EE-3220-21 - Dr. Durant - Quiz 4 Winter 2013-'14, Week

Given the difference equation $y(n) = -\frac{1}{2}0.5 y(n-1) + 0.5 x(n)$

- 1. (2 points) Take the DTFT of both sides of the equation. Recall that the DTFT of a delayed signal, y(n-k), is $e^{-j\omega k}Y(e^{j\omega})$. $y(a-k) = -0.5 e^{-j\omega}Y(e^{j\omega}) + 0.5 \times (e^{j\omega})$
- 2. (2 points) Solve the above equation for transfer function $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$ $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1}{1+\frac{1}{2}e^{-j\omega}} = \frac{1}{2+e^{-j\omega}}$ $Y(e^{j\omega}) = \frac{1}{2} \times (e^{j\omega})$
- 3. (2 points) Let $f_s = 1000$ Hz, $f_1 = 0$ Hz, $f_2 = 250$ Hz, and $f_3 = 500$ Hz. Calculate the digital frequencies, ω_n , for each frequency, f_n . for f_2 through f_3 . Recall that the digital frequency is how many radians a sinusoid moves through between samples. For example, if a signal is sampled 10 times per period, its digital frequency is $2\pi/10$.

$$w_1 = \frac{F_1}{F_2} = \frac{Q}{1000} = \frac{2\pi}{1000} = \frac{Q}{1000}$$

$$w_2 = \frac{250}{1000} = \frac{2\pi}{1000} = \frac{7\pi}{1000}$$

$$w_3 = \frac{500}{1000} = \frac{7\pi}{1000} = \frac{7\pi}{1000}$$

4. (2 points) Evaluate H at the digital frequencies calculated above.

$$H(e^{j\omega_{3}}) = \frac{1}{2+e^{-j\phi}} = \frac{1}{3}$$

$$H(e^{j\omega_{3}}) = \frac{1}{2+e^{-j\pi}} = \frac{1}{2-j} = \frac{2+j}{5}$$

$$H(e^{j\omega_{3}}) = \frac{1}{2+e^{-j\pi}} = \frac{1}{2+1} = 1$$

5. (Bonus point) Explain, using properties of the DTFT, why H at
$$\omega_3$$
 must be a real number (its imaginary part must be 0). Recall that $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$, $X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$ and, for real signals, $X(e^{-j\omega}) = X^*(e^{j\omega})$.

Conjugate Property: $X(e^{j\omega}) = X^*(e^{j\omega})$.

Perodicity Property: $X(e^{j\omega}) = X(e^{j\omega}) = X(e^{j\omega})$

Combining: X(e-ji) = X*(e-ji) -> self-conjugate -> rea)

n	0	1	2	3	4	5	6
x1	1	1	1	1	1	1	1
у1	1-2	14	3	<u>s</u> 16	<u>m</u> 11	2/s 21	3/2/1
x2	1	-1	1	-1	1	-1	1
у2	-12	-3	7	-15 16	31	-63 64	127

 π radians on each sample (x2).

7. (Bonus point) What is the connection between your results in 4 and in 6?

EE-3220-41 - Dr. Durant - Quiz 4 Winter 2013-'14, Week 3 4

Given the difference equation y(n) = 0.5 y(n-1) + x(n)

