A priori and a posteriori analysis of a local scheme for elliptic equations

Assyr Abdulle, Giacomo Rosilho de Souza

ANMC, Mathematics Section, École Polytechnique Fédérale de Lausanne, CH–1015 Lausanne, Switzerland

Swiss Numerics Day: Zürich, April 20, 2018

A priori analysis

Semi linear problem:

Find $u \in H_0^1(\Omega)$ such that

$$a(u,v) := \int_{\Omega} A(u) \nabla u \cdot \nabla v = \langle f, v \rangle_{H^{-1}, H_0^1} \qquad \forall v \in H_0^1(\Omega),$$

with $\Omega \subset \mathbb{R}^d$, A(u) symmetric and positive, $f \in H^{-1}(\Omega)$.

Richard's equation, with f = 0 and A(u) discontinuous in space.

Classical approach

(a) Mesh \mathcal{T}_2 .

(b) Solution w_2 .

Figure: Classical scheme

Local scheme

Figure: Two iterations of the Local Scheme.

Differences and related works

Classical scheme:

- solves one non linear system on a refined mesh,
- no artificial boundary conditions error.

Local scheme:

- solves a sequence of smaller non linear systems: first on a coarse mesh, then on locally refined meshes,
- most of Newton iterations occur at coarse levels,
- artificial boundary conditions introduce additional error.

Related works: Methods iteratively solving a coarse full problem and a local fine problem. In finite differences framework under strong assumptions. See [Brandt, '77], [Hackbusch, '84], [McCormick, Thomas, '86].

Local scheme

Let $\Omega_1 = \Omega$, and $\Omega_k \subset \Omega$ for k = 2, ..., M subdomains. Let $\{\mathcal{T}_k\}_{k=1}^M$ meshes on Ω and V_k discontinuous finite element spaces

$$V_k := \{ v \in L^2(\Omega) : v|_T \in \mathbb{P}_d^1(T) \,\forall T \in \mathcal{T}_k \}$$

such that $V_1 \subset V_2 \subset ... \subset V_M$.

Let $a_k: V_k \times V_k \to \mathbb{R}$ be the discrete version of a(u, v).

Local Scheme

Set $u_0 = 0$, for k = 1, ..., M find $\hat{u}_k \in V_k$ with supp $(\hat{u}_k) \subset \Omega_k$

$$a_k(\hat{u}_k, v_k) = (f, v_k)_{\Omega_k} \quad \forall v_k \in V_k \text{ with supp}(v_k) \subset \Omega_k$$

 $\hat{u}_k | \approx u_{k-1} \quad \text{on } \partial \Omega_k.$

Set $u_k = u_{k-1} \chi_{\Omega \setminus \Omega_k} + \hat{u}_k$.

Convergence: Semi linear and linear case

Theorem [Abdulle, Rosilho, '18]: A priori convergence

Let $u \in H_0^1(\Omega)$ be the exact solution, then for k = 1, ..., M

$$\lim_{h_1 \to 0} \|\nabla u - \nabla u_k\|_{L^2(\Omega)^d} + |u_k|_{J(\Omega)} = 0.$$

If $u \in H^2(\Omega) \cap H^1_0(\Omega)$, $f \in L^2(\Omega)$ and A is linear, then

$$\|\nabla u - \nabla u_k\|_{L^2(\Omega_k)^d} + |u_k|_{J(\Omega_k)} \le C\hat{h}_k + \frac{C}{\hat{h}_k} \|v_k - u_{k-1}\|_{L^2(\partial\Omega_k)},$$

with $v_k \in V_k$ any approximation of u and \hat{h}_k the local mesh size. For k=2

$$\|\nabla u - \nabla u_2\|_{L^2(\Omega_2)^d} + |u_2|_{J(\Omega_2)} \le C\hat{h}_2 + C\hat{h}_1^{3/2}\log(1/\hat{h}_1).$$

Numerical example: Stationary Richards equation

Given a sequence of subdomains $\{\Omega_k\}_{k=1}^4$ and meshes $\{\mathcal{T}_k\}_{k=1}^4$ we compare the cost of the Classical the Local schemes.

Classical solution w_k

Cost of w_k is the solution of

$$a(w_k, v_k) = (f, v_k)_{\Omega} \quad \forall v_k \in V_k$$

Local solution u_k

Cost of u_k is the solution of

$$a_j(\hat{u}_j, v_j) = (f, v_j)_{\Omega_j} \quad \forall v_j \in V_j$$

 $\sup_{i} (v_j) \subset \Omega_j$

for
$$j = 1, ..., k$$
.

