

3D Vision and Machine Perception

Prof. Kyungdon Joo

3D Vision & Robotics Lab.

Al Graduate School (AIGS) & Computer Science and Engineering (CSE)

Some materials, figures, and slides (used for this course) are from textbooks, published papers, and other open lectures

Contents

- Image (image pipeline)
- Focus, pinhole and Lens

What is an image?

- Image: projection of the 3D world onto an (2D) image plane
 - 2-dimensional patterns of brightness values
 - Formed by the projection of 3D objects

"Dürer - Man Drawing a Lute" in Geometrie (1535) by Albrecht Dürer

"Image created with a mobile phone" by Olaf Simons - Own work.

This is how we obtain images

https://static.makeuseof.com/wp- content/uploads/2018/05/iphone-camerasettings-670x335.jpg

https://www.aolor.com/images/tutorial/devices/take- photos-with-iphone.jpg

Travel of a photon - Image formation

Travel of a photon - Image formation

Recovering High Dynamic Range Radiance Maps from Photographs , SIGGRAPH97 Images from A. Efros

Thinking about images as functions

Thinking about images as functions

• A (grayscale) image is a 2D function

grayscale image

What is the range of the image function f?

Color intensity

[Top] Images from Ioannis Gkioulekas [Bottom] Images under CC license (Searched by "camera spectral response")

Bayer pattern

- Sensor placement: Bayer RGB mosaic
- Why more green?
 - We have 3 channels and square lattice don't like odd numbers
 - It's the spectrum "in the middle"
 - More important to human perception of brightness

Focus, Pinhole and Lens

Pinhole camera

• By Aristotle 2300 years ago (a Chinese record; 2400 years ago)

Less then 200 years ago

https://photography.lovetoknow.com/First_Camera_Invented

Why is there no image on a piece of white paper?

Light is coming from all directions!

Let's say we have a sensor...

... and an object we like to photograph

What would an image taken like this look like?

- All scene points contribute to all sensor pixels
- What does the image on the sensor look like?

• All scene points contribute to all sensor pixels

Why is there no image on a piece of white paper?

• Light is coming from all directions!

Let's add something to this scene

• What would an image taken like this look like?

- Each scene point contributes to only one sensor pixel
- What does the image on the sensor look like?

copy of real-world object (inverted and scaled)

Accidental pinhole camera

Accidental pinhole and pinspeck cameras: revealing the scene outside the picture

Antonio Torralba, William T. Freeman Computer Science and Artificial Intelligence Laboratory (CSAIL) MIT

torralba@mit.edu, billf@mit.edu

What does this image say about the world outside?

Accidental pinhole camera

window is an aperture

projected pattern on the wall

upside down

window with smaller gap

view outside window

Pinhole camera terms

• What happens as we change the focal length?

What happens as we change the focal length?

• What happens as we change the focal length?

object projection is half the size

- Ideal pinhole has infinitesimally small size
 - In practice that is impossible.

Light efficiency of pinhole camera

Exposure 4 seconds

Exposure <u>96 minutes</u>

What about light efficiency?

- What is the effect of doubling the pinhole diameter?
- What is the effect of doubling the focal length?

What about light efficiency?

- 2x pinhole diameter $\rightarrow 4x$ light
- 2x focal length $\rightarrow \frac{1}{4}x$ light

The lens camera

- Lenses map "bundles" of rays from points on the scene to the sensor.
- How does this mapping work exactly?

Why not pinhole? - Lens

- Two important things to observe.
 - Lens allows to capture a sharper image.
 - Lens allows a much faster exposure.

Pinhole camera (6 sec.)

Photograph made with small pinhole

To make this picture, the lens of a camera was replaced with a thin metal disk pierced by a tiny pinhole, equivalent in size to an aperture of f/182. Only a few rays of light from each point on the

subject got through the tiny opening, producing a soft but acceptably clear photograph. Because of the small size of the pinhole, the exposure had to be 6 sec long.

Lens camera (1/100 sec.)

Photograph made with lens

This time, using a simple convex lens with an f/16 aperture, the scene appeared sharper than the one taken with the smaller pinhole, and the exposure time was much shorter, only 1/100 sec.

The lens opening was much bigger than the pinhole, letting in far more light, but it focused the rays from each point on the subject precisely so that they were sharp on the film.

Thin lens optics

- Simplification of geometrical optics for well-behaved lenses
- All parallel rays converge to one point on a plane located at the focal length f

- All rays going through the center are not deviated
 - Hence same perspective as pinhole

• Also, rays' behaviors are symmetric

Image plane

(sensor)

• When the image plane is placed at a different location

(sensor)

• When the image plane is placed at a different location

Thin lens optics - Lens focus

• When the object is placed at a different location

• When the object is placed at a different location

Thin lens optics - Focus tolerance

Thin lens optics - Aperture

Thin lens optics - Aperture

Thin lens optics – Aperture vs. depth of field

Depth of field

[Right] Image from K. J. Yoon's slide

Depth of field

Approximate optics blur by linear Gaussian filters

Gaussian filters

Depth from focus

Field of view

FoV vs. focal length

Four images using 28, 35, 50 and 72mm equivalent zoom lengths, portrait format, to illustrate angles of view.