§6 Обобщённые функции

Определение 6.1. Пусть $G \subseteq \mathbb{R}^n$ – область. Линейное отображение $f: D(G) \to \mathbb{R}$ назовём *обобщённой функцией* (или *распределением*) из D'(G), если $\phi_n \xrightarrow[n \to \infty]{} \phi \Rightarrow f(\phi_n) \xrightarrow[n \to \infty]{} f(\phi)$. (61)

Обозначение. Далее везде пишем (f, φ) вместо $f(\varphi)$.

Лемма 6.2. Свойство (61) равносильно тому, что

$$\varphi_n \xrightarrow{D(G)} 0 \Rightarrow f(\varphi_n) \xrightarrow{n \to \infty} 0.$$
(62)

Доказательство. Ясно, что (61) \Rightarrow (62). Обратно, если $\varphi_n \xrightarrow{D(G)} \varphi$, то пусть $\psi_n = \varphi_n - \varphi$. По (62) $f(\psi_n) \xrightarrow[n \to \infty]{} 0$. Значит, $f(\varphi_n) \xrightarrow[n \to \infty]{} f(\varphi)$.

Обозначение. Множество всех линейных отображений (функционалов) $f: D(G) \to \mathbb{R}$ со свойством (61) (или (62)) обозначается D'(G).

Лемма 6.3. D'(G) – векторное пространство.

Доказательство – упражнение.

Определение 6.4. Функция $f:G\to\mathbb{R}$ называется локально интегрируемой в области $G\subset\mathbb{R}^n$ (пишут $f\in L^{loc}(G)$), если для любого компакта $K\subset G$ существует интеграл $\int\limits_K |f(x)|dx$.

Теорема 6.5. Пусть $f \in L^{loc}(G)$. Тогда отображение $f_r:D(G) \to \mathbb{R}$, заданное правилом $\Big(f_r, \varphi\Big) = \int\limits_G f(x) \cdot \varphi(x) dx$ (63) является обобщённой функцией.

Доказательство. Линейность f_r очевидна. Докажем свойство (62). Пусть $\phi_n \xrightarrow[n \to \infty]{D(G)} 0$. Из определения 5.12 при $\alpha = 0$ следует, что $\max_{x \in K} \left| \phi_n(x) \right| \xrightarrow[n \to \infty]{} 0$, где компакт $K \subset G$ содержит носители всех функций ϕ_n . Поэтому,

$$\left| \left(f_r, \varphi_n \right) \right| = \left| \int_G f(x) \cdot \varphi_n(x) dx \right| \le \int_K \left| f(x) \right| \cdot \left| \varphi_n(x) \right| dx \le \max_{x \in K} \left| \varphi_n(x) \right| \cdot \int_K \left| f(x) \right| dx \xrightarrow[n \to \infty]{} 0. \blacksquare$$

Определение 6.6. Пусть $f \in L^{loc}(G)$. Тогда обобщённая функция, заданная формулой (63) называется *регулярной* обобщённой функцией.

Теорема 6.7. (дю Буа-Реймона) Пусть $G \subseteq \mathbb{R}^n$, $f \in L^{loc}(G)$. Тогда $(\forall \phi \in D(G) \ (f_r, \phi) = 0) \Leftrightarrow (f(x) = 0$ для почти всех $x \in G$).

Доказательство. \Leftarrow). Если f равна 0 почти везде в G, то, независимо от ϕ , произведение $f \cdot \phi$ также равно 0 почти везде в G. Поэтому $\left(f_r, \phi \right) = \int\limits_G f(x) \cdot \phi(x) dx = 0 \;\; \text{для любой основной функции } \phi \in D(G).$

 \Rightarrow). Произвольную область $G \subseteq \mathbb{R}^n$ можно представить как счётное объединение шаров:

$$G = \bigcup \{B(x_k, r_k) : k \in \mathbb{N}\}$$

Пусть H – любой из таких шаров. Достаточно доказать, что f=0 почти везде в H. Это, в свою очередь, последует из равенства $\int_H |f(x)| dx = 0$. Докажем

его.
$$\int\limits_{H} \big|f(x)\big|dx = \int\limits_{H} \mathrm{sign}\big(f(x)\big)\cdot f(x)dx \tag{*}$$
 Поскольку $f\in L^{loc}\big(G\big), f$ – измеримая функция. H – область, следователь-

