Chapter 2 Approximation and Interpolation

Songting Luo

Department of Mathematics lowa State University

MATH 561 Numerical Analysis

Approximation of Functions

Approximation of Functions

Given a function f and a class Φ of "approximating functions" ϕ and a norm $\|\cdot\|$. A function $\hat{\phi}\in\Phi$ is called the best approximation of f from the class Φ relative to the norm $\|\cdot\|$ if

$$\|f - \hat{\phi}\| \leqslant \|f - \phi\|$$
 for all $\phi \in \Phi$.

Depending on the linear space Φ and norm $\|\cdot\|$.

Existence?

Uniqueness?

Approximation Error?

Approximation of Functions; Examples

Depending on the linear space Φ and norm $\|\cdot\|$. For example:

• Least Squares Approximation: the least squares problem:

$$\min_{\phi \in \Phi_n} \|\phi - f\|_{2, d\lambda}.$$

- Existence and Uniqueness by Normal equations; Least Squares Error.
- Polynomial Interpolation: given $\{x_i\}_{i=0}^n$ and $\{f_i=f(x_i)\}_{i=1}^n$ of function f, find a polynomial $p \in \mathbf{P}_n$ s.t.,

$$p(x_i) = f_i, i = 0, 1, \dots, n.$$

• Fourier series with trigonometric functions, use truncated sum to approximate the function (recall Calculus).

Approximation of Functions by Polynomials

Polynomial Interpolation

- Polynomial interpolation: Vandermonde method, Lagrange formula, Barycentric formula, Newton's formula; Interpolation error; Chebyshev Nodes.
- Hermite interpolation: Newton's formula.
- Spline interpolation/approximation, piecewise Lagrange interpolation.
- Polynomial Approximation
 - Weierstrass's Approximation Theorem (A Proof with Bernstein polynomial)
 - Characterization of best approximation; Alternant set; Remez method.
 - Least Squares Approximation; Normal equations.
 - Orthogonal polynomials: Chebyshev polynomials, Legendre polynomials.

Approximation and Interpolation by Spline Functions

Spline Functions

Given a partition (subdivision) Δ of [a, b],

$$\Delta : a = x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

with $|\Delta| \equiv \max_{1 \le i \le n-1} \Delta x_i$, $\Delta x_i = x_{i+1} - x_i$.

Recall the spline functions of degree m and smoothness class ${\bf k}$ relative to the subdivision $\Delta,$

$$\mathbf{S}_{m}^{k}(\Delta) = \{s : s \in C^{k}[a, b], s|_{[x_{i}, x_{i+1}]} \in \mathbf{P}_{m}, i = 1, 2, \dots, n-1\}.$$

I.e., any function in \mathbf{S}_m^k is piecewise polynomial of degree $\leqslant m$, and upto kth derivative is continuous everywhere including points x_1,\ldots,x_{n-1} of Δ .

Approximation and Interpolation by Spline Functions

Some examples:

- \mathbf{S}_m^{-1} : piecewise polynomial of degree $\leq m$, no assumption of continuity at x_1, \ldots, x_{n-1} is assumed.
- $S_m^m = P_m$.
- k < m: e.g., simplest case $m=1, \ k=0$, i.e., piecewise linear interpolation.

Piecewise Linear Interpolation

Interpolation by Piecewise Linear Functions

Find $s \in \mathbf{S}_1^0(\Delta)$ such that for a given function f defined on [a, b],

$$s(x_i) = f_i$$
 where $f_i = f(x_i), i = 1, 2, ..., n$.

The solution is given by $s(\cdot) = s_1(f; \cdot)$, on $[x_i, x_{i+1}]$:

$$s_1(f;x) = f_i + (x - x_i)[x_i, x_{i+1}]f$$
 for $x_i \le x \le x_{i+1}, i = 1, 2, \dots, n-1$.

I.e., on each subinterval $[x_i, x_{i+1}]$, s is a linear function. The interpolation error is (from previous results with Newton's form)

$$f(x) - s_1(f;x) = (x - x_i)(x - x_{i+1})[x_i, x_{i+1}, x]f \text{ for } x \in [x_i, x_{i+1}]$$

 $\text{If } f \in C^2[a,\ b]\text{,}$

$$|f(x) - s_1(f;x)| \le \frac{(\Delta x_i)^2}{8} \max_{[x_i, x_{i+1}]} |f''|, \ x \in [x_i, x_{i+1}].$$

Piecewise Linear Functions; Interpolation Error

Interpolation error:

$$||f(\cdot) - s_1(f; \cdot)||_{\infty} \le \frac{1}{8} |\Delta|^2 ||f''||_{\infty}$$

Furthermore, the piecewise linear interpolation is nearly optimal:

$$dist_{\infty}(f, \mathbf{S}_{1}^{0}) \leqslant ||f(\cdot) - s_{1}(f; \cdot)||_{\infty} \leqslant 2 dist_{\infty}(f, \mathbf{S}_{1}^{0})$$

where

$$dist_{\infty}(f, \mathbf{S}) \equiv \inf_{s \in \mathbf{S}} \|f(\cdot) - s\|_{\infty}$$

is the best approximation to f from ${\bf S}$.

