Examens avec Solutions Recherche opérationnelle

Filière: Gestion E1-E2-E3

Filière: Economie et Gestion E1-E2

2019-2020

Examen de la Session Normale - Printemps 2016

Filière : Economie et Gestion - Semestre : 6 - Ensembles : 2 et 3 Elément du Module : Recherche opérationnelle - Durée : 1H30min - M.ATMANI

La calculatrice est autorisée à titre personnel

Exercice 1 : (12 pts)

La société JET produit deux types de peintures A et B, à partir de trois matières premières M_1 , M_2 et M_3 .

Peinture type A nécessite $10 \ Kg \ de \ M_1$, $2 \ Kg \ de \ M_2$ et $1 \ Kg \ de \ M_3$. Son prix de vente est $1200 \ Dhs$.

Peinture type B nécessite 5 Kg de M₁ et 3 Kg de M₂. Son prix de vente est 1000 Dhs.

La société dispose de 200 Kg de M₁, 60 Kg de M₂ et 34 Kg de M₃.

- 1 Ecrire le programme linéaire qui permet de maximiser le bénéfice de la société.
- 2 Résoudre le problème par la méthode du simplexe, interpréter les résultats obtenus.
- 3 Ecrire le programme dual et déduire sa solution
- 4 Effectuer une analyse de sensibilité pour le prix de vente de la peinture type B.
- 5 Une entreprise concurrente demande à la société JET de lui vendre 50 % de la matière M_1 (et ce, bien entendu avant que la fabrication ne soit lancée) . A quel prix minimum la société JET devra t elle vendre <u>cette quantité</u>? Expliquer clairement votre raisonnement
- 6 Supposons qu'un troisième type C est proposé par le département de production, et qui nécessite $\underline{2kg\ de\ M_1\ et\ 3Kg\ de\ M_2}$, et son prix de vente est $650\ Dhs.$ Tenant compte de la valeur marginale de $M_1\ et\ M_2$, est-ce que la société JET doit produire ce type ? Expliquer clairement votre raisonnement

Exercice 2: (8 pts)

Un projet peut être décomposé en 10 tâches, dans le tableau ci-dessous, on indique pour chaque tâche, sa durée et les tâches immédiatement antérieures

Tâche	A	В	C	D	E	F	G	H	I	J
Tâche			A	A,B	A	C	D,F	E	G	H, I
Antérieur										
Durée	4	2	1	1	2	2	2	10	4	1

- 1 Tracer le graphe PERT.
- 2 Calculer la date au plus tôt et au plus tard pour chaque tâche.
- 3 Déterminer la marge libre et totale de chaque tâche.
- 4 Déterminer le chemin critique.

Corrigé de l'examen de la session normale Recherche opérationnelle Comparte (Filière Formanie et Costion Franchise 2 et 3 M.A.)

Semestre 6 Filière Economie et Gestion Ensembles: 2 et 3 M.ATMANI

Exercice 1

1°) le programme linéaire qui permet de maximiser le bénéfice de l'entreprise

Soit X1 la quantité de la peinture type A et X2 la quantité de la peinture type B

$$Max Z = 1200 X1 + 1000X2
10X1 + 5X2 ≤ 200
2X1 + 3X2 ≤ 60
1 X1 ≤ 34
X1; X2 ≥ 0$$

2°) Résolution simplexe

Forme standard : on intriduit trois variables d'écarts e1 , e2 et e3

Сј			1200	1000	0	0	0	
	VB	Q	X1	X2	e 1	e 2	e 3	RT
0	e 1	200	10	5	1	0	0	20
0	e 2	60	2	3	0	1	0	30
0	e 3	34	1	0	0	0	0	34
	Zj		0	0	0	0	0	
	Ci - Zi		1200	1000	0	0	0	

				\downarrow				
Cj			1200	1000	0	0	0	
	VB	Q	X1	X2	e 1	e 2	e 3	RT
1200	X1	20	1	1/2	1/10	0	0	40
0	e 2	20	0	2	-1/5	1	0	10
0	e 3	14	0	-1/2	-1/10	0	1	-28
	Zj		1200	600	120	0	0	
	Cj - Zj		0	400	- 120	0	0	

