Question 1:

Show that the size of the state space of the RC4 cipher is bounded by $2^{16}*256! \approx 2^{1700}$

Answer

- -Two 8-bit sized indices i and j \rightarrow $(2^8)^2$
- -Total amount of 256! permutations for S-box of length 256
- \rightarrow Together size of $(2^8)^2 * 256!$

Question 2:

In the RC4 attack, suppose that 60 IVs of the form (3,255,V) are available. Empirically determine the probability that the key byte K_3 can be distinguished.

What is the smallest number of IVs for which this probability is greater than $\frac{1}{2}$?

Answer:

See added Python Code for logic. Probability: Ca 5 %, at least 14 IVs needed

Question 3:

Assuming, that the key bytes K_3 through K_{n-1} have been recovered, what is the desired form of the IVs that will be used to recover K_n ?

Answer: IV = (n, 255, V)

For $K_{\rm n}$ what is the formula corresponding to 3.11?

Answer:

$$KB_{\rm n} = k_{\rm n} - \sum_{1}^{n} x - V - (\sum_{3}^{n-1} K_{\rm n})$$

Question 4:

What is the probability that 3.13 holds?

Answer:

$$K_4$$
: $(\frac{253}{256})^{251} = 0.0518$

What is the probability that the corresponding equation for K_n holds?

Answer:

$$\left(\frac{253}{256}\right)^{256-(n+1)}$$

Question 5:

What is another useful IV for recovering K_3 ?

Answer::

(3,253,254)

Question 6:

What are other secure methods to employ RC4 when a long-term key is combined with an IV?

Answer:

Increase key size and increase IV size to at least 32-bit (64-bit would be best). Or send the IV encrypted as well.