Power Bi dashboard

In [1]: from IPython.display import Image

Provide the correct path to your image file

img_path = '/Users/pritampathrabe/Downloads/Dexter_Power BI file_page-Image(filename=img_path)

Out[1]:

Orange City Canine Club Dataset

This is an demo project where we have the set of data belonging from dog breed with their various parameter such as

- * Type of breed
- * Its intelligence level
- $\boldsymbol{\ast}$ various expenditures like Purchasing Price, Food cost per year and life time cost

Also we have the ranking and score which defines the dog is sutable for which kind of condition such as family dog or guard dogs.

In [2]: #importing required libraries

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

plt.get_current_fig_manager().full_screen_toggle()

import seaborn as sns

<Figure size 640x480 with 0 Axes>

In [3]: #Uploading dataset and checking its shape

data=pd.read_csv('dogs-ranking-dataset.csv')

data.shape

Out[3]: (87, 19)

In [4]: #overview of dataset data.head()

Out [4]:

	Breed	type	score	popularity ranking	size	intelligence	congential ailments	score for kids	size.1	\$LIFETIM COS
0	Border Terrier	terrier	3.61	61	1	Above average	none	4.99	small	\$22,60
1	Cairn Terrier	terrier	3.53	48	1	Above average	'lion jaw', heart problems	4.91	small	\$21,99
2	Siberian Husky	working	3.22	16	2	Average	none	4.72	medium	\$22,04
3	Welsh Springer Spaniel	sporting	3.34	81	2	Above average	hip problems	4.71	medium	\$20,22
4	English Cocker Spaniel	sporting	3.33	51	2	Excellent	none	4.70	medium	\$18,99

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 87 entries, 0 to 86
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Breed	87 non-null	object
1	type	87 non-null	object
2	score	87 non-null	float64
3	popularity ranking	87 non-null	int64
4	size	87 non-null	int64
5	intelligence	87 non-null	object
6	congential ailments	87 non-null	object
7	score for kids	87 non-null	float64
8	size.1	87 non-null	object
9	\$LIFETIME COST	87 non-null	object
10	INTELLIGENCE RANK	87 non-null	int64
11	INTELLIGENCE %	87 non-null	object
12	LONGEVITY(YEARS)	87 non-null	float64
13	NUMBER OF GENETIC AILMENTS	87 non-null	int64
14	GENETIC AILMENTS	87 non-null	object
15	PURCHASE PRICE	87 non-null	object
16	FOOD COSTS PER YEAR	87 non-null	object
17	GROOMING FREQUNCY	87 non-null	object
18	SUITABILITY FOR CHILDREN	87 non-null	int64

dtypes: float64(3), int64(5), object(11)

memory usage: 13.0+ KB

```
In [6]: #cheaking whether the dataset containg any null value or not
    null_values = data.isnull().sum()
    null_percentage = (data.isnull().sum() / len(data)) * 100

null_stats = pd.DataFrame({
        'Column': data.columns,
        'Null Values': null_values.values,
        'Percentage': null_percentage.values
})

print(null_stats)
```

	Column	Null Values	Percentage
0	Breed	0	0.0
1	type	0	0.0
2	score	0	0.0
3	popularity ranking	0	0.0
4	size	0	0.0
5	intelligence	0	0.0
6	congential ailments	0	0.0
7	score for kids	0	0.0
8	size.1	0	0.0
9	\$LIFETIME COST	0	0.0
10	INTELLIGENCE RANK	0	0.0
11	INTELLIGENCE %	0	0.0
12	LONGEVITY(YEARS)	0	0.0
13	NUMBER OF GENETIC AILMENTS	0	0.0
14	GENETIC AILMENTS	0	0.0
15	PURCHASE PRICE	0	0.0
16	FOOD COSTS PER YEAR	0	0.0
17	GROOMING FREQUNCY	0	0.0
18	SUITABILITY FOR CHILDREN	0	0.0

In [7]: #describing data to see its numerical parameters
data.describe()

Out[7]:

					INTELLIGENCE		NUN
	score	popularity ranking	size	score for kids	INTELLIGENCE RANK	LONGEVITY(YEARS)	GEN AILMI
count	87.000000	87.000000	87.000000	87.000000	87.000000	87.000000	87.00
mean	2.603678	44.000000	1.954023	3.681839	41.540230	11.117701	1.68
std	0.570288	25.258662	0.819927	0.655736	21.979803	1.938465	1.70
min	0.990000	1.000000	1.000000	1.860000	1.000000	6.290000	0.00
25%	2.185000	22.500000	1.000000	3.180000	27.000000	10.000000	0.50
50%	2.710000	44.000000	2.000000	3.810000	43.000000	11.560000	1.00
75%	3.035000	65.500000	3.000000	4.115000	59.000000	12.430000	2.00
max	3.640000	87.000000	3.000000	4.990000	80.000000	16.500000	9.00

```
In [8]: # Remove '$' and ',' and convert to float
data['$LIFETIME COST'] = data['$LIFETIME COST'].astype(str).str.replace
# Remove '%' and convert to float
data['INTELLIGENCE %'] = data['INTELLIGENCE %'].str.rstrip('%').astype
# Remove '$' and ',' and convert to float
data['PURCHASE PRICE'] = data['PURCHASE PRICE'].astype(str).str.replace()
data['FOOD COSTS PER YEAR'] = data['FOOD COSTS PER YEAR'].str.replace()
```

In [9]: #creating a new dataset containing object datatype
data_category = data.select_dtypes(include=['object'])

In [10]: #creating a new dataset containing int, float datatype
data_numeric = data.select_dtypes(include=['int64','float64'])

In [11]: data_category.head()

Out[11]:

	Breed	type	intelligence	congential ailments	size.1	GENETIC AILMENTS	GROOMING FREQUNCY
0	Border Terrier	terrier	Above average	none	small	none	Once a week
1	Cairn Terrier	terrier	Above average	'lion jaw', heart problems	small	'lion jaw', heart problems	Once a week
2	Siberian Husky	working	Average	none	medium	none	Once in a few weeks
3	Welsh Springer Spaniel	sporting	Above average	hip problems	medium	hip problems	Once a week
4	English Cocker Spaniel	sporting	Excellent	none	medium	none	Once a week

In [12]: data_numeric.head()

Out[12]:

	score	popularity ranking	size	score for kids	\$LIFETIME COST	INTELLIGENCE RANK	INTELLIGENCE %	LONGEVITY(YEA
0	3.61	61	1	4.99	22638.0	30	70.0	14
1	3.53	48	1	4.91	21992.0	35	61.0	18
2	3.22	16	2	4.72	22049.0	45	45.0	12
3	3.34	81	2	4.71	20224.0	31	69.0	12
4	3.33	51	2	4.70	18993.0	18	82.0	11

#NO missing vale found
#NO dupplicate value found

#A seperate dataframe has been created for categorical Variable called as data_category

#A seperate dataframe has been created for numerical Variable called as data_numeric

Univariate analysis

```
In [13]: #lokking for frequency of particular variable and its value count
data['type'].value_counts()
```

```
Out[13]: type
sporting 15
working 14
toy 13
hound 13
terrier 12
non-sporting 10
herding 10
```

Name: count, dtype: int64

```
In [14]: #Count of type of Dog
    Type_count= data['type'].value_counts().sort_index()
    plt.figure(figsize=(10, 5))
    plt.bar(Type_count.index, Type_count.values, edgecolor='black')
    plt.xlabel('Type')
    plt.ylabel('Count')
    plt.title('Histogram of Service Types')
    plt.show()
```



```
In [15]: type_counts = data['type'].value_counts()

# Create a pie chart
plt.figure(figsize=(4, 4))
plt.pie(type_counts, labels=type_counts.index, autopct='%1.1f%%', star
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a
plt.title("Pie Chart of Types")
plt.show()
```


In [17]: #Droping dupplicate column as it has been present in the form of mune
data = data.drop(columns=['size.1','congential ailments'])

