Probabilidade e Estatística com R

Fernando Náufel

(versão de 10/11/2021)

Sumário

A	orese	ntação 2
•		rcício
1	O Q	ue É Estatística?
	1.1	Vídeo 1
	1.2	Exercícios
	1.3	Vídeo 2
	1.4	Exercícios
2	Intr	rodução a R
		Vídeo 1
		Vídeo 2
	2.3	Exercícios
3	Visu	ualização com ggplot2
		Vídeo 1
	3.2	Componentes de um gráfico ggplot2
	3.3	Conjunto de dados
	3.4	Gráficos de dispersão (scatter plots)
	3.5	Histogramas e cia
	3.6	Ogiva (frequência acumulada)
	3.7	Ramos e folhas
	0.,	Fyerrácios

Apresentação

Atenção

Este material ainda está em construção.

Pode haver mudanças a qualquer momento.

Verifique, no rodapé da página *web* ou na capa do arquivo pdf, a data desta versão.

Este livro/site foi iniciado em 2020, durante a pandemia de COVID-19, quando a Universidade Federal Fluminense (UFF) funcionou em regime de ensino remoto durante mais de

um ano.

Para atender os alunos do curso de Probabilidade e Estatística do curso de graduação em Ciência da Computação da UFF, decidi gravar aulas em vídeo e disponibilizar os arquivos usados nelas. Foram esses arquivos que deram origem a este livro/site.

Para tirar o máximo proveito deste material, você deve fazer o sequinte:

- 1. Assistir aos vídeos contidos em cada capítulo. A *playlist* completa está em https: //www.youtube.com/playlist?list=PL7SRLwLs7ocaV-Y1vrVU3W7mZnnS0qkWV.
- Instalar o R no seu computador ou abrir uma conta no RStudio Cloud, para poder usar o R online. Você encontra instruções para fazer isto no capítulo de introdução a R.
- 3. Seguir os *links* para outras fontes *online* que abordam assuntos que não são cobertos em detalhes neste curso.
- 4. Fazer os exercícios. Ao longo do tempo, acrescentarei *links* para vídeos explicando as soluções.

O código-fonte deste livro/site pode ser encontrado neste repositório do Github¹.

Se você preferir ler este livro em pdf, ou se quiser imprimi-lo, faça o download do arquivo aqui².

Exercício

1. Pesquise sobre a imagem do início deste capítulo. Ela foi criada em 1858 por Florence Nightingale.

¹https://github.com/fnaufel/probestr

²https://github.com/fnaufel/probestr/blob/master/docs/probestr.pdf

CAPÍTULO 1

O Que	É	Estatística?
O Guc	_	LJIGIIJICG:

1.1

Vídeo 1

https://youtu.be/6Q_XSoLCIpc

1.2

Exercícios

- Você está interessado em estimar a altura de todos os homens da sua faculdade. Para isso, você decide medir as alturas de todos os homens da sua turma de Estatística.
 - Qual é a amostra?
 - Qual é a população?
- 2. Um instituto de pesquisa entrevista um grupo de 1000 pessoas, perguntando a cada uma se ela vai votar a favor do candidato A na próxima eleição. Dos entrevistados, 600 responderam que sim. A proporção 0,6 (ou 60%) é uma estatística ou um parâmetro?
- 3. Você vê alguma diferença entre as cinco situações abaixo? Quais das situações são equivalentes em termos da probabilidade de conseguir 5 cartas do mesmo naipe?
 - a. Usando um baralho normal, você retira $10\,\mathrm{cartas}$ e registra as cartas retiradas.

- b. Usando um baralho normal, você repete a seguinte sequência de ações 10 vezes: retirar uma carta do baralho, registrar a carta retirada e repor a carta no baralho.
- c. Usando uma caixa contendo todas as cartas de 1 milhão de baralhos reunidos, você retira 10 cartas e registra as cartas retiradas.
- d. Usando uma caixa contendo todas as cartas de 1 milhão de baralhos reunidos, você repete a seguinte sequência de ações 10 vezes: retirar uma carta da caixa, registrar a carta retirada e repor a carta na caixa.
- e. Usando um baralho *infinito*, você retira 10 cartas e registra as cartas retiradas.
- f. Usando um baralho *infinito*, você repete a seguinte sequência de ações 10 vezes: retirar uma carta do baralho, registrar a carta retirada e repor a carta no baralho.
- 4. Qual a graça dos quadrinhos na Figura 1.1, que também aparecem no vídeo¹?

