ЛАБОРАТОРНАЯ РАБОТА №7

ИЗУЧЕНИЕ СПЕКТРОВ АЛЬФА-ЧАСТИЦ С ПОМОЩЬЮ ПОЛУПРОВОДНИКОВОГО СПЕКТРОМЕТРА

Поляков Даниил, 19.Б23-фз

Цель работы: с помощью полупроводникового спектрометра измерить спектры альфа-излучения источников из 226 Ra, 238 Pu, 239 Pu и комбинированного источника из 233 U + 238 Pu + 239 Pu, проградуировать спектрометр по спектру излучения 226 Ra и определить энергию альфа-частиц остальных источников; оценить время изготовления источника 226 Ra.

Схема установки

Расчётные формулы

Энергия пика излучения по градуировочной прямой спектрометра:

$$E = aN + b$$

N — положение пика по шкале спектрометра;

a, b — коэффициенты градуировочной прямой.

Разрешающая способность спектрометра:

$$R = \frac{\Delta E}{E}$$

 ΔE — ширина линии на полувысоте в энергетических единицах;

E — энергия линии.

Время изготовления источника:

$$A_1 = n_0 \lambda_1 e^{-\lambda_1 t}$$
 $A_n = n_0 \sum_{i=1}^n c_i e^{-\lambda_i t}$ $A_n = n_0 \sum_{i=1}^n c_i e^{-\lambda_i t}$

o — начальное количество ядер 1-го

 T_i — период полураспада i-го

нуклида;

 A_n — активность n-го нуклида;

 I_n — интенсивность излучения n-го

нуклида;

t — время изготовления источника.

$$c_{i} = \frac{\prod_{j=1}^{n} \lambda_{j}}{\prod_{\substack{j=1\\j\neq i}}^{n} (\lambda_{j} - \lambda_{i})}$$
$$\lambda_{i} = \frac{\ln 2}{T_{i}}$$

Время изготовления t находим решением уравнения численным методом.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\Delta_{f(x_1,x_2,\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_1}\cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\cdot \Delta_{x_2}\right)^2 + \ldots}$$

$$\circ \quad \Delta_E = \sqrt{\left(\frac{\partial E}{\partial N} \cdot \Delta_N\right)^2 + \left(\left(\frac{\partial E}{\partial a} + \frac{\partial E}{\partial b} \cdot \frac{\partial b}{\partial a}\right) \cdot \Delta_a\right)^2} = \sqrt{\left(a \cdot \Delta_N\right)^2 + \left(\left(N - \langle N_{\rm rpag} \rangle\right) \cdot \Delta_a\right)^2}$$

 $N_{ ext{\tiny град}}$ — положения пиков, использованные для градуировки.

Порядок измерений

Запускаем спектрометр, насос и ПО для работы со спектрометром. Помещаем источник из 226 Ra в камеру спектрометра. Откачиваем воздух из камеры с помощью насоса. Подаём напряжение на детектор. После установки заданного напряжения проводим измерение спектра продолжительностью 10 минут. Затем выключаем напряжение и заменяем источник на следующий. Аналогично проводим измерение спектра источников из 238 Pu, 239 Pu и комбинированного источника.

Результаты

<u>Примечание</u>: построение и аппроксимация графиков и численное решение уравнения выполнены с помощью ПО MATLAB. Погрешности коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

1. Спектры альфа-излучения источников

Спектр альфа-излучения источника из ²²⁶Ra по каналам спектрометра

Наблюдаем, что спектр альфа-излучения радия помимо линий самого радия содержит также линии продуктов его распада. Всего выделяем 6 спектральных линий.

Используем данный спектр для градуировки шкалы спектрометра. Аппроксимируем линейным уравнением зависимость табличных значений энергий пиков $E_{{
m Ta}6\pi}$ от их положений по шкале спектрометра N:

$$E_{\text{табл}} = aN + b$$

График 2. Градуировочная прямая спектрометра

Коэффициенты аппроксимации:

$$a$$
 = 2.175 ± 0.007 кэВ

$$b = -30 \pm 20$$
 кэВ

Далее представлены проградуированные спектры альфа-излучения радия и остальных источников.

График 3. Спектр альфа-излучения источника из ²²⁶Ra по энергиям

График 4. Спектр альфа-излучения источника из ²³⁸Ри по энергиям

Полученный спектр альфа-излучения ²³⁸Pu содержит две близко расположенные линии.

