

Technical Support : support@cdebyte.com

成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Co.,Ltd.

E32-TTL-100 Datasheet v1.1

Contents

1. Introduction	2
1.1 Feature	2
1.2 E32 Series	3
1.3 Electrical Parameters	4
2. UART functional description (default)	5
2.1 Fixed transmission.	5
2.2 Broadcast transmission	5
2.3 Broadcast address	5
2.4 Monitoring address	5
3. Functional description	6
3.1 Pin definition.	6
3.2 Connect to MCU	7
3.3 Reset	7
3.4 AUX description	7
4. Operating mode	9
4.1 Mode switch	9
4.2 Normal Mode (Mode 0)	10
4.3 Wake-up mode (Mode 1)	10
4.4 Power-saving mode (Mode 2)	
4.5 Sleep mode (Mode 3)	
4.6 Quick communication test	
5. Instruction format	12
5.1 Default parameter	12
5.2 Reading operating parameters	
5.3 Reading version number	
5.4 Reset instruction.	
5.5 Parameter setting instruction	13
6. Parameter setting	
7. Customization	
8. About us	17

1. Introduction

1.1 Feature

E32-TTL-100 is a 100mW wireless transceiver module with LoRa spread-spectrum technology, operates at 410-441MHz (default: 433MHz), based on originally imported RFIC SX1278 from SEMTECH, transparent transmission is available, TTL level, compatible with the 3.3V and 5V IO port.

The module has the function of data encryption & compression. The data of the module transmitted over the air features randomness. And with the rigorous encryption & decryption, data interception becomes pointless. The function of data compression can decrease the transmission time & probability of being interfered, while improving the reliability & transmission efficiency.

Page 2 of 17 Technical Support: support@cdebyte.com

No.

Usage

		•
1	LoRa	LoRa spread-spectrum means the transmitting distance is much longer than before. Confidentiality is high and the possibility of being intercepted is extremely low; Strong ability of anti-interference, which has a strong inhibitory capacity for the Co-Channel Interference and all kinds of noises, and with excellent performance of anti multipath fading.
2	Ultra-low power consumption	It supports WOR to reduce overall power consumption. In power-saving mode(Mode 2), it can regulate overall power consumption by setting receiving response delay; The maximum receiving response delay can be configured as 2000ms, and the average current is about 30uA.
3	Fixed transmission	Module can communicate with other modules which work in different channels and addresses, it is easy for networking and repeater. For example: module A transmits AA BB CC to module B (address: 0x00 01, channel: 0x80), HEX format is 00 01 80 AA BB CC (00 01 refers to the address of module B, 80 refers to the channel of module B), then module B receives AA BB CC (only module B).
4	Broadcast transmission	Set the module address as 0xFFFF, then the module can communicate with other modules in same channel.
5	FEC	Forward Error Correction, high coding efficiency & good correction performance. In the case of sudden interference, it can correct the interfered data packets proactively, so that the reliability & transmission range are improved correspondingly. Without FEC, those data packets can only be dropped.
6	Sleep mode	When the module works in sleep mode (mode 3), transmitting & receiving is not available, while the configuration is available. The typical current is 6.0uA in this mode.
7	Watchdog	Module with a built-in watchdog, layout and precise time, once an exception occurs, the module will restart in 0.107 seconds, and will continue to work on the my previous parameter settings.
8	Parameter saving	The parameters will be saved after setting and won't be lost when power-off. After power-up again, modules work as the previous parameters.
9 Application		As free frequency, 433M can be used directly. With the capability of penetration and diffraction, this module is suitable for the environment with small packet, long transmission distance and vulnerable to interference.

