sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_jobs=None, positive=False) [source]

Ordinary least squares Linear Regression.

LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.

Parameters:

fit_intercept : bool, default=True

Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize: bool, default=False

This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the I2-norm. If you wish to standardize, please use StandardScaler before calling fit on an estimator with normalize=False.

Deprecated since version 1.0: normalize was deprecated in version 1.0 and will be removed in 1.2.

copy_X: bool, default=True

If True, X will be copied; else, it may be overwritten.

n_jobs : int, default=None

The number of jobs to use for the computation. This will only provide speedup in case of sufficiently large problems, that is if firstly n_targets > 1 and secondly X is sparse or if positive is set to True. None means 1 unless in a <u>joblib.parallel_backend</u> context. -1 means using all processors. See <u>Glossary</u> for more details.

positive : bool, default=False

When set to True, forces the coefficients to be positive. This option is only supported for dense arrays.

New in version 0.24.

Attributes:

coef_: array of shape (n_features,) or (n_targets, n_features)

Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features.

rank_: int

Rank of matrix x. Only available when x is dense.

singular_: array of shape (min(X, y),)

Singular values of x. Only available when x is dense.

intercept_: float or array of shape (n_targets,)

Independent term in the linear model. Set to 0.0 if fit_intercept = False.

n_features_in_: int

Number of features seen during fit.

New in version 0.24.

feature_names_in_: ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when x has feature names that are all strings.

New in version 1.0.

See also:

<u>Ridge</u>

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with I2

Lasso

The Lasso is a linear model that estimates sparse coefficients with I1 regularization.

ElasticNet

Elastic-Net is a linear regression model trained with both I1 and I2 -norm regularization of the coefficients.

Notes

From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares (scipy.optimize.nnls) wrapped as a predictor object.

Examples

```
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
>>> reg.coef_
array([1, 2.])
>>> reg.intercept_
3.0...
>>> reg.predict(np.array([[3, 5]]))
array([16.])
```

Methods

<pre>fit(X, y[, sample_weight])</pre>	Fit linear model.
<pre>get_params([deep])</pre>	Get parameters for this estimator.
<pre>predict(X)</pre>	Predict using the linear model.
<pre>score(X, y[, sample_weight])</pre>	Return the coefficient of determination of the prediction.
<pre>set_params(**params)</pre>	Set the parameters of this estimator.
4	▶

fit(X, y, sample_weight=None)

[source]

Fit linear model.

Parameters:

X: {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.

y : array-like of shape (n_samples,) or (n_samples, n_targets)

Target values. Will be cast to X's dtype if necessary.

sample_weight : array-like of shape (n_samples,), default=None

Individual weights for each sample.

New in version 0.17: parameter sample_weight support to LinearRegression.

Returns:

self : object

Fitted Estimator.

get_params(deep=True) [source]

Get parameters for this estimator.

Parameters:

deep : bool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

dict

Toggle Menu er names mapped to their values.

predict(X)

Predict using the linear model.

Parameters:

X: array-like or sparse matrix, shape (n_samples, n_features)
Samples.

Returns:

C: array, shape (n_samples,)
Returns predicted values.

score(X, y, sample_weight=None)

[source]

Return the coefficient of determination of the prediction.

The coefficient of determination R^2 is defined as $\left(1-\frac{u}{v}\right)$, where u is the residual sum of squares ((y_true - y_pred)** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters:

X: array-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

y: array-like of shape (n_samples,) or (n_samples, n_outputs)

True values for x.

sample_weight : array-like of shape (n_samples,), default=None

Sample weights.

Returns:

score : float

 R^2 of self.predict(X) wrt. y.

Notes

The R^2 score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of <u>r2_score</u>. This influences the score method of all the multioutput regressors (except for <u>MultiOutputRegressor</u>).

set_params(**params) [source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form component>__<parameter> so that it's possible to update each component of a nested object.

Parameters:

**params : dict

Estimator parameters.

Returns:

self: estimator instance

Estimator instance.

KBinsDiscretizer to discretize continuous

features

© 2007 - 2021, scikit-learn developers (BSD License). Show this page source

Validated Predictions

<u>Overfitting</u>