

EENGM0004: Engineering Research Skills

ASync 1: How to Define and Manage a Project

2021-2022

Dr. Fan (Aaron) Zhang

fan.zhang@bristol.ac.uk

Projects: Stages and Process

Starting a project

- Formulating a project.
- Project planning.
- Obtaining the resources for the project.

Executing a project

- Project management.
- Project implementation.

Managing and exploiting of the outcome of a project

- Dissemination of results.
- Intellectual property.
- Exploitation of research outcome.

Starting a Project

The type and motivation of a project

- Research projects.
 - Basic research.
 - Applied research.
- Development projects.

Think about your project and decide which type it belongs to!

Planning a project

It is important to plan ahead for a project in order for it to be successful.

Obtaining resources for the project

► A project will need certain kinds and amounts of resources to implement.

Project Type 1: Basic Research Projects

Motivation

Production of new knowledge.

Typical Aims

- Aims are the general directions or targets of the research.
 - To find scientific truth about a specific investigation subject.
 - ► To prove or disprove a scientific hypothesis.
 - ► To establish a set of theories / methodologies about a scientific field.

Hypothesis

A proposed explanation to something made with limited evidence.

Project Type 1: Basic Research Projects

Typical Objectives

- Objectives are outcomes that can be achieved in this project.
- They must be steps of progress towards the Aims.
 - Establish facts and gather data.
 - Extract regularities/patterns/orders. E.g., from data.
 - Discover irregularities / disorders from data.
 - Prove/disprove/improve a theory.
- Objectives in basic research are often defined by researchers themselves.

Typical methodologies

- Critical review of the state of the arts.
 - ▶ Identify the various hypotheses (note: plural!) that have been proposed.
 - Analyse the plausibility and flaws of existing hypotheses.
 - ▶ Identify the key evidences and arguments needed to prove or disprove.

Project Type 1: Basic Research Projects

Typical methodologies

- **Evidence gathering**: survey, measurement, observation, etc.
- ► Logical/reasoning: induction (bottom up) or deduction (top down).
- Analytical: using mathematical tools to carry out deductive research.
- Statistical: using math tools (statistics) to carry out induction research.

Typical outputs

Publications; research reports; databases; policy advice

Exploitation and application

► Long-term.

Deduction and Induction

Figure: Source from Conjoint.ly

Examples of Basic Research Projects

Basic research examples in science

- ► A research to discover the components of the human DNA.
- ► A study on the contrast sensitivity characteristics of human visual system.

Basic research examples in health

- An investigation into the symptoms of Coronavirus.
- An investigation into the secondary symptoms of high blood pressure.

Basic research examples in engineering

- ► A study on the properties of electrical conductor.
- A study on the characteristics of the discrete cosine transform.

Research Project Type 2: Applied Research

Motivation

► Find a solution to a specific problem.

Typical aims

➤ To solve an important social/economical/technical problem.

Typical objectives

- Objectives are defined by the problem to be solved.
 - Which part of the problem will be solved?
 - ▶ To what extent will the problem be solved?
- Discover and verify a new method of solving the problem (or part of it).
- Improve existing solutions that have deficiencies.

Project Type 2: Applied Research Projects

Typical methodologies

- Identify the causes of the problem by
 - ► Applying known theories, modelling and simulation, and/or testing existing solutions.
- Critically review the effectiveness of existing solutions to the problem.
- Propose new solutions or improvements based on
 - ► Theoretical understanding, experience (practice), modelling and simulations results.
- Evaluate proposed solutions through modelling simulation and/or design/build.
- Improving solutions based on iterative optimization.

Typical outputs

► Technical reports, publications, patents and other intellectual properties.

Exploitation and application

▶ Mid - short term

Examples of Applied Research Projects

Applied research examples in science

- ► How to improve agricultural crop production?
- ▶ How to treat or cure a specific disease?

Applied research examples in health

- An investigation to identify the healing properties of a specific herb.
- An investigation to identify the side effects of using a particular drug.

Applied research examples in engineering

- ► The application of the discrete cosine transform in image compression.
- Volcano unrest detection based on deep learning.

Project Type 3: Development Projects

Motivation

Development of new products and services, profitability/financial gains, and/or social benefits.

Typical Aims

- Develop a product or service not yet available: opening new opportunities.
- Develop a product or service that will replace existing ones: higher performance and/or lower cost.

Typical Objectives

- Objectives should be highly focused avoid unnecessary objectives.
- Objectives are dictated by the specifications of the end-product.
- Specifications: a detailed list of functionality and performance parameters.
- ► Break-down the general specifications into objectives for the project.
- Describe the assessment method for each objective: objective assessment (measurements) and/or subjective assessment (human observation, experience, scoring).

Development Projects

Typical methodologies

- Design and build a part of the whole product/service.
- ► Test functionality, evaluate performance and iterative optimization.
- Evaluate user experience, cost-effectiveness of production process and profitability.

Typical output

► Intellectual property, technological knowhow, designs, and prototypes.

Exploitation and commercialisation

► Short term - immediate

Examples

- Develop a video quality assessment interface software.
- Design an external heart rate monitor.

Relationship between Different Types of Projects

Project Resources

Public funding

- International: e.g., European Union, UNESCO, international collaborative funds.
- National and regional government funding bodies: e.g., EPSRC, BBSRC and CSC.

Private funding

- Industrial funding: e.g., Amazon Research Awards and Google PhD Fellowship Program.
- Internal funding: e.g., Vice Chancellor's Fellowships (UoB).

Organization and human resources

- ► Project consortium and organizations (company, department, etc.)
- People: leaders/supervisors, managers/administrators, researchers and technicians.

Material resources

Infrastructure (e.g., buildings and labs); equipment; experimental materials; software; electricity, water.

Project Planning and Execution

Project Planning

- ► Work Package and tasks.
- ► Critical Path: the longest route (shortest time) to achieving all objectives.
- ▶ Milestones: critical stages of a project when certain targets are to be achieved.
- ▶ **Deliverables**: reports, papers, software, hardware, etc., that show the achievement of Milestones.

Project Management

- ▶ **Project Meetings**: internal review of progress; technical discussions.
- ▶ Project Reviews: panel of experts / assessors reviewing progress of project.
- ► Risk management: avoid failure due to unforeseeable factors.
 - Try to predict potential issues that may cause delay or failure of the project.
 - Plan for alternative measures that can mitigate these risks.

Dissemination

Dissemination plan

► How do you plan to make your research results known to people?

Publications (primarily for academics)

Journals, conferences, books, book chapters, special issues, arxiv.

Workshop or Conference

Oral presentation, poster presentation.

Industrial / Commercial events

Exhibitions, promotions.

Websites, social media, mainstream media reports

Twitter and tech blogs.

Protection and Exploitation of Intellectual Property Rights (IPR)

IPR protection

Foreground and background knowledge

- Foreground: new knowledge generated during a project.
- Background: existing knowledge before the start of a project.

Ownership, joint ownership

▶ Who owns the knowledge (intellectual property rights – IPR)?

IP protection, patenting

► Protect your innovation before it becomes public!

IPR Exploitation

Access rights

- ▶ Who can use the IPR and how?
- ► Free of charge (usually for the purpose of project completion).
- Licensed (for a fee) or sold (for commercial exploitation).

Exploitation modes

- Commercial product development.
- Used in further (follow-on) research and/or for education (professional & general public).

Commercialization, marketing and value

- ► Angel investors, venture capital, spin-off or start-up companies.
- ► Go on to become an independent company selling product.
- Capitalisation through initial public offering (IPO).
- Large corporate buy-out.

