Secure Multiparty Computation: Background and Use Cases

João Santos

Universidade de Évora

ISR-2021

February 10, 2021

Outline

- Introduction
- Cryptography Use in Society
 - Classical Cryptography
 - Modern Cryptography
- Distributed Computing
 - Motivation for MPC
- Secure Multiparty Computation
 - Defining Adversarial Behavior Model
 - MPC Building Blocks
 - Two Party Computation
 - Building Upon Initial Work
 - Example Use Cases

Introduction

- The world is becoming increasingly digital and cryptography is used to secure critical services.
- MPC (Secure Multi Party Computation) enables distributed computing tasks with privacy and correctness.
- MPC has the goal of allowing parties to share computation efforts over their inputs while keeping those inputs private.

Cryptography Use in Society

Classical Cryptography

- Cryptography has a long history of use.
- One of the first known encryption techniques is Caesar's cipher.
- Cryptography first relied on security through obscurity.

Cryptography use in Society

Modern Cryptography

- The Kerckhoffs principle states that a cryptographic algorithm must be made public.
- This principle is widely accepted and embraced in modern cryptography.
- Algorithms can be classified as symmetric and asymmetric.

Distributed Computing Motivation for MPC

- A distributed system can be defined as a collection of computing elements that appear as a single coherent system.
- Distributed systems are subject to many failures such as Byzantine failures.
- Computing elements may be owned by different competing parties.

Defining Adversarial Behavior Model

- MPC is concerned with possible deliberately malicious behaviour by a participating or external party.
- Adversarial behaviour is defined in regards to behaviour by corrupt parties.

MPC Building Blocks

- OT (Oblivious Transfer) protocols in which a sender transfers one of potentially many pieces of information to a receiver.
- ZKP (Zero Knowledge Proof) protocols in which a prover can convince a verifier that it knows some truth by only revealing that it is able to know this thruth.

Figure: Proving a Color-Blind Person Two Balls Have Different Colors (Source: Nicole Zhu, 2019)

Two Party Computation

- Yao's millionaires problem describes two millionaires who wish to know which one is richer without revealing their wealth.
- The solution uses asymmetric cryptography techniques and oblivious transfer techniques and it is known as Yao's Garbled Circuit protocol.

Building Upon Initial Work

Many MPC protocols use Yao's Garbled Circuit as basis.

Figure: Communication Flow in Yao's Protocol (Source: Osman Biçer, 2017)

Example Use Cases

- Comparing a patient's medical data with other patients.
- Electronic voting and anonymous auctions, as it aligns with the fundamental requirements of MPC.
- Hyperledger Fabric, a permissioned blockchain also uses MPC to support private data.

Discussion

- Cryptography and distributed systems techniques are used to secure the critical digital services that modern society relies on.
- MPC is a domain of research that provides protocols for securing these systems
- Recent privacy related regulation changes increasingly justify the investment for MPC based approaches.