1 (currently amended). A compound of the formula I:

wherein

A is a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-membered mono-, bi- or spirobicyclic ring containing one or more heteroatoms selected from the group of N, O and S, and is optionally substituted with F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R11, R12, R13, R14, R15 are each independently H, (C1-C6)-alkyl or a heterocycle;

- n is 1;
- m is 0, 1, 2, 3, 4, 5 or 6;
- R1 is R8, (C₁-C₆)-alkylene-R8, (C₂-C₆)-alkenylene-R9, (SO₂)-R8, (SO₂)-(C₁-C₆)-alkylene-R8, (SO₂)-(C₂-C₆)-alkenylene-R9, (C=O)-R8, (C=O)-(C₁-C₆)-alkylene-R8, (C=O)-NH-(C₁-C₆)-alkylene-R8, (C=O)-NH-(C₁-C₆)-alkylene-R8, (C=O)-NH-(C₂-C₆)-alkylene-R9, COO-R8, COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkylene-R9, COO-R8, COO-R8,

 C_6)-alkenylene-R9, alkynylene-R9 or $(C_1$ - C_4 -alkyl)-heterocycle, wherein the alkylene component of said $(C_1$ - C_6)-alkylene-R8, $(C_2$ - C_6)-alkenylene-R9, (SO_2) - $(C_1$ - C_6)-alkylene-R8, (SO_2) - $(C_2$ - C_6)-alkylene-R9, (C=O)- $(C_1$ - C_6)-alkylene-R9, (C=O)- $(C_2$ - C_6)-alkylene-R9, (C=O)-NH- $(C_2$ - C_6)-alkylene-R9 groups is optionally substituted by F;

- R8, R9 are each independently H, F, Cl, Br, I, OH, CF₃, aryl, heterocycle or (C₃-C₈)cycloalkyl, wherein said aryl, heterocycle and (C₃-C₈)-cycloalkyl groups are
 optionally mono-, di- or tri-substituted by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, CON(R11)(R12), N(R13)(R14), SO₂-CH₃, COOH,
 COO-(C₁-C₆)-alkyl or CONH₃:
- R2 is NH₂, NO₂, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N⁺(C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom;
- R3, R4, R5 are each independently H, F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O(C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, S-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₃C₈)-cycloalkyl, O-(C₃-C₈)-cycloalkyl, (C₃-C₈)-cycloalkenyl, O-(C₃-C₈)-cycloalkenyl,
 (C₂-C₆)-alkynyl, aryl, O-aryl (C₁-C₈)-alkylene-aryl, O-(C₁-C₈)-alkylene-aryl, S-aryl,
 N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CO-N((C₁-C₆)-alkyl)₂;
- R6 is H, F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, S-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₃-C₈)-cycloalkyl, O-(C₃-C₈)-cycloalkyl, (C₃-C₈)-cycloalkenyl, (C₂-C₆)-alkynyl, (C₀-C₈)-alkylene-aryl, O-(C₀-C₈)-alkylene-aryl, S-aryl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CO-N((C₁-C₆)-alkyl)₂;

Arvl is phenyl or naphthyl;

Heterocycle is acridinyl, azocinyl, benzimidazolyl, benzofuryl, benzothienyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3b]-tetrahydrofuran, furyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3Hindolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, benzimidazolyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoguinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazoles, pyridoimidazoles, pyridothiazoles, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, tetrahydroisoguinolinyl, tetrahydroguinolinyl, 6H-1,2,5thiadazinvl, thiazolvl, 1,2,3-thiadiazolvl, 1,2,4-thiadiazolvl, 1,2,5thiadiazolyl, 1,3,4-thiadiazolyl, thienyl, triazolyl, tetrazolyl and xanthenyl and corresponding N-oxides;

wherein said heterocycle is optionally substituted one or more times, each substituent independently chosen from F, Cl, Br, I, CF₃, NO₂, N₃, CN, COOH, COO(C₁-C₆)alkyl, CONH₂, CONH(C₁-C₆)alkyl, CON[(C₁-C₆)alkyl, CON[(C₁-C₆)alkyl, CON[(C₁-C₆)alkyl, Wherein one or more than one, or all hydrogen(s) in the alkyl radicals may be replaced by fluorine;

PO₃H₂, SO₃H, SO₂-NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N[(C₁-C₆)-alkyl]₂, S-(C₁-C₆)-alkyl, S-(CH₂)_n-phenyl, SO-(C₁-C₆)-

alkyl, SO-(CH₂)₆-phenyl, SO₂-(C₁-C₆)-alkyl, SO₂-(CH₂)₈-phenyl, wherein n can be 0-6, and the phenyl radical may be substituted up to two times by F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl or NH₂; C(NH)(NH₂), NH₂, NH-(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl), N((C₁-C₆)-alkyl)₂, NH(C₁-C₂)-acyl, phenyl and O-(CH₂)₆-phenyl, wherein n may be 0-6, and wherein the phenyl ring may be substituted one to 3 times by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH(C₁-C₆)-alkyl, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl, NH(C₁-C₆)-alkyl, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl, N((C₁-C₆)-alkyl, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl, N((C₁-C₆

and pharmaceutically acceptable salts thereof.

