

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Integrados Analógicos

Design de um Amplificador

João Bernardo Sequeira de Sá n.º 68254 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

Índice

1	Introdução	1
2	Funcionamento Teórico do Circuito	2
3	Dimensionamento dos Transístores	4
	3.1 Slew-Rate	4
	3.2 Slew-Rate, Ganho, Largura de Banda e Margem de Fase	11
	3.3 Budget da Corrente	17
4	$ m extbf{\acute{A}rea}$	21
5	Simulações de Monte Carlo e Corners	22
6	Conclusões	23

1 Introdução

Pretende-se projectar um amplificador folded cascode CMOS OTA de dois andares de acordo com as especificações da seguinte tabela.

	Tabela 1:	Características	do am	plificador	a ı	orojectar.
--	-----------	-----------------	-------	------------	-----	------------

Especificação	Símbolo	Valor
Tensão de Alimentação	Vdd	3.3 V
Ganho para Sinais de Baixa Amplitude	Av	70 dB
Largura de Banda	Bw	60 kHz
Margem de Fase	PM	60°
Capacidade da Carga	CL	0.25 pF
Slew-Rate	SR	200 V/μs
Budget da Corrente	IDD	400 μΑ
Área de <i>Die</i>	/	0.02 mm ²

O circuito de ponto de partida para a realização do projecto é apresentado de seguida.

Figura 1: Circuito do amplificador a projectar.

2 Funcionamento Teórico do Circuito

O circuito a desenvolver é do tipo folded cascode CMOS OTA (Operational Transconductance Amplifier). Os amplificadores OTA são caracterizados por apresentar ganhos e valores de impedância de saída elevados. O valor elevado da impedância de saída faz com que sejam especialmente indicados para cargas capacitivas podendo, no entanto, servir para cargas resistivas pequenas através de feedback.

Quando se compara o folded cascode com o telescopic observa-se que se tem o dobro da corrente e ganhos muito similares. No entanto, deve-se notar que se tem melhor largura de banda, slew-rate, estabilidade e impedância de saída mais elevada. O compromisso por estas qualidades é uma velocidade de resposta inferior, assim como índices de ruido superiores e uma pior resposta na frequência.

Analisando o circuito da Figura 1 em pormenor identificam-se 5 blocos, sendo importante analisar a função de cada um, para que melhor se possa compreender o funcionamento e comportamento do circuito na sua totalidade. O Bloco 1 representa o transístor responsável pela polarização do circuito. O Bloco 2 representa um par diferencial PMOS. O Bloco 3 corresponde a um espelho de corrente cascode básico do tipo PMOS. O Bloco 4 actua como isolamento. O Bloco 5 funciona como fonte de corrente que "puxa" sempre I (corrente de M_{11}) para o ground.

Relativamente ao par diferencial, o circuito pode funcionar de acordo com três situações:

- $v_{in-} = v_{in+} \rightarrow \text{situação } 1$
- $v_{in-} > v_{in+} \rightarrow \text{situação } 2$
- $v_{in-} < v_{in+} \rightarrow \text{situação } 3$

Na situação 1, cada transístor do par diferencial, M_1 e M_2 , tem metade da corrente que passa em M_{11} e o circuito apresenta o seguinte comportamento.

Figura 2: Funcionamento do circuito na situação 1.

Considerando agora o extremo da situação 2, a tensão na gate de M_1 toma o valor máximo da fonte de tensão que polariza esse transístor e a tensão na gate de M_2 é nula. Assim, o circuito apresenta o seguinte comportamento.

Figura 3: Funcionamento do circuito no extremo da situação 2.

Considerando agora o extremo da situação 3, a tensão na gate de M_2 toma o valor máximo da fonte de tensão que polariza esse transístor e a tensão na gate de M_1 é nula. Assim, o circuito apresenta o seguinte comportamento.

Figura 4: Funcionamento do circuito no extremo da situação 3.

3 Dimensionamento dos Transístores

A primeira fase no projecto do amplificador passou por decidir as dimensões dos vários transístores. Sabe-se que a dimensão de um transístor é dada pelos parâmetros W (width - largura) e L (lenght - comprimento).

3.1 Slew-Rate

Para efectuar o primeiro dimensionamento dos transístores teve-se em consideração o critério da slew-rate, onde se pretende atingir um valor de 200 V/ μ s.

O valor de L ficou decidido à partida como sendo 1 μ m para todos os transístores do circuito, isto porque se tem como rule of thumb que, para se evitar o efeito de modulação do comprimento do canal, o valor de L deve ser maior ou igual a 1 μ m. O valor de W pode ser calculado recorrendo à equação que determina a corrente num transístor. Para um transístor do tipo P a corrente é dada por

$$I_D = \frac{1}{2}\mu_n C_{ox} \times \left(\frac{W}{L}\right) \times \left(V_{GS} - V_{TH}\right)^2 = k_P \times \left(\frac{W}{L}\right) \times V_{OD}^2,\tag{3.1}$$

sendo que para um transístor do tipo N troca o valor do factor de ganho, em vez de k_P tem-se k_N . Da equação anterior pretende-se determinar o valor de W dos vários transístores, sendo então necessário saber o valor de L (já determinado anteriormente), o valor da corrente que passa nos transístores, I_D , o valor de k e o valor da tensão de overdrive, V_{OD} .

