Regression: Theory and Practice

Gaussian vectors

Karim Lounici

Let
$$X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{pmatrix} \in \mathbb{R}^d$$
 be a random vector such that $\mathbb{E}[X_j^2] < \infty$ for all $1 \le j \le d$.

For all $1 \le i, j \le d$, the covariance between X_i and X_j is

$$\mathrm{Cov}(X_i,X_j) = \mathbb{E}[X_iX_j] - \mathbb{E}[X_i] \ \mathbb{E}[X_j].$$

- Remarks:
 - Symmetry: $Cov(X_i, X_j) = Cov(X_j, X_i)$
 - If X_i , X_j are independent then $Cov(X_i, X_j) = 0$
 - The converse is false in general.

Expectation vector:

$$\mathbb{E}[X] = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_d] \end{pmatrix}$$

Covariance operator

$$\Sigma_X = \operatorname{Cov}(X) := \left(\begin{array}{cccc} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_d) \\ \operatorname{Cov}(X_1, X_2) & \operatorname{Var}(X_1) & \cdots & \operatorname{Cov}(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_d, X_1) & \operatorname{Cov}(X_d, X_2) & \cdots & \operatorname{Var}(X_d) \end{array} \right)$$

Theorem

 Σ_X is symmetric positive semi-definite $(v^\top Cov(X)v \geq 0, \forall v \in \mathbb{R}^d)$

Proof.

By definition, $v^{\top}Cov(X)v = Var(v^{\top}X) \ge 0$

Theorem (Affine mapping)

Let $\alpha \in \mathbb{R}^d$ and $A \in \mathbb{R}^{k \times d}$, then $Y = \alpha + A X$ is a random vector in \mathbb{R}^k with

$$\mathbb{E}[Y] = \alpha + A \mathbb{E}[X], \text{ and } \Sigma_Y = A \Sigma_X A^\top.$$

Proof as an exercise.
$$\times \in \mathbb{R}^n$$
, $Y \in \mathbb{R}^n$
 $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]$

Theorem (Affine mapping)

Let $\alpha \in \mathbb{R}^d$ and $A \in \mathbb{R}^{k \times d}$, then $Y = \alpha + A X$ is a random vector in \mathbb{R}^k with

$$\mathbb{E}[Y] = \alpha + A \mathbb{E}[X], \text{ and } \Sigma_Y = A \Sigma_X A^\top.$$

Proof as an exercise.

Definition (characteristic function)

Let $X \in \mathbb{R}^d$ be a random vector. Its characteristic function $\Phi_X : \mathbb{R}^d \to \mathbb{C}$ is

$$\Phi_X(t) = \mathbb{E}[e^{i\langle t, X\rangle}] = \mathbb{E}[e^{i\sum_{j=1}^d t_j X_j}].$$

► X and \tilde{X} random vectors in \mathbb{R}^d are independent iff $\phi_{X+\tilde{X}}(t) = \phi_X(t)\phi_{\tilde{X}}(t)$, for any $t \in \mathbb{R}^d$.

Definition

a random variable $z \in \mathbb{R}$ is Gaussian iff its characteristic function is

$$\Phi_{z}(t) = e^{im-\frac{1}{2}t^{2}\sigma^{2}}, \quad \forall t \in \mathbb{R}.$$

z is a degenerate Gaussian if σ = 0.

Definition

a random vector $X \in \mathbb{R}^d$ is a Gaussian vector iff $\mathbf{a}^T X$ is a Gaussian random variable for any $\mathbf{a} \in \mathbb{R}^d$.

- If $\mathbb{E}[X] = 0$ and $Cov(X) = I_d$, then we say that the Gaussian vector X is standard.
- If $X \in \mathbb{R}^d$ is a Gaussian vector, then its components are Gaussian rv's.

Gaussiairivs.

$$\alpha = e_{\delta} = [0, ..., 0, 1, 0, ..., 0]^{T} \in \mathbb{R}^{d}$$

$$e_{\delta}^{T} \times = \times_{\delta}$$

Definition

a random variable $z \in \mathbb{R}$ is Gaussian iff its characteristic function is

$$\Phi_z(t) = e^{im-\frac{1}{2}t^2\sigma^2}, \quad \forall t \in \mathbb{R}.$$

z is a degenerate Gaussian if $\sigma = 0$.

Definition

a random vector $X \in \mathbb{R}^d$ is a Gaussian vector iff $a^T X$ is a Gaussian random variable for any $a \in \mathbb{R}^d$.

- If $\mathbb{E}[X] = 0$ and $Cov(X) = I_d$, then we say that the Gaussian vector X is standard.
- If $X \in \mathbb{R}^d$ is a Gaussian vector, then its components are Gaussian rv's.

