Paradigma de Godel (Parte 2)

Continuación de Σ -p.r.

Sumatoria, productoria y concatenatoria de funciones Σ -p.r.

• *Definiciones*: Sea Σ un alfabeto finito y $f:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\to\omega$ con $S_i\subseteq\omega$ y $L_i\subseteq\Sigma^*$ no vacíos, entonces $\forall x,y\in\omega, (\vec{x},\vec{\alpha})\in S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m$ definimos:

$$\sum_{t=x}^{t=y} f(t,ec{x},ec{lpha}) = egin{cases} 0 & ext{si } x>y \ f(x,ec{x},ec{lpha}) + f(x+1,ec{x},ec{lpha}) + \ldots + f(y,ec{x},ec{lpha}) & ext{si } x\leq y \end{cases}$$

$$\prod_{t=x}^{t=y} f(t,ec{x},ec{lpha}) = egin{cases} 1 & ext{si } x>y \ f(x,ec{x},ec{lpha}) \cdot f(x+1,ec{x},ec{lpha}) \cdot \ldots \cdot f(y,ec{x},ec{lpha}) & ext{si } x \leq y \end{cases}$$

Y, en forma similar, cuando $I_f \subseteq \Sigma^*$, definimos:

$$\subset_{t=x}^{t=y} f(t,ec{x},ec{lpha}) = egin{cases} arepsilon & ext{si } x > y \ f(x,ec{x},ec{lpha})f(x+1,ec{x},ec{lpha}) \ldots f(y,ec{x},ec{lpha}) & ext{si } x \leq y \end{cases}$$

todas con dominio $\omega \times \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$.

- Lemas: Sea Σ un alfabeto finito
 - Si $f:\omega imes S_1 imes \ldots imes S_n imes L_1 imes \ldots imes L_m o \omega$ es Σ -p.r. con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ no vacíos, entonces $\lambda xy\vec{x}\vec{\alpha}[\sum_{t=x}^{t=y} f(t,\vec{x},\vec{\alpha})]$ y $\lambda xy\vec{x}\vec{\alpha}[\prod_{t=x}^{t=y} f(t,\vec{x},\vec{\alpha})]$ son Σ -p.r.
 - Si $f:\omega imes S_1 imes \ldots imes S_n imes L_1 imes \ldots imes L_m o \Sigma^*$ es Σ -p.r. con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ no vacíos, entonces $\lambda xy\vec{x}\vec{\alpha}[\subset_{t=x}^{t=y}f(t,\vec{x},\vec{\alpha})]$ es Σ -p.r.

Cuantificación acotada de predicados Σ -p.r. con dominio rectangular

- Definiciones:
 - Variable numérica: Sea $P: S \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$ un predicado con $S, S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ no vacíos, y $\bar{S} \subseteq S$, entonces definimos:

$$egin{aligned} &\lambda x ec{x} ec{lpha}[(orall t \in ar{S})_{t \leq x} P(t, ec{x}, ec{lpha})] = egin{cases} 1 & ext{si } P(t, ec{x}, ec{lpha}) = 1 \ ext{vt} \leq x \ 0 & ext{en otro caso} \end{cases} \ &\lambda x ec{x} ec{lpha}[(\exists t \in ar{S})_{t \leq x} P(t, ec{x}, ec{lpha})] = egin{cases} 1 & ext{si } P(t, ec{x}, ec{lpha}) = 1 \ ext{para algún } t \leq x \ 0 & ext{en otro caso} \end{cases}$$

Ambos con dominios $\omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$.

