Table 1: Comparison between SemlaFlow and GeoRCG (Semla) across varying numbers of sampling steps. Evaluated on 5k samples on the GEOM-DRUG dataset, and with a single Nvidia 4090. Results for SemlaFlow are obtained from our own experiments. While classifier-free guidance approximately doubles the sampling time, GeoRCG still outperforms SemlaFlow even when using half the number of sampling *steps*—resulting in comparable sampling *time*.

# Steps	Method	Energy ↓	Energy/Atom ↓	Strain ↓	Strain/Atom ↓	Validity ↑	Atom-Stab. ↑	MolStab. ↑	Rep. Time ↓	Mol. Time ↓	Mol. Time w/o CFG ↓
		kcal· mol ⁻¹	kcal· mol ^{−1}	kcal⋅ mol ⁻¹	kcal⋅ mol ⁻¹	%	%	%	seconds	seconds	seconds
100	SemlaFlow	96.387	2.167	53.688	1.206	93.9	99.8	97.2	-	610	610
100	GeoRCG (Semla)	83.334	1.836	48.627	1.077	96.0	99.9	98.0	97	1481	770
50	SemlaFlow	96.226	2.130	55.613	1.231	94.3	99.8	97.1	-	310	310
	GeoRCG (Semla)	89.221	1.982	49.964	1.099	95.4	99.9	97.4	97	690	380
20	SemlaFlow	106.388	2.359	68.080	1.516	94.1	99.8	95.8	=	152	152
	GeoRCG (Semla)	95.984	2.119	65.038	1.449	94.6	99.8	95.1	97	315	189

Table 2: Ablation study of GeoRCG (EDM) with CFG coefficient w=0.0 and inverse temperature inv_T = 1.0, i.e., without classifier-free guidance and low-temperature sampling. Evaluated on 10k samples. The gray cells denotes the base molecule generator employed in GeoRCG (EDM). Even without these two techniques, GeoRCG consistently improves EDM by a significant margin and is highly competitive with advanced models.

		QM9		GEOM		
Model	MolStab. (%) ↑	$Valid(\%) \uparrow$	Valid & Unique(%) ↑	Atom-Stab.(%) ↑	Valid (%)↑	
EDM	82.0	91.90	90.70	81.3	92.6	
GeoLDM	89.4	93.80	92.70	<u>84.4</u>	99.3	
GeoBFN	90.87	95.31	92.96	86.1	91.66	
GeoRCG (EDM) ($w = 1$, inv_T = 1)	92.32	96.52	<u>92.45</u>	84.3	98.5	
GeoRCG (EDM) ($w = 0$, inv_T = 1)	90.2	<u>95.67</u>	92.65	<u>84.4</u>	97.8	

Table 3: Energy and strain values for DRUG molecules generated by selected 3D-only models. Evaluated on 10k samples. All results are obtained by our own experiments. The gray cells denotes the base molecule generator employed in GeoRCG (EDM). Models marked with an asterisk (*) **are not directly comparable** to the methods below, as SemlaFlow is trained on the 5 lowest-energy conformations of DRUG, whereas the other methods are trained on the 30 lowest-energy conformations. GeoRCG consistently improves the base model by a large margin and outperforms GeoLDM.

Model	Model type	QM9				DRUG			
Model		Energy \downarrow	Energy/Atom ↓	Strain \downarrow	Strain/Atom \downarrow	Energy ↓	Energy/Atom ↓	Strain \downarrow	Strain/Atom \downarrow
SemlaFlow*	EI (2D 0 2D)	_	_	_	_	96.387	2.167	53.688*	1.206*
GeoRCG (Semla)*	Flow (2D&3D)	_	_	_	_	83.334	1.836	48.627*	1.077*
EDM	Diffusion	34.76	2.01	12.99	0.74	412.71	8.88	402.65	8.67
GeoLDM		33.44	<u>1.91</u>	10.38	0.61	329.46	7.2	313.83	6.93
GeoRCG (EDM)		32.0	1.80	9.48	0.55	318.2	6.8	303.7	6.58

Table 4: Conditional molecule generation on QM9. The metric used is the MSE between the target property value and the classifier-predicted value. SemlaFlow results are obtained by our own experiments. Results for SemlaFlow and GeoRCG (Semla) are calculated over 5k molecules. The gray cells and blue cells denote the base molecule generator employed in GeoRCG (EDM) and GeoRCG (Semla), respectively.

