#### STRIDE CLASSIFICATION DATASET, FEATURES, AND MODEL GENERATION

# ▼ Installing SensiML

```
!pip install sensiml-dev -U
```

# ▼ Login into the Project

#### ▼ Sensor Data

```
dsk.project = 'Stride Classification'
dsk.project.columns()

dict_keys(['GyroscopeX', 'GyroscopeY', 'GyroscopeZ', 'AccelerometerX', '
```

#### ▼ Metadata

```
dsk.project.metadata_columns()
    ['Cont or Event', 'Type', 'Side', 'Subject', 'capture_uuid', 'segment_uuid']
```

### ▼ Data Samples

```
dsk.project.get project summary().T
```

|                         | 0                                                | 1                                                      | 2                                              | 3                                              | 4                                               |    |
|-------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|----|
| Capture<br>Name         | Rafael_Normal<br>2021-07-31<br>16_00_17.csv      | Martin_Heel<br>Striking 2021-<br>07-30<br>08_06_42.csv | Rafael_Pronation<br>2021-07-31<br>16_13_34.csv | Rafael_Pronation<br>2021-07-31<br>16_14_27.csv | Rafael_Supination<br>2021-07-30<br>21_12_49.csv | 16 |
| Capture<br>UUID         | 01267146-<br>efa1-4bfb-<br>ad0f-<br>f27d64db23ab | 062dddc8-<br>7474-48e0-<br>8b4c-<br>fdece0a6a453       | 0779527e-a0c8-<br>4c51-8c99-<br>68f837196a70   | 1629d4c8-b571-<br>4eb9-bb85-<br>f1106668e56a   | 1b7a563d-311d-<br>4b41-9bdb-<br>e1d28aeda6d5    | 95 |
| Total<br>Event<br>Count | 0                                                | 0                                                      | 0                                              | 0                                              | 0                                               |    |
| Size<br>(MB)            | 0.01                                             | 0.02                                                   | 0.02                                           | 0.02                                           | 0.08                                            |    |
| Cont or<br>Event        | Continuous                                       | None                                                   | Continuous                                     | Continuous                                     | Discrete Event                                  |    |
| Side                    | Right                                            | Right                                                  | Right                                          | Right                                          | Right                                           |    |

# ▼ Project Pipeline

dsk.pipeline = 'Pipeline Final'

#### ▼ Feature Generator

pd.set\_option("display.max\_rows",150)
dsk.list\_functions(qgrid=False).head(100)

|    | NAME                   | TYPE         | SUBTYPE    | DESCRIPTION                                    | KP<br>FUNCTION |
|----|------------------------|--------------|------------|------------------------------------------------|----------------|
| 0  | Add Convolve           | Augmentation | Supervised | Add Convolve:\n Convolve (smoothing            | False          |
| 1  | Add Quantize           | Augmentation | Supervised | Add Quantize:\n<br>Quantize time serie         | False          |
| 2  | Add Noise              | Augmentation | Supervised | Add Noise:\n Add random noise to ti            | False          |
| 3  | Add Drift              | Augmentation | Supervised | Add Drift:\n The augmenter drifts t            | False          |
| 4  | Add Dropout            | Augmentation | Supervised | Add Dropout:\n Dropout values of so            | False          |
| 5  | Add Pool               | Augmentation | Supervised | Add Pool:\n Reduce the temporal res            | False          |
| 6  | Add Reverse            | Augmentation | Supervised | Add Reverse:\n Reverse the time lin            | False          |
| 7  | Add TimeWarp           | Augmentation | Supervised | Add Timewarp:\n<br>Random time warping         | False          |
| 8  | PME                    | Classifier   | Clustering | PME or pattern matching engine is a distance b | False          |
| 9  | Decision Tree Ensemble | Classifier   | Ensemble   | The decision tree ensemble classifier is an en | False          |
| 10 | Boosted Tree Ensemble  | Classifier   | Ensemble   | The boosted tree ensemble classifier is an ens | False          |
| 11 | Bonsai                 | Classifier   | Ensemble   | Bonsai is a tree model for supervised learning | False          |

The Tangarflow Micro

dsk.pipeline.add\_feature\_generator?

