GIẢI TÍCH III

TS. Lê Văn Tứ

Hanoi University of Science and Technology

Chuỗi số - Tổng riêng - Sự hội tụ

Định nghĩa

Xét một dãy các số thực $(u_n)_{n\geq 1}$. Tổng hình thức của vô hạn số hạng sau

$$u_1 + \ldots + u_n + \ldots$$

được gọi là một chuỗi số, kí hiệu là $\sum_{n=1}^{\infty} u_n$. Ta gọi

- u_n là số hạng tổng quát.
- $S_n = u_1 + \ldots + u_n$ là tổng riêng của n số hạng đầu tiên.
- $R_n = u_{n+1} + u_{n+2} + \ldots = \sum_{k=n+1}^{\infty} u_k$ được gọi là phần dư của S_n .

Ví dụ. Chuỗi $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$

Số hạng tổng quát: $\frac{1}{n^2}$. Tổng riêng $\sum_{k=1}^n \frac{1}{k^2}$. Phần dư $\sum_{k=n+1}^\infty \frac{1}{k^2}$.

Chuỗi hội tụ - Chuỗi phân kì

Định nghĩa

Chuỗi $\sum_{n=1}^{+\infty} u_n$ được gọi là *hội* tự nếu tồn tại $\ell \in \mathbb{R}$ hữu hạn sao cho dãy tổng riêng $S_n = u_1 + \ldots + u_n$ hôi tu về ℓ .

$$\sum_{n=1}^{+\infty} u_n = \ell \Leftrightarrow \lim_{n \to +\infty} S_n = \ell.$$

Nếu dãy tổng riêng S_n không có giới hạn hoặc giới hạn bằng vô cùng khi n tiến về $+\infty$ thì ta nói $\sum_{n=1}^{\infty} u_n$ phân kì.

Chuỗi $\sum_{n=0}^{+\infty} q^n$

$$ullet$$
 Tổng riêng $S_n=1+q+\ldots+q^n=egin{cases} n ext{ n\'eu } q=1 \ rac{1-q^{n+1}}{1-q} ext{ n\'eu } q
eq 1 \end{cases}$.

$$\bullet \ \mathsf{V\'oi} \ q \neq 1, \lim_{n \to +\infty} q^n = \begin{cases} 0 \ \mathsf{n\'eu} \ |q| < 1 \\ +\infty \ \mathsf{n\'eu} \ q > 1 \\ \mathsf{không tồn tại n\'eu} \ q \leq -1 \end{cases}$$

$$\bullet \lim_{n \to +\infty} S_n = \begin{cases} \frac{1}{1-q} \text{ n\'eu } |q| < 1 \\ +\infty \text{ n\'eu } q \geq 1 \\ \text{không tồn tại n\'eu } q \leq -1 \end{cases}$$

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q} \Leftrightarrow |q| < 1$$

Lê Văn Tứ (BKHN) Chuỗi - PTVP - BD Laplace 03/2023 4/21

Chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

Ta có với mọi $n \ge 2$,

$$\frac{1}{n^2} < \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$$

Do đó,

$$\begin{split} S_n &= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} &< 1 + \frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n-1)} \\ &< 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \ldots + \frac{1}{n-1} - \frac{1}{n} \\ &< 2 - \frac{1}{n} < 2. \end{split}$$

Suy ra S_n là dãy tăng ngặt và bị chặn trên. Do đó, $\lim_{n \to +\infty} S_n$ tồn tại và hữu hạn.

Nói cách khác, $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ hội tụ.

4 D > 4 B > 4 B > 4 B > 8 9 9 9

Chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n}$

• Nếu $\sum\limits_{n=1}^{+\infty} \frac{1}{n}$ hội tụ bằng L thì

$$\lim_{n\to+\infty} S_{2n} = \lim_{n\to\infty} S_n = L.$$

•
$$S_{2n} - S_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > n \frac{1}{2n} = \frac{1}{2}.$$

• Suy ra $\sum_{n=1}^{+\infty} \frac{1}{n}$ phân kì.

