Group Structure on the Universal Cover \widetilde{G} of a Connected Lie Group G

ATONU ROY CHOWDHURY

October 23, <u>2025</u>

Let G be a connected Lie group. Then it has a unique (upto diffeomorphism) (universal) simply connected covering manifold \widetilde{G} . The purpose of this note is to give a group structure on \widetilde{G} . First, let's recall the "universal property" of this covering $p:\widetilde{G}\to G$:

For any simply connected manifold M and a smooth map $f: M \to G$, suppose that for some $m_0 \in M$, we fix $g_0 \in p^{-1}(f(m_0))$. Then there is **unique** smooth map $\widetilde{f}: M \to \widetilde{G}$ such that $\widetilde{f}(m_0) = g_0$, and $p \circ \widetilde{f} = f$. In other words, the following diagram commutes:

This universal property will be our best friend in order to prove that \widetilde{G} can be given a Lie-group structure. We will use the following equivalent form of the universal property:

Let M be a simply connected manifold and $f: M \to G$ be a smooth map. Suppose there are two smooth maps $f_1, f_2: M \to \widetilde{G}$, such that $p \circ f_1 = p \circ f_2$, and $f_1(m_0) = f_2(m_0)$ for some $m_0 \in M$. Then $f_1 = f_2$.

This clearly follows from the **uniqueness** of \widetilde{f} , as we are fixing $f_1(m_0) = f_2(m_0)$. So both f_1 and f_2 fit in place of \widetilde{f} , and hence, they must be equal.

§1 Defining the binary operation

Consider the map

$$s: \widetilde{G} \times \widetilde{G} \to G$$

$$(\overline{g}, \overline{h}) \mapsto p(\overline{g}) p(\overline{h})^{-1}.$$
(1)

 $\widetilde{G} \times \widetilde{G}$ is simply connected, because $\pi_1\left(\widetilde{G} \times \widetilde{G}\right) = \pi_1\left(\widetilde{G}\right) \times \pi_1\left(\widetilde{G}\right) = \{1\}$. Let's fix some $\overline{e} \in p^{-1}(e)$ (this will be our identity element). Notice that

$$s(\overline{e}, \overline{e}) = p(\overline{e}) p(\overline{e})^{-1} = e.$$
(2)

Therefore, there exists a unique smooth map $\widetilde{s}:\widetilde{G}\times\widetilde{G}\to\widetilde{G}$ such that $\widetilde{s}(\overline{e},\overline{e})=\overline{e}$, and the following diagram commutes:

Then we define

$$\overline{h}^{-1} := \widetilde{s}\left(\overline{e}, \overline{h}\right),\tag{3}$$

$$\overline{g} \cdot \overline{h} := \widetilde{s} \left(\overline{g}, \overline{h}^{-1} \right). \tag{4}$$

We claim that this defines a group structure on \widetilde{G} . Clearly, the multiplication map and inversion maps are smooth as they are made out of smooth maps. Hence, it would prove that \widetilde{G} is a Lie group.

Lemma 1.1

For any $\overline{g}, \overline{h} \in \widetilde{G}$,

- (a) $\overline{e}^{-1} = \overline{e}$. (b) $\overline{e} \cdot \overline{e} = \overline{e}$. (c) $p(\overline{h}^{-1}) = p(\overline{h})^{-1}$.
- (d) $p(\overline{g} \cdot \overline{h}) = p(\overline{g}) p(\overline{h})$, i.e. $p: \widetilde{G} \to G$ is (going to be) a Lie group homomorphism (once we prove that \widetilde{G} is a Lie group).

$$\overline{e}^{-1} = \widetilde{s}(\overline{e}, \overline{e}) = \overline{e}. \tag{5}$$

(b)
$$\overline{e} \cdot \overline{e} = \widetilde{s} \left(\overline{e}, \overline{e}^{-1} \right) = \widetilde{s} \left(\overline{e}, \overline{e} \right) = \overline{e}. \tag{6}$$

(c) Using $p \circ \widetilde{s} = s$,

$$p\left(\overline{h}^{-1}\right) = p\left(\widetilde{s}\left(\overline{e},\overline{h}\right)\right) = s\left(\overline{e},\overline{h}\right) = p(\overline{e})p(\overline{h})^{-1} = p(\overline{h})^{-1}.$$
 (7)

(d) Using $p \circ \widetilde{s} = s$,

$$p\left(\overline{g}\cdot\overline{h}\right) = p\left(\widetilde{s}\left(\overline{g},\overline{h}^{-1}\right)\right) = s\left(\overline{g},\overline{h}^{-1}\right) = p(\overline{g})p\left(\overline{h}^{-1}\right)^{-1} = p\left(\overline{g}\right)p\left(\overline{h}\right). \tag{8}$$

Proposition 1.2

The operation defined in (4) is associative.