O valor da tensão de overdrive definiu-se como sendo de 0.2 V para todos os transístores. Este valor deriva de outra rule of thumb que indica que se deve escolher para V_{OD} um valor de 0.2V - menos do que isso e fica-se demasiado sensível a V_{TH} e mais do que isso e fica-se com pouca margem de saturação, que é uma medida do quão dentro da saturação se está, sendo calculada por $V_{DS} - V_{OD}$.

O valor de k pode ser obtido com recurso aos process parameters, sendo de referir que o valores que se retiram das datasheets representam apenas $\mu_n C_{ox}$, pelo que têm de ser multiplicados por 1/2 para que se obtenha o factor de ganho final, como se pode ver na próxima equação, para o caso de um transístor do tipo P:

$$k_P = \frac{1}{2}\mu_n C_{ox} = \frac{1}{2} \times KP_P.$$
 (3.2)

Os valores já conhecidos que ajudam a obter o valor de W através da equação (2.1) encontram-se esquematizados na seguinte tabela.

Tabela 2: Valores especificados para algumas das características que definem os transístores.

Especificação	Método de Cálculo	Símbolo	Valor
Comprimento	rule of thumb	L	1 μm
Tensão de Overdrive	rule of thumb	Vod	0.2 V
Factor de Ganho (tipo P) datasheet	process parameters	KPp	58 μA/V²
Factor de Ganho (tipo N) datasheet	process parameters	KPn	175 μA/V²
Factor de ganho (tipo P)	equação (2.2)	kР	29 μA/V²
Factor de ganho (tipo N)	equação (2.2)	kn	87.5 μA/V²

Para determinar os valores das correntes que passam nos vários transístores começou-se por determinar a corrente máxima à saída do circuito. Existe uma relação entre a slew-rate, SR, e a corrente de saída máxima, $I_{out_{max}}$ expressa por

$$SR = \frac{I_{out_{max}}}{C_L},\tag{3.3}$$

que nos permite concluir que quanto maior for a corrente de saída, mais depressa é carregado o condensador que constitui a carga.

Com os valores da Tabela 1 obtém-se:

$$SR = \frac{I_{out_{max}}}{C_L} \leftrightarrow I_{out_{max}} = 200 \times 0.25 \times 10^{-6} \text{ A} = 50 \ \mu\text{A}.$$
 (3.4)

Analisando as Figuras 3 a 4 percebe-se que a corrente $I_{out_{max}}$ corresponde a I/2, pelo que o valor máximo de I corresponde a 100 μ A. O dimensionamento dos transístores foi feito tendo em conta o ponto de funcionamento em repouso (PFR), situação 1, de acordo com

$$W_P = \frac{I_D \times L}{k_P \times V_{QD}^2} \to \text{transistor tipo PMOS};$$
 (3.5)

$$W_N = \frac{I_D \times L}{k_N \times V_{OD}^2} \to \text{transistor tipo NMOS}.$$
 (3.6)

Os valores obtidos para a *width* dos vários transístores apresenta-se na tabela seguinte. De notar que os valores foram arredondados ao inteiro mais próximo.

Tabela 3: Valores de W dos transístores que constituem o circuito, calculados em função do PFR.

Transístor	Tipo	Corrente	Observações	W
M1	PMOS	ID= Imax/2 = 50 μA	/	43 μm
M ₂	PMOS	ID= Imax/2 = 50 μA	/	43 μm
Мз	NMOS	ID= Imax/2 = 50 μA	/	14 μm
M4	NMOS	ID= Imax/2 = 50 μA	/	14 μm
M5	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M6 com rácio 1:1	43 μm
M6	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M5 com rácio 1:1	43 μm
M7	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M8 com rácio 1:1	43 μm
M8	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M7 com rácio 1:1	43 μm
M9	NMOS	IDmax = Imax = 100 μA	/	29 μm
M10	NMOS	IDmax = Imax = 100 μA	/	29 μm
M ₁₁	PMOS	IDmax = Imax = 100 μA	/	86 µm

De referir que os transístores M_5 e M_6 têm as mesmas dimensões, tal como pretendido, pois formam um espelho de corrente que tem como rácio 1:1. O mesmo se aplica aos transístores M_7 e M_8 .

Com o dimensionamento dos transístores feito procede-se a uma primeira simulação do circuito, com o intuito de verificar o seu funcionamento. Porém, antes de simular o circuito alterou-se a sua polarização, para que em vez de ser feita em tensão seja feita em corrente. Isto é feito porque uma

polarização em corrente permite ter mais controlo, sendo que quando é feita em tensão não se tem garantias dos valores pretendidos.

Assim, o circuito da Figura 1 foi alterado para o apresentado de seguida.

Figura 5: Primeiro circuito de simulação do amplificador.

Na figura anterior pode-se ver o valor de W utilizado nos vários transístores, sendo que para todos o valor de L é de 1 μ m.

Como se pode ver, o transístor M_{11} que é originalmente polarizado em tensão com V_{BIAS} , Bloco 1, foi substituído por um espelho de corrente básico que é polarizado em corrente com I_{BIAS} . A polarização feita com recurso a V_{BIAS_2} e V_{BIAS_3} foi tanbém alterada para passar a ser feita em corrente com I_{BIAS_2} , através de um espelho de corrente cascode low-voltage. O valor de I_{BIAS} e de I_{BIAS_2} é de $100~\mu\text{A}$.

