CARDIAC DISEASE DETECTION USING ANFIS-GA

NUR BIDAYATUL HIDAYAH BINTI ABDUL KADER 2013180 SITI SALWA BINTI MUHAMMAD RAIS 2015454 NUR AZSHIMADATHUL ASYQIN BINTI DARWIS 1910828

O1
About project

02

System Architecture

03

Methodology

04

Findings

About Project

Intelligent Model

Why Neural Network why ANFIS-GA

Heart disease prediction

- consider related data with disease
- gives values to parameter
- normalization
- training

System Architecture

output layer

hidden layer 2

hidden layer 1

input layer

System Architecture Stop No **Mutation** Crossover **Parent Selection** Standard meet? Health Data Generate initial Environment, population of **Fitness Function** Start Data chromosomes for Evaluation ANFIS Behavioral Adaptive Node Data Fixed Node

Methodology

1. Data Processing

Normalizing data

2. Data Splitting

 Split the dataset into training and testing sets.

3. Initialization and Fine Tuning Parameters

- functions = 3
- generations = 300, 50, 500
- offsprings = 10
- mutationRate = 0.1, 0.002
- CrossoverRate = 0.9
- learningRate = 0.01,
- chance = 0.5
- ruleComb = "simple"

Data Analysis

	count	mean	std	min	25%	50%	75%	max
risk	1000.0	0.334000	0.471876	0.000000	0.000000	0.000000	1.000000	1.000000
age	1000.0	53.857000	21.724099	18.000000	35.000000	54.000000	73.000000	90.000000
cholesterol	1000.0	257.169000	80.583212	120.000000	194.000000	252.000000	326.000000	400.000000
heart_rate	1000.0	75.617000	20.087355	40.000000	58.000000	76.000000	93.000000	110.000000
diabetes	1000.0	0.672000	0.469720	0.000000	0.000000	1.000000	1.000000	1.000000
family_history	1000.0	0.505000	0.500225	0.000000	0.000000	1.000000	1.000000	1.000000
smoking	1000.0	0.881000	0.323951	0.000000	1.000000	1.000000	1.000000	1.000000
obesity	1000.0	0.477000	0.499721	0.000000	0.000000	0.000000	1.000000	1.000000
alcohol	1000.0	0.597000	0.490746	0.000000	0.000000	1.000000	1.000000	1.000000
exercise	1000.0	9.795311	5.876251	0.004000	4.479250	9.510000	15.037000	19.999000
previous_problems	1000.0	0.485000	0.500025	0.000000	0.000000	0.000000	1.000000	1.000000
medication	1000.0	0.497000	0.500241	0.000000	0.000000	0.000000	1.000000	1.000000
stress_level	1000.0	5.398000	2.806327	1.000000	3.000000	5.000000	8.000000	10.000000
sedentary	1000.0	6.134730	3.462298	0.002000	3.082320	6.189809	9.262017	11.992000
bmi	1000.0	28.822092	6.368839	18.004211	23.200693	28.728500	34.309725	39.997211
trigl	1000.0	419.299000	221.226827	30.000000	231.750000	419.500000	601.250000	800.000000
physical_activity	1000.0	3.468000	2.283460	0.000000	1.000000	3.000000	5.000000	7.000000
sleep_hour	1000.0	6.973000	2.013038	4.000000	5.000000	7.000000	9.000000	10.000000

Findings

Neural Network

-result fine tune hidden layer

-no of neuron hidden layer

Neural Network

The results, converge

Mutation rate = 0.1 Learning rate = 0.01 Generation = 300

Mutation rate = 0.002 Learning rate = 0.001 Generation = 50

Mutation rate = 0.0002 Learning rate = 0.001 Generation = 200

Conclusion

CLASSES 2024