Поскольку $f \in L^{loc}(G)$, f – измеримая функция. H – область, следовательно – измеримое множество. Значит, $\operatorname{sign}(f)$ – измеримая, ограниченная, а потому интегрируемая функция. Итак, $\operatorname{sign}(f) \in L_1(H)$. По теореме 5.10, к функции $\operatorname{sign}(f)$ сходится в пространстве $L_1(H)$ некоторая последовательность $(\phi_n)_{n\in\mathbb{N}} \subset D(H)$. Для любого номера $k = \operatorname{sign}(f) = \phi_k + \left(\operatorname{sign}(f) - \phi_k\right)$. Поэтому, интеграл (*) равен сумме двух интегралов

Поэтому, интеграл (*) равен сумме двух интегралов
$$\int\limits_{H} f(x) \cdot \varphi_k(x) dx + \int\limits_{H} \left(\text{sign} \big(f(x) \big) - \varphi_k(x) \big) \cdot f(x) dx \,, \tag{**} \right)$$

из которых первый равен 0 при любом k по условию, а второй стремится к 0 при $k \to \infty$. Действительно,

 $\left(\operatorname{sign}(f) - \varphi_k\right) \xrightarrow{L_1(H)} 0 \Rightarrow \left(\operatorname{sign}(f) - \varphi_k\right) \xrightarrow{\mu} 0 \Rightarrow$, поскольку мера Лебега $\mu(H) < \infty$, $\left(\operatorname{sign}(f) - \varphi_k\right) \xrightarrow{\Pi.B.} 0$. Так как \overline{H} – компакт, то $\int_{\overline{H}} |f(x)| dx = \int_{H} |f(x)| dx < +\infty$. Кроме того, из формулы (58) следует, что $|\operatorname{sign}(f) - \varphi_k| \le 1 + |\varphi_k| \le 1 + 2$. Таким образом, выполнены условия теоремы о предельном переходе под знаком интеграла для второго интеграла в (**).

Итак,
$$\int_{H} |f(x)| dx = 0$$
, что завершает доказательство.

Справка. Дю Буа-Реймон Пауль, 1831 – 1889, Германия.

Определение 6.8. Скажем, что обобщённая функция $f \in D'(G)$ равна нулю в области $G \subseteq \mathbb{R}^n$, если всегда $(f, \varphi) = 0$, когда $\sup \varphi \subset G$.

Теорема 6.9. Пусть $\{G_i: i\in I\}$ — семейство областей в \mathbb{R}^n , $G=\cup\{G_i: i\in I\}$. Если $f\in D'(\mathbb{R}^n)$ равна 0 во всех областях G_i , то f равна 0 и в G.

Доказательство. Возьмём произвольную функцию $\varphi \in D(\mathbb{R}^n)$ с носителем $\sup \varphi \subset G$. Значит, $\left\{G_i : i \in I\right\}$ — открытое покрытие компакта $\sup \varphi$, и из него можно извлечь конечное подпокрытие $\left\{G_{i_1}, \dots G_{i_m}\right\}$. Далее, по теореме 5.6 найдутся $\left(\varphi_1, \dots \varphi_m\right) \subset D(\mathbb{R}^n)$ с носителями $\sup \varphi_k \subset G_{i_k}$, такие, что при всех $x \in \sup \varphi$ выполнено $\varphi_1(x) + \dots + \varphi_m(x) = 1$. Поэтому при $x \in \sup \varphi$ имеем $\varphi(x) = \varphi(x) \cdot 1 = \varphi(x) \cdot \varphi_1(x) + \dots + \varphi(x) \cdot \varphi_m(x)$, причём $\sup \varphi(\varphi \cdot \varphi_k) \subset G_{i_k}$. Значит, $(f, \varphi) = \left(f, \varphi \cdot (\varphi_1 + \dots + \varphi_m)\right) = \left(f, \varphi \cdot \varphi_1\right) + \dots + \left(f, \varphi \cdot \varphi_m\right) = 0$.

Определение 6.10. *Носителем обобщённой функции* $f \in D'(\mathbb{R}^n)$ назовём множество $\mathrm{supp}\, f = \mathbb{R}^n \setminus \bigl(\bigcup \bigl\{ G \colon f \ \mathrm{paвно} \ 0 \ \mathrm{B} \ G \bigr\} \bigr).$

Определение 6.11. Всякая не регулярная обобщённая функция называется *сингулярной*.