# ▼ Pipeline Datasets

dsk.list\_queries()

```
Created
                                                                   UUID
                Name
dsk.pipeline.reset()
dsk.pipeline.set_input_query("Continuous Final")
dsk.pipeline.describe()
     0.
           Name: Continuous Final
                                                             Type: query
                                                           Abaalista araa af lass
print(dsk.snippets.Segmenter.Windowing())
    dsk.pipeline.add transform("Windowing", params={"window size": 250,
                                     "delta": 250,
                                     "train delta": 0,
                                     "return_segment_index": False,
                                     })
                                    . . . . . . .
     23
                                                  Area
                                                                                 True
                                                         frequency components
dsk.function_description("Windowing")
        This function transfer the `input data` and `group column` from the previou
        It groups 'input_data' by using group_column. It divides each group into wi
        The argument `delta` represents the extent of overlap.
        Args:
            window size: Size of each window
            delta: The number of samples to increment. It is similar to overlap.
              If delta is equal to window size, this means no overlap.
            train delta: Train delta will be used only during training. Can be used
              Only used if train_delta is set to > 0.
            return segment index (False): Set to true to see the segment indexes
              for start and end. Note: This should only be used for visualization r
              pipeline building.
            DataFrame: Returns dataframe with `SegmentID` column added to the original
        Example:
            >>> dsk.pipeline.reset()
            >>> df = dsk.datasets.load activity raw toy()
            >>> df
                out:
                       Subject
                                   Class Rep accelx accely accelz
                                                   377
                                                                  4019
                           s01 Crawling
                                                           569
                    0
                                           1
                    1
                           s01 Crawling
                                           1
                                                  357
                                                           594
                                                                  4051
                    2
                           s01 Crawling
                                           1
                                                 333
                                                          638
                                                                 4049
                    3
                           s01 Crawling
                                            1
                                                  340
                                                           678
                                                                  4053
                    4
                           s01 Crawling
                                           1
                                                 372
                                                           708
                                                                  4051
                    5
                           s01 Crawling
                                           1
                                                 410
                                                           733
                                                                  4028
```

