Roll	No.	:				•				•	•		•	•	

National Institute of Technology, Delhi

Name of the Examination: B. Tech. / M. Tech. / Ph.D.

Branch : ECE/EEE Semester : III/V

Title of the Course : Analog Electronics Course Code : EC 220

Time: 3 Hours Maximum Marks: 50

Note: All parts of section Λ are compulsory and carrying of 01 mark each.

Attempt any 4 questions from Section B each carrying 5 marks.

Attempt any 2 questions from section C each carrying of 10 marks.

Section A

Q 1. (a) Why power amplifier is always preceded by a voltage amplifier?

(1X10)

- (b) What is crossover distortion. How it is minimized.
- (c) Differentiate between Direct Coupled, RC and Transformer coupled amplifier.
- (d) Define three stability factors for a transistor.
- (e) What is minority carrier current?
- (f) What is the condition for avalanche breakdown to occur?
- (g) What is early effect?
- (h) What is thermal drift?
- (i) Explain the effect of coupling capacitor and bypass capacitor on the voltage gain of an amplifier.
- (j) What are the advantages of negative feedback.

Section B (4X5)

- Q 2. Draw the hybrid equivalent circuit for common base configuration and find the expression for current gain, voltage gain, input impedance, output impedance and power gain.
- Q 3. A Class B push pull amplifier is supplied with $V_{cc} = 50V$. The signal swings the collector voltage down to $V_{min} = 5V$. The total dissipation in both transistors is 40 W. Find the total power and conversion efficiency.
- Q 4. Explain the effect of negative feedback on input impedance, output impedance, voltage gain and bandwidth in current shunt feedback topology.
- Q 5. Give DC and AC analysis of single input balanced output differential amplifier and derive expressions of the operating current and voltage, input and output resistance and voltage gain.
- Q 6. Derive the expression of frequency and gain of the RC Phase Shift Oscillator.

Section C (2X10)

- Q 7. (a) A CB transistor amplifier uses a voltage source of internal R_s =200 ohm and the load resistance is R_L =1200 ohm. The h parameters are h_{ib} =24 ohm, h_{rb} =4 x 10⁻⁴, h_{fe} =-0.98 and h_{ob} =0.6 μ A/V. Calculate the following:
- (i) Current gain (ii) Voltage gain (iii) input impedance (iv) output impedance (v) Overall current gain (vi) Overall voltage gain
- (b) The following low frequency parameters are known for a given transistor at I_c =10 mA and V_{CE} =100V and at room temperature h_{ie} =500 ohm, h_{oe} =10⁻⁵A/V, h_{fe} =100 and h_{re} =10⁻⁴. At the same operating point f=10 MHz and C_c =3 pF. Calculate the values of all hybrid π conductance parameters and emitter junctiuon capacitance.
- Q 8. (a) (i) Explain the working of an emitter follower and show how it performs the function of impedance transformation.
 - (ii) An emitter follower has voltage gain of 0.99. Determine β for the transistor.
- (b) Draw the general block diagram of a feedback amplifier. Derive the gain analysis in a feedback amplifier. From the gain analysis, show the Brackhausen criteria for self sustained oscillations.
- Q 9. (a) Discuss Class A power amplifier with output transformer as a load. Discuss its working and find an expression for its efficiency.
- (b) Derive the expressions of stability factors with respect to I_{CO} , β and V_{BE} for emitter bias circuit.