1 Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamin content, resulting in the following data (µg/g):

Wheat	5.2	4.5	6.0	6.1	6.7	5.7
Barley	6.5	8.0	6.1	7.5	5.9	5.6
Maize	5.8	4.7	6.4	4.9	6.0	5.2
Oats	8.3	6.1	7.8	7.0	5.6	7.2

	n _i	\bar{X}_i	Sį	s _i ²
Wheat	6	5.7	0.7668	0.588
Barley	6	6.6	0.9508	0.904
Maize	6	5.5	0.6693	0.448
Oats	6	7.0	1.0139	1.028

Source	SS	DF	MS	F
Between	9.24	3	3.08	4.151
Within	14.84	20	0.742	
Total	24.08	23		$F_{0.05}(3,20) = 3.10$
				$t_{0.025}(20) = 2.086$

A $100 \times (1 - \gamma)$ -percent confidence interval the difference $\mu_i - \mu_j$, $i \neq j$, is given by

$$\overline{Y}_i - \overline{Y}_j \pm t_{\gamma/2} (N - J \text{ d.f.}) \cdot s_{pooled} \cdot \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$

where $S_{pooled} = \sqrt{MSW}$.

a) Construct a 95% confidence interval for the difference between the average thiamin content for Oats and Maize.

$$(7.0-5.5) \pm 2.086 \cdot \sqrt{0.742} \cdot \sqrt{\frac{1}{6} + \frac{1}{6}}$$
 1.5 ± 1.0374

Tukey's pairwise comparison:

With $100 \times (1 - \gamma)$ -percent confidence *all* pairwise differences $\mu_i - \mu_j$ are bracketed by the bounds

$$(\overline{Y}_i - \overline{Y}_j) \pm \frac{q_{\gamma,J,N-J}}{\sqrt{2}} \cdot s_{pooled} \cdot \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$

where $s_{pooled} = \sqrt{MSW}$,

 $q_{\gamma,J,N-J}$ = values from Studentized Range table.

b) Use a 95% confidence level and Tukey's pairwise comparison procedure to compare the average thiamin content for Oats with the average thiamin content for Maize.

$$q_{0.05,4,20} = 3.96.$$

$$(7.0 - 5.5) \pm \frac{3.96}{\sqrt{2}} \cdot \sqrt{0.742} \cdot \sqrt{\frac{1}{6} + \frac{1}{6}}$$
1.5 \pm 1.3926

```
> qtukey(0.95, 4, 20)
[1] 3.958293
> results = glm(Thiamin ~ factor(Grain))
> TukeyHSD(aov(results))
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = results)
$`factor(Grain)`
            diff
                        lwr upr
Maize-Barley -1.1 -2.4919842 0.29198423 0.1541415
Oats-Barley 0.4 -0.9919842 1.79198423 0.8516188
Wheat-Barley -0.9 -2.2919842 0.49198423 0.2980981
Oats-Maize 1.5 0.1080158 2.89198423 0.0318296
Wheat-Maize 0.2 -1.1919842 1.59198423 0.9773911
Wheat-Oats -1.3 -2.6919842 0.09198423 0.0724920
```

TukeyHSD - Tukey's Honest Significant Difference

Contrast in the means $\mu_1, \mu_2, \dots, \mu_J$

$$c_1 \mu_1 + c_2 \mu_2 + ... + c_J \mu_J = \sum_{j=1}^{J} c_j \mu_j$$
 where $\sum_{j=1}^{J} c_j = 0$

Scheffé's multiple comparison:

With $100 \times (1 - \gamma)$ -percent confidence *all* contrasts in the *J* population means of the form $\sum_{j=1}^{J} c_j \mu_j$ are bracketed by the bounds

$$\sum_{j=1}^{J} c_j \overline{Y}_j \pm \sqrt{F_{\gamma}(J-1, N-J)} \cdot s_{pooled} \cdot \sqrt{(J-1) \cdot \sum_{j=1}^{J} \frac{c_j^2}{n_j}}$$

where $s_{pooled} = \sqrt{MSW}$.

- c) Use a 95% confidence level and Scheffé's multiple comparison procedure to compare ...
 - (i) the average thiamin content for Oats with the average thiamin content for Maize;

$$c_{\rm W} = 0$$
, $c_{\rm B} = 0$, $c_{\rm M} = -1$, $c_{\rm O} = 1$.

$$(7.0 - 5.5) \pm \sqrt{3.10} \cdot \sqrt{0.742} \cdot \sqrt{3 \cdot \left(\frac{1}{6} + \frac{1}{6}\right)}$$
 1.5 ± 1.51664

(ii) the average thiamin content for Oats and Barley with the average thiamin content for Maize;

$$c_{\text{W}} = 0,$$
 $c_{\text{B}} = \frac{1}{2},$ $c_{\text{M}} = -1,$ $c_{\text{O}} = \frac{1}{2}.$

$$(\frac{6.6+7.0}{2}-5.5) \pm \sqrt{3.10} \cdot \sqrt{0.742} \cdot \sqrt{3 \cdot \left(\frac{1}{24} + \frac{1}{6} + \frac{1}{24}\right)}$$
 1.3 ± 1.31345

