'Induktiv' bedeutet, vom Einzelnen auf das Allgemeine zu schließen. Im Gegensatz dazu bedeutet **'deduktiv'**, vom Allgemeinen auf das Einzelne zu schließen.

I Das Stichprobenmittel \overline{X}

Es sei X eine Zufallsvariable.

Beispiel 1: X = Augenzahl bei einmaligem Würfeln mit einem idealen Würfel.

Dann ist
$$E(X) = \sum_{i=1}^{6} i \cdot P(X = i) = \sum_{i=1}^{6} i \cdot \frac{1}{6} = 3,5$$
 und $\sigma^2 = \sum_{i=1}^{6} (i - \mu)^2 \cdot P(X = i) = \sum_{i=1}^{6} (i - 3, 5)^2 \cdot \frac{1}{6} = \frac{35}{12} \approx 2,92$ oder

$$\sigma^2 = E(X^2) - E(X)^2 = \sum_{i=1}^6 i^2 \cdot P(X=i) - \left(\sum_{i=1}^6 i \cdot P(X=i)\right)^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}.$$

Beispiel 2: $X = Anzahl der Treffer bei 10 Versuchen und sei <math>B_{10;0,7}$ -verteilt.

Dann ist
$$E(X) = n \cdot p = 10 \cdot 0, 7 = 7$$
 und $\sigma^2 = n \cdot p \cdot q = 10 \cdot 0, 7 \cdot 0, 3 = 2, 1$.

Beispiel 3: Ein Großhändler bezieht sehr viele Tüten mit Grassamen. Er möchte das mittlere Gewicht X einer Tüte zu bestimmen.

Dazu greift der Händler n Tüten aus einer Sendung heraus, deren Gewichte mit X_i bezeichnet werden. Dann bildet er das arithmetische Mittel $\overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$, um einen Näherungswert für das gesuchte mittlere Gewicht zu bekommen. Ist diese Hoffnung berechtigt?

Antwort: Je größer der Umfang n der Stichprobe ist, desto besser wird dieses arithmetische Mittel mit dem unbekannten Gewicht übereinstimmen.

Exakter Beweis:

$$\mu_{\overline{X}} = E\Big(\overline{X}\Big) = E\bigg(\frac{X_1 + X_2 + \ldots + X_n}{n}\bigg) = \frac{1}{n} \cdot \Big(E(X_1) + E(X_2) + \ldots + E(X_n)\Big) = \frac{1}{n} \cdot n \cdot E(X) = E(X) = \mu_X \text{ , da die einzelnen Erwartungswerte } E(X_i) \text{ alle gleich } E(X) \text{ sind.}$$

Def.: Die Zufallsvariable $\overline{X} = \frac{X_1 + X_2 + ... + X_n}{n}$ heißt das **Stichprobenmittel**.

Satz: Das zu einer Zufallsvariablen X gehörige Stichprobenmittel \overline{X} hat denselben Erwartungswert wie X, d.h. es gilt $\overline{E(\overline{X})} = E(X)$ bzw. $\overline{\mu_{\overline{X}} = \mu_{X}}$. Das Stichprobenmittel \overline{X} ist somit eine **erwartungstreue Schätz-funktion** für den Erwartungswert $\mu_{X} = E(X)$ der Gesamtheit.

Und nun zur Varianz des Stichprobenmittels: Die Zufallsvariablen X_i sind unabhängig, so dass

$$\sigma_{\overline{X}}^2 = Var\bigg(\frac{X_1 + \ldots + X_n}{n}\bigg) = \frac{1}{n^2} Var\big(X_1 + \ldots + X_n\big) = \frac{1}{n^2} \Big(Var\big(X_1\big) + \ldots + Var\big(X_n\big)\Big) = \frac{1}{n^2} \cdot n \cdot Var(X) = \frac{1}{n} \sigma_X^2 \cdot \frac{1}{n^2} \cdot n \cdot Var(X) = \frac{1}{n^2}$$

$$\boxed{ \sigma_{\overline{X}}^2 = \frac{\sigma_X^{\ 2}}{n} } \quad \text{bzw. die Standardabweichung} \quad \boxed{ \sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}} } \ .$$

Es ist natürlich klar, dass das Stichprobenmittel weniger streut als die einzelnen Stichproben. Zum Beispiel streuen die Mathematiknoten innerhalb einer Klasse stärker als die Mathematik-Durchschnittsnoten mehrerer Klassen. Außerdem erkennt man, dass \bar{X} mit wachsendem n immer weniger streut, also vertrauenswürdiger wird.

 $\sigma_{\bar{X}} = \frac{\sigma_X}{\sqrt{n}}$ heißt auch der **Standardfehler** des Mittelwertes, oder auch SEM (Standard Error of the Mean).

Der Standardfehler ist ein Maß für die mittlere Abweichung des Stichprobenmittels vom Gesamtmittelwert.

Nach dem zentralen Grenzwertsatz gilt sogar:

Satz: Bei großem Strichprobenumfang ist das Stichprobenmittel \overline{X} angenähert normalverteilt, unabhängig davon, wie die Grundgesamtheit verteilt ist.

Beispiel 1: In einer Schulklasse wird eine Mathematikarbeit geschrieben. Für die Noten X innerhalb einer Klasse gelte $\mu_X = E(X) = 2,7$ und $\sigma_X = 0,9$. Diese seien annähernd normalverteilt:

$$f_X(x) = \frac{1}{\sigma_X \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma_X}\right)^2} = \frac{1}{0.9 \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-2.7}{0.9}\right)^2} \text{ . Siehe breites Schaubild.}$$

Nun betrachten wir die Notendurchschnitte \overline{X} der einzelnen Klassen, die jeweils aus n=25 Schülern bestehen sollen. Diese Durchschnitte sind nach dem zentralen Grenzwertsatz annähernd normalverteilt. Für sie gilt dann $\mu_{\overline{X}}=\mu_X=2,7$ und

$$\sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}} = \frac{0.9}{5} = 0.18$$
 mit der Verteilungsfunktion

$$f_{\overline{X}}(x) = \frac{1}{\sigma_{\overline{x}} \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma_{\overline{x}}}\right)^2} = \frac{1}{0.18 \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-2.7}{0.18}\right)^2} \; ; \; \text{ siehe schmales Schaubild.}$$

Das schmale Schaubild zeigt die Verteilung der Klassendurchschnitte. Wie kann es sein, dass hier $f_{\overline{X}}(x)$ -Werte größer 1 vorkommen?

Die $f_{\overline{x}}(x)$ -Werte geben <u>keine</u> Wahrscheinlichkeit an. Diese ist durch Flächeninhalte gegeben.