Примеры сингулярных обобщённых функций

6.12. Дельта-функция Дирака $\delta(x)$: $D(\mathbb{R}^n) \to \mathbb{R}$, $(\delta(x), \varphi(x)) = \varphi(0)$. Доказательства линейности, непрерывности (в смысле (62)), сингулярности этого отображения, а также отыскание носителя аналогичны примеру 6.13 (см. ниже), но значительно проще технически. Они предоставляются слушателям.

Справка. Дирак Поль Адриен Морис, 1902 – 1984, Великобритания.

6.13. Пусть S — кусочно гладкая поверхность в \mathbb{R}^n , $\mu: S \to \mathbb{R}$ — измеримая, интегрируемая функция. *Простой слой* $\mu\delta_S: D(\mathbb{R}^n) \to \mathbb{R}$ задаётся формулой $(\mu\delta_S, \varphi(x)) = \int\limits_S \mu(x) \cdot \varphi(x) dS$.

Из линейности интеграла следует, что простой слой линеен:

$$(\mu \delta_S, a \cdot \varphi(x) + b \cdot \psi(x)) = \int_S \mu(x) (a \cdot \varphi(x) + b \cdot \psi(x)) dS = a \cdot (\mu \delta_S, \varphi(x)) + b \cdot (\mu \delta_S, \psi(x))$$

Проверим, что выполнено свойство (62). Пусть $\varphi_n \frac{D(G)}{n \to \infty} 0$. Из определения 5.12 при $\alpha = 0$ следует, что $\max_{x \in K} \left| \varphi_n(x) \right| \underset{n \to \infty}{\to} 0$, где компакт K содержит носители всех функций φ_n . Поэтому,

$$\left|\left(\mu\delta_{S}, \varphi_{n}(x)\right)\right| \leq \int_{S \cap K} \left|\mu(x)\right| \left|\varphi_{n}(x)\right| dS \leq \max_{x \in K} \left|\varphi_{n}(x)\right| \cdot \int_{S \cap K} \left|\mu(x)\right| dS \xrightarrow[n \to \infty]{} 0.$$

Покажем, что носитель простого слоя находится на поверхности S. Очевидно, что если $\operatorname{supp} \varphi \subset \mathbb{R}^n \setminus S$, то $(\mu \delta_S, \varphi(x)) = \int_S \mu(x) \cdot \varphi(x) dS = 0$. По определению 6.8, $\mu \delta_S$ равен 0 на разности $\mathbb{R}^n \setminus S$. По определению 6.10,

Покажем, что $\mu\delta_S$ — сингулярная обобщённая функция. Предположим противное: найдётся $f\in L^{loc}\left(G\right)$ такая, что при всех $\phi\in D(\mathbb{R}^n)$ выполнено

$$(\mu \delta_S, \varphi(x)) = (f_r(x), \varphi(x)) = \int_{\mathbb{R}^n} f(x) \cdot \varphi(x) dx.$$

Тогда при $\operatorname{supp} \varphi \subset \mathbb{R}^n \setminus S$ обязательно $(\mu \delta_S, \varphi(x)) = \int_{\mathbb{R}^n} f(x) \cdot \varphi(x) dx = 0$. По

теореме дю Буа-Реймона, f(x)=0 почти везде в $\mathbb{R}^n\setminus S$. Но мера Лебега самой поверхности S в \mathbb{R}^n тоже равна 0. Значит, f(x)=0 почти везде в \mathbb{R}^n . Но тогда $\left(\mu\delta_S,\phi(x)\right)=\int\limits_{\mathbb{R}^n}f(x)\cdot\phi(x)dx=0$ при всех $\phi\in D(\mathbb{R}^n)$, то есть $\mu\delta_S=0$. Противоречие. Итак, $\mu\delta_S$ — сингулярная обобщённая функция.

6.14. Двойной слой $-\frac{\partial}{\partial \overline{n}}\mu\delta_S:D(\mathbb{R}^n)\to\mathbb{R}$ задаётся формулой $\left(-\frac{\partial}{\partial \overline{n}}\mu\delta_S,\phi(x)\right)=\int_S\mu(x)\cdot\frac{\partial\phi}{\partial\overline{n}}(x)dS\,.$

Двойной слой также обладает свойствами, доказанными в 6.13 для простого слоя. Доказательства аналогичны.

Определение 6.15. Функция $\mu: S \to \mathbb{R}$ из примеров 6.13, 6.14 называется *плотностью простого (двойного) слоя*.