Сј			1200	1000	0	0	0	
	VB	Q	X1	X2	e 1	e 2	e 3	
1200	X1	15	1	0	3/20	-1/4	0	
1000	X2	10	0	1	-1/10	1/2	0	
0	e 3	19	0	0	-3/10	1/4	1	
	Zj		1200	1000	80	200	0	

	_	_			_	
C; 7;	1.0	1.0	1 00	1 200	1 0	
	1 ()	1 ()	1 -AU	1 - / () ()		
1 01 21			- 00	200	1 0	

Tous les $Cj-Zj \le 0$ donc la solution est optimale , X1 = 15 ; X2 = 10 et Z = 1200*15 + 1000*10 = 28000. Pour maximiser le bénéfice de l'entreprise , il faut produire 15 unités de type A et 10 unités de type B.

3°) Le programme dual

Y1 la valeur d'un Kg de M1; Y2 la valeur d'un Kg de M2; Y3 la valeur d'un Kg de M3

Min Z = 200 y 1 + 60 y 2 + 34 y 3 la solution duale :

 $10y1 + 2y2 + 1y3 \ge 1200$ d'après le dernier tableau (tableau optimal) on a :

 $5y1 + 3y2 \ge 1000$ C4 - Z4 = -80; C5 - Z5 = -200; C6 - Z6 = 0

 $y1; y2; y3 \ge 0$ donc y1 = 80; y2 = 200; y3 = 0 et Z = 28000.

4°) Analyse de sensibilité pour le prix de vente de la peinture type B, d'après le dernier tableau on a :

Cj			1200	1000+Δ	0	0	0	
	VB	Q	X1	X2	e 1	e 2	e 3	
1200	X1	15	1	0	3/20	-1/4	0	
1000+Δ	X2	10	0	1	-1/10	1/2	0	
0	e 3	19	0	0	-3/10	1/4	1	
	Zj		1200	1000+Δ	80-∆/10	200+Δ/2	0	
	Cj - Zj		0	0	-80+∆/10	-200-∆/2	0	

La solution reste optimale si tous les Cj-Zj ≤0, donc :

 $-80+\Delta/10 \leq 0$ donc $\Delta \leq 800$

 $-200-\Delta/2 \le 0$ donc $\Delta \ge -400$ donc $-400 \le \Delta \le 800$ donc $600 \le \Delta +1000 \le 1800$

Tant que le prix de la peinture type B reste entre 600 et 1800, alors la solution est optimale.

5°) prix minimum de la vente de 50% de M1

la valeur marginale de M1 est 80,

la société ne peut accepter qu'une valeur supérieure ou égale à 80 pour un Kg de M1 , donc minimum 80 pour 1 Kg de M1 ,

la société dispose de 200 Kg de M1, alors 50 % de M1 c'est 100 Kg

donc le prix minimum pour vendre 50% (100 Kg) c'est $100 \times 80 = 8000 \text{ Dhs}$

6°) production d'un troisième type C

le troisième type C demande 2Kg de M1 et 3Kg de M2.

donc la valeur marginale de (2Kg de M1 et 3Kg de M2) c'est 2*80 + 3*200 = 760 Dhs si la société JET utilise la quantité (3Kg de M2 et 2Kg de M1) dans la production de type A et type B le revenu est 760 Dhs, mais s'elle utilise la quantité (3Kg de M2 et 2Kg de M1) pour le type C le revenu c'est 650 Dhs, donc <u>la société ne doit pas produire le type C</u>.

Exercice 2

Le graphe PERT partiel

Le graphe PERT complet :

2) Les dates au plus tôt

t1 = 0 t2 = Max (0+4) = 4t3 = Max(0+2;4+0) = 4

Les dates et au plus tard

T9 = 17 T8 = Min(17-1) = 16 T 7 = Min(16-4) = 12 t4 = Max(4+1) = 5 t5 = Max(4+1; 5+2) = 7 t6 = Max(4+2) = 6 t7 = Max(7+2) = 9 t8 = Max(7+4; 6+10) = 16

t9 = Max(16+1) = 17

T6 = Min(16-10) = 6 T5 = Min(12-2) = 10 T4 = Min(10-2) = 8 T3 = Min(10-1) = 9 T2 = Min(8-1; 6-2; 9-0) = 4 T1 = Min(4-4; 9-2) = 0

