Neural Networks Basics

13 April 2018 10:56

Neuron in Human Brain

Cost Function (Linear)

$$C = \frac{1}{2}(\hat{y} - y)^2$$
 where $\hat{y} = \sum_{i=1}^{m} w_i x_i$

Activation Functions

Step Function

$$y = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Rectified Linear Unit

$$y = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\frac{\text{Sigmoid Function}}{y = \frac{1}{(1 + e^{-x})}}$$

$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Multi-Layer Perceptron

Multilayer Perceptron

No of Weights = 3*4 + 4*3 + 3 = 27

Gradient Descent

Batch V/s Stochastic Gradient Descent

- Stochastic Gradient Descent helps avoid local minima
- Batch GD is deterministic algorithm which Stochastic is stochastic algorithm

Mini-Batch Gradient Descent

Back-Propagations

Neural Network Training Process Flow