Z.B.
$$P(2,5 \le \overline{X} \le 2,8) = \int_{2,5}^{2,8} f_{\overline{X}}(x) dx = \int_{2,5}^{2,8} \frac{1}{0.18 \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \cdot \left(\frac{x-2.7}{0.18}\right)^2} dx = 0.1322$$
,

$$P(2,0 \le \overline{X} \le 4,0) = \int_{2,0}^{4,0} f_{\overline{X}}(x) dx = \int_{2,0}^{4,0} \frac{1}{0,18 \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \cdot \left(\frac{x-2.7}{0.18}\right)^2} dx = 0,7073,$$

$$P(1,0 \leq \overline{X} \leq 6,0) = \int\limits_{1,0}^{6,0} f_{\overline{X}}(x) \, dx = \int\limits_{1,0}^{6,0} \frac{1}{0,18 \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \cdot \left(\frac{x-2,7}{0,18}\right)^2} \, dx = 0,9704 \; .$$

Beispiel 2: Die Zufallsvariable X sei normalverteilt mit dem Erwartungswert $\mu_X=3$ und der Varianz $\sigma_X^2=2$. Nun nehmen wir Stichproben jeweils vom

Umfang n = 800 und bilden die Stichprobenmittel $\overline{X} = \frac{1}{800} \sum_{i=1}^{800} X_i$. Dann haben

diese Stichprobenmittel ebenfalls den Erwartungswert $\mu_{\overline{X}}=3$, aber die kleinere

Standardabweichung $\sigma_{\overline{X}}=\frac{\sigma_X}{\sqrt{n}}=\frac{\sqrt{2}}{\sqrt{800}}=0,05$. Die beiden Dichtefunktionen sind im Schaubild dargestellt:

$$f_X(x) = \frac{1}{\sigma_X \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma_x}\right)^2} = \frac{1}{\sqrt{2} \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-3}{\sqrt{2}}\right)^2} \quad \text{breite Kurve}$$

$$f_{\overline{X}}(x) = \frac{1}{\sigma_{\overline{X}} \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma_{\overline{X}}}\right)^2} = \frac{1}{0,5 \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-3}{0,05}\right)^2} \quad \text{sehr schmale Kurve}.$$

II Die Stichprobenvarianz S²

Nachdem wir eine Schätzfunktion \overline{X} , das Stichprobenmittel, für den Erwartungswert $E(X) = \mu_X$ gefunden haben, suchen wir nun eine Schätzfunktion S^2 , die **Stichprobenvarianz**, für die Varianz $Var(X) = \sigma_X^2$.

Falls $\mathbf{E}(\mathbf{X}) = \boldsymbol{\mu}_{\mathbf{X}}$ bekannt ist, dann haben wir in $\sigma_{\mathbf{X}}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \boldsymbol{\mu}_{\mathbf{X}})^2$ eine Schätzfunktion für die unbekannte

$$Varianz, \ denn \ E\bigg(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu_{X})^{2}\bigg) = \frac{1}{n}E\bigg(\sum_{i=1}^{n}(X_{i}-\mu_{X})^{2}\bigg) = \frac{1}{n}\sum_{i=1}^{n}E\Big((X_{i}-\mu_{X})^{2}\bigg) = \frac{1}{n}\sum_{i=1}^{n}Var(X_{i}) = \frac{1}{n}\sum_{i=1}^{n}Var(X) = Var(X)$$

da die X_i unabhängige Kopien von X sind, so dass $Var(X_i) = Var(x)$ für alle i = 1,...,n.

$$\text{Zur Erinnerung: } E\Big((X-\mu)^2\Big) = E\Big(X^2-2\mu\cdot X+\mu^2\Big) = E\Big(X^2\Big)-2\mu\cdot E(X)+\mu^2 = E\Big(X^2\Big)-E\Big(X\Big)^2 = Var(X) \;.$$

Falls $E(X) = \mu_X$ unbekannt ist, dann bietet sich der Ansatz $Z = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$ an. Wir müssen nur noch prüfen, ob Z für große Werte von n wirklich gegen σ_X^2 strebt, also ob $E(Z) = \sigma_X^2$ gilt.

Zuerst wird Z umgeformt in
$$Z = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left(\overline{X} - \mu_X \right) \right]^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(X_i - \mu_X \right) - \left($$

$$\begin{split} &=\frac{1}{n}\cdot\left[\sum_{i=1}^{n}\big(X_{i}-\mu_{X}\,\big)^{2}-2\cdot\left(\overline{X}-\mu_{X}\,\right)\cdot\sum_{i=1}^{n}\big(X_{i}-\mu_{X}\,\big)+n\cdot\left(\overline{X}-\mu_{X}\,\right)^{2}\,\right] = \\ &=\frac{1}{n}\cdot\left[\sum_{i=1}^{n}\big(X_{i}-\mu_{X}\,\big)^{2}-2\cdot\left(\overline{X}-\mu_{X}\,\right)\cdot n\cdot\left(\overline{X}-\mu_{X}\,\right)+n\cdot\left(\overline{X}-\mu_{X}\,\right)^{2}\,\right] = \frac{1}{n}\cdot\sum_{i=1}^{n}\big(X_{i}-\mu_{X}\,\big)^{2}-\left(\overline{X}-\mu_{X}\,\right)^{2}\,. \end{split}$$

In dieser Form lässt sich E(Z) berechnen.

$$\text{Einerseits ist} \quad E\Bigg(\frac{1}{n} \cdot \sum_{i=1}^{n} \big(X_i - \mu_X\big)^2\Bigg) = \frac{1}{n} \cdot E\Bigg(\sum_{i=1}^{n} \big(X_i - \mu_X\big)^2\Bigg) = \frac{1}{n} \cdot n \cdot Var(X) = Var(X) = \sigma_X^2 \text{ , andererseits gilt we-proved the sum of the proved the$$

gen $\mu_{x} = \mu_{\overline{x}}$

$$E\left(\left(\overline{X} - \mu_X\right)^2\right) = E\left(\left(\overline{X} - \mu_{\overline{X}}\right)^2\right) = \sigma_{\overline{X}}^2 = \frac{1}{n} \cdot \sigma_X^2$$
. Mit Hilfe dieser beiden Ergebnisse folgt

$$E(Z) = E\bigg(\frac{1}{n} \cdot \sum_{i=1}^n \big(X_i - \mu_X\big)^2 - \Big(\overline{X} - \mu_X\big)^2\bigg) = E\bigg(\frac{1}{n} \cdot \sum_{i=1}^n \big(X_i - \mu_X\big)^2\bigg) - E\bigg(\overline{X} - \mu_X\bigg)^2 = \sigma_X^2 - \frac{1}{n} \cdot \sigma_X^2 = \frac{n-1}{n}\sigma_X^2 \;.$$

Eigentlich erhofften wir $\,\sigma_X^2\,$ als Ergebnis. Wir müssen also unser Z leicht abändern:

$$E\left(\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}\right) = \frac{n}{n-1} \cdot E\left(\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}\right) = \frac{n}{n-1} \cdot \frac{n-1}{n}\sigma_{X}^{2} = \sigma_{X}^{2}. \text{ Hurra!!!}$$

Satz: Die Stichprobenvarianz $\boxed{S^2 = \frac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2} \text{ ist eine erwartungstreue Schätzfunktion für die Value Value$

rianz
$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_X)^2 = \overline{X^2} - \overline{X}^2 = E(X^2) - E(X)^2$$
.

