UT Austin CSE 386D

Homework 5

Jonathan Zhang EID: jdz357

Problem 7.6:

Suppose $\Omega \subset \mathbb{R}^d$ is a possibly unbounded domain and $\{U_\alpha\}_{\alpha \in I}$ is a collection of open sets in \mathbb{R}^d that cover Ω . Prove there exists a locally finite partition of unity in Ω subordinate to the cover.

Solution We start with a lemma:

Lemma 0.1. If S is a countable dense subset of \mathbb{R}^d with the collection of balls

$$\mathcal{B} = \left\{ B_r(x) \subset \mathbb{R}^d | r \in \mathbb{Q}, x \in S, \text{ and } \exists \alpha \in I : B_r(x) \subset U_{\alpha} \right\},$$

then $\bigcup B_{r_i/2}(x_j)$ is an open cover of Ω .

Proof. Fix $r_j/2>0$ for all j and consider a point $x\in\Omega$. Suppose now to the contrary that there does not exists a j such that x belongs to $B_{r_j/2}(x_j)$. Then, since $\mathbb Q$ is dense in $\mathbb R$, for any $\varepsilon>0$ there exists a rational q arbitrarily close to x. Since $q\in Q$, then also $q\in S$, and so it has a radius $r_{q/2}$ associated with it. If $\varepsilon\leq r_{q/2}$, then we are done. If not, select a new $\varepsilon_1<\varepsilon$ and repeat the process, arriving at a new $q_1\in\mathbb Q$ such that $x\in B_{\varepsilon_1}(q_1)$. Repeating, we keep looking with smaller ε_k , q_k , $r_{q_k/2}$. If we repeat infinitely many times, though, we have found some j such that $\varepsilon>r_j$ for every $\varepsilon>0$, otherwise we would have stopped. The only way to satisfy this would be for $r_j=0$, a contradiction.

We now want to construct the functions that make up the partition of unity. Let $\varphi(x)$ denote Cauchy's infinitely differentiable function in 1D. We can easily translate and dilate this to form a bump function $\phi_j \in C_0^\infty(B_j)$ satisfying $0 \le \phi_j \le 1$ and $\phi_j = 1$ on $B_{r_j/2}$:

$$\phi_j(x) = \varphi\left(\frac{2}{r_j}\left(|x - x_j| + r_j\right)\right) \varphi\left(-\frac{2}{r_j}\left(|x - x_j| - r_j\right)\right).$$

Now let $\psi_1 = \phi_1$, $\psi_k = \prod_{j=1}^{k-1} \psi_j \psi_k$.

We can now demonstrate the desired properties. First of all, property (iii) is easy to see. Indeed, for every $j \in \mathcal{J}$ that indexes \mathcal{B} , there exists $\alpha \in I$ such that

$$\operatorname{supp} \psi_j \subset \operatorname{supp} \phi_j \subset \operatorname{supp} B_j \subset \operatorname{supp} U_\alpha.$$

Now we show that for every compact $K \subset \Omega$, all but finitely many ψ_j vanish. Observe that if $\psi_i = 0$, then all ψ_{i+k} vanish for k > 0. We have already shown that $B_{r_j/2}$ provide an open cover for Ω . Since K is compact, it admits a finite subcover, that is, $K \subset \bigcup_{j=1}^M B_{r_j/2}(x_j)$. Now for $x \in K$, there exists a $N \leq M$ such that $x \in B_{r_N/2}(x_N)$. We then have that $\phi_N(x) = 1$, and that $\psi_n(x) = 0$ for $n \geq N$. So, only finitely many ψ support on K. It is also easy to see that ψ_j range between 0 and 1. To show the summation property, go by induction. We need to show that

$$\sum_{j=1}^{m} \psi_j = 1 - \prod_{j=1}^{m} (1 - \phi_j).$$

CSE 386D UT Austin

This holds trivially for m = 1. Now, for the inductive step,

$$\sum_{j=1}^{m+1} \psi_j = \psi_{m+1} + \sum_{j=1}^{m} \psi_j$$

$$= \psi_{m+1} + 1 - \prod_{j=1}^{m} (1 - \phi_j)$$

$$= \phi_{m+1} \prod_{j=1}^{m} (1 - \phi_j) + 1 - \prod_{j=1}^{m} (1 - \phi_j)$$

$$= 1 - \prod_{j=1}^{m+1} (1 - \phi_j).$$

To show the summation property, we again use the fact that we have an open cover of half-radius balls. Using what we have just proved,

$$\sum_{j \in \mathcal{J}} \psi_j(x) = \sum_{j=1}^m \psi_j(x) = 1 - \prod_{j=1}^m (1 - \phi_j(x)) = 1 - (1 - \phi_m(x)) \prod_{j=1}^{m-1} (1 - \phi_j(x)) = 1.$$

