MATH CAMP ASSIGNMENT 2

ANALYSIS

Xiankang Wang

August 20, 2025

Q1. The function d(x,y) = |x-y| is a metric on \mathbb{R}

Proposition 1. Define $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by d(x,y) = |x-y|. Then d is a metric on \mathbb{R} .

Proof. We verify the three axioms.

(M1) Nonnegativity and identity of indiscernibles. By the definition of absolute value, $|x - y| \ge 0$ for all x, y. Moreover, |x - y| = 0 iff x - y = 0 (by the definition again), i.e. iff x = y.

(M2) Symmetry. We have x - y = -(y - x), hence

$$d(x,y) = |x - y| = |-(y - x)| = |-1| \cdot |y - x| = |y - x| = d(y,x),$$

where |ab| = |a||b| from Q10(a) and |-1| = 1 since |1| = 1 and $|1| = |-1| \cdot |-1|$.

(M3) Triangle inequality. For any $x, y, z \in \mathbb{R}$,

$$d(x,y) = |x-y| = |(x-z) + (z-y)| \le |x-z| + |z-y| = d(x,z) + d(z,y),$$

by the triangle inequality $|a + b| \le |a| + |b|$ from Q10(b) with a = x - z and b = z - y.

Thus d satisfies (M1)–(M3), so it is a metric on \mathbb{R} .

Q2. If *S* is bounded, then $S \subset B_{\rho}(y)$ for every $y \in X$ and some $\rho > 0$

Proposition 2. Let (X,d) be a metric space and let $S \subset X$ be bounded, i.e. there exist $a \in X$ and R > 0 such that $S \subset B_R(a) = \{x \in X : d(x,a) < R\}$. Then for every $y \in X$ there exists $\rho > 0$ with $S \subset B_\rho(y)$.

Proof. Fix $y \in X$. Define

$$\rho := R + d(a, y) \quad (> 0).$$

Take any $x \in S$. Since $S \subset B_R(a)$ we have d(x, a) < R. By the triangle inequality,

$$d(x,y) \le d(x,a) + d(a,y) < R + d(a,y) = \rho.$$

Hence $x \in B_{\rho}(y)$. Because $x \in S$ was arbitrary, $S \subset B_{\rho}(y)$. Since y was arbitrary as well, the claim holds for every $y \in X$.

Q3.
$$(0,1) = \bigcup_{n=1}^{\infty} [1/n, 1-1/n]$$

Proposition 3. *For the standard metric on* \mathbb{R} *,*

$$(0,1) = \bigcup_{n=1}^{\infty} [1/n, 1 - 1/n].$$

(We adopt the convention $[a,b] = \emptyset$ if a > b; thus the n = 1 term is empty and harmless.)

Proof. (⊆) Let $x \in [1/n, 1-1/n]$ for some $n \in \mathbb{N}$ with $n \ge 2$. Then $1/n \le x \le 1-1/n$, hence x > 0 and x < 1. Therefore $x \in (0,1)$. So $\bigcup_{n=1}^{\infty} [1/n, 1-1/n] \subseteq (0,1)$.

 (\supseteq) Let $x \in (0,1)$. Choose $n \in \mathbb{N}$ such that

$$n > \max \left\{ \frac{1}{x}, \frac{1}{1-x} \right\}.$$

(For instance, take $n = \lceil \max\{1/x, 1/(1-x)\} \rceil + 1$.) Then 1/n < x and 1/n < 1-x, hence

$$1/n < x < 1 - 1/n$$

so $x \in [1/n, 1 - 1/n]$. As x was arbitrary, $(0,1) \subseteq \bigcup_{n=1}^{\infty} [1/n, 1 - 1/n]$.

Combining the two inclusions gives the desired equality.

Remark. Each set [1/n, 1-1/n] is closed in \mathbb{R} , yet their (countably) infinite union equals the open interval (0,1). Hence an infinite union of closed sets can be open.

Q4. Show that $\operatorname{ext} A = \operatorname{int}(A^c)$

Proposition 4. *Let* (X,d) *be a metric space and* $A \subset X$. *Then*

$$\operatorname{ext} A = \operatorname{int}(A^c).$$

Proof. (\subseteq) If $x \in \text{ext } A$, by definition there exists r > 0 such that $B_r(x) \subset A^c$. This exactly says that x is an interior point of A^c , i.e. $x \in \text{int}(A^c)$.

(⊇) Conversely, if $x \in \text{int}(A^c)$, then some ball $B_r(x)$ is contained in A^c ; hence x is an exterior point of A, i.e. $x \in \text{ext } A$.

