Lecture Note 0: Course Introduction

February 25, 2021 Jongmoo Choi

Dept. of software **Dankook University** http://embedded.dankook.ac.kr/~choijm

J. Choi, DKU

What is Operating System?

Definition (from wikipedia.org)

Who am I?

Lecture site

(e-learning campus)

J. Choi, DKU

Course Objectives

2

- Understand the definition, role and goal of OS
 - Resource manager, computing environments, ...
- Know the existing operating systems
 - ✓ UNIX, Windows, Apple OS X, Linux, Android, iOS, WebOS, Mach, ...
- Learn the internal structure of OS
 - ✓ Process, Virtual memory, File system, Driver, Protocol, Interrupt, ...
- Comprehend the policies and mechanisms used by OS
 - ✓ CPU scheduling, Demand paging, LRU, inode, System call, ...
- Grasp the idea of abstraction
 - ✓ Information Hiding, Illusion, Interface, Layered architecture, ...
- Demonstrate what we have learned
 - ✓ Lab. project

J. Choi, DKU

Traditional Textbook

- Three representative textbooks for operating system course
 - ✓ Operating Systems Concepts (10th edition), by A. Silberschatz, P. Galvin and G. Gagne
 - ✓ Operating Systems: Internals and Design Principles (9th edition), by W.
 - ✓ Modern Operating Systems (5th edition), by A. Tanenbaum and H. Bos

Textbook in this course

■ TOC (Table of Contents) of OSTEP

		CONTENTS
	Homework (Simulation)	35
5	Interlude: Process API	37
	5.1 The fork () System Call	37
	5.2 The wait () System Call	39
	5.3 Finally, The exec () System Call	40
	5.4 Why? Motivating The API	41
	5.5 Process Control And Users	44
	5.6 Useful Tools	
	5.7 Summary	
	References	
	Homework (Code)	
6	Mechanism: Limited Direct Execution	49
	6.1 Basic Technique: Limited Direct Execution	49
	6.2 Problem #1: Restricted Operations	
	6.3 Problem #2: Switching Between Processes	55
	6.4 Worried About Concurrency?	59
	6.5 Summary	60
	References	
	Homework (Measurement)	
7	Scheduling: Introduction	65
	7.1 Workload Assumptions	65
	7.2 Scheduling Metrics	66
	7.3 First In, First Out (FIFO)	66
	7.4 Shortest Job First (SJF)	
	7.5 Shortest Time-to-Completion First (STCF)	
	7.6 A New Metric: Response Time	
	7.7 Round Robin	
	7.8 Incorporating I/O	
	7.9 No More Oracle	
	7.10 Summary	
	References	75
	Homework (Simulation)	76
8	Scheduling:	
	The Multi-Level Feedback Queue	77
	8.1 MLFQ: Basic Rules	78
	8.2 Attempt #1: How To Change Priority	
	8.3 Attempt #2: The Priority Boost	
	8.4 Attempt #3: Better Accounting	
	8.5 Tuning MLFQ And Other Issues	
	8.6 MLFQ: Summary	86
	References	87
	Homework (Simulation)	88

Textbook in this course

Remzi's OSTEP (OS Three Easy Pieces)

√ http://pages.cs.wisc.edu/~remzi/OSTEP/

Reference

- Linux Kernel Internals (리눅스 커널 내부 구조)
 - ✓ 1장. 리눅스 소개
 - ✓ 2장. 리눅스 커널 구조
 - ✓ 3장. 태스크 관리
 - ✓ 4장. 메모리 관리
 - ✓ 5장. 파일시스템과 가상 파일시스템
 - ✓ 6장. 인터럽트와 트랩 그리고 시스템 호출
 - ✓ 7장. 리눅스 모듈 프로그래밍
 - ✓ 8장. 디바이스 드라이버
 - ✓ 9장. 네트워킹
 - ✓ 10장. 운영체제 관련 실습
 - ✓ 부록1. 리눅스와 가상화 그리고 XEN
 - ✓ 부록2. MTD와 YAFFS

