Avon High School **AP** Calculus AB **SEMESTER 2** FINAL EXAM REVIEW

1. The function $G(x) = \begin{cases} x^2, & x < 2 \\ 4 - 2x, & x > 2 \end{cases}$ is not continuous at x = 2 because:

A. G(2) is not defined

B. $\lim_{x\to 2} G(x)$ does not exist

 $\mathbf{C.} \quad \lim_{x \to 2} G(x) \neq G(2)$

D. All of the above

E. None of the above

2.
$$\lim_{x\to 0} \left(\frac{1}{x} + \frac{1}{x^2}\right) =$$

$$3. \lim_{x \to \infty} \frac{x^3 - 4x + 1}{2x^3 - 5} =$$

4.
$$\lim_{h \to 0} \frac{\arcsin(a+h) - \arcsin(a)}{h} =$$

5. A ladder is 15 feet tall leans against a vertical wall of a home. If the bottom of the ladder is pulled away horizontally from the house at 4 ft / sec, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 9 feet from the wall?

6. A cone (vertex down) with height 10 inches and radius 5 inches is being filled with water at a constant rate of $2 in^3$ / sec. How fast is the surface of the water rising when the depth of the water is 6 inches?

- 7. Find the derivative of $y = e^{2x}$.
- **8.** Find the derivative of $y = \ln(\sin x)$.
- **9.** Find the derivative of $y = \frac{e^x 1}{e^x + 1}$.
- **10.** Find the derivative of $y = e^{\sin x}$.
- 11. Find the equation of the tangent line to the curve $(x^2 + y^2)^2 = 4x^2y$ at the point (1, 1).

12. Find the value of c guaranteed to exist by Rolle's Theorem for $f(x) = 2x^2 - 11x + 15$ in the interval $\left[\frac{5}{2}, 3\right]$.

13. Find the value of c guaranteed to exist by the Mean Value Theorem for $f(x) = (x-1)^3$ in the interval [-1, 2].

14.
$$\int (\sec^2 \theta - \sin \theta) d\theta =$$

$$15. \int (\cos 6x) dx =$$

16.
$$\int_{1}^{2} \left(\frac{3}{x^{2}} - 1 \right) dx =$$

17.
$$\int_{-1}^{1} x(x^2 + 1) dx =$$

18.
$$\int \frac{e^{-x}}{1 + e^{-x}} dx =$$

19.
$$\int 3^x dx =$$

20.
$$\int_{e}^{e^{2}} \frac{1}{x \ln x} dx =$$

- **21.** Using the substitution $u = \sin(2x)$, $\int_{\pi/2}^{\pi/2} \sin^5(2x) \cos(2x) dx$ is equivalent to:
 - **A.** $-2\int_{1/2}^{1} u^5 du$ **B.** $\frac{1}{2}\int_{1/2}^{1} u^5 du$
- - C. $\frac{1}{2} \int_0^{\sqrt{3}/2} u^5 du$ D. $\frac{1}{2} \int_{\sqrt{3}/2}^0 u^5 du$
 - **E.** $2\int_{\sqrt{3}/2}^{0} u^5 du$
- 22. A particle moves along the x-axis with velocity given by $v(t) = 3t^2 4$ for time $t \ge 0$. If the particle is a position x = -2 at time t = 0, what is the position of the particle at time t = 3?

23. Find $\frac{dy}{dx}$ if $ye^x - x = y^2$.

- **24.** Given $f(x) = x^3 + 2x + 1$, find $(f^{-1})'(1)$.
- **25.** Find the derivative of $y = \arctan\left(\frac{x}{2}\right)$.
- **26.** Find the derivative of $y = arc \cot(\sqrt{x})$.

- **27.** Find the derivative of $y = \arccos(\cos x)$.
- **28.** Find the derivative of $y = \ln(\arcsin x)$.
- **29.** Find the particular solution to the differential equation $xyy' \ln x = 0$ given the initial condition y(1) = 0.

30. If $\frac{dy}{dx} = x + 2xy$ and y(0) = 1, find y as a function of x.

31. Which of the following is the slope field for the differential equation $y' = \frac{x}{y}$?

A.

В.

C.

D.

E.

32. Find the volume of the solid generated when the region in the first quadrant bounded by the graphs of $y = \cos x$, $y = \sin x$, the line $x = \frac{\pi}{4}$, and the y-axis is revolved about the x-axis.

33. Find the volume of the solid generated when the region in the first quadrant bounded by the graph of $y = (x+3)^3$, the line x = 2, and the x-axis is revolved about the line y = -1.

34. Let R be the region bounded by $y = e^x$, y = 2, and x = 0. Find the volume of the solid whose base is bounded by the region R and the cross sections perpendicular to the x-axis are semicircles.

35. The base of a solid is the region in the first quadrant bounded by the line $y = -\frac{1}{2}x + 2$ and the coordinate axes. If every cross section perpendicular to the x-axis is a square, which of the following integrals represents volume of the solid?

A.
$$\int_0^2 \left[-\frac{1}{2} x + 2 \right] dx$$

B.
$$\int_0^4 \left[-\frac{1}{2} x + 2 \right] dx$$

C.
$$\int_0^2 \left[-\frac{1}{2}x + 2 \right]^2 dx$$

C.
$$\int_0^2 \left[-\frac{1}{2}x + 2 \right]^2 dx$$
 D. $\int_0^4 \left[-\frac{1}{2}x + 2 \right]^2 dx$

E. None of these