TRIGONOMETRY Chapter 15

Circunferencia Trigonométrica II

Unidades de medidas de los Incas

Existieron diferentes unidades de medida para magnitudes como la longitud y el volumen en tiempos prehispánicos. Los pueblos andinos, como en muchos otros lugares del mundo, tomaron el cuerpo humano como referencia para establecer sus unidades de

medida.

Longitud

Superficie

Capacidad

REPRESENTACIONES TRIGONOMÉTRICAS EN LA CT.

El seno está representada en la CT por la ordenada del extremo del arco.

Se muestra la variación del seno en cada cuadrante.

EL COSENO está representada en la CT por la abscisa del extremo del arco.

HELICOPRACTICE 1

Del gráfico, halle las coordenadas del punto Q.

Resolución:

Primero calculamos las coordenadas del punto P:

 $P(\cos\beta; \sin\beta)$

Luego por simetría respecto al eje Y:

 $\therefore Q(-\cos\beta; \sin\beta)$

Del gráfico, halle PM si:

Resolución:

Se observa que:

$$PM = 2|\cos\alpha|$$

Como
$$\alpha \in IVC$$
 cos α : (+)

$$|\cos\alpha| = \cos\alpha$$

Entonces:

∴
$$PM = 2cos\alpha$$

HELICOPRACTICE 3

Del gráfico, halle B'Q si:

Resolución:

Tenemos:

$$\mathbf{B}'\mathbf{Q} = \mathbf{B}'\mathbf{O} + \mathbf{O}\mathbf{Q}$$

$$B'Q = 1 + |sen\phi|$$

Como
$$\phi \in IIC$$
 $sen \phi: (+)$

$$|\text{sen}\phi| = \text{sen}\phi$$

Entonces:

$$: B'Q = 1 + sen\phi$$

Del gráfico, determine el área de la región sombreada.

Resolución:

Se sabe que:

$$S = \frac{b \times h}{2}$$

Como α ∈ IIC

 $sen\alpha: (+)$

$$|sen\alpha| = sen\alpha$$

Entonces:

$$S = \frac{sen\alpha}{2}u^2$$

Del gráfico, determine el área de la región sombreada.

Resolución:

Se sabe que:

$$S = \frac{b \times h}{2}$$

$$S = \frac{\left(\frac{1}{2} + 1\right) \left|\cos\beta\right|}{2}$$

$$S = \frac{\left(\frac{3}{2}\right)(-\cos\beta)}{2}$$

$$S = -\frac{3cos\beta}{4}u^2$$

Luis necesita calcular el área del terreno que heredó de sus abuelos. Para ello cuenta con los siguientes datos:

Si cada unidad de los ejes X e Y representan 1 km ¿Cuál es el área del terreno sombreado?

Resolución:

$$S_{\text{Total}} = S_1 + S_2$$

$$S_{\text{Total}} = \frac{(1)(1)}{2} + \frac{(1)|\cos\alpha|}{2}$$

$$S_{\text{Total}} = \frac{1}{2} + \frac{\cos\alpha}{2}$$

$$S_{Total} = \frac{1 + \cos\alpha}{2} km^2$$

HELICOPRACTICE 7

Juan desea colocar césped a un jardín que tiene forma triangular, tal como muestra la figura; si la circunferencia es trigonométrica de radio 1 m. Cuánto recibirá de pago, si por cada metro cuadrado cobra 200 soles. (dato: α =127°)

Resolución:

$$S_{\text{Total}} = S_1 + S_2 + S_3$$

$$|\text{sen127}^{\circ}| = \text{sen127}^{\circ}; 127^{\circ} \in \text{IIC}$$
 $|\text{cos127}^{\circ}| = -\text{cos127}^{\circ}; 127^{\circ} \in \text{IIC}$
 $|\text{sen127}^{\circ}| = \text{sen(180}^{\circ} - 53^{\circ}) = + \text{sen53}^{\circ} = \frac{4}{5}$

$$-\cos 127^{\circ} = -\cos (180^{\circ} - 53^{\circ}) = -(-\cos 53^{\circ}) = 100^{\circ}$$

Reemplazamos:

$$S_{\text{Total}} = \left(\frac{1 \times \frac{4}{5}}{2}\right) + \left(\frac{1 \times \frac{3}{5}}{2}\right) + \frac{1 \times 1}{2} = \frac{12}{10} \text{ m}^2$$

$$\therefore$$
 Pago = S/240