

11 Publication number: 0 467 850 A1

31

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91810561.0

(22) Date of filing: 11.07.91

(5) Int. Cl.⁵: C07C 69/54, C07C 57/075,

C07C 15/46, C07C 67/62,

C07C 7/20

30 Priority: 20.07.90 US 556066

(3) Date of publication of application : 22.01.92 Bulletin 92/04

Designated Contracting States :
 DE FR GB IT

(1) Applicant: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH) (72) Inventor: Gatechair, Leslie R. Rural Route 2, Box 60
Katonah, New York 10536 (US) Inventor: Seltzer, Raymond 11 Angus Lane
New City, N.Y. 10956 (US) Inventor: Hyun, James Lee 6 Kevin Drive Danbury, Conn. 06811 (US)

(54) Stabilized monomer compositions.

A process for stabilizing an ethylenically unsaturated monomer or oligomer from premature polymerization is disclosed whereby a stabilizing amount of an amine, preferably a substituted hindered amine, in combination with phenothiazine or other related heterocyclic moiety is added to said polymerizable monomer or oligomer. The ethylenically unsaturated monomer or oligomer encompass vinyl monomers or oligomers bearing at least one polymerizable moiety. The combination of substituted hindered amine plus phenothiazine inhibits premature polymerization in the liquid and/or vapor phase.

P 0 467 850 A

page is skipping

BEST AVAILABLE COPY

S.is 1-methoxy-2,2,6,6-tetramethylpiperidin-4-one.

T is 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-one.

U is 4-hydroxyethoxy-2,2,6,6-tetramethylpiperidine.

V is bis(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate.

W is bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate.

Examples 25-27:

When using the procedure of Example 2, the acrylic acid is replaced respectively with the monomers shown below, no polymer is formed in the presence of 100 ppm of 1-tert-butoxy-2,2,6,6-tetramethylpiperidin-4-yl benzoate and 1000 ppm of phenothiazine.

15	Example	Monomer		
	25	methyl methacrylate		
20	26	2-hydroxyethyl methacrylate		
	27	2-hydroxyethyl acrylate		

Claims

25

30

35

40

50

55

1. A monomer composition, stabilized against premature polymerization, which comprises

- (a) an ethylenically unsaturated monomer or mixture of monomers, polymerizable by free radical initiation, and
- (b) an effective amount, sufficient to inhibit the premature polymerization of component (a), which is a combination of
- (i) a heterocyclic compound selected from any of formulas A to C

$$G_5$$
 G_4
 G_5
 G_3
 G_4
 G_5
 G_4
 G_5
 G_4

$$G_5$$

$$G_5$$

$$G_4$$

$$G_5$$

$$G_4$$

$$G_5$$

$$G_4$$

$$G_5$$

$$G_5$$
 G_3
 G_4
 G_5
 G_5
 G_6
 G_7
 G_8
 G_8

where

 G_3 is hydrogen, alkyl of 1 to 4 carbon atoms or alkenyl of 3 to 4 carbon atoms, G_4 and G_5 are independently hydrogen or alkyl of 1 to 8 carbon atoms, and f and g are independently 0, 1 or 2, and

(ii) a primary, secondary or tertiary amine, or hydroxylamine, or mixture thereof, of the formula

$NQ_2Q_3Q_4$

10 $Q_{8} \longrightarrow Q_{5}$ 15 $Q_{9} \longrightarrow Q_{5}$ 20 $Q_{10} \longrightarrow Q_{11}$ 25