Figura 1.1: http://xkcd.com/552/

- 5. Qual a graça dos quadrinhos na Figura 1.2?
- 6. Veja este vídeo sobre o cavalo Hans:

https://youtu.be/G3VkCmdUfZE

Qual a relação entre esta história e a necessidade de duplo cegamento?

¹https://youtu.be/6Q XSoLCIpc?t=1385

LIMITAÇÕES DE ESTUDOS COM CEGAMENTO

Figura 1.2: http://xkcd.com/1462/

1.3			

Vídeo 2

https://youtu.be/492VASxIDRo

1.4

Exercícios

- 1. Por que não faz sentido calcular a média dos CEPs de um grupo de pessoas?
- 2. Uma temperatura de $-40~{\rm graus}$ Celsius é igual a uma temperatura de $-40~{\rm graus}$ Fahrenheit?
- 3. Uma temperatura de zero graus Celsius é igual a uma temperatura de zero graus Fahrenheit?
- 4. Uma variação de temperatura de 1 grau Celsius é igual a uma variação de temperatura de 1 grau Fahrenheit?
- 5. Um saldo bancário de zero reais é igual a um saldo bancário de zero dólares?
- 6. Um produto de 1 milhão de reais custa o mesmo que um produto de 1 milhão de dólares?
- 7. Meses representados por números de $1\ {\rm a}\ 12\ {\rm s\~ao}$ dados de que nível?

CAPÍTULO 2

Introdução a R	
2.1	
Vídeo 1	
	https://youtu.be/1kXQDNqm41c
Vídeo 2	
	https://youtu.be/3GEc1oiKDrU
2 2	
2.3 Exercícios	

- 1. Para criar sua conta no RStudio Cloud, acesse https://rstudio.cloud/.
- 2. Se você preferir instalar o R no seu computador, acesse
 - https://cran.r-project.org/ para baixar e instalar o R, e
 - https://rstudio.com/products/rstudio/download/ para baixar e instalar o RStudio, um IDE específico para R.

- 3. Abra o RStudio Cloud ou o seu RStudio instalado localmente.
- 4. Crie um novo projeto. Sempre trabalhe em projetos para ter seus arquivos organizados.
- 5. Para instalar o swirl (pacote do R para exercícios interativos)¹, execute o seguinte comando no console do RStudio:

```
install.packages("swirl")
```

6. Para instalar os exercícios de introdução a R, execute os seguintes comandos no console do RStudio:

```
library(swirl)
install_course_github('fnaufel', 'introR')
```

7. Mude o idioma para português e execute o swirl.

```
select_language('portuguese', append_rprofile = TRUE)
swirl()
```

- 8. Na primeira execução, você vai precisar se identificar (qualquer nome serve). Com essa identificação, o swirl vai registrar o seu progresso nas lições.
- 9. No swirl, as perguntas são mostradas no console. Você também deve responder no console.
- 10. Às vezes, um *script* será aberto no editor de textos para que você complete um programa. Quando seu programa estiver pronto, salve o arquivo e digite submit() no console para o swirl processar o *script*.
- 11. O swirl dá instruções claras no console. Na dúvida, digite info() no prompt do R (>).
- 12. Se, em vez do *prompt* do R, o console mostrar reticências (...), tecle *Enter*.
- 13. Se nada funcionar, tecle ESC.
- 14. Para sair do swirl(), digite bye() no prompt do R.
- 15. Para voltar para os exercícios, digite

```
library(swirl)
swirl()
```

¹https://swirlstats.com/

CAPÍTULO 3

Visualização	com ggplot2
3.1	
Vídeo 1	
	https://youtu.be/OBpNjqIIyhI
3.2	
Componentes	de um gráfico ggplot2
3.2.1	
Geometrias e maj	eamentos estéticos (<i>mappings</i>)

• Observe o gráfico abaixo, obtido de https://www.gapminder.org/downloads/upda ted-gapminder-world-poster-2015/.

