Лекции № 15-16

Компактные множества. Компактные операторы. Вполне непрерывные операторы = линейные компактные. Свойства вполне непрерывных операторов. Спектральные свойства вполне непрерывных сомосопряженных операторов

Определение 1. Оператор $A: X \to Y$ называется *компактным*, если он любое ограниченное множество переводит в компактное.

Определение 2. Линейный компактный оператор $A: X \to Y$ называется *вполне непрерывным* (иногда, вполне ограниченным).

Понятно, что прежде, чем переходить к основной теме лекции "Свойства вполне непрерывных операторов", необходимо познакомиться с компактными множествами.

• Компактные множества

Известная теорема Больцано-Вейерштрасса гласит: из любой ограниченной последовательности действительных чисел можно выделить сходящуюся подпоследовательность.

Эта теорема легко переносится и на конечномерные пространства, но в бесконечномерных пространствах она в общем случае не верна. Действительно, возьмём в гильбертовом пространстве l_2 ортонормальный базис $\{e_k\}$. Эта последовательность ограничена: $\|e_k\|=1$, но из нее нельзя выделить сходящуюся подпоследовательность, так как расстояние между разными e_k равно $\sqrt{2}$:

$$||e_k - e_m||^2 = (e_k - e_m, e_k - e_m) = 2.$$

Чтобы выделить случаи в бесконечномерных пространствах, когда этот важный результат все-таки имеет место, дадим (или напомним) следующие определения.

Определение 3. Множество Q банахова пространства X называется $\mathit{бикомпактным}$ ($\mathit{бикомпактом}$), если из любой его последовательности можно выделить сходящуюся подпоследовательность, предел которой принадлежит Q. Множество Q банахова пространства X называется

компактным, если из любой его последовательности можно выделить фундаментальную подпоследовательность (которая необязательно сходится к элементу из Q).

Замечание. В некоторых учебниках такую пару называют, соответственно, компактом и предкомпактом. Мы будем использовать терминологию определения 3.

Из определения 3 и теоремы Больцано-Вейерштрасса следует, что в конечномерном пространстве любое ограниченное множество является компактом, а любое замкнутое ограниченное множество является бикомпактом.

В бесконечномерных пространствах имеет место

Предложение 1. Всякий бикомпакт Q является ограниченным и замкнутым.

Ограниченность доказывается от противного: пусть для любого n во множестве Q существует $x_n: ||x_n|| > n$, тогда из такой последовательности $\{x_n\}$ нельзя выбрать фундаментальную подпоследовательность и, следовательно, сходящуюся подпоследовательность. Замкнутость легко следует из определния бикомпакта. $\Pi posepьme$. \square

Следующий факт является аналогом на случай функционалов хорошо известных из матанализа фактов для непрерывных функций на отрезке.

Предложение 2. Пусть f = f(x) — вещественный непрерывный функционал на бикомпакте Q. Тогда f ограничен на Q и достигает своих верхней и нижней границ.

Доказательство. полностью аналогично доказательству соответствующих теорем для непрерывных функций на отрезке. Проведем его для случая ограниченности сверху. Остальные утверждения *докажсите* сами.

Покажем, что f=f(x) ограничен сверху, т.е. существует такая $c\in\mathbb{R},$ что $f(x)\leq c.$ От противного: найдется $x_1\in Q,$ такое что $f(x_1)>1,$ затем найдется $x_2\in Q,$ такое что $f(x_2)>2,\ldots$ В итоге получим в Q последовательность x_n со свойством $f(x_n)>n.$ В

силу бикомпактности множества Q для последовательности x_n найдется сходящаяся подпоследовательность x_{n_k} : $x_{n_k} \to x \in Q$. Отсюда, в силу непрерывности функционала следует, что $f(x_{n_k}) \to f(x)$, значит подпоследовательность $f(x_{n_k})$ ограничена. С другой стороны $f(x_{n_k}) > n_k$, т.е. $f(x_{n_k}) \to \infty$ и мы пришли к противоречию. \square

На основе этого предложения приведем **пример** ограниченного замкнутого множества, не являющегося бикомпактным в 6/м пространстве X .