3) Les marges libres et totales

Tache	Α	В	С	D	E	F	G	Н		J
ML	0	2	0	2	0	0	0	0	3	0
MT	0	7	3	5	0	3	3	0	3	0

4) Le chemin critique

Le chemin critique est composé des taches qui ont une marge totale nulle , donc d'après le tableau ci-dessus le chemin critique est : (AEHJ)

Université Hassan II – Casablanca Faculté des Sciences Juridiques Economiques Et Sociales –Ain Chock

Examen de la Session Normale – Printemps 2017

A / U: 2016-2017

Semestre: 6 // Filière: Economie et Gestion (Ensemble: 2) // Filière: Gestion

Elément de Module : RECHERCHE OPERATIONNELLE Durée : 1H30min - M. ATMANI

Aucun document n'est autorisé

Exercice 0

La clarté et la bonne présentation de la copie (1 pt)

Exercice 1 (11pts)

Un fabricant produit deux types de yaourts A et B à partir de trois matières premières (fraise, lait, sucre). Le type A nécessite 2 Kg de fraise et 4 kg de lait. Le type B nécessite 1 Kg de fraise, 2 kg de lait et 1 Kg de sucre.

Les matières premières sont en quantité limitée : 800 Kg de fraise, 700 Kg de lait et 300 kg de sucre.

La vente de A rapporte 50 DH et la vente de B rapporte 60 DH.

- 1- Ecrire le programme linéaire qui permet de maximiser le bénéfice du fabricant.(1pt)
- 2- Résoudre ce problème par la méthode du simplexe. (4pts)
- 3- Ecrire le programme dual et déduire sa solution. (2pts)
- 4- Si le fabricant souhaite diminuer la quantité de l'une des matières premières, laquelle doit-il choisir ? pourquoi ? (2pts)
- 5- Quel est le prix maximum qu'il faut dépenser par le fabricant pour doubler la production du yaourts type A? (2pts)

Exercice 2 (8pts)

Un projet peut être décomposé en dix tâches, le tableau ci-dessous résume l'ensemble des informations nécessaires :

tâche	A	В	C	D	E	F	G	Н	I	J
tâches antérieures			A	A	A , B	C	C,D	E	F,G	н, і
Durée (jours)	6	2	3	7	2	4	2	3	4	1

- 1- Tracer le graphe PERT, calculer les dates au plus tôt et au plus tard pour chaque sommet.
 - déterminer sous forme de tableau les marges libres et totales de l'ensemble des tâches et déduire le chemin critique. (6pts)
- 2 Si on retarde la tâche E de 10 jours.

- a) Quelle est la date au plus tôt pour commencer la tâche H? pourquoi ?(1 pt)
- b) Quelle est la durée du projet ? pourquoi ? (1pt)

Solution de l'examen

Exercice 1

La fabricant produit deux types de yaourts A et B.
 Soit la qté X1de A et X2 de B

```
A X1 consomme 2 KG FRAISE, 4KG de LAIT et rapporte 50DH
B X2 consomme 1KG FRAISE, 2 KG de LAIT, 1 Kg de SUCRE et rapporte 60DH
```

$$\begin{cases}
Max Z = 50 X1 + 60 X2 \\
2X1 + 1X2 \le 800 \\
4X1 + 2X2 \le 700 \\
1X2 \le 300 \\
X1, X2 \ge 0
\end{cases}$$

2- Résolution simplexe

Forme standard

$$\begin{cases} \text{Max Z} = 50 \text{ X1} + 60 \text{ X2} + 0 \text{ e1} + 0 \text{ e2} + 0 \text{ e3} \\ 2\text{X1} + 1\text{X2} + \text{e1} = 800 \\ 4\text{X1} + 2\text{X2} + \text{e2} = 700 \\ 1\text{X2} + \text{e3} = 300 \\ \text{X1} , \text{X2}, \text{e1}, \text{e2}, \text{e3} \ge 0 \end{cases}$$

Méthode des tableaux

Cj			50	60	0	0	0	
	VB	Q	X1	X2	e1	e2	e3	RT
0	e 1	800	2	1	1	0	0	800
0	e 2	700	4	2	0	1	0	350
0	e 3	300	0	1	0	0	1	300
	Zj		0	0	0	0	0	
	Cj - Zj		50	60	0	0	0	

