第二章程序的性能: 35 页 Q15 、Q16; 36 页 Q18; P81 Q20; 39 页 Q24; 54 页 Q37(b)(d)(f)(g)(h)(i)(m)

Q15

The third for loop is entered n^3 times. So, the total number of multiplications is n^3 .

O16

The third for loop is entered mpn times and the number of multiplications is mpn.

Q18

The first minmax function makes zero comparisons when n < 1 and 2 (n - 1) comparisons when $n \ge 1$.

The second function also makes zero comparisons when n < 1. However, when $n \ge 1$, the best case number of comparisons is n - 1 and the worst case number is 2(n - 1). The second function is expected to run faster on average.

Q20

The best case is one and the worst n+1. In comparing the two codes, we see that the new code has an additional assignment a[n] = x. However, the for loop is simplified and does not include the check i < n. In a successful search, the tradeoff is between one assignment and between 1 and n comparisons of type i < n. In an unsuccessful search, the tradeoff is between 1 assignment and an additional comparsion between elements of type T and T and T comparisons of the for T and T are the new code to run faster than the old one.

O24

(a)
$$t(n) = \begin{cases} 1, n < 1 \\ 1 + t(n-1), n \ge 1 \end{cases}$$
 so, $t(n) = 1 + t(n-1) = 2 + t(n-2) = \cdots = n$

(b)
$$4 + O(n) = O(n)$$

(c)
$$3 + O(n) = O(n)$$

o)						
	Statement	s/e	Frequency	Total steps		
	int MinMax(T a[], int n, int& Min, int& Max)	0	0	Θ(0)		
	{// Find min and max elements in a[0:n-1].		0	$\Theta(0)$		
	if $(n < 1)$ return 0;	1	1 1	$\Theta(1)$ $\Theta(1)$		
	Min = Max = 0;	1				
	for (int $i = 1$; $i < n$; $i++$) { if $(a[Min] > a[i]) Min = i$;		$\Theta(n)$ $\Theta(n)$	$\Theta(n)$ $\Theta(n)$		
						if $(a[Max] < a[i]) Max = i;$
	3	0	0	$\Theta(0)$		
	return 1;	1	1	Θ(1)		
	}	0	0	$\Theta(0)$		
	$t_{MinMax}(n) = \Theta(n)$					
d)	Statement	s/e	Frequency	Total steps		
	void Mult(T **a, T **b, T **c, int n)	0	0	Θ(0)		
	{// Multiply the n x n matrices a and b to get c.		0	Θ(0)		
	for (int $i = 0$; $i < n$; $i++$)	1	$\Theta(n)$	$\Theta(n)$		
	for (int $j = 0$; $j < n$; $j++$) {	1	$\Theta(n^2)$	$\Theta(n^2)$		
	T sum = 0;	1	$\Theta(n^2)$	$\Theta(n^2)$		
	for (int $k = 0$; $k < n$; $k++$)	1	$\Theta(n^3)$	$\Theta(n^3)$		
	sum += a[i][k] * b[k][j];	1	$\Theta(n^3)$	$\Theta(n^3)$		
	c[i][j] = sum;	1	$\Theta(n^2)$	$\Theta(n^2)$		
	}	0	0	$\Theta(0)$		
	}	0	0	$\Theta(0)$		
	$t_{Mult}(n) = \Theta(n)$	n^3)				
f)	Statement	s/e	Frequency	Total steps		
	int Max(T a[], int n)	0	0	$\Theta(0)$		
	{// Locate the largest element in a[0:n-1].	0	0	$\Theta(0)$		
	int $pos = 0$;	1	1	Θ(1)		
	for (int $i = 1$; $i < n$; $i++$)	1	$\Theta(n)$	$\Theta(n)$		
	if (a[pos] < a[i])	1	$\Theta(n)$	$\Theta(n)$		
	pos = i;	1	O(n)	O(n)		
	pos – 1,			0.00		
	return pos;	1	1	Θ(1)		

