概完全数に関する決定手続き

長岡一昭

2015年12月27日

概要

 $\sigma(a)=2a-1$ をみたす正の整数は概完全数と呼ばれている。 $\sigma(2^e)=2\cdot 2^e-1$ であるが、概完全数は 2 の冪に限られるかという問題を概完全数の問題ということにする。この論文では n が与えられたとき、異なる素因数の個数が n の奇の概完全数が存在するかどうかを決定する手続きを定義し、その手続きを用いて新しい結果が得られることを示す。

1 概完全数に関する決定手続き

以下では a の異なる素因数の個数を $\omega(a)$ と表し、 $\omega(a)=n$ である概完全数を n-概完全数という。 $\omega(a)=1,2$ の場合については 飯高茂 「完全数について」 第25回数学史シンポジウム報告集 参照。 また、奇の完全数を OP、擬完全数を QP、奇の概完全数を OAP で示す。

まず関連する今までに知られている結果と今回得られた結果について述べる。

今までに知られている結果

 $a = p_1^{e_1} \cdots p_n^{e_n}, \quad p_1 < \cdots < p_n$ とする。

- ・OP について O.Grun(1952) $p_1 < 2 + 2n/3$
- ・ OP について C.Pomerance(1977) $p_i < (4n)^{2^{i(i+1)/2}}$ $(1 \le i \le n)$
- OP/QP KOVT M.Kishore(1981) $p_i < 2^{2^{i-1}}(n-i+1)$ $(2 \le i \le 6)$
- ・OAP について M.Kishore(1981) $p_i < 2^{2^{i-1}}(n-i+1)$ $(2 < i \le 5), p_6 < 23775427335(n-5)$
- Sylvester (1888), Dickson (1913), Kanold (1949) $a \not \in OP \not \in U \omega(a) \geq 5$
- Gradštein(1925), Kühnel(1949), Webber(1951), Kishore(1978) a b OP b b b $\omega(a) \geq 6$
- Pomerance(1971), Robbins(1972) $a \not \in OP \not \in \mathcal{U} \omega(a) \geq 7$
- ・Hagis(1975) a が OP ならば $\omega(a) \geq 8$
- ・Nielsen(2006) a が OP ならば $\omega(a) \geq 9$
- ・Kishore(1978) a が QP ならば $\omega(a) \geq 6$
- ・Kishore(1978) a が OAP ならば $\omega(a) \geq 6$
- ・Kishore(1978) a が OAP かつ 3 a ならば $\omega(a) \geq 7$

今回得られた結果 (2015)

- ・a が OAP かつ 3 /a ならば $\omega(a) \geq 10$

命題 1 (1) p を素数とする。 $\frac{\sigma(p^e)}{n^e}$ は e に関しては増加関数であり、p に関しては減少関数である。さらに、

$$\frac{p+1}{p} \le \frac{\sigma(p^e)}{p^e} < \frac{p}{p-1}$$
 (左辺は $\frac{\sigma(p^e)}{p^e}$ の上限)

(2) $a=p_1^{e_1}\cdots p_n^{e_n}$ とする。a が概完全数で p_i が奇素数なら e_i は偶数である。

$$(1) \ \frac{\sigma(p^e)}{p^e} = \frac{p^{e+1}-1}{(p-1)p^e} = \frac{1}{p-1} \left(p-\frac{1}{p^e}\right)$$
 だから e に関して増加関数であり、 $\frac{p+1}{p} = \frac{\sigma(p)}{p} \leq \frac{\sigma(p^e)}{p^e} < \frac{p}{p-1}$ が成り立つ。さらに、 $\frac{p}{p-1}$ は $\frac{\sigma(p^e)}{p^e}$ の上限である。また、 $\frac{\sigma(p^e)}{p^e} = 1/p^e + \dots + 1/p + 1$ だから p に関して減少関数である。

$$(2)$$
 $\sigma(a)=2a-1$ だから、 $\sigma(p^{e_1})\cdots\sigma(p^{e_n})=2a-1$ であり、 p_i が奇素数ならば $\sigma(p^{e_i})=1+p_i+\cdots+p_i^{e_i}\equiv e_i+1\pmod 2$ 。 したがって、 e_i が奇数なら、 $\sigma(p^{e_1})\cdots\sigma(p^{e_n})$ は偶数となり矛盾する。

a の素因数分解を $a = p_1^{e_1} \cdots p_n^{e_n}, p_1 < p_2 < \cdots < p_n$ とする。a が概完全数のとき、 $\sigma(a) = 2a - 1$ より、

$$\sigma(p_1^{e_1}) \cdots \sigma(p_n^{e_n}) = 2p_1^{e_1} \cdots p_n^{e_n} - 1 \tag{\sharp}$$

したがって、

$$\frac{1}{2} \frac{\sigma(p_1^{e_1})}{p_1^{e_1}} \cdots \frac{\sigma(p_n^{e_n})}{p_n^{e_n}} = 1 - \frac{1}{2p_1^{e_1} \cdots p_n^{e_n}} \tag{b}$$

が成立する。以後、(b) 式左辺を $H(p_1^{e_1},\ldots,p_n^{e_n})$ と表し、右辺を $M(p_1^{e_1},\ldots,p_n^{e_n})$ と表す。また、 $\frac{\sigma(p^e)}{n^e}$ を $hi(p^e)$ と表す。以下では奇の概完全数のみを考える。

