

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:			
Alexander	Τ.	Nowasell	

UB Person Number:

5	0	2	9	0	3	2	6
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	1 2 3 4 5 6 7 8 9			(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0 1 2 4 5 6 7 8 9	① ① ③ ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

0							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

Solution

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

an par

Compute A^{-1} .

$$\begin{bmatrix}
1 & -1 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{bmatrix}$$

Reduction

10	-). 	7	, 1 , -	.\ ^	\ \ 0	١	,
C	(2	_					
(_	l	21	C	, (`	

 $\begin{bmatrix} 1 & -1 & 12 \\ 1 & 0 & 11 \\ 0 & 2 & 11 \end{bmatrix}, \begin{bmatrix} -2 & 3 & 12 & 11 \\ 1 & -1 & 12 & 11 \\ 2 & -2 & 11 \end{bmatrix}$

Checko

-2 1

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of \mathcal{T} .
- b) Find all vectors **u** satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

0.12

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

> (10

1,0

1001 Pivet 0103 6100 00 17 Pivet

one to one

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

Not one-to-one

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 000)

(1 Spoh.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set {u, v} must be linearly independent.

> because if, {U,U, w} was linearly independent, then making w zero sidnit change it to be derendent, So remaving to be derendent, So remaving the entirely changes nothing. True,

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Putting to 222 Har service of the formation and using \$12 are material that the putting of the p

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True, the transformation must be one to one and onto, so the span would be kept it tact.