Д

C

M

算法模板

目录

1	数排	居结构		3
	1.1	二分		3
	1.2	线段	树	5
		1.2.1	基础线段树(单点更新)	5
		1.2.2	优化线段树(成段更新)	6
		1.2.3	线段数区间合并	7
	1.3	并查	集	10
		1.3.1	带权并查集	10
	1.4	RMÇ	2	10
	1.5	排序	;	11
		1.5.1	计数排序	11
		1.5.2	桶排序	12
		1.5.3	基数排序	12
		1.5.4	快速排序	13
		1.5.5	归并排序	13
		1.5.6	堆排序	13
	1.6	树状	数组	13
	1.7	哈希	·表	13
	1.8	霍夫	·曼树	13
	1.9	平衡	f二叉树	13
		1.9.1	Treap	13
		1.9.2	Splay	13
		1.9.3	树链剖分	13
2	图计	仑		14
	2.1	拓扑	排序	14
	2.2	最小	生成树	14
		2.2.1	普利姆算法	14
		2.2.2	克鲁斯卡尔算法	15
	2.3	最短	15	
		2.3.1	Dijkstra	15
		2.3.2	Floyd:	15
		2.3.3	SPFA	16
		2.3.4	优先队列对 dijkstra 算法的优化	16
	2.4	二分	图	18
	2.5	网络	流	18
3	组台	合游戏		18
	3.1	Nim	博弈	18
4	动え	您规划		19
	4.1	记忆	化搜索	19
	4.2	背包	问题	20
		4.2.1	01 背包	20
		4.2.2	完全背包	21
		4.2.3	多重背包	21
		4.2.4	二维费用背包	22

		4.2.5 分组背包	22	
	4.3	区间 DP	23	
	4.4	树形 DP	23	
	4.5	数位 DP	23	
	4.6	状态压缩 DP	25	
5	数论	26		
	5.1	素数筛法	26	
	5.2	求质因子	26	
	5.3	逆元求法	27	
		5.3.1 费马小定理	27	
		5.3.2 扩展欧几里德	27	
	5.4	中国剩余定理	28	
	5.5	Lucas 定理	28	
6	字符	串	30	
	6.1	KMP	30	
	6.2	AC 自动机	31	
	6.3	后缀数组	36	
7	C++	37		
	7.1	map:	37	
	7.2	vector:	37	
	7.3	queue(先进先出):	37	
	7.4	stack(先进后出)	37	
	7.5	重载运算符	37	
	7.6	模版函数	38	
8	数学公式			
	8.1	求三角形面积	39	
	8.2	点到直线的距离	39	
	8.3	卡特兰数	40	
	8.4	判断一个点是否在已知三点坐标的三角形内	40	
9	杂项		40	
	9.1	快速幂取模	40	
	9.2	大整数取模	41	
	9.3	约瑟夫环	41	
	9.4	求字典序值	42	
	9.5	输入输出流重定向	42	

1 数据结构

1.1 二分

最简单的二分查找

```
while (low <= high)</pre>
{
   int mid = (low + high) / 2;
   if (dp[mid] >= tmp) high = mid - 1;
   else low = mid + 1;
}
dp[low] = tmp;
//几种二分查找(O(logn)),区别在于是否数组中含有多个相同的查找值
//lower bound返回等于item的第一个位置
template<typename T>
int mine_lower_bound(T *a, T item, int n) {
   int l = 0, r = n - 1;
   while (1 < r) {
       int m = (r - 1) / 2 + 1;
       if (a[m] >= item) r = m;
       else l = m + 1;
   }
   if (a[1] == item) return 1;
   else return -1;
}
//upper_bound返回等于item的最后一个位置的下一个位置。。
template<typename T>
int mine_upper_bound(T *a, T item, int n) {
   int l = 0, r = n - 1;
   while (1 < r) {
       int m = (r - 1) / 2 + 1;
       if (a[m] > item) r = m;
       else l = m + 1;
   if (a[l - 1] == item) return l - 1;
   else return -1;
}
template<typename T>
int mine_binary_search(T *a, T item, int n) {
   int l = 0, r = n - 1;
   while (1 < r) {
       int m = (r - 1) / 2 + 1;
       if (a[m] == item) return m;
       else if (a[m] > item) r = m - 1;
       else l = m + 1;
   return -1;
}
```

```
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    while (cin >> n) {
        int _array[MAX];
        REP(i, n) cin >> _array[i];
        sort(_array, _array + n);
        REP(i, n) fcout(_array[i], i, n);
        int item;
        cin >> item;
        cout << "upper_bound:" << endl;</pre>
        cout << mine_upper_bound(_array, item, n) << endl << endl;</pre>
        cout << "lower_bound:" << endl;</pre>
        cout << mine_lower_bound(_array, item, n) << endl << endl;</pre>
        cout << "binary_search:" << endl;</pre>
        cout << mine_binary_search(_array, item, n) << endl << endl;</pre>
    }
    return 0;
}
```

1.2 线段树

1.2.1基础线段树(单点更新)

```
all是线段树;
build()是初始化线段树:在叶子结点输入值;
update()是从叶子结点开始改变线段树上的值,变化值即为 data; query()的代码类似于 build(),查询[I, r]段
的值。
struct node {
   int 1, r;
   int sum;
a[4 * 50005];
void build(int i, int l, int r) {
   a[i].1 = 1;
   a[i].r = r;
   int mid = (1 + r) / 2;
   if (1 == r) {
      scanf("%d", &a[i].sum);
      return;
   }
   build(i * 2, 1, mid);
   build(i * 2 + 1, mid + 1, r);
```

```
a[i].sum = a[i * 2].sum + a[i * 2 + 1].sum;
}
void updata(int i, int index, int data) {
   if (a[i].l == a[i].r) {
       a[i].sum += data;
       return;
   }
   int mid = (a[i].l + a[i].r) / 2;
   if (index <= mid) updata(i * 2, index, data);</pre>
           updata(i * 2 + 1, index, data);
   else
   a[i].sum = a[i * 2].sum + a[i * 2 + 1].sum;
}
int query(int i, int l, int r) {
   int mid = (a[i].l + a[i].r) / 2;
   int sum = 0;
   if (a[i].l == l&&a[i].r == r)     return a[i].sum;
                   return query(i * 2, 1, r);
   if (r <= mid)
   else if (l > mid) return query(i * 2 + 1, l, r);
   else {
       sum += query(i * 2, 1, mid);
       sum += query(i * 2 + 1, mid + 1, r);
       return sum;
   }
}
```