命題 2 p_1, \ldots, p_n $(p_1 < \cdots < p_n)$ を奇素数、 e_1, \ldots, e_n を正の整数とする。さらに、1 < m < n とする。

(1) $H(p_1^{e_1},\ldots,p_m^{e_m})\geq 1$ ならば、任意の $f_1\geq e_1,\ldots,f_m\geq e_m$ と任意の整数 f_{m+1},\ldots,f_n (≥ 1) に対して上

記の等式 (b) 式は成立しない。
$$(2) \ \frac{1}{2} \mathrm{hi}(p_1^{e_1}) \cdots \mathrm{hi}(p_{m-1}^{e_{m-1}}) \frac{p_m}{p_m-1} \cdots \frac{p_n}{p_n-1} < M(p_1^{e_1}, p_2^{e_2}, \ldots, p_{m-1}^{e_{m-1}}, p_m, \ldots, p_n) \text{ ならば任意の } q_m \geq p_m, \ldots, q_n \geq p_n$$
 と任意の整数 $f_m, \ldots, f_n \ (\geq 1)$ に対して (b) 式は成立しない。

証明(1)命題1より、

$$H(p_1^{f_1},\ldots,p_n^{f_n}) \ge H(p_1^{e_1},\ldots,p_m^{e_m}) \ge 1 > M(p_1^{f_1},\ldots,p_n^{f_n})_{\circ}$$

$$\begin{split} &H(p_1^{e_1},\dots,p_{m-1}^{e_{m-1}},q_m^{f_m},\dots,q_n^{f_n}) < \frac{1}{2}\mathrm{hi}(p_1^{e_1})\cdots\mathrm{hi}(p_{m-1}^{e_{m-1}})\frac{q_m}{q_m-1}\cdots\frac{q_n}{q_n-1}\\ &\leq \frac{1}{2}\mathrm{hi}(p_1^{e_1})\cdots\mathrm{hi}(p_{m-1}^{e_{m-1}})\frac{p_m}{p_m-1}\cdots\frac{p_n}{p_n-1} < M(p_1^{e_1},p_2^{e_2},\dots,p_{m-1}^{e_{m-1}},p_m,\dots,p_n)\\ &\leq M(p_1^{e_1},\dots,p_{m-1}^{e_{m-1}},q_m^{f_m},\dots,q_n^{f_n})\circ \end{split}$$

命題 3
$$p_1,p_2,\ldots,p_n$$
を相異なる素数とし、 $1\leq m\leq n$ とする。
$$\operatorname{Hsup}(m) = \frac{1}{2}\operatorname{hi}(p_1^{e_1})\cdots\operatorname{hi}(p_{m-1}^{e_{m-1}})\frac{p_m}{p_m-1}\cdots\frac{p_n}{p_n-1}$$
とおき、 $\operatorname{Hsup}(m) < 1$ と仮定する。このとき、
$$\operatorname{Hsup}(m) < M(p_1^{e_1},\ldots,p_{m-1}^{e_{m-1}},p_m,\ldots,p_n)$$

証明 証明すべき不等式の左辺の分母を払うと、

$$\sigma(p_1^{e_1})\cdots\sigma(p_{m-1}^{e_{m-1}})p_m\cdots p_n$$

$$<2p_1^{e_1}\cdots p_{m-1}^{e_{m-1}}(p_m-1)\cdots(p_n-1)-\frac{(p_m-1)\cdots(p_n-1)}{p_m\cdots p_n}.$$

したがって、仮定のもとで

$$\begin{pmatrix} (2p_1^{e_1}\cdots p_{m-1}^{e_{m-1}}(p_m-1)\cdots (p_n-1)-\sigma(p_1^{e_1})\cdots \sigma(p_{m-1}^{e_{m-1}})p_m\cdots p_n \end{pmatrix} - \frac{(p_m-1)\cdots (p_n-1)}{p_m\cdots p_n} > 0$$
 を示せば良い。上式左辺の第1項は整数だから仮定より1以上であり、第2項は1未満だから、不等式が示せた。

系 命題 3 の不等式が成立するとき、 $p_1^{e_1}\cdots p_{m-1}^{e_{m-1}}$ を Hall 約数としてもち、 p_1,\ldots,p_n を素因数にもつ n-概完全数は存在しない。

証明 任意の
$$e_m,\ldots,e_n$$
 (>0) に対して、
$$\frac{1}{2}\mathrm{hi}(p_1^{e_1})\cdots\mathrm{hi}(p_n^{e_n}) < \frac{1}{2}\mathrm{hi}(p_1^{e_1})\cdots\mathrm{hi}(p_{m-1}^{e_{m-1}})\frac{p_m}{p_m-1}\cdots\frac{p_n}{p_m-1} < M(p_1^{e_1},\ldots,p_{m-1}^{e_{m-1}},p_m,\ldots,p_n) \leq M(p_1^{e_1},\ldots,p_m^{e_m-1},p_m^{e_m},\ldots,p_n^{e_m})$$

上の系の応用例としてつぎの命題を示す。

命題 (M.KIshore(1978))

a が OAP かつ 3 a ならば $\omega(a) \ge 7$

証明
$$\frac{1}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} = 0.9745 \cdots$$
 だから

