ÁLGEBRA (LCC) UNIDAD 4 - TRANSFORMACIONES LINEALES

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN FING - UNCUYO

UNIDAD 4 - TRANSFORMACIONES LINEALES.

- 4.A Definición y propiedades de una transformación lineal. Breve introducción a los espacios vectoriales abstractos: conjunto generador, independencia lineal, base y dimensión. Vector de coordenadas. Subespacio. Definición de transformaciones lineales. Ejemplos, transformaciones especiales: transformación nula, transformación identidad, transformación matricial. Propiedades de las transformaciones lineales.
- 4.B Núcleo e imagen de una transformación lineal. Núcleo e imagen de una transformación lineal: definición y propiedades. Rango y nulidad de una transformación lineal. Teorema de la dimensión.
- 4.C Matriz asociada a una transformación lineal. Definición de matriz asociada estándar. Teorema general de transformación lineal matricial en bases cualesquiera. Matriz de pasaje o de transición o de cambio de base. Matrices semejantes. Propiedades.

EJEMPLOS

El conjunto de vectores de \mathbb{R}^2

$$B = \{(1, 2), (3, 1)\}$$

es LI y genera a \mathbb{R}^2 .

EJEMPLOS

El conjunto de vectores de \mathbb{R}^2

$$B = \{(1,0), (0,1)\}$$

es LI y genera a \mathbb{R}^2 .

EJEMPLO

El conjunto de vectores de \mathbb{R}^3

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$

es LI v genera a \mathbb{R}^3

Recordemos.

EJEMPLOS

El conjunto de vectores de \mathbb{R}^2

$$B = \{(1, 2), (3, 1)\}$$

es LI y genera a \mathbb{R}^2 .

EJEMPLOS

El conjunto de vectores de \mathbb{R}^2

$$B = \{(1,0), (0,1)\}$$

es LI y genera a \mathbb{R}^2 .

EJEMPLC

El conjunto de vectores de \mathbb{R}^3

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$

es LI v genera a \mathbb{R}^3 .

Recordemos.

EJEMPLOS

El conjunto de vectores de \mathbb{R}^2

$$B = \{(1, 2), (3, 1)\}$$

es LI y genera a \mathbb{R}^2 .

EJEMPLOS

El conjunto de vectores de \mathbb{R}^2

$$B = \{(1,0), (0,1)\}$$

es LI y genera a \mathbb{R}^2 .

EJEMPLO

El conjunto de vectores de \mathbb{R}^3

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$

es LI y genera a \mathbb{R}^3 .

DEFINICIÓN (BASE)

Un conjunto de vectores $B=\{v_1,v_2,\ldots,v_n\}$ en un espacio vectorial $\mathbb V$ se llama base de $\mathbb V$ si cumple

- 1. B genera a \mathbb{V} .
- 2. $B \in LI$.

Observación: Trabajaremos con espacios vectoriales que tienen una cantidad finita de vectores en la base. Estos espacios se llaman Espacios vectoriales de dimensión finita.

EJEMPLOS

- 1. El conjunto $B = \{(1,2),(3,1)\}$ de \mathbb{R}^2 es una base de \mathbb{R}^2 .
- 2. El conjunto $B = \{(1,0),(0,1)\}$ de \mathbb{R}^2 es una base de \mathbb{R}^2 .
- 3. El conjunto $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ de \mathbb{R}^3 es una base de \mathbb{R}^3 .

- Las bases de los ejemplos 2 y 3 se denominan base canónica o base estándar de \mathbb{R}^2 y \mathbb{R}^3 , respectivamente.
- Este resultado puede generalizarse a los espacios vectoriales n—dimensionales.

DEFINICIÓN (BASE CANÓNICA)

Los vectores

$$e_1 = (1, 0, \dots, 0)$$

 $e_2 = (0, 1, \dots, 0)$
 \vdots
 $e_n = (0, 0, \dots, 1)$

forman una base denominada base canónica o base estándar de \mathbb{R}^n .

