第九章 方差分析及回归分析

王笑尘

北京邮电大学网络空间安全学院

wxiaochen@bupt.edu.cn

第一节 单因素试验的方差分析

- 一、单因素试验
- 二、平方和的分解
- 三、 S_E , S_A 的统计特性
- 四、假设检验问题的拒绝域
- 五、未知参数的估计
- 六、小结

一、单因素试验

方差分析——根据试验的结果进行分析,鉴别 各个有关因素对试验结果的影响程度.

试验指标——试验中要考察的指标.

 素——影响试验指标的条件.

水 平——因素所处的状态。

可

控因素

*单因素试验——在一项试验中只有一个因素改变.

→多因素试验——在一项试验中有多个因素在改变.

例1 设有三台机器,用来生产规格相同的铝合金薄板.取样,测量薄板的厚度精确至千分之一厘米.得结果如下表所示.

表9.1 铝合金板的厚度

机器I	机器II	机器III
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

试验指标:薄板的厚度

因素: 机器

水平: 不同的三台机器是因素的三个不同的水平

假定除机器这一因素外,其他条件相同,属于单因素试验.

试验目的:考察各台机器所生产的薄板的厚度有无显著的差异,即考察机器这一因素对厚度有无显著的影响.

例2 下表列出了随机选取的、用于计算器的四种类型的电路的响应时间(以毫秒计).

表9.2 电路的响应时间

类型I	类型II	类型III	类型Ⅳ
19 15	20 40	16 17	18
22	21	15	22
20	33	18	19
18	27	26	

试验指标:

因素:

水平:

单因素试验

试验目的:

例2 下表列出了随机选取的、用于计算器的四种类型的电路的响应时间(以毫秒计).

表9.2 电路的响应时间

类型I	类型II	类型III	类型Ⅳ
19 15	20 40	16 17	18
22	21	15	22
20	33	18	19
18	27	26	

试验指标:电路的响应时间

因素:电路类型

水平: 四种电路类型为因素的四个不同的水平

单因素试验

试验目的:考察电路类型这一因素对响应时间有无

显著的影响.

例3 一火箭用四种燃料,三种推进器作射程试验. 每种燃料与每种推进器的组合各发射火箭两次,得 射程如下(以海里计).

表9.3 火箭的射程

推进器(推进器(B)		B_2	B_3
	A_1 A_2	58.2 52.6	56.2 41.2	65.3 60.8
燃料(A)		49.1 42.8	54.1 50.5	51.6 48.4
然作(A)	A_3	60.1 58.3	70.9 73.2	39.2 40.7
	A_4	75.8 71.5	58.2 51.0	48.7 41.4

水平: 推进器有3个,燃料有4个

双因素试验

试验目的:考察推进器和燃料两因素对射程有

无显著的影响.

例1

表9.1 铝合金板的厚度

机器I	机器II	机器III
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

问题分析在每一个水平下进行独立试验,结果是一个随机变量.将数据看成是来自三个总体的样本值.

设总体均值分别为 μ_1,μ_2,μ_3 .

检验假设

 $H_0: \mu_1 = \mu_2 = \mu_3,$

 $H_1: \mu_1, \mu_2, \mu_3$ 不全相等.

检验假设

 $H_0: \mu_1 = \mu_2 = \mu_3,$

 $H_1: \mu_1, \mu_2, \mu_3$ 不全相等.

进一步假设各总体均为正态变量,且各总体的方差相等,但参数均未知.

问 题——检验同方差的多个正态总体均值是否相等.

解决方法——方差分析法(分析与均值偏差的平方和),一种统计方法.