In [18]: #count of intelligence intelligence_counts = data['intelligence'].value_counts().sort_index() plt.figure(figsize=(12, 5)) plt.bar(intelligence_counts.index, intelligence_counts.values, edgecol plt.xlabel('Intelligence') plt.xticks(rotation=60) plt.ylabel('Count') plt.title('Bar Plot of Intelligence') plt.show()

In [19]: # Count of Grooming Frequency GROOMING_FREQUNCY=data['GROOMING FREQUNCY'].value_counts().sort_index(plt.figure(figsize=(10,3)) plt.bar(GROOMING_FREQUNCY.index, GROOMING_FREQUNCY.values, edgecolor=' plt.xlabel('GROOMING_FREQUNCY') plt.xticks(rotation=60) plt.ylabel('Count') plt.title('Bar Plot of GROOMING_FREQUNCY') plt.show()


```
In [20]: plt.figure(figsize=(10,5))
  plt.hist(data['score'],bins=10,color='skyblue', edgecolor='black')
  plt.xlabel('Score')
  plt.ylabel('count')
  plt.title('Histogram of score')
  plt.show
```

Out[20]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [21]: plt.figure(figsize=(10,5))
    plt.hist(data['PURCHASE PRICE'], bins=15, color='red',edgecolor='greer
    plt.xlabel('PURCHASE PRICE')
    plt.ylabel('count')
    plt.title('Histogram of purchase price')
    plt.show()
```


In [22]: plt.figure(figsize=(10,5)) plt.hist(data['\$LIFETIME COST'], bins=15, color='yellow',edgecolor='re plt.xlabel('Lifetime Cost') plt.ylabel('count') plt.title('Histogram of lifetime cost') plt.show()


```
In [23]: plt.figure(figsize=(10,5))
   plt.hist(data['score for kids'],bins=10,color='skyblue', edgecolor='bl
   plt.xlabel('Score for kids')
   plt.ylabel('count')
   plt.title('Histogram of score for kids')
   plt.show
```

Out[23]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [24]: plt.figure(figsize=(10,5))
    plt.hist(data['popularity ranking'],bins=10,color='skyblue', edgecolor
    plt.xlabel('popularity ranking')
    plt.ylabel('count')
    plt.title('Histogram of popularity ranking')
    plt.show
```

Out[24]: <function matplotlib.pyplot.show(close=None, block=None)>

Bivariate and Multivariate Analysis

```
In [25]: #function to examing whether the variables contain any outlier or not
        lef UVA_outlier(data, var_group, include_outlier=True):
            size = len(var_group)
            plt.figure(figsize=(20,10), dpi=100)
            for j, i in enumerate(var group):
                # calculating descriptives of variable
                quant25 = data[i].quantile(0.25)
                quant75 = data[i].quantile(0.75)
                IQR = quant75 - quant25
                med = data[i].median()
                whis low = med - (1.5 * IOR)
                whis high = med + (1.5 * IQR)
                # Calculating Number of Outliers
                outlier_high = len(data[i][data[i] > whis_high])
                outlier low = len(data[i][data[i] < whis low])</pre>
                if include outlier:
                    # Plotting the variable with every information
                    plt.subplot(1, size, j + 1)
                    sns.boxplot(data[i], orient="v")
                    plt.vlabel('{}'.format(i))
                    plt.title('With Outliers\nIQR = {}; Median = {} \n 2nd,3rd
                         round(IQR, 2),
                         round(med, 2),
                         (round(quant25, 2), round(quant75, 2)),
                         (outlier_low, outlier_high)
                     ))
                else:
                    # replacing outliers with max/min whisker
                    data2 = data[var_group].copy()
                    data2[i][data2[i] > whis_high] = whis_high + 1
                    data2[i][data2[i] < whis_low] = whis_low - 1</pre>
                    # plotting without outliers
                    plt.subplot(1, size, j + 1)
                    sns.boxplot(data2[i], orient="v")
                    plt.ylabel('{}'.format(i))
                    plt.title('Without Outliers\nIQR = {}; Median = {} \n 2nd,3
                         round(IQR, 2),
                         round(med, 2),
                         (round(quant25, 2), round(quant75, 2)),
                         (outlier_low, outlier_high)
                     ))
            plt.tight_layout()
            plt.show()
```

```
In [26]:
         column_names_numeric = data_numeric.columns.tolist()
         column_names_numeric
Out [26]:
         ['score',
           'popularity ranking',
           'size',
           'score for kids',
           '$LIFETIME COST',
           'INTELLIGENCE RANK',
           'INTELLIGENCE %'
           'LONGEVITY(YEARS)',
           'NUMBER OF GENETIC AILMENTS',
           'PURCHASE PRICE',
           'FOOD COSTS PER YEAR',
           'SUITABILITY FOR CHILDREN']
```

