Back to the equation ax + by = c.

• (a, b) divides both a and b \Rightarrow (a, b) divides ax + byNo solution unless $(a, b) \mid c$.

What about c = (a, b)?

Theorem: There are integers x, y such that ax + by = (a, b)

Proof: We'll give an algorithm that finds

(a,b) and integers x,y such that ax + by = (a,b)

(Euclid's algorithm)

By Division algorithm, we can write

•
$$a = k_0 \cdot b + r_0$$
, $0 \le r_0 \le |b|$ $\frac{Lemma:}{(a, b) = (b, r_0)}$.

Then, continue using Division (will prove later) algorithm to find (b, r_0)

•
$$b = k_1 \cdot r_6 + r_1$$
, $0 \le r_1 < r_0$ (b, r_0) = (r_0, r_1)

•
$$r_0 = k_2 \cdot r_1 + r_2$$
, $0 \le r_2 < r_1 < r_0$ $(r_0, r_1) = (r_1, r_2)$

•
$$r_{n-2} = k_n \cdot r_{n-1} + r_n$$
 because $r_{01}r_{11}r_{21}\cdots$ decreasing.

Tracing back our steps, we can find x and y such that $ax + by = r_{n-1}$

- Begin with the equation $(2^{nd} \text{ from last})$ $\Gamma_{n-3} = k_{n-1} \cdot \Gamma_{n-2} + \Gamma_{n-1} \Longrightarrow \Gamma_{n-1} = \Gamma_{n-3} k_{n-1} \cdot \Gamma_{n-2}$
- Replace r_{n-2} on RHS using the equation $r_{n-4} = k_{n-2} \cdot r_{n-3} + r_{n-2} \Rightarrow r_{n-2} = r_{n-4} k_{n-2} \cdot r_{n-3}$

Now, $r_{n-1} = r_{n-3} - k_{n-1} \cdot (r_{n-4} - k_{n-2} \cdot r_{n-3})$

· Replace rn-3 similarly ...

:

Moving upward, we eventually get $ax + by = r_{n-1}$.

Lemma: a = kb + r, then (a,b) = (b,r)

 $\frac{\text{Proof:}}{\text{c|a}} \quad \text{c|a} \quad \text{and} \quad \text{c|b} \Rightarrow \text{c|a-kb=r}$ $\Rightarrow \text{c|b} \quad \text{and} \quad \text{c|r}$

 $d \mid b$ and $d \mid r \Rightarrow d \mid kb + r$ $\Rightarrow d \mid a$ and $d \mid b$

Same common divisors mean same gcd.

Example:
$$a = 600$$
 and $b = 136$

$$600 = 4 \cdot 136 + 56$$

$$24 = 3.8 + 0$$

$$8 = 56 - 2.24 = 56 - 2.(136 - 2.56)$$

$$= 5.56 - 2.136$$

$$= 5.(600 - 4.136) - 2.136$$

$$= 5.600 - 22.136$$

Corollary: ax + by = c has solution if and only if (a, b) | c.

 \Rightarrow (600, 136) = 8

$$ax + by = (a,b) \implies a \cdot kx + b \cdot ky = k \cdot (a,b)$$

An alternative definition for gcd:(a,b) is the smallest positive integer that can be written ax + by.

(Very useful to prove some properties)

· a, b not all zero.

$$a = 24$$
 $b = 30$ $(a, b) = 6$

cla and clb \Leftrightarrow cl(a,b) common divisors $\pm 1, \pm 2, \pm 3, \pm 6$

Common divisors are divisors of greatest common divisor

Proof: (<=): obvious.

$$c \mid (a,b) \mid a$$
 and $c \mid (a,b) \mid b$

$$(\Rightarrow)$$
: cla and clb \Rightarrow clax+by

(a,b)

· a, b not both zero

$$(a, b, c) = ((a, b), c)$$

$$x \mid a$$
, $x \mid b$, $x \mid c \Rightarrow x \mid (a, b)$ and $x \mid c$

$$y|(a,b)$$
 and $y|c \Rightarrow y|a$ and $y|b$, $y|c$

Same common divisors, same gcd.

m > 0

•
$$(ma, mb) = m \cdot (a, b)$$

=
$$m \cdot smallest$$
 pos. int. $ax + by$
= $m \cdot (a, b)$