De notar que os transístores M_{11_1} e M_{11_2} têm a mesma dimensão que aquela que foi determinada para M_{11} , uma vez que a corrente que os atravessa é também 100 μ A e são do tipo PMOS. Já os transístores M_{12} e M_{14} têm a mesma dimensão que M_9 e M_{10} , uma vez que a corrente que os atravessa é também 100 μ A e são do tipo NMOS. O transístor M_{13} , de acordo com o funcionamento teórico de um espelho de corrente *cascode low-voltage*, deve ter um W 3 vezes inferior ao de M_{12} , assim como deve funcionar sempre no tríodo, o que implica uma *width* de 9 μ m.

Na Figura 6 encontra-se o schematic criado no Cadence correspondente ao da Figura 5.

Figura 6: Schematic do circuito criado para a primeira simulação.

Com o schematic anterior projectou-se um símbolo e criaram-se novos schematics de testbench, como se pode ver nas Figura 7, 8 e 9.

Figura 7: Schematic do testbench que permite simular o circuito em testes transiente e de resposta DC.

Figura 8: Schematic do testbench que permite simular o circuito em testes de resposta AC.

Figura 9: Schematic do testbench que permite simular o circuito em testes da slew-rate.

Recorrendo ao circuito da Figura 7 efectuou-se uma análise transiente durante 2 ms. Para verificar se o circuito funciona como pretendido otpou-se por verificar se todos os transístores do amplificador tem a corrente I_D pretendida, ou seja, de acordo com a Figura 1, e se estão na região de saturação.

Figura 10: Valores do PFR do schematic da Figura 6.

A região de funcionamento dos transístores pode ser vista na secção *region*: 0 implica que o transístor está ao corte, 1 que está no tríodo, 2 que está na zona de saturação e 3 na região de *subthreshold*.

Como se pode ver, todos os transístores do amplificador estão na região 2, tal como pretendido, assim como os que polarizam através de I_{BIAS} . Os transístores M_{12} e M_{14} do espelho de corrente cascode low-voltage estão também saturados e o transístor M_{13} está no tríodo, tal como se queria.

Porém, apesar de os transístores estarem a funcionar na zona correcta, o valor das suas correntes está ligeiramente afastado do pretendio. Os transístores M_3 , M_4 , M_5 , M_6 , M_7 e M_8 deveriam ter um valor de I_D de 50 μ A, sendo, no entanto, o valor registado pela simulação de 42.6 μ A. Para os transístores M_9 e M_{10} esperava-se um valor de I_D de 100 μ A, sendo, no entanto, o valor registado pela simulação de 91.57 μ A. As correntes do espelho de corrente básico estão de acordo com o esperado,

sendo que os transístores M_1 e M_2 têm um valor de corrente de 48.97 μA , um valor próximo do esperado de 50 μA .

Até agora, para efectuar o dimensionamento dos transístores o critério que se teve em consideração foi a slew-rate. Assim, com recurso à calculadora do Cadence calculou-se o seu valor, sendo este de $170.7 \times 10^6 \text{ V/segundo} \leftrightarrow 169.9 \text{ V/}\mu\text{s}$. O valor pretendido é de $200 \text{ V/}\mu\text{s}$, verificando-se então alguma diferença entre os dois valores.

Relativamente aos valores de V_{GS} para os vários transístores, os valores teóricos esperados foram calculados com base nos process parameters da seguinte forma:

$$V_{TH_{0_R}} \approx 0.6V \rightarrow V_{GS} = V_{OD} + V_{TH_N} = 0.2 + 0.6 = 0.8V \rightarrow \text{transistor tipo PMOS};$$
 (3.7)

$$V_{TH_{0_N}} \approx 0.5V \rightarrow V_{GS} = V_{OD} + V_{TH_N} = 0.2 + 0.5 = 0.7V \rightarrow \text{transistor tipo NMOS}.$$
 (3.8)

Na Figura 10 pode-se verificar que certos transístores do amplificador sofrem de efeito de corpo, ou seja, não têm o *bulk* à mesma tensão que a *source*. Para transístores NMOS tal ocorre se a *source* não estiver ligada a GND e, para transístores PMOS, se a *source* não estiver ligada a VDD.

Quando um transístor sofre de efeito de corpo o seu valor de V_{TH} desvia-se de V_{TH_0} (tensão de limiar na ausência de efeito de corpo) e, como tal, a sua tensão V_{GS} toma também valores diferentes. De facto, os transístores PMOS que sofrem de feito de corpo (M₁, M₂, M₅ e M₆), quando comparados aos que não sofrem, apresentam uma tensão de limiar mais afastada do valor da equação (3.7).

Na tabela seguinte pode-se ver as especificações pretendidas e as que se verificam até ao momento, sendo que a verde se assinalam aquelas que se considera cumpridas e a vermelho aquelas que se pretende melhorar. É de referir que ainda não se tem em consideração o critério da área, pois essa é uma preocupação final.

