labassignment3

February 2, 2023

1 Lab Assignment 3: How to Load, Convert, and Write JSON Files in Python

1.1 DS 6001: Practice and Application of Data Science

1.1.1 Instructions

Please answer the following questions as completely as possible using text, code, and the results of code as needed. Format your answers in a Jupyter notebook. To receive full credit, make sure you address every part of the problem, and make sure your document is formatted in a clean and professional way.

1.2 Problem 0

Import the following libraries:

```
[1]: import numpy as np
import pandas as pd
import requests
import json
import sys
sys.tracebacklimit = 0 # turn off the error tracebacks
```

1.3 Problem 1

JSON and CSV are both text-based formats for the storage of data. It's possible to open either one in a plain text editor. Given this similarity, why does a CSV file usually take less memory than a JSON formatted file for the same data? Under what conditions could a JSON file be smaller in memory than a CSV file for the same data? (2 points)

Consider a CSV file with the following contents:

```
print(csv_data[0:699])
print('characters: ' + str(len(csv_data)))
```

characters: 10780

Such a data set may be represented by the following JSON elements:

```
[3]: json_element = data_frame.to_json(orient = "records")
    print(json_element[0:1091])
    print('characters: ' + str(len(json_element)))

    json_element = data_frame.to_json(orient = "columns")
    print(json_element[0:1091])
    print('characters: ' + str(len(json_element)))

    json_element = data_frame.to_json(orient = "split")
    print(json_element[0:1091])
    print('characters: ' + str(len(json_element)))

    json_element = data_frame.to_json(orient = "index")
    print(json_element[0:1091])
    print('characters: ' + str(len(json_element)))

    json_element = data_frame.to_json(orient = "values")
    print(json_element[0:1091])
    print('characters: ' + str(len(json_element)))
```

[{"c0":0.0,"c1":null,"c2":null,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,
,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null,"c13":null,"c14":null,"c15
":null,"c16":null,"c17":null,"c18":null,"c19":null,"c20":null,"c21":null,"c22":n
ull,"c23":null,"c24":null,"c25":null,"c26":null,"c27":null,"c28":null,"c29":null
,"c30":null,"c31":null,"c32":null,"c33":null,"c34":null,"c35":null,"c36":null,"c
37":null,"c38":null,"c39":null,"c40":null,"c41":null,"c42":null,"c43":null,"c44"
:null,"c45":null,"c46":null,"c47":null,"c48":null,"c49":null,"c50":null,"c51":nu
ll,"c52":null,"c53":null,"c54":null,"c55":null,"c56":null,"c56":null,"c65":null,"c66":null,"c66":null,"c67":null,"c68":null,"c69":null,"c70":null,"c71":null,"c72":null,"c73":

null,"c74":null,"c75":null,"c76":null,"c77":null,"c78":null,"c79":null,"c80":nul
1,"c81":null,"c82":null,"c83":null,"c84":null,"c85":null,"c86":null,"c87":null,"
c88":null,"c89":null,"c90":null,"c91":null,"c92":null,"c93":null,"c94":null,"c95
":null,"c96":null,"c97":null,"c98":null,"c99":null}

characters: 109191

{"c0":{"0":0.0,"1":null,"2":null,"3":null,"4":null,"5":null,"6":null,"7":null,"8
":null,"9":null,"10":null,"11":null,"12":null,"13":null,"14":null,"15":null,"16"
:null,"17":null,"18":null,"19":null,"20":null,"21":null,"22":null,"23":null,"24"
:null,"25":null,"26":null,"27":null,"28":null,"29":null,"30":null,"31":null,"32"
:null,"33":null,"34":null,"35":null,"36":null,"37":null,"38":null,"39":null,"40"
:null,"41":null,"42":null,"43":null,"44":null,"45":null,"46":null,"47":null,"48"
:null,"49":null,"50":null,"51":null,"52":null,"53":null,"54":null,"55":null,"56":null,"57":null,"58":null,"59":null,"60":null,"61":null,"62":null,"63":null,"64":null,"65":null,"66":null,"67":null,"68":null,"69":null,"70":null,"71":null,"72":null,"73":null,"74":null,"75":null,"76":null,"77":null,"78":null,"88":null,"89":null,"90":null,"91":null,"92":null,"93":null,"94":null,"95":null,"96":null,"96":null,"97":null,"98":null,"99":null,"8":null,"99":null,"9":null,"95":null,"3":null,"4":null,"5":null,"95":null,"96":null,"97":null,"98":null,"99":null,"88":null,"99":null,"99":null,"99":null,"99":null,"98":null,"98":null,"99":null,"99":null,"99":null,"99":null,"98":null,"98":null,"99"

characters: 99781

characters: 51102

{"0":{"c0":0.0,"c1":null,"c2":null,"c3":null,"c4":null,"c5":null,"c6":null,"c7":
null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null,"c13":null,"c14":null,
"c15":null,"c16":null,"c17":null,"c18":null,"c19":null,"c20":null,"c21":null,"c2
2":null,"c23":null,"c24":null,"c25":null,"c26":null,"c27":null,"c28":null,"c29":
null,"c30":null,"c31":null,"c32":null,"c33":null,"c34":null,"c35":null,"c36":nul
1,"c37":null,"c38":null,"c39":null,"c40":null,"c41":null,"c42":null,"c43":null,"
c44":null,"c45":null,"c46":null,"c47":null,"c48":null,"c50":null,"c50":null,"c51
":null,"c52":null,"c53":null,"c54":null,"c55":null,"c56":null,"c57":null,"c58":n
ull,"c59":null,"c60":null,"c61":null,"c62":null,"c63":null,"c64":null,"c72":null,"c
73":null,"c74":null,"c75":null,"c76":null,"c77":null,"c78":null,"c79":null,"c80":null,"c80":null,"c88":null,"c89":null,"c89":null,"c89":null,"c99":null,"c92":null,"c93":null,"c94":null,"c

```
"c95":null, "c96":null, "c97":null, "c98":null, "c99":n
characters: 109681
null, null,
null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null,
null, null, null, null, null, 1.0, null, null,
1, null, null
1, null, null
1, null, nul
ll, null, null, null, null, null, null, null, null, null, null
characters: 50191
```

A CSV file usually takes less memory than a JSON formatted file for the same data because the number of characters in the CSV file is usually less than the number of characters in each JSON element for the same data.

