INFORME LABORATORIO N°1

Jesamin Melissa Zevallos Quispe Algoritmos Paralelos Ciencia de la Computación-Universidad Católica San Pablo

1. ANÁLISIS DE MULTIPLICACIÓN CLÁSICA:

Como sabemos el algoritmo de multiplicación clásica tiene 3 bucle, donde el primero recorre filas de la primera matriz, el segundo las columnas de la segunda matriz y el tercero para el valor de cada elemento

TAMAÑO DE MATRIZ	TIEMPO	L1-REFERENCES	L1-MISSES	LL-REFERENCES	LL-MISSES
50	0.285	17750786	3211	21981	12249
100	2.026	123075228	4261	95597	15778
300	54.327	3226966989	8505	2994337	52677
500	263.494	14906964931	12712	180223766	221167

TABLA 1: Multiplicación clásica

Como sabemos en la memoria cache se almacenan las variables cercanas a nuestro elemento que consultamos o lo que usamos muchas veces, y como la segunda matriz itera por las columnas, accede a memoria continuamente; según la tabla1, hay poca cantidad de misses, ya que el programa es pequeño.

2. ANÁLISIS DE MULTIPLICACIÓN POR BLOQUES:

A diferencia del anterior, este algoritmo tiene 6 bucles, ya que va a dividir la multiplicación en bloques y así aprovechar el uso del cache

TAMAÑO DE MATRIZ	TIEMPO	L1-REFERENCES	L1-MISSES	LL-REFERENCES	LL-MISSES
50	0.295	18411791	3212	21961	12250
100	2.021	126538334	4262	37180	15779
300	54.236	3158182949	8500	251660	52655
500	240.632	15190439989	12710	858312	220752

TABLA2. Multiplicación por bloques

En este algoritmo se aprovecha el uso de la memoria cache, pero en la cantidad de misses no hay muchos cambio, como vemos en la Tabla1 y 2, en el tiempo no hay mucho cambio, pero en 500, la diferencia de tiempo es notable.

3. CONCLUSIONES:

Se concluye que la multiplicación por bloque es más eficiente que la multiplicación clásica, ya que se hace mejor uso de la memoria cache, si se hace la operación con bloques pequeños es mejor porque permanecen en memoria cache.