 $\textbf{Bemerkung:} \ \ \text{Ein deutlicher Unterschied zwischen} \ \ S^2 \ \ \text{und} \quad \ \sigma_X^2 \ \ \text{besteht nur für kleine Werte von n.}$

Beispiel 1 (σ_X sei bekannt): Für eine Zufallsvariable X gilt $\mu_X = 6$ und $\sigma_X^2 = 5$. Bestimmen Sie den Erwartungswert und die Varianz $\sigma_{\overline{X}}^2$ der Stichprobenmittels \overline{X} für n = 10 Durchführungen.

Es ist
$$E(\overline{X}) = E(X) = 6$$
 und $\sigma_{\overline{X}}^2 = \frac{1}{10}\sigma_X^2 = 0.5$.

Beispiel 2 (σ_X sei unbekannt): Die Gewichte von 20 Schrauben wurden gemessen. Bestimmen Sie einen Schätzwert für den Mittelwert und die Varianz des Gewichts.

Gewicht m _j in g	2,5	2,6	2,7	2,8	2,9
abs. Häufigkeit h _j	2	3	9	5	1

Der Schätzwert x für den Mittelwert ist das arithmetische Mittel

$$\bar{x} = \frac{1}{n} \cdot \sum_{i} h_{j} \cdot m_{j} = \frac{1}{20} \cdot (2 \cdot 2, 5 + 3 \cdot 2, 6 + 9 \cdot 2, 7 + 5 \cdot 2, 8 + 1 \cdot 2, 9) = 2, 7.$$

Der Schätzwert s² für die Varianz ist

$$s^2 = \frac{1}{n-1} \cdot \sum h_j \cdot \left(m_j - \overline{x}\right)^2 = \frac{1}{19} \cdot (2 \cdot 0, 2^2 + 3 \cdot 0, 1^2 + 9 \cdot 0^2 + 5 \cdot 0, 1^2 + 1 \cdot 0, 2^2) = \frac{1}{95} \approx 0,011 \; . \quad \text{Oder man rechnet}$$

$$s^2 = \frac{n}{n-1}\sigma_X^2 = \frac{n}{n-1}\cdot \left(E(X^2) - E(X)^2\right) = \frac{20}{19} \left(\frac{1}{20}\cdot 146 - \left(\frac{1}{20}\cdot 54\right)^2\right) = \frac{1}{95} \approx 0,011 \quad \text{mit} \quad E\left(X^2\right) = \frac{1}{n}\cdot \sum_j h_j \cdot m_j^2 \ .$$

Der Standardfehler wird geschätzt zu $\sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}} = \frac{\sqrt{1/95}}{20} \approx 0,0051 \approx 0,01$. Somit kann man schreiben:

 $X = 2,70 \pm 0,01$.

Die Endformel für den Schätzwert des Standardfehlers lautet $\sigma_{\overline{X}} = \sqrt{\frac{1}{n \cdot (n-1)} \cdot \sum h_j \cdot \left(m_j - \overline{x}\right)^2}$.

III Vertrauensintervalle (Konfidenzintervalle) für den Erwartungswert einer normalverteilten Grundgesamtheit bei bekannter Varianz

Es sei X eine normalverteilte Zufallsvariable. Dann ist auch das Stichprobenmittel \overline{X} normalverteilt und es gilt

$$E(\overline{X}) = \mu_{\overline{X}} = \mu_{X} = E(X)$$
 und $Var(\overline{X}) = \sigma_{\overline{X}}^{2} = \frac{\sigma_{X}^{2}}{n} = \frac{Var(X)}{n}$

 $\text{Durch} \quad \mu_{\overline{X}} - c \cdot \sigma_{\overline{X}} \leq \overline{X} \leq \mu_{\overline{X}} + c \cdot \sigma_{\overline{X}} \quad \text{bzw.} \quad \left| \overline{X} - \mu_{\overline{X}} \right| \leq c \cdot \sigma_{\overline{X}} \quad \text{ist ein } \textbf{Vertrauensintervall f } \overline{\textbf{u}} \quad \overline{\textbf{X}} \quad \text{gegeben.}$

Seine Wahrscheinlichkeit lässt sich auf eine einfache Form bringen

$$P\Big(\mu_{\overline{X}} - c \cdot \sigma_{\overline{X}} \leq \overline{X} \leq \mu_{\overline{X}} + c \cdot \sigma_{\overline{X}}\Big) = \Phi\Bigg(\frac{\mu_{\overline{X}} + c \cdot \sigma_{\overline{X}} - \mu_{\overline{X}}}{\sigma_{\overline{X}}}\Bigg) - \Phi\Bigg(\frac{\mu_{\overline{X}} - c \cdot \sigma_{\overline{X}} - \mu_{\overline{X}}}{\sigma_{\overline{X}}}\Bigg) = \Phi(c) - \Phi(-c) = 2 \cdot \Phi(c) - 1 \cdot \frac{1}{2} \cdot$$

Diese Bedingung $\mu_{\overline{X}} - c \cdot \sigma_{\overline{X}} \leq \overline{X} \leq \mu_{\overline{X}} + c \cdot \sigma_{\overline{X}}$ lässt sich umformen in

$$\mu_X - c \cdot \frac{\sigma_X}{\sqrt{n}} \leq \overline{X} \leq \mu_X + c \cdot \frac{\sigma_X}{\sqrt{n}} \,. \ \, \text{Durch Subtraktion von} \ \ \, \mu_X \ \, \text{und} \ \, \overline{X} \ \, \text{folgt}$$

$$-\overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \le -\mu_X \le -\overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}}$$
. Nach Multiplikation mit -1 folgt

$$\overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}} \ge \mu_X \ge \overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \quad \text{bzw.} \quad \overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \le \mu_X \le \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}} \,.$$

$$\underline{Oder\ einfacher}:\ \mu_{\overline{X}} - c \cdot \sigma_{\overline{X}} \leq \overline{X} \leq \mu_{\overline{X}} + c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\overline{X} - \mu_{\overline{X}}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}} \quad \Leftrightarrow \quad \left|\mu_{\overline{X}} - \overline{X}\right| \leq c \cdot \sigma_{\overline{X}$$

$$\overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \leq \mu_{\overline{X}} \leq \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}} \text{ bzw. } \overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \leq \mu_X \leq \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}} \text{ , da } \mu_{\overline{X}} = \mu_X \text{ .}$$

Satz: Die Wahrscheinlichkeit, dass μ_X im Intervall $\left[\overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \middle/ \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}}\right]$ liegt, beträgt

$$\boxed{P\!\left(\overline{X}\!-\!c\!\cdot\!\frac{\sigma_X}{\sqrt{n}}\!\leq\!\mu_X\leq\!\overline{X}\!+\!c\!\cdot\!\frac{\sigma_X}{\sqrt{n}}\right)\!=\!2\!\cdot\!\Phi(c)\!-\!1}\ .$$

Beispiel: Ein Zufallsexperiment wird $n=100\,\text{mal}$ durchgeführt. Als Mittelwert der 100 Ergebnisse ergibt sich $\overline{x}=3,2$. Außerdem ist bekannt, dass bei diesem Experiment $\sigma_X=1,7$ beträgt.

