

Прикладная статистика и анализ данных

Съезд Х

Дисперсионный анализ III

Типы задач Д.А. — несколько выборок

1. Независимые выборки

Несколько групп пациентов, которым дают лекарство с различной дозировкой активного вещества. Есть ли различия в эффективности лечения?

2. Связные выборки

Измеряется активность работников предприятия в течении недели. Отличается ли эффективность в зависимости от дня недели?

- Методы для задач 2 типа можно использовать для задач 1 типа.
 При этом теряется важная информация.
- ▶ Методы для задач 1 типа нельзя использовать для задач 2 типа.

Схема анализа

Имеется несколько выборок в соответствии со значением фактора — категориальная переменная.

Этапы анализа:

- 1. Оказывает ли фактор влияние на исследуемую величину?
- 2. Если да, то post hoc анализ:
 - Какие значения фактора оказывают различное влияние?
 - Насколько отличаются степени влияния различных значений фактора?

Независимые выборки

1	2	 k
X ₁₁	X ₁₂	 X_{1d}
X ₂₁	X ₂₂	 X_{2d}
X_{n_11}	X_{n_22}	 $X_{n_k k}$

$$X_{ij} = \overbrace{\mu + \beta_j}^{\mu_j} + \varepsilon_{ij},$$
 $i = 1, ..., n_j$ — номер наблюдения в выборке
 $j = 1, ..., k$ — номер выборки
 μ — неизвестное общее среднее
 β_j — неизвестный эффект воздействия фактора для j -й выборки
 ε_{ij} — случайная ошибка

Предположение:

 $arepsilon_{ij}$ независимы и имеют одинаковое непрерывное распределение.

$$\mathsf{H}_0\colon \mu_1=...=\mu_k$$
 vs. $\mathsf{H}_1\colon \exists j_1,j_2$ т.ч. $\mu_{j_1}
eq \mu_{j_2}$

PÔ

Независимые выборки (пример)

Исследуется эффективность трех жаропонижающих.

Лекарство 1	Лекарство 2	Лекарство 3
X ₁₁	X ₁₂	X ₁₃
X_{21}	X ₂₂	X ₂₃
X ₃₁		X ₃₃
X ₄₁		

 $j \in \{1, 2, 3\}$ — номер группы пациентов.

 X_{ij} — изменения температуры i-го пациента в j-й группе после введения жаропонижающего.

 μ_{i} — среднее изменение температуры после j-го лекарства.

 H_0 : $\mu_1 = ... = \mu_k$ — эффект лекарств не отличается

 $\mathsf{H}_1 \colon \exists j_1, j_2$ т.ч. $\mu_{j_1}
eq \mu_{j_2}$ — для некоторых лекарств эффект отлич..

Что делаем в первую очередь?

Ящики с усами!!!

F-критерий

[требование: $\varepsilon_{ii} \sim \mathcal{N}(0, \sigma^2)$]

$$X_{\bullet j} = \frac{1}{n_j} \sum_{i=1}^{n_j} X_{ij}, \qquad X_{\bullet \bullet} = \frac{1}{N} \sum_{i=1}^k \sum_{j=1}^{n_j} X_{ij}, \qquad N = \sum_{i=1}^k n_i$$

$$V_{tot} = \sum_{i=1}^k \sum_{i=1}^{n_j} \left(X_{ij} - X_{ullet ullet}
ight)^2 = V_{in} + V_{out} -$$
 общая изменчивость

$$V_{in} = \sum\limits_{j=1}^k \sum\limits_{i=1}^{n_j} \left(X_{ij} - X_{ullet j}
ight)^2 \sim \sigma^2 \cdot \chi_{N-k}^2$$
 мера общей изменчивости внутри выборок $V_{out} = \sum\limits_{i=1}^k n_j \left(X_{ullet j} - X_{ullet ullet o}
ight)^2 \sim \sigma^2 \cdot \chi_{k-1}^2$ мера разброса между выборками

$$F(X) = \frac{V_{out}/(k-1)}{V_{in}/(N-k)} \stackrel{d_0}{\sim} F_{k-1,N-k}$$

Идея: если разброс между выборками V_{out} сильно больше разброса внутри выборок, то H_0 надо отклонить. Критерий имеет вид $S = \{F(\mathsf{x}) > F_{k-1,N-k,1-\alpha}\}.$

