

Test 14: Phase Diagram with Critical Marking

Goals

- To generate a **phase diagram** over a grid of (β, slope) values.
- Track $\Delta Q = Q_{fast} Q_{slow}$, the weight ratio $R = \frac{w_{fast}}{w_{fast} + w_{slow}}$, and mark where transitions occur.
- Console log each line for your copy-paste workflow.
- Write results into a **CSV file** for structured analysis.
- Produce plots:
 - 1. ΔQ vs slope (for each β).
 - 2. Weight ratio vs slope (for each β).
- Add a vertical line on each plot showing where ΔQ ≈ 0, marking the critical slope for transition.

Interpretation Strategy

- ∆Q = 0 is the geometric degeneracy point → transition between slow- and fast-dominated dynamics.
- R (ratio) indicates which path actually dominates dynamically.
- Together, these form the critical manifold in parameter space.
- Plotting across β (8–10) shows whether the critical slope shifts with β (suggesting dimensionality effects).

Updated Test 14 (extended)

Goals

- Keep all the previous outputs (console, CSV, separate ΔQ and Ratio plots).
 - Add a dual-axis plot:
 - Left y-axis → ΔQ (difference between Q_fast and Q_slow).
 - Right y-axis → Ratio (fast / total).
 - This will allow us to see directly whether the critical $\Delta Q=0$ point aligns with the Ratio=0.5 threshold across different β values.
 - Critical for identifying whether the geometric and dynamic transitions coincide or separate - which could reveal hidden dimensional effects.