That being said, consider the following JSON elements:

```
[4]: def convert to JSON string(data frame, orientation):
         if orientation == 'records':
             JSON array = []
             for i in range(0, len(data_frame.index)):
                 JSON_object = {}
                 for column name in data frame.columns:
                     if not pd.isnull(data_frame.at[i, column_name]):
                         JSON_object[column_name] = data_frame.at[i, column_name]
                 if JSON_object:
                     JSON_array.append(JSON_object)
             return str(JSON_array).replace(' ', '')
         if orientation == 'columns':
             JSON_object = {}
             for column_name in data_frame.columns:
                 JSON_subobject = {}
                 for i in range(0, len(data frame.index)):
                     if not pd.isnull(data_frame.at[i, column_name]):
                         JSON_subobject[str(i)] = data_frame.at[i, column_name]
                 if JSON subobject:
                     JSON_object[column_name] = JSON_subobject
             return str(JSON_object).replace(' ', '')
         if orientation == 'split':
             JSON_object = {}
             JSON_object['columns'] = data_frame.columns.to_list()
```

```
JSON_object['index'] = data_frame.index.to_list()
    JSON_array = []
    for i in range(0, len(data_frame.index)):
        JSON_subarray = []
        for column in data_frame.columns:
            if not pd.isnull(data_frame.at[i, column]):
                JSON_subarray.append(data_frame.at[i, column])
            else:
                JSON subarray.append('null')
        JSON_array.append(JSON_subarray)
    JSON_object['data'] = JSON_array
    return str(JSON_object).replace(' ', '')
if orientation == 'index':
    JSON_object = {}
    for i in range(0, len(data_frame.index)):
        JSON_subobject = {}
        for column_name in data_frame.columns:
            if not pd.isnull(data_frame.at[i, column_name]):
                JSON_subobject[column_name] = data_frame.at[i, column_name]
        if JSON_subobject:
            JSON_object[str(i)] = JSON_subobject
    return str(JSON_object).replace(' ', '')
if orientation == 'values':
    JSON array = []
    for i in range(0, len(data_frame.index)):
        JSON_subarray = []
        for column in data_frame.columns:
            if not pd.isnull(data_frame.at[i, column]):
                JSON_subarray.append(data_frame.at[i, column])
            else:
                JSON_subarray.append('null')
        JSON_array.append(JSON_subarray)
    return str(JSON_array).replace(' ', '')
return None
```

```
print(json_element[0:1091])
print('characters: ' + str(len(json_element)))
json_element = convert_to_JSON_string(data_frame = data_frame, orientation = __
  print(json element[0:1091])
print('characters: ' + str(len(json_element)))
json_element = convert_to_JSON_string(data_frame = data_frame, orientation = u
 print(json_element[0:1091])
print('characters: ' + str(len(json_element)))
[{'c0':0.0},{'c1':1.0},{'c2':2.0},{'c3':3.0},{'c4':4.0},{'c5':5.0},{'c6':6.0},{'
c7':7.0},{'c8':8.0},{'c9':9.0},{'c10':10.0},{'c11':11.0},{'c12':12.0},{'c13':13.
0},{'c14':14.0},{'c15':15.0},{'c16':16.0},{'c17':17.0},{'c18':18.0},{'c19':19.0}
,{'c20':20.0},{'c21':21.0},{'c22':22.0},{'c23':23.0},{'c24':24.0},{'c25':25.0},{
'c26':26.0},{'c27':27.0},{'c28':28.0},{'c29':29.0},{'c30':30.0},{'c31':31.0},{'c
32':32.0},{'c33':33.0},{'c34':34.0},{'c35':35.0},{'c36':36.0},{'c37':37.0},{'c38
':38.0},{'c39':39.0},{'c40':40.0},{'c41':41.0},{'c42':42.0},{'c43':43.0},{'c44':
44.0},{'c45':45.0},{'c46':46.0},{'c47':47.0},{'c48':48.0},{'c49':49.0},{'c50':50
.0},{'c51':51.0},{'c52':52.0},{'c53':53.0},{'c54':54.0},{'c55':55.0},{'c56':56.0
},{'c57':57.0},{'c58':58.0},{'c59':59.0},{'c60':60.0},{'c61':61.0},{'c62':62.0},
{'c63':63.0},{'c64':64.0},{'c65':65.0},{'c66':66.0},{'c67':67.0},{'c68':68.0},{'
c69':69.0},{'c70':70.0},{'c71':71.0},{'c72':72.0},{'c73':73.0},{'c74':74.0},{'c7
5':75.0},{'c76':76.0},{'c77':77.0},{'c78':78.0},{'c79':79.0},{'c80':80.0},{'c81'
:81.0},{'c82':82.0},{'c83':83.0},{'c84':84.0},{'c85
characters: 1281
{'c0':{'0':0.0},'c1':{'1':1.0},'c2':{'2':2.0},'c3':{'3':3.0},'c4':{'4':4.0},'c5'
:{'5':5.0},'c6':{'6':6.0},'c7':{'7':7.0},'c8':{'8':8.0},'c9':{'9':9.0},'c10':{'1
0':10.0},'c11':{'11':11.0},'c12':{'12':12.0},'c13':{'13':13.0},'c14':{'14':14.0}
,'c15':{'15':15.0},'c16':{'16':16.0},'c17':{'17':17.0},'c18':{'18':18.0},'c19':{
'19':19.0},'c20':{'20':20.0},'c21':{'21':21.0},'c22':{'22':22.0},'c23':{'23':23.
0},'c24':{'24':24.0},'c25':{'25':25.0},'c26':{'26':26.0},'c27':{'27':27.0},'c28'
:{'28':28.0},'c29':{'29':29.0},'c30':{'30':30.0},'c31':{'31':31.0},'c32':{'32':3
2.0},'c33':{'33':33.0},'c34':{'34':34.0},'c35':{'35':35.0},'c36':{'36':36.0},'c3
7':{'37':37.0},'c38':{'38':38.0},'c39':{'39':39.0},'c40':{'40':40.0},'c41':{'41'
:41.0},'c42':{'42':42.0},'c43':{'43':43.0},'c44':{'44':44.0},'c45':{'45':45.0},'
c46':{'46':46.0},'c47':{'47':47.0},'c48':{'48':48.0},'c49':{'49':49.0},'c50':{'5
0':50.0},'c51':{'51':51.0},'c52':{'52':52.0},'c53':{'53':53.0},'c54':{'54':54.0}
,'c55':{'55':55.0},'c56':{'56':56.0},'c57':{'57':57.0},'c58':{'58':58.0},'c59':{
'59':59.0},'c60':{'60':60.0},'c61':{'61':61.0},'c62
characters: 1771
{'columns':['c0','c1','c2','c3','c4','c5','c6','c7','c8','c9','c10','c11','c12',
```

