Multimedia

COMP90007

Internet Technologies

Chien Aun Chan

Outline: Application Layer

- Multimedia Networks
 - Audio
 - Video

Application
Transport
Network
Link
Physical

 Audio and video have become key types of traffic, e.g., voice over IP, and video streaming.

Characteristics of Multimedia Networks

- Higher bandwidth requirements
- Higher QoS requirement (i.e., delay sensitive)
- New infrastructure models
 - Need separate multimedia servers from web servers
- New service providers
 - Streaming multimedia service providers are often separated and highly specialised, compared to traditional web hosts

A Basic Model for Multimedia on the Web

Problems with the Basic Model

- The entire media file must be transmitted over the network before playback starts, causing delay in user experience (e.g., to transmit a 5Mb file over a 56Kbps link takes about 5 minutes)
- Basic model assumes mainly point-to-point media distribution rather than a point-to-multipoint (broadcast) distribution model
- Does not scale
- Basic model assumes the browser/plugin/helper integration and traditional service types

Streaming Media Protocols

- Transport Protocols
 - TCP
- Open Protocols
 - HTTP
 - RTP Real-time Transport Protocol (RFC 1889)
 - RTSP Real Time Streaming Protocol (RFC 2326)
 - MPEG-4 (ISO)
- Closed Protocols
 - Real Networks' RealAudio
 - Microsoft's Windows Media
 - Apple's QuickTime

The Role of Multimedia Playback Software

- 4 main tasks of the multimedia playback software
 - Manage the user interface (e.g., volume, playback, next, etc..)
 - Handle transmission errors in conjunction with transport protocols
 - Using RTP/UDP errors will likely occur, playback software must manage them gracefully
 - Decompress the multimedia files (codecs)
 - Eliminate jitter
 - Small buffer, quick playback but susceptible to jitter/delay
 - Large buffer, delay at start of playback while buffer fills, but less susceptible to delay/jitter

Manage the user interface

Effective streaming starts the playout during transport

Handling Errors: Streaming Stored Media

Strategy	Advantage	Disadvantage
Use reliable transport (TCP)	Repairs all errors	Increases jitter significantly
Add FEC (e.g., parity)	Repairs most errors	Increases overhead, decoding complexity and jitter
Interleave media	Masks most errors	Slightly increases decoding complexity and jitter

Forward Error Correction (FEC) is simply the error-correcting coding. For every four data packets a fifth The parity packet, P, contains redundant bits that are the parity or exclusive-OR sums of the bits in each of the four data packets.

Streaming Stored Media

Use of Parity packets can repair one lost packet in a group of N

Cons: Decoding is delayed for N packets

Streaming Stored Media

Interleaving spreads nearby media samples over different transmissions to reduce the impact of loss

Loss reduces temporal resolution; doesn't leave a gap

Jitter Management

- Similarly to router buffering, multimedia software buffers streamed media sources prior to transmission
- Buffering is a defensive mechanism to reduce jitter (variance in average packet arrival times)
- Ideally the stream buffer will continue to be filled at the same rate the stream is played back to the user

Jitter Management

Jitters happens because of variable bandwidth and loss/retransmissions

Example

An video streaming server takes 10 ms to communicate with a client media player. If the media player has a 2 MB buffer, what can you say about the position of the low and high-water mark? Assume the media being streamed has a bitrate of 1 Mbps and the server sends data at a fix rate of 2 Mbps.

Ans: It takes 10 ms to send a pause command to the server and another 10 ms for the data already in the network to drain after the server stops sending.

HWM: Bandwidth delay product= $20 \text{ ms} \times 2 \text{ Mbps} = 5,000 \text{ bytes will arrive, so}$ the high-water mark should be at least 5,000 bytes below the top to avoid buffer overflow. To be absolutely safe, set the mark to be 20,000 bytes from the top.

LWM: 20 ms × 1 Mbps = 2,500 bytes for the client to request data from the server and start receiving it. 2,500 bytes will be played during this time. Hence, the low-water mark should be at least 2,500 bytes and probably 15,000 bytes to be safe.