- O gráfico mostra como, em cada país, a saúde (mais precisamente, a expectativa de vida) se relaciona com a riqueza (mais precisamente, o PIB).
- Além da expectativa de vida e o do PIB, o gráfico traz mais informações sobre cada país.
- Cada país é representado por um ponto (a geometria).
- Informações sobre cada país são representadas por características do ponto correspondente (as estéticas):

Variável	Geometria	Estética
PIB per capita	ponto	posição x
Expectativa de vida População	ponto ponto	posição y tamanho
Continente	ponto	cor

- Você pode usar outras estéticas para representar informações:
 - Cor de preenchimento.
 - Cor do traço.
 - Tipo do traço (sólido, pontilhado, tracejado etc.).
 - Forma (círculo, quadrado, triângulo etc.).

- Opacidade.
- etc.
- Você pode usar outras geometrias:
 - Linhas.
 - Barras ou colunas.
 - Caixas.
 - etc.

3.2.2

Escalas (scales)

- Controlam os detalhes da geometria e do mapeamento (eixos, cores etc.).
- Os eixos do gráfico acima são escalas contínuas, com valores reais.
- Observe o eixo horizontal. Os valores não aumentam linearmente, mas sim exponencialmente: cada passo à direita equivale a dobrar o valor do PIB. O eixo horizontal segue uma escala logarítmica.
- Os tamanhos dos pontos formam uma escala $\frac{\text{discreta}}{\text{discreta}}$, com 4 valores possíveis (veja a legenda no canto inferior direito do gráfico).
- As cores também formam uma escala discreta.

3.2.3 ____

Rótulos (labels)

- O gráfico também representa informação na forma de texto.
- Além de rótulos (por exemplo, o texto que identifica cada eixo), o texto também pode, ele mesmo, ser uma geometria, com suas próprias estéticas: observe como o nome de cada país é escrito em um tamanho proporcional à sua população.

3.2.4

Outros componentes

- Coordenadas:
 - Este gráfico usa coordenadas cartesianas, com eixos x e y.
 - Existem gráficos que usam um sistema de coordenadas polares.
- Temas:
 - Incluem todos os elementos "decorativos": cor de fundo, linhas de grade, etc.
 Ajudam a facilitar a leitura e a interpretação.
 - No gráfico acima, um detalhe interessante do tema é a divisão de cada eixo em segmentos claros e segmentos escuros.
- Legendas (*quides*).

- · Facetas:
 - Às vezes, um gráfico é composto por múltiplos subgráficos.
 - Cada subgráfico é uma faceta.
 - Facetas evitam que informações demais sejam apresentadas no mesmo lugar.

3.3

Conjunto de dados

- Nossos exemplos de gráficos vão usar dados sobre o sono de diversos mamíferos.
- O conjunto de dados se chama msleep e está incluído no pacote ggplot2.
- Para ver a documentação, digite

```
library(ggplot2)
?msleep
```

Vamos atribuir o conjunto de dados à variável df:

```
df <- msleep
df
## # A tibble: 83 x 11
## name genus vore order conservation sleep_total sleep_rem sleep_cycle
    <chr> <chr> <chr> <chr> <chr> <chr>
                                               <dbl>
                                                         <dbl>
                                                                     <db1>
## 1 Cheet~ Acin~ carni Carn~ lc
                                                12.1
                                                          NA
                                                                    NA
## 2 Owl m~ Aotus omni Prim~ <NA>
                                                17
                                                           1.8
                                                                    NA
## 3 Mount~ Aplo~ herbi Rode~ nt
                                               14.4
                                                          2.4
                                                           2.3
## 4 Great~ Blar~ omni Sori~ lc
                                                14.9
                                                                     0.133
## 5 Cow Bos herbi Arti~ domesticated
                                                4
                                                          0.7
                                                                    0.667
                                                          2.2
## 6 Three~ Brad~ herbi Pilo~ <NA>
                                                14.4
                                                                     0.767
## # ... with 77 more rows, and 3 more variables: awake <dbl>,
      brainwt <dbl>, bodywt <dbl>
```

