- 3 $\triangle ABC$ は AB=c , BC=a , $\angle D=90^\circ$ の直角 3 角形である.いま, $\triangle ABC$ の斜辺 BC の n 等分点を ,点 B に近いものから順次 $P_1,\,P_2,\,\cdots\cdots$, $P_k,\,\cdots\cdots$, P_{n-1} とする.このとき
- (1) ベクトル $\overrightarrow{AP_k}$ をベクトル \overrightarrow{AB} , \overrightarrow{BC} および n , k を用いて表せ . また , ベクトル $\overrightarrow{AP_{k-1}}$, $\overrightarrow{AP_k}$ の内積 $(\overrightarrow{AP_{k-1}},\overrightarrow{AP_k})$ を a , c および n , k を用いて表せ .
- (2) $P_0=B$, $P_n=C$ とするとき , 次の極限値を求めて , この値は a のみを用いて表せることを示せ .

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} (\overrightarrow{AP_{k-1}}, \overrightarrow{AP_k})$$