(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-327684

(43)公開日 平成7年(1995)12月19日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FI

技術表示箇所

C 1 2 N 15/09

ZNA

ZNA

9/12

(C 1 2 N 15/09

9281-4B

C 1 2 N 15/00

ZNA A

(C 1 2 N 15/00

ZNA A

審査請求 未請求 請求項の数3 FD (全23頁) 最終頁に続く

特願平6-150591 (21)出願番号 (71)出願人 591038141 查酒造株式会社 (22)出順日 平成6年(1994)6月9日 京都府京都市伏見区竹中町609番地 (72)発明者 上森 隆司 滋賀県大津市瀬田3丁目4番1号 資酒造 株式会社中央研究所内 (72)発明者 石野 良純 滋賀県大津市瀬田3丁目4番1号 審酒造 株式会社中央研究所内 (72)発明者 加藤 郁之進 滋賀県大津市瀬田3丁目4番1号 資酒造 株式会社中央研究所内 (74)代理人 介理士 中本 宏 (外2名)

(54)【発明の名称】 DNAポリメラーゼ遺伝子

(57)【要約】

【目的】 新規のDNAポリメラーゼ遺伝子を特定し、 該遺伝子を用いる新規DNAポリメラーゼの遺伝子工学 的製造法を提供する。

【構成】 配列表の配列番号1若しくは2で示されるア ミノ酸配列、又はそれらの一部であって、かつ、DNA ポリメラーゼ活性を有する部分をコードするDNAポリ メラーゼ遺伝子。該遺伝子に厳密な条件下でハイブリダ イズ可能なDNAポリメラーゼ遺伝子。前記いずれかの 遺伝子を含有するプラスミドを保有する形質転換体を培 養し、該培養物から相当する前記のDNAポリメラーゼ 遺伝子がコードするDNAポリメラーゼを採取するDN Aポリメラーゼの製造方法。

【効果】 耐熱性DNAポリメラーゼが提供される。

【特許請求の範囲】

【請求項1】 配列表の配列番号1若しくは2で示されるアミノ酸配列、又はそれらの一部であって、かつ、DNAポリメラーゼ活性を有する部分をコードするDNAポリメラーゼ遺伝子。

【請求項2】 請求項1に記載のDNAポリメラーゼ遺伝子に厳密な条件下でハイブリダイズ可能なDNAポリメラーゼ遺伝子。

【請求項3】 請求項1又は2に記載のDNAポリメラーゼ遺伝子を含有するプラスミドを保有する形質転換体 10 を培養し、該培養物から請求項1又は2に記載のDNAポリメラーゼ遺伝子がコードするDNAポリメラーゼを探取することを特徴とするDNAポリメラーゼの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規のDNAポリメラーゼ遺伝子及びDNAポリメラーゼの遺伝子工学的製造方法に関する。

[0002]

【従来の技術】今まで遺伝子工学研究用試薬として一般 に利用されているDNAポリメラーゼとしては、大腸菌 由来DNAポリメラーゼ、その変形であるクレノウ断 片、サーマス アクアティカス (Thermus aquaticus)由 来DNAポリメラーゼ、バチルスカルドテナックス (Ba cillus caldotenax)由来DNAポリメラーゼ等がある。 これらの酵素はその有する性質に応じて、DNAの標識 化、PCR、DNA塩基配列決定等に利用されている。 一般にDNAポリメラーゼはその起源による特異性を有 しており、その特性を生かした利用法がある。ピロディ クティウム オクルタム (Pyrodictium occultum) は生 育至適温度が約105℃である超高熱性古細菌であり、 この細菌由来のDNAポリメラーゼは高温で安定である ことが予想されるため、遺伝子工学研究用試薬として有 用な用途が期待される。ところが、該細菌は生育温度が 非常に高い上に嫌気性であるのでその大量培養は困難で ある。したがって、該細菌の培養物からDNAポリメラ ーゼを直接大量に採取することは非常に困難である。一 方、該細菌由来のDNAポリメラーゼの遺伝子について は、アプストラクト オプジ アメリカン ソサイエテ 40 イ フォー マイクロバイオロジー (Abstract of The American Society for Microbiology)、第93巻、第1 97頁(1993) に該細菌からDNAポリメラーゼ遺 伝子が単離された旨が記載されている。しかしながら、 803アミノ酸をコードし得るオープンリーディングフ レームが存在するという以外に塩基配列等の該遺伝子を 特定するに足る記載はなく、また、該DNAポリメラー ゼを特定するに足るアミノ酸配列や酵素化学的性質の十 分な記載もない。また、該細菌のその他のDNAボリメ ラーゼ遺伝子についても記載されていない。

[0003]

【発明が解決しようとする課題】本発明の目的は、新規のDNAポリメラーゼ遺伝子を特定し、該遺伝子を含有させたプラスミドを保有する形質転換体を用いた新規DNAポリメラーゼの遺伝子工学的製造法を提供することにある。

[0004]

【課題を解決するための手段】本発明を概説すれば、本発明の第1の発明は配列表の配列番号1若しくは2で示されるアミノ酸配列、又はそれらの一部であって、かつ、DNAポリメラーゼ活性を有する部分をコードするDNAポリメラーゼ遺伝子に関する。本発明の第2の発明は第1の発明のDNAポリメラーゼ遺伝子に厳密な条件下でハイブリダイズ可能なDNAポリメラーゼの製造方法に関し、第1又は第2の発明のDNAポリメラーゼ遺伝子を含有するプラスミドを保有する形質転換体を培養し、該培養物から第1又は第2の発明のDNAポリメラーゼ遺伝子がコードするDNAポリメラーゼを採取することを特徴とする。

【0005】本発明者らは鋭意研究の結果、ピロディクティウム オクルタムから2種の新規DNAポリメラーゼ遺伝子を見出し、これらをクローニングすることに成功した。更に、これらの遺伝子を導入した形質転換体を作製し、DNAポリメラーゼを大量生産することに成功し、本発明を完成した。

【0006】以下、本発明を詳細に説明する。本発明に使用する菌株としては、例えば、ピロディクティウムオクルタムDSM2709[†] 株 [ドイッチェ ザムルンク フォン ミクロオルガニズメンウント ツェルクルチュウレン (Deutsche Sammlung von Mikroorganismen und Zellkulturen) GmbHの保存菌株: DSM2709[†] 〕がある。

【0007】本発明のDNAポリメラーゼ遺伝子は次に 例示する工程により得ることができる。

- (1) ピロディクティウム オクルタムからDNAを抽出する。
- (2) α型DNAポリメラーゼに共通なアミノ酸配列を基に遺伝子増幅用オリゴヌクレオチドプライマーを作製し、(1)で得たDNAを鋳型としてPCRを行う。
- (3) (1) で得たDNAを適当な制限酵素で切断し、これに対して(2) で得た増幅DNA断片をプローブとしてサザンハイブリダイゼーションを行う。
- (4) (3) で適当な陽性シグナルが得られた制限酵素で(1) のDNAを切断し、それぞれの切断部位に合うカセットをDNAリガーゼで結合させる。
- (5) カセット内の共通プライマーとプローブに用いた DNA断片中に貼り付くプライマーを用いてPCRを行い、増幅されるDNA断片の制限酵素マッピングを行う 50 ことにより、DNAポリメラーゼ遺伝子を含む周辺領域

の制限酵素地図を作成する。

(6) (5) の結果を基にDNAポリメラーゼをコード する全領域を含む断片が得られる制限酵素で(1)のD NAを切断し、ベクターに結合させる。

(7) DNA断片を結合させたベクターを宿主菌に導入し、目的のDNA断片を含む形質転換体を選択する。

(8) (7) で得た形質転換体を培養し、培養菌体抽出物のDNAポリメラーゼ活性を確認する。

【0008】上記DNA供与体であるピロディクティウム オクルタム DSM2709由来DNAは、100 でで嫌気培養した該培養菌体より抽出する。抽出、精 製、制限酵素による切断等は公知の方法を用いることが でき、当該方法の詳細は1982年 コールド スプリ ング ハーパー ラボラトリー発行、T. マニアティス (T.Maniatis) ほか著、モレキュラー クローニング、 ア ラボラトリー マニュアル (Molecular Cloning, A Laboratory Manual) 第75~178頁に記載されている。

【0009】目的のDNA断片を選択する方法としては、例えば、公知のDNAボリメラーゼのアミノ酸配列 20 を比較し、共通のアミノ酸配列を示す領域を基にPCR用のプライマーを作製する。これまでに知られている古細菌由来のDNAポリメラーゼは 20 型であることから、例えば、公知の 20 DNAポリメラーゼのアミノ酸配列を比較して、共通の領域を基にしてミックスプライマーを作製することができる。 20 型DNAポリメラーゼをクローニングするためのプライマーとしては、特開平6-14780号公報に記載のGC型、AT型、若しくは中間型のプライマーを使用することができる。これらは目的のDNAのGC含量に応じて使い分けることができる。

【0010】ピロディクティウム オクルタムは、シス テマティック アンド アプライドマイクロバイオロジ 一 (Systematic and Applied Microbiology)、第4巻、 第535~551頁(1983)記載のようにGC含量 が62%と高いことから、本発明者らは配列表の配列番 号3及び4に示されるGC型のプライマーを用いてピロ ディクティウム オクルタムDNAを鋳型してPCRを 行った。その結果、特異的なDNA断片が増幅されるこ とを見出した。更に、この増幅DNA断片の塩基配列を 決定したところ、その推定されるアミノ酸配列が公知の DNAポリメラーゼと相同性を有する2種類の配列が見 出された。これら2種類の増幅DNA断片の塩基配列を 配列表の配列番号5 (配列1と称する) 及び配列番号6 (配列11と称する) に示す。このことから、ピロディク ティウム オクルタムが少なくとも2種類のDNAボリ メラーゼを有することが示唆された。

できる。ハイプリダイゼーションによる選択は公知の方 法、例えば、前記モレキュラー クローニング、ア ラ ボラトリー マニュアル、第309頁(1982)に記 載されている方法を用いることができる。サザンハイブ リダイゼーション法により目的のDNAポリメラーゼ遺 伝子がピロディクティウム オクルタムDNAのどの制 限酵素断片上に存在するかを分析した後、適当な制限酵 素部位を有するカセットをそれぞれの切断断片に結合さ せ、その反応液を一部とってカセット内の共通プライマ ーとプローブ内の領域に貼りつくプライマーとでPCR を行い、得られた増幅断片を制限酵素分析することによ りDNAポリメラーゼ遺伝子を含む領域の制限酵素地図 を求めることができる。この結果よりDNAポリメラー ゼをコードする全領域を含む断片をクローニングすべく ピロディクティウム オクルタムDNAを切断し、ベク ターに組込む。プラスミドベクターとしては公知のもの が使用でき、例えばpUC18、pUC19、pTV1 18N、pTV119Nなどが挙げられるがこれらに限 定されるものではない。また組込ませる手段についても 公知の方法が利用でき、DNAリガーゼを用いた酵素反 応で組込ませればよい。

