Mágneses szuszceptibilitás mérése

Klasszikus fizika laboratórium, Csütörtöki csoport

Márton Tamás

2017, Oktober 5.

Bevezetés

A mérés célja a három darab fém henger és az üvegfiolába töltött víz mágneses szuszceptibilitása volt. Ezt az úgynevezett Gouy-módszerrel végeztem. Ez azt jelenti, hogy a mintákat a laborban található kisebb teljesítményű elektromágnes mágnespofái közé helyeztem ahol a mágneses tér jó közelítéssel hommogénnek tekinthető, azonba a pofák álltal határolt hengeres térrészt elhagyva már inhomogenitást mutat, majd mértük a mágneses indukció nagyságát és a mintára ható erőt. Előbbit egy, a mérés első lépéseként hitelesített Hall-szondával végeztem, az erőt pedig egy nagy pontosságú analitikai mérleggel mértem.

I. Elméleti összefoglaló, képlettár

I.1. Anyagok mágneses tulajdonságai

Ismert, hogy az anyagok külső **H** mágneses tér hatására valamilyen **m** mágneses dipólmomentumot vesznek fel. A dipólusmomentum helyett célszerű az egységnyi térfogatra jutó dipólusmomentumot, az **M** mágnesezettség vektort használni. Kis térerősségek és izotrop anyagok esetén a mágnesezettség és a térerősség között lineáris kapcsolat áll fenn:

$$\mathbf{M} = \mu_0 \chi \mathbf{H}$$

ahol $\mu_0 = 4\pi 10^{-7} \, \frac{\text{Vs}}{\text{Am}}$ a vákuum (levegő) permeabilitása, χ pedig az anyag szuszceptibilitása. Fennáll továbbá a térerősség és az indukció között az alábbi összefüggés:

$$\mathbf{B} = \mu \mu_0 \mathbf{H}$$

A μ relatív permeabilitás és a χ szuszceptibilitás nem függetlenek egymástól:

$$\mathbf{B} = \mu_0 \mathbf{H} + \mathbf{M}$$

Mivel $\mu_0\mu = \mu_0(1+\chi)$, ezért

$$\mathbf{B} = \mu_0 (1 + \chi) \mathbf{H}$$

Ezek alapján az anyagokat három csoportba oszthatjuk:

1. Diamágneses anyagok:

Diamágnesnek azokat az anyagokat nevezzük melyek szuszceptibilitása kis abszolút értékű negatív szám. Tehát a mágnesezettség vektor a térrel ellentétes irányú:

$$|\chi| \ll 1, \chi < 0$$

2. Paramágneses anyagok:

Paramágnesnek nevezzük azon anyagokat melyek kis abszolút értékű pozitív szuszceptibilitással rendelkeznek:

$$0 < \chi \ll 1$$

3. Ferromágneses anyagok:

A ferromágneses anyagok esetén

$$\chi \gg 1$$
,

ekkor a szuszceptibilitás már a külső tér $\chi(\mathbf{H})$ függvénye (egy bizonyos telítési értékig).

I.2. A Hall-effektus

Mivel a mintát egy olyan mágneses térbe helyezzük, ahol a mágnespofák között a mágneses tér jó közelítéssel homogénnek tekinthető, de a pofák széleinél már inhomogén a mágneses tér,ezért a méréshez használt Hall-szondát a pofák geometriai középpontjához lehető legközelebb helyezték el.

Itt használjuk ki a Hall-effektust, amely szerint mágneses térben egy félvezetőben I_H áramot folyatva az áram irányára merőlegesen U_H Hall-feszültség mérhető, mely arányos lesz a mágneses térrel:

$$U_H = B \frac{R_H}{d} I_H$$

ahol d a félvezető vastagsága, B pedig a mágneses indukció nagysága.

A minták szuszceptibilitásának meghatározása előtt, hitelesítenem kellett a Hallszondát. Ez azt jelenti, hogy meghatározzuk a $B(U_H)$ függvényt. Ennek a fentebb leírtak értelmében ennnek egy egyenesnek kell lennie, ami egy a mérés során indukálódó parazita feszültséggel azaz egy konstans értékkel el lesz tolva:

$$B = \alpha U_H + \beta$$

Itt U_H -t tudjuk mérni a szondára kapcsolt voltméterrel. B értékét a fluxusváltozásból tudjuk meghatározni, az alábbi módon:

$$B = \frac{\phi}{n\overline{F}}$$

A ϕ fluxusváltozást egy fluxusmérővel tudjuk mérni, tekercs n menetszáma, adott volt, az átlagos menetfelületet, \overline{F} -et pedig az alábbi módon számíthatjuk ki:

$$\overline{F} = \frac{\pi}{3}(r_k^2 + r_k r_b + r_b^2)$$

Ezen ismereteket felhasználva már a fenti α és β paramétere meghatározhatóak.

