SCF methods, basis sets, and integrals

Lecture IV: Integrals

Wim Klopper

Abteilung für Theoretische Chemie, Institut für Physikalische Chemie Karlsruher Institut für Technologie (KIT)

ESQC 2019, 8-21 September 2019

The Gaussian-product theorem

- The great success of GTOs is based on the fact that all necessary integrals are easily evaluated analytically.
- The most important reason for this efficiency is the Gaussianproduct theorem (GPT).

• The figure shows the product of the (unnormalised) s-type GTOs χ_a with exponent $\alpha=0.25$ at $\mathbf{A}=(1,0,0)$ and χ_b with exponent $\beta=0.50$ at $\mathbf{B}=(-1,0,0)$,

$$\chi_a(\mathbf{r}) = e^{-\alpha(\mathbf{r} - \mathbf{A})^2}, \qquad \chi_b(\mathbf{r}) = e^{-\beta(\mathbf{r} - \mathbf{B})^2}$$

• The two-centre product $\chi_a(\mathbf{r})\chi_b(\mathbf{r})$ is again a Gaussian χ_p centred at the "centre of gravity" \mathbf{P} .

The Gaussian-product theorem

• The product of the GTOs χ_a and χ_b can be written as

$$\chi_a(\mathbf{r})\chi_b(\mathbf{r}) = e^{-\frac{\alpha\beta}{\alpha+\beta}(\mathbf{A}-\mathbf{B})^2}e^{-(\alpha+\beta)(\mathbf{r}-\mathbf{P})^2}$$

with

$$\mathbf{P} = \frac{\alpha \mathbf{A} + \beta \mathbf{B}}{\alpha + \beta}$$

• The factor $\exp(-\frac{\alpha\beta}{\alpha+\beta}({\bf A}-{\bf B})^2)$ is known as pre-exponential factor. Obviously, this factor vanishes for large distances between ${\bf A}$ and ${\bf B}$.

• Note that for two like exponents of the order of $10^{-3}~a_0^{-2}$, the distance $|{\bf A}-{\bf B}|$ must be $\gg 100~a_0$ to make the pre-exponential factor smaller than 10^{-6} .

The overlap integral

 Using the GPT, We can easily compute the overlap integral S_{ab} between two (real, unnormalised) s-type Gaussians,

$$\int \chi_a(\mathbf{r})\chi_b(\mathbf{r})d\mathbf{r} = e^{-\frac{\alpha\beta}{\alpha+\beta}(\mathbf{A}-\mathbf{B})^2} \int e^{-(\alpha+\beta)(\mathbf{r}-\mathbf{P})^2} d\mathbf{r}$$

$$= e^{-\frac{\alpha\beta}{\alpha+\beta}(\mathbf{A}-\mathbf{B})^2} \int e^{-(\alpha+\beta)\mathbf{r}^2} d\mathbf{r}$$

$$= e^{-\frac{\alpha\beta}{\alpha+\beta}(\mathbf{A}-\mathbf{B})^2} \int e^{-(\alpha+\beta)x^2} dx \int e^{-(\alpha+\beta)y^2} dy \int e^{-(\alpha+\beta)z^2} dz$$

$$= e^{-\frac{\alpha\beta}{\alpha+\beta}(\mathbf{A}-\mathbf{B})^2} \left(\frac{\pi}{\alpha+\beta}\right)^{\frac{3}{2}}$$

- This equation reveals another important property of integrals over Gaussians: the 3D integral factorises into a product of three 1D integrals.
- Normalisation constant: $N_a = \left(\frac{2\alpha}{\pi}\right)^{\frac{3}{4}}$.

The overlap integral

- The figure shows the overlap integral S_{ab} for two s-type Gaussians with exponent $\alpha=\beta=1$ a_0^{-2} as a function of the distance $|\mathbf{A}-\mathbf{B}|$ (solid line).
- The dashed lines are overlap integrals with exponents 10 times larger and 10 times smaller.

 For the integral over contracted Gaussians (CGTOs), the overlap integral becomes

$$S_{\mu\nu} = \sum_{a=1}^{n_{\mu}} \sum_{b=1}^{n_{\nu}} c_{a\mu} S_{ab} c_{b\nu}$$

 In general, a large number of integrals over primitive functions contribute to a smaller number of integrals over CGTOs.

Primitive Cartesian GTOs

The primitive Cartesian GTO is

$$\chi_a(\mathbf{r}) = x_A^i y_A^j z_A^k \exp(-\alpha r_A^2), \qquad \mathbf{r}_A = \mathbf{r} - \mathbf{A}$$

Integrals over real-valued spherical-harmonic GTOs

$$\chi_a'(\mathbf{r}) = S_{lm}(x_{\rm A}, y_{\rm A}, z_{\rm A}) \exp(-\alpha r_{\rm A}^2)$$

(where $S_{lm}(x_{\rm A},y_{\rm A},z_{\rm A})$ is a real solid harmonic), can be obtained by transforming the integrals over primitive Cartesian GTOs with a corresponding transformation matrix.

$$S' = C^T S C$$

Usually, this transformation is done after the contraction:

 $\label{eq:contracted} \begin{aligned} \text{primitive Cartesian GTOs} &\Rightarrow \text{contracted Cartesian GTOs} \\ &\Rightarrow \text{contracted spherical-harmonic GTOs} \end{aligned}$

Primitive Cartesian GTOs

 As already mentioned, the factorisation of the Cartesian GTOs is an important property,

$$\chi_a = \left\{ x_{\rm A}^i \exp(-\alpha x_{\rm A}^2) \right\} \left\{ y_{\rm A}^i \exp(-\alpha y_{\rm A}^2) \right\} \left\{ z_{\rm A}^i \exp(-\alpha z_{\rm A}^2) \right\}$$

• We can thus focus our attention on only one Cartesian component, say x,

$$G_i(x, \alpha, A_x) = x_A^i \exp(-\alpha x_A^2)$$

The self overlap of the x component is

$$\langle G_i|G_i\rangle = \frac{(2i-1)!!}{(4\alpha)^i}\sqrt{\frac{\pi}{2\alpha}}, \qquad \langle G_0|G_0\rangle = \sqrt{\frac{\pi}{2\alpha}}$$

All we have used thus far is the definite integral

$$\int_{-\infty}^{\infty} x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{(2a)^n} \sqrt{\frac{\pi}{a}}$$

Recurrence relations for Cartesian GTOs

 The differentiation property of Cartesian GTOs is needed on several occasions,

$$\frac{\partial G_i}{\partial A_x} = -\frac{\partial G_i}{\partial x} = 2\alpha G_{i+1} - i G_{i-1}$$

