Inferencia de Tipos

PLP

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

26 de abril de 2018

Introducción

2 Algoritmo de inferencia

3 Extensiones

Motivación

Ejemplo

Dada la expresión λx : Nat.isZero(x), ¿qué tipo tiene?

$$\emptyset \rhd \lambda x$$
: Nat . isZero (x) : Nat $ightarrow$ Bool

¿Cómo hicimos? ¿Se puede automatizar? ¿Podríamos no escribir el : Nat?

¿Y para $\lambda x.\lambda y.(x\ y)\ (\lambda z.x)$?

Inferencia

Dada una expresión, ¿tiene tipo? ¿Cuál es este tipo? ¿Es el más general? ¿Qué necesitamos saber del contexto?

Más ejemplos *a ojo*

¿Qué tipo tiene? ¿En qué contexto? ¿En qué contexto? ¿Es lo más general posible?

- $\emptyset \rhd \lambda x$:Nat. succ(x) : Nat \rightarrow Nat
- $\{y: \mathsf{Nat}\} \rhd \lambda x: \Box : t. \mathsf{succ}(y) : \Box : t \to \mathsf{Nat}$
- $(\lambda x.isZero(x))$ true no tiene tipo.
- $\emptyset \rhd \lambda x$: Nat. x: Nat \to Nat no es lo más general.
- $\emptyset \rhd \lambda x : t. \ x : t \to t$ es lo más general.

Generalidad

Dijimos que queremos el juicio *más general.* ¿Qué significa ser el más general?

Todos los juicios derivables para $\lambda x.x$ son instancias de $\emptyset > \lambda x: t.x: t \to t$. Por ejemplo:

- $\emptyset \rhd \lambda x : \mathsf{Nat}. \ x : \mathsf{Nat} \to \mathsf{Nat}$
- $\emptyset \rhd \lambda x$: Bool. x : Bool \rightarrow Bool
- $\{y : \mathsf{Bool}\} \rhd \lambda x : r \to \mathsf{Nat}. \ x : (r \to \mathsf{Nat}) \to (r \to \mathsf{Nat})$
- ...

Recordemos algunas reglas de tipado

$$\frac{x : \sigma \in \Gamma}{\Gamma \rhd x : \sigma} \text{ (T-VAR)} \quad \frac{\Gamma \cup \{x : \sigma\} \rhd M : \tau}{\Gamma \rhd \lambda x : \sigma.M : \sigma \to \tau} \text{ (T-Abs)}$$
$$\frac{\Gamma \rhd M : \sigma \to \tau \quad \Gamma \rhd N : \sigma}{\Gamma \rhd M N : \tau} \text{ (T-App)}$$

Tipado vs. Inferencia

$$\frac{x:\sigma\in\Gamma}{\Gamma\rhd x:\sigma}\,(\text{T-VAR})$$

$$\mathbb{W}(x)\ \stackrel{\text{def}}{=}\ \{x:t\}\rhd x:t,\quad t \text{ variable fresca}$$

Tipado vs. Inferencia

$$\frac{\Gamma \cup \{x : \sigma\} \rhd M : \tau}{\Gamma \rhd \lambda x : \sigma M : \sigma \to \tau}$$
(T-ABS)

Otra forma de escribirlo:

- Sea $\mathbb{W}(U) = \Gamma \triangleright M : \rho$
- Si el contexto tiene información de tipos para x (i.e. $x: \tau \in \Gamma$ para algún τ), entonces

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma \setminus \{x : \tau\} \rhd \lambda x : \tau. M : \tau \to \rho$$

 Si el contexto no tiene información de tipos para x (i.e. x ∉ Dom(Γ)) elegimos una variable fresca t y entonces

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma \rhd \lambda x : t.M : t \to \rho$$

$$\tau = \begin{cases} \alpha \text{ si } x : \alpha \in \Gamma \\ \text{variable fresca en otro caso.} \end{cases}$$

$$\Gamma' = \Gamma \ominus \{x\}$$

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma' \rhd \lambda x : \tau.M : \tau \to \rho$$

Tipado vs. Inferencia

$$\frac{\Gamma \rhd M : \sigma \to \tau \quad \Gamma \rhd N : \sigma}{\Gamma \rhd M N : \tau} \text{ (T-APP)}$$

- Sea
 - $\mathbb{W}(U) = \Gamma_1 \triangleright M : \tau$
 - $\mathbb{W}(V) = \Gamma_2 \triangleright N : \rho$
- Sea

$$S = MGU\{\sigma_1 \doteq \sigma_2 \mid x : \sigma_1 \in \Gamma_1 \land x : \sigma_2 \in \Gamma_2\}$$

$$\cup$$

$$\{\tau \doteq \rho \rightarrow t\} \text{ con } t \text{ una variable fresca}$$

Entonces

$$\mathbb{W}(UV) \stackrel{\mathrm{def}}{=} S\Gamma_1 \cup S\Gamma_2 \rhd S(MN) : St$$

Apliquémoslo |

Utilizar el algoritmo \mathbb{W} para las siguientes expresiones:

- $\lambda f \cdot \lambda x \cdot f(f x)$
- $x(\lambda x.x)$
- $\lambda x . x y x$

Extensiones al algoritmo

En general

- Agregar casos nuevos al algoritmo.
- Menos frecuentemente, modificar casos existentes.

