

Elementy elektroniczne

dr inż. Piotr Ptak

Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Podstaw Elektroniki

A-303, pptak@prz.edu.pl, tel. 178651113 konsultacje: pn. – cz. 11-12

Plan wykładu

Tranzystor bipolarny

- Zasady działania
- Struktury i symbole
- Model pasmowy
- Zakresy pracy
- Współczynniki wzmocnienia prądowego
- · Układy włączenia
- Charakterystyki statyczne
- Parametry statyczne

Elementy elektroniczne I

.

Tranzystory - wstęp

Tranzystor – trójkońcówkowy aktywny element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego.

Tranzystor to wzmacniacz -

- umożliwia sterowanie większej mocy mniejszą.

Tranzystory

Bipolarne

(npn, pnp)
W działaniu biorą udział
jednocześnie oba rodzaje nośników
ładunku (elektrony i dziury).
[Sterowane prądowo]

Unipolarne

(FET)

W działaniu istotny udział ma tylko jeden rodzaj nośników (elektrony lub dziury).

[Sterowane napięciowo]

Elementy elektroniczne I – tranzystor bipolarny

,

Tranzystory bipolarne

https://www.aphelektra.com

Prąd płynący między dwiema końcówkami (C, E) tranzystora bipolarnego jest regulowany przez stosunkowo niewielki prąd płynący przez trzecią końcówkę (B).

Elementy elektroniczne I – tranzystor bipolarny

ļ

Zasada działania

Dioda spolaryzowana zaporowo (przypomnienie) –

- źródło prądowe o stałej wydajności prądowej I_0 <u>niesterowalne</u>:
- I_0 nie zależy od U_D oraz od R_L nie ma oddziaływania (niepożądanego) sygnału wyjściowego na wejściowy,

Elementy elektroniczne I – tranzystor bipolarny

.

Zasada działania

Jak zwiększyć liczbę nośników mniejszościowych? – Wstrzyknąć z zewnątrz!

Elementy elektroniczne I – tranzystor bipolarny

Podstawowe zasady działania tranzystora

1. przybliżenie $I_E \approx I_C$

Elementy elektroniczne I – tranzystor bipolarny

_

Podstawowe zasady działania tranzystora

2. Rekombinacja elektronów i dziur w obszarze bazy ($I_{\it rB}$).

$$I_C < I_E$$

$$I_E = I_C + I_B$$

3. Dyfuzja dziur z bazy do emitera (I_{dE}) i rekombinacja z elektronami.

- 4. Rekombinacja w obszarze warstwy zaporowej złącza E-B (I_{rEB}).
- 5. Generacja (termiczna) pary elektron-dziura w warstwie zaporowej złącza C-B (I_{CBO}):

$$I_C = \alpha_N I_E + I_{CBO}$$

$$I_{\scriptscriptstyle B} = I_{\scriptscriptstyle rB} + I_{\scriptscriptstyle dE} + I_{\scriptscriptstyle rBE} - I_{\scriptscriptstyle CBO}$$

Elementy elektroniczne I – tranzystor bipolarny

Rzeczywista struktura tranzystora

Tranzystor wykonany metodą epitaksjalno-planarną (epiplanarną)

Elementy elektroniczne I – tranzystor bipolarny

a

Struktury i symbole tranzystorów

Strzałka w symbolach ma zwrot zgodny z kierunkiem przepływu prądu według konwencji przyjętej w elektrotechnice (od + do –), czyli zwrot zgodny z kierunkiem przepływu ładunków dodatnich (dziur).

Elementy elektroniczne I – tranzystor bipolarny

Model pasmowy tranzystora

Przed połączeniem obszarów n, p, n

Elementy elektroniczne I – tranzystor bipolarny

1

Model pasmowy tranzystora

Po połączeniu obszarów n, p, n – stan równowagi termodynamicznej

Elementy elektroniczne I – tranzystor bipolarny

Model pasmowy tranzystora

Po połączeniu obszarów n, p, n – stan aktywny: $U_{\it BE} > 0$

Elementy elektroniczne I – tranzystor bipolarny

13

Model pasmowy tranzystora

Po połączeniu obszarów n, p, n – stan nasycenia: $\,U_{\it BE}>0\,$

Elementy elektroniczne I – tranzystor bipolarny

B (p)

E (n)

14

C (n)

Model pasmowy tranzystora

Po połączeniu obszarów n, p, n – stan zatkania: $U_{\it BE} < 0$

 $U_{BC} < 0$

C (n)

B (p)

Elementy elektroniczne I – tranzystor bipolarny

15

 E_V

E (n)

Model pasmowy tranzystora

Po połączeniu obszarów n, p, n – stan inwersyjny: $\,U_{{\scriptscriptstyle BE}} < 0\,$

Elementy elektroniczne I – tranzystor bipolarny

Zakresy pracy tranzystora

Ile złącz ma tranzystor?

