CPE-723 – Otimização Natural

Lista de Exercícios #3

Amanda Isabela de Campos (DRE 120074842)

01) Prova de 2012 - Questão 4;

(*Deterministic Annealing*) Considere um problema de *soft clustering* com cinco vetores de dados x = (x1, x2) e três centroides iniciais $y = (y_1, y_2)$, definidos segundo a tabela a seguir. Considere também que a distância entre dois vetores é quadrática, ou seja, $d(x, y) = (x_1 - y_1)^2 + (x_2 - y_2)^2$.

\mathbf{x}_1	5	4
\mathbf{x}_2	4	5
\mathbf{x}_3	5	5
\mathbf{x}_4	-5	-4
\mathbf{x}_5	-4	-5
\mathbf{y}_1	0	0
\mathbf{y}_2	1	1
y 3	-1	-1

a) Calcule a matriz de probabilidades p(y|x) que minimiza J = D - TH com T = 10. Calcule também os valores dos centróides atualizados segundo esta matriz.

0.164248

```
import numpy as np
X = np.array([[5,4,5,-5,-4],[4,5,5,-4,-5]])
M, N=np.shape(X)
K=2 #número de clusters
Y=np.array([[0,1,-1],[0,1,-1]])
d=np.zeros([K,N])
T = 10
p_ygivenx=np.zeros([K,N])
# Condição da Partição
for n in range(0,N):
    for k in range(0,K):
        d[k,n]=np.sum(np.power(X[:,n]-Y[:,k],2))
        p_ygivenx[k,n]=np.exp(-d[k,n]/T)
Zx=np.sum(p_ygivenx,axis=0)
p_ygivenx=p_ygivenx/np.tile(Zx,(K,1))
# Condição do centróide
Y=np.zeros([M,K])
for k in range(0,K):
    y=np.zeros(M)
    w=0
    for n in range(0,N):
        y+=p_ygivenx[k,n]*X[:,n]
        w+=p_ygivenx[k,n]
    Y[:,k]=y/w
                   0.164248
                               0.139656
                                            0.164248
p_{y|x} = 0.164248
```

0.813524	0.813524	0.84487	0.0222285	0.0222285
0.0222285	0.0222285	0.0154743	0.813524	0.813524

b) Repita o item (a) para T = 0.1 e comente sobre qual é a diferença.

$$p_{y|x} = 3.25749e-70$$
 3.25749e-70 6.71418e-79 3.25749e-70 3.25749e-70 1 1 4.50803e-157 4.50803e-157 4.50803e-157 1.91517e-174 1 1

Neste caso, para uma temperatura menor a matriz de probabilidades $p_{y|x}$ tem em cada linha praticamente todos os valores iguais a zero e apenas um valor igual a um, o que indica um probabilidade de acerto igual a 100%, ou seja o processo convergiu.

02) Prova de 2017 - Questão 4;

4. (Deterministic Annealing) Considere um conjunto de dados \mathbf{X} composto por quatro vetores equiprováveis e com coordenadas (0,0), (0,2), (2,2) e (2,0). Considere uma partição suave do \mathbb{R}^2 realizada através de dois centróides \mathbf{y}_1 e \mathbf{y}_2 . As distâncias quadráticas entre cada vetor \mathbf{x} e cada vetor \mathbf{y} são dadas a seguir:

- a) Considerando T=5, calcule a matriz de probabilidades condicionais $p_{\mathbf{Y}|\mathbf{X}}$ que minimiza $J=D-TH=\sum_x p_{\mathbf{X}}(x)\sum_y p_{\mathbf{Y}|\mathbf{X}}(y|x) + T\sum_x p_{\mathbf{X}}(x)\sum_y p_{\mathbf{Y}|\mathbf{X}}(y|x)\log p_{\mathbf{Y}|\mathbf{X}}(y|x)$.
- b) Também considerando T = 5, calcule vetores \mathbf{y}_1 e \mathbf{y}_2 atualizados. Compare o erro médio quadrático D_2 , associado aos vetores \mathbf{y}_1 e \mathbf{y}_2 atualizados, com o erro médio quadrático D_1 , associado aos vetores \mathbf{y}_1 e \mathbf{y}_2 anteriores à atualização.

