Module : logique Mathématique 2020/2021

Solution de TD N° 01

Exercice 1

1°) Soit p désignant la proposition « l'enfant sait lire » et q désignant la proposition « l'enfant sait écrire ». Donner la traduction dans le langage courant des formules suivantes :

Formule	Traduction dans le langage courant				
p∧q	l'enfant sait lire et écrire				
p∧ (¬q)	l'enfant sait lire mais il ne sait pas écrire				
(p → q)	Si l'enfant sait écrire alors il sait lire				
$(\neg p)\lor(\neg q)$	l'enfant ne sait pas lire ou il ne sait pas écrire				
$(\neg p) \land (\neg q)$	l'enfant ne sait pas lire et il ne sait pas écrire				

2°) Même question avec p la proposition « l'homme est mortel » et q désignant la proposition « l'homme est éternel » et les propositions :

Formule	Traduction dans le langage courant
(p v q)	L'Homme est mortel ou éternel
$(\neg p)\lor (\neg q)$	l'Homme n'est pas mortel, ou il n'est pas éternel
¬(p^q)	Il est faux que « l'Homme est mortel et éternel »
p∧ (¬q)	l'Homme est mortel mais pas éternel
$(p \rightarrow (\neg q))$	Si l'Homme est mortel alors il n'est pas éternel

Exercice 2 Soit p la proposition « X estime Y » et q la proposition « Y estime X ». Ecrire sous forme symbolique les phrases suivantes :

Phrase	Traduction en Logique Propositionnel				
X estime Y mais Y ne lui rend pas son estime	$p \land \neg q$				
X et Y s'estiment	p∧q				
X et Y se détestent	$\neg p \land \neg q$				
Y est estimé par X mais X est détesté par Y	$p \land \neg q$				
X et Y ne se détestent ni l'un ni l'autre	$\neg p \land \neg q$				

Exercice 3 En interprétant P par « je pars » , Q par « tu restes » et R par « il n'y a personne », traduisez les formules logiques suivantes en phrases du langage naturel :

 $(P \land \neg Q) \rightarrow R$: si je pars et tu ne restes pas alors il n'y a personne

: si je pars et tu pars alors il n'y a personne

 $(\neg P \lor \neg Q) \to \neg R$: si je ne pars pas et tu ne restes pas alors il y a quelqu'un

: si je reste et tu pars pas alors il y a quelqu'un

Exercice 4 Les expression suivantes sont elles bien formées ? Pourquoi ?

- 1) $((P \rightarrow Q) \lor (Q \rightarrow (\neg (\neg P))))$ FBF
- 2) 2) ((P) \vee (Q \wedge R)) FBF
- 3) $(P_1 \rightarrow ((P_2 \rightarrow Q)))$ FBF
- 4) 4) $(\neg (P \lor Q) \rightarrow \neg \neg Q) R$ n'est pas FBF

Exercice 5 Soit P, Q et R des propositions. Dans chacun des ces cas suivant ; les propositions citées sont elles la négation l'une de l'autre ? 0 : faux 1 : vraie

P	Q	non P	non Q	(P et Q)	(non P et non Q)	$(P \rightarrow Q)$	$(\text{non } Q \to \text{non } P)$	(P ou Q)	(P et Q)
0	0	1	1	0	1	1	1	0	0
0	1	1	0	0	0	1	1	1	1

1	0	0	1	0	0	0	0	1	1
1	1	0	0	1	0	1	1	1	1

Pour dire qu'une formule F1 est la négation d'une autre F2, il faut que toutes les valeurs dans F1 soient la négation de toutes celles dans F2

Alors: Non (P et Q) n'est pas (non P et non Q)

Non (P \rightarrow Q) n'est pas (non Q \rightarrow non P)

Non (P ou Q) n'est pas (P et Q)

Il est:

$$\neg (P \land Q) \equiv (\neg P \lor \neg Q)$$

$$\neg (P \to Q) \equiv (P \land \neg Q)$$

$$\neg (P \lor Q) \equiv (\neg P \land \neg Q)$$

Exercice 6 Soit a, b et c des réels. Ecrire la négation des propositions suivantes :

- 1. Non $(a \le -2 \text{ ou } a \ge 3) \equiv a > -2 \text{ et } a < 3$
- 2. Non $(a \le 5 \text{ et } a \ge -1) \equiv a > 5 \text{ ou } a < -1$
- 3. Non (a ≤ 5 ou 3 > c) \equiv a < 5 et 3 \leq c
- 4. Non (a+1 et a > 1) impossible puisque a+1 n'est pas une proposition