4 warianty (zakresy) pracy.

Zakres AI – emiter spełnia funkcję kolektora, a kolektor – emitera.

Elementy elektroniczne I – tranzystor bipolarny

Współczynniki wzmocnienia prądowego KPE

Stan aktywny

Założenie: cały obszar bazy jest obojętny elektrycznie:

$$I_r = I_c + I_p$$
 o

$$\Delta I_{\rm r} = \Delta I_{\rm c} + \Delta I_{\rm c}$$

$$I_{\scriptscriptstyle E} = I_{\scriptscriptstyle C} + I_{\scriptscriptstyle B} \qquad \text{oraz} \qquad \Delta I_{\scriptscriptstyle E} = \Delta I_{\scriptscriptstyle C} + \Delta I_{\scriptscriptstyle B} \qquad \text{dla malych przyrostów prądu}$$

Tranzystor jest tym lepszy (większe wzmocnienie) im mniej nośników rekombinuje w bazie, $I_{rB} \lor \to k_p$

$$I_C \leq I_E$$

$$I_C \leq I_E, \qquad I_B << I_C, \qquad I_B << I_E$$

$$\alpha_N = \frac{I_C}{I_E}$$

 $lpha_{_{N}}=rac{I_{_{C}}}{I_{_{E}}}$ - współczynnik wzmocnienia prądowego dla prądu stałego

$$\alpha = \frac{\Delta I_C}{\Delta I_E}$$

$$\beta_{N} = \frac{I_{C}}{I_{B}}$$

$$\beta = \frac{\Delta I_{C}}{I_{B}}$$

$$\alpha \approx 0.980...0.995$$

$$\beta \approx 50...200$$

Elementy elektroniczne I – tranzystor bipolarny

Współczynniki wzmocnienia prądowego KPE

Stan aktywny

$$I_E = I_C + I_B$$
 /: $I_C \Rightarrow \frac{I_E}{I_C} = 1 + \frac{I_B}{I_C} \Rightarrow \frac{1}{\alpha} = 1 + \frac{1}{\beta}$

$$\beta = \frac{\alpha}{1 - \alpha}$$

Uwzględniając rozpływ prądów w tranzystorze ($I_C=lpha_NI_E+I_{CBO}$), dla prądu stałego:

Elementy elektroniczne I – tranzystor bipolarny

10

Oznaczanie prądów i napięć

$$I_E = I_C + I_B \qquad \qquad \beta_N = \frac{I_C}{I_B}$$

$$I_E = \beta_N I_B + I_B$$

 $I_E = I_B(\beta_N + 1)$

$$\begin{array}{c} C \\ U_{BC} \\ I_{B} \\ V_{BE} \\ V_{E} \\ \end{array}$$

$$U_{BE} - U_{BC} - U_{CE} = 0$$

 $U_{CB} + U_{EC} - U_{EB} = 0$

Strzałka w symbolach ma zwrot zgodny z kierunkiem przepływu prądu według konwencji przyjętej w elektrotechnice (od + do –), czyli zwrot zgodny z kierunkiem przepływu ładunków dodatnich (dziur).

Elementy elektroniczne I – tranzystor bipolarny

Układy włączenia tranzystora

Tranzystor – element 3-końcówkowy, traktowany jako czwórnik – - jedna końcówka wspólna dla wejścia i wyjścia.

Dla wzmocnienia mocy: B na wejściu, C na wyjściu:

Każdy z układów ma różne właściwości (m.in. wzmocnienia $k_i,\,k_u,\,k_p$), ale tranzystor działa zawsze JEDNAKOWO

$$I_{E} = I_{C} + I_{B}, \quad \alpha_{N} = I_{C}/I_{E}, \quad \beta_{N} = I_{C}/I_{B}$$

$$I_{WE} = I_{E}, \quad I_{WY} = I_{C} \qquad I_{WE} = I_{B}, \quad I_{WY} = I_{C} \qquad I_{WE} = I_{B}, \quad I_{WY} = I_{E}$$

$$k_{i} = \frac{I_{C}}{I_{E}} = \alpha_{N} \qquad k_{i} = \frac{I_{C}}{I_{B}} = \beta_{N} + 1$$

