

Prof. Antoine Bosselut Modern Natural Language Processing – CS-552 09.04.2025 from 11h30 to 13h00

Duration: 90 minutes

1

Midterm Practice Set

 $\mathrm{SCIPER}\colon 111111$

Do not turn the page before the start of the exam. This document is double-sided, has 7 pages, the last ones are possibly blank. Do not unstaple.

- This is a closed book exam. Non-programmable calculators are allowed. No other electronic devices of any kind are allowed.
- Place on your desk: your student ID, writing utensils, one double-sided A4 page cheat sheet if you have one; place all other personal items below your desk.
- You each have a different exam.
- This exam has multiple-choice questions of varying difficulty. Each question is worth one point.
- Each question has **exactly one** correct answer. For each question, mark the box corresponding to the correct answer. You are not expected to get every question right even for the best grade.
- Only answers in this booklet count. No extra loose answer sheets. You can use the blank pages at the end as scrap paper.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question turns out to be wrong or ambiguous, we may decide to nullify it.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

$$i_t = \sigma(W_{ix}x_t + W_{ih}h_{t-1} + b_i)$$

$$f_t = \sigma(W_{fx}x_t + W_{fh}h_{t-1} + b_f)$$

$$o_t = \sigma(W_{ox}x_t + W_{oh}h_{t-1} + b_o)$$

$$\tilde{c}_t = \phi(W_{cx}x_t + W_{ch}h_{t-1} + b_c)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$

$$h_t = o_t \odot \phi(c_t)$$

In the equations above, which term explicitly represents the memory component that enables the LSTM to retain **long-term information** across timesteps?

A representation of words as sparse vectors in a high-dimensional space, ensuring that each word has

a unique but unrelated position in the space.

Question 5 Which of the following is FALSE regarding autoregressive natural language generation?
At each step during inference, the model predicts a probability distribution over the vocabulary space.
The next generated token is the one with maximum probability as predicted by the model.
We train a model to maximize the likelihood of the next token given the preceding tokens.
Beam Search is more likely to generate a more probable sequence than greedy argmax decoding.
Question 6 Which of the following best describes Chain-of-Thought (CoT) prompting in large language models?
A reinforcement learning technique that optimizes a language model's response generation using reward signals based on coherence and logical correctness.
A prompting technique where multiple examples are given in the prompt to guide the model towards correct predictions through imitation learning.
A method where the model is fine-tuned on logical reasoning tasks to improve its structured decision-making capabilities.
A reasoning-based prompting method that encourages the model to break down complex problems into intermediate reasoning steps before producing a final answer.
Question 7 Which of the following claims are NOT TRUE about the perplexity metric?
(a) Easy to implement.
(b) Using base-2, base-3 and base- e will lead to the same perplexity score.
(c) Can be cheated by predicting low-frequency tokens.
(d) Can be very sensitive to high frequency tokens.
(e) The perplexity score can be 0.
A and B.
\square B and E.
\square C and E.
\square A and E.
B, D and E
\square B and C.
\square C, D, E
\square B, C and D.
Question 8 Applying N-gram language model, Fixed-window language model and a RNN language model on the same training dataset, which one will have the largest model size (i.e. greatest number of parameters)?
Cannot be determined from the given information
Fixed-window language model
\square RNN
N-gram language model

Backpropagation

Figure 1: FFN Backpropagation

Question 9 According to Figure 1, the forward pass includes three steps:

$$\begin{split} u &= W_{out}h_2 = w_1^o \times \phi_{12}(\cdot) + w_2^o \times \phi_{22}(\cdot) + w_3^o \times \phi_{32}(\cdot) \\ \hat{y} &= \phi_0(u) \\ L(\hat{y}, y) &= -y \ln \hat{y} \end{split}$$

Given that ϕ_0 is the ReLU function, $W_{out} = \begin{bmatrix} 0.53 & -0.21 & 1.04 \end{bmatrix}, h_2 = \begin{bmatrix} 0.36 & 1.02 & 5.18 \end{bmatrix}^T, y = 4.20$, what is the partial gradient $\frac{\partial L(\hat{y},y)}{\partial \phi_{32}(\cdot)}$?

- 4.06
- 0.81
- 0.41
- -4.06
- -0.81
- -0.41

Question 10 gradient $\frac{\partial L(\hat{y},y)}{\partial w_3^o}$? Now given that the loss function is the L2 loss $L(\hat{y},y) = \frac{1}{2}(y-\hat{y})^2$, what is the partial gradient $\frac{\partial L(\hat{y},y)}{\partial w_3^o}$?

- 1.21
- 0.42
- 6.03
- ____ -1.21
- -0.42
- -6.03