s01 Crawling

1

450

733

3988

6

```
7
                                 Crawling
                                            1
                            s01
                                                  492
                                                          696
                                                                3947
                     8
                            s01
                                 Crawling
                                            1
                                                  518
                                                          677
                                                                3943
                     9
                                                  528
                            s01
                                 Crawling
                                            1
                                                          695
                                                                3988
                     10
                            s01
                                 Crawling
                                            1
                                                   -1
                                                                4609
                                                         2558
                     11
                            s01
                                  Running
                                            1
                                                  -44
                                                       -3971
                                                                 843
                     12
                            s01
                                  Running
                                            1
                                                  -47
                                                        -3982
                                                                 836
                                            1
                     13
                            s01
                                  Running
                                                  -43
                                                        -3973
                                                                 832
                     14
                            s01
                                  Running
                                            1
                                                  -40
                                                       -3973
                                                                 834
                     15
                                                  -48
                            s01
                                  Running
                                            1
                                                        -3978
                                                                 844
                     16
                            s01
                                  Running
                                            1
                                                  -52
                                                       -3993
                                                                 842
                     17
                            s01
                                  Running
                                            1
                                                  -64
                                                        -3984
                                                                 821
                     18
                            s01
                                  Running
                                            1
                                                  -64
                                                       -3966
                                                                 813
                     19
                            s01
                                  Running
                                            1
                                                  -66
                                                       -3971
                                                                 826
                     20
                            s01
                                  Running
                                            1
                                                  -62
                                                        -3988
                                                                 827
                     21
                            s01
                                  Running
                                            1
                                                  -57
                                                        -3984
                                                                 843
              >>> dsk.pipeline.set_input_data('test_data', df, force=True,
                                 data_columns=['accelx', 'accely', 'accelz'],
                                 group_columns=['Subject', 'Class', 'Rep'],
                                 label column='Class')
              >>> dsk.pipeline.add_transform('Windowing',
                                            params={'window_size' : 5,
                                                    'delta': 5})
              >>> results, stats = dsk.pipeline.execute()
              >>> print results
                  out:
                                            . -- - 1 . .
                                                           Calculate the peak
                                    Fastura
  dsk.pipeline.add transform("Windowing", params={"window size":250, "delta":100, "train
  dsk.pipeline.describe()
      ______
              Name: Continuous Final
      _____
              Name: Windowing
                                                           Type: segmenter
      ______
              group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'se
              window size: 250
              delta: 100
              train delta: 50
              return segment index: False
       4/
                                               Physical
                                                        magnitude area.\n \n ...
                                                                               True
                                   Canarator

    Adding Feature Mannually to the Dataset

                   IVICALI DILICITICE
                                                            UIIICI CIICC OI CACII
                                   Generator
                                                Change
  dsk.pipeline.add_transform("Strip",params={"input_columns":["AccelerometerX","Accelero
                                           "type": "mean", },)
  dsk.pipeline.describe()
  dsk.pipeline.add transform("Strip".params={"input columns":["GvroscopeX"."GvroscopeY".
```

https://colab.research.google.com/drive/1wkMBCyL4wC14M18JvZGqq2m49ZCPuxUI#scrollTo=x\_DbR2Ie4gwC&printMode=true

```
"type": "mean", },)
dsk.pipeline.describe()
         Name: Continuous Final
                                              Type: query
   ______
         Name: Windowing
                                              Type: segmenter
   ______
         group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'se
         window_size: 250
         delta: 100
         train_delta: 50
         return_segment_index: False
                 ._____
                                              Type: transform
        Name: Strip
         group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject
         input columns: ['AccelerometerX', 'AccelerometerY', 'AccelerometerZ']
         type: mean
         Name: Continuous Final
                                              Type: query
         Name: Windowing
                                              Type: segmenter
   ______
         group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'se
         window size: 250
         delta: 100
         train delta: 50
         return segment index: False
         Name: Strip
                                             Type: transform
          _____
         group columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject
         input_columns: ['GyroscopeX', 'GyroscopeY', 'GyroscopeZ']
         type: mean
```

# ▼ Adding Features with Feature Generator (Rate of Change & Statistical)

```
"params": {
                         "columns":sensor_columns,
                         "sample rate":100,
                         "cepstra_count":10,
                       }},
                       function_defaults={'columns':sensor_columns},
                       ____
                                   fv, s = dsk.pipeline.execute()
    Executing Pipeline with Steps:
        Name: Continuous Final
                                      Type: query
     -----
        Name: Windowing
                                      Type: segmenter
    ______
    ______
        Name: Strip
                                      Type: transform
    ______
    _____
        Name: generator set
    Results Retrieved... Execution Time: 0 min. 2 sec.
                      Generator
                                         column in
Features Added
                      Generator
                                         column i
 dsk.pipeline.describe()
        Name: Continuous Final
                                     Type: query
    -----
        Name: Windowing
                                      Type: segmenter
    ______
        group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type',
        window size: 250
        delta: 100
        train delta: 50
        return segment index: False
    ______
        Name: Strip
                                     Type: transform
    -----
         group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject
         input_columns: ['GyroscopeX', 'GyroscopeY', 'GyroscopeZ']
```

