

# Unterlagen für die Lehrkraft

# Zentrale Klausur am Ende der Einführungsphase 2023

# Mathematik

#### 1. Aufgabenart / Inhaltsbereich

Prüfungsteil A: Hilfsmittelfrei zu bearbeitende Aufgaben

Aufgabe 1: Analysis

Aufgabe 2: Stochastik

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Aufgabe 3: Analysis (Innermathematische Argumentationsaufgabe)

Aufgabe 4: Analysis (Aufgabe mit realitätsnahem Kontext)

#### 2. Aufgabenstellung 1

siehe Prüfungsaufgaben

# 3. Materialgrundlage

entfällt

<sup>&</sup>lt;sup>1</sup> Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.



#### 4. Bezüge zum Kernlehrplan und zu den Vorgaben 2023

Die Aufgaben weisen vielfältige Bezüge zu Kompetenzbereichen und Inhaltsfeldern des Kernlehrplans bzw. zu den in den Vorgaben ausgewiesenen Fokussierungen auf. Im Folgenden wird auf Bezüge von zentraler Bedeutung hingewiesen.

Inhaltsfelder und inhaltliche Schwerpunkte

Prüfungsteil A: Hilfsmittelfrei zu bearbeitende Aufgaben

Inhaltsfeld Funktionen und Analysis (A)

- Grundlegende Eigenschaften von Potenz- und Exponentialfunktionen
- Grundverständnis des Ableitungsbegriffs
- Differentialrechnung ganzrationaler Funktionen (Untersuchung ganzrationaler Funktionen bis zum Grad drei)

Inhaltsfeld Stochastik (S)

- Mehrstufige Zufallsexperimente
- Bedingte Wahrscheinlichkeiten

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Inhaltsfeld Funktionen und Analysis (A)

- Grundverständnis des Ableitungsbegriffs
- Differentialrechnung ganzrationaler Funktionen

#### 5. Zugelassene Hilfsmittel

Prüfungsteil A:

Wörterbuch zur deutschen Rechtschreibung

Prüfungsteil B:

- GTR (Graphikfähiger Taschenrechner) oder CAS (Computeralgebrasystem)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

#### 6. Vorgaben für die Bewertung der Schülerleistungen

Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Für die Leistungen werden entsprechend der konkreten Lösungsqualität Punkte im vorgegebenen Rahmen vergeben. Der gewählte Lösungsansatz und -weg der Schülerinnen und Schüler muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung"). Es dürfen nur ganzzahlige Punkte vergeben werden.



# Aufgabe 1:

#### Modelllösung a)

$$f'(-4) = (-4)^{2} - 2 \cdot (-4) - 8$$
$$= 16 + 8 - 8 = 16.$$

#### Modelllösung b)

$$f'(x) = 0 \Leftrightarrow x^2 - 2 \cdot x - 8 = 0 \Leftrightarrow x = 1 - \sqrt{1^2 + 8} = -2 \lor x = 1 + \sqrt{1^2 + 8} = 4.$$

#### Modelllösung c)

- (1) Die Extremstellen von f sind x = -2 und x = 4.
- (2) An der Stelle x = -2 liegt ein Vorzeichenwechsel von positiven zu negativen Funktionswerten von f' und damit eine lokale Maximalstelle von f vor.

An der Stelle x = 4 liegt ein Vorzeichenwechsel von negativen zu positiven Funktionswerten von f' und damit eine lokale Minimalstelle von f vor.

# **Aufgabe 2:**

### Modelllösung

| (1) |                | Н  | A  | Summe |
|-----|----------------|----|----|-------|
|     | T              | 14 | 9  | 23    |
|     | $\overline{T}$ | 4  | 7  | 11    |
|     | Summe          | 18 | 16 | 34    |

(2) 
$$P(H \cap T) = \frac{14}{34} = \frac{7}{17}$$
.

$$(3) \quad P(\overline{T}) = \frac{11}{34}.$$

(4) 
$$P(H|T) = \frac{14}{23}$$
.



