第五节 序列信号发生器

什么是序列信号?

序列信号是把一组0、1数码按一定规则顺序排列的串行信号,可以做同步信号、地址码、数据等,也可以做控制信号。

这一节非常重要,是中规模集成电路的综合运用。

- 一、移存型序列信号发生器
- 1、移存型序列信号发生器的原理 移存型序列信号发生器由两部 分组成:
 - ☆ 移位寄存器
 - ☆ 组合电路 组合电路的输出做移位寄存器的输入,也是反馈电路,只要有反馈,寄存器就可以计数。

&

2、移存型序列信号发生器的设计

在移位寄存器的基础上加反馈网络形成移存型序列信号发生器。先设计移位寄存器,再设计反馈网络。

例:设计产生序列信号11000的发生器电路。

解:首先判断序列长度M,若n位移位寄存器最多可产生长度M=2°的序列,依此确定移位寄存器位数.

状态划分:

$$\begin{array}{c|ccccc} CP & Q_2Q_1Q_0 & D_R \\ \hline 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 1 & 1 \\ -4 & 0 & 1 & 1 & 0 \end{array}$$

2、移存型序列信号发生器的设计

2、移存型序列信号发生器的设计

2.中规模实现:

三、计数型序列信号发生器

移存型序列信号发生器只能产生一组序列信号,如 果要同时产生多组序列信号,可以采用计数型序列信号 发生器。

计数型序列信号发生器是在计数器的基础上加适当的反馈网络构成。要实现序列长度为**M**的序列信号发生器,其设计步骤为:

- ★ 先设计一个计数模置为M的计数器。
- ★ 再令计数器每一个状态输出符合序列信号要求。
- ★ 根据计数器状态转换关系和序列信号要求设计输出组合网络。

orselpjorselpjorselpjorselpjo

例:设计产生序列信号1101000101,1101000101,---的计数型序列信号发生器电路。要求用74161和8选1数据选择器实现。

解: 先用74161置数法设计M10计数器。

Q_3	${f Q}_2$	Q_1	Q_0	F
Q_3	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	0	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

₹	今计数器每一/	个状态与一	-位序列信号相对应	_
\sim	Y N XX III ()		- 1441 177110 - J107114	0

变量数大于地址数要进行降维, Q_0 作记图变量。

$$\Rightarrow$$
: $Q_3Q_2Q_1=A_2A_1A_0$

将降维卡诺图与**8**选**1**数据 选择器卡诺图相比较得出:

$$D_0 \sim D_3 = 1$$

 $D_5 = 0$
 $D_4, D_6, D_7 = Q_0$

$\sqrt{Q_3Q_2}$							
Q_1Q_0	00	01	11	10			
00	X	X	0	0			
01	X	X	1	1			
11	X	1	1	0			
10	X	1	0	0			

Q_3Q_2						
01	00	01	11	10		
0	X	X	Q_0	Q_0		
1	X	1	Q_0	0		

#15#9@g#15#9@g#15#9@g#15#9@g#

☆最后画出逻辑电路图。

$$Q_3Q_2Q_1=A_2A_1A_0$$

 $D_0\sim D_3=1$
 $D_5=0$
 $D_4,D_6,D_7=Q_0$

计数器在0110~1111之间循环计数, F 循环输出1101000101序列信号。

distring participated and properties and properties

例:列出电路状态转换图(表),求电路的输出序列信号。

Z循环输出 0001011101 的序列信号

例: 求电路的输出序列信号。

74161接成六进制计数器 Q₂Q₁Q₀=A₂A₁A₀

$$Z_1(Q_2, Q_1, Q_0) = \sum m(0, 1, 3, 5)$$

$$Z_2(Q_2, Q_1, Q_0) = \sum m(1, 3, 4)$$

Q_3	Q_2	Q_1	Q_0	$Z_1 Z_2$
0	0	0	0	1 0
0	0	0	1	1 1
0	0	1	0	0 0
0	0	1	1	1 1
0	1	0	0	0 1
_0	1	0	1	1 0

Z₁循环输出 110101 的序列信号 **Z**₂循环输出 010110 的序列信号

