Analisi Funzionale

Spazi di successioni e spazi L^p

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Spazi di successioni

Notazione: $\mathbb F$ denota il campo dei numeri reali $\mathbb R$ o dei numeri complessi $\mathbb C.$

Poniamo $\mathbb{F}^{\mathbb{N}}:=\{\underline{x}=(x_k)_{k\in\mathbb{N}}:x_n\in\mathbb{F}\; orall k\in\mathbb{N}\}$ (successioni a valori in \mathbb{F})

Oss. $\mathbb{F}^{\mathbb{N}} = \mathcal{F}(\mathbb{N}, \mathbb{F})$ è uno sp. vett. su \mathbb{F} con le op. comp. per componente: $\underline{x} + \underline{y} = (x_k + y_k)_{k \in \mathbb{N}}, \quad \alpha \underline{x} = (\alpha x_k)_{k \in \mathbb{N}}$ per ogni $\underline{x} = (x_k)_{k \in \mathbb{N}}, \ \underline{y} = (y_k)_{k \in \mathbb{N}} \in \mathbb{F}^{\mathbb{N}}$ e $\alpha \in \mathbb{F}$.

Def. Per ogni $\underline{x} = (x_k)_{k \in \mathbb{N}}$ definiamo $\|\underline{x}\|_{\infty} = \sup_{k \in \mathbb{N}} |x_k|$. Poniamo inoltre $\ell^{\infty} = \{\underline{x} \in \mathbb{F}^{\mathbb{N}} : \|\underline{x}\|_{\infty} < \infty\} = \mathcal{F}_b(\mathbb{N}, \mathbb{F})$ (successioni limitate)

Prop. ℓ^{∞} è un sottospazio vettoriale di $\mathbb{F}^{\mathbb{N}}$ e $\|\cdot\|_{\infty}$ è una norma su ℓ^{∞} .

Def. $c_0 = \{\underline{x} \in \mathbb{F}^{\mathbb{N}} : \lim_{k \to \infty} x_k = 0\}$ (successioni infinitesime) $c_{00} = \{\underline{x} \in \mathbb{F}^{\mathbb{N}} : \exists N \in \mathbb{N} : x_k = 0 \ \forall k > N\}$ (successioni definitivamente nulle)

Prop. (i) $(\ell^{\infty}, \|\cdot\|_{\infty})$ è uno spazio di Banach. (ii) c_0 è un sottospazio vettoriale chiuso di ℓ^{∞} ; in particolare $(c_0, \|\cdot\|_{\infty})$ è uno spazio di Banach. (iii) c_{00} è un sottospazio vettoriale denso e non chiuso in c_0 .

Successioni p-sommabili

Def. Per $p \in [1, \infty)$ e $\underline{x} = (x_k)_{k \in \mathbb{N}}$ definiamo $\|\underline{x}\|_p = \left(\sum_{k=0}^{\infty} |x_k|^p\right)^{1/p}$. Poniamo inoltre $\ell^p = \{\underline{x} \in \mathbb{F}^{\mathbb{N}} : \|\underline{x}\|_p < \infty\}$ (successioni *p*-sommabili)

Prop. Per ogni $p \in [1, \infty)$, ℓ^p è un sottospazio vettoriale di $\mathbb{F}^{\mathbb{N}}$. Inoltre $\|\underline{x}\|_p = 0$ se e solo se $\underline{x} = \underline{0}$. $\|\cdot\|_p$ è una norma su ℓ^p ?

Def. Sia $p \in [1, \infty]$. L'elemento $q \in [1, \infty]$ tale che 1/p + 1/q = 1 è detto *esponente coniugato* di p (qui si intende che $1/\infty = 0$).

Prop. (disug. di Young) Siano $p,q\in(1,\infty)$ esponenti coniugati. Allora $ab\leq \frac{a^p}{p}+\frac{b^q}{q} \qquad \forall a,b\in[0,\infty).$

Prop. (disug. di Hölder) Siano $p, q \in [1, \infty]$ esponenti coniugati. Allora

 $\left|\sum_{k=0}^{\infty} x_k y_k\right| \leq \sum_{k=0}^{\infty} |x_k y_k| \leq \|\underline{x}\|_p \|\underline{y}\|_q \qquad \forall \underline{x} \in \ell^p, \ \forall \underline{y} \in \ell^q,$ ove la serie $\sum_{k=0}^{\infty} x_k y_k$ converge assolutamente.