Real Time Streaming (RTSP)

- RTSP has mechanisms to start and stop the flow of streaming media:RTSP commands are sent from player to server to adjust streaming
- Defined in RFC 2326;
- For Data stream, RTP over UDP or RTP over HTTP over TCP
- RTSP commands are sent from player to server to adjust streaming

Command	Server action
DESCRIBE	List media parameters
SETUP	Establish a logical channel between the player and the server
PLAY	Start sending data to the client
RECORD	Start accepting data from the client
PAUSE	Temporarily stop sending data
TEARDOWN	Release the logical channel

Digital Audio: Basics

ADC (Analog-to-Digital Converter) produces digital audio from a microphone

 Telephone: 8000 8-bit samples/second (64 Kbps); computer audio is usually better quality

Audio Compression

- Audio CD can represent frequencies up to 22.05kHz, hence Nyquist (sample) rate is 44.1 kHz, Stereo channels: 44100 samples/sec, 16 bits/sample = 2*44100*16 = 1,411,200 bits/s
- The key property of perceptual coding is that some sounds can mask other sounds and at any point those sounds are identified and encoded for transmission
- Frequency masking: Some sounds mask/hide others so there is no point encoding them.
- Temporal masking: Human ears can miss soft sounds immediately after loud sounds, takes time for the ear to adjust, no need

Digital Video

- Video is digitized as pixels (sampled, quantized)
 - TV quality: 640x480 pixels, 24-bit color, 30 times/sec
 200Mbs uncompressed
- Video is sent compressed due to its large bandwidth
 - Lossy compression exploits human perception
 - E.g., JPEG for still images, MPEG, H.264 for video
 - Large compression ratios (often 50X for video)

Compression with JPEG

- JPEG lossy compression sequence for one image
- JPEG often provides compression ratios of 20:1
- JPEG compression is symmetric, decoding takes as long as encoding

MPEG Standard

- MPEG Motion Picture Experts Group
- MPEG can compress both audio and video together (using synchronised streams)
- The evolution of MPEG
 - MPEG-1: VCR quality at 1.2 Mbps (40:1)
 - MPEG-2: Broadcast quality at 4-6Mbps (200:1)
 - MPEG-4: DVD quality at 10Mbps (1200:1)

Video over the Web

- Embedded with web content
 - Streaming servers required to deliver content over ordinary connection
- Integrated with other consumer services eg cable television (video on demand)
 - Content stored on central video servers
 - Delivered via a shared network to consumers

Outline

- Voice over IP (VOIP)
 - VOIP Benefits
 - VOIP Technologies
 - Protocols

The Emergence of VOIP

- Voice services becoming applications on top of data networks are being driven by a number of factors:
 - Data has overtaken voice as the primary traffic on many networks originally built for voice
 - PSTN infrastructure is not flexible enough for the rapid deployment of new features
 - PSTN technologies are largely incompatible with the convergence of data/voice/video
 - The architecture built primarily for voice is not flexible enough to carry data
 - Network providers are increasingly looking to leverage investment in network infrastructure by bringing new services to data networks
- Where suitable data networks are already in existence, the evolution of audio encoding technologies has allowed voice to be transmitted over data links - hence VOIP

Benefits of VOIP

- Financial savings
- Consolidated infrastructure
- Flexible infrastructure
- Standards based voice and data

VOIP Technologies

- Within the VOIP domain, there are 3 distinct models for service provision
 - infrastructural PSTN/PABX integration
 - virtual media gateways, virtual directories
 - value-added voice mail
- Alternative VOIP Technologies
 - H.323
 - SGCP (Simple Gateway Control Protocol) and MGCP
 - SIP

H.323 architecture for Internet telephony

supports calls between Internet computers and PSTN phones.

H.323

- H.323 is an international standard that specifies how multimedia traffic is carried over packet networks
- H.323 integrates existing standards to provide a layered protocol stack
- H.323 was originally developed to enable multimedia applications to run over unreliable data networks - includes support for audio
- (including VOIP), video and data sharing services within a single protocol stack

The H.323 Protocol Stack

- Call is digital audio/video over RTP/UDP/IP
- Call setup is handled by other protocols (Q.931 etc.)