• Vamos examinar a estrutura — usando R base:

```
## $ bodywt : num [1:83] 50 0,48 1,35 0,019 ...
```

• Podemos usar glimpse, uma função do tidyverse:

```
glimpse(df)
## Rows: 83
## Columns: 11
## $ name
                 <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Great~
## $ genus
                 <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos~
                 <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi"~
## $ vore
                 <chr> "Carnivora", "Primates", "Rodentia", "Soricomorpha~
## $ order
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", NA~
## $ sleep_total <dbl> 12,1, 17,0, 14,4, 14,9, 4,0, 14,4, 8,7, 7,0, 10,1,~
## $ sleep rem <dbl> NA, 1,8, 2,4, 2,3, 0,7, 2,2, 1,4, NA, 2,9, NA, 0,6~
## $ sleep_cycle <dbl> NA, NA, NA, 0,1333333, 0,6666667, 0,7666667, 0,383~
## $ awake
                 <dbl> 11,9, 7,0, 9,6, 9,1, 20,0, 9,6, 15,3, 17,0, 13,9, ~
## $ brainwt
                 <dbl> NA, 0,01550, NA, 0,00029, 0,42300, NA, NA, NA, NA, 0,0~
## $ bodywt
                <dbl> 50,000, 0,480, 1,350, 0,019, 600,000, 3,850, 20,49~
```

• Para examinar só as primeiras linhas do data frame:

```
head(df)
## # A tibble: 6 x 11
            genus vore order conservation sleep_total sleep_rem sleep_cycle
     <chr> <chr> <chr> <chr> <chr> <chr> <chr>
                                                  <db1>
                                                            <db1>
                                                                        <db1>
## 1 Cheet~ Acin~ carni Carn~ lc
                                                  12.1
                                                             NA
                                                                       NA
## 2 Owl m~ Aotus omni Prim~ <NA>
                                                  17
                                                              1.8
                                                                       NA
## 3 Mount~ Aplo~ herbi Rode~ nt
                                                              2.4
                                                                       NA
                                                  14.4
## 4 Great~ Blar~ omni Sori~ lc
                                                   14.9
                                                              2.3
                                                                        0.133
## 5 Cow
            Bos herbi Arti~ domesticated
                                                              0.7
                                                   4
                                                                        0.667
## 6 Three~ Brad~ herbi Pilo~ <NA>
                                                   14.4
                                                              2.2
                                                                        0.767
## # ... with 3 more variables: awake <dbl>, brainwt <dbl>, bodywt <dbl>
```

• Para examinar o *data frame* interativamente:

```
view(df)
```

• Podemos produzir um sumário dos dados usando o pacote *summarytools* (que já foi carregado neste documento):

```
df %>% dfSummary() %>% print()
```

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
name	1. African elephant	1 (1,2%)	0
[character]	African giant pouched rat	1 (1,2%)	(0,0%)
	3. African striped mouse	1 (1,2%)	
	4. Arctic fox	1 (1,2%)	
	5. Arctic ground squirrel	1 (1,2%)	
	6. Asian elephant	1 (1,2%)	
	7. Baboon	1 (1,2%)	
	8. Big brown bat	1 (1,2%)	
	9. Bottle-nosed dolphin	1 (1,2%)	
	10. Brazilian tapir	1 (1,2%)	
	[73 outros]	73 (88,0%)	
genus	1. Panthera	3 (3,6%)	0
[character]	2. Spermophilus	3 (3,6%)	(0,0%)
	3. Equus	2 (2,4%)	
	4. Vulpes	2 (2,4%)	
	5. Acinonyx	1 (1,2%)	
	6. Aotus	1 (1,2%)	
	7. Aplodontia	1 (1,2%)	
	8. Blarina	1 (1,2%)	
	9. Bos	1 (1,2%)	
	10. Bradypus	1 (1,2%)	
	[67 outros]	67 (80,7%)	
vore	1. carni	19 (25,0%)	7
[character]	2. herbi	32 (42,1%)	(8,4%)
	3. insecti	5 (6,6%)	
	4. omni	20 (26,3%)	
order	1. Rodentia	22 (26,5%)	0
[character]	2. Carnivora	12 (14,5%)	(0,0%)
	3. Primates	12 (14,5%)	
	4. Artiodactyla	6 (7,2%)	
	5. Soricomorpha	5 (6,0%)	
	6. Cetacea	3 (3,6%)	
	7. Hyracoidea	3 (3,6%)	
	8. Perissodactyla	3 (3,6%)	
	9. Chiroptera ´	2 (2,4%)	
	10. Cingulata	2 (2,4%)	
	[9 outros]	13 (15,7%)	
conservation	1. cd	2 (3,7%)	29
[character]	2. domesticated	10 (18,5%)	(34,9%)
	3. en	4 (7,4%)	(, , ,
	4. lc	27 (50,0%)	
	5. nt	4 (7,4%)	
	6. vu	7 (13,0%)	