【0012】次いで組換えブラスミドを宿主大腸菌に導入させるが、宿主大腸菌としては、形質転換能を有するものであれば野生株、変異株のいずれも使用できるが、制限系変異株で修飾系野生株(r⁻, m⁻)であることが望ましい。導入の手段自体は公知の方法、例えば前記モレキュラー クローニング、ア ラボラトリー マニュアル、第250頁(1982)を用いることができる。このようにして目的のDNA断片を宿主に導入させ、プラスミドベクターの特性、例えばpUC18の場合アンピシリン耐性を有するコロニーを選択することによりクローン化されたDNAの集団を調製することができる。

【0013】次に上記集団の中から目的の断片を有するクローンを選択する。選択の方法はベクターの種類によってコロニーハイブリダイゼーション、プラークハイブリダイゼーションを用いればよく、方法自体は公知のものである。

【0014】本発明者らは、以上の方法で配列 I を有する増幅 D N A 断片(プローブ I)をプローブとして約4.2 k b の D N A 断片をクローニングした。その塩基配列の一部を配列表の配列番号 7 に示す。また、配列 II を有する増幅 D N A 断片(プローブ II)をプローブとして約3.1 k b の D N A 断片をクローニングした。その塩基配列の一部を配列表の配列番号 8 に示す。更に本発明者らはプローブ II を用いてクローニングした約3.1 k b の断片を p T V 1 1 9 N に組込んだブラスミドを作成し、p P O 5 0 0 ー II と命名した。プラスミド p P O 5 0 0 ー II を有する大腸菌を培養し、菌体の粗油出液を得た。該抽出液は 9 0 ℃ 2 0 分処理後も十分量の D N A

ポリメラーゼ活性を有し、発現ベクターのみを有する大腸菌粗抽出液ではこのような活性を有しないことより、pPO500ーII上に耐熱性DNAポリメラーゼ産生情報が存在し、かつ、大腸菌内で該情報を有する遺伝子が発現していると結論した。pPO500ーIIで形質転換された大腸菌JM109/pPO500ーIIと命名、表示され、工業技術院生命工学工業技術研究所にFERM P-13659として寄託されている。

【0015】また、本発明者らは、プローブIを用いて 10 クローニングした約4.2kbの断片をpTV118Nに組込んだプラスミドを作製し、pPO100-Iと命名した。プラスミドpPO100-Iを有する大腸菌を培養し、菌体の粗抽出液を得た。該抽出液は70℃20分処理後も十分量のDNAポリメラーゼ活性を有し、pPO100-I上に耐熱性DNAポリメラーゼ産生情報が存在し、かつ、大腸菌内で該情報を有する遺伝子が発現していると結論した。pPO100-Iで形質転換された大腸菌JM109/pPO100-Iと命名、表示され、工業技術院生命20工学工業技術研究所にFERM P-13660として寄託されている。

【0016】また、得られたDNAポリメラーゼ遺伝子をプロープとして、厳密な条件下でハイブリダイゼーションを行えば、塩基配列は少し異なるが、実質的に同一である他のDNAポリメラーゼ遺伝子を得ることができる

【0017】なお、かかる厳密な条件下とは、例えば、以下のとおりである。すなわち、DNAを固定したナイロン膜を、 $6\times SSC$ ($1\times SSC$ は塩化ナトリウム 8. 76g、クエン酸ナトリウム 4. 41gを1リットルの水に溶かしたもの)、1%ラウリル硫酸ナトリウム、 $100\mu g/m 1$ のサケ精子DNA、 $5\times F$ ンハルツ(Denhardt's)(ウシ血清アルブミン、ポリビニルピロリドン、フィコールをそれぞれ 0. 1%の濃度で含む)を含む溶液中で 65%で 20 時間プロープとハイブリダイゼーションを行うことである。

【0018】これらの耐熱性DNAポリメラーゼの精製法としては、培養菌体より、例えば超音波処理、熱処理、フェニルセファロース カラム クロマトグラフィー、ヘバリンセファロース カラム クロマトグラフィー、ヘバリンセファロース カラム クロマトグラフィー、モノ(Mono)Q(ファルマシア社)、モノS(ファルマシア社)の各処理を行い、該DNAポリメラーゼをほぼ単一のパンドとなるまで精製することができる。pPO500ーII上のDNAポリメラーゼ遺伝子がコードする耐熱性DNAポリメラーゼは、SDS-PAGEで約9万ダルトンの分了量を示すポリペプチドであり、DNA合成活性及び5′→3′、3′→5′エキソヌクレアーゼ活性を有していた。また、pPO100-I上のDNAポリメラーゼ遺伝子がコードする耐熱性DNAポ 50

リメラーゼは、SDS-PAGEで約9.5万ダルトンの分子量を示すポリペプチドであり、DNA合成活性及び $5' \rightarrow 3'$, $3' \rightarrow 5'$ エキソヌクレアーゼ活性を有していた。これらの耐熱性DNAポリメラーゼは遺伝子工学研究用試薬として有用である。

【0019】また、本発明によって古細菌から2種類の DNAポリメラーゼが見出されたことは、以下のような 興味深い知見も提供する。すなわち、真核生物の系では 複数個のDNAポリメラーゼがDNA複製に働いている ということが提唱されており、リーディング鎖合成、ラ ギング鎖合成がそれぞれ別のDNAポリメラーゼによっ て行われている可能性が示唆されている。一方原核生物 では大腸菌の系で解析が進んでおり、複製酵素であるD NAポリメラーゼIII が知られている。この酵素は10 種類もの異なるタンパク質の複合体で、複合体が2量体 になるときの組合せによって非対称性が現れ、これがリ ーディング鎖とラギング鎖合成のメカニカルな違いを説 明している。しかし、古細菌では、これまで真核細胞の 持つDNAポリメラーゼ α に構造が類似したDNAポリ メラーゼを有することが知られているが、DNA複製の メカニズムは全くわかっていない。今回、本発明者ら は、α型と構造的に同じファミリーに属する2種類のD NAポリメラーゼ遺伝子を見出した。真核細胞は古細菌 に真正細菌が共生して進化したと考えられており、おそ らく本発明者らが見出した2種類のα型DNAポリメラ ーゼ遺伝子それぞれは、真核生物のDNAポリメラーゼ α 、 δ 、 ϵ 、のうちの2種類のDNAポリメラーゼに相 当するものと考えられる。超好熱性古細菌からDNA複 製に関与すると思われる2種類のDNAポリメラーゼ遺 伝子を単離したことは、生物の原始により近いDNA複 製のメカニズムを解明する手がかりを提供するものであ る。古細菌のDNA複製メカニズムの解明は高等生物の DNA複製の研究に役立てることができる。

[0020]

【実施例】以下、実施例をもって本発明を更に詳細に説明するが、本発明は実施例に限定されるものではない。 【0021】実施例1

- (1) ピロディクティウム オクルタム染色体DNAの 調勢
- ピロディクティウム オクルタム DSM2709[™]をDSMの指定する条件により嫌気的に培養した。150 mlの培養から得た菌体を750μlの25%ショ糖、0.05M トリス-塩酸 (pH8.0)に懸濁し、150μlの0.5M EDTA、75mlのリゾチーム溶液 (10mg/ml)を加えて20℃で1時間放置した。更に6mlのSET溶液 (20mM トリス-塩酸pH8.0、1mM EDTA、150mM NaC1)を加えた後、375μlの10%SDSと75μlのプロティナーゼK溶液 (20mg/ml)を加えて、37℃で1時間放置した。フェノール抽出、クロロホル

ム抽出の後エタノール沈殿を行い、長鎖DNAを回収し た。以上の操作により約7μgのDNAが得られた。

【0022】 (2) PCRによる特異的DNAの増幅 配列表の配列番号3及び4に示す2種類のオリゴヌクレ オチド (GC型プライマー1、2) を合成した。これら のプライマーをそれぞれ100pmolと実施例1-(1) で調製した染色体DNA1ngを用いて全量10 0μ1の系で91℃で1分、45℃で2分、72℃で2 分の条件でPCRを50サイクル行った。反応液の5μ 1を取り、アガロースゲル電気泳動で分析した結果、約 400bpのDNA断片が特異的に増幅していた。この DNA断片をSma Iで開裂したpUC118ベクター に組込んで塩基配列を決定した。その結果、2種類の配 列が見出された。配列表の配列番号5(配列I)及び配 列番号6 (配列II) にその配列を示す。これらの配列は いずれも公知のDNAポリメラーゼの配列と相同性を有 していた。

【0023】(3)ゲノミックサザン法によるDNAポ リメラーゼ遺伝子の検索

実施例1-(1)で調製した染色体DNAを1つの制限 20 · 酵素につき0. 15μgを用いて、BamHI、Eco RI、Hind III、PstI、Xbalの5種類の制 限酵素で分解してアガロースゲル電気泳動に供した。次 いでアガロースゲル上のDNAをナイロン膜に移し、プ ロープロを用いてサザンハイブリダイゼーションを行っ た。プロープの標識はランダムプライミング法によって 放射性標識した。ハイブリダイゼーションの条件は、5 ×SSC、0.1%SDS、5×デンハルツ液、100 μg/ml仔牛胸腺DNA中65℃で5時間行った。2 ×SSC、0.1%SDS、中で5.5℃1時間洗浄し た後、イメージングプレート(富士フィルム社)に感光 して、イメージアナライザーBAS-2000 (富士フ ィルム社)で画像データを得た。その結果、BamH I, EcoRI, Hind III, Pstl, Xbalで それぞれ2.7kb、20kb、4.4kb、6.6k b、9. 4kbの長さの位置に陽性シグナルを検出し た。

【0024】(4) DNAポリメラーゼ遺伝子を含む領 域の制限酵素地図の作成

実施例1-(1) で調製した染色体DNA0. 3μgを 40 BamHI、EcoRI、Hind III、又はPstI で切断した後、それぞれの切断部位を有するカセット (宝酒造社) 各50 ngをDNAリガーゼを用いて結合 させた。この反応液からDNAをエタノール沈殿によっ て回収し、この一部を用いてPCRを行った。ネスティ ドPCRを行うために、あらかじめプローブ川の配列内 で、GC型プライマー1、2 (配列番号3、4) と同方 向の特異的プライマーII-S1(配列番号11)、II-S2(配列番号12)を合成した。1回目のPCRはカ

