Supplement 3

Number of pain sites

Peter Kamerman

Last knitted: 03 March 2021

Contents

1	Imp	ort an	d check	data	1
	1.1	Add a	cute/chro	onic pain column to demographic data	4
2	Dat	a anal	ysis		5
	2.1	Proces	ss data .		5
	2.2	Summ	ary statis	stics	5
		2.2.1	Total gr	oup	5
		2.2.2	For each	r categorical variable	6
			2.2.2.1	By sex	
			2.2.2.2	By HAART	
			2.2.2.3	By education	
			2.2.2.4	By employment status	
			2.2.2.5	By pain definition	
	2.3	Explo	ratory plo	ots	
		2.3.1		ition of pain counts	
		2.0.1	2.3.1.1	Overall count frequency	
			2.3.1.2	Count by sex	
			2.3.1.3	Count by HAART	
			2.3.1.4	Count education	
			2.3.1.4 $2.3.1.5$	Count by employment status	
			2.3.1.6	Count by pain definition	
	2.4	Rogros		lysis	
	2.4	2.4.1		data	
		2.4.1 $2.4.2$			
		2.4.2 $2.4.3$		nodel negative binomial regression for count data	
	2 5	_			
	2.5	rublic	anon plo	t	22
3	Sess	sion in	formatio	on	25

1 Import and check data

```
# Import
data <- read_rds('data-cleaned/data-pain-sites.rds')
demo <- read_rds('data-cleaned/data-demographics.rds')
# Check</pre>
```

```
## Pain sites
dim(data)
## [1] 596 21
names (data)
    [1] "ID"
                             "Head"
                                                  "Throat"
##
   [4] "Shoulder"
                             "Arms"
                                                  "Elbows"
   [7] "Wrists.Hands"
                             "Chest"
                                                  "Upper_back"
## [10] "Lower back"
                             "Abdomen"
                                                  "Cervical_spine"
                             "Lumbosacral_spine" "Groin"
## [13] "Thoracic_spine"
## [16] "Hips"
                             "Legs"
                                                  "Knees"
## [19] "Ankles.Feet"
                             "Buttocks"
                                                  "Site"
glimpse(data)
## Rows: 596
## Columns: 21
## $ ID
                        <chr> "RPB73", "RPB74", "RPB75", "RPB76", "RPB77", "RPB...
## $ Head
                        <chr> "No", "No", "No", "Yes", "Yes", "No", "No", "No", ...
                        <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Throat
## $ Shoulder
                        <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
                       <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Arms
                        <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Elbows
                        <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Wrists.Hands
                       <chr> "No", "No", "No", "Yes", "No", "No", "No", "No", ...
## $ Chest
                        <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Upper_back
                        <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Lower_back
                        <chr> "No", "No", "Yes", "Yes", "No", "No", "Yes", "No"...
## $ Abdomen
                       <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Cervical spine
## $ Thoracic_spine
                       <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Lumbosacral spine <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Groin
                       <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
                       <chr> "No", "No", "No", "No", "No", "No", "No", "Yes", ...
## $ Hips
                        <chr> "No", "No", "No", "No", "Yes", "No", "Yes", ...
## $ Legs
                        <chr> "No", "No", "No", "No", "No", "Yes", "No", "Yes",...
## $ Knees
                        <chr> "No", "No", "No", "No", "Yes", "No", "Yes",...
## $ Ankles.Feet
                       <chr> "No", "No", "No", "No", "No", "No", "No", "Yes", ...
## $ Buttocks
                        <chr> "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "...
## $ Site
data %>%
    select(-ID, -Site) %>%
    mutate_if(is.character, factor) %>%
    skim()
```

