

EEE 205 Fundamentals of Electrical Circuits

Prepared by: Barış Dal

Lab 3 Kirchhoff's Current Law

A. Background

In 1845, a German physicist Gustav Robert Kirchhoff stated two rules regarding the behavior of electrical circuits. The first rule, known as Kirchhoff's Current Law (KCL), is about the currents entering and exiting a node (junction). KCL states that "sum of all currents entering and the sum of all currents leaving a node must be equal".

Fig. 3.1.

Consider the above node given in Fig. 3.1.

Currents entering the node = $\{i_1, i_2, i_4, i_6\}$ Currents leaving the node = $\{i_3, i_5\}$

Therefore, KCL states that:

$$i_1 + i_2 + i_4 + i_6 = i_3 + i_5$$

Current Divider:

Consider the circuitry given in Fig. 3.2.

Fig. 3.2.

For the upper node, i₀ is the entering current and i₁ and i₂ are the leaving currents. Then,

$$i_0 = i_1 + i_2$$

The voltage drops over the resistors are equal, then,

$$R_1 i_1 = R_2 i_2$$

Solving the above two equations simultaneously, the branch currents i_1 and i_2 can be expressed in terms of the incoming total current i_0 as:

$$i_1 = \frac{R_2}{R_1 + R_2} i_0$$
 $i_2 = \frac{R_1}{R_1 + R_2} i_0$ &

B. Experimental Work

B.1. Current Divider & KCL

Consider the circuit given in Fig. 3.3.

- 1) Use OrCAD/PSpice to find the currents i₀, i₁, i₂, i₃ and i₄ by performing bias point analysis.
- 2) Set up the given circuit on a breadboard and measure the currents i₀, i₁, i₂, i₃ and i₄.

 $i_0 = 0,00098mA$

 $i_1 = 0,00041 mA$

 $i_2 = 0,00055mA$

 $i_3 = 0,00023mA$

 $i_4 = 0,00082mA$

3) Express the currents i_1 and i_2 in terms of the current i_0 , using current division rule. Similarly express the currents i_3 and i_4 in terms of the current i_0 , using the current division rule. Calculate the currents i_0 , i_1 , i_2 , i_3 and i_4 , and verify KCL at all nodes.

Fig. 3.3. Current Divider Circuit

i. Circuit Schematic & Simulation Output (i_0 , i_1 , i_2 , i_3 and i_4)

ii. Hand Calculations (Q3)

Equivalent Resistance

Consider the circuit given in Fig. 3.4.

- 1) Simulate the circuit in OrCAD/PSpice and find the current flowing through the 12V voltage source.
- 2) Calculate the equivalent resistance seen from the terminals of voltage source.
- 3) How can you measure the equivalent resistor experimentally? What is the measured equivalent resistor?

Fig. 3.4. A simple resistive circuit

iii. Circuit Schematic & Simulation Output (The current flowing through 12V voltage source)

iv. Hand Calculations (Calculate the equivalent resistance seen from the terminals of voltage source) 16

