Wymiana kluczy ECDH i własne parametry krzywych eliptycznych.

Mikołaj Koszowski 274392 Hubert Nowakowski 274415

Zad 5. wariant 4

Kod źródłowy: github.com/Fisher16/KiBD

Stworzyliśmy notebook pokazujący jak poprawnie dobrać parametry systemu szyfrowania z kluczem publicznym wykorzystującym krzywe eliptyczne. Istotnym warunkiem jest brak punktów osobliwych (eng. singular point), co dla krzywych postaci:

$$v^2 = x^3 + ax + b$$

Sprowadza się do warunku:

$$4a^3+27b^2\neq 0$$

Ten i inne warunki sprawia, że możemy sprowadzić algebrę na krzywej do algebry ciała skończonego szeroko wykorzystywanej w kryptografii. Zaletą kryptografii krzywych eliptycznych jest większa trudność odwrócenia mnożenia w tej przestrzeni w porównaniu z odwróceniem funkcji jednokierunkowych stosowanych w innych typach kryptografii klucza publicznego. Sprawia to że dla danego poziomu bezpieczeństwa jest możliwe używanie krótszego klucza, a przewaga ta będzie tylko rosła z czasem, co widać w załączonej tabeli.

NIST Recommended Security Bit Level:

Security Bit Level	RSA	ECC	ratio RSA:ECC
80	1024	160	6
112	2048	224	9
128	3072	256	12
192	7680	384	20
256	15360	512	30

Artykuł opisujący podatności:

Degenerate Fault Attacks on Elliptic Curve Parameters in OpenSSL: https://eprint.iacr.org/2019/400.pdf

Źródła:

https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/https://mathworld.wolfram.com/SingularPoint.html

RSA and ECC: A Comparative Analysis https://www.ripublication.com/ijaer17/ijaerv12n19 140.pdf