Теоретическая часть

Для измерения сопротивлений, ёмкостей и индуктивностей часто применяют мостовые схемы. В таких схемах элементы цепи соединяют «четырехугольником», в одну диагональ которого включают источник напряжения, а в другую — измерительный прибор. При определенном соотношении между параметрами элементов измерительный прибор показывает отсутствие напряжения в диагонали (баланс моста). В данной работе измерительный мост используется для измерения емкости конденсатора.

где R_1 и R_2 — магазины сопротивлений; C_1 и C_x — конденсаторы известной и неизвестной емкости соответственно; G — прибор для измерения напряжений; E — источник напряжения; K — ключ, может быть замкнут на контакт T, где конденсаторы заряжаются от источника напряжения, или S, где они разряжаются через сопротивления R_1 и R_2 .

Процесс зарядки конденсаторов (ключ в положении Т): Для упрощения выкладок считаем R_G - бесконечно большим, r – пренебрежимо малым ($R_G\gg R_1$, $R_2\gg r$) Контур DATD, правило Кирхгофа:

$$i_1R_1 + \frac{q_1}{C_1} = \varepsilon,$$

где: i_1 – ток, текущий через сопротивление R_1 , q_1 – заряд конденсатора C_1 .

Ток через G мал (R_G велико), поэтому $i_1 = \frac{dq_1}{dt}$, подставим:

$$\frac{\mathrm{d}q_1}{\mathrm{d}t}R_1 + \frac{q_1}{C_1} = \varepsilon$$

$$\frac{dq_1}{q_1 - \mathcal{E}C_1} = -\frac{dt}{C_1 R_1}$$

$$\begin{aligned} \ln(\mathbf{q}_{1} - \mathbf{E}\mathbf{C}_{1}) &= -\frac{\mathbf{t}}{\mathbf{C}_{1}\mathbf{R}_{1}} + const \\ \mathbf{q}_{1}(t = 0) &= \mathbf{E}\mathbf{C}_{1} => const = \mathbf{E}\mathbf{C}_{1} \\ \mathbf{q}_{1}(t) &= \mathbf{E}\mathbf{C}_{1} + \mathbf{E}\mathbf{C}_{1}e^{-\frac{\mathbf{t}}{\mathbf{C}_{1}\mathbf{R}_{1}}} = \mathbf{E}\mathbf{C}_{1}(1 + e^{-\frac{\mathbf{t}}{\mathbf{C}_{1}\mathbf{R}_{1}}}) \end{aligned}$$

Произведение R_1C_1 имеет размерность времени и называется постоянной времени RC-цепи. Величина постоянной времени определяет, насколько быстро заряжается конденсатор. Как видно из формулы, за время $\tau = R_1C_1$ заряд конденсатора достигает значения $q_1(t) = C_1 \mathcal{E}(1+e^{-1}) \approx 0.63C_1\mathcal{E}$

$$q_1(t) = \mathcal{E}C_1(1 + e^{-\frac{t}{C_1 R_1}})$$

$$U_1(t) = \mathcal{E}(1 + e^{-\frac{t}{C_1 R_1}})$$

Аналогично DBTD:

$$U_{x}(t) = \mathcal{E}(1 + e^{-\frac{t}{C_{x}R_{2}}})$$

Напряжение U_G на измерительном приборе (между A и B) равно разности напряжений на конденсаторах:

$$U_{G}(t) = U_{1}(t) - U_{x}(t) = E(e^{-\frac{t}{C_{x}R_{2}}} - e^{-\frac{t}{C_{1}R_{1}}})$$

Откуда следует, что при равенстве $R_1C_1=R_2C_x$ напряжение $U_G(t)=0$. Это условие называется условием баланса моста. Графики напряжений в отсутствие баланса моста могут выглядеть так:

Рисунок 1. графики напряжений при отсутствии баланса

Процесс разрядки конденсаторов (ключ в положении S):

$$U_1(t) = \varepsilon e^{-\frac{t}{C_1 R_1}}$$

$$U_x(t) = \varepsilon e^{-\frac{t}{C_x R_2}}$$

$$U_G(t) = \varepsilon (e^{-\frac{t}{C_1 R_1}} - e^{-\frac{t}{C_x R_2}})$$

При балансе моста U_G будет так же равно нулю, тогда для измерения ёмкости конденсатора C_X следует, подбирая значения сопротивлений R_1 и (или) R_2 , добиться баланса моста, тогда $C_X = C_1 \frac{R_1}{R_2}$.