A posteriori analysis

- In practical cases it is not known a priori where the mesh has to be refined.
- We develop a posteriori error estimators which are used to define the local domains Ω_k .

Model Problem:

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} A \nabla u \cdot \nabla v + \boldsymbol{\beta} \cdot \nabla u v + \mu u v = (f, v)_{\Omega} \qquad \forall v \in H_0^1(\Omega),$$

with $\Omega \subset \mathbb{R}^d$, A symmetric and positive, $\boldsymbol{\beta}$ velocity field, μ reaction and $f \in L^2(\Omega)$.

Diffusive Flux Reconstruction

A posteriori error estimators based on fluxes $t_k \approx -A\nabla u_k$ locally in $H_{\rm div}$, with jumps at the interface between sub domains.

- Start with $t_0 = 0$, $t_0 \in L^2(\Omega)^d$. For each k:
- Given current local solution \hat{u}_k , compute local flux $\hat{t}_k \approx -A\nabla \hat{u}_k$ with $\hat{t}_k \in H_{\text{div}}(\Omega_k)$.
- Update $\mathbf{t}_k = \mathbf{t}_{k-1} \chi_{\Omega \setminus \Omega_k} + \hat{\mathbf{t}}_k \notin H_{\text{div}}(\Omega)$.

Similar for a convection reconstruction $q_k \approx \beta u_k$.

Conservation property

Lemma [Abdulle, Rosilho, '18]: Local conservation property

Let $u_k \in V_k$ be defined by the local algorithm and $t_k, q_k \in L^2(\Omega)^d$ the reconstructed fluxes. For all $K \in \mathcal{T}_k$ it holds

$$\nabla \cdot \boldsymbol{t}_k + \nabla \cdot \boldsymbol{q}_k + \pi_\ell (\mu - \nabla \cdot \boldsymbol{\beta}) u_k = \pi_\ell f,$$

with π_{ℓ} orthogonal projector on K of order ℓ .

Theorem [Abdulle, Rosilho, '18]: Energy norm error bound

Let $u \in H_0^1(\Omega)$ be the exact solution, $u_k \in V_k$ discrete solution, then

$$||A^{1/2}(\nabla u - \nabla u_k)||_{L^2(\Omega)^d} + ||(\mu - \nabla \cdot \boldsymbol{\beta})^{1/2}(u - u_k)||_{L^2(\Omega)} \le \left(\sum_{K \in \mathcal{T}_k} \eta_K^2\right)^{1/2}$$

with

$$\begin{split} \eta_K &= \text{residual } |f - \nabla \cdot \boldsymbol{t}_k - \nabla \cdot \boldsymbol{q}_k - (\mu - \nabla \cdot \boldsymbol{\beta}) u_k| \text{ in } K \\ &+ \text{errors of approximations } \boldsymbol{t}_k \approx -A \nabla u_k \text{ and } \boldsymbol{q}_k \approx \boldsymbol{\beta} u_k \\ &+ \text{jumps of } u_k \text{ on } \partial K \\ &+ \text{jumps of } \boldsymbol{t}_k \cdot \boldsymbol{n}_K \text{ on } \partial K \\ &+ \text{jumps of } \boldsymbol{q}_k \cdot \boldsymbol{n}_K \text{ on } \partial K. \end{split}$$

Numerical example: Singularly perturbed problem

Problem

Solve
$$-\varepsilon \Delta u + \boldsymbol{\beta} \cdot \nabla u + \mu u = f$$
 in $\Omega = [0, 1]^2$, with $\varepsilon = 10^{-5}$, $\boldsymbol{\beta} = -(1, 1)^\top$, $\mu = 2$.

We solve the problem with the Classical and Local scheme and compare accuracy, costs, error estimators.

Classical solution w_k

Cost of w_k is the solution of

$$a_j(w_j, v_j) = (f, v_j)_{\Omega} \quad \forall v_j \in V_j$$

for
$$j = 1, ..., k$$
.

Local solution u_k

Cost of u_k is the solution of

$$a_j(\hat{u}_j, v_j) = (f, v_j)_{\Omega_j} \quad \forall v_j \in V_j$$
$$\operatorname{supp}(v_j) \subset \Omega_j$$

for
$$j = 1, ..., k$$
.

(a) η versus GMRES cost.

(b) Effectivity index of η .

Figure: Estimator η versus cost and its effectivity index.

(a) Energy error versus GMRES cost.

(b) Speed up in function of the error

Figure: Error versus cost and speed up in function of the error.

Thanks for your attention!