Регулярные и критические точки

ДГТ 3 \diamond 1. Проверьте, что отображение $\mathbf{R}^1 \to \mathbf{R}^2$, $t \mapsto \left(\frac{e^t + e^{-t}}{2}, \frac{e^t - e^{-t}}{2}\right)$, является вложением.

ДГТ 3\diamond2. Докажите, что гладкое отображение $f(t) = (t, t^2, t^3)$ является вложением. Постройте такое гладкое отображение $F: \mathbf{R}^3 \to \mathbf{R}^2$ максимального ранга, что $f(\mathbf{R}) = F^{-1}((0,0))$.

ДГТ 3\diamond3. Проверьте, что 0 является единственным критическим значением отображения $f(x,y,z) = x^2 + y^2 - z^2$. Проверьте, что если ab > 0, то $f^{-1}(a)$ и $f^{-1}(b)$ диффеоморфны.

ДГТ 3\diamond4. В каких точках отображение $(x,y) \mapsto (x,xy,y^2)$ является вложением, а в каких — погружением?

ДГТ 3\diamond5. Покажите, что множество матриц ранга 1 является гладким 3-мерным подмногообразием в пространстве $Mat_2(\mathbf{R})$ квадратных матриц 2×2 .

Дополнительные задачи

ДГТ 3♦6. Решить одну из двух задач:

- ДГТ 2 \diamond 3 Выяснить, является ли гладким подмногообразием в ${f R}^2=\langle x,y\rangle$ подмножество, заданное уравнением $x^4+y^4=8xy^2$.
- ДГТ 2 \diamond 7 Выяснить, является ли гладким подмногообразием в $\mathbf{R}^3 = \langle x,y,z \rangle$ подмножество, заданное уравнением $x^2(z-1) + y^2z = 0$.

ДГТ 3\diamond7. Покажите, что множество матриц ранга r является гладким подмногообразием *коразмерности* (m-r)(n-r) в пространстве $\mathrm{Mat}_{m,n}(\mathbf{R}) \simeq \mathbf{R}^{mn}$.

ДГТ 3\diamond8. (Задача ДГТ 2 \diamond 8) Найти критические точки и значения гладкого отображения $F: SO_3(\mathbf{R}) \to SO_3(\mathbf{R})$, где $F(A) = A^3$.