

普通地质学

资源与地球科学学院

主讲: 郭英海

E-mail: gyhai@163.com

guoyh@cumt.edu.cn

第十六章 风的地质作用

- 概述
- 风的地质作用
- ・荒漠与黄土
- 大气污染与风暴灾害

第十六章 风的地质作用

- 概述
- 风的地质作用
- ・荒漠与黄土
- 大气污染与风暴灾害

第一节 概述-大气圈

地球的最外大气圈是由气体和悬浮物组成的复杂的流体

系统。它由于地球的引力作用,在地球周围集聚的一个气

体圈层,又称地球的 大气。

人类的活动主要在 大气圈底部的所谓下垫 面上进行,所以大气圈 是地球系统的一个子系 统,是人类生存环境的 重要组成部分。

一、大气的组成

地球大气圈的总质量约5×10¹⁸ kg(5万万亿吨),只占地球总量的0.0001%左右,其组成极为复杂。自然状态下,大气由干燥清洁的空气、水蒸气和浮微粒三部分组成。90千米以下低层大气中,干洁空气的组成基本是不变的(见下表)。

大气的组成

气体	容积(%)	分子量	气体	容积(%)	分子量
氮(N ₂)	78.09	28.016	氖(Ne)	0.0018	20.183
氧(O ₂)	20.94	32.000	氦(He)	0.0005	4.003
氩(Ar)	0.93	39.994	氪(Kr)	0.0001	83.700
二氧化碳 (CO ₂)	0.03	44.000	氢(H ₂)	0.0005	2.016
臭氧(O ₃)	0.00001	48.000	氙(Xe)	0.00008	131.300

一、大气的组成

地球大气圈主要成分 是氮(N₂)、氧(O₂)和氩 (Ar), 它们占干洁空气总 容积的78.09%、20.95% 和0.93%,合计占干洁空 气总容积的99.9%, 其它 还有少量的二氧化碳、氢、 氖、氪、氙、臭氧等, 总 和不超过0.04%。

二、大气圈的结构

大气圈是环绕地球最外层的气体圈层,它的密度随高度的增加而减小,越向上空气越稀薄,并逐渐转化为宇宙空间。大气上界的具体数字还难以确定,根据人造卫星所得的资料,在2000~3000千米的高空,还有稀薄的空气痕迹;在16000千米高空仍存在更稀薄的气体或基本粒子。

