In the proof of Lemma 6, $k \ge 1$ and $\Delta = 2 \left\lceil \frac{2^\ell n}{\epsilon^{\ell-1} k} \right\rceil$. Then taking $\epsilon > 0$ small enough so that $N_{\ge k}(m) \ge \epsilon n$, we use Lemma 4 to show that whp, after $\Delta/2$ steps we have $\ell-1$ components together containing at least $\varepsilon n/2$ vertices (this part of the proof actually shows a bit more than this, but it doesn't really matter).

Proposition 1. For all $\varepsilon > 0$, whp there is a giant component after at most $(1 + \varepsilon)n$ steps.

Proof. We can assume $0 < \varepsilon \le 2$. Note that if we set $k = 2^{\ell}/\varepsilon^{\ell-1}$, then $k \ge 1$, so we can set m = 0 and apply the same reasoning as in the proof of Lemma 6. Thus after $\Delta/2 = n < (1+\varepsilon)n$ steps, whp we have $\ell-1$ components together containing at least $\varepsilon n/2$ vertices. This means that we must have at least one component with $\frac{\varepsilon}{2(\ell-1)}n$ vertices. Since ε and ℓ are fixed, this component is a giant component.