Câu hỏi trọng tâm

Cho chuỗi $\sum\limits_{n=1}^{+\infty}u_n.$

- Chuỗi hội tụ hay phân kì ?
- Nếu chuỗi hội tụ thì giá trị bằng bao nhiêu ?

Các tính chất cơ bản của chuỗi hội tụ

Mênh đề

Chuỗi $\sum\limits_{n=1}^{+\infty}u_n$ hội tụ khi và chỉ khi với mọi $k\in\mathbb{N},\sum\limits_{n=k}^{+\infty}u_n$ hội tụ.

Mệnh đề

Cho hai chuỗi hội tụ $\sum\limits_{n=1}^{+\infty}u_n=\ell_1, \sum\limits_{n=1}^{+\infty}v_n=\ell_2.$ Khi đó, với mọi $\alpha,\beta\in\mathbb{R}$,

$$\sum_{n=1}^{+\infty} (\alpha u_n + \beta v_n) = \alpha \ell_1 + \beta \ell_2.$$

Chú ý

Ta không kết luận được tính hội tụ hay phân kì của chuỗi $\sum_{n=1}^{+\infty} u_n v_n$ (ví dụ sử dụng chuỗi đan dấu).

Xét sự hội tụ của $\sum\limits_{n=1}^{+\infty}(u_n+v_n)$

a.
$$u_n = \frac{2n+1}{n^2(n+1)^2}$$
, $v_n = \frac{1}{2^n}$.
$$u_n = \frac{1}{n^2} - \frac{1}{(n+1)^2} \Rightarrow \sum_{n=1}^{+\infty} u_n \text{ hội tụ. } \sum_{n=1}^{+\infty} v_n \text{ hội tụ do } \left| \frac{1}{2} \right| < 1. \text{ Dó đó,}$$
$$\sum_{n=1}^{+\infty} (u_n + v_n) \text{ hội tụ.}$$

b.
$$u_n = \frac{2}{3^n}, v_n = \frac{1}{n}$$
.

Ta có
$$\sum_{n=1}^{+\infty} -u_n$$
 hội tụ. Giả sử $\sum_{n=1}^{+\infty} (u_n+v_n)$ hội tụ thì $\sum_{n=1}^{+\infty} (u_n+v_n+(-u_n))$ hội

tụ. Tuy nhiên, $\sum_{n=1}^{+\infty} v_n$ phân kì. Do đó, $\sum_{n=1}^{+\infty} (u_n + v_n)$ phân kì.

c.
$$u_n=\frac{1}{n}, v_n=-\frac{1}{n}.$$

$$u_n+v_n=0 \text{ nên } \sum_{n=1}^{+\infty}(u_n+v_n) \text{ hội tụ}.$$

Các tính chất cơ bản của chuỗi hội tụ

Điều kiện cần của chuỗi hội tụ

Chuỗi
$$\sum_{n=1}^{+\infty} u_n$$
 hội tụ thì $\lim_{n\to\infty} u_n = 0$

Chứng minh. Nếu $\sum_{n=1}^{+\infty} u_n$ hội tụ và bằng ℓ thì $\lim_{n\to+\infty} S_n = \lim_{n\to+\infty} S_{n-1} = \ell$. Do

đó,
$$u_n = \lim_{n \to +\infty} (S_n - S_{n-1}) = 0.$$

Ví dụ. Chứng minh các chuỗi sau phân kì

a.
$$\sum_{n=1}^{+\infty} (-1)^n n$$

$$b.\sum_{n=1}^{+\infty} \left(\frac{n+1}{n+2}\right)^n$$

Chú ý

Mệnh đề đảo không đúng. Ví dụ, chuỗi $\sum\limits_{n=1}^{+\infty} \frac{1}{n}$ có $\lim\limits_{n\to\infty} u_n=0$ nhưng phân kì.

