Package 'NRAIA'

February 15, 2013

1 cordary 13, 2013
Version 0.9-8
Date 2009-10-19
Title Data sets from "Nonlinear Regression Analysis and Its Applications"
Maintainer Douglas Bates <bates@stat.wisc.edu></bates@stat.wisc.edu>
Author R port by Douglas Bates <pre><bates@stat.wisc.edu></bates@stat.wisc.edu></pre>
Description Datasets from Bates and Watts (1988) "Nonlinear Regression Analysis and Its Applications" with sample code.
Depends lattice, stats
LazyLoad yes
LazyData yes
License GPL (>= 2)
Repository CRAN
Repository/R-Forge/Project nraia
Repository/R-Forge/Revision 7
Date/Publication 2011-04-09 07:48:41
NeedsCompilation no
R topics documented:
BOD2

BOD2

Lubricant	8
Nitren	9
Nitrite	10
O.xylene	11
Oilshale	12
PCB	13
Pinene	14
Pinene2	14
plotfit	15
Rumford	16
Sacch2	17
Saccharin	17
sPMMA	18
SSRichards	19
Sulfi	20
Tetra	21
	22

Description

BOD2

Index

The BOD2 data frame has 8 rows and 2 columns giving the biochemical oxygen demand versus time in an evaluation of water quality.

Biochemical Oxygen Demand

Format

This data frame contains the following columns:

Time A numeric vector giving the time of the measurement (days).

demand A numeric vector giving the biochemical oxygen demand (mg/l).

Source

Bates and Watts (1998), *Nonlinear Regression Analysis and Its Applications*, Wiley, (Appendix A4.1).

Originally from Marske (1967), M.Sc. Thesis, University of Wisconsin - Madison.

```
str(BOD2)
# simplest form of fitting a first-order model to these data
(fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD2,
    start = c(A = 2.2, lrc = log(0.25))))
coef(fm1)
# using the plinear algorithm
(fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD2,</pre>
```

Chloride 3

Chloride

Chloride ion concentrations

Description

The Chloride data frame has 54 rows and 2 columns representing measurements of the chloride ion concentration in blood cells suspended in a salt solution.

Format

This data frame contains the following columns:

conc A numeric vector giving the chloride ion concentration (%).

Time A numeric vector giving the time of the concentration measurement (min).

Details

There is a noticeable serial correlation in the residuals from a fit of a simple asymptotic regression model to these data, as described in section 3.8 of Bates and Watts (Wiley, 1988). We can either use a modified model with nls, as described in the reference, or model it directly with the gnls function.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A4.1).

Originally from Sredni (1970), Ph.D. Thesis, University of Wisconsin - Madison.

4 Coal

Coal

Coal liquefaction data

Description

The Coal data frame has 23 rows and 20 columns of data on a coal liquefaction process.

Format

This data frame contains the following columns:

Time the time of the observation, measured from the beginning of the run (min).

temp the temperature of the run (K).

pressure the pressure at which the run was performed (MPa).

fe2o3 iron oxide? (Fe2 O3) concentration in the run (wt% maf).

- **tr** transfer rate of the feed (wt% maf).
- **x1** inlet composition of unconverted coal (wt %).
- x2 inlet composition of thermal residuals (wt %).
- x3 inlet composition of C4-822K (wt %).
- x4 inlet composition of C1-C3 gases (wt %).
- x5 inlet composition of byproduct gases (wt %).
- x6 inlet composition of water (wt %).
- x7 inlet composition of hydrogen (wt %).
- x8 inlet composition of Coal (wt %).
- y1 outlet composition of unconverted coal (wt %).
- y2 outlet composition of thermal residuals (wt %).
- y3 outlet composition of C4-822K (wt %).
- y4 outlet composition of C1-C3 gases (wt %).
- y5 outlet composition of byproduct gases (wt %).
- y6 outlet composition of water (wt %).
- y7 outlet composition of hydrogen (wt %).

Ethyl 5

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A4.7).

Originally from Lythgoe (1986), M.Sc. Thesis, Queen's University at Kingston.