- In words, differentation of a d_{xy} -type GTO with respect to x gives a linear combination of p_y and f_{x^2y} , etc.
- For higher derivatives, we obtain

$$\frac{\partial^{n+1} G_i}{\partial A_x^{n+1}} = \left(\frac{\partial}{\partial A_x}\right)^n \left(2\alpha G_{i+1} - i G_{i-1}\right) = 2\alpha \frac{\partial^n G_{i+1}}{\partial A_x^n} - i \frac{\partial^n G_{i-1}}{\partial A_x^n}$$

• We thus find (besides $G_{i+1} = x_A G_i$):

$$G_i^{n+1} = 2\alpha G_{i+1}^n - i G_{i-1}^n, \qquad \text{with} \quad G_i^n = \frac{\partial^n G_i}{\partial A_x^n}$$

Gaussian overlap distributions

We define the Gaussian overlap distribution

$$\Omega_{ab}(\mathbf{r}) = \chi_a(\mathbf{r})\chi_b(\mathbf{r})$$

which factorises as

$$\Omega_{ab}(\mathbf{r}) = G_i(x, \alpha, A_x)G_j(x, \beta, B_x) \cdots = \Omega_{ij}^x(x, \alpha, \beta, A_x, B_x) \dots$$

• Due to the GPT, Ω^x_{ij} may be written as

$$\Omega^x_{ij} = K^x_{ab} x^i_{\rm A} x^j_{\rm B} \exp(-\eta x^2_{\rm P}), \qquad \text{with } \eta = \alpha + \beta$$

 K_{ab}^{x} is the x component of the pre-exponential factor.

• In the above equation, we give x relative to A_x , x_B and x_P . We therefore rewrite the equation using

$$x_{A} = x - A_{x} = x - P_{x} + (P_{x} - A_{x}) = x - P_{x} + X_{PA} = x_{P} + X_{PA}$$

 $x_{B} = x - B_{x} = x - P_{x} + (P_{x} - B_{x}) = x_{P} + X_{PB}$

Properties of overlap distributions

We have the obvious relationships

$$x_{\mathrm{A}}\Omega_{ij}^x = \Omega_{i+1,j}^x, \quad x_{\mathrm{B}}\Omega_{ij}^x = \Omega_{i,j+1}^x, \quad X_{\mathrm{AB}}\Omega_{ij}^x = \Omega_{i,j+1}^x - \Omega_{i+1,j}^x$$

Differentiating the overlap distributions yields

$$\frac{\partial \Omega_{ij}^x}{\partial A_x} = 2\alpha \Omega_{i+1,j}^x - i \Omega_{i-1,j}^x, \quad \frac{\partial \Omega_{ij}^x}{\partial B_x} = 2\beta \Omega_{i,j+1}^x - j \Omega_{i,j-1}^x$$

We furthermore note that

$$X_{\mathrm{PA}} = P_x - A_x = \frac{\alpha A_x + \beta B_x}{\eta} - \frac{\alpha + \beta}{\eta} A_x = \frac{\beta}{\eta} (B_x - A_x) = -\frac{\beta}{\eta} X_{\mathrm{AB}}$$

$$X_{\text{PB}} = P_x - B_x = \frac{\alpha A_x + \beta B_x}{\eta} - \frac{\alpha + \beta}{\eta} B_x = \frac{\alpha}{\eta} (A_x - B_x) = \frac{\alpha}{\eta} X_{\text{AB}}$$

 It is sometimes convenient to work with P_x and X_{AB} in the place of A_x and B_x.

The Obara–Saika scheme for S_{ij}

We consider the integral

$$S_{ij} = \int_{-\infty}^{\infty} \Omega_{ij}^x dx$$

 This integral is invariant to a translation of the coordinate system along the x-axis,

$$\frac{\partial S_{ij}}{\partial A_x} + \frac{\partial S_{ij}}{\partial B_x} = 0$$

This yields the translational recurrence relation

$$2\alpha S_{i+1,j} - i S_{i-1,j} + 2\beta S_{i,j+1} - j S_{i,j-1} = 0$$

- This recurrence relation alone is not useful, because there are two terms with "quantum number" i + j + 1.
- The idea is to first compute S_{00} and then to obtain all other integrals from the recurrence relation.

The Obara–Saika scheme for S_{ij}

• In order to be useful, the translational recurrence relation

$$2\alpha S_{i+1,j} - i S_{i-1,j} + 2\beta S_{i,j+1} - j S_{i,j-1} = 0$$

must be combined with the horizontal recurrence relation,

$$S_{i,j+1} - S_{i+1,j} = X_{AB}S_{ij}$$

 By doing this, we obtain the Obara-Saika (OS) recurrence relations for the Cartesian overlap integrals,

$$\begin{split} S_{i+1,j} &=& X_{\mathrm{PA}} S_{ij} + \frac{1}{2\eta} \left(i \, S_{i-1,j} + j \, S_{i,j-1} \right) \\ S_{i,j+1} &=& X_{\mathrm{PB}} S_{ij} + \frac{1}{2\eta} \left(i \, S_{i-1,j} + j \, S_{i,j-1} \right) \end{split}$$

• We start with $S_{00}=K^x_{ab}\sqrt{\frac{\pi}{\eta}}$ and then compute

$$S_{10} = X_{\mathrm{PA}} S_{00}$$
 $S_{20} = X_{\mathrm{PA}} S_{10} + \frac{1}{2\eta} S_{00}, \quad ext{etc}$

The Obara–Saika scheme for S_{ij}

- The fundamental ideas are:
 - 1. Translational invariance:

$$\partial S_{ij}/\partial A_x + \partial S_{ij}/\partial B_x = 0$$

2. Horizontal recurrrence:

$$x_{\rm B} - x_{\rm A} = X_{\rm AB}$$

- Each S_{ij} in the triangle is computed from one of the two above it and from the two above that one.
- The target integral S_{ij} may be generated in many different ways.
- Note that horizontal recurrence relation can be applied to transfer "quantum numbers" from i to j and vice versa for all kinds of basis functions, also contracted Gaussians.

$$\langle \mathbf{x}_{\mathbf{A}} \chi_{\mu} | \chi_{\nu} \rangle = \langle \chi_{\mu} | \mathbf{x}_{\mathbf{B}} \chi_{\nu} \rangle - X_{\mathbf{A} \mathbf{B}} \langle \chi_{\mu} | \chi_{\nu} \rangle$$