Para incorporar nuevos términos

- Nuevas reglas de tipado \Rightarrow nuevos casos del algoritmo \mathbb{W} .
- Anotar las expresiones con sus tipos.

Extensión del lenguaje

Abstracciones sobre pares

$$M ::= \ldots |\lambda\langle x, y\rangle : \langle \sigma \times \tau \rangle . M$$

$$M' ::= \ldots |\lambda\langle x, y\rangle.M'$$

$$\frac{\Gamma, x \colon \sigma, y \colon \tau \triangleright M \colon \rho}{\Gamma \triangleright \lambda \langle x, y \rangle \colon \langle \sigma \times \tau \rangle . M \colon \langle \sigma \times \tau \rangle \to \rho}$$

Extender el algoritmo

$$\mathbb{W}(\lambda\langle x,y\rangle.U) \stackrel{\mathrm{def}}{=} \Gamma' \triangleright \lambda\langle x,y\rangle \colon \langle \tau_x \times \tau_y\rangle.M \colon \langle \tau_x \times \tau_y\rangle \to \rho$$
 donde
$$\tau_x = \left\{ \begin{array}{l} \alpha \text{ si } x \colon \alpha \in \Gamma \\ \text{ variable fresca si no.} \end{array} \right. \quad \tau_y = \left\{ \begin{array}{l} \beta \text{ si } y \colon \beta \in \Gamma \\ \text{ variable fresca si no.} \end{array} \right.$$

Extensiones del lenguaje

```
\sigma ::= \dots \mid [\sigma]
M, N, O ::= \dots \mid [\ ]_{\sigma} \mid M :: N \mid Case \ M \ of \ [\ ] \leadsto N \ ; h :: t \leadsto O
\frac{}{\lceil \rhd [\ ]_{\sigma} : [\sigma]} \frac{}{\lceil \rhd M : \sigma \qquad \lceil \rhd N : [\sigma] \rceil} \frac{}{\lceil \rhd M :: N : [\sigma]} \frac{}{\lceil \rhd M :: N : [\sigma]}
\frac{}{\lceil \rhd M : [\sigma] \qquad \lceil \rhd N : \tau} \frac{}{\lceil \rhd Case \ M \ of \ [\ ] \leadsto N \ ; h :: t \leadsto O : \tau}
```

Extender el algoritmo

$$\mathbb{W}([\]) \stackrel{\text{def}}{=} ?$$
 $\mathbb{W}(U_1 :: U_2) \stackrel{\text{def}}{=} ?$
 $\mathbb{W}(\textit{Case } U_1 \textit{ of } [\] \rightsquigarrow U_2 ; h :: t \rightsquigarrow U_3) \stackrel{\text{def}}{=} ?$

Ahora usémoslo

 $\mathbb{W}(Case\ succ(0)::x\ of\ [] \sim x ; x :: y \sim succ(x) ::[]) = ?$

Otra extensión Switch de naturales

Switch

Extender el algoritmo de inferencia \mathbb{W} para que soporte el tipado del *switch* de números naturales, similar al de C o C++. La extensión de la sintaxis es la siguiente:

 $M = \ldots \mid$ switch M {case $\underline{n_1} : M_1 \ldots$ case $\underline{n_k} : M_k$ default : M_{k+1} } donde cada $\underline{n_i}$ es un numeral (un *valor* de tipo Nat, como 0, succ(0), succ(succ(0)), etc.). Esto forma parte de la sintaxis y no hace falta verificarlo en el algoritmo.