Basis for $\mathbf{S}_1^0(\Delta)$

Dimension of $\mathbf{S}_1^0(\Delta)$: n.

A basis: for i = 1, ..., n, (denote $x_0 = x_1$ and $x_{n+1} = x_n$)

$$B_i(x) = \begin{cases} \frac{x-x_{i-1}}{x_i-x_{i-1}} \text{ if } x_{i-1} \leqslant x \leqslant x_i, \\ \frac{x_{i+1}-x}{x_{i+1}-x_i} \text{ if } x_i \leqslant x \leqslant x_{i+1}, \\ 0 \text{ otherwise.} \end{cases}$$

Clearly,

$$B_i(x_j) = \delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

And for any $s \in \mathbf{S}_1^0(\Delta)$,

$$s(x) = \sum_{i=1}^{n} s(x_i)B_i(x).$$

Least Squares Approximation over $\mathbf{S}_1^0(\Delta)$

Least Squares Approximation

Given $f \in C[a, b]$, find $\hat{s}_1(f; \cdot) \in \mathbf{S}_1^0(\Delta)$ such that

$$\|f - \hat{s}_1\|_2 = \min_{s \in \mathbf{S}_1^0(\Delta)} \|f - s\|_2.$$

The unique solution by Normal equations

$$Ac = b$$

with $\mathbf{A} = [a_{ij}] = [(B_i, B_j)]$, $\mathbf{b} = [b_i] = [(f, B_i)]$, denoted as $\hat{\mathbf{c}} = \mathbf{A}^{-1}\mathbf{b}$ or $\hat{s}_1(f; x) = \sum_{i=1}^n \hat{c}_i B_i(x)$. Clearly, $(B_i, B_j) = 0$ if |i - j| > 1, so \mathbf{A} is tridiagonal, i.e.,

$$\frac{1}{6}\Delta x_{i-1}\hat{c}_{i-1} + \frac{1}{3}(\Delta x_{i-1} + \Delta x_i)\hat{c}_i + \frac{1}{6}\Delta x_i\hat{c}_{i+1} = b_i, \ i = 1, 2, \dots, n.$$

The least squares approximation is nearly optimal:

$$dist_{\infty}(f, \mathbf{S}_1^0) \leqslant \|f(\cdot) - \hat{s}_1(f; \cdot)\|_{\infty} \leqslant 4dist_{\infty}(f, \mathbf{S}_1^0)$$

Interpolation by Cubic Splines

Cubic Splines $\mathbf{S}_3^1(\Delta)$

Given nodes x_1, \ldots, x_n , and numbers m_1, \ldots, m_n , find $s_3(f; \cdot) \in \mathbf{S}_3^1(\Delta)$ with

$$s_3(f;\cdot)|_{[x_i,x_{i+1}]} \equiv p_i(x), \ i=1,2,\ldots,n-1,$$

such that $s_3'(f;x_i)=m_i, i=1,\ldots,n.$

We selecting each piece p_i to be the solution of a Hermite interpolation problem: for $i=1,2,\ldots,n-1$,

$$p_i(x_i) = f_i, \quad p_i(x_{i+1}) = f_{i+1},$$

$$p'_i(x_i) = m_i, \quad p'_i(x_{i+1}) = m_{i+1}.$$

The cubic splines depend on the choices of m_1, \ldots, m_n . Different approaches used to determined m_1, \ldots, m_n result in different cubic splines (discussed later).

Newton's Formula; In general

Cubic Splines $\mathbf{S}_3^1(\Delta)$

Each piece p_i is given by

in Newton's form

$$p_i(x) = f_i + (x - x_i)m_i + (x - x_i)^2 \frac{[x_i, x_{i+1}]f - m_i}{\Delta x_i} + (x - x_i)^2 (x - x_{i+1}) \frac{m_{i+1} + m_i - 2[x_i, x_{i+1}]f}{(\Delta x_i)^2}$$

• in Taylor's form

$$c_{i,0} = f_i; \quad c_{i,1} = m_i; \quad c_{i,2} = \frac{[x_i, x_{i+1}]f - m_i}{\Delta x_i} - c_{i,3} \Delta x_i;$$

$$c_{i,3} = \frac{m_{i+1} + m_i - 2[x_i, x_{i_1}]f}{(\Delta x_i)^2}$$

 $p_i(x) = c_{i,0} + c_{i,1}(x - x_i) + c_{i,2}(x - x_i)^2 + c_{i,3}(x - x_i)^3$, with

Possible Choices of $\{m_i\}$

• Piecewise cubic Hermite interpolation: for $i=1,\ldots,n$,

$$m_i = f'(x_i).$$

• Cubic spline interpolation: $s_3(f;\cdot) \in \mathbf{S}_3^2(\Delta)$, i.e., enforcing,

$$p''_{i-1}(x_i) = p''_i(x_i), i = 2, 3, \dots, n-1.$$

then from Taylor's form, we have

$$2c_{i-1,2} + 6_{i-1,3} \cdot \Delta x_{i-1} = 2c_{i,2}, \ i = 2, 3, \dots, n-1,$$

which can reformulated as a linear system for m_1, \ldots, m_n :

$$(\Delta x_i)m_{i-1} + 2(\Delta x_{i-1} + \Delta_i)m_i + (\Delta x_{i-1})m_{i+1} = b_i, \ i = 2, 3, \dots, n-1,$$

with
$$b_i = 3\{(\Delta x_i)[x_{i-1}, x_i]f + (\Delta x_{i-1})[x_i, x_{i+1}]f\}.$$

?Only n-2 equations for n unknowns m_1, \ldots, m_n ? Not Enough! Need m_1, m_n in some way!

