Preliminary analysis of the Icelandic Gyrfalcon CMR

dataset - v2

Frederic Barraquand, Olafur Nielsen

February 22, 201_

- 5 Here I attempt to explore the CMR dataset, before we go to inferential models to estimate survival and
- $_{6}$ perhaps link this to an integrated pop. model.

7 Basic statistics

2

8 How many birds have been ringed?

```
dringed<-read.csv("data/Gyrs_ringed.csv")
head(dringed) # What's in the data table</pre>
```

```
Ring_No Ringed_date Ringed_day Ringed_month Ringed_year EurAgeCode
       15551
                7/12/1975
                                    12
                                                              1975
## 1
                                                                              1
## 2
       15552
                7/12/1975
                                    12
                                                              1975
                                                                              1
                7/12/1975
                                    12
                                                    7
## 3
       15553
                                                              1975
                                                                              1
                6/20/1976
                                    20
                                                    6
                                                              1976
       15554
                                                                              1
                6/20/1976
## 5
       15555
                                    20
                                                    6
                                                              1976
                                                                              1
## 6
       15556
                6/20/1976
                                    20
                                                    6
                                                              1976
                                                                              1
```

```
16 ## EurAgeText SEX
```

- 7 ## 1 Pullus 0
- 18 ## 2 Pullus 0
- 19 ## 3 Pullus 0
- o ## 4 Pullus 0
- 21 ## 5 Pullus 0
- 22 ## 6 Pullus 0

length(unique(dringed\$Ring_No)) #How many unique bird IDs

23 **##** [1] 1653

OK, so we have 1653 unique IDs. Let's compare to how many gyrs have been recovered.

```
drecov<-read.csv("data/Gyrs_recovered.csv")
head(drecov)</pre>
```

25	##	Ring_No	Date_recovered	Day_recorded	Month_recorded	Year_recorded
26	## 1	15554	10/15/1976	15	10	1976
27	## 2	15556	9/18/1980	18	9	1980
28	## 3	15559	6/18/1980	18	6	1980
29	## 4	15560	4/15/1979	15	4	1979
30	## 5	15562	8/20/1987	20	8	1987
31	## 6	15567	5/13/1995	13	5	1995
32	##	Accurance	cy_of_date_Eurin	ng_code Condit	cion_Euring_code)
33	## 1			5	3	3
34	## 2			9	3	3
35	## 3			9	3	3
36	## 4			9	3	3
37	## 5			0	3	3
38	## 6			9	3	3
39	##	Circumst	tances_Euring_co	ode Ci	ircumstances_Eur	ring_text
40	## 1			1	Bird fo	ound dead
41	## 2			1	Bird found 1	long dead
42	## 3			1	Bird found 1	long dead
43	## 4			1	Bird found 1	long dead
44	## 5			1 Bird found	d dead (less tha	n month)
45	## 6			1	Bird found 1	long dead
46	##		When.dead I	Date_reported		
47	## 1			14.09.1985		
48	## 2	Die	ed summer 1980	22.09.1980		

```
## 3 18.12.1980

## 4 Died winter 1978-1979 29.06.1984

51 ## 5 Died summer 1987 25.08.1987

52 ## 6 26.05.1995
```

length(unique(drecov\$Ring_No)) #How many unique bird IDs in Gyrs_recovered.csv

53 ## [1] 270

Let's now analyse the number of birds that have been ringed as a function of the year

We now analyse the patterns of recovery (and resighting)

- Problem here with the definition of a year —
- Now how many birds have been seen several times? We see below that very few birds have been recovered
- 60 more than once (also this tends to be recent?).

64

Question: when did the change from recovery of dead birds to resighting of live birds occur?

- I can infer the earliest date at which a bird has been resighted a second time, but given few birds have been
- sez resighted, but it might be preferable to allow later for a change in protocol (in the CMR models) using a
- $_{63}$ predefined time (we can use several if unsure). I have noted 2006 earlier but I am unsure.


```
66 ## ntimes_recovered
```

67 ## 1 2 3 4

68 ## 255 11 3 1

- This is coherent with the info given by Oli 1 bird recovered 4 times, 3 birds 3 times, 11 birds two times and
- the rest 1 time.
- 71 Thus for all practical purposes, we can consider that such data consists mainly of individual that are either
- recovered or not recovered/resighted. We'll now turn to whether the individuals have been found live or dead,
- ₇₃ and how this varies in time.
- Also whether the recoveries of dead birds are of young vs. adult birds (which may provide quick and dirty
- estimates of survival rates, at least for the youngs...)

these are all the recovery codes that we have (top row), and how many of those we have in the datase table(drecov\$Condition_Euring_code)

```
76 ##
77 ## 1 2 3 4 5 7 8
78 ## 2 66 136 8 26 31 21
```

```
### [previous comment: For instance, we can see 15 read colourmarks.
### We need to simplify this complexity to some extent by aggregating some values.]
```

- Now we need some more info on the codes
- These are defined according to The EURING EXCHANGE Code 2000+ https://euring.org/files/documents/
- 81 E2000PLUSExchangeCodeV117.pdf