'c13','c14','c15','c16','c17','c18','c19','c20','c21','c22','c23','c24','c25','c
26','c27','c28','c29','c30','c31','c32','c33','c34','c35','c36','c37','c38','c39
','c40','c41','c42','c43','c44','c45','c46','c47','c48','c49','c50','c51','c52',

'c53','c54','c55','c56','c57','c58','c59','c60','c61','c62','c63','c64','c65','c
66','c67','c68','c69','c70','c71','c72','c73','c74','c75','c76','c77','c78','c79
','c80','c81','c82','c83','c84','c85','c86','c87','c88','c89','c90','c91','c92',
'c93','c94','c95','c96','c97','c98','c99'],'index':[0,1,2,3,4,5,6,7,8,9,10,11,12
,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,3
9,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92
,93,94,95,96,97,98,99],'data':[[0.0,'null','n

characters: 70902

{'o':{'c0':0.0},'1':{'c1':1.0},'2':{'c2':2.0},'3':{'c3':3.0},'4':{'c4':4.0},'5': {'c5':5.0},'6':{'c6':6.0},'7':{'c7':7.0},'8':{'c8':8.0},'9':{'c9':9.0},'10':{'c1} O':10.0},'11':{'c11':11.0},'12':{'c12':12.0},'13':{'c13':13.0},'14':{'c14':14.0},'15':{'c15':15.0},'16':{'c16':16.0},'17':{'c17':17.0},'18':{'c18':18.0},'19':{'c19':19.0},'20':{'c20':20.0},'21':{'c21':21.0},'22':{'c22':22.0},'23':{'c23':23.0},'24':{'c24':24.0},'25':{'c25':25.0},'26':{'c26':26.0},'27':{'c27':27.0},'28':{'c28':28.0},'29':{'c29':29.0},'30':{'c30':30.0},'31':{'c31':31.0},'32':{'c32':32.0},'33':{'c33':33.0},'34':{'c34':34.0},'35':{'c35':35.0},'36':{'c36':36.0},'37':{'c37':37.0},'38':{'c38':38.0},'39':{'c39':39.0},'40':{'c40':40.0},'41':{'c41':41.0},'42':{'c42':42.0},'43':{'c43':43.0},'44':{'c44':44.0},'45':{'c45':45.0},'46':{'c46':46.0},'47':{'c47':47.0},'48':{'c48':48.0},'49':{'c49':49.0},'50':{'c50':50.0},'51':{'c51':51.0},'52':{'c52':52.0},'53':{'c53':53.0},'54':{'c54':54.0},'55':{'c55':55.0},'56':{'c56':56.0},'57':{'c57':57.0},'58':{'c58':58.0},'59':{'c59':59.0},'60':{'c60':60.0},'61':{'c61':61.0},'62'

characters: 1771

[[0.0,'null','nu

characters: 69991

The number of characters in some of our JSON elements is less than the number of characters in our CSV data.

A JSON file can be smaller in memory than a CSV file when there are many data, many missing values, and omission of missing values from the JSON file.

1.4 Problem 2

NASA has a dataset of all meteorites that have fallen to Earth between the years A.D. 860 and 2013. The data contain the name of each meteorite, along with the coordinates of the place where the meteorite hit, the mass of the meteorite, and the date of the collison. The data is stored as a JSON here: https://data.nasa.gov/resource/y77d-th95.json

Look at the data in your web-browser and explain which strategy for loading the JSON into Python makes the most sense and why.

Then write and run the code that will work for loading the data into Python. (2 points)

Looking at the data in Chrome, I observe that there is nesting but no metadata, and that the data set is a JSON array. Thus, I may:

- 1. Use requests.get to download the raw JSON data,
- 2. Use json.loads on the text attribute of the output from step 1 to register the data as a list in Python, and
- 3. Use the pd.json_normalize function on the list that is the output of step 2.

[6]:		name	id	nametype		recclass	mass	fall \	
	0	Aachen	1	Valid		L5	21	Fell	
	1	Aarhus	2	Valid		Н6	720	Fell	
	2	Abee	6	Valid		EH4	107000	Fell	
	3	Acapulco	10	Valid		Acapulcoite	1914	Fell	
	4	Achiras	370	Valid		L6	780	Fell	
		•••	•••	•••			•••		
	995	Tirupati	24009	Valid		Н6	230	Fell	
	996	Tissint	54823	Valid	Martian	(shergottite)	7000	Fell	
	997	Tjabe	24011	Valid		Н6	20000	Fell	
	998	Tjerebon	24012	Valid		L5	16500	Fell	
	999	Tomakovka	24019	Valid		LL6	600	Fell	
					7-4			·	,
				year	reclat	O	geolocat	0.2	\
	0	1880-01-01	T00:00	:00.000	50.775000	6.083330		Point	
	1	1951-01-01	T00:00	:00.000	56.183330	10.233330		Point	
	2	1952-01-01	T00:00	:00.000	54.216670	-113.000000		Point	
	3	1976-01-01	T00:00	:00.000	16.883330	-99.900000		Point	
	4	1902-01-01	T00:00	:00.000	-33.166670	-64.950000		Point	
				•••		•••	•••	•	
	995	1934-01-01	T00:00	:00.000	13.633330	79.416670		Point	

```
996
    2011-01-01T00:00:00.000
                                 29.481950
                                               -7.611230
                                                                      Point
997
     1869-01-01T00:00:00.000
                                 -7.083330
                                                                      Point
                                              111.533330
998
     1922-01-01T00:00:00.000
                                 -6.666670
                                              106.583330
                                                                      Point
999
     1905-01-01T00:00:00.000
                                 47.850000
                                               34.766670
                                                                      Point
    geolocation.coordinates :@computed_region_cbhk_fwbd
0
           [6.08333, 50.775]
                                                        NaN
1
       [10.23333, 56.18333]
                                                        NaN
2
            [-113, 54.21667]
                                                        NaN
3
           [-99.9, 16.88333]
                                                        NaN
        [-64.95, -33.16667]
4
                                                        NaN
995
       [79.41667, 13.63333]
                                                        NaN
996
       [-7.61123, 29.48195]
                                                        NaN
      [111.53333, -7.08333]
997
                                                        NaN
      [106.58333, -6.66667]
998
                                                        NaN
999
          [34.76667, 47.85]
                                                        NaN
    :@computed_region_nnqa_25f4
0
                              NaN
1
                              NaN
2
                              NaN
3
                              NaN
4
                              NaN
. .
995
                              NaN
996
                              NaN
997
                              NaN
998
                              NaN
999
                              NaN
```