EJEMPLOS DE BASES CANÓNICAS

1. El conjunto

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

es la base canónica para las matrices de orden 2, $M_{2,2}$.

- 2. La base canónica para las matrices de tamaño $m \times n$, $M_{m,n}$, es el conjunto de las distintas matrices de tamaño $m \times n$ que tienen sólo un 1 y todos los demás elementos igual a 0.
- 3. El conjunto $B=\left\{1,x,x^2,x^3\right\}$ es la base canónica para el EV formado por los polinomios de grado 3, P_3 .
- 4. El conjunto $B = \{1, x, x^2, x^3, \dots, x^n\}$ es la base canónica para el EV formado por los polinomios de grado n, P_n .

TEOREMA

Si $B = \{v_1, v_2, \dots, v_n\}$ es una base de un EV \mathbb{V} , entonces todo vector en \mathbb{V} puede escribirse de una y sólo de una forma como CL de vectores de S.

TEOREMA

- Si $B = \{v_1, v_2, \dots, v_n\}$ es una base de un EV \mathbb{V} , entonces todo conjunto que contiene más de n vectores en \mathbb{V} es LD.
- Si un EV tiene una base con n vectores, entonces toda base de $\mathbb V$ tiene n vectores.

Definición (Dimensión)

Sea $\mathbb V$ un EV que tiene una base con n vectores, el número n se denomina dimensión de $\mathbb V$ y se denota como

$$dim(\mathbb{V}) = n$$

Si $\mathbb{V} = \{0\}$, entonces $dim(\mathbb{V}) = 0$.

EJEMPLOS DE DIMENSIÓN

- 1. La dimensión de \mathbb{R}^n con las operaciones estándar es n.
- 2. La dimensión de P_n con las operaciones estándar es n+1.
- 3. La dimensión de $M_{m,n}$ con las operaciones estándar es mn.

Definición (Vector de Coordenadas)

Sea $B = \{v_1, v_2, \dots, v_n\}$ una base de un EV $\mathbb V$ y sea x un vector de $\mathbb V$ tal que

$$x = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$$

Los escalares c_1, c_2, \ldots, c_n se denominan coordenadas de x con respecto a la base \mathbb{V} .

El vector de coordenadas con respecto a \mathbb{V} es la matriz columna en \mathbb{R}^n cuyas componentes son las coordenadas de x. Es decir,

$$[x]_B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

EJEMPLO

Determinemos la matriz de coordenadas de x=(2,1,3) en \mathbb{R}^3 con respecto a la base canónica.

Como

$$x = (2, 1, 3) = 2(1, 0, 0) + 1(0, 1, 0) + 3(0, 0, 1)$$

el vector de coordenadas de x respecto a la base canónica es simplemente

$$[x]_B = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$$

EJEMPLO

Con respecto a la base $B = \{(1,0),(1,2)\}$ sabemos que

$$[x]_B = \begin{bmatrix} 3\\2 \end{bmatrix}$$

Hallemos las coordenadas de x con respecto a la base canónica.

Sabemos que

$$x = 3(1,0) + 2(1,2) = (5,4)$$

Es fácil notar que,

$$(5,4) = 5(1,0) + 4(0,1)$$

Así, el vector de coordenadas de x respecto a la base canónica es

$$[x]_B = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Transformaciones lineales

DEFINICIÓN (TRANSFORMACIÓN LINEAL)

Sean V y W espacios vectoriales. La función

$$T: \mathbb{V} \to \mathbb{W}$$

se llama transformación lineal de $\mathbb V$ en $\mathbb W$ si para todo u y v en $\mathbb V$ y para cualquier escalar c se cumplen las propiedades

- 1. T(u+v) = T(u) + T(v).
- 2. T(cu) = cT(u).

Se dice que una transformación lineal conserva operaciones porque se obtiene el mismo resultado si las operaciones de suma y multiplicación escalar se efectúan antes o después de que se aplique la transformación lineal.