Condition Code	Meaning	
0	Condition completely unknown	
1	Dead but no information on how recently died/killed	
2	Freshly dead – within about a week	
3	dead for $>$ a week. If $>>$, use 9 in Accuracy of Date, and 3 here	
4	Found sick/wounded and released afterwards	
5	Found sick/wounded and NOT released afterwards	
6	Alive and probably healthy but taken into captivity.	
7	Alive and probably healthy and certainly released (ring seen without the bird having being caught).	
8	Alive and probably healthy and released by a ringer	
9	Alive and probably healthy but ultimate fate of bird is not known	

- Thus categories 4, 7 and 8 (respectively 8, 31 and 21 birds) correspond to cases where the bird is 'released'
- alive, i.e. effectively resighted rather than recovered (when dead).

drecov\$Date_recovered[drecov\$Condition_Euring_code %in% c(4,7,8)]

```
[1] 7/16/1986
                              5/17/1987
                                         5/14/1987
                                                    4/22/1985
                                                               2/4/1988
##
                   5/16/1985
   [7] 5/6/1988
                   5/6/1987
                              5/21/1988
                                         6/3/1982
                                                    5/15/1985 5/16/1987
## [13] 5/10/1985
                   3/17/1984
                              5/28/1984
                                         5/15/1987
                                                    10/30/1985 11/29/1986
## [19] 5/9/1988
                             1/4/1988
                                                    6/9/2009
                                                               8/27/2000
                   7/28/1988
                                         9/13/1990
## [25] 3/6/2005
                   12/12/2001 6/5/2011
                                         6/30/2007
                                                    10/23/2008 6/14/2014
## [31] 6/14/2015
                   6/5/2016
                              6/17/2017
                                         5/4/2012
                                                    11/1/2011
                                                               10/1/2012
## [37] 1/2/2013
                                         6/13/2012 6/16/2016 3/7/2015
                   6/17/2010
                             6/16/2011
  [43] 6/19/2017
                   6/17/2017
                              5/5/2012
                                         2/26/2012 7/21/2012
                                                               6/11/2014
## [49] 1/22/2018
                  3/14/2016 1/5/2017
                                         3/10/2017 6/9/2015
                                                               11/11/2014
```

```
93 ## [55] 2/6/2016 3/10/2017 8/28/2015 8/13/2015 8/17/2016 10/19/2017
```

94 ## 269 Levels: 10/10/2008 10/1/2012 10/15/1976 10/15/1981 ... 9/8/1982

drecov\$Date_recovered[drecov\$Condition_Euring_code %in% c(7,8)]

```
[1] 5/16/1985 5/17/1987 5/14/1987 2/4/1988
                                                      5/6/1988
                                                                5/6/1987
      [7] 5/21/1988 6/3/1982
                                5/15/1985 5/16/1987
                                                     5/10/1985 3/17/1984
   ## [13] 5/15/1987 10/30/1985 11/29/1986 5/9/1988
                                                      6/9/2009
                                                                8/27/2000
   ## [19] 3/6/2005
                     12/12/2001 6/5/2011
                                           6/30/2007 10/23/2008 6/14/2014
   ## [25] 6/14/2015 6/5/2016
                                6/17/2017 5/4/2012
                                                      11/1/2011 10/1/2012
   ## [31] 1/2/2013
                     6/17/2010 6/16/2011 6/13/2012 6/16/2016 3/7/2015
   ## [37] 6/19/2017 6/17/2017
                               5/5/2012
                                           2/26/2012 7/21/2012 6/11/2014
101
   ## [43] 1/22/2018 3/14/2016
                                           3/10/2017 11/11/2014 2/6/2016
                               1/5/2017
   ## [49] 3/10/2017 8/13/2015 8/17/2016 10/19/2017
103
   ## 269 Levels: 10/10/2008 10/1/2012 10/15/1976 10/15/1981 ... 9/8/1982
```

table(drecov\$Accurancy_of_date_Euring_code)

```
105 ##
106 ## 0 1 2 3 4 5 9
107 ## 212 8 5 9 6 5 45
```

Accuracy of date Code	Meaning	
0	Accurate to the day	
1	Accurate to within 1 day either side of date coded.	
2	Accurate to within 3 days either side of date coded.	
3	Accurate to within 1 week either side of date coded.	
4	Accurate to within 2 weeks either side of date coded.	
5	Accurate to within 6 weeks either side of date coded.	
6	Accurate to within 3 months either side of date coded.	
7	Accurate to within 6 months either side of date coded.	
8	Accurate to within some years only	
9	Date of earliest possible use of ring (EURING for details)	

For the circumstances, see the EURING pdf. Here are the numbers for the various categories

table(drecov\$Circumstances_Euring_code)

110 Old codes

133 I'm attempting below to fill this gap but may need some help

AGE Code	Meaning
100	unfledged young
101	unfledged young at the nest
501	adult at the nest

RECOVERY Code	Meaning	
100	found dead	
120	found dead for a long time	
121	found dead with one tag only?	
146	found dead just outside the nest	
5700	read colourmark	
981,996	found injured and had to kill it	