1. Definirea problemei

Datasetul cuprinde informații despre studenți colectate la momentul înscrierii. Acestea includ detalii despre parcursul academic, demografie și factori socio-economici. Informațiile sunt variate, acoperind starea civilă, modul de aplicare la universitate, cursurile urmate, prezența la cursuri (diurn/seral), calificările anterioare, naționalitatea, ocupația părinților și multe altele. Toate aceste date sunt esențiale pentru a înțelege contextul fiecărui student și a modela potențialele riscuri asociate parcursului său academic.

Problema centrală a acestui proiect este identificarea timpurie a studenților cu risc de abandon universitar, cu scopul de a reduce ratele de abandon și eșec academic în învățământul superior. Se utilizează un set de date complex, care include informații despre parcursul academic, demografie și factori socio-economici ai studenților la momentul înscrierii. Obiectivul este de a clasifica studenții în trei categorii la sfârșitul duratei normale de studiu: abandon, înmatriculare și absolvire.

2. Informații necesare pentru rezolvare

Pentru a aborda această problemă, sunt necesare următoarele informații din setul de date:

- Statutul marital, modul de aplicare la universitate, cursurile urmate, prezența la cursuri, calificările anterioare, naționalitatea și ocupația părinților.
- Date despre performanța academică, cum ar fi notele obținute și numărul de unități curriculare evaluate, înscrieri și aprobări.
- Date demografice și socio-economice, cum ar fi vârsta la înscriere, genul, dacă studentul este deplasat și dacă are nevoi educaționale speciale.

3. Metode de calcul, algoritmi, formule de calcul utilizate

Calculul Ratei de Succes:

Calculul ratei de succes pentru primul semestru se face folosind formula:

$$Success Rate = \frac{Curricular units 1st sem (approved)}{Curricular units 1st sem (enrolled)}$$

Acest calcul este aplicat fiecărui student folosind funcția apply().

Algoritmi Utilizați:

Pentru predicția categoriei de rezultat a studentului (abandon, înmatriculare, absolvire) se folosește algoritmul RandomForestClassifier din biblioteca scikit-learn, un algoritm bazat pe învățarea ansamblului de arbori de decizie.

4. Prezentarea rezultatelor

Cerinte python

- utilizarea listelor și a dicționarelor, incluzând metode specifice acestora;
- definirea și apelarea unor funcții
- utilizarea structurilor condiționale;
- importul unui fișier csv sau json în pachetul pandas;
- accesarea datelor cu loc și iloc;
- utilizarea funcțiilor de grup;
- prelucrări statistice, gruparea și agregarea datelor în pachetul pandas;
- reprezentarea grafică a datelor cu pachetul matplotlib;
- utilizarea pachetului scikit-learn;