EJEMPLO

Verificar que $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por T(x,y) = (x-y,x+2y) es una TL. **Solución** Sean $u = (u_1,u_2)$ y $v = (v_1,v_2)$.

$$T(u+v) = T((u_1, u_2) + (v_1, v_2)) = T((u_1 + v_1, u_2 + v_2))$$

$$= ((u_1 + v_1) - (u_2 + v_2), (u_1 + v_1) + 2(u_2 + v_2))$$

$$= (u_1 - u_2 + v_1 - v_2, u_1 + 2u_2 + v_1 + 2v_2)$$

$$= (u_1 - u_2, u_1 + 2u_2) + (v_1 - v_2, v_1 + 2v_2)$$

$$= T(u_1, u_2) + T(v_1, v_2)$$

$$= T(u) + T(v)$$

$$T(cu) = T(c(u_1, u_2)) = T((cu_1, cu_2))$$

$$= (cu_1 - cu_2, cu_1 + 2cu_2)$$

$$= (c(u_1 - u_2), c(u_1 + 2u_2))$$

$$= c(u_1 - u_2, u_1 + 2u_2)$$

$$= cT(u_1, u_2)$$

$$= cT(u_1, u_2)$$

Como ambas propiedades se cumplen, T es TL.

ALGUNAS TL ESPECIALES

1. $T: \mathbb{V} \longrightarrow \mathbb{W}$ dada por

$$T(v) = 0$$

es la transformación cero.

2. $T: \mathbb{V} \longrightarrow \mathbb{V}$ dada por T(v) = v es la transformación identidad y la denotaremos como

$$Id(v) = v$$

3. Para una matriz A de tamaño $m \times n$, la TL $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ definida por

$$T(v) = Av$$

es la transformación matricial definida por la matriz A.

EJEMPLO

Para
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 dada por $T(v) = Av = \begin{pmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{pmatrix}$

Hallar T(2,-1) y verificar que es una TL.

EJEMPLO

Sea $T:M_{3,2}\longrightarrow M_{2,3}$ la TL que transforma una matriz A de tamaño 3×2 en su transpuesta. Es decir, $T(A)=A^T.$

Verificar que T es una TL.

Propiedades

Sean $\mathbb V$ y $\mathbb W$ EV, $T:\mathbb V\to\mathbb W$ una TL y $u,v\in\mathbb V$. Entonces, valen las siguientes propiedades

- 1. T(0) = 0
- 2. T(-v) = -T(v)
- 3. T(u-v) = T(u) T(v)
- 4. Si $v = c_1v_1 + c_2v_2 + \ldots + c_nv_n$, entonces

$$T(v) = c_1 T(v_1) + c_2 T(v_2) + \ldots + c_n T(v_n)$$

Demostración

Veamos en el siguiente ejemplo, cómo trabajar con la TL si está definida sólo en una base.

EJEMPLO

Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$T(1,0,0) = (2,-1,4)$$
$$T(0,1,0) = (1,5,-2)$$
$$T(0,0,1) = (0,3,1)$$

Hallar T(2,3,-2) y T(x,y,z).

Solución Como $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ es una base de \mathbb{R}^3 , podemos escribir (de manera única)

$$(2,3,-2) = 2(1,0,0) + 3(0,1,0) - 2(0,0,1)$$

Aplicando la transformación en ambos miembros y utilizando la definición de TL, resulta que

$$\begin{array}{lll} T(2,3,-2) & = & T(2(1,0,0) + 3(0,1,0) - 2(0,0,1)) \\ & = & 2T(1,0,0) + 3T(0,1,0) - 2T(0,0,1) \\ & = & 2(2,-1,4) + 3(1,5,-2) - 2(0,3,1) = (7,7,0) \end{array}$$

EJEMPLO(continuación

De igual manera,

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

Entonces,

$$T(x, y, z) = T(x(1,0,0) + y(0,1,0) + z(0,0,1))$$

$$= xT(1,0,0) + yT(0,1,0) + zT(0,0,1)$$

$$= x(2,-1,4) + y(1,5,-2) + z(0,3,1)$$

$$= (2x + y, -x + 5y + 3z, 4x - 2y + z)$$

Ası, la TL está definidad como

$$T(x, y, z) = (2x + y, -x + 5y + 3z, 4x - 2y + z)$$

DEFINICIÓN (Núcleo)

