IN-STK 5000 Session 10 Bandits and Model Interpretation

Multi-Armed Bandits

Set of real distributions $B=\{R_1,\ldots,R_K\}$, each associated with rewards delivered by one of K levers. Each action generates a reward r_t . $\mu_k=E(R_k)$. Regret is defined as

$$ho = T \mu^* - \sum_{t=1}^T \hat{r}_t$$
 .

Multi-Armed Bandits

Relevant for many applications, e.g.

- Clinical trials
- Adaptive routing
- Financial portfolio design

Bandits: Strategies

If action a chosen, and reward r received, update

$$lpha_a o lpha_a + r, \quad eta_a o eta_a + (1-r)$$
. Probability model $\hat{ heta} = lpha/(lpha + eta)$.

- Greedy
 - Explore phase, then exploit
- Epsilon-greedy
 - \circ Choose random action with probability ϵ
- Probability matching (e.g. Thompson Sampling)
 - Choose action according to probability model

Bootstrapping

Resample sample data to allow inference of statistical properties of original distribution.

- 1. Start with N samples \hat{X} .
- 2. Draw M bootstrap samples $\hat{B}_i, i=1,\ldots,M$ of size N, with replacement.
- 3. Obtain M values for a statistic $f_i = F(\hat{B}_i)$ of interest.
- 4. Use those to e.g. estimate confidence intervals.