1.2.2优化线段树(成段更新)

```
暂时记忆以减少复杂度, 可实现成段更新
```

```
typedef long long LL;
struct node {
    int 1, r, m;
    LL sum, mark;
}T[maxn << 2];
int a[maxn];
void build(int id, int l, int r) {
    T[id].1 = 1; T[id].r = r; T[id].m = (1 + r) >> 1; T[id].mark = 0;
    if (1 == r) { T[id].sum = a[1]; return; }
    int m = (1 + r) >> 1;
    build(id << 1, 1, m); build((id << 1) + 1, m + 1, r);
    T[id].sum = (T[id << 1].sum + T[(id << 1) + 1].sum);
}
void update(int id, int l, int r, int val) {
    if (T[id].1 == 1&&T[id].r == r) {
        T[id].mark += val; return;
    }
```

```
T[id].sum += (LL)val*(r - l + 1);
    if (T[id].m >= r)
        update(id << 1, 1, r, val);</pre>
    else if (T[id].m<1)</pre>
        update((id << 1) + 1, 1, r, val);</pre>
    else {
        update(id << 1, 1, T[id].m, val);</pre>
        update((id << 1) + 1, T[id].m + 1, r, val);
    }
}
LL query(int id, int l, int r) {
    if T[id] = 1&T[id] = r return T[id] = T[id] = r
    if (T[id].mark != 0) {
        T[id << 1].mark += T[id].mark;</pre>
        T[(id << 1) + 1].mark += T[id].mark;</pre>
        T[id].sum += (LL)(T[id].r - T[id].l + 1)*T[id].mark; T[id].mark = 0;
    }
    if (T[id].m >= r) {
        return query(id << 1, 1, r);</pre>
    }
    else if (T[id].m<l) {</pre>
        return query((id << 1) + 1, 1, r);</pre>
    }
    else {
        return query(id << 1, 1, T[id].m) + query((id << 1) + 1, T[id].m + 1, r);</pre>
    }
}
```

1.2.3线段数区间合并

例子:给一个由 0,1 组成的序列,有两种操作,一种是翻转给定区间的数(0->1,1->0),另一种是查询给定区间内由 1 组成的子串的最大长度。重点在**区间合并**和**延迟标记**。

```
#include<cstdio>
#include<algorithm>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int maxn = 111111;
int sum[maxn << 2];
int lb[maxn << 2], rb[maxn << 2];
int col[maxn << 2];
int wm[maxn << 2];</pre>
```

```
int wl[maxn << 2];</pre>
int wr[maxn << 2];</pre>
int max(int a, int b) {
    return a>b ? a : b;
}
int Min(int a, int b) {
    return a<b ? a : b;</pre>
}
void pushup(int m, int rt) {
    wl[rt] = wl[rt << 1];
    lb[rt] = lb[rt << 1];</pre>
    wr[rt] = wr[rt << 1 | 1];</pre>
    rb[rt] = rb[rt << 1 | 1];
    if (wl[rt] == m - (m >> 1)) wl[rt] += wl[rt << 1 | 1];</pre>
    if (lb[rt] == m - (m >> 1)) lb[rt] += lb[rt << 1 | 1];</pre>
    if (wr[rt] == (m >> 1)) wr[rt] += wr[rt << 1];</pre>
    if (rb[rt] == (m >> 1)) rb[rt] += rb[rt << 1];</pre>
    wm[rt] = max(wm[rt << 1], wm[rt << 1 | 1]);</pre>
    sum[rt] = max(sum[rt << 1], sum[rt << 1 | 1]);</pre>
    wm[rt] = max(wm[rt], wr[rt << 1] + wl[rt << 1 | 1]);
    sum[rt] = max(sum[rt], rb[rt << 1] + lb[rt << 1 | 1]);</pre>
}
void make(int rt) {
    swap(sum[rt], wm[rt]);
    swap(wl[rt], lb[rt]);
    swap(wr[rt], rb[rt]);
}
void pushdown(int rt) {
    if (col[rt]) {
        col[rt << 1] ^= 1;
        col[rt << 1 | 1] ^= 1;
        col[rt] = 0;
        make(rt << 1);
        make(rt << 1 | 1);
    }
}
int num[100001];
void build(int 1, int r, int rt) {
    col[rt] = lb[rt] = rb[rt] = wl[rt] = wr[rt] = sum[rt] = wm[rt] = 0;
    if (1 == r) {
        if (num[l] == 1) sum[rt] = lb[rt] = rb[rt] = 1;
        else {
             wm[rt] = wl[rt] = wr[rt] = 1;
        }return;
```

```
}
    int m = (1 + r) >> 1;
    build(lson);
    build(rson);
    pushup(r - l + 1, rt);
}
void update(int L, int R, int l, int r, int rt) {
    if (L <= 1&&r <= R) {</pre>
        col[rt] ^= 1;
        make(rt);
        return;
    }
    pushdown(rt);
    int m = (1 + r) >> 1;
    if (L <= m) update(L, R, lson);</pre>
    if (R>m) update(L, R, rson);
    pushup(r - l + 1, rt);
}
int query(int L, int R, int l, int r, int rt) {
    if (L <= 1&&r <= R) {</pre>
        return sum[rt];
    }
    pushdown(rt);
    int m = (1 + r) >> 1;
    if (R <= m)
        return query(L, R, lson);
    if (L > m)
        return query(L, R, rson);
    int t1 = query(L, R, lson);
    int t2 = query(L, R, rson);
    int a = Min(m - L + 1, rb[rt << 1]);</pre>
    int b = Min(R - m, lb[rt << 1 | 1]);</pre>
    return max(max(t1, t2), a + b);
}
int main() {
    int n, m, i, j, k, a, b, op;
    while (scanf("%d", &n) != EOF) {
        for (i = 1; i <= n; i++) scanf("%d", &num[i]);</pre>
        build(1, n, 1);
        scanf("%d", &m);
        while (m--) {
            scanf("%d%d%d", &op, &a, &b);
            if (op == 1)
                 update(a, b, 1, n, 1);
            else {
                 int ans = query(a, b, 1, n, 1);
                 printf("%d\n", ans);
```

```
}
}
return 0;
}
```