2 (original). The compound of Claim 1 having the following structure Ia

wherein

A is a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-membered mono-, bi- or spirobicyclic ring containing one or more heteroatoms selected from the group of N, O and S, and is optionally substituted with F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl,

$$\begin{split} & CON(R11)(R12), N(R13)(R14), OH, O-(C_1-C_6)-alkyl, S-(C_1-C_6)-alkyl, \\ & N(R15)CO(C_1-C_6)-alkyl \ or \ COO-(C_1-C_6)-alkyl; \end{split}$$

R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or a heterocycle;

m is 0, 1, 2, 3, 4, 5 or 6;

- R1 is R8, (C₁-C₆)-alkylene-R8, (C₂-C₆)-alkenylene-R9, (SO₂)-R8, (SO₂)-(C₁-C₆)alkylene-R8, (SO₂)-(C₂-C₆)-alkenylene-R9, (C=O)-R8, (C=O)-(C₁-C₆)-alkylene-R8,
 (C=O)NH-R8, (C=O)-(C₂-C₆)-alkenylene-R9, (C=O)-NH-(C₁-C₆)-alkylene-R8,
 (C=O)-NH- (C₂-C₆)-alkenylene-R9, COO-R8, COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkenylene-R9 or (C₁-C₄-alkyl)-heterocycle;
- R8, R9 are each independently H, F, Cl, Br, I, OH, CF₃, aryl, heterocycle or (C₃-C₈)cycloalkyl, wherein said aryl, heterocycle and (C₃-C₈)-cycloalkyl groups are
 optionally mono-, di- or tri-substituted by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, CON(R11)(R12), N(R13)(R14), SO₂-CH₃, COOH,
 COO-(C₁-C₆)-alkyl or CONH₂;
- R2 is NH₂, NO₂, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N[†](C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom;
- $\label{eq:R3,R4,R5} R3, R4, R5 & are each independently H, F, Cl, Br, I, OH, CF_3, NO_2, CN, OCF_3, O-(C_1-C_6)-alkyl, O-(C_1-C_4)-alkoxy-(C_1-C_4)-alkyl, S-(C_1-C_6)-alkyl, (C_1-C_6)-alkyl, (C_2-C_6)-alkenyl, (C_3-C_8)-cycloalkyl, O-(C_3-C_8)-cycloalkenyl, (C_3-C_8)-cycloalkenyl, O-(C_3-C_8)-cycloalkenyl, (C_2-C_6)-alkynyl, aryl, O-aryl (C_1-C_8)-alkylene-aryl, O-(C_1-C_8)-alkylene-aryl, S-aryl, N((C_1-C_6)-alkyl)_2, SO_2-CH_3, COOH, COO-(C_1-C_6)-alkyl or CO-N((C_1-C_6)-alkyl)_2; \\$

C₈)-cycloalkyl, (C₃-C₈)-cycloalkenyl, O-(C₃-C₈)-cycloalkenyl, (C₂-C₆)-alkynyl, aryl, O-aryl, (C₁-C₈)-alkylene-aryl, O-(C₁-C₈)-alkylene-aryl, S-aryl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CO-N((C₁-C₆)-alkyl)₂;

and pharmaceutically acceptable salts thereof.

3 (original). The compound of Claim 2 wherein

A is aryl wherein said aryl is optionally substituted by F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R11, R12, R13, R14, R15 are each independently H, (C1-C6)-alkyl or heterocycle;

m is 1;

- R1 is R8, (C₁-C₆)-alkylene-R8, (C₂-C₆)-alkenylene-R9, (SO₂)-R8, (SO₂)-(C₁-C₆)-alkylene-R8, (SO₂)-(C₂-C₆)-alkenylene-R9, (C=O)-R8, (C=O)-(C₁-C₆)-alkylene-R8, (C=O)NH-R8, (C=O)-(C₂-C₆)-alkylene-R9, (C=O)-NH-(C₁-C₆)-alkylene-R8, (C=O)-NH-(C₂-C₆)-alkenylene-R9, COO-R8, COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkenylene-R9 or (C₁-C₄-alkyl)-heterocycle;
- R8, R9 are each independently H, F, Cl, Br, I, OH, CF₃, aryl, heterocycle or (C₃-C₈)cycloalkyl, wherein said aryl, heterocycle and (C₃-C₈)-cycloalkyl groups are
 optionally mono-, di-, or tri-substituted by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, CON(R11)(R12), N(R13)(R14), SO₂-CH₃, COOH,
 COO-(C₁-C₆)-alkyl or CONH₂;
- R2 is NH₂, NO₂, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N † (C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom,

R3 is H

R4, R5 are each independently H, F, Cl, Br, OH, CF₃, OCF₃, O-(C₁-C₆)-alkyl or (C₁-C₆)-alkyl;

R6 is H;

and pharmaceutically acceptable salts thereof.

4 (original). The compound of Claim 3 wherein

A is aryl, wherein said aryl group is optionally substituted by F, Cl, Br, NO₂, CF₃, OCF₃,
CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R11, R12, R13, R14, R15 are each independently H, (C1-C6)-alkyl or heterocycle;

m is 1;

R1 is (C₁-C₆)-alkyl or (C₁-C₆)-alkylene-R8;

R8, R9 are each independently F, Cl, Br, I, OH or CF₃;

R2 is NH₂, NO₂, CN, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N[†](C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom,

R3 is H;

R4 is F, Cl, Br, OH, CF₃, OCF₃, O-(C₁-C₆)-alkyl or (C₁-C₆)-alkyl;

R5 is H, F, Cl, Br, OH, CF₃, OCF₃, O-(C₁-C₆)-alkyl or (C₁-C₆)-alkyl;

R6 is H;

and pharmaceutically acceptable salts thereof.

5 (original). A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.

6-8 (canceled).

9 (original). A method of treating obesity comprising administering to a patient in need thereof a compound of Claim 1.

10-12 (canceled).

13 (original). A method of reducing weight in mammals comprising administering to a patient in need thereof a compound of Claim 1.

14-15 (canceled).