## Homework 2

## $\begin{array}{c} {\rm Team}\ {\rm F} \\ {\rm CSC}\ 565\ \text{- Graph Theory} \end{array}$

 $January\ 29,\ 2018$ 

**Question 1.** Find a graph G with 5 vertices which has neither a clique of size 3 nor an independent set of size 3.



C5 has a maximal clique of 2 and a maximal independent set of 2.

Question 2. Find all metamorphism classes of simple graphs with 5 vertices and 5 edges.









Question 3. Determine which pairs of graphs below are bipartite.





The first and second graph are isomorphic. The first can be relabeled to look like the second:



The third graph is not isomorphic to the first two graphs, because it is not a bipartite graph like the first two graphs (its non bipartite nature is easy discernible- it contains an odd cycle of 5, and by Theorem 1.2.18, a graph is bipartite iff it contains no odd cycles)

Question 4. Let A be the adjacency matrix of  $K_n$ . If i = j, then  $A^2[i, j]$ \_\_\_\_. Otherwise,  $A^2[i, j] =$ \_\_\_\_.

- If i = j, then  $A^2[i, j] = (n-1)$
- Otherwise,  $A^2[i, j] = (n-2)$

**Question 5.** Prove or disprove: if G is a disconnected graph, then  $\overline{G}$ , the complement of G, is connected.

i. Let u, v be on different components in G. Since there is no uv edge in G, there must be a uv edge in  $\overline{G}$ . Thus u v are connected in  $\overline{G}$ 

ii. Let u, v be on the same component in G. Let w be a vertex on a separate component in G. There must be a uw edge in  $\overline{G}$ . There must also be a vw edge in  $\overline{G}$ .

Because there is a uw path, and a vw path, by Lemma 1.2.5 there must also be a uv path. Thus u and v are connected in  $\overline{G}$ 

Because there exists a path between any two vertices in  $\overline{G}$  it is a connected graph.

**Question 6.** Determine whether  $K_4$  contains the following (give an example or a proof of non-existence);

a) A walk that is not a trail.



The walk B,  $e_1$ , A,  $e_1$ , B is a walk that is not a trail; it repeats the  $e_1$  edge.

b) A trail that is not closed and is not a path.



The walk A,  $e_1$ , B,  $e_2$ , C,  $e_3$ , D,  $e_4$ , B,  $e_5$ , E is a trail that is not closed and is not a path, as the vertex B is repeated.

c) A closed trail that is not a cycle.



The closed trail of A alone is a closed trail that is not a cycle. The length of the walk is 0, so it is not a cycle.  $v_0 = v_n$  so it is closed. It also does not repeat any edges, therefore it is a closed trail that is not a cycle.

Question 7. A graph is called chordal if it has no induced subgraph isomorphic to  $C_n$  for any  $n \leq 4$ . Which of the following 10-vertex graphs are chordal?

- $K_{10}$  : Yes
- $K_{5,5}$ : No  $K_{5,5}$  contains  $C_4$  as an induced subgraph
- $K_{1,9}$ : Yes  $K_{1,9}$  is trivially chordal, since it does not contain any cycles
- $\bullet$   $C_{10}$  : No  $C_{10}$  contains itself as an induced subgraph
- $P_{10}$ : Yes  $P_{10}$  is trivially chordal, since it does not contain any cycles
- $\bullet$  Petersen Graph: No The Petersen graph has  $C_5$  as an induced subgraph

**Question 8.** a. For each graph G below, find the incidence matrix M(G). (See definition 1.1.17 and Example 1.1.19.)



Far Left

|       | $e_1$ | $e_2$ |
|-------|-------|-------|
| $v_1$ | 1     | 0     |
| $v_2$ | 1     | 1     |
| $v_3$ | 0     | 1     |
| $v_4$ | 0     | 0     |

Middle

|       | $e_1$ | $e_2$ | $e_3$ | $e_4$ |
|-------|-------|-------|-------|-------|
| $v_1$ | 1     | 0     | 1     | 0     |
| $v_2$ | 1     | 1     | 0     | 0     |
| $v_3$ | 0     | 1     | 1     | 1     |
| $v_4$ | 0     | 0     | 0     | 1     |

Far Right

|       | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ |
|-------|-------|-------|-------|-------|-------|
| $v_1$ | 1     | 0     | 1     | 0     | 1     |
| $v_2$ | 1     | 1     | 0     | 0     | 0     |
| $v_3$ | 0     | 1     | 1     | 1     | 0     |
| $V_4$ | 0     | 0     | 0     | 1     | 1     |

b. Recall that the transpose of a  $p \times q$  matrix M is the  $q \times p$  matrix  $M^T$  with  $M^T[i,j] = M[j,i]$ . For each graph G above in (a), find the matrix product  $M(G) \cdot (M(G))^T$ .

Far Left

| 1 | 1 | 0 | 0 |
|---|---|---|---|
| 1 | 2 | 1 | 0 |
| 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 |

Middle

| 2 | 1 | 1 | 0 |
|---|---|---|---|
| 1 | 2 | 1 | 0 |
| 1 | 1 | 3 | 1 |
| 0 | 0 | 1 | 1 |

Far Right

|   | _ |   |   |
|---|---|---|---|
| 3 | 1 | 1 | 1 |
| 1 | 2 | 1 | 0 |
| 1 | 1 | 3 | 1 |
| 1 | 0 | 1 | 2 |