Prelucrarea datelor

Importarea bibliotecilor necesare

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

✓ 0.3s
Python
```

Citirea datelor si vizualizarea datelor

<pre>data = pd.read_csv('./data/datasetStudentPerformance.csv') \$\square\$ 0.0s</pre>								Python
dat	a							
✓ 0.0	s							Python
	Marital status	Application mode	Application order	Course	Daytime/evening attendance\t	Previous qualification	Previous qualification (grade)	Nacion
0	1	17	5	171	1	1	122.0	
1	1	15	1	9254	1	1	160.0	
2	1	1	5	9070	1	1	122.0	
3	1	17	2	9773	1	1	122.0	
4	2	39	1	8014	0	1	100.0	
4419	1	1	6	9773	1	1	125.0	
4420	1	1	2	9773	1	1	120.0	
4421	1	1	1	9500	1	1	154.0	
4422	1	1	1	9147	1	1	180.0	
4423 4424 ro	1 ws × 37 co	10 olumns	1	9773	1	1	152.0	

Analiza datelor

1. Calcularea ratei de succes pe primul semestru

Definirea problemei: Problema definită este calcularea ratei de succes a studenților în primul semestru, care este esențială pentru a evalua performanța academică inițială și pentru a identifica studenții care pot avea nevoie de sprijin suplimentar pentru a preveni abandonul școlar. Rata de succes este definită ca raportul dintre numărul de unități curriculare aprobate și numărul de unități curriculare la care studentul s-a înscris în primul semestru. Această măsură permite instituțiilor să monitorizeze eficacitatea programelor lor educaționale și să intervina în timp util pentru a ajuta studenții care nu își ating potențialul complet.

2. Maparea statutului marital, genului și grupei de vârstă

Descrierea problemei: problema specificată aici este îmbunătățirea ușurinței de interpretare a datelor setului de date al studenților prin transformarea valorilor numerice ale variabilelor categorice în etichete textuale mai ușor de înțeles. Această transformare ajută la analiza vizuală și statistică a datelor, permițând analiștilor să înțeleagă mai bine distribuția caracteristicilor cum ar fi starea civilă, genul și grupa de vârstă a studenților.

3. Vizualizarea distribuției rezultatelor studenților în funcție de grupa de vârstă și starea civila.

Descrierea problemei: problema adresată în acest segment al codului este vizualizarea distribuției rezultatelor studenților (cum ar fi abandon, înmatriculare, și absolvire) în funcție de două variabile demografice: grupa de vârstă și starea civilă. Scopul este de a identifica tendințe sau modele în date care ar putea sugera corelații între aceste caracteristici demografice și succesul academic al studenților.

4. Dezvoltarea unui model de învățare automată pentru a clasifica studenții în categorii.

Descrierea problemei: problema abordată în acest cod implică dezvoltarea unui model de învățare automată pentru a clasifica studenții în trei categorii posibile bazate pe rezultatele lor academice: abandon (Dropout), înmatriculare continuă (Enrolled) și absolvire (Graduate). Scopul este de a utiliza datele despre studenți, cum ar fi statutul marital, genul, modul de aplicare, cursul, naționalitatea, calificările și ocupația părinților, grupa de vârstă și rata de succes din primul semestru pentru a prezice aceste rezultate. Acest model ajută instituțiile de învățământ să identifice studenții cu risc ridicat de abandon și să intervină în mod corespunzător.

