# Properties of The Friendship and Spider Graphs

## Anaya Koirala and Rajwat Singh

## April 2025

#### Abstract

Graph theory is a fundamental area of combinatorics with diverse applications ranging from computer science and operations research to sociology and biology. This paper explores two special classes of graphs: the Friendship graph  $F_n$ , also known as the windmill graph, and the Spider graph F(a,b), characterized by their distinct structural properties. We rigorously analyze these graphs' key attributes, including their chromatic numbers, chromatic edge numbers, domination numbers, diameters, radii, and independence numbers. Through detailed mathematical proofs and discussions, we highlight how these properties reflect their underlying combinational structures and implications in theoretical and practical contexts.

### 1 Introduction

Graph theory investigates the properties of discrete structures composed of vertices and edges, providing powerful tools to model complex relationships across various disciplines. Among numerous interesting graph families, Friendship and Spider graphs stand out due to their unique topological structures and theoretical significance.

The Friendship graph,  $F_n$ , illustrates a centralized structure consisting of n triangles joined at a single common vertex, termed the "politician". Originating from the well-known Friendship theorem, this graph models scenarios such as social networks where a central node shares direct connections to multiple distinct groups. Conversely, the Spider graph F(a,b) consists of a single central vertex from which extend a disjoint paths, or "legs," each of length b. Spider graphs epitomize hierarchical or radial networks frequently encountered in communication and transportation systems.

This paper systematically examines these graphs' inherent characteristics, providing comprehensive analyses of parameters such as chromatic numbers, chromatic edge numbers, domination numbers, diameters, radii, and independence numbers. By doing so, we offer deeper insight into their structural complexity, demonstrating both similarities and differences in their combinational and algebraic properties. This study not only enriches the theoretical understanding of

these special graph families but also lays the groundwork for their application in network analysis and combinational optimization problems.

## 2 Friendship Graph $F_n$

### 2.1 Definition and Background

The friendship graph  $F_n$  (also called the windmill graph) consists of n triangles all sharing a single common vertex. Figure 1 below shows such a graph for  $F_4$  [2].



Figure 1: Friendship Graph for  $F_4$ 

The friendship graph's vertex set  $V(F_n)$  and edge set  $E(F_n)$  are defined by:

$$V(F_n) = \{v_0\} \cup V_1$$
$$V_1 = \{v_1, v_2, v_3, \dots, v_{2n}\}$$

$$E(F_n) = E_1 \cup E_2$$

$$E_1 = \{\{v_0, v\} : v \in V(F_n) - \{v_0\}\}\}$$

$$E_2 = \{\{v_{2n+1}, v_{2n+2}\} : 0 \le i \le n-1\}$$

References [1] Mehdi Behzad. Here,  $v_0$  acts as the center vertex, which we will call the "politician". The politician is adjacent to all the vertices in  $V_1$ , so its degree is 2n, since  $V_1$  contains 2n vertices.

The vertices in  $V_1$  come in n disjoint pairs. Each pair is joined to the politician and to each other, forming a triangle. Thus, each non-politician vertex has degree 2.

To determine the order of the graph, observe that  $V_1$  has 2n vertices and one additional vertex  $v_0$ , making the total:

$$|V(F_n)| = |V_1| + 1 = 2n + 1.$$

To find the size of the graph, add the number of edges from  $E_1$  and  $E_2$ :

$$|E(F_n)| = |E_1| + |E_2| = 2n + n = 3n.$$

The Friendship graph also relates to the Friendship theorem, which states that "In a party of n persons, if every pair of persons has exactly one common friend, then there is someone in the party (the politician) who is everyone else's friend" [3]. From this, we infer that as the politician is adjacent to all the vertices, the dominating number  $\gamma(F_n) = 1$ .