	Va	lor
Especificação	Teórico	Experimental
Ganho para Sinais de Baixa Amplitude	70 dB	66.01 dB
Largura de Banda	60 kHz	87.45 kHz
Margem de Fase	60°	54.59°
Slew-Rate	200 V/μs	169.9 V/μs
Budget da Corrente	400 μΑ	383.14 μΑ
Área de <i>Die</i>	0.02 mm ²	/

Tabela 4: Especificações actuais do circuito.

Face à ligeira discrepância nos valores obtidos para a corrente nos vários transístores e para a slew-rate, decidiu-se proceder a um ajuste nas dimensões dos transístores para se obter valores mais próximos dos esperados. Este ajuste foi feito ao nível dos transístores M_3 e M_4 pois, ao aumentar as suas dimensões faz-se variar as suas tensões V_{GS} , e como tal V_{BIAS_2} , o que resulta num aumento da tensão V_{DS} de M_9 , que por sua vez faz aumentar a corrente daquele ramo.

O ajuste feito nesses dois transístores passou por aumentar o seu rácio W/L para o dobro, ou seja, o valor de W passou de 14 μ m para 28 μ m. À primeira vista não parecer ser um ajuste fino, no entanto, está associado à existência de um efeito de segunda-ordem.

De facto, quando se é mais criterioso, a corrente de um transístor não é calculada de acordo com a equação (2.1), mas sim de acordo com

$$I_D = \frac{1}{2}\mu_n C_{ox} \times \left(\frac{W}{L}\right) \times \left(V_{GS} - V_{TH}\right)^2 \times \left(1 + \lambda V_{DS}\right) = k_P \times \left(\frac{W}{L}\right) \times V_{OD}^2 \times \left(1 + \lambda V_{DS}\right). \tag{3.9}$$

Como se pode ver, sobre o valor da corrente existe um efeito de segunda-ordem com a introdução da parcela $(1 + \lambda V_{DS})$. Assim se explica que, quando o valor de W de M_3 e M_4 passa para o dobro, a corrente nos transístores aumenta em aproximadamente 7μ A, conseguindo-se obter o valor desejado de 50μ A.

Fizeram-se mais ajustes finos nos transístores que polarizam o amplificador, sendo que o transístor M_{12} passou para um W de 28 μ m e o transístor M_{13} para um W de 7 μ m. Estes ajustes nos transístores foram feitos com o objectivo de melhorar a corrente dos respectivos ramos.

Na Figura 11 apresenta-se o circuito com o ajuste nas dimensões dos transístores.

Figura 11: Schematic do circuito com os valores de W ajustados.

Figura 12: Valores do PFR do schematic da Figura 9.

Como se pode ver na figura anterior, o valor da corrente nos transístores M_3 a M_8 passou para 50.39 μA , um valor muito próximo do pretendido de 50 μA . Relativamente aos transístores M_9 e M_{10} , passaram a ter uma corrente de 99.36 μA , um valor também bastante próximo do pretendido de 100 μA .

Face a estes ajustes mediu-se novamente o valor da slew-rate para verificar se o critério já é cumprido. O valor medido foi de $199.9 \times 10^6 \text{ V/segundo} \leftrightarrow 199.9 \text{ V/}\mu\text{s}$, um valor que se considera óptimo.

Assim, o estado actual do circuito é apresentado de seguida.

Tabela 5: Especificações.

	Valor				
Especificação	Teórico	Experimental			
Ganho para Sinais de Baixa Amplitude	70 dB	75.01 dB			
Largura de Banda	60 kHz	35.56 kHz			
Margem de Fase	60°	52.51°			
Slew-Rate	200 V/μs	199.9 V/μs			
Budget da Corrente	400 μΑ	398.72 μΑ			
Área de <i>Die</i>	0.02 mm ²	/			

Figura 13: Circuito actual.

3.2 Slew-Rate, Ganho, Largura de Banda e Margem de Fase

Por análise da tabela anterior, verifica-se que o valor da largura de banda corresponde a metade do pretendido, sendo que depois se torna mais complicado conseguir recuperar sem comprometer a slew-rate já obtida.

Assim, optou-se por uma nova abordagem em que fica decidido não alterar o rácio W/L dos transístores, com vista a não modificar o valor da sua transcondutância e não comprometer a sua região de funcionamento.

Olhando então para o primeiro ajuste feito, optou-se por modificar o valor de L dos transístores M_3 e M_4 de maneira igual à modificação de W, ou seja, L passa também para o dobro, ficando a 2 μ m. Relativamente ao ajuste fino feito nos transístores M_{12} e M_{13} , opta-se por não manter o seu rácio W/L, algo que não é problemático, uma vez que não fazem parte do circuito do amplificador, mas sim parte de um circuito que o polariza em corrente. Face a esta modificação o circuito comporta-se da seguinte maneira.

Tabela 6: Especificações.

	Valor				
Especificação	Teórico	Experimental			
Ganho para Sinais de Baixa Amplitude	70 dB	70.13 dB			
Largura de Banda	60 kHz	55.11 kHz			
Margem de Fase	60°	44.66°			
Slew-Rate	200 V/μs	171.4 V/μs			

Figura 14: Circuito actual.

