ANEXO_2_Segunda_combinación

November 24, 2023

0.0.1 Segunda combinación

$$U = 1.2 \cdot D + 1 \cdot EQ$$

Ecuaciones de pendiente deflexión

Momentos de los extremos fijos (FEM) Todas las vigas están sometidas a las cargas distribuidas con la misma configuracion, por lo tanto la distribucion de momentos en sus extremos fijos sería:

$$\text{FEMy} = \frac{L^2 wy}{12}$$

La rotación de las columnas del primer y segundo piso debido a un desplazamiento lineal que genera la carga del viento se define como:

$$\psi_1 = -\frac{\Delta_1}{H}$$

$$\psi_2 = -\frac{\Delta_2}{H}$$

$$Fs_1 = 720.000$$

$${\rm Fs}_2 = 1440.000$$

Momentos internos en los extremos de cada tramo Los momentos en los extremos de cada tramo empotrado sería:

Columnas primer piso

$$\begin{split} M_{ab} &= \frac{2EI\left(\frac{3\Delta_1}{H} + 2a + b\right)}{H} \\ M_{ba} &= \frac{2EI\left(\frac{3\Delta_1}{H} + a + 2b\right)}{H} \\ M_{de} &= \frac{2EI\left(\frac{3\Delta_1}{H} + 2d + e\right)}{H} \\ M_{ed} &= \frac{2EI\left(\frac{3\Delta_1}{H} + d + 2e\right)}{H} \\ M_{gh} &= \frac{2EI\left(\frac{3\Delta_1}{H} + d + 2g + h\right)}{H} \\ M_{hg} &= \frac{2EI\left(\frac{3\Delta_1}{H} + 2g + h\right)}{H} \end{split}$$

Columnas segundo piso

$$\begin{split} M_{bc} &= \frac{2EI\left(\frac{3\Delta_2}{H} + 2b + c\right)}{H} \\ M_{cb} &= \frac{2EI\left(\frac{3\Delta_2}{H} + b + 2c\right)}{H} \\ M_{ef} &= \frac{2EI\left(\frac{3\Delta_2}{H} + 2e + f\right)}{H} \\ M_{fe} &= \frac{2EI\left(\frac{3\Delta_2}{H} + e + 2f\right)}{H} \\ M_{hi} &= \frac{2EI\left(\frac{3\Delta_2}{H} + 2h + i\right)}{H} \\ M_{ih} &= \frac{2EI\left(\frac{3\Delta_2}{H} + h + 2i\right)}{H} \end{split}$$

Vigas del techo del segundo piso

$$\begin{split} M_{cf} &= \frac{2EI\left(2c+f\right)}{L} + \frac{L^2wy}{12} \\ M_{fc} &= \frac{2EI\left(c+2f\right)}{L} - \frac{L^2wy}{12} \\ M_{fi} &= \frac{2EI\left(2f+i\right)}{L} + \frac{L^2wy}{12} \\ M_{if} &= \frac{2EI\left(f+2i\right)}{L} - \frac{L^2wy}{12} \end{split}$$

Vigas del techo del primer piso

$$\begin{split} M_{be} &= \frac{2EI\left(2b+e\right)}{L} + \frac{L^2wy}{12} \\ M_{eb} &= \frac{2EI\left(b+2e\right)}{L} - \frac{L^2wy}{12} \\ M_{eh} &= \frac{2EI\left(2e+h\right)}{L} + \frac{L^2wy}{12} \\ M_{he} &= \frac{2EI\left(e+2h\right)}{L} - \frac{L^2wy}{12} \end{split}$$

Fórmula de cortantes

Cortantes del segundo piso

$$Rbc = \frac{\frac{2EI(\frac{3\Delta_2}{H} + b + 2c)}{H} + \frac{2EI(\frac{3\Delta_2}{H} + 2b + c)}{H}}{H}$$

$$Ref = \frac{\frac{2EI(\frac{3\Delta_2}{H} + e + 2f)}{H} + \frac{2EI(\frac{3\Delta_2}{H} + 2e + f)}{H}}{H}$$

$$Rhi = \frac{\frac{2EI(\frac{3\Delta_2}{H} + b + 2i)}{H} + \frac{2EI(\frac{3\Delta_2}{H} + 2h + i)}{H}}{H}$$

Cortantes del primer y segundo piso

$$\begin{aligned} \operatorname{Rgh} &= \frac{\frac{2EI\left(\frac{3\Delta_{1}}{H}+g+2h\right)}{H} + \frac{2EI\left(\frac{3\Delta_{1}}{H}+2g+h\right)}{H}}{H} \\ \operatorname{Rde} &= \frac{\frac{2EI\left(\frac{3\Delta_{1}}{H}+d+2e\right)}{H} + \frac{2EI\left(\frac{3\Delta_{1}}{H}+2d+e\right)}{H}}{H} \\ \operatorname{Rab} &= \frac{\frac{2EI\left(\frac{3\Delta_{1}}{H}+d+2e\right)}{H} + \frac{2EI\left(\frac{3\Delta_{1}}{H}+2a+b\right)}{H}}{H} \end{aligned}$$

Ecuaciones de equilibrio

Equilibrio de momentos en los nodos C e I

$$\begin{split} \mathrm{eq}_C &= M_{cb} + M_{cf} \\ &= \frac{2EI\left(\frac{3\Delta_2}{H} + b + 2c\right)}{H} + \frac{2EI\left(2c + f\right)}{L} + \frac{L^2wy}{12} \\ &= \frac{2EI\left(2c + f\right)}{L} + \frac{2EI\left(\frac{3\Delta_2}{H} + b + 2c\right)}{H} + \frac{L^2wy}{12} \ \ (\mathrm{ecu.C}) \end{split}$$

$$\begin{split} \mathrm{eq}_I &= M_{if} + M_{ih} \\ &= \frac{2EI\left(f+2i\right)}{L} - \frac{L^2wy}{12} + \frac{2EI\left(\frac{3\Delta_2}{H} + h + 2i\right)}{H} \\ &= \frac{2EI\left(f+2i\right)}{L} + \frac{2EI\left(\frac{3\Delta_2}{H} + h + 2i\right)}{H} - \frac{L^2wy}{12} \ \ (\mathrm{ecu.I}) \end{split}$$

Equilibrio de momentos en los nodos B, H, F

$$\begin{split} \mathrm{eq}_{F} &= M_{fc} + M_{fi} + M_{fe} \\ &= \frac{2EI\left(c + 2f\right)}{L} - \frac{L^{2}wy}{12} + \frac{2EI\left(2f + i\right)}{L} + \frac{L^{2}wy}{12} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + e + 2f\right)}{H} \\ &= \frac{2EI\left(c + 2f\right)}{L} + \frac{2EI\left(2f + i\right)}{L} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + e + 2f\right)}{H} \ \, (\text{ecu.F}) \end{split}$$

$$\begin{split} & \operatorname{eq}_{B} = M_{ba} + M_{bc} + M_{be} \\ & = \frac{2EI\left(\frac{3\Delta_{1}}{H} + a + 2b\right)}{H} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + 2b + c\right)}{H} + \frac{2EI\left(2b + e\right)}{L} + \frac{L^{2}wy}{12} \\ & = \frac{2EI\left(2b + e\right)}{L} + \frac{2EI\left(\frac{3\Delta_{1}}{H} + a + 2b\right)}{H} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + 2b + c\right)}{H} + \frac{L^{2}wy}{12} \ \ \, (ecu.B) \end{split}$$

$$\begin{split} \mathrm{eq}_{H} &= M_{hg} + M_{he} + M_{hi} \\ &= \frac{2EI\left(\frac{3\Delta_{1}}{H} + g + 2h\right)}{H} + \frac{2EI\left(e + 2h\right)}{L} - \frac{L^{2}wy}{12} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + 2h + i\right)}{H} \\ &= \frac{2EI\left(e + 2h\right)}{L} + \frac{2EI\left(\frac{3\Delta_{1}}{H} + g + 2h\right)}{H} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + 2h + i\right)}{H} - \frac{L^{2}wy}{12} \ \, (\text{ecu.H}) \end{split}$$

Equilibrio de momentos en el nodo E

$$\begin{split} & \operatorname{eq}_{E} = M_{ed} + M_{eb} + M_{eh} + M_{ef} \\ & = \frac{2EI\left(\frac{3\Delta_{1}}{H} + d + 2e\right)}{H} + \frac{2EI\left(b + 2e\right)}{L} - \frac{L^{2}wy}{12} + \frac{2EI\left(2e + h\right)}{L} + \frac{L^{2}wy}{12} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + 2e + f\right)}{H} \\ & = \frac{2EI\left(b + 2e\right)}{L} + \frac{2EI\left(2e + h\right)}{L} + \frac{2EI\left(\frac{3\Delta_{1}}{H} + d + 2e\right)}{H} + \frac{2EI\left(\frac{3\Delta_{2}}{H} + 2e + f\right)}{H} \text{ (ecu.E)} \end{split}$$

Equilibrio de fuerzas en el piso 1

$$\begin{split} & = \text{q}_{V1} = \text{Fs}_1 + \text{Fs}_2 - (\text{Rgh} + \text{Rde} + \text{Rab}) \\ & = 720.000 + 1440.000 - \left(\frac{\frac{2EI\left(\frac{3\Delta_1}{H} + g + 2h\right)}{H} + \frac{2EI\left(\frac{3\Delta_1}{H} + 2g + h\right)}{H}}{H} + \frac{\frac{2EI\left(\frac{3\Delta_1}{H} + d + 2e\right)}{H} + \frac{2EI\left(\frac{3\Delta_1}{H} + 2d + e\right)}{H}}{H} + \frac{\frac{2EI\left(\frac{3\Delta_1}{H} + d + 2e\right)}{H} + \frac{2EI\left(\frac{3\Delta_1}{H} + 2d + e\right)}{H}}{H} + \frac{\frac{2EI\left(\frac{3\Delta_1}{H} + 2d + e\right)}{H}}{H} + \frac{2EI\left(\frac{3\Delta_1}{H} + 2d + e\right)}{H} + \frac{2EI\left(\frac{3\Delta_1}{H} + g + 2h\right)}{H} + \frac{2EI\left(\frac{3\Delta_1}{H} + 2d + e\right)}{H} + \frac{2EI\left(\frac{3\Delta_1}{H} + g + 2h\right)}{H} + \frac$$

Equilibrio de fuerzas en el piso 2

$$\begin{split} & \operatorname{eq}_{V2} = \operatorname{Fs}_2 - (\operatorname{Rbc} + \operatorname{Ref} + \operatorname{Rhi}) \\ & = 1440.000 - \left(\frac{2EI\left(\frac{3\Delta_2}{H} + b + 2c\right)}{H} + \frac{2EI\left(\frac{3\Delta_2}{H} + 2b + c\right)}{H} + \frac{2EI\left(\frac{3\Delta_2}{H} + e + 2f\right)}{H} + \frac{2EI\left(\frac{3\Delta_2}{H} + 2e + f\right)}{H} + \frac{2EI\left(\frac{3\Delta_2}{H} + b + 2i\right)}{H} + \frac{2EI\left(\frac{3$$

Reemplazando con los datos conocidos y asisgando a la inercia con el valor de $I = 1ft^4$:

$$E = 1 (kip/ft^{2})$$

$$I = 1 (ft^{4})$$

$$L = 16 (ft)$$

$$H = 12 (ft)$$

Considerando las combinaciones de carga

$$w_D = 150 \ (k/ft)$$

EQ = 1440.000 (k)
wy = 180.000 (k/ft)

Ademas, los giros en los extremos empotrados es cero

$$a = 0$$

$$d = 0$$

$$g = 0$$

Los momentos internos en los extremos de cada tramo serían:

720.0

1440.0

$$\begin{split} \psi_1 &= -\frac{\Delta_1}{12} \\ \psi_2 &= -\frac{\Delta_2}{12} \\ M_{ab} &= 0.042\Delta_1 + 0.167b \\ M_{ba} &= 0.042\Delta_1 + 0.333b \\ M_{de} &= 0.042\Delta_1 + 0.167e \\ M_{ed} &= 0.042\Delta_1 + 0.167e \\ M_{gh} &= 0.042\Delta_1 + 0.167h \\ M_{hg} &= 0.042\Delta_1 + 0.333h \\ M_{bc} &= 0.042\Delta_2 + 0.333b + 0.167c \\ M_{cb} &= 0.042\Delta_2 + 0.167b + 0.333c \\ M_{ef} &= 0.042\Delta_2 + 0.167b + 0.333c \\ M_{ef} &= 0.042\Delta_2 + 0.167e + 0.333f \\ M_{hi} &= 0.042\Delta_2 + 0.167e + 0.333f \\ M_{hi} &= 0.042\Delta_2 + 0.167e + 0.333i \\ M_{cf} &= 0.042\Delta_2 + 0.167h + 0.333i \\ M_{cf} &= 0.25c + 0.125f + 3840.0 \\ M_{fc} &= 0.125c + 0.25f - 3840.0 \\ M_{fi} &= 0.125f + 0.25i - 3840.0 \\ M_{be} &= 0.25b + 0.125e + 3840.0 \\ M_{eb} &= 0.125b + 0.25e - 3840.0 \\ M_{eh} &= 0.125e + 0.125h + 3840.0 \\ M_{he} &= 0.125e + 0.25h - 3$$

Las cortantes internas en las bastes de cada columna serían:

Las ecuacioens de equilibrio serían:

$$\begin{split} \mathrm{eq}_{B} &= M_{ba} + M_{bc} + M_{be} \\ &= 0.042\Delta_{1} + 0.333b + 0.042\Delta_{2} + 0.333b + 0.167c + 0.25b + 0.125e + 3840.0 \\ &= 0.042\Delta_{1} + 0.042\Delta_{2} + 0.917b + 0.167c + 0.125e + 3840.0 \ \ (\mathrm{e1}) \end{split}$$

$$\begin{split} \mathrm{eq}_C &= M_{cb} + M_{cf} \\ &= 0.042 \Delta_2 + 0.167 b + 0.333 c + 0.25 c + 0.125 f + 3840.0 \\ &= 0.042 \Delta_2 + 0.167 b + 0.583 c + 0.125 f + 3840.0 \ \ (\mathrm{e2}) \end{split}$$

$$\begin{split} \mathrm{eq}_E &= M_{ed} + M_{eb} + M_{eh} + M_{ef} \\ &= 0.042\Delta_1 + 0.333e + 0.125b + 0.25e - 3840.0 + 0.25e + 0.125h + 3840.0 + 0.042\Delta_2 + 0.333e + 0.167f \\ &= 0.042\Delta_1 + 0.042\Delta_2 + 0.125b + 1.167e + 0.167f + 0.125h \ \ (\mathrm{e3}) \end{split}$$

$$\begin{split} \mathrm{eq}_F &= M_{fc} + M_{fi} + M_{fe} \\ &= 0.125c + 0.25f - 3840.0 + 0.25f + 0.125i + 3840.0 + 0.042\Delta_2 + 0.167e + 0.333f \\ &= 0.042\Delta_2 + 0.125c + 0.167e + 0.833f + 0.125i \ \ (\mathrm{e4}) \end{split}$$

$$\begin{split} \mathrm{eq}_{H} &= M_{hg} + M_{he} + M_{hi} \\ &= 0.042\Delta_{1} + 0.333h + 0.125e + 0.25h - 3840.0 + 0.042\Delta_{2} + 0.333h + 0.167i \\ &= 0.042\Delta_{1} + 0.042\Delta_{2} + 0.125e + 0.917h + 0.167i - 3840.0 \ \ (\mathrm{e5}) \end{split}$$

$$\begin{split} \mathrm{eq}_I &= M_{if} + M_{ih} \\ &= 0.125 f + 0.25 i - 3840.0 + 0.042 \Delta_2 + 0.167 h + 0.333 i \\ &= 0.042 \Delta_2 + 0.125 f + 0.167 h + 0.583 i - 3840.0 \ \ (\mathrm{e6}) \end{split}$$

$$\begin{split} \mathrm{eq}_{V1} &= \mathrm{Fs}_1 + \mathrm{Fs}_2 - (\mathrm{Rgh} + \mathrm{Rde} + \mathrm{Rab}) \\ &= 720.000 + 1440.000 - (0.007\Delta_1 + 0.042h + 0.007\Delta_1 + 0.042e + 0.007\Delta_1 + 0.042b) \\ &= -0.021\Delta_1 - 0.042b - 0.042e - 0.042h + 2160.0 \ \ (\mathrm{e7}) \end{split}$$

$$\begin{split} \mathrm{eq}_{V2} &= \mathrm{Fs}_2 - (\mathrm{Rbc} + \mathrm{Ref} + \mathrm{Rhi}) \\ &= 1440.000 - (0.007\Delta_2 + 0.042b + 0.042c + 0.007\Delta_2 + 0.042e + 0.042f + 0.007\Delta_2 + 0.042h + 0.042i) \\ &= -0.021\Delta_2 - 0.042b - 0.042c - 0.042e - 0.042f - 0.042h - 0.042i + 1440.0 \ \ (\mathrm{e8}) \end{split}$$

0.0.2 Solución del sistema de ecuaciones

Se tiene 8 varaibles y 8 ecuaciones, la solución del sistema de ecuaciones es:

El desplazamiento total: 362737.9588 ft

¿CUMPLE EL CRITERIO DE DESPLAZAMIENTO MÁXIMO?

$$\Delta_{max} = \frac{H}{400} = \frac{12}{400} = 0.03 \ ft$$

Los desplazamientos obtenidos asisgando a la inercia con el valor de $I=1ft^4$ son

$$dx_1 = 177154.253$$
 (ft)

$$dx_2 = 185583.706 \ (ft)$$

Por lo tanto, pada cumplir con el desplazamiento máximo permitido, la inercia mínimo debería ser:

$$E = 4176000 \ (kip/ft^2)$$

$$I_{min} = 2.895 \ (ft^4 \text{ absoluto})$$

Sin embargo por un factor de seguridad decimios trabajar con un valor de inercia:

$$I = 3 \ (ft^4)$$

Realizando el mismo procedimiento anterior, obtenemos las siguientes soluciones:

Sistema de acuaciones con el momento de inercia ya ajustado

$$\begin{split} \mathrm{eq}_{H} &= M_{hg} + M_{he} + M_{hi} \\ &= 522000.0\Delta_{1} + 4176000.0h + 1566000.0e + 3132000.0h - 3840.0 + 522000.0\Delta_{2} + 4176000.0h + 2088000.0i \\ &= 522000.0\Delta_{1} + 522000.0\Delta_{2} + 1566000.0e + 11484000.0h + 2088000.0i - 3840.0 \ \ (\mathrm{e}5) \end{split}$$

$$\begin{split} \mathrm{eq}_I &= M_{if} + M_{ih} \\ &= 1566000.0f + 3132000.0i - 3840.0 + 522000.0\Delta_2 + 2088000.0h + 4176000.0i \\ &= 522000.0\Delta_2 + 1566000.0f + 2088000.0h + 7308000.0i - 3840.0 \ \ (\mathrm{e6}) \end{split}$$

$$\begin{split} \mathrm{eq}_{V1} &= \mathrm{Fs}_1 + \mathrm{Fs}_2 - (\mathrm{Rgh} + \mathrm{Rde} + \mathrm{Rab}) \\ &= 720.000 + 1440.000 - (87000.0\Delta_1 + 522000.0h + 87000.0\Delta_1 + 522000.0e + 87000.0\Delta_1 + 522000.0b) \\ &= -261000.0\Delta_1 - 522000.0b - 522000.0e - 522000.0h + 2160.0 \ \ (\mathrm{e}7) \end{split}$$

$$\begin{aligned} & \operatorname{eq}_{V2} = \operatorname{Fs}_2 - (\operatorname{Rbc} + \operatorname{Ref} + \operatorname{Rhi}) \\ & = 1440.000 - (87000.0\Delta_2 + 522000.0b + 522000.0c + 87000.0\Delta_2 + 522000.0e + 522000.0f + 87000.0\Delta_2 + 522\\ & = -261000.0\Delta_2 - 522000.0b - 522000.0c - 522000.0e - 522000.0f - 522000.0h - 522000.0i + 1440.0 \end{aligned} \tag{e8}$$

Solución del sistema de ecuaciones

 $\mathbf{R2} = Delta1: 0.0141406651733419, Delta2: 0.0148135141711170, b: -0.00134648739209896, c: -0.001114481318$

Solución de los momentos y las costantes de cada tramo

[192]:		Tramos	Momentos kft	Cortantes kip
	0	AB	4569.96	527.37
	1	BA	1758.50	-527.37
	2	BC	-217.31	4.15
	3	CB	267.11	-4.15
	4	DE	5829.45	842.24
	5	ED	4277.47	-842.24
	6	EF	3806.62	695.26
	7	FE	4536.52	-695.26
	8	GH	5622.02	790.39
	9	HG	3862.61	-790.39
	10	HI	3780.49	740.59
	11	IH	5106.57	-740.59
	12	BE	-1541.18	826.39
	13	EB	-8276.57	2053.61
	14	CF	-267.11	997.16
	15	FC	-6818.40	1882.84
	16	EH	192.48	974.34
	17	HE	-7643.10	1905.66
	18	FI	2281.88	1263.46
	19	IF	-5106.57	1616.54

Reacciones del sistema

$$M_A = 4569.962 \ (kip \cdot ft)$$

 $M_D = 5829.449 \ (kip \cdot ft)$
 $M_G = 5622.016 \ (kip \cdot ft)$
 $R_{Ay} = 1823.546 \ (kip)$
 $R_{Dy} = 6174.247 \ (kip)$
 $R_{Gy} = 3522.207 \ (kip)$
 $R_{Ax} = -527.371 \ (kip)$
 $R_{Dx} = -842.243 \ (kip)$
 $R_{Gx} = -790.385 \ (kip)$

$\Delta_2 = 0.015 \ (ft)$

 $\Delta_1 = 0.014 \ (ft)$

¿CUMPLE EL CRITERIO DE DESPLAZAMIENTO MÁXIMO?

$$\Delta_{max} = \frac{H}{400} = \frac{12}{400} = 0.03 \ ft$$

El desplazamiento del primer piso relativo es: 0.0141 ft

El desplazamiento del segundo piso relativo es: 0.0148 ft

El desplazamiento del segundo piso absoluto es: 0.0289 ft

Empleando una sección con inercia I=3 ft 4 , los desplazamientos son menores al máximo permitido

Propiedades finales que cumplen con ambas combinaciones son:

$$E = 4176000 \ (kip/ft^2)$$

$$I_{final}=3\ (ft^4)$$