### 2.2 Results

### 2.2.1 Chromatic Number

**Theorem 1.** For a Friendship graph  $F_n$ , the chromatic number  $\chi(F_n) = 3$ .

*Proof.* Recall that the chromatic number  $\chi(G)$  of a graph G is the smallest number of colors required to color the vertices of G such that no two adjacent vertices share the same color [4].

In the vertex set of F(n), the politician  $v_0$  is connected to every other vertex along with n disjoint pairs each forming a complete graph  $K_3$ . The chromatic number of the complete graph  $K_3$  is exactly 3, because each vertex is connected to the other, each must have a distinct color. Thus, each  $K_3$  sub graph of triangles in  $F_n$  requires exactly 3 colors.

However, each triangle in  $F_n$  shares only the common vertex  $v_0$ , with no other vertices in common. Thus, it is possible to color each pair of vertices in  $V_1$  using two colors and one color to the politician.

This coloring is valid because no two adjacent vertices share the same color. Specifically,  $v_0$  differs in color from all vertices in  $V_1$ , and within each pair in  $V_1$ , vertices differ in color as well. Therefore, exactly three colors suffice, and since fewer than three colors cannot properly color even a single triangle, the chromatic number must be exactly 3.

$$\chi(F_n) = 3.$$

#### 2.2.2 Chromatic Edge Number

**Theorem 2.** For a Friendship graph  $F_n$ , the chromatic edge number  $\chi'(F_n) = 2n$ .

*Proof.* Recall that the chromatic edge number  $\chi'(G)$  of a graph G is the smallest number of colors required to color the edges of G such that no two incident edges share the same color [1].

The edge set for  $F_n$  is the union of  $E_1$  and  $E_2$ . The set  $E_1$  consists of all edges connecting the politician vertex  $v_0$  to every vertex in  $V_1$ . Since all edges in  $E_1$  are incident on the politician, they must all receive distinct colors. Thus,

at least  $|E_1| = 2n$  colors are needed to color the edges incident to  $v_0$ .

The set  $E_2$  consists of n edges, where each edge connects a distinct pair of vertices in  $V_1$ . Each vertex in  $V_1$  has degree 2 and is adjacent to the politician via an edge in  $E_1$  and to its paired vertex via an edge in  $E_2$ .

Since each vertex in  $V_1$  is already incident to exactly one edge from  $E_1$ , and since its degree is only 2, the edge from  $E_2$  incident to it can be colored using an already existing color from the set used for  $E_1$  without causing a conflict. Therefore, no additional new colors are required to color the edges in  $E_2$ .

Thus, the total number of colors required to color all edges of  $F_n$  is exactly 2n. Hence,

$$\chi'(F_n) = 2n$$

2.2.3 Independence Number

**Theorem 3.** For a Friendship graph  $F_n$ , the independence number  $\alpha(n) = n$ 

*Proof.* The independence number of a graph refers to the maximum number of vertices from the vertex set of a graph such that no two vertices are adjacent [5].

 $F_n$  consists of 2n vertices in the set  $V_1$ , which are partitioned into n disjoint pairs, each of which forms a  $K_3$  triangle subgraph with the central vertex  $v_0$ . Each of the triangle shares the vertex  $v_0$ , so every vertex in  $V_1$  is adjacent to  $v_0$ , and every pair of adjacent vertices in  $V_1$  is connected by an edge. Hence, we exclude the politician  $v_0$  from the independence set because  $v_0$  is adjacent to all the vertices in  $V_1$ , making it impossible for  $v_0$  to be a part of any independence set with more than one vertex. Therefore, the independent set must be chosen entirely from the vertices in  $V_1$ .

Likewise, within each triangle formed by a pair  $\{v_{2n+1}, v_{2n+2}\}$ , both vertices are adjacent to each other and to  $v_0$ . Hence, from each triangle, only one vertex can be included in the independence set. This means that from the set  $V_1$ , we can select at most one vertex from each of the n disjoint triangles. For a total of the remaining 2n vertices then, the independence number becomes

$$\alpha(G) = \frac{|V_1|}{2} = \frac{2n}{2} = n$$

Therefore, the maximum number of independent vertices that can be chosen is n, corresponding to selecting one vertex from each of the n disjoint pairs in  $V_1$ .

