PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	(51) International Patent Classification 6:		NODER THE PATENT COOPERATION TREATY (PCT)	
	C08F 8/00, C08J 5/18 // (C08F 210/02	A1	(11) International Publication Number:	WO 95/11929
	220:06)		(43) International Publication Date:	4 May 1995 (04.05.95)
- 1	(21) International Applications			

(21) International Application Number:

PCT/US94/12366

(22) International Filing Date:

27 October 1994 (27.10.94)

(30) Priority Data:

08/143,799 27 October 1993 (27.10.93) US 08/144,173 27 October 1993 (27.10.93) US

(71) Applicant: CHEVRON CHEMICAL COMPANY [US/US]; P.O. Box 5047, San Ramon, CA 94583-0947 (US).

(72) Inventors: WANG, James, H.; 1325 E. Overland Road, Appleton, WI 54915 (US). ROSENDALE, David; 205 Len Drive, Mauriceville, TX 77632 (US). KUFKOV, Victor, P.; 66 Dunfries Terrace, San Rafael, CA 94901 (US). THEARD, Leslie, P.; 10050 Westpark #1003, Houston, TX 77042 (US). CHING, Ta, Yen; 10 Santa Yorma Court, Novato, CA 94945 (US). COMPTON, Lewis, R.; 2705 East Tanager Trails, Orange, TX 77632 (US). EICHELBERGER, Mitchell, P.; 42 Meadowridge Place, Woodlands, TX 77381 (US). PALMGREN, Tor, H., G.; 2509 International Avenue, Orange, TX 77632 (US).

(74) Agents: HOLLAND, Charles, D. et al.; Chevron Corporation, Law Dept., P.O. Box 7141, San Francisco, CA 94120-7141 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: LOW-HAZE IONOMERS OF COPOLYMERS OF ALPHA-OLEFINS, CARBOXYLIC ACID ESTERS, AND OPTIONAL COMONOMERS, AND PROCESSES FOR MAKING AND ACIDIFYING THESE IONOMERS

(57) Abstract

Ionomer compositions which have improved optical properties are disclosed. These compositions comprise ionomers which can be represented as the polymerization product of alpha-olefins having from two to eight carbon atoms, esters of alpha, beta-ethylenicallyunsaturated carboxylic acids, metal salts of acrylic and methacrylic acid, and optional alpha, beta-ethylenically-unsaturated comonomers which impart some desired polymer property or properties, such as acidity and/or solvent resistivity. Also disclosed are methods of making these ionomer compositions in a reactive extruder and treating the compositions with acid to impart acidity to the compositions or to only the surface of the compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Austria	GB	United Kingdom	MR	Mauritania
Australia	GE			Malawi
Barbados	GN	Guinea		Niger
Belgium	GR	Greece		Netherlands
Burkina Faso	HU	Hungary		Norway
Bulgaria	IE	Ireland		New Zealand
Benin	IT	Italy		Poland
Brazil	JР	•		Portugal
Belarus	KE	-		Romania
Canada		•		Russian Federation
Central African Republic				Sudan
Congo				Sweden
Switzerland	KR			Slovenia
Côte d'Ivoire				Slovakia
Cameroon				Senegal
China				Chad
Czechoslovakia				Togo
Czech Republic		3		Tajikistan
Germany				•
Denmark				Trinidad and Tobago Ukraine
Spain				United States of America
Finland		-		Uzbekistan
France				Viet Nam
Gabon			***	VICT NAME
	Australia Barbados Belgium Burkina Faso Bulgaria Benin Benzil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Spain Finland France	Australia GE Barbados GN Belgium GR Burkina Faso HU Bulgaria IE Benin IT Brazil JP Belarus KE Canada KG Central African Republic KP Congo Switzerland KR Côte d'Ivoire KZ Cameroon LI China LK Czechoslovakia LU Czech Republic LV Germany MC Denmark MD Spain MG Finland ML France MN	Australia GE Georgia Barbados GN Guinea Belgium GR Greece Burkina Faso HU Hungary Bulgaria IE Ireland Benin IT Italy Brazil JP Japan Belarus KE Kenya Canada KG Kyrgystan Central African Republic Congo Switzerland KR Republic of Korea Switzerland Cameroon LI Liechtenstein China LK Sri Lanka Czechoslovakia LU Luxembourg Czech Republic of Monaco Denmark MD Republic of Moldova Spain MG Madagascar Finland ML Mali France MN Mongolia	Australia GE Georgia MW Barbados GN Guinea NE Belgium GR Greece NL Burkina Faso HU Hungary NO Bulgaria IE Ireland NZ Benin IT Italy PL Brazil JP Japan PT Belarus KE Kenya RO Canada KG Kyrgystan RU Central African Republic KP Democratic People's Republic SD Congo of Korea SE Switzerland KR Republic of Korea SI Còte d'Ivoire KZ Kazakhstan SK Cameroon LI Liechtenstein SN China LK Sri Lanka TD Czechoslovakia LU Luxembourg TG Czech Republic LV Latvia TJ Germany MC Monaco TT Denmark MD Republic of Moldova UA Spain MG Madagascar US Finland ML Mali UZ France MN Mongolia

- 1 -

1	LOW-HAZE IONOMERS OF COPOLYMERS OF ALPHA-OLEFINS, CARBOXYLIC
2	ACID ESTERS, AND OPTIONAL COMONOMERS, AND PROCESSES FOR
3	MAKING AND ACIDIFYING THESE IONOMERS

<u>BACKGROUND</u>

This invention provides new polymeric ionomer compositions which have low haze. Low haze makes the compositions especially suited for use in clear packaging films, in addition to the other applications in which ionomers are utilized. This invention also provides a method for making these new polymeric compositions and for modifying the acidity of the compositions.

The compositions comprise ionomers which can be represented 12 as the polymerization product of alpha-olefins having from 13 two to eight carbon atoms, esters of alpha, beta-14 ethylenically-unsaturated carboxylic acids, metal salts of 15 acrylic and methacrylic acid, and optional alpha, beta-16 ethylenically-unsaturated comonomers which impart some 17 desired polymer property or properties, such as acidity 18 and/or solvent resistivity. These ionomer compositions can 19 20 easily be formed into films.

21 Ionomers which can be formed into films and methods of making ionomers are known in the art. Although these 22 previously-known ionomers have similar chemical constituents 23 24 to the ionomer compositions of this invention, the known ionomers have significantly different properties from the 25 26 compositions of this invention. In addition, the known processes for making ionomers are also quite different from 27 the method of making compositions of the present invention. 28

Japanese patent number Sho 49-31556 to Iwami et al., dated
Aug. 22, 1974, discloses a process for making ionomers which
comprises saponifying copolymers of ethylene and alpha,

- 2 -

beta-ethylenically-unsaturated carboxylate esters with a 1 basic metal compound in aliphatic alcohol or in an organic 2 solvent containing an aliphatic alcohol. The copolymer is 3 homogeneously or heterogeneously dispersed in the alcohol The saponified product can be further acidified 5 6 to provide a composition having acid groups. ionomers which have acid functionality are said to have low haze, no haze values are provided for ionomers which have no 8 acid functionality. 9

Japanese patent number Sho 53-134591 to Harada et al., dated 10 11 Nov. 24, 1978, discloses a film made by the process of Sho 49-31556 which is said to be useful for stretch-wrap 12 13 applications. Their ionomer comprises a copolymer having 90-98 mole percent ethylene, 9.7 to 2.0 mole percent of an 14 15 alkyl ester of an unsaturated carboxylic acid, 0 to 2.5 mole percent of unsaturated carboxylic acid, and 0.3 to 2.5 mole 16 percent of a metal salt of an unsaturated carboxylic acid. 17 It is stated that their film has very good mechanical, 18 19 thermal, and optical properties, but the film is limited to 20 having less than 9.7 mole percent ester because blocking 21 occurs between film layers. In addition, the copolymer is 22 limited to a maximum of 2.5 mole percent metal salt of an 23 unsaturated carboxylic acid due to the viscosity of the copolymer being too high to allow processing of the 24 25 copolymer. All copolymers in the films of the examples 26 contain an unsaturated carboxylic acid component, which, the 27 patent states, are used to adjust the modulus of elasticity 28 and transparency of the film.

U.S. patent number 5,218,057, issued to V. Kurkov and
L. Theard on June 8, 1993 and which is incorporated by
reference in its entirety, teaches a process for saponifying
an ethylene alkyl acrylate copolymer which comprises adding
an aqueous solution of an inorganic alkali metal base to a

- 3 -

molten ethylene-alkyl acrylate copolymer and mixing the

2 alkali metal base and copolymer at a temperature sufficient

for saponification to take place and at which the ethylene-

4 alkyl acrylate copolymer remains in a molten or fluid state.

5 Copolymers made by this process have lower tensile strength,

lower gloss, and much higher haze than the copolymers of the

7 present invention.

6

- 8 U.S. patent number 4,638,034 to McClain, dated Jan. 20, 1987
- 9 and which is incorporated by reference in its entirety,
- claims a process for preparing an ethylene-acrylic acid
- copolymer salt which comprises saponifying an ethylene-alkyl
- acrylate copolymer in the molten state, in the absence of
- solvent or water other than by-product alkanol, with alkali
- 14 metal hydroxide or alkaline earth metal hydroxide under non-
- static mixing conditions so as to thereby form alkanol and
- an alkali metal or alkaline earth metal salt of ethylene-
- acrylic acid copolymer, and separately recovering the
- alkanol and the salt.
- U.S. patent number 3,970,626 to Hurst et al., dated July 20,
- 20 1976, discloses a copolymer of ethylene, alkyl acrylate or
- 21 methacrylate, and an alkali metal salt of acrylic or
- methacrylic acid. Although this patent is mainly concerned
- with forming copolymers which form stable aqueous emulsions,
- the patent states that the copolymer can be extruded into
- films of good flexibility. Copolymers in the examples are
- formed using a batch autoclave. It is stated that about a
- one-fold excess of sodium hydroxide over what is
- theoretically required is used to convert the ester groups.
- U.S. patent number 4,042,766 to Tatsukami et al., dated Aug.
- 30 16, 1977 and which is incorporated by reference in its
- entirety, provides a method for preparing ionically cross-
- 32 linked copolymers comprising melt-blending a copolymer

- 4 -

1 comprising 1) ethylene and 2) at least one alkyl acrylate or 2 methacrylate where the alkyl is selected from the group consisting of isopropyl or tert-butyl, with 3) at least one 3 metal compound selected from the group consisting of 4 acetates, formates, and oxides of zinc, magnesium, calcium, 5 and sodium, and maintaining the molten blend at a 6 7 temperature of about 200 to 320°C. The patent states that high mixing efficiency is desirable in the reaction 8 equipment to assure uniform dispersion of the metal compound 9 into the ester copolymer and to assure quick evaporation of 10 the low molecular-weight byproducts, such as by melt-11 blending the components. Per the patent, adequate mixing 12 was provided by a 20 mm-diameter single-screw extruder 13

having a retention time of about one minute, as illustrated

in Evample 1 of that patent.

14 15

U.S. patent number 3,789,035 to Iwami et al., dated Jan. 29, 16 1974 and which is incorporated by reference in its entirety, 17 discusses three methods for acidifying an ionomer of a 18 copolymer of ethylene and an ester of an alpha, beta-19 ethylenically-unsaturated carboxylic acid. 20 The ionomer is made by saponifying a copolymer of ethylene and an ester of 21 er alpha, beta-ethylenically-unsaturated carboxylic acid 22 with a basic metal compound in a solvent containing an 23 24 The patent states that the alcohol is used to promote the reaction of the basic metal compound with the 25 26 copolymer. The ionomer is then acidified by either 1) adding acid and replacing some of the basic metal with 27 hydrogen; 2) melt-blending a polymer having acid groups with 28 29 an ionomer; or 3) exchanging a non-alkali metal ion with the alkali metal ion on the ionomer which has been dispersed in 30 31 a solvent.

U.S. patent number 3,264,272 to Rees, dated Aug. 2, 1966,claims a composition comprising a random copolymer of an

- 5 -

1 alpha-olefin having from two to ten carbon atoms, an alpha, beta-ethylenically-unsaturated carboxylic acid having from 2 three to eight carbon atoms in which 10 to 90 percent of the 3 acid is neutralized with metal ions, and an optional third mono-ethylenically unsaturated comonomer such as methyl 5 methacrylate or ethyl acrylate. This copolymer is acidic 6 7 due to the carboxylic acid groups present in the copolymer. 8 U.S. patent number 3,404,134 discloses the process for making these compositions, which comprises reacting an 9 10 ethylene acrylic acid copolymer with a metal compound at a pressure between 100 and 10,000 psi and a temperature above 11 12 the melt-point of the copolymer.

U.S. patent number 5,189,113 to Muehlenbernd et al., dated 13 Feb. 23, 1993, discloses a process for making ionically 14 cross-linked copolymers of ethylene and alpha, beta-15 16 ethylenically-unsaturated carboxylic acids or alpha, betaethylenically-unsaturated comonomers donating carboxyl 17 18 groups, such as anhydrides. This process requires reacting 19 the copolymer with a solid metal compound in a mixing zone 20 of a twin-screw extruder and subsequently pumping in water. The advantages for this process are said to be that no 21 discoloration of the ionomer occurs because no corrosion of 22 23 the twin-screw extruder occurs, and no specks of unreacted 24 solid metal compound are found in the ionomer film.

25 U.S. patent number 5,003,001 to Hasenbein et al., dated Mar. 26 26, 1991, claims a process for making ionically cross-linked 27 copolymers of ethylene and alpha, beta-ethylenicallyunsaturated carboxylic acids or alpha, beta-ethylenically-28 29 unsaturated comonomers donating carboxyl groups, such as 30 anhydrides. This process reacts the copolymer with an 31 aqueous metal salt solution in a first reaction zone at a 32 temperature from 140 to 180°C to form ionomer and completely 33 devolatilizes the ionomer in a second, three-stage

- 6 -

- devolatilization zone at a temperature from 200 to 270°C.
- 2 This process is said to provide odor-free ionomer film which
- 3 is free of specks.
- 4 Although there has been much research in the area of
- 5 ionomers, what has been lacking in the prior art is
- 6 optically clear ionomers comprising copolymers of alpha
- 7 olefins having two to eight carbon atoms, esters of alpha,
- 8 beta-ethylenically-unsaturated carboxylic acids, and metal
- 9 salts of alpha, beta-ethylenically-unsaturated carboxylic
- acids as well as methods of making those ionomers. This
- invention provides such compositions and methods.

