Mathematik II für Informatik 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Thomas Streicher **SoSe 2018**

Alexander Dietz, Anton Freund Lucas Schöbel-Kröhn

Übung: 19./20. April 2018 Abgabe: 26./27. April 2018

Gruppenübung

Aufgabe G1 (Landausymbole)

Zeigen Sie:

- (a) Für $a_n := 2 \cdot n^2 + 42 \cdot n$ hat man $a_n \in O(n^2)$.
- (b) Man hat $\sqrt{n} \in o(n)$.
- (c) Aus $a_n \in o(b_n)$ folgt $a_n \in O(b_n)$.

Aufgabe G2 (Allgemeines Verständnis von Reihen)

Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind. Überlegen Sie sich eine kurze Begründung für Ihre Entscheidungen.

- (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und sei $(s_n)_{n\in\mathbb{N}}$ die Folge der Partialsummen der Reihe $\sum_{n=0}^{\infty} a_n$.
 - \square Wenn (a_n) eine Nullfolge ist, so konvergiert (s_n) .
 - \square Wenn (s_n) konvergiert, so ist (a_n) eine Nullfolge.

 - Wenn (a_n) eine Nullfolge ist, so ist (s_n) eine Nullfolge. $\sum_{n=0}^{\infty} a_n$ konvergiert genau dann, wenn $\sum_{n=j}^{\infty} a_n$ für beliebiges $j \in \mathbb{N}$ konvergiert.
- (b) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge positiver reeller Zahlen.

 Wenn die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert, dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} a_n^2$.

 Wenn die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert, dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} \frac{1}{a_n}$.

 Wenn die Reihe $\sum_{n=0}^{\infty} a_n^2$ konvergiert, dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$.
- (c) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge.

 - Existiert der Grenzwert $\lim_{n\to\infty} n \cdot \sqrt[n]{|a_n|}$, so konvergiert die Reihe $\sum_{n=0}^{\infty} a_n$ absolut. Wenn die Folge $(\sqrt[n]{|a_n|})_{n\in\mathbb{N}}$ konvergiert, so konvergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$. Gilt für alle $n\geq 1$ die Ungleichung $\left|\frac{a_{n+1}}{a_n}\right|<1$, so konvergiert die Reihe $\sum_{n=0}^{\infty} a_n$ absolut.

Aufgabe G3 (Konvergenz von Reihen — Teil 1)

Entscheiden Sie, ob die folgenden Reihen konvergieren, absolut konvergieren oder divergieren. Begründen Sie Ihre Entscheidung.

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{1+2^n}$$

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{1+2^n}$$
 (b) $\sum_{n=0}^{\infty} i^n$ (mit $i^2 = -1$) (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n + (-1)^n}$ (d) $\sum_{n=0}^{\infty} \frac{1}{(3n)!}$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{4n + (-1)^n}$$

$$(d) \sum_{n=0}^{\infty} \frac{1}{(3n)!}$$

Hausübung

Aufgabe H1 (Konvergenz von Reihen — Teil 2)

(12 Punkte)

1

Entscheiden Sie, ob die folgenden Reihen konvergieren, absolut konvergieren oder divergieren. Beweisen Sie Ihre Entscheidung.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2n-1}{\sqrt{2}^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 + 7}{5n^2 + 1}$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 (b) $\sum_{n=0}^{\infty} \frac{2n-1}{\sqrt{2}^n}$ (c) $\sum_{n=0}^{\infty} \frac{n^2+7}{5n^2+1}$ (d) $\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)}$

Aufgabe H2 (Konvergenz von Reihen — Teil 3)

(12 Punkte)

Bestimmen Sie, für welche $x \in \mathbb{R}$ die folgenden Reihen konvergieren, absolut konvergieren oder divergieren.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{\left(x - \frac{1}{n}\right)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{xn}{\sqrt{n} + x}$$

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt[3]{n} \sqrt[3]{n+1}}$$

Um Null als Nenner zu vermeiden kann man in (a) und (b) jeweils $x \notin (0, \frac{1}{2})$ bzw. $x \ge 0$ annehmen.

(12 Punkte)

- **Aufgabe H3** (Exponentialfunktion und Werte von Reihen)
 (a) Zeigen Sie $e^x \le \frac{1}{1-x}$ für alle $x \in [0,1)$. (Tipp: Verwenden Sie die geometrische Reihe.)
 - (b) Zeigen Sie $1 + x \le e^x$ für alle $x \ge 0$.
 - (c) Bestimmen Sie den Wert der folgenden Reihen.

$$i. \sum_{n=0}^{\infty} \frac{5 \cdot 3^n}{4^{n+2}}$$

ii.
$$\sum_{k=2}^{\infty} \frac{2}{k^2 - 1}$$

(Tipp zu ii: Finden Sie eine Folge (a_k) mit $a_{k-1} - a_{k+1} = \frac{2}{k^2 - 1}$.)