SUMÁRIO

Álgebra I	3
1. Grupos	4
1.1 Exercícios	20
2. Subgrupos	23
2.1 Exercícios	31
3. Homomorfismo de Grupos e Aplicações	35
3.1 Exercícios	43

ÁLGEBRA I

Grupos, Subgrupos e Homomorfismos de Grupos

André Luiz Galdino

zebra

1. Grupos

A essência por trás da Teoria dos Grupos é tomar dois elementos de um conjunto, combinar eles de alguma maneira e retornar um terceiro elemento do mesmo conjunto, e é este o papel das *operações binárias*.

Definição 1.1. Seja G um conjunto não vazio. Uma operação binária sobre G é uma função * que associa a cada par ordenado $(a,b) \in G \times G$ um elemento $a*b \in G$. De mais a mais, representamos uma operação binária sobre G da seguinte maneira:

$$*: G \times G \rightarrow G$$

$$(a,b) \mapsto a*b$$

Observe que a*b (lê-se: a estrela b) é uma outra forma de indicar a função *(a,b), e que uma operação binária combina dois elementos, nem mais, nem menos. No mais, quando há qualquer operação * definida sobre G, seja ela binária ou não, dizemos que G é um conjunto munido da operação *. Em particular, se * é operação binária sobre G, então dizemos que G é f echado com relação à operação *.

Exemplo 1.2. Sejam $\mathbb N$ o conjunto dos números naturais, incluindo o número $0, \mathbb Z$ o conjunto dos números inteiros, $\mathbb Q$ o conjunto dos números racionais, $\mathbb R$ o conjunto dos números reais e $\mathbb C$ o conjunto dos números complexos.

- 1. *=+: A adição sobre \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} é uma operação binária.
- 2. *=-: A subtração sobre \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} é uma operação binária.
- 3. * = ·: A multiplicação sobre \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} é uma operação binária.
- 4. $* = \div$: A divisão \mathbb{N} , \mathbb{Z} , \mathbb{Q} ou \mathbb{R} é uma operação binária.
- 5. * = \circ : A composição de funções é uma operação binária sobre o conjunto $\mathcal{F}(A) = \{f \mid f : A \to A\}$ de todas as funções de A em A.
- 6. A adição e multiplicação de matrizes são operações binárias sobre o conjunto $M_n(\mathbb{R})$ de todas as matrizes quadradas $n \times n$ com entradas em \mathbb{R} . Da mesma forma sobre $M_n(\mathbb{Q})$ e $M_n(\mathbb{C})$, respectivamente, os conjuntos das matrizes quadradas $n \times n$ com entradas racionais e complexos.

7. A adição de vetores em um espaço vetorial V é uma operação binária, pois,

$$+: V \times V \rightarrow V$$

 $(u, v) \mapsto u + v$

No entanto, a multiplicação por escalar não é uma operação binária, pois, tal multiplicação é definida por:

$$\begin{array}{ccc} \cdot : \mathbb{R} \times V & \to & V \\ (k, v) & \mapsto & k \cdot v \end{array}$$

8. A função $\star: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, dada por $a \star b = a^b$, é uma operação binária sobre \mathbb{N} , chamada de potenciação. No entanto, esta mesma função sobre \mathbb{Z} e \mathbb{Q} não é uma operação binária. De fato, sendo $(3,-1) \in \mathbb{Z} \times \mathbb{Z}$ e $\left(5,\frac{1}{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ temos, respectivamente, que:

$$3 \star (-1) = 3^{-1} = \frac{1}{3} \notin \mathbb{Z},$$

$$5 \star \frac{1}{2} = 5^{\frac{1}{2}} = \sqrt{5} \notin \mathbb{Q}.$$

Analogamente, a função de potenciação \star não é uma operação binária sobre $\mathbb R$ pelo mesmo motivo anterior, já que $\sqrt{5} \notin \mathbb R$.

Definição 1.3. Seja G um conjunto não vazio munido de uma operação *. Dizemos que G é um grupo com respeito à operação * se, e somente se, as seguintes acontecem:

- i) $\forall a, b \in G \implies a * b \in G;$
- ii) $\forall a, b, c \in G \implies a * (b * c) = (a * b) * c;$
- iii) $\exists e \in G : \forall a \in G \Rightarrow e * a = a;$
- iv) $\forall a \in G \implies \exists a^{-1} \in G : a^{-1} * a = e.$

Veja que na Definição 1.3 o item i) nos diz que G deve ser fechado com relação à operação *, ou seja, da operação * sobre os elementos de G sempre resulta um elemento de G. O item ii) requer que * seja uma operação associativa, isto é, a operação * deve nos permitir operar mais de dois elementos sem a necessidade de usar parênteses, uma vez que qualquer associação entre os elementos nos fornece o mesmo resultado final. Por exemplo,

$$a*b*c*d = (a*b)*(c*d) = a*(b*(c*d)) = a*((b*c)*d) = \cdots.$$

Na sequência, o item iii) exige a existência de um elemento especial $e \in G$, com relação à operação *, chamado de elemento neutro. Por fim, o item iv) pede a garantia de que todo elemento $a \in G$ possua, com relação à operação *, um inverso $a^{-1} \in G$.

Note que para se formar um grupo precisamos de um par de objetos: um conjunto G não vazio e uma operação * definida sobre ele. Logo, uma notação intuitiva para grupo é (G,*) e por vezes a usaremos, porém, por simplicidade costumamos dizer apenas que "G é um grupo" ou "o grupo G", o que evidentemente pressupõe a existência de uma operação * definida sobre G. Contudo, quando falamos de um grupo G específico, devemos deixar claro qual operação esta associada a ele.

Exemplo 1.4.

- Considere o conjunto Z com a operação usual de adição (+). Como a operação + é uma operação binária associativa sobre Z temos:
 - i) $\forall a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z};$
 - ii) $\forall a, b, c \in \mathbb{Z} \implies a + (b + c) = (a + b) + c;$
 - iii) $\exists 0 \in \mathbb{Z} : \forall a \in \mathbb{Z} \Rightarrow 0 + a = a;$
 - iv) $\forall a \in \mathbb{Z} \implies \exists -a \in \mathbb{Z} : (-a) + a = 0.$

Logo, $(\mathbb{Z}, +)$ é um grupo.

- 2. Analogamente ao item anterior, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ e $(\mathbb{C}, +)$ são grupos com suas respectivas operações usuais de adição, onde em todos os casos o 0 é o elemento neutro e o inverso de x é -x.
- 3. O conjunto \mathbb{Z} munido da operação subtração (-) não caracteriza um grupo. De fato, apesar da operação ser binária e associativa, o conjunto \mathbb{Z} não possui elemento neutro com relação à -. Isto porque não existe um elemento $e \in \mathbb{Z}$ de forma que, para todo $x \in \mathbb{Z}$, se tenha:

$$e - x = x$$
.

- 4. Seja \mathbb{Q}^* , conjunto dos números racionais sem o zero, munido da multiplicação usual em \mathbb{Q} . Afirmamos que (\mathbb{Q},\cdot) é um grupo. Vejamos:
 - i) $\forall a, b \in \mathbb{Q}^* \Rightarrow a \neq 0 \ e \ b \neq 0 \Rightarrow a \cdot b \neq 0 \Rightarrow a \cdot b \in \mathbb{Q}^*.$
 - ii) Já é sabido que \cdot é uma operação binária associativa, ou seja, para todo $a,b,c\in\mathbb{Q}^*,$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

iii) \mathbb{Q}^* possui o 1 como elemento neutro da multiplicação, pois, para todo $a \in \mathbb{Q}^*$ temos:

$$1 \cdot a = a$$
.

iv) Todo elemento $a\in\mathbb{Q}^*$ possui inverso multiplicativo que é $\frac{1}{a}\in\mathbb{Q}^*.$ De fato,

$$\frac{1}{a} \cdot a = 1.$$

Logo, (\mathbb{Q}^*, \cdot) é um grupo.

- 5. Analogamente ao item anterior, (\mathbb{R}^*,\cdot) e (\mathbb{C}^*,\cdot) são grupos com suas respectivas operações usuais de multiplicação, onde em todos os casos o 1 é o elemento neutro e o inverso de x é $\frac{1}{x}$.
- 6. O conjunto \mathbb{R}^* munido da operação divisão (\div) não é um grupo. De fato, a operação \div é binária, porém não é associativa, pois:

$$(48 \div 12) \div 4 = 4 \div 4 = 1$$

 $48 \div (12 \div 4) = 48 \div 3 = 16$

Logo, $(48 \div 12) \div 4 \neq 48 \div (12 \div 4)$.

- 7. Seja $G = \{1, -1\}$. Afirmamos que G é um grupo com a operação de multiplicação usual dos números reais. Vejamos, mas antes, sempre que possível e por simplicidade omitiremos a partir daqui o \cdot que representa a multiplicação usual.
 - i) Para todo $a, b \in G$, temos $ab \in G$, pois,

$$1 \cdot 1 = 1$$
 $1 \cdot (-1) = -1$ $(-1) \cdot 1 = -1$ $(-1) \cdot (-1) = 1$

- ii) Sem dúvida, para todo $a, b, c \in G$, tem-se a(bc) = (ab)c.
- iii) G possui elemento neutro que é 1.
- iv) Para todo $a \in G$, o própria a é seu inverso, ou seja, $a^{-1} = a$. De fato, para a=1 ou a=-1 temos que $a^{-1}a=aa=1$.

Logo, ${\cal G}$ é um grupo multiplicativo.

8. O conjunto \mathbb{N} munido da operação de potenciação \star , dada por $a \star b = a^b$, não forma um grupo. Verdade, \mathbb{N} é fechado para \star , mas \star não é associativa. De fato, sendo $2, 3, 4 \in \mathbb{N}$ temos:

$$(2 \star 3) \star 4 = 2^3 \star 4 = (2^3)^4 = 2^{3.4} = 2^{12}$$

 $2 \star (3 \star 4) = 2 \star 3^4 = 2^{(3^4)} = 2^{81}$

Portanto, $(2 \star 3) \star 4 \neq 2 \star (3 \star 4)$ e (\mathbb{N}, \star) não é um grupo.

- 9. O conjunto $M_n(\mathbb{R})$ munido da operação de multiplicação usual das matrizes não constitui um grupo. De fato, sendo $\mathbf{I}_n \in M_n(\mathbb{R})$ a matriz identidade temos:
 - i) $\forall A, B \in M_n(\mathbb{R}) \Rightarrow AB \in M_n(\mathbb{R}).$
 - ii) $\forall A, B, C \in M_n(\mathbb{R}) \Rightarrow A(BC) = (AB)C.$
 - iii) $\forall A \in M_n(\mathbb{R}) \Rightarrow \mathbf{I}_n A = A.$
 - iv) Porém, nem toda matriz $A \in M_n(\mathbb{R})$ possui um inverso, pois, nem toda matriz quadrada possui determinante diferente de zero.

Portanto, $M_n(\mathbb{R})$ não é um grupo com a operação de multiplicação usual das matrizes.

10. Considere o conjunto $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid det(A) \neq 0\}$. A operação de multiplicação usual de matrizes é uma operação binária sobre $GL_n(\mathbb{R})$. De fato, para todo $A, B \in GL_n(\mathbb{R})$ temos que $det(A) \neq 0$ e $det(B) \neq 0$, consequentemente,

$$det(AB) = det(A)det(B) \neq 0.$$

Isto nos leva a concluir que $AB \in GL_n(\mathbb{R})$. Já é sabido que a operação de multiplicação de matrizes é associativa, e que a matriz identidade \mathbf{I}_n é o elemento neutro de $GL_n(\mathbb{R})$. Além disso, toda matriz $A \in GL_n(\mathbb{R})$ possui um inverso A^{-1} , pois, toda matriz quadrada que possui determinante diferente de zero é inversível, e

$$det(A^{-1}) = \frac{1}{det(A)} \neq 0 \implies A^{-1} \in GL_n(\mathbb{R}).$$

Portanto, $GL_n(\mathbb{R})$ é um grupo multiplicativo. Similarmente, também é um grupo multiplicativo o conjunto $GL_n(\mathbb{Q})$.