Table 1: Data summary

Name	Piped data
Number of rows	596
Number of columns	19
Column type frequency:	
factor	19
	_
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	n_unique	top_counts
Head	0	1	2	No: 401, Yes: 195
Throat	0	1	2	No: 577, Yes: 19
Shoulder	0	1	2	No: 549, Yes: 47
Arms	0	1	2	No: 571, Yes: 25
Elbows	0	1	2	No: 574, Yes: 22
Wrists.Hands	0	1	2	No: 561, Yes: 35
Chest	0	1	2	No: 479, Yes: 117
$Upper_back$	0	1	1	No: 596
Lower_back	0	1	2	No: 554, Yes: 42
Abdomen	0	1	2	No: 437, Yes: 159
Cervical_spine	0	1	2	No: 566, Yes: 30
Thoracic_spine	0	1	2	No: 522, Yes: 74
Lumbosacral_spine	0	1	2	No: 504, Yes: 92
Groin	0	1	2	No: 542, Yes: 54
Hips	0	1	2	No: 556, Yes: 40
Legs	0	1	2	No: 497, Yes: 99
Knees	0	1	2	No: 512, Yes: 84
Ankles.Feet	0	1	2	No: 412, Yes: 184
Buttocks	0	1	2	No: 577, Yes: 19

```
## Demographics
dim(demo)
## [1] 596
names (demo)
## [1] "ID"
                                                "Sex"
## [4] "Age"
                           "Employment_status" "CD4_recent"
## [7] "ART_currently"
                           "Education"
glimpse(demo)
## Rows: 596
## Columns: 8
                       <chr> "RPB73", "RPB74", "RPB75", "RPB76", "RPB77", "RPB...
## $ ID
                       <chr> "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "...
## $ Site
## $ Sex
                       <chr> "Female", "Female", "Female", "Female", "Female", ...
                       <dbl> 36, 27, 39, 36, 31, 32, 28, 37, 31, 25, 31, 24, 3...
## $ Age
## $ Employment_status <chr> "Other", "Unemployed", "Other", "Unemployed", "Un...
## $ CD4_recent
                       <dbl> 391, 571, 591, 207, 126, 225, 543, 410, 74, 212, ...
## $ ART_currently
                       <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", ...
## $ Education
                       <chr> "Tertiary", "Secondary", "Secondary", "Primary", ...
demo %>%
   select(-ID, -Site) %>%
   mutate_if(is.character, factor) %>%
   skim()
```

Table 3: Data summary

Name Piped data

Table 3: Data summary

Number of rows Number of columns	596 6
Column type frequency:	4
numeric Group variables	2 None

Variable type: factor

skim_variable	n_missing	complete_rate	n_unique	top_counts
Sex	0	1.00	2	Fem: 481, Mal: 115
Employment_status	49	0.92	4	Une: 330, Ful: 131, Par: 52, Oth: 34
ART_currently	5	0.99	2	Yes: 460, No: 131
Education	37	0.94	3	Sec: 395, Pri: 99, Ter: 65

Variable type: numeric

skim_variable	n_missing	$complete_rate$	mean	sd	p0	p25	p50	p75	p100
Age	8	0.99	37.28	9.06	19	31	36	42	76
$CD4_recent$	99	0.83	320.71	238.92	1	155	261	432	1232

1.1 Add acute/chronic pain column to demographic data

Table 6: Data summary

Name Number of rows	Piped data 596		
Number of columns	1		
Column type frequency:			

Table 6: Data summary

factor	1
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	n_unique	top_counts
Pain_def	0	1	2	Acu: 387, Chr: 209

2 Data analysis

2.1 Process data

2.2 Summary statistics

2.2.1 Total group

```
analysis_set %>%
select(Count) %>%
skim()
```

Table 8: Data summary

Name	Piped data
Number of rows	596
Number of columns	1
Column type frequency:	
numeric	1
	_
Group variables	None

Variable type: numeric

skim_variable	n_missing	$complete_rate$	mean	sd	p0	p25	p50	p75	p100
Count	0	1	2.24	1.68	0	1	2	3	12

2.2.2 For each categorical variable

2.2.2.1 By sex

```
analysis_set %>%
  select(Count, Sex) %>%
  group_by(Sex) %>%
  skim()
```

Table 10: Data summary

Name	Piped data
Number of rows	596
Number of columns	2
Column type frequency:	
numeric	1
Group variables	Sex

Variable type: numeric

skim_variable	Sex	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Count	Female	0	1	2.27	1.69	0	1	2	3	12
Count	Male	0	1	2.13	1.63	0	1	2	3	9

2.2.2.2 By HAART

```
analysis_set %>%
select(Count, ART_currently) %>%
filter(complete.cases(.)) %>%
group_by(ART_currently) %>%
skim()
```

Table 12: Data summary

Name	Piped data
Number of rows	591
Number of columns	2
Column type frequency:	
numeric	1
Group variables	ART_currently

