Entraînement au calcul de limites : résultats et indications.

1°) $u_n = \frac{\sqrt{2n^5 + n^3 + 7}}{2n^3 - 1}$:

Mettre en facteur ce qui domine

2°) $u_n = \frac{(-1)^n \cos^2(n)}{\ln n}$:

suite bornée × suite de limite nulle

0

3°) $u_n = ne^{\frac{1}{n}} - n$:

Mettre sous la forme d'une limite de référence du cours

4°) $u_n = \ln(\operatorname{ch}(n)) - n$:

Remplacer ch(n) par sa définition - mettre en facteur ce qui domine dans le ln

 $-\ln(2)$

5°) $u_n = \sqrt{n+1}\cos(n) - n$:

Mettre en facteur ce qui domine - apparition d'une suite bornée × une suite de limite nulle

6°) $u_n = n^2 \ln \left(\frac{n^2 - 1}{n^2 + 1} \right)$:

Faire apparaître la forme $\frac{\ln(1+a_n)}{a_n}$ avec a_n de limite nulle

7°) $u_n = \sqrt{e^n + 2^n} - \sqrt{e^n + 1}$:

Quantité conjuguée - puis mettre en facteur ce qui domine - utiliser que $\frac{2}{\sqrt{e}} > 1$

8°) $u_n = \frac{e^{\sqrt{n}}}{n\ln(n)}$

écrire les n comme des \sqrt{n}^2 afin d'utiliser proprement les croissances comparées - faire apparaître $un \sqrt{n} \ au \ num \acute{e} rateur$

9°) $u_n = \frac{n\sin(n)}{n^2+1}$:

Suite bornée × suite de limite nulle

0

10°) $u_n = \sqrt[n]{2 + (-1)^n}$:

Passer à la forme exponentielle - suite bornée × suite de limite nulle

1

11°)
$$u_n = \frac{\sinh(n)}{\sqrt{\cosh(2n)}}$$
:

Remplacer les fonctions hyperboliques par leur définitions - mettre en facteur ce qui domine $\frac{\sqrt{2}}{2}$

12°)
$$u_n = 3n \sin\left(\frac{4\pi}{n}\right)$$
:

Se ramener à une forme de référence du cours

 12π

13°)
$$u_n = \operatorname{sh}(2n) - 2\operatorname{sh}(n)$$
:
Remplacer les fonctions hyperboliques par leur définitions - mettre en facteur ce qui domine $+\infty$

14°)
$$u_n = \left(\frac{2^n + 3^n}{2}\right)^{\frac{1}{n}}$$
:

Passer à la forme exponentielle - mettre en facteur ce qui domine dans le ln
3

15°)
$$u_n = \operatorname{Arctan}\left(\frac{n}{4}\sqrt{\ln\left(1+\frac{\pi^2}{n^2}\right)}\right)$$
:

Se ramener à une forme de référence du cours pour le \ln

Arctan $\left(\frac{\pi}{4}\right)$