[1000 rows x 13 columns]

1.5 Problem 3

The textbook chapter for this module shows, as an example, how to pull data in JSON format from Reddit's top 25 posts on /r/popular. The steps outlined there pull all of the features in the data into the dataframe, resulting in a dataframe with 172 columns.

If we only wanted a few features, then looping across elements of the JSON list itself and extracting only the data we want may be a more efficient approach.

Use looping - and not pd.read_json() or pd.json_normalize() - to create a dataframe with 25 rows (one for each of the top 25 posts), and only columns for subreddit, title, ups, and created_utc. The JSON file exists at http://www.reddit.com/r/popular/top.json, and don't forget to specify headers = {'User-agent': 'DS6001'} within requests.get(). (3 points)

```
[8]: url = 'http://www.reddit.com/r/popular/top.json'
                   the_headers = {'User-agent': 'DS6001'}
                   response = requests.get(url, headers = the_headers)
                   response_body_as_string = response.text
                   body = json.loads(response_body_as_string)
                   data = body.get('data')
                   children = data.get('children')
                   data_frame = pd.DataFrame({'subreddit': [], 'title': [], 'ups': [], ups': []

¬'created_utc': []})
                   for i in range(0, len(children)):
                                   child = children[i]
                                   data = child.get('data')
                                   list_of_subreddit_title_ups_and_created_utc = [data.get('subreddit'), data.

→get('title'), data.get('ups'), data.get('created_utc')]
                                   data frame.loc[len(data frame.index)] = ____
                         →list_of_subreddit_title_ups_and_created_utc
                   data_frame
```

```
[8]:
                  subreddit
                                                                            title \
     0
           nextfuckinglevel
                              The man climbed out of his eighth floor apartm...
                MadeMeSmile
                              Last January I started my sobriety and health ...
     1
     2
                      meirl
                                                                            meirl
     3
                      gaming
                                                                 Sonic's Hedgehog
     4
         WhitePeopleTwitter
                                     I guess I'm getting rid of Netflix then...
     5
                      meirl
                                                                            meirl
                                                           like father like son!
     6
             wholesomememes
     7
                                                   Sleeping in the mother's arms
                         aww
     8
          interestingasfuck
                              In the 1970s, North Korea ordered 1,000 Volvo ...
     9
                  dankmemes
                                                         Is a.i. art banned yet?
     10
                              TIL: In 1962, a 10 year old found a radioactiv...
              todavilearned
     11
          interestingasfuck
                              The last delivered Boeing 747 made a crown wit...
     12
                rareinsults
                                                                  Mayo is no joke
     13
           AnimalsBeingBros
                              Parrot ask his owner if he's alright after he ...
     14
                                                   To massage yourself unnoticed
          therewasanattempt
     15
                 Unexpected
                                                          The Night Train nsfw
     16
                              California police kill double amputee who was ...
                       news
     17
                                                               [OC] Single Player
                      comics
     18
          mildlyinfuriating
                              Convenience store worker wouldn't accept this ...
     19
                              Fireworks in House after Democrat says 'insurr...
                   politics
     20
             PublicFreakout
                              12 Year Old Tiktok prankster throws a dead sna...
     21
         WhitePeopleTwitter
     22
            HumansBeingBros
                              Saving a cow calf from crossing the rainbow road.
     23
                   antiwork
                                               First the French now the Brits
     24
             wallstreetbets
                             if JPow gives up trying to correct asset (real...
                   created_utc
            ups
         100132 1.675270e+09
```

```
1
     91469
            1.675255e+09
2
             1.675272e+09
     84070
3
     80431
             1.675245e+09
4
     79607
             1.675261e+09
5
     74146
             1.675264e+09
6
             1.675234e+09
     64840
7
             1.675259e+09
     63646
8
     62637
             1.675255e+09
     62167
9
             1.675254e+09
10
     59277
             1.675245e+09
11
     59766
             1.675280e+09
12
             1.675262e+09
     58187
13
     53412
             1.675270e+09
14
     52549
             1.675252e+09
15
     51793
             1.675254e+09
16
     50856
             1.675258e+09
17
     48763
             1.675258e+09
18
     44390
             1.675267e+09
19
     45017
             1.675284e+09
20
     44506
             1.675272e+09
21
     43642
             1.675273e+09
22
     43463
             1.675270e+09
23
     41923
             1.675255e+09
24
     41043
            1.675269e+09
```

1.6 Problem 4

The NBA has saved data on all 30 teams' shooting statistics for the 2014-2015 season here: https://stats.nba.com/js/data/sportvu/2015/shootingTeamData.json. Take a moment and look at this JSON file in your web browser. The structure of this particular JSON is complicated, but see if you can find the team-by-team data. In this problem our goal is to use pd.json_normalize() to get the data into a dataframe. The following questions will guide you towards this goal.

1.6.1 Part a

Download the raw text of the NBA JSON file and register it as JSON formatted data in Python's memory. (2 points)

```
[9]: url = 'https://stats.nba.com/js/data/sportvu/2015/shootingTeamData.json'
    response = requests.get(url)
    response_body_as_string = response.text
    body = json.loads(response_body_as_string)
```

1.6.2 Part b

Describe, in words, the path that leads to the team-by-team data. (2 points)

The response body of the request to https://stats.nba.com/js/data/sportvu/2015/shootingTeamData.json is a JSON object. This JSON object has a field with key resultSets and a value of a JSON

array. This JSON array has one JSON object. This JSON object has a field with key rowSet and a value of a JSON array of team-by-team data.