Question: If all the components of a Gaussian vector *X* are Gaussian rv's, is *X* a Gaussian vector?

Theorem

The following assertions are equivalent:

- $X \in \mathbb{R}^d$ is a Gaussian vector with expectation vector m and covariance operator Σ .
- The characteristic function of random vector $X \in \mathbb{R}^d$ is

$$\Phi_{X}(t) = e^{im^{T}t - \frac{1}{2}t^{T}\Sigma t}, \quad \forall t \in \mathbb{R}^{d}.$$
Proof as an exercise.
$$(0, 0)^{T} \times_{\mathbb{R}^{d}} \times_{\mathbb{R}^{d}$$

Theorem (Affine mapping stability)

If X is a Gaussian vector, then Y = a + AX is also a Gaussian vector.

Proof as an exercise.

Theorem

The following assertions are equivalent:

- $X \in \mathbb{R}^d$ is a Gaussian vector with expectation vector m and covariance operator Σ .
- The characteristic function of random vector $X \in \mathbb{R}^d$ is

Theorem (Affine mapping stability)

If X is a Gaussian vector, then Y = a + AX is also a Gaussian vector.

Proof as an exercise.

These results guarantee the existence of Gaussian vectors and provide a method to simulate them.

Proposition (Existence)

Let $Z = (Z_1, Z_2, \dots, Z_d)^{\top} \in \mathbb{R}^d$ be a random vector with i.i.d. standard gaussian components. Then Z is a standard Gaussian vector.

Proof as an exercise

Proposition (Existence)

Let $Z = (Z_1, Z_2, \dots, Z_d)^{\top} \in \mathbb{R}^d$ be a random vector with i.i.d. standard gaussian components. Then Z is a standard Gaussian vector.

Proof as an exercise

How can we simulate a Gaussian vector $X \sim N_d(m, \Sigma)$?

$$0 \Sigma = AA^{T} \quad A : d \times k$$

$$0 Z_{1,1}, Z_{k} \quad \stackrel{\text{ind}}{\sim} N(0,1)$$

$$2 = \left(\frac{21}{2k}\right) \sim N(0, T_{k})$$

$$2 = m + AZ \sim N(m, ACov(Z)A^{T})$$

$$X = m + AZ \sim N(m, AA^{T} = \Sigma)$$

Proposition (Existence)

Let $Z = (Z_1, Z_2, \dots, Z_d)^{\top} \in \mathbb{R}^d$ be a random vector with i.i.d. standard gaussian components. Then Z is a standard Gaussian vector.

Proof as an exercise

How can we simulate a Gaussian vector $X \sim N_d(m, \Sigma)$?

Algorithm:

- 1. Compute the Cholesky decomposition of $\Sigma = A A^{\top}$ with $A \in \mathbb{R}^{d \times k}$ is of rank k with $k \leq d$.
- 2. Generate Z_1, \ldots, Z_k are i.i.d. standard Gaussian rv's and set

$$Z = \begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_k \end{pmatrix} \in \mathbb{R}^k,$$

3. Compute m + AZ.

Theorem

Let $X = (X_1, \dots, X_d)^{\top} \in \mathbb{R}^d$ be a Gaussian vector. X_i and X_j are independent if and only if $cov(X_i, X_j) = 0$.

Proof is left as an exercise.

$$X, \parallel X_2 \Rightarrow Cov(X_1, X_2) = 0$$

 $X \text{ Courrien}$

Theorem

Let $X = (X_1, \dots, X_d)^{\top} \in \mathbb{R}^d$ be a Gaussian vector. X_i and X_j are independent if and only if $cov(X_i, X_j) = 0$.

Proof is left as an exercise.

- Independence property of Gaussian vectors is fundamental. It turns independence (a probabilistic notion) into a geometric one (orthogonality in $L_2(\mathbb{P})$).
- This is the core ingredient of the theory of Gaussian linear models.

In a nutshell, conditional Gaussian vectors are Gaussian vectors.

Theorem

Let
$$X = (X_1, \dots, X_d)^{\top} \in \mathbb{R}^d$$
 be a Gaussian vector. Set $Y = (X_1, \dots, X_m)^{\top}$ and $Z = (X_{m+1}, \dots, X_d)^{\top}$. Then $Y|Z = z \sim N_d(m_c, \Sigma_c)$.

Assume that Σ_Z is positive definite. Then,

$$m_c = \mathbb{E}[Y|Z = z] = m_Y + \Sigma_{YZ}(z - m_Z)$$

and

$$\Sigma_{c} = \Sigma_{Y} - \Sigma_{YZ} \Sigma_{Z}^{-1} \Sigma_{YZ} \qquad \max(d-m)$$
e proof?
$$U = Y - A Z$$

$$A \text{ st. } Cov(U, Z) = O$$

Y= U+AZ

Question: ideas for the proof?

