1 Classification of Hermitian Forms

A vector $v \in V$ is said to be **primitive** if $v \notin V\mathfrak{r}$. This is equivalent to saying that v belongs to a basis of V. We say that h is **isotropic** if there is a primitive vector $v \in V$ such that h(v, v) = 0.

Lemma 1.1. Suppose h is isotropic. Then, given any $r \in R$ there is a primitive vector v satisfying h(v, v) = r.

Proof. By assumption, h is isotropic so there is a primitive vector $u \in V$ such that h(u,u)=0. Because h is assumed to be non-degenerate, there exists $w \in V$ such that h(u,w)=d. Set $s=r-h(w,w)\in R$ and v=us+w. Then

$$h(v,v) = h(us + w, us + w)$$

$$= sh(u, w) + sh(u, w) + sh(w, u) + h(w, w)$$

$$= s(d + d^*) + h(w, w)$$

$$= s + h(w, w)$$

$$= r - h(w, w) + h(w, w)$$

$$= r$$

We assume for the remainder of the paper that the squaring map of the 1-group $1+\mathfrak{m}$ is an epimorphism and that $R/\mathfrak{m}=F_q$ is a field of finite order q and odd characteristic. Thus $[F_q^*:F_q^{*2}]=2$. To see this, pick $r\in F_q^*\backslash F_q^{*2}$. Then the minimal polynomial of x is $t^2-r^2\in F_q^{*2}[t]$. A similar argument shows that $[R^*:R^{*2}]=2$. We can now fix an element $\varepsilon\in R^*\backslash R^{*2}$. Since $R^{*2}\subseteq Q(A^*)$, we infer $Q(A^*)=R^*$ if Q is surjective and $Q(A^*)=R^{*2}$ otherwise.

Proposition 1.1. The division ring A/\mathfrak{r} is commutative. Moreover,

- (a) If the involution that * induces on A/\mathfrak{r} is the identity then Q is not surjective and $A/\mathfrak{r} \cong F_q$.
- (b) If the involution that * induces on A/\mathfrak{r} is not the identity then Q is surjective and $A/\mathfrak{r} \cong F_{\sigma^q}$.

Proof. We begin embedding R/\mathfrak{m} in A/\mathfrak{r} using the mapping $x + \mathfrak{m} \mapsto x + \mathfrak{r}$ for $x \in R$. Thus R/\mathfrak{m} can be viewed as a subfield of A/\mathfrak{r} . Now let \circ be the involution that * induces on $A/\mathfrak{r}(a + \mathfrak{r} \mapsto a^* + \mathfrak{r})$ and let $k = \{a \in A/\mathfrak{r} : a \in A/\mathfrak{r}$

 $a^{\circ} = a$ } be the set of all elements of A/\mathfrak{r} that are fixed by \circ . Then $R/\mathfrak{m} \subseteq k$ (by definition, R is fixed under *). Conversely, assume that $a + \mathfrak{r} \in k$. Then $a - a^* \in \mathfrak{r}$, so

$$a = \frac{a+a^*}{2} + \frac{a-a^*}{2} \in R + \mathfrak{r}$$

and $k \subseteq (R + \mathfrak{r})/\mathfrak{r} = R/\mathfrak{m}$. Thus k = R/m.

- (a) In this case, $A/\mathfrak{r} = k = R/\mathfrak{m}$ and the norm map $(A/\mathfrak{r})^* \to (R/\mathfrak{m})^*$ (induced by Q) is the squaring map of F_q^* . This map is not surjective, so the norm map Q is not surjective.
- (b) In this case, we assume that A/\mathfrak{r} properly contains k. Then for any $f \in A/\mathfrak{r} \setminus k$, the minimal polynomial of f is $(t-f)(t-f^\circ) = t^2 (f+f^\circ)t + ff^\circ \in k[t]$.