1.6.3 Part c

Use the pd.json_normalize() function to pull the team-by-team data into a dataframe. This is going to be tricky. You will need to use indexing on the JSON data as well as the record_path parameter.

If you are successful, you will have a dataframe with 30 rows and 33 columns. The first row will refer to the Golden State Warriors, the second row will refer to the San Antonio Spurs, and the third row will refer to the Cleveland Cavaliers. The columns will only be named 0, 1, 2, ... at this point. (4 points)

```
[10]: data_frame = pd.json_normalize(body, record_path = ['resultSets', 'rowSet'])
data_frame
```

[10]:	0	1	2	3 4	5	6	7	8	\
0	1610612744	Golden State	Warriors	GSW	82	48.7	114.9	14.9	
1	1610612759	San Antonio	Spurs	SAS	82	48.3	103.5	14.8	
2	1610612739	Cleveland	Cavaliers	CLE	82	48.7	104.3	16.9	
3	1610612746	Los Angeles	Clippers	LAC	82	48.6	104.5	15.0	
4	1610612760	Oklahoma City	Thunder	OKC	82	48.6	110.2	16.1	
5	1610612737	Atlanta	Hawks	ATL	82	48.6	102.8	19.0	
6	1610612745	Houston	Rockets	HOU	82	48.6	106.5	17.2	
7	1610612757	Portland	Trail Blazers	POR	82	48.5	105.1	17.5	
8	1610612758	Sacramento	Kings	SAC	81	48.4	106.7	18.7	
9	1610612764	Washington	Wizards	WAS	82	48.5	104.1	15.4	
10	1610612748	Miami	Heat	MIA	82	48.6	100.0	17.9	
11	1610612761	Toronto	Raptors	TOR	81	48.5	102.7	23.0	
12	1610612742	Dallas	Mavericks	DAL	82	49.0	102.3	18.2	
13	1610612766	Charlotte	Hornets	CHA	82	48.6	103.4	16.8	
14	1610612762	Utah	Jazz	UTA	82	49.0	97.7	18.1	
15	1610612753	Orlando	Magic	ORL	81	48.7	102.0	18.0	
16	1610612749	Milwaukee	Bucks	MIL	82	48.7	99.0	17.4	
17	1610612740	New Orleans	Pelicans	NOP	82	48.5	102.7	19.9	
18	1610612750	Minnesota	Timberwolves	MIN	82	48.6	102.4	15.1	
19	1610612754	Indiana	Pacers	IND	82	48.8	102.2	13.7	
20	1610612751	Brooklyn	Nets	BKN	82	48.4	98.6	14.4	
21	1610612765	Detroit	Pistons	DET	82	48.7	102.0	17.5	
22	1610612743	Denver	Nuggets	DEN	82	48.6	101.9	15.9	
23	1610612738	Boston	Celtics	BOS	81	48.5	105.6	18.9	
24	1610612741	${\tt Chicago}$	Bulls	CHI	82	48.9	101.6	18.1	
25	1610612755	Philadelphia	76ers	PHI	82	48.6	97.4	19.7	
26	1610612756	Phoenix	Suns	PHX	82	48.4	100.9	15.6	
27	1610612752	New York	Knicks	NYK	82	48.5	98.4	10.4	
28	1610612763	Memphis	Grizzlies	MEM	82	48.6	99.1	16.4	
29	1610612747	Los Angeles	Lakers	LAL	82	48.3	97.3	15.6	

```
9
                   23
                          24
                                 25
                                         26
                                               27
                                                     28
                                                             29
                                                                           31
                                                                                   32
                                                                    30
0
    0.498
            •••
                0.478
                        21.2
                               42.5
                                      0.497
                                              2.3
                                                    6.3
                                                         0.363
                                                                  10.8
                                                                         25.3
                                                                                0.429
    0.481
                0.506
                        18.3
                               39.8
                                      0.460
                                              0.9
                                                    2.6
                                                         0.341
                                                                         15.9
                                                                                0.381
1
                                                                   6.1
                                      0.447
                                                         0.299
2
    0.481
                0.473
                        18.2
                               40.7
                                              1.7
                                                    5.7
                                                                   9.0
                                                                         23.9
                                                                                0.378
    0.497
                0.480
                        18.9
                               42.0
                                      0.450
                                              2.0
                                                    6.0
                                                         0.334
                                                                         20.8
                                                                                0.373
3
                                                                   7.7
                                      0.451
4
    0.480
                0.497
                               38.7
                                              1.6
                                                    5.1
                                                         0.321
                                                                         18.6
                                                                                0.356
                        17.5
                                                                   6.6
5
    0.463
                0.483
                        19.4
                               44.6
                                      0.435
                                              1.0
                                                    3.1
                                                         0.311
                                                                   9.0
                                                                         25.3
                                                                                0.355
6
    0.433
                0.472
                               36.4
                                      0.426
                                              2.3
                                                    7.4
                                                         0.318
                                                                         23.5
                        15.5
                                                                   8.4
                                                                                0.355
7
                                      0.453
    0.441
                0.447
                        18.0
                               39.8
                                              1.7
                                                    5.9
                                                         0.295
                                                                   8.8
                                                                         22.6
                                                                                0.389
            •••
8
    0.452
            •••
                0.473
                        18.1
                               39.7
                                      0.454
                                              0.9
                                                    3.1
                                                         0.276
                                                                   7.2
                                                                         19.4
                                                                                0.372
9
    0.480
                0.483
                               44.3
                                      0.439
                                                    2.7
                                                         0.254
                        19.5
                                              0.7
                                                                   8.0
                                                                         21.5
                                                                                0.371
10
    0.488
                0.490
                        15.7
                               35.2
                                      0.445
                                              0.8
                                                    2.9
                                                         0.282
                                                                   5.3
                                                                         15.1
                                                                                0.347
11
    0.462
                0.461
                        14.1
                               32.4
                                      0.436
                                              1.8
                                                    5.6
                                                         0.327
                                                                   6.8
                                                                         17.7
                                                                                0.384
    0.473
                0.464
                               41.4
                                      0.423
                                              1.4
                                                    5.3
                                                         0.273
                                                                   8.4
                                                                         23.3
                                                                                0.360
12
                        17.5
13
    0.459
                0.449
                        17.0
                               39.8
                                      0.427
                                              1.8
                                                    6.0
                                                         0.297
                                                                   8.9
                                                                         23.4
                                                                                0.379
    0.445
                0.468
                               37.2
                                      0.426
                                              1.4
                                                         0.318
                                                                   7.1
14
                        15.9
                                                    4.3
                                                                         19.5
                                                                                0.363
            •••
                               42.6
                                      0.435
                                                    2.7
15
    0.456
            ...
                0.475
                        18.5
                                              0.7
                                                         0.249
                                                                   7.1
                                                                         19.5
                                                                                0.363
    0.463
                0.477
                        13.2
                               29.4
                                      0.448
                                              1.1
                                                    4.0
                                                         0.270
                                                                   4.3
                                                                         11.6
                                                                                0.370
16
    0.458
                0.460
                                      0.434
                                                    2.6
                                                         0.247
17
                        17.9
                               41.1
                                              0.6
                                                                   7.9
                                                                         21.2
                                                                                0.374
18
    0.464
                0.471
                        16.1
                               35.4
                                      0.455
                                              0.7
                                                    2.6
                                                         0.272
                                                                   4.8
                                                                         13.8
                                                                                0.350
    0.453
                0.465
                                      0.431
                                                         0.299
19
                        16.4
                               38.1
                                              1.7
                                                    5.7
                                                                   6.4
                                                                         17.4
                                                                                0.368
20
                                      0.438
    0.457
                0.464
                        15.8
                               36.1
                                              1.0
                                                    3.3
                                                         0.303
                                                                   5.5
                                                                         15.1
                                                                                0.363
21
    0.464
                0.452
                        15.7
                               37.2
                                      0.422
                                              0.9
                                                    4.0
                                                         0.227
                                                                   8.1
                                                                         22.2
                                                                                0.366
22
                0.448
                                      0.434
                                                    4.3
                                                         0.264
    0.406
                        16.4
                               37.8
                                              1.1
                                                                   6.9
                                                                         19.5
                                                                                0.354
            ...
23
    0.453
                0.451
                        16.9
                               39.9
                                      0.424
                                              1.6
                                                    5.7
                                                         0.274
                                                                   7.1
                                                                         20.3
                                                                                0.350
            •••
                               38.5
24
    0.458
                0.442
                        17.0
                                      0.441
                                              1.3
                                                    3.9
                                                         0.332
                                                                   6.6
                                                                         17.5
                                                                                0.380
25
    0.445
                0.449
                        15.3
                               37.4
                                      0.409
                                              1.6
                                                    5.7
                                                         0.281
                                                                   7.7
                                                                         21.8
                                                                                0.354
            ...
26
    0.440
                0.447
                        16.6
                               39.5
                                      0.421
                                              1.4
                                                    5.0
                                                         0.288
                                                                   7.6
                                                                         20.8
                                                                                0.363
27
    0.447
                0.439
                               36.4
                                      0.438
                                                    4.9
                                                         0.305
                        15.9
                                              1.5
                                                                   5.9
                                                                         16.6
                                                                                0.358
                0.459
28
    0.440
                        16.1
                               38.5
                                      0.418
                                              0.7
                                                    2.5
                                                         0.278
                                                                   5.4
                                                                         16.0
                                                                                0.340
29
    0.441
                0.420
                        14.0
                               34.5
                                      0.406
                                              2.2
                                                    7.9
                                                         0.278
                                                                   5.6
                                                                         16.7
            •••
                                                                                0.335
```