11. Sejam $n \in \mathbb{N}^*$, $X = \{x_1, x_2, x_3, \dots, x_n\}$ e S_n o conjunto de todas as funções bijetoras de X em X, ou seja,

$$S_n = \{ \phi : X \to X \mid \phi \text{ \'e uma função bijetora} \}.$$

Afirmamos que S_n é um grupo com a operação de composição de funções, chamado de Grupo Simétrico de grau n. De fato, como a composição de funções bijetoras é também bijetora, temos que S_n é fechado com relação à composição de funções. Sem nenhuma dúvida, a operação composição de funções é associativa. Temos ainda que o elemento neutro de S_n é a função identidade, e como toda função bijetora possui inversa, que também é bijetora, concluímos a afirmação, isto é, (S_n, \circ) é um grupo.

12. Seja $G = \{x \in \mathbb{R} \mid x \neq -1\}$. Vamos mostrar que G é um grupo com relação à operação \oplus dada por:

$$x \oplus y = x + y + xy$$
.

i) G é fechado para a operação \oplus . De fato, para todo $x,y\in G$, $x\neq -1$ e $y\neq -1$, temos:

$$x \oplus y = x + y + xy = (x+1)(y+1) - 1 \neq -1 \Rightarrow x \oplus y \in G.$$

ii) Para todo $x, y, z \in G$ vem que:

$$x \oplus (y \oplus z) = x \oplus (y + z + yz)$$

$$= x + (y + z + yz) + x(y + z + yz)$$

$$= x + y + z + yz + xy + xz + x(yz)$$

$$= x + y + z + yz + xy + xz + (xy)z$$

$$= (x + y + xy) + z + (x + y + xy)z$$

$$= (x + y + xy) \oplus z$$

$$= (x \oplus y) \oplus z.$$

Logo, a operação \oplus é associativa.

iii) Para todo $x \in G$, verifiquemos se existe $e \in G$ tal que $e \oplus x = x$.

$$e \oplus x = x$$

$$e + x + ex = x$$

$$e + ex = 0$$

$$(1+x)e = 0$$

$$e = 0.$$

Logo, G possui elemento neutro que é e=0.

iv) Por fim, todo $x \in G$ possui um inverso $x^{-1} \in G$, pois,

$$x^{-1} \oplus x = e$$

$$x^{-1} + x + x^{-1}x = 0$$

$$x^{-1} = -\frac{x}{1+x} = -1 + \frac{1}{1+x} \neq -1.$$

Logo, (G, \oplus) é um grupo.

Definição 1.5. Dizemos que um grupo (G, *) é abeliano ou comutativo se, e somente se, * é uma operação comutativa.

Exemplo 1.6.

- 1. Para todo $a, b \in \mathbb{Z}$ temos a + b = b + a, ou seja, $(\mathbb{Z}, +)$ é um grupo aditivo abeliano. Analogamente, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ e $(\mathbb{C}, +)$, com suas respectivas operações usuais de adição, são grupos abelianos.
- 2. Para todo $a, b \in \mathbb{Q}^*$ temos $a \cdot b = b \cdot a$, isto é, (\mathbb{Q}^*, \cdot) é um grupo multiplicativo abeliano. Igualmente, (\mathbb{R}^*, \cdot) e (\mathbb{C}^*, \cdot) , com suas respectivas operações usuais de multiplicação, são grupos abelianos.
- 3. É fácil ver que o grupo multiplicativo $G = \{1, -1\}$ é um grupo abeliano.
- 4. O conjunto $\mathcal{F}(\mathbb{R})$, de todas as funções de \mathbb{R} em \mathbb{R} , é um grupo abeliano com a operação de adição usual entre funções, a saber, para todo $x \in \mathbb{R}$:
 - i) Para todo $f, g \in \mathcal{F}(\mathbb{R})$ temos $(f+g)(x) = f(x) + g(x) \in \mathcal{F}(\mathbb{R})$.
 - ii) Para todo $f, g, h \in \mathcal{F}(\mathbb{R})$ temos

$$[f + (g+h)](x) = f(x) + (g+h)(x)$$

$$= f(x) + (g(x) + h(x))$$

$$= (f(x) + g(x)) + h(x)$$

$$= (f+g)(x) + h(x)$$

$$= [(f+q) + h](x).$$

iii) A função nula f(x)=0 é o elemento neutro de $\mathcal{F}(\mathbb{R})$ com relação à operação +, pois, para todo $g\in\mathcal{F}(\mathbb{R})$ temos:

$$(f+g)(x) = f(x) + g(x) = 0 + g(x) = g(x).$$

iv) Para todo $f \in \mathcal{F}(\mathbb{R})$, existe $-f \in \mathcal{F}(\mathbb{R})$ tal que:

$$(-f + f)(x) = -f(x) + f(x) = 0.$$

Logo, $(\mathcal{F}(\mathbb{R}), +)$ é um grupo. Ademais,

v) Para todo $f, g \in \mathcal{F}(\mathbb{R})$ temos:

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).$$

Portanto, $(\mathcal{F}(\mathbb{R}), +)$ é um grupo abeliano.

- 5. O conjunto $M_{n\times m}(\mathbb{Z})$ é um grupo aditivo abeliano com a operação de adição usual das matrizes. De fato, o elemento neutro de $M_{n\times m}(\mathbb{Z})$ é a matriz nula $n\times m$, denotada por $\mathbf{0}_{n\times m}$, e o inverso da matriz $A\in M_{n\times m}(\mathbb{Z})$ é a matriz $-A\in M_{n\times m}(\mathbb{Z})$. Assim temos:
 - i) $\forall A, B \in M_{n \times m}(\mathbb{Z}) \Rightarrow A + B \in M_{n \times m}(\mathbb{Z}).$
 - ii) $\forall A, B, C \in M_{n \times m}(\mathbb{Z}) \Rightarrow A + (B + C) = (A + B) + C.$
 - iii) $\forall A \in M_{n \times m}(\mathbb{Z}) \Rightarrow \mathbf{0}_{n \times m} + A = A.$
 - iv) $\forall A \in M_{n \times m}(\mathbb{Z}) \Rightarrow -A + A = \mathbf{0}_{n \times m}$
 - v) $\forall A, B \in M_{n \times m}(\mathbb{Z}) \Rightarrow A + B = B + A.$

Logo, $(M_{n\times m}(\mathbb{Z}),+)$ é um grupo abeliano aditivo. Também são grupos abelianos $(M_{n\times m}(\mathbb{Q}),+), (M_{n\times m}(\mathbb{R}),+)$ e $(M_{n\times m}(\mathbb{C}),+)$.

6. Sejam n > 1 um inteiro e $\overline{r} = \{kn + r \mid k \in \mathbb{Z}, 0 \le r < n\}$. Considerando o conjunto

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\},\$$

e definindo a operação de adição sobre \mathbb{Z}_n como sendo

$$\overline{x} + \overline{y} = \overline{x + y},$$

temos que $(\mathbb{Z}_n, +)$ é um grupo abeliano. De fato,

i) Para todo $\overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}_n$ temos:

$$\begin{array}{rcl} \overline{x} + (\overline{y} + \overline{z}) & = & \overline{x} + \overline{(y+z)} & = & \overline{x + (y+z)} \\ & = & \overline{(x+y) + z} & = & \overline{(x+y)} + \overline{z} \\ & = & (\overline{x} + \overline{y}) + \overline{z}. \end{array}$$

ii) Para todo $\overline{x} \in \mathbb{Z}_n$, existe $\overline{0} \in \mathbb{Z}_n$ tal que:

$$\overline{x} + \overline{0} = \overline{x + 0} = \overline{x}.$$

iii) Para todo $\overline{x} \in \mathbb{Z}_n$, existe $\overline{n-x} \in \mathbb{Z}_n$ tal que:

$$\overline{x} + \overline{n - x} = \overline{x + (n - x)} = \overline{n} = \overline{0}.$$

iv) Para todo $\overline{x}, \overline{y} \in \mathbb{Z}_n$,

$$\overline{x} + \overline{y} = \overline{x + y} = \overline{y + x} = \overline{y} + \overline{x}.$$

Portanto, $(\mathbb{Z}_n, +)$ é um grupo abeliano.

Álgebra I

- 7. Considere o conjunto $\mathcal{F}(\mathbb{R})$ das funções de \mathbb{R} em \mathbb{R} munido da operação composição de funções. Apesar do conjunto $\mathcal{F}(\mathbb{R})$ ser não vazio, ser fechado com relação à operação, possuir a função identidade $i_{\mathbb{R}}$ como elemento neutro e a operação composição ser associativa, ele não é um grupo, pois, nem toda $f \in \mathcal{F}(\mathbb{R})$ possui inverso f^{-1} . De fato, $f \in \mathcal{F}(\mathbb{R})$ possui uma inversa f^{-1} se, e somente se, f é bijetora. No entanto, nem toda $f \in \mathcal{F}(\mathbb{R})$ é bijetora, por exemplo, a função $f(x) = x^2$ não é injetora e nem sobrejetora.
- 8. Seja S_3 o grupo de todas as funções bijetoras de $X = \{x_1, x_2, x_3\}$ nele mesmo, ou seja,

$$S_{3} = \left\{ \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ x_{1} & x_{2} & x_{3} \end{pmatrix}, \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ x_{2} & x_{1} & x_{3} \end{pmatrix}, \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ x_{3} & x_{2} & x_{1} \end{pmatrix}, \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ x_{1} & x_{3} & x_{2} \end{pmatrix}, \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ x_{2} & x_{3} & x_{1} \end{pmatrix}, \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ x_{3} & x_{1} & x_{2} \end{pmatrix} \right\},$$

onde a notação $\left(\begin{array}{c} x_1 \ x_2 \ x_3 \\ x_i \ x_j \ x_k \end{array}\right)$ representa a função tal que:

$$x_1 \to x_i, \qquad x_2 \to x_j, \qquad x_3 \to x_k.$$

Como vimos no item 11 do Exemplo 1.4, S_3 é um grupo com a operação composição de funções. Porém, S_3 não é um grupo abeliano. De fato, considere as funções ϕ e ψ , dadas como segue:

$$\phi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_3 \end{pmatrix} \qquad e \qquad \psi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \end{pmatrix}.$$

Temos que:

(a)
$$\phi \psi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_3 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_3 & x_2 \end{pmatrix}.$$

(b)
$$\psi \phi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_3 & x_2 & x_1 \end{pmatrix}.$$

Portanto, $\phi\psi \neq \psi\phi$ e S_3 não é abeliano.

Lema 1.7. Sejam (G,*) um grupo e $a \in G$. Se a*a=a, então a=e.

Demonstração: Como $a \in G$, existe $a^{-1} \in G$ tal que $a^{-1} * a = e$. Logo,

$$a^{-1} * (a * a) = a^{-1} * a = e.$$

Por outro lado.

$$a^{-1} * (a * a) = (a^{-1} * a) * a = e * a = a.$$

Portanto, a = e.

Teorema 1.8. Se (G,*) é um grupo, então para todo $a \in G$ temos que:

1.
$$a * a^{-1} = e$$
. 2. $a * e = a$.

Demonstração: Se (G, *) é um grupo, então para todo $a \in G$,

$$a^{-1} * a = e$$
 e $e * a = a$.

- 1. $(a*a^{-1})*(a*a^{-1}) = (a*(a^{-1}*a))*a^{-1} = (a*e)*a^{-1} = a*a^{-1}$, consequentemente, pelo Lema 1.7 temos o resultado desejado, que é, $a*a^{-1} = e$.
- 2. $a*e=a*(a^{-1}*a)=(a*a^{-1})*a=e*a=a$. Como queríamos demonstrar.

O Teorema 1.8 nós diz que a ordem em que operamos o elemento neutro e o elemento inverso é indiferente, ou seja,

$$a^{-1} * a = a * a^{-1} = e$$
 e $e * a = a * e = a$.

Teorema 1.9. Seja (G,*) um grupo. Então,

- 1. G possui um único elemento neutro.
- 2. cada elemento $a \in G$ possui um único inverso.

Demonstração: Para mostrar que o elemento neutro e o inverso são únicos, suponhamos que existem dois de cada e mostramos que eles são, respectivamente, iguais.

- 1. Sejam $e, e' \in G$ elementos neutros com relação à *. Logo,
 - i) se e é um elemento neutro, então e * e' = e'.
 - ii) se e'é um elemento neutro, então $e\ast e'=e.$
 - De i) e ii) temos e=e', isto é, o elemento neutro é único.

$$a^{-1} * a = a * a^{-1} = e$$
 e $b * a = a * b = e$.

