Chrysostomos Karakasis

Ph.D. Candidate in Mechanical Engineering

Address: 68 Welsh Tract Road

Newark, DE, 19713

Phone: (+1) 302-898-8542 e-mail: chryskar@udel.edu in: in/chrys-karakasis

O: chryskar

•: Chrysostomos Karakasis

Chryskar.github.io

Education

Ph.D. in Mechanical Engineering

University of Delaware, USA

GPA: 4.0/4.0 Aug. 2019 - June 2024

• Dissertation: "Robust and Stable Locomotion of Lower-limb Prostheses and Bipedal Robots over Compliant Terrains" Advisor: Dr Panagiotis Artemiadis

Committee: Ioannis Poulakakis (UD); Thomas Buchanan (UD); Robert Gregg (UMich)

M.Sc. in Mechanical Engineering

University of Delaware, USA

GPA: 4.0/4.0 MAY 2023

GPA: 9.02/10

DEC. 2013 - FEB. 2019

B.Sc. & M.Sc. in Electrical and Computer Engineering (Top 5%)

NATIONAL TECHNICAL UNIVERSITY OF ATHENS, GREECE (5-YEAR JOINT DEGREE; 300 ECTS)

• Thesis: "Implementation of Quadruped Robot's Motion Control on SoC FPGA" Supervisors: Prof. Dimitrios Soudris & Prof. Evangelos Papadopoulos

Research Interests

Rehabilitation & Medical Robotics Legged Locomotion Dynamics and Control Embedded Systems Design

Professional Experience

Robotics and Controls Engineer Intern

Johnson & Johnson Medtech

Manager: Douglas Spencer Maughan - Mentor: Michael Dermksian

June - Aug. 2022

- Designed, implemented, and evaluated a hard-stop handling method to prevent overloading in cable-driven continuum wrists
- Studied the modeling/control of redundant robotic manipulators, covering kinematics and Jacobian-based space transitions
- Contributed code to production C++ robotics code-base and gained experience in unit testing and Git version control

Research Assistant University of Delaware

Advisor: Dr. Panagiotis Artemiadis

2019 - Present

- $\bullet \ \ \text{Proposed an energy-based framework for the dynamic locomotion of bipeds across a wide range of compliant surfaces}$
- Developed a bio-inspired controller for a biped to regulate expected perturbations of extremely low ground stiffness
- Implemented an admittance controller for an ankle-foot prosthesis to improve walking stability over compliant terrains
- Introduced a novel kinematic data-based algorithm (F-VESPA) for real-time foot-strike detection
- Designed a user-friendly interface for performing gait experiments using the Variable Stiffness Treadmill (VST)

Research Assistant

National Technical University of Athens

Advisor: Dr. Dimitrios Soudris & Dr. Evangelos Papadopoulos (MicroLab & CSL-EP)

2018-2019

• Implemented a highly affordable control architecture for the quadruped robot Laelaps II based on a SoC FPGA

Technical Skills

- Operating Systems: Microsoft Windows, Unix (Linux)
- Programming Languages: C/C++, Python, Pascal, Assembly (ARM, AVR architecture)
- Computer Hardware Design: VHDL, Verilog, Xilinx Vivado/ISE Design Suite, High-Level Synthesis (HLS)
- Software Tools: Mathworks MATLAB/Simulink, CLion IDE, Bitbucket, GitHub ,Vicon Nexus/DataStream SDK, Gazebo, Jupyter Notebook, Microsoft Azure, Eclipse IDE, Matplotlib
- Application Software: TFX (LATEX, BIBTEX), Microsoft Office, OpenOffice

Academic Scholarships and Awards

- IEEE/RAS Member Support Program for IROS 2023

- Graduate Student Travel Award for IROS 2023

- George W. Laird Merit Fellowship (Finalist)

- Onassis Foundation Scholarship

- Gerondelis Foundation Scholarship for Academic Excellence

IEEE Robotics and Automation Society, 2023

University of Delaware, 2023

University of Delaware, 2020

Alexander S. Onassis Foundation, 2020-2023

Gerondelis Foundation Inc., 2020

Publications

[J3] V. Chambers, B. Hobbs, W. Gaither, Z. The, A. Zhou, C. Karakasis, and P. Artemiadis, "The Variable Stiffness Treadmill (VST) 2.0: Development and Validation of a Unique Tool to Investigate Locomotion on Compliant Terrains," ASME Journal of Mechanisms and Robotics, 2023, Under Review.

