

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 38900 N
                                                               M_{\star}
                                                                         = -831000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 24800 N
                                                                         = 200000 \text{ N/mm}^2
          = 44200 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 44600 N	M,	= 34300 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 29700 N	M_x	= -1080000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 52700 N
                                                               M_{\star}
                                                                         = -1430000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 24200 N
                                                                         = 200000 \text{ N/mm}^2
          = 41500 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 43400 N
                                                               M_{\star}
                                                                         = -1890000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 30000 N
                                                                         = 200000 \text{ N/mm}^2
          = 51000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 55300 N
                                                                 M_{\star}
                                                                           = -1710000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 36900 N
                                                                           = 200000 \text{ N/mm}^2
          = 63000 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 42000 N	M _t	= 31700 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 25700 N	M_x	= -884000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_d =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$, =	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.16.06.09

17.06.09

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 47700 N
                                                               M_{\star}
                                                                         = -1140000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 20800 N
                                                                         = 200000 \text{ N/mm}^2
          = 37300 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 38100 N
                                                               M_{\star}
                                                                         = -1490000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 25600 N
                                                                         = 200000 \text{ N/mm}^2
          = 44800 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 47600 N
                                                               M_{\star}
                                                                         = -1330000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 31400 N
                                                                         = 200000 \text{ N/mm}^2
          = 54600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 60100 N
                                                                 M_{\star}
                                                                           = -1820000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 38400 N
                                                                           = 200000 \text{ N/mm}^2
          = 45600 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 44900 N
                                                               M_{\star}
                                                                         = -944000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 18200 N
                                                                         = 200000 \text{ N/mm}^2
          = 34400 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 34400 N
                                                                M_{\star}
                                                                           = -1210000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 22200 N
                                                                           = 200000 \text{ N/mm}^2
          = 40100 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 41700 N
                                                               M_{\star}
                                                                         = -1060000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 27000 N
                                                                         = 200000 \text{ N/mm}^2
          = 47800 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51600 N	M,	= 39400 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_{y}	= 32900 N	M_x	= -1440000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
                                                                           = -1940000 Nmm
Ν
          = 64700 N
                                                                 M_{\star}
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 27100 N
                                                                           = 200000 \text{ N/mm}^2
          = 50000 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 32100 N	M _t	= 36600 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 19700 N	M_x	= -1000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$; =	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_c$	₁ =	$\sigma_{ ext{tresca}}$	_=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.16.06.09