Obara-Saika for multipole moments

 The Obara–Saika scheme may be applied to multipole-moment schemes in a slightly modified form,

$$S_{ab}^{efg} = \langle \chi_a | x_{\mathrm{C}}^e \, y_{\mathrm{C}}^f \, z_{\mathrm{C}}^g | \chi_b \rangle = S_{ij}^e S_{kl}^f S_{mn}^g$$

The x component is

$$S_{ij}^e = \langle G_i | x_{\mathcal{C}}^e | G_j \rangle = \int_{-\infty}^{\infty} x_{\mathcal{C}}^e \Omega_{ij}^x dx$$

Translational invariance for this integral means that

$$\frac{\partial S_{ij}^e}{\partial A_x} + \frac{\partial S_{ij}^e}{\partial B_x} + \frac{\partial S_{ij}^e}{\partial C_x} = 0$$

• Furthermore, the horizontal recurrence relation for the order of the multipole operator is ($x_{\rm C}=x_{\rm A}+X_{\rm AC}$, etc.)

$$S_{ij}^{e+1} = S_{i+1,j}^e + X_{AC}S_{ij}^e = S_{i,j+1}^e + X_{BC}S_{ij}^e$$

Obara-Saika for multipole moments

· Putting it all together yields

$$\begin{split} S^e_{i+1,j} &= X_{\mathrm{PA}} S^e_{ij} + \frac{1}{2\eta} \left(i \, S^e_{i-1,j} + j \, S^e_{i,j-1} + e S^{e-1}_{ij} \right) \\ S^e_{i,j+1} &= X_{\mathrm{PB}} S^e_{ij} + \frac{1}{2\eta} \left(i \, S^e_{i-1,j} + j \, S^e_{i,j-1} + e S^{e-1}_{ij} \right) \\ S^{e+1}_{ij} &= X_{\mathrm{PC}} S^e_{ij} + \frac{1}{2\eta} \left(i \, S^e_{i-1,j} + j \, S^e_{i,j-1} + e S^{e-1}_{ij} \right) \end{split}$$

 These recurrence relations may be used in conjunction with the horizontal recurrences

$$S_{ij}^{e+1} = S_{i+1,j}^e + X_{\mathrm{AC}} S_{ij}^e = S_{i,j+1}^e + X_{\mathrm{BC}} S_{ij}^e$$

and

$$S_{i,j+1}^e = X_{AB} S_{ij}^e + S_{i+1,j}^e$$

 The final integrals are obtained by multiplying the x, y and z factors, followed by a transformation to contracted spherical-harmonic components.

Differential operators

We now consider the integrals in a slightly modified form,

$$D_{ab}^{efg} = \langle \chi_a | \frac{\partial^e}{\partial x^e} \frac{\partial^f}{\partial y^f} \frac{\partial^g}{\partial z^g} | \chi_b \rangle = D_{ij}^e D_{kl}^f D_{mn}^g$$

The x component is

$$D_{ij}^e = \langle G_i | \frac{\partial^e}{\partial x^e} | G_j \rangle = \int_{-\infty}^{\infty} G_i \frac{\partial^e G_j}{\partial x^e} dx$$

• The trick we use here is that we can differentiate the Gaussian $G_i(x,\alpha,A_x)$ with respect to the electron coordinate x or the basis-function centre A_x , because the function depends on the difference $(x-A_x)$

$$\frac{\partial G_i(x,\alpha,A_x)}{\partial x} = -\frac{\partial G_i(x,\alpha,A_x)}{\partial A_x}$$

Differential operators

• Since $\partial G_i/\partial x=-\partial G_i/\partial A_x$ and $\partial S_{ij}/\partial A_x=-\partial S_{ij}/\partial B_x$, we obtain

$$D_{ij}^e = \partial^e S_{ij} / \partial A_x^e = (-1)^e \partial^e S_{ij} / \partial B_x^e$$

• Furthermore, since $\partial X_{\rm PA}/\partial A_x = -\beta/\eta$ and $\partial X_{\rm PB}/\partial A_x = \alpha/\eta$, we obtain the Obara–Saika recurrence relations

$$D_{i+1,j}^{e} = X_{\text{PA}} D_{ij}^{e} + \frac{1}{2\eta} \left(i D_{i-1,j}^{e} + j D_{i,j-1}^{e} - 2\beta e D_{ij}^{e-1} \right)$$

$$D_{i,j+1}^{e} = X_{\text{PB}} D_{ij}^{e} + \frac{1}{2\eta} \left(i D_{i-1,j}^{e} + j D_{i,j-1}^{e} + 2\alpha e D_{ij}^{e-1} \right)$$

$$D_{ij}^{e+1} = 2\alpha D_{i+1,j}^{e} - i D_{i-1,j}^{e}$$

The horizontal recurrence relation becomes

$$D_{i,j+1}^e - D_{i+1,j}^e = X_{AB}D_{ij}^e + eD_{ij}^{e-1}$$

Momentum and kinetic-energy integrals

Consider the one-electron integrals

$$\mathbf{P}_{ab} = -\mathrm{i}\langle G_a | \mathbf{\nabla} | G_b \rangle$$
 (linear momentum)
$$\mathbf{L}_{ab} = -\mathrm{i}\langle G_a | \mathbf{r} \times \mathbf{\nabla} | G_b \rangle$$
 (angular momentum)
$$T_{ab} = -\frac{1}{2}\langle G_a | \Delta | G_b \rangle$$
 (kinetic energy)

 $\bullet\,$ The z components of the momentum integrals, for example, may be easily computed from

$$\begin{split} P^z_{ab} &= -\mathrm{i} S_{ij} S_{kl} D^1_{mn} \\ L^z_{ab} &= -\mathrm{i} \langle G_a | x \frac{\partial}{\partial y} - \frac{\partial}{\partial x} y | G_b \rangle = -\mathrm{i} \left(S^1_{ij} D^1_{kl} S_{mn} - D^1_{ij} S^1_{kl} S_{mn} \right) \end{split}$$

· For the kinetic-energy integral, we obtain

$$T_{ab} = -\frac{1}{2} \left(D_{ij}^2 S_{kl} S_{mn} + S_{ij} D_{kl}^2 S_{mn} + S_{ij} S_{kl} D_{mn}^2 \right)$$

Coulomb integrals over spherical Gaussians

 We consider the electrostatics of the (normalised) spherical Gaussian charge distributions

$$\rho_p(\mathbf{r}) = \left(\frac{\eta}{\pi}\right)^{3/2} \exp(-\eta r_{\mathrm{P}}^2), \qquad \rho_q(\mathbf{r}) = \left(\frac{\zeta}{\pi}\right)^{3/2} \exp(-\zeta r_{\mathrm{Q}}^2)$$

