

BIOS 6612 Lecture 7

Goodness of Fit,
Predictive Power,
And Diagnostics
for Logistic Regression

Review (Lecture 6) / Current (Lecture 7)/ Preview (Lecture 8)

- Lecture 6: Covariate Adjustment in Logistic Regression
 - Confounding
 - Operational vs Classical Criteria (NOT the same)
- Lecture 7
 - o Goodness of fit
 - Deviance Chi- Square
 - Compares the model of interest to the "saturated model"
 - Homer-Lemshow statistic (not preferred)
 - o Predictive Power
 - Generalized R², Max-rescaled R² (based on log-likelihood)
 - Somer's D, Gamma, Tau-a, c-index (based on predicted probabilities)
- Lecture 8: Multiple Logistic Regression
 - Diagnostics
 - o Examples
 - Code in R and SAS

Goodness-of-Fit Statistics

- How well does the model "fit" the data?
 - **Goodness-of-fit statistics** implicitly involve a comparison between a model of interest and a "maximal" model that is more complex.
 - The maximal model will always fit better, but is it "significantly" better?
 - The **global chi-square test** compares the model of interest and a "minimal" model that contains only an intercept.
- **Deviance Chi-Square** (available in PROC GENMOD)
 - Compares the model of interest to the "saturated" model.
 - 2* [log L(saturated model) log L(model of interest)] ~ χ^2
 - Number of degrees of freedom depends on the difference between the number of parameters in the models to compare
 - The saturated model has one parameter for every predicted probability and therefore produces a perfect fit to the data.
 - SAS's choice of the "saturated" model depends on how the data are arranged.
 - Analogous to multiple linear regression lack-of-fit F-test

Goodness of Fit: Hosmer-Lemeshow statistic

The *Hosmer-Lemeshow statistic* is based on comparing observed versus expected (from the model) frequencies in categories defined by the fitted values for the outcome.

It is used to examine goodness of fit for individual level data -recall the Deviance Chi-Square is used for grouped data

- The observations are first divided into approximately ten groups (deciles).
- The number of groups, g, may be smaller than 10 if there are fewer than 10 distinct patterns of explanatory variables (but g must be ≥ 3).
- The Hosmer-Lemeshow goodness-of-fit statistic is obtained by calculating the Pearson chisquare statistic from the $2 \times g$ table of observed and expected frequencies, where g is the number of groups:

$$\chi^{2} = \sum_{g} \frac{(O_{g} - E_{g})^{2}}{E_{g} (1 - E_{g} / n_{g})}$$

Goodness of Fit: Hosmer-Lemeshow statistic

- The Hosmer-Lemeshow statistic is then compared to a chi-square distribution with (g-n) degrees of freedom, where the value of n can be specified in the LACKFIT option in the MODEL statement.
 - The default is n=2.
- Large values of the test statistic (and *small p*-values) indicate a lack of fit of the model.
 - Ideally the p-value for this test will be >>>0.05.
- Note: The HL statistic is an ad-hoc method and does not have very good properties (including low power).
 - You'll see it reported widely but it is not necessarily a good statistic to report.

Predictive Power

• Sometimes the main interest of a logistic regression analysis is prediction.

- That is, how well can we predict the outcome (dependent variable) based on the values of the independent variables.
- This is a very different criterion from goodness-of-fit measures.
 - A model can have good prediction but poor fit or good fit but poor prediction.
- Measures of Predictive Power
 - (1) Measures based on the log-likelihood:
 - Generalized R²
 Max-Rescaled R² (Nagelkerke R²)

RSQ option in PROC LOGISTIC

(2) Measures based on predicted probabilities and observed responses:

SAS Defaults in PROC LOGISTIC

- Gamma - Tau-a
- c-index
- These should <u>not</u> be interpreted as the proportion of variance explained by the independent variables.
 - NOT the same thing as R² in linear regression

Measures of Predictive Power Based on the log-likelihood

• Generalized
$$R^2$$
 $R^2 = 1 - \exp\left[-\frac{L^2}{n}\right]$

- where L^2 is the likelihood ratio chi-square for testing the null hypothesis that all coefficients are 0 and n is the sample size.

• Max-Rescaled R² (Nagelkerke R²)

- Divides the generalized R² by its upper bound.

Measures of Predictive Power Based on predicted probabilities and observed responses

- The following measures use information based on the number of pairs of observations in which one observation had the response and the other did not.
- For each pair, if the observation with the response has the higher predicted probability, it is "concordant."
- If the observation with the response has the lower predicted probability, it is "discordant."
- If both observations have the same predicted probability, it is a "tie".

- Somer's
$$D$$
: $\frac{C-D}{C+D+T}$

- *Gamma*: $\frac{C-D}{C+D}$
- Tau-a: $\frac{C-D}{N}$
- c-index: 0.5 (1 + Somer's D)

C = Number of Concordant Pairs

D = Number of Discordant Pairs

T = Number of Ties

N = Total Number of Pairs
(including those with identical
responses – pairs where both
have the response or both
don't have the response)

NOTE: The c-index is equivalent to the area under the ROC curve; ROC curves are measures of predictive ability based on sensitivity and specificity.

p. 8

Example: Predictors of attrition from weight-loss program

gender Gender (1=female; 0=male)

age Age (years) bmi BMI (m/kg²)

steps Baseline Physical Activity (Steps Per Day)

complete Program Completer (0=No; 1=Yes)

0bs	gender	age	bmi	steps	complete
1	1	30.0395	25.1523	6242.87	. 0
2	1	39.5773	27.9006	5039.61	1
3	1	34.2372	28.1800	6224.94	1
4	1	39.4810	31.1162	6190.36	1
5	1	29.5557	32.4988	4487.81	0
6	1	40.4104	22.7115	10047.78	1
7	1	27.9558	28.3043	6872.79	1
8	1	35.3751	27.1835	8016.53	1
9	1	31.7030	44.1499	560.53	0
10	1	26.1246	25.4449	7683.27	1
11	0	35.7991	29.7877	7652.74	1
12	0	34.3726	24.5994	6637.54	1
13	0	26.8996	32.7637	4367.06	0
14	0	37.3319	34.6787	4199.86	0
15	0	30.0353	25.1707	9349.20	1
16	0	32.9544	37.1013	939.48	0
17	0	34.9997	26.3737	6820.67	1
18	0	19.1743	20.7199	11765.55	1
19	0	25.8094	31.1911	4415.38	0
20	0	29.8202	25.3290	5994.75	1

Question: Is baseline BMI or baseline physical activity (steps/day) a better predictor of attrition?

13 participants completed the program7 dropped out

Small n: LRT is more appropriate than Wald

Mean= 29.0 SD= 5.4 Mean= 6175.4 SD= 2701.6

Steps as predictor (Model 1):

The LOGISTIC Procedure

Ordered

Value

1

Response Profile

complete

Probability modeled is complete=0.

PROC LOGISTIC;

MODEL complete = steps /RSQ LACKFIT CLODDS=WALD;
UNITS steps=100;
RUN;

Requests R-square measures

Requests Hosmer-Lemeshow

Modeling Attrition (drop-out)

Model Fit Statistics

0

		intercept	
	Intercept	and	
Criterion	Only	Covariates	
AIC	27.898	12.554	
SC	28.894	14.546	
-2 Log L	25.898	8.554	
	_		

LL = 7*LN(7/20)+13*log(13/20) = -12.9489

-2LL = 25.8979

R-Square 0.5799 Max-rescaled R-Square 0.7986

13

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	17.3434	1	<.0001
Score	10.2874	1	0.0013
Wald	4.8496	1	0.0277

We will compare to model with BMI as predictor (Model 2).

Steps as predictor (Model 1)

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	11.7273	5.5413	4.4789	0.0343
steps	1	-0.00219	0.000993	4.8496	0.0277

Odds Ratio Estimates

	Point	95% Wald
Effect	Estimate	Confidence Limits
steps	0.998	0.996 1.000

Note that the point estimate is significant, but close to 1.0

What are the relative odds for 100 steps/day?

 $OR = EXP(-0.00219 \times 100) = 0.803$

The odds of attrition decrease 0.2% (95% CI: 0.02% to 0.4%) for each 1 step/day higher baseline steps.

The odds of attrition decrease 19.6% for each 100 step/day higher baseline steps.

Wald Confidence Interval for Adjusted Odds Ratios

Effect	Unit	Estimate	95% Confiden	ce Limits
steps	100.0	0.804	0.661	0.976

BIOS 6612: Lecture 7 p. 12

Steps as predictor (Model 1)

Association of Predicted Probabilities and Observed Responses

Percent Concordant	95.6	Somers' D	0.912
Percent Discordant	4.4	Gamma	0.912
Percent Tied	0.0	Tau-a	0.437
Pairs	91	С	0.956

Partition for the Hosmer and Lemeshow Test

		complete = 0		complete = 1		
Group	Total	Observed	Expected	Observed	Expected	
1	2	0	0.00	2	2.00	
2	2	0	0.00	2	2.00	
3	2	0	0.01	2	1.99	
4	2	0	0.07	2	1.93	
5	2	1	0.18	1	1.82	
6	2	0	0.27	2	1.73	
7	2	0	0.87	2	1.13	
8	2	2	1.76	0	0.24	
9	2	2	1.82	0	0.18	
10	2	2	2.00	0	0.00	

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq 6.3757 8 0.6052 P >>> 0.05; No significant lack of fit. The current model is adequate.

Predicted probability for complete = 0

p. 13

Predicted Values from Model 1 (baseline steps model):

0bs	gender	age	bmi	steps	complete	dropped	phat	11	
1	1	30.0395	25.1523	6242.87	0	1	0.12694	-2.06404	
2	1	39.5773	27.9006	5039.61	1	0	0.66901	-1.10566	
3	1	34.2372	28.1800	6224.94	1	0	0.13135	-0.14082	
4	1	39.4810	31.1162	6190.36	1	0	0.14022	-0.15108	
5	1	29.5557	32.4988	4487.81	0	1	0.87110	-0.13800	
6	1	40.4104	22.7115	10047.78	1	0	0.00004	-0.00004	
7	1	27.9558	28.3043	6872.79	1	0	0.03536	-0.03600	
8	1	35.3751	27.1835	8016.53	1	0	0.00299	-0.00300	
9	1	31.7030	44.1499	560.53	0	1	0.99997	-0.00003	
10	1	26.1246	25.4449	7683.27	1	0	0.00619	-0.00621	
11	0	35.7991	29.7877	7652.74	1	0	0.00661	-0.00663	
12	0	34.3726	24.5994	6637.54	1	0	0.05778	-0.05952	
13	0	26.8996	32.7637	4367.06	0	1	0.89797	-0.10762	
14	0	37.3319	34.6787	4199.86	0	1	0.92694	-0.07587	
15	0	30.0353	25.1707	9349.20	1	0	0.00016	-0.00016	
16	0	32.9544	37.1013	939.48	0	1	0.99994	-0.00006	
17	0	34.9997	26.3737	6820.67	1	0	0.03946	-0.04026	
18	0	19.1743	20.7199	11765.55	1	0	0.0000	-0.0000	
19	0	25.8094	31.1911	4415.38	0	1	0.88787	-0.11893	
20	0	29.8202	25.3290	5994.75	1	0	0.20012	-0.22329	

Obs #1: phat = 1/(1+EXP[-(11.7273-.0.0021874*6242.87)]) = 0.12694

 $LL = LN[0.12694 \times (1-0.66901) \times ... \times (0.88787) \times (1-0.20012)] = -4.42772238$

-2LL = -2*(-4.2772238) = 8.55445

$$\frac{\exp(\beta_0 + \beta_1 X_{1i} + ...)}{1 + \exp(\beta_0 + \beta_1 X_{1i} + ...)} = \frac{1}{1 + \exp(-[\beta_0 + \beta_1 X_{1i} + ...])}$$

BIOS 6612: Lecture 7

Predicted Values from Model 1 (baseline steps model): sorted by phat

0bs	id	gender	age	bmi	steps	complete	dropped	phat
1	18	0	19.1743	20.7199	11765.55	1	0	0.0000
2	6	1	40.4104	22.7115	10047.78	1	0	0.00004
3	15	0	30.0353	25.1707	9349.20	1	0	0.00016
4	8	1	35.3751	27.1835	8016.53	1	0	0.00299
5	10	1	26.1246	25.4449	7683.27	1	0	0.00619
6	11	0	35.7991	29.7877	7652.74	1	0	0.00661
7	7	1	27.9558	28.3043	6872.79	1	0	0.03536
8	17	0	34.9997	26.3737	6820.67	1	0	0.03946
9	12	0	34.3726	24.5994	6637.54	1	0	0.05778
10	1	1	30.0395	25.1523	6242.87	0	1	0.12694
11	3	1	34.2372	28.1800	6224.94	1	0	0.13135
12	4	1	39.4810	31.1162	6190.36	1	0	0.14022
13	20	0	29.8202	25.3290	5994.75	1	0	0.20012
14	2	1	39.5773	27.9006	5039.61	1	0	0.66901
15	5	1	29.5557	32.4988	4487.81	0	1	0.87110
16	19	0	25.8094	31.1911	4415.38	0	1	0.88787
17	13	0	26.8996	32.7637	4367.06	0	1	0.89797
18	14	0	37.3319	34.6787	4199.86	0	1	0.92694
19	16	0	32.9544	37.1013	939.48	0	1	0.99994
20	9	1	31.7030	44.1499	560.53	0	1	0.99997

Observed	Expected
	(sum
	phat for
	2 Obs)
0	.00004
0	.00315
0	.01280
0	.07482
1	.18472
0	.27157
0	.86913
2	1.75897
2	1.82491
2	1.99991

Hosmer-Lemeshow

$$\chi^{2} = \sum_{g} \frac{(O_{g} - E_{g})^{2}}{E_{g} (1 - E_{g} / n_{g})}$$

Is BMI or baseline steps a better predictor of attrition from the weight-loss program?

BMI as predictor (Model 2):

The LOGISTIC Procedure

Response Profile

PROC LOGISTIC;
 MODEL complete = bmi /RSQ LACKFIT;
RUN;

```
Ordered Total

Value complete Frequency

1 0 7
2 1 13

Probability modeled is complete=0.
```

Modeling Attrition (drop-out)

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	27.898	17.521
SC	28.894	19.512
-2 Log L	25.898	13.521

R-Square 0.4614 Max-rescaled R-Square 0.6355

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	12.3770	1	0.0004
Score	9.3057	1	0.0023
Wald	4.9650	1	0.0259

Compared to model 1 with steps: Larger LR p-value for model 2 Smaller Wald p-value for model 2 BIOS 6612: Lecture 7 p. 16

BMI as predictor (Model 2)

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-17.1372	7.4997	5.2214	0.0223
bmi	1	0.5601	0.2514	4.9650	0.0259

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
bmi 1.751 1.070 2.866

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits
bmi 1.0000 1.751 1.070 2.866

Association of Predicted Probabilities and Observed Responses

Percent	Concordant	89.0	Somers' D	0.791
Percent	Discordant	9.9	Gamma	0.800
Percent	Tied	1.1	Tau-a	0.379
Pairs		91	С	0.896

Compared to model 1 with steps: Larger Somer's D, Gamma, Tau-A and C-index for model 1

BIOS 6612: Lecture 7 p. 17

BMI as predictor (Model 2)

Partition for the Hosmer and Lemeshow Test

		comple	te = 0	comple	te = 1
Group	Total	Observed	Expected	Observed	Expected
1	2	0	0.02	2	1.98
2	2	1	0.08	1	1.92
3	2	0	0.10	2	1.90
4	2	0	0.14	2	1.86
5	2	0	0.31	2	1.69
6	2	0	0.42	2	1.58
7	2	0	0.96	2	1.04
8	2	2	1.33	0	0.67
9	2	2	1.68	0	0.32
10	2	2	1.97	0	0.03

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

15.6474 8 0.0477

P < 0.05; Significant lack of fit. The current model is not adequate.

Mode 1: p=0.60521 i.e. Model 1 is adequate.

Model Comparison Summary:

	Model 1: Steps	Model 2: BMI	Choose	Model 1 or 2?	
Model Comparison:			-1		
-2LL	8.554	13.521		NOT appropriate	
AIC	12.554	17.521	Smaller (diff of 2)	1	
BIC	14.546	19.512	Smaller (diff of 2)	1	
Measures of Predictive Power (ba					
R-Square	0.5799	0.4614	Larger	1	
Max-Rescaled R-Square	0.7986	0.6355	Larger	1	
Test of H ₀ : Beta=0					
Likelihood Ratio p-value	<.0001	0.0004	Smaller	1	
Wald p-value (Not appropriate for small n)	0.0277	0.0259	Smaller	Not Wald (n=20)	
Measures of Predictive Power:					
Somers	.912	.791	Larger	1	
Gamma	.912	.800	Larger	1	
Tau-A	.437	.379	Larger	1	
C-index	.956	.896	Larger	1	
Goodness of Fit:					
Hosmer-Lemeshow Chi-Square	6.3757	15.6474	Smaller	1	
Hosmer-Lemeshow p-value	0.6052	0.0477	Larger (fail to reject H0)	1	

Residuals

```
PROC LOGISTIC DATA=steps;

MODEL complete = bmi steps / CLPARM=BOTH CLODDS=BOTH;

UNIT steps=100;

RUN;
```

p. 19

Residuals are useful for identifying potential outliers or miss-specified models. Two types of residuals (reported by SAS) are Deviance residuals and Pearson residuals.

- **Deviance residuals:** Measures the contribution of each observation to the Deviance chisquare.
- **Pearson residuals:** Measures the contribution of each observation to the Pearson chi-square.

Influential observations

As in linear regression, we can use DFFITS and DFBETAS to identify influential observations. The statistics produced by SAS LOGISTIC include:

- **DFBETAS:** These statistics tell you how much each regression coefficient changes when a particular observation is deleted. The actual change is divided by the standard error of the coefficient.
- **DIFDEV:** Measures the change in the deviance with deletion of the observation.
- **DIFCHISQ:** Measures the change in the Pearson chi-square with deletion of the observation.
- C and CBAR: Measures the overall change in the regression coefficients (analogous to Cook's D in linear regression).
- **Hat Matrix Diagonal:** A measure of leverage or potential influence (how extreme the observation is in the "predictor space.")

PROC LOGISTIC;
 MODEL complete = steps100 / INFLUENCE IPLOTS;
RUN;

The LOGISTIC Procedure

Model Information

Data Set WORK.STEPS
Response Variable complete

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 20 Number of Observations Used 20

Response Profile

Total		Ordered
Frequency	complete	Value
7	0	1
13	1	2

Probability modeled is complete=0.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	27.898	12.554
SC	28.894	14.546
-2 Log L	25.898	8.554

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	17.3434	1	<.0001
Score	10.2874	1	0.0013
Wald	4.8496	1	0.0277

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	11.7273	5.5413	4.4789	0.0343
steps100	1	-0.2187	0.0993	4.8496	0.0277

The LOGISTIC Procedure

Association of Predicted Probabilities and Observed Responses

Percent	Concordant	95.6	Somers'	D 0.912
Percent	Discordant	4.4	Gamma	0.912
Percent	Tied	0.0	Tau-a	0.437
Pairs		91	С	0.956

Residuals for Model 1(steps)

• **Pearson residuals:** Measures the contribution of each observation to the Pearson chi-square.

Residuals for Model 1 (steps)

Regression Diagnostics

	Dev	iance	Residual		Hat	Matrix	(Diago	nal	
Case		(1	unit = 0.	25)		(1	unit =	0.0	1)
Number	Value	- 8	-4 0 2 4	6 8	Value	0 2	4 6 8	12	16
1	2.0318		1	*	0.1489			*	
2	-1.4871	*	1		0.2258				*
3	-0.5307		*		0.1503			*	
4	-0.5497		*		0.1530			*	
5	0.5254		*		0.2051				*
6	-0.00840		*		0.000748	*			
7	-0.2683		*		0.0904		*		
8	-0.0774		*		0.0210	*			
9	0.00742		*		0.000686	*			
10	-0.1114		*		0.0337	*			
11	-0.1152		*		0.0352	*			
12	-0.3450		*		0.1128		*		
13	0.4639		*		0.1909				*
14	0.3895		*		0.1684			*	
15	-0.0180		*		0.00250	*			
16	0.0112		*		0.00135	*			
17	-0.2838		*		0.0953		*		
18	-0.00128		*		0.000033	*			
19	0.4877		*		0.1969				*
20	-0.6683		*		0.1669			*	

- **Deviance residuals:** Measures the contribution of each observation to the Deviance chi-square.
- **Hat Matrix Diagonal:** A measure of leverage or potential influence (how extreme the observation is in the "predictor space.")

BIOS 6612: Lecture 7 p. 24

Influential Observations for Model 1 (steps)

	Intercept	
Case	DfBeta	(1 unit = 0.07)
Number	Value	-8 -4 0 2 4 6 8
1	-0.5926	*
2	-0.5199	*
3	0.0866	*
4	0.0871	*
5	0.1853	*
6	0.000152	*
7	0.0465	*
8	0.00708	*
9	0.000137	*
10	0.0127	*
11	0.0134	*
12	0.0628	*
13	0.1590	*
14	0.1252	*
15	0.000591	*
16	0.000291	*
17	0.0499	*
18	4.939E-6	*
19	0.1694	*
20	0.0804	*

• **DFBETAS for the intercept:** These statistics tell you how much each regression coefficient changes when a particular observation is deleted. The actual change is divided by the standard error of the coefficient.

Influential Observations for Model 1 (steps)

Confidence Interval
Displacement C

	steps100			•
Case	DfBeta	(1 unit = 0.09)		(1 unit = 0.09)
Number	Value	-8 -4 0 2 4 6 8	Value	0 2 4 6 8 12 16
1	0.7517	*	1.4131	*
2	0.3995	*	0.7615	*
3	-0.1105	*	0.0315	*
4	-0.1127	*	0.0348	*
5	-0.1639	*	0.0480	*
6	-0.00016	*	2.644E-8	*
7	-0.0528	*	0.00401	*
8	-0.00763	*	0.000066	*
9	-0.00014	*	1.888E-8	*
10	-0.0139	*	0.000225	*
11	-0.0146	*	0.000252	*
12	-0.0733	*	0.00879	*
13	-0.1426	*	0.0331	*
14	-0.1139	*	0.0192	*
15	-0.00062	*	4.097E-7	*
16	-0.00029	*	8.506E-8	*
17	-0.0570	*	0.00478	*
18	-5.13E-6	*	2.68E-11	*
19	-0.1511	*	0.0386	*
20	-0.1168	*	0.0602	*

- **DFBETAS** for the steps: These statistics tell you how much each regression coefficient changes when a particular observation is deleted. The actual change is divided by the standard error of the coefficient.
- C: Measures the overall change in the regression coefficients (analogous to Cook's D in linear regression).

Influential Observations for Model 1 (steps)

Confidence Interval Displacement CBar					Delta Deviance					
Case (1 unit = 0.08)				(1 unit = 0.33)						
Number	Value	0 2	4 6 8	12	16	Value	0 2	4 6 8	12	16
1	1.2028				*	5.3309				*
2	0.5896		*			2.8009		*		- 1
3	0.0267	*				0.3084	*			1
4	0.0295	*			į	0.3316	*			ĺ
5	0.0382	*				0.3142	*			1
6	2.642E-8	*			ĺ	0.000071	*			ĺ
7	0.00365	*			ĺ	0.0756	*			ĺ
8	0.000064	*				0.00606	*			ĺ
9	1.887E-8	*			i	0.000055	*			ĺ
10	0.000217	*			į	0.0126	*			ĺ
11	0.000243	*				0.0135	*			ĺ
12	0.00779	*			i	0.1268	*			ĺ
13	0.0268	*			į	0.2421	· *			į
14	0.0160	*				0.1677	*			ĺ
15	4.086E-7	*			i	0.000326	*			ĺ
16	8.495E-8	*			į	0.000126	*			ĺ
17	0.00433	*			ĺ	0.0848	*			ĺ
18	2.68E-11	*			i	1.649E-6	*			Ĺ
19	0.0310	*			İ	0.2688	· *			İ
20	0.0501	· *			į	0.4967	*			İ

- **CBAR:** Measures the overall change in the regression coefficients (analogous to Cook's D in linear regression).
- **DIFDEV:** Measures the change in the deviance with deletion of the observation.

BIOS 6612: Lecture 7 p. 27

Influential Observations for Model 1 (steps)

Delta Chi-Square

Case		(1 unit = 0.51)
Number	Value	0 2 4 6 8 12 16
1	8.0805	*
2	2.6108	*
3	0.1780	*
4	0.1926	*
5	0.1862	*
6	0.000035	*
7	0.0403	*
8	0.00307	*
9	0.000028	*
10	0.00644	*
11	0.00690	*
12	0.0691	*
13	0.1404	*
14	0.0948	*
15	0.000163	*
16	0.000063	*
17	0.0454	*
18	8.245E-7	*
19	0.1573	*
20	0.3003	*

DIFCHISQ: Measures the change in the Pearson chi-square with deletion of the observation.

Output from IPLOTS option

p. 30

Influential Observations for Model 1 (steps)

- Maybe case number 1 and 2?
 - o First few observations are always suspect
 - o May be true outliers or NOT
- Always report the results with and without those observations included
- Be VERY careful deleting outliers