Então.

$$b = e * b = (a^{-1} * a) * b = a^{-1} * (a * b) = a^{-1} * e = a^{-1}.$$

Logo, $b = a^{-1}$. Isto é, o inverso de cada elemento $a \in G$ é único.

O Teorema 1.9 mostra que se o elemento neutro existe, então ele é único. Em particular, por definição, temos e * e = e, ou seja, $e^{-1} = e$.

Corolário 1.10. Se G é um grupo e $a \in G$, então $(a^{-1})^{-1} = a$.

Demonstração: Seja a^{-1} o inverso de a, ou seja, $a*a^{-1} = e$. Pelo Teorema 1.9 o inverso é único, consequentemente, observando esta última igualdade podemos concluir, por definição, que a é o inverso de a^{-1} , ou seja, $(a^{-1})^{-1} = a$.

Lema 1.11. Sejam G um grupo e $a, x, y \in G$. Então, as seguintes leis de cancelamento são válidas:

- 1. $a * x = a * y \Rightarrow x = y$.
- $2. x*a = u*a \Rightarrow x = u.$

Demonstração:

1. Suponha que a * x = a * y. Então,

$$x = e * x = (a^{-1} * a) * x = a^{-1} * (a * x)$$

= $a^{-1} * (a * y)$
= $(a^{-1} * a) * y = e * y = y$.

Logo, x = y.

2. Suponha que x * a = y * a. Então,

$$x = x * e = x * (a * a^{-1}) = (x * a) * a^{-1}$$

= $(y * a) * a^{-1}$
= $y * (a * a^{-1}) = y * e = y$.

Portanto, x = y.

Lema 1.12. Seja (G, *) um grupo. Mostre que para todo $a, b \in G$,

$$(a*b)^{-1} = b^{-1} * a^{-1}.$$

Demonstração: Para todo $a, b \in G$ temos:

$$(a*b)*(a*b)^{-1} = e \implies a*(b*(a*b)^{-1}) = e.$$

Pelo item 1 do Lema 1.11, podemos operar a^{-1} à esquerda de ambos os lados da última igualdade, sem que a mesma se altere:

$$a * (b * (a * b)^{-1}) = e$$
 \Rightarrow $a^{-1} * a * (b * (a * b)^{-1}) = a^{-1} * e$
 \Rightarrow $e * (b * (a * b)^{-1}) = a^{-1} * e$
 \Rightarrow $b * (a * b)^{-1} = a^{-1}$.

Do mesmo modo, sem que a última igualdade se altere, podemos operar b^{-1} à esquerda de ambos os lados:

$$\begin{split} b*(a*b)^{-1} &= a^{-1} & \Rightarrow & b^{-1}*b*(a*b)^{-1} &= b^{-1}*a^{-1} \\ & \Rightarrow & e*(a*b)^{-1} &= b^{-1}*a^{-1} \\ & \Rightarrow & (a*b)^{-1} &= b^{-1}*a^{-1}. \end{split}$$

Como queríamos demonstrar.

Lema 1.13. Seja G um grupo. Se $a,b \in G$ e x é uma variável em G, então a equação a*x=b possui uma única solução em G, que é $x=a^{-1}*b$.

Demonstração: Claramente $x=a^{-1}*b$ é uma solução da equação a*x=b, pois,

$$a * (a^{-1} * b) = (a * a^{-1}) * b = e * b = b.$$

Por outro lado, se x_0 é uma solução da equação, então $a*x_0=b$. Donde obtemos,

$$x_0 = e * x_0 = (a^{-1} * a) * x_0 = a^{-1} * (a * x_0) = a^{-1} * b.$$

Portanto, a equação a*x=b possui uma única solução em G, que é $x=a^{-1}*b$.

Como consequência do Lema 1.13 temos: para mostrar que um determinando elemento $x \in G$ é igual ao elemento neutro do grupo G, basta mostrar que a*x=a para algum $a \in G$.

Lema 1.14. Sendo (G, *) um grupo e $n \in \mathbb{Z}$, definida recursivamente a n-ésima potência de $a \in G$ da seguinte forma:

$$a^{0} = e,$$

 $a^{n+1} = a^{n} * a n > 0,$
 $a^{n} = (a^{-n})^{-1} n < 0.$

Então, para todo $n, m \in \mathbb{Z}$:

1.
$$a^n * a^m = a^{n+m}$$
 2. $(a^n)^m = a^{nm}$

Demonstração: As provas se dão por indução em m e, sem perca de generalidade, vamos supor n > 0 e m > 0. Os casos n = 0 ou m = 0 são triviais e de fácil entendimento. Já os casos onde n < 0 ou m < 0, basta levar em conta a definição da n-ésima potência para o caso de expoente negativo, se valer da propriedade apresentada pelo Lema 1.12, e aplicar a propriedade para o caso em que os expoentes são positivos.

- 1. BI Para m=1 temos: $a^n*a^1=a^{n+1}$. Portanto, a igualdade é verdadeira para m=1.
 - **HI -** Vamos supor que a igualdade seja verdadeira para m=k, ou seja, $a^n*a^k=a^{n+k}$.
 - **PI -** Na sequência, vamos verificar se a igualdade é verdadeira para m=k+1, ou seja, verificar se $a^n*a^{k+1}=a^{n+(k+1)}$.

$$a^{n}*a^{k+1} = a^{n}*a^{k}*a \stackrel{HI}{=} a^{n+k}*a = a^{(n+k)+1} = a^{n+(k+1)}.$$

Logo, a igualdade é verdadeira para m = k+1 e, consequentemente, a igualdade é verdadeira para todo $a \in G$ e para todo $n, m \in \mathbb{N}$.

- 2. **BI** Para m = 1 temos: $(a^n)^1 = a^n = a^{n.1}$. Portanto, a igualdade é verdadeira para m = 1.
 - **HI -** Vamos supor que a igualdade seja verdadeira para m=k, ou seja, $(a^n)^k=a^{nk}$.
 - **PI** Verifiquemos se a igualdade é verdadeira para m = k + 1, ou seja, vamos verificar se $(a^n)^{k+1} = a^{n(k+1)}$.

$$(a^n)^{k+1} = (a^n)^k * a^n \stackrel{HI}{=} a^{nk} * a^n = a^{nk+n} = a^{n(k+1)}.$$

Portanto, a igualdade é verdadeira para m=k+1. Consequentemente, a igualdade é verdadeira para todo $a \in G$ e todo $n, m \in \mathbb{N}$.

Álgebra l

Definição 1.15. A *ordem* de um grupo G é definida como sendo o número de elementos em G e é denotada por |G|.

Exemplo 1.16.

- 1. O grupo $G = \{-1, 1\}$ é um grupo finito de ordem 2, que é, |G| = 2.
- 2. Como \mathbb{Z} é infinito, então o grupo $(\mathbb{Z}, +)$ possui ordem infinita.

Deste ponto em diante, sempre que possível e não causar prejuízos ou dúvidas, não mais explicitaremos a operação * de um grupo (G,*). Isto posto, em vez de a*b apenas escreveremos ab. Além disso, lembremos que por definição a n-ésima potência de $a \in G$ é dada por:

$$a^n = \underbrace{aaa \cdots a}_n$$
.

Definição 1.17. Seja G um grupo. Dizemos que um elemento $a \in G$ possui ordem n se, e somente se, n > 0 e é o menor inteiro tal que $a^n = e$. No mais, se $a \in G$ possui ordem n, então denotamos por |a| = n.

Exemplo 1.18.

1. Considere o grupo \mathbb{Z}_6 . O elemento $\overline{2} \in \mathbb{Z}_6$ possui ordem 3. De fato,

$$\overline{2}^1 = \overline{2}, \qquad \overline{2}^2 = \overline{2} + \overline{2} = \overline{4}, \qquad \overline{2}^3 = \overline{2} + \overline{2} + \overline{2} = \overline{6} = \overline{0}.$$

2. Os elementos $-1, i \in \mathbb{C}^*$ possuem, respectivamente, ordens 2 e 4. Vejamos,

$$(-1)^1 = -1,$$
 $(-1)^2 = (-1)(-1) = 1.$ $i^1 = i,$ $i^2 = -1,$ $i^3 = i^2i = -i,$ $i^4 = i^2i^2 = 1.$

Lema 1.19. Seja $a \in G$, onde G é um grupo. Se |a| = n, então $a^m = e$ se, e somente se, $n \mid m$.

Demonstração: (\Rightarrow) Seja |a|=n e suponha que $a^m=e$. Pelo algoritmo da divisão de Euclides temos que existem únicos $q,r\in\mathbb{Z}$, tal que m=qn+r e $0\leq r< n$. Sendo assim temos:

$$a^m = e \implies a^{qn+r} = e \implies a^{qn}a^r = e \implies (a^n)^q a^r = e \implies a^r = e.$$

Como |a| = n, isto é, n é o menor inteiro tal que $a^n = e$, concluímos de r < n e $a^r = e$ que a única possibilidade é termos r = 0. Consequentemente, m = qn e, por definição, $n \mid m$.

$$(\Leftarrow)$$
 Por outro lado, se $n \mid m$, então $m = kn$ e $a^m = a^{kn} = (a^n)^k = e$.

Corolário 1.20. Seja $a \in G$ tal que |a| = n. Para todo $k, t \in \mathbb{Z}$, temos $a^k = a^t$ se, e somente se, $k \equiv t \pmod{n}$.

 $\textbf{Demonstração:} \ a^k = a^t \Leftrightarrow a^{k-t} = e \Leftrightarrow n \mid (k-t) \Leftrightarrow k \equiv t (mod \ n).$

Na verdade, sendo $a \in G$ de ordem finita n, podemos comparar ou correlacionar as ordens de a e a^k . De fato, observe que

$$(a^k)^n = (a^n)^k = e.$$

Então, pelo Lema 1.19, a ordem de a^k divide n. Em outras palavras, a ordem de a^k divide a ordem de a. Por exemplo, suponhamos que $a \in G$ tenha ordem 12. Pela observação feita anteriormente, sabemos que a ordem de qualquer potência de a, digamos a^k , divide a ordem de a, que é 12. Neste sentido é natural pensar que a ordem de a^2 é 6. De fato,

$$(a^2)^1 = a^2, \quad (a^2)^2 = a^4, \quad (a^2)^3 = a^6,$$

 $(a^2)^4 = a^8, \quad (a^2)^5 = a^{10}, \quad (a^2)^6 = a^{12} = e.$

Isto é, $|a^2| = 6 = \frac{12}{2}$.

Mas, de maneira geral, sendo |a|=n será que podemos adotar como regra que $|a^k|=\frac{n}{k}$? Infelizmente não, pois, dessa forma teríamos que $|a^8|=\frac{12}{8}$, o que nos leva a um absurdo, uma vez que $\frac{12}{8}\notin\mathbb{Z}$. Não obstante,

$$(a^8)^1 = a^8,$$
 $(a^8)^2 = a^{16} = a^{12}a^4 = a^4,$ $(a^8)^3 = a^{24} = (a^{12})^2 = e.$

Portanto, concluímos que de fato $|a^8| = 3 = \frac{12}{4}$.

Sendo assim, a pergunta que surge naturalmente é: Já que a ordem de a^k divide |a|, então qual é sua ordem? Ou de outra forma, qual é o fator de |a| que é a ordem de a^k ? Ou ainda, qual é a correlação entre $|a^k|$ e |a|? A resposta para essa pergunta vem através da seguinte proposição.

Proposição 1.21. Sejam G um grupo e $a \in G$. Se |a| = n, então $|a^k| = \frac{n}{mdc(n,k)}$.

Demonstração: Seja |a| = n e $|a^k| = m$. Observe que:

$$(a^k)^{n/mdc(n,k)} = (a^n)^{k/mdc(n,k)} = e.$$

Isto implica, pelo Lema 1.19, que m divide $\frac{n}{mdc(n,k)}$. Por outro lado,

$$a^{km} = (a^k)^m = e,$$

o que, de acordo com o Lema 1.19, nos diz que n divide km. Donde obtemos que $\frac{n}{mdc(n,k)}$ divide $\frac{km}{mdc(n,k)} = \frac{k}{mdc(n,k)}m$. Por fim,

$$mdc\left(\frac{n}{mdc(n,k)},\frac{k}{mdc(n,k)}\right) = 1,$$

concluímos que $\frac{n}{mdc(n,k)}$ divide m. Portanto, $m = \frac{n}{mdc(n,k)}$.

