ECE 550D Fundamentals of Computer Systems and Engineering

Fall 2023

Storage and Clocking

Xin Li & Dawei Liu Duke Kunshan University

Slides are derived from work by Andrew Hilton, Tyler Bletsch and Rabih Younes (Duke)

Last time...

- Who can remind us what we did last time?
 - SR latch
 - D latch
 - Clocks

Building up to the D Flip-Flop and beyond

DFF: Edge Triggered

- Instead of level triggered
 - Latch a new value at a clock level (high or low)
- We use edge triggered
 - Latch a value at an clock edge (rising or falling)

Our Ultimate Goal: D Flip-Flop

- Rising edge triggered D Flip-flop
 - Two D Latches w/ opposite clking of enables

5

D Flip-Flop

- Rising edge triggered D Flip-flop
 - Two D Latches w/ opposite clking of enables
 - On Low Clk, first latch enabled (propagates value)
 - Second not enabled, maintains value

D Flip-Flop

- Rising edge triggered D Flip-flop
 - Two D Latches w/ opposite clking of enables
 - On Low Clk, first latch enabled (propagates value)
 - Second not enabled, maintains value
 - On High Clk, second latch enabled
 - First latch not enabled, maintains value

7

D Flip-Flop

- No possibility of "races" anymore
 - Even if I put 2 DFFs back-to-back...
 - By the time signal gets through 2nd latch of 1st DFF 1st latch of 2nd DFF is disabled
- Still must ensure signals reach DFF before clk rises
 - Important concern in logic design "making timing"

D Flip-flops

- Could also do falling edge triggered
 - · Switch which latch has NOT on clk
- D Flip-flop is ubiquitous
 - Typically people just say "latch" and mean DFF
 - Which edge: doesn't matter
 - As long as consistent in entire design
 - We'll use rising edge

9

D flip flops

- Generally don't draw clk input
 - Have one global clk, assume it goes there
 - Often see > as symbol meaning clk

- Maybe have explicit enable
 - Might not want to write every cycle
 - If no enable signal shown, implies always enabled

• Get output and NOT(output) for "free"

A few words about timing

- Quartus will tell you what timing you make
 - Fmax: how fast can this be clocked
 - Tells you your worst timing paths
 - From which dff to which dff
 - Can see in schematic viewer (usually)

11

Fixing timing misses

- Typical approach: reduce logic (gate delays)
 - Better adder?
 - · Rethink approach?
 - Change "don't care" behavior?
- Fix high fanout
 - Duplicate high FO/simple logic
- Also, feel free to ask for help from me/TAs
 - Quartus's tools to help you fix them aren't the best

Building up to the D Flip-Flop and beyond

Stick a bunch of DFFs together to make a register

Next evolution: multiple registers

Register File

- Can store one value... How about many?
- Register File
 - In processor, holds values it computes on
 - MIPS, 32 32-bit registers
- What other components do we need?

Register File: Interface

- 4 inputs
 - 3 register numbers (5 bit): 2 read, 1 write
 - 1 register write value (32 bits)
- 2 outputs
 - 2 register values (32 bits)

17

Register File Design

First: A Decoder

- First task: convert binary number to "one hot"
 - Saw this before
 - Take register number

19

Register File

- Now we know how to write:
 - Use decoder to convert reg # to one hot
 - Send write data to all regs
 - Use one hot encoding of reg # to enable right reg
- Still need to fix read side
 - 32 input mux (the way we've made it) not realistic
 - To do this: expand our world from {1,0} to {1, 0, Z}

So this third option: Z

- There is a third possibility: Z ("high impedance")
 - Output is "disconnected"
- Gate that gives us Z : Tri-state

D	E	Q
0	1	0
1	1	1
_	0	Z

21

CMOS: Complementary MOS

- 2 inputs: E and D. What does this do?
 - Write truth table for output

E	D	Output
0	0	
0	1	
1	0	
1	1	

CMOS: Complementary MOS

- 2 inputs: E and D. What does this do?
 - Write truth table for output
 - When E =1, straightforward

E	D	Output
0	0	
0	1	
1	0	1
1	1	0

23

CMOS: Complementary MOS

- 2 inputs: E and D. What does this do?
 - Write truth table for output
 - When E =1, straightforward
 - When E= 0, no connection: Z

E	D	Output
0	0	Z
0	1	Z
1	0	1
1	1	0

High Impedance: Z

- Z = High Impedance
 - · No path to power or ground
 - "Gate" does not produce a 1 or a 0
- Previous slide: tri-state inverter
 - · More commonly drawn: tri-state buffer
 - E = enable, D = data

25

Remember this rule?

• Remember I told you not to connect two outputs?

- If one gate tries to drive a 1 and the other drives a 0
 - "Short circuit" lots of current -> lots of heat

We've had this rule one day... and you break it

It's ok to connect multiple outputs together Under one circumstance:

All but one must be outputting Z at any time

27

Mux, implemented with tri-states

Register File

• Now we can write and read in one clock cycle!

29

Ports

- What we just saw: read port
 - Ability to do one read / clock cycle
 - May want more: read 2 source registers per instr
 - Maybe even more if we do many instrs at once
 - This design: can just replicate port
 - Another decoder
 - Another set of tri-states
 - Another output bus (wire connecting the tri-states)
- Earlier: write port
 - Ability to do one write/cycle
 - Could add more: need muxes to pick wr values

Minor Detail

- FYI: This is not how a register file is implemented
 - (Though it is how other things are implemented)
 - Actually done with SRAM
 - We'll see how those work soon

31

Summary

Storage devices
D flip-flops
Registers