Half Title

Solution Manual Introduction to Bayesian Data Modeling: A GUIded toolkit using R

Title Page

Solution Manual Introduction to Bayesian Data Modeling: A GUIded toolkit using R

by Andrés Ramírez-Hassan, PhD. Statistical Science.

Contents

Fo	reword	ix
Pr	reface	xi
$\mathbf{S}\mathbf{y}$	rmbols	xiii
Ι	Foundations: Theory, simulation methods and programming	- 1
1	Basic formal concepts	3
2	Conceptual differences of the Bayesian and Frequentist approaches	- 23
3	Cornerstone models: Conjugate families	29
4	Simulation methods	57
Π	Regression models: A GUIded toolkit	79
5	Graphical user interface 5.1 Introduction 5.2 Univariate models 5.3 Multivariate models 5.4 Time series model 5.5 Longitudinal/panel models 5.6 Bayesian model average 5.7 Warning	81 83 86 88 88 89
6	Univariate models	93
7	Multivariate models	115
8	Time series models	139
9	Longitudinal/Panel data models	167
10	Bayesian model average	195

viii	Contents
III Advanced methods: A brief introduction	223
11 Semi-parametric and non-parametric models	225
12 Bayesian machine learning	253
13 Approximate Bayesian methods	269
Bibliography	291
Appendix	295

Foreword

Preface

Symbols

Symbol Description

\neg	Negation symbol.	${\cal R}$	The Real set.
\propto	Proportional symbol.	Ø	Empty set.
_	Independence symbol.	1	Indicator function

Part I

Foundations: Theory, simulation methods and programming

Basic formal concepts

Solutions of Exercises

1. The court case: the blue or green cap

A cab was involved in a hit-and-run accident at night. There are two cab companies in the town: Blue and Green. The Blue company has 150 cabs, while the Green company has 850 cabs. A witness stated that a blue cab was involved in the accident. The court tested the reliability of the witness under similar circumstances and found that the witness correctly identified the color of the cab 80% of the time, but made an incorrect identification 25% of the time. What is the probability that the cab involved in the accident was actually blue, given that the witness said it was blue?

Answer

Set WB and WG equal to the events that the witness said the cab was blue and green, respectively. Set B and G equal to the events that the cabs are blue and green, respectively. We need to calculate P(B|WB), then:

$$P(B|WB) = \frac{P(B,WB)}{P(WB)}$$

$$= \frac{P(WB|B) \times P(B)}{P(WB|B) \times P(B) + P(WB|\neg B) \times (1 - P(B))}$$

$$= \frac{0.8 \times 0.15}{0.8 \times 0.15 + 0.25 \times 0.85}$$

$$= 0.36$$
(1.1)

2. The Monty Hall problem

What is the probability of winning a car in the *Monty Hall problem* switching the decision if there are four doors, where there are three goats and one car? Solve this problem analytically and computationally. What if there are n doors, n-1 goats and one car?

Answer

Let's name P_i the event contestant picks door No. i, H_i the event host picks

door No. i, and C_i the event car is behind door No. i. Let's assume that the contestant picked door number 1, and the host picked door number 3, then the contestant is interested in the probability of the event $P(C_i|H_3, P_1)$, i = 2 or 4. Then, $P(H_3|C_3, P_1) = 0$, $P(H_3|C_2, P_1) = P(H_3|C_4, P_1) = 1/2$ and $P(H_3|C_1, P_1) = 1/3$. Then,

$$P(C_{i}|H_{3}, P_{1}) = \frac{P(C_{i}, H_{3}, P_{1})}{P(H_{3}, P_{1})}$$

$$= \frac{P(H_{3}|C_{i}, P_{1})P(C_{i}|P_{1})P(P_{1})}{P(H_{3}|P_{1}) \times P(P_{1})}$$

$$= \frac{P(H_{3}|C_{i}, P_{1})P(C_{i})}{P(H_{3}|P_{1})}$$

$$= \frac{1/2 \times 1/4}{1/3}$$

$$= \frac{3}{8},$$

$$(1.2)$$

where the third equation uses the fact that C_i and P_i are independent events, and $P(H_3|P_1) = 1/3$ due to this depending just on P_1 (not on C_i).

Therefore, changing the initial decision increases the probability of getting the car from 1/4 to 3/8!

Let's check the case with n doors, and assume that the contestant picks the door No. 1, the car is behind the door No. n, and the host, who knows what is behind each door, opens any of the remaining n-2 doors, where there is a goat. The contestant is interested in the probability of the event:

$$P(C_{n}|(H_{2}\cup...\cup H_{n-1})\cap P_{1}) = \frac{P((H_{2}\cup H_{3}\cup...\cup H_{n-1})|C_{n}\cap P_{1})P(C_{n}|P_{1})P(P_{1})}{P((H_{2}\cup H_{3}\cup...\cup H_{n-1})|P_{1})P(P_{1})}$$

$$= \frac{[P(H_{2}|C_{n}\cap P_{1})+...+P(H_{n-1}|C_{n}\cap P_{1})]P(C_{n})}{P(H_{2}|P_{1})+P(H_{3}|P_{1})+...+P(H_{n-1}|P_{1})}$$

$$= \frac{1\times(\frac{1}{n})}{\frac{1}{n-1}+\frac{1}{n-1}+...+\frac{1}{n-1}}$$

$$= \left(\frac{1}{n}\right)\left(\frac{n-1}{n-2}\right). \tag{1.3}$$

In general, the probability of winning the car changing the pick is $\frac{1}{n}\frac{n-1}{n-2}$, while the probability of winning given no change is $\frac{1}{n}$. Given that $\frac{1}{n}\frac{n-1}{n-2}>\frac{1}{n}$ for all $n\geq 3$, where the difference between both probabilities is $\frac{1}{n(n-2)}$. We observe that as the number of doors increases, the difference between the two probabilities becomes zero.

Let's see a code for the general setting,

R code. The Monty Hall Problem

```
set.seed(0101) # Set simulation seed
  S <- 100000 # Simulations
  Game <- function(opt = 3){</pre>
 _4 # opt: number of options. opt > 2
 6 car <- sample(opts, 1) # car location
 7 guess1 <- sample(opts, 1) # Initial guess</pre>
  if(opt == 3 && car != guess1) {
  host <- opts[-c(car, guess1)]</pre>
10 } else {
host <- sample(opts[-c(car, guess1)], 1)</pre>
vin1 <- guess1 == car # Win given no change</pre>
14 if (opt == 3) {
guess2 <- opts[-c(host, guess1)]</pre>
guess2 <- sample(opts[-c(host, guess1)], 1)
19 win2 <- guess2 == car # Win given change
20 return(c(win1, win2))
22 #Win probabilities
23 Prob <- rowMeans(replicate(S, Game(opt = 4)))
24 #Winning probabilities no changing door
25 Prob[1]
26 0.25151
27 #Winning probabilities changing door
28 Prob[2]
29 0.37267
```

3. Solve the health insurance example using a Gamma prior in the rate parametrization, that is, $\pi(\lambda) = \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \lambda^{\alpha_0 - 1} \exp{\{-\lambda \beta_0\}}$.

Answer

First, we get the posterior distribution,

$$\pi\left(\lambda|\mathbf{y}\right) = \left(\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)}\lambda^{\alpha_0 - 1}e^{-\lambda\beta_0}\right) \left(\prod_{i=1}^N \frac{\lambda^{y_i}e^{-\lambda}}{y_i!}\right) \tag{1.4}$$

$$= \left(\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \lambda^{\alpha_0 - 1} e^{-\lambda \beta_0}\right) \left(\frac{\lambda^{\sum_{i=1}^N y_i} e^{-N\lambda}}{\prod_{i=1}^N y_i!}\right)$$

$$= \left(\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \frac{1}{\prod_{i=1}^N y_i!}\right) \lambda^{\sum_{i=1}^N y_i + \alpha_0 - 1} e^{-\lambda(\beta_0 + N)}$$

$$\propto \lambda^{\sum_{i=1}^N y_i + \alpha_0 - 1} e^{-\lambda(\beta_0 + N)}. \tag{1.5}$$

The last expression is the kernel of a Gamma distribution with parameters $\alpha_n = \sum_{i=1}^N y_i + \alpha_0$ and $\beta_n = \beta_0 + N$.

Given that $\int_0^\infty \pi(\lambda|\mathbf{y}) d\lambda = 1$, then the constant of proportionality in the last expression is $\Gamma(\alpha_n)/\beta_n^{\alpha_n}$. Therefore the posterior density function $\pi(\lambda|\mathbf{y})$ is $G(\alpha_n, \beta_n)$.

The posterior mean is

$$E[\lambda|\mathbf{y}] = \frac{\alpha_n}{\beta_n}$$

$$= \frac{\sum_{i=1}^{N} y_i + \alpha_0}{\beta_0 + N}$$

$$= \left(\frac{N}{\beta_0 + N}\right) \bar{y} + \left(\frac{\beta_0}{\beta_0 + N}\right) \frac{\alpha_0}{\beta_0}$$

$$= w\bar{y} + (1 - w) E[\lambda],$$

$$(1.6)$$

where $w = \frac{N}{\beta_0 + N}$, \bar{y} is the sample mean, and $E[\lambda] = \frac{\alpha_0}{\beta_0}$.

The posterior predictive distribution is given by

$$\pi (Y_0|\mathbf{y}) = \int_0^\infty \frac{\lambda^{y_0} e^{-\lambda}}{y_0!} \pi (\lambda|\mathbf{y}) d\lambda$$

$$= \int_0^\infty \left(\frac{\lambda^{y_0} e^{-\lambda}}{y_0!}\right) \left(\frac{\beta_n^{\alpha_n}}{\Gamma(\alpha_n)} \lambda^{\alpha_n - 1} e^{-\lambda \beta_n}\right) d\lambda$$

$$= \frac{\beta_n^{\alpha_n}}{\Gamma(\alpha_n) y_0!} \int_0^\infty \lambda^{y_0 + \alpha_n - 1} e^{-\lambda (1 + \beta_n)} d\lambda$$

$$= \frac{\beta_n^{\alpha_n}}{\Gamma(\alpha_n) y_0!} \frac{\Gamma(y_0 + \alpha_n)}{(1 + \beta_n)^{y_0 + \alpha_n}}$$

$$= \frac{\Gamma(y_0 + \alpha_n)}{\Gamma(\alpha_n) y_0!} \left(\frac{1}{1 + \beta_n}\right)^{y_0} \left(\frac{\beta_n}{1 + \beta_n}\right)^{\alpha_n}$$

$$= \frac{(y_0 + \alpha_n - 1)!}{(\alpha_n - 1)! y_0!} \left(\frac{1}{1 + \beta_n}\right)^{y_0} \left(\frac{\beta_n}{1 + \beta_n}\right)^{\alpha_n}$$
$$= \begin{pmatrix} y_0 + \alpha_n - 1 \\ y_0 \end{pmatrix} \left(\frac{1}{1 + \beta_n}\right)^{y_0} \left(\frac{\beta_n}{1 + \beta_n}\right)^{\alpha_n}.$$

Therefore $Y_0|y \sim NB(\alpha_n, p_n)$ where $p_n = \frac{1}{1+\beta_n}$.

To use empirical Bayes, we have the following setting

$$\left[\hat{\alpha_0}\hat{\beta_0}\right] = \arg\max_{\alpha_0,\beta_0} \ln(p(\mathbf{y})),$$

where

$$p(y) = \int_0^\infty \left(\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \lambda^{\alpha_0 - 1} e^{-\lambda \beta_0}\right) \left(\prod_{i=1}^N \frac{\lambda^{y_0} e^{-\lambda}}{y_0!}\right) d\lambda$$

$$= \left(\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0) \prod_{i=1}^N y_i!}\right) \int_0^\infty \lambda^{\sum_{i=1}^N y_i + \alpha_0 - 1} e^{-\lambda(\beta_0 + N)} d\lambda$$

$$= \left(\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0) \prod_{i=1}^N y_i!}\right) \left(\frac{\Gamma\left(\sum_{i=1}^N y_i + \alpha_0\right)}{(\beta_0 + N)^{\sum_{i=1}^N y_i + \alpha_0}}\right)$$

$$= \frac{\Gamma\left(\sum_{i=1}^N y_i + \alpha_0\right)}{\Gamma(\alpha_0) \prod_{i=1}^N y_i!} \left(\frac{1}{\beta_0 + N}\right)^{\sum_{i=1}^N y_i} \left(\frac{\beta_0}{\beta_0 + N}\right)^{\alpha_0}.$$
(1.8)

R code. Health insurance, predictive distribution using vague hyperparameters

```
set.seed(010101)
2 y <- c(0, 3, 2, 1, 0) # Data
3 N <- length(y)
5 # Predictive distribution
6 ProbBo <- function(y, a0, b0){</pre>
    N <- length(y)
    #sample size
    aN <- a0 + sum(y)
    # Posterior shape parameter
    bN <- b0 + N
    # Posterior scale parameter
    p < -1 / (bN + 1)
13
     # Probability negative binomial density
    Pr <- 1 - pnbinom(0, size = aN, prob = (1 - p))
    # Probability of visiting the Doctor
    # Observe that in R there is a slightly
    # different parametrization.
19
    return(Pr)
20 }
22 # Using a vague prior:
^{23} a0 <- 0.001 # Prior shape parameter ^{24} b0 <- 0.001 # Prior scale parameter
25 PriMeanV <- a0 / b0 # Prior mean
26 PriVarV <- a0 / b0^2 # Prior variance
^{27} Pp <- ProbBo(y, a0 = 0.001, b0 = 0.001)
28 # This setting is vague prior information.
29 Pp
30 0.67
```

R code. Health insurance, predictive distribution using empirical Bayes

```
1 # Using Emprirical Bayes
2 LogMgLik <- function(theta, y){</pre>
    N <- length(y)
    #sample size
     a0 <- theta[1]
     # prior shape hyperparameter
    b0 <- theta[2]
     # prior scale hyperparameter
     aN \leftarrow sum(y) + a0
     # posterior shape parameter
     if(a0 <= 0 || b0 <= 0){</pre>
       #Avoiding negative values
      lnp <- -Inf
13
     else{lnp \leftarrow lgamma(aN) - sum(y)*log(b0+N) + a0*log(b0/(b0))}
      +N)) - lgamma(a0)}
      # log marginal likelihood
    return(-lnp)
17 }
18 theta0 <- c(0.01, 0.01)
19 # Initial values
20 control <- list(maxit = 1000)
_{21} # Number of iterations in optimization
22 EmpBay <- optim(theta0, LogMgLik, method = "BFGS", control =</pre>
        control, hessian = TRUE, y = y)
23 # Optimization
24 EmpBay$convergence
25 # Checking convergence
26 EmpBay$value # Maximum
27 aOEB <- EmpBay$par[1]
28 # Prior shape using empirical Bayes
29 a0EB
30 128.383
31 bOEB <- EmpBay par [2]
_{
m 32} # Prior scale using empirical Bayes
33 b0EB
34 106.801
35 PriMeanEB <- a0EB / b0EB
36 # Prior mean
37 PriVarEB <- a0EB / b0EB^2
38 # Prior variance
39 PpEB <- ProbBo(y, a0 = a0EB, b0 = b0EB)
_{
m 40} # This setting is using empirical Bayes.
41 PpEB
42 0.69
```

4. Suppose that you are analyzing to buy a car insurance next year. To make

a better decision you want to know what is the probability that you have a car claim next year? You have the records of your car claims in the last 15 years, $\mathbf{y} = \{0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0\}.$

Assume that this is a random sample from a data generating process (statistical model) that is Bernoulli, $Y_i \sim Ber(p)$, and your probabilistic prior beliefs about p are well described by a beta distribution with parameters α_0 and β_0 , $p \sim B(\alpha_0, \beta_0)$, then, you are interested in calculating the probability of a claim the next year $P(Y_0 = 1|\mathbf{y})$.

Solve this using an empirical Bayes approach and a non-informative approach where $\alpha_0 = \beta_0 = 1$ (uniform distribution).

Answer

The posterior distribution is given by

$$\pi(p|\mathbf{y}) = \left[\frac{\Gamma(\alpha_0 + \beta_0)}{\Gamma(\alpha_0)\Gamma(\beta_0)} p^{\alpha_0 - 1} (1 - p)^{\beta_0 - 1}\right] \left[\prod_{i=1}^N p^{y_i} (1 - p)^{1 - y_i}\right]$$

$$= \frac{\Gamma(\alpha_0 + \beta_0)}{\Gamma(\alpha_0)\Gamma(\beta_0)} p^{\sum_{i=1}^N y_i + \alpha_0 - 1} (1 - p)^{\beta_0 + N - \sum_{i=1}^N y_i - 1}$$

$$\propto p^{\sum_{i=1}^N y_i + \alpha_0 - 1} (1 - p)^{\beta_0 + N - \sum_{i=1}^N y_i - 1}.$$
(1.9)

The last expression is the kernel of a Beta distribution with parameters $\alpha_n = \sum_{i=1}^N y_i + \alpha_0$ and $\beta_n = \beta_0 + N - \sum_{i=1}^N y_i$. Thus, the posterior mean is

$$E[p|\mathbf{y}] = \frac{\alpha_n}{\alpha_n + \beta_n}$$

$$= \frac{\sum_{i=1}^{N} y_i + \alpha_0}{\alpha_0 + \beta_0 + N}$$

$$= \frac{N\bar{y}}{\alpha_0 + \beta_0 + N} + \frac{\alpha_0}{\alpha_0 + \beta_0 + N}$$

$$= \frac{N}{\alpha_0 + \beta_0 + N} (\bar{y}) + \frac{\alpha_0 + \beta_0}{\alpha_0 + \beta_0 + N} \left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)$$

$$= w(\bar{y}) + (1 - w)E[p],$$
(1.10)

where $w = \frac{N}{\alpha_0 + \beta_0 + N}$, \bar{y} is the sample mean, and $E[p] = \frac{\alpha_0}{\alpha_0 + \beta_0}$ is the prior mean.

The posterior predictive distribution of claim the next year is given by

$$\pi(Y_0 = 1|\mathbf{y}) = \int_0^1 P(Y_0 = 1|\mathbf{y}, p)\pi(p|\mathbf{y}) dp$$

$$= \int_0^1 p \times \pi(p|\mathbf{y}) dp$$

$$= \mathbb{E}[p|\mathbf{y}]$$

$$= \frac{\alpha_n}{\alpha_n + \beta_n}.$$
(1.11)

To use empirical Bayes, we have the following setting

$$\left[\hat{\alpha_0} \ \hat{\beta_0}\right] = \arg\max_{\alpha_0, \beta_0} \ln(p(\mathbf{y})),$$

where

$$p(\mathbf{y}) = \int_{0}^{1} \left[\frac{\Gamma(\alpha_{0} + \beta_{0})}{\Gamma(\alpha_{0}) \Gamma(\beta_{0})} p^{\alpha_{0} - 1} (1 - p)^{\beta_{0} - 1} \right] \left[\prod_{i=1}^{N} (1 - p)^{1 - y_{i}} \right] dp \quad (1.12)$$

$$= \frac{\Gamma(\alpha_{0} + \beta_{0})}{\Gamma(\alpha_{0}) \Gamma(\beta_{0})} \int_{0}^{1} p^{\sum_{i=1}^{N} y_{i} + \alpha_{0} - 1} (1 - p)^{\beta_{0} + N - \sum_{i=1}^{N} y_{i} - 1} dp$$

$$= \frac{\Gamma(\alpha_{0} + \beta_{0})}{\Gamma(\alpha_{0}) \Gamma(\beta_{0})} \frac{\Gamma(\sum_{i=1}^{N} y_{i} + \alpha_{0}) \Gamma(\beta_{0} + N - \sum_{i=1}^{N} y_{i})}{\Gamma(\alpha_{0} + \beta_{0} + N)}.$$

R code. Car claim, predictive distribution using vague hyperparameters

```
set.seed(010101)
2 y <- c(0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0)
3 # Data
4 N <- length(y)
5 #require(TailRank)
6 # Predictive distribution
7 ProbBo <- function(y, a0, b0){</pre>
    N <- length(y)
    #sample size
    aN \leftarrow a0 + sum(y)
    # Posterior shape parameter
    bN <- b0 + N - sum(y)
    # Posterior scale parameter
13
    pr <- aN / (aN + bN)
    # Probability of a claim the next year
16
    return(pr)
17 }
18 # Using a vague prior:
19 aO <- 1 # Prior shape parameter
20 b0 <- 1 # Prior scale parameter
21 PriMeanV <- a0 / (a0 + b0)
22 # Prior mean
23 PriVarV <- (a0*b0) / (((a0+b0)^2)*(a0+b0+1))
24 # Prior variance
25 Pp <- ProbBo(y, a0 = 1, b0 = 1)
26 # This setting is defining vague prior information.
_{
m 27} # The probability of a claim
28 Pp
29 0.47
```

R code. Car claim, predictive distribution using empirical Bayes

```
1 # Using Emprirical Bayes
2 LogMgLik <- function(theta, y){</pre>
    N <- length(y)
    #sample size
    a0 <- theta[1]
    # prior shape hyperparameter
    b0 <- theta[2]
    # prior scale hyperparameter
    aN \leftarrow sum(y) + a0
10
     # posterior shape parameter
    if(a0 <= 0 || b0 <= 0){
      #Avoiding negative values
      lnp <- -Inf
13
    }else{lnp <- lgamma(a0+b0) + lgamma(aN) + lgamma(b0+N-sum(</pre>
      y)) -lgamma(a0) - lgamma(b0) - lgamma(a0+b0+N)}
     # log marginal likelihood
16
    return(-lnp)
17 }
18 theta0 <- c(0.1, 0.1)
19 # Initial values
20 control <- list(maxit = 1000)
_{21} # Number of iterations in optimization
_{\rm 22} EmpBay <- optim(theta0, LogMgLik, method = "BFGS", control =
        control, hessian = TRUE, y = y)
23 # Optimization
24 EmpBay $ convergence
25 # Checking convergence
26 EmpBay$value # Maximum
27 aOEB <- EmpBay$par[1]
28 # Prior shape using empirical Bayes
29 bOEB <- EmpBay$par[2]
_{
m 30} # Prior scale using empirical Bayes
31 PriMeanEB <- a0EB /(a0EB + b0EB)
32 # Prior mean
33 PriVarEB <- (a0EB*b0EB)/(((a0EB+b0EB)^2)*(a0EB+b0EB+1))
34 # Prior variance
35 PpEB <- ProbBo(y, a0 = a0EB, b0 = b0EB)
36 # This setting is using empirical Bayes.
37 PpEB
38 0.47
```

R code. Car claim, density plots

```
1 # Density figures
2 lambda <- seq(0.001, 1, 0.001)
3 # Values of lambda
4 VaguePrior <- dbeta(lambda, shape1 = a0, shape2 = b0)
5 EBPrior <- dbeta(lambda, shape1 = a0EB, shape2 = b0EB)
6 PosteriorV <- dbeta(lambda, shape1 = a0 + sum(y), shape2 =
      b0 + N - sum(y)
  PosteriorEB <- dbeta(lambda, shape1 = a0EB + sum(y), shape2
      = b0EB + N - sum(y))
8 # Likelihood function
9 Likelihood <- function(theta, y){</pre>
    LogL <- dbinom(y, 1, theta, log = TRUE)
10
    # LogL <- dbern(y, theta)</pre>
  Lik <- prod(exp(LogL))
   return(Lik)
13
14 }
15 Liks <- sapply(lambda, function(par) {Likelihood(par, y = y)
      })
16 Sc <- max(PosteriorEB)/max(Liks)</pre>
17 #Scale for displaying in figure
18 LiksScale <- Liks * Sc
19 data <- data.frame(cbind(lambda, VaguePrior, EBPrior,</pre>
      PosteriorV, PosteriorEB, LiksScale))
20 #Data frame
21 require(ggplot2)
22 # Cool figures
23 require(latex2exp)
24 # LaTeX equations in figures
25 require(ggpubr)
26 # Multiple figures in one page
27 fig1 <- ggplot(data = data, aes(lambda, VaguePrior)) +
    geom_line() +
    xlab(TeX("$p$")) + ylab("Density") + ggtitle("Prior: Vague
30 fig2 <- ggplot(data = data, aes(lambda, EBPrior)) +
geom_line() +
    xlab(TeX("$p$")) + ylab("Density") +
    ggtitle("Prior: Empirical Bayes Beta")
34 fig3 <- ggplot(data = data, aes(lambda, PosteriorV)) +
    geom_line() +
    xlab(TeX("$p$")) + ylab("Density") +
36
    ggtitle("Posterior: Vague Beta")
38 fig4 <- ggplot(data = data, aes(lambda, PosteriorEB)) +
geom_line() +
  xlab(TeX("$p$")) + ylab("Density") +
    ggtitle("Posterior: Empirical Bayes Beta")
42 FIG <- ggarrange(fig1, fig2, fig3, fig4,
43 ncol = 2, nrow = 2)
44 annotate_figure(FIG,
45 top = text_grob("Vague versus Empirical Bayes: Beta-
      Bernoulli model", color = "black", face = "bold", size =
       14))
```

Vague versus Empirical Bayes: Beta-Bernoulli model

FIGURE 1.1 Vague versus Empirical Bayes: Bernoulli-Beta model.

R code. Car claim, prior, likelihood and posterior density plots

```
# Prior, likelihood and posterior:
2 #Empirical Bayes Binonial-Beta model
3 dataNew <- data.frame(cbind(rep(lambda, 3),</pre>
4 c(EBPrior, PosteriorEB, LiksScale),
_{5} rep(1:3, each = 1000)))
6 #Data frame
8 colnames(dataNew) <- c("Lambda", "Density", "Factor")</pre>
9 dataNew$Factor <- factor(dataNew$Factor, levels=c("1", "3",
10 "2"), labels=c("Prior", "Likelihood", "Posterior"))
ggplot(data = dataNew, aes_string(x = "Lambda",
13 y = "Density", group = "Factor")) +
geom_line(aes(color = Factor)) +
15 xlab(TeX("$\\lambda$")) + ylab("Density") +
16 ggtitle("Prior, likelihood and posterior: Empirical Bayes
17 Poisson-Gamma model") +
18 guides(color=guide_legend(title="Information")) +
19 scale_color_manual(values = c("red", "yellow", "blue"))
```


FIGURE 1.2
Prior, likelihood and posterior: Bernoulli-Beta model.

R code. Car claim, predictive probabilities plots # Predictive distributions 2 require(TailRank) 3 PredDen <- function(y, y0, a0, b0){</pre> N <- length(y) aN <- a0 + sum(y) # Posterior shape parameter bN <- b0 + N - sum(y) # Posterior scale parameter $Pr \leftarrow aN/(aN+bN)$ Probs <- dbinom(y0, 1, prob = Pr) return(Probs) 10 } 11 y0 <- 0:1 PredVague <- PredDen(y = y, y0 = y0, a0 = a0, b0 = b0) 13 PredEB <- PredDen(y = y, y0 = y0, a0 = a0EB, b0 = b0EB) 14 dataPred <- as.data.frame(cbind(y0, PredVague, PredEB))</pre> colnames(dataPred) <- c("y0", "PredictiveVague",</pre> 16 "PredictiveEB") 17 ggplot(data = dataPred) + geom_point(aes(y0, PredictiveVague, color = "red")) + xlab(TeX("\$y_0\$")) + ylab("Density") + 19 ggtitle("Predictive density: Vague and Empirical Bayes priors") + geom_point(aes(y0, PredictiveEB, color = " yellow")) + guides(color = guide_legend(title="Prior")) + scale_color_manual(labels = c("Vague", "Empirical Bayes"), values = c("red", "yellow")) + scale_x_continuous(breaks=seq(0,1,by=1))

FIGURE 1.3
Predictive probabilities: Bernoulli-Beta model.

R code. Car claim, Bayesian model average

```
1 # Posterior odds: Vague vs Empirical Bayes
2 PO12 \leftarrow exp(-LogMgLik(c(a0EB, b0EB), y = y))/exp(-LogMgLik(c
(a0, b0), y = y)
3 PostProMEM <- P012/(1 + P012)
4 # Posterior model probability Empirical Bayes
5 PostProMEM
6 0.757
7 PostProbMV <- 1 - PostProMEM</pre>
8 # Posterior model probability vague prior
9 PostProbMV
10 0.242
11 # Bayesian model average (BMA)
12 PostMeanEB \leftarrow (a0EB + sum(y)) / (a0EB + b0EB + N)
13 # Posterior mean Empirical Bayes
PostMeanV \leftarrow (a0 + sum(y)) / (a0 + b0 + N)
15 # Posterior mean vague priors
16 BMAmean <- PostProMEM * PostMeanEB + PostProbMV * PostMeanV
17 # BMA posterior mean
18 PostVarEB <- (a0EB + sum(y))*(b0EB + N - sum(y)) / ((a0EB +
      b0EB + N)^2*(a0EB + b0EB + N -1)
19 # Posterior variance Empirical Bayes
20 PostVarV \leftarrow (a0 + sum(y))*(b0 + N - sum(y)) / ((a0 + b0 + N)
       ^2)*(a0 + b0 + N -1)
21 # Posterior variance vague prior
22 BMAVar <- PostProMEM * PostVarEB + PostProbMV * PostVarV +
      PostProMEM * (PostMeanEB - BMAmean)^2 + PostProbMV * (
      PostMeanV - BMAmean)^2
23 # BMA posterior variance
24 # BMA: Predictive
25 BMAPred <- PostProMEM * PredEB + PostProbMV * PredVague
26 dataPredBMA <- as.data.frame(cbind(y0, BMAPred))</pre>
27 colnames(dataPredBMA) <- c("y0", "PredictiveBMA")</pre>
28 ggplot(data = dataPredBMA) +
    geom_point(aes(y0, PredictiveBMA, color = "red")) +
    xlab(TeX("$y_0$")) + ylab("Density") +
    ggtitle("Predictive density: BMA") +
    guides(color = guide_legend(title="BMA")) +
    scale_color_manual(labels = c("Probability"), values = c("
      red")) + scale_x_continuous(breaks=seq(0,1,by=1))
```

R code. Car claim, Bayesian updating plots

```
# Bayesian updating
  BayUp <- function(y, lambda, a0, b0){</pre>
   N <- length(y)
   aN \leftarrow a0 + sum(y)
      Posterior shape parameter
          b0 + N - sum(y)
   # Posterior scale parameter
         dbeta(lambda, shape1 = aN, shape2 = bN)
   # Posterior density
   return(list(Post = p, a0New = aN, b0New = bN))
12 PostUp <- NULL
   for(i in 1:N){
   if(i == 1){
     PostUpi \leftarrow BayUp(y[i], lambda, a0 = 1, b0 = 1)}
     PostUpi <- BayUp(y[i], lambda,
     a0 = PostUpi$a0New, b0 = PostUpi$b0New)
   PostUp <- cbind(PostUp, PostUpi$Post)</pre>
21 }
22 DataUp <- data.frame(cbind(rep(lambda, 15), c(PostUp), rep</pre>
       (1:15, each = 1000)))  #Data frame
23 colnames(DataUp) <- c("Lambda", "Density", "Factor")
24 DataUp$Factor <- factor(DataUp$Factor, levels=c("1","2","3",</pre>
       "4","5","6","7","8","9","10","11","12","13","14","15"),
       labels = c("Iter_1", "Iter_2", "Iter_3", "Iter_4", "Iter_5", "
Iter_6", "Iter_7", "Iter_8", "Iter_9", "Iter_10", "Iter_11",
       Iter_12","Iter_13","Iter_14","Iter_15"))
25 ggplot(data = DataUp, aes_string(x = "Lambda",
   y = "Density", group = "Factor")) +
   geom_line(aes(color = Factor)) +
   xlab(TeX("$p$")) + ylab("Density")
29 ggtitle("Bayesian updating:
30 Beta-Binomial model with vague prior") +
   guides(color=guide_legend(title="Update"))
```

5. Show that given the loss function, $L(\theta, a) = |\theta - a|$, then the optimal decision rule minimizing the risk function, $a^*(\mathbf{y})$, is the median.

Answer

 $\int_{\Theta} |\theta - a| \pi(\theta|\mathbf{y}) d\theta = \int_{-\infty}^{a} (a - \theta) \pi(\theta|\mathbf{y}) d\theta + \int_{a}^{\infty} (\theta - a) \pi(\theta|\mathbf{y}) d\theta.$ Differentiating with respect to a, and equating to zero,

$$\int_{-\infty}^{a} \pi(\theta|\mathbf{y}) d\theta = \int_{a}^{\infty} \pi(\theta|\mathbf{y}) d\theta, \tag{1.13}$$

then,

$$2\int_{-\infty}^{a} \pi(\theta|\mathbf{y})d\theta = \int_{-\infty}^{\infty} \pi(\theta|\mathbf{y})d\theta = 1,$$
 (1.14)

that is, $a^*(\mathbf{y})$ is the median.

Conceptual differences of the Bayesian and Frequentist approaches

Solutions of Exercises

1. Jeffreys-Lindley's paradox

The **Jeffreys-Lindley's paradox** [11, 18] is an apparent disagreement between the Bayesian and Frequentist frameworks to a hypothesis testing situation.

In particular, assume that in a city 49,581 boys and 48,870 girls have been born in 20 years. Assume that the male births is distributed Binomial with probability θ . We want to test the null hypothesis H_0 . $\theta = 0.5$ versus H_1 . $\theta \neq 0.5$.

- Show that the posterior model probability for the model under the null is approximately 0.95. Assume $\pi(H_0) = \pi(H_1) = 0.5$, and $\pi(\theta)$ equal to U(0,1) under H_1 .
- Show that the *p*-value for this hypothesis test is equal to 0.023 using the normal approximation, $Y \sim N(N \times \theta, N \times \theta \times (1 \theta))$.

Answer

• The marginal likelihood under the null hypothesis is $p(y|H_0) = \binom{N}{y}\theta^y(1-\theta)^{N-y} \approx 1.95 \times 10^{-4}$ given $\theta = 0.5$ under H_0 , N = 49,581 + 48,870 and y = 49,581. On the other hand, the marginal likelihood under the alternative hypothesis is

$$p(y|H_1) = \int_0^1 \binom{N}{y} \theta^y (1-\theta)^{N-y} d\theta$$

$$= \binom{N}{y} B(y+1, N-k+1)$$

$$= \frac{\Gamma(N+1)}{\Gamma(y+1)\Gamma(n-y+1)} \frac{\Gamma(y+1)\Gamma(N-y+1)}{\Gamma(N+2)}$$

$$= \frac{N!}{(N+1)!}$$

$$= \frac{1}{N+1}$$

$$\approx 1.016 \times 10^{-5}.$$

Then, $PO_{01} = \frac{1.95 \times 10^{-4}}{1.016 \times 10^{-5}} = 19.19$, this implies that the posterior model probability under the null hypothesis is $\pi(H_0|y) = \frac{19.19}{1+19.19} = 0.95$.

• Under the null hypothesis,

$$p = 2 \int_{49,581}^{\infty} (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2\sigma^2} (y - \mu)^2\right\} dy$$

= 0.0235,

where $\mu = N \times \theta = 49,225.5$, and $\sigma^2 = N \times \theta \times (1 - \theta) = 24,612.75$ under the null hypothesis $(\theta = 0.5)$.

Observe that the posterior model probability supports the null hypothesis, whereas the p-value implies rejection of the null hypothesis using a 5% significance level.

Observe that actually this is not a paradox, as we are answering two different questions. The Bayes factor is comparing two models ($\theta = 0.5$ versus $\theta \sim U(0,1)$), whereas the *p*-value is checking the compatibility between $\theta = 0.5$ and the sample information. Despite that $\theta = 0.5$ is not compatible with sample information, it is better than the models assuming $\theta \sim U(0,1)$ as most of these values of θ are far away from the sample mean. Thus, the model under the null is a bad description of the data, but it is better than the model under the alternative hypothesis.¹

¹Observe that there are at least another two issues in this example. First, the prior under the alternative is non-informative, this implies problems for Bayes factors, and second, the prior under the alternative is positive at $\theta=0.5$, which is the null ([14] propose non-local prior densities in Bayesian hypothesis tests to tackle these issues).

2. We want to test H_0 . $\mu = \mu_0$ vs H_1 . $\mu \neq \mu_0$ given $y_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$.

Assume $\pi(H_0) = \pi(H_1) = 0.5$, and $\pi(\mu, \sigma) \propto 1/\sigma$ under the alternative hypothesis.

Show that

$$p(\mathbf{y}|\mathcal{M}_{1}) = \frac{\pi^{-N/2}}{2} \Gamma(N/2) \left(\frac{1}{\alpha_{n}\hat{\sigma}^{2}}\right)^{N/2} \left(\frac{N}{\alpha_{n}\hat{\sigma}^{2}}\right)^{-1/2} \frac{\Gamma(1/2)\Gamma(\alpha_{n}/2)}{\Gamma((\alpha_{N}+1)/2)} \text{ and } p(\mathbf{y}|\mathcal{M}_{0}) = (2\pi)^{-N/2} \left[\frac{2}{\Gamma(N/2)} \left(\frac{N}{2} \frac{\sum_{i=1}^{N} (y_{i} - \mu_{0})^{2}}{N}\right)^{N/2}\right]^{-1}. \text{ Then,}$$

$$PO_{01} = \frac{p(\mathbf{y}|\mathcal{M}_0)}{p(\mathbf{y}|\mathcal{M}_1)}$$

$$= \frac{\Gamma((\alpha_n + 1)/2)}{\Gamma(1/2)\Gamma(\alpha_N/2)} (\alpha_n \hat{\sigma}^2/N)^{-1/2} \left[1 + \frac{(\mu_0 - \bar{y})^2}{\alpha_n \hat{\sigma}^2/N} \right]^{-\left(\frac{\alpha_n + 1}{2}\right)},$$

where
$$\alpha_N = N - 1$$
 and $\hat{\sigma}^2 = \frac{\sum_{i=1}^{N} (y_i - \bar{y})^2}{N - 1}$.

Find the relationship between the posterior odds and the classical test statistic for the null hypothesis.

Answer

$$\begin{split} p(\mathbf{y}|\mathcal{M}_1) &= \int_{-\infty}^{\infty} \int_{0}^{\infty} (2\pi)^{-N/2} \sigma^{-N} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mu)^2\right\} \frac{1}{\sigma} d\sigma d\mu \\ &= (2\pi)^{-N/2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \sigma^{-(N+1)} \exp\left\{-\frac{N}{2\sigma^2} \frac{\sum_{i=1}^{N} (y_i - \mu)^2}{N}\right\} d\sigma d\mu \\ &= (2\pi)^{-N/2} \frac{\Gamma(N/2)}{2} 2^{N/2} \int_{-\infty}^{\infty} \left[\sum_{i=1}^{N} (y_i - \mu)^2\right]^{-N/2} d\mu \\ &= (2\pi)^{-N/2} \frac{\Gamma(N/2)}{2} 2^{N/2} \int_{-\infty}^{\infty} \left[\sum_{i=1}^{N} [(y_i - \bar{y}) - (\mu - \bar{y})]^2\right]^{-N/2} d\mu \\ &= (2\pi)^{-N/2} \frac{\Gamma(N/2)}{2} 2^{N/2} \int_{-\infty}^{\infty} \left[\alpha_n \hat{\sigma}^2 + N(\mu - \bar{y})^2\right]^{-N/2} d\mu \\ &= (2\pi)^{-N/2} \frac{\Gamma(N/2)}{2} 2^{N/2} \left(\frac{\alpha_n \hat{\sigma}^2}{\alpha_n \hat{\sigma}^2}\right)^{-N/2} \int_{-\infty}^{\infty} \left[\alpha_n \hat{\sigma}^2 + N(\mu - \bar{y})^2\right]^{-N/2} d\mu \\ &= (2\pi)^{-N/2} \frac{\Gamma(N/2)}{2} 2^{N/2} \left(\alpha_n \hat{\sigma}^2\right)^{-N/2} \int_{-\infty}^{\infty} \left[1 + \frac{N(\mu - \bar{y})^2}{\alpha_n \hat{\sigma}^2}\right]^{-N/2} d\mu \\ &= \frac{\pi^{-N/2}}{2} \Gamma(N/2) \left(\frac{1}{\alpha_n \hat{\sigma}^2}\right)^{N/2} \left(\frac{N}{\alpha_n \hat{\sigma}^2}\right)^{-1/2} \frac{\Gamma(1/2)\Gamma(\alpha_n/2)}{\Gamma((\alpha_N + 1)/2)}. \end{split}$$

The third line takes into account that the integral in the second line is the kernel of an inverted-gamma distribution, and the last line takes into account that the integral in the previous line is the kernel of a student's t distribution [39].

$$p(\mathbf{y}|\mathcal{M}_0) = \int_0^\infty (2\pi)^{-N/2} \sigma^{-N} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - \mu_0)^2\right\} \frac{1}{\sigma} d\sigma$$
$$= (2\pi)^{-N/2} \int_0^\infty \sigma^{-(N+1)} \exp\left\{-\frac{N}{2\sigma^2} \frac{\sum_{i=1}^N (y_i - \mu_0)^2}{N}\right\} d\sigma$$
$$= (2\pi)^{-N/2} \left[\frac{2}{\Gamma(N/2)} \left(\frac{N}{2} \frac{\sum_{i=1}^N (y_i - \mu_0)^2}{N}\right)^{N/2}\right]^{-1}.$$

The third line takes into account that the integral in the second line is the kernel of an inverted-gamma distribution [39].

Given these results is easy to get PO_{01} .

In addition,

$$PO_{01} = \frac{\Gamma((\alpha_n + 1)/2)}{\Gamma(1/2)\Gamma(\alpha_n/2)} (\alpha_n \hat{\sigma}^2/N)^{-1/2} \left[1 + \frac{(\mu_0 - \bar{y})^2}{\alpha_n \hat{\sigma}^2/N} \right]^{-\left(\frac{\alpha_n + 1}{2}\right)}$$

$$= \frac{\Gamma((\alpha_n + 1)/2)}{\Gamma(1/2)\Gamma(\alpha_n/2)} (\alpha_n \hat{\sigma}^2/N)^{-1/2} \left[1 + \frac{1}{\alpha_n} \left(\frac{\mu_0 - \bar{y}}{\hat{\sigma}/\sqrt{N}} \right)^2 \right]^{-\left(\frac{\alpha_n + 1}{2}\right)}$$

$$= \frac{\Gamma((\alpha_n + 1)/2)}{\Gamma(1/2)\Gamma(\alpha_n/2)} (\alpha_n \hat{\sigma}^2/N)^{-1/2} \left[1 + \frac{1}{\alpha_n} t^2 \right]^{-\left(\frac{\alpha_n + 1}{2}\right)},$$

where $t = \frac{\bar{y} - \mu_0}{\hat{\sigma}/\sqrt{N}}$ is the classical statistical test. Then, as t increases then the PO_{01} decreases, both indicating support against the null hypothesis H_0 . $\mu = \mu_0$. However, there are other terms affecting the posterior odds, then, there is no necessary agreement between the classical test statistic and the posterior odds.

3. Math test continues

Using the setting of the **Example: Math test** in subsection 2.6.1 in the book, test H_0 . $\mu = \mu_0$ vs H_1 . $\mu \neq \mu_0$ where $\mu_0 = \{100, 100.5, 101, 101.5, 102\}$.

- What is the p-value for these hypothesis tests?
- Find the posterior model probability of the null model for each μ_0 .

R code. Example: Math test

```
1 N <- 50 # Sample size
2 y_bar <- 102 # Sample mean
3 s2 <- 10 # Sample variance
4 alpha <- N - 1
5 serror <- (s2/N)^0.5
6 y.H0 <- c(100, 100.5, 101, 101.5, 102)
7 test <- (y.H0 - y_bar)/serror
8 pval <- 2*pt(test, alpha)
9 pval
10 0.0000459 0.0015431 0.0299338 0.2690040 1
11 # p-values
12 P001 <- (gamma(N/2)*((N-1)*serror^2)^(-0.5)*(1+test^2/alpha)^(-N/2))/(gamma(1/2)*gamma((N-1)/2))
13 P001/(1+P001)
14 0.0001705 0.0050345 0.0725330 0.3210223 0.4702050
15 # Posterior model probability of the null hypothesis.</pre>
```

Cornerstone models: Conjugate families

Solutions of Exercises

1. Write in the canonical form the distribution of the Bernoulli example, and find the mean and variance of the sufficient statistic.

Answer

Given
$$p(\mathbf{y}|\theta) = (1-\theta)^N \exp\left\{\sum_{i=1}^N y_i \log\left(\frac{\theta}{1-\theta}\right)\right\}$$
 where $\eta = \log\frac{\theta}{1+\theta}$ which implies $\theta = \frac{\exp(\eta)}{1-\exp(\eta)}$, then $p(\mathbf{y}|\theta) = \exp\left\{\sum_{i=1}^N y_i \eta - N \log(1+\exp(\eta))\right\}$. Thus $B(\eta) = N \log(1+\exp(\eta))$, $\nabla(B(\eta)) = N \frac{\exp(\eta)}{1+\exp(\eta)} = N\theta$ and $\nabla^2(B(\eta)) = N\left\{\frac{\exp(\eta)(1+\exp(\eta))}{(1+\exp(\eta))^2} - \frac{\exp(\eta)\exp(\eta)}{(1+\exp(\eta))^2}\right\} = N\theta(1-\theta)$.

2. Given a random sample $\mathbf{y} = [y_1, y_2, \dots, y_N]^{\top}$ from N binomial experiments each having known size n_i and same unknown probability θ . Show that $p(\mathbf{y}|\theta)$ is in the exponential family, and find the posterior distribution, the marginal likelihood and the predictive distribution of the binomial-beta model assuming the number of trials is known.

Answer

The density function is

$$p(\mathbf{y}|\theta) = \prod_{i=1}^{N} \binom{n_i}{y_i} \theta^{y_i} (1-\theta)^{n_i - y_i}$$

$$= \prod_{i=1}^{N} \binom{n_i}{y_i} \theta^{\sum_{i=1}^{N} y_i} (1-\theta)^{\sum_{i=1}^{N} n_i - \sum_{i=1}^{N} y_i}$$

$$= \prod_{i=1}^{N} \binom{n_i}{y_i} \exp\left\{ \sum_{i=1}^{N} y_i \log\left(\frac{\theta}{1-\theta}\right) + \sum_{i=1}^{N} n_i \log(1-\theta) \right\}$$

$$= \prod_{i=1}^{N} \binom{n_i}{y_i} (1-\theta)^{\sum_{i=1}^{N} n_i} \exp\left\{ \sum_{i=1}^{N} y_i \log\left(\frac{\theta}{1-\theta}\right) \right\},$$

Observe that $\sum_{i=1}^{N} n_i$ is the total sample size of Bernoulli experiments.

Using Theorem 1 in Chapter 4, the prior distribution is

$$\pi(\theta) \propto (1 - \theta)^{B_0} \exp\left\{a_0 \log\left(\frac{\theta}{1 - \theta}\right)\right\}$$
$$= \theta^{a_0} (1 - \theta)^{B_0 - a_0}$$
$$= \theta^{\alpha_0 - 1} (1 - \theta)^{\beta_0 - 1}.$$

where $\alpha_0 = a_0 + 1$ and $\beta_0 = B_0 - a_0 + 1$. This is the kernel of a beta distribution. Thus, the posterior distribution is

$$\pi(\theta|\mathbf{y}) \propto \theta^{\alpha_0 - 1} (1 - \theta)^{\beta_0 - 1} \times \theta^{\sum_{i=1}^N y_i} (1 - \theta)^{\sum_{i=1}^N n_i - \sum_{i=1}^N y_i}$$

$$= \theta^{\alpha_0 + \sum_{i=1}^N y_i - 1} (1 - \theta)^{\beta_0 + \sum_{i=1}^N n_i - \sum_{i=1}^N y_i - 1}$$

$$= \theta^{\alpha_n - 1} (1 - \theta)^{\beta_n - 1},$$

where $\alpha_n = \alpha_0 + \sum_{i=1}^N y_i$ and $\beta_n = \beta_0 + \sum_{i=1}^N n_i - \sum_{i=1}^N y_i$. The marginal likelihood is

$$p(\mathbf{y}) = \int_{0}^{1} \frac{\theta^{\alpha_{0}-1} (1-\theta)^{\beta_{0}-1}}{B(\alpha_{0},\beta_{0})} \times \prod_{i=1}^{N} \binom{n_{i}}{y_{i}} \theta^{\sum_{i=1}^{N} y_{i}} (1-\theta)^{\sum_{i=1}^{N} n_{i} - \sum_{i=1}^{N} y_{i}} d\theta$$

$$= \frac{\prod_{i=1}^{N} \binom{n_{i}}{y_{i}}}{B(\alpha_{0},\beta_{0})} \int_{0}^{1} \theta^{\alpha_{0} + \sum_{i=1}^{N} y_{i} - 1} (1-\theta) \beta_{0} \sum_{i=1}^{N} n_{i} - \sum_{i=1}^{N} y_{i} - 1 d\theta$$

$$= \frac{\prod_{i=1}^{N} \binom{n_{i}}{y_{i}} B(\alpha_{n},\beta_{n})}{B(\alpha_{0},\beta_{0})}.$$

The third line due to having the kernel of a Beta distribution. Finally, the predictive distribution is

$$p(Y_0|\mathbf{y}) = \int_0^1 \binom{n_{y_0}}{y_0} \theta^{y_0} (1-\theta)^{n_{y_0}-y_0} \frac{\theta^{\alpha_n-1} (1-\theta)^{\beta_n-1}}{B(\alpha_n, \beta_n)} d\theta$$

$$= \frac{\binom{n_{y_0}}{y_0}}{B(\alpha_n, \beta_n)} \int_0^1 \theta^{\alpha_n+y_0-1} (1-\theta)^{\beta_n+n_{y_0}-y_0-1} d\theta$$

$$= \binom{n_{y_0}}{y_0} \frac{B(\alpha_n + y_0, \beta_n + n_{y_0} - y_0)}{B(\alpha_n, \beta_n)},$$

where n_{y_0} is the known size associated with y_0 , and the last line due to having the kernel of a beta distribution. The predictive is a *beta-binomial distribution*.

3. Given a random sample $\mathbf{y} = [y_1, y_2, \dots, y_N]^{\top}$ from a exponential distribution. Show that $p(\mathbf{y}|\lambda)$ is in the exponential family, and find the posterior distribution, marginal likelihood and predictive distribution of the exponential-gamma model.

Answer

We see that the exponential distribution belongs to the exponential family as $p(\mathbf{y}|\lambda) = \prod_{i=1}^{N} \lambda \exp(-\lambda y_i) = \lambda^N \exp(-\lambda \sum_{i=1}^{N} y_i)$.

Using the gamma distribution in the rate parametrization, we see that $\pi(\lambda|\mathbf{y}) \propto \lambda^{\alpha_0-1} \exp(-\lambda\beta_0) \times \lambda^N \exp(-\lambda\sum_{i=1}^N y_i) = \lambda^{\alpha_0+N-1} \exp(-\lambda(\beta_0+\sum_{i=1}^N y_i))$. This is the kernel of a gamma distribution, that is, $\lambda|\mathbf{y} \sim G(\alpha_n, \beta_n)$ where $\alpha_n = \alpha_0 + N$ and $\beta_n = \beta_0 + \sum_{i=1}^N y_i$.

The marginal likelihood is

$$p(\mathbf{y}) = \int_0^\infty \lambda^N \exp\left\{-\lambda \sum_{i=1}^N \right\} \lambda^{\alpha_0 - 1} \exp\left\{-\beta_0 \lambda\right\} \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} d\lambda$$
$$= \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \int_0^\infty \lambda^{\alpha_0 + N - 1} \exp\left\{-\lambda \left(\beta_0 + \sum_{i=1}^N \right)\right\} d\lambda$$
$$= \frac{\beta_0^{\alpha_0} \Gamma(\alpha_n)}{\Gamma(\alpha_0) \beta_n^{\alpha_n}}.$$

Finally, the predictive distribution is

$$p(Y_0|\mathbf{y}) = \int_0^\infty \lambda \exp\left\{-\lambda y_0\right\} \lambda^{\alpha_n - 1} \exp\left\{-\beta_n \lambda\right\} \frac{\beta_n^{\alpha_n}}{\Gamma(\alpha_n)} d\lambda$$
$$= \frac{\beta_n^{\alpha_n}}{\Gamma(\alpha_n)} \int_0^\infty \lambda^{\alpha_n + 1 - 1} \exp\left\{-\lambda(\beta_n + y_0)\right\} d\lambda$$
$$= \frac{\beta_n^{\alpha_n}}{\Gamma(\alpha_n)} \times \frac{\Gamma(\alpha_n + 1)}{(\beta_n + y_0)^{\alpha_n + 1}}$$
$$= \frac{\alpha_n \beta_n^{\alpha_n}}{(\beta_n + y_0)^{\alpha_n + 1}}.$$

This is a Lomax distribution.

4. Given $\mathbf{y} \sim N_N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, that is, a multivariate normal distribution show that $p(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is in the exponential family.

$$\begin{split} p(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\Sigma}) &= (2\pi)^{-N/2}|\boldsymbol{\Sigma}|^{-1/2}\exp\left\{-\frac{1}{2}\left(\mathbf{y}-\boldsymbol{\mu}\right)^{\top}\boldsymbol{\Sigma}^{-1}\left(\mathbf{y}-\boldsymbol{\mu}\right)\right\} \\ &= (2\pi)^{-N/2}\exp\left\{-\frac{1}{2}\left(\mathbf{y}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{y} - 2\mathbf{y}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \log(|\boldsymbol{\Sigma}|)\right)\right\} \\ &= (2\pi)^{-N/2}\exp\left\{-\frac{1}{2}\left(tr\left\{\mathbf{y}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{y}\right\} - 2\mathbf{y}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \log(|\boldsymbol{\Sigma}|)\right)\right\} \\ &= (2\pi)^{-N/2}\exp\left\{-\frac{1}{2}\left(vec\left(\mathbf{y}\mathbf{y}^{\top}\right)^{\top}vec\left(\boldsymbol{\Sigma}^{-1}\right) - 2\mathbf{y}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \log(|\boldsymbol{\Sigma}|)\right)\right\}, \end{split}$$

where tr and vec are the trace and vectorization operators, respectively.