Die Standardabweichung von \overline{X} beträgt dann $\sigma_{\overline{X}} = \frac{1,7}{\sqrt{100}} = \frac{1,7}{10}$.

a. Dann gilt z.B. mit c = 0.5:

$$P\left(\overline{X}-c\cdot\frac{\sigma_X}{\sqrt{n}}\leq\mu_X\leq\overline{X}+c\cdot\frac{\sigma_X}{\sqrt{n}}\right)=P\left(3,2-0,5\cdot\frac{1,7}{10}\leq\mu_X\leq3,2+0,5\cdot\frac{1,7}{10}\right)=$$

$$= P(3,115 \le \mu_X \le 3,285) = 2 \cdot \Phi(c) - 1 = 2 \cdot \Phi(0,5) - 1 \approx 0,383 \; .$$

Die Dichtefunktion für \overline{X} lautet $f(x) = \frac{1}{\frac{1.7}{10} \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-3,2}{\frac{1.7}{10}}\right)^2}$.

Zusatz: Für einen Einzelwert x wäre $P(3,115 \le x \le 3,285) = \Phi\left(\frac{3,285-3,2}{1,7}\right) - \Phi\left(\frac{3,115-3,2}{1,7}\right) = \Phi\left(\frac{3,285-3,2}{1,7}\right) - \Phi\left(\frac{3,285-3,2}{1,7}\right) = \Phi\left(\frac{3,285-3,2}{1,7}\right) - \Phi\left(\frac{3,285-3,2}{1,7}\right) = \Phi\left(\frac{3,285-3,2}{1,7}\right) - \Phi\left(\frac{3,285-3,2}{1,7}\right) = \Phi\left(\frac{3,2$

 $\Phi(0,05) - \Phi(-0,05) = 2 \cdot \Phi(0,05) - 1 = 0,0399$, d.h. eine deutlich kleinere Wahrscheinlichkeit. Denn die Einzelwerte streuen viel stärker als die Mittelwerte.

b. In welchem Vertrauensintervall liegt $\,\mu_X\,$ mit einer Wahrscheinlichkeit von mindestens 90%? Aus

$$P\Bigg(\overline{X}-c\cdot\frac{\sigma_X}{\sqrt{n}}\leq\mu_X\leq\overline{X}+c\cdot\frac{\sigma_X}{\sqrt{n}}\Bigg)=P\Bigg(3,2-c\cdot\frac{1,7}{10}\leq\mu_X\leq3,2+c\cdot\frac{1,7}{10}\Bigg)=$$

= $2 \cdot \Phi(c) - 1 \ge 0.9$ ergibt sich $\Phi(c) \ge 0.95$. Aus der Tabelle folgt c = 1.65.

Das zugehörige Vertrauensintervall für μ_X lautet also

$$3, 2-1, 65 \cdot \frac{1,7}{10} \le \mu_X \le 3, 2+1, 65 \cdot \frac{1,7}{10}$$
, d.h. $2, 92 \le \mu_X \le 3, 48$. μ_X liegt nun

in diesem Intervall mit einer Sicherheit von mindestens 90%.

IV Vertrauensintervalle (Konfidenzintervalle) für den Erwartungswert einer normalverteilten Grundgesamtheit bei unbekannter Varianz

In diesem Fall müssen wir $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2$ als Schätzwert für die unbekannte Varianz σ_X^2 verwenden.

Beispiel: Gewichtsproben in Gramm von 50 Tafeln Schokolade ergaben:

a j	97	98	99	100	101	102
nj	3	7	13	18	6	3

Geben Sie das 95%-Vertrauensintervall an.

Es folgt
$$\bar{x} = \frac{1}{50} \cdot \sum_{j=1}^{6} n_j \cdot a_j = \frac{1}{50} \cdot 4976 = 99,52$$
.

Für die Varianz von X schätzen wir zu $s_X^2 = \frac{1}{49} \cdot \sum_{j=1}^6 n_j \cdot \left(a_j - \overline{x}\right)^2 = \frac{1}{49} \cdot 74,48 = 1,52$, so dass die Varianz von \overline{X}

$$s_{\overline{X}}^2 = \frac{1,52}{50}$$
 wird. Oder man rechnet

$$s_X^2 = \frac{50}{49} \cdot \left(E(X^2) - E(X)^2 \right) = \frac{50}{49} \cdot \left(\frac{1}{50} (3 \cdot 97^2 + 7 \cdot 98^2 + \dots + 3 \cdot 102^2) - E(X)^2 \right) = \frac{50}{49} \cdot \left(\frac{247643}{25} - \left(\frac{4976}{50} \right)^2 \right) = 1,52.$$

Aus dem Ansatz $2 \cdot \Phi(c) - 1 = 0.95$ folgt $\Phi(c) = 0.975$ und nach der Tabelle ist c = 1.96.

Also gilt

$$\begin{split} &P\Bigg(\overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \leq \mu_X \leq \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}}\Bigg) = P\Bigg(99,52 - 1,96 \cdot \frac{\sqrt{1,52}}{\sqrt{50}} \leq \mu_X \leq 99,52 + 1,96 \cdot \frac{\sqrt{1,52}}{\sqrt{50}}\Bigg) = \\ &= P(99,18 \leq \mu_X \leq 99,86) \; . \end{split}$$

D.h. mit einer Sicherheit von 95% liegt der Erwartungswert im Intervall [99,18/99,86].

Die Dichtefunktion für \overline{X} lautet $f(x) = \frac{1}{\sqrt{\frac{1,52}{50}} \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-99,52}{\sqrt{\frac{1.52}{50}}}\right)^2}$.

V Vertrauensintervalle (Konfidenzintervalle) für den Erwartungswert einer normalverteilten Grundgesamtheit bei unbekannter Varianz mit Hilfe der Student-t-Verteilung

William Sealey Gosset, damals Chemiker in der Guinness-Brauerei in Dublin, hatte festgestellt, dass der Mittelwert normalverteilter Daten nicht mehr normalverteilt ist, wenn die Varianz des Merkmals unbekannt ist und deshalb mit der Stichprobenvarianz geschätzt werden muss. Die Herleitung wurde erstmals 1908 veröffentlicht. Da sein Arbeitgeber die Veröffentlichung nicht gestattete, veröffentlichte Gosset sie unter dem Pseudonym Student. Die zugehörige Theorie wurde erst durch die Arbeiten von Ronald Aylmer Fisher belegt, der die Verteilung dann Student's t-distribution nannte.

$$\text{Die Dichtefunktion der t-Verteilung lautet} \quad f(x,n) = \frac{\Gamma\!\left(\frac{n+1}{2}\right)}{\sqrt{n\cdot\pi}\cdot\Gamma\!\left(\frac{n}{2}\right)} \cdot \left(1 + \frac{x^2}{2}\right)^{-\frac{n+1}{2}} \quad \text{mit der Gammafunktion}$$

