Data Repository Item

"Global Frequency of Magnitude 9 Earthquakes" by R. McCaffrey

Table DR1 explanation.

Length – length of subduction thrust measured along strike.

Rate range - Range of convergence rates along subduction segment.

Rate source: Source of relative angular velocity between plates. a - Sella et al. (2002); b - Bird (2003); c - DeMets et al. (1994); d - McCaffrey et al. (2007); e - Wallace et al. (2005); f - Wallace et al. (2004a); g - Wallace et al. (2004b).

Dip – dip angle of thrust estimated from CMT solutions (McCaffrey, 1997).

Sip range – Range of expected slip during M9 earthquake. Derived using $u = 2.5 \pm 1.0 \times 10^{-5} L$ where L is length of thrust fault along strike.

 $\boldsymbol{\beta}$ and sigma – value of $\boldsymbol{\beta}$ from Kagan (1999), assumed values for Cascadia and Timor.

Predicted Mw max – predicted Mw of largest earthquake that can occur on the fault.

$$M_o^{max} = \mu \ u_{av} L \ Z_{max} / \sin \delta$$

$$M_w^{max} = 2/3 \log_{10} (M_o^{max} - 9.1)$$

Maximum fault depth $Z_{max} = 40$ km (Tichelaar and Ruff, 1993), fault length L and fault dip δ taken from individual faults, $\mu = 30$ GPa. $u_{av} = 2.5 \times 10^{-5} L$.

Obs. Mw max, 100 year – observed largest thrust earthquake at trench during last 100 years. (Kanamori, 1983; Engdahl and Villasenor, 2002; Harvard CMT).

Obs. Mw max, 300 year – observed largest thrust earthquake at trench during last 300 years, taken from Stein and Okal,(2007).

Recurrence time – Nominal time between M9 earthquakes using

$$T = u_{av} / f \chi v$$

where $u_{av} = 2.5 \times 10^{-5} L$, v is the convergence rate, f = 1, and $\chi = 1$.

Recurrence time range – Range of times between M9 earthquakes estimated from ranges of v, β and u_{av} , where $f = 1 - \beta$.

Age – age of the subducting plate in Millions of years (McCaffrey, 1997).

Plate pairs (HW = hanging wall; FW = footwall) – plates meeting at subduction zones. Abbreviations: An – Antarctic; Au – Australia; Bu – Burma; Ca – Caribbean; Co – Cocos; Cs – South China; Hf – Hikurangi forearc; In – Indian; Jf – Juan de Fuca; Ma – Marianas forearc; Na – North America; Nz – Nazca; Ok – Okhtosk; Or – Oregon forearc; Pa – Pacific; Ph – Philippine; Sa – South America; Sf – Sumatra forearc; Su – Sunda; Sw – Sandwich; To – Tonga forearc.

Citations

- Bird, P. (2003). An updated digital model of plate boundaries, Geochem. Geophys. Geosystems 4, 1027, doi 10.1029/2001GC000252.
- DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1994). Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Letters 21, 2191-2194.
- Engdahl, E.R. and A. Villasenor (2002). Global seismicity: 1900-1999, in IASPEI Handbook of Earthquake and Engineering Seismology (W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Editors), pp. 665-690, Boston, Academic Press.
- Kagan, Y. Y. (1999). Universality of the seismic moment-frequency relation, Pure Appl. Geophys. 155, 537–573.
- Kanamori, H., (1983). Global Seismicity, in Earthquakes: Observation, theory and interpretation, edited by H. Kanamori and E. Bosch, pp. 597, North Holland, New York.
- McCaffrey, R., (1997). Influences of recurrence times and fault zone temperatures on the age-rate dependence of subduction zone seismicity, Journal of Geophysical Research, 102, 22,839-22,854.
- McCaffrey, R., A. I. Qamar, R. W. King, R. Wells, Z. Ning, C. A. Williams, C. W. Stevens, J. J. Vollick, and P. C. Zwick, (2007). Plate locking, block rotation and crustal deformation in the Pacific Northwest, Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03371.x.
- Sella, G. F., T. H. Dixon, and A. Mao (2002), REVEL: A model for recent plate velocities from space geodesy, J. Geophys. Res., 107, doi:10.1029/2000JB000033.
- Stein, S. and E. A. Okal (2007). Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process, Bull. Seism. Soc. Am. 97, S279-S295, doi: 10.1785/0120050617.
- Tichelaar, B. W., and L. J. Ruff, (1993). Depth of seismic coupling along subduction zones, J. Geophys. Res., 98, 2017-2037.
- Wallace, L.M., C. W. Stevens, E. Silver, R. McCaffrey, W. Loratung, S. Hasiata, R. Curley, R. Rosa, J. Taugaloidi, and H. Davies, (2004a). GPS Constraints on Active Tectonics and Arc-Continent Collision in Papua New Guinea: evidence for edge-driven microplate rotations, J. Geophys. Res., 109, doi:10.1029/2003JB002481.

- Wallace, L. M., J. Beavan, R. McCaffrey, and D. Darby (2004b), Subduction zone coupling and tectonic block rotations in the North Island, New Zealand, J. Geophys. Res., 109, B12406, doi:10.1029/2004JB003241.
- Wallace, L. M., R. McCaffrey, J. Beavan, and S. Ellis (2005), Rapid microplate rotations and back-arc rifting at the transition between collision and subduction, Geology, 33 857-860.

Table DR1.

