Outline Introduction The Tax-Managed portfolio optimization Bayesian Optimization Deep Q-Learning References

Deep Q-Learning hyper-parameters optimization for portfolio management

CS 229 - Project

October 8, 2017

- Introduction
- 2 The Tax-Managed portfolio optimization
- Bayesian Optimization
- 4 Deep Q-Learning
- 6 References

Introduction

- The proposed framework is to utlize machine learning methods to tune portfolio optimization parameters.
- Bayesian Optimization (Gaussian Process) and Deep
 Q-Learning are considered for the purpose of this research.
- The tax-managed equity portfolio optimization will be studied as the underlying system.

The Tax-Managed portfolio optimization

• The tax-managed portfolio optimization aims to track the return of a benchmark while minimizing the tax impact.

minimize
$$TE^2 + \sum_{i=1}^{M} (w_i^0 - w_i) TR_i (1 - \frac{c_i}{p_i})$$

S.t: $LB \leq \mathbf{w_A} \leq UB$ Assets bound constraints $LB^f \leq \mathbf{w_A'B_f} \leq UB^f$ Factor f exposure constraints $\sum_{k=1}^{m} w_k = w_i$ sum of (m) lots weights to asset i weight $\mathbf{w_p} \geq 0$ long-only constraints $\sum q_i \leq N$ max positions (N) constraint

The Tax-Managed portfolio optimization - Cont'd

 The mixed integer quadratic optimization goal is to minimize tax cost in addition to the square of tracking error:

$$TE^2 = \mathbf{w_A'} \mathbf{B} \mathbf{\Omega}_F \mathbf{B'w_A} + \mathbf{w_A'} \mathbf{Dw_A}$$

- The continuous Decision variables:
 - w_j^p Portfolio weights (at asset level)
 - w_i lot i weight
- The Binary Decision variables:
 - $q_i = 1$ if $w_j^p > 0$
- Other Variables/Constants:
 - w_i^0 initial lot i weight
 - w_i final lot i weight
 - TR_i Tax Rate (long term or short term)
 - c_i cost basis (asset price at purchase)
 - p_i current price (current asset price)

The Tax-Managed portfolio optimization - Cont'd

- Other Variables/Constants (cont'd):
 - $\mathbf{w_A}$ Active weights (vector of $w_j^p w_j^b$)
 - Ω_F Factors Covariance Matrix
 - B Factors Loadings/Exposures Matrix
- the factors covariance matrix and exposures can be estimated using Principle components analysis of historical stocks returns
- we also can use the quandl covariance matrix. In this case we won't need to use factor analysis altogether.

Outline
Introduction
The Tax-Managed portfolio optimization
Bayesian Optimization
Deep Q-Learning
Peferoace

Bayesian Optimization

Outline Introduction The Tax-Managed portfolio optimization Bayesian Optimization Deep Q-Learning References

Deep Q-Learning

Outline Introduction The Tax-Managed portfolio optimization Bayesian Optimization Deep Q-Learning References

References