Corolário 1.22. Sejam G um grupo e $a \in G$ tal que |a| = n. Se $k \mid n$, então $|a^k| = \frac{n}{k}$.

Demonstração: Se $k \mid n$, então n = qk e mdc(n,k) = mdc(qk,k) = k. Pela Proposição 1.21,

$$|a^k| = \frac{n}{mdc(n,k)} = \frac{n}{k}.$$

Corolário 1.23. Sejam G um grupo e $a \in G$ tal que |a| = n. Se mdc(n,k) = 1, então $|a^k| = n$.

Demonstração: Se mdc(n, k) = 1, então pela Proposição 1.21,

$$|a^k| = \frac{n}{mdc(n,k)} = n.$$

Corolário 1.24. Seja G um grupo. Se $a \in G$ e |a| = n, então $|a^{-1}| = n$.

Demonstração: Como mdc(n,-1)=1, é fácil ver que $|a^{-1}|=n$.

Exemplo 1.25. Seja $a \in G$ tal que |a| = 12. Como $|a^k| = \frac{12}{mdc(12, k)}$ temos:

k	0	1	2	3	4	5	6	7	8	9	10	11	12
mdc(12,k)	12	1	2	3	4	1	6	1	4	3	2	1	12
$ a^k $	1	12	6	4	3	12	2	12	3	4	6	12	1

k	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
mdc(12,k)	1	2	3	4	1	6	1	4	3	2
$ a^k $	12	6	4	3	12	2	12	3	4	6

1.1 Exercícios

- 1. Em cada item abaixo, considere a operação binária * sobre A e verifique se ela é associativa e se ela é comutativa.
 - a) $A = \mathbb{R}$ e $x * y = \frac{x+y}{2}$. c) $A = \mathbb{R}^*$ e $x * y = \frac{x}{y}$.
- - b) $A = \mathbb{Z}$ e x * y = x + xy. d) $A = \mathbb{R}$ e $x * y = x^2 + y^2$.
- 2. Seja $B = \mathbb{Z} \times \mathbb{Z}$. Considerando as operações a seguir, verifique se elas são associativas e/ou comutativas.
 - a) (a,b)*(x,y) = (ax,0)
 - b) $(a,b) \circ (x,y) = (a+x,b+y)$
 - c) $(a, b) \diamond (x, y) = (a + x, by)$
 - d) $(a, b) \oplus (x, y) = (ax by, ay + bx)$
- 3. Seja * a operação sobre \mathbb{Z} dada por a*b=ma+nb. Que condições devem satisfazer $m, n \in \mathbb{Z}$ de forma que * seja associativa? e para ser comutativa?
- 4. Considere o grupo $(\mathcal{F}(\mathbb{R}), \circ)$ e seja $f \in \mathcal{F}(\mathbb{R})$ a função dada por f(x) = 2x + 3 para todo $x \in \mathbb{R}$. Calcule $f^3 \in \mathcal{F}(\mathbb{R})$.
- 5. Sejam n > 1 um inteiro e $\overline{r} = \{kn + r \mid k \in \mathbb{Z}, 0 \le r < n\}$. Considerando o conjunto das classes de restos módulo n dado por $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}\}$, mostre que as operações \oplus e \odot definidas sobre \mathbb{Z}_n a seguir são associativas e comutativas.

a)
$$\overline{x} \oplus \overline{y} = \overline{x+y}$$

b)
$$\overline{x} \odot \overline{y} = \overline{x}\overline{y}$$

6. Prove que é associativa a operação * sobre \mathbb{Z}^3 dada por:

$$(a,b,c)*(x,y,z) = (ax,by,cz).$$

- 7. Mostre que a multiplicação de matrizes 2×2 sobre o conjunto dos números reais é associativa, mas não comutativa.
- 8. Mostre que o conjunto dos números inteiros positivos \mathbb{Z}^+ não é fechado sob a operação de subtração usual.
- 9. Prove que o conjunto G a seguir é um grupo com a operação de multiplicação usual de matrizes.

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}.$$

- 10. Considere o grupo $(GL_2(\mathbb{R}),\cdot)$. Determine o inverso de $A = \begin{bmatrix} 1 & 3 \\ -2 & -5 \end{bmatrix} \in GL_2(\mathbb{R}).$
- 11. Mostre que se G é um grupo abeliano, então para todo $a,b \in G$ e para todo $n \in \mathbb{N}$ temos que:

$$(a*b)^n = a^n * b^n.$$

- 12. Seja G um grupo. Mostre que se $x^2 = e$ para todo $x \in G$, então Gé abeliano.
- 13. Seja G um grupo. Mostre que se $a,b \in G$ e x é uma variável em G, então a equação x*a=b possui uma única solução em G, que $ext{e} x = b * a^{-1}$.
- 14. Mostre que se $(ab)^2 = a^2b^2$ para todo $a,b \in G$, então G é um grupo
- 15. Verifique se (\mathbb{R}, \otimes) é um grupo abeliano, onde \otimes é dada por:

$$a \otimes b = a + b - 3$$
.

16. Seja \mathbb{R}^2 o produto cartesiano de \mathbb{R} por ele mesmo. Considerando a soma de vetores usual em \mathbb{R}^2 ,

$$(x,y) + (a,b) = (x+a,y+b),$$

verifique se $(\mathbb{R}^2, +)$ é um grupo.

17. Seja S_3 o grupo das permutações dos 3 elementos x_1 , x_2 e x_3 . Considere as funções ϕ e ψ , dadas como segue:

$$\phi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_3 \end{pmatrix} \qquad \qquad e \qquad \qquad \psi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \end{pmatrix}.$$

Mostre que:

a)
$$\phi^2 = e$$
.

c)
$$\psi^{-1} = \psi^2$$

b)
$$\psi^3 = e$$
.

c)
$$\psi^{-1} = \psi^2$$
.
d) $\phi \psi = \psi^{-1} \phi$.

18. Sejam (G,*) um grupo e $a \in G$. Mostre que a função $T_a: G \to G$, definida por $T_a(x) = a * x$, é bijetora.

19. Considere o conjunto $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$, tal que:

$$ij = k$$
, $jk = i$, $ki = j$, $kj = -i$, $ik = -j$,
 $ji = -k$, $(\pm i)^2 = (\pm j)^2 = (\pm k)^2 = 1$.

Mostre que Q_8 é um grupo, chamado de *Grupo dos Quatérnios*.

20. Mostre que $D_3 = \{e, r, r^2, s, rs, r^2s\}$ é um grupo, onde

$$r^3 = e$$
, $s^2 = e$ $sr = r^2s$.

O grupo D_3 é chamado de *Grupo Diedral de Ordem* 3.

21. Mostre que $D_4 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$ é um grupo, onde

$$r^4 = e, \quad s^2 = e, \quad sr = r^3 s.$$

O grupo D_4 é chamado de *Grupo Diedral de Ordem* 4.

- 22. Mostre que $E=\{a+b\sqrt{2} \in \mathbb{R}^* \mid a,b\in\mathbb{Q}\}$ é um grupo multiplicativo abeliano.
- 23. Seja \mathcal{P}_n o conjunto de todos os polinômios de grau n com variável real x, ou seja, se $p(x) \in \mathcal{P}_n$, então

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0.$$

Mostre que $(\mathcal{P}_n, +)$ é um grupo, onde a operação + é a adição usual dos polinômios.

24. Determine as ordens de $A, B \in GL_2(\mathbb{R})$.

a)
$$A = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$$
 b) $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

$$b) B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

- 25. Determine a ordem de $\eta = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_3 & x_1 & x_2 \end{pmatrix} \in S_3$.
- 26. Seja $a \in G$ tal que |a| = 5. Determine a $|a^k|$ para $-8 \le k \le 8$.
- 27. Seja G um grupo finito. Mostre que as seguintes condições são equivalentes:
 - a) Para todo $a \in G$, $a^{|G|} = e$.
 - b) Para todo $a \in G$, |a| divide |G|.

2. Subgrupos

Definição 2.1. Sejam G um grupo e H subconjunto não vazio de G. Dizemos que H é um subgrupo de G, e denotamos por $H \leq G$, se, e somente se, H é um grupo com a operação binária de G.

Observe que $\{e\}$ e G são sempre subgrupos de G, chamados de sub-grupos triviais, e cujo interesse de estudo é diminuto.

Definição 2.2. Dizemos que H é um subgrupo próprio ou não trivial de G, e denotamos por H < G, se H é um subgrupo de G com $H \neq G$ e $H \neq \{e\}$.

Exemplo 2.3. É fácil ver que:

- 1. $\mathbb{Z} < \mathbb{Q} < \mathbb{R}$ com relação a operação usual de adição.
- 2. $\mathbb{Q}^* < \mathbb{R}^*$ e $\mathbb{R}^+ < \mathbb{R}^*$ com relação a operação usual de multiplicação.
- 3. o conjunto de todos os números pares, a saber, $2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\},$ é um subgrupo de $(\mathbb{Z}, +)$.

Na sequência, apresentamos formas de verificar se um determinando subconjunto H de G é um subgrupo de G, sem ter que mostrar que ele por si só é um grupo com a operação de G.

Teorema 2.4. Se H é um subconjunto de um grupo (G,*), então H é um subgrupo de G se, e somente se, as seguintes acontecem:

- i) $e \in H$; (elemento neutro de G)
- ii) $\forall a \in H \Rightarrow a^{-1} \in H;$ (fechado para inverso)
- iii) $\forall a,b \in H \implies a*b \in H.$ (fechado para a operação)

Demonstração: (\Rightarrow) Suponhamos que $H \leq G$ e mostremos que as condições i), ii) e iii) são satisfeitas. Se e_h é o elemento neutro de H, então $e_h * e_h = e_h$. Além disso, $e_h \in H \subseteq G$, consequentemente, sendo e o elemento neutro de G temos $e * e_h = e_h$. Dessas duas igualdades concluímos que $e * e_h = e_h * e_h$. Portanto, pelo Lema 1.11, vem que $e = e_h \in H$, o que prova a condição i).

Desde que (H, *) é um grupo, temos que H é fechado com relação à operação *, ou seja, para todo $a, b \in H$ temos $a * b \in H$. Além disso, temos que para todo $a \in H$ existe o inverso de a em H, isto é, $a^{-1} \in H$. Consequentemente, se verifica as condições ii) e iii).

pehra

 (\Leftarrow) Agora suponhamos que as condições i), ii) e iii) são satisfeitas, e provemos que H é um subgrupo de G, ou seja, provemos que (H,*) é um grupo. De fato, de i) temos que $H\neq\emptyset$ e possui elemento neutro, pois, $e\in H.$ Por iii) vem que H é fechado com relação à operação *. Como a operação * é a mesma operação sobre o grupo G, segue imediatamente que * é uma operação associativa sobre H. Finalmente, por ii), todo elemento de H possui inverso, donde concluímos que H é um grupo.

Teorema 2.5. Se H é um subconjunto de um grupo (G, *), então H é um subgrupo de G se, e somente se, as seguintes acontecem:

- i) $H \neq \emptyset$;
- ii) $\forall a, b \in H \implies a * b^{-1} \in H$.

Demonstração: (\Rightarrow) Suponhamos que H é um subgrupo de G. Pelo Teorema 2.4 sabemos que $e \in H$, ou seja, $H \neq \emptyset$. Além disso, para todo $b \in H$ temos que $b^{-1} \in H$. Sendo assim, para todo $a, b \in H$ vem que $a, b^{-1} \in H$, donde concluímos que $a * b^{-1} \in H$. Logo, se H é um subgrupo de G, então as condição i) e ii) são satisfeitas.

 (\Leftarrow) Agora suponhamos que as condições i) e ii) são satisfeitas, e provemos que H é um subgrupo de G. Pelo item i) temos que $H \neq \emptyset$, ou seja, existe $a \in H$. Agora pelo item ii) temos:

$$a * a^{-1} \in H \implies e \in H.$$

Ainda pelo item ii) vem que:

$$\forall a \in H \implies e * a^{-1} \in H \implies a^{-1} \in H.$$

Por fim, observando a implicação anterior, para todo $b \in H$ temos que $b^{-1} \in H$. Dessa forma.

$$\forall a, b \in H \quad \Rightarrow \quad a, b^{-1} \in H \quad \Rightarrow \quad a * (b^{-1})^{-1} \in H \quad \Rightarrow \quad a * b \in H.$$

Portanto, pelo Teorema 2.4, H é um subgrupo de G.