1.2 E32 Series

Model	Interface	Frequency (Hz)	Power (dBm)	Operation range (km)	Air data rate (bps)	Size (mm)	Packing
E32-T100S2	UART	433M	20	3.0	0.3k~19.2k	17*30	SMD
E32-TTL-100	32-TTL-100 UART		20	3.0	0.3k~19.2k	21*36	Plug-in
E32-TTL-500	UART	433M	27	5.0	0.3k~19.2k	24*43	Plug-in
<u>E32-TTL-1W</u>	UART	433M	30	8.0	0.3k~19.2k	24*43	Plug-in
E32-DTU-5W RS232/RS485		433M	37	20.0	0.3k~19.2k	105*120	-
E32-TTL-100 is compatible with other E32 series							

1.3 Electrical Parameters

No.	Parameter item	Parameter details	Description
1	Size	21 * 36mm	-
2	Weight	ght 6.7g Average weight	
3	3 Frequency Band 410 - 441MHz		Default: 433.0MHz, channel:32, Recommending frequency: 433±5MHz
4	PCB process	4-layer	Lead-free, SMT
5	Connector	1*7*2.54mm	Plug-in
6	Supply voltage	2.3 - 5.5V DC	Note: the voltage higher than 5.5V is forbidden
7	Communication level	Maximum 5.2V	The difference with supply voltage should be less than 0.3V to reduce power consumption
8	Operation Range	About 3000m	Test condition: clear and open area& 20dBm, antenna gain: 5dBi, height:> 2m, air data rate: 2.4kbps
9	Transmitting power	20dBm (100mW)	Four optional level: 20, 17, 14, 10dBm
10	Air data rate	2.4kbps	Can be configured to 0.3, 1.2, 2.4, 4.8, 9.6, 19.2kbps
11	Standby current	4.0uA	M1=1, M0=1 (Mode 3)
12	Transmitting 110mA@20dBm The proposed 250mA		The proposed power supply current is not less than 250mA
13	Receiving current	14mA	Mode 0 or Mode 1
14	Communication interface	UART	8N1, 8E1, 8O1 , eight kinds of UART baud rate, from 1200 to 115200 bps (Default: 9600)
15	Driving mode	UART	Can be configured to push-pull/high pull, open-drain
16	Transmitting length	512 bytes buffer	58 bytes per package
17	Receiving length	512 bytes buffer	58 bytes per package
18	Address	65536	Easy for networking, broadcast and fixed transmission
19	WOR	Available	Minimum average power consumption is about 30uA (applicable for battery powered applications)
21	Antenna type	SMA-K	External thread hole, 50Ω characteristic impedance
22	Operating temperature	-40 ~ +85℃	-
23	Operating humidity	10% ~ 90%	Relative humidity, no condensation
24	Storage temperature	-40 ~ +125℃	-
25	Sensitivity	-138dBm@0.3kbps	Sensitivity has nothing to do with baud rate or timing

2. UART functional description (default)

2.1 Fixed transmission

	Hex	Description		
The format: Hexadecimal, such as: 00 03 04 AA BB CC				
00 03 is the address of receiving	g module ; 04 is	the channel ; AA BB CC is the transmission data.		
Transmitting module A	Hexadecimal	Address: 00 01; Channel 02		
Receiving module B	Hexadecimal	Address: 00 03; Channel 04		
Receiving module C	Hexadecimal	Address: 00 05; Channel 04		
Receiving module D	Hexadecimal	Address: 00 07; Channel 06		
Module A must be in fixed mod	le.			
Module A Transmitting data	Hexadecimal	00 03 04 AA BB CC		
Module B receiving data	Hexadecimal	AA BB CC		
Module C receiving data	Hexadecimal	No		
Module D receiving data	Hexadecimal	No		
		'		

Only the modules with matched address and channel can receive the data.

In fixed transmission, modules only support 1 packet length (pls refer to electrical parameters). If the data packets exceed, then it need to be subcontracted automatically.

2.2 Broadcast transmission

	Hex	Description			
The format: Hexadecimal, such	The format: Hexadecimal, such as: FF FF 04 AA BB CC				
FF FF is the address; 04 is the	channel of receiv	ving module ; AA BB CC is the transmission data。			
Transmitting module A	Hexadecimal	Address: 00 01; Channel: 02			
Receiving module B	Hexadecimal	Address: 00 03; Channel 04			
Receiving module C	Hexadecimal	Address: 00 05; Channel 04			
Receiving module D	Hexadecimal	Address: 00 07; Channel 06			
Module A must be in fixed mode.					
Module A Transmitting data	Hexadecimal	FF FF 04 AA BB CC			
Module B receiving data	Hexadecimal	AA BB CC			
Module C receiving data Hexadecima		AA BB CC			
Module D receiving data Hexadecimal		No			
All the module with this channel can receive the data.					