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
sleep_total [numeric]	Média (dp) : 10,4 (4,5) mín < mediana < máx: 1,9 < 10,1 < 19,9 IQE (CV) : 5,9 (0,4)	65 valores distintos	0 (0,0%)
sleep_rem [numeric]	Média (dp) : 1,9 (1,3) mín < mediana < máx: 0,1 < 1,5 < 6,6 IQE (CV) : 1,5 (0,7)	32 valores distintos	22 (26,5%)
sleep_cycle [numeric]	Média (dp) : 0,4 (0,4) mín < mediana < máx: 0,1 < 0,3 < 1,5 IQE (CV) : 0,4 (0,8)	22 valores distintos	51 (61,4%)
awake [numeric]	Média (dp) : 13,6 (4,5) mín < mediana < máx: 4,1 < 13,9 < 22,1 IQE (CV) : 5,9 (0,3)	65 valores distintos	0 (0,0%)
brainwt [numeric]	Média (dp) : 0,3 (1) mín < mediana < máx: 0 < 0 < 5,7 IQE (CV) : 0,1 (3,5)	53 valores distintos	27 (32,5%)
bodywt [numeric]	Média (dp) : 166,1 (786,8) mín < mediana < máx: 0 < 1,7 < 6654 IQE (CV) : 41,6 (4,7)	82 valores distintos	0 (0,0%)

- \bullet Vemos que há muitos ${\tt NA}$ em diversas variáveis. Para nossos exemplos simples de visualização, vamos usar as colunas
 - name
 - genus
 - order
 - sleep_total
 - awake
 - bodywt
 - brainwt
- Mas... a coluna que mostra a dieta (vore) tem só 7 NA. Quais são?

```
df %>%
  filter(is.na(vore)) %>%
  select(name)
## # A tibble: 7 x 1
## name
## <chr>
## 1 Vesper mouse
## 2 Desert hedgehog
## 3 Deer mouse
```

```
## 4 Phalanger
## 5 Rock hyrax
## 6 Mole rat
## # ... with 1 more row
```

- OK. Vamos manter a coluna vore também, apesar dos NA. Quando formos usar esta variável, tomaremos cuidado.
- Também... a coluna bodywt tem 0 como valor mínimo. Como assim?

```
df %>%
 filter(bodywt < 1) %>%
 select(name, bodywt) %>%
 arrange(bodywt)
## # A tibble: 35 x 2
## name
                               bodywt
##
    <chr>
                               <db1>
## 1 Lesser short-tailed shrew 0.005
## 2 Little brown bat
                              0.01
## 3 Greater short-tailed shrew 0.019
## 4 Deer mouse
                               0.021
                               0.022
## 5 House mouse
## 6 Big brown bat
                                0.023
## # ... with 29 more rows
```

- Ah, sem problema. A função dfSummary arredondou estes pesos para 0. Os valores de verdade ainda estão na *tibble*.
- Vamos criar uma tibble nova, só com as colunas que nos interessam:

```
sono <- df %>%
select(
  name, order, genus, vore, bodywt,
  brainwt, awake, sleep_total
)
```