 $3 < p_1 < \dots < p_6$ をみたす 6-概完全数 $a = p_1^{a_1} \cdots p_6^{a_6}$ は存在しない。したがって、a が 3 で割れない OAP ならば $\omega(a) \geq 7$ 。

注意 この証明は M.Kihore(1978) の証明より簡潔なものになっている。

定義 1 整数 a(>0) の素因数分解を $a=p_1^{e_1}\cdots p_m^{e_m}\cdots p_n^{e_n}$ とし、 $\max\{p_1,\ldots,p_m\}<\min\{p_{m+1},\ldots,p_n\}$ $(1\leq m\leq n)$ とする。このとき、a を p_1,\ldots,p_m を延長した素因数をもつ整数という。また、 $a=bc,\;(b,c)=1$ のとき、b を a の Hall 約数ということにする。

定義 2 相異なる素数 $q_1,\ldots,q_m,p_{m+1},\ldots,p_{m+k}$ $(m\geq 0,k>0)$ と正の整数 e_1,\ldots,e_m に対して、 $H(q_1^{e_1},\ldots,q_m^{e_m},p_{m+1}^{e_{m+1}},\ldots,p_{m+k}^{e_{m+k}})\geq 1$ をみたす整数の組 (e_{m+1},\ldots,e_{m+k}) を整数 $q_1^{e_1}\cdots q_m^{e_m}$ と素数 p_{m+1},\ldots,p_{m+k} に関する上界指数という。

定義 3 実数 x より大きな最小の素数を x^+ と表す。 $p_{i+1}=p_i^+$ $(i=1,\ldots,n-1)$ をみたす素数列 p_1,\ldots,p_n を連続した素数列という。

定義 4 以下では、有限列 a_1,a_2,\ldots,a_m を $[a_1,a_2,\ldots,a_m]$ と表し、有限列 $[a_1,\ldots,a_m]$ と有限列 $[b_1,\ldots,b_n]$ を連接した有限列を $[a_1,\ldots,a_m]$ ω $[b_1,\ldots,b_n]$ ど表す。また、有限列 $as=[a_1,\ldots,a_m]$ から i 番目の要素を取り除いた有限列を drop(as,i) と表す。

つぎの定理は Dickson(1913) の結果と a が OAP で、p が a をみたす奇素数 ならば <math>ap は原始豊数であることを用いて示すことができる。ここでは決定手続きを定義する方法による別証明を与える。

定理 1 $n>0, m\geq 0, k\geq 0$ とする。 $q_1,\ldots,q_m,p_{m+1},\ldots,p_{m+k}$ を相異なる奇素数とし、 e_1,\ldots,e_m を正の

整数とする。このとき、

 $q_1^{e_1}\cdots q_m^{e_m}$ を Hall 約数としてもち、 $q_1,\ldots,q_m,p_{m+1},\ldots,p_{m+k}$ を延長した素因数をもつ n-概完全数が存在 するかどうか決定可能である。

証明 述語 kettei を

 $kettei(n, [[q_1, e_1], \dots, [[q_m, e_m]], [p_{m+1}, \dots, p_{m+k}])$

 $\Leftrightarrow q_1^{e_1}\cdots q_m^{e_m}$ を Hall 約数としてもち、 $q_1,\ldots,q_m,p_{m+1},\ldots,p_{m+k}$ を延長した素因数をもつ n-概完全数 は存在しない

によって定義する。述語 kettei が再帰的述語として定義できることを以下で示す。以下、ges = $[[q_1,e_1],\ldots,[q_m,e_m]],\ ps=[p_{m+1},\ldots,p_{m+k}]$ とおく。

n-(m+k) に関する帰納法。

n-(m+k)=0 のとき。k に関する帰納法で示す。

k=0 の場合は $a=q_1^{e_1}\cdots q_n^{e_n}$ とし、 $kettei[n,qes,ps] \Leftrightarrow \sigma(a)\neq 2a-1$ で定義する。

k > 0 の場合。

 $\frac{1}{2}\mathrm{hi}(q_1^{e_1})\cdots\mathrm{hi}(q_m^{e_m})\frac{p_{m+1}}{p_{m+1}-1}\cdots\frac{p_n}{p_n-1}<1$ の場合は命題 3 系より、条件をみたす n-概完全数は存在しない。したがって、 $kettei[n,qes,ps]\Leftrightarrow true$ で定義する。

 $\frac{1}{2}\mathrm{hi}(q_1^{e_1})\cdots\mathrm{hi}(q_m^{e_m})\frac{p_{m+1}}{p_{m+1}-1}\cdots\frac{p_n}{p_n-1}\geq 1\ \text{の場合},\ (g_{m+1},\ldots,g_n)\ \text{\in}\ q_1^{e_1}\cdots q_m^{e_m}\ \text{\in}\ \text{\pm}\ \text{b}\ p_{m+1},\ldots,p_n$}$ に関する上界指数とする。また、 $E_i=\{f|2\leq f< g_i\}\ \ (i=m+1,\ldots,m+k)\ \text{\in}\ \text{\in}\ E_{m+1}$ を任意に選 ぶ。k に関する帰納法の仮定より、

 $kettei(n, qes \smile [[p_{m+1}, f]], [p_{m+2}, \ldots, p_{m+k}]) \Leftrightarrow q_1^{e_1} \cdots q_m^{e_m} p_{m+1}^{f_{m+1}}$ を Hall 約数としてもち、