Chuỗi dương

Định nghĩa

Chuỗi $\sum_{n=1}^{+\infty} u_n$ được gọi là chuỗi dương nếu với mọi $n \geq 1, u_n > 0$.

Nhân xét

- Nếu với mọi $n \geq 0$, $u_n < 0$, ta xét chuỗi $\sum_{n=1}^{+\infty} -u_n = -\sum_{n=1}^{+\infty} u_n$. Nói cách khác, các kết quả áp dụng cho chuỗi dương áp dụng được với mọi chuỗi không đổi dấu.
- Chuỗi dương $\sum_{n=1}^{+\infty} u_n$ hội tụ khi và chỉ khi dãy tổng riêng S_n là dãy bị chặn.

←ロト ←部ト ← 差ト ← 差 ・ り へ ○

Định lí 1

Cho hai chuỗi dương $\sum_{n=1}^{+\infty} u_n, \sum_{n=1}^{+\infty} v_n$ sao cho kể từ $n_0 \geq 0$ nào đó

$$\forall n \geq n_0, u_n \leq v_n$$
.

- Nếu $\sum_{n=1}^{+\infty} v_n$ hội tụ thì $\sum_{n=1}^{+\infty} u_n$ hội tụ.
- Nếu $\sum_{n=1}^{+\infty} u_n$ phân kì thì $\sum_{n=1}^{+\infty} v_n$ phân kì.

Chứng minh. Giả sử với mọi $n, u_n \leq v_n$. Xét hai dãy tổng riêng $S_n = u_1 + \ldots + u_n, T_n = v_1 + \ldots v_n$. Khi đó, $0 < S_n \le T_n$.

- $\sum_{n=1}^{+\infty}v_n=T$ thì với mọi $n\geq 1, 0< S_n\leq T_n< T$ nên S_n bị chặn, tức là $\sum_{n=1}^{+\infty}u_n$ hội tụ.
- $\bullet \sum_{n=1}^{+\infty} u_n \text{ phân kì thì } \lim_{n \to +\infty} S_n = +\infty \Rightarrow \lim_{n \to +\infty} T_n = +\infty, \sup_{n \to +\infty} \operatorname{rank} \sum_{n=1}^{+\infty} v_n \text{ phân kì.}$ $\operatorname{Chuỗi PTVP BD Laplace}$

Ví dụ. Xét sự hội tụ

 $\bullet \sum_{n=1}^{+\infty} \frac{2^n}{3^n+n}.$

Với mọi $n \ge 1, u_n < \frac{2^n}{3^n}$. Do $\left|\frac{2}{3}\right| < 1$, $\sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^n$ hội tụ. Suy ra $\sum_{n=1}^{+\infty} \frac{2^n}{3^n+n}$ hội tụ.

 $\bullet \sum_{n=2}^{+\infty} \frac{1}{(\ln n)^p}, p > 0.$

Do p > 0, $\lim_{n \to +\infty} \frac{(\ln n)^p}{n} = 0$. Khi đó, tồn tại $n_0 > 0$ sao cho với mọi $n > n_0$, $\frac{(\ln n)^p}{n} < 1$. Suy ra,

$$\forall n > n_0, \frac{1}{n} < \frac{1}{(\ln n)^p}$$

Chuỗi $\sum_{n=2}^{+\infty} \frac{1}{n}$ phân kì suy ra $\sum_{n=2}^{+\infty} \frac{1}{(\ln n)^p}$ phân kì.

40140101000

Định lí 2

Cho hai chuỗi dương $\sum_{n=1}^{+\infty} u_n, \sum_{n=1}^{+\infty} v_n$ thoả mãn

$$\lim_{n\to+\infty}\frac{u_n}{v_n}=k.$$

Nếu $k \in (0,+\infty)$ thì $\sum\limits_{n=1}^{+\infty} u_n$ và $\sum\limits_{n=1}^{+\infty} v_n$ cùng hội tụ hoặc cùng phân kì.

Khi k = 1, ta viết $u_n \sim v_n$.