· Vamos ver o sumário:

```
sono %>% dfSummary() %>% print()
```

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
name	1. African elephant	1 (1,2%)	0
[character]	African giant pouched rat	1 (1,2%)	(0,0%)
	African striped mouse	1 (1,2%)	
	4. Arctic fox	1 (1,2%)	
	Arctic ground squirrel	1 (1,2%)	
	6. Asian elephant	1 (1,2%)	
	7. Baboon	1 (1,2%)	
	8. Big brown bat	1 (1,2%)	
	Bottle-nosed dolphin	1 (1,2%)	
	10. Brazilian tapir	1 (1,2%)	
	[73 outros]	73 (88,0%)	
order	1. Rodentia	22 (26,5%)	0
[character]	2. Carnivora	12 (14,5%)	(0,0%)
	3. Primates	12 (14,5%)	
	4. Artiodactyla	6 (7,2%)	
	5. Soricomorpha	5 (6,0%)	
	6. Cetacea	3 (3,6%)	
	7. Hyracoidea	3 (3,6%)	
	8. Perissodactyla	3 (3,6%)	
	9. Chiroptera	2 (2,4%)	
	10. Cingulata	2 (2,4%)	
	[9 outros]	13 (15,7%)	
genus	1. Panthera	3 (3,6%)	0
[character]	2. Spermophilus	3 (3,6%)	(0,0%)
	3. Equus	2 (2,4%)	
	4. Vulpes	2 (2,4%)	
	5. Acinonyx	1 (1,2%)	
	6. Aotus	1 (1,2%)	
	7. Aplodontia	1 (1,2%)	
	8. Blarina	1 (1,2%)	
	9. Bos	1 (1,2%)	
	10. Bradypus	1 (1,2%)	
	[67 outros]	67 (80,7%)	
vore	1. carni	19 (25,0%)	7
[character]	2. herbi	32 (42,1%)	(8,4%)
	3. insecti	5 (6,6%)	
	4. omni	20 (26,3%)	
bodywt	Média (dp) : 166,1 (786,8)	82 valores distintos	0
[numeric]	mín < mediana < máx:		(0,0%)
	0 < 1,7 < 6654		
	IQE (CV): 41,6 (4,7)		
brainwt	Média (dp) : 0,3 (1)	53 valores distintos	27
[numeric]	mín < mediana < máx:		(32,5%)
	0 < 0 < 5,7		
	IQE (CV): 0,1 (3,5)		

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
awake [numeric]	Média (dp) : 13,6 (4,5) mín < mediana < máx: 4,1 < 13,9 < 22,1 IQE (CV) : 5,9 (0,3)	65 valores distintos	0 (0,0%)
sleep_total [numeric]	Média (dp) : 10,4 (4,5) mín < mediana < máx: 1,9 < 10,1 < 19,9 IQE (CV) : 5,9 (0,4)	65 valores distintos	0 (0,0%)

3.4

Gráficos de dispersão (scatter plots)

- Servem para visualizar a *relação* entre duas variáveis quantitativas.
- Essa relação *não* é necessariamente de causalidade.
- Isto é, a variável representada no eixo horizontal não determina, necessariamente, os valores da variável representada no eixo vertical.
- Pense em associação, correlação, não em causalidade.
- Troque as variáveis de eixo, se ajudar a deixar isto claro.

3.4.1 ___

Horas de sono e peso corporal

Como as variáveis sleep_total e bodywt estão relacionadas?

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total))
```


O que houve? Cadê os pontos?

O problema foi que só especificamos o mapeamento estético. Faltou a geometria.

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
geom_point()
```


Que horror.

A única coisa que percebemos aqui é que os mamíferos muito pesados dormem menos de 5 horas por noite.

Estes animais muito pesados estão estragando a escala do eixo x.

Que animais são estes?

```
sono %>%
 filter(bodywt > 250) %>%
  select(name, bodywt) %>%
  arrange(bodywt)
## # A tibble: 6 x 2
     name
                      bodywt
##
     <chr>
                       <db1>
## 1 Horse
                        521
## 2 Cow
                        600
                        800
## 3 Pilot whale
                        900.
## 4 Giraffe
## 5 Asian elephant
                       2547
## 6 African elephant 6654
```

Além disso, há muitos pontos sobrepostos. Em bom português, temos um problema de *overplotting*.

Existem diversas maneiras de lidar com isso.

