Trees Ivan Velkov

2020

What is a tree

Non linear data structure

Recursive

Set of Nodes

Definitions

Root

Edge

Child

Parent

Leaf

Height

Depth

HTML

Arithmetic expressions

Binary Tries

"In computer science, a binary tree is a tree data structure in which each node has at the most two children, which are referred to as the left child and the right child."—

Wikipedia

Binary Tries

Binary Tries

```
class Node
       int key;
       Node left, right;
       public Node(int item)
               key = item;
               left = right = null;
```


Array representation

Used for complete trees

$$Arr[(i-1)/2] = parent node$$

$$Arr[(2 * i) + 1] = left child$$

$$Arr[(2 * i) + 2] = right child$$

Binary Heap

Used for priority queue

Heapsort – n log n

"A Binary Search Tree is sometimes called ordered or sorted binary trees, and it keeps its values in sorted order, so that lookup and other operations can use the principle of binary search"—Wikipedia

Insertion

Search

Deletion

- No children
- 1 child
- 2 children

Insertion – O(h)

Search – O(h)

Deletion – O(h)

h - Average O(log n) Worst O(n)

Balanced tree

Balanced tree
Perfectly balanced tree
Rotations

Rotations

There are 4 cases in all, choosing which one is made by seeing the direction of the first 2 nodes from the unbalanced node to the newly inserted node and matching them to the top most row.

Root is the initial parent before a rotation and Pivot is the child to take the root's place.

AVL tree

Self balancing tree – automatically keeps its height low

BalanceFactor(N) := Height(RightSubtree(N)) - Height(LeftSubtree(N))

BalanceFactor(N) \in {-1, 0, 1}

AVL tree

Homework

Modify the BST from the lecture into an AVL tree.

What to keep in the node

Value – mandatory

Children – mandatory

Height?

Parent?

Count of Nodes in the subtree?

Tons more depending on the situation

Tree Traversal

BFS - 1234567

DFS - 1245367

Pre order – Same as DFS

In order - 4251637

Post order - 4526731

Task

Given two BSTs (Binary Search Tree) that may be unbalanced, convert them into a balanced BST that has minimum possible height.

Note: You don't have to keep the two input trees.

Trees usage

- Maps Set of unique values
- Dicts Set of unique keys and values

Strategies for repeating keys

Confidential | ©2018 VMware, Inc.

25

Thank You

