Filter Summary Report: CG,TIA,simple,Z2,ZL

Generated by MacAnalog-Symbolix

December 18, 2024

Contents

1 Examined H(z) for CG TIA simple Z2 ZL: Z_L

$$H(z) = Z_L$$

2 HP

3 BP

3.1 BP-1 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

 $H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L} \label{eq:hamiltonian}$

Parameters:

Q: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{1}{C_L R_L}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.2 BP-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

 $H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$

Parameters:

Q: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{1}{C_L R_L}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.3 BP-3 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

 $H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$

Parameters:

Q: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{1}{C_L R_L}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.4 BP-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

K-LP: 0
K-HP: 0
K-BP:
$$R_L$$

Qz: 0 Wz: None

3.8 BP-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$$

$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$

Parameters:

Q: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{1}{C_L R_L}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

4 LP

5 BS

5.1 BS-1
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

 $\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$

5.2 BS-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$

Parameters:

 $\begin{aligned} &\text{Q: } \frac{\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}}{wo: \sqrt{\frac{1}{C_LL_L}}} \\ &\text{bondwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } R_L \end{aligned}$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

K-HP:
$$R_L$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_L L_L}}$

5.3 BS-3
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

5.4 BS-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.5 BS-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1} \label{eq:hamiltonian}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

5.6 BS-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{R_L}{L_L}$
K-LP: R_L
K-HP: R_L
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_L L_L}}$

5.7 BS-7
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(C_LL_Ls^2+1\right)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.8 BS-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

6 **GE**

7 AP

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, R_2, \infty, \infty, \infty, R_L)$

$$H(s) = R_L$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{1}{C_{L}s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L R_L s + 1}{C_L s}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$

 $H(s) = R_L$

10.10 INVALID-ORDER-10 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{1}{C_L s}$

10.11 INVALID-ORDER-11 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

 $H(s) = \frac{R_L}{C_L R_L s + 1}$

10.12 INVALID-ORDER-12 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_L R_L s + 1}{C_L s}$

10.13 INVALID-ORDER-13 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$

10.14 INVALID-ORDER-14 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

 $H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$

10.15 INVALID-ORDER-15 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$

10.16 INVALID-ORDER-16 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

 $H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$

10.17 INVALID-ORDER-17 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L\right)$

 $H(s) = R_L$

10.18 INVALID-ORDER-18 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$

 $H(s) = \frac{1}{C_L s}$

10.19 INVALID-ORDER-19 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.20 INVALID-ORDER-20 $Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$

$$H(s) = \frac{C_L R_L s + 1}{C_L s}$$

10.21 INVALID-ORDER-21 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$$

10.22 INVALID-ORDER-22 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.23 INVALID-ORDER-23 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$$

10.24 INVALID-ORDER-24 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.25 INVALID-ORDER-25 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$

$$H(s) = R_L$$

10.26 INVALID-ORDER-26 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{1}{C_{L}s}$$

10.27 INVALID-ORDER-27 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.28 INVALID-ORDER-28 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L R_L s + 1}{C_L s}$$

10.29 INVALID-ORDER-29 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$$

10.30 INVALID-ORDER-30 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.31 INVALID-ORDER-31 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$$

10.32 INVALID-ORDER-32 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.33 INVALID-ORDER-33 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$

$$H(s) = R_L$$

10.34 INVALID-ORDER-34 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{1}{C_L s}$$

10.35 INVALID-ORDER-35 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.36 INVALID-ORDER-36 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L R_L s + 1}{C_L s}$$

10.37 INVALID-ORDER-37 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$$

10.38 INVALID-ORDER-38 $Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = R_L$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{C_{L}s}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{C_L s}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.49 INVALID-ORDER-49 $Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, R_L\right)$

 $H(s) = R_L$

10.50 INVALID-ORDER-50 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$

 $H(s) = \frac{1}{C_L s}$

10.51 INVALID-ORDER-51 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$

 $H(s) = \frac{R_L}{C_L R_L s + 1}$

10.52 INVALID-ORDER-52 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$

 $H(s) = \frac{C_L R_L s + 1}{C_L s}$

10.53 INVALID-ORDER-53 $Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$

10.54 INVALID-ORDER-54 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$

 $H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$

10.55 INVALID-ORDER-55 $Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$

10.56 INVALID-ORDER-56 $Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

 $H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$

10.57 INVALID-ORDER-57 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, R_L\right)$

 $H(s) = R_L$

10.58 INVALID-ORDER-58 $Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$

 $H(s) = \frac{1}{C_L s}$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{C_L s}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, 1 + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{C_L s}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{C_L s}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

11 PolynomialError