Calculabilité - Décidabilité (ICC)

Cours nº 3

Stef Graillat

Sorbonne Université

Résumé du cours précédent

- ε-transitions : elles permettent d'étendre un AFN en autorisant un changement d'état en lisant une entrée vide (c'est-à-dire en ne lisant aucun symbole). Les ε-AFN peuvent être convertis en AFD acceptant le même langage.
- Expression régulière : notation algébrique décrivant exactement les mêmes langages que les automates finis. Les opérateurs sont l'union, la concaténation et la fermeture.
- Équivalence entre expressions régulières et automates finis : on peut convertir un AFN en ER. On peut aussi convertir une ER en un ε -AFN.

Applications

- ER sous UNIX:
 - . pour n'importe quel caractère
 - $[a_1 a_2 \cdots a_k]$ pour $a_1 + a_2 + \cdots + a_k$
 - [:digit:] pour les 10 chiffres [:alpha:] pour les caractères de l'alphabet (aussi [A-Z])
 - [:alnum:] pour les chiffres et l'alphabet.
 - | en lieu et place du +
 - *R** pour *R* répété zéro ou plusieurs fois
 - *R*? pour ε + *R*
 - R+ pour RR^*
 - $R\{n\}$ pour une copie de R n fois.
- lex, flex
- Recherche de motifs.

Lois algébriques pour les expressions régulières

Commutativité - Associativité :

•
$$L + M = M + L$$

•
$$(L+M)+N=L+(M+N)$$

•
$$(LM)N = L(MN)$$

Identité - éléments neutres - annulateur :

$$\emptyset \varnothing + L = L + \varnothing = L$$

•
$$\varepsilon L = L\varepsilon = L$$

•
$$\varnothing L = L\varnothing = \varnothing$$

Distributivité:

$$L(M+N) = LM + LN$$

$$\bullet (M+N)L = ML + NL$$

Attention : en général $LM \neq ML$

Lois algébriques pour les expressions régulières (suite)

$$\bullet$$
 $L + L = L$

•
$$(L^*)^* = L^*$$

$$\circ$$
 $\varnothing^* = \varepsilon$

$$\bullet$$
 $\varepsilon^* = \varepsilon$

•
$$L^+ = LL^* = L^*L$$

•
$$L^* = \varepsilon + L^+$$

Décider si une loi algébrique sur des ER est vraie

Tester la véracité de lois algébriques sur des ER.

Exemple : $(L + M)^* = (L^*M^*)^*$

Théorème 1

Soit E une ER avec les variables L_1, L_2, \ldots, L_m et C l'ER formée en remplaçant chaque occurrence de L_i par a_i pour $i=1,2\ldots,m$. Alors tout mot $w\in L(E)$ peut s'écrire sous la forme $w=w_1w_2\cdots w_k$, où chaque w_i est dans un des langages, par exemple L_{j_i} , et le mot $a_{j_1}a_{j_2}\cdots a_{j_k}$ est dans L(C)

Autrement dit, on peut construire L(E) en partant de mots de L(C), par exemple $a_{j_1}a_{j_2}\cdots a_{j_k}$, et en remplaçant chaque a_{j_i} par n'importe quel mot de L_{j_i} .

Décider si une loi algébrique sur des ER est vraie

Tester E = F:

- Remplacer chaque variable par un symbole. On obtient C = D
- Tester si L(C) = L(D)

Prouver que $(L+M)^* = (L^*M^*)^*$ revient à prouver que $(\mathbf{a}_1 + \mathbf{a}_2)^* = (\mathbf{a}_1^*\mathbf{a}_2^*)^*$

Propriétés des langages réguliers

- Le lemme de pompage : un outil pour prouver qu'un langage n'est pas régulier.
- Propriétés de fermeture des langages réguliers : construire des langages réguliers à partir d'autres langages réguliers.
- Propriétés de décision : algorithme décidant par exemple si deux automates reconnaissent le même langage.
- Minimisation des automates : construire un automate avec le moins d'états possibles

Intuition du lemme de pompage

Supposons que $L_{01} = \{0^n 1^n : n \ge 1\}$ soit régulier. Il est donc reconnu par un AFD A avec par exemple k états. Ouand A lit 0^k on a :

$$\begin{array}{ccc}
\varepsilon & p_0 \\
0 & p_1 \\
00 & p_2 \\
\cdots & \cdots \\
0^k & p_k
\end{array}$$

- $\Rightarrow \exists i < j \text{ tel que } p_i = p_j. \text{ Appelons } q = p_i = p_j$
 - Si $\widehat{\delta}(q, 1^i) \in F$ alors A accepte $0^j 1^i$
 - Si $\widehat{\delta}(q, 1^i) \notin F$ alors A rejete $0^i 1^i$

Par conséquent L_{01} n'est pas régulier

Lemme de pompage

Lemme 1 (Lemme de pompage)

Soit L un langage régulier. Alors il existe $n \in \mathbb{N}$ (qui dépend de L) tel que pour tout $w \in L$ tel que $|w| \ge n$, w se décompose en w = xyz avec

- $y \neq \varepsilon$,
- $|xy| \leq n$,
- pour tout $k \ge 0$, on a $xy^kz \in L$.

