APRIORI Algorithm

Md. Jamil Uddin East Delta University

Association Rule Mining

 Association rule mining finds interesting associations and relationships among large sets of data items. This can be considered as the frequent pattern mining from a given dataset.

Example: Market Basket Analysis

- Association rule mining has various applications beyond market basket analysis, including fraud detection, cross-selling and upselling in e-commerce, recommendation systems, and more. It's a valuable tool for discovering hidden patterns and relationships within datasets and can be implemented using algorithms like the Apriori algorithm or the FP-growth algorithm.
- The primary goal of association rule mining is to find patterns of co-occurrence and quantify the strength of these associations.

Important Keywords

Association rule - An association rule is a data mining concept that represents a statistical relationship or pattern between sets of items in a dataset. It's typically expressed as an "if-then" statement, where the "if" part (the antecedent) represents a condition or a set of items, and the "then" part (the consequent) represents an outcome or another set of items. Association rules are used to discover interesting and often non-obvious relationships between variables in large datasets.

Example: the information that customers who purchase computers also tend to buy antivirus software at the same time is represented in the following association rule:

Computer \Rightarrow antivirus software [Support = 2%, Confidence = 60%]

Support - A 2% support for the mentioned association rule indicates that antivirus software and computers are bought jointly in 2% of the transactions that are analyzed.

Support
$$(A \Rightarrow B) = P(A \cup B)$$

□ Confidence - A 60% confidence level indicates that 60% of consumers who bought a PC also bought the software.

Confidence
$$(A \Rightarrow B) = P(B \mid A) = (Support (A \cup B) / Support (A))$$

→ In general, association rules are deemed intriguing when they meet both a minimal confidence requirement and a minimum support threshold.

Rules that satisfy both a minimum support threshold (min sup) and a minimum confidence threshold (min conf) are called **strong**.

→ By convention, we write support and confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

	Itemset - Set of 'n' number of items
•	K-itemset - An itemset consisting of 'K' number of items
•	Candidate Itemset - An itemset that can be a frequent itemset if it satisfies minimum threshold value of support
۵	Frequent Itemset - An itemset that satisfies minimum threshold value of support
	→ {Computer, Antivirus, CD} is a 3-itemset
0	Downward Closure Property - If an itemset is frequent then its subset is also a frequent itemset. Such as - If {Computer, Antivirus, CD} is a frequent itemset, then {Computer, CD} must be frequent too.

Max Patterns vs Closed Patterns

Max Pattern	Closed Pattern
An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y \supset X	An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
Maximal patterns are frequent patterns that cannot be extended to include more items without decreasing their support to a level below the minimum support threshold. They represent the most specific patterns in the dataset that are still considered frequent.	If any item is removed from a closed pattern, the resulting pattern is no longer frequent.
If {A, B, C} is a maximal pattern with a support of 0.2, it implies that this pattern is frequent and cannot be extended by adding more items without making it non-frequent.	In a market basket analysis, if {A, B, C} is a closed pattern with a support of 0.2, this means that the items A, B, and C are frequently bought together, and there are no other items that, when added to this set, maintain the same level of support.

The Apriori Algorithm

- In 1994, R. Agrawal and R. Srikant presented the groundbreaking algorithm Apriori for mining frequent itemsets for Boolean association rules.
- The algorithm's name stems from the fact that it makes use of past knowledge of common itemset attributes.
- Apriori uses an iterative method called a level-wise search, in which (k+1)-itemsets are explored using k-itemsets.

How is Apriori Property is used in algorithm?

In 2 steps the association rule mining is done by Apriori Algorithm. They are - **Join Step** and **Prune Step**.

• **Join Step**: To find L_k , a set of candidate k-itemsets is generated by joining L_{k-1} with itself. This set of candidates is denoted C_k .

• **Prune Step:** Any (k-1)-itemset that is not frequent cannot be a subset of a frequent $\frac{k-itemset}{k}$. Hence, if any (k-1)-subset of a candidate k-itemset is not in L_{k-1} , then the candidate cannot be frequent either and so can be removed from C_k . This subset testing can be done quickly by maintaining a hash tree of all frequent itemsets.