大气在垂直方向上的温度、组成与物质也是不均匀的。根据大气温度垂直分布的特点,在结构上可将大气圈分为对流层、平流层、中间层、暖层和逸散层五个气层。

二、大气圈的结构

1、对流层

厚度平均11-13km,赤 道17-18km,两极8-9km。

质量约占大气圈质量的 75%。

气温从下向上是降温的大气降温率 6.5° C/km,对流层顶约一 83° C。

大气运动:强烈的对流。

成分:含水蒸气、尘埃。

气象现象:风、霜、雨、

雪、雹、雾等。

二、大气圈的结构

2、平流层

高度: 从对流层顶到55km。

质量: 几乎占大气圈质量的25

%。

气温:从下向上是升温的,到

平流层的顶温度升到00C。

大气运动:水平运动。

成分: 几乎不含水蒸气、尘埃,

存在数层臭氧层。

无天气现象。

二、大气圈的结构

2、平流层

平流层中臭氧集中,太阳辐射光中紫外部分(<290nm) 几乎全部被吸收,因此温度较高。高度40千米。

二、大气圈的结构

3、中间层

高度: 从平流层顶 到80-90km。

气温:从下向上是降温的,到中间层的顶温度降到-800C。

大气运动:对流运 动。

存在电离层(D), 反射无线电波。

二、大气圈的结构

4、暖层

高度: 从中间层顶到 800km。

气温: 从下向上迅速升温, 到300km高空, 温度达1000℃。

存在多层的电离层(E、F、G),也称电离层。可反射无线电短波,并可使之围绕地球折射若干次。

二、大气圈的结构

5、散逸层

高度: 从暖层顶到外层 空间。

物质多以原子、离子状态存在。是地球物质向宇宙空间扩散的部位,由于大气高度稀薄、地球引力场的束缚大大减弱,大气质点不断向星际空间逃逸。

但其边界在哪里,尚不 能定论,实际上外层是大 气圈向星际空间的过渡。

三、大气圈的物质转换

三、大气圈的物质转换

大气圈与水圈的交换

三、大气圈的物质转换

大气圈是氮、氧、碳、水等物质的重要转换场所

大气圈内部的物质交换

三、大气圈的物质转换

大气圈(自然界)中氧的转换与循环

大气是地球上生 命物质的源泉。通过 生物的光合作用.进 行氧和二氧化碳的物 质循环,并维持着生 物的生命活动,没有 大气就没有生物。没 有生物也就没有今日 的精彩世界。

三、大气圈的物质转换

大气圈中二氧化碳的转换与循环

Warm air cooling and descending.

COOLER

(High)

Cooler air over water

moving toward land. "SEA BREEZE"

Air heated over land

and rising.

三、大气圈的物质转换

DAY

大气圈(自然界)中水 蒸气的转换与循环

地球表面的水,通过蒸发进入大气,水汽在大气中凝结以降水落到地表。水循环过程往复不止,使地球上始终有水存在、也使自然界充满生机。

三、大气圈的物质转换

大气圈(自然界)中硫的转换与循环

四、大气的运动与气候变化

大气层保护着地球的"体温",使地表的热量不易散失,同时通过大气的流动和热量交换,使地表的温度得到调节。

1、大气运动的动力

大气运动的动力:

气压——是指单位面积上所承受的空气柱的重

量。单位一帕斯卡(Pa)。

气压梯度——单位距离内的气压变化值。

四、大气的运动与气候变化

2、科里奥利力

科里奥利力(Coriolis force),简称为科氏力,是对 旋转体系中进行直线运动的质 点由于惯性相对于旋转体系产 生的直线运动的偏移的一种描 述。科里奥利力来自于物体运 动所具有的惯性。

科里奥利效应在日常生活 中最重大意义,是同旋转着的 地球有关。

四、大气的运动与气候变化

2、科里奥利力

地球表面赤道上的一个点,24小时内划一个大圆圈,呈快速地运动。如从赤道出发,越向北(或向南)走,那么地面的一个点在一天之内划出的圆圈就越小,运动得就越慢。

四、大气的运动与气候变化

3、信风的形成

赤道附近的信风在北半球是EN方向,在南半球是 ES方向。

赤道附近日照强烈, 空气受热上升,引起赤道两 边的空气向赤道流动。但受 科里奥利力而偏离SN方向。

科里奥力效应指水体 运动的方向在北半球恒向偏 前进方向的右侧、在南半球 恒向偏前进方向的左侧。

四、大气的运动与气候变化

4、大气运动的形式

大气运动的形式:大气环流——是指大气大范围的运动状态。

表现为不同时间尺度和空间尺

度的大气周而复始运动特点。

- (1) 一是在各半球形成三个沿经向的环流圈,即哈得莱环流圈、费雷尔环流圈、极地环流圈。
- (2) 二是在各半球形成三个沿纬向的风向带,即信风带、盛行西风带、极地东风带。