Elementy elektroniczne I – tranzystor bipolarny

Opis właściwości funkcjonalnych tranzystora

Praca tranzystora:

- · nieliniowa:
 - statyczna,
- dynamiczna,
- liniowa (małe sygnały m. i d. cz.).
- (i) Praca nieliniowa statyczna związki między stałymi napięciami i prądami na końcówkach tranzystora.
- (ii) Procesy przejściowe przy przełączaniu tranzystora z Z do N (włączanie) i odwrotnie (wyłączanie).
- (iii) Tranzystor jest spolaryzowany w określonym punkcie pracy i sterowany małym sygnałem prądu zmiennego (o takiej amplitudzie, że tranzystor zachowuje się jak element liniowy).

Opis właściwości funkcjonalnych tranzystora

Tranzystor jako czwórnik nieliniowy

Punkt pracy (statyczny): I_1 , U_1 , I_2 , U_2 .

Równanie czwórnika – zależność jednej wielkości od dwóch innych przy niekontrolowanej czwartej (12).

Do pełnego opisu czwórnika wystarczy jedna para równań; praktyczne znaczenie mają trzy – impedancyjne $\mathit{U}(\mathit{I}_{1},\mathit{I}_{2})$, admitancyjne $\mathit{I}(\mathit{U}_{1},\mathit{U}_{2})$ i mieszane:

$$U_1 = f(I_1, U_2)$$
 i $I_2 = f(I_1, U_2)$

Cztery rodziny charakterystyk statycznych:

$$\begin{array}{ll} U_1 = f(I_1), & U_2 = const & - \text{ch-ki wejściowe} \\ U_1 = f(U_2), & I_1 = const & - \text{ch-ki zwrotne napięciowe} \\ I_2 = f(I_1), & U_2 = const & - \text{ch-ki przejściowe prądowe} \\ I_2 = f(U_2), & I_1 = const & - \text{ch-ki wyjściowe} \\ \end{array}$$

Dowolna kombinacja po jednym z pary wystarczy do wyznaczenia dwóch

Elementy elektroniczne I – tranzystor bipolarny

23

Charakterystyki statyczne WB

$$\begin{array}{c|c} E & \stackrel{I_1}{\longrightarrow} & \stackrel{I_2}{\longrightarrow} C \\ U_1 & & & & \\ \end{array}$$

$$\uparrow U_2 \qquad I_1 = I_E \qquad U_1 = U_{EB} \\
I_2 = I_C \qquad U_2 = U_{CB}$$

Stan aktywny: $U_{\it EB}$ – przewodzenia U_{CB} – zaporowo

$$U_{EB} = f(I_E, U_{CB})$$
$$I_C = f(I_E, U_{CB})$$

Cztery rodziny charakterystyk statycznych:

$$egin{aligned} U_{\it EB} &= f(I_{\it E})ig|_{U_{\it CB}} &- \mbox{wejściowa} \ U_{\it EB} &= f(U_{\it CB})ig|_{I_{\it E}} &- \mbox{zwrotna} \ I_{\it C} &= f(I_{\it E})ig|_{U_{\it CB}} &- \mbox{przejściowa} \ I_{\it C} &= f(U_{\it CB})ig|_{I_{\it E}} &- \mbox{wyjściowa} \end{aligned}$$

Charakterystyki statyczne WB

Zjawisko Early'ego – zjawisko modulacji efektywnej szerokości bazy (zmiana koncentracji nośników nadmiarowych w bazie przy zmianie U_{CB}).

Elementy elektroniczne I – tranzystor bipolarny

25

Charakterystyki statyczne WB

Pomiar charakterystyk

- Określić zakres dopuszczalnych zmian prądów i napięć.
- Pomiar charakterystyk parami (jednocześnie):
- wejściowe i przejściowe ($U_{\it CB} = {
 m const}$) zmiana $I_{\it E}$, odczyt $U_{\it BE}$ i $I_{\it C}$,
- wyjściowe i zwrotne ($I_{\it E}$ = const) zmiana $U_{\it CB}$, odczyt $I_{\it C}$ i $U_{\it BE}$.
- Pomiar po trzy charakterystyki (dla trzech różnych wartości parametru ważne jest utrzymywanie jego stałej wartości).
- Pomiar ch-k wyjściowych najpierw w st. A, potem w st. N (zmiana polaryzacji $U_{\it CB}$).
- Ch-ka wejściowa (złącza p-n) można wyznaczyć $I_0,\;\eta,\,R_S$

Charakterystyki statyczne WE

$$I_1 = I_B \qquad U_1 = U_{BB}$$

$$I_2 = I_C \qquad U_2 = U_{CD}$$

Napięcie $U_{\!\mathit{CE}}$ polaryzuje oba złącza: E-B i B-C.

