

mlrHyperopt: Effortless and collaborative hyperparameter optimization experiments

Jakob Richter July 5, 2017

Faculty of Statistics, TU Dortmund University

Contents

- 1. Motivation for caret 1 Users
- 2. Motivation for mlr^2 Users
- 3. Website and API
- 4. Parameter Tuning
- 5. Lessons learned

https://topepo.github.io/caret

²https://mlr-org.github.io/mlr

Motivation

caret automatically performs a grid search for all learners.

```
library(caret)
system.time({m.c = train(iris[,1:4], iris[,5], method = "rf")}
## user system elapsed
## 4.533 0.016 4.552
system.time({m.r = randomForest(iris[,1:4], iris$Species)})
## user system elapsed
## 0.025 0.000 0.026
```

How to find out what is going on?

caret

Can I find out in advance which parameters will be tuned?

modelLookup("rf") gives some information.

caret

Can I find out in advance which parameters will be tuned?

http://github.com/topepo/caret/blob/master/models/files
reveals all details.

caret: gbm

Extract from models/files/gbm.R:

```
out <- expand.grid(
  interaction.depth = seq(1, len), #<- parameter range depends on tuning budget
  n.trees = floor((1:len) * 50), #<- ..
  shrinkage = .1,
  n.minobsinnode = 10)
# ...
# Random Search
out <- data.frame(
  n.trees = floor(runif(len, min = 1, max = 5000)),
  interaction.depth = sample(1:10, replace = TRUE, size = len),
  shrinkage = runif(len, min = .001, max = .6),
  n.minobsinnode = sample(5:25, replace = TRUE, size = len) )
  out <- out[!duplicated(out),]</pre>
```

mlr

mlr provides parameter definitions for all learners.

```
library(mlr)
lrn = makeLearner("classif.randomForest")
filterParams(getParamSet(lrn), tunable = TRUE)
##
                    Type
                        len
                               Def
                                    Constr Reg Tunable Trafo
## ntree
                               500 1 to Inf
                                                 TRUF
                  integer
## mtrv
                 integer
                           - - 1 to Inf
                                                 TRUF
## replace
                 logical
                           - TRUE
                                                 TRUF
            numericvector <NA>
## classwt
                                 - 0 to Inf -
                                                TRUE
## cutoff
            numeric vector <NA> - 0 to 1 -
                                                TRUE
                                 - 1 to Inf -
                                                TRUF
## sampsize integervector <NA>
## nodesize
                  integer
                                 1 1 to Inf -
                                                TRUF
## maxnodes
                 integer - - 1 to Inf -
                                                TRUE
## importance
                 logical - FALSE
                                                 TRUE
## localImp
                 logical
                                                 TRUF
                           - FALSE
```

But **ParamSets** are unconstrained and include possibly unimportant parameters.

Necessary to define own ParamSets for tuning:

```
ps = makeParamSet(
   makeIntegerParam("mtry", lower = 1, upper = 4),
   makeIntegerParam("nodesize", lower = 1, upper = 10)
)
tuneParams(lrn, iris.task, cv10, measures = acc,
   par.set = ps, makeTuneControlGrid(resolution = 3L))
## Tune result:
## Op. pars: mtry=1; nodesize=6
## acc.test.mean=0.953
```

caret

Deviate from the defaults in caret:

```
grid = expand.grid(mtry = 2:4, nodesize = c(1,5,10))
m = caret::train(iris[,1:4], iris[,5],
   method = "rf", tuneGrid = grid)
## Error: The tuning parameter grid should have columns
mtry
```

It seems you have to write you own custom method³.

³https://stackoverflow.com/questions/38625493/ tuning-two-parameters-for-random-forest-in-caret-package

mlr vs. caret

In caret...

- + tuning is the default.
- + tuning with defaults is easy.
- deviating from defaults is a hassle and needs expert knowledge.

In mlr...

- + train works like the default of the package.
- tuning needs expert knowledge.
- + deviating from defaults is easy.

To solve this problem in ${\tt mlr}$ we want to share the expert knowledge with...

mlrHyperopt

mlrHyperopt

mlrHyperopt enables access to a web database of Parameter Configurations for many machine learning methods in R.

Why an online database?

- · Defaults in packages will always be controversial.
- Knowledge changes over time but **R** packages have to maintain reproducibility.
- · Defaults differ for different scenarios. (data set size etc.)

mlrHyperopt: ParConfigs

mlrHyperopt stores tuning parameters in ParConfigs:

- · Parameter Set of tunable parameters
- fixed Parameter Values to overwrite defaults
- · associated learner and note

Features of the Parameter Set4:

- · Parameter values can be: real-valued, integer, discrete, logical, ...
- · Parameters can have:
 - transformations (to account non-uniform distribution of interesting regions)
 - requirements on other parameters (to represent hierarchical structures)
- Bounds and defaults can depend on the task size, number of features, etc.

