On the Taylor center of a triangle / Darij Grinberg

Let AH_a , BH_b and CH_c be the altitudes of a triangle ABC. From the foot H_a we construct the perpendiculars H_aB_a to CA and H_aC_a to AB; so we get the feet B_a and C_a . Analogously, the points C_b , A_b and A_c , B_c are defined.

The following result was proven in [1] and [2]: The points B_a , C_a , C_b , A_b , A_c and B_c lie on one circle. This circle is called **Taylor circle** or **Catalan circle** of triangle ABC. Its center T lies on the Brocard axis of $\triangle ABC$ (for the Taylor circle is a Tucker circle: [1]); T is called the **Taylor center** of triangle ABC. We shall show a possibly new theorem on this point T:

Theorem 1. The distances of T to the vertices of $\triangle ABC$ satisfy the equations

$$AT^2 - h_a^2 = BT^2 - h_b^2 = CT^2 - h_c^2$$

where $h_a = AH_a$, $h_b = BH_b$ and $h_c = CH_c$ are the altitudes of $\triangle ABC$.

Proof. Let us use directed edges, where the sideline AB is oriented in direction $A \rightarrow B$, i. e. the length of the segment AB is positive, and the length of the segment BA is negative.

Let Z be the midpoint of segment C_aC_b . For the point T, being the center of the Taylor circle, lies on the perpendicular bisector of its chord C_aC_b , this perpendicular bisector is ZT; thus $ZT \perp AB$. Now we have

$$AT^{2} - BT^{2} = (AZ^{2} + ZT^{2}) - (BZ^{2} + ZT^{2})$$
 (Pythagoras)
= $AZ^{2} - BZ^{2} = AZ^{2} - ZB^{2}$ (since $BZ^{2} = (-ZB)^{2} = ZB^{2}$)
= $(AZ - ZB)(AZ + ZB) = (AZ - ZB) \cdot AB = c \cdot (AZ - ZB)$.

Since Z is the midpoint of C_aC_b , we get:

$$AZ = \frac{1}{2}(AC_a + AC_b) = \frac{1}{2}(AB + BC_a + AC_b)$$

$$= \frac{1}{2}(c - C_aB + AC_b)$$

$$= \frac{1}{2}(c - BH_a \cdot \cos \beta + AH_b \cdot \cos \alpha)$$

$$= \frac{1}{2}(c - c\cos \beta \cdot \cos \beta + c\cos \alpha \cdot \cos \alpha)$$

$$= \frac{1}{2}c \cdot (1 - \cos^2 \beta + \cos^2 \alpha),$$

and analogously

$$ZB = \frac{1}{2}c \cdot (1 - \cos^2\alpha + \cos^2\beta),$$

and thus

$$AT^{2} - BT^{2} = c \cdot (AZ - ZB)$$

$$= c \cdot \left(\frac{1}{2}c \cdot (1 - \cos^{2}\beta + \cos^{2}\alpha) - \frac{1}{2}c \cdot (1 - \cos^{2}\alpha + \cos^{2}\beta)\right)$$

$$= \frac{1}{2}c^{2}((1 - \cos^{2}\beta + \cos^{2}\alpha) - (1 - \cos^{2}\alpha + \cos^{2}\beta))$$

$$= \frac{1}{2}c^{2}(2\cos^{2}\alpha - 2\cos^{2}\beta) = c^{2} \cdot (\cos^{2}\alpha - \cos^{2}\beta)$$

$$= c^{2} \cdot \left((1 - \sin^{2}\alpha) - (1 - \sin^{2}\beta)\right)$$

$$= c^{2} \cdot \left(\sin^{2}\beta - \sin^{2}\alpha\right) = (c\sin\beta)^{2} - (c\sin\alpha)^{2} = h_{a}^{2} - h_{b}^{2}.$$

This formula $AT^2 - BT^2 = h_a^2 - h_b^2$ yields $AT^2 - h_a^2 = BT^2 - h_b^2$; analogously we can prove $BT^2 - h_b^2 = CT^2 - h_c^2$

and Theorem 1 is established.

Theorem 1 can be paraphrased in a geometric disguise:

The circle centered at A and having the radius h_a passes through H_a and touches the sideline BC (since the tangent to this circle at the point H_a is orthogonal to the radius AH_a , i. e. it is the line BC itself). Further, we construct the circle centered at B and having the radius h_b and the circle centered at C and having the radius h_c .

Theorem 2. The radical center of these three circles is the Taylor center *T*.

Proof. The power of T with respect to the circle centered at A and having the radius h_a is $AT^2 - h_a^2$, and similarly, $BT^2 - h_b^2$ and $CT^2 - h_c^2$ are the powers of T with respect to the two other circles. After Theorem 1, they are equal, i. e. T is in fact the radical center of the three circles.

This result is likely known. In fact, I have noticed that in [3], where some points on the Brocard axis are listed, one of them is "the radical center of the circles centered at A, B, C, which touch the opposite sidelines".

Fig. 3

References

- [1] R. Honsberger: *Episodes in Nineteenth and Twentieth Century Euclidean Geometry*, USA 1995.
 - [2] A. Bogomolny: http://cut-the-knot.com/triangle/Taylor.shtml
- [3] R. Stärk: Ein Verfahren, Punkte der Tuckergeraden eines Dreiecks zu konstruieren, Praxis der Mathematik 5/1992 pages 213-215.