<u>Deux exemples d'application de l'algorithme de</u> <u>Bellman_Ford</u>

Un premier exemple (sans cycle)

<u>Liste des prédécesseurs</u>:

 $Pred(A) = \{\}$

Pred(B) = { A, D }

Pred(C) = { A, B, D }

Pred(D) = { B, E }

 $Pred(E) = \{ B \}$

<u>Départ au sommet A</u> :

Iter	Α	В	С	D	E
0	0	inf	inf	inf	inf
1	0	-1	4	inf	inf
2	0	-1	2	1	1
3	0	-1	2	-2	1
4	0	-1	2	-2	1

<u>Remarque</u>: si les valeurs de la dernière ligne ne changent pas, c'est qu'il n'y a pas de cycle absorbant.

Un second exemple (avec cycle)

Liste des prédécesseurs :

Pred(A) = { B, D }

Pred(B) = { C }

Pred(C) = { A }

Pred(D) = { C }

<u>Départ au sommet A</u> :

Iter	Α	В	С	D
0	0	inf	inf	inf
1	0	inf	3	inf
2	0	-4	3	4
3	-2	-4	3	4

Présence d'un cycle absorbant?

On constate que valeur(A) + poids(A,C) < valeur(C), il y a donc **présence d'un cycle**.