Example 2

As shown in the figure, $\triangle ABC$ is a right triangle with $\angle C = 90^{\circ}.AC$ is the diameter of circle O. Circle O meets the hypotenuse AB at D. Draw the tangent through D to the circle to meet the leg BC at E. Prove: BE = EC. Solution:

Connect CD, EO. Since AC is the diameter, $\angle ADC = 90^\circ$. We also know that $\angle ACB = 90^\circ$ Let $\angle A = \alpha, \angle B = \angle ACD = \beta$. Then $\angle ODC = \angle OCD = \beta$

We also have $\angle ODC = \angle OEC = \beta$ (they all face the same arc OC). Thus $\angle ABC = \angle OEC = \beta$ and AB//OE. Since O is the midpoint of AC, E must be the

midpoint of BC. That is, BE = EC.