Chapter Two (con't)

Where were we?

- Algebraic manipulation can optimize functions
 - Minimizes the number of literals
 - Literal
 - A single variable within a term; whether complemented or not.
 - Minimization of the number of literals and/or terms often leads to a simpler circuit

Complement of a Function

- Derived algebraically via the application of DeMorgan's Theorem
 - Shown in Table 2.1 for 2 variables
 - Can be extended to 3 or more

Proof of 3 Variable DeMorgan's

Given the function F = A + B + C

Then
$$F' = (A + B + C)'$$

$$= (A + x)'$$

$$= A'x'$$

$$= A'(B + C)'$$

$$= A'(B'C')$$

$$= A'B'C'$$

Let x = B + C

2 variable DeMorgan's

Back-substitution

2 variable DeMorgan's

Associativity

Example

$$F = x'yz' + x'y'z$$

$$F' = (x'yz' + x'y'z)'$$

$$= (x'yz')'(x'y'z)'$$

$$= (x'' + y' + z'')(x'' + y'' + z')$$

$$= (x + y' + z)(x + y + z')$$

Another Way

Use Duality to your advantage

```
F = x(y'z' + yz)
= x + (y'+ z')(y + z) The dual of F
= x' + (y + z)(y' + z') Complement each literal
= x' + yy' + zy' + z'y + zz'
= x' + y'z + yz'
```

Algebra Reminder

- Sum
 - the result of addition
 - -1 + 2 = 3, 3 is the sum
- Product
 - The result of multiplication
 - -1*2=2, 3 is the product

Some symbology

- Each of these (sum and product) have a symbol
 - ∑ (Sigma)
 - $-\prod$ (Pi)

Definition time again

Minterms and Maxterms...

Sum of Products and Products of Sums...

Minterms

- Consider 2 variable (x, y) and AND them.
 - Result: x'y', x'y, xy', xy
 - Each of which is a minterm
 - AKA <u>standard product</u>

Х	У	
0	0	x'y'
0	1	x'y
1	0	xy'
1	1	ху

Table 2.3

M	in	t	e	rm	5
			•		

X	y	Z	Term	Designation	
0	0	0	x'y'z'	m_0	Designation of the minterm is in the form of m _i where j = the
0	0	1	x'y'z	m_1	decimal equivalet of the binary
0	1	0	x'yz'	m_2	number of the row
0	1	1	x'yz	m_3	
1	0	0	xy'z'	m_4	
1	0	1	xy'z	m_5	
1	1	0	xyz'	m_6	
1	1	1	xyz	m_7	

Maxterms

- Similar to minterms,
 - Still 2 variables
 - Except forming an OR term
 - AKA standard sum

Х	У	
0	0	x + y
0	1	x + y'
1	0	x' + y
1	1	x' + y'

Table 2.3

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			M	interms	Maxte	erms	
X	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0 Designat	
0	0	1	x'y'z	m_1	x + y + z'	M_1 the maxt	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Example

$$F = x'y'z + xy'z' + xyz$$

$$Minterms: m_1 + m_4 + m_7$$

$$F' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

x	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

continued

$$F' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

$$F'' = (x'y'z' + x'yz' + x'yz + xy'z + xyz')'$$

$$F = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')$$

$$(x' + y' + z)$$

$$= M_0M_2M_3M_5M_7$$

• NOTE: Mistake on pg 52. This term is missing.

General Case

- n variables
- Each minterm is the AND of the inputs
 - Each variable is primed iff the corresponding input is 0.
- Each Maxterm is the Or of the inputs
 - Each variable is primed iff the corresponding input is 1.
- Can still be read from a Truth table

Canonical Forms

- A function expressed as a
 - Sum of minterms, or a
 - Product of Maxterms

Sum of Minterms

- Any function can be expressed in a sum of minterms format.
 - May have to manipulate the function to do so.
 - Each term must include all possible variables (literals)
- Remember each minterm must include all literals (a literal may be complemented)

Example

$$F = A + B'C$$

First term A is missing 2 variables

Expand
$$A = A(B + B') = AB + AB'$$

$$A = AB(C + C') + AB'(C + C')$$

$$A = ABC + ABC' + AB'C + AB'C'$$

Second term B'C is missing 1 variable

Expand
$$B'C = B'C(A + A') = AB'C + A'B'C$$

Put it all together

$$F = A + B'C$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$= ABC + ABC' + AB'C + AB'C' + A'B'C$$

$$= A'B'C + AB'C' + AB'C + ABC' + ABC Reordered$$

Minterms

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

Much easier way

- Construct a truth table for the function
- Derive the minterms directly from the truth table.

Example

Truth T	able	for F	= A +	B'C

A	В	C	F
0	0	0	0
0	0	1	1 ←
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1 4
1	1	0	1 4/
1	1	1	1

From the truth table, we can see what the minterms are.

Any row where the Function = 1, is a minterm.

Product of Maxterms

- A boolean function can also be expressed as a product of maxterms.
- This too can be derived from an equation.
- But it is easier to derive it from the truth table.

Example

Truth	Tabl	e for	F = A	+ B'C
II ULII	IUDI	CIUI		

A	В	C	F
0	0	0	0 <
0	0	1	1
0	1	0	0 4
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Any row where theFunction = 0, is aMaxterm.

Remember a Maxterm is a sum.

$$Ex M_0 = A + B + C$$

Examples

- $F(A, B, C) = \sum (1, 4, 5) = m_1 + m_4 + m_5$ – The sum of m_1, m_4, m_5
- $F'(A, B, C) = \sum (0, 2, 3, 6, 7)$ = $m_0 + m_2 + m_3 + m_6 + m_7$
- Complement F' $F'' = F = \prod(0, 2, 3, 6, 7) = M_0 M_2 M_3 M_6 M_7$

Things to Note

- The canonical forms are easily read from a truth table
- They are basic forms
- They are seldom in an optimized form
 - Why?
- Sum of minterms AKA Canonical Sum of Products
- Product of Maxterms AKA Canonical Product of Sums

Standard Forms

- Sum of Products
 - A Boolean expression containing AND terms (products) which are OR'd together (summed).

$$F = x + xy + x'yz'$$

 Logic diagram will consist of AND gates and an OR gate.

Standard Forms

- Product of Sums
 - A Boolean expression containing OR terms (sums)
 which are AND'd together (product).

$$F = y (x + x'z')$$

 Logic diagram will consist of OR gates and an AND gate.

Standard Forms

Always result in a two-level implementation.

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Standard Form

- In general, a two-level implementation is preferred.
 - Functions can be implemented in other forms, but will inherently have more delay.
- Delay is caused by the components which create each gate and is a fundamental concern to designers.

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Word of Caution

- Sum of minterms
 - Also known as the Canonical Sum of Products
- Product of Maxterms
 - Also known as the Canonical Product of Sums
- But where the standard forms may be optimized, the canonical forms are not likely to be.

$$F = x + y'z$$

Digital Logic Operations

- AND, OR, NOT form the basis of all operations.
- NAND/NOR
 - Examined in Lab 1
 - Outputs are negated AND/OR respectively

Application of Concepts

Problem Statement: You want to write an equation which checks if the two inputs are different (i.e. $x \neq y$)

Good place to start is with a truth table.

$x \neq y$

$$F = x'y + xy'$$

X	У	F

Desired Result

х	У	F
0	0	0
0	1	1
1	0	1
1	1	0

XOR

x or y but not both

