السلسلة (2) للمراجعة النهائية في الفيزياء من أجل التحضير لشهادة التعليم المتوسط

- 1_ تمثل القوى ما يلى:
- \overrightarrow{F}_1 . قوة شد الخيط \overrightarrow{F}_2 . قوة جذب المغناطيس.
 - ج-F₃: قوة جذب الأرض للكرية (الثقل).
 - 2 تصنيف القوى:
- ترمسیة \overrightarrow{F}_2 قوة تلامسیة \overrightarrow{F}_2 قوة بعدیة.
- 3 الشروط هي: <u>شْ 1:</u> حوامل اشعة القوى تتلاقى في نقطة واحدة. $F_1 + F_2 + F_3 = 0$:2
- 4. الكرية في حالة توازن لان اشعة القوى ثلاث تتلاقى في نقطة واحدة و وتشكل مضلع مغلق أي: $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0}$
 - بعد ابعاد المغناطيس تصبح الكرية خاضعة لقوتين هما:
 - - $\overrightarrow{\mathsf{F}}_3$ قوة $\overrightarrow{\mathsf{F}}_3$ أي قوة ثقلها

التمرين(3): تستقبل مرأة مستوية شعاعا ضوئيا من منبع ثابت

كما هو بين في الوثيقة المقابلة.

- 2 سم الشعاع (IS)والشعاع (IR)
- (r) و (i) حدد (i) و A=60°
- $m{A}$ ندیر المرآة بزاویة $lpha=10^\circ$ في جهة دوران $m{M}'$ عقارب الساعة.
 - حدد جهة دوران الشعاع (IR) والشعاع (IN).
 - ب) ماهي زاوية دوران كل من الشعاع (IR) و الشعاع (IN).
 - ت) حدد قيس زاوية الورود الجديدة.

- <u>القانون الأول:</u> الشعاع الوارد والمنعكس يقعان في نفس المستوي.
- القانون الثاني: قيس زاوية الورود تساوي قيس زاوية الانعكاس.
- يمثل الشعاع (IS) شعاع الورود و الشعاع (IR) شعاع الانعكاس.

$$i = 90 - 60 = 40^{\circ}$$
 (i)

- 4. يدور كل من الشعاع (IR) والشعاع (IN) في نفس جهة دوران المرأة أي جهة دوران عقارب الساعة.
- β = $2(10^{\circ})$ = 20° بيدور الشعاع (IR) ضعف زاوية دوران المرآة أي
- $lpha=10^\circ$ يدور الشعاع (IN) بنفس زاوية دوران المرآة أي
- i'=i + α =40°+10°=50° : قيس زاوية الورود الجديدة هو

التمرين(1): نحضر في بيشر 04 محاليل ذات الصيغ التالية:

$$(Zn^{2+} + 2CI^{-}) - (Cu^{2+} + SO_4^{2-}) -$$

$$(Ag^{+} + NO_{3}^{-}) - (Mg^{2+} + 2CI^{-}) -$$

- 1_ هل هذه المحاليل جزيئية ام محاليل شاردية؟ برر اجابتك؟
 - سم كل محلول ثم اعط صيغته الإحصائية؟
- $(Cu^{2+} + SO_4^{2-})$ في المحلول (Fe) نغمر صفيحة من الحديد
 - صف ماذا بحدث في التجربة بعد مرور مدة من الزمن.
- ب) اكتب معادلة التفاعل الحادث داخل بيشر بالصيغة الشاردية والصيغة الإحصائية ثم بالأفراد المتفاعلة فقط.
 - ت ما هو المحلول الذي يمكننا من الكشف عن شوارد الكلور؟

- 1ـ كل محاليل شاردية لأنها تحتوي على شوارد حرة موجبة وسالبة
 - اسم كل محلول وصيغته الاحصائية:

صيغته الاحصائية	اسمه	صيغة المحلول
CuSO ₄	كبريتات النحاس	$(Cu^{2+} + SO_4^{2-})$
ZnCl ₂	كلور الزنك	(Zn ²⁺ +2Cl ⁻)
AgNO₃	نترات الفضة	(Ag ⁺ + NO ₃ -)
MgCl ₂	كلور المغنيزيوم	(Mg ²⁺ +2Cl ⁻)

- 3 وصف ما بحدث في التجربة:
- تأكل الجزء المغمور من صفيحة الحديد.
- ترسب معدن النحاس على الجزء الغمور من صفيحة الحديد.
 - اختفاء تدريجي للون الأزرق وظهور اللون الأخضر الفاتح.
 - 4_ المعادلة بالصيغة الشاردية:

$$(Cu^{2+} + SO_4^{2-})_{(aq)} + Fe(s) \longrightarrow (Fe^{2+} + SO_4^{2-})_{(aq)} + Cu(s)$$

العادلة بالصيغة الجزيئية:

المعادلة بالأفراد الكيميائية المتفاعلة والناتجة فقط:

$$Cu^{2+}_{(aq)}$$
 + Fe(s) \longrightarrow Fe²⁺_(aq) + Cu(s)

- المحلول الذي يساعدنا في الكشف عن شوارد الكلور هو محلول او كاشف نترات الفضة (-Ag+ + NO₃)

التمرين(2): تبين الوثيقة كرية معدنية خاضع لثلاث قوى غير متوازية.

- لأكد بيانيا ان الكرية في حالة توازن.
- نبعد قضيب المغناطيس عن الكرية وننتظر حتى تستقر.
 - أ) اذكر القوى المؤثرة على الكرية ثم مثلها كيفيا.