

Curves and Animation

Overview

1. Animation basics

2. Curves

Logistics

- Team presentations on Tuesday (9th)
- Guest lecture on Thursday (11th)
 - Craig Peters (EA)
 - Debugging and peer review
- Upcoming lectures
 - Testing and User Studies
 - Composite transformations and inverse kinematics animation

CPSC 427 Video Game Programming

Curves and Animation

Keyframe animation

Lasseter `87

Recap: Line equation

Parametric form

• 3D: x, y, and z are functions of a parameter value t

$$C(t) := \begin{pmatrix} P_y^0 \\ P_x^0 \end{pmatrix} t + \begin{pmatrix} P_y^1 \\ P_x^1 \end{pmatrix} (1-t)$$

What things can we interpolate?

Line segment

$$\Gamma_1$$

$$P_0 = \left(x_0^1, y_0^1\right)$$

$$P_1 = \left(x_1^1, y_1^1\right)$$

$$G_{1} = \begin{cases} x^{1}(t) = x_{0}^{1} + (x_{1}^{1} - x_{0}^{1})t \\ y^{1}(t) = y_{0}^{1} + (y_{1}^{1} - y_{0}^{1})t \end{cases} t \in [0,1]$$

Interpolating general properties

- position –
- aspect ratio?
- scale $\longrightarrow s^0$ s
- color \longrightarrow c^0
- What else?

 $C(t) := \begin{pmatrix} P_y^0 \\ P_y^0 \end{pmatrix} t + \begin{pmatrix} P_y^1 \\ P_x^1 \end{pmatrix} (1-t)$

Barycentric coordinates / interpolation

Other Parametric Functions

$$C(t) := \begin{pmatrix} P_y^0 \\ P_x^0 \end{pmatrix} t + \begin{pmatrix} P_y^1 \\ P_x^1 \end{pmatrix} (1-t) \qquad C(t) := \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

$$C(t) \coloneqq \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

Line segment

Circle (arc)

Splines

Splines

Segments of simple functions

$$f(x) = \begin{cases} f_1(x), & \text{if } x_1 < x \le x_2 \\ f_2(x), & \text{if } x_2 < x \le x_3 \\ \vdots & \vdots \\ f_n(x), & \text{if } x_n < x \le x_{n+1} \end{cases}$$

E.g., linear functions

Splines – Free Form Curves

Usually parametric

• C(t)=[x(t),y(t)] or C(t)=[x(t),y(t),z(t)]

Description = basis functions + coefficients

$$C(t) = \sum_{i=0}^{n} P_i B_i(t) = (x(t), y(t))$$

$$x(t) = \sum_{i=0}^{n} P_i^x B_i(t)$$

$$y(t) = \sum_{i=0}^{n} P_i^{y} B_i(t)$$

Same basis functions for all coordinates

Curves

Hermite Cubic Basis

Geometrically-oriented coefficients

• 2 positions + 2 tangents

Require
$$C(0)=P_0$$
, $C(1)=P_1$, $C'(0)=T_0$, $C'(1)=T_1$

Derivatives of C at 0 and 1

Define basis functions, one per requirement

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

Hermite Basis Functions

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

To enforce $C(\theta)=P_0$, $C(1)=P_1$, $C'(\theta)=T_0$, $C'(1)=T_1$ basis should satisfy

$$h_{ij}(t):i, j=0,1,t\in[0,1]$$

curve	C(0)	<i>C</i> (1)	C'(0)	C'(1)
$h_{00}(t)$	1	0	0	0 ~
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1
	-			

$$h_{00}(0) = 1$$

Splines – Free Form Curves

Geometric meaning of coefficients (base)

Approximate/interpolate set of positions, derivatives, etc...

Will see one example

Possible solution?

Hermite Cubic Basis

Can satisfy with cubic polynomials as basis

$$h_{ij}(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

Obtain - solve 4 linear equations in 4 unknowns for each basis function $h_{ii}(t)$: $i, j = 0, 1, t \in [0,1]$

curve	C(0)	<i>C</i> (1)	C'(0)	C'(1)
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

Four cubic polynomials that satisfy the conditions

$$h_{00}(t) = t^2(2t-3)+1$$
 $h_{01}(t) = -t^2(2t-3)$
 $h_{10}(t) = t(t-1)^2$ $h_{11}(t) = t^2(t-1)$

Derivative of h00

$$6(-1+t)t$$

Plots:

Curves

Applications:

UBC

Keyframe animation & mesh creation

https://www.youtube. com/watch?v=LLlimJ xTyNw