Cj			50	60	0	0	0	
	VB	Q	X1	X2	e1	e2	e3	RT

0	e 1	500	2	0	1	0	-1	250
0	e 2	100	4	0	0	1	-2	25
60	X2	300	0	1	0	0	1	8
	Zj		0	60	0	0	60	
	Cj - Zj		50	0	0	0	-60	

Cj			50	60	0	0	0	
	VB	Q	X1	X2	e1	e2	e3	RT
0	e 1	450	0	0	1	-1/2	0	
50	X1	25	1	0	0	1/4	-1/2	
60	X2	300	0	1	0	0	1	
	Zj		50	60	0	50/4	35	
	Cj - Zj		0	0	0	-50/4	-35	

Tous les Cj - Zj ≤ 0, donc la solution est optimale.

$$X_1^* = 25$$
 $X_2^* = 300$ $Z^* = 19250$

3 – la programme dual

$$\begin{cases}
Min Z = 800 Y1+ 700 Y2+ 300 Y3 \\
2 Y1 + 4 Y2 \ge 50 \\
1Y1 + 2Y2 + 1Y3 \ge 60 \\
Y1, Y2, Y3 \ge 0
\end{cases}$$

La solution duale :

$$\begin{cases}
C1 - Z1 = 0 \\
C2 - Z2 = 0
\end{cases}$$

$$\begin{cases}
C3 - Z3 = 0 \\
C4 - Z14 = -50/4 \\
C5 - Z5 = -35
\end{cases}$$

$$\begin{cases}
Y1 = 0 \\
Y2 = 50/4 \\
Y3 = 35
\end{cases}$$

$$\begin{cases}
e'_1 = 0 \\
e'_2 = 0
\end{cases}$$

4 – si le fabricant souhaite diminuer la quantité d'une ressource , il doit diminuer la matière qui n'est pas consommée.

En terme de consommation de matière première : On a X1 = 25 et X2 = 300 La consommation de fraise est $(25*2) + (300*1) = 350 \le 800$ donc il reste 450 Kg de fraise La consommation de lait est (25*4) + (300*2) = 700 épuisement total. La consommation de sucre est (25*0) + (300*1) = 300 épuisement total

Donc il doit diminuer la quantité de fraise.

5 – si le fabricant souhaite doubler la quantité de yaourt type A. Donc il souhaite produire 25 unités de plus, qui consomme :

25* 2 Kg de fraise = 50 kg de fraise et 25*4 Kg de lait = 100 Kg de lait. La valeur marginale de fraise est nulle (il reste déjà 450 Kg de fraise qui n'est pas consommée) et la valeur marginale de lait est 50/4 dh. Donc il faut dépenser au maximum 100*50/4 = 1250dh.

Exercice 2

1 - Graphe PERT - dates au plus tôt et au plus tard - Marges – chemin critique Graphe PERT

Dates au plus tôt	Dates au plus tard
t1 =0	T9 = 20
t2 = Max(0+6) = 6	T8 = Min(20-1) = 19
t3 =Max(0+2 , 6+0) = 6	T7= Min(19-3) = 16
t4 = Max(6+3)=9	T6= Min(19-4)=15
t5 = Max(6+7, 9+0) = 13	T5=Min(15-2) = 13
t6 = Max(9+4 , 13+2) = 15	T4=min(13-0 , 15-4) = 11
t7 = Max(6+2) = 8	T3 =Min(16-2) = 14
t8 = Max(15+4 , 8+3) = 19	T2 =Min(11-3 , 13-7 , 13-0) = 6
t9 = Max(19+1) = 20	T1 = Min(6-6 , 14-2) = 0

Marges libres et Marges totales

tache	Α	В	С	D	E	F	G	Η	1	J
ML	0	4	0	0	0	2	0	8	0	0
MT	0	12	2	0	8	2	0	8	0	0

Le chemin critique est : A-D-G-I-J

2 - si on retarde la tache E de 10 jours.

- a) Normalement la date au plus tôt pour commencer H c'est 8, mais si on retarde E de10, et comme la marge libre de E est 0, donc on va retarder H aussi de 10, donc la date au plus tôt pour commencer H c'est 18.
- b) Normalement la durée du projet est 20, mais si on retarde E de10, et comme la marge totale de E est 8, donc on va retarder le projet de (10-8 = 2) par conséquent la durée du projet est 22.