a)
$$p_{y|x} = 0.689974$$
 0.310026 0.310026 0.689974 0.310026 0.689974 0.310026

Calculos obtidos com o seguinte código:

```
X = np.array([[0,0,2,2],[0,2,2,0]])
M,N=np.shape(X)
K=2 #número de clusters
d=np.zeros([K,N])
T = 5
p_ygivenx=np.zeros([K,N])
d = np.array([[1,5,5,1],[5,1,1,5]])
# Partition Condition
for n in range(0,N):
    for k in range(0,K):
        # d[k,n]=np.sum(np.power(X[:,n]-Y[:,k],2))
        p_ygivenx[k,n]=np.exp(-d[k,n]/T)
Zx=np.sum(p_ygivenx,axis=0)
```

O erro médio quadrático D2 é 2.240102 (atualizado)

Com as coordenadas dos pontos e as distâncias quadráticas é possível calcular as coordenadas dos dois centróides y_1 e y_2 : y_1 (1,0) e y_2 (1,-2), portanto pode-se calcular o erro médio quadrático.

O erro médio quadrático D1 é 4.76766 (anterior). O erro médio quadrático diminuiu depois da atualização, isso porque esse processo de atualização é um passo do algoritmo de Deterministic Annealing em busca do clusters com mínimo erro médio quadrático.

O código adotado está reproduzido a seguir.

```
X = np.array([[0,0,2,2],[0,2,2,0]])
M, N=np.shape(X)
K = 2 #número de clusters
Y=np.array([[0,1],[1,-2]])
d=np.zeros([K,N])
T = 10
p_ygivenx=np.zeros([K,N])
# Partition Condition
for n in range(0,N):
    for k in range(0,K):
        d[k,n]=np.sum(np.power(X[:,n]-Y[:,k],2))
        p_ygivenx[k,n]=np.exp(-d[k,n]/T)
Zx=np.sum(p_ygivenx,axis=0)
p_ygivenx=p_ygivenx/np.tile(Zx,(K,1))
J=-T/N*np.sum(np.log(Zx))
D=np.mean(np.sum(p ygivenx*d,axis=0))
```

03) Proponha uma função J (x), sendo x um vetor com 20 dimensões, cujo ponto mínimo você conheça. Evite propor funções que tenham um só ponto mínimo. Encontre o ponto mínimo global utilizando S.A. Entregue o código utilizado e alguns comentários sobre o resultado obtido;

A função adotada como exemplo é a Alpine N. 1 Function definida no espaço n-dimensional. A função tem mínimo global $f(x^*) = 0$ localizado em $x^*=(0,...,0)$ e segue a expressão:

$$f(\mathbf{x}) = f(x_1,\ldots,x_n) = \sum_{i=1}^n |x_i sin(x_i) + 0.1x_i|$$

O gráfico da função Alpine em duas dimensões está indicado a seguir:

Referencias:

http://benchmarkfcns.xyz/benchmarkfcns/alpinen1fcn.html

O código implementado para a busca do mínimo global desta função com o Simulated Annealing e o Fast Simulated Annealing está reproduzido a seguir. Vale observar que em ambos os casos o mínimo global foi encontrado, porem com o FSA a convergência foi mais rápida.

```
import numpy as np
import math
numero_variaveis = 20
b = 10.0 ## Limite superior
a = -10.0 ## Limite inferior
                              limites = [a,b)
def Custo(X):
   numero_variaveis = 20
   d = numero_variaveis
   sum = 0;
    for ii in range(0,d):
        xi = X[ii]
        sum = sum + (np.abs(xi * math.sin(xi) + 0.1 * xi))
   y = sum
    return y
# Simulated Annealing
X0 = (b-a)*np.random.rand(numero_variaveis) + a
N=int(1e5); K=100; T0=5e-1; e=1e-1
X = X0
Xmin = X0
np.random.seed(0);
fim=0; n=0; k=0; Jmin=Custo(X); Xmin=X; T=T0;
```

```
while not(fim):
    T = T0/(1+k)
# T = T0/np.log2(2+k)
for n in range(N):
    X_hat = X + e*(np.random.standard_cauchy(np.shape(X)))
    # X_hat = X + e*(np.random.normal(0,1,np.shape(X)))

if np.random.uniform()<np.exp((Custo(X)-Custo(X_hat))/T):
    X = X_hat
    if Custo(X) < Jmin:
        Jmin = Custo(X)
        Xmin = X

print([k,Jmin])
    k=k+1
    if k == K: fim =1
print(Jmin)</pre>
```

04) Questão extra (opcional): Prova de 2009 - Questão 4.