数学模型

水平 观察结果	A_1	A_2	•••	A_s
	X_{11}	X_{12}		X_{1s}
	X_{21}	X_{22}		X_{2s}
	$X_{n_1^{-1}}$	$X_{n_2^2}$	•••	$X_{n_s s}$
样本总和	$T_{\bullet 1}$	$T_{\bullet 2}$		T_{\bullet_S}
样本均值	$\overline{X}_{ullet 1}$	$\overline{X}_{ullet 2}$		$\overline{X}_{ullet s}$
总体均值	μ_1	μ_2		μ_{s}

假设

1.各个水平 A_j ($j = 1, 2, \dots, s$)下的样本 X_{1j}, X_{2j} ,

 $...,X_{n_jj}$ 来自具有相同方差 σ^2 ,均值分别为 $\mu_j(j=1,$

 $2,\dots,s$)的正态总体 $N(\mu_j,\sigma^2),\mu_j$ 与 σ^2 均未知;

2.不同水平 A_j 下的样本之间相互独立.

因为 X_{ij} $\sim N(\mu_j, \sigma^2)$,所以 $X_{ij} - \mu_j \sim N(0, \sigma^2)$.

记 $X_{ij} - \mu_j = \varepsilon_{ij}$,表示随机误差,那么 X_{ij} 可写成

$$X_{ij} = \mu_j + \varepsilon_{ij}$$
,
 $\varepsilon_{ij} \sim N(\mathbf{0}, \sigma^2)$,各 ε_{ij} 独立,
 $i = 1, 2, \dots, n_j, j = 1, 2, \dots, s$,
 μ_j 与 σ^2 均未知.

单因素试验方差分析的数学模型

需要解决的问题

1.检验假设

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_s,$$

 $H_1: \mu_1, \mu_2, \cdots, \mu_s$ 不全相等.

2.估计未知参数 $\mu_1, \mu_2, \cdots, \mu_s, \sigma^2$.

数学模型的等价形式

记
$$n = \sum_{j=1}^{s} n_j, \mu = \frac{1}{n} \sum_{j=1}^{s} n_j \mu_j.$$

总平均

水平 A_j 的效

应,表示水平

 A_j 下的总体

平均值与总

平均的差异,

$$\delta_j = \mu_j - \mu, j = 1, 2, \dots, s.$$

$$n_1\delta_1+n_2\delta_2+\cdots+n_s\delta_s=0.$$

原数学模型 $X_{ij} = \mu_j + \varepsilon_{ij}$, $\varepsilon_{ij} \sim N(0, \sigma^2)$, 各 ε_{ij} 独立, $i = 1, 2, \cdots, n_j, j = 1, 2, \cdots, s$, $\mu_i = \sigma^2$ 均未知.

改写为

$$X_{ij} = \mu + \delta_j + \varepsilon_{ij},$$
 $\varepsilon_{ij} \sim N(0, \sigma^2),$ 各 ε_{ij} 独立,
 $i = 1, 2, \dots, n_j, j = 1, 2, \dots, s,$

$$\sum_{j=1}^{s} n_j \delta_j = 0.$$

检验假设

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_s,$$

$$H_1: \mu_1, \mu_2, \dots, \mu_s$$
不全相等.

等价于

检验假设
$$H_0: \delta_1 = \delta_2 = \cdots = \delta_s = 0,$$
 $H_1: \delta_1, \delta_2, \cdots, \delta_s$ 不全为零.

$$H_1: \delta_1, \delta_2, \cdots, \delta_s$$
不全为零。

二、平方和的分解

$$\overline{X} = \frac{1}{n} \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij}$$
 —数据的总平均

$$\overline{X}_{\bullet j} = \frac{1}{n_i} \sum_{i=1}^{n_j} X_{ij} - \underline{X} = \frac{1}{n_i} \sum_{i=1}^{n_j} X_{ij}$$

$$S_{T} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X})^{2}$$

$$= \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} [(X_{ij} - \overline{X}_{\bullet j}) + (\overline{X}_{\bullet j} - \overline{X})]^{2}$$

$$= \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{\bullet j})^{2} + \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (\overline{X}_{\bullet j} - \overline{X})^{2}$$

$$+ 2 \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{\bullet j}) (\overline{X}_{\bullet j} - \overline{X})$$