Пусть X = C[0, 1]. Рассмотрим в пространстве C[0, 1] множество

$$M = \{x(t) \in C[0,1]: \ x(0) = 0, \ x(1) = 1, \ \|x\| \le 1\}.$$

Это множество является ограниченным и замкнутым в пространстве C[0,1]. Рассмотрим на M функционал $f(x) = \int_0^1 x^2(t) dt$.

Проверьте, что этот функционал непрерывен.

Покажем, что функционал f не достигает на M точной нижней грани и, следовательно, M не является бикомпактом. Для этого возьмем последовательность $x_n(t) = t^n$, тогда

$$f(x_n) = \int_0^1 t^{2n} dt = \frac{1}{2n+1},$$

следовательно, inf f(x)=0. Если допустить, что нижняя грань достигается на элементе $x_0=x_0(t)$, то $\int_0^1 x_0^2(t)dt=0 \Rightarrow x_0(t)=0$ на [0,1]. Но тогда $x_0(1)\neq 1$ и, следовательно, $x_0\not\in M$. \square

Введем геометрически наглядное важное для исследования компактных множеств понятие ε -сети.

Определение 4. Пусть $\varepsilon > 0$. Множество M_{ε} в нормированном пространстве X называется ε -сетью множества M, если для любой точки $x \in M$ найдется точка $\tilde{x} \in M_{\varepsilon}$, такая что $\|x - \tilde{x}\| < \varepsilon$.

 Π одумайте над геометрической интерпретацией понятия ε -сети.

C помощью понятия ε -сети формулируется следующий критерий компактности.

Теорема 1 (Хаусдорфа). Множество M в банаховом пространстве X является компактным тогда и только тогда, когда для любого $\varepsilon > 0$ в X существует конечная ε -сеть.

Без доказательства. (Посмотреть доказательство можно в [1] и [2].)

Эта теорема редко используется для проверки является ли конкретное множество в некотором пространстве компактным, но, как мы увидим далее, теорема и ее следствия полезны для установления критерия компактности множеств в конкретных пространствах, в частности, при доказательстве знаменитого критерия компактности в C[a,b] — теоремы Арцела.

• Следствия из теоремы Хаусдорфа

Следствие 1. Замкнутое множество M в банаховом пространстве X является бикомпактным тогда и только тогда, когда для любого $\varepsilon > 0$ для M существует конечная ε -сеть.

Следствие 2. Пусть X — ЛНП. Если для любого $\varepsilon > 0$ для множества $M \subset X$ существует компактная ε -сеть, то M компактно.

Доказательство проводится методом "последовательных приближений множеств". Пусть M_{ε} — компактная ε -сеть для M. По теореме Хаусдорфа для компактного множества M_{ε} существует конечная ε -сеть M'_{ε} . Тогда M'_{ε} является конечной 2ε -сетью для M:

$$||x - x''|| \le ||x - x'|| + ||x' - x''||, \text{ где } x \in M, x' \in M_{\varepsilon}, x'' \in M'_{\varepsilon}.$$

Следствие 3. Всякое компактное множество в ЛНП X ограничено.

Доказательство. Пусть M компактно. Построим для M конечную 1-сеть: $\{x_1,\ldots x_n\}$. Тогда для любого $x\in M$ существует элемент x_i из 1-сети, такой, что $\|x-x_i\|<1$, и для любого $x\in M$ получаем оценку:

$$||x|| \le ||x - x_i|| + ||x_i|| < 1 + ||x_i|| \le 1 + \max_{1 \le i \le n} ||x_i||,$$

т.е. M ограничено.

• Компактность и конечномерность. Теоремы Рисса и Арцела

Определение 5. Неограниченное множество M в ЛНП X, в частности само X, является локально компактным (локально бикомпактным), если пересечение M с любым замкнутым шаром в X компактно (бикомпактно).

