Devre Teorisi Deneyleri 4. Deney

Devre Teorisi Teoremleri

1. Thévenin ve Norton Teoremleri:

1. Aşağıdaki devrelerin A-B düğümlerine göre Théveninve Norton eşdeğerleri hesaplanarak Tablo 7'deki sarı renkli kutucuklar doldurulmalıdır.

						5	Ł	•	3,1K
				Table	o 7	ςν	1		1 k
	V_{TH}	R _{TH}	I_N	\mathbf{R}_{N}	V.	V _{AB} (v)		I (mA)	
	(V)	(kΩ)	(mA)	(kΩ)	Gerçek Devreler	Eşdeğer Devreler	Gerçek Devreler	Eşdeğer Devreler	
Devre 1	0,10	1,803	0,499	1,803	0,90		0,14	0,14	
Devre 2	0,63	0,873	0,721	0,873	0,13		0,11	0,11	

- 2. Aşağıda verilen devreleri simülasyon aracında kurunuz.
 - **R**_L direnci devreye bağlı değilken A ve B noktaları arasındaki gerilimleri <u>ölçüp</u>, Tablo 7'ye <u>kaydediniz</u>. **R**_L direncini A-B uçlarına taktıktan sonra **R**_L direncinden geçen akımı <u>ölçüp</u>, Tablo 7'ye <u>kaydediniz</u>.
 - Devrelerin Thévenin eşdeğerini kurup **R**L direncinden geçen akımı <u>ölçerek</u> Tablo 7'deki eşdeğer devreler sütunlarını **doldurunuz**.
- 1. Devrenin parametreleri: V1 = 5v, R1 = 10k, R2 = 2.2k, RL = 4.7k
- 2. Devrenin parametreleri: V1 = 5v, R1 = 2.2k, R2 = 4.7k, R3 = 1k, RL = 4.7k

2. Süperpozisyon (Toplamsallık) Teoremi:

Şu ana kadar yapılan deneylerde sadece tek bir üreteç kullanılmıştır. Devrelerde birden fazla üreteç kullanılıyor olabilir. Bu deneyle bir devrede birden fazla üreteç kullanıldığında devrenin nasıl etkilendiği incelenecektir.

• Tablo 8'de istenilen değerleri hesaplayınız.

6,9

- Şekil 10'da verilen devreyi kurunuz. (Üreteçlerin ve ölçü aletinin bağlantı yönlerine dikkat ediniz.)
- Devreye sadece V1 üretecini bağlayınız (V2 üretecini S2 TKÇA Anahtarı aracılığıyla devreden çıkarınız.) ve R_L üzerinden geçen akımın yönüne dikkat ederek <u>ölçüp</u> Tablo 8'e yazınız.
- Devreye V2 üretecini bağlayınız (V1 üretecini S1 TKÇA Anahtarı aracılığıyla devreden çıkarınız.) ve R_L üzerinden geçen akımı yönüne dikkat ederek <u>ölçüp</u> Tablo 8'e <u>yazınız</u>.
- Devreye hem V1 hem de V2 üretecini bağlayınız ve R_L üzerinden geçen akımın yönüne dikkat ederek ölçüp Tablo 8'e <u>yazınız</u>.

V1 = 5v, V2 = 3.3v, R1 = 100, R2 = 100, RL = 220

Tablo 8									
	V1 (v)	V2 (v)	I (mA)						
Hesap	- 5		-9,26						
Ölçme	- 5								
Hesap		3.3	+6,11						
Ölçme		3.3							
Hesap	-5	3.3	-3,15						
Ölçme	- 5	3.3							