SUMMARY OF THE INVENTION

- In one embodiment, the invention comprises a copolymer of
- alpha-olefins having from two to eight carbon atoms, esters
- of alpha, beta-ethylenically-unsaturated carboxylic acids
- having from four to twenty-two carbon atoms, and metal salts
- of acrylic or methacrylic acid, wherein this copolymer has a
- haze of no more than ten percent as measured by ASTM method
- **19** D 1003.
- 20 In one preferred embodiment, the invention comprises a
- 21 copolymer of ethylene, methyl acrylate, and sodium salt of
- acrylic acid, wherein the haze of the copolymer is no more
- than five percent.
- In another embodiment, the invention comprises a method of
- making an ionomer composition. This method comprises
- 26 contacting a Group IA metal-containing solution with a
- 27 molten or fluid copolymer comprising alpha-olefins having
- from two to eight carbon atoms and esters of alpha, beta-
- ethylenically-unsaturated carboxylic acids having from four
- 30 to twenty two carbon atoms and having a melt index between
- about 100 and about 2000 g/10 min., as measured by ASTM

- 7 -

1	method D 1239 at 190°C using a 2.16 kg weight; and
2	intensively mixing the copolymer and Group IA metal-
3	containing solution at a temperature and to an extent which
4	provides an ionomer composition having no more than ten
5	percent haze.

- In another embodiment, the invention comprises a method of reducing the water solubility of an ionomer composition formed into a shape such as strands, pellets, or film, which method comprises contacting a surface of the shape with an acid.
- Among other factors, the present invention is based on our 11 finding that films of the composition as described herein 12 have very low haze, particularly when the films are made 13 after saponifying a copolymer as described above under 14 conditions which include intensive mixing, a greater extent 15 of saponification, and higher reaction temperatures. 16 haze is no more than ten percent, and many films have a haze 17 of no more than five or even two percent. 18 Furthermore, in a 19 preferred embodiment, the composition has improved properties such as improved tensile strength, hot tack 20 21 strength, and/or heat seal strength over ionomers of similar 22 composition.
- In addition to the properties discussed above, many of the compositions of this invention have no acidity, regardless of the extent of saponification. These advantages and others are further described below.

<u>DESCRIPTION OF THE FIGURES</u>

Figure 1 is a scanning electron micrograph of a freezefractured cross-section of 3-mil thick film made from an ionomer composition of this invention, taken at a magnification factor of 8,000.

- 8 -

- Figure 2 is a scanning electron micrograph of a freezefractured cross-section of 3-mil thick film of ionomer of Comparative Example G. Figure 2 illustrates that spherical and oblong ionic clusters or regions are present in the ionomer. This micrograph was also produced at a magnification factor of 8,000.
- A JEOL JSM-820 scanning electron microscope was used to generate the micrographs. The micrographs of Figures 1 and 2 show the fracture surface of films which were made by the blown film process of the examples.
- Figure 3 shows the hot-tack of ionomer of this invention from Example 24 as a function of temperature. The ordinate is temperature in °C, and the abscissa is hot-tack, measured in Newtons/inch. Line 1 is 35% hydrolyzed ionomer, line 2 is 42% hydrolyzed ionomer, and line 3 is 50% hydrolyzed ionomer.
- Figure 4 shows the heat seal strength of the ionomer/polyethylene film of Example 26 as a function of temperature. The ordinate is temperature in °F and the abscissa is the heat seal strength in lb/inch.

<u>DETAILED DESCRIPTION OF THE INVENTION</u>

A) Compositions

21

- Compositions of this invention can be represented as the copolymerization product which contains the following comonomers:
- 26 (a) alpha-olefins having from 2 to 8 carbon atoms,
- (b) esters of alpha, beta-ethylenically-unsaturatedcarboxylic acids,

- 9 -

1 (c) metal salts of acrylic or methacrylic acid, and

(d) optionally, other alpha, beta-ethylenically-unsaturated
 comonomers which impart desirable polymer properties.

4 These compositions have no more than ten percent haze,

5 preferably no more than seven percent haze, and more

6 preferably, no more than five percent haze. The most

7 preferred compositions have no more than two percent haze.

8 Additionally, these compositions have very good hot tack

strength, heat seal strength, and mechanical properties such

as tensile strength. Acid functionality can also be

introduced into these ionomers.

9 10

Examples of compositions of this invention include ethylene-12 methyl acrylate-sodium acrylate ionomer, ethylene-methyl 13 methacrylate-sodium methacrylate ionomer, ethylene-ethyl 14 acrylate-sodium acrylate ionomer, ethylene-propylene-methyl 15 acrylate-sodium acrylate ionomer, ethylene-propylene-methyl 16 methacrylate-sodium methacrylate ionomer, ethylene-methyl 17 acrylate-lithium acrylate ionomer, ethylene-methyl acrylate-18 19 potassium acrylate ionomer, ethylene-methyl acrylatecobalt(II) or (III) acrylate ionomer, ethylene-methyl 20 acrylate-zinc acrylate ionomer, ethylene-methyl acrylate-21 titanium(II), (III), or (IV) acrylate ionomer, ethylene-22 methyl acrylate-magnesium acrylate ionomer, ethylene-methyl 23 24 acrylate-iron(II) or (III) acrylate ionomer, ethylene-methyl acrylate-nickel(II) or (III) acrylate ionomer, ethylene-25 methyl acrylate-copper(I) or (II) acrylate ionomer, 26 ethylene-methyl acrylate-acrylic acid-sodium acrylate 27 28 ionomer, ethylene-methyl methacrylate-methacrylic acid-29 sodium methacrylate ionomer, ethylene-methyl acrylate-sodium 30 acrylate ionomer grafted with maleic anhydride, ethylene-31 methyl acrylate-maleic anhydride-sodium acrylate ionomer,

- 10 -

- and acrylic acid-grafted-(ethylene-methyl acrylate-sodium
- acrylate) ionomer.
- Monomer (a) comprises alpha-olefins having from 2 to 8
- 4 carbon atoms. Preferably, monomer (a) comprises alpha-
- olefins having from 2 to 3 carbon atoms, and more
- preferably, monomer (a) consists essentially of ethylene.
- Monomer (b) comprises esters of alpha, beta-ethylenically-
- 8 unsaturated carboxylic acids having from 4 to 22 carbon
- 9 atoms. Preferably, monomer (b) has from 4 to 13 carbon
- atoms, and more preferably has from 4 to 8 carbon atoms.
- Examples of monomer (b) include methyl acrylate, methyl
- methacrylate, ethyl acrylate, ethyl methacrylate, butyl
- acrylate, and butyl methacrylate. Methyl acrylate is the
- preferred monomer (b).
- Monomer (c) is a metal salt of acrylic or methacrylic acid.
- The metal ion is selected from Group IA, Group IIA, and
- transition metal ions. The metal ions may also be aluminum,
- gallium, germanium, and tin. Other examples include
- 19 lithium, sodium, potassium, rubidium, cesium, calcium,
- magnesium, zinc, titanium, iron, cobalt, nickel, and copper.
- Preferably, the metal ion is a Group IA or Group IIA metal
- ion, and more preferably, the metal ion is a Group IA metal
- ion. Most preferred is sodium. Monomer (c) is about 25 to
- 24 99 mole percent of the total amount of (b) and (c) present
- in a composition. Preferably, monomer (c) is about 35 to
- 26 80, and more preferably, is about 40 to 60, mole percent of
- 27 the total amount of (b) and (c) present in a composition.
- Typically, a composition of this invention contains from
- about 1 to 20 mole percent of monomers (b) and (c) in total.
- Preferably, a composition contains about 3.5 to 12.5 mole
- percent, and more preferably, about 5.5 to 10 mole percent

- 11 -

- of monomers (b) and (c). Most preferred is a composition
- 2 containing about 7.5 to 10 mole percent of monomers (b) and
- 3 (c).
- 4 Monomer (d) is an alpha, beta-ethylenically-unsaturated
- 5 comonomer which imparts certain desired polymer properties.
- 6 The amount and type of monomer (d) is determined by the
- 7 particular properties that are desired in the final
- 8 composition. For example, monomer (d) may be acrylic or
- 9 methacrylic acid which is present in an amount that provides
- the desired acid functionality to the composition. Other
- examples of monomer (d) include maleic anhydride and maleic
- acids to impart acidity, acrylonitrile to impart solvent
- resistance, and styrene to increase the rigidity of the
- composition. Typically, the compositions contain 0 to 10
- mole percent of monomer (d). Preferred compositions contain
- 16 0 to 5 mole percent of monomer (d).
- Monomer (d) can also be added by grafting a group such as
- acrylic acid or maleic anhydride to a composition of the
- present invention or to one of the composition's precursors.
- As a result, compositions can comprise grafted (ethylene,
- 21 (meth)acrylate, metal salt of (meth)acrylic acid)
- copolymers. Maleic anhydride-grafted (ethylene, methyl
- acrylate, sodium acrylate) copolymer is one such
- 24 composition.
- The ionomer compositions of this invention have a number of
- surprising features which distinguish them from other
- ionomers having similar chemical constituents. The ionomers
- of this invention are quite clear. Haze is typically no
- more than 5 percent. Also, in one preferred embodiment, the
- 30 60° gloss is typically at least 100, and in many instances,
- is at least 120. In another preferred embodiment, tensile
- strength of the composition is improved over ionomers of

- 12 -

similar composition by 100-300 percent. Hot-tack strength

2 and heat seal strength can also be improved over ionomers of

3 similar composition. Combinations of these improved

4 features are present in some preferred compositions of this

5 invention.

16

For example, the haze, gloss, and tensile strength of 6 ionomer of this invention are substantially different from 7 the haze, gloss, and tensile strength of ionomer made by the 8 process of U.S. Pat. № 5,218,057. Ethylene-methyl acrylate 9 copolymer having about 20 weight percent (about 7.5 mole 10 11 percent) methyl acrylate and having about 65% of the methyl acrylate saponified with aqueous sodium hydroxide according 12 13 to the process of U.S. Pat. № 5,218,057 had a haze of 15% and 60° gloss of 66. Tensile strength of an ethylene-methyl 14 acrylate copolymer having 20 weight percent methyl acrylate 15

which had about 60% of the methyl acrylate groups saponified

with aqueous sodium hydroxide according to the process of

U.S. Pat. № 5,218,057 was 1582 psi in the machine direction.

A composition of the present invention made by saponifying

an ethylene-methyl acrylate copolymer having about 20 weight

21 percent methyl acrylate with aqueous sodium hydroxide to

convert about 65% of the methyl acrylate groups had a haze

of 2%, gloss of 133, and tensile strength in the machine

24 direction of 4010 psi.

The ionomers of this invention also can be formed into very thin film. When blowing film, the blow-up ratio can be as

high as 2:1 to about 2.5:1. Typically, a film of ionomer of

this invention can have a thickness of less than about 1

mil. Film having a thickness of about 0.5 mil has been

made, and film having a thickness of about 0.2 - 0.3 mil can

31 be made on conventional processing equipment.

- 13 -

The morphology of prior art ionomers can also differ 1 substantially from the morphology of ionomers of this 2 invention. The morphology of prior art ionomers can also 3 differ substantially from the morphology of ionomers of this invention. Prior-art ionomers can contain highly localized 5 and large clusters of ionic material dispersed throughout the ionomer. Scanning-electron micrographs have shown that 7 these clusters can range in size from about 0.05 micron to 8 9 greater than 1 micron in size.

Figure 2 is a scanning-electron micrograph for the ionomer 10 of Comparative Example G. This ionomer consists essentially 11 of ethylene, 5.7 mole percent methyl acrylate, and 1.8 mole 12 percent of the sodium salt of acrylic acid. 13 The spherical or oblong ionic clusters evident in this micrograph range in 14 size from about 0.1 micron to about 0.5 micron. 15 clusters were determined to be ionic by energy-dispersive 16 X-ray spectroscopy, which showed a higher sodium content 17 within the clusters when compared to the surrounding 18 19 continuous phase.

Figure 1 is a scanning-electron micrograph for ionomer 20 composition of this invention, which consists essentially of 21 ethylene, 3.7 mole percent methyl acrylate, and 3.7 mole 22 23 percent of the sodium salt of acrylic acid. This ionomer composition is substantially free of ionic clusters of the 24 size seen in Figure 2, since essentially no ionic clusters 25 are observed in this micrograph. An ionomer composition 26 which is substantially free of ionic clusters contains 27 essentially no ionic clusters about 0.05 micron in size or 28 larger when a freeze-fractured cross-section of 3-mil thick 29 blown film which is made by the method of Example 1 is 30 viewed with a scanning electron microscope at a 31 magnification factor of 8,000. An ionomer composition which 32 is substantially free of ionic clusters will also have a 33

- 14 -

1 haze of no more than ten percent. The ionomer composition

- of Figure 1 corresponds to the composition of Example 12,
- which had a haze of 3%. The large flecks of debris in
- 4 Figure 1 are believed to be foreign matter. The flecks are
- 5 not regions having high sodium content.
- 6 Additives well-known in the art may be included in the
- 7 ionomer, such as anti-block and slip additives and anti-
- 8 oxidants. Preferably, the composition of this invention
- 9 also contains a polymeric acid having a molecular weight of
- less than about 10,000, such as ethylene acrylic acid.
- 11 Ionomer compositions containing these low molecular weight
- acids are disclosed in copending U.S. Ser. No. 08/188,848,
- filed Jan. 31, 1994, which is incorporated by reference in
- its entirety herein.

B) Method for making the compositions

- One method for making compositions of this invention
- comprises saponifying a copolymer having ester groups with a
- 18 Group IA metal-containing solution. To obtain the clear
- ionomer compositions of this invention, it is important to
- 20 provide intensive mixing of the copolymer and the Group IA
- 21 metal-containing solution and to have a temperature and/or
- extent of saponification high enough that a substantially
- uniform saponification of the copolymer occurs. This method
- 24 minimizes the production of localized ionomer regions or
- domains, which appear as the spherical and oblong ionic
- clusters of Figure 2. This method also permits a greater
- extent of saponification of the copolymer without obtaining
- a saponified product that has so high of a viscosity that it
- cannot be formed into a film on conventional equipment.
- 30 Intensive mixing of the reaction components results from
- 31 selection of reactants with the appropriate physical and
- chemical characteristics and selection of the proper

- 15 -

processing conditions. Particular processing conditions are discussed below for a reactive extruder. However, the general principles disclosed therein apply to processes which are equivalent to saponifying a copolymer with a Group IA metal-containing solution in a reactive extruder.

