Indian Institute of Information Technology - Vadodara

Mid-Semester Examination Autumn 2022-23

B. Tech. (IT & CSE)

EC-201: Digital Logic Design

Time:	2:0 hrs Max. Mark	Max. Marks: 6	
Attem	pt all questions		
9.1	Do the followings (a) $(110110)_2 = (?)_{10}$ (b) For function AB+AB'C+AB'C', find the minimum no. of NAND Gates? (c) Minimize the logical expression (A+B+C) (A+B+C') using Boolean theorems.	2	
	 (d) Identify and remove the redundant term from the logical expression AB+A'C+BC (e) Minimize the function using K-Map f(A,B) = Σm(0,2,3). 	2	
Q. 2	(a) Implement the full subtractor circuit using minimum number of NAND gate only.	5	
	(b) Explain carry look ahead adder with suitable diagram and drive the expression for it.	5	
Q.3	(a) Minimize the function using K-Map $f(A,B,C,D)=\Sigma m(0,1,2,3,5,7,9,10,11,13,15)$	5	
	(b) Take your roll number and write it in the 4-variable SOP function (for eg. If roll no is 201411012 the SOP function will be f(A,B,C,D)=Σm(2, 0, 1, 4, 1, 1, 0, 1, 2)= Σm(0, 1, 2, 4). And also take don't care conditions for 10, 11, 12, 13, 14, 15. Now make its 4- variable K-map. And implement it using basic Gates only.	5	
9/4	(a) Find the output f of the following circuit.	5	

figure. The minimal sum of products form of the output X is?

Q. 5 (a) The below sequential circuit is design using JK flip-flops is initialized with Q2 Q1 Q0 = 000. The state sequence for this circuit for the next 5th clock cycle is?

- (b) Convert the S-R flip flop using J-K flip flop.
- Q. 6 (a) Design a circuit that accept binary numbers between 1 & 5 and generates an output, equals to the numbers of 1's in the input. Use only 2-input logic gates for implementation. (5 Marks)
 - (b) The circuit shown in figure below, two 4-bit parallel-in serial-out shift registers loaded with the data shown are used to feed the data to a full adder. Initially, all the flip-flops are in clear state. After applying two clock pulses, find out the outputs of the full-adder S and CO. (5 Marks)

100 - mi 100 - mi 100 - mi 100 - mi

5

P. T. O