In fixed transmission, modules only support 1 packet length (pls refer to electrical parameters). If the data packets exceed, then it need to be subcontracted automatically.

2.3 Broadcast address

- 1. For example, set the address of module A as 0xFF FF, and the channel as 0x04.
- 2. When module A works as the transmitter (transparent transmission), all the receiving module with the channel 0x04 can receive the data, so as to realize the broadcast.

2.4 Monitoring address

- 1. For example, set the address of module A as 0xFF FF, and the channel as 0x04.
- 2.When module A works as the receiver, all the receiving module with the channel 0x04 can receive the data, so as to realize the monitoring.

Technical Support : support@cdebyte.com Page 5 of 17

Website : www.cdebyte.com/en

3. Functional description

3.1 Pin definition

			Units: n
	MIN	NOR	MAX
A	20.9	21.0	21.1
В	35.9	36.0	36.1
C	2.83	2.88	2.93
D	2.54	2.54	2.54
E	1.45	1.50	1.55
F	2.95	3.00	3.05
G	3.45	3.50	3.55
Н	2.54	2.54	2.54
J	12.4	12.5	12.6
K	6.20	6.20	6.20
L	15.55	15.6	15.65
M	11.0	11.1	11.2
N	12.7	12.8	12.9
P	4.10	4.20	4.30
Q	11.1	11.2	11.3

Pin No.	Pin item	Pin direction	Pin application
1	M0	Input	Work with M1 & decide the four operating modes.
!	IVIU	(weak pull-up)	Floating is not allowed, can be ground.
2	2 14		Work with M0 & decide the four operating modes.
	M1	(weak pull-up)	Floating is not allowed, can be ground.
			TTL UART inputs, connects to external (MCU, PC) TXD
3	RXD	Input	output pin. Can be configured as open-drain or pull-up
			input.
			TTL UART outputs, connects to external RXD (MCU, PC)
4	TXD	Output	input pin. Can be configured as open-drain or push-pull
			output
	5 AUX		To indicate module's working status & wakes up the
			external MCU. During the procedure of self-check
5		AUX Output	initialization, the pin outputs low level. Can be configured
			as open-drain output or push-pull output (floating is
			allowed).
6	6 VCC Input 7 GND Input 8 Fixing hole		Power supply 2.3V-5.5V DC
7			Ground
8			Fixing hole
9 Fixing hole Fixing			Fixing hole
10 Fixing hole Fixing hole		Fixing hole	

Page 6 of 17 Technical Support : support@cdebyte.com

3.2 Connect to MCU

	No.	Description (STM8L MCU)
Ī	1	The UART module is TTL level.
Ī	2	For some MCU works at 5VDC, it may need to add 4-10K pull-up resistor for the TXD & AUX pin.

3.3 Reset

No.	Description
	When the module is powered, AUX outputs low level immediately, conducts hardware self-check
	and sets the operating mode on the basis of the user parameters. During the process, the AUX
1	keeps low level. After the process completed, the AUX outputs high level and starts to work as
	per the operating mode combined by M1 and M0. Therefore, the user needs to wait the AUX
	rising edge as the starting point of module's normal work.

3.4 AUX description

AUX Pin can be used as indication for wireless send & receive buffer and self-check. It can indicate whether there are data that are yet to send via wireless way, or whether all wireless data has been sent through UART, or whether the module is still in the process of self-check initialization.

Page 7 of 17 Technical Support: support@cdebyte.com

[Indication of wireless transmitting]

Buffer (empty): the internal 512 bytes data in the buffer are written to the RFIC (Auto sub package). When AUX=1, the user can input data less than 512 bytes continuously without overflow.

Website: www.cdebyte.com/en

Buffer (not empty): when AUX=0, the internal 512 bytes data in the buffer have not been written to the RFIC completely. If the user starts to transmit data at this circumstance, it may cause overtime when the module is waiting for the user data, or transmitting wireless subpackage.