Gợi ý chứng minh. Do k > 0 nên $\frac{k}{2} < k < \frac{3k}{2}$. Khi đó, $\lim_{n \to +\infty} \frac{u_n}{v_n} = k$ suy ra là từ

chỉ số $n_0>0$ nào đó,

$$\frac{k}{2}v_n \le u_n \le \frac{3k}{2}v_n.$$

4 □ ト 4 問 ト 4 豆 ト 4 豆 ・ り Q (*)

Nhân xét

Nếu $\lim_{n\to\infty} \frac{u_n}{v_n} = k$ và

• $k=0 \Rightarrow \forall n>n_0, \frac{u_n}{v_n}<1$. Khi đó,

$$\sum_{n=1}^{+\infty} v_n \text{ hội tụ } \Rightarrow \sum_{n=1}^{+\infty} u_n \text{ hội tụ }, \quad \sum_{n=1}^{+\infty} u_n \text{ phân kì } \Rightarrow \sum_{n=1}^{+\infty} v_n \text{ phân kì.}$$

• $k = +\infty \Rightarrow \forall n > n_0, \frac{u_n}{v_n} > 1.$

$$\sum_{n=1}^{+\infty} v_n \text{ phân kì } \Rightarrow \sum_{n=1}^{+\infty} u_n \text{ phân kì }, \quad \sum_{n=1}^{+\infty} u_n \text{ hội tụ } \Rightarrow \sum_{n=1}^{+\infty} v_n \text{ hội tụ }.$$

◆□▶◆御▶◆団▶◆団▶ ■ めの@

Ví dụ. Xét sự hội tụ

•
$$\sum_{n=1}^{+\infty} \frac{n^2}{n^4+3}$$
.

Xét
$$\lim_{n \to \infty} \frac{n^2}{n^4 + 3} \frac{1}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^4}{n^4 + 3} = 1$$
. $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ hội tụ suy ra $\sum_{n=1}^{+\infty} \frac{n^2}{n^4 + 3}$ hội tụ.

$$\bullet \sum_{n=1}^{+\infty} \frac{\ln(3n+2)}{n^3}.$$

Xét
$$\lim_{n \to \infty} \frac{\ln(3n+2)}{n^3} \frac{1}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{\ln(3n+2)}{n} = 0$$
. $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ hội tụ suy ra $\sum_{n=1}^{+\infty} \frac{\ln(3n+2)}{n^3}$ hội tụ.

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 めらぐ

Các tiêu chuẩn hội tụ

Tiêu chuẩn D'Alembert

Xét chuỗi $\sum_{n=1}^{+\infty} u_n$ dương. Giả sử tồn tại giới hạn

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=I.$$

- Nếu l < 1 thì $\sum_{n=1}^{+\infty} u_n$ hội tụ.
- Nếu l>1 thì $\sum\limits_{n=1}^{+\infty}u_n$ phân kì.
- Nếu l=1 thì không kết luận được sự hội tụ hay phân kì.

Chứng minh. Nếu l < 1 thì tồn tại $l < q < 1, n_0 > 0$ sao cho với mọi

$$n>n_0, u_n< q^{n-n_0}u_{n_0}\Rightarrow \mathsf{Chu}\tilde{\mathsf{o}}\mathsf{i}\ \sum_{n=1}^{+\infty}u_n$$
 hội tụ.

Nếu l>1 thì $n>n_0, u_{n+1}>u_n\Rightarrow \lim_{n\to\infty}u_n\neq 0\Rightarrow \mathsf{Chuỗi}\;\sum_{n=1}^{+\infty}u_n\;\mathsf{phân}\;\mathsf{ki}.$

Các tiêu chuẩn hôi tu

Tiêu chuẩn Cauchy

Xét chuỗi $\sum^{+\infty} u_n$ dương. Giả sử tồn tại giới hạn

$$\lim_{n\to\infty}\sqrt[n]{u_n}=I.$$

- Nếu l < 1 thì $\sum_{n=1}^{+\infty} u_n$ hội tụ.
- Nếu l>1 thì $\sum_{n=1}^{+\infty}u_n$ phân kì.
- Nếu l=1 thì không kết luận được sự hội tụ hay phân kì.