 $q_1,\ldots,q_m,p_{m+1},\ldots,p_{(m+1)+(k-1)}$ を素因数にもつn-概完全数は存在しない

をみたすように定義できている。他の $f \in E_i$ に対しても同様である。そこで、

 $kettei[n, qes, ps] \Leftrightarrow \bigwedge \{kettei(qes \smile [[p_{m+i}, f]], drop(ps, i)) \mid 1 \le i \le k, f \in E_i\}$

によって kettei[n, qes, ps] を定義する。

n - (m + k) > 0 のとき。

$$\begin{split} p_{\max} &= \max\{q_1,\dots,q_m,p_{m+1},\dots,p_{m+k}\} \text{ とする}_\circ \\ \frac{1}{2} \text{hi}(q_1^{e_1}) \cdots \text{hi}(q_m^{e_m}) \frac{p_{m+1}}{p_{m+1}-1} \cdots \frac{p_{m+k}}{p_{m+k}-1} < 1 \text{ のとき}_\circ \\ \frac{1}{2} \text{hi}(q_1^{e_1}) \cdots \text{hi}(q_m^{e_m}) \frac{p_{m+1}}{p_{m+1}-1} \cdots \frac{p_{m+k}}{p_{m+k}-1} \frac{p_{m+k+1}}{p_{m+k+1}-1} \cdots \frac{p_n}{p_n-1} < 1 \text{ かつ } p_{m+k+1} > p_{\max} \mathcal{E} \text{ みたす連続} \\ \text{した素数列 } p_{m+k+1},\dots,p_n \text{ が存在する}_\circ \text{ そのような } p_{m+k+1} \text{ の最小のものを } r \text{ とし、} r \text{ より小さい最大の} \end{split}$$
素数を $p_{m+k+1,ub}$ とする。さらに、 $P_{m+k+1}=\{p|p_{ ext{max}}< p\leq p_{m+k+1,ub}$ かつ p は素数 $\}$ とする。有限個

の $p \in P_{m+k+1}$ に対しては、n - (m+k) に関する帰納法の仮定より、

 $kettei(n, qes, ps \smile [p]) \Leftrightarrow q_1^{e_1} \cdots q_m^{e_m}$ を Hall 約数としてもち、

 $q_1,\ldots,q_m,p_{m+1},\ldots,p_{m+k},p$ を延長した素因数をもつ n-概完全数は存在しない

をみたすように定義できている。そこで、

 $kettei(n, qes, ps) \Leftrightarrow \bigwedge \{kettei(n, qes, ps \smile [p] \mid p \in P_{m+k+1}\}$

によって、kettei(n, qes, ps) を定義する。

$$\frac{1}{2}\mathrm{hi}(q_1^{e_1})\cdots\mathrm{hi}(q_m^{e_m})\frac{p_{m+1}}{p_{m+1}-1}\cdots\frac{p_{m+k}}{p_{m+k}-1}\geq 1\ \text{のとき}.$$
 k に関する帰納法で示す。

k=0 のときは命題 2 より $q_1^{e_1}\cdots q_m^{e_m}$ を Hall 約数としてもち、 $q_1,\ldots,q_m,p_{m+1},\ldots,p_{m+k}$ を延長した素因数

をもつ n-概完全数は存在しない。したがって、 $kettei(n, ges, ps) \Leftrightarrow true$ と定義する。

k>0 の場合。 (e_{m+1},\ldots,e_{m+k}) を約数 $q_1^{e_1}\cdots,q_m^{e_m}$ と素数 p_{m+1},\ldots,p_{m+k} に関する上界指数とし、 $E_i=\{f_i|2\leq f_i< e_i\}\;(i=m+1,\ldots,m+k)$ とする。そこで、n-(m+k)=0 の場合と同様に $kettei[n,qes,ps] \Leftrightarrow \bigwedge\{kettei(qes \smile [[p_{m+i},f]],\operatorname{drop}(ps,i))\mid 1\leq i\leq k,f\in E_i\}$ によって kettei[n,qes,ps] を定義する。

定理1の証明で述べた決定手続きは改良することができる。

計算機 (Mac Air 4GB) を用いて、改良された決定手続きを実行することによりつぎの結果が得られた。

定理 2

- (1) a が OAP ならば $\omega(a) \geq 7$.

命題 a が OAP かつ 3 a ならば $\omega(a) \geq 8$.

は計算機を用いないで示すことができる。以下でこの命題の証明を行う。

部田

3 la ならば $\omega(a) = 7$ をみたす 7-概完全数は存在しないことを示す。

仮定より、 $p_1 \neq 3$ だから $p_1 = 5$.

$$\frac{1}{2}\frac{5}{4}\frac{11}{10}\frac{13}{12}\frac{17}{16}\frac{19}{18}\frac{23}{22}\frac{29}{28}=0.90446\cdots \quad したがって、 $p_2=7.$$$

以下同様にして、 $p_3 = 11$, $p_4 = 13$, $p_5 = 17$, $p_6 = 19$ が確かめられる。

$$\sharp \, \text{t.} \, , \, \frac{1}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} \frac{37}{36} = 1.0015 \cdots \, , \, \, \frac{1}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} \frac{41}{40} = 0.99888 \cdots \, .$$

