1 Convergence uniforme et combinaisons linéaires

Proposition 1

Soient $\lambda \in \mathbb{R}$, $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ convergeant uniformément vers $f \in \mathbb{R}^I$ sur I et $(g_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ convergeant uniformément vers $g \in \mathbb{R}^I$ sur I. Alors $(f_n + \lambda g_n)$ converge uniformément vers $f + \lambda g$ sur I.

2 Convergence uniforme et continuité

Proposition 2

Soient $x_0 \in I$, $f \in \mathbb{R}^I$ et $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ tels que pour tout $n \in \mathbb{N}$, f_n est continue en x_0 (resp. sur I) et (f_n) converge uniformément vers f sur I. Alors f est continue en x_0 (resp. sur I).

3 Convergence uniforme et intégrales

Proposition 3

Soient a et b deux réels avec a < b, $(f_n) \in (\mathbb{R}^{[a,b]})^{\mathbb{N}}$ avec pour tout $n \in \mathbb{N}$, f_n continue sur [a,b] et $f \in \mathbb{R}^{[a,b]}$ tels que (f_n) converge uniformément vers f sur [a,b].

$$\text{Alors } \lim_{n \to +\infty} \int_a^b f_n(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x \ \text{ c'est-\`a-dire } \lim_{n \to +\infty} \int_a^b f_n(x) \, \mathrm{d}x = \int_a^b \lim_{n \to +\infty} f_n(x) \, \mathrm{d}x$$

4 Approcher une fonction continue sur un segment

Théorème 1 (de Weierstrass)

Soient a et b deux réels tels que a < b. Toute fonction continue sur [a, b] (à valeurs réelles) est limite uniforme sur [a, b] d'une suite de fonctions polynomiales.

5 Approcher une fonction continue périodique

Définition 1

Soit f une fonction de \mathbb{R} dans \mathbb{C} . On dit que f est un polynôme trigonométrique s'il existe $N \in \mathbb{N}$ et $(c_n) \in \mathbb{C}^{2N+1}$ tels que

$$\forall t \in \mathbb{R}, \ f(t) = \sum_{n=-N}^{N} c_n e^{int}$$

Théorème 2 (de Weierstrass)

Toute fonction continue et 2π -périodique de $\mathbb R$ dans $\mathbb C$ est limite uniforme sur $\mathbb R$ d'une suite de polynômes trigonométriques.