```
label_encoders = {}
   for column in ['Marital status', 'Gender', 'Application mode', 'Course', 'Nacionality', 'Mother\'s qualification'
                  'Father\'s qualification', 'Mother\'s occupation', 'Father\'s occupation', 'Age Group']:
       le = LabelEncoder()
       data[column] = le.fit_transform(data[column])
       label_encoders[column] = le
   target_encoder = LabelEncoder()
   data['Target'] = target_encoder.fit_transform(data['Target'])
   target = data['Target']
   features = data.drop(['Target'], axis=1)
   X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
   clf = RandomForestClassifier(n_estimators=100, random_state=42)
   clf.fit(X_train, y_train)
   y_pred = clf.predict(X_test)
   classification_results = classification_report(y_test, y_pred, target_names=target_encoder.classes_, output_dict=
   classification_results
✓ 0.4s
                                                                                                                 Python
{0: {'precision': 0.8344594594594594,
  'recall': 0.7816455696202531,
 'f1-score': 0.8071895424836601,
 'support': 316.0},
1: {'precision': 0.5679012345679012,
  'recall': 0.304635761589404,
 'f1-score': 0.39655172413793105,
  'support': 151.0},
2: {'precision': 0.7716535433070866,
 'recall': 0.937799043062201,
 'f1-score': 0.8466522678185745,
 'support': 418.0},
 'accuracy': 0.7740112994350282,
 'macro avg': {'precision': 0.7246714124448158,
 'recall': 0.6746934580906193,
 'f1-score': 0.6834645114800552,
 'support': 885.0},
 'weighted avg': {'precision': 0.75931464035<u>17563</u>,
  'recall': 0.7740112994350282,
  'f1-score': 0.755764806460823,
  'support': 885.0}}
```

Interpretare economică

Rezultatele raportului de clasificare arată următoarele:

- Abandon (Dropout): Precizia de 83.4% și rechemarea de 78.1% indică o capacitate bună a modelului de a identifica corect studenții care vor abandona, cu un risc relativ scăzut de a clasifica greșit studenți care nu vor abandona.
- Înmatriculare (Enrolled): Precizia scăzută de 56.7% şi rechemarea de 30.4% sugerează că
 modelul are dificultăți în a identifica corect studenții care continuă studiile fără a absolvii
 sau abandona în perioada evaluată.

 Absolvire (Graduate): Precizia de 77.4% și rechemarea de 93.7% indică o capacitate excelentă a modelului de a identifica studenții care absolvă, cu un număr foarte mic de absolviri ratate.

Cerințe SAS

- Crearea unui set de date SAS din fisiere externe;
- Crearea și folosirea de formate definite de utilizator;
- Procesarea iterativă și condițională a datelor;
- Crearea de subseturi de date:
- Utilizarea de funcții SAS;
- Combinarea seturilor de date prin proceduri specifice SQL;
- Utilizarea de masive;
- Utilizarea de proceduri pentru rapoarte;
- Folosirea de proceduri statistice;
- Generarea de grafice;

Definirea problemei

Scopul acestei secțiuni SAS a proiectului este de a procesa și analiza un set de date privind performanța studenților, pentru a identifica factorii care influențează succesul academic. Analiza se concentrează pe corelațiile dintre variabilele demografice, academice și socio-economice și performanța studenților.

Informații necesare pentru rezolvare

Informațiile cheie folosite în analiza SAS includ:

- Statutul marital, rata șomajului, rata inflației și PIB-ul, care sunt combinate pentru a analiza influența factorilor externi asupra performanței studenților.
- Datele despre înscrierile și evaluările curriculare ale studenților pentru a evalua performanța academică.
- Detalii demografice cum ar fi vârsta şi genul, care sunt folosite pentru a studia distribuția notelor de admitere.

Metode de calcul, Algoritmi și Formule de Calcul Utilizate

Procesarea datelor:

- Imputarea valorilor lipsă cu 0 pentru unitățile curriculare ale studenților, folosind un array și o buclă do.
- Combinarea seturilor de date pentru a include variabilele economice relevante în analiza performanței studenților.

```
proc import datafile='~/datasetStudentPerformance.csv'
   out=StudentData
   dbms=csv
   replace;
run;

data ProcessedData;
   set StudentData;
   array sem1{*} "Curricular units 1st sem (credit"N--"Curricular units 1st sem (withou"N;
   array sem2{*} "Curricular units 2nd sem (credit"N--"Curricular units 2nd sem (withou"N;
   do i = 1 to dim(sem1);
        if sem1{i} = . then sem1{i} = 0;
   end;
   do i = 1 to dim(sem2);
        if sem2{i} = . then sem2{i} = 0;
   end;
   drop i;
run;
```


SQL și Join-uri:

• Utilizarea PROC SQL pentru a combina datele studentului cu factorii externi, filtrând pentru studenții peste 18 ani și de gen masculin, ordonând după nota de admitere.

```
data ExternalFactors:
     input "Marital status"N "Unemployment rate"N "Inflation rate"N GDP;
     datalines;
     1 6.5 1.2 50000
     2 7.0 1.5 55000
     3 5.5 1.1 47000
     4 6.8 1.4 58000
run;
proc sql;
     create table ComprehensiveData as
     select a.*, b. "Unemployment rate"N, b. "Inflation rate"N, b.GDP
     from StudentData as a left join ExternalFactors as b
     on a. "Marital status" N = b. "Marital Status" N
     where a. "Age at enrollment" N > 18 and a. "Gender" N = 1
     order by a. "Admission grade" N desc;
quit;
Table: WORK.EXTERNALFACTORS ▼
                    View: Column names ▼ 🚇 🖺 🕥 🗏 👕 Filter: (none)
                       Total rows: 4 Total columns: 4
                                                                               ← Rows 1-4 → →I
                              Marital status
                                         Unemployment rate
                                                          Inflation rate
                                                                           GDP
                                                 6.5
                                                               1.2
                                                                          50000
Marital status
                       2
                                     2
                                                  7
                                                               1.5
                                                                          55000
Unemployment rate
                       3
                                     3
                                                 5.5
                                                               1.1
                                                                          47000
                                                                          58000

