Contents

Communication Secrecy

- Introduction
- Stream ciphers
 - Perfect secrecy
 - One time pad (OTP)
 - Pseudorandom generators (PRG)
 - Semantic security for one-time keys
- Block ciphers
 - Pseudorandom functions and permitatios (PRFs, PRPs)
 - Modes of Operation
- Semantic security for many-time keys
- Summary

Introduction: providing confidentiality

- We'd like to provide confidential communication
 - Only the intended recipient(s) should be able to read the data

- Two types of encryption and decryption
 - Symmetric ciphers
 - Asymmetric ciphers

Symmetric Ciphers

• A cipher defined over (*K*, *M*, *C*) is a pair of "comp. eff." algorithms (*E*, *D*), where

E:
$$K \times M \rightarrow C$$

D: $K \times C \rightarrow M$

- s. t. for all k in K and m in M: D(k, E(k, m)) = m
- E is often randomized, D is always deterministic

Perfect Secrecy

- What is a "secure" cipher?
 - Shannon: Cipher text should reveal "no information" about the plain text
- A cipher (E, D) over (K, M, C) has perfect secrecy if for all m₀, m₁ ε M (|m₀|=|m₁|) and for all c ε C
 Pr [E(k, m₀) = c] = Pr [E(k, m₁) = c]
 where k ε K is randomly chosen
 - Given cipher text c, one cannot tell whether c is a cryptogram of m_0 or m_1

Adaptation of: Dan Boneh, Cryptography I, Stanford.

One Time Pad

- Vernam (1917)
 - $-M = C = K = \{0, 1\}^n$
 - $E(k,m) = k \oplus m$
 - $D(k, c) = k \oplus c$
- Features
 - Given a truly random key, OTP has *perfect secrecy*
 - Key has to be *random* and it must be used *only once*
 - Impractical: Shannon shows that perfect secrecy requires keys to be at least as long as the plain text

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Pseudo Random Generator

- Idea: Replace a "random" with a "pseudorandom" key $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$ where n >> s
- Pseudo Random Generator (PRG) is a function G
 that maps seed space to key space
 - Is "efficiently" computable by a deterministic algorithm
 - Its output (keys) "looks random"
- Stream ciphers
 - $E(k, m) := m \oplus G(k)$
 - $D(k, c) := c \oplus G(k)$
- Examples: RC4, CSS, eStream, Salsa 20
- Can stream ciphers have perfect secrecy, why?

Stream Ciphers: perfect secrecy?

- Stream ciphers cannot have perfect secrecy
 - Keys (seeds) are shorter than messages
- Can stream ciphers ever be secure?
 - Need a new definition of security
 - Security will depend on PRG used

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Pseudo Random Generators: defs

- Def: A PRG is **unpredictable** if given an initial sequence of bits (a prefix), one cannot efficiently predict the next bit (with probability higher than $\frac{1}{2} + \epsilon$)
- Thm: A PRG is secure iff. it is unpredictable.
- In practice
 - Unknown if there are provably secure PRG
 - But we have heuristic candidates

Pseudo Random Generators: defs

- Statistical test is an algorithm A: $\{0, 1\}^n \rightarrow \{0, 1\}$
 - Returns 1 if it thinks the input string is random, 0 otherwise
- Advantage of st. test A against PRG G:

$$Adv_{PRG}[A, G] = |Pr[A(G(k)) = 1] - Pr[A(r) = 1]|$$

$$k \in \mathbb{R} \atop k \in K$$

- If close to 0, A cannot distinguish G from random
- Otherwise, A can distinguish G from random
- **Def.** A PRG G is secure, if for all eff. stat. tests A: $Adv_{PRG}[A,G]$ is negligible.