Sea $T: \mathbb{V} \longrightarrow \mathbb{W}$ una transformación lineal. Entonces, el conjunto de todos los vectores en \mathbb{V} que cumplen T(v)=0 se denomina *núcleo* (o *kernel*) de T y se denota por $\mathrm{Ker}(T)$. En otras palabras

$$Ker(T) = \{ v \in \mathbb{V} : T(v) = 0 \}.$$

EJEMPLO

Sea $T:M_{3,2}\longrightarrow M_{2,3}$ la transformación lineal que transforma una matriz A de tamaño 3×2 en su transpuesta. Es decir, $T(A)=A^T$. Encuentre el kernel de T.

Solución

Para esta transformación lineal, es evidente que la matriz nula de tamaño 3×2 es la única matriz en $M_{3,2}$ cuya transpuesta es la matriz cero en $M_{2,3}$. Por consiguiente, el kernel de T consta de un solo elemento: la matriz cero en $M_{3,2}$. En otras palabras

$$\operatorname{Ker}(T) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$$

El kernel de las Transformaciones Nula e Identidad

- El kernel de la Transformación Nula $T : \mathbb{V} \longrightarrow \mathbb{W}$ consta de todo \mathbb{V} porque T(v) = 0 para todo vector v en \mathbb{V} . Es decir, $\operatorname{Ker}(T) = \mathbb{V}$.
- El kernel de la Transformación Identidad $T: \mathbb{V} \longrightarrow \mathbb{W}$ consta sólo del elemento cero. Es decir, $\operatorname{Ker}(T) = \{0\} \subset \mathbb{V}$.

EJEMPLO (DETERMINACIÓN DEL KERNEL DE UNA TRANSFORMACIÓN LINEAL I)

Determine el kernel de la proyección $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por T(x,y,z) = (x,y,0).

Solución

Esta transformación lineal proyecta el vector (x,y,z) en \mathbb{R}^3 en el vector (x,y,0) del plano xy.

Por consiguiente, el kernel consta de todos los vectores que se encuentran sobre el eje z. Es decir, $\operatorname{Ker}(T)=\{(0,0,z):z\in\mathbb{R}\}.$

EJEMPLO (DETERMINACIÓN DEL KERNEL DE UNA TRANSFORMACIÓN LINEAL II)

Encuentre el kernel de una transformación lineal $T:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ definida por

$$T(x_1, x_2) = (x_1 - 2x_2, 0, x_1)$$

Solución

Para encontrar $\operatorname{Ker}(T)$ es necesario determinar todos los $x=(x_1,x_2)$ en \mathbb{R}^2 tales que $T(x_1,x_2)=(x_1-2x_2,0,x_1)=(0,0,0)$. Lo anterior conduce al siguiente sistema homogéneo

$$\begin{cases} x_1 & -2x_2 &= 0 \\ 0 & = 0 \\ x_1 & = 0 \end{cases}$$

cuya única solución es la trivial $(x_1, x_2) = (0, 0)$.

Por tanto, se tiene $Ker(T) = \{(0,0)\} \subset \mathbb{R}^2$.

4 D > 4 D > 4 E > 4 E > E 9 Q Q

EJEMPLO (DETERMINACIÓN DEL KERNEL DE UNA TRANSFORMACIÓN LINEAL III)

Encuentre el kernel de la transformación lineal $T:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ definida por T(x)=Ax, donde

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{pmatrix}$$

Solución

El kernel de T es el conjunto de todos los $x=(x_1,x_2,x_3)$ en \mathbb{R}^3 tales que $T(x_1,x_2,x_3)=(0,0)$. A partir de esta ecuación se obtiene el siguiente sistema homogéneo.