Let $f, e \in A/\mathfrak{r}$. The goal is to show that f and e commute. Let $f_1 = f - (f + f^\circ)/2$ and $e_1 = e - (e + e^\circ)/2$. Since $(f + f^\circ)/2$, $(e + e^\circ)/2 \in k$ (which is a field), it is sufficient to show that f_1 and e_1 commute. Note that $f_1^\circ = -f_1$ and $e_1^\circ = -e_1$. Then

$$(e_1f_1 + f_1e_1)^{\circ} = f_1^{\circ}e_1^{\circ} + e_1^{\circ}f_1^{\circ} = f_1e_1 + e_1f_1$$

and $e_1f_1+f_1e_1 \in k$. Thus $k\langle f_1, e_1\rangle$ is the k-span of $1, f_1, e_1, f_1e_1$ and $k\langle f_1, e_1\rangle$ is a finite dimensional division algebra over k. Thus by Wedderburn's theorem, $k\langle f_1, e_1\rangle$ is a field, implying that f and e commute.

Thus A/\mathfrak{r} is a field, algebraic over $k = R/\mathfrak{m}$, where every element of $A/\mathfrak{r}\setminus k$ has degree 2 over k. Since every algebraic extension of k is separable, the primitive element theorem implies that $[A/\mathfrak{r}:k]=2$.

We now want to show that the norm map $\hat{Q}: (A/\mathfrak{r})^* \to k^*$ induced by * is surjective. Because $k \subseteq A/\mathfrak{r}$, if $r \in k^2$, then there exists $s \in k$ with s fixed under * and $s^2 = r$. Thus $\hat{Q}(s) = s^2 = r$. Now pick $x \in k \setminus k^2$. Then $\sqrt{x} \notin k$.

Consider two cases:

Case 1: Assume $-x \notin k^2$. Then $A/\mathfrak{r} \cong F_{q^2} = k(\sqrt{-x})$. Every element of A/\mathfrak{r} can be written in the form $a + b\sqrt{-x}$ with $a, b \in k$ and

$$\hat{Q}(a + b\sqrt{-x}) = a^2 - b^2 \cdot -x = a^2 + b^2 x.$$

Then taking $s = \sqrt{-x}$ gives $\hat{Q}(s) = x$ and $x \in \hat{Q}\left(A/\mathfrak{r}\right)$.

Case 2: Assume that $-x \in k^2$. Because exactly half of the elements in k^* have square roots, there must exist some element $z \in k^*$ where $\sqrt{z} \in k^*$ and $\sqrt{z+1} \notin k^*$. Then $F_{q^2} = k(\sqrt{z+1})$. Now take $s = \sqrt{-x}\sqrt{z} + \sqrt{-x}\sqrt{z+1}$. Then

$$\hat{Q}(s) = (-xz) - (-x(z+1)) = (z+1)x - zx = x$$

and \hat{Q} is surjective.

It follows that the norm map $(A/\mathfrak{r})^* \to (R/\mathfrak{m})^*$ induced by \star is surjective, implying that the norm map $A^* \to R^*$ is as well since the squaring map of $1 + \mathfrak{m}$ is surjective.

Proposition 1.2. Suppose $m \geq 2$. Then given any unit $r \in R$ there is a primitive vector $v \in V$ satisfying h(v, v) = r.

Proof. Cosider two cases:

- h is isotropic. Then 1.1 applies.
- \bullet h is non-isotropic.

