

Association Rules Mining

Manuel Dömer ZHAW School of Engineering

Items & Users

- Market basket/shopping cart (physical or online)
 - Items: Products
 - Users: Customers
- Library
 - Items: Books
 - Users: Library visitors
- News site
 - Items: News articles
 - Users: Readers

Recommender Systems

Suggest personalised and relevant items

- Cover the entire spectrum of the user's interests
- Take the user's context into account
- Avoid suggestions from what is already known
- Expand the user's range of interests

Why Recommender Systems?

Aproaches for Recommender Systems

- Popularity-based recommendation
- Frequent itemsets & association rules mining
- Content-based recommendation
- Collaborative filtering

Popularity-based recommendations

Example: The New York Times Online

Pros:

Cons:

- Small complexity
- Explainable

- No personalisation
- Item properties not taken into account

Association Rules Mining

Synonym: Market basket analysis

Source: www.quickmeme.com

Itemsets

- Items I: The set of available items $I = \{i_1, \dots, i_M\}$
- Itemset X: A set of items $X \subseteq I$
- Itemset size K: The number of items in the itemset
- K-itemset: An itemset of size K
- Items are ordered:

$$X_n = \{x_1, x_2, ..., x_K\}, \text{ such that } x_1 \le x_2 \le ... \le x_K$$

Transactions

- Transaction: $T_n = (tid, X_{tid})$
- Transactions in database: $\{T_1, T_2, \dots, X_N\}$

tid	itemset
1	{apple, bread, honey, milk, peanuts}
2	{bread, chips, coke, honey, milk}
3	{bread, chips, coke, honey, steak}
•••	
8	{apple, bread, cheese, milk, peanuts}

Support

• s(X): fraction of transactions that contain X

```
s(\{bread, milk\}) = ?
```

$$s(\{chips, coke\}) = ?$$

Example

tid	itemset
1	{apple, bread, honey, milk, peanuts}
2	{bread, chips, coke, honey, milk}
3	{bread, chips, coke, honey, steak}
4	{apple, coke, honey, milk, peanuts}
5	{bread, chips, coke, honey, milk}
6	{apple, chips, coke, milk}
7	{apple, bread, coke, milk, peanuts}
8	{apple, bread, cheese, milk, peanuts}

Frequent Itemsets Mining (FIM)

• An itemset X is frequent if its support in the DB is greater or equal than a minimum support threshold t_s :

$$s(X) \ge t_s$$

- Given:
 - Set of items I
 - Transaction database over I
 - Minimum support threshold t_s
- Goal: Find all frequent itemsets $\{X \subseteq I | s(X) \ge t_s\}$

FIM - example

	items
2000	{A,B,C}
1000	{A,C}
4000	{A,D}
5000	$\{B,E,F\}$

• Support of 1-itemsets:

```
(A): 75%, (B), (C): 50%, (D), (E), (F): 25%
```

• Support of 2-itemsets:

Association rules

Let X, Y be two itemsets: $X, Y \subseteq I$ and $X \cap Y = \emptyset$.

- ullet Association rules represent implications of the form X o Y
- \bullet Support of a rule: The fraction of transactions containing $X\, \cup\, Y$

$$s(X \rightarrow Y) = s(X \cup Y)$$

• Confidence c of a rule: the fraction of transactions containing $X \cup Y$ in the set of transactions containing X.

$$c(X \to Y) = \frac{s(X \cup Y)}{s(X)}$$

Association Rule Mining (ARM)

- Given:
 - Set of items I
 - Transaction database over I
 - Minimum support threshold t_s and a minimum confidence threshold t_c
- Goal: Find all association rules $X \to Y$ in DB with minimum support threshold and a minimum confidence i.e.:

$$\{X \rightarrow Y | s(X \cup Y) \ge t_s, c(X \rightarrow Y) \ge t_c\}$$

These rules are called strong.

ARM - example

items

2000 {A,B,C}

1000 {A,C}

4000 {A,D}

5000 {B,E,F}

Association rules:

• $A \rightarrow C$:

$$s(A \rightarrow C) = 0.50, c(A \rightarrow C) = 0.67$$

• $C \rightarrow A$:

$$s(C \to A) = 0.50, c(C \to A) = 1.0$$

Finding Strong Association Rules

- 1. FIM: Find the frequent itemsets w.r.t. minimum support threshold.
- 2. ARM: Find strong association rules among the frequent itemsets.

FRM by brute-force is inefficient

Example with small set of items: $I = \{A, B, C, D\}$

• # 1-itemsets:
$$\binom{4}{1} = \frac{4!}{1!(4-1)!} = \frac{4!}{3!} = 4$$

• # 2-itemsets:
$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4!}{2!2!} = 6$$

• # 3-itemsets:
$$\binom{4}{3} = \frac{4!}{3!(4-3)!} = \frac{4!}{3!} = 4$$

• # 4-itemsets:
$$\binom{4}{4} = \frac{4!}{4!(4-4)!} = 1$$

In general for
$$|I|$$
 items: $\binom{|I|}{1} + \binom{|I|}{2} + \ldots + \binom{|I|}{K} = 2^{|I|} - 1$ itemsets

Apriori Algorithm

Reduces the candidate itemsets to be tested: If an itemset is frequent, then all of its subsets must also be frequent. And if an itemset is infrequent, its supersets must not be tested.

Initialise: k = 1. Scan DB to get frequent 1-itemsets

Repeat:

- 1. Set k = k + 1
- 2. generate length k candidate itemsets from length k-1 frequent itemsets
- 3. test the candidates against DB to get frequent k-itemset
- 4. Stop when no frequent or candidate set was generated in 3.