る共通のプライマー(カセットプライマーC1、宝酒造 社) と配列番号3又は4で表されるプライマーを組合せ て用いて行った。次にそのPCR溶液1mlを鋳型と し、配列表の配列番号10で表されるカセットプライマ 一C2(宝酒造社)とプライマーII-S1、又はII-S 2の組合せでPCRを行った。増幅されたDNA断片を BamHI, Hind III, EcoRI, PstI, K pnl、Xbal、Smal、Sallなどの制限酵素 で切断して、制限酵素地図を作成した。図1にその制限 酵素地図を示す。この制限酵素地図とPCRに用いたブ ライマーの位置から、PstI-KpnIの二重切断に よって得られる約3.1kbの断片中にDNAポリメラ ーゼをコードする全領域が含まれていると推定した。

【0025】(5)DNAポリメラーゼ遺伝子を含むD NA断片のクローニング

実施例1-(1)で調製した染色体DNA4μgをPs t I とKpn I で切断し、3. 1 k b 付近のDNAをア ガロースゲルから回収した。回収はスプレック(SUPRE C) - 01 (宝酒造社) による遠心法を用いた。pTV 119N (宝酒造社) をPstlとKpnlで切断して 開裂したものを調製し、回収断片と混合してDNAリガ ーゼで結合させた。次に大腸菌JM109株に導入して 得られた形質転換体の集団からプローブIIをプローブと してコロニーハイブリダイゼーションによって目的のク ローンを選択した。選択した形質転換体からプラスミド を回収し、目的のPst 1-Кpn 1 断片が導入されて いることを確認し、該プラスミドをpPO500-IIと 命名した。再度pPO500-IIを大腸菌JM109に 導入して、 Escherichia coli JM109/pPO50 0-II (FERM P-13659) を得た。更に、p PO500-IIICDローニングされているPstI-K pn I 断片の塩基配列を決定した。その塩基配列を配列 表の配列番号8に示す。その結果、803アミノ酸から なるオープンリーディングフレーム (ORF) が認めら れた。そのアミノ酸配列を配列表の配列番号2に示す。

【0026】(6) 形質転換体の培養及び粗抽出液の調 製

Escherichia coli JM109/pPO500-II (F ERM P-13659) をアンピシリンが100μg /mlの濃度で存在するL培地5mlに植菌し37℃で 培養した。培養液の濁度が0.6(A660)のとき、誘 導物質であるイソプロピルーβ-D-チオガラクトシド (IPTG)を添加し更に15時間培養を行った。集菌 後150 µ 1 の25 %ショ糖、50 mM トリスー塩酸 (pH7. 6), 10mM NaCl, 1mM 2-x ルカプトエタノール、2μΜ フェニルメタンスルホニ ルフルオリド (PMSF) に懸濁し、リゾチームを0. 5mg/mlの濃度で加えて0℃30分静置、その後3 7℃に移し、更に30分静置した。凍結融解を一度行っ セット中の配列に貼り付く配列表の配列番号9で示され 50 た後、遠心分離(14000rpm、10分)により上

清を得た。得られた上清について100℃15分の熱処 理を行い、再度遠心分離 (14000rpm、10分) を行って上清を回収し粗抽山液とした。

【0027】(7) DNAポリメラーゼ活性の測定 反応溶液として20mM トリス-塩酸(pH6.3、 75℃)、2.5mM塩化マグネシウム、1mM 2-メルカプトエタノール、 $2 \mu M$ 活性化DNA、 33μ M datp, dctp, dgtp, ttp, 60nM [3H] TTPを用意し、この溶液150 μ l に対して 適当量の粗抽出液を加え、75℃、5分反応させた後、 50mM ピロリン酸、10%トリクロロ酢酸 (TC A)を1m1加えて反応を停止させた。氷中で5分間静 置した後、全量をガラスフィルター上に移し、吸引ろ過 した。10%TCAで数回洗浄した後、70%エタノー ルで置換し、フィルターを乾燥して液体シンチレーショ ンカウンターでフィルター上の放射活性を測定した。1 mlの培養液から3.0U単位のDNAポリメラーゼが 得られた。

【0028】 (8) プラスミドpPO500-IIを導入 した大腸菌による耐熱性DNAポリメラーゼの生産 大腸菌 JM 1 0 9 / p P O 5 0 0 - 11の培養液 3 リット ルより得られた菌体4.2gを緩衝液(150mM ト リス-塩酸pH7. 6、2mM EDTA、2. 4mM PMSF) 40mlに懸濁し、超音波処理にて破砕し た。最終濃度が0.2Mになるように、硫酸アンモニウ ムを加え遠心分離 (12,000 rpm、10分) した 上清について90℃10分の熱処理を行い粗抽出液を得 た。このA250 を測定し1000 (A250) に対し、5 %ポリエチレンイミン (PEI) 溶液 (pH7. 6) 0. 5mlを加え4℃で1時間かくはんした後、遠心分 離(12,000 r pm、20分) して除核酸を行い、 その上清を緩衝液 (50mMトリス-塩酸pH7.6、 2mM EDTA、0.2M 硫酸アンモニウム)で平 衡化したフェニルセファロース カラム (6FFHig h sub、ファルマシア社)1mlに添加した。緩衝 被50mM トリスー塩酸pH7.6、2mM EDT A、緩衝液 (50mM トリス-塩酸 p H 7. 6、2m M EDTA、20%エチレングリコール) で順に洗浄 した後、0M~4M尿素の直線濃度勾配で溶出して分画 し、実施例1- (7) に従ってDNA活性ポリメラーゼ 40 活性を調べた。次にその活性分画を集めて緩衝液〔50 mM トリスー塩酸pH7.6、100mM KC1、 0. 1 mM EDTA、0.2%トゥイーン (Tween) 2 0〕で平衡化したハイトラップ ヘパリン カラム (フ アルマシア社) 1mlに添加し150mM KCI、及 び150mM~650mM KClの直線濃度勾配で溶 出し、活性画分を集めた。活性画分は、緩衝液 (50 m M トリス-塩酸pH7. 6、0. 1mM EDTA、 0. 2%トゥイーン20)で透析し、同じ緩衝液で平衡

液で平衡化したモノS (5ml)に添加して0mM~5 00mM NaCl直線濃度勾配で溶出し活性画分を集 めた。モノS画分より2200U酵素標品 (PocDN AポリメラーゼII)を得、SDS-PAGE分析したと ころ、分子量約9万ダルトンの単一バンドを与えた。 【0029】(9)5′→3′エキソヌクレアーゼ活性

10

pUC119をSspIで切断後アガロースゲルにて電 気泳動し386bpの断片をスプレック-01(宝酒造 社)を用いて回収した。この断片の5′末端を〔γ-32 P] ATPとメガラベルキット(宝酒造社)を用いて放 射性標識し、NICKカラム(G50)(ファルマシア 社) でゲルろ過して遊離の〔γ-32 P〕 A T P を除いて 基質とした。この基質1ngと実施例1-(8)で得た PocDNAポリメラーゼII 0.05Uを20mM トリス-塩酸 (pH6.3、又はpH7.7) 2.5m M MgC12 溶液10μ1中で75℃5分、10分、 15分反応後エタノール $25\mu1$ と $20\mug/\mu1$ グリ コーゲン2μ1を加えてエタノール沈殿を行い、その上 清及び沈殿の放射活性をチェレンコフ法により液体シン チレーションカウンターで測定した。PocDNAポリ メラーゼ11を加えた場合、時間と共に5 末端のヌクレ オチドの遊離に伴う上清の放射活性の上昇があり、5′ \rightarrow 3′エキソヌクレアーゼ活性が認められた。一方JM109大腸菌破砕液を加えた場合、放射活性の上昇はな く、5 ′→3 ′エキソヌクレアーゼ活性は認められなか った。

【0030】(10)3′→5′エキソヌクレアーゼ活 性の測定

pUC119をSau3AIで切断後アガロースゲルに て電気泳動し341bpの断片をスプレック-01 (宝 酒造社)を用いて回収した。この断片の3′末端を〔α −³²P) dCTP、dATP、dGTP、dTTPとク レノウ酵素を用いて放射性標識し、NICKカラムでゲ ルろ過して遊離の〔α-32 P〕 d C T P を除いて基質と した。この基質 4 n g を 2 0 m M トリス - 塩酸 (p H 6. 3、又はpH7. 7)、2. 5mM MgCl2、 1. 25mg/mlのλ-HaeIII 分解物の溶液10 μ1中でPocDNAポリメラーゼII 0.2U(pH 6.3) 又は0.05U(pH7.7))と75℃5 分、10分、15分反応後実施例1-(9)と同様にエ タノール沈殿を行い上清と沈殿の放射活性を測定した。 反応は1. 25mg/mlのλ-Hae III分解物を加 えることによりKmに対して基質大過剰の条件で行っ た。その結果、PocDNAポリメラーゼを加えた場 合、時間と共に3′末端のヌクレオチドの遊離に伴う上 清の放射活性の上昇があり、3 ′→5 ′ エキソヌクレア ーゼ活性が認められた。一方JM109大腸菌破砕液を 加えた場合は放射活性の上昇はなく、 $3' \rightarrow 5'$ エキソ 化したモノQ($5\,\mathrm{m}\,1$)に供し、未吸着画分を同じ緩衝 $50\,$ ヌクレアーゼ括性は認められなかった。また、 DNA ボ

リメラーゼ活性に対する3′→5′エキソヌクレアーゼ 活性の割合を調べた結果、pH6.3の場合よりもpH 7. 7の場合の方が高く、約40倍であった。

【0031】 実施例2

(1) DNAポリメラーゼ遺伝子を含むDNA断片のク ローニング

プローブΙを用いて実施例1- (3) と同様にしてサザ ンハイブリダイゼーションを行った。その結果、約5. 5kbのEcoRI断片、約4.9kbのHind III 断片、及び約1.7kbのPstI断片が陽性を示し た。プロープIの配列内でGC型プライマー1、2と同 方向に特異的プライマー I-S1(配列番号13)、 I -S2(配列番号14)を合成し、実施例1-(4)と 同様にPCRを行って制限酵素地図を作成した。図2に その制限酵素地図を示す。制限酵素地図とPCRに用い たプライマーの位置から約4.2kbのEcoRI-H ind III断片上にDNAポリメラーゼをコードする全 領域が含まれていると推定した。次にpTV118N (宝酒造社)をEcoRIとHind IIIで開裂したも のを調製し、実施例1-(5)と同様にして目的のクロ 20 一ンを選択した。得られた組換体よりプラスミドを回収 し、目的のEcoRI-Hind III断片が挿入されて いることを確認し、該プラスミドをpPO100-Iと 命名した。再度pPO100-Iを大腸菌JM109に 導入して、 Escherichia coli JM109/pPO10 0-I (FERM P-13660) を得た。更に、p PO100-IにクローニングされているEcoRI-Hind III断片のうち、Smal-Hind III領域 の塩基配列を決定した。その塩基配列を配列表の配列番 号7に示す。その結果、塩基番号435~3176、5 40~3176にそれぞれ914、879アミノ酸から なるORFが認められた。914アミノ酸からなるOR Fのアミノ酸配列を、配列表の配列番号1に示す。87 9アミノ酸からなるORFは、配列番号1のうちアミノ 酸番号36~914に相当する。

