Find all the local maxima, local minima, and saddle points of following functions:

1.
$$f(x, y) = x^2 + xy + y^2 + 3x - 3y + 4$$

2. $f(x, y) = x^2 + 3xy + 3y^2 - 6x + 3y - 6$
3. $f(x, y) = 2xy - 5x^2 - 2y^2 + 4x + 4y - 4$
4. $f(x, y) = 2xy - 5x^2 - 2y^2 + 4x - 4$
5. $f(x, y) = x^2 + xy + 3x + 2y + 5$
6. $f(x, y) = y^2 + xy - 2x - 2y + 2$
7. $f(x, y) = 5xy - 7x^2 + 3x - 6y + 2$
8. $f(x, y) = 2xy - x^2 - 2y^2 + 3x + 4$
9. $f(x, y) = x^2 - 4xy + y^2 + 6y + 2$
10. $f(x, y) = 3x^2 + 6xy + 7y^2 - 2x + 4y$
11. $f(x, y) = 2x^2 + 3xy + 4y^2 - 5x + 2y$
12. $f(x, y) = 4x^2 - 6xy + 5y^2 - 20x + 26y$
13. $f(x, y) = x^2 - 2xy + 2y^2 - 2x + 2y + 1$
15. $f(x, y) = x^2 - 2xy + 2y^2 - 2x + 2y + 1$
16. $f(x, y) = x^2 + 2xy$
16. $f(x, y) = x^3 - y^3 - 2xy + 6$
18. $f(x, y) = x^3 + 3xy + y^3$
19. $f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy$
20. $f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy$
21. $f(x, y) = 9x^3 + y^3/3 - 4xy$

21.
$$f(x, y) = 9x^{2} + y^{2} + 3x^{2}$$

22. $f(x, y) = 8x^{3} + y^{3} + 6xy$
23. $f(x, y) = x^{3} + y^{3} + 3x^{2} - 3y^{2} - 8$
24. $f(x, y) = 2x^{3} + 2y^{3} - 9x^{2} + 3y^{2} - 12y$
25. $f(x, y) = 4xy - x^{4} - y^{4}$
26. $f(x, y) = x^{4} + y^{4} + 4xy$
27. $f(x, y) = \frac{1}{x^{2} + y^{2} - 1}$
28. $f(x, y) = \frac{1}{x} + xy + \frac{1}{y}$
29. $f(x, y) = y \sin x$
30. $f(x, y) = e^{2x} \cos y$

Find the absolute maxima and minima of following functions on the given domains:

- 31. $f(x, y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular plate bounded by the lines x = 0, y = 2, y = 2x in the first quadrant
- 32. $D(x, y) = x^2 xy + y^2 + 1$ on the closed triangular plate in the first quadrant bounded by the lines x = 0, y = 4, y = x
- 33. $f(x, y) = x^2 + y^2$ on the closed triangular plate bounded by the lines x = 0, y = 0, y + 2x = 2 in the first quadrant
- 34. $T(x, y) = x^2 + xy + y^2 6x$ on the rectangular plate $0 \le x \le 5, -3 \le y \le 3$
- 35. $T(x, y) = x^2 + xy + y^2 6x + 2$ on the rectangular plate $0 \le x \le 5, -3 \le y \le 0$
- 36. $f(x, y) = 48xy 32x^3 24y^2$ on the rectangular plate $0 \le x \le 1, 0 \le y \le 1$

Taylor's series expansions:

Finding Quadratic and Cubic Approximations

In Exercises — use Taylor's formula for f(x, y) at the origin to find quadratic and cubic approximations of f near the origin.

1.
$$f(x, y) = xe^y$$

2.
$$f(x, y) = e^x \cos y$$

3.
$$f(x, y) = y \sin x$$
 4. $f(x, y) = \sin x \cos y$

5.
$$f(x, y) = e^x \ln(1 + y)$$
 6. $f(x, y) = \ln(2x + y + 1)$

7.
$$f(x, y) = \sin(x^2 + y^2)$$
 8. $f(x, y) = \cos(x^2 + y^2)$

Chain Rule: One Independent Variable

In Exercises 1–6, (a) express dw/dt as a function of t, both by using the Chain Rule and by expressing w in terms of t and differentiating directly with respect to t. Then (b) evaluate dw/dt at the given value of t.

