Proof for Theorem A'

Let $a \sim \pi_G$ be an action sampled from the generator, p_G be the probability of the generated action having reward 1. Let $R_{\rm gt}(a) \in \{0,1\}$ be the ground-truth reward (i.e., whether the action is good or bad), and $V(a) \in \{0,1\}$ be the verifier output.

We define:

$$\begin{split} p_G &= P \big(R_{\rm gt}(a) = 1 \ \big| \ a \sim \pi_G \big) \\ p_{V1} &= P \left(V(a) = R_{\rm gt}(a) = 1 \ \big| \ R_{\rm gt}(a) = 1 \right) \\ p_{V0} &= P \left(V(a) = R_{\rm gt}(a) = 0 \ \big| \ R_{\rm gt}(a) = 0 \right) \end{split}$$

that is, p_G is the probability the generator generates a good action, and **the verifier's accuracy is dependent on the generation quality** (ground truth reward of the action), p_{V1} is the probability the verifier predicts 1 given the action is good, and p_{V0} is the probability the verifier predicts 0 given the action is bad.

Theorem A'. Given $p_G \in (0,1)$, N > 1, then $\mathbb{E}[R_{\mathsf{gt}}(a_{\mathsf{wiver}})] > \mathbb{E}[R_{\mathsf{gt}}(a_{\mathsf{naive}})]$ if and only if $p_{V1} + p_{V0} > 1$.

The expected reward of naive sampling from generator: $\mathbb{E}\left[R_{\mathrm{gt}}(a_{\mathrm{naive}})\right] = p_G \times 1 + (1-p_G) \times 0 = p_G$

The expected reward of the selected action using the verifier is:

$$\begin{split} \mathbb{E}[R_{\mathsf{gt}}(a_{\mathsf{w/ver}})] &= P(\exists i, \ V(a_i) = 1) \cdot \mathbb{E}[R_{\mathsf{gt}}(a) \mid V(a) = 1] \\ &+ P(\forall i, \ V(a_i) = 0) \cdot \mathbb{E}[R_{\mathsf{gt}}(a) \mid V(a) = 0] \\ &= \left(1 - (1 - Q)^N\right) \cdot \frac{P(R = 1, V = 1)}{P(V = 1)} \\ &+ (1 - Q)^N \cdot \frac{P(R = 1, V = 0)}{P(V = 0)} \end{split}$$

where

$$Q = P(V(a) = 1) = p_G \cdot p_{V1} + (1 - p_G) \cdot (1 - p_{V0}),$$

and

$$P(R = 1, V = 1) = p_G \cdot p_{V1}, \quad P(R = 1, V = 0) = p_G \cdot (1 - p_{V1}).$$

Substituting into the expression, we get:

$$\mathbb{E}[R_{\text{gt}}(a_{\text{w/ver}})] = (1 - (1 - Q)^N) \cdot \frac{p_G p_{V1}}{Q} + (1 - Q)^N \cdot \frac{p_G (1 - p_{V1})}{1 - Q}.$$

We will first prove $\mathbb{E}[R_{\rm gt}(a_{\rm w/ver})] > \mathbb{E}[R_{\rm gt}(a_{\rm naive})] \Rightarrow p_{V1} + p_{V0} > 1$, and show that each step is reversible to prove the other direction.

$$\begin{split} \mathbb{E}[R_{\text{gt}}(a_{\text{w/ver}})] > \mathbb{E}[R_{\text{gt}}(a_{\text{naive}})] = p_G. \\ \overset{divide}{\rightleftharpoons} \overset{by}{p_G} \left(1 - (1 - Q)^N\right) \cdot \frac{p_{V1}}{Q} + (1 - Q)^N \cdot \frac{1 - p_{V1}}{1 - Q} > 1. \end{split}$$

Rewriting and simplifying:

$$(1 - (1 - Q)^{N}) \cdot \frac{p_{V1}}{Q} + (1 - Q)^{N} \cdot \frac{1 - p_{V1}}{1 - Q} > 1$$

$$\Leftrightarrow (1 - (1 - Q)^{N}) \cdot \frac{p_{V1}}{Q} + (1 - p_{V1})(1 - Q)^{N-1} > 1$$

$$\Leftrightarrow \left(\frac{p_{V1}}{Q} - \frac{p_{V1}}{Q}(1 - Q)^{N}\right) + (1 - p_{V1})(1 - Q)^{N-1} > 1$$

$$\Leftrightarrow \frac{p_{V1}}{Q} - \frac{p_{V1}}{Q}(1 - Q)^{N} + (1 - p_{V1})(1 - Q)^{N-1} > 1$$

$$\Leftrightarrow \left(\frac{p_{V1}}{Q} - 1\right) + \left[-\frac{p_{V1}}{Q}(1 - Q)^{N} + (1 - p_{V1})(1 - Q)^{N-1}\right] > 0$$

$$\Leftrightarrow \left(\frac{p_{V1}}{Q} - 1\right) + (1 - Q)^{N-1}\left[-\frac{p_{V1}}{Q}(1 - Q) + (1 - p_{V1})\right] > 0$$

$$\Leftrightarrow \left(\frac{p_{V1}}{Q} - 1\right) + (1 - Q)^{N-1}\left[1 - p_{V1} - \frac{p_{V1}}{Q}(1 - Q)\right] > 0$$

$$\Leftrightarrow \left(\frac{p_{V1}}{Q} - 1\right) + (1 - Q)^{N-1}\left(1 - \frac{p_{V1}}{Q}\right) > 0$$

$$\Leftrightarrow \left(\frac{p_{V1}}{Q} - 1\right)\left[1 - (1 - Q)^{N-1}\right] > 0.$$

Since $p_G \in (0,1)$, we have $Q \in (0,1)$, then $1-(1-Q)^{N-1} > 0$, so the inequality holds if and only if:

$$\frac{p_{V1}}{Q} > 1 \quad \iff \quad p_{V1} > Q.$$

Substituting the expression for *Q*:

$$p_{V1} > p_G p_{V1} + (1 - p_G)(1 - p_{V0}),$$

Rearranging:

$$p_{V1} - p_G p_{V1} > (1 - p_G)(1 - p_{V0}),$$

 $\iff p_{V1}(1 - p_G) > (1 - p_G)(1 - p_{V0}).$

Since $p_G \in (0,1)$, we can divide both sides by $1-p_G$, yielding:

$$p_{V1} > 1 - p_{V0} \iff p_{V1} + p_{V0} > 1.$$

Since all of the above steps are reversible, we prove that the verifier improves the expected reward over naive sampling if and only if $p_{V1}+p_{V0}>1$.