Теорема Рисса. Для того, чтобы нормированное пространств X было локально компактным, необходимо и достаточно, чтобы оно было конечномерным.

Без доказательства.

Доказательство. \Leftarrow Пусть X конечномерно. Возьмем в X произвольный замкнутый шар \overline{S} . Тогда множество \overline{S} ограничено и по теореме Больцано-Вейерштрасса любая последовательность из \overline{S} содержит сходящуюся подпоследовательность. Следовательно, X локально компактно.

 \Rightarrow Пусть X локально компактно, т.е. любой замкнутый шар \overline{S}_a^r в X компактен. Чтобы доказать, что X конечномерное пространство, предположим противное, т.е. что X бесконечномерно. Возьмем $x_1 \in X$ с $\|x_1\| = 1$, положим $z = a + rx_1$ и рассмотрим множество M_1 элементов вида λx_1 — линейную оболочку элемента x_1 . Очевидно, множество M_1 является замкнутым линейным многообразием. Тогда по лемме Рисса о почти перпендикуляре существует x_2 , такой что

$$||x_2|| = 1$$
, $\rho(x_2, M_1) > \frac{1}{2} \implies ||x_2 - x_1|| > \frac{1}{2} \implies ||z_2 - z_1|| = r||x_2 - x_1|| > \frac{r}{2}$,

где $z_{1(2)} = a + rx_{1(2)}$ — это точки лежащие на границе шара с центром в точке a радиуса r.

Продолжая этот процесс, построим $x_1, x_2, x_3, \ldots x_n$, затем построим соответствующие $z_1, z_2, z_3, \ldots z_n$ и соответствующие M_n — (замкнутые) линейные оболочки элементов $x_1, x_2, x_3, \ldots x_n$. Тогда найдется x_{n+1} , такой что $||x_k - x_{n+1}|| > \frac{1}{2}$ для любого $x_k \in M_n$, и соответствующий элемент z_{n+1} , такой что $||z_{n+1} - z_k|| > \frac{r}{2}$ для k < n+1. Из последовательности $\{z_k\}$, лежащих на сфере с центром a радиуса r нельзя выделить фундаментальную подпоследовательность. Следовательно, X не является локально компактным. \square

Прежде, чем формулировать знаменитую теорему Арцела о компактности множества в C[a,b], дадим определение равностепенной непрерывности множества непрерывных функций, естественным образом обобщающее понятие равномерной непрерывности отдельной непрерывной функции.

Определение 6. Семейство M непрерывных функций на отрезке [a,b] называется равностепенно непрерывным, если для любого $\varepsilon > 0$ существует

 $\delta>0$, такое, что для любых $t_1,\ t_2\in [a,b]$: $|t_1-t_2|<\delta$, для любой функции $x\in M$ имеет место оценка

$$|x(t_1) - x(t_2)| < \varepsilon.$$

Теорема Арцела. Для того, чтобы множество $M\subset C[a,b]$ было компактным, необходимо и достаточно, чтобы функции из M были

- 1) равномерно ограниченными, т.е. $\exists c : \forall x \in M, ||x|| \leq c;$
- 2) равностепенно непрерывными.

Без доказательства. Геометрически понятное доказательство, основанное на теореме Хаусдорфа и на возможности приближать непрерывные на [a,b] функции ступенчатыми дано в [2].

У24. Является ли компактным в C[a,b] множество ограниченных функций, имеющих ограниченные (ограниченные в совокупности) производные? Привести примеры компактных множеств в пространствах C[a,b] и l_2 .

Рассмотрев свойства компактных множеств, переходим к свойствам вполне непрерывных операторов.

Легко проверить, что определение 2 вполне непрерывного оператора эквивалентно следующему: линейный оператор, переводящий единичный шар в компактное множество, называется *вполне непрерывным*.