T₉T₁₀N-OH

wherein

30

35

45

- Q_2 , Q_3 and Q_4 are independently hydrogen, alkyl of 1 to 18 carbon atoms, said alkyl substituted by hydroxy, alkenyl of 3 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, anyl of 6 to 10 carbon atoms or said anyl substituted by alkyl of 1 to 12 carbon atoms or by phenyl, with the proviso that all of Q_2 , Q_3 and Q_4 are not hydrogen, cycloalkyl, phenylalkyl or anyl at the same time; or
- Q₃ and Q₄ together are straight or branched alkylene of 4 to 8 carbon atoms, 3-oxapentamethylene, 3-thiapentamethylene, 3-iminopentamethylene or 3-methyliminopentamethylene, and
 Q₂ is hydrogen or alkyl of 1 to 8 carbon atoms;
 - Q_5 , Q_8 , Q_7 , Q_8 , Q_9 , Q_{10} and Q_{11} are independently hydrogen, methyl or ethyl; or T_9 is hydrogen, alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms or phenylalkyl of 7 to 15 carbon atoms, and
 - T_{10} is alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms or phenylalkyl of 7 to 15 carbon atoms.
 - A composition according to claim 1 wherein the effective amount is a combination of component (i) and component (ii) in a weight ratio of (i):(ii) of 1:10 to 1000:1, preferably 1:1 to 10:1, and where the total concentration of (i) plus (ii) is in the range of 50-10,000 ppm, preferably 200-600 ppm, based on the monomer being stabilized.
- 3. A composition according to claim 1 wherein component (a) is a monomer selected from the group consisting of the olefinic hydrocarbons, dienes, halogenated monomers, unsaturated acids, unsaturated esters, unsaturated amides, unsaturated nitriles, unsaturated ethers, acrylated urethanes and unsaturated polyesters and mixtures thereof.

- 4. A composition according to claim 4 wherein the monomer is styrene, butadiene, vinyl chloride, acrylic acid, methacrylic acid, vinyl acetate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, trimethylolpropane triacrylate, polyethylene glycol diacrylate or methyl methacrylate, preferably styrene, butadiene, acrylic acid or methacrylic acid.
- 5. A composition according to claim 1 wherein component (i) is phenothiazine.
- 6. A composition according to claim 1 wherein component (ii) is N,N-diethylhydroxylamine or N,N-di-tert-butylhydroxylamine.
- A composition according to claim 1 which additionally contains another stabilizer selected from the group consisting of hydroquinone and monomethyl ether of hydroquinone.
- 8. A process for preventing the premature polymerization of a monomer polymerizable by free radical initiation which comprises
 - adding to said monomer (a) an effective amount of a combination of compounds of component (b) according to claim 1.
- A process according to claim 8 for preventing the fouling of processing equipment including reactors,
 pipes, stills, distillation columns, cracking towers and heat transfer surfaces during the processing of a monomer polymerizable by free radical initiation which comprises
 - adding to said monomer (a), before processing is been, an effective amount of a combination of compounds of component (b) according to claim 1.
- 25 10. A process according to claim 8 which comprises
 - adding 50 to 10,000 ppm of component (b), according to claim 1, in a weight ratio of from 1:10 to 1000:1, to a continuous feed stream to deactivate the autocatalytic polymerization, in any part of the continuous process equipment, of any ethylenically unsaturated monomer present in the feed stream, and
 - further adding to said feed stream an additional 10 ppm to 500 ppm of said mixture as a makeup additive to maintain the desired concentration of said mixture in the fluid feed stream being processed.
 - 11. A monomer composition, stabilized against premature polymerization, which comprises
 - (a) an ethylenically unsaturated monomer or mixture of monomers, polymerizable by free radical initiation, and
 - (b) an effective amount, sufficient to inhibit premature polymerization of component (a), of a combination of
 - (i) a heterocyclic compound selected from any of formulas A to D

$$G_5$$
 G_4
 G_3
 G_4
 G_4
 G_5
 G_4
 G_4

$$G_{5} = G_{4}$$

$$G_{5} = G_{4}$$

$$G_{5} = G_{4}$$

$$G_{5} = G_{4}$$

$$G_{6} = G_{4}$$

$$G_{7} = G_{4}$$

$$G_{8} = G_{4}$$

5

10

30

35

40

$$G_5$$
 G_4
 G_{3}
 G_{4}
 G_{5}
 G_{5}

$$G_{6}$$
 G_{7}
 G_{8}
 G_{9}
 G_{9}
 G_{9}

where

5

10

15

20

45

 G_3 is hydrogen, alkyl of 1 to 4 carbon atoms or alkenyl of 3 to 4 carbon atoms, G_4 and G_5 are independently hydrogen or alkyl of 1 to 8 carbon atoms, G_6 is aryl of 6 to 10 carbon atoms or aralkyl of 7 to 15 carbon atoms, and G_7 , G_8 and G_9 are independently hydrogen, alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon

 G_7 , G_8 and G_9 are independently hydrogen, alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 15 carbon atoms or alkaryl of 7 to 15 carbon atoms; f and g are independently 0, 1 or 2, and

(ii) a compound or mixture of compounds of any of formulas I to XIX

$$\begin{array}{c|c}
G_1 & G_2 \\
L_1 & N & G_2
\end{array}$$

$$G_1 & G_2 & R$$

$$G_1 & G_2 & R$$

$$G_1 & G_2 & R$$

$$\begin{array}{c|c}
G_1 & G_2 \\
 & \downarrow \\$$

$$\begin{array}{c|c}
C_1 & C_2 \\
\hline
L_1 - N & C_2
\end{array}$$

$$\begin{array}{c|c}
R_3 & (III)
\end{array}$$

$$L_1$$
 Q_1 E $CO-NH-CH_2-OR_6$ (V)

$$G_{1}$$

$$G_{2}$$

$$G_{1}$$

$$G_{2}$$

$$G_{1}$$

$$G_{2}$$

$$G_{2}$$

$$G_{2}$$

$$G_{3}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{6}$$

$$G_{7}$$

$$G_{8}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{1}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{8}$$

$$G_{8$$

$$\begin{array}{c|c}
G_1 & G_2 \\
M & N-L_1 \\
Y & G_1 & G_2
\end{array}$$
(VII)

$$N = \begin{bmatrix} G_1 & G_2 \\ N - L_1 \\ G_1 & G_2 \end{bmatrix}_3$$
 (DX)

$$\begin{array}{c|c}
 & G_1 & G_2 \\
 & G_1 & G_2 \\
 & G_1 & G_2
\end{array}$$
(XI)

40
$$G_{1} \qquad G_{2} \qquad R_{1} \qquad N \qquad T_{6}$$

$$G_{1} \qquad G_{2} \qquad N \qquad R_{1}$$

$$G_{1} \qquad G_{2} \qquad N \qquad R_{1}$$

$$G_{2} \qquad N \qquad G_{2} \qquad N \qquad G_{2}$$

$$G_{1} \qquad G_{2} \qquad G_{2} \qquad G_{2}$$

$$G_1 \qquad G_1 \qquad (XIV)$$

$$G_1 \qquad G_1 \qquad (XV)$$

$$G_2 \qquad G_2 \qquad G_2$$

45
$$G_1$$
 G_2 G_1 G_2

$$O = \underbrace{\begin{array}{c} G_1 \\ N - O - L_2 - O - N \\ G_1 \\ G_2 \end{array}}_{G_2} = O$$

$$XIX$$

10 wherein

5

20

25

30

35

40

45

50

G₁ and G₂ are independently alkyl of 1 to 4 carbon atoms;

 L_1 is hydrogen, hydroxyl, alkyl of 1 to 18 carbon atoms, said alkyl substituted by hydroxyl, cyanoethyl, glycidyl, aralkyl of 7 to 15 carbon atoms or a monovalent acyl radical of an aliphatic, cycloaliphatic, araliphatic or aromatic acid, $-OCONHL_3$ or -OL4, where

L₃ is hydrogen, alkyl of 2 to 18 carbon atoms, allyl, cyclohexyl, aryl of 6 to 10 carbon atoms, said aryl substituted by one or two alkyl groups of 1 to 4 carbon atoms or is benzyl,