## Aufgabe 3:

#### Modelllösung a)

Die Gleichung f(x) = 0 hat neben der Lösung x = 2 die beiden weiteren Lösungen  $x_1$  und  $x_2$  mit  $x_1 \approx 0.27$ , und  $x_2 \approx 3.73$ .

#### Modelllösung b)

$$f'(x) = \frac{3}{2} \cdot x^2 - 6 \cdot x + \frac{9}{2}$$
.

Aus der notwendigen Bedingung f'(x) = 0 für lokale Extremstellen ergeben sich die beiden Lösungen x = 1 und x = 3.

Zusätzlich gilt  $f'(0) = \frac{9}{2} > 0$ ,  $f'(2) = -\frac{3}{2} < 0$  und  $f'(4) = \frac{9}{2} > 0$ . An der Stelle x = 1 liegt also

ein Vorzeichenwechsel von positiven zu negativen Funktionswerten von f' und damit ein lokales Maximum von f vor. An der Stelle x = 3 liegt ein Vorzeichenwechsel von negativen zu positiven Funktionswerten von f' und damit ein lokales Minimum von f vor.

Mit f(1) = 1 und f(3) = -1 folgt, dass H(1|1) der lokale Hochpunkt und T(3|-1) der lokale Tiefpunkt des Graphen von f ist.

#### Modelllösung c)

Die Aussage ist falsch.

Die Funktion n mit n(x) = f(x) + 2 ist ein Beispiel für eine ganzrationale Funktion dritten Grades, die zwei lokale Extremstellen, aber nur eine Nullstelle besitzt.





# Modelllösung d)

(1) Ansatz:  $g: y = m \cdot x + b$ .

$$m = \frac{f(3) - f(1)}{3 - 1} = \frac{-1 - 1}{3 - 1} = -1, \ f(1) = 1.$$

Einsetzen in  $y = m \cdot x + b$  liefert:

$$1 = -1 \cdot 1 + b \Leftrightarrow b = 2$$
.

Gleichung der Geraden g: y = -x + 2.

(2) Durch Gleichsetzen ergibt sich die Gleichung f(x) = -x + 2 mit den Lösungen x = 1, x = 2 und x = 3.

Mit f(2) = 0 gilt dann R(2|0).

(3) Die Gleichung f'(x) = -1 hat die beiden Lösungen  $x_3$  und  $x_4$  mit  $x_3 \approx 1,42$  und  $x_4 \approx 2,58$ .

Der Graph von f hat an den Stellen  $x_3 \approx 1,42$  und  $x_4 \approx 2,58$  Tangenten, die parallel zur Geraden g verlaufen.

# Modelllösung e)

- (1) Zu dem Wert h = 0.25 gehört die Abbildung 2.3.
- (2) Zu der Abbildung 2.2 gehört der Wert h = 0.5.
- (3) Der Wert des Differenzenquotienten nähert sich der Zahl 0.

Wenn h immer kleiner wird, dann nähert sich der Wert des Differenzenquotienten  $\frac{f(3+h)-f(3)}{h}$  dem Wert f'(3) an.



#### Aufgabe 4:

#### Modelllösung a)

$$f(3) = 191,82.$$

Am 01. April 2022 betrug die Füllmenge des Ederstausees ungefähr 191,82 Millionen m<sup>3</sup>.

#### Modelllösung b)

Die Gleichung  $f(t) = 0.43 \cdot 200$  hat die Lösungen  $t_1$ ,  $t_2$  und  $t_3$  mit  $t_1 \approx -0.05$ ,  $t_2 \approx 6.99$  und  $t_3 \approx 9.04$ . Die Lösungen  $t_1$  und  $t_3$  liegen nicht im Modellierungsbereich.

Im Jahr 2022 war die Aseler Brücke ab Anfang August begehbar.