1.3 并查集

```
基础算法
void init(){
   for(int i=1;i<MAX;i++){</pre>
       bin[i]=i;
       crank[i]=1;
   }
}
int findr(int x){
   if(x!=bin[x]){
       bin[x]=findr(bin[x]);
                              //路径压缩
   }
   return bin[x];
}
void mergebin(int x,int y){
   int rx,ry;
   rx=findr(x);
   ry=findr(y);
   if(rx!=ry){
       bin[rx]=ry;
       crank[ry]+=crank[rx];
       ans=max(ans,crank[ry]);
   }
}
```

1.3.1 带权并查集

1.4 RMQ

已知数组 a[], 求这个数组 l、h 范围内(从 0 计数)的最小值 #include <bits/stdc++.h> #define Max(a, b) a > b ? a: b #define Min(a, b) a < b ? a: b

```
#define MAX 100050
using namespace std;
//若要求区间最大值,那么将Min改为Max即可
int a[MAX];
                  //dp[i][j]表示a[]从下标i开始到i+2^j-1的范围中的最小值
int dp[MAX][20];
void RMQ(int n) { //Sparse Table算法,O(nlog(n))
   memset(dp, 0, sizeof(dp));
   for (int i = 0; i < n; i++)</pre>
       dp[i][0] = a[i]; //初始化
   int tmp = int(log(double(n)) / log(2.0));
   for (int j = 1; j <= tmp; j++) {</pre>
       for (int i = 0; i < n; i++) {</pre>
          if (i + (1 << (j - 1)) < n)
              dp[i][j] = Min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
       }
   }
}
int Minimum(int l, int h) { //O(1)的查询
   int k = int(log(double(h - l + 1)) / log(2.0));
   return Min(dp[1][k], dp[h - (1 << k) + 1][k]);
}
int main() {
   int n;
   while (cin >> n) {
       for (int i = 0; i < n; i++) cin >> a[i];
       RMQ(n);
       int x, y;
       while (cin >> x >> y)
          cout << Minimum(x, y) << endl;</pre>
   }
}
```

1.5 排序

1.5.1 计数排序

```
#include <iostream>
#include <string.h>
```

```
using namespace std;
void CountSort(int *a, int *b, int *rank, int n, int k) {
   int *c = new int[k + 1];
   memset(c, 0, sizeof(int)*(k + 1));
   for (int i = 1; i <= n; i++)</pre>
       c[a[i]]++;
   for (int i = 2; i <= k; i++)
       c[i] += c[i - 1];
   //important
   for (int i = n; i >= 1; i--) { //如果从1-n遍历,排序的结果中,a数组值相同的元素从左到右为
逆序排列,不符合要求。
       b[c[a[i]]] = a[i]; //c[a[i]]就是a[i]的排名,这行相当于将a[i]放到了根据他的排名应该放到的地
方。
       rank[c[a[i]]] = i; //rank[j]表示排名为j的数在a数组的位置
       c[a[i]]--;
   }
}
int main() {
                                     //n为a数组元素个数,k为a数组元素最大值
   int n, k;
   while (cin >> n >> k) {
       int *a = new int[n + 1];
       int *rank = new int[n + 1];
                                   //存放排名为i的数
       for (int i = 1; i <= n; i++)
           cin >> a[i];
       CountSort(a, b, rank, n, k); //计数排序
       cout << "sorted:" << endl;</pre>
       for (int i = 1; i <= n; i++)
           i == n ? cout << b[i] << endl : cout << b[i] << " ";
       cout << "rank:" << endl;</pre>
       for (int i = 1; i <= n; i++)
           i == n ? cout << rank[i] << endl : cout << rank[i] << " ";</pre>
   }
   return 0;
}
```

1.5.2桶排序

1.5.3 基数排序

1.5.4 快速排序

1.5.5 归并排序

归并排序是稳定的排序。时间复杂度为:O(nlogn)。归并排序的思想除了用于排序,还只需要修改一点便能够实现逆序数个数的求解。 归并排序

归并排序(逆序数)

1.5.6 堆排序

- 1.6 树状数组
- 1.7 哈希表
- 1.8 霍夫曼树
- 1.9 平衡二叉树
- 1.9.1 Treap
- 1.9.2 Splay
- 1.9.3 树链剖分

2 图论

2.1 拓扑排序

2.2 最小生成树

2.2.1普利姆算法

```
void prim(int v, int n) {
   int i, j, k, tmin;
   int ans = 0;
   for (i = 0; i<n; i++) {</pre>
       dis[i] = mpt[v][i];
       vis[i] = true;
   }
   vis[v] = false;
   for (j = 1; j<n; j++) {
       tmin = INF;
       k = 0;
       for (i = 0; i<n; i++) {
           if (vis[i] && dis[i] < tmin) {</pre>
               tmin = dis[i];
               k = i;
           }
       }
       if (tmin == INF)
           break;
       vis[k] = false;
       ans += tmin;
       for (i = 0; i<n; i++) {</pre>
           if (vis[i] && dis[i] > mpt[k][i]) {
               dis[i] = mpt[k][i];
           }
       }
   }
   cout << ans << endl;</pre>
}
```

2.2.2克鲁斯卡尔算法

2.3 最短路

要注意

- 1、输入坑点,比如双向路径、相同路多次输入等。这种坑有的是读题不仔细,有的是题上既没有说而且 不能用常识判断。所以要注意输入控制。
- 2、初始化

2.3.1 Dijkstra

```
int mpt[MAX][MAX];
int vis[MAX], dis[MAX];
int n;
int dijkstra(int s, int d) {
             //初始化mpt二维数组、vis数组和dis数组
   init();
   dis[s] = 0;
   dis[0] = 0; //这些初值要设置好
   for (int j = 0; j < n; j++) {
       int t = 0;
      for (int i = 1; i <= n; i++) { //从1开始计数的dis数组
          if (vis[i]) continue;
          t = dis[t] > dis[i] ? i : t;
      vis[t] = 1;
      for (int i = 0; i < n; i++) {
          if (vis[i] || mpt[t][i] == INF) continue;
          dis[i] = Min(dis[i], dis[t] + mpt[t][i]);
      }
   return dis[d];
}
```

