Problem 1

若 n 是正整数,A, B, $C\in\mathbb{C}^{n\times n}$ 是非奇异矩阵,并且 ACB=2A+3B,证明:BCA=2A+3B.

Problem 2

已知 n 是大于 1 的整数,定义 $f: \mathbb{R}^{n \times n}$ 如下:

$$f(A) = \max_{1 \leq i,j \leq n} |a_{i,j}|.$$

证明: $f \in \mathbb{R}^{n \times n}$ 上的相容范数,但不是相容范数.

Problem 3

若
$$A=egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$$
,求 $\mathbb{C}^{2 imes 2}$ 上的线性变换 $f(X)=AXA$ 在基底

$$E_1=egin{bmatrix}1&0\0&0\end{bmatrix}$$
 , $E_2=egin{bmatrix}0&0\1&0\end{bmatrix}$, $E_3=egin{bmatrix}0&1\0&0\end{bmatrix}$, $E_4=egin{bmatrix}0&0\0&1\end{bmatrix}$

下的表示矩阵.

Problem 4

求矩阵

$$A = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ -5 & 1 & 0 & -2 & 0 \ 1 & 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 0 & 0 \ 7 & 1 & 2 & 4 & 1 \end{bmatrix}$$

的 Jordan 标准型和极小多项式.

Problem 5

给定正整数 n 和 n 阶实方阵 A, 证明: $\operatorname{rank}(A^n) = \operatorname{rank}(A^{n+1})$.

Problem 6

给定正整数 n 和 n 阶实方阵 A,若对任意的 $x\in\mathbb{R}^n$ 都有 $x^TAx=0$,证明: $A^T=-A$.

Problem 7

给定大于 1 的正整数 n 和对称三对角矩阵 $A\in\mathbb{R}^{n\times n}$. 若 $a_{i,i+1}\neq 0$ 对 $i=2,3,\cdots,n$ 成立,证明: A 没有重特征值.

(注:三对角矩阵是满足当 |i-j|>1 时, $a_{i,j}=0$ 的矩阵)

Problem 8

给定正整数 n 及矩阵 $A,B,C\in\mathbb{C}^{n\times n}$,证明:关于 X 的矩阵方程 AXB=C 有解的充要条件是关于 Y 和 Z 的方程组 AY=ZB=C 有解.