

基于 RFM 分析的客户分群

一、实验目的:

1 掌握 RFM 分析方法和 k-means 聚类的方法,能够进行价值识别 2 掌握 Python 聚类的方法

二、知识准备:

RFM模型是衡量客户价值和客户创利能力的重要工具和手段。在客户分类中,RFM模型是一个经典的分类模型,利用通用交易环节中最核心的三个维度——最近消费 (Recency)、消费频率(Frequency)、消费金额(Monetary)细分客户群体,从而分析不同群体的客户价值。

三、实验步骤:

1、提出问题,确定目标

对客户数据,探讨如何利用 KMeans 算法对客户群体进行细分,以及细分后如何利用 RFM 模型对客户价值进行分析,并识别出高价值客户。主要希望实现以下三个目标:

- 1)对客户进行群体分类
- 2) 对不同的客户群体进行特征分析,比较各细分群体的客户价值
- 3) 对不同价值的客户制定相应的运营策略

2、数据获取

| data = pd. read_csv('实验2 数据data.csv', sep=',')

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	12/9/2011 12:50	0.85	12680.0	France
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	12/9/2011 12:50	2.10	12680.0	France
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	12/9/2011 12:50	4.15	12680.0	France
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	12/9/2011 12:50	4.15	12680.0	France
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	12/9/2011 12:50	4.95	12680.0	France

541909 rows × 8 columns

3、数据预处理

数据清洗: 缺失值, 异常值

变量转换、属性规约、标准化处理等

1) 缺失值

#检查缺失值

data.isnull().any()

InvoiceNo False
StockCode False
Description True
Quantity False
InvoiceDate False
UnitPrice False
CustomerID True
Country False

dtype: bool

▮ #对于关键字段缺失的数据进行清除数据记录处理

data = data.dropna(subset=['CustomerID'])

#处理之后

data.isnull().any()

InvoiceNo False
StockCode False
Description False
Quantity False
InvoiceDate False
UnitPrice False
CustomerID False
Country False

dtype: bool

data data

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	12/9/2011 12:50	0.85	12680.0	France
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	12/9/2011 12:50	2.10	12680.0	France
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	12/9/2011 12:50	4.15	12680.0	France
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	12/9/2011 12:50	4.15	12680.0	France
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	12/9/2011 12:50	4.95	12680.0	France

406829 rows × 8 columns

2) 新增变量

a、新增 money 存放数据记录中 Quantity 和 UnitPrice 的积

#计算每条数据的金额,存入新增的money列 data['money'] = data.loc[:,'Quantity']*data.loc[:,'UnitPrice'] data

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	money
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom	15.30
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom	20.34
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom	22.00
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0	United Kingdom	20.34
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0	United Kingdom	20.34
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	12/9/2011 12:50	0.85	12680.0	France	10.20
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	12/9/2011 12:50	2.10	12680.0	France	12.60
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	12/9/2011 12:50	4.15	12680.0	France	16.60
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	12/9/2011 12:50	4.15	12680.0	France	16.60
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	12/9/2011 12:50	4.95	12680.0	France	14.85

b、新增 days 存放 Invoicedate 与日期 2010-01-01 的差距天数: (由于时间我转换为 Invoicedate 距离 2010 年 1 月 1 日的天数, R 越大证明近期消费也就越近!)

#计算 InvoiceDate 距2010-01-01的天数并存储到新增的 days 列中

days = []

days = (pd. to_datetime(data['InvoiceDate'])-pd. to_datetime('2010-01-01 00:00:00')). map(lambda x:x. days) data['days'] = days

data

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	money	days
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom	15.30	334
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom	20.34	334
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom	22.00	334
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0	United Kingdom	20.34	334
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0	United Kingdom	20.34	334
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	12/9/2011 12:50	0.85	12680.0	France	10.20	707
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	12/9/2011 12:50	2.10	12680.0	France	12.60	707
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	12/9/2011 12:50	4.15	12680.0	France	16.60	707
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	12/9/2011 12:50	4.15	12680.0	France	16.60	707
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	12/9/2011 12:50	4.95	12680.0	France	14.85	707