[30 rows x 33 columns]

1.6.4 Part d

Find the path that leads to the headers (the column names), and extract these names as a list. Then set the .columns attribute of the dataframe you created in part c equal to this list. The result should be that the dataframe now has the correct column names. (3 points)

```
[11]: list_of_result_sets = body.get('resultSets')
    result_set = list_of_result_sets[0]
    list_of_headers = result_set.get('headers')
    data_frame.columns = list_of_headers
    data_frame
```

[11]:		TE	AM_ID	TEAM_CI	TY	TEA	M_N	AME '	TEAM_	ABBRI	EVIATI	ON	TEAM_	CODE	GP	\
	0	16106	12744	Golden Sta	te	Wa	rri	ors			G	SW			82	
	1	1610612759		San Anton	io		Sp	urs	SAS			AS			82	
	2	1610612739		Clevela	ind	Cavaliers		ers			C	LE			82	
	3	16106	12746	Los Angel	.es	Cl	ipp	ers			L	AC			82	
	4	16106	12760	Oklahoma City		T	'hun	der			0	KC			82	
	5	16106	12737	Atlan	ıta		Ha	wks			A	TL			82	
	6	16106	12745	Houst	on	R	lock	ets			Н	OU			82	
	7	16106	12757	Portla	nd	Trail B	Blaz	ers			P	OR			82	
	8	16106	12758	Sacramen	ito		Ki:	ngs			S	AC			81	
	9	16106	12764	Washingt	on	W	liza	rds			W	AS			82	
	10	16106	12748	Mia	mi		Н	eat			M	IΑ			82	
	11	16106	12761	Toron	ito		apt				Т	OR			81	
	12	16106	12742	Dall	.as	Mav	eri	cks				AL			82	
	13	16106	12766	Charlot		H	lorn	ets				HA			82	
	14	16106	12762	Ut	ah		J	azz				TA	82			
	15	16106		Orlan	ıdo			gic				RL	81			
	16	16106		Milwauk				cks				IL			82	
	17	16106		New Orlea			lic					OΡ	82		82	
	18	16106		Minneso		Timber	wol	ves				IN			82	
	19	16106		India			Pac					ND			82	
	20			Brookl	•	Nets			BKN							
	21			Detro		Pistons			DET						82	
	22			Denv			lugg		DEN						82	
	23	1610612738		Bost	Celtics			BOS						81		
	24	16106		Chica	_			lls				HΙ			82	
	25	16106		Philadelph				ers				ΗI			82	
	26	16106		Phoen				uns				HX			82	
	27	16106		New York		Knicks			NYK						82	
	28	16106		Memph		Grizzlies			MEM						82	
	29	16106	12/4/	Los Angeles		Lakers			LAL			AL			82	
		MIN	PTS	PTS_DRIVE	FGF	DRIVE	•••	CF	GP U	FGM	UFGA	U	FGP	CFG3M	\	
	0	48.7	114.9	14.9		0.498	•••	0.4	78 2	1.2	42.5	0.	497	2.3		
	1	48.3	103.5	14.8		0.481	•••	0.5	06 1	8.3	39.8	0.	460	0.9		
	2	48.7	104.3	16.9		0.481	•••	0.4	73 1	8.2	40.7	0.	447	1.7		
	3	48.6	104.5	15.0		0.497	•••	0.48	80 1	8.9	42.0	0.	450	2.0		
	4	48.6	110.2	16.1		0.480	•••	0.49	97 1	7.5	38.7	0.	451	1.6		
	5	48.6	102.8	19.0		0.463	•••	0.48	83 1	9.4	44.6	0.	435	1.0		
	6	48.6	106.5	17.2		0.433	•••	0.4	72 1	5.5	36.4	0.	426	2.3		
	7	48.5	105.1	17.5		0.441	•••	0.4	47 1	8.0	39.8	0.	453	1.7		
	8	48.4	106.7	18.7		0.452		0.4	73 1	8.1	39.7	0.	454	0.9		
	9	48.5	104.1	15.4		0.480	•••	0.48	83 1	9.5	44.3	0.	439	0.7		
	10	48.6	100.0	17.9		0.488	•••	0.49	90 1	5.7	35.2	0.	445	0.8		
	11	48.5	102.7	23.0		0.462		0.4		4.1	32.4		436	1.8		
	12	49.0	102.3	18.2		0.473		0.4		7.5	41.4		423	1.4		
	13	48.6	103.4	16.8		0.459	•••	0.4	49 1	7.0	39.8	0.	427	1.8		

