

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

УСТАНОВКИ, ПРИБОРЫ, УСТРОЙСТВА, БЛОКИ, МОДУЛИ ФУНКЦИОНАЛЬНЫЕ АГРЕГАТНОГО КОМПЛЕКСА ТЕХНИЧЕСКИХ СРЕДСТВ ДЛЯ ЛОКАЛЬНЫХ ИНФОРМАЦИОННО-УПРАВЛЯЮЩИХ СИСТЕМ (КТС ЛИУС)

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

FOCT 28853-90

Издание официальное

E

E3 7-95

ГОСУЛАРСТВЕННЫЙ СТАНЛАРТ СОЮЗА ССР

УСТАНОВКИ, ПРИБОРЫ, УСТРОЙСТВА, БЛОКИ, МОДУЛИ ФУНКЦИОНАЛЬНЫЕ АГРЕГАТНОГО КОМПЛЕКСА ТЕХНИЧЕСКИХ СРЕДСТВ ДЛЯ ЛОКАЛЬНЫХ ИНФОРМАЦИОННО-УПРАВЛЯЮ-ШИХ СИСТЕМ (КТС ЛИУС)

Общие технические требования

Installations, instruments, devices, units, functional modules of aggregate complex of technical means for local information-controlling systems (KTS LIUS).

General technical requirements

ОКП 42 1713, 42 1728

ГОСТ 28853—90

Дата введения 01.01.92

Настоящий стандарт распространяется на входящий в государственную систему промышленных приборов и средств автоматизации (ГСП) агрегатный комплекс технических средств для локальных информационно-управляющих систем КТС ЛИУС (комплекс микропроцессорных средств диспетчеризации, автоматики, телемеханики — МикроДАТ), включающий в себя агрегатные модули, компоновочные, вспомогательные и сервисные изделия, а также на проблемноориентированные (ПОИ) и объектно-ориентированные (ООИ) изделия с программным управлением, выполняемые на базе МикроДАТ, предназначенные для народного хозяйства, в т.ч. для судов, подлежащих надзору Регистра СССР, и экспорта.

Изделия, входящие в состав МикроДАТ, образуют группу однородной продукции «Блоки, модули функциональные агрегатного комплекса технических средств для локальных информационно-управляющих систем КТС ЛИУС» (ОКП 42 1728).

ПОИ и ООИ образуют группу однородной продукции «Установки, приборы устройства агрегатного комплекса технических средств для локальных информационно-управляющих систем КТС ЛИУС» (ОКП 42 1713).

Издание официальное

E

Стандарт устанавливает обязательные требования в пп.2.5.1, 2.7—2.9, 2.11, 3.1—3.3 (кроме 3.3.8), 3.5.5, 3.6.

Пояснения терминов, используемых в стандарте, приведены в приложении 1.

(Измененная редакция, Изм. № 1).

1. КЛАССИФИКАЦИЯ

- 1.1. По функциональному назначению агрегатные модули МикроДАТ подразделяют на следующие подгруппы:
 - средства обработки информации и управления;
- средства обмена информацией, сопряжения с другими агрегатными комплексами и ЭВМ;
 - средства хранения информации;
 - средства ввода-вывода непрерывных и дискретных сигналов;
- средства ручного ввода, вывода и отображения технологической информации;
- средства для подключения периферийных устройств и внешней памяти;
 - преобразователи сигналов и усилители мощности;
- специализированные средства программно-командного и логического управления;
 - специализированные средства для систем регулирования;
 - оперативно-диспетчерское оборудование.
- 1.2. К компоновочным изделиям относятся компоновочные каркасы, панели, кожухи (встраиваемые, настольные и настенные), шкафы, тумбы, столешницы с горизонтальной и наклонной рабочими поверхностями.
- 1.3. В состав вспомогательных изделий входят источники электропитания и средства электромонтажа.
- 1.4. К сервисным изделиям относятся средства контроля, отладки, ввода программ, стирания и программирования памяти и др.
- 1.5. По виду энергии носителя сигналов на входе и/или выходе агрегатные модули, ПОИ и ООИ относятся к электрическим изделиям.
- 1.6. Агрегатные модули, ПОИ и ООИ предназначены для информационной связи с другими изделиями.

Наличие информационных связей в сервисных изделиях определяется их функциональным назначением и указывается в технических условиях (ТУ) на изделия конкретного типа.

1.7. Агрегатные модули, компоновочные, вспомогательные и сервисные изделия МикроДАТ не являются средствами измерений и в

соответствии с ГОСТ 12997 подразделяются на изделия, имеющие точностные характеристики, и изделия, не имеющие точностных характеристик.

К изделиям, имеющим точностные характеристики, относятся агрегатные модули ввода-вывода непрерывных сигналов, преобразователи и усилители мощности с непрерывными входными и/или выходными сигналами. Наличие точностных характеристик у других агрегатных модулей, а также вспомогательных и сервисных изделий определяется их функциональным назначением.

ПОИ и ООИ должны относиться к изделиям, имеющим точностные характеристики, если в их составе использованы агрегатные модули, имеющие точностные характеристики.

характеристики изделий (требования к точности Точностные предписанных функций) должны сокаждой из выполнения ответствовать ГОСТ 23222 и должны быть указаны в ТУ на эти изделия (точностные характеристики ООИ — в техническом задании (Т3).

- 1.8. По эксплуатационной законченности изделия подразделяют в соответствии с ГОСТ 12997 на:
- изделия первого порядка субблоки, конструктивно реализованные на вдвижных платах, наборы субблоков;
 - изделия второго порядка блоки;
- изделия третьего порядка приборы, кассеты, устройства, комплексы.
- 1.9. Агрегатный модуль может быть конструктивно реализован в виде субблока, набора субблоков с соединительной панелью или кабелем, кассеты, блока, прибора или устройства. ПОИ и ООИ могут быть конструктивно реализованы в виде блока, прибора, устройства или комплекса.
- 1.10. По защищенности от воздействия окружающей среды изделия в соответствии с ГОСТ 12997 подразделяют на исполнения: обыкновенное; защищенное от попадания внутрь изделия твердых тел (пыли); защищенное от попадания внутрь изделия воды; сочетающее несколько видов защиты.

(Измененная редакция, Изм. № 1).

- стойкости к механическим воздействиям изделия подразделяют в соответствии с ГОСТ 12997 на исполнения: виброустойчивое; вибропрочное; ударопрочное; сочетающее виброустойчивость, вибропрочность и ударопрочность.

 1.12. Изделия следует изготавливать для эксплуатации в помеще-
- ниях с искусственно регулируемыми климатическими условиями в

районах с умеренным и холодным климатом; вид климатического исполнения — В4 по ГОСТ 12997 (УХЛ4 по ГОСТ 15150).

Допускается использование изделий для эксплуатации в районах с влажным и сухим тропическим климатом в помещениях с кондиционированием воздуха (климатические условия ТВ4.1, ТС4.1 или 04.1 по ГОСТ 15150).

Для отдельных агрегатных модулей третьего порядка, сервисных изделий, ООИ и ПОИ допускается по согласованию с заказчиком (основным потребителем) устанавливать в ТУ (ТЗ на ООИ) другие условия эксплуатации либо другие требования по устойчивости и прочности к воздействию температуры и влажности окружающего воздуха. При этом предпочтительными должны быть группы исполнения по ГОСТ 12997 и ГОСТ 15150:

- ВЗ (УХЛ4.1) для оперативно-диспетчерского оборудования, ПОИ и ООИ, а также для сервисных изделий;
- C3 (УХЛ3.1) для преобразователей сигналов, усилителей мощности, компоновочных и вспомогательных изделий.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Изделия (кроме ООИ) должны быть изготовлены в соответствии с настоящим стандартом, ТУ и картами данных (если они предусмотрены в ТУ на изделие) по рабочей документации, утвержденной в установленном порядке.

ООИ должны соответствовать требованиям настоящего стандарта и ТЗ, включающего требования к разработке (компоновке), изготовлению и приемке этих изделий.

Изделия для судов, подлежащих надзору Регистра СССР, должны соответствовать требованиям Правил Регистра, быть изготовлены по технической документации, одобренной Регистром, и испытаны под его надзором.

(Измененная редакция, Изм. № 1).

- 2.2. Стойкость к климатическим воздействиям
- 2.2.1. Изделия должны быть устойчивыми и прочными к воздействиям температуры и влажности окружающего воздуха, значения которых указаны в табл.1. В приложении 2, черт. 1—8, приведены границы допускаемых значений температуры и влажности для каждого климатического исполнения.
- 2.2.2. Изделия должны быть устойчивыми и прочными к воздействию атмосферного давления от 84,0 до 106,7 кПа по ГОСТ 12997, группа исполнения P1.

Исполнение по ГОСТ 12997	Порядок изделия по	Диапазон температуры окружающего воздуха, 'C	жипературы воздуха, *С	Относи	Относительная влажность, %	Максималь- ное содер- жание воды	Максималы изменения 1	Максимальная скорость изменения температуры, 'С/мин
(100.1 13130)	1001 1299/	Нижнее значение	Верхнее значение	Нижнее значение	Верхнее значение	в сухом воз- духе, г/м³	при	при охлаж- дении
ВЗ (УХЛ4.1)	Третий	+5(1)	+40(+40)	. 2	95(95)	29	5,0	5,0
B4 (YXII4)	Третий	+5(1)	+50(+50)	5	. (56)08	32	5,0	0.5
C3(УХЛЗ.1)	Третий	-10(-10)	+50(+50)	5	95(95)	37	0,1	1,0
Для всех ис- полнений	Второй	+5(-10)	+55(+60)	S	80(95)	32	1,0	10,0
	Первый	+5(-10)	+60(+65)				2,0	20,0

Примечание. В скобках указаны значения температуры и влажности по ГОСТ 15150, обязательные для изделий, разработанных после 01.01.91. Для этих изделий нормируются также максимальное содержание воды в сухом воздухе и максимальная скорость изменения температуры.

Для отдельных ПОИ допускается по согласованию с заказчиком (основным потребителем) устанавливать требования к устойчивости и прочности изделий к воздействию атмосферного давления в диа-пазоне, соответствующему группе исполнения P2 по ГОСТ 12997.

2.2.3. Изделия должны обладать коррозионной стойкостью к воздействию соляного (морского) тумана в соответствии с «Правилами

классификации и постройки морских судов».

- 2.2.4. В изделиях первого порядка, входящих в состав ПОИ и ООИ, предназначенных для эксплуатации на судах, устойчивость и прочность к воздействию влажности должны обеспечиваться путем нанесения трехслойного покрытия лаком субблоков. 2.2.3, 2.2.4. (Введены дополнительно, Изм. № 1).
- 2.3. Защита от попадания пыли воды внутрь изделия
- 2.3.1. Изделия третьего порядка защищенного исполнения должны соответствовать исполнениям ІР54 по ГОСТ 14254.
- 2.3.2. Оперативно-диспетчерское оборудование, средства ручного ввода, вывода и отображения информации должны соответствовать степени защиты IP40 или IP54 по ГОСТ 14254. Для встраиваемых изделий указанная степень защиты должна устанавливаться только для части оболочки, расположенной снаружи изделия, в которое устанавливается встраиваемое изделие. Степень защиты остальной
- части оболочки встраиваемого изделия должна устанавливаться в ТУ. 2.3.3. Для сервисных изделий и изделий третьего порядка, эксплуатируемых только внугри других изделий третьего порядка и/или внутри несущих конструкций пользователя, а также для компоновочных изделий, дорабатываемых в процессе изготовления ООИ (ПОИ) (например столешниц), допускается по согласованию с заказчиком устанавливать другие степени защиты по ГОСТ 14254, в том числе IP00.
- 2.3.4. Степень защиты изделий первого и второго порядков должна быть установлена в ТУ на изделия конкретного типа.
- 2.4. Стойкость механическим K действиям
- 2.4.1. По устойчивости и прочности к воздействию синусоидаль-

2.4.1. По устоичивости и прочности к воздеиствию синусоидальных вибраций изделия, кроме сервисных, должны соответствовать группе исполнения L1, сервисные изделия — L3 по ГОСТ 12997.

Для отдельных агрегатных модулей, ПОИ и ООИ допускается по согласованию с заказчиком (основным потребителем) устанавливать требования по устойчивости и прочности к воздействию синусоидальных вибраций, соответствующие группе исполнения N 2 по ΓΟCT 12997.

Изделия должны быть устойчивыми и прочными к воздействию синусоидальной вибрации с частотой от 5 до 100 Гц и ускорением до 7 m/c^2 .

2.4.2. Сервисные изделия, выполненные в виде переносных приборов (устройств), должны быть прочными к воздействию одиночных механических ударов (значение пикового ускорения — не менее 1000 м/с², длительность ударного импульса — в пределах 0,5—30 мс), а также к воздействию ударов при двухкратном свободном падении с высоты 100 мм

Изделия должны безотказно работать при многократных механических ударах (значение пикового ускорения — $30~\text{м/c}^2$, длительность ударного импульса — в пределах 10-15~мc) частотой от 40~дo80 1/мин.

На ПОИ и ООИ требования стойкости при ударных и вибрационных воздействиях, а также требования стойкости при воздействии резонансных частот (для обеспечения сейсмостойкости) устанавливаются в ТУ на ПОИ и в ТЗ на ООИ.

- 2.4.1, 2.4.2. (Измененная редакция, Изм. № 1). 2.4.3. ООИ и ПОИ, предназначенные для эксплуатации на судах, должны безотказно работать при длительных отклонениях до 15° от вертикального положения во всех направлениях, а также при качке до 22,5° (рекомендуется до 45°) с периодом от 7 до 19 с. (Введен дополнительно, Изм. № 1).

