

Syllabus (2021-1)

Course Title	Real Analysis	Course No.	35296-01
Department/ Major	Mathematics	Credit/Hour s	3/3
Class Time/ Classroom	Tuesday 3, Thursday 2 / Non face-to-face		
Instructor	Name Chulkwang Kwak	Department	Mathematics
	E-mail ckkwak@ewha.ac.kr	Phone 4439	
Office Hours/ Office Location	Any time via QnA in cyber campus or email		

I. Course Overview

1. Course Description

A measure on a set is a systematic way to understand a size of the set. Previously, we have learned similar concepts of length, area and volume, and thus the measure can be understood as its generalization. An important example is the Lebesgue measure on a Euclidean space, which assigns the conventional length, area, and volume of Euclidean geometry to suitable subsets of the n-dimensional Euclidean space \mathbb{R}^n .

This course covers basic measure theory on Euclidean space \mathbb{R}^n , particularly, including Set theory on \mathbb{R}^n , Lebesgue measure, Lebesgue integation, differentiation theorems and basic Banach spaces (L^p space).

2. Prerequisites

- -Advanced Calculus I, II.
- -Topology I. (not required, but helpful)

3. Course Format

Lecture		
100%		

(Instructor can change to match the actual format of the class.)

Explanation of course format: This course consists of two lectures and one recitation class per a week.

4		01 '	
/1	Course	()h1	IACTIVAS
т.	Course	OD.	

Real analysis (Barry Simon)

The main aim in this course is to understand Lebesgue measure on \mathbb{R}^n , integration and differentiation, and consequently, is to construct n infinite dimensional complete normed function space.

5. Evaluation S	System				
☐ Relative evalua	☐ Relative evaluation ☐ Absolute evaluation ☐ Others :				
- Explanation of e	valuation system:				
		Absol	ute evaluation		
Midterm Exam	Final Exam	Homeworks/Quizzes			
30%	40%	30%			
Ratio can be modified. * Evaluation of group projects may include peer evaluations.					
II. Course Materials and Additional Readings					
1. Required Materials					
Real Anlysis (H. L. Royden) Third edition					
2. Supplementary Materials					
3. Optional Additional Readings					
Real Analysis (Elias M. Stein and Rami Shakarachi)					
An introduction to measure theory (Terence Tao)					

III. Course Policies

- The class style is Non face-to-face. All classes will be given as recorded videos in cyber campus.
- Attendance will not be graded, but "F" grade will be automatically given for absences more than 1/3 of all classes.
- All exams will be taken via zoom.
- No final exam, no grade.
- 3~6 homeworks will be given (tentative).
- IV. Course Schedule (15 credit hours must be completed.)
- Star(*) marked sections will be given in Korean and will not be included in ranges of midterm and final
- Appendices (A.1, A.2 and A.3) and all star marked sections will be given if time allows
- Course schedule can be modified

Week	Date	Topics & Class Materials, Assignments	
	3/2 Orientation 3/4 *1. Preliminaries *1.1. Basic set theory		
Week 1			
Week 2	3/9 *1.2. Open, closed, and compact sets		
Meek 2	3/11	*1.3. σ-algebra and borel sets	
Week 3	3/16 2. Lebesgue measure *2.1. Cantor set		
	3/18	2.2. Measure of rectangles and cubes	
Week 4	3/23 2.3. Measure of open and compact sets		
Week 4	3/25 2.4. Outer measure		
Wool, F	3/30	2.5. Measurable sets and Lebesgue measure	
Week 5 4/1 2.6. Measurable functions		2.6. Measurable functions	
	4/6 *2.7. Non-measurable set and Littlewood's three principles		
Week 6 3. Lebesgue integral 3.1. Lebesgue integral of a bounded function		3. Lebesgue integral 3.1. Lebesgue integral of a bounded function	
Week 7	4/13 3.2. Lebesgue integral of a nonnegative function		
Week /	4/15	3.3. General Lebesgue measure	
Week 8	4/20 *3.4. Convergence in measure		
Week o	4/22	Midterm	
Week 9	4/27	4. Differentiation and Integration 4.1. Differentiation of monotone functions	
4/29 4.2. Functions of bounded variation		4.2. Functions of bounded variation	

Week	Date	Topics & Class Materials, Assignments
Wools 10	5/4 4.3. Differentiation of an integral 5/6 4.4. Absolute continuity	
Week 10		
	5/11 4.5. Convex functions	
Week 11	5/13	5. The Classical Banach spaces 5.1. L^p spaces
Week 12	5/18	5.2. Minkowski and Hölder inequalities
5/20 5.3. Convergence and completeness		5.3. Convergence and completeness
Wook 12	5/25	5.4. Approximation in L^p
Week 13 $5/27$ 5.5 Bounded linear functional on L		5.5 Bounded linear functional on L^p
Wools 14	6/1 *A.1. Product measure	
Week 14	6/3	*A.2. Fubini theorem
Wools 15	6/8 *A.3. Signed measure	
Week 15	6/10	Final
Makeup Class	(mm/dd)	

V. Special Accommodations

* According to the University regulation section #57-3, students with disabilities can request for special accommodations related to attendance, lectures, assignments, or tests by contacting the course professor at the beginning of semester. Based on the nature of the students' request, students can receive support for such accommodations from the course professor or from the Support Center for Students with Disabilities (SCSD). Please refer to the below examples of the types of support available in the lectures, assignments, and evaluations.

Lecture	Assignments	Evaluation
Visual impairment : braille, enlarged reading materials Hearing impairment : note-taking assistant Physical impairment : access to classroom, note-taking assistant	Extra days for submission, alternative assignments	Visual impairment: braille examination paper, examination with voice support, longer examination hours, note—taking assistant Hearing impairment: written examination instead of oral Physical impairment: longer examination hours, note—taking assistant

- Actual support may vary depending on the course.