Whole Tissue Analysis Pipeline

03/04/19

Carmen Li

Raw Images: Images taken by the Incell on a field by field and channel by channel basis.

BaSic Correction: Background and shading correction

ASHLAR: Stitches and registers each field into a whole image.

Full Stacks: Cuts the stitched and registered image into fields of a size specified by user and creates a stack of all cycle images. Cuts smaller images in each field for training Ilastik. Saves a small montage of DAPI first cycle for ROIs.

Ilastik: User trains llastik using a subset of the data. Ilastik produces segmentation probabilities.

Segmentation: Segments the nuclei based on the segmentation probabilities produced by Ilastik.

Measurements: Various measurements are taken for each antibody signal.

ROI: User draws ROI on montage in ImageJ

Filtering by ROI: Gets indexes of cells within the ROI. Measurement data can be filtered based on ROI.

Github repository: https://github.com/giorgiogaglia/CycIF-Pipelines/tree/master/WholeTissueAshlaredPipeline

Codes:

- **1. Basic Correction and ASHLAR** (run_ashlar_batch_csv_incell.py; Command Line): Background and shading correction and stitching and registering each field into a whole image
- 2. Script to run Step 3, 5 and 6 (RUN_All.m; MATLAB): Script to run all the MATLAB scripts
- 3. Preprocessing before Ilastik:
 - **Full Stacks and Cropped Stacks** (RUN_Step1_new_fields_preilastik_crops.m; MATLAB): Cuts fields to a size specified by the user and cuts out smaller cropped images in each field for training in Ilastik. Saves a small montage of the DAPI of the first cycle for ROIs.
 - b) Processing stacks for Ilastik (changetifffromZtoXhannel_nocrops.ijm; ImageJ): Changes properties of the stack from Z to channels. Required for Ilastik.
- **4. Ilastik** (GUI or headless on O2): User trains Ilastik using cropped stacks. Ilastik produces segmentation probabilities.
- **5. Segmentation**(RUN_Step3_segmentfromilastik.m; MATLAB): Segments the nuclei based on segmentation probabilities produced by Ilastik
- **Measurements** (RUN_Step4_CycIF_measurements_ilastik.m; MATLAB): Takes various measurements for each antibody signal.
- 7. ROI (RUN_Step5_ROI.m; MATLAB): User draws ROIs on ImageJ. Indexes of each pixel in the ROI are found. Indexes of centroils in the ROI are also found.

How to run ASHLAR

- Requirements:
 - "run_ashlar_batch_csv_incell.py" file created by YuAn
 - https://gist.github.com/Yu-AnChen/f9030c9d6425cb293846a729d1b224ed
 - CSV file:
 - First column: Directory (location of folder that holds all the raw data for the slide)
 - Second column: Correction (y/n; Basic Correction)
 - Third column: Pyramid (y/n)
- Open command prompt:
 - D: (directory that the script is in)
 - cd D:\path\ (folder that the script is in)
- Command line: python run_ashlar_batch_csv_incell.py Nameofcsv.csv

RUN_ALL.m

- What it does:
 - Runs step 1,3 and 4 after ASHLAR: Fullstacks, Segmentation and measuring
- User input:
 - Location of ASHLARed image
 - Name of ome.tif w/o "ome.tif" ending
 - Size of field desired (field will be a square)
 - Number of crops desired
 - Number of cycles
 - Location of folder that contains Ilastik probabilities and Full stacks
 - Channels corresponding to Ilastik probabilities
 - Foci segmentation parameters

RUN_Step1_new_fields_preilastik_crops.m

• What it does:

- Cuts ASHLARed image into fields of the size specified by user
 - Creates stack of all channels for fields that contain cells
- Cuts cropped images of 250X250 pixels from the field, for Ilastik training
 - Creates stack of all channels for the cropped image

• Inputs:

- Location of ASHLARed image
- Name of ome.tif w/o "ome.tif" ending
- Size of field desired (field will be a square)
- Number of crops desired
- Number of cycles

• Outputs:

- NameofOmetif_Field_row_column.tif: stack of all channels
- Coordinates_Fullstacks\NameofOmetif.mat:
 - Matrix of [if field is kept(1/0), x0,x1,y0,y1]
- NameofOmetif_Field_row_column_crop#.tif: stack of all channels for cropped image
- NameofOmetif_montage.tif

changetifffromZtoXhannel_nocrops.ijm

- What it does:
 - Changes the slices from Z to X for Ilastik processing
- User Input:
 - Number of channels
 - Location of full stacks and cropped images
- Output:
 - Full stack and cropped image tiff with Z changed to X

llastik

- Create project
- Input cropped images for training
- Train using three qualifications: nucleus, cytoplasm, background
- Input fields
- IMPORTANT: Export settings should be:
 - Export Source: Probabilities
 - Cover to Data Type: unsigned 16-bit
 - Renormalize [min,max] from: 0.0-1 .0 to 0:65535
 - Filename_format: {dataset_dir}/llastik_Probabilities/{nickname}_P robabilities.tif
 - File_format: tiff
- Use batch processing to create segmentation probabilities

RUN_Step3_segmentfromilastik.m

- What it does:
 - Takes in Ilastik probabilities and produces segmentation
- User input:
 - Ilastik probabilities
 - FullStacks
- Output:
 - Segmented image
 - Check segmented image

RUN_Step4_CycIF_measurements_ilastik.m

- What it does:
 - Takes measurements of the signal of the antibody
- User Input:
 - Segmented Image
 - FullStacks
- Output:
 - NameofOmeTif_Results_date.mat: matrix of measurements
 - Nucleus and cytoplasm segmented image
 - Foci segmented image