 $\Gamma(x) = \int_{0}^{\infty} e^{-t} t^{x-1} dt$. Dabei bezeichnet **n die Anzahl der Freiheitsgrade**. Der Vorfaktor lässt sich auch verständli-

$$\text{cher darstellen:} \quad \frac{\Gamma\!\left(\frac{n+1}{2}\right)}{\sqrt{n\cdot\pi}\cdot\Gamma\!\left(\frac{n}{2}\right)} = \left\{ \begin{aligned} &\frac{1}{\pi} & \text{für } n=1\\ &\frac{1}{2\cdot\sqrt{2}} & \text{für } n=2\\ &\frac{1}{2\cdot\sqrt{2}} & \text{für } n=2 \end{aligned} \right., \text{ so dass } f(x,1) = \frac{1}{\pi\cdot(1+x^2)} \ , \quad f(x,2) = \frac{1}{2\cdot\sqrt{2}\cdot(1+x^2)^{3/2}} \ ,$$

Heinz Göbel 23.11.2022 Seite 6 von 13

Die flache gepunktete Kurve gehört zu n=1, die gestichelte zu n=2 und die punkt-gestrichelte zu n=10. Die steilste durchgezogene Kurve stellt die Gauß-Normal-Verteilung dar. Man sieht, dass die Student-t-Verteilung mit wachsender Zahl n der Freiheitsgarde gegen die Gauß-Normal-Verteilung strebt. Alle Schaubilder sind symmetrisch zur y-Achse.

Für n > 1 ist $E(X) = \int_{-\infty}^{\infty} x \cdot f(x, n) dx = 0$ wegen der Punktsymmetrie zum Ursprung.

$$F \ddot{u}r \ \ n=1 \ \ \text{ist} \ \ E(X) = \frac{1}{\pi} \int\limits_{-\infty}^{\infty} x \cdot \frac{1}{1+x^2} dx = \frac{1}{2\pi} \cdot \left[\ln(1+x^2) \right]_{-\infty}^{\infty} \ \ \text{nicht definiert}.$$

Für
$$n>2$$
 ist $V(x)=\frac{n}{n-2}$, während für $n=1$ und $n=2$ ist $V(x)=\infty$.

Für die **Verteilungsfunktion** gilt $F(x,n) = \int\limits_{-\infty}^{x} f(u,n) du$.

Die gepunktete Kurve gehört zu F(x,1), die gestrichelte zu F(x,2) und die punkt-gestrichelte zu F(x,10).

Die durchgezogene Kurve stellt die Gauß-Normal-Verteilung dar. Man sieht wieder, dass die Student-t-Verteilung mit wachsender Zahl n der Freiheitsgarde gegen die Gauß-Normal-Verteilung strebt.

Beispiele zur Tabelle der t-Verteilung:

- 1. Für n=2 folgt aus $P\left(\overline{X}-c\cdot\frac{\sigma_X}{\sqrt{n}}\leq\mu_X\leq\overline{X}+c\cdot\frac{\sigma_X}{\sqrt{n}}\right)=2\cdot F(c)-1=0,9$ bzw. $F(c)=P(X\leq c)=0,95$ der Wert c=2,920.
- $\begin{aligned} \text{2. Für } n = 4 \ \text{folgt aus } P\Bigg(\overline{X} c \cdot \frac{\sigma_X}{\sqrt{n}} \leq \mu_X \leq \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}}\Bigg) = 2 \cdot F(c) 1 = 0,95 \\ \text{bzw. } F(c) = P(X \leq c) = 0,975 \ \text{der Wert } c = 2,776 \,. \end{aligned}$

Zum Beispiel von Seite 5: Gewichtsproben in Gramm von 50 Tafeln Schokolade ergaben:

a j	97	98	99	100	101	102
nj	3	7	13	18	6	3

Es folgt
$$\bar{x} = \frac{1}{50} \cdot \sum_{j=1}^{6} n_j \cdot a_j = \frac{1}{50} \cdot 4976 = 99,52$$
.

Die Varianz von X wird geschätzt zu

$$s_X^2 = \frac{1}{49} \cdot \sum_{j=1}^6 n_j \cdot \left(a_j - \overline{x}\right)^2 = \frac{1}{49} \cdot 74,48 = 1,52 \text{ , so dass die Varianz von } \overline{X}$$

gleich
$$s_{\overline{X}}^2 = \frac{1,52}{50}$$
 wird.

Es soll das 95%-Vertrauensintervall

$$P\left(\overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \le \mu_X \le \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}}\right) = 0.95$$
 bestimmt werden. Wie bei der Nor-

$$\text{malverteilung gilt } P\Bigg(\overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \leq \mu_X \leq \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}}\Bigg) = F(c) - F(-c) = 0,95 \ .$$

Wegen F(-c) = 1 - F(c) ergibt sich $2 \cdot F(c) - 1 = 0.95$, so dass F(c) = 0.975. Die Anzahl der Freiheitsgrade n (oder df = degrees of freedom) ist

df=n=50-1=49 . Denn bei gegebenem Mittelwert lassen sich immer noch 49 Messdaten beliebig wählen.

Die t-Tabelle liefert für n=49 und F(c)=0,975 den Wert c=2,010. Somit lautet das 95%-Vertrauensintervall

$$\begin{split} 99,52-2,01\cdot\frac{\sqrt{1,52}}{\sqrt{50}} \leq \mu_X \leq 99,52+2,01\cdot\frac{\sqrt{1,52}}{\sqrt{50}} \;,\;\; bzw. \\ 99,17 \leq \mu_X \leq 99,87 \;. \end{split}$$

Mit der Gauß-Normalverteilung erhielten wir mit c=1,96 das Vertrauensintervall $99,18 \le \mu_X \le 99,86$, also fast das gleiche Ergebnis.

2 F(c)-1	0,9	0,95	0,99	
⇔ F (c)	0,95	0,975	0,995	
n = 1	6,314	12,706	63,657	
n = 2	2,920	4,303	9,925	
n = 3	2,353	3,182	5,841	
4	2,132	2,776	4,604	
5	2,015	2,571	4,032	
6	1,943	2,447	3,707	
7	1,895	2,365	3,499	
8	1,860	2,306	3,355	
9	1,833	2,262	3,250	
10	1,812	2,228	3,169	
11	1,796	2,201	3,106	
12 13	1,782	2,179	3,055	
14	1,771 1,761	2,160 2,145	3,012	
15	1,753	2,143	2,977 2,947	
16	1,746	2,131	2,947	
17	1,740	2,110	2,898	
18	1,734	2,110	2,878	
19	1,729	2,093	2,861	
20	1,725	2,086	2,845	
21	1,721	2,080	2,831	
22	1,717	2,074	2,819	
23	1,714	2,069	2,807	
24	1,711	2,064	2,797	
25	1,708	2,060	2,787	
26	1,706	2,056	2,779	
27	1,703	2,052	2,771	
28	1,701	2,048	2,763	
29	1,699	2,045	2,756	
30	1,697	2,042	2,750	
31	1,696	2,040	2,744	
32	1,694	2,037	2,738	
33	1,692	2,035	2,733	
34 35	1,691 1,690	2,032	2,728	
36	1,688	2,030	2,724 2,719	
37	1,687	2,026	2,715	
38	1,686	2,024	2,712	
39	1,685	2,023	2,708	
40	1,684	2,021	2,704	
41	1,683	2,020	2,701	
42	1,682	2,018	2,698	
43	1,681	2,017	2,695	
44	1,680	2,015	2,692	
45	1,679	2,014	2,690	
46	1,679	2,013	2,687	
47	1,678	2,012	2,685	
48	1,677	2,011	2,682	
49	1,677	2,010	2,680	
50	1,676	2,009	2,678	
60	1,671	2,000	2,660	
70	1,667	1,994	2,648	
80	1,664	1,990	2,639	
90	1,662	1,987	2,632	
100	1,660	1,984	2,626	

Noch ein Beispiel: Einer Gruppe von 10 Studenten wird eine Statistik-Aufgabe vorgelegt. Dabei ergaben sich die notierten systolischen Blutdruckwerte. Die Frage ist, ob diese Statistik-Aufgabe eine "signifikante" Wirkung auf den Blutdruck zeigt, d.h. ob diese Statistik-Aufgabe mit 95-prozentiger Sicherheit den Blutdruck erhöht.