Критерий Бартлетта

$$\mathsf{H}_0\colon \sigma_1=...=\sigma_k$$
 при любых $\mu_1,...,\mu_k$

Статистика критерия

$$B = \left(\frac{1}{N}\sum_{j=1}^{k} n_j S_j^2\right) / \sqrt[N]{\prod_{j=1}^{k} \left(S_j^2\right)^{n_j}},$$

где
$$S_j^2 = \frac{1}{n_j-1} \sum_{i=1}^{n_j} \left(X_{ij} - X_{ullet j} \right)^2$$
 — несмещ. оценка дисперсии выборки j $N = n_1 + ... + n_j$ — общее число наблюдений.

Если
$$n_j>3$$
, то при H_0 выполнено $\gamma^{-1}N\ln B\stackrel{d_0}{pprox}\chi^2_{k-1},$ где $\gamma=1+rac{1}{3(k-1)}\left(\sum\limits_{j=1}^krac{1}{n_j}-rac{1}{N}\right)$

Критерий Бартлетта чувствителен к отклонениям от нормальности! Например, заменим $\mathcal{N}(0,1)$ на T_7 .

Значения $\emph{peaльного}$ уровня значимости при $\alpha = 0.05$:

k = 2	<i>k</i> = 5	k = 10
0.17	0.32	0.49

Критерий Фишера:

- 1. Если $n_1 = ... = n_k$, то критерий устойчив к отклонениям от нормальности и равенства дисперсий;
- 2. Вместо нормальности достаточно $n_1 \approx ... \approx n_k$ и N-k>20;
- 3. Вместо равенство дисперсий достаточно $\max S_j^2 / \min S_j^2 < 10;$
- 4. Чувствителен к выбросам.

[непараметрический]

$$R_{ij}$$
 — ранг наблюдения X_{ij} в наборе $(X_{ij}, i=1,...,n_j, j=1,...,k)$ $R_{ullet j} = rac{1}{n_j} \sum\limits_{i=1}^{n_j} R_{ij}$ — средний ранг в выборке j . $R_{ullet ullet} = rac{N+1}{2}$ — общий средний ранг

$$W = \frac{12}{N(N+1)} \sum_{j=1}^{k} n_j \left(R_{\bullet j} - R_{\bullet \bullet} \right)^2 \xrightarrow{d_0} \chi_{k-1}^2$$

 $\mathit{Идея}$: если H_0 верна, то средние ранги по выборкам не сильно отклоняются от общего среднего ранга. Критерий имеет вид $S=\{W(x)>\chi^2_{k-1,1-lpha}\}.$

При coвпадениях надо рассмотреть средние ранги и поделить W на $\gamma=1-rac{1}{N(N^2-1)}\sum_{m=1}^g I_m(I_m^2-1),$ где g — число групп совпадений, а I_k — количество элементов в k-ой группе.

Пример

Исследуется эффективность трех жаропонижающих.

Лекарство 1	Лекарство 2	Лекарство 3	
$-7.4 \ (R_{11}=1)$	$-1.5 \ (R_{21}=7)$	$+2.5 (R_{31}=9)$	
$-6.2 (R_{12}=2)$	$+1.7 (R_{22} = 8)$	$-1.9 \ (R_{32}=6)$	
$-4.6 \ (R_{13}=4)$		$-2.1 \ (R_{33}=5)$	
$-5.3 \ (R_{14}=3)$			
$n_1 = 4$	$n_2 = 2$	$n_3 = 3$	
$R_{\bullet 1} = 2.5$	$R_{\bullet 2} = 7.5$	$R_{\bullet 3} = 6.66$	
$R_{\bullet 1}=2.5$	$R_{\bullet 2} = 7.5$	$R_{\bullet 3} = 6.66$	

$$R_{ullet ullet} = rac{N+1}{2} = 5$$
 — общий средний ранг.

$$W = \frac{12}{9 \cdot 10} \left[4 \cdot (2.5 - 5)^2 + 2 \cdot (7.5 - 5)^2 + 3 \cdot (6.66 - 5)^2 \right] \approx 6.1.$$

 $pvalue \approx 0.0471 \implies$ отвергаем гипотезу об одинаковом эффекте.

$$H_0: \mu_1 = ... = \mu_k$$
 vs. $H_1: \mu_1 \leq ... \leq \mu_k$.

