#### Qui suis-je?

- Consultant en sécurité applicative depuis 2009
  - Tests de pénétration applicatifs (ethical hacking);
  - Revues de code de sécurité;
  - Accompagnement d'équipe de développement dans la réalisation d'applications sécuritaires;
  - Élaboration de cadre normatifs de développement sécuritaire.

#### Avant ça

- Maîtrise en informatique portant sur la sécurité applicative (model-checking), Université Laval 2009;
- Baccalauréat intégré en mathématiques-informatique, Université Laval, Université Laval 2006.

#### Autres

- Donne des présentations sur la sécurité applicative;
- Participe à des compétitions de sécurité.

## ReDoS Hackerspace mai 2011

Quand la validation de données tourne mal

#### Motivations

- Les expressions régulières sont partout !
  - Navigateurs Web
  - FireWalls
  - Serveurs Web
  - IDS/IPS
  - Applications Web
  - Etc

#### Motivations

- Connaissance limitée des expressions régulières et des concepts théoriques sousjacents
- Utilisation d'algorithmes de validation non efficaces
- Définition d'expressions régulières complexes

#### Plan

Retour sur les REGEX

**CAUSES dES REDOS** 

**Solutions POSSIBLES** 

**CONCLUSION** 

# Retour sur les regex

### Expressions régulières

 Une expression régulière permet de valider l'occurrence de caractères et l'ordre dans lequel ces caractères apparaissent dans un mot.

 Une expression régulière est définie à partir de caractères et d'opérateurs.

## Expressions régulières (suite)

| e1   e2     | Choix entre deux expressions régulières                      |
|-------------|--------------------------------------------------------------|
| <b>e1e2</b> | Séquence de deux expressions régulières                      |
| e*          | Répétition d'une expression régulière zéro ou plusieurs fois |
| e?          | Expression régulière présent zéro ou une fois                |
| -           | Désigne n'importe quel caractère                             |
| []          | Choix entre une série de caractères                          |

### Expressions régulières étendues

 Au fil du temps des ajouts ont été faits aux expressions régulières

Références ultérieures

 Il ne s'agit plus d'expressions régulières proprement dites

#### CauseS des ReDOS

#### Mise en situation

Expression régulière « simple »

Chaîne de caractères à valider

aaaaaaaaaaaX

### Algorithme de reconnaissance naïf

1. Traduction de l'expression régulière en automate fini non déterministe (NFA)



 Parcours l'automate en conservant en mémoire tous les chemins possibles
 65536 chemins possibles

### Algorithme de reconnaissance naïf

- Un algorithme de reconnaissance naïf est vulnérable au ReDoS quand :
  - L'automate fini non déterministe représentant l'expression régulière contient un choix non déterministe à l'intérieur d'une boucle



### Cas de figure I

 Application .NET utilisant la classe RegEx pour effectuer des validations

Expression régulière à valider : ^(a+)+\$

 Valide les chaînes de caractères formées d'une série de a et terminant par X.

# Cas de figure I (suite)



### Cas de figure II

- Application faisant la validation de courriel dans un formulaire d'inscription
- Expression régulière à valider : ^([a-zA-Zo-9]) (([\-.]|[\_]+)?([a-zA-Zo-9]+))\*(@){1}[a-zo-9]+[.] {1}(([a-z]{2,3})|([a-z]{2,3}[.]{1}[a-z]{2,3}))\$
- Valide les chaînes de caractères formées d'une série de a.

## Cas de figure II (suite)



#### **Solutions Possibles**

#### Pistes de solutions

- Utilisation de meilleurs algorithmes de validation
- Écrire de meilleures expressions régulières
- Pré-compilation d'expressions régulières

### Meilleurs algorithmes de validation

- Pour les expressions régulières pures c'est faisable
- Pour les expressions régulières étendues ce n'est pas faisable
- Peu ou pas de contrôle sur les algorithmes utilisés dans l'industrie
- Solution non-viable

## Réécriture d'expressions régulières

#### But:

 Écrire des expressions régulières qui sont traduites en automates fini déterministes par l'algorithme de reconnaissance naïf

#### Concept théorique

- Pour chaque automate fini non déterministe, il existe un automate fini déterministe équivalent

## Réécriture d'expressions régulières

 Des règles d'équivalences peuvent être utilisées pour « simplifier » les expression régulières.

```
e+ = ee*
e|e = e
e1(e2|e3) = e1e2|e1e3
(e1|e2)* = e1*(e2e1*)*
```

## Cas de figure







# Cas de figure (suite)



#### Limitations

 Difficile de simplifier en utilisant des règles d'équivalence dans les cas complexes

 L'expression régulière résultant de la simplification est difficile à lire dans certains cas

 Difficile de déterminer si l'automate résultant de la traduction est déterministe

### Pré-compilation

 Effectuer la conversion en automate fini déterministe avant la validation

- Ne peut être effectué au « Runtime »
- Concept théorique
  - La transformation d'un automate fini non déterministe en automate fini déterministe prend un temps exponentiel

## Pré-compilation (suite)

- Précompilation des expressions régulières
  - Utiliser un outil automatisé qui transforme les expressions régulières lisibles en expressions régulières sûres au moment de la compilation

### Conclusion

#### En résumé

- Les expressions régulières sont partout !
- Beaucoup d'outils, d'applications, de FrameWork, etc sont vulnérables aux ReDos
- Les ReDoS sont causés par deux facteurs :
  - Des expressions régulières mal construites
  - Des algorithmes de validations « mal conçus »

#### Contre-mesures

 Améliorer la maîtrise des expressions régulières afin d'en écrire de meilleurs (nonevil regex)

 Pré-compiler les expressions régulières lorsque cela est possible

#### Questions?

#### Références

#### ReDoS-OWASP

(https://www.owasp.org/index.php/Regular\_expression\_Denial\_of\_Service\_-\_ReDoS)

#### **REGEX-WikiPEDIA**

(http://en.wikipedia.org/wiki/Regular\_expression)

#### Mémoire de Maîtrise de Claude Bolduc

(http://archimede.bibl.ulaval.ca/archimede/meta/23728)