- 2.5. Электрическая изоляция
- 2.5.1. Электрическая прочность изоляции изделий должна соответствовать ГОСТ 12997 с учетом рабочих условий эксплуатации по п.2.2. 2.5.2. Минимально допускаемое электрическое сопротивление
- изоляции между гальванически разделенными токоведущими цепями (не соединенными электрически или разъединяющимися в процессе работы), а также между токоведущими цепями и металлическими нетоковедущими частями изделия должно соответствовать следуюшим значениям:
 - 40 МОм при условиях:
- температура окружающего воздуха естественно установив-шаяся в помещении от плюс 15 до плюс 30°C;
- относительная влажность естественно установившаяся в помещении:
- атмосферное давление естественно установившееся от 84 до 106.7 кПа:
- 10 МОм при верхнем значении температуры для рабочих условий по п.2.2;

- 2 МОм при верхнем значении относительной влажности для рабочих условий по п.2.2.1.
- 2.6. По устойчивости к воздействию внешних магнитных полей изделия третьего порядка, которые по своему принципу действия чувствительны к влиянию магнитного поля, должны сохранять свои при воздействии постоянных магнитных полей характеристики и/или переменных полей сетевой частоты с напряженностью 400 А/м.

Изделия, которые по своему принципу действия не выдерживают воздействия магнитных полей с напряженностью 400 А/м, должны выдерживать указанные воздействия с напряженностью до 80 А/м.

Проверку устойчивости к воздействию внешних магнитных полей проводят только в случае, если в изделии имеются составные части, которые по своему принципу действия чувствительны к влиянию внешних магнитных полей. Необходимость такой проверки устанавливают в ТУ на изделия конкретных типов и в ТЗ на ООИ. (Измененная редакция, Изм. № 1).

2.6а. ООИ и ПОИ, предназначенные для эксплуатации на судах, должны выдерживать электростатические разряды амплитудой 4 или 8 KB.

(Введен дополнительно, Изм. № 1).

2.7. Значение допускаемого уровня шума от изделий третьего порядка, имеющих в своем составе источники шума, не должно превышать 80 дБА при измерении звука на расстоянии 1 м от изделия.

Конкретные значения допускаемого уровня шума устанавливают в ТУ на изделия конкретных типов (в ТЗ на ООИ).

- 2.8. Надежность
- 2.8.1 В ТУ на изделия конкретных типов должно быть указано, является ли изделие ремонтируемым или неремонтируемым, однофункциональным (одноканальным) или многофункциональным (многоканальным).

ПОИ и ООИ относятся к ремонтируемым, многоканальным и (или) многофункциональным изделиям.

Критерии отказов и предельных состояний указывают в ТУ на изделия конкретных типов.

Для изделий, у которых имеют место отказы, существенно отличающиеся по вызываемым последствиям, значения показателей безотказности могут устанавливаться по каждому виду отказов с учетом требований по надежности к изделию в целом.

2.8.2. Для агрегатных модулей, компоновочных, вспомогательных

и сервисных изделий устанавливают следующую номенклатуру показателей надежности по ГОСТ 27883:

- показатель безотказности вероятность безотказной работы (на заданную наработку) P(t);
- показатель ремонтопригодности (только для ремонтируемых изделий) — среднее время восстановления работоспособного состояния $T_{\rm R}$;
- показатель сохраняемости гамма-процентный срок сохраня-
- показатель долговечности средний срок службы $T_{\rm cp.}$ 2.8.3. Значения показателей безотказности и ремонтопригодности ПОИ и ООИ определяют методом аналитической оценки по методике, утвержденной в установленном порядке на основании данных о нормах показателей надежности составных частей (агрегатных модулей, компоновочных и вспомогательных изделий, указанных в ТУ на эти изделия).
- 2.8.4. Значения показателей безотказности устанавливают для заданной наработки (2000 ч) с учетом регламентированных требований к транспортированию, хранению, эксплуатации и техническому обслуживанию изделий при их круглосуточной работе в нормальных условиях (приложение 3).

Конкретные значения показателей безотказности устанавливают в ТУ на изделия конкретного типа.

- 2.8.5. Значения показателей безотказности устанавливают для изделий в целом и/или для каждой функции (канала).
- 2.8.6. Среднее время восстановления изделий путем замены отка-(или другой сменной составной части) не субблока завшего более:
- для агрегатных модулей, выполненных в виде набора субблоков. — 0.15 ч;
- для агрегатных модулей, выполненных в виде кассет, блоков, приборов или устройств. — 1 ч:
 - для сервисного оборудования 2 ч;
 - для ПОИ и ООИ 0,2 ч.

Среднее время восстановления указывают в ТУ на изделия конкретных типов.

- 2.8.7. Средний срок службы изделий 10 лет. Критерием предельного состояния при определении срока службы является моральное старение изделия.
- 2.8.8. Гамма-процентный срок сохраняемости изделий в упаковке (у = 98 %) — не менее двух лет (для экспортных изделий — не менее

трех лет) при соблюдении следующих условий транспортирования и хранения:

- хранение по группе 1 ГОСТ 15150 и в соответствии с разд.6 ГОСТ 12997;
- транспортирование в части воздействия климатических факторов внешней среды по ГОСТ 15150: условия хранения 5 (при поставке в районы с умеренным и холодным климатом) или 6 (при поставке в районы с влажным и сухим тропическим климатом);
- в части механических факторов при транспортировании в крытых транспортных средствах всеми видами транспорта, кроме сверхзвуковых самолетов.
- 2.9. Значения показателей экономичности энергопотребления (номинальная потребляемая мощность) и общей материалоемкости (масса) устанавливаются в ТУ на изделия конкретного типа.

При этом потребляемая мощность должна быть, Вт, не более, для агрегатных модулей в виде:

- субблоков 12; 10*;
- набора из *n* субблоков (*n*=4)—32, (*n*=2)—18; 16*;
- кассет 10*;
- приборов вывода и отображения 60; 40*; 16; 12*;
- ручного ввода 8; 6*; 0,6; 0,5*.

Для ООИ номинальную потребляемую мощность и массу определяют расчетным путем на основании данных о номинальной потребляемой мощности и массе их составных частей (агрегатных модулей, компоновочных и вспомогательных изделий) и указывают в эксплуатационной документации.

- 2.10. Требования к изделиям в транспортной таре
- 2.10.1. Изделия в транспортной таре должны выдерживать воздействие температуры окружающего воздуха от минус 55 до плюс 70°C и относительной влажности от 5 до 100 %, при этом максимальное содержание воды в сухом воздухе не должно быть более 35 г/м^3 .
- 2.10.2. Изделия в транспортной таре должны быть прочными к механико-динамическим нагрузкам, действующим вдоль трех взаимно перпендикулярных осей тары или в направлении, обозначенном на таре: вибрации по группе F3 и ударам по ГОСТ 12997, в т.ч. ударам при свободном падении с высоты 250 мм.

Для ООИ допускается устанавливать в ТЗ (и указывать в эксплуатационной документации) другие требования по устойчивости из-

^{*}С 1996 г.

делия в транспортной таре к воздействию механико-динамических нагрузок по ГОСТ 12997.

2.11. Требования безопасности

Требования безопасности к изделиям должны соответствовать ГОСТ 12.2.007.0, ГОСТ 12997 и ГОСТ 25861 со следующими дополнениями.

- 2.11.1. Все внешние части изделий, а также электро- и радиоэлементы в изделиях первого порядка и соединяющие их печатные проводники, находящиеся под напряжением по отношению к корпусу и/или общей шине питания, должны иметь защиту от случайных прикосновений персонала при контроле и эксплуатации. Рукоятки органов управления, настройки, регулировки в цепях с напряжением св. 42 В, должны быть изготовлены из изоляционного материала или иметь изоляционное покрытие.
- 2.11.2. Конструкция изделий третьего порядка должна исключать возможность попадания в процессе эксплуатации электрических напряжений на наружные металлические части, в т.ч. на металлические ручки, рукоятки органов управления, замки, фиксаторы и т.п. Металлические части изделий, доступные для прикасания к ним при контроле и эксплуатации (включая регламентные работы), которые могут оказаться под напряжением в результате повреждения изоляции и не имеющие других видов защиты, подлежат защитному заземлению по ГОСТ 12.1.030.
- 2.11.3. Корпуса компоновочных изделий, в которых могут устанавливаться элементы с рабочим напряжением, превышающим 42 В, должны иметь устройства для подключения защитного заземления по ГОСТ 12.2.007.0. На корпусе изделия около устройства защитного заземления должен быть нанесен знак заземления по ГОСТ 2.721.

(Измененная редакция, Изм. № 1).

2.11.4. Защитные приспособления цепей с рабочим напряжением, превышающим 42 В, должны иметь надпись или знак, предупреждающий обслуживающий персонал об опасности.

На изделия, для безопасной работы с которыми необходимо принимать особые меры, указанные в эксплуатационной документации, должен быть нанесен знак «Осторожно! Прочие опасности» по ГОСТ 12.4.026 (знак должен быть нанесен на корпусе изделия или около частей, представляющих опасность).

Предупреждающие надписи и знаки должны быть четкими, нестираемыми и соответствовать ГОСТ 12.4.026, ГОСТ 12.4.040.

2.11.5. Изделия, подключаемые к питающей сети или источникам питания с напряжением св. 42 В, должны иметь сигнализацию, фик-

сирующую подачу питающего напряжения. Изделия, рассчитанные на питание от сетей и/или источников с разными номинальными напряжениями, снабжают указателями положения переключателя напряжения. Выключатель сети питания должен соответствовать напряжению питающей сети, коммутируемой мощности и обеспечивать двухполюсную коммутацию.

2.11.6. Переключатели и другие органы управления, состояние которых может повлиять на безопасность работы персонала, снабжают маркировкой, ясно обозначающей выполняемые ими функции.

- 2.11.7. В эксплуатационную документацию и ТУ на изделия с рабочим напряжением, превышающим 42 В, включают требования безопасности при контроле, эксплуатации (включая техническое обслуживание) и ремонте изделий.

В технических условиях на изделия (в ТЗ на ООИ) указывают класс изделия по способу защиты человека от поражения электрическим током в соответствии с ГОСТ 12.2.007.0.

- 2.11.8. Изделия третьего порядка и их составные части массой более 20 кг должны иметь устройства для подъема, опускания и удержания на весу при монтажных и такелажных работах, если контуры изделий не позволяют удобно и надежно захватить их тросом подъемного устройства.
- подъемного устроиства.

 2.11.9. Для изделий, масса которых превышает 50 кг, в ТУ и эксплуатационной документации устанавливают требования безопасности при выполнении погрузочно-разгрузочных работ.

 2.12. Номенклатура показателей технического уровня и качества, устанавливаемых в нормативно-технической документации (НТД) для изделий конкретных типов, и их применяемость для изделий различных подгрупп в составе группы однородной продукции приведены в приложении 4, табл.9—12.

3. ПАРАМЕТРЫ, ОБЕСПЕЧИВАЮЩИЕ СОВМЕСТИМОСТЬ

3.1. Типовые структуры и интерфейсы 3.1.1. Обмен информацией между агрегатными модулями, реализованными в виде субблоков (кассет) в составе проблемно- и объектно-ориентированных блоков должен осуществляться в структурах линейного типа в соответствии с регламентированными для Микро-ДАТ внутриблочными интерфейсами и протоколами по внутриблочной интерфейсной шине, реализованной в типовых компоновочных каркасах (панелях). Для ПОИ и ООИ допускается использование упрощенных версий интерфейса с учетом реального состава агрегатных модулей, сопряженных с шиной.

- 3.1.2. Логическое объединение внутриблочных шин должно осуществляться через пары агрегатных модулей, соединенных многопроводным кабелем; максимально допускаемая длина кабеля должна быть не менее 3 м.
- 3.1.3. Подключение к проблемно- или объектно-ориентированному блоку агрегатных модулей МикроДАТ, которые не предназначены для непосредственного сопряжения с внутриблочной шиной (оперативно-диспетчерского оборудования, средств ручного ввода, вывода и отображения информации и др.), а также изделий, имеющих информационную связь с этим блоком, должно осуществляться:
- 1) по двухпроводному или многопроводному кабелю с максимальной длиной не менее 200 м с использованием входных выходных непрерывных и/или дискретных сигналов (через сопрягаемые с внутриблочной шиной агрегатные модули ввода-вывода сигналов и интерфейсную карту, входящую в состав подключаемого сервисного изделия);
- 2) по одной или двум парам проводов в телефонном кабеле с максимальной длиной не менее 500 м сигналами последовательного интерфейса радиального типа по ГОСТ 28854 (через соответствующий агрегатный модуль МикроДАТ, сопрягаемый с внутриблочной шиной);
- 3) по локальной сети ввода-вывода, образованной парами проводов в телефонном кабеле с максимальной длиной не менее 500 м, в соответствии с регламентированными для этой сети интерфейсами и протоколами (через соответствующий агрегатный модуль МикроДАТ контроллер сети ввода-вывода, сопрягаемый с внутриблочной шиной) максимальное число изделий, подключаемых к одному контроллеру, не менее 64.
- 3.1.4. Обмен информацией между проблемно- и объектно-ориентированными блоками в структурах линейного типа должен осуществляться через соответствующие агрегатные модули МикроДАТ, сопрягаемые с внутриблочной шиной в каждом из блоков:
- 1) по многопроводной межблочной интерфейсной шине с максимальной длиной не менее 3 м сигналами интерфейса, логически эквивалентного внутриблочному интерфейсу, регламентированному для МикроДАТ, или по многопроводному каналу общего пользования с максимальной длиной не менее 10 м сигналами интерфейса по ГОСТ 26.003 (с параллельным способом обмена); максимальное число соединяемых блоков не менее 8;
- 2) по межблочной интерфейсной магистрали, образованной коаксиальным кабелем с максимальной длиной не менее 200 м в

соответствии с регламентированными для МикроДАТ межблочными интерфейсами и протоколами (с последовательным способом обмена), максимальное число соединяемых блоков — не менее 16;

- 3) по локальной сети ввода-вывода, образованной парами проводов в телефонном кабеле с максимальной длиной не менее 500 м, в соответствии с регламентированными для этой сети интерфейсами и протоколами: максимальное соединяемых число блоков — не менее 16.
- 3.1.5. Обмен информацией между проблемно- и объектно-ориентированными блоками в структурах радиального типа должен осуществляться:
- 1) по многопроводному кабелю с витыми парами и максимальной длиной не менее 3 м — сигналами внутриблочного интерфейса одного из блоков (через агрегатный модуль оперативной памяти с двухсторонним доступом к накопителю, сопряженный с внутриблочной шиной другого блока);
- 2) по одной или двум парам проводов в телефонном кабеле с максимальной длиной не менее 500 м — сигналами последовательного интерфейса радиального типа по ГОСТ 28854 (через соответстагрегатные модули МикроДАТ), сопрягаемые внутриблочной шиной в каждом из блоков).
- 3.1.6. Для интерфейсных сигналов по пп.3.1.3, перечисления 2 и 3, 3.1.4, 3.1.5, номинальные скорости передачи и соответствующие им предельно допускаемые длины линий связи устанавливают в соответствии со стандартами на интерфейсы или техническими условиями на агрегатные модули, формирующие и воспринимающие эти сигналы.
- 3.1.7. Вывод информации на видеомонитор осуществляют по коаксиальному кабелю с максимальной длиной не менее 30 м видеосигналами с синхронизирующими импульсами (через агрегатный модуль, сопрягаемый с внутриблочной шиной проблемно- или объектно-ориентированного блока).

