	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENC ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab Academic Year: 202		Academic Year: 2025-26
Course Coordinator Name		Dr. Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable to Batches	23CSBTB32	

Assignment Number: 01

Ī	Q. No.	Question	Expected Time to complete
	1	Learn Now – Online Course Platform:	

Objective:

Analyze the effect of email marketing on course enrollments for LearnNow by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- Use the given dataset where:
 - Independent Variable (x): Number of Emails Sent
 - Dependent Variable (y): Enrollments

Number of Emails Sent (x)	Enrollments (y)
1	80
3	120
2	95
1	85
3	130

2. Calculate the Baseline Value

• Compute the mean of all enrollments (y values).

3. Calculate SHAP Values

- For each record, calculate the **difference between the predicted value and the baseline**.
- This difference is the SHAP value, attributed to the number of emails sent.

4. Compute Final Prediction

- Use the linear regression model to calculate predicted enrollments for each x.
- Confirm that: Final Prediction=Baseline+SHAP Value

5. Interpret the Results

- Explain how the number of emails influenced each predicted enrollment.
- Compare the predicted value to the actual value for each row.
- Identify under prediction or over prediction and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - Accuracy of the model
 - Trend analysis
 - SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	ShopEase – E-commerce Revenue Prediction using Multiple Linear Regression and SHAP Analysis	

Objective:

Analyze how ad spend and discount percentage influence daily revenue using Multiple Linear Regression and interpret the results with SHAP value analysis.

Given Dataset:

Ad Spend (x ₁)	Discount (%) (x ₂)	Revenue (y)
200	10	1500
300	15	2000
250	5	1700
150	10	1400
100	0	1000

Tasks:

1. Perform Multiple Linear Regression Analysis

• Use Ad Spend and Discount (%) as independent variables

• Use Revenue as the dependent variable

2. Calculate the Baseline Value

• Compute the mean of all revenue values

3. Calculate SHAP Values

- Compute SHAP value
- Distribute SHAP contribution between Ad Spend and Discount based on model coefficients

4. Compute Final Prediction for Each Record

• Verify prediction = Baseline + SHAP (Ad Spend) + SHAP (Discount)

5. Interpret the Results

- For each row, explain how Ad Spend and Discount % influenced the predicted revenue
- Compare predicted vs actual revenue
- Comment on over/under prediction and possible reasons

Q.	No.	Question	Expected Time to complete
	3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

1. Perform Multiple Linear Regression Analysis

- Use all available features from the Diabetes dataset as independent variables.
- Fit a Multiple Linear Regression model to predict disease progression.

2. Calculate the Baseline Value

- Compute the **mean** of the target variable (disease progression scores) from the training data
- This will serve as the **baseline prediction**.

3. Calculate SHAP Values

- Apply SHAP to compute **feature contributions** to each prediction.
- Use model coefficients to proportionally attribute the difference from the baseline to each feature.

4. Compute Final Prediction for Each Record

• For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

5. Interpret the Results

- For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - Comment on whether the model overpredicted or underpredicted and why, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

1. Perform Multiple Linear Regression Analysis

• Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as

independent variables.

• Fit a regression model to predict the **final exam score**.

2. Calculate the Baseline Value

- Compute the **mean of the final exam scores** from the training set.
- This serves as the **baseline prediction** (expected value).

3. Calculate SHAP Values

- Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
- Distribute the prediction deviation from the baseline among the features.

4. Compute Final Prediction for Each Record

• For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

5. Interpret the Results

- For every prediction:
 - Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.