Notes: When AUX = 1, it does not mean that all the UART data of the module have been transmitted already, perhaps the last packet of data is still in transmission.

2

3

Subpackage transmitting: the last package of data have been written to the RFIC. When transmission is on, user can continue to input 512 new bytes. (The buffer is actually empty.)

Timing Sequence Diagram of AUX when RXD pin receives

【Configuration procedure of module】

Only happened when power-on resetting or exiting sleep mode.

Timing Sequence Diagram of AUX when self-check

No.	Notes for AUX				
	For function 1 & function 2 mentioned above, the priority should be given to the one with low				
1	level output, which means if it meets each of any low level output condition, AUX outputs low				
	level, if none of the low level condition is met, AUX outputs high level.				
	When AUX outputs low level, it means the module is busy & cannot conduct operating mode				
2	checking.				
	Within 1ms since AUX outputs high level, the mode switch will be completed.				
	After switching to new operating mode, it won't be work in the new mode immediately until				
3	AUX rising edge 2ms later.				
	If AUX is on the high level, the operating mode switch can be effect immediately.				
4	When the user switches to other operating modes from mode 3 (sleep mode) or it's still in reset				
4	process, the module will reset user parameters, during which AUX outputs low level.				

4. Operating mode

Contents in below table are the introduction of input status of M1 & M0 and their corresponding mode:

Website: www.cdebyte.com/en

Mode (0-3)	M1	M0	Mode introduction	Remark		
Mode 0	0 0			0	UART and wireless channel are open,	The receiver must work
Normal	0	U	transparent transmission is on.	in mode 0 or mode 1		
Mode 1 Wake-up	1	0	UART and wireless channel are open. The difference between normal mode and wake-up mode is it will add preamble code automatically before data packet transmission so that it can awaken the receiver works in mode 2.	The receiver can work in mode 0, mode 1 or mode 2		
Mode 2 Power-saving	0	1	UART is disabled. Wireless module works at WOR mode (wake on radio). It will open the UART and transmit data after receiving the wireless data.	1,the transmitter must work in mode 1 2,transmitting is not allowed in this mode		
Mode 3 Sleep	1	1	Parameter setting.	-		

4.1 Mode switch

No.	Remarks
	The user can decide the operating mode by the combination of M1 and M0. The two GPIO of
	MCU can be used to switch mode. After modifying M1 or M0, it will start to work in new mode 1
	ms later if the module is free. If there are any serial data that are yet to finish wireless transmitting,
1	it will start to work in new mode after the UART transmitting finished. After the module receives
	the wireless data & transmits the data through serial port, it will start to work in new mode after
	the transmitting finished. Therefore, the mode-switch is only valid when AUX outputs 1,
	otherwise it will delay.
	For example, in mode 0 or mode 1, if the user inputs massive data consecutively and switches
2	operating mode at the same time, the mode-switch operation is invalid. New mode checking can
	only be started after all the user's data process completed. It is recommended to check AUX
	pinout status and wait 2ms after AUX outputs high level before switching the mode.
	If the module switches from other modes to stand-by mode, it will work in stand-by mode only
	after all the remained data process completed. The feature can be used to save power
	consumption. For example, when the transmitter works in mode 0, after the external MCU
3	transmits data "12345", it can switch to sleep mode immediately without waiting the rising edge
	of the AUX pin, also the user's main MCU will go dormancy immediately. Then the module will
	transmit all the data through wireless transmission & go dormancy 1ms later automatically,
	which reduces MCU working time & save power.
	Likewise, this feature can be used in any mode-switch. The module will start to work in new mode
	within 1ms after completing present mode task, which enable the user to omit the procedure of
4	AUX inquiry and switch mode swiftly. For example, when switching from transmitting mode to
	receiving mode, the user MCU can go dormancy in advance of mode-switch, using external
	interrupt function to get AUX change so that the mode-switch can be done.
	This operation is very flexible and efficient. It is totally designed on the basis of the user MCU's
5	convenience, at the same time reduce the whole system work load as much as possible, increase
	the efficiency of system work and reduce power consumption.

