

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transient Solution

Embedded MC of a CTMC

Classification of States

Steady State

Semi-Markov Process

Finite Absorbing

Stochastic Network Modeling (SNM)

Llorenç Cerdà-Alabern Universitat Politècnica de Catalunya Departament d'Arquitectura de Computadors llorenc@ac.upc.edu

Parts

- Introduction
- Discrete Time Markov Chains (DTMC)
- Continuous Time Markov Chains (CTMC)
- Queuing Theory

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Part III

Continuous Time Markov Chains (CTMC)

Outline

- Definition of a CTMC
- Transient Solution
- Embedded MC of a CTMC
- Classification of States

- Steady State
- Semi-Markov Process
- Finite Absorbing Chains

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

State Transition
Diagram
Sojourn Time
Exponential Jumps
Description of a CTMC

Transier Solution

Embedded M of a CTMC

Classification of States

Steady Sta

Semi-Marko Process

Finite

Properties of a continuous time MC

- The states must be a numerable set.
- Let *X*(*t*) be the event {at time *t* the system is in state *i*}, then it must hold the memoryless property:

$$P(X(t_n) = i \mid X(t_1) = j, X(t_2) = k,...) =$$

 $P(X(t_n) = i \mid X(t_1) = j) \text{ for any } t_n > t_1 > t_2 > t_3...$

Continuous Time Markov Chains (CTMC)

Transition Matrix

Transition Matrix

Transition probabilities:

$$p_{ij}(t_1, t_2) = P(X(t_2) = j \mid X(t_1) = i)$$

For an homogeneous chain:

$$p_{ij}(t) = P(X(t_1 + t) = j \mid X(t_1) = i) =$$

= $P(X(t) = j \mid X(0) = i), \forall t_1$

• In matrix form (transition probability matrix):

$$\mathbf{P}(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \cdots \\ p_{21}(t) & p_{22}(t) & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}, t \ge 0$$

- Notes:
 - Compare with the n-step prob. matrix of a DTMC: P(n).
 - P(t) must be a stochastic matrix (all rows add to 1).

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transition Matrix
State Transition
Diagram
Sojourn Time

Exponential Jumps
Description of a CTMC
Example: Pure Aloha
System

Transien Solution

Embedded M of a CTMC

Classification of States

Steady Stat

Semi-Marko Process

Finite

Transition Matrix

$$p_{ij}(t) = P(X(t) = j \mid X(0) = i), t \ge 0$$

- We look for an equivalent 1-step prob. matrix **P** of DTMCs.
- For consistency: $\lim_{t\to 0} p_{ij}(t) = \delta_{ij}$. In matrix form:

$$\lim_{t\to 0} \mathbf{P}(t) = \mathbf{I}.$$

And assume that the following transition rates exist:

$$q_{ij} = \lim_{t \to 0} \frac{p_{ij}(t)}{t}, i \neq j; \quad q_{ii} = \lim_{t \to 0} \frac{p_{ii}(t) - 1}{t}$$

- In matrix form: $\mathbf{Q} = \lim_{t \to 0} \frac{\mathbf{P}(t) \mathbf{I}}{t}$
- Note that $\sum_{j} p_{ij}(t) = 1 \Rightarrow p_{ii}(t) = 1 \sum_{j \neq i} p_{ij}(t)$, thus:

$$q_{ii} = \lim_{t \to 0} \frac{p_{ii}(t) - 1}{t} = \lim_{t \to 0} \frac{-\sum_{j \neq i} p_{ij}(t)}{t} = -\sum_{j \neq i} q_{ij}$$

Continuous Time Markov Chains (CTMC)

Transition Matrix

Transition Matrix

- The matrix **Q** is called the transition rate or infinitesimal generator of the chain.
- Since $q_{ii} = -\sum q_{ij}$, all the rows of **Q** add to 0.
- The rate q_{ij} , $i \neq j$ measures "how fast" the chain moves from state i to j: the higher is q_{ij} , the faster it moves from i to j.
- For $q_{ii} = -\sum_{i \neq i} q_{ij}$, the higher $-q_{ii}$ is, the faster the chain leaves state i.
- If $q_{ij} = 0$, $\forall j \Rightarrow q_{ii} = 0$, then *i* is an absorbing state: the chain "moves with rate 0 from *i* to other states", i.e. never leaves *i*.

Continuous Time Markov Chains (CTMC)

State Transition Diagram

State Transition Diagram

- A continuous MC is characterized by the transition rate or infinitesimal generator: the Q-matrix.
- The state transition diagram is now represented as:

- Note that now we have transition rates $(0 \le q_{ij} < \infty, i \ne j)$ and not probabilities.
- The rates q_{ii} are not written in the diagram, no self transitions.

