ANALISIS DAN IMPLEMENTASI VERTICAL AUTOSCALING WEB APLIKASI MENGGUNAKAN KUBERNETES

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

AULIA RIZQI PUTRA 6705180006

D3 TEKNIK TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Perkembangan teknologi semakin cepat, termasuk datangnya teknologi baru yaitu container. Container Orchestration adalah salah satu teknologi Container. Dengan Container Orchestration proses pembuatan maupun penggunaan system tersebut akan semakin mudah tetapi seiring dengan permintaan pengguna yang terlalu banyak sehingga layanan tersebut tidak berjalan maksimal.Oleh karena itu Container Orchestration harus memiliki skalabilitas dan performansi yang bagus. Skalabilitas di perlukan untuk system dapat menyesuaikan kebutuhan dengan permintaan user . Dan performansi di perlukan untuk menjaga kualitas layanan yang diberikan. Pada sistem web hosting modern, di dalam setiap servernya, mengelola banyak aplikasi web.

Teknologi *virtual machine* dimanfaatkan untuk menyelesaikan masalah heterogenitas (perbedaan versi *library* atau tool dari beberapa aplikasi web). Peningkatan jumlah aplikasi web yang harus dihosting harus diikuti dengan peningkatan kualitas ataupun kuantitas sumber daya, terlebih saat hadirnya kebutuhan *high availability* dari layanan web tersebut. Teknik kontainerisasi (virtualisasi berbasis *container*) hadir sebagai solusi dan menjadi trend saat ini. Kubernetes adalah platform *open source* yang digunakan untuk manajemen *container* dan sebagai *container orchestration* yaitu platform yang akan bertugas melakukan penjadwalan, *scaling*, *recovery* dan monitoring pada *container*.

Pada penelitian ini, akan dikembangkan layanan web E-Commerce pada platform berbasis kubernetes dengan menggunakan vertical autoscaling, selanjutnya akan dilakukan simulasi untuk melihat gambaran performa sistem yang telah dikembangkan berdasarkan parameter Load Testing untuk skalabilitas, waktu scaling up dan scaling down untuk performansi, throughput, response time, request, dan delay. Hasil simulasi menunjukkan sistem yang dibangun mampu memenuhi standar dengan performa baik ketika menerima sejumlah http load.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literatur terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan			
1.	Exploring Potential for Non-Disruptive	2019	Pada jurnal ini penulis merancang			
	Vertical Auto Scaling and Resource		Resource Utilization Based Autoscaling			
	Estimation in Kubernetes [1]		System (RUBAS) untuk meningkatkan			
			sistem Kubernetes Vertical Pool			
			Autoscaler (VPA) tanpa gangguan			
			dengan memasukkan migrasi container.			
2.	Implementasi & Analisis Performasi	2019	Pada jurnal ini penulis membuat layanan			
	Layanan Web Pada Platform Berbasis		web E-Commerce pada platform			
	Docker [2]		berbasis docker, selanjutnya akan			
			dilakukan simulasi untuk melihat			
			gambaran performa sistem yang telah			
			dikembangkan berdasarkan parameter			
			throughput, response time, cpu			
			utilization, dan memory utilization.			
3.	Implementasi Load Balancing Server	2018	Pada jurnal ini penulis membuat sebuah			
	Basis Data Pada Virtualisasi Berbasis		load balancing yang berjalan			
	Kontainer [3]		menggunakan fitur load balancer dan			
			nodeport yang disediakan oleh			
			kubernetes.			
4.	Implementasi Failover Dan	2018	Pada jurnal ini penulis merancang dan			
	Autoscaling Kontainer Web Server		mengimplmentasikan sebuah server			
	Nginx Pada Docker Menggunakan		cluster untuk menjalankan web server			
	Kubernetes [4]		dengan mekanisme autoscaling dan			
			failover yang dimiliki oleh Kubernetes.			

