

(2)特許協力条約に基づいて公開された国際出

I NERO BURROL O BRADO DERO ERRO BERN HELV I DERO BERN HELV DER BERN HELV BERN BERN BERN MEN HELV BERN HELV BER

(43) 国際公開日 2004年2月5日 (05.02.2004)

(19) 世界知的所有権機関 国際事務局

PCT

(10) 国際公開番号 WO 2004/012128 A1

(51) 国際特許分類7:

G06F 19/00

(21) 国際出願番号:

PCT/JP2003/009579

(22) 国際出願日:

2003年7月29日(29.07.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2002年7月30日(30.07.2002) 特願2002-222192 特願 2002-361545

JР 2002年12月13日(13.12.2002)

(71) 出願人(米国を除く全ての指定国について): 山之内 製薬株式会社 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8411 東京都中央区 日本橋 本町二丁目3番11号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 上田 泰己 (UEDA,Hiroki) [JP/JP]; 〒305-8585 茨城県 つくば市 御幸が丘21 山之内製薬株式会社内 Ibaraki (JP). 橋 本誠一(HASHIMOTO,Seiichi) [JP/JP]; 〒305-8585 茨 城県 つくば市 御幸が丘21 山之内製薬株式会社内 Ibaraki (JP).
- (74) 代理人: 秋山 敦 . 外(AKIYAMA,Atsushi et al.); 〒 105-0001 東京都港区 虎ノ門3丁目8番27号 巴町ア ネックス2号館 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

/続葉有/

(54) Title: APPARATUS FOR FORMING MOLECULAR TIMETABLE AND APPRATUS FOR ESTIMATING CIRCADIAN CLOCK

(54) 発明の名称: 分子時刻表作成装置及び体内時計推定装置

101...TIME-LAPSE DATA OF GENE EXPRESSION PRODUCT AMOUNT IN STANDARD SAMPLE

102...SELECTION OF CIRCADIAN OSCILLATION GENE

103...FORMATION OF CIRCADIAN EXPRESSION CHANGE CURVE AND MOLECULAR TIMETABLE OF EACH GENE

E...TIME-LAPSE DATA OF GENE EXPRESSION PRODUCT AMOUNT IN SAMPLE F...YES 100...SELECTION OF GENE AND FORMATION OF MOLECULAR TIMETABLE

G...DETECTION OF DYSRHYTHM

I...ESTIMATION OF CIRCADIAN TIME

J...CIRCADIAN TIME

200...JUDGMENT OF CIRCADIAN DYSRHYTHM AND ESTIMATION OF CIRCADIAN TIME

L...DYSRHYTHM

300...REPORT

(57) Abstract: An apparatus 11 for estimating the circadian time in an individual organism based on the data of the gene expression product amount of a sample collected from the individual organism. This apparatus has a circadian oscillation gene selection means of selecting a circadian oscillation gene which shows a time-lapse change in the data of the gene expression product amount in a standard sample similar to a cosine wave having a definite time cycle; a circadian expression change curve selection means of selecting a circadian expression change curve which is similar to a time-lapse change in the gene expression product amount of the thus selected circadian oscillation gene from among a plural number of cosine waves having a definite time cycle and different phases; and a registration means of registering the data by which the thus selected circadian expression change curve is specified.

(57) 要約: 本発明は、生物個体から採取した 検体の遺伝子発現産物量測定データに基づ き生物個体の体内時刻を推定する装置11で ある。標準検体における遺伝子発現産物量 測定データの経時的変化が、所定時間を周 期とする余弦波に類似する概日振動遺伝子 を選択する概日振動遺伝子選択手段と、特 定時間を周期とし、位相の異なる複数の余 弦波から、選択された概日振動遺伝子の発 現産物量の経時的変化に類似する概日発現 変動曲線を選択する概日発現変動曲線選択

手段と、選択された前記概日発現変動曲線を特定する情報を登録する登録手段を備える。

DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,

GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

分子時刻表作成装置及び体内時計推定装置

5 技術分野

本発明は分子時刻表作成装置、体内時刻推定装置、分子時刻表作成方法、体内時刻推定方法、分子時刻表作成プログラム、体内時刻推定プログラム及び体内時刻推定システムに係り、特に1回の採取で得た検体の検査結果から、コンピュータを用いて簡易に体内時刻を推定可能な分子時刻表作成装置、体内時刻推定装置、分子時刻表作成方法、体内時刻推定方法、分子時刻表作成プログラム、体内時刻推定プログラム及び体内時刻推定システムに関するものである。

背景技術

20

25

15 多くの生物は体内時計を有しており、睡眠覚醒リズム、血圧リズム、体温リズム、及び一部のホルモン分泌リズムなど種々の生体リズムを制御している。

体内時計の発振周期は約24時間であるが、生物種によって多少異なり、ヒトの場合は約25時間といわれている。環境サイクルのない定常環境下における約24時間のリズムを概日リズムといい、日常生活では太陽光が、日々概日リズムを24時間サイクルに同調させる最も強力な同調因子として働く。

概日リズムの異常は、睡眠覚醒リズム障害(睡眠相後退症候群、睡眠相前進症候群、非24時間睡眠・覚醒症候群など)、季節性うつ病、時差症候群(JET-LAG)、昼夜交代勤務労働者における睡眠障害、痴呆老人にみられる夜間徘徊、及びせん妄等の疾患の原因や、不登校,不出社の原因の一つになることが知られている。

更に、投薬時刻によって薬効や副作用の発現の強弱、薬物動態が影響され

ることが知られている。深夜勤務者,交替制勤務者等の場合、体内時刻が一般的な人とは異なる場合があり、一般的な人の時刻に合わせて投薬しても、 その患者の体内時刻が投薬に適した時間でない場合には、十分な薬効の発 現が期待できないことがある。

5 従って、概日リズム障害患者の診断、個人毎の投薬時間の決定、痴呆老人 の夜間徘徊防止等のため、個人の体内時刻を個別に測定し、個人の体内時 刻の情報を医療機関の神経科、投薬のためのカルテを記載する医師、老人 病院、老人保健施設に提供できるシステムの開発が望まれており、体内時刻 を推定する方法の研究が進められている。

10 体内時刻推定方法としては、経時的に採血して血中のメラトニン量を測定し、 ピークを示す時刻及び量から個人の体内時刻を推定する方法、同様に経時 的に活動量や睡眠を測定して睡眠・覚醒リズムを観察し、個人の体内時刻を 推定する方法、体温を測定して体温リズムを観察することにより体内時刻を推 定する方法などが考えられる。

15 しかし、これらの方法は、24時間以上にわたって経時的に採血又は体温測 定等を行う必要があり、患者及び医療従事者側にとって負担が大きく、医療 現場で用いるには現実的な方法とはいえないという問題点があった。

一方、オリゴDNAアレイを用いたショウジョウバエ頭部の経時的遺伝子発現産物量の測定(McDonaLD, M. and Rosbash, M., Cell, 107, 567-578.(2001), ClarIDge-Chang, A.ら、Neuron, 32, 657-671(2001))やディファレンシャルディスプレイ法を用いたマウスの肝臓における概日振動遺伝子の探索(Kornmann, B.ら、Nucleic AcIDs Res., 29(11), e51(2001))により該組織において概日振動遺伝子が多数見出され、それぞれの概日振動遺伝子が最大発現値を示す時刻についても報告されている。

25 しかし、これらの測定データを用いて体内時刻の測定をする方法は知られて おらず、体内時刻の測定をする方法の確立が望まれている。

10

15

20

本発明の目的は、上記問題点を解決することにあり、複数回の検体採取を する必要なく、一回の検体採取手順のみで個人の体内時刻を推定可能な分 子時刻表作成装置、体内時刻推定装置、分子時刻表作成方法、体内時刻推 定方法、分子時刻表作成プログラム、体内時刻推定プログラム及び体内時刻 推定システムを提供することにある。

本発明の他の目的は、個人の体内時刻の推定結果を医療機関、老人保健施設、スポーツクラブ等の顧客に提供可能な分子時刻表作成装置、体内時刻推定装置、分子時刻表作成方法、体内時刻推定方法、分子時刻表作成プログラム、体内時刻推定プログラム及び体内時刻推定システムを提供することを目的とする。

発明の開示

本発明における分子時刻表作成装置は、請求項1に係る発明によれば、生物個体から採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するための分子時刻表を作成する装置であって、所定生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現産物量測定データを入力するデータ入力手段と、前記標準検体中において発現する遺伝子の中から、その遺伝子発現産物量測定データの経時的変化が、所定時間を周期とする余弦波に類似する概日振動遺伝子を選択する概日振動遺伝子選択手段と、特定時間を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記概日発現変動曲線を選択する概日発現変動曲線選択手段と、選択された前記概日発現変動曲線を選択する概日発現変動曲線選択手段と、選択された前記概日発現変動曲線を特定する情報を登録する登録手段と、を備えることにより解決される。

25 上記課題は、請求項4に係る分子時刻表作成方法によれば、生物個体から 採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の

10

15

20

25

体内時刻を推定するための分子時刻表を、情報処理装置を用いて作成する方法であって、所定生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現産物量測定データを入力するデータ入力手順と、前記標準検体中において発現する遺伝子の中から、その遺伝子発現産物量測定データの経時的変化が、所定時間を周期とする余弦波に類似する概日振動遺伝子を選択する概日振動遺伝子選択手順と、特定時間を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記概日発現変動曲線を選択する概日発現変動曲線選択手順と、選択された前記概日発現変動曲線を発定する情報を登録する登録手順と、選択された前記概日発現変動曲線を特定する情報を登録する登録手順と、を行うことにより解決される。

上記課題は、請求項6に係る分子時刻表作成プログラムによれば、生物個体から採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するための分子時刻表を作成する情報処理装置に、所定生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現産物量測定データを入力するデータ入力手順と、前記標準検体中において発現する遺伝子の中から、その遺伝子発現産物量測定データの経時的変化が、所定時間を周期とする余弦波に類似する概日振動遺伝子を選択する概日振動遺伝子選択手順と、特定時間を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記概日発現変動曲線を選択する概日発現変動曲線選択手順と、選択された前記概日発現変動曲線を選択する概日発現変動曲線選択手順と、選択された前記概日発現変動曲線を特定する情報を登録する登録手順と、変実行させるための分子時刻表作成プログラムにより解決される。

上記課題は、請求項8に係る体内時刻推定システムによれば、生物個体から採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するための分子時刻表を作成すると共に、前記生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の