No.	Trench Name	Length,	Rate range,	Rate	Dip, °	Dip	Slip range,	β	β	Predicted	Obs. Max Mw	Obs. Max Mw	Recurrence	Recurr. Time	Age,	Plate	Pairs
		km	mm/yr	source		sigma, °	meters		sigma	max Mw	100 yr	300 yr	Time, years	range, years	Ma	HW	FW
1	ALASKA	1489	55- 66	a	18	7	22-52	0.59	0.05	9.5	9.2	9.3	606	872- 2146	49	Na	Pa
2	ANDAMAN	1701	16- 44	b	24	3	25-59	0.72	0.13	9.5	9.3	9.3	1379	2091-8739	83	Bu	In
3	ANTILLES	1228	17-21	a	25	9	18-43	0.59	0.11	9.3	6.1	7.5	1600	2066- 6381	87	Ca	Na
4	C. AMERICA	1506	62-83	c	22	6	22-52	0.68	0.07	9.4	7.8	7.6	513	894- 2473	16	Ca	Co
5	C. CHILE	1304	63- 75	a	13	6	19-45	0.56	0.05	9.5	9.5	9.6	468	620- 1534	23	Sa	Nz
6	CASCADIA	1048	32-38	d	9	3	15-36	0.50	0.20	9.5	7.2	9.1	737	614- 2861	5	Or	Jf
7	E. ALEUTIAN	1092	64- 76	a	21	6	16-38	0.59	0.05	9.3	9.1	8.6	385	552- 1363	56	Na	Pa
8	ECU-COLOM	1358	52- 63	a	22	5	20-47	0.56	0.05	9.4	8.8	8.5	588	777- 1922	21	Sa	Nz
9	HIKURANGI	781	22- 48	g	20	10	11-27	0.79	0.04	9.1	7.7	7.8	553	1385-3865	100	Hf	Pa
10	IZU	1167	34-46	e	26	6	17-40	0.81	0.11	9.2	6.6	7.2	723	1739- 4619	145	Ph	Pa
11	JAPAN	654	62-81	a	22	7	9-22	0.57	0.04	9.0	8.3	8.2	226	311- 762	132	Ok	Pa
12	JAVA	1849	61- 74	a	20	11	27-64	0.67	0.06	9.6	7.8	7.7	675	1171-3069	75	Su	Au
13	KAMCHATKA	907	69- 84	a	30	6	13-31	0.57	0.04	9.1	9.0	8.9	294	399- 977	115	Ok	Pa
14	KERMADEC	1421	50- 66	a	24	7	21-49	0.79	0.04	9.4	8.0	8.1	609	1605-3966	100	Au	Pa
15	KURILES	1242	69- 82	a	26	8	18-43	0.57	0.04	9.3	8.5	8.5	410	561-1371	128	Ok	Pa
16	MARIANAS	1812	31-70	e	25	8	27-63	0.81	0.11	9.5	7.7	7.2	893	1990- 6165	134	Ma	Pa
17	MEXICO	1378	42- 61	b	21	7	20-48	0.58	0.06	9.4	8.0	8.1	663	900- 2344	9	Na	Co
18	N. CHILE	1581	63-74	a	22	8	23-55	0.56	0.05	9.5	8.5	8.3	573	762- 1887	41	Sa	Nz
19	NANKAI	923	59- 76	a	21	7	13-32	0.66	0.10	9.2	8.1	8.8	339	528- 1607	23	Cs	Ph
20	NEW BRITAIN	867	75-157	f	20	3	13-30	0.61	0.04	9.1	8.1	8.1	186	268- 728	50	Sb	Wk
21	NEW GUINEA	1030	103-121	a	20	10	15-36	0.57	0.05	9.2	8.2	8.2	229	312- 768	100	Au	Pa
22	NEW HEBRIDES	1187	70-86	a	28	8	17-41	0.60	0.04	9.2	7.5	7.8	378	561-1364	40	Pa	Au
23	PERU	1599	58- 70	a	22	8	23-55	0.56	0.05	9.5	8.4	9.2	618	806- 2020	37	Sa	Nz
24	PHILIPPINE	1512	95-113	a	25	9	22-52	0.61	0.05	9.4	8.0	8.0	361	539- 1355	43	Su	Ph
25	RYUKYU	1131	74- 92	a	25	8	16-39	0.66	0.10	9.2	6.7	8.0	339	525- 1619	46	Cs	Ph
26	S. CHILE	1218	15- 19	a	25	3	18-42	0.56	0.05	9.3	5.7	5.7	1734	2304- 5731	16	Sa	An
27	SANDWICH	1000	63-82	b	27	7	15-35	0.67	0.06	9.1	7.0	7.0	343	579- 1573	57	Sw	Sa
28	SOLOMON	1585	86-105	a	20	3	23-55	0.61	0.04	9.5	7.8	7.8	412	626- 1522	50	Pa	Au
29	SUMATRA	1393	60- 75	b	20	9	20-48	0.72	0.13	9.4	8.7	9.2	512	925- 2862	61	Sf	Au
30	TIMOR	1256	69- 84	a	20	10	18-43	0.67	0.06	9.4	7.5	7.5	409	709- 1864	100	Su	Au
31	TONGA	1450	125-252	e	24	7	21-50	0.79	0.04	9.4	8.5	8.3	191	479- 1321	100	To	Pa
32	W. ALEUTIAN	1244	69- 80	a	22	8	18-43	0.59	0.05	9.3	8.7	8.7	414	593- 1471	72	Na	Pa