Continuous Time Markov Chains (CTMC)

Sojourn Time

Sojourn Time

Sojourn or holding time: Is the RV H_k equal to the sojourn time in state k:

 The Markov property implies that the sojourn time is exponentially distributed with parameter q_{ii} :

$$P(H_i \le x) = 1 - e^{q_{ii}x} \Rightarrow P(H_i > x) = e^{q_{ii}x}, q_{ii} = -\sum_{j \ne i} q_{ij}, x \ge 0$$

Continuous Time Markov Chains (CTMC)

Sojourn Time

The exponential distribution satisfies the Markov property

Markov property (memoryless):

$$P(X(t_2) = i \mid X(t_1) = i, X(0) = i) =$$

 $P(X(t_2) = i \mid X(t_1) = i), t_2 > t_2 > 0$

 $P(X(t_2) = i \mid X(t_1) = i)$, $t_2 > t_1 > 0$ • In terms of the sojourn time:

$$P(H_i > t_2 \mid H_i > t_1) = P(H_i > t_2 - t_1)$$

But:

$$\begin{split} P\big(H_i > t_2 \mid H_i > t_1\big) &= \\ \frac{P(H_i > t_2, H_i > t_1)}{P(H_i > t_1)} &= \frac{P(H_i > t_2)}{P(H_i > t_1)} = \frac{\mathrm{e}^{q_{ii} t_2}}{\mathrm{e}^{q_{ii} t_1}} = \mathrm{e}^{q_{ii} (t_2 - t_1)} = \\ P(H_i > t_2 - t_1) & \Box \end{split}$$

 The exponential distribution is the only one satisfying the memoryless property.

Continuous Time Markov Chains (CTMC)

Exponential Jumps Description of a CTMO

Exponential Jumps Description of a CTMC

Assume a process built as follows:

- Upon reaching a state i
 - 1 the process can jump to a state $j \in \{1, 2, \dots l\}$
 - A set of independent exponential RVs, $\{H_{i1}, H_{i2}, \cdots H_{il}\}$, with parameters $\{q_{i1},q_{i1},\cdots q_{il}\}$ are triggered. That is, $P(H_{ii} \le t) = 1 - e^{-q_{ij}t}, t \ge 0.$

Theorem: This process is a CTMC with transition rates q_{ii} .

Continuous Time Markov Chains (CTMC)

Exponential Jumps Description of a CTMC

Exponential Jumps Description of a CTMC

$$P(H_{ij} \le t) = 1 - e^{-q_{ij}t}$$
.

Theorem: This process is a CTMC with transition rates q_{ii} .

Proof:

- The RV $H_i = \min\{H_{i1}, H_{i2}, \dots H_{il}\}$ (so journ time in state *i*) is exponentially distributed with parameter $q_i = \sum_i q_{ij}$: $P(H_i \le t) = 1 - e^{-q_i t}$
- $P(\min\{H_{i1}, H_{i2}, \dots H_{il}\} = H_{ij}) = q_{ij} / \sum_i q_{ij}$. Thus, the transition rate to state *j* is:

$$\begin{split} \lim_{t \to 0} \frac{p_{ij}(t)}{t} &= \lim_{t \to 0} \frac{P(\min\{H_{i1}, H_{i2}, \cdots H_{il}\} = H_{ij}) \times P(H_i \le t)}{t} = \\ &\frac{q_{ij}}{\sum_j q_{ij}} \left. \frac{\partial P(H_i \le t)}{\partial t} \right|_{t=0} = \frac{q_{ij}}{\sum_j q_{ij}} \sum_j q_{ij} = \frac{q_{ij}}{q_{ij}} \end{split}$$

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transition Matrix State Transition Diagram Sojourn Time

Exponential Jumps
Description of a CTM
Example: Pure Aloha

System

Embedded M

Classification of States

Steady Stat

Semi-Marko Process

Finite

Example: Pure Aloha System

- Consider a Pure Aloha System with 2 nodes:
 - Nodes in thinking state Tx a packet in a time exponentially distributed with rate λ.
 - Transmission time is exponentially distributed with rate μ .
 - If two transmissions overlap, the packet is lost and stations become backlogged (after the packet transmission) until the packet is successfully transmitted.
 - Nodes in backlogged state Tx a packet in a time exponentially distributed with rate α .

Questions

• Build the state transition diagram.