Prop. (disug. di Minkowski) Sia $p \in [1, \infty]$. Allora $\|\underline{x} + y\|_p \le \|\underline{x}\|_p + \|y\|_p \quad \forall \underline{x}, y \in \mathbb{F}^{\mathbb{N}}$.

Coroll. $\|\cdot\|_p$ è una norma su ℓ^p per ogni $p \in [1, \infty)$.

Proprietà degli spazi ℓ^p

Prop. Valgono le seguenti proprietà.

- (i) Per ogni $p \in [1, \infty]$, $\underline{x} \in \mathbb{F}^{\mathbb{N}}$ e $k \in \mathbb{N}$, si ha
- $|x_k| \leq \|\underline{x}\|_p.$ (ii) Per ogni $p, q \in [1, \infty]$, se p < q allora

$$\|\underline{x}\|_{g} \leq \|\underline{x}\|_{p} \quad \forall \underline{x} \in \mathbb{F}^{\mathbb{N}}.$$

In particolare $\ell^p \subseteq \ell^q$, e inoltre l'inclusione è propria.

- (iii) Per ogni $p \in [1, \infty)$, si hanno le inclusioni $c_{00} \subset \ell^p \subset c_0$.
 - Tali inclusioni sono proprie. Inoltre c_{00} è denso in $(\ell^p, \|\cdot\|_p)$ e ℓ^p è denso in $(c_0, \|\cdot\|_{\infty})$.

Teor. $(\ell^p, \|\cdot\|_p)$ è uno spazio di Banach per ogni $p \in [1, \infty]$.

Lemma (Fatou). (caso
$$(M, \mathcal{M}, \mu) = (\mathbb{N}, \mathcal{P}(\mathbb{N}), \#)$$
)
Se $(x_k^{(n)})_k$ sono a valori in $[0, \infty]$ e $x_k = \liminf_{n \to \infty} x_k^{(n)} \ \forall k \in \mathbb{N}$, allora $\sum_{k=0}^{\infty} x_k \leq \liminf_{n \to \infty} \sum_{k=0}^{\infty} x_k^{(n)}$.

Spazi di funzioni misurabili

Sia (M, \mathcal{M}, μ) uno spazio di misura.

(M insieme, $\mathcal{M}\subseteq\mathcal{P}(M)$ σ -algebra su M, $\mu:\mathcal{M}\to[0,\infty]$ misura su M)

$$f: M \to \mathbb{F}$$
 è *misurabile* se $f^{-1}(A) \in \mathcal{M}$ per ogni $A \subseteq \mathbb{F}$ aperto.
 $\mathscr{L}^0 = \mathscr{L}^0(M, \mathcal{M}, \mu)$ è l'insieme delle funzioni misurabili $f: M \to \mathbb{F}$.

Oss. \mathcal{L}^0 è un sottospazio vettoriale di $\mathcal{F}(M,\mathbb{F})$.

Per
$$f \in \mathcal{L}^0$$
 poniamo $||f||_p = (\int_M |f|^p d\mu)^{1/p}, p \in [1, \infty),$

$$||f||_{\infty} = \operatorname{ess\,sup} |f| := \inf\{\lambda \in \mathbb{R} : \mu\{x \in M : |f(x)| > \lambda\} = 0\}.$$

Definiamo
$$\mathcal{L}^p = \mathcal{L}^p(M, \mathcal{M}, \mu) = \{ f \in \mathcal{L}^0 : ||f||_p < \infty \} \text{ per } p \in [1, \infty].$$

Oss. Se $(M, \mathcal{M}, \mu) = (\mathbb{N}, \mathcal{P}(\mathbb{N}), \#)$, si ha $\mathcal{L}^p = \ell^p$.

Teor.