Page 9 of 17 Technical Support: support@cdebyte.com

4.2 Normal Mode (Mode 0)

	When $M1 = 0 & M0 = 0$, module works in mode 0
Transmitting	The module can receive the user data from serial port, and transmit wireless data package which length is 58 bytes. When the data inputted by user is up to 58 byte, the module will start wireless transmission. During which the user can input data continuously for transmission. When the required transmission bytes is less than 58 byte, the module will wait 3-byte time and treat it as data termination unless continuous data inputted by user. Then the module will transmit all the data through wireless channel. When the module receives the first data packet from user, the AUX outputs low level. After the module transmit all the data into RF chip & start transmission, AUX outputs high level. At this time, it means that the last wireless data package transmission has started, which enable the user to input another 512 bytes continuously. The data package transmitted from the module works in mode 0 can only be received by the module works in mode 0 or 1.
Receiving	The module keeps the wireless receive function on, it can receive the data packet transmitted from the module works in mode 0 & mode 1. After receiving the data packet, the AUX outputs low level, 5ms later the module starts to transmit wireless data through serial port TXD pin. After all the wireless data have been transmitted via serial port, the module AUX outputs high level.

Website : www.cdebyte.com/en

4.3 Wake-up mode (Mode 1)

	When $M1 = 0 & M0 = 1$, module works in mode 1	
	The condition of data packet transmission & AUX function is the same as mode 0. The	
	only difference is that the module will add preamble code before each data packet	
Tue in a maith in a	automatically. The preamble code length depends on the wake-up time set in the user	
Transmitting	parameters. The purpose of the preamble code is waking up the receiving module works	
	in mode 2. Therefore, the data package transmitted from mode 1 can be received by	
	mode 0, mode1 and mode 2.	
Receiving	The same as that in mode 0.	

4.4 Power-saving mode (Mode 2)

	When M1 = 1 & M0 = 0, module works in mode 2
	UART is closed, the module cannot receive any serial port data from outside MCU.
Transmitting	Hence the function of wireless transmission is not available for the module working in this
	mode.
	In mode 2, it is required the data transmitter works in mode 1.
	The wireless module monitors the preamble code at regular time.
	Once it gets the preamble code, it will remain as receiving status and waiting for the
	completion of receiving the entire valid data package.
	Then the AUX outputs low level, 5ms later the serial port is open to transmit received
Receiving	wireless data through TXD. Finally AUX outputs high level after process completed.
	The wireless module stays in "power-saving – monitoring" working status (polling).
	By setting different wake-up time, the module will have different receiving response delay
	(2s in maximum) and average power consumption (30uA in minimum).
	The user needs to achieve a balance between communication delay time & average
	power consumption.

Page 10 of 17 Technical Support : support@cdebyte.com

4.5 Sleep mode (Mode 3)

	When M1=1, M0=1, module works in mode 3
Transmitting	N/A
Receiving	N/A
Parameter	This mode can be used for parameter setting. It uses serial port 9600 & 8N1 to set module
setting	working parameters through specific instruction format. (pls refer to parameters setting
setting	for details)
	When the mode changes from stand-by mode to others, the module will reset its
Notes	parameters, during which the AUX keeps low level and then outputs high level after reset
	completed. It is recommended to check the AUX rising edge for user.

4.6 Quick communication test

Steps	Operation		
	Plug the USB test board (E15-USB-T2) into computer, make sure the driver is installed correctly.		
1	Plug mode-select jumper in the USB test board (M1 = 0 , M0 = 0), make the module work in		
	mode 0.		
2	Optional power supply, 3.3V or 5V.		
3	Operate AccessPort software and select the correct serial port code.		

5. Instruction format

In sleep mode (mode 3 : M1=1, M0=1), it supports below instructions on list.