 L_4 is alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, alkenyl of 2 to 18 carbon atoms, cycloalkenyl of 5 to 12 carbon atoms, aralkyl of 7 to 15 carbon atoms, a radical of a saturated or unsaturated bicyclic or tricyclic hydrocarbon of 7 to 12 carbon atoms or aryl of 6 to 10 carbon atoms or said aryl substituted by alkyl of 1 to 4 carbon atoms, or L_4 is $-CH_2CH_2COOL_5$ where L_6 is alkyl of 1 to 18 carbon atoms, n is 1 or 2,

when n is 1,

R is hydrogen, C₁-C₁₈-alkyl optionally interrupted by one or more oxygen atoms, cyanoethyl, benzyl, glycidyl, a monovalent acyl radical of an aliphatic, cycloaliphatic, araliphatic or aromatic acid, or of carbamic acid or of a phosphorus-containing acid, or a monovalent silyl radical; or when n is 2,

R is C₁-C₁₂-alkylene, C₄-C₁₂-alkenylene, xylylene, a divalent acyl radical ofan aliphatic, cycloaliphatic, araliphatic or aromatic dicarboxylic acid, or of a dicarbamic acid or of a phosphorus-containing acid, or a bivalent silyl radical;

p is 1, 2 or 3,

 R_1 is C_1 - C_{12} -alkyl, C_5 - C_7 -cycloalkyl, C_7 - C_8 -aralkyl, C_2 - C_{18} -alkanoyl, C_3 - C_5 -alkenoyl or benzoyl; when p is 1,

 R_2 is C_1 - C_{18} -alkyl, C_5 - C_7 -cycloalkyl, C_2 - C_8 -alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CONH-Z wherein Z is hydrogen, methyl or phenyl;or

when p is 2,

 R_2 is C_2 - C_{12} -alkylene, C_6 - C_{12} -arylene, xylylene, a -CH₂CH(OH)CH₂-O-X-O-CH₂CH(OH)CH₂- wherein X is C_2 - C_{10} -alkylene, C_6 - C_{15} -arylene or C_6 - C_{12} -cycloalkylene; or, provided that R_1 is not alkanoyl, alkenoyl or benzoyl, R_2 can also be a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid, or can be the group -CO-; or R_1 and R_2 together when p is 1 can be the cyclic acyl radical of an aliphatic or aromatic 1,2- or 1,3-dicarboxylic acid; or

R₂ is

where T₇ and T₈ are independently hydrogen, alkyl of 1 to 18 carbon atoms, or T₇ and T₈ together are alkylene of 4 to 6 carbon atoms or 3-oxapentamethylene;

55 when p is 3,

R₂ is 2,4,6-triazinyl;

when n is 1,

R₃ is C₂-C₈-alkylene or hydroxyalkylene or C₄-C₂₂-acyloxyalkylene; or

when n is 2, R₃ is $(-CH_2)_2C(CH_2-)_2$; when n is 1,

5

10

15

20

25

30

35

40

45

50

55

 R_4 is hydrogen, C_1 - C_{12} -alkyl, C_3 - C_5 -alkenyl, C_7 - C_9 -aralkyl, C_5 - C_7 -cycloalkyl, C_2 - C_4 -hydroxyalkyl, C_2 - C_5 -alkoxyalkyl, C_6 - C_{10} -aryl, glycidyl, a group of formula - $(CH_2)_m$ -COO-Q or of the formula - $(CH_2)_m$ -O-CO-Q wherein m is 1 or 2 and Q is C_1 - C_4 -alkyl or phenyl; or when n is 2.

R₄ is C₂-C₁₂-alkylene, C₆-C₁₂-arylene, a group -CH₂CH(OH)CH₂-O-X-O-CH₂CH(OH)CH₂- wherein X is C₂-C₁₀-alkylene, C₆-C₁₅-arylene or C₆-C₁₂-cycloalkylene, or a group -CH₂CH(OZ₁)CH₂-(OCH₂CH(OZ₁)CH₂)₂-wherein Z₁ is hydrogen, C₁-C₁₈-alkyl, allyl, benzyl, C₂-C₁₂-alkanoyl or benzoyl;

R₅ is hydrogen, C₁-C₁₂-alkyl, allyl, benzyl, glycidyl or C₂-C₈-alkoxyalkyl;

 Q_1 is -N(R₇)- or -O-;