Множество вполне непрерывных операторов обозначают $\sigma(X,Y)$.

Название "вполне непрерывный" сразу наводит на мысль сравнить вполне непрерывные операторы с (линейными) непрерывными. Линейные непрерывные операторы, как ВЫ знаете, совпадают линейными ограниченными операторами. Ограниченные операторы — это операторы, которые переводят ограниченные множества в ограниченные. Отсюда множество вполне непрерывных операторов является следует связь: подмножеством линейных ограниченных операторов и, следовательно, подмножеством линейных непрерывных операторов, т.е.

$$\sigma(X,Y) \subset L(X,Y).$$

Более того, оно является замкнутым подмножеством:

Утверждение 1. Множество $\sigma(X,Y)$ является подпространством в L(X,Y).

Без доказательства. По определению, подпространство — это замкнутое линейное многообразие, поэтому доказательство начинается с того, что $\sigma(X,Y)$ — линейное многообразие, а затем доказывается, что оно замкнутое.

У25 Проверьте следующие следствия из утверждения 1.

Следствие 1. Если X или Y конечномерно, то $\sigma(X,Y) = L(X,Y)$.

Следствие 2. Любой линейный функционал $f \in X^*$ вполне непрерывен.

Следствие 3. Если $||A_n - A|| \to 0$ в пространстве L(X,Y), где A_n — вполне непрерывные или конечномерные (переводящие ограниченные множества в конечномерные) операторы, то $A \in \sigma(X,Y)$.

Следующее утверждение оказывается очень важным при исследовании обратного оператора к вполне непрерывному. *Подумайте*, *почему*.

Утверждение 2. Пусть $A \in L(X,Y), B \in L(Y,Z)$. Если хоть один из этих операторов является вполне непрерывным, то $BA \in \sigma(X,Z)$.

Доказательство. Пусть S — единичный шар в X. Если A вполне непрерывен, то AS компактно, но тогда и BAS компактно, т.к. ограниченный оператор B переводит компактное множество в компактное. Следовательно BA вполне непрерывен.

Если B вполне непрерывен, то AS ограничено, следовательно BAS компактно, т.е. опять BA вполне непрерывен. \square

Из утверждения 2 следует, что $A^{-1}: Y \to X$ — оператор обратный к вполне непрерывному A не может быть ограниченным в случае бесконечномерных X и Y, т.к. единичные операторы $I_X = A^{-1}A$ и $I_Y = AA^{-1}$ не являются вполне непрерывными в бесконечномерных пространствах.

• Примеры

Приведем важные примеры вполне непрерывных операторов — интегрального и матричного.

Пример 1. Рассмотрим интегральный оператор $K: C[a,b] \to C[a,b]$

$$Kx(t) = \int_a^b K(t,s)x(s)ds, \ t \in [a,b], \tag{1}$$

с ядром K(t,s) — непрерывной функцией двух переменных в квадрате $[a,b] \times [a,b]$. Линейность оператора очевидна. Чтобы доказать вполне непрерывность оператора K, возьмем в C[a,b] единичную сферу S и проверим, что ее образ является компактным множеством.

Для проверки компактности множества KS воспользуемся теоремой Арцела: проверим, что функции из KS образуют ограниченное и равностепенно непрерывное семейство. Для $x \in KS$ имеем

$$\begin{split} \|Kx\| &= \max_{t \in [a,b]} \left| \int_a^b K(t,s) x(s) ds \right| \leq \max_{t \in [a,b]} \int_a^b |K(t,s)| |x(s)| ds \leq \\ &\leq (b-a) M \max_{t \in [a,b]} |x(t)| = (b-a) M \|x\| = \leq (b-a) M, \quad M := \max_{(t,s) \in [a,b] \times [a,b]} |K(t,s)|. \end{split}$$