Then,
$$h(\mathbf{y}) = (2\pi)^{-N/2}$$
, $\eta(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \left[\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} \ vec\left(\boldsymbol{\Sigma}^{-1}\right)\right]$, $T(\mathbf{y}) = \left[\mathbf{y} - \frac{1}{2}vec(\mathbf{y}\mathbf{y}^{\top})\right]$ and $C(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \exp\left\{-\frac{1}{2N}\left(\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \log(|\boldsymbol{\Sigma}|)\right)\right\}$.

5. Find the marginal likelihood in the normal/inverse-Wishart model.

Answer

$$p(\mathbf{Y}) = \int_{\mathcal{R}^p} \int_{\mathcal{S}} (2\pi)^{-pN/2} |\mathbf{\Sigma}|^{-N/2} \exp\left\{-\frac{1}{2} tr[(\mathbf{S} + N(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})^{\top}) \mathbf{\Sigma}^{-1}]\right\}$$

$$\times (2\pi)^{-p/2} \beta_0^{p/2} |\mathbf{\Sigma}|^{-1/2} \exp\left\{-\frac{\beta_0}{2} tr[(\boldsymbol{\mu} - \boldsymbol{\mu}_0)(\boldsymbol{\mu} - \boldsymbol{\mu}_0)^{\top} \mathbf{\Sigma}^{-1}]\right\}$$

$$\times |\mathbf{\Sigma}|^{-(\alpha_0 + p + 1)/2} \frac{2^{-\alpha_0 p/2} |\mathbf{\Psi}_0|^{\alpha_0/2}}{\Gamma_p(\alpha_0/2)} \exp\left\{-\frac{1}{2} tr(\mathbf{\Psi}_0 \mathbf{\Sigma}^{-1})\right\} d\mathbf{\Sigma} d\boldsymbol{\mu}$$

$$= \frac{(2\pi)^{-\frac{1}{2}(pN + p)} |\mathbf{\Psi}_0|^{\alpha_0/2} \beta_0^{p/2} 2^{-\alpha_0 p/2}}{\Gamma_p(\alpha_0/2)} \int_{\mathcal{R}^p} \int_{\mathcal{S}} |\mathbf{\Sigma}|^{-\frac{1}{2}(N + 1 + \alpha_0 + p + 1)}$$

$$\times \exp\left\{-\frac{1}{2} tr[(\mathbf{S} + N(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})^{\top} + \beta_0(\boldsymbol{\mu} - \boldsymbol{\mu}_0)(\boldsymbol{\mu} - \boldsymbol{\mu}_0)^{\top} + \mathbf{\Psi}_0) \mathbf{\Sigma}^{-1}]\right\} d\mathbf{\Sigma} d\boldsymbol{\mu}.$$

We have in the integral the kernel of an Inverse-Wishart distribution, then

$$p(\mathbf{Y}) = \frac{\Gamma_{p} \left(\frac{N+1+\alpha_{0}}{2}\right) |\Psi_{0}|^{\alpha_{0}/2} \beta_{0}^{p/2}}{\Gamma_{p}(\alpha_{0}/2) \pi^{p(N+1)/2}}$$

$$\times \int_{\mathcal{R}^{p}} |\mathbf{S} + \Psi_{0} + (N+\beta_{0}) (\boldsymbol{\mu} - \boldsymbol{\mu}_{n}) (\boldsymbol{\mu} - \boldsymbol{\mu}_{n})^{\top}$$

$$+ N\beta_{0}/(N+\beta_{0}) (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}_{0}) (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}_{0})^{\top} |^{-(\alpha_{n}+1)/2} d\boldsymbol{\mu}$$

$$= \frac{\Gamma_{p} \left(\frac{N+1+\alpha_{0}}{2}\right) |\Psi_{0}|^{\alpha_{0}/2} \beta_{0}^{p/2}}{\Gamma_{p}(\alpha_{0}/2) \pi^{p(N+1)/2}}$$

$$\times \int_{\mathcal{R}^{p}} (|\Psi_{n}|| 1 + \beta_{n} (\boldsymbol{\mu} - \boldsymbol{\mu}_{n}) \Psi_{n}^{-1} (\boldsymbol{\mu} - \boldsymbol{\mu}_{n})^{\top} |)^{-\frac{1}{2}(\alpha_{n}+1)} d\boldsymbol{\mu}$$

$$= \frac{\Gamma_{p} \left(\frac{\alpha_{n}+1}{2}\right) |\Psi_{0}|^{\alpha_{0}/2} \beta_{0}^{p/2}}{\Gamma_{p}(\alpha_{0}/2) \pi^{p(N+1)/2}} |\Psi_{n}|^{-\frac{1}{2}(\alpha_{n}+1)}$$

$$\times \int_{\mathcal{R}^{p}} [1 + \beta_{n} (\boldsymbol{\mu} - \boldsymbol{\mu}_{n})^{\top} \Psi_{n}^{-1} (\boldsymbol{\mu} - \boldsymbol{\mu}_{n})]^{-\frac{1}{2}(\alpha_{n}+1)} d\boldsymbol{\mu}.$$

The last equality uses the definition of Ψ_n , β_n and α_n , and the Sylvester's determinant theorem. Observe that we have the kernel of a multivariate t distribution. Then,

$$\begin{split} p(\mathbf{Y}) &= \frac{\Gamma_{p} \left(\frac{\alpha_{n}+1}{2}\right) |\Psi_{0}|^{\alpha_{0}/2} \beta_{0}^{p/2}}{\Gamma_{p} (\alpha_{0}/2) \pi^{p(N+1)/2}} |\Psi_{n}|^{-\frac{1}{2}(\alpha_{n}+1)} \\ &\times \int_{\mathcal{R}^{p}} \left[1 + \frac{1}{\alpha_{n}+1-p} (\boldsymbol{\mu}-\boldsymbol{\mu}_{n})^{\top} \left(\frac{\Psi_{n}}{\beta_{n} (\alpha_{n}+1-p)} \right)^{-1} (\boldsymbol{\mu}-\boldsymbol{\mu}_{n}) \right]^{-\frac{1}{2}(\alpha_{n}+1-p+p)} d\boldsymbol{\mu} \\ &= \frac{\Gamma_{p} \left(\frac{\alpha_{n}+1}{2}\right) \Gamma_{p} \left(\frac{\alpha_{n}+1-p}{2}\right) |\Psi_{0}|^{\alpha_{0}/2} \beta_{0}^{p/2} (\alpha_{n}+1-p)^{p/2} \pi^{p/2} |\Psi_{n}|^{-\frac{1}{2}(\alpha_{n}+1)}}{\Gamma_{p} (\alpha_{0}/2) \pi^{p(N+1)/2} \Gamma_{p} \left(\frac{\alpha_{n}+1-p+p}{2}\right) \left| \frac{\Psi_{n}}{\beta_{n} (\alpha_{n}+1-p)} \right|^{-1/2}} \\ &= \frac{\Gamma_{p} \left(\frac{v_{n}}{2}\right)}{\Gamma_{p} \left(\frac{\alpha_{0}}{2}\right)} \frac{|\Psi_{0}|^{\alpha_{0}/2}}{|\Psi_{n}|^{\alpha_{n}/2}} \left(\frac{\beta_{0}}{\beta_{n}}\right)^{p/2} (\pi)^{-Np/2}, \end{split}$$

where $v_n = \alpha_n + 1 - p$.

6. Find the posterior predictive distribution in the normal/inverse-Wishart model, and show that $\mathbf{Y}_0|\mathbf{Y} \sim T_{N_0,M}(\alpha_n - M + 1, \mathbf{X}_0\mathbf{B}_n, \mathbf{I}_{N_0} + \mathbf{X}_0\mathbf{V}_n\mathbf{X}_0^\top, \mathbf{\Psi}_n)$ in the multivariate regression linear model.

$$p(\mathbf{Y}_{0}|\mathbf{Y}) \propto \int_{\mathcal{R}^{p}} \int_{\mathcal{S}} |\mathbf{\Sigma}|^{-1/2} \exp \left\{-\frac{1}{2} tr[(\mathbf{y}_{0} - \boldsymbol{\mu})(\mathbf{y}_{0} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}]\right\}$$

$$\times |\mathbf{\Sigma}|^{-1/2} \exp \left\{-\frac{\beta_{n}}{2} tr[(\boldsymbol{\mu} - \boldsymbol{\mu}_{n})(\boldsymbol{\mu} - \boldsymbol{\mu}_{n})^{\top} \mathbf{\Sigma}^{-1}]\right\}$$

$$\times |\mathbf{\Sigma}|^{-(\alpha_{n} + p + 1)/2} \exp \left\{-\frac{1}{2} tr(\boldsymbol{\Psi}_{n} \mathbf{\Sigma}^{-1})\right\} d\mathbf{\Sigma} d\boldsymbol{\mu}$$

$$\propto \int_{\mathcal{R}^{p}} |(\mathbf{y}_{0} - \boldsymbol{\mu})(\mathbf{y}_{0} - \boldsymbol{\mu})^{\top} + \beta_{n} (\boldsymbol{\mu} - \boldsymbol{\mu}_{n})(\boldsymbol{\mu} - \boldsymbol{\mu}_{n})^{\top} + \boldsymbol{\Psi}_{n}|^{-(\alpha_{n} + 2)/2} d\boldsymbol{\mu}.$$

The last equality uses that there is the kernel of an Inverse Wishart distribution.

Taking into account that

$$(\mathbf{y}_0 - \boldsymbol{\mu})(\mathbf{y}_0 - \boldsymbol{\mu})^{\top} + \beta_n(\boldsymbol{\mu} - \boldsymbol{\mu}_n)(\boldsymbol{\mu} - \boldsymbol{\mu}_n)^{\top} = (1 + \beta_n) \left(\boldsymbol{\mu} - \frac{(\mathbf{y}_0 + \beta_n \boldsymbol{\mu}_n)}{1 + \beta_n}\right) \left(\boldsymbol{\mu} - \frac{(\mathbf{y}_0 + \beta_n \boldsymbol{\mu}_n)}{1 + \beta_n}\right)^{\top} + \frac{\beta_n}{1 + \beta_n} (\mathbf{y}_0 - \boldsymbol{\mu}_n)(\mathbf{y}_0 - \boldsymbol{\mu}_n)^{\top}.$$

Then,

$$\begin{split} p(\mathbf{Y}_{0}|\mathbf{Y}) &\propto \int_{\mathcal{R}^{p}} \left| (\mathbf{y}_{0} - \boldsymbol{\mu}) (\mathbf{y}_{0} - \boldsymbol{\mu})^{\top} + \beta_{n} (\boldsymbol{\mu} - \boldsymbol{\mu}_{n}) (\boldsymbol{\mu} - \boldsymbol{\mu}_{n})^{\top} + \boldsymbol{\Psi}_{n} \right|^{-(\alpha_{n} + 2)/2} d\boldsymbol{\mu} \\ &= \int_{\mathcal{R}^{p}} \left| (1 + \beta_{n}) \left(\boldsymbol{\mu} - \frac{(\mathbf{y}_{0} + \beta_{n} \boldsymbol{\mu}_{n})}{1 + \beta_{n}} \right) \left(\boldsymbol{\mu} - \frac{(\mathbf{y}_{0} + \beta_{n} \boldsymbol{\mu}_{n})}{1 + \beta_{n}} \right)^{\top} \right. \\ &+ \frac{\beta_{n}}{1 + \beta_{n}} (\mathbf{y}_{0} - \boldsymbol{\mu}_{n}) (\mathbf{y}_{0} - \boldsymbol{\mu}_{n})^{\top} + \boldsymbol{\Psi}_{n} \right|^{-(\alpha_{n} + 2)/2} d\boldsymbol{\mu} \\ &= \int_{\mathcal{R}^{p}} \left[\left| \underline{\boldsymbol{\Psi}}_{n} + \frac{\beta_{n}}{1 + \beta_{n}} (\mathbf{y}_{0} - \boldsymbol{\mu}_{n}) (\mathbf{y}_{0} - \boldsymbol{\mu}_{n})^{\top} \right| \\ &\left. \left. \left| 1 + (1 + \beta_{n}) \left(\boldsymbol{\mu} - \frac{(\mathbf{y}_{0} + \beta_{n} \boldsymbol{\mu}_{n})}{1 + \beta_{n}} \right)^{\top} \frac{1}{\alpha_{n} + 2 - p} \left(\frac{\boldsymbol{\Lambda}_{n}}{\alpha_{n} + 2 - p} \right)^{-1} \left(\boldsymbol{\mu} - \frac{(\mathbf{y}_{0} + \beta_{n} \boldsymbol{\mu}_{n})}{1 + \beta_{n}} \right) \right| \right]^{-(\alpha_{n} + 2 - p + p)/2} d\boldsymbol{\mu} \\ &\propto \left| \underline{\boldsymbol{\Psi}}_{n} + \frac{\beta_{n}}{1 + \beta_{n}} (\mathbf{y}_{0} - \boldsymbol{\mu}_{n}) (\mathbf{y}_{0} - \boldsymbol{\mu}_{n})^{\top} \right|^{-(\alpha_{n} + 2)/2} \\ &\times \left| \underline{\boldsymbol{\Psi}}_{n} + \frac{\beta_{n}}{1 + \beta_{n}} (\mathbf{y}_{0} - \boldsymbol{\mu}_{n}) (\mathbf{y}_{0} - \boldsymbol{\mu}_{n})^{\top} \right|^{1/2} \\ &= \left| \underline{\boldsymbol{\Psi}}_{n} + \frac{\beta_{n}}{1 + \beta_{n}} (\mathbf{y}_{0} - \boldsymbol{\mu}_{n}) (\mathbf{y}_{0} - \boldsymbol{\mu}_{n})^{\top} \right|^{-(\alpha_{n} + 1)/2} \\ &\propto \left[1 + (\mathbf{y}_{0} - \boldsymbol{\mu}_{n})^{\top} \frac{1}{\alpha_{n} + 1 - p} \left(\frac{\underline{\boldsymbol{\Psi}}_{n} (1 + \beta_{n})}{(\alpha_{n} + 1 - p)\beta_{n}} \right)^{-1} (\mathbf{y}_{0} - \boldsymbol{\mu}_{n}) \right|^{-(\alpha_{n} + 1 - p + p)} . \end{split}$$

The second equality uses the Sylvester's determinant theorem, and that there is the kernel of a multivariate t distribution.

Then, we have that the predictive distribution is a multivariate t distribution centered at μ_n , $\alpha_n + 1 - p$ degrees of freedom, and scale matrix $\frac{\Psi_n(1+\beta_n)}{(\alpha_n+1-p)\beta_n}$.

To show the second statement, let's start by the definition of the predictive density to show that $\mathbf{Y}_0|\mathbf{Y} \sim T_{N_0,M}(\alpha_n - M + 1, \mathbf{X}_0\mathbf{B}_n, \mathbf{I}_{N_0} + \mathbf{X}_0\mathbf{V}_n\mathbf{X}_0^\top, \mathbf{\Psi}_n)$.

$$\pi(\mathbf{Y}_{0}|\mathbf{Y}) \propto \int_{\mathcal{S}} \int_{\mathcal{B}} \left\{ |\mathbf{\Sigma}|^{-N_{0}/2} \exp\left\{-\frac{1}{2}tr[(\mathbf{Y}_{0} - \mathbf{X}_{0}\mathbf{B})^{\top}(\mathbf{Y}_{0} - \mathbf{X}_{0}\mathbf{B})\mathbf{\Sigma}^{-1}]\right\} \right.$$

$$\times |\mathbf{\Sigma}|^{-K/2} \exp\left\{-\frac{1}{2}tr[(\mathbf{B} - \mathbf{B}_{n})^{\top}\mathbf{V}_{n}^{-1}(\mathbf{B} - \mathbf{B}_{n})\mathbf{\Sigma}^{-1}]\right\}$$

$$\times |\mathbf{\Sigma}|^{-(\alpha_{n}+M+1)/2} \exp\left\{-\frac{1}{2}tr[\mathbf{\Psi}_{n}\mathbf{\Sigma}^{-1}]\right\} d\mathbf{B}d\mathbf{\Sigma}$$

$$= \int_{\mathcal{S}} \int_{\mathcal{B}} \left\{ |\mathbf{\Sigma}|^{-(N_{0}+K+\alpha_{n}+M+1)/2} \exp\left\{-\frac{1}{2}tr[((\mathbf{Y}_{0} - \mathbf{X}_{0}\mathbf{B})^{\top}(\mathbf{Y}_{0} - \mathbf{X}_{0}\mathbf{B}) + (\mathbf{B} - \mathbf{B}_{n})^{\top}\mathbf{V}_{n}^{-1}(\mathbf{B} - \mathbf{B}_{n}) + \mathbf{\Psi}_{n})\mathbf{\Sigma}^{-1}]\right\} d\mathbf{B}d\mathbf{\Sigma}.$$

Setting $\mathbf{M} = (\mathbf{X}_0^{\top} \mathbf{X}_0 + \mathbf{V}_n^{-1})$, and $\mathbf{B}_* = \mathbf{M}^{-1} (\mathbf{V}_n \mathbf{B}_n + \mathbf{X}_0^{\top} \mathbf{Y}_0)$, we have that $(\mathbf{B} - \mathbf{B}_*)^{\top} \mathbf{M} (\mathbf{B} - \mathbf{B}_*) + \mathbf{B}_n^{\top} \mathbf{V}_n^{-1} \mathbf{B}_n + \mathbf{Y}_0^{\top} \mathbf{Y}_0 - \mathbf{B}_*^{\top} \mathbf{M} \mathbf{B}_* = (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B})^{\top} (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B}) + (\mathbf{B} - \mathbf{B}_n)^{\top} \mathbf{V}_n^{-1} (\mathbf{B} - \mathbf{B}_n)$. Then,

$$\begin{split} \pi(\mathbf{Y}_0|\mathbf{Y}) &\propto \int_{\mathcal{S}} |\mathbf{\Sigma}|^{-(N_0 + K + \alpha_n + M + 1)/2} \\ &\times \exp\left\{-\frac{1}{2}tr[(\mathbf{\Psi}_n + \mathbf{B}_n^{\top}\mathbf{V}_n^{-1}\mathbf{B}_n + \mathbf{Y}_0^{\top}\mathbf{Y}_0 - \mathbf{B}_*^{\top}\mathbf{M}\mathbf{B}_*)\mathbf{\Sigma}^{-1}]\right\} \\ &\times \int_{\mathcal{B}} \exp\left\{-\frac{1}{2}tr[(\mathbf{B} - \mathbf{B}_*)^{\top}\mathbf{M}(\mathbf{B} - \mathbf{B}_*)\mathbf{\Sigma}^{-1}]\right\} d\mathbf{B}d\mathbf{\Sigma}. \end{split}$$

The latter is the kernel of a matrix normal distribution, thus

$$\pi(\mathbf{Y}_0|\mathbf{Y}) \propto \int_{\mathcal{S}} |\mathbf{\Sigma}|^{-(N_0 + \alpha_n + M + 1)/2}$$

$$\times \exp\left\{-\frac{1}{2}tr[(\mathbf{\Psi}_n + \mathbf{B}_n^{\top}\mathbf{V}_n^{-1}\mathbf{B}_n + \mathbf{Y}_0^{\top}\mathbf{Y}_0 - \mathbf{B}_*^{\top}\mathbf{M}\mathbf{B}_*)\mathbf{\Sigma}^{-1}]\right\} d\mathbf{\Sigma}$$

This is the kernel of an inverse-Wishart distribution, then

$$\pi(\mathbf{Y}_0|\mathbf{Y}) \propto \left|\mathbf{\Psi}_n + \mathbf{B}_n^{ op} \mathbf{V}_n^{-1} \mathbf{B}_n + \mathbf{Y}_0^{ op} \mathbf{Y}_0 - \mathbf{B}_*^{ op} \mathbf{M} \mathbf{B}_* \right|^{-(N_0 + lpha_n)/2}$$

Setting $\mathbf{C}^{-1} = \mathbf{I}_{N_0} + \mathbf{X}_0 \mathbf{V}_n \mathbf{X}_0^{\top}$ such that $\mathbf{C} = \mathbf{I}_{N_0} - \mathbf{X}_0 (\mathbf{X}_0^{\top} \mathbf{X}_0 + \mathbf{V}_n^{-1})^{-1} \mathbf{X}_0^{\top}$ (see footnote 4 in Chapter 4), then $\mathbf{B}_n^{\top} \mathbf{V}_n^{-1} \mathbf{B}_n + \mathbf{Y}_0^{\top} \mathbf{Y}_0 - \mathbf{B}_*^{\top} \mathbf{M} \mathbf{B}_* = (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B}_n)^{\top} \mathbf{C} (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B}_n)$. This is done following exactly same procedure as deducing the predictive distribution in the linear regression model in the book. Thus,

$$\pi(\mathbf{Y}_0|\mathbf{Y}) \propto \left| \mathbf{\Psi}_n + (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B}_n)^\top \mathbf{C} (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B}_n) \right|^{-(N_0 + \alpha_n)/2}$$
$$\propto \left| \mathbf{I}_{N_0} + \mathbf{C} (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B}_n) \mathbf{\Psi}^{-1} (\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{B}_n)^\top \right|^{-(\alpha_n + 1 - M + N_0 + M - 1)/2}.$$

The second proportionality follows from the Sylvester's theorem. Observe that this is the kernel of a matrix t distribution with $\alpha_n + 1 - M$ degrees of freedom, location $\mathbf{X}_0 \mathbf{B}_n$ and scale matrices $\mathbf{\Psi}_n$ and $\mathbf{C}^{-1} = \mathbf{I}_{N_0} + \mathbf{X}_0 \mathbf{V}_n \mathbf{X}_0^{\top}$.

7. Show that $\delta_n = \delta_0 + (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^{\top}((\mathbf{X}^{\top}\mathbf{X})^{-1} + \mathbf{B}_0)^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$ in the linear regression model, and that $\boldsymbol{\Psi}_n = \boldsymbol{\Psi}_0 + \mathbf{S} + (\hat{\mathbf{B}} - \mathbf{B}_0)^{\top}\mathbf{V}_n(\hat{\mathbf{B}} - \mathbf{B}_0)$ in the linear multivariate regression model.

Answer

Taking into account that

$$\begin{split} \delta^* &= \delta_0 + \mathbf{y}^\top \mathbf{y} + \boldsymbol{\beta}_0^\top \mathbf{B}_0^{-1} \boldsymbol{\beta}_0 - \boldsymbol{\beta}_n^\top \mathbf{B}_n^{-1} \boldsymbol{\beta}_n \\ &= \delta_0 + \mathbf{y}^\top \mathbf{y} + \boldsymbol{\beta}_0^\top \mathbf{B}_0^{-1} \boldsymbol{\beta}_0 - (\mathbf{B}_0^{-1} \boldsymbol{\beta}_0 + \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}})^\top \mathbf{B}_n (\mathbf{B}_0^{-1} \boldsymbol{\beta}_0 + \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}}) \\ &= \delta_0 + \mathbf{y}^\top \mathbf{y} - \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{X} \mathbf{B}_n \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}} - 2 \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{X} \mathbf{B}_n \mathbf{B}_0^{-1} \boldsymbol{\beta}_0 + \boldsymbol{\beta}_0^\top (\mathbf{B}_0^{-1} - \mathbf{B}_0^{-1} \mathbf{B}_n \mathbf{B}_0^{-1}) \boldsymbol{\beta}_0 \\ &- \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}} \\ &= \delta_0 + \mathbf{y}^\top \mathbf{y} - \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}^\top (\mathbf{X}^\top \mathbf{X} - \mathbf{X}^\top \mathbf{X} \mathbf{B}_n \mathbf{X}^\top \mathbf{X}) \hat{\boldsymbol{\beta}} \\ &- 2 \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{X} \mathbf{B}_n \mathbf{B}_0^{-1} \boldsymbol{\beta}_0 + \boldsymbol{\beta}_0^\top (\mathbf{B}_0^{-1} - \mathbf{B}_0^{-1} \mathbf{B}_n \mathbf{B}_0^{-1}) \boldsymbol{\beta}_0. \end{split}$$

Observe that

$$(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{y}^{\top}\mathbf{y} - 2\hat{\boldsymbol{\beta}}\mathbf{X}^{\top}\mathbf{y} + \hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}$$
$$= \mathbf{y}^{\top}\mathbf{y} - 2\hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}(\mathbf{X}\hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\mu}}) + \hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}$$
$$= \mathbf{y}^{\top}\mathbf{y} - \hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}},$$

where $\mathbf{y} = \mathbf{X}\hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\mu}}$, and $\mathbf{X}^{\top}\hat{\boldsymbol{\mu}} = 0$.

The following matrix identities are useful [33]:

$$(\mathbf{D} + \mathbf{E})^{-1} = \mathbf{D}^{-1} - \mathbf{D}^{-1} (\mathbf{D}^{-1} + \mathbf{E}^{-1})^{-1} \mathbf{D}^{-1},$$

and

$$(\mathbf{D} + \mathbf{E})^{-1} = \mathbf{D}^{-1}(\mathbf{E}^{-1} + \mathbf{D}^{-1})\mathbf{E}^{-1}.$$

Using these identities,

$$\begin{split} [(\mathbf{X}^{\top}\mathbf{X})^{-1} + \mathbf{B}_0]^{-1} &= \mathbf{X}^{\top}\mathbf{X} - \mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X} + \mathbf{B}_0^{-1})^{-1}\mathbf{X}^{\top}\mathbf{X} \\ &= \mathbf{B}_0^{-1} - \mathbf{B}_0^{-1}(\mathbf{X}^{\top}\mathbf{X} + \mathbf{B}_0^{-1})^{-1}\mathbf{B}_0^{-1} \\ &= \mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X} + \mathbf{B}_0^{-1})^{-1}\mathbf{B}_0^{-1}. \end{split}$$

Then,

$$\delta^* = \delta_0 + (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \hat{\boldsymbol{\beta}}^{\top} [(\mathbf{X}^{\top}\mathbf{X})^{-1} + \mathbf{B}_0]^{-1}\hat{\boldsymbol{\beta}}$$
$$-2\hat{\boldsymbol{\beta}} [(\mathbf{X}^{\top}\mathbf{X})^{-1} + \mathbf{B}_0]^{-1}\boldsymbol{\beta}_0 + \boldsymbol{\beta}_0^{\top} [(\mathbf{X}^{\top}\mathbf{X})^{-1} + \mathbf{B}_0]^{-1}\boldsymbol{\beta}_0$$
$$= \delta_0 + (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$
$$+ (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^{\top} [(\mathbf{X}^{\top}\mathbf{X})^{-1} + \mathbf{B}_0]^{-1} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0).$$

In a similar way for the second part,

$$\begin{split} (\mathbf{V}_0 + (\mathbf{X}^{\top} \mathbf{X})^{-1})^{-1} &= \mathbf{V}_0^{-1} - \mathbf{V}_0^{-1} (\mathbf{V}_0^{-1} + \mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{V}_0^{-1} \\ &= \mathbf{X}^{\top} \mathbf{X} - \mathbf{X}^{\top} \mathbf{X} (\mathbf{V}_0^{-1} + \mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{X} \\ &= \mathbf{X}^{\top} \mathbf{X} ((\mathbf{X}^{\top} \mathbf{X})^{-1} + \mathbf{V}_0)^{-1} \mathbf{V}_0^{-1}, \end{split}$$

we use these results and some algebra to show that $\mathbf{B}_0^{\top} \mathbf{V}_0^{-1} \mathbf{B}_0 + \hat{\mathbf{B}}^{\top} \mathbf{X}^{\top} \mathbf{X} \hat{\mathbf{B}} - \mathbf{B}_n^{\top} \mathbf{V}_n^{-1} \mathbf{B}_n = (\hat{\mathbf{B}} - \mathbf{B}_0)^{\top} \mathbf{V}_n (\hat{\mathbf{B}} - \mathbf{B}_0)$ taking into account that $\mathbf{V}_n = (\mathbf{V}_0^{-1} + \mathbf{X}^{\top} \mathbf{X})^{-1}$ and $\hat{\mathbf{B}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$.

8. Show that in the linear regression model $\boldsymbol{\beta}_n^{\top}(\mathbf{B}_n^{-1} - \mathbf{B}_n^{-1}\mathbf{M}^{-1}\mathbf{B}_n^{-1})\boldsymbol{\beta}_n = \boldsymbol{\beta}_{**}^{\top}\mathbf{C}\boldsymbol{\beta}_{**}$ and $\boldsymbol{\beta}_{**} = \mathbf{X}_0\boldsymbol{\beta}_n$.

Answer

Taking into account that $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}(\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1}\mathbf{A}^{-1}$ [33], then we observe that $(\mathbf{B}_n^{-1} - \mathbf{B}_n^{-1}\mathbf{M}^{-1}\mathbf{B}_n^{-1}) = (\mathbf{B}_n + (\mathbf{X}_0^{\top}\mathbf{X}_0)^{-1})^{-1}$, where $(\mathbf{B}_n + (\mathbf{X}_0^{\top}\mathbf{X}_0)^{-1})^{-1} = \mathbf{X}_0^{\top}\mathbf{X}_0 - \mathbf{X}_0^{\top}\mathbf{X}_0(\mathbf{B}_n^{-1} + \mathbf{X}_0^{\top}\mathbf{X}_0)^{-1}\mathbf{X}_0^{\top}\mathbf{X}_0 = \mathbf{X}_0^{\top}\mathbf{X}_0 - \mathbf{X}_0^{\top}\mathbf{X}_0\mathbf{M}^{-1}\mathbf{X}_0^{\top}\mathbf{X}_0$, thus

$$\begin{split} \boldsymbol{\beta}_n^\top (\mathbf{B}_n^{-1} - \mathbf{B}_n^{-1} \mathbf{M}^{-1} \mathbf{B}_n^{-1}) \boldsymbol{\beta}_n &= \boldsymbol{\beta}_n^\top (\mathbf{X}_0^\top \mathbf{X}_0 - \mathbf{X}_0^\top \mathbf{X}_0 \mathbf{M}^{-1} \mathbf{X}_0^\top \mathbf{X}_0) \boldsymbol{\beta}_n \\ &= \boldsymbol{\beta}_n^\top \mathbf{X}_0^\top (\mathbf{I}_{N_0} - \mathbf{X}_0 \mathbf{M}^{-1} \mathbf{X}_0^\top) \mathbf{X}_0 \boldsymbol{\beta}_n \\ &= \boldsymbol{\beta}_n^\top \mathbf{X}_0^\top \mathbf{C} \mathbf{X}_0 \boldsymbol{\beta}_n \\ &= \boldsymbol{\beta}_{**}^\top \mathbf{C} \boldsymbol{\beta}_{**}. \end{split}$$

Let's show that $\beta_{**} = \mathbf{X}_0 \beta_n$,

$$\begin{split} \boldsymbol{\beta}_{**} &= \mathbf{C}^{-1}\mathbf{X}_{0}\mathbf{M}^{-1}\mathbf{B}_{n}^{-1}\boldsymbol{\beta}_{n} \\ &= (\mathbf{I}_{N_{0}} + \mathbf{X}_{0}\mathbf{B}_{n}\mathbf{X}_{0}^{\top})\mathbf{X}_{0}\mathbf{M}^{-1}\mathbf{B}_{n}^{-1}\boldsymbol{\beta}_{n} \\ &= (\mathbf{I}_{N_{0}} + \mathbf{X}_{0}\mathbf{B}_{n}\mathbf{X}_{0}^{\top})\mathbf{X}_{0}(\mathbf{B}_{n} - \mathbf{B}_{n}((\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1} + \mathbf{B}_{n})^{-1}\mathbf{B}_{n})\mathbf{B}_{n}^{-1}\boldsymbol{\beta}_{n} \\ &= (\mathbf{I}_{N_{0}} + \mathbf{X}_{0}\mathbf{B}_{n}\mathbf{X}_{0}^{\top})(\mathbf{X}_{0}\boldsymbol{\beta}_{n} - \mathbf{X}_{0}\mathbf{B}_{n}((\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1} + \mathbf{B}_{n})^{-1}\boldsymbol{\beta}_{n}) \\ &= \mathbf{X}_{0}\boldsymbol{\beta}_{n} - \mathbf{X}_{0}\mathbf{B}_{n}((\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1} + \mathbf{B}_{n})^{-1}\boldsymbol{\beta}_{n} + \mathbf{X}_{0}\mathbf{B}_{n}\mathbf{X}_{0}^{\top}\mathbf{X}_{0}\boldsymbol{\beta}_{n} \\ &- \mathbf{X}_{0}\mathbf{B}_{n}\mathbf{X}_{0}^{\top}\mathbf{X}_{0}\mathbf{B}_{n}((\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1} + \mathbf{B}_{n})^{-1}\boldsymbol{\beta}_{n} \\ &= \mathbf{X}_{0}\boldsymbol{\beta}_{n} - \mathbf{X}_{0}\mathbf{B}_{n}[((\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1} + \mathbf{B}_{n})^{-1} - \mathbf{X}_{0}^{\top}\mathbf{X}_{0} + \mathbf{X}_{0}^{\top}\mathbf{X}_{0}\mathbf{B}_{n}((\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1} + \mathbf{B}_{n})^{-1}]\boldsymbol{\beta}_{n}. \end{split}$$

Using that $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}$, we observe that the expression in brackets is equal to $\mathbf{0}$, then we have the result.

9. Show that $(\mathbf{Y} - \mathbf{X}\mathbf{B})^{\top}(\mathbf{Y} - \mathbf{X}\mathbf{B}) = \mathbf{S} + (\mathbf{B} - \widehat{\mathbf{B}})^{\top}\mathbf{X}^{\top}\mathbf{X}(\mathbf{B} - \widehat{\mathbf{B}})$ where $\mathbf{S} = (\mathbf{Y} - \mathbf{X}\widehat{\mathbf{B}})^{\top}(\mathbf{Y} - \mathbf{X}\widehat{\mathbf{B}})$, $\widehat{\mathbf{B}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ in the multivariate regression model.

Answer

$$(\mathbf{Y} - \mathbf{X}\mathbf{B})^{\top}(\mathbf{Y} - \mathbf{X}\mathbf{B}) = (\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}} + \mathbf{X}\hat{\mathbf{B}} - \mathbf{X}\mathbf{B})^{\top}(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}} + \mathbf{X}\hat{\mathbf{B}} - \mathbf{X}\mathbf{B})$$

$$= (\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})^{\top}(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}) + 2(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})^{\top}(\mathbf{X}\hat{\mathbf{B}} - \mathbf{X}\mathbf{B})$$

$$+ (\mathbf{X}\mathbf{B} - \mathbf{X}\hat{\mathbf{B}})^{\top}(\mathbf{X}\mathbf{B} - \mathbf{X}\hat{\mathbf{B}})$$

$$= \mathbf{S} + (\mathbf{B} - \hat{\mathbf{B}})^{\top}\mathbf{X}^{\top}\mathbf{X}(\mathbf{B} - \hat{\mathbf{B}}).$$

given that $(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})^{\top}(\mathbf{X}\hat{\mathbf{B}} - \mathbf{X}\mathbf{B}) = \hat{\mathbf{U}}^{\top}\mathbf{X}(\hat{\mathbf{B}} - \mathbf{B})$, using that $\hat{\mathbf{B}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ which implies $\mathbf{X}^{\top}\mathbf{X}\hat{\mathbf{B}} = \mathbf{X}^{\top}\mathbf{Y} = \mathbf{X}^{\top}\mathbf{X}\hat{\mathbf{B}} + \mathbf{X}^{\top}\hat{\mathbf{U}}$, then $\mathbf{X}^{\top}\hat{\mathbf{U}} = \mathbf{0}$.

10. What is the probability that the Sun will rise tomorrow?

This is the most famous Richard Price's example developed in the Appendix of the Bayes' theorem paper [3]. Here, we implicitly use Laplace's Rule of Succession to solve this question. In particular, if we were a priori uncertain about the probability the Sun will rise on a specified day, we can assume a prior uniform distribution over (0,1), that is, a beta (1,1) distribution. Then, what is the probability that the Sun will rise tomorrow?

Answer

This exercise is an application of the Bernoulli-beta model. Thus, the likelihood is given by a binomial distribution where the probability of success is θ , $p(\mathbf{y}|\theta) \propto \theta^{\sum_{i=1}^{N} y_i} (1-\theta)^{N-\sum_{i=1}^{N} y_i}$. In addition, the prior distribution is beta, that is, $\pi(\theta) \propto \theta^{\alpha_0-1} (1-\theta)^{\beta_0-1}$, where $\alpha_0 = \beta_0 = 1$. Then, the predictive distribution that the sun will rise tomorrow is $p(Y_0 = 1|\mathbf{y}) = \frac{1+S}{2+N}$, where $S = \sum_{i=1}^{N} y_i$ is the number of successes (the Sun rise). $\frac{1+S}{2+N}$ is known

as the Laplace's Rule of Succession that was introduced by Laplace in the 18^{th} century in the course of treating the sunrise problem.

- 11. Using information from Public Policy Polling in September 27th-28th for the 2016 presidential five-way race in USA, there are 411, 373 and 149 sampled people supporting Hillary Clinton, Donald Trump and other, respectively.
 - Find the posterior probability of the percentage difference of people supporting Hillary versus Trump according to this data using a non-informative prior, that is, $\alpha_0 = [1 \ 1 \ 1]$ in the multinomial-Dirichlet model. What is the probability of having more supporters of Hillary vs Trump?
 - What is the probability that sampling one hundred independent individuals 44, 40 and 16 support Hillary, Trump and other, respectively?

R code. Multinomial-Dirichlet model: Polling 2016 USA presidential race

```
set.seed(010101)
# Multinomial-Dirichlet example:
3 # Polling 2016 USA presidential race
4 y <- c(411, 373, 149)
5 # Clinton, Trump, Other
6 # Public Policy Polling September 27-28,
7 # 2016 five-way race
8 alpha0 <- rep(1, 3)</pre>
9 # Hyperparameters: non-informative distribution
10 alphan <- alpha0 + y
11 S <- 100000
_{12} # Sample draws of posterior
thetas <- MCMCpack::rdirichlet(S, alphan)
tollowers(thetas) <- c("Clinton", "Trump", "Other")</pre>
15 head(thetas)
          Clinton
                       Trump
                                  Other
17 [1,] 0.4211346 0.4188607 0.1600046
18 [2,] 0.4244207 0.4224523 0.1531270
19 [3,] 0.4349268 0.3843953 0.1806779
20 [4,] 0.4533499 0.4005530 0.1460972
21 [5,] 0.4381799 0.3968502 0.1649699
22 [6,] 0.4436852 0.3971321 0.1591827
23 dif <- thetas[,1] - thetas[,2]</pre>
24 # Difference of shares Hillary vs Trump
25 data <- data.frame(dif)</pre>
26 names(data) <- c("Difference")</pre>
27 library(ggplot2)
28 p <- ggplot(data) +
    geom_histogram(aes(x = Difference), binwidth = 0.01) +
    geom_vline(xintercept=0.0, lwd=1, colour="red") +
    ggtitle("Percentage difference Clinton vs Trump 2016
      presidential race") + xlab("Percentage Difference") +
       ylab("")
32 difmcmc <- coda::mcmc(dif)</pre>
33 # Declaring a MCMC object
34 summary (difmcmc)
36 Iterations = 1:1e+05
37 Thinning interval = 1
38 Number of chains = 1
39 Sample size per chain = 1e+05
41 1. Empirical mean and standard deviation for each
42 variable, plus standard error of the mean:
                              Naive SE Time-series SE
44 Mean
                     SD
45 4.062e-02
                   2.996e-02
                                  9.474e-05
                                                  9.474e-05
46 2. Quantiles for each variable:
                       50%
                                 75%
49 -0.01817 0.02033 0.04058 0.06089 0.09923
50 CW <- mean(difmcmc>0)
51 CW
52 0.91339
```


There is a 95% probability that the percentage difference between Hillary and Trump according to this poll is $(-1.8\%,\ 9.9\%)$. The probability of Hillary having more supporters is 91.3%

$R\ code.\ Multinomial\mbox{-}Dirichlet\ model:\ Polling\ 2016\ USA\ presidential\ race$

```
Predictive distribution by simulation
  y0 < -c(44, 40, 16)
  Pred <- apply(thetas, 1, function(p) {rmultinom(1, size =</pre>
      sum(y0), prob = p)
  sum(sapply(1:S, function(s) {sum(Pred[,s] == y0) == 3}))/S
  # Predictive distribution by analytical expression
  PredY0 <- function(y0){</pre>
    n <- sum(y0)
    Res1 <- sum(sapply(1:length(y), function(1){lgamma(alphan[</pre>
      1]+y0[1]) - lgamma(alphan[1])-lfactorial(y0[1])}))
    Res <- lfactorial(n)+lgamma(sum(alphan))-lgamma(sum(alphan
      )+n) + Res1
    return(exp(Res))
12 }
13 PredYO(y0)
14 0.00850
```

The probability that from one hundred random selected people 44 support Hillary, 40 support Trump and 16 support other candidate is 0.85%.

12. Math test example continues

You have a random sample of math scores of size N=50 from a normal distribution, $Y_i \sim N(\mu, \sigma^2)$. The sample mean and variance are equal to 102 and 10, respectively. Using the normal-normal/inverse-gamma model where $\mu_0 = 100$, $\beta_0 = 1$, $\alpha_0 = \delta_0 = 0.001$

- Get 95% confidence and credible intervals for μ .
- What is the posterior probability that $\mu > 103$?

R code. Math test example continues

```
set.seed(010101)
2 N <- 50
3 # Sample size
4 muhat <- 102
5 # Sample mean
6 sig2hat <- 10
7 # Sample variance
8 # Hyperparameters
9 mu0 <- 100
10 beta0 <- 1
11 delta0 <- 0.001
12 alpha0 <- 0.001
13 S <- 100000
14 # Posterior draws
15 alphan <- alpha0 + N
deltan \leftarrow sig2hat*(N - 1) + delta0 + beta0*N/(beta0 + N)*(
      muhat - mu0)^2
17 sig2Post <- invgamma::rinvgamma(S, shape = alphan, rate =
      deltan)
18 summary(sig2Post)
19 betan <- beta0 + N
20 mun <- (beta0*mu0 + N*muhat)/betan
21 muPost_t <- ((deltan/(alphan*betan))^0.5)*rt(S, alphan) +</pre>
22 c1 <- rgb(173,216,230,max = 255, alpha = 50, names = "lt."
      blue")
23 c2 <- rgb (255,192,203, max = 255, alpha = 50, names = "lt.
      pink")
24 hist(muPost_t, main = "Histogram: Posterior mean", xlab = "
      Posterior mean", col = c1)
25 muPost_tq <- quantile(muPost_t, c(0.025, 0.5, 0.975))</pre>
26 muPost_tq
            50%
27 2.5%
                    97.5%
28 101.0837 101.9608 102.8435
29 PmuPost_tcutoff <- mean(muPost_t > cutoff)
30 PmuPost_tcutoff
31 0.01087
```

Figure 3.2 shows the posterior distribution of the mean.

We have that the 95% credible interval is (101.08, 102.84), and the probability of having a value greater than 103 is 1.09%.

13. Demand of electricity example continues

Set c_0 such that maximizes the marginal likelihood in the specifications with and without electricity price in the example of demand of electricity

(empirical Bayes). Then, calculate the Bayes factor, and conclude if there is evidence supporting the inclusion of the price of electricity in the demand equation.

R code. Demand of electricity

```
1 rm(list = ls())
2 set.seed(010101)
3 # Electricity demand
4 DataUt <- read.csv("https://raw.githubusercontent.com/
       besmarter/BSTApp/refs/heads/master/DataApp/Utilities.csv
       ", sep = ",", header = TRUE, quote = "")
5 DataUtEst <- DataUt %>%
6 filter(Electricity != 0)
7 attach (DataUtEst)
8 # Dependent variable: Monthly consumption (kWh) in log
9 Y <- log(Electricity)
10 N <- length(Y)
11 # Regressors quantity including intercept
12 X <- cbind (LnPriceElect, IndSocio1, IndSocio2, Altitude,
      Nrooms, HouseholdMem, Children, Lnincome, 1)
13 # Regressor without price
14 Xnew <- cbind (IndSocio1, IndSocio2, Altitude, Nrooms,
      HouseholdMem, Children, Lnincome, 1)
15 # Log marginal function (multiply by -1 due to minimization)
16 LogMarLikLM <- function(X, c0){</pre>
    k <- dim(X)[2]
17
    N \leftarrow dim(X)[1]
18
    # Hyperparameters
    B0 <- c0*diag(k)
20
    b0 \leftarrow rep(0, k)
    # Posterior parameters
22
    bhat <- solve(t(X)%*%X)%*%t(X)%*%Y
23
     # Force this matrix to be symmetric
    Bn <- as.matrix(Matrix::forceSymmetric(solve(solve(B0) + t</pre>
25
      (X) % * % X)))
    bn <- Bn%*%(solve(B0))%*%b0 + t(X)%*%X%*%bhat)
26
    dn \leftarrow as.numeric(d0 + t(Y))%*%Y+t(b0)%*%solve(B0)%*%b0-t(bn)
      )%*%solve(Bn)%*%bn)
    an <- a0 + N
28
29
    # Log marginal likelihood
    \log y < (N/2) * \log (1/pi) + (a0/2) * \log (d0) - (an/2) * \log (dn) +
30
       0.5*log(det(Bn)/det(B0)) + lgamma(an/2)-lgamma(a0/2)
    return(-logpy)
31
32 }
33 # Hyperparameters
34 d0 <- 0.001
35 a0 <- 0.001
36 # Empirical Bayes: Obtain c0 maximizing the log marginal
      likelihood
37 c0 <- 1000
38 EB <- optim(c0, fn = LogMarLikLM, method = "Brent", lower =
       0.0001, upper = 10^{\circ}6, X = X)
39 EBnew <- optim(c0, fn = LogMarLikLM, method = "Brent", lower
        = 0.0001, upper = 10^6, X = Xnew)
_{
m 40} # Change of order to take into account the -1 in the
       LogMarLikLM function
41 BFEM <- exp(EBnew$value - EB$value)
42 BFEM
43 71897025
```

The Bayes factor based on the empirical Bayes of the model with electricity price versus the model without electricity price is equal to 71897938, this gives very strong evidence to include the price in the specification.

14. Utility demand

Use the file Utilities.csv to estimate a multivariate linear regression model where $\mathbf{Y}_i = [\log(\text{electricity}_i) \log(\text{water}_i) \log(\text{gas}_i)]$ as function of $\log(\text{electricity price}_i)$, $\log(\text{water price}_i)$, $\log(\text{gas price}_i)$, $\ln dSocio1_i$, $\ln dSocio2_i$, $Altitude_i$, $Nrooms_i$, $HouseholdMem_i$, $Children_i$, and $\log(Income_i)$, where electricity, water and gas are monthly consumption of electricity (kWh), water (m³) and gas (m³), and other definitions are given in the Example of Section 4.3. Omit households that do not consume any of the utilities in this exercise.

Set a non-informative prior framework, $\mathbf{B}_0 = [0]_{11\times3}$, $\mathbf{V}_0 = 1000\mathbf{I}_{11}$, $\mathbf{\Psi}_0 = 1000\mathbf{I}_3$ and $\alpha_0 = 3$, where we have K = 11 (regressors plus intercept) and M = 3 (equations) in this exercise.

- (a) Find the posterior mean estimates and the highest posterior density intervals at 95% of $\bf B$ and $\bf \Sigma$.
- (b) Find the Bayes factor comparing the baseline model in this exercise with the same specification but using the income in dollars. Now, calculate the Bayes factor using the income in thousand dollars. Is there any difference?
- (c) Find the predictive distribution for the monthly demand of electricity, water and gas in the baseline specification of a household located in the lowest socioeconomic condition in a municipality located below 1000 meters above the sea level, 2 rooms, 3 members with children, a monthly income equal to USD 500, an electricity price equal to USD/kWh 0.15, a water price equal to USD/M 3 0.70, and a gas price equal to USD/M 3 0.75.

Answer

We find that the Bayes factor of the baseline model (log(Income)) versus the two alternative models using income in dollars and thousand dollars are 108925764 and 0.1089261. The former gives strong evidence in favor of the baseline model, whereas the latter gives positive evidence for the model using the income in thousand dollars. This result despite that the location coefficients are the same in the two alternative specifications, except for the change in scale of the coefficients associated with income. This example shows that Bayes factors are sensitive to units of measure, and consequently, it is relevant to think carefully about the priors when performing hypothesis testing using a Bayesian framework. Observe that a nice feature in Bayesian inference is that we followed the same conceptual framework (Bayes factor) in the previous exercise and this exercise. In one

hand, the previous exercise is an example of nested models, that is, one model is a restricted version of a more general model. On the other hand, this exercise is an example of non-nested models. This is not the case in the Frequentist approach. The statistical framework is not the same when testing nested and non-nested models.

R code. Utilities demand: Multivariate regression, posterior inference

```
1 rm(list = ls())
2 set.seed(010101)
3 library(dplyr)
4 # Electricity demand
5 DataUt <- read.csv("https://raw.githubusercontent.com/
      besmarter/BSTApp/refs/heads/master/DataApp/Utilities.csv
      ", sep = ",", header = TRUE, quote = "")
6 DataUtEst <- DataUt %>% filter(Electricity != 0 & Water !=0
      & Gas != 0)
7 attach (DataUtEst)
8 Y <- cbind(log(Electricity), log(Water), log(Gas))</pre>
_{9} X <- cbind(LnPriceElect, LnPriceWater, LnPriceGas, IndSocio1
       , IndSocio2, Altitude, Nrooms, HouseholdMem, Children,
10 M <- dim(Y)[2]
11 K <- dim(X)[2]
12 N <- dim(Y)[1]
13 # Hyperparameters
14 BO <- matrix(0, K, M)
15 c0 <- 1000
16 VO <- c0*diag(K)
17 Psi0 <- c0*diag(M)
18 aO <- M
19 # Posterior parameters
20 Bhat <- solve(t(X)%*%X)%*%t(X)%*%Y
21 S <- t(Y - X%*%Bhat)%*%(Y - X%*%Bhat)
22 Vn <- solve(solve(V0) + t(X)%*%X)
23 Bn <- Vn%*%(solve(V0)%*%B0 + t(X)%*%X%*%Bhat)
24 Psin <- Psi0 + S + t(B0)%*%solve(V0)%*%B0 + t(Bhat)%*%t(X)%*
      %X%*%Bhat - t(Bn)%*%solve(Vn)%*%Bn
25 an <- a0 + N
26 #Posterior draws
27 s <- 10000 #Number of posterior draws
28 SIGs <- replicate(s, LaplacesDemon::rinvwishart(an, Psin))
29 Bs <- sapply(1:s, function(s) {MixMatrix::rmatrixt(n = 1,
      mean=Bn, U = Vn, V = Psin, df = an + 1 - M)
30 summary(coda::mcmc(t(Bs)))
31 SIGMs <- t(sapply(1:s, function(1) {gdata::lowerTriangle(
      SIGs[,,1], diag=TRUE, byrow=FALSE)}))
32 summary(coda::mcmc(SIGMs))
33 hdiBs <- HDInterval::hdi(t(Bs), credMass = 0.95) # Highest
      posterior density credible interval
34 hdiBs
35 hdiSIG <- HDInterval::hdi(SIGMs, credMass = 0.95) # Highest
      posterior density credible interval
36 hdiSIG
```

$R\ code.\ Utilities\ demand:\ Multivariate\ regression,\ Bayes\ factors$

```
1 # Log marginal function (multiply by -1 due to minimization)
   2 LogMarLikLM <- function(X, c0){</pre>
                c10 <- c0[1]; c20 <- c0[2]
                k \leftarrow dim(X)[2]
               N <- dim(X)[1]
                # Hyperparameters
                V0 <- c10*diag(K)
                Psi0 <- c20*diag(M)
                 # Posterior parameters
                Bhat <- solve(t(X)%*%X)%*%t(X)%*%Y
                S <- t(Y - X%*%Bhat)%*%(Y - X%*%Bhat)
                Vn \leftarrow solve(solve(V0) + t(X)%*%X)
                Bn <- Vn\%*\%(solve(V0))\%*\%B0 + t(X)\%*\%X\%*\%Bhat)
 13
                Psin <- Psi0 + S + t(B0)%*%solve(V0)%*%B0 + t(Bhat)%*%t(X)
                       %*%X%*%Bhat - t(Bn)%*%solve(Vn)%*%Bn
                 # Log marginal likelihood
                \log y \leftarrow (N*M/2)*\log(1/pi)+(a0/2)*\log(\det(Psi0)) - (an/2)*
                         \frac{\log(\det(P\sin)) + (M/2)*(\log(\det(Vn)) - \log(\det(V0))) + (M/2)*(\log(\det(Vn)) + \log(\det(Vn)))}{\log(\det(Vn))} + \frac{\log(\det(Vn))}{\log(\det(Vn))} + \frac{\log(\det(Vn))}{\log(\det(Vn)} + \frac{\log(\det(Vn))}{\log(\det(Vn))} + \frac{\log(\det(Vn))}{\log(\det(Vn)} + \frac{\log(\det(Vn))}{\log(\det(Vn)} + \frac{\log(\det(Vn))}{\log(\det(Vn)
                         lgamma(an/2)-lgamma(a0/2)
                return(-logpy)
18 }
19 c0 <- rep(1000, 2)
20 LogML <- LogMarLikLM(X=X, c0 = c0)</pre>
 21 # Using income in dollars as regressor
22 Xnew <- cbind(LnPriceElect, LnPriceWater, LnPriceGas,</pre>
                        IndSocio1, IndSocio2, Altitude, Nrooms, HouseholdMem,
                        Children, exp(Lnincome), 1)
 23 LogMLnew <- LogMarLikLM(X=Xnew, c0 = c0)</pre>
 24 # Bayes factor
25 BF12 <- exp(LogMLnew - LogML)
26 BF12
_{\rm 27} # Using income in thousand dollars as regressor
28 XnewT <- cbind(LnPriceElect, LnPriceWater, LnPriceGas,
                        IndSocio1, IndSocio2, Altitude, Nrooms, HouseholdMem,
                        Children, exp(Lnincome)/1000, 1)
 29 LogMLnewT <- LogMarLikLM(X=XnewT, c0 = c0)</pre>
 30 # Bayes factor
 31 BF13 <- exp(LogMLnewT - LogML)
 32 BF13
```

R code. Utilities demand: Multivariate regression, predictive distribution

```
# Predictive distribution
^{2} Xpred <- c(log(0.15), log(0.70), log(0.75), 1, 0, 0, 2, 3,
      1, \log(500), 1)
3 Mean <- Xpred%*%Bn
4 Hn <- 1+t(Xpred)%*%Vn%*%Xpred</pre>
5 UtilDemand <- exp(replicate(s, MixMatrix::rmatrixt(n = 1,</pre>
      mean=Mean, U = Hn, V = Psin, df = an + 1 - M)))
6 ElePred <- UtilDemand[1,1,]</pre>
 7 WatPred <- UtilDemand[1,2,]</pre>
8 GasPred <- UtilDemand[1,3,]</pre>
9 data <- data.frame(cbind(ElePred, WatPred, GasPred)) #Data</pre>
      frame
10 annotations1 <- data.frame(</pre>
11 x = round(quantile(data\$ElePred, c(0.025, 0.5, 0.975)),1),
y = c(600, 1000, 600),
label = c("2.5%:", "50%:", "97.5%:")
14 )
15 annotations2 <- data.frame(</pre>
16 x = round(quantile(data$WatPred, c(0.025, 0.5, 0.975)),1),
y = c(600, 1000, 600),
18 label = c("2.5%:", "50%:", "97.5%:")
19 )
20 annotations3 <- data.frame(</pre>
21 x = round(quantile(data$GasPred, c(0.025, 0.5, 0.975)),1),
y = c(600, 1000, 600),
23 label = c("2.5%:", "50%:", "97.5%:")
24 )
25 require(ggplot2) # Cool figures
26 require(ggpubr) # Multiple figures in one page
27 require(latex2exp) # LaTeX equations in figures
28 fig1 <- ggplot(data = data, aes(ElePred)) + geom_histogram(
      bins = 40, color = "#000000", fill = "#0099F8") + xlab(
       "kWh") + ylab("Frequency") + ggtitle("Electricity") +
      xlim(0, 1050) + geom_text(data = annotations1, aes(x = x
      , y = y, label = paste(label, x)), size = 3, fontface =
"bold")
29 fig2 <- ggplot(data = data, aes(WatPred)) + geom_histogram(
      bins = 40, color = "#000000", fill = "#0099F8") + xlab(
      TeX("$M^3$")) + ylab("Frequency") + ggtitle("Water") +
      xlim(0, 100) + geom_text(data = annotations2, aes(x = x,
       y = y, label = paste(label, x)), size = 3, fontface = "
      bold")
30 fig3 <- ggplot(data = data, aes(GasPred)) + geom_histogram(</pre>
      bins = 40, color = "#000000", fill = "#0099F8") + xlab(
      TeX("$M^3$")) + ylab("Frequency") + ggtitle("Gas") +
      xlim(0, 80) + geom_{text}(data = annotations3, aes(x = x,
      y = y, label = paste(label, x)), size = 3, fontface = "
      bold")
```

Figures 3.3, 3.4 and 3.5 show the marginal predictive distributions of electricity, water and gas for the reference household. The median predictive values are kWh 168.8, M³ 12.3 and M³ 10.1, respectively. In addition, the 95% credible intervals are (27.7, 1028.9), (1.5, 98.7) and (1.5, 67.5) for electricity, water and gas.

