习题. 设M为一个非空集合, $\phi:M\to M$, $N\subseteq M$ 。 令 $\mathscr{A}=\{P|P\subseteq M$ 且 $N\subseteq P,\phi(P)\subseteq P\}$, $G=\cap_{P\in\mathscr{A}}P$ 。试证: $(1)G\in\mathscr{A}$; $(2)N\cup\phi(G)=G$ 。

证明. (1) 易验证 $G \subseteq M \perp N \subseteq G$, $\phi(G) \subseteq G$, 从而 $G \in \mathscr{A}$ 。

(2) 由 $N \subseteq G$, $\phi(G) \subseteq G$ 知 $N \cup \phi(G) \subseteq G$ 。以下证明 $G \subseteq N \cup \phi(G)$ 。首先验证

$$G = N \cup \phi(N) \cup \ldots \cup \phi^n(N) \cup \ldots \tag{1}$$

由此易得 $G \subseteq N \cup \phi(G)$ 。