14	49.0	97.7	18.1	0.445	•••	0.468	15.9	37.2	0.426	1.4
15	48.7	102.0	18.0	0.456	•••	0.475	18.5	42.6	0.435	0.7
16	48.7	99.0	17.4	0.463		0.477	13.2	29.4	0.448	1.1
17	48.5	102.7	19.9	0.458		0.460	17.9	41.1	0.434	0.6
18	48.6	102.4	15.1	0.464		0.471	16.1	35.4	0.455	0.7
19	48.8	102.2	13.7	0.453		0.465	16.4	38.1	0.431	1.7
20	48.4	98.6	14.4	0.457		0.464	15.8	36.1	0.438	1.0
21	48.7	102.0	17.5	0.464		0.452	15.7	37.2	0.422	0.9
22	48.6	101.9	15.9	0.406		0.448	16.4	37.8	0.434	1.1
23	48.5	105.6	18.9	0.453		0.451	16.9	39.9	0.424	1.6
24	48.9	101.6	18.1	0.458		0.442	17.0	38.5	0.441	1.3
25	48.6	97.4	19.7	0.445		0.449	15.3	37.4	0.409	1.6
26	48.4	100.9	15.6	0.440		0.447	16.6	39.5	0.421	1.4
27	48.5	98.4	10.4	0.447		0.439	15.9	36.4	0.438	1.5
28	48.6	99.1	16.4	0.440		0.459	16.1	38.5	0.418	0.7
29	48.3	97.3	15.6	0.441		0.420	14.0	34.5	0.406	2.2

	CFG3A	CFG3P	UFG3M	UFG3A	UFG3P
0	6.3	0.363	10.8	25.3	0.429
1	2.6	0.341	6.1	15.9	0.381
2	5.7	0.299	9.0	23.9	0.378
3	6.0	0.334	7.7	20.8	0.373
4	5.1	0.321	6.6	18.6	0.356
5	3.1	0.311	9.0	25.3	0.355
6	7.4	0.318	8.4	23.5	0.355
7	5.9	0.295	8.8	22.6	0.389
8	3.1	0.276	7.2	19.4	0.372
9	2.7	0.254	8.0	21.5	0.371
10	2.9	0.282	5.3	15.1	0.347
11	5.6	0.327	6.8	17.7	0.384
12	5.3	0.273	8.4	23.3	0.360
13	6.0	0.297	8.9	23.4	0.379
14	4.3	0.318	7.1	19.5	0.363
15	2.7	0.249	7.1	19.5	0.363
16	4.0	0.270	4.3	11.6	0.370
17	2.6	0.247	7.9	21.2	0.374
18	2.6	0.272	4.8	13.8	0.350
19	5.7	0.299	6.4	17.4	0.368
20	3.3	0.303	5.5	15.1	0.363
21	4.0	0.227	8.1	22.2	0.366
22	4.3	0.264	6.9	19.5	0.354
23	5.7	0.274	7.1	20.3	0.350
24	3.9	0.332	6.6	17.5	0.380
25	5.7	0.281	7.7	21.8	0.354
26	5.0	0.288	7.6	20.8	0.363
27	4.9	0.305	5.9	16.6	0.358
28	2.5	0.278	5.4	16.0	0.340

[30 rows x 33 columns]

1.7 Problem 5

Save the NBA dataframe you extracted in problem 4 as a JSON-formatted text file on your local machine. Format the JSON so that it is organized as dictionary with three lists: columns lists the column names, index lists the row names, and data is a list-of-lists of data points, one list for each row. (Hint: this is possible with one line of code) (2 points)

```
[12]: data_frame.to_json('shooting_statistics.json', orient = 'split')
pd.read_json('shooting_statistics.json', orient = 'split')
```