(g)	Statement		s/e	Frequency	y Total steps		
	T PolyEval(T coeff[], int n, const T&:	x)	0	0	Θ(0)		
	{// Evaluate the degree n polynomial		0	0	Θ(0)		
	// coefficients coeff[0:n] at the point x.						
	T y = 1, value = $coeff[0]$;		1	1	Θ(1)		
	for (int $i = 1$; $i \le n$; $i++$) {		1	$\Theta(n)$	$\Theta(n)$		
// add in next term			0	0	$\Theta(0)$		
	y *= x; value += y * coeff[i];		1	$\Theta(n)$	$\Theta(n)$		
			1	$\Theta(n)$	$\Theta(n)$		
	}			0	$\Theta(0)$		
return value;		1	1	$\Theta(1)$			
	}		0	0	$\Theta(0)$		
$t_{PolyEval}(n) = \Theta(n)$							
(h)	Statement		s/e	Frequency	y Total steps		
	T Horner(T coeff[], int n, const T& x)		0	0	Θ(0)		
	{// Evaluate the degree n polynomial		0	0	Θ(0)		
	// coefficients coeff[0:n] at the point x.		0	0	Θ(0)		
	T value = coeff[n];		1	1	Θ(1)		
	for (int $i = 1$; $i \le n$; $i++$)		1	$\Theta(n)$	$\Theta(n)$		
	value = value * x + coeff[n - i]	;	1	$\Theta(n)$	$\Theta(n)$		
	return value;		1	1	$\Theta(1)$		
	3		0	0	$\Theta(0)$		
	$t_{Horner}(n) = \Theta(n)$						
(i)	Statement	s/e	Freq	uency	Total steps		
	void Rank(T a[], int n, int r[])	0	0		Θ(0)		
	{// Rank the n elements a[0:n-1].	0	$ \begin{array}{c} 0\\ \Theta(n)\\ \Theta(n)\\ \Theta(n)\\ \Theta(\sum_{n=1}^{n-1}i)\\ \Theta(\sum_{i=1}^{n-1}i) \end{array} $		$\Theta(0)$		
	for (int $i = 0$; $i < n$; $i++$)	1			$\Theta(n)$		
	r[i] = 0;	1			$\Theta(n)$		
	for $(i = 1; i < n; i++)$	1			$\Theta(n)$		
	for (int $j = 0$; $j < i$; $j++$)	1			$\Theta(n^2)$		
	$if(a[j] \le a[i]) r[i]++;$	1			$\Theta(n^2)$		
	else r[j]++;	1), $O(n^2)$	$\Omega(0)$, $O(n^2)$		
	}	0	0		$\Theta(0)$		
	$t_{Rank}(n) = \Theta(n^2)$						

m)	Statement	s/e	Frequency	Total steps
	void Insert(T a[], int n, const T& x)	0	0	Θ(0)
	{// Insert x into the sorted array a[0:n-1].	0	0	$\Theta(0)$
	int i;	0	0	$\Theta(0)$
	for $(i = n-1; i \ge 0 \&\& x < a[i]; i)$	1	$\Omega(1)$, $O(n)$	$\Omega(1)$, $O(n)$
	$\mathbf{a[i+1]} = \mathbf{a[i]};$	1	$\Omega(1)$, $O(n)$	$\Omega(1)$, O(n)
	a[i+1] = x;	1	1	$\Theta(1)$
	}	0	0	$\Theta(0)$

$$t_{Insert}(n) = \Omega(1), O(n)$$

Statement	s/e	Frequency	Total steps
void InsertionSort(T a[], int n)	0	0	$\Theta(0)$
4	0	0	$\Theta(0)$
for (int $i = 1$; $i < n$; $i++$) {	1	$\Theta(n)$	$\Theta(n)$
T t = a[i];	1	$\Theta(n)$	$\Theta(n)$
Insert(a, i, t);	$\Omega(1)$, $O(i)$	$\Theta(n)$	$\Omega(n)$, $O(n^2)$
}	0	0	$\Theta(0)$
}	0	0	$\Theta(0)$

 $t_{InsertionSort}(n) = \Omega(n), O(n^2)$

```
Q.26
```

```
for m=2 to n do {
	for i=0 to n-m do {
		j=i+m
		w(i,j)=w(i,j-1)+P(i)+Q(j)
		c(i,j)=\min_{i< l \le j} { c(i,l-1)+c(l,j) } +w(i,j)
	}
}
W(n,n),P(n),Q(n),c(n,n)为算法中使用的数组并已初始化。
```

```
答: for m=2 to n do { \Theta(n) for i=0 to n-m do { \Theta(n^2) \Theta(n^2) W(i,j)=W(i,j-1)+P(i)+Q(j) \Theta(n^2) C(i,j)=\min_{i< l \le j} { C(i,l-1)+C(l,j) } C(i,j)=W(i,j)+C(i,k-1)+C(k,j) \Theta(n^2) } }
```

```
\min_{i < l \le j} \{ c(i, l-1) + c(l, j) \} 的执行时间为 O(j-i) = O(m); 内层 for-循环的执行时间为 O(m(n-m)); 总的执行时间 t(n) = O(\sum_{m=2}^{n} m(n-m)) = O(n^3) Q.27 void sort ( int EL l int n)
```

```
void sort ( int E[ ], int n)
{//对数组E中的n个元素进行排序
        if (n > 1) {
            i = n/2;
            j = n-i;
            令A 包含E中的前i 个元素
            令B 包含E中余下的j 个元素
            sort (A, i);
            sort (B, j);
            merge (A, B, E, i, j); //把A和B合并到E
        }
        其中merge (A, B, E, i, j)的时间复杂度是O(i+j)
```

