

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA
Departamento de Informática
Integrado / Análise e Desenvolvimento de Sistemas / Licenciatura em Computação

Normalização de Relações

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Normalização de relações

- Processo de analisar esquemas de relação usando suas dependências funcionais (DFs) e atributos visando:
 - Minimizar redundâncias de dados
 - Minimizar anomalias de atualização
- "Processo de melhoria na qualidade de um banco de dados"
 - Otimização de banco de dados (desempenho e espaço necessário para armazenar os dados)

Normalização de relações

- Consiste em testes realizados sobre uma relação para verificar se ela satisfaz uma forma normal
 - Os testes são baseados nas dependências funcionais e atributos de uma relação
- Inicialmente Edgar Codd propôs 3 formas normais em 1972:
 - 1^a forma normal (1FN)
 - 2^a forma normal (2FN)
 - 3^a forma normal (3FN)

Relações que não satisfazem à uma forma normal são decompostas em relações menores, que atendam aos testes

Forma normal

- Uma relação está em uma forma normal se ela satisfaz todos os critérios associados a esta forma normal
 - Uma relação que atende a formas normais de grau maior, também atende às formas normais de grau menor
 - Ex: se uma relação está na 3FN, ela também está na 2FN e na 1FN
 - Grau de normalização: forma normal mais alta da relação

1^a Forma Normal (1FN)

- Não aceita atributos multivalorados, e nem atributos repetidos
 - Domínio dos atributos inclui apenas:
 - Valores simples, atômicos e indivisíveis
 - Ex: CPF, RG, ano_nascimento, primeiro_nome_mae

Pessoa						
id	<u>cpf</u>	<u>rg</u>	ano_nasc	primeiro_nome_mae		
1	415.254.784-00	01354021-67	1992	Carla		
2	661.457.745-87	85410234-87	1985	Katia		
3	325.471.154-64	74520132-95	1970	Jussara		

Exemplo de relação que NÃO pertence a 1FN

Endereço é um **atributo multivalorado**

Endereço contém:

- rua (caracteres)
- número (inteiro)

Solução:

dividir o endereço em 2 atributos (rua e número)

Exemplo de adequação de relação para 1FN

Pessoa					
id	<u>cpf</u>	ano_nasc	<u>endereco</u>		
1	415.254.784-00	1992	Rua Castelo 74		
2	661.457.745-87	1985	Av ACM 85		
3	325.471.154-64	1970	Rua de Baixo 101		

	Pessoa				
id	<u>cpf</u>	ano_nasc	end_rua	<u>end_numero</u>	
1	415.254.784-00	1992	Rua Castelo	74	
2	661.457.745-87	1985	Av ACM	85	
3	325.471.154-64	1970	Rua de Baixo	101	

Relação "Pessoa" agora está na 1FN

Exemplo de relação que NÃO pertence a 1FN

Pessoa					Telefone é um	
id	<u>cpf</u>	ano_nasc	<u>telefone</u>		atributo repetido	
1	415.254.784-00	1992	991247485 987542014			
2	661.457.745-87	1985	985463214		Existem pessoas com mais de um telefone	
3	325.471.154-64	1970	32145678 981243685			

Solução:

transformar "telefone" em uma relação

Exemplo de adequação de relação para 1FN

Exercício - Projeto de tabelas na 1FN

- Construa tabelas para controlar a frequência dos funcionários de uma loja (controle de ponto)
 - O supervisor da loja precisa saber o horário de chegada, horário de saída, nome e CPF do funcionário, e o telefone para poder entrar em contato caso o funcionário não apareça para trabalhar
 - As tabelas devem estar na 1FN

Dependência Funcional Total

 Uma DF X->Y é uma DF Total se a remoção de qualquer atributo de X significar que a dependência não se mantém mais

Para saber quantas horas um funcionário trabalhou em um projeto, precisamos de *cpf_func* e *proj_numero*. Isto é, só o CPF ou proj_numero não são suficientes para descobrir as horas trabalhadas! Logo, (cpf_func, proj_numero) -> horas_trab é DF total

Dependência Funcional Parcial

 Uma DF X->Y é uma DF Parcial se algum atributo de X puder ser removido e a DF ainda se mantenha

DF Parcial

Podemos descobrir *func_nome* usando somente o *cpf_func*. Isto é, **(cpf_func, proj_numero)** -> **func_nome** é uma DF parcial via *cpf_func*.

(cpf_func, proj_numero) -> proj_nome também é DF parcial (via proj_numero)

2^a Forma Normal (2FN)

- Uma relação R está na 2FN, se:
 - Ela também estiver na 1FN

Atributos não pricipais são todos aqueles que não pertencem a chave primária

 Cada atributo n\u00e3o principal A em R for DF total da chave prim\u00e1ria (PK) de R

Exemplo de relação que NÃO está na 2FN

Existem atributos que **dependem parcialmente** da chave primária (*cpf_func*, *proj_numero*) como o *func_nome* e *proj_nome*

Exemplo adequação de relação para 2FN

DF Total

Atividade - Projeto de tabelas na 2FN

 Construa tabelas para controle de frequência de funcionários de uma loja (controle de ponto) tal que elas estejam na 2FN

Dependência Funcional Transitiva

 Uma DF X->Y é uma DF transitiva se existe uma DF W->Y tal que W não pertence à chave primária

3^a Forma Normal (3FN)

- Uma relação R está na 3FN, se:
 - Ela também estiver na 2FN
 - Nenhum atributo não principal (que não pertence a chave primária) de R for DF transitiva da chave primária
 - Isto é, nenhum atributo deve depender de outro atributo não-chave

Exemplo de relação que NÃO está na 3FN

Exemplo adequação de relação para 3FN

Resumo das Formas Normais

- Primeira Forma Normal (1FN)
 - Sem atributos multivalorados, e nem repetidos
- Segunda Forma Normal (2FN)
 - Atributos não chaves são **DF total** da chave primária
- Terceira Forma Normal (3FN)
 - Atributos não dependem de outros atributos não chave

Exercício - Projeto de tabelas na 3FN

 Ajuste as tabelas de controle de frequência dos funcionários de uma loja (controle de ponto) para que estas estejam na 3FN

Referencial Bibliográfico

 KORTH, H.; SILBERSCHATZ, A.; SUDARSHAN, S.
 Sistemas de bancos de dados. 5. ed. Rio de Janeiro: Ed. Campus, 2006.

 DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro: Ed. Campus, 2004. Tradução da 8ª edição americana.