

Languages and Machines

L10: Decidability (Part I)

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

 How to distinguish between the computable and non-computable?

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:
 - ► Turing machines (TMs)
 - Combinatory logic
 - ► The λ -calculus (functional programming!)

Then 'computable' would mean computable by, e.g., a TM.

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:
 - Turing machines (TMs)
 - Combinatory logic
 - The λ-calculus (functional programming!)

Then 'computable' would mean computable by, e.g., a TM.

 These formalisms are all equivalent — they embody the same notion of effective computation, from different angles (<u>Effective</u> as in: complete, mechanical, deterministic)

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:
 - Turing machines (TMs)
 - Combinatory logic
 - ► The λ -calculus (functional programming!)

Then 'computable' would mean computable by, e.g., a TM.

- These formalisms are all equivalent they embody the same notion of effective computation, from different angles (<u>Effective</u> as in: complete, mechanical, deterministic)
- Deterministic TMs are arguably closer to actual computers than the other formalisms

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- Church-Turing's thesis: computability is not just TMs, nor Java, nor the λ-calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- Church-Turing's thesis: computability is not just TMs, nor Java, nor the λ -calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)
- TMs were a key step towards acceptance of the Church-Turing's thesis: they were the first readily programmable model
- Of course TMs do not address all possible aspects of computation (say,

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- Church-Turing's thesis: computability is not just TMs, nor Java, nor the λ -calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)
- TMs were a key step towards acceptance of the Church-Turing's thesis: they were the first readily programmable model
- Of course TMs do not address all possible aspects of computation (say, interactivity or randomness)

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- Church-Turing's thesis: computability is not just TMs, nor Java, nor the λ -calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)
- TMs were a key step towards acceptance of the Church-Turing's thesis: they were the first readily programmable model
- Of course TMs do not address all possible aspects of computation (say, interactivity or randomness) but they do capture a robust notion of effective computability

Universality

• Programs as data:

TMs (but also all other models) are powerful enough that programs can be written to read/manipulate other programs (suitably encoded as data)

- Think: Compilers and interpreters

Universality

• Programs as data:

TMs (but also all other models) are powerful enough that programs can be written to read/manipulate other programs (suitably encoded as data)

- Think: Compilers and interpreters
- TMs can interpret input strings as descriptions of other TMs (see next lecture!)
- A universal machine U is constructed to take an encoded description of another machine M and a string x as input.
 U can perform a step-by-step simulation of M on input x
- This is computers as we know them today!

Self-Reference

- A consequence of universality, and key to the discovery of uncomputable problems
- Observation: there are uncountably many decision problems but countably many TMs
- Extremely powerful: Gödel's incompleteness theorem, whose proof exploits self-reference (Idea: Construct the provable sentence "I am not provable")

Some Terminology

Recall: A TM is **always terminating** (or **total**) if it halts on (accepts or rejects) all inputs

A language (set of strings) L is

- recursive
 - if L = L(M) for some always terminating TM M
- recursively enumerable (r.e.) if L = L(M) for some TM M

Some Terminology

Recall: A TM is **always terminating** (or **total**) if it halts on (accepts or rejects) all inputs

A language (set of strings) L is

- recursive
 - if L = L(M) for some always terminating TM M
- recursively enumerable (r.e.) if L = L(M) for some TM M

Alternatively, let P be a **property** of strings.

- P is decidable
 if the set of all strings having P is recursive: there is a total TM
 that
 accepts strings that have P and rejects those that don't
 - accepts strings that have P and rejects those that don't
- P is semi-decidable
 if the set of strings having P is r.e.: there is a TM that accepts x if x has P and rejects or loops if not

Some Terminology

Recursive and **recursively enumerable** are best applied to sets, while **decidable** and **semi-decidable** to properties

- Property P is decidable \Leftrightarrow Set $\{x \mid P(x)\}$ is recursive
- Set A is recursive \Leftrightarrow " $x \in A$ " is decidable

Similarly:

- Property P is semi-decidable \Leftrightarrow Set $\{x \mid P(x)\}$ is r.e.
- Set A is r.e. \Leftrightarrow " $x \in A$ " is semi-decidable

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

Decision problems

A question that expects an answer 'yes' or 'no', depending on some given **instance** (positive or negative).

We would like to have procedures (programs, TMs) to answer correctly this question in all cases.

Decision problems

A question that expects an answer 'yes' or 'no', depending on some given **instance** (positive or negative).

We would like to have procedures (programs, TMs) to answer correctly this question in all cases.

- 1. Given a graph, is there a path between two of its nodes?
- 2. Is a natural n the difference between two prime numbers?
- 3. Given a CFG G and a string w, do we have $w \in L(G)$?
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. Given a program *P*, does the call of *P* with input *I* terminate?