2.3.2 Floyd:

2.3.3 SPFA

```
int mpt[MAX][MAX];
int vis[MAX], dis[MAX];
int n;
int spfa(int s, int d) {
   init();
   queue<int>q;
   q.push(s);
                 // 这里的vis数组是用来判断当前下标是否在队列中。
   vis[s] = 1;
   dis[s] = 0;
   while (!q.empty()) {
       int e = q.front();
       q.pop();
       vis[e] = 0;
       for (int i = 0; i < n; i++) {
          if (mpt[e][i] + dis[e] >= dis[i]) continue;
          dis[i] = mpt[e][i] + dis[e];
          if (vis[i]) continue;
          q.push(i);
          vis[i] = 1;
       }
   }
   return dis[d];
}
```

2.3.4优先队列对 dijkstra 算法的优化

```
/*
priority_queue实现的dijkstra最短路算法,时间复杂度O(mlogn)
相比原始dijkstra的O(n^2)复杂度,该算法不仅在稀疏图的情况下大大提高效率,且在稠密图下也常常不会慢于原始算法。
*/
#include <iostream>
#include <queue>
#include <string.h>
using namespace std;
#define Max a > b ? a: b
#define Min a < b ? a: b
#define Max 1005
#define INF 0x3f3f3f3f

struct Edge {
    int from, to, dist; //起点,终点,边权
```

```
Edge(int f, int t, int d) :from(f), to(t), dist(d) {};
};
              //n是节点数, m是边数
int n, m;
vector<Edge>edges; //边数组
vector<int>G[MAX]; //邻接图,存储边的序号,不过注意第二维下标不再表示边终点!
int dis[MAX];
                   //图中每个点距离单源起点s的最短距离
//添加边到edges中,并且用G保存边的编号
void AddEdge(int s, int d, int w) {
   edges.push_back(Edge(s, d, w));
   int no = edges.size() - 1;
   G[s].push_back(no);
}
void init() {
   for (int i = 0; i < MAX; i++) {</pre>
       dis[i] = INF;
       G[i].clear();
   }
   edges.clear();
}
struct Node {
   int d, u;
   bool operator < (const Node& tp) const { //自定义优先级策略,在priority_queue会使用
       return d > tp.d;
                            //d即dis[u]
   }
};
//core code
int dijkstra(int s, int d) {
   int vis[MAX];
   priority_queue<Node>Q;
   //预处理部分
   memset(vis, 0, sizeof(vis));
   dis[s] = 0;
   Q.push((Node) { 0, s });
   while (!Q.empty()) {
       Node tp = Q.top();
       Q.pop();
       int u = tp.u;
                         //简化
       if (vis[u]) continue;
       vis[u] = 1;
       //松弛操作,和原版不一样了
       for (int i = 0; i < G[u].size(); i++) {</pre>
           Edge& e = edges[G[u][i]]; //简化
```

```
if (vis[e.to] == 0 && dis[e.to] > dis[u] + e.dist) {
                  dis[e.to] = dis[u] + e.dist;
                 Q.push((Node) { dis[e.to], e.to });
             }
         }
    }
    return dis[d];
}
int main() {
    ios::sync_with_stdio(0);
    while (cin >> m >> n) {
         init();
         for (int i = 0; i < m; i++) {</pre>
             int s, d, w;
             cin >> s >> d >> w;
             AddEdge(s, d, w);
             AddEdge(d, s, w);
         }
         cout << dijkstra(1, n) << endl;</pre>
    }
    return 0;
}
```

2.4 二分图

2.5 网络流

3 组合游戏

3.1 Nim 博弈

```
取^ (异或),结果为0则先手输。
上次的代码:
for(int i = 1; i < n; i++)
{
    scanf("%d", &a[i]);
```

```
key = key ^ a[i];

if(key == 0)
{
    printf("No\n");
    continue;
}
else
{
    printf("Yes\n");
    for(int i = 0; i < n; i++)
    {
        int temp = key^a[i];
        if(temp<a[i]) printf("%d %d\n",a[i],temp);
    }
}</pre>
```

4 动态规划

4.1 记忆化搜索

```
/*
题目: POJ - 1088 滑雪
int a[105][105], dp[105][105], n, m;
int ca[4][2] = { 1,0,0,-1,-1,0,0,1 };
int DFS(int x, int y) {
   if (dp[x][y] != 0) return dp[x][y];
   int i, j, k, tmp, ans = 1;
   for (k = 0; k<4; k++) {
       i = x + ca[k][0];
       j = y + ca[k][1];
       if (i >= n || j >= m || i<0 || j<0)</pre>
                                             continue;
       if (a[i][j] >= a[x][y]) continue;
       tmp = DFS(i, j) + 1;
       ans = max(tmp, ans);
   }
   dp[x][y] = ans;
   return ans;
}
int main() {
   while (cin >> n >> m) {
```

4.2 背包问题

4.2.101 背包

```
/*
状态转移方程: F[i,k] = max{F[i-1, k], F[i-1, k-w[i]]+v[i]}
w[i]表示i物品重量,v[i]表示i物品价值,s表示背包容量
*/
int dp[10005];
memset(dp, 0, sizeof(dp));
for (int i = 0; i < n; i++) {
   for (int j = s; j >= w[i]; j--) {
       dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
   }
}
01背包二维数组实现(最原始的版本)
*/
int dp[MAX][MAX];
for (int i = 1; i < n; i++) {
   for (int j = 0; j <= s; j++) {
       if (w[i] <= j)</pre>
          dp[i][j] = max(dp[i - 1][j - w[i]] + v[i], dp[i - 1][j]);
       else
          dp[i][j] = dp[i - 1][j];
   }
}
```

