第 108 學年度清華大學普通物理實驗(一)

为 100 子干	及何辛八	于日	TO 101.	生貝恢	•	
□預報 或 ☑結報	課程編號	•	10810	PHYS101010		
實驗名稱:	圓周 運	動血	向心力智	子 縣		
系 級:電機資訊學	院學士班 1 年級	組	別:	13		
學 號:108	3060018	姓	名:	葉承泓		
組 員: 陳	、					
實驗日期: 108 年 (<u> 月 18</u> 日	補作	日期:	年月	日	
○ 以下為助教記錄區						
				—————————————————————————————————————		
預報繳交日期	報告成績			助教簽名欄		
/大起始 六 口 如						
<u> </u>						
据 <i>生</i> 软化织镍						
│報告缺失紀錄 │ │						

六、實驗結果與分析

(一) 改變旋轉半徑(固定向心力與旋轉體質量)

表1 改變旋轉半徑

旋轉體的質量 M ≒ 0.2086 kg

在側滑輪上的懸掛之砝碼質量 m ≒ 0.0590 kg

圖形上的斜率≒ 13.481

r(m)	T(s)	$T^2(s^2)$	T 理論值(s)	T 誤差(%)
0.1050	1.27	1.6129	1.222905	3.851098
0.1390	1.4	1.96	1.407037	-0.500097
0.1910	1.61	2.5921	1.649357	-2.386201
0.1740	1.56	2.4336	1.574246	-0.904942
0.0580	0.88	0.7744	0.908891	-3.178747

表 2 改變旋轉半徑

向心力 ≡mg	0.5782(N)
由實驗斜率得到的向心力	0.610874(N)
誤差百分比	5.651057%

圖1 改變旋轉半徑之 r-T²關係圖

數據分析:

- 1. 由每次實驗測量之T可求出T²的值(如表1)
- 2. 將 r-T² 關係圖畫出(如圖 1)
- 3. 因為掛在滑輪上的砝碼質量等於繩線施加的向心力,故 向心力 = mg ≒0.059 kg × 9.8 m/s² =0.5782 N (理論值)
- 4. 理論上 $F = \frac{4\pi^2Mr}{T^2} = mg$,故 $r = \left(\frac{mg}{4\pi^2M}\right)T^2$,可知
 - (1) 因為 $m \cdot g \cdot M$ 皆為定值,故 $r-T^2$ 關係圖成一線性關係(如圖 1),因此可求出回歸直線及其斜率,紀錄斜率於表 1

(2) 因為
$$T>0$$
,故 $T=\sqrt{\frac{4\pi^2Mr}{mg}}$,可算出 T 的理論值(如表 1)

6. 接著要算F的實驗值:由
$$F = \frac{4\pi^2Mr}{T^2}$$
可得知 $r = \left(\frac{F}{4\pi^2M}\right)T^2$,故 r - T^2 關係圖之回歸直線
斜率為 $\frac{F}{4\pi^2M}$,可求出F的實驗值(如表 2)

7. 如表
$$2$$
, F 誤 $\underline{\mathcal{E}} = \frac{F_{\text{實驗值}} - F_{\text{理論值}}}{F_{\text{理論值}}} \times 100\%$

(二) 改變向心力 (固定旋轉半徑與旋轉體質量)

表 3 改變向心力

旋轉體的質量 M = 0.2086 kg 旋轉體旋轉半徑 r = 0.1050 m 圖形上的斜率= 0.9944

砝碼質量	向心力	週期 $T(s)$ $\frac{1}{T^2}(\frac{1}{s^2})$		T理論值(s)	T 誤差(%)
m(kg)	F=mg(N)		$T^{2}(s^{2})$	1 注册但(3)	1 跃年(79)
0.0390	0.3822	1.47	0.462770	1.504133	-2.269301
0.0490	0.4802	1.37	0.532793	1.341901	2.093943
0.0590	0.5782	1.27	0.620001	1.222905	3.851098
0.0690	0.6762	1.18	0.718184	1.130822	4.348911
0.0790	0.7742	1.08	0.857339	1.056830	2.192417

表 4 改變向心力

旋轉體的質量(秤重測量值)	0.2086(kg)
旋轉體的質量(由實驗斜率)	0.242599(kg)
誤差百分比	0.162989%

圖 2 改變向心力之 $F-\frac{1}{T^2}$ 關係圖

數據分析:

- 1. 由每次實驗測量之m可求出F=mg(向心力)的值(如表 3)
- 2. 由每次實驗測量之T可求出 $\frac{1}{T^2}$ 的值(如表 3)
- 3. 將 F-¹_{T²}關係圖畫出(如圖 2)
- 4. 理論上 $F = mg = \frac{4\pi^2 Mr}{T^2}$, 故 $mg = (4\pi^2 Mr)\frac{1}{T^2}$, 可知
 - (1) 因為 $M \times r$ 皆為定值,故 $F \frac{1}{T^2}$ 關係圖成一線性關係(如圖 2),因此可求出回歸直線及其斜率,紀錄斜率於表 3
 - (2) 因為 T>0,故 $T=\sqrt{\frac{4\pi^2Mr}{mg}}$,可算出 T 的理論值(如表 3)
- 5. 如表 3,T 誤 $\dot{z} = \frac{T_{g \text{ Nh fi}} T_{\text{ Th gh hi}}}{T_{\text{ Th gh hi}}} \times 100\%$
- 6. 接著要算 M 的實驗值:由 $F=\frac{4\pi^2Mr}{T^2}$ 可得知 $F=(4\pi^2Mr)\frac{1}{T^2}$,故 $F-\frac{1}{T^2}$ 關係圖之回歸直線斜率為 $4\pi^2Mr$,可求出 M 的實驗值(如表 4)
- 7. 如表 4,M 誤 $\dot{\mathcal{E}} = \frac{M_{g \oplus d} M_{j j \oplus d}}{M_{j j \oplus d}} \times 100\%$

(三) 改變旋轉體質量(固定半徑與向心力)

表 5 改變旋轉體的質量

在側滑輪上的砝碼的質量 m = 0.0590 kg 向心力(理論值) = mg = 0.5782 N 旋轉體旋轉半徑 r = 0.1050 m

旋轉體的質量 M(kg)	週期 T(s)	計算得到的向心力 F(N)	向心力誤差(%)	
0.2086	1.27	0.536112	-7.279066	
0.1565	1.04	0.599786	3.733396	
0.1043	0.86	0.584570	1.101672	

圖 3 改變旋轉體的質量之 M-T²關係圖

數據分析:

- 1. 由測量之 m 可求出 F=mg(向心力)的理論值(如表 5)
- 2. 理論上 $F = mg = \frac{4\pi^2 Mr}{T^2}$,故 $M = \left(\frac{mg}{4\pi^2 r}\right) T^2$,可知因為 $m \cdot g \cdot r$ 皆為定值,故 $M-T^2$ 關係圖成一線性關係(如圖 3),因此可求出回歸直線方程式
- 3. 接著要算 F 的實驗值:由 $F = \frac{4\pi^2 Mr}{r^2}$ 可計算出 F 的實驗值(如表 5)
- 4. 如表 5,F 誤差= $\frac{F_{g_{\&d}}-F_{g_{\&d}}}{F_{g_{\&d}}} \times 100\%$

七、問題與討論

Q1:此實驗中可能引起誤差的因素有哪些?

A1:1. 儀器測量精確度:

- (1)以旋轉平臺(上有刻度)測量 r 時,實際上的數值可能超過小數點後 4 位,但 儀器卻只精確到 mm(小數點後 3 位)的層級,因此小數點後第 4 位為估計 值,更後面的位數也就是造成誤差的原因之一
- (2)以光電閘連接 Arduino 控制盒測量 T 時, Arduino 控制盒螢幕上顯示的數值 只到小數點後 2 位, 也會造成測量上的誤差
- (3)以電子秤測量 m 及 M 時,儀器精確度只到 0.1 公克(小數點後 4 位)的程度,但是實際數值可能超過小數點後 4 位,因此也會導致誤差
- 2. 觀測紀錄者觀測之精確度(人為判斷誤差):
 - (1)架設器材時,用水平儀調整A型基座(為了使旋轉平臺能在同一水平面上旋轉),氣泡可能不是恰位於水平儀正中心,但我們卻認為已達水平,這使得旋轉時所測之T值與水平旋轉時的T值有差異
 - (2)估計值與實際值的誤差
 - (3)圓形指示片可能還沒恰好對齊指示托架的位置,我們就認為已對齊到,因此 紀錄的 T 值與實際對齊時有差異
 - (4)觀察「旋轉體是否垂直懸掛,兩端繩線是否均呈水平狀態」時亦可能有誤差 (旋轉體並非垂直懸掛,或兩端繩線並非均呈水平狀態)
 - 3. 摩擦力的影響:棉線與2個滑輪之間實際上有摩擦力,使得理論向心力並非mg,轉動時的實際向心力也不等於mg,故造成實驗值與理論值之間的誤差
 - 4. 儀器裝置並沒有安裝得很精確,例如:中心支架或側支架並非垂直固定住、 棉線綁住的位置與設想不同……等等

Q2: 當半徑增加時,轉動的週期增加或減少?

