Due in class: Feb 14.

Read Chapter 1 of the text (O'Rourke).

Problems 1-4 are due on Feb 14. Problem (5) can be turned in with HW 2.

- (1) Let's consider the algorithm for the closest pair problem done in class. In class we observed that there are at most 8 points in the "window" of size $\delta \times 2\delta$. With the assumption that no two points have the same x co-ordinate, what is the best upper bound (smallest number) we can claim about the number of points in this "window"? (Don't just provide a number, try to give a proof.)
- (2) Assume that $v_1 = x_1 \vec{\imath} + y_1 \vec{\jmath}$ and $v_2 = x_2 \vec{\imath} + y_2 \vec{\jmath}$ are two vectors in the xy plane. Let $v_1 \cdot v_2 = x_1 x_2 + y_1 y_2$.
 - (a) Prove that $v_1 \cdot v_2 = |v_1||v_2|\cos\theta$ where θ is the angle between the two vectors. (Hint: use elementary trigonometry to compute the length of the vector $v_1 v_2$.)
 - (b) Use the definition of cross product given in O'Rourke's book (page 19) to prove that $|v_1 \times v_2|$ is the area of the parallelogram formed by the two vectors. (Recall that $\cos^2 \theta + \sin^2 \theta = 1$.)
 - (c) Prove that if $|v_1 \times v_2|$ is positive, then vector v_1 is clockwise from vector v_2 with respect to the origin.
- (3) Problem 1 (page 10) in Exercises 1.1.4.
- (4) Problem 2 (page 10) in Exercises 1.1.4.
- (5) (Hard) Let $p_1p_2...p_n$ be a polygonal path in the plane such that at every vertex the path "turns left" (i.e., p_{i+1} is to the left of the ray from p_{i-1} to p_i). Give a linear time algorithm to check the path for self intersections.