Cubic Spline Interpolation

• Cubic spline interpolation: $s_3(f;\cdot) \in \mathbf{S}_3^2(\Delta)$, i.e., enforcing,

$$p''_{i-1}(x_i) = p''_i(x_i), i = 2, 3, \dots, n-1.$$

Once m_1, m_n are chosen, the linear system on m_1, \ldots, m_n can be solved easily by Gauss Elimination.

• Complete (clamped) splines:

$$m_1 = f'(a), m_n = f'(b)$$

Matching of the second derivative at the endpoints:

$$s_3''(f;a) = f''(a), s_3''(f;b) = f''(b)$$

Natural cubic splines:

$$s''(f;a) = s''(f;b) = 0$$

Not-a-knot spline.

Minimality Properties of Cubic Splines

Complete and natural splines have interesting optimality properties. Subdivision Δ :

$$\Delta : a = x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

Subdivision Δ' :

$$\Delta' : a = x_0 = x_1 < x_2 < \dots < x_{n-1} < x_n = x_{n+1} = b$$

Minimality Properties of Cubic Splines

Theorem (Complete Cubic Spline Interpolant)

For any function $g \in C^2[a, b]$ that interpolates f on Δ' , there holds

$$\int_{a}^{b} [g''(x)]^{2} dx \geqslant \int_{a}^{b} [s''_{compl}(f;x)]^{2} dx$$

with equality iff $g(\cdot) = s_{compl}(f; \cdot)$.

Theorem (Natural Cubic Spline Interpolant)

For any function $g \in C^2[a, b]$ that interpolates f on Δ (not Δ'), there holds

$$\int_{a}^{b} [g''(x)]^{2} dx \geqslant \int_{a}^{b} [s''_{nat}(f;x)]^{2} dx$$

with equality iff $g(\cdot) = s_{nat}(f; \cdot)$.

Note: $\int_a^b [s''_{compl}(f;x)]^2 dx \geqslant \int_a^b [s''_{nat}(f;x)]^2 dx$.

Weierstrass's Theorem; Bernstein Polynomials

Theorem (Weierstrass's Approximation Theorem)

If $f(x) \in C[a,b]$, then given $\epsilon > 0$, we can find p(x) such that

$$\sup |f(x) - p(x)| < \epsilon.$$

An alternative statement of it is that a continuous function is the sum of a uniformly convergent series of polynomials. For let $p_{n_1}(x), p_{n_2}(x), \cdots (n_1 \leqslant n_2 \leqslant \cdots)$ be polynomials corresponding to $\epsilon, \epsilon/2, \ldots, \epsilon/2^n, \ldots$, Then the series

$$p_{n_1}(x) + \{p_{n_2}(x) - p_{n_1}(x)\} + \cdots$$

converges uniformly to f(x).

Proof by Bernstein polynomials.

4 m b 4 m b

Bernstein Polynomial

Definition

Write $l_{n,m}(x) = \binom{n}{m} x^m (1-x)^{n-m}, \ 0 \le m \le n$. The nth Bernstein polynomials of f(x) in (0, 1) is defined to be

$$B_n(x) = B_n(f;x) = \sum_{m=0}^{n} f(m/n)l_{n,m}(x).$$

 $B_n(x)$ has degree n (at most).

Theorem

Let $f \in C[0,1]$, then $B_n(x) \to f(x)$ uniformly as $n \to \infty$.

The uniform convergence can be extended to any interval [a,b].

10 × 4 □ × 4 □ × 4 □ × 4 □ ×

Bernstein Polynomial; Proof

Lemma

Denote $f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = x^2$.

- $B_n(f_0) = f_0$, $B_n(f_1) = f_1$.
- $B_n(f_2) = (1 \frac{1}{n})f_2 + \frac{1}{n}f_1$, hence $B_n(f_2) \to f_2$ uniformly as $n \to \infty$.
- $\sum_{k=0}^{n} (\frac{k}{n} x)^2 \binom{n}{k} x^k (1 x)^{n-k} = \frac{x(1-x)}{n} \leqslant \frac{1}{4n}$, if $0 \leqslant x \leqslant 1$.
- Given $\delta > 0$ and $0 \le x \le 1$, let F denote the set of k in $\{0, \ldots, n\}$

for which
$$|k/n-x| \ge \delta$$
. Then $\sum_{k \in F} \binom{n}{k} x^k (1-x)^{n-k} \le \frac{1}{4n\delta^2}$.