406829 rows × 10 columns

3) 新建 DataFrame 结构的 data_RFM 用于存放整理后的数据集合。

```
#新建DataFrame结构的data_RFM data_RFM = pd. DataFrame(columns=['CustomerID','R','F','M']) data_RFM
```

CustomerID R F M

4) 根据原数据 data 进行分组统计构造 data_RFM 的数据集合

变量 R: (由于时间我转换为 Invoicedate 距离 2010 年 1 月 1 日的天数, R 越大证明近期消费也就越近!)

```
#按照'CustomerID'分组统计 'days' 的平均数目,作为RFM数据集的R (最近一次消费 (Recency))
R = pd. DataFrame(data. groupby(['CustomerID'])['days']. max())
R
```

CustomerID 12346.0 382 12347.0 705 12348.0 632 12349.0 689 12350.0 397 18280.0 430 18281.0 527 18282.0 700 18283.0 704 18287.0 665		days
12347.0 705 12348.0 632 12349.0 689 12350.0 397 18280.0 430 18281.0 527 18282.0 700 18283.0 704	CustomerID	
12348.0 632 12349.0 689 12350.0 397 18280.0 430 18281.0 527 18282.0 700 18283.0 704	12346.0	382
12349.0 689 12350.0 397 18280.0 430 18281.0 527 18282.0 700 18283.0 704	12347.0	705
12350.0 397 18280.0 430 18281.0 527 18282.0 700 18283.0 704	12348.0	632
18280.0 430 18281.0 527 18282.0 700 18283.0 704	12349.0	689
18281.0 527 18282.0 700 18283.0 704	12350.0	397
18281.0 527 18282.0 700 18283.0 704		
18282.0 700 18283.0 704	18280.0	430
18283.0 704	18281.0	527
	18282.0	700
18287.0 665	18283.0	704
10207.0 000	18287.0	665

4372 rows × 1 columns

变量 F:

```
| #按照'CustomerID'分组统计 'InvoiceNo' 的数目, 作为RFM数据集的F (消费频率)
| F = data.groupby(['CustomerID'])['InvoiceNo'].count()
| F
```

```
CustomerID
12346.0
             2
12347.0
           182
12348.0
            31
12349.0
            73
12350.0
            17
18280.0
            10
18281.0
             7
18282.0
            13
18283.0
           756
18287.0
            70
Name: InvoiceNo, Length: 4372, dtype: int64
```

变量 M:

```
#按照'CustomerID','InvoiceNo','days'分组计算'money'的和,作为RFM数据集的M(消费金额)
M = data.groupby(['CustomerID'])['money'].sum()
```

```
M
CustomerID
12346.0
            0.00
12347.0
        4310.00
12348.0
        1797. 24
12349.0
        1757. 55
12350.0
          334.40
18280.0
          180.60
18281.0
           80.82
18282.0
          176.60
18283.0
          2094.88
18287. 0 1837. 28
Name: money, Length: 4372, dtype: float64
```

5) 将数据整合到 data_RFM 中

```
#将数据整合到data_RFM中data_RFM中data_RFM['CustomerID'] = M. index. astype(object)data_RFM['F'] = F. valuesdata_RFM['M'] = M. valuesdata_RFM['R'] = R. values
```

```
data_RFM
```

	CustomerID	R	F	М
0	12346.0	382	2	0.00
1	12347.0	705	182	4310.00
2	12348.0	632	31	1797.24
3	12349.0	689	73	1757.55
4	12350.0	397	17	334.40
4367	18280.0	430	10	180.60
4368	18281.0	527	7	80.82
4369	18282.0	700	13	176.60
4370	18283.0	704	756	2094.88
4371	18287.0	665	70	1837.28