The normalisation means that

$$\int \rho_p(\mathbf{r})d\mathbf{r} = \int \rho_q(\mathbf{r})d\mathbf{r} = 1$$

• The electrostatic potential at ${f C}$ due to ρ_p is

$$V_p(\mathbf{C}) = \int \frac{\rho_p(\mathbf{r})}{r_{\mathbf{C}}} d\mathbf{r}$$

Coulomb integrals over spherical Gaussians

• The energy of repulsion between the charge distributions $\, \rho_p \,$ and $\, \rho_q \,$ is

$$V_{pq} = \int \int \frac{\rho_p(\mathbf{r})\rho_q(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

- The difficulty with this integral and $V_p(\mathbf{C})$ is that they do not factorise into products of x, y and z components due to the distances (square roots) $r_{\mathbf{C}}$ and $|\mathbf{r} \mathbf{r}'|$.
- Integrals over r^k with k even are easy, those with k odd are difficult.
- However, the integrals factorise again after the integral transform

$$\frac{1}{r_{\rm C}} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(-r_{\rm C}^2 t^2) dt$$

· This is the key step in treating Coulomb integrals.

Coulomb integrals over spherical Gaussians

- In the integral $V_p(\mathbf{C})$, we have a product of two Gaussians: $\rho_p(\mathbf{r})$ and $\exp(-r_{\mathrm{C}}^2 t^2)$.
- This product yields a new Gaussian centred at

$$\mathbf{S} = (\eta \mathbf{P} + t^2 \mathbf{C}) / (\eta + t^2)$$

according to the Gaussian-product theorem (GPT),

$$V_p(\mathbf{C}) = \frac{\eta^{3/2}}{\pi^2} \int_{-\infty}^{\infty} \left\{ \int \exp[-(\eta + t^2)r_{\mathrm{S}}^2] d\mathbf{r} \right\} \exp\left(-\frac{\eta t^2}{\eta + t^2} R_{\mathrm{PC}}^2\right) dt$$

The spatial integral can easily be computed and we obtain

$$V_p(\mathbf{C}) = \frac{2\eta^{3/2}}{\sqrt{\pi}} \int_0^\infty (\eta + t^2)^{-3/2} \exp\left(-\eta R_{PC}^2 \frac{t^2}{\eta + t^2}\right) dt$$

which can be solved after substituting $u^2 = t^2/(\eta + t^2)$.

The Boys function

• Since $dt = \sqrt{\eta}(1-u^2)^{-3/2}du$, we obtain

$$V_p(\mathbf{C}) = \sqrt{\frac{4\eta}{\pi}} \int_0^1 \exp(-\eta R_{PC}^2 u^2) du$$

- The integration over all space $(x, y \text{ and } z \text{ from } -\infty \text{ to } \infty)$ has been replaced by a one-dimensional integration over a finite interval.
- This integral is the Boys function $F_m(x)$ with m=0,

$$F_m(x) = \int_0^1 t^{2m} \exp(-xt^2) dt, \qquad F_0(x) = \sqrt{\frac{\pi}{4x}} \operatorname{erf}(\sqrt{x})$$

(erf is the error function).

We can thus write

$$V_p(\mathbf{C}) = \sqrt{\frac{4\eta}{\pi}} F_0(\eta R_{\rm PC}^2)$$

Calculating the Boys function

- The Boys function can be computed efficiently by pretabulating $F_m(x_k)$ for a series of grid points x_k .
- For example, we can tabulate $F_m(x_k)$ for $m=0,1,2,\ldots,$ $m_{\max}+5$ at regular intervals $x_1=0.0,x_2=0.1,x_3=0.2,\ldots,$ $x_n=2m_{\max}+36.$
- The Boys functions $F_m(x)$ may then be computed with machine precision from a six-term Taylor expansion around x_k ,

$$F_m(x) = F_m(x_k + \Delta x) = F_m(x_k) - F_{m+1}(x_k) \Delta x + \frac{1}{2} F_{m+2}(x_k) (\Delta x)^2 - \frac{1}{6} F_{m+3}(x_k) (\Delta x)^3 + \frac{1}{24} F_{m+4}(x_k) (\Delta x)^4 - \dots$$

$$F_7 = F_6 = F_8 =$$

The figure shows the grid points involved in computing $F_2(x)$ with

$$x_7 < x < x_8$$
.

Calculating the Boys function

- We note in passing that the exponential $\exp(-x)$ can be computed similarly by pretabulating $\exp(-x_k)$ at a number of grid points x_k .
- This number can be chosen such that a four-term Taylor expansion is enough to obtain machine precision.
- At the grid points x_k , the Boys functions are computed by downward recursion,

$$F_m(x) = \frac{2xF_{m+1}(x) + \exp(-x)}{2m+1}, \qquad F_{\infty}(x) = 0$$

- $F_m(x)$ can be set equal to zero for sufficiently large m.
- For large x, we have

$$F_m(x) pprox \frac{(2m-1)!!}{2^{m+1}} \sqrt{\frac{\pi}{x^{2m+1}}}, \qquad (x \text{ large})$$

The OS scheme for one-electron Coulomb integrals

· We write the Coulomb integral as

$$\Theta_{ijklmn}^{0} = \langle G_a | \frac{1}{r_{\mathbf{C}}} | G_b \rangle = \int \frac{\Omega_{ab}(\mathbf{r})}{r_{\mathbf{C}}} d\mathbf{r} = \int \frac{\Omega_{ij}^x \Omega_{kl}^y \Omega_{mn}^z}{r_{\mathbf{C}}} d\mathbf{r}$$

• We obtain Θ^0_{ijklmn} from $\Theta^N_{000000}=\frac{2\pi}{\eta}K^{xyz}_{ab}F_N(\eta R^2_{\rm PC})$ and

$$\Theta_{i+1,jklmn}^{N} = X_{\text{PA}}\Theta_{ijklmn}^{N} + \frac{1}{2\eta}(i\Theta_{i-1,jklmn}^{N} + j\Theta_{i,j-1,klmn}^{N})
- X_{\text{PC}}\Theta_{ijklmn}^{N+1} - \frac{1}{2\eta}(i\Theta_{i-1,jklmn}^{N+1} + j\Theta_{i,j-1,klmn}^{N+1})
\Theta_{i,j+1,klmn}^{N} = X_{\text{PB}}\Theta_{ijklmn}^{N} + \frac{1}{2\eta}(i\Theta_{i-1,jklmn}^{N} + j\Theta_{i,j-1,klmn}^{N})
- X_{\text{PC}}\Theta_{ijklmn}^{N+1} - \frac{1}{2\eta}(i\Theta_{i-1,jklmn}^{N+1} + j\Theta_{i,j-1,klmn}^{N+1})$$

and similarly for y and z.

