Assignment 4 - Question 3

Sasank, Tharun, Rajeev

October 22, 2014

Given: A is a $m \times n$ matrix, $P = A^T A$ and $Q = AA^T$.

Part (a)

For any $n \times 1$ column vector y,

$$y^{t}Py = y^{t}A^{t}Ay = (Ay)^{T}Ay = ||Ay||^{2} \ge 0$$

So, P is positive definite.

For any $m \times 1$ column vector z,

$$z^{t}Qz = z^{t}AA^{t}z = (A^{t}z)^{T}A^{t}z = ||A^{t}z||^{2} \ge 0$$

So, Q is positive definite.

Let λ be a eigenvalue of R, a positive definite matrix with eigenvector v, then $Pv = \lambda v$. Premultiply by v^T .

$$v^t R v = \lambda v^t v$$

$$\lambda = \frac{v^t R v}{\|v\|^2} \ge 0$$

because R is positive definite. Here both P and Q are positive definite. So, their eigenvalues are all positive.

Part (b)

Given

$$Pu = \lambda u$$

$$A^t A u = \lambda u$$

Premultiply by A

$$AA^t(Au) = \lambda(Au)$$

$$Q(Au) = \lambda(Au)$$

So, Au is a eigenvector of Q with eigenvalue λ

Given,

$$Qv = \mu v$$

$$AA^tv = \mu v$$

Premultiply by A^t

$$A^t(AA^tv) = \mu(A^Tv)$$

$$P(A^T v) = \mu(A^t v)$$

So, A^tu is a eigenvector of P with eigenvalue μ . Since P is $n \times n$, u is a $n \times 1$ matrix. and since Q is $m \times m$, v is a $m \times 1$ matrix.

Part (c)

Given,

$$Qv_i = \mu v_i$$
$$AA^t v_i = \mu v_i$$

$$Au_i = \frac{AA^tv_i}{\|A^tv_i\|} = \frac{\mu}{\|A^tv_i\|}v_i = \gamma_i v_i$$

where $\gamma_i = \frac{\mu}{\|A^t v_i\|} \ge 0$ because $\mu \ge 0$.

Part (d)

Given $V=[u_1|u_2|u_3|...|u_n]$. Then i,j th element of $V^TV=u_i^tu_j=1$ if i=j and =0 if $i\neq j$. So, $V^TV=I$ i.e, $V^T=V^{-1}$ as V is a $n\times n$ matrix. To show $A=U\Gamma V^t$, it is enough to show $AV=U\Gamma$ where Γ is a diagonal matrix containing

 γ_i 's along diagonals.

We know from part (c), $Au_i = \gamma v_i$.

$$AV = A[u_1|u_2|u_3|\dots|u_n] = [Au_1|Au_2|Au_3|\dots|Au_n]$$
$$= [\gamma_1v_1|\gamma_2v_2|\gamma_3v_3|\dots|\gamma_nv_n] = [v_1|v_2|v_3|\dots|v_n|]\Gamma = U\Gamma$$

. where Γ is a diagonal matrix containing γ_i 's along diagonals.