Nama anggota:

1.	Asfiah Adiba	(G1401211004)
2.	Alfikri Ihsan	(G1401211058)
3.	Fajryanti Kusuma Wardani	(G1401211098)
4.	Jonatahan Marjono	(G1401211064)
5.	Kheni Hikmah Lestari	(G1401211029)
6.	Muhammad Hafizd Harkaputra	(G1401211099)
7.	Pratama Fajrialdy	(G1401211081)
8.	Rifqi Rustu Andana	(G1401211067)
9.	Tubagus Fadhila Hafidh	(G1401211080)

Tentukan apakah deret ini konvergen atau divergen. Fika divergen, can nilainya

Jub: Deret ksb merupakan deret geometri dan a = 1 , r = 1 , berdasarkan beorema kekon vergenan deret geometri, pila Irl zi maka deret geometri ksb konvergen. Dengan jumleh:

a)
$$\sum k^2 - 5$$
 $k=1$
 $k+2$
 $ak = k^2 - 5$
 $k+2$
 $lim \quad a_k = lim \quad k^2 - 5$
 $n \to \infty \quad n \to \infty \quad k+2$
 $= lim \quad 2k$
 $n \to \infty \quad 1$
 $= \infty$

Karena $lim \neq 0$ maka deret divergen

 $n \to \infty$

$$3. \sum_{k=1}^{\infty} \frac{2}{3k}$$

$$\frac{2}{3} \sum_{k=1}^{\infty} \frac{1}{k}$$

I merupakan deret harmonik sehingga

soal nomor 3 bernilas divergen

5)
$$\frac{1}{5}$$
 = $\int_{0}^{\infty} \frac{1}{1+3} dx$

= $\lim_{b \to \infty} \int_{0}^{b} \frac{1}{1+3} dx$

6.
$$\leq \frac{3}{2k-3}$$
 $k=1$

Superat un integral. $f(k)$ tentmu : $\sqrt{b-\infty}$
 $f(k)$ positif : \sqrt{b}
 $f(k)$
 $f(k)$

7)
$$\sum_{k=0}^{\infty} \frac{k}{k^{2}+3} = \int_{0}^{\infty} \frac{k}{k^{2}+3} dk$$

$$\int_{0}^{\infty} \frac{k}{k^{2}+3} dk = \lim_{k \to 00} \int_{0}^{k} \frac{k}{k^{2}+3} dk$$

$$\lim_{k \to 00} \int_{0}^{k} \frac{k}{k} \cdot \frac{dy}{2k}$$

$$= \lim_{k \to 00} \int_{0}^{k} \frac{1}{2} \cdot \frac{dy}{2k}$$

$$= \lim_{k \to 00} \int_{0}^{k} \frac{1}{2} \cdot \frac{1}{2} du$$

$$= \lim_{k \to 00} \int_{0}^{k} \frac{1}{2} \cdot \frac{1}{2} du$$

$$= \lim_{k \to 00} \int_{0}^{k} \frac{1}{2} \cdot \frac{1}{2} du$$

$$= \lim_{k \to 00} \int_{0}^{k} \frac{1}{2} \cdot \frac{1}{2} du$$

$$= \lim_{k \to 00} \int_{0}^{k} \frac{1}{2} \cdot \frac{1}{2} du$$

$$= \lim_{k \to 00} \int_{0}^{k} \frac{1}{2} \cdot \frac{1}{2} \left[\ln |(k)^{2}+3| - \ln |(0)^{2}+3| \right]$$

$$= \lim_{k \to 00} \left[\ln |(k)^{2}+3| - \ln |(0)^{2}+3| \right]$$

$$= \lim_{k \to 00} \left[\ln |(k)^{2}+3| - \ln |(0)^{2}+3| \right]$$

$$= \lim_{k \to 00} \left[\ln |(k)^{2}+3| - \ln |(0)^{2}+3| \right]$$

$$= \lim_{k \to 00} \left[\ln |(k)^{2}+3| - \ln |(0)^{2}+3| \right]$$

= divergen

8)
$$\sum_{k=1}^{3}$$
 $\lim_{k \to \infty} \int_{1}^{3} \frac{3}{2k^{2}+1} dx$

$$\lim_{k \to \infty} \frac{3\sqrt{2} + 4n^{-1}\sqrt{2} \times 1}{2}$$

$$\lim_{k \to \infty} \frac{3\sqrt{2} + 4n^{-1}\sqrt{2} \times 1}{2}$$