5. Boolean Algebra :

• Commutative laws:
$$A+B=B+A$$
 $A\cdot B=B\cdot A$

• Associative laws:
$$A+(B+c)=(A+B)+C=(A+c)+B$$

 $A.(B.c)=(A.B).c=(A.c).B$

$$A + A = A$$
$$I + A = I$$

$$A + \overline{A} = 1$$

• De Morgans Theorems:
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A\cdot B} = \overline{A} + \overline{B}$$

Example 1:

$$A.(B+c) = A.B + A.c$$

$$A + B \cdot C = (A+B) \cdot (A+c)$$

Example 2: Let $F(A,B) = A \cdot \hat{B} + \overline{A} \cdot B$

$$F_{D}(A,B) = (A+\overline{B}) \cdot (\overline{A}+B)$$

$$= A\overline{A} + AB + \overline{B} \cdot \overline{A} + B\overline{B}$$

$$= A.B + \overline{A} \overline{B}$$

. Self-dual: a Boolean/function is called self-dual, if its dual is the same function itself.

· Ex-OR and Ex-NOR are duals of each other

$$\mathcal{L}_{1} + f(A, B) = A \oplus B = A.\overline{B} + \overline{A}.B$$

$$f_{D}(A,B) = (A+\bar{B}) \cdot (\bar{A}+B) = \underbrace{AA}_{O} + AB + \underbrace{BA}_{O} + \underbrace{BB}_{O} = AB + \bar{A}\bar{B}$$

Now dual of above would be:

$$\int_{D}'(A,B) = (A+B) \cdot (\overline{A} + \overline{B}) = \underbrace{A\overline{A}}_{0} + A\overline{B} + B\overline{A} + B\overline{B} = A\overline{B} + \overline{A}\overline{B}$$
(Hence, proved)

· covering and combination:

Covering means where one term covers the condition of other term so that the other term becomes redundant:

$$A + AB = A$$

$$A(A+B) = AA+AB = A+AB = A$$

$$A(A+B) = AA + AB = A + AB + AB + BB = A$$
Combining Rules: $AB + AB = A$; $(A+B)(A+B) = AA + AB + AB + BB = A$

· Consensus Theorem: This theorem finds a redundant term which is consensus of two other terms. If consensus term is true then any of the remaining term is true and thus, it becomes redundant

Example 1:
$$Y = AB + \overline{A}C + \underline{B}C$$

Example 2:
$$Y = (A+B) \cdot (\overline{A}+c) \cdot (B+c)$$

If
$$B+c=0$$
, the $B=0$, $C=0$
then $Y=A.\tilde{A}=0$

Shanon's expansion Theorem:

$$\frac{s \times \text{pansion Theorem}}{F(x_1, x_2 \dots x_N)} = \overline{x_1} F(o, x_2, \dots x_N) + x_1 F(1, x_2, \dots x_N)$$

and its dual

to dual
$$F(x_1,x_2,...x_N) = \left[\overline{x_1} + F(1,x_2...x_N)\right], \left[x_1 + F(0,x_2,...x_N)\right]$$

Example: $F(A,B) = AB + \overline{A}B$

Using Shanon's theorem:
$$F(A,B) = \overline{A} \cdot F(0,B) + A + (1,B)$$

$$F(0,B) = 0.\overline{B} + 1.B = B$$

 $F(1,B) = 1.\overline{B} + 0.B = B$

Example 1: Prove that $x + \overline{x}y = x + y$

Set's find
$$Y = (\overline{x} + \overline{x} \overline{y})$$

$$= [\overline{x} \cdot (\overline{x} \cdot \overline{y})]$$
using De Morgan's Theorem
$$= \overline{x} \cdot (x + \overline{y})$$
Using De Morgan's Theorem
$$= \overline{x} \times + \overline{x} \cdot \overline{y}$$

$$= \overline{x} \cdot \overline{y}$$
Use De Morgan's Theorem again
$$= x + x$$
Hence, proved.

Example 2. Prove that -

$$F = A(\overline{A} + c)(\overline{A}B + c)(\overline{A}Bc + \overline{c}) = 0$$

$$F = (A\overline{A} + Ac)(\overline{A}B + c)(\overline{A}Bc + \overline{c})$$

$$= (Ac\overline{A}B + Acc)(\overline{A}Bc + \overline{c})$$

$$= (Ac\overline{A}B + Acc)(\overline{A}Bc + \overline{c})$$

$$= Ac(\overline{A}Bc + \overline{c}) = Ac\overline{A}Bc + Ac\overline{c} = 0$$

$$= X$$

$$= X$$

Example 3. Simplify
$$Y = (A+B) \overline{A} \cdot (\overline{B}+\overline{c}) + \overline{A} \cdot (B+c)$$

$$= (A+B) \overline{A} + Bc + \overline{A} \cdot (B+c)$$

$$= AA + ABc + AB + Bc + \overline{A}B + \overline{A}c$$

$$= A + ABc + AB + Bc + \overline{A}B + \overline{A}c$$

$$= A + ABc + \overline{A}B + \overline{A}c$$

$$= A + Bc + \overline{A}B + \overline{A}c$$

$$= A + Bc + \overline{A}(B+c)$$

6. Sum of products equations:

Likewise: fundamental products of three variables are:

These are fundamental products of three variables

Sum of product equation : (example)

These are known as "canonical sum forms".