Examples

```
str(Coal)
x8s <- with(Coal, equal.count(x8))
xyplot( y1 ~ x1 | x8s * Time, Coal, type = c("g","p"))
xyplot( y2 ~ x2 | x8s * Time, Coal, type = c("g","p"))
xyplot( y3 ~ x3 | x8s * Time, Coal, type = c("g","p"))
xyplot( y4 ~ x4 | x8s * Time, Coal, type = c("g","p"))
xyplot( y5 ~ x5 | x8s * Time, Coal, type = c("g","p"))
xyplot( y6 ~ x6 | x8s * Time, Coal, type = c("g","p"))
xyplot( y7 ~ x7 | x8s * Time, Coal, type = c("g","p"))</pre>
```

Ethyl

Ethyl Acrylate data

Description

The Ethyl data frame has 12 rows and 3 columns of ethyl acrylate concentrations in exhalate of a rat.

Format

This data frame contains the following columns:

start start of collection period, measured from the start of the experiment (hr).

length duration of the collection period (hr).

CO2 exhaled radioactively tagged CO₂ (g).

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.10).

Originally from Watts, deBethizy, and Stiratelli (1986), Technical Report, Rohm and Haas Co.

```
str(Ethyl)
xyplot(cumsum(CO2) ~ I(start + length), # compare to Figure 3.10, page 97
   data = Ethyl, type = c("g","S"), scales=list(x=list(log =2)),
   xlab = "Time (hr)",
   ylab = expression(plain("Normalized cumulative CO")[2]*(g)))
```

6 Isom

Isom

Isomerization data

Description

The Isom data frame has 24 rows and 4 columns from an isomerization experiment.

Format

This data frame contains the following columns:

```
hyd partial pressure of hydrogen (psia).
```

n.pent partial pressure of n-pentane (psia).

iso.pen partial pressure of isopentane (psia).

rate reaction rate for isomerization of n-pentane to isopentane (1/hr).

Details

These are data on the reaction rate of catalytic isomerization of n-pentane to isopentane.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

Originally from Carr (1960), Industrial and Engineering Chemistry, 52, pp. 391-396.

```
str(Isom)
splom(Isom, main = "Isom data")
xyplot(rate ~ hyd, data = Isom, type = c("g", "p"),
     xlab = "Hydrogen partial pressure (psia)",
    ylab = expression(plain("Reaction rate (hr")^{-1}*plain(")")))
xyplot(rate ~ n.pent, data = Isom, type = c("g", "p"),
     xlab = "n-pentane partial pressure (psia)"
    ylab = expression(plain("Reaction rate (hr")^{-1}*plain(")")))
xyplot(rate ~ iso.pen, data = Isom, type = c("g", "p"),
     xlab = "iso-pentane partial pressure (psia)",
    ylab = expression(plain("Reaction rate (hr")^{-1}*plain(")")))
## Note - the model is mis-stated on page 272, x2 and x3 are reversed
fm1 <-
nls(rate ~ b3*(n.pent - iso.pen/1.632)/(1+b2*hyd+b3*n.pent+b4*iso.pen),
        data = Isom, start = c(b2 = 0.1, b3 = 0.1, b4 = 0.1),
        algorithm = "plinear", trace = TRUE)
                   # compare to Table 2.2, page 56
summary(fm1)
```

Leaves 7

Leaves

Growth of Leaves

Description

The Leaves data frame has 15 rows and 2 columns of leaf length over time.

Format

This data frame contains the following columns:

Time time from initial emergence (days).

Length leaf length (cm).

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A4.5).

Originally from Heyes and Brown (1956) in F.L. Milthorpe (ed), *The Growth of Leaves*, London: Butterworth.

```
options(show.signif.stars = FALSE)
## first fit a logistic model
fm1 <- nls(Length ~ SSlogis(Time, Asym, xmid, scal), data = Leaves)</pre>
summary(fm1)
plotfit(fm1, xlab = "Time from initial emergence (days)",
        ylab = "Leaf length (cm)", main = "Logistic growth model")
## compare with Richards growth model
fm2 <- nls(Length ~ Asym/(1+exp(-(Time - xmid)/scal))^exp(-lpow), Leaves,</pre>
           c(coef(fm1), c(lpow = 0)))
summary(fm2)
anova(fm1, fm2)
plotfit(fm2, xlab = "Time from initial emergence (days)",
        ylab = "Leaf length (cm)", main = "Richards growth model")
pm1 <- profile(fm1)</pre>
plot(pm1, aspect = 'xy', layout = c(3,1))
plot(pm1, absVal = FALSE, aspect = 'xy', layout = c(3,1))
pm2 <- profile(fm2, alpha = 0.05)
plot(pm2, aspect = 'xy', layout = c(4,1))
plot(pm2, absVal = FALSE, aspect = 'xy', layout = c(4,1))
```