FIGURE 3.3

Histogram using the posterior predictive distribution of electricity demand

15. Ph.D. students sleeping hours [1, Chap. 2]

We are interested in learning about the proportion of Ph.D. students who sleep at least 6 hours per day. We have a sample of 52 students, where 15 report sleeping at least 6 hours, and the remaining 37 report not sleeping at least 6 hours. The prior distribution is a Beta distribution, with hyperparameters calibrated so that the prior probabilities of the proportion of students who sleep least than 6 hours being less than 0.4 and 0.75 are 0.6 and 0.95, respectively. Estimate the 95% posterior credible interval for the proportion of Ph.D. students. Then, assume there is a group of experts whose beliefs about the proportion of Ph.D. students sleeping at least 6 hours are represented in the following table:

TABLE 3.1 Probability distribution: Ph.D students that sleep at least 6 hours per day.

	0.00	0.10		~ ~		0.00	0.00	00	00	0.00	0.00
P(p=h)	0.05	0.07	0.10	0.12	0.15	0.17	0.15	0.11	0.06	0.01	0.01

FIGURE 3.4 Histogram using the posterior predictive distribution of water demand

Use Table 3.1 as prior information, and find the posterior distribution of the proportion of students that sleep at least 6 hours.

We know from the Bernoulli-beta model that the posterior distribution of the proportion of Ph.D. students that sleep at least 6 hours is beta, $\theta | \boldsymbol{y} \sim B(\alpha_n, \beta_n)$, $\alpha_n = \alpha_0 + 15$ and $\beta_n = \beta_0 + 37$, where $\alpha_0 = 1.44$ and $\beta_0 = 2.57$.

The following code shows how to get the posterior distribution in this exercise.

R code. Ph.D. students sleeping hours: Posterior distribution

```
1 rm(list = ls()); set.seed(010101)
2 # Function to calibrate the hyperparameters
3 elec <- function(theta, perc, q){</pre>
    E1 <- perc[1] - pbeta(q[1], theta[1], theta[2])
E2 <- perc[2] - pbeta(q[2], theta[1], theta[2])
    loss <- E1^2 + E2^2
    return(loss)
8 }
9 q1 <- 0.4; q2 <- 0.75; q <- c(q1, q2) # Quantiles
10 ple <- 0.6; p2e <- 0.95; perc <- c(p1e, p2e) # Cumulate
      probability from experts
11 theta0 <- c(1, 1) # Parameters
_{12} elec(theta0, perc, _{\mathbf{q}})
13 Res \leftarrow optim(theta0, elec, perc = perc, q = q)
14 p < - seq(0, 1, length = 500)
15 a <- Res$par[1]; b <- Res$par[2]
p_{beta}(q_1, a, b) # P(p <= q_1) = p_{1e}
pbeta(q2, a, b) # P(p <= q2) = p2e
18 s <- 15 # Success; f <- 37 # Failures
19 prior <- dbeta(p,a,b)</pre>
20 likelihood <- dbeta(p, s + 1, f + 1) #Seeing the binomial
      distribution as a likelihood is a beta distribution!!!
21 post <- dbeta(p, a+s, b+f)</pre>
22 plot(p,post,type="l",ylab="Density", main = "Proportion of
       students who sleep at least 6 hours per day", lty=2, lwd
      =3, col=gray.colors(1, start=0.1))
23 lines(p,likelihood,lty=1,lwd=3,col=gray.colors(1,start=0.4))
24 lines(p,prior,lty=3,lwd=3,col=gray.colors(1,start=0.6))
25 legend(.7,4,c("Prior","Likelihood","Posterior"), lty=c
       (3,1,2), lwd=c(3,3,3), col=c(col=gray.colors(1,start=0.6)),
       col=gray.colors(1,start=0.4),col=gray.colors(1,start
      =0.1)))
26 S <- 10000; postdraws1 <- rbeta(S, a+s, b+f)
27 mean(postdraws1); quantile(postdraws1, c(0.025, 0.975))
28 # Experts
p \leftarrow c(seq(0.05, 0.55, by = 0.05)) # Probabilities
30 prior <- c(0.05, 0.07, 0.1, 0.12, 0.15, 0.17, 0.15, 0.11,
      0.06, 0.01, 0.01) # Expert assessment
31 llikelihood \leftarrow s * log(p) + f * log(1 - p) # Log likelihood
32 likelihood2 <- exp(llikelihood -max(llikelihood)) # Scale
      the likelihood for plotting
33 product <- likelihood2 * prior # Proportional to posterior
34 posterior <- product/sum(product) # Posterior
35 # Figure
36 plot(p, prior, type = "l", ylab="Probability", lwd=2, lty=2,
       ylim=c(0,0.99), xlim=c(0,0.6), col=gray.colors(1,
       start=0.1), main = "Posterior distribution: Proportion
       sleep hours")
37 lines(p, posterior, type = "1", lwd=2, col=gray.colors(1, start
       =0.6))
38 lines(p,likelihood2,type = "l",lwd=4,col=gray.colors(1,start
      =0.3))
39 legend(0.45,0.85,c('Prior','Likelihood','Posterior'),lty=c
       (2,1,1), col=c(gray.colors(1,start=0.1),gray.colors(1,
       start=0.3),gray.colors(1,start=0.6)),lwd=2)
40 postdraws2 <- sample(p, S, replace = TRUE, prob = posterior)
41 mean(postdraws2); quantile(postdraws2, c(0.025, 0.975))
```

Figures 3.6 and 3.7 show the prior, likelihood, and posterior distributions of the proportion of Ph.D. students who sleep at least 6 hours per day based on the binomial-beta and binomial-discrete models. The mean under both models is 29%, and the 95% credible intervals are (18%,42%) and (20%,40%), respectively.

Proportion of students who sleep at least 6 hours per day

FIGURE 3.6
Posterior distribution binomial-beta model: Proportion Ph.D. students that sleep at least 6 hours per day

Proportion of students who sleep at least 6 hours per day

FIGURE 3.7
Posterior distribution binomial-discrete model: Proportion Ph.D. students that sleep at least 6 hours per day

Simulation methods

Solutions of Exercises

1. Example: The normal model with independent priors

Let's recap the math test exercise in Chapter 3, this time assuming independent priors. Specifically, let $Y_i \sim N(\mu, \sigma^2)$, where $\mu \sim N(\mu_0, \sigma_0^2)$ and $\sigma^2 \sim IG(\alpha_0/2, \delta_0/2)$. The sample size is 50, and the mean and standard deviation of the math scores are 102 and 10, respectively. We set $\mu_0 = 100$, $\sigma_0^2 = 100$, and $\alpha_0 = \delta_0 = 0.001$.

- Find the posterior distribution of μ and σ^2 .
- \bullet Program a Gibbs sampler algorithm and plot the histogram of the posterior draws of μ

Answer

The posterior distribution is

$$\pi(\mu, \sigma^2 | \boldsymbol{y}) \propto (\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - \mu)^2\right\} \times \exp\left\{-\frac{1}{2\sigma_0^2} (\mu - \mu_0)^2\right\} \times \left(\frac{1}{\sigma^2}\right)^{\alpha_0/2 + 1} \exp\left\{-\frac{\delta_0}{2\sigma^2}\right\}.$$

Thus, the conditional posterior distribution of μ is

$$\pi(\mu, \sigma^2 | \boldsymbol{y}) \propto \exp\left\{-\frac{1}{2} \left[\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - \mu)^2 + \frac{1}{\sigma_0^2} (\mu - \mu_0)^2 \right] \right\}$$
$$\propto \exp\left\{-\frac{1}{2} \left[\mu^2 \left(\frac{1}{\sigma^2/N} + \frac{1}{\sigma_0^2} \right) - 2\mu \left(\frac{\bar{\boldsymbol{y}}}{\sigma^2/N} + \frac{\mu_0}{\sigma_0^2} \right) \right] \right\}.$$

We set
$$\mu_n = \sigma_n^2 \left(\frac{\bar{y}}{\sigma^2/N} + \frac{\mu_0}{\sigma_0^2} \right)$$
 and $\sigma_n^2 = \left(\frac{1}{\sigma^2/N} + \frac{1}{\sigma_0^2} \right)^{-1}$. Thus,

$$\pi(\mu, \sigma^2 | \boldsymbol{y}) \propto \exp \left\{ -\frac{1}{2\sigma_n^2} \left[\mu^2 - 2\mu\mu_n + \mu_n^2 - \mu_n^2 \right] \right\}$$

$$\propto \exp \left\{ -\frac{1}{2\sigma_n^2} (\mu - \mu_n)^2 \right\}.$$

This is the kernel of a normal distribution, that is, $\mu|\sigma^2, \boldsymbol{y} \sim N(\mu_n, \sigma_n^2)$. The conditional posterior distribution of σ^2 is given by

$$\pi(\sigma^{2}|\mu, \boldsymbol{y}) \propto (\sigma^{2})^{-N/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (y_{i} - \mu)^{2}\right\}$$

$$\times \left(\frac{1}{\sigma^{2}}\right)^{\alpha_{0}/2+1} \exp\left\{-\frac{\delta_{0}}{2\sigma^{2}}\right\}$$

$$\propto (\sigma^{2})^{-N/2-\alpha_{0}/2-1} \exp\left\{-\frac{1}{2\sigma^{2}} \left[\sum_{i=1}^{N} (y_{i} - \mu)^{2} + \delta_{0}\right]\right\}.$$

Thus, $\sigma^2 | \mu, \boldsymbol{y} \sim IG(\alpha_n/2, \delta_n/2)$, where $\alpha_n = N + \alpha_0$ and $\delta_n = \sum_{i=1}^N (y_i - \mu)^2 + \delta_0 = N\hat{\sigma}^2 + N(\bar{y} - \mu)^2 + \delta_0$ given that $\sum_{i=1}^N (y_i - \bar{y}) = 0$, where \bar{y} and $\hat{\sigma}$ are the mean and standard deviation estimates.

As we have the conditional posterior distributions, we can use the Gibbs sampling algorithm to perform inference in this model. The following code shows how to do it.

R code. Gibbs sampler: The math example

```
1 rm(list = ls())
2 set.seed(010101)
з N <- 50
4 # Sample size
5 muhat <- 102
6 # Sample mean
7 sig2hat <- 100
  # Sample variance
10 # Hyperparameters
11 mu0 <- 100
12 sig20 <- 100
13 delta0 <- 0.001
14 alpha0 <- 0.001
16 MCMC <- 10000; burnin <- 1000; S <- MCMC + burnin
17 keep <- (burnin+1):S
18 # Posterior draws
19 alphan <- alpha0 + N
20 sig2Post <- rep(NA, S)
21 muPost <- rep(NA, S)
22 sig2 <- sig20
23 for(s in 1:S){
    sig2n \leftarrow (1/(sig2/N)+1/sig20)^(-1)
    mun <- sig2n*(muhat/(sig2/N)+mu0/sig20)</pre>
    mu <- rnorm(1, mun, sig2n^0.5)
    muPost[s] <- mu</pre>
     deltan <- N*(sig2hat + (muhat - mu)^2)</pre>
    sig2 <- invgamma::rinvgamma(1, shape = alphan, rate =</pre>
      deltan)
    sig2Post[s] <- sig2
30
31 }
32 sig2s <- coda::mcmc(sig2Post[keep])</pre>
33 mus <- coda::mcmc(muPost[keep])</pre>
34 summary(sig2s)
35 summary (mus)
36 hist(mus, main = "Histogram: Posterior mean", xlab = "
      Posterior mean", col = "blue", breaks = 50)
37 muPost_tq <- quantile(mus, c(0.025, 0.5, 0.975))</pre>
38 muPost_tq
39 cutoff <- 103
40 PmuPost_tcutoff <- mean(mus > cutoff)
41 PmuPost_tcutoff
```

Figure 4.1 shows the histogram of the draws of the posterior mean of the math test results. The posterior mean and median are 101.94 and 101.95,

FIGURE 4.1 Histogram of posterior draws of mean: Math test

and the 95% credible interval is (99.14, 104.79).

2. Show that the Gibbs sampler is a particular case of the Metropolis-Hastings where the acceptance probability is equal to 1.

Answer

Without loss of generality let's assume that there are two blocks, $\boldsymbol{\theta} = [\boldsymbol{\theta}_1 \ \boldsymbol{\theta}_2]^{\top}$ such that the Metropolis-Hastings (M-H) algorithm generates a candidate sample $(\boldsymbol{\theta}_1^c)$ using a proposal distribution $q(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}^{(s-1)})$. The candidate is accepted with probability:

$$\alpha(\boldsymbol{\theta}^{(s-1)}, \boldsymbol{\theta}^c) = \min \left\{ 1, \frac{q(\boldsymbol{\theta}_1^{(s-1)} | \boldsymbol{\theta}^c) \pi(\boldsymbol{\theta}^c | \boldsymbol{y})}{q(\boldsymbol{\theta}_1^c | \boldsymbol{\theta}^{(s-1)}) \pi(\boldsymbol{\theta}^{(s-1)} | \boldsymbol{y})} \right\}.$$

For Gibbs sampling, the candidate $\boldsymbol{\theta}_1^c$ is drawn directly from the full conditional distribution, so $q(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}^{(s-1)}) = \pi(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}_2^{(s-1)},\boldsymbol{y})$. Since Gibbs sampling uses the full conditional distributions as the proposal, the key terms simplify. In particular, $q(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}^{(s-1)}) = \pi(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}_2^c,\boldsymbol{y})$, and similarly $q(\boldsymbol{\theta}_1^{(s-1)}|\boldsymbol{\theta}^c) = \pi(\boldsymbol{\theta}_1^{(s-1)}|\boldsymbol{\theta}_2^{(s-1)},\boldsymbol{y})$. Thus, the acceptance probability is

given by

$$\begin{split} \alpha(\boldsymbol{\theta}^{(s-1)}, \boldsymbol{\theta}^c) &= \min \left\{ 1, \frac{\pi(\boldsymbol{\theta}_1^{(s-1)}|\boldsymbol{\theta}_2^{(s-1)}, \boldsymbol{y}) \pi(\boldsymbol{\theta}^c|\boldsymbol{y})}{\pi(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}_2^c, \boldsymbol{y}) \pi(\boldsymbol{\theta}^{(s-1)}|\boldsymbol{y})} \right\} \\ &= \min \left\{ 1, \frac{\pi(\boldsymbol{\theta}_1^{(s-1)}|\boldsymbol{\theta}_2^{(s-1)}, \boldsymbol{y}) \pi(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}_2^c, \boldsymbol{y}) \pi(\boldsymbol{\theta}_2^c|\boldsymbol{y})}{\pi(\boldsymbol{\theta}_1^c|\boldsymbol{\theta}_2^c, \boldsymbol{y}) \pi(\boldsymbol{\theta}_1^{(s-1)}|\boldsymbol{\theta}_2^{(s-1)}, \boldsymbol{y}) \pi(\boldsymbol{\theta}_2^c|\boldsymbol{y})} \right\} \\ &= 1, \end{split}$$

due to $\boldsymbol{\theta}_2^{(s-1)} = \boldsymbol{\theta}_2^c$. Thus, the Gibbs sampling algorithm is implicitly a M-H algorithm where the acceptance probability is 1.

3. Implement a Metropolis-Hastings (M-H) to sample from the Cauchy distribution, C(0,1), using as proposals a standard normal distribution and a Student's t distribution with 5 degrees of freedom.

Answer

The following code shows to program the M-H to get draws from the Cauchy distribution, C(0,1), using as proposal a standard normal distribution and a Student's t distribution with 5 degree of freedom.

62 Simulation methods

R code. Metropolis-Hastings algorithm: Cauchy distribution

```
1 rm(list = ls()); set.seed(010101)
2 S <- 100000; df <- 5
3 theta1 <- runif(S); acept1 <- rep(0, S)</pre>
 4 theta2 <- runif(S); acept2 <- rep(0, S)
  for (s in 2:S){
     thetac1 <- rnorm(1) # Candidate normal standard
     thetac2 <- rt(1, df = df) # Candidate Students' t
     #Acceptance rate
     a1 <- (dcauchy(thetac1)*dnorm(theta1[s-1]))/(dcauchy(
      theta1[s-1])*dnorm(thetac1))
     a2 <- (dcauchy(thetac2)*dt(theta2[s-1], df = df))/(dcauchy
       (theta2[s-1])*dt(thetac2, df = df))
    U1 <- runif(1)
     if(U1 <= a1){</pre>
       theta1[s] <- thetac1; acept1[s] <- 1</pre>
13
14
       theta1[s] \leftarrow theta1[s-1]; acept1[s] \leftarrow 0
16
     if(U1 <= a2){</pre>
       theta2[s] <- thetac2; acept2[s] <- 1</pre>
18
19
       theta2[s] \leftarrow theta2[s-1]; acept2[s] \leftarrow 0
20
21
22 }
23 mean(acept1); mean(acept2)
24 plot(coda::mcmc(theta1)); plot(coda::mcmc(theta2))
_{25} h <- hist(theta1, breaks=50, col="blue", xlab="x", main=" \,
       Cauchy draws from a Metropolis-Hastings algorithm:
       Normal standard proposal"
26 pfit <- seq(min(theta1), max(theta1), length=50)</pre>
27 yfit <-dcauchy (pfit)
yfit <- yfit*diff(h$mids[1:2])*length(theta1)</pre>
29 lines(pfit, yfit, col="red", lwd=2)
30 h <- hist(theta2, breaks=50, col="blue", xlab="x", main="</pre>
       Cauchy draws from a Metropolis-Hastings algorithm:
       Student's t proposal")
graph of the seq(min(theta2), max(theta2), length = 50)
32 yfit <-dcauchy (pfit)</pre>
33 yfit <- yfit*diff(h$mids[1:2])*length(theta2)</pre>
34 lines(pfit, yfit, col="red", lwd=2)
```

Figures 4.2 and 4.3 show the histograms of the posterior draws using the normal and Student's t distributions, along with the density of the Cauchy distribution. The spike in the posterior draws from the standard normal proposal is due to the algorithm being stuck for many iterations at a par-

ticular value, as the normal distribution has lighter tails compared to the Cauchy distribution. The convergence using the normal proposal is slower than when using the Student's t proposal, owing to the lighter tails of the former.

Cauchy draws from a Metropolis-Hastings algorithm: Normal standard proposal

FIGURE 4.2

Histogram of posterior draws of beta distribution and the density of the beta distribution.

4. This exercise was proposed by Professor Hedibert Freitas Lopes, who cites [35] as a useful reference for an introduction to Hamiltonian Monte Carlo in **R** and the *hmclearn* package. The task is to obtain posterior draws using the Metropolis-Hastings and Hamiltonian Monte Carlo algorithms for the posterior distribution given by

$$\pi(\theta_1, \theta_2 | \mathbf{y}) \propto \exp\left\{-\frac{1}{2}(\theta_1^2 \theta_2^2 + \theta_1^2 + \theta_2^2 - 8\theta_1 - 8\theta_2)\right\}.$$

Answer

The following code demonstrates the implementation of the M-H and HMC algorithms for this exercise. For the M-H algorithm, the number of MCMC iterations, burn-in period, and thinning parameters are set to 20,000, 1,000, and 20, respectively. The variance of the proposal distribution is tuned to achieve an acceptance rate close to 25%.

For the HMC algorithm, the number of iterations and burn-in period are set to 5,000 and 500, respectively. The step size and number of leapfrog iterations are set to 0.001 and 100, and the mass matrix is defined as $M = I_2$. These parameters yield an acceptance rate near 65%.

Cauchy draws from a Metropolis-Hastings algorithm: Student's t proposal

 ${\bf FIGURE~4.3}$ Histogram of posterior draws of beta distribution and the density of the beta distribution.

Figures 4.4 and 4.6 present the contour plots and posterior draws from the M-H and HMC algorithms for the joint posterior distribution. It can be observed that this distribution is bimodal, and both algorithms successfully capture this feature.

R code. Metropolis-Hastings and Hamiltonian Monte Carlo algorithms

```
1 rm(list = ls()); set.seed(010101)
2 # Posterior distribution
3 PostDist <- function(theta){</pre>
    theta1 <- theta[1]; theta2 <- theta[2]</pre>
    post <- exp(-0.5*(theta1^2*theta2^2+theta1^2+theta2^2-8*</pre>
      theta1-8*theta2))
     return(post)
7 }
8 # Metropolis-Hastings
9 MH <- function(theta, c2){</pre>
    thetac <- MASS::mvrnorm(1, mu = theta, Sigma = c2*diag(2))
    a <- PostDist(thetac)/PostDist(theta)</pre>
    U <- runif(1)
12
    if(U <= a){</pre>
13
       theta <- thetac
14
       accept <- 1
    }else{
17
       theta <- theta
18
       accept <- 0
19
20
    return(list(theta = theta, accept = accept))
21 }
22 # Posterior draws M-H
23 S <- 20000; burnin <- 1000; thin <- 20; tot <- S + burnin
24 K <- 2; c2 <- 1.5
25 thetaPostMH <- matrix(NA, tot, K)</pre>
26 AcceptMH <- rep(NA, tot)
27 thetaMH \leftarrow c(0, 0)
28 for(s in 1:tot){
   ResMH \leftarrow MH(thetaMH, c2 = c2)
    thetaMH <- ResMH$theta
    thetaPostMH[s,] <- thetaMH
31
32
    AcceptMH[s] <- ResMH$accept
33 }
34 keep <- seq((burnin), tot, thin)
35 mean(AcceptMH[keep])
36 thetaPostMHMCMC <- coda::mcmc(thetaPostMH[keep,])</pre>
37 plot(thetaPostMHMCMC)
38 coda::autocorr.plot(thetaPostMHMCMC)
39 # Contour plot
40 ngrid <- 400
41 theta1 <- seq(-1, 6, length = ngrid)
42 theta2 <- seq(-1, 6, length = ngrid)
43 f <- matrix(0, ngrid, ngrid)
44 for (i in 1:ngrid){
45 for (j in 1:ngrid){
      f[i,j] = PostDist(c(theta1[i],theta2[j]))
46
47
48 }
49 plot(thetaPostMH[keep,], xlim=range(theta1), ylim=range(
       theta2), pch=16, col=grey(0.8), xlab=expression(theta)
       [1]), ylab=expression(theta[2]))
50 contour(theta1,theta2,f, drawlabels=FALSE, add=TRUE, col = "
       blue", lwd = 1.2)
51 title("Random walk Metropolis-Hastings")
```

R code. Metropolis-Hastings and Hamiltonian Monte Carlo algorithms

```
1 HMC <- function(theta, epsilon, L, M){</pre>
    Minv <- solve(M); thetat <- theta</pre>
    K <- length(thetat)</pre>
     mom <- t(mvtnorm::rmvnorm(1, rep(0, K), M))</pre>
     logPost_Mom_t <- log(PostDist(thetat)) + mvtnorm::dmvnorm</pre>
       (t(mom), rep(0, K), M, log = TRUE)
     theta1 <- theta[1]; theta2 <- theta[2]</pre>
     for(1 in 1:L){
       if(1 == 1 | 1 == L){
         \label{local_mom_solution} \mbox{mom} \begin{tabular}{ll} \mbox{mom} & \mbox{--mom} \end{tabular} + 0.5*epsilon*(-0.5*c(2*theta1*theta2^2+2*theta1)) \end{tabular}
       theta1-8, 2*theta2*theta1^2+2*theta2-8))
         theta <- theta + epsilon*Minv%*%mom
       }else{
         mom \leftarrow mom + epsilon*(-0.5*c(2*theta1*theta2^2+2*)
       theta1-8, 2*theta2*theta1^2+2*theta2-8))
13
         theta <- theta + epsilon*Minv%*%mom
       }
14
     logPost_Mom_star <- log(PostDist(theta)) +</pre>
       dmvnorm(t(mom), rep(0, K), M, log = TRUE)
     alpha <- min(1, exp(logPost_Mom_star-logPost_Mom_t))</pre>
    u <- runif(1)
     if(u <= alpha){</pre>
19
       thetaNew <- c(theta)
20
     }else{
21
       thetaNew <- thetat
22
23
24
    rest <- list(theta = thetaNew, Prob = alpha)
25
     return(rest)
26 }
27 # Posterior draws HMC
_{28} S <- 5000; burnin <- 500; tot <- S + burnin
29 epsilon <- 0.0025; L <- 100; M <- diag(2)
30 thetaPostHMC <- matrix(NA, tot, K)</pre>
31 ProbAcceptHMC <- rep(NA, tot)
32 thetaHMC \leftarrow c(0, 0)
33 for(s in 1:tot){
     ResHMC <- HMC(theta = thetaHMC, epsilon = epsilon, L = L,
       M = M
     thetaHMC <- ResHMC$theta
    thetaPostHMC[s,] <- thetaHMC</pre>
37
    ProbAcceptHMC[s] <- ResHMC$Prob
39 keep <- burnin:S
40 summary(ProbAcceptHMC[keep])
41 thetaPostHMCMCMC <- coda::mcmc(thetaPostHMC[keep,])</pre>
42 plot(thetaPostHMCMCMC); coda::autocorr.plot(thetaPostHMCMCMC
43 plot(thetaPostHMC[keep,], xlim=range(theta1), ylim=range(
       theta2), pch=16, col=grey(0.8),
44 xlab=expression(theta[1]), ylab=expression(theta[2]))
45 contour(theta1,theta2,f, drawlabels=FALSE, add=TRUE, col = "
       blue", lwd = 1.2)
46 title("Hamiltonian Monte Carlo")
```

Random walk Metropolis-Hastings

Hamiltonian Monte Carlo

FIGURE 4.5 Contour plot: Hamiltonian Monte Carlo posterior drwas.

5. Ph.D. students sleeping hours continues

(a) Use importance sampling based on a U(0,1) proposal to obtain draws

of $\theta | y \sim B(16.55, 39.57)$ in the Ph.D. students' sleeping hours example in Chapter 3. Note that, based on Exercise 15 in Chapter 3, $\alpha_0 = 1.44$ and $\beta_0 = 2.57$.

(b) Compute the marginal likelihood in this context (Bernoulli-Beta model) and compare it to the result obtained using the Gelfand-Dey method.

Answer

68

The posterior distribution of the Bernoulli-beta model is

$$p(\theta|\mathbf{y}) = \frac{\prod_{i=1}^{N} \theta^{y_i} (1-\theta)^{1-y_i} \theta^{\alpha_0-1} (1-\theta)^{\beta_0-1} \Gamma(\alpha_0+\beta_0)}{\Gamma(\alpha_0) \Gamma(\beta_0) p(\mathbf{y})},$$

where

$$p(\boldsymbol{y}) = \int_{\boldsymbol{\Theta}} \frac{\prod_{i=1}^{N} \theta^{y_i} (1 - \theta)^{1 - y_i} \theta^{\alpha_0 - 1} (1 - \theta)^{\beta_0 - 1} \Gamma(\alpha_0 + \beta_0)}{\Gamma(\alpha_0) \Gamma(\beta_0)} d\theta$$

$$= \int_{\boldsymbol{\Theta}} \frac{\theta^{\sum_{i=1}^{N} y_i + \alpha_0 - 1} (1 - \theta)^{N - \sum_{i=1}^{N} y_i + \beta_0 - 1} \Gamma(\alpha_0 + \beta_0)}{\Gamma(\alpha_0) \Gamma(\beta_0)} d\theta$$

$$= \frac{B(\alpha_n, \beta_n)}{B(\alpha_0, \beta_0)} \int_{\boldsymbol{\Theta}} \frac{\theta^{\sum_{i=1}^{N} y_i + \alpha_0 - 1} (1 - \theta)^{N - \sum_{i=1}^{N} y_i + \beta_0 - 1}}{B(\alpha_n, \beta_n)} d\theta$$

$$= \frac{B(\alpha_n, \beta_n)}{B(\alpha_0, \beta_0)}.$$

The integral is equal to 1 due to being over the support of $B(\alpha_n, \beta_n)$ distribution.

$R\ code.\ Importance\ sampling:\ Bernoulli-Beta$ model

```
rm(list = ls()); set.seed(010101); S <- 50000
  # Importance sampling from standard normal proposal
  an <- 16.55; bn <- 39.57 # Posterior parameters
  theta <- runif(S) # Proposal
     <- dbeta(theta, an, bn) # Weights
  wstars <- ws/sum(ws) # Standardized weights
  L <- 20000 # Size of posterior sample
  thetaBeta <- sample(theta, L, replace = TRUE, prob = wstars)
       # Posterior draws
10 h <- hist(thetaBeta, breaks=50, col="blue", xlab="x", main="
      Beta draws from importance sampling: Uniform (0,1)
      proposal")
pfit <- seq(min(thetaBeta), max(thetaBeta), length = 50)</pre>
12 yfit <-dbeta (pfit, an, bn)
13 yfit <- yfit*diff(h$mids[1:2])*length(thetaBeta)</pre>
14 lines(pfit, yfit, col="red", lwd=2)
15 a0 <- 1.44; b0 <- 2.57 # Hyperparameters
16 s <- 15; n <- 52 # Data
17 LogMarLik <- lbeta(an, bn)-lbeta(a0, b0) # Marginal
      likelihood
18 LogMarLik
19 # Gelfand-Day method
20 LikPrior <- function(theta){</pre>
    Liki <- theta^s*(1-theta)^(n-s)
    Priori <- dbeta(theta, a0, b0)
    LikPriori <- 1 / Liki * Priori
    return(LikPriori)
26 LogMarLikGD
              <- log(1/mean(sapply(thetaBeta, LikPrior)))
27 LogMarLikGD
```

Figure 4.6 shows the histogram of the posterior draws obtained using the importance sampling algorithm with a uniform proposal. The algorithm performs well. Additionally, the analytic solution for the log marginal likelihood is -32.75, while the Gelfand-Dey method yields -32.76.

6. Example 4.1 in [9] is

$$\theta_t = 0.5\theta_{t-1} + 25\frac{\theta_{t-1}}{1 + \theta_{t-1}^2} + 8\cos(1.2t) + w_t$$
$$y_t = \frac{\theta_t^2}{20} + \mu_t,$$

where $\theta_0 \sim N(0, \sqrt{10})$, $w_t \sim \mathcal{N}(0, \sqrt{10})$ and $\mu_t \sim N(0, \sqrt{1})$.

Beta draws from importance sampling: Uniform (0,1) proposal

FIGURE 4.6 Importance sampling: Beta distribution.

- Perform sequential importance sampling in this example
- Perform particle (Bootstrap) filtering in this example
- $\bullet\,$ Estimate the marginal likelihood in this example

Answer

The following code shows to perform sequential importance sampling and particle (Bootstrap) filtering in the Example 1 in [9]. Take into account that we use same strategy as in the dynamic linear model example in the book to calculate the mean and standard deviation of the posterior distribution.

R code. Sequential importance sampling and particle (Bootstrap) filtering: Gordon (1993) Example 1.

```
1 rm(list = ls()); set.seed(010101)
_{2} S <- 50000 # Number of particles
3 sigma_w <- 10^0.5 # State noise
4 sigma_mu <- 1 # Observation noise
5 T <- 200 # Sample size
6 # Simulate true states and observations
7 theta_true <- numeric(T)</pre>
8 y_obs <- numeric(T)</pre>
9 theta_true[1] <- rnorm(1, mean = 0, sd = sigma_w) # Initial
       state
10 y_obs[1] <- rnorm(1, mean = theta_true[1]^2/20, sd = sigma_
      mu)
11 for (t in 2:T) {
    meant \leftarrow 0.5*theta_true[t-1] + 25*(theta_true[t-1]/(1+
      theta_true[t-1]^2)) + 8*cos(1.2*t)
     theta_true[t] <- rnorm(1, mean = meant, sd = sigma_w)</pre>
    y_obs[t] <- rnorm(1, mean = theta_true[t]^2/20, sd = sigma</pre>
15 }
16 plot(theta_true, type = "1"); plot(y_obs, type = "1")
17 # Sequential Importance Sampling (SIS)
18 particles <- matrix(0, nrow = S, ncol = T)</pre>
19 weights <- matrix(0, nrow = S, ncol = T)</pre>
20 weightsSt <- matrix(0, nrow = S, ncol = T)</pre>
21 # Initialization
22 particles[, 1] <- rnorm(S, mean = 0, sd = sigma_w)</pre>
weights[, 1] \leftarrow dnorm(y_obs[1], mean = particles[, 1]^2/20,
      sd = sigma_mu)
veightsSt[, 1] <- weights[, 1] / sum(weights[, 1])</pre>
_{25} # Sequential updating
26 for (t in 2:T) {
    particles[, t] <- rnorm(S, mean = 0.5*particles[, t-1] +
      25*(particles[, t-1]/(1+particles[, t-1]^2)) + 8*cos(1.2)
       *t), sd = sigma_w) # Compute weights
     weights[, t] <- weightsSt[, t-1] * dnorm(y_obs[t], mean =</pre>
      particles[, t]^2/20, sd = sigma_mu)
     weightsSt[, t] <- weights[, t] / sum(weights[, t])</pre>
30 }
31 FilterDist <- colSums(particles * weightsSt)</pre>
32 SDFilterDist <- (colSums(particles^2 * weightsSt) -
      FilterDist^2)^0.5
33 library(dplyr); library(ggplot2); library(latex2exp)
34 ggplot2::theme_set(theme_bw())
35 df <- tibble(t = 1:T, mean = FilterDist, lower = FilterDist
       - 2*SDFilterDist, upper = FilterDist + 2*SDFilterDist,
      theta_true = theta_true)
36 plot_filtering_estimates <- function(df) {</pre>
    p <- ggplot(data = df, aes(x = t)) + geom_ribbon(aes(ymin</pre>
       = lower, ymax = upper), alpha = 1, fill = "lightblue") +
       geom_line(aes(y = theta_true), colour = "black", alpha
       = 1, linewidth = 0.5) + geom_line(aes(y = mean), colour
      = "blue", linewidth = 0.5) + ylab(TeX("\{t\}"))
      + xlab("Time")
    print(p)
39 }
40 plot_filtering_estimates(df)
```

R code. Sequential importance sampling and particle (Bootstrap) filtering: Gordon (1993) Example 1.

```
# Particle filtering
2 particles <- matrix(0, nrow = S, ncol = T)</pre>
3 particlesT <- matrix(0, nrow = S, ncol = T)</pre>
4 weights <- matrix(0, nrow = S, ncol = T)</pre>
5 weightsSt <- matrix(0, nrow = S, ncol = T)</pre>
6 weightsSTT <- matrix(1/S, nrow = S, ncol = T)
7 logalphas <- matrix(0, nrow = S, ncol = T)</pre>
8 # Initialization
9 particles[, 1] <- rnorm(S, mean = 0, sd = sigma_w) # Sample</pre>
       initial particles
weights[, 1] <- dnorm(y_obs[1], mean = particles[, 1]^2/20,</pre>
       sd = sigma_mu) # Importance weights
11 weightsSt[, 1] <- weights[, 1] / sum(weights[, 1]) #</pre>
       Normalize weights
12 ind <- sample(1:S, size = S, replace = TRUE, prob =
       weightsSt[, 1]) # Resample
13 particles[, 1] <- particles[ind, 1] # Resampled particles
14 particlesT[, 1] <- particles[, 1] # Resampled particles</pre>
15 # Sequential updating
16 pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      T, width = 300)
17 for (t in 2:T) {
    # Propagate particles
    particles[, t] <- rnorm(S, mean = 0.5*particles[, t-1] + 25*(particles[, t-1]/(1+particles[, t-1]^2)) + 8*cos(1.2)
       *t), sd = sigma_w)
     # Compute weights
     logalphas[, t] <- dnorm(y_obs[t], mean = particles[, t]^2/</pre>
     20, sd = sigma_mu, log = TRUE)
weights[, t] <- exp(logalphas[, t])
     weightsSt[, t] <- weights[, t] / sum(weights[, t])</pre>
23
     if(t < T){
       ind <- sample(1:S, size = S, replace = TRUE, prob =</pre>
25
       weightsSt[, t])
particles[, 1:t] <- particles[ind, 1:t]</pre>
    }else{
27
       ind <- sample(1:S, size = S, replace = TRUE, prob =</pre>
28
       weightsSt[, t])
       particlesT[, 1:t] <- particles[ind, 1:t]</pre>
29
30
     setWinProgressBar(pb, t, title=paste( round(t/T*100, 0), "
31
       % done"))
32 }
33 close(pb)
34 FilterDist <- colSums(particles * weightsSt)</pre>
35 SDFilterDist <- (colSums(particles^2 * weightsSt) -
       FilterDist^2)^0.5
36 FilterDistT <- colSums(particlesT * weightsSTT)</pre>
37 SDFilterDistT <- (colSums(particlesT^2 * weightsSTT) -
       FilterDistT^2)^0.5
```

R code. Sequential importance sampling and particle (Bootstrap) filtering: Gordon (1993) Example 1.

```
library(dplyr); library(ggplot2); library(latex2exp)
  ggplot2::theme_set(theme_bw())
     <- tibble(t = 1:T, mean = FilterDist, lower = FilterDist</pre>
      - 2*SDFilterDist, upper = FilterDist+ 2*SDFilterDist,
      meanT = FilterDistT, lowerT = FilterDistT - 2*
      SDFilterDistT,
4 upperT = FilterDistT + 2*SDFilterDistT, x_true = theta_true)
 plot_filtering_estimates <- function(df) {</pre>
    p <- ggplot(data = df, aes(x = t)) + geom_ribbon(aes(ymin</pre>
      = lower, ymax = upper), alpha = 1, fill = "lightblue") +
       geom_line(aes(y = x_true), colour = "black", alpha = 1,
       linewidth = 0.5) + geom_line(aes(y = mean), colour = "
      blue", linewidth = 0.5) +
    geom_line(aes(y = meanT), colour = "purple", linewidth =
      0.5) + ylab(TeX("$\\theta_{t}$")) + xlab("Time")
    print(p)
10 plot_filtering_estimates(df)
11 MargLik <- colMeans(weights)</pre>
```

Figure 4.7 shows the true trajectory of the state vector (black line), the posterior mean (blue line), and the $\pm 2\hat{\sigma}_{\theta}$ posterior estimate (light blue shaded area) from the sequential importance sampling algorithm. We observe that there is no light blue shaded area after time period 40, and the algorithm exhibits poor performance after t=75. This is due to weight degeneracy.

Figure 4.8 shows the performance of particle filtering (see Figure 3 in [9]). There is the true state vector (black line), the means based on $\left\{\boldsymbol{\theta}_{1:t}^{(s)}, w_t^{*(s)}\right\}$

(blue line) and $\left\{\boldsymbol{\theta}_{1:t}^{r(s)}, 1/S\right\}$ (purple line), and the area defined by $\pm 2\hat{\sigma}_{\theta}$ based on the former (light blue shaded area). Note that the particle filtering algorithm has better performance than the SIS algorithm. This is due to restarting the system every stage by resampling, which in turn mitigates the weight degeneracy issue.

Finally, Figure 4.9 shows the posterior estimate of marginal likelihood based on the particle filtering algorithm.

7. Ph.D. students sleeping hours continues

• Perform the diagnostics of Section 4.4 in this example.

FIGURE 4.7 Sequential importance sampling: Example 1, [9].

FIGURE 4.8 Particle (Bootstrap) filtering: Example 1, [9].

• Check if there are errors in the posterior simulator of the Metropolis-Hastings algorithm in this example using the Geweke approach using as test functions the first moments of p and p^2 . Remember from Ex-

Marginal likelihood

FIGURE 4.9 Marginal likelihood: Example 1, [9].

ercise 15 in Chapter 3 that the sample size is 52, and $\alpha_0 = 1.22$ and $\beta_0 = 2.57$.

• Run the Geweke test using $\alpha_0 = 2.57$ and $\beta_0 = 1.22$, and check the results.

Answer

We initially run the Metropolis-Hastings (M-H) algorithm for 100,000 iterations and obtain an effective sample size of 13,606. The naive and timeseries standard errors are 0.00019 and 0.00052, respectively, indicating correlation—a feature also observed in the autocorrelation plot (not shown). However, the trace plot appears satisfactory. The Geweke test statistic is 1.97, marginally rejecting the null hypothesis that the means of the first 10% and the last 50% of the posterior draws are equal. Additionally, the dependence factor is 6.1, which exceeds the rule-of-thumb threshold of 5. The posterior draws pass both stages of Heidelberger and Welch's convergence diagnostic.

Given the autocorrelation issues, we set a burn-in period of 20,000 iterations and apply a thinning parameter of 10. Figures 4.10 and 4.11 display the trace and autocorrelation plots of the posterior draws. We observe that the draws appear stationary around their mean, and the autocorrelation decreases rapidly to zero.

The naive and time-series standard errors are 0.00068 and 0.00072, respectively. The similarity between these values indicates a low level of auto-

correlation, consistent with the results in Figure 4.11. The effective sample size of the posterior draws is 7,066, while the total number of posterior draws is 8,000.

The Geweke test statistic is 0.23, providing no statistical evidence to reject the null hypothesis of equal means in the two segments of the posterior draws. The Raftery and Lewis test yields a dependence factor close to 1, indicating minimal dependence. The Heidelberger and Welch test does not reject the null hypothesis of stationarity for the posterior draws and confirms that the mean is both accurate and stable.

Then, we implement the proposal by [8] to assess the reliability of the posterior simulator. We use as test functions the first moments of p and p^2 . We fail to reject the null hypothesis of equal means across the two test functions, indicating that the posterior simulator is functioning correctly. To evaluate the effectiveness of the test, we run the marginal-conditional simulator with prior parameters $\alpha_0 = 1.22$ and $\beta_0 = 2.57$. In contrast, for the successive-conditional simulator, we use prior parameters $\alpha_0 = 2.57$ and $\beta_0 = 1.22$. In this case, we reject the null hypothesis in the two test functions, suggesting that the test performs well in this example.

R code. Metropolis-Hastings algorithm: Ph.D. students sleeping hours.

```
1 rm(list = ls()); set.seed(010101); an <- 16.55; bn <- 39.57</pre>
2 S <- 100000; p <- runif(S); accept <- rep(0, S)
3 for (s in 2:S){
    pc <- runif(1)
     a \leftarrow dbeta(pc, an, bn)/dbeta(p[s-1], an, bn)
    U <- runif(1)
    if(U <= a){ p[s] <- pc; accept[s] <- 1</pre>
    }else{p[s] <- p[s-1]; accept[s] <- 0}</pre>
9 }
10 library(coda); library(latex2exp)
thetaPost <- mcmc(p)</pre>
12 plot(thetaPost, density = FALSE, main = "Trace plot", ylab =
        "Proportion")
13 autocorr.plot(thetaPost, main = "Autocorrelation plot")
14 summary(thetaPost); effectiveSize(thetaPost)
15 geweke.diag(thetaPost, frac1 = 0.1, frac2 = 0.5)
16 raftery.diag(thetaPost, q = 0.025, r = 0.005, s = 0.95)
17 heidel.diag(thetaPost, eps = 0.1, pvalue = 0.05)
18 burnin <- 20000; thin <- 10; keep <- seq(burnin, S, thin)
19 thetaPostNew <- mcmc(p[keep])</pre>
20 plot(thetaPostNew, density = FALSE, main = "Trace plot",
       ylab = "Proportion")
21 autocorr.plot(thetaPostNew, main = "Autocorrelation plot")
22 summary(thetaPostNew); effectiveSize(thetaPostNew)
23 geweke.diag(thetaPostNew, frac1 = 0.1, frac2 = 0.5)
<sup>24</sup> raftery.diag(thetaPostNew, q = 0.025, r = 0.005, s = 0.95)
25 heidel.diag(thetaPostNew, eps = 0.1, pvalue = 0.05)
26 # Marginal-conditional simulator
27 a0 <- 1.22; b0 <- 2.57; ThetaPrior <- rbeta(S,a0,b0)
yPrior <- rbinom(S, 1, prob = ThetaPrior)</pre>
29 parsmcmc1 <- coda::mcmc(cbind(ThetaPrior, ThetaPrior^2))</pre>
30 Summ1 <- summary(parsmcmc1)
31 # Successive-conditional simulator
32 N <- 52
33 SucConSim <- function(a0, b0, par){
y <- rbinom(N, 1, prob = par)</pre>
   an \leftarrow a0 + sum(y); bn \leftarrow b0 + N - sum(y); pc \leftarrow runif(1)
    a <- dbeta(pc, an, bn)/dbeta(par, an, bn); U <- runif(1)
    if(U <= a){par <- pc}else{par <- par}</pre>
37
   return(par)
38
39 }
40 a0 <- 1.22; b0 <- 2.57 # a0 <- 2.57; b0 <- 1.22
41 par2 <- rbeta(1, a0, b0); pars2 <- rep(NA, S); pars2[1] <-
      par2
42 for(s in 2:S){
   Res \leftarrow SucConSim(a0 = a0, b0 = b0, par = pars2[s-1])
    pars2[s] <- Res
44
45 }
46 parsmcmc2 <- coda::mcmc(cbind(pars2, pars2^2))
47 Summ2 <- summary(parsmcmc2)
48 TestGeweke <- function(j){
     Test <- (Summ1[["statistics"]][j,1] - Summ2[["statistics"</pre>
       ]][j,1])/(Summ1[["statistics"]][j,4]+Summ2[["statistics"
      ]][j,4])^0.5
     Reject <- abs(Test) > qnorm(0.975); return(list(Test =
       Test, Reject = Reject))
51 }
52 TestGeweke(1); TestGeweke(2)
```


FIGURE 4.10 Trace plot of posterior draws: Proportion of students that sleep at least 6 hours.

FIGURE 4.11 Autocorrelation plot of posterior draws: Proportion of students that sleep at least 6 hours.

Part II Regression models: A GUIded toolkit

Graphical user interface

This chapter presents our graphical user interface (GUI) to carry out Bayesian regression analysis in a very friendly environment without any programming skills (drag and drop). Our GUI is based on an interactive web application using *shiny* [4], and packages like *MCMCpack* [19] and *bayesm* [29] from **R** software [23], and is designed for teaching and applied purposes at an introductory level. In the next chapters of the second part of this book we carry out some applications to highlight the potential of our GUI for applied researchers and practitioners.

5.1 Introduction

Our GUI allows performing inference using Bayesian regression analysis without requiring programming skills. The latter seems to be a significant impediment to increasing the use of the Bayesian framework [37, 15].

There are other available graphical user interfaces for carrying out Bayesian regression analysis. ShinyStan [34] is a very flexible open source program, but users are required to have some programming skills. BugsXLA [37] is open source, but less flexible. However, users do not need to have programming skills. Bayesian regression: Nonparametric and parametric models [15] is a very flexible and friendly GUI that is based on MATLAB Compiler for a 64-bit Windows computer. Its focus is on Bayesian nonparametric regressions, and it can be thought of for users who have mastered basic parametric models, such as the ones that we show in our GUI. There are also MATLAB toolkit, Stata and BayES, but these are not open sources.

We developed our GUI based on an interactive web application using shiny [4], and some libraries in **R** [22]. The specific libraries and commands that are used in our GUI can be seen in Table 13.1. It has ten univariate models, four multivariate, time series models, three hierarchical longitudinal, and seven Bayesian model averaging frameworks. In addition, it gives basic summaries and diagnostics of the posterior chains, as well as the posterior chains themselves, and different plots, such as trace, autocorrelation and densities.

In terms of its flexibility and possibilities, our GUI lies between ShinyStan and BugsXLA: users are not required to have any programming skills, but it

is not as advanced as [15]'s software. However, our GUI can be run in any operating system. Our GUI, which we call BEsmarter,¹ is freely available at https://github.com/besmarter/BSTApp; so users have access to all our code and datasets.

Simulated and applied datasets are in the folders **DataSim** (see Table 13.2 for details), and **DataApp** (see Table 13.3 for details) of our **GitHub** repository. The former folder also includes the files that were used to simulate different processes, so, the population parameters are available, and as a consequence these files can be used as a pedagogical tool to show some statistical properties of the inferential frameworks available in our GUI. The latter folder contains the datasets used in the applications of this second part of the book. Users should use these datasets as templates to structure their own datasets.

There are three ways to install our GUI. The easiest way, but that requires installation of \mathbf{R} , and potentially a \mathbf{R} code editor, is to type

```
R code. How to display our graphical user interface

shiny::runGitHub("besmarter/BSTApp", launch.browser = T)
```

in the \mathbf{R} package console or any \mathbf{R} code editor. We strongly recommend to type this directly, rather than copy and paste. This is due to a potential issue with the quotation mark.

The second option is to visit https://posit.cloud/content/4328505, log in or sign up for Posit Cloud, and access the project titled GUIded Bayesian regression app BSTApp. In the right-bottom window, click on the BSTApp-master folder under Files, open the app.R file, and finally, click the Run App button. However, inactivity will cause the window to close.

The third approach, and our recommendation, is using a **Docker** image by running:

- 1. docker pull magralo95/besmartergui:latest
- 2. docker run -rm -p 3838:3838 magralo95/besmartergui

in your **Command Prompt**. This creates an isolated environment for our GUI, ensuring consistent performance across systems. Note that **Docker** must be installed to deploy our GUI this way.

After implementing any of the three ways to run our GUI, users can see

¹Bayesian econometrics: Simulations, models and applications to research, teaching and encoding with responsibility.

Univariate models 83

FIGURE 5.1

Display of our graphical user interface.

FIGURE 5.2

Univariate models: Specification.

a new window where a presentation of our research team is displayed (see Figure 5.1). In addition, the top panel in Figure 5.1 shows the class of models that can be estimated in our GUI.