Таким образом, множество KS ограничено. Теперь проверим, что функции из KS образуют равностепенно непрерывное семейство. Имеем

$$|Kx(t_1) - Kx(t_2)| = \left| \int_a^b K(t_1, s) x(s) ds - \int_a^b K(t_2, s) x(s) ds \right| \le \int_a^b |K(t_1, s) - K(t_2, s)| |x(s)| ds.$$

Из равномерной непрерывности функции K(t,s) на множестве $[a,b] \times [a,b]$ следует, что для любого $\varepsilon > 0$ существует такое $\delta(\varepsilon) >$), что для любых t_1 и $t_2 \in [a,b]$ и любого $s \in [a,b]$, как только имеем $|t_1 - t_2| < \delta$, так сразу же $|K(t_1,s) - K(t_2,s)| < \varepsilon$. Отсюда следует равностепенная непрерывность образов единичного шара.

Пример 2 Доказательство вполне непрерывности интегрального оператора $K: L_2[a,b] \to L_2[a,b]$ с ядром, называемым ядром Гильберта-Шмидта: $K(t,s) \in L_2([a,b] \times [a,b])$ можно найти в [1]. В доказательстве сначала используется теорема Арцела для случая непрерывного ядра, а затем ядро из $K \in L_2([a,b] \times [a,b])$ приближается непрерывными ядрами.

Пример 3 Рассмотрим в l_2 матричный оператор $A\{x_l\} = \{y_k\}$, где $y_k = \sum_{l=1}^{\infty} a_{kl} x_l$ в матрица удовлетворяет условию $\sum_{l=1}^{\infty} \sum_{l=1}^{\infty} |a_{kl}|^2 < \infty$. Операторы такого типа называют матричными операторами Гильберта-Шмидта. Линейность оператора A очевидна. Докажем ограниченность оператора A.

По неравенству Коши-Буняковского имеем

$$\|\{y_k\}\|^2 = \sum_{l=1}^{\infty} |y_k|^2 = \sum_{k=1}^{\infty} \left| \sum_{l=1}^{\infty} a_{kl} x_l \right|^2 \le$$

$$\sum_{k=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{kl}|^2 \sum_{l=1}^{\infty} |x_l|^2 \right) = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |a_{kl}|^2 ||x||^2.$$

Это означает ограниченность оператора $A: l_2 \to l_2$.

Покажем вполне непрерывность оператора A, пользуясь доказанным свойством замкнутости множества вполне непрерывных операторов в пространстве непрерывных операторов: в данном примере $\sigma(l_2, l_2)$ замкнуто в $L(l_2, l_2)$.

Введем последовательность операторов A_n , переводящих вектор $\{x_l\}$ в вектор $\{y_l, y_2 \dots y_n, 0, 0 \dots\}$. Эти линейные ограниченные операторы переводят пространство в l_2 в конечномерное пространство, следовательно они вполне непрерывны (Следствие 3). Покажем, что оператор A — это предел вполне непрерывных операторов A_n :

$$||A_n - A|| \le \sum_{k=n+1}^{\infty} \sum_{l=1}^{\infty} |a_{kl}|^2 ||x||^2 \to 0$$
 при $n \to \infty$,

следовательно, и A — вполне непрерывен.

Сформулируем теперь без доказательства теорему о вполне непрерывности сопряженного оператора. Формулируется она очень просто, чего нельзя сказать о доказательстве (см. в [1]).

(Теорема Шаудера). Пусть оператор $A \in L(X,Y)$, где X) — ЛНП, Y — банахово. Тогда оператор A вполне непрерывен, если и только если A^* вполне непрерывен.

• Спектральные свойства вполне непрерывных операторов и вполне непрерывных самосопряженных операторов

Мы будем рассматривать спектральные свойства вполне непрерывных и вполне непрерывных самосопряженных операторов. Покажем, что из собственных векторов вполне непрерывного самосопряженного оператора (с нулевым ядром) в гильбертовом пространстве можно составить ортонормированный базис. Техника разложения в ряды Фурье по этому

базису является вполне рабочей для решения операторных уравнений первого и второго рода.

