# Process book Group 23

Jonas Kouwenhoven

Martijn Maiwald

Folkert Stijnman

Casper Wortmann

Juni 2018





TOUSINGOUNTERMINAL

#### Update 6 juni 2018

- Een aantal lijnen van de DataFrame wilden niet laden doordat een | ineens | | werd
- Sommige lines gaven problemen tijden het preprocessen doordat er quotes in quotes stonden "...;tekst'...."
- Regels kunnen isoleren en vervolgens alle regels met 1 kleine aanpassingen kunnen lezen en schrijven
- In de GitHub opstart gids werd vertelt dat we een private repository moesten creeeren, dit koste geld en na overleg met Nick zijn we overgestapt op een public repository
- Jonas maakte de overstap van CS50 naar normaal programmeren, programma's runnen verliep nu veel sneller.

# Update 8 juni 2018

- Moeite met het terugzetten van de csv in JSon, verschillende manieren geprobeerd
- Kolommen met *URL's* zijn er uitgehaald, deze gaan we niet gebruiken.
- Was maar 1 kleine aanpassing nodig
- Hebben we bepaalde data extra nodig of juist niet nodig.

|--|

• De JSon file was te groot om op *GitHub* te zetten, dus moest er apart bij gezet worden

## Update 11 juni 2018

- Bepaalde data was echt onnodig en vervolgens uit de set gehaald.
- Lege entries vervangen met "NaN"
- Leeftijden die ongeloofwaardig zijn (311 en 201) zijn er uitgehaald.
- In regel 997511 was er een character dat niet gelezen kon worden csv parser, dit is eruit gehaald.

```
{'0': 'Julian Sims'}
('0': 'Bernard Gillis')
('0': 'Bernard Gillis')
('0': 'Damien Bell', '1': 'Desmen Noble', '2': 'Herman Seagers', '3': 'Ladd Tate Sr', '4': 'T
allis Moore')
('0': 'Stacie Philbrook', '1': 'Christopher Ratliffe', '2': 'Anthony Ticali', '3': 'Sonny Arc
huleta')
('0': 'Danielle Imani Jameison', '1': 'Maurice Eugene Edmonds, Sr.', '2': 'Maurice Edmonds I
I', '3': 'Sandra Palmer')
('0': 'Rebeika Powell', '1': 'Kayetie Melchor', '2': 'Misty Nunley', '3': 'Julie Jackson',
'4': 'James Poore', '5': 'Gerric Poore')
('0': 'Greg Griego', '1': 'Sara Griego', '2': 'Zephania Griego', '3': 'Jael Griego', '4': 'An
gelina Griego', '5': 'Nehemiah Griego')
NAN
NAN
('0': 'Deshaun Jones')
```

#### Update 13 juni 2018

• Oplossing gezocht voor het omzetten van participant data naar dictionaries



- Uiteindelijk gekozen voor een extra DataFrame voor de particpants, dit duurde een nacht en kostte enorm veel stroom.
- Begonnen met de eerste plotjes.





```
df_suspect = df_p.loc[(df_p['participant_type'] == "Subject-Suspect")]
df_relationships = df_suspect.groupby([ "participant_relationship"])
# df_relationships = df_relationship.drop(df_relationship.index[11])

df_relationships.describe()

# df_relation_age = df_relationship.set_index('participant_age')
df_relations = df_relationship.groupby('participant_relationship')
df_relations.describe()

# for index, row in df_relationship.iterrows():

# print(row)

# df_aquaintance = df_relationship.loc[df_relationship['participant_relation # print(df_aquaintance)
# df_aquaintance
# counter = 0
# counter1 = 0
# incidentcount = 0

zus = []
dit = []
dat = []
for line in df_p['participant_type']:
    if line == 'Victim':
        counter +=1
        dit.append(counter)
else:
        dit.append(counter)
for line in df_p['participant_type']:
    if line == 'Subject-Suspect':
        counter1 +=1
```

# Update 15 juni 2018

- Gekeken naar de beste manier om een groupby DataFrame om te zetten naar een grafiek
- Moeite met hoe precies data van een bepaalde DF te verwerken
- Probleem dat waarden te vaak uitgerekend werd, waardoor de plot steeds andere waardes had. De berekening in een eigen *cell* gezet waardoor het probleem werd verholpen