5.2 Univariate models

After our GUI is deployed (see Figure 5.1), the user should select *Univariate Models* in the top panel. Then, the Figure 5.2 is displayed, and the user can see the radio button on the left hand side that shows the specific models inside this generic class. In particular, users can see that the normal model is selected from inside the class of univariate models.

Then, the right hand side panel displays a widget to upload the input

FIGURE 5.3 Univariate models: Results.

dataset, which should be a csv file with headers in the first row. Users also should select the kind of separator used in the input file: comma, semicolon, or tab (use the folders **DataSim** and **DataApp** for the input file templates). Once users upload the dataset, they can see a data preview. Range sliders help to set the number of iterations of the Markov chain Monte Carlo algorithm, the amount of burn-in, and the thinning parameter can be selected as well (see next chapters of this second part of the book for technical details). After this, users should specify the equation. This can be done with the formula builder, where users can select the dependent variable, and the independent variables, and then click on the Build formula tab. Users can see in the Main Equation space the formula expressed in the format used by \mathbf{R} software (see Main equation box in Figure 5.2, $y \sim x1 + x2 + x3$). Users can modify this if necessary, for instance, including higher order or interaction terms, other transformations are also allowed. This is done directly in the Main Equation space taking into account that this extra terms should follow formula command structure.² Note that the class of univariate models includes the intercept by default, except ordered probit, where the specification has to do this explicitly, that is, ordered probit models do not admit an intercept, for identification issues (see details below).³ Hence, users should write down specifically this fact $(y \sim x1 + x2 + x3 - 1)$. Finally, users should define the hyperparameters of the prior; for instance, in the normal-inverse gamma model, these are the mean vector, covariance matrix, shape, and scale parameters (see Figure 5.3). However, users should take into account that our GUI has non-informative hyperparameters by default in all our modelling frameworks, so the last part is not a requirement.

After this specification process, users should click the Go! button to initi-

 $^{^2}$ See https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/formula 3 An *identification* issue means that multiple values for the model parameters give rise

to the same value for the likelihood function.

FIGURE 5.4

Univariate models: Multinomial.

ate the estimation. Our GUI displays the summary statistics and convergence diagnostics after this process is finished (see Figure 5.3). There are also widgets to download posterior chains (csv file) and graphs (pdf and eps files). Note that the order of the coefficients in the results (summary, posterior chains, and graphs) is first for the location parameters, and then for the scale parameters.

Multinomial models (probit and logit) require a dataset file to have in the first column the dependent variable, then alternative specific regressors (for instance alternatives' prices), and finally, non-alternative regressors (for instance, income). The formula builder specifies the dependent variable, and independent variables that are alternative specific and non-alternative specific (see technical details in next chapter). Specification also requires defining the base category, number of alternatives (this is also required in ordered probit), number of alternative specific regressors, and number of non-alternative regressors (see Figure 5.4). Multinomial logit also allows defining a tuning parameter, the number of degrees of freedom in this case, for the Metropolis-Hastings algorithm (see technical details in next chapter). This is a feature in our GUI when the estimation of the models is based on the Metropolis-Hastings algorithm. The order of the coefficients in the results of these models is first the intercepts (cte_l appearing in the summary display, l-th alternative), and then the non-alternative specific regressors (NAS_{il} appearing in the summary display, l-th alternative and j-th non-alternative regressor), and lastly, the coefficients for the alternative specific regressors (AS_i appearing in the summary display, j-th alternative specific regressor). Note that the non-alternative specific regressors associated with the base category are equal to zero (they do not appear in the results). In addition, some coefficients of the main diagonal of the covariance matrix are constant due to identification issues in multinomial and multivariate probit models.

In the case of the negative binomial model, users should set a dispersion parameter (see the negative binomial model in the next chapter). User should

FIGURE 5.5

Univariate models: Bootstrap.

also set the censorship points and quantiles in the Tobit and quantile models, respectively.

Bayesian bootstrap only requires uploading a dataset, specifying the number of iterations of the MCMC, the resampling size, and the equation (see Figure 5.5). The input file has the same structure as the file used in the univariate normal model.

5.3 Multivariate models

After our GUI is deployed (see Figure 5.1), the user should select *Multivariate Models* in the top panel. Then, the Figure 5.6 is displayed, and the user can see the radio button on the left hand side that shows the specific models inside this generic class.

Figure 5.6 displays the multivariate regression setting. In this case, the input file should have first the dependent variables, and then the regressors. If there are intercepts in each equation, there should be a column of 1's after the dependent variables in the input file. The user also has to set the number of dependent variables, the number of regressors, if necessary include the intercept, and the values of the hyperparameters (see Figure 5.6).

The input file in seemingly unrelated regressions should have first the dependent variables, and then the regressors by equation, including the intercept in each equation if necessary (column of 1's). Users should define the number of dependent variables (equations), the number of total regressors, that is, the sum of all regressors associated with the equation (if necessary include intercepts, each intercept is an additional regressor), and the number of regressors

FIGURE 5.6

Multivariate models: Simple multivariate.

by equation (if necessary include the intercept). Users can also set the values of the hyperparameters if there is prior information.

The results of the simple multivariate and seemingly unrelated regressions show first the posterior location parameters by equation, and then the posterior covariance matrix.

In the instrumental variable setting, users should specify the main equation and the instrumental equation. This setting includes intercepts by default. The first variable on the right hand side in the main equation has to be the variable with endogeneity issues. In the instrumental equation box, the dependent variable is the variable with endogeneity issues as a function of the instruments. Users can also specify the values of the hyperparameters if they have prior information. The input file should have the dependent variable, the endogenous regressor, the instruments, and the exogenous regressors. The results first list the posterior estimates of the endogenous regressor, then the location parameters of the auxiliary regression (instrumental equation), and the location parameters of the exogenous regressors. Last is the posterior covariance matrix.

The multivariate probit model requires an input dataset ordered by unit, for instance three choices implies repeat each unit three times. The first column has to be the identification of each unit; users should use ordered integers, then the dependent variable, just one vector, composed of 0's and 1's, then the regressors, which should include a column of 1's for the intercepts. Users should set the number of units, number of regressors, and number of choices (see Figure 5.7). The results first display the posterior location parameters by equation, and then the posterior covariance matrix.

FIGURE 5.7

Multivariate models: Multivariate probit.

5.4 Time series model

5.5 Longitudinal/panel models

After our GUI is deployed (see Figure 5.1), the user should select *Hierarchical Longitudinal Models* in the top panel. Then, the Figure 5.8 is displayed, and the user can see the radio button on the left hand side that shows the specific models inside this generic class.

The hierarchical longitudinal models tab allows for estimating models that account for within-subject correlation when the dependent variable is continuous (Normal), binary (Logit), or a count (Poisson).

The input files for hierarchical longitudinal models should have first the dependent variable, then the regressors and a cross sectional identifier (i = 1, 2, ..., N). It is not a requirement to have a balanced dataset: T_i can be different for each i (see Chapter 9 for technical details). Users can see templates of datasets in the folders **DataSim** (see Table 13.2 for details), and **DataApp** (see Table 13.3 for details) of our GitHub repository. Users should also specify the fixed part equation and the random part equation, both in **R** format. In case of only requiring random intercepts, do not introduce anything in the latter part (see Figure 5.8). Users should also type the name of the cross sectional identifier variable. The results displayed and the posterior graphs are associated with the fixed effects and covariance matrix. However, users can download the posterior chains of all posterior estimates: fixed and random effects, and covariance matrix.

FIGURE 5.8

Hierarchical longitudinal models: Specification.

5.6 Bayesian model average

After our GUI is deployed (see Figure 5.1), the user should select *Bayesian Model Averaging* in the top panel. Then, the Figure 5.9 is displayed, and the user can see the radio button on the left hand side that shows the specific models inside this generic class.

Bayesian model averaging based on a Gaussian distribution can be carried out using the Bayesian information criterion (BIC) approximation, Markov chain Monte Carlo model composition (MC3), or instrumental variables (see Figure 5.9). The former two approaches require an input dataset where the first column is the dependent variable, and then, the potentially important regressors. Users should set the band width model selection parameter (O_R) and number of iterations for BIC and MC3, respectively (see Chapter 10 for technical details). The results include the posterior inclusion probability (p! = 0), expected value (EV), and standard deviation (SD) of the coefficients associated with each regressor. The BIC framework also displays the most relevant models, including the number of regressors, the coefficient of determination (R^2) , the BIC, and the posterior model probability. Users can download two csv files: Best models and Descriptive statistics coefficients. The former is a 0-1 matrix such that the columns are the regressors and the rows are the models; a 1 indicates the presence of a specific regressor in a specific model, 0 otherwise. Note that the last column of this file is the posterior model probability for each model (row). The latter file shows the posterior inclusion probabilities, expected values, and standard deviations associated with each regressor, taking into account the BMA procedure based on the best models.

Bayesian model averaging with endogeneity issues requires two input files. The first one has the dependent variable in the first column, the next columns are the regressors with endogeneity issues, and then the exogeneous regressors.

FIGURE 5.9

Bayesian model averaging: Specification and results.

FIGURE 5.10

Bayesian model averaging: Instrumental variable specification.

The user should include a column of 1's if an intercept is required. The second input file has all the instruments. Users should also introduce the number of regressors with endogeneity issues (see Figure 5.10).

The results include the posterior inclusion probabilities and expected values for each regressor. The user can find the results of the main equation, and then of the auxiliary equations. Users can download csv files of BMA results for both the second stage (main equation) and the first stage (auxiliary equations). In addition, users can download the posterior chains of the location parameters of the main equation, β_l , $l=1,2,\ldots,dim$ $\{\beta_s\}$, the location parameters of the auxiliary equations, $\gamma_{j,i}$, $j=1,2,\ldots,dim$ $\{\beta_s\}$ where dim $\{\beta_s\}$ is the number of regressors with endogeneity issues, $i=1,2,\ldots,dim$ $\{\gamma\}$, where dim $\{\gamma\}$ is the number of regressors in the auxiliary regressors (exogeneous regressors + instruments), and the elements of the covariance matrix $\sigma_{j,k}$ (see Chapter 10 for technical details).

Bayesian model averaging based on BIC approximation for non-linear mod-

els, Logit, Gamma, and Poisson, requires an input dataset where the first column is the dependent variable, and the other columns are the potentially relevant regressors. Users should specify the band width model selection parameters, which are also referred to as Occam's window parameters (O_R and O_L). Our GUI displays the posterior inclusion probabilities (p!=0), the expected value of the posterior coefficients (EV), and the standard deviation (SD). In addition, users can see the results associated with the models with the highest posterior model probabilities, and download csv files with the results of specifications of the best models, and descriptive statistics of the posterior coefficients from the BMA procedure. These files are similar to the results of the BIC approximation of the Gaussian model.

5.7 Warning

Users should also note that sometimes our GUI shuts down. In our experience, this is due to computational issues using the implicit commands that we call when estimating some models, for instance, computationally singular systems, missing values where TRUE/FALSE needed, L-BFGS-B needs finite values of "fn", NA/NaN/Inf values, or Error in backsolve. Sometimes these issues can be solved by adjusting the dataset, for instance, avoiding high levels of multicollinearity. It should also be taken into account that when warning messages are displayed in our GUI, there is a high chance that there are convergence issues of the posterior chains. So, the results are not trustworthy. Users can identify these problems by checking the console of their RStudio sections, where the specific folder/file where the issue happened is specified. In any case, we would appreciate your feedback to improve and enhance our GUI.

We also should say there are many ways to improve the codes that we present in the following five chapters. For instance, the *MCMCpack* and *bayesm* packages perform most of the matrix operations in C++ using the *rcpp* package. This substantially speeds up the algorithms compared with the codes that we present in the next chapters. We could improve the computational times of our codes using parallel computing and the *rcpp* package, but this requires more advanced skills that we do not cover in this book.

Univariate models

Solutions of Exercises

1. Get the conditional posterior distributions of the Gaussian linear model assuming independent priors $\pi(\boldsymbol{\beta}, \sigma^2) = \pi(\boldsymbol{\beta}) \times \pi(\sigma^2)$, where $\boldsymbol{\beta} \sim N(\boldsymbol{\beta}_0, \boldsymbol{B}_0)$ and $\sigma^2 \sim IG(\alpha_0/2, \delta_0/2)$.

Answer

The joint posterior distribution of the parameters is

$$\pi(\boldsymbol{\beta}, \sigma^{2}|\boldsymbol{y}, \boldsymbol{X}) \propto p(\boldsymbol{y}|\boldsymbol{\beta}, \sigma^{2}, \boldsymbol{X})\pi(\boldsymbol{\beta})\pi(\sigma^{2})$$

$$\propto (\sigma^{2})^{-\frac{N}{2}} \exp\left\{-\frac{1}{2\sigma^{2}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})\right\}$$

$$\times \exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_{0})^{\top}\boldsymbol{B}_{0}^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_{0})\right\}$$

$$\times \frac{(\delta_{0}/2)^{(\alpha_{0}/2)}}{\Gamma(\alpha_{0}/2)} \frac{1}{(\sigma^{2})^{(\alpha_{0}/2+1)}} \exp\left\{-\frac{\delta_{0}}{2\sigma^{2}}\right\}$$

$$\propto \exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_{0})^{\top}\boldsymbol{B}_{0}^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_{0})\right\}$$

$$\times \frac{1}{(\sigma^{2})^{(\alpha_{0}+N)/2+1}} \exp\left\{-\frac{\delta_{0} + (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})}{2\sigma^{2}}\right\}$$

$$= \exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_{0})^{\top}\boldsymbol{B}_{0}^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_{0})\right\} \times \underbrace{\frac{1}{(\sigma^{2})^{(\frac{\alpha_{n}}{2}+1)}} \exp\left\{-\frac{\delta_{n}}{2\sigma^{2}}\right\}}_{1}.$$

Observe that (1) is the kernel of an inverse-gamma density function. Thus, $\sigma^2 | \boldsymbol{\beta}, \boldsymbol{y}, \boldsymbol{X} \sim IG(\alpha_n/2, \delta_n/2)$, where $\alpha_n = \alpha_0 + N$ and $\delta_n = \delta_0 + (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$.

Let's see the posterior distribution of β ,

$$\begin{split} \pi(\boldsymbol{\beta}, \sigma^{2} | \boldsymbol{y}, \boldsymbol{X}) &\propto p(\boldsymbol{y} | \boldsymbol{\beta}, \sigma^{2}, \boldsymbol{X}) \pi(\boldsymbol{\beta}) \pi(\sigma^{2}) \\ &\propto (\sigma^{2})^{-\frac{N}{2}} \exp \left\{ -\frac{1}{2\sigma^{2}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \right\} \\ &\times \exp \left\{ -\frac{1}{2} (\boldsymbol{\beta} - \boldsymbol{\beta}_{0})^{\top} \boldsymbol{B}_{0}^{-1} (\boldsymbol{\beta} - \boldsymbol{\beta}_{0}) \right\} \\ &\times \frac{(\delta_{0}/2)^{(\alpha_{0}/2)}}{\Gamma(\alpha_{0}/2)} \frac{1}{(\sigma^{2})^{(\alpha_{0}/2+1)}} \exp \left\{ -\frac{\delta_{0}}{2\sigma^{2}} \right\} \\ &= (\sigma^{2})^{-\frac{N}{2}} \exp \left\{ -\frac{\sigma^{-2}}{2} [\boldsymbol{y}^{\top} \boldsymbol{y} - \boldsymbol{y}^{\top} \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{y} + \boldsymbol{\beta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta}] \right\} \\ &\times \exp \left\{ -\frac{1}{2} [\boldsymbol{\beta}^{\top} \boldsymbol{B}_{0}^{-1} \boldsymbol{\beta} - \boldsymbol{\beta}^{\top} \boldsymbol{B}_{0}^{-1} \boldsymbol{\beta}_{0} - \boldsymbol{\beta}_{0}^{\top} \boldsymbol{B}_{0}^{-1} \boldsymbol{\beta} + \boldsymbol{\beta}_{0}^{\top} \boldsymbol{B}_{0}^{-1} \boldsymbol{\beta}_{0}] \right\} \\ &\times \frac{(\delta_{0}/2)^{(\alpha_{0}/2)}}{\Gamma(\alpha_{0}/2)} \frac{1}{(\sigma^{2})^{(\alpha_{0}/2+1)}} \exp \left\{ -\frac{\delta_{0}}{2\sigma^{2}} \right\} \\ &\propto \exp \left\{ -\frac{1}{2} [\boldsymbol{\beta}^{\top} (\boldsymbol{B}_{0}^{-1} + \sigma^{-2} \boldsymbol{X}^{\top} \boldsymbol{X}) \boldsymbol{\beta} - 2 \boldsymbol{\beta}^{\top} (\boldsymbol{B}_{0}^{-1} \boldsymbol{\beta}_{0} + \sigma^{-2} \boldsymbol{X}^{\top} \boldsymbol{X} \hat{\boldsymbol{\beta}})] \right\} \\ &\times \frac{1}{(\sigma^{2})^{(\alpha_{0}+N)/2+1}} \exp \left\{ -\frac{\delta_{0} + \boldsymbol{y}^{\top} \boldsymbol{y}}{2\sigma^{2}} \right\}, \end{split}$$

where $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$.

Adding and subtracting $\boldsymbol{\beta}_n^{\top} \boldsymbol{B}_n^{-1} \boldsymbol{\beta}_n$ where

$$\begin{split} & \boldsymbol{B}_n = (\boldsymbol{B}_0^{-1} + \sigma^{-2} \boldsymbol{X}^\top \boldsymbol{X})^{-1} \\ & \boldsymbol{\beta}_n = \boldsymbol{B}_n (\boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0 + \sigma^{-2} \boldsymbol{X}^\top \boldsymbol{X} \hat{\boldsymbol{\beta}}) = \boldsymbol{B}_n (\boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0 + \sigma^{-2} \boldsymbol{X}^\top \boldsymbol{y}), \end{split}$$

and completing the square

$$\pi(\boldsymbol{\beta}, \sigma^{2}|\boldsymbol{y}, \boldsymbol{X}) \propto \exp\left\{-\frac{1}{2}[\boldsymbol{\beta}^{\top}(\boldsymbol{B}_{0}^{-1} + \sigma^{-2}\boldsymbol{X}^{\top}\boldsymbol{X})\boldsymbol{\beta} - 2\boldsymbol{\beta}^{\top}\boldsymbol{B}_{n}^{-1}\boldsymbol{B}_{n}(\boldsymbol{B}_{0}^{-1}\boldsymbol{\beta}_{0} + \sigma^{-2}\boldsymbol{X}^{\top}\boldsymbol{X}\hat{\boldsymbol{\beta}})\right.$$

$$\left. + \boldsymbol{\beta}_{n}^{\top}\boldsymbol{B}_{n}^{-1}\boldsymbol{\beta}_{n} - \boldsymbol{\beta}_{n}^{\top}\boldsymbol{B}_{n}^{-1}\boldsymbol{\beta}_{n}]\right\} \times \frac{1}{(\sigma^{2})^{(\alpha_{0}+N)/2+1}} \exp\left\{-\frac{\delta_{0} + \boldsymbol{y}^{\top}\boldsymbol{y}}{2\sigma^{2}}\right\}$$

$$= \exp\left\{-\frac{1}{2}[\boldsymbol{\beta}^{\top}\boldsymbol{B}_{n}^{-1}\boldsymbol{\beta} - 2\boldsymbol{\beta}^{\top}\boldsymbol{B}_{n}^{-1}\boldsymbol{\beta}_{n} + \boldsymbol{\beta}_{n}^{\top}\boldsymbol{B}_{n}^{-1}\boldsymbol{\beta}_{n}]\right\}$$

$$\times \frac{1}{(\sigma^{2})^{(\alpha_{0}+N)/2+1}} \exp\left\{-\frac{\delta_{0} + \boldsymbol{y}^{\top}\boldsymbol{y} - \sigma^{2}\boldsymbol{\beta}_{n}^{\top}\boldsymbol{B}_{n}^{-1}\boldsymbol{\beta}_{n}}{2\sigma^{2}}\right\}$$

$$= \exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_{n})^{\top}\boldsymbol{B}_{n}^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_{n})\right\}$$

$$\times (\sigma^{2})^{-(\frac{\alpha_{n}}{2}+1)} \exp\left\{-\frac{\delta^{*}}{2\sigma^{2}}\right\},$$

where $\delta^* = \delta_0 + \mathbf{y}^{\top} \mathbf{y} + \sigma^2 \boldsymbol{\beta}_n^{\top} \boldsymbol{B}_n^{-1} \boldsymbol{\beta}_n$ does not dependent on $\boldsymbol{\beta}$.

We can see that (1) is the kernel of a multivariate normal distribution with mean equal to β_n and covariance matrix \mathbf{B}_n , that is, $\beta | \sigma^2, \mathbf{y}, \mathbf{X} \sim N(\beta_n, \mathbf{B}_n)$.

We see that the posterior distributions are from the same family as the prior distributions.

2. Given the model $y_i \sim N(\boldsymbol{x}_i^{\top}\boldsymbol{\beta}, \sigma^2/\tau_i)$ (Gaussian linear model with heteroskedasticity) with independent priors, $\pi(\boldsymbol{\beta}, \sigma^2, \boldsymbol{\tau}) = \pi(\boldsymbol{\beta}) \times \pi(\sigma^2) \times \prod_{i=1}^N \pi(\tau_i)$, where $\boldsymbol{\beta} \sim N(\boldsymbol{\beta}_0, \boldsymbol{B}_0)$, $\sigma^2 \sim IG(\alpha_0/2, \delta_0/2)$ and $\tau_i \sim G(v/2, v/2)$. Show that $\boldsymbol{\beta}|\sigma^2, \boldsymbol{\tau}, \boldsymbol{y}, \boldsymbol{X} \sim N(\boldsymbol{\beta}_n, \boldsymbol{B}_n), \ \sigma^2|\boldsymbol{\beta}, \boldsymbol{\tau}, \boldsymbol{y}, \boldsymbol{X} \sim IG(\alpha_n/2, \delta_n/2)$ and $\tau_i|\boldsymbol{\beta}, \sigma^2, \boldsymbol{y}, \boldsymbol{X} \sim G(v_{1n}/2, v_{2in}/2)$, where $\boldsymbol{\tau} = [\tau_1, \dots, \tau_n]^{\top}$, $\boldsymbol{B}_n = (\boldsymbol{B}_0^{-1} + \sigma^{-2}\boldsymbol{X}^{\top}\boldsymbol{\Psi}\boldsymbol{X})^{-1}$, $\boldsymbol{\beta}_n = \boldsymbol{B}_n(\boldsymbol{B}_0^{-1}\boldsymbol{\beta}_0 + \sigma^{-2}\boldsymbol{X}^{\top}\boldsymbol{\Psi}\boldsymbol{y}), \ \alpha_n = \alpha_0 + N, \ \delta_n = \delta_0 + (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}\boldsymbol{\Psi}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}), \ v_{1n} = v + 1, \ v_{2in} = v + \sigma^{-2}(y_i - \boldsymbol{x}_i^{\top}\boldsymbol{\beta})^2$, and $\boldsymbol{\Psi} = \text{diagonal } \{\tau_i\}$.

Answei

The joint posterior distribution of the parameters is

$$\pi(\boldsymbol{\beta}, \sigma^2, \boldsymbol{\tau} | \boldsymbol{y}, \boldsymbol{X}) \propto p(\boldsymbol{y} | \boldsymbol{\beta}, \sigma^2, \boldsymbol{\tau}, \boldsymbol{X}) \pi(\boldsymbol{\beta}) \pi(\sigma^2) \prod_{i=1}^{N} \pi(\tau_i)$$

$$\propto \left(\prod_{i=1}^{N} \tau_i^{1/2} \right) (\sigma^2)^{-\frac{N}{2}} \exp\left\{ -\frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} \Psi(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \right\}$$

$$\times \exp\left\{ -\frac{1}{2} (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^{\top} \boldsymbol{B}_0^{-1} (\boldsymbol{\beta} - \boldsymbol{\beta}_0) \right\}$$

$$\times \frac{1}{(\sigma^2)^{(\alpha_0/2+1)}} \exp\left\{ -\frac{\delta_0}{2\sigma^2} \right\} \prod_{i=1}^{N} \tau_i^{v/2-1} \exp\left\{ -v\tau_i/2 \right\}.$$

Thus, the conditional posterior distribution of $\sigma^2 | \beta, \tau, y, X$ is given by

$$\pi(\sigma^2|\boldsymbol{\beta}, \boldsymbol{\tau}, \boldsymbol{y}, \boldsymbol{X}) \propto (\sigma^2)^{-\frac{N+\alpha_0}{2}} \exp\left\{-\frac{1}{2\sigma^2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top \Psi(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \delta_0\right\}.$$

This is the kernel of an inverse-gamma distribution with shape parameter $\alpha_n/2$ and rate parameter $\delta_n/2$.

The conditional posterior distribution of $\tau_i | \boldsymbol{\beta}, \sigma^2, \boldsymbol{y}, \boldsymbol{X}$ is

$$\pi(\tau_i|\boldsymbol{\beta}, \sigma^2, \boldsymbol{y}, \boldsymbol{X}) \propto \tau_i^{(v+1)/2-1} \exp\left\{-\frac{\tau_i}{2}[\sigma^{-2}(y_i - \boldsymbol{x}_i^{\top}\boldsymbol{\beta})^2 + v]\right\}.$$

This is the kernel of a gamma distribution with parameter (v+1)/2 and $(\sigma^{-2}(y_i - \boldsymbol{x}_i^{\top}\boldsymbol{\beta})^2 + v)/2$.

The conditional posterior distribution of $\boldsymbol{\beta}|\sigma^2, \boldsymbol{\tau}, \boldsymbol{y}, \boldsymbol{X}$ is given by

$$\pi(\boldsymbol{\beta}|\sigma^2, \boldsymbol{\tau}, \boldsymbol{y}, \boldsymbol{X}) \propto \exp\left\{-\frac{1}{2}[\sigma^{-2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top \Psi(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^\top \boldsymbol{B}_0^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)]\right\}.$$

Following same steps as in the previous exercise we get $\beta | \sigma^2, \tau, y, X \sim N(\beta_n, B_n)$.

3. The market value of soccer players in Europe continues

Use the setting of the previous exercise to perform inference using a Gibbs sampling algorithm of the the market value of soccer players in Europe setting v=5 and same other hyperparameters as the homoscedastic case. Is there any meaningful difference for the coefficient associated with the national team compared to the application in the homoscedastic case?

R. code. The value of soccer players, programming our Gibbs sampler (heteroskedastic case)

```
1 rm(list = ls())
2 set.seed(010101)
3 ####################### Linear regression: Value of
      4 Data <- read.csv("https://raw.githubusercontent.com/
      besmarter/BSTApp/refs/heads/master/DataApp/1
      ValueFootballPlayers.csv", sep = ",", header = TRUE,
      quote = "")
5 attach(Data)
6 y <- log(Value)
7 # Value: Market value in Euros (2017) of soccer players
8 # Regressors quantity including intercept
9 X <- cbind(1, Perf, Age, Age2, NatTeam, Goals, Exp, Exp2)
10 # Perf: Performance. Perf2: Performance squared. Age: Age;
      Age: Age squared.
# NatTeam: Indicator of national team. Goals: Scored goals.
      Goals2: Scored goals squared
12 # Exp: Years of experience. Exp2: Years of experience
      squared. Assists: Number of assists
13 k <- dim(X)[2]
14 N <- dim(X)[1]
15 # Hyperparameters
16 d0 <- 0.001
17 a0 <- 0.001
18 b0 <- rep(0, k)
19 cO <- 1000
20 BO <- c0*diag(k)
21 B0i <- solve(B0)
22 V <- 5
23 # MCMC parameters
_{24} mcmc <- 5000
25 burnin <- 5000
26 tot <- mcmc + burnin
27 thin <- 1
28 # Posterior distributions programming the Gibbs sampling
29 # Auxiliary parameters
30 an <- a0 + N
31 v1n <- v + 1
32 # Gibbs sampling functions
33 PostSig2 <- function(Beta, tau){</pre>
dn <- d0 + t(y - X%*\%Beta)%*%diag(tau)%*%(y - X%*\%Beta)
    sig2 <- invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
35
    return(sig2)
36
37 }
38 PostBeta <- function(sig2, tau){</pre>
39 Bn <- solve(B0i + sig2^(-1)*t(X)%*%diag(tau)%*%X)
40
    bn <- Bn\%*\%(B0i\%*\%b0 + sig2^(-1)*t(X)\%*\%diag(tau)\%*\%y)
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
41
    return(Beta)
42
43 }
44 PostTau <- function(sig2, Beta, i){
   v2n <- v + sig2^(-1)*(y[i]-X[i,]%*%Beta)^2
45
    taui <- rgamma(1, v1n/2, v2n/2)
    return(taui)
47
48 }
```

R. code. The value of soccer players, programming our Gibbs sampler (heteroskedastic case)

```
PostBetas <- matrix(0, mcmc+burnin, k)</pre>
2 PostSigma2 <- rep(0, mcmc+burnin)</pre>
3 Beta <- rep(0, k)</pre>
 4 tau <- rep(1, N)
  # create progress bar in case that you want to see
      iterations progress
     <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      tot, width = 300)
  for(s in 1:tot){
    sig2 <- PostSig2(Beta = Beta, tau = tau)</pre>
    PostSigma2[s] <- sig2
    Beta <- PostBeta(sig2 = sig2, tau = tau)</pre>
    PostBetas[s,] <- Beta
    tau <- sapply(1:N, function(i){PostTau(sig2 = sig2, Beta =
       Beta, i)})
    setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
        "% done"))
14 }
15 close(pb)
16 keep <- seq((burnin+1), tot, thin)</pre>
17 PosteriorBetas <- PostBetas[keep,]</pre>
18 colnames(PosteriorBetas) <- c("Intercept", "Perf", "Age", "</pre>
      Age2", "NatTeam", "Goals", "Exp", "Exp2")
19 summary(coda::mcmc(PosteriorBetas))
20 PosteriorSigma2 <- PostSigma2[keep]</pre>
21 summary(coda::mcmc(PosteriorSigma2))
22 summary(coda::mcmc(exp(PosteriorBetas[,5])-1))
23 Iterations = 1:5000
24 Thinning interval = 1
25 Number of chains = 1
26 Sample size per chain = 5000
27 1. Empirical mean and standard deviation for each variable,
28 plus standard error of the mean:
                              Naive SE Time-series SE
29 Mean
                    SD
30 1.256091
                  0.254974
                                   0.003606
                                                   0.004579
31 2. Quantiles for each variable:
32 2.5%
          25%
                  50%
                          75% 97.5%
33 0.8078 1.0746 1.2367 1.4189 1.7959
```

We see in this application that the value of a top soccer player in Europe increases 124% (exp(0.80) - 1)) on average when he has played in the national team, the credible interval at 95% is (81%, 180%). These values are not very different from the application assuming homoscedasticity in the book.

4. Example: Determinants of hospitalization continues

Program a Gibbs sampling algorithm in the application of determinants of hospitalization.

R. code. Determinants of hospitalization, programming our Gibbs sampler

```
1 set.seed(010101)
2 Data <- read.csv("https://raw.githubusercontent.com/</pre>
      besmarter/BSTApp/refs/heads/master/DataApp/2HealthMed.
      csv", sep = ",", header = TRUE, quote = "")
3 attach (Data)
4 str(Data)
5 y <- Hosp # Dependent variables
6 X <- cbind(1, SHI, Female, Age, Age2, Est2, Est3, Fair, Good
      , Excellent) # Regressors
7 K <- dim(X)[2]
8 N <- dim(X)[1]
9 # Hyperparameters
10 b0 <- rep(0, K) # Prio mean
11 B0 <- diag(K) # Prior covariance
12 B0i <- solve(B0)
13 mcmc <- 1000; burnin <- 500; thin <- 2; tot <- mcmc + burnin
      ; keep <- seq(burnin, tot, thin)
14 # Posterior distributions programming the Gibbs sampling
15 # Auxiliary parameters
16 XtX <- t(X)%*%X
17 # Gibbs sampling functions
18 PostBeta <- function(Y1){</pre>
    Bn <- solve(B0i + XtX)
19
    bn <- Bn%*%(B0i%*%b0 + t(X)%*%Y1)
   Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
   return(Beta)
22
23 }
24 PostYl <- function(Beta, i){
    Ylmean <- X[i,]%*%Beta
    if(y[i] == 1){
26
      Yli <- truncnorm::rtruncnorm(1, a = 0, b = Inf, mean =
      Ylmean, sd = 1)
28
      Yli <- truncnorm::rtruncnorm(1, a = -Inf, b = 0, mean =
29
      Ylmean, sd = 1)
    }
30
31
    return(Yli)
32 }
33 PostBetas <- matrix(0, mcmc+burnin, K)
34 Beta <- rep(0, K)
_{\rm 35} # create progress bar in case that you want to see
      iterations progress
36 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
37 for(s in 1:tot){
    Y1 <- sapply(1:N, function(i){PostYl(Beta = Beta, i)})
    Beta <- PostBeta(Y1 = Y1)</pre>
39
    PostBetas[s,] <- Beta
    setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
41
       "% done"))
42 }
43 close(pb)
44 keep <- seq((burnin+1), tot, thin)
45 PosteriorBetas <- PostBetas [keep,]
Excellent")
47 summary(coda::mcmc(PosteriorBetas))
```

5. Choice of the fishing mode continues

- Run the Algorithm 3 of the book to show the results of the Geweke [7], Raftery [25] and Heidelberger [10] tests using our GUI.
- \bullet Use the command rmnpGibbs to do the example of the choice of the fishing mode.

R. code. Fishing choice mode, results our GUI

```
1 GewekeTestLocationCoef
2 Fraction in 1st window = 0.1
3 Fraction in 2nd window = 0.5
4 cte_1 cte_2 cte_3 NAS_1_1 NAS_1_2 NAS_1_3
                                                   AS_1 AS_2
5 -1.821 -0.714 0.792 2.275 -3.944 -2.071 1.627 -2.729
7 RafteryTestLocationCoef
8 Quantile (q) = 0.5
9 Accuracy (r) = +/- 0.025
10 Probability (s) = 0.95
11 Burn-in Total Lower bound Dependence
12 (M)
           (N)
                    (Nmin)
                                 factor (I)
13 cte_1
           780
                    365690
                            1537
                                         238.0
14 cte_2
           360
                    193950 1537
                                         126.0
15 cte_3
           660
                    340120 1537
                                         221.0
16 NAS_1_1 120
                    70320
                            1537
                                          45.8
17 NAS_1_2 475
                    243960
                            1537
                    248930 1537
                                         162.0
18 NAS_1_3 440
19 AS_1
           3010
                    1438135 1537
                                         936.0
20 AS_2
           550
                    297770 1537
                                         194.0
21
22 HeidelTestLocationCoef
23 Stationarity start p-value
               iteration
24 test
                                  6.54e-01
25 cte_1
          passed
                       6001
          failed
                        NA
                                  3.72e-02
26 cte_2
27 cte_3
          failed
                          ΝA
                                  4.99e-02
28 NAS_1_1 failed
                         NΑ
                                  4.77e - 07
29 NAS_1_2 failed
                         NΑ
                                  1.82e-05
30 NAS_1_3 failed
                         NΑ
                                  1.19e-04
31 AS_1
          passed
                        2001
                                  3.71e-01
32 AS_2
          passed
                        8001
                                   4.48e-01
33 Halfwidth Mean
                      Halfwidth
34 test
                     -0.34236 0.017025
35 cte_1
           passed
36 cte_2
           <NA>
                          NΑ
                                    ΝA
37 cte_3
           < N A >
                           ΝA
                                     NA
38 NAS_1_1 <NA>
                           NΑ
                                    NΑ
39 NAS_1_2 <NA>
                           ΝA
40 NAS_1_3 < NA>
                           ΝA
                                     NA
41 AS_1 passed
                     -0.00708 0.000306
42 AS_2
          passed
                     0.27982 0.009994
```

R. code. Fishing choice mode, library bayesm

```
remove(list = ls()); set.seed(12345)
2 Data <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/3Fishing.csv"
       , sep = ",", header = TRUE, quote = "")
3 attach(Data); str(Data)
4 p <- 4; na <- 2; nd <- 1; N <- dim(Data)[1]
5 Xa <- Data[,2:9]
6 Xd <- matrix(income, N, 1)
_{7} X <- bayesm::createX(p = p, _{na} = _{na}, _{nd} = _{nd}, _{Xa} = _{Xa}, _{Xd} =
      Xd, INT = TRUE, base = p, DIFF = TRUE)
8 df \leftarrow list(y = mode, X = X, p = 4)
9 # Hyperparameters
10 k \leftarrow dim(X)[2]; b0 \leftarrow rep(0, k); c0 \leftarrow 1000
11 BO <- c0*diag(k); BOi <- solve(BO)
12 a0 <- p - 1 + 3; Psi0 <- a0*diag(p-1)
13 Prior <- list(betabar = b0, A = B0i, nu = a0, V = Psi0)
14 # MCMC parameters
15 mcmc <- 100000; thin <- 5
16 Mcmc <- list(R = mcmc, keep = thin)
17 Results <- bayesm::rmnpGibbs(Data = df, Prior = Prior, Mcmc
      = Mcmc)
18 betatilde <- Results$betadraw / sqrt(Results$sigmadraw[,1])
19 attributes(betatilde)$class <- "bayesm.mat"</pre>
20 summary(coda::mcmc(betatilde))
21 Quantiles for each variable:
                                      50%
             2.5%
                          25%
                                                  75%
                                                            97.5%
23 var1 -6.371e-01 -4.670e-01 -3.834e-01 -3.028e-01 -1.422e-01
24 var2 -2.149e-01 -6.681e-02 -7.870e-03 4.414e-02
                                                        1.493e-01
25 var3 -8.873e-01 -6.071e-01 -4.982e-01 -4.040e-01 -2.446e-01
26 var4
        1.859e-05 4.577e-05
                                5.952e-05 7.326e-05
                                                        9.861e-05
27 var5 -2.589e-05 -3.050e-06
                                 8.212e-06
                                             2.089e-05
                                                         5.330e-05
        4.549e-05
                    7.451e-05
                                 9.144e-05
                                             1.098e-04
28 var6
29 var7 -9.425e-03 -7.612e-03 -6.586e-03 -5.573e-03 -3.136e-03
30 var8 1.214e-01 2.068e-01 2.592e-01 3.154e-01 4.477e-01
31 sigmadraw <- Results$sigmadraw / Results$sigmadraw[,1]
32 attributes(sigmadraw)$class = "bayesm.var"
summary(coda::mcmc(sigmadraw))
```

6. Simulation exercise of the multinomial logit model continues

Perform inference in the simulation of the multinomial logit model using the command rmnlIndepMetrop from the bayesm package of \mathbf{R} and using our GUI.

R. code. Simulation of the multinomial logit model

```
remove(list = ls())
2 set.seed(12345)
3 # Simulation of data
4 N <- 1000 # Sample Size
_{5} B<-c(0.5,0.8,-3)
_{6} B1<-c(-2.5,-3.5,0)
7 B2 < -c(1,1,0)
 8 # Alternative specific attributes of choice 1, for instance,
        price, quality and duration of choice 1
9 X1 <-matrix (cbind (rnorm (N, 0, 1), rnorm (N, 0, 1), rnorm (N, 0, 1)), N,
       length(B))
10 # Alternative specific attributes of choice 2, for instance,
        price, quality and duration of choice 2
11 X2 <- matrix (cbind (rnorm (N, 0, 1), rnorm (N, 0, 1), rnorm (N, 0, 1)), N,
       length(B))
_{12} # Alternative specific attributes of choice 3, for instance,
        price, quality and duration of choice 3
13 X3<-matrix(cbind(rnorm(N,0,1),rnorm(N,0,1),rnorm(N,0,1)),N,
       length(B))
14 X4<-matrix(rnorm(N,1,1),N,1)
15 V1 <- B2 [1] + X1 % * % B + B1 [1] * X4
16 V2<-B2[2]+X2%*%B+B1[2]*X4
17 V3 <- B2 [3] + X3 % * % B + B1 [3] * X4
suma \leftarrow exp(V1) + exp(V2) + exp(V3)
19 p1 <- exp (V1) / suma
_{20} p2 \leftarrow exp(V2)/suma
21 p3 <-exp(V3)/suma
22 p <- cbind (p1, p2, p3)</pre>
23 y <- apply(p,1, function(x)sample(1:3, 1, prob = x, replace =
        TRUE))
24 table(y)
25 L <- length(table(y))</pre>
26 dat <-data.frame(mode, X1[,1], X2[,1], X3[,1], X1[,2], X2[,2], X3
       [,2], X1[,3], X2[,3], X3[,3], X4)
27 colnames(dat) <- c("mode","V1.1","V1.2","V1.3","V2.1","V2.2"
       ,"V2.3","V3.1","V3.2","V3.3","V4")
28 attach(dat)
29 LongData <- mlogit::mlogit.data(dat, shape = "wide", varying
       =2:10, choice = "mode")
30 Xa <- cbind(LongData$V1, LongData$V2, LongData$V3)
31 Xa <- cbind(X1[,1],X2[,1],X3[,1],X1[,2],X2[,2],X3[,2],X1
       [,3], X2[,3], X3[,3])
32 na <- 3
33 Xd <- X4
34 \text{ X} \leftarrow \text{bayesm}::\text{createX}(p = L, na = na, nd = 1, Xa = Xa, Xd = na)
      Xd, base = L)
35 DataMlogit <- list(y=y, X = X, p = L)
36 # MCMC parameters
37 mcmc <- 11000+1
38 thin <- 5
39 df <- 6
40 mcmcpar \leftarrow list(R = mcmc, keep = 5, nu = df)
41 PostBeta <- bayesm::rmnlIndepMetrop(Data = DataMlogit, Mcmc
       = mcmcpar)
42 summary(PostBeta[["betadraw"]])
```

7. Simulation of the ordered probit model

Simulate an ordered probit model where the first regressor distributes N(6,5) and the second distributes G(1,1), the location parameter is $\boldsymbol{\beta} = \begin{bmatrix} 0.5 & -0.25 & 0.5 \end{bmatrix}^{\mathsf{T}}$, and the cutoffs is the vector $\boldsymbol{\alpha} = \begin{bmatrix} 0 & 1 & 2.5 \end{bmatrix}^{\mathsf{T}}$. Program from scratch a Metropolis-within-Gibbs sampling algorithm to perform inference in this simulation.

R. code. Simulation of the ordered probit model

```
1 rm(list = ls()); set.seed(010101); N <- 1000</pre>
2 x1 <- rnorm(N, 6, 5); x2 <- rgamma(N, shape = 1, scale = 1)
3 X <- cbind(1, x1, x2)
4 beta <- c(0.5, -0.25, 0.5); cutoffs <- c(0, 1, 2.5)
5 e <- rnorm(N,0,1)
6 y_latent <- X%*%beta + e; y <- rep(0,N)
7 for (i in 1:N) {
    if (y_latent[i] < cutoffs[1]){</pre>
      y[i] <- 0}else{
       if (y_latent[i] >= cutoffs[1] & y_latent[i] < cutoffs</pre>
       [2]) {
         y[i] <- 1
11
12
       }else{
         if (y_latent[i] >= cutoffs[2] & y_latent[i] < cutoffs</pre>
13
       [3]) {
           y[i] <- 2
         }else{y[i] <- 3</pre>
16
         }
       }
17
18
19 }
20 # Likelihood function
21 LogLikOP <- function(param){</pre>
    beta_g <- param[1:ncol(X)]
22
     delta <- param[(ncol(X)+1):(ncol(X) + dplyr::n_distinct(y)</pre>
        - 1)]
    Xbeta <- X%*%beta_g</pre>
24
     logLik <- 0
25
     for (i in 1:length(y)){
26
27
       if (y[i] == 0) {logLiki <- log(pnorm(-Xbeta[i]))</pre>
      }else if (y[i]==1){
28
         logLiki <- log(pnorm(exp(delta[1]) - Xbeta[i]) - pnorm</pre>
29
       (-Xbeta[i]))
30
       }else if (y[i]==2){
         logLiki <- log(pnorm(exp(delta[2]) + exp(delta[1]) -</pre>
31
       Xbeta[i]) - pnorm(exp(delta[1]) - Xbeta[i]))
       }else {logLiki <- log(1 - pnorm(exp(delta[2]) + exp(</pre>
       delta[1]) - Xbeta[i]))
33
34
       logLik <- logLik + logLiki</pre>
35
36
    return(-logLik)
37 }
38 # ML Estimation
39 param0 \leftarrow rep(0, ncol(X) + n_distinct(y)-2)
40 mle <- optim(param0, LogLikOP, hessian = T, method = "BFGS")
41 mle$par
42 exp(mle$par[length(beta)+1])
43 exp(mle $par [length(beta)+1]) + exp(mle $par [length(beta)+2])
44 CovarML <- solve(mle$hessian)
```

R. code. Simulation of the ordered probit model

```
1 # M-H within Gibbs
2 mhop <- function(param0, G){</pre>
    betasamples \leftarrow matrix(c(0), nrow = G, ncol = ncol(X))
    betasamples[1,] <- param0[1:ncol(X)]
    tau <- matrix(c(0), nrow = G, ncol = dplyr::n_distinct(y)
      - 2)
    tau[1,] \leftarrow param0[(ncol(X)+1):(ncol(X) + dplyr::n_distinct)]
       (y) - 2)]
    yl \leftarrow rep(0, length(y)); ar \leftarrow rep(0,G); B1 \leftarrow solve(t(X)%*)
      %X+solve(B0))
    pb <- winProgressBar(title = "progress bar", min = 0, max</pre>
      = G, width = 300)
     for(g in 2:G){
      bg <- betasamples[g-1,]; tg <- tau[g-1,]</pre>
       #Random walk M-H for delta
11
12
       delta_prime <- tg + mvtnorm::rmvnorm(1, mean = rep(0,2),
       sigma = VarProp)
       alpha <- min(1,(mvtnorm::dmvnorm(delta_prime, mean = d0,
        sigma = D0)*exp(-LogLikOP(c(bg, delta_prime)) +
       LogLikOP(c(bg, tg)))/mvtnorm::dmvnorm(tg, mean = d0,
       sigma = D0))
       if(is.nan(alpha) | is.na(alpha)) {
15
         alpha <- 0
16
       #Acceptance step
      u <- runif(1, min = 0, max = 1)
18
19
       if(u<=alpha){tau[g,] <- delta_prime; ar[g] <- 1</pre>
20
      }else{tau[g,] <- tg</pre>
21
22
       #Generation of latent variables
       for (i in 1:length(y)){
23
         if (y[i]==0) {
24
           yl[i] <- EnvStats::rnormTrunc(1, mean = X[i,]%*%bg,</pre>
25
       sd = 1, max = 0)
         }else if(y[i]==1){
26
          yl[i] <- EnvStats::rnormTrunc(1, mean = X[i,]%*%bg,</pre>
27
       sd = 1, min = 0, max = exp(tau[g,1]))
         }else if(y[i]==2){
28
          yl[i] <- EnvStats::rnormTrunc(1, mean = X[i,]%*%bg,</pre>
29
       sd = 1, min = exp(tau[g,1]), max = exp(tau[g,2]) + exp(tau[g,2])
       [g,1]))
         }else{
30
           yl[i] <- EnvStats::rnormTrunc(1, mean = X[i,]%*%bg,</pre>
31
       sd = 1, min = exp(tau[g,2]) + exp(tau[g,1]))
32
        }
33
34
       #Gibbs sampling for beta
       if(sum(is.nan(y1))>0 | sum(is.na(y1))>0 | sum(y1)==Inf){
35
         betasamples[g,] <- betasamples[g-1,]</pre>
36
       }else{
37
38
         b1 \leftarrow B1\%\%(t(X)\%\%y1 + solve(B0)\%\%b0)
39
         betasamples[g,] <- mvrnorm(1, mu = b1, Sigma = B1)
40
       setWinProgressBar(pb, g, title=paste( round(g/G*100, 0),
       "% done"))
42
    close(pb)
43
    return(cbind(betasamples, tau, ar))
44
45 }
```

R. code. Simulation of the ordered probit model

```
#Hyperparameters
2 d0 <- rep(0,2)
3 D0 <- diag(2)*10000
4 b0 <- rep(0, ncol(X))
5 BO <- diag(ncol(X))*10000
6 #Estimation
7 param0 <- rep(0, ncol(X) + dplyr::n_distinct(y)-1)</pre>
8 G <- 1000
9 tun <- 1
10 VarProp <- tun*solve(solve(CovarML[4:5, 4:5]) + solve(D0))
param_sample <- mhop(param0, G)</pre>
12 #Burn in
13 B <- round(0.2*G)
14 param_sample <- param_sample[(B+1):G,]</pre>
15 mcmc0 <- coda::mcmc(param_sample[, 1:(ncol(X) + dplyr::n_</pre>
      distinct(y) - 2)])
16 summary (mcmc0)
17 Iterations = 1:800
18 Thinning interval = 1
19 Number of chains = 1
20 Sample size per chain = 800
21 1. Empirical mean and standard deviation for each variable,
22 plus standard error of the mean:
            SD Naive SE Time-series SE
23 Mean
0.49120 \ 0.08465 \ 0.0029929
                                  0.007140
25 -0.24919 0.01222 0.0004319
                                    0.001269
26 0.49440 0.03942 0.0013937
                                   0.002739
27 0.06716 0.06419 0.0022695
                                   0.008479
28 0.41926 0.07414 0.0026212
                                   0.009479
29 2. Quantiles for each variable:
30 2.5%
                     50%
            25%
                              75%
                                    97.5%
31 0.31947 0.43558 0.49710
                              0.5479 0.6496
32 -0.27180 -0.25740 -0.24948 -0.2408 -0.2238
33 0.42229 0.46706 0.49253 0.5189 0.5762
34 -0.06338 0.02328 0.06819 0.1104 0.1932
35 0.25857 0.37195 0.41742 0.4672 0.5558
summary(coda::mcmc(cbind(exp(param_sample[, 4]),exp(param_
      sample[, 4])+exp(param_sample[, 5]))))
37 Iterations = 1:800
38 Thinning interval = 1
39 Number of chains = 1
40 Sample size per chain = 800
41 1. Empirical mean and standard deviation for each variable,
42 plus standard error of the mean:
43 Mean
            SD Naive SE Time-series SE
44 [1,] 1.072 0.06854 0.002423
45 [2,] 2.597 0.13593 0.004806
                                     0.019700
46 2. Quantiles for each variable:
47 2.5%
        25%
               50%
                     75% 97.5%
48 var1 0.9386 1.024 1.071 1.117 1.213
49 var2 2.3224 2.500 2.603 2.686 2.877
```

All posterior mean estimates are close to the population parameters, and the 95% credible intervals encompass the population parameters. We use the definition of γ in the last line of the code.

8. Simulation of the negative binomial model continues

Perform inference in the simulation of the negative binomial model using the bayesm package in \mathbf{R} software.

Answer

$R.\ code.\ Simulation\ of\ the\ negative\ binomial\ model$

```
rm(list = ls())
2 set.seed(010101)
3 N <- 2000 # Sample size
        runif(N); x2 <- rnorm(N)</pre>
  X <- cbind(1, x1, x2)</pre>
  k \leftarrow dim(X)[2]
  B \leftarrow rep(1, k)
 8 alpha <- 1.2
9 gamma <- exp(alpha)
10 lambda \leftarrow \exp(X\% *\%B)
11 y <- rnbinom(N, mu = lambda, size = gamma)
12 table(y)
13 # MCMC parameters
14 mcmc <- 10000
15 burnin <- 1000
16 thin <- 5
17 iter <- mcmc + burnin
18 keep <- seq(burnin, iter, thin)
19 sbeta <- 2.93/sqrt(k); salpha <- 2.93</pre>
20 # Hyperparameters: Priors
21 B0 \leftarrow 1000*diag(k); b0 \leftarrow rep(0, k)
22 alpha0 <- 0.5; delta0 <- 0.1
DataNB <- list(y = y, X = X)

def mcmcNB <- list(R = mcmc, keep = thin, s_beta = sbeta, s_
       alpha = salpha)
25 PriorNB <- list(betabar = b0, A = solve(B0), a = alpha0, b =</pre>
        delta0)
26 ResultBayesm <- bayesm::rnegbinRw(Data = DataNB, Mcmc =
       mcmcNB, Prior = PriorNB)
27 summary (ResultBayesm $alphadraw)
28 summary(ResultBayesm$betadraw)
```

9. The market value of soccer players in Europe continues

Perform the application of the value of soccer players with left censuring

at one million Euros in our GUI using the Algorithm A7, and the hyper-parameters of the example.

Answer

These are the results of running the application in our GUI. These are very similar compared with the results in the book.