I.3. Gouy-módszer

A mágnespofák közé helyezett mintára, az inhomogén tér következtében a mágneses tér gradiense függőleges irányú erőt gyakorol:

$$F_y = \frac{1}{2}(\chi - \chi_0)A\mu_0H_y^2 = \frac{1}{2\mu_0}(\chi - \chi_0)AB_y^2$$

ahol A a minta keresztmetszete, $\chi_0 = 3.77 \cdot 10^{-7}$ pedig a levegő szuszceptibilitása. Mivel F és B^2 között lineáris kapcsolat áll fenn ezért az $F - B^2$ grafikonra m meredekségű egyenest illesztve kapjuk, hogy:

$$\chi = \chi_0 + m \frac{2\mu_0}{A}$$

II. Mérési eredmények

Először a szondát kellett hitelesítenem. Ehhez különböző áramok mellett mértem a fluxust és a Hall-feszültséget. A következő adatokat kaptam:

Áramerősség [A]	Fluxus [1000*Vs]	Hall-feszültség [mV]
0.4	0.91	21.0
0.8	1.66	35.6
1.2	2.53	53.1
1.6	3.33	68.9
2	4.22	86.7
2.4	5.08	104.0
2.8	5.93	120.8
3.2	6.73	134.0
3.6	7.32	148.1
4	7.97	162.1

Ahol a Hall-feszültség hibája, mindenhol $\pm 0.05~mV$, az áramerősségé $\pm 0.05~A$, a fluxusé pedig $\pm 5~Vs$. Ebből kaphatóak megfelelő átalakítások után az elméleti összefoglalóban felsorolt képletekkel, a következő, már ábrázolandó mennyiségek:

Áramerősség [A]	Fluxus [1000*V]	Mágneses indukció $\left[\frac{Vs}{m^2}\right]$
0.4	0.91	0.1189 ± 0.0003
0.8	1.66	0.2169 ± 0.0005
1.2	2.53	0.3306 ± 0.0008
1.6	3.33	0.435 ± 0.001
2	4.22	0.5515 ± 0.0013
2.4	5.08	0.6639 ± 0.0016
2.8	5.93	0.7751 ± 0.0019
3.2	6.73	0.8796 ± 0.0021
3.6	7.32	0.9567 ± 0.0024
4	7.97	0.0416 ± 0.0026

Hitelesítéshez az alábbi paraméterekkel rendelkező mérőtekercset használtam:

- n = 194
- $r_k = 4.8 \pm 0.01 \text{ mm}$
- $r_b = 3.05 \pm 0.01 \text{ mm}$
- $\overline{F} = 49.17 \pm 0.25 \text{ mm}^2$

Itt

$$\overline{F} = \frac{\pi}{3}(r_k^2 + r_k r_b + r_b^2)$$

a $\Delta \overline{F}$ hiba pedig:

$$\Delta \overline{F} = \frac{\pi}{3} [(2r_b + r_k)\Delta r_b + (r_b + 2r_k)\Delta r_k] = 0.25 \text{ mm}^2$$

Ezután ábrázolva az adatokat:

Az egyenes egyenletéből az illesztés után az együztthatók: $B=\alpha*U_H=0.0016\pm0.00002\beta=0.0022\pm0.0001ebblmeghatrozhat, hogya{\bf R}_{h\,\overline{d}}$ együttható értéke: 47.7±0.5 $\frac{T}{V}$ és a feszültség amit 0 T-nál elviekben mérhető az illesztés szerint (tengelymetszet) $U_t=2.2\pm0.11mV$

Ezután megmértem a három fém minta és a víz szuszceptibilitását. Az első esetben a 14 es mintánál a következő mérési adatokat kaptam:

$$2r \text{ (mm)} \mid 7.26 \mid 7.25 \mid 7.27$$

Ahol $\Delta 2r = 0.005$ mm. Az adatokból kiszámolható az átlagos sugár és keresztmetszet:

$$\overline{r} = 3.63 \text{ mm},$$

$$A = 41.37 \pm 0.5 \text{ mm}^2.$$

$U_H \text{ (mV)}$	F/g (mg)
21	-0.1
35.6	-0.7
53.1	-1.9
69.9	-3.3
86.7	-5.5
104	-8.1
120.8	-11.1
134	-13
148.1	-16.8
162.1	-20.2