(Only support 9600 and 8N1 format when setting)

No.	Instruction format	Illustration	
		C0 + 5 bytes working parameters are sent in hexadecimal format. 6	
1	C0 + working parameters	bytes in total and must be sent in succession. (Save the parameters	
		when power-down)	
2	C1+ C1+ C1	Three C1 are sent in hexadecimal format. The module returns the	
	CI+CI+CI	saved parameters and must be sent in succession.	
		C2 + 5 bytes working parameters are sent in hexadecimal format. 6	
3	C2 + working parameters	bytes in total and must be sent in succession. (Do not save the	
		parameters when power-down)	
4	C2 + C2 + C2	Three C3 are sent in hexadecimal format. The module returns the	
4	C3 + C3 + C3	version information and they must be sent in succession.	
5	C4 + C4 + C4	Three C4 are sent in hexadecimal format. The module will reset one	
5		time and they must be sent in succession.	

Website: www.cdebyte.com/en

5.1 Default parameter

	Default parameter values: C0 00 00 1A 17 44						
Model	Frequency	Address	Channel	Air data rate	Baud rate	Parity	Transmitting power
E32-TTL-100	433MHz	0x0000	0x17	2.4kbps	9600	8N1	100mW

5.2 Reading operating parameters

Instruction format	Description
	In sleep mode (M0=1 , M1=1) ,
C1 · C1 · C1	User gives the module instruction (HEX format): C1 C1 C1,
C1+C1+C1	Module returns the present configuration parameters.
	For example, C2 00 00 1A 17 44.

5.3 Reading version number

Instruction format	Description		
	In sleep mode (M0=1 , M1=1) ,		
	User gives the module instruction (HEX format): C3 C3 C3,		
C3+C3+C3	Module returns its present version number, for example C3 32 xx yy.		
	32 here means the module model (E32 series); xx is the version number and yy		
	refers to the other module features.		

5.4 Reset instruction

Instruction format	Description
	In sleep mode (M0=1 , M1=1) ,
	User gives the module instruction (HEX format): C4 C4 C4, the module resets
C4+C4+C4	for one time. During the reset process, the module will conduct self-check, AUX
C4+C4+C4	outputs low level. After reset completing, the AUX outputs high level, then the
	module starts to work regularly which the working mode can be switched or be
	given another instruction.

Page 12 of 17 Technical Support : support@cdebyte.com

5.5 Parameter setting instruction

No.	Item	Description	Remark		
0	HEAD	Fix 0xC0 or 0xC2, it means this frame	Must be 0xC0 or 0xC2		
		data is control command	C0: Save the parameters when		
			power-down		
			C2: Do not save the parameters when		
			power-down		
1	ADDH	High address byte of module	00H-FFH		
		(the default 00H)			
2	ADDL	Low address byte of module	00H-FFH		
		(the default 00H)			
3	SPED	Rate parameter , including UART baud			
		rate and air data rate	UART mode can be different		
		7, 6 UART parity bit	between communication parties		
		00 : 8N1 (default)			
		01 : 8O1			
		10 : 8E1			
		11 : 8N1 (equal to 00)			
		5, 4, 3 TTL UART baud rate (bps)	UART baud rate can be different		
		000 : 1200bps	between communication parties		
		001 : 2400bps	The UART baud rate has nothing to		
		010 : 4800bps	do with wireless transmission		
		011 : 9600bps (default)	parameters & won't affect the		
		100 : 19200bps	wireless transmit / receive features.		
		101 : 38400bps	· ·		
		110 : 57600bps			
		111 : 115200bps			
		2 , 1 , 0 Air data rate (bps)	The lower the air data rate, the		
		000 : 0.3Kbps	longer the transmitting distance,		
		001 : 1.2Kbps	better anti-interference		
		010 : 2.4Kbps (default)	performance and longer		
		011 : 4.8Kbps	transmitting time		
		100 : 9.6Kbps	The air data rate must keep the		
		101 : 19.2Kbps	same for both communication		
		110 : 19.2Kbps	parties.		
		111 : 19.2Kbps	· ·		
		·			