17.06.09

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 37400 N
                                                               M_{\star}
                                                                          = -868000 Nmm
                                                                          = 220 \text{ N/mm}^2
          = 23700 N
                                                                          = 200000 \text{ N/mm}^2
          = 42400 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 44800 N
                                                               M_{\star}
                                                                         = -1150000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 28500 N
                                                                         = 200000 \text{ N/mm}^2
          = 34200 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 55100 N
                                                               M_{\star}
                                                                         = -1530000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 23300 N
                                                                         = 200000 \text{ N/mm}^2
          = 42800 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 46700 N
                                                               M_{\star}
                                                                          = -2050000 Nmm
                                                                          = 220 \text{ N/mm}^2
          = 29000 N
M,₊
                                                                          = 200000 \text{ N/mm}^2
          = 53800 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 34800 N
                                                                       M_{\star}
                                                                                  = -734000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 21400 N
                                                                                  = 200000 \text{ N/mm}^2
           = 38600 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 40000 N
                                                               M_{\star}
                                                                          = -956000 Nmm
                                                                          = 220 \text{ N/mm}^2
          = 25400 N
                                                                          = 200000 \text{ N/mm}^2
          = 30200 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 47700 N
                                                               M_{\star}
                                                                         = -1240000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 20500 N
                                                                         = 200000 \text{ N/mm}^2
          = 36900 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 39700 N
                                                               M_{\star}
                                                                         = -1640000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 25300 N
                                                                         = 200000 \text{ N/mm}^2
          = 45900 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
                                                                           = -1470000 Nmm
Ν
          = 51100 N
                                                                 M_{\star}
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 31100 N
                                                                           = 200000 \text{ N/mm}^2
          = 57400 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 49000 N	M _t	= 37100 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_{y}	= 30300 N	M_x	= -1240000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 55400 N
                                                               M_{\star}
                                                                         = -1560000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 24100 N
                                                                         = 200000 \text{ N/mm}^2
          = 43400 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 43800 N
                                                               M_{\star}
                                                                         = -1990000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 29300 N
                                                                         = 200000 \text{ N/mm}^2
          = 51500 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 54000 N	M,	= 61900 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 35500 N	M_x	= -1740000 Nmm	Ē	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67100 N	M _t	= 51100 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_{y}	= 42900 N	M_x	= -2320000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 52300 N
                                                                 M_{\star}
                                                                           = -1330000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 21500 N
                                                                           = 200000 \text{ N/mm}^2
          = 40200 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 39900 N	M _t	= 46500 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
T_y	= 25900 N	M_x	= -1660000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{d}$	₁ =	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 47800 N	M _t	= 54800 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 31000 N	M_x	= -1420000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 58400 N
                                                               M_{\star}
                                                                         = -1870000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 37200 N
                                                                         = 200000 \text{ N/mm}^2
          = 44600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 72100 N
                                                                 M_{\star}
                                                                            = -2470000 Nmm
T_y \\ M_t
                                                                            = 220 \text{ N/mm}^2
          = 30300 N
                                                                            = 200000 \text{ N/mm}^2
          = 55800 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 37600 N
                                                                 M_{\star}
                                                                           = -1420000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 23500 N
                                                                           = 200000 \text{ N/mm}^2
          = 43100 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 43500 N
                                                               M_{\star}
                                                                         = -1200000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 27800 N
                                                                         = 200000 \text{ N/mm}^2
          = 49400 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51600 N	M _t	= 39400 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
T_y	= 33000 N	M_x	= -1550000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_{d}$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 62500 N
                                                               M_{\star}
                                                                         = -2020000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 26600 N
                                                                         = 200000 \text{ N/mm}^2
          = 48600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 52200 N
                                                                 M_{\star}
                                                                            = -2630000 Nmm
T_y \\ M_t
                                                                            = 220 \text{ N/mm}^2
          = 32700 N
                                                                            = 200000 \text{ N/mm}^2
          = 60300 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 40900 N
                                                                 M_{\star}
                                                                           = -1040000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 25600 N
                                                                           = 200000 \text{ N/mm}^2
          = 45700 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 46800 N	M,	= 35400 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_{y}	= 30000 N	M_x	= -1320000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 55100 N
                                                               M_{\star}
                                                                         = -1680000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 23900 N
                                                                         = 200000 \text{ N/mm}^2
          = 42700 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 45200 N
                                                               M_{\star}
                                                                         = -2170000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 29100 N
                                                                         = 200000 \text{ N/mm}^2
          = 52300 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 57200 N
                                                                      M_{\star}
                                                                                  = -1900000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 35200 N
                                                                                  = 200000 \text{ N/mm}^2
           = 64500 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 44000 N
                                                                       M_{\star}
                                                                                  = -1160000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 27900 N
                                                                                  = 200000 \text{ N/mm}^2
           = 32600 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 49900 N
                                                               M_{\star}
                                                                         = -1450000 Nmm
                                                                          = 220 \text{ N/mm}^2
          = 22000 N
                                                                         = 200000 \text{ N/mm}^2
          = 38300 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 39700 N
                                                               M_{\star}
                                                                         = -1830000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 26400 N
                                                                         = 200000 \text{ N/mm}^2
          = 45800 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 49400 N
                                                               M_{\star}
                                                                         = -1580000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 31700 N
                                                                         = 200000 \text{ N/mm}^2
          = 55700 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 62000 N
                                                                 M_{\star}
                                                                            = -2090000 Nmm
T_y \\ M_t
                                                                            = 220 \text{ N/mm}^2
          = 37900 N
                                                                            = 200000 \text{ N/mm}^2
          = 46500 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 45000 N
                                                               M_{\star}
                                                                         = -761000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 18100 N
                                                                         = 200000 \text{ N/mm}^2
          = 37700 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 34600 N
                                                                       M_{\star}
                                                                                  = -1020000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 22800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 44000 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 42100 N	M,	= 52900 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_{y}	= 28200 N	M_x	= -932000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 52600 N
                                                                      M_{\star}
                                                                                  = -1290000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 34800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 44000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 66500 N
                                                                      M_{\star}
                                                                                  = -1780000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 28900 N
                                                                                  = 200000 \text{ N/mm}^2
           = 56300 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 32500 N
                                                                 M_{\star}
                                                                            = -793000 Nmm
T_y \\ M_t
                                                                            = 220 \text{ N/mm}^2
          = 19200 N
                                                                            = 200000 \text{ N/mm}^2
          = 40700 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 37900 N
                                                                       M_{\star}
                                                                                   = -720000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 220 \text{ N/mm}^2
           = 23800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 47100 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 45700 N	M _t	= 38200 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_{y}	= 29300 N	M_x	= -994000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 56700 N	M _t	= 48200 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
T_y	= 24500 N	M_x	= -1370000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.16.06.09

