Sheaves on Manifolds Exercise I.31 の解答

ゆじとも

2021年2月17日

Sheaves on Manifolds [Exercise I.31, KS02] の解答です。

I Homological Algebra

問題 I.31. $M \in \mathsf{D}^b(\mathsf{Ab})$ とする。

- (1) $M^*=R\operatorname{Hom}(M,\mathbb{Z})=0$ であるとき、M=0 であることを示せ。
- (2) $M^* \in \mathsf{D}^b_f(\mathsf{Ab})$ であるとき、 $M \in \mathsf{D}^b_f(\mathsf{Ab})$ であることを示せ。

注意. (2) は $M^* \in \mathsf{D}^b(\mathsf{Mod}^f(\mathbb{Z}))$ という仮定のもとで $M \in \mathsf{D}^b(\mathsf{Mod}^f(\mathbb{Z}))$ を示す問題であったが、 $\mathsf{D}^b(\mathsf{Mod}^f(\mathbb{Z}))$ は $\mathsf{D}^b(\mathsf{Ab})$ の部分圏として同型で閉じていないので、これはかなり微妙な問題設定であり (成り立たないかもしれない)、上記の設定がより適切であると思われる。

証明. (1) を示す。まず $M \in \mathsf{Ab}$ である場合に (1) を証明する。 $R \operatorname{Hom}(M\mathbb{Z}) = 0$ は $\operatorname{Hom}(M,\mathbb{Z}) = \operatorname{Ext}^1(M,\mathbb{Z}) = 0$ を意味する。このときに M = 0 を示す。単射 $\mathbb{Z}/n\mathbb{Z} \to M$ を任意にとると $0 = \operatorname{Ext}^1_\mathbb{Z}(M,\mathbb{Z}) \to \operatorname{Ext}^1_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z})$ は全射となるので $\mathbb{Z}/n\mathbb{Z} \cong \operatorname{Ext}^1_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}) = 0$ となって n = 1 となる。従って M はねじれなし群である。 $n \neq 0,1,-1$ とすれば M/nM はねじれ群であるが、完全列 $0 \to M \xrightarrow{n} M \to M/nM \to 0$ に函手 $R \operatorname{Hom}(-,\mathbb{Z})$ を施すことによって $R \operatorname{Hom}(M/nM,\mathbb{Z}) = 0$ が従い、よって M/nM はねじれなし群でもある。これは M/nM = 0 を意味し、従って M は可除である。M は ねじれがないので $M \to M \otimes \mathbb{Q}$ は単射であり、M は可除なのでこれは全射でもある。従って $M \cong M \otimes \mathbb{Q}$ である。もし $M \neq 0$ なら、M は \mathbb{Q} を直和因子として持つ。一方、完全列 $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ に $\operatorname{Hom}(\mathbb{Q}/\mathbb{Z},-)$ を適用することにより、 $\hat{\mathbb{Z}} \cong \operatorname{End}(\mathbb{Q}/\mathbb{Z}) \xrightarrow{\sim} \operatorname{Ext}^1(\mathbb{Q}/\mathbb{Z},\mathbb{Z})$ を得るので、同じ完全列に $\operatorname{Hom}(-,\mathbb{Z})$ を適用することで $\operatorname{Ext}^1(\mathbb{Q},\mathbb{Z}) \cong \operatorname{coker}(\operatorname{Hom}(\mathbb{Z},\mathbb{Z}) \to \operatorname{Ext}^1(\mathbb{Q}/\mathbb{Z},\mathbb{Z})) \cong \hat{\mathbb{Z}}/\mathbb{Z} \neq 0$ が従い、これは $\operatorname{Ext}^1(M,\mathbb{Z}) = 0$ に反する。以上で $M \in \operatorname{Ab}$ の場合に示された。