1.
$$w = x^2 + y^2$$
, $x = \cos t$, $y = \sin t$; $t = \pi$

2.
$$w = x^2 + y^2$$
, $x = \cos t + \sin t$, $y = \cos t - \sin t$; $t = 0$

3.
$$w = \frac{x}{z} + \frac{y}{z}$$
, $x = \cos^2 t$, $y = \sin^2 t$, $z = 1/t$; $t = 3$

4.
$$w = \ln(x^2 + y^2 + z^2)$$
, $x = \cos t$, $y = \sin t$, $z = 4\sqrt{t}$; $t = 3$

5.
$$w = 2ye^x - \ln z$$
, $x = \ln (t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$; $t = 1$

6.
$$w = z - \sin xy$$
, $x = t$, $y = \ln t$, $z = e^{t-1}$; $t = 1$

Method of Lagrange Multiplier

Three Independent Variables with One Constraint

- 17. Minimum distance to a point Find the point on the plane x + 2y + 3z = 13 closest to the point (1, 1, 1).
- 18. Maximum distance to a point Find the point on the sphere $x^2 + y^2 + z^2 = 4$ farthest from the point (1, -1, 1).
- 19. Minimum distance to the origin Find the minimum distance from the surface $x^2 + y^2 z^2 = 1$ to the origin.
- 20. Minimum distance to the origin Find the point on the surface z = xy + 1 nearest the origin.
- 21. Minimum distance to the origin Find the points on the surface $z^2 = xy + 4$ closest to the origin.
- 22. Minimum distance to the origin Find the point(s) on the surface xyz = 1 closest to the origin.
- 23. Extrema on a sphere Find the maximum and minimum values of

$$f(x, y, z) = x - 2y + 5z$$

on the sphere $x^2 + y^2 + z^2 = 30$.

- **24.** Extrema on a sphere Find the points on the sphere $x^2 + y^2 + z^2 = 25$ where f(x, y, z) = x + 2y + 3z has its maximum and minimum values.
- 25. Minimizing a sum of squares Find three real numbers whose sum is 9 and the sum of whose squares is as small as possible.
- 26. Maximizing a product Find the largest product the positive numbers x, y, and z can have if $x + y + z^2 = 16$.

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express $\partial z/\partial u$ and $\partial z/\partial v$ as functions of u and v both by using the Chain Rule and by expressing z directly in terms of u and v before differentiating. Then (b) evaluate $\partial z/\partial u$ and $\partial z/\partial v$ at the given point (u, v).

- 7. $z = 4e^x \ln y$, $x = \ln (u \cos v)$, $y = u \sin v$; $(u, v) = (2, \pi/4)$
- 8. $z = \tan^{-1}(x/y), \quad x = u \cos v, \quad y = u \sin v;$ $(u, v) = (1.3, \pi/6)$

In Exercises 9 and 10, (a) express $\partial w/\partial u$ and $\partial w/\partial v$ as functions of u and v both by using the Chain Rule and by expressing w directly in terms of u and v before differentiating. Then (b) evaluate $\partial w/\partial u$ and $\partial w/\partial v$ at the given point (u, v).

9.
$$w = xy + yz + xz$$
, $x = u + v$, $y = u - v$, $z = uv$; $(u, v) = (1/2, 1)$

10.
$$w = \ln(x^2 + y^2 + z^2), \quad x = ue^v \sin u, \quad y = ue^v \cos u,$$

 $z = ue^v; \quad (u, v) = (-2, 0)$

In Exercises 11 and 12, (a) express $\partial u/\partial x$, $\partial u/\partial y$, and $\partial u/\partial z$ as functions of x, y, and z both by using the Chain Rule and by expressing u directly in terms of x, y, and z before differentiating. Then (b) evaluate $\partial u/\partial x$, $\partial u/\partial y$, and $\partial u/\partial z$ at the given point (x, y, z).

11.
$$u = \frac{p-q}{q-r}$$
, $p = x + y + z$, $q = x - y + z$, $r = x + y - z$; $(x, y, z) = (\sqrt{3}, 2, 1)$

12.
$$u = e^{qr} \sin^{-1} p$$
, $p = \sin x$, $q = z^2 \ln y$, $r = 1/z$; $(x, y, z) = (\pi/4, 1/2, -1/2)$

Finding Specified Partial Derivatives

- 33. Find $\frac{\partial w}{\partial r}$ when r = 1, s = -1 if $w = (x + y + z)^2$, $x = r s, y = \cos(r + s), z = \sin(r + s)$.
- 34. Find $\partial w/\partial v$ when u = -1, v = 2 if $w = xy + \ln z$, $x = v^2/u$, y = u + v, $z = \cos u$.
- 35. Find $\partial w/\partial v$ when u = 0, v = 0 if $w = x^2 + (y/x), x = u 2v + 1, y = 2u + v 2.$
- 36. Find $\partial z/\partial u$ when u = 0, v = 1 if $z = \sin xy + x \sin y$, $x = u^2 + v^2$, y = uv.
- 37. Find $\partial z/\partial u$ and $\partial z/\partial v$ when $u = \ln 2$, v = 1 if $z = 5 \tan^{-1} x$ and $x = e^u + \ln v$.
- 38. Find $\partial z/\partial u$ and $\partial z/\partial v$ when u=1 and v=-2 if $z=\ln q$ and $q=\sqrt{v+3}\tan^{-1}u$.