Exercice – (Examen de rattrapage -2016-2017)

Un artisan fabrique deux articles A et B nécessitent chacun deux opérations : Un usinage et un traitement thermique . Le produit A subit un usinage d'une heure et un traitement thermique de 3H. B subit un usinage de 2H et un traitement thermique de 3H. de plus 2 Kg de matière première entrent dans la composition de A et 1 Kg dans celle de B.

La fabrication de B se termine par un travail de finition qui dure 1H.

L'artisan dispose de 80 H d'usinage , 150 H de traitement thermique , 35 H de finition et 80Kg de matière première.

La marge bénéficiaire est 30 DH pour l'article A, et 25 DH pour l'article B.

- 1 Formuler le programme linéaire qui permet de maximiser le bénéfice de l'artisan.
- 2 Résoudre le problème par la méthode graphique. (en utilisant la méthode d'énumération des sommets.)
- 3 Effectuer une analyse de sensibilité pour le bénéfice de l'article A.
- 4 Quelles sont les ressources épuisées ?

Solutions

-50 \(- (30+2) \(\le - 25 3) Analyse de sensibilité. -50 4-30-2 4-25 Z= 30x, + 25xe -20 6 -7 65 Z= (30+2) x1+25 x2 -5 57 520 D c'et la solution optimale D & D2 ND3 25 (30+2 550. tout que le prix de A D2: X+12=50=) 22=-1,+50 reste entre 25 et 50, [Rn=-2]: la pente le solition reste optimale. 03: 27,+AN2=80=) N2=-2x,+80 W Les Ressources épuises: Re=-2 : la pente x = 30 X = 20 Z=0 => (30+2)x,+25x2=0 Usinage: 30+2(20)=70. <80 =) 25 x = - (30+2)2, : 3(30)+3(20)= 150=150 $x_2 = -\frac{30+\lambda}{25} x,$ 2(30)+1(20)=80=80 12= - 30+2 lapente H.F , 20. 535 tout que Pz rete entre P, et Pz la ressources qui sont épuisées la solitar rete sprindle. -2 LPZ K-N - les heures de traitement terrique -5 \(- (\frac{50+3}{20+3}) \leq -7 - la matière previère.

Remarque Importante : réponse juste +1

Aucune réponse : 00 réponse fausse : 4.8

Programmation linéaire : Exercice 1

Une société fabrique deux types de produits A et B à partir de trois matières premières M1, M2 et M3. Le produit A nécessite 6 unités de M1 , 3 unités de M2 et 1 unité de M3.

Le produit B nécessite 4 unités de M1 , 4 unités de M2 et 2 Unités de M3.La société dispose de 2000 unités de M1, 3000 unités de M2 et 500 unités de M3.Le produit A donne un bénéfice de 140 DH et le produit B donne un bénéfice de 170 DH

Soit x₁ la qté de A et x₂ la qté de B.

Q1 : la fonction objectif pour maximiser le profit est

A Max Z = 140 X_1 +170 X_2 B: Max Z = 170 X_1 +140 X_2 C: Max Z = $1200X_1 + 1000X_2$ D: Max Z = $1000X_1 + 1200X_2$

Q2 : la contrainte liée à la matière M1 est :

A: 3X₁+4X₂≤3000

(B:)6X₁+4X₂≤2000

C: $10X_1 + 5X_2 \le 200$

D: $2X_1+3X_2 \le 60$

Q3 : la contrainte liée à la matière M3 est :

(A) 1X₁+2X₂≤500

B: 6X₁+4X₂≤2000

C: 1X₁≤ 34

 $D: 2X_1+3X_2 \le 60$

RESOLUTION SIMPLEXE :soient les variables d'écarts suivantes (e1 : M1) (e2 : M2) (e3 : M3) la résolution du système par la méthode du simplexe donne le tableau optimal suivant (dernier tableau)

		140	170	0	0	0
VB	Q	X ₁	X ₂	e 1	1	e 3
X ₁	?	1	0	a	0	-1/2
e ₂	?	0	0	b	1	-3/2
X ₂	?	0	1	С	0	3/4
Zj		140	170	d	0	1
Cj-Zj		0	0	?	?	?
	X ₁ e ₂ X ₂ Zj	X ₁ ? e ₂ ? X ₂ ? Z _j	VB Q X1 X1 ? 1 e2 ? 0 X2 ? 0 Zj 140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VB Q X1 X2 e 1 X1 ? 1 0 a e2 ? 0 0 b X2 ? 0 1 C Zj 140 170 d	VB Q X1 X2 e1 e2 X1 ? 1 0 a 0 e2 ? 0 0 b 1 X2 ? 0 1 C 0 Zj 140 170 d 0

