

MALWARE ANALYSIS

Progetto n°10

INCIPIT

Obiettivi

Dato un file malevolo Malware_U3_W2-L5

- Trovare le librerie importate del file eseguibile
- Trovare le sezioni di cui è composto il file eseguibile

Data la figura a pagina 6

- Identificare i costrutti noti
- Ipotizzare il comportamento della funzionalità implementata

ANALISI STATICA

Tramite l'utilizzo del tool CFF

Expolorer stata analizzata la struttura interna del malware in oggetto.

Si tratta infatti di un programma che consente l'analisi di softwar, in particolare è stato utilizzato per verificare la composizione delle sessioni del malware e l'importazione delle librerie

ANALISI STATICA

Da questa prima immagine si può apprezzare la composizione delle sessioni del malware:

- .text = contiene le riche di codice che andranno eseguite dalla CPU
- .rdata = contiene le informazioni riguardo le librerie che verranno importate dal software
- .data = contiene le variabili globali che sono quindi richiamabili da qualsiasi funzione del codice

Queste sessioni definiscono in toto il software analizzato e la loro analisi restituisce informazioni come 'peso' 'indirizzi virtuali' e 'caratteristiche'.

ANALISI STATICA

Da questa immagine si può osservare la sezione dedica alle librerie che verranno importate dal software malevolo. Inoltre è possibile visualizzare le funzioni che queste richiamano e tramite esse iniziare a capire come potrebbe comportarsi il malware.

In questo caso le librerie importate sono due:

- Kernel32.dll = essa contiene le funzioni principali per interagire col sistema operativo
- Wininet.dll = essa contiene le funzioni per l'interazione con i protocolli di rete.

Con un analisi delle funzioni di entrambe le librerie è possibile capire che il malware utilizzerà le funzioni di libreria in Runtime e cercherà di definire la connessione ad internet della macchina infetta.

ASSEMBLY

Tramite l'utilizzo del linguaggio Assembly si possono riconoscere ed evidenziare diversi costrutti notti:

- Creazione dello Stack
- Chiamata di funzione
- Ciclo IF
- Rimozione dello Stack

```
ebp
push
        ebp, esp
mov
push
        ecx
                          dwReserved
push
                         ; lpdwFlags
push
        ds:InternetGetConnectedState
call
        [ebp+var 4], eax
MOV
        [ebp+var_4], 0
cmp
jz
        short loc_40102B
        offset aSuccessInterne
push
call
        sub 40117F
        esp, 4
add
        eax, 1
mov
        short loc_40103A
inp
                        : "Error
loc 40102B:
        offset aError1_1NoInte
push
call
        sub_40117F
add
        esp, 4
        eax, eax
xor
loc 40103A:
nov
         esp, ebp
         ebp
pop
retn
sub 401000 endp
```

ASSEMBLY

Data l'analisi della figura precedente possiamo fare delle ipotesi sul tipo di malware analizzato.

Il codice appena visto è progettato in modo da cercare una connesione ad internet sulla macchina infetta, restituendo l'esito della tentata operazione come 'Successo' o 'Errore'.

Un codice del genere, potrebbe dare diverse connotazioni ad un malware. Potrebbero essere infatti diversi i malware che contengono una componente del genere, quali:

- **Trojan**; esso potrebbe cercare di stabilire una connessione a Internet per scaricare ulteriori componenti dannosi, ricevere comandi da un server remoto o inviare informazioni sensibili.
- Spyware; potrebbe connettersi a Internet per inviare informazioni rubate, come password, dati personali o dettagli finanziari, a un server remoto controllato dall'attaccante.
- Worm; potrebbe connettersi a Internet per cercare nuovi bersagli, scaricare aggiornamenti o ricevere istruzioni da un server remoto.
- Ransomware; per comunicare con i server degli attaccanti, inviare informazioni sulla vittima o ricevere istruzioni su come procedere
- **Botnet**; Un malware che trasforma un dispositivo infetto in parte di una botnet può connettersi a Internet per ricevere comandi dal server centrale. I dispositivi infetti possono quindi essere coordinati per eseguire azioni dannose come attacchi DDoS