HMMT February 2022

February 19, 2022

Algebra and Number Theory Round

- 1. Positive integers a, b, and c are all powers of k for some positive integer k. It is known that the equation $ax^2 bx + c = 0$ has exactly one real solution r, and this value r is less than 100. Compute the maximum possible value of r.
- 2. Compute the number of positive integers that divide at least two of the integers in the set $\{1^1, 2^2, 3^3, 4^4, 5^5, 6^6, 7^7, 8^8, 9^9, 10^{10}\}$.
- 3. Let $x_1, x_2, \ldots, x_{2022}$ be nonzero real numbers. Suppose that $x_k + \frac{1}{x_{k+1}} < 0$ for each $1 \le k \le 2022$, where $x_{2023} = x_1$. Compute the maximum possible number of integers $1 \le n \le 2022$ such that $x_n > 0$.
- 4. Compute the sum of all 2-digit prime numbers p such that there exists a prime number q for which 100q + p is a perfect square.
- 5. Given a positive integer k, let ||k|| denote the absolute difference between k and the nearest perfect square. For example, ||13|| = 3 since the nearest perfect square to 13 is 16. Compute the smallest positive integer n such that

$$\frac{\|1\| + \|2\| + \dots + \|n\|}{n} = 100.$$

- 6. Let f be a function from $\{1, 2, ..., 22\}$ to the positive integers such that $mn \mid f(m) + f(n)$ for all $m, n \in \{1, 2, ..., 22\}$. If d is the number of positive divisors of f(20), compute the minimum possible value of d.
- 7. Let (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) , and (x_5, y_5) be the vertices of a regular pentagon centered at (0,0). Compute the product of all positive integers k such that the equality

$$x_1^k + x_2^k + x_3^k + x_4^k + x_5^k = y_1^k + y_2^k + y_3^k + y_4^k + y_5^k$$

must hold for all possible choices of the pentagon.

- 8. Positive integers $a_1, a_2, \ldots, a_7, b_1, b_2, \ldots, b_7$ satisfy $2 \le a_i \le 166$ and $a_i^{b_i} \equiv a_{i+1}^2 \pmod{167}$ for each $1 \le i \le 7$ (where $a_8 = a_1$). Compute the minimum possible value of $b_1b_2 \cdots b_7(b_1 + b_2 + \cdots + b_7)$.
- 9. Suppose P(x) is a monic polynomial of degree 2023 such that

$$P(k) = k^{2023}P\left(1 - \frac{1}{k}\right)$$

for every positive integer $1 \le k \le 2023$. Then $P(-1) = \frac{a}{b}$, where a and b relatively prime integers. Compute the unique integer $0 \le n < 2027$ such that bn - a is divisible by the prime 2027.

10. Compute the smallest positive integer n for which there are at least two odd primes p such that

$$\sum_{k=1}^{n} (-1)^{\nu_p(k!)} < 0.$$

Note: for a prime p and a positive integer m, $\nu_p(m)$ is the exponent of the largest power of p that divides m; for example, $\nu_3(18) = 2$.