Artificial Intelligence

Adversarial Search

Logistics

- Midterm
 - Nov. 2nd, in class test
 - All questions will be related/similar to quiz/homework

- Final project
 - Will be released soon

- Final exam examples
 - Canvas

Course Topics

Search problems

Markov decision processes

Constraint satisfaction problems

Adversarial games

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Machine learning

Graph Search

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

World states? $120x(2^{30})x(12^2)x4$

Tree Search: Extra Work!

 Failure to detect repeated states can cause exponentially more work.

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list

Tree/ Graph Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure fringe \leftarrow Insert(make-node(initial-state[problem]), fringe) loop do

if fringe is empty then return failure

node \leftarrow remove-front(fringe)

if Goal-test(problem, state[node]) then return node

for child-node in expand(state[node], problem) do

fringe \leftarrow insert(child-node, fringe)

end

end
```

```
function Graph-Search(problem, fringe) return a solution, or failure

closed ← an empty set

fringe ← Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node ← remove-front(fringe)

if Goal-test(problem, state[node]) then return node

if state[node] is not in closed then

add state[node] to closed

for child-node in expand(state[node], problem) do

fringe ← insert(child-node, fringe)

end

end
```

Consistency of Heuristics

- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

A* graph search is optimal

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Adversarial Games

Types of Games

Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?

Game Playing State-of-the-Art

 Checkers: 1950: First computer player. 1994: First computer champion: Chinook ended 40year-reign of human champion Marion Tinsley using complete 8-piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion Gary Kasparov in a six-game match.

 Go: 2016/2017: AlphaGo defeats Korean and Chinese champions with reinforcement learning + deep learning.

Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

Rational Agent: Maximize Your Expected Utility

Act rationally: Want algorithms for calculating a strategy (policy) which recommends a move from each state

Deterministic Games

Many possible formalizations, one is:

States: S (start at s₀)

– Players: P={1...N} (usually take turns)

Actions: A (may depend on player / state)

- Transition Function: $SxA \rightarrow S$

- Terminal Test: $S \rightarrow \{true, false\}$

- Terminal Utilities: $SxP \rightarrow R$

Solution for a player is a policy: S → A

19

Start State Goal State

Single-Agent Trees

Value of a State

Zero-Sum Games

Zero-Sum Games

- Agents have opposite utilities (values on outcomes)
- Lets us think of a single value that one maximizes and the other minimizes
- Adversarial, pure competition

General Games

- Agents have independent utilities (values on outcomes)
- Cooperation, indifference, competition, and more are all possible
- More later on non-zero-sum games

Adversarial Search

Adversarial Game Trees

Minimax Values

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax Implementation

Minimax values: computed recursively

Terminal values: part of the game

initialize $v = -\infty$ for each successor of state:

v = max(v, min-value(successor))
return v

initialize v = +∞
for each successor of state:
 v = min(v, max-value(successor))
return v

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Minimax Implementation (Dispatch)

def value(state): if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is MIN: return min-value(state) initialize $v = -\infty$ initialize $v = +\infty$ for each successor of state: for each successor of state: v = max(v, value(successor)) v = min(v, value(successor)) return v return v

Minimax Example

Minimax Properties

Optimal against a perfect player. Otherwise?

[Demo: min vs exp (L6D2, L6D3)]

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Video of Demo Smart Ghosts (Coordination)

Video of Demo Smart Ghosts (Coordination) – Zoomed In

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, b ≈ 35, m ≈ 100
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:
- e.g. $f_1(s)$ = (num white queens num black queens), etc.

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Game Tree Pruning

Minimax Example

Minimax Pruning

Alpha-Beta Pruning

- General configuration (MIN version)
 - We're computing the MIN-VALUE at some node n
 - We're looping over n's children
 - n's estimate of the childrens' min is dropping
 - Who cares about n's value? MAX
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, MAX will avoid it, so we can stop considering n's other children (it's already bad enough that it won't be played)

MAX version is symmetric

Alpha-Beta Implementation

MIN

α: MAX's best option on path to root
β: MIN's best option on path to root

MIN

MIN

```
initialize v = -\infty

for each successor of state:

v = \max(v, value(successor, \alpha, \beta))

if v \ge \beta return v

\alpha = \max(\alpha, v)

return v
```

```
initialize v = +\infty

for each successor of state:

v = min(v, value(successor, \alpha, \beta))

if v \le \alpha return v

\beta = min(\beta, v)

return v
```

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection

 This is a simple example of metareasoning (computing about what to compute)

Course Topics

Search problems

Markov decision processes

Constraint satisfaction problems

Adversarial games

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Machine learning