Arbres binaires de recherche (II)

- Version avec équilibrage (AVL) -

Irena.Rusu@univ-nantes.fr

Temps d'exécution

opérations sur ensemble

	Ens_vide	Ajouter Enlever	Élément	Min
table	cst	O(1)*	O(<i>n</i>)	O(n)
table triée	cst	<i>O</i> (<i>n</i>)	O(log <i>n</i>)	O(1)
liste chaînée	cst	O(1)*	<i>O</i> (<i>n</i>)	O(<i>n</i>)
arbre équilibré	cst	O(log n)	O(log <i>n</i>)	O(log <i>n</i>)
arbre	cst	O(log <i>n</i>)	O(log <i>n</i>)	O(log <i>n</i>)
table de hachage	O(B)	cst	cst	O(B)

n nombre d'élémentsB > n taille de la table de hachage*sans le test d'appartenance

en moyenne

implémentation

Objectifs

- Recherche, insertion, suppression en O(h(A)) chacune, MAIS
- ... Maintenir h(A) à une valeur en O(log n), où n est le nombre d'éléments dans l'arbre
- Eviter l' « allongement » de l'arbre ; faire basculer des sous-arbres entiers de gauche vers la droite ou inversement...
- ... et cela après chaque opération d'insertion ou suppression

→ Ce rééquilibrage doit aussi être fait en O(log n) au pire pour assurer l'efficacité

Sommaire

- Arbres binaires équilibrés en hauteur (ou AVL)
 - Equilibrage
 - Ajout d'un élément
 - Suppression d'un élément

Sommaire

- Arbres binaires équilibrés en hauteur (ou AVL)
 - Equilibrage
 - Ajout d'un élément
 - Suppression d'un élément

AVLs - Historique

Auteurs : Georgy Adelson-Velsky (1922 -)

et Evgueny Landis (1921-1997)

Publication en 1962 :

An algorithm for the organization of information, *Soviet Mathematics Doklady*, 3:1259–1263, 1962.

 Ce sont historiquement les premiers arbres de recherche équilibrés algorithmiquement

Arbres binaires de recherche équilibrés (AVLs)

A arbre AVL ssi A est un ABR et en plus (si A non-vide)

Soit 1/ en tout noeud p de A: $|h(D(p)) - h(G(p))| \le 1$

Soit 2/A est de la forme A=(r, G, D) avec:

G, D sont des AVLs $max(G) \le r < min(D)$ et $|h(D) - h(G)| \le 1$


```
bal(p) = bal(A(p)) = h(D(p)) - h(G(p)) balance (ou déséquilibre)

1'/ en tout nœud p de A (si A non vide),

bal(p) = -1, 0 ou + 1
```

Implémentation des AVLs

- avl: structure, comme les ABR, sauf bal:
- compris entre –1 et +1 si AVL
- -2 et +2 temporairement dans la suite

Fonctions:

```
(avl,entier) AJOUTER (element x, avl A);

/* rend l'arbre modifié et la différence de hauteur : 0 ou +1 */

(avl,entier) ENLEVER (element x, avl A);

/* rend l'arbre modifié et la différence de hauteur : -1 ou 0 */

(avl,entier) OTERMIN (avl A);

/* rend l'arbre modifié et la différence de hauteur : -1 ou 0 */
```

Hauteur d'AVL

A arbre AVL à n nœuds $\log_2(n+1)-1 \le h(A) \le 1,45 \log_2(n+2)$

⇒ Implémentation d'ensembles avec opérations :

```
MIN (A), MAX (A)
AJOUTER (x, A)
ENLEVER (x, A)
O(log(n))
pire des cas
ELEMENT (x, A)
```

Sommaire

- Arbres binaires équilibrés en hauteur (ou AVL)
 - Equilibrage
 - Ajout d'un élément
 - Suppression d'un élément

Equilibrage: 4 solutions (à choisir convenablement)

x indique la source du déséquilibre.

Note : A est le nœud le plus bas de déséquilibre +2 ou -2

Rotation gauche: cas 1

$$A = (r, A_g, A_d)$$
 où A_g, A_d sont AVL
- bal $(A) = 2$
- bal $(A_d) = 1$

La rotation préserve l'ordre symétrique

Note: elle diminue la hauteur

Rotation gauche: cas 2

$$A = (r, A_g, A_d)$$
 où A_g, A_d sont AVL
- bal $(A) = 2$
- bal $(A_d) = 0$

La rotation préserve l'ordre symétrique **Note** : elle ne diminue pas la hauteur

Rotation gauche (suite)

Note. Algorithme valable pour tout arbre binaire pour lequel les balances sont calculées (quelles que soient ces balances)

Fonction ROTD similaire.