In [27]: UVA_outlier(data_numeric,['score', 'popularity ranking', 'size', 'score')


```
In [28]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 87 entries, 0 to 86
         Data columns (total 17 columns):
              Column
                                           Non-Null Count
                                                            Dtype
              Breed
          0
                                           87 non-null
                                                            object
          1
                                           87 non-null
                                                            object
              type
                                                            float64
          2
              score
                                           87 non-null
                                           87 non-null
          3
              popularity ranking
                                                            int64
          4
              size
                                           87 non-null
                                                            int64
          5
              intelligence
                                           87 non-null
                                                            obiect
          6
              score for kids
                                           87 non-null
                                                            float64
              $LIFETIME COST
          7
                                           87 non-null
                                                            float64
                                                            int64
          8
              INTELLIGENCE RANK
                                           87 non-null
              INTELLIGENCE %
                                           87 non-null
                                                            float64
                                                            float64
             LONGEVITY (YEARS)
                                           87 non-null
          10
          11 NUMBER OF GENETIC AILMENTS
                                           87 non-null
                                                            int64
                                                            object
          12
              GENETIC AILMENTS
                                           87 non-null
          13 PURCHASE PRICE
                                                            float64
                                           87 non-null
                                           87 non-null
          14 FOOD COSTS PER YEAR
                                                            float64
          15
              GROOMING FREQUNCY
                                           87 non-null
                                                            object
                                                            int64
          16 SUITABILITY FOR CHILDREN
                                           87 non-null
         dtypes: float64(7), int64(5), object(5)
         memory usage: 11.7+ KB
         Changing categorical variable into numerical
```

```
In [29]: #impoting preprocessing libraries for converting the variable
         from sklearn.preprocessing import LabelEncoder
         label_encoder = LabelEncoder()
In [30]: | data['GROOMING FREQUNCY'].value_counts()
Out[30]: GROOMING FREQUNCY
         Once a week
                                  65
         Daily
                                  20
         Once in a few weeks
                                  2
         Name: count, dtype: int64
In [31]: data['GROOMING FREQUNCY']=data['GROOMING FREQUNCY'].map({'Once a week'
         data['GROOMING FREQUNCY']
Out[31]:
         0
                0
         1
                0
         2
                2
         3
                0
         4
                0
         82
                1
         83
                0
         84
                1
         85
                0
         86
         Name: GROOMING FREQUNCY, Length: 87, dtype: int64
```

```
In [32]: data['type'].value_counts()
Out[32]: type
          sporting
                           15
                           14
         working
          toy
                           13
         hound
                           13
          terrier
                           12
          non-sporting
                           10
         herding
                           10
         Name: count, dtype: int64
In [33]: data['type']=data['type'].map({'sporting':0,'working':1,'toy':2,'hound
         data['type']
Out[33]: 0
                4
          1
                4
          2
                1
          3
                0
          4
                0
          82
                1
          83
                3
          84
                5
          85
                1
          86
         Name: type, Length: 87, dtype: int64
In [34]: data['intelligence'].value_counts()
Out[34]: intelligence
          Average
                            21
         Above average
                            19
          Fair
                            15
          Excellent
                            11
          Lowest
                            11
         Brightest
                            10
         Name: count, dtype: int64
In [35]: data['intelligence']=data['intelligence'].map({'Average':0,'Above aver
         data['intelligence']
Out[35]:
         0
                1
          1
                1
          2
                0
          3
                1
          4
                3
          82
                0
          83
                4
          84
                4
          85
                0
         Name: intelligence, Length: 87, dtype: int64
```

```
In [36]: # Checking the correlation between the variables
    data_corr = data.select_dtypes(include=['int', 'float'])
    correlation_matrix = data_corr.corr()

# Plot the heatmap
    plt.figure(figsize=(12, 8))
    heatmap = sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm',
    plt.title('Correlation Matrix Heatmap')
    plt.show()
```



```
In [37]: data['GENETIC AILMENTS'].value_counts()
```

```
Out[37]: GENETIC AILMENTS
none
22
hip problems
12
heart problems
3
deafness, hip problems
2
knee problems
2
eye, hip problems
2
heart, spine, blood clotting disorders
1
hip problems, heart defects
1
kidney, eye problems, anaemia
```

```
In [38]: data = pd.get_dummies(data, columns=['Breed', 'GENETIC AILMENTS'])
data = data.astype(int)
```

```
In [39]: data
```