• Cabe destacar que $\lambda x \vec{x} \vec{\alpha} [(\exists t \in \bar{S})_{t \le x} P(t, \vec{x}, \vec{\alpha})] = \neg \lambda x \vec{x} \vec{\alpha} [(\forall t \in \bar{S})_{t \le x} \neg P(t, \vec{x}, \vec{\alpha})].$

• Variable alfabética: De forma similar, sea $P: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times L \to \omega$ un predicado con $S_i \subseteq \omega$ y $L, L_i \subseteq \Sigma^*$ no vacíos, y $\bar{L} \subseteq L$, entonces definimos

$$egin{aligned} &\lambda x ec{x} ec{lpha}[(orall lpha \in ar{L})_{|lpha| \leq x} P(ec{x}, ec{lpha}, lpha)] = egin{cases} 1 & ext{si } P(ec{x}, ec{lpha}, lpha) = 1 \ orall lpha \in \{eta \in ar{L} : |eta| \leq x\} \ 0 & ext{en otro caso} \end{cases} \ &\lambda x ec{x} ec{lpha}[(\exists lpha \in ar{L})_{|lpha| \leq x} P(ec{x}, ec{lpha}, lpha)] = egin{cases} 1 & ext{si } \exists lpha \in \{eta \in ar{L} : |eta| \leq x\} : P(ec{x}, ec{lpha}, lpha) = 1 \ 0 & ext{en otro caso} \end{cases}$$

Ambos con dominios $\omega imes S_1 imes \ldots imes S_n imes L_1 imes \ldots imes L_m$

- Cabe destacar que $\lambda x \vec{x} \vec{\alpha} [(\exists \alpha \in \bar{L})_{|\alpha| \le x} P(\vec{x}, \vec{\alpha}, \alpha)] = \neg \lambda x \vec{x} \vec{\alpha} [(\forall \alpha \in \bar{L})_{|\alpha| \le x} \neg P(\vec{x}, \vec{\alpha}, \alpha)].$
- Lemas: Sea Σ un alfabeto finito
 - Si $P: S \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$ es un predicado Σ -p.r. con $S, S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ no vacíos, y $\bar{S} \subseteq S$ un conjunto Σ -p.r., entonces $\lambda x \vec{x} \vec{\alpha} [(\forall t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha})]$ y $\lambda x \vec{x} \vec{\alpha} [(\exists t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha})]$ son predicados Σ -p.r.
 - Si $P: S_1 imes \ldots imes S_n imes L_1 imes \ldots imes L_m imes L o \omega$ es un predicado Σ -p.r. con $S_i \subseteq \omega$ y $L, L_i \subseteq \Sigma^*$ no vacíos, y $\bar{L} \subseteq L$ un conjunto Σ -p.r., entonces $\lambda x \vec{x} \vec{\alpha} [(\forall \alpha \in \bar{L})_{|\alpha| \leq x} P(\vec{x}, \vec{\alpha}, \alpha)]$ y $\lambda x \vec{x} \vec{\alpha} [(\exists \alpha \in \bar{L})_{|\alpha| \leq x} P(\vec{x}, \vec{\alpha}, \alpha)]$ son predicados Σ -p.r.
- Idea: En muchos casos de predicados obtenidos por cuantificación a partir de otros predicados, la variable cuantificada tiene una cota natural en términos de las otras variables y entonces componiendo adecuadamente se lo puede presentar como un caso de cuantificación acotada.

Minimización y funciones Σ -recursivas

Definición de función Σ -recursiva

• *Definición*: Con el nuevo constructor (que se define más abajo), podemos definir los conjuntos $R_0^\Sigma \subseteq R_1^\Sigma \subseteq R_2^\Sigma \subseteq \ldots \subseteq R^\Sigma$ de la siguiente manera:

$$egin{aligned} R_0^\Sigma &= PR_0^\Sigma \ R_{k+1}^\Sigma &= R_k^\Sigma \cup \{f \circ [f_1, \ldots, f_r]: f, f_i \in R_k^\Sigma, r \geq 1]\} \ &\cup \{R(f, \mathcal{G}): f, \mathcal{G}_a \in R_k^\Sigma orall a \in \Sigma\} \cup \{R(f, g): f, g \in R_k^\Sigma\} \ &\cup \{M(P): P ext{ es } \Sigma ext{-total y } P \in R_k^\Sigma\} \end{aligned}$$
 $egin{aligned} R^\Sigma &= igcup_{k \in \omega} R_k^\Sigma \end{aligned}$

Con ello, diremos que una función f es Σ -recursiva si $f \in R^{\Sigma}$.

