Física II

Resumo

Rafael Rodrigues

LEIC Instituto Superior Técnico 2023/2024

Contents

1	Fundamentos				
2	Ele	Eletrostática			
3	Condutores e Dielétricos				
	3.1 Condutor				
		3.1.1 P	ropriedades	2	
			argas Induzidas	2	
			avidades	2	
	3.2			3	
		3.2.1 C	ondensador de placas paralelas	3	
			ondensador de esferas concêntricas	3	
			ondensadores em Paralelo	3	
		3.2.4 C	ondensadores em Série	3	
		3.2.5 T	rabalho	3	
	3.3		os	4	
4	Ma	Magnetostática			
4.1 Corrente Elétrica		_	Elétrica	4	
		4.1.1 D	ensidade de Corrente	4	
		4.1.2 C	orrente Elétrica	4	
		4.1.3 L	ei de Kirchhoff	4	
	4.2	Lei de O	nm	4	
	4.3		ule	5	
	4.4	A Força	de Lorentz	5	
	4.5	_	Biot-Savart	5	
		4.5.1 E	xperiência de Ampère revisitada	5	
5	Campo magnético na matéria				
6	Eletrodinâmica				
7	$\mathbf{A}\mathbf{s}$	As equações de Maxwell			

Fundamentos 1

Campos

Um campo (ϕ) é uma zona do espaço onde em cada ponto está definida uma quantidade.

$\mathbf{2}$ Eletrostática

Condutores e Dielétricos 3

3.1 Condutor

Num condutor as cargas elétricas podem mover-se livremente no material. Um condutor pode ser metálico onde as cargas são eletrões, ou líquido onde as cargas são iões.

3.1.1 Propriedades

• $\vec{E} = 0$ dentro de um condutor

Quando aplicamos um campo \overrightarrow{E} sobre um condutor isolado, as cargas negativas (cargas induzidas) movem-se na direção oposta ao campo \overrightarrow{E} , separando-se das cargas positivas e criando um campo \overline{E}' .

$$\overrightarrow{E} + \overrightarrow{E'} = 0 = \overrightarrow{E}_{total}$$

• $\rho = 0$ dentro de um condutor

Pela lei de Gauss $\overrightarrow{\nabla}.\overrightarrow{E}=\frac{\rho}{\epsilon_0}$, como $\overrightarrow{E}=0\Longrightarrow \rho=0$. Há cargas no interior do condutor, mas em igual quantidade de + e -, de modo a que se anulam.

• $\overrightarrow{E} \perp$ à superfície do condutor

Qualquer carga remanescente situa-se na superfície do condutor, o que significa que

• um condutor é um equipotencial

3.1.2 Cargas Induzidas

As Cargas procuram sempre o equilíbrio $(\overrightarrow{E} = 0)$.

Se tivermos uma carga $+\mathbf{Q}$ e um condutor não carregado, as cargas negativas são atraídas para a carga $+\mathbf{Q}$, para que assim se anule o campo no interior do condutor.

3.1.3 Cavidades

No caso de no interior do condutor houver uma cavidade e a carga $+\mathbf{Q}$ estiver dentro dela, então o campo é não nulo nessa região.

Assim a carga induzida \mathbf{Q}_{ind} é igual a $-\mathbf{Q}$ e a carga à superfície do condutor passa a ser positiva porque as cargas negativas aproximaram-se da carga $+\mathbf{Q}$ deixando de estar na superfície.

2

No caso de não haver carga na cavidade, $\overrightarrow{E} = 0$ na cavidade (Gaiola de Faraday).

3.2 Condensador

Um condensador é um componente que armazena cargas elétricas num campo elétrico, composto por dois condutores, com cargas $+\mathbf{Q}$ e $-\mathbf{Q}$.

3.2.1 Condensador de placas paralelas

Composto por duas placas paralelas a uma distância d.

- \bullet Densidade de carga de cada placa: $\sigma = \mathbf{Q}/\mathbf{A}$
- Campo entre as placas: $\overrightarrow{E} = \frac{\mathbf{Q}}{\mathbf{A}\epsilon_0}$
- Diferença de potencial entre as placas: $V = \frac{\mathbf{Q}d}{\mathbf{A}\epsilon_0}$
- Capacitância: $C = \frac{\mathbf{A}\epsilon_0}{d}$

3.2.2 Condensador de esferas concêntricas

Composto por duas superfícies esféricas concêntricas de raios $a \in b$.