Properties Methods	Model type	α	$\varepsilon_{ m LUMO}$	C_v
QM9 (lower bound)	-	0.1	36	0.04
Random	-	9.01	1457	6.857
N_atoms	-	3.86	813	1.971
EDM		2.76	584	1.101
GeoRCG (EDM)	Diffusion	0.89(0.005)	290.8(3.1)	0.542(0.004)
GeoLDM	Dillusion	2.37	522	1.025
GCDM		1.97	479	0.689
GeoBFN	Baysian Flow	2.34	<u>516</u>	0.949
EquiFM	Flory (2D only)	2.41	530	1.033
GOAT	Flow (3D-only)	2.74	534	0.883
SemlaFlow	Flow (2D&3D)	1.63(0.004)		
GeoRCG (Semla)	Flow (2D&3D)	1.05(0.012)	340.1(0.8)	

Table 5: Reorganized Table 1 from the original paper to ensure more completeness. Quality comparison of unconditional molecular generation across 3D-only methods. The gray cells denote the base molecule generator employed in GeoRCG (EDM).

			QM9					DRUG		
Metrics Methods	Model type	# Steps	Atom Sta (%) ↑	Mol Sta (%) \uparrow	Valid (%) \uparrow	Valid & Unique (%) \uparrow	Atom Sta (%) ↑	Valid (%) \uparrow		
Data	-		99	95.2	97.7	97.7	86.5	99.9		
G-Schnet	Autoregressive	-	95.7	68.1	85.5	80.3	-	-		
GDM		1000	97	63.2	-	=	75	90.8		
GDM-AUG	Non-equivariant	1000	97.6	71.6	90.4	89.5	77.7	91.8		
GraphLDM		1000	97.2	70.5	83.6	82.7	76.2	97.2		
GraphLDM-AUG		1000	97.9	78.7	90.5	89.5	79.6	98		
		50	97.0(0.1)	66.4(0.2)	-	-	-	-		
EDM	Diffusion	100	97.9(0.1)	69.8(0.2)	-	-	-	-		
EDM		500	98.5(0.1)	81.2(0.1)	-	-	-	-		
		1000	98.7	82	91.9	90.7	81.3	92.6		
EDM-Bridge		1000	98.8	84.6	92	90.7	82.4	92.8		
GeoLDM		1000	98.9(0.1)	89.4(0.5)	93.8(0.4)	92.7(0.5)	84.4	99.3		
GCDM		1000	98.7(0.0)	85.7(0.4)	94.8(0.2)	93.3(0.0)	89	95.5		
ENF		-	85	4.9	40.2	39.4	-	-		
EquiFM	Flow (3D-only)	200	98.9(0.1)	88.3(0.3)	94.7(0.4)	93.5(0.3)	84.1	<u>98.9</u>		
GOAT		90	98.4	84.1	90.9	89.99	81.8	96.0		
	Baysian Flow	50	98.28(0.1)	85.11(0.5)	92.27(0.4)	-	75.11	91.66		
CDEN		100	98.64(0.1)	87.21(0.3)	93.03(0.3)	-	78.89	93.05		
GeoBFN		500	98.78(0.8)	88.42(0.2)	93.35(0.2)	-	81.39	93.47		
		1000	99.08(0.03)	90.87(0.1)	95.31(0.1)	92.96(0.1)	85.6	92.08		
	Two-stage	50	98.75(0.05)	89.08(0.52)	95.05(0.33)	-	81.44(0.1)	95.7(0.7)		
CaaDCC (EDM)		100	99.08(0.03)	91.85(0.34)	96.49(0.27)	-	83.02(0.06)	96.3(0.7)		
GeoRCG (EDM)		500	99.09(0.01)	91.89(0.24)	96.57(0.12)	-	84.03(0.37)	97.57(0.9)		
		1000	99.12(0.03)	92.32(0.06)	96.52(0.2)	92.45(0.2)	84.3(0.12)	98.5(0.12)		