# Meta Reinforcement Learning en Meta-Maze

MATTHIAS ALEXANDER GDANIETZ DE DIEGO: 100383277

MANUEL LOZANO RAMOS: 100514547

ALONSO MENÉNDEZ GONZÁLEZ: 100512399

#### Contenidos



¿Qué es Meta-RL?



**Dominio Meta-Maze** 



Aplicación Meta-RL



## ¿Qué es Meta Reinforcement Learning?

- 1. Ideas Principales
- 2. Meta-World
- 3. Tareas Parametrizables
- 4. Otras Consideraciones





#### Adquirir Meta-Conocimiento

 Conocimiento abstracto, no específico.

## Aprender de varias tareas

Para poder generalizar

## Aplicar en nuevos problemas

 Facilita el aprendizaje

#### 2. Meta-World







#### 3. Tareas Parametrizables





No Parametrizable

Abrir una puerta Encestar una pelota

Abrir una ventana

Abrir Ventana



#### 4. Otras Consideraciones

# Modelado de problemas

- Observaciones, acciones...
- Comunes a todas las tareas

#### Función de Refuerzo

- 1. Resolubles Individualmente
- 2. Estructura Común

#### Objetivos de Meta Learning

- 1 tarea Variar las metas.
- Aprender antes nuevas tareas



## Dominio Meta-Maze y Modelado del Problema

- 1. Meta-Maze
- 2. Observabilidad Parcial
- 3. Primer Modelo
- 4. Segundo Modelo

#### 1. Meta-Maze







#### 2. Observabilidad Parcial



#### Observación

Pixeles alrededor

#### Estado Inicial

- Mi posición es aleatoria
- Posición meta aleatoria
- Tamaño del laberinto conocido

#### **Problemas**

- ¿Dónde empecé?
- ¿Dónde estoy?
- ¿Dónde está la meta?



#### 2. Observabilidad Parcial



¿Se puede resolver con Q-Learning?



¿Se puede usar Meta-RL?



# 3. Primer Modelo: Observación como estado

Cada observación es un estado

Codificado en un solo entero

Generalización aprendizaje



### 떒

# 3. Primer Modelo: Problemas





# 3. Primer Modelo: Problemas





# 4. Segundo Modelo: Posición Relativa como estado

Se empieza en (0,0)

Moverse a una posición libre cambia la Coordenada

Codificado en un solo entero





# 4. Segundo Modelo: Problemas





## Aplicación de Meta-RL en Meta-Maze

- 1. Objetivo del Meta-Conocimiento
- 2. Reglas Manuales
- 3. Reglas Automáticas
- 4. Datos a usar en los Modelos
- 5. Modelos Propuestos
- 6. Nuestra Implementación



## 1. Objetivo del Meta-Conoci miento

## Exploración

- Aleatoria
- •Reglas Manuales
- Reglas Automáticas

## Explotación

Política aprendida

### 2. Reglas Manuales



Reconstruir mapa

Seguir por pasillos

 Recordar dirección de la meta

 No chocar con paredes



### 3. Reglas Automáticas



Datos de pasos previos



Nueva acción a realizar

| Random Forest y similares |
|---------------------------|
| MLP                       |
| RNN                       |
| LSTM                      |

### 4. Datos a usar en los Modelos



Observaciones

Acciones



### 5. Modelos Propuestos



Random Forest y similares

MLP





### 5. Modelos Propuestos



RNN

LSTM



### 6. Nuestra Implementación



#### Reglas Manuales

 No chocar con las paredes

#### Reglas Automáticas

- Solo acciones
- Observaciones y acciones
- Random Forest
- LSTM

# Muchas gracias!