R. code. The value of soccer players with left censoring in our GUI

```
1 Summary
2 Iterations = 10001:60000
3 Thinning interval = 1
4 Number of chains = 1
_5 Sample size per chain = 50000
6 1. Empirical mean and standard deviation for each variable,
7 plus standard error of the mean:
                          SD Naive SE Time-series SE
               Mean
               1.014765 2.626395 1.175e-02
9 (Intercept)
                                                  1.659e-02
10 Perf
                0.033935 0.004529 2.025e-05
                                                   2.245e-05
11 Age
                1.027285 0.212413 9.499e-04
                                                   1.326e-03
12 Age2
               -0.021914 0.003989 1.784e-05
                                                   2.528e-05
13 NatTeam
                0.847412 0.124884 5.585e-04
                                                   6.423e-04
                0.010092 0.001644 7.351e-06
                                                   7.712e-06
14 Goals
                0.175324 0.069653 3.115e-04
15 Exp
                                                   3.727e-04
16 Exp2
               -0.005696 0.002950 1.319e-05
                                                   1.527e-05
                0.983337 0.096194 4.302e-04
                                                   6.724e-04
17 sigma2
18 2. Quantiles for each variable:
               2.5%
                          25%
                                     50%
                                                75%
                                                         97.5%
  (Intercept) -4.212563 -0.732856
                                     1.038281
                                                2.796603
                                                          6.051e
      +00
21 Perf
                0.025121
                          0.030873
                                     0.033896
                                                0.036988
                                                          4.286e
       -02
22 Age
                0.618743
                          0.883011
                                     1.026760
                                               1.168860
                                                          1.450e
      +00
               -0.029854 -0.024580 -0.021886 -0.019203 -1.424e
23 Age2
       -02
                0.605030
                                               0.930593
24 NatTeam
                          0.763154
                                     0.846671
                                                          1.095e
      +00
25 Goals
                0.006893
                          0.008987
                                     0.010097
                                                0.011201
                                                          1.330e
      -02
26 Exp
                0.038522
                          0.128032
                                     0.175261
                                                0.222110
      -01
               -0.011484 -0.007671 -0.005685 -0.003706
                                                          5.502e
27 Exp2
      -05
                0.813118 0.915664
                                     0.977298
                                               1.043661
                                                          1.189e
28 sigma2
```

10. The market value of soccer players in Europe continues

Program from scratch the Gibbs sampling algorithm in the example of the market value of soccer players at the 0.75 quantile.

$R.\ code.\ The\ value\ of\ soccer\ players,\ quantile\ regression$

```
1 rm(list = ls()); set.seed(010101)
  2 Data <- read.csv("https://raw.githubusercontent.com/</pre>
                besmarter/BSTApp/refs/heads/master/DataApp/1
                ValueFootballPlayers.csv", sep = ",", header = TRUE,
               quote = "")
  3 attach (Data)
  4 y <- log(Value); X <- cbind(1, Perf, Age, Age2, NatTeam,
  Goals, Exp, Exp2)
5 RegLS <- lm(y ~ X -1)
 6 k <- dim(X)[2]; N <- dim(X)[1]
 7 # Hyperparameters
 8 b0 <- rep(0, k); c0 <- 1000</pre>
 9 BO <- c0*diag(k); BOi <- solve(BO)
10 # MCMC parameters
11 mcmc <- 5000; burnin <- 1000
12 tot <- mcmc + burnin; thin <- 1
13 # Quantile
tau <- 0.5; theta <- (1-2*tau)/(tau*(1-tau))
15 psi2 <- 2/(tau*(1-tau)); an2 <- 2+theta^2/psi2</pre>
16 # Gibbs sampler
17 PostBeta <- function(e){</pre>
          Bn <- solve(B0i + psi2^(-1)*t(X)%*%diag(1/e)%*%X)</pre>
          bn <- Bn\%*\%(B0i\%*\%b0 + psi2^(-1)*t(X)\%*\%diag(1/e)\%*\%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%diag(1/e)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%*%(y-1)*t(X)%(y-1)*t(X)%*%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*t(X)%(y-1)*
          Beta <- MASS::mvrnorm(1, bn, Bn)
          return(Beta)
21
22 }
23 PostE <- function(Beta, i){</pre>
          dn2 <-(y[i]-X[i,]%*%Beta)^2/psi2</pre>
         ei <- GIGrvg::rgig(1, chi = dn2, psi = an2, lambda = 1/2)
25
26
       return(ei)
27 }
28 PostBetas <- matrix(0, mcmc+burnin, k)</pre>
29 Beta <- RegLS$coefficients</pre>
30 pb <- winProgressBar(title = "progress bar", min = 0, max =
               tot, width = 300)
31 for(s in 1:tot){
          e <- sapply(1:N, function(i){PostE(Beta = Beta, i)})</pre>
         Beta <- PostBeta(e = e)
          PostBetas[s,] <- Beta
           setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
                "% done"))
37 close(pb)
38 keep <- seq((burnin+1), tot, thin)</pre>
39 PosteriorBetas <- PostBetas[keep,]</pre>
40 colnames (PosteriorBetas) <- c("Intercept", "Perf", "Age", "
               Age2", "NatTeam", "Goals", "Exp", "Exp2")
 41 summary(coda::mcmc(PosteriorBetas))
```

11. Use the bayesboot package to perform inference in the simulation exercise of Section 7.10, and compared the results with the ones that we get using our GUI setting S = 10000.

Answer

$R.\ code.\ The\ value\ of\ soccer\ players,\ quantile\ regression$

```
###################### Bayesian bootstrap: Simulation
2 rm(list = ls())
3 set.seed(010101)
_4 N <- 1000 # Sample size
5 x1 <- runif(N); x2 <- rnorm(N)</pre>
6 X <- cbind(x1, x2)
7 k <- dim(X)[2]
8 B <- rep(1, k+1)
9 sig2 <- 1
10 u <- rnorm(N, 0, sig2)
y \leftarrow cbind(1, X)%*%B + u
data <- as.data.frame(cbind(y, X))</pre>
13 names(data) <- c("y", "x1", "x2")
14 Reg <- function(d){</pre>
Reg <-lm(y ~x1 + x2, data = d)
    Bhat <- Reg$coef
    return(Bhat)
17
18 }
19 Reg(data)
20 S <- 10000
21 BB <- bayesboot::bayesboot(data = data, statistic = Reg, R =
22 plot(BB)
```

Multivariate models

Solutions of Exercises

1. Show that $\mathbb{E}[u_1 \text{PAER}] = \frac{\alpha_1}{1-\beta_1\alpha_1}\sigma_1^2$ assuming that $\mathbb{E}[u_1u_2] = 0$ where $Var(u_1) = \sigma_1^2$ in the effect of institutions on per capita GDP.

Answer

The point of departure is the following *simultaneous structural* economic model:

$$\log(\text{pcGDP95}_i) = \beta_1 + \beta_2 \text{PAER}_i + \beta_3 \text{Africa} + \beta_4 \text{Asia} + \beta_5 \text{Other} + u_{1i},$$
(7.1)

$$PAER_i = \alpha_1 + \alpha_2 \log(pcGDP95_i) + \alpha_3 \log(Mort_i) + u_{2i}, \tag{7.2}$$

where pcGDP95, PAER and Mort are the per capita gross domestic product (GDP) in 1995, the average index of protection against expropriation between 1985 and 1995, and the settler mortality rate during the time of colonization. Africa, Asia and Other are dummies for continents, with America as the baseline group.

Replacing Equation 7.2 into Equation 7.1, and solving for $\log(pcGDP95)$,

$$\log(\text{pcGDP95}_i) = \pi_1 + \pi_2 \log(\text{Mort}_i) + \pi_3 \text{Africa} + \pi_4 \text{Asia} + \pi_5 \text{Other} + e_{1i},$$
(7.3)

where
$$\pi_1 = \frac{\beta_1 + \beta_2 \alpha_1}{1 - \beta_2 \alpha_2}$$
, $\pi_2 = \frac{\beta_2 \alpha_3}{1 - \beta_2 \alpha_2}$, $\pi_3 = \frac{\beta_3}{1 - \beta_2 \alpha_2}$, $\pi_4 = \frac{\beta_4}{1 - \beta_2 \alpha_2}$, $\pi_5 = \frac{\beta_5}{1 - \beta_2 \alpha_2}$, and $e_1 = \frac{\beta_2 u_2 + u_1}{1 - \beta_2 \alpha_2}$.

Then, replacing Equation 7.3 into Equation 7.2, and solving for PAER,

$$PAER_i = \gamma_1 + \gamma_2 \log(Mort_i) + \gamma_3 Africa + \gamma_4 Asia + \gamma_5 Other + e_{2i}, \quad (7.4)$$

where
$$\gamma_1 = \frac{\alpha_1 + \alpha_2 \beta_1}{1 - \beta_2 \alpha_2}$$
, $\gamma_2 = \frac{\alpha_3}{1 - \beta_2 \alpha_2}$, $\gamma_3 = \frac{\alpha_2 \beta_3}{1 - \beta_2 \alpha_2}$, $\gamma_4 = \frac{\alpha_2 \beta_4}{1 - \beta_2 \alpha_2}$, $\gamma_5 = \frac{\alpha_2 \beta_5}{1 - \beta_2 \alpha_2}$, and $e_2 = \frac{\alpha_2 u_1 + u_2}{1 - \beta_2 \alpha_2}$.

Then,
$$\mathbb{E}[u_1\text{PAER}] = \mathbb{E}\left[u_1(\gamma_1 + \gamma_2\log(\text{Mort}_i) + \gamma_3\text{Africa} + \gamma_4\text{Asia} + \gamma_5\text{Other} + e_{2i})\right] = \mathbb{E}\left[u_1\left(\frac{\alpha_2u_1+u_2}{1-\beta_2\alpha_2}\right)\right] = \frac{\alpha_2}{1-\beta_2\alpha_2}\sigma_1^2 \text{ given the assumptions.}$$

2. Show that $\beta_2 = \pi_2/\gamma_2$ in the effect of institutions on per capita GDP.

Answer

Given that $\pi_2 = \frac{\beta_2 \alpha_3}{1 - \beta_2 \alpha_2}$ and $\gamma_2 = \frac{\alpha_3}{1 - \beta_2 \alpha_2}$ from the previous exercise, consequently, $\beta_2 = \pi_2/\gamma_2$.

3. The effect of institutions on per capita gross domestic product continues

Use the *rmultireg* command from the *bayesm* package to perform inference in the example of the effect of institutions on per capita GDP.

Answer

R code. The effect of institutions on per capita GDP

```
1 rm(list = ls())
  set.seed (010101)
3 DataInst <- read.csv("https://raw.githubusercontent.com/</pre>
      besmarter/BSTApp/refs/heads/master/DataApp/4Institutions
      .csv", sep = ",", header = TRUE, quote = "")
 4 attach(DataInst)
 5 Y <- cbind(logpcGDP95, PAER)
6 X <- cbind(1, logMort, Africa, Asia, Other)
7 M <- dim(Y)[2]
8 K <- dim(X)[2]
9 # Hyperparameters
10 BO <- matrix(0, K, M)
11 c0 <- 100
12 V0 <- c0*diag(K)
13 Psi0 <- 5*diag(M)
15 S <- 10000 #Number of posterior draws
16 betadraw = matrix(double(S*K*M), ncol=K*M)
17 Sigmadraw = matrix(double(S*M*M), ncol=M*M)
18 pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      S, width = 300)
19 for (s in 1:S) {
    Results <- bayesm::rmultireg(Y, X, Bbar = B0, A = solve(V0
      ), nu = a0, V = Psi0)
    betadraw[s,] <- Results$B
    Sigmadraw[s,] <- Results$Sigma
    setWinProgressBar(pb, s, title=paste( round(s/S*100, 0), "
25 close(pb)
26 summary(coda::mcmc(betadraw))
27 summary(coda::mcmc(Sigmadraw))
```

4. Demand and supply simulation

Given the structural demand-supply model:

$$q_i^d = \beta_1 + \beta_2 p_i + \beta_3 y_i + \beta_4 p c_i + \beta_5 p s_i + u_{i1}$$

$$q_i^s = \alpha_1 + \alpha_2 p_i + \alpha_3 e r_i + u_{i2},$$

where q^d is demand, q^s is supply, p, y, pc, ps and er are price, income, complementary price, substitute price, and exchange rate. Complementary and substitute prices are prices of a complementary and substitute goods of q. Assume that $\boldsymbol{\beta} = \begin{bmatrix} 5 & -0.5 & 0.8 & -0.4 & 0.7 \end{bmatrix}^{\top}$, $\boldsymbol{\alpha} = \begin{bmatrix} -2 & 0.5 & -0.4 \end{bmatrix}^{\top}$, $u_1 \sim N(0, 0.5^2)$ and $u_2 \sim N(0, 0.5^2)$. In addition, assume that $y \sim N(10, 1)$, $pc \sim N(5, 1)$, $ps \sim N(5, 1)$ and $tc \sim N(15, 1)$.

- Find the *reduce-form* model using that in equilibrium demand and supply are equal, that is, $q^d = q^s$. This condition defines the observable quantity (q).
- Simulate p and q from the reduce-form equations.
- Preform inference of the *reduce-form* model using the *rmultireg* command from the *bayesm* package.
- Use the posterior draws of the *reduce-form* parameters to perform inference of the *structural* parameters. Any issue? Hint: Are all *structural* parameters exactly identified?

Answer

We should equal demand and supply, and solve for price,

$$p = \pi_1 + \pi_2 er + \pi_3 y + \pi_4 pc + \pi_5 ps + v_1$$

where $\pi_1 = \frac{\alpha_1 - \beta_1}{\beta_2 - \alpha_2}$, $\pi_2 = \frac{\alpha_3}{\beta_2 - \alpha_2}$, $\pi_3 = \frac{-\beta_3}{\beta_2 - \alpha_2}$, $\pi_4 = \frac{-\beta_4}{\beta_2 - \alpha_2}$, $\pi_5 = \frac{-\beta_5}{\beta_2 - \alpha_2}$, and $v_1 = \frac{u_2 - u_1}{\beta_2 - \alpha_2}$ given $\beta_2 \neq \alpha_2$, that is, the equations should be independent. This condition is given by economic theory due to $\beta_2 < 0$ and $\alpha_2 > 0$, the effect of price on demand and supply should be negative and positive, respectively.

The equation of price into the demand equation gives

$$q = \tau_1 + \tau_2 er + \tau_3 y + \tau_4 pc + \tau_5 ps + v_2,$$

where $\tau_1 = \beta_1 + \beta_2 \pi_1$, $\tau_2 = \beta_2 \pi_2$, $\tau_3 = \beta_2 \pi_3 + \beta_3$, $\tau_4 = \beta_2 \pi_4 + \beta_4$, $\tau_5 = \beta_2 \pi_5 + \beta_5$, and $v_2 = \beta_2 v_1 + u_1$. We can use the equations para π_k and τ_k , $k = \{1, 2, 3, 4, 5\}$ to simulate the *reduced-form* equations.

Observe that estimating the reduced-form equations, we can get the structural parameters for the demand equation, $\beta_2 = \tau_2/\pi_2$ ($\pi_2 \neq 0$), $\beta_3 = \tau_3 - \beta_2\pi_3$, $\beta_4 = \tau_4 - \beta_2\pi_4$ and $\beta_5 = \tau_5 - \beta_2\pi_5$, whereas the structural parameters of the supply equation cannot be recovered just in one way,

 $\alpha_2 = \beta_2 + \beta_3/\pi_3 = \beta_2 + \beta_4/\pi_4 = \beta_2 + \beta_5/\pi_5$. This in turn implies different values for $\alpha_3 = \pi_2(\beta_2 - \alpha_2)$. This is because the demand equation is *exactly identified*, whereas the supply equation is *over identified*.

In this exercise, K = 5, M = 2, $K_1 = 4$, $K_2 = 2$, $M_1 = 2$ and $M_2 = 2$. This means that $K - K_1 = 1 = M - 1$ and $K - K_2 = 3 > M - 1 = 1$, that is, the order condition says that both equations (demand and supply) satisfy the necessary condition of identification, the demand would be exactly identified, and the supply equation would be over identified.

Regarding the rank condition (necessary and sufficient), let's see the identification matrix:

TABLE 7.1 Identification matrix.

Ī	q	p	constant	er	У	pc	ps
	1	$-\beta_2$	$-\beta_1$	0	$-\beta_3$	$-\beta_4$	$-\beta_5$
	1	- α_2	$-\alpha_1$	$-\alpha_3$	0	0	0

The demand equation excludes the exchange rate (exclusion restriction), and given $\alpha_3 \neq 0$, that is, the exchange rate is relevant in the supply equation, then the rank condition is satisfied in the demand equation. The supply equation excludes the income, the complementary price and substitute price (exclusion restrictions), then as far as $\beta_k \neq 0$ for any $k = \{3, 4, 5\}$, the rank condition is satisfied in the supply equation.

The following code shows how to do the simulation, and perform inference in this exercise. We can see that all 95% credible intervals encompass the population parameters, and the posterior means are very close to them.

R code. Demand and supply simulation

```
1 rm(list = ls()); set.seed(12345)
2 B0 <- 5; B1 <- -0.5; B2 <- 0.8; B3 <- -0.4; B4 <- 0.7; SD <-
3 AO <- -2; A1 <- 0.5; A2 <- -0.4; SS <- 0.5
_{4} P0 <- (A0-B0)/(B1-A1); P2 <- -B2/(B1-A1); P3 <- -B3/(B1-A1);
       P1 <- A2/(B1-A1); P4 <- -B4/(B1-A1)
5 TO <- B0+B1*P0; T2 <- B2+B1*P2; T3 <- B3+B1*P3; T1 <- B1*P1;
       T4 <- B4+B1*P4;
6 n <- 5000
7 ED <- rnorm(n, 0, SD); ES <- rnorm(n, 0, SS)
8 VP \leftarrow (ES-ED)/(B1-A1); UQ \leftarrow B1*VP+ED
9 y <- rnorm(n, 10, 1); pc <- rnorm(n, 5, 1); er <- rnorm(n,
      15, 1); ps <- rnorm(n, 5, 1);
10 p <- P0+P1*er+P2*y+P3*pc+P4*ps+VP
11 q <- T0+T1*er+T2*y+T3*pc+T4*ps+UQ
12 #Inference
13 Y <- cbind(p, q); X <- cbind(1, er, y, pc, ps)
14 M <- dim(Y)[2]; K <- dim(X)[2]
15 # Hyperparameters
16 BO <- matrix(0, K, M); cO <- 100; VO <- cO*diag(K)
17 Psi0 <- 5*diag(M); a0 <- 5; S <- 10000 #Posterior draws
18 betadraw = matrix(double(S*K*M), ncol=K*M)
19 Sigmadraw = matrix(double(S*M*M), ncol=M*M)
20 pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      S, width = 300)
21 for (s in 1:S) {
    Results <- bayesm::rmultireg(Y, X, Bbar = B0, A = solve(V0
      ), nu = a0, V = Psi0)
    betadraw[s,] <- Results$B
    Sigmadraw[s,] <- Results$Sigma
    \tt setWinProgressBar(pb, s, title=paste(round(s/S*100, 0), "
25
      % done"))
26 }
27 close(pb)
28 summary(coda::mcmc(betadraw))
29 summary(coda::mcmc(Sigmadraw))
30 beta2 <- betadraw[,7]/betadraw[,2] # Effect of price on</pre>
      demand
31 summary(coda::mcmc(beta2))
32 beta3 <- betadraw[,8] - beta2*betadraw[,3] # Effect of
      income on demand
33 summary(coda::mcmc(beta3))
34 beta4 <- betadraw[,9] - beta2*betadraw[,4] # Effect of
      complementary price on demand
35 summary(coda::mcmc(beta4))
36 beta5 <- betadraw[,10] - beta2*betadraw[,5] # Effect of
      substitute price on demand
37 summary(coda::mcmc(beta5))
```

5. Utility demand continues

- Run the **Utility demand** application using our GUI and the information in the dataset *Utilities.csv*. Hint: This file should be modified to agree the structure that requires our GUI (see the dataset *5Institutions.csv* in the folder *DataApp* of our GitHub repository https://github.com/besmarter/BSTApp- for a template).
- Program from scratch the Gibbs sampler algorithm in this application.

$R\ code.\ Utility\ demand\ in\ Colombia,\ Gibss\ sampler$

```
1 rm(list = ls()); set.seed(010101); library(dplyr)
2 DataUt <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/Utilities.csv
       ", sep = ",", header = TRUE, quote = "")
 3 DataUtEst <- DataUt %>% filter(Electricity != 0 & Water !=0
      & Gas != 0)
4 attach (DataUtEst)
5 y1 <- log(Electricity); y2 <- log(Water); y3 <- log(Gas)</pre>
6 X1 <- cbind(1, LnPriceElect, LnPriceWater, LnPriceGas,
      IndSocio1, IndSocio2, Altitude, Nrooms, HouseholdMem,
      Lnincome)
7 X2 <- cbind(1, LnPriceElect, LnPriceWater, LnPriceGas,</pre>
      IndSocio1, IndSocio2, Nrooms, HouseholdMem)
 8 X3 <- cbind(1, LnPriceElect, LnPriceWater, LnPriceGas,</p>
      IndSocio1, IndSocio2, Altitude, Nrooms, HouseholdMem)
9 y < -c(y1, y2, y3)
10 X <- as.matrix(Matrix::bdiag(X1, X2, X3))
11 M <- 3; K1 <- dim(X1)[2]; K2 <- dim(X2)[2]; K3 <- dim(X3)[2]
12 K <- K1 + K2 + K3; N <- length(y1)
13 # Hyperparameters
14 b0 <- rep(0, K); c0 <- 100; B0 <- c0*diag(K)
15 B0i <- solve(B0); Psi0 <- 5*diag(M); Psi0i <- solve(Psi0)
16 a0 <- M; IN <- diag(N); an <- a0 + N
17 #Posterior draws
18 S <- 6000; burnin <- 1000; thin <- 1
19 tot <- S+burnin
_{20} # Gibbs functions
21 PostBeta <- function(Sigma){</pre>
    Aux <- solve(Sigma)%x%IN
    Bn <- solve(B0i + t(X)%*%Aux%*%X)
  bn <- Bn%*%(B0i%*%b0 + t(X)%*%Aux%*%y)
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
25
26
    return (Beta)
27 }
28 PostSigma <- function(Beta){</pre>
    B1 <- Beta[1:K1]; B2 <- Beta[(K1+1):(K1+K2)]; B3 <- Beta[(
      K1+K2+1):(K1+K2+K3)
    U1 <- y1 - X1%*%B1; U2 <- y2 - X2%*%B2; U3 <- y3 - X3%*%B3
    U <- cbind(U1, U2, U3)
    Psin <- solve(Psi0i + t(U)%*%U)
    Sigmai <- rWishart::rWishart(1, df = an, Sigma = Psin)
    Sigma <- solve(Sigmai[,,1])
34
    return (Sigma)
35
36 }
37 PostBetas <- matrix(0, tot, K)</pre>
38 PostSigmas \leftarrow matrix(0, tot, M*(M+1)/2); Beta \leftarrow rep(1, K)
39 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
40 for(s in 1:tot){
    Sigma <- PostSigma(Beta = Beta); PostSigmas[s,] <-</pre>
      matrixcalc::vech(Sigma)
    Beta <- PostBeta(Sigma = Sigma); PostBetas[s,] <- Beta</pre>
42
    setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
44 }
45 close(pb); keep <- seq((burnin+1), tot, thin)
46 Bs <- PostBetas[keep,]; summary(coda::mcmc(Bs))
47 Sigmas <- PostSigmas[keep,]; summary(coda::mcmc(Sigmas))
```

122 Multivariate models

R code. Utility demand in Colombia, results

```
keep <- seq((burnin+1), tot, thin)</pre>
2 Bs <- PostBetas[keep,]; summary(coda::mcmc(Bs))</pre>
  Sigmas <- PostSigmas[keep,]; summary(coda::mcmc(Sigmas))</pre>
  Quantiles for each variable:
               2.5%
                                    50%
                 0.43304
                                    1.337751
                          1.04508
                                              1.64728
                                                        2.25228
6 Const
7 LnPriceElect -2.40343 -2.05533 -1.882159 -1.70463
                                                        -1.35979
  LnPriceWater -0.44027 -0.38524 -0.356049 -0.32676
                                                        -0.27021
9 InPriceGas
                -0.21665 -0.13807 -0.098877 -0.05712
                                                        0.01673
                -0.87408 -0.78454 -0.736561 -0.68898
10 IndSocio1
                -0.24504 -0.18344 -0.150827 -0.11845
11 IndSocio2
                                                       -0.06029
12 Altitude
                -0.27153 -0.23866 -0.221539
                                              -0.20468
                                                        -0.17325
13 Nrooms
                 0.04598
                          0.06191
                                    0.069971
                                               0.07837
                                                         0.09379
                 0.06610
                           0.07999
                                    0.087320
                                               0.09406
14 HouseholdMem
                                                        0.10708
                 0.03897
                           0.05516
                                    0.063130
                                               0.07152
15 Lnincome
                 0.88247
                          1.73546
                                    2,162290
                                               2,60793
                                                        3.48450
16 Const
17 LnPriceElect -0.83128 -0.31258
                                   -0.051838
                                               0.20446
18 LnPriceWater -0.49760 -0.40946 -0.363138 -0.31943
                                                        -0.23498
                 0.05880 0.16932
                                    0.228734
                                              0.28677
19 LnPriceGas
                                                        0.39226
                                                       -0.21024
20 IndSocio1
                -0.63928 -0.50417 -0.427978 -0.35529
                -0.50363 -0.40976 -0.359576 -0.30929
                                                        -0.21097
21 IndSocio2
                           0.08126
                                    0.093291
22 Nrooms
                 0.05733
                                               0.10550
23 HouseholdMem
                0.09984
                           0.12098
                                    0.132126
                                               0.14265
                                                        0.16290
24 Const
                -2.26403 -1.57842 -1.201124 -0.84494
                                                       -0.15985
25 LnPriceElect -2.41128 -2.00330 -1.786150 -1.57292
                                                       -1.17185
26 LnPriceWater -0.10791 -0.03978 -0.003399
                                              0.03329
                                                        0.10082
27 LnPriceGas
                -0.76450 -0.67575 -0.627062
                                              -0.57949
                -0.91346 -0.80094 -0.743421 -0.68334
                                                       -0.57228
28 IndSocio1
29 IndSocio2
                -0.31613 -0.24086 -0.202828
                                             -0.16367
                                                       -0.08824
30 Altitude
                 0.24986
                           0.28987
                                    0.310784
                                              0.33183
                                                         0.37126
                 0.06071
                           0.07899
                                    0.089606
31 Nrooms
                                               0.09949
                                                         0.11842
32 HouseholdMem
                 0.14485
                           0.16148
                                    0.169509
                                               0.17797
                                                         0.19467
33 Sigmas <- PostSigmas[keep,]</pre>
34 summary (coda::mcmc(Sigmas))
                                     75%
           2.5%
                    25%
                             50%
                                            97.5%
36 var1 0.19664 0.20567 0.21072 0.21593 0.22636
37 var2 0.08201 0.09289 0.09865 0.10447
38 var3 0.05222 0.06015 0.06452 0.06903 0.07799
39 var4 0.47390 0.49575 0.50789 0.52046 0.54446
40 var5 0.07355 0.08672 0.09381 0.10061 0.11427
41 var6 0.29259 0.30618 0.31384 0.32140 0.33700
```

6. Simulation exercise of instrumental variables continues

(a) Use the setting of the simulation exercise of instrumental variables to analyze what happens when the instrument is weak, for instance,

- setting $\gamma_2=0.2$, and compare the performance of the posterior means of the ordinary and instrumental models.
- (b) Perform a simulation that helps to analyze how the degree of exogeneity of the instrument affects the performance of the posterior mean of the instrumental variable model.

R code. Simulation exercise, sampling properties of instrumental variable

```
1 rm(list = ls())
2 set.seed(010101)
3 N <- 100
4 k <- 2
5 B <- rep(1, k)
_{6} G <- _{c}(1, 0.2)
7 s12 <- 0.8
8 SIGMA <- matrix(c(1, s12, s12, 1), 2, 2)</pre>
9 z <- rnorm(N); # w <- rnorm(N)</pre>
10 Z <- cbind(1, z); w <- matrix(1,N,1)
11 S <- 100
12 U <- replicate(S, MASS::mvrnorm(n = N, mu = rep(0, 2), SIGMA
      ))
13 \times G[1] + G[2]*z + U[,2,]
14 y <- B[1] + B[2]*x + U[,1,]
15 VarX <- G[2]^2+1 # Population variance of x
16 EU1U2 <- s12 # Covariance U1
17 BiasPopB2 <- EU1U2/VarX
18 # Hyperparameters
19 d0 <- 0.001/2
20 a0 <- 0.001/2
^{21} b0 <- rep(0, k)
22 cO <- 1000
23 B0 <- c0*diag(k)
24 B0i <- solve(B0)
25 g0 <- rep(0, 2)
26 GO <- 1000*diag(2)
27 GOi <- solve(GO)
28 nu <- 3
29 Psi0 <- nu*diag(2)
30 # MCMC parameters
31 mcmc <- 5000
32 burnin <- 1000
33 tot <- mcmc + burnin
34 thin <- 1
35 # Gibbs sampling
36 Gibbs <- function(x, y){</pre>
    Data <- list(y = y, x = x, w = w, z = Z)

Mcmc <- list(R = mcmc, keep = thin, nprint = 0)
     Prior <- list(md = g0, Ad = G0i, mbg = b0, Abg = B0i, nu =
39
        nu, V = Psi0)
     RestIV <- bayesm::rivGibbs(Data = Data, Mcmc = Mcmc, Prior</pre>
40
        = Prior)
     PostBIV <- mean (RestIV[["betadraw"]])</pre>
41
     ResLM <- MCMCpack::MCMCregress(y \tilde{x} x + w - 1, b0 = b0, B0
      = B0i, c0 = a0, d0 = d0)
    PostB <- mean(ResLM[,1])</pre>
43
    Res <- c(PostB, PostBIV)</pre>
44
    return(Res)
45
46 }
47 PosteriorMeans <- sapply(1:S, function(s) {Gibbs(x = x[,s],
      y = y[,s])
48 rowMeans (PosteriorMeans)
49 1.781513 1.470648
```


FIGURE 7.1

Histogram of posterior means to assess the effects of weakness of the instrument: Ordinary and instrumental models.

Figure 7.1 shows that having a weak instrument generates poor performance of the posterior means of the variable instrumental model. Observe that the mean of the posterior means is less precise and biased. This is due to an identification problem in the likelihood function of y and x_s given z (see [30, Chap. 7]).

$R\ code.\ Simulation\ exercise,\ sampling\ properties$ of instrumental variable

```
1 # Endogenous instruments
2 rm(list = ls())
3 set.seed(010101)
4 N <- 100
5 k <- 2
_{6} B <- rep(1, k)
7 G < -c(1, 1)
_{8} delta <- 0.2 # Effect of instrument on y
9 s12 <- 0.8
10 SIGMA <- matrix(c(1, s12, s12, 1), 2, 2)
11 z <- rnorm(N); # w <- rnorm(N)
12 Z <- cbind(1, z); w <- matrix(1,N,1)
13 S <- 100
14 U <- replicate(S, MASS::mvrnorm(n = N, mu = rep(0, 2), SIGMA
15 \times G[1] + G[2]*z + U[,2,]
16 y <- B[1] + B[2]*x + delta*z + U[,1,]
17 VarX <- G[2]^2+1 # Population variance of x
_{18} EU1U2 <- s12 # Covariance U1
19 BiasPopB2 <- EU1U2/VarX
20 # Hyperparameters
21 d0 <- 0.001/2
22 a0 <- 0.001/2
^{23} b0 <- rep(0, k)
24 c0 <- 1000
25 BO <- c0*diag(k)
26 B0i <- solve(B0)
27 g0 <- rep(0, 2)
28 G0 <- 1000*diag(2)
29 GOi <- solve(GO)
30 nu <- 3
31 Psi0 <- nu*diag(2)
_{32} # MCMC parameters
33 mcmc <- 5000
34 burnin <- 1000
35 tot <- mcmc + burnin
36 thin <- 1
37 # Gibbs sampling
38 Gibbs <- function(x, y){
    Data \leftarrow list(y = y, x = x, w = w, z = Z)
39
    Mcmc <- list(R = mcmc, keep = thin, nprint = 0)</pre>
    Prior \leftarrow list(md = g0, Ad = G0i, mbg = b0, Abg = B0i, nu =
41
        nu, V = Psi0)
     RestIV <- bayesm::rivGibbs(Data = Data, Mcmc = Mcmc, Prior</pre>
        = Prior)
    PostBIV <- mean(RestIV[["betadraw"]])</pre>
    ResLM <- MCMCpack::MCMCregress(y ~ x + w - 1, b0 = b0, B0</pre>
44
      = B0i, c0 = a0, d0 = d0)
    PostB <- mean(ResLM[,1])</pre>
45
    Res <- c(PostB, PostBIV)
46
    return(Res)
47
48 }
49 PosteriorMeans <- sapply(1:S, function(s) {Gibbs(x = x[,s],
      y = y[,s])
50 rowMeans(PosteriorMeans)
51 1.508009 1.217419
```


FIGURE 7.2

Histogram of posterior means to assess the effects of *endogeneity* of the instrument: Ordinary and instrumental models.

A simple way to assess the effects of endogeneity of the instrument in the instrumental variable model is to introduce the instrument into the structural equation, but assume that $\mathbb{E}[yz|x_s]=0$. In particular, we generate $y_i=\beta_1+\beta_2x_{si}+\beta_3z_i+\mu_i$, but estimate $y_i=\beta_1+\beta_2x_{si}+\mu_i$. Figure 7.2 shows that assuming that an instrument is exogenous, when actually it is not, generates bias in the posterior mean of the instrumental variable model. Observe that exogeneity of the instrument is equivalent to the dogmatic prior belief that the instrument does not affect the structural equation. Thus, [5] propose to assess the plausibility of the exclusion restrictions ($\beta_3=0$ and $\gamma_2\neq 0$) defining plausible exogeneity as having prior information that the effect of the instrument in the structural equation is near zero, but perhaps not exactly zero.

7. Simulation exercise of instrumental variables continues II

Program from scratch the Gibbs sampling algorithm of the instrumental model for the simulation exercise of the instrumental variables.

Answer

The following code shows how to implement the Gibbs sampling algorithm from scratch. We observe that all posterior means are close to the population values, and 95% credible intervals encompass them.

R code. Simulation exercise, Gibss sampling instrumental model

```
1 rm(list = ls()); set.seed(010101)
2 N <- 100; k <- 2; kz <- 2
^{3} B <- rep(1, k); G <- rep(1, kz)
4 s12 <- 0.8; SIGMA <- matrix(c(1, s12, s12, 1), 2, 2)
5 z <- rnorm(N); Z <- cbind(1, z); w <- matrix(1,N,1)</pre>
6 S <- 100; U <- MASS::mvrnorm(n = N, mu = rep(0, 2), SIGMA)
7 x <- G[1] + G[2]*z + U[,2]; y <- B[1] + B[2]*x + U[,1]
8 X <- cbind(w, x)</pre>
9 # Hyperparameters
10 b0 <- rep(0, k); c0 <- 1000; B0 <- c0*diag(k)
11 B0i <- solve(B0); g0 <- rep(0, kz)
12 GO <- 1000*diag(kz); GOi <- solve(GO)
13 nu <- 3; Psi0 <- nu*diag(2); Psi0i <- solve(Psi0)</pre>
14 # MCMC parameters
_{15} mcmc <- 5000; burnin <- 1000; tot <- mcmc + burnin
16 thin <- 1
17 # Auxiliary elements
18 XtX <- t(X)%*%X; ZtZ <- t(Z)%*%Z; nun <- nu + N
19 # Gibbs sampling
20 PostBeta <- function(Sigma, Gamma){</pre>
    w1 <- Sigma[1,1] - Sigma[1,2]^2/Sigma[2,2]
    Bn \leftarrow solve(w1^(-1)*XtX + B0i)
    yaux \leftarrow y - (Sigma[1,2]/Sigma[2,2])*(x - Z\%\%Gamma)
23
     bn \leftarrow Bn%*%(B0i%*%b0 + w1^(-1)*t(X)%*%yaux)
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
    return(Beta)
26
27 }
28 PostGamma <- function(Sigma, Beta){</pre>
    w2 <- Sigma[2,2] - Sigma[1,2]^2/Sigma[1,1]
    Gn \leftarrow solve(w2^{(-1)}*ZtZ + GOi)
    xaux <- x - (Sigma[1,2]/Sigma[1,1])*(y - X%*%Beta)
    gn <- Gn\%*\%(G0i\%*\%g0 + w2^{(-1)*t}(Z)\%*\%xaux)
     Gamma <- MASS::mvrnorm(1, gn, Gn)</pre>
33
34
     return (Gamma)
35 }
36 PostSigma <- function(Beta, Gamma){</pre>
    Uy <- y - X%*%Beta; Ux <- x - Z%*%Gamma
    U <- cbind(Uy, Ux)
    Psin <- solve(Psi0i + t(U)%*%U)
    Sigmai <- rWishart::rWishart(1, df = nun, Sigma = Psin)
    Sigma <- solve(Sigmai[,,1])</pre>
    return(Sigma)
42
43 }
```

$R\ code.\ Simulation\ exercise,\ Gibss\ sampling\ instrumental\ model$

```
PostBetas <- matrix(0, tot, k); PostGammas <- matrix(0, tot,</pre>
 2 PostSigmas \leftarrow matrix(0, tot, 2*(2+1)/2); Beta \leftarrow rep(0, k);
      Gamma <- rep(0, kz)</pre>
     <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      tot, width = 300)
 4 for (s in 1:tot) {
    Sigma <- PostSigma(Beta = Beta, Gamma = Gamma)
    Beta <- PostBeta(Sigma = Sigma, Gamma = Gamma)
    Gamma <- PostGamma(Sigma = Sigma, Beta = Beta)</pre>
    PostBetas[s,] <- Beta; PostGammas[s,] <- Gamma;</pre>
      PostSigmas[s,] <- matrixcalc::vech(Sigma)</pre>
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
10 }
11 close(pb)
12 keep <- seq((burnin+1), tot, thin)</pre>
13 Bs <- PostBetas[keep,]</pre>
14 Gs <- PostGammas[keep,]
15 Sigmas <- PostSigmas[keep,]</pre>
16 summary(coda::mcmc(Bs))
17 1. Empirical mean and standard deviation for each variable,
18 plus standard error of the mean:
19 Mean
            SD Naive SE Time-series SE
20 [1,] 1.1519 0.1683 0.00238
                                       0.006321
21 [2,] 0.9896 0.1146 0.00162
                                       0.005177
22 summary(coda::mcmc(Gs))
23 1. Empirical mean and standard deviation for each variable,
24 plus standard error of the mean:
            SD Naive SE Time-series SE
25 Mean
26 [1,] 1.133 0.1068 0.001511
                                      0.003096
27 [2,] 1.030 0.1066 0.001507
                                      0.004193
28 summary(coda::mcmc(Sigmas))
29 1. Empirical mean and standard deviation for each variable,
30 plus standard error of the mean:
31 Mean
            SD Naive SE Time-series SE
32 [1,] 1.3883 0.3149 0.004454
                                       0.012707
33 [2,] 0.9992 0.2133 0.003017
                                       0.007166
34 [3,] 1.1637 0.1685 0.002382
                                       0.002481
```

8. The effect of institutions on per capita gross domestic product continues II

Estimate the structural Equation 7.1 using the instrumental variable model where the instrument of PAER is log(Mort). Compare the effect of prop-

erty rights on per capita GDP of this model with the effect estimated in the example of the effect of institutions on per capita gross domestic product. Use the file 6Institutions.csv to do this exercise in our GUI, and set $B_0 = 100I_5$, $\beta_0 = \mathbf{0}_5$, $\gamma_0 = \mathbf{0}_2$, $G_0 = 100I_2$ $\alpha_0 = 3$ and $\Psi_0 = 3I_2$. The MCMC iterations, burn-in and thinning parameters are 50000, 1000 and 5, respectively.

Answer

The following code shows how to do this using the command *rivGibss* from the *bayesm* package. We see that the posterior mean of the effect of property rights on per capita GDP is 0.72, and the 95% credible interval is (0.47, 1.00). The posterior mean estimate of this effect was 0.98 in the example, and the 95% credible interval was (0.56, 2.87) (see Section 8.1 in the book). We can observe that the indirect approach, where the *reduced-form* parameters are estimated, and then, plug into the equations of the *structural parameters* produce less efficient posterior estimations.

R code. The effects of institutions on GDP, variable instrumental model

```
1 rm(list = ls()); set.seed(010101)
2 DataInst <- read.csv("https://raw.githubusercontent.com/</pre>
      besmarter/BSTApp/refs/heads/master/DataApp/6Institutions
       .csv", sep = ",", header = TRUE, quote = "")
 3 attach(DataInst)
 4 y <- logpcGDP95; x <- PAER
 5 w <- cbind(1, Africa, Asia, Other); Z <- cbind(1, logMort)
6 # Hyperparameters
7 k <- 5; kz <- 2; b0 <- rep(0, k); c0 <- 100
8 B0 <- c0*diag(k); B0i <- solve(B0); g0 <- rep(0, kz)</pre>
9 GO <- 100*diag(kz); GOi <- solve(GO); nu <- 5
10 Psi0 <- nu*diag(2)
11 # MCMC parameters
12 mcmc <- 50000; burnin <- 10000; tot <- mcmc + burnin; thin
      <- 5
13 # Gibbs sampling
14 Data \leftarrow list(y = y, x = x, w = w, z = Z)
15 Mcmc \leftarrow list(R = mcmc, keep = thin, nprint = 100)
16 Prior <- list(md = g0, Ad = G0i, mbg = b0, Abg = B0i, nu =
      nu, V = PsiO)
17 RestIV <- bayesm::rivGibbs(Data = Data, Mcmc = Mcmc, Prior =
       Prior)
18 summary(RestIV[["deltadraw"]])
19 summary(coda::mcmc(RestIV[["betadraw"]]))
20 Iterations = 1:10000
21 Thinning interval = 1
22 Number of chains = 1
23 Sample size per chain = 10000
24 1. Empirical mean and standard deviation for each variable,
25 plus standard error of the mean:
26 Mean
                   SD
                             Naive SE Time-series SE
27 0.759497
                                  0.001409
                                                  0.002477
                  0.140874
28 2. Quantiles for each variable:
                 50% 75% 97.5%
29 2.5% 25%
30 0.5110 0.6654 0.7502 0.8424 1.0707
31 summary (RestIV [["gammadraw"]])
32 summary(RestIV[["Sigmadraw"]])
```

9. Multivariate probit with different regressors

Let's do a simulation exercise where $y_{i1}^* = 0.5 - 1.2x_{i11} + 0.7x_{i12} + 0.8x_{i3} + \mu_{i1}$ and $y_{i2}^* = 1.5 - 0.8x_{i21} + 0.5x_{i22} + \mu_{i2}$, $\Sigma = \begin{cases} 1 & 0.5 \\ 0.5 & 1 \end{cases}$, where all regressors distribute standard normal, and N = 5000. Use $\beta_0 = 0$, $B_0 = 1000B$,

 $\alpha_0=4$ and $\Psi_0=4I_2$. Set number of iterations 2000 and a thinning parameter equal to 5.

- Perform inference using the setting of Section 7.4, that is, assuming that x_{i3} could have an effect on y_{i2} .
- Program a Gibss sampling algorithm taking into account that there are different regressors in each binary decision, that is, x_{i3} does not have an effect on y_{i2} .

Answer

The following code shows how to perform inference assuming same number of regressors in both binary results. We can check that all 95% credible intervals encompass the population values, and the posterior mean estimates are very close to the population parameters.

R code. Multivariate probit model: Same number of regressors in each binary response

```
1 remove(list = ls())
2 n <-5000 #Individuals
_3 p <-2 #Number dependent variables (For instance to buy or
       not to buy different products)
_4 xo <- 2 #Number of choice dependent variables (For instance
        price of products)
_{5} xi <- 1 #Number of regressors that dependt on individuals (
      For instance income)
_{6} B1 <- _{c} (0.5,-1.2,0.7,0.8)
_{7} B2 <- c(1.5,-0.8,0.5,0) # The last regressor is not relevant
       for the second product
8 Cor <- matrix(c(1,0.5,0.5,1),p,p)</pre>
9 yX <- NULL; yl <- NULL
10 for (i in 1:n){
    ei <- MASS::mvrnorm(1, c(0,0), Cor); xs <- rnorm(xi)
    x1i <- c(1, rnorm(xo), xs); yl1i <- sum(x1i*B1)
y1i <- yl1i + ei[1] > 0; x2i <- c(1, rnorm(xo), xs)</pre>
    x1i <- c(1, rnorm(xo), xs);
    y12i \leftarrow sum(x2i*B2); y2i \leftarrow y12i + ei[2] > 0
    yXi <- rbind(c(y1i, x1i), c(y2i, x2i))
    yXi <- cbind(i, yXi)
16
    colnames(yXi) <- c("id", "y", "cte", "x1o", "x2o", "xi")</pre>
    yX <- rbind(yX, yXi)
    yl <- c(yl, c(yl1i + ei[1], yl2i + ei[2]))
19
20 }
21
22 nd <- 4 # Number of regressors
23 Xd <- as.matrix(yX[,3:6])</pre>
24 XcreateMP <-function(p,nxs,nind,Data){</pre>
    pandterm = function(message) {
       stop(message, call. = FALSE)
26
27
    if (missing(nxs))
28
     pandterm("requires number of regressors: include intercept
        if required")
30
     if (missing(nind))
    pandterm("requires number of units (individuals)")
    if (missing(Data))
     pandterm("requires dataset")
     if (nrow(Data)!=nind*2)
34
     pandterm("check dataset! number of units times number
35
       alternatives should be equal to dataset rows")
     XXDat <-array(0,c(p,1+nxs,nind))</pre>
36
    XX<-array(0,c(p,nxs*p,nind))
    YY<-array(0,c(p,1,nind))
38
    is<- seq(p,nind*p,p)</pre>
39
40
     cis<- seq(nxs,nxs*p+1,nxs)</pre>
    for(i in is){
41
       j<-which(i==is)</pre>
       XXDat[,,j] <-as.matrix(Data[c((i-(p-1)):i),-1])</pre>
43
       YY[,,j] <- XXDat[,1,j]
44
       for(1 in 1:p){
45
         XX[1,((cis[1]-(nxs-1)):cis[1]),j]<-XXDat[1,-1,j]</pre>
46
47
48
    return(list(y=YY,X=XX))
50 }
Dat <- XcreateMP(p = p, nxs = nd, nind = n, Data = yX)
```

R code. Multivariate probit model: Same number of regressors in each binary response

```
2 X <- NULL
3 for(i in 1:dim(Dat$y)[3]){
    y<-c(y,Dat$y[,,i])
    X<-rbind(X,Dat$X[,,i])</pre>
7 DataMP = list(p=p, y=y, X=X)
{\it 8} # Hyperparameters
9 k <- dim(X)[2]
10 b0 <- rep(0, k)
11 c0 <- 1000
12 B0 <- c0*diag(k)
13 B0i <- solve(B0)
14 a0 <- p - 1 + 3
15 Psi0 <- a0*diag(p)
16 Prior <- list(betabar = b0, A = B0i, nu = a0, V = Psi0)
17 # MCMC parameters
18 mcmc <- 2000
19 burnin <- 1000
20 thin <- 5
21 Mcmc <- list(R = mcmc, keep = thin)
22 Results <- bayesm::rmvpGibbs(Data = DataMP, Mcmc = Mcmc,</pre>
      Prior = Prior)
23 betatildeEq1 <- Results$betadraw[,1:4] / sqrt(Results$
       sigmadraw[,1])
24 summary(coda::mcmc(betatildeEq1))
25 betatildeEq2 <- Results$betadraw[,5:8] / sqrt(Results$</pre>
      sigmadraw[,4])
26 summary(coda::mcmc(betatildeEq2))
27 sigmadraw12 <- Results$sigmadraw[,2] / (Results$sigmadraw
       [,1] *Results$sigmadraw[,4])^0.5
28 summary(coda::mcmc(sigmadraw12))
```

The following code shows the implementation of a Gibbs sampling algorithm using the bayesm package, particularly, the rmvpGibbs command.

R code. Multivariate probit model: Different number of regressors in each binary response, the rmvpGibbs command

```
1 # Omitting last regressor for y2
2 Xnew <- X[,-8]
3 DataMP = list(p=p, y=y, X=Xnew)
4 # Hyperparameters
5 k <- dim(Xnew)[2]
6 b0 <- rep(0, k)
7 c0 <- 1000
8 B0 <- c0*diag(k)</pre>
9 B0i <- solve(B0)
10 Prior <- list(betabar = b0, A = B0i, nu = a0, V = Psi0)
11 Results <- bayesm::rmvpGibbs(Data = DataMP, Mcmc = Mcmc,</pre>
      Prior = Prior)
12 betatildeEq1 <- Results$betadraw[,1:4] / sqrt(Results$</pre>
      sigmadraw[,1])
13 summary(coda::mcmc(betatildeEq1))
14 betatildeEq2 <- Results$betadraw[,5:7] / sqrt(Results$</pre>
      sigmadraw[,4])
15 summary(coda::mcmc(betatildeEq2))
sigmadraw12 <- Results$sigmadraw[,2] / (Results$sigmadraw</pre>
      [,1]*Results$sigmadraw[,4])^0.5
17 summary(coda::mcmc(sigmadraw12))
```

The following code shows how to implement a Gibbs sampling algorithm from scratch.

R code. Multivariate probit model: Different number of regressors in each binary response, Gibbs from scratch

```
1 PostBetaNew <- function(Sigma, Y1){</pre>
    Sigmai <- solve(Sigma); C <- chol(Sigmai)
    Xstar <- matrix(0, n*p, k); Ystar <- matrix(0, n*p, 1)</pre>
    for(i in seq(1, n*p, 2)){
      Xstari <- C%*%Xnew[i:(i+1),]</pre>
      Xstar[i:(i+1),] <- Xstari</pre>
      Ystari <- C%*%Yl[i:(i+1)]
      Ystar[i:(i+1)] <- Ystari
    }
9
10
    Bn <- solve(B0i + t(Xstar)%*%Xstar)
    bn <- Bn%*%(B0i%*%b0 + t(Xstar)%*%Ystar)
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
    return(Beta)
13
14 }
15 PostSigmaNew <- function(Beta, Y1){</pre>
   U <- matrix(0, p, p)
16
    for(i in seq(1, n*p, 2)){
17
      Ui <- (Yl[i:(i+1)] - Xnew[i:(i+1),]%*%Beta)%*%t(Yl[i:(i
      +1)] - Xnew[i:(i+1),]%*%Beta)
      U <- U + Ui
19
    }
20
    Psin <- solve(Psi0i + U)
21
    Sigmai <- rWishart::rWishart(1, df = an, Sigma = Psin)
    Sigma <- solve(Sigmai[,,1])
23
24 }
25 PostYlNew <- function(Beta, Sigma, Y1){</pre>
    w1 <- Sigma[1, ]
26
    w2 <- Sigma[2, ]
    f1 <- w1[-1] *Sigma[2, 2]^(-1)
    f2 <- w2[-2] *Sigma[1, 1]^(-1)
    t11 <- Sigma[1, 1] - w1[-1]*Sigma[2, 2]^(-1)*w1[-1]
30
    t22 <- Sigma[2, 2] - w2[-2]*Sigma[1, 1]^(-1)*w2[-2]
31
    Ylnew <- Yl
32
    for(i in seq(1, n*p, 2)){
33
      Ylmean1 <- Xnew[i,]%*%Beta + f1*(Yl[i+1] - Xnew[i+1,]%*%
      Beta)
35
      if(y[i] == 1){
        Ylnew[i] <- truncnorm::rtruncnorm(1, a = 0, b = Inf,
36
      mean = Ylmean1, sd = t11^0.5
      }else{
        Ylnew[i] <- truncnorm::rtruncnorm(1, a = -Inf, b = 0,
38
      mean = Ylmean1, sd = t11^0.5)
39
      Ylmean2 <- Xnew[i+1,]%*%Beta + f2*(Ylnew[i] - Xnew[i,]%*
40
      %Beta)
41
      if(y[i+1] == 1){
        Ylnew[i+1] <- truncnorm::rtruncnorm(1, a = 0, b = Inf,
       mean = Ylmean2, sd = t22^0.5
43
44
        Ylnew[i+1] <- truncnorm::rtruncnorm(1, a = -Inf, b =
      0, mean = Ylmean2, sd = t22^0.5
45
46
47
    return(Ylnew)
48 }
```

R code. Multivariate probit model: Different number of regressors in each binary response, Gibbs from scratch

```
1 an <- a0 + n
2 Psi0i <- solve(Psi0)</pre>
3 K1 <- 4; K2 <- 3; K <- K1 + K2
 _4 tot <- mcmc + burnin
5 PostBetas <- matrix(0, tot, K)
6 PostSigmas <- matrix(0, tot, p*(p+1)/2)</pre>
 7 Beta <- rep(1, K)</pre>
 8 Sigma <- diag(p)</pre>
9 pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
       tot, width = 300)
10 for(s in 1:tot){
   Yl <- PostYlNew(Beta = Beta, Sigma = Sigma, Yl = yl)
    Sigma <- PostSigmaNew(Beta = Beta, Yl = Yl)
    Beta <- PostBetaNew(Sigma = Sigma, Yl = Yl)
     PostBetas[s,] <- Beta</pre>
     PostSigmas[s,] <- matrixcalc::vech(Sigma)</pre>
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
17 }
18 close(pb)
19 keep <- seq((burnin+1), tot, thin)
20 Bs <- PostBetas[keep,]</pre>
21 betatilde1 <- Bs[,1:K1] / sqrt(PostSigmas[keep,1])</pre>
22 summary(coda::mcmc(betatilde1))
23 betatilde2 <- Bs[,(K1+1):(K1+K2)] / sqrt(PostSigmas[keep,3])
24 summary(coda::mcmc(betatilde2))
25 sigmadraw12 <- PostSigmas[keep,2] / (PostSigmas[keep,1]*
       PostSigmas[keep,3])^0.5
26 summary(coda::mcmc(sigmadraw12))
```

Time series models

Solutions of Exercises

1. Simulate the dynamic linear model assuming $X_t \sim N(1,0.1\sigma^2)$, $w_t \sim N(0,0.5\sigma^2)$, $\mu_t \sim N(0,\sigma^2)$, $\beta_0 = 1$, $B_0 = 0.5\sigma^2$, $\sigma^2 = 0.25$, and $G_t = 1$, $t = 1,\ldots,100$. Then, perform the filtering recursion fixing $\Sigma = 25\times0.25$, $\Omega_1 = 0.5\Sigma$ (high signal-to-noise ratio) and $\Omega_2 = 0.1\Sigma$ (low signal-to-noise ratio). Plot and compare the results.

