Robustez

Protección ante datos atípicos (outliers)

La Importancia de la Robustez

- La información posee frecuentemente datos atípicos (outliers):
 - Mediciones erroneas
 - Mediciones extremas
- Los datos atípicos pueden afectar fuertemente el resultado de la aplicaciión de los métodos clásicos.
- Puede ser de interes la detección de los datos atípicos (Novelty detection).

El problema

Soluciones en Regresión

Valor absoluto ___ Estimador L1

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} \left| y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right|$$

Mediana

Estimador LMS

$$\hat{oldsymbol{eta}} = rg \min_{oldsymbol{eta}} \left\{ egin{aligned} \operatorname{med} \left(y_i - eta_0 - \sum_{j=1}^p eta_j X_{ij}
ight)^2
ight\} \end{aligned}$$

Técnicas más **Eficientes**

M-Estimadores de Regresión

0

Х

Estimador robusto de escala de los errores

Función de Huber

$$\rho(x) = \left\{ \begin{array}{ccc} x^2 & \text{si} & x \leq k \\ 2k \left| x \right| - k^2 & \text{si} & x > k \end{array} \right.$$

Ecuaciones de estimación

Derivando se obtienen las ecuaciones des estimación para el estimador de mínimos cuadrados (ecuaciones normales):

LOS

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right) \mathbf{X}_i = 0$$

parámetros

satisfacen esta

estimados

ecuación

para M-estimadores :

 $\sum_{i=1}^n \psi\left(\frac{y_i-\beta_0-\sum_{j=1}^p\beta_jX_{ij}}{\hat{\sigma}}\right)\mathbf{X}_i=0$ donde $\psi=\rho'$ Perivada de la Función de Pérdida

La ecuación

$$\sum_{i=1}^{n} \psi \left(\frac{y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij}}{\hat{\sigma}} \right) \mathbf{X}_i = 0$$

es equivalente a

Nueva ecaución de estimación con **PESOS**

$$\sum_{i=1}^{n} \frac{\psi\left(\frac{y_{i} - \beta_{0} - \sum_{j=1}^{r} \beta_{j} X_{ij}}{\hat{\sigma}}\right)}{y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} X_{ij}} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} X_{ij}\right) \mathbf{X}_{i} = 0,$$

o sea

$$\sum_{i=1}^n W_i \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right) \mathbf{X}_i = 0,$$
 basados en l
$$\mathsf{ATIPICIDAD}$$
 de las obs.

Pesos basados en la

con

$$W_i = \frac{\psi\left(\frac{y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij}}{\hat{\sigma}}\right)}{y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij}}$$

Es la ecuación de un estimador de mínimos cuadrados pesados con pesos desconocidos. Se resuelve por un métodos iterativos: IRWLS.

Implementación en R

- RIm (MASS)
- rq (quantreg)
- ImRob (robust)
- Imrob (robustbase)

https://cran.r-project.org/web/views/ Robust.html

CRAN Task View: Robust Statistical Methods

Regularización (Shrinkage)

Regresión con Penalización Ridge y Lasso

Regularización, para que se usa?

- En general, es una técnica para prevenir el Overfitting, mediante la penalización de la complejidad del modelo.
- Controla los desbalances entre el número de observaciones y el número de variables.
- Como método automático de selección de variables (Lasso).
- Reduce la alta variabilidad observada en situaciones de multicolinealidad (Ridge).
- Cuidado! Reduce la Varianza pero Aumenta el Sesgo de los estimadores!
- Cuidado! No son equivariantes por cambios de escala! Hay que estandarizar las variables!

Regresión Ridge

Parámetro de Penalización

Penalización cuadrática (L2)

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Falta de Ajuste

Penalización, é encoge los coeficientes hacia el CERO (Shrinkage)

Propiedades del Estimador Ridge

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Distinto de CERO y creciente (en modulo) con Lambda

 $\operatorname{Bias}(\widehat{\boldsymbol{\beta}}) = -\lambda \mathbf{W} \boldsymbol{\beta}$

Decreciente con Lambda

$$Var(\widehat{\boldsymbol{\beta}}) = \sigma^2 \mathbf{W} \mathbf{X}^T \mathbf{X} \mathbf{W}$$

Matriz Inversible (SIEMPRE)

$$\mathbf{W} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1}$$

Resultado Sorprendente!!!

 Siempre existe un valor del parámetro de peanalización tal que el MSE de Ridge es estrictamente menor que el MSE de OLS.

$$\exists \lambda > 0 \qquad MSE_{\hat{\beta_{\lambda}}}^{RIDGE} < MSE_{\beta}^{OLS}$$

 Como se elige el Lambda óptimo ??????Validación Cruzada

Ejemplo de Ridge Regression Predicción de Lluvia

Elección de Lambda (Deviance)

Elección del Lambda (Error Clsificación)

Lasso Regression

 Puede usarse como método de selección de variables

Parámetro de Penalización Penalización lineal (L1)

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Falta de Ajuste

Penalización, encoge los coeficientes hacia el CERO. Convierta a algunos coeficientes en CERO

Ejemplo de Regresión Lasso

Elección de Lambda (Deviance)

Elección del Lambda (Error Clasificación), Clasificación)

Ridge y Lasso - Intuición Geométrica

El Paquete "glmnet"

Parámetro de Elasticnet

glmnet solves the following problem

$$\min_{\beta_0,\beta} \frac{1}{N} \sum_{i=1}^{N} w_i l(y_i, \beta_0 + \beta^T x_i) + \lambda \left[(1 - \alpha) ||\beta||_2^2 / 2 + \alpha ||\beta||_1 \right],$$

over a grid of values of λ covering the entire range. Here $l(y,\eta)$ is the negative log-likelihood contribution for observation i; e.g. for the Gaussian case it is $\frac{1}{2}(y-\eta)^2$. The *elastic-net* penalty is controlled by α , and bridges the gap between lasso ($\alpha=1$, the default) and ridge ($\alpha=0$). The tuning parameter λ controls the overall strength of the penalty.