【0032】(2)形質転換体の培養及び粗抽出液の調 製

E. coli JM109/pPO100-Iをアンピシリ ンが100μg/mlの濃度で存在するL培地5mlに 植菌し37℃で20時間培養し、集菌後200µ1の2 40 5%ショ糖、50mM トリス-塩酸 (pH7.6)、 10mM NaCl、1mM 2-メルカプトエタノー ル、2μM PMSFに懸濁し、リゾチームを0.5m g/mlの濃度で加えて0℃30分静置、その後37℃ に移し更に30分静置した。凍結融解を一度行った後遠 心分離(14000 грm、10分)により上清を得 た。得られた上清について70℃20分の熱処理を行い 再度遠心分離(14000rpm、10分)を行って上 清を回収し粗酵素液とした。実施例1-(7)と同様に

12 培養液から0.22単位の活性が得られた。

【0033】(3)発現系の改変

発現量を上げるためにベクターpET15b(ノバジェ ン社)のNcoI部位のATGよりDNAポリメラーゼ が直接発現するプラスミドを構築した。最初に公知のα タイプのDNAポリメラーゼとのホモロジーより開始コ ドンと推定される2ヵ所のATGの領域(配列番号7の 塩基番号135~137と510~512) にそれぞれ NcoIサイトを導入するためのオリゴヌクレオチド 1、2(配列番号15、16)を合成した。このオリゴ ヌクレオチド1、又は2とpPO100-I、ミュータ ン(Mutan)-K(宝酒造社)を用いてサイトダイレクト ミュータジェネシスを行いpPO100-IにNcoI サイトを導入したプラスミドpPO100-IM1、p PO100-IM2を構築した。次にそれぞれのプラス ミドによりNcoI-Afl II (1551bpと14 46bp) 断片とAfl II -EcoRV (1457b p) 断片を精製し(Afl II サイトは配列番号7の塩 基番号1983~1988にある)、pET-15bを BamHIで切断後を平滑末端化し、更にNcoIで切 断して得られるpET-15bNcoI-BamHI平 滑化断片と混合しDNAリガーゼにより結合させた。そ れぞれの混合液を用いて大腸菌HB101を形質転換 し、得られた形質転換体よりプラスミドを調製し、制限 酵素解析よりNcoI-Afl II 断片とAfl II ~ EcoRV断片が連結したプラスミドを選別しpPO2 00-IとpPO300-Iと命名した。すなわち、p PO200-Iは914アミノ酸(配列番号1。ただ し、2番目のアミノ酸はLysからGluに置換されて いる)、及び879アミノ酸(配列番号1のアミノ酸番 号36~914) からなる2つのORFを含んでおり、 pPO300-1は879アミノ酸(配列番号1のアミ ノ酸番号36~914) からなる1つの〇尺Fを含んで

【0034】(4) プラスミドpPO200-I、pP ○300-Iを導入した大腸菌による耐熱性DNAポリ メラーゼの生産

大腸菌HMS174 (DE3) (ノバジェン社) にプラ スミドpPO200-I又はpPO300-Iを導入し た形質転換体をそれぞれHMS174 (DE3) / pP O200-I, HMS174 (DE3) /pPO300 - I と命名した。HMS174 (DE3) /pPO20 0-IとHMS174 (DE3) /pPO300-Iを それぞれ2リットルのパッフル付フラスコで500m1 のL培地に植菌し濃度が 0. 7のとき 1M IPTGを 0.2ml加え20時間培養した。培養液3リットルよ り得られた菌体 4. 4 g と 4. 3 g より実施例 1 -(8) と同様にしてDNAポリメラーゼを精製した。H MS174 (DE3) /pPO200-Iからはヘパリ してDNAポリメラーゼ活性を測定したところ1mlの 50 ン活性画分より11250U得られSDS-PAGEで

ほぼ等量の分子量約9.5万ダルトンと10万ダルトンの2パンドを与えた。HMS174(DE3)/pPO300-Iからはヘパリン活性画分より13350U得られ、SDS-PAGEで分子量約9.5万ダルトンの単一パンドを与えた。

[0035] HMS174 (DE3) /pPO300-Iより精製して得られた酵素標品 (PocDNAポリメ ラーゼーI)を用いて実施例1- (9)、1- (10) と同様の方法で付随するヌクレアーゼ活性の有無を調べ た。 $5' \rightarrow 3'$ エキソヌクレアーゼに関してはPocD 10 $NAポリメラーゼII同様活性が認められた。既知の<math>\alpha$ 型 古細菌株由来の酵素であるピロコッカス フリオサス (P.furiosus) 由来のDNAポリメラーゼ (PfuDN Aポリメラーゼ、ストラタジーン社)にはこの活性は認 められなかった。 $3' \rightarrow 5'$ エキソヌクレアーゼに関し ては、PocDNAポリメラーゼII同様活性が認められ pH6. 3よりpH7. 7の反応液においてより約7倍 高い活性を示した。DNAポリメラーゼ活性に対する $3' \rightarrow 5'$ エキソヌクレアーゼ活性の割合はpH6. 3 の反応液でPocDNAポリメラーゼIIの数10倍、P fuDNAポリメラーゼの約3.5倍、pH7.7の反 応液でPocDNAポリメラーゼHの約14倍、Pfu DNAポリメラーゼの約1.5倍であった。

【0036】3′→5′エキソヌクレアーゼ活性はDN

14
Aポリメラーゼの有するDNA合成時の校正機能と考えられ、鋳型DNAに対して誤った塩基を取り込んで合成してしまったとき、これを切り離し、改めて正しい塩基を取り込む過程で大切な活性である。本発明におけるPocDNAポリメラーゼIのポリメラーゼ活性に対するエキソヌクレアーゼ活性の比率が、本発明のPocDNAポリメラーゼIIや既知のPfuDNAポリメラーゼの持つそれぞれの活性の比と比べて明らかに高いということはPocDNAポリメラーゼ I が非常に高い正確性を

[0037]

【発明の効果】本発明により、遺伝子工学研究用試薬として有用な耐熱性DNAポリメラーゼをコードする遺伝子、及び該遺伝子を用いた耐熱性DNAポリメラーゼの遺伝子工学的製造方法が提供された。

持ったDNA合成を行うことを示唆している。

[0038]

【配列表】

【0039】配列番号:1

配列の長さ:914 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:ベプチド

配列:

Met Lys Ala Gln Pro Gln Leu Ala Thr His Gln Gly Leu Thr Thr 1 5 10 Glu Lys Ala Val Val Asn Val Asp Ala Glu Thr Trp Ala Glu Gln 20 25 His Ala Trp Ser Thr Met Val Pro Gln Ser Ser Thr Pro Pro Ala 35 40 Gly Tyr Gly Asp Asp Leu Ala Gly Lys Leu Gly Ser Leu Leu Gly 50 55 Gly Ser Arg Gly Ala Leu Glu Arg Leu Ser Ala Leu Pro Leu Thr 65 70 Arg Lys Pro Leu Glu Ala Arg Asp Gly Val Glu Gly Phe Leu Leu 80 85 Gin Thr Met Tyr Asp Gly Glu Arg Gly Val Ala Ala Ala Lys Ile 95 100 Tyr Asp Asp Arg Asn Gly Ile Val Tyr Val Tyr Phe Asp Arg Thr 110 115 Gly Tyr Met Pro Tyr Phe Leu Thr Asp lle Pro Pro Asp Lys Leu 125 130 Gin Glu Leu His Giu Val Val Arg His Lys Gly Phe Asp His Val 140 145 Glu Val Val Glu Lys Phe Asp Leu Leu Arg Trp Gln Arg Arg Lys 160 Val Thr Lys Ile Val Val Lys Thr Pro Asp Val Val Arg Val Leu 170 175 Arg Asp Lys Val Pro Arg Ala Trp Glu Ala Asp Ile Lys Phe His

<i>15</i>								
	185			19	0			195
His Asp Tyr	Ile Tyr	Asp T	yr Gly	Leu Va	l Pro	Gly Met	Lys	Туг
	200			20	5			210
Arg Val Gly	Lys Gly	Arg L	eu Ile	Leu Le	u Gly	Gly Glu	Ala	Ser
	215		-	22	0			225
Gly Asp Asp	Glu Arg	His I	le Arg	Glu II	e Phe	Ser Gly	Glu	Asp
	230			23	5			240
Glu Ser Thr	Ile Glu	Met A	la Val	Lys Tr	p Leu	Ser Leu	Phe	Glu
	245			25	0			255
Gin Pro Pro	Pro Lys	Pro A	rg Arg	Leu Ai	a Val	Asp Ile	Glu	Va)
	260			26	5			270
Phe Thr Pro	Phe Lys	Gly A	rg Ile			Ser Thr	Ala	
	275			28			_	285
Tyr Pro Val		Val A	la Met			Glu Gly	Trp	
	290		_	29	_		_	300
Ala Val Tyr			rg Pro		_	Met Asb	P10	
Ang Cla Dec	305			31		Ila Dha	4	315
Arg Gly Pro	320		ish ren	118 va		He rne	ASP	330
Glu Arg Ala			ln Ala			Tle Ser	Δen	
OIU NIE NIG	335		ilu Ala	34		TIC SEI	USII	345
Pro Val Leu			sn Glv			Asp Leu	Pro	
110 (41 200	350		D. 01,	35		nop zec		360
Leu Tyr Asn			ys Leu			Arg Glu	Tyr	
-	365		-	37			-	375
Pro Phe Arg	Ala Arg	Ser A	sp Tyr	Val Th	r Leu	Glu Tyr	Gly	Phe
	380			38	5			390
His Ile Asp	Leu Tyr	Lys P	be Phe	Ser Tb	r Lys	Ala Val	Glo	Ala
	395			40	0			405
Tyr Ala Phe	Gly Asn	Ala T	yr Gln	Glu Pb	e Thr	Leu Asp	Ala	He
	410			41	5			420
Ala Ser Ala	Leu Leu	Gly G	lu His			Val Glu	Ser	
	425			43				435
Val Ser Asp			be Glu			Tyr Asn	Val	
A 11- A	440		T	44		A A		450
Asp Ala Asp			rrg ren			ASB ASB	ASP	
Val Trp Ser	455		an Lan	46 Mat A:		Cor Ivo	Lan	465 Dec
vat 11p Sci	470		.cu Leu			Dei Lys	LCu	480
Leu Glu Asp					_	Ten Val	Lvs	
LCG GIG IMP	485		,c1 0111	49		110 ,41	2,0	495
Leu Phe Tyr			Arg Arg		-	Leu Ile	Pro	
	500		J	50				510
Arg Glu Glu	lle lle	Arg L	eu Lys	Gly Th	r Thr	Arg Ser	Glu	Ala
	515	_		52				525
Leu Ile Lys	Gly Lys	Lys T	yr Gln	Gly Al	a Leu	Val Leu	Asp	Pro
	530	1		53	15			540
Pro Ser Gly	lle Tyr	Phe A	Asn Ile	Val Va	l Leu	Asp Phe	Ala	Ser
	545	;		55	i0			555

