Problem 1

a. Intrinsic Parameters Matrices:

<u>KI:</u>

186.994	0	160.6481
0	246.3474	30.44049
0	0	1

<u>TI:</u>

0.48573708	-0.87410361	-0.0015373376	15.254536
0.013919079	0.0064612491	0.72411669	1.5228312
-0.63294308	-0.35175173	0.015305186	-2489.5116
0	0	0	1

Kr:

Tr:

0.48573708	-0.87410361	-0.0015373376	15.254536
0.013919079	0.0064612491	0.72411669	1.5228312
-0.63294308	-0.35175173	0.015305186	-2489.5116
0	0	0	1

b. Error-values computed:

Error w.r.t Ground Truth:

3.0937

2.3601

0.77193

1.5797

4.7098

4.1762

3.6708

3.9812

5.091

4.5356

Error Statistics:

Min Error

0.77193

Max Error

5.091

Error Mean

3.397

Error Std

1.4249

Problem 2

NCC Disparity Map

Error Statistics:

Method	Mean Error	Max Error	Min Error	Error Std	Running Time (seconds)
SSD	3.5830	34.3012	3.1528e-06	4.3162	0.382920
CC	2.6292	30.1133	1.1017e-06	3.6097	0.413366
NCC	0.6582	0.9862	4.2581e-05	0.1819	1.044601

Window size taken: (7x7) (yielded better result)

Among the three methods above, NCC seems to be the best if we consider the error percentage, but if we focus on speed both SSD and CC methods are comparatively faster than NCC.

Problem 4

Method	Line Parameter (W)
Measurements 1	[2.09203, 11.3271]
Measurements 2	[1.57843, 29.6492]
RANSAC Estimation	[1.64146, 21.4035]

Ransac Parameters:

Threshold: 60 (selected randomly visualizing for each value taken)

Number of points taken: 10

EXTRA CREDIT

Using the MATLAB camera toolbox, the extracted results from the given checkerboard images are shown below. The intrinsic parameters for both left and right cameras along with the extrinsic parameters giving the transformation for points in the right camera to those in the left camera frame are given below.

Stereo calibration parameters after optimization:

```
Intrinsic parameters of left camera:
```

```
Focal Length:
                     99.32829 1
Principal point:
                     33.84856 ]
     Skew:
Distortion:
      Intrinsic parameters of right camera:
```

```
Focal Length:
              cc_right = [ 430.69284    188.87239 ] @ [ 86.24145    33.79906 ]
Principal point:
Skew:
```

kc right = [-0.17372 -0.78303 -0.00325 -0.11540 0.00000] @ [0.46076 1.51601 0.01790 0.06528 0.00000] Distortion:

Extrinsic parameters (position of right camera wrt left camera):

```
Rotation vector:
                                    om = [ 0.00414  -0.11644  -0.00576 ] & [ 0.04669   0.14886   0.00747 ]
Translation vector:
                                    T = [-183.24627 \quad 114.71485 \quad -656.35000 \quad ] \quad \text{(i)} \quad [106.16727 \quad 42.59277 \quad 212.75900 \quad ]
```

Note: The numerical errors are approximately three times the standard deviations (for reference).

Intrinsic Parameter Matrices (Using the above calibration output to be used in Prob3)

```
Kl = [742.33151]
                                 0;
                    758.24496
                                 0
      397.25962
                    206.56216
                                 1];
Kl = Kl';
Kr = [528.64586]
                                 0:
                    590.79207
                                 0
      430.69284
                   188.87239
                                 1];
Kr = Kr':
```

Problem 3

