Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

23 Lecture 23 Jun 25th 2018

- **23.1** Ring (Continued 3)
- 23.1.1 Ideals (Continued)

Proposition 64 (Ideals of \mathbb{Z} are Principal Ideals)

All ideals of \mathbb{Z} are of the form $\langle n \rangle$ for some $n \in \mathbb{Z}$.

Proof

Let A be an ideal of \mathbb{Z} . If $A = \{0\}$, then $A = \langle 0 \rangle$. Otherwise, let $a \in A$ with $a \neq 0$, and |a| be the minimum. Clearly, $\langle a \rangle = a\mathbb{Z} \subseteq A$. To prove the other inclusion, let $b \in A$. By the Division Algorithm, $\exists q, t \in \mathbb{Z}$ with $0 \leq r < |a|$ such that b = qa + r. Because A is an ideal, we have $r = b - qa \in A$. Since |r| < |a| which is the minimal case, it must be that r = 0. Therefore $b = qa \in \langle a \rangle$ and so $A \subseteq \langle a \rangle$.

23.1.2 *Isomorphism Theorems for Rings*

Definition 38 (Ring Homomorphism)

Let R and S be rings. A mapping

 $\Theta: R \to S$

is a ring homomorphism if $\forall a, b \in R$, we have

124 Lecture 23 Jun 25th 2018 - Ring (Continued 3)

1.
$$\Theta(a+b) = \Theta(a) + \Theta(b)$$

2.
$$\Theta(ab) = \Theta(a)\Theta(b)$$

3.
$$\Theta(1_R) = 1_S$$

Note (Remark)

(2) \implies (3) because $\Theta(1_R) \in S$ does not necessarily have a multiplicative inverse, since S is a ring.

Example 23.1.1

The mapping $k \mapsto [k]$ from $\mathbb{Z} \to \mathbb{Z}_n$ is a surjective ring homomorphism.

Example 23.1.2 (Direct Product of Rings)

If R_1 , R_2 are rings, the projection

$$\pi_1: R_1 \times R_2 \rightarrow R_1$$
 defined by $\pi_1(r_1, r_2) = r_1$

is a surjective ring homomorphism, since

1.
$$\pi_1(r_1+r_2,q_1+q_2)=r_1+r_2=\pi_1(r_1,q_1)+\pi_1(r_2,q_2);$$

2.
$$\pi_1(r_1r_2, q_1q_2) = r_1r_2 = \pi_1(r_1, q_1)\pi_1(r_2, q_2)$$
; and

3.
$$\pi(1,1) = 1$$
.

We can a similar $\pi_2: R_1 \times R_2 \to R_2$ such that $(r_1, r_2) \mapsto r_2$, and we will get that π_2 is also a surjective ring homomorphism.

Proposition 65 (Properties of Ring Homomorphisms)

Let $\Theta: R \to S$ be a ring homomorphism and let $r \in R$. Then

1.
$$\Theta(0_R) = 0_S$$

2.
$$\Theta(-r) = -\Theta(r)$$

3.
$$\Theta(kr) = k\Theta(r)$$

4.
$$\forall n \in \mathbb{N} \cup \{0\} \quad \Theta(r^n) = \Theta(r)^n$$

5.
$$u \in R^* \implies \forall k \in \mathbb{Z} \quad \Theta(u^k) = \Theta(u)^k$$

Proof

1. Note that

$$\Theta(r) = \Theta(0_R + r) = \Theta(0_R) + \Theta(r).$$

Therefore,

$$\Theta(0_R) = 0_S$$

as required.

2. Note that

$$0_S = \Theta(0_R) = \Theta(r - r) = \Theta(r) + \Theta(-r),$$

SO

$$\Theta(-r) = -\Theta(r)$$
.

3. *Observe that*

$$\Theta(kr) = \Theta(\underbrace{r + r + \ldots + r}_{k \text{ times}}) = \underbrace{\Theta(r) + \Theta(r) + \ldots + \Theta(r)}_{k \text{ times}} = k\Theta(r)$$

Item 4 follows by induction on the definition of a ring homomorphism, and Item 5 follows as a result from Item 4 because if $u \in R^*$, then $u^{-1} \in$ R^* such that $uu^{-1} = 1_R$.