The McMurchie-Davidson scheme

- Before we turn our attention to the two-electron repulsion integrals, we note that the following three integral-evaluation techniques are currently in use:
 - 1. The Obara-Saika scheme
 - 2. The McMurchie-Davidson scheme
 - 3. Rys quadrature
- The idea of the McMurchie–Davidson scheme is to expand the overlap distribution Ω_{ab} in Hermite Gaussians,

$$\Omega_{ij}^x = \sum_{t=0}^{i+j} E_t^{ij} \Lambda_t, \qquad \Lambda_t = (\partial/\partial P_x)^t \exp(-\eta x_{\rm P}^2)$$

and similarly for Ω_{kl}^y and Ω_{mn}^z .

• In the McMurchie–Davidson (MD) scheme, integrals over Hermite Gaussians are evaluated and transformed to the Cartesian Gaussian basis using the expansion coefficients E_t^{ij} .

The MD expansion coefficients

• In order to compute the expansion coefficients E_t^{ij} , we consider the incremented distribution

$$\Omega^x_{i+1,j} = \sum_{t=0}^{i+j+1} E^{i+1,j}_t \Lambda_t$$

• Of course, $\Omega^x_{i+1,j}=x_{\rm A}\Omega^x_{ij}=x_{\rm P}\Omega^x_{ij}+X_{\rm PA}\Omega^x_{ij}$, and furthermore

$$x_{\rm P}\Lambda_t = t\,\Lambda_{t-1} + \frac{1}{2\eta}\Lambda_{t+1}$$

· We thus obtain

$$x_{\mathrm{P}}\Omega_{ij}^{x} = \sum_{t=0}^{i+j} E_{t}^{ij}(t\,\Lambda_{t-1} + \frac{1}{2\eta}\Lambda_{t+1}) = \sum_{t=0}^{i+j+1} \left\{ (t+1)E_{t+1}^{ij} + \frac{1}{2\eta}E_{t-1}^{ij} \right\} \Lambda_{t}$$

• Here, we assume that $E_t^{ij} = 0$ when t < 0 or t > i + j.

The MD expansion coefficients

We have established that

$$\Omega_{i+1,j}^{x} = \sum_{t=0}^{i+j+1} E_{t}^{i+1,j} \Lambda_{t}$$

and

$$\Omega_{i+1,j}^{x} = \sum_{t=0}^{i+j+1} \left\{ (t+1)E_{t+1}^{ij} + \frac{1}{2\eta}E_{t-1}^{ij} + X_{\text{PA}}E_{t}^{ij} \right\} \Lambda_{t}$$

 We therefore arrive at the following McMurchie—Davidson recurrence relations for the expansion coefficients:

$$\begin{split} E_t^{i+1,j} &= \frac{1}{2\eta} E_{t-1}^{ij} + X_{\mathrm{PA}} E_t^{ij} + (t+1) E_{t+1}^{ij} \\ E_t^{i,j+1} &= \frac{1}{2\eta} E_{t-1}^{ij} + X_{\mathrm{PB}} E_t^{ij} + (t+1) E_{t+1}^{ij} \\ E_0^{00} &= K_{ab}^x \end{split}$$

The McMurchie-Davidson scheme

For all three Cartesian coordinates, we have

$$\Lambda_{tuv} = \Lambda_t \Lambda_u \Lambda_v = \left(\frac{\partial}{\partial P_x}\right)^t \left(\frac{\partial}{\partial P_y}\right)^u \left(\frac{\partial}{\partial P_z}\right)^v \exp(-\eta r_{\rm P}^2)$$

and

$$\Omega_{ab} = \sum_{t=0}^{i+j} \sum_{u=0}^{k+l} \sum_{v=0}^{m+n} E_t^{ij} E_u^{kl} E_v^{mn} \Lambda_{tuv}$$

Thus, using the MD scheme, the Coulomb integrals becomes

$$\Theta^0_{ijklmn} = \sum_{t=0}^{i+j} \sum_{v=0}^{k+l} \sum_{v=0}^{m+n} E^{ij}_t E^{kl}_u E^{mn}_v \int \frac{\Lambda_{tuv}}{r_{\mathrm{C}}} d\mathbf{r}$$

Furthermore,

$$\int \frac{\Lambda_{tuv}}{r_{\rm C}} d\mathbf{r} = \frac{2\pi}{\eta} \left(\frac{\partial}{\partial P_x} \right)^t \left(\frac{\partial}{\partial P_y} \right)^u \left(\frac{\partial}{\partial P_z} \right)^v F_0(\eta R_{\rm PC}^2)$$

The McMurchie-Davidson recurrence relations

The Coulomb integrals are written as

$$\Theta_{ijklmn}^{0} = \sum_{t=0}^{i+j} \sum_{u=0}^{k+l} \sum_{v=0}^{m+n} E_{t}^{ij} E_{u}^{kl} E_{v}^{mn} \int \frac{\Lambda_{tuv}}{r_{C}} d\mathbf{r}$$

$$= \frac{2\pi}{\eta} \sum_{t=0}^{i+j} \sum_{u=0}^{k+l} \sum_{v=0}^{m+n} E_{t}^{ij} E_{u}^{kl} E_{v}^{mn} R_{tuv}^{0}$$

Here, we have introduced the auxiliary integrals

$$R_{000}^N = (-2\eta)^N F_N(\eta R_{PC}^2)$$

• The integrals R_{tuv}^0 are obtained from the recurrence relations

$$\begin{array}{lcl} R_{t+1,uv}^{N} & = & t\,R_{t-1,uv}^{N+1} + X_{\rm PC}\,R_{tuv}^{N+1} \\ R_{t,u+1,v}^{N} & = & u\,R_{t,u-1,v}^{N+1} + Y_{\rm PC}\,R_{tuv}^{N+1} \\ R_{tu,v+1}^{N} & = & v\,R_{tu,v-1}^{N+1} + Z_{\rm PC}\,R_{tuv}^{N+1} \end{array}$$

Gauß-Rys quadrature

 We have seen that the Coulomb integrals are obtained as a linear combination of Boys functions

$$\Theta_{ijklmn}^{0} = \sum_{N=0}^{M} c_N F_N(\eta R_{PC}^2), \qquad M = i + j + k + l + m + n$$

where the coefficients $\,c_N\,$ depend on the exponents and coordinates involved.