(1) Reactants

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

(a) Copolymer to be saponified The copolymers which are saponified comprise copolymers of ethylene, esters of alpha, beta-ethylenically-unsaturated carboxylic acids, and optional alpha, beta-ethylenicallyunsaturated comonomers which impart desirable polymer properties. Typically, these copolymers contain from about 1 to 20 mole percent of esters of alpha, beta-ethylenicallyunsaturated carboxylic acids in total. Preferably, the copolymers contain about 2 to 20 mole percent, more preferably 3.5 to 12.5 mole percent, and even more preferably, about 5.5 to 12.5 mole percent of esters of alpha, beta-ethylenically-unsaturated carboxylic acids in Most preferred are those copolymers containing about 6.5 to 10 mole percent of esters of alpha, betaethylenically-unsaturated carboxylic acids. The preferred esters are alkyl acrylates. Preferably, the alkyl group contains from one to eight carbon atoms, and more preferably contains from one to four carbon atoms. Methyl is a preferred alkyl group.

Examples of the copolymers which are saponified include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene-methyl acrylate copolymer, ethylene-propylene-methyl methacrylate copolymer, ethylene-methyl acrylate-acrylic acid copolymer, ethylene-methyl methacrylate-methacrylic acid copolymer, maleic anhydride-grafted-ethylene-methyl acrylate copolymer, ethylene-methyl

- 16 -

acrylate-maleic anhydride copolymer, acrylic acid-graftedethylene-methyl acrylate copolymer, and ethylene-methyl
acrylate-butyl acrylate copolymer. Preferably, the
copolymers are ethylene-methyl acrylate copolymer, ethylenemethyl methacrylate copolymer, ethylene-ethyl acrylate
copolymer, maleic anhydride-grafted-ethylene-methyl acrylate
copolymer, and ethylene-methyl acrylate-butyl acrylate

8 copolymer. Most preferred is ethylene-methyl acrylate

9 copolymer.

The melt index of copolymers to be saponified should be 10 between about 100 and 2000, preferably between about 200 and 11 800, and more preferably between about 300 and 600 grams/10 12 Copolymers having higher melt-index values are 13 minutes. preferred when it is desired to have a saponified 14 composition with a higher melt index. One process for 15 making these copolymers comprises polymerizing ethylene, 16 alkyl acrylate and/or alkyl methacrylate, and the optional 17 comonomer in autoclaves using free-radical initiation 18 19 This process is described in U.S. Patent № 3,350,372, which is incorporated by reference in its 20 entirety. The copolymers of the examples were made by this 21 method, unless specified otherwise. In one preferred 22 embodiment, the ethylene-alkyl acrylate copolymer is made by 23 the process described in copending U.S. Ser. No. 07/947,870, 24 filed Sep. 21, 1992 (published as WO 93/06137), which is 25 26 incorporated by reference in its entirety herein. Copolymer made by this process has a substantially higher melt-point 27 28 temperature than the copolymer made by the process of U.S. Patent No. 3,350,372. The ionomer of this invention has 29 30 high melt point temperature and high clarity when made with this copolymer. Another process for producing copolymers 31 32 useful in making the ionomer compositions of this invention comprises free-radical polymerization of ethylene and alkyl 33 acrylate and/or alkyl methacrylate as described above, 34

- 17 -

followed by reactive extrusion with a compound such as acrylic acid or maleic anhydride. Alternatively, grafting may be performed after saponification. A particularly preferred copolymer is ethylene-methyl acrylate copolymer having between about 5.5 and 12.5 mole percent methyl acrylate and having a melt index of about 400 g/10 min., available from Chevron Chemical Company as EMAC® copolymer.

(b) Group IA metal-containing solution 8 The Group IA metal-containing solution comprises a Group IA 9 metal in a solvent, which solvent does not prevent 10 saponification of an ester by the Group IA metal. 11 solvent is preferably one which evaporates readily under 12 devolatilization conditions typically encountered in 13 reactive extruders. Solvents can be organic or inorganic, 14 and common solvents include water, alcohols, and 15 16 polyethylene glycols, with water being preferred.

The Group IA metal-containing solution has at least one
Group IA metal present. Preferably, the solution comprises
an aqueous solution of a Group IA metal oxide and/or
hydroxide, such as oxides and hydroxides of lithium, sodium,
potassium, rubidium, and/or cesium. Preferably, the
Group IA metal-containing solution comprises aqueous sodium
hydroxide or aqueous potassium hydroxide.

24

25

26

27

28

29

30

31 32 It is important that the overall concentration of metals in the Group IA metal-containing solution is low enough that the solution is capable of being mixed uniformly and intensively with melted copolymer in a reaction section of a reactive extruder. However, it is preferred to have only that amount of solvent present that is necessary to provide this capability. Normally, a sufficient quantity of solvent is present when the Group IA metal-containing solution contains little or no excess solvent beyond that required to

- 18 -

solubilize essentially all of the Group IA metal and other

metals present. Thus, for example, 50% aqueous caustic

3 solution is preferred over 35% aqueous caustic solution.

4 The Group IA metal-containing solution may optionally

5 contain other metal oxides, hydroxides, and/or salts which

6 supply cations for monomer (c). The metal ions can be

7 alkaline earth or transition-element metals. Specific

8 examples of these metals include calcium, magnesium, zinc,

9 titanium, cobalt, nickel, and copper. Typical anions

include hydroxide, halide, acetate, propionate, decanoate,

and stearate ions, with acetate ions being preferred anions.

The hydroxide form is also preferred.

13 Instead of being present in the Group IA metal-containing

solution, metal ions (including Group IA metal ions) may

optionally be incorporated into the ionomer composition of

this invention by other methods. One method is to first

saponify a copolymer by the method of this invention, then

totally or partially replace the ion of this ionomer

composition with other metal ions under ion-exchange

conditions, or to react the ionomer composition with an

21 aqueous metal hydroxide. For example, an ion-exchange

solution comprising an aqueous solution of zinc oxide or

zinc acetate may be mixed with a sodium ionomer composition

of this invention in a section of a reactive extruder to

replace at least a portion of the sodium ions with zinc

26 ions.

29

27 Examples of metal ions which may be exchanged include the

alkaline metals, alkaline earth metals such a magnesium,

transition metals such as titanium, cobalt, copper, and

zinc, and other metal ions such as aluminum, gallium,

31 germanium, and tin.

- 19 -

The anion of a salt used to ion-exchange the ionomer is 1 preferably one which is easily washed out of the ionomer and 2 separated from it during filtration. Alternatively, the 3 anion is preferably one which forms an easily-evolved 4 compound or one which evolves or whose products of 5 decomposition evolve at devolatilization conditions in a 6 reactive extruder. Typical anions include chloride, 7 acetate, propionate, decanoate, and stearate ions. Acetate 8 9 ions are preferred.

(2) Reactive Extruder

10

A reactive extruder which is useful in producing 11 compositions of this invention comprises an extruder having 12 a copolymer feed section, one or more reaction sections, a 13 subsequent devolatilization section, and an extrusion 14 section. Typically, these sections are separately jacketed 15 to allow for heating or cooling within each section. 16 sections can also be vented with one or more vent ports per 17 section to allow the escape of volatile components, such as 18 the solvent for the Group IA metal solution and byproducts 19 of the saponification reaction, such as alcohols. 20 Generally, the reactive extruder will also have optional 21 means for introducing reactants into any reaction sections 22 as well as means for mixing components in the reaction 23 section(s) and means for conveying the components through 24 the extruder. Typically, the means for mixing and conveying 25 components to be reacted are screws. 26

Reactive extruders can have a single screw or multiple screws. Each screw typically has a central shaft with a key-way or spline upon which mixing elements are secured. The reactive extruder may have either co-rotating or counter-rotating screws.

- 20 -

Typically, copolymer to be reacted is fed to the screw 1 through a loss-in-weight feeder, and the solid copolymer is 2 melted in a feed section of the reactive extruder. 3 embodiments, all reactants (i.e. copolymer and Group IA 5 metal-containing solution) can be fed to the reactive extruder through a feed section. In a preferred embodiment, 6 copolymer is introduced into the reactive extruder in a feed 7 8 section, and the Group IA metal-containing solution is fed 9 to one or more reaction sections. A devolatilization section is a convenient means for removing any solvent and 10 11 byproducts of the saponification reaction from the 12 saponified composition. Equivalent or additional means for 13 removing volatile components can be used, however, such as 14 drying the ionomer composition under reduced pressure in a 15 falling-film evaporator.

One reactive extruder which was particularly effective in 16 producing compositions of this invention is a Werner-17 18 Pfleiderer co-rotating and intermeshing twin-screw extruder. 19 The reactive extruder had a feed section, a reaction 20 section, a devolatilization section, and a pressurization or pumping section which pushed the product through an 21 The devolatilization section had a first 22 extrusion die. portion which was vented to a condenser maintained at 23 24 atmospheric pressure, and a second portion of the devolatilization section was vented with sufficient vacuum 25 26 and capacity to remove essentially all of the volatile 27 components from compositions prior to conveying and extruding them. 28

Typically, copolymer pellets are introduced into a feed section of a reactive extruder, where the pellets are heated and worked by the screw to form molten or fluid copolymer.

The screw elements also convey the molten copolymer from this feed section to a first reaction section, where the

- 21 -

molten copolymer and Group IA metal-containing solution are

2 mixed intensively.

9

3 Intensive mixing can be supplied by incorporating one or

4 more reverse-flow elements along with neutral or reverse-

flow kneading blocks on the screw in a reaction zone. The

6 copolymer to be saponified and the Group IA metal-containing

7 solution should be mixed as uniformly and as quickly as

8 possible to provide a fairly uniform reaction of metal-

containing solution with the molten copolymer. Mixing

should be of sufficient intensity that saponification of

only localized areas is prevented.

12 This intensive mixing is of greater intensity than that

required in the prior-art processes of U.S. Pat. Nº 4,638,034

and U.S. Pat. № 4,042,766. For example, a Werner-Pfleiderer

Model ZSK-40 twin-screw reactive extruder had the

configuration of screw elements detailed in Table 1 column

17 A. This screw design provided intensive mixing of the

18 Group IA metal-containing solution with copolymer in the

reaction section through a combination of left-handed

elements and neutral kneading blocks. It is believed that

21 the left-handed elements in the reaction section provide

momentary retardation of polymer flow in addition to a shear

23 zone due to impeded and/or reversed flow of the reaction

24 mass, while the neutral kneading blocks imparted intensive

25 mixing and promoted additional shear. Most of the

26 compositions of this invention were produced at a screw

speed of about 400 to 550 rpm. High screw speeds help to

28 assure intensive mixing.

29 TABLE 1

30 ELEMENT COLUMN A COLUMN B COLUMN C
31 NUMBER

- 22 -

1	1	40/20		
		40/201	PKR/10 ²	PKR/10
2	2	60/60	20/10	20/10
3	3	60/60	42/42	42/42
4	4	40/40	42/42	42/42
5	5	40/40	42/42	28/28
6	6	40/40	28/28	28/28
7	7	40/20	28/28	28/28
8	8	40/40	20/20	20/20
9	9	25/25	20/20	20/20
10	10	KB45/5/40 ³	20/20	20/20
11	11	KB45/5/40	KB45/5/28	20/10
12	12	25/25	KB45/5/28	KB45/5/28
13	13	25/25	20/20	KB45/5/28
14	14	25/25	20/20	20/20
15	15	40/20 LH ⁴	KB90/5/28	20/20
16	16	25/25	20/10 LH	20/10 LH
17	17	KB90/5/40	20/20	20/10 LH
18	18	25/25	20/20	20/10 LH
19	19	KB90/5/40	KB45/5/28	20/20
20	20	25/25	20/10	20/20
21	21	40/20 LH	20/20	KB45/5/28
22	22	25/25	20/20	20/10
23	23	KB90/5/40	KB90/5/28	20/20
24	24	25/25	20/20	20/20
25	25	KB90/5/40	KB45/5/14 LH	KB90/5/28
26	26	25/25	KB45/5/14 LH	20/20
27	27	40/20 LH	20/20	KB45/5/14 LH
28	28	KB45/5/20 LH	20/20	KB45/5/14 LH
29	29	25/25	KB90/5/28	20/20
30	30	25/25	20/20	20/20
31	31	25/25	20/20	KB90/5/28
32	32	25/25	20/20	20/20
33	33	25/25	20/20	20/20
34	34	40/40	20/20	20/20
11			•	1

- 23 -

1	35	40/40	KB90/5/28	20/20
2	36	40/40	20/20	KB90/5/28
3	37	KB45/5/20 LH	20/20	20/20
4	38	40/40	20/20	20/20
5	39	40/40	20/20	20/20
6	40	40/40	20/20	20/20
7	41	40/40	20/20	KB90/5/28
8	42	25/25	20/20	20/20
9	43	25/25	20/20	20/20
10	44	25/25	KB90/5/28	20/10
11	45	25/25	20/20	20/20
12	46	25/25	20/20	20/20
13	47	25/25	20/10 LH	20/20
14	48	25/25	20/10 LH	20/20
15	49	25/25	20/20	20/20
16	50	25/25	20/20	20/20
17	51	25/25	20/20	20/20
18	52	25/25	20/20	20/20
19	53	25/25	42/42	20/20
20	54	25/25	42/42	20/20
21	5 5	25/25	42/42	42/42
22	56		20/20	42/42
23	57		20/20	42/42
24	58		20/20	28/28
25	59		20/20	20/20
26	60		20/20	20/20
27	61		•	20/20
28 N	OTES:			

29

30

31

32

1. All elements were right-handed elements unless designated otherwise. The first number is the pitch, given in distance (mm) traveled in one revolution. The second number is the length of the element (mm).

- 24 -

- The PKR element is a wedge-shaped adapter which
 provides a taper from the 1/2 inch shaft to the first
 element of the screw.
- 3. KB indicates a kneading block. The first number is the angle formed by the paddles on the kneading block when compared to the line through the screw shaft, in degrees. The second number is how many paddles are on one element. The third number is the length of the element (mm).
- 4. "LH" indicates a left-handed element.

(3) Reaction conditions

11

15

Reaction temperature, feed-rate of reactants, and extent of saponification are also important processing parameters when

making compositions of this invention.

