CSE 1003

DLD

Assessment – 4

L27+L28
WINTER SEMESTER 2019-20

February 21, 2020

by

SHARADINDU ADHIKARI 19BCE2105

Aim: To design the BCD to seven segment circuit (use seven segment display to show the output)

Truth Table:

	Α	В	C	D	Е	F	G	Н	1	J	K
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	1	0	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

Boolean

expression: E = A+CD+BD+B'D' F = B'+C'D'+CD G = B+C'+D

H = B'D' + CD' + B'C + BC'D I = B'D' + CD' J = A + C'D' + BC' + BD'

K = A+BC'+CD'+B'C

Logic diagram:

Final output screen:

Test case: a=0, b=1, c=0, d=1, e=1, f=1, g=0, h=0, i=1, j=1, k=1

Result: The BCD to seven segment circuit has been verified in Quartus-II ModelSim Altera.

Aim: To design a 2-bit parallel adder/subtractor circuit.

Truth Table:

A0	A1	В0	B1	C1	S0	S 1	C2
0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0
0	1	0	0	0	0	1	0
1	0	1	0	0	0	1	0
0	1	0	1	0	0	0	1
0	1	0	0	1	1	1	0
1	0	1	0	1	1	1	0
1	1	1	1	1	1	1	1

Logic diagram:

Final output screen:

Test case: s1=1, a0=1, b0=0, c1=0, s2=1, a1=0, b1=0, c2=1

Result: The design and implement 4 line to 2 line priority encoder has been verified in Quartus-II ModelSim Altera.

Aim: To design a 4-bit odd parity generator using a multiplexer.

Logic diagram:

Final output screen:

Test case:	a=1, b=1, c=1, d=1, e=0, f=0, g=1, h=1
Result:	The 4-bit odd parity generator has been verified in Quartus-II ModelSim Altera.

Aim: To design and implement 4 line to 2 line priority encoder.

Truth Table:

	l ₃	l ₂	I ₁	l ₀	O ₁	O ₂
0	0	0	0	0	0	0
1	0	0	0	1	0	0
2	0	0	1	0	0	1
3	0	0	1	1	0	1
4	0	1	0	0	1	0
5	0	1	0	1	1	0
6	0	1	1	0	1	0
7	0	1	1	1	1	0
8	1	0	0	0	1	1
9	1	0	0	1	1	1
10	1	0	1	0	1	1
11	1	0	1	1	1	1
12	1	1	0	0	1	1
13	1	1	0	1	1	1
14	1	1	1	0	1	1
15	1	1	1	1	1	1

Logic diagram:

Test case: $i_0=0, i_1=1, i_2=0, i_3=0, o_1=1, o_2=0$

Result: The design and implement 4 line to 2 line priority encoder has been verified in Quartus-II ModelSim Altera.

Aim: To design a 2 to 4 line decoder.

Logic diagram:

Final output screen:

Test case:	d1=1, en=1, a1=1, a0=1, d2=1, d3=1, d4=0					
Result:	The 2 to 4 line decoder has been verified in Quartus-II ModelSim Altera.					
	end					