Московский физико-технический институт (национальный исследовательский университет)

Лабораторная работа по общему курсу физики

Отчёт о выполнении лабораторной работы 1.4.1 Измерение интенсивности радиационного фона

Засимов Георгий Алексеевич Группа Б01-109

Долгопрудный 2021

1. Аннотация

В работе измеряется интенсивность радиационного фона, в основном состоящего из потока космических частиц. Используются методы обработки полученных измерений при помощи построения графиков и их анализа.

Детально исследуются систематическая и случайные погрешности проводимых измерений.

Используемое оборудование: - счётчик Гейгера-Мюллера (СТС-6) для обнаружения космических лучей и измерения их интенсивности (по ионизации газа). - компьютер с интерфейсом связи с счётчиком для считывания импульсов счётчика и фиксации результатов измерений. - блок питания.

2. Теоретические сведения и методика измерений

Счётчик Гейгера-Мюллера представляет собой 2 электрода (катод металлический цилиндр и анод - тонкая металлическая нить вдоль оси цилиндра). Электроны, попадающие в счетчик ионизируют газ и разгоняются при довольно высоком напряжении (400 В), образуя лавину электронов, которая создает импульс, передаваемый через конденсатор 2 компьютеру. За это время разряжается конденсатор C_1 и наступает "мертвое время" зарядки еонденсатора перед новой порцией электронов. Схема включения счётчика представлена на Рис. 1.

Рис. 1. Схема включения счетчика

Методы обработки полученных результатов те же, что и для расчёта случайных погрешностей, так как в данном опыте измеряется величина, меняющаяся со временем случайным образом.

В процессе выполнения работы убеждаемся, что при увеличении числа измерений: - измеряемая величина флуктуирует - флуктуации среднего значения уменьшаются, а среднее занчение выходит на постоянну величину - флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного эксперимента выходит на постоянну величину - флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает.

Будем использовать следующие формулы:

Среднее число срабатываний счетчика за N секунд:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{n} n_i \tag{1}$$

Среднеквадратичная ошибка отдельного измерения:

$$\sigma_1 = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (n_i - \overline{n})^2}$$
 (2)

Определение стандартной ошибки величины \overline{n} :

$$\sigma_{\overline{n}} = \frac{\sigma}{\sqrt{N}} \tag{3}$$

И относительной ошибки:

$$\epsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} \tag{4}$$

Окончательный результат будет соответствовать формуле:

$$\overline{n_t} = \overline{n} \pm \sigma_{\overline{n}} \tag{5}$$

4. Результаты измерений и обработка данных

Результаты компьютерной обработки числа срабатываний счётчика за 20 и 40 секунд приведены соответственно в таблицах 1 и 2.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	28	22	30	14	29	22	24	33	23	17
10	27	15	28	34	19	24	38	22	28	30
20	20	31	24	31	29	30	29	18	24	31
30	14	23	22	22	33	28	24	25	16	29
40	33	20	29	25	31	36	22	19	24	18
50	25	23	27	19	23	19	20	18	28	22
60	17	24	27	33	14	33	31	24	28	26
70	36	27	35	16	27	31	24	30	30	25
80	20	36	25	26	20	31	19	29	23	18
90	20	26	26	15	22	34	20	28	22	25
100	16	20	21	21	30	30	23	25	23	27
110	21	24	34	18	19	26	22	24	18	21
120	24	21	21	24	25	17	17	21	22	29
130	22	22	30	26	35	16	27	16	28	31
140	17	23	27	27	23	24	32	25	24	23
150	19	24	22	18	27	19	22	34	27	23
160	24	24	18	25	31	20	21	30	24	25
170	30	28	24	30	21	21	19	35	17	28
180	20	28	27	19	27	21	19	29	20	25
190	24	19	20	21	25	22	26	16	25	22

Таблица 1. Число срабатываний счётчика за 20 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	50	44	51	57	40	42	62	43	60	58
10	51	55	59	47	55	37	44	61	49	45
20	53	54	67	41	42	48	46	42	38	50
30	41	60	47	55	54	63	51	58	54	55
40	56	61	51	48	51	46	41	57	48	47
50	36	42	60	48	50	45	52	45	46	39
60	45	45	42	38	51	44	56	51	43	59
70	40	54	47	57	47	43	40	46	56	50
80	48	33	51	51	49	58	54	42	54	45
90	48	46	48	48	45	43	41	47	52	47