したがって、 $p_7 = 23, 29, 31, 37$ のいずれかである。

よって、 $[p_1, p_2, p_3, p_4, p_5, p_6, p_7]$ は

 $[5,7,11,13,17,19,23], \quad [5,7,11,13,17,19,29], \quad [5,7,11,13,17,19,31] \;\; \sharp \, \hbar \, \mbox{td} \;\; [5,7,11,13,17,19,37] \;\; \tau \, \mbox{5.}$

 $[p_1, p_2, p_3, p_4, p_5, p_6, p_7] = [5, 7, 11, 13, 17, 19, 23]$ の場合。

 $H(5^2,7^2,11^2,13^2,17^2,19^2,23^2)=1.0060\cdots$ だから $pes=[],\ ps=[5,7,11,13,17,19,23]$ は解をもたない。 $[p_1,p_2,p_3,p_4,p_5,p_6,p_7]=[5,7,11,13,17,19,31]$ の場合。

 $H(5^4,7^2,11^2,13^2,17^2,19^2,31^2)=1.0066\cdots$ より、(4,2,2,2,2,2,2,2) は素数 5,7,11,13,17,19,31 に関する上界指数である。

 $H(5^2,7^\infty,11^\infty,13^\infty,17^\infty,19^\infty,31^\infty)=0.9989\cdots$ より、 $pes=[[5,2]],\ ps=[7,11,13,17,19,31]$ は解をもたない。

したがって、pes = [], ps = [5, 7, 11, 13, 17, 19, 31] は解をもたない。

 $[p_1, p_2, p_3, p_4, p_5, p_6, p_7] = [5, 7, 11, 13, 17, 19, 29]$ の場合。

 $H(5^2,7^4,11^2,13^4,17^2,19^2,29^2)=1.00005$ だから (2,4,2,4,2,2,2) は 5,7,11,13,17,19,29 に関する上界指数である。

そのため、 $pes=[[7,2]],\ ps=[5,11,13,17,19,29]$ の場合と $pes=[[13,2]],\ ps=[5,7,11,17,19,29]$ の場合を調べる。

pes = [[7, 2]], ps = [5, 11, 13, 17, 19, 29] の場合。

 $H(7^2, 5^\infty, 11^\infty, 13^\infty, 17^\infty, 19^\infty, 29^\infty) = 1.0063 \cdots$ ా శ్రీ $H(7^2, 5^4, 11^2, 13^2, 17^2, 19^2, 29^2) = 1.0044 \cdots$ సౌక్స్

(4,2,2,2,2,2) は 7^2 と素数 5,11,13,17,19,29 に関する上界指数である。

しかし、 $H(7^2,5^2,11^\infty,13^\infty,17^\infty,19^\infty,29^\infty)=0.9983\cdots$ だから、pes=[[7,2],[5,2]], ps=[11,13,17,19,29] は解をもたない。

したがって、pes = [[7,2]], ps = [5,11,13,17,19,29] は解をもたない。

pes = [[13, 2]], ps = [5, 7, 11, 17, 19, 29] の場合。

 $H(13^2,5^\infty,7^\infty,11^\infty,17^\infty,19^\infty,29^\infty)=1.0286\cdots$ ొ శ్రీ $H(13^2,5^2,7^4,11^4,17^2,19^2,29^2)=1.0003\cdots$ ోగుక్స

(2,4,4,2,2,2) は 13^2 と素数 5,7,11,17,19,29 に関する上界指数である。

そのため $pes=[[13,2],[7,2]],\ ps=[5,11,17,19,29]$ の場合と $pes=[[13,2],[11,2]],\ ps=[5,7,17,19,29]$ の場合を調べる。

- (13.1) pes = [[13,2],[7,2]], ps = [5,11,17,19,29] の場合。 pes = [[7,2]], ps = [5,11,13,17,19,29] の場合は解なしであったから、解をもたない。
- (13.2) $pes=[[13,2],[11,2]],\ ps=[5,7,17,19,29]$ の場合。 $H(13^2,11^2,5^\infty,7^\infty,17^\infty,19^\infty,29^\infty) \ = \ 1.0081\cdots$ であり、 $H(13^2,11^2,5^2,7^6,17^4,19^4,29^2) \ = \ 1.0583\cdots$ だから、

(2,6,4,4,2) は 13^27^2 と素数 5,7,17,19,29 に関する上界指数である。

そのため、 $pes=[[13,2],[11,2],[7,2]],\ ps=[5,17,19,29]$ と $pes=[[13,2],[11,2],[7,4]],\ ps=[5,17,19,29]$ と $pes=[[13,2],[11,2],[17,2]],\ ps=[5,7,19,29]$ と $pes=[[13,2],[11,2],[19,2]],\ ps=[5,7,17,29]$ の場合を調べる。

- (13.2.1) pes = [[13,2],[11,2],[7,2]], ps = [5,17,19,29] の場合。 pes = [[7,2]], ps = [5,11,13,17,19,29] の場合は解なしであったから、解をもたない。
- (13.2.2) pes=[[13,2],[11,2],[7,4]], ps=[5,17,19,29] の場合。 $H(13^2,11^2,7^4,5^4,17^2,19^2,29^2)=1.0073\cdots$ だから、(4,2,2,2) は $13^211^27^4$ と素数 5,17,19,29 に 関する上界指数である。

しかし、 $H(13^2,11^2,7^4,5^2,17^\infty,19^\infty,29^\infty)=0.999985$ だから $pes=[[13,2],[11,2],[7,4],[5,2]],\ ps=[17,19,29]$ の場合は解をもたない。したがって、 $pes=[[13,2],[11,2],[7,4]],\ ps=[5,17,19,29]$ の場合は解をもたない。