Proof. Consider the map

$$m: \widetilde{G} \times \widetilde{G} \times \widetilde{G} \to G$$

$$(\overline{g}, \overline{h}, \overline{k}) \mapsto p(\overline{g}) p(\overline{h}) p(\overline{k}).$$
(9)

Note that this is well-defined since the multiplication in G is associative.

$$\widetilde{G} \xrightarrow{p} G$$

$$m_1 \downarrow m_2 \qquad m$$

$$\widetilde{G} \times \widetilde{G} \times \widetilde{G}$$

$$(10)$$

where the maps m_1 and m_2 are defined as follows:

$$m_{1}: \widetilde{G} \times \widetilde{G} \times \widetilde{G} \to \widetilde{G}$$

$$(\overline{g}, \overline{h}, \overline{k}) \mapsto (\overline{g} \cdot \overline{h}) \cdot \overline{k}.$$

$$(11)$$

$$m_2: \widetilde{G} \times \widetilde{G} \times \widetilde{G} \to \widetilde{G}$$

$$(\overline{g}, \overline{h}, \overline{k}) \mapsto \overline{g} \cdot (\overline{h} \cdot \overline{k}).$$

$$(12)$$

We need to show that m_1 and m_2 are equal. Clearly, they agree on $(\overline{e}, \overline{e}, \overline{e})$, because by (b) of Lemma 1.1,

$$(\overline{e} \cdot \overline{e}) \cdot \overline{e} = \overline{e} \cdot \overline{e} = \overline{e};$$
$$\overline{e} \cdot (\overline{e} \cdot \overline{e}) = \overline{e} \cdot \overline{e} = \overline{e}.$$

Both m_1 and m_2 make (10) commutative, since by (d) of Lemma 1.1,

$$(p \circ m_{1}) (\overline{g}, \overline{h}, \overline{k}) = p ((\overline{g} \cdot \overline{h}) \cdot \overline{k})$$

$$= p (\overline{g} \cdot \overline{h}) p (\overline{k})$$

$$= p (\overline{g}) p (\overline{h}) p (\overline{k}) = m (\overline{g}, \overline{h}, \overline{k}).$$

$$(p \circ m_{2}) (\overline{g}, \overline{h}, \overline{k}) = p (\overline{g} \cdot (\overline{h} \cdot \overline{k}))$$

$$= p (\overline{g}) p ((\overline{h} \cdot \overline{k}))$$

$$= p (\overline{g}) p (\overline{h}) p (\overline{k}) = m (\overline{g}, \overline{h}, \overline{k}).$$

$$(13)$$

$$(14)$$

Since $\widetilde{G} \times \widetilde{G} \times \widetilde{G}$ is simply connected, by the uniqueness part of the universal property, $m_1 = m_2$, i.e. (4) is associative.

Proposition 1.3 \overline{e} is a two-sided identity.

Proof. Consider the map

$$\ell: \widetilde{G} \to \widetilde{G}$$

$$\overline{g} \mapsto \overline{e} \cdot \overline{g} = \widetilde{s} \left(\overline{e}, \overline{g}^{-1} \right).$$
(16)

We then have the following diagram:

$$\widetilde{G} \xrightarrow{p} G$$

$$id_{\widetilde{G}} \uparrow \downarrow \qquad p$$

$$\widetilde{G} \qquad (17)$$

Note that $\operatorname{id}_{\widetilde{G}}$ and ℓ agree on $\overline{e}.$ Furthermore,

$$(p \circ \ell)(\overline{g}) = p(\overline{e} \cdot \overline{g}) = p(\overline{e}) p(\overline{g}) = p(\overline{g}). \tag{18}$$