Vorher	130	145	140	150	140	145	145	150	145	155
Nachher	170	145	150	160	150	155	150	160	150	160
Änderungen	40	0	10	10	10	10	5	10	5	5

Die mittlere Blutdruckerhöhung beträgt $\overline{X} = 105:10 = 10,5$. Die Stichprobenvarianz ergibt sich zu

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 = \frac{1}{10-1} \cdot \left((40-10,5)^2 + (0-10,5)^2 + 5 \cdot (10-10,5)^2 + 3 \cdot (5-10,5)^2 \right) = \frac{1072,5}{9} \approx 119,17 ,$$

so dass die Standardabweichung zu $\sigma_X = \sqrt{s^2} \approx 10,92$ geschätzt wird. Das 95%-Vertrauensintervall für den

$$\label{eq:mittel} \text{Mittelwert } \overline{X} \text{ lautet } P \Bigg(\overline{X} - c \cdot \frac{\sigma_X}{\sqrt{n}} \leq \mu_X \leq \overline{X} + c \cdot \frac{\sigma_X}{\sqrt{n}} \Bigg) = 0,95 \text{ . Um c zu bestimmen, wird umgeformt:}$$

$$P\left(\overline{X}-c\cdot\frac{\sigma_X}{\sqrt{n}}\leq\mu_X\leq\overline{X}+c\cdot\frac{\sigma_X}{\sqrt{n}}\right)=F(c)-F(-c)=2\cdot F(c)-1=0,95\text{ , so dass }F(c)=0,975\text{ folgt.}$$

Mit df = n = 9 Freiheitsgraden folgt aus der t-Tabelle der Wert c = 2,262, so dass das Vertrauensintervall

$$10, 5-2, 262 \cdot \frac{10, 92}{\sqrt{10}} \leq \mu_X \leq 10, 5+2, 262 \cdot \frac{10, 92}{\sqrt{10}} \ , \ \text{bzw.} \quad 2, 69 \leq \mu_X \leq 18, 31 \ \text{lautet. Somit bewirkt diese Statis-10}$$

tik-Aufgabe mit 95-prozentiger Sicherheit eine Erhöhung des systolischen Blutdrucks um einen Wert zwischen 2,69 und 18,31. Mit der Normalverteilung von Gaus wäre c=1,95, also $3,77 \le \mu_X \le 17,23$.

VI Signifikanztest für die Abweichung eines Mittelwertes \overline{x} einer normalverteilten Grundgesamtheit vom Sollwert μ_0

Beispiel 1: Zweiseitiger Test

Der Hersteller eines Getränkeabfüllautomaten garantiert eine durchschnittliche Füllmenge von 0,7 Liter je Flasche. Eine Stichprobe von 36 Flaschen ergab folgende Füllmengen:

	0,69	0,70	0,71	0,69	0,69	0,70	0,70	0,69	0,69	0,70	0,68	0,70	0,69	0,69	0,72	0,71	0,68	0,70
Г																		
Γ	0,69	0,69	0,70	0,68	0,70	0,69	0,71	0,70	0,70	0,69	0,70	0,68	0,70	0,69	0,67	0,69	0,70	0,69

Frage: Ist die Angabe des Händlers glaubhaft?

Es sei X die Füllmenge in Liter.

- $\begin{tabular}{ll} @ & Man geht davon aus, dass die Nullhypothese & H_0 wahr ist. \\ \end{tabular}$

Sie wird irrtümlich abgelehnt, wenn der Mittelwert \bar{x} zu sehr von $\mu_0 = 0.7$ abweicht, d.h. wenn

$$|x - \mu_0| \ge c$$
 gilt, d.h. wenn $x \le \mu_0 - c$ oder $x \ge \mu_0 + c$ eintritt.

Definition: Die Wahrscheinlichkeit α , die Nullhypothese irrtümlich abzulehnen, heißt **Irrtumswahrscheinlichkeit** α . $1-\alpha$ heißt auch **statistische Sicherheit**.

Der Ablehnungsbereich von H_0 ist dann bei diesem zweiseitigen Test gegeben durch

$$\boxed{P(\left| x - \mu_0 \right| \ge c) = \alpha} \quad \text{bzw.} \quad \boxed{P(x \le \mu_0 - c \text{ oder } x \ge \mu_0 + c) = \alpha}.$$

③ Der Mittelwert beträgt $\bar{x} = 25/36 \approx 0,6944$.

Die Stichprobenvarianz beträgt

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2} = \frac{1}{35} \sum_{i=1}^{36} \left(x_{i} - \frac{25}{36} \right)^{2} = \frac{1}{35} \cdot \frac{157}{45000} = \frac{157}{1575000} \approx 0,00009968$$

$$oder \ s^2 = \frac{n}{n-1} \cdot \sigma_X^2 = \frac{n}{n-1} \cdot \left(E(X^2) - E(X)^2 \right) = \frac{36}{35} \cdot \left(\frac{1}{36} \cdot 17,3646 - \left(\frac{25}{36} \right)^2 \right) = \frac{157}{1575000} \approx 0,00009968 \ .$$

$$\Phi\!\left(\frac{\mu_0 - c - \mu_0}{\sigma_{\overline{X}}}\right) + 1 - \Phi\!\left(\frac{\mu_0 + c - \mu_0}{\sigma_{\overline{X}}}\right) = \Phi\!\left(-\frac{c}{\sigma_{\overline{X}}}\right) + 1 - \Phi\!\left(\frac{c}{\sigma_{\overline{X}}}\right) = 1 - \Phi\!\left(\frac{c}{\sigma_{\overline{X}}}\right) + 1 - \Phi\!\left(\frac{c}{\sigma_{\overline{X}}}\right) = 2 - 2 \cdot \Phi\!\left(\frac{c}{\sigma_{\overline{X}}}\right) = 2 - 2 - 2 \cdot \Phi\!\left(\frac{c}{\sigma_{\overline{X}}}\right) = 2 - 2 - 2 \cdot \Phi\!\left(\frac{c}{\sigma_{\overline{X}}}\right)$$

$$\text{d.h. } \Phi\!\left(\frac{c}{\sigma_{\overline{v}}}\right) \!=\! 1 \!-\! \frac{\alpha}{2} \text{ . Mit } \sigma_{\overline{X}} = \! \frac{s}{\sqrt{n}} \text{ folgt } \Phi\!\left(\frac{c}{s} \!\cdot\! \sqrt{n}\right) \!=\! 1 \!-\! \frac{\alpha}{2} \text{ .}$$

Wir wählen z.B. $\alpha = 0.05 = 5\%$, d.h. in nur 5% aller Fälle wird eine wahre Nullhypothese irrtümlich abge-

lehnt. Dann gilt $\Phi\left(\frac{c}{s}\cdot\sqrt{n}\right) = 0,975$. Nach der Φ – Tafel folgt $\frac{c}{s}\cdot\sqrt{n} = 1,96$, (nach der Student-Tafel

2,010 bei n = 49), also c = 1,96 ·
$$\frac{s}{\sqrt{n}}$$
 = 1,96 · $\frac{\sqrt{0,00009968}}{\sqrt{36}}$ $\approx 0,0033$.