答:
$$t(n) = \begin{cases} d & n \leq 1 \\ t(\lfloor n/2 \rfloor + t(\lceil n/2 \rceil + cn \quad n > 1) \end{cases}$$
 令 $n = 2^m$,则 $t(n) = 2t(n/2) + cn = 2[2t(n/2^2) + c(n/2)] + cn = 2^2t(n/2^2) + 2cn = \cdots = 2^mt(n/2^m) + mcn = nd + cnlog_2^n$ 所以 $t(n) = \Theta(nlog_2^n)$

1.

$$T(N) \leq \begin{cases} 0 & \text{if } N = 1 \\ \underline{T(\lceil N/2 \rceil)} + \underline{T(\lfloor N/2 \rfloor)} + \underbrace{cN}_{\text{combine}} & \text{otherwise} \end{cases}$$

$$\Rightarrow T(N) \leq cN \lceil \log_2 N \rceil$$

Proof by induction on N.

- . Base case: N = 1.
- Define n₁ = [n / 2], n₂ = [n / 2].
- Induction step: assume true for 1, 2, ..., N 1.

$$\begin{split} \varGamma(N) & \leq \varGamma(n_1) + \varGamma(n_2) + cn \\ & \leq cn_1 \lceil \log_2 n_1 \rceil + cn_2 \lceil \log_2 n_2 \rceil + cn \\ & \leq cn_1 \lceil \log_2 n_2 \rceil + cn_2 \lceil \log_2 n_2 \rceil + cn \\ & = cn \lceil \log_2 n_2 \rceil + cn \\ & \leq cn (\lceil \log_2 n_1 \rceil - 1) + cn \\ & = cn \lceil \log_2 n \rceil \end{split}$$

$$\begin{array}{rcl} n_2 &=& \left \lceil n/2 \right \rceil \\ &\leq & \left \lceil 2^{\left \lceil \log_2 n \right \rceil}/2 \right \rceil \\ \Rightarrow & \log_2 n_2 \leq \left \lceil \log_2 n \right \rceil -1 \end{array}$$

2. Case 1: $\log_b a = 1$, $n^{\log a}$ 是 $n^{1/2}$ 的上界(例如 ϵ 取 1/3)。所以 $T(n) = \Theta(n)$. 3. $\Theta(n^2)$

4. Θ (nlogn)

- 5. 应用Master's方法求解书中157页练习Q37的递归式
 - (a) Case 1: $\Theta(n^{\log 10})$
 - (b) Case 3: Θ (n⁵)

6. 练习14(a)

解:因每次将较大的段进栈,留下较小的段继续分划,所以,至多 $\lceil \log_2 n \rceil$ 次分划留下的段长度为1,所以进栈的段至多 $\lceil \log_2 n \rceil$ 。

7. 分析当r取3时是否能在O(n)时间内求解选择问题?分析r=7时选择算法的时间复杂度。解:当r=3 时,找不到满足 α +1/3<1的正数 α 使得n-2*[(1/2)(n/3)]< α n,[]表示向上取整。所以不能确定是否能在O(n)时间内用本节介绍的分治法求解。

当r=7时,可证明: T(n)≤T(n/7)+T(5n/6)+cn,当n>1时成立。用归纳法可证明: T(n) ≤42cn成立。

8. (123 页练习 4) 证明按普通 2×2 分块矩阵乘法得到的分治法算法的时间复杂度为 $\Theta(n^3)$.

解.
$$t(n)=8t(n/2)+cn^2=8[8t(n/2^2)+c(n/2)^2]+cn^2$$

 $=8^2t(n/2^2)+c(8/4)n^2+cn^2$
 $=8^2[8t(n/2^3)+c(n/2^2)^2]+c(8/4)n^2+cn^2$
 $=8^3t(n/2^3)+c(8/4)^2n^2+c(8/4)n^2+cn^2$
 $=\cdots\cdots$
 $=8^kt(1)+cn^2(1+2+\cdots+2^{k-1})$
 $=8^kt(1)+cn^2(2^k-1)=(2^k)^3+cn^2(n-1)=n^3+cn^2(n-1)=\Theta(n^3)$
9. 分析书中递归式(14.7).

解 设 $n=4^k$, 即 $2^k \times 2^k$ 棋盘的方格数目。

$$t(k)=d$$
 $k = 0$
 $t(k) = 4t(k-1)+c$ $k>0$

$$\begin{array}{lll} t(k) = & 4t(k-1)+c \\ & = & 4[4t(k-2)+c]+c \\ & = & \dots \\ & = & 4^kt(0)+c(1+4+4^2+\dots+4^{k-1}) \end{array}$$