Например, лекарства отличаются дозировкой

$$U_{rs} = \sum_{i=1}^{n_r} \sum_{l=1}^{n_s} I\{X_{ir} < X_{ls}\}$$
 — статистики критерия Манна-Уитни $J = \sum U_{rs}$ — статистика критерия Джонкхиера

$$\frac{\textit{J}-E\textit{J}}{\sqrt{D\textit{J}}} \stackrel{\textit{d}_0}{\longrightarrow} \mathcal{N}(0,1)$$

$$EJ = \sum_{r < s} EU_{rs} = \frac{1}{2} \sum_{r < s} n_r n_s = \frac{1}{4} \left(N^2 - \sum_{j=1}^k n_j^2 \right)$$

$$DJ = \frac{1}{72} \left(N^2 (2N + 3) - \sum_{j=1}^k n_j^2 (2n_j + 3) \right)$$

Hезависимые выборки Post hoc анализ

Общая суть:

если $|X_{ullet r}-X_{ullet s}|>c$ или $|R_{ullet r}-R_{ullet s}|>c$, то отвергаем H_{rs} : $\mu_{\mathit{r}}=\mu_{\mathit{s}}.$

LSD Фишера

[требование: $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$]

Пусть H_0 отвергается.

Далее проверяем гипотезы H_{rs} : $\mu_r = \mu_s$ с помощью T-критерия:

$$T(X) = \frac{X_{\bullet r} - X_{\bullet s}}{S\sqrt{1/n_r + 1/n_s}} \stackrel{\mathsf{H}_{rs}}{\sim} T_{n_r + n_s - 2} + \mathsf{M}\mathsf{\Pi}\mathsf{\Gamma}$$

$$S^2 = \frac{(n_r - 1)S_r^2 + (n_s - 1)S_s^2}{n_r + n_s - 2}$$
 — несмещенная оценка σ .

$$S_j^2$$
 — несмещенная оценка дисперсии выборки j .

$$LSD_{rs} = t_{n_r + n_s - 2, 1 - \alpha/2} \cdot S\sqrt{1/n_r + 1/n_s}$$

Если $|X_{ullet r}-X_{ullet s}|>LSD_{rs}$, то H_{rs} отвергается

 LSD_{rs} — наименьшая значимая разность (least significant difference)

Не зависимо от справедливости H_0 : $\mu_1 = ... = \mu_k$:

Гипотеза H_{rs} : $\mu_r = \mu_s$ отвергается если

$$|X_{\bullet r} - X_{\bullet s}| > HSD,$$

 $+M\Pi\Gamma$

где $HSD=q_{n-k,\alpha}S/M$ — критерий подлинной значимости (honest significant difference),

$$M=k\left/\sum_{j=1}^{k}1/n_{j}\right.$$

 S_j^2 — несмещенная оценка дисперсии выборки j,

$$S^2 = \frac{1}{n-k} \sum_{j=1}^k (n_k - 1) S_k^2,$$

 $q_{n-k,\alpha} - \alpha$ -квантиль распределения стьюдентизированного размаха с n-k степенями свободы (см. далее).

[непараметрический]

Пусть H_0 отвергается.

Далее проверяем гипотезы
$$\mathsf{H}_{rs}$$
: $\mu_r = \mu_s$ +МПГ Если $|R_{ullet r} - R_{ullet s}| > CD = q_{k,1-\alpha/2} \sqrt{\frac{k(k+1)}{6N}}$, то H_{rs} отвергается, где $q_{k,p} - p$ -квантиль распр. стьюд. размаха с k ст. свободы

Пусть $\xi_{ij} \sim \mathcal{N}(0,\sigma^2), i=1..n, j=1..k$. Распр. стюдентизированного размаха с k степенями свободы — распр. величины

$$\frac{\max_{j} \xi_{\bullet j} - \min_{j} \xi_{\bullet j}}{S/\sqrt{n}},$$

S — выборочная дисперсия по всей совокупности

Пусть H_0 отвергается.

