Preconditioning using Rank-structured Sparse Matrix Factorization

Pieter Ghysels, Xiaoye Sherry Li, Gustavo Chávez, Yang Liu Mathias Jacquelin, Esmond Ng Lawrence Berkeley National Laboratory pghysels@lbl.gov

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative.

Introduction

Sparse direct factorization based solvers

- Are robust
- But expensive
 - Use a lot of memory: fill-in
 - Cost determined by dense algebra on largest dense submatrices

Introduction

Sparse direct factorization based solvers

- Are robust
- But expensive
 - Use a lot of memory: fill-in
 - Cost determined by dense algebra on largest dense submatrices

Use low-rank approximation/compression for fill-in in sparse LU factorization

- For many matrices from PDEs fill-in occurs in dense matrices with low rank off-diagonal blocks
 - Hierarchically Semi-Separable (HSS) matrices
- Gains in complexity (over exact direct solver)
- Fully algebraic sparse solver/preconditioner
- STRUMPACK software library

Jianlin Xia. Randomized sparse direct solvers. SIAM Journal on Matrix Analysis and Applications 34.1 (2013): 197-227.

- Nested-dissection reordering
 - Separator/supernodal tree
 - $\bullet \ (\mathsf{Par})\mathsf{Metis}/(\mathsf{PT})\mathsf{Scotch} \ \mathsf{graph} \ \mathsf{partitioners}$
- For every separator
 - Dense frontal matrix
 - Partial LU factorization
 - Schur complement update
 - Extend-add: parent nodes "sum" Schur complements from the children
- Multifrontal solve
 - Forward and backward solve
 - Two traversals of the separator tree

- Nested-dissection reordering
 - Separator/supernodal tree
 - $\bullet \ (\mathsf{Par})\mathsf{Metis}/(\mathsf{PT})\mathsf{Scotch} \ \mathsf{graph} \ \mathsf{partitioners}$
- For every separator
 - Dense frontal matrix
 - Partial LU factorization
 - Schur complement update
 - Extend-add: parent nodes "sum" Schur complements from the children
- Multifrontal solve
 - Forward and backward solve
 - Two traversals of the separator tree

- Nested-dissection reordering
 - Separator/supernodal tree
 - (Par)Metis/(PT)Scotch graph partitioners
- For every separator
 - Dense frontal matrix
 - Partial LU factorization
 - Schur complement update
 - Extend-add: parent nodes "sum" Schur complements from the children
- Multifrontal solve
 - Forward and backward solve
 - Two traversals of the separator tree

supernodal/separator tree

- Nested-dissection reordering
 - Separator/supernodal tree
 - (Par)Metis/(PT)Scotch graph partitioners
- For every separator
 - Dense frontal matrix
 - Partial LU factorization
 - Schur complement update
 - Extend-add: parent nodes "sum" Schur complements from the children
- Multifrontal solve
 - Forward and backward solve
 - Two traversals of the separator tree

Hierarchically Semi-Separable (HSS) Matrices

- \bullet Data-sparse representation (like $\mathcal{H},\,\mathcal{H}^2,\,\mathsf{BLR},\,\mathsf{HODLR},\,\dots)$
- \bullet HSS is subset of $\mathcal{H}^2\text{-matrices},$ subset of $\mathcal{H}\text{-matrices}$
- Full rank matrix with low-rank off-diagonal blocks
- Hierarchical partitioning of the matrix

Hierarchically Semi-Separable (HSS) Matrices

- Data-sparse representation (like \mathcal{H} , \mathcal{H}^2 , BLR, HODLR, ...)
- HSS is subset of \mathcal{H}^2 -matrices, subset of \mathcal{H} -matrices
- Full rank matrix with low-rank off-diagonal blocks
- Hierarchical partitioning of the matrix

Off-diagonal blocks are approximated as low-rank

$$A_{\nu_1,\nu_2} = A(I_{\nu_1},I_{\nu_2}) = U_{\nu_1}^{\mathsf{Big}} B_{\nu_1,\nu_2} (V_{\nu_2}^{\mathsf{Big}})^*$$

• Diagonal blocks are full rank

$$D_{\tau} = A(I_{\tau}, I_{\tau})$$

ullet Column bases U^{Big} and row bases V^{Big} are nested

$$U_{ au}^{ ext{Big}} = egin{bmatrix} U_{
u_1} & 0 \ 0 & U_{
u_2} \end{bmatrix} U_{ au}, \quad V_{ au}^{ ext{Big}} = egin{bmatrix} V_{
u_1} & 0 \ 0 & V_{
u_2} \end{bmatrix} V_{ au}$$