J. Choi, DKU J. Choi, DKU

Discussion

Mainly Lecturing

✓ Discussion (Q&A) during the course is quite important

Homework

- ✓ Reading assignment
 - 2 or 3 times
- Lab. Project (Programming or Analysis)
 - Lab1: schedulingLab2: concurrencyLab3: file system

Grading

- Exam(45%) + Lab. Project (35%) + Assignment/Discussion (10%) + Attendance/Quiz/Discussion (10%)
- ✓ Absence more than 5 times or Mid or Final Exam. score below 20 or No lab. Project → F
- Roughly, 20% students are expected to get the A grade.

J. Choi, DKU

Quiz for 1th-Week 1st-Lesson

Quiz

- ✓ 1. What are the difference between Operating Systems (e.g. MS Windows or Linux) and Applications (e.g. MS Word or Chrome)?. Explain the difference using the word "mode".
- ✓ 2. Find out the philosopher who appears in Chapter 1, "A Dialog on the Book", of the OSTEP (our main text book).
- ✓ Due: until 6 PM Friday of this week (5th, March)

◆ Any questions? Ask at "문의 게시판" or Send an email to me: choijm@dankook.ac.kr

10

J. Choi, DKU

Reference

- Operating Systems Concepts
 - Chapter 1: Introduction
 - ✓ Chapter 2: Operating System Structure
 - √ Chapter 3: Processes
 - √ Chapter 4: Threads
 - ✓ Chapter 5: Process Synchronization
 - ✓ Chapter 6: CPU Scheduling
 - √ Chapter 7: Deadlocks
 - ✓ Chapter 8: Main Memory
 - √ Chapter 9: Virtual Memory
 - ✓ Chapter 10: Mass-Storage Structure
 - √ Chapter 11: File System Interface
 - √ Chapter 12: File System Implementation
 - √ Chapter 13: I/O Systems
 - √ Chapter 14: Protection
 - √ Chapter 15: Security
 - ✓ Chapter 16: Virtual machine
 - √ Chapter 17: Distributed Systems
 - √ Chapter 18: The Linux System
 - ✓ Chapter 19: Windows 7
 - √ Chapter 20: Influential OSes
 - ✓ Appendix: Mach, BSD

J. Choi, DKU

Reference

- Operating Systems: Internals and Design Principles
 - ✓ Chapter 1. Computer system overview
 - ✓ Chapter 2. Operating system overview
 - ✓ Chapter 3. Process description and control
 - √ Chapter 4. Threads
 - ✓ Chapter 5. Concurrency: Mutual exclusion & synchror
 - ✓ Chapter 6. Concurrency: Deadlock & Starvation
 - ✓ Chapter 7. Memory management
 - ✓ Chapter 8. Virtual memory
 - ✓ Chapter 9. Uniprocessor scheduling
 - ✓ Chapter 10. Multiprocessor and RT scheduling
 - ✓ Chapter 11. I/O management and disk scheduling
 - ✓ Chapter 12. File management
 - ✓ Chapter 13. Embedded operating system
 - ✓ Chapter 14. Virtual machine
 - ✓ Chapter 15. Operating system security
 - ✓ Chapter 16. Distributed processing, Client/Server, and Cluster

13

✓ Appendix and Online chapter

Reference

Modern Operating Systems

- ✓ Chapter 1. Introduction
- √ Chapter 2. Process and Thread
- ✓ Chapter 3. Memory Management
- √ Chapter 4. File Systems
- √ Chapter 5. Input/Output
- √ Chapter 6. Deadlocks
- ✓ Chapter 7. Virtualization and Cloud
- ✓ Chapter 8. Multiple Processor Systems
- ✓ Chapter 9. Security
- ✓ Chapter 10. Case Study 1: UNIX, Linux, & Android
- ✓ Chapter 11. Case Study 2: Windows 8
- ✓ Chapter 13. Operating System Design
- ✓ Chapter 14. Reading List and Bibliography