- (i) \mathcal{L}^p è un sottospazio vettoriale di \mathcal{L}^0 per ogni $p \in [1, \infty]$.
- (ii) (dis. di Hölder) $|\int_M f g d\mu| \le \int_M |f g| d\mu \le ||f||_p ||g||_q$ se $p, q \in [1, \infty]$ sono esponenti coniugati e $f \in \mathcal{L}^p$, $g \in \mathcal{L}^q$.
- (iii) (dis. di Minkowski) $\|f+g\|_p \leq \|f\|_p + \|g\|_p$ se $p \in [1,\infty]$ e $f,g \in \mathscr{L}^0$.

Spazi di Lebesgue L^p $\mathscr{L}^p = \{ f \in \mathscr{L}^0 : \|f\|_p < \infty \}, \quad \|f\|_p = \begin{cases} \operatorname{ess\,sup}|f|, & p = \infty, \\ \left(\int_M |f|^p \, d\mu\right)^{1/p} & p \in [1, \infty). \end{cases}$

Oss. $||f||_p = 0 \iff f = 0$ μ -quasi ovunque. Dunque in generale $||\cdot||_p$ non è una norma su \mathscr{L}^p : la proprietà di separazione può fallire (!) (se esiste $\emptyset \neq E \in \mathcal{M}$ con $\mu(E) = 0$).

Def. Per $p \in [1, \infty]$, poniamo $L^p(M, \mathcal{M}, \mu) = \mathcal{L}^p(M, \mathcal{M}, \mu)/\sim$ ove \sim è la relazione di equivalenza definita da

 $f\sim g$ \iff f=g μ -quasi ovunque. **Lemma** Siano $f,g,\tilde{f},\tilde{g}\in \mathscr{L}^0$ e $p\in [1,\infty]$. Se $f\sim \tilde{f}$ e $g\sim \tilde{g}$, allora:

 $f+g\sim \widetilde{f}+\widetilde{g}, \qquad f\cdot g\sim \widetilde{f}\cdot \widetilde{g}, \qquad \|f\|_p=\|\widetilde{f}\|_p$ Per $[f],[g]\in L^p(M,\mathcal{M},\mu)$ e $\alpha\in\mathbb{F}$ possiamo allora definire $[f]+[g]=[f+g], \qquad lpha[f]=[lpha f], \qquad \|[f]\|_p=\|f\|_p.$

Prop. $L^p(M, \mathcal{M}, \mu)$ è uno sp. vettoriale con queste operazioni e $\|\cdot\|_p$ è una norma su $L^p(M, \mathcal{M}, \mu)$ per ogni $p \in [1, \infty]$.

Teor. $(L^p(M, \mathcal{M}, \mu), \|\cdot\|_p)$ è uno spazio di Banach per ogni $p \in [1, \infty]$.

Proprietà degli spazi L^p

Per $p \in [1, \infty]$, $L^p(M, \mathcal{M}, \mu) = \mathcal{L}^p(M, \mathcal{M}, \mu)/\sim$ ove $f \sim g \iff f = g \mu$ -quasi ovunque

- Nella pratica si tende a non distinguere nella notazione la funzione $f \in \mathcal{L}^p(M, \mathcal{M}, \mu)$ dalla sua classe di equivalenza $[f] \in L^p(M, \mathcal{M}, \mu)$.
- $ightharpoonup L^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \#) = \ell^p.$
- Scriviamo anche $L^p(M, \mu)$ o $L^p(M)$ invece di $L^p(M, \mathcal{M}, \mu)$ se la σ -algebra \mathcal{M} e/o la misura μ sono chiare dal contesto.
- ightharpoonup Se $I\subseteq\mathbb{R}$ è un intervallo, scriviamo $L^p(I)$ sottintentendo la misura di Lebesgue.
- Se I = [a, b] scriviamo anche $L^p(a, b)$ invece di $L^p(I)$. I = (a, b) dà lo stesso spazio $L^p(a, b)$, siccome $\{a, b\}$ è Lebesgue-trascurabile. Per $p < \infty$ e $f \in L^p(a, b)$ si ha $||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{1/p}$.
- Se $f,g \in C[a,b]$ e $f \sim g$ (rispetto alla misura di Lebesgue) allora f=g e inoltre sup |f|= ess sup |f|.

 Quindi la notazione $||f||_{\infty}$ non è ambigua per $f \in C[a,b]$ e C[a,b] si può pensare come sottospazio di $L^{\infty}(a,b)$ con la norma indotta.