Pseudo Code for Apriori Algorithm

```
C_{k}: Candidate itemset of size k
L_{k}: frequent itemset of size k
L_1 = \{\text{frequent items}\};
for (k = 1; L_k! = \emptyset; k++) do begin
  C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
       increment the count of all candidates in C_{k+1} that are contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_{k} L_{k};
```

Flowchart for Generating Frequent Itemset

Association Rule Generation

Association rules can be generated as follows:

- For each frequent itemset I, generate all nonempty subsets of I.
- For every nonempty subset s of I, output the rule "s⇒I-s" if Support_count(I) / Support_count(s) >= min_conf, where min_conf is the minimum confidence threshold.
- Where confidence of any rule A⇒B is:

Confidence ($A \Rightarrow B$) = Support_count (A U B) / Support_count (A)

Example:

For the following given Transaction Data-set, Generate Rules using Apriori Algorithm.

Consider the values as Support=50% and Confidence=75%

Transaction ID	Items Purchased
1	Bread, Cheese, Egg, Juice
2	Bread, Cheese, Juice
3	Bread, Milk, Yogurt
4	Bread, Juice, Milk
5	Cheese, Juice, Milk

Step 1: Find Frequent Item Set and their support

1-itemset:

Item	Frequency	Support (in %)
Bread	4	4/5=80%
Cheese	3	3/5=60%
Egg	1	1/5=20%
Juice	4	4/5=80%
Milk	3	3/5=60%
Yogurt	1	1/5=20%

Step 2: Remove all the items whose support is below given minimum support.

1-itemset:

Items	Frequency	Support (in %)
Bread	4	4/5=80%
Cheese	3	3/5=60%
Juice	4	4/5=80%
Milk	3	3/5=60%

Step 3: Form the two items candidate set

Items Pair	Frequency	Support (in %)
Bread, Cheese	2	2/5=40%
Bread, Juice	3	3/5=60%
Bread, Milk	2	2/5=40%
Cheese, Juice	3	3/5=60%
Cheese, Milk	1	1/5=20%
Juice, Milk	2	2/5=40%

Step 4: Remove all the items below minimum support

Items Pair	Frequency	Support (in %)
Bread, Juice	3	3/5=60%
Cheese, Juice	3	3/5=60%

Step 5: Rule Generation

For Rules we consider item pairs:

> (Bread, Juice)

Bread->Juice and Juice->Bread

(Cheese, Juice)

Cheese->Juice and Juice->Cheese

Confidence (A->B) = support (AUB)/support (A)

Rule Validation

- I. Confidence (Bread->Juice) = support (Bread U Juice)/support (Bread) = 3/5 * 5/4=3/4=75%
- II. Confidence (Juice->Bread) = support (Juice U Bread)/support (Juice) = 3/5*5/4=3/4=**75**%
- III. Confidence (Cheese->Juice) = support (Cheese U Juice)/support (Cheese)=3/5*5/3=1=**100**%
- IV. Confidence (Juice->Cheese) = support (Juice U Cheese)/support (Juice) = 3/5*5/4=3/4=75%

★ All the rules are valid as they satisfy the minimum confidence value.

Limitations of Apriori Algorithm

- Exponential Growth of Candidate Generation
- Inefficient for Sparse Data
- Multiple Database Scans
- Difficulty Handling Continuous or Numeric Data
- High Memory Usage
- No Consideration of Item Order
- Limited Discovery of Infrequent Itemsets
- Difficulty with Variable-Length Itemsets
- Difficulty Handling Large Itemsets

Improving the performance of Apriori algorithm

- Hash based Technique
- Sampling
- Dataset Partitioning
- Transaction Reduction
- Dynamic Itemset Counting

Reference

- [1] J. Han and M. Kamber, *Data Mining : Concepts and Techniques*, 3rd ed. Haryana, India; Burlington, Ma: Elsevier, 2018.
- [2] R. Agrawal and Ramakrishnan Srikant, "Fast algorithms for mining association rules," pp. 580–592, Jul. 1998.
- [3] "•Apriori Algorithm in Data Mining." Available: https://www.cvs.edu.in/upload/Apriori%20Algorithm.pdf
- [4] "(PDF) Association Rule Mining--Apriori Algorithm Solved Problems," *ResearchGate*. https://www.researchgate.net/publication/340105166_Association_Rule_Mining--Apriori_Algorithm_Solved_Problems