Semaine du 16 septembre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Propriétés de morphisme de l'application $t \mapsto e^{it}$.
- 2. Inégalité triangulaire.

Exercice nº 2:

(Application directe):

- 1. Résoudre dans $\mathbb C$ l'équation suivante : $(3-i)z+(1+i)\bar z=1+i$
- 2. Mettre sous forme trigonométrique le nombre complexe suivant : $1+i\sqrt{3}$

Exercice no 3:

Montrer que pour tout $z \in \mathbb{C}$:

$$z \in \mathbb{U} \setminus \{-1\} \iff \exists x \in \mathbb{R}, z = \frac{1+ix}{1-ix}$$

Semaine du 16 septembre - Planche n° 2

Exercice no 1:

(Questions de cours):

- 1. Une similitude directe est une translation ou la composée commutative d'une rotation et d'une homothétie de même centre.
- 2. Formule de transformation de $e^{ia} \pm e^{ib}$ avec les demi sommes des arguments.

Exercice nº 2:

(Application directe):

- 1. Résoudre dans \mathbb{C} l'équation suivante : $(3-i)z (3+i)\bar{z} = 0$
- 2. Mettre sous forme trigonométrique le nombre complexe suivant : $-2\sqrt{3} + 2i$

Exercice nº 3:

On pose $\omega = e^{\frac{2i\pi}{5}}$

- 1. Montrer que $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.
- 2. On pose $z = \omega + \omega^{-1}$. Former une équation du second degré vérifiée par z.
- 3. En déduire les valeurs de $\cos(2\pi/5)$, $\sin(2\pi/5)$ et $\tan(2\pi/5)$.

Semaine du 16 septembre - Planche nº 3

Exercice no 1:

(Questions de cours):

- 1. Définitions géométriques des translations, homothéties et rotations puis expressions complexes associées.
- 2. Calcul de la somme des racines n-ième de l'unité.

Exercice nº 2:

(Application directe):

- 1. Résoudre dans \mathbb{C} l'équation suivante : $(1+2i)\bar{z}+i=0$
- 2. Mettre sous forme trigonométrique le nombre complexe suivant : 1+i

Exercice no 3:

On rappelle que $j = e^{2i\pi/3}$. On note $E = \{z \in \mathbb{C}, \exists (a,b) \in \mathbb{Z}^2, z = a + jb\}$

1. Soit $z = a + jb \in E$. Montrer que

$$|z| = 1 \iff (2a - b)^2 + 3b^2 = 4$$

2. En déduire explicitement tout les éléments de $U=\{z\in E:|z|=1\}$ en fonction de ± 1 et $\pm j$.

Semaine du 16 septembre - Exercices supplémentaires

Exercice no 1:

Exercice 9 - Entiers de Gauss

Exercice nº 2:

(Classique à savoir - possible diviser en 2) :

- 1. Linéariser $\sin^3(x)$ et $\cos^4(x)$
- 2. Exprimer $\cos(5x)$ sous forme d'une expression polynomiale en $\cos(x)$. De même, pour $\sin(5x)$ en fonction de $\sin(x)$ et $\cos(x)$

Exercice no 3:

(Équation dans \mathbb{C}): Résoudre dans \mathbb{C} , $z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0$.

Exercice nº 4:

(Mi-géométrie/Mi calculatoire) : Déterminer les complexes $z\in\mathbb{C}$ tels que $z,\frac{1}{z}$ et z-1 aient même module.

Exercice no 5:

(Géométrie) : Soient A, B, C trois point du plan deux à deux distincts, d'affixes respectives a, b et c. Montrer que :

$$(ABC)$$
 est équilatéral $\iff j$ ou j^2 est racine de l'équation $az^2 + bz + c = 0$ $\iff a^2 + b^2 + c^2 = ab + ac + bc$ $\iff \frac{1}{b-c} + \frac{1}{b-a} + \frac{1}{c-a} = 0$