Variable type: numeric

skim_variable	ART_currently	n_missing	$complete_rate$	mean	sd	p0	p25	p50	p75	p100
Count	No	0	1	2.18	1.64	0	1	2	3	12
Count	Yes	0	1	2.27	1.70	0	1	2	3	9

2.2.2.3 By education

```
analysis_set %>%
  select(Count, Education) %>%
  filter(complete.cases(.)) %>%
  group_by(Education) %>%
  skim()
```

Table 14: Data summary

Name	Piped data
Number of rows	559
Number of columns	2
Column type frequency:	
numeric	1
Group variables	Education

Variable type: numeric

skim_variable	Education	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Count	Primary	0	1	2.38	1.64	0	1	2	3	8
Count	Secondary	0	1	2.24	1.73	0	1	2	3	12
Count	Tertiary	0	1	2.06	1.52	0	1	2	3	6

2.2.2.4 By employment status

```
analysis_set %>%
  select(Count, Employment_status) %>%
  filter(complete.cases(.)) %>%
  group_by(Employment_status) %>%
  skim()
```

Table 16: Data summary

Name	Piped data
Number of rows	547
Number of columns	2
Column type frequency: numeric	1
Group variables	Employment_status

Variable type: numeric

skim_variable	Employment_status	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Count	Full-time work	0	1	2.21	1.46	0	1	2	3	6
Count	Other	0	1	2.18	1.64	0	1	2	4	5
Count	Part-time work	0	1	2.50	1.89	0	1	2	3	9
Count	Unemployed	0	1	2.21	1.75	0	1	2	3	12

2.2.2.5 By pain definition

```
analysis_set %>%
  select(Count, Pain_def) %>%
  group_by(Pain_def) %>%
  skim()
```

Table 18: Data summary

Name	Piped data
Number of rows	596
Number of columns	2
Column type frequency:	
numeric	1
Group variables	Pain_def

Variable type: numeric

skim_variable	Pain_def	$n_{missing}$	$complete_rate$	mean	sd	p0	p25	p50	p75	p100
Count	Acute	0	1	2.19	1.74	0	1	2	3	12
Count	Chronic	0	1	2.33	1.57	0	1	2	3	9

2.3 Exploratory plots

2.3.1 Distribution of pain counts

2.3.1.1 Overall count frequency

```
theme(plot.title = element_text(size = 18),
    plot.subtitle = element_text(size = 12),
    panel.grid = element_blank(),
    axis.text = element_text(colour = '#000000'),
    axis.line = element_line(size = 0.5),
    axis.ticks = element_line(size = 0.5)); all
```

All participants

(Complete cases = 596)


```
all <- analysis_set %>%
    select(Count) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(y = Count,
        x = 'All participants') +
    geom_boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0,
                 width = 0.5) +
    geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
   labs(title = 'All participants',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Count), ])})'),
```

```
y = 'Number of sites') +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
    plot.subtitle = element_text(size = 12),
    plot.caption = element_text(size = 12),
    panel.grid = element_blank(),
    axis.title.x = element_blank(),
    axis.title.x = element_text(colour = '#000000'),
    axis.line = element_line(size = 0.5),
    axis.ticks = element_line(size = 0.5)); all
```

All participants

(Complete cases = 596)

2.3.1.2 Count by sex

Sex

(Complete cases = 596)

2.3.1.3 Count by HAART

```
analysis_set %>%
    select(Count, ART_currently) %>%
    filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(Count) +
   geom_histogram(binwidth = 1,
                   colour = '#FFFFFF') +
    scale_y_continuous(limits = c(0, 150),
                      breaks = c(0, 50, 100, 150)) +
   labs(title = 'Currently on HAART',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$ART_currently), ])})'),
         x = 'Number of sites',
         y = 'Count') +
   facet_wrap(~ART_currently) +
    coord_flip() +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
         plot.subtitle = element_text(size = 12),
          panel.grid = element_blank(),
          axis.text = element_text(colour = '#000000'),
          axis.line = element line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
```

Currently on HAART

(Complete cases = 591)


```
haart <- analysis_set %>%
    select(Count, ART_currently) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
    aes(y = Count,
        x = ART_currently) +
   geom boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0) +
   geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
    scale_x_discrete(labels = c('No', 'Yes')) +
   labs(title = 'Currently on HAART',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$ART_currently), ])})'),
         y = 'Number of sites') +
   theme_minimal(base_size = 18) +
    theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          plot.caption = element_text(size = 12),
          panel.grid = element_blank(),
          axis.title.x = element_blank(),
```

```
axis.text = element_text(colour = '#000000'),
axis.line = element_line(size = 0.5),
axis.ticks = element_line(size = 0.5))
```