8 Lubricant

Lipo

Lipoprotein concentrations

Description

The Lipo data frame has 12 rows and 2 columns of lipoprotein concentrations over time.

Format

This data frame contains the following columns:

```
time a numeric vector giving the time of the concentration measurement (hr) conc a numeric vector of concentrations.
```

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A4.1).

Examples

Lubricant

Viscosity of lubricants

Description

The Lubricant data frame has 53 rows and 3 columns on the viscosity of a lubricant at different pressures and temperatures.

Format

This data frame contains the following columns:

```
pressure a numeric vector of pressures (stokes).viscos a numeric vector of observed log(kinematic viscosity).tempC a numeric vector of temperatures (degrees Celsius).
```

Nitren 9

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

Examples

Nitren

Nitrendipene data

Description

The Nitren data frame has 26 rows and 5 columns from an experiment in cardiology.

Format

This data frame contains the following columns:

log.NIF a numeric vector giving the log of the NIF concentration

tiss1 a numeric vector giving the reaction in tissue 1.

tiss2 a numeric vector giving the reaction in tissue 2.

tiss3 a a numeric vector giving the reaction in tissue 3.

tiss4 a numeric vector giving the reaction in tissue 4.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

Nitrite Nitrite

```
fm2 <- nls(tiss2 ~ SSfpl(log.NIF, A, B, xmid, scal), Nitren)</pre>
fm2
fm3 <- nls(tiss3 ~ SSfpl(log.NIF, A, B, xmid, scal), Nitren)</pre>
fm4 <- nls(tiss4 ~ SSfpl(log.NIF, A, B, xmid, scal), Nitren)</pre>
usr <- par("usr")</pre>
xx \leftarrow seq(usr[1], usr[2], len = 50)
lines(xx, predict(fm1, list(log.NIF = xx)), col = 1, lty = 2)
lines(xx, predict(fm2, list(log.NIF = xx)), col = 2, lty = 2)
lines(xx, predict(fm3, list(log.NIF = xx)), col = 3, lty = 2)
lines(xx, predict(fm4, list(log.NIF = xx)), col = 4, lty = 2)
title(sub = deparse(fm1$call$formula))
## replacing the data at NIF concentration of zero by a very small value
log.NIF <- Nitren[, 1]</pre>
log.NIF[ is.na(log.NIF) ] <- -18</pre>
Nitren[, 1] <- log.NIF</pre>
matplot(Nitren[, 1], Nitren[, -1], las = 1,
    xlab = "log(NIF concentration)",
    ylab = "reaction level",
    main = paste("Nitren data and fitted curves",
       "- zero concentration recoded as -18"))
fm1 <- nls(tiss1 ~ SSfpl(log.NIF, A, B, xmid, scal), Nitren)</pre>
fm1
fm2 <- nls(tiss2 ~ SSfpl(log.NIF, A, B, xmid, scal), Nitren)</pre>
fm2
fm3 <- nls(tiss3 ~ SSfpl(log.NIF, A, B, xmid, scal), Nitren)</pre>
fm3
fm4 <- nls(tiss4 ~ SSfpl(log.NIF, A, B, xmid, scal), Nitren)</pre>
fm4
usr <- par("usr")</pre>
xx \leftarrow seq(usr[1], usr[2], len = 50)
lines(xx, predict(fm1, list(log.NIF = xx)), col = 1, lty = 2)
lines(xx, predict(fm2, list(log.NIF = xx)), col = 2, lty = 2)
lines(xx, predict(fm3, list(log.NIF = xx)), col = 3, lty = 2)
lines(xx, predict(fm4, list(log.NIF = xx)), col = 4, lty = 2)
title(sub = deparse(fm1$call$formula))
```

Nitrite

Nitrite utilization by bean leaves

Description

The Nitrite data frame has 48 rows and 3 columns giving nitrite utilization by bean leaves under different light conditions on two different days.