Далее проверяем гипотезы H_{rs} : $\mu_r = \mu_s$ +МПГ приближенным критерием: если

$$|R_{\bullet r}-R_{\bullet s}|>C_{rs}=z_{1-\alpha/2}\sqrt{\frac{N(N+1)}{12}\left(\frac{1}{n_r}+\frac{1}{n_s}\right)},$$

то H_{rs} отвергается,

где $N = n_1 + ... + n_k$ — общее число наблюдений.

Пусть H_{rs} отвергается \Longrightarrow оцениваем контраст $\Delta_{\mathit{rs}} = \mu_{\mathit{r}} - \mu_{\mathit{s}}.$

$$V_{rs}=med\{X_{ir}-X_{ls},i=1..n_r,j=1..n_s\}$$
 — первичная оценка $W_r=rac{1}{N}\sum_{s=1}^k n_sV_{rs}$, где $V_{rr}=0$ $\widehat{\Delta}=W_r-W_s$ — уточненная оценка контраста

Свойства:

- 1. Первичные оценки могут быть несогласоваными: $V_{12} \neq V_{13} + V_{32}$
- 2. Уточненные оценки согласованы и состоятельны.
- 3. Уточненные оценки зависят от всех выборок.

Связные выборки

Связные выборки

	1	2	 k
1	X ₁₁	X ₁₂	 X _{1d}
2	X ₂₁	X ₂₂	 X_{2d}
n	X_{n1}	X_{n2}	 X_{nk}

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij},$$

 $i = 1, ..., n$ — номер наблюдения в выборке
 $j = 1, ..., k$ — номер выборки
 μ — неизвестное общее среднее
 α_i — неизвестный эффект блока i
(мешающий параметр)

 eta_j — неизвестный эффект выборки j (интересующий нас параметр) $arepsilon_{ij}$ — случайная ошибка

Предположение:

 $arepsilon_{ij}$ независимы и имеют одинаковое непрерывное распределение.

$$\mathsf{H}_0\colon \beta_1=...=\beta_k$$
 vs. $\mathsf{H}_1\colon \exists j_1,j_2$ т.ч. $\beta_{j_1}\neq \beta_{j_2}.$

Связные выборки

Исследуется эффективность работы в зависимости от дня недели.

Человек	Понедельник	Вторник	Среда	Четверг	Пятница
Иван	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
Ольга	X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅
Артем	X ₃₁	X ₃₂	X ₃₃	X ₃₄	X ₃₅
Ирина	X ₄₁	X ₄₂	X ₄₃	X ₄₄	X ₄₅

$$j \in \{1,2,3,4,5\}$$
 — номер дня недели; $i \in \{1,2,3,4\}$ — номер человека.

 X_{ij} — время работы i-го человека в день j.

 μ — время работы сотрудника по приказу.

 $lpha_i$ — среднее отклонение i-го человека от приказа.

 eta_j — влияние j-го дня.

 H_0 : $\mu_1 = ... = \mu_k$ — дни недели не влияют на эффективность

 $H_1: \exists j_1, j_2$ т.ч. $\mu_{j_1} \neq \mu_{j_2}$ — для некоторых дней эффективность отлич..

