Bài 1 – Cơ sở trí tuệ nhân tạo

Tổng quan về Trí Tuệ Nhân Tạo

TS. Đỗ Như Tài Đại Học Sài Gòn dntai@sgu.edu.vn

Al Trong Cuộc Cách Mạng Công Nghệ Lần Thứ 4

Definition

of

Artificial Intelligence (A.I.)

_

Artificial Intelligence

"... the SCIENCE and engineering of making

intelligentmachines"

(John McCarthy, 1955)

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

Artificial Intelligence

"... technology that thinks and

acts like humans"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

Artificial Intelligence

"... intelligence exhibited by

machines or software"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

Al là Động cơ lõi (core engine) của CMCN 4.0

Lần thứ nhất

Sản xuất cơ khí với máy móc dựa vào động cơ hơi nước (Cuối thế kỷ 18, đầu tk 19)

Lần thứ hai

Sản xuất hàng loạt với máy móc dựa vào năng lượng điện (Cuối tk 19, đầu tk 20)

Lần thứ ba

Sản xuất tự động với máy tính, điện tử và cách mạng số hóa (Từ 1970)

Lần thứ Tư

Sản xuất thông minh nhờ chuyển đổi số - kinh tế chia sẻ (Từ bây giờ, đúng thời điểm)

Chuyển đổi số

Lộ trình chuyển đổi số

Nền Kinh Tế Chia Sẽ

- Al là gì?
- CMCN lần 4.0 vs Al vs Chuyển đổi số?
- Mục tiêu của chuyển đổi số?
- Lộ trình chuyển đổi số?
- Là lực lượng sản xuất mới, anh (chị) làm gì để thích ứng với quan hệ sản xuất mới và phương thức sản xuất mới?

Deep in Dive Al

Evolution of Decision Support, Business Intelligence, and Analytics

Al

Al Cloud Computing Big Data DM BI

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Thinking Humanly

Thinking Rationall y

Acting Humanly

Acting

Rationall

y

4 Approaches of Al¹⁶

2_ **Thinking Humanly: The** Cognitive Modeling Approach Acting

Humanly: The Turing Test Approach (1950) 3. **Thinking Rationally:** The "Laws of Thought" Approach

4. Acting

Rationally: The Rational Agent Approach

Source: Stuart Russell and Peter Norvig (2016), Artificial Intelligence: A Modern Approach, 3rd Edition, Pearson International

Al Acting Humanly: The Turing Test Approach (Alan Turing, 1950)

- Natural Language Processing (NLP)
- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
- Computer Vision
- Robotics

17

Artificial Intelligence

Source: Stuart Russell and Peter Norvig (2016), Artificial Intelligence: A Modern Approach, 3rd Edition, Pearson International

Machine Learning & Deep Learning

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Artificial Intelligence (A.I.) Timeline

How to define Artificial Intelligence?

21

What is Learning From Data?

Machine Learning
Supervised Learning (Classification)
Learning from Examples

X

input Output

label

What is Learning From Data?

Machine Learning Supervised Learning (Classification) Learning from Examples

$$y = f(x)$$

Example

s-setosa

4.7,3.2,1.3,0.2,Iri

5.1,3.5,1.4,0.2,Iri s-setosa

s-setosa

4.9,3.0,1.4,0.2,Iri

xV

```
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
```

```
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
```

Time Series Data²⁶

```
[10, 20, 30, 40, 50, 60, 70, 80, 90]
```

```
XY
   [10 20 30] 40
    [20 30 40] 50
   [30 40 50] 60
 1 [40 50 60] 70
    [50 60 70] 80
    [60 70 80] 90
27
```

What is Learning From Data?

The Theory of Learning

• How can we be sure that our learned hypothesis will predict well for

- How do we know that the hypothesis h is close to the target function f
 if we don't know what is?
- How many examples do we need to get a good h?
- What hypothesis space should we use?
- If the hypothesis space is very complex, can we even find the best h or do we have to settle for a local maximum?
- How complex should *h* be?
- How do we avoid overfitting?

Linear Regression Weight Space

$$h_w(x) = w_1 x + w_0$$

$$w^* = \operatorname{argmin}_{w} Loss(h_{w}) Loss function for Weights (w_1, w_0 y = 0.232 x + 246)$$

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Linear Regression Weight Space

How to find the best values for w1, w2 and w3?

More data and

computing power always beat fancy algorithms

Al From Simple to Complex Models

Perceptron – Architecture

• Biological neuron vs Artificial neuron

Architecture

Perceptron - Capability

Single Perceptron with presents a linear classifier in

MLP – Architecture

- Multi-Layer Perceptron
 - input layer, hidden layer(s), output layer
 - feed-forward
 - fully-connected

MLP – Capability

- Nonlinear decision boundaries
 - 2×4×1 MLP with sigmoid activation
 - learning rate = 0.01
 - max #-iterations = 9,000

MLP – Learning: Deep MLP

- ���: ��-th input value of layer 1
- ����� (��): weight from ��-th node of layer �� to ��-th node of layer �� + 1
- ����^(��): output from ��-th node of layer ��
- ����(���•): ��-th output(desired output) value in layer ��

CNN - Architecture

- Deep feed-forward network
 - Convolution layers
 - Pooling layers
 - Fully-Connected layers

CNN Architecture

- Example CNN (AlexNet, 2012)
 - Conv:1-Pool:1-Conv:2-Pool:2-Conv:3-Conv:4-Conv:5-Pool:4-FC:6-FC:7-FC:8

CNN - Architecture

• Feature Maps - multiple levels

CNN - Learning

Back-propagation algorithm for learning CNN

CNN - Capability

• AlphaGo [Nature, 2016]

RNN – Architecture

Vanilla RNN


```
• input sequence: \diamondsuit \diamondsuit_1, \diamondsuit \diamondsuit_2, \dots, \diamondsuit \diamondsuit_{\diamondsuit \diamondsuit}, \dots, \diamondsuit \diamondsuit_{\diamondsuit \diamondsuit}
```

weights: ��, ��, ��

Useful for Temporal Dependencies

Short-term dependency

• Long-term dependency

RNN - Applications

- many-to-many
 - Text Summarization

Speech Recognition

RNN - Applications

- one-to-many
 - Image Captioning

Generating Image Descriptions", CVPR (2015)

e.g. Image Captioning Image to Sequence of

RNN - Applications

• many-to-one

e.g. Sentiment Classification... Sequence of Words to Sentiment

CÁM ƠN ĐÃ LẮNG NGHE!