E is C_1 - C_3 -alkylene, the group - $CH_2CH(R_8)$ -O- wherein R_8 is hydrogen, methyl or phenyl, the group - $(CH_2)_3$ -NH- or a direct bond;

 R_7 is C_1 - C_{18} -alkyl, C_5 - C_7 -cycloalkyl, C_7 - C_{12} -aralkyl, cyanoethyl, C_6 - C_{10} -aryl, the group -CH₂CH(R_8)-OH; or a group of the formula

$$C_1$$
 C_2
 C_1
 C_2

or a group of the formula

$$G_1$$
 G_2
 G_2
 G_2
 G_2
 G_3
 G_4
 G_5
 G_7
 G_8

wherein G is C_2 - C_6 -alkylene or C_6 - C_{12} -arylene; or R_7 is a group -E-CO-NH-CH₂-OR₆; R_6 is hydrogen or C_1 - C_{18} -alkyl;

Formula VI denotes a recurring structural unit of a polymer where T is ethylene or 1,2-propylene, or is a repeating structural unit derived from an α-olefin copolymer with an alkyl acrylate or methacrylate; k is 2 to 100;

 T_1 has the same meaning as R_2 when p is 1 or 2; M and Y are independently methylene or carbonyl; T_2 has the same meaning as R_4 , and T_2 is octamethylene; T_3 and T_4 are independently alkylene of 2 to 12 carbon atoms, of T_4 is

T₆ is

-NH(CH₂)_a-N(CH₂)_b-N((CH₂)_c-N-1_dH

where a, b and c are independently 2 or 3, and d is 0 or 1;

e is 3 or 4:

T₅ is the same as R with the proviso that T₅ cannot be hydrogen when n is 1;

E₁ and E₂ being different, are each oxo or imino;

E₃ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl, said phenyl or said naphthyl substituted by chlorine or by alkyl of 1 to 4 carbon atoms, or phenylalkyl of 7 to 12 carbon atoms, or said phenylalkyl substituted by alkyl of 1 to 4 carbon atoms; and

15 E₄ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl or phenylalkyl of 7 to 12 carbon atoms; or E₃ and E₄ together are polymethylene of 4 to 17 carbon atoms, or said polymethylene substituted by up to four alkyl groups of 1 to 4 carbon atoms;

L₂ is a divalent radical from an aliphatic, cycloaliphatic or aromatic diisocyanate from which the two -NCO groups are removed, or is an alkanediyl of 1 to 18 carbon atoms or cyclohexanediyl

20

5

10

12. A composition according to claim 11 wherein the effective amount is a combination of component (i) and component (ii) in a weight ratio of (i):(ii) of 1:10 to 1000:1, preferably 1:1 to 10:1, and where the total concentration of (i) plus (ii) is in the range of 50-10,000 ppm, preferably 200-600 ppm, preferably 200-600 ppm, based on the monomer being stabilized.

25

13. A composition according to claim 11 wherein component (a) is a monomer selected from the group consisting of the olefinic hydrocarbons, dienes, halogenated monomers, unsaturated acids, unsaturated esters, unsaturated amides, unsaturated nitriles, unsaturated ethers, acrylated urethanes and unsaturated polyesters and mixtures thereof.

30

14. A composition according to claim 13 wherein the monomer is styrene, butadiene, vinyl chloride, acrylic acid, methacrylic acid, vinyl acetate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, trimethylol-propane triacrylate, polyethylene glycol diacrylate or methyl methacrylate, preferably styrene, butadiene, acrylic acid or methacrylic acid.