Времена зарядки или разрядки конденсаторов (следовательно, и импульса U_G) оказываются малыми и поэтому отклик измерительного прибора будет зависеть не только от чувствительности прибора, но и от его инерционных свойств.

При *безинерционном* (малоинерционном) наблюдении прибор успевает отслеживать все изменения измеряемой величины. В качестве такого прибора в работе используется осциллограф, обладающий достаточным быстродействием для наблюдения импульсов U_G . О величине разбаланса моста можно судить по максимальному значению напряжения U_G .

При *инерционном* (баллистическом) наблюдении прибор не успевает отслеживать все изменения измеряемой величины. Высокочувствительный нуль-гальванометр, установленный в диагональ моста, является типичным прибором, реализующим инерционное наблюдение. Время установки стрелки в таком гальванометре существенно больше времени зарядки/разрядки конденсаторов. Процесс измерения в этом случае можно представить в виде двух последовательных этапов: сначала, из-за проходящего через гальванометр кратковременного тока, рамка гальванометра приобретает некоторую угловую скорость, а затем, когда ток уже прекратился, эта рамка отклоняется на некоторый угол. Отклонение стрелки гальванометра пропорционально прошедшему через гальванометр заряду.

Как правило, у чувствительных гальванометров условие $R_G\gg R_{1,2}$ не выполняется, но т.к. между A и B разность потенциалов отсутствует, то ток через измерительный прибор будет равен нулю при любом значении R_G и, следовательно, величина R_G на условие баланса моста влиять не будет.

Практическая часть

Собрав схему (рисунок 3), измеряем время, за которое конденсатор заряжается (разряжается) на (до) $\frac{1}{e}$ от его максимального заряда. Во время эксперимента магазин сопротивлений R_1 был выставлен на 99999 Ом, поэтому ток через конденсатор C_1 будем считать нулевым. Найдем ёмкость конденсатора C_x

Рисунок 2. схема установки с осциллографом

Таблица экспериментальных данных:

R_1	1000	2000	3000	4000	5000	6000	7000	8000	9000
τ	4.4	8.4	12.8	17.2	22.4	26.4	32.8	38.8	45.2

По графику мы видим, что полученную зависимость с хорошим приближением можно считать линейной, что совпадает с теорией, так как $\tau = R_1 C_1$

3. Теперь присоединим осциллограф, а затем гальванометр, к точкам A и B и попытаемся достичь нулевой разности потенциалов, регулируя R2 при фиксированном R1 (условие баланса моста). На реальных измерительных приборах невозможно определить отсутствие тока, так как присутствуют шумы (осциллограф) или большая инерция (гальванометр), поэтому выбирались границы, в которых можно считать ток нулевым. Таблицы экспериментальных данных и советующее им значение ёмкости конденсатора, вычисленное по формуле $C_x = C_1 \frac{R_1}{R_2}$:

Осциллограф, U =

R ₁	R ₂ -	R ₂ 0	R ₂ +	С _х мкФ	
100	24,4	25	25,5	4	
300	300 72,1 74		74,1	4,05	
1000	1000 242		249	4,08	
2000	485	488	494	4,09	
3000	727	732	737	4,09	

Гальванометр, U = 12

R ₁	R ₂ -	R ₂ 0	R ₂ +	СхмкФ
100	19	24,5	29	4,1
300	66	72,3	78	4,15
1000	233	240	251	4,17
2000	474	485	493	4,12
3000	710	722	737	4,16

Гальванометр, U = 24

R ₁	R ₂ -	R ₂ 0	R ₂ +	СхмкФ
100	21.5	25	28	4
300	68	72	76	4,17
1000	237	241	245	4,15
2000	478	483	487	4,14
3000	718	723	730	4,15