Q4 : trouver les valeurs de la colonne liée à e1.

$$(a,b,c,d)$$
:
A: $(\frac{-1}{a},\frac{-$

B:
$$(\frac{1}{4}, \frac{-1}{4}, \frac{1}{8}, \frac{110}{8})$$

$$C:(\frac{1}{8},\frac{-1}{4},\frac{-1}{8},\frac{110}{8})$$

$$(\frac{1}{4}, \frac{-1}{4}, \frac{-1}{9}, \frac{110}{9})$$

Q5 - la solution optimale : $(x^*_1, x^*_2, Z^*) = ?$

A:(125, 250, 56250)

(B)(250, 125, 56250)

C: (10, 15, 28000)

D:(15, 10, 28000)

Q 6 – quelle est la ou les ressources épuisées ?

A) M1

B:M2

C:) M3

D : toutes les ressources

Q7 – Déterminer l'intervalle de variation du bénéfice du produit A, tout en restant dans l'optimum est :

A: [65, 255]

(B; [85, 255]

C: [30, 255]

D: [75, 255]

Q 8 – si la société souhaite diminuer le stock d'une matière première, laquelle doit elle choisir?

(B):M2

C: M3

D : aucune ressource

Q9 : un client s'intéresse à l'achat de 50 % de M3 quel est le prix minimum acceptable par la société ?

(A) 14375 B: 6875 C:4000

D:6000

Q10 : quel est le prix maximum qu' il faut dépenser par la société pour produire 50 unités supplémentaire de A.

A: 10000 B: 8500

C:12000

Méthode PERT : exercice 2

Soit le projet à analyser :

tâche	Α	В	С	D	E	F	G	Н	I	J	K
Tâches précédent es	-	A	В	-	D	D	E	G B	С	I H	J F
Durée	3	1	5	6	6	2	9	5	8	2	3

Q 11: la date au plus tôt pour commencer la tâche F :

A: 12

B: 5

C: 4

(D):6 Q12:la date au plus tard pour commencer la tâche K:

A:6

(B): 28

C: 25

D:17

Q 13 : la date au plus tard pour terminer la tâche G :

(A): 21

B: 7

C:18

D:15

Q14 : la marge totale de la tâche F est :

B: 14

(C): 20

D:9

Q15 : la marge libre de la tâche H est :

(A) 0

B: 9

C:6

D:14

Q16- si on retarde E de 3 quelle est la date au plus tôt pour commencer G?

A:8

(B) 15

C:24

D:16

Q 17 - si on retarde la tâche E de 4 et la tâche C de 8 quelle est la durée du projet :

A) 35

B:36

C: 38

D: 39

Q 18- si on retarde la tâche B de14 quelle est la durée du projet :

A: 31

(B) 36

C: 29

D:32

Code Apogée Nom	Remarques: Cette fiche doit être remplie avec un stylo ou feutre; ne pas utiliser de crayon. L'utilisation du blanco est strictement interdite. Les noms et prénoms doivent être saisis en majuscule. Pour les noms composés laisser un espace. Vous devez cocher à l'intérieur des cases sans les dépasser de la manière suivante:
Prénom	⊠ OU BIEN ■

01

		ABCD
1	Q1	M D D D
1	Q2	
1	Q3	
1	Q4	
2	Q5	
1	Q6	
2	Q7	
1	Q8	
1	Q9	MUUU

		ABCD
1	Q10	
1	Q11	
1	Q12	
1	Q13	
1	Q14	
1	Q15	
1	Q16	
1	Q17	
1	Q18	

Remarque Importante : réponse juste +1

Aucune réponse : 00 réponse fausse : 🐠

Programmation linéaire : Exercice 1

Une société fabrique deux types de produits A et B à partir de trois matières premières M1, M2 et M3.

Le produit A nécessite 10 unités de M1 , 2 unités de M2 et 1 unité de M3.