Proof of Weierstrass's Theorem

Let $f \in C[0,1]$, and $\delta > 0$. There is a $\delta > 0$ such that $|f(x) - f(y)| < \epsilon/2$ whenever $|x-y| < \delta$. We know $l_{n,k} \geqslant 0$ and $\sum_{k=0}^n l_{n,k} = 1$. Then,

$$|f(x) - B_n(f)(x)| = |f(x) - \sum_{k=0}^n \binom{n}{k} f(k/n) x^k (1-x)^{n-k}|$$

$$= |\sum_{k=0}^n \binom{n}{k} (f(x) - f(k/n)) x^k (1-x)^{n-k}|$$

$$\leq \sum_{k=0}^n |f(x) - f(k/n)| \binom{n}{k} x^k (1-x)^{n-k}.$$

Now fix n (to be specified later) and let F denote the set of k in $\{0,\ldots,n\}$ for which $|(k/n)-x|\geqslant \delta$. Then $|f(x)-f(k/n)|<\epsilon/2$ for $k\notin F$, while $|f(x)-f(k/n)|\leqslant 2\|f\|f$ for $k\in F$.

Proof of Weierstrass's Theorem

Thus,

$$\begin{split} &|f(x)-B_n(f)(x)|\\ &\leqslant \frac{\epsilon}{2} \sum_{k \notin F} \left(\begin{array}{c} n \\ k \end{array} \right) x^k (1-x)^{n-k} + 2\|f\| \sum_{k \in F} \left(\begin{array}{c} n \\ k \end{array} \right) x^k (1-x)^{n-k} \\ &< \frac{\epsilon}{2} \cdot 1 + 2\|f\| \cdot \frac{1}{4n\delta^2} \\ &< \epsilon, \text{ provided that } n > \|f\|/\epsilon \delta^2. \end{split}$$

Characterization of Best Approximation

We denote for any $f \in C[a, b]$,

$$E_n(f) = \inf_{p \in \mathbf{P}_n} ||f - p||, \forall n \geqslant 0.$$

Clearly,

$$E_0(f) \geqslant E_1(f) \geqslant \cdots \geqslant E_n(f) \geqslant \cdots$$

by Weierstrass's Theorem

$$\lim_{n \to \infty} E_n(f) = 0, \forall f \in C[a, b].$$

Definition (Best Uniform Approximation)

A best uniform approximation of a given $f \in C[a,b]$ in \mathbf{P}_n is a polynomial $p_n \in \mathbf{P}_n$ that satisfies $\|f-p_n\| = \min_{p \in \mathbf{P}_n} \|f-p\|$.

A best uniform approximation is also called a minimax approximation, because $\max_{a \leqslant x \leqslant b} |f(x) - p_n(x)| = \min_{p \in \mathbf{P}_n} \max_{a \leqslant x \leqslant b} |f(x) - p(x)|$.

Existence of Best Uniform Approximation

Theorem (Existence)

For any $f \in C[a,b]$ and any $n \ge 0$, there exits a best uniform approximation of f in \mathbf{P}_n .

Proof. Let $f \in C[a,b]$ and $n \ge 0$. For any $\mathbf{c} = (c_0,\ldots,c_n) \in \mathbf{R}^{n+1}$, define a $p_c \in \mathbf{P}_n$ as $p_c(x) = \sum_{k=0}^n c_k x^k$. Define $F: \mathbf{R}^{n+1} \to \mathbf{R}$ by

$$F(\mathbf{c}) = \|f - p_c\| = \max_{a \le x \le b} |f(x) - \sum_{k=0}^{n} c_k x^k\|.$$

The assertion of the theorem is equivalent to the existence of $\mathbf{c} \in \mathbf{R}^{n+1}$ s.t.

$$F(\mathbf{c}) = \min_{\mathbf{d} \in \mathbf{R}^{n+1}} F(\mathbf{d}).$$

Let $m=\inf_{\mathbf{d}\in\mathbf{R}^{n+1}}F(\mathbf{d})$. Since $\lim_{\mathbf{d}\to\infty}F(\mathbf{d})=\infty$, there exits R>0 s.t. $F(\mathbf{d})>m$ if $\|\mathbf{d}\|>R$. Hence $m=\inf_{\|\mathbf{d}\|\leqslant R}F(\mathbf{d})$. By continuity of F, this minimum is obtained on $\{\mathbf{d}\in\mathbf{R}^{n+1}:\|\mathbf{d}\|\leqslant R\}$.

Best Uniform Approximation; Alternating Set

Theorem (The Chebyshev Alternation Theorem)

Let $f \in C[a,b]$ and $f \notin \mathbf{P}_n$. Then $p \in \mathbf{P}_n$ is a best uniform approximation if and only if f-p achieves its maximum magnitude at n+2 points with alternating signs, i.e., there exist n+2 points $\{x_1 < x_2 < \cdots < x_{n+2}\}$ in [a,b] such that

$$|f(x_k) - p(x_k)| = ||f - p||, \ k = 1, \dots, n+2,$$
$$(f(x_k) - p(x_k))(f(x_{k+1}) - p(x_{k+1})) < 0, \ k = 1, \dots, n+1.$$

Definition (Change of Sign)

A function $g:(a,b)\to \mathbf{R}$ changes its sign at a point z, if there exists $\epsilon>0$ with $(z-\epsilon,z+\epsilon)\subset (a,b)$ s.t.