$$\begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \begin{cases} x_1 & -x_2 & -2x_3 & = 0 \\ -x_1 & +2x_2 & +3x_3 & = 0 \end{cases}$$

EJEMPLO (DETERMINACIÓN DEL KERNEL DE UNA TRANSFORMACIÓN LINEAL III) [CONTINUACIÓN]

Al escribir la matriz aumentada de este sistema en forma escalonada reducida se obtiene

$$\left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right) \longrightarrow \left\{\begin{array}{ccc|c} x_1 & -x_3 & = 0 \\ x_2 & +x_3 & = 0 \end{array}\right. \longrightarrow \left\{\begin{array}{ccc|c} x_1 & = x_3 \\ x_2 & = -x_3 \end{array}\right.$$

Con el parámetro $t = x_3$ se obtiene la familia de soluciones

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} t \\ -t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Por tanto, el kernel de T es

$$\mathsf{Ker}(T) = \{t(1, -1, 1) : t \in \mathbb{R}\} = \mathsf{gen}\{(1, -1, 1)\}.$$

TEOREMA (EL KERNEL ES UN SUBESPACIO DE V)

El kernel de la transformación lineal $T: \mathbb{V} \longrightarrow \mathbb{W}$ es un subespacio del dominio \mathbb{V} .

EJEMPLO (Base para el Kernel)

Sea $T:\mathbb{R}^5\longrightarrow\mathbb{R}^4$ definida por T(x)=Ax, donde x está en \mathbb{R}^5 y

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}$$

Determine una base para $\operatorname{Ker}(T)$ como subespacio de \mathbb{R}^5

TEOREMA (EL KERNEL ES UN SUBESPACIO DE V)

El kernel de la transformación lineal $T: \mathbb{V} \longrightarrow \mathbb{W}$ es un subespacio del dominio \mathbb{V} .

EJEMPLO (BASE PARA EL KERNEL)

Sea $T:\mathbb{R}^5\longrightarrow\mathbb{R}^4$ definida por T(x)=Ax, donde x está en \mathbb{R}^5 y

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}$$

Determine una base para $\operatorname{Ker}(T)$ como subespacio de \mathbb{R}^5

EJEMPLO (Base para el Kernel) [CONTINUACIÓN]

Solución

Siguiendo el procedimiento mostrado en el ejemplo anterior, la matriz aumentada [A|0] se reduce a la forma escalonada como se muestra a continuación.

$$\begin{pmatrix} 1 & 0 & 2 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{cases} x_1 & +2x_3 & -x_5 & = 0 \\ x_2 & -x_3 & +2x_5 & = 0 \\ x_4 & +4x_5 & = 0 \end{cases}$$

$$\longrightarrow \begin{cases} x_1 & +2x_3 & -x_5 & = 0 \\ x_2 & -x_3 & +2x_5 & = 0 \\ x_4 & +4x_5 & = 0 \end{cases}$$

EJEMPLO (BASE PARA EL KERNEL) [CONTINUACIÓN]

Con $x_3 = s$ y $x_5 = t$, se tiene

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -2s+t \\ s+2t \\ s+0t \\ 0s-4t \\ 0s+t \end{pmatrix} = s \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 0 \\ -4 \\ 1 \end{pmatrix}$$

Por tanto, una base para el kernel de T está dada por

$$B = \{(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)\}.$$

y entonces,

$$dim(ker T) = 2$$

En el ejemplo anterior se encontró una base para el kernel de T al resolver el sistema homogéneo dado por Ax=0. Este procedimiento se trata del mismo procedimiento aplicado para hallar el espacio solución del SELH Ax=0. Se afirma en el siguiente corolario.

COROLARIO (KERNEL Y SEL)

Sea $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ la transformación lineal definida por T(x) = Ax. Entonces el kernel de T es igual al espacio solución del SEL Ax = 0.