4372 rows × 4 columns

6) data_RFM 数据处理

data RFM 数据集基本情况:

data_RFM.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4372 entries, 0 to 4371

Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	4372 non-nu11	object
1	R	4372 non-null	int64
2	F	4372 non-nu11	int64
3	M	4372 non-null	float64
_	/		2.00

dtypes: float64(1), int64(2), object(1)

memory usage: 136.8+ KB

进一步数据清理:

#清除金额小于等于0的无效数据,此类数据只有退货数据(为负值),不能作为RFM模型分析数据data_RFM.drop(data_RFM[data_RFM['M']<=0].index,inplace=**True**)

4、数据探索性分析(可视化显示)

1) 未标准化的变量分布情况,并存入到 k1 中(后续反标准化有用到)

#未进行标准化的描述 data_RFM. describe()

	CustomerID	R	F	M
count	4322.000000	4322.000000	4322.000000	4.322000e+03
mean	15298.534475	617.123785	94.059695	1.923483e+03
std	1721.534033	99.137727	233.621415	8.263128e+03
min	12347.000000	334.000000	1.000000	1.776357e-15
25%	13812.250000	569.000000	18.000000	3.022925e+02
50%	15297.500000	658.000000	42.000000	6.575500e+02
75%	16777.750000	691.000000	102.750000	1.625740e+03
max	18287.000000	707.000000	7983.000000	2.794890e+05

k1 = data_RFM. describe()

```
#未进行标准化的三个变量的分布特征
import warnings
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
warnings.filterwarnings(action = 'ignore')
plt.figure(figsize=(13, 13))
#R的分布
plt. subplot (2, 2, 1)
x_R = data_RFM['R']
plt.hist(x_R,bins=30)
#plt. yticks(())
plt.xlabel('R',fontsize=15)
plt.ylabel('数量',fontsize=15)
plt.title("变量R分布特征",fontsize=20)
#F的分布
plt. subplot (2, 2, 2)
x_F = data_RFM['F']
plt.hist(x_F, bins=30)
#plt.yticks(())
plt.xlabel('F',fontsize=15)
plt.ylabel('数量',fontsize=15)
plt.title("变量F分布特征",fontsize=20)
#M的分布
plt. subplot (2, 2, 3)
x M = data RFM['M']
plt.hist(x_M, bins=30)
#plt.yticks(())
plt.xlabel('M',fontsize=15)
plt.ylabel('数量',fontsize=15)
plt.title("变量M分布特征",fontsize=20)
```


在上图中,对于R、F两个变量的分布显示的较为明显,但是由于M变量的变量分布特性,在频率分布直方图中并不能很好的展示。从下图变量M的最大、最小值也可看出上述分布图的不足之处。

```
data_RFM['M']. max()
279489.02
data_RFM['M']. min()
1.77635683940025e-15
```

2) 标准化(Z-score) 处理

```
#标准化函数Z-score

def Zscore(x):
    x = (x-x.mean()) / np.std(x)
    return x

data_RFM.iloc[:,1:4] = Zscore(data_RFM.iloc[:,1:4])
```


标准化之后的数据集描述:

data_RFM. describe()

	CustomerID	R	F	М
count	4322.000000	4.322000e+03	4.322000e+03	4.322000e+03
mean	15298.534475	2.787888e-16	-3.364770e-17	-3.947311e-16
std	1721.534033	1.000116e+00	1.000116e+00	1.000116e+00
min	12347.000000	-2.856194e+00	-3.983816e-01	-2.328060e-01
25%	13812.250000	-4.854797e-01	-3.256058e-01	-1.962185e-01
50%	15297.500000	4.123652e-01	-2.228636e-01	-1.532204e-01
75%	16777.750000	7.452739e-01	3.720254e-02	-3.603693e-02
max	18287.000000	9.066842e-01	3.377196e+01	3.359474e+01

