Real Analysis

Activity 1

July 11, 2021

- I. Let $S \subseteq \mathbb{R}$. What is meant by a limit point of S? We shall denote the set of limit points of S by S'.
- 2. What is S' for the following sets S? No proof required.

(a)
$$S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \left\{\frac{-1}{n} : n \in \mathbb{N}\right\}.$$

(b)
$$S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \left\{\frac{-1}{n} : n \in \mathbb{N}\right\} \cup \{0\}.$$

(c)
$$S = [0, 1]$$

(d)
$$S = [0, 1)$$

(e)
$$S = (0, 1)$$

(f)
$$S = [0, 1] \setminus \left\{\frac{k}{10}\right\}_{k=1}^{9}$$

- 3. Question will be given depending on how you define limit point in problem 1.
- 4. For a set $S \subseteq \mathbb{R}$ what is an open cover of S? Given an open cover of S, what is a finite subcover?
- 5. Consider $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Let $\varepsilon > 0$ be given. Find finitely many closed intervals $I_1 = [a_1, b_1]$, $I_2 = [a_2, b_2]$, \cdots , $I_k = [a_3, b_3]$ such that $S \subseteq \bigcup_{i=1}^k I_i$, $b_i > a_i \forall i$ and $\sum_{i=1}^k b_i a_i \leq \varepsilon$. (Here k is not fixed and can depend on ε , but it must a be a natural number).