DEFINICIÓN (IMAGEN)

Sea $T:\mathbb{V}\longrightarrow\mathbb{W}$ una transformación lineal. Entonces, el conjunto de todos los vectores w en \mathbb{W} tales que existe v en \mathbb{V} y T(v)=w se denomina imagen de T y se denota por $\mathrm{Im}(T)$. En otras palabras

$$\operatorname{Im}(T) = \left\{ w \in \mathbb{W} : \exists v \in \mathbb{V} \land T(v) = w \right\} = \left\{ T(v) : v \in \mathbb{V} \right\}.$$

$\operatorname{TEOREMA}$ (La imagen de T es un subespacio de $\mathbb W$)

La imagen de una transformación lineal $T: \mathbb{V} \longrightarrow \mathbb{W}$ es un subespacio de $\mathbb{W}.$

DEFINICIÓN (IMAGEN)

Sea $T:\mathbb{V}\longrightarrow\mathbb{W}$ una transformación lineal. Entonces, el conjunto de todos los vectores w en \mathbb{W} tales que existe v en \mathbb{V} y T(v)=w se denomina imagen de T y se denota por $\mathrm{Im}(T)$. En otras palabras

$$\operatorname{Im}(T) = \{ w \in \mathbb{W} : \exists v \in \mathbb{V} \land T(v) = w \} = \{ T(v) : v \in \mathbb{V} \}.$$

TEOREMA (La imagen de T es un subespacio de \mathbb{W})

La imagen de una transformación lineal $T:\mathbb{V}\longrightarrow\mathbb{W}$ es un subespacio de $\mathbb{W}.$

EJEMPLO (IMAGEN)

Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(x) = Ax, donde x está en \mathbb{R}^3 y

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Determine la imagen de T.

Solución

Un vector (a,b,c) de \mathbb{R}^3 está en la imagen de T, si existe (x,y,z) de \mathbb{R}^3 tal que

$$T(x, y, z) = (a, b, c)$$

. A partir de esta ecuación se obtiene el siguiente sistema.

$$\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \longrightarrow \begin{cases} x_1 & -2x_3 = a \\ x_2 & +x_3 = b \\ 0x_1 & +0x_2 & +0x_3 = c \end{cases}$$

- 4 ロ > 4 部 > 4 き > 4 き > き の 9

EJEMPLO [CONTINUACIÓN]

La matriz aumentada está en forma escalonada reducida.

Buscamos los valores de a, b, c para los cuales el SEL tiene solución.

La única condicón para que el SEL tenga solución es que

$$c = 0$$

Por tanto, la imagen de T es

$$\begin{split} & \operatorname{Im}(T) = \{(a,b,c): c = 0\} = \{(a,b,0): a,b \in \mathbb{R}\} \\ & = \{a(1,0,0) + b(0,1,0): a,b \in \mathbb{R}\} = \operatorname{gen}\{(1,0,0),(0,1,0)\}. \end{split}$$

De esta última ecuación podemos determinar que una base para la imagen de ${\cal T}$ es

$$B = \{(1,0,0), (0,1,0)\}$$

y que

$$dim(ImT) = 2$$

EJEMPLO [CONTINUACIÓN]

Continuemos con este mismo ejemplo, vamos a obtener el kernel de T. Siguiendo el procedimiento mostrado en los ejemplos anteriores, la forma escalonada de la matriz aumentada $\lceil A \rceil 0 \rceil$ es

$$\begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{cases} x_1 & -2x_3 & = 0 \\ & x_2 & -x_3 & = 0 \end{cases}$$

Con $x_3 = t$, se tiene

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2t \\ t \\ t \end{pmatrix} = t \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

De esta última ecuación podemos determinar que una base para la imagen de ${\cal T}$ es

$$B = \{(2, 1, 1)\}$$
 y que $\dim(kerT) = 1$

EJEMPLO [CONTINUACIÓN]

Con todo lo visto en este ejemplo, notemos que

$$\dim(\operatorname{Im} T) + \dim(\ker T) = 2 + 1 = 3$$

Este valor, 3, coincide con la dimensión del dominio de T. Si recordamos,

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

y la dimensión de \mathbb{R}^3 es 3.