3) 依照 3 σ 原则去除离群点

```
#依照3の原则去除离群点
k = data_RFM. describe()
std_M = k.loc['std','M']
std_F = k.loc['std','F']
std_R = k.loc['std','R']
import numpy as np
outlier_M = data_RFM[np. abs(data_RFM['M'])>3*std_M] #变量M离群点,将离群数据保存到outlier_M
data_RFM. drop(outlier_M. index, inplace=True) #去除离群点

data_RFM[np. abs(data_RFM['R'])>3*std_R] #未发现离群点

outlier_F = data_RFM[np. abs(data_RFM['F'])>3*std_F] #变量F离群点,将离群数据保存到outlier_F
data_RFM. drop(outlier_F. index, inplace=True) #去除离群点

data_RFM
```

	CustomerID	R	F	М
1	12347	0.886508	0.376466	0.288849
2	12348	0.150073	-0.269954	-0.015280
3	12349	0.725098	-0.090155	-0.020084
4	12350	-2.220641	-0.329887	-0.192332
5	12352	0.543511	0.004025	-0.045760
4367	18280	-1.887732	-0.359853	-0.210947

```
#合并离群点数据
outlier = pd. concat([outlier_M, outlier_F])
#检测合并的离群点数据是否有重复数据
print(outlier.duplicated().any())
```

False

去除离群点后的数据描述(未进行标准化处理的,后续反标准化结果分析有用到)

data_RFM. describe()

	CustomerID	R	F	М
count	4260.000000	4260.000000	4260.000000	4.260000e+03
mean	15296.950000	615.913615	78.648357	1.363619e+03
std	1722.246113	99.339302	99.848036	2.074735e+03
min	12347.000000	334.000000	1.000000	1.776357e-15
25%	13809.750000	566.000000	17.750000	2.992275e+02
50%	15298.500000	657.000000	41.500000	6.458050e+02
75%	16777.250000	690.000000	99.000000	1.548585e+03
max	18287.000000	707.000000	696.000000	2.153590e+04

4) 箱线图

```
#箱线图
import matplotlib.pyplot as plt

box_1, box_2, box_3 = data_RFM['R'], data_RFM['F'], data_RFM['M']

plt.figure(figsize=(10,5))#设置画布的尺寸
plt.title('箱线图',fontsize=20)#标题,并设定字号大小
labels = 'R','F','M' #图例
plt.boxplot([box_1, box_2, box_3], labels = labels)
plt.show()#显示图像
```


5) 变量分布

```
#根据三个变量特征,绘制三维散点图

from mpl_toolkits.mplot3d import Axes3D # 空间三维画图
#设置x、y、z轴
x=data_RFM['R']
y=data_RFM['F']
z=data_RFM['M']
#绘图
fig = plt.figure(figsize=(10,10))
ax = Axes3D(fig, auto_add_to_figure=False)
fig.add_axes(ax)
ax.scatter(x, y, z)
# 添加坐标轴
ax.set_xlabel('R:最近一次消费', fontdict={'size': 20})
ax.set_ylabel('F:消费频率', fontdict={'size': 20})
ax.set_zlabel('M:消费金额', fontdict={'size': 20})
plt.show()
```


5、建立模型和评价模型(聚成几类,效果好),聚类可视化

```
#評石图
SSE = []
from sklearn.cluster import KMeans
for i in range(2,8):
    model = KMeans(n_clusters=i)
    model.fit(data_RFM.iloc[:,1:4])
    SSE.append(model.inertia_)

X = range(2,8)
plt.xlabel('k')
plt.ylabel('SSE')
plt.plot(X,SSE,'o-')
plt.show
```