Continuous Time Markov Chains (CTMC)

System

Example: Pure Aloha System

State	Condition	Leg	Legend	
1	T,T	\overline{T}	Thin	
2	X,T	X	Tran	
3	C,C	C	Colli	
4	B,C	B	Back	
5	B,B			
6	X, B			
7	T,B			

Legend

nking

nsmitting

ided transmission

klogged

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Transient Solution

Llorenç Cerdà-Alabern

Part III

Continuous Time Markov Chains (CTMC)

Outline

- Transient Solution

Transient Solution

Continuous Time Markov Chains (CTMC)

Chapman-Kolmogorov Equations

Chapman-Kolmogorov Equations

- Chapman-Kolmogorov: $p_{ij}(t) = \sum_{i} p_{ik}(t-\alpha)p_{kj}(\alpha), 0 \le \alpha \le t$
- Thus:

$$\frac{p_{ij}(t+\Delta t)-p_{ij}(t)}{\Delta t} = \sum_{k} \left\{ \frac{p_{ik}(t+\Delta t-\alpha)-p_{ik}(t-\alpha)}{\Delta t} p_{kj}(\alpha) \right\}$$

Taking the limit

$$\alpha \to t, \Delta t \to 0 \Rightarrow \begin{cases} p_{ik}(t-\alpha) \to 0, & i \neq k \\ p_{ik}(t-\alpha) \to 1, & i = k \end{cases}$$

and using:

and using: we have:
$$\begin{cases} q_{ij} = \lim_{t \to 0} \frac{p_{ij}(t)}{t}, & i \neq j \\ q_{ij} = \lim_{t \to 0} \frac{p_{ij}(t) - 1}{t}, & i = j \end{cases} \qquad \frac{\partial p_{ij}(t)}{\partial t} = \sum_{k} q_{ik} p_{kj}(t),$$
$$t \ge 0, \forall i \le 0, \forall j \le 0$$

we have:

$$\frac{\partial p_{ij}(t)}{\partial t} = \sum_{k} q_{ik} p_{kj}(t),$$
$$t \ge 0, \forall i,j$$

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of CTMC

Transient Solution

Chapman-Kolmogorov Equations

State Probabilities

Eigenvalues of an Infinitesimal Generator

Chain with a Defecti Matrix

Embedded Mo of a CTMC

Classificatior of States

Steady State

Semi-Markov

Chapman-Kolmogorov Equations (cont)

• we have:
$$\frac{\partial p_{ij}(t)}{\partial t} = \sum_{k} q_{ik} p_{kj}(t), t \ge 0, \ \forall i,j$$

- In matrix form: $\frac{\partial \mathbf{P}(t)}{\partial t} = \mathbf{Q} \mathbf{P}(t), t \ge 0$ known as the master equations of a CTMC.
- The solution of the previous matrix differential equation is the exponential matrix:

$$\mathbf{P}(t) = \mathbf{e}^{\mathbf{Q}t} = \sum_{i=0}^{\infty} \frac{(\mathbf{Q}t)^{i}}{i!} = \mathbf{I} + \mathbf{Q}t + \frac{\mathbf{Q}^{2}t^{2}}{2!} + \frac{\mathbf{Q}^{3}t^{3}}{3!} + \cdots, t \ge 0$$

• Due to rounding errors, the previous series is difficult to compute numerically (the powers of **Q** have positive and negative entries).

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transient Solution

Chapman-Kolmogor Equations

Equations
State Probabilities

Transient Solut Eigenvalues of Infinitesimal

Example
Chain with a Defecti

Embedded M of a CTMC

Classification of States

Steady State

Semi-Markov

State Probabilities

• Define the probability of being in state *i* at time *t*:

$$\pi_i(t) = P(X(t) = i)$$

In vector form (row vector)

$$\pi(t) = (\pi_1(t), \pi_2(t), \cdots).$$

· Clearly:

$$\pi_i(t) = \sum_k P(X(0) = k) \; P\big(X(t) = i \; \big| \; X(0) = k\big) = \sum_k \pi_k(0) \; p_{ki}(t)$$

In matrix form:

$$\pi(t) = \pi(0) \mathbf{P}(t) = \pi(0) e^{\mathbf{Q} t}, t \ge 0$$

where $\pi(0)$ is the initial distribution.

• NOTE: Compare with DTMC

$$\pi(n) = \pi(0) \mathbf{P}^n, n \ge 0$$

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of CTMC

Solution

Chapman-Kolmogoro
Equations

Transient Solution Eigenvalues of an Infinitesimal

Example Chain with a Defecti Matrix

Embedded M of a CTMC

Classificatio of States

Steady State

Transient Solution

- If we are interested in the transient evolution we shall study $\pi(t) = \pi(0) \mathbf{P}(t) = \pi(0) \mathbf{e}^{\mathbf{Q}t}$, $t \ge 0$.
- Assume a finite CTMC with N states (infinitesimal generator $\mathbf{Q}^{N \times N}$).
- Assume that **Q** can be diagonalized: $\mathbf{Q} = \mathbf{L}^{-1} \Lambda \mathbf{L}$, where Λ is the diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots \lambda_N)$, with λ_l , $l = 1, \dots N$ the eigenvalues of **Q**.
- NOTE: the eigenvalues λ_l of a matrix **A** are scalars that satisfy: $l\mathbf{A} = \lambda_l \mathbf{l}$ (or $\mathbf{A}\mathbf{r} = \lambda_l \mathbf{r}$) for some row vectors \mathbf{l} (column vectors \mathbf{r}), referred to as *left* and *right* eigenvectors, respectively. Thus, solve the characteristic polynomial $\det(\lambda \mathbf{I} \mathbf{A}) = 0$.