Double rotation gauche: cas 1

$$A = (r, A_g, A_d)$$
 où A_g, A_d sont AVL
- bal $(A) = 2$
- bal $(A_d) = -1$

La rotation préserve l'ordre symétrique

Note: elle diminue la hauteur

Double rotation gauche: cas 2, 3

Double rotation gauche (suite)

Exemple

Ajouts successifs de 4, 3, 1, 6, 7, 5, 2 dans l'arbre vide

Note. Dans les AVLs, on n'ajoute jamais un élément déjà présent.

Equilibrage

```
avl EQUILIBRER(avl A) {
                        si (A.bal = 2) alors
Entrée
                              si (A.d.bal >= 0) alors
A arbre tel que
                                   retour ROTG(A);
A_{\rm a}, A_{\rm d} sont AVL
                              sinon { A.d ← ROTD(A.d);
-2 \le \text{bal}(A) \le 2
                                   retour ROTG(A);
                        sinon si (A.bal = -2) alors
Sortie
                              si (A.g.bal <= 0) alors</pre>
A arbre AVL
                                   retour ROTD(A);
[-1 \le bal(A) \le 1]
                              sinon { A.g \leftarrow ROTG(A.g); }
                                   retour ROTD(A);
                        sinon retourne A;
```

Sommaire

- Arbres binaires équilibrés en hauteur (ou AVL)
 - Equilibrage
 - Ajout d'un élément
 - Suppression d'un élément

Variation de la hauteur après ajout

Ajout d'un élément

```
(avl,int) AJOUTER(element x, avl A)
/* retourne le nouvel arbre et la variation de la hauteur */
     si (A = NULL) alors {
           créer un nœud A; A.q ← NULL; A.d ← NULL;
           A.elt \leftarrow x_i A.bal \leftarrow 0_i
           retour (A,1);}
     sinon si (x = A.elt) alors
              retour (A, 0);
            sinon si (x > A.elt) alors
                      (A.d,h) \leftarrow AJOUTER(x,A.d);
                   sinon
                      \{(A.g,h) \leftarrow AJOUTER(x,A.g); h \leftarrow -h;\}
                   si (h = 0) alors
                       retour (A, 0);
                   sinon
                       A.bal \leftarrow A.bal + h;
                       A \leftarrow EOUILIBRER(A);
                       si (A.bal = 0) alors
                       retour (A,0);
                                                                  23
                       sinon retour (A,1);
```

Temps pour un ajout avec équilibrage

Temps d'une rotation : constant

Note: AJOUTER exécute au plus une rotation car une rotation dans cette situation rétablit la hauteur initiale de l'arbre auquel elle est appliquée

A arbre AVL à n nœuds Temps total d'un ajout : $O(h(A)) = O(\log n)$ car une seule branche de l'arbre est examinée

Sommaire

- Arbres binaires équilibrés en hauteur (ou AVL)
 - Equilibrage
 - Ajout d'un élément
 - Suppression d'un élément

Variation de la hauteur après une suppression

Suppression d'un élément

```
(avl,int) ENLEVER(element x, avl A)
\* retourne le nouvel arbre et la variation de la hauteur*\
     si (A = NULL) alors retour (A,0);
     sinon si (x > A.elt) alors
             (A.d,h) \leftarrow ENLEVER(x,A.d);
            sinon si (x < A.elt) alors</pre>
                    \{(A.g,h) \leftarrow ENLEVER(x,A.g); h \leftarrow -h;\}
                   sinon si (A.q = NULL) alors
                            retour (A.d,-1);
                          sinon si (A.d = NULL) alors
                                   retour (A.q,-1);
                                sinon {A.elt ← min(A.d);
                                       (A.d,h) \leftarrow OTERMIN(A.d);
           si (h = 0) alors retour (A, 0);
             sinon {A.bal ← A.bal + h;
                       A \leftarrow EOUILIBRER(A);
                       si (A.bal = 0) alors retour (A, -1);
                    sinon retour (A,0);}
                                                               27
```

Fonction OTERMIN

Entrée A arbre AVL non vide

```
(avl,int) OTERMIN(avl A) {
     si (A.g = NULL) alors {
          min ← A.elt;
          retour (A.d,-1);}
    sinon
          \{(A.g,h) \leftarrow OTERMIN(A.g); h \leftarrow -h;\}
     si (h = 0) alors
          retour(A,0);
     sinon {
          A.bal \leftarrow A.bal + h;
          A ← EQUILIBRER(A);
          si (A.bal = 0) alors
               retour (A,-1);
          sinon
               retour (A,0);
```

Temps pour une suppression

Note: ENLEVER et OTERMIN peuvent exécuter une rotation sur chaque ancêtre du nœud supprimé

A arbre AVL à n nœuds Temps total d'une suppression : $O(h(A)) = O(\log n)$ car ENLEVER et OTERMIN examinent une seule branche de l'arbre (et temps d'une rotation constant)