Intro to Ecological Niche Models with MaxEnt

Eugenio Valderrama ev243@cornell.edu

Rossetto Marcelino & Verbruggen 2015

G-space and E-space

(Pulliam, 2000)

(Pulliam, 2000)

(Pulliam, 2000)

(Jackson and Overpeck, 2000)

(Jackson and Overpeck, 2000; their "potential niche")

Occupied distributions may be smaller than abiotically suitable distributions due to:

- 1. Contingent factors
 - a. lack of dispersal
 - b. local extinction

Occupied distributions may be smaller than abiotically suitable distributions due to:

- 1. Contingent factors
 - a. lack of dispersal
 - b. local extinction
- 2. Biotic interactions (e.g., competition)

Occupied distributions may be smaller than abiotically suitable distributions due to:

- 1. Contingent factors
 - a. lack of dispersal
 - b. local extinction
- 2. Biotic interactions (e.g., competition)
- 3. Human modifications of the landscape

• goal: model distribution of plant or animal species

• goal: model distribution of plant or animal species

- goal: model distribution of plant or animal species
- given: presence records

- goal: model distribution of plant or animal species
- given: presence records

• given: environmental variables

- goal: model distribution of plant or animal species
- given: presence records

• given: environmental variables

desired output: map of range

Biological Importance

- fundamental question: what are survival requirements (niche) of given species?
- core problem for conservation of species
- first step for many applications:
 - reserve design
 - impact of climate change
 - discovery of new species
 - clarification of taxonomic boundaries

Our Approach

- ullet assume presence records come from probability distribution π
- try to estimate π
- apply maximum entropy approach

Maximum Entropy (Maxent) method

Estimates target probability distribution

by finding probability distribution (statistical model) of *maximum entropy* (i.e., most spread out, closest to uniform)

subject to constraints

Maximum Entropy (Maxent) method

Constraints: what we know about the features

Data from the sample points (the known occurrence localities, in our case)

Random subsets

random split-sample approach: easy test, cannot detect overfitting to bias

White: calibrate the model

Black: evaluate the model

Now we will review the output of MaxEnt and the interpretation of the results
Please leave us your anonymous feedback in this link:
https://docs.google.com/forms/d/1yVSL1IPiFVuJqPPi0v19oQBGyoJqZBoDEYLTcHTpB-M/edit?usp=sharing
it is super, super important for us!!

Many of the slides were taken from presentations by Robert P. Anderson & Robert Schapire