How to Relate Particle Physics and Air Shower Development: the EPOS Model

Tanguy Pierog, K. Werner

Institut für Kernphysik, Karlsruhe, Germany

31th ICRC, Łódź, Poland July the 14th 2009

Outline

- The EPOS model
- Constrains from air showers
 - Cross section
 - Multiplicity
 - Forward spectra
 - Baryon production
- New results

T. Pierog, KIT - 2/12

The EPOS Model

EPOS* is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting

EPOS designed to be used for particle physics experiment analysis (SPS, RHIC, LHC)

EPOS is a complex monte-carlo for minimum bias hadronic interaction generation (h-p to A-B) : suitable for air shower!

EPOS and Air Showers

Success:

- → Large increase of # muons (MIA data, Auger S1000)
 - baryon-antibaryon contribution
 - remnant breakup

Problems:

- → KASCADE data (talks by Haungs and Hörandel):
 - composition too light : too many muons
 - or not enough elec.?
 - Hadron energy too low: shower too old?
- Auger : not enough muons in inclined showers :
 - Muon energy too low : shower too old ?

needed here!

cross section or inelasticity too large?

dN/dx_F

Cross Section and Inelasticity

Cross-section too large in pA:

Problem with the calculation of pA cross- sections

Number of protons at large x_F too small:

- remnant break-up too large at high energy
- inelasticity too large

Problem seen in CR confirmed by accelerator data!

Constrains by Air Showers

Air shower data give global constrains on the hadronic interactions

- Low cross section / inelasticity
 - Equilibrium remnant/central particle production
 - Strong sreening effect but with saturation
 - Reduction of multiple interaction
 - Limited growth of multiplicity
 - Limited growth of hard scattering ???
- High muon number
 - Modified fragmentation : evolution with energy
 - Increase of diquark production
 - Cronin effect (pt kink)
 - π⁰ spectra

New Developments

- To increase predictive power : less parameters
 - improvement of screening effect
 - → unique saturation scale (pA cross section and RHIC p,)
- More contrains on other parameters (break-up, baryons, ...)

EPOS 2009 = EPOS 1.99 last release, EPOS 2006 = EPOS 1.61 prev. release

h-Air Results

h-Air Results

Consequences on Air Showers

- Smaller cross section = deeper shower (larger X_{max})
 - More electron @ ground
 - More energetic hadrons @ ground
- Slightly less muons (less break-up) but with more energy

Consequences on Air Showers

Summary

EPOS ... or how to relate cosmic ray physics and particle physics :

- Particle physics : baryons should be treated correctly
 - effects on muon number
- Cosmic ray: if a lot of muons, then pA cross section small
 - large nuclear screening effects
 - effect on multiplicity and p_t in pA
 - limitation by RHIC data on p,
 - cross section limited by nuclear saturation
- → Low multiplicity and low cross section = large X_{max} for Auger

Consequences on cosmic ray mass composition

Muons @ 1000 m - 10¹⁹ eV

PAO observable