Jumping for Bernstein-Yang Inversion

Li-Jie Jian, Dean Wang, Bo-Yin Yang, Ming-Shing Chen

Institute of Information Science, Academia Sinica

2024.07.16

Motivation: Bernstein-Yang Algorithm [TCHES'19]

- ▶ NTRU
- ► NTRU Prime
- ▶ BIKE

Bernstein-Yang GCD algorithm

Bernstein-Yang GCD algorithm uses a matrix to keep track of changes in the process of GCD.

Definition

The algorithm determines a transition matrix $\mathcal T$ from the degree-0 coefficients of inputs f,g and their degree difference δ as

$$\mathcal{T}(\delta,f,g) = \begin{cases} \begin{bmatrix} 0 & 1 \\ \frac{g(0)}{x} & \frac{-f(0)}{x} \end{bmatrix} & \text{if } \delta > 0 \text{ and } g(0) \neq 0, \\ \begin{bmatrix} 1 & 0 \\ \frac{-g(0)}{x} & \frac{f(0)}{x} \end{bmatrix} & \text{otherwise.} \end{cases}$$

Bernstein-Yang GCD algorithm

We compute reciprocal of polynomial g in $\mathbb{F}_q[x]/(x^p-x-1)$ by performing a number of consecutive divsteps on (x^p-x-1, g) to obtain the transition matrix.

$$\begin{bmatrix} f_0 \\ g_0 \end{bmatrix} = \begin{bmatrix} u & v \\ q & r \end{bmatrix} \cdot \begin{bmatrix} x^p - x - 1 \\ g \end{bmatrix}$$

where

$$f_0=u\cdot (x^p-x-1)+v\cdot g \ o \ f_0\equiv v\cdot g \mod (x^p-x-1)$$
 we get $g^{-1}=v/f_0$ in $\mathbb{F}_q[x]/(x^p-x-1)$.

Bernstein-Yang GCD algorithm

Algorithm 1 divsteps (n, δ, f, g)

Input: $n > 0, \delta \in \mathbb{Z}$ **Output:** $\delta, f, g, M \in \mathbf{R}_a[x]^{2 \times 2}$ 1: $\begin{bmatrix} u & v \\ a & r \end{bmatrix} \in \mathbf{R}_q[x]^{2 \times 2} \leftarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 2. for $i \leftarrow 1$ to n do if $\delta > 0$ and $g_0 \neq 0$ then \Rightarrow swap 4: $j \leftarrow \lfloor n/2 \rfloor$ 4: $\delta \leftarrow -\delta$ end if 7: $\delta \leftarrow \delta + 1$ 8: $g \leftarrow (g \cdot f_0 - f \cdot g_0)/x$ 9: $q, r \leftarrow (q \cdot f_0 - u \cdot g_0), (r \cdot f_0 - v \cdot g_0)$ $u, v \leftarrow u \cdot x, v \cdot x$ \triangleright Raise degree 10: 11: end for 12: **return** δ , f, g, $\begin{bmatrix} u & v \\ a & r \end{bmatrix}$

Algorithm 2 jumpdivstep (n, δ, f, g)

Jumpdivsteps

MxV:

$$\begin{bmatrix} f' \\ g' \end{bmatrix} = x^{-n} \times \begin{bmatrix} u_1 & v_1 \\ q_1 & r_1 \end{bmatrix} \times \begin{bmatrix} f \\ g \end{bmatrix}$$

MxM:

$$\mathcal{T}_2 \cdot \mathcal{T}_1 = \begin{bmatrix} u_2 & v_2 \\ q_2 & r_2 \end{bmatrix} imes \begin{bmatrix} u_1 & v_1 \\ q_1 & r_1 \end{bmatrix}$$

Matrix multiplication by NTT

Normally, NTT polynomial multiplication requires 2x input transforms, 1x point-wise multiplication 1x output transform.

Normal --
$$\begin{bmatrix} u_2 & v_2 \\ q_2 & r_2 \end{bmatrix} \qquad \begin{bmatrix} f' \\ g' \end{bmatrix} \qquad \begin{bmatrix} f' \\ g' \end{bmatrix}$$

$$\mathbf{4x} \downarrow \qquad \mathbf{2x} \downarrow \qquad \uparrow \mathbf{2x}$$

$$\mathbf{NTT} \quad -- \quad \begin{bmatrix} u_2 & v_2 \\ q_2 & r_2 \end{bmatrix} \qquad \times \quad \begin{bmatrix} f \\ g \end{bmatrix} \qquad = \quad \begin{bmatrix} f' \\ g' \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} u_2 & v_2 \\ q_2 & r_2 \end{bmatrix} \qquad \times \quad \begin{bmatrix} u_1 & v_1 \\ q_1 & r_1 \end{bmatrix} = \begin{bmatrix} u' & v' \\ q' & r' \end{bmatrix} \xrightarrow{\mathbf{4x}} \quad \begin{bmatrix} u' & v' \\ q' & r' \end{bmatrix}$$

Saturated divsteps

- ► Sufficiently utilizes all storage of vector registers while keeping coefficients aligned as possible.
- Multiply x by rotating storage space to prevent overflow.

$$\mathcal{T} = \begin{bmatrix} u & v \\ q & r \end{bmatrix} \text{ or } \begin{bmatrix} u/x^n & v/x^n \\ q & r \end{bmatrix}$$

Saturated divsteps

$$u, v, q, r \rightarrow \boxed{x_0 \mid x_1 \mid x_2 \mid x_3 \mid x_4 \mid x_5 \mid \dots \mid x_{n-1}}$$

If degree of g=0, the lift operations will only apply to the same pair, we denote u and v as:

Before NTT matrix multiplication, conditional multiplications are required to address this *special case*.