10

25

体内時刻を推定するシステムであって、前記体内時刻情報を提供する情報セ ンターに設置されるサーバコンピュータと、該サーバコンピュータに情報送受信 可能に接続された端末コンピュータとを備え、前記サーバコンピュータは、所定 生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現産物 量測定データを入力する標準データ入力手段と、前記標準検体中において発 現する遺伝子の中から、その遺伝子発現産物量測定データの経時的変化が、 所定時間を周期とする余弦波に類似する概日振動遺伝子を選択する概日振 動遺伝子選択手段と、特定時間を周期とし、位相の異なる複数の余弦波から、 前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前 記概日発現変動曲線を選択する概日発現変動曲線選択手段と、前記概日 発現変動曲線上の値が最大となる時刻を、前記概日振動遺伝子の標準分子 時刻として前記体内時刻の推定のために用いられる分子時刻表に登録すると 共に、前記発現産物量の前記概日振動遺伝子毎の平均値及び標準偏差を、 前記概日振動遺伝子の標準発現量及び標準変動量として前記分子時刻表 に登録する登録手段と、前記生物個体の前記所定部位から採取された検体 15 に含まれる前記概日振動遺伝子の前記遺伝子発現産物量測定データを入力 する測定データ入力手段と、入力された前記測定データを、前記分子時刻表 で特定される前記概日発現変動曲線と照合することにより、前記生物個体が 概日リズム障害であるかの判定結果及び概日リズム障害でない場合には前 記生物個体の体内時刻推定結果を含む体内時刻情報を導出する体内時刻 20 情報導出手段と、前記導出された体内時刻情報を、前記端末コンピュータに 送信する体内時刻情報送信手段と、を備えることにより解決される。

このように、前記標準検体中において発現する遺伝子の中から、その遺伝 子発現産物量測定データの経時的変化が、所定時間を周期とする余弦波に 類似する概日振動遺伝子を選択する概日振動遺伝子選択手段と、特定時間 を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝

10

15

20

25

子の発現産物量の経時的変化に類似する前記概日発現変動曲線を選択する概日発現変動曲線選択手段と、選択された前記概日発現変動曲線を特定する情報を登録する登録手段と、を備えているため、所定生物種の所定部位に含まれる概日振動遺伝子の概日発現変動曲線を特定する時刻表を作成することができる。つまり、その生物種の個体について、概日リズム障害であるか否かの判定、概日リズム障害でない場合の体内時刻推定の基本となる時刻表を得ることが可能になるのである。

このとき、前記登録手段は、前記概日発現変動曲線上の値が最大となる時刻を、前記概日振動遺伝子の標準分子時刻として前記体内時刻の推定のために用いられる分子時刻表に登録すると共に、前記発現産物量の前記概日振動遺伝子毎の平均値及び標準偏差を、前記概日振動遺伝子の標準発現量及び標準変動量として前記分子時刻表に登録すると好適である。

このように構成しているため、所定生物種の所定部位に含まれる概日振動 遺伝子の概日発現変動曲線を特定する分子時刻表を作成することができる。 つまり、その生物種の個体について、概日リズム障害であるか否かの判定、 概日リズム障害でない場合の体内時刻推定に用いる分子時刻表を得ること が可能になるのである。また、概日発現変動曲線を標準分子時刻、標準発現 量、標準変動量のデータのみで登録でき、概日発現変動曲線を、少ないデー タで管理可能となる。

上記課題は、請求項3に係る体内時刻推定装置によれば、生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定する装置であって、所定生物種の所定部位の概日振動遺伝子の発現産物量の経時的変化を示す概日発現変動曲線を特定する分子時刻表を記憶する分子時刻表記憶手段と、前記生物個体の前記所定部位から採取された検体に含まれる前記概日振動遺伝子の前記遺伝子発現産物量測定データを入力するデータ入力手段と、入力された前記測定データを、前記分子時

10

15

20

25

刻表で特定される前記概日発現変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推定結果を含む体内時刻情報を導出する体内時刻情報導出手段と、を備えることにより解決される。

上記課題は、請求項5に係る体内時刻推定方法によれば、生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を、情報処理装置を用いて推定する方法であって、所定生物種の所定部位の概日振動遺伝子の発現産物量の経時的変化を示す概日発現変動曲線を特定する分子時刻表を記憶する分子時刻表記憶手順と、前記生物個体の前記所定部位から採取された検体に含まれる前記概日振動遺伝子の前記遺伝子発現産物量測定データを入力するデータ入力手順と、入力された前記測定データを、前記分子時刻表で特定される前記概日発現変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推定結果を含む体内時刻情報を導出する体内時刻情報導出手順と、を行うことにより解決される。

上記課題は、請求項7に係る体内時刻推定プログラムによれば、生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定する情報処理装置に、所定生物種の所定部位の概日振動遺伝子の発現産物量の経時的変化を示す概日発現変動曲線を特定する分子時刻表を記憶する分子時刻表記憶手順と、前記生物個体の前記所定部位から採取された検体に含まれる前記概日振動遺伝子の前記遺伝子発現産物量測定データを入力するデータ入力手順と、入力された前記測定データを、前記分子時刻表で特定される前記概日発現変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推定結果を含む体内時刻情報を導出する体内時刻情報導出手順と、を実行させるための体内時刻推定プログラム

により解決される。

このように、測定データを、前記分子時刻表で特定される前記概日発現変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推定結果を含む体内時刻情報を導出する体内時刻情報導出手段を備えているため、1回の採取で得た検体の測定データと所定生物種の所定部位の分子時刻表により特定される前記概日発現変動曲線とを照合することにより、検体を複数回採取する必要なく、1回の採取で得た検体に基づいて簡易に概日リズム障害か否かの判定及び体内時刻の推定が可能となる。

10

15

20

25

5

図面の簡単な説明

図1は、本発明の一実施形態に係る体内時刻推定システムの全体構成を示す説明図、図2は、本発明の一実施形態に係る体内時刻推定システムを統括する体内時刻推定装置のハード構成を示す説明図、図3は、経時的遺伝子発現産物量テーブルの構成を示す説明図、図4は、分子時刻表テーブルの構成を示す説明図、図5は、体内時刻情報テーブルの構成を示す説明図、図6は、本発明の一実施形態に係る体内時刻推定システムの処理の流れを示すブロック図、図7は、本発明の一実施形態に係る概日振動遺伝子選択処理を示すフローチャート、図8は、遺伝子選択用余弦波を示す説明図、図9は、本発明の一実施形態に係る概日発現変動曲線・分子時刻表作成処理を示すフローチャート、図10は、本発明の一実施形態に係る体内時刻の推定及び情報提供処理を示すフローチャート、図11は、本発明の一実施形態に係る体内時刻の推定及び情報提供処理のうちサンプルの概日振動遺伝子発現産物量の正規化処理を示すフローチャート、図13は、本発明の一実施形態に係る体内時刻の推定及び情報提供処理のうち

10

15

25

正規化された概日振動遺伝子発現産物量と時刻t時における各概日振動遺伝子産物の推定発現量との間のピアソン相関係数cの計算処理を示すフローチャート、図14は、本発明の一実施形態に係る体内時刻情報報告画面を示す説明図、図15は、検査対象者特性テーブルを示す説明図、図16は、データ解析結果の一例を示す説明図である。

発明を実施するための最良の形態

以下、本発明の実施例を図面に基づいて説明する。なお、以下に説明する 部材、配置等は本発明を限定するものでなく、本発明の趣旨の範囲内で種々 改変することができるものである。

本発明の体内時刻推定システムとは、情報センター内のサーバコンピュータに入力・受信された人体の検体中の遺伝子発現産物量測定データを用いて、概日リズム障害か否かの判定結果と概日リズム障害でない場合の体内時刻推定結果とを含む体内時刻情報を導出すると共に、この体内時刻情報を、判定依頼者である顧客の端末コンピュータに送信するシステムである。

本実施形態では、人体の体内時刻推定を行う例について説明するが、本実施形態の体内時刻推定システムは、マウス、ラット、犬等の哺乳動物など、概日リズムを有する生物であれば、いかなる生物の体内時刻推定に用いてもよい。

20 また、本実施形態ではヒトの血液検体を用いて各個人の体内時刻推定を行う例について説明するが、マウスの視交叉上核、肝臓、ショウジョウバエの頭部、ヒトの皮膚、末梢血の白血球、口腔粘膜、その他各臓器など、概日リズムを有する検体であれば、いかなる検体を体内時刻推定に用いてもよい。

更に、本実施形態では、遺伝子発現産物量測定データとして、遺伝子の転写産物であるメッセンジャーRNA(以下、mRNAとする)量の測定データを用いるが、遺伝子によりコードされる蛋白質量の測定データ、遺伝子によりコードされ

15

20

25

る蛋白質の修飾量の測定データ、遺伝子にコードされる酵素の活性量の測定データ、酵素によって代謝される化合物量の測定データ、遺伝子発現産物により制御されている体温・血圧・心拍数・血流量・呼吸数・脳波・活動量・体液pH等の物理量の測定データなど、概日リズムを有するものであれば、いかなる測定データを遺伝子発現産物量測定データとして用いても良い。

「概日振動遺伝子」は、明期と暗期が交互に繰り返す24時間周期の明暗条件下或いは恒暗条件下で、遺伝子発現が約24時間(20~28時間)周期で振動を示すものをいう。

「標準発現量」は遺伝子の経時的発現量測定データの平均値、「標準変動 10 量」は遺伝子の経時的発現量測定データの標準偏差、「相対発現量」は、遺 伝子の遺伝子発現産物の測定値から標準発現量を減じ、標準変動量で除す ことによって正規化した発現量を意味する。

「正規化」とは、各遺伝子の発現変動を同一基準で評価するための手段であって、各遺伝子の遺伝子発現産物量の測定値或いは各概日発現変動曲線上の値から標準発現量を減じ、標準変動量で除すことをいう。これによって、各概日振動遺伝子の標準変動量を1、標準発現量を0として統一的に扱うことが可能となる。

「概日発現変動曲線」とは、有限の発現データから概日振動遺伝子の経時的な発現状態を数式化したもので、経時的に測定した発現量をもとに複数の方法で作成可能である。「相対概日発現変動曲線」とは、各概日発現変動曲線上の値から標準発現量を減じ、標準変動量で除すことによって正規化した概日発現変動曲線を意味する。

「ZT時刻」は、明暗条件下における点灯時をZT0時とした時刻を示す。12時間点灯した後、ZT12時に消灯する。従って、ZT0時からZT12時までが明期で、その後ZT12時からZT24時までが暗期になる。