Negligible? Assume less than 2⁻⁸⁰

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Perfect secrecy, threat model

• (Recall) A cipher (*E*, *D*) over (*K*, *M*, *C*) has **perfect secrecy** if for all m_0 , $m_1 \in M$ ($|m_0|=|m_1|$) and for all c e C

Pr [
$$\boldsymbol{E}(k, m_0) = c$$
] = Pr [$\boldsymbol{E}(k, m_1) = c$] where $k \in K$ is randomly chosen

- Given cipher text c, one cannot tell whether c is a cryptogram of mo or m1
- Threat model: basis for reasoning about security
 - Adversary's power: what can she do
 - **Adversary's goal:** what is she trying to achieve

Semantic security: def

(for one-time key; adv. sees only one CT)

- Adversary's power: observe one ciphertext
 - Every message is encrypted with its own key; a particular key is used only once
- Adversary's goal: learn about the plaintext

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Semantic security

- Informally
 - A cipher has semantic security if given only cipher text, an attacker cannot practically derive any information about the plain text
- <u>Thm:</u> Given a secure PRG, derived stream cipher is semantically secure

Semantic security: def

(for one-time key; adv. sees only one CT)

• For $b \in \{0,1\}$ define experiments EXP(b) as

• Def: $\zeta = (E, D)$ is **semantically secure** if for all eff. adversaries A $\mathrm{Adv}_{\mathrm{SS}}[A, \zeta]$ is negligible.

$$Adv_{ss}[A,\zeta]:=|Pr[EXP(0)=1]-Pr[EXP(1)=1]|$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Final thoughts

- Two-time pad attack
 - Never use stream-cipher key to encrypt more than one message
 - later we show a secure a multi-message exchange

$$c_{1} \leftarrow m_{1} \oplus \mathbf{G}(k)$$

$$c_{2} \leftarrow m_{2} \oplus \mathbf{G}(k)$$

$$\cdots$$

$$m_{1} \oplus m_{2} \leftarrow c_{1} \oplus c_{2}$$

- Redundancy in natural languages and in encoding schemes (ASCII, UTF-8, ...) to separate $m_1 \oplus m_2 \rightarrow m_1$, m_2
- http://www.crypto-it.net/eng/attacks/two-time-pad.html

Final thoughts

Two-time pad attack

Final thoughts

- Malleability
 - Modifications to CT are not detected and have predictable impact on the plain text

Encrypt: $c \leftarrow m \oplus k$ Modify: $c' \leftarrow c \oplus p$ Decrypt: $m' \leftarrow c' \oplus k$

- What is the relation between *m* and *m*?

https://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse

Block Ciphers

Notable examples

- 3DES: n = 64 bits, k = 168 bits

- AES: n = 128 bits, k = 128, 192, 256 bits

Block Ciphers: Built by iteration

• R(k, m) is a round function

$$-3DES (n = 48)$$

$$- AES (n = 10)$$

Abstracting BC: PRF and PRP

- Pseudo Random Function (PRF) defined over (K, X, Y):
 F: K × X → Y
 - We can evaluate F(k, x) efficiently
- Pseudo Random Permutation (PRP) defined over (K, X):
 E: K × X → X
 - We can evaluate E(k, x) efficiently
 - E(k, -) has an inverse
 - We have an efficient inversion algorithm D(k, x)
 - (All PRPs are PRFs.)

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Secure PRF (def.)

• For $b \in \{0,1\}$ define experiment EXP(b) as

• Def: F is a secure PRF if for all eff. adversaries A $Adv_{PRF}[A,F]$ is negligible.

$$Adv_{PRF}[A,F]:=|Pr[EXP(0)=1]-Pr[EXP(1)=1]|$$

Secure PRF

- Let $F: K \times X \rightarrow Y$ be a PRF
 - Funs[X,Y] the set of all functions from X to Y
 - $-S_F = \{F(k, -) : \forall k \in K\} \quad \subseteq Funs[X, Y]$

Intuitively

- A PRF is secure if a random function in Funs[X,Y] is indistinguishable from a random function in S_F
- Believed to be secure PRPs:
 - AES, 3DES, Blowfish

 $|S_F| = |K|$

Funs[X,Y] $|Funs[X,Y]|=|Y|^{|X|}$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Secure PRP (def.)