$$S_{T} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{\bullet j})^{2} + \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (\overline{X}_{\bullet j} - \overline{X})^{2}$$
$$= S_{E} + S_{A}$$

$$S_E = \sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})^2$$
—误差平方和(随机误差引起)

$$S_A = \sum_{j=1}^{s} \sum_{i=1}^{n_j} (\overline{X}_{\bullet j} - \overline{X})^2 = \sum_{j=1}^{s} n_j (\overline{X}_{\bullet j} - \overline{X})^2$$

$$=\sum_{i=1}^{3}n_{j}\overline{X}_{\bullet j}^{2}-n\overline{X}^{2}$$

 $= \sum_{j=1}^{n} n_{j} \overline{X}_{\bullet j}^{2} - n \overline{X}^{2} \quad - \underline{X}^{2} \quad - \underline{X$ 的差异和随机误差引起)

三、 S_E , S_A 的统计特性

$$S_{E} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{\bullet j})^{2}$$

$$=\sum_{i=1}^{n_1}(X_{i1}-\overline{X}_{\bullet 1})^2+\cdots+\sum_{i=1}^{n_s}(X_{is}-\overline{X}_{\bullet s})^2,$$

$$\sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})^2 \mathbb{E}N(\mu_j, \sigma^2)$$
的样本方差的 $n_j - 1$ 倍,

$$\sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})^2 / \sigma^2 \sim \chi^2(n_j - 1).$$

又由于各 X_{ii} 独立,所以由 χ^2 分布的可加性知

$$S_E/\sigma^2 \sim \chi^2(\sum_{j=1}^s (n_j-1)),$$

即

$$S_E/\sigma^2 \sim \chi^2(n-s)$$
,其中 $n = \sum_{j=1}^s n_j$.

根据 χ² 分布的性质可以得到

 S_E 的自由度为n-s;

$$E(S_E) = (n-s)\sigma^2.$$

$$S_{A} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (\overline{X}_{\bullet j} - \overline{X})^{2} = \sum_{j=1}^{s} [\sqrt{n_{j}} (\overline{X}_{\bullet j} - \overline{X})]^{2}$$

因为
$$\sum_{j=1}^{s} \sqrt{n_j} [\sqrt{n_j} (\overline{X}_{\bullet j} - \overline{X})] = \sum_{j=1}^{s} n_j (\overline{X}_{\bullet j} - \overline{X})$$

$$= \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij} - n\overline{X} = 0$$

所以 S_A 的自由度为s-1.

又因为
$$\mu = \frac{1}{n} \sum_{j=1}^{s} n_j \mu_j, \overline{X} = \frac{1}{n} \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij}, X_{ij}$$
相互独立,

所以 $\overline{X} \sim N(\mu, \sigma^2/n)$.

$$S_{A} = \sum_{j=1}^{s} n_{j} \overline{X}_{\bullet j}^{2} - n \overline{X}^{2}$$

$$E(S_{A}) = E[\sum_{j=1}^{s} n_{j} \overline{X}_{\bullet j}^{2} - n \overline{X}^{2}]$$

$$= \sum_{j=1}^{s} n_{j} E(\overline{X}_{\bullet j}^{2}) - n E(\overline{X}^{2})$$

$$= \sum_{j=1}^{s} n_{j} \left[\frac{\sigma^{2}}{n_{j}} + (\mu + \delta_{j})^{2}\right] - n \left[\frac{\sigma^{2}}{n} + \mu^{2}\right]$$

$$= (s - 1)\sigma^{2} + 2\mu \sum_{j=1}^{s} n_{j} \delta_{j} + n\mu^{2} + \sum_{j=1}^{s} n_{j} \delta_{j}^{2} - n\mu^{2}$$

$$= (s - 1)\sigma^{2} + \sum_{j=1}^{s} n_{j} \delta_{j}^{2}$$

 S_A 与 S_E 独立, H_0 为真时, $S_A/\sigma^2 \sim \chi^2(s-1)$.

四、假设检验问题的拒绝域

检验假设 $H_0: \delta_1 = \delta_2 = \cdots = \delta_s = 0,$ 检验假设 $H_1: \delta_1, \delta_2, \cdots, \delta_s$ 不全为零.

$$E(S_A) = E[\sum_{j=1}^{s} n_j \overline{X}_{\bullet j}^2 - n \overline{X}^2] = (s-1)\sigma^2 + \sum_{j=1}^{s} n_j \delta_j^2$$

 H_0 为真时, $S_A/\sigma^2 \sim \chi^2(s-1)$.

$$E(\frac{S_A}{s-1}) = \sigma^2$$
,即 $\frac{S_A}{s-1}$ 是 σ^2 的无偏估计.

四、假设检验问题的拒绝域

$$egin{aligned} H_0: \delta_1 = \delta_2 = \cdots = \delta_s = 0, \ H_1: \delta_1, \delta_2, \cdots, \delta_s$$
不全为零.

$$E(S_A) = E[\sum_{j=1}^{s} n_j \overline{X}_{\bullet j}^2 - n \overline{X}^2] = (s-1)\sigma^2 + \sum_{j=1}^{s} n_j \delta_j^2$$

$$H_1$$
为真时, $\sum_{j=1}^s n_j \delta_j^2 > 0$,

$$E(\frac{S_A}{s-1}) = \sigma^2 + \frac{1}{s-1} \sum_{j=1}^{s} n_j \delta_j^2 > \sigma^2.$$

因为 $S_E/\sigma^2 \sim \chi^2(n-s)$,所以 $E(\frac{S_E}{n-s}) = \sigma^2$,

即不管 H_0 是否为真, $S_E/(n-s)$ 都是 σ^2 的无偏估计.

因为 H_0 为真时, $S_A/\sigma^2 \sim \chi^2(s-1)$, $S_E/\sigma^2 \sim \chi^2(n-s)$,所以 H_0 为真时,

$$\frac{S_A/(s-1)}{S_E/(n-s)} = \frac{S_A/\sigma^2}{(s-1)} / \frac{S_E/\sigma^2}{(n-s)} \sim F(s-1,n-s).$$

$$E(S_A) = E[\sum_{j=1}^{s} n_j \overline{X}_{\bullet j}^2 - n \overline{X}^2] = (s-1)\sigma^2 + \sum_{j=1}^{s} n_j \delta_j^2$$
$$\delta_j = \mu_j - \mu, j = 1, 2, \dots, s.$$

$$F = \frac{S_A/(s-1)}{S_E/(n-s)}$$
.
1. 分子和分母相互独立;

- 2. 分母 $S_E/(n-s)$ 的数学期望始终是 σ^2 ,
- $3. H_0$ 为真时,分子的期望为 σ^2 , H_0 不真时,分子 取值有偏大的趋势.

拒绝域形如
$$F = \frac{S_A/(s-1)}{S_E/(n-s)} \ge k$$
.

检验假设
$$H_0: \delta_1 = \delta_2 = \cdots = \delta_s = 0,$$
 $H_1: \delta_1, \delta_2, \cdots, \delta_s$ 不全为零.

统计量为
$$\frac{S_A/(s-1)}{S_E/(n-s)} = \frac{S_A/\sigma^2}{(s-1)} / \frac{S_E/\sigma^2}{(n-s)} \sim F(s-1,n-s).$$

拒绝域为

单因素试验方差分析表

方差	き来源	平方和	自由度	均方	F 比
因	$$ 素 A	$\boldsymbol{S}_{\boldsymbol{A}}$	s-1	$\overline{S}_A = \frac{S_A}{s-1}$	$oldsymbol{F} = oldsymbol{\overline{S}}_A / oldsymbol{\overline{S}}_E$
误	差	S_E	n-s	$\overline{S}_E = \frac{S_E}{n-s}$	
总	和	S_T	n-1		

记
$$T_{\bullet j} = \sum_{i=1}^{n_j} X_{ij}, j = 1, \dots, s, T_{\bullet \bullet} = \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij},$$

$$S_T = \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij}^2 - \frac{T_{\bullet \bullet}^2}{n}, \quad S_A = \sum_{j=1}^{s} \frac{T_{\bullet j}^2}{n_j} - \frac{T_{\bullet \bullet}^2}{n},$$

$$S_E = S_T - S_A.$$

设有三台机器,用来生产规格相同的铝合金薄 板.取样,测量薄板的厚度精确至千分之一厘米.得结 果如下表所示.

表9.1 铝合金板的厚度

机器I	机器II	机器III
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

取 $\alpha = 0.05$,检验假设

 $H_0: \mu_1 = \mu_2 = \mu_3, \ H_1: \mu_1, \mu_2, \mu_3$ 不全相等.

解
$$s = 3, n_1 = n_2 = n_3 = 5, n = 15,$$

 $S_T = 0.00124533, S_A = 0.00105333, S_E = 0.000192.$
方差分析表

方差	色来源	平方和	自由度	均	方	F	比
因	素A	0.00105333	2	0.0005	52667	32	.92
误	差	0.000192	12	0.0000)16		
总	和	0.00124533	14				

 $F = 32.92 > F_{0.05}(2,12) = 3.89$.在水平 0.05 下拒绝 H_0 . 各机器生产的薄板厚度有显著差异.

在MATLAB中的求解

函数:anoval

格式:p=anova1(x)

说明:对样本X中的多列数据进行单因素方差分析, 比较各列的均值,返回"零假设"成立的概率值,如果 概率值接近于零,则零假设值得怀疑,表明各列的均 值事实上是不同的.

源程序: x=[0.236,0.238,0.248,0.245,0.243; 0.257,0.253,0.255,0.254,0.261; 0.258,0.264,0.259,0.267,0.262]; p=anova1(x')

程序运行结果

■ Figure 1: One-way ANOVA

文件(E) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)

	*****		, ,	,	, , , , , , ,	
					ANOVA Tab	le
Source	SS	df	MS	F	Prob>F	
Columns				32. 92	1. 34305e-05	
Error Total	0. 00019 0. 00125	12 14	0. 00002			

五、未知参数的估计

$$E(S_E/(n-s)) = \sigma^2$$
 $\hat{\sigma}^2 = S_E/(n-s)$ $E(\overline{X}) = \mu$ $\hat{\mu} = \overline{X}$ 无偏估计 $E(\overline{X}_{\bullet j}) = \mu_j, j = 1, 2, \dots, s$ $\hat{\mu}_j = \overline{X}_{\bullet j}$ $\delta_j = \mu_j - \mu, j = 1, 2, \dots, s$ $\hat{\delta}_j = \overline{X}_{\bullet j} - \overline{X}$

若拒绝 H_0 ,需对两总体 $N(\mu_j, \sigma^2)$, $N(\mu_k, \sigma^2)$

的均值差 $\mu_j - \mu_k = \delta_j - \delta_k$ 作出区间估计.

因为
$$E(\overline{X}_{\bullet j} - \overline{X}_{\bullet k}) = \mu_j - \mu_k$$
,
$$D(\overline{X}_{\bullet j} - \overline{X}_{\bullet k}) = \sigma^2(\frac{1}{n_j} + \frac{1}{n_k}),$$

$$\overline{X}_{\bullet j} - \overline{X}_{\bullet k}$$
与 $\hat{\sigma}^2 = S_E/(n-s)$ 独立,

$$\frac{(\overline{X}_{\bullet j} - \overline{X}_{\bullet k}) - (\mu_j - \mu_k)}{\sqrt{\overline{S}_E(\frac{1}{n_j} + \frac{1}{n_k})}}$$

$$=\frac{(\bar{X}_{\cdot j} - \bar{X}_{\cdot k}) - (\mu_{j} - \mu_{k})}{\sigma \sqrt{\frac{1}{n_{j}} + \frac{1}{n_{k}}}} / \sqrt{\frac{S_{E}}{\sigma^{2}}} / (n-s) \sim t(n-s).$$
均值差 $\mu_{j} - \mu_{k} = \delta_{j} - \delta_{k}$ 的置信水平为 $1 - \alpha$ 的

