

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings of claims in the application:

Claims 1-14 (Canceled).

Claim 15 (Currently Amended): A process for hydroformylating olefins, comprising:
~~the reaction of reacting~~ a monoolefin or a monoolefin mixture having from 2 to 25 carbon atoms with a mixture of carbon monoxide and hydrogen in the presence of a heteroacylphosphite of general formula (1) or a corresponding complex with one or more metals of groups 4 to 10 of the Periodic Table of the Elements

(1)

wherein R¹, R², R³, R⁴ and q are the same or different and are each a substituted or unsubstituted aliphatic, alicyclic, aromatic, heteroaromatic, mixed aliphatic-alicyclic, mixed aliphatic-aromatic, heterocyclic, mixed aliphatic-heterocyclic hydrocarbon radical having from 1 to 70 carbon atoms, H, F, Cl, Br, I, -CF₃, -CH₂(CF₂)jCF₃ where wherein j = 0-9, -OR⁵, -COR⁵, -CO₂R⁵, -CO₂M, -SiR⁵₃, -SR⁵, -SO₂R⁵, -SOR⁵, -SO₃R⁵, -SO₃M, -SO₂NR⁵R⁶, -NR⁵R⁶, -N=CR⁵R⁶, where wherein R⁵ and R⁶ are the same or different and are each as defined for R¹, and M is an alkali metal, formally half an alkaline earth metal ion, an ammonium or phosphonium ion, x, y, z are each independently O, NR⁷, S, where wherein R⁷ is as defined

for q, and x, y, z are not simultaneously O, with the proviso that when q is a radical which has a structural formula (6c)

wherein the R¹ to R⁴ radicals are each as defined for formula (1), x¹, y¹, z¹ are each independently O, NR⁷, S, wherein R⁷ is as defined for q, T is an oxygen or an NR³⁰ radical, wherein R³⁰ is as defined for q, and the a position serves as the attachment point,

x and x¹ must not simultaneously be N, and

x must not be N when T is NR³⁰.

Claim 16 (Currently Amended): The process as claimed in claim 15, characterized in that wherein the R¹ and R², R² and R³ and/or R³ and R⁴ radicals form a fused substituted or unsubstituted aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed heteroaromatic-aliphatic ring system.

Claim 17 (Currently Amended): The process as claimed in claim 15, characterized in that wherein the q radical consists of the W-R radicals where wherein W is a divalent substituted or unsubstituted aliphatic, alicyclic, mixed aliphatic-alicyclic, heterocyclic, mixed aliphatic-heterocyclic, aromatic, heteroaromatic, mixed aliphatic-aromatic hydrocarbon radical having from 1 to 50 carbon atoms, and the R radical is -OR⁵, -NR⁵R⁶, phosphite, phosphonite, phosphinite, phosphine or heteroacylphosphite of formula (6c), where wherein R⁵ and R⁶ are the same or different and are as defined for R¹.

Claim 18 (Currently Amended): The process as claimed in claim 17, characterized in
that wherein

W is a radical of general formula (2)

wherein R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ are the same or different and are each as defined for R¹,

t is a divalent CR¹⁶R¹⁷, SiR¹⁶R¹⁷, NR¹⁶, O or S radical, and R¹⁶ and R¹⁷ are each as defined for R⁵ and R⁶, n = 0 or 1 and the a and b positions serve as attachment points.

Claim 19 (Currently Amended): The process as claimed in claim 18, characterized in
that wherein in each case two adjacent R⁹ to R¹⁵ radicals together form a fused substituted or unsubstituted, aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed heteroaromatic-aliphatic ring system.

Claim 20 (Currently Amended): The process as claimed in claim 18, characterized in
that wherein W is a radical of general formula (3):

wherein

R^{18} , R^{19} , R^{20} , R^{21} , R^{22} and R^{23} are the same or different and are each as defined for R^1 ,
 t is a divalent $CR^{16}R^{17}$, $SiR^{16}R^{17}$, NR^{16} , O or S radical, and R^{16} and R^{17} are each as
defined for R^5 and R^6 , $n = 0$ or 1 and the a and b positions serve as attachment points.

Claim 21 (Currently Amended): The process as claimed in claim 20, characterized in
that wherein in each case two adjacent R^{18} to R^{23} radicals together form a fused substituted or
unsubstituted, aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed
heteroaromatic-aliphatic ring system.