「CT時刻」は、明期・暗期の24時間周期にリズム同調を行った後、本来ZTO

時に相当する時刻に点灯を行わずにCTO時とする。CTO時からの恒暗条件下における24時間周期の時刻をCT時刻として表記する。

「分子時刻」とは概日振動遺伝子の概日発現変動曲線が最大値をとるCT時刻或いはZT時刻である。

5 「類似性」とは対象と対象との間の類似の度合いを表す数値である。類似性には相関係数のように値の大きい方ほど類似性が高いことを表わす「類似度」と、距離のようにその値が小さい方ほど類似性が高いことを表わす「非類似度」とがある。

非類似度を表す指標の一つである「距離」は、対象と対象の間の隔たりの程 10 度を示す指標のことである。「ユークリッドの平方距離」は、最も良く用いられる 距離のうちの一つであり、データが (x_1, y_1) 、 (x_2, y_2) 、 (x_3, y_3) ···· (x_n, y_n) で与えられた場合、変数×とyの間の距離 d_{xy} は

$$d_{xy} = \sum_{i=1}^{N} (x_i - y_i)^2$$

で定義される(文献3)。

15 「相関係数」とは類似度を表す指標の一つで相関の程度を示す指標のことである。「ピアソンの積率相関係数」は、最も良く用いられる相関係数の一つであり、

$$\gamma_{xy} = \frac{\sum_{i=1}^{N} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}}{\sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{n}} \sqrt{\frac{\sum_{i=1}^{N} (y_i - \overline{y})^2}{n}}}$$

で定義される(文献4)。ただし

余弦波の標準偏差sについて説明する。余弦波上の対応する時刻tにおける値A(t)は、次のように求めることが出来る。

$$A(t) = Cos(\frac{2\pi(t-T)}{$$
周期時間)

周期時間:24(時間)

5 T: 余弦波の分子時刻(例えば、0/60, 10/60, 20/60, 30/60, …, 1420/60, 1430/60までの10分刻みの144種類の時刻とすることができる)

t:対応する時刻

10

15

余弦波上の経時的データ(サンプリング時刻における値の集合)の標準偏差sは、次のように求めることができる。

$$S = \sqrt{\frac{n\sum_{i=1}^{n} (A(t)_{i})^{2} - \left(\sum_{i=1}^{n} A(t)i\right)^{2}}{n(n-1)}}$$

例えば、4時間間隔で余弦波上の経時的データを取得した場合、tは次のような6点の時刻の組(n=6)として表記できる。 $(\alpha+0)/60$, $(\alpha+240)/60$, $(\alpha+480)/60$, $(\alpha+720)/60$, $(\alpha+960)/60$, $(\alpha+1200)/60$, $(\mu$ し、 α は、0分から240分までのある時刻(240分は含まず))。このときの標準偏差は、0.7745967となる。

本明細書中で「コンピュータ」とは、演算装置を備えた情報端末すべてを含む意味である。例えば、スーパーコンピュータ、汎用コンピュータ、オフィスコンピュータ、制御用コンピュータ、ワークステーション、パソコンのほか、携帯情報端末、演算装置を備えた携帯電話、ウェアラブルコンピュータ等をも含む。

20 また、本明細書中で「入力」とは、コンピュータに指示やデータを入れることをいい、キーボード、マウス等で指示やデータを入力する場合のほか、フレキシブルディスク、コンパクトディスク等の記憶媒体から指示やデータを入れる場合、通信回線を介して外部装置から指示やデータを受信する場合も含む。

(実施の形態1)

5

10

15

本実施形態の体内時刻推定システムは、図1に示すように、個人の体内時刻情報を顧客に提供する情報センター1と、情報センター1から個人の体内時刻情報の提供を受ける顧客としての医療機関2、スポーツセンター3、個人会員4、老人保健施設5、法人会員6、教育機関7を備えている。

情報センター1にはサーバコンピュータ11が設置され、インターネット13を介して顧客2~7の各端末コンピュータ21~71が接続されている。

情報センター1は、本実施形態の体内時刻推定システムを統括管理する組織であり、検査会社、製薬会社、医療機関、研究機関、分析センター、検査センター、データセンター等に含まれていてもよい。

情報センター1には、検体の遺伝子発現産物量を測定し、サーバコンピュータ11に遺伝子発現産物量測定データを入力するDNAチップ読取装置12と、DNAチップ読取装置12から受信した遺伝子発現産物量測定データを用いて概日リズム障害の判定処理、体内時刻推定処理を行うと共に、これらの処理で導出された体内時刻情報を端末コンピュータ21~71に送信する体内時刻情報提供装置としてのサーバコンピュータ11とが設置されている。

なお、本実施形態では、遺伝子発現産物量測定データを、DNAチップ読取装置12から受信しているが、顧客2~7に遺伝子発現産物量測定装置を設置し、端末コンピュータ21~71から受信するようにしてもよい。

20 情報センター1は、顧客2~7から検査対象者の血液サンプル19を送付又は 持込みにより受領する。公知の方法により、血液サンプル19を、遺伝子の発 現mRNA量を測定可能な状態に処理する。公知の方法として、例えば、血液 サンプル19から市販のRNA抽出キット、例えばRNAqueous-Blood Module、RN Aqueous Phenol-free Total RNA kit(フナコシ社)を用い、添付のプロトコー ルに従ってmRNAを分離・精製する。なお、血液サンプル19の処理として、グア ニジン・チオシアネート塩化セシウム法、グアニジン・チオシアネート・ホット・フ

20

ェノール法、グアニジン・チオシアネートーグアニジン・塩酸法等でmRNAを抽出し、mRNAをオリゴ(dT)セルロースカラムに吸着・溶出させ、精製してもよい。

その後、処理された血液サンプル19について、DNAチップ読取装置12で発現mRNA量を測定する。測定されたmRNA量の生データは、DNAチップ読取装置12に蓄積される。

DNAチップ読取装置12に蓄積された生データは、サーバコンピュータ11に送信される。サーバコンピュータ11では、この生データを加工して、検査対象者が概日リズム障害であるかどうかの判定を行い、概日リズム障害でない場合にはこの検査対象者の体内時刻を導出する。

10 導出された検査対象者の概日リズム障害の判定結果及び概日リズム障害 でない場合の体内時刻の情報は、この検査対象者の体内時刻情報として、依 頼した顧客の端末コンピュータ21~71に送信され、報告される。

顧客2~7は、情報センター1の顧客であって、情報センター1から本実施形態 の体内時刻推定システムによる体内時刻情報の提供を受ける。

15 顧客2~7にはそれぞれ、情報センター1のサーバコンピュータ11が提供する 体内時刻情報表示画面を閲覧可能な端末コンピュータ21~71が設置されて いる。

なお、遺伝子発現産物量を測定するための遺伝子発現産物量測定装置を顧客2~7に設置してもよい。この場合、検査対象者の血液サンプル19の発現mRNA量を顧客2~7側で測定し、その測定データを端末コンピュータ21~71からサーバコンピュータ11に送信し、その測定データに対する概日リズム障害の判定結果、体内時刻の情報を、サーバコンピュータ11から端末コンピュータ21~71で受信することになる。

医療機関2は、睡眠覚醒リズム障害、季節性うつ病、時差症候群、昼夜交代 25 勤務労働者における睡眠障害等の患者の概日リズム障害の判定、患者の投 薬時刻の決定等のために、本実施形態の体内時刻推定システムを利用す る。

5

10

20

医療機関2にはまた、診療記録、処方箋、各検査結果等が電子データとして 患者毎に登録された電子カルテサーバコンピュータ22が設置されている。電子 カルテサーバコンピュータ22は、院内LANで端末コンピュータ21と接続され、サ ーバコンピュータ11から端末コンピュータ21にダウンロードした体内時刻情報 を電子カルテサーバコンピュータ22に入力可能に構成されている。

後述する検査対象者番号を、電子カルテサーバコンピュータ22に登録された 患者番号と同じ番号にしておくと共に、サーバコンピュータ11から端末コンピュ ータ21にダウンロードした検査対象者毎の体内時刻情報を自動で電子カルテ サーバコンピュータ22の不図示のカルテデータベースに取込むプログラムを格 納しておけば、電子カルテに体内時刻情報を直接自動で取込むよう構成でき る。

また、医療機関2の代わりに、心理カウンセラー、保健所等の保健福祉施設、 診療所、児童相談所、薬局等が顧客であってもよい。

15 スポーツセンター3は、スポーツ選手の指導、トレーニング、育成等をする組織であって、スポーツの種類は問わない。スポーツセンター3は、国際大会参加前のスポーツ選手の練習スケジュール作成等のために、本実施形態の体内時刻推定システムを利用する。

スポーツセンター3には、端末コンピュータ31のほかに、スポーツ選手の健康 状態、練習メニュー、食事メニュー、大会参加記録等が電子データとして選手 毎に登録された選手管理サーバコンピュータ32が設置されている。選手管理 サーバコンピュータ32は、センター内LANで端末コンピュータ31と接続され、サ ーバコンピュータ11から端末コンピュータ31にダウンロードした体内時刻情報 を選手管理サーバコンピュータ32に入力可能に構成されている。

25 後述する検査対象者番号を、選手管理サーバコンピュータ32に登録された 選手番号と同じ番号にしておくと共に、サーバコンピュータ11から端末コンピュ

ータ31にダウンロードした検査対象者毎の体内時刻情報を自動で選手管理サーバコンピュータ32の不図示のデータベースに取込むプログラムを格納しておけば、データベースに体内時刻情報を直接自動で取込むよう構成できる。

また、スポーツセンター3の代わりに、スポーツジム、スポーツクラブ、クラブ活 動を管理する法人やクラブ活動を管轄する教育機関等が顧客であってもよい。

個人会員4は、自分の生活改善を目的として個人的に本実施形態の体内時刻推定システムを利用する顧客である。

例えば、健康志向の高い個人、高齢者、過去に睡眠覚醒リズム障害、季節 10 性うつ病、時差症候群等の経験のある者、昼夜交代勤務労働者等である。ま た、これらの者の家族や介護者が、本人から検体を採取できる場合には、検 体を採取し、本人の体内時刻情報の閲覧・管理を代わりに行ってもよい。

老人保健施設5は、施設に滞在している老人の健康管理、生活管理のため に本実施形態の体内時刻推定システムを利用する。

15 例えば、部屋割りを決定するための情報として、体内時刻情報を用いてもよい。

入所時に体内時刻情報を情報センター1から取得することにより、体内時刻の近い者を同じ部屋に滞在させることが可能である。これにより、同じ部屋の者は、体内時刻が近く、生活ペースが類似するため、起床時や就寝時の見回りなど、滞在者の管理を楽に行うことが可能になる。