Lo que hemos concluído en este ejemplo, se cumple para toda TL.

DEFINICIÓN (RANGO Y NULIDAD)

Sea $T: \mathbb{V} \longrightarrow \mathbb{W}$ una transformación lineal.

La dimensión del kernel de T se llama nulidad de T y se denota null(T). La dimensión de la imagen de T se denomina rango de T y se denota $\operatorname{rg}(T)$.

TEOREMA (Teorema de la Dimensión)

Sea $T: \mathbb{V} \longrightarrow \mathbb{W}$ una transformación lineal de un espacio vectorial \mathbb{V} n-dimensional a un espacio vectorial \mathbb{W} . Entonces,

$$\operatorname{rg}(T) + \operatorname{nul}(T) = \dim(\mathbb{V}).$$

Es decir,

$$\dim(\operatorname{Im} T) + \dim(\ker T) = \dim(\mathbb{V}).$$

DEFINICIÓN (RANGO Y NULIDAD)

Sea $T: \mathbb{V} \longrightarrow \mathbb{W}$ una transformación lineal.

La dimensión del kernel de T se llama nulidad de T y se denota null(T). La dimensión de la imagen de T se denomina rango de T y se denota $\operatorname{rg}(T)$.

TEOREMA (TEOREMA DE LA DIMENSIÓN)

Sea $T: \mathbb{V} \longrightarrow \mathbb{W}$ una transformación lineal de un espacio vectorial \mathbb{V} n-dimensional a un espacio vectorial \mathbb{W} . Entonces,

$$\operatorname{rg}(T) + \operatorname{nul}(T) = \dim(\mathbb{V}).$$

Es decir,

$$\dim(\operatorname{Im} T) + \dim(\ker T) = \dim(\mathbb{V}).$$

Matrices de transformaciones lineales

- En esta materia, sólo trabajamos con TL sobre espacios vectoriales de dimensión finita.
- Veremos ahora que para toda TL siempre es posible una representación matricial.
- La clave para representar una TL $T: \mathbb{V} \longrightarrow \mathbb{W}$ por medio de una matriz es determinar cómo actúa T sobre una base de \mathbb{V} . Una vez que se conoce la imagen de todo vector de la base es posible aplicar las propiedades de las transformaciones lineales para determinar T(v) para todo v en \mathbb{V} .

TEOREMA (Matriz estándar de una TL)

Sea $T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ una transformación lineal tal que

$$T(e_1) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, T(e_2) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, T(e_n) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Entonces, la matriz $m \times n$ cuyas columnas corresponden a $T(e_i)$

$$A = \begin{bmatrix} a_{1n} & a_{12} & \dots & a_{1n} \\ a_{2n} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

es aquella que cumple T(v) = Av para toda $v \in \mathbb{R}^n$. La matriz A se denomina matriz estándar de T.

EJEMPLO (MATRIZ ESTÁNDAR))

Hallar la matriz estándar de la TL $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por

$$T(x, y, z) = (x - 2y, 2x + y)$$

Solución

Comenzaremos por hallar los transformados de los vectores de la base canónica y los expresamos como vectores columnas.

$$T(e_1) = T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, T(e_2) = T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, T(e_3) = T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Formamos la matriz A, colocando estos vectores como columnas, así

$$A = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

EJEMPLO (Continuación))

Para verificar, notemos que

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 2y \\ 2x + y \end{bmatrix}$$

lo que es equivalente a la fórmula de la función dada.

EJEMPLO (MATRIZ ESTÁNDAR))

La matriz estándar de la TL $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por

$$T(x,y) = (x,0)$$

es

$$A = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

TEOREMA (MATRIZ DE UNA TL PARA CUALQUIER BASE)

Sea $T: \mathbb{V} \longrightarrow \mathbb{W}$ una transformación lineal con

$$B = \{v_1, v_2, \dots, v_n\}$$
 una base de $\mathbb V$ y B' una base de $\mathbb W$

Si

$$[T(v_1)]_{B'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, [T(v_2)]_{B'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, [T(v_n)]_{B'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Entonces, la matriz $m \times n$ cuyas columnas corresponden a $[T(v_i)]_{B'}$

$$A = \begin{bmatrix} a_{1n} & a_{12} & \dots & a_{1n} \\ a_{2n} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

es aquella que cumple $[T(v)]_{B'} = A[v]_B$ para toda $v \in \mathbb{V}$.