So $p \circ \mathrm{id}_{\widetilde{G}} = p \circ \ell$. Therefore, both ℓ and $\mathrm{id}_{\widetilde{G}}$ make (17) commutative. Hence, by the uniqueness parrt of the universal property, $\ell=\mathrm{id}_{\widetilde{G}},$ i.e. $\overline{e}\cdot\overline{g}=\overline{g}.$

Analogously, we can define

$$r: \widetilde{G} \to \widetilde{G}$$

$$\overline{g} \mapsto \overline{g} \cdot \overline{e} = \widetilde{s} \left(\overline{g}, \overline{e}^{-1} \right).$$
(19)

We then have the following diagram:

$$\widetilde{G} \xrightarrow{p} G$$

$$id_{\widetilde{G}} \uparrow r \qquad p$$

$$\widetilde{G} \qquad (20)$$

Note that $\operatorname{id}_{\widetilde{G}}$ and r agree on $\overline{e}.$ Furthermore,

$$(p \circ r) (\overline{g}) = p (\overline{g} \cdot \overline{e}) = p (\overline{g}) p (\overline{e}) = p (\overline{g}).$$

$$(21)$$

So $p \circ \mathrm{id}_{\widetilde{G}} = p \circ r$. Therefore, both r and $\mathrm{id}_{\widetilde{G}}$ make (20) commutative. Hence, by the uniqueness parrt of the universal property, $r = \mathrm{id}_{\widetilde{G}}$, i.e. $\overline{g} \cdot \overline{e} = \overline{g}$.

Proposition 1.4

The inverse defined on (3) is two-sided inverse.

Proof. Consider the maps

$$i_1: \widetilde{G} \to \widetilde{G}$$

$$\overline{g} \mapsto \overline{g} \cdot \overline{g}^{-1}.$$
(22)

$$\operatorname{const}_{\overline{e}} : \widetilde{G} \to \widetilde{G}$$

$$\overline{q} \mapsto \overline{e}. \tag{23}$$

$$const_e: \widetilde{G} \to G
\overline{g} \mapsto e.$$
(24)

We then have the following diagram:

$$\widetilde{G} \xrightarrow{p} G$$

$$\operatorname{const}_{\overline{e}} \qquad i_{1} \qquad \operatorname{const}_{e}$$

$$\widetilde{G} \qquad (25)$$

Note that $\operatorname{const}_{\overline{e}}$ and i_1 agree on \overline{e} . Furthermore,

$$(p \circ i_1)(\overline{g}) = p(\overline{g} \cdot \overline{g}^{-1}) = p(\overline{g}) p(\overline{g}^{-1}) = p(\overline{g}) p(\overline{g})^{-1} = e.$$
(26)

So $p \circ \operatorname{const}_{\overline{e}} = p \circ i_1$. Therefore, both i_1 and $\operatorname{const}_{\overline{e}}$ make (25) commutative. Hence, by the uniqueness parrt of the universal property, $i_1 = \operatorname{const}_{\overline{e}}$, i.e. $\overline{g} \cdot \overline{g}^{-1} = \overline{e}$.

Furthermore, consider the maps

$$i_2: \widetilde{G} \to \widetilde{G}$$

$$\overline{g} \mapsto \overline{g}^{-1} \cdot \overline{g}. \tag{27}$$

We then have the following diagram:

$$\widetilde{G} \xrightarrow{p} G$$

$$\operatorname{const}_{\overline{e}} \qquad i_{2} \qquad \operatorname{const}_{e}$$

$$\widetilde{G} \qquad (28)$$

Note that $\operatorname{const}_{\overline{e}}$ and i_1 agree on \overline{e} . Furthermore,

$$(p \circ i_1)(\overline{g}) = p(\overline{g}^{-1} \cdot \overline{g}) = p(\overline{g}^{-1})p(\overline{g}) = p(\overline{g})^{-1}p(\overline{g}) = e.$$
(29)

So $p \circ \operatorname{const}_{\overline{e}} = p \circ i_1$. Therefore, both i_2 and $\operatorname{const}_{\overline{e}}$ make (28) commutative. Hence, by the uniqueness parrt of the universal property, $i_2 = \operatorname{const}_{\overline{e}}$, i.e. $\overline{g}^{-1} \cdot \overline{g} = \overline{e}$.

By combining Proposition 1.2, Proposition 1.3 and Proposition 1.4, we finally conclude that

Theorem 1.5

 \widetilde{G} is a group with respect to the operations defined on (3) and (4).