MATH CAMP ASSIGNMENT 1

LOGIC AND SET THEORY

Xiankang Wang

August 20, 2025

1 Q1

According to the definitions of logical operations, the completed truth table is as follows:

p	q	$\neg q$	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$
T	T	F	T	T	Т	T
T	F	Т	F	T	F	F
F	Т	F	F	T	T	F
F	F	T	F	F	T	T

2 Q2

We use the truth table to verify that $p \Rightarrow q \equiv \neg(p \land \neg q)$.

p	q	$\neg q$	$p \wedge \neg q$	$\neg(p \land \neg q)$	$p \Rightarrow q$
T	Т	F	F	Т	T
T	F	T	T	F	F
F	Т	F	F	T	T
F	F	Т	F	Т	T

From the table, we observe that $\neg(p \land \neg q)$ and $p \Rightarrow q$ have exactly the same truth values in all cases. Therefore, we conclude that:

$$p \Rightarrow q \equiv \neg (p \land \neg q).$$

3 Q3

Setup. Let *X* and *Y* be sets and let $f: X \to Y$ be a function. For $S \subset X$, the *image* of *S* under *f* is

$$f(S) := \{ f(x) : x \in S \}.$$

For $T \subset Y$, the *inverse image* (preimage) of T under f is

$$f^{-1}(T) := \{ x \in X : f(x) \in T \}.$$

(a) If
$$S_1 \subset S_2$$
, then $f(S_1) \subset f(S_2)$.

Proof. Take any $y \in f(S_1)$. By the definition of image, there exists $x \in S_1$ such that y = f(x). Since $S_1 \subset S_2$, we also have $x \in S_2$, hence $y = f(x) \in f(S_2)$ by the definition of image. Because every element of $f(S_1)$ is an element of $f(S_2)$, we conclude $f(S_1) \subset f(S_2)$. □

(b) If
$$T_1 \subset T_2$$
, then $f^{-1}(T_1) \subset f^{-1}(T_2)$.

Proof. Take any $x \in f^{-1}(T_1)$. By the definition of preimage, $f(x) \in T_1$. Since $T_1 \subset T_2$, it follows that $f(x) \in T_2$, and therefore $x \in f^{-1}(T_2)$ by the definition of preimage. Hence $f^{-1}(T_1) \subset f^{-1}(T_2)$.

Remark. In (a) the inclusion need not be equality in general (it may be strict); similarly for (b).

(c) Prove that

$$A - (B - C) = (A \cap C) \cup (A \cap B^c).$$

Proof. Recall the definitions:

- $B-C:=\{x:x\in B \land x\notin C\}=B\cap C^c$.
- $A D := \{x : x \in A \land x \notin D\}$ for any set D.
- Two sets *X* and *Y* are equal iff $X \subseteq Y$ and $Y \subseteq X$.

We will prove the equality by showing both inclusions.

(1) Show that $A - (B - C) \subseteq (A \cap C) \cup (A \cap B^c)$.

Let $x \in A - (B - C)$. By definition, this means:

$$x \in A$$
 and $x \notin (B - C)$.

Since $B - C = B \cap C^c$, we have:

$$x \notin (B \cap C^c) \implies x \notin B \text{ or } x \in C.$$

Thus, two cases arise:

- If $x \in C$, then $x \in A \cap C$.
- If $x \notin B$, then $x \in A \cap B^c$.

In both cases, $x \in (A \cap C) \cup (A \cap B^c)$. Therefore:

$$A - (B - C) \subseteq (A \cap C) \cup (A \cap B^c).$$

(2) Show that $(A \cap C) \cup (A \cap B^c) \subseteq A - (B - C)$.

Take any $x \in (A \cap C) \cup (A \cap B^c)$. Then either $x \in A \cap C$ or $x \in A \cap B^c$.

- If $x \in A \cap C$, then $x \in A$ and $x \in C$. Since $x \in C$, we know $x \notin B \cap C^c = B C$. Hence $x \in A (B C)$.
- If $x \in A \cap B^c$, then $x \in A$ and $x \notin B$. Thus $x \notin B \cap C^c$, so $x \in A (B C)$.

Therefore:

$$(A \cap C) \cup (A \cap B^c) \subseteq A - (B - C).$$

(3) Conclusion.

Since we have shown both inclusions, the two sets are equal:

$$A - (B - C) = (A \cap C) \cup (A \cap B^c).$$

Remark. We can also use

$$A - (B - C) = A \setminus (B \setminus C)$$

$$= A \cap (B \setminus C)^{c} \quad \text{(by } A \setminus D = A \cap D^{c}\text{)}$$

$$= A \cap (B \cap C^{c})^{c}$$

$$= A \cap (B^{c} \cup C) \quad \text{(De Morgan)}$$

$$= (A \cap B^{c}) \cup (A \cap C) \quad \text{(distributivity)}$$

$$= (A \cap C) \cup (A \cap B^{c}).$$

4 **O**4

Let $f: X \to Y$ be a function. Recall that

$$X \times Y := \{(x, y) : x \in X, y \in Y\},\$$

and by the definition of a function, for every $x \in X$ there exists a *unique* $y \in Y$ such that y = f(x).