Среднее значение емкости конденсатора в цепи с осциллографом: С_х = 4,06

Среднее значение емкости конденсатора при $U=12\;B$ и цепи с гальванометром: $C_x=4,14$

Среднее значение емкости конденсатора при U = 24 B и цепи с гальванометром: $C_x = 4,12$

Рассчитаем погрешность измерения \mathcal{C}_x по формуле $\Delta \mathcal{C}_x = \varepsilon_{\mathcal{C}_x} \cdot \overline{\mathcal{C}_x}$:

 $arepsilon_{C_X} = \sqrt{{arepsilon_{R_2}}^2 + {arepsilon_{C_1}}^2 + {arepsilon_{R_1}}^2}$, где $arepsilon_{R_1} = 0.01 \left(0.2 + 0.5 rac{m}{R_1}
ight) pprox 0.002$ (m – число ненулевых декад магазина, во всех экспериментах m = 1); $arepsilon_{C_1} = 0.002$, $arepsilon_{R_2} = 0.01 \left(0.2 + 0.5 rac{m}{R_2}
ight)$, затем усредним значение инструментальной погрешности:

$$\Delta C_x = \overline{C_x} \cdot \frac{\sum_{i=1}^5 \varepsilon_{C_x}^i}{5}$$

 $C_x^{\text{осц}} = (4,06 \pm 0,01) \text{ мкФ}$

 $C_x^{12} = (4,14 \pm 0,01) \text{ MK}\Phi$

 $C_x^{24} = (4,12 \pm 0,01) \text{ MK}\Phi$

Исследуем, как погрешность δR_2 зависит от R_1 , задаваемым нами сопротивлением:

Погрешность, вносимая конечной чувствительностью нуль-индикатора:

$$\delta R_2 = \frac{\Delta R_2}{R_{\rm 2cp}}$$
 где $\Delta R_2 = \frac{R_{2\,max} - R_{2\,min}}{2}$, $R_{\rm 2cp} = \frac{R_{2\,max} + R_{2\,min}}{2}$

Осциллограф:

$$\delta R_2^G \approx \frac{e U_{min}}{c}$$
,

где e — основание натурального логарифма, ε — ЭДС источника, U_{min} — минимальное напряжение которое регистрируется осциллографом, в эксперименте $U_{min}=100\,\mathrm{mB}$. Получается, что погрешность не зависит от сопротивлений R1 и R2, а также убывает с ростом напряжения от источника.

Гальванометр:

$$\delta R_2 = Q_{min} \frac{1 + \frac{C_1}{C_x} + \frac{R_G}{R_1}}{C_1 \varepsilon},$$

где Q_{min} - минимальный заряд, прохождение которого мы можем заметить. Его можно оценить, зная какой ток отклоняет стрелку гальванометра на деление, в эксперименте брался минимальный ток в 1 деление, чтобы найти заряд нужно ток умножить на характерное время для эксперимента $au=R\mathcal{C}$. Оценка минимального заряда: $Q_{min}= au\ I_{\text{дел}}^G=rac{R_G C_1 R_1}{R_1+R_{2cn}}\ I_{\text{дел}}^G$, где $I_{\text{дел}}^G=0.3$ мкрА. Итоговая

формула:
$$\delta R_2 = I_{\text{дел}}^G \left(\frac{R_G C_1 R_1}{R_1 + R_{2\text{cp}}} \right) \left(\frac{1 + \frac{C_1}{C_X} + \frac{R_G}{R_1}}{C_1 E} \right)$$

Осциллограф U =

R ₁ OM	100	300	1000	2000	3000
δR_2					

Нуль-гальванометр U = 12B

R ₁ Om	100	300	1000	2000	3000
δR_2					

Нуль-гальванометр U = 24 B

R ₁ Om	100	300	1000	2000	3000
δR_2					

Вывод: Во время проведения работы емкость конденсатора была измерена двумя разными методами. При увеличении сопротивлении, т.е. времени зарядки-разрядки конденсатора, погрешность измерения емкости конденсатора уменьшается. Также при увеличении напряжения при измерении при помощи нуль-гальванометра, погрешность уменьшается.