(a) Reaction temperature

Compositions of this invention are typically produced where 16 the barrel temperature in the reaction section(s) of the 17 extruder is between about 200 and 350°C, although some clear 18 ionomers were prepared at a temperature between about 150 19 20 Any reaction temperatures discussed herein refer and 200°C. to the barrel temperatures of the extruder. 21 The actual temperature of the melted polymer is believed to be lower 22 than the measured barrel temperature because of heat-23 transfer limitations. 24

Preferably, the reaction temperature is between 225 and 25 26 350°C, and, more preferably, the temperature is between about 275 and 350°C. The upper limit of the temperature 27 range is determined by the temperature at which the 28 copolymer or composition degrades. The lower limit of the 29 temperature range is the temperature at which 1) the 30 copolymer to be reacted is in a molten or fluid state; 31 2) essentially all of the Group IA metal in the Group IA 32

- 25 -

metal-containing solution is consumed by the saponification reaction within the reaction section; and 3) the composition being extruded remains visually clear. As a general rule,

4 higher reaction temperatures as specified in the more

preferable range above provide low-haze ionomers more

6 consistently than lower reaction temperatures.

(b) Feed rate of reactants

The Group IA metal-containing solution is fed in an amount that is effective to achieve the desired extent of saponification of the copolymer being fed to the reactive extruder. Typically, essentially all of the Group IA metal in solution reacts with the copolymer. The Group IA metal-containing solution may be fed to a reaction section batchwise or continuously, or it may be fed intermittently so that the solution is mixed intimately and rapidly with the molten copolymer. A continuous feed is preferred. The Group IA metal-containing solution may also be split between multiple reaction sections and be fed continuously and/or intermittently to any reaction section.

The copolymer to be saponified is fed to the reactive extruder at a rate high enough that the molten polymer forms a molten polymer seal between consecutive segments of a reaction section and between a reaction section and a devolatilization section. This seal can be formed by having a reverse-flow screw element at the desired seal location. The feed-rate should also be low enough that the reaction mass comprising the copolymer to be saponified and the Group IA metal-containing solution does not move through the reaction section so quickly that the reaction mass is not mixed intensively. The feed-rate should also be low enough that the extruded polymer is visually clear, corresponding to no more than ten percent haze.

- 26 -

The copolymer to be saponified may be fed to the extruder batch-wise, intermittently or continuously. A continuous feed is preferred to provide a commercially-attractive process which is easily and effectively controlled.

Typically, the average residence time for reactants in a Werner & Pfleiderer ZSK-40 twin-screw extruder which has a feed section, one reaction section, devolatilization section, and pumping section is about 30 to about 40 seconds at a continuous feed-rate of approximately 100 lb./hr. of polymer to be saponified and at a screw speed of about 500 rpm. The average residence time in the reaction section of this reactive extruder at these conditions is typically about 5 to about 15 seconds.

When the feed-rate is too high to make a composition of this invention, the screw torque will decrease, and the ionomer will turn cloudy. Both of these conditions can be observed almost immediately upon feeding too much copolymer to the extruder. Visually, the extruded copolymer turns from clear to cloudy, and when a strand of the cooled copolymer is pulled in the direction in which it was extruded, the cloudy copolymer turns whitish and opaque.

(c) % saponified

The extent of saponification is defined as the percent of moles of esters of alpha, beta-ethylenically-unsaturated carboxylic acids converted to metal salts of acrylic and methacrylic acid. Compositions of this invention have been produced where the extent of saponification of the ester groups in the copolymer has been between about 25 and 99%. Ionomer which has an extent of saponification below about 25% above are typically cloudy and have poorer gloss, melt strength, and/or tensile strength than compositions of this invention. A greater extent of saponification generally

- 27 -

produces low-haze ionomers more consistently than a low extent of saponification, particularly when the reaction temperature is between about 150 and 225°C.

C) Acidification

4

5

6

7

8

9

10

11

12 13 Acidification of a polymer is a useful method for modifying polymer properties. In one preferred embodiment, ionomers of this invention have essentially no acidity. These ionomers can be represented as copolymers comprising comonomers of alpha-olefins, esters of alpha, beta-ethylenically-unsaturated carboxylic acids, and metal salts of alpha, beta-ethylenically-unsaturated carboxylic acids. The properties of these non-acidic ionomers can be modified by adding acid groups.

14 Also, some of the ionomers of this invention are highly 15 water-dispersible. This can be an advantage for applications where repulpable compositions are desired, such 16 as repulpable paper coatings and adhesives. However, water 17 dispersibility is a problem where the ionomer composition is 18 cooled in a water-bath after saponification, which is a 19 common commercial method of cooling polymers. Much of the 20 ionomer to be cooled can end up dispersed in the cooling 21 water, turning the water a milky white color. 22

23 Other cooling means may be used for handling highly waterdispersible ionomers, such as hot-face cutting or utilizing 24 25 an air-cooled conveyor or a conveyor which has a waterchilled surface to cool the polymer strands or pellets. 26 27 However, these methods are more expensive and less efficient than passing hot polymer in the form of strands, pellets, or 28 29 film through a water bath, and these methods require the 30 installation of new equipment in many existing commercial 31 ionomer production facilities. In addition, ionomer may 32 discolor when using these cooling means, since the ionomer

- 28 -

rapidly oxidizes when it is maintained at elevated temperatures for the extended periods of time inherent in these other cooling means.

(1) Cooling ionomer in an aqueous acid bath In a preferred embodiment, highly water-dispersible ionomer 5 of this invention may be cooled in an acid bath to prevent 6 dispersion of much of the ionomer. Highly water-dispersible 7 ionomer typically has a high sodium acrylate content which 8 makes the ionomer water-soluble. 9 It is believed that ion exchange occurs predominantly on the surface of the polymer 10 when passing hot ionomer strands through the acid bath, 11 replacing metal ions on the surface of the polymer with 12 hydrogen ions from the acid. 13 It is believed that this makes the surface of the strands or pellets acidic and 14 substantially reduces their water solubility. 15

Infrared analysis of ionomer pellets which were cooled in an acid bath detected no acid groups. However, it is believed that the concentration of acid groups in the overall ionomer pellets was so small that it was undetectable by infrared analysis of the bulk ionomer.

Almost any inorganic or water-soluble organic acid can be 21 used in the acid bath. A dilute aqueous solution of a non-22 oxidizing acid is preferred to reduce processing cost and to 23 improve the washing efficiency when rinsing any excess acid 24 off of the polymer. The following list is illustrative of 25 the types of acids which may be used: sulfuric acid, formic 26 acid, propionic acid, oxalic acid, and the like. 27 acids are hydrochloric acid, phosphoric acid, and acetic 28 29 acid.

The temperature of the acid solution is preferably that temperature which produces ionomer which has not discolored

- 29 -

1	and which provides ionomer at the appropriate temperature
2	for any subsequent processing steps, such as drying. The
3	temperature of the acid solution is typically between about
4	5 to 50°C, and preferably is between about 10 and 30°C.

Example 16 illustrates this method for cooling ionomer usingan aqueous acid solution.

(2) Acidification of a clear copolymer of ethylene and esters and metal salts of alpha, beta-ethylenically-unsaturated carboxylic acids

In one embodiment, compositions of this invention have carboxylic acid groups, in which case the compositions can be represented as copolymers comprising comonomers of alphaolefins, esters of alpha, beta-ethylenically-unsaturated carboxylic acids, metal salts of alpha, beta-ethylenically-unsaturated carboxylic acids, and alpha, beta-ethylenically-unsaturated carboxylic acids. Acid groups can plasticize the composition and increase its melt index. This permits tailoring of polymer properties such as polymer flow viscosity, tear strength, polymer reactivity with food, and odor or taste for a particular application.

Acidification of a composition comprising a copolymer of alpha-olefins, esters of alpha, beta-ethylenically-unsaturated carboxylic acids, and metal salts of alpha, beta-ethylenically-unsaturated carboxylic acids can occur in a reaction section of a reactive extruder. Preferably, acidification occurs in a second reaction section when using reactive extrusion, and preferably after the composition comprising the reaction product of a copolymer of alpha-olefins and esters of alpha, beta-ethylenically-unsaturated carboxylic acids has been saponified with a Group IA metal-containing solution in a first reaction section.

- 30 -

Other equipment may be used in place of a reactive extruder 1

for acidification of a saponified composition. For example, 2 3

a Brabender Plasticorder, a resin kettle, or an autoclave

may be used.

A non-oxidizing acid can be used at a temperature and in a 5 concentration which does not cause significant degradation 6 of the copolymer or composition. 7 Typically, the amount of acid required is the amount which provides the desired 8 weight percent of acid groups per combined weight of acid 9 and copolymer to be acidified. Examples of these acids 10 include phosphoric acid, hydrochloric acid, benzoic acid, 11 lactic acid, and stearic acid. Polymeric non-oxidizing 12 acids can also be used, such as ethylene-acrylic acid 13 copolymer, exemplified by Dow Chemical Company's Primacor 14 15 Grade 3330. The non-oxidizing acids may have only one or two monomer units, such as benzoic acid or acetic acid, or 16 they may comprise polymeric acids having multiple monomer 17 units and having a molecular weight well in excess of one 18 million, such as Primacor Grade 3330. Phosphoric acid, 19 lactic acid, and polymer acids are preferred. 20 temperatures for acidification are between about 190 and 21 300°C, and preferably are between about 230 and 300°C. 22 acid concentration is preferably between 10 and 95%. 23

In certain applications or compositions of this invention, 24 any byproducts of acidification can remain in the 25 composition. For other applications or compositions, any 26 byproducts of acidification and/or any excess acid can be 27 removed from the ionomer by washing with water or other 28 solvent and filtering the composition. For example, polymer 29 30 acidified using phosphoric acid can be washed with water in an autoclave. The byproduct salt in the aqueous phase can 31 subsequently be separated from the polymer by filtration. 32

- 31 -

1 (3) Acidification of hazy non-acidic ionomer to improve clarity

Acid can also be used to improve the clarity of an ionomer 3 which has high haze and little or no acid functionality 4 present before acidification. This provides an easy and 5 inexpensive means for rendering these opaque polymers less 6 hazy or even clear. In a preferred embodiment, the adhesion 7 of the acidified polymer improves as well. 8 In another preferred embodiment, the melt index of the ionomer also 9 10 increases.

The ionomer to be acidified has a haze greater than 10% but 11 otherwise has the same chemical analysis of components as 12 described in the preceding section for adding acid functions 13 to a clear but non-acidic ionomer composition of this 14 invention. Acidification is also preferably performed as 15 described in the preceding section. Uniform mixing of the 16 acid and ionomer, as supplied by a reactive extruder, for 17 example, provides a consistent and clearer acidified 18 19 In the examples, the haze of the ionomer to be acidified exceeded 90% and could be reduced in half and even 20 21 by 75%.

The previous section also specifies the types of acids 22 useful for acidifying hazy ionomers. 23 The amount of acid required for acidification is that amount which provides an 24 ionomer film having at most half of the haze that was 25 26 present in the non-acidified ionomer. The amount of acid used also should not exceed that amount which is necessary 27 to provide the greatest reduction in haze for the particular 28 ionomer and acid used. As Tables 22 and 23 show, haze 29 30 begins to increase again once the amount of acid is increased beyond the amount necessary to provide minimum 31 32 haze for the particular ionomer and acid. Therefore, excess

- 32 -

acid beyond the amount required to reduce the haze to its

2 minimum value is to be avoided.

When the acidified ionomer is analyzed, as little as 0.05 3 mole of acidic monomer need be present in the ionomer per mole of the saponified monomer that was originally present 5 in the ionomer prior to acidification. 6 For example, when ethylene-methyl acrylate-sodium acrylate ionomer having greater than 10% haze is made from ethylene-methyl acrylate R copolymer having 20 weight percent methyl acrylate which is 9 25% hydrolyzed using aqueous sodium hydroxide, the ionomer 10 has approximately 5.4 weight percent sodium acrylate, or 11 about 1.9 mole percent sodium acrylate. Acidification of at 12 least 5% of the sodium acrylate groups decreases the haze of 13 Preferably, the amount of acidic monomer in 14 this ionomer. the acidified ionomer is greater than 0.07 mole per mole of 15 hydrolyzed monomer present in the non-acidified ionomer, and 16 preferably the amount of acidified ionomer is greater than 17

D) Uses of the compositions

making clearer ionomers from hazy ionomers.

18 19

20

22 23 Ionomer compositions of this invention can be formed into single or multi-layer films using conventional equipment. For example, cast, extruded, or blown film can be made.

0.1 mole per mole. Examples 20-23 illustrate this method of

24 An ionomer composition of this invention can be coextruded with or laminated to other polymers such as nylon 25 (unoriented and oriented), polyester (unoriented and 26 oriented), polystyrene, vinyl acetate, polyacrylonitrile, 27 28 polyvinylidene dichloride, and polyolefins such as polypropylene (unoriented and oriented), polyethylene (low 29 density, high density, and linear low density), ethylene-30 methyl (meth)acrylate copolymers, ethylene-ethyl 31 (meth)acrylate copolymers, ethylene-(meth)acrylic acid 32 33 copolymers, ethylene-vinyl alcohol copolymers, ethylene

- 33 -

1 vinyl acetate copolymers, and other polymers and their 2 derivatives capable of being coextruded. Typical uses for ionomer compositions of this invention include their use in 3 single-layer or multi-layer films, where they can be used as tie layers or used for imparting flexibility, strength, hot 5 tack, and/or heat seal capabilities. Such uses include 6 7 stretch films, bundling (shrink) wrap, food and drug packaging, and skin packaging for protecting the contents of 8 9 a package.

10

12

13 14

15

16

17 18

19

20 21

Single-layer ionomer film or multi-layer film in which the 11 ionomer is on one face of the film can be used as a surface protection layer for products such as glass, polycarbonate or poly(methyl methacrylate) products, which can be used in windshields for vehicles or windows. The ionomer layer protects products from scratches and/or nicks because of the ionomer's abrasion resistance. The ionomer's adhesion to such substrates is excellent, yet it can be peeled readily from the surface. The transparency of the ionomer of this invention allows visual inspection of the surface of the wrapped product, permitting a customer to inspect a product for flaws prior to receipt and unwrapping of the product.

22 Single-layer ionomer film or multi-layer film containing 23 ionomer of this invention can be used to make easy-open packaging such as easy-tear film, bags, pouches and parcels. 24 25 A tear propagates linearly through the film, and the 26 Elmendorf tear strength of the ionomer indicates that it is 27 well-suited to uses such as easy-opening packaging. 28 package in which the film is incorporated normally is 29 notched or incorporates a tear strip to facilitate ease of 30 opening of the package.

