CLAIMS

- 1. An amplifier system (1) for satellites including:
 - first and second amplifier modules (A1, A2) each having an input and an output,
 - a signal divider (D) having an input, a first output, and a second output,
 - a signal combiner (C) having a first input, a second input and an output, said first output of said divider (D) being connected to said input of said first amplifier module (A1) via a connection length Le1, said second output of said divider (D) being connected to said input of said second amplifier module (A2) via a connection length Le₂, said output of said first amplifier module (A₁) being connected to said first input of said combiner (C) via a connection length Ls1, said output of said second amplifier module (A2) being connected to said second input of said combiner (C) via a connection length Ls2, and said connection length satisfying the equation $Le_1 + Ls_1 = Le_2 + Ls_2$, which system is characterized in that the connection length Ls, is different from the connection length Ls₂.
- 2. An amplifier system (1) for satellites according to claim 1 characterized in that said length Le₁ is equal to said length Ls₂ and said length Le₂ is equal to said : length Ls₁.
- 20 3. An amplifier system (1) for satellites according to either claim 1 or claim 2 characterized in that at least one of said amplifier modules (A1, A2) is a traveling wave tube amplifier.
 - 4. An amplifier system (1) for satellites according to claim 1 characterized in that at least one of said amplifier modules is a semiconductor SSPA.
- 25 5. An amplifier system (1) for satellites according to claim 1 characterized in that the connections between the outputs of said amplifier modules and the input of said combiner are waveguides.
 - 6. An amplifier system (1) for satellites according to claim 1 characterized in that at least one of said amplifier modules (2) includes:
 - first and second amplifier submodules (A1, A2) each having an input and an output,
 - a signal divider (d) having an input, a first output, and a second output, and
 - a signal combiner (c) having a first input, a second input, and an output, said first output of said divider (d) being connected to said input of said first

10

5

15

30

35

amplifier submodule (A_1) via a connection length Le_{11} , said second output of said divider (d) being connected to said input of said second amplifier submodule (A_2) via a connection length Le_{12} , said output of said first amplifier submodule (A_2) being connected to said first input of said combiner via a connection length Ls_{11} , said output of said second amplifier submodule being connected to said second input of said combiner via a connection length Ls_{12} , said connection lengths satisfying the equation $Le_{11} + Ls_{11} = Le_{12} + Ls_{12}$, and the connection length Ls_{11} being different from the connection length Ls_{12} .