- (13.2.3) pes = [[13, 2], [11, 2], [17, 2]], ps = [5, 7, 19, 29] の場合
- (13.2.4) pes = [[13, 2], [11, 2], [19, 2]], ps = [5, 7, 17, 29] の場合上の 2 つの場合は (13.2.2) と全く同様にして解をもたないことが確認できる。

したがって、(13.2) pes = [[13, 2], [11, 2]], ps = [5, 7, 17, 19, 29] の場合は解をもたない。

以上より、 $[p_1, p_2, p_3, p_4, p_5, p_6, p_7] = [5, 7, 11, 13, 17, 19, 29]$ の場合は解をもたないことがわかる。

 $[p_1, p_2, p_3, p_4, p_5, p_6, p_7] = [5, 7, 11, 13, 17, 19, 37]$ の場合も同様である。

注意 上の証明は定理 1 で述べた手続きにしたがって行った。しかし、 $3|\sigma(7^2)$, $3|\sigma(13^2)$ だから、以下の命題 4 を用いることにより、 7^2 または 13^2 を 13^2 Hall 約数にもつ OAP は存在しないことが容易に分かる。

П

命題 4 (M.Kishore[3]) a を奇の n-概完全数とし、 p^e を a の Hall 約数とする。このとき、 $\sigma(p^e)$ およびその素因数はすべて 8 を法として ± 1 である。

証明 $q|\sigma(p^e)$ とする。このとき、 $q|2\sigma(a)=4a-2$ であり、4a は平方数だから $\left(\frac{2}{q}\right)=(-1)^{\frac{q^2-1}{8}}=1$ 。したがって、 $q\equiv \pm 1\pmod 8$ 。したがって、 $\sigma(p^e)$ の素因数はすべて 8 を法として ± 1 だから、 $\sigma(p^e)$ も 8 を法として ± 1 である。

2 $\omega(a) = 7$ かつ $p_1 = 3$ **の場合**

n=7 とし、a を OAP, $a=p_1^{e_1}\cdots p_n^{e_n}$, $p_1<\cdots< p_n$ とする。 $\frac{1}{2}\frac{57}{46}\frac{11}{10}\frac{13}{12}\frac{17}{16}\frac{19}{18}\frac{23}{22}>1$ かつ $\frac{17}{26}\frac{11}{10}\frac{13}{12}\frac{17}{16}\frac{19}{18}\frac{23}{22}\frac{29}{28}<1$ だから p_1 は 3 または 5 である。 p_1,p_2,p_3 が [3,5,7], [3,5,11], [3,5,13] の場合 はいずれも $\frac{1}{2}\frac{p_1}{p_1-1}\frac{p_2}{p_2-1}\frac{p_3}{p_3-1}\geq 1$ であり、これらを延長した素因数をもつ 7-概完全数が存在しないことは $p_1=5$ の場合と同様にして確かめられる。これら以外の場合、 p_1,p_2,p_3,p_4 の組み合わせは以下の表のように 422 通りある。各場合に p_1,p_2,p_3,p_4 を延長した素因数をもつ 7-概完全数が存在しないことが確認されているものを以下の表で示す。

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p_3, p_4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	719 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	727 ✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	733 ✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	739 ✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	743 ✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	757 ✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	761 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	769 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	773 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	787 ✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	797 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	809 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	811 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	821 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	823 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	827 🗸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	829 🗸
21 3 5 17 107 \$\sqrt{\chi}\$ 61 3 5 17 337 101 3 5 17 593 \$\sqrt{\chi}\$ 141 3 5 17 22 3 5 17 109 62 3 5 17 347 102 3 5 17 599 \$\sqrt{\chi}\$ 142 3 5 17 23 3 5 17 113 \$\sqrt{\chi}\$ 63 3 5 17 349 103 3 5 17 601 \$\sqrt{\chi}\$ 143 3 5 17	839 🗸
22 3 5 17 109 62 3 5 17 347 102 3 5 17 599 ✓ 142 3 5 17 23 3 5 17 113 ✓ 63 3 5 17 349 103 3 5 17 601 ✓ 143 3 5 17	853 🗸
23 3 5 17 113	857 🗸
	859 🗸
	863 🗸
24 3 5 17 127 \checkmark 64 3 5 17 353 104 3 5 17 607 \checkmark 144 3 5 17	877 ✓
25 3 5 17 131	881 🗸
26 3 5 17 137 \(\sqrt{66} \) 3 5 17 367 \(\sqrt{106} \) 3 5 17 617 \(\sqrt{146} \) 3 5 17	883 🗸
27 3 5 17 139 🗸 67 3 5 17 373 🗸 107 3 5 17 619 🗸 147 3 5 17	887 ✓
28 3 5 17 149 \(\sqrt{68} \) 3 5 17 379 \(\text{108} \) 3 5 17 631 \(\sqrt{148} \) 3 5 17	
29 3 5 17 151 🗸 69 3 5 17 383 109 3 5 17 641 🗸 149 3 5 17	911 🗸
30 3 5 17 157 70 3 5 17 389 110 3 5 17 643 150 3 5 17	919 🗸
31 3 5 17 163 🗸 71 3 5 17 397 111 3 5 17 647 🗸 151 3 5 17	929 🗸
32 3 5 17 167 72 3 5 17 401 112 3 5 17 653 152 3 5 17	937 🗸
33 3 5 17 173 73 3 5 17 409 113 3 5 17 659 153 3 5 17	
34 3 5 17 179 74 3 5 17 419 114 3 5 17 661 154 3 5 17	
35 3 5 17 181 √ 75 3 5 17 421 115 3 5 17 673 √ 155 3 5 17	
36 3 5 17 191 ✓ 76 3 5 17 431 116 3 5 17 677 ✓ 156 3 5 17	953
37 3 5 17 193 ✓ 77 3 5 17 433 117 3 5 17 683 ✓ 157 3 5 17	
38 3 5 17 197 78 3 5 17 439 118 3 5 17 691 158 3 5 17	967 ✓
39 3 5 17 199	967 ✓ 971 ✓
40 3 5 17 211 \checkmark 80 3 5 17 449 120 3 5 17 709 \checkmark 160 3 5 17	967 ✓ 971 ✓ 977 ✓