—581—

Leu Tyr Pro Ser Ile Ile Lys Arg Trp Asn Leu Ser Tyr Glu Thr

```
560
                                    565
Val Asn Pro Val Tyr Cys Pro Glu Ser Lys Leu Val Glu Val Pro
                575
                                    580
Asp Val Gly His Lys Val Cys Met Ser Ile Pro Gly Leu Thr Ser
                590
                                    595
Gin Ile Val Gly Leu Leu Arg Asp Tyr Arg Vai Lys Ile Tyr Lys
                                    610
Lys Lys Ala Lys Asp Lys Ser Leu Pro Asp Asp Val Arg Ala Trp
                                    625
Tyr Asn Thr Val Gin Ala Ala Met Lys Val Tyr lle Asn Ala Ser
                                    640
Tyr Gly Val Phe Gly Ala Glu Ser Phe Pro Phe Tyr Ala Pro Pro
                                    655
Val Ala Glu Ser Val Thr Ala Ile Gly Arg Tyr Thr Ile Lys Gln
                                   670
Thr Leu Glu Lys Ala Gly Glu Leu Gly Leu Arg Val Leu Tyr Gly
                680
                                    685
Asp Thr Asp Ser Leu Phe Ile Trp Asn Pro Asp Glu Asp Lys Leu
                695
                                    700
Arg Glu Leu Gln Glu Tyr Val Glu Lys Asn Phe Gly Leu Asp Leu
                710
Glu Val Asp Lys Val Tyr Lys Phe Val Thr Phe Ser Gly Leu Lys
                                    730
Lys Asm Tyr Ile Gly Ala Tyr Glu Asp Gly Ser Ile Asp Val Lys
                740
                                    745
Gly Met Val Ala Lys Lys Arg Asn Thr Pro Glu Phe Leu Lys Lys
                                    760
Glu Phe Ser Glu Met Leu Ala Val Ile Gly Ser Val Lys Ser Pro
                                   775
Glu Asp Phe Ile Lys Val Arg Arg Val Ile Arg Glu Arg Leu Arg
                                   790
Lys Val Tyr His Gly Leu Arg Asp Leu Glu Phe Asn Leu Asp Glu
                800
                                   805
Leu Ala Ile Arg Met Ala Leu Asn Lys Pro Val Glu Ala Tyr Thr
                                   820
Lys Asn Thr Pro Gln His Val Lys Ala Ala Arg Gln Leu Ile Arg
                830
Ala Gly Val Glm Val Leu Pro Gly Asp Val Ile Ser Phe Val Lys
                                   850
Val Lys Gly Lys Glu Gly Val Lys Pro Val Gln Leu Ala Arg Leu
                                    865
Pro Glu Val Asp Val Glu Lys Tyr Val Glu Ser Met Arg Asp Val
                                   880
Phe Glu Gln Leu Leu Ala IIe Ser Met Ser Trp Asp Glu IIe
                                   895
Ile Gly Ser Ser Arg Leu Glu Ala Phe Phe Ser Arg Arg Gly
                905
```

【0040】配列番号:2

配列の長さ:803 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 50 配列の種類:ペプチド

			(11)	
19				
配列:				
Met Thr Glu	Thr Ile Glu	Phe Val	Leu Leu Asp	Ser Ser Tyr Glu
1	5		10	15
Ile Leu Gly	Lys Glu Pro	Val Val	Ile Leu Trp	Gly Ile Thr Leu
	20		25	30
Asp Gly Lys	Arg Val Val	Leu Leu	Asp His Arg	Phe Arg Pro Tyr
	35		40	45
Phe Tyr Ala	Leu Ile Ala	Arg Gly	Tyr Glu Asp	Mei Val Glu Glu
	50		55	. 60
Ile Ala Ala	Ser Ile Arg	Arg Leu	Ser Val Val	Lys Ser Pro Ile
	65		70	75
Ile Asp Ala 1		Asp Lys		Gly Arg Pro Arg
	80		85	90
Lys Ala Vai		The Met		Ser Val Arg His
m 1 01	95		100	105
lyr Arg Giu .		Lys Ile		Glu Asp Ser Leu
Clu Ala Asa	110	. Ala Maa	115	120
GIU AIA ASP	125	: Ala Mei		I lle Asp Lys Arg
Leu Tur Dro		Tue Aea	130	135
ren tal Lio	140	INI HIR	145	Glu Asp Ala Gly 150
Arg Asn Pro		Val Δen		Lys Val Ala Gly
711 JUL 110	155	, (ui /isp	160	165
Asp Pro Glu		Asp Ile		Asp Leu Pro Pro
	170		175	180
Met Arg Leu		ASD Ile		Ser Arg Arg Gly
_	185	•	190	195
Ser Pro Asn	Pro Ala Arg	Asp Pro	Val Ile Ile	Val Ser Leu Arg
	200		205	210
Asp Ser Glu	Gly Lys Glu	Arg Leu	lle Glu Ala	Glu Gly His Asp
	215		220	225
Asp Arg Arg	Val Leu A r g	Glu Phe	Val Glu Tyr	Val Arg Ala Phe
	230		235	240
Asp Pro Asp	lle Ile Val	Gly Tyr	Asn Ser Asn	His Phe Asp Trp
	245		250	255
Pro Tyr Leu l	Met Glu Arg	Ala Arg	Arg Leu Gly	7 Ile Lys Leu Asp
	260		265	270
Val Thr Arg	Arg Val Gly	Ala Glu	Pro Thr The	Ser Val Tyr Gly
	275		280	285
His Val Ser	Val Gln Gly	Arg Leu		Leu Tyr Asp Tyr
	290		295	300
Ala Glu Glu I		lle Lys	Met Lys The	Leu Glu Glu Val
	305		310	315
Ala Glu Tyr I		Met Lys		Arg Val Ile Ile
.	320		325	330
Glu Trp Trp		Glu Tyr		Glu Lys Lys Arg
a	335		340	345
Gin Leu Leu (Ala Leu		Arg Ala Thr Tyr
	350		355	360
Gly Leu Ala (Glu Lys Met	Leu Pro	Phe Ala Ile	Gln Leu Ser Thr

365 370 375 Val Thr Gly Val Pro Leu Asp Gln Val Gly Ala Met Gly Val Gly 380 385 Phe Arg Leu Glu Trp Tyr Leu Met Arg Ala Ala Tyr Asp Met Asn 395 400 Glu Leu Val Pro Asn Arg Val Glu Arg Arg Gly Glu Ser Tyr Lys 415 Gly Ala Val Val Leu Lys Pro Leu Lys Gly Val His Glu Asn Val Val Val Leu Asp Phe Ser Ser Met Tyr Pro Ser 11e Met 11e Lys 445 Tyr Asn Val Gly Pro Asp Thr Ile Val Asp Asp Pro Ser Glu Cys 460 Pro Lys Tyr Gly Gly Cys Tyr Val Ala Pro Glu Val Gly His Arg 470 475 Phe Arg Arg Ser Pro Pro Gly Phe Phe Lys Thr Val Leu Glu Asn 485 490 Leu Leu Lys Leu Arg Arg Gln Val Lys Glu Lys Met Lys Glu Phe 500 505 Pro Pro Asp Ser Pro Glu Tyr Arg Leu Tyr Asp Glu Arg Gln Lys Ala Leu Lys Val Leu Ala Asn Ala Ser Tyr Gly Tyr Met Gly Trp 530 535 Ser His Ala Arg Trp Tyr Cys Lys Arg Cys Ala Glu Ala Val Thr 550 Ala Trp Gly Arg Asn Leu Ile Leu Thr Ala Ile Glu Tyr Ala Arg 560 565 Lys Leu Gly Leu Lys Val Ile Tyr Gly Asp Thr Asp Ser Leu Phe 580 Val Val Tyr Asp Lys Glu Lys Val Glu Lys Leu Ile Glu Phe Val 590 595 Glu Lys Glu Leu Gly Phe Glu Ile Lys Ile Asp Lys Ile Tyr Lys 605 610 Lys Val Phe Phe Thr Glu Ala Lys Lys Arg Tyr Val Gly Leu Leu 620 625 Glu Asp Gly Arg Ile Asp Ile Val Gly Phe Glu Ala Val Arg Gly 640 Asp Trp Cys Glu Leu Ala Lys Glu Val Glu Glu Lys Ala Ala Glu 650 Ile Val Leu Asn Thr Gly Asn Val Asp Lys Ala Ile Ser Tyr Ile 670 Arg Glu Val Ile Lys Gin Leu Arg Glu Gly Lys Val Pro Ile Thr 685 Lys Leu lie lie Trp Lys Thr Leu Ser Lys Arg lie Glu Glu Tyr 695 700 Glu His Asp Ala Pro His Val Met Ala Ala Arg Arg Met Lys Glu 710 715 Ala Gly Tyr Glu Val Ser Pro Gly Asp Lys Val Gly Tyr Val Ile 725 730 Val Lys Gly Ser Gly Ser Val Ser Ser Arg Ala Tyr Pro Tyr Phe

740 745 Met Val Asp Pro Ser Thr Ile Asp Val Asp Tyr Tyr Ile Asp His 755 760 Glm Ile Val Pro Ala Ala Leu Arg Ile Leu Ser Tyr Phe Gly Val 770 775 Thr Glu Lys Gln Leu Lys Ala Ala Ala Thr Val Gln Arg Ser Leu

785 790

Phe Asp Phe Phe Ala Ser Lys Lys

800

[0041] 配列番号:3

配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

WSSYTSTACC CSWSSATCAT 【0042】配列番号:4

配列の長さ:20 配列の型:核酸

10 鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

配列:

TCNGTRTCNC CRTARATNAC 20 【0043】配列番号:5

配列の長さ:416

配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状

20

配列:

GGC GAT ACG GA

Gly Asp Thr

AGC CTG TAC CCC AGT ATC ATA AAG AGG TGG AAC CTA AGC TAC GAG 45 Ser Leu Tyr Pro Ser Ile Ile Lys Arg Trp Asn Leu Ser Tyr Glu 10 ACC GTA AAC CCC GTA TAC TGC CCC GAA TCG AAG CTA GTG GAG GTT 90 Thr Val Asn Pro Val Tyr Cys Pro Glu Ser Lys Leu Val Glu Val 20 CCC GAT GTA GGG CAT AAG GTG TGC ATG AGC ATA CCC GGC CTG ACC 135 Pro Asp Val Gly His Lys Val Cys Met Ser Ile Pro Gly Leu Thr 35 40 TCG CAG ATA GTT GGC CTG CTT AGG GAC TAT CGA GTC AAG ATA TAC 180 Ser Gln Ile Val Gly Leu Leu Arg Asp Tyr Arg Val Lys Ile Tyr 50 55 AAG AAG AAG GCC AAG GAT AAG AGT CTG CCG GAT GAT GTT AGA GCA 225 Lys Lys Lys Ala Lys Asp Lys Ser Leu Pro Asp Asp Val Arg Ala TGG TAT AAT ACA GTC CAG GCA GCC ATG AAG GTG TAT ATA AAT GCC 270 Trp Tyr Asn Thr Val Gln Ala Ala Met Lys Val Tyr Ile Asn Ala 85 AGC TAT GGA GTC TTC GGG GCC GAG AGC TTC CCG TTC TAC GCG CCG 315 Ser Tyr Gly Val Phe Gly Ala Glu Ser Phe Pro Phe Tyr Ala Pro 95 100 CCG GTA GCG GAG AGC GTC ACA GCC ATA GGC AGG TAT ACT ATC AAG 360 Pro Val Ala Glu Ser Val Thr Ala 11e Gly Arg Tyr Thr 11e Lys 115 CAG ACG CTG CAG AAG GCT GGC GAA CTA GGG CTC CGC GTG ATC TAT 405 Gin Thr Leu Gin Lys Ala Gly Glu Leu Gly Leu Arg Val Leu Tyr

--585--

ACT ATA GTC GAC GAC CCC TCG GAG TGC CCA AAG TAC GGC GGC TGC 90 Thr Ile Val Asp Asp Pro Ser Glu Cys Pro Lys Tyr Gly Gly Cys 20 25 TAT GTA GCC CCC GAG GTC GGG CAC CGG TTC CGT CGC TCC CCG CCA 135 Tyr Val Ala Pro Glu Val Gly His Arg Phe Arg Arg Ser Pro Pro 35 40 GGC TTC TTC AAG ACC GTG CTC GAG AAC CTA CTG AAG CTA CGC CGA 180 Gly Phe Phe Lys Thr Val Leu Glu Asn Leu Leu Lys Leu Arg Arg 55 CAG GTA AAG GAG AAG ATG AAG GAG TTT CCG CCT GAC AGC CCC GAG 225 Gln Val Lys Glu Lys Met Lys Glu Phe Pro Pro Asp Ser Pro Glu 70 TAC AGG CTC TAC GAT GAG CGC CAG AAG GCG CTC AAG GTT CTT GCG 270 Tyr Arg Leu Tyr Asp Glu Arg Gln Lys Ala Leu Lys Val Leu Ala

80 85 AAC GCG AGC TAT GGC TAC ATG GGG TGG AGC CAT GCC CGC TGG TAC 315 Asn Ala Ser Tyr Gly Tyr Met Gly Trp Ser His Ala Arg Trp Tyr 95 100 TGC AAA CGC TGC GCC GAG GCT GTC ACA GCC TGG GGC CGT AAC CTT 360

Cys Lys Arg Cys Ala Glu Ala Val Thr Ala Trp Gly Arg Asn Leu 110 115 ATA CTG ACA GCT ATC GAG TAT GCC AGG AAG CTC GGC CTA AAG GTG 405

Ile Leu Thr Ala Ile Glu Tyr Ala Arg Lys Leu Gly Leu Lys Val 125 130 ATA TAT GGG TAC ACC GA

lle Tyr Gly Asp Thr

140

【0045】配列番号:7

配列の長さ:3437 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA

生物名:ピロディクティウム オクルタム (Pyrodicti

422

um occultum) 株名:DSM2709 ⁷

配列:

CCCGGGCCAC TCCATCCATA GGCTCAAGGC GCTCCAGGCT CCTTTTAAAC ATTACATGCA ATTCTAAGGG ACTCTGCGCG CGGCTTAGGT CACCCACCTT ATACCGTGAT ACGTGGGAGC TGGATAGGGG GCGGTGCGTG GTTAGGCGGT CAAAGAGGGG TGGAGGGGAG CGCGACCTAC TCGAGTTCCT AGCTGGTGGC GTAACCGCGG CCCGCAGGGC TAAGGGCCGA ACCACCGAGA 240 GCGGGGATGG TACGGGCAGC GAGAGGGATG GTGCTAAGCC CCTCTGGGAG GGGAATACGG CCAGGAGGC CGGGGTGGAG AGGCTATACG ATAACAGCCT CTACGAACTG TTATCGGAAA TATCCTCATC TAGGAGACGC GGGTCTAGCC ATCCAAGAGA CGATGATCGG GAGGGGGCTG 420 ATCTCACTGG CGGC ATG AAG GCT CAG CCG CAG CTT GCT ACG CAC CAA GGG Met Lys Ala Gln Pro Gln Leu Ala Thr His Gln Gly

(15)	特開平7-327684
27	28
CTA ACG ACA GAG AAG GCC GTG GTG AAC GTG GA	AT GCA GAA ACC TGG 515
Leu Thr Thr Glu Lys Ala Val Val Asn Val As	
15 20	25
GCT GAG CAG CAT GCA TGG AGC ACT ATG GTG CC	
Ala Glu Gln His Ala Trp Ser Thr Met Val Pi	
30 35	40
CCC CCC GCG GGG TAT GGA GAT GAT CTG GCA GC Pro Pro Ala Gly Tyr Gly Asp Asp Leu Ala G	
45 50	55
CTG CTA GGG GGC TCA CGG GGT GCC CTT GAG AG	
Leu Leu Gly Gly Ser Arg Gly Ala Leu Glu A	
60 65	70
CCG CTT ACG CGC AAA CCC CTG GAA GCG CGT G	GAT GGG GTT GAG GGT 695
Pro Leu Thr Arg Lys Pro Leu Glu Ala Arg A	Asp Gly Val Glu Gly
75 80	85
TTC CTG CTT CAA ACA ATG TAT GAC GGG GAG A	AGG GGT GTT GCG GCG 740
Phe Leu Leu Gln Thr Met Tyr Asp Gly Glu A	Arg Gly Val Ala Ala
90 95	100
GCT AAG ATA TAT GAC GAC CGT AAT GGC ATT G	
Ala Lys Ile Tyr Asp Asp Arg Asn Gly Ile V	
105 110	115 ACC GAT ATA CCA CCG 830
GAT AGG ACT GGT TAC ATG CCA TAC TTT CTA A Asp Arg Thr Gly Tyr Met Pro Tyr Phe Leu T	
120 125	130
GAC AAG CTG CAG GAG CTT CAC GAG GTG GTG C	
Asp Lys Leu Glm Glu Leu His Glu Val Val A	
135 140	145
GAC CAT GTT GAG GTT GTG GAG AAG TTT GAT C	CTC CTG CGT TGG CAG 920
Asp His Val Glu Val Val Glu Lys Phe Asp L	Leu Leu Arg Trp Gln
150 155	160
CCT AGG AAG GTT ACT AAG ATC GTT GTA AAG A	
Arg Arg Lys Val Thr Lys Ile Val Val Lys T	
165 170	175
AGG GTG CTC CGT GAC AAG GTT CCA CGC GCC T	
Arg Val Leu Arg Asp Lys Val Pro Arg Ala T 180 185	190
	GGG CTA GTG CCT GGA 1055
Lys Phe His His Asn Tyr Ile Tyr Asp Tyr G	
195 200	205
ATG AAG TAC CGC GTC GGG AAG GGC AGG CTA A	ATC CTC CTG GGG GGA 1100
Met Lys Tyr Arg Val Gly Lys Gly Arg Leu I	Ile Leu Leu Gly Gly
210 215	220
GAG GCT AGC GGG GAC GAT GAG CGC CAT ATA C	CGC GAG ATA TTC AGT 1145
Glu Ala Ser Gly Asp Asp Glu Arg His Ile A	Arg Glu Ile Pbe Ser
225 230	235
GGT GAG GAT GAA AGC ACT ATT GAG ATG GCA G	GTA AAA TGG CTC TCC 1190
Gly Glu Asp Glu Ser Thr Ile Glu Met Ala V	
240 245	250
CTG TTT GAG CAG CCT CCC CCT AAG CCT CGT A	
Leu Phe Glu Gln Pro Pro Pro Lys Pro Arg A	Arg Leu Ala Val Asp

