Roll	No.:	
-	-	_

National Institute of Technology, Delhi

Name of the Examination: B. Tech. End Semester Examination (November-December, 2019)

Branch

: CSE, ECE, EEE

Semester

: 1st

Title of the Course

: Advanced Calculus

Course Code

: MAL 101

Time: 3 Hours

Maximum Marks: 50

Note: Read instructions on each section carefully.

Section A [10 Marks]

Note: Questions 1-4 carries 1 mark. Questions 5-7 carries 2 mark.

Q.1. A line is drawn through the point (1, 2) forming a right triangle with the positive x- and y-axes. The slope of the line forming the triangle of least area is

- (A). -1
- (B). -2
- (C). -4
- (D). -1/2

Q.2. If the graph of $f(x) = x^3 + ax^2 + bx - 4$ has a point of inflection at (1, -6), what is the value of b?

- (D). 3
- (E). Information insufficient

Q.3. The value of double integral $\int_{0}^{4} \int_{0}^{2} \cos(y^{3}) dy dx$ is

- (A) $\frac{1}{3}(1-\cos 8)$ (B) $\frac{1}{3}\sin 8$ (C) $\frac{1}{3}\cos 8$ (D) $3(1-\cos 8)$ (E) $3\sin 8$ (F) $3\cos 8$

Q.4. The value of the integral $\oint_C \left[\left(y^3 + x^2 \right) dx + \left(3y^2 x + x \right) dy \right]$ when C is the boundary of positively

oriented triangle with vertices (0,0), (0,4), and (2,2) is

- (A) -2
- (B) 2 (C) -4 (D) 0

Q.5. What do you mean by a vector field to be conservative? Is the field $F(x,y) = x\hat{i}$ conservative?

- **Q.6.** Check the convergence of the series $\sum_{n=0}^{\infty} \frac{n^3 x^n}{3^n}$.
- Q.7. Evaluate the integral $\iint_{0}^{\infty} x \max(x, y) dy dx$ where $\max(x, y)$ is a maximum function.

Section B [20 Marks]

Note: Attempt any 4 questions. Each question carries 5 marks.

- Q.8. A company has been asked to design a storage tank for a liquid petroleum gas. The specifications require a cylindrical tank with hemispherical ends, and the tank is to hold 8000 m³ of gas. It is also desired to use the smallest amount of material possible in building the tank. What radius and height do you recommend for the cylindrical portion of the tank?
- Q.9. State and prove ratio test for the convergence of a series. Check the convergence of series with terms $a_n = \frac{4^n n! n!}{(2n)!}$.
- Q.10. Find the volume of the solid generated by revolving the region which is bounded by the parabola $y = x^2$ and the line y = 1 about (i) the line y = 1 and (ii) the line y = -1.
- Q.11. Find the work done by the force $\vec{F} = (x^2 y^3)\vec{i} + (x + y)\vec{j}$ in moving a particle along closed path C containing the curves x + y = 0, $x^2 + y^2 = 16$, and y = x in the first and fourth quadrants.
- Q.12. Find the flux of the vector field $\vec{F} = -x\vec{i} y\vec{j} + z^2\vec{k}$ outward (normal away from the z-axis) through the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2.

Section C [20 Marks]

Note: Attempt any 2 questions. Each question carries 10 marks.

- Q.13. (A) Find the interval of convergence of series $\sum_{n=1}^{\infty} \frac{(-1)^n 3^{2n} (x-2)^n}{3n}.$
 - (B) State and prove integral test for convergence of a series.
- Q.14. (A) Convert the triple integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2 + y^2) dz dx dy$ to cylindrical coordinates and evaluate.
 - **(B)** Evaluate the double integral $\int_{1}^{2} \int_{\frac{1}{y}}^{y} \sqrt{\frac{y}{x}} e^{\sqrt{xy}} dx dy$ by appropriate substitution.
- Q.15. (A) Find the circulation using Stokes theorem for the vector field $\vec{\mathbf{F}} = x^2y\vec{\mathbf{i}} + 2y^3z\vec{\mathbf{j}} + 3z\vec{\mathbf{k}}$ across the surface S having position vector $\vec{\mathbf{r}}(r,\theta) = r\cos\theta\vec{\mathbf{i}} + r\sin\theta\vec{\mathbf{j}} + r\vec{\mathbf{k}}$, $0 \le r \le 1$, $0 \le \theta \le 2\pi$.
- (B) Find the flux of field using divergence theorem, where $\vec{\mathbf{F}} = \sqrt{x^2 + y^2 + z^2} \left(x \vec{\mathbf{i}} + y \vec{\mathbf{j}} + z \vec{\mathbf{k}} \right)$ across the boundary of the region $1 \le x^2 + y^2 + z^2 \le 2$.