PaperDaily — 2017.09.27

Stack-based Multi-layer Attention for Transition-based Dependency Parsing

Zhirui Zhang¹, Shujie Liu², Mu Li², Ming Zhou², Enhong Chen¹
University of Science and Technology of China, Hefei, China¹
Microsoft Research Asia, Beijing, China²
zr011036@mail.ustc.edu.cn cheneh@ustc.edu.cn¹
{shujie,muli,mingzhou}@microsoft.com²

[EMNLP17]的论文,多层Attention的思想非常有意思,而且效果相当不错,能够在我们的工作中引入。

Abstract

在transition-based dependency parsing任务上简单的应用seq2seq模型并没有像NMT、Text Summarization等任务那样获得有竞争力的结果。本文中,作者提出 stack-based multi-layer attention model 的seq2seq来更好的学习结构化语言信息。他们的方法中,两个binary向量来刻画转移序列中的decoding stack、引入多层attention来捕捉部分树中多个词的依存关系。本文在PTB和CTP上获得了基于seq2seq模型的最好的结果。

Introduction

简单的seq2seq模型的一个问题是,不能明确地使用结构化语言学信息。比如Transition-based parsing使用栈来维护部分子树的根,并基于此选择正确的转移行为。seq2seq的另一个问题是普通的 attention机制不能捕捉单词间的依赖关系。传统的特征模板中使用的word unigram, bigram, trigram, ...特征很难被attention捕捉,但是它们对parsing很重要。

作者为了刻画转移系统中的栈,引入了两个binary向量,一个表示单词是否进栈,另一个表示是否出栈。为了捕捉复杂的结构信息,作者提出了基于栈、生成的动作序列、输入句子的多层 attention。

作者在PTB和CTB上评估他们的模型,最高的结果是4个模型的ensembled。

English: 94.16 (+1.87) UAS Chinese: 87.97 (+1.61) UAS

Neural Model for Sequence-to-Sequence Learning

Encoder: 对于输入句子 $X=(x_1,x_2,\cdots,x_T)$,使用BiRNN生成hidden states sequence $h=(h_1,h_2,\cdots,h_T)$ 。

Attention Mechanism: context向量 c_i 是 (h_1,h_2,\cdots,h_T) 的加权求和:

$$egin{aligned} lpha_{i,t} &= rac{\exp(e_{i,t})}{\sum_k \exp(e_{i,k})} \ e_{i,k} &= v_a^ op anh(W_a z_{i-1} + U_a h_t) \end{aligned}$$

Decoder: 解码网络生成目标序列 $Y=(y_1,y_2,\cdots,y_{T'})$, y_i 的计算如下:

$$egin{aligned} z_i &= ext{RNN}([y_{i-1;c_i}], z_{i-1}) \ p(y_i|y_{< i}, h) &= ext{softmax}(g(y_{i-1}, z_i, c_i)) \end{aligned}$$

g是非线性函数(激活函数), z_i 是解码网络 i_{th} 隐层表示, y_{i-1} 是 i_{th} 时刻生成的目标词, c_i 是编码网络的上下文向量。

Sequence-to-Sequence Parsing Model

和其他任务相比,Dependency parsing不仅需要考虑输入句子和之前的操作序列,而且还需要许多结构化信息,比如parsing过程中的子树结构。但是普通的seq2seq没有明确结构来刻画这些必要的结构信息。

Encoder: 编码的输入 $x_i = [W_e * e(w_i); W_t * e(t_i)]$ 包含词、词性向量。

Attention Mechanism: 栈信息由 $s=(s_1,\cdots,s_T)$ 和 $r=(r_1,\cdots,r_T)$ 构成。当 w_i 进栈时令 $s_i=1$,出栈时令 $r_i=1$,其余状态下为0。

$$egin{aligned} lpha_{i,t} &= rac{\exp(e_{i,t})*(1-r_t)}{\sum_k \exp(e_{i,k})*(1-r_k)} \ e_{i,k} &= v_a^ op anh(W_a z_{i-1} + U_a h_t + S_a s_t) \ e_{i,k}^m &= v_a^ op anh(W_a^m[z_{i-1}; c_i^{m-1}] + U_a h_t + S_a s_t) \end{aligned}$$

Decoder: 解码转移序列。

Experiments

Setup

- 3-layers GRU 用来编码和解码
- 300 word embedding dimensions
- 32 POS-tag/label embedding dimensions
- 500 hidden units in GRU
- 3-layers attention structure
- 300-dimensional pre-trained GloVe vectors
- SGD algorithm
- 64 mini-batch size
- dropout rate is 0.2
- For testing, beam search with beam size 8

Main Results

	PTB-SD				СТВ			
Parser	Dev		Test		Dev		Test	
	UAS	LAS	UAS	LAS	UAS	LAS	UAS	LAS
Z&N11	-	-	93.00	90.95	-	-	86.00	84.40
C&M14	92.20	89.70	91.80	89.60	84.00	82.40	83.90	82.40
ConBSO	-	-	91.57	87.26	-	-	-	-
Dyer15	93.20	90.90	93.10	90.90	87.20	85.90	87.20	85.70
Weiss15	-	-	93.99	92.05	-	-	-	-
K&G16	-	-	93.99	91.90	-	-	87.60	86.10
DENSE	94.30	91.95	94.10	91.90	87.35	85.85	87.84	86.15
seq2seq	92.02	89.10	91.84	88.84	86.21	83.80	85.80	83.53
Our model	93.65	91.52	93.71	91.60	87.28	85.30	87.41	85.40
Ensemble	94.24	92.01	94.16	92.13	88.06	86.30	87.97	86.18

- 本文的模型在seq2seq方法中获得了最高的效果
- 4个不同随机初始化的模型做ensemble才超越了之前先进的parser,但是和最近最好的parser 仍然有很大差距。
- ensemble之后的性能才和Head selection(DENSE)相当。

	De	ev	Test		
	UAS	LAS	UAS	LAS	
seq2seq	92.02	89.10	91.84	88.84	
l=1	92.85	90.44	92.70	90.40	
l=2	93.30	91.13	93.21	90.98	
l=3	93.65	91.52	93.71	91.60	
l=4	93.49	91.29	93.42	91.24	

- 增加attention的层数对parsing是有帮助的。3层attention的效果最好。
- attention层数的增加并不是无限制的,会增加训练、预测的时间以及过拟合的风险。

	D	ev	Test		
	UAS	LAS	UAS	LAS	
Our model	93.65	91.52	93.71	91.60	
-pretraining	93.19	90.92	93.22	91.11	
–POS	92.73	89.86	92.57	90.05	
−s vector	93.18	90.68	93.02	90.89	
-r vector	93.16	90.90	93.27	91.02	

- 由于没有使用char-embedding,模型比较依赖POS
- 栈信息的引入是有效的