Questions de cours.

- **1.** Montrer que les parties convexes de \mathbb{R} sont exactement les intervalles.
- **2.** Prouver que \mathbb{R} est archimédien.
- 3. Démontrer la bonne définition de la fonction partie entière.

1 Nombres réels

Exercice 1.1 (*). Soit A et B deux parties non vides de \mathbb{R} t.q. $\forall (a,b) \in A \times B$, $a \leq b$. Montrer que $\sup A$ et $\inf B$ existent et que $\sup A \leq \inf B$.

Exercice 1.2 (*). Soit A et B deux parties non vides et bornées de \mathbb{R} . On suppose que $A \subset B$. Comparer inf A, sup A, inf B et sup B.

Exercice 1.3 (*). Soit A et B deux parties non vides et majorées de \mathbb{R} . Montrer que A, B et $A \cup B$ admettent une borne supérieure et que :

$$\sup (A \cup B) = \max (\sup A, \sup B).$$

Exercice 1.4 (*). Soit A et B deux parties non vides et majorées de \mathbb{R} . On considère l'ensemble $A+B=\{a+b,\ (a,b)\in A\times B\}$. Montrer que A, B et A+B admettent une borne supérieure et que :

$$\sup (A + B) = \sup A + \sup B.$$

Exercice 1.5 (\star) . Soit $(x,y) \in \mathbb{R}^2$. Montrer les assertions suivantes :

- 1. |x+1| = |x| + 1.
- **2.** $|x| + |y| \le |x + y|$.
- 3. $|x| + |y| + |x + y| \le |2x| + |2y|$.

Exercice 1.6 (*). On se place dans (\mathbb{Q}, \leqslant) . On considère l'ensemble B des $x \in \mathbb{Q}_+$ $t.q. \lfloor x \rfloor$ a exactement deux chiffres dans son écriture décimale.

- 1. Décrire B.
- **2.** B est-il majoré (dans \mathbb{Q})?
- 3. B a-t-il un plus grand élément?
- **4.** B a-t-il une borne supérieure ?

Exercice 1.7 (*). Soit A, B deux parties non vides de \mathbb{R} . On considère $AB = \{ab, (a, b) \in A \times B\}$ et $A + B = \{a + b, (a, b) \in A \times B\}$.

- **1.** On suppose que A et B sont denses. Les ensembles AB et A+B sont-ils denses?
- 2. Étude de la réciproque.

Exercice 1.8 (\star). *Soit* $A \subset \mathbb{R}$ *vérifiant :*

- (i) $\forall (a,b) \in A^2, \frac{a+b}{2} \in A$,
- (ii) $\forall x \in \mathbb{R}, \exists (a,b) \in A^2, a < x < b.$

Montrer que A est dense dans \mathbb{R} .

Exercice 1.9 (Automorphismes de \mathbb{R} , \star). Soit $f : \mathbb{R} \to \mathbb{R}$ une application vérifiant $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y), f(0) = 0 et f(1) = 1.

- **1.** Montrer que $f_{|\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$.
- **2.** On suppose ici que f est continue. Montrer que $f = id_{\mathbb{R}}$.
- **3.** On suppose ici que f vérifie $\forall (x,y) \in \mathbb{R}^2$, f(xy) = f(x)f(y).

- **a.** Montrer que f est croissante.
- **b.** En déduire que $f = id_{\mathbb{R}}$.
- **4.** Qu'en conclut-on si on supprime l'hypothèse f(1) = 1?

Exercice 1.10 (\star) . Soit E un ensemble muni d'une relation d'ordre. On dit que E est un treillis lorsque tout sous-ensemble de E admet une borne supérieure $(dans\ E)$.

- **1.** Déterminer si les ensembles ordonnés suivants sont des treillis : $([0,1],\leqslant)$, $(]0,1[,\leqslant)$, (\mathbb{R},\leqslant) , $(\mathcal{P}(X),\subset)$, (\mathbb{N},\mid) .
- **2.** Soit E un treillis et $f: E \to E$ une fonction croissante. Montrer que f admet un point fixe.

Exercice 1.11 (Théorème de Cantor, \star).

- **1.** Soit E un ensemble. Montrer qu'il n'existe pas de surjection $E \to \mathcal{P}(E)$.
- **2.** a. Montrer que, pour tout ensemble E, $\mathcal{P}(E)$ est en bijection avec $\{0,1\}^E$.
 - **b.** On admet \mathbb{R} est en bijection avec $\{0,1\}^{\mathbb{N}}$ (cela peut se démontrer à l'aide du théorème de Cantor-Bernstein). Montrer que \mathbb{R} n'est pas dénombrable, i.e. il n'existe pas de surjection $\mathbb{N} \to \mathbb{R}$.