2.3.1.4 Count education

```
analysis_set %>%
    select(Count, Education) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(Count) +
   geom_histogram(binwidth = 1,
                  colour = '#FFFFFF') +
    scale_y_continuous(limits = c(0, 150),
                       breaks = c(0, 50, 100, 150)) +
   labs(title = 'Level of education',
        subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Education), ])})'),
        x = 'Number of sites',
        y = 'Count') +
   facet_wrap(~Education, ncol = 2) +
    coord flip() +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
         plot.subtitle = element_text(size = 12),
         panel.grid = element_blank(),
         axis.text = element_text(colour = '#000000'),
         axis.line = element_line(size = 0.5),
         axis.ticks = element_line(size = 0.5))
```

Level of education

(Complete cases = 559)


```
edu <- analysis_set %>%
    select(Count, Education) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
    aes(y = Count,
        x = Education) +
   geom boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0) +
   geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
    scale_x_discrete(labels = c('Primary', 'Secondary',
                                'Tertiary')) +
   labs(title = 'Level of Education',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Education), ])})'),
         y = 'Number of sites') +
   theme_minimal(base_size = 18) +
    theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          plot.caption = element_text(size = 12),
          panel.grid = element_blank(),
```

```
axis.title.x = element_blank(),
axis.text = element_text(colour = '#000000'),
axis.line = element_line(size = 0.5),
axis.ticks = element_line(size = 0.5))
```

2.3.1.5 Count by employment status

```
analysis_set %>%
   select(Count, Employment_status) %>%
   filter(complete.cases(.)) %>%
   mutate(Employment_status = factor(Employment_status,
                                      levels = c('Full-time work',
                                                 'Part-time work',
                                                 'Other',
                                                 'Unemployed'),
                                      ordered = TRUE)) %>%
   ggplot(data = .) +
   aes(Count) +
   geom_histogram(binwidth = 1,
                   colour = '#FFFFFF') +
   scale_y_continuous(limits = c(0, 150),
                       breaks = c(0, 50, 100, 150)) +
   labs(title = 'Employment status',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Employment_status), ])})'),
         x = 'Number of sites',
         y = 'Count') +
   facet_wrap(~Employment_status, ncol = 2) +
    coord_flip() +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
         plot.subtitle = element_text(size = 12),
          panel.grid = element_blank(),
          axis.text = element_text(colour = '#000000'),
          axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
```

Employment status

(Complete cases = 547)


```
employment <- analysis_set %>%
    select(Count, Employment_status) %>%
    filter(complete.cases(.)) %>%
   mutate(Employment_status = factor(Employment_status,
                                      levels = c('Full-time work',
                                                  'Part-time work',
                                                  'Other',
                                                  'Unemployed'),
                                      ordered = TRUE)) %>%
    ggplot(data = .) +
    aes(y = Count,
        x = Employment_status) +
   geom_boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0) +
   geom_point(size = 2,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
    scale_x_discrete(labels = c('Full-time\nwork', 'Part-time\nwork',
                                 'Other', 'Unemployed')) +
   labs(title = 'Employment status',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Employment_status), ])})'),
```

```
caption = 'Other: receiving social grants or were students',
    y = 'Number of sites') +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
    plot.subtitle = element_text(size = 12),
    plot.caption = element_text(size = 12),
    panel.grid = element_blank(),
    axis.title.x = element_blank(),
    axis.text = element_text(colour = '#000000'),
    axis.ticks = element_line(size = 0.5),
    axis.ticks = element_line(size = 0.5))
```

2.3.1.6 Count by pain definition

```
analysis_set %>%
    select(Count, Pain_def) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(Count) +
   geom_histogram(binwidth = 1,
                   colour = '#FFFFFF') +
   labs(title = 'Pain definition',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Pain_def), ])})'),
         x = 'Number of sites',
         y = 'Count') +
   facet_wrap(~Pain_def) +
   coord_flip() +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          panel.grid = element_blank(),
          axis.text = element_text(colour = '#000000'),
          axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
```

