Clustering: K-Means, Nearest Neighbors

Foundation of Data Analysis 03/02/2021

Clustering Example

Divide data into different groups

Original image

Segmented image

Ask user how many clusters they'd like (e.g. k=5)

- 1. Ask user how many clusters they'd like (e.g. k=5)
- Randomly guess k cluster Center locations

- Ask user how many clusters they'd like (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.

- 1. Ask user how many clusters they'd like (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...

- Ask user how many clusters they'd like (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

Disadvantages of K-means

 Does not work efficiently with complex geometrical shaped data (mostly non-linear)

Hard assignment for labels might lead to misgrouping

Disadvantages of K-means

 Does not work efficiently with complex geometrical shaped data (mostly non-linear)

Hard assignment for labels might lead to misgrouping

 Nearest Neighbors: (Un)supervised Learning (non-parametric model)

Nearest Neighbors

K-nearest neighbors of seed x: data points that have the k smallest distance to x.

 K-Nearest Neighbor (KNN) classification - supervised learning

KNN Classifiers

Unknown seed

- Requires three things
 - The set of stored records
 - Distance metric
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown seed:
 - Compute distance to other training seeds
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown seed (e.g., by taking majority vote)

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i=1}^{d} (p^{i} - q^{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - optionally weight the vote according to distance
 - weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise
 - If k is too large, neighborhood may include points from other classes

Issues of Nearest Neighbor Classification

Scaling issues

- Attributes (features) may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

K-NN Algorithm

- Training:
 - Save the training examples
- At prediction:
 - Find the k training examples $(x_1, y_1), ..., (x_k, y_k)$ that are closest to the test example x
 - Predict the most frequent class among those y_i 's.

K-NN Algorithm

- Training:
 - Save the training examples
- At prediction:
 - Find the k training examples $(x_1, y_1), ..., (x_k, y_k)$ that are closest to the test example x
 - Predict the most frequent class among those y_i 's.
- Improvements:
 - Weighting examples from the neighborhood
 - Measuring "closeness"
 - Finding "close" examples in a large training set quickly

Tricks with Fast k-NN

K-means using r-NN

- 1. Pick k points $c_1 = x_1, \dots, c_k = x_k$ as centers
- 2. For each x_i , find D_i =Neighborhood(x_i)
- 3. For each x_i , let c_i =mean(D_i)
- 4. Go to step 2....