31 The ionomer of this invention can also serve as its own tie layer due to its good adhesion to other layers. 32

- 34 -

eliminates the need for separate tie layers in a multi-layer

2 film, reducing the thickness of the multi-layer film and

3 reducing the overall cost of making the multi-layer film.

4 Ionomer compositions of this invention may also be used in

5 thermally extruded and thermally formed products such as

automotive interior parts and skin packaging. The ionomer

7 compositions may be used alone or in combination with other

polymers in blow-molded or injection molded articles,

particular where such articles need to be grease- and oil-

resistant such as bottles for fragrances or detergents, and

the compositions may also be used in articles such as food

trays formed by vacuum thermo-forming. The ionomer

compositions of this invention may be used in making

articles such as golf ball covers; coated fabrics;

orthopedic, prosthetic and medical devices; recreational

equipment; and footwear components. The ionomer

compositions of this invention are especially useful in

applications where the ionomer properties discussed above,

as well as the excellent abrasion resistance, transparency,

and/or directional tear properties of the ionomer, are

21 useful.

11

Theories discussed herein are intended to provide possible

explanations for what was observed. These theories are not

24 to be interpreted as limiting the invention described

herein. Also, the following examples are illustrative and

are not intended to limit the invention disclosed herein.

EXAMPLE 1

28 An ethylene-methyl acrylate copolymer (manufactured by

29 Chevron by the method disclosed in U.S. Patent

No. 3,350,372) containing 20% by weight methyl acrylate

31 (7.5 mole %) and having a melt index of 400 g/10 min.

32 (190°C) was fed to a Werner & Pfleiderer corrosion-resistant

- 35 -

2SK-40mm twin screw extruder at a rate of 100 lbs./hr. The

extruder had a ratio of length to diameter of about 44. The

3 screw configuration for Examples 1-13 and Comparative

4 Example A is given in Table 1 column A. Aqueous sodium

5 hydroxide (50% NaOH by weight in all examples, except where

6 noted otherwise) was fed to Zone 3 of the extruder at

7 9.3 lbs./hr. The screw speed was 550 rpm.

8

12

13

14

15 16 (°C)

The following extruder temperatures were measured:

9 Table 2 10 Zone No. 1 2 3 4 5 6 7 11 Temperature 236 350 253 253 230 245 260

Note: Zone 1: melting section for polymer to be reacted;
Zone 2 & 3: reaction section;
Zone 4: devolatilization section;
Zones 5-7: extrusion section.

17 Water from the sodium hydroxide solution and the reaction by-product methanol were removed by a two-stage 18 In all examples, the evolved water and 19 devolatilization. 20 methanol from the first devolatilization stage were 21 condensed at atmospheric pressure. The second devolatilization stage was connected to a vacuum system in 22 all examples. The second devolatilization stage had 28.4 23 in. Hg vacuum during this run. 24

The reaction product was extruded through an eight-strand die, cooled on a stainless steel belt (about 20 feet in length, made by Sandvik) which was chilled by cold water underneath the belt, and subsequently pelletized.

The product had a melt flow rate of 0.33 g/10 min. (230°C).

The product had a hydrolysis of 53% (i.e., 53% of the methyl

- acrylate in the ethylene-methyl acrylate copolymer was
- converted to sodium acrylate).
- 3 The polymer was made into blown film on a Victor blown film
- 4 line at the following processing conditions:

6	Zone 1	Zone 2	Zone 3	Adapter	Die 1	Die 2	Die Pressure	Melt Temperature
7	400°F	440°F	515°F	435°F	430°F	440°F	7600 psi	440°F

- 8 The blown film had a thickness of 3.5 mils. The haze of the
- film was 2%, and the 60° gloss was 122. The 1% secant
- moduli of the film were 12,740 and 10,080 psi respectively
- for the machine direction (MD) and the transverse direction
- 12 (TD).
- All haze values were measured using the method of
- ASTM D 1003. The 60° gloss values were measured using the
- method of ASTM D 2457. The 1% secant modulus values and
- tensile strength values were measured using the method of
- 17 ASTM D-638.
- 18 Melt index of feed resin was measured by the method of
- ASTM D 1239, using a temperature of 190°C and a 2.16 kg
- weight. The melt flow rate of a composition of this
- invention was determined by the method of ASTM D 1239 but
- using a temperature of 230°C rather than 190°C and using a
- 23 2.16 kg weight.
- The hydrolysis of the product is defined as the moles of
- metal salt of the alpha, beta-ethylenically-unsaturated
- 26 carboxylic acid present in the product, expressed as a
- percentage of the moles of the ester of alpha,
- 28 beta-ethylenically-unsaturated carboxylic acid present prior

1 to saponifying the copolymer. The terms "hydrolysis",

"extent of hydrolysis", "percent hydrolysis", "percent 2

saponified", and "extent of saponification" are used

interchangeably.

3

11

12

14 15

16

17 18

19

21 22

23

24

25

26

28 29 30

5 The extent of hydrolysis is determined by dissolving 10 q. of ionomer in 250 ml. of tetrahydrofuran (THF) in a 500 ml. 6 round-bottom flask, to which 1 ml. of glacial acetic acid is 7 added. The flask is fitted with a refluxing condenser, and 8 the contents are boiled for about 20 min. 9 The mixture is poured into 1 liter of cold distilled water (about 15-20°C), 10 and then filtered. The precipitate is subsequently washed with about 3 liters of distilled water. The precipitate is dried under vacuum, then weighed and dissolved in THF and 13 titrated with 0.1 N potassium hydroxide in ethanol, using thymol blue to indicate the end-point of titration. extent of hydrolysis is then calculated by dividing the moles of potassium used in titrating the sample by the moles of ester present in the initial ethylene-methyl acrylate copolymer prior to the saponification reaction.

20 EXAMPLE 2

The ethylene-methyl acrylate copolymer of Example 1 was fed to the Werner & Pfleiderer corrosion-resistant ZSK-40mm twin screw extruder at a rate of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3 of the extruder at a rate of 11.2 lbs./hr. The screw speed was 500 rpm.

The following temperatures were measured during the process:

Zone No.	1	2	3	4	5	6	7
Temperature (°C)	271	252	255	256	230	231	241

- 38 -

- 1 The vacuum on the second devolatilization zone was 28.4 in.
- 2 Hg. The reaction product was extruded, cooled on a Sandvik
- 3 belt and pelletized in the same way as Example 1. The
- 4 product had a melt flow rate of 0.20 g/10 min. (230°C). The
- 5 hydrolysis of the product was 65%.
- 6 The polymer was made into blown film on a Victor blown film
- 7 line using the processing conditions similar to those in
- 8 Example 1. The haze of the blown film was 2%, and the 60°
- 9 gloss was 133. The film had a tensile strength of 4010 and
- 3180 psi respectively for MD and TD. The 1% secant moduli
- of the film were 14720 and 13110 psi respectively for MD and
- 12 TD.

EXAMPLE 3

- 14 The ethylene-methyl acrylate copolymer of Example 1 was fed
- to the Werner & Pfleiderer corrosion-resistant ZSK-40mm twin
- screw extruder at a rate of 100 lbs./hr. Aqueous sodium
- hydroxide was fed to Zone 3 on the extruder at a rate of
- 18 12.1 lbs./hr. The screw speed was 500 rpm.
- The following temperatures were measured during the process:

21	Zone No.	1	2	3	4	5	6	7
22 23	Temperature (°C)	218	347	255	255	230	251	260

- The vacuum on the second devolatilization zone was 28.5 in.
- 25 Hg. The reaction product was extruded, cooled on a Sandvik
- 26 belt and pelletized in the same way as Example 1. The
- product had a melt flow rate of 0.1 g/10 min. (230°C). The
- hydrolysis of the product was 70%.

- 39 -

- The polymer was made into blown film on a Victor blown film
- 2 line using the processing conditions similar to those in
- 3 Example 1. The haze of the blown film was 2%, and the 60°
- 4 gloss was 134. The film had a tensile strength of 4470 and
- 5 2420 psi respectively for MD and TD.

EXAMPLE 4

- 7 An ethylene-methyl acrylate copolymer containing 20% by
- 8 weight methyl acrylate and having a melt index of
- 9 570 g/10 min. (190°C) was fed to the Werner & Pfleiderer
- corrosion-resistant ZSK-40mm twin screw extruder at a rate
- of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3
- on the extruder at a rate of 13.0 lbs./hr. The screw speed
- 13 was 500 rpm.
- 14 The following temperatures were measured during the process:

16	Zone No.	1	2	3	4	5	6	7
17 18	Temperature (°C)	178	242	254	252	301	303	289

- The vacuum on the second devolatilization zone was 25.5 in.
- 20 Hg. The reaction product was extruded, cooled on a Sandvik
- 21 belt and pelletized in the same way as Example 1. The
- product had a melt flow rate of 0.87 g/10 min. (230°C). The
- hydrolysis of the product was 69%.
- 24 The polymer was made into blown film on a Victor blown film
- line using the processing conditions similar to those in
- Example 1. The haze of the blown film was 2%, and the 60°
- 27 gloss (ASTM D 2457) was 135. The film had a tensile
- strength of 2870 and 1760 psi respectively for MD and TD.

- 40 -

EXAMPLE 5

9

An ethylene-methyl acrylate copolymer containing 20% by
weight methyl acrylate and having a melt index of
4 440 g/10 min. (190°C) was fed to the Werner & Pfleiderer
corrosion-resistant ZSK-40mm twin screw extruder at a rate
of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3
on the extruder at a rate of 13.0 lbs./hr. The screw speed
was 500 rpm.

The following temperatures were measured during the process:

10			<u> </u>	Table 7				
11	Zone No.	1	2	3	4	5	6	7
12 13	Temperature (°C)	189	257	257	258	251	263	283

The vacuum on the second devolatilization zone was 28.4 in.

Hg. The reaction product was extruded, cooled on a Sandvik
belt and pelletized in the same way as Example 1. The
product had a melt flow rate of 0.81 g/10 min. (230°C). The
hydrolysis of the product was 72%.

The polymer was made into blown film on a Victor blown film line using the processing conditions similar to those in Example 1. The haze of the blown film was 2%, and the 60° gloss was 135. The film had a tensile strength of 2600 and 1850 psi respectively for MD and TD.

EXAMPLE 6

An ethylene-methyl acrylate copolymer containing 23% by
weight methyl acrylate and having a melt index of
500 g/10 min. (190°C) was fed to the Werner & Pfleiderer
corrosion-resistant ZSK-40mm twin screw extruder at a rate
of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3

- 41 -

on the extruder at a rate of 10.7 lbs./hr. The screw speed

2 was 500 rpm.

3 The following temperatures were measured during the process:

Table 8 5 Zone No. 1 2 3 4 5 6 7 6 Temperature 181 247 256 255 255 254 270 7 (°C)

- 8 The vacuum on the second devolatilization zone was 26.7 in.
- 9 Hg. The reaction product was extruded, cooled on a Sandvik
- belt and pelletized in the same way as Example 1. The
- product had a melt flow rate of 0.54 g/10 min. (230°C). The
- hydrolysis of the product was 51%.
- The polymer was made into blown film on a Victor blown film
- line using the processing conditions similar to those in
- Example 1. The haze of the blown film was 2%, and the 60°
- gloss was 124. The film had a tensile strength of 2270 and
- 17 1470 psi respectively for MD and TD.

18 EXAMPLE 7

- An ethylene-methyl acrylate copolymer containing 23% by
- 20 weight methyl acrylate and having a melt index of
- 500 g/10 min. (190°C) was fed to the Werner & Pfleiderer
- corrosion-resistant ZSK-40mm twin screw extruder at a rate
- of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3
- on the extruder at a rate of 12.8 lbs./hr. The screw speed
- 25 was 500 rpm.

17

18

19

20

21

22

23

24

- 42 -

The following temperatures were measured during the process:

2			<u>'</u>	Table 9					
3	Zone No.	1	2	3	4	5	6	7	I
4 5	Temperature (°C)	175	247	253	259	254	257	271	

The vacuum on the second devolatilization zone was 26.6 in.
The reaction product was extruded, cooled on a Sandvik

belt and pelletized in the same way as Example 1. The

product had a melt flow rate of 0.45 g/10 min. (230°C). The

hydrolysis of the product was 61%.

The polymer was made into blown film on a Victor blown film line using the processing conditions similar to those in Example 1. The haze of the blown film was 3%, and the 60° gloss was 132. The film had a tensile strength of 2730 and 1960 psi respectively for MD and TD.

16 EXAMPLE 8

An ethylene-methyl acrylate copolymer containing 23% by weight methyl acrylate and having a melt index of 500 g/10 min. (190°C) was fed to the Werner & Pfleiderer corrosion-resistant ZSK-40mm twin screw extruder at a rate of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3 on the extruder at a rate of 9.6 lbs./hr. The screw speed was 500 rpm.

The following temperatures were measured during the process:

25 Tab	le	10	
25Tab	le	10	

26	Zone No.	1	2	3	4	5	6	7
27 28	Temperature (°C)	193	284	257	259	254	254	271

+ 43 -

- 1 The vacuum on the second devolatilization zone was 26.2 in.
- 2 Hg. The reaction product was extruded, cooled on a Sandvik
- 3 belt and pelletized in the same way as Example 1. The
- 4 product had a melt flow rate of 0.60 g/10 min. (230°C). The
- 5 hydrolysis of the product was 46%.
- 6 The polymer was made into blown film on a Victor blown film
- 7 line using the processing conditions similar to those in
- 8 Example 1. The haze of the blown film was 2%, and the 60°
- gloss was 120. The film had a tensile strength of 1950 and
- 10 1240 psi respectively for MD and TD.

EXAMPLE 9

- An ethylene-methyl acrylate copolymer containing 22% by
- weight methyl acrylate and having a melt index of
- 470 g/10 min. (190°C) was fed to the Werner & Pfleiderer
- corrosion-resistant ZSK-40mm twin screw extruder at a rate
- of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3
- on the extruder at a rate of 14.3 lbs./hr. The screw speed
- 18 was 500 rpm.
- The following temperatures were measured during the process:

21	Zone No.	1	2	3	4	5	6	7
22 23	Temperature (°C)	298	326	255	266	254	254	271

- The vacuum on the second devolatilization zone was 28.4 in.
- 25 Hg. The reaction product was extruded, cooled on a Sandvik
- 26 belt and pelletized in the same way as Example 1. The
- product had a melt flow rate of 0.23 g/10 min. (230°C). The
- hydrolysis of the product was 70%.

