

Nifty50 forecasting and trading strategies

Barbieri Claudio, Delera Giacomo, Huser Cyril, Howe Alessandro

Econometrics project 2024/2025

Lecturer: Azzone Michele

TA: Sala Edoardo

Data

High-frequency (minute-level) data of the Indian stock market from 2017 to 2021

- Indexes
- Stocks

Select **Nifty50** index data from 2017,2018, and 2019 to avoid the COVID-19 pandemic

Aggregate into *daily* Open High Low Close prices to reduce noise level

Category	Indicators			
Trend-following	MACD (Moving Average Convergence/Divergence)			
	DEMA (Double Exponential Moving Average)			
	CP (Close Price)			
Momentum	OC (Rate of Change)			
	RSI (Relative Strength Index)			
	ULTOSC (Ultimate Oscillator)			
	WR (Williams %R)			
	CCI (Commodity Channel Index)			
Volatility	ATR (Average True Range)			
	VOL (Volatility)			
Volume-based	OBV (On Balance Volume)			

- Extract a proxy for the index **V**olume from the constituent underlying stocks
- Compute some **technical indicators** to use as features

Linear Model

- Variable selection: backward/forward minimizing AIC
- Training set: 2017, 2018
- Test set: 2019

$$CLOSE_{t+1} = \beta_0 + \beta_1 CLOSE_t + \beta_2 ULTISC_t + \beta_3 ATR_t + \beta_4 OBV_t + \beta_5 WR_t$$

- No interest in the statistical reliability here, just focus on the forecast power
 - Spurious high R² from non-stationary features
 - Heteroskedastic residuals
 - Non-normal error distribution
- Diagnostics for guiding future modeling
 - No autocorrelation detected after including lagged values

Adj R-squared DW test		BP test	JB test	RMSE		
0.9881	p-value = 0.4736	p-value < 0.01	p-value < 0.01	106.6839		

Trading strategies

Absolute Change Threshold Strategy

Objective: Take a position only when the predicted change in log returns is significant.

Threshold-Based Switching:

- Compute change in predictions: $\Delta pred_t = \left| \frac{\widehat{r_t} \widehat{r_{t-1}}}{\widehat{r_{t-1}}} \right|$
- Enter or switch position only if $\Delta pred_t \geq$ threshold and the sign of the return is the opposite.

Position Logic:

Long if prediction > 0, Short if < 0, otherwise Neutral.

Hold previous position if change is small.

Transaction Cost Handling:

When a position change occurs.

Volatility-Scaled Strategy

Objective: Adjust position size dynamically based on predicted log return and market volatility, aiming to maintain consistent risk exposure.

Volatility-Based Sizing:

- Estimate rolling volatility from past true returns: $vol_t = std([r_{t-n}, ..., r_{t-1}])$
- Compute position size: $position_t = scale \cdot \frac{\hat{r_t}}{vol_t + \epsilon}$
- Clip positions within $[-max\ leverage, +max\ leverage]$

Position Logic:

- Take proportionally larger positions when predicted return is high and volatility is low.
- Reduce exposure when volatility rises or signal weakens.
- No fixed thresholds position is continuous and dynamically adjusted.

Transaction Cost Handling:

When a position change occurs.

Our choice: Fixed Threshold Sign Strategy

Objective: Daily trading strategy, taking long or short positions based on the predicted log return. While not the most advanced approach, it best allowed us to evaluate the index forecast — our primary objective.

Signal-Based Positioning:

Long if prediction > threshold, Short if < -threshold, Neutral otherwise.

2 Variants:

- 1. Log(Close / Previous Close) measures the daily return, encompassing both overnight and intra-day price changes between two consecutive closes.
- 2. Log(Close / Open) captures the intra-day return, reflecting the price movement from the market open to close within the same trading day.

Even if the 2nd is the "classical" definition of log return, strategies based on Log(Close/Open) often provide more consistent and reliable signals for short-term trading.

Transaction Cost Handling:

- 1. When a position change occurs.
- 2. Exiting and entering the market costs.

Result on Linear Model:

Whole day trading

Cumulative Returns: Strategy VS NIFTY50

Sharpe Ratio: -3.00 Max Drawdown: 30.79% Sortino Ratio: -4.98

Remark: strategies with frequent trades suffer cost accumulation.

(Conv-)LSTM

Leverage LSTM's sequence "memory" plus local feature extraction via 1D convolutions, common in financial forecasting literature

♠ Input tensor: N x W x F

N: total samples (sliding windows)

W: window size (days of history)

F: features per day

- Sliding-window encoding stride 1 (one-day step) many-to-one (single output)
- Feature scaling: Min-Max scaling
- Option 1: NIFTY50 (prior-day log-return + prior-day volume + technical indicators)
 - Option 2: NIFTY50 + SP500 (prior-day NIFTY50 and SP500 log-return + prior-day NIFTY50 and SP500 volume + NIFTY50 technical indicators

Whole-day trading

Annualized Return: -3.12% Sharpe Ratio: -0.16 Max Drawdown: 9.49% Sortino Ratio: -0.28

