Question I

Please see code documentation in file /HW3_DANIEL_MURPHY_I/p1.c for comments related to this question. For info on how to run p1.c, see the README.md file.

Question 2

١.

Matrices MatA and MatB are initialized to a SIZExSIZE dimension and populated with randomly generated integers. To achieve parallel matrix multiplication, each processor calculates a subset of the final result.

MatA is transposed to optimize memory locality and each processor multiplies its corresponding sub-set of MatA against the entirety of MatB, saving the results to a local one-dimensional array MatFlat. Each process' MatFlat is then gathered to the root processes MatC.

The one-dimensional matrix MatFlat was used to simplify the datatype used in the MPI_Gather operation.

As can be seen below, there is a performance benefit to multi-processing. One can note that the biggest improvement is seen between the single processor serial calculation, and the parallel calculation using 2 processors. The slightly diminishing returns in performance improvements might be explained by the overhead of sharing memory between the different processes.

An example of the input and output for a small matrix size. For the output of a large matrix, see the file MatC.txt

INPUT							W-10								
MatA:								MatB							
	8	0	1	5	1	4	5	5	4	7	4	1	3	5	4
L	0	5	3	1	0	7	2	8	8	0	2	7	5	5	8
3	2	7	1	3	2	3	1	7	7	3	7	4	0	2	2
)	8	7	7	6	8	2	1	8	2	0	0	8	0	5	8
3	0	8	7	3	6	3	5	0	8	2	4	2	6	0	Θ
1	8	5	5	0	8	4	3	6	0	4	1	3	4	3	2
5	8	1	4	0	2	0	5	8	6	3	2	7	1	2	6
3	4	0	5	2	6	3	1	8	1	6	7	7	2	2	8
DUTPU															
185	163	105	108	147	109	101	166								
136	97	57	71	110	20	48	96								
57	142	106	112	98	65	83	100								
41	188	77	108	197	112	119	170								
227	129	114	127	171	64	100	154								
248	140	84	92	190	85	118	182								
.85	108	83	84	139	76	108	166								
55	89	64	47	121	70	86	122								

These results are printed to the console automatically for matrix sizes of 9x9 and less.