Out[39]:

	type	score	popularity ranking	size	intelligence	score for kids	\$LIFETIME COST	INTELLIGENCE RANK	INTELLIGEN(
0	4	3	61	1	1	4	22638	30	
1	4	3	48	1	1	4	21992	35	(
2	1	3	16	2	0	4	22049	45	ı
3	0	3	81	2	1	4	20224	31	(
4	0	3	51	2	3	4	18993	18	+
82	1	1	47	3	0	2	21986	50	;
83	3	1	42	3	4	2	13824	75	
ΩΛ	5	1	54	2	Λ	2	15202	77	

Spliting the Dataset

```
In [40]: #creating two dataset where x contain all variable except target varia
x=data.drop(['PURCHASE PRICE'],axis=1)
y=data['PURCHASE PRICE']
```

```
In [41]: #importing required libraries
from sklearn.model_selection import train_test_split
```

```
In [42]: #split dataset in two parts train and test with test size 20%
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,rando
    print('x_train =',x_train.shape)
    print('y_train =',y_train.shape)
    print('x_test =',x_test.shape)
    print('y_test =',y_test.shape)
```

```
x_train = (69, 151)
y_train = (69,)
x_test = (18, 151)
y_test = (18,)
```

Linear Regression

```
In [43]: from sklearn.linear_model import LinearRegression
# Instance the linear regression object
reg = LinearRegression().fit(x_train, y_train)
reg.score(x_train, y_train)
```

Out[43]: 1.0

```
In [44]:
         y_pred_train = reg.predict(x_train)
         y_pred_test = reg.predict(x_test)
In [45]: from sklearn.metrics import r2_score
         from sklearn.metrics import mean squared error
In [46]: from matplotlib import legend
         # Function for evaluation metric for regression
         def EvaluationMetric(Xt,yt,yp,disp="on"):
           ''' Take the different set of parameter and prints evaluation metric
           MSE=round(mean_squared_error(y_true=yt,y_pred=yp),4)
           RMSE=(np.sqrt(MSE))
           R2=(r2_score(y_true=yt,y_pred=yp))
           Adjusted_R2=(1-(1-r2\_score(yt, yp))*((Xt.shape[0]-1)/(Xt.shape[0]-Xt)
           if disp=="on":
             print("MSE :", MSE, "RMSE :", RMSE)
             print("R2 :",R2,"Adjusted R2 :",Adjusted_R2)
           #Plotting Actual and Predicted Values
           plt.figure(figsize=(18,6))
           plt.plot((yp)[:100])
           plt.plot((np.array(yt)[:100]))
           plt.legend(["Predicted","Actual"])
           plt.title('Actual and Predicted Time Duration')
           return (MSE,RMSE,R2,Adjusted R2)
```

In [47]: #Evaluation metrics for Train set EvaluationMetric(x_train,y_train,y_pred_train)

MSE : 0.0 RMSE : 0.0 R2 : 1.0 Adjusted R2 : 1.0

Out[47]: (0.0, 0.0, 1.0, 1.0)