Assuming that the equations in Exercises 25–28 define y as a differentiable function of x, use Theorem 8 to find the value of dy/dx at the given point.

25.
$$x^3 - 2y^2 + xy = 0$$
, (1, 1)

26.
$$xy + y^2 - 3x - 3 = 0$$
, $(-1, 1)$

27.
$$x^2 + xy + y^2 - 7 = 0$$
, $(1, 2)$

28.
$$xe^y + \sin xy + y - \ln 2 = 0$$
, $(0, \ln 2)$

Limits with Two Variables

Find the limits in Exercises 1–12.

1.
$$\lim_{(x,y)\to(0,0)} \frac{3x^2-y^2+5}{x^2+y^2+2}$$
 2. $\lim_{(x,y)\to(0,4)} \frac{x}{\sqrt{y}}$

2.
$$\lim_{(x, y) \to (0,4)} \frac{x}{\sqrt{y}}$$

3.
$$\lim_{(x,y)\to(3,4)} \sqrt{x^2+y^2-1}$$
 4. $\lim_{(x,y)\to(2,-3)} \left(\frac{1}{x}+\frac{1}{y}\right)^2$

4.
$$\lim_{(x,y)\to(2,-3)} \left(\frac{1}{x} + \frac{1}{y}\right)^2$$

5.
$$\lim_{(x, y) \to (0, \pi/4)} \sec x \tan y$$

6.
$$\lim_{(x,y)\to(0,0)} \cos\frac{x^2+y^3}{x+y+1}$$

7.
$$\lim_{(x, y) \to (0, \ln 2)} e^{x-y}$$

8.
$$\lim_{(x,y)\to(1,1)} \ln|1+x^2y^2|$$

9.
$$\lim_{(x, y) \to (0,0)} \frac{e^y \sin x}{x}$$

10.
$$\lim_{(x,y)\to(1,1)}\cos\sqrt[3]{|xy|-1}$$

11.
$$\lim_{(x,y)\to(1,0)} \frac{x\sin y}{x^2+1}$$

12.
$$\lim_{(x,y)\to(\pi/2,0)} \frac{\cos y + 1}{y - \sin x}$$

Limits of Quotients

Find the limits in Exercises 13-20 by rewriting the fractions first.

13.
$$\lim_{\substack{(x,y)\to(1,1)\\x\neq y}} \frac{x^2 - 2xy + y^2}{x - y}$$
 14.
$$\lim_{\substack{(x,y)\to(1,1)\\x\neq y}} \frac{x^2 - y^2}{x - y}$$

15.
$$\lim_{\substack{(x,y) \to (1,1) \\ x \neq 1}} \frac{xy - y - 2x + 2}{x - 1}$$

16.
$$\lim_{\substack{(x,y)\to(2,-4)\\y\neq-4,\,x\neq x^2}} \frac{y+4}{x^2y-xy+4x^2-4x}$$

17.
$$\lim_{\substack{(x,y)\to(0,0)\\x\neq y}} \frac{x-y+2\sqrt{x}-2\sqrt{y}}{\sqrt{x}-\sqrt{y}}$$

18.
$$\lim_{\substack{(x,y)\to(2,2)\\x+y\neq4}} \frac{x+y-4}{\sqrt{x+y}-2}$$
 19. $\lim_{\substack{(x,y)\to(2,0)\\2x-y\neq4}} \frac{\sqrt{2x-y}-2}{2x-y-4}$

20.
$$\lim_{\substack{(x,y)\to(4,3)\\x\neq y+1}} \frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}$$

Continuity in the Plane

At what points (x, y) in the plane are the functions in Exercises 27–30 continuous?

27. a.
$$f(x,y) = \sin(x+y)$$
 b. $f(x,y) = \ln(x^2+y^2)$

28. a.
$$f(x,y) = \frac{x+y}{x-y}$$
 b. $f(x,y) = \frac{y}{x^2+1}$

29. a.
$$g(x, y) = \sin \frac{1}{xy}$$
 b. $g(x, y) = \frac{x + y}{2 + \cos x}$

30. a.
$$g(x,y) = \frac{x^2 + y^2}{x^2 - 3x + 2}$$
 b. $g(x,y) = \frac{1}{x^2 - y}$