In [1]:

1 from sklearn.datasets import load_iris

2 import pandas as pd

C:\Users\CompLab27\anaconda3\lib\site-packages\scipy__init__.py:138: UserWarnin
g: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (d
etected version 1.24.4)</pre>

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion} is requ
ired for this version of "</pre>

In [3]:

- 1 dataset=load_iris() #constructor
- 2 cols=dataset.feature_names
- 3 df=pd.DataFrame(dataset.data,columns=cols)
- 4 df

Out[3]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [4]:

1 df.head()

Out[4]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

```
1 df["target"]=dataset.target #Load new column
In [6]:
              df["target"]
Out[6]: 0
                  0
                  0
          2
                  0
          3
                  0
          4
                  0
          145
                  2
                  2
          146
          147
                  2
          148
                  2
          149
                  2
          Name: target, Length: 150, dtype: int32
In [7]:
               df.head()
Out[7]:
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
          0
                          5.1
                                           3.5
                                                            1.4
                                                                            0.2
           1
                                                                            0.2
                          4.9
                                           3.0
                                                            1.4
                                                                                     0
           2
                          4.7
                                                                            0.2
                                                                                     0
                                           3.2
                                                            1.3
           3
                          4.6
                                           3.1
                                                            1.5
                                                                            0.2
                                                                                     0
                          5.0
                                           3.6
                                                            1.4
                                                                            0.2
                                                                                     0
In [8]:
               df.tail()
Out[8]:
                sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
           145
                                                                                       2
                            6.7
                                             3.0
                                                              5.2
                                                                              2.3
           146
                            6.3
                                             2.5
                                                              5.0
                                                                              1.9
                                                                                       2
           147
                                                                                       2
                            6.5
                                             3.0
                                                              5.2
                                                                              2.0
                                                                                       2
           148
                            6.2
                                             3.4
                                                              5.4
                                                                              2.3
           149
                            5.9
                                             3.0
                                                              5.1
                                                                              1.8
                                                                                       2
               from sklearn.preprocessing import StandardScaler #Full data on same scale
```

In [9]:

ML - PCA - Jupyter Notebook

In [10]:	1 2	<pre>x=df.iloc[:,:-1] x</pre>	
----------	--------	-------------------------------	--

Out[10]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
Out[20]: 0
                 0
          2
                 0
          3
                 0
          4
                 0
          145
                 2
          146
                 2
                 2
          147
          148
                 2
          149
```

Name: target, Length: 150, dtype: int32

```
1 x=StandardScaler().fit_transform(x)
In [21]:
           2
Out[21]: array([[-9.00681170e-01,
                                    1.01900435e+00, -1.34022653e+00,
                  -1.31544430e+00],
                 [-1.14301691e+00, -1.31979479e-01, -1.34022653e+00,
                  -1.31544430e+00],
                                    3.28414053e-01, -1.39706395e+00,
                 [-1.38535265e+00,
                  -1.31544430e+00],
                 [-1.50652052e+00,
                                    9.82172869e-02, -1.28338910e+00,
                 -1.31544430e+00],
                [-1.02184904e+00,
                                    1.24920112e+00, -1.34022653e+00,
                 -1.31544430e+00],
                [-5.37177559e-01,
                                    1.93979142e+00, -1.16971425e+00,
                 -1.05217993e+00],
                                    7.88807586e-01, -1.34022653e+00,
                 [-1.50652052e+00,
                 -1.18381211e+00],
                [-1.02184904e+00, 7.88807586e-01, -1.28338910e+00,
                 -1.31544430e+00],
                [-1.74885626e+00, -3.62176246e-01, -1.34022653e+00,
                 -1.31544430e+00],
                                    9.82172869e-02, -1.28338910e+00,
                 [-1.14301691e+00,
In [22]:
           1 x=pd.DataFrame(x)
           2 x
Out[22]:
```

	0	1	2	3
0	-0.900681	1.019004	-1.340227	-1.315444
1	-1.143017	-0.131979	-1.340227	-1.315444
2	-1.385353	0.328414	-1.397064	-1.315444
3	-1.506521	0.098217	-1.283389	-1.315444
4	-1.021849	1.249201	-1.340227	-1.315444
145	1.038005	-0.131979	0.819596	1.448832
146	0.553333	-1.282963	0.705921	0.922303
147	0.795669	-0.131979	0.819596	1.053935
148	0.432165	0.788808	0.933271	1.448832
149	0.068662	-0.131979	0.762758	0.790671

150 rows × 4 columns

```
In [23]: 1 from sklearn.decomposition import PCA
```


Out[24]:

```
        0
        1
        2
        3

        0
        -2.264703
        0.480027
        -0.127706
        -0.024168

        1
        -2.080961
        -0.674134
        -0.234609
        -0.103007

        2
        -2.364229
        -0.341908
        0.044201
        -0.028377

        3
        -2.299384
        -0.597395
        0.091290
        0.065956

        4
        -2.389842
        0.646835
        0.015738
        0.035923
```

In [25]:

```
#Varince covered by each person
print("Explained variance",pca.explained_variance_)
print("Proportions of explained variance",pca.explained_variance_ratio_)

import numpy as np
print("Cumulative proportion of explained variance",np.cumsum(pca.explained_v x_pca["target"]=y
x_pca.columns=["PC1","PC2","PC3","PC4","target"]
x_pca.head()
```

Explained variance [2.93808505 0.9201649 0.14774182 0.02085386]

Proportions of explained variance [0.72962445 0.22850762 0.03668922 0.00517871]

Cumulative proportion of explained variance [0.72962445 0.95813207 0.99482129 1.]

Out[25]:

	PC1	PC2	PC3	PC4	target
0	-2.264703	0.480027	-0.127706	-0.024168	0
1	-2.080961	-0.674134	-0.234609	-0.103007	0
2	-2.364229	-0.341908	0.044201	-0.028377	0
3	-2.299384	-0.597395	0.091290	0.065956	0
4	-2.389842	0.646835	0.015738	0.035923	0

```
In [27]: 1 import matplotlib.pyplot as plt
```



```
In [34]: 1 plt.bar(PCA_values,pca.explained_variance_ratio_)
```

Out[34]: <BarContainer object of 4 artists>


```
In [ ]: 1
```

6 of 6