一般の $M\in\mathsf{D}^b(\mathsf{Ab})$ に対して (1) を示す。 $H^n(M)\neq 0$ となる最大の n をとる。このとき $\tau^{\leq n-1}(M)\to M\to H^n(M)[-n] \xrightarrow{+1}$ は完全三角である。 $R\operatorname{Hom}(-,\mathbb{Z})$ を適用してコホモロジーをとることで、アーベル群の完全列

$$0 \longrightarrow \operatorname{Hom}(H^n(M), \mathbb{Z}) \longrightarrow H^n(R \operatorname{Hom}(M, \mathbb{Z})) \longrightarrow H^n(R \operatorname{Hom}(\tau^{\leq n-1}(M), \mathbb{Z}))$$
$$\longrightarrow \operatorname{Ext}^1(H^n(M), \mathbb{Z}) \longrightarrow H^{n+1}(R \operatorname{Hom}(M, \mathbb{Z})) \longrightarrow \cdots$$

を得る。ここで、 $R\operatorname{Hom}(M,\mathbb{Z})=0$ であるから、 $H^n(R\operatorname{Hom}(M,\mathbb{Z}))=0,H^{n+1}(R\operatorname{Hom}(M,\mathbb{Z}))=0$ が成り立つ。さらに、 $[\operatorname{Exercise}\ 1.21,\ \operatorname{KS02}]$ を $\tau^{\leq n-1}(M)$ と $R\operatorname{Hom}(-,\mathbb{Z})$ に対して適用することによって、 $H^n(R\operatorname{Hom}(\tau^{\leq n-1}(M),\mathbb{Z}))=0$ であることが従う。従って $\operatorname{Hom}(H^n(M),\mathbb{Z})=\operatorname{Ext}^1(H^n(M),\mathbb{Z})=0$ が成

り立つ。すでに示している $M\in\mathsf{Ab}$ の場合により $H^n(M)=0$ が従い、これは $H^n(M)\neq 0$ に矛盾する。以上で (1) の証明を完了する。

(2) を示す。(1) の証明と同様に、 $H^n(M) \neq 0$ となる最大の n をとり、アーベル群の完全列

$$0 \longrightarrow \operatorname{Hom}(H^{n}(M), \mathbb{Z}) \longrightarrow H^{n}(R \operatorname{Hom}(M, \mathbb{Z})) \longrightarrow H^{n}(R \operatorname{Hom}(\tau^{\leq n-1}(M), \mathbb{Z}))$$
$$\longrightarrow \operatorname{Ext}^{1}(H^{n}(M), \mathbb{Z}) \longrightarrow H^{n+1}(R \operatorname{Hom}(M, \mathbb{Z})) \longrightarrow H^{n+1}(R \operatorname{Hom}(\tau^{\leq n-1}(M), \mathbb{Z}))$$
$$\longrightarrow 0$$

について考える $(\operatorname{Ext}^2(H^n(M),\mathbb{Z})=0$ であることに注意)。[Exercise 1.21, KS02]を $\tau^{\leq n-1}(M)$ と $R\operatorname{Hom}(-,\mathbb{Z})$ に適用することにより、 $H^n(R\operatorname{Hom}(\tau^{\leq n-1}(M),\mathbb{Z}))=0$ である。また、 $R\operatorname{Hom}(M,\mathbb{Z})\in \mathsf{D}^b_f(\mathsf{Mod}(\mathbb{Z}))$ であるので、 $H^n(R\operatorname{Hom}(M,\mathbb{Z})),H^{n+1}(R\operatorname{Hom}(M,\mathbb{Z}))\in \mathsf{Mod}^f(\mathbb{Z})$ である。従って、

$$\operatorname{Hom}(H^n(M),\mathbb{Z}), \operatorname{Ext}^1(H^n(M),\mathbb{Z}), H^{n+1}(R\operatorname{Hom}(\tau^{\leq n-1}(M),\mathbb{Z})) \in \operatorname{\mathsf{Mod}}^f(\mathbb{Z})$$

である。さらに、n より大きい部分のコホモロジーを見れば、

$$H^m(R\operatorname{Hom}(\tau^{\leq n-1}(M),\mathbb{Z})) \cong H^m(R\operatorname{Hom}(M,\mathbb{Z})), \ (\forall m > n+1)$$

であるので、 $R\operatorname{Hom}(\tau^{\leq n-1}(M),\mathbb{Z})\in\operatorname{\mathsf{Mod}}^f(\mathbb{Z})$ が従う。以上より、帰納的に、(2) を示すためには、アーベル群 M が $\operatorname{Hom}(M,\mathbb{Z}),\operatorname{Ext}^1(M,\mathbb{Z})\in\operatorname{\mathsf{Mod}}^f(\mathbb{Z})$ を満たすとき $M\in\operatorname{\mathsf{Mod}}^f(\mathbb{Z})$ であることを示すことが十分である。