Decidable and semi-decidable problems

A problem is

- decidable if there is a procedure (a program or TM) able to answer the question correctly in all cases
- semi-decidable if there is a procedure that
 - for every positive instance terminates with answer 'yes'
 - for every negative instance terminates with answer 'no' or loops

- 1. Given a graph, is there a path between two of its nodes?
- 2. Is a natural n the difference between two prime numbers?
- 3. Given a CFG G and a string w, do we have $w \in L(G)$?
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. The halting problem:
 Given a program P, does the call of P with input I terminate?

- Given a graph, is there a path between two of its nodes? (decidable)
- 2. Is a natural n the difference between two prime numbers?
- 3. Given a CFG G and a string w, do we have $w \in L(G)$? (decidable)
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. The halting problem:
 Given a program P, does the call of P with input I terminate?

- Given a graph, is there a path between two of its nodes? (decidable)
- 2. Is a natural *n* the difference between two prime numbers? (semi-decidable)
- 3. Given a CFG G and a string w, do we have $w \in L(G)$? (decidable)
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. The halting problem:
 Given a program P, does the call of P with input I terminate?

- Given a graph, is there a path between two of its nodes? (decidable)
- 2. Is a natural *n* the difference between two prime numbers? (semi-decidable)
- 3. Given a CFG G and a string w, do we have $w \in L(G)$? (decidable)
- 4. Given a CFG G, does L(G) contain a palindrome? (not decidable)
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$? (not decidable)
- 6. The halting problem: Given a program P, does the call of P with input I terminate? (not decidable)

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

The halting problem for TMs (1/3)

Theorem

The halting problem for TMs is undecidable.

Idea for a proof by contradiction.

1. Assume there is a TM *H* that solves the halting problem.

A string is accepted by H if

- ▶ the input consists of two strings, R(M) and w. R(M) is the **representation** of a TM M, and w is the input to M
- ightharpoonup the computation of M with input w halts.

Otherwise, *H* rejects the input.

The halting problem for TMs (1/3)

Theorem

The halting problem for TMs is undecidable.

Idea for a proof by contradiction.

1. Assume there is a TM H that solves the halting problem.

A string is accepted by H if

- ▶ the input consists of two strings, R(M) and w. R(M) is the **representation** of a TM M, and w is the input to M
- ightharpoonup the computation of M with input w halts.

Otherwise, H rejects the input.

Graphically:

The halting problem for TMs (2/3)

2. Modify H to build another TM, called K: the computations of K are the same as H, but K loops indefinitely whenever H terminates in an accepting state, i.e., whenever M halts on w.

The halting problem for TMs (2/3)

- 2. Modify H to build another TM, called K: the computations of K are the same as H, but K loops indefinitely whenever H terminates in an accepting state, i.e., whenever M halts on w.
- 3. Combine K with a "copy machine" to build another TM, called D, with D(M) = K(M, M), as follows:

If the call D(M) terminates, then the call M(M) won't terminate

The halting problem for TMs (3/3)

4. The input to D may be the representation of any TM, even D itself. Adapting the diagram in the previous slide:

Thus, D(D) terminates iff D(D) doesn't terminate.

A contradiction, derived from the assumption that there is a machine ${\cal H}$ that solves the halting problem.

The halting problem, without input

A seemingly simpler problem, which is also undecidable.

Given a program P without input, is there a program Q that can decide whether or not P terminates?

- 1. Assume *Q* does indeed exist, and is an always terminating program with boolean output.
- 2. Hence, Q(P) terminates iff the call P terminates.
- 3. Define a "linker" L: a program that calls program P_i with input I. That is, $L(P_i, I) = P_i(I)$.
- 4. $L(P_i, I)$ is a program without input, for any P_i and I.
- 5. Thus, $Q(L(P_i, I))$ terminates iff the call $P_i(I)$ terminates
- 6. Define a program Q' such that $Q'(P_i, I) = Q(L(P_i, I))$
- 7. Q' would decide the halting problem—a contradiction

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

Problems and languages

As mentioned earlier:

- Languages can be recursive or recursively enumerable
- Decision problems can be decidable or semi-decidable

We can relate problems and languages:

- Given a decision problem P, we can define a language L_P that consists of its positive instances.
- We need a function encode that transforms problem instances into a suitable alphabet.
- This way, the decision problem P is reduced to the problem of constructing a TM that accepts the language L_P .

Taking Stock

- Effective computation and Church-Turing's thesis
- Universality and self-reference
- A language (set of strings) is recursive or recursively enumerable
- A property can be decidable or semi-decidable
- Decision problems
- Accepting a language is a decision problem; every decision problem corresponds to a language (via an encoding function)
- The halting problem is not decidable, even without input

Taking Stock

- Effective computation and Church-Turing's thesis
- Universality and self-reference
- A language (set of strings) is recursive or recursively enumerable
- A property can be decidable or semi-decidable
- Decision problems
- Accepting a language is a decision problem; every decision problem corresponds to a language (via an encoding function)
- The halting problem is not decidable, even without input

Next lecture:

- A Universal Turing machine
- Acceptance of the empty string (the blank tape problem)
- Undecidability results

A Suggestion

You Can't Prove Everything That's True

https://www.youtube.com/watch?v=HeQX2HjkcNo