Problem 1

- 1. (10 points) Let $\mathbf{r_1}$ be the line passing through the point P = (1, 0, 1) and with direction (1, -1, 0). Write the equation of the line in parametric and symmetric form.
- 2. (10 points) Find the equation of the line r_2 obtained by intersecting the planes x + y z = 2 and 2x + 2y + z = 3.
- 3. (10 points) Find the equation of the plane passing through r_1 and the line $r_3(t) = (t, -t, 0)$.
- 4. (5 points) Consider the line intersecting r_1 in P and with direction (1,1,1). What is the angle of this line with r_1 ? Is this line orthogonal to the plane you found in part 3?

Problem 2

Consider the function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = \sqrt{x^2 - y^2}$.

- 1. (15 points) Find and sketch the domain D and the level curves of f in \mathbb{R}^2 .
- 2. (15 points) Consider the point P = (1,0). Find the unitary directions \vec{v} along which the partial derivative of f in P has value $\frac{1}{2}$. What are the lowest and highest values of the directional derivatives of f in P?
- 3. (5 points) Is f differentiable at the origin?
- 4. (5 points) Let $A = \{(x,y)|x^2 + y^2 6x \le 10\}$. Find the absolute maximum and minimum of f in A.

Problem 3

- 1. (10 points) Find the volume of the solid inside the cylinder $(x-1)^2 + (y-1)^2 = 1$ and below the paraboloid $z = 30 3x^2 y^2$.
- 2. (10 points) Find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 1$ and outside the cone $z = \sqrt{x^2 + y^2}$.
- 3. (10 points) Use cylindrical coordinates to find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 1$ and below the plane $z = \frac{\sqrt{2}}{2}$.
- 4. (5 points) Set up the integral from part 3 in spherical coordinates.