- $g(x) \ge (\le)0$ for $x \in (z \epsilon, z)$, and $g(x) \le (\ge)0$ for $x \in (z, z + \epsilon)$.
- both one-side limits g(z-) and g(z+) exist and they are not equal.

Proof of the Chebyshev Alternation Theorem

It is equivalent to proving:

Let $f \in C[a,b]$ but $f \notin \mathbf{P}_n$. Then the zero polynomial $0 \in \mathbf{P}_n$ is a best uniform approximation of f in \mathbf{P}_n if and only if f achieves its maximum magnitude at n+2 points $\{x_1,\ldots,x_{n+2}\}$ in [a,b] with alternating signs.

Proof by contradiction.

Uniqueness of Best Uniform Approximation

Theorem (Uniqueness)

For any $f \in C[a,b]$ and $n \ge 0$, the best approximation of f is unique.

Proof by contradiction. Suppose p,q are both best approximations. Then r=(p+q)/2 is a best approximation. By Chebyshev Alternation Theorem, |f-r| attains maximum at $\{x_1,\ldots,x_{n+2}\}$. Assume $f(x_k)-r(x_k)=E_n(f)$ for some k, which implies

f(x_k) - $(p(x_k) + q(x_k))/2 = E_n(f)$ for some k, which implies $f(x_k) - (p(x_k) + q(x_k))/2 = E_n(f) = \|f - p\| \geqslant f(x_k) - p(x_k)$. Thus $p(x_k) \leqslant q(x_k)$. Similarly, $q(x_k) \geqslant p(x_k)$. So $p(x_k) = q(x_k)$.

Similarly, assume $f(x_j) - r(x_j) = -E_n(f)$ for some j, we can prove $p(x_j) = q(x_j)$.

To summarize, p=q at n+2 points $\{x_1,\ldots,x_{n+2}\}$, hence p=q in \mathbf{P}_n .

Chebyshev Polynomials

Chebyshev polynomials of first kind.

- $T_n(x) = \cos(n\cos^{-1}x), x \in [-1,1]. (\cos n\theta = T_n(\cos \theta))$
- $T_{n+1}(x) = 2xT_n(x) T_{n-1}(x)$. $T_0(x) = 1$, $T_1(x) = x$. $(\cos(n+1)\theta + \cos(n-1)\theta = 2\cos\theta\cos n\theta)$
- Zeros of T_n : $x_k^{(n)} = \cos \theta_k^{(n)}, \ \theta_k^{(n)} = \frac{2k-1}{2n}\pi, \ k = 1, 2, \dots, n.$
- Extrema of T_n : $y_k^{(n)} = \cos \eta_k^{(n)}$, $\eta_k^{(n)} = k \frac{\pi}{n}$, $k = 0, 1, 2, \ldots, n$. So \mathring{T}_n obtains maximum magnitude at n+1 points with alternating signs. That is $x^n (x^n \mathring{T}_n)$ obtains maximum magnitude at n+1 points with alternating signs. By Chebyshev Alternation Theorem, $(x^n \mathring{T}_n)$ is the best uniform approximation of x^n in \mathbf{P}_{n-1} . I.e.,

$$\begin{split} &1/2^{n-1} = \max_{-1 \leqslant x \leqslant 1} |\mathring{T}_n| = \max_{-1 \leqslant x \leqslant 1} |x^n - (x^n - \mathring{T}_n)| \\ &= \min_{p_{n-1} \in \mathbf{P}_{n-1}} \max_{-1 \leqslant x \leqslant 1} |x^n - p_{n-1}| = \min_{\mathring{p}_n \in \mathring{\mathbf{P}}_n} \max_{-1 \leqslant x \leqslant 1} |\mathring{p}_n| \end{split}$$

Properties of Chebyshev Polynomial of First Kind

• Orthogonality with weight $w(x) = 1/\sqrt{1-x^2}$:

$$\int_{-1}^{1} T_k(x) T_l(x) \frac{dx}{\sqrt{1 - x^2}} = \begin{cases} 0, & \text{if } k \neq l \\ \pi, & \text{if } k = l = 0 \\ \frac{\pi}{2}, & \text{if } k = l > 0 \end{cases}$$

 Best uniform approximation (by Chebyshev's Theorem); and best least squares approximation

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} [\mathring{T}_n(x)]^2 dx = \min_{\mathring{p}_n \in \mathring{\mathbf{P}}_n} \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} [\mathring{p}_n(x)]^2 dx = 2^{1-2n} \pi.$$

Differential equation:

$$(1 - x2)T''n(x) - xT'n(x) + n2Tn(x) = 0, n = 0,$$

Rodrigue's formula:

$$T_n(x) = \frac{(-1)^n}{(2n-1)!!} (1-x^2)^{1/2} \frac{d^n}{dx^n} (1-x^2)^{n-1/2}, \ n=0,\dots$$

Orthogonal Polynomials

Recall inner product w.r.t. weight w(x) on [a, b]:

$$(f,g) = \int_{a}^{b} w(x)f(x)g(x)dx.$$

Definition (Orthogonal Polynomials)

A sequence of polynomials $Q_n, n = 0, 1, ...$, are called orthogonal polynomials in $L^2_w(a,b) \equiv \{s: (s,s) < \infty\}$, if

- Q_n is a polynomial of degree n
- $(Q_n, Q_m) = 0 \text{ if } m \neq n.$

Lemma

- If $\{Q_0, \ldots, Q_n\}$ are orthogonal, then they are linearly independent.
- $\{Q_0,\ldots,Q_n\}$ is a basis of \mathbf{P}_n .