type: mean

```
Name: generator set
                                                     Type: generatorset
______
        0. Name: MFCC
        1. Name: MFCC
        2. Name: MFCC
        3. Name: MFCC
        4. Name: MFCC
        5. Name: MFCC
        6. Name: Mean Difference
        7. Name: Threshold Crossing Rate
        8. Name: Mean Crossing Rate
        9. Name: Zero Crossing Rate
       10. Name: Sigma Crossing Rate
       11. Name: Second Sigma Crossing Rate
       12. Name: Threshold With Offset Crossing Rate
       13. Name: Kurtosis
       14. Name: Maximum
       15. Name: Absolute Mean
       16. Name: Mean
       17. Name: Variance
       18. Name: Zero Crossings
       19. Name: Positive Zero Crossings
       20. Name: Negative Zero Crossings
       21. Name: Median
       22. Name: Linear Regression Stats
       23. Name: Linear Regression Stats
       24. Name: Linear Regression Stats
       25. Name: Linear Regression Stats
       26. Name: Linear Regression Stats
       27. Name: Linear Regression Stats
       28. Name: Standard Deviation
       29. Name: Skewness
       30. Name: Interquartile Range
       31. Name: 25th Percentile
       32. Name: 75th Percentile
       33. Name: 100th Percentile
       34. Name: Minimum
       35. Name: Sum
       36. Name: Absolute Sum
```

aroun columns. ['Cont or Frant' 'SaamantTD' 'Sida' 'Strida' 'Subiac

# New Shape With The Added Features

```
fv.T.shape
     (241, 67)
fv.T.head(100)
```

|                                    | 0                                                | 1                                                | 2                                                |   |
|------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---|
| Cont or Event                      | Continuous                                       | Continuous                                       | Continuous                                       |   |
| SegmentID                          | 0                                                | 0                                                | 0                                                |   |
| Side                               | Right                                            | Right                                            | Right                                            |   |
| Stride                             | Normal                                           | Normal                                           | Normal                                           |   |
| Subject                            | Rafael                                           | Rafael                                           | Rafael                                           |   |
| Туре                               | Train                                            | Train                                            | Train                                            |   |
| segment_uuid                       | 0dbde19a-<br>d028-47ae-<br>9642-<br>ef056e4dcdf0 | 2a28cd32-<br>0193-4b52-<br>a0ed-<br>5e25da32832c | 2d4326a4-<br>61cd-415c-<br>9af5-<br>dc27933bbb0a | f |
| gen_0001_AccelerometerXmfcc_000000 | 330571                                           | 330408                                           | 322229                                           |   |
| gen_0001_AccelerometerXmfcc_000001 | -96066                                           | -72169                                           | -91373                                           |   |
| gen_0001_AccelerometerXmfcc_000002 | -90505                                           | -105532                                          | -73317                                           |   |
| gen_0001_AccelerometerXmfcc_000003 | -34643                                           | -39155                                           | -51241                                           |   |
| gen_0001_AccelerometerXmfcc_000004 | -9615                                            | -14631                                           | -26385                                           |   |
| gen_0001_AccelerometerXmfcc_000005 | -56522                                           | -17195                                           | -42642                                           |   |
| gen_0001_AccelerometerXmfcc_000006 | -32336                                           | -9984                                            | -71405                                           |   |
| gen_0001_AccelerometerXmfcc_000007 | -28055                                           | 10705                                            | -49373                                           |   |
| gen_0001_AccelerometerXmfcc_000008 | -7462                                            | -8046                                            | 7528                                             |   |
| gen_0001_AccelerometerXmfcc_000009 | -21134                                           | 33507                                            | -9233                                            |   |
| gen_0002_AccelerometerYmfcc_000000 | 362054                                           | 359008                                           | 345784                                           |   |
| gen_0002_AccelerometerYmfcc_000001 | -60355                                           | -57397                                           | -47997                                           |   |
| gen_0002_AccelerometerYmfcc_000002 | -38405                                           | -20586                                           | -12613                                           |   |
| gen_0002_AccelerometerYmfcc_000003 | -23059                                           | -28082                                           | -38464                                           |   |
| gen_0002_AccelerometerYmfcc_000004 | -7128                                            | -57807                                           | -27268                                           |   |
| gen_0002_AccelerometerYmfcc_000005 | 5684                                             | -13782                                           | -11805                                           |   |
| gen_0002_AccelerometerYmfcc_000006 | 1322                                             | 34924                                            | 19483                                            |   |
| gen_0002_AccelerometerYmfcc_000007 | -2923                                            | 14919                                            | 12632                                            |   |
| gen_0002_AccelerometerYmfcc_000008 | -23784                                           | -7330                                            | 9773                                             |   |
| gen_0002_AccelerometerYmfcc_000009 | -2254                                            | 28701                                            | 7625                                             |   |
| an 0002 Annalarameter7mfon 000000  | 250000                                           | 26/1/6                                           | 240770                                           |   |

