Occupancy and multi-state occupancy projection models SSA 200

Site occupancy projection

Essentially a weighted coin flip

Probability of heads (1) = Occupancy probability (P)

P can be a function of environmental factors

Year t +1 Year t Site Occupied Invasive fish community affects P Natural persistence probability (P, near 1) Stream Length affects P

Round tail and Headwater Chub site occupancy model

Hydrology/flood frequency affects P Recolonize?

These effects and relationships are estimated from data (i.e., the needs analysis) or elicited from experts

Multiple replicates

Spread sheet example

Eastern Black Rail species status assessment

Available occupancy data:

Site	State	2014			2015			2016		I	NLCD	Fire Ants	Y-precip
1	SC	0	0	1	0	0	0	0	0	0	22	0	27.2
2	SC	0	0	0	0	0	0	1	1	0	22	1	34.1
3	SC	0	0	0	0	0	0	0	0	0	95	1	19.7
4	SC	0	0	0	0	0	0	0	0	0	95	1	67
5	SC	0	0	0	0	0	0	0	0	0	22	0	22.2
6	SC	1	0	1	0	0	0	0	1	1	45	0	34.5
7	SC	1	0	0	0	0	0	0	0	1	22	1	17.9
8	SC	0	0	0	0	0	0	0	0	0	45	1	42.1
9	SC	0	0	0	1	0	0	0	1	0	45	0	28.6

Eastern Black rail, proportion of sites occupied in the future

Multistate projection models

$$\sum T_t^{j,i} = 1$$

Multistate projection models

$$\sum T_t^{j,i} = 1$$

Multiple population states

Low abundance

Multiple population states

Matrix formulation

$$\begin{bmatrix} N_{t+1}^e \\ N_{t+1}^L \\ N_{t+1}^H \end{bmatrix} = \begin{bmatrix} T^{ee} & T^{eL} & T^{eH} \\ T^{Le} & T^{LL} & T^{LH} \\ T^{He} & T^{HL} & T^{HH} \end{bmatrix} \times \begin{bmatrix} N_t^e \\ N_t^L \\ N_t^H \end{bmatrix}$$

Matrix formulation

$$\begin{bmatrix} N_{t+1}^e \\ N_{t+1}^L \\ N_{t+1}^H \end{bmatrix} = \begin{bmatrix} T^{ee} & T^{eL} & T^{eH} \\ T^{Le} & T^{LL} & T^{LH} \\ T^{He} & T^{HL} & T^{HH} \end{bmatrix} \times \begin{bmatrix} N_t^e \\ N_t^L \\ N_t^H \end{bmatrix}$$

$$N_{t+1}^{e} = N_{t}^{e} T^{ee} + N_{t}^{L} T^{eL} + N_{t}^{H} T^{eH}$$

$$N_{t+1}^{L} = N_{t}^{e} T^{Le} + N_{t}^{L} T^{LL} + N_{t}^{H} T^{LH}$$

$$N_{t+1}^{H} = N_{t}^{e} T^{He} + N_{t}^{L} T^{HL} + N_{t}^{H} T^{HH}$$

Example output

	Time										
Replicate	1	2	3	4	5	6	7	8	9	10	
1	2	2	2	2	1	1	2	2	1	1	
2	2	1	1	1	0	0	0	0	0	0	
3	2	2	2	2	2	2	2	2	2	2	
4	2	2	2	2	2	1	1	2	2	2	
5	2	0	0	0	0	0	0	0	0	0	
6	2	2	2	2	2	2	2	2	2	2	
7	2	1	2	2	2	2	2	2	2	2	
8	2	2	2	2	2	2	2	2	2	2	
9	2	2	2	2	2	1	1	1	1	1	
10	2	1	1	1	2	2	2	1	1	1	
											Γ

Modeling Headwater and Roundtail Chub resilience and redundancy

Chub Model Parameters

General Ecological Model for 2 AZ Chubs Model inputs

Environmental effects on probabilities

Conditional Logical functions

 Link population parameters to environmental conditions by discrete logic function

"If average rainfall is less than x, then occupancy probability is y"

"if exotic community is equal to 2, then persistence probability is 0.93; if exotic community is equal to 3 then persistence probability is..."

Continuous functions

Stream length and extinction probability

The relationship between stream length and occupancy probability is curvilinear, a negative exponential relationship. The longer a stream is, the less it effects occupancy.

Model output

Analysis Unit 5

Questions?