Hierarchically Semi-Separable (HSS) Matrices

- Data-sparse representation (like \mathcal{H} , \mathcal{H}^2 , BLR, HODLR, ...)
- HSS is subset of \mathcal{H}^2 -matrices, subset of \mathcal{H} -matrices
- Full rank matrix with low-rank off-diagonal blocks
- Hierarchical partitioning of the matrix

Off-diagonal blocks are approximated as low-rank

$$A_{
u_1,
u_2} = A(I_{
u_1},I_{
u_2}) = U_{
u_1}^{\mathsf{Big}} B_{
u_1,
u_2} (V_{
u_2}^{\mathsf{Big}})^*$$

$$D_{\tau} = A(I_{\tau}, I_{\tau})$$

$$U_{ au}^{\mathsf{Big}} = egin{bmatrix} U_{
u_1} & 0 \ 0 & U_{
u_2} \end{bmatrix} U_{ au}, \quad V_{ au}^{\mathsf{Big}} = egin{bmatrix} V_{
u_1} & 0 \ 0 & V_{
u_2} \end{bmatrix} V_{ au}$$

- Fast HSS construction via randomized sampling
- Fast HSS ULV-like factorization (U and V^* unitary, L triangular)

Multifrontal HSS-enabled Sparse Solver/Preconditioner

- Only use HSS approximation for the largest frontal matrices
 - level $(\tau) < \ell_s \to F_{\tau}$ is HSS
 - level $(\tau) \ge \ell_s \to F_{\tau}$ is dense
- HSS partitioning based on recursive bisection of separator graph
 - Uses METIS partitioner
 - Goal is to reduce HSS ranks

Multifrontal HSS-enabled Sparse Solver/Preconditioner

- Only use HSS approximation for the largest frontal matrices
 - level $(au) < \ell_s o F_{ au}$ is HSS
 - level $(au) \geq \ell_s
 ightarrow F_ au$ is dense
- HSS partitioning based on recursive bisection of separator graph
 - Uses METIS partitioner
 - Goal is to reduce HSS ranks

Multifrontal HSS-enabled Sparse Solver/Preconditioner

Sources of Parallelism

- Sources of parallelism
 - Supernodal/separator tree
 - HSS hierarchy
 - BLAS/LAPACK calls
- On-Node parallelism
 - Recursive traversal of trees using OpenMP tasks
 - Recursively split BLAS operations in smaller ones with OpenMP tasks
- Distributed memory parallelism
 - Proportional splitting of MPI communicators for sub-trees
 - ScaLAPACK for distributed levels of the trees

Work In Progress: SLATE integration

- On-node: SLATE with OpenMP tasks parallelism
- SLATE as ScaLAPACK alternative, with GPU off-loading

Fast Direct Solver for 3D Helmholtz - Flop Count

- Theory predicts $\mathcal{O}(n^{4/3} \log n)$ FLOPS for factorization
- HSS ranks grow with mesh dimension $\sim n^{\frac{1}{3}} = k$
- Use as a preconditioner

Preconditioner Setup and Solve Phases

$(\times 10^6)$				
matrix	N	nnz	type	origin
Hook_1498	1.5	59.3	SPD	struct. mechanics
memchip	2.7	13.3	non-sym	memory chip
ML_Geer	1.5	110.7	non-sym	poroelasticity

- 4 nodes, 96 Intel[®] Ivy Bridge cores
- For memchip, solver acts as direct method (small frontal matrices)
- AMG very efficient for many PDE based systems () +

ParMETIS Matrix Ordering Preprocessing Phase

Matrix reordering to reduce fill-in becomes a major bottleneck

- ParMETIS issues: poor scaling, worsening quality, . . .
- Possible remedy: only use a handful of compute nodes
- Good strong scaling for numerical factorization

The Graph Laplacian

Graph G(V, E), vertices $V = \{v_i\}$, edges $E = \{e_{ij} = (v_i, v_j)\}$, $i, j \in \{i, \dots, n\}$

Adjacency matrix

$$A_{i,j} = egin{cases} 1 & ext{if } (v_i, v_j) \in E \ 0 & ext{otherwise} \end{cases}$$

Degree matrix

$$D = diag(d_i) = diag(degree(v_i))$$

where degree (v_i) is the number of edges incident to vertex v_i

Graph Laplacian

$$L(G) = D - A = \begin{cases} -1 & \text{if } (v_i, v_j) \in E \\ d_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

- L(G) is positive semi-definite
- $\lambda_0 = 0$, $v_0 = c^{st}$ (constant vector)
- ullet If G is connected, then λ_0 has multiplicity 1