Pain definition

(Complete cases = 596)


```
pain_def <- analysis_set %>%
    select(Count, Pain_def) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
    aes(y = Count,
        x = Pain_def) +
   geom boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0) +
   geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
    scale_x_discrete(labels = c('Acute', 'Chronic')) +
   labs(title = 'Pain definition',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Pain_def), ])})'),
         y = 'Number of sites') +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          plot.caption = element_text(size = 12),
          panel.grid = element_blank(),
          axis.title.x = element_blank(),
```

```
axis.text = element_text(colour = '#0000000'),
axis.line = element_line(size = 0.5),
axis.ticks = element_line(size = 0.5))
```

2.4 Regression analysis

2.4.1 Process data

```
analysis_set <- analysis_set %>%
  # Re-factor Employment_status
mutate(Employment_status = case_when(
          Employment_status == 'Unemployed' ~ ' 1_unemployed',
          Employment_status == 'Part-time work' ~ ' 3_employed PT',
          Employment_status == 'Full-time work' ~ ' 2_employed FT',
          Employment_status == 'Other' ~ ' 4_other'
)) %>%
filter(complete.cases(.))
```

2.4.2 Mixed model negative binomial regression for count data

```
# Null model
null <- glmer.nb(Count ~ 1 +</pre>
                        (1|Site),
                    data = analysis_set)
# Full model
mod.mmnb <- glmer.nb(Count ~ Sex +</pre>
                        # Center and scale age
                        scale(Age) +
                        # Center and scale CD4
                        scale(CD4_recent) +
                        Employment_status +
                        Education +
                        ART_currently +
                        Pain_def +
                        (1|Site),
                    data = analysis_set)
## Fit is singular, print model to check SD of random effect
summary(mod.mmnb)
```

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: Negative Binomial(9.4933) ( log )
## Formula: Count ~ Sex + scale(Age) + scale(CD4_recent) + Employment_status +
      Education + ART_currently + Pain_def + (1 | Site)
##
     Data: analysis_set
##
##
       AIC
                      logLik deviance df.resid
                BIC
    1608.4
##
            1661.2 -791.2
                              1582.4
                                           417
##
## Scaled residuals:
                               ЗQ
##
      Min
           1Q Median
                                      Max
```

```
## -1.5293 -0.7298 -0.1483 0.4427 6.0224
##
## Random effects:
                      Variance Std.Dev.
## Groups Name
           (Intercept) 4.952e-12 2.225e-06
## Site
## Number of obs: 430, groups: Site, 5
## Fixed effects:
##
                                  Estimate Std. Error z value Pr(>|z|)
                                              0.11990 7.229 4.88e-13 ***
## (Intercept)
                                   0.86675
## SexMale
                                  -0.11757
                                              0.10083 -1.166
                                                                0.2436
## scale(Age)
                                   0.06919
                                              0.04101
                                                        1.687
                                                                0.0916
## scale(CD4_recent)
                                   0.01573
                                              0.03825
                                                        0.411
                                                                0.6809
## Employment_status 2_employed FT -0.01663
                                              0.09150 -0.182
                                                                0.8558
## Employment_status 3_employed PT 0.18433
                                                       1.532
                                                                0.1256
                                              0.12035
## Employment_status 4_other
                                   0.02330
                                              0.14169
                                                        0.164
                                                                0.8694
                                              0.09809 -0.610
## EducationSecondary
                                  -0.05979
                                                                0.5422
## EducationTertiary
                                  -0.20110
                                              0.14198 -1.416
                                                                0.1567
## ART_currentlyYes
                                   0.01669
                                              0.09858
                                                        0.169
                                                                0.8656
## Pain defChronic
                                   0.08157
                                              0.09758
                                                        0.836
                                                                0.4032
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
              (Intr) SexMal scl(A) s(CD4_ E_2_FT E_3_PT Emp_4_ EdctnS EdctnT
## SexMale
              -0.141
## scale(Age) -0.051 -0.149
## scl(CD4_rc) 0.023 0.191 -0.033
## Emplym_2_FT -0.158 -0.009 -0.087 -0.035
## Emplym_3_PT -0.178  0.001 -0.003 -0.018  0.224
## Emplymnt_4_ -0.079  0.038  0.049 -0.047  0.148
## EdctnScndry -0.646 0.038 0.221 0.047 -0.088 0.050 -0.070
## EductnTrtry -0.399 0.061 0.220 0.016 -0.148 0.032 -0.132 0.586
## ART_crrntly -0.619 0.029 0.019 0.032 0.105 0.036 -0.027 0.013 -0.017
## Pan_dfChrnc 0.029 -0.162 -0.377 -0.334 -0.165 -0.108 0.092 -0.063 -0.153
              ART cY
## SexMale
## scale(Age)
## scl(CD4_rc)
## Emplym_2_FT
## Emplym_3_PT
## Emplymnt_4_
## EdctnScndry
## EductnTrtry
## ART_crrntlY
## Pan_dfChrnc -0.297
## convergence code: 0
## boundary (singular) fit: see ?isSingular
```

2.4.3 Negative binomial regression for count data