Как следует из свойств вполне непрерывных операторов, которые мы изучали на прошлой лекции, вполне непрерывные операторы чем-то близки к конечномерным. Для их собственных значений имеют место следующие утверждения.

Утверждение 3. Если оператор $A: X \to X$ вполне непрерывен, то его собственное подпространство $X_{\lambda} = \{x \in X : Ax = \lambda x\}$, отвечающее $\lambda \neq 0$, конечномерно.

Доказательство. Пусть $\overline{S_0^1}$ — единичный шар с центром в нуле, замкнутый в подпространстве X_{λ} .

Возьмем произвольную последовательность элементов $\{x_n\}$ из $\overline{S_0^1}$. Из вполне непрерывности оператора A следует, что последовательность $\{Ax_n\}$ компактна, но $\{x_n=\frac{1}{\lambda}Ax_n\}$, откуда следует, что и $\{x_n\}$ компактна. Значит, шар $\overline{S_0^1}$ компактен. Отсюда легко видеть, что и любой шар компактен. Следовательно, подпространство X_λ конечномерно.

Утверждение 4. Для любого $\varepsilon > 0$ вне круга радиуса ε может быть лишь конечное число собственных значений вполне непрерывного оператора.

Без доказательства.

В качестве примера рассмотрим как устроено множество собственных значений интегрального оператора A с непрерывным ядром K в пространстве C[a,b]:

$$\int_{a}^{b} K(t,s)x(s)ds = \lambda x(t), \quad t \in [a,b].$$

Было доказано, что такой оператор является вполне непрерывным. Из утверждения 2 следует, что существуют три возможности поведения собственных значений оператора A:

- оператор A не имеет собственных значений, отличных от нуля, т.е. из равенства $Ax(t) = \lambda x(t)$ при $\lambda \neq 0$ следует x(t) = 0.
- существует лишь конечное число собственных значений, отличных от нуля;
- ullet существует последовательность собственных значений λ_n , отличных от нуля, при этом $\lambda_n \to_{n \to \infty} 0$.

До СИХ ПОР МЫ рассматривали свойства спектра различных операторов, в частности вполне непрерывных. Для вполне непрерывного самосопряженного оператора имеет место теорема существования собственных значений:

Теорема 2 . Пусть $A \neq 0$ — вполне непрерывный самосопряженный в H оператор. Тогда A имеет по крайней мере одно собственное значение, отличное от нуля. Все собственные значения расположены на отрезке [m,M], где

$$m = \inf_{\|x\|=1} (Ax, x), \quad M = \sup_{\|x\|=1} (Ax, x).$$

При этом, если $M \neq 0$, то M — это наибольшее собственное значение, если $m \neq 0$, то m — наименьшее собственное значение.

Без доказательства. (Доказательство можно посмотреть в [1]).

Теорема 3 Все собственные значения вполне непрерывного самосопряженного оператора A действительны. Собственные векторы, соответствующие разным собственным значениям, ортогональны.

Без доказательства.

Доказательство. Если оператор $A \neq 0$ является вполне непрерывным и самосопряженным в H, то у него существует собственное значение $\lambda \neq 0$. Пусть x — соответствующий ему собственный вектор: $Ax = \lambda x$. Покажем, что λ — действительное число. В силу самосопряженности имеем (Ax, x) = (x, Ax). Отсюда

$$(Ax, x) = (\lambda x, x) = \lambda(x, x) = (x, \lambda x) = \overline{\lambda}(x, x) \implies \lambda = \overline{\lambda}.$$

Теперь пусть $x_{1,2}$ — собственные векторы, отвечающие разным собственным значениям $\lambda_{1,2}$. Тогда

$$(Ax_1, x_2) = (x_1, Ax_2) = \lambda_1(x_1, x_2) = \lambda_2(x_1, x_2).$$

Отсюда следует, что $(x_1, x_2) = 0$. \square

Завершаем этот раздел теоремой, подводящей итог свойствам спектра вполне непрерывного самосопряженного оператора.