By lemma 2.2, there is an orthogonal basis $u_1, u_2, \ldots u_m$ of V such that $h(u_i, u_i) \in R^*$. Let $a = h(u_1, u_2) \in R^*$ and $b = h(u_2, u_2) \in R^*$. if $t_1, t_2 \in R^*$, then $v = u_1 t_1 + u_2 t_2$ is primitive (because it is part of a basis), so

$$0 \neq h(v, v) = at_1^2 + bt_2^2.$$

Dividing by a and letting $c = b/a \in R^*$,

$$0 \neq t_1^2 + ct^2$$

implying that -c is not a square in R^* . Let $S = R[t]/(t^2 + c)$ and $\delta = t + (t^2 + c) \in S$. Then $S = R[\delta], \delta^2 = -c$ and every element of S can be uniquely written in teh form $t_1 + t_2\delta$ with $t_1, t_2 \in R$. We have an involution $s \mapsto \hat{s}$ defined by $t_1 + t_2\delta \mapsto t_1 - t_2\delta$, whose corresponding norm map $J: S^* \to R^*$ given by $s \mapsto s\hat{s}$, or $t_1 + t_2\delta \mapsto t_1^2 + ct_2^2$.

We claim that S is local with maximal ideal $S\mathfrak{m}$. Let $t_1,t_2\in R$, not both in \mathfrak{m} , and consider $J(t_1+t_2\delta)=t_1^2+ct_2^2$. If one of t_1,t_2 is in m, then $t_1^2+ct_2^2\in R^*$. To see this, assume that either t_1 or $t_2\not\in\mathfrak{m}$. Then if $t_1^2+ct_2^2\in\mathfrak{m}$, $t_1^2=-ct_2^2+m$ and $ct_2^2=-t_1^2-m$ for some $m\in\mathfrak{m}$. Since either t_1,t_2 is invertible, this implies that both $t_1,t_2\in\mathfrak{m}$, a contradiction.

Thus $t_1^2 + ct_2^2 \in R^*$ and $t_1 + t_2\delta \in S^*$. Now suppose that both $t_1, t_2 \in R^*$ but $t_1 + t_2\delta \notin S^*$. Then $t_1^2 + ct_2^2 = f \in \mathfrak{m}$, and

$$-c = (t_1^{-1})^2(t_1^2 - f) = (t_2^{-1})^2 t_1^2 (1 - (t_1^{-1})^2 f)$$

. By assumption (because A is a local ring), $1 - (t_1^{-1})^2 f \in \mathbb{R}^{*2}$, implying that $-c \in \mathbb{R}^{*2}$, a contradiction. Thus S is local with maximal ideal $S\mathfrak{m}$.

Thus $S/S\mathfrak{m}$ is a field. The imbedding $R/\mathfrak{m} \to S/S\mathfrak{m}$ allows us to view $S/S\mathfrak{m}$ as a vector space over R/\mathfrak{m} , with $\{1+S\mathfrak{m},\delta+\mathfrak{m}\}$ as a basis. Thus $S/S\mathfrak{m}$ is a quadratic extension of R/\mathfrak{m} . The involution of S induces the R/\mathfrak{m} -automorphism of $S/S\mathfrak{m}$ of orer 2 and the norm map J induces the norm map $(S/S\mathfrak{m})^* \to (R/\mathfrak{m})^*$.

Since R/\mathfrak{m} is known to be F_q , this map is known to be surjective. We claim that J is surjective. Indeed, pick $e \in R^*$. Then by the surjectivity of the norm map, there is $s \in S$ and $f \in \mathfrak{m}$ such that

$$j(s) = e + f = e(1 + e^{-1}f).$$

Since $1 + e^{-1}f \in R^{*2}$ (by surjectivity of squaring map of $1 + \mathfrak{m}$), it follows that e is in the image of J, as claimed.

By the claim there are $t_1, t_2 inR$ with at least one in R^* , such that $t_1^2 + t_2^2 c = r/a$. Then $v = u_1 t_1 + u_2 t_2$ is primitive and

$$h(v,v) = at_1^2 + bt_2^2 = r.$$

This completes the proof.