Spectral Bisection and the Fiedler Vector

Fiedler vector

- Eigenvector v_1 belonging to λ_1 , the smallest (nonzero) eigenvalue of L(G)
- Fiedler vector is very smooth

Spectral bisection based on Fiedler vector values $F_i \equiv F(v_i)$

$$V_1 = \{ v_i \mid F_i \leq c \}$$

$$V_2 = \{ v_i | F_i > c \}$$

•
$$c = \text{mean}\{F_0, F_1, \dots, F_n\} = 0$$

•
$$c = \text{median}\{F_0, F_1, \dots, F_n\}$$

•
$$c = (\min(F_i) + \max(F_i))/2$$

•
$$c = \operatorname{argmin}(Q(V_1, V_2))$$

. . . .

Computing the Fiedler Vector

- Graph coarsening
 - Group neighboring vertices
 - Define graph Laplacian on coarser graph
 - Weighted coarsening
- Compute Fiedler vector on coarser graph
 - Recursive call
 - LAPACK ssyevx/dsyevx (|V| < 30)
- Interpolate Fiedler vector to original graph
- Lanczos eigensolver on original graph
 - Start with interpolated Fiedler vector

Works well for low accuracy

Spectral Nested Dissection Ordering Quality Comparison

Typically slightly worse than Metis, comparable to Scotch

Shared Memory Parallel Implementation

- Exploit multiple levels of parallelism
 - Bisection
 - Fiedler vector computation
 - Recursive call for unconnected subgraphs
 - Reorder subgraphs concurrently
 - Spawn a new tasks for each subgraph
- For the top separator
 - Parallelism exclusively from Fiedler vector computation
- Lower down the recursion
 - Parallelism from many concurrent sub-graphs
- Multiple eigensolves going on concurrently
- Possible load imbalance
- Need for dynamic scheduling
- Carefully control granularity

Nested Dissection with OpenMP Tasking

```
PPt<intt> nd_recursive(const Graph<intt>& g, const NDOptions& opts, int lvl) {
   // limit number of tasks
   auto par = (lvl < opts.max_task_lvl()) ?</pre>
     ThreadingModel:: TASK : ThreadingModel:: SEO:
   if (g.n() <= opts.dissection_cutoff()) return amd(g);</pre>
   // handle nodes with degree 0 separately
   // check if q is connected, if not recursion on connected parts
   auto F = compute_Fiedler(par, g, opts); // multilevel Fiedler computation
   auto c = get_cut_value(par, g, F, opts);  // minimize conductance
   auto part = vertex_separator(par, g, c, opts); // edge to vertex separator
   auto [A, B] = g.extract_domains(par, part);
   PPt<intt> pA, pB;
#pragma omp task if(par==ThreadingModel::TASK) default(shared)
     pA = nd_recursive(A, opts, lvl+1);
#pragma omp task if(par==ThreadingModel::TASK) default(shared)
     pB = nd_recursive(B, opts, lvl+1);
#praama omp taskwait
   return ... // combine pA, pB
 max_task_lvl = std::log2(omp_get_max_threads()) + 3;
```

OpenMP Scaling

NERSC Cori Haswell - Flan_1565.mtx

- SpMV: Application of Graph Laplacian to a vector
- PAR: OpenMP parallel for loop for each loop (axpy, spmv, dot, ..)
- TASK: single OpenMP parallel region, taskloop parallelism
- ullet taskloop reduction not supported yet o manual implementation

OpenMP Scaling

Distributed Memory Spectral Nested Disscetion

NERSC Cori, Haswell

Queen_1417.mtx, N=4,147,110 nnz=333,646,394

- Parallel multilevel Lanczos, split MPI communicator after bisection
- Spectral quality degrades: edge to vertex separator, parallel coarsening

Conclusions and Outlook

Rank-Structured Preconditioner STRUMPACK

- Preconditioner for range of PDE based problems
- Achieves (nearly) linear scaling for certain problems
- Not all problems compress well: other rank structured formats!
 - HODLR Hierarchically Off-Diagonal Low-Rank
 - BLR Block Low-Rank
 FFT:
 - Butterfly, based on FFT ideas
- Never form dense front: randomized sampling, ACA

Spectral Nested-Dissection

- Okay quality, worse than ParMetis, better than PTScotch
 - Improve with Kernighan-Lin or Fiduccia-Mattheyses?
- Efficient and scalable implementation: MPI+OpenMP (+GPU?)
- Prec LOBPCG, communication avoiding/hiding eigensolvers
- Integration in SuperLU, STRUMPACK
- Optimize for data-sparsity in rank-structured solver?
- K-way graph partitioning

The End

Thanks for listening!

Questions?