M をアーベル群であって $\operatorname{Hom}(M,\mathbb{Z})$ と $\operatorname{Ext}^1(M,\mathbb{Z})$ がどちらも有限生成であると仮定する。ねじれ部分を $T(M)\subset M$ として、 $F(M):\stackrel{\operatorname{def}}{=} M/T(M)$ とおく。完全列 $0\to T(M)\to M\to F(M)\to 0$ に $\operatorname{Hom}(-,\mathbb{Z})$ を適用することにより、全射 $\operatorname{Ext}^1(M,\mathbb{Z})\to \operatorname{Ext}^1(T(M),\mathbb{Z})$ を得る。従って、 $\operatorname{Ext}^1(T(M),\mathbb{Z})$ は有限生成アーベル群である。完全列 $0\to\mathbb{Z}\to\mathbb{Q}\to\mathbb{Q}/\mathbb{Z}\to 0$ に $\operatorname{Hom}(T(M),-)$ を適用することにより、自然な同型 $\operatorname{Hom}(T(M),\mathbb{Q}/\mathbb{Z})\overset{\sim}{\to} \operatorname{Ext}^1(T(M),\mathbb{Z})$ を得る。T(M) に離散位相を入れて \mathbb{Q}/\mathbb{Z} に \mathbb{R}/\mathbb{Z} の双対位相を入れることにより、 $\operatorname{Hom}(T(M),\mathbb{Q}/\mathbb{Z})=\operatorname{Hom}_{\operatorname{cont.}}(T(M),\mathbb{Q}/\mathbb{Z})$ を連続準同型のなす位相群とみなすと、 $\operatorname{Hom}_{\operatorname{cont.}}(T(M),\mathbb{Q}/\mathbb{Z})$ は副有限アーベル群である。とくにコンパクトハウスドルフである。一方、 $\operatorname{Ext}^1(T(M),\mathbb{Z})\cong \operatorname{Hom}(T(M),\mathbb{Q}/\mathbb{Z})$ はアーベル群として有限生成であるので、 $\operatorname{Hom}_{\operatorname{cont.}}(T(M),\mathbb{Q}/\mathbb{Z})$ は有限アーベル群であることが従う。 $\operatorname{Pontryagin}$ 双対より、 $\operatorname{T}(M)\cong \operatorname{Hom}_{\operatorname{cont.}}(\operatorname{Hom}_{\operatorname{cont.}}(T(M),\mathbb{Q}/\mathbb{Z}),\mathbb{Q}/\mathbb{Z})=\operatorname{Hom}(\operatorname{Hom}(T(M),\mathbb{Q}/\mathbb{Z}),\mathbb{Q}/\mathbb{Z})$ が成り立つ。以上より、 $\operatorname{T}(M)$ は有限生成ねじれアーベル群である。

n 倍写像 $n:F(M)\to F(M)$ を考えると、F(M) はねじれなし群なので、これは単射である。従って、n 倍写像

$$\operatorname{Ext}^1(F(M), \mathbb{Z}) \xrightarrow{n} \operatorname{Ext}^1(F(M), \mathbb{Z})$$

は全射であり、 $\operatorname{Ext}^1(F(M),\mathbb{Z})$ が可除群であることが従う。n-倍写像 $n:M\to M$ を考えると、完全列

$$0 \to \operatorname{Hom}(M/nM, \mathbb{Z}) \to \operatorname{Hom}(M, \mathbb{Z}) \xrightarrow{n} \operatorname{Hom}(M, \mathbb{Z})$$

を得る。M/nM はねじれ群なので $\operatorname{Hom}(M/nM,\mathbb{Z})=0$ であり、従って $\operatorname{Hom}(M,\mathbb{Z})$ はねじれなし群である。仮定より、 $\operatorname{Hom}(M,\mathbb{Z})$ は有限生成なので、従って自由アーベル群である。ランクを $r=\operatorname{rank}(\operatorname{Hom}(M,\mathbb{Z}))$ と置く。r に関する帰納法により M の有限生成性を証明する。