Definition 39 (Ring Isomorphism)

A mapping of rings $\Theta: R \to S$ is a ring isomorphism if Θ is a bijective ring homomorphism. In this case, we say that R and S are isomorphic and denote that by $R \cong S$.

Definition 40 (Kernel and Image)

Let $\Theta: R \to S$ be a ring homomorphism. The *kernel* of Θ is defined by

$$\ker\Theta = \{r \in R : \Theta(r) = 0_S\}$$

and the *image* of Θ is defined by

$$\operatorname{im} \Theta := \Theta(R) = \{\Theta(r) : r \in R\}.$$

Proposition 66

Let $\Theta: R \to S$ be a ring homomorphism. Then

- 1. $im \Theta \leq_r S$
- 2. $\ker \Theta$ is an ideal of R

Proof

1. $\Theta(1_R) = 1_S$ by definition of a homomorphism so $\Theta(1_R) \in \operatorname{im} \Theta$. Suppose $s_1 = \Theta(r_1)$ and $s_2 = \Theta(r_2)$, then

$$s_1 - s_2 = \Theta(r_1) - \Theta(r_2) = \Theta(r_1 - r_2)$$

 $s_1 s_2 = \Theta(r_1)\Theta(r_2) = \Theta(r_1 r_2)$

are both in im Θ . By the Subring Test, im $\Theta \leq_r S$.

2. Since $\ker \Theta$ is an additive subgroup of R, it suffices to show that $ra, ar \in \ker \Theta$ for all $r \in R$ and $a \in \ker \Theta$. Let $r \in R$ and $a \in \ker \Theta$. Then

$$\Theta(ra) = \Theta(r)\Theta(a) = \Theta(r) \cdot 0 = 0$$

So $ra \in \ker \Theta$ *. Similarly so,*

$$\Theta(ar) = \Theta(a)\Theta(r) = 0 \cdot \Theta(r) = 0$$

and so $ar \in \ker \Theta$. Therefore, $\ker \Theta$ is an ideal of R.

Theorem 67 (First Isomorphism Theorem for Rings)

Let $\Theta: R \to S$ be a ring homomorphism. Then

$$R_{\ker\Theta} \cong \operatorname{im} \Theta.$$

Proof

Let $A = \ker \Theta$. Since A is an ideal of R, we have that R_A is a ring.

Define

$$\overline{\Theta}: R_{/A} \to \operatorname{im} \Theta \ by \ (r+A) \mapsto \theta(a).$$

Note that

$$r+A=s+A\iff (r-s)\in A\iff \Theta(r-s)=0\iff \Theta(r)=\Theta(s).$$

Therefore $\overline{\Theta}$ is well-defined and injective. Also, it is clear that $\overline{\Theta}$ is surjective. To show that $\overline{\Theta}$ is a homomorphism, note that $\forall r,s \in R$, we have

$$\begin{split} \overline{\Theta}(r+A+s+A) &= \overline{\Theta}(r+s+A) = \Theta(r+s) \\ &= \Theta(r) + \Theta(s) = \overline{\Theta}(r+A) + \overline{\Theta}(s+A). \end{split}$$

It follows that $\overline{\Theta}$ is a ring isomorphism and so

$$R_{\ker\Theta} \cong \operatorname{im}\Theta$$

as required.

Exercise 23.1.1

Let A, $B \leq_r R$, where R is a ring. Prove that

- 1. $A \cap B$ is the largest subring of R contained in both A and B.
- 2. If either A or B is an ideal of R, the sum

$$A + B = \{a + b : a \in A, b \in B\}$$

is a subring of R, and is the smallest subring of R that contains both A and B.

Theorem 68 (Second Isomorphism Theorem for Rings)

Let A be a subring and B an ideal of a ring R. Then

- 1. $A + B \leq_r R$;
- 2. B is an ideal of A + B;
- 3. $A \cap B$ is an ideal of A; and

4.

$$(A+B)/B \cong A/(A\cap B)$$

Theorem 69 (Third Isomorphism Theorem for Rings)

Let A and B be ideals of R with $A \subseteq B$, then ${}^B\!\!/_A$ is an ideal of ${}^R\!\!/_A$ and

$$(R/A)/(B/A) \cong R/B.$$