Merge Sort

Divide-and-Conquer (§ 10.1.1)

Divide-and-conquer (分治演 算法) is a general algorithm design paradigm:

- 化整為零 各個擊破
- Divide: divide the input data S in two disjoint subsets S_1 and S_2
- Conquer: solve the subproblems associated with S₁ and S₂
- Combine: combine the solutions for S_1 and S_2 into a solution for S

- Merge-sort: A sorting algorithm based on divide and conquer
 Some don't!
- Like heap-sort
 - It uses a comparator
 - It has *O*(*n* log *n*) running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential/local manner (suitable to sort data on a disk)

Good for external sorting

Merge Sort

- Merge sort
 - A divide-and-conquer algorithm
 - Invented by John von Neumann in 1945

約翰·馮·紐曼(John von Neumann, 1903年12月28日-1957年2月8日), 出生於匈牙利的美國籍猶太人數學家, 現代電腦創始人之一。他在電腦科學、 經濟、物理學中的量子力學及幾乎所 有數學領域都作過重大貢獻,被譽為 「電腦之父」。(圖及說明摘自<u>維基百</u> 科)

Merge-Sort (§ 10.1)

- Three steps of mergesort on an input sequence *S* with *n* elements:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Conquer: recursively sort S_1 and S_2
 - Combine: $\frac{\text{merge } S_1}{\text{merge } S_2}$ and $\frac{1}{\text{merge } S_2}$ into a sorted sequence

Key

```
Algorithm mergeSort(S, C)
Input sequence S with n
elements, comparator C
Output sequence S sorted
according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

Merging Two Sorted Sequences

Merging two sorted sequences (implemented as linked lists) with n/2 elements each, takes O(n) time.

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.empty() \land \neg B.empty()
       if A.front() < B.front()
           S.addBack(A.front()); A.eraseFront();
       else
            S.addBack(B.front()); B.eraseFront();
   while \neg A.empty()
       S.addBack(A.front()); A.eraseFront();
   while \neg B.empty()
       S.addBack(B.front()); B.eraseFront();
   return S
```

To Merge 2 Sorted Sequences

- Properties
 - Need extra space to store the sorted results → Not an in-place sort
 - Total time = O(|A|+|B|) = O(m+n)

Also good for singly linked lists

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Merge

Recursive call, ..., base case, merge

Merge

Recursive call, ..., merge, merge

Merge

Merge Sort: Example

Why Merge Sort Is Stable?

Resources on Merge Sort

- Numerous resources on merge sort
 - Wiki
 - Animation by sorting a vector
 - Animation by dots
 - Youtube
 - Detailed explanation with pseudo code

Analysis of Merge-Sort

- \bullet The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- \bullet The overall amount or work done at the nodes of depth *i* is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

Summary of Sorting Algorithms

Algorithms	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	 fast in-place for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	 fast Not in-place sequential data access for huge data sets (> 1M)

Merge Sort