(im f(n) 1-00 g(n)

we can't limits!

458 X 434 X

7(n) = 1000 m $\beta(n)=n^2$ 3 is "worse"

For algorithm A and input X t_A(x):= # of steps taken by A on ilp x. Worst-case time of A

 $t_A(n) = \max_{x:|x|=n} t_A(x)$ $t_A:N\to N$ of continuity:

Mourige peparior our auge inputs. We say $f \leq g$ if there is some $N_0 \in \mathbb{N}$ S.+ for all $n \geq n_0$ $N_0 \in \mathbb{N}$ $f(n) \leq g(n)$ Pirk 10= 1003

Note: loop 1 < n² why?. and satisfy the definition.

For any Constant k $kn \leq n^2$ (Pilk $n_0 = K$) Also, observe $\lim_{n\to\infty} \frac{kn}{n^2} = 0$

2) (onstant factors do not maker
$$2n^2 \le n^2 \le n^2$$

(ompare $2n^2$ and $n^2 \le 2n^2$

fin) = $\begin{cases} n^2, & \text{if } n \text{ odd} \\ 2n^2, & \text{n} \text{ even} \end{cases}$
 $\begin{cases} 2n^2, & \text{n} \text{ even} \end{cases}$

$$\lim_{n\to\infty} f(2n) = 4 \lim_{n\to\infty} \frac{g(2n)}{g(n)}$$

$$= 4$$

1 < 3 it there exists
3 < N, C > 0 S.+ for all ns EM, $n > n_0$ $f(n) \leq c \cdot d(n)$ 458 as above s 0(3)=(5 "big-Oh" of 3

For any fn. g. O(g) is a set of functions. $f \in O(8) \sim f = O(8)$ f & 0(8) f 7 0(8)

$$0(n^2) \le 0(n^3) \le 0(2^n)$$

 $f(n) = 2^n$, $n < 1000$
 $2^{1000} + n^2$, $n > 1000$
 $m_0 = 1001$, $c = 2^{1000} \int_{\{for \ n > n_0\}}^{4}$

To Prove of & O(n)
You have to show for all Constants (>0 there are infinitely wany n's.t £(m)> C· M

big-omega of
$$g$$

$$\Omega(g) = \begin{cases} f & \text{there are constants } 10,000 \end{cases}$$

$$for all $n \ge n_0$

Observe
$$\frac{n^2}{1000} = \Omega(n) \left(\frac{n}{1000} \right)$$$$

 $f(n)=\begin{cases} n, & n \text{ even } g(n)=\int_{-1}^{2} n, & n \text{ even } \\ n^{2}, & n \text{ odd} \end{cases}$