How I spent last summer

William Fayers School of Mathematics and Physics, University of Lincoln

October 17, 2023

Abstract

In this article, I shall discuss how I spent last summer.

Introduction

Preparation is described in Section 1, beginning in Section 2, and summer proper in Section 3. Section 4 contains a photo showing a capybara that I saw when I visited the capybara cafe in Tokyo.

Note: Everything written about in this document is entirely fictional and not intentionally based on any true events.

1 Preparation

Prepare for summer:

- 1. Get fit
 - (a) Jogging
 - (b) Press-ups
 - (c) Learn to swim
- 2. Buy summer clothes
- 3. Buy tickets

2 May

Apart from recreational activities, in May I also did some maths, as described in Subsection 2.3.

2.1 May weather

It was raining a lot. This phenomenon is explained in [1, Section 4].

2.2 Reading books

Because of what is described in Subsection 2.1, we stayed indoors and read the book [2].

2.3 Maths

I was also revising some maths for A-level exams, like the following.

Theorem 1. The solutions of a quadratic equation $ax^2 + bx + c = 0$ are given by the formulae

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Lemma 1. A finite sum $\sum_{i=0}^{k} r^{i}a_{0}$ of a geometric progression with ratio $r \neq 1$ is equal to

$$a_0\left(\frac{1-r^{k+1}}{1-r}\right).$$

Proof. We have

$$(1-r)(1+r+r^2+\cdots+r^k)=1-r^{k+1}$$

which is verified by expanding brackets:

$$(1+r+r^2+\cdots+r^k)-r(1+r+r^2+\cdots+r^k)$$

= 1+r+r^2+\cdots+r^k-r-r^2-\cdots-r^k-r^{k+1}=1-r^{k+1}.

Dividing both sides of formula (3) by r-1 and multiplying by a_0 we have

$$a_0 + ra_0 + r^2a_0 + r^3a_0 + \dots + r^ka_0 = a_0\left(\frac{1 - r^{k+1}}{1 - r}\right).$$

Theorem 2. The infinite sum $\sum_{i=0}^{\infty} r^i a_0$ of a geometric progression with ratio r satisfying 0 < r < 1 is equal to $\frac{a_0}{1-r}$.

Proof. The sum $\sum_{i=0}^{\infty} r^i a_0$ is equal to the limit of the partial sums $\sum_{i=0}^{k} r^i a_0$ as k tends to ∞ . By Lemma 1,

$$\sum_{i=0}^{k} r^{i} a_{0} = a_{0} \left(\frac{1 - r^{k+1}}{1 - r} \right).$$

When 0 < r < 1, the term r^{k+1} tends to 0 as k tends to ∞ . Hence the result. \square

3 Summer proper

After exams, we watched football matches on TV. At the moment the table in group E looks as in Table 1.

Table 1: Euro 2016. Group E

Pos	Team	Pld	W	D	L	GD	Pts	Qualification
1	Italy	3	2	0	1	+2	6	Qualified
2	Belgium	3	2	0	1	+2	6	Qualified
3	Republic of Ireland	3	1	1	1	0	4	Round of 16
4	Sweden	3	0	1	2	-2	1	

4 Photo

Figure 1 shows the capybara cafe from Tokyo

Figure 1: Capybara Cafe

References

[1] A. Nother, Recent advances in weather prediction, J. Adv. Weather 76, no. 3 (2013), 23-45.

- [2] S. Someone, A great book, Lincoln, 2014.
- [3] C. Capybara, Cafe Capybara introduction page, Cafe Capybara, 2023.