EJEMPLO (MATRIZ ESTÁNDAR))

Hallar la matriz de la TL $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por

$$T(x,y) = (x+y, 2x - y)$$

con respecto a las bases

$$B = \{(1,2), (-1,1)\}\$$
y $B' = \{(1,0), (0,1)\}$

Solución

Comenzaremos por hallar los transformados de los vectores de la base B y los expresamos como CL de los vectores de la base B'.

$$T(1,2) = (3,0) = 3(1,0) + 0(0,1) \Rightarrow [T(1,2)]_{B'} = \begin{bmatrix} 3\\0 \end{bmatrix}$$

$$T(-1,1) = (0,-3) = 0(1,0) - 3(0,1) \Rightarrow [T(-1,1)]_{B'} = \begin{bmatrix} 0\\-3 \end{bmatrix}$$

EJEMPLO (Continuación))

Formamos la matriz A, colocando estos vectores como columnas, así

$$A = \begin{bmatrix} [T(1,2)]_{B'} & [T(-1,1)]_{B'} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$$

EJEMPLO (APLICACIÓN DE LA MATRIZ DE UNA TL))

Use la matriz hallada en el ejemplo anterior para calcular T(v) siendo v=(2,1).

Solución

Con la base $B = \{(1,2), (-1,1)\}$ podemos escribir

$$v = (2, 1 = 1(1, 2) - 1(-1, 1))$$

de donde

$$[v]_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

EJEMPLO (Continuación))

Así,

$$A[v]_B = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = [T(v)]_{B'}$$

Como $B' = \{(1,0), (0,1)\}$, se obtiene que

$$T(v) = 3(1,0) + 3(0,1) = (3,3)$$

Podemos verificar este valor obtenido, calculando directamente T(v) utilizando la definición de la función.

$$T(2,1) = (2+1, 2*2-1) = (3,3)$$

DEFINICIÓN (CAMBIO DE BASE)

Sea $\mathbb V$ un EV y sean B y B' dos bases diferentes de $\mathbb V$.

Sea $Id: \mathbb{V} \longrightarrow \mathbb{V}$ la transformación lineal identidad, considerando B como base del dominio y B' base del codominio.

La matriz P asociada a Id con respecto a B y B' es la matriz de cambio de base de B a B' (o matriz de transición de B a B'). Es decir.

$$[x]_{B'} = [Id(x)]_{B'} = P[x]_B$$

EJEMPLO (MATRIZ DE TRANSICIÓN))

Hallar la matriz de cambio de base de B' a B con

$$B = \{(1,2), (-1,1)\}$$
 y $B' = \{(1,0), (0,1)\}$

Solución

$$Id(1,2) = (1,2) = 1(1,0) + 2(0,1) \Rightarrow [(1,2)]_{B'} = \begin{bmatrix} 1\\2 \end{bmatrix}$$

$$Id(-1,1) = (-1,1) = -1(1,0) + 1(0,1) \Rightarrow [(-1,1)]_{B'} = \begin{bmatrix} -1\\1 \end{bmatrix}$$

Formamos la matriz P, colocando estos vectores como columnas

$$P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$$

TEOREMA

Si P es la matriz de transición de una base B a una base B', entonces P es invertible y la matriz de transición de B' a B está dada por P^1 .

Entonces la matriz de transición P de una base B a una base B' es la matriz P tal que

$$[x]_{B'} = P[x]_B$$

El teorema establece que la matriz P^{-1} es la matriz de transición de B^\prime a B tal que

$$[x]_B = P^{-1}[x]_{B'}$$