Como se pode ver pela Tabela 6, a slew-rate desceu drasticamente face ao valor da Tabela 5. Assim, conclui-se que passar o rácio W/L dos transístores M_3 e M_4 para o dobro é muito e optou-se por aumentar, numa primeira fase, em 30% face ao valor original de $W=14~\mu m$ e $L=1~\mu m$. Também nesta altura, verificou-se que considerar apenas o critério da slew-rate como estando isolado dos demais critérios não é a melhor abordagem. De facto, optou-se por ter agora também em consideração o critério do ganho, da largura de banda e da margem de fase - tomou-se esta decisão pois uma análise teórica de todos estes factores revela o quão afectados são uns pelos outros.

Veja-se: o ganho do circuito é dado pela equação (3.10) e a largura de banda, que está associada à frequência do pólo dominante, é dada pela equação (3.11).

$$A_v = g_{m_1} R_o = g_{m_1} \left[\left(g_{m_4} r_{o_4} \left(r_{o_2} / / r_{o_{10}} \right) \right) / \left(g_{m_6} r_{o_6} r_{o_8} \right) \right]; \tag{3.10}$$

$$f_p = \frac{1}{2\pi C_L R_o} = \frac{1}{2\pi C_L \left[\left(g_{m_4} r_{o_4} \left(r_{o_2} / / r_{o_{10}} \right) \right) / \left(g_{m_6} r_{o_6} r_{o_8} \right) \right]}.$$
 (3.11)

O parâmetro comum ao ganho e à largura de banda é R_o - resistência de saída do amplificador folded cascode. O valor de R_o depende das resistências de saída de M_2 (r_{o_2}) , M_4 (r_{o_4}) , M_6 (r_{o_6}) , M_8 (r_{o_8}) e M_{10} $(r_{o_{10}})$ e também da transcondutância de M_4 (g_{m_4}) e M_6 (g_{m_6}) .

O valor da transcondutância é directamente proporcional ao rácio W/L e a resistência de saída de um transístor é dada por:

$$r_o = \left[\lambda \frac{1}{2} \mu_n C_{ox} \times \left(\frac{W}{L}\right) \times \left(V_{GS} - V_{TH}\right)^2\right]^{-1}.$$
 (3.12)

Sabendo que se procura sempre manter o rácio das dimensões dos transístores vem:

$$g_m$$
: aumentar/diminuir W e aumentar/diminuir $L \to \text{mant\'em valor } de \ g_m$ (3.13)

$$r_o: \left\{ \begin{array}{l} \text{aumentar } W \text{ e aumentar } L \rightarrow \text{ aumenta valor de } de \ r_o \\\\ \text{diminuir } W \text{ e diminuir } L \rightarrow \text{ diminui valor de } de \ r_o \end{array} \right. \tag{3.14}$$

Quando se analisa o comportamento dos amplificador em altas frequências, é necessário verificar a estabilidade do amplificador, ou seja verificar a margem de fase. Como o comportamento dos transístores não é constante com a frequência, o ganho diminui drasticamente para altas frequências. Esta diminuição deve-se ao facto da existência de dois tipos de efeitos capacitivos internos - efeito capacitivo da *gate* e efeito capacitivo de depleção.

Sendo os efeitos definidos pelas capacidades: C_{db} corresponde à capacidade entre o dreno e a base, C_{gb} é a capacidade entre a gate e o dreno, C_{gs} é a capacidade entre a gate e o dreno, C_{gs} é a capacidade entre a gate e a source e C_{sb} é a capacidade entre a source e a base do transístor.

A margem de fase, PM, é afectada pela frequência do pólo não dominante, sendo dada pela equação (3.15), tal como se pode ver de seguida.

$$f_{np} = \frac{g_{m_3}}{2\pi C_{n_1}} \approx \frac{g_{m_3}}{2\pi \left[C_{gs_3} + C_{db_2} + C_{db_9} \right]}.$$
 (3.15)

Analisando a equação anterior tem-se quatro graus de liberdade: g_{m_3} , C_{gs_3} , C_{db_2} e C_{db_9} . Como foi referido anteriormente, o rácio W/L mantém-se, logo o valor de g_{m_3} é constante. Assim, os parâmetros que afectam de facto a frequência do pólo não dominante são C_{gs_3} , C_{db_2} e C_{db_9} . Estes parâmetros ocorrem quando se analisa o comportamento dos transístores num modelo de altas frequência, De seguida apresentam-se as equações que definem C_{gs} e C_{db} em função de W, L e V_{DB} .

$$C_{gs} = \frac{2}{3}WLC_{ox}; (3.16)$$

$$C_{db} = \frac{C_{db0}}{\sqrt{1 + \frac{V_{DB}}{V_0}}};\tag{3.17}$$

$$PM$$
: aumentar $f_{np} \to \text{diminui valor de } PM$; (3.18)

$$f_{np}: \begin{cases} \text{aumentar } W \text{ e aumentar } L \to \text{ aumenta valor de } C_{gs} \to \text{ diminui valor de } f_{np} \\ \text{aumentar } V_{DB} \to \text{ diminui valor de } C_{db} \to \text{ aumenta valor de } f_{np} \end{cases}$$
(3.19)