Le produit B nécessite 5 unités de M1 , 3 unités de

M2. La société dispose de 200 unités de M1, 60 unités de M2 et 34 unités de M3.

Le produit A donne un bénéfice de 1200 DH et le produit B donne un bénéfice de 1000 DH soitx₁ la qté de A et x₂ la qté de B.

Q1 : la fonction objectif pour maximiser le profit est

A: Max Z = $140X_1+170X_2$ B: Max Z = $170X_1+140X_2$

C: Max Z = $1000X_1 + 1200X_2$ D Max Z = $1200X_1 + 1000X_2$

Q2 : la contrainte liée à la matière M2 est

 $A:3X_1+4X_2 \le 3000$

B: 6X₁+4X₂<2000

C: $10X_1 + 5X_2 \le 200$

(D) $2X_1 + 3X_2 \le 60$

Q3 : la contrainte liée à la matière M3 est :

 $A: 1X_1+2X_2 \le 500$

B: 6X₁+4X₂≤2000

C) 1X₁≤ 34

 $D: 2X_1+3X_2 \le 60$

RESOLUTION SIMPLEXE: soient les variables d'écarts suivantes (e1:M1) (e2:M2) (e3:M3) la résolution du système par la méthode dusimplexe donne le tableau optimal suivant (dernier tableau)

		1200	1000			
1.10	-			U	0	0
VB	Q	X_1	X_2	e ₁	e ₂	e 3
X1	?	1	0		a	0
X2	?	0	1		b	0
e 3	?	0	0		C	1
Zj		1200	1000		d	0
Cj-Zj		0	0	?	?	?
	X2 e ₃	X1 ? X2 ? e ₃ ? Zj	X1 ? 1 X2 ? 0 e ₃ ? 0 Zj 1200	VB Q X1 X2 X1 ? 1 0 X2 ? 0 1 e 3 ? 0 0 Zj 1200 1000	VB Q X1 X2 e 1 X1 ? 1 0 X2 ? 0 1 e 3 ? 0 0 Zj 1200 1000	VB Q X1 X2 e1 e2 X1 ? 1 0 a X2 ? 0 1 b e3 ? 0 0 C Zj 1200 1000 d

Q4 : trouver les valeurs de la colonne liée à e2

$$(a,b,c,d)$$
:
A: $(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},00)$

A:
$$(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 200)$$
 B) $(\frac{-1}{4}, \frac{1}{2}, \frac{1}{4}, 200)$

$$C:(\frac{-1}{4},\frac{-1}{2},\frac{1}{4},200)$$

$$C:(\frac{-1}{4},\frac{-1}{2},\frac{1}{4},200)$$
 $D:(\frac{-1}{4},\frac{1}{2},\frac{-1}{4},200)$

Q5 - la solution optimale : $(x^*_1, x^*_2, Z^*) = ?$

A: (125,250,56250)

B: (250,125,56250)

(C) (15,10,28000)

D: (10,15,28000)

Q 6 - quelle est la ou les ressources qui ne sont pas

épuisées?

A: M1

B: M2

C 1 M3

D: toutes les ressources

Q 7 -Déterminer l'intervalle de variation du bénéfice du produit B, tout en restant dans l'optimum est :

(A)[600, 1800]

B:[600,800]

C:[60, 1800] D:[400, 1800]

Q8 – si la société souhaite diminuer le stock d'une matière première , laquelle doit elle choisir ?

A: M1

B:M2

C M3

D : aucune ressource

Q9 : un client s'intéresse à l'achat de 50 % de M2 quel est le prix minimum acceptable par la société ?

A: 14375

B: 6875

C:4000

D: 6000

Q10 : quel est le prix maximum qu' il faut dépenser pour produire 10 unités supplémentaire de B

(A;) 10000 B:8500 C: 12000

D:7000

Méthode PERT : exercice 2

Soit le projet à analyser

tache	A	В	C	D	E	F	G	Н	1	J	K
Tache précédent e	-	A	В	-	D	D	E	G B	С	H	J
Durée	1	3	6	5	2	6	5	5	2	8	3

Q 11: la date au plus tôt pour commencer la tâche H est:

(A) 12

C: 4

D:6

Q 12 : la date au plus tard pour commencer la tâche Jest:

A:6

B: 28

B: 5

C: 25

(D) 17

Q 13 : la date au plus tard pour terminer la tâche C est:

A:21

B: 7

C:18

D) 15

Q14 : la marge totale de la tâche F est :

A: 5

(B) 14

C: 20

D:9

Q15 : la marge libre de la tâche F est :

B:9

C:6

(D):14

Q16- si on retarde D de 3 quelle est la date au plus tôt pour commencer la tâche E

A):8

B:15

C:24

D ·16

Q 17 - si on retarde la tâche E de 5 et la tâche C de 8 quelle est la durée du projet ?

