Indian Statistical Institute, Kolkata M.Math I Year SECOND SEMESTER 2024-'25

Analysis II Assignment 2

Due Date: 10.04.25

Please submit one assignment per group

- (1) Prove that there exist functions $C: \mathbb{R} \to \mathbb{R}$ and $S: \mathbb{R} \to \mathbb{R}$ such that
 - (i) C''(x) = -C(x) and S''(x) = -S(x) for all $x \in \mathbb{R}$.
 - (ii) C(0) = 1, C'(0) = 0 and S(0) = 0, S'(0) = 1.

[Hint: Define the functions by $C_1(x) = 1, S_1(x) = x$ and then use the above relations together with integration. Deduce the power series representation for such functions.

- (2) Is the series of functions $\sum_{n=1}^{\infty} (-1)^n (n+x)^{-1}$ convergent for $x \geq 0$? Give reasons for your answer.
- (3) (a) Show that ∑_{k=1}ⁿ sin kx = cos x/2-cos(n+1)x/2/2 (x ≠ 2lπ, l ∈ Z).
 (b) Let (c_n) be a decreasing sequence of non negative real numbers such that lim_{n→∞} c_n = 0. Show that the trigonometric series ∑_{n=1}[∞] c_n sin nx converges for all x ∈ R.
 - (c) Does there exist a 2π periodic Riemann integrable function f such that $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}}$ is the Fourier series of f? Justify your answer.
- (4) Consider the 2π -periodic odd function defined on $[0, \pi]$ by $f(x) = x(\pi x)$.
 - (a) Compute the Fourier coefficients of f.

 - (b) Show that $f(x) = \frac{8}{\pi} \sum_{k \text{ odd}, \geq 1} \frac{\sin kx}{k^3}$ (c) Use Parseval's identity to prove that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6} = \frac{\pi^6}{960}$ and $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^4}{945}$.
- (5) Show that the trigonometric series

$$\sum_{n\geq 2} \frac{1}{\log n} \sin nx$$

converges for every x, yet it is not the Fourier seies of a Riemann integrable function. Show that the same holds for $\sum_{n\geq 1} \frac{\sin nx}{n^{\alpha}}$ for $0<\alpha\leq 1/2$.

(6) Show that for α not an integer, the Fourier series of $\frac{\pi}{\sin \pi \alpha} e^{i(\pi-x)\alpha}$ on $[0, 2\pi]$ is given by

$$\sum_{n=1}^{\infty} \frac{e^{inx}}{n+\alpha}.$$

Apply Parseval's formula to show that

$$\frac{1}{(n+\alpha)^2} = \frac{\pi^2}{(\sin \pi \alpha)^2}$$