```
# Full model
mod.nb <- glm.nb(Count ~ Sex +</pre>
                     # Center and scale age
                     scale(Age) +
                     # Center and scale CD4
                     scale(CD4_recent) +
                     Employment_status +
                     Education +
                     ART_currently +
                     Pain_def,
                 data = analysis_set)
# Compare models
anova(null, mod.nb)
## Likelihood ratio tests of Negative Binomial Models
## Response: Count
##
                                                                                                 Model
## 1
## 2 Sex + scale(Age) + scale(CD4_recent) + Employment_status + Education + ART_currently + Pain_def
       theta Resid. df
                                           Test
                           2 x log-lik.
                                                   df LR stat.
                                                                 Pr(Chi)
## 1 8.192033
                    429
                              -1596.185
## 2 9.493334
                    419
                              -1582.363 1 vs 2
                                                  10 13.82139 0.1812956
# Summary of coefficients
cbind(Estimate = coef(mod.nb)[-1],
      confint(mod.nb)[-1, ],
      summary(mod.nb)$coefficients[-1, 3:4]) %>%
   kable(caption = 'Coefficients and 95% CI',
          digits = 3,
          col.names = c('Estimate', 'Lower 95%CI', 'Upper 95%CI',
                        'z-value', 'P-value'))
```

Table 20: Coefficients and 95% CI

	Estimate	Lower 95%CI	Upper 95% CI	z-value	P-value
SexMale	-0.118	-0.317	0.078	-1.166	0.243
scale(Age)	0.069	-0.012	0.149	1.692	0.091
scale(CD4_recent)	0.016	-0.060	0.090	0.413	0.680
Employment_status 2_employed FT	-0.017	-0.197	0.162	-0.181	0.856
Employment_status 3_employed PT	0.184	-0.055	0.417	1.528	0.127
Employment_status 4_other	0.023	-0.260	0.296	0.164	0.869
EducationSecondary	-0.060	-0.250	0.134	-0.609	0.542
EducationTertiary	-0.201	-0.481	0.076	-1.418	0.156
ART_currentlyYes	0.017	-0.175	0.212	0.169	0.866
Pain_defChronic	0.082	-0.110	0.272	0.842	0.400

2.5 Publication plot

```
# Generate plots for age and CD4
## Count by age
age <- analysis_set %>%
```

```
select(Count, Age) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(y = Count,
        x = Age) +
   geom_point(size = 2,
              shape = 21,
              position = position jitter(height = 0.2, width = 0.2),
              fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
   labs(title = 'Age',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Age), ])})'),
        x = 'Age (years)',
        y = 'Number of sites') +
    scale_x_continuous(limits = c(18, 80),
                      breaks = seq(20, 80, by = 20)) +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
         plot.caption = element_text(size = 12),
         panel.grid = element_blank(),
         axis.text = element_text(colour = '#000000'),
         axis.line = element line(size = 0.5),
         axis.ticks = element_line(size = 0.5))
## Count by CD4 T-cell count
cd4 <- analysis_set %>%
   select(Count, CD4_recent) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(y = Count,
       x = CD4_recent) +
   geom_point(size = 2,
               shape = 21,
              position = position_jitter(height = 0.2, width = 0.2),
              fill = '#000000',
               colour = '#000000',
              alpha = 0.5) +
   labs(title = 'Recent CD4 T-cell count',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$CD4_recent), ])})'),
        x = expression('CD4 T-cell count (cells.mm'^-3*')'),
        y = 'Number of sites') +
   scale_x_continuous(limits = c(0, 1400),
                       breaks = seq(0, 1400, by = 400)) +
   scale_y_continuous(breaks = seq(0, 12, 4)) +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
         plot.subtitle = element_text(size = 12),
         plot.caption = element_text(size = 12),
         panel.grid = element_blank(),
```