Допускается использование отдельных кабелей для передачи видеосигналов и синхронизирующих импульсов строчной и кадровой развертки.

3.1.8. Обмен информацией между ПОИ (ООИ) и информационно-измерительными системами на базе агрегатных средств по ГОСТ 22316, а также с измерительно-вычислительными комплексами по ГОСТ 26.203 и отдельными измерительными приборами должен осуществляться в соответствии с интерфейсом по ГОСТ 26.003.

Измерительные приборы, не имеющие выхода на интерфейс, под-

ключают к проблемно- и объектно-ориентированным блокам многопроводным кабелем с максимальной длиной не менее 3 м:
1) через агрегатные модули МикроДАТ с дискретными входными

- сигналами, сопрягаемые с внутриблочной шиной;
- 2) через агрегатные модули с дискретными входными сигналами, сопрягаемые с сетью ввода-вывода, и контроллер сети ввода-вывода. установленный в блоке.
- 3.1.9. Периферийные средства из номенклатуры СМ ЭВМ и ЕС ЭВМ подключают к проблемно- и объектно-ориентированным блокам через агрегатные модули, сопрягаемые с внутриблочной шиной:

 1) по одной, двум или трем парам проводов в телефонном кабеле с максимальной длиной не менее 500 м сигналами последователь-
- ного интерфейса радиального типа по ГОСТ 28854 или С2 по ГОСТ 23675;
- 2) по многопроводному экранированному кабелю с максимальной длиной не менее 3 м сигналами интерфейса для радиального подключения печатающих устройств с параллельной передачей информации ИРПР.М по ГОСТ 27942;
- 3) сигналами других унифицированных интерфейсов, номенклатура и параметры которых должны определяться для каждого вида подключаемых периферийных устройств ввода-вывода и внешней памяти СМ ЭВМ (ЕС ЭВМ) и устанавливаться в ТУ на конкретные агрегатные модули МикроДАТ, предназначенные для подключения этих изделий к внутриблочной шине.
- 3.1.10. Обмен информацией между проблемно- и объектно-ориентированными блоками и управляющими вычислительными комплексами на базе СМ ЭВМ (или микроЭВМ, в т.ч. персональными) плексами на оазе СМ ЭВМ (или микроЭВМ, в т.ч. персональными) должен осуществляться через агрегатные модули МикроДАТ, сопрягаемые с внутриблочной шиной, и соответствующие средства в составе комплексов СМ ЭВМ (или микроЭВМ) — по одной, двум или трем парам проводов в телефонном кабеле с максимальной длиной не менее 150 м — сигналами последовательного интерфейса радиального типа по ГОСТ 28854 или С2 по ГОСТ 23675.
- 3.1.11. Обмен информацией между проблемно- и объектно-ориентированными устройствами и комплексами должен осуществляться по локальной сети, реализованной в виде коаксиального кабеля (интерфейсной магистрали) с максимальной длиной не менее 3 км, в соответствии с интерфейсом и протоколами по ГОСТ 26139 через соответствующие агрегатные модули МикроДАТ в составе этих устройств (комплексов).

В технически обоснованных случаях для информационного объ-

единения проблемно- и объектно-ориентированных устройств (комплексов) допускается использование линейных и радиальных структур по пп. 3.1.4, 3.1.5 с последовательными способами обмена между отдельными блоками, входящими в состав этих устройств (комплектирование). сов), а также волоконно-оптических систем связи.

- 3.1.12. Подключение управляющих вычислительных комплексов на базе СМ ЭВМ (или микроЭВМ) к локальным сетям — по п.3.1.10, с унифицированными интерфейсами и протоколами, регламентированными для МикроДАТ, должно осуществляться по одной, двум или трем парам проводов в телефонном кабеле с максимальной длиной не менее 150 м сигналами последовательного интерфейса радиального типа по ГОСТ 28854 или С2 по ГОСТ 23675:
- 1) через агрегатные модули МикроДАТ (согласователи интерфейсов), непосредственно сопрягаемые с соответствующей локальной сетью:
- 2) через проблемно-ориентированный (объектно-ориентированный) блок, в составе которого предусмотрены агрегатные модули для подключения ЭВМ (по п.3.1.10) и к локальной сети (по п.3.1.3), сопряженные с внутриблочной шиной.
- 3.1.13. Подключение к проблемно- и объектно-ориентированным блокам стандартной аппаратуры связи для передачи информации в телеавтоматических системах должно осуществляться через агрегатные модули МикроДАТ, сопрягаемые с внутриблочной шиной:

 1) на стыке C2 в соответствии с ГОСТ 18145, ГОСТ 23675 — при
- использовании аппаратуры передачи данных;
 2) на стыке С1ТЧ в соответствии с ГОСТ 25007 при использовании цепей телефонной связи;
- 3) на стыке СІТГ в соответствии с ГОСТ 22937 при использовании цепей телефонной связи;
- 4) на стыке С1-ТЧР в соответствии с ГОСТ 23578 для сопря-
- 4) на стыке CI-IYP в соответствии с IOCI 235/8 для сопряжения с радиоканалами тональной частоты.

 3.1.14. При использовании стандартных интерфейсов в типовых структурах по пп.3.1.1—3.1.12 номинальные скорости передачи, требования к среде, по которой передаются сигналы, максимальное число объединяемых изделий, предельные расстояния передачи и другие технические параметры должны соответствовать приведенным в стандартах на эти интерфейсы и/или указанным в ТУ на агрегатные модули, через которые осуществляется обмен.
- 3.1.15. Один из возможных вариантов структур по пп.3.1.3—3.1.13 выбирает разработчик ПОИ (заказчик ООИ) с учетом технической и экономической целесообразности, а также рекомендаций, содержа-

щихся в руководящих документах по проектной компоновке ООИ на базе МикроДАТ.

3.2. Требования к входным и выходным

сигналам

3.2.1. Входные и выходные сигналы изделий подразделяют на интерфейсные по п.3.1 и неинтерфейсные.

3.2.2. Интерфейсные сигналы должны соответствовать стандартам на интерфейсы, а при отсутствии стандартов — ТУ на изделия

конкретных типов, использующие эти интерфейсы.

В ТУ на агрегатные модули и ПОИ должны быть указаны наименования и/или обозначения интерфейсов и обозначения используемых входных и выходных интерфейсных сигналов, а при отсутствии стандартов на эти интерфейсы — также электрические параметры интерфейсных сигналов, правила обмена информацией (протоколы обмена) и требования к физической реализации интерфейса.

Для ООИ интерфейсные сигналы определяются типами и числом входящих в их состав агрегатных модулей, воспринимающих и/или

формирующих эти сигналы.

3.2.3. Неинтерфейсные непрерывные сигналы

3.2.3.1. Неинтерфейсные входные и выходные непрерывные сигналы постоянного тока и напряжения должны соответствовать ГОСТ 26.011.

Ограничительные ряды параметров этих сигналов и их числовые значения должны соответствовать указанным в табл.2.

В табл.2 указаны: для сигналов тока — минимальная граница допускаемого верхнего предела сопротивления нагрузки, для сигналов напряжения — максимальная граница нижнего предела допускаемого сопротивления нагрузки.

Таблица 2

Пределы изменения параметра непреры	информативного явного сигнала	Сопроти	вление, кОм
постоянного тока, мА	напряжения постоянного тока, В	Входное	Нагрузки
От 0 до 5; от —5 до +5;		Не более 0,5	Не менее 2,0
От 0 до 20; от 4 до 20; от —20 до +20*;	_	Не более 0,25	Не менее 0,5
От100 до +100*		Не более 0,12	Не менее 0,24

Пределы изменен параметра неп	чия информативного рерывного сигнала	Сопрот	вление, кОм
постоянного тока, мА	напряжения постоянного тока, В	Входное	Нагрузки
	От 0 ло 0,01*; от 0 до 0,05*; от 0 ло 0,10*		
	От 0 до 1,00*; от —1 до +1*		Не более 2,0
-	От 0 до 5; от 1 до 5; от —5 до +5*	Не менее 10	Не более 1,0
	От 0 до 10; от —10 до +10		Не более 2,0
	От —24 до +24*		

*Сигналы, допускаемые для изделий МикроДАТ:

а) воспринимающих сигналы от изделий (например датчиков), не входящих в состав МикроДАТ;

б) формирующих сигналы для связи с изделиями (например исполнительными устройствами), не входящими в состав МикроДАТ. Применение данных сигналов для связи между агрегатными модулями МикроДАТ не допускается.

В ТУ на изделия конкретного типа должно быть установлено значение входного сопротивления (для приемников входных сигналов) и пределы допускаемого сопротивления нагрузки (для источников выходных сигналов).

- 3.2.3.2. Входные непрерывные сигналы, получаемые от термопреобразователей сопротивления, должны соответствовать государственным стандартам на эти преобразователи.
- 3.2.3.3. Входные непрерывные сигналы, получаемые от термоэлектрических преобразователей, должны соответствовать ГОСТ Р 50431.
- 3.2.3.4. Входные непрерывные сигналы, получаемые от тензорезисторных датчиков, должны соответствовать ГОСТ 28836. Ограничительные ряды параметров сигналов устанавливают в ТУ на агрегатные модули, воспринимающие эти сигналы.
- 3.2.3.5. Входные непрерывные частотные сигналы должны соответствовать ГОСТ 26.010.

Для сигналов синусоидальной формы начальное значение частоты f_0 должно приниматься равным 4 кГц; диапазон изменения частоты $\Delta f_{\text{max}} = 4$ кГц; амплитуда напряжения — в диапазоне 0.6-2.4 В.

Входные сигналы с амплитудой от 0 до 0,15 В не должны восприниматься изделиями. Входное сопротивление изделий выбирают из ряда 600, 1400, 6000 Ом и устанавливают в ТУ на эти изделия (способ определения входного сопротивления — по ГОСТ 26.010).

Для сигналов несинусоидальной формы начальное значение частоты f_0 принимают равным 0 или 4 кГц; диапазон изменения частоты $\Delta f_{\text{max}} = 8$ или 100 кГц (при $f_0 = 0$ кГц) либо 4 кГц (при $f_0 = 4$ кГц); уровень — от 0,6 до 2,4 В (высокий) и от минус 2,4 до плюс 0,15 В (низкий). По согласованию с заказчиком (основным потребителем) допускается разработка и выпуск изделий с уровнями входных сигналов от 2,0 до 5,25 В (высокий) и от минус 0,4 до плюс 0,8 В (низкий). Значения входных сопротивлений изделий и способы их определения устанавливают в ТУ на эти изделия.

В технически обоснованных случаях для ПОИ и ООИ должны быть предусмотрены входные непрерывные сигналы несинусоидальной формы, уровни которых представлены периодически изменяющимся активным сопротивлением электрической цепи источника сигнала, подключенной ко входу изделия, при условии, что энергия поступает в эту цепь со стороны приемника. В ТУ на ПОИ (ТЗ на ООИ) для таких сигналов должно быть установлено:

- при низком сопротивлении цепи, подключенной ко входу, входной (втекающий или вытекающий) ток (не превышающий 1,6 или 16 мА) и предельно допускаемое остаточное напряжение на входе (не менее 1,8 или 3,6 В);
- при высоком сопротивлении цепи, подключенной ко входу, предельно допускаемый входной ток (не менее 1,0 мА) и максимальное напряжение на входе (не превышающее 13,2 или 26,4 В).
- 3.2.3.6. Параметры входных непрерывных сигналов, получаемых от импульсных датчиков, должны соответствовать: частота от 0 до 125 кГц, форма импульсов постоянного тока прямоугольная, активная длительность импульса не менее 4 мкс, активная длительность фронта и среза не более 1 мкс. Высокий (импульс) и низкий (пауза) уровни напряжения входного сигнала, а также требования к входному току изделий, воспринимающих эти сигналы, устанавливают такими же, как для дискретных сигналов постоянного тока (см.табл.3).

