IN THE CLAIMS:

- 1. (previously presented) A hydrogen absorbing alloy represented by the formula $\frac{Lm_{\star} Mg_{\star}Ni_{\star} Al_{\star}}{Lm_{\star} Mg_{\star}Ni_{\star} Al_{\star}} \frac{Lm_{\star} Mg_{\star}Ni_{\star} Al_{\star} Mg_{\star}}{Lm_{\star} Mg_{\star}Ni_{\star} Al_{\star} Mg_{\star}}$, (where Ln is at least one element selected from rare earth elements, $\frac{M}{L}$ is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, $\frac{L}{L}$ Sn, $\frac{L}{L}$ Nn, Cu, Si, P and B, 0.05 \leq x < 0.20, 2.8 \leq y < 3.9, [[and]] 0.10 \leq a \leq 0.25 and 0 \leq b), wherein, when said at least one element selected from rare earth elements includes La, a mole ratio of La in said at least one element selected from rare earth elements is not greater than 0.5.
- 2. (previously presented) The hydrogen absorbing alloy according to claim 1, wherein Y is contained in the rare earth elements.
- 3. (previously presented) The hydrogen absorbing alloy according to claim 1, further containing Zr.
- 4. (previously presented) The hydrogen absorbing alloy according to claim 2, further containing Zr.
 - 5 8. (canceled)

- 9. (previously presented) The hydrogen absorbing alloy according to claim 1, wherein an average particle diameter of the alloy is in a range of 65 \sim 200 μm .
- 10. (previously presented) The hydrogen absorbing alloy according to claim 2, wherein an average particle diameter of the alloy is in a range of 65 \sim 200 μm .
- 11. (previously presented) The hydrogen absorbing alloy according to claim 3, wherein an average particle diameter of the alloy is in a range of 65 \sim 200 μm_{\odot}
- 12. (previously presented) The hydrogen absorbing alloy according to claim 4, wherein an average particle diameter of the alloy is in a range of 65 \sim 200 μm .
- 13. (previously presented) An alkaline storage battery comprising a positive electrode, a negative electrode and an alkaline electrolyte, wherein the negative electrode comprises a hydrogen absorbing alloy represented by the formula $\frac{\text{Lm}_{\perp}\text{Mg}_{x}\text{Ni}_{y}}{\text{Ln}_{\parallel}}$ (where Ln is at least one element selected from

rare earth elements, <u>M is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P and B, $0.05 \le x < 0.20$, $2.8 \le y \le 3.9$ [[and]] $0.10 \le a \le 0.25$ and $0 \le b$), wherein, when said at least one element selected from rare earth elements includes La, a mole ratio of La in said at least one element selected from rare earth elements</u>

- 14. (previously presented) The alkaline storage battery according to claim 13, wherein Y is contained in the rare earth elements of the hydrogen absorbing alloy.
- 15. (previously presented) The alkaline storage battery according to claim 13, wherein the hydrogen absorbing alloy further contains Zr.
- 16. (previously presented) The alkaline storage battery according to claim 14, wherein the hydrogen absorbing alloy further contains Zr.
 - 17 20. (canceled)

- 21. (previously presented) The alkaline storage battery according to claim 13, wherein an average particle diameter of the hydrogen absorbing alloy is in a range of 65 \sim 200 μm .
- 22. (previously presented) The alkaline storage battery according to claim 14, wherein an average particle diameter of the hydrogen absorbing alloy is in a range of 65 \sim 200 μm .
- 23. (previously presented) The alkaline storage battery according to claim 15, wherein an average particle diameter of the hydrogen absorbing alloy is in a range of 65 ~ 200 μm_{\odot}
- 24. (previously presented) The alkaline storage battery according to claim 16, wherein an average particle diameter of the hydrogen absorbing alloy is in a range of 65 \sim 200 μm .
- 25. (previously presented) The alkaline storage battery according to claim 13, wherein the amount of the alkaline electrolyte is 0.31 ml or less per 1g of the hydrogen absorbing alloy.