- 1. (2 points) Take the DTFT of both sides of the equation. Recall that the DTFT of a delayed signal $y(n-k) = \frac{1}{e^{-j\omega}} (e^{j\omega}),$ $y'(e^{j\omega}) = \frac{1}{e^{-j\omega}} y'(e^{j\omega}) + \frac{1}{2} \times (e^{j\omega})$
- 2. (2 points) Solve the above equation for transfer function $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$ $\frac{Y(e^{j\omega})}{Y(e^{j\omega})} \left(1 \frac{1}{2}e^{-j\omega}\right) = \frac{1}{2} \times \left(e^{j\omega}\right)$ $\frac{Y(e^{j\omega})}{Y(e^{j\omega})} = \frac{Y(e^{j\omega})}{Y(e^{j\omega})} = \frac{1}{1 \frac{1}{2}e^{-j\omega}} = \frac{1}{2 e^{-j\omega}}$ $\frac{Y(e^{j\omega})}{Y(e^{j\omega})} = \frac{Y(e^{j\omega})}{Y(e^{j\omega})} = \frac{1}{1 \frac{1}{2}e^{-j\omega}} = \frac{1}{2 e^{-j\omega}}$
 - 3. (2 points) Let $f_s = 1000$ Hz, $f_1 = 0$ Hz, $f_2 = 250$ Hz, and $f_3 = 500$ Hz. Calculate the digital frequencies, ω_n , for each frequency, f_n . for f_1 through f_3 . Recall that the digital frequency is how many radians a sinusoid moves through between samples. For example, if a signal is sampled 10 times per period, its digital frequency is $2\pi/10$.

$$u_1 = \frac{f_1}{f_3} \cdot 2\pi = \frac{O}{1000} \cdot 2\pi = O$$

$$u_2 = \frac{250}{1000} \cdot 2\pi = \frac{\pi}{2}$$

$$u_3 = \frac{500}{1000} \cdot 2\pi = \pi$$

4. (2 points) Evaluate H at the digital frequencies calculated above.

$$H(e^{j\omega_i}) = \frac{1}{2^{-e}} = \frac{1}{2^{-1}} = \frac{1}{2^{-1}}$$

$$H(e^{j\omega_i}) = \frac{1}{2^{-e}} = \frac{1}{2^{-1}} = \frac{2^{-j}}{2^{-j}}$$

$$H(e^{j\omega_i}) = \frac{1}{2^{-e}} = \frac{1}{2^{-1}} = \frac{1}{2^{-1}}$$

$$H(e^{j\omega_i}) = \frac{1}{2^{-e}} = \frac{1}{2^{-1}} = \frac{1}{2^{-1}}$$

5. (Bonus point) Explain, using properties of the DTFT, why H at
$$\omega_3$$
 must be a real number (its imaginary part must be 0). Recall that $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$, $X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$ and, for real signals, $X(e^{-j\omega}) = X^*(e^{j\omega})$.

and, for real signals,
$$X(e^{-j\omega}) = X^*(e^{j\omega})$$
.

 $H(e^{j\pi}) = H(e^{-j\pi})$ due to conjugate symmetry

 $H(e^{j\pi}) = H(e^{j(\pi - 2\pi)}) = H(e^{-j\pi})$ by 2π periodicity

Combining: $H(e^{j\pi}) = H^*(e^{j\pi}) = H(e^{j\pi})$ is real

(only real #5 are their own conjugate)

 (2 points) Use the difference equation to complete the table below by filling in the outputs of the system when stimulated with a step input (x1) and with a causal cosine that is advancing by π radians on each sample (x2).

n	0	1	2	3	4	5	6
x1	1	1	1	1	1	1	1
у1	1 2	3/4	78	15	31	63	127
x2	1	-1	1	-1	1	-1	1
y2	- 2	-14	mloc	-s 16	32	-21	128

(Bonus point) What is the connection between your results in 4 and in 6?

lim
$$y_1(n) = 1 = H(e^{ju_1})$$
 DC signal is passed as predicted by $H @ u = 0$

lim $y_2(n) = \frac{1}{3} = H(e^{ju_2})$ AC signal $@ \pi \text{ rad/s}$ is reduced in level

 $h = \frac{1}{3} = H(e^{ju_2})$ AC signal $@ \pi \text{ rad/s}$ is reduced in level

 $h = \frac{1}{3} = H(e^{ju_2})$ Ac signal $@ \pi \text{ rad/s}$ is reduced in level

 $h = \frac{1}{3} = H(e^{ju_2})$ Ac signal $@ \pi \text{ rad/s}$ is reduced in $e = \pi$