产生在西太平洋洋面之上的热带气旋,构成了东亚季风,可以大规模把水分快速送上东亚大陆,对我国农业生产密切相关。

四、大气的运动与气候变化

在海洋中,定向风是推动长驱万里的洋流运动的动力之一

四、大气的运动与气候变化

5、天气与天气变化

天气 是指瞬时或一定时段内风、云、降水、温度、湿度、气压等气象要素的综合状况。是指短时间的内的气象要素的综合状况。

一个地方的天气变化,是由大气中一个个移 动、大小不同的天气系统所引起的。

天气系统 是指显示大气中天气变化及其分布的独立系统,天气系统的运动形式大都呈漩涡 状或波状,如气旋、反气旋、锋、高空槽、脊等。

四、大气的运动与气候变化

5、天气与天气变化

气团 在一定范围内相对 比较均匀的大块空气。包括暖 气团和冷气团。

锋 不同性质气团的交界 区,包括暖锋和冷锋;脊等。

天气变化 是不同气团相 互作用的结果,或暖锋和冷锋 的移动。如:在夏天在暖气团 的控制下,天气闷热;在冬天, 冷气团侵入,天气寒冷风大。 锋面附近天气多变。

四、大气的运动与气候变化

6、气候及其变迁

(1) 气候

是指一个地区多年平均天气状况的综合。是气候 系统的全部成分在任一特定时段内的平均统计特征。

气候系统包括大气圈、水圈、岩石圈、冰雪圈、 生物圈中与气候有关的物理的、化学的和生物化学的 运动变化过程。

因地球纬度高低、地面状况的差异,地球上不同地区的气候各具有特色。并分为热带(南、北回归线之间)、亚热带(25°-35°)、温带(35°-65°)、寒带(60°-极区)四类气候带。

四、大气的运动与气候变化

6、气候及其变迁

(2) 地质历史时期的气候变迁

近百年来气候变化

① 冰期与间冰期

冰期:就是地球上气候寒冷的时期。

间冰期:就是地球上气候温暖的时期

在地质历史时期: 冰期短,间冰期长, 前者约1/10的时间

四、大气的运动与气候变化

6、气候及其变迁

(2) 地质历史时期的 气候变迁

地质历史时期的气候和气候带是变化的。地质和气候带是变化的。地质历史上曾出现三次大冰期(震旦纪、石炭一二叠纪、第四纪),并影响全球气温的大幅度升降、古气候和气候带的变化。

- 四、大气的运动与气候变化
 - 6、气候及其变迁
 - (2) 地质历史时期的气候变迁
 - ② 气候变迁的原因

太阳活动:黑子活动、磁暴

陨石撞击:激起粉尘

地球轨道要素: 黄赤交角、偏心率、岁差

人类活动:森林砍伐、排放二氧化碳等

第十六章 风的地质作用

- 概述
- 风的地质作用
- ・荒漠与黄土
- 大气污染与风暴灾害

一、风的地质作用类型

大气的水平运动产生风。由于地表气温、气压不均衡,大气总是由高气压流向低气压。在多雨的潮湿地区,因地表植被繁茂,风对地表的岩石破坏作用不显著;在干旱半干旱地区,植被稀少、地表日温差大、风很盛行,对地表岩石的破坏作用影响极大。

风是一种机械动力,风的地质作用纯属机械性质的 作用。

大气的地质作用包括风化作用、风蚀作用、搬运作用、沉积作用等。

二、风蚀作用

1、剥蚀作用

指风以及河流、地下水、海(湖)、冰川中的水体在运动 状态下对地表或地下岩石产生 的破坏,并将破坏形成的产物 带走的作用过程,称剥蚀作用。

如特殊的风蚀地貌;河岸 的岩石被流水冲刷导致河岸后 退;石灰岩被地下水溶解形成 喀斯特地貌等。

美国西部风蚀地貌(刘焕杰摄,1989)

二、风蚀作用

2、风的剥蚀作用(风蚀作用)

不同因素引起的剥蚀作用具有不同的特点。

风对地表的破坏是一种纯机械侵蚀作用。称为风蚀作用,包括吹蚀(吹扬)作用与磨蚀作用。

风蚀作用的总趋势是使地面 降低、直到地下水出露为止。形 成风蚀蘑菇石、风蚀谷、风蚀城、 风蚀穴、风蚀柱等各种风蚀地形。

美国西部风蚀地貌(刘焕杰摄,1989)