Для указания направления (например при использовании реверсивных импульсных датчиков скорости) должен предусматриваться дополнительный входной сигнал в виде последовательности прямо-угольных импульсов постоянного тока, синхронных с импульсами основного сигнала, отстающих или опережающих их по фазе на 90°.

В этом случае направление определяется уровнем («низкий» или «высокий») дополнительного сигнала на каждом фронте и/или спаде основного сигнала.

- 3.2.3.7. Параметры входных непрерывных сигналов в виде переменного напряжения синусоидальной или другой формы с фиксированной частотой, у которых информативным параметром является изменение временного сдвига напряжения сигнала по отношению к опорному напряжению той же частоты (фазовых входных сигналов), получаемых от сельсинов или вращающихся трансформаторов, уста-ТУ на агрегатные модули, воспринимающие эти навливают сигналы.
- 3.2.3.8. Параметры входных непрерывных сигналов в виде одиночных или периодически повторяющихся импульсов постоянного тока прямоугольной формы, у которых информативным параметром является изменение активной длительности импульсов или промежутков (пауз) между повторяющимися импульсами, должны соответствовать:
- высокий (импульс) и низкий (пауза) уровни напряжения и входной ток — указанным в табл.3:
- минимальное значение активной длительности импульса (паузы) — 1,0 или 10 мс, максимальное значение — не ограничивается:
- активные длительности фронта и среза импульса не более 10 MKC.
- 3.2.4. *Неинтерфейсные дискретные сигналы* 3.2.4.1. В качестве информативных параметров неинтерфейсных дискретных сигналов выбирают:
 - логические состояния сигнала («0» или «1») на входе (выходе);
- дискретно изменяющуюся частоту входных (выходных) импульсов постоянного тока;
- дискретно изменяющуюся фазу (сдвиг по времени) входных (выходных) импульсов постоянного тока по отношению к опорному напряжению той же частоты;
- дискретно изменяющуюся длительность входных (выходных) импульсов постоянного тока;
 - число входных (выходных) импульсов постоянного тока;
- кодовые комбинации логических состояний «0» и «1» на входах (выходах).
- 3.2.4.2. Для неинтерфейсных входных дискретных сигналов, в том числе сигналов импульсной формы с дискретным изменением информативного параметра, состояния логической «1» — импульса и

логического «0» — паузы, представляют уровнями напряжения постоянного тока по ГОСТ 26.013. Ограничительные ряды параметров этих сигналов и их числовые значения должны соответствовать указанным в табл.3 (для сигналов переменного тока промышленной частоты приведены эффективные значения напряжений и токов).

Таблица 3

	Уровень наг	ряжения, В	Ток, не более		
Вид сигнала	низкий (∗0∗, пауза)	высокий (*1*, импульс)	входной, мА	выходной. А	
Дискретный по-	От -0,4 до +0,8*	От 2,0 до 5,25**			
стоянного тока (входной)	От 0 до 2,4	От 9,6 до 14,4	1,6, 16	-	
(входнои)	От 0 до 4,8	От 19,2 до 28,8			
Дискретный пе-	От 0 до 22	От 88 до 132			
ременного тока (входной)	От 0 до 44	От 176 до 264	1,6	***************************************	
Дискретный по-	От 0 до 0,5*	От 2,4 до 5,25*		0,05	
стоянного тока (вы-ходной)	От 0 до 0,6	От 10,8 до 12,6	· <u> </u>	0,1; 0,2; 0,3; 2,0	
ходнои)	От 0 до 1,2	От 21,6 до 25,2			
	От 0 до 2,4	От 43,2 до 50,4			
Дискретный переменного тока (выходной)	От 0 до 11	От 198 до 242	_	0,2; 2,0 3,0; 5,0	

^{*}Диапазон значений, соответствующий стандартному уровню сигналов ТТЛ, допускается по согласованию с заказчиком (основным потребителем).

Примечание. Параметры входных сигналов, непосредственно воспринимаемых обмотками электромеханических реле, должны соответствовать технической документации на эти реле и должны быть указаны в ТУ на изделия конкретных типов.

В табл.3 указаны:

- 1) предельно допускаемые границы (максимальная нижняя и минимальная верхняя) для низкого и высокого уровней напряжения входных сигналов. Фактические значения этих границ для низкого и высокого уровней напряжения устанавливают в ТУ на изделия конкретных типов, воспринимающих эти сигналы;
- 2) предельно допускаемая (максимальная) верхняя граница для входного тока при нормальных условиях испытаний. Фактические значения верхней границы для входного тока при нормальных условиях испытаний устанавливают в ТУ на изделия конкретных типов,

воспринимающих эти сигналы. В.ТУ могут быть указаны также верхние границы для входного тока при условиях испытаний, отличающихся от нормальных (нормальные условия испытаний — см. приложение 3).

3.2.4.3. Для ПОИ и ООИ, а в технически обоснованных случаях также для отдельных агрегатных модулей, должны быть предусмотрены неинтерфейсные выходные дискретные сигналы, у которых состояния логической «1» (импульс) и «0» (пауза) представлены уровнями напряжения постоянного тока по ГОСТ 26.013 или переменного тока промышленной частоты.

Ограничительные ряды нормируемых параметров таких сигналов и их числовые значения должны соответствовать указанным в табл.3 (для сигналов переменного тока промышленной частоты приведены эффективные значения напряжения и токов).

В табл. 3 указаны:

- 1) предельно допускаемые границы (минимальная нижняя и максимальная верхняя) для низкого и высокого уровней напряжения выходных сигналов. Фактические значения этих границ для низкого и высокого уровней напряжения устанавливают в ТУ на изделия конкретных типов, формирующие эти сигналы (В ТЗ на ООИ);
- 2) предельно допускаемая (минимальная) верхняя граница для выходного тока. Фактическое значение верхней границы для выходного тока при нормальных условиях испытаний устанавливают в ТУ на изделия конкретных типов, формирующие эти сигналы (в ТЗ на ООИ). В ТУ могут быть указаны также верхние границы для выходного тока при условиях испытаний, отличающихся от нормальных.
- 3.2.4.4. Для ПОИ и ООИ, а в технически обоснованных случаях также для отдельных агрегатных модулей должны быть предусмотрены неинтерфейсные входные дискретные сигналы, у которых состояния логической «1» (импульс) и «0» (пауза) представлены дискретно изменяющимся активным сопротивлением электрической цепи источника сигнала, подключенной ко входу изделия, при условии, что энергия поступает в эту цепь со стороны приемника.

Ограничительные ряды нормируемых параметров таких сигналов и их числовые значения должны соответствовать указанным в табл.4.

В табл. 4 указаны предельно допускаемые верхние границы входных сигналов: максимальная для тока и минимальная для напряжения — при низком уровне сопротивления на входе; минимальная для тока и максимальная для напряжения — при высоком уровне сопротивления на входе. Фактические значения верхних границ для входных токов и напряжений должны быть установлены в ТУ на изделия

конкретных типов, воспринимающих эти сигналы (в ТЗ на ООИ). В технически обоснованных случаях допускается использовать в изделиях схемы монтажной логики для преобразования входных сигналов, при этом границы числовых значений нормируемых параметров входных сигналов могут отличаться от приведенных в табл. 4.

Таблица 4

	Низки		ь сопроти мпульс)	вления	Высокий уровень сопротивления (*0*, пауза)			
Вид сигиала	To	эĸ	Напряж	ение, В	Ток	, мА	Напряя	ение, В
	вход- ной, мА	выход- ной, А	на входе	на вы- ходе	вход- ной	выход- ной	на входе	на вы- ходе
Дискретный, с изменяющимся сопротивлением на входе	1,6; 16		1,8; 3,6		1,0	_	13,2; 26,4	
Дискретный с изменяющимся вы- ходным сопротив-		0,03; 0,1; 0,2		1,5		0,1		30
лением для коммутации посто-	-	2,0] _	2,5		1,0	_	
янного тока		0,1; 0,2 0,3		1,5		0,1		48
		2,0		2,5		1,0		60
Дискретный, с изменяющимся вы-		2,0		2,0		10		121; 140
ходным сопротив- лением для коммутации пере-	<u> </u>	0,2; 0,5	-		_	1,0	_	
менного тока		2,0; 3,0; 5,0		2,5		10		242

 Π р и м е ч а н и е. Параметры выходных сигналов, коммутируемых непосредственно контактами электромеханических реле, должны соответствовать НТД на эти реле и должны быть установлены в ТУ на изделия конкретных типов.

3.2.4.5. Для неинтерфейсных выходных дискретных сигналов, в т.ч. сигналов импульсной формы с дискретным изменением информативного параметра, состояние логической «1» (импульса) и логического «0» (пауза) должны быть представлены изменяющимся активным сопротивлением электрической цепи на выходе изделия

(выходным сопротивлением) при условии, что энергия поступает в эту цепь со стороны приемника.

Ограничительные ряды нормируемых параметров таких сигналов и их числовые значения должны соответствовать указанным в табл.4 (для сигналов переменного тока промышленной частоты приведены эффективные значения напряжений и токов).

В табл. 4 указаны предельно допускаемые верхние границы выходных сигналов: минимальная для тока и максимальная для напряжения — при низком уровне выходного сопротивления; максимальная для тока и минимальная для напряжения — при высоком уровне входного сопротивления. Фактические значения верхних границ для выходных токов и напряжений должны быть установлены в ТУ на изделия конкретных типов, формирующих эти сигналы.

В технически обоснованных случаях допускается использовать в изделиях схемы монтажной логики для формирования выходных сигналов, при этом границы числовых значений нормируемых параметров этих сигналов могут отличаться от приведенных в табл.4.

3.2.4.6. Для входных и выходных дискретных сигналов импульсной формы с дискретно изменяющейся частотой импульсов постоянного тока начальное значение частоты f_0 должно быть 0 или 4 кГц; диапазон изменения частоты $\Delta f_{\rm max}$ должен быть 8 или 100 кГц (при $f_0=0$) или 4 кГц (при $f_0=4$ кГц).

Цена единицы наименьшего разряда кода (Гц), номинальные значения активной длительности импульсов и (или) пауз (либо номинальное отношение длительностей импульсов и пауз), а также пределы допускаемых отклонений этих значений, длительности фронта и спада устанавливают в ТУ на изделия конкретных типов, воспринимающие и формирующие эти сигналы.

- 3.2.4.7. Для выходных дискретных сигналов импульсной формы с дискретно изменяющейся фазой импульсов постоянного тока (временным сдвигом напряжения сигнала по отношению к опорному напряжению той же частоты) пределы изменения информативного параметра, цена единицы наименьшего разряда кода (радиан, градус), номинальные значения активной длительности импульсов и (или) пауз) (либо номинальное отношение длительностей импульсов и пауз), пределы допускаемых отклонений этих значений, длительности фронта и спада, а также параметры, характеризующие опорное напряжение, устанавливают в ТУ на изделия конкретных типов, формирующие эти сигналы.
- 3.2.4.8. Для входных и выходных дискретных сигналов импульсной формы с дискретно изменяющейся активной длительностью

одиночных или повторяющихся импульсов постоянного тока цену единицы наименьшего разряда кода (мкс, мс, с), длительность фронта и спада, номинальное значение и пределы допускаемых отклонений частоты повторяющихся импульсов устанавливают в ТУ на изделия конкретных типов, воспринимающие и формирующие эти сигналы.

3.2.4.9. Для входных дискретных сигналов с изменяющимся числом импульсов постоянного тока допускаемые значения максимальной частоты, минимальной активной длительности, длительности фронта и спада, а также максимальное число импульсов, воспринимаемое изделием (для каждого направления счета), устанавливают в ТУ на изделия конкретных типов, воспринимающие эти сигналы.

Параметры входных дискретных сигналов, получаемых от импульсных датчиков, в т.ч. от реверсивных импульсных датчиков перемещения (поворота), устанавливают такими же, как в п.3.2.3.6.

- 3.2.4.10. Для выходных дискретных сигналов с изменяющимся числом импульсов постоянного тока номинальные значения и пределы допускаемых отклонений частоты и длительности выходных импульсов, длительности фронта и спада, а также максимальное число выходных импульсов устанавливают в ТУ на изделия, формирующие эти сигналы.
- 3.2.4.11. Кодированные сигналы должны соответствовать ГОСТ 26.014 (коды общего назначения) и ГОСТ 27463 (коды стандартных графических и управляющих символов для ввода, вывода и передачи данных). Кодирование сообщений при обмене информацией между агрегатными модулями по интерфейсной шине или локальной сети должно быть определено форматами сообщений, приведенными в ТУ на изделия конкретных типов.

Способы кодирования сообщений неинтерфейсными входными (выходными) дискретными сигналами устанавливают в ТУ на ПОИ.

3.2.5. Допускается использование входных (получаемых от датчиков) и выходных (предназначенных для управления исполнительными устройствами) неинтерфейсных сигналов, отличающихся от установленных настоящим стандартом. Параметры таких сигналов должны быть установлены в ТУ на изделия конкретных типов, воспринимающие или формирующие эти сигналы.

Для изделий с повышенной устойчивостью к воздействию на входные цепи внешних помех допускается устанавливать в ТУ параметры входных дискретных сигналов, отличающиеся от указанных в табл.3 и 4.

- 3.2.6. Требования к входным и выходным неинтерфейсным сигналам, которые используются для обмена информацией между конструктивно автономными составными частями изделий МикроДАТ (предназначенными для совместной работы и поставляемыми комплектно), устанавливают при необходимости в ТУ на эти изделия.
- 3.2.7. В ТУ на агрегатные модули и ПОИ устанавливают виды, параметры и при необходимости число входных и/или выходных сигналов каждого вида.