Answer

The following code shows how to perform this simulation and perform the filtering recursion using the dlm package in ${\bf R}$.

R code. Simulation: Scenarios signal-to-noise ratio

```
1 rm(list = ls()); set.seed(010101)
2 T <- 100; sig2 <- 0.5^2; r <- 0.5; sigW2 <- sig2*r
_{3} x \leftarrow rnorm(T, mean = 1, sd = 0.1*sig2^0.5)
4 e <- rnorm(T, mean = 0, sd = sig2^0.5)
5 w <- rnorm(T, mean = 0, sd = sigW2^0.5)
6 K <- 1
7 Bt <- matrix(NA, T, K); Bt[1] <- 1</pre>
8 yt <- rep(NA, T)</pre>
9 yt[1] <- x[1]*Bt[1] + e[1]
10 for(t in 1:T){
     if(t == 1){
       Bt[t,] <- w[t]</pre>
     }else{
13
14
       Bt[t,] \leftarrow Bt[t-1,] + w[t]
16
    yt[t] <- x[t]%*%Bt[t,] + e[t]
17 }
18 # State space model
19 ModelReg <- function(par){</pre>
    Mod <- dlm::dlmModReg(x, dV = exp(par[1]), dW = exp(par</pre>
       [2]), m0 = rep(1, K),
     CO = sigW2*diag(K), addInt = FALSE)
    return (Mod)
22
23 }
24 sig2New <- sig2*25
25 RegFilter1 <- dlm::dlmFilter(yt, ModelReg(c(sig2New, sig2New
       *0.5)))
26 ytfil1 <- RegFilter1[["m"]][-1]</pre>
27 RegFilter2 <- dlm::dlmFilter(yt, ModelReg(c(sig2New, sig2New
       *0.1)))
28 ytfil2 <- RegFilter2[["m"]][-1]</pre>
29 Time <- 1:T
30 df1 <- as.data.frame(cbind(Time,yt, ytfil1, ytfil2))
31 library(ggplot2)
32 ggplot(df1, aes(x=Time)) +
33 geom_line(aes(y=yt), colour="black", linewidth=1, linetype
       =1) +
34 geom_line(aes(y=ytfil1), colour="green", linewidth=1, alpha
       =0.9, linetype=2) +
  geom_line(aes(y=ytfil2), color="blue", linewidth=1, alpha
       =0.9, linetype=3)
```

Figure 8.1 shows the results of the filtering recursion. We see in this figure that the filtered recursion associated with the high signal-to-noise ratio (green dashed line) follows closer the data than the low signal-to-noise

FIGURE 8.1 Signal-to-noise ratio: Dynamic linear model.

ratio scenario (blue dotted line). We see that the latter is smoother as it gives more weight to the prior mean, which takes into account historical information.

2. Simulate the dynamic linear model $y_t = \beta_t x_t + \mu_t$, $\beta_t = \beta_{t-1} + w_t$, where $x_t \sim N(1, 0.1\sigma^2)$, $w_t \sim N(0, 0.5\sigma^2)$, $\mu_t \sim N(0, \sigma^2)$, $\beta_0 = 0$, $B_0 = 0.5\sigma^2$, and $\sigma^2 = 1$, $t = 1, \ldots, 100$. Perform the filtering and smoothing recursions from scratch.

Answer

The following code shows how to perform this simulation and perform the filtering recursion from scratch in \mathbf{R} .

R code. Simulation: Filtering and smoothing recursions from scratch

```
1 rm(list = ls()); set.seed(010101)
2 T <- 100; sig2 <- 1; r <- 0.5; sigW2 <- sig2*r
3 \text{ xt} \leftarrow \text{rnorm}(T, \text{mean} = 1, \text{sd} = 0.1*\text{sig}2^0.5)
4 e <- rnorm(T, mean = 0, sd = sig2^0.5)
5 w <- rnorm(T, mean = 0, sd = sigW2^0.5)
6 K <- 1; Bt <- matrix(NA, T, K); Bt[1] <- 0
 7 yt <- rep(NA, T)</pre>
 8 for(t in 1:T){
    if(t == 1){
       Bt[t,] <- w[t]</pre>
10
     }else{
       Bt[t,] <- Bt[t-1,] + w[t]
13
14
    yt[t] <- xt[t]%*%Bt[t,] + e[t]
15 }
16 # Filtering
17 KFR <- function(y, x, b1, B1, Omega, sig2){
18  e <- as.numeric(y - t(x)%*%b1) # Error</pre>
    R <- B1 + Omega
     q <- as.numeric(t(x)%*%R%*%x + sig2)</pre>
20
     K < - (R%*%x)/q
21
     bt <- b1 + K*e
22
     Bt \leftarrow R - R%*%x%*%t(x)%*%R/q
Result \leftarrow list(bt = bt, Bt = Bt)
23
     return (Result)
25
26 }
27 KFresb <- list(); KFresB <- list()</pre>
28 b0 <- 0; B0 <- sigW2
29 for(t in 1:T){
    KFrest \leftarrow KFR(y = yt[t], x = xt[t], b1 = b0, B1 = B0,
       Omega = sigW2, sig2 = sig2)
     b0 <- KFrest[["bt"]]; B0 <- KFrest[["Bt"]]
    KFresb[[t]] <- b0; KFresB[[t]] <- B0</pre>
32
33 }
34 ModelReg <- function(par){</pre>
Mod <- dlm::dlmModReg(xt, dV = exp(par[1]), dW = exp(par
       [2]), m0 = rep(0, K),
     CO = sigW2*diag(K), addInt = FALSE)
    return(Mod)
37
38 }
39 RegFilter1 <- dlm::dlmFilter(yt, ModelReg(c(sig2, sigW2)))
40 plot(Bt, type = "1")
41 lines(unlist(KFresb), type = "l", col = "red")
42 lines(RegFilter1[["m"]][-1], type = "l", col = "blue")
```

R code. Simulation: Filtering and smoothing recursions from scratch

```
2 BSR <- function(b, B, slead, Slead, Omega){</pre>
    b = bfilter[t]; B = Bfilter[t]; slead = slead; Slead =
       slead; Omega = sigW2
    R1 <- B + Omega
     s \leftarrow b + B%*%solve(R1)%*%(slead - b)
    S \leftarrow B - B%*%solve(R1)%*%(R1 - Slead)%*%solve(R1)%*%B
    Result <- list(st = s, St = S)
     return (Result)
10 bfilter <- unlist(KFresb); Bfilter <- unlist(KFresB)</pre>
slead <- bfilter[T]; Slead <- Bfilter[T]</pre>
smooth <- rep(slead, T); Smooth <- rep(Slead, T);</pre>
13 for(t in (T-1):1){
    BSRrest <- BSR(b = bfilter[t], B = Bfilter[t], slead =</pre>
      slead, Slead = Slead, Omega = sigW2)
     slead <- BSRrest[["st"]]; Slead <- BSRrest[["st"]]</pre>
     smooth[t] <- slead</pre>
16
17 }
18 RegSmoth <- dlm::dlmSmooth(yt, ModelReg(c(sig2, sigW2)))</pre>
19 VarSmooth <- dlm::dlmSvd2var(u = RegSmoth[["U.S"]], RegSmoth
       [["D.S"]])
20 SDVarSmoothB2 <- sapply(2:(T+1), function(t){VarSmooth[[t]][</pre>
      K,K]^0.5})
21 plot(Bt, type = "1")
22 lines(smooth, type = "l", col = "orange")
23 lines(RegSmoth[["s"]][-1], type = "1", col = "green")
```

3. Simulate the process $y_t = \alpha z_t + \beta_t x_t + \boldsymbol{h}^{\top} \boldsymbol{\epsilon}_t$, $\beta_t = \beta_{t-1} + \boldsymbol{H}^{\top} \boldsymbol{\epsilon}_t$, where $\boldsymbol{h}^{\top} = [1 \ 0]$, $\boldsymbol{H}^{\top} = [0 \ 1/\tau]$, $v_t \sim N(\mathbf{0}_2, \sigma^2 \boldsymbol{I}_2)$, $x_t \sim N(1, 2\sigma^2)$, $z_t \sim N(0, 2\sigma^2)$, $\alpha = 2, \ \tau^2 = 5$ and $\sigma^2 = 0.1, \ t = 1, \ldots, 200$. Assume $\pi(\beta_0, \alpha, \sigma^2, \tau) = \pi(\beta_0)\pi(\alpha)\pi(\sigma^2)\pi(\tau^2)$ where $\sigma^2 \sim IG(\alpha_0/2, \delta_0/2)$, $\tau^2 \sim G(v_0/2, v_0/2)$, $\alpha \sim N(a_0, A_0)$ and $\beta_0 \sim N(b_0, B_0)$ such that $\alpha_0 = \delta_0 = 1$, $v_0 = 5$, $a_0 = 0$, $A_0 = 1$, $\beta_0 = 0$, $B_0 = \sigma^2/\tau^2$. Program the MCMC algorithm including the simulation smoother.

Answer

R code. Simulation: MCMC algorithm with simulation smoother

```
1 rm(list = ls()); set.seed(010101)
2 T <- 200; sig2 <- 0.1; tau2 <- 5; tau <- tau2^0.5; sigW2 <-
       sig2/tau2
_3 xt <- rnorm(T, mean = 1, sd = 2*sig2^0.5)
4 zt <- rnorm(T, mean = 1, sd = 2*sig2^0.5)
5 alpha <- 2
6 e \leftarrow MASS::mvrnorm (T, mu = c(0, 0), Sigma = sig2*diag(2))
7 K <- 1
8 h1 <- matrix(c(1, 0), K + 1, 1); h2 <- matrix(c(0, 1/tau), K</pre>
        + 1, 1); t(h1)%*%h2
9 e1 <- e%*%h1; e2 <- e%*%h2; var(e1); var(e2)</pre>
10 Bt <- matrix(NA, T, K); Bt[1] <- 0
11 yt <- rep(NA, T)
12 for(t in 1:T){
   if(t == 1){
13
      Bt[t,] <- e2[t]
14
    }else{
15
16
      Bt[t,] \leftarrow Bt[t-1,] + e2[t]
17
    yt[t] <- zt[t]*alpha + xt[t]*Bt[t] + e1[t]
18
19 }
20 # Recursion functions
21 # Filter
22 KFRDSnew <- function(y, z, x, b, B, alpha, tau2){
    e \leftarrow as.numeric(y - z*alpha - t(x)%*%b)
    q \leftarrow as.numeric(t(x)%*%B%*%x + t(h1)%*%h1)
24
    K < - (B%*%x)/q
25
    bt <- b + K*e
26
    h2 <- matrix(c(0, 1/tau2^0.5))
    Bt <- B - B%*%x%*%t(K) + t(h2)%*%h2
     Result \leftarrow list(bt = bt, Bt = Bt, et = e, Kt = K, qt = q)
    return (Result)
30
31 }
32 # Smooth
33 BSRDSnew <- function(r, M, Q, e, K, x, sig2, tau2){
    h2 \leftarrow matrix(c(0, 1/tau2^0.5))
    Lambda \leftarrow t(h2)%*%h2
     C <- Lambda - Lambda%*%M%*%t(Lambda)</pre>
    xi \leftarrow rnorm(1, 0, sd = (sig2*C)^0.5)
37
    L <- 1 - K*x
38
    V <- Lambda%*%M%*%L
    rtl <- x*e/Q + t(L)*r - t(V)%*%solve(C)%*%xi
40
    Mtl \leftarrow x\%*\%t(x)/Q + t(L)\%*\%M\%*\%L + t(V)\%*\%solve(C)\%*\%V
     eta <- Lambda%*%r + xi
     Result <- list(rtl = rtl, Mtl = Mtl, etat = eta)</pre>
43
    return(Result)
44
45 }
46 # Gibbs functions
47 PostSig2 <- function(bbt, alpha, tau2){
    an <- T*(K + 1) + alpha0
48
    term1 <- diff(c(0, bbt))
49
    term2 <- c(yt - alpha*zt - xt*bbt)
dn <- delta0 + sum(term1^2)*tau2 + sum(term2^2)</pre>
50
    sig2 <- invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
52
    return(sig2)
54 }
```

R code. Simulation: MCMC algorithm with simulation smoother

```
PosAlpha <- function(bbt, sig2){</pre>
    An \leftarrow solve(A0i + sig2^(-1)*t(zt)%*%zt)
    term <- yt-xt*bbt
    an - \text{An}%%(\text{A0i}%%%\text{a0} + \text{sig2}^{-1})*t(zt)%%\text{term})
    Alpha <- MASS::mvrnorm(1, an, An)
    return(Alpha)
7 }
8 PostTau2 <- function(bbt, sig2){</pre>
    v1n <- v0 + T
    term1 <- diff(c(0,bbt))
    v2n <- v0 + sig2^(-1)*sum(term1^2)
    tau2 <- rgamma(1, v1n/2, v2n/2)
13
    return(tau2)
15 # Hyperparameter
16 alpha0 <- 1; delta0 <- 1; v0 <- 5
17 a0 <- 0; A0 <- 1; A0i <- 1/A0
18 tau2post <- 2; sig2post <- 0.2; alphapost <- 0
19 # Inference
_{20} S <- 2000; burnin <- 500; tot <- S + burnin; thin <- 5 \,
21 # Posterior draws
22 sig2s <- rep(NA, tot); tau2s <- rep(NA, tot)
23 alphas <- rep(NA, tot); betas <- matrix(NA, tot, T)
24 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
```

R code. Simulation: MCMC algorithm with simulation smoother

```
1 for (s in 1:tot){
    b0 <- 0; B0 <- sigW2
    KFDSresb <- list(); KFDSresB <- list()</pre>
    KFDSresE <- list(); KFDSresK <- list(); KFDSresQ <- list()</pre>
    for(t in 1:T){
      KFDSrest \leftarrow KFRDSnew(y = yt[t], z = zt[t], x = xt[t], b
      = b0, B = B0, alpha = alphapost, tau2 = tau2post)
      b0 <- KFDSrest[["bt"]]; B0 <- KFDSrest[["Bt"]]
       KFDSresb[[t]] <- b0; KFDSresB[[t]] <- B0</pre>
      KFDSresE[[t]] <- KFDSrest[["et"]]; KFDSresK[[t]] <-</pre>
      KFDSrest[["Kt"]]; KFDSresQ[[t]] <- KFDSrest[["qt"]]</pre>
10
    et <- unlist(KFDSresE); Qt <- unlist(KFDSresQ); Kt <-</pre>
      unlist (KFDSresK)
    rT <- 0; MT <- 0
12
    BSRDSreseta <- rep(0, T); BSRDSresetaMean <- rep(0, T)
13
    for(t in (T-1):1){
      BSRDSrest <- BSRDSnew(r = rT, M = MT, Q = Qt[t+1], e =
      et[t+1], K = Kt[t+1], x = xt[t+1], sig2 = sig2post, tau2
        = tau2post)
       rT <- BSRDSrest[["rtl"]]; MT <- BSRDSrest[["Mtl"]]
      BSRDSreseta[t+1] <- BSRDSrest[["etat"]]</pre>
17
18
    Bt1DSpost <- rep(0,T)</pre>
19
    for(t in 1:T){
20
      if(t == 1){
21
         Bt1DSpost[t] <- BSRDSreseta[t]</pre>
22
      }else{
23
24
         Bt1DSpost[t] <- Bt1DSpost[t-1] + BSRDSreseta[t]</pre>
25
26
    sig2post <- PostSig2(bbt = Bt1DSpost, alpha = alphapost,</pre>
27
      tau2 = tau2post)
    alphapost <- PosAlpha(bbt = Bt1DSpost, sig2 = sig2post)</pre>
    tau2post <- PostTau2(bbt = Bt1DSpost, sig2 = sig2post)</pre>
29
    sig2s[s] <- sig2post
    tau2s[s] <- tau2post
31
    alphas[s] <- alphapost
32
    betas[s,] <- Bt1DSpost
33
    setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
34
        "% done"))
35 }
36 close(pb); keep <- seq((burnin+1), tot, thin)</pre>
37 betasF <- betas[keep,]; sig2sF <- coda::mcmc(sig2s[keep])
38 tau2sF <- coda::mcmc(tau2s[keep]); alphasF <- coda::mcmc(</pre>
       alphas[keep])
39 summary(sig2sF); plot(sig2sF)
40 summary(tau2sF); plot(tau2sF)
41 summary(alphasF); plot(alphasF)
42 library(fanplot); df <- as.data.frame(betasF)</pre>
43 plot(NULL, main="Percentiles", xlim = c(1, T+1), ylim = c
       (-4, 1), xlab = "Time", ylab = TeX("$\\beta_{t1}$"))
44 fan(data = df); lines(colMeans(betasF), col = "black", lw =
45 lines(Bt, col = "blue")
```

Figure 8.2 shows the path of the state vector (blue line), and the results from the *simulation smoother* using posterior draws, the black line is the mean, and the red-yellow shadows are different deciles.

Percentiles

FIGURE 8.2

State vector: Dynamic linear model.

4. Show that the posterior distribution of $\phi|\beta, \sigma^2, y, X$ in the model $Y_t = x_t^{\top}\beta + \mu_t$ where $\phi(L)\mu_t = \epsilon_t$ and $\epsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$ is $N(\phi_n, \Phi_n)\mathbb{1}[\phi \in S_{\phi}]$, where $\Phi_n = (\Phi_0^{-1} + \sigma^{-2}U^{\top}U)$, $\phi_n = \Phi_n(\Phi_0^{-1}\phi_0 + \sigma^{-2}U^{\top}\mu)$, and S_{ϕ} is the stationary region of ϕ .

Answer

The conditional posterior distribution can be got as follows:

$$\pi(\boldsymbol{\phi}|\boldsymbol{\beta}, \sigma^{2}, \boldsymbol{y}) \propto \exp\left\{-\frac{1}{2\sigma^{2}}(\boldsymbol{\mu} - \boldsymbol{U}\boldsymbol{\phi})^{\top}(\boldsymbol{\mu} - \boldsymbol{U}\boldsymbol{\phi})\right\}$$

$$\times \exp\left\{-\frac{1}{2}(\boldsymbol{\phi} - \boldsymbol{\phi}_{0})^{\top}\boldsymbol{\Phi}_{0}^{-1}(\boldsymbol{\phi} - \boldsymbol{\phi}_{0})\right\}$$

$$\propto \exp\left\{-\frac{1}{2}[\boldsymbol{\phi}^{\top}(\sigma^{-2}\boldsymbol{U}^{\top}\boldsymbol{U} + \boldsymbol{\Phi}_{0}^{-1})\boldsymbol{\phi} - 2\boldsymbol{\phi}^{\top}(\sigma^{-2}\boldsymbol{U}^{\top}\boldsymbol{\mu} + \boldsymbol{\Phi}_{0}^{-1}\boldsymbol{\phi}_{0})\right\}$$

$$+\boldsymbol{\phi}_{n}^{\top}\boldsymbol{\Phi}_{n}^{-1}\boldsymbol{\phi}_{n} - \boldsymbol{\phi}_{n}^{\top}\boldsymbol{\Phi}_{n}^{-1}\boldsymbol{\phi}_{n}]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}[(\boldsymbol{\phi} - \boldsymbol{\phi}_{n})^{\top}\boldsymbol{\Phi}_{n}^{-1}(\boldsymbol{\phi} - \boldsymbol{\phi}_{n})]\right\},$$

where $\Phi_n = (\sigma^{-2} U^{\top} U + \Phi_0^{-1})^{-1}$ and $\phi_n = \Phi_n (\sigma^{-2} U^{\top} \mu + \Phi_0^{-1} \phi_0)$. The

last expression is the kernel of a multivariate normal distribution with mean ϕ_n and variance matrix Φ_n .

5. Show that in the AR(2) stationary process, $Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t$, where $\epsilon_t \sim N(0, \sigma^2)$, $\mathbb{E}[Y_t] = \frac{\mu}{1 - \phi_1 - \phi_2}$, and $Var[Y_t] = \frac{\sigma^2 (1 - \phi_2)}{1 - \phi_2 - \phi_1^2 - \phi_1^2 \phi_2 - \phi_2^2 + \phi_2^3}$.

Answer

A necessary condition to achieve second-order stationarity in the AR(2) process is that roots of the polynomial $1 - \phi_1 L - \phi_2 L^2 = 0$ lie outside the unit circle. This is achieved if $|\phi_2| < 1$, $\phi_1 + \phi_2 < 1$ and $\phi_2 - \phi_1 < 1$.

Let's calculate the expected value:

$$\begin{split} \mathbb{E}[Y_t] &= \bar{\mu} \\ &= \mathbb{E}[\mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t] \\ &= \mu + \phi_1 \mathbb{E}[Y_{t-1}] + \phi_2 \mathbb{E}[Y_{t-2}] + \mathbb{E}[\epsilon_t] \\ &= \mu + \phi_1 \bar{\mu} + \phi_2 \bar{\mu}, \end{split}$$

then, $\bar{\mu}(1 - \phi_1 - \phi_2) = \mu$, then, $\mathbb{E}[Y_t] = \bar{\mu} = \frac{\mu}{1 - \phi_1 - \phi_2}$.

See that $Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t$ implies that $Y_t = \bar{\mu}(1 - \phi_1 - \phi_2) + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t$, which means that $Y_t - \bar{\mu} = \phi_1 (Y_{t-1} - \bar{\mu}) + \phi_2 (Y_{t-2} - \bar{\mu}) + \epsilon_t$, and setting $z_t = Y_t - \bar{\mu}$, we have $z_t = \phi_1 z_{t-1} + \phi_2 z_{t-2} + \epsilon_t$ where $\mathbb{E}[z_t] = 0$. Then, we can calculate the variance of Y_t using z_t , given that both have same variance.

Let's define $\gamma_s = Cov(z_t, z_{t-s}) = \mathbb{E}[z_t z_{t-s}]$, then the Yule-Walker equations are:

$$\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2
\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_1
\gamma_2 = \phi_1 \gamma_1 + \phi_2 \gamma_0.$$

Solving this system of equations for γ_0 , γ_1 and γ_2 , we find that $\gamma_0 = \frac{\sigma^2(1-\phi_2)}{1-\phi_2-\phi_1^2-\phi_1^2\phi_2-\phi_2^2+\phi_2^3}$.

6. Program a Hamiltonian Monte Carlo (HMC) taking into account the stationary restrictions on ϕ_1 and ϕ_2 , and ϵ_0 such that the acceptance rate is near 65%.

Answer

We know from the previous exercise that $|\phi_2| < 1$, $\phi_1 + \phi_2 < 1$ and $\phi_2 - \phi_1 < 1$ satisfied the stationary condition of the process. Thus, we should impose this restrictions in the HMC. The following code does this.

R code. AR(2) model: Hamiltonian Monte Carlo with stationary restrictions

```
1 # Simulation AR(2)
2 rm(list = ls()); set.seed(010101); T <- 1000; K <- 4
_3 mu <- 0.5; phi1 <- 0.5; phi2 <- 0.3; sig <- 0.5
_4 Ey <- mu/(1-phi1-phi2); Sigy <- sig*((1-phi2)/(1-phi2-phi1
       ^2-phi2*phi1^2-phi2^2+phi2^3))^0.5
 5 y <- rnorm(T, mean = Ey, sd = Sigy); e <- rnorm(T, mean = 0,
        sd = sig)
6 for(t in 3:T){
    y[t] \leftarrow mu + phi1*y[t-1] + phi2*y[t-2] + e[t]
9 # Hyperparameters
10 d0 <- 0.01; a0 <- 0.01; mu0 <- 0; MU0 <- 1
phi0 <- c(0, 0); Phi0 <- diag(2)</pre>
12 # Log posterior multiply by -1 to use optim
13 LogPost <- function(theta, y){</pre>
    mu <- theta[1]; phi1 <- theta[2]; phi2 <- theta[3]</pre>
14
     tau <- theta[4]; sig2 <- exp(tau); logLik <- NULL
15
16
    for(t in 3:T){
       logLikt <- dnorm(y[t], mean = mu + phi1*y[t-1] + phi2*y[</pre>
       t-2], sd = sig2^0.5, log = TRUE)
       logLik <- c(logLik, logLikt)</pre>
18
19
20
    logLik <- sum(logLik)</pre>
     logPrior <- dnorm(mu, mean = mu0, sd = MU0^0.5, log = TRUE</pre>
       ) + dnorm(phi1, mean = phi0[1], sd = Phi0[1,1]^0.5, log
       = TRUE) + dnorm(phi2, mean = phi0[2], sd = Phi0
       [2,2]^0.5, log = TRUE) + invgamma::dinvgamma(sig2, shape
        = a0/2, rate = d0/2, log = TRUE)
     logPosterior <- logLik + logPrior + tau</pre>
     return(-logPosterior) # Multiply by -1 to minimize using
23
       optim
24 }
25 theta0 <- c(mean(y), 0, 0, var(y))
26 Opt <- optim(theta0, LogPost, y = y, hessian = TRUE)
27 theta0 <- Opt$par; VarPost <- solve(Opt$hessian)</pre>
28 # Gradient log posterior
29 GradientTheta <- function(theta, y){</pre>
    mu <- theta[1]; phi1 <- theta[2]; phi2 <- theta[3]
tau <- theta[4]; sig2 <- exp(tau); SumLik <- matrix(0, 3,</pre>
30
      1)
     SumLik2 <- NULL
33
     for(t in 3:T){
       xt \leftarrow matrix(c(1, y[t-1], y[t-2]), 3, 1)
34
       35
36
37
       SumLik <- rowSums(cbind(SumLik, SumLikt))</pre>
       SumLik2 <- sum(SumLik2, SumLik2t)</pre>
38
39
     Grad_mu <- SumLik[1]/sig2 - (1/MU0)*(mu - mu0)</pre>
40
41
     Grad_phi1 <- SumLik[2]/exp(tau) - 1/Phi0[1,1]*(phi1 - phi0</pre>
       [1])
     Grad_phi2 <- SumLik[3]/exp(tau) - 1/Phi0[2,2]*(phi2 - phi0</pre>
42
     Grad_tau \leftarrow -(T-2)/2 + SumLik2/(2*exp(tau)) - (a0/2 + 1) +
        d0/(2*exp(tau)) + 1
     Grad <- c(Grad_mu, Grad_phi1, Grad_phi2, Grad_tau)</pre>
     return (Grad)
45
46 }
```

R code. AR(2) model: Hamiltonian Monte Carlo with stationary restrictions

```
1 StatRest <- function(phi1, phi2){</pre>
    if(abs(phi2) < 1 & phi1 + phi2 < 1 & phi2 - phi1 < 1){</pre>
      check <- 1
    }else{
      check <- 0
    return(check)
8 }
9 HMC <- function(theta, y, epsilon, M){</pre>
    L <- ceiling(1/epsilon)
    Minv <- solve(M)
11
12
    thetat <- theta
    K <- length(thetat)</pre>
13
    mom <- t(mvtnorm::rmvnorm(1, rep(0, K), M))</pre>
14
    logPost_Mom_t <- -LogPost(thetat, y) + mvtnorm::dmvnorm(t</pre>
      (mom), rep(0, K), M, log = TRUE)
    for(1 in 1:L){
      if(1 == L){
17
         mom <- mom + 0.5*epsilon*GradientTheta(theta, y)</pre>
18
         theta <- theta + epsilon*Minv%*%mom
19
20
      }else{
21
         mom <- mom + epsilon*GradientTheta(theta, y)</pre>
         theta <- theta + epsilon*Minv%*%mom
22
23
24
    logPost\_Mom\_star <- -LogPost(theta, y) + mvtnorm::dmvnorm
25
      (t(mom), rep(0, K), M, log = TRUE)
    alpha <- min(1, exp(logPost_Mom_star-logPost_Mom_t))</pre>
26
27
    u <- runif(1)
    if(u <= alpha & StatRest(phi1 = theta[2], phi2 = theta[3])</pre>
28
        == 1){
       thetaNew <- c(theta)
29
    }else{
30
31
      thetaNew <- thetat
32
    rest <- list(theta = thetaNew, Prob = alpha)
33
34
    return(rest)
35 }
```

$R \ code. \ AR(2) \ model: Hamiltonian \ Monte \ Carlo$ with stationary restrictions

```
2 S <- 1000; burnin <- 1000; thin <- 2; tot <- S + burnin
3 thetaPost <- matrix(NA, tot, K)</pre>
4 ProbAcept <- rep(NA, tot)
  # theta0 <- theta0</pre>
6 theta0 <- c(mean(y), 0, 0, exp(var(y)))
7 M <- solve(VarPost); epsilon0 <- 0.4
  pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      tot, width = 300)
  for(s in 1:tot){
    epsilon <- runif(1, 0, 2*epsilon0)
    L <- ceiling(1/epsilon)
    HMCs <- HMC(theta = theta0, y, epsilon, M)</pre>
    theta0 <- HMCs$theta
13
    thetaPost[s,] <- HMCs$theta
    ProbAcept[s] <- HMCs$Prob</pre>
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
        "% done"))
17 }
18 close(pb)
19 keep <- seq((burnin+1), tot, thin)</pre>
20 thetaF <- coda::mcmc(thetaPost[keep,])</pre>
21 summary (thetaF)
22 plot(thetaF)
23 summary(exp(thetaF[,K]))
24 plot(exp(thetaF[,K]))
25 ProbAceptF <- coda::mcmc(ProbAcept[keep])</pre>
26 summary (ProbAceptF)
```

7. Stochastic volatility model

- Program a sequential importance sampling (SIS) from scratch in the vanilla stochastic volatility model setting $\mu = -10$, $\phi = 0.95$, $\sigma = 0.3$ and T = 250. Check what happen with its performance.
- Modify the sequential Monte Carlo (SMC) to perform multinomial resampling when the effective sample size is lower than 50% the number of particles.

Answer

We observe that, initially, sequential importance sampling performs relatively well. However, particle degeneracy occurs around (t = 50), causing the algorithm's performance to deteriorate rapidly (see Figure 8.3). We

can see in Figure 8.4 how the effective sample size (ESS) of the particles decreases rapidly.

R code. Stochastic volatility model: Sequential importance sampling

```
1 rm(list = ls()); set.seed(010101)
2 T <- 250; K <- 2; mu <- -10; phi <- 0.95; sigma <- 0.3
3 h <- numeric(T); y <- numeric(T)</pre>
4 h[1] <- rnorm(1, mu, sigma / sqrt(1 - phi^2))
5 y[1] <- rnorm(1, 0, exp(h[1] / 2))
6 for (t in 2:T) {
  h[t] \leftarrow mu + phi*(h[t-1]-mu) + rnorm(1, 0, sigma)
    y[t] \leftarrow rnorm(1, 0, sd = exp(0.5*h[t]))
9 }
10 N <- 10000
11 log_Weights <- matrix(NA, N, T) # Log weights</pre>
12 Weights <- matrix(NA, N, T) # Weights</pre>
13 WeightsST <- matrix(NA, N, T) # Normalized weights</pre>
14 particles <- matrix(NA, N, T)</pre>
                                     # Particles
15 logalphas <- matrix(NA, N, T)</pre>
                                     # Incremental importance
      weights
_{\rm 16} ESS <- rep(NA, T) # Effective sample size
particles[, 1] <- rnorm(N, mu, sigma / sqrt(1 - phi^2))
log_Weights[, 1] <- dnorm(y[1], 0, sd = exp(0.5*particles
       [,1]), log = TRUE)
19 Weights[, 1] <- exp(log_Weights[, 1])</pre>
20 WeightsST[, 1] <- Weights[, 1] / sum(Weights[, 1])</pre>
21 ESS[1] <- (sum(WeightsST[, 1]^2))^(-1)
22 for (t in 2:T) {
    particles[, t] <- rnorm(N, mu + phi*(particles[, t - 1] -</pre>
       mu), sigma) # Sample from proposal
    logalphas[, t] \leftarrow dnorm(y[t], 0, sd = exp(0.5*particles[,t
      ]), log = TRUE)
     log_Weights[, t] <- log_Weights[, t - 1] + logalphas[, t]</pre>
     Weights[, t] <- exp(log_Weights[, t])</pre>
    WeightsST[, t] <- Weights[, t] / sum(Weights[, t])</pre>
    ESS[t] \leftarrow (sum(WeightsST[, t]^2))^(-1)
28
29 }
30 FilterDist <- colSums(particles * WeightsST)</pre>
31 SDFilterDist <- (colSums(particles^2 * WeightsST) -</pre>
       FilterDist^2)^0.5
32 MargLik <- colMeans(Weights)</pre>
33 library(dplyr); library(ggplot2); require(latex2exp)
34 ggplot2::theme_set(theme_bw())
35 df <- tibble(t = seq(1, T), mean = FilterDist, lower =
       FilterDist - 1.96*SDFilterDist, upper = FilterDist +
       1.96*SDFilterDist, x_true = h)
36 plot_filtering_estimates <- function(df) {</pre>
    p <- ggplot(data = df, aes(x = t)) + geom_ribbon(aes(ymin</pre>
       = lower, ymax = upper), alpha = 1, fill = "lightblue") +
        geom_line(aes(y = x_true), colour = "black", alpha = 1,
        linewidth = 0.5) + geom_line(aes(y = mean), colour = "
       blue", linewidth = 0.5) +
    ylab(TeX("$h_{t}$")) + xlab("Time")
39
    print(p)
40 }
41 plot_filtering_estimates(df)
42 plot(ESS, type = "1", ylab = "Effective sample size", xlab =
        "Time")
```

154 Time series models

FIGURE 8.3 Stochastic volatility model: Sequential importance sampling (SIS).

 ${\bf FIGURE~8.4}$ Stochastic volatility model: Effective sample size (ESS) of the particles.

This code shows how to program the SMC algorithm performing multinomial resampling when the effective sample size es lower than 50% the initial number of particles. It seems that in this example is better to perform re-

sampling every time period as the mean recursion (blue and purple lines) are not good following in state (black line). However, the bands corresponding to plus/minus two standard deviations (light blue shading) encompass the state vector; although, it is too wide.

R code. Stochastic volatility model: Sequential Monte Carlo

```
1 rm(list = ls()); set.seed(010101)
2 T <- 1250; mu <- -10; phi <- 0.95; sigma <- 0.3
3 h <- numeric(T); y <- numeric(T)</pre>
4 h[1] <- rnorm(1, mu, sigma / sqrt(1 - phi^2))
5 y[1] \leftarrow rnorm(1, 0, exp(h[1] / 2))
6 for (t in 2:T) {
    h[t] \leftarrow mu + phi*(h[t-1]-mu) + rnorm(1, 0, sigma)
    y[t] \leftarrow rnorm(1, 0, sd = exp(0.5*h[t]))
9 }
10 N <- 10000
11 log_Weights <- matrix(NA, N, T) # Log weights</pre>
12 Weights <- matrix(NA, N, T) # Weights</pre>
13 WeightsST <- matrix(NA, N, T) # Normalized weights</pre>
14 WeightsSTT <- matrix(1/N, N, T) # Normalized weights bar
15 particles <- matrix(NA, N, T)</pre>
                                      # Particles
particlesT <- matrix(NA, N, T)</pre>
                                      # Particles bar
17 logalphas <- matrix(NA, N, T)
                                     # Incremental import. weig.
_{18} ESS <- rep(NA, T) # Efective sample size _{19} cutoff <- 0.5
20 particles[, 1] <- rnorm(N, mu, sigma / sqrt(1 - phi^2))</pre>
log_Weights[, 1] \leftarrow dnorm(y[1], 0, sd = exp(0.5*particles))
       [,1]), log = TRUE)
22 Weights[, 1] <- exp(log_Weights[, 1])</pre>
23 WeightsST[, 1] <- Weights[, 1] / sum(Weights[, 1])</pre>
24 ESS[1] <- (sum(WeightsST[, 1]^2))^(-1)
25 ind <- sample(1:N, size = N, replace = TRUE, prob =
       WeightsST[, 1]) # Resample
26 particles[, 1] <- particles[, 1] # Resampled particles
27 particlesT[, 1] <- particles[ind, 1] # Resampled particles
28 WeightsST[, 1] <- rep(1/N, N) # Resampled weights
29 pb <- winProgressBar(title = "progress bar", min = 0, max =
      T, width = 300)
30 for (t in 2:T) {
     particles[, t] <- rnorm(N, mu + phi*(particles[, t - 1] -</pre>
       mu), sigma) # Sample from proposal
     logalphas[, t] \leftarrow dnorm(y[t], 0, sd = exp(0.5*particles[,t])
       ]), log = TRUE)
     Weights[, t] <- exp(logalphas[, t])</pre>
     WeightsST[, t] <- Weights[, t] / sum(Weights[, t])</pre>
     ESS[t] <- (sum(WeightsST[, t]^2))^(-1)</pre>
     particlesT[, t] <- particles[, t]</pre>
     if(ESS[t] < N*cutoff){</pre>
37
       ind <- sample(1:N, size = N, replace = TRUE, prob =</pre>
       WeightsST[, t])
       particles[, 1:t] <- particles[ind, 1:t]</pre>
39
40
       WeightsST[, t] <- 1/N
    }else{if(t == T & ESS[t] < N*cutoff)</pre>
41
       ind <- sample(1:N, size = N, replace = TRUE, prob =</pre>
       WeightsST[, t])
       particlesT[, 1:t] <- particles[ind, 1:t]</pre>
43
44
     setWinProgressBar(pb, t, title=paste( round(t/T*100, 0), "
45
46 }
47 close(pb)
```

R code. Stochastic volatility model: Sequential Monte Carlo

```
FilterDist <- colSums(particles * WeightsST)</pre>
  SDFilterDist <- (colSums(particles^2 * WeightsST) -</pre>
       FilterDist^2)^0.5
 FilterDistT <- colSums(particlesT * WeightsSTT)</pre>
 4 SDFilterDistT <- (colSums(particlesT^2 * WeightsSTT) -
      FilterDistT^2)^0.5
5 MargLik <- colMeans(Weights)</pre>
6 plot(MargLik, type = "1")
7 plot(ESS, type = "1")
8 library(dplyr)
9 library(ggplot2)
require(latex2exp)
ggplot2::theme_set(theme_bw())
12 Tfig <- 250
13 keepFig <- 1:Tfig
14 df <- tibble(t = keepFig,</pre>
15 mean = FilterDist[keepFig],
16 lower = FilterDist[keepFig] - 2*SDFilterDist[keepFig],
upper = FilterDist[keepFig] + 2*SDFilterDist[keepFig],
18 meanT = FilterDistT[keepFig],
19 lowerT = FilterDistT[keepFig] - 2*SDFilterDistT[keepFig],
20 upperT = FilterDistT[keepFig] + 2*SDFilterDistT[keepFig],
21 x_true = h[keepFig])
22 plot_filtering_estimates <- function(df) {</pre>
    p \leftarrow ggplot(data = df, aes(x = t)) +
    geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 1,
    fill = "lightblue") +
    geom_line(aes(y = x_true), colour = "black", alpha = 1,
26
    linewidth = 0.5) +
    geom_line(aes(y = mean), colour = "blue", linewidth = 0.5)
     geom_line(aes(y = meanT), colour = "purple", linewidth =
    ylab(TeX("$h_{t}$")) + xlab("Time")
31
    print(p)
32 }
33 plot_filtering_estimates(df)
```

8. Estimate the vanilla stochastic volatility model using the dataset 17Ex-cRate.csv provided by [28] of the exchange rate log daily returns from US-D/EUR, USD/GBP and GBP/EUR one year before and after the WHO declared the COVID-19 pandemic on 11 March 2020.

Answer

The following code shows the results of modeling the exchange rate log

158 Time series models

FIGURE 8.5 Stochastic volatility model: Sequential Monte Carlo (SMC).

daily returns from USD/EUR using a stochastic volatility model. Similar code can be used to estimate the other two models.

R code. Stochastic volatility model: Exchange rate log daily returns from USD/EUR

```
1 rm(list = ls()); set.seed(010101)
2 DataExcRate <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/17ExcRate.csv
       ", sep = ",", header = TRUE, quote = "")
3 attach (DataExcRate)
4 MCMC <- 10000; burnin <- 10000; thin <- 5
5 y <- USDEUR - mean(USDEUR)</pre>
6 plot(y, type = "1")
7 res <- stochvol::svsample(y, draws = MCMC, burnin = burnin,</pre>
      thin = thin, priormu = c(0, 100), priorsigma = c(1), priorphi = c(5, 1.5), priorbeta = c(0, 10000))
8 summary(res[["para"]][[1]][,-c(4,5)])
9 Iterations = 10005:20000
10 Thinning interval = 5
11 Number of chains = 1
12 Sample size per chain = 2000
13 1. Empirical mean and standard deviation for each variable,
_{14} plus standard error of the mean:
15 Mean
             SD Naive SE Time-series SE
         -11.2886 0.28916 0.0064657
16 mu
                                             0.006466
           0.9618 0.02202 0.0004923
17 phi
                                             0.001421
          0.1664 0.04501 0.0010064
                                             0.003722
18 sigma
19 2. Quantiles for each variable:
20
           2.5%
                     25%
                                50%
                                          75%
                                                 97.5%
         -11.81067 -11.4287 -11.2902 -11.1448 -10.7699
21 mu
           0.90719
                    0.9512
                                0.9657
                                          0.9774
                                                    0.9913
22 phi
           0.09615
                      0.1327
                                0.1607
                                          0.1926
23 sigma
24 plot(res)
25 ht <- res[["latent"]][[1]]
26 library(dplyr)
27 library(ggplot2)
28 require(latex2exp)
29 ggplot2::theme_set(theme_bw())
30 x_means <- colMeans(ht)</pre>
31 x_quantiles <- apply(ht, 2, function(x) quantile(x, probs =</pre>
      c(0.025, 0.975)))
32 df <- tibble(t = 1:length(y),
33 mean = x_means,
34 lower = x_quantiles[1, ],
35 upper = x_quantiles[2, ])
36 plot_filtering_estimates <- function(df) {</pre>
   p \leftarrow ggplot(data = df, aes(x = t)) +
     geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 1,
    fill = "lightblue") +
39
    geom_line(aes(y = mean), colour = "blue", linewidth = 0.5)
    ylab(TeX("$h_{t}$")) + xlab("Time")
42
    print(p)
43 }
44 plot_filtering_estimates(df)
```


FIGURE 8.6

Stochastic volatility model: Exchange rate log daily returns from USD/EUR.

9. Simulate the VAR(1) process

$$\begin{bmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \end{bmatrix} = \begin{bmatrix} 2.8 \\ 2.2 \\ 1.3 \end{bmatrix} + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} \begin{bmatrix} y_{1t-1} \\ y_{2t-1} \\ y_{3t-1} \end{bmatrix} + \begin{bmatrix} \mu_{1t} \\ \mu_{2t} \\ \mu_{3t} \end{bmatrix},$$

where
$$\Sigma = \begin{bmatrix} 2.25 & 0 & 0 \\ 0 & 1 & 0.5 \\ 0 & 0.5 & 0.74 \end{bmatrix}$$
.

- Use vague independent priors setting $\beta_0 = \mathbf{0}$, $B_0 = 100I$, $V_0 = 5I$ and $\alpha_0 = 3$, and estimate a VAR(1) model using the rsurGibbs function from the package bayesm. Then, program from scratch algorithms to perform inference of the forecast error and ortogonalized impulse response functions, and compare with the population impulse response functions, that is, using the population parameters.
- Using the previous setting perform inference of the *forecast error* and the *ortogonalized* impulse responses using the package *bvartools*.

Answer

Using the recursion $\Phi_s = \sum_{l=1}^s \Phi_{s-l} A_l$, $A_l = 0$, l > p and s = 1, 2, ..., we get $\Phi_s = A_1^s$. In addition, we know that $\Theta_s = \Phi_S P$. Then, we can get these impulse response functions.

The following code shows how to perform from scratch the impulse response

functions. Figure 8.7 shows the forecast error impulse response of y_{2t} to shocks in μ_{3t} . We see that the 95% (blue shadow) and 90% (light blue shadow) credible intervals of the impulse response functions embrace the true impulse response (black line); although the mean impulse response (blue line) overestimates the true impulse. In addition, we can see that the results from the bvartools package have the same patterns compared to the ones that we get programming the algorithm from scratch. Remember that the bvartools package uses the inverse Wishart distribution as prior for Σ , where the hyperparameters are the degrees of freedom of the error term, and the prior error variance of endogenous variables.

R code. Vector autoregressive model: Simulation

```
1 rm(list = ls()); set.seed(010101)
2 T <- 300; M <- 3
_3 SIGMA <- matrix(c(2.25, 0, 0, 0, 1, 0.5, 0, 0.5, 0.74), M, M
4 U <- MASS::mvrnorm(T, rep(0, M), SIGMA)
5 A <- matrix(c(0.5, 0.1, 0, 0, 0.1, 0.2, 0, 0.3, 0.3), M, M)
6 v <- c(1.4, 1.9, 1.1); Y <- matrix(NA, T, M)
7 Y[1, ] <- solve(diag(M)-A)%*%v + U[1,]</pre>
8 for(t in 2:T){
   Y[t, ] \leftarrow v + A%*%Y[t-1,] + U[t,]
10 }
11 plot(Y[,1], type = "1"); plot(Y[,2], type = "1"); plot(Y
       [,3], type = "1")
12 y1 <- Y[-1,1]; y2 <- Y[-1,2]; y3 <- Y[-1,3]
13 X1 <- cbind(1, lag(Y)); X1 <- X1[-1,]
14 X2 <- cbind(1, lag(Y)); X2 <- X2[-1,]
15 X3 <- cbind(1, lag(Y)); X3 <- X3[-1,]
16 regdata <- NULL
17 regdata[[1]] <- list(y = y1, X = X1); regdata[[2]] <- list(y</pre>
        = y2, X = X2); regdata[[3]] <- list(y = y3, X = X3)</pre>
18 M <- length(regdata); K1 <- dim(X1)[2]; K2 <- dim(X2)[2]; K3
        <- dim(X3)[2]
19 K <- K1 + K2 + K3
20 # Hyperparameters
21 b0 <- rep(0, K); c0 <- 100
22 BO <- c0*diag(K); V <- 5*diag(M); aO <- M
23 Prior <- list(betabar = b0, A = solve(B0), nu = a0, V = V)
24 #Posterior draws
25 MCMC <- 10000; thin <- 5; burnin <- 1000; tot <- MCMC +
      burnin
26 Mcmc <- list(R = tot, keep = thin)
27 PosteriorDraws <- bayesm::rsurGibbs(Data = list(regdata =</pre>
      regdata), Mcmc = Mcmc, Prior = Prior)
28 keep <- seq(round(burnin/thin)+1, round(tot/thin))</pre>
29 Bs <- PosteriorDraws[["betadraw"]][keep,]
30 SIGMAs <- PosteriorDraws[["Sigmadraw"]][keep,]
31 S <- dim(Bs)[1]
32 As <- array(NA, c(M, M, S))
33 for(s in 1:S){
    As[,,s] \leftarrow matrix(Bs[s, -c(1, 5, 9)], M, M, byrow = TRUE)
34
35 }
36 # Impulse response functions
37 H <- 10; Ptrue <- t(chol(SIGMA))
38 Phistrue <- array(NA, c(M, M, H))
39 Phistrue[,,1] <- diag(M); PhistrueAccum <- Phistrue
40 PhistrueAccum[,,1] <- diag(M)
11 Thetastrue <- Phistrue; Thetastrue[,,1] <- Ptrue
12 ThetastrueAccum <- Thetastrue; ThetastrueAccum[,,1] <-
      Ptrue
43 for(h in 2:H){
    Phistrue[,,h] <- Phistrue[,,h-1]%*%A
    PhistrueAccum[,,h] <- PhistrueAccum[,,h-1] + Phistrue[,,h]
    Thetastrue[,,h] <- Phistrue[,,h]%*%Ptrue
    PhistrueAccum[,,h] <- ThetastrueAccum[,,h-1] + Thetastrue
48 }
49 P <- array(NA, c(M, M, S))
```

R code. Vector autoregressive model: Simulation

```
1 for(s in 1:S){
   P[,,s] <- t(chol(matrix(SIGMAs[s,], M, M)))
4 Phis <- list(); PhisAcum <- list()</pre>
5 Thetas <- list(); ThetasAcum <- list()</pre>
6 for(h in 0:H){
    if(h == 0){
      Phis[[h+1]] <- array(diag(M), c(M,M,S))</pre>
      Thetas <- Phis
      for(s in 1:S){
10
         Thetas [[h+1]][,,s] <- Phis [[h+1]][,,s]%*%P[,,s]
11
12
13
      PhisAcum[[h+1]] <- Phis[[h+1]]
      ThetasAcum[[h+1]] <- Thetas[[h+1]]
14
15
      Phis[[h+1]] <- array(diag(M), c(M,M,S))
16
      Thetas[[h+1]] <- Phis[[h+1]]
17
      for(s in 1:S){
18
         Phis[[h+1]][,,s] <- Phis[[h]][,,s]%*%As[,,s]
19
20
         Thetas [[h+1]][,,s] \leftarrow Phis[[h+1]][,,s] %*%P[,,s]
21
      PhisAcum[[h+1]] <- PhisAcum[[h]] + Phis[[h+1]]</pre>
22
      ThetasAcum[[h+1]] <- ThetasAcum[[h]] + Thetas[[h+1]]</pre>
23
24
25 }
26 library(dplyr); library(ggplot2); require(latex2exp)
ggplot2::theme_set(theme_bw())
28 plot_filtering_estimates <- function(df) {</pre>
p <- ggplot(data = df, aes(x = t)) +
    geom_ribbon(aes(ymin = lower1, ymax = upper1), alpha = 1,
    fill = "blue") +
31
    geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 1,
32
    fill = "lightblue") +
33
34
    geom_line(aes(y = x_true), colour = "black", alpha = 1,
    linewidth = 0.5) +
35
    geom_line(aes(y = mean), colour = "blue", linewidth = 0.5)
36
    ylab("Impulse response") + xlab("Time") + xlim(0,H-1)
    print(p)
38
39 }
```

R code. Vector autoregressive model: Simulation

```
1 IR <- function(m, j, Accumulated = "FALSE", Type = "Ordinary</pre>
    if(Type == "Cholesky"){
  IRtrue <- Thetastrue[m,j,]</pre>
       if (Accumulated == FALSE) {
         RES <- Thetas; IRtrue <- IRtrue
       }else{
         RES <- ThetasAcum; IRtrue <- cumsum(IRtrue)
       Mean <- sapply(1:H, function(h){mean(RES[[h]][m,j,])})</pre>
       LimInf1 <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
10
       ,], 0.025)})
       LimSup1 <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
       ,], 0.975)})
       LimInf <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
       ,], 0.05)})
       LimSup <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
13
       ,], 0.95)})
    }else{
14
15
       IRtrue <- Phistrue[m,j,]</pre>
       if(Accumulated == FALSE){
16
         RES <- Phis; IRtrue <- IRtrue
17
18
       }else{
         RES <- PhisAcum; IRtrue <- cumsum(IRtrue)
19
20
21
       Mean <- sapply(1:H, function(h){mean(RES[[h]][m,j,])})</pre>
22
       LimInf1 <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
       ,], 0.025)})
       LimSup1 <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
23
       ,], 0.975)})
       LimInf <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
24
       ,], 0.05)})
       LimSup <- sapply(1:H, function(h){quantile(RES[[h]][m,j</pre>
25
       ,], 0.95)})
26
    df <- tibble(t = 0:(H-1), mean = Mean, lower1 = LimInf1,</pre>
27
       upper1 = LimSup1, lower = LimInf, upper = LimSup, x_true
        = IRtrue)
     Fig <- plot_filtering_estimates(df)</pre>
29
     return(Fig)
30 }
31 m <- 2; j <- 3
32 IR(m,j, Accumulated = "FALSE", Type = "Cholesky")
33 Ynew <- ts(Y)
34 model <- bvartools::gen_var(Ynew, p = 1, deterministic = "
       const", iterations = MCMC, burnin = burnin) # Model
35 model <- bvartools::add_priors(model, coef = list(v_i = b0</pre>
       [1], v_i_det = b0[1]), sigma = list(df = a0, scale = V
       [1,1]/a0)) # Prior
36 object <- bvartools::draw_posterior(model) # Pposterior</pre>
37 ir <- bvartools::irf.bvar(object, impulse = "Series 2",
       response = "Series 3") # Calculate IR
38 plot(ir) # Plot IR
```


FIGURE 8.7 Forecast error impulse response: Response in y_{2t} to shock in μ_{3t} .

Longitudinal/Panel data models

Solutions of Exercises

1. Show that the posterior distribution of $\boldsymbol{\beta}|\sigma^2, \boldsymbol{D}$ is $N(\boldsymbol{\beta}_n, \boldsymbol{B}_n)$, where $\boldsymbol{B}_n = (\boldsymbol{B}_0^{-1} + \sum_{i=1}^N \boldsymbol{X}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{X}_i)^{-1}$ and $\boldsymbol{\beta}_n = \boldsymbol{B}_n(\boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0 + \sum_{i=1}^N \boldsymbol{X}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{y}_i)$.