As tensões V_{DB_2} e V_{DB_3} são dadas pelas seguintes equações:

$$V_{DB_2} = V_D - V_B = V_{DD} - R_2 I_D - V_{DD} = -R_{o_{11,2}} I_D; (3.20)$$

$$V_{DB_9} = V_D - V_B = V_{DD} - R_9 I_D - GND = V_{DD} - R_{o_9} I_D;$$
(3.21)

Analisando o circuito observa-se que a resistência R_2 depende da resistência de saída do transístor $M_{11.2}$, ou seja de $r_{o_{11.2}}$. A resistência R_9 depende dos transístores M_2 , M_3 , M_5 e M_7 . Veja-se:

$$R_9 = (g_{m_2}r_{o_2}) // (g_{m_3}r_{o_3}r_{o_5}r_{o_7}); (3.22)$$

Em primeiro lugar, decidiu-se obter a slew-rate desejada, não comprometendo as restantes especificações. A solução encontrada foi aumentar a corrente que passa nos transístores M_9 e M_{10} aumentado os seus valores de W e L, ou seja, as suas dimensões, assim como as dos transístores M_3 e M_4 - esta alteração está associada ao efeito de segunda ordem referido anteriormente.

Com a slew-rate próxima do valor pretendido seguiu-se o objectivo de reduzir a largura de banda e aumentar o ganho. Observando as equações anteriores, deduz-se que o aumento de W e de L dos transístores M_7 e M_8 traduz-se num aumento de r_o e numa diminuição de f_p , o que implica um aumento do ganho - iteração 2 na tabela seguinte. Obteve-se, porém, em contrapartida uma diminuição da slew-rate que foi corrigida com o aumento de W e L dos transístores M_9 e M_{10} - iteração 3 da tabela. Verificou-se que esta alteração não originava melhorias ao circuito, pelo contrário, aumentava a largura de banda e provocava uma diminuição do ganho.

Partindo da iteração 2, continuou-se a reduzir a largura de banda e aumentar o ganho, aumentando o W e L dos transístores M_5 , M_6 , M_7 e M_8 , aumentando então o seus valores de r_o - iteração 4 e 5.

De seguida, optou-se por aumentar a margem de fase e, para tal, diminuiu-se o valor de W e L dos transístores M_3 e M_4 o que diminui o V_{DB_9} aumentando a margem de fase - iteração 6. Continuou-se com o objectivo de aumentar a margem de fase, aumentando o W e o L de M_1 e M_2 , alterando a margem de fase como na iteração anterior.

Seguiu-se este raciocínio até chegar às especificações próximas das pretendidas. Relativamente aos rácios de W/L que se procura manter, estes são apresentados na seguinte tabela.

Os rácios de W/L que se procura manter são apresentados na seguinte tabela.

 ${\it Tabela 7: R\'acios das dimens\~oes dos trans\'istores que constituem o amplificador.}$

Transístores	Rácio W/L
M1 e M2	43
Мзе М4	14
M5 e M6	43
M7 e M8	43
M9 e M10	29

Na página seguinte apresenta-se uma tabela que representa a linha temporal das mudanças que foram sendo feitas nas dimensões dos transístores de acordo com a lógica anteriormente explicada. Cada célula da tabela corresponde a um rácio W/L do par de transístores correspondente e, para cada alteração feita numa determinada iteração, representa-se também o actual valor das especificações que se pretende cumprir.

De referir que, os transístores são sempre modificados aos pares, ou seja, um ajuste em M_1 implica igual ajuste em M_2 , sendo o mesmo válido para M_3 e M_4 , M_5 e M_6 , M_7 e M_8 e ainda para M_9 e M_{10} , sendo isto feito para que o circuito não fique em desiquilíbrio.

É de notar também que existem dois transístores, M_5 e M_6 , que possuem um L menor que 1 μm , sendo esta alteração necessária para que se obtivesse um valor de slew-rate bom sem afectar as restantes especificações.

Tabela 8: Linha temporal das alterações nas dimensões dos transístores e valores experimentais registados.

							Iteraç	ões					
	Transístores	1	2	3	4	5	6	7	8	9	10	11	12
	M1 e M2	43/1							55.9/1.3	77.4/1.8			90.3/2.1
	M3 e M4	18.2/1.3					16.8/1.2						
	M5 e M6	43/1			47.3/1.1								
	M7 e M8	43/1	55.9/1.3			64.5/1.5		77.4/1.8			98.9/2.3	111.8/2.6	
Г	M9 e M10	49.3/1.7		55.1/1.9	49.3/1.7								

		Valores											
Especificação						Experim	entais						Teóricos
Ganho [dB]	66.867	67.167	64.47	67.264	67.367	66.8	66.9	67	67.09	67.2	67.24	67.28	70
Largura de Banda [kHz]	81.54	78.74	85.81	76.45	75.51	80.5	79.57	79.26	79.04	78.01	77.57	77.49	60
Margem de Fase [°]	50.2	51.51	50.79	51.46	52.76	53.47	56.14	55.11	54.08	59.25	62.25	62.04	60
Slew-Rate [V/µs]	202.5	198.5	200.3	187.1	184.7	184.5	180.4	180.8	181.2	173.7	168.8	169	200

		Iterações										
Transístores	13	14	15	16	17	18	19	20	21	22	23	
M1 e M2	111.8/2.6											
M3 e M4		18.2/1.3	19.6/1.4	21/1.5		22.4/1.6			23.8/1.7			
M5 e M6							34.4/0.8	30.1/0.7				
M7 e M8					116.1/2.7							
M9 e M10										46.4/1.6	43.5/1.5	

