Cut the Tree

Anna loves graph theory! She has a tree where each vertex is numbered from 1 to n, and each contains a data value.

The *sum* of a tree is the sum of all its nodes' data values. If she cuts an edge in her tree, she forms two smaller trees. The *difference* between two trees is the absolute value between their sums.

Given a tree, determine which edge to cut so that the resulting trees have a minimal *difference* between them, then return that difference.

For example, your tree's nodes have weights of [1, 2, 3, 4, 5, 6]. In this case, node numbers match their weights for convenience. In the diagram below, you have the following edges: [(1, 2), (1, 3), (2, 6), (3, 4), (3, 5)].

The values are calculated as follows:

```
Edge Tree 1 Tree 2 Absolute
Cut Sum Sum Difference
1 8 13 5
2 9 12 3
3 6 15 9
4 4 17 13
5 5 16 11
```

The minimum absolute difference is **3**.

Note: The tree is *always* rooted at vertex **1**.

Function Description

Complete the *cutTheTree* function in the editor below. Return an integer that represents the minimal absolute difference achievable between the resultant two trees.

cutTheTree has the following parameter(s):

- data: an array of integers that represent node values
- edges: an 2 dimensional array of integer pairs where each pair represents an edge in the graph

Input Format

The first line contains an integer n, the number of vertices in the tree.

The second line contains n space-separated integers, where each integer u denotes the value of data[u].

Each of the n-1 subsequent lines contains two space-separated integers u and v describing edge $u \leftrightarrow v$ in tree t.

Constraints

- $3 \le n \le 10^5$
- $1 \leq data[u] \leq 1001$, where $1 \leq u \leq n$.

Output Format

A single line containing the minimum *difference* possible for tree t.

Sample Input

```
6
100 200 100 500 100 600
1 2
2 3
2 5
4 5
5 6
```

Sample Output

400

Explanation

We can visualize the initial, uncut tree as:

There are n-1=5 edges we can cut:

- 1. Edge $1\leftrightarrow 2$ results in $d_{1\leftrightarrow 2}=1500-100=1400$
- 2. Edge $2\leftrightarrow 3$ results in $d_{2\leftrightarrow 3}=1500-100=1400$
- 3. Edge $2\leftrightarrow 5$ results in $d_{2\leftrightarrow 5}=1200-400=800$
- 4. Edge $4\leftrightarrow 5$ results in $d_{4\leftrightarrow 5}=1100-500=600$
- 5. Edge $5\leftrightarrow 6$ results in $d_{5\leftrightarrow 6}=1000-600=400$

The minimum difference is 400.