- 44 -

The polymer was made into blown film on a Victor blown film line using the processing conditions similar to those in Example 1. The haze of the blown film was 1%, and the 60° gloss was 134. The film had a tensile strength of 3000 and

2170 psi respectively for MD and TD.

EXAMPLE 10

5

An ethylene-methyl acrylate copolymer containing 23% by
weight methyl acrylate and having a melt index of
500 g/10 min. (190°C) was fed to the Werner & Pfleiderer
corrosion-resistant ZSK-40mm twin screw extruder at a rate
of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3
on the extruder at a rate of 8.6 lbs./hr. The screw speed
was 500 rpm.

14 The following temperatures were measured during the process:

15 Table 12

16	Zone No.	1	2	3	4	5	6	7
17 18	Temperature (°C)	177	262	255	253	254	255	270

The vacuum on the second devolatilization zone was 25.8 in.

Hg. The reaction product was extruded, cooled on a Sandvik
belt and pelletized in the same way as Example 1. The
product had a melt flow rate of 1.25 g/10 min. (230°C). The
hydrolysis of the product was 41%.

The polymer was made into blown film on a Victor blown film line using the processing conditions similar to those in Example 1. The haze of the blown film was 4%, and the 60° gloss was 104. The film had a tensile strength of 1910 and 970 psi respectively for MD and TD.

- 45 -

1 EXAMPLE 11

An ethylene-methyl acrylate copolymer containing 20% by 2 weight methyl acrylate and having a melt index of 3 100 g/10 min. (190°C) was fed to the Werner & Pfleiderer 4 corrosion-resistant ZSK-40mm twin screw extruder at a rate 6 of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3 on the extruder at a rate of 4.7 lbs./hr. The screw speed 7 was 500 rpm.

The following temperatures were measured during the process:

10 Table 13

9

11	Zone No.	11	2	3	4	5	6	7
12 13	Temperature (°C)	253	322	254	230	230	231	241

The vacuum on the second devolatilization zone was 28.4 in. 14

The reaction product was extruded, cooled on a Sandvik 15

belt and pelletized in the same way as Example 1. 16

product had a melt flow rate of 0.67 g/10 min. (230°C). 17

18 hydrolysis of the product was 26%.

The polymer was made into blown film on a Victor blown film 19 20 line using the processing conditions similar to those in

Example 1. The haze of the blown film was 3%, and the 60° 21 22

gloss was 115. The film had a tensile strength of 1150 and

23 1080 psi respectively for MD and TD.

24 EXAMPLE 12

25 An ethylene-methyl acrylate copolymer containing 20% by weight methyl acrylate and having a melt index of 26 400 g/10 min. (190°C) was fed to the Werner & Pfleiderer 27 corrosion-resistant ZSK-40mm twin screw extruder at a rate 28

29 of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3

- 46 -

- on the extruder at a rate of 9.3 lbs./hr. The screw speed was 500 rpm.
- 3 The following temperatures were measured during the process:

Table 14

Zone No.	1	2	3	4	5	6	7
Temperature (°C)	209	201	266	255	256	256	256

8 The vacuum on the second devolatilization zone was 24.7 in.

9 Hg. The reaction product was extruded, cooled in a water

bath, and pelletized. The pellets were dried in a vacuum

over at 65°C and 29.5 in. Hg for 48 hours. The product had

a melt flow rate of 0.66 g/10 min. (230°C). The hydrolysis

of the product was 49%.

The polymer was made into blown film on a Victor blown film

line using the processing conditions similar to those in

Example 1. The haze of the blown film was 3%, and the 60°

17 gloss was 128.

5

18 EXAMPLE 13

An ethylene-methyl acrylate copolymer containing 20% by

20 weight methyl acrylate and having a melt index of

21 150 g/10 min. (190°C) was fed to the Werner & Pfleiderer

corrosion-resistant ZSK-40mm twin screw extruder at a rate of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3

on the extruder at a rate of 7.4 lbs./hr. The screw speed

25 was 450 rpm.

24

- 47 -

The following temperatures were measured during the process:

2		,	T	able 15	5			
3	Zone No.	1	2	3	4	5	6	7
4 5	Temperature (°C)	188	199	276	253	257	260	262

- The vacuum on the second devolatilization zone was 28.5 in. Hg. The reaction product was extruded, cooled in a water bath, and pelletized. The pellets were dried in a vacuum over at 65°C and 29.5 in. Hg for 48 hours. The product had a melt flow rate of 0.22 g/10 min. (230°C). The hydrolysis of the product was 42%.
- The polymer was made into blown film on a Victor blown film line using the processing conditions similar to those in Example 1. The haze of the blown film was 4%, and the 60° gloss was 122.

16 EXAMPLE 14

- An ethylene-methyl acrylate copolymer containing 20% by 17 weight methyl acrylate and having a melt index of 18 19 400 g/10 min. (190°C) was fed to a Werner & Pfleiderer 20 ZSK-58mm twin screw extruder at a rate of 425 lbs./hr. The 21 screw was configured to provide substantially the same mixing as provided in the ZSK-40mm extruder in Examples 1-22 23 Aqueous sodium hydroxide was fed to the reaction zone 24 on the extruder at a rate of 56 lbs./hr.
- The screw speed of the extruder was at 500 rpm. The temperatures in the reaction zones were 226°C to 338°C. The product was 71% hydrolyzed. The product had similar optical properties to the product of Example 3.

- 48 -

EXAMPLE 15

An ethylene-methyl acrylate copolymer containing 20% by
weight methyl acrylate and having a melt index of
400 g/10 min. (190°C) was fed to a Werner & Pfleiderer
ZSK-70mm twin screw extruder at a rate of 450 lbs./hr. The

6 screw was configured to provide substantially the same

7 mixing as provided in the ZSK-40mm extruder in Examples 1-

8 13. Aqueous sodium hydroxide was fed to the reaction zone

on the extruder at a rate of 50 lbs./hr.

14

22

The screw speed of the extruder was at 580 rpm. The temperatures in the reaction zones were 330°C to 350°C. The product was 61% hydrolyzed. The product had similar optical properties to the product of Example 3.

COMPARATIVE EXAMPLE A

An ethylene-methyl acrylate copolymer containing 20% by
weight methyl acrylate and having a melt index of
20 g/10 min. (190°C) was fed to the Werner & Pfleiderer
corrosion-resistant ZSK-40mm twin screw extruder at a rate
of 100 lbs./hr. Aqueous sodium hydroxide was fed to Zone 3
on the extruder at a rate of 4.6 lbs./hr. The screw speed
was 400 rpm.

The following temperatures were measured during the process:

23		T	able 1	5					
24	Zone No.	1	2	3	4	5	6	7	1
25 26	Temperature (°C)	216	213	270	269	270	271	270	

The vacuum on the second devolatilization zone was 27.9 in.
Hg. The reaction product was extruded, cooled in a water
bath, and pelletized. The pellets were dried in a vacuum
over at 65°C and 29.5 in. Hg for 48 hours. The product had

- 49 -

- a melt flow rate of 3.2 g/10 min. (190°C). The hydrolysis
- of the product was 15%.
- 3 The polymer was made into blown film on a Victor blown film
- 4 line using the processing conditions similar to those in
- 5 Example 1. The haze of the blown film was 81%, and the 60°
- 6 gloss was 35.
- 7 This Comparative Example A shows that saponifying 15% of the
- 8 methyl acrylate groups to form the sodium salt of acrylic
- 9 acid is insufficient at these reaction conditions to produce
- the low haze of compositions of this invention.

11 <u>COMPARATIVE EXAMPLE B</u>

- An ethylene-methyl acrylate copolymer containing 20% methyl
- acrylate by weight and having a melt index of 400 g/10 min.
- was fed to a Werner & Pfleiderer ZSK-30 corrosion-resistant
- extruder at 13.2 lbs/hr. 1.73 lbs/hr. of 35% sodium
- hydroxide solution was fed to zone 3 of the extruder. The
- extruder had the configuration of elements shown in Table 1
- 18 column B.
- The following extruder temperatures were measured:

20 Table 17

21	Zone No.	1	2	3	4	5	6	7
22 23	Temperature (°C)	230	275	275	275	275	240	235

24 Water and the by-product methanol were removed in a two-

stage devolatilization zone. The polymer strands were

cooled in a water bath and pelletized. The pellets were

vacuum-dried overnight at about 25 in. Hg vacuum and at

28 68°C.

26

- 50 -

- Chemical analysis of the product indicated a degree of
- 2 saponification of 49.2%. The product had a melt index
- 3 (190°C) of 0.54 g/10 min.
- 4 A 1/2 inch Randcastle miniextruder was used to make a cast
- film of about 4 inch width. The temperature at the feed
- zone and barrels 1A through 3A was 430°C, while the die
- 7 temperature was 440°C. The film had a haze of 55% and a 60°
- gloss of 20.
- 9 It is believed that the poor clarity of this example results
- from a more dilute caustic solution and poorer mixing at
- these reaction conditions as compared to the conditions
- which produce compositions of this invention.

COMPARATIVE EXAMPLE C

- An ethylene-methyl acrylate copolymer containing 20% methyl
- acrylate by weight and having a melt index of 400 g/10 min.
- was fed to a Werner & Pfleiderer ZSK-30 corrosion-resistant
- extruder at 13.2 lbs/hr. 2.29 lbs/hr. of 35% sodium
- hydroxide solution was fed to zone 3 of the extruder. The
- extruder had the configuration of elements shown in Table 1
- 20 column B.
- 21 The following extruder temperatures were measured:

23	Zone No.	1	2	3	4	5	6	7
24 25	Temperature (°C)	230	275	275	275	275	240	235

- Water and the by-product methanol were removed in a two-
- 27 stage devolatilization zone. The polymer strands were
- cooled in a water bath and pelletized. The pellets were

- 51 -

- 1 vacuum-dried overnight at about 25 in. Hg vacuum and at
- 2 68°C.
- 3 Chemical analysis of the product indicated a degree of
- 4 saponification of 65.2%. The product had a melt flow rate
- 5 of 0.38 g/10 min. (230°C).
- 6 A 1/2 inch Randcastle miniextruder was used to make a cast
- 7 film of about 4 inch width. The temperature at the feed
- 8 zone and barrels 1A through 3A was 430°C, while the die
- 9 temperature was 440°C. The film had a haze of 15% and a 60°
- **10** gloss of 66.
- 11 This comparative example shows that a greater extent of
- hydrolysis provided clearer ionomer, but mixing conditions
- as supplied by the screw design of Table 1 column B when
- using 35% aqueous caustic did not appear to provide the
- intensive mixing and reaction conditions necessary to obtain
- a haze of 10% or less.

17 <u>COMPARATIVE EXAMPLE D</u>

- 18 Ethylene-methyl acrylate copolymer having 20 weight percent
- methyl acrylate and a 400 melt index (190°C) was saponified
- with a 35% by weight aqueous solution of sodium hydroxide
- 21 per the method of Comparative Example B. The product was
- 22 60% saponified and had a melt index (190°C) of 0.06. The
- 23 tensile strength in the machine direction was 1582 psi.

24 <u>COMPARATIVE EXAMPLE E</u>

- 25 Ethylene-methyl acrylate copolymer having 25 weight percent
- methyl acrylate and a 457 melt index (190°C) was saponified
- with a 35% by weight aqueous solution of sodium hydroxide
- 28 per the method of Comparative Example B. The product was
- 29 44% saponified and had a melt index (190°C) of 0.04. The
- tensile strength in the machine direction was 985 psi.

- 52 -

EXAMPLE 16 -- ACID BATH COOLING OF IONOMER 2 26.4 lbs./hr. of the ethylene-methyl acrylate copolymer of Example 1 were fed to a Werner & Pfleiderer corrosion resistant ZSK-30 twin-screw extruder having the configuration of elements given in Table 1 column C. 50% aqueous sodium hydroxide was fed into zone 3 at 2.5 lb./hr.

7 The screw speed was 500 rpm.

8

The following extruder temperatures were measured:

9	Table 19								
10	Zone No.	1	2	3	4	5	6	7	
11 12	Temperature (°C)	174	200	255	260	254	267	255	

Volatile components were removed in a two port
devolatilization section, and the second port had a vacuum
of 28 in. Hg. The polymer strands from a four-strand die
were cooled in a 5% phosphoric acid bath which was 10 ft.
long, and were then rinsed in a 2 ft. water bath and
pelletized in a Conair pelletizer.

During 1.75 hours of operation, the ionomer was efficiently 19 20 cooled and pelletized, and the acid bath remained acidic and 21 clear with no evidence of dissolved polymer. Total carbon 22 analysis of the cooling water (determined by potentiometric 23 titration) at the end of operation showed less than 20 ppm 24 of dissolved carbon. By contrast, when the same polymer was 25 cooled in water, the water bath became turbid and milkywhite within a few minutes of operation. 26

The resulting pellets were colorless, shiny, and clear.

EXAMPLE 17

- 53 -

This example shows a copolymer of ethylene, methyl acrylate, 1 sodium acrylate, and acrylic acid. First, ethylene-methyl 2 acrylate copolymer having 20 weight percent methyl acrylate 3 and 153 melt index (190°C) was saponified in a Werner-Pfleiderer ZSK-30 twin-screw reactive extruder using 50% 5 6

aqueous sodium hydroxide and substantially the same reaction

conditions as Example 16. The extent of saponification was 7

The pelletized ionomer was clear and glossy and had a 8

melt flow rate (230°C) of 0.17 g/10 min. 9

The ionomer pellets were fed to the extruder at a rate of 12 10

85.6% aqueous phosphoric acid was fed to Zone 3 of 11 kg/hr.

the extruder at a rate of 0.14 kg/hr., and the product was 12

extruded, cooled in a water bath, and pelletized. 13

The product retained its clear and glossy optical 14

properties, and the melt flow rate increased to 1.0 g/10 15

min. (230°C). Film that was made on the Randcastle mini-16

extruder had a tensile strength in the machine direction of 17

18 2418 psi.

19 EXAMPLE 18

Ethylene-methyl acrylate copolymer having 20 weight percent 20 methyl acrylate and 400 melt index (190°C) was saponified in 21 a ZSK-30 extruder having the configuration of elements given 22 in Table 1 column C with 50% aqueous sodium hydroxide at a 23 reaction temperature of about 148°C. 24 The screw speed was 500 rpm. The copolymer was fed to the extruder at a rate of 25 12 kg/hr., and the product was about 54% saponified. 26 product was visually clear. 27

28 COMPARATIVE EXAMPLE F

Ethylene-methyl acrylate copolymer having 20 weight percent 29 methyl acrylate and 400 melt index (190°C) was saponified 30 with 50% aqueous sodium hydroxide in a ZSK-30 extruder 31

- 54 -

having the configuration of screw elements given in Table 1 column B at a reaction temperature of about 149°C. The screw speed was 500 rpm. The copolymer was fed to the extruder at a rate of 16 kg/hr., and the product was about

5 52% saponified. The product was visually cloudy.