• Since $F_N(x) = \int_0^1 t^{2N} \exp(-xt^2) dt$, we may write

$$\Theta_{ijklmn}^{0} = \int_{0}^{1} p_{M}(t^{2}) \exp(-\eta R_{PC}^{2} t^{2}) dt$$

• $p_M(t^2)$ is a polynomial in t^2 of degree M. The integral can be evaluated by means of a Gauß–Rys quadrature using $L = \left[\frac{M}{2}\right] + 1$ quadrature points (roots t_λ and weights w_λ),

$$\Theta_{ijklmn}^{0} = \sum_{\lambda=1}^{L} w_{\lambda} p_{M}(t_{\lambda}^{2}) \exp(-\eta R_{PC}^{2} t_{\lambda}^{2})$$

Two-electron Coulomb integrals

• We now turn our attention to the two-electron integral V_{pq} , which is the energy of repulsion between the (normalised) charge distributions ρ_p and ρ_q ,

$$V_{pq} = \int \int \frac{\rho_p(\mathbf{r})\rho_q(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

• Integration over r' yields

$$V_{pq} = \sqrt{\frac{4\zeta}{\pi}} \int F_0(\zeta r_{\rm Q}^2) \rho_p(\mathbf{r}) d\mathbf{r}$$

- The charge distribution $\rho_p(\mathbf{r})$ is a Gaussian, $F_0(\zeta r_{\mathrm{Q}}^2)$ is an integral over a Gaussian, and their product is again (an integral over) a Gaussian by virtue of the GPT.
- The integration over ${\bf r}$ is easy and the integration over t [hidden in $F_0(\zeta r_{\rm O}^2)$] remains.

Two-electron Coulomb integrals

We obtain

$$V_{pq} = \sqrt{\frac{4\eta\zeta}{\pi}} \int_0^1 \frac{\zeta}{(\eta t^2 + \zeta)^{3/2}} \exp\left(-\frac{\eta\zeta t^2 R_{\rm PQ}^2}{\eta t^2 + \zeta}\right) dt$$

This integral can be written as

$$V_{pq} = \sqrt{\frac{4\omega}{\pi}} F_0(\omega R_{PQ}^2), \qquad \omega = \frac{\eta \zeta}{\eta + \zeta}$$

which can be verified by substituting $u^2=\frac{\eta+\zeta}{\eta t^2+\zeta}t^2.$ ω is the reduced exponent.

 Recurrence relations for Cartesian Gaussians other than s-type functions may be obtained in a mannner similar to the one-electron Coulomb integrals, e.g., with the auxiliary functions

$$\Theta_{0000;0000;0000}^{N} = \frac{2\pi^{5/2}}{\eta \zeta \sqrt{\eta + \zeta}} K_{ab}^{xyz} K_{cd}^{xyz} F_{N}(\omega R_{PQ}^{2})$$

Two-electron Coulomb integrals

The two-electron Coulomb integrals are

$$\langle ab|r_{12}^{-1}|cd\rangle = g_{abcd} = \Theta^0_{iji'j';klk'l';mnm'n'}$$

- Since there are four Gaussians involved (G_a, G_b, G_c and G_d) the total number of integrals scales as N⁴, where N is the size of the basis set.
- When we increase the basis set in a series of calculations of the same small molecule, there is little we can do about the $\mathcal{O}(N^4)$ scaling.
- When we run calculations on a series of molecules of different size (e.g., on the alkanes C_NH_{2N+2}) in a given Gaussian basis, then many two-electron Coulomb integrals are very small and can be ignored.
- In that case, the number of significant integrals scales as $\mathcal{O}(N^2)$.

Scaling of two-electron Coulomb integrals

 To facilitate the discussion, we consider two-electron Coulomb integrals over (unnormalized) s-type Gaussians,

$$g_{abcd} = \langle ab | r_{12}^{-1} | cd \rangle = \Theta_{0000;0000;0000}^{0} = \frac{2\pi^{5/2}}{\eta \zeta \sqrt{\eta + \zeta}} K_{ab}^{xyz} K_{cd}^{xyz} F_0(\omega R_{PQ}^2)$$

We note that

$$\frac{2\pi^{5/2}}{\eta\zeta\sqrt{\eta+\zeta}} = \sqrt{\frac{4\omega}{\pi}} \left(\frac{\pi}{\eta}\right)^{3/2} \left(\frac{\pi}{\zeta}\right)^{3/2} \quad \text{and} \quad S_{ab} = \left(\frac{\pi}{\eta}\right)^{3/2} K_{ab}^{xyz}$$

The two-electron Coulomb integral can thus be written as

$$g_{abcd} = \sqrt{\frac{4\omega}{\pi}} S_{ab} S_{cd} F_0(\omega R_{PQ}^2)$$

We furthermore know that

$$F_0(x) \le 1$$
 and $F_0(x) \le \frac{1}{2} \sqrt{\frac{\pi}{x}}$

Scaling of two-electron Coulomb integrals

We find that the Coulomb integral is bounded by

$$g_{abcd} \leq S_{ab}S_{cd} \min\left(\sqrt{\frac{4\omega}{\pi}}, \frac{1}{R_{PQ}}\right)$$

- For large molecular systems, the number of nonzero overlap integrals S_{ab} scales as $\mathcal{O}(N)$.
- When the number of significant overlap integrals begins to increase as N, the number of significant two-electron Coulomb integrals will begin to increase as N².
- Note that $R_{\rm PQ}^{-1}$ will not be smaller than 10^{-6} in any practical calculation.
- The number of significant two-electron Coulomb integrals will depend at least quadratically on the size of the system.

Prescreening of integrals

- In large systems, the number of significant two-electron integrals increases only quadratically.
- In order to exploit this fact, we need a strict upper bound for the magnitude of the integrals.
- Such a bound is provided by the Schwarz inequality,

$$|(ab|cd)| \le Q_{ab}Q_{cd}$$

with
$$Q_{ab} = \sqrt{(ab|ab)}$$
 and $Q_{cd} = \sqrt{(cd|cd)}$.

• Before an integral is computed, the product $Q_{ab}Q_{cd}$ is compared with some threshold τ . The integral is only computed if

$$Q_{ab}Q_{cd} \ge \tau$$

- Typical values are $\tau = 10^{-7} 10^{-8}$ for small molecules.
- The upper bound is also useful when we ask how the integral contributes to the energy or the Fock matrix.