Each term here is called a "MIN' term

Truth Table

				_	
1	A	8	C	٧	1
1	0	0	0	0	-
	0	0	1	10	-\
	0	1	0	-	-\
	0	1	1	1	-
	1	0	0	O	_
	<u> </u>	0	1	1	-
	1	1	0	1	
	1	1	1	1	

Logic Circuit For the above function:

7. Product of Sums form:

For writing a logical expression in this form, we identify which sums produce a '0' at the output

Logic Circuit:

Γ	A	В	c	4	Max terms	,
t	0	0	0	a	Mo	(A+B+C)
H	0	0	1	1	M)	
t	0	1	0	ı	M2	(====)
t	0	1	١	0	MB	(A+8+C)
T	1	0	0	1	Mig	
Ì	1	0	ı	1	M5	()
1	1	1	0	0	N6	(A+B+c)
	1	1	1	i	M7)

$$Y = (A+B+c) \cdot (A+\overline{B}+\overline{c}) \cdot (\overline{A}+\overline{B}+c)$$

$$Y = F(A,B,c) = T M (0,3,6)$$

Conversion between SOP and POS:

9f Y = F(A,B,C,D) = TTM(0,3,6,) then it is also equal to $\sum m(1,2,4,5,7)$ As another example, if $Y = F(A,B,C) = \sum m(3,5,6,7)$; it is also equal to TTM(0,2,4)

8. Simplification of Boolean functions using Karnaugh's Maps

Karnough's map is a visual display of the fundamental products needed for a "sum of products" solution.

Consider 2-Variable case Truth Table 4 A 0 1

/	B	В	_
Ā	0	0	
Α	1	١	

K- map representation

CD

6

CD

3- variable map:

0

consider three variable Truth table

or
$$Y = F(A,B,C) = \sum_{m} (2,6,7)$$

1-variable map:

· Pairs

· Quads

	ร จิ	2 D	CD	c D
ĀB				
百B				
AB	11	1	-	1)
AB				

\	ā5	5 D	CD	cD
ĀB				
ĀB				
AB	П		٠,١	3'`;
\overline{B}			١.١.	1.

\	Ĉ Ū	c)	c D	CD
$\overline{A}\overline{B}$		۱	ì',	
ΆB		ί.	1.	
AB				
AB				

$$AB\overline{c} + ABc$$

$$= AB(\overline{c}+c)$$

$$= AB$$

ΔC

 \overline{A}

· Octets

sum of two ghods

obtain

. Example: Simplified expression for Boolean function Y using Karnaugh's map shown:

$$\vec{a}$$
) + $\vec{5}$ A + \vec{a} \vec{A} = \vec{Y} :

· Overlapping Groups :

· Rolling the map :

or
$$Y = \overline{C} + \overline{A} \overline{D} + \overline{B} \overline{D}$$

. Eliminating redundant groups :

• Example: Simplify Y = F(A,B,C,D) = \(\sigma m \) (7,9,10,11,12,13,14,15)

Y = AB+ AC + AD+ BC]

Convert decimal no. 13

2)
$$\frac{6}{13}$$

to binary:

1

2) $\frac{3}{6}$

0

2) $\frac{3}{6}$

1

2) $\frac{3}{6}$

1

2) $\frac{3}{6}$

1

2) $\frac{3}{6}$

1

Check:
$$1 \times 2 + 1 \times 2 + 0 \times 10 + 1 \times 10$$

$$= 8 + 4 + 0 + 1$$

$$= 13$$

Prob. Realise Y = AB + 2 using only one type of Gates.

- (i) using NOR gates only
- (ii) using NAND godes only

9. Binary Numbers, addition/ subtraction:

Decimal O 1 2 3 4 5 6 7 89 10 11 12 13 14 15	3200000011111111	200000111100001111	2001100110011	2010101010101		
	Most Signi ¹ Lit (MSB)	freamb		Lecust (L	Significant SB)	Pit

Binary addition :

Rules:
$$0+0=0$$
 $0+1=1$
 $1+0=0$
 $1+1=0$ and a carry [1] to the addition of next higher significant bits

Example:

А	В	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$=\overline{A}B+A\overline{B}$$
. SUM $=\overline{A}B+A\overline{B}$ $=A \oplus B$

CARRY $=A \cdot B$

11. Full-adder

Truth table

В			
1	c	SUM	CARRY
0	0	0	0
0	1	١	0
١	0	1	0
1	1	0	1
0	0	1	0
-	1	0	1
	0	0	1
	1 1	1	1
	0 1 1 0	0 1 1 0 1 1 0 0 0 0 1	0 1 1 1 1 0 1 1 0 0 0 1 0

SDM =
$$c \left[\overline{A} \overline{B} + A \overline{B} \right] + \overline{c} \left[\overline{A} B + A \overline{B} \right]$$

= $c \overline{D} + \overline{c} \overline{D}$
= $c \oplus D$
= $c \oplus D$
= $c \oplus A \oplus B$

$$CARRY = (\overline{A}B + A\overline{B})c + AB(c+\overline{c})$$

CARRY

CARRY = AB+BC+AC