La regla de tipado es la siguiente:

Otra extensión del lenguaje Letrec

En este ejercicio modificaremos el algoritmo de inferencia para incorporar la posibilidad de utilizar letrec en nuestro cálculo.

$$M ::= \ldots | \text{letrec } f = M \text{ in } N$$

Permite por ejemplo representar el factorial de 10 de la siguiente manera:

letrec
$$f = (\lambda x : \text{Nat.ifisZero}(x) \text{ then } \underline{1} \text{ else } x \times f \text{ (Pred}(x))) \text{ in } f \text{ } \underline{10}$$

Para ello se agrega la siguiente regla de tipado:

$$\frac{\Gamma \cup \{f : \pi \to \tau\} \rhd M : \pi \to \tau \qquad \Gamma \cup \{f : \pi \to \tau\} \rhd N : \sigma}{\Gamma \rhd \mathsf{letrec} \ f = M \ \mathsf{in} \ N : \sigma}$$

Extendemos el algoritmo

$$\frac{\Gamma \cup \{f : \pi \to \tau\} \rhd M : \pi \to \tau \qquad \Gamma \cup \{f : \pi \to \tau\} \rhd N : \sigma}{\Gamma \rhd \text{letrec } f = M \text{ in } N : \sigma}$$

 $\mathbb{W}(\mathsf{letrec}\ f = U_1\ \mathsf{in}\ U_2) \stackrel{\mathrm{def}}{=} S\,\Gamma_1' \cup S\,\Gamma_2' \rhd S\,(\mathsf{letrec}\ f = M_1\ \mathsf{in}\ M_2) : S\,\tau_2$ donde

- $\mathbb{W}(U_1) = \Gamma_1 \rhd M_1 : \tau_1$
- $\bullet \ \mathbb{W}(U_2) = \Gamma_2 \rhd M_2 : \tau_2$
- $\tau_{f1} = \begin{cases} \alpha_1 \text{ si } f : \alpha_1 \in \Gamma_1 \\ \text{variable fresca en otro caso.} \end{cases}$
- $\tau_{f2} = \begin{cases} \alpha_2 \text{ si } f : \alpha_2 \in \Gamma_2 \\ \text{variable fresca en otro caso.} \end{cases}$
- $\Gamma_1' = \Gamma_1 \ominus \{f\}$ y $\Gamma_2' = \Gamma_2 \ominus \{f\}$
- $\begin{array}{ll} \bullet & S & = & \text{mgu } \{\tau_{f1} \doteq \tau_{f2}, \tau_1 \doteq t_1 \rightarrow t_2, \tau_1 \doteq \tau_{f1} \} \\ & \cup & \{\sigma_1 \doteq \sigma_2 \mid x : \sigma_1 \in \Gamma_1', x : \sigma_2 \in \Gamma_2' \} \\ & t_1 \text{ y } t_2 \text{ variables frescas} \end{array}$

Otra forma de escribirlo

$$\frac{\Gamma \cup \{f : \pi \to \tau\} \rhd M : \pi \to \tau \qquad \Gamma \cup \{f : \pi \to \tau\} \rhd N : \sigma}{\Gamma \rhd \mathsf{letrec} \ f = M \ \mathsf{in} \ N : \sigma}$$

W(letrec $f = U_1$ in U_2) $\stackrel{\text{def}}{=} S \Gamma_1' \cup S \Gamma_2' \triangleright S$ (letrec f = M in N) : $S \sigma$ donde

- $\mathbb{W}(U_1) = \Gamma_1 \rhd M : \gamma$
- $\mathbb{W}(U_2) = \Gamma_2 \rhd N : \sigma$

•
$$\tau_f = \begin{cases} \alpha_1 \text{ si } f : \alpha_1 \in \Gamma_1 \\ \alpha_2 \text{ si } f \notin \text{dom}(\Gamma_1) \text{ y } f : \alpha_2 \in \Gamma_2 \\ \text{variable fresca en otro caso.} \end{cases}$$

$$\bullet \ \Gamma_1' = \Gamma_1 \ominus \{f\} \ \mathsf{y} \ \Gamma_2' = \Gamma_2 \ominus \{f\}$$

$$\begin{array}{ll} \bullet & S & = & \text{mgu } \{ \gamma \doteq t_1 \rightarrow t_2, \gamma \doteq \tau_f \} \\ & \cup & \{ \sigma_1 \doteq \sigma_2 \mid x : \sigma_1 \in \Gamma_1, x : \sigma_2 \in \Gamma_2 \} \\ & t_1 \text{ y } t_2 \text{ variables frescas} \end{array}$$

Moraleja

Algunas conclusiones

- Los llamados recursivos devuelven un contexto, un término anotado y un tipo. No podemos asumir nada sobre ellos.
- Cuando la regla tiene tipos iguales o tipos con una forma específica: unificar.
- Si hay contextos repetidos en las premisas, unificarlos.
- Cuando la regla liga variables:
 - Obtener su tipo del Γ obtenido recursivamente.
 - Si no figuran: variable fresca.
 - Sacarlas del Γ del resultado (y del que se vaya a unificar).
- Decorar los términos según corresponda.
- Si la regla tiene restricciones adicionales, se incorporan como posibles casos de falla.

PLP ⊳ fin clase: consultas