Out[9]:

|            |                                | count |           |           |     |       |      | participant_age |       |       |           |           |      |       |
|------------|--------------------------------|-------|-----------|-----------|-----|-------|------|-----------------|-------|-------|-----------|-----------|------|-------|
|            |                                | count | mean      | std       | min | 25%   | 50%  | 75%             | max   | count | mean      | std       | min  | 25%   |
| participan | t_relationship                 |       |           |           |     |       |      |                 |       |       |           |           |      |       |
|            | Aquaintance                    | 65.0  | 13.030769 | 11.468666 | 1.0 | 4.00  | 9.0  | 22.00           | 38.0  | 65.0  | 41.953846 | 19.505953 | 1.0  | 26.00 |
| Ar         | med Robbery                    | 85.0  | 51.764706 | 69.337279 | 1.0 | 3.00  | 24.0 | 67.00           | 313.0 | 85.0  | 44.070588 | 25.388781 | 0.0  | 23.00 |
|            | Co-worker                      | 44.0  | 2.590909  | 1.435727  | 1.0 | 1.00  | 3.0  | 3.00            | 6.0   | 44.0  | 41.386364 | 14.231011 | 18.0 | 29.75 |
| Drive      | by - Random<br>victims         | 20.0  | 1.650000  | 0.745160  | 1.0 | 1.00  | 1.5  | 2.00            | 3.0   | 20.0  | 31.200000 | 13.813037 | 9.0  | 21.75 |
|            | Family                         | 94.0  | 33.829787 | 19.766181 | 1.0 | 15.25 | 37.0 | 47.75           | 77.0  | 94.0  | 46.500000 | 27.279418 | 0.0  | 23.25 |
|            | Friends                        | 72.0  | 13.277778 | 14.863911 | 1.0 | 3.00  | 5.5  | 18.25           | 60.0  | 72.0  | 39.680556 | 21.292614 | 3.0  | 21.75 |
| C          | Gang vs Gang                   | 50.0  | 9.900000  | 13.286866 | 1.0 | 1.00  | 4.0  | 13.50           | 52.0  | 50.0  | 31.680000 | 17.523675 | 1.0  | 18.25 |
|            | vasion - Perp<br>Know Victim   | 76.0  | 7.947368  | 9.102226  | 1.0 | 1.75  | 3.5  | 11.25           | 37.0  | 76.0  | 42.526316 | 22.735273 | 2.0  | 23.75 |
|            | vasion - Perp<br>Knows Victim  | 56.0  | 6.875000  | 7.163195  | 1.0 | 1.75  | 4.5  | 11.25           | 31.0  | 56.0  | 40.714286 | 19.139407 | 2.0  | 25.75 |
|            | nooting - Perp<br>nows Victims | 10.0  | 1.100000  | 0.316228  | 1.0 | 1.00  | 1.0  | 1.00            | 2.0   | 10.0  | 43.400000 | 24.404918 | 16.0 | 21.75 |
|            | ıss shooting -<br>ndom victims | 9.0   | 1.222222  | 0.440959  | 1.0 | 1.00  | 1.0  | 1.00            | 2.0   | 9.0   | 35.444444 | 23.335119 | 14.0 | 19.00 |
|            | Neighbor                       | 77.0  | 7.610390  | 5.582293  | 1.0 | 2.00  | 7.0  | 12.00           | 25.0  | 77.0  | 45.896104 | 23.239930 | 2.0  | 27.00 |
|            | icant others -                 | 91.0  | 33.494505 | 33.256035 | 1.0 | 3.50  | 21.0 | 58.00           | 105.0 | 91.0  | 47.000000 | 26.886593 | 0.0  | 24.50 |

• Nog veel "test code" tussen de echte code die we gaan gebruiken



# Update 18 juni 2018

- $\bullet$  Meerdere manieren gebruikt om te checken dat de 50/50 verdeling van suspect en victim over alle incidenten klopt.
- Er waren wat problemen met het toekennen van kleuren aan bepaalde variabelen of lijnen.