#### Modelllösung c)

$$\frac{f(7)-f(5)}{7-5} = -53,35$$
.

Von Anfang Juni 2022 bis Ende Juli 2022 nahm die Füllmenge des Ederstausees pro Monat um durchschnittlich 53,35 Millionen m<sup>3</sup> ab.

#### Modelllösung d)

$$f'(t) = 0.85 \cdot t^4 - 13.96 \cdot t^3 + 75.6 \cdot t^2 - 166.8 \cdot t + 136.8.$$

Aus der notwendigen Bedingung f'(t) = 0 für lokale Extremstellen ergeben sich die beiden Lösungen  $t_4$  und  $t_5$  mit  $t_4 \approx 4,20$  und  $t_5 \approx 8,21$ .

Zusätzlich gilt f'(0) = 136,8 > 0, f'(6) = -56,16 < 0 und  $f'(8,5) \approx 44,97 > 0$ . An der Stelle  $t_4$  liegt also ein Vorzeichenwechsel von positiven zu negativen Funktionswerten von f' und damit ein lokales Maximum von f vor. An der Stelle  $t_5$  liegt ein Vorzeichenwechsel von negativen zu positiven Funktionswerten von f' und damit ein lokales Minimum von f vor.

Wegen f(0) = 93,  $f(t_5) \approx 24.93$  und  $f(8.5) \approx 31.07$  liegt bei  $t_5$  auch das absolute Minimum von f im Intervall [0;8,5] vor.

Die geringste Füllmenge des Ederstausees im Zeitraum von Anfang Januar 2022 bis Mitte September 2022 betrug ungefähr 24,93 Millionen m<sup>3</sup>.



#### Modelllösung e)

(1) Die Bedingung f(t) < g(t) gilt für  $0 \le t \le 8,5$  näherungsweise in den Bereichen  $0 \le t < 0,25$  und  $5,9 < t \le 8,5$ .

Durch diese Bereiche sind die Zeiträume zwischen Anfang Januar 2022 und Mitte September 2022 gegeben, in denen die Füllmenge des Ederstausees geringer war als die entsprechende mittlere Füllmenge der letzten dreißig Jahre.



Für  $t \approx 8.0$  beträgt der vertikale Abstand d der Graphen von f und g ungefähr 73 LE.

Anfang September 2022 war die Füllmenge des Ederstausees 73 Millionen m<sup>3</sup> geringer als die entsprechende mittlere Füllmenge der letzten dreißig Jahre. Dies war die größte Abweichung der Füllmenge nach unten von der mittleren Füllmenge zwischen Anfang Januar 2022 und Mitte September 2022.





# 7. Bewertungsbogen zur Klausur

| Name des Prüflings: | Kursbezeichnung: |
|---------------------|------------------|
| Schule:             |                  |

# **Aufgabe 1: Analysis (Hilfsmittelfrei zu bearbeitende Aufgabe)**

#### Teilaufgabe a)

|       | Anforderungen L                                            |                                     | qualität               |
|-------|------------------------------------------------------------|-------------------------------------|------------------------|
|       | Der Prüfling                                               | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1     | berechnet $f'(-4)$ .                                       | 1                                   |                        |
| Sachl | Sachlich richtige Lösungsalternative zur Modelllösung: (1) |                                     |                        |
|       | Summe Teilaufgabe a)                                       | 1                                   |                        |

#### Teilaufgabe b)

|       | Anforderungen                                              |                                     | qualität               |
|-------|------------------------------------------------------------|-------------------------------------|------------------------|
|       | Der Prüfling                                               | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1     | berechnet die beiden Nullstellen der Funktion $f$ '.       | 2                                   |                        |
| Sachl | Sachlich richtige Lösungsalternative zur Modelllösung: (2) |                                     |                        |
|       |                                                            |                                     |                        |
|       | Summe Teilaufgabe b)                                       | 2                                   |                        |