## 3 Spider Graph F(a,b)

## 3.1 Definition and Background

The spider graph F(a, b) is a tree consisting of a disjoint paths, also known as "legs" of length b, all emanating from a single central vertex  $\{v_0\}$ , or the "body" of the graph. Figure 2 below shows such a graph for F(3,3) [2].



Figure 2: Spider Graph for F(3,3)

The spider graph's vertex set  $V(F_{a,b})$  and edge set  $E(F_{a,b})$  are defined by:

$$V(F_{a,b}) = \{v_0\} \cup \bigcup_{i=1}^{a} V_i$$
$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,b}\}, \text{ for } 1 \le i \le a$$

$$E(F_{a,b}) = E_0 \cup E_1$$

$$E_0 = \{\{v_0, v_{i,1}\} : 1 \le i \le a\}$$

$$E_1 = \{\{v_{i,j}, v_{i,j+1}\} : 1 \le i \le a, \ 1 \le j \le b-1\}$$

Each leg  $V_i$  is a path of b vertices, beginning from the body and extending outward, which b-1 edges internally, plus one additional edge connecting the leg to the body. Hence, each leg contributes b edges to the graph.

Since, there is one central vertex and a legs with b vertices, the order of the graph becomes

$$|V(F_{a,b})| = 1 + ab$$

Likewise, using the definition of a tree graph, the size of the graph becomes,

$$|E(F_{a,b})| = a + a(b-1) = ab$$

The central vertex  $v_0$ , is connected to the first vertex  $v_{i,1}$  of each leg  $V_i$  for  $1 \le i \le a$ . Therefore, the degree of  $v_0$  is

$$\deg(v_0) = |\{\{v_0, v_{i,1}\} : 1 \le i \le a\}| = a.$$

Since all other vertices in the graph are part of simple paths and have degree at most 2, the maximum degree in the graph is attained at  $v_0$ , as

$$\Delta(F(a,b)) = \max_{v \in V(F_{a,b})} \deg(v) = a.$$

On the other hand, for each leg  $V_i = \{v_{i,1}, \dots, v_{i,b}\}$ , the vertex  $v_{i,b}$  lies at the terminal end and is connected only to  $v_{i,b-1}$ . Thus,

$$deg(v_{i,b}) = 1,$$

and since there are a such terminal vertices, the minimum degree in the graph is

$$\delta(F(a,b)) = \min_{v \in V(F_{a,b})} \deg(v) = 1.$$

### 3.2 Results

### **3.2.1** Diameter, Radius, and Center of F(a, b)

**Theorem 4.** For a spider graph F(a,b) with one central vertex  $\{v_0\}$  and a number of legs of length b,

$$diam(F(a,b)) = 2b$$
 and  $rad(F(a,b)) = b$ ,

*Proof.* For any graph G:

- The distance d(u, v) is the length of the shortest path between u and v.
- $\bullet$  The *eccentricity* of a vertex x is

$$ecc(x) = \max_{y \in V(G)} d(x, y).$$

• The diameter of a graph G is

$$diam(G) = \max_{x \in V(G)} ecc(x).$$

• The radius of a graph G is

$$rad(G) = \min_{x \in V(G)} ecc(x).$$

In F(a,b), the longest distance is between two leaves on separate legs. For instance, between  $u_{i,b}$  and  $u_{j,b}$ , the shortest path goes:

$$u_{i,b} \to u_{i,b-1} \to \cdots \to u_{i,1} \to v_0 \to u_{j,1} \to \cdots \to u_{j,b},$$

which has length 2b. Thus, diam(F(a,b)) = 2b.