A:35

(B) 36

C: 38

D:39

Q 18 - si on retarde la tâche F de18 quelle est la durée du projet?

A: 31

B:36

C:29

D): 32

Code		Remarques:
Apogée		Cette fiche doit être remplie avec un stylo ou feutre; ne pas utiliser de crayon.
	V-0'//	L'utilisation du blanco est strictement interdite. Les noms et prénoms doivent être saisis en majuscule.
Nom		Pour les noms composés laisser un espace. Vous devez cocher à l'intérieur des cases sans les dépasser de la manière suivante :
		OU BIEN ■
Prénom		
	7//	

		ABCD
1	Q1	
1	Q2	
1	Q3	
1	Q4	
2	Q5	
1	Q6	
2	Q7	
1	Q8	
1	Q9	

of M

Recherche opérationelle - SEG - Atmani

Examen de la Session Normale & Filière: Gestion & Semestre: 6 & Ensembles: 1 - 2 - 3

Elément de Module : Recherche Opérationnelle & Durée : 1H30min & M. ATMANI

Nom	Lie		 Prénom				
CNE	pore	Code apogée	 	Amphi	************	Position	

Exercice 1: **Formulation **

Un opérateur télécom lance un nouveau produit . Il décide d'organiser une campagne de communication en utilisant les deux supports de médiatiques Télé et radio. (avec un nombre de msg télé x₁ et un nombre de msg radio x₂). Le public cible est constitué de trois catégories dont les effectifs sont résumés dans le tableau suivant :

	CAT1	CAT2	CAT3	Coût d'un msg
Télé	10	25	9	10000 UM
Radio	5	30	8	7000 UM
effectif	9000	25000	9100	

Pour que cette campagne soit efficace, elle doit toucher au moins 70% du CAT1 et 30% du CAT2 et 50% du CAT3. Ainsi le nombre total de message doit dépasser 5500 msg. Modéliser ce problème sous forme d'un programme linéaire. -sans solution -

Réponse: (la solution n'est pas demandée)

Min
$$2 = 10000 \times 1 + 7000 \times 2$$
 $5 = 10000 \times 1 + 7000 \times 2$
 $5 = 10000 \times 1 + 7000 \times 2$
 $25 \times 1 + 50 \times 2 > 7500$
 $5 \times 1 + 8 \times 2 > 4550$
 $5 \times 1 + 32 > 5500$
 $5 \times 1 > 0 = 12 > 0$

Exercice 2: ** Simplexe **

Soit le Programme linéaire suivant : $Max Z = 1000x_1 + 1200 x_2$

$$\begin{cases} 5x_1 + 10x_2 \le 200 \\ 3x_1 + 2x_2 \le 60 \\ 1x_2 \le 34 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

Résoudre le PL En utilisant la méthode du simplexe et remplir le dernier tableau (tableau optimal)-4pts-

es			1000	1200	0	0	0
	VB	Q	X٩	X2	21	e2	e3
1200	X2	15	0	4	3/20	-1/4	0
1000	×n	10	1	0	-1/10	1/2	0
0	ez	19	0	0	-3/20	1/4	1
	Zj		2000	1200	80	200	0
	9-21		0	0	- 80	-200	0

Exercice 4 ** Méthode PERT **

Soit le projet à analyser													
Tâche	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
Antériorité		Α		7 <u>~</u> •	D		BCE	D	G	G	1 F	KJH	L
Durée	2	2	. 6	1	2	8	3	10	7	11	3	8	8

Calculer les marges libres et totales- 2pts-

Tâche	Α	В	С	D	E	F	G	Н	1	J	K	L	М
MI	0	2	0	0	3	8	0	9	0	0	1	0	0
MT	2	2	0	3	3	9	0	9	1	0	1	0	0

Quelles sont les tâches critiques?
réponse: C - G - J - L - M