Outline

- Introduction
 - What is a distributed DBMS
 - **→** Problems
 - Current state-of-affairs
- Background
- Distributed DBMS Architecture
- Distributed Database Design
- Semantic Data Control
- Distributed Query Processing
- □ Distributed Transaction Management
- Distributed Database Operating Systems
- Open Systems and Interoperability
- Parallel Database Systems
- Distributed Object Management
- Concluding Remarks

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 1

Motivation

integration ≠ centralization

Distributed Database Management

Distributed Computing

- A concept in search of a definition and a name.
- A number of autonomous processing elements (not necessarily homogeneous) that are interconnected by a computer network and that cooperate in performing their assigned tasks.

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 3

Distributed Computing

■ Synonymous terms

- distributed function
- distributed data processing
- multiprocessors/multicomputers
- → satellite processing
- backend processing
- dedicated/special purpose computers
- timeshared systems
- → functionally modular systems

What is distributed ...

- Processing logic
- Functions
- Data
- Control

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 5

What is a Distributed Database System?

A distributed database (DDB) is a collection of multiple, *logically interrelated* databases distributed over a *computer network.*

A distributed database management system (D–DBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent to the users.

Distributed database system (DDBS) = DDB + D-DBMS

Distributed Database Management

What is not a DDBS?

- A timesharing computer system
- A loosely or tightly coupled multiprocessor system
- A database system which resides at one of the nodes of a network of computers this is a centralized database on a network node

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 7

Centralized DBMS on a Network

Distributed Database Management

Distributed DBMS Environment

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 9

Implicit Assumptions

- Data stored at a number of sites ⇒ each site *logically* consists of a single processor.
- Processors at different sites are interconnected by a computer network ⇒ no multiprocessors
 - **⇒** parallel database systems
- Distributed database is a database, not a collection of files ⇒ data logically related as exhibited in the users' access patterns
 - relational data model
- D-DBMS is a full-fledged DBMS
 - → not remote file system, not a TP system

Distributed Database Management

Shared-Memory Architecture

Examples: symmetric multiprocessors (Sequent, Encore) and some mainframes (IBM3090, Bull's DPS8)

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 11

Shared-Disk Architecture

Examples : DEC's VAXcluster, IBM's IMS/VS Data Sharing

Distributed Database Management

Shared-Nothing Architecture

Examples: Teradata's DBC, Tandem, Intel's Paragon, NCR's 3600 and 3700

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 13

Applications

- Manufacturing especially multi-plant manufacturing
- Military command and control
- EFT
- **■** Corporate MIS
- Airlines
- **■** Hotel chains
- Any organization which has a decentralized organization structure

Advantages of DDBS

- **■** Local autonomy
- **■** Improved performance
- Improved reliability/availability
- **■** Economics
- **■** Expendability
- Shareability

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 15

Disadvantages of DDBS

- Lack of experience
- **■** Complexity
- Cost
- Distribution of control
- Difficulty of change

Distributed Database Management

Distributed DBMS Issues

■ Distributed Database Design

- → how to distribute the database
- replicated & non-replicated database distribution
- → a related problem in directory management

Query Processing

- convert user transactions to data manipulation instructions
- optimization problem
- min{cost = data transmission + local processing}
- general formulation is NP-hard

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 17

Distributed DBMS Issues

■ Concurrency Control

- → synchronization of concurrent accesses
- consistency and isolation of transactions' effects
- deadlock management

Reliability

- how to make the system resilient to failures
- atomicity and durability

Relationship Between Issues

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 19

Related Issues

■ Operating System Support

- operating system with proper support for database operations
- dichotomy between general purpose processing requirements and database processing requirements

■ Open Systems and Interoperability

- **➡** Distributed Multidatabase Systems
- More probable scenario
- ➡ Parallel issues

Distributed DBMS Promises

- Transparent management of distributed, fragmented, and replicated data
- ② Improved reliability/availability through distributed transactions
- **8** Improved performance
- Easier and more economical system expansion

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 21

Transparency Support

- No replication yet
- **■** Generally no fragmentation
 - → Horizontal fragmentation may come
- Limited distribution transparency
 - path specification
 - aliasing
 - remote login to a DBMS
- Most are multiple-client/single-server

Distributed Database Management

Distributed Transactions in Commercial Systems

- Some do not provide it at all
 - ightharpoonup Oracle 6.x ightharpoonup have to open one database at a time
 - Sybase

 ⇒ primitives are there, applications have to implement distributed transactions themselves
- Others do
 - ➡ Ingres, NonStop SQL, Oracle V.7
- **■** Replication support
 - ➡ Either nonexistent, or
 - → ROWA rule: Read One Write All

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 23

Potentially Improved Performance

- Proximity of data to its points of use
 - ➡ Requires some support for fragmentation and replication
- Parallelism in execution
 - Inter-query parallelism
 - ➡ Intra-query parallelism

Parallelism Requirements

- Have as much of the data required by each application at the site where the application executes
 - **→** Full replication
- How about updates?
 - Updates to replicated data requires implementation of distributed concurrency control and commit protocols

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 25

Commercial System Alternatives

- Multiplex time between read and updates
 - Have database open for reads during regular hours; perform updates after hours
 - **➡** Banks do this
- Multiplex the database
 - Query database
 - ➡ Production database

Distributed Database Management

System Expansion

- Issue is database scaling
- Emergence of microprocessor and workstation technologies
 - **→** Demise of Grosh's law
 - Client-server model of computing
- Data communication cost vs telecommunication cost

Distributed Database Management

© 1994 M. Tamer Özsu & Patrick Valduriez Page 1. 27

Example

E					
ENO	ENAME	TITLE			
E1 E2 E3 E4 E5 E6 E7	J. Doe M. Smith A. Lee J. Miller B. Casey L. Chu R. Davis J. Jones	Mech. Eng. Programme			

G				
ENO	JNO	RESP	DUR	
E1 E2 E2 E3 E3 E4 E5 E6 E7	J1 J2 J3 J4 J2 J2 J2 J4 J3 J5	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager Engineer Engineer	12 24 6 10 48 18 24 48 36 23	
E8	J3	Manager	40	

J			
JNO	JNAME	BUDGET	LOC
J1 J2 J3 J4 J5	Instrumentation Database Develop. CAD/CAM Maintenance CAD/CAM	135000	Montreal New York New York Paris Boston

Distributed Database Management