Exercice 7 Donner la table de vérité des propositions suivantes :

Р	Q	R	.¬p	$\neg P \lor Q$.(P∧ Q)	$(Q \wedge R)$	(P∧ Q) ∧ R	(P∧ (Q∧ R))	.(P→ Q)	$(\Theta \to P)$	$.(P \rightarrow Q) \rightarrow R$	$P \rightarrow (Q \rightarrow R)$	$(P \rightarrow Q) \land (Q \rightarrow R)$
0	0	0	1	0	0	0	0	0	1	1	0	1	1
0	0	1	1	0	0	0	0	0	1	1	1	1	1
0	1	0	1	0	0	0	0	0	1	0	0	1	0
0	1	1	1	0	0	1	0	0	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0	1	1	1	0
1	0	1	0	0	0	0	0	0	0	1	1	1	0
1	1	0	0	0	1	0	0	0	1	0	0	0	0
1	1	1	0	1	1	1	1	1	1	1	1	1	1

Exercice 8 Pour chacune des formules suivantes, 1°) construire sa table de vérité ; 2°) indiquer si c'est une tautologie, une contradiction ou ni l'une ni l'autre :

 $(a) = \neg(p \lor p) \lor \neg(p \lor p)$

P	Q	p∨p	¬(p∨p)	p∧p	¬(p∧p)	$\neg (p \lor p) \lor \neg (p \lor p)$
0	0	0	1	0	1	1
0	1	1	0	0	1	1
1	0	1	0	0	1	1
1	1	1	0	1	0	0

La formule (a) n'est ni une tautologie ni une contradiction.

(b) = $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$.

p	q	r	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	$(p \rightarrow q)$	$(p \rightarrow r)$	$((p \rightarrow q) \rightarrow (p \rightarrow r).)$	(b)
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	0	0	1	1
1	0	1	1	1	0	1	1	1
1	1	0	0	0	1	0	0	1
1	1	1	1	1	1	1	1	1

La formule (b) est une tautologie

 $(c) = (p \land q) \lor ((\neg(p \land r) \lor q) \to r):$

p	q	r	p∧ q	p∧ r	$\neg (p \land r)$	$\neg (p \land r) \lor q$	$(\neg(p \land r) \lor q) \to r$	(c)
0	0	0	0	0	1	1	0	0
0	0	1	0	0	1	1	1	1
0	1	0	0	0	1	1	0	0
0	1	1	0	0	1	1	1	1
1	0	0	0	0	1	1	0	0
1	0	1	0	1	0	0	1	1
1	1	0	1	0	1	1	0	1
1	1	1	1	1	0	1	1	1

(c) n'est ni un tautologie ni une contradiction.

(d) : soient les sous-formules : A = (x \vee y \vee z), B = (u \vee x) \rightarrow u, C = B \leftrightarrow (y \vee z) ; on a la formule (d) = A \leftrightarrow x \vee C.

X	у	Z	u	Α	$(u \lor x)$	В	$(y \lor z)$	С	$(x \lor C)$	(d)
0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	1	1	0	0	0	1
0	0	1	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1
0	1	0	0	1	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	1	0	0	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	1	1	0	1	0	1	1
1	0	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	0	1	0	1	1
1	1	0	1	1	1	1	1	1	1	1
1	1	1	0	1	1	0	1	0	1	1
1	1	1	1	1	1	1	1	1	1	1

La formule (d) est une tautologie.

Exercice 9 Evaluez les formules suivantes en considèrent uniquement les valeurs des variables données :

$$\upsilon(Q \to (P \to R))_{\upsilon(Q)=f} \equiv V$$

$$\upsilon(P \land (Q \lor R))_{\upsilon(Q)=v} \equiv \upsilon(P)$$

$$\upsilon(P\lor(Q\to R))_{\upsilon(Q)=f}\equiv V$$

<u>Exercice 10</u> Précisez en utilisant la méthode des tables de vérité, si les formules suivantes sont des tautologie, des contradictions, ou des formules simplement satisfiables :

- 1. $A \lor \neg A$ tautologie (toutes les lignes de TV sont des 1)
- 2. $A \land \neg A$ contradictoire (toutes les lignes de TV sont des 0)
- 3. $(P \land Q) \land (\neg P \lor Q)$ satisfiable il a une ligne dans TV égal à 1 (p,q)=(1,1)
- 4. $P \lor \neg (P \land Q)$ tautologie
- 5. $\neg P \rightarrow (P \land Q)$ satisfiable pour v(p)=1
- 6. $P \rightarrow (P \rightarrow P)$ tautologie
- 7. $((P \rightarrow Q) \rightarrow Q) \rightarrow P$ satisfiable
- 8. $(P \rightarrow Q) \lor (Q \rightarrow P)$ tautologie
- 9. $(P \leftrightarrow Q) \land (P \leftrightarrow \neg Q)$ contradictoire

Exercice 11: Soit une fonction logique f à 4 variables logique, telle que f = 1 si et seulement si le nombre de variables de f qui sont à '1' est supérieur ou égal à 2.