Annualized Return: 5.95% Sharpe Ratio: 0.49

Max Drawdown: 11.13% Sortino Ratio: 0.78

Output (T, 1)

Input	_[LSTM		Dropout		LSTM	J	Dropout		LSTM	L	Dropout	Conv1D	 Dropout		Conv1D	_[Dropout	Conv1D	[Crop1D	
(W,F)	1	128	7	0.2	[128		0.2	1	128	Γ	0.2	128×3	0.4	,	128×3	1	0.4	1×3	\mathbb{I}	(W-T,0)	

VAR on OHLC

Enable mutual influence among OHLC variables via dynamic multivariate model: VAR

sponding

 $\{\Delta Y_{jt}\}_{i}^{i+q}$

$y_t^{(3)} = \log\left(\frac{\lambda_t^o}{1 - \lambda_t^o}\right) \qquad \lambda_t^c = \frac{x_t^c - x_t^l}{x_t^h - x_t^l}$ $y_t^{(4)} = \log\left(\frac{\lambda_t^c}{1 - \lambda_t^c}\right) \qquad \lambda_t^o = \frac{x_t^o - x_t^l}{x_t^h - x_t^l}$

Cumulative Returns: Strategy VS NIFTY50

Ann. Return	Sharpe	Max DD	Sortino		
14.35%	1.17	9.33%	2.28		

GARCH

Forecast the **conditional quantiles** of Nifty50 closing prices by modeling volatility.

GARCH-M:

$$r_t = \mu + \lambda \sigma_t + \varepsilon_t,$$

 $\varepsilon_t \sim \mathcal{N}(0, \sigma_t^2)$, Strong assumption: Normality of residuals

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2,$$

$$\mathbf{r}_t^{(q)} = E[r_t \mid \mathcal{F}_{t-1}] + z_q \sigma_t = \mu + \lambda \sigma_t + z_q \sigma_t, \qquad z_q = \Phi^{-1}(q),$$

Fit the model using a 50-day rolling window to generate a 1-day-ahead forecast at each step

Results:

Backtesting the model reveals that the quantiles deviate by about 5%. The results become more consistent when applying shrinkage.

Confidence Band	Return Coverage	Return Winkler
90% (0.050-0.950)	86.99%	0.0395
80% (0.100-0.900)	75.20%	0.0324

Probabilistic trading strategies

Tail Exceedance Mean Reversion Strategy

- Builds a signal from the frequency of returns breaching fixed quantiles over a 5-day rolling window.
- Uses the 25th and 75th percentiles as thresholds.
- Frequent downside breaches → signal a long position (overreaction).
- Frequent upside breaches → signal a short position (overextension).

Delivered solid performance with 8.42% annual return and a Sharpe of 0.99.

Three-Layer Tail Mean Reversion Strategy

- Utilizes three quantile bands:
 - Outer: 10th-90th percentile
 - Middle: 15th-85th percentile
 - Inner: 25th-75th percentile
- Positions start when returns cross outer bands.
- Positions held while returns stay within middle or inner bands.
- Exit triggered by:
 - Crossing inner band favorably (profit)
 - Reversion within inner band (trend exhaustion)
 - Breaching opposite tail (regime shift)

Underperformed, showing near-zero return and weak risk-adjusted metrics.

(a) Tail exceedance strategy.

Annual Return Sharpe Ratio Max Drawdown Sortino Ratio -0.24% 0.01 8.19% 0.14

(b) Three layer strategy.

Conclusion

Wrapping up:

- ☐ Linear model using technical indicators offers good prediction for whole-day trading
- **LSTM** with *log return* cannot generate profit with the used strategy (better with S&P500 information)
- □ VAR on the OHLC exhibits strong performance when targeting *intraday* returns
- ☐ GARCH leverages *probabilistic* strategies to achieve positive results

References

[1] Zahra Fathali, Zahra Kodia Aouina, and Lamjed Ben Said. "Stock Market Prediction of NIFTY 50 Index Applying Machine Learning Techniques". In: Applied Artificial Intelligence 36 (2022). doi: 10. 1080/08839514.2022.2111134. url: https://www.researchgate.net/publication/363632317_
Stock_ Market_ Prediction_ of_ NIFTY_ 50_ Index_ Applying_ Machine_ Learning_ Techniques.

- [2] Gang Ji et al. "An adaptive feature selection schema using improved technical indicators for predicting stock price movements". In: Expert Systems with Applications 200 (2022), p. 116941. issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2022.116941. url: https://www.sciencedirect.com/science/article/pii/S0957417422003712.
- [3] Fatemeh Moodi, Amir Jahangard-Rafsanjani, and Sajad Zarifzadeh. Feature selection and regression methods for stock price prediction using technical indicators. 2023. arXiv: 2310.09903 [q-fin.ST]. url: https://arxiv.org/abs/2310.09903.
- [4] Huiwen Wang, Wenyang Huang, and Shanshan Wang. Forecasting open-high-low-close data contained in candlestick chart. 2021. arXiv: 2104.00581 [econ.EM]. url: https://arxiv.org/abs/ 2104.00581.

Thank you for the attention!