Homework 2

Consider a spacehaft composed of a main cylindrical budy B, and 4 affendages

Body B_1 , with radius R and length L

MBI = 2000 Kg

R = 1m

L = 4m

Bodies Bz and Bz, with radius Bz and length ba
Bodies Bz and Bz, with radius Bz and length ba

mbz = mbz = mbz = 100 kg

Va = VB = 0.05 m

(1 degree of freedom).

torque about the respective rotation axis, with coefficients

K1 = 100 Nm for the elastic torque (moportions (to Q.)

K2 = 50 Nm sec for the friction torque (proportional to Q.)

The spacehaft travels a circular orbit of radius $R_0 = 7000 \text{ km}$ and the inertial frame coincides with B_1 at t_0 (initial time). Thus the position and velocity of the center of mass of B_1 at t_0 are

$$\frac{V_{\text{P1}}(t_0)}{R_0} = \begin{bmatrix} 0 & \sqrt{\frac{R}{R_0}} & 0 \end{bmatrix} \underbrace{V}^{\text{T}}$$
 where $\underbrace{N} = \underbrace{B_1}(t_0)$

$$\frac{V_{\text{P1}}(t_0)}{R_0} = \begin{bmatrix} R_0 & 0 & 0 \end{bmatrix} \underbrace{V}^{\text{T}}$$

The remaining initial conditions are

$$\underline{\omega}_{1}(t_{0}) = \begin{bmatrix} 1 & 0.1 & 0.1 \end{bmatrix} \operatorname{Sec}^{1} \underline{\beta}_{1}^{\mathsf{T}}$$

$$\theta_1(t_0) = -30 \text{ deg}$$
 $\theta_2(t_0) = 30 \text{ deg}$ $\theta_3(t_0) = -30 \text{ deg}$ $\theta_4(t_0) = 10 \text{ deg}$

$$\nabla_1(t_0) = -0.2 \text{ sec}^{-1} \quad \nabla_2(t_0) = 0.2 \text{ sec}^{-1} \quad \nabla_3(t_0) = 0.1 \text{ sec}^{-1} \quad \nabla_4(t_0) = -0.3 \text{ sec}^{-1}$$
Consider two cases

(A)
$$l_A = 2m$$
 $l_B = 9m$, propragation time [0, 1800] sec

(B)
$$l_A = 2m$$
 $l_B = 3m$, propagation time [0, 7200] sec

Portray the time histories of

$$(ii)$$
 $\theta_i(t)$ $(i=1,...,4)$

Comment on the asymptotic rotational state of the spacehaft