```
axis.text = element_text(colour = '#000000'),
          axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
# Fix figures for patchwork plot
all2 <- all
sex2 <- sex +
 theme(axis.title.y = element_blank())
haart2 <- haart
employment2 <- employment</pre>
edu2 <- edu +
 theme(axis.title.y = element_blank())
pain_def2 <- pain_def +</pre>
 theme(axis.title.y = element_blank())
age2 <- age
cd42 <- cd4 +
 theme(axis.title.y = element_blank())
pubs <- all2 + sex2 + haart2 + edu2 + employment2 + pain_def2 + age2 + cd42 +</pre>
 plot_layout(ncol = 2)
ggsave(filename = 'figures/figure_3.png',
       width = 10,
       height = 18)
```

3 Session information

sessionInfo()

```
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 10 (buster)
##
## Matrix products: default
## BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.5.so
##
## locale:
   [1] LC CTYPE=en US.UTF-8
                                   LC NUMERIC=C
##
   [3] LC TIME=en US.UTF-8
                                   LC COLLATE=en US.UTF-8
##
   [5] LC MONETARY=en US.UTF-8
                                   LC MESSAGES=C
##
   [7] LC_PAPER=en_US.UTF-8
                                   LC_NAME=C
##
  [9] LC_ADDRESS=C
                                   LC TELEPHONE=C
## [11] LC MEASUREMENT=en US.UTF-8 LC IDENTIFICATION=C
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
   [1] patchwork_1.0.0 knitr_1.28
                                        skimr_2.1.1
                                                         forcats 0.5.0
   [5] stringr_1.4.0
                                                         readr_1.3.1
##
                        dplyr_0.8.5
                                        purrr_0.3.4
   [9] tidyr 1.0.2
                        tibble_3.0.1
                                        ggplot2_3.3.0
                                                         tidyverse_1.3.0
## [13] MASS_7.3-51.5
                        lme4_1.1-23
                                        Matrix_1.2-18
## loaded via a namespace (and not attached):
   [1] Rcpp 1.0.4.6
                         lubridate 1.7.8 lattice 0.20-38 utf8 1.1.4
                                          R6 2.4.1
##
   [5] assertthat_0.2.1 digest_0.6.25
                                                            cellranger_1.1.0
## [9] repr_1.1.0
                         backports_1.1.6 reprex_0.3.0
                                                            evaluate 0.14
## [13] highr_0.8
                         httr_1.4.1
                                          pillar_1.4.3
                                                            rlang_0.4.5
## [17] readxl_1.3.1
                         minqa_1.2.4
                                          rstudioapi_0.11 nloptr_1.2.2.1
                                          splines 3.6.3
## [21] rmarkdown 2.1
                         labeling 0.3
                                                            statmod 1.4.34
## [25] munsell_0.5.0
                         broom 0.5.6
                                          compiler_3.6.3
                                                            modelr 0.1.6
## [29] xfun_0.13
                         base64enc_0.1-3
                                          pkgconfig_2.0.3
                                                            htmltools_0.4.0
## [33] tidyselect_1.0.0 fansi_0.4.1
                                          crayon_1.3.4
                                                            dbplyr_1.4.3
## [37] withr_2.2.0
                         grid_3.6.3
                                          nlme_3.1-144
                                                            jsonlite_1.6.1
## [41] gtable_0.3.0
                         lifecycle_0.2.0
                                          DBI_1.1.0
                                                            magrittr_1.5
## [45] scales_1.1.0
                         cli_2.0.2
                                          stringi_1.4.6
                                                            farver_2.0.3
## [49] fs_1.4.1
                         xm12_1.3.2
                                          ellipsis_0.3.0
                                                            generics_0.0.2
## [53] vctrs_0.2.4
                         boot_1.3-24
                                          tools_3.6.3
                                                            glue_1.4.0
## [57] hms_0.5.3
                         yaml_2.2.1
                                          colorspace_1.4-1 rvest_0.3.5
## [61] haven_2.2.0
```


Figure 1: Number of pain sites by predictor variable 26