

General Addition Rule General Multiplication Rule

Learning Objectives

By the end of this lecture, you should be able to:

- Apply the general addition rule and the general multiplication rule.
- Describe what is meant by the term 'general' in the general addition rule and general multiplication rule.

General addition rule

Why is it called the "general" rule?

"General" means can be used on BOTH joint and disjoint events!

Example: If rolling a single die, determine the probability of rolling an even number or a number greater than 2.

$$P(A) = \frac{n(A)}{n(5)} = \frac{3}{6}$$

P(Even or
$$>2$$
) = ?

Applying General Addition Rule:

$$P(A \text{ or } B)$$
 = $P(A)$ + $P(B)$
= $P(Even)$ + $P(>2)$
= $\frac{5}{6}$

$$A = \{2, 4, 6\}$$
 $B = \{3, 4, 5, 6\}$
 $Ang = \{4, 6\}$
 $= P(A and B)$

Why do we call it the "general" addition rule? P(AUB) = P(A)+US_P(AnB)

- •Because it applies to any addition events. That is, you can use it for both joint events and disjoint events.
- •Why does it also work for disjoint events?
 - -Recall that if 2 events are disjoint, this means that the two events are mutually exclusive. In other words, if one of the two events or occurs, the other event will not occur.
 - -Therefore, P(A and B), i.e. the probability of both events being true will always equal 0.

So: P(A or B) = P(A) + P(B) - P(A and B)However, if the events are disjoint, then P(A and B) is 0, Therefore: P(A or B) = P(A) + P(B) - 0 (i.e. This is our addition rule for disjoint events)

Let's look at an example of applying the general rule to a disjoint events:

Example: What is the probability of randomly drawing either an Ace or a 7 from a deck of 52 playing cards?

• P(Card is an Ace)
$$\rightarrow 4/52$$

• P(Card is a 7)
$$\rightarrow 4/52$$

• P(Card is an Ace AND a 7)
$$\rightarrow 0$$

P(Draw an Ace OR Draw a 7)?

$$= P(Ace) + P(7) - P(Ace and 7)$$

$$= 4/52 + 4/52 - 0/52$$

$$= 8/52$$

Example: What is the probability of randomly drawing either an ace or a heart from a deck of

- P(Ace) $\Rightarrow 4/52$ $\Rightarrow 4/52$
- - P(Heart) \rightarrow 13/52
- P(Ace and Heart) $\rightarrow 1/52$
- There is one NON-disjoint event present. Notice how the Ace of Hearts has been counted twice. Therefore we must subtract this doubled item. So the correct answer is: (4/52 +

$$13/52 - 1/52) = \underline{16/52}.$$

Question: What is the probability of randomly drawing either an ace or a heart from a deck of 52 playing cards?

Answer: There are 4 aces in the pack and 13 hearts. However, 1 card is both an ace and a heart. If you simply added the two probabilities separately, you would end up counting that same card <u>twice</u>.

The general addition rule tells us that if some of the outcomes are non-disjoint, then we will over count those non-disjoint outcomes – an additional time for each outcome.

Therefore, we need to subtract those overlaps. In this problem, there is exactly one disjoint event.

Thus:
$$P(\text{ace or heart}) = P(\text{ace}) + P(\text{heart}) - P(\text{ace and heart})$$

= $4/52$ (the 4 aces) + $13/52$ (the 13 hearts) - $1/52$ (the Ace of Hearts)
= $16/52$

Example: What is the probability that a card from a deck is either a King or a Queen or a Diamond?

King or a Queen or a Diamond?

$$P(A \cup L \cup C) = P(B) + P(B) + P(B) + P(B) + P(B) - P(B \cap C) + P(B \cap$$

P(King) + P(Queen) + P(Diamond) is NOT correct since there are non-disjoint events that will be over counted.

Non disjoint events: King of Diamonds and Queen of Diamonds

To solve this question, we count all the outcomes, and then subtract all outcomes that have overlapped. I.e. All non-disjoint outcomes.

General multiplication rule ("And")

When dealing with events that are dependent, we need to look at our 'conditional' event and account for the possible change in probability.

- Recall that if A and B are independent, then P(A and B) = P(A) * P(B)
- However, if P(B) changes based on whether or not A has occurred, then we are saying that the events are dependent.
- Therefore, rather than simply saying P(B), we must adjust it to say P(B given that A has occurred).
- There is a special notation for this: $P(B \mid A)$.

$$P(A \text{ and } B) = P(A) * P(B|A)$$

This is called the general multiplication rule. That is, this is a version of the multiplication rule that is not limited to independent events.

$$P(A \text{ and } B) = P(A) * P(B | A)$$

$$P(\text{ace and heart}) \neq P(\text{ace})^* P(\text{heart} | \text{ace})$$

$$P(Ace) = \frac{4(4/52)}{4}$$

- → Take a moment and think about this! We are <u>limiting the situation</u> to Aces only!!
- → Probability of a Heart GIVEN that we are looking at Aces = 1/4

$$= (4/52) * (1/4)$$

$$= 1/52$$

Why do we call it the "general" multiplication rule?

•Same story as with the "general" addition rule. That is, this rule applies to ANY multiplication events – BOTH independent and non-independent.

Why does it also work for independent events?

- -Recall that if two events are independent, this means that P(B) is NOT affected by P(A).
- -That is, $P(B \mid A) = P(B)$.
- -Our general rule states: $P(A \text{ and } B) = P(A) * P(B \mid A)$
 - •If our events are independent, then $P(B \mid A) = P(B)$
 - •So: P(A and B) = P(A) * P(B)

ANY QUESTION