COMS31700 Design Verification: Checking

Kerstin Eder

Checking - Outline

- Motivation
- Issues in checking
 - When to check
 - What to check
- Checking technologies
 - Reference models
 - Scoreboards
 - (Rule-based checking)
 - (Assertions)
 - Assertion-based verification (ABV) later

The Yin-Yang of Verification

- Driving and checking are the yin and yang of verification
 - We cannot find bugs without creating the failing conditions.
 - We cannot find bugs without detecting the incorrect behavior.

Ideal Checking

- In theory detect deviation from expected behavior as soon as it happens and where it happens
 - No need to worry about "disappearing errors"
 - Easy to debug the checker points to the bug
- This is not easy (even if we ignore many practical aspects) because in many cases we understand that something bad happened only in retrospect
 - Several "good" behaviors collide to create a bad behavior
- And what about the bugs we are not looking for?

"Good" Behavior Collision

- At cycle 1000 fdi F1 F2, F3 is dispatched to the M unit

 It reaches stage M2 at cycle 1001

 Its execution time is 60 cycles

 At cycle 1023 fld F1 100 (G2) is dispatched to the S unit

 It reaches stage S2 at cycle 1024

 Dispatch
- The data returns from the cache at cycle 1060
- At cycle 1061 the fdiv is ready to write - It moves to stage M3
- At cycle 1061 the fld is ready to write
- It moves to stage S3Both instruction write to the same register together

"Good" Behavior Collision

• There are many possible causes for the problem

Checking: Practical Aspects

Consider:

The cost of implementation and maintenance of checkers

VS

- the cost of debugging (without checkers).
- The cost of mistakes
 - Missed detection
 - We failed to detect a bug that was exposed by the stimuli.
 - False alarm
 - We mistakenly flagged a good behavior as bad.

Which is more expensive?

7

When to check

When to Check?

- Checking can be done at various stages of the verification job
 - During simulation
 - On-the-fly checking
 - At the end of simulation
 - End-of-test checking
 - After the verification job finishes
 - External checking
- Checking at each stage has its own advantages and disadvantages

9

On-the-fly Checking

Advantages

- Detection can be as close as possible (in time and space) to the bug source
- Can stop test as soon as bug occurs; no wasted simulation cycles
- Do not require large traces and external tools to do the checking
- Disadvantages
 - May slow down simulation
 - Checking is limited to allowed time and space complexity
 - Need to plan the checking in advance
 - To add a new checker, we need to rerun simulation

11

End-of-test Checking

- Disadvantages
 - Provides limited checking capabilities
 - Static look at the state of resources at the end of the test
 - High probability of masking bugs by repeated writing to the resources
 - Hard to detect performance bugs
 - Correct things are happening, but not at the right time
 - Hard to correlate symptoms to bugs
 - Hard to debug
- Advantages
 - Simpler than other forms
 - May not require a deep understanding of the DUV
 - Reduces probability of false alarms
 - (because bad effects may disappear)

13

External Checking

- External checking separates the checking from the simulation
 - We can perform any check we want without rerunning the simulation
 - As long as the data is in the trace files
 - We can perform more complicated checks
 - Use longer history, process events out-of-order
 - We can combine information coming from different sources
 - For example, different verification environments

In theory, external checking has all the powers of on-the-fly checking plus end-of-test checking - plus more

(Trace size and amount of traced facilities is a practical limitation.)

5

What to check

What to Check

- There are five main sources of checkers
 - The inputs and outputs of the design (specification)
 - The architecture of the design
 - The microarchitecture of the design
 - The implementation of the design
 - The context of the design
 - e.g. protocol compliance

(Slide from a previous lecture to remind us of where we can get inspiration for checkers from.)

17

Checking the What

- Check the final outcome of a behavior
 - Data oriented
 - But not limited to data
 - Usually based on higher level of abstraction
 - Checking is less tightly focused on implementation details
 - Requires less familiarity with the DUV
 - Low correlation between failure, the observed behavior that violates the spec, and bugs/ faults, the root cause of the failure
 - Harder for debugging

10

Checking the How

- Check how things are done internally
 - Control oriented
 - Usually at lower levels of abstraction
 - Closer to implementation
 - Tighter correlation between failure and bugs

20

Stimuli Generation and Checking

- In general, checking should be isolated from the stimuli generation
 - Modularity ability to replace the stimuli generator
 - Reusability ability to use the checkers at higher level of the design hierarchy
 - Independence of Checking from Generation
- Exceptions
 - Self-checking tests
 - Golden vectors
- Can stimuli generation assist checking?
 - The stimuli generation can assist checking by improving observability
 - Help transfer events from dark corners to the spotlight

21

Checking Technologies

Scoreboards

- Scoreboards are smart data structures that keep track of events in the DUV during simulation
- Usually, scoreboards are global
 - One scoreboard per verification environment
- Scoreboards are not checking mechanisms, but
 - The main purpose of using scoreboards is for checking
 - In practice, many checkers are implemented inside scoreboards
 - There are many typical checks that are done with scoreboards

23

Scoreboards Overview

- Scoreboards source information from
 - the inputs and outputs of the DUV, and
 - occasionally also from internal events in the DUV.
- Scoreboards are very useful in dataflow designs
 - Routers, cache designs, queues
- Types of checks enabled using a scoreboard:
 - Matching outputs with inputs
 - No loss of data
 - Detect inputs with no matching output.

 No creation of data

 - Detect output with no matching input.
 No unintended modification of data
 - Timing specification
 - Delay from input to output remains within specified limits.
 - Data order

Scoreboarding in e - 1

Assume: DUV does not change order of packets. Hence, first packet on scoreboard has to match received packet.

```
!!c scorepoard {
!expected_packets : list of packet_s;
add_packet(p_in : packet_s) is {
   expected_packets.add(p_in);
};
intr);
-- If match was successful, continue.
out(''Found received packet on scoreboard.'');
expected_packets.delete(0);
```

Scoreboarding in e - 2

Recording a packet on the scoreboard:

Extend driver such that

- When packet is driven into DUV call add_packet method of
 - · Current packet is copied to scoreboard.
- It is useful to define an event that indicates when packet is being

Checking for a packet on the scoreboard:

Extend receiver such that

- When a packet was received from DUV call check_packet. Try to find the matching packet on scoreboard.
- It is useful to define an event that indicates when a packet is being received.

Side Note – Graceful End-of-test

- Checking that nothing is lost is very important
- If an input does not have a matching output, how can we distinguish between these two cases:
 - The input is lost or hopelessly stuck in the DUV
 - The DUV did not have enough time to handle the input
- Possible solution Start a timer when a new input enters the DUV
 - If the timer expires, that input is lost or stuck
 - But, what if the delay cannot be bound?
- Alternative (or complementary) solution stop the inputs before the end of the test and let the design
 - Because there are no new inputs, things that are stuck inside have a chance to get processed

Reference Models

- A reference model is an *oracle* that tells how the DUV should behave
 - Usually in the form of an alternative implementation
- It runs in parallel to the DUV, using the same inputs and provides the checking mechanisms with information about the expected behavior
 - Checking is done by comparing the expected behavior to the actual one
- · Pure reference models can run independently of the DUV
 - But not all reference models are pure (example later)

Reference Model Operation DUV

Reference Models

- Reference models have many uses
 - Checking
 - Aids for stimuli generation

- "Smart" protocol models imitate the function of the
- Vehicles for SW development
- What can we check with a reference model
 - In principle, anything
 - In practice it depends on the level of detail and accuracy of the reference model
 - And how much of its behavior we are willing to expose

Levels of Abstraction

- The level of abstraction in a reference model dictates the type of information we can get out of it for checking
 - Functionally accurate models can be used only to check correctness of data, usually at the end of the test or at well defined points in time
 - Timing, order, and other checks need other means
 - Cycle accurate models can be used for checking all aspects of I/O behavior
 - Cycle accurate and latch accurate models can be used also for checking the internal state of the DUV
 - This type of model is sometimes called deep function

Impure Reference Model

- Sometimes it is impossible (or very hard) for the reference model to duplicate significant decisions made by the DUV
- Possible solution: Use information from the DUV to assist the reference model!

Contemporary TB Architecture

Contemporary Testbench Architecture Scoreboard / Response Check

Monitors

- Monitors are TB components that observe the inputs, outputs, or internals of the DUV.
 - Monitors watch activity of the DUV.
 - Black box: DUV inputs and outputs
 - Grey box: potentially selected internals
 - Monitors can convert low-level signals to transactions.
 - Monitors can flag simple timing and protocol errors.
 - Monitors collect functional coverage.
 - Monitors update the scoreboard.
 - Monitors don't drive DUV pins; they are "passive".
 - Monitors are self-contained and don't cause "side effects"
 Monitors are re-usable at different levels of abstraction.

Types of Monitors

- Input monitors:
 - Collect inputs to the DUV and pass them to scoreboard.
 - Can have checker components.
- Output monitors:
 - Observe the outputs from the DUV and pass them to the scoreboard.
 - Can have checker components.
- Coverage monitors:
 - Collects inputs, outputs and selected internal signals.
 - Permit analysis of stimulus and functionality coverage.

Rule-based Checking

- Checks that a set of rules hold in the DUV
- Essentially, all checking is rule-based, e.g.

if (not "something") then error

- where the "something" can be
 - Value of a register matches value in reference model
 - Data in a packet at the DUV output matches data in the input as stored in the scoreboard
 - response_out == 0 → data_out == 0

Rule-based Checking

- Rules can come from many sources
 - All levels of the design process
 - Spec, high-level design, implementation
 - Behavior of neighboring units
- Rules checking can be implemented in many places
 - External checking tools
- Various places in the verification environment
 - Interface monitors
 - Scoreboards
 - End-of-test checkers
 - In the DUV itself
- Rule-based checkers embedded in the DUV code are called assertions
 - Lecture on Assertion-Based Verification

Self-Checking Testbenches

- Knowledge of the DUV functionality can be built into the TB.
 - This automates the checking process.
 - Verification engineers encode their knowledge of correct DUV functionality into the checkers, monitors and scoreboard using:
 - Golden Vectors,
 - Reference Models,
 - Protocols or Transactions.
 - Assertions.
- This results in a "self-checking" TB.
 - Checkers are "always" active.

Putting Coverage, Generation and Checking together:

The Verification Environment

(With many thanks to Cadence for providing the animations in this section.)

Directed Test Environment - Composition of a directed test - Directed tests contain more than just stimulus. - Checks are embedded into the tests to verify correct behavior. - The passing of each test is the indicator that a functionality has been exercised. - Reusability and maintenance - Tests can become quite complex and difficult to understand the intent of what functionality is being verified - Since the checking is distributed throughout the test suite, it is a lot of maintenance to keep checks updated - It is usually difficult or impossible to reuse the tests across projects or from module to system - The more tests you have the more effort is required to develop and maintain them directed tests - Tests can be usually difficult or impossible to reuse the tests across projects or from module to system - The more tests you have the more effort is required to develop and maintain them directed tests - Tests can be used. - Tests can be used. - Tests can be used. - Test can be used. - Tests c

