Lab 10 – Designing a Control Unit of a RISC Processor

Objectives

In this lab, we will develop an instruction-fetch datapath and verify its functionality.

Section	\odot
a) Introduction A brief overview of this lab.	10
b) Implementation In this section, you will implement a control unit of a RISC-V processor.	90

a. Introduction

The last module we are left with is the control unit, which we have to design before we proceed further to integrate the already-designed processor components. In this lab, we will develop a module for generating control signals for specific instructions. These control signals are used to control the data flow and enabling or disabling the modules which are not needed for specific instructions.

b. Implementation

Besides control unit, we also have to develop ALU Control unit to set the control signals of ALU.

i. Lab Task 01

As shown in Fig. 10.1, Write a module, namedControl_Unit, which takes a 7-bit wide input, named Opcode, and generate 7 output signals. Out of these seven outputs, one is ALUOp which is 2-bits wide, and the remaining six are 1-bit wide, which are Branch, MemRead, MemtoReg, MemWrite, ALUSrc, and RegWrite.

Fig. 10.1. I/O diagram of Control Unit.

The behavior of Control_Unit module should be designed according to the Table 10.1. The outputs depend only on the input, Opcode. Here, 1'bx means don't care.

Table.	10.1. This tar	ole shows h	low the control	signals are	set based on the	e input values	of Opcode	٠.
ıction								^

Instruction Type	Opcode	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch	ALUOp [1:0]
R-Type	0110011	0	0	1	0	0	0	10
I-Type (ld)	0000011	1	1	1	1	0	0	00
I-Type (sd)	0100011	1	Х	0	0	1	0	00
SB-Type (Beq)	1100011	0	Х	0	0	0	1	01

Interpret these control signals, relate these with the given instructions and identify their impact on data-flow. Now, add another case for addi instruction by including its opcode and corresponding output signals. You can initialize all these control signals with 0 or add a default case for this in module.

ii. Lab Task 02

Write a module, named ALU_Control, which takes a 2-bit input, named ALUOp and a 4-bit input, named Funct, and produces a 4-bit output, named Operation, as shown in Figure. 10.2.

Fig. 10.2. I/O diagram of ALU_Control module.

The values of the output, Operation, should be set based on the input signals, ALUOP, as shown in Table 10.2.

Table. 10.2. The values of the output, Operation, based on the corresponding input, ALUOp, signals.

Instruction Type	ALUOp [1:0]	Funct	Operation
I/S-Type (ld, sd)	00	XXXX	0010
SB-Type (Beq)	01	xxxx	0110
		0000	0010
D. Tuno	10	1000	0110
R-Type		0111	0000
		0110	0001

If ALUOp is 2'b00 or 2b'01, then Operation can be decided directly without checking bits of Funct. If ALUOp is 2'b10, then Operation is decided according to the value of Funct bits.

iii. Lab Task 03

Integrate above two modules in a top module, named top_control. Write a testbench and perform verification.

The top module has 2 inputs; Opcode, and Funct and outputs 7 outputs; Branch, MemRead, MemtoReg, MemWrite ALUSrc, RegWrite, and Operation.

Assessment Rubric Computer Architecture Lab Lab 10

Designing a Control Unit for RISC V Processor

Name:	Student ID:
-------	-------------

Points Distribution

Task No.	LR 2	LR 5	AR 7	
Task No.	Code	Results	Report Submission	
Task 1 Control Unit	/20	-	/20	
Task 2 ALU Control	/20	-	/20	
Task 3 Top Control	/20	/20		
Total Points	/100 Points			
CLO Mapped	CLO 1			

For description of different levels of the mapped rubrics, please refer to the provided Lab Evaluation Assessment Rubrics.

#	Assessment Elements	Level 1: Unsatisfactory Points 0-1	Level 2: Developing Points 2	Level 3: Good Points 3	Level 4: Exemplary Points 4
LR2	Program/Code/ Simulation Model/ Network Model	Program/code/simulation model/network model does not implement the required functionality and has several errors. The student is not able to utilize even the basic tools of the software.	Program/code/simulation model/network model has some errors and does not produce completely accurate results. Student has limited command on the basic tools of the software.	Program/code/simulation model/network model gives correct output but not efficiently implemented or implemented by computationally complex routine.	Program/code/simulation /network model is efficiently implemented and gives correct output. Student has full command on the basic tools of the software.
LR5	Results & Plots	Figures/ graphs / tables are not developed or are poorly constructed with erroneous results. Titles, captions, units are not mentioned. Data is presented in an obscure manner.	Figures, graphs and tables are drawn but contain errors. Titles, captions, units are not accurate. Data presentation is not too clear.	All figures, graphs, tables are correctly drawn but contain minor errors or some of the details are missing.	Figures / graphs / tables are correctly drawn and appropriate titles/captions and proper units are mentioned. Data presentation is systematic.
AR7	Report Content/Code Comments	not answered / figures are	Some of the questions are answered, figures are labelled, titles are mentioned and units are mentioned. Few comments are stated in the code.	Majority of the questions are answered, figures are labelled, titles are mentioned and units are mentioned. Comments are stated in the code.	All the questions are answered, figures are labelled, titles are mentioned and units are properly mentioned. Proper comments are stated in the code.