Для ООИ число сигналов каждого вида и их параметры определяют типами, исполнениями и количеством агрегатных модулей, входящих в состав ООИ, которые воспринимают и/или формируют эти сигналы; при этом неиспользованные входы и выходы агрегатных модулей допускается не учитывать. В ТЗ на ООИ должны быть указаны все (используемые и резервные) входы и выходы агрегатных модулей.

3.2.8. Входные и выходные цепи изделий, воспринимающих и формирующих сигналы по пп. 3.1.3, 3.1.4 (кроме перечисления 1), 3.1.5 (перечисление 2), 3.1.8, 3.1.9—3.1.13, не должны быть гальванически связаны между собой и с линиями внутриблочной шины, в т.ч. с линиями интерфейсного питания.

Входные и выходные цепи изделий, воспринимающих и формирующих неинтерфейсные сигналы по пп. 3.2.3—3.2.5, не должны быть гальванически связаны между собой и с интерфейсными цепями.

По согласованию с заказчиком (основным потребителем) допускается гальваническая связь между отдельными входными (выходными) цепями агрегатного модуля, воспринимающими (формирующими) сигналы одного вида. Группа таких входных (выходных) цепей не должна иметь гальванических связей с другими группами входных и выходных цепей и с интерфейсными цепями этого агрегатного модуля.

Предельно допускаемое напряжение между гальванически разделенными цепями должно быть не менее 500 или 1500 В для групп цепей, сопротивление электрической изоляции между цепями — по ГОСТ 12997.

В технически обоснованных случаях по согласованию с заказчиком (основным потребителем) в агрегатных модулях допускается устанавливать предельно допускаемое напряжение между гальванически разделенными цепями (группами цепей) равным 100 В или не предусматривать гальваническое разделение входных (выходных) цепей, воспринимающих (формирующих) неинтерфейсные сигналы, от интерфейсных цепей. В случае необходимости гальваническое разделение должно быть обеспечено использованием в составе ПОИ (ООИ) соответствующих преобразователей сигналов и усилителей мощности с гальваническим разделением входных и выходных цепей.

В ПОИ и ООИ допускается соединение любых гальванически разделенных входных и выходных цепей, воспринимающих и формирующих неинтерфейсные сигналы.

В ТУ на агрегатные модули и ПОИ (ТЗ на ООИ) устанавливают гальванически разделенные входные и выходные цепи (группы цепей) и предельно допускаемое напряжение между ними.

- 3.3. Параметры питания
- 3.3.1. Электрическое питание изделий должно осуществляться:
- ПОИ, ООИ, эксплуатационно-автономных агрегатных модулей переменным однофазным или постоянным током от сетей общего назначения, источников или преобразователей электрической энергии по ГОСТ 21128;
- агрегатных модулей в составе ПОИ (ООИ) постоянным током от стабилизированных источников питания по ГОСТ 18953, например входящих в состав МикроДАТ.

Параметры питания изделий, питающихся от сетей, источников или преобразователей по ГОСТ 21128, должны соответствовать указанным в табл.5; питающихся от стабилизированных источников по ГОСТ 18953 — указанным в табл.6.

Таблица 5

Наименование параметра	Номинальное значение	Допускаемое отклонение, %
Номинальное переменное напряжение (эффективное значение), В	24,110*; 220	От —15 до +10 (длительно) От —30 до +20 (в течение 1,5 с)
Частота переменного тока, $\Gamma_{\mathbf{U}}$	50; 60	±5 (длительно) ±10 (в течение 5 с)
Коэффициент гармоник, %	_	До 10
Номинальное постоянное напряжение, В	12; 24	От —15 до +20
Коэффициент пульсаций постоянного напряжения, %		∫ 5 ; 15

^{*}По требованию заказчика (основного потребителя).

Наименование параметра	Номинальное значение	Допускаемое отклонение, %
Номинальное постоянное напряжение, В	(-5)* 12; (±15)*;	±5 От —25 до +30**
Коэффициент пульсаций постоянного напряжения (двойная амплитуда), %	24; ±24 —	2,0

^{*}В новых разработках не применять.

(Измененная редакция, Изм. № 1).

- 3.3.2. Для ПОИ и ООИ, предназначенных для экспорта, по требованию заказчика допускается применение других номинальных значений питающих напряжений, частоты и их допускаемых отклонений.
- 3.3.3. Параметры питания изделий, а также потребляемый ток или мощность устанавливают в ТУ на агрегатные модули и ПОИ для каждого из питающих напряжений.

Для ООИ потребляемый ток или мощность определяют расчетным путем и устанавливают в Т3 на эти изделия.

- 3.3.4. Для питания эксплуатационно-автономных изделий и подпитки гальванически разделенных цепей в составе ПОИ и ООИ должны быть предусмотрены источники питания по ГОСТ 18953, входящие в состав МикроДАТ, допускающие последовательное соединение для получения требуемых номинальных значений питающих напряжений, если они отличаются от указанных в п.3.3.1. Питание от этих источников агрегатных модулей, входящих в состав ПОИ (ООИ), не допускается.
- 3.3.5. В ПОИ и ООИ должна быть предусмотрена возможность автоматического продолжения работы (или автоматического повторного перезапуска) при снятии и последующем включении питающего напряжения. Время, в течение которого допускается отсутствие питающего напряжения, устанавливают в ТУ на ПОИ (ТЗ на ООИ).

Для изделий с автоматическим переключением питания на внешний резервный источник отклонение напряжения питания от номинального значения, при котором должен выдаваться сигнал на подключение внешнего источника, и предельно допускаемую про-

^{**}Для оборудования, получающего питание от аккумуляторных батарей.

должительность времени переключения устанавливают в ТУ на ПОИ (ТЗ на ООИ).

3.3.6. Изделия с встроенными источниками резервного электропитания должны допускать отключение внешнего источника электропитания (и внешнего резервного источника, если он применяется) на время не менее 96 ч. Последующее включение внешних источников не должно вызывать сбоев в работе изделия.

Конкретное значение предельно допускаемого времени отключения и режим работы изделия при отключении внешних источников (нормальное функционирование, функционирование в аварийном режиме, останов с последующим автоматическим продолжением работы или автоматическим перезапуском, сохранение накопленной информации и возобновление работы при запуске вручную) устанавливают в ТУ на изделия (ТЗ на ООИ).

режиме, останов с последующим автоматическим продолжением работы или автоматическим перезапуском, сохранение накопленной информации и возобновление работы при запуске вручную) устанавливают в ТУ на изделия (ТЗ на ООИ). 3.3.7. Изделия, питающиеся от сети общего назначения, источников или преобразователей по ГОСТ 21128 не должны создавать при их включении коммутационных помех, которые вызвали бы сбои в работе других изделий (ПОИ или ООИ), подключаемых к той же сети, источнику или преобразователю.

Допускаемый уровень напряжения радиопомех, создаваемый на зажимах изделий третьего порядка (ООИ и ПОИ), предназначенных для эксплуатации на судах, не должен превышать значений, указанных в п.2.1.6.2 части XI «Правил классификации и постройки морских судов».

3.3.8. Воздействие на изделие помех со стороны питающей сети переменного тока, параметры которых указаны в табл. 7, не должно приводить к отказам и сбоям в работе изделия.

Таблица 7

Вид пом	ехи	Параметры помехи	Значение параметра
Импульс ния	напряже-	Амплитуда, % от номиналь- ного значения напряжения сети, не менее	
		Длительность, мкс	10; 100 или 1000
		Минимальный интервал между двумя импульсами, мс	10
Выброс		Амплитуда, % от номинального значения напряжения	25
		Максимальная длительность, мс	100
		Минимальный интервал между двумя выбросами, с	5

Продолжение табл. 7

Вид помехи	Параметры помехи	Значение параметра	
Прерывание пита- ния	Амплитуда, % от номиналь- ного значения напряжения сети Максимальная длительность, мс Минимальный интервал между двумя прерываниями, с	20	
Коммутационная помеха	Устанавливается в ТУ	_	
Радиопомеха	Действующее значение напряжения, % от номинального значения напряжения сети Частота, кГц	2 (но не более 4,4 В) От 10 до 10000	

^{*}Для ООИ и ПОИ, предназначенных для эксплуатации на судах, не более 800 В при длительности фронта нарастания между уровнями 0,1 и 0,9—100 мс.

Изделия, для которых не предусмотрено непосредственное питание от сети переменного тока, должны удовлетворять указанным требованиям при питании их от рекомендованного для них источника, подключенного к сети переменного тока.

Воздействие на изделие помех со стороны питающей сети постоянного тока и с номинальным напряжением 24 В в виде импульсов напряжения с амплитудой до 96 В и длительностью, не превышающей 10 мкс, не должно приводить к отказам и сбоям в работе изделия.

- 3.3.7, 3.3.8. (Измененная редакция, Изм. № 1).
- 3.4. Изделия третьего порядка должны сохранять свои характеристики при воздействии на них индустриальных радиопомех, не превышающих норм, предусмотренных в «Общесоюзных нормах допускаемых индустриальных радиопомех» (Нормы 1-87÷9-87). Проверка работоспособности изделий при воздействии на них индустриальных радиопомех должна проводиться только в тех случаях, когда в них имеются агрегатные модули или другие составные части, которые по своему принципу действия чувствительны к индустриальным радиопомехам. Необходимость такой проверки устанавливают в ТУ на изделия конкретных типов и в ТЗ на ООИ.
 - 3.5. Требования к конструкции
- 3.5.1. Изделия должны быть выполнены на базе системы унифицированных типов (несущих) конструкций, принятых для Микро-ДАТ.
 - 3.5.2. В качестве конструктивной основы ПОИ и ООИ следует

применять компоновочные изделия с унифицированным электромонтажом, входящие в состав МикроДАТ; для изделий второго и третьего порядков (кроме ООИ) допускается использовать вместо компоновочных изделий непосредственно типовые (несущие) конструкции.

- 3.5.3. Для отдельных агрегатных модулей, вспомогательных и сервисных изделий, которые не могут быть реализованы на базе унифицированных типовых (несущих) конструкций, допускается возможность иной конструктивной реализации; в ТУ на эти изделия, при необходимости, устанавливают требования их конструктивного сопряжения в составе ПОИ и ООИ с несущими конструкциями по пп. 3.5.1, 3.5.2.
- 3.5.4. Габаритные и установочные размеры изделий, их числовые значения и допуски на установочные размеры должны соответствовать указанным в ТУ на эти изделия (для ООИ в ТУ на компоновочные изделия, на базе которых они реализованы).
- 3.5.5. Конструкция ПОИ и ООИ должна обеспечивать доступ ко всем агрегатным модулям и другим составным частям, которые могут потребовать регулировки и/или замены в процессе эксплуатации.
- 3.6. Агрегатные модули, вспомогательные и сервисные изделия одного и того же типа и исполнения должны быть взаимозаменяемы. Замена любого изделия однотипным (того же типа и исполнения) не должна требовать регулировки в других составных частях ПОИ и ООИ. Допускается применение подстроечных элементов на заменяемом агрегатном модуле, если это предусмотрено в эксплуатационной документации этого изделия и/или ПОИ.
 - 3.7. ПОИ разрабатывают и выпускают:
 - с фиксированным составом оборудования;
- с переменным составом оборудования (границы возможного изменения состава оборудования указывают в ТУ на конкретные ПОИ).
- 3.8. ООИ компонуют проектным путем с использованием агрегатных модулей, компоновочных, вспомогательных и сервисных изделий, которые включены в номенклатурный перечень изделий МикроДАТ и освоены в производстве изготовителем ООИ (либо поступают по кооперации с других предприятий-изготовителей).

Разработка (компоновка), изготовление и приемка ООИ осуществляются в соответствии с настоящим стандартом, технологическими инструкциями и другими документами системы нормативно-методического обеспечения МикроДАТ.

3.9. ООИ выпускают с фиксированным составом оборудования,

оговоренным в ТЗ. Возможность изменения состава в процессе эксплуатации (например с целью расширения функций, увеличения информационной емкости или резервирования) должна предусматриваться в процессе компоновки ООИ. Доукомплектование ранее изготовленных ООИ проводят по отдельным ТЗ.

3.10. Составные части ПОИ и ООИ (агрегатные модули, компоновочные, вспомогательные и сервисные изделия) должны соответствовать ТУ на эти изделия, что должно быть подтверждено отметкой

в их паспорте (этикетке) и/или клеймом ОТК.

Комплектующие изделия, используемые при изготовлении агрегатных модулей, вспомогательных изделий и сервисной аппаратуры, должны пройти входной контроль в соответствии с ГОСТ 24297.

- 3.11. Требования к функционированию 3.11.1. В ТУ на агрегатные модули, ПОИ и сервисные изделия указывают следующие требования, характеризующие функционирование:
- полный перечень выполняемых функций (алгоритм функционирования):
- основные показатели согласно приложению 4, характеризующие качество выполнения каждой функции, а также необходимые дополнительные показатели:
- допускаемые значения показателей качества и другие необходимые критерии правильности функционирования изделия;
- характеристики точности выполнения предписанной функции (точностные характеристики) в соответствии с ГОСТ 23222 (для изделий, имеющих точностные характеристики);
- условия, для которых задают показатели качества и точностные характеристики.
- 3.11.2. Требования к функционированию ООИ определяются их составом, структурой (установленными в ТЗ на ООИ) и требованиями к функционированию каждого из агрегатных модулей, входящих в эти изделия.
- 3.11.3. Изделия должны правильно функционировать (соответствовать требованиям пп.3.11.1, 3.11.2):
- при отклонении параметров питания от номинальных значений в пределах, указанных в пп.3.3.1, 3.3.2;
- при изменении температуры окружающего воздуха от соответствующей нормальным условиям (приложение 3) (для точностных характеристик — ГОСТ 23222) до соответствующей верхнему и нижнему значениям диапазона рабочих температур при эксплуатации $(\pi.2.2.1)$:

- при изменении атмосферного давления в диапазоне, указанном в п.2.2.2;
- при воздействии синусоидальных вибраций по п.2.4.1 и после воздействия ударов по п.2.4.2;
- при воздействии на изделия третьего порядка внешних магнитных полей по п.2.6.