- Notar que $PR_k^\Sigma\subseteq R_k^\Sigmaorall k\in\omega$, por lo que $PR^\Sigma\subseteq R^\Sigma$
- Proposiciones:
 - Si $f \in R^{\Sigma}$, entonces f es Σ -efectivamente computable.
 - Sea Σ un alfabeto finito, entonces no toda función Σ -recursiva es Σ -p.r. Es decir, $PR^{\Sigma} \subset R^{\Sigma}$ y $PR^{\Sigma} \neq R^{\Sigma}$.

Minimización de variable numérica

• *Definición*: Sea Σ un alfabeto finito y sea $P:D_P\subseteq\omega\times\omega^n\times\Sigma^{*m}\to\omega$ un predicado, dado $(\vec{x},\vec{\alpha})\in\omega^n\times\Sigma^{*m}$, cuando exista al menos un $t\in\omega$ tal que $P(t,\vec{x},\vec{\alpha})=1$, usaremos $\min_t P(t,\vec{x},\vec{\alpha})$ para denotar al menor de tales t's. Con ello, definimos:

$$M(P) = \lambda \vec{x} \vec{\alpha} [\min_t P(t, \vec{x}, \vec{\alpha})]$$

El cual cumple que:

$$egin{aligned} D_{M(P)} &= \{(ec{x},ec{lpha}) \in \omega^n imes \Sigma^{*m} : (\exists t \in \omega) P(t,ec{x},ec{lpha}) \} \ M(P)(ec{x},ec{lpha}) &= \min_t P(t,ec{x},ec{lpha}), orall (ec{x},ec{lpha}) \in D_{M(P)} \end{aligned}$$

Y diremos que M(P) se obtiene por *minimización de variable numérica* a partir de P.

- Regla U: Si tenemos una función $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ y buscamos un predicado P tal que f=M(P), muchas veces es útil tratar de diseñar P de modo que para cada $(\vec{x},\vec{\alpha})\in D_f$ se cumpla que $f(\vec{x},\vec{\alpha})=$ único $t\in\omega$ tal que $P(t,\vec{x},\vec{\alpha})$.
- Lemas:
 - Si $P:D_P\subseteq\omega\times\omega^n\times\Sigma^{*m}\to\omega$ es un predicado Σ -efectivamente computable y D_P es Σ -efectivamente computable, entonces M(P) es Σ -efectivamente computable.
 - Minimización acotada de variable numérica de predicados Σ -p.r.: Sean $n,m\geq 0$ y $P:D_P\subseteq \omega\times\omega^n\times\Sigma^{*m}\to\omega$ un predicado Σ -p.r., entonces
 - M(P) es Σ -recursiva
 - Si hay una función Σ -p.r. $f:\omega^n \times \Sigma^{*m} \to \omega$ tal que $M(P)(\vec{x},\vec{lpha}) = \min_t P(t,\vec{x},\vec{lpha}) \le f(\vec{x},\vec{lpha}) \ \forall (\vec{x},\vec{lpha}) \in D_{M(P)}$, entonces M(P) es Σ -p.r.
- *Ejemplos*: Sea Σ un alfabeto finito, entonces
 - $Q: \omega \times N \to \omega$ con $(x,y) \to$ (cociente de la división de x por y), es Σ -p.r.
 - $R: \omega \times N \to \omega$ con $(x,y) \to$ (resto de la división de x por y), es Σ -p.r.
 - $M = \lambda xy[mcd(x,y)]$ es Σ -p.r.
 - $G = \lambda xy[mcm(x,y)]$ es Σ -p.r.
 - $pr: N \to \omega$ con $n \to$ (el n-ésimo número primo), es Σ -p.r.
 - $\lambda xi[(x)_i]$ es Σ -p.r.
 - Lt es Σ -p.r.