Claim 22 (Currently Amended): The process as claimed in claim 17, characterized in
that wherein

W is a radical of general formula (4):

where wherein u is a divalent group selected from radicals of formulae (5a), (5b) and (5c)

(5a)

(5b)

(5c)

in which R^{24} , R^{25} , R^{26} and R^{27} are the same or different and are each as defined for R^1 , and
the a and b positions serve as attachment points.

Claim 23 (Currently Amended): The process as claimed in claim 22, characterized in that wherein two adjacent R²⁴ to R²⁷ radicals together form a fused substituted or unsubstituted, aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed heteroaromatic-aliphatic ring system.

Claim 24 (Currently Amended): The process as claimed in claim 17, characterized in that wherein

R represents radicals of general formulae (6a), (6b) and (6c):

wherein R²⁸ and R²⁹ are the same or different and are each as defined for R¹,

x, y, z and W are each defined as specified and

m = 0 or 1, n = 0 or 1, k = 0 or 1, l = 0 or 1,

and the position a serves as the attachment point.

Claim 25 (Currently Amended): The process as claimed in claim 15, characterized in that wherein the metal of groups 4 to 10 of the Periodic Table is selected from the group consisting of rhodium, platinum, palladium, cobalt and ruthenium.

Claim 26 (Currently Amended): The process as claimed in claim 15, characterized in that wherein further phosphorus ligands are present.

Claim 27 (Currently Amended): A process for making a compound, comprising:
hydrocyanation, isomerization of olefins or amidocarbonylation hydrocyanating,
isomerizing of an olefin or amidocarbonylating in the presence of heteroacylphosphines of formula (1)

or metal complexes thereof,

wherein R¹, R², R³, R⁴ and q are the same or different and are each a substituted or unsubstituted aliphatic, alicyclic, aromatic, heteroaromatic, mixed aliphatic-alicyclic, mixed aliphatic-aromatic, heterocyclic, mixed aliphatic-heterocyclic hydrocarbon radical having from 1 to 70 carbon atoms, H, F, Cl, Br, I, -CF₃, -CH₂(CF₂)_jCF₃ where j = 0-9, -OR⁵, -COR⁵, -CO₂R⁵, -CO₂M, -SiR⁵₃, -SR⁵, -SO₂R⁵, -SOR⁵, -SO₃R⁵, -SO₃M, -SO₂NR⁵R⁶, -NR⁵R⁶, -N=CR⁵R⁶, where R⁵ and R⁶ are the same or different and are each as defined for R¹, and M is an alkali metal ion, formally half an alkaline earth metal ion, an ammonium or phosphonium ion, x, y, z are each independently O, NR⁷, S, where R⁷ is as defined for R¹.

Claim 28 (Currently Amended): A process for carbonylation in the presence of a heteroacylphosphite of formula (1)

(1)

or metal complexes thereof,

wherein R¹, R², R³, R⁴ and q are the same or different and are each a substituted or unsubstituted aliphatic, alicyclic, aromatic, heteroaromatic, mixed aliphatic-alicyclic, mixed aliphatic-aromatic, heterocyclic, mixed aliphatic-heterocyclic hydrocarbon radical having from 1 to 70 carbon atoms, H, F, Cl, Br, I, -CF₃, -CH₂(CF₂)_jCF₃ where j = 0-9, -OR⁵, -COR⁵, -CO₂R⁵, -CO₂M, -SiR⁵₃, -SR⁵, -SO₂R⁵, -SOR⁵, -SO₃R⁵, -SO₃M, -SO₂NR⁵R⁶, -NR⁵R⁶, -N=CR⁵R⁶, where R⁵ and R⁶ are the same or different and are each as defined for R¹, and M is an alkali metal ion, formally half an alkaline earth metal ion, an ammonium or phosphonium ion, x, y, z are each independently 0, NR⁷, S, where R⁷ is as defined for q, and x, y, z are not simultaneously 0, with the proviso that when q has a radical which has a structural formula (6c)

~~wherein~~ the R^1 to R^4 radicals are each as defined for formula (1), x^1 , y^1 , z^1 are each independently O, NR⁷, S, ~~wherein~~ R⁷ is as defined for q, T is an oxygen or an NR³⁰ radical, ~~wherein~~ R³⁰ is as defined for q, and the a position serves as the attachment point, x and x¹ must not simultaneously be N and

x must not be N when T is NR³⁰.