THEORETICAL PART:

Identities (Sum and Difference Identities):

Sine Identities

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$
, $\sin(u-v) = \sin u \cos v - \cos u \sin v$

Cosine Identities

$$cos(u + v) = cos u cos v - sin u sin v,$$
 $cos(u - v) = cos u cos v + sin u sin v$

Tangent Identities

$$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}, \quad \tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$$

Theorem (Sum of Sines and Cosines)

$$A\sin(x) + B\cos(x) = \sqrt{A^2 + B^2} \left(\frac{A}{\sqrt{A^2 + B^2}} \sin(x) + \frac{B}{\sqrt{A^2 + B^2}} \cos(x) \right) = \sqrt{A^2 + B^2} \sin(x + \varphi),$$

where

$$\cos \varphi = \frac{A}{\sqrt{A^2 + B^2}}, \quad \sin \varphi = \frac{B}{\sqrt{A^2 + B^2}}$$

PRACTICAL PART:

1. Determine the exact value of $\sin 75^{\circ}$.

2. Determine the exact value of $\cos 75^{\circ}$.

3. Determine the exact value of $tan(\pi/12)$.

4. Determine the exact value of $\sin 80^{\circ} \cos 20^{\circ} - \cos 80^{\circ} \sin 20^{\circ}$.

5. Use a difference identity to verify that $\sin\left(\frac{\pi}{2} - x\right) = \cos x$.

6. Evaluate the expression

$$\sin\left(\cos^{-1}(3/5) - \tan^{-1}(12/5)\right)$$
.

7. Express $\sin(\tan^{-1} x + \cos^{-1} x)$ as an algebraic function of x.

8. Express the function $f(x) = \sin x - \sqrt{3} \cos x$ in terms of a single sine function, and graph the result.