[12]:		TEAM_ID	TEAM_CITY	TEAM_NAME	TEAM_ABBREVIATION T	EAM_CODE GP \
	0	1610612744	Golden State	Warriors	GSW	82
	1	1610612759	San Antonio	Spurs	SAS	82
	2	1610612739	Cleveland	Cavaliers	CLE	82
	3	1610612746	Los Angeles	Clippers	LAC	82
	4	1610612760	Oklahoma City	Thunder	OKC	82
	5	1610612737	Atlanta	Hawks	ATL	82
	6	1610612745	Houston	Rockets	HOU	82
	7	1610612757	Portland	Trail Blazers	POR	82
	8	1610612758	Sacramento	Kings	SAC	81
	9	1610612764	Washington	Wizards	WAS	82
	10	1610612748	Miami	Heat	MIA	82
	11	1610612761	Toronto	Raptors	TOR	81
	12	1610612742	Dallas	Mavericks	DAL	82
	13	1610612766	Charlotte	Hornets	CHA	82
	14	1610612762	Utah	Jazz	UTA	82
	15	1610612753	Orlando	Magic	ORL	81
	16	1610612749	Milwaukee	Bucks	MIL	82
	17	1610612740	New Orleans	Pelicans	NOP	82
	18	1610612750	Minnesota	Timberwolves	MIN	82
	19	1610612754	Indiana	Pacers	IND	82
	20	1610612751	Brooklyn	Nets	BKN	82
	21	1610612765	Detroit	Pistons	DET	82
	22	1610612743	Denver	Nuggets	DEN	82
	23	1610612738	Boston	Celtics	BOS	81
	24	1610612741	Chicago	Bulls	CHI	82
	25	1610612755	Philadelphia	76ers	PHI	82
	26	1610612756	Phoenix	Suns	PHX	82
	27	1610612752	New York	Knicks	NYK	82
	28	1610612763	Memphis	Grizzlies	MEM	82
	29	1610612747	Los Angeles	Lakers	LAL	82

MIN PTS PTS_DRIVE FGP_DRIVE ... CFGP UFGM UFGA UFGP CFG3M \

0	48.7	114.9	14	. 9	0.498		0.478	21.2	42.5	0.497	2.3
1	48.3	103.5	14		0.481			18.3	39.8	0.460	0.9
2	48.7	104.3	16		0.481			18.2	40.7	0.447	1.7
3	48.6	104.5	15		0.497			18.9	42.0	0.450	2.0
4	48.6	110.2	16		0.480			17.5	38.7	0.451	1.6
5	48.6	102.8	19		0.463			19.4	44.6	0.435	1.0
6	48.6	102.5						15.5	36.4	0.435	
			17		0.433	•••					2.3 1.7
7	48.5	105.1	17		0.441			18.0	39.8	0.453	
8	48.4	106.7	18		0.452			18.1	39.7		0.9
9	48.5	104.1	15		0.480			19.5	44.3	0.439	0.7
10	48.6	100.0	17		0.488			15.7	35.2	0.445	0.8
11	48.5	102.7	23		0.462			14.1	32.4	0.436	1.8
12	49.0	102.3	18		0.473	•••		17.5	41.4	0.423	1.4
13	48.6	103.4	16		0.459	•••	0.449	17.0	39.8	0.427	1.8
14	49.0	97.7	18	.1	0.445	•••	0.468	15.9	37.2	0.426	1.4
15	48.7	102.0	18	.0	0.456	•••	0.475	18.5	42.6	0.435	0.7
16	48.7	99.0	17	.4	0.463	•••	0.477	13.2	29.4	0.448	1.1
17	48.5	102.7	19	.9	0.458	•••	0.460	17.9	41.1	0.434	0.6
18	48.6	102.4	15	.1	0.464	•••	0.471	16.1	35.4	0.455	0.7
19	48.8	102.2	13	.7	0.453	•••	0.465	16.4	38.1	0.431	1.7
20	48.4	98.6	14	.4	0.457	•••	0.464	15.8	36.1	0.438	1.0
21	48.7	102.0	17	.5	0.464	•••	0.452	15.7	37.2	0.422	0.9
22	48.6	101.9	15	.9	0.406	•••	0.448	16.4	37.8	0.434	1.1
23	48.5	105.6	18	.9	0.453	•••	0.451	16.9	39.9	0.424	1.6
24	48.9	101.6	18	. 1	0.458		0.442	17.0	38.5	0.441	1.3
25	48.6	97.4	19	.7	0.445	•••	0.449	15.3	37.4	0.409	1.6
26	48.4	100.9	15	.6	0.440	•••	0.447	16.6	39.5	0.421	1.4
27	48.5	98.4	10	.4	0.447	•••	0.439	15.9	36.4	0.438	1.5
28	48.6	99.1	16		0.440		0.459	16.1	38.5	0.418	0.7
29	48.3	97.3	15		0.441			14.0	34.5	0.406	2.2
	CFG3A	CFG3P	UFG3M	UFG3A	UFG3P						
0	6.3	0.363	10.8	25.3	0.429						
1	2.6	0.341	6.1	15.9	0.381						
2	5.7		9.0	23.9	0.378						
3	6.0	0.334	7.7	20.8	0.373						
4	5.1	0.321	6.6	18.6	0.356						
5	3.1	0.311	9.0	25.3	0.355						
6	7.4	0.311	8.4	23.5	0.355						
7	5.9	0.316	8.8	22.6	0.389						
8											
	3.1	0.276	7.2	19.4	0.372						
9	2.7	0.254	8.0	21.5	0.371						
10	2.9	0.282	5.3	15.1	0.347						
11	5.6	0.327	6.8	17.7							
12	5.3	0.273	8.4	23.3	0.360						
13	6.0	0.297	8.9	23.4	0.379						
14	4.3	0.318	7.1	19.5	0.363						

```
2.7 0.249
15
                   7.1
                         19.5 0.363
16
     4.0 0.270
                   4.3
                         11.6 0.370
     2.6 0.247
17
                   7.9
                         21.2 0.374
18
     2.6 0.272
                   4.8
                         13.8 0.350
19
     5.7 0.299
                   6.4
                         17.4 0.368
20
     3.3 0.303
                   5.5
                         15.1 0.363
21
     4.0 0.227
                   8.1
                         22.2 0.366
22
     4.3 0.264
                   6.9
                         19.5 0.354
23
     5.7 0.274
                   7.1
                         20.3 0.350
24
     3.9 0.332
                   6.6
                         17.5 0.380
     5.7 0.281
                   7.7
25
                         21.8 0.354
26
     5.0 0.288
                   7.6
                         20.8 0.363
27
     4.9 0.305
                   5.9
                         16.6 0.358
28
     2.5 0.278
                   5.4
                         16.0 0.340
29
     7.9 0.278
                   5.6
                         16.7 0.335
```

[30 rows x 33 columns]

[]: