Exercise Sheet 6

MAGIC009 - Category Theory

November 15th, 2024

- 1. Prove explicitly that the following categories have a terminal object, binary products, equalisers and pullbacks:
 - (a) Set, the category of sets and functions,
 - (b) **Grp**, the category of groups and group homomorphisms,
 - (c) **Top**, the category of topological spaces and continuous functions.
- 2. Fix a category \mathbb{C} . Let \mathbb{I} be the empty category, with no objects.
 - (a) Convince yourself that $\mathbb{C}^{\mathbb{I}}$ is isomorphic to the terminal category 1, with a single object and no non-identity maps.
 - (b) Describe the diagonal functor $\Delta\colon\mathbb{C}\to\mathbb{C}^\mathbb{I}$ in this case.
 - (c) Prove that, for this choice of I, the following statements are equivalent:
 - i. The functor $\Delta \colon \mathbb{C} \to \mathbb{C}^{\mathbb{I}}$ has a right adjoint.
 - ii. \mathbb{C} has a terminal object.
- 3. Fix a category \mathbb{C} . Let I be a set (not necessarily finite) and consider it as a category with no non-identity morphisms.
 - (a) Describe explicitly the category \mathbb{C}^{I} .
 - (b) Describe the diagonal functor $\Delta \colon \mathbb{C} \to \mathbb{C}^I$ in this case.
 - (c) Describe what it means for $\Delta\colon\mathbb{C}\to\mathbb{C}^I$ to have a right adjoint, following the pattern explained in Lecture 6.
 - (d) Prove that such a right adjoint exists when $\mathbb{C} = \mathbf{Set}$.
- 4. Prove the following statements:
 - (a) If $\mathbb C$ has binary products and equalisers, then it has pullbacks. *Hint*. Consider the description of pullbacks in **Set** obtained in the answer to Exercise 1 (a).
 - (b) If $\mathbb C$ has pullbacks and a terminal object, then it has binary products and equalisers.