El envío se debe hacer en un solo correo electrónico, que contenga todo lo que se pide en los dos puntos de la tarea.

1. PLANETAS TROYANOS

- a) Hemos simulado en clase el movimiento de dos cuerpos celestes. Considere que uno de ellos el Júpiter y el otro es El Sol, cuya masa es $m_0=1047$ veces la masa de Júpiter ($m_1=1$). Asuma que la distancia entre Júpiter y El Sol es r=100 y coloque las condiciones iniciales para que el movimiento de los dos cuerpos sea girar en círculos alrededor de su centro de masa con velocidad angular ω . Cuadre el paso de tiempo Δt para que un total de 20 órbitas cierren correctamente.
- b) Ahora, en vez de imprimir las coordenadas x_i , de Júpiter, imprima las coordenadas x_{rotado} , y_{rotado} en un sistema que rota con Júpiter, de tal manera que tanto El Sol como Júpiter se ven quietos.

En este sistema, que rota a velocidad angular constante, un tercer cuerpo que se observara en reposo en este sistema rotante sentiría tres fuerzas: la atracción de El Sol, la atracción de Júpiter y la fuerza centrífuga. Lagrange (en 1772) calculó los puntos en los que estas tres fuerzas se equilibran, que se conocen como puntos de libración. De ellos, sólo dos son puntos estables (L4 y L5), y se encuentran sobre la órbita circular de Júpiter, 60° en adelanto y 60° en atraso

(ver Figura). Un tercer planeta colocado en reposo en estos puntos (es decir, rotando con la misma órbita de Júpiter pero 60° en adelanto o en atraso), permanecería en reposo. De hecho, existe una infinidad de planetas, llamados troyanos, que orbitan alrededor del sol cerca de estos dos puntos.

588 Achilles
624 Hektor
659 Nestor
911 Agamemnon
1143 Odysseus
1404 Ajax
1437 Diomedes
1583 Antilochus
1647 Menelaus
1749 Telamon
1868 Thersites

617 Patroclus
884 Priamus
1172 Äneas
1173 Anchises
1208 Troilus
1867 Deiphobus
1870 Glaukos
1871 Astyanax
1872 Helenos
1873 Agenor
2207 Antenor

c) Coloque un tercer planeta de masa $m_3 = 0.005$ en el punto de libración L4 girando con la misma rapidez que Júpiter, y compruebe que en permanece aproximadamente quieto a lo largo de 20 órbitas.

sistema rotante una trayectoria en espiral, como la que muestra la figura. Esta espiral corresponde, aproximadamente, a una elipse moviéndose sobre otra elipse, como en los epiciclos de Ptolomeo. Los periodos de estos dos movimientos elípticos superpuestos se pueden calcular por teoría clásica de perturbaciones, y resultan ser:

$$T_1 = \frac{T}{\sqrt{\frac{27}{4} \frac{m_2}{m_0}}}$$

$$T_1 = rac{T}{\sqrt{rac{27}{4}rac{m_1}{m_0}}} \qquad , \qquad T_2 = rac{T}{1 - rac{27}{8}rac{m_1}{m_0}} \; ,$$

donde $T = 2\pi/\omega$ es el período de rotación del sistema Sol-Júpiter.

e) Grafique la posición x del planeta troyano en el sistema rotante en función del tiempo y mida aproximadamente los dos periodos. Compare los valores obtenidos con los predichos por la teoría clásica de perturbaciones.

Para la entrega

El envío se debe hacer en un solo correo electrónico, que contenga:

- a) El programa .cpp que resuelve el punto a), es decir que simula el sistema Sol-Júpiter en el sistema sin rotar, junto con la gráfica de las 20 órbitas en formato .pdf
- b) El programa .cpp que resuelve el punto b), es decir que simula el sistema Sol-Júpiter en el sistema rotado, junto con la gráfica de las órbitas en formato .pdf
- c) El programa .cpp que resuelve el punto c), es decir que muestra los tres cuerpos en el sistema rotado y comprueba que el planeta troyano prácticamente permanece inmóvil en dicho sistema. junto con la gráfica correspondiente en formato .pdf
- d) El programa .cpp que resuelve el punto d), es decir que perturba la posición o la velocidad del planta troyano y grafica su órbita espiral en el sistema rotado, junto con la gráfica de esa órbita espiral en formato .pdf
- e) El programa .cpp que resuelve el punto e), es decir que muestra la componente x de la trayectoria espiral del planeta troyano en el sistema rotado, en función del tiempo, junto con la gráfica .pdf correspondiente. Además, el texto del correo debe tener los dos períodos, tanto con sus valores teóricos como con los obtenidos de la simulación.

Referencias

[1] S.W. McCuskey and S.W. Reading , Introduction to Celestial Mechanics, (Addison Wesley, 1963)