A 14-es mintára ható tartóerő az indukció négyzetének függvényében:

Az illesztett görbe meredeksége és az abből számolt szuszceptibilitás:

$$m = -2.393 \pm 0.17 \frac{\mu \text{N}}{\text{T}^2},$$

 $\chi = -0.0733 \pm 0.005.$

Ezután következett az 15-ös minta. A minta átmérőjére a következő értékeket mértem:

$$2r \text{ (mm)} \mid 7.12 \mid 7.14 \mid 7.13$$

Ahol $\Delta 2r = 0.005$ mm. Az adatokból kiszámolható az átlagos sugár és keresztmetszet:

$$\overline{r} = 3.57 \pm 0.002 \text{ mm},$$

$$A = \overline{r}^2 \pi = 40.04 \pm 0.004 \text{ mm}^2.$$

A mintára ható erő az egyes esetekben

$U_H \text{ (mV)}$	F/g (mg)
21	-0.1
35.6	-0.7
53.1	-1.9
68.9	-3.3
86.7	-5.5
104	-8.1
120.8	-11
134	-13
148.1	-16.8
162.1	-20.2
·	·

A tartóerő erős mágneses terek esetén:

$$m = -2.115 \pm 0.16 \ \frac{\mu\text{N}}{\text{T}^2},$$

$$\chi = \chi_0 + \frac{2\mu_0}{A} m = -0.1295 \pm 0051 \cdot 10^{-6}.$$

ahol a hibát

$$\Delta\chi = \frac{2\mu_0}{A}m\sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta m}{m}\right)^2}$$

szerint számoltam, χ_0 hibáját elhanyagolva.

Ezután következett az 19-es minta. A minta átmérőjére a következő értékeket mértem:

$$2r \text{ (mm)} \mid 7.8 \mid 7.97 \mid 7.88$$

Ahol $\Delta 2r = 0.005$ mm. Az adatokból kiszámolható az átlagos sugár és keresztmetszet:

$$\overline{r} = 3.91 \pm 0.002 \text{ mm},$$

 $A = \overline{r}^2 \pi = 48.06 \pm 0.004 \text{ mm}^2.$

A mintára ható erő az egyes esetekben

$U_H \text{ (mV)}$	F/g (mg)
21	-0.3
35.6	-0.6
53.1	-1.3
68.9	-2.1
86.7	-3.2
104	-4.5
120.8	-6.2
134	-7.4
148.1	-9
162.1	-10.8

A tartóerő erős mágneses terek esetén:

$$m = -1.196 \pm 0.074 \frac{\mu \text{N}}{\text{T}^2},$$

$$\chi = \chi_0 + \frac{2\mu_0}{A} m = -0.438 \pm 0051 \cdot 10^{-6}.$$

ahol a hibát

$$\Delta\chi = \frac{2\mu_0}{A}m\sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta m}{m}\right)^2}$$

szerint számoltam, χ_0 hibáját elhanyagolva.

Az utolsó mérésem alkalmával a víz szuszceptibilitását határozom meg

Az üveg cső belsőátmérőjét az elmondottak alapján hazsnáltam a számításokhoz:

$$R = 3mm$$

$$A = \overline{r}^2 \pi = 28.27 \pm 0.004 \text{ mm}^2.$$

A mintára ható erő az egyes esetekben az üvegben benne volt a víz:

$U_H \text{ (mV)}$	F/g (mg)
21	-0.7
35.6	-1.4
53.1	-2.5
68.9	-3.6
86.7	-5.5
104	-7.6
120.8	-9.9
134	-11.8
148.1	-14.3
162.1	-17

A tartóerő erős mágneses terek esetén:

ahol a hibát

$$\Delta \chi = \frac{2\mu_0}{A} m \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta m}{m}\right)^2}$$

szerint számoltam, χ_0 hibáját elhanyagolva.

III. Konklúzió

A mérés során rengeteg hibaforrás volt. A mintát nehezen lehetett egy síkban mozgatni a Hall-szonda hitelesítésénél ezért is fordulhatott elő, hogy a mérés kissé pontatlan lehetett. Ez sajnos befolyással volt a többi eredményre is.