• For $b \in \{0,1\}$ define experiment EXP(b) as

• Def: E is a secure PRP if for all eff. adversaries A $\operatorname{Adv}_{\operatorname{PRP}}[A,E]$ is negligible.

$$Adv_{PRP}[A,E] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

Block Ciphers: Modes of Operation

- Goal: How do we build a secure encryption from secure PRP (e.g. AES)
 - A PRP encrypts a single data block. How do we encrypt larger data?
- Semantic security (still for one-time key only)
 - Adversary's power: observe one ciphertext
 - Adversary's goal: **learn about plaintext**

Adaptation of: Dan Boneh, Cryptography I, Stanford.

MO: Electronic Code Book

- Problem: If PT[0] == PT[1], then CT[0] == CT[1]
 - If two plaintext blocks are the same, so are the corresponding ciphertexts blocks

MO: Electronic Code Book

- "Solution" Electronic Code Book (ECB):
 - Split the data into blocks
 - if needed, extend the last block with padding bits
 - Independently encrypt each block

Adaptation of: Dan Boneh, Cryptography I, Stanford.

ECB is not semantically secure

How does the Adversary win the semantic security game against ECB?

MO: Deterministic counter mode

• Deterministic counter from a pseudorandom function (PRF)

\oplus_{0}^{0}	PT[0]	PT[1]	PT[2]
	PRF(k, 0)	PRF(k, 1)	PRF(k, 2)
	CT[0]	CT[1]	CT[2]

- Creates a stream cipher from a PRF
- Secure (but only for encrypting a single message which may consists of multiple blocks)

Semantic security for many-time key

- Key is used more than once: adversary sees many CTs encrypted with the same key
- Adversary's power: chosen-PT attack (CPA)
 - Can obtain the encryption of any message of her choice
- Adversary's goal: break semantic security
 - Learn about the PT from the CT

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Semantic security for CPA (def)

(for many-time key)

- Let $\zeta = (E, D)$ be a cipher defined over (K, M, C)
- For $b \in \{0,1\}$ define experiments EXP(b) as

• Def: $\zeta = (E, D)$ is semantically secure under **CPA** if for all eff. adversaries A $Adv_{CPA}[A, \zeta]$ is negligible. $Adv_{CPA}[A, E] := |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$ Adaptation of: Dan Boneh, Cryptography I, Stanford.

Ciphers insecure under CPA

- Suppose a cipher is deterministic
 - Given some message m, the cipher always produces the same ciphertext

Implication

- An attacker can learn that two encrypted elements (files, packets, ...) are the same

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Ciphers insecure under CPA

- If a key is to be used multiple times, the encryption should be **non-deterministic**:
 - Encrypting the same PT twice, must produce different CTs
- Solutions
 - Randomized encryption
 - Nonce-based encryption

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Modes of Operation: CBC

- Randomize the encryption with an initialization vector (IV)
 - Sent unencrypted
 - Must generate new random IV for every message: pair (key, IV) must never repeat
 - IV must be unpredictable
- Forces encryption to be sequential
 - Decryption may be parallelized

Non-deterministic encryption

- Nonce n: a value that changes from message to message
 - Pair (key, n) must never repeat
- Method 1: Nonce is a random value (AES-CBC)
- Method 2: Nonce is a counter (AES-CTR)

 CPA system should be secure even when the adversary chooses nonces

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption https://en.wikipedia.org/wiki/Block_cipher_mode_oi_operation

Counter Mode

- The random element is a counter
 - Or a combination of a random IV and a counter
 - The combination must not repeat for the lifetime of the key
- Encryption and decryption can be done in parallel
- In effect, creates a stream cipher out of a block cipher

Summary

- Two security notions
 - Semantic security against one-time CPA
 - Semantic security against many-time CPA
- Only covered secrecy against passive attackers
 - Adversaries can see, but not modify cipher text
 - We'll cover integrity next week

Goal	One-time key	Many-time key (CPA)
Semantic	Stream-ciphers	Rand CBC
security	Deterministic CTR-mode	Rand CTR-mode

Counter (CTR) mode encryption

Counter (CTR) mode decryption

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation