Raport z KMeans

Stanisław Denkowski 305288

Etap pierwszy DANE

Mamy 9 następujących kategorii:

Chicken & Fish,
Salads,
Snacks & Sides,
Desserts,
Breakfast,
Coffee & Tea,
Smoothies & Shakes,
Beef & Pork,
Beverages

Nie wszystkie kolumny są potrzebne

Category	object
Item	object
Serving Size	object
Calories	int64
Calories from Fat	int64
Total Fat	float64
Total Fat (% Daily Value)	int64
Saturated Fat	float64
Saturated Fat (% Daily Value)	int64
Trans Fat	float64
Cholesterol	int64
Cholesterol (% Daily Value)	int64
Sodium	int64
Sodium (% Daily Value)	int64
Carbohydrates	int64
Carbohydrates (% Daily Value)	int64
Dietary Fiber	int64
Dietary Fiber (% Daily Value)	int64
Sugars	int64
Protein	int64
Vitamin A (% Daily Value)	int64
Vitamin C (% Daily Value)	int64
Calcium (% Daily Value)	int64
Iron (% Daily Value)	int64

Wartości liczbowe są ładnie reprezentowane, jedynie będziemy musieli je ewentualnie znormalizować. Category i Item nie jest istotne, a serving size wykorzystamy do przeliczenia danych na jedną jednostkę, niezależnie od jej rodzaju. Nie ma potrzeby doublować kolumny, jeśli podana jest

% i nieprocentowa wartość - procentowa jest zazwyczaj sensowniejsza. Dorośli powinni spoyżwać, przyjmijmy 2,250 kalorii dziennie - dzięki takiemu założeniu możemy wyznaczyć procentowe dzienne spożycie kalorii (pominiemy kalorie z tłuszczu). Pominiemy Trans Fat, bo on zawiera się już w tłuszczach. Przyjmiemy również 30 gramów cukrów jako, maksymalne zalecane dzienne spożycie. Dodatkowo zakładamy, że dzienne spożycie białka powinno być mniej więcej 51 gramów. Wszystkie te wartości są średnią z zalecanych wartości dla mężczyzn i kobiet.

Mamy zatem:

Calories (% Daily Value)	float64
Total Fat (% Daily Value)	float64
Saturated Fat (% Daily Value)	float64
Cholesterol (% Daily Value)	float64
Sodium (% Daily Value)	float64
Carbohydrates (% Daily Value)	float64
Dietary Fiber (% Daily Value)	float64
Sugars (% Daily Value)	float64
Protein (% Daily Value	float64
Vitamin A (% Daily Value)	float64
Vitamin C (% Daily Value)	float64
Calcium (% Daily Value)	float64
Iron (% Daily Value)	float64

W naszym przypadku, nie ma potrzeby centrować zbioru danych. Nie będziemy normalizować danych bardziej, niż przedstawienie wszystkich danych jako procent zalecanego dziennego spożycia.

Zadania

Wybrałem indeks Daviesa-Bouldina jako metrykę. Metryka ta reprezentuje "ścisłość/zbitość" (compactness) oraz "rozdzielność" (separablity) w jednej wartości - wybieramy środki tak aby zminimalizować maxa z sumy średniej odległości wierzchołków dwóch centrów, podzielonej przez odległość między tymi centrami. Może to powowdować problemy, gdy nasze obserwacje mają bardziej nieregularne kształty(np. podłużne), równolegle i niedaleko od siebie. Innym przypadkiem, mogłoby być np. duże skupisko kilku cech niedaleko siebie i drugie rzadsze jednej cechy daleko - jedno gęste skupisko może zostać jedną cechą, a drugie rzadkie rozdzielone na killka małych.

Przyjmuję k=6

Jak widać, niespodziewanie najlepsze wyniki otrzymujemy dla napisanego ręcznie losowania z rozkładem jednostajnym, natępnie jest zaimplementowany KMeans++, a na końcu zaimplementowany K-Random.

Niestety nie wydaje się, by funkcja osiągała globalne minimum w rozsądnym zakresie

Jeśli się doszukiwać, zdecydowałbym się na k=10, ponieważ wydaje się to być rozsądne minimum - do tego momentu funkcja wydaje się sensownie maleć, później oscyluje w okolicy, z drobną tendencją malejącą. Dodatkowo, jest to liczba zbliżona do liczby obserwacji.

Właściwe KMeans

Takie jest rozłożenie w obserwacji w klastrze:

- 7: 59
- 2: 56
- 4: 45
- 6: 16
- 1: 6
- 9: 6
- 0: 4
- 5: 1
- 3: 1

Jak widać, jest spora rozbieżność - 5 klastrów zawiera zdecydowaną większość obserwacji, reszta po prostu uzupełnia tak by zminimalizować score. Nie ma to większego sensu dla człowieka.

Clusters

Jak widać centra są w miarę nieźle dopasowane, do odpowiadających im klastrom. Jeśli chodzi o klastry, gdyby się bardzo doszukiwać, dałoby się znaleźć sensowne dopasowanie, jednak bez porównania z kategoriami jest to trudne.

Categories

Jak widać, tak dobrane klastry nie mają praktycznie żadnego pokrycia z rzeczywistymi kategoriami. Mam nadzieję, że nie wynika to zmojego błędu.