Maximum Common Subgraph Algorithms and Algorithm Portfolios

Paulius Dilkas
Supervisors: Dr Patrick Prosser and Dr Ciaran McCreesh

School of Computing Science University of Glasgow

21st March 2018

Outline

- The Problem
- 2 Algorithms
- Understanding the Data
- 4 Algorithm Selection
- Observations and Insights
- **6** Switching Algorithms Mid-Execution

Outline

- 🕕 The Problem
- 2 Algorithms
- Understanding the Data
- 4 Algorithm Selection
- Observations and Insights
- 6 Switching Algorithms Mid-Execution

Maximum Common Subgraph

Definition

A maximum common (induced) subgraph between graphs G_1 and G_2 is a graph $G_3 = (V_3, E_3)$ such that G_3 is isomorphic to induced subgraphs of both G_1 and G_2 with $|V_3|$ maximised.

Maximum Common Subgraph

Definition

A maximum common (induced) subgraph between graphs G_1 and G_2 is a graph $G_3 = (V_3, E_3)$ such that G_3 is isomorphic to induced subgraphs of both G_1 and G_2 with $|V_3|$ maximised.

Maximum Common Subgraph

Definition

A maximum common (induced) subgraph between graphs G_1 and G_2 is a graph $G_3 = (V_3, E_3)$ such that G_3 is isomorphic to induced subgraphs of both G_1 and G_2 with $|V_3|$ maximised.

Related: Subgraph Isomorphism

- A decision problem: is G_1 isomorphic to a subgraph of G_2 ?
- G_1 is the pattern graph
- G_2 is the target graph

Related: Subgraph Isomorphism

- A decision problem: is G_1 isomorphic to a subgraph of G_2 ?
- G_1 is the pattern graph
- G_2 is the target graph

Why Is It Important?

Source: Cook and Holder 1994

Source: M. Grindley et al. 1993
circuit graph representation

Source: Djoko, Cook and Holder 1997

Outline

- The Problem
- 2 Algorithms
- Understanding the Data
- Algorithm Selection
- Observations and Insights
- 6 Switching Algorithms Mid-Execution

Algorithms

- McSplit, McSplit↓
 - McCreesh, Prosser and Trimble 2017
- clique encoding
 - McCreesh, Ndiaye et al. 2016
- k↓
 - Hoffmann, McCreesh and Reilly 2017

Partial solution: Upper bound: 4

Label	G_1	G_2
0	u_2, u_3, u_4, u_5	v_1, v_2, v_3
1	u_1	v_4, v_5

Partial solution: Upper bound: 4

Label	G_1	G_2
0	u_2, u_3, u_4, u_5	v_1, v_2, v_3
1	u_1	v_4, v_5

Decision: $u_1 \mapsto v_4$

Partial solution: Upper bound: 4

Label	G_1	G_2
00	из	<i>V</i> 3
01	u_4, u_5	Ø
02	u_2	v_1, v_2
10	Ø	<i>V</i> ₅

Partial solution: $u_1 \mapsto v_4$ Upper bound: 1+2

Label	G_1	G_2
00	из	<i>V</i> 3
01	u_2	v_1, v_2

Partial solution: $u_1 \mapsto v_4$ Upper bound: 1 + 2

Label	G_1	G_2
00	из	<i>V</i> 3
01	<i>u</i> ₂	v_1, v_2

Decision: $u_3 \mapsto v_3$

Partial solution: $u_1 \mapsto v_4$ Upper bound: 1 + 2

Label	G_1	G_2
010 011	и ₂ и ₄ , и ₅	<i>v</i> ₁ , <i>v</i> ₂ ∅

Partial solution: $u_1 \mapsto v_4$, $u_3 \mapsto v_3$ Upper bound: 2 + 1

Label	G ₁	G ₂
010	u_2	v_1, v_2

Partial solution: $u_1 \mapsto v_4$, $u_3 \mapsto v_3$ Upper bound: 2+1

Label	G_1	G_2
010	<i>u</i> ₂	v_1, v_2

Decision: $u_2 \mapsto v_1$ Found a solution! Backtrack to confirm optimality

$k\downarrow$

- k = 0: search for a complete subgraph isomorphism
- k = 1: allow one vertex of the smaller graph to not match anything
- ... and so on
- Developed to handle large instances
- Implements many domain filtering techniques

McSplit↓

- The main idea of $k\downarrow$ applied to McSplit
- Looks for a common subgraph of a set size
 - (decreasing with every iteration)
- This allows us to prune more search tree branches

Clique Encoding

Outline

- The Problem
- 2 Algorithms
- Understanding the Data
- 4 Algorithm Selection
- Observations and Insights
- 6 Switching Algorithms Mid-Execution

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003 (81,400 pairs of graphs)

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003 (81,400 pairs of graphs)

Definition

A vertex-labelled graph is a 3-tuple $G = (V, E, \mu)$, where $\mu \colon V \to \{0, \dots, N-1\}$ is a vertex labelling function, for some $N \in \mathbb{N}$.

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003 (81,400 pairs of graphs)

Definition

A vertex-labelled graph is a 3-tuple $G = (V, E, \mu)$, where $\mu \colon V \to \{0, \dots, N-1\}$ is a vertex labelling function, for some $N \in \mathbb{N}$.

Definition

$$N = \max \left\{ 2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor \right\}.$$

Definition

$$N = \max\left\{2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right
floor\right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average

Definition

$$N = \max\left\{2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor\right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average
- Typical values explored: 33%, 50%, 75%

Definition

$$N = \max\left\{2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor\right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average
- Typical values explored: 33%, 50%, 75%
- In my data: 5%, 10%, 15%, 20%, 25%, 33%, 50%

Definition

$$N = \max \left\{ 2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor \right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average
- Typical values explored: 33%, 50%, 75%
- In my data: 5%, 10%, 15%, 20%, 25%, 33%, 50%
- 3 different cases:
 - no labels
 - vertex labels
 - vertex and edge labels

Number of Vertices Per Label

For each graph and label

- C is the number of vertices with that label
- E(C) is the number we would expect from a (discrete) uniform distribution

Outline

- The Problem
- 2 Algorithms
- Understanding the Data
- 4 Algorithm Selection
- Observations and Insights
- 6 Switching Algorithms Mid-Execution

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i, s(i))]$.

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i, s(i))]$.

 (G_1,G_2)

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i,s(i))]$.

$$(G_1,G_2) \xrightarrow{[V]{}} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i, s(i))]$.

(Per-Instance) Algorithm Selection

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i,s(i))]$.

(Per-Instance) Algorithm Selection

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i,s(i))]$.

(Per-Instance) Algorithm Selection

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i,s(i))]$.

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - number of edges
 - mean/max degree
 - density
 - mean/max distance between pairs of vertices
 - o number of loops
 - \odot proportion of vertex pairs with distance \geq 2, 3, 4
 - connectedness

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - number of edges
 - mean/max degree
 - density
 - mean/max distance between pairs of vertices
 - o number of loops
 - proportion of vertex pairs with distance ≥ 2 , 3, 4
 - connectedness
 - standard deviation of degrees
 - labelling percentage

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - number of edges
 - mean/max degree
 - density
 - mean/max distance between pairs of vertices
 - o number of loops
 - \odot proportion of vertex pairs with distance \geq 2, 3, 4
 - connectedness
 - standard deviation of degrees
 - labelling percentage
 - ratios of features 1–5

Random Forests (Breiman 2001)

Source: Tae-Kyun Kim & Bjorn Stenger, Intelligent Systems and Networks (ISN) Research Group,
Imperial College London

Random Forests (Breiman 2001)

Source: Random Forests(r), Explained, Ilan Reinstein, KDnuggets

Results

Results (27%)

Results

Results (86%)

Results

Results (88%)

Errors

- Out-of-bag error
- For each algorithm
 - 1 − recall

Definition

For an algorithm A, recall (sensitivity) is

the number of instances that were correctly predicted as A the number of instances where A is the correct prediction

Errors (%)

Error	Labelling		
	no	vertex	both
out-of-bag	17	13	14
clique	30	8	7
McSplit	29	22	29
$McSplit \downarrow$	11	11	11
$k\downarrow$	80		

Convergence of Errors for Unlabelled Graphs

Outline

- The Problem
- 2 Algorithms
- Understanding the Data
- 4 Algorithm Selection
- Observations and Insights
- 6 Switching Algorithms Mid-Execution

Overview

- Most important features:
 - labelling percentage
 - standard deviation of degrees (for both graphs)
- Looking at a single feature is not enough

Overview

- Most important features:
 - labelling percentage
 - standard deviation of degrees (for both graphs)
- Looking at a single feature is not enough
- $k\downarrow$ is no longer competitive
- Unclear when McSPLIT outperforms McSPLIT↓

Overview

- Most important features:
 - labelling percentage
 - standard deviation of degrees (for both graphs)
- Looking at a single feature is not enough
- $k\downarrow$ is no longer competitive
- Unclear when McSPLIT outperforms McSPLIT↓
- Benchmarking algorithms with just a few different labels is important
- No work has ben done on non-uniform distributions of labels

What Happens When Labelling Changes?

What Happens When Labelling Changes?

Margins

Definition

Let c_1, \ldots, c_n be n classes and let p be a data point that belongs to class c_p . Let v_1, \ldots, v_n denote the number of votes for each class when given p as input. The *margin* of p is

$$\frac{v_p}{\sum_{i=1}^n v_i} - \max_{i \neq p} \frac{v_i}{\sum_{j=1}^n v_j},$$

which is a number in [-1, 1].

Margins: Unlabelled Graphs

Margins: Vertex and Edge Labels

Partial Dependence: Unlabelled Graphs

Defined as

$$f(x) = \log p_k(x) - \frac{1}{K} \sum_{i=1}^K \log p_i(x)$$

- $p_i(x)$ is the proportion of votes for class i
- K is the number of different classes
- k is the class under consideration

Partial Dependence: Vertex and Edge Labels

Partial Dependence: Vertex and Edge Labels

Outline

- The Problem
- 2 Algorithms
- Understanding the Data
- 4 Algorithm Selection
- Observations and Insights
- 6 Switching Algorithms Mid-Execution

Some Preliminary Analysis

Some Preliminary Analysis

Idea 1: Switch After a Fixed Number of Decisions

Idea 1: Switch After a Fixed Number of Decisions

- Vertices of the association graph can be constructed from McSplit label classes, edges from the original input graphs
- Only a few extra lines of code:

$$|incumbent_{clique}| \leftarrow |incumbent_{McSplit}| - |M|$$

and then

 $incumbent_{\mathrm{MCSPLIT}} \leftarrow incumbent_{\mathrm{MCSPLIT}} \cup incumbent_{\mathsf{clique}}$

Not That Good...

- Goal: switch algorithms in a more intelligent way
- Plan: use runtime data on unsolved instances
 - using either machine learning or simple guidelines

- Goal: switch algorithms in a more intelligent way
- Plan: use runtime data on unsolved instances
 - using either machine learning or simple guidelines
- Implementation can be optimised to:
 - only track important information
 - reuse information between iterations

- Goal: switch algorithms in a more intelligent way
- Plan: use runtime data on unsolved instances
 - using either machine learning or simple guidelines
- Implementation can be optimised to:
 - only track important information
 - reuse information between iterations
- Is it any good?

- Goal: switch algorithms in a more intelligent way
- Plan: use runtime data on unsolved instances
 - using either machine learning or simple guidelines
- Implementation can be optimised to:
 - only track important information
 - reuse information between iterations
- Is it any good?
 - Remains to be seen
 - Could be that...

- Goal: switch algorithms in a more intelligent way
- Plan: use runtime data on unsolved instances
 - using either machine learning or simple guidelines
- Implementation can be optimised to:
 - only track important information
 - reuse information between iterations
- Is it any good?
 - Remains to be seen
 - Could be that...
 - the answer is "never switch"
 - or the performance gains are minimal

Label	G_1	G_2	
00 01	и ₃ и ₂	<i>v</i> ₃ <i>v</i> ₁ , <i>v</i> ₂	

Label	G_1	G_2	
00	из	<i>V</i> 3	
01	u_2	v_1, v_2	

Step 1: Add vertices from label classes

Label	G_1	G_2	
00	из	<i>V</i> 3	
01	u_2	v_1, v_2	

Step 2: $E' = E \cap (V'_1 \times V'_1)$ (preserving edge labels)

Label	G_1	G_2	New label
00	и3	<i>V</i> 3	0
01	u_2	v_1, v_2	1

Step 3: label vertices according to vertex classes

Label	G_1	G_2	New label
00	из	<i>V</i> 3	0
01	u_2	v_1, v_2	1

Step 4: Set

|incumbent'| = |incumbent| - |M|

Thank You!

