ÁLGEBRA LINEAR

Exercícios - Matrizes

Lic. Ciências da Computação

2017/2018

1. Escreva a tabela das seguintes matrizes:

(a)
$$A = [i+j]_{\substack{i=1,\dots,4\\j=1,\dots,5}}$$
;

(b) $B = [b_{ij}]_{\substack{i = 1, \dots, 4 \ j = 1, \dots, 5}}$ onde $b_{ij} = |i - j|$;

(c) A + 2B.

2. Escreva a matriz $A = [a_{ij}]$, quadrada de ordem n, tal que

(a)
$$n = 3 \text{ e } a_{ij} = \begin{cases} 1 & \text{se } i + j \text{ \'e par} \\ 0 & \text{caso contr\'ario} \end{cases}$$
; (b) $n = 3 \text{ e } a_{ij} = \begin{cases} -1 & \text{se } i > j \\ 0 & \text{se } i = j \end{cases}$; $1 & \text{se } i < j \end{cases}$

(c)
$$n = 6$$
 e $a_{ij} = \begin{cases} i+j & \text{se } i > j-1 \\ 2i/j & \text{caso contrário} \end{cases}$.

3. Considere as matrizes:

$$A = \left[\begin{array}{rrr} 2 & 1 & 4 \\ -1 & -2 & -1 \\ 0 & 3 & 1 \\ 3 & 0 & 1 \end{array} \right]$$

$$A = \begin{bmatrix} 2 & 1 & 4 \\ -1 & -2 & -1 \\ 0 & 3 & 1 \\ 3 & 0 & 1 \end{bmatrix}; \qquad B = \begin{bmatrix} 3 & 0 & 1 \\ 4 & -1 & 2 \\ -1 & 2 & 1 \\ 0 & 3 & -1 \end{bmatrix};$$

$$C = \begin{bmatrix} 1 & 3 & -1 & 4 \\ 2 & 0 & -2 & -2 \\ 1 & -1 & 4 & 0 \end{bmatrix}; \qquad D = \begin{bmatrix} -1 & 0 \\ 2 & 3 \\ 0 & -3 \\ 1 & 1 \end{bmatrix}.$$

$$D = \begin{bmatrix} -1 & 0 \\ 2 & 3 \\ 0 & -3 \\ 1 & 1 \end{bmatrix}$$

Diga quais das seguintes expressões identificam matrizes, e em tais casos calcule-as.

(a)
$$A + 2B$$
;

(b) AB;

(c)
$$AC + D$$
;

(d) (A + B)C:

(e)
$$ACD$$
;

(f) 2ACA + A.

4. Seja
$$A = \begin{bmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
. Verifique que:

(a)
$$A - 3A + 2I_3 \neq 0_{3 \times 3}$$
;

(b)
$$A.I_3 = A = I_3.A;$$

(c)
$$A.0_{3\times3} = 0_{3\times3}$$
;

(d)
$$2A - 3A = -A$$
.

- 5. Sejam $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, m, n \in \mathbb{N} \in A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Mostre que
 - (a) A + B = B + A (comutatividade da adição).
 - (b) A + 0 = A = 0 + A (0 é o elemento neutro da adição).
 - (c) A + (-A) = (-A) + A = 0 (-A é o simétrico de A).
- 6. Sejam $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, m, n \in \mathbb{N}, A, B \in \mathcal{M}_{m \times n}(\mathbb{K}) \text{ e } \alpha, \beta \in \mathbb{K}.$ Mostre que
 - (a) $\alpha(A+B) = \alpha A + \alpha B$. (b) $(\alpha + \beta)A = \alpha A + \beta A$.
 - (c) $(\alpha \beta)A = \alpha(\beta A)$. (d) 1A = A.
- 7. Sejam $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $\alpha \in \mathbb{K}$ e $A, B, C, D, I, 0 \in \mathcal{M}(\mathbb{K})$ (matrizes de dimensões tais que as operações abaixo indicadas estejam definidas). Mostre que
 - (a) (AB)C = A(BC) (o produto de matrizes é associativo).
 - (b) A(B+C) = AB + AC (o produto de matrizes é distributivo em relação à adição),
 - (c) $\alpha(AB) = (\alpha A)B = A(\alpha B)$.
 - (d) AI = A = IA.
 - (e) A0 = 0, 0A = 0.
- 8. Se possível calcule AB e BA sendo

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 1 & -1 & 0 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 & 1 \\ -1 & 2 \\ -1 & 0 \\ 0 & 3 \end{bmatrix}$;

(b)
$$A = \begin{bmatrix} 2+i & -1 \\ 0 & 4+i \\ -3 & -i \end{bmatrix}$$
 e $B = \begin{bmatrix} 1-i & 0 & 2 & -2i \\ 2 & -i & 1 & 0 \end{bmatrix}$;

(c)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$;

(d)
$$A = \begin{bmatrix} 1+2i & 0 & 1 \\ 0 & -1 & 2i \\ -1+i & 0 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} i & 0 & -3i \\ 2 & 2 & 1+4i \\ 1-3i & 0 & 3i \end{bmatrix}$.

9. Sejam A, B matrizes 2×2 reas tais que

$$AB - BA = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Mostre que a + d = 0.

