

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Sprawozdanie

Techniki Pomiarowe

Laboratorium 2 Ćwiczenie 1

> Borsuk Piotr Technologie Przemysłu 4.0 Rok 2, Semestr 4, Grupa nr. 1 Rok akademicki 2023/2024

Pomiar bezpośredni napięcia stałego multimetrem cyfrowym RIGOL DM3051 Zadanie 1.

1.1 Schemat pomiarowy

Rys. 1. Schemat pomiarowy

Rys. 2, 3. Źródło napięcia i woltomierz

1.2 Metoda pomiaru

Pomiar bezpośredni napięcia stałego multimetrem cyfrowym

1.3 Tabela pomiarowa:

Tabela 1. Wyniki uzyskane w pomiarze.

U_{Z}	$Z_{\scriptscriptstyle U}$	a	b	U	$\Delta_{gr}U$
[V]	[V]	а		[V]	[mV]
25	40	0,002	0,005	25,11	2
30	40	0,002	0,005	30,09	2
30	400	0,002	0,005	30,09	20

1.4 Zastosowane wzory:

$$\Delta_{gr}U = \frac{a*b+b*Z_U}{100} \tag{1.1}$$

 $\delta_{gr}U$ [%] 0,008

0,006

0,06

$$\Delta_{gr}U = \frac{a*b+b*Z_{U}}{100}$$

$$\delta_{gr}U = \frac{\Delta_{gr}U}{U}*100 = a + b*\frac{Z_{U}}{U}$$
(1.1)

,gdzie:

U – zmierzona wartość napięcia,

 U_z – napięcie ustawione na zasilaczu,

a – procent odczytu,

b – procent zakresu,

 Z_U – zakres napięciowy na którym wykonano pomiar.

1.5 Obliczenia.

$$\Delta_{gr}U = \frac{a*b+b*Z_U}{100} = \frac{0,002*0,005+0,005*40}{100} = 2*10^{-3}$$
$$\delta_{gr}U = \frac{\Delta_{gr}U}{U}*100 = \frac{0,002}{25}*100 = 0,008\%$$

Zadanie 2 Pomiar bezpośredniego napięcia stałego multimetrem analogowym UM-3a/UM-4B/UM-5B

2.1 Schemat pomiarowy

Rys. 4. Schemat pomiarowy.

2.2. Metoda pomiaru.

Pomiar bezpośredniego napięcia stałego multimetrem analogowym.

2.3 Tabela pomiarowa.

Tabela 2. Wyniki uzyskane w pomiarze.

Uz	K	$\alpha_{\scriptscriptstyle m}$ [dz]	$Z_{\scriptscriptstyle U}$ [V]
2	1,5	50	2,5
4	1,5	50	10
6	1,5	50	10
6	1,5	50	50

α	$c_{\scriptscriptstyle U}$	U
[dz]	[V/dz]	[V]
41	0,05	2,05
21	0,2	4,2
30	0,2	6,2
5,5	1	5,5

$\Delta_{gr}U$	$\delta_{gr}\!U$
[mV]	[%]
37,5	1,83
150	3,58
150	2,41
750	13,64

2.4 Zastosowane wzory.

$$U = c_U * \alpha \tag{2.1}$$

$$\Delta_{gr}U = \frac{K*Z_U}{100} \tag{2.2}$$

$$\delta_{gr}U = \frac{\Delta_{gr}U}{U} * 100 \tag{2.3}$$

$$c_U = \frac{z_U}{a_m} \tag{2.4}$$

,gdzie:

K – klasa przyrządu.

2.5 Obliczenia

$$c_U = \frac{Z_U}{a_m} = \frac{2.5}{50} = 0.05$$

$$U = c_U * \alpha = 0.05 * 41 = 2.05$$

$$\Delta_{gr}U = \frac{K * Z_U}{100} = \frac{1.5 * 2.5}{100} = 0.0375$$

$$\delta_{gr}U = \frac{\Delta_{gr}U}{U} * 100 = \frac{0.0375}{2.05} * 100 = 1.83$$

Zadanie 3. Pomiar bezpośredni rezystancji metodą dwuprzewodową

3.1. Schemat pomiarowy.

Rys. 5. Schemat pomiaru rezystancji metodą dwuprzewodową.

3.2 Metoda pomiaru.

Pomiar bezpośredni rezystancji metodą dwuprzewodową multimetrem cyfrowym.

3.3. Tabela pomiarowa.

Tabela 3. Wyniki uzyskane w pomiarze.

	Z_R	R	$\Delta_{gr}R$	$\delta_{gr}R$
	$[k\Omega]$	[kΩ]	$[m\Omega]$	[%]
R_1	40	5,88	202,1	3,43
$R_{2.}$	40	19,94	202,4	1,05
R _{3.}	40	36,56	202,4	1,02

3.4. Zastosowane wzory.

$$\Delta_{gr}R = \frac{a*R+b*Z_R}{100} + 0.2\Omega \tag{3.1}$$

,gdzie:

 Z_R – zmierzona wartość rezystancji.

3.5. Obliczenia

$$\Delta_{gr}R = \frac{a*R+b*Z_R}{100} + 0.2 = \frac{0.002*5.88 + 0.005*40}{100} + 0.2 = 0.2021$$

Zadanie 4. Pomiar bezpośredni rezystancji metodą czteroprzewodową.

4.1. Schemat pomiarowy

Rys. 6. Schemat pomiaru metodą czteroprzewodową.

4.2. Metoda pomiaru.

Pomiar bezpośredni rezystancji metodą czteroprzewodową multimetrem cyfrowym.

4.3 Tabela pomiarowa

Tabela 4. Wyniki uzyskane w pomiarach.

	R^{4W}	$\Delta_{gr}R^{4W}$	$\delta_{gr}R^{4W}$
	$[\Omega]$	$[\Omega]$	[%]
R_1	1,00	0,00203	0,2

R^{2W}	$\Delta_{gr}R^{2W}$	$\delta_{gr}R^{2W}$
$[\Omega]$	$[\Omega]$	[%]
1,22	0,202	16,56

$\Delta R[\Omega]$	δR [%]
0,22	22

4.4. Zastosowane wzory.

$$\Delta R = R^{2W} - R^{4W} \tag{4.1}$$

$$\delta R = \frac{\Delta R}{R^{4W}} * 100 \, [\%] \tag{4.2}$$

$$\Delta_{gr}R^{2W} = \frac{a*R^{2W} + b*Z_R}{100} + 0.2\Omega \tag{4.3}$$

$$\Delta_{gr}R^{4W} = \frac{a*R^{4W} + b*Z_R}{100} \tag{4.4}$$

$$\delta_{gr}R^2 = \frac{\Delta_{gr}R^{2W}}{R^{2W}} * 100 \, [\%]$$
 (4.5)

$$\delta_{gr}R^4 = \frac{\Delta_{gr}R^{4W}}{R^{4W}} * 100 \, [\%]$$
 (4.6)

4.5 Obliczenia.

$$\Delta_{gr}R^{2W} = \frac{a*R^{2W} + b*Z_R}{100} + 0.2\Omega = \frac{0.003*1.22 + 0.0005*400}{100} + 0.2\Omega = 0.202[\Omega]$$

$$\Delta_{gr}R^{4W} = \frac{a*R^{4W} + b*Z_R}{100} = \frac{0.003*1,00+0,0005*400}{100} = 2,03 \ [\Omega]$$

$$\delta_{gr}R^2 = \frac{\Delta_{gr}R^{2W}}{R^{2W}} * 100 \ [\%] = \frac{0,202}{1,22} * 100 = 16,56 \ [\%]$$

$$\delta_{gr}R^4 = \frac{\Delta_{gr}R^{4W}}{R^{4W}} * 100 \ [\%] = \frac{0,00203}{1,00} * 100 = 0,2 \ [\%]$$

Zadanie 5. Pomiar bezpośredni wartości skutecznej napięcia zmiennego multimetrem cyfrowym.

5.1 Schemat pomiarowy.

Rys. 7. Schemat pomiarowy

Rys. 8. Generator RIGOL.

5.2. Metody pomiaru.

Pomiar bezpośredni wartości skutecznej napięcia zmiennego za pomocą multimetra cyfrowego.

5.3. Tabela pomiarowa.

Tabela 5. Wyniki uzyskane w pomiarze.

	$U_{\it rms}$	$\Delta_{gr} U_{rms}$	$\delta_{\it gr} U_{\it rms}$	V_{pp}
	[V]	[mV]	[%]	
U_1	2,83	8,566	0,30	8
U_2	4,59	8,918	0,19	13
U ₃	6,36	9,272	0,16	18

5.4. Zastosowane wzory.

$$\Delta_{gr}U = \frac{a*U + b*Z_U}{100} \tag{5.1}$$

$$\delta_{gr}U = \frac{\Delta_{gr}U}{U} * 100 \tag{5.2}$$

5.5. Obliczenia.

$$\Delta_{gr}U = \frac{a * U + b * Z_U}{100} = \frac{0,02 * 2,83 + 0,02 * 40}{100} = 0,008566$$
$$\delta_{gr}U = \frac{\Delta_{gr}U}{U} * 100 = \frac{0,008566}{2,83} * 100 = 0,302686$$

Podsumowanie

Podczas laboratorium obsługiwaliśmy przyrządy pomiarowe takie jak: multimetr, generator, oscyloskop.

Podczas laboratoriów przytrafiła się usterka multimetra analogowego, miał uszkodzoną gałkę pomiarów, przez co doświadczyliśmy różnicy pomiędzy urządzeniami.

Wnioskujemy, że metoda czteroprzewodowa pomiaru bezpośredniego rezystancji jest bardziej efektywna od metody dwuprzewodowej.