Minimización de variable alfabética

• Definición: Sea $\Sigma \neq \emptyset$ un alfabeto con \leq un orden total sobre este, y sea $P: D_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^* \to \omega$ un predicado, dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $\alpha \in \Sigma^*$ tal que $P(\vec{x}, \vec{\alpha}, \alpha) = 1$, usaremos $\min_{\alpha} P(\vec{x}, \vec{\alpha}, \alpha)$ para denotar al menor de tales α 's. Con ello, definimos:

$$M^{\leq}(P) = \lambda ec{x} ec{lpha} [min_{lpha}^{\leq} P(ec{x},ec{lpha},lpha)]$$

El cual cumple que:

$$D_{M^{\leq}(P)} = \{(ec{x},ec{lpha}) \in \omega^n imes \Sigma^{*m} : (\exists lpha \in \Sigma^*) P(ec{x},ec{lpha},lpha) = 1\}$$

$$M^{\leq}(P)(ec{x},ec{lpha})=min_{lpha}^{\leq}P(ec{x},ec{lpha},lpha), orall (ec{x},ec{lpha})\in D_{M^{\leq}(P)}$$

Y diremos que $M^{\leq}(P)$ se obtiene por *minimización de variable alfabética* a partir de P.

- Lemas:
 - Minimización acotada de variable alfabética de predicados Σ -p.r.: Sea $\Sigma \neq \emptyset$ un alfabeto, \leq un orden total sobre Σ y $n,m \geq 0$ tales que

 $P:D_P\subseteq\omega^n\times\Sigma^{*m}\times\Sigma^*\to\omega$ es un predicado Σ -p.r., entonces:

- $M^{\leq}(P)$ es Σ -recursiva
- Si existe una función Σ -p.r. $f:\omega^n \times \Sigma^{*m} \to \omega$ tal que $|M^{\leq}(P)(\vec{x},\vec{lpha})| = |min^{\leq}_{\alpha}P(\vec{x},\vec{lpha},lpha)| \leq f(\vec{x},\vec{lpha}) \forall (\vec{x},\vec{lpha}) \in D_{M^{\leq}(P)}$, entonces $M^{\leq}(P)$ es Σ -p.r.

Conjuntos Σ -recursivamente enumerables

• *Definición*: Diremos que un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -recursivamente enumerable cuando sea vacío o haya una función $F: \omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ sea Σ -recursiva $\forall i \in \{1, \ldots, n+m\}$.

Conjuntos Σ -recursivos

- *Definición*: Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -recursivo si su función característica $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -recursiva.
- Lemas: Sea Σ un alfabeto finito
 - Si $P:S\subseteq\omega^n imes\Sigma^{*m}\to\omega$ y $Q:S\subseteq\omega^n imes\Sigma^{*m}\to\omega$ son predicados Σ -r., entonces $P\wedge Q,\, P\vee Q$ y $\neg P$ son predicados Σ -r también.
 - Si $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son conjuntos Σ -r., entonces $S_1 \cup S_2, S_1 \cap S_2$ y $S_1 S_2$ son conjuntos Σ -r también.

Independencia del alfabeto

- *Teorema*: Sean Σ y Γ dos alfabetos finitos cualesquiera:
 - Sea f una función Σ -mixta y Γ -mixta, entonces f es Σ -(r./p.r.) $\Leftrightarrow f$ es Γ -(r./p.r.).
 - Sea S un conjunto Σ -mixto y Γ -mixto, entonces S es Σ -(r./p.r./r.e.) $\Leftrightarrow S$ es Γ -(r./p.r./r.e.).