Syntax -CKY, PCFGs

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 3

CKY Algorithm

- Let n be the number of words in the input. Think about n + 1 lines separating them, numbered 0 to n.
- x_{ij} will denote the words between line i and j
- We build a table so that x_{ij} contains all the possible non-terminal spanning for words between line i and j.
- We build the Table bottom-up.

CKY Algorithm

- Let n be the number of words in the input. Think about n + 1 lines separating them, numbered 0 to n.
- x_{ij} will denote the words between line i and j
- We build a table so that x_{ij} contains all the possible non-terminal spanning for words between line i and j.
- We build the Table bottom-up.

Home Exercise

Use CKY algorithm to find the parse tree for "Book the flight through Houston" using the CNF form shown in the previous slide.

CKY for CFG

а	pilot 2	likes	flying	planes
1	2	3	4	5

 $S \rightarrow NP \ VP$ $VP \rightarrow VBG \ NNS$ $VP \rightarrow VBZ \ NP$ $NP \rightarrow DT \ NN$ $NP \rightarrow JJ \ NNS$ $DT \rightarrow a$ $NN \rightarrow pilot$ $VBZ \rightarrow likes$ $VBG \rightarrow flying$ $JJ \rightarrow flying$ $NNS \rightarrow planes$

CKY for CFG

а	pilot	likes	flying	planes
1	2	3	4	5
DT	NP	-	-	SS
	NN	-	-	-
		VBZ	-	VP
				VP
			JJ VBG	NP VP
				NNS

 $\begin{array}{lll} S & \rightarrow & NP & VP \\ VP & \rightarrow & VBG & NNS \\ VP & \rightarrow & VBZ & VP \\ VP & \rightarrow & VBZ & NP \\ NP & \rightarrow & DT & NN \\ NP & \rightarrow & JJ & NNS \\ DT & \rightarrow & a \\ NN & \rightarrow & pilot \\ VBZ & \rightarrow & likes \\ VBG & \rightarrow & flying \\ JJ & \rightarrow & flying \\ NNS & \rightarrow & planes \end{array}$

What about Ambiguities?

Probabilistic Context-free grammars (PCFGs)

PCFG: G = (T, N, S, R, P)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

Probabilistic Context-free grammars (PCFGs)

PCFG: G = (T, N, S, R, P)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$
- P(R) gives the probability of each rule.

$$\forall X \in \mathbb{N}, \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$$

A Simple PCFG (in CNF)

5	\rightarrow	NP VP	1.0	NP →	NP PP	0.4
VP	\rightarrow	V NP	0.7	NP →	astronomers	0.1
VP	\rightarrow	VP PP	0.3	NP →	ears	0.18
PP	\rightarrow	P NP	1.0	NP →	saw	0.04
Р	\rightarrow	with	1.0	NP →	stars	0.18
V	\rightarrow	saw	1.0	NP →	telescope	0.1

Example Trees

Example Trees

Probability of trees and strings

- P(t): The probability of tree is the product of the probabilities of the rules used to generate it
- $P(w_{1n})$: The probability of the string is the sum of the probabilities of the trees which have that string as their yield

Tree and String probabilities

Tree and String probabilities

"Book the dinner flight"

"Book the dinner flight"

"Book the dinner flight"

Probabilities

- Parse tree 1: $.05 \times .20 \times .30 \times .20 \times .60 \times .20 \times .75 \times .10 \times .30 = 1.62 \times 10^{-6}$
- Parse tree 2: $.05 \times .05 \times .30 \times .20 \times .60 \times .75 \times .10 \times .15 \times .75 \times .30 = 2.28 \times 10^{-7}$

 As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes. PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes. PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability
- In practice, a PCFG is a worse language model for English than an n-gram model

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes. PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability
- In practice, a PCFG is a worse language model for English than an n-gram model
- All else being equal, the probability of a smaller tree is greater than a larger tree

Let W_{1m} be a sentence, G a grammar, t a parse tree

Let W_{1m} be a sentence, G a grammar, t a parse tree

• What is the most likely parse of sentence?

$$argmax_t P(t|w_{1m}, G)$$

Let W_{1m} be a sentence, G a grammar, t a parse tree

• What is the most likely parse of sentence?

$$argmax_t P(t|w_{1m}, G)$$

• What is the probability of a sentence?

$$P(w_{1m}|G)$$

Let W_{1m} be a sentence, G a grammar, t a parse tree

• What is the most likely parse of sentence?

$$argmax_tP(t|w_{1m},G)$$

• What is the probability of a sentence?

$$P(w_{1m}|G)$$

• How to learn the rule probabilities in the grammar *G*?