		T	· · · · · · · · · · · · · · · · · · ·								
	p_1, p_2, p_3, p_4			p_1, p_2, p_3, p_4			$p_1, p_2, p_3.p_4$			p_1, p_2, p_3, p_4	
161		✓	201	3 5 19 199	✓	241	3 5 23 73	√	281	3 5 29 107	√
162		√	202	3 5 19 211	√	242	3 5 23 79		282	3 5 29 109	✓
163		√	203	3 5 19 223	√	243	3 5 23 83	✓	283	3 5 29 113	√
164	3 5 19 23	√	204	3 5 19 227	√	244	3 5 23 89	✓	284	3 5 29 127	√
165	3 5 19 29	✓	205	3 5 19 229	√	245	3 5 23 97	√	285	3 5 31 37.	✓
166	3 5 19 31	✓	206	3 5 19 233	✓	246	3 5 23 101	✓	286	3 5 31 41	√
167	3 5 19 37	✓	207	3 5 19 239	✓	247	3 5 23 103	✓	287	3 5 31 43	✓
168	3 5 19 41	✓	208	3 5 19 241	✓	248	3 5 23 107	✓	288	3 5 31 47	√
169	3 5 19 43	✓	209	3 5 19 251	✓	249	3 5 23 109	✓	289	3 5 31 53	✓
170	3 5 19 47	√	210	3 5 19 257	✓	250	3 5 23 113	✓	290	3 5 31 59	✓
171	3 5 19 53	√	211	3 5 19 263	✓	251	3 5 23 127	✓	291	3 5 31 61	√
172	3 5 19 59	✓	212	3 5 19 269	✓	252	3 5 23 131	✓	292	3 5 31 67	✓
175	3 5 19 61	✓	213	3 5 19 271	✓	253	3 5 23 137	✓	293	3 5 31 71	√
174	1 3 5 19 67	✓	214	3 5 19 277	✓	254	3 5 23 139	✓	294	3 5 31 73	V
175	3 5 19 71	✓	215	3 5 19 281	✓	255	3 5 23 149	✓	295	3 5 31 79	✓
176	3 5 19 73	✓	216	3 5 19 283	✓	256	3 5 23 151	✓	296	3 5 31 83	1
17'	7 3 5 19 79	✓	217	3 5 19 293	✓	257	3 5 23 157	✓	297	3 5 31 89	✓
178	3 5 19 83	✓	218	3 5 19 307	✓	258	3 5 23 163	✓	298	3 5 31 97	√
179	3 5 19 89	√	219	3 5 19 311	✓	259	3 5 23 167	✓	299	3 5 31 101	✓
180	3 5 19 97		220	3 5 19 313	✓	260	3 5 23 173	✓	300	3 5 31 103	✓
18	1 3 5 19 101		221	3 5 19 317	✓	261	3 5 23 179	✓	301	3 5 31 107	✓
185	2 3 5 19 103		222	3 5 19 331	✓	262	3 5 23 181	✓	302	3 5 31 109	✓
183	3 3 5 19 107		223	3 5 19 337	✓	263	3 5 23 191	✓	303	3 5 31 113	✓
184	4 3 5 19 109		224	3 5 19 347	✓	264	3 5 29 31	✓	304	3 5 37 41	✓
18	5 3 5 19 113	√	225	3 5 19 349	V	265	3 5 29 37		305	3 5 37 43	✓
18	6 3 5 19 127		226	3 5 19 353	√	266	3 5 29 41		306	3 5 37 47	✓
18	7 3 5 19 131		227	3 5 19 359	V	267	3 5 29 43	✓	307	3 5 37 53	✓
18	8 3 5 19 137		228	3 5 19 367	✓	268	3 5 29 47	✓	308	3 5 37 59	✓
18	9 3 5 19 139		229	3 5 19 373	1	269	3 5 29 53	✓	309	3 5 37 61	✓
19	0 3 5 19 149	✓	230	3 5 23 29	√	270	3 5 29 59	✓	310	3 5 37 67	✓
19	1 3 5 19 151	✓	231	3 5 23 31	√	271	3 5 29 61	✓	311	3 5 37 71	✓
19	2 3 5 19 157	✓	232	3 5 23 37		272	3 5 29 67	✓.	312	3 5 37 73	√
19	3 3 5 19 163	√	233	3 5 23 41		273	3 5 29 71	✓	313	3 5 37 79	✓
19	4 3 5 19 167	√	234	3 5 23 43	√	274	3 5 29 73	√	314	3 5 37 83	1
19	5 3 5 19 173	√	235	3 5 23 47	√	275	3 5 29 79	✓	315	3 5 37 89	1
19	6 3 5 19 179	V	236	3 5 23 53		276	3 5 29 83	1	316	3 5 37 97	✓
19	7 3 5 19 181	✓	237	3 5 23 59	1	277	3 5 29 89	V	317	3 5 37 101	√
19	8 3 5 19 191	✓	238	3 5 23 61	✓	278	3 5 29 97	✓	318	3 5 37 103	1
19	9 3 5 19 193	√	239	3 5 23 67	ļ	279	3 5 29 101	√	319	3 5 41 43	✓
20	0 3 5 19 197	✓	240	3 5 23 71	√	280	3 5 29 103	✓	320	3 5 41 47	√