4. (Deterministic Annealing) A figura a seguir representa quatro vetores reais, \mathbf{x}_1 a \mathbf{x}_4 , marcados sobre o plano \mathbb{R}^2 . Estes quatro vetores serão agrupados em duas "classes", conforme a posição dos centróides de cada classe: \mathbf{y}_1 e \mathbf{y}_2 . A distância quadrática entre dois vetores é definida como $d_{\mathbf{x}\mathbf{y}} = (x_1 - y_1)^2 + (x_2 - y_2)^2$ e os vetores \mathbf{x}_i são atribuídos às classes \mathbf{y}_j conforme as probabilidades condicionais $p(\mathbf{y}_j|\mathbf{x}_i) = \exp\left(-d_{\mathbf{x}_i\mathbf{y}_j}/T\right)$, onde i = 1, 2, 3, 4 e j = 1, 2. O parâmetro T ("temperatura") controla a incerteza com a qual a partição é feita. O objetivo deste problema é caracterizar a dependência entre a posição relativa (d) dos centróides e a temperatura T.

a) Usando as posições iniciais de \mathbf{y}_1 e \mathbf{y}_2 indicadas na figura, complete a matriz de probabilidades condicionais a seguir. Neste item, considere T = 5 e d = 1.

$p(\mathbf{y} \mathbf{x})$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
\mathbf{y}_1				
\mathbf{y}_2				

Usando a matriz acima, calcule os novos vetores y_1 e y_2 , atualizados para a iteração seguinte.

b) As probabilidades do item (a) e as novas posições dos centróides podem ser escritas como funções de d e T. Escreva a expressão atualizada de \mathbf{y}_1 em função de d(k) e T genéricos. Mostre então que d(k+1) = f(d(k), T), descrevendo a função f(.).

c) (Item opcional) Encontre a faixa de temperaturas de transição (T_1,T_2) , acima das quais tem-se $d\simeq 0$ e abaixo das quais tem-se $d\simeq 1.5$.

a)

$$d_{xy} = \begin{bmatrix} d^2 - 2d + 1 & d^2 + 2d + 1 \\ d^2 + 2d + 1 & d^2 - 2d + 1 \end{bmatrix}$$

Partição:

$$p_{y|x} = \begin{bmatrix} \frac{e^{\frac{-d^2+2d-1}{T}}}{e^{\frac{-d^2+2d-1}{T}}+e^{\frac{-d^2-2d-1}{T}}} & \frac{e^{\frac{-d^2-2d-1}{T}}}{e^{\frac{-d^2+2d-1}{T}}+e^{\frac{-d^2-2d-1}{T}}} \\ \frac{e^{\frac{-d^2-2d-1}{T}}+e^{\frac{-d^2-2d-1}{T}}}{e^{\frac{-d^2+2d-1}{T}}+e^{\frac{-d^2-2d-1}{T}}} & \frac{e^{\frac{-d^2+2d-1}{T}}+e^{\frac{-d^2-2d-1}{T}}}{e^{\frac{-d^2+2d-1}{T}}+e^{\frac{-d^2-2d-1}{T}}} \end{bmatrix}$$

Substituindo $e^{\frac{2d}{T}}$ por α em $p_{x|y}$, temos:

$$p_{y|x} = \begin{bmatrix} \frac{\alpha}{\alpha + \alpha^{-1}} & \frac{\alpha^{-1}}{\alpha + \alpha^{-1}} \\ \frac{\alpha^{-1}}{\alpha + \alpha^{-1}} & \frac{\alpha}{\alpha + \alpha^{-1}} \end{bmatrix}$$

b) Condição da partição: novo y_1 (sendo que $y_2 = -y_1$)

$$y_1 = \frac{1}{1} \left(\frac{\alpha}{\alpha + \alpha^{-1}} \times 1 + \frac{\alpha^{-1}}{\alpha + \alpha^{-1}} \times 2 \right)$$

$$y_1 = \frac{\alpha - \alpha^{-1}}{\alpha + \alpha^{-1}} = \frac{e^{2d/T} - e^{-2d/T}}{e^{2d/T} + e^{-2d/T}} = tanh(\frac{2d}{T})$$

c) Atualizando d(n), temos: d(n+1) = tanh(2d(n)/T). Numericamente:

$$\lim_{n \to \infty} d(n) = \begin{cases} 1, seT < 0.5 \\ 0, seT > 2 \\ \epsilon \left[0, 1\right], seT\epsilon \left[0.5, 2\right] \end{cases}$$