Theorem 1.1. There is an orthogonal basis v_1, v_2, \ldots, v_m of V satisfying

$$h(v_1, v_1) = \dots = h(v_{m-1}, v_{m-1}) = 1$$
 and $h(v_m, v_m) = 1$ if $QA^* = R^*$ $h(v_m, v_m) \in \{1, \varepsilon\}$ if $Q(A^*) = R^{*2}$

Proof. To prove this, we'll use induction on m. Assume that m=1. By lemma 2.2, V has a basis $\{u_1\}$ such that $h(u_1,u_1) \in R^*$. If $Q(A^*) = R^*$, then $h(u_1,u_1) = aa^*$ for some $a \in A^*$. Let $v = u_1a^{-1}$. Then

$$h(v, v) = a^{-1} * a^{-1}h(u, u) = 1.$$

If $Q(A^*) = R^{*2}$, then $h(u_1, u_1) = \varepsilon b$ for some $b \in R^{*2}$ (note that from earlier result, $[R^*: R^{*2}] = 2$). Then $b = r^2$ for some $r \in R^*$. Let $v = r^{-1}u_1$. Then

$$h(v, v) = (r^{-1})^2 h(u, u) = b^{-1} \varepsilon b = \varepsilon.$$

Now assume that m>1 and that the hypothesis is true for m-1. By proposision 2.4, there exists u_1 such that $h(u_1,u_1)=1$. Using lemma 2.3, this can be extended to a basis u_1,v_2,\ldots,v_m . But $V'=\operatorname{span}\{v_2,\ldots v_m\}$ has dimension m-1 and thus there is a basis $u_2,\ldots u_m$ of V'. Then $\{u_1,u_2,\ldots,u_m\}$ is a basis of V with the desired property. \square

Let \mathfrak{i} be a * invariant ideal of A and let $\overline{A} = A/\mathfrak{i}$. Then * induces an involution on \overline{A} . Moreover, $\overline{V} = V/V\mathfrak{i}$ is a free \overline{A} module of rank m and the map $\overline{h}: \overline{V} \times \overline{V} \to \overline{A}$, given by $\overline{h}(v+V\mathfrak{i},w+V\mathfrak{i}) = h(v,w)$ is a non-degenerate hermitian form.

Recall that when A is commutative the discriminant of h is the element of $R^*/Q(A^*)$ obtained by taking the determinant of the Gram matrix of h relative to any basis of V.

Corollary 1.1. Let h_1 and h_2 be non-degenerate hermitian forms on V. Then the following conditions are equivalent:

- (a) h_1 and h_2 are equivalent.
- (b) The reductions $\overline{h_1}$ and h_2 modulo \mathfrak{r} are equivalent.
- (c) The discriminants of $\overline{h_1}$ and $\overline{h_2}$ are the same.

Proof. Need to fill this in

Given $r_1, \ldots, r_m \in R^*$ we say that h is of type $\{r_1, \ldots, r_m\}$ if there is a basis B of V relative to which h has matrix $\operatorname{diag}\{r_1, \ldots, r_m\}$. In that case, h is also of type $\{s_1, \ldots, s_m\}$ for $s_1 \in R^*$, if and only if $(r_1 \cdots r_m)(s_1 \cdots s_m)^{-1} \in Q(A^*)$.

Proof. Assume that h is of type $\{r_1, \ldots, r_m\}$ and of type $\{s_1, \ldots, s_m\}$. Because the determinant is invariant under the choice of basis, $r_1 \cdots r_m = s_1 \cdots s_m$ and $(r_1 \cdots r_m)(s_1 \cdots s_m)^{-1} = 1 \in Q(A^*)$.