<function matplotlib.pyplot.show(close=None, block=None)>

1)聚类(上方碎石图显示聚类数为4或5效果较好)

```
from sklearn.cluster import KMeans
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
model = KMeans(n_clusters = 5) #指定聚类数
model.fit(data_RFM.iloc[:,1:4])
label_pred = model.labels_
                               #获取聚类标签
data_RFM['label'] = label_pred
#设置x、y、z轴
x=data_RFM['R']
y=data_RFM['F']
z=data_RFM['M']
#绘图
fig = plt.figure(figsize=(10, 10))
ax = Axes3D(fig, auto_add_to_figure=Fa1se)
fig. add_axes(ax)
ax. scatter(x, y, z, c=label_pred, alpha=0.3)
centers = model.cluster_centers_ #获得中心点的坐标
ax. scatter(centers[0:5, 0], centers[0:5, 1], centers[0:5, 2], c='red', s=300, alpha=1) #聚类质心
#添加坐标轴
ax.set_xlabel('R:最近一次消费', fontdict={'size': 20})
ax.set_ylabel('F:消费频率', fontdict={'size': 20})
ax.set_zlabel('M:消费金额', fontdict={'size': 20})
ax.set_title('RFM聚类分析结果', fontdict={'size': 20})
plt.show()
print(centers)
                  #聚类质心数据
```

RFM聚类分析结果

聚类质心数据:

[[0.07251632 -0.21892102 -0.12918667]

[-1.02698256 -0.25681336 -0.16073191]

[0.69642694 -0.08397428 -0.07421719]

[-2. 1950712 -0. 29845741 -0. 18543799]]

2)添加清理的离群点数据,重新进行聚类结果展示:

```
#添加前部分清理掉的离群点数据,并在已经聚类完成的结果中展示
label_pred = model.labels_
                              #获取聚类标签
label_pred1 = outlier_result
data_RFM['label'] = label_pred
outlier['label'] = label_pred1 #离群点数据聚类标签
#设置x、y、z轴
x1 = data_RFM['R']
y1 = data_RFM['F']
z1 = data RFM['M']
#离群点数据
x2 = outlier['R']
y2 = outlier['F']
z2 = outlier['M']
#绘图
fig = plt.figure(figsize=(8,8))
ax = Axes3D(fig, auto_add_to_figure=False)
fig.add_axes(ax)
ax. scatter(x1, y1, z1, c=label_pred, alpha=0.3)
ax.scatter(x2, y2, z2, c=label_pred1, alpha=0.1)
centers = model.cluster_centers_ #获得中心点的坐标
ax. scatter(centers[0:5, 0], centers[0:5, 1], centers[0:5, 2], c='red', s=300, alpha=1) #聚类质心
#添加坐标轴
ax. set_xlabel('R:最近一次消费', fontdict={'size': 20})
ax.set_ylabel('F:消费频率', fontdict={'size': 20})
ax.set_zlabel('M:消费金额', fontdict={'size': 20})
ax.set_title('RFM聚类分析结果', fontdict={'size': 20})
plt.show()
                 #聚类质心数据
print(centers)
```

RFM聚类分析结果

3) 反标准化:

```
import numpy as np

#k1 = data_RFM. describe() #未标准化的数据描述
std_M = k1. loc['std','M']
std_F = k1. loc['std','F']
std_R = k1. loc['mean','R']
mean_R = k1. loc['mean','F']
mean_F = k1. loc['mean','M']

centers_zscore = np. zeros((5,3))
centers_zscore[:,0] = np. abs(centers[:,0]*std_R) + mean_R
centers_zscore[:,1] = np. abs(centers[:,0]*std_F) + mean_F
centers_zscore[:,2] = np. abs(centers[:,0]*std_M) + mean_M
```

