

Física Computacional Integrantes:

Jonni Antonio Moreno Fernando Maximiliano López Villegas Rubio Ruiz Claudia Daniela

HIPERPLANO

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p = 0$$

Fig. 1. Hiperplano de margen maximal está indicado con una línea sólida. *Nota*. Adaptado de *Support Vector Machines* (p.372), por G.James et.al., 2021, Springer Texts in Statistics.

CLASIFICADORES DE MARGEN MAXIMAL

El principal objetivo del Clasificador de Margen Maximal es obtener el hiperplano que separe al máximo las diferentes clases en un conjunto de datos.

64 ey. X_1 ey. X_1 X_1

Fig. 2. Ajuste del parámetro C comenzando por un valor grande .Nota. Adaptado de Support Vector Machines (p.378), por G.James et.al., 2021, Springer Texts in Statistics..

CLASIFICADORES DE SOPORTE VECTORIAL

El objetivo es seleccionar una observación de prueba en función de que lado del hiperplano se encuentra y separarla en dos clases.

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le C$$

Ajustar c permite que el modelo equilibre el deseo de un margen más grande con la tolerancia a los errores de clasificación

MAQUINAS DE SOPORTE VECTORIAL

Conjunto de datos no linealmente separables

Intento de clasifiación

¿PODEMOS USAR CSV EN DATOS NO-LINEALES?

Conjunto de datos no linealmente separables

¿Conjunto de datos no linealmente separables?

Conjunto de datos linealmente separables

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i \langle x_i, x_{i'} \rangle$$

$$K(x_i, x_{i'})$$

Conjunto de datos no linealmente separables

$$K(x_i, x_{i'}) = \sum_{j=1}^{P} x_{ij} x_{i'} x_j$$

$$K(x_i, x_{i'}) = (1 + \sum_{j=1}^{P} x_{ij} x_{i'} x_j)^d$$

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{r} (x_{ij} - x_{i'j})^2)$$

PROBLEMA FÍSICO

DATA SET: ELECTRICAL GRID STABILITY SIMULATED DATA

- τ [x] : Tiempo de reacción de los participantes en un rango de O.5 a 10 segundos.
- p[x] : Poder nominal consumido o producido (negativo o positivo respectivamente).
- g[x] : Coeficiente proporcional a la elasticidad del precio en un rango de 0.05 a 1 s^-1
- stab : Estabilidad. La parte real máxima de la raíz de la ecuación característica, si es positiva el sistema es linealmente inestable.

El análisis de estabilidad local del sistema en estrella de 4 nodos.

IMPLEMENTACIÓN

Se empleará un algoritmo de Máquina de Soporte Vectorial para clasificar los datos en las categorías de "estable" o "inestable" representadas como O o I, respectivamente (nuestro y_test), en el total del dataset tenemos:

```
ESTABILIDAD

1 6380

0 3620

NAME: COUNT, DTYPE: INT64
```

Después de realizar el tratamiento de datos, los dividimos en los respectivos conjuntos de entrenamiento y validación y empleamos One Hot Encoding.

```
clf_svm =
SVC(random_state=42)

#creamos el clasificador

clf_svm.fit(X_train_scaled,
y_train) #entrenamos el
clasificador
```


OPTIMIZACIÓN

```
param_grid = [
 {'C': [0.5, 1, 10, 100],
 'gamma': ['scale', 1, 0.1, 0.01,
0.001, 0.0001],
  'kernel': ['rbf']},
optimal_params = GridSearchCV(
     S V C (),
     param_grid,
     cv = 5,
     scoring='accuracy',
     verbose=2
optimal_params.fit(X_train_scaled,
y_train)
print(optimal_params.best_params_)
```


{'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}

RESULTADOS

Fig. X. Matriz de Confusión sin parámetros optimizados.

Fig. 14. Matriz de Confusión con parametros optimizados..

CONCLUSIÓN

Ajustando el parámetro C y con la inclusión de un kernel a través de un GridSearch obtuvimos los parámetros óptimos para nuestro modelo. Gracias a la implementación de una (MSV) optimizada se pudieron determinar los escenarios posibles en los que la red eléctrica era estable o inestable con gran precisión.

REFERENCIAS

- [1] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics). Springer Science+Business Media. DOI: 10.1007/978-1-0716-1418-1
- [2] Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press. DOI: 10.1017/CBO9780511801389
 [3] Kecman, V. (Autor), & Wang, L. (Ed.). (2005). Support Vector Machines: Theory and Applications (Studies in Fuzziness and Soft Computing, 177). Springer-Verlag Berlin Heidelberg. DOI: 10.1007/10984697