F-критерий

[требование: $\varepsilon_{ii} \sim \mathcal{N}(0, \sigma^2)$]

$$X_{\bullet j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}, \qquad X_{i \bullet} = \frac{1}{k} \sum_{j=1}^{k} X_{ij}, \qquad X_{\bullet \bullet} = \frac{1}{nk} \sum_{i=1}^{n} \sum_{j=1}^{k} X_{ij}$$

$$V_{tot} = \sum_{i=1}^{n} \sum_{j=1}^{k} \left(X_{ij} - X_{ullet ullet} \right)^2 = V_{lpha} + V_{eta} + V_{in}$$
 — общая изменчивость

$$V_{lpha} = k \sum\limits_{i=1}^{n} \left(X_{iullet} - X_{ulletullet}
ight)^2 \sim \sigma^2 \cdot \chi_{n-1}^2$$
 — изменчивость блоков

$$V_{eta}=n\sum\limits_{j=1}^{k}(X_{ullet j}-X_{ullet ullet})^2\sim\sigma^2\cdot\chi_{k-1}^2$$
 — изменчивость выборок

$$V_{in}=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{k}\left(X_{ij}-X_{iullet}-X_{ullet j}+X_{ullet ullet}
ight)^{2}\sim\sigma^{2}\cdot\chi_{(n-1)(k-1)}^{2}$$
 — изменч. данных

$$F(X) = \frac{V_{\beta}/(k-1)}{V_{in}/(n-1)(k-1)} \sim F_{k-1,(n-1)(k-1)}$$

Идея: если изменчивость выборок V_{eta} сильно больше общей изменчивости данных, то H_0 надо отклонить. Критерий имеет вид $S=\{F(x)>F_{k-1,(n-1)(k-1),1-lpha}\}.$

Критерий Фридмана

[непараметрический]

$$Q_{ij}$$
 — ранг наблюдения X_{ij} в наборе $(X_{i1},...,X_{ik})$ $T_j = \sum\limits_{i=1}^{n_j} Q_{ij}$ — сумма рангов выборки j $Q_{ullet j} = T_j/n$ — средний ранг в выборке j $Q_{ullet ullet e} = rac{k+1}{2}$ — общий средний ранг

$$F = \frac{12n}{k(k+1)} \sum_{i=1}^{k} (Q_{\bullet i} - Q_{\bullet \bullet})^2 \xrightarrow{d_0} \chi_{k-1}^2$$

Идея: если H_0 верна, то средние ранги по выборкам не сильно отклоняются от общего среднего ранга. Критерий имеет вид $S=\{F(x)>\chi^2_{k-1.1-\alpha}\}.$

При coвпадениях надо рассмотреть средние ранги и взять $F = rac{12 \sum_{j=1}^k (T_j - nQ_{ullet})^2}{nk(k+1) - rac{1}{k-1} \sum_{i=1}^n \left(\sum_{m=1}^{g_i} rac{J^3}{im} - k\right)},$ где g_i — число групп совпадений в блоке i,

а I_{im} — количество элементов в m-ой группе блока i.

Исследуется эффективность работы в зависимости от дня недели.

В скобках указаны ранги по блокам

Ч.	Понедельник	Вторник	Среда	Четверг	Пятница
1	6.7 $(Q_{11}=1)$	7.6 ($Q_{12}=3$)	8.2 (5)	7.9 (4)	7.1 (2)
2	$4.9 (Q_{21} = 2)$	$6.2 (Q_{22} = 5)$	5.1 (3)	5.9 (4)	4.7 (1)
3	7.8 $(Q_{31}=1)$	$8.3 (Q_{32} = 4)$	8.2 (3)	8.9 (5)	8.1 (2)
4	$9.3 (Q_{41} = 3)$	$11.1 \; (Q_{42} = 4)$	11.7 (5)	9.2 (2)	9.0 (1)
$Q_{\bullet j}$	1.75	4	4	3.75	1.5

$$Q_{\bullet \bullet} = \frac{k+1}{2} = 3$$
 — общий средний ранг.

$$F = \frac{12 \cdot 4}{5 \cdot 6} \left[(1.75 - 3)^2 + (4 - 3)^2 + (4 - 3)^2 + (3.75 - 3)^2 + (1.5 - 3)^2 \right] \approx 10.2.$$

 $pvalue \approx 0.0372 \implies$ отвергаем гипотезу об одинаковом эффекте.

[непараметрический]

$$\mathsf{H}_0$$
: $\beta_1 = \ldots = \beta_k$ vs. H_1 : $\beta_1 \leqslant \ldots \leqslant \beta_k$.