RUN_Step5_ROI.m

- What it does:
 - Finds the pixels in the ROI area
- User Input:
 - ROI drawn on ImageJ
 - Montage that ROI was drawn on (Created in RUN_Step1...)
 - Coordinates of each field
- Output:
 - ROI_pixels.mat: matrix of pixel locations (x,y) of ROIs, vector of **row** indexes of Centroids that are within the ROI

Other Scripts

Might be useful, might not be useful. All on Github

RUN_Step6_PlottingResults.m

 Example of how you would use indexes to filter measurements in mat file created in RUN_Step4

renamefiles_v2.m

- Renames multiple files
- In Other Scripts folder of Github

Ilastik on O2

Need to Download and Install

- Filezilla: to upload to O2
- https://filezilla-project.org/download.php
- Mobaxterm: to access O2 on Windows
- https://mobaxterm.mobatek.net/download.html

Installing Linux version of O2

```
mfk8@login02:~$ srun --pty -p interactive -t 0-12:00 /bin/bash (Interactive node) mfk8@compute-a-01-01:~$ wget <a href="http://files.ilastik.org/ilastik-1.3.2rc2-Linux.tar.bz2">http://files.ilastik.org/ilastik-1.3.2rc2-Linux.tar.bz2</a> mfk8@compute-a-01-01:~$ tar -vxjf ilastik-1.3.2rc2-Linux.tar.bz2
```

IMPORTANT: Make sure you are downloading the version you need

http://files.ilastik.org/

Example script to run 1 Field

IMPORTANT: Must have training set of data in same folder format for Ilastik to work

SH Script:

```
#!/bin/bash
#SBATCH -p short (Type of Partition)
#SBATCH -t 0-03:00 (Time requested)
#SBATCH --mem=100G (Memory Requested)
#SBATCH -o %j.out (Out file naming: JobID..out)
./ilastik-1.3.2rc2-Linux/run ilastik.sh \ (Calling Ilastik)
--headless \ (Non GUI mode)
--project=/n/scratch2/cl401/MouseLung/2019-01-03 MouseLungTumors training headless.ilp \ (Project)
--export source="Probabilities" \ (Export type)
--export dtype=uint16 \ (Data type)
--pipeline result drange="(0.0,1.0)" \ (Import data range)
--export drange="(0,65535)"\(Export Data range)
--output format=tif \ (Output file type)
--output filename format={dataset dir}/Ilastik Probabilities/{nickname} Probabilities.tif \ (output filename format: location)
/n/scratch2/cl401/MouseLung/AJ0176 P2 Field 02 01.tif (File to be run through ilastik)
```

How to create a script

- vim scriptname.sh
- Type i for insert mode
- Start typing
- When finished, press ESC key
- To save, type :wq, then press Enter key
- To run the script: sbatch Scriptname.sh

How to check on the job you are running:

squeue -u UserName (Shows Job id and information)
watch squeue -u UserName (updates the squeue every 2 seconds)
sacct (Shows list of jobs you are running/ have run for the day)
tail -f JobID.out (Shows last ten lines of "out" file)
less JobID.out (shows entire "out" file)
O2sacct JobID (returns information about the job after completion)

Example script to run llastik on multiple files

```
To create script: vim NameofScript.sh
To save and exit out of writing script: Shift + Z + Z
for f in {Folder w/ all files}/*.tif; do
  cmd="./ilastik-1.3.2-Linux/run ilastik.sh\
           --headless \
           --project=./ilastik-1.3.2-Linux/2019-01-03 MouseLungTumors training headless.ilp \ (Project)
           --export source=Probabilities \ (Export type)
           --export dtype=uint16 \ (Data type)
           --pipeline result drange='(0.0,1.0)'
           --export drange='(0, 65535)' \ (Data range)
           --output format=tif \ (Output file type)
           --output filename format={dataset dir}/Ilastik Probabilities/{nickname} Probabilities.tif\ (Output file format:
location)
           $f" (File that is run in Ilastik)
  sbatch -p short -t 0-01:00 --mem=100G -o %j.out --wrap="$cmd"
done
```

Completed ilastik 1 field (6000X6000 pixels)

• Time = 01:3:03

• Memory used = 72.01G

```
35756800.ba+ COMPLETED compute-e-16-245 2019-03-
05T15:37:10 01:03:30 01:03:30 01:02:46
cpu=1,mem=100G,node=1 72.01G
```

O2 Tips and tricks

```
CTRL + L (clear screen)
```

CTRL + A (jumps to beginning of line)

rsync —a (command to upload data; -a: uploads metadata)

Slum= 10TB size

Home= 100GB size

Helpful Links

https://wiki.rc.hms.harvard.edu/display/O2/Local+Software+Installs https://www.ilastik.org/documentation/basics/headless

Old slides + extra stuff

Headless on windows

```
.\run-ilastik.bat --headless --
project=Z:\sorger\data\IN Cell Analyzer 6000\Giorgio\2019-01-
03 Mouse Lung Tumors Round2\Analysis\2019-01-
03_MouseLungTumors_training.ilp --export source="Probabilities" --
export dtype=uint16 --pipeline result drange="(0.0,1.0)" --
export drange="(0,65535)" --output format=tif --
output filename format={dataset dir}/llastik Probabilities/{nickname
} Probabilities.tif
Z:\sorger\data\IN Cell Analyzer 6000\Carmen\O2test\Field 01 03 1
7.tif
```

Analysis Pipeline

Github repository: https://github.com/giorgiogaglia/CycIF-Pipelines/tree/master/WholeTissueAshlaredPipeline

Analysis Pipeline

and channel by channel basis.

ds of a size specified by user and create k. Saves a small montage of DAPI first cy produces segmentation probabilities.

ation probabilities produced by Ilastik.

antibody signal.

<u> Pipelines/tree/master/WholeTissueAsh</u>