INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

DEPARTAMENTO DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES Lógica e Sistemas Digitais

2° Teste - (18/Jul/2008)

[1]

- a) Dada a função $F = A.(\overline{C} \oplus D) + A.\overline{B} + \overline{A}.\overline{C}.D + \overline{A}.C.\overline{D}$ obtenha a forma AND-OR, simplificando algebricamente.
- b) Obtenha a forma OR-AND simplificada de $G = ((B.\overline{C} + D)(\overline{A}.D + \overline{C}.D)) + A.\overline{B}.(A + B + \overline{C} + D).A.\overline{C}.D$, utilizando mapas de Karnaugh.
- [2] Não dispondo das variáveis na forma complementar, realize com o mínimo de componentes as seguintes funções:
 - a) $H = \overline{B}.\overline{C}.\overline{D} + A + B.\overline{C}.D$, apenas com portas NAND e NOR e XOR de duas entradas. Desenhe o circuito, explicitando o método utilizado.
 - b) $I = \overline{C}(A + \overline{D}) + C(B + D)$, apenas com multiplexers de 4x1.
- [3] Projecte e implemente com portas lógicas o módulo da figura ao lado. As saídas R₀ e R₁ representam, em binário natural, o resultado do produto de X por Y que valem respectivamente 2 e 3. A saída OV fica activa quando o resultado do produto excede o domínio de R. As entradas E1 e E2 funcionam como inibidoras do circuito, ou seja, se alguma destas estiver inactiva, todas as saídas do módulo ficam desactivadas.

[4] Dado o circuito da figura ao lado, obtenha a expressão simplificada para a saída J. Justifique.

[5]

- a) Represente o número -(144)₆ em código dos complementos na base 2, com o menor número de bits.
- b) Na operação R = (x * 3 + x) 4, com $x = \overline{A}$ 0 B calcule justificando, expressões booleanas para cada um dos seis bits do resultado (em função de A e B).
- c) Complete os campos da tabela, assumindo que numa ALU de 4 bits está seleccionada a operação de subtracção R = A - B - Ci. Justifique sucintamente os cálculos efectuados e o significado dos valores dos vários indicadores.

	R	Α	В	Ci	Cy/	Ov	BE	GE	
Base 2						Br	0	DE	GE
Base 10	natural				1		-		_
	relativo			0	1	_	1	-	

[6] Dado o programa em CUPL, desenhe o *ASM-chart* referente a este módulo. Os símbolos de gráficos de decisão só devem conter o teste a uma variável, ou seja, não devem conter expressões booleanas.

```
[Q0..2].AR = 'b' 0;
 [Q0..2].SP = 'b' 0;
 SEQUENCE [Q2..Q0]{
 PRESENT 0
    NEXT 1;
 PRESENT 1
     IF X & Y OUT A;
     IF X & Y NEXT 4;
    DEFAULT NEXT 2;
 PRESENT 2
    OUT B;
    IF X # Y NEXT 2;
    DEFAULT NEXT 4;
 PRESENT 4
    IF X $ !Y NEXT 1;
    DEFAULT NEXT 0;
}
```

- [7] Dada a máquina de estados descrita pelo *ASM-chart* da figura, e assumindo que caso a máquina se encontre no estado 10 deverá seguir para o estado 01, na próxima transição de *clock*:
 - a) Obtenha as funções de saída e de geração do estado seguinte utilizando flip-flops do tipo JK:
 - b) Admita a existência de uma entrada síncrona S (Set) que quando activa leva a máquina ao estado 11 e ai permanece enquanto S estiver activa. Indique quais as alterações a realizar na implementação da alínea a) de forma a implementar esta funcionalidade.
 - c) Realize a máquina de estados descrita pelo ASM da figura utilizando uma PAL22V10. Descreva o programa em CUPL utilizando a estrutura SEQUENCE e especifique os pinos utilizados.

[8] Desenhe o ASM-chart correspondente ao circuito da figura abaixo, com início no estado 00.

Os docentes

Questão	1a	1b	2a	2b	3	4	5a	5b	5c	6	7a	7b	7c	8	
Classificação	1,5	1,5	1,5	1,5	1	2	0,5	1,5	1,5	1,5	2	1	1	2	20