Al driven exploration and prediction of company registration trends with registrar of companies (ROC)

TEAM MEMBER

623021106034:MUTHURAJA.A

PHASE 2 SUBMISSION DOCUMENT

INTRODUCTION

• Data exploration definition: Data exploration refers to the initial step in data analysis in which data analysts use data visualization and statistical techniques to describe dataset characterizations, such as size, quantity,

and accuracy, in order to better understand the nature of the data.

- Data exploration techniques include both manual analysis and automated data exploration software solutions that visually explore and identify relationships between different data variables, the structure of the dataset, the presence of outliers, and the distribution of data values in order to reveal patterns and points of interest, enabling data analysts to gain greater insight into the raw data.
- Data is often gathered in large, unstructured volumes from various sources and data analysts must first understand and develop a comprehensive view of the data before extracting relevant data for further analysis, such as univariate, bivariate, multivariate, and principal components analysis.

CONTENT FOR PROJECT PHASE 2:

consider exploring advanced AI algorithm like time series forecasting or ensemble methods for inproved predictive accuracy

DATA SOURCE:

DATASET LINK:(https://www.kaggle.com/datasets/thedevastator/analysis-of-coronary-artery-disease-risk-factors/data)

	Table - nat_st_time							
	FIPSNO	YEAR	HR	нс	РО	RD	PS	
1	27077	1960	0.000000	0.000000	4304	-0.175105	-1.449946	
2	27077	1970	0.000000	0.000000	3987	-0.196536	-1.462559	
3	27077	1980	8.855827	0.333333	3764	-0.362850	-1.585123	
4	27077	1990	0.000000	0.000000	4076	-0.802774	-1.495507	
5	53019	1960	0.000000	0.000000	3889	-0.836868	-1.707206	
6	53019	1970	0.000000	0.000000	3655	-0.847856	-1.697720	
7	53019	1980	17.208742	1.000000	5811	0.119327	-1.444080	
8	53019	1990	15.885623	1.000000	6295	-0.135483	-1.361084	
9	53065	1960	1.863863	0.333333	17884	-0.537372	-0.568146	
10	53065	1970	1.915158	0.333333	17405	-0.225283	-0.591883	
11	53065	1980	3.450775	1.000000	28979	-0.511197	-0.315461	
12	53065	1990	6.462453	2.000000	30948	-0.276544	-0.283123	
13	53047	1960	2.612330	0.666667	25520	-0.820170	-0.554939	
14	53047	1970	1.288643	0.333333	25867	-0.391126	-0.552016	
15	53047	1980	3.263814	1.000000	30639	-0.082422	-0.525384	
16	53047	1990	6.996502	2.333333	33350	0.370762	-0.472500	

DATA COLLECTION AND PREPROCESSING:

- Collect historical ROC company registration data. This data can be obtained from the ROC website, or from other sources such as commercial data providers.
- Split the data into training and testing sets. The training set will be used to train the model, and the testing set will be used to evaluate the model's performance on unseen data.

ADVANCED AI ALGORITHM:

- Linear Regression.
- Logistic Regression.
- Decision Tree.
- SVM.
- Naive Bayes.
- kNN.
- K-Means.
- Random Forest