Claim. The function *f* can be identified with the subset

$$\Gamma_f := \{ (x,y) \in X \times Y : y = f(x) \} \subseteq X \times Y,$$

called the *graph* of f.

Proof. First, for any $x \in X$ we have $f(x) \in Y$ (codomain of f), hence $(x, f(x)) \in X \times Y$. Therefore every ordered pair in the set above lies in $X \times Y$, so indeed $\Gamma_f \subseteq X \times Y$.

Second, Γ_f encodes exactly the action of f: by the definition of a function, for each $x \in X$ there exists a unique $y \in Y$ with y = f(x). Equivalently,

$$(\forall x \in X) \ (\exists! \ y \in Y) \ ((x, y) \in \Gamma_f).$$

Thus from Γ_f one recovers f via

$$f(x)$$
 is the unique $y \in Y$ such that $(x, y) \in \Gamma_f$.

Conversely, any subset $R \subseteq X \times Y$ satisfying $(\forall x \in X)(\exists ! y \in Y)((x,y) \in R)$ is the graph of a unique function $X \to Y$, namely $x \mapsto y$ where $(x,y) \in R$. Hence identifying f with its graph Γ_f is legitimate. \square

Therefore, as a subset of $X \times Y$,

$$f \equiv \Gamma_f = \{(x, f(x)) : x \in X\} \subseteq X \times Y$$

and the correspondence $f \leftrightarrow \Gamma_f$ is a bijection between functions $X \to Y$ and those subsets of $X \times Y$ with the "exactly one Y-partner per $x \in X$ " property.

5 **Q**5

Let $Id_X : X \to X$ be the identity map defined by $Id_X(x) = x$ for all $x \in X$.

Injective. Assume $Id_X(x_1) = Id_X(x_2)$. By the definition of Id_X , this means $x_1 = x_2$. Hence for every $y \in X$ there is at most one $x \in X$ such that $y = Id_X(x)$, so Id_X is injective.

Surjective. Let $y \in X$ be arbitrary. Taking x = y gives $Id_X(x) = Id_X(y) = y$. Therefore for every $y \in X$ there exists $x \in X$ with $y = Id_X(x)$, so Id_X is surjective.

Conclusion. Since Id_X is both injective and surjective, it is bijective. (Indeed, $Id_X^{-1} = Id_X$.)

6 Q6

(a) Is
$$(f(A))^c = f(A^c)$$
 correct?

Answer: No in general. Consider $X = Y = \{0,1\}$ and the constant map $f: X \to Y$ given by f(0) = f(1) = 0. Let $A = \{0\}$. Then

$$f(A) = \{0\}, \qquad (f(A))^c = Y \setminus f(A) = \{1\},$$

while

$$A^{c} = X \setminus A = \{1\}, \qquad f(A^{c}) = f(\{1\}) = \{0\}.$$

Hence $(f(A))^c = \{1\} \neq \{0\} = f(A^c)$.

Remark. In general only the preimage distributes over complement: $(f^{-1}(T))^c = f^{-1}(T^c)$. For the image, equality $(f(A^c) = (f(A))^c)$ holds if f is bijective (indeed, injective gives $f(X \setminus A) = f(X) \setminus f(A)$, and

surjectivity upgrades f(X) to Y).

(b) If $A \subset B$, $B \subset C$, and $C \subset A$, then A = B = C.

Proof. From $A \subset B$ and $B \subset C$ we have $A \subset C$. Together with $C \subset A$ it follows that A = C. Then $A \subset B \subset C = A$ implies $A \subset B \subset A$, hence A = B. Therefore A = B = C.

7 Q7

(a)

For $k \in \mathbb{N}$, let

$$A_k = [0,1] \cup (1,k].$$

Then $\bigcup_k A_k = [0, \infty)$ and $\bigcap_k A_k = [0, 1]$, and the A_k are pairwise distinct.

Another solution is

$$A_k=[0,k]$$

(b)

Let

$$A_1 = (0, \infty), \qquad A_k = \left(3 - \frac{1}{k-1}, 3 + \frac{1}{k-1}\right) \ (k \ge 2).$$

Then $\bigcup_k A_k = (0, \infty)$ and $\bigcap_k A_k = \{3\}$, with all A_k distinct.

(c)

For $k \in \mathbb{N}$, let

$$A_k = \mathbb{N} \cup (-k, k).$$

Then $\bigcup_k A_k = \mathbb{R}$ and $\bigcap_k A_k = \mathbb{N}$, and the A_k are pairwise distinct.