☑ Ø GDP
```

Crearea de rapoarte:

• Utilizarea PROC REPORT pentru a genera rapoarte despre statutul marital, genul și rezultatele bursierilor în funcție de media notelor de admitere.

```
proc format;
    value MaritalFmt
        1 = 'Single'
        2 = 'Married'
        3 = 'Widower'
        4 = 'Divorced'
        5 = 'Facto Union'
        6 = 'Legally Separated';

run;

proc report data=StudentData nowd;
    column "Marital status"N Gender "Scholarship holder"N "Admission grade"N;
    define "Marital status"N / group 'Marital Status' format=MaritalFmt. width=12;
    define Gender / group 'Gender' width=8;
    define "Scholarship holder"N / group 'Scholarship' width=10;
    define "Admission grade"N / mean 'Mean Admission Grade' format=8.2;
    title "Summary Report of Student Admission Grades";
run;
```

Summary Report of Student Admission Grades

Marital Status	Gender	Scholarship	Mean Admission Grade
Divorced	0	0	123.04
		1	125.91
	1	0	129.32
		1	130.00
Facto Union	0	0	128.48
		1	126.15
	1	0	129.95
		1	124.37
Legally Separated	0	0	111.67
		1	116.90
	1	0	119.00
Married	0	0	124.09
		1	122.17
	1	0	133.99
		1	128.46
Single	0	0	127.16
		1	127.38
	1	0	125.89
		1	128.61
Widower	0	0	149.70
		1	133.50
	1	0	170.00

Generarea de grafice:

• PROC SGPLOT pentru a crea un scatter plot care arată distribuția notelor de admitere în funcție de vârstă la înscriere și gen.

```
proc sgplot data=StudentData;
    scatter x="Age at enrollment"N y="Admission grade"N / group=Gender markerattrs=(symbol=circlefilled);
    xaxis label='Age at Enrollment';
    yaxis label='Admission Grade';
    title 'Scatter Plot of Admission Grades by Age and Gender';
run;
```


Analiza regresiei:

• PROC REG pentru a modela relația dintre vârsta la înscriere și calificarea anterioară asupra notei de admitere, producând valorile prezise și reziduurile.

```
proc reg data=StudentData;
    model "Admission grade"N = "Age at enrollment"N "Previous qualification (grade)"N;
    output out=RegResults p=predicted_values r=residuals;
run;
```

Number of Observations Read 4424 Number of Observations Used 4424

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	313665	156833	1129.31	<.0001		
Error	4421	613963	138.87423				
Corrected Total	4423	927628					

Root MSE	11.78449	R-Square	0.3381
Dependent Mean	126.97812	Adj R-Sq	0.3378
Coeff Var	9.28073		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	40.32087	1.93989	20.79	<.0001	
Age at enrollment	1	0.06712	0.02350	2.86	0.0043	
Previous qualification (grade)	1	0.64168	0.01352	47.46	<.0001	

Interpretare economică

Analiza economică a rezultatelor subliniază cum factorii socio-economici externi, cum ar fi rata șomajului și PIB-ul, influențează performanța academică. Prin identificarea și înțelegerea acestor corelații, instituțiile educaționale pot dezvolta strategii mai bine targetate pentru a sprijini studenții vulnerabili, optimizând utilizarea resurselor pentru a îmbunătăți rezultatele educaționale și pentru a minimiza riscul de abandon școlar.