Daqui em diante, por uma questão de simplicidade e sem prejuízo, usaremos a notação ab, em vez de a*b, para representar a operação entre dois elementos quaisquer de um grupo qualquer, com uma operação qualquer. Porém, sempre que houver a possibilidade de uma interpretação dúbia, ou se fazer necessário, recorremos à explicitação da operação envolvida.

Na sequência, apresentamos "roteiros" com intuito de fornecer uma orientação de como provar ou não, que determinando subconjunto H de um grupo G é um subgrupo ou não.

De acordo com o Teorema 2.4, para provar que um subconjunto não vazio H de um grupo G é um subgrupo de G, é necessário e suficiente que se verifique todas as seguintes:

- i) Mostre que o elemento neutro de G pertence a H.
- ii) Assuma que $a \in H$ e mostre que $a^{-1} \in H$.
- iii) Assuma que $a, b \in H$ e mostre que $ab \in H$.

Já de acordo com o Teorema 2.5, para provar que um subconjunto não vazio H de um grupo G é um subgrupo de G, é necessário e suficiente que todas as seguintes sejam verdadeiras:

- i) Mostre que H não é vazio. Em particular, mostre que o elemento neutro de G pertence a H.
- ii) Assuma que $a, b \in H$ e mostre que $ab^{-1} \in H$.

Por outro lado, para provar que um subconjunto não vazio H de um grupo G não \acute{e} um subgrupo de G, \acute{e} necessário e suficiente que apenas uma das seguintes se verifique:

- i) Mostre que o elemento neutro de G não pertence a H.
- ii) Ou encontre um elemento $a \in H$ e mostre que $a^{-1} \notin H$.
- iii) Ou encontre dois elementos $a, b \in H$ e mostre que $ab \notin H$.

Exemplo 2.6.

- 1. Considere o grupo (\mathbb{R}^*, \cdot) e $\mathbb{R}^*_+ = \{x \in \mathbb{R} \mid x > 0\}$. Afirmamos que \mathbb{R}^*_+ é um subgrupo de \mathbb{R}^* . De fato, pois,
 - i) Como 1>0temos que $1\in\mathbb{R}_+^*,$ ou seja, $\mathbb{R}_+^*\neq\emptyset.$
 - ii) Para todo $b \in \mathbb{R}_+^*$ temos que b > 0. Portanto, $b^{-1} = \frac{1}{b} > 0$ e

$$\forall a,b \in \mathbb{R}_+^* \ \Rightarrow \ a > 0 \ \mathrm{e} \ b^{-1} > 0 \ \Rightarrow \ ab^{-1} > 0 \ \Rightarrow \ ab^{-1} \in \mathbb{R}_+^*.$$

Consequentemente, pelo Teorema 2.5, $\mathbb{R}_{+}^{*} \leq \mathbb{R}^{*}$.

2. O conjunto dos números inteiros pares $2\mathbb{Z} = \{\dots, -2, 0, 2, 4, \dots\}$ é um subgrupo de $(\mathbb{Z}, +)$. De fato, a identidade de \mathbb{Z} é o 0, e seguramente $0 \in 2\mathbb{Z}$. A soma de dois números inteiros pares é um número inteiro par, assim $2\mathbb{Z}$ é fechado para a adição de inteiros. Por fim, se $x \in 2\mathbb{Z}$, isto é, x é um inteiro par, então o seu inverso aditivo -x também é um número inteiro par, que é $-x \in 2\mathbb{Z}$. Portanto, $2\mathbb{Z} \leq \mathbb{Z}$.

- 3. O subconjunto \mathbb{N} de \mathbb{Z} não é um subgrupo de $(\mathbb{Z},+)$, pois, \mathbb{N} não contém todos os inversos de seus elementos. Neste sentido, e pelo mesmo motivo, \mathbb{N} não é um subgrupo de \mathbb{Q}^* com relação à operação de multiplicação.
- 4. Seja $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \mid n \in \mathbb{Z} \right\}$. Afirmamos que $H \leq GL_2(\mathbb{R})$.

De fato,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in H \qquad \text{e} \qquad \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix} \in H.$$

Além disso,

$$\left[\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & m \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & n+m \\ 0 & 1 \end{array}\right] \in H.$$

Portanto, pelo Teorema 2.4, $H \leq GL_2(\mathbb{R})$.

5. O conjunto $SL_2(\mathbb{R})$, de toda matriz 2×2 com determinante igual a 1, é subgrupo de $GL_2(\mathbb{R})$ com a multiplicação usual de matrizes. De fato,

$$SL_2(\mathbb{R}) = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mid a, b, c, d \in \mathbb{R} \quad \text{e} \quad ad - bc = 1 \right\}.$$

Uma vez que $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ pertence a $SL_2(\mathbb{R})$, temos $SL_2(\mathbb{R}) \neq \emptyset$.

Além disso, $SL_2(\mathbb{R})$ é fechado para a multiplicação usual de matrizes. Verdade, se $A, B \in SL_2(\mathbb{R})$, então $AB \in SL_2(\mathbb{R})$, pois,

$$det(AB) = det(A)det(B) = 1.1 = 1.$$

Por fim, $SL_2(\mathbb{R})$ é fechado para inverso, pois, se $A \in SL_2(\mathbb{R})$, então $det(A) \neq 0$. Consequentemente, existe A^{-1} e

$$det(A^{-1}) = \frac{1}{det(A)} = \frac{1}{1} = 1.$$

Portanto, $SL_2(\mathbb{R})$ é subgrupo de $GL_2(\mathbb{R})$.

Lema 2.7. Seja G um grupo, $H \leq G$ e $K \leq G$. Então $H \cap K \leq G$.

Demonstração: Como $H \leq G$ e $K \leq G$ temos que $e \in H$ e $e \in K$, ou seja, $e \in H \cap K$. Consequentemente, $H \cap K \neq \emptyset$. Agora suponhamos que $a, b \in H \cap K$, ou seja, $a, b \in H$ e $a, b \in K$. Uma vez que por hipótese $H \leq G$ e $K \leq G$ temos que $ab^{-1} \in H$ e $ab^{-1} \in K$, isto é, $ab^{-1} \in H \cap K$. Portanto, pelo Teorema 2.5, $H \cap K \leq G$.

Na verdade, o Lema 2.7 é verdadeiro para uma família qualquer $\{H_a\}_{a\in A}$ de subgrupos de um grupo G. Por outro lado, se $H,K\leq G$, então $H\cup K$ não é necessariamente um subgrupo de G, como mostra o exemplo a seguir.

Exemplo 2.8. Seja o grupo \mathbb{Z} com a operação adição usual. Temos que,

$$2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\} \le \mathbb{Z}$$
 e $3\mathbb{Z} = \{3k \mid k \in \mathbb{Z}\} \le \mathbb{Z}.$

No entanto,

$$2\mathbb{Z} \cup 3\mathbb{Z} \nleq \mathbb{Z}$$
.

De fato, por exemplo,

$$2+3=5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$$
.

ou seja, $2\mathbb{Z} \cup 3\mathbb{Z}$ não é fechado para a operação adição.

Definição 2.9. Seja G um grupo e $a \in G$. Definimos o conjunto gerado por a, denotado por $\langle a \rangle$, como sendo o conjunto de todas as potências inteiras de a, ou seja,

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \} .$$

Exemplo 2.10. Considere o grupo (\mathbb{R}^*, \cdot) e $-2, -1 \in \mathbb{R}^*$. Assim temos:

1.
$$\langle -2 \rangle = \{(-2)^n \mid n \in \mathbb{Z}\} = \{\dots, -\frac{1}{8}, -\frac{1}{4}, -\frac{1}{2}, 1, -2, 4, -8, 16, \dots\}.$$

2.
$$\langle -1 \rangle = \{(-1)^n \mid n \in \mathbb{Z}\} = \{-1, 1\}.$$

Lema 2.11. Seja G um grupo e $a \in G$. Então $\langle a \rangle$ é um subgrupo abeliano de G, chamado de subgrupo cíclico gerado por a.

Demonstração: Claramente $\langle a \rangle \neq \emptyset$, pois, $a = a^1 \in \langle a \rangle$. Agora, se $x, y \in \langle a \rangle$, então por definição temos que $x = a^n$ e $y = a^m$ para algum $n, m \in \mathbb{Z}$. Sendo assim, temos:

$$xy^{-1} = a^n(a^m)^{-1} = a^na^{-m} = a^{n-m} \in \langle a \rangle.$$

Finalmente,

$$xy = a^n a^m = a^{n+m} = a^{m+n} = a^m a^n = yx.$$

Portanto, $\langle a \rangle$ é um subgrupo abeliano G.

|gebra|

Proposição 2.12. Seja G um grupo. Se $a \in G$ e |a| = n, então:

1.
$$\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}.$$

2.
$$|\langle a \rangle| = n$$
.

Demonstração: Note que para mostrar a primeira afirmação é suficiente mostrar que $\langle a \rangle \subset \{e,a,a^2,\ldots,a^{n-1}\}$, isto porque $\{e,a,a^2,\ldots,a^{n-1}\}\subset \langle a \rangle$.

Seja |a| = n e considere uma potência qualquer de a, digamos a^k . Pelo algoritmo da divisão de Euclides existem inteiros q e r tais que k = qn + r onde 0 < r < n. Logo,

$$a^k = a^{qn+r} = a^{qn}a^r = (a^n)^q a^r = a^r,$$

ou seja, toda potência $a^k \in \langle a \rangle$ é igual a alguma potência a^r , onde $0 \leq r < n$, isto é, $a^k \in \{e, a, a^2, \dots, a^{n-1}\}$. Portanto, $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$.

Por fim, para mostrar a segunda afirmação, ou seja, mostrar que $|\langle a \rangle| = n$, é suficiente mostrar que todos os elementos do conjunto $\{e,a,a^2,\ldots,a^{n-1}\}$ são distintos. Para isto, por contradição, suponhamos que existem duas potências iguais no conjunto $\{e,a,a^2,\ldots,a^{n-1}\}$, que é,

$$a^i = a^j$$
 com $1 \le i < j < n$.

Donde obtemos, $a^{j-i} = e$. Como 0 < j - i < n temos uma contradição, pois, n é o menor inteiro tal que $a^n = e$. Portanto, todos os elementos do conjunto $\{e, a, a^2, \ldots, a^{n-1}\}$ são distintos e concluímos que $|\langle a \rangle| = n$.

Definição 2.13. Um grupo G é chamado *cíclico* se, e somente se, existe $a \in G$ tal que $G = \langle a \rangle$. Neste caso, diz-se que G é *cíclico gerado por a*.

Exemplo 2.14. Seja o grupo $(\mathbb{Z}, +)$ e $1 \in \mathbb{Z}$. Então \mathbb{Z} é um grupo cíclico gerado por 1, ou seja, $\mathbb{Z} = \langle 1 \rangle$. De fato, com a operação adição temos que $a^n = \underbrace{a + a + \cdots + a}_{n} = n.a$, ou seja:

$$0 = 0.1 = 1^{0}$$
 $4 = 4.1 = 1^{4}$ $8 = 8.1 = 1^{8}$
 $1 = 1.1 = 1^{1}$ $5 = 5.1 = 1^{5}$ \vdots
 $2 = 2.1 = 1^{2}$ $6 = 6.1 = 1^{6}$ $n = n.1 = 1^{n}$
 $3 = 3.1 = 1^{3}$ $7 = 7.1 = 1^{7}$ \vdots

Não obstante, $\mathbb Z$ também é um grupo cíclico gerado por -1, ou seja, $\mathbb Z=\langle -1\rangle$, donde podemos concluir que um grupo pode ter mais de um gerador.

Lema 2.15. Todo subgrupo de um grupo cíclico é cíclico.

