Formulario Control Geométrico

Raúl Ultralaser

Preliminares

Definición (Polinomio anulador o aniquilador de un vector). Cualquier polinomio $f(\lambda)$ tal que f(A) = 0

Definición (Polinomio anulador mínimo de x o polinomio mínimo de x). El polinomio $\phi(\lambda)$ es el polinomio anulador de menor grado del vector x

Definición (Polinomio anulador mínimo de X). El polinomio $\Psi(\lambda)$ es el polinomio anulador mínimo de menor grado del espacio completo X, y es único.

se satisface que

$$1 \le deg\Psi(\lambda) \le dimX$$

Definición (Subespacio A-invariante). Un espacio τ de X se dice invariante bajo el operador A o A-invariante, si

$$Ax \in \tau \forall x \in \tau$$

Teorema (1.2.1 Primer teorema de descomposición de un espacio en subespacios invariantes). Sea A un operador $A: X \to X$ y $\Psi(\lambda)$ el polinomio mínimo de X tal que $\Psi(\lambda)$ es expresado como el producto de dos polinomios coprimos $\phi_1(\lambda)$ y $\phi_2(\lambda)$, es decir $\Psi(\lambda) = \phi_1(\lambda)\phi_2(\lambda)$.

Entonces X se puede descomponer en la suma directa de 2 subespacios A-invariantes τ_1 y τ_2 cuyos polinomios mínimos son, respectivamente, $\phi_1(\lambda)$ y $\phi_2(\lambda)$, esto es, $X = \tau_1 \oplus \tau_2$

Teorema (1.2.2). En un espacio vectorial siempre existe un vector cuyo polinomio mínimo coincide con el polinomio mínimo del espacio completo.

Lema (1.2.1). Si los polinomios mínimos de los vectores e y e" son coprimos, entonces el polinomio

mínimo del vector e=e'+e'' es igual al producto de los polinomios mínimos de e y e''

Definición (Congruente módulo τ). Sea τ un subespacio de X. Los vectores $x, y \in X$ se dicen congruentes módulo τ , representado como $x \equiv y (mod\tau)$ si

$$y - x \in \tau$$

El concepto de congruencia establece clases de equivalencia

$$[x] = \{ y \in X : y = x + t, t \in \tau \}$$

Definición (Espacio cociente). Denotado como X/τ , es el conjunto de todas las clases de equivalencia de los vectores $x \in X$.

Nota: la manera fácil de encontrar una base del espacio cociente es tomando las clases de equivalencia de los vectores que no están en la base de τ , pero sí en la base de X

Teorema (1.3.1). La dimensión del espacio cociente X/τ está dada por

$$dim(X/\tau) = dimX - dim\tau$$

Definición (Dependencia e independencia lineal). Los vectores $x_1, x_2, ..., x_p$ se dicen linealmente dependientes módulo τ si existen escalares $\alpha_1, \alpha_2, ..., \alpha_p \in F$, no todos cero, tal que

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_p x_p \equiv 0 \pmod{\tau}$$

y linealmente independientes módulo τ , en caso contrario.

Nota: Los conceptos de polinomio anulador, polinomio mínimo, etc. como se vieron anteriormente, se les llamará **absolutos**, y cuando se trate del caso módulo τ se les llamará **relativos**.

Definición (Subespacio cíclico). Los vectores $\{e, Ae, A^2e, ..., A^{p-1}e\}$ forman una base de un espacio A-invariante de dimensión p

$$\tau = span\{e, Ae, A^2e, ..., A^{p-1}e\}$$

Se dice que τ es un subespacio cíclico, y que el vector e es el elemento generador de este subespacio.

Teorema (1.4.1 Segundo teorema de la descomposición de un espacio vectorial en subespacios invariantes cíclicos). Relativo a un operador lineal dado $A:X\to X$, el espacio X puede descomponerse en la suma directa de subespacios invariantes cíclicos $\tau_1,\tau_2,...,\tau_t$ con polinomios mínimos $\Psi_1(\lambda),\Psi_2(\lambda),...,\Psi_t(\lambda)$ tal que

$$X = \tau_1 \oplus \tau_2 \oplus ... \oplus \tau_t$$

donde $\Psi_1(\lambda)$ coincide con el polinomio mínimo $\Psi(\lambda)$ del espacio completo X y cada $\Psi_i(\lambda)$ es divisible por $\Psi_{i+1}(\lambda)$, i=1,2,...,t-1.

Teorema (1.4.2). Un espacio vectorial es cíclico si y solo si su dimensión es igual al grado de su polinomio mínimo.

Teorema (1.4.3). Un espacio cíclico puede descomponerse únicamente en subespacios invariantes que:

- son también cíclicos, y
- tienen polinomios mínimos coprimos.

Teorema (1.4.4). Si un espacio es descompuesto en subespacios invariantes que

- son también cíclicos, y
- tienen polinomios mínimos coprimos, entonces el espacio mismo es cíclico.

Teorema (1.4.5). Un espacio no puede descomponerse en subespacios invariantes, si y solo si

- es cíclico,
- su polinomio mínimo es potencia de un polinomio irreducible sobre F.

Teorema (1.4.6 Tercer teorema de la descomposición de un subespacio vectorial en subespacios invariantes cíclicos). UN espacio vectorial X siempre puede ser descompuesto en subespacios invariantes cíclicos

$$X = \tau' \oplus \tau'' \oplus ... \oplus \tau^{(u)}$$

tales que el polinomio mínimo de cada uno de estos subespacios cíclicos es una potencia de un polinomio irreducible.

Teorema (2.1). El subespacio R_0 está dado por

$$R_0 = \langle A|ImB\rangle$$

donde

$$R_0 = \langle A|ImB\rangle := ImB + AImB + \dots + A^{n-1}ImB$$

Teorema (2.2). El subespacio R_0 es el subespacio A – invariante más pequeño que contiene a ImB