1°) Table de vérité de f :

/ ·				-
Х	У	Z	t	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2°) Forme normale disjonctive de f:

 $f.n.d = (\neg x \land \neg y \land z \land t) \lor (\neg x \land y \land \neg z \land t) \lor (\neg x \land y \land z \land \neg t) \lor (\neg x \land y \land z \land t) \lor (x \land \neg y \land \neg z \land t) \lor (x \land \neg y \land z \land \neg t) \lor (x \land \neg y \land z \land \neg t) \lor (x \land y \land \neg z \land \neg t) \lor (x \land y \land z \land \neg t) \lor (x \land y \land z \land \tau)$

Forme normale conjonctive de f : (obtenue comme \neg (f.n.d de \neg f))

 $f.n.c = (x \lor y \lor z \lor t) \land (x \lor y \lor z \lor \neg t) \land (x \lor y \lor \neg z \lor t) \land (x \lor \neg y \lor z \lor t) \land (\neg x \lor y \lor z \lor t)$

Exercice 12 a) L'ensemble $E = \{ a, ((b \rightarrow a) \lor c), \neg c, (b \lor c) \}$ est il satisfiable ?

a	b	С	(b→a)	(b→a)∨c	¬ c	(b∨c)
0	0	0	1	1	1	0
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	0	1	1	1	0	1
0	1	0	0	0	1	1
0	1	0	0	0	1	1
0	1	1	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	1	1	0
1	0	0	1	1	1	0
1	0	1	1	1	0	1
1	0	1	1	1	0	1
1	1	0	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	0	1
1	1	1	1	1	0	1

L'ensemble E est satisfiable parce qu'il existe des lignes dans la TV dont toutes les sous formules de E sont satisfiables

b) L'ensemble $A=\{a, \neg a\}$ est il satisfiable ? Cet ensemble n'est pas satisfiable

Exercice 13: En associant les énoncés élémentaires « Ali est étudiant », « Djawed est étudiant », « Chiheb est étudiant » aux propositions p, q, r, respectivement ; associer à chacun des énoncés suivants la formule propositionnelle qui semble lui correspondre sémantiquement :

- (a) Ali et Djawed sont étudiants. : p ∧ q
- (b) Ali ou Djawed est étudiant. : $p \vee q$
- (c) Exactement un seul parmi Ali et Djawed est étudiant. : $(p \land \neg q) \lor (\neg p \land q)$
- (d) Ni Ali ni Chiheb ne sont étudiants. : ¬ q ∧¬ p
- (e) Au moins l'un des trois n'est pas étudiant. : $\neg q \lor \neg p \lor \neg r$
- (f) Un seul parmi les trois n'est pas étudiant. : $(\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r)$
- (g) Seulement deux, parmi les trois, sont étudiants. \equiv (f)
- (h) Si Ali est étudiant, Djawed l'est. $p \rightarrow q$
- (i) Si Ali est étudiant, Djawed l'est ; sinon Djawed ne l'est pas. $(p \rightarrow q) \land (\neg p \rightarrow \neg q)$
- (j) Ali est étudiant à condition que Chiheb le soit. $p \rightarrow r$
- (k) Que Chiheb soit étudiant est une condition nécessaire pour que Ali le soit. $p \rightarrow r$
- (I) Que Chiheb soit étudiant est une condition suffisante pour que Ali le soit. $r \rightarrow p$
- (m) Que Chiheb soit étudiant est une condition nécessaire et suffisante pour que Ali le soit. $P \leftrightarrow r$
- (n) Ali n'est étudiant que si exactement l'un des deux autres l'est. $p \rightarrow ((q \land \neg r) \lor (\neg q \land r))$
- (o) Si Ali est étudiant alors au moins l'un des deux autres ne l'est pas. $p \rightarrow (\neg q \lor \neg r)$

Exercice 14: On considère les énoncés suivants :

- (A) Si Pierre est rentré chez lui, alors Jean est allé au cinéma.
- (B) Marie est à la bibliothèque ou Pierre est rentré chez lui.
- (C) Si Jean est allé au cinéma, alors Marie est à la bibliothèque ou Pierre est rentré chez lui.
- (D) Marie n'est pas à la bibliothèque et Jean est allé au cinéma.
- (E) Pierre est rentré chez lui.