Rancangan Sistem

Bab ini akan menjelaskan mengenai analisis dan impelementasi *vertical autoscaling* web aplikasi menggunakan Kubernetes. Adapun model sistem *vertical autoscaling* Kubernetes terhadap performasi layanan web dengan menggunakan metode *vertical autoscaling* yang dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Model Sistem Mengenai Analisis dan Impelementasi Vertical Autoscaling web Aplikasi Menggunakan Kubernetes

Sistem ini merupakan layanan web E-Commerce yang dibangun menggunakan Kubernetes. Seluruh proses sistem yang bekerja terdapat pada Worker Node yang dikontrol oleh master node agar memudahkan penjadwalan serta pengalokasian sumber daya yang dibangun menggunakan teknologi Kubernetes serta containerization untuk membantu proses isolasi sistem aplikasi yang kompleks dan memungkinkan untuk scaling system sesuai perancangan dan kebutuhan hingga kapasitas tertentu sesuai dengan spesifikasi server. Sistem dapat dibangun dan dikembangkan melalui Docker yang merupakan sebuah container management tools sebagai medium penghubung dan pengatur dari beberapa Kubernetes container yang bekerja saling terkoneksi melalui medium web browser. Sistem juga dibangun menggunakan Minikube sebagai tools yang akan memudahkan untuk menjalankan Kubernetes pada komputer local dan minikube juga digunakan untuk membuat multi node agar web aplikasi tersebut agar memudahkan untuk mempertahankan pod yang sedang berjalan secara terus menerus.

Desain sistem web *E-Commerce* yang dibangun terdiri dari variasi Reaction Commerce sebagai *front-end system* dan mongoDB sebagai *back-end system* yang bekerja saling terintegrasi untuk menciptakan layanan dengan performa terbaik. Sistem Reaction Commerce akan di scale yang dapat ditampung di host yang tersedia untuk meningkatkan performa server dan aplikasi. Kedua sistem tersebut terhubung berkat tools dan konfigurasi dari Kubernetes, terdapat konfigurasi automasi *load balancer* untuk membagi beban kerja server sehingga mampu menyajikan layanan *high performance*.

Sistem juga dibangun menggunakan vertical pod autoscaling sehingga saat user melakukan request secara bersamaan dengan waktu yang sama maka secara otomatis pods akan menyesuaikan menambah dan mengurangi sumber daya komputasi dari satu replica sehingga spesifikasi dari suatu pod juga akan berubah sesuai kebutuhan request user. Selanjutnya parameter yang akan diukur yaitu parameter *Load Testing* untuk skalabilitas, waktu *scaling up*, waktu *scaling down*, *throughput*, *response time*, *request*, dan *delay*.

Referensi

- [1] G. Rattihalli, "Exploring Potential for Non-Disruptive Vertical Auto Scaling and Resource Estimation in Kubernetes," 2019.
- [2] M. Fihri, "Implementasi & Analisis Performasi Layanan Web Pada Platform Berbasis Docker," 2019.
- [3] M. W. I. Santosa, "Implementasi *Load Balancing* Server Basis Data Pada Virtualisasi Berbasis Kontainer," 2018.
- [4] Y. T. Sumbogo, "Implementasi *Failover* Dan *Autoscaling* Kontainer Web Server Nginx Pada Docker Menggunakan Kubernetes," 2018.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 10 Desember 2020

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : RMT

Nama: Rohmat Tulloh, S.T., M.T.

CALON PEMBIMBING 2

Kode : MIQ

Nama: Muhammad Iqbal, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705180006

Nama : Aulia Rizqi Putra

Prodi / Peminatan : TT /__ (contoh: MI / SDV)

Calon Judul PA : Analisis dan Implementasi Vertical Autoscaling Web Aplikasi Menggunakan

Kubernetes

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Calon Pembimbing 2

M MIL

NIP: 06830002

Muhammad Iqbal, S.T., M.T.

NIP: 10840012

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

etujuan pbb PA

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705180006

Dosen Wa**l**i Program Studi : RMT / ROHMAT TULLOH : D3 Teknologi Telekomunikasi

Nama : AULIA RIZQI PUTRA

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	А
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	А
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	В
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	АВ
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	АВ
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	АВ
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	АВ
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	В
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	АВ
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	АВ
2	DMH1A2	OLAH RAGA	SPORT	2	АВ
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	АВ
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	АВ
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	А
3	DTH2G3 SISTEM KOMUNIKASI OPTICAL COMMUNICATION SYSTEMS		3	А	
Jumlah SKS			83	3.68	

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	А
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	А
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	АВ
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
	Jumlah SKS				3.68

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES	2	
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
5	UWI3E1	HEI	HEI	1	
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
Jumlah SKS				13	

 Tingkat I
 : 41 SKS
 Belum Lulus
 IPK : 3.55

 Tingkat II
 : 81 SKS
 Belum Lulus
 IPK : 3.67

 Tingkat III
 : 83 SKS
 Belum Lulus
 IPK : 3.68

 Jumlah SKS
 : 83 SKS
 IPK : 3.68

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 November 2020 13:44:00 oleh AULIA RIZQI PUTRA