Page 13 of 17 Technical Support : support@cdebyte.com

4	CHAN			
		7,6,5: N/A	•	0(recommended)
		4-0 : Communication channel(410M + CHAN*1M), default 17H (433MHz)		00H-1FH, for 410~441MHz
5	OPTION	7 , Fixed transmission (similar to MODBUS) 0 : Transparent transmission mode 1 : Fixed transmission mode	•	In fixed transmission mode, the first three bytes of each user's data frame can be used as high/low address and channel. The module changes its address and channel when transmit. And it will revert to original setting after complete the process.
		6 IO drive mode(the default 1) 1 : TXD and AUX push-pull outputs, RXD pull-up inputs 0 : TXD、AUX open-collector outputs, RXD open-collector inputs	•	This bit is used to the module internal pull-up resistor. It also increases the level's adaptability in case of open drain. But in some cases, it may need external pull-up resistor.
		5 , 4 , 3 wireless wake-up time (for the receiver, it means the monitor interval time ,while for the transmitter it means continuously sending preamble code time.) 000 : 250ms (default) 001 : 500ms 010 : 750ms 011 : 1000ms 100 : 1250ms 101 : 1500ms 111 : 2000ms	•	The transmit & receive module work in mode 0, whose delay time is invalid & can be arbitrary value. The transmitter works in mode 1 can transmit the preamble code of the corresponding time continuously. When the receiver works in mode 2, the time means the monitor interval time (wireless wake-up). Only the data from transmitter that works in mode 1 can be received. The wake-up time set by transmitter cannot be less than the monitor interval time of receiver; otherwise, it may lead to data loss. In case of two-way communication, both parties should keep the wake-up time the same.
			•	The longer the wake-up time, the

Website : www.cdebyte.com/en

lower the average receive current consumption. 2, FEC switch After turn off FEC, the actual data 0 : Turn off FEC transmission rate increases while 1 : Turn on FEC (Default) anti-interference ability decreases. Also the transmission distance is relatively short. Both communication parties must keep on the same pages about turn-on or turn-off FEC. 1, 0 transmission power The external power must make sure (approximation) the ability of current output more 00: 20dBm (Default) than 200mA and ensure the power 01: 17dBm supply ripple within 100mV. 10: 14dBm Low power transmission is not 11: 10dBm recommended due to its low power supply efficiency.

For example: The meaning of No.3 "SPED" byte:

The binary bit of the byte	7	6	5	4	3	2	1	0
The specific value (configured by user)	0	0	0	1	1	0	1	0
Meaning	UART parity bit 8N1		UART baud rate is 9600			Air data rate is 2.4k		
Corresponding hexadecimal	1			А				

Page 15 of 17 Technical Support : support@cdebyte.com

Website: www.cdebyte.com/en

6. Parameter setting

Step	Operation	Description			
1	Install Driver	Please install the USB adapter driver (CP2102).			
2	Pull out the jumper	Pull the M0, M1 jumper out, 3.3V or 5V are available for jumper.			
3	Connect to module	Connect the module with USB adapter. Connect to the USB interface of PC.			
4	Open serial port	Operate the parameter setting software, choose corresponding serial number and press the "OpenPort" button. Please choose other serial numbers until open successfully.			
5	Interface	Press "Preset" button , the interface will be as below. If failed, please check if the module is in mode 3, or if the driver has been installed.			
6	Input parameter	Please adjust the parameter as your request according to the corresponding setting, then click "SetParam" button, write the new parameter to the module.			
7	Complete the operation	Please operate the "Fifth step" if you need to reconfigure, if the configuration is completed, please click "ClosePort" and then take off the module.			
8	Commands Configuration	Parameter configuration is also available for MCU (in mode 3).			

Page 16 of 17 Technical Support : support@cdebyte.com

Website: www.cdebyte.com/en

7. Customization

- ★Please contact us for customization.
- ★Ebyte has established profound cooperation with various well-known enterprises.

8. About us

Chengdu Ebyte Electronic Technology Co., Ltd. (Ebyte) is specialized in wireless solutions and products.

- •We research and develop various products with diversified firmware;
- Our catalogue covers WiFi, Bluetooth, Zigbee, PKE, wireless data transceivers & etc.;
- •With about one hundred staffs, we have won tens of thousands customers and sold millions of products;
- Our products are being applied in over 30 countries and regions globally;
- ◆We have obtained ISO9001 QMS and ISO14001 EMS certifications;
- ♦We have obtained various of patents and software copyrights, and have acquired FCC, CE, RoHs & etc.

Page 17 of 17 Technical Support : support@cdebyte.com