二、风蚀作用

3、吹蚀作用与磨蚀作用

风可以把地表松散的 砂粒或尘土吹扬起来、离 开原地,即所谓的吹蚀(吹 扬)作用:也可以夹带的砂 石磨蚀地表的岩石, 从而 不断地破坏岩石圈表层, 在地表形成特殊的风蚀地 貌。也即磨蚀作用。

美国西部风蚀地貌(刘焕杰摄, 1989)

美国西部风蚀地貌(刘焕杰摄, 1989)

美国西部风蚀地貌(刘焕杰摄, 1989)

三、风的搬运作用

悬浮搬运 跳跃搬运 蠕动搬运

三、风的搬运作用

风化、剥蚀作用的产物除少部分 残留于原地之外,大部分由水、风、 冰川等介质搬运到沉积盆地中去。

风的搬运作用属机械搬运作用,主要搬运风化产物中的碎屑物质。

风的搬运能力取决于风速的大小。

沙漠地区,物理风化强烈,不断产生大量碎屑物质, 使得经过这里的风总能把砂和尘土带走;大块石头搬运 不动,被留在原地,形成戈壁滩。

Figure 16.9

Dust Storm in the Blue Nile area—Sudan, Africa results when cool air descends and moves laterally over the surface as a density current. As the dense, cool air moves across the surface it sweeps up dust and sand by its turbulent flow creating a dust storm or "Habools."

四、风的沉积作用

风化、剥蚀产物在搬运过程中, 因搬运介质的能量减弱或因物理化学 条件的改变以及生物作用,可使被搬 运物在适当的环境中堆积下来,称为 沉积作用。

风的搬运物因风力减弱或受阻而 堆积。

风积物的特征:砂级、分选好、 含不稳定矿物、大规模交错层理

堆积方式: 沉降堆积、遇阻堆积

风积地貌:砂堆、砂丘

四、风的沉积作用

普通地质学

第十六章 风的地质作用

- 概述
- 风的地质作用
- 荒漠与黄土
- 大气污染与风暴灾害

一、荒漠

1 荒漠

气候干旱、雨量稀少、年降雨量小于250mm或蒸发量 大于降雨量的地区

2 荒漠的种类

岩漠、砾漠、沙漠、泥漠 防止荒漠化和治理荒漠

一、荒漠

风蚀地貌——戈壁 青海柴达木欧龙布鲁克

风的剥蚀作用 —— 岩漠 青海柴达木南八仙

二、沙漠

沙漠是指地面完全被沙所<u>覆盖</u>、植物非常稀少、雨水稀少、空气干燥的荒芜地区。

在干旱半干旱地区,较小的砂粒随着风力的强弱变化起落,跳跃式 前进,形成顺风向移动的沙丘,移动的沙丘最终形成沙漠。

第三节 沙漠与黄土

二、黄土

干旱、半干旱地区一种特殊的沉积物。黄土是指在地质时代中的第四纪期间,以风力搬运的黄色粉土沉积物。

它是原生的、成厚层连续分布,掩覆在低分水岭、山坡、 丘陵,常与基岩不整合接触,无层理,常含有古土壤层及钙 质结核层,垂直节理发育,常形成陡壁。也有次生黄土。

特征:粉砂为主,含细砂和粘土,矿物为石英、长石和碳酸盐矿物

分布:中纬度温暖地带。

成因:风成

第三节 沙漠与黄土

第三节 沙漠与黄土

二、黄土

╓╬╶╫╸╫╸╇╸┈

大气圈是地球的外圈之一,是人类生存环境的重要一环

气候变化与人类将严重影响人类生存环境

风的地质作用从多方面改变我们的生存环境

大气污染改变大气圈的成分、气候的特征,对人类生存存在威胁

SINGUES SEED!