Chứng minh. Nếu l < 1 thì tồn tại $l < q < 1, n_0 > 0$ sao cho với mọi

$$n > n_0, u_n < q^n \Rightarrow \mathsf{Chu} \tilde{\mathsf{o}} \mathsf{i} \sum_{n=1}^{+\infty} u_n \; \mathsf{h} \hat{\mathsf{o}} \mathsf{i} \; \mathsf{t} \mathsf{u}.$$

Nếu l>1 thì tồn tại l>q>1 và $\forall n>n_0, u_n>q^n\Rightarrow$ Chuỗi $\sum\limits_{}^{+\infty}u_n$ phân kì.

Môt số ví du

Ví du. Xét sư hôi tu

•
$$\sum\limits_{n=1}^{+\infty} \frac{1}{n!}$$
. $\frac{u_{n+1}}{u_n} = \frac{1}{n} o 0 < 1 \Rightarrow$ Chuỗi hội tụ.

$$\bullet \sum_{n=1}^{+\infty} \left(\frac{n+3}{n+2}\right)^{n(n+3)}.$$

$$\sqrt[n]{u_n} = \left(\frac{n+3}{n+2}\right)^{n+3} = e > 1 \Rightarrow \mathsf{Chu\~oi} \; \mathsf{ph\^an} \; \mathsf{k} \mathsf{i}.$$

•
$$\sum_{n=1}^{+\infty} 2^{(-1)^n-n}$$
.

$$\sqrt[n]{u_n}=\sqrt[n]{rac{2^{(-1)^n}}{2^n}}=rac{\sqrt[n]{2^{(-1)^n}}}{2} orac{1}{2}<1\Rightarrow \mathsf{Chu\~oi}$$
 hội tụ.

Chú ý
$$\frac{u_{n+1}}{u_n} = \frac{2^{(-1)^{n+1}-(-1)^n}}{2} = \begin{cases} \frac{1}{8} \text{ nếu } n \text{ chẵn} \\ 2 \text{ nếu } n \text{ lể} \end{cases}$$
 nên Tiêu chuẩn D'Alembert

không áp dụng được.

Các tiêu chuẩn hôi tu

Tiêu chuẩn tích phân

Xét chuỗi $\sum_{n=0}^{+\infty} u_n$ dương và f là hàm dương liên tục và $\lim_{n\to+\infty} f(x)=0$ thoả mãn

$$u_n=f(n).$$

Nếu tồn tại N>0 sao cho f **giảm trên** $[N,+\infty)$ thì $\sum_{n=1}^{+\infty}u_n$ và $\int\limits_{1}^{+\infty}f(x)dx$ cùng hội tụ hoặc cùng phân kì.

Gơi ý chứng minh. Giả sử N=1. Do f giảm,

$$u_{n+1} \leq \int_{n}^{n+1} f(x) dx \leq u_{n}.$$

$$\Rightarrow u_{2} + u_{3} + \ldots + u_{n} \leq \int_{1}^{n} f(x) dx \leq u_{1} + u_{2} + \ldots + u_{n-1}.$$

Chuỗi zeta $\sum\limits_{n=1}^{+\infty} \frac{1}{n^{\alpha}}, \alpha > 0$

Xét hàm $f(x) = \frac{1}{x^{\alpha}}$. Do $\alpha > 0$, f là hàm giảm về 0 khi $x \to +\infty$. Khi đó, $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$

và $\int\limits_1^{+\infty} \frac{dx}{x^{\alpha}}$ cùng hội tụ hoặc cùng phân kì. Nhắc lại rằng $\int\limits_1^{+\infty} \frac{dx}{x^{\alpha}}$ hội tụ khi và chỉ

khi $\alpha>$ 1. Do đó,