#### Teilaufgabe c)

|                                                            | Anforderungen                                                                                                 |                                     | qualität               |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
|                                                            | Der Prüfling                                                                                                  | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1                                                          | (1) gibt die beiden lokalen Extremstellen der Funktion $f$ an.                                                | 1                                   |                        |
| 2                                                          | (2) entscheidet begründet anhand der Tabelle, um welche Art von lokaler Extremstelle es sich jeweils handelt. | 2                                   |                        |
| Sachlich richtige Lösungsalternative zur Modelllösung: (3) |                                                                                                               |                                     |                        |
|                                                            | Summe Teilaufgabe c)                                                                                          | 3                                   |                        |

| Summe Aufgabe 1 | 6 |  | 1 |
|-----------------|---|--|---|
|-----------------|---|--|---|



# Aufgabe 2: Stochastik (Hilfsmittelfrei zu bearbeitende Aufgabe)

|                                                            | Anforderungen                                                                                                                                                                |                                     | qualität               |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
|                                                            | Der Prüfling                                                                                                                                                                 | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1                                                          | (1) vervollständigt die Vierfeldertafel.                                                                                                                                     | 2                                   |                        |
| 2                                                          | (2) gibt die Wahrscheinlichkeit dafür an, dass ein zufällig ausgewähltes Spiel ein Heimspiel war und Lionel Messi getroffen hat.                                             | 1                                   |                        |
| 3                                                          | (3) gibt die Wahrscheinlichkeit dafür an, dass Lionel Messi bei einem zufällig ausgewählten Spiel kein Tor geschossen hat.                                                   | 1                                   |                        |
| 4                                                          | (4) gibt die Wahrscheinlichkeit dafür an, dass es sich um ein Heimspiel gehandelt hat, wenn bekannt ist, dass Lionel Messi in dem zufällig ausgewählten Spiel getroffen hat. | 2                                   |                        |
| Sachlich richtige Lösungsalternative zur Modelllösung: (6) |                                                                                                                                                                              |                                     |                        |
|                                                            |                                                                                                                                                                              |                                     |                        |

| Summe Aufgabe 2 6 |  |  |
|-------------------|--|--|
|-------------------|--|--|

# **Aufgabe 3: Analysis (Innermathematische Argumentationsaufgabe)**

#### Teilaufgabe a)

|                                                            | Anforderungen                                                                                             |                                     | qualität               |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
|                                                            | Der Prüfling                                                                                              | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1                                                          | berechnet die weiteren Nullstellen von $f$ und gibt die Ergebnisse auf zwei Nachkommastellen gerundet an. | 2                                   |                        |
| Sachlich richtige Lösungsalternative zur Modelllösung: (2) |                                                                                                           |                                     |                        |
|                                                            |                                                                                                           |                                     |                        |
|                                                            | Summe Teilaufgabe a)                                                                                      | 2                                   |                        |





#### Teilaufgabe b)

|       | Anforderungen                                                                                                                                                           |                                     | qualität               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
|       | Der Prüfling                                                                                                                                                            | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1     | gibt $f'(x)$ an.                                                                                                                                                        | 1                                   |                        |
| 2     | bestimmt rechnerisch – ohne dabei an Funktionsgraphen abgelesene Werte oder Zusammenhänge zu verwenden – die Koordinaten der lokalen Extrempunkte des Graphen von $f$ . |                                     |                        |
| Sachl | Sachlich richtige Lösungsalternative zur Modelllösung: (7)                                                                                                              |                                     |                        |
|       |                                                                                                                                                                         |                                     |                        |
|       | Summe Teilaufgabe b)                                                                                                                                                    | 7                                   |                        |