Таблица 2. Число срабатываний счётчика за 40 с

Среднее число срабатываний счётчика за 20 с по формуле (1):

$$\overline{n_1} = \frac{4881}{400} = 12, 2$$

Среднеквадратичная ошибка отдельного измерения по формуле (2):

$$\sigma_1 \approx 3,68$$

Убедимся в справедливости формулы:

$$\sigma_1 \approx \sqrt{\overline{n}_1}; 3,68 \approx \sqrt{12,2} = 3,49$$

Среднее число срабатываний счётчика за 40 с по формуле (1):

$$\overline{n_2} = \frac{4881}{100} = 48,9$$

Среднеквадратичная ошибка отдельного измерения по формуле (2):

$$\sigma_2 = \sqrt{\frac{4607, 4}{100}} \approx 6,79$$

Убедимся в справедливости формулы:

$$\sigma_2 \approx \sqrt{\overline{n}_2}; 6,79 \approx \sqrt{48,9} = 6,99$$

Число импульсов n_i	4	5	6	7	8	9	10
Число случаев	4	4	8	20	24	35	45
Доля случаев w_n	0,01	0,01	0,02	0,05	0,06	0,088	0,113
Число импульсов n_i	11	12	13	14	15	16	17
Число случаев	48	31	52	27	26	21	23
Доля случаев w_n	0,12	0,078	0,13	0,068	0,065	0,053	0,058
Число импульсов n_i	18	19	20	21	22	23	24
Число случаев	9	10	4	5	1	2	1
Доля случаев w_n	0,023	0,025	0,01	0,013	0,003	0,005	0,003

Таблица 4.1. Данные для построения гистограммы распределения числа срабатываний счетчика за $10\ {
m c}$

Число импульсов n_i	33	34	35	36	37	38	39
Число случаев	1	0	0	1	1	2	1
Доля случаев w_n	0,01	0	0	0,01	0,01	0,02	0,01
Число импульсов n_i	40	41	42	43	44	45	46
Число случаев	3	4	6	4	3	7	5
Доля случаев w_n	0,03	0,04	0,06	0,04	0,03	0,07	0,05
Число импульсов n_i	47	48	49	50	51	52	53
Число случаев	6	7	2	4	9	2	1
Доля случаев w_n	0,06	0,07	0,02	0,04	0,09	0,02	0,01
Число импульсов n_i	54	55	56	57	58	59	60
Число случаев	6	4	3	3	3	2	3
Доля случаев w_n	0,06	0,04	0,03	0,03	0,03	0,02	0,03
Число импульсов n_i	61	62	63	64	65	66	67
Число случаев	2	1	1	0	0	0	1
Доля случаев w_n	0,02	0,01	0,01	0	0	0	0,01

Таблица 4.2. Доли случаев отклонения от среднего значения

Определим долю случаев, когда отклонения от среднего значния не превышают σ_1, σ_2 , и сравним с теоретическими оценками (см. Табл. 4.2).

Сравним среднеквадратичные ошибки отдельных измерений для двух распределений $\overline{n}_1=12,2;\sigma_1=3,68$ и $\overline{n}_2=48,9;\sigma_2=6,79$. Легко видеть,

что хотя абсолютное значение σ во втором распределении больше, чем в первом (6,79 > 3,68), относительная полуширина второго распределения меньше (что также следует из Puc.1):

$$\frac{\sigma_1}{\overline{n}_1} \cdot 100\% \approx 30\%$$

$$\frac{\sigma_2}{\overline{n}_2} \cdot 100\% \approx 14\%$$

Определим стандартную ошибку величины \overline{n} по формуле (3):

$$\sigma_{\overline{n}} = \frac{3,68}{\sqrt{400}} \approx 0,18$$

И относительную ошибку по формуле (4):

$$\epsilon_{\overline{n}} = \frac{0.18}{12.2} \cdot 100\% \approx 1.48\%$$

По равенству $\epsilon_{\overline{n}} \approx \frac{1}{\sqrt{\overline{n}N}}$ получим:

$$\epsilon_n \approx \frac{100\%}{\sqrt{12, 2\cdot 400}} \approx 1,43\%$$

Окончательный результат:

$$\overline{n_{t=20c}} = 12, 2 \pm 0, 18$$

Аналогично для $N_2=100$ измерений по 40 с:

$$\sigma_{\overline{n}} = \frac{6,79}{\sqrt{100}} \approx 0,67$$

$$\epsilon_{\overline{n}} = \frac{0,67}{48,9} \cdot 100\% \approx 1,37\%$$

$$\epsilon_{\overline{n}} \approx \frac{100\%}{\sqrt{48,9 \cdot 100}} \approx 1,37\%$$

Окончательный результат:

$$\overline{n_{t=40c}} = 48,9 \pm 0,7$$

Приведем гистограммы распределений среднего числа отсчетов за 10 и 40 с. (см. Рис. 2)

5. Обсуждение результатов и выводы

В работе получено значение интенсивности радииационного фона. Были проаналезированны полученные данные, построенны гистограммы нормального (Гауссового) распределения, показывающие, что в пределах

 1σ лежат 63,7%, в пределах 2σ лежат 94% и в пределах 3σ лежат 99,5% результатов, что соответствует законам нормального распределения.