Python Data Structures and Libraries

Task 1 - Tuple, List, Set, Dictionary, Pandas and NumPy Practice

Muhammad Haseeb

Task Objectives

Tuple Practice

- Create a tuple for the first 5 students containing their StudentID and Name.

List Practice

- Store the marks (Math, Science, English) of top 5 students in a list.
- Calculate and print the average score using this list.

Set Practice

Extract all unique genders from the dataset and store them in a set.

Dictionary Practice

Pick any one student and create a dictionary with keys: "Name", "Gender", and
 "Marks" (another dictionary for their subjects and scores).

Pandas Practice

- Load the dataset using Pandas.
- Display the first 10 rows.
- Check missing values.
- Add a new column called "Total" which sums all subject scores.
- Find and print details of the top 5 students with the highest total marks.

NumPy Practice

- Convert all numeric scores into a NumPy array.
- Calculate and print the mean, max, and standard deviation for each subject.
- Use filtering to display all students with "Math" >= 85 and "Science" >= 90.
- Count how many male and female students scored above 240 total marks.

1 Importing Libraries and Reading the Dataset

```
import pandas as pd
import numpy as np

df = pd.read_csv("Dataset 1.csv")
print("First 10 rows:")
print(df.head(10))
```

Output

First 10 rows:

	StudentID	Name	Gender	Math	Science	English
0	1	Megan	M	94	97	50
1	2	Katherine	F	53	53	89
2	3	Robert	F	59	69	71
3	4	Jonathan	M	86	73	56
4	5	William	M	74	74	62
5	6	Richard	M	51	88	89
6	7	Kristen	F	73	96	74
7	8	Kevin	M	67	87	75
8	9	Thomas	F	63	58	59
9	10	Brandy	M	70	66	55

2 Top 5 Students by Total Marks

```
df['Total'] = df[['Math', 'Science', 'English']].sum(axis=1)
top_5 = df.sort_values(by='Total', ascending=False).head(5)
print(top_5)
```

Output

	${\tt StudentID}$	Name	Gender	Math	Science	English	Total
95	96	Sabrina	M	90	86	98	274
36	37	Jennifer	F	99	86	84	269
78	79	Sandra	М	78	97	90	265
69	70	Kelly	F	88	97	79	264
94	95	Wendy	М	98	85	77	260

3 Tuple Practice

```
student_tuples = tuple(zip(df['StudentID'][:5], df['Name'][:5]))
print(student_tuples)
```

Output

```
((1, 'Megan'), (2, 'Katherine'), (3, 'Robert'), (4, 'Jonathan'), (5, 'William'))
```

4 List Practice

```
marks_list = top_5[['Math', 'Science', 'English']].values.tolist()
all_scores = [score for student in marks_list for score in student]
average_score = sum(all_scores) / len(all_scores)
print("Average score of top 5 students:", round(average_score, 2))
```

Output

Average score of top 5 students: 88.8

5 Set Practice

```
genders = set(df['Gender'].dropna())
print(genders)
```

Output

```
{'M', 'F'}
```

6 Dictionary Practice

```
student = df.iloc[0]
student_dict = {
    "Name": student['Name'],
    "Gender": student['Gender'],
    "Marks": {
        "Math": student['Math'],
        "Science": student['Science'],
        "English": student['English']
    }
}
print(student_dict)
```

Output

```
{'Name': 'Megan', 'Gender': 'M', 'Marks': {'Math': 94, 'Science': 97, 'English': 50}}
```

7 NumPy Practice

```
scores = df[['Math', 'Science', 'English']].to_numpy()
print("Mean per subject:", np.mean(scores, axis=0))
print("Max per subject:", np.max(scores, axis=0))
print("Std Dev per subject:", np.std(scores, axis=0))
```

Output

Mean per subject: [73.73 75.89 72.7]

Max per subject: [99 98 98]

Std Dev per subject: [14.62043433 14.96789564 14.17779955]

8 Filtering Students with High Scores

```
filtered_df = df[(df['Math'] > 85) & (df['Science'] > 90)]
print(filtered_df)
```

Output

```
StudentID
               Name Gender Math Science English
0
           1 Megan
                         М
                              94
                                      97
                                               50
                                                     241
69
          70 Kelly
                         F
                              88
                                      97
                                               79
                                                     264
```

9 Gender Count of High Scorers

```
high_scorers = df[df['Total'] > 240]
gender_counts = high_scorers['Gender'].value_counts()
print(gender_counts)
```

Output

```
Gender
```

F 14 M 13

Name: count, dtype: int64