	Valores											
Especificação	Experimentais							Teóricos				
Ganho [dB]	67.31	67.897	68.378	68.787	68.803	69.161	69.299	69.123	69	69.598	70.123	70
Largura de Banda [kHz]	77.4	72.27	68.23	65.31	65.19	62.71	65.2	67.54	67.8	64.53	61	60
Margem de Fase [°]	61.92	61.32	60.67	59.97	60.98	60.24	61.14	61.42	60.58	60.99	61.37	60
Slew-Rate [V/μs]	169.2	169.4	169.4	169.4	167.6	167.5	193.8	201.9	200.6	199	197.2	200

Como se pode ver, quando se atinge última iteração as especificações estão bastante próximas do pretendido e o circuito que permite atingir estas as especificações determinadas anteriormente é:

Figura 15: Circuito actual.

Tabela 9: Especificações actuais do circuito.

	Valor			
Especificação	Teórico	Experimental		
Ganho para Sinais de Baixa Amplitude	70 dB	70.123 dB		
Largura de Banda	60 kHz	61 kHz		
Margem de Fase	60°	61.37°		
Slew-Rate	200 V/μs	197.2 V/μs		
Budget da Corrente	400 μΑ	409.66 μΑ		

Na Figura 16 encontra-se o schematic criado no Cadence correspondente ao da Figura 15.

Figura 16: Schematic do circuito actual.

Apresenta-se de seguida uma simulação do PFR obtida com o Cadence.

Figura 17: Valores do PFR do schematic da Figura 16.

3.3 Budget da Corrente

Com as especificações associadas ao ganho, largura de banda, margem de fase e slew-rate cumpridas, o foco vira agora para o budget de corrente, de modo a que o consumo de corrente no circuito seja o

mínimo possível. De facto, como se pode ver na Tabela 9, o *budget* de corrente actual está acima do especificado e uma mudança no circuito é obrigatória.

Numa primeira abordagem para se corrigir este problema, opta-se por "injectar" uma corrente de 5 μ A na polarização de V_{BIAS} e então ajustar a dimensão dos transístores do espelho de corrente básico, para que a corrente fornecida ao par diferencial seja de 100 μ A na mesma. Olhando apenas para o circuito do espelho de corrente vem:

Figura 18: Espelho de corrente básico que polariza V_{BIAS} em corrente.

Do circuito anterior vem:

$$\frac{I_{OUT}}{I_{BIAS}} = \frac{(W/L)_{11_2}}{(W/L)_{11_1}};$$
(3.23)

que permite concluir que a relação entre as duas correntes é controlada pela dimensão dos transístores. Pretende-se que I_{BIAS} seja 5 μ A e que I_{OUT} seja 100 μ A. Efectuou-se o ajuste nas dimensões de M_{11_1} , mantendo o valor de L fixo a 1 μ m e mantendo também fixas as dimensões de M_{11_2} . Assim:

$$\frac{100}{5} = \frac{(86/1)}{(W/L)_{11_1}} \leftrightarrow (W/L)_{11_1} = \frac{86}{20} \leftrightarrow W = 4.3 \ \mu\text{m}. \tag{3.24}$$

Foram efectuados testes com a nova polarização do circuito, o que resultou num ajuste do valor de W obtido anteriormente, ficando então M_{11_1} com uma width de 4.9 μ m. Com este ajuste a corrente que é fornecida ao par diferencial ficou definida de acordo com o pretendido. Face a esta alteração o budget de corrente passou para 314.7 μ A.

Para melhorar ainda mais o budget de corrente, optou-se por modificar a polarização de I_{BIAS_2} que é efectuada com o espelho de corrente cascode low-voltage. Prentede-se agora polarizar o espelho de corrente anteriormente referido com uma corrente de 25 μ A. Primeiro, é necessário redimensionar os transístores para a corrente dimensionada. Definindo $L=1~\mu$ m e utilizando a equação (3.1) para um transístor do tipo NMOS obtém-se os seguintes valores:

$$M_{12} \to W = \frac{I_D L}{k_N V_{OD}^2} = 7.2 \ \mu \text{m};$$
 (3.25)

$$M_{13} \to W = \frac{W_{12}}{3} = 2.4 \ \mu \text{m};$$
 (3.26)

$$M_{14} \to W = \frac{I_D L}{k_N V_{OD}^2} = 7.2 \ \mu \text{m}.$$
 (3.27)

Com estes valores base foi realizada a simulação do circuito, sendo necessário ajustar alguns dos valores anteriores e também nos transístores M_7 e M_8 de forma a obter as especificações desejadas.

Assim sendo, M_{12} tem um W de 7.1 μ m, M_{13} tem um W de 1.8 μ m, M_{14} tem um W de 7.2 μ m, M_7 tem um W de 111.8 μ m e um L de 2.6 μ m e o M_8 tem um W de 111.8 μ m e um L de 2.6 μ m.

Assim, o circuito final é apresentado de seguida.

Figura 19: Circuito final.

Tabela 10: Especificações finais do circuito.

