

NHẬN DIỆN CẢM XÚC TỪ VĂN BẢN BẰNG MÔ HÌNH HỌC SÂU

Hồ Hưng Lộc, Nguyễn Trường Sinh, Hoàng Sỹ Khiêm

INTRODUCTION

Problems definition:

- Input: Text segments (reviews, feedback, etc.)
- Output: Probability distribution of sentiments (Positive, Neutral, Negative)
- Example:
- "No regrets on downloading this... Love it!" → Positive (99%)
- "I was disappointed with this product..." → Negative (Sadness, Anger)

Research Significance:

- Market analysis
- Customer psychology analysis
- Educational state analysis
- Feedback in healthcare and government policies

Challenges:

- Noisy training data (spelling errors, abbreviations, non-standard language)
- Context-dependent word meanings (e.g., same phrase, different sentiments)
- Complex languages like Vietnamese require advanced models and high-quality data

Thesis Goal:

Evaluate and compare the performance of deep learning models (CNN, LSTM, BERT) in text sentiment analysis, focusing on accuracy and robustness.

DATASET

- Source: Amazon Reviews, "All Beauty" category (https://amazon-reviews-2023.github.io/)
- Size: 701,500 reviews, 561,136 reviews (training set) and 70,143 samples (test set).
- Purpose: Training and testing deep learning models for sentiment classification (Love, Joy, Neutral, Sadness, Angry)

PROPOSED METHOD

Mô hình học sâu CNN (Convolutional Neural Network)

Mô hình LSTM (Long Short Term Memory)

(BERT - Bidirectional Encoder Representations from Transformers)

Các phương pháp kết hợp các mô hình

- 1. Data Preprocessing: Clean text, handle noise (spelling, abbreviations)
- 2. Feature Extraction: Convert text to numerical representations (e.g., word embeddings)
 - Model Training:
 - Convolutional Neural Network (CNN)
 - Long Short-Term Memory (LSTM)
- 3. Bidirectional Encoder Representations from Transformers (BERT)
- 4. Model Evaluation: Compare performance on accuracy, robustness, and training time
- 5. Optimization: Apply data augmentation to improve model accuracy

EXPERIMENTS (LSTM)

LSTM model training results

Lớp Cảm Xúc				Precision		Recall	F1-score	Support
Anger			\neg	0.15		0.94	0.26	10,133
Joy				0.18		0.07	0.10	7,994
Love				0.58		0.01	0.02	42,004
Sadness				0.09		0.01	0.03	4,301
Surprise				0.06		0.00	0.01	5,711
Micro avg				0.16		0.15	0.15	70,143
Macro avg				0.21		0.21	0.08	70,143
Weighted avg				0.40		0.15	0.06	70,143
	Ma trá	n nhám tần t	trên tặp Tes	t (cho 5 lớp đi	à chọn)			
Arqui -	9544	292	72	134	18	- 20000		
	6876	556	151	97	46	- 30000		
py-	6876	356	131	97	46	- 25000		
une -		1762	463	291	268	-		
adves -	3903	188	6	43	10	- 10400		
						- 1000		

EXPECTED RESULTS

1. Model Performance:

2. Comparative Analysis:

- Identify strengths and weaknesses of each model
- Determine the optimal model for sentiment analysis

3. Tools and Optimization:

- Use data augmentation for improved accuracy
- Provide open-source code and documentation

4. Future Work:

- Propose improvements for complex languages like Vietnamese
- Extend models to real-world applications