计算机组织与体系结构实习 Lab 4.1

2017/12/05

基于SIMD扩展指令的图像处理加速

该lab希望通过在x86主流处理器上,使用SIMD指令来加速实现图像的渐变和叠加,加深同学对SIMD指令的基本认识,并为lab 4.2做准备。

part1、背景知识简介

- 1. YUV420 图像格式简介
- 定义:每个像素分为三个分量,Y表示明亮度,也就是灰度值;U和V表示的则是色度,作用是描述影像色彩及饱和度,用于指定像素的颜色。
- 特点:即使没有U、V分量也可以显示完整的图片,只是没有颜色。在传输时可以占用较小的带宽。
- 采样方式:

存储格式:

假设一个分辨率为8X4的YUV图像,存储格式如下图所示。 Y分量数目= 8 * 4 ; U分量数目= Y/4 ; V分量数目 = Y/4。

Y1 <i>₽</i>	Y2₽	Y 3₽	Y4₽	Y5 ₽	Y6 ₽	Y7₽	Y8₽
Y 9₽	Y 10₽	Y11 <i>↔</i>	Y12∉	Y1 3₽	Y14₽	Y15∉	Y16₽
Y17₽	Y18₽	Y 19∉	Y2 0₽	Y21₽	Y22₽	Y23₽	Y24₽
Y25₽	Y26₽	Y27₽	Y28₽	Y29₽	Y 30₽	Y31 <i>₽</i>	Y32₽
U1₽	U2₽	U3₽	U4 <i>₽</i>	U5₽	U6₽	U 7 ₽	U8a
V1e	V2₽	V 3₽	V4₽	V5₽	V 6₽	V7e	V8•

- 2. ARGB8888 图像格式简介
- 定义:每个像素四个分量:ARGB,分别是Alpha(透明度)、Red、Green、Blue三色。
- 存储格式:分别用8位来记录4个值,所以每个像素会占用32位。

- 3. RGB888 图形格式简介
- 定义:就是RGB24,具有三个分量RGB,每个分量8位。
- 存储格式:就是位图的存放格式,BMP就是在RGB数据基础上增加位图头数据而形成的文件格式。

4.RGB2YUV 转换

```
Y= 0.299 * R + 0.587 * G + 0.114 * B
U= -0.147 * R - 0.289 * G + 0.436 * B = 0.492 * (B- Y)
V= 0.615 * R - 0.515 * G - 0.100 * B = 0.877 * (R- Y)
```

5.YUV2RGB 转换

```
R= Y + 1.140 * V
G= Y - 0.394 * U - 0.581 * V
B= Y + 2.032 * U
```

6.ALPHA混合

```
R' = A * R / 256
G' = A * G / 256
B' = A * B / 256
```

7.图像叠加计算

```
R'= (A * R1 + (256-A) * R2) / 256
G'= (A * G1 + (256-A) * G2) / 256
B'= (A * B1 + (256-A) * B2) / 256
```

part2、单幅图像的淡入淡出

- 1. 从网盘目录lab 3.1下载实习相关文件: https://pan.baidu.com/s/1o8wXJHg 密码: sann
- 2. 处理步骤如下:
- 从demo目录中读入一幅YUV420格式的图像。demo目录下共存放了两个单帧的yuv文件:dem1.yuv和dem2.yuv,大小都是1920*1080(width*height),截取于parkscene.yuv文件。
- 进行YUV420到ARGB8888转换。其中,Alpha的取值范围:1~255,每隔3进行一次转换,共生成84幅
 图像;
- 根据A计算alpha混合后的RGB值(A*RGB/256),得到不同亮度的alpha混合;
- 将alpha混合后的图像转换成YUV420格式,存入输出文件。
- 可以使用yuv播放器对生成的图像进行播放。

part3、两幅图形叠加的渐变处理

1. 处理步骤如下:

- 读入demo目录下的二幅YUV420格式的图像;
- 分别进行YUV420到RGB888的转换;
- Alpha的取值范围: 1~255, 每隔3取值一次, 并将两幅图像相加, 共生成84幅图像;
- 将叠加后的图像转换成YUV420格式,存入输出文件。
- 可以使用yuv播放器对生成的图像进行播放。

实习要求

- 1. 分别采用X86的MMX, SSE2, AVX扩展指令对part2进行加速处理,统计加速后处理时间变化。
- 2. 分别采用x86的MMX, SSE2, AVX扩展指令对part3进行加速处理,统计加速后处理时间变化。

注意:

- 需要加速处理的计算包括:YUV2RGB转换、RGB2YUV转换、alpha混合计算。
- 提供程序模板

提交要求

每人需单独提交:

- 1. 实验报告1份。具体内容参照报告模板。
- 2. part2中优化前后的程序代码。提交内容中还应包含README文档,简要描述程序执行方法。
- 3. part3中优化前后的程序代码。提交内容中还应包含README文档,简要描述程序执行方法。