This example shows that insufficient mixing was supplied by the screw configuration of Table 1 column B at these reaction conditions.

9 EXAMPLE 19

26.4 lbs./hr. of the ethylene-methyl acrylate copolymer of
Example 1 were fed to a Werner & Pfleiderer corrosion
resistant ZSK-30 twin-screw extruder having the
configuration of elements given in Table 1 column C. 50%
aqueous potassium hydroxide was fed into zone 3 at the rate
given in Table 20. The screw speed was 500 rpm.

The extruder temperatures were substantially the same as those given in Table 19. Volatile components were removed in a two port devolatilization section, and the second port had a vacuum of 28 in. Hg. The following table summarizes the feed rate of potassium hydroxide, the melt flow rate (230°C), and the extent of saponification of the methyl acrylate groups.

23

22

16

17 18

19

20 21

TABLE 20

Feed rate (lb./hr.) of 50% aqueous potassium hydroxide	Melt flow rate of ionomer of this Example	Extent of saponification
1.87	1.66	27
2.62	0.60	37
3.74	0.23	53
5.28	0.07	78

WO 95/11929

8

10

11 12 **-** 55 **-**

1 COMPARATIVE EXAMPLE G

An ethylene-methyl acrylate copolymer containing 20% methyl acrylate by weight and having a melt index of 20 g/10 min.

(190°C) was fed to a Werner & Pfleiderer ZSK-40 corrosionresistant extruder at 100 lbs/hr. 4.7 lbs/hr. of 50% sodium hydroxide solution was fed to zone 3 of the extruder. The screw speed was 275 rpm.

The following extruder temperatures were measured:

Table 21

Zone No.	1	2	3	4	5	6	7
Temperature	200	208	279	280	278	280	281
(°C)			:				

The vacuum on the second devolatilization zone was 27.0 in.

14 Hg. The reaction product was extruded, cooled in a water

bath, and pelletized. The pellets were dried in a vacuum

over at 65°C and 29.5 in. Hg for 48 hours. The product had

a melt index of 1.6 g/10 min. (190°C). The hydrolysis of

the product was 24%.

19 The polymer was made into blown film on a Victor blown film

line using the processing conditions similar to those in

Example 1. The haze of the blown film was 97%, and the 60°

22 gloss was 43.

The SEM micrograph shown in Figure 2 was taken on a freezefractured surface of the blown film made from this ionomer.

EXAMPLE 20

26 Ethylene-methyl acrylate copolymer having 20% by weight

methyl acrylate and a melt index of 20 g/10 min. (190°C) was

28 25% hydrolyzed by the method of Comparative Example A, and

- 56 **-**

this sodium ionomer was ground to 60 mesh-sized powder. 1 grams of the ground ionomer were put into a 500 ml single-2 neck round-bottom flask, and 250 ml of stabilized THF and a 3 magnetic stirrer were added. The above mixture was heated 4 to reflux and stirred for about 10 minutes to ensure that 5 the ionomer dissolved. After dissolution, 1.6 ml of 2 N $\,$ 6 aqueous hydrochloric acid was added to the flask. 7 reaction continued for 2 hours, then the solution was 8 precipitated in 1 liter of cold water, filtered, and dried 9 10 under vacuum.

The reaction produced 9.7 grams of white polymer precipitate 11 having a melt index of 0.9 g/10 min. (190°C). Fourier-12 transform infrared (FT-IR) analysis showed that the 13 carboxylic acid group was present (1708 cm-1, absorbance 14 1.5259) as well as sodium acrylate (1558 cm⁻¹, absorbance 15 1.0294). This indicated that 60% of the sodium acrylate 16 groups present in the ionomer prior to acidification was 17 converted to acid groups, thus giving a stoichiometric 18 reaction of this acid with sodium acrylate. 19 The acidified ionomer was a tetrapolymer of ethylene, methyl acrylate, 20 sodium acrylate, and acrylic acid having about 5.7 mole 21 percent methyl acrylate, 0.8 mole percent sodium acrylate, 22 and 1.1 mole percent acrylic acid. The melt index of the 23 acidified ionomer was 6.3 g/10 min. (190°C). 24

The acidified ionomer had excellent adhesion to a polar 25 substrate such as unprimed aluminum foil. Both non-26 acidified ionomer and acidified ionomer were separately 27 pressed between two pieces of unprimed aluminum foil in a 28 hydraulic press having two heated plates. The pellets and 29 foil were heated without pressure for about 5 minutes at 30 350°C, then the pressure was increased to 20,000 psi and 31 maintained for an additional 5 minutes at 350°C. 32

- 57 -

acidified ionomer sealed the aluminum foil and could not be

separated from it without tearing the foil. The non-

3 acidified ionomer was easily peeled from the foil.

4 Separate films of acidified ionomer and non-acidified

ionomer were each made by placing 0.2 g of the ionomer

between two pieces of Mylar film. The ionomer was heated

7 and pressed as above. The Mylar was separated from the

ionomer with a small amount of acetone. The acidified ionomer film was clear having no above.

ionomer film was clear, having no observable haze and having

an observable high gloss. The non-acidified ionomer film

was opaque, dull, and frosty.

EXAMPLE 21

Example 20 was repeated, except that 0.2556 g of glacial

acetic acid was substituted in place of the hydrochloric

acid. The reaction produced 9.8 grams of acidified ionomer

as a white precipitate. FT-IR analysis indicated that 80%

of the sodium acrylate present in the ionomer prior to

acidification were converted to acid groups. The acidified

ionomer was a tetrapolymer of ethylene, methyl acrylate,

sodium acrylate, and acrylic acid, having about 5.7 mole

21 percent methyl acrylate, 0.4 mole percent sodium acrylate,

and 1.5 mole percent acrylic acid in the acidified ionomer.

The acidified ionomer had a melt index of 11.7 g/10 min.

24 (190°C).

The acidified ionomer produced a clear film with no

observable haze and observably high gloss. The non-

acidified ionomer produced opaque, dull, and frosty film.

The acidified ionomer also exhibited excellent adhesion to

29 aluminum foil, particularly when compared to the non-

30 acidified ionomer.

31

- 58 -

An ethylene-methyl acrylate copolymer having 20 weight percent methyl acrylate and a melt index of 153 g/10 min.

3 (190°C) was 35% hydrolyzed by the method of Comparative

4 Example A. The melt index of this ionomer was 9.7 g/10 min.

5 (190°C), and the haze of a cast film was 98%, the 60° gloss

6 was 6, and the tear strength (g/mil) in the machine

7 direction was 33 and in the transverse direction was 41.

This ionomer was fed continuously at a rate of 10 kg/hr to the Werner-Pfleiderer ZSK-30 extruder which was maintained at 210°C. Primacor Grade 3330 was also fed continuously to the extruder in the ratio given below, and the properties of a cast film of the acidified copolymer made on the

Randcastle mini-extruder are listed in Table 22.

14 15

16 17 18 Table 22

- 1						
	Kg. Primacor per Kg. Ionomer	Melt index (g/10 min. @ 190°C	Haze (%)	60° gloss	Tear strength, g/mil, machine direction	Tear strength g/mil, trans- verse direc- tion
	0.076	6.6	48	18	26	21
	0.152	5.6	70	11	24	38
	0.228	4.3	82	9	18	57

19 20

21

22 23

24 25

26 27 EXAMPLE 23

The non-acidified ionomer of Example 22 was fed continuously to the extruder at a rate of 8 kg/hr. and was acidified using 21.5% phosphoric acid, as detailed below. The properties of a cast film of the acidified copolymer made on the Randcastle mini-extruder are listed in Table 23.

- 59 -

Table 23

				DIE 23		
2 3 4 5	Kg H ₃ PO ₄ (21.5%)/ kg. ionomer	Melt index (190°C)	Haze (%)	60° gloss	Tear strength (g/mil), machine direction	Tear strength (g/mil), trans- verse direc- tion
6	0.0375	8.0	46	18	28	36
7	0.0738	20.0	23	51	45	43
8	0.1113	36.3	23	51	71	49
9	0.1488	57.3	32	35	79	70

Tear strength was measured using the method of ASTM D-1922.

EXAMPLE 24

An ethylene-methyl acrylate copolymer having 20 weight percent methyl acrylate was saponified substantially by the method of Example 1. The percent hydrolysis and properties of the polymer are listed in the following Table 24.

SCANT MELT ELMENDORF ELONGA- S, PSi POINT TEAR TION @ TEMP. STRENGTH, BREAK, % % TD MD TD MD 7667 77 12 14 350 376 14054 76 17 24 420 434	0 7
MELT POINT TEMP. °C	326
MELT POINT TEMP. °C	22 326 405
	26
ANT PSi TD 7667	73
	7718
TABLE 24 SILE	8193
	1984
TENSI STRENG' PSi MD 1709 1	2321
,, , , , , , , , , , , , , , , , , , , ,	140
% HAZE 13.3	0.5
* HYDRO- LYZED 35	50

Melt point temperature was measured using a differential scanning calorimeter Elmendorf tear strength was measured using ASTM D-1922. Elongation at break was measured using ASTM D-882. and standard methods well-known in the art.

- 61 -

The hot tack strength for these ionomers is summarized in Figure 3.

EXAMPLE 25

Samples of ethylene methyl acrylate copolymer having the 4 methyl acrylate contents in following Table 25 were 5 saponified to various degrees of hydrolysis using 6 substantially the method of Example 1. In addition, 7 ethylene methyl acrylate copolymers made by the method of U.S. Ser. No. 07/947,870, filed Sep. 21, 1992, where all of 9 the methyl acrylate was fed to a first reaction zone of a 10 multi-zone high-pressure polymerization reactor, were 11 saponified to various degrees of hydrolysis. 12 summarizes the melt point temperatures of these ionomers. 13

14 <u>Table 25</u>

15 16 17

WT. % METHYL ACRYLATE	ETHYLENE METHYL ACRYLATE COPOLYMER MADE BY METHOD OF U.S. 3,350,372		ETHYLENE METHYL ACRYLATE COPOLYMER MADE BY METHOD OF U.S. SER. NO. 07/947,870		
	% HYDROLYZED	MELT POINT TEMP., °C	% HYDROLYZED	MELT POINT TEMP., °C	
12	62	90	60	97	
12	86	83	83	99	
12			83	98	
12	100	87	99	93	
20			35	92	
20	47	87	42	91	
20	51	86	50	91	
20	61	83	65	92	
20	72	64			
24	42	64			

- 62 -

1	EXAMPLE 26
2	Ionomer was made substantially by the method of Example 1.
3	This ionomer was cast coextruded individually with three
4	polymers on a Randcastle Mini-Extruder to form three 2-layer
5	films, where each layer was 2 mil thick. Adhesion strength
6	of the 2-layer films was analyzed using TAPPI Uniform Method
7	541, "Adhesion to Non-Porous Flexible Substrates", which is
8	incorporated by reference in its entirety herein.
9	Ionomer/propylene film (Fina 3275) had an adhesion of 770
10	g/inch; ionomer/high density polyethylene (Chevron HiD®
11	9650) could not be separated; and ionomer/nylon (Allied
12	Chemical's Capron 8350) had an adhesion of 80 g/inch.

The heat seal strength of the ionomer/polyethylene film above is summarized in Figure 4.

EXAMPLE 27

Ethylene-methyl acrylate-butyl acrylate copolymer containing 10 weight percent methyl acrylate and 10 weight percent butyl acrylate is about 50% hydrolyzed substantially by the method of Example 1. This yields an ethylene-methyl acrylate-butyl acrylate-sodium acrylate copolymer. It is expected that the methyl acrylate reacts at a faster rate than the butyl acrylate, so more methyl acrylate is converted to the sodium salt than butyl acrylate. This product is useful in applications where a higher melt-point temperature is desired, such as films or bags which contact hot food or liquids.

1 WE CLAIM:

4

13

14 15

16

- 2 1. A method of making an ionomer composition comprising:
- A) contacting:
 - (1) a Group IA metal-containing solution with
- (2) 5 a molten or fluid copolymer comprising alphaolefins having from two to eight carbon atoms 6 7 and esters of alpha, beta-ethylenically-8 unsaturated carboxylic acids having from four 9 to twenty two carbon atoms and having a melt index between about 100 and about 2000 g/10 10 11 min., as measured by ASTM method D 1239 at 190°C; and 12
 - B) intensively mixing the copolymer and Group IA metal-containing solution at a temperature and to an extent which provides an ionomer composition having no more than ten percent haze.
- The method of claim 1 wherein the copolymer comprises
 ethylene methyl acrylate copolymer.
- The method of claim 1 or 2 wherein said copolymer has amelt index between 300 and 600 g/10 min.
- The method of any of claims 1-3 wherein the Group IA
 metal-containing solution comprises aqueous metal
 hydroxide, where the metal is selected from the group
 consisting of sodium and potassium.
- The method of claim 4 wherein the concentration of
 metal hydroxide in the aqueous metal hydroxide is at
 least 50 percent by weight.
- 28 6. The method of any of claims 1-5 wherein the intensive29 mixing is provided by a twin-screw extruder.

- 64 -

7. The method of any of claims 1-6 wherein the intensive
 mixing occurs at a temperature between 200 and 350°C.

- 3 8. The method of claim 7 wherein the temperature is between 275 and 350°C.
- The method of any of claims 1-8 wherein the intensive mixing provides an ionomer composition substantially free of ionic clusters greater than 0.05 micron in size.
- 9 10. A composition made by the method of any of claims 1-9.
- 11. A composition comprising a copolymer of alpha-olefins

 12 having from two to eight carbon atoms, esters of alpha,

 13 beta-ethylenically-unsaturated carboxylic acids having

 14 from four to twenty-two carbon atoms, and metal salts

 15 of acrylic or methacrylic acid, wherein said copolymer

 16 has a haze of no more than ten percent as measured by

 17 ASTM method D 1003.
- 17 12. The composition of claim 10 or 11 having a haze of no 18 more than seven percent.
- 13. The composition of claim 12 having a haze of no more20 than five percent.
- 14. The composition of claim 13 having a haze of no morethan two percent.
- 23 15. The composition of any of claims 10-14 wherein the24 alpha-olefin consists essentially of ethylene.

