SAMET ÖZGÜL

705201014 BBL536E Data Science

Question 1

Firstly, I read data from file using pandas read_excel command. The preprocessing steps are perform one by one. The data is splitted X, y_1 and y_1. X represents our features, y_1 and y_2 represent outputs. I create parameters for gridsearhcv to find best parameters. After find best parameters with loops, cross_val_score helps to find mean and standart deviation values. The result is close enough the given in question.

- + -	Mean Absolute Error		Mean Square Error	/
+ Output	RandomForest	RidgeRegression	RandomForest	RidgeRegression
Y1	0.3264245017186668±0.04777957958275208	2.0684062874150566±0.24478405555575394	0.24860697545245825±0.10011504913900393	8.589288373986665±1.791267376161846
Y2	1.0078042905869906±0.1584577568858271	2.2830741086533677±0.2724593537075571	2.7932144110587758±0.8433308541147456	10.481908726214302±2.523616365288306

Question 2

The result is close like in homework. The algorithm use 20 different C for logistic regression. In this graph, increasing of C value gives best results. The auc score is came from cross_val_score.

Firstly, I calculate average classification score for logistic regression with C=1. The result is close the given result. Also I get score for neural network. The model parameter come from task-3.

Best parameters of Random regressor {'max_depth': 150, 'min_samples_leaf': 3, 'min_samples_split': 2, 'n_estimators': 1000}
Best parameters for Neural Network {'alpha': 0.1, 'hidden_layer_sizes': (10, 10, 10, 10, 10)}
classification report for logistic regression

	precision	recall	f1-score	support
0	0.93	0.98	0.95	29269
1	0.67	0.38	0.49	3681
accuracy			0.91	32950
macro avg	0.80	0.68	0.72	32950
weighted avg	0.90	0.91	0.90	32950
classification	report for	neural n	etwork	
	precision	recall	f1-score	support
Θ	0.94	0.96	0.95	29269
1	0.62	0.55	0.58	3681
accuracy			0.91	32950
macro avg	0.78	0.75	0.77	32950
weighted avg	0.91	0.91	0.91	32950
classification	report for	Random f	orest	
	precision	recall	f1-score	support
0	0.94	0.97	0.95	29269
1	0.65	0.48	0.55	3681
accuracy			0.91	32950
macro avg	0.79	0.72	0.75	32950
weighted avg	0.90	0.91	0.91	32950