W stanie aktywnym:

$$U_{BE} = f(I_B, U_{CE})$$

$$U_{\it BE}$$
 — przewodzenia

 U_{CE} — przewodzenia

$$I_C = f(I_B, U_{CE})$$

Cztery rodziny charakterystyk statycznych:

$$U_{{\scriptscriptstyle BE}} = f(I_{{\scriptscriptstyle B}}) \big|_{U_{{\scriptscriptstyle CE}}}$$
 – wejściowa

$$U_{{\scriptscriptstyle BE}} = f(U_{{\scriptscriptstyle CE}})\big|_{I_{\scriptscriptstyle B}}$$
 – zwrotna

$$I_{C} = f(I_{B}) \Big|_{U_{CE}}$$
 - przejściowa

$$I_{C} = f(U_{CE})|_{I_{B}}$$
 - wyjściowa

Elementy elektroniczne I – tranzystor bipolarny

27

Charakterystyki statyczne WE

Zjawisko Early'ego – zjawisko modulacji efektywnej szerokości bazy (zmiana koncentracji nośników nadmiarowych w bazie przy zmianie U_{CB}).

Elementy elektroniczne I – tranzystor bipolarny

Charakterystyki statyczne WE

Pomiar charakterystyk

- Określić zakres dopuszczalnych zmian prądów i napięć.
- Pomiar charakterystyk parami (jednocześnie):
- wejściowe i przejściowe ($U_{\it CE}$ = const) zmiana $I_{\it B}$, odczyt $U_{\it BE}$ i $I_{\it C}$,
- wyjściowe i zwrotne ($I_{\it B}$ = const) zmiana $U_{\it CE}$, odczyt $I_{\it C}$ i $U_{\it BE}$.
- Pomiar po trzy charakterystyki (dla trzech różnych wartości parametru ważne jest utrzymywanie jego stałej wartości). Dokładny pomiar dla stanu nasycenia.
- Ch-ka wejściowa (złącza p-n) można wyznaczyć I_0 , η , R_S .
- Wyznaczyć napięcie Early'ego.

Elementy elektroniczne I – tranzystor bipolarny

20

Parametry statyczne

Większość parametrów ogranicza dozwolony obszar pracy aktywnej tranzystora.

- P_a moc admisyjna maksymalna wartość $I_{dc} \cdot U_{dc}$ hiperbola mocy.
- $I_{C\max}$ prąd maksymalny ograniczenie przeważnie wynika ze zmian lpha lub eta dla dużych I_E (I_C).
- $U_{
 m max}$ napięcie maksymalne ograniczenie ze względu na zjawiska przebiciowe.
- I_{C0} prądy zerowe granica między zakresem aktywnym i odcięcia.
- $U_{\it CEs}$ napięcie nasycenia (tylko dla WE).
- Współczynniki wzmocnienia prądowego $lpha_{\!\scriptscriptstyle N}$ i $eta_{\!\scriptscriptstyle N}$.

Parametry statyczne

Napięcie Early'ego

W stanie aktywnym:

$$I_C = \beta_N I_B \left(1 + \frac{U_{CE}}{U_{AN}} \right)$$

$$g_{CE} = \frac{dI_C}{dU_{CE}}\Big|_{I=\text{count}} = \frac{I_C}{U_{CE} + U_{AN}}$$

Elementy elektroniczne I – tranzystor bipolarny

31

Parametry statyczne

Prądy zerowe – prądy płynące przez tranzystor włączony w układzie dwójnika

Elementy elektroniczne I – tranzystor bipolarny

Parametry statyczne

Napięcie nasycenia (stan nasycenia – oba złącza spolaryzowane w kierunku przewodzenia)

Dla WB **A** -> **N** dla $U_{\it CB}$ = 0.

Dla WE **A** -> **N** przy U_{CEsat} : takie U_{CE} , przy którym U_{CB} = 0 $\Rightarrow U_{CEsat}$ = U_{BE}

Elementy elektroniczne I – tranzystor bipolarny

33

Model odcinkowo-liniowy tranzystora WE

Elementy elektroniczne I – tranzystor bipolarny