#### Teilaufgabe c)

|                                                            | Anforderungen                                                                                                                                                                                                        |                                     | qualität               |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
|                                                            | Der Prüfling                                                                                                                                                                                                         | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1                                                          | entscheidet, ob die Aussage gilt, dass für alle ganzrationalen Funktionen dritten Grades die Anzahl der lokalen Extremstellen um eins geringer ist als die Anzahl der Nullstellen, und begründet seine Entscheidung. | 3                                   |                        |
| Sachlich richtige Lösungsalternative zur Modelllösung: (3) |                                                                                                                                                                                                                      |                                     |                        |
|                                                            | Summe Teilaufgabe c)                                                                                                                                                                                                 | 3                                   |                        |



#### Teilaufgabe d)

|                                                            | Anforderungen                                                                                                                                                               |                                     | qualität               |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
|                                                            | Der Prüfling                                                                                                                                                                | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1                                                          | (1) ermittelt rechnerisch eine Gleichung der Geraden $g$ , die durch die Punkte $P(1 f(1))$ und $Q(3 f(3))$ verläuft.                                                       | 3                                   |                        |
| 2                                                          | (2) bestimmt die Koordinaten des Schnittpunktes $R$ der Geraden $g$ mit dem Graphen von $f$ .                                                                               | 2                                   |                        |
| 3                                                          | (3) berechnet die Stellen, an denen der Graph von $f$ Tangenten hat, die parallel zur Geraden $g$ verlaufen, und gibt die Ergebnisse auf zwei Nachkommastellen gerundet an. | 2                                   |                        |
| Sachlich richtige Lösungsalternative zur Modelllösung: (7) |                                                                                                                                                                             |                                     |                        |
|                                                            |                                                                                                                                                                             |                                     |                        |
|                                                            | Summe Teilaufgabe d)                                                                                                                                                        | 7                                   |                        |

# Teilaufgabe e)

|                      | Anforderungen                                                                                                         | Lösungsqualität |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------|--|
|                      | Der Prüfling                                                                                                          |                 |  |
| 1                    | (1) entscheidet, welche der <i>Abbildungen 2.1</i> oder <i>2.3</i> zu dem Wert $h = 0.25$ gehört.                     | 1               |  |
| 2                    | (2) gibt an, welcher Wert von <i>h</i> zu der <i>Abbildung 2.2</i> gehört.                                            | 1               |  |
| 3                    | (3) gibt die Zahl an, der sich der Differenzenquotient $\frac{f(3+h)-f(3)}{h}$ annähert, wenn $h$ immer kleiner wird. | 1               |  |
| 4                    | (3) begründet seine Angabe.                                                                                           | 2               |  |
| Sachl                | Sachlich richtige Lösungsalternative zur Modelllösung: (5)                                                            |                 |  |
|                      |                                                                                                                       |                 |  |
| Summe Teilaufgabe e) |                                                                                                                       |                 |  |

|  | Summe Aufgabe 3 | 24 |  |  |
|--|-----------------|----|--|--|
|--|-----------------|----|--|--|



# Aufgabe 4: Analysis (Aufgabe mit realitätsnahem Kontext)

#### Teilaufgabe a)

|       | Anforderungen Lösur                                         |                                     | ösungsqualität         |  |
|-------|-------------------------------------------------------------|-------------------------------------|------------------------|--|
|       | Der Prüfling                                                | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |  |
| 1     | berechnet die Füllmenge des Ederstausees am 01. April 2022. | 2                                   |                        |  |
| Sachl | Sachlich richtige Lösungsalternative zur Modelllösung: (2)  |                                     |                        |  |
|       | Summe Teilaufgabe a)                                        |                                     |                        |  |

#### Teilaufgabe b)

|       | Anforderungen                                                  |                                     | Lösungsqualität        |  |
|-------|----------------------------------------------------------------|-------------------------------------|------------------------|--|
|       | Der Prüfling                                                   | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |  |
| 1     | bestimmt, ab wann die Aseler Brücke im Jahr 2022 begehbar war. | 4                                   |                        |  |
| Sachl | Sachlich richtige Lösungsalternative zur Modelllösung: (4)     |                                     |                        |  |
|       | Summe Teilaufgabe b)                                           |                                     |                        |  |