Теорема 4 (Гильберта-Шмидта) Если A — вполне непрерывный самосопряженный оператор в H, то при любом $x \in H$ элемент Ax разлагается в сходящийся ряд Фурье по ортонормальной системе собственных векторов оператора A.

Без доказательства.

Доказательство. Пусть e_1 — нормированный собственный вектор, отвечающий наибольшему по модулю собственному значению λ_1 . Такое собственное значение по теореме 1 существует. Рассмотрим подпространство H_1 элементов, ортогональных e_1 . Оператор A переводит элементы из H_1 в H_1 , т.к.

$$(Ax, e_1) = (x, Ae_1) = \lambda_1(x, e_1) = 0,$$

следовательно, если x ортогонален e_1 , то и Ax ортогонален e_1 .

Таким образом, A можно рассматривать как вполне непрерывный самосопряженный оператор в H_1 . Пусть e_2 — нормированный собственный вектор, отвечающий наибольшему по модулю собственному значению λ_2 оператора A в пространстве H_1 . ($\lambda_2 \leq \lambda_1$). Продолжая этот процесс, можно построить подпространство H_2 пространства H_1 и т.д. Получим последовательность ортонормированных собственных векторов $e_k \in H_{k-1}$, отвечающих последовательности собственных значений $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$, ...

Есть две возможности: либо этот процесс оборвется, либо будет бесконечным. Если оборвется, скажем на n-м шаге, тогда на пространстве H_n будем иметь A=0. В этом случае для любого x рассмотрим элемент

$$y = x - \sum_{i=1}^{n} (x, e_k)e_k.$$

Нетрудно проверить, что $(y,e_k)=0$ для $k=1,\ldots n$. Следовательно, $y\in H_n$. Значит Ay=0, т.е. $Ax=\sum_{i=1}^n(x,e_k)\lambda_k e_k$, и для этого случая теорема доказана.

Другая возможность — процесс продолжается неограниченно. Значит мы получим последовательность e_k , отвечающих собственным значениям $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n, \ldots$

Далее, для самосопряженного оператора в гильбертовом пространстве можно проверить, что $||A|| = M = \sup_{||x||=1} |(Ax,x)|$ (см.[1]). Тогда, согласно

теореме 1,

$$||A||_{L(H_n)}^2 = \lambda_{n+1}^2.$$

Отсюда получаем оценки:

$$||A[x - \sum_{i=1}^{n} (x, e_k)e_k]||^2 \le \lambda_{n+1}^2 ||x - \sum_{i=1}^{n} (x, e_k)e_k||^2 =$$

$$= \lambda_{n+1}^2 \left[\|x\|^2 - \sum_{i=1}^n |(x, e_k)|^2 \right] \le \lambda_{n+1}^2 \|x\|^2.$$

Поскольку $\lambda_n \to 0$ при $n \to \infty$, то $A[x - \sum_{i=1}^n (x, e_k) \lambda_k e_k] \to 0$ при $n \to \infty$, т.е.

$$Ax = \sum_{i=1}^{\infty} (x, e_k) \lambda_k e_k. \quad \Box$$

Следствие. Если $N(A) = \{0\}$, то любой элемент из H раскладывается в ряд Фурье по ортонормальному базису — ортонормальной системе собственных векторов оператора A. В общем случае, когда $N(A) \neq \{0\}$, базис составляется из элементов множеств N(A) и R(A).

Разложением по ортонормальному базису, состоящему из собственных векторов оператора A, мы в дальнейшем воспользуемся при исследовании и решении операторных уравнений.

References

- [1] Треногин С.В. Функциональный анализ М.: Наука, 1983, 384 с.
- [2] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: ФИЗМАТЛИТ, 2012. 572 с.
- [3] *Люстерник Л.А., Соболев В.И.* Краткий курс функционального анализа. Изд. Лань. 2009. 271 с.