Do language models have coherent mental models of everyday things?

By: Yuling Gu and Bhavana Dalvi Mishra and Peter Clark

NATURAL LANGUAGE PROCESSING · MASTER'S DEGREE IN PHYSICS OF DATA

Gloria Isotton - 2072705 Kostas Panagiotakis - 2081260

May 2024

Introduction

- People effortlessly understand the parts and relationships of everyday objects. The study aims to assess if language models (LMs) possess similar coherent understandings.
- Dataset Description: Consists of 100 everyday objects. Includes parts and relationships expressed as 11,720 true/false questions.
- Proposed Solution: Integrate a constraint satisfaction layer onto LM's raw predictions to enhance coherence while applying commonsense constraints.

Related Work

- Craik described mental models as "small-scale models" of external reality
- Johnson-Laird emphasized the importance of coherent internal representations of spatial layouts in human reasoning

Do LMs possess coherent internal representations?

- Psychologists suggest:
 - humans develop mental models of the world to base decisions on (Ha and Schmidhuber, 2018; Jonassen and Henning, 1996).
 - o humans develop mental models of the world to base decisions on exhibit understanding of object properties before language comprehension (Hespos and Spelke, 2004).
- State-of-the-art LMs like GPT-3 and Macaw perform poorly in answering relationship queries between object parts.

Building and Evaluating Parts Mental Models

- "Parts mental model", (pmm), for everyday objects: a
 focused subset of a complete mental model represented
 as a directed graph. Parts mental models consist of
 nodes representing parts and edges indicating
 relationships between them, including:
 - spatial orientation
 - connectivity
 - o functional dependency
- Dataset creation involves **human annotators** constructing **pmm** based on predefined parts and relationship vocabulary.
- The dataset as an ensemble is known as **ParRoT**.
- Considered **14 different relationships** between parts of objects

https://www.dropbox.com/sh/tv2hc6pmsbr25l3/AAAXZKvfkfyx6SAkqjolhS0ra?dl=0&e=1& file subpath=%2FParRoT MM sketches&preview=ParRoT MM sketches.zip

Type	Relations
Spatial orientation	part of, has part, inside, contains, in front of, behind, above, below, surrounds, surrounded by, next to*
Connectivity	directly connected to*
Functional dependency	requires ² , required by

A closer look: the Task

- Define the objective as **constructing** a **parts mental model** for **everyday things**.
- **Input** Specifications: Include the everyday thing, parts list, and a relation vocabulary comprising 14 relations.
- **Output** Specifications: Require a list of tuples (x, r, y) where relation r holds between parts x and y.
- **Evaluation Criteria**: Specify the criteria for evaluating LM-generated parts mental models, including **accuracy** of LM-generated parts mental models compared to gold-standard models in our dataset and adherence to **commonsense constraints** such as the inverse relation between 'above' and 'below', ensuring predictions align with established patterns.

Enriched annotations

- The model in the study automatically infers **new connections** (positive & negative) between everyday objects, using four types of constraints (symmetric, asymmetric, inverse, and transitive)
- Inferred relationships can be **positive** (e.g., "A above B" implies "B below A") or **negative** (e.g., "A above B" implies "B NOT above A").
- This adds over **11,700 relationships** to the knowledge base.

	Given as seed (unique)		Avg. annotated per mental model		tated + enriched (Total)	Total avg. per mental model (Total /
						# mental models)
# everyday things	100	100	## T		100	-
# mental models	-	300	-		300	*
# parts	716	2191	7.30	Ι,	2191	7.30
# relations (p1, rln, p2)	8	2752	9.17		11720	39.07
# spatial relations	6	1858	6.19		9956	33.19
# connectivity relation(s)	1	818	2.73		1612	5.37
# functional relation(s)	1	76	0.25		152	0.51

ParRoT-Con: Improving LM

Step 1: Probing a Pre-trained Language Model

ParRoT-Con: Improving LM Step 2: Constraint Reasoning

Many inconsistencies have been reported by considering the following hard constraints:

Constraint	Math Symbols
Symmetric	$x \operatorname{rln} y \leftrightarrow$
relations	$y \operatorname{rln} x$
Asymmetric	$x \operatorname{rln} y \lor$
relations	y rln x
Inverse	$x \operatorname{rln} y \leftrightarrow$
relations	y inverse(rln) x
Transitive	$x \operatorname{rln} y \wedge$
relations	$y \operatorname{rln} z \rightarrow$
	x rln z

Step 2: Constraint Reasoning

- Constraint reasoning refines predictions from the LM using weighted **MaxSAT Solver**;
- it tries different combinations of true/false values for the relation tuples to fulfill:
 - **Soft Clauses** (preferences): preserve the model's raw answers;
 - **Hard Clauses** (mandatory): minimize constraint violations;

What is accuracy?

True/False accuracy compared to the 11.7K gold relation tuples present in ParRoT

GPT-3	Judge whether this statement is true or false: In a tree, roots are surrounded by the trunk.	True (incorrect)
GPT-3	Judge whether this statement is true or false: In a tree, trunk is below the roots.	False (correct)

- baseline accuracy at 59%;
- random chance at 50%.

Base LM results

Sec. 10.2. 1.2. 1.2. 1.2. 1.2. 1.2. 1.2. 1.	# params	Base LM (%)
GPT-3 (text- davinci-003)	175B	53.83
Macaw-11B	11B	59.45

AVERAGE ACCURACY

ParRoT-Con results

	# params	ParRoT-Con (%)	Improve (%)
GPT-3 (text- davinci-003)	175B	70.26	16.42
Macaw-11B	11B	79.28	19.84

AVERAGE ACCURACY

20 everyday things that each model achieved best performance on.

What is (in)consistency?

Measure inconsistency across the 4 types of constraints:

$$\tau = \frac{\sum\limits_{x \in D} \left[\bigvee\limits_{(L,R)} \neg (L(x) \to R(x)) \right]}{\sum\limits_{x \in D} \left[\bigvee\limits_{(L,R)} L(x) \right]}$$

size of the set of violated constraints size of the set of applicable constraints

Base LM results

• 19-43% **conditional violation** on average;

	11	% Conditional Violation (lower is better)					AVG C	AVG CONDITIONAL VIOLATION		
	%True tuples	Symmet relation		Asymmetri relations	С	Inverse relations	Transitive relations	-	Avg. (micro)	
GPT-3 (text-davinci -003)	12.64	66.37		23.01		71.14	32.18	48.17	42.84 (27,105/63,265)	
Macaw-11B	57.77	29.98		64.97		33.63	10.08	34.66	19.23 (111,022/577,322)	

- GPT-3 struggles with symmetric and inverse relations consistency;
- Macaw-11B struggles with asymmetric relations;

ParRoT-Con results

Produces perfectly consistent mental models for all LMs with respect to the imposed constraints i.e. **0** % **conditional violation** for all columns in table.

Conclusions

The authors were able to:

- 1. **Built a Benchmark**: dataset, ParRoT. This dataset includes detailed information about 100 common things, outlining over 2,000 parts and the relationships between them (more than 11,700 relationships in total).
- 2. **Exposed LM Weaknesses**: Using ParRoT, the authors showed that current LMs generally lack strong mental models of everyday objects, violating basic common sense constraints of everyday things;
- 3. **Introduced ParRoT-Con**: develop a method, ParRoT-Con, to solve the inconsistency problem, which has proven to improve both accuracy (up to 20% improvement) and consistency.