Thus ext
$$A = int(A^c)$$
.

Q5. Show that int A and ext A are open

Proposition 5. *For any* $A \subset X$ *in a metric space* (X,d)*, both* int A *and* ext A *are open subsets of* X.

Proof. (a) int A is open. Take $x \in \text{int } A$. Then there exists R > 0 with $B_R(x) \subset A$. Let $y \in B_R(x)$ and set $\rho := R - d(x,y) > 0$. If $z \in B_\rho(y)$, then by the triangle inequality

$$d(z, x) \le d(z, y) + d(y, x) < \rho + d(x, y) = R$$
,

so $z \in B_R(x) \subset A$. Hence $B_\rho(y) \subset A$, which means $y \in \text{int } A$. Therefore $B_R(x) \subset \text{int } A$, showing that every $x \in \text{int } A$ has an open ball contained in int A; thus int A is open.

(b) ext A **is open.** Let $x \in \text{ext } A$. Then some R > 0 satisfies $B_R(x) \subset A^c$. For any $y \in B_R(x)$ define $\rho := R - d(x,y) > 0$. If $z \in B_\rho(y)$, then

$$d(z,x) \le d(z,y) + d(y,x) < \rho + d(x,y) = R,$$

hence $z \in B_R(x) \subset A^c$. Therefore $B_\rho(y) \subset A^c$ and $y \in \text{ext } A$. Thus $B_R(x) \subset \text{ext } A$, proving ext A is open.

Q6. (1/2, 1] is open in the subspace X = [0, 1]

Proposition 6. Let X = [0,1] be endowed with the Euclidean metric d(x,y) = |x-y| restricted to X. Then the subset U = (1/2,1] is open in X.

Proof. Recall that an open ball in the subspace *X* is

$$B_r^X(x) = \{ y \in X : d(x,y) < r \} = (x - r, x + r) \cap [0,1].$$

We must show that for every $x \in U$ there exists r > 0 with $B_r^X(x) \subset U$.

Case 1: x = 1. Take $r = \frac{1}{2}$. Then

$$B_{1/2}^X(1) = (1 - \frac{1}{2}, 1 + \frac{1}{2}) \cap [0, 1] = (1/2, 1] \subset U.$$

Case 2: $x \in (1/2, 1)$. Set

$$r := \min\{x - \frac{1}{2}, 1 - x\} > 0.$$

If $y \in B_r^X(x)$ then $|y - x| < r \le x - \frac{1}{2}$ and $|y - x| < r \le 1 - x$. Hence $y > x - (x - \frac{1}{2}) = \frac{1}{2}$ and y < x + (1 - x) = 1, i.e. $y \in (1/2, 1)$. Therefore $B_r^X(x) \subset (1/2, 1) \subset U$.

In both cases there exists r > 0 with $B_r^X(x) \subset U$. Thus U is open in X.

Q7. (x_n) with $x_n = \frac{1}{n^2}$ converges to 0

Proposition 7. *In the metric space* $(\mathbb{R}, |\cdot|)$ *, the sequence* $x_n = 1/n^2$ *satisfies* $x_n \to 0$ *as* $n \to \infty$.

Proof. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $N > \frac{1}{\sqrt{\varepsilon}}$ (equivalently $1/N^2 < \varepsilon$). Then for every $n \ge N$,

$$d(x_n,0) = |x_n - 0| = \frac{1}{n^2} \le \frac{1}{N^2} < \varepsilon.$$

By the definition of convergence in a metric space, $x_n \to 0$.

Q8. If
$$x_n \to x$$
 and $y_n \to y$ then $d(x_n, y_n) \to d(x, y)$

Proposition 8. Let (X, d) be a metric space. If $x_n \to x$ and $y_n \to y$, then $d(x_n, y_n) \to d(x, y)$.

Proof. By the triangle inequality,

$$d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n),$$
 $d(x, y) \le d(x, x_n) + d(x_n, y_n) + d(y_n, y).$

Rearranging gives, for all n,

$$|d(x_n, y_n) - d(x, y)| \le d(x_n, x) + d(y_n, y).$$
 (*)

Since $x_n \to x$ and $y_n \to y$, we have $d(x_n, x) \to 0$ and $d(y_n, y) \to 0$. By Proposition 18(1) (squeeze: if $0 \le u_n \le v_n$ and $v_n \to 0$ then $u_n \to 0$), from (*) it follows that $|d(x_n, y_n) - d(x, y)| \to 0$. Therefore $d(x_n, y_n) \to d(x, y)$.

