Incorporating Object and People Information to Improve Video Activity Recognition

Niranjan Viladkar Under the guidance from

Dr. Parag Singla

Department of Computer Science, IIT Delhi

M.Tech Project Presentation – June, 2014

Outline

- Problem Definition
- Background
 - Video recognizer, Object Detector, MLN
- Approach
 - MLN Model details
- Results

Problem Definition

- Existing Frameworks
 - Pure HoGHoF features (Laptev, CVPR'08)
 - HoGHoF + Scene context (Laptev, CVPR'09)
 - HoGHoF + Object detection(Mooney, ECAI'12)
- Problem with low level features
 - Partial or full occlusion
 - Noisy training data
- To capture semantic relationship between Activity and object & people information.

Background – Data set

- Hollywood2 data set
- 823 Training and 884 Testing video clips
- 12 Activity Classes
- Labeled data

Background - Video Features

HoGHoF features at STIPs.

Background - Video Features

- HoGHoF features at STIPs.
- Describe a video clip as bag-of-features.
 - Cluster all HoGHoF feature descriptors using kmeans.
 - Represent clip as a histogram over these clusters
- Train a SVM classifier
 - Supervised Dataset is pre labeled
 - Output For each clip, confidence value for all 12 activities.

Background – Object Detection

- Using Discriminatively Trained Deformable Part Models (Felzenszwalb - PAMI'10)
 - Pre-trained object detector for 20 objects
 - aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, potted plant, person, sheep, sofa, train, tv monitor
- Application to videos
- Output Confidence of object being present in selected frames from the video

Output of Object Detector

• FRAME 1 car -0.181786

•

•

•

FRAME 151
 person 0.579786
 person -0.593087

Background – People Information

- Object "Person"
- Average number of persons per frame

Background - Inference Using MLN

- Undirected Graphical models to represent the joint distribution of a set of random variables.
- Graph has a node for each variable, and the model has a potential function for each clique in the graph.

$$P(X = x) = \frac{1}{Z} \prod_{k} \phi_k(x_{\{k\}})$$
 $Z = \sum_{x \in X} \prod_{k} \phi_k(x_{\{k\}})$

$$P(X = x) = \frac{1}{Z} exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$

Background - Inference Using MLN

- Framework to form Markov networks
- MLN :- A set of pairs (F_i, w_i) and set of constants C.
- F_i :- formula in first-order logic
- w_i :- real valued weight
- Contains binary node for each possible grounding.

Background - Inference Using MLN

Probability calculated as :-

$$P(X=x) = \frac{1}{Z} \exp\left(\sum_{i=1}^{F} w_i n_i(x)\right)$$

- F: number of formulas in the MLN.
- $n_i(x)$:- is the number of true groundings.

Approach

- MLN Evidence
 - Partitioning confidence into bins
 - Threshold for object detection confidence
 - True labels from data set

```
HasActivity("actioncliptrain00001","SitUp")
ActivityConf_N2_TO_N15("actioncliptrain00001","AnswerPhone")
ActivityConf_N15_TO_N1("actioncliptrain00001","DriveCar")
ObjPresent("actioncliptrain00001","person")
NumPersons_1_TO_15("actioncliptrain00001")
```

MLN Query made on "HasActivity"

Approach

- MLN Rules
 - Positive and Negative

```
ActivityConf_P1_TO_P15(c,a) => HasActivity(c,a)
ActivityConf_P15_TO_P2(c,a) => HasActivity(c,a)
ObjPresent(c,"chair") => HasActivity(c,"Eat")
ObjPresent(c,"car") => HasActivity(c,"DriveCar")
ObjPresent(c,"bus") => HasActivity(c,"StandUp")
ObjPresent(c,"car") => HasActivity(c,"HandShake")
NumPersons_1_TO_15(c) => HasActivity(c,+a)
NumPersons_15_TO_2(c) => HasActivity(c,+a)
```

Approach

- TF-IDF features
 - Appending 10 tf-idf features one per object
 - And 1 feature corresponding to number of people

Results

• MLN Experiments

Activity Class	SVM	MLN			
		Only	Action	Action	Action
		Action	&	&	Object
			Object	People	&
					People
AnswerPhone	11.36%	10.64%	11.11%	11.67%	12.73%
DriveCar	66.96%	66.06%	66.67%	71.57%	68.18%
Eat	45.45%	32.50%	40.00%	35.00%	40.00%
FightPerson	57.63%	56.90%	54.84%	61.54%	62.26%
GetOutCar	17.86%	8.00%	13.79%	17.39%	14.29%
HandShake	25.93%	21.43%	25.00%	30.77%	41.67%
HugPerson	15.15%	15.79%	13.79%	14.29%	16.13%
Kiss	18.18%	18.07%	19.78%	19.79%	20.65%
Run	38.78%	36.42%	41.48%	40.32%	42.15%
SitDown	40.96%	38.10%	35.56%	34.78%	39.56%
SitUp	5.26%	0.00%	5.26%	0.00%	12.50%
StandUp	35.20%	38.46%	36.29%	38.26%	36.24%
AAP	31.56%	28.53%	30.30%	31.28%	33.86%

Results

• TF-IDF Experiments

Activity Class	AP - Basic	AP - Object
	SVM	and People
AnswerPhone	11.36%	16.67%
DriveCar	66.96%	70.09%
Eat	45.45%	50.00%
FightPerson	57.63%	66.04%
GetOutCar	17.86%	12.12%
HandShake	25.93%	31.82%
HugPerson	15.15%	17.86%
Kiss	18.18%	20.69%
Run	38.78%	39.35%
SitDown	40.96%	42.05%
SitUp	5.26%	8.70%
StandUp	35.20%	37.88%
Average AP	31.56%	34.44%

References

- Actions in Context by M. Marszalek, I. Laptev and C. Schmid; in Proc. CVPR-2009
- Improving Video Activity Recognition using Object Recognition and Text Mining by Tanvi Motwani and Raymond J. Mooney, ECAI-2012
- Markov Logic by Pedro Domingos, Parag Singla, et.al., Probabilistic Inductive Logic Programming (pp. 92-117), 2008.
 New York: Springer.
- Learning realistic human actions from movies by Laptev et.al.,
 Conference on Computer Vision & Pattern Recognition, Jun 2008.
- Object Detection with Discriminatively Trained Part-Based Models by Pedro F. Felzenszwalb, et.al., PAMI-2010