17.06.09

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 48500 N
                                                                      M_{\star}
                                                                                  = -1870000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 30800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 61200 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 35600 N
                                                                 M_{\star}
                                                                            = -564000 Nmm
T_y \\ M_t
                                                                            = 220 \text{ N/mm}^2
          = 20300 N
                                                                            = 200000 \text{ N/mm}^2
          = 43500 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 41100 N	M _t	= 34000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 25000 N	M_x	= -776000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 49200 N
                                                               M_{\star}
                                                                         = -1050000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 20700 N
                                                                         = 200000 \text{ N/mm}^2
          = 41800 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 41200 N
                                                                      M_{\star}
                                                                                  = -1440000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 26200 N
                                                                                  = 200000 \text{ N/mm}^2
           = 52300 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 53400 N
                                                                      M_{\star}
                                                                                  = -1330000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 32700 N
                                                                                  = 200000 \text{ N/mm}^2
           = 65900 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38000 N	M _t	= 30800 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 21200 N	M_x	= -606000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	·	

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.16.06.09

17.06.09

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 43500 N
                                                                       M_{\star}
                                                                                   = -822000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 220 \text{ N/mm}^2
           = 17500 N
                                                                                  = 200000 \text{ N/mm}^2
           = 36500 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 35200 N
                                                                M_{\star}
                                                                           = -1100000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 22000 N
                                                                           = 200000 \text{ N/mm}^2
          = 44600 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 44800 N
                                                                M_{\star}
                                                                          = -1010000 Nmm
T_y \\ M_t
                                                                          = 220 \text{ N/mm}^2
          = 27400 N
                                                                          = 200000 \text{ N/mm}^2
          = 55500 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 57600 N
                                                                      M_{\star}
                                                                                  = -1420000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 33800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 47400 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 40400 N
                                                               M_{\star}
                                                                         = -662000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 15300 N
                                                                         = 200000 \text{ N/mm}^2
          = 33100 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 31000 N
                                                                       M_{\star}
                                                                                   = -881000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 220 \text{ N/mm}^2
           = 19100 N
                                                                                  = 200000 \text{ N/mm}^2
           = 38800 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 38200 N
                                                                M_{\star}
                                                                           = -798000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 23500 N
                                                                           = 200000 \text{ N/mm}^2
          = 47000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 48100 N
                                                                      M_{\star}
                                                                                  = -1100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 28900 N
                                                                                  = 200000 \text{ N/mm}^2
           = 39600 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 61600 N
                                                                      M_{\star}
                                                                                  = -1510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 24000 N
                                                                                  = 200000 \text{ N/mm}^2
           = 51500 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 30000 N
                                                                 M_{\star}
                                                                            = -522000 Nmm
T_y \\ M_t
                                                                            = 220 \text{ N/mm}^2
          = 15600 N
                                                                            = 200000 \text{ N/mm}^2
          = 36900 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 34400 N
                                                                       M_{\star}
                                                                                  = -502000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 20800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 42200 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 41900 N
                                                                 M_{\star}
                                                                            = -732000 Nmm
T_y \\ M_t
                                                                            = 220 \text{ N/mm}^2
          = 26300 N
                                                                            = 200000 \text{ N/mm}^2
          = 34600 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 52400 N
                                                                      M_{\star}
                                                                                  = -1040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 22300 N
                                                                                  = 200000 \text{ N/mm}^2
           = 44100 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 45300 N
                                                                M_{\star}
                                                                          = -1460000 Nmm
                                                                          = 220 \text{ N/mm}^2
          = 28400 N
M,₊
                                                                          = 200000 \text{ N/mm}^2
          = 56700 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```