4.2.2 完全背包

```
完全背包解法思路:
类比01背包,他的策略是取或者只取一件,而完全背包的策略是取0、1、2...|S/wi|件,故
状态转移方程: F[i,k] = max{F[i-1,k-a*w[i]]+a*v[i] | 0 <= a*w[i] <= S}
时间优化方法:
完全背包转化为01背包。即将第i种物品分解为|S/wi|件重量价值相同的物品。
不过这样时间仍比较复杂,更高效的方法是把第i种物品拆成重量w[i]*2^k,价值v[i]*2^k的若干物品,
这样便使分解的物品的个数变为了log(|S/wi|)件,能这样分解的原因是:
不管选几件第i种物品,这个件数总能表示成若干个2<sup>k</sup>件的和。
w[i]表示i物品重量,v[i]表示i物品价值,s表示背包容量
*/
int dp[10005];
memset(dp, 0, sizeof(dp));
for (int i = 0; i < n; i++) {
   for (int j = w[i]; j <= s; j++) { //次序和01背包颠倒: 为了多次选择以前选过的物品
      dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
   }
}
4.2.3 多重背包
/*
多重解法思路:
类比完全背包,多重背包的策略是取0、1、2...M件,故
状态转移方程: F[i,k] = max{F[i-1,k-a*w[i]]+a*v[i] | 0 <= a <= M}
时间优化方法:
和完全背包的二进制优化法思想完全相同。
若是M件物品,就可以分解为2^0,2^1,2^2...2^(k-1),M-(2^k-1)这些个物品,k是满足M-(2^k-1)>0的最大整数
例如,13件物品,算出k为3,按照这个方法就会分解为1,2,4,6
w[i]表示i物品重量,v[i]表示i物品价值,s表示背包容量
//分解(ww: 物品重量, vv: 物品价值, num: 物品件数)
int ic = 0; //计数器
for (int j = 0; j < n; j++) {
   int i = 1;
   int ww, vv, num;
   cin >> ww >> vv >> num;
   while (i < num) {</pre>
      w[ic] = i * ww;
```

```
v[ic] = i * vv;
      num -= i;
      i <<= 1;
      ic++;
   //此时的i(k)已经不满足M-(2^k-1)>0了,而num正是M-(2^(k-1) - 1)
   w[ic] = num * ww;
   v[ic] = num * vv;
   ic++;
}
//分解后直接使用01背包
int dp[10005];
memset(dp, 0, sizeof(dp));
for (int i = 0; i < n; i++) {
   for (int j = s; j >= w[i]; j--) { //只能选择一次
      dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
   }
}
```

4.2.4二维费用背包

```
/*
状态转移方程: F[i, s, u] = max{F[i-1, s, u], F[i-1, s-c[i], u-d[i]] + v[i]}
思路: 类型为01背包或多重背包, s、u采用逆序遍历, 类型为完全背包, s、u采用顺序遍历

c[i]、v[i]为物品的二维费用, 最高容量分别是s和u, v[i]是物品价值

*/

int dp[MAX][MAX];
for (int i = 0; i < n; i++) {
    for (int j = s; j >= c[i]; j--) {
        for (int k = u; k >= v[i]; k--) {
            dp[j][k] = max(dp[j][k], dp[j-c[i]][k-d[i]] + v[i]);
        }
    }
}
```

4.2.5 分组背包

/*

分组背包: 物品被分为k个组, 选的时候要么从一个组中选一个, 要么就不选

```
状态转移方程: F[k, u]=max{F[k-1, u-w[i]]+v[i], F[k-1, u]}
F[k, u]表示容量为u的背包, 在前k组选最大能有多少重量
*/

int v[MAX][MAX];
int dp[MAX];
for (int i = 0; i < n; i++) {
    for (int j = s; j >= 0; j--) {
        for (int k = 1; k <= j; k++) {
            dp[j] = max(dp[j], dp[j - k] + v[i][k]);
        }
    }
}
```

4.3 区间 DP

```
dp[i][j] = max{dp[i][j], dp[i][k] + dp[k+1][j]}
石子归并
```

括号匹配

4.4 树形 DP

4.5 数位 DP

```
/*
统计数字: 在1-n范围的数字, 0~9这个10位数分别共出现了多少次(无前导零)
*/
#include <iostream>
#include <string.h>
#define LL long long
using namespace std;

int a[20];
int dp[20][20];

LL dfs(int pos, int num, bool limit, bool lead, int k) {
    if (pos == -1)         return num;
    if (!limit && !lead && dp[pos][num] != -1)         return dp[pos][num];
    int ans = 0;
```

```
int up = limit ? a[pos] : 9;
    for (int i = 0; i <= up; i++) {</pre>
        int num1 = num + (i == k);
        if (i == 0 && lead) num1 = num;
        ans += dfs(pos - 1, num1, limit && i == up, !i && lead, k);
    }
    if (!limit && !lead) dp[pos][num] = ans;
    return ans;
}
LL solve(int x, int i) {
    int ic = 0;
    while (x) {
        a[ic++] = x % 10;
        \times /= 10;
    }
    return dfs(ic - 1, 0, true, true, i);
}
int main() {
    ios::sync_with_stdio(false);
    int n;
    while (cin >> n) {
        for (int i = 0; i < 10; i++) {
            memset(dp, -1, sizeof(dp));
            cout << i << " ";
            cout << solve(n, i) - solve(1 - 1, i) << endl;</pre>
        }
    }
    return 0;
}
/*
在1到r范围的数中,含2014数的个数
#include <iostream>
#include <string.h>
#define LL long long
using namespace std;
int a[20];
int dp[20][2][2][2][2];
LL dfs(int pos, int n1, int n2, int n3, int n4, bool limit, bool lead) {
    if (pos == -1) return n1&n2&n3&n4;
    if (!limit && !lead && dp[pos][n1][n2][n3][n4] != -1) return dp[pos][n1][n2][n3][n4];
    int ans = 0;
```

```
int up = limit ? a[pos] : 9;
    for (int i = 0; i \le up; i++) {
         int nn1 = i == 2 ? 1 : 0;
         int nn2 = i == 0 ? 1 : 0;
         int nn3 = i == 1 ? 1 : 0;
         int nn4 = i == 4 ? 1 : 0;
         if (lead) nn2 = 0;
         ans += dfs(pos - 1, nn1 | n1, nn2 | n2, nn3 | n3, nn4 | n4, limit && i == up, lead && !i);
    if (!limit && !lead) dp[pos][n1][n2][n3][n4] = ans;
    return ans;
}
LL solve(int x) {
    int ic = 0;
    while (x) {
        a[ic++] = x \% 10;
        x /= 10;
    return dfs(ic - 1, 0, 0, 0, true, true);
}
int main() {
    ios::sync_with_stdio(false);
    int 1, r;
    while (cin >> 1 >> r) {
        memset(dp, -1, sizeof(dp));
        cout \ll solve(r) - solve(1 - 1) \ll endl;
    return 0;
}
```