Feature Selection (using Variance Threshol, Correlation Threshold & t-Test Feature Selector) and Scaling the output data before training the model.

```
nan NNRA Gurnecona77aroCrossings
                                                                                                                                                                                                                        ണ
                                                                                                                                                                                                                                                               57
                                                                                                                                                                                                                                                                                                    52
dsk.pipeline.add feature selector([{'name':'Variance Threshold','params':{"threshold":
                                                                                                                             { 'name': 'Correlation Threshold', 'params': { "threshol
                                                                                                                             { 'name': 't-Test Feature Selector', 'params': { "Feature Sele
                                                                                                                             1)
dsk.pipeline.add transform(
               "Min Max Scale",)
dsk.pipeline.describe()
                                            Name: Continuous Final
                                                                                                                                                                                                                        Type: query
                 _____
                      _____
                                         Name: Windowing
                                                                                                                                                                                                                       Type: segmenter
                                            group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type',
                                            window size: 250
                                            delta: 100
                                            train delta: 50
                                            return segment index: False
                 ______
                                            Name: Strip
                                                                                                                                                                                                                       Type: transform
                                            group columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subjection or Event', 'SegmentID', 'Subjection or Event', 'Subjectio
                                            input_columns: ['GyroscopeX', 'GyroscopeY', 'GyroscopeZ']
                                            type: mean
                 ______
                                            Name: generator set
                                                                                                                                                                                                                       Type: generatorset
                                               .....
                                                0. Name: MFCC
                                                1. Name: MFCC
                                                 2. Name: MFCC
                                                 3. Name: MFCC
                                                 4. Name: MFCC
                                                 5. Name: MFCC
                                                 6. Name: Mean Difference
                                                7. Name: Threshold Crossing Rate
                                                8. Name: Mean Crossing Rate
                                                9. Name: Zero Crossing Rate
                                             10. Name: Sigma Crossing Rate
                                             11. Name: Second Sigma Crossing Rate
                                             12. Name: Threshold With Offset Crossing Rate
                                            13. Name: Kurtosis
                                             14. Name: Maximum
                                             15. Name: Absolute Mean
                                             16. Name: Mean
                                             17. Name: Variance
                                             18. Name: Zero Crossings
```

```
19. Name: Positive Zero Crossings
         20. Name: Negative Zero Crossings
         21. Name: Median
         22. Name: Linear Regression Stats
         23. Name: Linear Regression Stats
         24. Name: Linear Regression Stats
         25. Name: Linear Regression Stats
         26. Name: Linear Regression Stats
         27. Name: Linear Regression Stats
         28. Name: Standard Deviation
         29. Name: Skewness
         30. Name: Interquartile Range
         31. Name: 25th Percentile
         32. Name: 75th Percentile
         33. Name: 100th Percentile
         34. Name: Minimum
         35. Name: Sum
         36. Name: Absolute Sum
         group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject
      gen_0107_GyroscopeYLinearRegressionStdErr_0003
                                      0.376796
                                             0.490591
                                                    0.490307
Executing the Pipeline
      gen_v roo_ayroscopezemearnegressionintercept_voor
 fv_t, s_t = dsk.pipeline.execute()
    Executing Pipeline with Steps:
      -----
         Name: Continuous Final
                                         Type: query
     -----
         Name: Windowing
                                         Type: segmenter
    ______
    ______
         Name: Strip
                                         Type: transform
    ______
    _____
         Name: generator set
                                         Type: generatorset
    ______
    _____
         Name: selector set
                                         Type: selectorset
     ._____
         Name: Min Max Scale
                                         Type: transform
```

