

Executive Summary – Motor Claims Fast-Track Prediction with GenAl

© GitHub Repository

Source Code: https://github.com/Gobinath1994/Motor-Claims-Fast-Track-Prediction-with-GenAl

1. Problem Statement

Motor insurance providers handle thousands of claims every month. While many are complex and require human intervention, a large proportion are routine and low-risk—making them ideal for **fast-track processing**. Fast-tracking such claims significantly reduces operational effort, turnaround time, and improves customer satisfaction.

This project addresses the following business question:

"Can we predict whether a motor claim is eligible for fast-track processing using structured metadata and unstructured free-text descriptions?"

2. Dataset & Technical Challenges

The dataset provided consists of **10,000 historical claims** with:

- Structured data: Vehicle make/model, mileage, accident type, customer tenure, etc.
- Unstructured data: Free-text "damage_description" field containing claims narrative.

Key Challenges:

- Inconsistent formats in text data (misspellings, informal language).
- Imbalanced target distribution (fewer fast-tracked claims).
- Noisy or missing fields like mileage and textual descriptions.

3. Feature Engineering

The feature engineering pipeline included a rich blend of structured transformations and NLP techniques:

Structured Features:

- Derived vehicle age from year
- Claim-to-tenure ratios
- Binning risk features (e.g., damage severity groups)

NLP Features (on damage_description):

- TF-IDF (Top 30 words)
- MiniLM Sentence Embeddings (384-d vector per row)
- PCA Reduction to 5 key dimensions
- KMeans Clustering to create semantic clusters

All features were scaled and concatenated for modeling. Feature selection was performed using ensemble voting across 6 different methods (Mutual Info, L1 Logistic, LightGBM importance, Permutation, Boruta, etc.).

4. Modeling & Evaluation

Multiple classifiers were trained using Stratified 5-fold Cross-Validation, including:

- Random Forest
- XGBoost
- CatBoost
- MLPClassifier
- LightGBM
- LogisticRegression

Final Model:

	Model	PR AUC	Balanced Accuracy	Precision (Class 1)	Recall (Class 1)	F1-Score (Class 1)
0	XGBoost	0.9156	0.8609	0.98	0.73	0.84
1	LightGBM	0.9141	0.8647	1.00	0.73	0.84
2	CatBoost	0.9169	0.8647	1.00	0.73	0.84
3	RandomForest	0.9213	0.8625	0.97	0.75	0.84
4	LogisticRegression	0.5232	0.5166	0.51	0.97	0.67
5	RandomForest_Tuned	0.9215	0.8634	0.99	0.74	0.84

RandomForestClassifier (Tuned)

PR AUC: 0.9156

• Balanced Accuracy: 0.8609

• Threshold optimization used for maximizing recall of eligible (class 1) cases.

Hyperparameter tuning was performed via Optuna. Class imbalance was handled using **SMOTE oversampling**.

5. Model Explainability

SHAP (SHapley Additive exPlanations) was used to interpret feature influence:

- Top contributing features:
 - damage_level_reported
 - vehicle_mileage
 - days_between_accident_and_claim
 - text_cluster and text_pca_1-5

This interpretability was embedded directly into the dashboard for each prediction.

6. GenAl Integration – Amazon Bedrock

To enhance downstream processing, the project integrates **Generative AI (Mistral 7B via Amazon Bedrock)** to auto-generate:

• Executive Summaries per claim

- Risk Tags
- Suggested Next Steps

These allow human claim agents to make quicker triage decisions and improve overall process efficiency.

7. Deployment & Streamlit Dashboard

The complete solution is deployed on AWS EC2, and includes:

- CSV batch upload for bulk scoring
- Live prediction with visual indicators
- SHAP explainability per claim
- Amazon Bedrock-powered LLM outputs
- Results saved to AWS RDS (motor_claims_predictions)

Access: Dashboard runs via streamlit run and is exposed on port 8501 via EC2 public IP.

8. Next Steps & Recommendations

- **Deploy as API** for real-time scoring during claims intake
- **Feedback loop** for user corrections to retrain models
- Improve LLM prompts to reduce token cost and refine summaries
- Drift detection with rolling monthly claims data

Business Impact

- Automated identification of fast-track claims enables near-instant decisions, reducing processing time from days to minutes.
- Operational savings through automation of low-risk claims
- Enhanced human productivity through LLM-assisted reasoning
- Reliable decision-making supported by SHAP explanations

Built by **Gobinath Subramani**

A data science and GenAl-driven solution designed for motor insurance modernization.