 A_2 :由實驗(-)的圖 1 或理論公式 $F=mg=\frac{4\pi^2Mr}{T^2}$ 可知:當 m、M 固定為定值時, $r\propto T^2$,故當 r 增加時,T 也增加

O3: 當半徑及轉動物體的質量固定時, 增加週期會增加或減少向心力?

 A_3 : 由實驗(二)的圖 2 或理論公式 $F = mg = \frac{4\pi^2Mr}{T^2}$ 可知:當 $r \cdot M$ 固定為定值時,

 $F \propto \frac{1}{T^2}$,故當 T 增加時, F 會<u>減少</u>

Q4: 當物體的質量增加時,向心力增加或是減少?

 A_4 :理論上, $F = mg = \frac{4\pi^2 Mr}{T^2}$,故當 r、T 固定為定值時, $F \propto M$,故當 M 增加時,F 會增加。但在本次實驗中,T 並非固定(而是 F 固定),故無法從實驗數據得知。

Q5:在本實驗中,假設向心力 F 與圓周運動周期 T 的關係為 F=aTⁿ+b,式中 n、a 和 b 皆為常數。請說明:如何由實驗得到的數據,作何種關係圖後,進行分析, 推測 n、a 和 b 等數值?

 A_5 : 由實驗(二)圖 2 可知 $F \propto \frac{1}{T^2}$,且 $\frac{1}{T^2} = 0.9944F + 0.0632$,故 $F = 1.0056T^{-2} - 0.0636$ 可推測出 n = -2、a = 1.0056、b = -0.0636

Q6:在實驗中,固定輸入馬達的電壓時,若此時發現圓形指示片持續上下振盪,不易穩定,請說明造成此現象的可能原因。

A6:可能原因:

- 1. 因為旋轉平臺不水平:因此當旋轉體忽高忽低時(非做水平面上的圓周運動), 會使旋轉體的重力影響向心力(在高處時向心力由重力的分力及棉線施予的力 提供;在低處時向心力由棉線施予的力減去重力的分力提供),導致彈力不一 致,因此圓形指示片持續(有規律性)上下震動。
- 2. 彈簧作簡諧運動:彈簧一開始長度為原長,隨著馬達加速旋轉帶動旋轉體也跟著加速旋轉,使得所需向心力越來越大,彈簧也越拉越長。當圓形指示片對齊指示托架的位置時,我們將電壓、電流設定為固定值,馬達因此等速率旋轉,旋轉體也等速率旋轉,此時所需向心力為定值,理論上彈簧應立刻保持固定長度,但由於慣性,旋轉體的還是有向外的衝動((向心)加速度無法瞬間成為固定值),導致向心力仍會稍微加大,彈簧再稍微伸長,直到向心力又太大,把旋轉體又拉回來一點,而又因慣性而拉過頭,向心力又太小而使旋轉體有向外的衝動,……,就這樣一直循環(如圖 4),使彈簧作簡諧運動。

圖 4 彈簧作簡諧運動示意圖

Q7:1. 由實驗測得數據,分別作出下列物理量的關係圖:

- (1)圓周運動週期平方的倒數 $\frac{1}{T^2}$ 與向心力 F
- (2)圓周運動週期平方 T²與旋轉體質量 M
- (3)圓周運動週期平方 T²與旋轉半徑 r

- 2. 理論上,上述三個關係應均為線性關係,故可以線性回歸分析數據。依據你的 實驗數據,請分別說明:所得到的線性回歸結果,其截距的物理意義。
- A7:1.(1) 如實驗(二)圖2所示
 - (2) 如實驗(三)圖3所示
 - (3) 如實驗(一)圖1所示
 - 2.(1) 理論上 $\frac{1}{T^2}$ 軸截距為 0,造成其不為 0 的可能原因有:
 - ①因為有摩擦力影響,使得實際向心力應為彈力+摩擦力,故想要得到同樣的某個週期 T,實際上根本就不需要施予到 mg 的力,因此圖 2 中的回歸直線為「理論上的直線」向左平移後所得的結果(因此 T2 軸截距為正),如下圖 5 所示
 - ②實驗誤差所導致
 - (2) 理論上T²軸截距為 0,造成其不為 0 的可能原因有:
 - ①由公式 $F = \frac{4\pi^2 Mr}{T^2}$,在 $M \times r$ 固定為定值的情況下, $F \propto \frac{1}{T^2}$,又因為有摩擦力影響,使得實際向心力應為彈力+摩擦力,比理論上的向心力 mg 還要大,故在同樣的某個 M 值下,實際的 T 值較理論值低,即表示圖 3 中的回歸直線為「理論上的直線」向下平移後所得的結果(因此 T^2 軸截距為 9),如下圖 9 所示
 - ②實驗誤差所導致
 - (3) 理論上 T^2 軸截距為0,我認為造成其不為0的可能原因之一為實驗誤差所導致