Theorem (Least Squares Approximation)

Let $\{Q_0, \ldots, Q_n\}$ be orthogonal polynomials. Then the least squares approximation of a given function f in \mathbf{P}_n is

$$p_n = \sum_{k=0}^n \frac{(f, Q_k)}{(Q_k, Q_k)} Q_k.$$

See previous lectures for proof. Also we know,

Theorem

Three-term Recurrence for Orthogonal Polynomials Let $Q_0(x)=1, Q_1(x)=x-a_1, \ Q_n(x)=(x-a_n)Q_{n-1}(x)-b_nQ_{n-2}(x), \ n=2,\ldots,$ with $a_n=(xQ_{n-1},Q_{n-1})/(Q_{n-1},Q_{n-1}), \ n=1,2,\ldots$ and $b_n=(Q_{n-1},Q_{n-1})/(Q_{n-2},Q_{n-2}), n=2,\ldots,$ then $\{Q_n, \ n=0,\ldots\}$ are orthogonal.

Theorem (Minimization)

Let $\{Q_n, n = 0, ...\}$ be orthogonal polynomials. Suppose $n \ge 1$ and $Q_n \in \mathring{\mathbf{P}}_n$, then Q_n is the unique polynomial in $\mathring{\mathbf{P}}_n$ s.t.,

$$||Q_n|| = \min_{q_n \in \mathring{\mathbf{P}}_n} ||q_n||.$$

Proof. $Q_n(x) = x^n - q_{n-1}(x)$ for some $q_{n-1} \in \mathbf{P}_{n-1}$. Then by orthogonality,

$$0 = (Q_n, q) = (x^n - q_{n-1}(x), q), \forall q \in \mathbf{P}_{n-1}.$$

This implies q_{n-1} is the unique least-squares approximation of x^n in \mathbf{P}_{n-1} , which is equivalent to the assertion of the theorem.

Theorem (Minimization)

Let $\{Q_n, n = 0, ...\}$ be orthogonal polynomials. Suppose $n \ge 1$ and $Q_n \in \mathring{\mathbf{P}}_n$, then Q_n is the unique polynomial in $\mathring{\mathbf{P}}_n$ s.t.,

$$||Q_n|| = \min_{q_n \in \mathring{\mathbf{P}}_n} ||q_n||.$$

Proof. $Q_n(x) = x^n - q_{n-1}(x)$ for some $q_{n-1} \in \mathbf{P}_{n-1}$. Then by orthogonality,

$$0 = (Q_n, q) = (x^n - q_{n-1}(x), q), \forall q \in \mathbf{P}_{n-1}.$$

This implies q_{n-1} is the unique least-squares approximation of x^n in \mathbf{P}_{n-1} , which is equivalent to the assertion of the theorem.

Theorem (Uniqueness of Orthogonal Polynomials)

If $\{P_n\}$ and $\{Q_n\}$ are two systems of orthogonal polynomials in $L^2_w(a,b)$, then for each $n\geqslant 0$, there exists $c_n\in \mathbf{R}$ with $c_n\neq 0$ s.t., $P_n=c_nQ_n$.

Proof. Let α_n and β_n be the leading coefficients of P_n and Q_n , resp. Then $P_n/\alpha_n = Q_n/\beta_n$ by last theorem. DONE.

Theorem (Zeros of Orthogonal Polynomials)

Let $\{Q_n, n=0,\ldots\}$ be orthogonal polynomials in $L^2_w(a,b)$. Then for $n\geqslant 1$, Q_n has exactly n simple roots in (a,b).

Proof by contradiction. We know $\int_a^b w(x)Q_n(x)dx=0$, so Q_n changes sign in (a,b) at least once. Suppose it changes sign $k\leqslant n-1$ times at $x_1<\dots< x_k$. Define $p(x)=(x-x_1)\dots(x-x_k)$, so $(Q_n,q)\neq 0$ since they change signs at same points. This is a contradiction to

 $(Q_n, q) = 0, \forall q \in \mathbf{P}_{n-1}.$

Legendre Polynomials

The Legendre polynomials $P_n \in \mathbf{P}_n, n=0,\ldots$, are the unique orthogonal polynomials in $L^2(-1,1)$ that are normalized by

$$P_n(1) = 1, \forall n \geqslant 0.$$

Rogrigues' formula:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n], \ n = 0, \dots$$

 P_n has degree n. If n is odd (even), P_n is an odd (even) polynomial. E.g.,

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}, P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$$

Properties of Legendre Polynomials

- Orthogonality: $\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ 2/(2n+1) & \text{if } m = n. \end{cases}$
- Recurrence: $P_0(x) = 1, P_1(x) = x$,