График 5. Спектр альфа-излучения источника из $^{239}{
m Pu}$ по энергиям

²³⁹Pu Полученный спектр альфа-излучения содержит близко две расположенные линии. Спектр также должен содержать третью линию, однако она расположена очень близко к правой линии и при этом имеет намного меньшую интенсивность, поэтому она не различима используемым спектрометром.

График 6. Спектр альфа-излучения источника из 233 U, 238 Pu, 239 Pu по энергиям

Полученный спектр альфа-излучения комбинированного источника содержит 3 пары близко расположенных линий. Пары относятся к 233 U, 239 Pu и 238 Pu в порядке возрастания энергии.

В таблице ниже представлены положения пиков в каналах спектрометра N и соответствующих энергиях E, их ширина на полувысоте ΔN и ΔE и разрешающая способность R.

Таблица 1. Линии альфа-излучения источников

№ источника	Нуклид	N	ΔN	Е, кэВ	Етабл, кэВ	ΔE , кэ B	R, %
1	²²⁶ Ra	2128 ± 2	10	4599 ± 6	4601.4(3)	21	0.46
		2212 ± 1	9	4782 ± 4	4784.3(3)	19	0.41
	²¹⁰ Po	2454 ± 2	14	5308 ± 4	5304.33(7)	31	0.59
	²²² Rn	2538 ± 1	11	5490 ± 2	5489.5(3)	23	0.43
	²¹⁸ Po	2775 ± 1	11	6006 ± 2	6002.35(9)	25	0.41
	²¹⁴ Po	3547 ± 1	11	7685 ± 7	7686.82(7)	25	0.32
2	²³⁸ Pu	2540 ± 1	7	5495 ± 2	5456	14	0.26
		2559 ± 1	6	5536 ± 2	5499	14	0.24
3	²³⁹ Pu	2378 ± 1	9	5143 ± 3	5106	20	0.38
		2401 ± 1	9	5193 ± 3	5157	19	0.37
4	²³³ U	2228 ± 1	11	4816 ± 4	4784	24	0.49
		2246 ± 1	9	4855 ± 3	4824	19	0.39
	²³⁹ Pu	2378 ± 1	12	5143 ± 3	5106	27	0.52
		2401 ± 1	11	5193 ± 3	5157	24	0.46
	²³⁸ Pu	2540 ± 1	10	5495 ± 2	5456	22	0.40
		2560 ± 1	8	5538 ± 2	5499	18	0.33

Экспериментально полученные значения энергий излучения E остальных источников значительно отличаются от табличных $E_{\text{табл}}$, причём отклонения систематические — экспериментальные значения всегда на 30 – 40 кэВ больше.

Проиллюстрируем отклонения наглядно — нанесём на градуировочный график точки $E_{{\rm табл}}(N)$ от остальных источников. Эти точки обозначены на графике незакрашенными маркерами:

График 7. Градуировочная прямая спектрометра с табличными энергиями остальных источников

Зависимость $E_{\text{табл}}$ от N остальных источников тоже образует прямую, однако смещённую по какой-то причине. Скорее всего либо для 1-го источника, либо для остальных источников указаны неверные табличные значения энергий.

2. Время изготовления источника

Оценим время изготовления источника из ²²⁶Ra. Для этого воспользуемся измеренными спектральными линиями альфа-излучения ядер ²²⁶Ra и ²¹⁰Po и значениями их времени жизни. Время жизни этих нуклидов велико по сравнению с временем жизни промежуточных нуклидов, поэтому промежуточными распадами можно пренебречь.

Таблица 2.Время жизни $^{226}\mathrm{Ra}\ u$ продуктов его распада

Нуклид	T		
²²⁶ Ra	1600(7) лет		
²²² Rn	3.8235(3) дн		
²¹⁸ Po	3.10(2) мин		
²¹⁴ Po	0.164(2) мс		
²¹⁰ Po	138.376(2) дн		

Интенсивности альфа-излучения $^{226}{
m Ra}$ и $^{210}{
m Po}$ находим как площадь их спектральных линий:

$$I_1 = 11478$$
 $I_5 = 359$

Получаем примерное время, прошедшее с момента изготовления источника:

$$t \approx 11$$
 дн

Выводы

В ходе работы были измерены спектры альфа-излучения радиоактивных источников с помощью полупроводникового спектрометра. Преимуществом полупроводникового спектрометра является высокая разрешающая способность.

Спектр альфа-излучения линий, источника состоит И3 нескольких соответствующих исходному продуктам нуклиду И его распада. По соотношению интенсивностей линий можно оценить время изготовления источника.