

DoExercises:

esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

Luca Prigione

2024- 05-27	Soluzione all' esercizio del
2024- 05-24	2024-05-09 creato per luca.prigione
2024- 05-23	Soluzione all' esercizio del 2024-05-09 creato per luca.prigione
2024- 05-22	Nella pavimentazione di una stanza vengono adoperati listelli di legno di lunghezza media $16.5~\rm cm$. Dai macchinari per la produzione, si sa che le lunghezze di tali listelli seguono una legge normale con deviazione standuguale a $\sigma=0.14~\rm cm$.
2024- 05-21	
2024- 05-20	Per ricoprire il buco lasciato dai lavori per inserire un tubo, bisogna creare una striscia larga quanto un listello e lunga $510.2528208\mathrm{cm}$, con un opportuno numero n di listelli.
2024- 05-17	Quesiti e soluzioni
	Quesito 1
2024- 05-16	Qual è la probabilità che servano più di $n=31$ listelli per creare una striscia lunga $510.2528208\mathrm{cm}$?
2024- 05-15	Innanzitutto, sia X_i la v.a. che indica la lunghezza dell'\$i\$-esimo listello. Allora, $X_i\sim \mathcal{N}(\mu,\sigma)$, con $\mu=16.5$ cm e $\sigma=0.14$ cm.
2024- 05-14	Sia poi S_n la v. a. che indica la lunghezza della striscia formata da n listelli. Allora,

$$S_n = \sum_{i=1}^n X_i.$$

2024- 05-13	Poiché le X_i sono indipendenti tra di loro, si ha che $S_n \sim \mathcal{N}(n \cdot \mu, \sqrt{n} \cdot \sigma)$ dal momento che la distribuzione Gaussiana è riproducibile.
2024- 05-10	Ora, servono più di 31 listelli per una striscia lunga 510.2528208 cm se $S_{31} < 510.2528208$. Dobbiamo calcolare quindi la $P(S_{31} < 510.2528208)$.
2024- 05-09	Ricordiamo che se $X\sim \mathcal{N}(\mu,\sigma)$, allora $P(X\leq x)=P\left(Z\leq rac{x-\mu}{\sigma} ight)$, dove $Z\sim \mathcal{N}(0,1)$.
2024- 05-08	Quindi nel nostro caso abbiamo $P(S_{31} < 510.2528208) = P\left(Z < rac{510.2528208 - 31 \cdot 16.5}{0.14 \cdot \sqrt{31}} ight)$
2024- 05-07	Possiamo allora usare la funzione di R pnorm(x) . Alternativamente,
2024- 05-06	avremmo potuto guardare le tavole della normale standard. Notiamo che la funzione pnorm è la cdf di una normale standard, tuttavia s non ci fossimo ricondotti ad una normale standard avremmo potuto comunque usare pnorm(x, mean = $31*16.5$, sd =sqrt(31)*0.14), passando quindi in input i valori della media e della deviazione standard de nostra v.a. gaussiana di partenza S_{31} . • Risposta corretta: 0.0547993 • Risposta inserita: 0.05479929
2024- 05-03	
2024- 05-02	
2024- 04-30	Quesito 2.
2024- 04-29	Qual è la probabilità che servano meno di $n=31$ listelli per creare una striscia lunga $510.2528208\mathrm{cm}$?
	Servono meno di 31 listelli per una striscia lunga 510.2528208 cm se $S_{31}>510.2528208$. Dobbiamo calcolare quindi la $P(S_{31}>510.2528208)$
2024- 04-24	. Basta quindi calcolarsi 1- pnorm(x) , sfruttando il fatto che la Gaussiana è una
2024- 04-23	distribuzione continua. • Risposta corretta: 0.9452007
2024-	Risposta inserita: 0.9452007
04-22	Quesito 3.
2024- 04-19	Quanto dovrebbe essere lunga la striscia affinché 31 listelli siano sufficienti per ricoprirla con una probabilità maggiore o uguale al 63.285% ?

Dobbiamo trovare quel valore ${\cal L}$ della lunghezza della striscia per cui valga

2024- 04-18
2024- 04-17
2024- 04-16
2024- 04-15
2024- 04-10
2024- 04-09
2024- 04-08
2024- 04-05
2024- 04-04
2024- 04-03
2024- 04-02
2024- 03-28
2024- 03-27
2024- 03-26

$$P(S_{31} \ge L) \ge 0.63285.$$

Sia
$$L^*=rac{L-n\cdot \mu}{\sqrt{n}\cdot \sigma}$$
, con $n=3$ 1, $\mu=16.5$ e $\sigma=0.14$, allora

$$P(S_n \geq L) = P(Z \geq L^*) = 1 - \Phi(L^*) \geq p,$$

 $\operatorname{dove} p = 0.63285 \text{, da cui}$

$$L = \sqrt{n}\sigma\cdot\Phi^{-1}(1-p) + n\mu.$$

 $\Phi^{-1}(1-p)$ può essere calcolato con $\ensuremath{\operatorname{qnorm}(1-p)}$.

• Risposta corretta: 511.2354334

• Risposta inserita: 511.2354333

2024-03-25 2024-03-22 2024-03-21 2024-03-20 2024-03-19 2024-03-18 2024-03-15 2024-03-14 2024-03-13 2024-03-12