Problem 7.7:

$$u \in \mathcal{D}'(\mathbb{R}^d), \phi \in \mathcal{D}.$$

Solution

1. Define the functional

$$\psi : \mathbb{R} \ni t \to \psi(t) = \phi(x - ty) \in \mathbb{R}.$$

Apply the fundamental theorem,

$$\psi(1) - \psi(0) = \int_{0}^{1} \frac{d\psi}{dt} dt$$

$$\phi(x - y) - \phi(x) = \int_{0}^{1} \frac{d}{dt} \phi(x - ty) dt$$

$$\tau_{y} \phi - \phi(x) = \int_{0}^{1} -y \cdot \nabla \phi(x - ty) dt$$

UT Austin CSE 386D

and apply $u \in \mathcal{D}'$. We have

$$u(\tau_{y}\phi - \phi) = u(\tau_{y}\phi) - u(\phi) = u\left(\int_{0}^{1} -y \cdot \nabla(\tau_{ty}\phi) dt\right)$$

$$= -\int_{0}^{1} u\left(\sum_{j=1}^{d} y_{j} \frac{\partial}{\partial x_{j}}(\tau_{ty}\phi)\right) dt$$

$$= -\int_{0}^{1} \sum_{j=1}^{d} y_{j} \left\langle u, \frac{\partial}{\partial x_{j}}(\tau_{ty}\phi) \right\rangle dt$$

$$= \int_{0}^{1} \sum_{j=1}^{d} y_{j} \left\langle \frac{\partial}{\partial x_{j}} u, (\tau_{ty}\phi) \right\rangle dt$$

$$= \int_{0}^{1} \sum_{j=1}^{d} y_{j} \frac{\partial u}{\partial x_{j}}(\tau_{ty}\phi) dt$$

2. Let $f \in W^{1,1}_{loc}\left(\mathbb{R}^d\right)$. Then,

$$\Lambda_f (\tau_y \phi) - \Lambda_f \phi = \int_0^1 \sum_{j=1}^d y_j \frac{\partial f}{\partial x_j} (\tau_{ty} \phi) dt,$$

$$\tau_{-y}\Lambda_{f}\phi - \Lambda_{f}\phi = \int_{\mathbb{R}^{d}} \left(f\left(x + y \right) - f\left(x \right) \right) \phi\left(x \right) dx = \int_{0}^{1} \sum_{j=1}^{d} y_{j} \int_{\mathbb{R}^{d}} \frac{\partial f}{\partial x_{j}} \left(x + ty \right) \phi\left(x \right) dx dt.$$

Exchanging order of integration, we have

$$\int_{\mathbb{R}^d} \left(f(x+y) - f(x) \right) \phi(x) dx = \int_{\mathbb{R}^d} \left\{ \int_0^1 \sum_{j=1}^d y_j \frac{\partial f}{\partial x_j} (x+ty) dt \right\} \phi(x) dx.$$

Now, we see equality of the prefactors within the integrand. Finally, we need just recognize that $y \cdot \nabla f(x + ty)$ is exactly the expssion represented by the sum.

3. For $p \in (1, \infty]$, $L^p_{loc}\left(\mathbb{R}^d\right) \subset L^1_{loc}$. Thus, for $f \in W^{1,\infty}_{loc}\left(\mathbb{R}^d\right)$, $f \in W^{1,1}_{loc}$ and we can apply the result from the previous part. The previous part tells us that

$$|f(x + (y - x)) - f(x)| = \int_{0}^{1} (y - x) \cdot \nabla f(x + t(y - x)) dt.$$

CSE 386D UT Austin

So then,

$$|f(y) - f(x)| = \left| \int_{0}^{1} (y - x) \cdot \nabla f(x + t(y - x)) dt \right|$$

$$\leq |y - x| \int_{0}^{1} dt ||\nabla f||_{L^{\infty}(B_{R}(0))}$$

$$\leq C_{R,f} |y - x|$$

Problem 7.8:

Counterexamples.

