

- 1. The switch has been in position a for a <u>long time</u>. All transients have died out. At t=0, the switch moves instantaneously to position b.
 - a. At $t=0^-$ (the last instant that the switch is in position a), what is the current through the capacitor? $\begin{bmatrix} 0 & A \end{bmatrix}$
 - b. At $t=0^-$ (the last instant that the switch is in position a), what is the voltage across the capacitor? $-28-v_C(0^-)+(4K\Omega)(3mA)=0$; $v_C(0^-)=-16$ V
 - c. At $t=0^+$ (the first instant that the switch is in position b), the current through the capacitor is the same as in Part a. True False
 - d. At $t=0^+$ (the first instant that the switch is in position b), the voltage across the inductor is the same as at $t=0^-$. True False
 - e. At $t=0^+$ (the first instant that the switch is in position b), what is the voltage across the inductor?

KVL CCW: $-20+v_L(0^+)+(8K\Omega)(3mA)+v_C(0^+)=0$; $v_L(0^+)=12$ V; + at right end

2. This is a second-order circuit. There is an initial voltage on the capacitor $v(0^-)=12$ V, and an initial current in the inductor $i_L(0^-)=30$ mA. In order to solve the differential equation for v(t), the following values must be found:

- a. $i_{C}(0^{+})$
- b. $i_R(0^+)$
- c. $dv(t)/dt|_{t=0}^{+}$

Using what you know about inductors, capacitors, and KCL, find these values.

$$i_L(0^+) = i_L(0^-) = 30 \text{ mA}$$

 $v(0^+) = v(0^-) = 12 \text{ V}$

a.
$$i_C(0^+)+i_L(0^+)+i_R(0^+)=0$$

 $i_C(0^+)=(-30-60)=-90 \text{ mA}$

b.
$$i_R(0^+) = \frac{v(0^+)}{R} = \frac{12}{200} = 60 \text{ mA}$$

c. Because
$$i_C(0^+) = C \left. \frac{dv(t)}{dt} \right|_{t=0^+}$$

$$\frac{dv(t)}{dt}\Big|_{t=0^{+}} = \frac{-90\text{e-3}}{0.2\text{e-6}} = -450 \text{ KV/s}$$

- 3a. Find the time constant τ of this circuit. This will require solving the differential equation for the circuit.
- 3b. Then, find only the Thévenin resistance R_{th}of the circuit to the left of the capacitor (consider the capacitor to be the load).
- 3c. Then, compute $R_{th}*C$ and compare to the τ from 3a.

$$\frac{v_C - 3.3}{10e3} + \frac{v_C}{22e3} + 1e - 8 \frac{dv_C}{dt} = 0$$

$$\frac{dv_C}{dt} + (1e8) \left(\frac{1}{10e3} + \frac{1}{22e3} \right) v_C = (1e8) \left(\frac{3.3}{10e3} \right)$$

$$P = 1.45e4; \ Q = 3.3e4; \ e^{\int_0^1 PdX} = e^{1.45e4t}$$

$$e^{1.45e4t} \frac{dv_C}{dt} + 1.45e4 e^{1.45e4t} v_C = 3.3e4 e^{1.45e4t}$$

$$\frac{d}{dt} \left(e^{1.45e4t} v_C \right) = 3.3e4 e^{1.45e4t}$$

$$e^{1.45e4t} v_C = \int_0^1 3.3e4 e^{1.45e4t} dt = \frac{3.3e4}{1.45e4} e^{1.45e4t} + C = 2.27 e^{1.45e4t} + C$$

$$v_C = 2.27 + C e^{-1.45e4t}$$

$$v_C(0^+) = 2.27 + C \Rightarrow C = -2.27$$

$$v_C(t) = 2.27 (1 - e^{-1.45e4t})$$
Time constant $\tau = \frac{1}{1.45e4} = 6.875e-5$ s

 R_{th} of network assuming C is the load:

$$R_{th} = 10e3||22e3 = 6.875e3 \Omega$$

$$R_{th} \cdot C = (6.875e3)(1e-8) = 6.875e-5 \text{ s}$$

CONCLUSION: for a first-order capacitive circuit with step input, $\tau = \frac{1}{P}$!

Also, $\tau = C \cdot R_{th}$, where C is the load! NOTE: not a mathematical proof.

- 4. The switch has been in the position shown for a <u>long time</u>. Find:
 - a. $i_1(0^+)$
 - b. $i_0(0^+)$
 - c. $v_0(0^+)$
 - d. τ for t=0+
 - e. i_L(0+) for all t>0 (HINT: refer to the Lecture 4 video at 22 minutes.)

a.
$$i_L(0^+) = i_L(0^-) = 20 \text{ A}$$

b.
$$i_O(0^+) = -20\left(\frac{10}{10+40}\right) = -4$$
 A

c.
$$v_O(0^+) = (-4) \cdot (40) = -160 \text{ V}$$

d.
$$\tau = \frac{L}{R_{th}}$$

$$R_{th} = 2 + 10 ||40 = 2 + 8 = 10 \Omega$$

$$\tau = \frac{2}{10} = 0.2 \text{ s}$$

e. Refer to the Lecture 4 video at 22 minutes.

$$i_L(t) = i_O(0^+)e^{\frac{-t}{\tau}} = 20e^{-5t}$$

- 5. The switch has been open for a long time. Find:
 - a. $v_{C}(0^{-})$
 - b. $v_{C}(0^{+})$
 - c. v_C(∞)
 - d. $i_{C}(0^{-})$
 - e. $i_{C}(0^{+})$

a.
$$v_C(0^-) = 12 \left(\frac{60}{60 + 40} \right) = 7.2 \text{ V}$$

b.
$$v_C(0^+) = v_C(0^-) = 7.2 \text{ V}$$

c.
$$v_C(\infty) = 12 \left(\frac{60}{60 + 30} \right) = 8 \text{ V}$$

d.
$$i_C(0^-) = 0$$

e.
$$\frac{7.2 - 12}{30e3} + \frac{7.2}{60e3} - i_C(0^+) = 0$$

$$i_C(0^+) = \frac{21.6 - 24}{60e3} = 0.04 \text{ mA}$$