In [48]: #Evaluation metrics for Test set
EvaluationMetric(x_test,y_test,y_pred_test)

MSE: 36242.6197 RMSE: 190.374945042671

R2: 0.531253709560429 Adjusted R2: 1.0594678129662143

Out[48]: (36242.6197, 190.374945042671, 0.531253709560429, 1.059467812966214 3)

Decision Tree

In [49]: from sklearn import tree
from sklearn.tree import DecisionTreeRegressor

In [50]: x.shape ,y.shape

Out[50]: ((87, 151), (87,))

In [51]: dt_model = tree.DecisionTreeRegressor()
dt_model = dt_model.fit(x, y)

In [52]: #checking the training score
dt_model.score(x_train, y_train)

Out[52]: 1.0

In [53]: #test score
dt_model.score(x_test, y_test)

Out[53]: 1.0

In [55]: from sklearn.model_selection import GridSearchCV

```
Fitting 5 folds for each of 8 candidates, totalling 40 fits
[CV] END max depth=5, min samples leaf=10, min samples split=10; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=10, min_samples_split=10; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=10, min_samples_split=10; tot
al time=
           0.0s
[CV] END max depth=5, min samples leaf=10, min samples split=10; tot
al time=
           0.0s
[CV] END max depth=5, min samples leaf=10, min samples split=10; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=10, min_samples_split=20; tot
al time=
           0.0s
[CV] END max depth=5, min samples leaf=10, min samples split=20; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=10, min_samples_split=20; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=10, min_samples_split=20; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=10, min_samples_split=20; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=20, min_samples_split=10; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=20, min_samples_split=10; tot
al time=
           0.0s
[CV] END max depth=5, min samples leaf=20, min samples split=10; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=20, min_samples_split=10; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=20, min_samples_split=10; tot
al time=
           0.0s
[CV] END max depth=5, min samples leaf=20, min samples split=20; tot
al time=
           0.0s
[CV] END max depth=5, min samples leaf=20, min samples split=20; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=20, min_samples_split=20; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=20, min_samples_split=20; tot
al time=
           0.0s
[CV] END max_depth=5, min_samples_leaf=20, min_samples_split=20; tot
al time=
           0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=20; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=20; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=20; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=20; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=10, min_samples_split=20; to
tal time=
            0.0s
```

Out [56]:

```
Orange City canine club - Jupyter Notebook
[CV] END max depth=10, min samples leaf=20, min samples split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=20, min_samples_split=10; to
tal time=
            0.0s
[CV] END max depth=10, min samples leaf=20, min samples split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=20, min_samples_split=10; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=20, min_samples_split=10; to
tal time=
            0.0s
[CV] END max depth=10, min samples leaf=20, min samples split=20; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=20, min_samples_split=20; to
tal time=
            0.0s
[CV] END max_depth=10, min_samples_leaf=20, min_samples_split=20; to
tal time=
            0.0s
[CV] END max depth=10, min samples leaf=20, min samples split=20; to
tal time=
            0.0s
[CV] END max depth=10, min samples leaf=20, min samples split=20; to
tal time=
            0.0s
             GridSearchCV
 ▶ estimator: DecisionTreeRegressor
       ▶ DecisionTreeRegressor
```

```
In [60]: y_pred_dt_test=dt_optimal_model.predict(x_test)
y_pred_dt_train=dt_optimal_model.predict(x_train)
```

#Evaluation metrics for Train set In [61]:

EvaluationMetric(x_train,y_train,y_pred_dt_train)

MSE: 125128.0001 RMSE: 353.7343637533679

R2: 0.18263361267317557 Adjusted R2: 1.669649570340049

Out[61]: (125128.0001, 353.7343637533679, 0.18263361267317557, 1.669649570340

049)

In [62]: #Evaluation metrics for Test set

EvaluationMetric(x_test,y_test,y_pred_dt_test)

MSE: 50878.9357 RMSE: 225.56359568866606

R2: 0.3419539604998376 Adjusted R2: 1.0834834527724087

Out[62]: (50878.9357, 225.56359568866606, 0.3419539604998376, 1.0834834527724

087)

In []: