1

A New Parallel Algorithm for Two-Pass Connected Component Labeling

Abstract—Connected Component Labeling(CCL) is one of the most important step in pattern recognition and image processing. Connected component labeling assigns labels to a pixel such that adjacent pixels sharing the same features are assigned the same label. Typically, CCL requires several passes over the data. For example, in a two-pass technique, the first pass, each pixel is given a provisional label and label equivalence information is stored. In the second pass,an actual label is given to each pixel. Suzuki et al have proposed two algorithms for CCL with two-pass technique called Link by Rank and Path Compression(LRPC), and ARun. The LRPC algorithm uses a decision tree to assign provisional labels and an array-based union-find datastructure to store label equivalence information. The ARun algorithm employs a special scan order over the data and three linear arrays instead of the conventional union-find datastructure. To the best of our knowledge, there has not been any effort yet on parallelizing two-pass CCL for shared memory architecture.

We present a scalable parallel two-pass CCL algorithm called PARemSP, which employs scan strategy of ARun algorithm and the best union-find technique called RemSP for storing label equivalence information of pixels in a 2-D image. In the first pass, we divide the image among threads and each thread runs the scan strategy of ARun algorithm along with RemSP simultaneously. As RemSP is easily parallelizable, we use the parallel version of RemSP for merging the pixels on the boundary. Our experiments show the scalability of PARemSP achieving speedups up to 20.1 using 24 cores on shared memory architecture for an image of size 22822×20384 . Additionally, the parallel algorithm does not make use of any hardware specific routines, and thus is highly portable.

I. Introduction

One of the most fundamental operations in pattern recognition is the labeling of connected components in a binary image. Connected-component labeling(CCL) is a procedure for assigning a unique label to each object (or a connected component) in an image. Because these labels are key for other analytical procedures, connected-component labeling is an indispensable part of most applications in pattern recognition and computer vision, such as fingerprint identification, character recognition, automated inspection, target recognition, face identification, medical image analysis, and computer-aided diagnosis. In many cases, it is also one of the most time-consuming tasks among other pattern-recognition algorithms [1]. Therefore, connected-component labeling continues to be an active area of research [2]–[9].

There exist many algorithms for computing connected components in a given image. These algorithms are categorized into mainly four groups [10]: 1) repeated pass algorithms, 2) two-pass algorithms 3) Algorithms with hierarchical tree equivalent representations of the data, 4) parallel algorithms. The repeated pass algorithms perform repeated passes over an image in forward and backward raster directions alternately to propagate the label equivalences until no labels change. In

two-pass algorithms, during the first pass, provisional labels are assigned to connected components; the label equivalences are stored in a one-dimensional or a two-dimensional table array. After the first pass, the label equivalences are resolved by some search. This step is often performed by using a search algorithm such as the union-find algorithm. The results of resolving are generally stored in a one-dimensional table. During the second pass, the provisional labels are replaced by the smallest equivalent label using the table. As the algorithm traverses image twice that's why these algorithms are called two-pass algorithms. In algorithms that employ hierarchical tree structures i.e., n-ary tree such as binary-tree, quad-tree, octree, etc., the label equivalences are resolved by using a search algorithm such as the union-find algorithm. Lastly, the parallel algorithms have been developed for parallel machine models such as a mesh connected massively parallel processor. Hoverver all these algorithms shares one common step, known as scanning step in which provisional label is given to each of the pixel depending on its neighbors.

In this paper we focus on two-pass CCL algorithms. [11], and [12] are two developed techniques for two-pass CCL algorithms. The algorithm in [11], which we refer to as LRPC, uses a decision tree to assign provisional labels and an array-based union-find datastructure to store label equivalence information. However, the technique for employed for union-find, Link by Rank and Path Compression is not the best technique available [13]. The algorithm in [12], which we refer to as ARUN, employs a special scan order over the data and three linear arrays instead of the conventional union-find datastructure. There exists a parallel implementation of ARUN on TILE64 many core platform [14]. According to the experimental results given in [14], they got a speedup of 10 on 32 processor units. As the parallel implementation is hardware specific and speedup is less than 33% of the actual speedup so this unconventional implementation is not suited for parallel implementation.

We propose two two-pass algorithm for labeling the connected components called AREMSP and REMSP, which are based on REM union-find algorithm [15] and the scan strategy of ARUN and LRPC algorithms. Since REM union-find is an interleaved algorithm which implements immediate parent check test and compression technique called *Splicing* [15], our proposed sequential two-pass algorithm AREMSP is 39% faster than LRPC and 4% faster than ARUN. Another advantage of using REM union-find approach is that its parallel implementation is shown to scale better with increasing number of processor [13]. Parallel REM union-find implementation thus allows us to process the pixels of the image in any order. Therefore, we propose a parallel implementation of our proposed sequential algorithm two-pass CCL algorithm called PAREMSP. For scalability, our algorithm in the first pass,

divides the image into equal proportions and executes the scan strategy of ARUN algorithm along with REMSP concurrently on each portion of the image. To merge the provisional labels on the image boundary, we use the parallel version of REMSP [13]. Our experiments show the scalability of PAREMSP achieving speedups up to 20.1 using 24 cores on shared memory architecture for an image of size $22,822\times20,384$. Additionally, the parallel algorithm does not make use of any hardware specific routines, and thus is highly portable.

The remainder of this paper is organized as follows. In section II, we provided related work on connected component labeling. In section III, we propose our sequential two-pass CCL algorithm AREMSP and it's parallel version in section IV. We present our experimental methodology and results in section V. We conclude our work and propose future work in section VI.

II. Related Work

As mentioned in [10], there exists different types of CCL algorithms. Repeated pass or multi pass algorithm repeatedly scans the image forward and backward alternatively to give labels until no further changes can be made to the assigned pixels [16]. The algorithm in [10], which we call as *Suzuki's* algorithm modifies the conventional multi pass algorithm using one-dimensional table. There exists a parallel implementation of *Suzuki's* algorithm using OpenMP in [17]. According to experimental results in [17], the parallel implementation gets maximum speedup of 2.5 on 4 threads.

In any two-pass algorithm, there are two steps in scanning step: 1) examining neighbors of current pixel which already assigned labels to determine label for the current pixel, 2) storing label equivalence information to speed up the algorithm.

The algorithm in [11], which we refer to as LRPC, provides two strategies to improve the running time of the algorithm. First strategy reduces the average number of neighbors accessed by factor of 2 by employing a decision tree. Second strategy replaces the conventional pointer based union-find algorithm, which is used for storing label equivalence, by array based union-find algorithm that uses less memory. The union-find algorithm is implemented using Link by Rank and Path Compression technique.

The union-find data structure in [18] is replaced by a different data structure to process label equivalence information. In this algorithm, at any point, all provisional labels that are assigned to a connected component found thus far during the first scan are combined in a set S(r), where r is the smallest label and is referred to as the representative label. The algorithm employs rtable for storing representative label of a set, next to find the next element in the set and tail to find the last element of the set.

In another strategy, which we call ARUN, the first part of scanning step employs a scanning technique, which processes image two lines at a time and process image pixels two by two [12]. This algorithm uses the same data structure given in [18] for processing label equivalence information. The scanning technique reduces the number lines to be processed by half thereby improving the speed of the two-pass CCL method.

In this paper, we provide two different implementations of

two-pass CCL algorithm. These two algorithms are different in their first scan step. In the first implementation called REMSP, we have used the decision tree suggested by the LRPC algorithm for the first part of scanning step but for the second part we have used REM union-find approach instead of Link by Rank and Path Compression technique. [15] compares all of the different variations of union-find algorithms over different graph data sets and found that REM implementation is best among all the variations. Thus in our second implementation, called AREMSP, we process the image lines two by two as suggested by [12] but for the second step we use REMSP instead of the data structure used by [12].

We have compared both of our proposed implementations with LRPC, RUN, and ARUN algorithms and found out that AREMSP performs best among all the algorithms. Finally we have also provided a shared memory parallel implementation of REMSP called AREMSP using OpenMP. We use the parallel implementation of REMSP given in [13].

III. Proposed Algorithm

Throughout the paper, for an $M \times N$ image, we denote image(a) to denote the pixel value of pixel a. We consider binary images i.e. an containing of two types of pixels: object pixel and background pixel. Generally, we consider value of object pixel as 1 and value of background pixel as 0. The connected component labeling problem is to assign a label to each object pixel so that connected object pixels have the same label. In 2D images, there are two ways of defining connectedness: 4-connectedness and 8-connectedness. In this paper, we have only used the 8-connectedness of the pixel.

A. REMSP Algorithm

In REMSP, we have used the decision tree suggested in LRPC for scanning and REM union-find algorithm for storing label equivalence. The full algorithm for REMSP is given as Algorithm 1.

In the first scan step of REMSP, we process image lines one by one using the forward scan mask as shown in Figure 1a. We have used the decision tree proposed by [11] for determining the provisional label of current pixel e as we can reduce the number of neighbors using decision tree. Instead of examining all four neighbors of pixel, say e, i.e. a, b, c and d, we only examine the neighbors according to a desicion tree as shown in Fig 2. Let label denote the 2D array storing the labels and let p denote equivalence array then according to LRPC algorithm, three functions used by this decision tree are defined as follows:

- 1). The one-argument copy function, copy(a), contains one statement: label(e) = p(label(a))
- 2). The two-argument copy function, copy(c,a), contains one statements: label(e) = merge(p, label(c), label(a))
- 3). The new label function sets count as label(e), appends count to array p, and increments count by 1.

However, the implementation of MERGE operation in our proporsed algorithm REMSP is different from that of in LRPC. We have used the implementation of union-find proposed by REM [15] for merge operation. REM integrates the Union

Fig. 1: Forward Scan Mask

Fig. 2: Decision tree for RemSP

operation with a compression technique known as Splicing (sp). In the MERGE algorithm when rootx is to be moved to p(rootx), firstly p(rootx) is stored in a temporary variable z then p(rootx) is set to p(rooty), making the subtree rooted at rootx a sibling of rooty and finally rootx is set to z. The algorithm for MERGE is given as Algorithm 4. After the first step, we carry out the analysis phase using FLATTEN algorithm. In FLATTEN algorithm, we are giving smallest equivalent label of every connected component to all the pixels which belongs to that connected component. The algorithm also generates consecutive labels. The algorithm for FLATTEN is given as Algorithm 2. The implementation of RemSP-I is given as Algorithm 7

Algorithm 1 Pseudo-code for RemSP

```
Input: 2D array image containing the pixel values Output: 2D array label containing the final labels
```

```
1: function REMSP(image)
     Scan\_RemSP(image)
                                  3:
     flatten(p, count)
4:
     for row in image do

    ▶ Labeling Phase of RemSP

        for col in row do
5:
6:
           label(e) \leftarrow p[label(e)]
7.
        end for
     end for
۸٠
9: end function
```

Algorithm 2 Pseudo-code for flatten

```
InOut: 1D array p containing the equivalence info
Input: Max value of provisional label count
 1: function FLATTEN(p,count)
 2:
        k \leftarrow 1
 3:
        for i = 1 to count do
 4:
            if p[i] < i then
 5:
                p[i] \leftarrow p[p[i]]
 6:
 7:
                p[i] \leftarrow k
 8:
                k + +
 9:
            end if
10:
        end for
11: end function
```

B. AREMSP Algorithm

In AREMSP, we have used the decision tree suggested in ARUN for scanning and REM union-find algorithm for storing label equivalence. The full algorithm for AREMSP is given as Algorithm 3.

In the first scan step of AREMSP, we process image two lines at a time and processes pixels two by two using the mask shown in Fig 1b suggested in [12]. We will give the label to both e and q simultaneously. If both e and q are background pixels, then nothing needs to be done. If e is a foreground pixel and there is no foreground pixel in the mask, we assign a new provisional label to e and if q is a foreground pixel, we will give the label of e to g. If there are foreground pixels in the mask, then we assign e any label assigned to foreground pixels. In this case, if there is only one connected component in the mask then there is no need for label equivalance. Otherwise, if there are more than one connected component in the mask and as they are connected to e so all the labels of the connected components are equivalent labels and needs to be merged. For all the cases, one can refer [12]. However, our implementation of the union-find is different from [12]. We use the implementation of union-find proposed by Rem [15] for merge operation in AREMSP. We use FLATTEN for analysis phase and generating consequtive labels. The implementation of ARemSP - I is given as Algorithm

Algorithm 3 Pseudo-code for ARemSP

```
Input: 2D array image containing the pixel values
Output: 2D array label containing the final labels
 1: function AREMSP(image)
      Scan\_ARemSP(image)
                                     2:
 3:
      flatten(p, count)
                                 4:
      for row in image do

    ▶ Labeling Phase of RemSP

         for col in row do
 5:
            label(e) \leftarrow p[label(e)]
 6:
 7:
         end for
      end for
 9: end function
```

IV. Parallelizing AREMSP Algorithm

In the following we describe how one can run AREMSP algorithm in parallel on a shared memory system. In doing so we make the assumption about memory model as stated in *OpenMP* when we use atomic directive. We assume that

Algorithm 4 Pseudo-code for merge

```
Input: 1D array p and two nodes x and y
Output: The root of united tree
 1: function MERGE(p,x,y)
        rootx \leftarrow x, rooty \leftarrow y
        while p[rootx] \neq p[rooty] do
 3:
 4:
            if p[rootx] > p[rooty] then
 5:
                 if rootx = p[rootx] then
 6:
                     p[rootx] \leftarrow p[rooty]
 7:
                     return p[rootx]
 8:
                 end if
 9.
                 z \leftarrow p[rootx], p[rootx] \leftarrow p[rooty], rootx \leftarrow z
10:
            else
                 if rooty = p[rooty] then
11:
                     p[rooty] \leftarrow p[rootx]
12:
13:
                     return p[rootx]
14:
                 z \leftarrow p[rooty], p[rooty] \leftarrow p[rootx], rooty \leftarrow z
15:
            end if
16:
17:
        end while
        return p[rootx]
18:
19: end function
```

memory read/write operations are atomic and any operations issued concurrently by different processors will be executed in some unknown sequential order if no ordering constructs are being used. However, two dependent operations issued by the same processor will always be applied in the same order as they are issued. [13]

In PAREMSP, we divide the image among threads row-wise. The image is divided into chunks of equal size and given to the threads. In the first step, each thread run Phase-I of AREMSP on it's chunk simultaneously. We initialize the label to the start index of the thread for every thread so that no two pixels in the image have the same label after the first step. After the first step, each pixel is given a provisional label. Now the pixels at the boundary of each chunk need to be merged to get the final labels. In the second step, we merge the boundary pixels using parallel implementation of Rem's Algorithm [13]. We implement the parallel algorithm using OpenMP directives pragma omp parallel and pragma omp for. The pseudo code for parallel implementation of Rem's Algorithm is given as Algorithm 6. The pseudo code of PAREMSP is given as Algorithm 5.

Algorithm 5 Pseudo-code for PARemSP

```
Input: 2D array image containing the pixel values
Output: 2D array label containing the final labels
 1: function PAREMSP(image)
        numiter \leftarrow row/2 \triangleright As we are processing 2 rows at a time
 3:
        # pragma omp parallel
        chunk \leftarrow numiter/number of threads
 4:
 5:
        size \leftarrow 2 \times chunk
        start \leftarrow start index of the thread
 6:
        count \leftarrow start \times col
 7:
 8:
        # pragma omp for
 9:
        Scan\_ARemSP(image)
10:
        # pragma omp for
11:
        for i = size to row - 1 do
            for col in row do
12:
                if label(e) \neq 0 then
13:
14:
                   if label(b) \neq 0 then
                        merger(p, label(e), label(b))
15:
16:
17:
                        if label(a) \neq 0 then
18:
                            merger(p, label(e), label(a))
19:
                        end if
                        if label(c) \neq 0 then
20:
                            merger(p, label(e), label(c))
21:
22:
23:
                    end if
                end if
24:
25:
            end for
26:
           i \leftarrow i + size
27:
        end for
28:
        flatten(p, count)
        for row in image do
29.
30:
            for col in row do
                label(e) \leftarrow p[label(e)]
31:
            end for
32:
        end for
33:
34: end function
```

V. Experiments

For the experiments we used Hopper. Hopper is NERSC's first peta-flop system, a Cray XE6, with a peak performance of 1.28 Petaflops/sec, 153, 216 compute cores for running scientific applications, 217 terabytes of memory, and 2 petabytes of online disk storage. All algorithms were implemented in C using OpenMP and compiled with gcc.

Our test dataset consists of 4 types of image dataset: Texture, Arial, Miscellaneous and NLCD. First three datasets are taken from the image database of the University of Southern California. The fourth dataset is taken from US National Cover Database $2006.^2$ All of the images are converted to binary images by means of MATLAB. Texture, Arial and Miscellaneous dataset contain images of size 1024×1024 or less. NCLD dataset contains images of size bigger than 3000×4000 . The biggest image in the dataset is $22,822 \times 20,384$.

Firstly, we did the experiment over all the sequential algorithms. The experimental results are shown in Table I. In the table, we have shown the minimum, maximum and average execution time of all the 4 datasets. As we can see that execution time of AREMSP is lowest among all the sequential algorithms thus AREMSP is best among all the sequential

¹http://sipi.usc.edu/database/

²http://dx.doi.org/10.1016/j.cageo.2013.05.014

Fig. 3: Speedup for different images and different numbers of threads for NLCD dataset

TABLE I: Comparison of various execution times[msec] for sequential algorithms

Image type		LRPC	RemSP	ARun	ARemSP
Arial	Min	2.5	2.48	1.98	1.95
	Average	13.68	13.25	11.90	11.86
	Max	86.64	80.90	72.92	70.17
Texture	Min	2.07	2.06	1.58	1.53
	Average	8.42	8.20	7.32	7.27
	Max	16.86	16.18	14.81	14.47
Miscellaneous	Min	0.50	0.49	0.36	0.36
	Average	3.28	3.21	2.75	2.74
	Max	12.96	12.81	11.30	11.20
NLCD	Min	4.61	4.46	3.77	3.75
	Average	307.66	299.55	244.88	242.59
	Max	130.72	127.38	103.65	102.14

algorithms. Then we tested the parallel algorithm PAREMSP over all the images. Fig 3a-3b shows the speedup of the algorithm for NCLD image dataset. The images are labeled in the increasing order of their sizes. We get a maximum speedup of 20.1 for image of size 22822×20384 . Fig 3a shows the speedup for *Phase-I* of PAREMSP i.e. the local computation and fig 3b shows the overall speedup (i.e. local + merge). We can see that there is not significant difference between both the speedups, implying that merge operation does not have a significant overhead. We can also see from the graph that as the image size increases, speedup also increases and therefore we can conclude that we will get linear speedup as the image size increases. We have also shown the speedup for all the other datasets in Fig 4. We get a maximum seedup of 10 in this case as the images are small in size. The speedup also decreases in some cases as the number of threads increases. This is because the image size is small so as the number of threads increases, the threads will have less work to perform and the overhead due to thread creation will increase.

VI. Conclusion

In this paper, we presented two sequential CCL algorithms REMSP and AREMSP which are based on union-find technique

Fig. 4: Speedup for different images and different numbers of threads for Arial, Texture & Miscellaneous dataset

of REM algorithm and scan strategies of ARUN and LRPC algorithms. REMSP algorithm uses the scan strategy of LRPC algorithm whereas ARUN uses the scan strategy of ARUN algorithm. Based on the experiments, we found out that AREMSP outperforms over all the other sequential algorithms. Then we present the parallel version of AREMSPwhich gives a maximum speedup of 20.1 on 24 threads. Our experimental results show that the parallel algorithm is scalable. As the algorithm just uses the standard *OpenMP* directives thus is easily portable.

Algorithm 6 Pseudo-code for merger

```
Input: 1D array p and two nodes x and y
Output: The root of united tree
 1: function MERGER(p,x,y)
 2:
         rootx \leftarrow x, rooty \leftarrow y
         while p[rootx] \neq p[rooty] do
 3:
 4:
             if p[rootx] > p[rooty] then
                 if rootx = p[rootx] then
 5:
                      omp\_set\_lock(\&(lock\_array[rootx]))
 6:
 7:
                      success \leftarrow 0
                      \begin{array}{c} \textbf{if } rootx = p[rootx] \textbf{ then} \\ p[rootx] \leftarrow p[rooty] \end{array}
 8:
 9:
                          success \leftarrow 1
10:
                      end if
11:
                      omp\_unset\_lock(\&(lock\_array[rootx]))
12:
13:
                      if success = 1 then
14:
                          break
                      end if
15:
                 end if
16:
                 z \leftarrow p[rootx], p[rootx] \leftarrow p[rooty], rootx \leftarrow z
17:
18:
19:
                 if rooty = p[rooty] then
                      omp\_set\_lock(\&(lock\_array[rooty]))
20:
                      success \leftarrow 0
21:
                      if root = p[rooty] then
22:
                          p[rooty] \leftarrow p[rootx]
23:
                          success \leftarrow 1
24:
                      end if
25:
                      omp\_unset\_lock(\&(lock\_array[rooty]))
26:
27:
                      if success = 1 then
28:
                          break
29:
                      end if
                 end if
30:
                 z \leftarrow p[rooty], p[rooty] \leftarrow p[rootx], rooty \leftarrow z
31:
             end if
32:
33:
         end while
34:
         return p[rootx]
35: end function
```

Algorithm 7 Pseudo-code for RemSP Scan Phase

Input: 2D array image containing the pixel values **InOut:** 2D array label containing the privisonal labels and 1D array p containing the equivalence info

Output: maximum value of provisional label in count

```
1: function SCAN_REMSP(image)
       for row in image do
 3:
           for col in row do
               if image(e) = 1 then
 4:
                  if image(b) = 1 then
 5.
 6:
                      copy(b)
 7:
                  else
                      if image(c) = 1 then
 8:
 9.
                          if image(a) = 1 then
10:
                             copy(c, a)
11:
                          else
12:
                             if image(d) = 1 then
13:
                                 copy(c,d)
                             else
14:
15:
                                copy(c)
                             end if
16:
                         end if
17:
18:
                      else
                          if image(a) = 1 then
19:
20:
                             copy(a)
21:
                          else
                             if image(d) = 1 then
22.
23:
                                 copy(d)
24:
                             else
25:
                                 new label
                             end if
26:
                         end if
27.
28:
                      end if
                  end if
29:
               end if
30:
           end for
31:
32:
       end for
33.
       return count
34: end function
```

References

- Hussein M Alnuweiri and Viktor K Prasanna. Parallel architectures and algorithms for image component labeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(10):1014–1034, 1992.
- [2] Rafael C Gonzales and RE Woods. Digital image processing, 1993.
- [3] Pankaj K Agarwal, Lars Arge, and Ke Yi. I/o-efficient batched union-find and its applications to terrain analysis. In *Proceedings of* the twenty-second annual symposium on Computational geometry, pages 167–176. ACM, 2006.
- [4] Fu Chang, Chun-Jen Chen, and Chi-Jen Lu. A linear-time component-labeling algorithm using contour tracing technique. Computer Vision and Image Understanding, 93(2):206–220, 2004.
- [5] Hiroki Hayashi, Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Fast labelling of natural scenes using enhanced knowledge. *Pattern Analysis & Applications*, 4(1):20–27, 2001.
- [6] Qingmao Hu, Guoyu Qian, and Wieslaw L Nowinski. Fast connected-component labelling in three-dimensional binary images based on iterative recursion. *Computer Vision and Image Understanding*, 99(3):414–434, 2005.
- [7] Felipe Knop and Vernon Rego. Parallel labeling of three-dimensional clusters on networks of workstations. *Journal of Parallel and Distributed Computing*, 49(2):182–203, 1998.
- [8] Alina N Moga and Moncef Gabbouj. Parallel image component labelling with watershed transformation. *Pattern Analysis and Machine Intelligence*, *IEEE Transactions on*, 19(5):441–450, 1997.
- [9] Kuang-Bor Wang, Tsorng-Lin Chia, Zen Chen, and Der-Chyuan Lou. Parallel execution of a connected component labeling operation on a linear array architecture. J. Inf. Sci. Eng., 19(2):353–370, 2003.

- [10] Kenji Suzuki, Isao Horiba, and Noboru Sugie. Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding, 89(1):1–23, 2003.
- [11] Kesheng Wu, Ekow Otoo, and Kenji Suzuki. Optimizing two-pass connected-component labeling algorithms. Pattern Analysis and Applications, 12(2):117–135, 2009.
- [12] Lifeng He, Yuyan Chao, and Kenji Suzuki. A new two-scan algorithm for labeling connected components in binary images. In *Proceedings of the World Congress on Engineering*, volume 2, 2012.
- [13] Md Patwary, Mostofa Ali, Peder Refsnes, and Fredrik Manne. Multi-core spanning forest algorithms using the disjoint-set data structure. In Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 827–835. IEEE, 2012.
- [14] Chien-Wei Chen, Yi-Ta Wu, Shau-Yin Tseng, and Wen-Shan Wang. Parallelization of connected-component labeling on tile64 many-core platform. *Journal of Signal Processing Systems*, pages 1–15, 2013.
- [15] Md Mostofa Ali Patwary, Jean Blair, and Fredrik Manne. Experiments on union-find algorithms for the disjoint-set data structure. In *Experimental Algorithms*, pages 411–423. Springer, 2010.
- [16] RM Haralick. Some neighborhood operators. In *Real-Time Parallel Computing*, pages 11–35. Springer, 1981.
- [17] Mehdi Niknam, Parimala Thulasiraman, and Sergio Camorlinga. A parallel algorithm for connected component labelling of gray-scale images on homogeneous multicore architectures. In *Journal of Physics:* Conference Series, volume 256, page 012010. IOP Publishing, 2010.
- [18] Lifeng He, Yuyan Chao, and Kenji Suzuki. A run-based two-scan labeling algorithm. *Image Processing, IEEE Transactions on*, 17(5):749-756, 2008

Algorithm 8 Pseudo-code for ARemSP Scan Phase

```
Input: 2D array image containing the pixel values
InOut: 2D array label containing the privisonal labels and 1D areay
p containing the equivalence info
Output: maximum value of provisional label in count
 1: function SCAN_AREMSP(image)
        for row in image do
 3:
           for col in row do
 4:
               if image(e) = 1 then
 5:
                   if image(d) = 0 then
                       if image(b) = 1 then
 6:
 7:
                           label(e) \leftarrow label(b)
                           if image(f) = 1 then
 8:
                              merge(p, label(e), label(f))
 9.
10:
                           end if
                       else
11:
12:
                           if image(f) = 1 then
                              label(e) \leftarrow label(f)
13:
                              if image(a) = 1 then
14:
15:
                                  merge(p, label(a))
16:
                              end if
                              if image(c) = 1 then
17:
                                  merge(p, label(e), label(c))
18:
19:
                              end if
20:
                           else
                              if image(a) = 1 then
21:
                                  label(e) \leftarrow label(a)
22:
23:
                                  if image(c) = 1 then
                                      merge(p, label(e), label(c))
24:
25:
                                  end if
                              else
26:
                                  if image(c) = 1 then
27.
                                      label(e) \leftarrow label(c)
28:
29:
                                      label(e) \leftarrow count,
30:
                                      p[count] \leftarrow count,
31:
32:
                                      count + +
                                  end if
33:
                              end if
34:
                           end if
35:
                       end if
36:
                   else
37:
38:
                       label(e) = label(d)
                       if image(b) = 0 then
39:
                           if image(c) = 1 then
40:
41:
                               merge(p, label(e), label(c))
42:
                           end if
                       end if
43:
                   end if
44:
                   if image(g) = 1 then
45:
                       label(g) \leftarrow label(e)
46:
47:
                   end if
               else
48:
49.
                   if image(g) = 1 then
                       if image(d) = 1 then
50:
51:
                           label(q) \leftarrow label(d)
52:
                       else
                           if image(f) = 1 then
53:
                              label(g) \leftarrow label(f)
54:
55:
                           else
56:
                              label(e) \leftarrow count,
                              p[count] \leftarrow count,
57:
58:
                              count + +
59:
                           end if
                       end if
60:
                   end if
61:
               end if
62:
           end for
63:
64:
        end for
65:
        return count
66: end function
```