⁴https://github.com/berndbischl/ParamHelpers

API Examples

Web Interface

Overview of all ParConfigs uploaded to

http://mlrhyperopt.jakob-r.de/parconfigs

API: Download and Use ParConfigs

Tune the parameters for the ranger Random Forest with mlr^5 .

```
library(mlrHyperopt)
lrn = makeLearner("classif.ranger")
(pc = downloadParConfigs(learner.class = getLearnerClass(lrn)))
## [[1]]
## Parameter Configuration
    Parameter Values: num.threads=1. verbose=FALSE. respect.unordered.factors=T
##
## Associated Learner: classif.ranger
## Parameter Set:
                  Type len Def Constr Req Tunable Trafo
##
## min.node.size integer - 1 1 to 10 - TRUE
## mtrv
                integer - floor(sqrt(p)) 1 to p - TRUE
ps = getParConfigParSet(pc[[1]])
ps = evaluateParamExpressions(ps, dict = getTaskDictionary(iris.task))
lrn = setHyperPars(lrn, par.vals = getParConfigParVals(pc[[1]]))
tuneParams(lrn, iris.task, resampling = cv10, par.set = ps,
 measures = acc, control = makeTuneControlRandom(maxit = 10))
## Tune result:
## Op. pars: min.node.size=3; mtry=1
## acc.test.mean=0.96
```

⁵http://mlr-org.github.io/mlr-tutorial/devel/html/tune/

API: Upload ParConfigs

Dependent search space for the tuning of a support vector machine.

```
ps = makeParamSet(
  makeDiscreteParam("kernel", c("rbfdot", "polydot")),
  makeNumericParam("C", -5, 5, trafo = function(x) 2^x),
  makeNumericParam("sigma", lower = -10, upper = 10,
        trafo = function(x) 2^x, requires = quote(kernel == "rbfdot")),
  makeNumericParam("degree", lower = 1, upper = 5,
        requires = quote(kernel == "polydot"))
)
pc = makeParConfig(ps, learner.name = "ksvm")
uploadParConfig(pc)
## [1] "23"
```

Bonus: Use ParConfigs in caret

With the following **ParamHelpers** functions we can generate grids for **caret**

- · generateGridDesign
- · generateRandomDesign
- · generateDesign (Latin Hypercube Sample)
- generateDesignOfDefaults (to be used in combination)

```
pc = downloadParConfigs(learner.name = "nnet")
grid = generateRandomDesign(n = 10L, par.set = pc[[1]]$par.set,
    trafo = TRUE)

tr = caret::train(iris[,1:4], iris[,5], method = "nnet",
    tuneGrid = grid, trace = FALSE)

tr$bestTune
## size decay
## 8 14 0.4467496
```

Tuning with mlrHyperopt

Tuning parameters with mlrHyperopt

A heuristic decides for tuning method:

Tuning Methods:

- grid search: 1 parameter, 2 mixed parameters
- random search: > 2 mixed parameters
- · Bayesian optimization with mlrMBO6: all parameters numeric

Default parameter sets from mlrHyperopt are used:

```
(h.res = hyperopt(task = iris.task, learner = "classif.ksvm"))
## Tune result:
## Op. pars: C=101; sigma=0.0432
## mmce.test.mean=0.0267
m = mlr::train(h.res$learner, iris.task)
```

⁶https://mlr-org.github.io/mlrMBO/

Benchmark

OpenML⁷ Data Sets

OpenML_ID	Name	р	n
18	mfeat-morphological	6	2000
3493	monks-problems-2	6	601
3510	JapaneseVowels	14	9961
3883	mfeat-karhunen	64	2000
3896	ada_agnostic	48	4562
3903	pc3	37	1563
9914	wilt	5	4839
9970	hill-valley	100	1212
34536	Internet-Advertisements	1558	3279

Algorithms: **caret** with *grid* and *random* search and **mlrHyperopt**. Each with a budget of 10 and 50 CV10-evaluations.

⁷https://www.openml.org/

All Results

Performance: Dominance

Performance with a budget of 10 10CV-Evaluations.

	caret grid	caret random	mlrHyperopt	default
caret grid	0.00	0.09	0.11	0.40
caret random	0.09	0.00	0.09	0.49
mlrHyperopt	0.14	0.12	0.00	0.47
default	0.09	0.02	0.04	0.00

The table gives the fractions of instances where $H_0: acc_A \leq acc_B$ is rejected by the paired *Wilcoxon*-test to level $\alpha = 0.05$. A column, *B* rows.

i.e.: mlrHyperopt is significantly better than the default settings in 47% of the cases.

Performance: Dominance

Performance with a budget of 50 10CV-Evaluations.

	caret grid	caret random	mlrHyperopt	default
caret grid	0.00	0.09	0.21	0.30
caret random	0.40	0.00	0.12	0.54
mlrHyperopt	0.40	0.16	0.00	0.53
default	0.33	0.02	0.05	0.00

The table gives the fractions of instances where $H_0: acc_A \leq acc_B$ is rejected by the paired *Wilcoxon*-test to level $\alpha = 0.05$. A column, *B* rows.

i.e.: mlrHyperopt is significantly better than the default settings in 53% of the cases.

Which Learner Tuner Combination is a Good Choice?

Rankings of averaged performances of each combination on each dataset.

Lessons Learned

Lessons Learned

- Parameter Tuning is only beneficial on some data and for some methods.
- carets grid search has performance problems on big data sets (ksvm, nnet).
- · carets grid search sub model trick is beneficial (glmnet).
- The benchmark indicates that *random search* is better than the grid search.

mlrHyperopt

Benefits

- Transparent and reproducible benchmarks in combination with OpenML:
 - e.g. Tune ml method A on parameter space with id 123 on Open ML Task 456.

Outlook

· Implement voting system / advanced statistics

Find us on GitHub

- github.com/jakob-r/mlrHyperopt
- · github.com/mlr-org/mlr

