1.
$$\int \sin 3\theta \ d\theta =$$

A)
$$3\cos 3\theta + C$$

B)
$$-3\cos 3\theta + C$$

C)
$$-\cos 3\theta + C$$

D)
$$\frac{1}{3}\cos 3\theta + C$$

E)
$$-\frac{1}{3}\cos 3\theta + C$$

2.
$$\int 3^{x^2} x \ dx =$$

A)
$$\frac{3^{x^2+1}}{x^2+1} + C$$

B)
$$\frac{3^{x^2}}{\ln 9} + C$$

C)
$$3^{x^2} \ln 3 + C$$

D)
$$3^{x^3/3} + C$$

E) None of these

3. Let f(x) be defined as below. Evaluate $\int_0^6 f(x) dx$.

$$f(x) = \begin{cases} x & 0 < x \le 2\\ 1 & 2 < x \le 4\\ \frac{1}{2}x & 4 < x \le 6 \end{cases}$$

- **4.** $\int_0^1 \frac{x}{x^2 + 1} \ dx =$
 - A) $\frac{\pi}{4}$
 - B) $\ln \sqrt{2}$
 - C) $\frac{1}{2}(\ln 2 1)$
 - D) $\frac{3}{2}$
 - **E)** ln 2

- **5.** The average value of $g(x) = (x-3)^2$ in the interval [1,3] is
 - **A)** 2
 - B) $\frac{2}{3}$
 - C) $\frac{4}{3}$
 - D) $\frac{8}{3}$
 - E) None of these
- **6.** $\int_0^5 \frac{dx}{\sqrt{3x+1}} =$
 - **A)** $\frac{1}{2}$
 - B) $\frac{2}{3}$
 - **C)** 1
 - **D)** 2
 - E) 6

7. There is a point between P(1,0) and Q(e,1) on the graph of $y = \ln x$ such that the tangent to the graph at that point is parallel to the line through points P and Q. The x-coordinate of this point is

- A) e 1
- B) *e*
- C) -1
- $\mathsf{D)} \ \frac{1}{e-1}$
- E) $\frac{1}{e+1}$

8. Which of the following statements are true?

- I. If the graph of a function is always concave up, then the left-hand Riemann sums with the same subdivisions over the same interval are always less than the right-hand Riemann sum.
- II. If the function f is continuous on the interval [a,b] and $\int_a^b f(x) dx = 0$, then f must have at least one zero between a and b.
- III. If f'(x) > 0 for all x in an interval, then the function f is concave up in that interval.
- A) I only
- B) II only
- C) III only
- D) II and III only
- E) None are true.

9. If $f(x) = \int_2^{2x} \frac{1}{\sqrt{t^3 + 1}} dt$, then f'(1) =

- **A)** 0
- B) $\frac{1}{3}$
- C) $\frac{2}{3}$
- D) $\sqrt{2}$
- E) undefined

10. If $\int_a^b f(x) dx = 3$ and $\int_a^b g(x) dx = -2$, then which of the following must be true?

I.
$$f(x) > g(x)$$
 for all $a \le x \le b$

II.
$$\int_{a}^{b} [f(x) + g(x)] dx = 1$$

I.
$$f(x) > g(x)$$
 for all $a \le x \le b$
II. $\int_a^b [f(x) + g(x)] dx = 1$
III. $\int_a^b [f(x)g(x)] dx = -6$

- A) I only
- B) II only
- C) III only
- D) II and III only
- E) I, II, and III
- **11.** The graph of f is shown below. Approximate $\int_{-3}^{3} f(x) dx$ using the trapezoid rule with 3 equal subdivisions.
 - A) $\frac{9}{4}$
 - B) $\frac{9}{2}$
 - **C)** 9
 - **D)** 18
 - E) 36

- **12.** If $\int_0^k \frac{\sec^2 x}{1 + \tan x} dx = \ln 2$, then the value of k is
 - A) $\pi/6$.
 - B) $\pi/4$.
 - C) $\pi/3$.
 - D) $\pi/2$.
 - E) π .

13. The graph of the function f on the interval [-4,4] is shown below. $\int_{-4}^{4} |f(x)| dx =$

14. The acceleration of a particle moving along the x-axis at time t > 0 is given by $a(t) = \frac{1}{t^2}$. When t = 1 second, the particle is at x = 2 and has velocity -1 unit per second. If x(t) is the particle's position, then the position when t = e seconds is

A)
$$x = -2$$
.

B)
$$x = -1$$
.

C)
$$x = 0$$
.

D)
$$x = 1$$
.

E)
$$x = 2$$
.

15. The area enclosed by the two curves $y = x^2 - 4$ and y = x - 4 is given by

A)
$$\int_{0}^{1} (x - x^{2}) dx$$

B)
$$\int_{0}^{1} (x^{2} - x) dx$$

C)
$$\int_{0}^{2} (x - x^{2}) dx$$

D)
$$\int_{0}^{2} (x^{2} - x) dx$$

E)
$$\int_0^4 (x^2 - x) \ dx$$