\

29	14-14-14
055	<i>30</i>
255 260 265	
ATC GAG GTA TTC ACT CCC TTC AAG GGC CGT ATA CCA GAC CCT TCC	
Ile Glu Val Phe Thr Pro Phe Lys Gly Arg Ile Pro Asp Pro Ser	•
270 275 280	
ACA GCC AGC TAC CCT GTA ATC AGT GTA GCT ATG TCC TCG GAC GAO	1325
The Ala Ser Tyr Pro Val IIe Ser Val Ala Met Ser Ser Asp Giv	1020
000	
GGG TGG CGC GCC GTC TAT GTG CTG GCG CGC CCG GGC GTG CCT ATG	
Gly Trp Arg Ala Val Tyr Val Leu Ala Arg Pro Gly Val Pro Met	
300 305 310	
AAT CCC CCG CGT GGC CCA TTA CCC GAG AAT CTA CAC GTA GAG ATA	1415
Asn Pro Pro Arg Gly Pro Leu Pro Glu Asn Leu His Val Glu Ile	
315 320 325	
TTC GAC GAT GAG CCT GCA CTC ATA TTG GAG GCG TTC CGG CTT ATA	1460
Phe Asp Asp Glu Arg Ala Leu Ile Leu Glu Ala Phe Arg Leu Ile	•
330 335 340	
TCA AAC TAC CCG GTG CTG CTC ACC TTC AAC GGT GAT AAC TTT GAC	
Ser Asn Tyr Pro Val Leu Leu Thr Phe Asn Gly Asp Asn Phe Asp	1
345 350 355	
CTC CCC TAC CTC TAC AAC CGG GCA GTA AAA CTA GGC ATA CCA CGC	1550
Leu Pro Tyr Leu Tyr Asn Arg Ala Val Lys Leu Gly Ile Pro Arg	
360 365 370	
GAG TAC ATA CCA TTC CGT GCT AGA AGC GAC TAT GTG ACA TTG GAG	1505
Glu Tyr Ile Pro Phe Arg Ala Arg Ser Asp Tyr Val Thr Leu Glu	
0.00	
375 380 385	
TAC GGC TTC CAT ATA GAC CTC TAT AAG TTC TTC AGC ACC AAG GCG	
Tyr Gly Phe His Ile Asp Leu Tyr Lys Phe Phe Ser Thr Lys Ala	
390 395 400	
GTT CAG GCA TAT GCC TTC GGC AAC GCT TAC CAG GAG TTC ACC CTT	1685
Yal Gln Ala Tyr Ala Phe Gly Asn Ala Tyr Gln Glu Phe Thr Leu	
405 410 415	
GAT GCT ATA GCC TCT GCG TTG CTG GGG GAG CAC AAG GTG GAG GTC	1730
Asp Ala Ile Ala Ser Ala Leu Leu Gly Glu His Lys Val Glu Val	1100
400	
20 400	
GAG TCT ACT GTA AGC GAC CTA CCA TTC TTT GAG CTG GTC AGG TAT	1775
Glu Ser Thr Val Ser Asp Leu Pro Phe Phe Glu Leu Val Arg Tyr	
435 440 445	
AAT GTG CGT GAC GCT GAT CTA ACC CTT AGG CTA ACA ACG TTC AAC	1820
Asn Val Arg Asp Ala Asp Leu Thr Leu Arg Leu Thr Thr Phe Asn	
450 455 460	
AAC GAC CTG GTA TGG TCC CTT ATC ATA CTG CTA ATG CGT ATC TCC	1865
Asn Asp Leu Val Trp Ser Leu Ile Ile Leu Leu Mei Arg Ile Ser	1000
105	
AAG CTG CCT CTG GAG GAT GTC ACG AGA AGC CAG GTC TCA GCT TGG	1910
Lys Leu Pro Leu Glu Asp Val Thr Arg Ser Gln Val Ser Ala Trp	
480 485 490	
GTG AAG AGC TTA TTC TAC TGG GAG CAT AGG AGG AGG GGC TAC CTA	1955
Val Lys Ser Leu Phe Tyr Trp Glu His Arg Arg Arg Gly Tyr Leu	
195 500 505	
ATA CCA TCA AGG GAG GAG ATA ATA CGG CTT AAG GGC ACC ACC CGC	2000
THE WILL MIN HIS GOO OT AND GOO ACC ACC CHE	2000

(17)	特開平7-327684
31	32
Ile Pro Ser Arg Glu Glu Ile Ile Arg Leu Lys Gly Thr Thr Arg	
510 515 520	
TCT GAA GCC CTG ATA AAG GGT AAG AAG TAT CAG GGG GCG CTA GTC	2045
Ser Glu Ala Leu Ile Lys Gly Lys Lys Tyr Gln Gly Ala Leu Val	
525 530 535	
CTT GAC CCG CCT AGC GGC ATA TAC TTC AAC ATA GTG GTG CTT GAC	2090
Leu Asp Pro Pro Ser Gly Ile Tyr Phe Asn Ile Val Val Leu Asp	
510 545 550	0105
TTC GCC AGC CTG TAC CCC AGT ATA ATA AAG AGG TGG AAC CTA AGC	2135
Phe Ala Ser Leu Tyr Pro Ser Ile Ile Lys Arg Trp Asn Leu Ser 555 560 565	/
	2100
TAC GAG ACC GTA AAC CCC GTA TAC TGC CCC GAA TCG AAG CTA GTG	2180
Tyr Glu Thr Val Asn Pro Val Tyr Cys Pro Glu Ser Lys Leu Val 570 575 580	
GAG GTT CCC GAT GTA GGG CAT AAG GTG TGC ATG AGC ATA CCC GGC	2225
Glu Val Pro Asp Val Gly His Lys Val Cys Met Ser Ile Pro Gly	
585 590 595	
CTG ACC TCG CAG ATA GTT GGC CTG CTT AGG GAC TAT CGA GTC AAG	2270
Leu Thr Ser Gln Ile Val Gly Leu Leu Arg Asp Tyr Arg Val Lys	22.0
600 605 610	
ATA TAC AAG AAG AAG GCC AAG GAT AAG AGT CTG CCG GAT GAT GTT	2315
lle Tyr Lys Lys Lys Ala Lys Asp Lys Ser Leu Pro Asp Asp Val	
615 620 625	
AGA GCA TGG TAT AAT ACA GTC CAG GCA GCC ATG AAG GTG TAT ATA	2360
Arg Ala Trp Tyr Asm Thr Val Glm Ala Ala Met Lys Val Tyr Ile	
630 635 640	
AAT GCC AGC TAT GGA GTC TTC GGG GCC GAG AGC TTC CCG TTC TAC	2405
Asn Ala Ser Tyr Gly Val Phe Gly Ala Glu Ser Phe Pro Phe Tyr	
645 650 655	•
GCG CCG CCG GTA GCG GAG AGC GTC ACA GCC ATA GGC AGG TAT ACT	2450
Ala Pro Pro Val Ala Glu Ser Val Thr Ala Ile Gly Arg Tyr Thr	
660 665 670	
ATC AAG CAG ACG CTG CAG AAG GCT GGC GAA CTA GGG CTC CGC GTG	2495
Ile Lys Gln Thr Leu Gln Lys Ala Gly Glu Leu Gly Leu Arg Val	
675 680 685	
CTC TAT GGC GAT ACG GAC TCA CTA TTC ATA TGG AAT CCA GAT GAG	2540
Leu Tyr Gly Asp Thr Asp Ser Leu Phe 11e Trp Asn Pro Asp Glu	
690 695 700	9595
GAT AAG CTG CGG GAG CTG CAA GAG TAT GTA GAG AAG AAC TTT GGC	2585
Asp Lys Leu Arg Glu Leu Gln Glu Tyr Val Glu Lys Asn Phe Gly 705 710 715	
705 710 715 CTA GAC CTT GAG GTT GAT AAG GTC TAT AAA TTC GTG ACA TTT AGC	2620
Leu Asp Leu Glu Val Asp Lys Val Tyr Lys Phe Val Thr Phe Ser	2630
720 725 730	
GGC CTG AAG AAG AAC TAT ATA GGC GCC TAC GAG GAT GGA AGC ATC	2675
Gly Leu Lys Lys Asn Tyr Ile Gly Ala Tyr Glu Asp Gly Ser Ile	20(0
735 740 745	
GAT GTC AAG GGT ATG GTC GCT AAG AAG CGT AAT ACG CCG GAG TTC	2720
Asp Val Lys Gly Met Val Ala Lys Lys Arg Asn Thr Pro Glu Phe	
750 755 760	
100 100 100	

【0046】配列番号:8

配列の長さ:3068

配列の型:核酸 鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

CTGCAGCTCT CGGGGCTACA GCTCCTTCGT GCTCGAGGTG GAGGCCGGCA ACTATCCAGC GCAGAGCCTA TATGCGAGAA GCTCCTTCAA GCCCGTCATG ATAGTGCCCG ACTACTATGG 120

CGAGGGCCGG CACGCTGTGG TCATGGCGTT GTTGGGGGAG AGGCCCTGCT GCCTAGACGG 180

CTAGCCGTCC TCATGCGTTA GCGGGCAGAG GCAGGCAATG ATATACGATT ATGTAGGGGC 240

GGGTGGTGGT AGATTCTCCA GGGCAGAGCC AGCCC ATG ACA GAG ACT ATA GAG TTC 296

Met Thr Glu Thr Ile Glu Phe

	25							(1	19)						特開平7-3276
oma	35		~.~				~ . ~		000	000		~~~	200		36
	CTG														341
vai	Leu		ASP	Ser	Ser	Tyr		He	Leu	GIY	Lys		Pro	vai	
		10					15					20			
GTA	ATC	CTC	TGG	GGG	ATA	ACG	CTT	GAC	GGT	AAA	CGT	GTC	GTG	CTT	386
Val	Ile	Leu	Trp	Gly	Ile	Thr	Leu	Asp	Gly	Lys	Arg	Val	Val	Leu	
		25					30					35			
CTA	GAC	CAC	CGC	TTC	CGC	CCC	TAC	TTC	TAC	GCC	CTC	ATA	GCC	CGG	431
Leu	Asp	His	Arg	Phe	Arg	Pro	Туг	Phe	Tyr	Ala	Leu	He	Ala	Arg	
		40					45					50			
GGC	TAT	GAG	GAT	ATG	GTG	GAG	GAG	ATA	GCA	GCT	TCC	ATA	AGG	AGG	476
Gly	Tyr	G) u	Asp	Me t	Val	Glu	Glu	He	Ala	Ala	Ser	He	Arg	Arg	
		55					60					65			
CTT	AGT	GTG	GTC	AAG	AGT	CCG	ATA	ATA	GAT	GCC	AAG	CCT	CTT	GAT	521
_	Ser			_	_			_			_				
		70					75					80			
AAG	AGG		TTC	GGC	AGG	ccc		AAG	GCG	GTG	AAG		ACC	ACT	566
	Arg														333
273	ın 6	85	1110	017	мь	110	90	LJS	mu	***	LJJ	95		1111	
ATC	ATA		CAC	ፕሮፕ	СТТ	AC A		TAC	ccc	CAC	ccc		AAC	440	611
		_		_									_		011
ate t	Ile		Giu	361	741	MIR		1 7 1	MIR	GIU	HIA		Lys	LyS	
A T A	CAC	100	cac	CAC	CAC	TCC	105	CAC	CCA	CAT	174	110	***	ccı	cre
	GAG														656
116	Glu		yaı	GIU	ASP	261		GIU	Ala	ASP	116		rue	AIA	
170	404	115	OT C	470.4	047		120	000	m.c	000	mm^	125	OTT T		701
	AGA														701
Met	Arg		ren	116	ASP	Lys		Leu	ıyr	Pro	rne		vai	lyr	
606		130					135					140			
	ATC														746
Arg	He		Val	Glu	Asp	Ala		Arg	Asn	Pro	Gly		Arg	Val	
		145					150					155			
GAC	CGT	GTC	TAC	AAG	GTT	GCT	GGC	GAC	CCG	GAG	ccc	CTA	GCG	GAT	791
Asp	Arg	Val	Tyr	Lys	Val	Ala	Gly	Asp	Pro	Glu	Pro	Leu	Ala	Asp	
		160					165					170			
ATA	ACG	CGG	ATC	GAC	CTT	CCC	CCG	ATG	AGG	CTG	GTA	GCT	TTT	GAT	836
He	Thr	Arg	He	Asp	Leu	Pro	Pro	Met	Arg	Leu	Val	Ala	Phe	Asp	-
		175					180					185			
ATA	GAG	GTG	TAT	AGC	AGG	AGG	GGG	AGC	CCT	AAC	CCT	GCA	AGG	GAT	881
Ile	Glu	Val	Tyr	Ser	Arg	Arg	Gly	Ser	Pro	Asn	Pro	Ala	Arg	Asp	
		190					195					200			
CCA	GTG	ATA	ATA	GTG	TCG	CTG	AGG	GAC	AGC	GAG	GGC	AAG	GAG	AGG	926
Pro	Val	He	He	Val	Ser	Leu	Arg	Asp	Ser	Glu	Gly	Lys	Glu	Arg	
		205					210					215			
CTC	ATA	GAA	GCT	GAA	GGC	CAT	GAC	GAC	AGG	AGG	GTT	CTG	AGG	GAG	971
Leu	He	Glu	Ala	Glu	Gly	His	Asp	Asp	Arg	Arg	Val	Leu	Arg	Glu	
		220			_		225	-	_	_		230			
TTC	GTA			GTG	AGA	GCC		GAC	CCC	GAC	ATA			GGC	1016
	Val														
20		235		- 44 1	6	,4	240			р	.,0	245		J.,	
тат	AÁC			ርልር	ፐ ፐር	CAC		ccc	TAC	ሮ ፕለ	ልተሮ			ccc	1061
															1061
1 y F	Aso	ser	ASA	піѕ	rue	ASP	irp	r10	īΥΓ	rea	mel	ចាប	ALA	AIA	