また、入所時に体内時刻情報を取得しておけば、施設側も、入所後早い時期にその滞在者の生活リズムに対応できるため、新規入所者を早い時期に施設全体のペースに適合させることが可能になる。

老人保健施設5には、端末コンピュータ51のほかに、滞在者の健康状態、食 25 事メニュー、家族構成、リハビリメニュー等が電子データとして滞在者毎に登 録された管理サーバコンピュータ52が設置されている。管理サーバコンピュー

15

20

タ52は、施設内LANで端末コンピュータ51と接続され、サーバコンピュータ11から端末コンピュータ51にダウンロードした体内時刻情報を管理サーバコンピュータ52に入力可能に構成されている。

後述する検査対象者番号を、管理サーバコンピュータ52に登録された滞在 者通し番号と同じ番号にしておくと共に、サーバコンピュータ11から端末コンピュータ51にダウンロードした検査対象者毎の体内時刻情報を自動で管理サーバコンピュータ52の不図示のデータベースに取込むプログラムを格納しておけば、データベースに体内時刻情報を直接自動で取込むよう構成できる。

また、老人保健施設5のほかに、老人病院、老人福祉施設、老人ホーム、在 10 宅老人介護の支援業者等が顧客であってもよい。

法人会員6は、従業員の健康管理、業務効率向上等のために、本実施形態 の体内時刻推定システムを利用する。

法人会員6には、端末コンピュータ61のほかに、勤務時間、勤務時間帯、作業内容、健康状態、年齢等が電子データとして従業員毎に登録された従業員情報サーバコンピュータ62が設置されている。従業員情報サーバコンピュータ62は、LANで端末コンピュータ61と接続され、サーバコンピュータ11から端末コンピュータ61にダウンロードした体内時刻情報を従業員情報サーバコンピュータ62に入力可能に構成されている。

後述する検査対象者番号を、従業員情報サーバコンピュータ62に登録された従業員番号と同じ番号にしておくと共に、サーバコンピュータ11から端末コンピュータ61にダウンロードした検査対象者毎の体内時刻情報を自動で従業員情報サーバコンピュータ62の不図示のカルテデータベースに取込むプログラムを格納しておけば、従業員情報に体内時刻情報を直接自動で取込むよう構成できる。

25 また、法人会員6の代わりに、官公庁及びその国内外の出先機関等が顧客 であってもよい。

20

教育機関7は、児童・生徒・学生の健康管理、精神衛生、教育効率向上等のために、本実施形態の体内時刻推定システムを利用する。

教育機関7には、端末コンピュータ71のほかに、成績、家庭環境、健康状態、年齢等が電子データとして毎に登録された児童・生徒・学生情報サーバコンピュータ72が設置されている。児童・生徒・学生情報サーバコンピュータ72は、LANで端末コンピュータ71と接続され、サーバコンピュータ11から端末コンピュータ71にダウンロードした体内時刻情報を児童・生徒・学生情報サーバコンピュータ72に入力可能に構成されている。

後述する検査対象者番号を、児童・生徒・学生情報サーバコンピュータ72に 登録された児童・生徒・学生番号と同じ番号にしておくと共に、サーバコンピュータ11から端末コンピュータ71にダウンロードした検査対象者毎の体内時刻情報を自動で児童・生徒・学生情報サーバコンピュータ72の不図示のカルテデータベースに取込むプログラムを格納しておけば、児童・生徒・学生情報に体内時刻情報を直接自動で取込むよう構成できる。

15 また、教育機関7の代わりに、大学、研究所等の研究機関等が顧客であって もよい。

顧客2~7は、検査対象者の血液を採取して、情報センター1から配布された 試験管に入れ、血液サンプル19とする。この試験管には、サンプルを入れた段 階で、顧客固有の顧客番号、検査対象者の番号、採取年月日・時刻を記入 する。顧客2~7は、血液サンプル19を、送付又は持込みにより情報センター1 に提出する。

血液サンプル19提出後1~2日で、顧客2~7は、端末コンピュータ21~71で、 検査対象者が概日リズム障害であるかの判定結果と、概日リズム障害でない 場合の体内時刻とを、閲覧可能である。

25 一方、顧客2~7側に遺伝子発現産物量測定装置が設置されている場合、 血液サンプル19の発現mRNA量を顧客2~7側で測定し、この測定データを、

15

予め付与されている顧客番号、検査対象者の番号、採取年月日・時刻等の情報と共に端末コンピュータ21~71からサーバコンピュータ11に送信する。

測定データ送信後数時間以内で、顧客2~7は、端末コンピュータ21~71で、 検査対象者が概日リズム障害であるかの判定結果、体内時刻情報とを閲覧 可能となる。

次いで、各装置、コンピュータについて説明する。

DNAチップ読取装置12は、公知のDNAチップ読取装置からなり、不図示のDNAチップのスキャナと、スキャナで読み取ったデータの加工を行う不図示のCPUと、加工されたデータを記憶する記憶装置とを備えている。

10 DNAチップ読取装置12は、検体に含まれる全RNA中の個々のmRNAの量を 測定し、測定データを不図示の記憶装置に登録する。

本実施形態では、遺伝子発現産物量測定にDNAチップ読取装置12を用いているが、定量PCR装置、リアルタイムPCR装置、DNAマイクロアレイ装置、RNaseプロテクションアッセイ装置、ノザンハイブリダイゼーション装置を用いてもよい。

また、遺伝子発現産物量として蛋白質量の測定データを利用する場合には、公知の二次元泳動装置、マススペクトル装置、蛋白質チップ装置、抗体チップ装置、イムノブロット装置等を用いる。

サーバコンピュータ11は、遺伝子発現産物量測定データを用い、検体の概 20 日リズム障害有無の判定、検体に係る検査対象者の体内時刻推定を行う装 置である。

サーバコンピュータ11は、図2に示すように、中央演算処理装置であるCPU70と、記憶装置としてのRAM73、ROM74、HDD75、記憶媒体装置76と、通信装置77、キーボード78、マウス79、表示装置80、プリンタ81を備えている。

25 CPU70は、記憶装置、通信装置や入力装置から受け取った情報を用いて演算し、演算した結果を記憶装置、通信装置や出力装置に渡す役目をはたす。

記憶装置は各種処理を実行するためのプログラム等を記憶する。記憶装置のうち、記憶媒体装置76は外付のHDD、CD、DVD等の媒体装置により構成され、通信装置77を介して受信したデータ、キーボード78やマウス79から入力されるデータを適宜記憶、読出し可能である。

5 RAM73には、CPU70が処理を実行するために必要なデータ等が記憶される。表示装置80は、CPU70がROM74、HDD75等に記憶されたプログラムにより作成した画像等を表示する。プリンタ81は各コンピュータから所定の情報を紙面上に出力する。通信装置77は、DNAチップ読取装置12、端末コンピュータ21~71等他のコンピュータとのデータ送受信を行う。

10 HDD75には、図3の経時的遺伝子発現産物量テーブル14と、標準検体の経時的遺伝子発現産物量測定データから選択された概日振動遺伝子候補の遺伝子発現産物量の経時的データを含む不図示の概日振動遺伝子テーブルと、図4の分子時刻表テーブル15と、図5の体内時刻情報テーブル16と、不図示の遺伝子選択用余弦波情報と、不図示の時刻表作成用余弦波情報とが格納されている。

図3の経時的遺伝子発現産物量テーブル14とは、標準検体に含まれる遺伝子発現産物量の経時的データが、遺伝子毎に登録されたテーブルである。

図4の分子時刻表テーブル15とは、サンプルの概日リズム障害判定、体内時刻推定処理に用いるテーブルであって、標準検体中から選択した各概日振動遺伝子の概日発現変動曲線を特徴付ける値、即ちLD条件(12時間明期、12時間暗期の24時間周期の明暗条件)における標準発現量153、標準変動量154、分子時刻155と、DD条件(恒暗条件)における標準発現量156、標準変動量157、分子時刻158が登録されている。

図5の体内時刻情報テーブル16とは、検査対象者のサンプルの概日リズム 25 障害判定、体内時刻推定処理の結果を登録するテーブルであって、図10の体 内時刻の推定及び情報提供処理のフローチャートを実行することにより各レコ 一ドが登録される。

体内時刻情報テーブル16には、血液サンプル19受領時に情報センター1で 検体毎に付される受付番号161、顧客の会員登録時に顧客毎に付される顧客 番号162、顧客担当者のユーザID163、顧客の担当者のユーザパスワード164、 15 顧客側で検査対象者毎に付される検査対象者番号165、顧客側で血液サンプル19を採取時にサンプル19の試験管等に記載され、情報センター1側で入力される採取時刻166、サーバコンピュータ11による概日リズム障害の有無の判定結果167、サーバコンピュータ11による体内時刻の推定結果168、情報センター1側で必要に応じて検体毎に入力されるコメント169が登録される。

10 遺伝子選択用余弦波情報とは、標準検体に含まれる遺伝子中から概日振動遺伝子を選択するために用いられる余弦波の情報である。

遺伝子選択用余弦波とは、周期時間が20時間から28時間まで1時間刻みで 異なると共に、60分の1刻みで位相のずれた合計540種類の余弦波をいう。即 ち、9種類の周期時間のそれぞれについて、位相の異なる60種類の余弦波を 作成したものである。この遺伝子選択用余弦波の一部を、図8に示す。

遺伝子選択用余弦波情報には、遺伝子選択用余弦波上の値z(t)を求めるために用いられるA(t)の式

$$A(t) = Cos(\frac{2\pi(t-T)}{$$
周期時間)

周期時間:20,21,22,23,24,25,26,27,28の9種類

20 T:周期時間を60等分したときの各時刻であって且つ余弦波が最大値を示す 時刻

t:ある時刻

15

が含まれている。

時刻表作成用余弦波情報とは、標準検体に含まれる遺伝子中から選択さ 25 れた概日振動遺伝子の分子時刻表を作成するために用いられる余弦波の情 報である。

時刻表作成用余弦波とは、24時間周期を持ち10分刻みで位相のずれた144 種類の余弦波をいう。

時刻表作成用余弦波情報には、時刻表作成用余弦波上の値 α(t)を求める ために用いられるA(t)の式

$$A(t) = Cos(\frac{2\pi(t-T)}{$$
周期時間)

周期時間:24(時間)

T: 余弦波の分子時刻(例えば、0/60, 10/60, 20/60, 30/60, ···, 1420/6

0. 1430/60までの10分刻みの144種類の時刻とすることができる)