Prop. C[a, b] è un sottospazio chiuso proprio di $L^{\infty}(a, b)$.

Convergenza monotona e convergenza dominata

Teor. (convergenza monotona) Siano $f_n: M \to [0, \infty]$ misurabili tali che:

- ▶ $f_n \rightarrow f$ puntualmente μ -quasi ovunque;
- $f_n \le f_{n+1} \mu$ -quasi ovunque per ogni n.

Allora $f:M \to [0,\infty]$ è misurabile e $\int_M f \ d\mu = \lim_{n \to \infty} \int_M f_n \ d\mu$.

Teor. (convergenza dominata) Siano $f_n \in L^1(M)$ tali che:

- $ightharpoonup f_n o f$ puntualmente μ -quasi ovunque;
- ▶ esiste $g \in L^1(M)$ tale che $|f_n| \leq g \mu$ -quasi ovunque per ogni n.

Allora $f \in L^1(M)$ e $\int_M f d\mu = \lim_{n \to \infty} \int_M f_n d\mu$.

Coroll. (convergenza dominata in L^p) Sia $p \in [1, \infty)$. Siano $f_n \in L^p(M)$ tali che:

- $ightharpoonup f_n o f$ puntualmente μ -quasi ovunque;
- ▶ esiste $g \in L^p(M)$ tale che $|f_n| \leq g \mu$ -quasi ovunque per ogni n.

Allora $f \in L^p(M)$ e $f_n \to f$ in $L^p(M)$.

Inclusioni fra spazi L^p **Prop.** Sia (M, \mathcal{M}, μ) sp. di misura *finito* $(\mu(M) < \infty)$. Se $1 \le p \le q \le \infty$,

allora $L^q(M) \subseteq L^p(M)$ e $||f||_p \le \mu(M)^{1/p-1/q} ||f||_q$ per ogni $f \in L^q(M)$. Nota: inclusioni opposte rispetto agli ℓ^p (!)

Sia $[a,b]\subseteq\mathbb{R}$.

Coroll. $C[a,b] \subseteq L^{\infty}(a,b) \subseteq L^{q}(a,b) \subseteq L^{p}(a,b)$ se $1 \le p < q < \infty$.

Domande:

- le inclusioni sono proprie?
 C[a, b] è chiuso in L^p(a, b) per p < ∞?
- **Def.** Poniamo $C_c(a, b) = \{f \in C[a, b] : \text{supp } f \subseteq (a, b)\}$ ove supp $f = \{t \in [a, b] : f(t) \neq 0\}$ è il *supporto* di f.

Oss. $C_c(a,b)$ è un sottospazio vettoriale di C[a,b].

Prop. Sia $p \in [1, \infty)$. Per ogni intervallo $[c, d] \subseteq (a, b)$,

Prop. Sia $p \in [1, \infty)$. Per ogni intervallo $[c, d] \subseteq (a, b)$. $\mathbf{1}_{[c, d]} \in \overline{C_c(a, b)}^{L^p(a, b)}$.

In particolare, $C_c(a, b)$ e C[a, b] non sono chiusi in $L^p(a, b)$.

Sottospazi densi di *L*^p

Teor.

- (i) Sia (M, \mathcal{M}, μ) uno spazio di misura. Allora l'insieme $\operatorname{span}\{\mathbf{1}_E: E \in \mathcal{M}, \ \mu(E) < \infty\}$ è denso in $L^p(M)$ per ogni $p \in [1, \infty)$.
- (ii) Sia $I \subseteq \mathbb{R}$ un intervallo. Allora l'insieme $\operatorname{span}\{\mathbf{1}_{[c,d]}: [c,d] \subseteq I\}$ è denso in $L^p(I)$ per ogni $p \in [1,\infty)$.
- (iii) Sia $[a, b] \subseteq \mathbb{R}$. Allora $C_c(a, b)$ e C[a, b] sono densi in $L^p(a, b)$ per ogni $p \in [1, \infty)$.

Coroll. $L^p(a,b)$ è separabile per ogni $p \in [1,\infty)$.

Oss. I risultati sopra non valgono per $p = \infty$.