--5<u>6</u>. --

1781

1826

TTC TTC AAG ACC GTG CTC GAG AAC CTA CTG AAG CTA CGC CGA CAG

Phe Phe Lys Thr Val Leu Glu Asn Leu Leu Lys Leu Arg Arg Gln

495 GTA AAG GAG AAG ATG AAG GAG TTT CCG CCT GAC AGC CCC GAG TAC

								12	71/							15	
	<i>39</i>	•													40)	
Val	Lys	Glu	Lys	Met	Lys	Glu	Phe	Pro	Рго	Asp	Ser	Pro	Glu	Tyr			
		505					510					515					
AGG	CTC	TAC	GAT	GAG	CGC	CAG	AAG	GCG	CTC	AAG	GTT	CTT	GCG	AAC		1871	
Arg	Leu	Туг	Asp	Glu	Arg	Gln	Lys	Ala	Leu	Lys	Val	Leu	Ala	Asti			
		520					525					530					
GCG	AGC	TAT	GGC	TAC	ATG	GGG	TGG	AGC	CAT	GCC	CGC	TGG	TAC	TGC		1916	
Al a	Ser	Tyr	Gly	Tyr	Met	Gly	Trp	Ser	His	Ala	Arg	Trp	Tyr	Cys			
		535					5/10					5/15					
AAA	CGC	TGC	GCC	GAG	GCT	GTC	ACA	GCC	TGG	GGC	CGT	AAC	CTT	ATA		1961	
Lys	Arg	Cys	Ala	Glu	Ala	Val	Thr	Ala	Trp	Gly	Arg	Asn	Leu	He			
		550					555					560					
CTG	ACA	GCT	ATC	GAG	TAT	GCC	AGG	AAG	CTC	GGC	CTA	AAG	GTT	ATA		2006	
Leu	Thr	Ala	He	Glu	Tyr	Ala	Arg	Lys	Leu	Gly	Leu	Lys	Val	He			
		565					570					5 75					
TAT	GGA	GAC	ACC	GAC	TCC	CTC	TTC	GTG	GTC	TAT	GAC	AAG	GAG	AAG		2051	
Tyr	Gly	Asp	Thr	Asp	Ser	Leu	Phe	Val	Val	Tyr	Asp	Lys	Glu	Lys			
		580					585					590					
GTT	GAG	AAG	CTG	ATA	GAG	TTT	GTC	GAG	AAG	GAG	CTG	GGC	TTT	GAG		2096	
Vai	Glu	Lys	Leu	Ile	Glu	Phe	Val	Glu	Lys	Glu	Leu	Gly	Phe	Glu			
		595					600					605					
ATA	AAG	ATA	GAC	AAG	ATC	TAC	AAG	AAA	GTG	TTC	TTC	ACG	GAG	GCT		2141	
He	Lys	He	Asp	Lys	He	Tyr	Lys	Lys	Val	Phe	Phe	Thr	Glu	Ala			
		610					615					620					
	AAG															2186	
Lys	Lys		Tyr	Val	Gly	Leu	Leu	Glu	Asp	Gly	Arg	He	Asp	He			
		625					630					635					
	GGC															2231	
Val	Gly		Glu	Ala	Val	Arg		Asp	Trp	Cys	Glu			Lys			
		640					645					650	-				
	GTG															2276	
Glu	Val		Glu	Lys	Ala	Ala		He	Val	Leu	Asn		Gly	Asn			
		655					660		a			665					
	GAC	_														2321	
Vai	Asp		AJA	He	zet	lyr		Arg	GIO	Val	He		Gin	Leu			
000		670		· oma	004		675			450	4.00.4	680		400			
	GAG															2366	
Arg	Glu		Lys	vai	Pro	116		Lys	Leu	116	116		Lys	Inr			
CTC	ACC.	685	100	121	CAC	CAC	690	010	CAT		000	695		are.			
	AGC															2411	
Leu	Ser		Arg	116	GIU	GIU		GIU	HIS	ASP	Ala		nis	vai			
ATC	COT	700	000	cor	ATC		705	004	000	T40	040	710	202	000		0.450	
	GCT															2456	
met	Ala		Arg	Arg	meı	Lys		ATA	ыу	tyr	GIU		ser	Pro			
ccc	C A T	715	CTC	ccc	TAC	CTC	720	CTT.		CCT	100	725	A CT	CTC		0501	
	GAT															2501	
GIY	Asp		val	GIÄ	TÄL	vai		vai	Lys	GIÄ	ser		ser	val			
ተረረ	ACC	730	ccc	TAC	ccc	T.	735	ATTC	_ር ጥ ሞ	CAT	00+	740	ACC.	170		0540	
_	AGC															2546	
ser	Ser		BIR	ŢŸľ	rr0	ΙŸΓ		met	val	ASP	rro		101	116			
		745					750					755					

```
(22)
                                                                     特開平7-327684
                                                                 42
               GAC GTC AAC TAC TAT ATT GAC CAC CAG ATA GTG CCG GCT GCT CTG
                                                                   2591
               Asp Val Asn Tyr Tyr Ile Asp His Gln Ile Val Pro Ala Ala Leu
                                     765
               AGG ATA CTC TCC TAC TTC GGA GTC ACC GAG AAA CAG CTC AAG GCG
                                                                   2636
               Arg Ile Leu Ser Tyr Phe Gly Val Thr Glu Lys Gln Leu Lys Ala
                     775
                                     780
                                                    785
               GCG GCT ACG GTG CAG AGA AGC CTC TTC GAC TTC TTC GCC TCA AAG
                                                                   2681
               Ala Ala Thr Val Gin Arg Ser Leu Phe Asp Phe Phe Ala Ser Lys
                                     795
                                                     800
               AAA TAGCTCCTCC ACCCGGCTAG CTTTATTAAA CGCGTAGGCA CAAGCTCTCC
                                                                   2734
               Lvs
               GAGAGGCCTG GAGGGTAAGG GGTGCAATAG AGCCAGCCTC TCCGCCGAGG CCGTGCGCTC 2794
               TTGGGTGGCT TGGAATGATC CTCGCATCCT GGAGATCCTT GGCGTGGATA GTAAGGCGTG 2854
               TCGACGTAGT ACTCGAGGTT GTCGATGCGC GCGACCCGGT CTCGACAAGG AGCCTGCGGC 2914
               TAGAGAGGAT GGTGCAGAGC CTAGGGAAGC GCCTCCTAAT AGTCATCAAT AAGGCTGACC 2974
               TGGTGCCCCG CGGGGTCGCT GAGAAGTGGA AGCGCATCCT CGAGGATCAG GGTTACCGTA 3034
               CTGTCTACAT GGCTGCCCGC GATCACAAGG GTAC
【0047】配列番号:9
                                              配列の長さ:18
配列の長さ:23
                                              配列の型:核酸
配列の型:核酸
                                          20 鎖の数:一本鎖
鎖の数:一本鎖
                                              トポロジー:直鎖状
トポロジー:直鎖状
                                              配列の種類:他の核酸(合成DNA)
配列の種類:他の核酸(合成DNA)
                                              配列:
                                              GTATACGGGG TTTACGGT
                                                                18
GTACATATTG TCGTTAGAAC GCG
                                               【0052】配列番号:14
【0048】配列番号:10
                                              配列の長さ:18
配列の長さ:23
                                              配列の型:核酸
配列の型:核酸
                                              鎖の数:一本鎖
鎖の数:一本鎖
                                              トポロジー:直鎖状
トポロジー:直鎖状
                                          30 配列の種類:他の核酸(合成DNA)
配列の種類:他の核酸(合成DNA)
                                              配列:
                                              ATCAAGCAGA CGCTGCAG
                                                                18
TAATACGACT CACTATAGGG AGA
                                              【0053】配列番号:15
【0049】配列番号:11
                                              配列の長さ:30
配列の長さ:18
                                              配列の型:核酸
配列の型:核酸
                                              鎖の数:一本鎖
鎖の数:一本鎖
                                              トポロジー:直鎖状
トポロジー:直鎖状
                                              配列の種類:他の核酸(合成DNA)
配列の種類:他の核酸(合成DNA)
                                              配列:
                                          40 ATCTCACTGG CGCCATGGAG GCTCAGCCGC
                                                                           30
GGGGTCGTCG ACTATAGT
                  18
                                              【0054】配列番号:16
【0050】配列番号:12
                                              配列の長さ:25
配列の長さ:18
                                              配列の型:核酸
配列の型:核酸
                                              鎖の数:一本鎖
鎖の数:一本鎖
                                              トポロジー:直鎖状
トポロジー:直鎖状
                                             配列の種類:他の核酸(合成DNA)
配列の種類:他の核酸(合成DNA)
                                             配列:
                                             TGCATGGAGC ACCATGGTGC CTCAG
ATACTGACAG CTATCGAG
```

配列・

配列:

配列:

配列:

【0051】配列番号:13

18

【図面の簡単な説明】

【図1】pPO500-IIに挿入されている約3.1k

特開平7-327684

43

ものDNA断片の制限酵素地図、及びPCRに用いたプライマーの位置を示す図である。

【図2】pPO100-1に挿入されている約4.2k

44 bのDNA断片の制限酵素地図、及びPCRに用いたプライマーの位置を示す図である。

[図1]

【図2】

フロントページの続き

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

C 1 2 R 1:01) (C 1 2 N 9/12 C 1 2 R 1:19)

C12R 1:01)

THIS PAGE BLANK (USPTO)