Introducción a la programación con MatLAB Módulo 10 - Álgebra matricial

- AUTORES - 1

1 - NOMBRE UNIVERSIDAD -

AÑO

Transpuesta

Operador transpuesta:

$$Transpuesta_A = A'$$

Cambia las filas de una matriz en culumnas y las columnas en fila

Producto punto

Producto escalar:

Vector_resultante = **sum**(A.*B)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$A = [1 \ 2 \ 3 \ 4 \ 5];$$

 $B = [2 \ 3 \ 4 \ 5 \ 6];$
 $sum(A.*B)$

Producto punto

Ver comando: dot()

$$A = [1 \ 2 \ 3 \ 4 \ 5];$$

 $B = [2 \ 3 \ 4 \ 5 \ 6];$
 $dot(A,B)$

- Use la función dot para encontrar el producto punto de los siguientes vectores :
 - A = [1 2 3 4]
 - B = [12 20 15 7]
- Encuentre el producto punto de A y B al sumar los productos arreglo de A y B (sum(A.*B))

Multiplicación matricial

Producto matricial:

Vector_resultante = A*B

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

Potencias de matrices

Elevar a la potencia N cada elemento de la matriz.

Vector_resultante = A.Ñ

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

Comando

Ver comando: inv()

$$A = [1 \ 2 \ 3 \ ; \ 4 \ 5 \ 6 \ ; \ 7 \ 8 \ 9];$$

 $Res = inv(A)$

Determinantes

Comando

Ver comando: det()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$A = [1 \ 2 \ 3 \ ; \ 4 \ 5 \ 6 \ ; \ 7 \ 8 \ 9];$$

 $Res = det(A)$

$$A = [1 \ 2 \ 3 \ ; \ 0 \ 0 \ 5 \ ; \ 0 \ 0 \ 6];$$

 $Res = inv(A)$

det(A)

Cuando te dicen que si quedo todo claro y dices que si, pero tu mente sabe que no.

det(A)

Cuando te dicen que si quedo todo claro y dices que si, pero tu mente sabe que no.

Algebra!

det(A) = 0 entonces matriz singular. No existe la inversa!

IEEE Sección Argentina

- Encuentre el inverso de las siguientes matrices mágicas, tanto con la función inv como al elevar la matriz a la potencia -1:
 - magic(3)
 - magic(4)
 - magic(5)
- 2 Encuentre el determinante de cada una de las matrices de la parte 1

Matrices especiales : unos y ceros

Comando

Ver comando: ones()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

MatrizUnos = ones(2)

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Matrices especiales : unos y ceros

Comando

Ver comando: ones()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

MatrizUnos = ones(2)

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Comando

Ver comando : zeros()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

MatrizCeros = zeros(2,2)

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Matrices especiales : Matriz identidad

Comando

Ver comando: eye()

$$MatrizIdentidad = eye(3)$$

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Considere la siguiente matriz : A = [1 2 3; 2 4 6; 3 6 9]. Calcule el determinante de A. Es inversible?

Recordar

Si el $det(A) \neq 0$, entonces la matriz es inversible.

inv(A)

Resupuesta:

Tener en cuenta

Si el $det(A) \neq 0$, entonces las columnas de A son linealmente independientes y, por lo tanto, A es inversible.

Resupuesta:

Tener en cuenta

Si el $det(A) \neq 0$, entonces las columnas de A son linealmente independientes y, por lo tanto, A es inversible.

Matriz propuesta

A =

1 2 3 2 4 6

Eran todas linealmente dependientes