10 t:ある時刻

15

が含まれている。

次いで図6に基づき、本実施形態の体内時刻推定システムの処理の流れについて説明する。

情報センター1は、サーバコンピュータ11で、インターネット13を介して顧客向けの体内時刻情報閲覧サービスを提供する。

体内時刻推定システムの処理は、大きく分けて、図6に示す遺伝子選択・時刻表作成段階100と、概日リズム障害判定・体内時刻推定段階200と、顧客への報告段階300とからなる。

遺伝子選択・時刻表作成段階100の手順は、概日リズム障害判定・体内時 20 刻推定の準備段階というべき手順であり、顧客への体内時刻情報提供サービ ス開始前に行われる手順である。

概日リズム障害判定・体内時刻推定に使用する組織・細胞等の部位、概日 振動遺伝子を選択し、この概日振動遺伝子の分子時刻表を作成する。

遺伝子選択・時刻表作成段階100では、まず、処理101で、標準検体の経時 25 的遺伝子発現データを取得する。このデータ取得は、DNAチップ読取装置12 で行われる。

5

10

15

20

標準検体とは、生物の組織を複数の個体から採取したものをいう。本実施 形態では、標準検体として、複数のヒトから採取した血液を用いる。

標準検体として、所定条件下の複数の人体から一定時間毎に血液を採取する。具体的には、複数の被験者を12時間明期、12時間暗期の24時間周期の室内に2週間滞在させた後、2日間にわたって同様に12時間明期、12時間暗期の24時間周期の明暗条件下(LD条件下)、或いは恒暗条件下(DD条件下)4時間ごとに血液を採取する。

明暗条件下における採取時刻は、点灯直前(ZTO)、点灯4時間後(ZT4)、点灯8時間後(ZT8)、消灯直前(ZT12)、消灯4時間後(ZT16)、消灯8時間後(ZT20)、二日目の点灯直前(ZT24)、二日目の点灯4時間後(ZT28)、二日目の点灯8時間後(ZT32)、二日目の消灯直前(ZT36)、二日目の消灯4時間後(ZT40)及び二日目の消灯8時間後(ZT44)の12点、恒暗条件下における採取時刻は、恒暗条件開始直前(CT0時)、主観的な昼の始まりから4時間後(CT4時)、主観的な昼の始まりから8時間後(CT8時)、主観的な夜の開始直前(CT12時)、主観的な夜の始まりから8時間後(CT16時)、主観的な夜の始まりから8時間後(CT20時)、二日目の主観的な昼の始まりから8時間後(CT20時)、二日目の主観的な昼の始まりから8時間後(CT30時)、二日目の主観的な昼の始まりから8時間後(CT30時)、二日目の主観的な夜の始まりから8時間後(CT30時)、二日目の主観的な夜の開始直前(CT36時)、二日目の主観的な夜の始まりから8時間後(CT310年)、二日目の主観的な夜の始まりから8時間後(CT310年)、二日目の主観的な夜の始まりから8時間後(CT310年)、二日目の主観的な夜の始まりから8時間後(CT310年)、二日目の主観的な夜の始まりから8時間後(CT410時)及び二日目の主観的な夜の始まりから8時間後(CT410年)の12点とする。

複数人数から採取した血液を公知の方法で個体毎条件毎採取時刻毎に、 遺伝子発現産物量であるmRNA量測定用の標準検体を調製する。

この個体毎条件毎採取時刻毎の標準検体中のmRNA量を、DNAチップ読取 25 装置12を用いて測定し、標準検体の経時的遺伝子発現産物量測定データを 得る。 この経時的遺伝子発現産物量測定データは、DNAチップ読取装置12の不図示の記憶装置に格納されると共に、DNAチップ読取装置12からサーバコンピュータ11に送信される。

次いで、処理102で、処理101で受信した経時的遺伝子発現産物量測定デ 5 一タに基づき、サーバコンピュータ11が、概日振動遺伝子選択を行う。

この概日振動遺伝子選択の処理を、図7の概日振動遺伝子選択フローチャートに基づき詳細に説明する。図7の処理は、サーバコンピュータ11のCPU70で制御される。

サーバコンピュータ11は、DNAチップ読取装置12から経時的遺伝子発現産 10 物量測定データを受信すると、このデータをHDD75に経時的遺伝子発現産物 量テーブル14として登録する。経時的遺伝子発現産物量テーブル14を図3に 示す。

経時的遺伝子発現産物量テーブル14には、各遺伝子の各時刻における発現量であるmRNA量が、遺伝子毎に登録されている。

15 HDD75に経時的遺伝子発現産物量テーブル14が登録されると、図7のフローチャートがスタートする。まず、ステップS101で、経時的遺伝子発現産物量テーブル14の遺伝子レコードを一件読込む。

次いで、ステップS102で、HDD75から取得した遺伝子選択用余弦波情報の式A(t)に、それぞれの遺伝子の標準変動量、標準発現量を適用した式z(t)を導き出し、z(t)

$$z(t) = \frac{A}{B}Cos(\frac{2\pi(t-T)}{周期時間}) + C$$

周期時間:20,21,22,23,24,25,26,27,28の9種類

A:遺伝子Aの標準変動量

B:上記数4及び数5により計算した余弦波の標準偏差

25 C:遺伝子Aの標準発現量

20

T: 周期時間を60等分したときの各時刻であって且つ余弦波が最大値を示す

時刻

10

15

20

25

t:ある時刻

に周期時刻、Tをそれぞれ1件代入し、540種類の余弦波の中から1つの余弦波を特定する。

5 次いで、ステップS103で、ステップS101で読込んだ遺伝子レコードの各時刻の値と、対応する4時間刻みの時刻を式z(t)のtに代入して得た値との間のピアソンの積率相関係数を算出し、算出結果をRAM73に保存する。

即ち、遺伝子レコードの時刻4n時の値xn(ZT4nの発現量又はCT4nの発現量(nは、0以上11以下の整数))と、時刻4n時の余弦波上の値yn(ZT4nの余弦波上の値又はCT4nの余弦波上の値(nは、0以上11以下の整数))との間のピアソンの積率相関係数を算出する。

次いで、ステップS104で、まだ積率相関係数を算出していない周期時刻、Tがあるか判定する。

まだ積率相関係数を算出していない周期時刻、Tがある場合(ステップS104: YES)、ステップS102で、式z(t)に周期時刻、Tをそれぞれ1件代入し、540種類の余弦波の中から1つの余弦波を特定する。

積率相関係数を算出していない周期時刻、Tがない場合(ステップS104:NO)、その遺伝子レコードについては、すべての遺伝子作成用余弦波について積率相関係数の算出・保存が完了しているものとして、ステップS105で、その遺伝子レコードについて算出されたすべての積率相関係数中に、係数>0.75を満たすものがあるか判定する。

係数>0.75を満たすものがある場合(ステップS105:YES)、その遺伝子は、発現量が周期時刻20時間以上28時間以下の範囲内で振動しており、概日振動遺伝子としての特性を有しているものとして、ステップS106で、その遺伝子レコードに遺伝子候補フラグをセットする。

次いで、ステップS107で、まだ遺伝子選択用余弦波との積率相関係数算出

10

25

処理を行っていない遺伝子レコードがあるか判定する。積率相関係数算出処理は、各遺伝子について、LD条件下、DD条件下における遺伝子レコード双方について行う。

まだ相関係数算出処理を行っていない遺伝子レコードがある場合(ステップS 107:YES)、ステップS101で、遺伝子レコードを1件読込む。

相関係数算出処理を行っていない遺伝子レコードがない場合(ステップS10 7:NO)、すべての遺伝子について概日振動遺伝子候補の判定を完了したものとして、ステップS108で、概日振動遺伝子候補を含む不図示の概日振動遺伝子テーブルを生成する。このステップS108では、経時的遺伝子発現産物量テーブル14を参照し、LD条件下及びDD条件下の双方について遺伝子候補フラグがセットされている遺伝子レコードのみを抽出して、不図示の概日振動遺伝子テーブルを生成する。その後、処理を終了する。

以上の処理で、図6の処理102の概日振動遺伝子選択が完了する。

図6の処理102の概日振動遺伝子選択が完了すると、処理103で、サーバコ 15 ンピュータ11は、各遺伝子産物の概日発現変動曲線・分子時刻表作成を行 う。

この処理を、図9の概日発現変動曲線・分子時刻表作成フローチャートに基づき説明する。図9の処理は、サーバコンピュータ11のCPU70で制御される。

図6の処理102の概日振動遺伝子選択が完了すると、図9のフローチャートが 20 スタートする。

まず、ステップS201で、図7のステップS108で生成された不図示の概日振動遺伝子テーブルから、概日振動遺伝子レコードをLD条件、DD条件の条件毎に1件読込む。

次いで、ステップS202で、HDD75から取得した時刻表作成用余弦波情報の式A(t)にそれぞれの遺伝子の標準変動量、標準発現量を適用した式 $\alpha(t)$

$$\alpha(t) = \frac{A}{B} Cos(\frac{2\pi(t-T)}{24}) + C$$

A: 概日振動遺伝子Aの標準変動量

B:上記数4及び数5により計算した余弦波の標準偏差

C:遺伝子Aの標準発現量

T: 余弦波の分子時刻(例えば、0/60, 10/60, 20/60, 30/60, ···, 1420/6

5 0,1430/60までの10分刻みの144種類の時刻とすることができる)

t:ある時刻

15

20

25

を導き出し、 α (t)にTを1件代入し、144種類の余弦波の中から1つの余弦波を特定する。

次いで、ステップS203で、ステップS201で読込んだ概日振動遺伝子レコード の各時刻の値と、対応する4時間刻みの時刻を式 $\alpha(t)$ のtに代入して得た値と の間のピアソンの積率相関係数を算出し、算出結果をRAM73に保存する。

即ち、概日振動遺伝子レコードの時刻4n時の値xn(ZT4nの発現量又はCT4nの発現量(nは、0以上11以下の整数))と、時刻4n時の余弦波上の値yn(ZT4nの余弦波上の値又はCT4nの余弦波上の値(nは、0以上11以下の整数))との間のピアソンの積率相関係数を算出する。

次いで、ステップS204で、まだ積率相関係数を算出していないTがあるか判 定する。

まだ積率相関係数を算出していないTがある場合(ステップS204:YES)、ステップS202で、式 α (t)にTを1件代入し、144種類の余弦波の中から1つの余弦波を特定する。

積率相関係数を算出していないTがない場合(ステップS204:NO)、その条件のその概日振動遺伝子レコードについては、すべての時刻表作成用余弦波について積率相関係数の算出・保存が完了しているものとして、ステップS205で、その条件のその概日振動遺伝子レコードについて算出されたすべての積率相関係数中で最大の値になる余弦波を抽出し、RAM73に保存する。この余弦波が、概日振動遺伝子の発現振動を示す概日発現変動曲線となる。

