Finite Automata=Models for small memory

Door controller

- front pad (DOOR) rear pad
 - door swings open to the rear
- Door is CLOSED or OPEN
- Four signals: FRONT, REAR, BOTH, NEITHER
- When CLOSED: NEITHER or BOTH \to CLOSED, FRONT \to OPEN; REAR \to CLOSED When OPEN: NEITHER \to CLOSED; FRONT or REAR \to OPEN; BOTH \to OPEN

Finite Automata

 Door controller can be represented by a state diagram: Two states: closed, open

Other Examples

- Lexical analyzer of a compiler for detecting identifiers, keywords, and punctuation
- Model checking techniques for verifying finite state systems (e.g., communication protocols, hardware systesms)
- In the probabilistic setting, Markov chains (e.g. for PageRank)

Example of Finite Automata

```
\begin{array}{cccc} & 0 & 1 \\ q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}
```

Start state is q_1 . Accept state is q_2 .

Other examples:

- counting mod *n*
- $M = \{w \mid \text{ends with a } 1\}.$
- complement

A formal definition of a Finite Automaton

A finite automaton (FA) is a structure $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- \bullet Σ is the input symbols or alphabet,
- ullet δ , the transition function, e.g., $\delta(q,a)=q'$ where $q,q'\in Q$ and $a\in \Sigma$
- $q_0 \in Q$ is the start state,
- \bullet F is a subset of Q; elements of F are called accept states or final states.
- The *language of* the machine M is the set A of all strings that M accepts. We write L(M) = A and say M accepts (or recognizes) A. If the machine M accepts no strings then $L(M) = \emptyset$.

Formal definition of computation

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton, and let $w=w_1w_2...w_n$ be a string over Σ .

Then M accepts w if there is a sequence of states $r_0, ..., r_n$ in Q s.t.

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$
- 3. $r_n \in F$

M recognizes A if $A = \{w \mid M \ accepts \ w\}$. A language is called a regular language if some finite automaton recognizes it.

More examples

Construct a finite automaton accepting the following language:

 $\{x \in \{a,b\}^* \mid x \text{ contains a substring of 3 consecutive } a's\}$

Another example

Construct a finite automaton accepting the following language:

 $\{x \in \{a,b\}^* \mid x \text{ does not contain a substring of 3 consecutive } a's\}$

Operations on Languages

Recall:

- A *language* is set of strings over an alphabet.
- We may apply set operations like union, intersection, and set difference to languages.
- The *union* of L and M is denoted $L \cup M$, and is the set of strings that are in either L or M.
- The complement of a language A is $\Sigma^* A$ or is denoted \bar{A} if Σ is understood.

Operations on Languages (cont'd)

• If L_1 and L_2 are languages over Σ their concatenation is

$$L_1L_2 = L_1 \cdot L_2 = \{ w \in \Sigma^* \mid w = xy \text{ for some } x \in L_1 \text{ and } y \in L_2 \}.$$

• The star of a language L is the set of all strings obtained by concatenating zero or more strings from L. Thus,

$$L^* = \{ w \in \Sigma^* \mid w = w_1...w_k \text{ for some } k \geq 0 \text{ and } w_1, ..., w_k \in L \}.$$

Closure of regular languages

A set is *closed* under some operation if applying that operation to elements of the set returns in another element of the set.

Theorem: If A_1 and A_2 are regular languages then so is $A_1 \cup A_2$.

Proof Idea: Let $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ be the automaton that recognize A_1 and A_2 resp. We construct $M=(Q,\Sigma,\delta,q_0,F)$ which recognizes $A_1\cup A_2$ by *simulating* both of these machines *concurrently*, and accepting if one of them accepts.

Union Construction

1.
$$Q = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\}$$

- 2. For each $(r_1,r_2)\in Q$ and each $a\in \Sigma$, $\delta(r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a)).$
- 3. $q_0 = (q_1, q_2)$
- 4. $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

Why this construction works: remembers the pairs of states the machine is in. Similarly, closed under intersection.

Closed under concatenation

Theorem: If A_1 and A_2 are regular languages, then so is $A_1 \cdot A_2$.

Product construction doesn't help here... need to do two strings consecutively, not concurrently.