Для изделий, имеющих точностные характеристики, наибольшие допускаемые изменения этих характеристик, вызванные изменениями внешних влияющих величин и неинформативных параметров входных сигналов, устанавливают в ТУ.

4. КОМПЛЕКТНОСТЬ

- 4.1. В комплект изделия, кроме самого изделия, входят:
- эксплуатационная документация по ГОСТ 2.601;
- запасные части, инструменты, присоединительные и установочные детали приспособления и принадлежности (ЗИП) согласно технической документации или ТЗ;
 - программные изделия;
 - программная документация.
- 4.2. В комплект агрегатных модулей, вспомогательных, компоновочных и сервисных изделий, предназначенных для пополнения группового ЗИП, для ПОИ и ООИ по заказам потребителей включают:
- техническое описание или инструкцию по эксплуатации. Число экземпляров документов устанавливают в ТУ на изделия конкретных типов;
 - паспорт;
- программную документацию, включенную в ведомость эксплуатационных документов (для отдельных агрегатных модулей);
- программные изделия (для отдельных агрегатных модулей): рабочие, тестовые, диагностические и другие программы, записанные в полупроводниковых накопителях (рабочие программы) и (или) на перфолентах (остальные программы);
- документацию программных изделий согласно спецификации этих изделий;
 - одиночный комплект ЗИП (при необходимости).
 - 4.3. В комплект ПОИ включают:
- формуляр (для проблемно-ориентированных комплексов), техническое описание или инструкцию по эксплуатации и паспорт (для эксплуатации);

- общую программную документацию на ПОИ, включенную в ведомость эксплуатационных документов;
- программные изделия: рабочие, тестовые, диагностические и другие программы (фрагменты программ), записанные в агрегатных модулях постоянной (стираемой программируемой) памяти, в отдельных полупроводниковых накопителях и/или на машинных носителях (перфолентах, магнитных лентах, гибких магнитных дисках);
- документацию программных изделий согласно спецификациям этих изделий;
- технические описания или инструкции по эксплуатации агрегатных модулей, вспомогательных, компоновочных и сервисных изделий— по одному на каждый вид изделий, входящих в состав ПОИ;
- паспорта агрегатных модулей, вспомогательных, компоновочных и сервисных изделий для каждого изделия, входящего в состав ПОИ;
- программные изделия и программную документацию агрегатных модулей и сервисных изделий (при необходимости для каждого вида изделий, входящих в состав ПОИ);
 - одиночный комплект ЗИП (согласно ведомости ЗИП).
 - 4.4. В комплект ООИ должны входить:
 - формуляр;
- технические описания или инструкции по эксплуатации агрегатных модулей, вспомогательных, компоновочных и сервисных изделий— по одному на каждый вид изделий, входящих в состав ООИ;
- паспорта агрегатных модулей, вспомогательных, компоновочных и сервисных изделий для каждого изделия, входящего в состав ООИ;
- программные изделия и программная документация агрегатных модулей и сервисных изделий (для каждого вида изделий, входящих в состав ООИ, если это оговорено в ТЗ на ООИ);
- программные изделия (записанные в агрегатных модулях постоянной памяти в отдельных полупроводниковых накопителях, на перфолентах, магнитных лентах, гибких магнитных лентах) и/или программная документация, относящиеся к системе базового программного обеспечения МикроДАТ, оговоренные в ТЗ на ООИ;
- одиночный комплект ЗИП, составленный из запасных частей, инструментов, приспособлений и принадлежностей, предусмотренных ТУ на изделия, примененные в составе ООИ (за исключением присоединительных и установочных деталей и приспособлений, использованных в процессе компоновки ООИ).
 - 4.5. В формуляре ООИ должны быть указаны: обозначение, за-

водской номер, дата выпуска, сведения о составе, количестве и заводских номерах входящих изделий, схемы расположения и подключения согласно ТЗ на ООИ и другие сведения по ГОСТ 2.601.

4.6. Для обеспечения эксплуатации изделий следует предусмот-

реть комплекты ЗИП двух видов: одиночный и групповой.

Одиночный комплект ЗИП (ЗИП-О) должен обеспечивать поддержание работоспособности изделий в течение гарантийного срока эксплуатации.

Групповой комплект ЗИП (ЗИП-Г) должен обеспечивать возможность восстановления работоспособности устройств и комплексов, эксплуатируемых у одного потребителя, в период с момента истечения гарантийного срока эксплуатации до первого пополнения ЗИП-Г. Период пополнения ЗИП-Г принимают равным году.

ЗИП-Г пополняется изготовителем комплексов независимо от самих изделий, по отдельному заказу.

- 4.7. В состав ЗИП должны включаться:
- легко теряющиеся и недолговечные комплектующие изделия (крепеж, рукоятки, предохранители, сигнальные лампочки и т.п.);
- легко изнашивающиеся и неремонтируемые механические, электромеханические и электрические узлы и детали, изготавливаемые или получаемые по кооперации (соединители, вентиляторы и т.п.);
 - типовые сменные части (субблоки) восстанавливаемых изделий;
 - невосстанавливаемые изделия;
- специальные инструменты, приспособления и материалы для монтажа, обслуживания и эксплуатации изделий.
- 4.8. Состав ЗИП-О определяется расчетным путем на стадии разработки рабочей документации изделий (проектной компоновки ООИ) по утвержденной методике. Критерием обеспеченности изделия запасными частями должна быть вероятность того, что в течение гарантийного срока эксплуатации оно не будет простаивать из-за отсутствия ЗИП.

Изделия из состава ЗИП-О, не израсходованные в течение гарантийного срока, должны переводиться в ЗИП-Г.

4.9. Состав ЗИП-Г определяется (рассчитывается) на время, равное периоду его пополнения, по утвержденной методике.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Изготовитель гарантирует соответствие изделий требованиям настоящего стандарта и ТУ (ТЗ на ООИ) при соблюдении условий эксплуатации, хранения, транспортирования, установленных настоящим стандартом и ТУ на изделия, а также при условии выполнения

монтажа и наладки изделий на месте эксплуатации в соответствии с требованиями технической документации на выполнение этих работ.

5.2. Гарантийный срок эксплуатации изделий — 18 мес со дня

ввода в эксплуатацию.

Правила исчисления гарантийного срока эксплуатации — по ГОСТ 22352.

5.3. Для изделий, предназначенных для экспорта, изготовитель гарантирует качество и соответствие требованиям ТУ (ТЗ на ООИ) в течение 12 мес со дня ввода в эксплуатацию, однако не более 24 мес с момента проследования их через Государственную границу СССР.

ПРИЛОЖЕНИЕ 1 Справочное

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ИХ ПОЯСНЕНИЯ

Таблица 8

Термин	Пояснение				
Автоматизированная	По ГОСТ 34.003				
система управления (АСУ) Автоматизированная система управления техно- логическими процессами	По ГОСТ 34.003				
(АСУ ТП)					
Агрегатный комплекс технических средств автоматизации (агрегатный комплекс, комплекс технических средств)	1 11				
Агрегатный модуль	Функционально и конструктивно законченное изделие, предназначенное для информационной связи с другими агрегатными модулями, включенное в номенклатуру агрегатного комплекса и являющееся на-				
	именьшей функциональной и структурной единицей при проектировании и заказе объектно-ориентированных изделий (ООИ)				
Блок	1. Агрегатный модуль, вспомогательное изделие, ПОИ или ООИ в виде функционально и конструктивно законченного изделия 2-го порядка, состоящее из субблоков и/или узлов и деталей (объектно-ориентирован-				
	ный блок — только из агрегатных модулей первого порядка и вспомогательных изделий в виде субблоков				
	или наборов субблоков, электрически и механически объединенных в компоновочном каркасе), не допускаю-				
	щее самостоятельного эксплуатационного применения и используемое для построения проблемно- или объектно-				
	ориентированных устройств либо для установки в устройства пользователя.				
	2. Агрегатный модуль, вспомогательное изделие, ПОИ или ООИ в виде функционально и конструктивно законченного эксплуатационно-автономного изделия				
	3-го порядка, состоящее из субблоков и/или узлов и деталей (объектно-ориентированный блок — только из агрегатных модулей 3-го порядка и вспомогательных				

изделий в виде кассет, электрически и механически

объединенных компоновочной панелью)

	ттрооолжение таол. о			
Термин	Пояснение			
Вид интерфейса	Установленное стандартом или иным НТД наименование и/или условное обозначение интерфейса			
Время реализации функции				
Емкость памяти	Число ячеек накопителя в запоминающем устройстве (агрегатном модуле или блоке), доступном для записи и (или) чтения данных, с указанием их разрядности			
Интерфейс	Совокупность сигналов, правил обмена данными и требований к техническим средствам и среде передачи, обеспечивающих обмен информацией между изделиями в системе			
Интерфейсная маги-	См. магистраль			
страль Интерфейсная шина	См. шина			
Каркас	См. шина Типовая несущая конструкция 2-го порядка для раз- мещения субблоков (а также унифицированных элемен- тов для крепления, электрического объединения субблоков, подключения внешних информационных цепей и цепей питания)			
Кассета	Агрегатный модуль или вспомогательное изделие в виде эксплуатационно-автономного изделия 3-го порядка (настенного монтажа), состоящего из одной или нескольких печатных плат с электро- и радиокомпонентами и/или других узлов и деталей, снабженного типовыми элементами для подключения внешних информационных цепей и цепей питания, а также элементами для установки и крепления на панелях			
Кожух	Типовая несущая конструкция 3-го порядка для размещения субблоков и/или других узлов и деталей (а также унифицированных элементов для крепления, электрического объединения субблоков, подключения внешних информационных цепей и цепей питания), снабженная средствами, обеспечивающими заданную степень защиты от проникания внутрь твердых тел и воды. В зависимости от способа размещения на месте эксплуатации различают кожухи настольные, настенные и встраиваемые (щитового монтажа)			
Комплекс	1. См. Агрегатный комплекс.			

Термин	Пояснение				
	2. Функционально и эксплуатационно-законченное изделие (ПОИ или ООИ), изготавливаемое на приборостроительном предприятии, состоящее в общем случае из устройств, блоков и приборов, соединяемых при эксплуатации электрическими или иными связями в соответствии с регламентированными (типовыми) структурами. Может быть предусмотрена возможность установки и/или подключения на месте эксплуатации других изделий (не входящих в состав агрегатного комплекса), необходимых для функционирования комплекса в составе АСУ ТП				
Компоновочное изде- лие	Изделие (не имеющее самостоятельного эксплуатационного назначения), реализованное на базе типовой несущей конструкции (каркаса, панели, кожуха, тумбы, шкафа), входящей в состав системы унифицированных типовых конструкций, регламентированной для агрегатного комплекса, в котором предусмотрены необходимые средства, обеспечивающие в процессе проектной компоновки и изготовления объектно-ориентированных изделий возможность размещения агрегатных модулей и вспомогательных изделий, их электрического объединения и подключения к внешним информационным цепям и цепям питания				
. Локальная система управления	1. Автоматизированная система управления отдельной технологической установкой, агрегатом или участком (частью) технологического процесса, функционирование которой в течение достаточно длительного промежутка времени может считаться относительно независимым от функционирования других локальных систем управления в составе АСУ ТП 2. Подсистема АСУ, выделенная на нижнем уровне				
Магистраль	иерархии АСУ Физическая среда передачи данных в локальных сетях с линейной топологией. Выполняется преимущественно в виде коаксиального кабеля или пары проводов с соединителями, к которым может осуществляться параллельное подключение электрических (информационных) цепей от любой станции				
Объектно-ориентиро- ванное изделие (ООИ)	Изделие (блок, прибор, устройство, комплекс), скомпонованное без проведения ОКР и технологической подготовки производства путем агрегатирования с при- менением технических и программных средств агрегат- ного комплекса для конкретного технологического объекта управления и/или АСУ ТП, в составе которой				

Термин	Пояснение			
	предусмотрено использование ООИ. Объектно-ориснтированные изделия относятся к единичной продукции (т.е. выпускаются по ТЗ заказчика в виде отдельных изделий или партий изделий, не предназначенных к тиражированию)			
Пансль	Типовая несущая конструкция 3-го порядка для установки и крепления кассет (а также унифицированных коммутационных элементов для их электрического объединения)			
Подсистема автомати- зированной системы управ- ления				
Полнота	Свойство агрегатного комплекса обеспечивать возможность создания автоматизированных систем управления различных по составу, структуре и техническим характеристикам и удовлетворять перспективным требованиям пользователей для технологических объектов управления и АСУ ТП определенного класса (при технически и экономически обоснованном заимствовании серийно выпускаемых приборов и средств автоматизации, не входящих в состав агрегатного комплекса)			
	Различают свойства функциональной структурной, параметрической полноты и полноты технического обеспечения			
Полнота параметричес- кая	По ГОСТ 22315			
Полнота структурная	По ГОСТ 22315			
Полнота функциональная	По ГОСТ 22315			
Полнота технического обеспечения	Свойства достаточности и доступности технического обеспечения (по видам, составу документации каждого вида, а также необходимым средствам аппаратной поддержки), обеспечивающее рациональное использование агрегатного комплекса и эффективность работ при проектировании, программировании, заказе, изготовлении, отладке и эксплуатации ООИ			
	Свойство полноты конкретизируется для информа-			

ционного нормативно-методического, лингвистического, программного, информационного, стендового и сервисного обеспечения агрегатного комплекса