Cochran's Theorem

Definition (χ^2)

The chi-square distribution with ν degrees of freedom and noncentrality parameter μ (denoted by $\chi^2_{\nu,\mu}$) is the distribution of

$$Z_1^2 + Z_2^2 + \cdots + Z_{\nu}^2,$$

where $Z_1, ..., Z_{\nu}$ are i.i.d. Gaussian with unit variance and $\mathbb{E}Z_1 = \mu$, $\mathbb{E}Z_2 = \cdots = \mathbb{E}Z_{\nu} = 0$.

- If $\mu = 0$, we simply write $\chi_{\nu}^2 = \chi_{\nu,0}^2$.

Cochran's Theorem

Definition (χ^2)

The chi-square distribution with ν degrees of freedom and noncentrality parameter μ (denoted by $\chi^2_{\nu,\mu}$) is the distribution of

$$Z_1^2 + Z_2^2 + \cdots + Z_{\nu}^2$$
,

where Z_1, \ldots, Z_{ν} are i.i.d. Gaussian with unit variance and $\mathbb{E}Z_1 = \mu$,

$$\mathbb{E} Z_2 = \cdots = \mathbb{E} Z_{\nu} = 0.$$
- If $\mu = 0$, we simply write $\chi^2_{\nu} = \chi^2_{\nu,0}$.

Theorem (simple version)

Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$. Then

$$\mathbb{F}_{\mu}(x) = \mathbb{F}_{\mu}(x)$$

Theorem (simple version)

Let
$$X_1, \ldots, X_n$$
 be i.i.d. $N(\mu, \sigma^2)$. Then
$$1. \ \bar{X}_n = \frac{1}{2} \sum_{i=1}^n X_i \sim N(\mu, \frac{\sigma^2}{2})$$

1.
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \frac{\sigma^2}{n})$$

1.
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \frac{\sigma^2}{n})$$

2. $\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ satisfies $\frac{n-1}{\sigma^2} \hat{\sigma}_n^2 \sim \chi^2(n-1)$

3. $\bar{X}_n \perp \hat{\sigma}_n^2$

Cochran's Theorem = $P_{\text{M}} = Cov(\times,\times) P_{\text{M}} = \sigma^2 P_{\text{M}} = 0$

Theorem

Let $Y \in \mathbb{R}^n$ be a random vector with $\mathbb{E}[Y] = \mu$ and $\Sigma_Y = \sigma^2 I_n$ (isotropic). Let M_1, \ldots, M_k be mutually orthogonal linear subspaces of \mathbb{R}^n . Then R" = M, + ··· + Me

i. $P_{M_i}(Y)$, i = 1, ..., k, are uncorrelated,

$$\mathbb{E}[P_{M_i}(Y)] = P_{M_i}(\mu), \quad \operatorname{Cov}(P_{M_i}(Y)) = \sigma^2 P_{M_i},$$

$$\operatorname{Cov}(Y) = \operatorname{Cov}(Y) = \operatorname{Cov}(Y) = \operatorname{Cov}(Y)$$

and

 $\mathbb{E}||P_{M_i}(Y)||^2 = \sigma^2 \dim(M_i) + ||P_{M_i}(\mu)||^2.$

Cochran's Theorem

Theorem

Let $Y \in \mathbb{R}^n$ be a random vector with $\mathbb{E}[Y] = \mu$ and $\Sigma_Y = \sigma^2 I_n$ (isotropic). Let M_1, \ldots, M_k be mutually orthogonal linear subspaces of \mathbb{R}^n . Then

i. $P_{M_i}(Y)$, i = 1, ..., k, are uncorrelated,

$$\mathbb{E}[P_{M_i}(Y)] = P_{M_i}(\mu), \quad \operatorname{Cov}(P_{M_i}(Y)) = \sigma^2 P_{M_i},$$

and

$$\mathbb{E}||P_{M_i}(Y)||^2 = \sigma^2 \dim(M_i) + ||P_{M_i}(\mu)||^2.$$

If $Y \sim N_n(\mu, \sigma^2 I_n)$, then

- ii. $P_{M_i}(Y) \sim N_n(P_{M_i}(\mu), \sigma^2 P_{M_i})$ are mutually independent.
- iii. $||P_{M_i}Y||^2$ are mutually independent and

$$||P_{M_i}(Y)||^2 \sim \sigma^2 \chi^2_{\dim(M_i), ||P_{M_i}(\mu)||/\sigma}, \quad 1 \leq i \leq k.$$