Preuve.

Comme L est régulier, il est reconnu par un AFD A avec n états.

Posons $w = a_1 a_2 \dots a_m \in L$ avec $m \ge n$ et $p_i = \widehat{\delta}(q_0, a_1 a_2 \dots a_i)$ pour $i = 0, 1, \dots n$ (on remarque que $p_0 = q_0$).

 $\Rightarrow \exists i, j \text{ v\'erifiant } 0 \le i < j \le n \text{ tel que } p_i = p_j \text{ (principe des tiroirs)}$

Lemme de pompage (suite)

On sépare w = xyz comme suit :

Il est alors clair que $xy^kz \in L$ pour tout $k \ge 0$.

Applications du lemme de pompage

Prouver que les langages suivants ne sont pas réguliers :

• Le langage L constitué des mots contenant autant de 0 que de 1 : considérons $w = 0^n 1^n \in L$ pour le n correspondant à l'énoncé. D'après le lemme de pompage w = xyz, $|xy| \le n$, $y \ne \varepsilon$ et $xy^kz \in L$

$$w = \underbrace{000\cdots}_{x} \underbrace{\cdots 0}_{y} \underbrace{0111\dots 11}_{z}$$

En particulier $xz \in L$, or xz a moins de 0 que de 1

Applications du lemme de pompage (suite)

• Le langage L des mots ne contenant que des 1 et dont la longueur est un nombre premier : considérons un premier $p \ge n + 2$ et $w = 1^p$ pour n donné par le lemme de pompage

$$w = \underbrace{111\cdots}_{x} \underbrace{\cdots 1}_{y,|y|=m} \underbrace{1111\cdots 11}_{z}$$

Alors
$$xy^{p-m}z \in L$$
.
Or $|xy^{p-m}z| = |xz| + (p-m)|y| = p-m + (p-m)m = (1+m)(p-m)$ qui n'est pas premier
En effet $y \neq \varepsilon \Rightarrow 1+m > 1$ et $m = |y| \le |xy| \le n$, $p \ge n+2$
 $\Rightarrow p-m \ge n+2-n=2$

Propriétés de fermeture

Énoncés du type : si certains langages sont réguliers et un langage L est obtenu via certaines opérations sur ces langages réguliers, alors L est régulier.

- Opérations de nature ensembliste
- Concaténation, renversement, fermeture

Propriétés de fermeture (suite)

Soit *L* et *M* deux langages réguliers. Alors les langages suivants sont réguliers :

- Union : $L \cup M$
- Intersection : $L \cap M$
- Complémentaire : \overline{L}
- Différence : $L \setminus M$
- Renversement : $L^R = \{w^R : w \in L\}$
- Fermeture : L^*
- Concaténation : LM

Union, concaténation et fermeture

Théorème 2

Soit L et M deux langages réguliers. Alors $L \cup M$ est régulier.

Preuve : Soit L = L(E) et M = L(F) avec E et F des ER. On a alors $L \cup M = L(E) \cup L(F) = L(E+F)$ par définition.

Théorème 3

Soit L et M deux langages réguliers. Alors LM est régulier.

Preuve : Soit L = L(E) et M = L(F) avec E et F des ER. On a alors LM = L(E).L(F) = L(EF) par définition.

Théorème 4

Soit L un langage régulier. Alors L* est régulier.

Preuve : Soit L = L(E) avec E une ER. On a alors $L^* = L(E)^* = L(E^*)$ par définition.

Complémentaire, intersection et différence

Théorème 5

Soit L un langage régulier. Alors le complémentaire de L dans Σ^* noté \overline{L} est régulier.

Preuve : Convertir l'expression régulière en un ε -AFN, puis convertir cet ε -AFN en un AFD $A = (Q, \Sigma, \delta, q_0, F)$. Soit alors l'automate $B = (Q, \Sigma, \delta, q_0, Q \setminus F)$. On a $\overline{L} = L(B)$.

Exemple : complémentaire du langage $L = (\mathbf{0} + \mathbf{1})^* \mathbf{01}$

Intersection et différence

Théorème 6

Soit L et M deux langages réguliers. Alors $L \cap M$ est régulier.

Preuve : Par les lois de De Morgan, on a $L \cap M = \overline{\overline{L} \cup \overline{M}}$. Par conséquent, $L \cap M$ est régulier comme complémentaire et l'union de langages régulier.