Prescreening of integrals

In closed-shell Hartree

Fock theory, the Fock matrix is

$$F_{\mu\nu} = h_{\mu\nu} + \sum_{\kappa\lambda} D_{\kappa\lambda} [2(\mu\nu|\kappa\lambda) - (\mu\kappa|\nu\lambda)]$$

 Using real basis functions, we have the following permutational symmetry among the two-electron integrals:

$$\begin{split} &(\mu\nu|\kappa\lambda) = (\nu\mu|\kappa\lambda) = (\nu\mu|\lambda\kappa) = (\mu\nu|\lambda\kappa) \\ &= (\kappa\lambda|\mu\nu) = (\kappa\lambda|\nu\mu) = (\lambda\kappa|\nu\mu) = (\lambda\kappa|\mu\nu) \end{split}$$

 Hence, we compute only ca. 1/8 of the total number of integrals and use each integral in various manners,

$$\begin{split} F_{\mu\nu} \leftarrow F_{\mu\nu} + 4D_{\kappa\lambda}(\mu\nu|\kappa\lambda) \\ F_{\kappa\lambda} \leftarrow F_{\kappa\lambda} + 4D_{\mu\nu}(\mu\nu|\kappa\lambda) \\ F_{\mu\kappa} \leftarrow F_{\mu\kappa} - D_{\nu\lambda}(\mu\nu|\kappa\lambda) \\ F_{\mu\lambda} \leftarrow F_{\mu\lambda} - D_{\nu\kappa}(\mu\nu|\kappa\lambda) \\ F_{\nu\kappa} \leftarrow F_{\nu\kappa} - D_{\mu\lambda}(\mu\nu|\kappa\lambda) \\ F_{\nu\kappa} \leftarrow F_{\nu\kappa} - D_{\mu\kappa}(\mu\nu|\kappa\lambda) \end{split}$$

Prescreening of integrals

- The density matrix elements are known when the integrals are evaluated. They can be incorporated in the prescreening tests.
- The evaluation of the integral $(\mu\nu|\kappa\lambda)$ is only needed if

$$Q_{\mu\nu}Q_{\kappa\lambda}D_{\max} \ge \tau$$

where

$$D_{\max} = \max\{4|D_{\mu\nu}|, 4|D_{\kappa\lambda}|, |D_{\mu\kappa}|, |D_{\mu\lambda}|, |D_{\nu\kappa}|, |D_{\nu\lambda}|\}$$

· Concerning the Hartree-Fock energy, we could screen with

$$Q_{\mu\nu}Q_{\kappa\lambda}\mathrm{max}\left\{4|D_{\mu\nu}D_{\kappa\lambda}|,|D_{\mu\kappa}D_{\nu\lambda}|,|D_{\nu\kappa}D_{\mu\lambda}|\right\}\geq\tau$$

but this leaves an unmonitored error in the Fock matrix.

 This last screening is however useful for energy-related properties such as the nuclear forces.

The direct SCF procedure

- In conventional SCF procedures, the integrals are computed only once and stored on disk for later use. In such procedures, the Schwarz screening helps to eliminate integrals once and for all.
- In direct SCF procedures, the integrals are re-evaluated in each SCF iteration.
- The prescreening is then performed in conjunction with the density matrix, which is usually done for batches of integrals,

$$D_{\mathrm{MN}} = \max_{\substack{\mu \in \mathrm{M}, \nu \in \mathrm{N}}} |D_{\mu\nu}| \qquad Q_{\mathrm{MN}} = \max_{\substack{\mu \in \mathrm{M}, \nu \in \mathrm{N}}} |Q_{\mu\nu}|$$

- Furthermore, important savings in the number of calculated integrals may be obtained by considering the change of the Fock matrix in two consecutive iterations.
- The screening can then be performed using the change of the density matrix,

$$\Delta D_{\mu\nu}^{(i)} = D_{\mu\nu}^{(i)} - D_{\mu\nu}^{(i-1)}$$

The direct SCF procedure

 In the direct SCF procedure, the Fock matrix in iteration number i is computed from

$$F_{\mu\nu}^{(i)} = F_{\mu\nu}^{(i-1)} + \sum_{\kappa\lambda} \Delta D_{\kappa\lambda}^{(i)} \left[2(\mu\nu|\kappa\lambda) - (\mu\kappa|\nu\lambda) \right]$$

- Only those integrals are required which are related to significant changes in the density matrix from one iteration to the next.
- Close to convergence, screening with $\Delta \mathbf{D}^{(i)}$ is extremely efficient.
- Furthermore, if the Coulomb and exchange matrices are constructed separately, we have the following two screening criteria:

$$\begin{split} Q_{\mu\nu}Q_{\kappa\lambda}\left\{4|D_{\mu\nu}|,4|D_{\kappa\lambda}|\right\} \geq \tau\\ Q_{\mu\nu}Q_{\kappa\lambda}\left\{|D_{\mu\kappa}|,|D_{\mu\lambda}|,|D_{\nu\kappa}|,|D_{\nu\lambda}|\right\} \geq \tau \end{split}$$

The RI approximation

- The idea of the resolution-of-the-identity (RI) approximation is to avoid four-index (or four-centre) two-electron integrals.
- In a naive approach, we can insert an approximation to the unity operator represented in an orthonormal auxiliary basis $\{\varphi_P\}$,

$$\hat{1} \approx \sum_{P} |\varphi_{P}\rangle \langle \varphi_{P}|$$

We then obtain, for example,

$$(\mu\nu|\kappa\lambda) \approx \sum_{P} (\mu\nu|P)\langle P\kappa\lambda\rangle, \qquad \langle P\kappa\lambda\rangle = \int \varphi_P(1)\chi_\kappa(1)\chi_\lambda(1)d\mathbf{r}_1$$

• $(\mu\nu|P)$ is a three-index two-electron repulsion integral,

$$(\mu\nu|P) = \int \int \chi_{\mu}(1)\chi_{\nu}(1)r_{12}^{-1}\varphi_{P}(2)d\mathbf{r}_{1}d\mathbf{r}_{2}$$

RI approximation with non-orthonormal basis

• If we approximate the unity operator by a projection operator onto a non-orthonormal auxiliary basis $\{\chi_P\}$, then we have

$$\hat{1} \approx \sum_{P,Q} |\chi_P\rangle S_{PQ}^{-1}\langle\chi_Q|$$

• Note that S_{PQ}^{-1} is a matrix element of the inverse overlap matrix,

$$S_{PQ}^{-1} \equiv \left(\mathbf{S}^{-1} \right)_{PQ}$$

We obtain

$$(\mu\nu|\kappa\lambda)\approx\sum_{PQ}(\mu\nu|P)S_{PQ}^{-1}\langle Q\kappa\lambda\rangle$$