Например, выборки отличаются интенсивностью стимулов стоит ожидать упорядоченный эффект

$$Q_{ij}$$
 — ранг наблюдения X_{ij} в наборе $(X_{i1},...,X_{ik})$

$$T_j = \sum\limits_{i=1}^{n_j} Q_{ij}$$
 — сумма рангов выборки j

$$L = \sum_{j=1}^{k} jT_j$$
 — статистика критерия Пейджа

$$\frac{L - \mathsf{E}L}{\sqrt{\mathsf{D}L}} \stackrel{d_0}{\to} \mathcal{N}(0,1)$$

$$\mathsf{E}L = \frac{nk(k+1)^2}{4}, \quad \mathsf{D}L = \frac{n(k-1)k^2(k+1)^2}{144}$$

Связные выборки Post hoc анализ

Пусть H_0 отвергается.

Далее проверяем гипотезы $H_{rs}\colon \beta_r=\beta_s$ +МПГ Если $|T_r-T_s|>q_{k,1-\alpha}\sqrt{nk(k+1)/12}$, то H_{rs} отвергается, где $q_{k,p}-p$ -квантиль распределения нормального размаха, т.е. величины $\xi_{(k)}-\xi_{(1)}$, где $\xi_1,...,\xi_k\sim \mathcal{N}(0,1)$.

Пусть H_{rs} отвергается \Longrightarrow оцениваем контраст $\Delta_{\mathit{rs}} = \beta_{\mathit{r}} - \beta_{\mathit{s}}.$

$$Z_{rs} = med\{X_{ir} - X_{is}, i = 1..n\}$$
 — первичная оценка

$$Z_{rullet}=rac{1}{k}\sum_{j=1}^k Z_{jj}$$
, где $Z_{jj}=0$

$$\widehat{\Delta} = Z_{rullet} - Z_{sullet}$$
 — уточненная оценка контраста

Свойства:

- 1. Первичные оценки могут быть несогласоваными: $Z_{12} \neq Z_{13} + Z_{32}$
- 2. Уточненные оценки согласованы.
- 3. Уточненные оценки зависят от всех выборок.

Двухфакторный дисперсионный анализ

Два фактора

6

Два типа разбиения:

фактор
$$F_1 \in \{1,...,k_1\};$$
 фактор $F_2 \in \{1,...,k_2\};$

	$F_2 = 1$		$F_2 = j$	 $F_2 = k_2$
$F_1 = i$	X_{i11} $X_{i1n_{i1}}$		X_{ij1} $X_{ijn_{ij}}$	 $X_{ik_21} \\ \dots \\ X_{ik_2n_{ik_2}}$
$F_1=k_1$	X_{k_111} $X_{k_11n_{k_11}}$.:	X_{k_1j1} $X_{k_1jn_{k_1j}}$	 $X_{k_1 k_2 1}$ $X_{k_1 k_2 n_{k_1 k_2}}$

Задача: влияют ли факторы на среднее значение?

Два фактора

$$X_{ijm} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijm},$$

$$i=1,...,k_1$$
 — значения фактора F_1 $j=1,...,k_2$ — значения фактора F_2 $m=1,...,n_{k_1k_2}$ — номер наблюдения в выборке μ — неизвестное общее среднее α_i — неизвестный эффект воздействия фактора $F_1=i$ β_j — неизвестный эффект воздействия фактора $F_2=j$ γ_{ij} — неизвестный эффект воздействия комбинации $F_1=i,F_2=j$ ε_{ijm} — случайная ошибка

Решение задачи дисперсионного анализа: функция aov в R.

	Доза 10 мг	Доза 20 мг
Препарат А	$X_{111}, X_{112}, X_{113}, X_{114}, X_{115}, X_{116}$	$X_{121}, X_{122}, X_{123}$
Препарат В	$X_{211}, X_{212},$ X_{213}, X_{214}	$X_{221}, X_{222}, X_{223},$ X_{224}, X_{225}

Что делать если есть еще контрольная группа?

- Двухфакторный без контрольной группы;
- Однофакторный по 5 группам;
- Два однофакторных по каждому препарату с тремя дозами (для контрольной 0 мг);