4.6 状态压缩 DP

5 数论

5.1 素数筛法

```
//素数筛法优化版本
memset(prime, 0, sizeof(prime));
prime[0] = prime[1] = 1;
for (int i = 2; i < MAX; i++) {</pre>
   if (prime[i] == 1) continue;
   if (i > MAX / i) continue;
                                       //点睛之笔
   for (int j = i * i; j < MAX; j += i)</pre>
       prime[j] = 1;
}
5.2 求质因子
int main()
{
   LL num;
   memset(prime, 0, sizeof(prime));
   prime[0] = prime[1] = 1;
   //筛法
   for (LL i = 2; i < MAX; i++)</pre>
   {
       if (prime[i] == 1) continue;
       if (i * i >= MAX) continue;
       for (LL j = i * i; j < MAX; j += i)
       {
          prime[j] = 1;
       }
   }
   //输入一个数num, 求其质因子(no是输出格式开关变量)
   while (~scanf("%lld", &num))
   {
       int no = 0;
       for (LL j = 2; j \leftarrow num; j++)
       {
           if (prime[j] == 1)
                               continue;
          if (num % j == 0)
           {
              if (no == 0)
              {
                  printf("%lld", j);
                  no = 1;
```

5.3 逆元求法

5.3.1费马小定理

```
/*
逆元: a*x \equiv 1 \pmod{p}, x就是a关于p的逆元
逆元的作用: (a / b) % p = (a * inv(a)) % p
前提条件: a和p互质,且gcd(a, p) = 1
*/
LL POW(LL a, LL n, LL mod) {
   LL ans = 1, tmp = a;
   while (n) {
       if (n % 2 == 1) ans = (ans * tmp) % mod;
      tmp = (tmp * tmp) % mod;
      n >>= 1;
   }
   return ans;
}
LL INV(LL a, LL p) {
   return POW(a, p - 2, p);
}
```

5.3.2扩展欧几里德

```
/*
前提条件: a和b互质
*/
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d) {
if (!b) d = a, x = 1, y = 0;
```

```
else {
    ex_gcd(b, a % b, y, x, d);
    y -= x * (a / b);
}

LL INV(LL a, LL p) { //a、p代表扩展欧几里德中的a、b。
    LL x, y, d;
    ex_gcd(a, p, x, y, d);
    return d == 1 ? (x % p + p) % p : -1; //返回-1表示无解
}
```

5.4 中国剩余定理

```
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d) { //扩展欧几里德
   if (!b) d = a, x = 1, y = 0;
   else {
      ex_gcd(b, a % b, y, x, d);
      y -= x * (a / b);
   }
}
//X表示被取模的数,M表示原本模的数,M=m1*m2*m3...*mn,m[]数组元素两两互素
LL CRT(LL n, LL X, LL M, LL *m) { //中国剩余定理
   LL ans = 0, d, x, y;
   for (int i = 0; i < n; i++) {
      ex gcd(M / m[i], m[i], x, y, d); //扩欧求逆元x
      ans += ((X \% m[i]) * (M / m[i]) * x);
   if (ans < 0) ans += M;
   return ans;
}
```

5.5 Lucas 定理

```
/*
结论1. Lucas(n,m,p) = C(n, m)%p = C(n%p, m%p)*Lucas(n/p, m/p, p)
结论2. 把n写成p进制a[n]a[n-1]a[n-2]...a[0], 把m写成p进制b[n]b[n-1]b[n-2]...b[0],则
C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])*C(a[n-2],b[-2])*....*C(a[0],b[0])模p同余。
前提条件: p为素数, n、m为非负整数
前置工具代码: 阶乘数组,快速幂取模,费马小定理求逆元
注意事项: n,m不能大于10^5,不大于情况下用逆元的方法可以解决,如果大了就不能解决。
```

```
*/
LL fac[MAX]; //阶乘数组
void init_jc(LL p) { //初始化阶乘数组
   fac[0] = 1;
   for (int i = 1; i < MAX; i++)</pre>
       fac[i] = fac[i - 1] * i % p;
}
LL POW(LL a, LL n, LL mod) { //快速幂取模
   LL ans = 1, tmp = a \% \mod;
   while (n) {
      if (n % 2 == 1) ans = (ans * tmp) % mod;
      tmp = (tmp * tmp) % mod;
      n >>= 1;
   return ans;
}
LL INV(LL a, LL p) { //求逆元 (费马小定理)
   return POW(a, p - 2, p);
}
LL C(LL n, LL m, LL mod) { //组合公式(利用逆元)
   if (m > n) return 0;
   return fac[n] * INV((fac[n - m] * fac[m]) % mod, mod) % mod;
}
LL Lucas(LL n, LL m, LL p) {
   if (m == 0)
       return 1;
   return (C(n % p, m % p, p) * Lucas(n / p, m / p, p)) % p;
}
int main() {
   LL n, m, mod;
   while (cin >> n >> m >> mod) {
       init_jc(mod);
       cout << Lucas(n, m, mod) << endl; //别忘了mod需要是素数
   }
   return 0;
}
```

6 字符串

6.1 KMP

```
s 是正文串, t 是模式串
void makeNext(int m) {
   int i = 0, j = -1;
   Next[0] = -1;
   while (i < m) {
       if (j == -1 || t[i] == t[j]) {
          i++, j++;
          Next[i] = j;
       }
       else j = Next[j];
   }
}
int kmp(int n, int m) {
   int i = 0, j = -1;
   makeNext(m);
   while (i < n \&\& j < m) {
       if (j == -1 || t[j] == s[i]) {
          i++, j++;
       }
       else j = Next[j];
   }
   if (i >= n && j < m) return -1;</pre>
   else return i - m;
}
next 数组的使用(字符串 str, 当有 n 个相同子串 x 整合到一起满足为 str 字符串时, 求 x 串的长度):
void makeNext(int n) {
   int i = 0, j = -1;
   Next[0] = -1;
   while (i < n) {
       if (j == -1 || s[i] == s[j]) {
          Next[++i] = ++j;
          if (j == 1) {
              ans = i - 1;
           }
       }
       else j = Next[j];
   }
}
```