	Valor		
Especificação	Teórico	Experimental	
Ganho para Sinais de Baixa Amplitude	70 dB	69.26 dB	
Largura de Banda	60 kHz	62.89 kHz	
Margem de Fase	60°	61.26°	
Slew-Rate	200 V/μs	200.5 V/μs	
Budget da Corrente	400 μΑ	243.6 μΑ	

Na Figura 20 encontra-se o schematic criado no Cadence correspondente ao da Figura 19.

Figura 20: Schematic do circuito final.

Apresenta-se de seguida as simulações obtidas com o Cadence.

Figura 21: Valores do PFR do schematic da Figura 19.

Figura 22: Resposta transiente do circuito.

Figura 23: Resposta em frequência do circuito.

4 Área

Com os critérios de ganho, largura de banda, margem de fase, slew-rate e budget de corrente cumpridos, verifica-se qual a área ocupada pelo circuito.

De forma a que se possa obter uma estimativa da área que o circuito ocupa fez-se um novo *schematic* no qual se colocou apenas o símbolos dos transístores com as dimensões que se obtiveram, sem qualquer ligação. A partir desse *schematic* obteve-se então o layout respectivo, movimentado-se os blocos de forma a que se obtivesse a forma mais compacta possível tal como se mostra na imagem seguinte.

Figura 24: Pseudo-layout do circuito.

A partir desta forma compacta e fazendo uso da régua do Cadence cujas unidades são μ m, é possível obter uma estimativa da área, multiplicando a largura pela altura. Multiplica-se ainda este resultado por um factor de 1.2 de forma a sobrestimar-se a área pois aqui não se consideram as ligações nem eventuais discrepâncias das dimensões reais. Tem-se assim

$$\text{Área} = 1.2 \times l \times h = 1.2 \times \left(114.05 \times 10^{-6}\right) \times \left(44.70 \times 10^{-6}\right) \times \left(1 \times 10^{-6}\right) = 0.00611 \text{ mm}^2. \tag{4.1}$$

Como se veririca, a área obtida está bastante abaixo da especificada, que era 0.02 mm². Assim, obtém-se uma área cerca de 3.3 vezes menor, pelo que, mesmo que haja algum factor de erro no método de cálculo, podemos considerar que o objectivo foi cumprido.

Na tabela seguinte apresentam-se todas as especificações do circuito e quais os seus valores experimentais e teóricos.

	Valor		
Especificação	Teórico	Experimental	
Ganho para Sinais de Baixa Amplitude	70 dB	69.26 dB	
Largura de Banda	60 kHz	62.89 kHz	
Margem de Fase	60°	61.26°	
Slew-Rate	200 V/μs	200.5 V/μs	
Budget da Corrente	400 μΑ	243.6 μΑ	
Área de <i>Die</i>	0.02 mm ²	0.0048 mm ²	

Tabela 11: Especificações actuais do circuito.

5 Conclusões

Tal como já foi observado, todos os requisitos impostos foram cumpridos, alguns deles com resultados melhores do que esperado pelo que se pode concluir que o dimensionamento foi realizado com sucesso.

O processo utilizado começou, em primeira instância, por uma análise do circuito de forma a compreender o seu funcionamento assim como perceber quais os principais blocos que o constituem. Após esta análise iniciou-se então o dimensionamento dos transístores constituintes, através de cálculos teóricos, utilizando a equação da corrente no dreno, a slew-rate requerida e considerando, sempre que possível, o comprimento L destes a 1 μ m obtendo depois a largura W através de diversas relações matemáticas.

Com estes valores iniciais, começou-se então o processo de simulação no Cadence. Em primeira análise, o único requisito que se cumpria era o budget de corrente pelo que seria necessário melhorar todos os outros. Tinha-se então o ponto de partida pelo que se deu inicio à tarefa de estudar quais as melhores formas de se influenciar cada uma das especificações. A abordagem tomada foi de manter o rácio W/L e olhar para as equações do ganho, da frequência do pólo dominante e da frequência do pólo não dominante de forma a compreender qual o impacto nos parâmetros de alterações nas dimensões. Com isto, é possível definir melhor quais os graus de liberdade e fica-se com uma ideia de quais as melhores acções a tomar.

Com este estudo feito optou-se então por criar uma tabela de alterações do estilo "diário de bordo" onde se colocaram as alterações feitas e os resultados obtidos nas simulações com o Cadence. Neste processo foi-se aproximando os parâmetros obtidos dos desejados sendo que, por vezes, ao aproximar uns se piorava outros, sendo então necessário voltar a iterações anteriores. Esta abordagem foi essencial para se conseguir os resultados desejados.

Por fim, obtiveram-se os valores requeridos, fazendo-se então alterações minutas de forma a obterse os melhores resultados possíveis. Tomou-se atenção ao *budget* de corrente, fazendo-se alterações nos espelhos de corrente que polarizam o circuito de forma obter o valor desejado. Fez-se também uma previsão da área a partir do Cadence, que levou a um valor bastante inferior ao dos requisitos, ficando-se assim com todas as especificações cumpridas.

Ao longo deste dimensionamento aprofundaram-se os conhecimentos tanto no funcionamento da ferramenta Cadence como do workflow do projecto de um amplificador, assim como das melhores formas de identificar como impactar os parâmetros e chegar aos objectivos impostos.