

Temporal characteristic of ELMs on COMPASS tokamak

J. Adamek, J. Cavalier, B. Csillag, L. Cinnirella, D. Tskhakaya, J. Lipps, D. Lopez and the COMPASS team

ELMs problematic for next step in fusion

What are ELMS?

- Plasma instabilities that form at the pedestal in tokamaks
- Carrying important portion of confined plasma energy (up to 10%)
- Large energy and particle fluxes to the divertor

Current status: Eich model valid for parallel and collisionless transport along field lines

- T. Eich et al., NME, 12 (2017), 84-90.
- J. Adamek et al., NF, 57 (2017), 116017.

Main goal: find out if the connection length is given by ergodized or non-ergodized magnetic field lines during ELM rise period→ ELM heat loads dominated by parallel transport.

- Formed in the pedestal
- From upstream to divertor, along field lines
- Ion sound speed assumption

$$\tau_{\parallel} = \frac{L}{\sqrt{(T_e + T_i)/m_d}}$$

L: connection length by PLEQUE

DIAGNOSTIC: DIVERTOR PROBES

Electronics sampling at 4MHz

- #Probe > 27 (Low Field Side)
- BPP $\rightarrow V_{BPP} \sim V_p$
- LPB \rightarrow V_{LPB} = V_{fl}
- LPA \rightarrow I_{LPA}(-270) \sim Iⁱ_{sat}

Evaluated Quantities

• $T_e = (V_{BPP} - V_{fl})/(\alpha_{LP} - \alpha_{BPP})$ with: $\alpha_{LP} = 2.0$ & $\alpha_{BPP} = 0.6$

• $Q_{\parallel} = \gamma I_{sat}^{i} T_{e}/A_{probe}$ with: $\gamma = 11$ & $A_{probe} = 2.8 \text{ mm}^{2}$

Adamek J. et al 2017 Nucl. Fusion 57 116017

DIAGNOSTIC: DIVERTOR PROBES

Adamek J. et al 2017 Nucl. Fusion 57 116017

Low temporal resolution (4 kHz) HL-2A

J.M. Gao et al., NF 61 (2021), 066024

- HL-2A tokamak (China)
- IR camera measurements
- Conditional averaged ELM
- τ_{rise} : (10-100)% of the max of the ELM
- τ_{decay} : exponential fit that starts at the max

Low temporal resolution (4 kHz) HL-2A

High temporal resolution (1 MHz), single ELM COMPASS

- Model for the temporal evolution of the ELMs
- It assumes Maxwellian distribution for particles that propagate "force-freeway" along B to the SOL
- Fits very well to the data

$$q(t) = \frac{2E}{3\sqrt{\pi}} \left[1 + \left(\frac{\tau}{t}\right)^2 \right] \frac{\tau}{t^2} \exp\left[-\left(\frac{\tau}{t}\right)^2 \right] + q_{\text{BG}}$$

- W. Fundamenski and R. A. Pitts, PPCF 48 (2006)109-56
- D. Silvagni et al 2020 Nucl. Fusion 60 126028

20 ELMs events from different shots #18232 - #18611. TS data already published in J. Adamek et al., NF 60 (2020)

20 ELMs events from different shots #18232 - #18611. TS data already published in J. Adamek et al., NF 60 (2020)

 $L_{\parallel}(appr.) = 2 \cdot \pi \cdot R_{LCFS} \cdot q_{95}/3 \text{ on LFS}$

HL-2A: J.M. Gao et al., NF 61 (2021), 066024

We have analyzed 154 single ELM events within 29 H-mode discharges

HL-2A: J.M. Gao et al., NF 61 (2021), 066024

We have analyzed 154 single ELM events within 29 H-mode discharges

HL-2A: J.M. Gao et al., NF 61 (2021), 066024

We have analyzed 154 single ELM events within 29 H-mode discharges

ELM CHARACTERISTIC TIMES VS DIFFERENT PARAMETERS

We have analyzed 154 single ELM events within 29 H-mode discharges

- \Box $\tau_{\text{rise}} \approx \tau_{\parallel}$ with connection length given by EFIT or simple formula $2 \cdot \pi \cdot R_{\text{LCFS}} \cdot q_{95}/3$
- □ non-ergodized magnetic field lines during ELM rise time
- ELM heat loads dominated by parallel transport → Eich model hypothesis satisfied
- Duration of the ELM heat load
- \Box τ_{decay} / τ_{rise} is found to be within the range 1.5 4 as similarly on HL-2A tokamak
- lacktriangledown $au_{
 m decay}$ / $au_{
 m rise}$ seems to be independent on the plasma current, relative ELM energy,
 - but it is slightly reduced for higher line averaged density