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}1(x) = 0, \ n = 1, \dots$$

- For each $n \ge 1$, P_n has n simple roots in (-1,1).
- Least squares approximation: for $n\geqslant 1$, $\mathring{P}_n=\big[2^n(n!)^2/((2n)!)\big]P_n\in \mathbf{P}_n \text{ is the unique polynomial in }\mathring{\mathbf{P}}_n\text{ s.t.}$

$$\|\mathring{P}_n\|_2 = \frac{2^n (n!)^2}{(2n)!} \sqrt{2/(2n+1)} = \min_{\mathring{p}_n \in \mathring{\mathbf{P}}_n} \|\mathring{p}_n\|_2$$

• Differential equation: for $n \ge 0$, $(1-x^2)P_n''(x) - 2xP_n'(x) + n(n+1)P_n(x) = 0.$

Uniform Approximation by Trigonometric Polynomials

The trigonometric polynomials, i.e., functions of the form

$$P(x) = \sum_{n=-N}^{N} c_n e_n(x)$$

with $e_n(x) = exp(i2\pi nx)$ are dense in the space of periodic continuous functions.

Theorem (Approximation of Continuous Periodic Functions)

Let f(x) be a complex-valued continuous function on ${\bf R}$ that is 1-periodic, and let $\epsilon>0$, then there exists a trigonometric polynomial P(x) s.t., $\|f-P\|_{\infty}<\epsilon.$

Proof by Weierstrass's Approximation theorem since we can pass from [0,1] to the circle using transformation $x\mapsto exp(i2\pi x)$.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Expansions in Legendre Polynomials

The polynomials $\{P_n, n=0,\ldots\}$ form a complete set on the interval [-1,1], and any piecewise smooth function may be expanded in a series of the polynomials, i.e.,

$$f(x)=\sum_{n=0}^{\infty}c_nP_n(x), \text{ where } c_n=\frac{2n+1}{2}\int_{-1}^1f(x)P_n(x)dx.$$

The series will converge at each point to the usual mean of the right and left limits.

Chebyshev Polynomials

Discrete Orthogonality Relation

• With zeros of $T_{n+1}(x)$ as nodes: let $n > 0, r, s \le n$, and let $x_j = \cos((j+1/2)\pi/(n+1))$. Then

$$\sum_{j=0}^{n} T_r(x_j) T_s(x_j) = K_r \delta_{rs},$$

where $K_0 = n + 1$ and $K_r = (n + 1)/2$ when $1 \le r \le n$.

• With extrema of $T_n(x)$ as nodes: let $n>0, r,s\leqslant n$, and $x_j=\cos(\pi j/n)$, then

$$\sum_{j=0}^{n} "T_r(x_j)T_s(x_j) = K_r \delta_{rs},$$

where $K_0 = K_n = n$ and $K_r = n/2$ when $1 \le r \le n-1$.

Computing Chebyshev Interpolation Polynomial

An alternative way to compute Lagrange polynomials at Chebyshev nodes: given $P_n \in \mathbf{P}_n$ be the Lagrange polynomial at n+1 zeros of $T_{n+1}(x)$. Since $\{T_k\}_{k=0}^n$ is a basis of \mathbf{P}_n , so

$$P_n(x) = \sum_{k=0}^{n} {'c_k T_k(x)},$$

where by the Discrete Orthogonality Relation, one can find

$$c_k = \frac{2}{n+1} \sum_{j=0}^{n} f(x_j) T_k(x_j), \ x_j = \cos((j+1/2)\pi/(n+1)).$$

Or

$$c_k = \frac{2}{n+1} \sum_{j=0}^{n} f(\cos \theta_j) \cos(k\theta_j), \ \theta_j = (j+1/2)\pi/(n+1),$$

which is a discrete cosine transform of $f(\cos \theta_j)$, $j=0,\ldots,n$.

Expansions in Chebyshev Polynomials

Recall: Given f, Chebyshev interpolation (Lagrange interpolation at Chebyshev nodes) converges when the number of nodes tends to infinity. This leads to a representation of f in terms of an infinite series of Chebyshev polynomials. I.e.,

$$f(x) = \sum_{k=0}^{\infty} c_k T_k(x) = \frac{1}{2}c_0 + \sum_{k=1}^{\infty} c_k T_k(x), -1 \le x \le 1,$$

with

$$c_k = \frac{2}{\pi} \int_{-1}^1 \frac{f(x)T_k(x)}{\sqrt{1-x^2}} dx = \frac{2}{\pi} \int_0^{\pi} f(\cos\theta)\cos(k\theta)d\theta.$$

For computing the coefficients, one needs to compute the above cosine transform.

If using truncated sum $\tau_n(x) = \sum_{k=0}^n {}' c_k T_k(x)$, we see

$$E_n(x) = f(x) - \tau_n(x) = \sum_{k=n+1}^{\infty} c_k T_k(x) \approx c_{n+1} T_{n+1}(x).$$

Convergence of Chebyshev Expansions

Theorem (Functions with Continuous Derivatives)

When a function f has m+1 continuous derivatives on [-1,1], where m is a finite number, then $|f(x)-\tau_n(x)|=O(n^{-m})$ as $n\to\infty$ for all $x\in[-1,1]$.