- campo entre as superfícies: $\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{Q}}{r^2} \overrightarrow{e}_r$
- Diferença de potencial entre as superfícies: $V=\frac{\mathbf{Q}}{4\pi\epsilon_0}\left(\frac{1}{a}-\frac{1}{b}\right)$
- Capacitância: $C = 4\pi\epsilon_0 \frac{ab}{b-a}$

3.2.3 Condensadores em Paralelo

$$C = \frac{Q_1 + Q_2 + Q_3}{V} = \frac{Q_1}{V} + \frac{Q_2}{V} + \frac{Q_3}{V} = C_1 + C_2 + C_3$$

3.2.4 Condensadores em Série

$$C = \frac{Q}{V_1 + V_2 + V_3} \Rightarrow \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

3.2.5 Trabalho

Para carregar um condensador é preciso eliminar eletrões do condutor positivo e movê-los para o condensador negativo. Isso requer trabalho pois é temos de puxar cargas negativas contra o campo elétrico. O trabalho necessário para carregar o condensador com uma carga mathbfQ é dado por:

$$W = \frac{Q^2}{2C} = \frac{CV^2}{2}$$

3

3.3 Dielétricos

Com os Dielétricos entramos no estudo do campo elétrico na matéria. Existem 2 grandes grupos:

- Condutores
 - As cargas elétricas movem-se livremente através do material
- Dielétricos ou Isolantes:
 - As cargas elétricas estão presas aos átomos ou moléculas e apenas se podem mover um pouco dentro deles
 - Existem 2 mecanismos pelos quais um campo elétrico pode distorcer a distribuição de carga de um átomo ou molécula dielétrica
 - * Estiramento
 - * Rotação

4 Magnetostática

- 4.1 Corrente Elétrica
- 4.1.1 Densidade de Corrente
- 4.1.2 Corrente Elétrica
- 4.1.3 Lei de Kirchhoff

4.2 Lei de Ohm

Para ter corrente é preciso empurrar as cargas, a velocidade que adquirem depende das características do material. A densidade de corrente elétrica \overrightarrow{J} é proporcional à força aplicada

$$\overrightarrow{J} = \sigma \overrightarrow{f}$$

em que σ é uma constante experimental que depende do material e que se chama **Condutividade** do meio. É mais comum o uso da **Resistividade** do meio, que é o inverso: $\rho = \frac{1}{\sigma}$

Nesta parte da matéria assumimos que a força aplicada às cargas é a do Campo Elétrico

$$\overrightarrow{J}=\sigma\overrightarrow{E}$$

Num condutor **em equilíbrio eletrostático** temos $\overrightarrow{E} = 0$ e $\overrightarrow{J} = 0$.

Para condutores perfeitos temos $\overrightarrow{E} = \frac{\overrightarrow{J}}{\sigma} = 0$, mesmo que esteja corrente a fluir.

Conclui-se que o campo elétrico necessário para movimentar as cargas é quase nulo. Assim consideramos estes fios como **equipotenciais**. Já as resistências são feitos de materiais que conduzem pouco.

A Lei de Ohm é então dada por

$$R = \frac{V}{I} \Leftrightarrow V = I \times R$$

V: Tensão elétrica (V), R: Resistência elétrica (Ω), I: Corrente elétrica (A)

4

$$R = \frac{\rho L}{A} \Leftrightarrow R = \frac{L}{A\sigma}$$

R: Resistência elétrica (Ω) , L: Comprimento do condutor (m), A: Secção do condutor (m^2)

$$I = \sigma E A$$

I: Corrente elétrica (A), E: Campo elétrico (Vm⁻¹), A: Secção do condutor (m²)

4.3 Lei de Joule

$$P = VI = RI^2$$

P: Potência elétrica (W), V: Tensão elétrica (V), I: Corrente elétrica (A), R: Resistência elétrica (Ω)

4.4 A Força de Lorentz

4.5 A Lei de Biot-Savart

O campo magnético gerado por um fio percorrido por corrente estacionária é dada por

$$\overrightarrow{B}(\overrightarrow{r}) = \frac{\mu_0 \mathbf{I}}{4\pi} \int_{\mathcal{C}} \frac{d\overrightarrow{\mathbf{I}}' \times \overrightarrow{e}_r}{r^2}$$

A qunatidade μ_0 chama-se **permeabilidade do espaço livre** com valor $\mu_0 = 4\pi \times 10^{-7} NA^{-2}$.

4.5.1 Experiência de Ampère revisitada

Para calcular o campo magnético de um fio longo sobre outro fio longo, paralelos entre si, a uma distância d, percorridos por correntes \mathbf{I}_1 e \mathbf{I}_2 usamos a fórmula

$$\overrightarrow{B}_1 = -\frac{\mu_0 \mathbf{I}_1}{2\pi d}$$

Para calcular o valor da força por unidade de cumprimento dentre os dois fios utilizamos a fórmula

$$\overrightarrow{F} = \frac{\mu_0 \mathbf{I}_1 \mathbf{I}_2}{2\pi d}$$

Esta força é atrativa caso as correntes tenham a mesma direção, ou repulsiva caso contrário.

5 Campo magnético na matéria

6 Eletrodinâmica

7 As equações de Maxwell