

Space Charge Effects on the Short Pulse Beam Profile

Yves Heri, Peng Zhang*

Michigan State University, Electrical and Computer Engineering, East Lansing, Michigan, USA

Summary

- We investigate **space charge effects** on the dynamics of short pulse beam profile.
- We consider **short pulses** of different initial profiles for different charge densities and pulse widths.
- We analyze the **phase-space trajectories** of the electrons sheets in the vacuum gap.
- We study the evolution of the pulse profiles and the current density during the transit in the gap.

Multiple-Sheet Model

A one-dimensional (1D) planar diode with gap distance d and gap voltage V_q . With M sheets inside.

Figure 1: Sheet numbering inside the diode gap [1]

- Sheet j at \bar{x}_i has a normalized charge density $\bar{\rho}_i$
- Normalized Electric field on sheet j is

$$\bar{E}_j = 1 + \left[\sum_{i=1}^{M} \bar{\rho}_i \bar{x}_i - \left(\sum_{i=1}^{j-1} \bar{\rho}_i + \frac{1}{2} \bar{\rho}_j \right) \right] \tag{1}$$

• Normalized Electric field at the cathode $(\bar{x} = 0)$

$$\bar{E}_K = 1 + \sum_{i=1}^{M} \bar{\rho}_i (\bar{x}_i - 1)$$
 (2)

• The Space Charge Limited (SCL) charge density $\bar{\rho}_i^*$ is found for $\bar{E}_K = 0$

$$1 + \sum_{i=1}^{M} \bar{\rho}_{j}^{*} (\bar{x}_{i} - 1) = 0$$
 (3)

Square-top Profile

- All sheets with equal charge density $\bar{\rho}$
- The SCL charge density $\bar{\rho}^*$ is from (3)

$$\bar{\rho}^* = \frac{1}{M} \left[\frac{1}{1 - \delta \bar{x} \left(\frac{M-1}{2} \right)} \right] \tag{4}$$

• The initial pulse intervals $\delta \bar{x} = \bar{x}_n - \bar{x}_{n+1}$ are assumed to be uniform.

Figure: Trajectories of each sheet and current density

Figure: Square-top profile distortion with initial pulse length

Gaussian Profile

• Sheet j with charge density

$$\bar{\rho}_j = a \exp\left(-\frac{(j-\mu)^2}{b}\right) \tag{5}$$

• Where $\mu = (M+1)/2$, a and b are found solving (3) with assumption $\sum_{i=1}^{M} \bar{\rho}_{i}^{*} = 1$ as the bulk of sheets tends to bunch, looking like a single sheet.

Figure: Trajectories of each sheet and current density

Figure: Gaussian profile distortion with initial pulse length

Evolution of the Gaussian Profiles inside the gap

Figure: Snapshots of the evolution of pulse profile, electric field and velocity for $\bar{\rho}_i = 25, 50, 75$ and 100% of $\bar{\rho}_i^*$

Model parameters

Symbol	Meaning	Formula/Value
V_g	Gap voltage	$30 \ kV$
d	Gap distance	$1.5 \ mm$
$ au_p$	Pulse length	$[0.1, 1] \times T_0$
T_0	Transit time	see [3]
Δ	Distortion	$\Delta = \frac{\delta \bar{x}_{init}}{\delta \bar{x}_{final}}$
J	Current density	$J = 3\sum_{i=1}^{M}$

Conclusion & Future Work

- For same total charge, both the square-top and Gaussian pulses undergo identical distortion.
- 2 The shorter the pulse length, the more significant the distortion becomes.
- 3 The smaller the charge, the faster the tail of the pulse travels through the gap.
- 4 In future research, assess the Child-Langmuir limit as the pulse length decreases.

References & Acknowledgement

[1] C. Birdsall and W. Bridges (1966). Electron dynamics of diode regions. New York: Academic Press [2] P. Zhang et *al.*, Applied Physics Reviews 4, 011304 (2017).

[3] A. Valfells et *al.*, Physics of Plasmas 9(5), 2377-2382 (2002).

[4] C. Kaur et *al.*, Physical Review E 106(5-2), 055203 (2002).

Acknowledgement: Work is supported by the Office of Naval Research (ONR) YIP Grant No. N00014-20-1-2681, the Air Force Office of Scientific Research (AFOSR) Grant No. FA9550-20-1-0409, and the Air Force Office of Scientific Research (AFOSR) Award No. FA9550-22-1-0523

Download the poster:

https://aaaaaaaaa