Demonstração: Seja $G=\langle a\rangle$ um grupo cíclico. Se $H\leq G$, então existem duas posibilidades, que é: H é um subgrupo trivial, ou seja, $H=\{e\}$ ou H=G. Em qualquer um desses casos temos que H é cíclico. A outra possibilidade é H ser um subgrupo próprio de G, ou seja, $H\neq\{e\}$ e $H\neq G$. Neste caso, existe um inteiro positivo mínimo n tal que $a^n\in H$. Claramente, temos que $\langle a^n\rangle\subseteq H$. Por outro lado, se $h\in H$, então h é da forma a^m , pois H é um subgrupo de G. Pelo algoritmo da divisão de Euclides existem inteiros $g\in F$ tais que:

$$a^m = a^{nq+r} = a^{nq}a^r, \quad \text{com} \quad 0 \le r < n,$$

ou seja,

$$a^r = a^{-nq}a^m \in H.$$

Dessa forma, somente podemos ter r=0, já que supomos que n é o menor menor inteiro positivo para o qual $a^n \in H$. Assim todo elemento $h \in H$ é da forma $a^{qn} = (a^n)^q$, o que nos leva a concluir que $H \subseteq \langle a^n \rangle$. Consequentemente, temos $H = \langle a^n \rangle$ e, portanto, H é cíclico.

Definição 2.16. Seja G um grupo. O centro de G, denotado por Z(G), é o conjunto de todos os elementos $a \in G$ tal que a comuta com todo elemento de G. De outra forma,

$$Z(G)=\{a\in G\mid \forall x\in G,\ ax=xa\}.$$

Note que Z(G) é sempre não vazio. De fato, desde que ex = xe para todo $x \in G$, temos que $e \in Z(G)$, ou seja, $Z(G) \neq \emptyset$. Além disso, é fácil ver que o centro Z(G) é sempre abeliano.

Exemplo 2.17. Vamos determinar o centro do grupo $GL_2(\mathbb{R})$ de todas as matrizes 2×2 inversíveis. Para isto, vamos supor que

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \in Z(GL_2(\mathbb{R})). \text{ Dessa forma, a matrix } \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \text{ comuta com}$$

todas as matrizes pertencentes a $GL_2(\mathbb{R})$. Em outras palavras, para

toda matrix
$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} \in GL_2(\mathbb{R})$$
 temos:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} x & y \\ z & w \end{array}\right] = \left[\begin{array}{cc} x & y \\ z & w \end{array}\right] \left[\begin{array}{cc} a & b \\ c & d \end{array}\right].$$

|gebra|

Donde obtemos,

$$\begin{bmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{bmatrix} = \begin{bmatrix} ax + cy & bx + dy \\ az + cw & bz + dw \end{bmatrix}.$$

Note que da igualdade anterior devemos ter:

$$ax + bz = ax + cy \implies bz = cy.$$

Como $b, c \in \mathbb{R}$ são fixos e a escolha de $y, z \in \mathbb{R}$ é arbitrária, a única forma da igualdade bz = cy ser verdadeira para todo $y, z \in \mathbb{R}$ é fazendo b = 0 e c = 0. Daí, consequentemente,

$$ay + bw = bx + dy \quad \Rightarrow \quad ay = dy \quad \Rightarrow \quad a = d.$$

Portanto, o centro de $GL_2(\mathbb{R})$ é dado por:

$$Z(GL_2(\mathbb{R})) = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \mid a \neq 0 \right\}.$$

Lema 2.18. Se G é um grupo, então Z(G) é um subgrupo de G.

Demonstração: Claramente, $Z(G) \neq \emptyset$, pois, $e \in Z(G)$. Também, se $g \in Z(G)$, então $g^{-1} \in Z(G)$. Isto porque, para todo $x \in G$ temos:

$$q^{-1}x = q^{-1}xe = q^{-1}(xq)q^{-1} = q^{-1}(qx)q^{-1} = exq^{-1} = xq^{-1}.$$

Agora, se $a, b \in Z(G)$, então $ab^{-1} \in Z(G)$. De fato, se $a, b \in Z(G)$, então para todo $x \in G$ temos:

$$ax = xa$$
 e $bx = xb$.

Além disso, como vimos anteriormente, ambos a^{-1} e b^{-1} pertencem ao Z(G). Sendo assim,

$$(ab^{-1})x = a(b^{-1}x) = a(xb^{-1}) = (ax)b^{-1} = (xa)b^{-1} = x(ab^{-1}).$$

Portanto, Z(G) é um subgrupo de G.

Definição 2.19. Seja G um grupo e $x \in G$. O centralizador de x em G, denotado por $C_G(x)$, é o conjunto de todos os elementos $x \in G$ tal que a comuta com x. Em outras palavras,

$$C_G(x) = \{ a \in G \mid ax = xa \}.$$

Exemplo 2.20. Sendo $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \in GL_2(\mathbb{R})$, vamos determinar o

 $C_{GL_2(\mathbb{R})}(A)$. Por definição, uma matriz $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in C_{GL_2(\mathbb{R})}(A)$ se, e somente se, AB = BA, a saber:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right] \left[\begin{array}{cc} a & b \\ c & d \end{array}\right].$$

Donde obtemos,

$$\left[\begin{array}{cc} a & 2b \\ c & 2d \end{array}\right] = \left[\begin{array}{cc} a & b \\ 2c & 2d \end{array}\right].$$

Esta última igualdade é verdadeira se, e somente se, 2b = b e c = 2c, isto é, se, e somente se, b = 0 e c = 0. Portanto,

$$C_{GL_2(\mathbb{R})}(A) = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \mid a, d \in \mathbb{R}, \ ad \neq 0 \right\}.$$

Lema 2.21. Seja G um grupo. Se $x \in G$, então $C_G(x)$ é um subgrupo de G.

Demonstração: É fácil ver que $e \in C_G(x)$, ou seja, $C_G(x) \neq \emptyset$. Agora, se $g \in C_G(x)$, então $g^{-1} \in C_G(x)$, pois,

$$g^{-1}x = g^{-1}xe = g^{-1}(xg)g^{-1} = g^{-1}(gx)g^{-1} = exg^{-1} = xg^{-1}.$$

Por fim, se $a, b \in C_G(x)$, então $ab^{-1} \in C_G(x)$. De fato,

$$(ab^{-1})x = a(b^{-1}x) = a(xb^{-1}) = (ax)b^{-1} = (xa)b^{-1} = x(ab^{-1}).$$

Portanto, $C_G(x)$ é um subgrupo de G.

2.1 Exercícios

- 1. Verifique se $H_2 = \{1, 2, 3, 4, 5, 6, \ldots\} \subseteq \mathbb{Z}$, o conjunto dos números inteiros positivos, é um subgrupo de $(\mathbb{Z}, +)$. E o que podemos dizer sobre o conjunto $H_3 = \{\ldots, -3, -1, 1, 3, 5, 7, \ldots\} \subseteq \mathbb{Z}$?
- 2. É verdade que $\mathbb{Q} \leq \mathbb{R}$? Justifique sua resposta!

- 3. Mostre que $n\mathbb{Z}=\{nx\mid x\in\mathbb{Z}\}$ é um subgrupo de \mathbb{Z} com a operação de adição usual.
- 4. Seja S_3 o grupo das permutações dos 3 elementos x_1 , x_2 e x_3 . Considere as aplicações ϕ e ψ dadas por:

$$\phi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_3 \end{pmatrix} \qquad \psi = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \end{pmatrix}$$

Mostre que $S_3 = \{e, \psi, \psi^2, \phi, \phi\psi, \phi\psi^2\}$. Além disso, mostre que os seguintes são subgrupos de S_3 .

$$H_1 = \{e\}$$
 $H_4 = \{e, \phi\psi^2\}$
 $H_2 = \{e, \phi\}$ $H_5 = \{e, \psi, \psi^2\}$
 $H_3 = \{e, \phi\psi\}$ $H_6 = \{e, \psi, \psi^2, \phi, \phi\psi, \phi\psi^2\}$

- 5. a) Mostre que $GL_2(\mathbb{R})$ é um grupo com a operação de multiplicação de matrizes usual.
 - b) Mostre que o conjunto $D = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \mid a \in \mathbb{R} \quad \text{e} \quad a \neq 0 \right\}$ é um subgrupo de $GL_2(\mathbb{R})$.
 - c) Mostre que o conjunto $SL_2(\mathbb{R})$ das matrizes 2×2 cujo determinante é igual a 1, é um subgrupo de $GL_2(\mathbb{R})$.
- 6. Seja \mathbb{Q}^* o grupo dos números racionais não nulos sob a operação de multiplicação usual, e considere o conjunto

$$H = \left\{ \frac{1}{2^m} \mid m \in \mathbb{Z} \right\}.$$

H é um subgrupo de \mathbb{Q}^* ?

- 7. Seja \mathbb{R}^2 o produto cartesiano de \mathbb{R} por ele mesmo. Considerando a soma de vetores usual em \mathbb{R}^2 , ou seja, (x,y)+(a,b)=(x+a,y+b), responda:
 - a) $(\mathbb{R}^2, +)$ é um grupo?
 - b) $A = \{(a,0) \mid a \in \mathbb{R}\}$ é um subgrupo de \mathbb{R}^2 ?
 - c) $B = \{(0, b) \mid b \in \mathbb{R}\}$ é um subgrupo de \mathbb{R}^2 ?
 - d) $A \cup B$ é um subgrupo de \mathbb{R}^2 ?

- 8. Verifique se:
 - a) $\left\{ \frac{1+2m}{1+2n} \mid m,n \in \mathbb{Z} \right\}$ é um subgrupo de (\mathbb{Q}^*,\cdot) .
 - b) $\{..., -4, -2, 0, 2, 4, ...\}$ é um subgrupo de $(\mathbb{Q}^* \setminus \{1\}, *)$, onde x * y = x + y xy.
 - c) $\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ é um subgrupo de $(\mathbb{R}, +)$.
 - d) $\{a+b\sqrt{2}\in\mathbb{R}^*\mid a,b\in\mathbb{Q}\}$ é um subgrupo de (\mathbb{R}^*,\cdot) .
 - e) $\left\{ \begin{bmatrix} cos(x) & sen(x) \\ -sen(x) & cos(x) \end{bmatrix} \mid x \in \mathbb{R} \right\} \text{ \'e subgrupo de } (GL_2(\mathbb{R}), \cdot).$
- 9. Seja G o grupo dos números reais não nulos com a operação de multiplicação usual. Verifique se o conjunto H dado a seguir é um subgrupo de G.

$$H = \{x \in G \mid x = 1 \text{ ou } x \text{ \'e um n\'umero irracional}\}.$$

- 10. Considere o grupo \mathbb{Q}^* com a operação multiplicação usual, e o conjunto $\mathbb{Q}_+^* = \{x \in \mathbb{Q} \mid x > 0\}$ de todos os racionais positivos. Podemos afirmar que \mathbb{Q}_+^* é um subgrupo de \mathbb{Q}^* ?
- 11. Mostre que:
 - a) o grupo aditivo dos inteiros $\mathbb Z$ é cíclico gerado pelo número -1.
 - b) o grupo multiplicativo $G = \{-1, 1, -i, i\}$ é cíclico gerado por i, com $i^2 = -1$.
 - c) o grupo multiplicativo $G = \{-1, 1, -i, i\}$ é cíclico gerado por -i, onde $i^2 = -1$.
 - d) o grupo aditivo $2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$ é cíclico gerado por 2.
 - e) o grupo aditivo $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ é cíclico gerado por n.
 - f) o grupo aditivo $n\mathbb{Z}=\{nk\mid k\in\mathbb{Z}\}$ é cíclico gerado por -n.
- 12. Seja $\{H_a\}_{a\in A}$ uma família de subgrupos de um grupo G. Mostre que a interseção $H=\cap_{a\in A}H_a$, da família de subgrupos $\{H_a\}_{a\in A}$, ainda é um subgrupo.
- 13. Seja $Q_8=\{1,-1,i,-i,j,-j,k,-k\}$. Mostre que $Z=\{1,-1\}$ é um subgrupo de Q_8 .
- 14. Mostre que $Z(S_3) = \{e\}.$
- 15. Mostre que se G é abeliano, então Z(G) = G.

- 16. Sejam G um grupo e S um subconjunto de G. Considere os seguintes conjuntos:
 - a) $S^{-1} = \{a^{-1} \mid a \in S\}.$
 - b) $\langle S \rangle = \{ a_1 a_2 a_3 \cdots a_n \mid n \in \mathbb{N}, \ a_i \in S \text{ ou } a_i \in S^{-1} \}.$

Mostre que o conjunto $\langle S \rangle$ é um subgrupo de G, chamado de $Subgrupo\ gerado\ por\ S.$

17. Seja $G=GL_2(\mathbb{R})$ com a multiplicação de matrizes usual. Determine $C_G(x),$ onde

$$x = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right].$$

- 18. Prove que se G é um grupo e $x \in G$, então $Z(G) \leq C_G(x)$.
- 19. Prove que o grupo G é abeliano se, e somente se, $G=C_G(x)$ para todo $x\in G.$

3. Homomorfismo de Grupos e Aplicações

Definição 3.1. Sejam (G, *) e (H, \otimes) grupos.