- 65 -

16. The composition of any of claims 10-15 wherein the
metal of said metal salt is selected from the group
consisting of sodium, lithium, and potassium.

- 4 17. The composition of any of claims 10-16 wherein said ester comprises methyl acrylate.
- The composition of any of claims 10-17 wherein the
 metal of said metal salt consists essentially of
 sodium.
- 9 19. The composition of any of claims 10-18 wherein said
 10 metal salt of acrylic or methacrylic acid comprises
 11 between about 1.9 and about 7.5 mole percent of said
 12 copolymer.
- 20. The composition of any of claims 10-19 wherein said esters of alpha, beta-ethylenically-unsaturated carboxylic acid comprise between about 2.3 and about 7.4 mole percent of said copolymer.
- 21. The composition of any of claims 10-20 wherein said alkali metal salt of alpha, beta-ethylenically-unsaturated carboxylic acid comprises between about 3.0 and about 6.5 mole percent of said copolymer.
- 22. The composition of any of claims 10-21 wherein said 22 esters of alpha, beta-ethylenically-unsaturated 23 carboxylic acid comprise between about 2.8 and about 24 6.3 mole percent of said copolymer.
- 23. The composition of any of claims 10-22 wherein the26 composition is acidified.

- 66 **-**

24. The composition of claim 23 wherein the acid is a
 polymeric acid.

- 25. The composition of claim 23 wherein the acid is phosphoric acid.
- 5 26. The composition of any of claims 10-25 wherein the composition has a 60° gloss of at least 100.
- 7 27. A film comprising the composition of any of claims 10-8 26.
- 9 28. The film of claim 27 having a thickness of no more than10 about 0.5 mil.
- 29. A blow-molded article comprising the composition of any of claims 10-25.
- 30. An easy-open package comprising the composition of anyof claims 10-25.
- 31. The composition of any of claims 10-26 wherein a
 strand, pellet, or film of the composition is acidified
 on its surface.
- 32. A method of reducing the water solubility of an ionomer
 composition formed into a shape such as strands,
 pellets, or film comprising contacting a surface of the
 shape with an acid.
- 33. The method of claim 32 wherein the acid comprises anon-oxidizing acid.
- 34. The method of claim 33 wherein the acid consistsessentially of a dilute aqueous solution of an acid

- 67 -

chosen from the group consisting of phosphoric acid,hydrochloric acid, and acetic acid.

- 3 35. A method for reducing the haze of a copolymer4 comprising combining:
 - A) acid; and

 B) a copolymer of alpha-olefins having from two to eight carbon atoms, esters of alpha, beta-ethylenically-unsaturated carboxylic acids having from four to twenty-two carbon atoms, and metal salts of acrylic or methacrylic acid, wherein said copolymer has a haze of greater than ten percent as measured by ASTM method D 1003 and uniformly mixing the copolymer and acid in an

and uniformly mixing the copolymer and acid in an amount and at conditions sufficient to reduce the haze of a film.

- 36. A method for reducing the haze and increasing the meltindex of a copolymer comprising combining:
 - A) acid; and
 - B) a copolymer of alpha-olefins having from two to eight carbon atoms, esters of alpha, beta-ethylenically-unsaturated carboxylic acids having from four to twenty-two carbon atoms, and metal salts of acrylic or methacrylic acid, wherein said copolymer has a haze of greater than ten percent as measured by ASTM method D 1003 and uniformly mixing the copolymer and acid in an

and uniformly mixing the copolymer and acid in an amount and at conditions sufficient to reduce the haze of a pressed film.

- 37. A method for reducing the haze and increasing the30 adhesion of a copolymer comprising combining:
- A) acid; and

- 68 -

- a copolymer of alpha-olefins having from two to 1 B) 2 eight carbon atoms, esters of alpha, betaethylenically-unsaturated carboxylic acids having 3 from four to twenty-two carbon atoms, and metal 4 salts of acrylic or methacrylic acid, wherein said 5 6 copolymer has a haze of greater than ten percent 7 as measured by ASTM method D 1003 and uniformly mixing the copolymer and acid in an 8 amount and at conditions sufficient to reduce the haze 9 10 of a pressed film.
- 38. The method of any of claims 35-37 wherein the copolymerand acid are mixed in an extruder.
- 39. The method of any of claims 35-37 wherein the copolymer
 is dispersed in solvent and acidified.
- 40. The method of any of claims 35-39 wherein the acidified
 copolymer has a haze of no more than ten percent as
 measured by ASTM method D 1003.
- 18 41. The method of any of claims 35-40 wherein the alpha-olefin consists essentially of ethylene.
- 20 42. The method of any of claims 35-41 wherein metal of said 21 metal salt is selected from the group consisting of 22 sodium, lithium, and potassium.
- 23 43. The method of any of claims 35-42 wherein said ester24 comprises methyl acrylate.
- 25 44. The method of any of claims 35-43 wherein the metal of26 said metal salt consists essentially of sodium.

- 69 -

45. The method of any of claims 35-44 wherein said metal
salt of acrylic or methacrylic acid comprises between
about 1.9 and about 7.5 mole percent of said copolymer.

- 4 46. The method of any of claims 35-45 wherein said esters of alpha, beta-ethylenically-unsaturated carboxylic acid comprise between about 2.3 and about 7.4 mole percent of said copolymer.
- 8 47. The method of any of claims 35-46 wherein said alkali
 9 metal salt of alpha, beta-ethylenically-unsaturated
 10 carboxylic acid comprises between about 3.0 and about
 11 6.5 mole percent of said copolymer.
- 48. The method of any of claims 35-47 wherein said esters
 of alpha, beta-ethylenically-unsaturated carboxylic
 acid comprise between about 2.8 and about 6.3 mole
 percent of said copolymer.
- 49. The method of any of claims 35-48 wherein the acid is apolymeric acid.
- 18 50. The method of any of claims 35-48 wherein the acid is19 phosphoric acid.

FIGURE 1

FIGURE 2

INTERNATIONAL SEARCH REPORT

International Application No. 94/12366

A. CLAS	A. CLASSIFICATION OF SUBJECT MATTER					
C	08 F 8/00,C 08 J 5/18,//(C 0 08 F 220:06)	8 F 210/02,				
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELD	DS SEARCHED					
	documentation searched (classification system followed by class	afication symbols)				
	08 F,C 08 J					
Document	ation searched other than minimum documentation to the extent	that such documents are included in the fields	searched			
51,						
Electronic	data base consulted during the international search (name of data	a base and, where practical, search terms used)			
C. DOCUN	MENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of t	the relevant passages	Relevan: to claim No.			
A	EP, A, 0 194 677					
	(NIPPON PETROCHEMICA	AT.S	1-8, 10,			
	CO LTD.) 17 Septembe	1986	15-22			
	(17.09.86), claims 1,2,5-7,10; e	examples.				
A	US, A, 5 218 057					
	(KURKOV et al.) 08 J	Tune 1993	1,2, 4-8,			
1	(08.06.93),		10,11,			
	claims 1-15; example	es 1-3;	15-23,			
	column 5, lines 3-9 (cited in the applic	ation).	25			
A						
A	GB, A, 1 011 981 (E.I.DU PONT DE NEMO	ממזהפ	1,2,4,			
	AND COMPANY) 01 Dece	mber 1965	5,10, 11,			
	(01.12.65),		15-18,			
	claims 1,2,8-12,15;	page 12,	27,29			
	lines 50-54; page 10	,				
χ Furthe	Further documents are listed in the continuation of box C. Patent family members are listed in annex.					
Special cate	gones of ated documents:	"T" later document published after the inte				
A documer	nt defining the general state of the art which is not red to be of particular relevance	or priority date and not in conflict wi cated to understand the principle or th	th the application but			
E' earlier de	ocument but published on or after the international	ry Acudiou				
L' document which may throw doubts on priority claim(s) or						
distance of particular relevance; the datmed invention						
O' document referring to an oral disclosure, use, exhibition or document is combined with one or more other such documents, such combination being obvious to a person stilled						
P documen later that	it published prior to the international filing date but in the priority date claimed	in the art. "&" document member of the same patent	·			
ate of the ac	20 February 1995		Date of mailing of the international search report			
	20 February 1995	1 3. 03.95				
ame and ma	uling address of the ISA	Authorized officer				
	European Patent Office, P.B. 5818 Patentjaan 2 NL - 2280 HV Ruprwijk					
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	PUSTERER e.h.				

1 No. 24. 64 272 62 August 1966 66), 1,3,4,7,8,18,20,30,33 in the application). 70 626 et al.) 20 July 1976 76), 1,3,4; example 1 in the application). 38 034 AIN) 20 January 1987 .87), 1-3,5-7 in the application). 15 190 U PONT DE NEMOURS MPANY) 08 August 1984 .84),	1,4,5, 10, 15-17, 27,29 1,2, 4,5, 8-11, 15-22, 27,28 1,2,4, 7,10, 15-23
02 August 1966 .66), 1,3,4,7,8,18,20,30,33 in the application). 70 626 et al.) 20 July 1976 .76), 1,3,4; example 1 in the application). 38 034 AIN) 20 January 1987 .87), 1-3,5-7 in the application) 15 190 U PONT DE NEMOURS MPANY) 08 August 1984 .84),	10. 15-17, 27,29 1,2, 4,5, 8-11, 15-22, 27,28 1,2,4, 7,10, 15-23
02 August 1966 .66), 1,3,4,7,8,18,20,30,33 in the application). 70 626 et al.) 20 July 1976 .76), 1,3,4; example 1 in the application). 38 034 AIN) 20 January 1987 .87), 1-3,5-7 in the application) 15 190 U PONT DE NEMOURS MPANY) 08 August 1984 .84),	10. 15-17, 27,29 1,2, 4,5, 8-11, 15-22, 27,28 1,2,4, 7,10, 15-23
et al.) 20 July 1976 .76), 1,3,4; example 1 in the application) 38 034 AIN) 20 January 1987 .87), 1-3,5-7 in the application) 15 190 U PONT DE NEMOURS MPANY) 08 August 1984 .84),	4,5, 8-11, 15-22, 27,28 1,2,4, 7,10, 15-23
AIN) 20 January 1987 .87), 1-3,5-7 in the application) 15 190 U PONT DE NEMOURS MPANY) 08 August 1984 .84),	7,10, 15-23
U PONT DE NEMOURS MPANY) 08 August 1984 .84),	6-8,
0, ative examples 1,3.	10,15, 16,18
07 211 t al.) 22 December 1981 .81), 1.	1,7,8,

ANHANG

ANNEX

ANNEXE

zum internationalen Recherchenbericht über die internationale Patentanmeldung Nr.

to the International Search Report to the International Patent Application No.

au rapport de recherche international relatif à la demande de brevet international n°

PCT/US 94/12366 SAE 100266

In diesem Anhang sind die Mitglieder der Patentfamilien der im obenge- members relating to the patent documenten internationalen Recherchenbericht cited in the above-mentioned international der Patent der Pate angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

members relating to the patent documents membres de la famille de brevets national search report. The Office is in no way liable for these particulars which are given merely for the purpose of information.

La présente annexe indique les relatifs aux documents de brevets cités dans le rapport de recherche international visée ci-dessus. Les reseigne-ments fournis sont donnés à titre indice tif et n'engagent pas la responsibilité

Im Pechershophorish				tif et n'engagent pas la responsibilité de l'Office.	
Im Recherchenbericht angeführtes Patentdokument Patent document cited in search report Document de brevet cité dans le rapport de recherche		Datum der Veröffentlichung Publication date Date de publication	Mitglied(er) der Patentfamilie Patent family member(s) Membre(s) de la famille de brevets	Datum der Veröffentlichung Publication date Date de publication	
EP A2	194677	17-09-86	DE CO 3689007 DE T2 3689007 EP A3 194677 EP B1 194677 JP A2 61209205	21-10-93 05-05-94 05-04-89 15-09-93	
US A	5218057	08-06-93	EP A1 548352 EP A4 548352 FI A 930936 FI A0 930936 JF T2 6501519 NO A 930651 NO A0 930651	30-04-93 29-12-93 03-03-93 03-03-93 17-02-94 24-02-93 24-02-93	
GB A	1011981		keine - none -	21-01-93	
US A	3264272		keine - none -		
US A	3970626	20-07-76	BE A 692973 DE A1 1520778 SE B 317194 US A 3876452 NL A 6406361	03-07-67 08-02-73 10-11-69 08-04-75 07-12-64	
	4638034	20-01-87	keine – none – r	· · ·	
EP 42	115190	08-08-64	BR A 8307134 CA 11213389 DE CA 6002/83 DK A B 167025 DK A B 167025 DK CA 115190 DK CA 115190 JP B1 59002467 JP B4 59002467 KR B1 9102467 KR B1 9102467 KR B1 834816 NO B 164032 4690849 VA 8309624	07-08-84 28-10-84 05-11-87 27-12-83 29-04-84 16-08-93 03-01-94 27-12-84 30-09-87 31-07-84 13-01-93 23-04-91 29-06-84 14-05-90 01-09-87 31-01-89	
S A 4	307211	22-12-81	0007624	28-08-85	

AUSTRALIA

PATENTS ACT 1990

PATENT REQUEST: STANDARD PATENT

I/We, the Applicant(s)/Nominated Person(s) specified below, request I/We be granted a patent for the invention disclosed in the accompanying standard complete specification.

[70,71] Applicant(s)/Nominated Person(s):

•

Robert J. Petcavich, of 4136 Palisades Road, San Diego, California, 92116, UNITED STATES OF AMERICA

[54] Invention Title:

Disposable Degradable Recyclable Plastic Articles and Synthetic Resin Blends for Making the Same

[72] Inventor(s):

Robert J. Petcavich

[74] Address for service in Australia:

Spruson & Ferguson, Patent Attorneys Level 33 St Martins Tower 31 Market Street

Sydney New South Wales Australia (Code SF)

Details of Basic Application(s):

[31] Appl'n No(s): [33] Country:

[32] Application Date:

080,079

US

18 June 1993

Basic Applicant(s): Robert J. Petcavich

Divisional Application Details

[62] Original Application No(s): 15038/92.

Person by whom made :Robert J. Petcavich

DATED this THIRTEENTH day of DECEMBER 1993

Robert J. Petcavich

By:

Registered Patent Attorney

9. G. Sinn.

IRN: 206970D1 INSTR CODE: 56385

S 042641 131293