Format

This data frame contains the following columns:

O.xylene 11

```
light a numeric vector of light intensities.utilization a numeric vector of nitrite utilizations.day a factor with levels 1 2
```

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.10).

Examples

0.xylene

O-xylene reaction data

Description

The 0. xylene data frame has 57 rows and 4 columns of data on a chemical engineering experiment.

Format

This data frame contains the following columns:

```
oxygen a numeric vector giving the oxygen partial pressure.o.xyl a numeric vector giving the O.xylene partial pressure.
```

temp a numeric vector giving the temperature (Kelvins).

rate a numeric vector giving the rate of reaction.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.6).

12 Oilshale

```
ylab = "Reaction rate")
xyplot(rate ~ o.xyl | Oxygen, O.xylene, groups = tempf,
    type = c("g", "p"), aspect = 2.5,
    xlab = "O.xylene partial pressure",
    ylab = "Reaction rate",
    auto.key = list(space = "right"))
xyplot(rate ~ oxygen | O.xyl, O.xylene, groups = tempf,
    type = c("g", "p"), aspect = 2.5,
    xlab = "Oxygen partial pressure",
    ylab = "Reaction rate",
    auto.key = list(space = "right"))
```

Oilshale

Pyrolysis of Oil Shale

Description

The Oilshale data frame has 64 rows and 4 columns from an experiment on the pyrolysis of oil shale.

Format

This data frame contains the following columns:

time a numeric vector giving the time since the beginning of the experiment.

bitumen a numeric vector giving the proportion of bitumen.

oil a numeric vector giving the proportion of oil.

temp a numeric vector giving the temperature of the run.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

```
str(Oilshale)
```

PCB 13

PCB concentrations in Lake Cayuga fish

Description

The PCB data frame has 28 rows and 2 columns giving the concentration of polychlorinated biphenyls (PCB's) in fish caught in Lake Cayuga in northern New York state. The fish had been tagged as yearlings so their ages could be accurately determined.

Format

This data frame contains the following columns:

age a numeric vector giving the age of the fish in years.

conc a numeric vector giving the concentration of PCB's in the fish.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.1).

Examples

```
str(PCB)
# compare to Figure 1.1 (p. xxx)
xyplot(conc ~ age, PCB, aspect = 'xy',
     type = c("g", "p"), xlab = "Age of fish (yr)",
     ylab = "PCB concentration")
# compare to Figure 1.2 (p. xxx)
xyplot(conc ~ age, PCB, scales = list(y = list(log = 2)),
     aspect = 'xy', type = c("g", "p", "smooth"),
     xlab = "Age of fish (yr)",
     ylab = "PCB concentration")
# linear model in cube root of age
summary(fm1 <- lm(log(conc) \sim I(age^(1/3)), data = PCB))
xyplot(log(conc) ~ I(age^(1/3)), data = PCB, aspect = 'xy';
     xlab = "Cube root of age (yr)", type = c("g", "p", "r"),
     ylab = "log(PCB concentration)"
     main = "Transformed PCB data and fitted line",
     sub = deparse(fm1$call$formula))
# diagnostic plots
opar \leftarrow par(mfrow = c(2, 2))
plot(fm1, which = 1:4, las = 1)
par(opar)
```

PCB

Pinene2

Pinene

Alpha-pinene and by-products

Description

The Pinene data frame has 8 rows and 6 columns giving the proportion of alpha-pinene and four of its by-products over time.

Format

This data frame contains the following columns:

```
time a numeric vector giving the time at which the observation is made. (hours)
a.pin a numeric vector giving the alpha-pinene proportion. (%)
dipen a numeric vector giving the dipene proportion. (%)
alloo a numeric vector giving the allo-ocimene proportion. (%)
pyron a numeric vector giving the pyronene proportion. (%)
dimer a numeric vector giving the dimer proportion. (%)
```

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.6).