	m. m. m. m.			n. n. n. n.			m. m. m. m.			n. n. n. n	
201	p_1, p_2, p_3, p_4		0.46	p_1, p_2, p_3, p_4		071	$p_1, p_2, p_3.p_4$		000	p_1, p_2, p_3, p_4	
321	3 5 41 53	√	346	3 5 47 79	√	371	3 7 11 43	✓	396	3 7 13 67	✓
322	3 5 41 59	√	347	3 5 47 83	√	372	3 7 11 47	✓	397	3 7 17 19	√
323	3 5 41 61	✓	348	3 5 53 59	✓	373	3 7 11 53	✓	398	3 7 17 23	✓
324	3 5 41 67	✓	349	3 5 53 61	✓	374	3 7 11 59	✓	399	3 7 17 29	✓
325	3 5 41 71	✓	350	3 5 53 67	✓	375	3 7 11 61	✓	400	3 7 17 31	✓
326	3 5 41 73	✓	351	3 5 53 71	1	376	3 7 11 67	✓	401	3 7 17 37	✓
327	3 5 41 79	√	352	3 5 53 73	✓	377	3 7 11 71	✓	402	3 7 17 41	1
328	3 5 41 83	✓	353	3 5 53 79	√	378	3 7 11 73	✓	403	3 7 17 43	√
329	3 5 41 89	✓	354	3 5 59 61	1	379	3 7 11 79	✓	404	3 7 17 47	✓
330	3 5 43 47	✓	355	3 5 59 67	✓	380	3 7 11 83	✓	405	3 7 19 23	✓
331	3 5 43 53	✓	356	3 5 59 71	✓	381	3 7 11 89	✓	406	3 7 19 29	√
332	3 5 43 59	✓	357	3 5 59 73	1	382	3 7 11 97	✓	407	3 7 19 31	✓
333	3 5 43 61	✓	358	3 5 61 67	1	383	3 7 11 101	✓	408	3 7 19 37	√
334	3 5 43 67	√	359	3 5 61 71	✓	384	3 7 13 17	1	409	3 7 19 41	√
335	3 5 43 71	✓	360	3 5 61 73	✓	385	3 7 13 19	✓	410	3 7 19 43	1
336	3 5 43 73	✓	361	3 5 67 71	✓	386	3 7 13 23	1	411	3 7 23 29	✓
337	3 5 43 79	1	362	3 5 67 73	1	387	3 7 13 29	1	412	3 7 23 31	1
338	3 5 43 83	1	363	3 7 11 13	1	388	3 7 13 31	1	413	3 7 23 37	1
339	3 5 43 89	√	364	3 7 11 17	V	389	3 7 13 37	V	414	3 7 29 31	V
340	3 5 47 53	√	365	3 7 11 19	√	390	3 7 13 41	1	415	3 11 13 17	√
341	3 5 47 59	1	366	3 7 11 23	1	391	3 7 13 43	1	416	3 11 13 19	1
342	3 5 47 61	✓	367	3 7 11 29	✓	392	3 7 13 47	✓	417	3 11 13 23	1
343	3 5 47 67	1	368	3 7 11 31	1	393	3 7 13 53	√	418	3 11 13 29	V
344	3 5 47 71	√	369	3 7 11 37	√	394	3 7 13 59	√	419	3 11 17 19	1
345	3 5 47 73	√	370	3 7 11 41	1	395	3 7 13 61	1	420	3 11 17 23	✓
									421	3 11 19 23	1
									422	3 13 17 19	✓

参考文献

- [1] L.E.Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors, Amer.J.Math., Vol.35, No.4, 1913, pp.413-422.
- [2] 飯高茂、 完全数について、 第25回数学史シンポジウム報告集, 2015, pp.38-61
- [3] M.Kishore, Odd Integers N With Five Distinct Prime Factors for Which $2-10^{-12}<\sigma(N)<2+10^{-12}$, Math.Comp.,Vol.32,1978,pp.303-309.
- [4] M.Kishore, On Odd Perfect, Quasiperfect, and Odd Almost Perfect Numbers, Math.Comp., Vol. 36, 1981, pp. 583-586.
- [5] C.Pomerance, Multiply Perfect Numbers, Mersenne Primes, and Effectiv Computability, Math.Ann. Vol.266, 1977, pp.195-206.

白紙ページ 1p 挿入 (ページ番号の記載は、必要ありません。)

注意)このページは、原稿ではありません。 印刷しないでください。

