Euclid Preparation 1

Logarithms, Exponents, Functions, and Equations

Vincent Macri

William Lyon Mackenzie C.I. Math Club

© Caroline Liu, Vincent Macri, and Samantha Unger, 2018

Part I:

- 1 Exponents
 - Review
 - Exponent problems
- 2 Logarithms
 - Review
 - Logarithm problems

Part I

Logarithms and Exponents

Table of Contents

- 1 Exponents
 - Review
 - Exponent problems
- 2 Logarithms
 - Review
 - Logarithm problems

Formulas Exponents

When $a, b, x, y \in \mathbb{R}$ and $n \in \mathbb{R} \mid n \neq 0$:

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{0} = 1 \text{ if } a \neq 0$$

$$a^{-x} = \frac{1}{a^{x}} \text{ if } a \neq 0$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \text{ if } a \neq 0$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{x} \cdot b^{x} = (ab)^{x}$$

$$a^{x}a^{y} = a^{x+y}$$

 0^0 is not defined.

Exponents problem 1 Exponents

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Exponents problem 1 Exponents

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^2)7^k = 5^m(5^3+1)$$

Exponents problem 1 Exponents

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^2)7^k = 5^m(5^3+1)$$
$$(450)7^k = 5^m(126)$$

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$
$$(450)7^{k} = 5^{m}(126)$$
$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$

$$(450)7^{k} = 5^{m}(126)$$

$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

$$5^{2} \cdot 7^{k} = 5^{m} \cdot 7$$

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Solution

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$

$$(450)7^{k} = 5^{m}(126)$$

$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

$$5^{2} \cdot 7^{k} = 5^{m} \cdot 7$$

Since the integer factorization of numbers is always unique and both m and k are integers:

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Solution

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$

$$(450)7^{k} = 5^{m}(126)$$

$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

$$5^{2} \cdot 7^{k} = 5^{m} \cdot 7$$

Since the integer factorization of numbers is always unique and both m and k are integers: m=2 and k=1.

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$
$$n = (\pm \sqrt{5})^5$$

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$
$$n = (\pm \sqrt{5})^5$$

$$mn =$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = = = =$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = = = =$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = (\sqrt{5} \cdot \sqrt{5})^3 = -1$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = (\sqrt{5} \cdot \sqrt{5})^3 = 5^3 = 5^3$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

 $n = (\pm \sqrt{5})^5$
 $mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = (\sqrt{5} \cdot \sqrt{5})^3 = 5^3 = 125$

Table of Contents

- 1 Exponents
 - Review
 - Exponent problems
- 2 Logarithms
 - Review
 - Logarithm problems

Formulas Logarithms

When $a, x, y \in \mathbb{R} \mid a, x, y \neq 0$:

$$\log_a(xy) = \log_a x + \log_a y$$
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$
$$\log_a(x^y) = y \log_a x$$
$$\log_a(a^x) = a^{\log_a x} = x$$

$$\log_a 1 = 0$$
$$\log_a x = \frac{1}{\log_a a}$$
$$\frac{\log_a x}{\log_a y} = \log_y x$$

Formulas Logarithms

When $a, x, y \in \mathbb{R} \mid a, x, y \neq 0$:

$$\begin{split} \log_a(xy) &= log_a x + log_a y & \log_a 1 = 0 \\ \log_a\left(\frac{x}{y}\right) &= \log_a x - \log_a y & \log_a x = \frac{1}{\log_a a} \\ \log_a(x^y) &= y \log_a x & \frac{\log_a x}{\log_a y} = \log_y x \\ \operatorname{Also,} \log_b c & \text{has the restrictions:} \end{split}$$

$$b \in \mathbb{R} \mid b > 0 \text{ and } b \neq 1$$

$$c \in \mathbb{R} \mid c > 0$$

Formulas Logarithms

When $a, x, y \in \mathbb{R} \mid a, x, y \neq 0$:

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a 1 = 0$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a x = \frac{1}{\log_a a}$$

$$\log_a(x^y) = y \log_a x$$

$$\log_a(a^x) = a^{\log_a x} = x$$

$$\frac{\log_a x}{\log_a y} = \log_y x$$

Also, $\log_b c$ has the restrictions:

$$b \in \mathbb{R} \mid b > 0 \text{ and } b \neq 1$$

$$c \in \mathbb{R} \mid c > 0$$

Finally, if $f(x) = a^x$ then $f^{-1} = \log_a(x)$. That is, the exponential and logarithmic functions are each other's inverses. More formally:

$$y = a^x \iff x = \log_a y$$

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our restrictions:

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y)=\log_5(2x)+\log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

$$2\log_5(x - 3y) = \log_5(2x) + \log_5(2y)$$
$$\log_5(x - 3y)^2 = \log_5(4xy)$$

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

$$2\log_5(x - 3y) = \log_5(2x) + \log_5(2y)$$
$$\log_5(x - 3y)^2 = \log_5(4xy)$$

We know that the logarithmic function is an injective function.

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

$$2\log_5(x - 3y) = \log_5(2x) + \log_5(2y)$$
$$\log_5(x - 3y)^2 = \log_5(4xy)$$

We know that the logarithmic function is an **injective function**.

An **injective function** is one where f(a) = b is only true for one value of a. More formally:

$$f \colon A \to B$$
 is injective if $\forall a, b \in A, f(a) = f(b) \implies a = b$

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy)$$
$$(x - 3y)^2 = 4xy$$
$$x^2 - 6xy + 9y^2 = 4xy$$

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

From here we have two cases:

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

From here we have two cases:

$$x - y = 0$$
$$x = y$$

But this violates our restriction x > 3y, so the answer must be found via the next case.

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

From here we have two cases:

$$x - y = 0$$
 $x - 9y = 0$ $x = 9y$ our restriction $x > 3y$, so the $x = 9y$ $x = 9y$

But this violates our restriction x>3y, so the answer must be found via the next case.

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our restrictions:

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Next, we simply equate the two curves:

$$\log_{10}(x-2) = 1 - \log_{10}(x+1)$$

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Next, we simply equate the two curves:

$$\log_{10}(x-2) = 1 - \log_{10}(x+1)$$
$$\log_{10}(x-2) + \log_{10}(x+1) = 1$$

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Next, we simply equate the two curves:

$$\log_{10}(x-2) = 1 - \log_{10}(x+1)$$
$$\log_{10}(x-2) + \log_{10}(x+1) = 1$$
$$\log_{10}((x-2)(x+1)) = 1$$

$$\log_{10}((x-2)(x+1)) = 1$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$
$$(x-4)(x+3) = 0$$

Solution

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$
$$(x-4)(x+3) = 0$$

So we get x = 4, -3.

Solution

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$
$$(x-4)(x+3) = 0$$

So we get x=4,-3. We have the restriction x>2, so we are left with x=4.

Solution

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$
$$(x-4)(x+3) = 0$$

So we get x=4,-3. We have the restriction x>2, so we are left with x=4. This leaves us with the point of intersection $(4,\log_{10}2)$.

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our restrictions:

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$
$$9 - 2^x = 2^{3-x}$$

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$
$$9 - 2^x = 2^{3-x}$$
$$9 - 2^x = \frac{2^3}{2^x}$$

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$
$$9 - 2^x = 2^{3-x}$$
$$9 - 2^x = \frac{2^3}{2^x}$$
$$9 - 2^x = \frac{8}{2^x}$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

$$9 - y = \frac{8}{y}$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

$$9 - y = \frac{8}{y}$$
$$-y^2 + 9y - 8 = 0$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

$$9 - y = \frac{8}{y}$$
$$-y^2 + 9y - 8 = 0$$
$$y = 1, 8$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

Let $y=2^x$.

$$9 - y = \frac{8}{y}$$
$$-y^2 + 9y - 8 = 0$$
$$y = 1, 8$$

We substitute these solutions back into $y=2^x$ to find that x=0 or x=3, both of which satisfy our restrictions.