Examples

```
str(Pinene)
xyplot(a.pin + dipen + alloo + pyron + dimer ~ time, Pinene,
  type = c("b", "g"), aspect = 'xy',
  xlab = "Time (hr)", ylab = "Proportion (%)",
  auto.key = list(space = "right", lines = TRUE))
```

Pinene2

Alpha-pinene and by-products

Description

The Pinene data frame has 8 rows and 6 columns giving the proportion of alpha-pinene and four of its by-products over time from a second experiment.

plotfit 15

Format

This data frame contains the following columns:

```
time a numeric vector giving the time at which the observation is made. (hr)
a.pin a numeric vector giving the alpha-pinene proportion. (%)
dipen a numeric vector giving the dipene proportion. (%)
alloo a numeric vector giving the allo-ocimene proportion. (%)
pyron a numeric vector giving the pyronene proportion. (%)
dimer a numeric vector giving the dimer proportion. (%)
```

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.6).

See Also

Pinene

Examples

```
str(Pinene2)
xyplot(a.pin + dipen + alloo + pyron + dimer ~ time, Pinene2,
  type = c("b", "g"), aspect = 'xy',
  xlab = "Time (hr)", ylab = "Proportion (%)",
  auto.key = list(space = "right", lines = TRUE))
```

plotfit

Plot x-y data and a fitted model

Description

Extract the original data from a fitted model and plot these data along with a smooth curve of the fitted model function. The fitted model must be for one covariate only.

Usage

```
plotfit(fm, ...)
## S3 method for class 'nls'
plotfit(fm, ...)
```

Arguments

```
fm A fitted model object, typically a nls fitted model.
... Arguments to be passed to xyplot or panel.curve.
```

16 Rumford

Value

A lattice object.

See Also

```
xyplot, panel.curve
```

Examples

Rumford

Count Rumford's cooling data

Description

The Rumford data frame has 13 rows and 2 columns from an experiment by Count Rumford on the rate of cooling.

Format

This data frame contains the following columns:

time a numeric vector giving the time since the beginning of the experiment (hr).

temp a numeric vector giving the temperature (degrees Fahrenheit) of the cannon.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

Sacch2

Sacch2

Pharmacokinetics of saccharin

Description

The Sacch2 data frame has 10 rows and 2 columns from an experiment on the pharmacokinetics of saccharin.

Format

This data frame contains the following columns:

time a numeric vector giving the time since drug administration (min).

conc a numeric vector giving the observed concentration of saccharin.

Source

Bates and Watts (1998), *Nonlinear Regression Analysis and Its Applications*, Wiley (Appendix A1.5).

Examples

Saccharin

Elimination of saccharin

Description

The Saccharin data frame has 9 rows and 3 columns from an experiment on the elimination of saccharin.

18 sPMMA

Format

This data frame contains the following columns:

```
start start of collection period, measured from the start of the experiment (hr). length duration of the collection period (hr).
```

sacch exhaled radioactively tagged CO2 (g).

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

Examples

```
xyplot(cumsum(sacch) ~ I(start + length), Saccharin,
    type = c("g", "S"), scales = list(x = list(log = 2)),
    xlab = "Time (hr)", ylab = "Cumulative saccharin")
```

sPMMA

syndiotactic poly-methyl-methacrylate

Description

The sPMMA data frame has 23 rows and 3 columns from an experiment on the dielectric response of a sample of syndiotactic poly-methyl-methacrylate (sPMMA).

Format

This data frame contains the following columns:

freq a numeric vector giving the frequency of the driving signal (Hz).

real a numeric vector giving the real component of the dielectric response.

imag a numeric vector giving the imaginary component of the dielectric response.

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

```
str(sPMMA)
xyplot(imag ~ real, data = sPMMA, xlab = "Real component",
    ylab = "Imaginary component", type = c("p", "g"))
xyplot(real + imag ~ freq, data = sPMMA, xlab = "Frequency (Hz)",
    ylab = "Component of dielectric response",
    main = "sPMMA data", type = c("g", "p"), aspect = 'xy',
    auto.key = list(space = "right"))
```

SSRichards 19

SSRichards	Richards Growth Model	

Description

This selfStart model evaluates the Richards growth model function and its gradient. It has an initial attribute that creates initial estimates of the parameters Asym, xmid, scal and lpow.