- 1. We know that for $f(x) = |x|^r$, that $f \in W^{1,p}(\Omega)$ if and only if r > -(d-p)/p. For q > dp/(d-p), $f \notin L^q(\Omega)$ if, for some $B_r(0) \subset \Omega \cap B_1(0)$, $||f||_q^q \ge \int_{B_r(0)} |x|^{rq} dx$, that is, if $rq \le -1$. Thus, we can find a counterexample for $r \in (-(d-p)/p, -(d-p)/dp]$.
- 2. The previous example is bot bounded and shows there is no embedding $W^{1,p}(\Omega) \hookrightarrow C^0_B$. However, from the Sobolev embedding theorem, if Ω is bounded and mp > d, then $W^{m,p}_0(\Omega) \hookrightarrow C^0_B(\Omega)$. In the case of the H^s spaces, though, we have p=2 and thus m>1/2, so $W^{s,2}_0 \hookrightarrow C^0_B$ for s>1/2. This implies that $\delta \in H^s$ for s<-1/2.
- 3. Notice immediately that f is not bounded at the origin. However,

$$\left|\log\log\left(\frac{4R}{|x|}\right)\right|^p \leqslant \left(4R|x|^{-1/2p}\right)^p$$

for every $x \in B_r(0)$. So then, $f \in L^p(\Omega)$. For the derivative, notice that

$$Df(x) = \frac{-x}{|x^2| \log (4R/|x|)}.$$

Define a similar sequence

$$Df_n = \begin{cases} Df(x) & x \in \Omega \setminus B_n \\ 0 & \text{otherwise} \end{cases}$$

and observe that Df_n converges monotonically to Df in $L^p(\Omega)$. Computation of the norm is done in spherical coordinates,

$$||Df_n||_p^p = \int_{\Omega \setminus B_n} \left| \frac{-x}{|x^2| \log (4R/|x|)} \right|^p dx = \int_{\Omega \setminus B_n} \left| \frac{1}{|x| \log (4R/|x|)} \right|^p dx \sim \int_{\varepsilon_n}^R \frac{1}{\rho \log (4R/\rho)} d\rho.$$

As $\rho \to 0$, the integrand is zero and is bounded across the rest of the domain. Thus, $f \in W^{1,p}$ as requested.

UT Austin CSE 386D

4. The distributional derivative of absolute value is

$$Du = \begin{cases} -1 & x < 0 \\ a & x = 0 \\ 1 & x > 0 \end{cases}$$

for any choice of $a \in \mathbb{R}$. Thus, $Du \in L^{\infty}$ (-1,1) and $u \in W^{1,\infty}$ (-1,1). Assume now to the contrary that there exists a sequence of smooth functions $f_n \in C^{\infty}$, $f_n \to u$ in $W^{1,\infty}$ (-1,1). If this is the case, then for the derivative, we have $Df_n \to Du$ in L^{∞} . Since f_n are smooth, then so are Df_n . For $\varepsilon = 1/2$, this implies in particular that $Df_n(x) \in (-3/2, -1/2)$ for x < 0 and $Df_n \in (1/2, 3/2)$ for x > 0. The contradiction is that the intermediate value theorem implies that there exists an interval such that $Df_n \in [-1/2, 1/2]$ in order to connect these two regions. So, C^{∞} $(-1,1) \cap W^{1,\infty}$ (-1,1) is not dense in $W^{1,\infty}$ (-1,1).

Problem 7.11:

We have

$$\begin{split} \|f\|_{H^{s}}^{2} &= \int\limits_{\mathbb{R}^{d}} \left(1 + |\xi|^{2}\right)^{s} \left|\hat{f}\left(\xi\right)\right|^{2} d\xi \\ &= \int\limits_{\mathbb{R}^{d}} \left(1 + |\xi|^{2}\right)^{s} \left|\hat{f}\left(\xi\right)\right|^{2s} \left|\hat{f}\left(\xi\right)\right|^{2(s-1)} d\xi \\ &= \int\limits_{\mathbb{R}^{d}} \left\{ \left(1 + |\xi|^{2}\right)^{1/2} \left|\hat{f}\left(\xi\right)\right|\right\}^{2s} \left|\hat{f}\left(\xi\right)\right|^{2(s-1)} d\xi \\ &\leqslant \left\| \left(1 + |\xi|^{2}\right)^{1/2} \left|\hat{f}\left(\xi\right)\right| \right\|_{L^{2}(\mathbb{R}^{d})}^{2s} \left\| \left|\hat{f}\right|^{2(s-1)} \right\|_{L^{2}(\mathbb{R}^{d})} \\ &\leqslant \left\| \left(1 + |\xi|^{2}\right)^{1/2} \left|\hat{f}\left(\xi\right)\right| \right\|_{L^{2}(\mathbb{R}^{d})}^{2s} \left\| \left|\hat{f}\right|^{2(1-s)} \right\|_{L^{2}(\mathbb{R}^{d})} \end{split}$$

and hence,

$$||f||_{H^{s}} \leqslant \left\| \left(1 + |\xi|^{2} \right)^{1/2} \left| \hat{f}\left(\xi\right) \right| \right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{s} \left\| \left| \hat{f} \right| \right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{(1-s)} \Rightarrow ||f||_{H^{s}} \leqslant ||f||_{H^{1}}^{s} ||f||_{L^{2}}^{1-s}$$