Problem 1

1.

By definition, 2-D Gaussian kernel is the cross product of 21-D Gaussian kernels. If we denote 1-D Gaussian kernel as H, then 2-D Gaussian kernel is $H\times H$.

Hence for image I, [*(H×H')=[*H*H'=[*H'*H

2.

The Sobel kernel is spatially seperable. $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

3.

For an axb image and cxd kernel, for each pixel there are abcd multiplications. In total there are abcd multiplications.

For an axb image and $c \times 1$ kernel, for each pixel there are abc multiplications. Convolute the resulting axb image with $1 \times d$ kernel, there will be abd multiplications.

Since it's likely that about > ab (c+d), separable convolution is preferred.