Corollaire 1

Soit L et M deux langages réguliers. Alors $L \setminus M$ est régulier.

Preuve : Comme $L \setminus M = L \cap \overline{M}$, on en déduit que $L \setminus M$ est régulier.

Retour sur l'intersection

Théorème 7

Soit L et M deux langages réguliers. Alors $L \cap M$ est régulier.

Preuve : Soit $A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$ et $B_L = (Q_M, \Sigma, \delta_M, q_M, F_M)$ deux automates déterministes reconnaissant respectivement L et M.

 \rightarrow on va construire un automate qui simule A_L et A_M en parallèle et qui accepte si et seulement si A_L et A_M acceptent.

Posons $A_{L\cap M} = (Q_L \times Q_M, \Sigma, \delta_{L\cap M}, (q_L, q_M), F_L \times F_M)$ avec

$$\delta_{L\cap M}((p,q),a)=(\delta_L(p,a),\delta_M(q,a))$$

 $\Rightarrow A_{L\cap M}$ reconnaît le langage $L\cap M$.

Retour sur l'intersection (exemple)

Renversement

Renversement : $a_1 a_2 \cdots a_{n-1} a_n \rightarrow a_n a_{n-1} \cdots a_2 a_1$ Pour un mot w, on note w^R son miroir

Étant donné un langage L, on note $L^R = \{w^R : w \in L\}$

Théorème 8

Soit L un langage régulier. Alors L^R est régulier.

Preuve 1 : Si *L* est régulier, il existe un AFD *A* qui le reconnaît :

- Renverser toutes les flèches dans le diagramme de transition de A
- L'état de départ de *A* devient seul et unique état acceptant.
- Créer un nouvel état p_0 de départ avec ε -transitions sur chaque état acceptant de A.

L'automate ainsi construit reconnaît L^R .

Renversement (suite)

Théorème 9

Soit L un langage régulier. Alors L^R est régulier.

Preuve 2 : Si L = L(E) avec E une ER, on va construire un ER E^R telle que $L(E^R) = L(E)^R$ par induction structurelle

Base : Si E est égale à ε , \varnothing ou **a** alors $E^R = E$

Induction:

- si E = F + G alors $E^R = F^R + G^R$
- si E = F.G alors $E^R = G^R.F^R$
- si $E = F^*$ alors $E^R = (F^R)^*$

On vérifie que E^R ainsi construit satisfait $L(E^R) = (L(E))^R$.

Exemple : si $L = (0 + 1)0^*$ alors $L^R = 0^*(0 + 1)$

Propriétés de décision des langages réguliers

Représentation finie des langages réguliers :

- AFD
- AFN, ε-AFN
- Expressions régulières

Questions:

- Le langage décrit est-il vide?
- Un mot donné appartient-il au langage décrit?
- Deux descriptions différentes définissent-elles le même langage?

Conversion entre représentations

On en a déjà vu quelques-unes... mais combien coûtent-elles?

Des AFN aux AFD:

On part d'un ε -AFN à n états :

- Calcul des ε -fermetures : $\mathcal{O}(n^3)$
- Construction des sous-ensembles : il y en a 2^n mais il faut aussi obtenir le diagramme de transition! Chaque transition coûte $\mathcal{O}(n^2)$.
- Cout global : $\mathcal{O}(n^3 2^n)$

Des AFD aux AFN:

C'est le plus simple et ça ne coûte que $\mathcal{O}(n)$ opérations.

Conversion entre représentations (suite)

Des automates aux expressions régulières :

À chaque étape, la longueur de l'expression peut quadrupler et il y a n étapes! Écrire les n^3 expressions coûte $\mathcal{O}(n^34^n)$.

L'élimination d'états ne change pas la complexité (juste la constante). Si l'entrée est un ε -AFN à n états, le coût de cette conversion est $\mathcal{O}(n^3 4^{2^n})$!

Des expressions régulières aux automates :

Conversion vers les ε -AFN linéaire en la longueur de l'expression.

Pour passer à un AFN : $\mathcal{O}(n^3)$

Tester si un langage régulier est vide

Représentation: un automate fini.

Reformulation de la question : existe-t-il un moyen de joindre un état acceptant à partir de l'état de départ (parcours de graphe)?

Par induction:

Base : L'état de départ est atteignable par l'état de départ.

Induction : Si l'état q est atteignable par l'état de départ, tout état atteignable depuis q est atteignable par l'état de départ.

Coût total : $\mathcal{O}(n^2)$.

Tester si un langage régulier est vide (suite)

On peut aussi étudier une ER E et dire si $L(E) = \emptyset$.