	прообъетие табля
Термин	Пояснение
Прибор	1. Агрегатный модуль, предназначенный для информационной связи с операционно-технологическим персоналом, в виде эксплуатационно-автономного изделия 3-го порядка (щитового монтажа), состоящего из
	одной или нескольких печатных плат с электро- и ра- диокомпонентами и (или) других узлов и деталей, снаб- женного типовыми элементами для подключения
	внешних цепей, а также элементами для установки и крепления на рабочих поверхностях щитов, пультов и т.п.
	2. ПОИ или ООИ, предназначенное для информационной связи с оперативно-технологическим персоналом, в виде эксплуатационно-автономного изделия 3-го порядка (настольного или щитового монтажа), состоящего из-субблоков и (или) узлов и деталей (объектно-
	ориентированный прибор — только из агрегатных модулей и вспомогательных изделий в виде субблоков, блоков, приборов, электрически и механически объединенных в компоновочном кожухе)
Проблемно-ориентированное изделие (ПОИ)	□ Программно-аппаратное изделие (блок, прибор, устройство, комплекс), разработанное с использованием средств агрегатного комплекса, рассчитанное на серийное производство и поставляемое для комплектации АСУ ТП.
Проектная компоновка	Создание ПОИ предусматривает стадии проведения ОКР и технологической подготовки производства Совокупность действий по разработке ООИ для конкретного технологического объекта управления (конкретной АСУ ТП), включая разработку ТЗ, технической документации заказа, программы и методики испытаний ООИ
Протокол обмена	Совокупность правил, определяющих формат, отно- сительное расположение и способы синхронизации со- общений при обмене данными между изделиями
Сервисные изделия	Изделия в составе агрегатного комплекса, предна- значенные для автоматизации проектирования, про- граммирования, отладки, проверки и обслуживания в условиях эксплуатации ПОИ и ООИ, а также отдельных агрегатных модулей, вспомогательных и компоновочных изделий
Сеть ввода-вывода	Локальная сеть, предназначенная для информационного обмена проблемно- и объектно-ориентированных блоков с периферийными источниками (датчиками, преобразователями и (или) приемниками (усилителями, исполнительными устройствами) технологического объекта управления

Сигнап

Сигнал

ный

Термин

неинтерфейс-

Пояснение

относящийся к номенклатуре сигналов интерфейса, рег-

Любой сигнал на входе и/или выходе изделия, не

Скорость передачи дан-Среднее число байтов, передаваемых и/или прининых маемых в единицу времени при оговоренных условиях и режимах обмена Величина, обратная времени реализации функции Скорость реализации функции Сообщение По ГОСТ 34 003 Совместимость Согласованность технических параметров и характеристик изделий агрегатного комплекса, обеспечивающая возможность и эффективность их совместного функционирования в составе ПОИ. ООИ и АСУ ТП. Для агрегатного комплекса различают функциональную, информационную, конструктивную, энергетическую и эксплуатационную совместимость Совместимость функ-По ГОСТ 22315 циональная Совместимость инфор-Согласованность параметров входных и выходных мационная интерфейсных и неинтерфейсных сигналов друг с другом, с параметрами входных и выходных цепей изделий, воспринимающих и формирующих эти сигналы, а также с параметрами используемых (рекомендуемых) каналов (линий) связи Совместимость Согласованность форм, размеров (включая присо-KOHструктивная единительные размеры и допускаемые предельные отклонения на них), эстетических и эргономических требований, типов электрических соединителей и других конструктивных параметров механически соединяемых изделий. Для изделий, соединяемых только кабельными перемычками, требование конструктивной совместимости ограничивается единством стилевых и цветофактурных решений Совместимость энерге-Согласованность параметров питания (включая дотическая пускаемые предельные отклонения) вспомогательных изделий (источников питания), агрегатных модулей и сетей общего назначения рекомендованных для питания ПОИ и ООИ Совместимость эксплу-Согласованность климатического исполнения и каатационная тегории размещения изделий, а также требований к изделиям по устойчивости к климатическим, механическим и другим внешним воздействующим факторам (с учетом взаимной конструктивной входимости изделий 1. 2 и 3-го порядков)

По ГОСТ 34 003

ламентированного для этого изделия

Термин	Пояснение				
Субблок	Сборочная единица, состоящая из электро- и радио- компонентов, расположенных на унифицированной вдвижной монтажной плате с печатным монтажом, снабженная типовыми элементами для крепления и подключения внешних цепей при установке субблока в каркае или кожух				
Технологический объект	По ГОСТ 34.003				
Тумба	Типовая несущая конструкция 3-го порядка для размещения субблоков, блоков кассет (а также унифицированных элементов для их крепления, охлаждения, электрического объединения, подключения внешних информационных цепей и цепей питания), снабженная средствами, обеспечивающими заданную степень защиты от проникания внутрь твердых тел и воды.				
	В операторских и диспетчерских пунктах АСУ ТП тумбы могут использоваться как самостоятельные интерьерные изделия либо в качестве составной части столов и пультов (совместно со столешницами с горизонтальной или наклонной рабочей поверхностью и настольными кожухами)				
Устройство	ПОИ и ООИ в виде эксплуатационно-автономного изделия 3-го порядка (напольного, настенного или напольного монтажа), состоящего из субблоков, блоков, приборов, кассет, узлов и деталей (объектно-ориентированное устройство — только из агрегатных модулей и вспомогательных изделий в виде блоков, приборов и кассет, электрически и механически объединенных в компоновочном кожухе, шкафу или тумбе)				
Устройство связи с объектом					
Формат данных	Число двоичных разрядов, хранимых, передаваемых и обрабатываемых как единое сообщение минимальной длины (слово)				
Функция основная	Регламентированная функция, определяющая основное назначение изделия				
Функция вспомогательная	Любая регламентированная функция изделия, за ис- ключением функции, которая указана в качестве основной				

Термин	Лояснение
Шина	Система электрических соединителей и/или линий связи для передачи информационных, адресных, управляющих, синхронизирующих и других сигналов параллельного интерфейса линейного типа, реализованная в соответствии с нормами и требованиями, установленными электрическими и конструктивными условиями соответствующего интерфейса, обеспечивающая возможность подключения и информационного объецинения изделий (агрегатных модулей) при обмене данными в соответствии с установленным протоколом. К шине могут относиться также линии электропитания сопрягаемых с ней изделий
Шкаф	Типовая несущая конструкция 3-го порядка для размещения блоков, приборов, кассет (а также унифицированных элементов для их крепления, охлаждения, электрического объединения), подключения внешних интерфейсных цепей и цепей питания, снабженная средствами, обеспечивающими заданную степень защиты от проникания внутрь твердых тел и воды.
	В зависимости от способа размещения на месте эксплуатации различают шкафы напольные и настенные

ГРАНИЦЫ ДОПУСКАЕМЫХ ЗНАЧЕНИЙ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ

Для изделий климатического исполнения В4

70 80 002 -40 -30 -20 -10 0 10 20 30 40 50 60 Ternepanypa cysoso mepronempa,°C 001 05 ST / 25 OI Абсолютная влажность, г/н³52 ς ξ 2 100000 E 8 8 8 8 8 3 2 20 9

у (ошноспшвирна и диамносшр

S

си/г 'ахфесод нохбо д мрод апномоврор

Для изделий климатического исполнения СЗ У дапосительная влаяность %

28

3

Vepr.5

128

8

Для изделий в транспортной таре

5

9

Относительна в бламность.

8 20 002 8 001 40 50 Тетпература сухого термотетра, оС Для изделий в транспортной таре 05 58 Авсолютная вламность, г/н³ хүг R 22 51 01 20 Ð 00000 1 255 01-02-06-05δŻ 22 8 8 8 8 B 8 9 0 % 'ошноспшельная блажность

сиуг эхногоо иохно додя воздахь сунд

22

\$

22

Vepr.7

7 од во ст. Сухого тернопепра, ос

04

8

008

Черт.8

ПРИЛОЖЕНИЕ З Справочное

НОРМАЛЬНЫЕ УСЛОВИЯ ИСПЫТАНИЙ ИЗДЕЛИЙ МикроДАТ

Температура окружающего воздуха — естественно установившанся в помещении от 15 до 30°C

Относительная влажность — естественно установившаяся в помещении от 30 до 80 % при указанной температуре.

Атмосферное давление — естественно установившееся от 84 до 106,7 кПа.

Отклонение от номинального значения напряжения питания — не более ± 5 % при питании изделий от стабилизированных источников постоянного напряжения; от минус 15 до плюс 10 % при питании от сети постоянного или переменного тока.

Коэффициент гармоник питающего напряжения переменного тока — не более 5 %

Коэффициент пульсаций питающего напряжения постоянного тока — не более 1 %.

Частота питающего напряжения переменного тока — от 49 до 51 Гц.

Отсутствие влияющих на изделис механических воздействий (тряски, вибраций и т.п.).

Отсутствие в окружающем воздухе газов и паров, активных по отношению к применяемым в изделиях материалам.

Внешние электрические и магнитные поля должны отсутствовать или находиться в пределах, не влияющих на работу изделий.

ПРИЛОЖЕНИЕ 4 Обязательное

НОМЕНКЛАТУРА ПОКАЗАТЕЛЕЙ технического уровня и качества, устанавливаемых в стандартах и/или ТУ на изделия конкретных групп (видов)

1. Показатели назначения

- 1.1. Неинтерфейсные сигналы, входные и/или выходные, непрерывные и (или) дискретные.
 - 1.2. Емкость памяти, байт, Кбайт (K = 1024).
 - 1:3. Число входных и (или) выходных сигналов (каналов).
- 1.4. Время, мкс, мс и/или скорость, 1/с реализации основной и/или вспомогательной функции.
- 1.5. Скорость записи, считывания и/или передачи данных, бит/с, байт/с, Кбит/с, Кбайт/с, Мбайт/с.
 - 1.6. Основные размеры и шаг установки, мм.
 - 1.7. Формат данных, двоичный разряд.
 - 1.8. Точностные характеристики (по ГОСТ 23222).

C. 50 FOCT 28853-90

1.9. Максимально допускаемая длина линии связи от источника и/или присмника информации, м, км.

1.10. Параметры электропитания, В. Гц, и их допускаемые отклонения, %.

- 1.11. Параметры, характеризующие входные и/или выходные цепи (входное сопротивление и сопротивление нагрузки, Ом, кОм, либо ток и напряжение на входе и/или выходе. А. мА. Ву.
- 1.12. Параметр, характеризующий гальваническое разделение цепей (предельно допускаемое напряжение между цепями). В.
- 1.13. Число позиций для установки (модулей, субблоков, кассет, блоков, приборов), шт.

1.14. Диапазон температуры окружающего воздуха, "С.

1.15. Верхнее значение относительной влажности, %, г/м3.

1.16. Другие показатели назначения — по согласованию с заказчиком.

2. Показатели надежности

2.1. Вероятность безотказной работы за заданную наработку t (t = 2000 ч).

2.2. Средний срок службы, лет.

2.3. у-процентный срок сохраняемости, (у = 98 %), год.

2.4. Среднее время восстановления, мин, ч.

3. Показатели экономного использования материалов и энергии

3.1. Потребляемая мощность, Вт, или потребляемый ток, А, или КПД.

3.2. Удельная масса, кг/главный параметр, и/или масса, кг.

4. Показатели транспортабельности

4.1. Прочность изделия в таре при климатических воздействиях (температуры воздуха, °С, и относительной влажности,. %).

4.2. Прочность изделия в таре при механико-динамических нагрузках (вибрации, Γu , мм, и ударах, м/с², мс, шт.).

5. Показатели безопасности

5.1. Электрическая прочность изоляции, В, кВ.

Другие показатели безопасности — по согласованию с заказчиком.

6. Качественные характеристики

- 6.1. Устойчивость к внешним воздействиям (вид климатического исполнения по ГОСТ 15150, группа исполнения по устойчивости к механическим воздействиям по ГОСТ 12997, степень зашиты от проникания внутрь изделия твердых тел и воды по ГОСТ 14254).
 - 6.2. Вид интерфейса.

6.3. Основная выполняемая функция (функции).

6.4. Вспомогательная функция (функции).

6.5. Форма конструктивной реализации (субблок; набор субблоков; кассета; блок на базе каркаса или панели, прибор настенный, настольный или встраиваемый; устройство в настенном кожухе, тумбе или напольном шкафу и т.п.).

6.6. Способы подключения внешних цепей (пайкой, накруткой, через соединители, под винт и т.п.).

6.7. Характеристика искробезопасности (для изделий с искробезопасными входными и/или выходными цепями).

6.8. Другие качественные характеристики — по указанию заказчика.

Применяемость показателей технического уровня и качества — по табл.9—12.