Next, consider the eccentricity of the hub:

$$\operatorname{ecc}(v_0) = \max_{x \in V} d(v_0, x) = b.$$

For any non-hub vertex  $u_{i,j}$ , its distance to a leaf on a different leg is:

$$d(u_{i,j}, u_{k,b}) = j + b > b,$$

so no non-hub vertex has eccentricity as small as b. Hence, the radius is b, and the unique center is  $\{v_0\}$ .

### **3.2.2** Domination Number of F(a, b)

**Theorem 5.** For the spider graph F(a,b), the domination number is:

$$\gamma(F(a,b)) = 1 + a \left\lceil \frac{b-1}{3} \right\rceil.$$

*Proof.* Let D be a minimum dominating set.

#### 1. Necessity of including the hub $v_0$ :

Suppose  $v_0 \notin D$ . Then each leg's vertex  $v_{i,1}$  must be dominated separately, either by itself or by  $v_{i,2}$ . No single non-hub vertex can dominate more than one of them, and  $v_0$  still needs to be dominated. So, at least a+1 vertices are needed—more than if we include  $v_0$ . Therefore,  $v_0 \in D$  in any minimal set.

### 2. Dominating the remaining path of each leg:

After  $v_0$  covers each  $v_{i,1}$ , what's left on leg i is a path on b-1 vertices:

$$v_{i,2}, v_{i,3}, \ldots, v_{i,b}.$$

The domination number of a path with n vertices is  $\lceil \frac{n}{3} \rceil$ , so each leg requires  $\lceil \frac{b-1}{3} \rceil$  more vertices.

In total, this gives us,

$$\gamma(F(a,b)) = 1 + a \left\lceil \frac{b-1}{3} \right\rceil.$$

### 3.2.3 Independence Number

**Theorem 6.** The independence number of the spider graph F(a,b) is:

$$\alpha(F(a,b)) = a \cdot \left\lceil \frac{b}{2} \right\rceil.$$

*Proof.* Each leg is a path  $P_b$ , and the independence number of such a path is  $\left\lceil \frac{b}{2} \right\rceil$ .

If we do not include  $v_0$ , we can independently choose those maximum sets on each leg. Including  $v_0$  forces us to exclude all  $v_{i,1}$ , which decreases the count.

Therefore,

$$\alpha(F(a,b)) = a \cdot \left\lceil \frac{b}{2} \right\rceil.$$

## 4 Conclusion

In this paper, we have extensively examined two distinctive classes of graphs, the Friendship graph  $F_n$  and the Spider graph F(a,b). Our analysis provided rigorous proofs of several essential graph properties, including chromatic numbers, edge chromatic numbers, domination numbers, independence numbers, diameters, and radii. These properties illuminate fundamental structural insights and highlight significant combinational characteristics unique to these graphs. Friendship graphs, due to their centralized connectivity, are particularly illustrative of social network dynamics, while spider graphs effectively represent hierarchical and radial structures found in various communication and transportation scenarios. The comprehensive examination presented here establishes a solid foundation for further exploration of these and related graph structures, emphasizing their theoretical importance and practical applications in network design and optimization.

## References

- [1] Mehdi Behzad. *Graphs and their chromatic numbers*. Michigan State University, 1965.
- [2] Farshad Kazemnejad et al. *Domination number of middle graphs*. Aug. 2020. DOI: 10.48550/arXiv.2008.02975.
- [3] Judith Q Longyear and Torrence D Parsons. "The friendship theorem". In: *Indagationes Mathematicae (Proceedings)*. Vol. 75. 3. Elsevier. 1972, pp. 257–262.
- [4] Arthur T. White. "Chapter 8 Map-Coloring Problems". In: Graphs of Groups on Surfaces. Ed. by Arthur T. White. Vol. 188. North-Holland Mathematics Studies. North-Holland, 2001, pp. 89-106. DOI: https://doi.org/10.1016/S0304-0208(01)80009-8. URL: https://www.sciencedirect.com/science/article/pii/S0304020801800098.
- [5] William Willis. "Bounds for the independence number of a graph". In: (2011).