|   | State      | Census     | Estimation | 2010       | 2011       | 2012       | 2013       | 2014       | 2015       | 2016       | 2017       |
|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 0 | Alabama    | 4.779.736  | 4.780.135  | 4.785.579  | 4.798.649  | 4.813.946  | 4.827.660  | 4.840.037  | 4.850.858  | 4.860.545  | 4.874.747  |
| 1 | Alaska     | 710.231    | 710.249    | 714.015    | 722.259    | 730.825    | 736.760    | 736.759    | 737.979    | 741.522    | 739.795    |
| 2 | Arizona    | 6.392.017  | 6.392.309  | 6.407.002  | 6.465.488  | 6.544.211  | 6.616.124  | 6.706.435  | 6.802.262  | 6.908.642  | 7.016.270  |
| 3 | Arkansas   | 2.915.918  | 2.916.031  | 2.921.737  | 2.938.640  | 2.949.208  | 2.956.780  | 2.964.800  | 2.975.626  | 2.988.231  | 3.004.279  |
| 4 | California | 37.253.956 | 37.254.518 | 37.327.690 | 37.672.654 | 38.019.006 | 38.347.383 | 38.701.278 | 39.032.444 | 39.296.476 | 39.536.653 |
| 5 | Colorado   | 5.029.196  | 5.029.325  | 5.048.029  | 5.116.411  | 5.186.330  | 5.262.556  | 5.342.311  | 5.440.445  | 5.530.105  | 5.607.154  |

• Extra dataset toegevoegd met de bevolkingen van elke staat, met deze dataset konden we plots genereren per inwoner. Voor percentuale resultaten.

```
df['month'] = df['date'].dt.month
df['year'] = df['date'].dt.year
```

#### Update 20 juni 2018

| year   | month | day |
|--------|-------|-----|
| 2013.0 | 1.0   | 1.0 |

- Legenda toevoegen aan de kaart van Amerika was lastig, dit hebben we ernaast gefotoshopt.
- Martijn zijn knie werd verbrijzeld tijdens boksen, waardoor afspreken op Science Park moeilijker werd
- Apart de dagen, maanden en jaren toegevoegd zodat we konden zoeken op alleen dag of maand of jaar.

# Update 22 juni 2018

- Tegen een aantal beperkingen van Bokeh aangelopen, dit vervolgens met Mat-PlotLib opgelost
- Helaas was MatPlotLib ook niet erg goed, en niet van hoge kwaliteit.



# VS.

#### Update 25 juni 2018

- Vanuit MatPlotLib kon geen output HTML file gemaakt worden, we hebben dus screenshots gemaakt van de plot.
- Wat standaard typefoutjes, die het css/html file wat vertraging opleverde, drie keer goed lezen en het was opgelost.



## Update 27 juni 2018

- De HTML files van de plotjes waren erg groot, dit vertraagde de website aanzienlijke. Van een aantal van deze plotjes zijn screenshots gemaakt wat minder werkgeheugen vraagt.
- Andere HTML files zijn zelfs weggelaten omdate de bestanden te groot werden. 105.2 MB !!!



# Update 29 juni 2018

- Te horen gekregen dat plotly beter werkt dan Bokeh of MatPlotLib
- Moeite met het creëren van een folder op Git

### Research idea's

- 1) Correlation between surname's and incidents.
- 2) Incidents correlated to universities/campus/students with the help of keywords like: 'campus','university','school','student','professor','teacher'.
- 3) Participant relationships; family, friends, co-workers, gang vs gang, acquaintance, significant others.
- 4) Potential forecasting of incidents, the course of gun violence in the future.
- 5) Woman/man distribution in family incidents.

# Steps taken

- 1) **From CSV to JSON**: The provided dataset was in a CSV Format, but the discovery was made that Panda<sup>1</sup> would work better with a JSON format.
- 2) **Deleting columns**: Columns containing url's were deleted, because it looked messy and they where not needed.
- 3) **Tidy up**: By removing unnecessary enters and punctuation the data set got a better appearance.
- 4) **Empty cells**: Because empty cells could cause some problems during plotting and programming, we replaced them all with 'NaN' or 'Unknown'.
- 5) **Removing ages**: We removed all the age information above a 100 years. These were only a few, including one where someone was stated to be 209 and 311.

# Questions

We will be focusing on the level of federal involvement in gun violence incidents. Federal involvement includes the rate of suspects that include police officers, deputees and agents.

<sup>&</sup>lt;sup>1</sup>https://pandas.pydata.org/

- 1) How has federal involvement developed over time since 2013, per state? Where are they concentrated? Could we find any correlation between these concentrations and other incident characteristics?
- 2) Does federal involvement show any correlation with age? State? Gender? The amount of mass shootings? Accidental shootings?
- 3) Is there a correlation between the percentage of suspects that are male or female in a state, and the percentage of times the victim in an incident with federal involvement is male or female?

4)