Formaliser cette famille d'énoncés en calcul propositionnel. On notera A, B, C, D, E les cinq formules obtenues. Montrer que l'on peut inférer E des prémisses A, B, C, D :

- Les formules qu'on obtient, en formalisant les énoncés, sont :

$$A=P \rightarrow J \; ; \quad B=M \vee P \; ; \quad C=J \rightarrow (M \vee P) \; ; \quad D= \neg M \wedge J \; E=P.$$

On peut inférer (déduire) la conclusion E des prémisses (hypothèses) A, B, C, D si et seulement si

(I) $(A \land B \land C \land D) \rightarrow E$ est une tautologie.

Table de vérité : Soit F la sous-formule F = $A \wedge B \wedge C \wedge D$

Р	J	М	Α	В	С	D	E	$A \land B \land C \land D$	$F \rightarrow E$
0	0	0	1	0	1	0	0	0	1
0	0	1	1	1	1	0	0	0	1
0	1	0	1	0	0	1	0	0	1
0	1	1	1	1	1	0	0	0	1
1	0	0	0	1	1	0	1	0	1
1	0	1	0	1	1	0	1	0	1
1	1	0	1	1	1	1	1	1	1
1	1	1	1	1	1	0	1	0	1

On en déduit que $\models (A \land B \land C \land D) \rightarrow E$

Raisonnement en français :

Pour montrer que (I) est une tautologie on suppose que la sous-formule F est vraie et on doit déduire que E est vraie. Supposons, donc, que F soit vraie ; par conséquent D est vraie donc Marie n'est pas à la bibliothèque et Jean est allé au cinéma. B est aussi vraie donc ou bien Marie est à la bibliothèque ou alors Pierre est rentré chez lui. Comme on sait déjà que Marie n'est pas à la bibliothèque, alors forcément que Pierre est rentré chez lui. Donc E est vraie. On en déduit que F → E est une tautologie

Exercice 15 Mohamed, ali et salim sont prévenus de fraude fiscale. Ils prêtent serment de la manière suivante :

Mohamed: Ali est coupable et Salim est innocent. (I)

ALI: Si Mohamed est coupable alors Salim aussi. (II)

SALIM: Je suis innocent mais au moins l'un des deux autres est coupable. (III)

Soient M, A et S les énoncés « Mohamed est innocent », « Ali est innocent » et « Salim est innocent ».

1) Formalisation:

$$(I): \neg J \wedge S \qquad (II): \neg B \rightarrow \neg S \qquad (III): S \wedge (\neg J \vee \neg B)$$

2) Tables de vérité :

В	J	S	$\neg B$	$\neg J$	$\neg S$	(I)	(II)	(III)
0	0	0	1	1	1	0	1	0
0	0	1	1	1	0	1	0	1
0	1	0	1	0	1	0	1	0
0	1	1	1	0	0	0	0	1
1	0	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1	1
1	1	0	0	0	1	0	1	0
1	1	1	0	0	0	0	1	0

- 3) D'après la table de vérité, on remarque que lorsque B = 1, J = 0, S = 1, les trois formules (I), (II) et (III) sont simultanément satisfiables.
- $(I) \rightarrow (II), (II) \rightarrow (I), (III) \rightarrow (III), (III) \rightarrow (II)$ et $(III) \rightarrow (I)$ ne sont pas des tautologies.
- 5) S'ils sont tous innocents alors $B = J = S = 1 \Rightarrow (I) = 0$ et (III) = 0; donc Mohamed et Salim ont fait un faux serment.

<u>Exercice 16</u>: On se trouve sur une île dont les habitants sont répartis en deux catégories : les Purs et les Pires. Les Purs disent toujours la vérité, tandis que les Pires mentent toujours. On rencontre trois habitants de l'île : Moe, Jon et Will.

Moe déclare : « Nous sommes Pires tous les trois ».

Jon déclare : « Il y a exactement un Pire parmi nous ».

Que peut-on déduire de ces déclarations ?

Solution au TD

<u>Exercice 17</u>: Trois personnes, Ali (A), Belaid (B) et Chérif (C) exercent chacune une profession différente : pharmacien, dentiste ou chirurgien.

Sachant que les implications suivantes sont vraies, retrouver leur profession :

(A chirurgien \rightarrow B dentiste),

(A dentiste \rightarrow B pharmacien),

(B non chirurgien \rightarrow C dentiste).

Solution au TD