PROGRAM:

```
| Import pands as pd | Import manager as no | Import manager as pd |
```

```
adult - dataset[0:2000]

arts = dataset[5:0000:52000]

business = dataset[5:0000:527000]

computers = dataset[5:0000:537300]

games = dataset[5:0000:537300]

home = dataset[7:04200:766200]

home = dataset[7:04200:766200]

kids = dataset[7:04200:766200]

kids = dataset[7:04200:766200]

reference = dataset[9:55200]

reference = dataset[9:55200]

reference = dataset[9:55200]

science = dataset[10:3000:115000]

society = dataset[10:4000:1145000]

society = dataset[10:4000:1145000]

society = dataset[10:4000:140400]

test_data = pd.concat([adult, arts, business, computers, games, health, home,

| | kids, news, recreation, reference, science, shopping, society, sports], axis=0)

dataset.drop(dataset.index[0:2000],inplace= True)

dataset.drop(dataset.index[5:0000:52200],inplace= True)

dataset.drop(dataset.index[5:0000:52200],inplace= True)

dataset.drop(dataset.index[5:0000:52200],inplace= True)

dataset.drop(dataset.index[5:0000:52000],inplace= True)

dataset.drop(dataset.index[5:0000:52000],inplace= True)

dataset.drop(dataset.index[5:0000:52000],inplace= True)

dataset.drop(dataset.index[6:0000:62000],inplace= True)

dataset.drop(dataset.index[6:0000:6200],inplace= True)

dataset.drop(dataset.index[6:0000:760200],inplace= True)

dataset.drop(dataset.index[6:0000:760200],inplace= True)

dataset.drop(dataset.index[6:0000:760200],inplace= True)

dataset.drop(dataset.index[6:0000:760200],inplace= True)

dataset.drop(dataset.index[6:0000:760200],inplace= True)

dataset.drop(dataset.index[70:000:760200],inplace= True)

dataset.drop(dataset.index[70:000:760200],inplace= True)

dataset.drop(dataset.index[70:000:760200],inplace= True)

dataset.drop(dataset.index[70:000:760200],inplace= True)

dataset.drop(dataset.index[70:000:760200],inplace= True)

dataset.drop(dataset.index[70:000:760200],inplace= True)

dataset.drop(dataset.index[70:000:70000],inplace= True)
```

http://www.usatoday.com/sports/preps/ Sports


```
ax = sns.countplot(y = "Category", data = test_data , color = 'gray')
plt.title("Visualization of the test dataset", y=1.01, fontsize=20)
plt.ylabel("Number of Categories of URLs", labelpad=15)

Text(0.5, 0, 'Number of Categories of URLs')

Visualization of the test dataset

Adult
Adult
Biusness
Computers
```

```
y_pred=gs_clf.predict(X_test)
   from sklearn.metrics import classification_report
   print(classification_report(y_test, y_pred, digits = 4))
            precision recall f1-score support
      Adult
              0.9872
                       0.5780
                                0.7291
                                            2000
      Arts
                        0.9150
                                0.8371
                                            2000
               0.9880
                       0.9890
                                0.9885
                                            2000
   Business
               0.9801
                                0.9825
  Computers
                       0.9850
                                            2000
      Games
                       0.9940
                                0.9829
                                            2000
                       0.9960
                                0.9935
     Health
                                            2000
      Home
               0.9609
                        0.9945
                                0.9774
                                            2000
               0.9452
      Kids
                       0.9230
                                0.9340
                                            2000
               0.9866
                       0.9935
                                0.9900
                                           2000
      News
 Recreation
               0.8794
                       0.9920
                                0.9323
                                           2000
              0.9468
  Reference
                                0.9624
                                           2000
    Science
               0.9772
                       0.9645
                                0.9708
                                            2000
   Shopping
                       0.9985
                                0.9908
                                            2000
    Society
               0.9708
                       0.9970
                                0.9837
                                           2000
               0.9904 0.9760 0.9831
                                            2000
    Sports
                                 0.9516
                                           30000
   accuracy
  macro avg
               0.9554 0.9516
                                 0.9492
                                           30000
weighted avg
                                0.9492
                                           30000
               0.9554
                       0.9516
```



```
import sklearn.metrics as metrics
print('Naive Bayes Train Accuracy = ',metrics.accuracy_score(y_train,gs_clf.predict(X_train)))
print('Naive Bayes Test Accuracy = ',metrics.accuracy_score(y_test,gs_clf.predict(X_test)))

Naive Bayes Train Accuracy = 0.9719513261116598
Naive Bayes Test Accuracy = 0.95163333333333333
```

CONCLUSION AND FUTURE WORK(PHASE2):

PROJECT conclusion:

The project has successfully developed an AI-driven system for exploring and predicting company registration trends with the Registrar of Companies. The system has been trained on a large dataset of historical company registration data, and it is able to identify patterns and trends in the data that would be difficult or impossible for humans to identify on their own.

The system has been evaluated on a held-out test set, and it has been shown to be able to predict future company registration trends with high accuracy. The system is also able to generate visualizations and reports that communicate the findings of the AI analysis to users in a way that is easy to understand and use