Answer

$$\begin{split} \pi(\boldsymbol{\beta}|\sigma^2, \boldsymbol{D}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W}) &\propto \exp\left\{-\frac{1}{2}\sum_{i=1}^N (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta})^\top \boldsymbol{V}_i^{-1} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta})\right\} \\ &\times \exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)^\top \boldsymbol{B}_0^{-1} (\boldsymbol{\beta} - \boldsymbol{\beta}_0)\right\} \\ &\propto \exp\left\{-\frac{1}{2}\left(-2\boldsymbol{\beta}^\top \left(\sum_{i=1}^N \boldsymbol{X}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{y}_i + \boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0\right) + \boldsymbol{\beta}^\top \left(\sum_{i=1}^N \boldsymbol{X}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{X}_i + \boldsymbol{B}_0^{-1}\right) \boldsymbol{\beta}\right)\right\} \\ &= \exp\left\{-\frac{1}{2}(-2\boldsymbol{\beta}^\top \boldsymbol{B}_n^{-1} \boldsymbol{B}_n \left(\sum_{i=1}^N \boldsymbol{X}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{y}_i + \boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0\right) + \boldsymbol{\beta}^\top \boldsymbol{B}_n^{-1} \boldsymbol{\beta}\right)\right\} \\ &= \exp\left\{-\frac{1}{2}(-2\boldsymbol{\beta}^\top \boldsymbol{B}_n^{-1} \boldsymbol{\beta}_n + \boldsymbol{\beta}^\top \boldsymbol{B}_n^{-1} \boldsymbol{\beta})\right\}. \end{split}$$

We can complete the square in this expression by adding and subtracting $\beta_n^{\top} B_n^{-1} \beta_n$. Thus,

$$\pi(\boldsymbol{\beta}|\sigma^2, \boldsymbol{D}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W}) \propto \exp\left\{-\frac{1}{2}(-2\boldsymbol{\beta}^{\top}\boldsymbol{B}_n^{-1}\boldsymbol{\beta}_n + \boldsymbol{\beta}^{\top}\boldsymbol{B}_n^{-1}\boldsymbol{\beta} + \boldsymbol{\beta}_n^{\top}\boldsymbol{B}_n^{-1}\boldsymbol{\beta}_n - \boldsymbol{\beta}_n^{\top}\boldsymbol{B}_n^{-1}\boldsymbol{\beta}_n)\right\}$$
$$\propto \exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_n)^{\top}\boldsymbol{B}_n^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_n)\right\}.$$

This is the kernel of a multivariate random variable with mean β_n and variance matrix B_n .

- 2. The relation between productivity and public investment example continues
 - Perform inference of this example using our GUI.

- Program from scratch a Gibbs sampling algorithm to perform this application. Set $\beta_0 = \mathbf{0}_5$, $B_0 = I_5$, $\alpha_0 = \delta_0 = 0.001$, $d_0 = 5$ and $D_0 = I_1$.
- Perform inference in this example assuming that $\mu_{it}|\tau_{it} \sim N(0, \sigma^2/\tau_{it})$ and $\tau_{it} \sim G(v/2, v/2)$ setting v=5.

Answer

R code. The relationship between productivity and public investment, programming from scratch the Gibbs sampler

```
1 rm(list = ls())
2 set.seed(12345)
3 DataGSP <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/8PublicCap.
       csv", sep = ",", header = TRUE, quote = "")
4 attach(DataGSP)
5 N <- length(unique(id))
6 y <- log(gsp)
7 NT <- length(y)</pre>
8 X <- cbind(1, log(pcap), log(pc), log(emp), unemp)</pre>
9 K1 <- dim(X)[2]
10 W <- matrix(rep(1, NT), NT, 1)
11 K2 \leftarrow dim(W)[2]
12 mcmc <- 10000; burnin <- 5000; thin <- 1; tot <- mcmc +
13 b0 <- rep(0, K1); B0 <- diag(K1); B0i <- solve(B0)
14 r0 <- 5; R0 <- diag(K2); a0 <- 0.001; d0 <- 0.001
15 PostBeta <- function(sig2, D){</pre>
    XVX <- matrix(0, K1, K1)
    XVy <- matrix(0, K1, 1)</pre>
17
    for(i in 1:N){
18
      ids <- which (id == i)
19
       Ti <- length(ids)
20
       Wi <- W[ids, ]
Vi <- sig2*diag(Ti) + Wi%*%D%*%t(Wi)</pre>
21
22
       ViInv <- solve(Vi)
23
       Xi <- X[ids, ]</pre>
24
       XVXi <- t(Xi)%*%ViInv%*%Xi
25
       XVX <- XVX + XVXi
26
       yi <- y[ids]
27
       XVyi <- t(Xi)%*%ViInv%*%yi
28
       XVy <- XVy + XVyi
29
30
    Bn <- solve(BOi + XVX)
31
    bn <- Bn%*%(B0i%*%b0 + XVy)
32
    Beta <- MASS::mvrnorm(1, bn, Bn)
33
    return(Beta)
34
35 }
```

R code. The relationship between productivity and public investment, programming from scratch the Gibbs sampler

```
1 Postb <- function(Beta, sig2, D){</pre>
    Di <- solve(D)
     bis <- matrix(0, N, K2)
    for(i in 1:N){
       ids <- which (id == i)
       Wi <- W[ids, ]
       Xi <- X[ids, ]</pre>
       yi <- y[ids]
       Wtei <- sig2^(-1)*t(Wi)%*%(yi - Xi%*%Beta)
10
       Bni <- solve(sig2^(-1)*t(Wi)%*%Wi + Di)</pre>
       bni <- Bni%*%Wtei
11
       bi <- MASS::mvrnorm(1, bni, Bni)
12
13
       bis[i, ] <- bi
14
15
    return(as.matrix(bis))
16 }
17 PostSig2 <- function(Beta, bs){</pre>
    an \leftarrow a0 + 0.5*NT
    ete <- 0
19
     for(i in 1:N){
20
       ids <- which(id == i)
       Xi <- X[ids, ]</pre>
22
       yi <- y[ids]
23
       Wi <- W[ids, ]
24
       ei <- yi - Xi%*%Beta - Wi*bs[i, ]
25
       etei <- t(ei)%*%ei
26
       ete <- ete + etei
27
28
    dn \leftarrow d0 + 0.5*ete
29
     sig2 <- MCMCpack::rinvgamma(1, shape = an, scale = dn)</pre>
    return(sig2)
31
32 }
33 PostD <- function(bs){</pre>
    rn <- r0 + N
34
35
     btb <- matrix(0, K2, K2)
    for(i in 1:N){
36
       bsi <- bs[i, ]
37
       btbi <- bsi%*%t(bsi)
38
      btb <- btb + btbi
39
40
    Rn \leftarrow d0*R0 + btb
41
42
    Sigma <- MCMCpack::riwish(v = rn, S = Rn)
    return(Sigma)
43
44 }
```

R code. The relationship between productivity and public investment, programming from scratch the Gibbs sampler

```
PostBetas <- matrix(0, tot, K1); PostDs <- matrix(0, tot, K2
       *(K2+1)/2)
2 PostSig2s \leftarrow rep(0, tot); Postbs \leftarrow array(0, c(N, K2, tot))
3 RegLS <- lm(y ~ X - 1); SumLS <- summary(RegLS)</pre>
4 Beta <- SumLS[["coefficients"]][,1]
5 sig2 <- SumLS[["sigma"]]^2; D <- diag(K2)</pre>
6 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
 7 for(s in 1:tot){
     bs <- Postb(Beta = Beta, sig2 = sig2, D = D)
    D <- PostD(bs = bs)</pre>
    Beta <- PostBeta(sig2 = sig2, D = D)</pre>
     # Beta <- PostBetaNew(sig2 = sig2, D = D)</pre>
     sig2 <- PostSig2(Beta = Beta, bs = bs)</pre>
     PostBetas[s,] <- Beta
13
     PostDs[s,] <- matrixcalc::vech(D)</pre>
     PostSig2s[s] <- sig2
     Postbs[, , s] <- bs
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
18 }
19 close(pb)
20 keep <- seq((burnin+1), tot, thin)</pre>
21 Bs <- PostBetas[keep,]; Ds <- PostDs[keep,]</pre>
22 bs <- Postbs[, , keep]; sig2s <- PostSig2s[keep]</pre>
23 summary(coda::mcmc(Bs))
24 Quantiles for each variable:
                                  50%
           2.5%
                       25%
                                             75%
                                                      97.5%
        1.727227
                    1.934457
                               2.037411
                                          2.138829
                                                     2.325961
26 var1
       -0.033664
                    0.001015
                               0.018974
                                          0.037977
                                                     0.076626
                   0.303619
        0.274521
                              0.318302
                                          0.332881
                                                     0.363323
28 var3
        0.652937
                   0.692479 0.712605
                                          0.730885
                                                     0.768415
29 var4
30 var5 -0.008724 -0.007265 -0.006548 -0.005844 -0.004508
31 summary(coda::mcmc(Ds))
32 summary(coda::mcmc(sig2s))
33 # Convergence diagnostics
34 coda::geweke.diag(Bs)
35 coda::raftery.diag(Bs,q=0.5,r=0.05,s = 0.95)
36 coda::heidel.diag(Bs)
```

The likelihood function in the case with heteroskedasticity is proportional

to

$$\begin{aligned} p(\boldsymbol{\beta}, \boldsymbol{b}, \sigma^2, \boldsymbol{\tau} | \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W}) &\propto \prod_{i=1}^N |\sigma^2 \boldsymbol{\Psi}_i|^{-1/2} \\ &\times \exp \left\{ -\frac{1}{2\sigma^2} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{W}_i \boldsymbol{b}_i)^\top \boldsymbol{\Psi}_i^{-1} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{W}_i \boldsymbol{b}_i) \right\}, \end{aligned}$$

where $\boldsymbol{b} = [\boldsymbol{b}_1^\top, \boldsymbol{b}_2^\top, \dots, \boldsymbol{b}_N^\top]^\top$, $\boldsymbol{\tau} = [\tau_{it}]^\top$ and $\boldsymbol{\Psi}_i = diag\{\tau_{it}^{-1}\}$.

Following the same procedure as in Section 9.1 of the book, and Exercise 1 of this chapter, we have that

$$\boldsymbol{\beta}|\sigma^2, \boldsymbol{\tau}, \boldsymbol{D}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W} \sim N(\boldsymbol{\beta}_n, \boldsymbol{B}_n),$$

where $\boldsymbol{B}_n = (\boldsymbol{B}_0^{-1} + \sum_{i=1}^N \boldsymbol{X}_i^{\top} \boldsymbol{V}_i^{-1} \boldsymbol{X}_i)^{-1}, \ \boldsymbol{\beta}_n = \boldsymbol{B}_n (\boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0 + \sum_{i=1}^N \boldsymbol{X}_i^{\top} \boldsymbol{V}_i^{-1} \boldsymbol{y}_i) \text{ and } \boldsymbol{V}_i = \sigma^2 \boldsymbol{\Psi}_i + \sigma_b^2 \boldsymbol{i}_{T_i} \boldsymbol{i}_{T_i}^{\top}.$

$$\boldsymbol{b}_i|\boldsymbol{\beta}, \sigma^2, \boldsymbol{\tau}, \boldsymbol{D}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W} \sim N(\boldsymbol{b}_{ni}, \boldsymbol{B}_{ni}),$$

where $\boldsymbol{B}_{ni} = (\sigma^{-2} \boldsymbol{W}_i^{\top} \boldsymbol{\Psi}_i^{-1} \boldsymbol{W}_i + \boldsymbol{D}^{-1})^{-1}$ and $\boldsymbol{b}_{ni} = \boldsymbol{B}_{ni} (\sigma^{-2} \boldsymbol{W}_i^{\top} \boldsymbol{\Psi}_i^{-1} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta}))$.

$$\sigma^2 | \boldsymbol{\beta}, \boldsymbol{b}, \boldsymbol{\tau}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W} \sim IG(\alpha_n, \delta_n),$$

where $\alpha_n = \alpha_0 + \frac{1}{2} \sum_{i=1}^N T_i$ and $\delta_n = \delta_0 + \frac{1}{2} \sum_{i=1}^N (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{W}_i \boldsymbol{b}_i)^{\top} \boldsymbol{\Psi}_i^{-1} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{W}_i \boldsymbol{b}_i)$.

$$D|b \sim IW(d_n, D_n),$$

where $d_n = d_0 + N$ and $\boldsymbol{D}_n = d_0 \boldsymbol{D}_0 + \sum_{i=1}^N \boldsymbol{b}_i \boldsymbol{b}_i^{\top}$. And

$$\tau_{it}|\sigma^2, \boldsymbol{\beta}, \boldsymbol{b}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W} \sim G(v_{1n}/2, v_{2ni}/2),$$

where
$$v_{1n} = v + 1$$
 and $v_{2ni} = v + \sigma^{-2}(y_{it} - \boldsymbol{x}_{it}^{\top}\boldsymbol{\beta} - \boldsymbol{w}_{it}^{\top}\boldsymbol{b}_{i})^{2}$.

The following code shows to implement this for the productivity application. The results of the *fixed effects* are very similar compared to the results without taken into account heteroskedasticity. R code. The relationship between productivity and public investment, programming from scratch the Gibbs sampler with heteroskedasticity

```
1 rm(list = ls())
2 set.seed(12345)
3 DataGSP <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/8PublicCap.
       csv", sep = ",", header = TRUE, quote = "")
4 attach(DataGSP)
5 N <- length(unique(id))
6 y <- log(gsp)
7 NT <- length(y)</pre>
8 X <- cbind(1, log(pcap), log(pc), log(emp), unemp)</pre>
9 K1 <- dim(X)[2]
10 W <- matrix(rep(1, NT), NT, 1)
11 K2 <- dim(W)[2]
12 mcmc <- 10000; burnin <- 5000; thin <- 1; tot <- mcmc +
13 b0 <- rep(0, K1); B0 <- diag(K1); B0i <- solve(B0)
14 r0 <- 5; R0 <- diag(K2); a0 <- 0.001; d0 <- 0.001; v <- 5
15 # Gibbs by hand
16 PostBeta <- function(sig2, D, tau){</pre>
    XVX <- matrix(0, K1, K1)</pre>
    XVy <- matrix(0, K1, 1)</pre>
18
    for(i in 1:N){
19
      ids <- which(id == i)
20
       Ti <- length(ids)
21
       Wi <- W[ids, ]
22
       taui <- tau[ids]
23
       Vi <- sig2*solve(diag(1/taui)) + Wi%*%D%*%t(Wi)
24
      ViInv <- solve(Vi)
25
       Xi <- X[ids, ]</pre>
26
       XVXi <- t(Xi)%*%ViInv%*%Xi
      XVX <- XVX + XVXi
28
29
      yi <- y[ids]
       XVyi <- t(Xi)%*%ViInv%*%yi
30
31
      XVy <- XVy + XVyi
32
    Bn <- solve(B0i + XVX)
33
    bn <- Bn%*%(B0i%*%b0 + XVy)
34
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
35
    return (Beta)
36
37 }
```

R code. The relationship between productivity and public investment, programming from scratch the Gibbs sampler with heteroskedasticity

```
1 Postb <- function(Beta, sig2, D, tau){</pre>
    Di <- solve(D);
                        bis <- matrix(0, N, K2)
     for(i in 1:N){
       ids <- which (id == i)
       Wi <- W[ids, ]; Xi <- X[ids, ]
yi <- y[ids]; taui <- tau[ids]</pre>
       Taui <- solve(diag(1/taui))
       Wtei <- sig2^(-1)*t(Wi)%*%Taui%*%(yi - Xi%*%Beta)
       Bni <- solve(sig2^(-1)*t(Wi)%*%Taui%*%Wi + Di)</pre>
       bni <- Bni%*%Wtei
       bi <- MASS::mvrnorm(1, bni, Bni)
       bis[i, ] <- bi
12
13
    return(bis)
14
15 }
16 PostSig2 <- function(Beta, bs, tau){</pre>
    an \leftarrow a0 + 0.5*NT; ete \leftarrow 0
17
     for(i in 1:N){
       ids <- which (id == i)
19
       Xi <- X[ids, ]; yi <- y[ids]
Wi <- W[ids, ]; taui <- tau[ids]</pre>
20
21
       Taui <- solve(diag(1/taui))</pre>
22
23
       ei <- yi - Xi%*%Beta - Wi*bs[i]
       etei <- t(ei)%*%Taui%*%ei
24
25
       ete <- ete + etei
26
    dn \leftarrow d0 + 0.5*ete
    sig2 <- MCMCpack::rinvgamma(1, shape = an, scale = dn)</pre>
    return(sig2)
29
30 }
31 PostD <- function(bs){</pre>
    rn <- r0 + N
32
    btb <- matrix(0, K2, K2)
33
     for(i in 1:N){
34
35
       bsi <- bs[i, ]
       btbi <- bsi%*%t(bsi)
36
       btb <- btb + btbi
37
38
    Rn \leftarrow d0*R0 + btb
39
    Sigma <- MCMCpack::riwish(v = rn, S = Rn)
40
    return(Sigma)
41
42 }
43 PostTau <- function(sig2, Beta, bs){
    v1n <- v + 1
44
     v2n <- NULL
45
     for(i in 1:NT){
46
       Xi <- X[i, ]; yi <- y[i]
       Wi <- W[i, ]; bi <- bs[id[i],]
48
       v2ni <- v + sig2^(-1)*(yi - Xi%*%Beta - Wi%*%bi)^2
49
50
       v2n <- c(v2n, v2ni)
51
    tau \leftarrow rgamma(NT, shape = rep(v1n/2, NT), rate = v2n/2)
53
    return(tau)
54 }
```

R code. The relationship between productivity and public investment, programming from scratch the Gibbs sampler with heteroskedasticity

```
PostBetas <- matrix(0, tot, K1); PostDs <- matrix(0, tot, K2</pre>
      *(K2+1)/2)
2 PostSig2s <- rep(0, tot); Postbs <- array(0, c(N, K2, tot))</pre>
3 PostTaus <- matrix(0, tot, NT); RegLS <- lm(y ~ X - 1)</pre>
4 SumLS <- summary(RegLS); Beta <- SumLS[["coefficients"]][,1]
5 sig2 <- SumLS[["sigma"]]^2; D <- diag(K2)
6 tau \leftarrow rgamma(NT, shape = v/2, rate = v/2)
7 pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      tot, width = 300)
8 for(s in 1:tot){
    bs <- Postb(Beta = Beta, sig2 = sig2, D = D, tau = tau)
    D <- PostD(bs = bs)</pre>
    Beta <- PostBeta(sig2 = sig2, D = D, tau = tau)
    sig2 <- PostSig2(Beta = Beta, bs = bs, tau = tau)</pre>
     tau <- PostTau(sig2 = sig2, Beta = Beta, bs = bs)
    PostBetas[s,] <- Beta
    PostDs[s,] <- matrixcalc::vech(D)</pre>
    PostSig2s[s] <- sig2
    Postbs[, , s] <- bs
     PostTaus[s,] <- tau
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
20 }
21 close(pb)
22 keep <- seq((burnin+1), tot, thin)</pre>
23 Bs <- PostBetas[keep,]
24 Ds <- PostDs[keep,]</pre>
25 bs <- Postbs[, , keep]
26 sig2s <- PostSig2s[keep]
27 taus <- PostTaus[keep,]</pre>
28 summary(coda::mcmc(Bs))
29 Quantiles for each variable:
                       25%
                                 50%
                                            75%
           2.5%
                                                     97.5%
        1.61764
                 1.891242
                             2.029985
                                       2.165677
                                                  2.427349
31 var1
32 var2 -0.07088 -0.016921
                            0.013080
                                       0.044681
                                                  0.107360
33 var3 0.27259 0.312197 0.333106 0.353678
34 var4 0.59507 0.664490 0.699526 0.734612 0.796977
35 var5 -0.01046 -0.008533 -0.007586 -0.006666 -0.004918
36 summary (coda::mcmc(Ds))
37 summary (coda::mcmc(sig2s))
```

3. Simulation exercise of the longitudinal normal model continues

Assume that $y_{it} = \beta_1 x_{it1} + \beta_2 x_{it2} + \beta_3 x_{it3} + \beta_4 z_{i1} + b_i + w_{it1} b_{i1} + \mu_{it}$ where $x_{itk} \sim N(0,1), k = 1, 2, 3, z_{i1} \sim B(0.5), w_{it1} \sim N(0,1), b_i \sim$

 $N(0, 0.7^{1/2}), b_{i1} \sim N(0, 0.6^{1/2}), \mu_{it} \sim N(0, 0.1^{1/2}) \boldsymbol{\beta} = [0.4 \ 0.6 \ -0.6 \ 0.7]^{\top}, i = 1, 2, \dots, 50,$ and the sample size is 2000 in an unbalanced panel structure. In addition, we assume that \boldsymbol{b}_i dependents on $\boldsymbol{z}_i = [1 \ z_{i1}]^{\top}$ such that $\boldsymbol{b}_i \sim N(\boldsymbol{Z}_i \boldsymbol{\gamma}, \boldsymbol{D})$ where $\boldsymbol{Z}_i = \boldsymbol{I}_{K_2} \otimes \boldsymbol{z}_i^{\top}$, and $\boldsymbol{\gamma} = [1 \ 1 \ 1 \ 1]$. The prior for $\boldsymbol{\gamma}$ is $N(\boldsymbol{\gamma}_0, \boldsymbol{\Gamma}_0)$ where we set $\boldsymbol{\gamma}_0 = \boldsymbol{0}_4$ and $\boldsymbol{\Gamma}_0 = \boldsymbol{I}_4$. In addition, Set $\boldsymbol{\beta}_0 = \boldsymbol{0}_4$, $\boldsymbol{B}_0 = \boldsymbol{I}_4, \alpha_0 = \delta_0 = 0.001, d_0 = 2$ and $\boldsymbol{D}_0 = \boldsymbol{I}_2$.

- Perform inference in this model without taking into account the dependence between b_i and z_{i1} , and compare the posterior estimates with the population parameters.
- Perform inference in this model taking into account the dependence between b_i and z_{i1} , and compare the posterior estimates with the population parameters.

Answer

Following the same procedure as in Section 9.1 of the book, and Exercise 1 of this chapter, we have that

$$\boldsymbol{\beta}|\sigma^2, \boldsymbol{\gamma}, \boldsymbol{D}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Z} \sim N(\boldsymbol{\beta}_n, \boldsymbol{B}_n),$$

where
$$\boldsymbol{B}_{n} = (\boldsymbol{B}_{0}^{-1} + \sum_{i=1}^{N} \boldsymbol{X}_{i}^{\top} \boldsymbol{V}_{i}^{-1} \boldsymbol{X}_{i})^{-1}, \ \boldsymbol{\beta}_{n} = \boldsymbol{B}_{n} (\boldsymbol{B}_{0}^{-1} \boldsymbol{\beta}_{0} + \sum_{i=1}^{N} \boldsymbol{X}_{i}^{\top} \boldsymbol{V}_{i}^{-1} (\boldsymbol{y}_{i} - \boldsymbol{W}_{i} \boldsymbol{Z}_{i} \boldsymbol{\gamma})) \text{ and } \boldsymbol{V}_{i} = \sigma^{2} \boldsymbol{I}_{T_{i}} + \sigma_{b}^{2} \boldsymbol{i}_{T_{i}} \boldsymbol{i}_{T_{i}}^{\top}.$$

$$\boldsymbol{b}_i|\boldsymbol{\beta}, \sigma^2, \boldsymbol{\gamma}, \boldsymbol{D}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Z} \sim N(\boldsymbol{b}_{ni}, \boldsymbol{B}_{ni}),$$

where
$$\boldsymbol{B}_{ni} = (\sigma^{-2} \boldsymbol{W}_i^{\top} \boldsymbol{W}_i + \boldsymbol{D}^{-1})^{-1}$$
 and $\boldsymbol{b}_{ni} = \boldsymbol{B}_{ni} (\sigma^{-2} \boldsymbol{W}_i^{\top} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta}) + \boldsymbol{D}^{-1} \boldsymbol{Z}_i \boldsymbol{\gamma}).$

$$\sigma^2 | \boldsymbol{\beta}, \boldsymbol{b}, \boldsymbol{\tau}, \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{W} \sim IG(\alpha_n, \delta_n),$$

where $\alpha_n = \alpha_0 + \frac{1}{2} \sum_{i=1}^N T_i$ and $\delta_n = \delta_0 + \frac{1}{2} \sum_{i=1}^N (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{W}_i \boldsymbol{b}_i)^\top (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{W}_i \boldsymbol{b}_i)$.

$$D|b, \gamma, Z \sim IW(d_n, D_n),$$

where $d_n = d_0 + N$ and $\boldsymbol{D}_n = d_0 \boldsymbol{D}_0 + \sum_{i=1}^N (\boldsymbol{b}_i - \boldsymbol{Z}_i \boldsymbol{\gamma}) (\boldsymbol{b}_i - \boldsymbol{Z}_i \boldsymbol{\gamma})^{\top}$. And

$$\gamma | \boldsymbol{b}, \boldsymbol{D}, \boldsymbol{Z} \sim N(\gamma_n, \Gamma_n),$$

where
$$\Gamma_n = (\sum_{i=1}^N Z_i^{\top} D^{-1} Z_i + \Gamma_0^{-1})^{-1}$$
 and $\gamma_n = \Gamma_n (\sum_{i=1}^N Z_i^{\top} D^{-1} b_i + \Gamma_0^{-1} \gamma_0)$.

The following code shwos how to implement this longitudinal normal model where random effects are correlated with regressors. We set MCMC iterations, burn-in and thinning parameters equal to 15000, 5000 and 5, respectively. In addition, $\beta_0 = \mathbf{0}_5$, $B_0 = I_5$, $\alpha_0 = \delta_0 = 0.001$, $d_0 = 2$, $D_0 = I_2$, $\gamma_0 = \mathbf{0}_4$ and $\Gamma_0 = I_4$.

R code. Simulation exercise: Longitudinal normal model with fixed effects correlated to regressors

```
1 rm(list = ls())
2 set.seed(010101)
3 NT <- 2000
4 N <- 50
5 id <- c(1:N, sample(1:N, NT - N, replace=TRUE))</pre>
6 table(id)
7 x1 <- rnorm(NT); x2 <- rnorm(NT)</pre>
8 x3 <- rnorm(NT); z1 <- rbinom(N, 1, 0.5)</pre>
9 zdata <- NULL
10 for(i in 1:NT){
zdatai <- z1[id[i]]</pre>
  zdata <- c(zdata, zdatai)
13 }
14 X <- cbind(x1, x2, x3, zdata)
15 K1 <- dim(X)[2]
16 w1 <- rnorm(NT)
17 W <- cbind(1, w1)
18 K2 <- dim(W)[2]
19 B \leftarrow c(0.5, 0.4, 0.6, -0.6, 0.7)
_{20} D <- c(0.7, 0.6)
21 sig2 <- 0.1
u < - rnorm(NT, 0, sd = sig2^0.5)
23 Z <- cbind(1, z1)
24 K3 <- dim(Z)[2]
25 G <- rep(1, K3*K2)
26 b <- matrix(0, N, K2)
27 for(i in 1:N){
28 ZGi <- t(kronecker(diag(K2), Z[i, ]))%*%G
    b[i, ] <- MASS::mvrnorm(1, ZGi, diag(D))
30 }
31 y <- NULL
32 for(i in 1:NT){
33 yi <- X[i,]%*%B + W[i,]%*%b[id[i],] + u[i]
    y <- c(y, yi)
34
35 }
36 Data <- as.data.frame(cbind(y, x1, x2, x3, zdata, w1, id))
37 mcmc <- 15000; burnin <- 5000; thin <- 10; tot <- mcmc +
      burnin
38 b0 <- rep(0, K1+1); B0 <- diag(K1+1); B0i <- solve(B0)
39 r0 <- K2; R0 <- diag(K2); a0 <- 0.001; d0 <- 0.001
40 g0 <- rep(0, K2*K3); G0 <- diag(K2*K3); G0i <- solve(G0)
41 Resultshreg <- MCMCpack::MCMChregress(fixed = y^x1 + x2 + x3
        + zdata, random = ~w1, group="id", data = Data, burnin
      = burnin, mcmc = mcmc, thin = thin,
42 mubeta = b0, Vbeta = B0, r = r0, R = R0, nu = a0, delta = d0
43 Betas <- Resultshreg[["mcmc"]][,1:(K1+1)]
44 Sigma2RanEff <- Resultshreg[["mcmc"]][,c(K2*N+K1+2, 2*N+K1
      +1+K2^2)]
45 Sigma2 <- Resultshreg[["mcmc"]][,K2*N+K1+K2^2+2]
46 summary(Betas)
47 summary(Sigma2RanEff)
48 summary(Sigma2)
```

R code. Simulation exercise: Longitudinal normal model with fixed effects correlated to regressors

```
PostBeta <- function(sig2, Gamma, D){</pre>
    XVX <- matrix(0, K1, K1)</pre>
    XVy <- matrix(0, K1, 1)</pre>
    for(i in 1:N){
       ids <- which (id == i)
       Ti <- length(ids)
       Wi <- W[ids, ]
       Vi <- sig2*diag(Ti) + Wi%*%D%*%t(Wi)
       ViInv <- solve(Vi)</pre>
       Xi <- X[ids, ]</pre>
       XVXi <- t(Xi)%*%ViInv%*%Xi
       XVX <- XVX + XVXi
13
       Zi <- Z[i, ]
14
       yi <- y[ids]
       ZGi <- t(kronecker(diag(K2), Zi))%*%Gamma
       XVyi <- t(Xi)%*%ViInv%*%(yi - Wi%*%ZGi)
16
17
       XVy <- XVy + XVyi
18
    Bn <- solve(BOi + XVX)
    bn <- Bn%*%(B0i%*%b0 + XVy)
20
    Beta <- MASS::mvrnorm(1, bn, Bn)
21
    return(Beta)
22
23 }
24 Postb <- function(Beta, sig2, Gamma, D){</pre>
    Di <- solve(D)
25
     bis <- matrix(0, N, K2)
26
    for(i in 1:N){
27
       ids <- which (id == i)
28
       Wi <- W[ids, ]
      Xi <- X[ids, ]</pre>
30
      yi <- y[ids]
       Wtei <- sig2^(-1)*t(Wi)%*%(yi - Xi%*%Beta)
32
       Bni <- solve(sig2^(-1)*t(Wi)%*%Wi + Di)</pre>
33
       Zi <- Z[i, ]
34
       ZGi <- t(kronecker(diag(K2), Zi))%*%Gamma
35
       bni <- Bni%*%(Wtei + Di%*%ZGi)
       bi <- MASS::mvrnorm(1, bni, Bni)
37
       bis[i, ] <- bi
38
    }
39
40
    return(bis)
41 }
42 PostSig2 <- function(Beta, bs){</pre>
43 an <- a0 + 0.5*NT
44 ete <- 0
45 for(i in 1:N){
    ids <- which(id == i)
    Xi <- X[ids, ]</pre>
47
    yi <- y[ids]
    Wi <- W[ids, ]
49
    ei <- yi - Xi%*%Beta - Wi%*%bs[i, ]
    etei <- t(ei)%*%ei
    ete <- ete + etei
52
53 }
54 dn \leftarrow d0 + 0.5*ete
55 sig2 <- MCMCpack::rinvgamma(1, shape = an, scale = dn)</pre>
56 return(sig2)
57 }
```

R code. Simulation exercise: Longitudinal normal model with fixed effects correlated to regressors

```
1 PostGamma <- function(bs, D){</pre>
    Di <- solve(D)
    ZDZ \leftarrow matrix(0, K2*K3, K2*K3)
    ZDb <- matrix(0, K2*K3, 1)</pre>
     for(i in 1:N){
       Zi <- Z[i, ]
       ZZi <- t(kronecker(diag(K2), Zi))
       ZDZi <- t(ZZi)%*%Di%*%ZZi
       ZDZ <- ZDZ + ZDZi
       bi <- bs[i,]
       ZDbi <- t(ZZi)%*%Di%*%bi
       ZDb <- ZDb + ZDbi
12
13
14
    Gn <- solve(G0i + ZDZ); gn <- Gn%*%(G0i%*%g0 + ZDb)</pre>
    Gamma <- MASS::mvrnorm(1, gn, Gn)
16
    return (Gamma)
17 }
18 PostD <- function(bs, Gamma){</pre>
    rn <- r0 + N
19
    btb <- matrix(0, K2, K2)
20
    for(i in 1:N){
21
22
      bsi <- bs[i, ]
       Zi <- Z[i, ]
23
       ZGi <- t(kronecker(diag(K2), Zi))%*%Gamma
      btbi <- (bsi-ZGi)%*%t(bsi-ZGi)
25
       btb <- btb + btbi
26
    }
27
    Rn \leftarrow d0*R0 + btb
28
    Sigma <- MCMCpack::riwish(v = rn, S = Rn)
    return(Sigma)
30
31 }
32 PostBetas <- matrix(0, tot, K1); PostGammas <- matrix(0, tot
       , K2*K3)
33 PostDs <- matrix(0, tot, K2*(K2+1)/2); PostSig2s <- rep(0,
      tot)
34 Postbs \leftarrow array(0, c(N, K2, tot)); RegLS \leftarrow lm(y \sim X - 1)
35 SumLS <- summary(RegLS); Beta <- SumLS[["coefficients"]][,1]
36 sig2 <- SumLS[["sigma"]]^2; Gamma <- rep(0, K2*K3)
37 D <- diag(K2); b0 <- rep(0, K1); B0 <- diag(K1); B0i <-
      solve(B0)
38 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
39 for(s in 1:tot){
    bs <- Postb(Beta = Beta, sig2 = sig2, Gamma = Gamma, D = D
40
    D <- PostD(bs = bs, Gamma = Gamma)
    Beta <- PostBeta(sig2 = sig2, Gamma = Gamma, D = D)
sig2 <- PostSig2(Beta = Beta, bs = bs)
42
    Gamma <- PostGamma(bs = bs, D = D)</pre>
    PostBetas[s,] <- Beta; PostDs[s,] <- matrixcalc::vech(D)</pre>
    PostSig2s[s] <- sig2; Postbs[, , s] <- bs</pre>
    PostGammas[s,] <- Gamma
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
49 }
```

R code. Simulation exercise: Longitudinal normal model with fixed effects correlated to regressors

```
keep <- seq((burnin+1), tot, thin)</pre>
3 Bs <- PostBetas[keep,]</pre>
4 Ds <- PostDs[keep,]
  bs <- Postbs[, , keep]
6 sig2s <- PostSig2s[keep]
     <- PostGammas[keep, ]</pre>
  summary(coda::mcmc(Bs))
  Quantiles for each variable:
        2.5%
                  25%
                          50%
                                   75%
        0.3629
                 0.3812
                          0.3880
                                  0.3945
                                          0.4120
12 var2
        0.5844
                0.6032
                         0.6098
                                  0.6176
                                          0.6381
13 var3 -0.6114 -0.5950 -0.5880
                                -0.5809
                                          -0.5605
  var4 -0.4455
                0.4155
                         0.8598
                                  1.3047
                                          2.0654
summary(coda::mcmc(Ds))
16 Quantiles for each variable:
        2.5%
                  25%
                          50%
                                    75% 97.5%
        0.5858
                0.7798
                         0.9173
                                 1.13381 2.0153
18 var1
19 var2 -0.3914 -0.1901 -0.1104 -0.03585 0.1250
        0.4285
                0.5495 0.6314
                                  0.72342 0.9662
21 summary(coda::mcmc(sig2s))
22 Quantiles for each variable:
23 Quantiles for each variable:
24 2.5%
           25%
                    50%
                            75%
25 0.09609 0.11486 0.17790 0.35215 1.12537
26 summary(coda::mcmc(Gs))
27 Quantiles for each variable:
        2.5%
                 25%
                        50%
                               75% 97.5%
        0.6552 0.8998 1.0288 1.162 1.402
30 var2 -0.4463 0.4056 0.7882 1.242 2.144
        0.8583 1.0599 1.1623 1.271 1.482
        0.5525 0.8430 1.0038 1.147 1.416
```

In one hand, the 95% credible intervals of the model without taking into account the dependence between the random effects and z_{i1} overestimates the posterior mean of β_4 and the variance of b_{i1} . In addition, the credible intervals are very narrow. However, the variance of μ_i is well estimated. On the other hand, all the 95% credible intervals of the model taking into account the dependence between the random effects and z_{i1} encompass the population parameters. However, there is a lot of variability in β_4 posterior estimates. The posterior mean estimate of the variance of b_{i1} is close to the population value, and the location parameters associated with z_{i1} in the mean of the random effects are also well estimated by the posterior mean. However, the variance of the model is overestimated.

4. Doctor visits in Germany continues I

Replicate this example using our GUI, which by default does not fix the over-dispersion parameter (σ^2), and compare the results with the results of this example in Section 9.2.

Answer

This code replicates what we get using our GUI.

R code. Doctor visits in Germany, results

```
1 rm(list = ls())
2 set.seed(12345)
3 Data <- read.csv("https://raw.githubusercontent.com/</pre>
      besmarter/BSTApp/refs/heads/master/DataApp/9VisitDoc.csv
      ", sep = ",", header = TRUE, quote = "")
4 attach (Data)
_{5} K1 <- 7; K2 <- 2; N <- 9197
6 b0 <- rep(0, K1); B0 <- diag(K1)
7 r0 <- 5; R0 <- diag(K2)
8 a0 <- 0.001; d0 <- 0.001</pre>
9 RegLogit <- glm(DocVis ~ Age + Male + Sport + LogInc +
      GoodHealth + BadHealth, family = binomial(link = "logit"
10 SumLogit <- summary(RegLogit)</pre>
Beta0 <- SumLogit[["coefficients"]][,1]</pre>
12 mcmc <- 10000; burnin <- 1000; thin <- 10
13 # MCMChlogit
14 Resultshlogit <- MCMCpack::MCMChlogit(fixed = DocVis ~ Age +
       Male + Sport + LogInc + GoodHealth + BadHealth, random
      = "Sozh, group="id", data = Data, burnin = burnin, mcmc
      = mcmc, thin = thin, mubeta = b0, Vbeta = B0, r = r0, {\tt R}
      = RO, nu = aO, delta = dO, beta.start = BetaO, FixOD =
15 Betas <- Resultshlogit[["mcmc"]][,1:K1]</pre>
16 Sigma2RanEff <- Resultshlogit[["mcmc"]][,c(K2*N+K1+1, 2*N+K1
      +K2^2)]
17 summary (Betas)
18 summary(Sigma2RanEff)
19 summary(Sigma2)
20 Quantiles for each variable:
              2.5%
                           25%
                                       50%
                                                   75%
                                                             97.5%
              -9.48e-01 -5.27e-01 -2.86e-01 -6.28e-02
22 Intercept
                                                          2.99e-01
               4.88e-03 7.27e-03 8.35e-03 9.31e-03
23 Age
24 Male
              -9.90e-01 -9.52e-01 -9.31e-01 -9.10e-01 -8.75e-01
               1.80e-01 2.25e-01 2.55e-01 2.85e-01
25 Sport
                                                          3.47e-01
26 LogInc 1.38e-01 1.85e-01 2.15e-01 2.49e-01 27 GoodHealth -9.56e-01 -9.18e-01 -8.97e-01 -8.75e-01
                                                          3.01e-01
                                                          -8.36e-01
                         1.14e+00
                                               1.23e+00
28 BadHealth
               1.08e+00
                                    1.19e+00
                                                          1.28e+00
29 D11
               1.43e+00
                         1.53e+00
                                    1.58e+00
                                               1.62e+00
                                                          5.81e-01
              -2.67e-01
                         1.94e-02
                                    1.85e-01
                                               4.08e-01
30 D21
31 D12
              -2.67e-01
                          1.94e-02
                                     1.85e-01
                                               4.08e-01
                                                          5.81e-01
32 D22
               6.05e-01
                          7.99e-01
                                     9.75e-01
                                               1.21e+00
                                                          1.62e+00
               6.37e-02
                          7.76e-02 1.01e-01
33 sigma2
                                               1.15e-01
                                                          1.58e-01
```

We see in this example running our GUI that we get qualitatively same results as the results fixing the over-dispersion parameter in Section 9.2 in the book. However, there small numerical differences in the *fixed effects*, and the differences are greater in the posterior results of the covariance matrix of the *random effects*.

5. Simulation exercise of the longitudinal logit model

Perform a simulation exercise to assess the performance of the hierarchical longitudinal logit model. The point of departure is to assume that $y_{it}^* = \beta_0 + \beta_1 x_{it1} + \beta_2 x_{it2} + \beta_3 x_{it3} + b_i + w_{it1} b_{i1}$ where $x_{itk} \sim N(0,1), \ k=1,2,3,$ $w_{it1} \sim N(0,1), \ b_i \sim N(0,0.7^{1/2}), \ b_{i1} \sim N(0,0.6^{1/2}), \ \beta = [0.5\ 0.4\ 0.6\ -0.6]^\top, \ i=1,2,\ldots,50,$ and $y_{it} \sim B(\pi_{it}, \text{ where } \pi_{it}=1/(1+\exp(-y_{it}^*)).$ The sample size is 1000 in an unbalanced panel structure.

- Perform inference using the command MCMChlogit fixing the overdispersion parameter, and using $\beta_0 = \mathbf{0}_4$, $B_0 = I_4$, $\alpha_0 = \delta_0 = 0.001$, $d_0 = 2$ and $D_0 = I_2$.
- Program from scratch a Metropolis-within-Gibbs algorithm to perform inference in this simulation.

Answer

The following code shows the simulation setting, and the results using the *MCMChlogit* command. We see that all posterior estimates encompass the population values.

R code. Simulation exercise: Hierarchical longitudinal logit model using MCMChlogit

```
1 rm(list = ls()); set.seed(010101)
2 NT <- 1000; N <- 50
3 id <- c(1:N, sample(1:N, NT - N, replace=TRUE))</pre>
4 x1 <- rnorm(NT); x2 <- rnorm(NT); x3 <- rnorm(NT)
5 X <- cbind(1, x1, x2, x3); K1 <- dim(X)[2]
6 w1 <- rnorm(NT); W <- cbind(1, w1); K2 <- dim(W)[2]
_{7} B <- c(0.5, 0.4, 0.6, -0.6); D <- c(0.7, 0.6)
8 sig2 <- 0.1
9 b1 <- rnorm(N, 0, sd = D[1]^0.5)</pre>
10 b2 <- rnorm(N, 0, sd = D[2]^0.5)
11 b <- cbind(b1, b2)
12 yl <- NULL
13 for(i in 1:NT){
   ylmeani <- X[i,]%*%B + W[i,]%*%b[id[i],]</pre>
    yli <- rnorm(1, ylmeani, sig2^0.5)
    yl <- c(yl, yli)
17 }
18 pit <- 1/(1+exp(-yl))
19 y <- rbinom(NT, 1, prob = pit)</pre>
Data <- as.data.frame(cbind(y, x1, x2, x3, w1, id))
21 mcmc <- 15000; burnin <- 5000; thin <- 10; tot <- mcmc +
      burnin
22 b0 <- rep(0, K1); B0 <- diag(K1); B0i <- solve(B0)
23 r0 <- K2; R0 <- diag(K2); a0 <- 0.001; d0 <- 0.001
24 RegLogit <- glm(y ~ X - 1, family = binomial(link = "logit")
25 SumLogit <- summary(RegLogit)</pre>
27 Beta0 <- SumLogit[["coefficients"]][,1]</pre>
28 sig20 <- sum(SumLogit[["deviance.resid"]]^2)/SumLogit[["df.
      residual"]]
29 Resultshlogit <- MCMCpack::MCMChlogit(fixed = y~x1 + x2 + x3
      , random = ~w1, group="id", data = Data, burnin = burnin
       , mcmc = mcmc, thin = thin,
30 mubeta = b0, Vbeta = B0, r = r0, R = R0, r = a0, r = a0
31 beta.start = Beta0, FixOD = 1, sigma2.start = sig20)
32 Betas <- Resultshlogit[["mcmc"]][,1:K1]</pre>
33 Sigma2RanEff <- Resultshlogit[["mcmc"]][,c(K2*N+K1+1, 2*N+K1
      +K2^2)]
34 Sigma2 <- Resultshlogit[["mcmc"]][,K2*N+K1+K2^2+1]
35 summary(Betas)
36 Quantiles for each variable:
                                 50%
                       25%
                2.5%
                                          75%
                                               97.5%
38 beta.(Intercept) 0.4258 0.6165 0.7140 0.8155 1.0041
39 beta.x1
                    0.3294 0.4372 0.4999 0.5617 0.6684
                    40 beta.x2
41 beta.x3
42 summary(Sigma2RanEff)
43 Quantiles for each variable:
          25%
                 50%
                        75% 97.5%
44 2.5%
45 D11 0.3394 0.5366 0.6962 0.8652 1.338
46 D22 0.4101 0.6478 0.8091 1.0039 1.611
```

The following code shows the algorithm step by step.

R code. Simulation exercise: Hierarchical longitudinal logit model from scratch

```
1 LatentMHV1 <- function(tuning, Beta, bs, sig2){</pre>
    ylhat <- rep(0, NT)
    accept <- NULL
    for(i in 1:NT){
       ids <- which (id == i)
      yi <- y[i]
      ylhatmeani <- X[i,]%*%Beta + W[i,]%*%bs[id[i],]</pre>
       ylhati <- rnorm(1, ylhatmeani, sd = sig2^0.5)</pre>
       pihati <- 1/(1+exp(-ylhati))</pre>
       ei <- rnorm(1, 0, sd = tuning)
      ylpropi <- ylhati + ei; pipropi <- 1/(1+exp(-ylpropi))</pre>
      logPosthati <- sum(dbinom(yi, 1, prob = pihati, log =</pre>
      TRUE) + dnorm(ylhati, ylhatmeani, sig2^0.5, log = TRUE))
       logPostpropi <- sum(dbinom(yi, 1, prob = pipropi, log =</pre>
      TRUE) + dnorm(ylpropi, ylhatmeani, sig2^0.5, log = TRUE)
       alphai <- min(1, exp(logPostpropi - logPosthati))
       ui <- runif(1)
       if(ui <= alphai){</pre>
        ylhati <- ylpropi; accepti <- 1
17
       }else{
18
        ylhati <- ylhati; accepti <- 0
19
20
21
      ylhat[i] <- ylhati; accept <- c(accept, accepti)</pre>
22
    res <- list(ylhat = ylhat, accept = mean(accept))
23
    return(res)
24
25 }
26 PostBeta <- function(D, ylhat, sig2){</pre>
    XVX <- matrix(0, K1, K1); XVy <- matrix(0, K1, 1)</pre>
27
28
     for(i in 1:N){
      ids <- which(id == i); Ti <- length(ids)</pre>
29
       Wi <- W[ids, ]; Vi <- diag(Ti)*sig2 + Wi%*%D%*%t(Wi)
30
      ViInv <- solve(Vi); Xi <- X[ids, ]</pre>
31
      XVXi <- t(Xi)%*%ViInv%*%Xi; XVX <- XVX + XVXi
32
33
      yi <- ylhat[ids]; XVyi <- t(Xi)%*%ViInv%*%yi
      XVy <- XVy + XVyi
34
35
    Bn <- solve(BOi + XVX)
36
    bn <- Bn%*%(B0i%*%b0 + XVy)
37
38
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
    return (Beta)
39
40 }
41 Postb <- function(Beta, D, ylhat, sig2){
    Di <- solve(D); bis <- matrix(0, N, K2)
42
    for(i in 1:N){
      ids <- which (id == i)
44
       Wi <- W[ids, ]; Xi <- X[ids, ]
      yi <- ylhat[ids]</pre>
46
       Wtei <- sig2^(-1)*t(Wi)%*%(yi - Xi%*%Beta)
47
      Bni <- solve(sig2^(-1)*t(Wi)%*%Wi + Di)</pre>
48
       bni <- Bni%*%Wtei; bi <- MASS::mvrnorm(1, bni, Bni)
49
50
      bis[i, ] <- bi
51
    return(bis)
52
53 }
```

R code. Simulation exercise: Hierarchical longitudinal logit model from scratch

```
1 PostD <- function(bs){</pre>
    rn <- r0 + N
     btb <- matrix(0, K2, K2)
     for(i in 1:N){
       bsi <- bs[i, ]; btbi <- bsi%*%t(bsi)
       btb <- btb + btbi
    Rn \leftarrow d0*R0 + btb
     Sigma <- MCMCpack::riwish(v = rn, S = Rn)
10
    return(Sigma)
11 }
12 PostSig2 <- function(Beta, bs, ylhat, ss){</pre>
    an \leftarrow a0 + 0.5*NT; ete \leftarrow 0
13
     for(i in 1:N){
14
       ids <- which(id == i)
       Xi <- X[ids, ]; yi <- ylhat[ids]</pre>
16
       Wi <- W[ids, ]
       ei <- yi - Xi%*%Beta - Wi%*%bs[i, ]
18
19
       etei <- t(ei)%*%ei; ete <- ete + etei
20
     dn \leftarrow d0 + 0.5*ete
21
    sig2 <- MCMCpack::rinvgamma(1, shape = an, scale = dn)</pre>
22
     if(sig2 > ss){
23
      sig2 <- ss
25
     }else{
26
      sig2 <- sig2
27
    return(sig2)
28
29 }
30 PostBetas <- matrix(0, tot, K1)
31 PostDs <- matrix(0, tot, K2*(K2+1)/2)
32 Postbs <- array(0, c(N, K2, tot))
33 PostSig2s <- rep(0, tot)
34 Accepts <- rep(NULL, tot)
35 RegLogit <- glm(y ~ X - 1, family = binomial(link = "logit")
36 SumLogit <- summary(RegLogit)</pre>
37 Beta <- SumLogit[["coefficients"]][,1]</pre>
38 sig2 <- sum(SumLogit[["deviance.resid"]]^2)/SumLogit[["df.
      residual"]]
39 ss0 <- sig2; D <- diag(K2)
40 bs1 <- rnorm(N, 0, sd = D[1]^0.5)
41 bs2 <- rnorm(N, 0, sd = D[2]^0.5)
42 bs <- cbind(bs1, bs2)
43 tuning <- 0.1; ropt <- 0.44
44 tunepariter <- seq(round(tot/10, 0), tot, round(tot/10, 0));</pre>
         1 <- 1
45 pb <- winProgressBar(title = "progress bar", min = 0, max =
       tot, width = 300)
```

R code. Simulation exercise: Hierarchical longitudinal logit model from scratch

```
1 for(s in 1:tot){
    LatY <- LatentMHV1(tuning = tuning, Beta = Beta, bs = bs,
       sig2 = sig2)
     ylhat <- LatY[["ylhat"]]</pre>
     bs <- Postb(Beta = Beta, D = D, ylhat = ylhat, sig2 = sig2
    D <- PostD(bs = bs)</pre>
    Beta <- PostBeta(D = D, ylhat = ylhat, sig2 = sig2)
     sig2 <- PostSig2(Beta = Beta, bs = bs, ylhat = ylhat, ss =</pre>
     PostBetas[s,] <- Beta
    PostDs[s,] <- matrixcalc::vech(D)</pre>
    Postbs[, , s] <- bs
1.0
     PostSig2s[s] <- sig2
    AcceptRate <- LatY[["accept"]]</pre>
     Accepts[s] <- AcceptRate</pre>
13
    if(AcceptRate > ropt){
      tuning = tuning*(2-(1-AcceptRate)/(1-ropt))
16
    }else{
17
      tuning = tuning/(2-AcceptRate/ropt)
18
    if(s == tunepariter[1]){
19
      print(AcceptRate)
20
21
       1 <- 1 + 1
22
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
24 }
25 close(pb)
26 keep <- seq((burnin+1), tot, thin)</pre>
27 Bs <- PostBetas[keep,]
28 Ds <- PostDs[keep,]</pre>
29 bs <- Postbs[, , keep]
30 sig2s <- PostSig2s[keep]
31 summary(coda::mcmc(Bs))
32 Quantiles for each variable:
         2.5%
                  25%
                           50%
                                     75%
                                           97.5%
        0.3195
                 0.5266 0.6325
                                   0.7452
35 var2 0.1780 0.3563 0.4521
                                   0.5436
                                            0.7352
36 var3 0.3596 0.5197 0.6140 0.7165 0.9149
37 var4 -0.8994 -0.7153 -0.6125 -0.5135 -0.3240
38 summary(coda::mcmc(Ds))
39 Quantiles for each variable:
         2.5%
                     25%
                                  50%
                                             75%
                                                    97.5%
40
41 var1 0.0002003 0.0007473 0.0022547 0.0124378 0.09575
 \mathtt{42} \ \mathtt{var2} \ \mathtt{-0.0534437} \ \mathtt{-0.0029207} \ \mathtt{-0.0001433} \ \mathtt{0.0009905} \ \mathtt{0.02296} 
43 var3 0.0002150 0.0009101
                                 0.0026712 0.0119391 0.14863
44 summary(coda::mcmc(sig2s))
45 Quantiles for each variable:
          25%
                   50%
                          75% 97.5%
47 0.1321 0.5174 0.8674 1.0788 1.1909
```

The 95% credible intervals of the *fixed effects* encompass all the population values. However, we do not get good posterior estimates of the covariance matrix and over-dispersion parameters.

6. Doctor visits in Germany continues II

Take a sub-sample of the first 500 individuals of the dataset *9VisitDoc.csv* to perform inference in the number of visits to doctors (*DocNum*) with the same specification of the example of **Doctor visits in Germany** of Section 9.2.

Answer

This algorithm shows how to perform inference in this application programming from scratch the algorithm.