Sheared divsteps

Skips degree raising in the last step to prevent overflow.

$$\mathcal{T} = \begin{bmatrix} u/x & v/x \\ q & r \end{bmatrix}$$

$$u, v \rightarrow | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | \dots | x_n |$$
 $q, r \rightarrow | x_0 | x_1 | x_2 | x_3 | x_4 | x_5 | \dots | x_{n-1}$

Sheared divsteps

$$\begin{bmatrix} u_2/x & v_2/x \\ q_2 & r_2 \end{bmatrix} \begin{bmatrix} u_1/x & v_1/x \\ q_1 & r_1 \end{bmatrix} = \begin{bmatrix} u_2u_1/x^2 + v_2q_1/x & u_2v_1/x^2 + v_2r_1/x \\ q_2u_1/x + r_2q_1 & q_2v_1/x + r_2r_1 \end{bmatrix}$$

In MxM, since the degree of augend and addend are inconsistent, we can't add them in Toom/NTT form, taking additional output transforms.

Unsaturated divsteps

Execute fewer steps of divsteps than storage size.

$$\mathcal{T} = \begin{bmatrix} u & v \\ q & r \end{bmatrix}$$

$$u, v, q, r \rightarrow x_0 x_1 x_2 x_3 x_4 x_5 \dots x_{n-1}$$

This method can eliminate all overhead present in previous versions.

Comparison

- 1. Use unsaturated divsteps as much as possible.
- 2. If the structure still lacks steps, we use some sheared divsteps evenly to gain extra steps.

	Operation	In	Mul	Out	ceq	dup	and	or	mvn	ext
	Saturated	6	4	2	2	2	2m	2m	0	0
MxV	Sheared	6	4	2	0	0	0	0	0	2m
	Unsaturated	6	4	2	0	0	0	0	0	4m
	Saturated	0	8	4	0	0	10m	8m	2(m-1)	0
MxM	Sheared	0	8	8	0	0	0	0	0	8m
	Unsaturated	0	8	4	0	0	0	0	0	0

Matrix multiplication

Length	Algorithm	In	Mul	Out	PxP	MxV	MxM	Jump
	Schoolbook	0	94	0	94	376	752	1,504
8x8	Karatsuba	0	56	0	56	224	448	896
0.00	Extend	0	50	0	50	200	400	800
	Batched(x8)	0	360	0	360	-	-	-
16x16	Schoolbook	0	231	0	231	924	1,848	3,696
10×10	Karatsuba	0	182	0	182	728	1,456	2,912
	Schoolbook	0	760	0	760	3,040	6,080	12,160
32x32	Toom	114	374	462	950	2,762	5,296	10,364
	Karatsuba	0	614	0	614	2,456	4,912	9,824
	Schonhage	367	2,319	521	3207	11419	22,104	43,474
64×64	Karatsuba	0	1,999	0	1,999	7,996	15,992	31,984
04204	Toom	207	1,295	944	2,446	7,689	14,964	29,514
	Rader[Hwang24]	1,228	411	570	2,209	6,468	10,480	18,504
	Karatsuba	0	6,998	0	6,998	27,992	55,984	111,968
128×128	Schonhage	1,691	4,903	1,521	8,115	27,727	52,072	100,762
	Toom	454	3,096	1,896	5,446	17,538	34,168	67,428
	Bruun	1,982	2,443	1,764	6,189	19,246	34,528	65,092
	Rader	2,908	828	1,240	4,976	14,516	23,216	40,616
768×768	Good-3	11,022	2,494	5,349	18,865	53,740	85,436	222,520

Jumping for
$$\mathbb{Z}_3[x]/\langle x^{761}-x-1\rangle$$

We perform Divsteps for steps less than 128. Since it only requires 2 bits to store the coefficients in F_3 , we divide them into 2 vectors, sign-bits and value-bits, to achieve further acceleration.

After that, we use 8 bits to store the coefficients, and start to perform Jumpdivsteps.

Result

Benchmark for key generation in sntrup761.

sntrup761	Supercop/Jumpdivsteps	Divsteps/Jumpdivsteps
Cortex-A53	13x	2.5x
Cortex-A72	12x	2.8x
Cortex-A76	12x	2.1x
M1	29x	2.2x

Takeaway

- ► We exploit the structure of Jumpdivsteps, and are the first to make it faster than Divsteps in practical.
- ▶ We implement fast key generation for NTRU-Prime.
- We optimize matrix multiplications in various length by revising NTT algorithms.