Select Junction Boxes According to Box Fill Requirements in the NEC®

Program: Electrician Technician

Course: EL140 – Residential Applications

Objectives: Under the supervision of your instructor, you should be able to do the following:

- Size outlet boxes and select the proper type for different wiring methods
- Select the proper type and size outlet box needed for a given set of wiring conditions

Lab Equipment:

Raceway system layout including conductor number, sizes, and notes

Required Tools:

- Pencil and paper
- Calculator
- National Electrical Code® book

Materials:

N/A

Safety (PPE):

- Safety Glasses
- Hard Hats if using bays

Resources-Instructor Notes:

• National Electrical Code® book

Time Required: 120 Minutes

Shop Maintenance:

- All work will cease 20 minutes prior to the end of class.
- All work areas must be cleaned.
- Tools and equipment must be cleaned and returned to the designated areas (cage, tool room, cabinets etc.)
- Any broken or missing tools must be reported immediately.
- Tools and equipment are student's responsibility

Procedures:

This performance project requires you to determine the minimum box sizes based on the size and number of conductors, and other factors that regulate box fill requirements.

- 1. Review NEC Section 314.16 and Tables 314.16(A) and (B).
- 2. Review the raceway layout in *Figure 1* and note the size and number of conductors entering and leaving each box.
- 3. Review the Notes on Figure 1.
- 4. Refer to Module 26111-11 Section 12.0.0, *NEC Section 314.16*, and *NEC Table 314.16(B)* for box fill calculations and volume allowance required per conductor.
- 5. Calculate the total cubic inch requirements for each box based on the number of conductors entering and leaving the boxes, and the box fill allowances listed in the **NEC Sections 314.16(B)(1)** through (5).
- 6. Enter the minimum box sizes on the spaces provided in each box of Figure 1.
- 7. Have your instructor check your work.

UEI COLLEGE • UNITED EDUCATION INSTITUTE

SOLUTION

Box A: 27 – 12 AWG (coming in and leaving) 9 – 14 AWG (coming in and leaving) 1 – 12 EGC 4 – 12 AWG (two yokes) Total minimum cubic inch capacity for Box A:	2.25 in ³ x 27 2.00 in ³ x 9 2.25 in ³ x 1 2.25 in ³ x 4	= 60.75 = 18.00 = 2.25 = 9.00 = 90.00 in ³
Box B: 3 – 12 AWG (coming in) 1 – 14 AWG (coming in) 1 – 12 EGC 4 – 12 AWG (two yokes) Total minimum cubic inch capacity for Box B:	2.25 in ³ x 3 2.00 in ³ x 1 2.25 in ³ x 1 2.25 in ³ x 4	= 6.75 = 2.00 = 2.25 = 9.00 = 20.00 in ³
Box C: 15 – 12 AWG (coming in and leaving) 5 – 14 AWG (coming in and leaving) 1 – 12 AWG EGC 4 – 12 AWG (two yokes) Total minimum cubic inch capacity for Box C:	2.25 in ³ x 15 2.00 in ³ x 5 2.25 in ³ x 1 2.25 in ³ x 4	= 33.75 = 10.00 = 2.25 = 9.00 = 55.00 in ³
Box D: 9 – 12 AWG (coming in and leaving) 3 – 14 AWG (coming in and leaving) 1 – 12 AWG EGC 2 – 12 AWG (one yoke) Total minimum cubic inch capacity for Box D:	2.25 in ³ x 9 2.00 in ³ x 3 2.25 in ³ x 1 2.25 in ³ x 2	= 20.25 = 6.00 = 2.25 = 4.50 = 33.00 in^3
Box E: 3 – 12 AWG (coming in) 1 – 14 AWG (coming in) 1 – 12 AWG EGC 2 – 12 AWG (one yoke) Total minimum cubic inch capacity for Box E:	2.25 in ³ x 3 2.00 in ³ x 1 2.25 in ³ x 1 2.25 in ³ x 2	= 6.75 = 2.00 = 2.25 = 4.50 = 15.50 in ³