8 Q8

(1) If $f : \mathbb{R} \to \mathbb{R}$ is surjective, then f is unbounded. Suppose, to the contrary, that f is bounded above by some $M \in \mathbb{R}$: $f(\mathbb{R}) \subset (-\infty, M]$. Since f is surjective, there exists $x_0 \in \mathbb{R}$ with $f(x_0) = M + 1$, which contradicts $f(x_0) \leq M$. Hence f is not bounded above. The same argument with -f shows that f is not bounded below. Therefore f is unbounded.

(2) A function $g: \mathbb{R} \to \mathbb{R}$ that is unbounded but not surjective. Define

$$g(x) := \begin{cases} x, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

Then for $|x| \to \infty$ we have $g(x) = x \to \pm \infty$, so g is unbounded (indeed unbounded above and below). However, $0 \notin g(\mathbb{R})$, because g(x) = 0 would force x = 0 (by $x \neq 0 \Rightarrow g(x) = x$), but $g(0) = 1 \neq 0$. Hence $g(\mathbb{R}) = \mathbb{R} \setminus \{0\}$, so g is not surjective.

9 Q9

Let $7\mathbb{N} := \{7n : n \in \mathbb{N}\}$ be the set of multiples of 7. Define $f : \mathbb{N} \to 7\mathbb{N}$ by f(n) = 7n. If $f(n_1) = f(n_2)$ then $7n_1 = 7n_2$ hence $n_1 = n_2$; thus f is injective. For any $m \in 7\mathbb{N}$ there exists $k \in \mathbb{N}$ with m = 7k, and then f(k) = m; thus f is surjective. Therefore f is a bijection and $|\mathbb{N}| = |7\mathbb{N}|$.

Q10. Properties of Absolute Value

$$|a| = \begin{cases} a, & a \ge 0, \\ -a, & a < 0. \end{cases}$$

Lemma 1. For any $x \in \mathbb{R}$, we have $-|x| \le x \le |x|$.

Proof. If $x \ge 0$, then |x| = x and $-|x| = -x \le 0 \le x = |x|$. If x < 0, then |x| = -x, hence $-|x| = x \le -x = |x|$. Thus $-|x| \le x \le |x|$ in both cases.

Lemma 2. If $M \ge 0$ and $-M \le x \le M$, then $|x| \le M$.

Proof. If $x \ge 0$ then $|x| = x \le M$. If x < 0 then $-M \le x$ implies $-x \le M$, but |x| = -x, so $|x| \le M$.

Proposition 1 (Absolute value identities and inequalities). For all real numbers a, b,

- (a) |ab| = |a| |b|;
- (b) $|a+b| \le |a| + |b|$;
- (c) $||a| |b|| \le |a b|$.

Proof. (a) By the definition of absolute value, consider four sign cases for a and b. In each case one checks directly that |ab| equals |a| |b|; e.g., if $a \ge 0$, b < 0 then |ab| = a(-b) = |a| |b|, etc.

(b) By Lemma 1, we have $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. Adding inequalities yields

$$-(|a|+|b|) \le a+b \le |a|+|b|.$$

Since $|a| + |b| \ge 0$, Lemma 2 gives $|a + b| \le |a| + |b|$.

(c) Apply part (b) to (a - b) + b = a:

$$|a| = |(a-b) + b| \le |a-b| + |b| \implies |a| - |b| \le |a-b|.$$

Swapping *a* and *b* gives $|b| - |a| \le |a - b|$. Hence

$$-|a-b| \le |a|-|b| \le |a-b|.$$

By Lemma 2 (with x = |a| - |b| and M = |a - b|), we obtain $||a| - |b|| \le |a - b|$.

Q11. Infinitely many reals between two distinct reals

Proposition 2. For any real numbers a < b, there are infinitely many real numbers in the open interval (a,b).

Proof. Fix a < b. For each integer $n \in \mathbb{N}$ with $n \ge 2$, define

$$x_n := a + \frac{b-a}{n}.$$

Since b - a > 0 and $n \ge 2$, we have $\frac{b-a}{n} > 0$, hence

$$a < a + \frac{b-a}{n} = x_n.$$

Also $\frac{b-a}{n} < b-a$, so adding a to both sides yields

$$x_n = a + \frac{b-a}{n} < a + (b-a) = b.$$

Thus $x_n \in (a, b)$ for every $n \ge 2$.

Finally, if $m \neq n$ with $m, n \geq 2$, then

$$x_m - x_n = \frac{b-a}{m} - \frac{b-a}{n} = (b-a)\left(\frac{1}{m} - \frac{1}{n}\right) \neq 0,$$

so the x_n are pairwise distinct. Therefore there are infinitely many distinct real numbers in (a, b).