Results Retrieved... Execution Time: 0 min. 0 sec.

# ▼ Significant Features Selected (reduced to a few)

GOD 0125 GUEGGOODOVIOD 414 25 496 25 274 75

fv\_t.T

|                                     | 0                                                | 1                                                | 2                                                |                                             |
|-------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| gen_0099_AccelerometerZMedian       | 199                                              | 193                                              | 166                                              | 19                                          |
| gen_0102_GyroscopeZMedian           | 125                                              | 156                                              | 148                                              | 9                                           |
| gen_0133_AccelerometerX75Percentile | 133                                              | 104                                              | 135                                              | 12                                          |
| gen_0150_GyroscopeZminimum          | 187                                              | 198                                              | 243                                              | 23                                          |
| Cont or Event                       | Continuous                                       | Continuous                                       | Continuous                                       | Continuou                                   |
| SegmentID                           | 0                                                | 0                                                | 0                                                |                                             |
| Side                                | Right                                            | Right                                            | Right                                            | Rigl                                        |
| Stride                              | Normal                                           | Normal                                           | Normal                                           | Norma                                       |
| Subject                             | Rafael                                           | Rafael                                           | Rafael                                           | Rafa                                        |
| Туре                                | Train                                            | Train                                            | Train                                            | Trai                                        |
| segment_uuid                        | 0dbde19a-<br>d028-47ae-<br>9642-<br>ef056e4dcdf0 | 2a28cd32-<br>0193-4b52-<br>a0ed-<br>5e25da32832c | 2d4326a4-<br>61cd-415c-<br>9af5-<br>dc27933bbb0a | bed1d3fa<br>096a-4bb2<br>859<br>f45c391b311 |
| gen_u14z_Gyroscopex1uure            | UOC                                              | U 5U3Z                                           | 4800                                             |                                             |

fv\_t.T.shape

(11, 67)

den 0145 AccelerometerXminimum -1165 -802 -620

dsk.pipeline.visualize\_features(fv\_t)



### Creating Train and Test Datasets

```
x_train, x_test, x_validate, y_train, y_test, y_validate, class_map = dsk.pipeline.fe@
----- Summary -----
Class Map: {'Normal': 0, 'Over Pronation': 1, 'Over Supination': 2, 'Pronation':
Train:
    total: 53
    by class: [ 8. 12. 13. 12. 8.]
Validate:
    total: 14
    by class: [1. 4. 3. 3. 3.]
Train:
    total: 0
    by class: [0. 0. 0. 0. 0.]
x_train.shape
(53, 4)
```

### Creating the NN Aerchitecture Model in Tensorflow

```
from tensorflow.keras import layers
import tensorflow as tf

tf_model = tf.keras.Sequential()

tf_model.add(layers.Dense(11, activation='relu',kernel_regularizer='l1',input_shape=(xt_model.add(layers.Dropout(0.1)))
tf_model.add(layers.Dense(8, activation='relu',input_shape=(x_train.shape[1],)))
tf_model.add(layers.Dropout(0.1))
tf_model.add(layers.Dense(y_train.shape[1], activation='softmax'))

# Fitting the Model
tf_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'tf_model.summary())
train_history = {'loss':[],'val_loss':[],'accuracy':[],'val_accuracy':[]}
```

Model: "sequential"

| Layer (type)        | Output | Shape | Param # |
|---------------------|--------|-------|---------|
| dense (Dense)       | (None, | 11)   | 55      |
| dropout (Dropout)   | (None, | 11)   | 0       |
| dense_1 (Dense)     | (None, | 8)    | 96      |
| dropout_1 (Dropout) | (None, | 8)    | 0       |
| dense_2 (Dense)     | (None, | 5)    | 45      |

Total params: 196
Trainable params: 196
Non-trainable params: 0

from IPython.display import clear\_output
import sensiml.tensorflow.utils as sml\_tf

```
num_iterations=10
epochs=100
batch_size=32
```

```
data = tf.data.Dataset.from_tensor_slices((x_train, y_train))
shuffle_ds = data.shuffle(buffer_size=x_train.shape[0], reshuffle_each_iteration=True)
```

```
for i in range(num_iterations):
```

history = tf\_model.fit( shuffle\_ds, epochs=epochs, batch\_size=batch\_size, validation

```
for key in train_history:
```

train\_history[key].extend(history.history[key])

```
clear_output()
```

sml tf.plot training results(tf model, train history, x train, y train, x validate,





## Qualtizing the Model for TFLite

```
import numpy as np
def representative dataset generator():
  for value in x_validate:
    yield[np.array(value, dtype=np.float32, ndmin=2)]
# Unquantized Model
converter = tf.lite.TFLiteConverter.from keras model(tf model)
tflite model full = converter.convert()
print("Full Model Size", len(tflite model full))
# Quantized Model
converter = tf.lite.TFLiteConverter.from keras model(tf model)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE FOR SIZE]
converter.representative dataset = representative dataset generator
tflite model quant = converter.convert()
print("Quantized Model Size", len(tflite_model_quant))
    INFO:tensorflow:Assets written to: /tmp/tmpy8kneu2f/assets
    INFO:tensorflow:Assets written to: /tmp/tmpy8kneu2f/assets
    Full Model Size 2560
    INFO:tensorflow:Assets written to: /tmp/tmpv12ki8l1/assets
    INFO:tensorflow:Assets written to: /tmp/tmpv12ki8l1/assets
    Quantized Model Size 2720
```

## Uploading the Model Back to SensiML Project

"class map":class map tmp,

"estimator type": "classification",

```
"threshold":0.0,
                                                                             "train history":train history,
                                                                             "model_json":tf_model.to_json()})
dsk.pipeline.set validation method("Recall",params={})
dsk.pipeline.set_classifier("TF Micro", params={})
dsk.pipeline.set tvo()
results, stats = dsk.pipeline.execute()
         Executing Pipeline with Steps:
                         Name: Continuous Final
                                                                                                                                Type: query
                         Name: Windowing
                                                                                                                                  Type: segmenter
           -----
            2.
                         Name: Strip
                                                                                                                                  Type: transform
           -----
                          Name: generator set
                                                                                                                                  Type: generatorset
           ______
                          Name: selector set
                                                                                                                                  Type: selectorset
          _____
                          Name: Min Max Scale
           -----
          _____
                         Name: tvo
                                                                                                                                  Type: tvo
          ______
                           Classifier: TF Micro
                           Training Algo: Load Model TF Micro
                                            class map: {'Normal': 1, 'Over Pronation': 2, 'Over Supination':
                                            estimator type: classification
                                            model_json: {"class_name": "Sequential", "config": {"name": {
                                            model parameters: {'tflite': '1c00000054464c3314002000040008000c
                                            threshold: 0.0
                                            train history: {'loss': [46.95075607299805, 44.74125671386719, 3'
                           Validation Method: Recall
```

Results Retrieved... Execution Time: 0 min. 0 sec.

```
results.summarize()
```

```
NameError Traceback (most recent call last)
<ipython-input-30-468118724af2> in <module>()
----> 1 results.summarize()

NameError: name 'results' is not defined

SEARCH STACK OVERFLOW
```

#### Confusion Matrix

```
model = results.configurations[0].models[0]
model.confusion_matrix_stats['validation']
  CONFUSION MATRIX:
                 NormalOver PronationOver Supination PronationSupination
                                                                                UNK
      Normal
                   9.0
                              0.0
                                        0.0
                                                  0.0
                                                             0.0
                                                                                 0.0
                        0.0
                                16.0
  Over Pronation
                                            0.0
                                                      0.0
                                                                0.0
                                                                         0.0
  Over Supination
                         0.0
                                   0.0
                                            16.0
                                                       0.0
                                                                  0.0
                                                                            0.0
   Pronation
                              0.0
                                        0.0
                                                 15.0
                                                             0.0
                   0.0
                                                                       0.0
                                                                                 0.0
  Supination
                   0.0
                              0.0
                                        0.0
                                                 0.0
                                                           11.0
                                                                       0.0
                                                                                 0.0
```

16

15

100.0

11

100.0

0

0

16

100.0 100.0

#### Double-click (or enter) to edit

Total

PosPred(%)

100.0

```
model.knowledgepack.save("TFu With SensiML Features")
    Knowledgepack 'TFu With SensiML Features' updated.
    {'class_map': {'1': 'Normal',
       '2': 'Over Pronation',
       '3': 'Over Supination',
       '4': 'Pronation',
       '5': 'Supination'},
      'configuration_index': '0',
      'cost summary': {'framework': {'flash': 0,
        'latency': 0,
        'sram': 0,
        'stack': 0},
       'model_size': 2593,
       'neurons': 2593,
       'pipeline': [{'flash': 0,
         'latency': 0.0,
         'name': 'Windowing',
         'sram': 0,
         'stack': 0,
```

```
'type': 'segmenter'},
{'flash': 0,
 'latency': 0.0,
 'name': 'Strip',
 'sram': 0,
 'stack': 0,
 'type': 'transform'},
{'flash': 0,
 'latency': 0.0,
 'name': 'generator set',
 'per_generator_costs': {'75th Percentile': {'flash': 0,
   'latency': 0.0,
   'name': '75th Percentile',
   'num_features': 1,
   'num_iterations': 1,
   'sram': 0,
   'stack': 0,
   'type': 'generator'},
  'Median': {'flash': 0,
   'latency': 0.0,
   'name': 'Median',
   'num_features': 2,
   'num iterations': 2,
   'sram': 0,
   'stack': 0,
   'type': 'generator'},
  'Minimum': {'flash': 0,
   'latency': 0.0,
   'name': 'Minimum',
   'num features': 1,
   'num iterations': 1,
   'sram': 0,
   'stack': 0,
   'type': 'generator'}},
 'sram': 0,
 'stack': 0,
 'type': 'generatorset'},
{'flash': 0,
 'latency': 0.0,
 'name': 'Min Max Scale',
```

# ▼ Flashing

```
!pip install qgrid

!pip install bqplot

from sensiml import SensiML
from sensiml.widgets import *

dsk = SensiML()
FlashWidget(dsk, folder='pack').create widget()

https://colab.research.google.com/drive/1wkMBCyL4wC14M18JvZGqq2m49ZCPuxUI#scrollTo=x_DbR2Ie4gwC&printMode=true
```

- # Replace <Your Folder> with the directory folder path of your Knowledge Pack
- # Note that the folder path needs double backslashes. See example:
- # C:\\Users\\YourName\\Documents\\notebooks\\knowledgepacks

| /usr/local/lib/python3.7/dist-packages/sensiml/client.py:112: | UserWarning: | Confi |
|---------------------------------------------------------------|--------------|-------|
| <pre>mgc("%config Completer.use_jedi = False")</pre>          |              |       |

| Platform     | Nordic Thingy | -     |
|--------------|---------------|-------|
| Binary       |               |       |
| Flash Method | J-Link        | Flash |

• X