- 10. Seja A uma matriz do tipo $m \times (m+5)$ e B uma matriz do tipo $n \times (11-n)$ tais que AB e BA estão definidas. Determine os valores possíveis para m e n.
- 11. Determine a matriz $X \in \mathcal{M}_{4\times 2}(\mathbb{R})$ tal que A+3X=B, onde $A=\begin{bmatrix}2i-3j\end{bmatrix}_{\substack{i=1,\ldots,4\\j=1,2}}$ e $B=\begin{bmatrix}2i+3j\end{bmatrix}_{\substack{i=1,\ldots,4\\j=1,2}}$.

- 12. Demonstre a proposição: "Para quaisquer matrizes $A, B \in \mathcal{M}_{p \times n}(\mathbb{R})$, existe e é única a matriz X tal que A + 3X = B".
- 13. Dê exemplos de matrizes A e B tais que $A \neq B$ e:
 - (a) $A^2 = -I$;
 - (b) $A^2 = 0_{2\times 2} \text{ e } A \neq 0;$
 - (c) $AB = 0_{2\times 2}$, com $A \neq 0$ e $B \neq 0$;
 - (d) $AB = 0_{2\times 2}$, com $A \in B$ sem elementos nulos;
 - (e) $A, C \in D$ tais que $AC = AD \in C \neq D$.
 - (f) $A \in B$ tais que $(A + B)(A B) = A^2 B^2$;
 - (g) $A \in B$ tais que $(A + B)^2 = A^2 + B^2 + 2AB$.

Sugestão: procurar as condições gerais a satisfazer e depois construir os exemplos.

- 14. Seja $A=\begin{bmatrix}2+i&\sqrt{2}+3i\\0&1-i\\i&3\end{bmatrix}\in\mathcal{M}_{3\times 2}(\mathbb{C})$. Determine matrizes reais A_1 e A_2 tais que $A=A_1+iA_2$.
- 15. Simplifique a expressão seguinte onde $A, B \in C$ representam matrizes quadradas com a mesma ordem,

$$A.(B+C) + B.(C-A) - (A+B).C.$$

- 16. Desenvolva a expressão $(A+B)^3$ no caso de:
 - (a) A e B serem matrizes de ordem n quaisquer.
 - (b) A e B serem comutáveis.
- 17. Seja

$$\mathcal{G} = \{ \left[\begin{array}{cc} a & b \\ -b & a \end{array} \right] : a, b \in \mathbb{R} \}.$$

- (a) Mostre que quaisquer dois elementos de $\mathcal G$ comutam entre si.
- (b) Mostre que $A, B \in \mathcal{G} \Rightarrow AB \in \mathcal{G}$.
- 18. Verifique que a inversa da matriz $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 4 \end{bmatrix}$ é a matriz $B = \begin{bmatrix} 4 & -4 & 1 \\ 0 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$.
- 19. Use a definição para calcular a inversa de cada uma das seguintes matrizes:

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}; \qquad B = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}; \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}; \qquad D = \begin{bmatrix} x & 1 & 0 \\ 0 & y & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

 $com x, y \in \mathbb{R}$.

- 20. Sejam C uma matriz invertível e $A = CBC^{-1}$. Mostre que A é invertível se e só se B é invertível.
- 21. Dada uma matriz invertível A, mostre que toda a potência de A é também invertível.
- 22. Indique A^T no caso de A ser
 - (a) $\begin{bmatrix} 1 & 8 \\ 3 & 4 \\ 2 & 2 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$
- 23. Sejam $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, A, B \in \mathcal{M}(\mathbb{K}) \text{ e } \alpha \in \mathbb{K}$. Mostre que
 - (a) $(A^T)^T = A$.
 - (b) $(A + B)^T = A^T + B^T$.
 - (c) $(\alpha A)^T = \alpha A^T$.
 - (d) $(AB)^T = B^T A^T$.
 - (e) $(A^k)^T = (A^T)^k, k \in \mathbb{N}.$
 - (f) Se A for invertível, então $(A^T)^{-1} = (A^{-1})^T$.
- 24. Verifique se é válida a igualdade $AA^T = A^T A$, para qualquer matriz A.
- 25. Sejam $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, n \in \mathbb{N}, A \in \mathcal{M}_n(\mathbb{K}) \in \alpha \in \mathbb{K}$. Mostre que
 - (a) As matrizes $A + A^T$ e AA^T são simétricas;
 - (b) Se as matrizes A e B são simétricas, então
 - i) As matrizes $A + B = \alpha A$ são simétricas;
 - ii) A matriz AB é simétrica se e só se AB = BA.
- 26. Sejam $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, m, n, p \in \mathbb{N}, A \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K}) \text{ e } \alpha \in \mathbb{K}.$ Mostre que
 - (a) $(A^*)^* = A$.

- (b) $(A+B)^* = A^* + B^*$
- (c) $(\alpha A)^* = \overline{\alpha} A^*$.
- (d) $(AB)^* = B^*A^*$.
- (e) $(A^k)^* = (A^*)^k, k \in \mathbb{N}$. (f) Se A for invertivel, então $(A^*)^{-1} = (A^{-1})^*$.
- 27. Diga quais das seguintes matrizes são simétricas, quais são ortogonais, quais são hermíticas e quais são unitárias:

(a)
$$A = \begin{bmatrix} 4 & -i & 2i \\ i & 1 & 1-i \\ -2i & 1+i & 0 \end{bmatrix}$$
; (b) $B = \begin{bmatrix} 2 & 1+i & 5-i \\ 1-i & 7 & i \\ 5+i & -i & -1 \end{bmatrix}$;

(c)
$$C = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$$
; (d) $D = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$.