6.2 AC 自动机

```
判断多个字符串在一段长文本中的存在情况。
举例:给出 n 个字符串,在这 n 个中有多少个存在于 str[]中?
struct node {
   int cnt;
   struct node *next[CAP];
   struct node *fail;
   void init() {
       cnt = 0;
       for (int i = 0; i < CAP; i++) next[i] = NULL;</pre>
       fail = NULL;
   }
};
void build(char str[MAX], struct node *&root) {
   struct node *tmp = root;
   int j = 0;
   int m = strlen(str);
   while (j < m) {
       int i = str[j] - 'a';
       if (tmp->next[i] == NULL) {
           tmp->next[i] = new struct node;
           tmp->next[i]->init();
                                       //important
       tmp = tmp->next[i];
       j++;
   }
   tmp->cnt++;
void setFail(struct node *&root) {
   root->fail = NULL;
   queue<struct node *>que;
   struct node *son, *p, *tmp;
   que.push(root);
```

```
p = root;
   while (!que.empty()) {
       tmp = que.front();
       que.pop();
       for (int i = 0; i < CAP; i++) {</pre>
            if (tmp->next[i] == NULL) continue;
           son = tmp->next[i];
           if (tmp == root) son->fail = root;
           else {
               p = tmp->fail;
               while (p) {
                   if (p->next[i]) {
                       son->fail = p->next[i];
                       break;
                   }
                   else p = p->fail;
               if (p == NULL) son->fail = root;
           }
           que.push(son);
       }
   }
}
void query(char str[MAX], struct node *root) {
   struct node *p, *tmp;
   int ans = 0;
   p = root;
   int len = strlen(str);
   for (int i = 0; i < len; i++) {</pre>
       int pos = str[i] - 'a';
       while (p->next[pos] == NULL && p != root) p = p->fail;
       p = p->next[pos];
       if (p == NULL) p = root;
       tmp = p;
       while (tmp != NULL)
       {
           if (tmp->cnt >= 0) {
               ans += tmp->cnt;
               tmp->cnt = -1;
           }
           else break;
           tmp = tmp->fail;
       }
   cout << ans << endl;</pre>
}
int main() {
```

```
int T;
cin >> T;
while (T--) {
    int n;
    struct node *root = new struct node;
    root->init();
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {</pre>
        char str[MAX];
        scanf("%s", str);
       build(str, root);
    }
    setFail(root);
    char str[MAX];
    scanf("%s", str);
    query(str, root);
}
return 0;
```

}

(失败指针指法如图,理解:当模式匹配过程中**失配时**,指针则指向**失败指针**指向的内存)

AC 自动机变形:(不仅要知道哪些字符串存在,还要分别其求出在长文本中的个数)

```
struct node {
    int no;
    int cnt;
    struct node *next[CAP];
    struct node *fail;
    void init() {
```

```
for (int i = 0; i < CAP; i++) next[i] = NULL;</pre>
       fail = NULL;
       no = -1;
       cnt = 0;
   }
};
char s[1000][55];
void build(char str[MAX], struct node *&root, int no) {
   struct node *tmp = root;
   int j = 0;
   int m = strlen(str);
   while (j < m) {
       int i = str[j] - 'A';
       if (tmp->next[i] == NULL) {
           tmp->next[i] = new struct node;
           tmp->next[i]->init();
                                          //important
       }
       tmp = tmp->next[i];
       j++;
   }
   tmp->no = no;
   tmp->cnt++;
}
void setFail(struct node *&root) {
   root->fail = NULL;
   queue<struct node *>que;
   struct node *son, *p, *tmp;
   que.push(root);
   p = root;
   while (!que.empty()) {
       tmp = que.front();
       que.pop();
       for (int i = 0; i < CAP; i++) {</pre>
           if (tmp->next[i] == NULL) continue;
           son = tmp->next[i];
           if (tmp == root) son->fail = root;
           else {
               p = tmp->fail;
              while (p) {
                  if (p->next[i]) {
                      son->fail = p->next[i];
                      break;
                  }
                  else p = p->fail;
               if (p == NULL) son->fail = root;
           }
```

```
que.push(son);
       }
   }
}
void query(char str[MAX], struct node *root) {
   struct node *p, *tmp;
   int vis[1001];
   int ans[1001];
   memset(vis, 0, sizeof(vis));
   memset(ans, 0, sizeof(ans));
   p = root;
   int len = strlen(str);
   for (int i = 0; i < len; i++) {</pre>
       int pos = str[i] - 'A';
       if (pos < 0 || pos > 25) { p = root; continue; }
       while (p->next[pos] == NULL && p != root) p = p->fail;
       p = p->next[pos];
       if (p == NULL) p = root;
       tmp = p;
       while (tmp != NULL)
       {
           vis[tmp->no] = 1;
           ans[tmp->no] += tmp->cnt;
           tmp = tmp->fail;
       }
   }
   for (int i = 0; i < 1000; i++) {
       if (vis[i]) {
           printf("%s: %d\n", s[i], ans[i]);
       }
   }
}
int main() {
   int n;
   while (~scanf("%d", &n)) {
       struct node *root = new struct node;
       root->init();
       for (int i = 0; i < n; i++) {</pre>
           scanf("%s", s[i]);
           build(s[i], root, i);
       setFail(root);
       char str[MAX];
       scanf("%s", str);
       query(str, root);
   }
   return 0;
```

}

6.3 后缀数组

```
int wa[maxn], wb[maxn], wv[maxn], ws[maxn];
int cmp(int *r, int a, int b, int 1)
{
   return r[a] == r[b] && r[a + 1] == r[b + 1];
}
void da(int *r, int *sa, int n, int m)
{
   int i, j, p, *x = wa, *y = wb, *t;
   for (i = 0; i < m; i++) ws[i] = 0;
   for (i = 0; i < n; i++) ws[x[i] = r[i]]++;
   for (i = 1; i<m; i++) ws[i] += ws[i - 1];
   for (i = n - 1; i >= 0; i--) sa[--ws[x[i]]] = i;
   for (j = 1, p = 1; p < n; j *= 2, m = p)
   {
       for (p = 0, i = n - j; i < n; i++) y[p++] = i;
       for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
       for (i = 0; i < n; i++) wv[i] = x[y[i]];
       for (i = 0; i < m; i++) ws[i] = 0;
       for (i = 0; i<n; i++) ws[wv[i]]++;</pre>
       for (i = 1; i<m; i++) ws[i] += ws[i - 1];
       for (i = n - 1; i >= 0; i--) sa[--ws[wv[i]]] = y[i];
       for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
           x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
   }
   return;
}
int rank[maxn], height[maxn];
void calheight(int *r, int *sa, int n)
   int i, j, k = 0;
   for (i = 1; i <= n; i++) rank[sa[i]] = i;</pre>
   for (i = 0; i<n; height[rank[i++]] = k)</pre>
       for (k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
   return;
}
```

```
da(r, sa, n + 1, 128);
calheight(r, sa, n);
```

