CSCE 221 Cover Page Homework #1

Due September 18 at midnight to CSNet

E-mail address

UIN

Last Name

First Name

User Name

Please list all sour implement the current or even zero. Accordingly including: acquiring an not specifically permit answers when not specexam prior to the exam penalties to expulsion	homework. If you faing to the University aswers from any una sted, observing the cifically authorized to a, and failing to cred	y Regulations, Sectauthorized source, we work of other stude to do so, informing it sources used. Disc	can get a lower num ion 42, scholastic d orking with another ents during any exa any person of the c	mber of point lishonesty ar person when am, providing contents of a
Type of sources				7
People				$\frac{1}{2}$
Web pages (provide URL)				
Printed material				
Other Sources				-
submitted work.		ces that I used to do		,
Your Name	Date			

Type the solutions to the homework problems listed below using preferably L_YX/L^AT_EX program, see the class webpage for more information about its installation and tutorial.

- 1. (50 points) There are two players. The first player selects a random number between 1 and 32 and the other one (could a computer) needs to guess this number asking a minimum number of questions. The first player responses possible answers to each question are:
 - yes the number is found
 - lower the number to be guessed is smaller than the number in the question
 - higher the number to be guessed is greater than the number in the question

Hint. The number of questions in this case (range [1,32]) should not exceed 6.

- (a) Write a C++ code for this algorithm and test it using the following input in ranges from 1 to: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048. Be sure that your program throws an exception in case of an invalid dialog entry during the computations.

 Note that the "brute force" algorithm is not accepted.
- (b) Your program must allow the user to set a target number, so that you can do controlled testing. It would be good if you also had a mode where the human's and computer's roles were switched, with the computer generating a (random) target number and the user trying to guess it.
- (c) For the report, you need to measure how many guesses the program takes to find the numbers 2^n and $2^n 1$ as sample input, not as the only valid input.
 - i. Tabulate the output results in the form (range, guessed number, number of comparisons required to guess it) in a given range using an STL vector. Plot the number of questions returned by your algorithm when the number to be guessed is selected as $n = 2^k$, where k = 1, 2, ..., 11. You can use any graphical package (including a spreadsheet).
 - i. Provide a mathematical formula/function which takes n as an argument, where n is equal to the upper value of the testing ranges, and returns as its value the maximum number of questions for the range $[1, \ldots, n]$. Does your formula match computed output for a given input? Justify your answer.

Range [1n]	True answer n	# guesses/comparison	Result of formula in (c)
[1,1]	1		
[1,2]	2		
[1,4]	4		
[1,8]	8		
[1,16]	16		
[1,2048]	2048		

ii. How can you modify your formula/function if the number to be guessed is between 1 and N, where N is not an exact power of two? Test your program using input in ranges starting from 1 to $2^k - 1$, k = 2, 3, ... 11.

Range [1N]	True answer N	# guesses/comparison	Result of formula in (d)
[1,1]	1		
[1,3]	3		
[1,7]	7		
[1,15]	15		
[1,31]	31		
•••			
[1,2047]	2047		

(d) Use Big-O asymptotic notation to classify this algorithm.

Submit for grading an electronic copy of your code and solutions to the questions above.

Points Distribution

- (a) (b) (5 pts) # guesses in a table; (5 pts) A plot in the report; (15 pts) Program code using STL vector and exception
- (c) (5 pts) A math formula of n; (5 pts) Formula results compared to # guesses
- (d) (5 pts) A math formula of N; (5 pts) Program code (and the second table)
- (e) (5 pts) A big-O function

Submit an electronic copy of your code and results of all your experiments for grading.

- 2. (15 points) Write a C++ function using the STL string which can determine if a string s is a palindrome, that is, it is equal to its reverse. For example, "racecar" and "gohangasalamiimalasagnahog" are palindromes. Provide 7 test cases, including: the empty string, 4 string which are palindromes and two string which are not palindromes. Write the running time function in terms of n, the length of the string, and its big-O notation to represent the efficiency of your algorithm. Submit an electronic copy of your code and results of all your experiments for grading.
- 3. (10 points) Write a function (in pseudo code) which takes as an input an object of vector type and removes an element at the rank k in the constant time, O(1). Assume that the order of elements does not matter.
- 4. (10 points) (R-4.39 p. 188) Al and Bob are arguing about their algorithms. Al claims his $O(n\log n)$ -time method is always faster than Bob's $O(n^2)$ -time method. To settle the issue, they perform a set of experiments. To Al's dismay, they find that if n < 100, the $O(n^2)$ -time algorithm runs faster, and only when n > 100 is the $O(n\log n)$ -time one better. Explain how this is possible.
- 5. (15 points) Find the running time functions and classify the algorithms using Big-O asymptotic notation presented in the exercise 4.4, p. 187.

```
Algorithm Ex1(A):
  Input: An array A storing n \ge 1 integers.
  Output: The sum of the elements at even cells in A.
for i \leftarrow 2 to n-1 by increments of 2 do
   s \leftarrow s + A[i]
return s
Algorithm Ex2(A):
    Input: An array A storing n \ge 1 integers.
   Output: The sum of the prefix sums in A.
s \leftarrow 0
for i \leftarrow 0 to n-1 do
   s \leftarrow s + A[0]
   for j \leftarrow 1 to n do
       s \leftarrow s + A[j]
return s
Algorithm Ex2(A):
   Input: An array A storing n \ge 1 integers.
   Output: The sum of the prefix sums in A.
s \leftarrow 0
for i \leftarrow 0 to n-1 do
   s \leftarrow s + A[0]
    for j \leftarrow 1 to i do
       s \leftarrow s + A[j]
return s
```