Now assume that h is of type $\{r_1, \ldots, r_m\}$ with respect to basis B and $(r_1 \cdots r_m)(s_1 \cdots s_m)^{-1} \in Q(A^*)$. It's clear that if m=1 that this implies that h is of type $\{s_1\}$. Consider the case that m>1 and assume also that h is not of type $\{s_1, s_2, \ldots, s_m\}$. Then for every orthogonal basis B of V, let k_B denote the number of $v_i \in V$ such that $h(v_i, v_i) \neq s_i$, and let $k = \min\{k_B : B \text{ is a basis of } V\}$. Because h is not of type $\{s_1, \ldots, s_m\}$, k>0. Similarly, by proposition 3.4, k <= m-1. Without loss of generality, assume that $h(v_i, v_i) = s_i$ when i <= m-k and $h(v_i, v_i) = d_i s_i$ where $d_i \neq 1$

(mod $Q(A^*)$) when i > m - k. Because h is of type $\{h(v_i, v_i)\}$, and det(h) is invariant under choice of basis,

$$\prod_{i=1}^{m} r_{i} = \prod_{i=1}^{m} h(v_{i}, v_{i}) = \left(\prod_{i=1}^{m-k} s_{i}\right) \left(\prod_{i=m-k}^{m} d_{i} s_{i}\right)$$

and by assumption,

$$\prod_{i=m-k}^{m} d_i = 1 \mod Q(A^*).$$

This result shows that k > 1. Now let $V_1 = \operatorname{span}\{v_i : i \leq m - k\}$ and $V_2 = \operatorname{span}\{v_i : i > m - k\}$. Because $k \geq 2$, by prop 3.4 there exists an orthogonal basis $\{w_1, \ldots, w_k\}$ with $h(w_1, w_1) = s_{m-k+1}$. But then $V' = \{v_1, v_2, \ldots, v_{m-k}, w_1, \ldots, w_k\}$ is a basis for V with $k_{V'} < k$, contradicting the assumption that k was minimized. Thus $d_i = 1 \pmod{Q(A^*)}$ for all i, and for some basis V, h is of type $\{s_1, s_2, \ldots, s_m\}$.

Statement 1. When m is even then h is of type $\{1, -1, \ldots, 1, -1\}$ (define this as kind I) or $\{1, -1, \ldots, 1, -\varepsilon\}$ (kind II). When m is odd then h is of type $\{1, -1, \ldots, 1, -1, -1\}$ (kind I) or of type $\{1, -1, \ldots, 1, -1, -\varepsilon\}$ (kind II).

Proof. By theorem 3.5, we know that h is of type $\{1,1,\ldots,1\}$ or $\{1,1,\ldots,\varepsilon\}$. If $-1 \in Q(A^*)$, then the result is immediate. Assume that Q is not surjective and that $-1 \notin Q(A^*)$. Let r=1 if h is of type $\{1,1,\ldots,1\}$ and $r=\varepsilon$ if h is of type $\{1,1,\ldots,\varepsilon\}$. Let $k=\frac{m}{2}$ if m is even, and $k=\frac{m}{2}+1$ if m is odd. By the previous result, if $r(-1)^k\delta^{-1}$, then h is of type $\{1,-1,\ldots,1,-\delta\}$ (m even) or $\{1,-1,\ldots,1,-1,-\delta\}$ (m odd), where $\delta\in\{1,\varepsilon\}$. Note that because $-1 \notin Q(A^*) = R^{*2}$ and $\varepsilon\notin Q(A^*)$, because $[R^*:R^{*2}] = 2$, $-\varepsilon\in Q(A^*)$. Consider 4 cases:

Case 1: r = 1 and k even Let $\delta = 1$. Then $r(-1)^k \delta = 1 \in Q(A*)$ and h is of type $\{1, -1, ..., -1\}$.

Case 2: r = 1 and k odd Let $\delta = \varepsilon$. Then $r(-1)^k \delta = -\varepsilon \in Q(A)$ and h is of type $\{1, -1, \dots, -\varepsilon\}$.

Case 3: $r = \varepsilon$ and k even Let $\delta = \varepsilon$. Result follows similarly.

Case 4: $r = \varepsilon$ and k odd Let $\delta = 1$. Result follows similarly.

Additionally, it is clear from these prior results that h is of kind I and kind II if and only if $Q(A^*) = R^*$.

Even when Q is not surjective, if m is odd there is only one unitary group of rank m, regardless of h, since h and εh are non-equivalent and have the same unitary group.

Lemma 1.2. Let Λ be the set of all values h(u, u) with $u \in V$ primitive. Assume that the involution * induces on A/\mathfrak{r} is the identity.

- (a) Suppose m=1. If h is of type $\{1\}$ then $\Lambda=R^{*2}$ and if h is of type $\{\varepsilon\}$ then $\Lambda=R^*/R^{*2}$.
- **(b)** Suppose m = 2. If h is of type $\{1, -1\}$, then $\Lambda = R$ and if h is of type $\{1, -\varepsilon\}$ then $\Lambda = R^*$.
- (c) If m > 2 then $\Lambda = R$.
- Proof. (a) Assume m=1. Assume that h is of type $\{1\}$. Then $\{u_1\}$ is a basis of V with $h(u_1,u_1)=1$. Pick $r\in R^{*2}$. Because * is the identity on A/\mathfrak{r} , $Q(A^*)=R^{*2}$. Pick $r\in R^{*2}$. Then $r=Q(a)=aa^*$ for some $a\in A^*$ and $h(u_1a^*,u_1a^*)=aa^*=r$. Thus $R^{*2}\subseteq \Lambda$. Now let $v\in V$ be primitive. Because $m=1, v=u_1a$ for some $a\in A^*$ and $h(v,v)\in Q(A)=R^{*2}$. Thus $\Lambda=R^{*2}$. A similar argument shows that $\Lambda=R\backslash R^{*2}$ when h is of type $\{\varepsilon\}$.
- (b) Assume m=2 and h is of type $\{1,-1\}$ with corresponding basis vectors u_1, u_2 . Then $u_1 + u_2$ is primitive and $h(u_1 + u_2, u_1 + u_2) = 0$. Applying Lemma 3.1 shows that $\Lambda = R$.

Suppose instead that h is of type $\{1, -\varepsilon\}$. Assume that $v = u_1 a_1 + u_2 a_2$ is primitive and $h(v,v) \in \mathfrak{m}$. That is, $a_1 a_1^* - \varepsilon a_2 a_2^* = f \in \mathfrak{m}$. Because v is primitive, at least one a_1, a_2 is a unit. Without loss of generality, assume that $a_1 \in A^*$. Then a_2 is also a unit because $\varepsilon a_2 a_2 \star \neq 0$ in A/\mathfrak{r} . Because $Q(A) = R^{*2}$, $a_1^2 = b_1 b_1^*$ and $a_2^2 = b_2 b_2^*$ for some $b_1, b_2 \in R^*$. Then $b_1 b_1^* - \varepsilon b_2 b_2^* = f$ and $c_1^2 - \delta c_2^2 = 0$ in A/\mathfrak{r} with $c_1, c_2, \delta \neq 0$. But $\delta = c_1^2 (c_2^{-1})^2 = (c_1 c_2^{-1})^2$, contradicting the assumption that $\varepsilon \notin R^{*2}$. Thus $h(v,v) \in R^*$ for all primitive v. Because h is of type $\{-1, \varepsilon\}$ as well as $\{1, -\varepsilon\}$ there are primitive vectors u and v with h(u,u) = 1 and $h(v,v) = \varepsilon$. Thus $\Lambda = R^*$.

(c) Assume that $u_1, u_2, \ldots u_m$ is an orthogonal basis of V with $h(u_i, u_i) \in \mathbb{R}^*$. Then $-h(u_3, u_3) \in \mathbb{R}^*$ an by proposition 3.4, there exists a primitive vector $v \in u_1 A \oplus u_2 A$ with $h(v, v) = -h(v_3, v_3)$. Then $u = v + u_3$ is primitive with h(u, u) = 0, and applying lemma 3.1 shows that $\Lambda = \mathbb{R}$.