7 C++ STL

7.1 map:

声明语法(例子),map<string, int>mpt; 然后就可以把 mpt 当成一个一维数组来使用,只不过数组的下标变成了 string 类型的值。

7.2 vector:

```
添加, push_back()
删除 vec 的第 i+1 个元素: vec.erase(vec.begin()+i);
删除 vec 的[i,j-1]区间的所有元素: vec.erase(vec.begin()+i,vec.begin()+j);
其余和数组差不多
```

7.3 queue(先进先出):

```
添加, push()
删除, pop()
```

7.4 stack(先进后出)

```
添加, push()
删除, pop()
```

7.5 重载运算符

```
/*重载运算符让自定义变量使用sort函数*/
template <typename T>
struct NODE {
    T x, y;
    NODE(T a = 0, T b = 0) : x(a), y(b) {}; //构造函数
```

```
};
template<typename T>
//运算符<的返回值是布尔变量
bool operator < (const NODE<T>& A, const NODE<T>& B) {
   if (A.x > B.x) return false;
   else return true;
}
template<typename T>
ostream& operator << (ostream& out, const NODE<T>& A) {
   out << "x=" << A.x << endl;
   out << "y=" << A.y << endl;
   return out;
}
int main() {
   int n;
   while (cin >> n) {
      NODE<double> tp[MAX];
      REP(i, n) cin >> tp[i].x >> tp[i].y;
                        //若是自定义变量需要重载<运算符才能使用sort函数!
      sort(tp, tp + n);
      REP(i, n) cout << tp[i];</pre>
   }
   return 0;
}
7.6 模版函数
//模版函数的使用
template <typename T>
struct NODE {
   T x, y;
   NODE(T a, T b) : x(a), y(b) {}; //构造函数
};
/*
重载+运算符
注意每个使用到模版函数的都要修改保留字格式:后面加上<typename>
template <typename T> //每段使用模版函数的函数前都应该加上模版函数的声明
NODE<T> operator + (const NODE<T>& A, const NODE<T>& B) {
   return NODE<T>(A.x + B.x, A.y + B.y);
}
//重载<<运算符,ostream是<<运算符的数据类型
```

8 数学公式

8.1 求三角形面积

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

- ① 海伦公式描述:公式中 a, b, c 分别为三角形三边长, p 为半周长, S 为三角形的面积。
- ② 行列式求三角形面积:

8.2 点到直线的距离

方法一:距离公式直接求

$$d = \left| \frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}} \right|$$

公式描述:公式中的直线方程为 Ax+By+C=0, 点 P 的坐标为(x0,y0)。但是直线方程不是够直接。推荐使用方法二。

方法二:先用海伦公式求面积然后求三角形高

8.3 卡特兰数

```
令 h(1) = 1, h(0) = 1, catalan 数满足递归式: h(n) = h(0) * h(n-1) + h(1) * h(n-2) + ... + h(n-1) h(0) (其中 n > = 2) 另类递归式: h(n) = h(n-1) * (4 * n-2)/(n+1) 该递推关系的解为:h(n) = C(2n,n)/(n+1) (n=1,2,3,...)
```

8.4 判断一个点是否在已知三点坐标的三角形内

```
//判断一个点是否在已知三点坐标的三角形内(向量法)
struct node {
   double x, y;
};
double dot(node a, node b) {
   return a.x * b.x + a.y * b.y;
}
bool JudgePointInTriangle(node v0, node v1, node v2) {
   double fenzi = dot(v0, v0) * dot(v1, v1) - dot(v0, v1) * dot(v1, v0);
   double u = dot(v1, v1) * dot(v2, v0) - dot(v1, v0) * dot(v2, v1);
   u /= fenzi;
   if (u < 0 \mid | u > 1) return false;
   double v = dot(v0, v0) * dot(v2, v1) - dot(v0, v1) * dot(v2, v0);
   v /= fenzi;
   if (v < 0 \mid | v > 1) return false;
   return u + v <= 1;</pre>
}
```

9 杂项

9.1 快速幂取模

```
//求 a^n 的前log<sub>10</sub> MOD位数
LL POW(LL a, LL n, LL MOD) {
    LL ans = 1, tmp = a;
    while (n != 0) {
        if (n % 2 == 1) {
            ans = (ans * tmp) % MOD;
        }
        tmp = (tmp * tmp) % MOD;
        n /= 2;
    }
    return ans;
```

}

9.2 大整数取模

```
#include<cstdio>
char a[10105];
int main(void) {
   int i, sum;
   while (scanf("%s", a) != EOF) {//a为大整数
      if (a[0] == '0') break;
      for (i = sum = 0; a[i] != '\0'; i++) {
          sum *= 10;
          sum += a[i] - '0';
          sum %= 17; //模17
      }
      if (sum == 0) printf("1\n");
                                     //能整除
                                     //不能
      else printf("0\n");
   }
}
```

9.3 约瑟夫环

```
int jsf(int n) {
   if (n == 3) return 3;
   if (n == 2) return 1;
   if (n == 1) return 1;
   bool isOdd;
   if (n % 2 == 1) isOdd = true;
   else isOdd = false;
   int ans;
   if (isOdd) {
       ans = jsf((n - 1) / 2);
       return ans * 2 + 1;
   }
   else {
       ans = jsf(n / 2);
       return ans * 2 - 1;
   }
}
```

9.4 求字典序值

```
// 求字典序值 ans
for(int i = 0; i < n; i++)</pre>
{
   ans += beishu(a, i, n) * jiecheng(n- i - 1);
}
int jiecheng(int x)
   int ans = 1;
   for(int i = 2; i <= x; i++)</pre>
       ans *= i;
   }
   return ans;
}
int beishu(int a[], int x, int n)
{
   int ans = 0;
   for(int i = x + 1; i < n; i++)
       if(a[i] < a[x])
           ans++;
   return ans;
}
```

9.5 输入输出流重定向

```
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
```