```
- Convex optimization
-> SVM, KKT conditions to SVM
   (derivation via margén maximization)
              Variants of SVM
               \frac{\|\omega\|^2}{2}
  min
 \omega, be \mathbb{R}
€ IRd
               s.t.
                      y; (ω·x;+b) ≥ 1
 d = dim(x)
```

Margin | | | | | |

Convex optimization Convex function f a convex set ω for any ω_1 , $\omega_2 \in \omega$, $f(\alpha \omega_1 + (1-\alpha)\omega_a) \leq \alpha f(\omega_i)$ + (1-d) f(w2) < strictly convex $(\omega_1,f(\omega_2))$ Suppose a convex function $f: \omega \to \mathbb{R}$ has the them: Then the set of minima forms a convex subset of ω . If I is strictly convex, there is a Unique minimum. Let Mg = W be the set of minima of f. Let mg be the minimum value of on W. Let ω , $\omega' \in \mathcal{H}_S$, for any $\omega \in [0,1]$, αω + (-a) ω' ∈ Hg. $f(\alpha\omega + (1-\alpha)\omega') \leq \alpha f(\omega) + (1-\alpha)f(\omega')$ $= \alpha m_f + (1-\alpha) m_f$ = $\omega + (1-\alpha)\omega' \in \mathcal{M}_{\sharp}$ when f is skrictly convex, $\omega = \omega'$. He is a simpleton set. KKT theorem for constrained optimization min $f(\omega) = P_{opt}$ $\omega \in \mathbb{R}^d$ s.t. $g_i(\omega) \leq 0$ i=[m] pointal Lagrangian: $\mathcal{L}(\omega, \lambda) = f(\omega) + \sum_{i=1}^{m} \lambda_{i} g_{i}(\omega)$ duel $\lambda \in \mathbb{R}^{m}$ $\lambda = [\lambda_{1}, ..., \lambda_{m}]^{T} \in \mathbb{R}^{m}$ $f(\omega)$ Duel problem: $\max_{\lambda \in \mathbb{R}^{m}} F(\lambda) := \inf_{\omega} \mathcal{L}(\omega, \lambda) = d_{opt}$ $\lambda \in \mathbb{R}^{m}$ $g(\lambda) = \lim_{\omega} \sum_{\alpha} \lambda_{i} g_{i}(\omega)$ st. 1,70 co[m]. Weak duality: dopt & Popt with equality for convex poslollon. Assumption of is convex, g is convex & diff. KKT: There exists a $\lambda \in \mathbb{R}^m$ s.t. at a minimum werd of f, the following conditions are satisfied: (i) Vw & (w, 1) = 0 (ii) $\nabla_{\lambda} d(\omega, \lambda) = \begin{cases} g_{c}(\omega) \leq 0 \\ j = 1, ..., m \end{cases}$ (iii) Complementarty constraints:

either $\lambda_{i} = 0$ or $g_{c}(\omega) = 0$.

for every i = 1, ..., m. ② constraints are qualified: $\exists \omega \in int(Co)$ s.t. $g_i(\omega) < o + i \in [m]$. or $g_i(\omega) \leq 0$ and $g_i(\varepsilon)$ affine (Slater's conditions) Gilw = x·00 + b Ref: Chapter 6 of "learning with Kernels" Smola & Scholkopt.

SVM 1012 $f(\omega) = |\omega|^2$ $g_{il}(\omega) =$ y: (w.x.+b) 21. 1- 4: (w.xitb) i € [m] $\mathcal{L}(\omega,b,\lambda) = \frac{\|\omega\|^2}{2} - \frac{\mathcal{E}}{i=1} \lambda_i(\mathcal{L}(\omega,\mathcal{L}_i+b))$ At min ω , b, $\exists \lambda \geq 0$ $\nabla \mathcal{L}(\omega, b, \lambda) = 0$ $\nabla_b \mathcal{L}(\omega, b, \lambda) = 0$ $\omega = \sum_{i=1}^{m} \lambda_i y_i z_i$ d: d: d:=0 or $g:(\omega \cdot x_i + b) = 1$ $i \in [m].$ Comp. cond: Last class: Force + troque balance it; for nonzero di \$0 are called support vectors. For support vectors 2i, y: (w.x:+b) = 1 100×1+b=+1) w.x+b=0 Separating hyperplane) d support vectors, co is not unique.