Transient Solution

Continuous Time Markov Chains (CTMC)

Transient Solution

Transient Solution

... assume that **Q** can be diagonalized: $\mathbf{Q} = \mathbf{L}^{-1} \Lambda \mathbf{L}$

Since

$$\mathbf{P}(t) = \mathbf{e}^{\mathbf{Q}t} = \sum_{i=0}^{\infty} \frac{(\mathbf{Q}t)^i}{i!} = \sum_{i=0}^{\infty} \frac{(\mathbf{L}^{-1} \Lambda \mathbf{L}t)^i}{i!} =$$

$$\mathbf{L}^{-1} \operatorname{diag} \left(\sum_{i=0}^{\infty} \frac{(\lambda_1 t)^i}{i!}, \cdots \right) \mathbf{L} = \mathbf{L}^{-1} \operatorname{diag}(e^{\lambda_1 t}, \cdots) \mathbf{L}$$

we have that

$$\boldsymbol{\pi}(t) = \boldsymbol{\pi}(0) e^{\mathbf{Q}t} =$$

$$\boldsymbol{\pi}(0) \mathbf{L}^{-1} \operatorname{diag}(e^{\lambda_1 t}, e^{\lambda_2 t}, \dots e^{\lambda_L t}) \mathbf{L}$$

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of CTMC

Transient Solution

Chapman-Kolmogoro Equations

State Probabilities Transient Solution

Eigenvalues of a Infinitesimal

Example
Chain with a Defect
Matrix

Embedded MO of a CTMC

Classification of States

Steady State

Semi-Markov

Transient Solution

... we have that $\boldsymbol{\pi}(t) = \boldsymbol{\pi}(0) \mathbf{L}^{-1} \operatorname{diag}(e^{\lambda_1 t}, e^{\lambda_2 t}, \cdots e^{\lambda_L t}) \mathbf{L}$

• Thus, the probability of being in state *i* is given by:

$$\pi_i(t) = (\pi(t))_i = \sum_{l=1}^{N} a_i^{(l)} e^{\lambda_l t}, t \ge 0$$

where the unknown coefficients $a_i^{(l)}$ can be obtained solving the system of equations:

$$\left. \frac{\partial^n \pi_i(t)}{\partial t^n} \right|_{t=0} = (\boldsymbol{\pi}(0) \, \mathbf{Q}^n)_i, \, n = 0, \dots N - 1$$

NOTE: Compare with $(\boldsymbol{\pi}(n))_i = (\boldsymbol{\pi}(0) \mathbf{P}^n)_i$, $n = 0, \dots N - 1$

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Solution
Chapman-Kolmi

Equations
State Probabilities

Eigenvalues of an Infinitesimal Generator

Chain with a Defecti Matrix

Embedded MO of a CTMC

Classificatior of States

Steady State

Eigenvalues of an Infinitesimal Generator

- **Q** has an eigenvalue equal to 0 ($\mathbf{Q} \mathbf{x} = \lambda \mathbf{x}$, for $\lambda = 0$, $\mathbf{x} \neq \mathbf{0}$). Proof: $\mathbf{Q} \mathbf{e} = \mathbf{0}$, where $\mathbf{e} = (1, 1, \cdots)^T$ is a column vector of 1 (all rows of **Q** add to 0).
- The eigenvalue $\lambda = 0$ is single if **Q** is irreducible (Perron-Frobenius theorem). **Q** is irreducible if all states communicate: for t > 0, $p_{ij}(t) > 0$, $\forall i, j$.
- All eigenvalues of **Q** are $\lambda_l \leq 0$.

Proof: Using Gerschgorin's theorem and the fact that the rows of \mathbf{Q} add to 0.

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transien Solution

Chapman-Kolmogoro Equations

State Probabilities Transient Solution

Eigenvalues of an Infinitesimal Generator

Example

Chain with a Defecti Matrix Example

Embedded MC of a CTMC

Classification

Steady Stat

Semi-Marko

Example

Assume a CTMC with

$$\mathbf{Q} = \begin{bmatrix} -1 & 1\\ 1/2 & -1/2 \end{bmatrix}$$

• We want the probability of being in state 2 at time t starting from state 1: $\pi_2(t)$ with $\pi(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Transient Solution

Continuous Time Markov Chains (CTMC)

Solution

• It can be easily found that the eigenvalues of **Q** are $\lambda_1 = 0$ and $\lambda_2 = -3/2$.

