

ลำดับที่ 115

ใบบันทึกผลการทดลองที่ 21 ความร้อนจำเพาะ

ชื่อผู้ทดลอง	ปถองพัธมน	สเน็บเล็กาอเ	เลขประจำตัว	6432106821	
-	9 4 0	1			

ตารางบันทึกผลการทดลอง

การทดลอง ครั้งที่	มวลของน้ำ ในแคลอริ มิเตอร์ (g)	มวลของ เม็ดวัสดุ (g)	อุณหภูมิน้ำ ก่อนผสม (°C)	อุณหภูมิน้ำ หลังผสม (°C)	ผลต่าง อุณหภูมิ(^o C)	ความร้อน จำเพาะ (J/kg·K)	ค่า คลาดเคลื่อน แบบมากที่สุด# (J/kg•K)
1	71.5	50.0	26.8	34.7	7.9	724.88	23.00
2	84.9	50.0	26.7	33.7	7.0	751.17	23.84
3	70.5	50.0	26.2	34.3	8.1	728.37	2 2 . 1)

ให้แสดงวิธีทำเฉพาะการทดลองครั้งที่ 1 ในหน้าถัดไปของใบบันทึกผลการทดลองนี้

21

วิเคราะห์ค่า<u>ความคลาดเคลื่อนมากที่สุด</u>ของความร้อนจำเพาะ

จงแสดงวิธีการคำนวณหาค่า<u>ความคลาดเคลื่อนมากที่สุด</u>ของความร้อนจำเพาะของการทดลองครั้งที่ 1

$$\frac{SC_{6lass}}{C_{6lass}} = \frac{Sm_{H,0}}{m_{H,0}} + \frac{S(T_{min} - T_{H,0})}{(T_{min} - T_{H,0})} + \frac{Sm_{9lass}}{m_{9lass}} + \frac{S(T_{9lass} \cdot T_{min})}{(T_{5lass} - T_{min})}$$

$$SC_{6lass} = C_{6lass} \left[\frac{Sm_{H,0}}{m_{H,0}} + \frac{S(T_{min} - T_{H,0})}{(T_{min} - T_{H,0})} + \frac{Sm_{9lass}}{m_{9lass}} + \frac{S(T_{5lass} \cdot T_{min})}{(T_{5lass} - T_{min})} \right]$$

$$= 723.84 \text{ J/kg·K} \left[\frac{0.1}{71.5} + \frac{0.2}{7.9} + \frac{0.1}{50.0} + \frac{0.2}{65.9} \right]$$

$$= 23.00 \text{ J/kg·K}$$

คำถามท้ายการทดลอง

1. ค่าความร้อนจำเพาะที่วัดได้มีผลต่างระหว่างค่าเฉลี่ยและค่ามาตรฐาน เกินค่าความคลาดเคลื่อนมากสุด หรือไม่

ไม่ ผลทางระหว่างดาเฉลี่ย และ ดำ เฉลี่ยมาการาน = 11.19 ส่วนดำความคลากเคลื่อนมากาสกลื้อ = 23.84

2. การทำการทดลองซ้ำหลาย ๆ ครั้ง เป็นการลดความคลาดเคลื่อนเชิงระบบหรือเชิงสถิติ จงให้เหตุผล ประกอบ

1 ซึ่งสีถืด จากสุทร 50 พะพา . <u>5.0</u> รึ่ง ท คือจำนวนครั้งที่ทำการทดลอง นากถึงทำการทกลองเข้ามากๆ จะทำในค่า ท มากขึ้น คำ ร.อ. พากา จะคกน้อยลงไปถือย

3. ในการทดลองเราต้องการให้เม็ดวัสดุมีอุณหภูมิ 100 $^{\circ}$ C ก่อนที่จะผสมกับน้ำในแคลอริมิเตอร์ ถ้าเม็ดวัสดุ ร้อนไม่ถึง 100 $^{\circ}$ C แต่ในสูตรเราแทนค่า T_{glass} ด้วย 100 $^{\circ}$ C ค่าความร้อนจำเพาะที่คำนวณได้จะมากกว่า หรือน้อยกว่าค่ามาตรฐาน เพราะเหตุใด

 ห้อบก่า เนื่องจาก T_{min} ที่วัดได้จะมีค่าน้อยอง ทำในคา T_{olass} T_{min} มากขึ้น แต่จะทำในคา T_{min} T_{uo} น้อยลง

 จากสุดร C_{slass}: M_{Ho} · C_{Ho} · (T_{min} - T_{min}) จะรังเกตได้ว่าตัวส่วนมากขึ้น และตัวเกียลกอง ทำในคา C_{slass} ทำให้ค่าความร้อนจำเพาะที่คำนวณได้

 4. การสูญเสียพลังงานความร้อนไปกับอากาศและภาชนะแคลอริมิเตอร์ทำให้ค่าความร้อนจำเพาะที่คำนวณได้

4. การสูญเสียพลังงานความร้อนไปกับอากาศและภาชนะแคลอริมิเตอร์ทำให้ค่าความร้อนจำเพาะที่คำนวณได้ มีค่ามากกว่าหรือน้อยกว่าค่ามาตรฐาน เพราะเหตุใด

พ้อบกว่า เนื่องจาก T... ที่วัดได้น้องลง เนื่องจากเรียพลังงานกวามง่อนในสิ่งแรกล้อม เช่นเจียวกับข้อ ร

จากสุศร Coluss: Major Chia - Tuo) จะสังากทได้ว่าตัวส่วนมากขึ้น และตัวเก่ยลดลง ทำในคำ Column นี้ได้มีคำน้อยลง

21

5. ถ้าเราไม่เช็ดเม็ดวัสดุให้แห้งก่อนที่จะการทดลองครั้งต่อไป จะมีผลอย่างไรต่อค่าความร้อนจำเพาะที่คำนวณ ได้

ค่ากรามร้อนจ๊าเพาะที่ไก้จะน้อยกว่าความเป็นจริง เนื่องจากน้ำหั่เกาะกับเม็กแก้วจะทำให้น้ำหนักของเม็กแก้วเพิ่มขึ้น แต่ปริมาณกรามร้อนที่ถ่ายทอดให้ระบบเท่าเดิม และจากสูตร พบจำถ้ามวลของเม็กแก้วเพิ่มขึ้นทำให้ถ่า C