Usage

```
SSRichards(input, Asym, xmid, scal, lpow)
```

Arguments

input	a numeric vector of values at which to evaluate the model.
Asym	a numeric parameter representing the asymptote.
xmid	a numeric parameter representing the x value at the inflection point of the curve. The value of SSlogis will be Asym/2 at xmid.
scal	a numeric scale parameter on the input axis.
lpow	the natural logarithm of the inverse of the power to which the denominator is raised.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*(1+exp((xmid-input)/scal))^(-exp(If all of the arguments Asym, xmid, scal and lpow are names of objects, the gradient matrix with respect to these names is attached as an attribute named gradient.

See Also

```
nls, selfStart
```

```
summary(fm1 <- nls(Length ~ SSRichards(Time, Asym, xmid, scal, lpow), Leaves))\\
```

20 Sulfi

Sulfi

Pharmacokinetics of sulfisoxazole

Description

The Sulfi data frame has 12 rows and 2 columns from an experiment on the pharmacokinetics of sulfisoxazole.

Format

This data frame contains the following columns:

time a numeric vector giving the time since drug administration (min).

conc a numeric vector giving the observed concentration of sulfisoxazole (μ g/ml).

Source

Bates and Watts (1998), *Nonlinear Regression Analysis and Its Applications*, Wiley (Appendix A1.5).

```
plot(conc ~ time, data = Sulfi, las = 1,
     xlab = "Time since drug administration (min)",
     ylab = expression(plain("Sulfisoxazole concentration (")
               *mu*plain("g/ml)")),
     main = "Sulfisoxazole data and fitted curve")
fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),</pre>
    data = Sulfi)
summary(fm1)
usr <- par("usr")
xx \leftarrow seq(usr[1], usr[2], len = 50)
lines(xx, predict(fm1, list(time = xx)))
plot(conc ~ time, data = Sulfi, las = 1, log = "y",
     xlab = "Time since drug administration (min)",
     ylab = expression(plain("Sulfisoxazole concentration (")
               *mu*plain("g/ml)")),
     main = "Sulfisoxazole data (log scale)")
lines(xx, predict(fm1, list(time = xx)))
```

Tetra 21

Tetra

Tetracycline concentrations

Description

The Tetra data frame has 9 rows and 2 columns from an experiment on the pharmacokinetics of tetracycline.

Format

This data frame contains the following columns:

```
time a numeric vector of time since drug administration (hr). conc a numeric vector of tetracycline concentrations.
```

Source

Bates and Watts (1998), Nonlinear Regression Analysis and Its Applications, Wiley (Appendix A1.5).

Index

*Topic datasets Leaves, 7	
BOD2, 2 Lipo, 8	
Chloride, 3 Lubrican	t, <mark>8</mark>
Coal, 4	
Ethyl, 5 Nitren, 9	
Isom, 6 Nitrite,	10
Leaves, 7 nls, 19	
Lipo, 8	4.4
Lubricant, 8 0.xylene,	
Nitren, 9 Oilshale,	, 12
Nitrite, 10	muo 15 16
() vylana II	rve, <i>15</i> , <i>16</i>
Olishale, 12 PCB, 13	1 15
PCB, 13 Pinene, 14	
Pinene, 14	
Pinene2, 14 plotfit,	15
Rumford, 16 Rumford,	16
Sacch2, 17	10
Saccharin, 17 Sacch2, 1	7
sPMMA, 18 Sacchari	
Sulfi, 20 selfStar	
Tetra, 21 sPMMA, 18	•
*Topic hplot SSRichard	ds, 19
plotfit, 15 Sulfi, 20	
*Topic models	
plotfit, 15 Tetra, 21	
SSRichards, 19	
*Topic nonlinear xyplot, 1.	5, 16
plotfit, 15	
*Topic regression	
plotfit, 15	
BOD2, 2	
Chloride, 3	
Coal, 4	
Ethyl,5	
Luiy I, J	