1. Uma aplicação $f: G \to H$ é um homomorfismo se, e somente se,

$$\forall a, b \in G, \ f(a * b) = f(a) \otimes f(b).$$

2. Uma aplicação $f:G\to H$ é um isomorfismo se, e somente se, f é um homomorfismo bijetor. Neste caso, dizemos que G e H são grupos isomorfos e denotamos por $G\cong H$.

Exemplo 3.2.

1. Sejam os grupos $G = (\mathbb{R}_+^*, \cdot)$ e $H = (\mathbb{R}, +)$. Defina a aplicação $f: G \to H$ por f(x) = log(x). A aplicação f assim definida é um homomorfismo. De fato, para todo $x, y \in \mathbb{R}_+^*$ temos:

$$f(xy) = log(xy) = log(x) + log(y) = f(x) + f(y).$$

- 2. Os grupos $G=(\mathbb{R},+)$ e $H=(\mathbb{R}^+,\cdot)$ são isomorfos. De fato, a aplicação $f:G\to H$ definida por $f(x)=2^x$ é um isomorfismo, pois:
 - i) a aplicação f é um homomorfismo.

$$f(x+y) = 2^{x+y} = 2^x \cdot 2^y = f(x) \cdot f(y).$$

ii) a aplicação f é injetora.

$$\forall x, y \in G, \ f(x) = f(y) \quad \Rightarrow \quad 2^x = 2^y \quad \Rightarrow \quad x = y.$$

iii) a aplicação f é sobrejetora.

$$\forall y \in H \quad \Rightarrow \quad \exists \ x = \log_2(y) \in G: \quad f(x) = 2^{\log_2(y)} = y.$$

3. Obviamente, por definição, todo isomorfismo é um homomorfismo. No entanto, nem todo homomorfismo é um isomorfismo. De fato, seja $\psi: \mathbb{Z}_6 \to \mathbb{Z}_6$ dada por:

$$\psi(\overline{x}) = \overline{2x}.$$

A aplicação ψ assim definida é um homomorfismo, pois

$$\psi(\overline{x+y}) = \overline{2(x+y)} = \overline{2x+2y} = \overline{2x} + \overline{2y} = \psi(\overline{x}) + \psi(\overline{y}).$$

Porém, a aplicação ψ não é bijetiva, pois, ψ não é sobrejetiva, uma vez que:

$$\psi(\mathbb{Z}_6) = \{\overline{0}, \overline{2}, \overline{4}\}.$$

Definição 3.3. Seja G um grupo.

- 1. Uma aplicação $\phi:G\to G$ é um endomorfismo se, e somente se, ϕ é um homomorfismo.
- 2. Uma aplicação $\phi:G\to G$ é um automorfismo se, e somente se, ϕ é um isomorfismo.

Exemplo 3.4.

1. A aplicação $\phi:(\mathbb{R},+)\to(\mathbb{R},+)$ definida por $\phi(x)=x^3$ não é um automorfismo. De fato, apesar de ϕ ser bijetiva, ϕ não é um homomorfismo, pois existem números reais x e y tais que

$$(x+y)^3 \neq x^3 + y^3.$$

ou seja,

$$\phi(x+y) \neq \phi(x) + \phi(y)$$
.

2. A aplicação $\eta:(\mathbb{R}^*,\cdot)\to(\mathbb{R}^*,\cdot)$ definida por $\eta(x)=x^3$ é um automorfismo. De fato, a aplicação η é um homomorfismo, pois para todo $x,y\in\mathbb{R}^*$ temos

$$\eta(xy) = (xy)^3 = x^3y^3 = \eta(x)\eta(y).$$

Além disso, a aplicação η é bijetora, pois para todo $y \in \mathbb{R}^*$ a equação $\eta(x) = y$ possui uma única solução, que é $x = \sqrt[3]{y}$. Logo, η é um automorfismo sobre \mathbb{R}^* .

Na sequência, omitiremos a indicação da operação dos grupos. No entanto, sendo (G,*) e (H,\otimes) grupos, e a aplicação $f:G\to H$, fica subentendido que quando escrevemos f(ab) a operação aplicada entre ab é a operação * de G, domínio da aplicação f. Da mesma forma, que a operação aplicada entre f(a)f(b) é a operação \otimes de G, contradomínio da aplicação G.

Lema 3.5. Sejam G e H grupos, e $f:G\to H$ um homomorfismo. Então:

- 1. $f(e_{\scriptscriptstyle G})=e_{\scriptscriptstyle H}$ onde $e_{\scriptscriptstyle G}\in G,\,e_{\scriptscriptstyle H}\in H$ são os elementos neutros.
- 2. $f(a^{-1}) = f(a)^{-1}$ para todo $a \in G$.
- 3. $f(a^n) = f(a)^n$ para todo $n \in \mathbb{Z}$.

Demonstração: Sejam e_G e e_H os respectivos elementos neutros de G e H. Se $a \in G, n \in \mathbb{Z}$, e $f: G \to H$ é um homomorfismo, então:

- 1. $f(e_G)=e_H$. De fato, $f(e_G)=f(e_Ge_G)=f(e_G)f(e_G)$. Logo, como $f(e_G)\in H$, pelo Lema 1.7 vem que $f(e_G)=e_H$.
- 2. $f(a^{-1}) = f(a)^{-1}$. De fato, $f(a)f(a^{-1}) = f(aa^{-1}) = f(e_G) = e_H$. Consequentemente, pela unicidade do elemento inverso vem que $f(a)^{-1} = f(a^{-1})$.
- 3. $f(a^n) = f(a)^n$. De fato,

$$f(a^n) = f(\underbrace{aa \cdots a}_n) = \underbrace{f(a)f(a) \cdots f(a)}_n = f(a)^n.$$

Geralmente, os algebristas não fazem qualquer distinção entre grupos isomorfos. Em outras palavras, não se preocupam com a natureza dos elementos que compõem os grupos, mas apenas com a forma como eles se operam. Neste sentindo, como mostra o lema a seguir, não fazemos nenhuma distinção entre um grupo cíclico infinito e o grupo aditivo dos inteiros, a menos possivelmente da natureza de seus elementos.

Lema 3.6. Todo grupo cíclico infinito é isomorfo ao grupo aditivo dos inteiros.

Demonstração: Seja G um grupo cíclico infinito, ou seja, existe $a \in G$ tal que $G = \langle a \rangle$. Defina $f : \mathbb{Z} \to G$ por $f(n) = a^n$. A aplicação f é um homomorfismo:

$$f(n+m) = a^{n+m} = a^n a^m = f(n) + f(m).$$

Por outro lado,

$$f(n) = f(m) \Rightarrow a^n = a^m.$$

Como G é um grupo cíclico infinito gerado por a, então todas as potências de a são distintas, o que nos leva a concluir que $a^n=a^m$ se, e só se, temos n=m. Isto é, f é injetiva. Que f é sobrejetiva é fácil ver. Logo, a aplicação f é um isomorfismo e, portanto, $G\cong \mathbb{Z}$.

Lema 3.7. Seja G um grupo cíclico finito de ordem n. Então, $G \cong \mathbb{Z}_n$.

Demonstração: Sejam $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}\}$ e G um grupo cíclico gerado por a, isto é,

$$G = \{e, a, a^2, \dots, a^{n-1}\}.$$

Álgebral

Álgebra l

Considere a aplicação $\phi: \mathbb{Z}_n \to G$ dada por $\phi(\overline{m}) = a^m$. Afirmamos que ϕ assim definida é um isomorfismo. De fato, a aplicação ϕ é injetora, pois,

$$\phi(\overline{r}) = \phi(\overline{s}) \implies a^r = a^s \implies a^{r-s} = e \implies n \mid (r-s) \implies r \equiv s \pmod{n}.$$

Donde concluímos que $\overline{r} = \overline{s}$. Obviamente, ϕ é sobrejetora. Resta então mostrar que ϕ é um homomorfismo. Note que:

$$\phi(\overline{r} + \overline{s}) = \phi(\overline{r+s}) = a^{r+s} = a^r a^s = \phi(\overline{r})\phi(\overline{s}).$$

Portanto, ϕ é um isomorfismo e, consequentemente, $G \cong \mathbb{Z}_n$.

Note que para mostrar que dois grupos G e H são isomorfos, basta seguir os seguintes passos, não necessariamente na ordem:

- i) Defina uma aplicação $f: G \to H$.
- ii) Mostre que f é injetora.
- iii) Mostre que f é sobrejetora.
- iv) Mostre que f é um homomorfismo.

Não obstante, seguindo a linha de pensamento dos algebristas, quando desejamos mostrar que dois grupos $n\tilde{a}o$ são isomorfos, uma das formas é encontrar uma propriedade algébrica que seria preservada pela existência de qualquer isomorfismo entre os dois grupos, mas que é satisfeita somente por um dos grupos envolvidos. Por exemplo, se há um isomorfismo entre dois grupos e um deles é abeliano, então o outro tem por obrigação ser também abeliano, como mostramos a seguir.

Lema 3.8. Sejam G e H grupos, e $f:G\to H$ um isomorfismo. Se G é abeliano, então H é abeliano.

Demonstração: Se G é um grupo abeliano, então para todo $a, b \in G$ temos ab = ba. Sendo assim,

$$f(ab) = f(ba) \Rightarrow f(a)f(b) = f(b)f(a),$$

ou seja, para todo $a,b \in G$ vem que f(a)f(b) = f(b)f(a). Como f é bijetora concluímos que H é abeliano.

Em geral, um homomorfismo de grupo $f: G \to H$ envia subgrupos de G em subgrupos de H, como mostra o Lema 3.9 a seguir. Mas antes relembremos que dados dois conjuntos G e H, e uma aplicação $f: G \to H$, o conjunto $imagem\ de\ f$, denotado por Im(f), é dado por:

$$Im(f) = \{ y \in H \mid y = f(x) \text{ para algum } x \in G \}.$$

Além disso, dado $S \subseteq G$, a imagem de S por f, denotada por f(S), é:

$$f(S) = \{ f(x) \mid x \in S \}.$$

Também, sendo $E \subseteq H$, a imagem inversa de E por f, denotada por $f^{-1}(E)$, é o subconjunto de G dado por:

$$f^{-1}(E) = \{x \in G \mid f(x) \in E\}.$$

Lema 3.9. Sejam G e H grupos, S um subgrupo de G, e $f: G \to H$ um homomorfismo. Então, f(S) é um subgrupo de H. Em particular, Im(f) = f(G) é um subgrupo de H.

Demonstração: Sejam e_G e e_H os respectivos elementos neutros de G e H. Como S é um subgrupo de G temos que $e_G \in S.$ Logo, sendo

$$f(S) = \{ f(x) \mid x \in S \},$$

temos que:

- 1. $f(e_G) = e_H \in f(S)$, ou seja, $f(S) \neq \emptyset$.
- 2. Para todo $x,y\in f(S)$ existem $a,b\in S$ tal que f(a)=x e f(b)=y. Como S é um subgrupo de G temos que $ab^{-1}\in S$, consequentemente,

$$xy^{-1} = f(a)f(b)^{-1} = f(a)f(b^{-1}) = f(ab^{-1}) \in S.$$

Portanto, f(S) é um subgrupo de H.

Lema 3.10. Sejam G e H grupos, e $f: G \to H$ um homomorfismo. Se f é injetiva, então $G \cong Im(f)$.

Demonstração: Pelo Lema 3.9, a Im(f) é um subgrupo de H. Defina a aplicação $\phi: G \to Im(f)$ por $\phi(x) = f(x)$. Como $f: G \to H$ é um homomorfismo, obviamente, ϕ também é um homomorfismo. Além disso, como f é injetora e sobrejetora de G em Im(f), vemos claramente que ϕ é bijetora. Portanto, ϕ é um isomorfismo e $G \cong Im(f)$.

Lema 3.11. Seja G um grupo cíclico gerado por a. Se $\phi : G \to H$ é um homomorfismo de grupos, então para todo $x \in G$, $\phi(x)$ é completamente determinado por $\phi(a)$.