#反标准化回去的聚类质心数据

centers_zscore

4) 分析

聚类 1: 变量 R 高于平均水平, 变量 F、M 均低于平均水平, 属于一般发展客户。

聚类 2: 变量 F、M、R 均低于平均水平,属于一般保持客户。

聚类 3: 变量 R 明显高于平均水平, 变量 F、M 均稍低于平均水平, 属于重要发展客户。

聚类 4: 变量 R、F 和 M 均明显高于平均水平, 属于重要价值客户。

聚类 5: 变量 R 明显低于平均水平, 变量 F、M 均低于平均水平, 属于一般挽留客户。

data_RFM

	CustomerID	R	F	М	label
1	12347	0.886508	0.376466	0.288849	2
2	12348	0.150073	-0.269954	-0.015280	0
3	12349	0.725098	-0.090155	-0.020084	2
4	12350	-2.220641	-0.329887	-0.192332	4
5	12352	0.543511	0.004025	-0.045760	2
4367	18280	-1.887732	-0.359853	-0.210947	4
4368	18281	-0.909182	-0.372696	-0.223024	1
4369	18282	0.836067	-0.347010	-0.211432	2
4370	18283	0.876420	2.833717	0.020745	3
4371	18287	0.482982	-0.102998	-0.010433	2

4272 rows × 5 columns

```
len(np.unique(data_RFM['CustomerID']))
```

4272

客户总人数: 4272; 聚类结果表格:

data

	聚类	聚类个数	ZR	ZF	ZM
0	聚类1	987	0.072516	-0.218921	-0.129187
1	聚类2	606	-1.026983	-0.256813	-0.160732
2	聚类3	1821	0.696427	-0.083974	-0.074217
3	聚类4	381	0.746677	1.084032	0.455216
4	聚类5	477	-2.195071	-0.298457	-0.185438

5) 聚类模型评价

```
from sklearn.metrics import silhouette_score
from sklearn import metrics
import warnings
#from sklearn.cluster import KMeans
#import matplotlib.pyplot as plt
warnings.filterwarnings(action = 'ignore')
plt. figure (figsize=(15, 10))
#聚类模型评价
silhouettescore = []
calinski_harabasz_score = []
for i in range (2, 8):
    #轮廓系数
    kmeans = KMeans(n clusters=i, random state=100).fit(data RFM.iloc[:,1:4])
    score1 = silhouette_score(data_RFM.iloc[:,1:4], kmeans.labels_)
    silhouettescore.append(score1)
    # CH指数
    score2 = metrics.calinski_harabasz_score(data_RFM.iloc[:, 1:4], kmeans.labels_)
    calinski_harabasz_score.append(score2)
plt. subplot (2, 2, 1)
#plt. figure (figsize=(10, 6))
plt.plot(range(2,8), silhouettescore, linewidth=1.5, linestyle='-')
plt.xlabel('聚类数目', fontdict={'size': 15})
plt.ylabel('轮廓系数', fontdict={'size': 15})
plt.title('轮廓系数与聚类数目', fontdict={'size': 15})
plt. subplot (2, 2, 2)
plt.plot(range(2,8), calinski_harabasz_score, linewidth=1.5, linestyle='-')
plt.xlabel('聚类数目', fontdict={'size': 15})
plt.ylabel('CH指数', fontdict={'size': 15})
plt.title('CH指数与聚类数目', fontdict={'size': 15})
plt.show()
```


分析:在上图中,聚类数目为5时轮廓系数图像的畸变程度最大,同时在CH指数与聚类数目图中,聚类为5类也是较高水平,因此选择聚为5类较好。

6、模型应用

对于上述 5 类客户均可采取进行会员升级,以此更好地服务客户,对于优质客户进行会员升级定制一站式服务,对于新用户以及一般客户也可通过会员升级的形式刺激消费,进而留住客户。

在老客户中,采取支持购物积分兑换,回馈优质老客户,应用到聚类 1、3、4、的客户效果应该会比较不错的,可以进一步刺激客户的消费热情。

交叉销售

交叉销售的销售策略,在销售产品的同时有额外的产品推荐和优惠,这对于新老客户或者是优质客户都有一定的效果,个人觉得对于吸引新用户(一般客户)效果会比较好,如聚类1,2。