(iii) the average thiamin content for Oats and Barley with the average thiamin content for Maize and Wheat;

$$c_{\text{W}} = -\frac{1}{2}, \quad c_{\text{B}} = \frac{1}{2}, \quad c_{\text{M}} = -\frac{1}{2}, \quad c_{\text{O}} = \frac{1}{2}.$$

$$(\frac{6.6 + 7.0}{2} - \frac{5.7 + 5.5}{2}) \pm \sqrt{3.10} \cdot \sqrt{0.742} \cdot \sqrt{3 \cdot \left(\frac{1}{24} + \frac{1}{24} + \frac{1}{24} + \frac{1}{24}\right)} \qquad \textbf{1.2} \pm \textbf{1.0724}$$

Bonferroni method:

To make m confidence intervals with *simultaneous* confidence level of at least $(1-\gamma)\times 100\%$, use $(1-\frac{\gamma}{m})\times 100\%$ for the individual confidence level.

We have 6 pairwise differences:

$$\mu_1 - \mu_2$$
 $\mu_1 - \mu_3$ $\mu_1 - \mu_4$ $\mu_2 - \mu_3$ $\mu_2 - \mu_4$ $\mu_3 - \mu_4$

To make 6 confidence intervals with *simultaneous* confidence level of at least 95%,

$$\frac{\gamma}{m} = \frac{0.05}{6}, \qquad \frac{\gamma/m}{2} = \frac{0.05}{12}.$$

Margin of error:
$$\pm 2.927119 \cdot \sqrt{0.742} \cdot \sqrt{\frac{1}{6} + \frac{1}{6}}$$
 ± 1.4557

Maize-Barley
$$-1.1 \pm 1.4557$$

Oats-Barley 0.4 ± 1.4557
Wheat-Barley -0.9 ± 1.4557
Oats-Maize 1.5 ± 1.4557
Wheat-Maize 0.2 ± 1.4557
Wheat-Oats -1.3 ± 1.4557

STAT 420

Kruskal-Wallis test for equivalence of means:

Let f(x) be a density of a continuous random variable with mean 0.

Assume Y_{ij} , $i=1,2,\ldots,n_j$, $j=1,2,\ldots,J$, are independent random variables with density $f(x-\mu_j)$.

(The *J* populations have no parametric assumptions, they are assumed to have densities with a common shape, but perhaps different centers.)

Let r_{ii} be the respective rank of a data point when all the data is ranked from smallest to largest.

Let \bar{r}_j be the mean of the ranks for each group. Let $\bar{r} = \frac{N+1}{2}$ be the grand mean of the ranks.

Test statistic:

$$K = \frac{12}{N(N+1)} \sum_{j=1}^{J} n_j (\bar{r}_j - \bar{r})^2 = \frac{12}{N(N+1)} \sum_{j=1}^{J} n_j (\bar{r}_j - \frac{N+1}{2})^2 = \frac{N+1}{N(N+1)} \sum_{j=1}^{J} n_j (\bar{r}_j - \frac{N+1}{2})^2 = \frac{N+1}{N($$

Reject H_0 if $K > \chi_0^2 (J - 1)$.

Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamin content, resulting in the following data ($\mu q/g$):

Does this data suggest that at least two of the grains differ with respect to true average thiamin content? Use $\alpha = 0.05$.

W	M	M	W	M	В	О	W	M	В	W	M
4.5	4.7	4.9	5.2	5.2	5.6	5.6	5.7	5.8	5.9	6.0	6.0
1	2	3	4.5	4.5	6.5	6.5	8	9	10	11.5	11.5

W	В	O	M	В	W	О	O	В	О	В	О
6.1	6.1	6.1	6.4	6.5	6.7	7.0	7.2	7.5	7.8	8.0	8.3
14	14	14	16	17	18	19	20	21	22	23	24

Wheat

Barley

$$\bar{r}_{\rm W} = 9.5$$

 $\bar{r}_{\rm B} = 15.25$

Maize

$$\bar{r}_{\rm M} = 7.66666$$

Oats

$$\bar{r}_{0} = 17.5833\bar{3}$$

r = 12.5

$$K = \frac{12}{24 \cdot 25} \left[6 \cdot (9.5 - 12.5)^2 + 6 \cdot (15.25 - 12.5)^2 + 6 \cdot (7.6666\overline{6} - 12.5)^2 + 6 \cdot (17.5833\overline{3} - 12.5)^2 \right] = 7.89166\overline{6}.$$

A correction for ties can be made, but this correction usually makes little difference in the value of K unless there are a large number of ties.

$$\chi_{\alpha}^{2}(J-1) = \chi_{0.05}^{2}(3) = 7.815.$$

$$K > 7.815$$
.

Reject H₀ at
$$\alpha = 0.05$$
.

p-value
$$\approx 0.0483 < 0.05$$
.

[1] 0.04830449