15

次いで、ステップS206で、抽出した余弦波である概日発現変動曲線上の値が最大となる時刻を分子時刻として、概日振動遺伝子名及び条件名、標準発現量、標準変動量と共に図4の分子時刻表テーブル15に登録する。

この標準発現量153、156、標準変動量154、157、分子時刻155、158は、概 日発現変動曲線を特徴付けるものである。

次いで、ステップS207で、まだ時刻表作成用余弦波との積率相関係数算出 処理を行っていない概日振動遺伝子レコードの条件があるか判定する。

まだ時刻表作成用余弦波との積率相関係数算出処理を行っていない概日 振動遺伝子レコードの条件がある場合(ステップS207:YES)、ステップS201で、

10 図7のステップS108で生成された不図示の概日振動遺伝子テーブルから、概日振動遺伝子レコードをLD条件、DD条件の条件毎に1件読込む。

時刻表作成用余弦波との積率相関係数算出処理を行っていない概日振動 遺伝子レコードの条件がない場合(ステップS207:NO)、すべての概日振動遺 伝子について概日発現変動曲線及び分子時刻表の作成が完了したものとし て、処理を終了する。

以上で、図6の処理103の各遺伝子産物の概日発現変動曲線・分子時刻表 作成が完了する。

これにより、遺伝子選択・時刻表作成段階100が完了して、顧客への体内時刻情報提供サービスが可能な状態となる。

20 遺伝子選択・時刻表作成段階100が完了すると、情報センター1は、体内時 刻情報提供サービスを開始する。

顧客2~7のユーザは、本実施形態に係る体内時刻推定システムを利用する 前には、予め情報センター1に会員登録をしておく。

会員登録は、サーバコンピュータ11から提供される会員登録画面で、会員団 25 体名、ユーザ名、ユーザのパスワード、ユーザの電子メールアドレス、連絡先、サービス利用料金の支払方法等の情報を入力することにより行う。

15

20

25

本実施形態では、体内時刻情報提供サービスは、予め会員に登録した者に対するサービスとするが、一般の小売店等で、血液サンプル19を入れるための試験管と、情報センター1のサーバコンピュータ11に接続するための説明書をセットにしたキットを販売し、キットを購入した消費者が単発でサービスを受けるようにしてもよい。

顧客2~7は、情報センター1から受領した試験管に患者の血液を入れ、血液サンプル19を情報センター1に送付する。情報センター1は、DNAチップ読取装置12で、受領した血液サンプル19の発現mRNA量を公知の方法で測定する。

情報センター1は、血液サンプル19の発現量測定が完了すると、サーバコン 10 ピュータ11を作動し、概日リズム障害、体内時刻の推定及び情報提供処理を 開始する。

概日リズム障害、体内時刻の推定及び情報提供処理において、サーバコン ピュータ11が実行する処理を図10~図13のフローチャートに基づき説明する。

処理がスタートすると、まず、ステップS301で、初期設定が行われる。ステップS301の処理の詳細を、図11のフローチャートに基づき説明する。

ステップS301の初期設定の処理では、まず、ステップS351で、サーバコンピュータ11のユーザによりキーボード78等で入力された閾値Dを入力し、HDD75の不図示の閾値メモリに登録する。

ここで、閾値Dとは、サンプル中の概日振動遺伝子発現産物量の波と概日振動遺伝子産物の推定発現量の波とのピアソン積率相関係数の最大値Cがどの値未満であれば概日リズム障害と判定するかを示す閾値である。

この閾値Dは、サンプル中の概日振動遺伝子の数によって異なる値とすると好適である。例えば、サンプル中の概日振動遺伝子の数が増加するほど閾値Dは小さい値に設定する。サンプル中の概日振動遺伝子の数が100~200程度の場合、閾値Dを0.3以上、好ましくは0.5以上の値とするとよい。

本実施形態では、閾値Dを0.5とする。

10

次いで、ステップS352で、サーバコンピュータ11のユーザによりキーボード78 等で入力された閾値Uを入力し、HDD75の不図示の閾値メモリに登録する。

ここで、閾値Uとは、サンプルの概日振動遺伝子について推定された体内時刻と環境時刻とがどの程度の時間ずれていた場合に概日リズム障害と判定するかを示す閾値であり、本実施形態では2時間とする。

次いで、ステップS353で、標準検体の各遺伝子産物の標準発現量・標準変動量・分子時刻を入力する。このステップでは、図6の処理103の各遺伝子産物の概日発現変動曲線・分子時刻表作成処理で作成された分子時刻表のうち、今回測定するサンプルの部位に対応するものを、分子時刻表テーブル15から抽出し、ROM74に登録する。

次いで、ステップS354で、ステップS353で登録した今回測定するサンプルの 部位に対応する分子時刻表から標準発現量・標準変動量・分子時刻の値を 抽出し、標準検体の概日発現変動曲線の式

$$\alpha(t) = \frac{A}{B} Cos(\frac{2\pi(t-T)}{24}) + C$$

15 A: 概日振動遺伝子Aの標準変動量

B:上記数4及び数5により計算した余弦波の標準偏差

C:遺伝子Aの標準発現量

T: 余弦波の分子時刻(例えば、0/60, 10/60, 20/60, 30/60, ···, 1420/6

0. 1430/60までの10分刻みの144種類の時刻とすることができる)

20 t:ある時刻

を導き出す。

次いで、ステップS355で、この概日発現変動曲線を正規化する。つまり、標準検体の各概日振動遺伝子の概日発現変動曲線から標準発現量を減じ、次いで標準変動量で除すことにより標準検体の各概日振動遺伝子の相対概日

25 発現変動曲線の式

$$\beta(t) = \frac{1}{B} Cos(\frac{2\pi(t-T)}{24})$$

B:上記数4及び数5により計算した余弦波の標準偏差

T: 余弦波の分子時刻(例えば、0/60, 10/60, 20/60, 30/60, ···, 1420/6

0, 1430/60までの10分刻みの144種類の時刻とすることができる)

t:ある時刻

15

5 を導き出す。この相対概日発現変動曲線をROM74に登録する。

以上で、図10のステップS301の初期設定処理を終了する。

次いで、図10のステップS302で、サーバコンピュータ11のユーザにより入力された今回測定するサンプルのサンプリング時刻SをRAM73に登録する。このサンプリング時刻Sは、環境時刻である。

10 次いで、ステップS303で、サンプルの概日振動遺伝子発現産物量測定データをHDD75に登録する。このステップは、サーバコンピュータ11のユーザの操作により、DNAチップ読取装置12からサンプルの概日振動遺伝子発現産物量測定データを受信することにより行う。

次いで、ステップS304で、サンプルの概日振動遺伝子発現産物量の正規化を行い、サンプルの各概日振動遺伝子産物の相対発現量を求める。このステップS304の処理について、図12に基づき詳細に説明する。

まず、ステップS361で、サンプルの概日振動遺伝子発現産物量から標準検体の標準発現量を減ずる。この標準発現量は、遺伝子毎に標準検体中の概日振動遺伝子産物の発現量の平均値を算出することにより求めた値である。

20 次いで、ステップS362で、ステップS361で得た値を、標準検体の標準変動量で除す。この標準変動量は、遺伝子毎に標準検体中の概日振動遺伝子産物の発現量の標準偏差を算出することにより求めた値である。

以上で、ステップS304のサンプルの概日振動遺伝子発現産物量の正規化 処理が完了し、サンプルの各概日振動遺伝子産物の相対発現量が求められ る。

15

20

次いで、ステップS305で、標準検体の相対概日発現変動曲線の式 β(t)のtに0を代入し、各概日振動遺伝子の相対概日発現変動曲線上の時刻t=0における値を算出する。

5 次に、ステップS306で、標準検体の相対概日発現変動曲線の式 β (t)のtに 代入した値が24より大きいか判定する。

標準検体の相対概日発現変動曲線の式 β (t)のtに代入した値が24より大きくない場合(ステップS306:NO)、つまり、標準検体の相対概日発現変動曲線の式 β (t)のtに代入した値が0時以上24時以下である場合、ステップS307で、

10 正規化された概日振動遺伝子発現産物量と時刻t時における各概日振動遺 伝子産物の推定相対発現量との間のピアソン相関係数cの計算を行う。

このステップS307の処理について、図13に基づき詳細に説明する。

まず、ステップS371で、各概日振動遺伝子の相対概日発現変動曲線上の時刻は時における推定相対発現量を取得する。この処理では、分子時刻表の各概日振動遺伝子に関するレコードを1件ずつ読込み、概日振動遺伝子の相対概日発現変動曲線を求める。次いで、相対概日発現変動曲線上の時刻は時における値を取得し、推定相対発現量とする。この処理をすべての概日振動遺伝子について行う。

次いで、ステップS372で、ステップS304で正規化して得たサンプリング時刻におけるサンプルの概日振動遺伝子産物の相対発現量と、各概日振動遺伝子の相対概日発現変動曲線上の時刻t時における推定相対発現量との間のピアソン積率相関係数を計算し、得られた値を、時刻tの値と関連付けてRAM73に登録し、図13の処理を完了する。

次いで、図10のステップS308に進み、標準検体の相対概日発現変動曲線の 25 式 β(t)のtに、直前のtにdtを足したt+dtを代入し、各概日振動遺伝子の相対 概日発現変動曲線上の時刻t=t+dtにおける値を算出する。

20

なお、本実施形態では、このdtは、10分、即ち10/60時間とする。

次いで、ステップS306に進み、標準検体の相対概日発現変動曲線の式 β (t) のtに代入した値が24より大きいか判定する。

標準検体の相対概日発現変動曲線の式 β (t)のtに代入した値が24より大きい場合(ステップS306:YES)、サンプルの各概日振動遺伝子の相対発現量と、0時から24時までの間のすべての時刻についての各概日振動遺伝子の相対概日発現変動曲線上の推定相対発現量との間のピアソン積率相関係数の算出が完了しているものとして、ステップS309に進み、ピアソン積率相関係数cの最大値C及び最大値Cを与える体内時刻Tの探索を行う。

10 このステップでは、RAM73に登録されたピアソン積率相関係数cのデータ群を取得し、このデータ群中から、最大のピアソン積率相関係数値を抽出して最大値Cとする。次いで、ピアソン積率相関係数最大値Cに対応する時刻tを取得して、最大値Cを与える体内時刻Tとする。この最大値C及び体内時刻Tを、サンプルの最大値C及び体内時刻Tとして、RAM73に登録する。

