Computação Gráfica

Algoritmo de

Cyrus-Beck

Giovanni Garcia Gustavo Alves Marcos Treviso Paulo Almeida Wolgan Quepfert

Roteiro

•	História	3
•	Definição	4
•	Intersecção entre linhas	5
•	Descrição do algoritmo	8
•	Pseudocódigo	9
•	Código em C	10
•	Demonstração	11
•	Nossa opinião	12
•	Referências	13

História

 Os cientistas Cyrus e Beck seguiram uma aproximação ao problema do recorte de segmentos de reta no qual conceberam um algoritmo.

Definição

 Foi primeiramente criado para o recorte de uma linha usando uma forma paramétrica contra um polígno convexo de duas dimensões.

 Similiar ao Liang-Barsky, diferença é que LB é uma variação simplificada do CB.

Possui complexidade de O(n).

Intersecção entre linhas

 Através da classificação de cada um dos pontos de intersecção é possível saber quais os valores de t dos vértices do segmento recortado, caso existam.

Equação paramétrica da reta:

$$P(t) = P_0 + (P_1 - P_0)t; t \in (0, 1)$$

Intersecção entre linhas

 Recorte paramétrico: pontos de interseção da reta contendo o segmento de reta a recortar com o retângulo de recorte.

Intersecção vetor normal Pei e Ponto da Reta: Ni • [P(t) - Pei] = 0

Intersecção entre linhas

• O algoritmo paramétrico é eficiente quando é necessário recortar muitos segmentos de reta.

$$t = \frac{N_i \bullet \left(P_0 - P_{ei}\right)}{-N_i \bullet D}$$

Lado:	Ni	Pei
Left (X=X _{min})	[-1, 0]	(X_{min}, Y)
Right (X=X _{max})	[1, 0]	(X_{max}, Y)
Bottom (Y=Y _{min})	[0, -1]	(X, Y _{min})
Top (Y=Y _{max})	[0, 1]	(X, Y_{max})

Descrição do Algoritmo

 Algoritmo de Cyrius-Beck: segmento de reta a recortar com identificação do tipo (PE ou PS) das suas intersecções com o polígono de recorte.

Pseudocódigo

Calcule Ni e escolha um PEi para cada aresta

```
tE = 0:
tL = 1:
for(cada aresta){
 if (Ni.(P1-P0)!=0 ){ /* aresta não é paralela ao segmento */
  calcule t;
  use sign of Ni.(P1-P0) para categorizar como PE ou PL;
  if( PE ) tE = max(tE, t);
  if(PL)tL = min(tL, t);
 else{ /* aresta paralela ao segmento */
  if (Ni.(P0-PEi) > 0) /* está fora */
  return nil;
 if (tE > tL)
  return nil;
 else
  return P(tE) and P(tL) as true clip intersections;
```

Código em C

```
#include <windows.h> //caso precise
#include <gl/Gl.h>
#include <gl/glut.h>
#include <iostream>
//****** Estrutura de Dados
struct GLintPoint{
     GLint x,y;
};
struct GlfloatPoint{
     GLfloat x,y;
};
```

Demonstração

Usando OpenGL.

Nossa Opinião

• É necessário entendimento de Geometria.

Bom desempenho.

Baixa complexidade.

Várias referências na internet e em livros.

Referências

 Cyrus, M., Beck, J.: Generalized Two and Three Dimensional Clipping, Computers&Graphics, Vol.3, No.1, pp.23-28, 1978

 CS 535 Test Programs, http://cs1.bradley.edu/public/jcm/cs535OpenGLCyrusBeck.html

 TI Especialistas - Geometria Computacional, http://www.tiespecialistas.com.br/2013/08/geometria-computacional-algoritmo-de-cyrus-beck

Fim

Obrigado à todos pela atenção!

Giovanni Garcia

Gustavo Alves

Marcos Treviso

Paulo Almeida

Wolgan Quepfert