[2018–2019] группа: 9-3

Про квадратный трехчлен

1. Известно, что корни уравнения $x^2 + px + q = 0$ — целые числа, а p и q — простые числа. Найдите p и q.

2. На рисунке изображён график функции $y = x^2 + ax + b$. Известно, что прямая AB перпендикулярна прямой y = x. Найдите длину отрезка OC.

- **3.** Дан многочлен $P(t)=t^2-4t$. Доказать, что при любых $x\geqslant 1$ и $y\geqslant 1$ выполняется $P(x^2+y^2)\geqslant P(2xy)$.
- **4.** Квадратный трёхчлен $f(x) = ax^2 + bx + c$ принимает в точках 1/a и c значения разных знаков. Докажите, что корни трёхчлена f(x) имеют разные знаки.
- **5.** Сто последовательных чётных чисел взяли в качестве коэффициентов a_k и b_k в 50 квадратных уравнениях вида $x^2 + a_k x + b_k = 0$. Могут ли все эти уравнения иметь целые корни?
- 6. Приведённые квадратные трёх
члены f(x) и g(x) таковы, что уравнения

$$f(g(x)) = 0 \quad \text{if} \quad g(f(x)) = 0$$

не имеют вещественных корней. Докажите, что хотя бы одно из уравнений f(f(x)) = 0 и g(g(x)) = 0 тоже не имеет вещественных корней.

7. Дано множество различных чисел $a_1, \ldots, a_n, b_1, \ldots, b_n, n > 2018$. Могло ли так оказаться, что множество корней уравнений $x^2 - a_i x + b_i = 0$ (для всех $i = 1, 2, \ldots, n$) совпадает с исходным множеством?