15 次いで、ステップS310で、RAM73に登録した最大値Cが、C<閾値Dを満たしているか判定する。本実施形態では、閾値Dが0.5として登録されているので、このステップでは、最大値Cが0.5未満であるか判定する。

最大値C<閾値Dである場合(ステップS310:YES)、サンプルのサンプリング時刻における相対概日振動遺伝子発現産物量は、いずれの時刻における各概日振動遺伝子の推定相対発現量とも類似しないことから、このサンプルに係る検査対象者は、概日振動遺伝子が正常な概日振動をしていないとして、ステップS311で、このサンプルについて、概日リズム障害と判定すると共に、体内時刻情報テーブル16の該当する受付番号の概日リズム障害の有無の判定結果167に、リズム障害であることを示す「1」を登録する。

25 最大値C<閾値Dでない場合(ステップS310:NO)、即ち、最大値Cが閾値Dの値と同じかそれ以上である場合、サンプルのサンプリング時刻における相対概

日振動遺伝子発現産物量と各概日振動遺伝子の推定相対発現量とが類似する時刻Tが存在することから、このサンプルに係る検査対象者は、概日振動遺伝子が正常な概日振動をしている可能性があるとして、ステップS312に進み、体内時刻Tとサンプリング時刻Sとの差の絶対値が

5 | T-S | >閾値U

10

15

20

であるかを判定する。ここでは、閾値Uが2時間として登録されているので、体内時刻Tとサンプリング時刻Sの差の絶対値が2時間より大きいか判定する。

体内時刻Tとサンプリング時刻Sとの差の絶対値が閾値Uより大きい場合(ステップS312:YES)、環境時刻であるサンプリング時刻Sとの時間のずれが、本発明に係る体内時刻推定法の一般的な誤差を考慮しても大きすぎるとして、ステップS313で、このサンプルについて、概日リズム障害と判定すると共に、体内時刻情報テーブル16の該当する受付番号の概日リズム障害の有無の判定結果167に、リズム障害であることを示す「1」を登録する。

次いで、ステップS314で、ステップS309で算出された体内時刻Tを体内時刻情報テーブル16の該当する受付番号の体内時刻の推定結果168に登録し、 処理を終了する。

体内時刻Tとサンプリング時刻Sとの差の絶対値が閾値Uより大きくない場合 (ステップS312:NO)、即ち、体内時刻Tとサンプリング時刻Sとの差の絶対値が 閾値U以下である場合、環境時刻であるサンプリング時刻Sとの時間のずれは 正常な範囲内であり、Tを検査対象者の体内時刻とすることに問題がないとして、体内時刻Tを体内時刻情報テーブル16の該当する受付番号の体内時刻 の推定結果168に登録し、処理を終了する。

以上で、概日リズム障害判定処理及び体内時刻推定処理を終了する。

次に、顧客2~7から、サーバコンピュータ11に登録された概日リズム障害の 25 有無及び体内時刻情報を閲覧する処理について説明する。

検査対象者の血液サンプル19を情報センター1に送付しておいた顧客2~7

のユーザは、図6の概日リズム障害判定、体内時刻推定段階200が完了すると、サーバコンピュータ11から、概日リズム障害判定及び体内時刻推定処理が完了した旨の電子メールを受信する。

ユーザは、この電子メールにより概日リズム障害判定及び体内時刻推定処 5 理が完了した旨を知ると、サーバコンピュータ11で提供される体内時刻情報報 告画面91で、図6の体内時刻情報の報告300を受ける。

この体内時刻情報報告画面91で、図6の体内時刻情報の報告をする処理について説明する。

端末コンピュータ21で、インターネットで情報センター1の体内時刻情報提供 10 サービス画面のアドレスを入力すると、不図示の体内時刻情報提供サービス の初期画面が表示される。

この初期画面には、体内時刻や投薬時間管理等に関する一般的な情報のほか、体内時刻情報提供サービスの会員専用画面に移行するためのID. パスワード入力画面表示ボタンが表示されている。

15 ID, パスワード入力画面表示ボタンをクリックすると、不図示のID, パスワード入力画面が表示される。この画面でID, パスワードが入力されると、サーバコンピュータ11は、体内時刻情報テーブル16を、その顧客の顧客番号162をキーとして検索し、その顧客のレコードを抽出して、体内時刻情報報告画面91用のデータを作成する。

20 その後、この体内時刻情報報告画面91用のデータを端末コンピュータ21側に送信する。

端末コンピュータ21では、そのIDの会員専用の画面にログインし、図14に示す体内時刻情報報告画面91が表示される。

体内時刻情報報告画面91には、ログインした会員がリズム障害判定及び体 25 内時刻推定を依頼した検体の体内時刻情報リスト910、体内時刻情報報告画 面91を閉じるための閉じるボタン921、ダウンロードチェック欄919にチェックした

10

15

検体に関する判定・推定結果をダウンロードするためのダウンロードボタン922、ログアウトボタン923が表示される。

体内時刻情報リスト910は、検体毎の体内時刻情報のリストであって、検体毎に、その検体の受付番号911、その検体の検査対象者番号912、その検体の採取時刻913、その検体を情報センター1が受領した日付を示す受領日914、その検体の検査結果であるリズム障害有無915、その検体の検査結果である体内時刻情報916、その検査対象者番号の体内時刻情報の履歴画面表示ボタン917、その検体の検査結果に関するコメント表示ボタン918、その検体の検査結果をダウンロードするためのダウンロードチェック欄919が表示されている。

ユーザは、履歴画面表示ボタン917をクリックすることにより、リストに表示された検体の検査対象者の過去の結果の履歴を閲覧可能である。

なお、サーバコンピュータ11は、体内時刻推定システム提供で得た多数の検 査対象者の体内時刻情報をデータ解析するプログラムを格納していてもよい。

このプログラムにより、年代毎、性別毎、人種毎、罹病疾患毎、身長・体重等の特性毎、業務形態毎等の体内時刻情報を算出し、ヒトの体内時刻と人の特性との相関を解析してもよい。解析して得たヒトの体内時刻と人の特性との相関の解析結果は、人類の健康増進や疾患への対策等のために利用可能である。

20 体内時刻推定システムを提供することにより得た多数の検査対象者の体内 時刻情報をデータ解析する処理について説明する。

情報センター1は、血液サンプル19受領時に、検査対象者番号165と共に、 検査対象者の生年月日、性別、人種、罹病疾患、身長・体重等の特性データ を受領しておく。

25 このデータは、血液サンプル19受領時にインターネット13を介して受信すると よいが、血液サンプル19と共にデータが記載された用紙を受領してもよい。 情報センター1が受領した各検査対象者の特性データは、サーバコンピュータ11の図15の検査対象者特性テーブル17に登録する。

体内時刻情報テーブル16及び検査対象者特性テーブル17に所定件数以上のレコードが蓄積されると、サーバコンピュータ11で、データの解析を行う。

5 データ解析結果の一例を図16に示す。

データ解析結果は、その後の睡眠覚醒リズム障害(睡眠相後退症候群、睡眠相前進症候群、非24時間睡眠・覚醒症候群など)、季節性うつ病、時差症候群(JET-LAG)の診断に用いてもよい。

なお、概日発現変動曲線は、有限の発現データから概日振動遺伝子の経 10 時的な発現状態を数式化したもので経時的に測定した発現量をもとに作成し たものであれば限定されない。

例えば、概日発現変動曲線は、各概日振動遺伝子の経時的な発現量測定データのフーリエ変換による周期曲線の作成法(文献1)によっても作成可能である。「フーリエ変換」とは、フランスの数学、物理学者フーリエが発表した原理(物理的過程は時間tの関数h(t)で表現することも、ある周波数fの関数H(f)を用いて表現することもできる)に基づく変換法で2つの表現間を行き来するために使われる式である。数式で表すと次のようになる。

$$h(t) = \int_{-\infty}^{\infty} H(f) \exp(-2\pi i f t) df$$

15

$$H(f) = \int_{-\infty}^{\infty} h(t) \exp(2\pi i f t) dt$$

20 有限個の標本値(計測値)に対するフーリエ変換は離散フーリエ変換と呼ばれる。離散フーリエ変換の対象となるN個の一連の測定値

$$h_k \equiv h(t_k)$$
, $t_k \equiv k\Delta$, $k = 0,1,2,...,N-1$

があるとする。標本化間隔は△である。ここで離散フーリエ変換は次のように 定義できる。

$$H_n = \sum_{k=0}^{N-1} h_k \exp(\frac{2\pi i k n}{N})$$

$$n = 0,1,2,...,N-1$$

15

20

このHnを用いて時間の関数h(t)を次のように推定することが可能である。

$$h(t) \approx \frac{1}{N} \sum_{n=0}^{N-1} H_n \exp(-2\pi i \frac{n}{N\Delta} t)$$

5 また、概日発現変動曲線は、スプライン補間等の補間法を用いた補間曲線 の作成法(文献1)によっても作成可能である。「スプライン補間」とは、補間曲 線の生成、有限要素法、関数近似、実験データの当てはめなどに利用される 補間法である(文献1、文献2)。

フーリエ変換或はスプライン補間による概日発現変動曲線も時間の関数として表記されることからある時間tを代入することで該概日発現変動曲線上の値を、また、その値から対応する標準発現量を減じ、標準変動量で除することによって相対発現変動曲線上の値を求めることができる。

また、体内時刻の推定は、6個以上(好ましくは30個以上、より好ましくは50個以上、特に好ましくは100個以上)の任意の概日振動遺伝子群について予め作成した前記相対概日発現変動曲線上のある時刻における値と、別途測定した概日振動遺伝子群の発現産物の相対発現量との間の最も高い類似性を示す時刻を体内時刻として推定することが可能である。例えば、概日発現変動曲線を余弦波で作成し、且つ類似性をピアソンの積率相関係数として算出した場合は、最も高い類似性が0.5以上の相関係数を示したときは、2時間の誤差範囲内で体内時刻の推定が可能である。

一方、すべての時刻にわたって両者に十分な類似性が認められない場合 (例えば、ピアソンの積率相関係数として0.5未満)は、概日リズム障害として 検出が可能である。類似性は、対象と対象との間の類似の度合いを表す数値 である限り限定されないが、ピアソンの積率相関係数が好ましい。

10

20

体内時刻の推定に用いる概日振動遺伝子は、本明細書における概日振動遺伝子としての性質を有する限り、公知の概日振動遺伝子でも良いし、DNA チップ法などで抽出した遺伝子(機能未知の遺伝子を含む)であっても良い。