Q9. Completeness of \mathbb{R}^n via Prop. 21, Thm. 29 and BW (Thm. 30)

Proposition 9 (Proposition 23: \mathbb{R}^n is complete). Let (x_n) be a sequence in \mathbb{R}^n with the Euclidean metric d_E . Then (x_n) converges if and only if it is Cauchy. In particular, every Cauchy sequence in \mathbb{R}^n converges.

Proof. (\Rightarrow) If (x_n) converges, then it is Cauchy by Proposition 21(2).

(\Leftarrow) Suppose (x_n) is Cauchy. By Proposition 21(1), every Cauchy sequence is bounded; hence (x_n) is bounded. By the Bolzano–Weierstrass Theorem (Theorem 30), a bounded sequence in \mathbb{R}^n has a convergent subsequence: there exist indices n_k and some $x \in \mathbb{R}^n$ with $x_{n_k} \to x$. Now apply Theorem 29: a Cauchy sequence that has a subsequence converging to x must itself converge to x. Hence $x_n \to x$.

Combining the two implications gives the equivalence, and in particular the completeness of \mathbb{R}^n .

Q10. ε - δ proof that \sqrt{x} is continuous at x=1

Proposition 10. The function $f(x) = \sqrt{x}$ is continuous at x = 1.

Proof. Let $\varepsilon > 0$ be given. Choose

$$\delta := \min\{1, \varepsilon\}.$$

Assume $|x-1| < \delta$. Then $\delta \le 1$ implies $x \in (0,2)$, hence $\sqrt{x} > 0$ and

$$|\sqrt{x} - 1| = \frac{|x - 1|}{\sqrt{x} + 1} \le \frac{|x - 1|}{1} = |x - 1| < \varepsilon.$$

Therefore, for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x-1| < \delta \Rightarrow |\sqrt{x}-1| < \varepsilon$. By the ε - δ definition of continuity, f is continuous at x = 1.

Q11. Continuity of $f(x) = \sqrt{x}$ on $[0, \infty)$ via preimages of open sets

Proposition 11. Let $f:[0,\infty)\to [0,\infty)$ be given by $f(x)=\sqrt{x}$. Then f is continuous.

Proof. We use the topological characterization of continuity: f is continuous iff for every open set $U \subset [0, \infty)$ (with the subspace topology) the preimage $f^{-1}(U)$ is open in $[0, \infty)$.

Let $U \subset [0,\infty)$ be open. Then there exists an open set $V \subset \mathbb{R}$ such that $U = V \cap [0,\infty)$. By the stated theorem, we can write

$$V = \bigcup_{i>1} I_i$$

as a countable union of pairwise disjoint open intervals $I_i = (a_i, b_i)$, where $a_i, b_i \in \mathbb{R} \cup \{\pm \infty\}$ and $a_i < b_i$. Hence

$$U = V \cap [0, \infty) = \bigcup_{i > 1} (I_i \cap [0, \infty)), \qquad f^{-1}(U) = \bigcup_{i > 1} f^{-1}(I_i \cap [0, \infty)).$$

It therefore suffices to show that $f^{-1}(J)$ is open in $[0, \infty)$ for each interval J of the form $I_i \cap [0, \infty)$.

There are four possibilities (empty intersections are irrelevant):

(1) I = (a, b) with $0 \le a < b < \infty$. Then

$$f^{-1}(J) = \{ x \ge 0 : \ a < \sqrt{x} < b \} = (a^2, b^2),$$

which is open in $[0, \infty)$.

(2) J = [0, b) with $0 < b < \infty$ (this occurs when $a_i < 0 < b_i$). Then

$$f^{-1}(J) = \{x \ge 0 : 0 \le \sqrt{x} < b\} = [0, b^2),$$

which is open in the subspace $[0, \infty)$ since $[0, b^2) = (-1, b^2) \cap [0, \infty)$.

(3) $J = (a, \infty)$ with $a \ge 0$ (this occurs when $b_i = +\infty$ and $a_i \ge 0$). Then

$$f^{-1}(I) = \{x \ge 0 : \sqrt{x} > a\} = (a^2, \infty),$$

open in $[0, \infty)$.

(4) $J = [0, \infty)$ (this occurs when $b_i = +\infty$ and $a_i < 0$). Then

$$f^{-1}(J) = [0, \infty),$$

which is open in $[0, \infty)$.

Thus in every case $f^{-1}(J)$ is open in $[0,\infty)$. Since a (countable) union of open sets is open, $f^{-1}(U)$ is open in $[0,\infty)$ for every open $U\subset [0,\infty)$. Hence f is continuous on $[0,\infty)$.