Surfaces

Formulations

```
Implicit: f(x,y,z) = 0
```

Normal

Assignment Project Exam Help

Explicit: z = f(x,y)https://powcoder.com

Parametric: $x = f_x(s,t)$, $y = f_v(s,t)$, $z = f_z(s,t)$

Quadric surfaces

Quadric surfaces

Sphere:

Quadric surfaces

Ellipsoid

$$f(x,y,z) = \underbrace{\frac{\text{Assignment}}{R_x}}_{R_x} \underbrace{\frac{\text{Project}}{R_y}}_{R_y} \underbrace{\text{Exam Help}^2}_{R_z} = 1$$
 <https://powcoder.com>

$$x(\phi,\theta) = R_x cos(\phi) dos(\psi)$$
e Elizat powcoder $y(\phi,\theta) = R_y cos(\phi) sin(\theta) + y_0$ $z(\phi,\theta) = R_z sin(\phi) + z_0$ $-\pi/2 \le \phi \le \pi/2$ $-\pi < \theta < \pi$

Height fields

$$y=f(x,z)$$

Assignment Project Exam Help

https://poweoder.com
Add WeChat powcoder

Typical height fields

Gaussian

 $y = f(x, z) = e^{-ax^2 - bz^2}$

Sinc

https://powcoder.com

Add WeChat powcoder

$$y = f(x, z) = \frac{\sin(\sqrt{x^2 + z^2})}{\sqrt{x^2 + z^2}}$$

Parametric formulations

Ruled surfaces:

Linear combination of two curves Assignment Project Exam Help Through every point on the surface there passes at least

 Through every point on the surface there passes at least one line that lies one line that lies one line that lies of the surface of the passes at least

Add WeChat powcoder

$$P(u) = (1 - u)P_0 + uP_1$$

Making P_0 and P_1 curves:

$$P(u, v) = (1 - u)P_0(v) + uP_1(v)$$

Special cases

General cone

Assignment Project Exam Help

$$P(u, v) = (1 - u)P_0 + uP_1(v)$$

 P_0 is the apex

https://powcoder.com

Add WeChat powcoder

General Cylinder

P₁ a translated version of P₀

Assignment Project Exam Help $P(u,v) = (1-u)P_0(v) + u(P_0(v) + \mathbf{d}) \Rightarrow P(u,v) = P_0(v) + u\mathbf{d}$ https://powcoder.com

Bilinear patches

Both P₁ and P₀ are lines

$$P(u,v) = (1-u)P_{0}(v) + uP_{1}(v) \Rightarrow$$
Assignment Project Exam Help
$$P(u,v) = (1-u)[(1-v)P_{00} + vP_{01}] + u[(1-v)P_{10} + vP_{11}] \Rightarrow$$

$$P(u,v) = (1-u)(\frac{\text{httpsp/powerger.com}}{p_{00}} + vP_{01} + uvP_{11}) \Rightarrow$$

Surfaces of revolution

Sweep profile curve around an axis:

C(v) = (X(v),Z(v)) $P(u, v)=(X(v)\cos(u),X(v)\sin(u),Z(v))$ Assignment Project Exam Help

https://powcoder.com
Add WeCharpowcoder

a)
b)
c)

Example

Curve

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \cdot \cos(t) & \text{Assignment Project Exam Help} \\ 0 \\ 2 \cdot \sin(t) & \text{https://powcoder.com} \end{bmatrix}$$

Add WeChat powcoder

Surface

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \cdot \cos(t) \cdot \cos(u) \\ 4 \cdot \cos(t) \cdot \sin(u) \\ 2 \cdot \sin(t) \end{bmatrix}, t = -\frac{\pi}{2} \dots \frac{\pi}{2}, u = 0 \dots a$$

Parametric surfaces from control points (constraints)

Extension of the curve form to two dimensions

Curve: $P(s) = SMG = [s^3 \ s^2 \ s \ 1]MG$ with s in [0,1]Surface: P(s,t) = SMG(t) with s, t in [0,1]

https://powcoder.com

Example: Bezier curve P.(s) of four points P₁,P₂,P₃,P₄: Add WeChat powcoder

$$P(s) = SMG, s \in [0, 1] \text{ or }$$

$$\begin{bmatrix} x(s) & y(s) & z(s) \end{bmatrix} = \begin{bmatrix} s^3 & s^2 & s & 1 \end{bmatrix} \mathbf{M} \begin{bmatrix} G_x & G_y & G_z \end{bmatrix} \text{ or }$$

$$\begin{bmatrix} x(s) & y(s) & z(s) \end{bmatrix} = \begin{bmatrix} s^3 & s^2 & s & 1 \end{bmatrix} \mathbf{M} \begin{bmatrix} P_{1,x} & P_{1,y} & P_{1,z} \\ P_{2,x} & P_{2,y} & P_{2,z} \\ P_{3,x} & P_{3,y} & P_{3,z} \\ P_{4,x} & P_{4,y} & P_{4,z} \end{bmatrix}$$

Bezier Surfaces

Take a bezier curve P(s) and let its control points become beziersignment Project Exam Help

Total: 4x4 = 16 control points

$$P_{ij}$$
, $i=1,2,3,4$, $j=1,2,3,4$

Tensor product representation (easier per dimension)

$$P_x(s,t) = S\mathbf{M}G_x(t) = S\mathbf{M} \begin{bmatrix} P_{1,x}(t) \\ P_{2,x}(t) \\ P_{3,x}(t) \\ P_{4,x}(t) \end{bmatrix}$$
, where

 $P_{i,x}(t) = G_{i,x}^T \mathbf{M}^T \mathbf{S_{i}^T} \mathbf{gnment}$ Project Exam $\mathbf{M}^T \mathbf{Cl}^T \mathbf{p}$ Together they give:

$$P_x(s,t) = S\mathbf{M}G_x(t) = S\mathbf{M} \begin{bmatrix} P_{2,x}(t) \\ P_{2,x}(t) \\ \mathbf{M} \end{bmatrix} = S\mathbf{M} \begin{bmatrix} G_{2,x}^T \mathbf{M}^T T^t \\ G_{2,x}^T \mathbf{M}^T T^t \\ \mathbf{M} \end{bmatrix} \rightarrow \mathbf{M} \begin{bmatrix} \mathbf{M} \mathbf{M}^T \mathbf{M}$$

$$P_x(s,t) = S\mathbf{M} \begin{bmatrix} P_{11,x} & P_{12,x} & P_{13,x} & P_{14,x} \\ P_{21,x} & P_{22,x} & P_{23,x} & P_{24,x} \\ P_{31,x} & P_{32,x} & P_{33,x} & P_{34,x} \\ P_{41,x} & P_{42,x} & P_{43,x} & P_{44,x} \end{bmatrix} \mathbf{M}^T T^T$$

$$P_x(s,t) = SMG_xM^TT^T, (s,t) \in [0,1] \times [0,1]$$

Similarly:

$$P_y(s,t) = S\mathbf{M}\mathbf{G}_y\mathbf{M}^TT^T, (s,t) \in [0,1] \times [0,1]$$

$$P_z(s,t) = S\mathbf{M}\mathbf{G}_z\mathbf{M}^TT^T, (s,t) \in [0,1] \times [0,1]$$

Tensor product representation

More compactly:

Assignment Project Exam Help

$$P(s,t) = S\mathbf{M}\mathbf{G}\mathbf{M}^TT^T, (s,t) \in [0,1] \times [0,1] \text{ or } \mathbf{https://powcoder.com}$$

$$P(s,t) = \begin{bmatrix} s^3 & s^2 & s & 1 \end{bmatrix} \mathbf{M} \begin{bmatrix} \mathbf{Chat} & \mathbf{phycolder} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} \mathbf{M}^T \begin{bmatrix} t^3 \\ t^2 \\ t \end{bmatrix}$$

Properties of Bezier surfaces

Affine Invariance
Convex Hull
https://powcoder.com
Plane precision
Add WeChat powcoder
Variation diminishing

Hermite surfaces

Constraints at the four corners:

 Position, Tangent, Twist Assignment Project Exam Help

https://powcoder.com

Piecewise cubic bezier surfaces

Rendering parametric curves and surfaces

Transform into primitives we know how to handle Curves

Assignment Project Exam Help

Line segments

Surfaces https://powcoder.com

Quadrilaterals Add WeChat powcoder

Triangles

Converting to quadrilaterals

Straightforward

Uniform subdivision Project Exam Help

(1,1)https://powcoder.com Evaluation of P(s,t) at each Add WeChat powcoder grid point Isoparametric lines (islines) become isoparametric curves (0,0)

Isolines

Optimizations

 $x(s,t) = S M G_x M^T T^T$

- Assignment Project Exam Help
 M G M^T remains constant over patch: precompute
- S M and MT Themain constant over all patches: precompute S Mand stoketing lebder $Q[t] = Q^T[s]$ assuming equal subdivisions in s and t

Computing surface normals

Parametric surface P(u,v)

$$\mathbf{N} = \frac{\partial P(u, v)}{\partial u} \times \frac{\partial P(u, v)}{\partial v}$$

Cubic Bezier patch forms

Pick the most convenient

$$P(s,t) = \sum_{i=0}^{3} B_i^3(s) \sum_{i=0}^{3} B_j^3(t) P_{ij}, \quad (s,t) \in [0,1] \times [0,1]$$

where the Bernstein polynomials are

$$B_0^3(v) = (1 - v)^3, B_1^3(v) = 3(1 - v)^2 v,$$

$$B_2^3(v) = 3(1 - v)v^2, B_3^3(v) = u^3$$

General form of a cubic patch

$$P(s,t) = \sum_{i=0}^{15} B_i(s,t) G_i, \quad (s,t) \in [0,1] \times [0,1]$$

$$https://powcoder.com$$

where Add WeChat powcoder

 $B_i(s,t)$: Cubic polynomials in two variables

 G_i : Point or tangent constraints