On procède de manière récursive :

- E = F + G. Alors L(E) est vide ssi L(F) et L(G) sont vides
- E = F.G. Alors L(E) est vide ssi L(F) ou L(G) sont vides
- $E = F^*$. Alors L(E) n'est jamais vide puisque $\varepsilon \in L(E)$
- $E = \varepsilon$. Alors L(E) est non vide
- $E = \mathbf{a}$. Alors L(E) est non vide
- $E = \emptyset$. Alors L(E) est vide

Tester l'appartenance à un langage régulier

- Pour tester si $w \in L(A)$ avec A un AFD, on en simule le fonctionnement. Si |w| = n alors cela coûte $\mathcal{O}(n)$.
- Si A est un AFN à s états, simuler A sur w coûte $\mathcal{O}(ns^2)$.
- Si A est un un ε -AFN à s états (il faut alors calculer les ε -fermetures), simuler A sur w coûte $\mathcal{O}(ns^3)$.
- Si L = L(E) pour une ER E de longueur s, on convertit E en un ε -AFN avec 2s états. Simuler w sur cette machine coûte $\mathcal{O}(ns^3)$.

Équivalence et minimisation d'automates

Tester si deux langages réguliers définissent le même langage.

Conséquence : Minimisation d'un AFD en un AFD unique.

Tester l'équivalence de deux états d'un AFD

Définition 1

Soit $A = (Q, \Sigma, \delta, q_0, F)$ un AFD et $p, q \in Q$. On dit que p et q sont équivalents et on note $p \equiv q$ si pour $w \in \Sigma^*$,

 $\widehat{\delta}(p,w)$ est un état acceptant ssi $\widehat{\delta}(q,w)$ est un état acceptant.

Si $p \not\equiv q$, on dit que p et q sont distinguables.

Autrement dit, $p \not\equiv q$ ssi il existe $w \in \Sigma^*$ tel que

- $\widehat{\delta}(p, w) \in F$ et $\widehat{\delta}(q, w) \notin F$ ou
- $\widehat{\delta}(p, w) \notin F$ et $\widehat{\delta}(q, w) \in F$

Tester l'équivalence de deux états d'un AFD

Exemple:

$$\widehat{\delta}(C,\varepsilon) \in F, \widehat{\delta}(G,\varepsilon) \notin F \implies C \not\equiv G$$

$$\widehat{\delta}(A,01) = C \in F, \widehat{\delta}(G,01) = E \notin F \implies A \not\equiv G$$

Tester l'équivalence de deux états d'un AFD (suite)

Que dire de *A* et *E*?

$$\widehat{\delta}(A,\varepsilon) = A \notin F, \widehat{\delta}(E,\varepsilon) = E \notin F \text{ et } \widehat{\delta}(A,1) = F = \widehat{\delta}(E,1)$$

Ainsi
$$\widehat{\delta}(A, 1x) = \widehat{\delta}(E, 1x) = \widehat{\delta}(F, x)$$
 pour tout $x \in \{0, 1\}^*$

De plus
$$\widehat{\delta}(A,00) = G = \widehat{\delta}(E,00)$$
 et $\widehat{\delta}(A,01) = C = \widehat{\delta}(E,01)$

Par conséquent : $A \equiv E$

Algorithme de remplissage de table

Algorithme récursif:

Base : si $p \in F$ et $q \notin F$ alors $p \not\equiv q$

Induction : si pour un $a \in \Sigma$, $\delta(p, a) \not\equiv \delta(q, a)$ alors $p \not\equiv q$

		,					
В	х		,				
C	x	x					
D	x	x	x				
\boldsymbol{E}		x	x	x			
\boldsymbol{F}	x	x	x		x		
G	x	x	x	x	x	x	
H	x		x	x	x	x	х

 $B \quad C \quad D \quad E \quad F \quad G$

Tester l'équivalence de langages réguliers

Les langages L et M deux langages réguliers Pour tester si L = M:

- ① Convertir L et M en AFD A_1 et A_2
- Imaginer l'AFD qui est l'union des deux AFD
- **③** Si les deux états de départ de A_1 et A_2 sont équivalents, alors L = M autrement $L \neq M$

Complexité : $\mathcal{O}(n^4)$

On peut la faire chuter à $\mathcal{O}(n^2)$.

Tester l'équivalence de langages réguliers (exemple)

On voit bien que les 2 automates acceptent le langage $\varepsilon + (0+1)^*0$

Minimisation d'AFD

Minimisation unique d'un AFD.

- Éliminer tout état ne pouvant pas être atteint par l'état de départ.
- Partitionner les états restants en blocs tels que tous les états se trouvant dans un même bloc sont équivalents.
- Les blocs deviennent des états.
- L'état de départ est le bloc contenant l'état de départ
- Les blocs acceptants sont ceux qui contiennent des états acceptants
- Si S est un bloc d'états équivalents et $a \in \Sigma$ alors $\delta(S, a)$ (réunion) est un bloc d'états équivalents.

Minimisation d'AFD (exemple)

Minimiser l'automate

