Q1. Dequation of the trajectory
$$x_0 = 30. \cos(2\pi \cdot 15.u)$$
 $y_0 = 30. \sin(2\pi \cdot 15.u)$ $u \in [0,1]$ $z_0 = |5 \cdot 10u$ a might sphere $1 - (x - x_0)^2 - (y - y_0)^2 - (z - z_0)^2 = 0$ a to specify the uniform speed $a = \frac{k-1}{160-1} = \frac{1}{160-1} = \frac{1}{160-1} = \frac{1}{160-1}$

Wz. The definition of the line is
$$\begin{cases} x_0 = 2 \cdot u \\ y_0 = 2 \cdot u \\ \frac{1}{2} = 0 \end{cases}$$

Code

x0=2*u;

x=z0*sin(1.5*pi*tau) + x0*cos(1.5*pi*tau);

$$\begin{array}{ll}
\therefore & \begin{cases}
\frac{3}{2} = \frac{3}{2} \cdot \cos(\frac{3}{2}\pi \cdot 7) - x_0 \sin(\frac{3}{2}\pi \cdot 7) \\
y = y_0 & 7 = \sin(\frac{3}{2}\pi \cdot 7) \\
x = \frac{3}{2} \cdot \sin(\frac{3}{2}\pi \cdot 7) + x_0 \cos(\frac{3}{2}\pi \cdot 7) & \text{te[0,1]}
\end{array}$$

B:
$$\begin{cases} X = V \cdot \cos(2\pi u) \\ Y = 2 \cdot V \cdot \sin(2\pi u) \\ \frac{1}{2} = 0 \end{cases}$$

.. the transformation is
$$\begin{cases}
X = (1-s)(2v\omega s(2\pi u) + s \cdot (V\omega s(2\pi u))) \\
Y = (1-s)(V \cdot sin(2\pi u)) + s \cdot (2V sin(2\pi u)) \\
\frac{1}{2} = 0
\end{cases}$$

$$\begin{cases} X_{z} = 2u \cos(2\pi V) - 2 \\ y_{z} = -4 + 4w \\ z_{z} = 2u \sin(2\pi V) + 2 \end{cases}$$

Cylinder
$$\begin{cases} X_{2} = 2u \cos(2\pi V) - 2 \\ y_{2} = -4 + 4w \\ 2z = 2u \sin(2\pi V) + 2 \end{cases}$$

$$(x_{2} = 2u \sin(2\pi V) + 2)$$

$$(x_{3} = (1 - 7)X_{1} + 7X_{2})$$

$$(x_{4} = (1 - 7)Y_{1} + 7Y_{2})$$

$$(x_{5} = (1 - 7)Y_{1} + 7Y_{2})$$

$$(x_{7} = (1 - 7)Y_{1} + 7Y_{2}$$

$$(x_{7} = (1 - 7)Y_$$

Code

x1=w*cos(-0.5*pi+pi*u)*sin(-pi+2*pi*v);

y1=w*sin(-0.5*pi+pi*u);

z1=w*cos(-0.5*pi+pi*u)*cos(-pi+2*pi*v);

x2=2*u*cos(2*pi*v)-2;

y2 = -4 + 4*w;

z2=2*u*sin(2*pi*v)+2;

x=(1-tau)*x1+tau*x2;

y=(1-tau)*y1+tau*y2;

z=(1-tau)*z1+tau*z2;