Der Ablehnungsbereich lautet also: $\left| \overline{x} - \mu_0 \right| \ge c$, d.h. x < 0, 7 - 0,0033 = 0,6967 oder x > 0, 7 + 0,0033 = 0,7033.

Und $\bar{x} = 25/36 \approx 0,6944$ liegt in diesem Ablehnungsbereich.

Oder: Es ist
$$|x - \mu_0| = |0,6944 - 0,7| = 0,0055 > 0,0033 = c$$
.

Ergebnis: Bei der gegebenen Stichprobe wird die Nullhypothese H_0 : E(X) = 0.7 mit einer Irrtumswahrscheinlichkeit von 5% abgelehnt (verworfen).

Die Gleichung der dargestellten Dichtefunktion lautet

$$f(x) = \frac{1}{\sigma_{\bar{x}} \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x - 0.7}{\sigma_{\bar{x}}}\right)^2} \text{ mit der Standardabweichung}$$

$$\sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{n}} \approx \frac{s}{\sqrt{n}} = \frac{\sqrt{0,00009968}}{\sqrt{36}} \approx 0,00166 \text{ . Der Ablehnungsbereich}$$
 ist markiert.

Beispiel 2: Linksseitiger Test

Eine Schokoladenfabrik garantiert, dass jede Tafel genau 100 g schwer sei und nicht weniger. Es sei X die Masse in g. Eine Stichprobe von 100 Tafeln ergab $\bar{x} = 99,5$ und s = 2,0. Prüfen Sie, ob die Angabe des Herstellers bei einer Irrtumswahrscheinlichkeit von 5% glaubhaft ist.

- ① Aufstellen der Nullhypothese H_0 : E(X) = 100, d.h. $\mu_X = \mu_0$ mit $\mu_0 = 100$ Gegenhypothese H_1 : E(X) < 100.
- ② Man geht davon aus, dass die Nullhypothese H_0 wahr ist. Sie wird irrtümlich abgelehnt, wenn der Mittelwert \bar{x} deutlich kleiner als $\mu_0 = 100$ ist, d.h. wenn $\bar{x} \le \mu_0 c$ gilt.
- $\bar{x} = 99.5$ und s = 2.0 sind gegeben.

① Der Ablehnungsbereich von H_0 ist gegeben durch $P(x \le \mu_0 - c) = \alpha$. Also

$$P(x \le \mu_0 - c) = \Phi\left(\frac{\mu_0 - c - \mu_0}{s / \sqrt{n}}\right) = \Phi\left(\frac{-c \cdot \sqrt{n}}{s}\right) = 1 - \Phi\left(\frac{c \cdot \sqrt{n}}{s}\right) = \alpha,$$

d.h.
$$\Phi\left(\frac{c \cdot \sqrt{n}}{s}\right) = 1 - \alpha = 0,95$$
.

Die Tabelle liefert $\frac{c \cdot \sqrt{n}}{s} = 1,64$, d.h. c = 0,328 , so dass der Ab-

lehnungsbereich durch $x \le \mu_0 - c \approx 100 - 0,329 = 99,671$ gegeben ist. Die Behauptung des Herstellers lässt sich bei einer Irrtumswahrscheinlichkeit von 5% nicht aufrechterhalten.

Die Gleichung der dargestellten Dichtefunktion lautet

$$f(x) = \frac{1}{\sigma_x^- \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x - 100}{\sigma_x^-}\right)^2} \text{ mit der Standardabweichung}$$

$$\sigma_{\overline{x}} = \frac{s}{\sqrt{n}} = \frac{2}{\sqrt{100}} = 0, 2$$
. Der Ablehnungsbereich ist markiert.

Beispiel 3: Rechtsseitiger Test

Eine Arzneimittelfirma bietet zur Behandlung einer bestimmten Krankheit ein Präparat an, das angeblich im Durchschnitt höchstens bei 10% der behandelten Patienten Nebenwirkungen hinterlässt. Es sei X die Anzahl der Patienten mit Nebenwirkungen.

- a. Bei Überprüfung zeigten von 20 behandelten Patienten 5 Nebenwirkungen. Lässt sich daraus mit einer statistischen Sicherheit von 99% ein Widerspruch gegen die Behauptung der Firma herleiten? Hinweis: Verwenden Sie die Binomialverteilung.
- b. Bei Überprüfung zeigten von 200 behandelten Patienten 50 Nebenwirkungen. Lässt sich daraus mit einer statistischen Sicherheit von 99% ein Widerspruch gegen die Behauptung der Firma herleiten? Hinweis: Nähern Sie die Binomialverteilung durch die Normalverteilung an.

a. ① Aufstellen der Nullhypothese $H_0: \ E(X) = 20 \cdot 10\% = 2 \ , \ d.h. \ \ \mu_X = \mu_0 \ \ mit \ \ \mu_0 = 2$ Gegenhypothese $H_1: \ E(X) > 2 \ .$

- $\ \ \,$ Man geht davon aus, dass die Nullhypothese $\ \ \,$ H $_0$ wahr ist. Sie wird irrtümlich abgelehnt, wenn deutlich mehr als 2 Patienten Nebenwirkungen zeigen.
- 3 5 Patienten zeigen Nebenwirkungen.

① X ist $B_{20;0,1}$ verteilt. Der Ansatz lautet $\sum_{k=c}^{20} B_{20;0,1}(k) = \sum_{k=c}^{20} {20 \choose k} \cdot 0, 1^k \cdot 0, 9^{20-k} = 0,01$ mit dem Ableh-

 $nungsbereich \ X \geq c \text{ , bzw.} \quad \sum_{k=0}^{c-1} B_{20;0,1}(k) = \sum_{k=0}^{c-1} \binom{20}{k} \cdot 0, 1^k \cdot 0, 9^{20-k} = 0,99 \text{ .}$

Es gilt $\sum_{k=0}^{5} B_{20;0,1}(k) = 0,9887$ und $\sum_{k=0}^{6} B_{20;0,1}(k) = 0,9976$.