Audio	Video	Control				
G.7xx	H.26x	RTCP	H.225	Q.931	H.245 (Call	
RT	RTP (RAS)		(Signaling)	Control)		
UDP			TCP			
IP						
Link layer protocol						
Physical layer protocol						

The H.323 Protocol Stack

- G.7xx e.g. G.711 encodes a voice channel by sampling 8000 times/sec with 8 bit sample rate, giving uncompressed 64kbps speech
 - Other G.7xx compression protocols exist that have different quality/bandwidth tradeoffs
- H.245 protocol handles negotiation to decide which compression algorithm to use, and the bit-rate.
- Q.931 protocol handles connection establishment and release, provides dial-tones, ringing sounds and other telephony functions.
- H.225 (RAS = Registration/Admission/Status) protocol is needed to talk to the gatekeeper, if the client is behind one. e.g. LAN.
- RTP is responsible for data flow once negotiation has been completed.
- RTCP (RTP Control Protocol) manages congestion control, and if the call contains video as well as audio, RTMP handles the synchronisation

Logical channels in H.323 VOIP

Session Initiation Protocol (SIP)

- SIP codified in RFC 3261
- Modelled on HTTP, simple ASCII based protocol, method + parameters, similar headers to MIME
- SIP Architecture
 - A single network module rather than a complete protocol suite
- SIP only handles the setup, management and termination of sessions - requires other protocols such as RTP/RTCP for data transport. SIP is an application layer protocol and can run over UDP or TCP
- SIP Functionality
 - Two party, multiparty and multicast
 - Callee location, callee capabilities, call setup, call termination
- SIP Addressing: addressing based on a URL type schema
 - sip:badenh@estragon.cs.mu.oz.au
 - SIP URLs can contain IPv4 or IPv6 addresses or actual telephone numbers

SIP Methods

Method	Description
INVITE	Request initiation of a session
ACK	Confirm that a session has been initiated
BYE	Request termination of a session
OPTIONS	Query a host about its capabilities
CANCEL	Cancel a pending request
REGISTER	Inform a redirection server about the user's current location

SIP Methods

H.323 and SIP Compared

Item	H.323	SIP
Designed by	ITU	IETF
Compatibility with PSTN	Yes	Largely
Compatibility with Internet	Yes, over time	Yes
Architecture	Monolithic	Modular
Completeness	Full protocol stack	SIP just handles setup
Parameter negotiation	Yes	Yes
Call signaling	Q.931 over TCP	SIP over TCP or UDP
Message format	Binary	ASCII
Media transport	RTP/RTCP	RTP/RTCP
Multiparty calls	Yes	Yes
Multimedia conferences	Yes	No
Addressing	URL or phone number	URL
Call termination	Explicit or TCP release	Explicit or timeout
Instant messaging	No	Yes
Encryption	Yes	Yes
Size of standards	1400 pages	250 pages
Implementation	Large and complex	Moderate, but issues
Status	Widespread, esp. video	Alternative, esp. voice

Evolving Voice over Data Solutions

- First voice-data integration technologies were designed to eliminate long distance phone toll charges by providing tie lines between PABXs over a WAN infrastructure
- Later support for analogue telephony devices was introduced to allow off-premises extensions to PABX
- As data networks expanded, enterprise wide call handling began to migrate towards the data network - shorter call forwarding distances between PABX and WAN gateways
- With increased voice traffic, connection admission control became a more significant issue
- With larger networks, dial plans and directory services became essential
- Centralised call control through the use of H.323 gatekeeper functions allowed voice and data transmissions to be regulated at a single point

Future of Network-Centric Telephony Applications

- As integration increases, new solutions are emerging typically allowing for packetised voice technologies to replace PABX with end to end solutions
- Generally 2 categories of technologies and application architectures
 - UnPABX: Server based call routing, with direct connections to data network, trunk telephony network and analogue telephony networks
 - LAN-PABX: Telephony on the desktop rather than actual telephone handsets, the telephony function is in software on a workstation

Incentives for Packet Based Telephony

- Un-PABX systems typically cost less than systems they replace
- LAN-PABX systems bring much greater flexibility to end users
- Both leverage existing infrastructure either the convergence of communications infrastructure or wired/wireless connections to the workstation
- Fully integrated applications, which allow manipulation of complex software services via telephony interfaces will likely drive the convergence of voice and data even further

Summary - Multimedia

- Multimedia networks
 - General operations of audio and video streaming
 - Describe techniques for jitter management
- VolP
 - Contrast H.323 and SIP
 - Explain steps in SIP call establishment