpha see page 253, abstract 117, 1981, 135(2), 295-300	, Mortensen, steen ndary cleavage sites a-2-macroglobulin ",	5-10,29- 34
A	Chemical Abstracts, volume 95, 1981, (Columbus, Ohio, US) Lars et al.: "Promary struc- region for proteinases in alpha-2-macroglobulin. Natu see page 261, abstract 5705 1981, 127(2), 167-173	, Sottrup-Jensen, cture of the bait' ure of the complex ",	1-59
"A" doc con "E" ear filir "L" doc whi cita "O" doc othe	cument defining the general state of the art which is not sidered to be of particular relevance. Iter document but published on or after the international date. Item which may throw doubts on priority claim(s) or ch is cited to establish the publication date of another stion or other special reason (as specified). Itement referring to an oral disclosure, use, exhibition of the means the priority date claimed.	"X" document of particular relevance cannot be considered novel or convolve an inventive step "Y" document of particular relevance cannot be considered to involve document is combined with one ments, such combination being in the art.	e, the claimed invention annot be considered to e, the claimed invention an inventive step when the or more other such docu- obvious to a person skilled
Date of the	Actual Completion of the International Search	Date of Mailing of this International Se	earch Report
11th De	ecember 1990	1990 -12- 13	
Internation	al Searching Authority	Signature of Authorized Officer	
	SWEDISH PATENT OFFICE	Yvonne Siösteen	レっ
00446	A/210 (second sheet) (lanuary 1985)	1401111C 0103CCCII	

3-4	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
A	Chemical Abstracts, volume 101, no. 11, 10 September 1984, (Columbus, Ohio, US), Sottrup-Jensen, Lars et al.: "Primary structure of human alpha-2-macroglobulin. V. The complete structure ", see page 237, abstract 85952p, & J. Biol. Chem. 1984, 259(13), 8318-8327	1-59
P	Chemical Abstracts, volume 111, no. 23, 4 December 1989, (Columbus, Ohio, US), Sottrup-Jensen, Larset al.: "The alpha-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian alpha-macroglobulins ", see page 227, abstract 210722y, & J. Biol. chem. 1989, 264(27), 15781-15789	5-10,29-34
P	Chemical Abstracts, volume 112, no. 25, 18 June 1990, (Columbus, Ohio, US), Marynen, P et al: "A genetic polymorphism in a functional domain of human pregnancy zone protein: the bait region. Genomic structure of the bait domains of human pregnancy zone protein and alpha-2-macroglobulin ", see page 167, abstract 230679p, & FEBS Lett. 1990, 262(2), 349-352	5-10,29,

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/DK 90/00225

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the Swedish Patent Office EDP file on 90-11-01 The Swedish Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
	· · · · · · · · · · · · · · · · · · ·		
•			