FPGAs, HLS Tools & Runtime Systems

(Super)Advisors: Frederic Desprez, Francois Broquedis, Olivier Muller

Georgios Christodoulis

CORSE-LIG

gchristodoul is @gmail.com

Overview

FPGAs structure

Description

Look-Up Table

Basic Logic Element

Overview

Optimization Using HLS tools

Problem Description

Serial Version

Opt1: Inner Loop Unrolling

Pipeline

J-loop Unrolling

Array Partitioning

FPGA Description

A *Field Programmable Gate Array* is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence "Field-programmable".

FPGAs are semiconductor devices that are based around a matrix of configurable logic blocks (BLEs) connected via programmable interconnects.

FPGAs Structure

LUT

- It is a table that ditermines what the output is for any given input
- A state-less interconnection of any number of gates (no feedback loops)
- Implemented multiplexing a combination of SRAM bits

Figure: 3 stages of 2x1 MUX

FPGAs Structure

LUT Example

$$y = (a+b) \cdot c$$

а	b	С	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Figure: $y = (a + b) \cdot c$

FPGAs structure

Figure: Basic Logic Element

FPGAs structure

Overview

Figure: FPGAs Complete Overview

Problem Description

Matrix Multiplication

$$C = A * B$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$C_{11}$$
 ... C_{1n}
 \vdots C_{km} \vdots C_{nn}

```
 \begin{vmatrix} c_{11} & \dots & c_{1n} \\ \vdots & c_{km} & \vdots \\ c_{n1} & \dots & c_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} b_{11} & \dots & b_{1m} & \dots & b_{1n} \\ b_{21} & \dots & b_{2m} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & \dots & b_{nm} & \dots & b_{nn} \end{vmatrix}
```

No Directives

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
 $c_{km} = a_{k1} b_{1m} + a_{k2} b_{2m} + \dots + a_{kn} b_{nm}$

- ▶ 2n operations \forall element
- $ightharpoonup n^2$ elements
- $\Rightarrow 2n^3$ operations
- ▶ 19MFLOPS on the tested platform

Inner Loop Unrolling

Opt1: Sum Mul Overlaping

Our reference time interval is defined by the slowest operation which is the multiplication.

- Complete overlaping between Multiplication and addition
- ▶ 35MFLOPS on the given machine

Pipeline

Initiation Interval is called the number of cycles between two new iterations.

In this case it is indicated by the time that the addition register is occupied.

J-loop unrolling

Memmory Bounds: Dual Channeled memory \implies only 2 concurrent operations.

Row / Col Partitioning

Figure: Distribute the array into multiple BRAMS