 $\omega = \sum_{i=1}^{m} \lambda_i y_i = 0.$ $\lambda_i \neq 0$, $\forall i (\omega \cdot x_i + b) = 1$ Dual problem inf $d(\omega,b,d) = \inf_{\omega,b} \frac{\|\omega\|^2}{2} - \sum_{j=1}^m \frac{(\omega \cdot z_j + b)d_j}{-1}$ $F(\lambda) = \frac{1}{2} \sum_{i,j=1}^{\infty} \frac{\lambda_i \lambda_j \cdot y_i \cdot y_j}{\sum_{i=1}^{\infty} \frac{\lambda_i \lambda_j \cdot y_i \cdot y_i}{\sum_{i=1}^{\infty} \frac{\lambda_i \lambda_j \cdot y_i}{\sum_{i=1}^{\infty}$ $\sum_{i=1}^{m} \lambda_{i} \left(y_{i} \left(\sum_{j=1}^{m} \lambda_{j} y_{j} y_{j}^{*} y_{j}^{*} y_{j}^{*} \right) + b \right) -1 \right)$ ie [m] li ≥ 0 $\max_{\lambda} \frac{-1}{2} \sum_{i,j=1}^{m} \lambda_{i} \lambda_{j} y_{i} y_{j} z_{i} z_{j} + \sum_{i=1}^{m} \lambda_{i}$ $s.t. \quad \lambda_{i} > 0 \quad le [m].$ Ex: Convex problem

Remark: Remark:
To evaluate objective punction, we only
need dot products on data space • $h_{SVM}(z) = sgn(\omega \cdot z + b)$ = $sgn\left(\sum_{i=1}^{m}\lambda_{i}y_{i}x_{i}.x+b\right)$ output & SVC also needs only dot products -) so con replace 2:02 -> X(2i,2)

to get nonlinear classifiers. $h_{sym}(x) = sgn\left(\sum_{i=1}^{m} J_i Y_i X(x_i x^2) + b\right)$ When x PD besnel -> linear classifier with features $\Phi(x)$ s.t. (12 inner product if $\Phi(z)$ one inf. dimensional). $\Rightarrow g(x)$ Z feature Data Could be frite-but high-dimensored inf-dimensional) Kernel SVM SIZM nonlinear dampier linear on X damfier on x linear claonfier on featene pace. C:5. NOR function linearly $\chi(x_i,x_j) = (x_i \cdot x_j + c)^2$ polynomialkernel

Other kerneds $\frac{1}{x(x,y)} = e^{-\frac{1}{2}\frac{|x-y||^2}{2q^2}}$ hyper parameter Goussian 11 x-y12 for given data point big 0 (11x-y112) =0(22)

(inf-dimensional feature space) · Symoid bornel (nound network) $\pi(x,y) = \tanh(\sigma(x \circ y) + b)$ Beyond linear classifiers > nonlinear function to punction

the tention

The hyperplane

clarifier

Suffices Kennel dessifiers are still linear clernitiers in feature space Covers Theorem: m points in d dimensions in "general position" how many "labelings"/sets of m points are linearly separable? # Subsets of m points in dimensions that are linearly separable = C(m, d)• if $m \leq d+1$, $c(m,d) = 2^m$ • if m > d+1, $d = 2 \leq {m-1 \choose i}$ Sub exponential in m. does lin. class. exist 408 $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ Yes +1 -1 - 1 $\binom{3}{2}$ 8=23 2⁴=16 subsets or labelajs C(4,2) C(3,2) + C(4,1)6 = 14 m = 4 d = 2 $2 = \binom{m-1}{i} = 2 \left(\binom{3}{6} + \binom{3}{1} + \binom{3}{2} \right)$ = 2 (1 + 3 + 3) = 4c (m-1,d) + C (m,d-1) C(m, d)Fix m. Its you increase d, there is a higher prob. of point in general position being linearly separable.