Example

- Database with 9 transactions
- Minimum support $t_s = 22\%$
- Minimum confidence $t_c = 70\%$
- 1. Identify frequent itemsets using Apriori
- 2. Identify association rules

Database		
tid	items	
1	{chips, coke, whiskey}	
2	{beer, chips}	
3	{chips, ice}	
4	{beer, chips, coke}	
5	{coke, ice}	
6	{chips, ice}	
7	{coke, ice}	
8	{chips, ice, coke, whiskey}	
9	{chips, coke, ice}	

Database		
tid	items	
1	{chips, coke, whiskey}	
2	{beer, chips}	
3	{chips, ice}	
4	{beer, chips, coke}	
5	{coke, ice}	
6	{chips, ice}	
7	{coke, ice}	
8	{chips, ice, coke, whiskey}	
9	{chips, coke, ice}	

$\begin{array}{c|c} \textbf{Candidates} \ C_1 \\ \hline \textbf{itemset} & s \\ \hline \{coke\} & 67\% \\ \{chips\} & 78\% \\ \{ice\} & 67\% \\ \{beer\} & 22\% \\ \{whiskey\} & 22\% \\ \end{array}$

Frequent itemsets L_1		
itemset	S	
{coke}	67%	
{chips}	78%	
{ice}	67%	
{beer}	22%	
{whiskey}	22%	

Generate candidates

 C_k is generated by

- 1. Self-joining L_{k-1} : $L_{k-1} \cdot L_{k-1}$. Two (k-1)-itemsets are joined, if they agree in the first (k-2) items
- 2. Pruning all k-itemsets with a (k-1)-subset that is not frequent, i.e. not in L_{k-1}

Example: $L_3 = \{abc, abd, acd, ace, bcd\}$

- 1. $C_4 = L_3 \cdot L_3 = \{abc \cdot abd = abcd, acd \cdot ace = acde\}$
- 2. acde is pruned since cde is not in L_3

Generate C_2 by self-joining L_1 , determine s and prune by support threshold $\rightarrow L_2$

Database		Candidates C_2		Frequent itemsets L_2	
tid	items	itemset	S	itemset	S
1	{chips, coke, whiskey}	{beer, chips}	22%	{beer, chips}	22%
2	{chips, beer}	{beer, coke}	11%	{chips, coke}	44%
3	{chips, ice}	{beer, ice}	0%	{chips, ice}	44%
4	{coke, chips, beer}	{beer, whiskey}	0%	{chips, whiskey}	22%
5	{coke, ice}	{chips, coke}	44%	{coke, ice}	44%
6	{chips, ice}	{chips, ice}	44%	{coke, whiskey}	22%
7	{coke, ice}	{chips, whiskey}	22%		
8	{coke, chips, ice, whiskey}	{coke, ice}	44%		
9	{coke, chips, ice}	{coke, whiskey}	22%		
		{ice, whiskey}	11%		

Generate C_3 by self-joining L_2 , determine s and prune by support threshold $\rightarrow L_3$

Candidates C_3

itemset	S
{chips, coke, ice}	22%
{chips, coke, whiskey}	22%
{coke, ice, whiskey}	11%

Frequent itemsets L_3

itemset	S
{chips, coke, ice}	22%
{chips, coke, whiskey}	22%

Self-joining \rightarrow C₃ = \emptyset \rightarrow stop

Identify Association Rules

- For every frequent itemset X
 - For every subset $Y: Y \neq \emptyset, Y \neq X$, form the rule $Y \rightarrow (X Y)$
 - Remove rules with $c(Y \rightarrow (X Y)) = \frac{s(X)}{s(Y)} < t_c$

Example - Association Rules

From L_2 :

- {beer} \rightarrow {chips} : c = $\frac{s(\{beer, chips\})}{s(\{beer\})} = \frac{22\%}{22\%} = 100\%$
- {beer} \rightarrow {chips} : c = $\frac{s(\{beer, chips\})}{s(\{chips\})} = \frac{22\%}{78\%} = 28\%$
- {chips} \rightarrow {coke} : c = $\frac{s(\{\text{chips}, \text{coke}\})}{s(\{\text{chips}\})} = \frac{44\%}{78\%} = 56\%$
- ...

From L₃:

- {chips, coke} \rightarrow {ice} : c = $\frac{s(\{\text{chips, coke, ice}\})}{s(\{\text{chips, coke}\})} = \frac{22\%}{44\%} = 50\%$
- {chips, ice} \rightarrow {ccoke} : c = $\frac{s(\{\text{chips, coke, ice}\})}{s(\{\text{chips, ice}\})} = \frac{22\%}{44\%} = 50\%$
- chips} \rightarrow {coke, ice} : c = $\frac{s(\{\text{chips, coke, ice}\})}{s(\{\text{chips}\})} = \frac{22\%}{78\%} = 28\%$
- whiskey \rightarrow {chips coke} : $c = \frac{s(\{\text{chips, coke, whiskey}\})}{s(\text{chips, coke, whiskey})} = \frac{22\%}{s(\text{chips, coke, w$

The Efficient Apriori Package

Beyond the Apriori Algorithm

Computational challenge: Multiple scans of transaction database required. Problematic with growing number of transactions and candidate itemsets.

Possible improvements:

- Reduce database scans
- shrink number of candidate itemsets

Frequent Pattern Tree: Allows frequent itemsets discovery without candidates generation.

Summary Association Rules Mining

- identifes item combinations frequently appearing together across all transactions, not grouped by users
- does not take into account ratings
- does not allow to build a latent representation of users and/or items
- → does not offer personalisation