Таблица 9

			Таблица 9		
	Наименование подгруппы однородной продукции				
Наименование показателя	Средства обра- ботки информа- ции и управле- ния	Средства обмена информацией, сопряжения с другими агрегат- ными комплексами и ЭВМ	Средства хранения информации		
1.1. Неинтерфейсные сигналы, входные и/или выходные, непре-					
рывные и/или дискретные	±	±	_		
1.2. Емкость памяти	<u> </u>	±	+		
1.3. Число входных и/или вы- ходных сигналов (каналов)	±	±	<u></u>		
1.4. Время и/или скорость реа- лизации основной и/или вспомога- тельной функции	+	+	_		
1.5. Скорость записи (считывания и/или передачи) данных	±	+	+		
 1.6. Основные размеры и шаг установки 	+	+	+		
1.7. Формат данных	+	+	+		
1.8. Точностные характеристи- ки	_	_	_		
1.9. Максимально допускаемая длина линии связи от источника и/или приемника информации	± :	+	_		
1.10. Параметры электропитания и их допускаемые отклонения	+	+	+		
 1.11. Параметры, характери- зующие входные и/или выходные цепи 	±	±			
1.12. Параметр, характеризую- щий гальваническое разделение цепей	±	_	~		
1.13. Число позиций для уста- новки приборов	_	±	-		
1.14. Диапазон температуры окружающего воздука	+	_	_		
• •	. ,	· · · /	₹		

Продолжение табл.9

	Наименование подгруппы однородной продукции				
Наименование показателя	Средства обра- ботки информа- ции и управле- ния	Средства обмена информацией, сопряжения с другими агрегат-ными комплексами и ЭВМ	Средства хранения информации		
1.15. Верхнее значение отно-	.				
2.1. Вероятность безотказной работы за заданную наработку	+ .	+	+		
2.2. Средний срок службы	+	+	+		
2.3. у-процентный срок сохра- няемости	+	+	+		
2.4. Среднее время восстанов- пения	. ±	±	±		
 3.1. Потребляемая мощность или потребляемый ток, или коэф- фициент полезного действия 	+ .	+	+		
3.2. Удельная масса и/или масса изделия	` +	+	+		
4.1. Прочность изделия в таре при климатических воздействиях	+	+ . ;	+		
4.2. Прочность изделия в таре при механико-динамических на- грузках	+		+		
5.1. Электрическая прочность изоляции	±	±	±		
6.1. Устойчивость к внешним воздействиям	+	+ ,	· · · · · · · · · · · · · · · · · · ·		
6.2. Вид интерфейса	+	<u> </u>	+		
6.3. Основная выполняемая функция	+	+	+		
6.4. Вспомогательная функция	±	±	±		
6.5. Форма конструктивной реализации	· +	+	+		
6.6. Способы подключения внешних цепей	±	±`	_		
6.7. Характеристики искробе- зопасности	-	_	. -		

. Таблица 10

	Наименование подгруппы однородной продукции			
Наименование показателя	Средства ввода-вывода непрерывных и дискрет- ных сигналов	Средства ручного ввода и отображения технологической инфор- мации	Средства для подключения периферийных устройств и внешней памяти	Преобразова- тели сигна- лов и усили- тели мощнос- ти
1.1. Неинтерфейсные сиг-	ļ			
налы, входные и/или выходные, непрерывные и/или дискретные	+	±	±	+
1.2. Емкость памяти	±	l ±	±	
1.3. Число входных и/или выходных сигналов (каналов)		 ±	±	±
1.4. Время и/или скорость реализации основной и/или вспомогательной функции	. .	_ _ _	_ _	_
1.5. Скорость записи (счи-	•	<u> </u>	_ <u>-</u>	<u> </u>
тывания и/или передачи) дан- ных	±	±	±	_
1.6. Основные размеры и шаг установки	+	+	 +	+
1.7. Формат данных	+	±	+	l ±
1.8. Точностные характеристики	±	.	_	±
1.9. Максимально допус- каемая длина линии связи от источника и/или приемника				
информации	±	l ±	+	±
1.10. Параметры электро- питания и их допускаемые от- клонения	+	+		_
1.11. Параметры, характеризующие входные и/или вы-			,	
ходные цепи	+	+	+	+
 Параметр, характери- зующий гальваническое разде- ление цепей 	±	±	±	<u>+</u>
1.13. Число позиций для установки модулей	_	_	_	_
1.14. Диапазон температуры окружающего воздуха	+	+	+	+

Продолжение табл. 10

	Наименование подгруппы однородной пролукции			
Наименование показателя	Средства ввода-вывода непрерывных и дискрет- ных сигналов	Средства ручного ввода и отображения технологической информации	Средства для подключения периферийных устройств и внешней памяти	Преобразователи сигналов и усилители мощности
1.15. Верхнее значение относительной влажности 2.1. Вероятность безотказ-	+	. +	+	
ной работы за заданную наработку	_	_	,	
•	7	T .	†	+
2.2. Средний срок службы	+	+	+	+
2.3. у-процентный срок со- храняемости 2.4. Среднее время восста-	+	+	+	+
новления 3.1. Потребляемая мощ-	±	±	±	±
ность или потребляемый ток, или коэффициент полезного действия 3.2. Удельная масса и/или масса	++	+	+	+ .
4.1. Прочность изделия в таре при климатических воздействиях 4.2. Прочность изделия в	+	+	+	+
таре при механико-динамичес- ких нагрузках 5.1. Электрическая проч-	+	+	+	+
ность изоляции	+	±	±	+
6.1. Устойчивость к внешним воздействиям	+	±	<u>+</u>	+
6.2. Вид интерфейса	+	±	±	
6.3. Основная выполняе-	·	, <u>.</u>	<u> </u>	_
мая функция 6.4. Вспомогательная	+	+	+	. +
функция 6.5. Форма конструктив-	±	±	±	±
ной реализации 6.6. Способы подключе-	+	+	+	+
ния цепей	±	±	±	+
6.7. Характеристика ис- кробезопасности	±	±	_	±

Таблица II

	Наименование подгруппы однородной продукции			
Наименование показателя	Специализи- рованные средства про- граммно-ко- мандного и логического управления	Оперативно- диспетчер- ское оборудование	Специализи- рованные средства для систем регу- лирования	Сервисные изделия
1.1. Неинтерфейсные сигналы входные и/или выходные.				
непрерывные и/или дискрет-				
ные	+	±	+	±
1.2. Емкость памяти	±	±	±	±
1.3. Число входных и/или			_	_
выходных сигналов (каналов)	+	_	±	±
1.4. Время и/или скорость				
реализации основной и/или вспомогательной функции				_
	±	±	±	±
1.5. Скорость записи (счи- тывания и/или передачи) дан-				
ных	±	l ±	l ±	<u> </u>
1.6. Основные размеры и			_	_
шаг установки	+	+	+	+
1.7. Формат данных	±	+	±	±
1.8. Точностные характе-				
ристики	-] -	±	±
1.9. Максимально допус- каемая длина линии связи от источника и/или приемника информации	_	+	±	
1.10. Параметры электро-]		
питания и их допускаемые от-			_	
клонения	+	† †	+	+
1.11. Параметры, характеризующие входные и выходные цепи	+	<u>+</u>	±	±
 Параметр, характери- зующий гальваническое разде- ление цепей 	+	±	±	±
1.13. Число позиций для установки модулей	±	_	_	+
1.14. Диапазон температуры окружающего воздуха	+	+	+	+

Продолжение табл. 11

Продолжение табл. 1 / Наименование подгруппы однородной продукции				
Наименование показателя	Наимено: Специализи- рованные средства про- граммно-ко- мандного и логического управления	оперативно- диспетчер- ское оборудование	специализированные средства для систем регулирования	Сервисные изделия
1.15. Верхнее значение от- носительной влажности	+	. +	+	4
2.1. Вероятность безотказ- ной работы за заданное время	+	+	±	±
2.2. Средний срок службы	+	+	+	+
2.3. у-процентный срок со- храняемости	+	+	+	+
2.4. Среднее время восста- новления 3.1. Потребляемая мощ-	±	±	±	±
ность или потребляемый ток, или коэффициент полезного действия 3.2. Удельная масса и/или масса изделия	+	+ .	+	+
4.1. Прочность изделия в таре при климатических воз- действиях	+	+	+	+
4.2. Прочность изделия в таре при механико-динамических нагрузках	+	+	+	+
5.1. Электрическая прочность изоляции	. +	+	+	+
6.1. Устойчивость к внешним воздействиям	+	+.	+	+
6.2. Вид интерфейса	±	±	±	±
6.3. Основная выполняе- мая функция	+	+	+	+
6.4. Вспомогательная функция	±	±	±	±
6.5. Форма конструктивной реализации	+	+	+	+
6.6. Способы подключения внешних цепей	+	±	± ,	±
6.7. Характеристика искро- безопасности	±	-	-	_

Таблица 12

	Наименование подгруппы однородной продукции			
Наименование показателя	Компоновочные и интерьерные изделия	Источники электропитания	Средства электромонтажа	
1.1. Неинтерфейсные сигналы, входные и (или) выходные, непре- рывные и/или дискретные	_	±	_	
1.2. Емкость памяти	_	_	_	
1.3. Число входных и/или вы- ходных сигналов (каналов)	_	±	_	
1.4. Время и/или скорость реа- лизации основной и/или вспомога- тельной функции			_	
1.5. Скорость записи (считывания или передачи) данных	_	_	_	
1.6. Основные размеры и шаг установки	+	_	+	
1.7. Формат данных	–	_	_	
1.8. Точностные характеристи- ки	_	±	_	
1.9. Максимально допускаемая длина линии связи от источника и/или приемника информации	_	_		
1.10. Параметры электропитания и их допускаемые отклонения	±	+		
1.11. Параметры, характери- зующие входные и выходные цепи		±		
 1.12. Параметр, характеризую- щий гальваническое разделение цепей 	±	±	_	
1.13. Число позиций для установки модулей	+	±	_	
1.14. Диапазон температуры окружающего воздуха	+	+	+	
1.15. Верхнее значение относи- тельной влажности	+	+	+	
2.1. Вероятность безотказной работы за заданную наработку	±	±	±	
2.2. Средний срок службы	+	+	+ .	

Продолжение табл. 12

U	Наименование подгруппы однородной продукции			
Наименование показателя	Компоновочные и интерьерные изделия	Источники электропитания	Средства электромонтажа	
2.3. у-процентный срок сохра- няемости	+	+	+	
2.4. Среднее время восстанов-	, ±	+	_	
3.1. Потребляемая мощность или потребляемый ток, или коэф- фициент полезного действия	±	+	77	
3.2. Удельная масса и/или масса изделия	+	+	-	
4.1. Прочность изделия в таре при климатических воздействиях	+	+	+	
4.2. Прочность изделия в таре при механико-динамических нагрузках	+		+	
5.1. Электрическая прочность изоляции	±	+	±	
6.1. Устойчивость к внешним воздействиям (группы исполнения согласно ГОСТ 12997)	+	+	+	
6.2. Вид интерфейса	±			
6.3. Основная выполняемая функция	+	+	+	
6.4. Вспомогательная функция	± İ	+ 1	_	
6.5. Форма конструктивной ре- ализации	+	+	+	
6.6. Способы подключения внешних цепей	±	. ±	+	
6.7. Характеристика искробе- зопасности		_	±	

Примечание к табл. 9—12. Показатели по пп.1.11 и 3.1 не применяют для изделий, которые не потребляют энергию от первичного или вторичного источника питания.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности и приборостроения СССР

РАЗРАБОТЧИКИ

- К.И. Диденко, д-р техн. наук; Ю.В. Розен; А.И. Литкевич; Л.С. Ланина; С.Н. Кийко
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.12.90 № 3639
- 3. СРОК ПРОВЕРКИ 1996 г., периодичность проверки 5 лет
- 4. B3AMEH FOCT 4.145-85
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ΓΟCT 2.601—95	4.1; 4.5
ΓΟCT 2.721—74	2.11.3
ΓΟCT 12.1.030—81	2.11.2
ΓΟCT 12.2.007.0—75	2.11; 2.11.3; 2.11.7
ΓΟCT 12.4.026—76	2.11.4
ΓΟCT 12.4.040—78	2.11.4
ΓOCT 26.00380	3.1.4; 3.1.8
ΓΟCT 26.01080	3.2.3.5
ΓΟCT 26.011-80	3.2.3.1
ΓΟCT 26.013—81	3.2.4.2; 3.2.4.3
ΓΟCT 26.014—81	3.2.4.11
ΓΟCT 26.203—81	3.1.8
ΓOCT 34.00390	Приложение 1
ΓΟCT 12997—84	[1.7; 1.8; 1.10; 1.11; 1.12; 2.2.1;
•	2.2.2; 2.4.1; 2.5.1; 2.6; 2.8.8;
FO.CT 14064	2.10.2; 2.11; 3.2.8; приложение 4
FOCT 14254—80	2.3.1; 2.3.2; 2.3.3; приложение 4
FOCT 15150—69	1.12; 2.2.1; 2.8.8; приложение 4
FOCT 18145—81	3.1.13
FOCT 18953—73	3.3.1; 3.3.4
FOCT 21128—83	3.3.1, 3.3.7
ГОСТ 22315—77 ГОСТ 22316—77	Приложение 1
	3.1.8
OCT 22352—77	5.2

Продолжение

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ГОСТ 22937—78 ГОСТ 23222—88 ГОСТ 23578—79 ГОСТ 23675—79 ГОСТ 24297—87 ГОСТ 25807—81 ГОСТ 25861—83 ГОСТ 26139—84 ГОСТ 27463—87 ГОСТ 27883—88 ГОСТ 27942—88 ГОСТ 27942—88 ГОСТ 28836—90 ГОСТ Р 50431—92 ГОСТ 28854—90 Нормы 1—87÷9—87	3.1.13 1.7; 3.11.1; 3.11.3; приложение 4 3.1.13 3.1.9; 3.1.10; 3.1.12; 3.1.13 3.10 3.1.13 2.11 3.1.14 3.2.4.11 2.8.2 3.1.9 3.2.3.4 3.2.3.3 3.1.3; 3.1.5; 3.1.9; 3.1.10; 3.1.12 3.4

6. ПЕРЕИЗДАНИЕ (март 1996 г.) с Изменением № 1, утвержденным в декабре 1991 г. (ИУС 5--92)

Редактор В.П. Огурцов
Технический редактор Л.А. Кузнецова
Корректор Т.И. Кононенко
Компьютерная верстка Е.Н. Мартемьянова

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 21.05.96. Подписано в печать 27.08.96. Усл. печ. л. 3,49. Уч.-изд. л. 3,50. Тираж 161 экз. С3749 Зак. 397

ИПК Издательство стандартов 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник" Москва, Лялин пер., 6.