# Teilaufgabe c)

|       | Anforderungen                                                                  | Lösungs                             | qualität               |
|-------|--------------------------------------------------------------------------------|-------------------------------------|------------------------|
|       | Der Prüfling                                                                   | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1     | berechnet $\frac{f(7)-f(5)}{7-5}$ und deutet das Ergebnis im Sachzusammenhang. | 4                                   |                        |
| Sachl | Sachlich richtige Lösungsalternative zur Modelllösung: (4)                     |                                     |                        |
|       | Summe Teilaufgabe c)                                                           | 4                                   |                        |





# Teilaufgabe d)

|                                                            | Anforderungen                                                                                                                                                                                                  |                                     | qualität               |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
|                                                            | Der Prüfling                                                                                                                                                                                                   | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| 1                                                          | gibt $f'(t)$ an.                                                                                                                                                                                               | 1                                   |                        |
| 2                                                          | bestimmt rechnerisch – ohne dabei an Funktionsgraphen abgelesene Werte oder Zusammenhänge zu verwenden – die geringste Füllmenge des Ederstausees im Zeitraum von Anfang Januar 2022 bis Mitte September 2022. |                                     |                        |
| Sachlich richtige Lösungsalternative zur Modelllösung: (8) |                                                                                                                                                                                                                |                                     |                        |
|                                                            |                                                                                                                                                                                                                |                                     |                        |
|                                                            | Summe Teilaufgabe d)                                                                                                                                                                                           | 8                                   |                        |

#### Teilaufgabe e)

|                                                            | Anforderungen                                                                                        | Lösungsqualität |                        |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------|------------------------|
|                                                            | Der Prüfling                                                                                         |                 | erreichte<br>Punktzahl |
| 1                                                          | (1) gibt für $0 \le t \le 8,5$ näherungsweise die Bereiche an, in denen $f(t) < g(t)$ gilt.          | 2               |                        |
| 2                                                          | (1) interpretiert die Bedeutung dieser Bereiche im Sachzusammenhang.                                 |                 |                        |
| 3                                                          | (2) ermittelt näherungsweise den vertikalen Abstand der Graphen von $f$ und $g$ fü $t \approx 8,0$ . |                 |                        |
| 4                                                          | (2) interpretiert den ermittelten Wert im Sachzusammenhang.                                          |                 |                        |
| Sachlich richtige Lösungsalternative zur Modelllösung: (6) |                                                                                                      |                 |                        |
|                                                            | Summe Teilaufgabe e)                                                                                 |                 |                        |

|  | Summe Aufgabe 4 | 24 |  |
|--|-----------------|----|--|
|--|-----------------|----|--|



#### Festlegung der Gesamtnote

|                                                 | Lösungsqualität                     |                        |
|-------------------------------------------------|-------------------------------------|------------------------|
|                                                 | maximal<br>erreichbare<br>Punktzahl | erreichte<br>Punktzahl |
| Übertrag der Punktsumme aus der ersten Aufgabe  | 6                                   |                        |
| Übertrag der Punktsumme aus der zweiten Aufgabe | 6                                   |                        |
| Übertrag der Punktsumme aus der dritten Aufgabe | 24                                  |                        |
| Übertrag der Punktsumme aus der vierten Aufgabe | 24                                  |                        |
| Gesamtpunktzahl                                 | 60                                  |                        |

| Note |  |  |  |
|------|--|--|--|
|      |  |  |  |

Unterschrift, Datum

# Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Noten zu den Punktsummen ist folgende Tabelle zu verwenden:

| Note         | Erreichte Punktsummen |
|--------------|-----------------------|
| sehr gut     | 52 – 60               |
| gut          | 43 – 51               |
| befriedigend | 34 – 42               |
| ausreichend  | 25 – 33               |
| mangelhaft   | 13 – 24               |
| ungenügend   | 0 – 12                |