また上述のようにアプリオリに類似性を定義して体内時刻を推定する方法以外にも例えば、サポートベクターマシン、遺伝的アルゴリズム、ニューラルネット等のような学習アルゴリズムなどを用いて類似性を学習させることによって体内時刻を推定することも可能である。

本明細書中で引用した文献は、文献1が、ニューメリカルレシピ・イン・シー、William H. Pressほか、技術評論社、文献2が、Cによるスプライン関数、一データ解析、CG、微分方程式一監修 桜井明、著者 菅野敬祐、吉村和美、高山文雄、東京電機大学出版局、文献3が、クラスター分析とその応用、西田英朗監訳、内田老鶴圃、文献4が、基礎統計学I、統計学入門 東京大学教養学部統計学教室編 東京大学出版会である。

15 産業上の利用性

以上のように本発明によれば、測定データを、前記分子時刻表で特定される 前記概日発現変動曲線と照合することにより、前記生物個体が概日リズム障 害であるかの判定結果及び概日リズム障害でない場合には前記生物個体の 体内時刻推定結果を含む体内時刻情報を導出する体内時刻情報導出手段 を備えているため、1回の採取で得た検体の測定データと所定生物種の所定 部位の分子時刻表により特定される前記概日発現変動曲線とを照合すること により、検体を複数回採取する必要なく、1回の採取で得た検体に基づいて簡 易に概日リズム障害か否かの判定及び体内時刻の推定が可能となる。

25

請求の範囲

- 1. 生物個体から採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するための分子時刻表を作成する装置であって、
- 5 所定生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現 産物量測定データを入力するデータ入力手段と、

前記標準検体中において発現する遺伝子の中から、その遺伝子発現産物量測定データの経時的変化が、所定時間を周期とする余弦波に類似する概日振動遺伝子を選択する概日振動遺伝子選択手段と、

10 特定時間を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記概日発現変動曲線を選択する概日発現変動曲線選択手段と、

選択された前記概日発現変動曲線を特定する情報を登録する登録手段と、を備えることを特徴とする分子時刻表作成装置。

15 2. 前記登録手段は、前記概日発現変動曲線上の値が最大となる時刻を、 前記概日振動遺伝子の標準分子時刻として前記体内時刻の推定のために 用いられる分子時刻表に登録すると共に、

前記発現産物量の前記概日振動遺伝子毎の平均値及び標準偏差を、前 記概日振動遺伝子の標準発現量及び標準変動量として前記分子時刻表に 登録することを特徴とする請求項1記載の分子時刻表作成装置。

3. 生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定する装置であって、

所定生物種の所定部位の概日振動遺伝子の発現産物量の経時的変化を示す概日発現変動曲線を特定する分子時刻表を記憶する分子時刻表記憶手段と、

前記生物個体の前記所定部位から採取された検体に含まれる前記概日振

10

15

20

25

動遺伝子の前記遺伝子発現産物量測定データを入力するデータ入力手段と、

入力された前記測定データを、前記分子時刻表で特定される前記概日発現 変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの 判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推 定結果を含む体内時刻情報を導出する体内時刻情報導出手段と、を備える ことを特徴とする体内時刻推定装置。

4. 生物個体から採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するための分子時刻表を、情報処理装置を用いて作成する方法であって、

所定生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現 産物量測定データを入力するデータ入力手順と、

前記標準検体中において発現する遺伝子の中から、その遺伝子発現産物 量測定データの経時的変化が、所定時間を周期とする余弦波に類似する概 日振動遺伝子を選択する概日振動遺伝子選択手順と、

特定時間を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記概日発現変動曲線選択手順と、

選択された前記概日発現変動曲線を特定する情報を登録する登録手順と、を行うことを特徴とする分子時刻表作成方法。

5. 生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を、情報処理装置を用いて推定する方法であって、

所定生物種の所定部位の概日振動遺伝子の発現産物量の経時的変化を示す概日発現変動曲線を特定する分子時刻表を記憶する分子時刻表記憶手順と、

前記生物個体の前記所定部位から採取された検体に含まれる前記概日振

10

15

20

25

動遺伝子の前記遺伝子発現産物量測定データを入力するデータ入力手順と、

入力された前記測定データを、前記分子時刻表で特定される前記概日発現 変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの 判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推 定結果を含む体内時刻情報を導出する体内時刻情報導出手順と、を行うこと を特徴とする体内時刻推定方法。

6. 生物個体から採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するための分子時刻表を作成する情報処理装置に、

所定生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現 産物量測定データを入力するデータ入力手順と、

前記標準検体中において発現する遺伝子の中から、その遺伝子発現産物量測定データの経時的変化が、所定時間を周期とする余弦波に類似する概日振動遺伝子を選択する概日振動遺伝子選択手順と、

特定時間を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記概日発現変動曲線選択手順と、

選択された前記概日発現変動曲線を特定する情報を登録する登録手順と、を実行させるための分子時刻表作成プログラム。

7. 生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定する情報処理装置に、

所定生物種の所定部位の概日振動遺伝子の発現産物量の経時的変化を示す概日発現変動曲線を特定する分子時刻表を記憶する分子時刻表記憶 手順と、

前記生物個体の前記所定部位から採取された検体に含まれる前記概日振

10

20

動遺伝子の前記遺伝子発現産物量測定データを入力するデータ入力手順と、

入力された前記測定データを、前記分子時刻表で特定される前記概日発現変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推定結果を含む体内時刻情報を導出する体内時刻情報導出手順と、を実行させるための体内時刻推定プログラム。

8. 生物個体から採取した標準検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するための分子時刻表を作成すると共に、前記生物個体から採取した検体の遺伝子発現産物量測定データに基づき前記生物個体の体内時刻を推定するシステムであって、

前記体内時刻情報を提供する情報センターに設置されるサーバコンピュータと、該サーバコンピュータに情報送受信可能に接続された端末コンピュータとを備え、

15 前記サーバコンピュータは、

所定生物種の複数個体の所定部位から採取した標準検体中の遺伝子発現 産物量測定データを入力する標準データ入力手段と、

前記標準検体中において発現する遺伝子の中から、その遺伝子発現産物 量測定データの経時的変化が、所定時間を周期とする余弦波に類似する概 日振動遺伝子を選択する概日振動遺伝子選択手段と、

特定時間を周期とし、位相の異なる複数の余弦波から、前記選択された概日振動遺伝子の発現産物量の経時的変化に類似する前記概日発現変動曲線選択手段と、

前記概日発現変動曲線上の値が最大となる時刻を、前記概日振動遺伝子 25 の標準分子時刻として前記体内時刻の推定のために用いられる分子時刻表 に登録すると共に、前記発現産物量の前記概日振動遺伝子毎の平均値及び

標準偏差を、前記概日振動遺伝子の標準発現量及び標準変動量として前記 分子時刻表に登録する登録手段と、

前記生物個体の前記所定部位から採取された検体に含まれる前記概日振動遺伝子の前記遺伝子発現産物量測定データを入力する測定データ入力手段と、

入力された前記測定データを、前記分子時刻表で特定される前記概日発現変動曲線と照合することにより、前記生物個体が概日リズム障害であるかの判定結果及び概日リズム障害でない場合には前記生物個体の体内時刻推定結果を含む体内時刻情報を導出する体内時刻情報導出手段と、

10 前記導出された体内時刻情報を、前記端末コンピュータに送信する体内時刻情報送信手段と、を備えることを特徴とする体内時刻推定システム。

図 2

2/11

14 経時的遺伝子発現産物量テーブル アクセッション 番号 ZT=32 ZT=36 ZT=40 ZT=44 ZT=24 ZT=28 ZT=16 ZT=20 ZT=0 ZT=4 ZT=8 ZT=12 番号 AA_00000

図 4

図 5

図 6

図10

図 1 1

図12

図13

図14

11/11

図15

体内時刻情報テーブル

17

顧客番号	検査対象 者番号	ューサ*ID	ューザ゛ パスワ <i>ー</i> ド	生年月日	性別	人種	罹病疾患	身長	体重
A12345	A000345	A12345BB	USERAA	1950/05/01	男	日本	なし	170cm	60kg

	10歳~30歳	30歳~50歳	50歳~70歳
概日リズム障害	1人	7人	15人
体内時刻平均	-20分	+20分	+1時間20分
検査対象者合計人数	50人	50人	50人

International app	lication No.
· · · · / J	P03/09579

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ G06F19/00						
According to International Patent Classification (IPC) or to both national classification and IPC						
	S SEARCHED	electification symbols				
	ocumentation searched (classification system followed to C1 G06F19/00	y classification symbolsy .				
Documentat	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Kokai	yo Shinan Koho 1922-1996 Jitsuyo Shinan Koho 1971-2003	Jitsuyo Shinan Toroku Koh	o 1996–2003			
	ata base consulted during the international search (name FILE (JOIS)	e of data base and, where practicable, sea	rch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
X A	Adam CLARIDGE-CHANG, Circadia Expression Systems in the Dro 20 November, 2001 (20.11.01), 657 to 671	sophila Head, Neuron,	1-2,4,6 3,5,7-8			
A	JP 4-506020 A (Brigham and Women's Hospital), 22 October, 1992 (22.10.92), Full text; Figs. 1 to 41 & WO 90/15639 A1 & US 5176133 A					
Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
"A" docum conside "E" earlier date "L" docum cited to special "O" docum means "P" docum than th	categories of cited documents: ent defining the general state of the art which is not ened to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed actual completion of the international search october, 2003 (14.10.03)	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family ate of mailing of the international search report 28 October, 2003 (28.10.03)				
Name and n	nailing address of the ISA/	Authorized officer				
Japa	Japanese Patent Office					
Faccimile N	lo.	Telephone No.				

国際調査

発明の属する分野の分類(国際特許分類(IPC)) A.

Int. Cl' G06F19/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' G06F19/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報 1971-2003年

日本国登録実用新案公報 1994-2003年

日本国実用新案登録公報 1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

JICSTファイル(JOIS)

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	Adam CLARIDGE-CHANG, Circadian Regulation of Gene Expression Systems in the Drosophila Head, Neuron, 2001.11.20, Vol.32,	1-2, 4, 6
Α	No. 4, p. 657-671	3, 5, 7-8
A	JP 4-506020 A (ブリガム・アンド・ウイメンズ・ホスピタル) 1992.10.22,全文,第1-41図 & WO90/15639 A1 & US 5176133 A	3, 5, 7-8

C欄の続きにも文献が列挙されている。

| | パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

14. 10. 03

国際調査報告の発送日

28.10.03

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 岩間 直純

5 L 3136

電話番号 03-3581-1101 内線 3560