まず r=0 の場合について考える。このとき、 $\mathrm{Hom}(M,\mathbb{Z})=0$ であり、 $\mathrm{Ext}^1(M,\mathbb{Z})$ は有限生成である。完全列

$$0 \to T(M) \to M \to F(M) \to 0$$

により得られる完全列

$$0 \longrightarrow \operatorname{Hom}(F(M), \mathbb{Z}) \longrightarrow \operatorname{Hom}(M, \mathbb{Z}) \longrightarrow \operatorname{Hom}(T(M), \mathbb{Z})$$
$$\longrightarrow \operatorname{Ext}^{1}(F(M), \mathbb{Z}) \longrightarrow \operatorname{Ext}^{1}(M, \mathbb{Z}) \longrightarrow \operatorname{Ext}^{1}(T(M), \mathbb{Z}) \longrightarrow 0$$

について考える。T(M) はねじれ群なので、 $\operatorname{Hom}(T(M),\mathbb{Z})=0$ が成り立つ。よって $\operatorname{Ext}^1(F(M),\mathbb{Z})\to \operatorname{Ext}^1(M,\mathbb{Z})$ は単射である。 $\operatorname{Ext}^1(M,\mathbb{Z})$ は有限生成なので、 $\operatorname{Ext}^1(F(M),\mathbb{Z})$ も有限生成である。一方、 $\operatorname{Ext}^1(F(M),\mathbb{Z})$ は可除群なので、従って $\operatorname{Ext}^1(F(M),\mathbb{Z})=0$ が成り立つ。さらに、r=0 であるという仮定より、 $\operatorname{Hom}(M,\mathbb{Z})=0$ であるので、 $\operatorname{Hom}(F(M),\mathbb{Z})=0$ が成り立つ。ここで(1)より、F(M)=0 が従う。よって $T(M)\xrightarrow{\sim} M$ は同型射であり、既に示した T(M) の有限生成性より、M も有限生成である。以上で r=0 の場合の証明を完了する。

r>0 とする。 $\operatorname{Hom}(M,\mathbb{Z})$ のランクが r-1 以下であるような任意の M について主張が成り立つと仮定する。この仮定のもとで、 $\operatorname{Hom}(M,\mathbb{Z})$ のランクが r であるような任意の M に対して主張を示す。 $\operatorname{Hom}(M,\mathbb{Z})$ のランクが r であるとする。 $\operatorname{Hom}(M,\mathbb{Z})\neq 0$ であるので、0 でない射 $f:M\to\mathbb{Z}$ が存在する. $f\neq 0$ なので、ある $m\in M$ が存在して $f(m)\neq 0$ が成り立つ。ここで $1\mapsto m$ により定義される射 $\mathbb{Z}\to M$ を考えると、任意の 0 でない $n\in\mathbb{Z}$ に対して $f(nm)=nf(m)\neq 0$ であることから、 $\mathbb{Z}\to M$ は単射である。この単射の余核を M_1 として、完全列

$$0 \longrightarrow \mathbb{Z} \xrightarrow{1 \mapsto m} M \longrightarrow M_1 \longrightarrow 0$$

により得られる完全列

$$0 \longrightarrow \operatorname{Hom}(M_1, \mathbb{Z}) \longrightarrow \operatorname{Hom}(M, \mathbb{Z}) \xrightarrow{f \mapsto f(m)} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z})$$
$$\longrightarrow \operatorname{Ext}^1(M_1, \mathbb{Z}) \longrightarrow \operatorname{Ext}^1(M, \mathbb{Z}) \longrightarrow 0$$

を考える。 $\operatorname{Hom}(M,\mathbb{Z})\cong\mathbb{Z}^r$ であるので、 $\operatorname{Hom}(M_1,\mathbb{Z})$ はねじれなしであり、従って自由アーベル群である。また、 $f(m)\neq 0$ であるので、 $\operatorname{Hom}(M_1,\mathbb{Z})$ のランクは r-1 以下である。さらに、 $\operatorname{Ext}^1(M,\mathbb{Z})$ は有限生成であるので、 $\operatorname{Ext}^1(M_1,\mathbb{Z})$ も有限生成である。ここで帰納法の仮定より、 M_1 が有限生成であることが従う。よって M も有限生成である。以上で(2)の証明を完了し問題 I.31 の解答を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.