Demonstração: Para todo $x \in G = \langle a \rangle$ temos $x = a^k$, para algum $k \in \mathbb{Z}$. Logo, $\phi(x) = \phi(a^k) = \phi(a)^k$, isto é, todo $\phi(x)$ pode ser escrito como uma potência de $\phi(a)$, como queríamos demonstrar.

Na verdade, o Lema 3.11 nos diz que: Se $G = \langle a \rangle$ e $\phi, \psi : G \to H$ são isomorfismos, tais que $\phi(a) = \psi(a)$, então $\phi(x) = \psi(x)$ para todo $x \in G$. Isto é, ϕ e ψ são o mesmo isomorfismo.

Lema 3.12. Sejam G, H e J grupos. Se $g:G\to H$ e $f:H\to J$ são homomorfismos, então $f\circ g:G\to J$ é um homomorfismo.

Demonstração: Sejam $g:G\to H$ e $f:H\to J$ homomorfismos. Então, para todo $a,b\in G$ temos:

$$(f \circ g)(ab) = f(g(ab)) = f(g(a)g(b)) = f(g(a))f(g(b)) = (f \circ g)(a)(f \circ g)(b).$$

Portanto, $f \circ g : G \to J$ é um homomorfismo.

Lema 3.13. Se $f: G \to H$ é um isomorfismo, então $f^{-1}: H \to G$ também é um isomorfismo.

Demonstração: Seja $f: G \to H$ um isomorfismo. Como f é bijetora, a inversa $f^{-1}: H \to G$ de f existe e também é bijetora. Logo, nos resta provar apenas que f^{-1} é um homomorfismo de grupos. Sendo assim,

$$\forall x, y \in H \implies \exists a, b \in G \text{ tal que } x = f(a) \text{ e } y = f(b) \implies f^{-1}(x) = a \text{ e } f^{-1}(y) = b$$

Portanto, f^{-1} é um homomorfismo pois:

$$f^{-1}(xy) = f^{-1}(f(a)f(b)) = f^{-1}(f(ab)) = ab = f^{-1}(x)f^{-1}(y)$$

Definição 3.14. Sejam G e H grupos, e $f: G \to H$ um homomorfismo. Definimos o núcleo de f, denotado por Ker(f), como segue:

$$Ker(f) = \{ x \in G \mid f(x) = e_{_H} \}.$$

Exemplo 3.15.

1. Seja $f: \mathbb{Z} \to \mathbb{C}$ dada por $f(n) = i^n$. Lembrando que o elemento neutro de \mathbb{C} é igual a 1 e que $i^2 = -1$, então

$$\begin{split} Ker(f) &= & \{n \in \mathbb{Z} \mid f(n) = e_{\mathbb{C}} \} \\ &= & \{n \in \mathbb{Z} \mid i^n = 1 \} \\ &= & \{n \in \mathbb{Z} \mid i^n = (-1)^{2m}, \text{ com } m \in \mathbb{Z} \} \\ &= & \{n \in \mathbb{Z} \mid i^n = (i^2)^{2m} = i^{4m}, \text{ com } m \in \mathbb{Z} \} \\ &= & \{n \in \mathbb{Z} \mid n = 4m, \text{ com } m \in \mathbb{Z} \} \\ &= & \{0, \pm 4, \pm 8, \pm 12, \ldots \}. \end{split}$$

2. Seja $\phi: \mathbb{Z} \to \mathbb{Z}$ definida por $\phi(x) = 2x$ para todo $x \in \mathbb{Z}$. Claramente, ϕ é um homomorfismo e

$$Ker(\phi) = \{x \in \mathbb{Z} \mid \phi(x) = 0\} = \{x \in \mathbb{Z} \mid 2x = 0\} = \{0\}.$$

O resultado apresentando a seguir é uma ferramenta muito útil para determinar quando um homomorfismo é injetor ou não.

Lema 3.16. Seja $f: G \to H$ um homomorfismo. Então:

- 1. Ker(f) é um subgrupo de G.
- 2. f é injetora se, e somente se, $Ker(f) = \{e_G\}.$

Demonstração: Considere e_G e e_H os respectivos elementos neutros de G e H, e $f: G \to H$ um homomorfismo.

1. Ker(f) é um subgrupo de G. De fato, como $f(e_G) = e_H$, vem que $e_G \in Ker(f)$. Além disso, para todo $x, y \in Ker(f)$ temos $f(x) = e_H$ e $f(y) = e_H$, então:

$$f(xy^{-1}) = f(x)f(y^{-1}) = f(x)f(y)^{-1} = e_{_H}e_{_H}^{-1} = e_{_H}.$$

Portanto, $xy^{-1} \in Ker(f)$ e, consequentemente, $Ker(f) \leq G$.

- 2. (\Rightarrow) Suponhamos que f seja injetora. Para todo $x \in Ker(f)$ temos $f(x) = e_H$. Como $f(e_G) = e_H$ vem que $f(x) = f(e_G)$. Uma vez que f é injetora injetora, por definição, temos que $x = e_G$. Logo, para todo $x \in Ker(f)$ temos $x = e_G$, ou seja, $Ker(f) = \{e_G\}$.
 - (\Leftarrow) Suponhamos que $Ker(f)=\{e_{\scriptscriptstyle G}\}.$ Sejam $a,b\in G$ tais que f(a)=f(b). Temos que:

$$f(a) = f(b) \implies f(a)f(b)^{-1} = f(ab^{-1}) = e_{H} \implies ab^{-1} \in Ker(f).$$

Como $Ker(f)=\{e_G\}$, temos que $ab^{-1}=e_G$, o que nos leva a concluir que a=b. Portanto, f é injetora e concluímos a demonstração.

Exemplo 3.17.

1. A aplicação $\phi: (\mathbb{R}^*, \cdot) \to (\mathbb{R}^*, \cdot)$ dada por $\phi(x) = |x|$ é um homomorfismo, porém não um isomorfismo. De fato,

$$\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y)$$

mas

$$Ker(\phi) = \{x \in \mathbb{R}^* \mid \phi(x) = 1\} = \{x \in \mathbb{R}^* \mid |x| = 1\} = \{-1, 1\} \neq \{1\}$$

Portanto, ϕ não é injetiva, e consequentemente, ϕ não é um isomorfismo.

2. Vimos no Exemplo 3.15 que $\phi: \mathbb{Z} \to \mathbb{Z}$, definida por $\phi(x) = 2x$ para todo $x \in \mathbb{Z}$, é um homomorfismo cujo $Ker(\phi) = \{0\}$. Portanto, ϕ é injetiva.

Algebra

Um dos principais resultados da Teoria de Grupos é, incontestavelmente, o Teorema de Cayley. Este teorema coloca todos os grupos num mesmo nível, e mostra que estudar o *Grupo das Permutações*, definido na sequência, é de extrema relevância, pois ele mostra que todo grupo é isomorfo a um grupo de permutações. Respondendo assim a seguinte pergunta: De que realmente são formados os grupos abstratos?

Definição 3.18. Seja X um conjunto não vazio. Definimos o grupo das permutações sobre X, denotado por S_X , como sendo o conjunto de todas as aplicações bijetoras de X em X munido da operação binária composição de aplicações. Em particular, quando X é finito com n elementos, digamos $X = \{x_1, x_2, x_3, \ldots, x_n\}$, escrevemos S_n em vez de S_X , e chamamos S_n de G de G simétrico de G grau G de G supposition G supposition

Teorema 3.19 (Teorema de Cayley). Todo grupo é isomorfo a um grupo de permutações.

Demonstração: Seja G um grupo. Para todo $a \in G$ defina a aplicação $T_a: G \to G$ por

$$T_a(x) = ax$$

Como vimos no Exercício 18 do Capítulo ??, a aplicação T_a é bijetora, ou seja, uma permutação dos elementos de G pela esquerda.

Seja $H = \{T_a \mid a \in G\}$ o conjunto de todas as permutações T_a . Considerando a composição de aplicações, H é um grupo. De fato, para todo $a, b \in G$ temos

$$(T_a \circ T_b)(x) = T_a(T_b(x)) = T_a(bx) = (ab)x = T_{ab}(x).$$

Logo, para todo $x \in G$ temos $(T_a \circ T_b)(x) = T_{ab}(x)$, donde resulta que $T_a \circ T_b = T_{ab}$.

Sendo assim T_e é o elemento neutro de H e, para todo $T_a \in H$, $(T_a)^{-1} = T_{a^{-1}}$. Como a composição de aplicações é associativa, concluímos que H é um grupo.

Agora defina $\phi: G \to H$ como sendo $\phi(a) = T_a$ para todo $a \in G$. Dessa forma, ϕ é um homomorfismo, pois, para todo $a, b \in G$ temos:

$$\phi(ab) = T_{ab} = T_a \circ T_b = \phi(a) \circ \phi(b).$$

Temos também que ϕ é injetora, pois, se $\phi(a) = \phi(b)$, então $T_a = T_b$, em particular, $T_a(e) = T_b(e)$, ou seja, ae = be o que nos leva a concluir que a = b. Por fim, pela própria definição de H, ϕ é sobrejetora.

Portanto, ϕ é um isomorfismo e, consequentemente, $G\cong H$, o que conclui a demonstração.

3.1 Exercícios

- 1. Seja V um espaço vetorial qualquer. Mostre que V é um grupo abeliano com relação a adição usual de vetores.
- 2. Sejam V e W espaços vetoriais. Considerando a adição usual de vetores, mostre que toda transformação linear $T:V\to W$ é um homomorfismo de grupo.
- 3. Sejam $G,\ H,\ I$ e J grupos. Se $f:G\to I$ e $g:H\to J$ são isomorfismos, então mostre que $\phi:G\times H\to I\times J$ dada por

$$\phi(x,y) = (f(x), g(y)),$$

para todo $(x,y) \in G \times H$, é também um isomorfismo.

- 4. Seja $H = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \mid x \in \mathbb{R} \right\}$. Mostre que:
 - (a) $H \leq GL_2(\mathbb{R})$.
 - (b) $\mathbb{R} \cong H$.
- 5. Mostre o Lema 3.8 por contradição.
- 6. Sejam G e H grupos, e $\phi:G\to H$. Mostre que, se H não é abeliano, então G não é abeliano ou $G\ncong H$.
- 7. Seja $G = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \mid b, m \in \mathbb{R} \text{ e } m \neq 0 \right\}$. Mostre que:
 - (a) (G, \cdot) é um grupo.
 - (b) $G \ncong \mathbb{R}^* \times \mathbb{R}$.
 - (c) Dado $u \in \mathbb{Z}$, $f_u : G \to \mathbb{R}$ definida por

$$f_u\left(\left[\begin{array}{cc}a&b\\0&1\end{array}\right]\right) = a^u$$

é um homomorfismo.

- 8. Seja $\phi : \mathbb{Z} \to \mathbb{Z}$ definida por $\phi(x) = 2x$ para todo $x \in \mathbb{Z}$. Determine $Im(\phi)$.
- 9. Seja $\phi : \mathbb{Z}_3 \to \mathbb{Z}_6$ definida por $\phi(\overline{x}) = \overline{2x}$. Mostre que ϕ é um homomorfismo e determine $Ker(\phi)$ e $Im(\phi)$.

- 10. Seja $\psi : \mathbb{Z}_6 \to \mathbb{Z}_3$ definida por $\psi(\overline{x}) = \overline{x}$. Mostre que ϕ é um homomorfismo e determine $Ker(\psi)$ e $Im(\psi)$.
- 11. Seja $f:G\to H$ umhomomorfismo, e K o núcleo de f, isto é, K=Ker(f). Mostre que para todo $k\in K$ e $x\in G$, temos que $xkx^{-1}\in K$.
- 12. Seja $\phi : \mathbb{R} \to \mathbb{C}^*$ dada por $\phi(x) = e^{ix}$, para todo $x \in \mathbb{R}$. Mostre que ϕ é um homomorfismo, determine o $Ker(\phi)$ e a $Im(\phi)$.
- 13. SejamGum grupo e Hum subgrupo de G. Prove que se $a\in G,$ então o subconjunto

$$aHa^{-1} = \{g \in G \mid g = aha^{-1} \text{ para algum } h \in H\}$$

é um subgrupo de G e $H \cong aHa^{-1}$.

Sugestão: Considere $\phi: G \to G$ dada por $\phi(x) = axa^{-1}$.