35

- 15. A composition according to claim 11 wherein component (i) is phenothiazine.
- 16. A composition according to claim 11 wherein component (ii) is of formula I or XV, preferably of formula I.
- 40 17. A composition according to claim 11 wherein component (ii) is selected from the group consisting of 1-[2-(methoxycarbonyl)ethoxy]-4-benzyloxy-2,2,6,6-tetramethyl piperidine;

1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl benzoate;

bis[1-(2-(methoxycarbonyl)ethoxy)-2,2,6,6-tetramethylpiperidin-4-yl] phthalate;

1-tert-butoxy-2,2,6,6-tetramethylpiperidin-4-yl benzoate;

4-hydroxy-1-octyloxy-2,2,6,6-tetramethylpiperidine;

1-[2-(methoxycarbonyl)ethoxy]-2,2,6,6-tetramethylpipendine; ramethylpipendin-4-yl benzoate;

1-methylcyclohexyloxy-2,2,6,6-tet-

4-benzyloxy-1-ethoxy-2,2,6,6-tetramethylpiperidine;

1-carbamoyloxy-4-benzoyloxy-2,2,6,6-tetramethylpiperidine;

50 4-hydroxy-1,2,2,6,6-pentamethylpiperidine;

1-butylcarbamoyloxy-4-benzoyloxy-2,2,6,6-tetramethylpiperidin e;

1-α-methylbenzyloxy-2,2,6,6-tetramethylpiperidin-4-yl benzoate;

1,4-dimethoxy-2,2,6,6-tetramethylpiperidine;

bis[1-(2-(methoxycarbonyl)ethoxy)-2,2,6,6-tetramethylpiperidi n-4-yloxy]-p-xylylene;

55 1-hydroxy-2,2,6,6-piperidin-4-yl benzoate;

4-hydroxy-1-methoxy-2,2,6,6-tetramethylpiperidine;

1-methoxy-2,2,6,6-tetramethylpiperidin-4-one;

1-hydroxy-2,2,6,6-tetramethylpiperidin-4-one;

4-hydroxyethoxy-2,2,6,6-tetramethylpiperidine; bis(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate; and bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate.

- 5 18. A composition according to claim 11 which additionally contains another stabilizer selected from the group consisting of hydroquinone and monomethyl ether of hydroquinone.
 - 19. A process for preventing the premature polymerization of a monomer polymerizable by free radical initiation which comprises

adding to said monomer (a) an effective amount of a combination of compounds of component (b) according to claim 11.

20. A process according to claim 19 for preventing the fouling of processing equipment including reactors, pipes, stills, distillation columns, cracking towers and heat transfer surfaces during the processing of a monomer polymerizable by free radical initiation which comprises

adding to said monomer, before processing is begun, an effective amount of a combination of compounds of component (b) according to claim 11.

21. A process according to claim 19 which comprises

10

15

20

25

30

35

45

50

55

adding 50 to 10,000 ppm of a mixture of components (i) and (ii), according to claim 13, in a weight ratio of from 1:10 to 1000:1, to a continuous feed stream to deactivate the autocatalytic polymerization, in any part of the continuous process equipment, of any ethylenically unsaturated monomer present in the feed stream, and

further adding to said feed stream an additional 10 ppm to 500 ppm of said mixture as a makeup additive to maintain the desired concentration of said mixture in the fluid feed stream being processed.

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT				EP 91810561.
Category	Citation of document with	indication, where appropriate,	Relevant to claim	CLASSIFICATION OF TH APPLICATION (Int. CL.S)
х	US - A - 4 912 (P.V. ROLING) * Claims *	2 247	1-5,7, 11-15, 18	C 07 C 69/54 C 07 C 57/07 C 07 C 15/46 C 07 C 67/62
D,A			11-13	C 07 C 7/20
D,A			11-13,	
A	EP - A1 - 0 33 (UNIROYAL) * Claims *	34 500	1-5, 11-15	
				TECHNICAL FIELDS SEARCHED (Inc. CL.5)
				C 07 C 7/00 C 07 C 15/00 C 07 C 51/00 C 07 C 57/00
	The present search report has l	been drawn up for all claims		
Place of search		Date of completion of the search		Errenteer
VIENNA		07-10-1991	991 HOFBAUER	
X : partici Y : partici docum A : techno	TEGORY OF CITED DOCUME starty relevant if taken alone starty relevant if combined with an ent of the same category logical background rittes disclosure	E : earlier paleat 400 after the faing da other D : document cited fo L : document cited fo	zument, but publication the application or other reasons	lished on, or

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.