圖 5 摩擦力對 $F-\frac{1}{r^2}$ 圖的影響

圖 6 摩擦力對 M-T²圖的影響

八、心得及建議

這次的向心力實驗是我大學的物理實驗課第一個實驗,因為才剛開學2個星期, 所以有比較充分的時間能夠仔細看實驗講義及影片,也能慢慢的思考、理解充分後再 整理出預報(而且字體也能(努力)寫得較工整),但即使做了如此多的準備,卻都仍是 「紙上談兵」,等實際上戰場後…呃…敵人有點強啊! 首先是實驗裝置的部分:講義的圖片及課程影片中的裝置已經裝得差不多好了,而講義的裝置步驟只能在腦中構思,但是到了實驗現場,哇!竟然是零件要我們自己組裝,而且怎麼跟想像中的不太一樣(很不一樣)啊。我們這組在實驗裝置上就耗費了許多時間(其他組已經開始轉了我們卻還沒裝好):首先是A型基座的水平校正,我們先利用水平儀發現如果在某個方向已達成水平時,把旋轉平臺轉個角度,氣泡又偏移了,因此我們只好使用講義中的方法,也是弄了好幾次才「稍微」水平(這也是造成實驗誤差的因素之一)。接著我們又遇到狀況了:馬達上接O型環的位置與A型基座轉軸輪上接O型環的位置高度不一致,在旋轉時會滑下來,因此我們又花了一些時間嘗試解決,最後決定等它滑下來再手動扳上去。我們在裝中心支架、側支架、側滑輪,以及掛砝碼時也摸索了好一段時間,喔對了,還有綁上棉線,真是有夠麻煩又累人的,而且還要重複好幾次!

終於要正式開始實驗了!結果我們都不會操作直流電源供應器……,不太懂要先設定電壓電流各為何,馬達才會開始動;也不知道是否可以在馬達轉動時改變它的轉速,還是要先關掉、重新設定才可以……。經過各地(別組、助教)詢問後,終於了解要如何操作,我們每次都先設定電壓為 2V、電流為 0.15A,讓馬達轉起來,再微調電流至大約 0.1 A 上下,觀察圓形指示片對齊指示托架的位置後,記錄下 T(終於啊~)。

實驗數據雖然只有 13 組,但我們卻一直忘東忘西,有時候忘記要移動指示托架的位置,有時候忘記拿下砝碼,有時候又忘記把棉線越過定滑輪。經過多次小心謹慎的來回「掛砝碼→綁棉線→移動指示托架的位置→拆棉線→開啟直流電源供應器→尋找到適當時機(圓形指示片對齊在指示托架的位置)→紀錄數據」的流程後,我們…我們…我們終於測出 13 組數據了!

可是,精彩的還在後頭:帶著忐忑不安的心情,我們開始整理數據—寫出方程式、帶入數據、畫出關係圖……,然後是最令人緊張的時刻的到來—算出實驗誤差!難道說…我們要重做實驗了?(我來不及吃晚餐了?)螢幕上顯示出 0.32…的數值,明顯地,超過 30%,看來真的得……唉…。

然而,事情突然出現了轉機:我原本將 M 帶入 0.2 kg(講義的實驗器材的數據),但我們測量後發現是 0.2086,這讓誤差稍微降低了。後來我們又發現有一組實驗數據並沒有被納入計算,再重新加入那組數據後計算,終於……誤差<30%,我們不用重做實驗了!後來又因為沒有仔細看黑板上的說明,以致於好幾個誤差及要求的數據沒算到,讓助教跑了好多趟,深感抱歉!

晚間 6 點多,在明亮的月色中,我們帶著疲憊但愉快的心情踏出了綜合大樓,準備迎接晚上的演習課……(好累喔~)

大學物理實驗生活第一章,完結~(啊對還有結報要寫)

九、參考資料

- 1. <u>國立清華大學</u>普通物理實驗室網站—實驗 3:圓周運動與向心力實驗 (Centripetal Force) · 網址: http://www.phys.nthu.edu.tw/~gplab/exp003.html
- 2. 實驗 3: 圓周運動與向心力實驗講義・編寫者: <u>國立清華大學</u>物理系<u>戴明鳳</u>教授・100. 09. 27 初版・108. 09 三版・網址:

http://www.phys.nthu.edu.tw/~gplab/file/03%20Centripetal%20Force/Centripetal%20force.pdf