Theorem

Analytic Functions Inside an Ellipse When a function f on $x \in [-1,1]$ can be extended to a function that is analytic inside an ellipse E_r defined by

$$E_r = \{z : |z + \sqrt{z^2 - 1}| = r\}, r > 1,$$

then $|f(x) - \tau_n(x)| = O(r^{-n})$ as $n \to \infty$ for all $x \in [-1, 1]$.

Evaluation of a Chebyshev Sum; Clenshaw's Method

Assume $c_k, k = 0, \ldots, n$ is given, evaluate $\tau_n(x)$.

Clenshaw's Method for a Chebyshev Sum

Input: $x; c_0, c_1, ..., c_n$.

Output: $\tau_n(x)$.

Step 1: $b_{n+1} = 0; b_n = c_n$

Step 2: DO $r = n - 1, n - 2, \dots, 1$:

$$b_r = 2xb_{r+1} - b_{r+2} + c_r.$$

Step 3:
$$\tau_n(x) = xb_1 - b_2 + c_0$$
.

Remez Method for Best Uniform Approximation

Since the best approximation is unique, we can define the operator that assigns to each continuous function f its best polynomial approximation of fixed degree p^* . This operator, although continuous, is nonlinear, and so we need iterative methods to compute p^* .

Two theorems are essential to Remez method (Evgeny Yakovlevich Remez, 1934). One is Chebyshev Alternation theorem. Another one is the following

Theorem (de La Vallée Poussin)

Let $p \in \mathbf{P}_n$ and $\{y_i\}_{i=0}^{n+1}$ be a set of n+2 distinct points s.t. $sign(f(y_i)-p(y_i))=\lambda\sigma_i$ with $\sigma_i=(-1)^i$ and $\lambda=1$ or -1 fixed. Then for any $q \in \mathbf{P}_n$, $\min_i |f(y_i)-p(y_i)| \leqslant \max_i |f(y_i)-q(y_i)|$, and in particular, $\min_i |f(y_i)-p(y_i)| \leqslant \|f-p^*\| \leqslant \|f-p\|$.

We refer to the n+2 points $A^* \equiv \{x_i\}_{i=0}^{n+1}$ in Chebyshev Alternation Theorem as a "reference".

Remez Method

From last theorem, we know a polynomial $p \in \mathbf{P}_n$ whose error oscillates n+2 times is "near-best" in the sense

$$||f - p|| \le C||f - p^*||, \quad C = \frac{||f - p||}{\min_i |f(y_i) - p(y_i)|} \ge 1.$$

The Remez algorithm constructs a sequence of trial references $\{A_k\}$ and trial polynomials $\{p_k\}$ that satisfy this alternation condition in such a way that $C \to 1$ as $k \to \infty$.

At the kth step the algorithm starts with a trial reference A_k and then computes a polynomial p_k s.t. $f(x_i)-p_k(x_i)=\sigma_i h_k,\ x_i\in A_k,$ where $h_k=f(x_i)-p_k(x_i)$ is the levelled error. Then, a new trial reference A_{k+1} is computed from the extrema of $f-p_k$ in such a way that $|h_{k+1}|\geqslant |h_k|$ is guaranteed. This monotonic increase of the levelled error is the key observation in showing that the algorithm converges to p^* .

From a trial reference to a trial polynomial

Assume $\{\phi_j, j=0,\ldots,n\}$ be a basis of \mathbf{P}_n , so

$$p(x) = \sum_{j=0}^{n} c_j \phi_j(x)$$

Then we have a linear system for c_0, \ldots, c_n and h:

$$\begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n) \\ \phi_0(x_{n+1}) & \phi_1(x_{n+1}) & \cdots & \phi_n(x_{n+1}) \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} f(x_0) + \sigma_0 h \\ f(x_1) + \sigma_1 h \\ \vdots \\ f(x_n) + \sigma_n h \\ f(x_{n+1}) + \sigma_{n+1} h \end{pmatrix}$$

Choice of $\{\phi_i,\}$ is crucial.

- ◆ロ → ◆ ┛ → ◆ 重 ト ◆ 重 ・ 夕 Q (~)

From a trial polynomial to a new trial reference

First Remez Algorithm

Construct A_{k+1} by exchanging a point $x_{old} \in A_k$ with the global extremum x_{new} of $f-p_k$ in such a way that the alternation of signs of the error is maintained. If $x_0 < x_{new} < x_{n+1}$, then x_{old} is the closest point in A_k for which the error has the same sign as at x_{new} . If $x_{new} < x_0$ and the signs of x_{new} and x_0 coincide then x_{old} is x_0 ; if $x_{new} < x_0$ but the signs of x_{new} and x_0 are different, then x_{old} is x_{new} . Similar rules apply if $x_{new} > x_{n+1}$.

Second Remez Algorithm

Constructs the set \tilde{A}_{k+1} of points in A_k and local extrema x_r of $f-p_k$ such that $|(f-p_k)(x_r)|>|h_k|$. Then, for each subset of \tilde{A}_{k+1} of consecutive points with the same sign it keeps only one for which $|f-p_k|$ attains the largest value. From the resulting set, A_{k+1} is obtained by choosing n+2 consecutive points that include the global extremum of $f-p_k$.

47 / 48