$$\pi_2(t) = ae^{\lambda_1 t} + be^{\lambda_2 t} = a + be^{-(3/2) t}$$

Imposing the boundary conditions:

$$\pi_2(0) = a + b = (\boldsymbol{\pi}(0) \mathbf{Q}^0)_2 = (\boldsymbol{\pi}(0) \mathbf{I})_2 = (\boldsymbol{\pi}(0))_2 = 0$$

$$\frac{\partial \pi_2(t)}{\partial t}\bigg|_{t=0} = b(-3/2) = (\boldsymbol{\pi}(0)\,\mathbf{Q})_2 = \mathbf{Q}_{12} = 1$$

we have that a = 2/3, b = -2/3, thus:

$$\pi_2(t) = 2/3 (1 - e^{-(3/2)t}), \quad t \ge 0$$

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of a

Transient Solution

Equations
State Probabilities

Transient Solution Eigenvalues of an Infinitesimal Generator

Chain with a Defective Matrix

Embedded MC of a CTMC

Classification of States

Steady State

Semi-Marko

Chain with a Defective Matrix

- What if **Q** cannot be diagonalized? (defective matrix).
- Let λ_l , $l = 1, \dots L$ be the eigenvalues of $\mathbf{Q}^{N \times N}$, each with multiplicity k_l ($k_l \ge 1, \sum_l k_l = N$). Then [1]:

$$\pi_j(t) = \sum_{l=1}^L \mathrm{e}^{\lambda_l t} \sum_{m=0}^{k_l-1} a_j^{(l,m)} \, t^m$$

where $a_j^{(l,m)}$ are constants. So, exponentials associated with eigenvalues λ_l of multiplicity $k_l > 1$ are multiplied by polynomials in t of degree $k_l - 1$.

[1] Llorenç Cerdà-Alabern. Transient Solution of Markov Chains Using the Uniformized Vandermonde Method. Tech. rep.

UPC-DAC-RR-XCSD-2010-2. Universitat Politècnica de Catalunya, Dec.
2010. URL: https://www.ac.upc.edu/app/research-reports/html/research_center_index-XCSD-2010, en.html.

Transient Solution

Continuous Time Markov Chains (CTMC)

Definition of CTMC

Transien Solution

Chapman-Kolmogoro Equations

State Probabilities

Transient Solution Eigenvalues of an

Infinitesimal Generator Example

Chain with a Defecti Matrix Example

Embedded MC of a CTMC

Classification of States

Steady Stat

Semi-Markov

Example

• Assume the CTMC:

$$\mathbf{Q} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

• We have $\lambda_1 = 0$ and $\lambda_2 = -1$ with multiplicity 2. Thus:

$$\pi_3(t) = a + e^{-t}(b + ct)$$

• We have that a = 1, because state 3 is absorbing. Imposing $\pi_3(0) = 0$ and $\pi_3'(0) = 0$, we have b = c = -1, and

$$\pi_3(t) = 1 - e^{-t}(1+t), t \ge 0$$

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Embedded MC of a CTMC

Part III

Continuous Time Markov Chains (CTMC)

Outline

- Embedded MC of a CTMC

Embedded MC of a CTMC

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transient Solution

Embedded MC of a CTMC

Proof Example

Classification of States

Steady State

Process

Finite Absorbing Chains

Definition

We form a discrete time process X^e(n), called the fembedded MC (EMC), by looking a CTMC at the transition time instants.

Theorem: This process is a DTMC with transition probabilities:

$$p_{ij}^e = egin{cases} 0, & i = j \ q_{ij} \ \overline{\sum_{j \neq i} q_{ij}}, & i \neq j \end{cases}$$

• NOTE: If *i* is absorbing $(q_{ii} = 0)$, we define $p_{ii}^e = 1$.

Embedded MC of a CTMC

Continuous Time Markov Chains (CTMC)

Definition of a

Transient Solution

Embedded MC of a CTMC

Definition
Proof
Example

Classification of States

o

Finite Absorbing

Proof

Theorem: This process is a DTMC with transition probabilities:

$$p_{ij}^e = egin{cases} 0, & i = j \ q_{ij} & i
ot j \end{cases}$$

- The EMC satisfies the memoryless property.
- Since we look the system only upon transition to a different state: $p_{ii}^e = 0$. NOTE: it might be $p_{ii}^e \neq 0$ if we look at transitions that end up in the same state.
- The probability that there is a transition from state i to j in the CTMC is the probability that the exponentially distributed RV with parameter q_{ij} is the minimum from the independent exponentially distributed RVs with parameters $\{q_{ik}\}_{k\neq i}$. This probability is $q_{ij}/\sum_{k\neq i}q_{ik}$.

Embedded MC of a CTMC

Continuous Time Markov Chains (CTMC)

Definition of a

Transien Solution

Embedded MO

of a CTMC

Proof Example

Classificatio

Steady State

occurry ocure

Process

Finite Absorbing Chains

Example

$$\mathbf{Q} = \begin{bmatrix} -7 & 4 & 3 \\ 0 & -2 & 2 \\ 5 & 3 & -8 \end{bmatrix} \Rightarrow \quad \mathbf{P}_e = \begin{bmatrix} 0 & 4/7 & 3/7 \\ 0 & 0 & 1 \\ 5/8 & 3/8 & 0 \end{bmatrix}$$

- Each transition in the CTMC is a transition in the EMC.
- One step in i in the EMC is a sojourn time H_i in the CTMC.

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Classification of States

Part III

Continuous Time Markov Chains (CTMC)

Outline

- Classification of States

Classification of States

Continuous Time Markov Chains (CTMC)

Definition of CTMC

Transient Solution

Embedded MO of a CTMC

Classification of States

Irreducibility
Transient and
Recurrent
Mean recurrence time
of the CTMC

Steady State

Semi-Marko Process

Finite Absorbing Chains

Irreducibility

- A state *j* is said to communicate with i, $i \leftrightarrow j$, if $p_{ij}(t_1) > 0$, $p_{ii}(t_2) > 0$ for some $t_1 \ge 0$, $t_2 \ge 0$.
- We define an irreducible closed set, ICS C_k as a set where all states communicate with each other, and have no transitions to other states out of the set: $i \leftrightarrow j, \forall i, j \in C_k$ and $q_{ij} = 0, \forall i \in C_k, j \notin C_k$
- An absorbing state form an ICS of only one element. This state, i, must have $q_{ij} = 0 \forall i, j$.
- Transient states do not belong to any ICS.
- A MC is irreducible if all the states form a unique ICS.

Classification of States

Continuous Time Markov Chains (CTMC)

Irreducibility

Irreducibility

- Assume a MC has M ICSs: By properly numbering the states, we can write **P** as an *M* block diagonal matrix with the probabilities of the transient states in the last rows.
- Example, if M = 3:

• Note that the *M* sub-matrices are infinitesimal generators (their rows add to 0).

0

 e^{Tt}

Classification of States

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transient Solution

Embedded MC of a CTMC

Classificatio of States

Transient and
Recurrent
Mean recurrence tim
of the CTMC

Steady State

Semi-Marko Process

Finite Absorbing

Transient and Recurrent

- Recurrent: States that, being visited, have a probability > 0 of being visited again. They are visited an infinite number of times when $t \to \infty$.
- Transient: States that, being visited, have a probability > 0 of never being visited again. They are visited a finite number of times when $t \to \infty$.
- Absorbing: A single (recurrent) state where the chain remains with probability = 1.

State 1 is transient
States 2 and 3 are recurrent
State 4 is absorbing

Classification of States

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transient Solution

Embedded MO of a CTMC

Classification of States

Transient and
Recurrent
Mean recurrence time

Steady State

Semi-Marko Process

Finite Absorbing Chains

Transient and Recurrent

- To derive a classification criteria, we shall study the embedded MC (EMC), and proceed as in DTMC: Let $f_{ij}^e(n)$ the first passage prob. of the EMC, and $f_{ij}^e = \sum_{n=1}^{\infty} f_{ij}^e(n)$.
- If $f_{ii}^e = 1$ we say *i* is a recurrent state.
- If $f_{ii}^e < 1$ we say *i* is a transient state.
- When $f_{ij}^e = 1$, we define the mean recurrence time of the EMC $m_{ii}^e = \sum_{n=1}^{\infty} n f_{ii}^e(n)$. NOTE: in steps, not time units.
- If $m_{ii}^e = \infty$ the state is null recurrent.
- If $m_{ii}^e < \infty$ the state is positive recurrent.
- NOTEs: (i) Even if the EMC is periodic, there are not periodic CTMC (it has no sense). (ii) f_{ij}^e and m_{ij}^e can be computed using the recursive equations for DTMC.

Classification of States

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Solution

Embedded MC of a CTMC

Classification of States

Transient and
Recurrent
Mean recurrence time
of the CTMC

Steady Stat

Semi-Marko Process

Finite Absorbing Chains

Mean recurrence time of the CTMC

- If the chain is in i at a time t, it takes an expected time to leave i equal to $1/(-q_{ii}) = 1/\sum_{j \neq i} q_{ij}$ (sojourn time exponentially distributed with rate $q_i = -q_{ii} = \sum_{j \neq i} q_{ij}$).
- Thus, if the chain is in state *i*, it takes a mean time to enter state *j* (mean first passage time):

$$m_{ij} = \frac{1}{q_i} + \sum_{k \neq i} p_{ik}^e \, m_{kj}$$

• Since: $p_{ij}^e = \begin{cases} 0, & i = j \\ \frac{q_{ij}}{\sum_{i \neq i} q_{ij}} = \frac{q_{ij}}{q_i}, & i \neq j \end{cases}$ we have:

$$m_{ij} = \frac{1}{q_i} + \sum_{k \neq i} p_{ik}^e m_{kj} = \frac{1}{q_i} + \sum_{k \neq i} \frac{q_{ik}}{q_i} m_{kj}$$
 [time units]

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Steady State

Outline

Part III

Continuous Time Markov Chains

(CTMC)

Steady State

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Solution

Embedded MO of a CTMC

Classification of States

Steady State
Limiting Distribution
Stationary
Distribution

Numerical Solution Global balance equations Solving using flux balancing Example: Birth-dead Process

Limiting Distribution

• The probability to be in state i at time t is:

$$\pi_i(t) = P(X(t) = i) = \sum_k \pi_k(0) \, p_{ki}(t), \, t \ge 0$$

- In matrix form: $\pi(t) = \pi(0) P(t) = \pi(0) e^{Qt}, t \ge 0$
- Assume that the following limit exists:

$$\boldsymbol{\pi}(\infty) = \lim_{t \to \infty} \boldsymbol{\pi}(t) = \lim_{t \to \infty} \boldsymbol{\pi}(0) \, \mathbf{P}(t) = \boldsymbol{\pi}(0) \lim_{t \to \infty} \mathbf{e}^{\mathbf{Q} \, t}$$

• for any $\pi(0)$, which implies

$$\lim_{t\to\infty} e^{\mathbf{Q}t} = \mathbf{P}(\infty) = \begin{bmatrix} \boldsymbol{\pi}(\infty) & \cdots & \boldsymbol{\pi}(\infty) \end{bmatrix}^{\mathrm{T}}$$

- If this limit exists, we call $P(\infty)$ the limiting matrix, and $\pi(\infty)$ the limiting distribution.
- $\mathbf{P}(\infty) = \begin{bmatrix} \boldsymbol{\pi}(\infty) & \cdots & \boldsymbol{\pi}(\infty) \end{bmatrix}^T$ does not exist if the CTMC has more than one irreducible closed set (each ICS will converge to a diagonal block, and $\boldsymbol{\pi}(\infty)$ will depend on $\boldsymbol{\pi}(0)$).

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transient Solution

Embedded MC of a CTMC

Classificatio of States

Steady State
Limiting Distribution
Stationary
Distribution

Global balance equations Solving using flux balancing Example: Birth-dea Process

Example: Birth-dead Process Ergodic Chains Theorems for ergodic

Stationary Distribution

- We have: $\pi(t) = \pi(0) e^{\mathbf{Q}t}$, $t \ge 0$.
- In steady state the probabilities do not change. We look for a probability vector $\pi = \pi(t_1)$ satisfying: $\pi(t_1) e^{\mathbf{Q} t} = \pi(t_1)$. In other words, for $t \ge t_1$ the probability vector reach the steady state π , and do not change anymore. Thus:

$$\boldsymbol{\pi} \frac{\partial \mathbf{e}^{\mathbf{Q}t}}{\partial t} = \boldsymbol{\pi} \mathbf{Q} \mathbf{e}^{\mathbf{Q}t} = \mathbf{0}$$

• and we obtain that the stationary distribution π can be computed with the Global balance equations:

$$\boldsymbol{\pi} \mathbf{Q} = \mathbf{0}$$

$$\boldsymbol{\pi} \mathbf{e} = 1, \mathbf{e}^{\mathrm{T}} = (1, 1, \cdots)$$

• NOTE: Compare with DTMC $\pi = \pi P$, $\pi e = 1$.

Continuous Time Markov Chains (CTMC)

Numerical Solution

Numerical Solution

Replace one equation method:

$$\pi \mathbf{Q} = \mathbf{0}$$
 $\pi \mathbf{e} = 1, \mathbf{e}^{\mathrm{T}} = (1, 1, \cdots)$

• We solve the equation $\pi Q = 0$ replacing the last equation by $\pi e = 1$:

$$\boldsymbol{\pi} \begin{bmatrix} q_{11} & q_{12} & \cdots q_{1n-1} & 1 \\ q_{21} & q_{22} & \cdots q_{2n-1} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ q_{n1} & q_{n2} & \cdots q_{nn-1} & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

Continuous Time Markov Chains (CTMC)

Numerical Solution

Numerical Solution

- Replace one equation method: $\mathbf{Q} = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$ $\pi \mathbf{Q} = 0$
- Solving with octave (matlab clone):

```
octave:1> Q=[-2.1.1:1.-2.1:1.1.-2]:
octave: 2> s=size(Q,1); # number of rows.
octave: 3> [zeros(1,s-1),1] / ...
> [Q(1:s.1:s-1), ones(s.1)]
ans =
  0.33333
           0.33333
                    0.33333
```

With R

```
> Q <- matrix(nc=3, byr=T, c(-2,1,1,1,-2,1,1,1,-2))
> s <- nrow(0)
> solve(t(cbind(Q[,1:(s-1)], rep(1,s))), c(rep(0,s-1),1))
[1] 0.3333333 0.3333333 0.3333333
```


Steady State

Continuous Time Markov Chains (CTMC)

Global balance

Global balance equations

• Why are they called Global balance equations?

$$\left. \begin{array}{ll}
\boldsymbol{\pi} \, \mathbf{Q} = \mathbf{0} \Rightarrow & \sum\limits_{i=0}^{\infty} \pi_i \, q_{ij} = 0 \\
\sum\limits_{i=0}^{\infty} q_{ji} = 0 \Rightarrow & \pi_j \sum\limits_{i=0}^{\infty} q_{ji} = 0
\end{array} \right\} \Rightarrow \pi_j \sum\limits_{i=0}^{\infty} q_{ji} = \sum\limits_{i=0}^{\infty} \pi_i q_{ij}$$

$$\sum_{i=0}^{\infty} \pi_i q_{ij} \Rightarrow \text{Frequency of transitions entering state } j$$

$$\pi_j \sum_{i=0}^{\infty} q_{ji}$$
 \Rightarrow Frequency of transitions leaving state j

 In stationary regime, the frequency of transitions leaving state *j* is equal to the frequency of transitions entering state j.

Continuous Time Markov Chains (CTMC)

Definition of CTMC

Transient Solution

Embedded MC of a CTMC

Classification of States

Stationary Distribution Numerical Solution Global balance

Solving using flux balancing Example: Birth-dead

Example: Birth-dead Process Ergodic Chains

Solving using flux balancing

• Define the flux F_{uv} from state u to v:

$$F_{uv} = \pi_u q_{uv}$$

• and the flux from set of states *U* to *V*:

$$F(U,V) = \sum_{u \in U} \sum_{v \in V} F_{uv}$$

 From the Global balance equations, and reasoning exactly as in DTMC:

$$F(U,U^c) = F(U^c,U)$$

• NOTE: Same equation as in DTMC, changing p_{ij} by q_{ij} .

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transien Solution

Embedded MC of a CTMC

Classification

of States

Limiting Distribution

Numerical Soluti

equations
Solving using flu

Example: Birth-dead Process

Ergodic Chains

odic Chains corems for ergod

Example: Birth-dead Process

- Flux balancing $\Rightarrow \lambda \pi_i = \mu \pi_{i+1}$
- Iterating:

$$\pi_i = \pi_0 \, \rho^i, \, i = 0, 1, \dots N - 1, \, \rho = \frac{\lambda}{\mu}$$

Normalizing:

$$\pi_0 = \frac{1-\rho}{1-\rho^N}$$

Steady State

Continuous Time Markov Chains (CTMC)

Definition of CTMC

Solution

Embedded MC of a CTMC

Classification of States

Stationary Distribution Numerical Solution Global balance equations Solving using flux balancing

Ergodic Chains
Theorems for ergod

Ergodic Chains

- Ergodic state: positive recurrent ($f_{ii}^e = 1, m_{ii}^e < \infty$).
- Ergodic chain if all states are ergodic.
- Theorem: All states of an irreducible Markov chain are of the same type: Transient or positive/null recurrent (see [1, chapter XV]).
- Consequences:
 - Finite irreducible chains are ergodic (since all states are positive recurrent).
 - Infinite irreducible chains can be:
 - Ergodic: all the states are positive recurrent (stable chains).
 - Non ergodic: all states are null recurrent or transient (unstable chains).
- [1] William Feller. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition. Wiley, 1968.

Steady State

Continuous Time Markov Chains (CTMC)

Definition of a

Transient Solution

Embedded MO of a CTMC

Classification of States

Limiting Distribution Stationary Distribution Numerical Solution Global balance equations

choose balance
equations
Solving using flux
balancing
Example: Birth-dead
Process
Ergodic Chains
Theorems for ergodic

Theorems for ergodic chains

- $\pi = \pi(\infty)$. Proof: $\pi(\infty)$ satisfies the GBE.
- In stationary regime (when $\pi = \pi e^{\mathbf{Q}t}$), the mean number of time the system remains in state j during T time units is given by

$$T\pi_j$$

thus, π_j is the fraction of time the chain remains in state j. The proof is analogous to DTMC.

• NOTE: The relation of DTMC between mean recurrence time and stationary probabilities does not hold for CTMC. I.e., the mean number of time units between two consecutive visits to state j, m_{jj} , cannot be computed as $1/\pi_j$. It must be computed with the recursive equations (slide 35).