Es folgt c-1=5, d.h. c=6. 5 gehört also nicht zum Ablehnungsbereich der Nullhypothese. Der Test spricht für die Behauptung der Firma.

b. ① Aufstellen der Nullhypothese

$$H_0$$
: $E(X) = 200 \cdot 10\% = 20$,

d.h.
$$\mu_X = \mu_0 \text{ mit } \mu_0 = 20$$

$$H_1: E(X) > 20.$$

② Man geht davon aus, dass die Nullhypothese H_0 wahr ist. Sie wird irrtümlich abgelehnt, wenn deutlich mehr als 20 Patienten Nebenwirkungen zeigen, d.h. wenn $X \ge 20 + c$

3 50 Patienten zeigen Nebenwirkungen.

Es ist
$$\sigma = \sqrt{npq} = \sqrt{200 \cdot 0, 1 \cdot 0, 9} = \sqrt{18}$$
.

 $\ \ \, \oplus \ \ \,$ Der Ablehnungsbereich von $\ \ \, \mathrm{H}_0 \,$ ist gegeben durch

$$P(X \ge 20 + c) = \alpha$$
, d.h. $P(X < 20 + c) = 1 - \alpha$. Also

$$P(X < 20 + c) = \Phi\left(\frac{20 + c - 20}{\sigma}\right) = \Phi\left(\frac{c}{\sqrt{18}}\right) = 1 - \alpha = 0.99$$
. Die Tabelle liefert $\frac{c}{\sqrt{18}} = 2.33$, d.h.

c=9,9, so dass der Ablehnungsbereich durch $X\geq 29,9$ gegeben ist. Die Behauptung des Herstellers lässt sich bei einer Irrtumswahrscheinlichkeit von 1% nicht aufrecht erhalten.

Die Gleichung der dargestellten Dichtefunktion lautet

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-20}{\sigma}\right)^2} \text{ mit der Standardabweichung } \sigma = \sqrt{18} \text{ . Der Ablehnungsbereich ist markiert.}$$

VII Fehler 1. Art und 2. Art beim Testen

Fehler 1. Art: Eine richtige Hypothese wird abgelehnt.

Fehler 2. Art: Eine falsche Hypothese wird nicht abgelehnt.

	Hypothese H ist richtig	Hypothese H ist falsch
Hypothese H wird abgelehnt	Fehler 1. Art (α-Fehler)	richtige Entscheidung
Hypothese H wird beibehalten	richtige Entscheidung	Fehler 2. Art (β-Fehler)

Definition: Die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen, heißt **Irrtumswahrscheinlichkeit** α oder **Risiko 1. Art**. Die Wahrscheinlichkeit, einen Fehler 2. Art zu begehen, heißt **Risiko 2. Art** und wird mit β bezeichnet.

Beispiel: Bei einer normalverteilten Grundgesamtheit mit der Varianz 4 soll durch einen zweiseitigen Test mit der Irrtumswahrscheinlichkeit 0,05 geprüft werden, ob der Mittelwert der Grundgesamtheit signifikant vom Sollwert 5 abweicht. Bestimmen Sie das Risiko 2. Art, wenn der tatsächliche Mittelwert der Grundgesamtheit 5,4 beträgt.

Der Ablehnungsbereich von H_0 : $\mu_0 = 5$ lautet $\left| \overline{X} - \mu_0 \right| > c$, so dass $P\left(\left| \overline{X} - \mu_0 \right| > c \right) = \alpha$ gilt. Es folgt

$$1 - P\left(\left|\overline{X} - \mu_0\right| \le c\right) = \alpha \text{ , also } P\left(\left|\overline{X} - \mu_0\right| \le c\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\overline{X} - \mu_0 \le c\right) - P\left(\overline{X} - \mu_0 \le -c\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le c\right|\right) - P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le c\right|\right) - P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le c\right|\right) - P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le c\right|\right) - P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le c\right|\right) - P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,95 \text{ , so dass } P\left(\left|\overline{X} - \mu_0 \le -c\right|\right) = 1 - \alpha = 0,9$$

$$=\Phi\left(\frac{\mu_0+c-\mu_0}{\sqrt{4}/\sqrt{n}}\right)-\Phi\left(\frac{\mu_0-c-\mu_0}{\sqrt{4}/\sqrt{n}}\right)=\Phi\left(\frac{c\cdot\sqrt{n}}{2}\right)-\Phi\left(-\frac{c\cdot\sqrt{n}}{2}\right)=\Phi\left(\frac{c\cdot\sqrt{n}}{2}\right)-1+\Phi\left(\frac{c\cdot\sqrt{n}}{2}\right)=2\cdot\Phi\left(\frac{c\cdot\sqrt{n}}{2}\right)-1=0,95$$

Es folgt
$$\Phi\left(\frac{c \cdot \sqrt{n}}{2}\right) = 0,975$$
. Nach der Tabelle folgt $\frac{c \cdot \sqrt{n}}{2} = 1,96$, d.h. $c = 3,92/\sqrt{n}$.

 $\text{Der Annahmebereich von } H_0: \ \mu_0 = 5 \quad \text{lautet somit} \quad \left| \overline{X} - 5 \right| \leq \frac{3,92}{\sqrt{n}} \ \text{, d.h.} \quad 5 - \frac{3,92}{\sqrt{n}} \leq \overline{X} \leq 5 + \frac{3,92}{\sqrt{n}} \ .$

Das Risiko 2. Art beträgt nun $\beta = P\left(5 - \frac{3,92}{\sqrt{n}} \le \overline{X} \le 5 + \frac{3,92}{\sqrt{n}}\right)$, wobei aber $\mu_0 = 5,4$ beträgt:

$$\beta = P\Bigg(5 - \frac{3,92}{\sqrt{n}} \leq \overline{X} \leq 5 + \frac{3,92}{\sqrt{n}}\Bigg) = P\Bigg(\overline{X} \leq 5 + \frac{3,92}{\sqrt{n}}\Bigg) - P\Bigg(\overline{X} \leq 5 - \frac{3,92}{\sqrt{n}}\Bigg) =$$

$$= \Phi\left(\frac{5 + \frac{3,92}{\sqrt{n}} - 5,4}{\frac{\sqrt{4}}{\sqrt{n}}}\right) - \Phi\left(\frac{5 - \frac{3,92}{\sqrt{n}} - 5,4}{\frac{\sqrt{4}}{\sqrt{n}}}\right) =$$

$$= \Phi\Big(1,96-0,2\cdot\sqrt{n}\,\Big) - \Phi\Big(-1,96-0,2\cdot\sqrt{n}\,\Big)\,.$$

 $\beta = \Phi(-0.04) - \Phi(-3.96) = \Phi(3.96) - \Phi(0.04) = 0.4840$, was sehr groß ist.

der Standardabweichung $\sigma = \frac{2}{\sqrt{100}} = 0, 2$.

Der Annahmebereich von H_0 : $\mu_0 = 5$ ist durch zwei senkrechte Striche gekennzeichnet. Das Risiko 2. Art ist farblich markiert.

 $\beta = \Phi\Big(1,96-0,2\cdot\sqrt{n}\,\Big) - \Phi\Big(-1,96-0,2\cdot\sqrt{n}\,\Big) \text{ nimmt mit}$ wachsendem n ab:

n	10	100	400	600	
β	0,903	0,484	0,021	0,002	

Heinz Göbel 23.11.2022 Seite 13 von 13