CSE2001		COMPUTER ARCHITECTURE AND ORGANIZATION				J 0	<u>C</u>
Pre-requisite			Syll	abu	s ve	rsi	on
			_			v1	1.0
	e Objectives						
1.		students with the basic concepts of fundamental component	t, arch	itect	ure,		
2		anization and performance metrics of a computer.	1 . 1				
2.		ne knowledge of data representation in binary and understand calgorithms in a typical computer.	a impi	eme	ntati	ion	l
3.		c argorithms in a typical computer. Idents how to describe machine capabilities and design an ef	fective	e da	ta na	ıth	
<i>5.</i>		nstruction execution. To introduce students to syntax and ser			_		
	level progra	·		0 01	111000		
4.		idents understand the importance of memory systems, IO int	erfaci	ng			
	techniques a	and external storage and their performance metrics for a typi	cal co	mpu	ter.	An	ıd
	explore vari	ious alternate techniques for improving the performance of a	proce	ssor	·		
	ted Course						
1.		Differentiate Von Neumann, Harvard, and CISC and RISC architectures. Analyze the					
2		e of machines with different capabilities.	ماممین	·h ···	for		
۷.	arithmetic of	nary format for numerical and characters. Validate efficient appearations	argorn	ШШ	101		
3		nachine level program for given expression on n-address made	chine	Δng	lyze	ar	nd
3.		emory traffic for a program execution. Design an efficient da					Iu
		format for a given architecture.	au pu	11 10	- 411		
4.		importance of hierarchical memory organization. Able to co	nstruc	et lar	ger		
	memories.	nemories. Analyze and suggest efficient cache mapping technique and replacement					
	algorithms t	lgorithms for given design requirements. Demonstrate hamming code for error detection					
	and correcti						
5.		the need for an interface. Compare and contrast memory ma					
		chniques. Describe and Differentiate different modes of data		er. A	Appr	ais	se
6	•	nous and asynchronous bus for performance and arbitration.		ome			
0.		the structure and read write mechanisms for different storag d suggest appropriate use of RAID levels. Assess the performance of the structure and read write mechanisms for different storage	•			nd	
		rage systems.	mance	OI I	. O al	ıu	
7.		rallel machine models. Illustrate typical 6-stage pipeline for o	overla	ppec	i		
. •	• 1	Analyze the hazards and solutions		rr	-		

execution. Analyze the hazards and solutions. **Student Learning Outcomes (SLO):** 1,2,5 Having an ability to apply mathematics and science in engineering applications 1. 2. Having a clear understanding of the subject related concepts and of contemporary issues Having design thinking capability Introduction and overview of computer Module:1 3 hours architecture Introduction to computer systems - Overview of Organization and Architecture -Functional components of a computer -Registers and register files-Interconnection of components-Organization of the von Neumann machine and Harvard architecture-Performance of processor Module:2 **Data Representation And Computer** 6 hours

Arithmetic

Fixed point representation of numbers-algorithms for arithmetic operations: multiplication (Booths, Modified Booths) - division (restoring and non-restoring) - Floating point representation with IEEE standards and algorithms for common arithmetic operations- Representation of non-numeric data (character codes).

Module:3 | Fundamentals of Computer Architecture

11 hours

Introduction to ISA (Instruction Set Architecture)-Instruction formats- Instruction types and addressing modes- Instruction execution (Phases of instruction cycle)- Assembly language programming-Subroutine call and return mechanisms-Single cycle Data path design-Introduction to multi cycle data path-Multi cycle Instruction execution.

Module:4 Memory System Organization and Architecture

9 hours

Memory systems hierarchy-Main memory organization-Types of Main memory-memory interleaving and its characteristics and performance- Cache memories: address mapping-line size-replacement and policies- coherence- Virtual memory systems- TLB- Reliability of memory systems- error detecting and error correcting systems.

Module:5 Interfacing and Communication

7 hours

I/O fundamentals: handshaking, buffering-I/O techniques: programmed I/O, interrupt-driven I/O, DMA- Interrupt structures: vectored and prioritized-interrupt overhead- Buses: Syn- chronous and asynchronous- Arbitration.

Module:6 | **Device Subsystems**

4 hours

External storage systems-organization and structure of disk drives: Electronic- magnetic and optical technologies- RAID Levels- I/O Performance

Module:7 | Performance Enhancements

4 hours

Classification of models - Flynns taxonomy of parallel machine models (SISD, SIMD, MISD, MIMD)- Introduction to Pipelining- Pipelined data path-Introduction to hazards

Module:8 Contemporary issues: Recent Trends

1 hour

Multiprocessor architecture: Overview of Shared Memory architecture, Distributed architecture.

Total Lecture hours:

45 hours

Text Book(s)

- 1. David A. Patterson and John L. Hennessy Computer Organization and Design-The Hardware/Software Interface 5th edition, Morgan Kaufmann, 2013.
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer organization, Mc Graw Hill, Fifth edition, Reprint 2011.

Reference Books

1. W. Stallings, Computer organization and architecture, Prentice-Hall, 8th edition, 2013

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies 04-04-2014

Approved by Academic Council No. 37 Date 16-06-2015