- [J2] C. Karakasis, I. Poulakakis, and P. Artemiadis, "An Energy-Based Framework for Robust Dynamic Bipedal Walking Over Compliant Terrain," *Journal of Dynamic Systems, Measurement, and Control*, pp. 1–12, Nov. 2023, ISSN: 0022-0434. DOI: 10.1115/1.4064094.
- [J1] C. Karakasis and P. Artemiadis, "Real-time kinematic-based detection of foot-strike during walking," *Journal of Biome-chanics*, vol. 129, p. 110849, 2021, ISSN: 0021-9290. DOI: https://doi.org/10.1016/j.jbiomech.2021.110849.
- [C4] C. Karakasis, R. Salati, and P. Artemiadis, "Adjusting the Quasi-Stiffness of an Ankle-Foot Prosthesis Improves Walking Stability during Locomotion over Compliant Terrain," in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 2140–2145. DOI: 10.1109/IROS55552.2023.10342344.
- [C3] C. Karakasis, I. Poulakakis, and P. Artemiadis, "Robust Dynamic Walking for a 3D Dual-SLIP Model under One-Step Unilateral Stiffness Perturbations: Towards Bipedal Locomotion over Compliant Terrain," in 2022 30th Mediterranean Conference on Control and Automation (MED), 2022, pp. 969–975. DOI: 10.1109/MED54222.2022.9837236.
- [C2] C. Karakasis and P. Artemiadis, "F-VESPA: A Kinematic-based Algorithm for Real-time Heel-strike Detection During Walking," in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2021, pp. 5098–5103. DOI: 10.1109/IROS51168.2021.9636335.
- [C1] C. Karakasis, K. Machairas, C. Marantos, I. S. Paraskevas, E. Papadopoulos, and D. Soudris, "Exploiting the SoC FPGA Capabilities in the Control Architecture of a Quadruped Robot," in 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2020, pp. 501–507. DOI: 10.1109/AIM43001.2020.9159012.

Presentations

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Detroit, USA, Oct. 2023

In-person presentation of the accepted paper "Adjusting the Quasi-Stiffness of an Ankle-Foot Prosthesis Improves Walking Stability during Locomotion over Compliant Terrain" as part of the "Prosthesis Design and Control" Technical Session.

30th Mediterranean Conference on Control and Automation (MED)

Athens, Greece, July 2022

 $\label{lem:continuous} \begin{tabular}{ll} Virtual presentation of the accepted paper ``Robust Dynamic Walking for a 3D Dual-SLIP Model under One-Step Unilateral Stiffness Perturbations: Towards Bipedal Locomotion over Compliant Terrain" as part of the "Robotics V" Regular Session. \\ \end{tabular}$

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Prague, Czech Republic, Sep. 2021 Virtual presentation of the accepted paper "F-VESPA: A Kinematic-based Algorithm for Real-time Heel-strike Detection During Walking" as part of the "Prosthetics and Exoskeletons I" Technical Session.

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)

Boston, USA, July 2020

Virtual presentation of the accepted paper "Exploiting the SoC FPGA Capabilities in the Control Architecture of a Quadruped Robot" as part of the "Legged Robots II" Technical Session.

Mentoring

Research Advising at the University of Delaware (HORC Lab)

• <u>Camryn Scully</u> (M.Sc. in Robotics) Feb. 2023 - Present Development of an inline bypass adapter for an ankle-foot prosthesis based on the iWALK3.0 Hands Free Crutch

• <u>Robert Salati</u> (M.Sc. in Robotics) Sep. 2022 - Aug. 2023 Development of admittance controller for the adjustment of the quasi-stiffness of an ankle-foot prosthesis