Mathematik I

Lösungstheorie von LGS

Lineanes Gleichungssystem

Prof. Dr. Doris Bohnet Sommersemester 2020

Zeitplan Vorlesung

		Datum	Bemerkung	Inhalt
Grund- lagen			Selbststudium	Grundlagen: Mengen
			Selbststudium	Grundlagen: Relationen
			Selbststudium	Grundlagen: Abbildungen
Zahlen- theorie	1	22.04.	Einmalig Mi.	Wiederholung & Zusammenfassung Selbststudium
	2	27.04.		Zahlentheorie I
	3	28.04.		Zahlentheorie II
Algebra	4	04.05.		Gruppen
	5	11.05.		Ringe, Körper
	6	12.05.		Kryptographie
	7	18.05.		Vektorräume
Lineare Algebra	8	25.05.		Lineare Gleichungssysteme: Gauß-Algorithmus
	9	26.05.		Lineare Gleichungssysteme: Lösungstheorie
	10	01.06.	Pfingstmontag	
	11	08.06.		Matrizen
	12	09.06.		Lineare Abbildungen

Lernziele

- Begriffe kennen:
 - ✓ Rang
 - ✓ Lösungsraum/ Lösungsmenge
 - ✓ Dimension des Lösungsraums
- Rang einer Matrix mit Hilfe des Gauß-Algorithmus berechnen können
- Lösbarkeit eines linearen Gleichungssystem und Anzahl der Lösungen mit Hilfe des Rangs der Matrix bestimmen können

Lösbarkeit von linearen Gleichungssystemen

Beispiel: 2 Aleichungen, 2 Unbekannte, a, b $\in \mathbb{R}$ x-y=1 $\Rightarrow y \Rightarrow x-1$ Geradungleichung 2x-ay=b $\Rightarrow y=2x-b=2\times -2$ Lösung ist Schnittpunkt der Graden. Welche Möglichkeiten gibt es?

- 1) kein Sehnittpunkt. = D a = 2 damit also keine Lösung b \neq 2 damit obschritt
- 2) unendlich viele Schnitpunkte also mendlid viele Lösungen
- 3) genou eine Schnitpucht & a & 2 also eine Lösung b beliebig

y = x + 1 y = x + 1 y = -x + 4

b = 9

$$x-y=1$$

$$2x-ay=b$$

$$Voe ff: rienten matrix
$$(A \mid b) = \begin{pmatrix} 1 & -1 \mid 1 \\ 2 & -a \mid b \end{pmatrix} \stackrel{2}{\sim} D \stackrel{1}{\sim} D \stackrel{1}$$$$

Lösbarkeit und Rang – Möglichkeit 1

Beispiel (letzte Vorlesung):

$$x_1 + x_2 + x_3 = -6$$
$$x_2 + 2x_3 = -4$$
$$2x_3 = -2$$

Wann ist ein solches Gleichungssystem lösbar?

$$A \mid b = \begin{pmatrix} 1 & 1 & 1 & | -6 \\ 0 & 1 & 2 & | -4 \\ 0 & 0 & 2 & | -2 \end{pmatrix}$$

+ 3 Unbekonute

Lösbarkeit und Rang – Möglichkeit 2

Beispiel:

$$x_1 + x_2 + x_3 = -6$$

$$x_2 + 2x_3 = -4$$

$$0 \cdot x_3 = -2$$

Lösbarkeit und Rang – Möglichkeit 3

Beispiel:

Rang
$$-r \operatorname{rg}(A) = H \operatorname{Nich} - \operatorname{Nullaeileu}$$
 $x_1 + x_2 + x_3 = -6$
 $x_2 + 2x_3 = -4$
 $0 \cdot x_3 = 0$
 $x_3 = 0$
 $x_1 + x_2 + x_3 = -6$
 $x_2 + 2x_3 = 0$
 $x_3 = 0$

OpenS III :
$$x_3$$
 beliefog
in II: $x_2 = -4 - 2x_3$
in II: $x_4 = -6 - x_3 - (-4 - 2x_3)$
 $x_1 = -2 + x_3$
 $x_3 \in \mathbb{R}$

$$\frac{1}{2} = \sqrt{\begin{pmatrix} -2 + x_3 \\ -4 - 2x_3 \\ x_3 \end{pmatrix}} \times_3 \in \mathbb{R}^3$$

Aufgabe: Rang

Geben Sie den Rang von der Koeffizientenmatrix sowie von der erweiterten Koeffizientenmatrix des folgenden linearen Gleichungssystems an:

$$x_{1} + 3x_{2} - 3x_{3} = 3$$

$$x_{2} + 2x_{3} = 2$$

$$2x_{3} = 0$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

$$A = \begin{cases} 1 & 3 - 3 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{cases}$$

Rang von A:
$$rg(A) = 3$$

$$rg(A) = rg(A|b) = 3 = # Unbekannte$$

26.05.2020

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 12

=> geran 1 Lsg.

Lösbarkeit eines LGS

Für ein lineares Gleichungssystem Ax = b mit m Gleichungen und mit n Unbekannten gilt:

- 1) Ax = b ist lösbar genau dann, wenn Rang(A) = Rang(A|b) rg(A) = rg(A|b)
 - 1) Ax = b ist eindeutig lösbar genau dann, wenn $Rang(A) = Rang(A|b) = \underline{n} = \#$ Un bekaunte
 - 2) Ax = b hat unendlich viele Lösungen genau dann, wenn $Rang(A) = Rang(A|b) \neq n$. = # Unbehanne
- 2) Ax = b ist nicht lösbar genau dann, wenn $Rang(A) \neq Rang(A|b)$

Bsp:
$$(1 - 1 | 1)$$
 $(1 - 1 | 1)$ $(2 - 1)$ $(3 - 1 | 1)$ $(3 - 1 | 1)$ $(4 - 1 | 1)$ $(5 - 2 + a | 2 - b)$ $(5 - 2 + a | 2 -$

Rang und lineare Unabhängigkeit

Ubung 7 - Abgobe

Sind die folgenden Vektoren linear unabhängig

$$v_{1} = (4,1,1,0,-2), v_{2} = (0,1,4,-1,2), v_{3} = (4,3,9,-2,2), v_{4} = (1,1,1,1,1), v_{5} = (0,-2,-8,2,-4)$$

$$v_{1} \circ v_{1} + v_{2} \cdot v_{2} + v_{3} \cdot v_{3} + v_{4} \cdot v_{5} + v_{5} \cdot v_{5} = 0 \in \mathbb{N} \text{ where } left$$

26.05.2020

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 12

Rang einer Matrix - Definition

Sei A eine Matrix aus m Zeilen und n Spalten. Die maximale Anzahl an linear unabhängigen Spalten (oder Zeilen) von A bezeichnet man als den **Rang von** A. Man schreibt: rg(A).

Bemerkungen:

- Es gilt immer: $rg(A) \leq \min(n, m)$.
- Anders gesagt: Der Rang einer Matrix ist also gleich der Dimension des Raums, der von den Spalten (oder Zeilen) der Matrix aufgespannt wird: $rg(A) = \dim span(v_1, v_2, ..., v_n)$ falls $v_1, v_2, ..., v_n$ die Spalten der Matrix bezeichnen.
- Man berechnet den Rang meistens mit Hilfe des Gauß-Algorithmus: Der Rang einer Matrix in Zeilenstufenform ist gleich der Anzahl von Nicht-Nullzeilen. Nullzeilen sind Zeilen, in denen nur Nullen vorkommen.

Lösungsmenge

Wie hängt die Lösungsmenge vom Rang der (erweiterten) Koeffizientenmatrix ab?

Lösungsmenge

Die Anzahl der frei wählbaren Variablen heißt **Dimension** der Lösungsmenge: $\dim(L)$

Ist ein lineares Gleichungssystem lösbar, dann ist die **Dimension** $\dim(L)$ der Lösungsmenge immer gleich der Anzahl der Unbekannten n minus den Rang Rang(A) der Koeffizientenmatrix A:

$$\dim(L) = n - Rang(A)$$

Ein lineares Gleichungssystem ist also genau dann **eindeutig lösbar**, wenn der Rang der Koeffizientenmatrix und der Rang der erweiterten Koeffizientenmatrix gleich der Anzahl der Unbekannten sind: Rang(A) = Rang(A|b) = n

Beachte: Der Rang der Koeffizientenmatrix ist höchstens $Rang(A) \le \min(m, n)$. Wenn es also weniger Gleichungen als Unbekannte gibt, dann kann es keine eindeutige Lösung geben.

Beispiel: Lösbarkeit eines LGS

Beispiel : Für welche Parameter $t \in \mathbb{R}$ ist das folgende LGS lösbar? Geben Sie in diesem Fall auch die Dimension des Lösungsraums an.

$$2x_{1} + 4x_{2} + 2x_{3} = 12t$$

$$2x_{1} + 12x_{2} + 7x_{3} = 12t + 7$$

$$x_{1} + 10x_{2} + 6x_{3} = 7t + 8$$

$$A \mid b = \begin{cases} 2 \mid 4 \mid 2 \mid 12t \\ 2 \mid 12 \mid 7 \end{cases}$$

$$10 \mid 6 \mid 7t + 8 \end{cases} \quad \boxed{1 - 2} \quad \boxed{$$