A primeira delas é alterando a opacidade dos pontos:

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
  geom_point(alpha = 0.2)
```


Outra maneira é usar geom_jitter em vez de geom_point:

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
  geom_jitter(width = 100)
```


Vamos mudar a escala do gráfico para nos concentrarmos nos animais menos pesados:

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
   geom_point() +
   scale_x_continuous(limits = c(0, 200))
## Warning: Removed 7 rows containing missing values (geom_point).
```


Nesta escala, a relação entre horas de sono e peso não é mais tão regular.

3.4.2 _

Horas de sono e peso corporal para animais pequenos

Vamos restringir o gráfico a animais com no máximo $5 \,\mathrm{kg}.$

```
limite <- 5
```

Em vez de mudar a escala do gráfico, vamos filtrar as linhas do data frame:

```
sono %>%
filter(bodywt < limite) %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
   geom_point()
```


3.4.3 __

Incluindo a dieta

```
sono %>%
filter(bodywt < limite) %>%
ggplot(aes(x = bodywt, y = sleep_total, color = vore)) +
   geom_point()
```


3.4.4 _

A estética pode ser especificada na geom

```
sono %>%
filter(bodywt < limite) %>%
ggplot() +
geom_point(aes(x = bodywt, y = sleep_total, color = vore))
```


3.4.5 _

Estética fixa ou dependendo de variável?

Compare o último *chunk* acima com:

```
sono %>%
filter(bodywt < limite) %>%
ggplot() +
geom_point(aes(x = bodywt, y = sleep_total), color = 'blue')
```


Um erro comum:

```
sono %>%
filter(bodywt < limite) %>%
ggplot() +
geom_point(aes(x = bodywt, y = sleep_total, color = 'blue'))
```


3.4.6 __

Uma correlação mais clara

Peso cerebral versus peso corporal:

```
sono %>%
  ggplot() +
    geom_point(aes(x = bodywt, y = brainwt))
## Warning: Removed 27 rows containing missing values (geom_point).
```


Vamos restringir aos animais mais leves e mudar a opacidade:

```
sono %>%
  filter(bodywt < limite) %>%
  ggplot() +
    geom_point(aes(x = bodywt, y = brainwt), alpha = .5)
## Warning: Removed 18 rows containing missing values (geom_point).
```


Vamos incluir horas de sono e dieta:

```
sono %>%
  filter(bodywt < limite) %>%
  ggplot() +
   geom_point(
    aes(
        x = bodywt,
        y = brainwt,
        size = sleep_total,
        color = vore
    ),
    alpha = .5
  )

## Warning: Removed 18 rows containing missing values (geom_point).
```


Mudar a escala dos tamanhos e incluir rótulos:

```
sono %>%
  filter(bodywt < limite) %>%
 ggplot() +
   geom_point(
      aes(
       x = bodywt,
       y = brainwt,
       size = sleep_total,
        color = vore
      ),
     alpha = .5
    ) +
    scale_size(
      breaks = seq(0, 24, 4)
    ) +
    labs(
      title = 'Peso do cérebro versus peso corporal',
      subtitle = paste0(
        'para mamíferos com menos de ',
        limite,
        ' kg'
      ),
      caption = 'Fonte: dataset `msleep`',
```

```
x = 'Peso corporal (kg)',
y = 'Peso do\n cérebro (kg)',
color = 'Dieta',
size = 'Horas\nde sono'
)
## Warning: Removed 18 rows containing missing values (geom_point).
```

Peso do cérebro versus peso corporal para mamíferos com menos de 5 kg

3.5

Histogramas e cia.

A idéia agora é agrupar indivíduos em classes, dependendo do valor de uma variável numérica.

Fonte: dataset 'msleep'

Vamos nos concentrar nas horas de sono.

Distribuições de frequência

Em R base, é fácil fazer os agrupamentos:

```
sono$sleep_total
## [1] 12,1 17,0 14,4 14,9 4,0 14,4 8,7 7,0 10,1 3,0 5,3 9,4 10,0
## [14] 12,5 10,3 8,3 9,1 17,4 5,3 18,0 3,9 19,7 2,9 3,1 10,1 10,9
## [27] 14,9 12,5 9,8 1,9 2,7 6,2 6,3 8,0 9,5 3,3 19,4 10,1 14,2
## [40] 14,3 12,8 12,5 19,9 14,6 11,0 7,7 14,5 8,4 3,8 9,7 15,8 10,4
## [53] 13,5 9,4 10,3 11,0 11,5 13,7 3,5 5,6 11,1 18,1 5,4 13,0 8,7
## [66] 9,6 8,4 11,3 10,6 16,6 13,8 15,9 12,8 9,1 8,6 15,8 4,4 15,6
## [79] 8,9 5,2 6,3 12,5 9,8
sono$sleep_total %>% range()
## [1] 1,9 19,9
sono$sleep_total %>%
 cut(breaks = seq(0, 20, 2), right = FALSE)
## [1] [12,14) [16,18) [14,16) [14,16) [4,6) [14,16) [8,10)
                                                              [6,8)
## [9] [10,12) [2,4) [4,6)
                              [8,10) [10,12) [12,14) [10,12) [8,10)
## [17] [8,10) [16,18) [4,6) [18,20) [2,4) [18,20) [2,4)
                                                              [2,4)
## [25] [10,12) [10,12) [14,16) [12,14) [8,10) [0,2)
                                                      [2,4)
                                                              [6.8)
## [33] [6,8)
             [8,10) [8,10) [2,4)
                                     [18,20) [10,12) [14,16) [14,16)
## [41] [12,14) [12,14) [18,20) [14,16) [10,12) [6,8)
                                                      [14,16) [8,10)
## [49] [2,4) [8,10) [14,16) [10,12) [12,14) [8,10) [10,12) [10,12)
## [57] [10,12) [12,14) [2,4) [4,6) [10,12) [18,20) [4,6)
## [65] [8,10) [8,10) [8,10) [10,12) [10,12) [16,18) [12,14) [14,16)
## [73] [12,14) [8,10) [8,10) [14,16) [4,6) [14,16) [8,10) [4,6)
## [81] [6,8)
               [12,14) [8,10)
## 10 Levels: [0,2) [2,4) [4,6) [6,8) [8,10) [10,12) [12,14) ... [18,20)
sono$sleep_total %>%
  cut(breaks = seq(0, 20, 2), right = FALSE) %>%
 table(dnn = 'Horas de sono') %>%
 as.data.frame()
## # A tibble: 10 x 2
## Horas.de.sono Freq
## <fct>
                  <int>
## 1 [0,2)
                      1
## 2 [2,4)
                      8
                      7
## 3 \[ \( \)4.6\)
## 4 [6,8)
                      5
## 5 [8,10)
                     17
## 6 [10,12)
                     14
## # ... with 4 more rows
```

3.5.2 ___

Histograma

```
sono %>%
ggplot(aes(x = sleep_total)) +
  geom_histogram(breaks = seq(0, 20, 2)) +
  scale_x_continuous(breaks = seq(0, 20, 2))
```


3.5.3 _

Polígono de frequência

```
sono %>%
ggplot(aes(x = sleep_total)) +
  geom_histogram(breaks = seq(0, 20, 2)) +
  geom_freqpoly(breaks = seq(0, 20, 2), color = 'red') +
  scale_x_continuous(breaks = seq(0, 20, 2))
```


3.6

Ogiva (frequência acumulada)

```
sono %>%
ggplot(aes(x = sleep_total)) +
geom_step(stat = 'ecdf')
```


3.7

Ramos e folhas

```
sono$sleep_total %>%
  stem()
##
     The decimal point is at the |
##
##
      0 | 9
##
##
      2 | 79013589
     4 | 0423346
##
##
     6 | 23307
##
      8 | 03446779114456788
##
     10 | 01113346900135
##
     12 | 15555880578
##
     14 | 234456996889
     16 | 604
##
     18 | 01479
```

Exercícios

- 1. Construa um histograma da variável brainwt. Escolha o número de classes que você achar melhor. O que acontece com os valores NA?
- 2. Construa um *scatter plot* de horas de sono versus peso do cérebro. Você percebe alguma correlação entre estas variáveis?