置信区间为

$$\left(\overline{X}_{\bullet j} - \overline{X}_{\bullet k} \pm t_{\alpha/2}(n-s)\sqrt{\overline{S}_E(\frac{1}{n_j} + \frac{1}{n_k})}\right).$$

例5 求例4中的未知参数 σ^2 , μ_j , δ_j (j=1,2,3)的点估计及均值差的置信水平为0.95的置信区间.

例5 求例4中的未知参数 σ^2 , μ_j , δ_j (j = 1, 2, 3)的点估计及均值差的置信水平为0.95的置信区间.

解
$$\hat{\sigma}^2 = S_E/(n-s) = 0.000016$$
,

$$\hat{\mu}_1 = \overline{x}_{\bullet 1} = 0.242, \hat{\mu}_2 = \overline{x}_{\bullet 2} = 0.256, \hat{\mu}_3 = \overline{x}_{\bullet 3} = 0.262.$$

$$\hat{\mu}=\overline{x}=0.253,$$

$$\hat{\delta}_1 = \overline{x}_{\bullet 1} - \overline{x} = -0.011,$$

$$\hat{\delta}_2 = \overline{x}_{\bullet 2} - \overline{x} = 0.003,$$

$$\hat{\delta}_3 = \overline{x}_{\bullet 3} - \overline{x} = 0.009.$$

因为
$$t_{0.025}(n-s) = t_{0.025}(12) = 2.1788$$
,

$$t_{0.025}(12)\sqrt{\overline{S}_E(\frac{1}{n_j}+\frac{1}{n_k})}=0.006,$$

所以 $\mu_1 - \mu_2$ 的置信水平为0.95的置信区间为

$$(0.242 - 0.256 \pm 0.006) = (-0.020, -0.008),$$

 $\mu_1 - \mu_3$ 的置信水平为0.95的置信区间为

$$(0.242 - 0.262 \pm 0.006) = (-0.026, -0.014),$$

 $\mu_2 - \mu_3$ 的置信水平为0.95的置信区间为

$$(0.256 - 0.262 \pm 0.006) = (-0.012,0).$$

例6 下表列出了随机选取的、用于计算器的四种类型的电路的响应时间(以毫秒计).

表9.2 电路的响应时间

类型I	类型II	类型III	类型Ⅳ
19 15	20 40	16 17	18
22	21	15	22
20	33	18	19
18	27	26	

设四种类型电路的响应时间的总体均为正态,且各总体的方差相同,但参数均未知,各样本相互独立. 取水平 $\alpha = 0.05$ 检验各类型电路的响应时间是否有显著差异.

在MATLAB中求解

x=[19,22,20,18,15,20,40,21,33,27,16,17,15,18,26,18, 22,19];

y=[1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4]; p=anova1(x,y)

程序运行结果

方差分析表

Box 图检验

帮

Table

助

■ Figure 1: One-way ANOVA

文件(E) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(I

1					ANOVA
Source	SS	df	MS	F	Prob>F
	318. 978			3. 76	0. 0359
BIIOI	395. 467 714. 444		28. 248		

六、小结

- 1. 随机试验: 单因素试验、多因素试验
- 2. 单因素试验方差分析步骤
 - (1) 建立数学模型;
 - (2) 分解平方和;
 - (3) 研究统计特性;
 - (4) 进行假设检验;
 - (5) 估计未知参数.

第九章作业(教材第五版):

P261: 1, 2

注:作业不得抄袭;写上姓名、班级、学号和页码(如1/5),待第九章讲授结束后,与第八章作业一起提交至教学云平台。

