

MAT1161 – Cálculo de Uma Variável P2 – 24 de outubro de 2018

Nome Legível	: _	Gab	arito					
Assinatura	:							
Matrícula	:				Turma :			
			Questão	Valor	Grau	Revisão		

1,0

2,0

2.0

 1^a

 2^a

 3^a

T2 (2,0)	P2 Maple (3,0)	P2 (5,0)	Total (10,0)	Revisão

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara, rigorosa e de preferência sucinta. Respostas sem justificativas não serão consideradas.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Não é permitido o uso de calculadora ou qualquer dispositivo eletrônico.
- Esta prova possui 3 questões. Confira.

Questão 1

Calcule as seguintes integrais:

(a)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$\Rightarrow$$
 du = $\frac{1}{2\sqrt{x}}$ dx

$$\Rightarrow$$
 2 du = $\frac{1}{\sqrt{x}}$ dx

$$logg$$
 $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2 \int e^{u} du$

(b)
$$\int (2x-2)\ln(x) \ dx$$

Per Partes:

$$\begin{cases} u = ln(x) \Rightarrow du = \frac{1}{x} dx \\ dv = 2x - 2 dx \Rightarrow v = x^2 - 2x \end{cases}$$

$$dv = 2x - 2 dx \Rightarrow v = x^2 - 2x$$

Logica

$$\int (2x-2) \ln(x) dx = (x^2-2x) \ln(x) - \int \frac{x^2-2x}{x} dx$$

=
$$(x^2 - 2x) ln(x) - \int x - 2 dx$$

=
$$(x^2 - 2x) ln(x) - \frac{x^2}{2} + 2x + c$$

Questão 2

Considere a função $f(x) = \ln(x^3 - x)$.

(a) Determine o domínio de f.

Dom (f):
$$x^3 - x > 0$$
. Para estudar o sinal de $x^3 - x$ podemos esboçar a curva $y = x^3 - x$ ou gaterar a expressal como $x^3 - x = x(x^2 - 1)$:

$$logg$$

$$dom(f) = (-1,0) U(1,+\infty)$$

(b) Calcule f'(x) (a primeira derivada de f).

$$f'(x) = \frac{3x^2 - 1}{x^3 - x}$$

(c) Mostre que, se restringirmos o domínio de f ao intervalo $(1, +\infty)$, então f é uma função inversível.

$$\Rightarrow$$
 $3x^2 - 170$ e $x^3 - x70$

$$\Rightarrow f'(x) > 0$$

2° modo:
$$f'(x) = 0 \Leftrightarrow 3x^2 - 1 = 0 \Leftrightarrow x = \pm 1/\sqrt{3} \notin (1, +\infty)$$
.

Ou seja, f'(x) \$0, \times \x \in (1, + \in), o que implica que Lé estitamente crescente ou estitamente decrescente em todo o intervalo $(1, +\infty)$. Lega f é inversível em $(1, +\infty)$. (d) Determine a equação da reta tangente ao gráfico de f^{-1} no ponto (f(2), 2). Dica: Não é necessário determinar $f^{-1}(x)$.

$$\frac{1^{\circ} \text{ modo}}{y} = (f^{-1})'(f(2))(x - f(2)) + f^{-1}(f(2))$$

Observe que:

$$(t^{-1})'(t(2)) = \frac{1}{t'(t^{-1}(t(2)))} = \frac{6}{t'(2)}$$

Lega a equação pedida é:

$$y = \frac{6}{11} (x - ln(6)) + 2 //$$

2º modo: řeg. da uta targente ao gráfico de f no ponto (2, f(2)):

$$y = f'(2)(x - 2) + f(2)$$

$$\Rightarrow y = \frac{11}{6}(x-2) + Inl6)$$

Isolando a variavel x:

$$\frac{11}{6}(x-2) = y - ln(6)$$

$$\Rightarrow x-2 = \frac{6}{11}(y-1n(6))$$

$$\Rightarrow$$
 $x = \frac{6}{11} (y - ln(6)) + 2$

Trocando as variaveis:

$$y = \frac{6}{11}(x - ln(6)) + 2$$

ao gráfico de f⁻¹ no pento (f(2), 2).

Questão 3

Considere a função

$$f(x) = e^{-2x} + 1$$

(a) Determine o domínio e a expressão da função f^{-1} (a função inversa de f).

Dom
$$(f^{-1}) = Im(f) = (1, +\infty)$$

expressal de f^{-1} :

 $y = e^{-2x} + 1$
 $\Rightarrow y - 1 = e^{-2x}$
 $\Rightarrow ln(y - 1) = -2x$
 $\Rightarrow x = -\frac{1}{2} ln(y - 1)$
 $logg = f^{-1}(x) = -\frac{1}{2} ln(x - 1)$

(b) Esboce abaixo os gráficos das funções f e f^{-1} .

(c) Considere a região plana definida abaixo:

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge 0, \ y \le x, \ y \le f^{-1}(x) \}$$

(c.1) Seja x=a a abscissa do <u>único</u> ponto de interseção entre a reta y=x e os gráficos das funções f e f^{-1} .

Escreva a área de \mathcal{R} como uma soma de integrais na variável x.

$$A(R) = \int_{0}^{a} x \, dx + \int_{0}^{2} f^{-1}(x) \, dx$$

(c.2) Calcule a área da região \mathcal{R} em termos de a.

1º modo:

$$A(R) = \int_{0}^{a} x \, dx + \int_{a}^{2} -\frac{1}{2} \ln(x-1) \, dx$$

Observe que:
$$\int ln(x-1) dx$$
. Per Partes: $u = ln(x-1)$
 $\Rightarrow du = \frac{1}{x-1} dx$

$$e dv = dx \Rightarrow v = x$$

Logg
$$\int \ln(x-1) dx = x \ln(x-1) - \int \frac{x}{x-1} dx$$

Substituiçal simplus:
 $m = x - 1 \Rightarrow dm = dx$
 $e = x = m + 1$

$$= \times \ln(x-1) - \int 1 + \frac{1}{m} dm$$

$$= \times ln(x-1) - m - ln(lm1) + c$$

$$= \times ln(x-1) - (x-1) - ln(|x-1|) + c$$
.

$$Logo$$

$$A(R) = \int_{0}^{x} x dx - \frac{1}{2} \int_{a}^{2} ln(x-1) dx$$

$$= \frac{x^{2}}{2} \Big|_{x=0}^{a} - \frac{1}{2} \left(x \ln(x-1) - (x-1) - \ln(|x-1|) \right) \Big|_{x=a}^{2}$$

$$= \frac{a^2}{2} - \frac{1}{2} \left(-1 - a \ln(a - 1) + a - 1 + \ln(|a - 1|) \right)$$

$$= \frac{a^2}{2} + 1 + \frac{a}{2} + \frac{(a-1)}{2} \ln (a-1) /$$

2º modò

Observe que
$$A(R) = A(S) = \int_{0}^{a} f(x) - x dx$$

$$= \int_{0}^{a} e^{-2x} + 1 - x dx$$

$$= \left(-\frac{1}{2} \cdot e^{-2X} + x - \frac{x^2}{2}\right) \Big|_{x=0}^{a}$$

$$= \left(-\frac{1}{2}e^{-2\alpha} + \alpha - \frac{\alpha^2}{2}\right) - \left(-\frac{1}{2}\right)$$

$$= -\frac{1}{2}e^{-2a} + a - \frac{a^2}{2} + \frac{1}{2}$$