 It has turned out that the most accurate RI approximation is obtained by using the Coulomb metric

RI approximation with Coulomb metric

 Using the Coulomb metric, we approximate the unity operator as follows:

$$\hat{1} \approx \sum_{P,Q} |\chi_P\rangle (P|Q)^{-1} (\chi_Q|,$$

where

$$(\chi_Q| = \int \chi_Q(2) r_{12}^{-1} d\mathbf{r}_2$$

• Note that $(P|Q)^{-1}$ is a matrix element of the inverse of the two-index Coulomb integrals,

$$(P|Q)^{-1} \equiv (\mathbf{C}^{-1})_{PQ}, \qquad C_{PQ} = \int \int \chi_P(1) r_{12}^{-1} \chi_Q(2) d\mathbf{r}_1 d\mathbf{r}_2$$

We obtain

$$(\mu\nu|\kappa\lambda) \approx \sum_{PQ} (\mu\nu|P)(P|Q)^{-1}(Q|\kappa\lambda)$$

RI approximation with Coulomb metric

• Alternatively, we expand the orbital product $\chi_{\kappa}\chi_{\lambda}$ in a basis $\{\chi_P\}$,

$$\chi_{\kappa}\chi_{\lambda}\approx\widetilde{\chi_{\kappa}\chi_{\lambda}}=\sum_{P}c_{P}^{\kappa\lambda}\chi_{P}$$

We then minimise the self-repulsion of the error,

$$(\kappa\lambda-\widetilde{\kappa\lambda}|\kappa\lambda-\widetilde{\kappa\lambda})=\min$$

This immediately leads to the set of linear equations

$$\sum_{Q} (P|Q) c_{Q}^{\kappa\lambda} = (P|\kappa\lambda) \quad \forall P \quad \Rightarrow \quad c_{P}^{\kappa\lambda} = \sum_{Q} (P|Q)^{-1} (Q|\kappa\lambda)$$

· Hence,

$$(\mu\nu|\kappa\lambda)\approx \sum_{P}(\mu\nu|P)c_{P}^{\kappa\lambda}=\sum_{PQ}(\mu\nu|P)(P|Q)^{-1}(Q|\kappa\lambda)$$

Robust fitting

 The RI approximation can be inserted in such a manner, that the error in the target integral is only quadratic in the error of the fit,

$$(\mu\nu|\kappa\lambda)\approx\sum_{P}c_{P}^{\mu\nu}(P|\kappa\lambda)+\sum_{Q}(\mu\nu|Q)c_{Q}^{\kappa\lambda}-\sum_{PQ}c_{P}^{\mu\nu}(P|Q)c_{Q}^{\kappa\lambda}$$

For Coulomb integrals, as before, this leads to

$$(\mu\nu|\kappa\lambda) \approx \sum_{PQ} (\mu\nu|P)(P|Q)^{-1}(Q|\kappa\lambda)$$

• The robust fitting is, however, important for other two-electron integrals, for example those over the operator $f(r_{12})$,

$$(\mu\nu||\kappa\lambda)\approx \sum_{P}c_{P}^{\mu\nu}(P||\kappa\lambda) + \sum_{Q}(\mu\nu||Q)c_{Q}^{\kappa\lambda} - \sum_{PQ}c_{P}^{\mu\nu}(P||Q)c_{Q}^{\kappa\lambda}$$

where (...||...) indicates the integral over $f(r_{12})$.

Various applications of the RI approximation

- The RI approximation is for example used to accelerate the calculation of the Coulomb operator \hat{J} (RI-J approximation), especially in DFT.
- The RI approximation can also be used to accelerate the calculation of the exchange operator \hat{K} (RI-JK approximation) in Hartree–Fock theory or DFT with hybrid functional (e.g., B3LYP).
- Finally, it can also be used to approximate integrals of the type (IA|JB), where I,J are occupied Hartree–Fock orbitals and A,B are virtual Hartree–Fock orbitals. These integrals occur in the MP2 and CC2 theories.
- Clearly, different basis sets are needed to approximate orbital products of the types $\varphi_I \varphi_I$ (RI-J), $\varphi_I \chi_\mu$ (RI-JK) and $\varphi_I \varphi_A$ (cbas in Turbomole).
- These three types of auxiliary basis sets have been designed and optimised for the <u>Turbomole</u> basis sets.

RI-J approximation

 In the RI-J approximation, the electron density is expanded in an appropriate auxiliary basis,

$$J_{\mu\nu} = (\mu\nu|\rho) \approx \sum_{P} (\mu\nu|P) c_{P}^{\rho} = \sum_{P} \sum_{\kappa\lambda} (\mu\nu|P) c_{P}^{\kappa\lambda} D_{\kappa\lambda}$$
$$= \sum_{PQ} \sum_{\kappa\lambda} (\mu\nu|P) (P|Q)^{-1} (Q|\kappa\lambda) D_{\kappa\lambda}$$

- The formal scaling is no longer ${\cal N}^4$ but rather ${\cal N}^3$, assuming that the auxiliary basis increases linearly with system size.
- It is possible to obtain accurate results (with an error of ca. 0.1 mE_h per atom) with auxiliary basis sets that are about three times larger than the orbital basis.
- Asymptotically, the construction of the Coulomb matrix will scale as N^2 , as before, but with a much smaller prefactor.
- The RI-J approximation can be combined with multipole methods (MARI-J: multipole-accelerated RI-J).

RI-JK approximation

 In the RI-JK approximation, the RI approximation is not only used for the Coulomb matrix but also for the exchange matrix,

$$K_{\mu\nu} = \sum_{\kappa\lambda} D_{\kappa\lambda}(\mu\kappa|\nu\lambda) \approx \sum_{PQ} \sum_{\kappa\lambda} (\mu\kappa|P)(P|Q)^{-1}(Q|\nu\lambda)D_{\kappa\lambda}$$

- The formal scaling is still N⁴, as before.
- The RI-JK approximation is very useful when relatively large basis sets are used, for example when the Hartree–Fock calculation is followed by a post-Hartree–Fock treatment.
- Similar algorithms have been developed for the RI-MP2 and RI-CC2 methods. The formal scaling is still N^5 for these methods, as before, but with a much smaller prefactor.
- The RI-MP2-F12 methods utilises robust fitting for integrals over other operators than $1/r_{12}$.