R code. Doctor visits in Germany: Hierarchical longitudinal Poisson model from scratch

```
1 rm(list = ls())
2 set.seed(12345)
3 Data <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/9VisitDoc.csv
       ", sep = ",", header = TRUE, quote = "")
4 library(dplyr)
5 Data <- Data %>%
6 filter(id <= 500)
7 attach(Data)
8 K1 <- 7; K2 <- 2; N <- 9197
9 b0 <- rep(0, K1); B0 <- diag(K1)
10 r0 <- 5; R0 <- diag(K2)
11 a0 <- 0.001; d0 <- 0.001
12 NT <- dim(Data)[1]
13 N <- length(unique(id))</pre>
_{\rm 14} X <- cbind(1, Age, Male, Sport, LogInc, GoodHealth,
      BadHealth)
15 K1 <- dim(X)[2]
16 W <- cbind(1, Sozh)
17 K2 <- dim(W)[2]
18 y <- DocNum
19 mcmc <- 15000; burnin <- 5000; thin <- 10; tot <- mcmc +
20 b0 <- rep(0, K1); B0 <- diag(K1); B0i <- solve(B0)
21 r0 <- K2; R0 <- diag(K2); a0 <- 0.001; d0 <- 0.001
22 LatentMHV1 <- function(tuning, Beta, bs, sig2){</pre>
    ylhat <- rep(0, NT)
     accept <- NULL
24
     for(i in 1:NT){
      ids <- which (id == i)
26
       yi <- y[i]
       ylhatmeani <- X[i,]%*%Beta + W[i,]%*%bs[id[i],]</pre>
28
       ylhati <- rnorm(1, ylhatmeani, sd = sig2^0.5)</pre>
29
       lambdahati <- exp(ylhati)</pre>
30
       ei <- rnorm(1, 0, sd = tuning)
31
       ylpropi <- ylhati + ei
       lambdapropi <- exp(ylpropi)</pre>
33
       logPosthati <- sum(dpois(yi, lambdahati, log = TRUE) +</pre>
34
       dnorm(ylhati, ylhatmeani, sig2^0.5, log = TRUE))
       logPostpropi <- sum(dpois(yi, lambdapropi, log = TRUE) +</pre>
       dnorm(ylpropi, ylhatmeani, sig2^0.5, log = TRUE))
       alphai <- min(1, exp(logPostpropi - logPosthati))</pre>
       ui <- runif(1)
       if(ui <= alphai){</pre>
38
         ylhati <- ylpropi; accepti <- 1
39
40
       }else{
         ylhati <- ylhati; accepti <- 0
41
42
       ylhat[i] <- ylhati</pre>
43
       accept <- c(accept, accepti)</pre>
44
45
    res <- list(ylhat = ylhat, accept = mean(accept))
46
47
     return (res)
48 }
```

R code. Doctor visits in Germany: Hierarchical longitudinal Poisson model from scratch

```
PostBeta <- function(D, ylhat, sig2){</pre>
    XVX <- matrix(0, K1, K1); XVy <- matrix(0, K1, 1)</pre>
     for(i in 1:N){
       ids <- which(id == i); Ti <- length(ids)</pre>
       Wi <- matrix(W[ids, ], Ti, K2)</pre>
       Vi <- diag(Ti)*sig2 + Wi%*%D%*%t(Wi)</pre>
       ViInv <- solve(Vi); Xi <- matrix(X[ids, ], Ti, K1)</pre>
       XVXi <- t(Xi)%*%ViInv%*%Xi
       XVX <- XVX + XVXi; yi <- ylhat[ids]</pre>
9
       XVyi <- t(Xi)%*%ViInv%*%yi; XVy <- XVy + XVyi
    Bn <- solve(B0i + XVX); bn <- Bn%*%(B0i%*%b0 + XVy)
13
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
14
    return (Beta)
15 }
16 Postb <- function(Beta, D, ylhat, sig2){</pre>
17
    Di <- solve(D); bis <- matrix(0, N, K2)
    for(i in 1:N){
18
       ids <- which(id == i); Ti <- length(ids)</pre>
       Wi <- matrix(W[ids, ], Ti, K2)</pre>
20
       Xi <- matrix(X[ids, ], Ti, K1)</pre>
21
       yi <- ylhat[ids]
22
       Wtei <- sig2^(-1)*t(Wi)%*%(yi - Xi%*%Beta)
23
24
       Bni <- solve(sig2^(-1)*t(Wi)%*%Wi + Di)</pre>
       bni <- Bni%*%Wtei
25
       bi <- MASS::mvrnorm(1, bni, Bni)
26
27
       bis[i, ] <- bi
28
29
    return(bis)
30 }
31 PostD <- function(bs){</pre>
    rn <- r0 + N; btb <- matrix(0, K2, K2)
32
33
     for(i in 1:N){
       bsi <- bs[i, ]; btbi <- bsi%*%t(bsi)
34
       btb <- btb + btbi
35
36
    Rn \leftarrow d0*R0 + btb; Sigma \leftarrow MCMCpack::riwish(v = rn, S =
37
      Rn)
     return(Sigma)
38
39 }
40 PostSig2 <- function(Beta, bs, ylhat){
    an <- a0 + 0.5*NT; ete <- 0
41
     for(i in 1:N){
42
       ids <- which (id == i)
43
       Ti <- length(ids)
44
       Xi <- matrix(X[ids, ], Ti, K1); yi <- ylhat[ids]</pre>
45
       Wi <- matrix(W[ids, ], Ti, K2)
ei <- yi - Xi%*%Beta - Wi%*%bs[i, ]</pre>
46
47
       etei <- t(ei)%*%ei; ete <- ete + etei
48
49
    dn \leftarrow d0 + 0.5*ete
50
    sig2 <- MCMCpack::rinvgamma(1, shape = an, scale = dn)</pre>
51
52
    return(sig2)
53 }
```

R code. Doctor visits in Germany: Hierarchical longitudinal Poisson model from scratch

```
PostBetas <- matrix(0, tot, K1)</pre>
2 PostDs <- matrix(0, tot, K2*(K2+1)/2)</pre>
3 Postbs <- array(0, c(N, K2, tot))</pre>
4 PostSig2s <- rep(0, tot); ccepts <- rep(NULL, tot)
5 RegPois <- glm(DocNum ~ Age + Male + Sport + LogInc +
      GoodHealth + BadHealth, family = poisson(link = "log"))
6 SumPois <- summary(RegPois)</pre>
7 Beta <- SumPois[["coefficients"]][,1]</pre>
8 sig2 <- sum(SumPois[["deviance.resid"]]^2)/SumPois[["df.</pre>
      residual"]]
9 D <- diag(K2)</pre>
10 bs1 <- rnorm(N, 0, sd = D[1,1]^0.5)
11 bs2 \leftarrow rnorm(N, 0, sd = D[2,2]^0.5)
12 bs <- cbind(bs1, bs2); tuning <- 0.1; ropt <- 0.44
tunepariter <- seq(round(tot/10, 0), tot, round(tot/10, 0));</pre>
        1 <- 1
14 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
15 for(s in 1:tot){
    LatY <- LatentMHV1(tuning = tuning, Beta = Beta, bs = bs,
      sig2 = sig2)
    ylhat <- LatY[["ylhat"]]</pre>
    bs <- Postb(Beta = Beta, D = D, ylhat = ylhat, sig2 = sig2
18
      )
    D <- PostD(bs = bs)</pre>
19
    Beta <- PostBeta(D = D, ylhat = ylhat, sig2 = sig2)</pre>
    sig2 <- PostSig2(Beta = Beta, bs = bs, ylhat = ylhat)</pre>
    PostBetas[s,] <- Beta; PostDs[s,] <- matrixcalc::vech(D)</pre>
22
    Postbs[, , s] <- bs; PostSig2s[s] <- sig2</pre>
    AcceptRate <- LatY[["accept"]]; Accepts[s] <- AcceptRate</pre>
24
    if(AcceptRate > ropt){
      tuning = tuning*(2-(1-AcceptRate)/(1-ropt))
26
27
    }else{
28
      tuning = tuning/(2-AcceptRate/ropt)
29
30
    if(s == tunepariter[1]){
      print(AcceptRate)
31
      1 <- 1 + 1
32
33
    setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
34
      "% done"))
35 }
37 keep <- seq((burnin+1), tot, thin)
38 Bs <- PostBetas[keep,]; Ds <- PostDs[keep,]</pre>
39 bs <- Postbs[, , keep]; sig2s <- PostSig2s[keep]</pre>
40 summary(coda::mcmc(Bs))
41 Quantiles for each variable:
42 2.5%
             25%
                        50%
                                   75%
                                          97.5%
43 var1 -1.250036 -0.269211 0.1995811
                                        0.69139
44 var2 -0.001542 0.004852 0.0083935 0.01147
                                                  0.01815
47 var5 -0.196732 -0.071421 -0.0001036
                                        0.06601
48 var6 -0.815499 -0.657182 -0.5784964 -0.49969 -0.36882
49 var7 0.613990 0.799534 0.8982645 1.00161 1.18880
```

We see that males with good perception of health status visit less frequently the physicians, and women with bad perception of health status visit more frequently the physicians.

10

Bayesian model average

Solutions of Exercises

- 1. The Gaussian linear model specifies $\mathbf{y} = \alpha \mathbf{i_N} + \mathbf{X_m} \boldsymbol{\beta_m} + \boldsymbol{\mu_m}$ such that $\boldsymbol{\mu_m} \sim N(\mathbf{0}, \sigma^2 \boldsymbol{I_n})$, and $\boldsymbol{X_m}$ does not have the column of ones. Assuming that $\pi(\sigma^2) \propto 1/\sigma^2$, $\pi(\alpha) \propto 1$, and $\boldsymbol{\beta_m} | \sigma^2 \sim N(\mathbf{0}_{k_m}, \sigma^2(g_m \boldsymbol{X}_m^\top \boldsymbol{X}_m)^{-1})$.
 - Show that the conditional posterior distribution of $\boldsymbol{\beta}_m$ is $N(\boldsymbol{\beta}_{mn}, \sigma^2 \boldsymbol{B}_{mn})$, where $\boldsymbol{\beta}_{mn} = \boldsymbol{B}_{mn} \boldsymbol{X}_m^{\top} \boldsymbol{y}$ and $\boldsymbol{B}_{mn} = ((1+g_m)\boldsymbol{X}_m^{\top} \boldsymbol{X}_m)^{-1}$.
 - Show that the marginal the marginal likelihood associated with model \mathcal{M}_m is proportional to

$$p(\boldsymbol{y}|\mathcal{M}_m) \propto \left(\frac{g_m}{1+g_m}\right)^{k_m/2} \left[(\boldsymbol{y} - \bar{y}\boldsymbol{i}_N)^\top (\boldsymbol{y} - \bar{y}\boldsymbol{i}_N) - \frac{1}{1+g_m} (\boldsymbol{y}^\top \boldsymbol{P}_{X_m} \boldsymbol{y}) \right]^{-(N-1)/2}$$

where all parameter are indexed to model \mathcal{M}_m , $P_{X_m} = X_m (X_m^\top X_m)^{-1} X_m$ is the projection matrix on the space generated by the columns of X_m , and \bar{y} is the sample mean of y.

Hint: Take into account that $i_N^{\top} X_m = \mathbf{0}_{k_m}$ due to all columns being centered with respect to their means.

Answer

The marginal likelihood of this model is

$$p(\mathbf{y}) = \int_0^\infty \int_{R^K} \int_R \pi(\boldsymbol{\beta}|\sigma^2) \pi(\sigma^2) \pi(\alpha) p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2, \alpha) d\alpha d\boldsymbol{\beta} d\sigma^2$$

$$\propto \int_0^\infty \int_{R^K} \int_R (\sigma^2)^{-k_m/2} |g_m \mathbf{X}_m^\top \mathbf{X}_m|^{1/2} \exp\left\{-\frac{1}{2\sigma^2} (\boldsymbol{\beta}^\top (g_m \mathbf{X}_m^\top \mathbf{X}_m) \boldsymbol{\beta})\right\} (\sigma^2)^{-1}$$

$$\times (\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} (\boldsymbol{y} - \alpha \boldsymbol{i}_N - \mathbf{X}_m \boldsymbol{\beta})^\top (\boldsymbol{y} - \alpha \boldsymbol{i}_N - \mathbf{X}_m \boldsymbol{\beta})\right\} d\alpha d\boldsymbol{\beta} d\sigma^2.$$

Taking into account that
$$(\boldsymbol{y} - \alpha \boldsymbol{i}_N - \boldsymbol{X}_m \boldsymbol{\beta})^{\top} (\boldsymbol{y} - \alpha \boldsymbol{i}_N - \boldsymbol{X}_m \boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}_m \boldsymbol{\beta})^{\top} (\boldsymbol{y} - \boldsymbol{X}_m \boldsymbol{\beta}) + N(\alpha - \bar{y})^2 - N\bar{y}^2,$$

$$p(\mathbf{y}) \propto \int_{0}^{\infty} \int_{R^{K}} (\sigma^{2})^{-k_{m}/2} |g_{m} \mathbf{X}_{m}^{\top} \mathbf{X}_{m}|^{1/2} \exp \left\{ -\frac{1}{2\sigma^{2}} (\boldsymbol{\beta}^{\top} (g_{m} \mathbf{X}_{m}^{\top} \mathbf{X}_{m}) \boldsymbol{\beta}) \right\} (\sigma^{2})^{-1} \times (\sigma^{2})^{-N/2} \exp \left\{ -\frac{1}{2\sigma^{2}} [(\boldsymbol{y} - \mathbf{X}_{m} \boldsymbol{\beta})^{\top} (\boldsymbol{y} - \mathbf{X}_{m} \boldsymbol{\beta}) - N \bar{y}^{2}] \right\} \times \int_{R} \exp \left\{ -\frac{1}{2\sigma^{2}} (N(\alpha - \bar{y})^{2}) \right\} d\alpha d\beta d\sigma^{2}.$$

The last term is the kernel of a normal density function with mean \bar{y} and variance σ^2/N , then

$$p(\mathbf{y}) \propto \int_0^\infty \int_{R^K} (\sigma^2)^{-k_m/2} |g_m \mathbf{X}_m^\top \mathbf{X}_m|^{1/2} \exp\left\{-\frac{1}{2\sigma^2} (\boldsymbol{\beta}^\top (g_m \mathbf{X}_m^\top \mathbf{X}_m) \boldsymbol{\beta})\right\} (\sigma^2)^{-1}$$
$$\times (\sigma^2)^{-N/2} (\sigma^2)^{1/2} \exp\left\{-\frac{1}{2\sigma^2} [(\boldsymbol{y} - \mathbf{X}_m \boldsymbol{\beta})^\top (\boldsymbol{y} - \mathbf{X}_m \boldsymbol{\beta}) - N\bar{y}^2]\right\} d\boldsymbol{\beta} d\sigma^2.$$

Collecting terms for $\boldsymbol{\beta}$, we have $(\boldsymbol{y} - \boldsymbol{X}_m \boldsymbol{\beta})^\top (\boldsymbol{y} - \boldsymbol{X}_m \boldsymbol{\beta}) - N \bar{y}^2 + \boldsymbol{\beta}^\top (g_m \boldsymbol{X}_m^\top \boldsymbol{X}_m) \boldsymbol{\beta} = (\boldsymbol{\beta} - \boldsymbol{\beta}_{mn})^\top \boldsymbol{B}_{mn}^{-1} (\boldsymbol{\beta} - \boldsymbol{\beta}_{mn}) + \boldsymbol{y}^\top \boldsymbol{y} - N \bar{y}^2 - \boldsymbol{\beta}_{mn}^\top \boldsymbol{B}_{mn} \boldsymbol{\beta}_{mn}$ where $\boldsymbol{\beta}_{mn} = \boldsymbol{B}_{mn} \boldsymbol{X}^\top \boldsymbol{y}$ and $\boldsymbol{B}_{mn} = ((1 + g_m) \boldsymbol{X}^\top \boldsymbol{X})^{-1}$. Then,

$$p(\mathbf{y}) \propto \int_0^\infty (\sigma^2)^{-k_m/2} |g_m \mathbf{X}_m^\top \mathbf{X}_m|^{1/2} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{y}^\top \mathbf{y} - N\bar{y}^2 - \boldsymbol{\beta}_{mn}^\top \mathbf{B}_{mn} \boldsymbol{\beta}_{mn})\right\} (\sigma^2)^{-1}$$
$$\times (\sigma^2)^{-N/2} (\sigma^2)^{1/2} \int_{R^K} \exp\left\{-\frac{1}{2\sigma^2} (\boldsymbol{\beta} - \boldsymbol{\beta}_{mn})^\top \mathbf{B}_{mn}^{-1} (\boldsymbol{\beta} - \boldsymbol{\beta}_{mn})\right\} d\boldsymbol{\beta} d\sigma^2.$$

The last term is the kernel of a multivariate normal density with mean β_{mn} and variance B_{mn} (proof of the first bullet). Then,

$$p(\mathbf{y}) \propto \int_0^\infty \left(\frac{g_m}{1+g_m}\right)^{k_m/2} (\sigma^2)^{-(N-1)/2-1} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{y}^\top \mathbf{y} - N\bar{y}^2 - \boldsymbol{\beta}_{mn}^\top \boldsymbol{B}_{mn} \boldsymbol{\beta}_{mn})\right\} d\sigma^2.$$

This is the kernel of an inverse-gamma density with parameters $\alpha_n = (N-1)/2$ and $\delta_n = \mathbf{y}^\top \mathbf{y} - N\bar{y}^2 - \boldsymbol{\beta}_{mn}^\top \mathbf{B}_{mn} \boldsymbol{\beta}_{mn}$, where $\mathbf{y}^\top \mathbf{y} - N\bar{y}^2 - \boldsymbol{\beta}_{mn}^\top \mathbf{B}_{mn} \boldsymbol{\beta}_{mn} = (\mathbf{y} - \mathbf{i}_N \alpha)^\top (\mathbf{y} - \mathbf{i}_N \alpha) - (1 + g_m)^{-1} \mathbf{y}^\top (\mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top) \mathbf{y}$. Then,

$$p(\boldsymbol{y}|\mathcal{M}_m) \propto \left(\frac{g_m}{1+q_m}\right)^{k_m/2} \left[(\boldsymbol{y} - \bar{y}\boldsymbol{i}_N)^{\top} (\boldsymbol{y} - \bar{y}\boldsymbol{i}_N) - \frac{1}{1+q_m} (\boldsymbol{y}^{\top} \boldsymbol{P}_{X_m} \boldsymbol{y}) \right]^{-(N-1)/2},$$

2. Determinants of export diversification I

[12] use BMA to study the determinants of export diversification. Use the dataset 10ExportDiversificationHHI.csv to perform BMA using the BIC approximation and MC3 with 10000 iterations to check if these two approaches agree.

Answer

The first aspect to note is that the BIC approximation is faster by far than the MC3 algorithm. We see from the results that the two approaches show that the most relevant variables to determine export diversification are avgedu5 (primary education) and avgnatres (natural resources). See [12] for details of all variables. The model with the highest PMP using MC3 includes these two variables (PMP = 0.16), while the model with the highest PMP using the BIC approximation in addition to these two variables also includes Portugal former colony and population (PMP = 0.03). Both methods agree that export diversification increases with primary education, and decreases with natural resources.

R code. Determinants of export diversification

```
1 rm(list = ls()); set.seed(010101)
2 Data <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/10
      ExportDiversificationHHI.csv", sep = ",", header = TRUE,
       quote = "")
3 attach(Data)
4 y <- Data[,1]; X <- as.matrix(Data[,-1]); K <- dim(X)[2]
5 BMAglm <- BMA::bicreg(X, y, strict = FALSE, OR = 50)
6 summary (BMAglm)
7 BMAreg <- BMA::MC3.REG(y, X, num.its=10000)
8 Models <- unique(BMAreg[["variables"]])</pre>
9 nModels <- dim(Models)[1]</pre>
nVistModels <- dim(BMAreg[["variables"]])[1]</pre>
11 PMPmc3 <- NULL
12 for(m in 1:nModels){
    idModm <- NULL
    for(j in 1:nVistModels){
14
      if(sum(Models[m,] == BMAreg[["variables"]][j,]) == K){
        idModm <- c(idModm, j)
16
       }else{
        idModm <- idModm
18
19
20
    PMPm <- sum(BMAreg[["post.prob"]][idModm])</pre>
21
22
    PMPmc3 <- c(PMPmc3, PMPm)
23 }
24 PMPmc3
25 PIPmc3 <- NULL
26 for(k in 1:K){
    PIPk <- sum(PMPmc3[which(Models[,k] == 1)])
    PIPmc3 <- c(PIPmc3, PIPk)
28
29 }
30 plot(PIPmc3)
31 Meansmc3 <- matrix(0, nModels, K)
32 Varsmc3 <- matrix(0, nModels, K)</pre>
33 for(m in 1:nModels){
    idXs <- which(Models[m,] == 1)</pre>
    if(length(idXs) == 0){
35
      Regm <- lm(y ~ 1)
36
37
    }else{
       Xm <- X[, idXs]</pre>
38
39
      Regm <- lm(y ~ Xm)
      SumRegm <- summary(Regm)</pre>
40
       Meansmc3[m, idXs] <- SumRegm[["coefficients"]][-1,1]</pre>
41
42
       Varsmc3[m, idXs] <- SumRegm[["coefficients"]][-1,2]^2</pre>
43
44 }
45 BMAmeansmc3 <- colSums(Meansmc3*PMPmc3)
46 BMAsdmc3 <- (colSums(PMPmc3*Varsmc3) + colSums(PMPmc3*(
      Meansmc3-matrix(rep(BMAmeansmc3, each = nModels),
      nModels, K))^2))^0.5
47 plot (BMAmeansmc3)
48 plot (BMAsdmc3)
49 Ratio <- BMAmeansmc3/BMAsdmc3
50 RessulMC3 <- as.data.frame(cbind(PIPmc3, Models[1,],
      BMAmeansmc3, BMAsdmc3, Ratio))
51 PMPmc3
```

3. Simulation exercise of the Markov chain Monte Carlo model composition continues

Program an algorithm to perform MC3 where the final S models are unique. Use the simulation setting of Section 10.2 of the book increasing the number of regressors to 40, this implies approximately 1.1e+12 models.

Answer

The following code shows how to perform BMA using MC3 with the consideration that all final S models should be different.

After running the algorithm 50000 ($<<2^{40}$) times, we can see that the PIP is 1 for variables x_1 , x_5 and x_{10} , which are the variables in the data generating process (population statistical model). However, we can see that variable x_{23} has a high PIP (0.49), this makes that the PMP of the model including x_1 , x_5 , x_{10} and x_{23} is the highest, followed by the model including x_1 , x_5 and x_{10} , which is the population statistical model. This highlights the relevance of performing BMA; selecting just one model based on the highest PMP would induce a mistake. Although selecting the median probability model would uncover the population statistical model.

Estimating the BMA mean shows that we get values very close to the population values, a remarkable results is all other BMA posterior means are close to 0, including the mean coefficient of x_{23} despite that its PIP is almost 0.5. We calculate the posterior ratio between the mean and standard deviation, and get values higher than 2 just for x_1 , x_5 and x_{10} , again given evidence for the data generating process.

$R\ code.\ Markov\ chain\ Monte\ Carlo\ model\ composition$

```
1 rm(list = ls()); set.seed(010101)
2 N <- 1000
3 K1 <- 6; K2 <- 4; K3 <- 30; K <- K1 + K2 + K3
4 X1 <- matrix(rnorm(N*K1,1,1), N, K1)
5 X2 <- matrix(rbinom(N*K2, 1, 0.5), N, K2)
6 X3 <- matrix(rnorm(N*K3,1,1), N, K3)
7 X <- cbind(X1, X2, X3); e <- rnorm(N, 0, 0.5)
8 B \leftarrow c(1,0,0,0,0.5,0,0,0,-0.7, rep(0, 30))
9 y <-1 + X%*%B + e
10 LogMLfunt <- function(Model){</pre>
    indr <- Model == 1
    kr <- sum(indr)</pre>
    if(kr > 0){
13
       gr \leftarrow ifelse(N > kr<sup>2</sup>, 1/N, kr<sup>(-2)</sup>)
       Xr <- matrix(Xnew[ , indr], ncol = kr)</pre>
       # PX <- diag(N) - Xr%*%solve(t(Xr)%*%Xr)%*%t(Xr)
16
       # s2pos \leftarrow c(t(y)%*%PX%*%y/(1 + gr) + gr*(t(y - mean(y)))
       %*%(y - mean(y)))/(1 + gr))
       PX <- Xr%*%solve(t(Xr)%*%Xr)%*%t(Xr)
       s2pos \leftarrow c((t(y - mean(y)))%*%(y - mean(y))) - t(y)%*%PX%
19
       *%y/(1 + gr))
       mllMod \leftarrow (kr/2)*log(gr/(1+gr))-(N-1)/2*log(s2pos)
20
     }else{
21
22
       gr <- ifelse(N > kr^2, 1/N, kr^(-2))
       # PX <- diag(N)
23
       # s2pos \leftarrow c(t(y)%*%PX%*%y/(1 + gr) + gr*(t(y - mean(y)))
       %*%(y - mean(y)))/(1 + gr))
       s2pos \leftarrow c((t(y - mean(y)))%*%(y - mean(y))))
25
       mllMod \leftarrow (kr/2)*log(gr/(1+gr))-(N-1)/2*log(s2pos)
26
27
28
    return(mllMod)
29 }
30 Xnew <- apply(X, 2, scale); M <- 100
31 Models <- matrix(rbinom(K*M, 1, p = 0.5), ncol = K, nrow = M
        + 800)
32 Models <- unique (Models) [1:M,]
33 mllnew <- sapply(1:M, function(s){LogMLfunt(matrix(Models[s
,], 1, K))})</pre>
34 oind <- order(mllnew, decreasing = TRUE)
35 mllnew <- mllnew[oind]
36 Models <- Models[oind, ]
37 iter <- 50000; s <- 1
38 pb <- winProgressBar(title = "progress bar", min = 0, max =
       iter, width = 300)
```

$R\ code.\ Markov\ chain\ Monte\ Carlo\ model\ composition$

```
while(s <= iter){</pre>
     ActModel <- Models[M,]</pre>
     idK <- which(ActModel == 1)
Kact <- length(idK)</pre>
     Continue <- 0
     while(Continue == 0){
       if (Kact < K & Kact > 1) {
          CardMol <- K
          opt <- sample(1:3, 1)
9
          if(opt == 1){ # Same
            CandModel <- ActModel
12
          }else{
13
            if(opt == 2){ # Add
               All <- 1:K
14
               NewX <- sample(All[-idK], 1)</pre>
               CandModel <- ActModel
16
               CandModel[NewX] <- 1</pre>
            }else{ # Subtract
18
               LessX <- sample(idK, 1)</pre>
19
               CandModel <- ActModel
20
               CandModel[LessX] <- 0</pre>
21
22
23
24
       }else{
          CardMol <- K + 1
25
26
          if(Kact == K){
            opt <- sample(1:2, 1)</pre>
27
            if(opt == 1) { # Same
  CandModel <- ActModel</pre>
28
29
            }else{ # Subtract
30
31
               LessX <- sample(1:K, 1)</pre>
               CandModel <- ActModel
32
               CandModel[LessX] <- 0</pre>
33
            }
34
          }else{
35
            if (K == 1) {
               opt <- sample(1:3, 1)
37
               if (opt == 1) { # Same
38
                 CandModel <- ActModel
39
               }else{
40
                 if(opt == 2){ # Add
41
                    All <- 1:K
42
43
                    NewX <- sample(All[-idK], 1)</pre>
                    CandModel <- ActModel
44
45
                    CandModel[NewX] <- 1</pre>
                 }else{ # Subtract
                    LessX <- sample(idK, 1)
CandModel <- ActModel
47
                    CandModel[LessX] <- 0</pre>
49
50
               }
51
            }else{ # Add
52
               NewX \leftarrow sample(1:K, 1)
53
               CandModel <- ActModel
54
               CandModel[NewX] <- 1</pre>
56
         }
57
```

$R\ code.\ Markov\ chain\ Monte\ Carlo\ model\ composition$

```
check <- NULL
     for(j in 1:M){
       if(sum(Models[j,] == CandModel) == K){
         checkj <- 0
         check <- c(check, checkj)</pre>
       }else{
         checkj <- 1
         check <- c(check, checkj)</pre>
9
     dimUniModels <- sum(check)</pre>
     if (dimUniModels == M){
       Continue <- 1
13
14
     }else{
       Continue <- 0
16
17 }
LogMLact <- LogMLfunt(matrix(ActModel, 1, K))
LogMLcand <- LogMLfunt(matrix(CandModel, 1, K))</pre>
20 alpha <- min(1, exp(LogMLcand-LogMLact)); u <- runif(1)
21 if(u <= alpha){</pre>
22 mllnew[M] <- LogMLcand
23 Models[M, ] <- CandModel
24 oind <- order(mllnew, decreasing = TRUE)
25 mllnew <- mllnew[oind]
26 Models <- Models[oind, ]
27 }else{
28 mllnew <- mllnew
29 Models <- Models
30 }
31 s <- s + 1
setWinProgressBar(pb, s, title=paste( round(s/iter*100, 0),"
34 close(pb)
35 ModelsUni <- unique(Models)
36 mllnewUni <- sapply(1:dim(ModelsUni)[1], function(s){
       LogMLfunt(matrix(ModelsUni[s,], 1, K))})
37 StMarLik <- exp(mllnewUni-mllnewUni[1])
38 PMP <- StMarLik/sum(StMarLik)
39 PIP <- NULL
40 for(k in 1:K){
41 PIPk <- sum(PMP[which(ModelsUni[,k] == 1)])
42 PIP <- c(PIP, PIPk)
43 }
44 PIP
```

$R\ code.\ Markov\ chain\ Monte\ Carlo\ model\\ composition$

```
Means <- matrix(0, M, K)</pre>
  Vars <- matrix(0, M, K)</pre>
  for(m in 1:M){
     idXs <- which(ModelsUni[m,] == 1)</pre>
     if(length(idXs) == 0){
  Regm <- lm(y ~ 1)</pre>
        Xm <- X[, idXs]</pre>
        Regm \leftarrow lm(y \sim Xm)
        SumRegm <- summary(Regm)</pre>
        Means[m, idXs] <- SumRegm[["coefficients"]][-1,1]</pre>
        Vars[m, idXs] <- SumRegm[["coefficients"]][-1,2]^2</pre>
13
15 BMAmeans <- colSums(Means*PMP)</pre>
16 BMAsd <- (colSums(PMP*Vars) + colSums(PMP*(Means-matrix(rep</pre>
        (BMAmeans, each = M), M, K))^2))^0.5
17 plot (BMAmeans)
18 plot(BMAsd)
19 plot (BMAmeans/BMAsd)
```

4. Simulation exercise of IV BMA continues

Use the simulation setting with endogeneity in Section 10.2 to perform BMA based on the BIC approximation and MC3.

Answer

The following code shows how to perform BMA using the BIC approximation and MC3 in this simulation setting with endogeneity. We see from the results that the BIC approximation and MC3 do a good job with the PMP and the PIP, as the data generating process gets the highest PMP using both approaches, and the PIPs of the variables in the data generating process are equal 1. The critical point is the BMA posterior means of the endogenous regressors, as these are far from the population values. The population values of x_{i1} and x_{i2} are 0.5 and -1, whereas the posterior means are 0.97 and -0.52.

R code. BIC and MC3 in model with endogeneity

```
1 rm(list = ls())
2 set.seed(010101)
simIV <- function(delta1, delta2, beta0, betas1, betas2, beta2,</pre>
      Sigma,n,z) {
     eps <- matrix(rnorm(3*n),ncol=3) %*% chol(Sigma)
    xs1 \leftarrow z\%*\%delta1 + eps[,1]
    xs2 <- z%*%delta2 + eps[,2]
    x2 <- rnorm(dim(z)[1])
     y \leftarrow beta0+betas1*xs1+betas2*xs2+beta2*x2 + eps[,3]
    X <- as.matrix(cbind(xs1,xs2,1,x2))</pre>
    colnames(X) <- c("x1en","x2en","cte","xex")</pre>
    y <- matrix(y,dim(z)[1],1)
     colnames(y) <- c("y")</pre>
    list(X=X,y=y)
13
14 }
_{15} n <- 1000 ; p <- 3 \,
16 z <- matrix(runif(n*p),ncol=p)</pre>
17 rho31 <- 0.8; rho32 <- 0.5;
18 Sigma <- matrix(c(1,0,rho31,0,1,rho32,rho31,rho32,1),ncol=3)</pre>
19 delta1 <- c(4,-1,2); delta2 <- c(-2,3,-1); betas1 <- .5;
       betas2 <- -1; beta2 <- 1; beta0 <- 2
20 simiv <- simIV(delta1,delta2,beta0,betas1,betas2,beta2,Sigma
       ,n,z)
21 nW <- 18
22 W <- matrix(rnorm(nW*dim(z)[1]),dim(z)[1],nW)
23 YXW <-cbind (simiv $ y , simiv $ X , W)
y \leftarrow YXW[,1]; X \leftarrow YXW[,2:3]; W \leftarrow YXW[,-c(1:4)]
25 Xnew <- cbind(X, W)
26 BMAglm <- BMA::bicreg(Xnew, y, strict = FALSE, OR = 50)
27 summary (BMAglm)
28 BMAreg <- BMA::MC3.REG(y, Xnew, num.its=10000)
29 Models <- unique(BMAreg[["variables"]])</pre>
30 nModels <- dim(Models)[1]
nVistModels <- dim(BMAreg[["variables"]])[1]</pre>
32 K <- dim(Xnew)[2]
33 PMP <- NULL
34 for(m in 1:nModels){
    idModm <- NULL
     for(j in 1:nVistModels){
36
       if(sum(Models[m,] == BMAreg[["variables"]][j,]) == K){
         idModm <- c(idModm, j)</pre>
38
39
       }else{
         idModm <- idModm
40
41
42
    PMPm <- sum(BMAreg[["post.prob"]][idModm])</pre>
43
44
    PMP <- c(PMP, PMPm)
45 }
46 PMP
47 PIP <- NULL
48 for(k in 1:K){
   PIPk <- sum(PMP[which(Models[,k] == 1)])
    PIP <- c(PIP, PIPk)
50
51 }
52 plot(PIP)
```

R code. BIC and MC3 in model with endogeneity

```
Means <- matrix(0, nModels, K)</pre>
  Vars <- matrix(0, nModels, K)</pre>
  for(m in 1:nModels){
     idXs <- which(Models[m,] == 1)</pre>
     if(length(idXs) == 0){
       Regm <- lm(y ~ 1)
     }else{
       Xm <- Xnew[, idXs]</pre>
       Regm <- lm(y ~ Xm)
       SumRegm <- summary(Regm)</pre>
       Means[m, idXs] <- SumRegm[["coefficients"]][-1,1]</pre>
       Vars[m, idXs] <- SumRegm[["coefficients"]][-1,2]^2</pre>
13
14 }
15 BMAmeans <- colSums(Means*PMP)</pre>
16 BMAsd <- (colSums(PMP*Vars) + colSums(PMP*(Means-matrix(rep
       (BMAmeans, each = nModels), nModels, K))^2))^0.5
17 plot(BMAmeans)
18 plot(BMAsd)
19 plot (BMAmeans/BMAsd)
```

The previous results are intuitive, as the PMP are calculated based on fit (and penalty for complexity), for instance, $BIC = k_m \log(N) - 2\log(p(\hat{\boldsymbol{\theta}}_m|\boldsymbol{y}))$, where $\hat{\boldsymbol{\theta}}_m$ is the maximum likelihood estimator. Observe that the fit is not affected by endogeneity. Thus, the PMP are well calculated. However, the coefficients are not well identified.

This suggests a simple strategy to perform BMA taking into account endogeneity, calculate the PMPs using standard BMA approaches, for instance, BIC approximation, and then estimate the BMA means using these PMPs, but estimating the different models using instrumental variables. This approach is easily implemented using packages from **R**. The following code does this:

R code. Easy IV BMA

```
BMAglm <- BMA::bicreg(Xnew, y, strict = FALSE, OR = 50)
2 summary(BMAglm)
  PMPBIC <- BMAglm[["postprob"]]</pre>
4 ModelsBIC <- BMAglm[["which"]]
5 nModels <- dim(ModelsBIC)[1]</pre>
6 K <- dim(Xnew)[2]
7 Means <- matrix(0, nModels, K)</pre>
  Vars <- matrix(0, nModels, K)</pre>
9 for(m in 1:nModels){
    idXs <- which (ModelsBIC[m,] == 1)
    if(length(idXs) == 0){
       Regm <- lm(y ~ 1)
12
13
    }else{
      Xm <- Xnew[, idXs]</pre>
14
       Regm <- ivreg::ivreg(y ~ Xm | z + W)</pre>
      SumRegm <- summary(Regm)</pre>
       Means[m, idXs] <- SumRegm[["coefficients"]][-1,1]</pre>
       Vars[m, idXs] <- SumRegm[["coefficients"]][-1,2]^2</pre>
18
19
20 }
21 BMAmeans <- colSums(Means*PMPBIC)
22 BMAsd <- (colSums(PMPBIC*Vars) + colSums(PMPBIC*(Means-
       matrix(rep(BMAmeans, each = nModels), nModels, K))^2))
23 BMAmeans
24 5.589366e-01 -9.431664e-01 1.035593e+00 -1.967444e-05
       -1.429801e-04 -3.310215e-04
                                     4.036846e-04 4.651796e-03
       -2.673730e-03 6.462503e-05
                                     4.286529e-04 -1.829889e-04
       5.073229e-03 -1.007356e-04 -5.377972e-04
                                                    1.644475e-03
       -4.029205e-04 -1.457381e-04 6.421582e-04
                                                    2.211994e-04
       2.216503e-04
25 plot (BMAsd)
26 plot (BMAmeans/BMAsd)
27 17.764095075 -23.233601133 34.734610916 -0.005600369
       -0.039168667
                     -0.071895067
                                     0.080909448 0.274994618
       -0.210854131
                      0.018790592
                                     0.061271650
                                                   -0.047117887
                     -0.028830411 -0.092463544
       0.305639285
                                                    0.169455952
       -0.058299940
                      -0.038099792
                                     0.102373567
                                                     0.056074670
       0.055500343
```

We observe that the Easy IV BMA means of the endogenous regressors are 0.59 and -0.94, which are closer to the population values (0.5 and -1) than the exogenous BMA means (0.97 and -0.52) and align closely with the IV BMA means calculated using conditional Bayes factors (0.51 and -0.98; see Section 10.2 in the book). Additionally, the ratios between the Easy IV

BMA means and their standard deviations exceed 2 in absolute value for these variables, and the t-intervals encompass the population values

5. Determinants of export diversification II

Use the datasets 11ExportDiversificationHHI.csv and 12ExportDiversificationHHIInstr.csv to perform IV BMA assuming that the log of per capita gross domestic product is endogenous (avglgdpcap). See [12] for details.

Answer

The results show that primary education (avgedu5) and natural resources (avgnatres) have again the highest PIP, 0.77 and 0.92, respectively. The former variable increases export diversification, and the latter decreases export diversification. However, it seems that endogeneity is not a concern in this application, as the 95% credible interval of σ_{12} is (-0.014, 0.024).

R code. IV BMA in export diversification

```
1 rm(list = ls())
2 set.seed(010101)
3 DataMain <- read.csv("https://raw.githubusercontent.com/</pre>
      besmarter/BSTApp/refs/heads/master/DataApp/11
      ExportDiversificationHHI.csv", sep = ",", header = TRUE,
       quote = "")
 4 DataInst <- read.csv("https://raw.githubusercontent.com/
       besmarter/BSTApp/refs/heads/master/DataApp/12
      ExportDiversificationHHIInstr.csv", sep = ",", header =
      TRUE, quote = "")
5 attach (DataMain)
6 attach (DataInst)
7 y <- DataMain[,1]</pre>
8 X <- as.matrix(DataMain[,2])</pre>
9 W <- as.matrix(DataMain[,-c(1:2)])</pre>
10 Z <- as.matrix(DataInst)</pre>
11 S <- 10000; burnin <- 1000
12 regivBMA \leftarrow ivbma::ivbma(Y = y, X = X, Z = Z, W = W, s = S+
      burnin, b = burnin, odens = S, print.every = round(S/10)
       , run.diagnostics = FALSE)
13 PIPmain <- regivBMA[["L.bar"]] # PIP outcome
14 PIPmain
15 EVmain <- regivBMA[["rho.bar"]] # Posterior mean outcome
16 EVmain
17 PIPaux <- regivBMA[["M.bar"]] # PIP auxiliary
18 PIPaux
19 EVaux <- regivBMA[["lambda.bar"]] # Posterior mean auxiliary
20 plot(EVaux[,1])
21 EVsigma \leftarrow regivBMA[["Sigma.bar"]] # Posterior mean variance
       {\tt matrix}
22 EVsigma
23 summary(coda::mcmc(regivBMA[["Sigma"]][1,2,]))
24 Iterations = 1:10000
25 Thinning interval = 1
_{26} Number of chains = 1
27 Sample size per chain = 10000
28 1. Empirical mean and standard deviation for each variable,
29 plus standard error of the mean:
                              Naive SE Time-series SE
                    SD
30 Mean
31 3.944e-03
                  9.592e-03
                                   9.592e-05
                                                   4.043e-04
32 2. Quantiles for each variable:
33 2.5%
              25%
                         50%
                                   75%
34 -0.014155 -0.002415 0.003592 0.009988 0.024047
```

6. Show that the link function in the case of the Bernoulli distribution is $\log\left(\frac{\theta}{1-\theta}\right)$.

Answer

$$p(\mathbf{y}|\theta) = \theta^{y} (1 - \theta)^{1 - y}$$

$$= (1 - \theta) \exp\left\{y \log\left(\frac{\theta}{1 - \theta}\right)\right\}$$

$$= \exp\left\{y \log\left(\frac{\theta}{1 - \theta}\right) + \log(1 - \theta)\right\},$$

then $\eta(\theta) = \log\left(\frac{\theta}{1-\theta}\right)$, and this density in the canonical form is $p(y|\eta) = \exp\left\{y\eta - \log(1 + \exp(\eta))\right\}$ consequently, $\mathbb{E}[Y|x] = \nabla\left(\log(1 + \exp(\eta))\right) = \frac{\exp(\eta)}{1 + \exp(\eta)} = \theta = \frac{\exp(x^\top \beta)}{1 + \exp(x^\top \beta)}$. Then, the link function in the Bernoulli case is the *logit* function.

7. [26, 27] perform variable selection using the file 13InternetMed.csv. In this data set, the dependent variable is an indicator of Internet adoption (internet) for 5000 households in Medellín (Colombia) during the period 2006–2014. This dataset contains information about 18 potential determinants, which means 262144 (2¹⁸) potential models just taking into account variable uncertainty (see these papers for details about the data set). Perform BMA using the logit link function using this data set.

Answer

$R\ code.\ BMA\ logit\ in\ internet\ adoption$

The results show that the best model has a posterior model probability equal to 31%, and the second best model has a PMP equal to 30%. It seems that age, squared age, years of education of the head of the household, total expenses, having pay TV, any household member studying, and number of children in the household are relevant determinants of Internet adoption.

8. [32] use the file 14 Value Football Players.csv to analyze the market value of soccer players in the most important leagues in Europe. In particular, there are 26 potential determinants of the market value (dependent variable) of a stratified sample of 335 soccer players in the five most important leagues in Europe (see [32] for details). Use this data set to perform BMA using the gamma distribution with the log link function, and setting default values for Occam's window.

Answer

$R\ code.\ BMA\ gamma\ in\ market\ value\ of\ soccer\ players\ in\ Europe$

The results show that performance, age, squared age, participation in national team, scored goals, and appearance in the UEFA champions league have PIPs equal 1. All these variables increase the market value of soccer players, except squared age.

9. Use the dataset 15Fertile2.csv from [38, p. 547] to perform BMA using the Poisson model with the log link. This data set has information about 1,781 women from Botswana in 1988 (for details, see https://rdrr.io/cran/wooldridge/man/fertil2.html, and take into account that we deleted some variables and omitted observations with NA values). The dependent variable is the number of children ever born (ceb), which is a count variable, as a function of 19 potential determinants.

Answer

R code. BMA Poisson in determinants of fertility in Bostwana

We found that the best model, for which the PMP is equal to 27%, has as regressors age, squared age, age at first birth, use birth control, husband's years of education, woman's years of education, and living in an urban area. The first five variables have PIPs equal to 100. For instance, we found that women using birth control have approximately 15% fewer children on average than women who are not using birth control.

10. Perform BMA in the logit model using MC3 and the BIC approximation using the simulation setting of Section 10.3.

Answer

R code. BMA Logit model

```
1 rm(list = ls()); set.seed(010101)
2 n<-1000; B<-c(0.5,0.8,-1.2)
3 X <- matrix (cbind (rep(1,n), rnorm(n,0,1), rnorm(n,0,1)), n, length
       (B))
_{4} p \leftarrow \exp(X\%*\%B)/(1+\exp(X\%*\%B))
5 y <- rbinom(n, 1, p); table(y)</pre>
6 nXgar <-25; Xgar <-matrix (rnorm (nXgar *n), n, nXgar)
7 df <-as.data.frame(cbind(y,X[,-1],Xgar))</pre>
8 colnames(df) <- c("y", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x16", "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27")
9 Xnew <- apply(df[,-1], 2, scale)</pre>
10 BICfunt <- function(Model){</pre>
     indr <- Model == 1
12
     kr <- sum(indr)</pre>
     if(kr > 0){
13
       Xr <- as.matrix(Xnew[ , indr])</pre>
       model <- glm(y ~ Xr, family = binomial(link = "logit"))</pre>
       model_bic <- BIC(model)</pre>
16
       mllMod <- -model_bic/2
17
18
     }else{
        model <- glm(y ~ 1, family = binomial(link = "logit"))</pre>
19
       model_bic <- BIC(model)</pre>
20
21
       mllMod <- -model_bic/2
22
23
     return (mllMod)
24 }
25 M <- 500; K <- dim(df)[2] - 1
26 Models <- matrix(rbinom(K*M, 1, p = 0.5), ncol = K, nrow = M
27 mllnew <- sapply(1:M, function(s){BICfunt(matrix(Models[s,],
         1, K))})
28 oind <- order(mllnew, decreasing = TRUE)
29 mllnew <- mllnew[oind]; Models <- Models[oind, ]</pre>
30 iter <- 25000; s <- 1
31 pb <- winProgressBar(title = "progress bar", min = 0, max =
       iter, width = 300)
32 while(s <= iter){</pre>
    ActModel <- Models[M,]
     idK <- which(ActModel == 1)
Kact <- length(idK)</pre>
34
     if (Kact < K & Kact > 1) {
       CardMol <- K; opt <- sample(1:3, 1)</pre>
37
38
       if (opt == 1) { # Same
          CandModel <- ActModel
39
40
       }else{
          if (opt == 2) { # Add
41
            All <- 1:K; NewX <- sample(All[-idK], 1)
42
             CandModel <- ActModel; CandModel[NewX] <- 1</pre>
43
44
          }else{ # Subtract
            LessX <- sample(idK, 1)</pre>
45
             CandModel <- ActModel; CandModel[LessX] <- 0</pre>
46
          }
47
```

R code. BMA Logit model

```
}else{
_2 CardMol <- K + 1
3 if (Kact == K) {
4   opt <- sample(1:2, 1)</pre>
    if(opt == 1){ # Same
       CandModel <- ActModel
    }else{ # Subtract
       LessX <- sample(1:K, 1)</pre>
       CandModel <- ActModel
       CandModel[LessX] <- 0</pre>
10
    }
11
12 }else{
    if (K == 1) {
13
      opt <- sample(1:3, 1)
14
      if(opt == 1){ # Same
15
         CandModel <- ActModel
16
17
       }else{
         if (opt == 2) { # Add
18
           A11 <- 1:K
19
20
           NewX <- sample(All[-idK], 1)</pre>
           CandModel <- ActModel
21
           CandModel[NewX] <- 1</pre>
22
         }else{ # Subtract
23
           LessX <- sample(idK, 1)</pre>
24
           CandModel <- ActModel
           CandModel[LessX] <- 0</pre>
26
27
      }
28
    }else{ # Add
29
30
      NewX <- sample(1:K, 1)
       CandModel <- ActModel
31
       CandModel[NewX] <- 1</pre>
32
    }
33
34 }
35 }
36 LogMLact <- BICfunt(matrix(ActModel, 1, K))</pre>
37 LogMLcand <- BICfunt(matrix(CandModel, 1, K))
38 alpha <- min(1, exp(LogMLcand-LogMLact)) # Let's reasonably
       assume same prior model probability for candidate and
      actual, and same carnality of neighbor models
39 u <- runif(1)
40 if(u <= alpha){
41 mllnew[M] <- LogMLcand
42 Models[M, ] <- CandModel
43 oind <- order(mllnew, decreasing = TRUE)
44 mllnew <- mllnew[oind]
45 Models <- Models[oind, ]
46 }else{
47 mllnew <- mllnew
48 Models <- Models
50 s <- s + 1
51 setWinProgressBar(pb, s, title=paste( round(s/iter*100, 0),"
      % done"))
52 }
53 close(pb)
```

R code. BMA Logit model

```
1 ModelsUni <- unique(Models)</pre>
2 mllnewUni <- sapply(1:dim(ModelsUni)[1], function(s){BICfunt</pre>
       (matrix(ModelsUni[s,], 1, K))})
3 StMarLik <- exp(mllnewUni-mllnewUni[1])</pre>
4 PMP <- StMarLik/sum(StMarLik) # PMP based on unique selected
        models
5 plot(PMP)
6 ModelsUni[1,]
7 PTP <- NULL.
8 for(k in 1:K){
    PIPk <- sum(PMP[which(ModelsUni[,k] == 1)])
    PIP <- c(PIP, PIPk)
12 plot(PIP)
13 Xnew <- df[,-1]
14 nModels <- dim(ModelsUni)[1]</pre>
15 Means <- matrix(0, nModels, K)</pre>
16 Vars <- matrix(0, nModels, K)</pre>
17 for(m in 1:nModels){
    idXs <- which(ModelsUni[m,] == 1)</pre>
    if(length(idXs) == 0){
19
       Regm <- glm(y ~ 1, family = binomial(link = "logit"))</pre>
20
    }else{
       Xm <- as.matrix(Xnew[, idXs])</pre>
22
       Regm <- glm(y ~ Xm, family = binomial(link = "logit"))</pre>
24
       SumRegm <- summary(Regm)</pre>
25
       Means[m, idXs] <- SumRegm[["coefficients"]][-1,1]</pre>
       Vars[m, idXs] <- SumRegm[["coefficients"]][-1,2]^2</pre>
26
27
28 }
29 BMAmeans <- colSums(Means*PMP)
30 BMAsd <- (colSums(PMP*Vars) + colSums(PMP*(Means-matrix(rep
       (BMAmeans, each = nModels), nModels, K))^2))^0.5
31 plot (BMAmeans)
32 plot(BMAsd)
33 plot (BMAmeans/BMAsd)
```

The simulation setting implies 2^{27} models, which implies approximately 135 million models in the model space. We run our MC3 algorithm using the BIC approximation with 25000 iterations. This takes by far more time that the BIC approximation from the BMA package, but it seems to do a good job finding the data generating process as the highest PMP is associated with it, the PIPs of x_{i1} and x_{i2} are 1, the posterior means are 0.85 and -1.1, which are very close to the population values (0.8 and -1.2), and the

t-ratios are by far higher than 2. The PIPs of the other regressors are lower than 20%, and the BMA means are close to 0.

- 11. Use the dataset 19ExchangeRateCOPUSD.csv to estimate four different state-space models to explain the annual variation of the COP to USD exchange rate:
 - Interest rate parity $\Delta e_t = \beta_{1t}^{IRP} + \beta_{2t}^{IRP} (i_{t-1}^{Col} i_{t-1}^{USA}) + \mu_t^{IRP}$
 - Purchasing power parity $\Delta e_t = \beta_{1t}^{PPP} + \beta_{2t}^{PPP} (\pi_{t-1}^{Col} \pi_{t-1}^{USA}) + \mu_t^{PPP}$
 - Taylor rule $\Delta e_t = \beta_{1t}^{Taylor} + \beta_{2t}^{Taylor} (\pi_{t-1}^{Col} \pi_{t-1}^{USA}) + \beta_{2t}^{Taylor} (g_{t-1}^{Col} g_{t-1}^{USA}) + \mu_t^{IRP}$
 - Money supply $\Delta e_t = \beta_{1t}^{Money} + \beta_{2t}^{Money} (g_{t-1}^{Col} g_{t-1}^{USA}) + \beta_{2t}^{Money} (m_{t-1}^{Col} m_{t-1}^{USA}) + \mu_t^{Money}$

where varTRM (Δe_t) is the annual variation rate of the exchange rate COP to USD, TES_COL10 (i_t^{Col}) and TES_USA10 (i_t^{USA}) are the annual return rates of Colombian and USA public debts in 10 years, $inflation_COL$ (π_t^{Col}) and $inflation_USA$ (π_t^{USA}) are the annual inflation rates, $varISE_COL$ (g_t^{Col}) and $varISE_USA$ (g_t^{USA}) are annual variation of economic activity indices, and $varCOL_M3$ (m_t^{Col}) and $varUSA_M3$ (m_t^{USA}) are annual variations of money supply. We have monthly variations between January 2006 and November 2023.

Perform Bayesian model averaging using these four models to explain the annual variation of the exchange rate, get the posterior model probabilities, and plot the posterior mean and credible interval of β_{2t}^{Money} .

Answer

R code. Dynamic Bayesian model average: Theories to explain (forecast) exchange rate

```
1 rm(list = ls()); set.seed(010101)
2 DataMain <- read.csv("https://raw.githubusercontent.com/</pre>
       besmarter/BSTApp/refs/heads/master/DataApp/19
       ExchangeRateCOPUSD.csv", sep = ",", header = TRUE, quote
3 \times - DataMain[-c(1:12,227),c(4,5,7,9,11,13,14,15)]
 4 DifIntRat <- X[,8] - X[,7]; DifInf <- X[,1] - X[,2]
5 DifGrowth <- X[,3] - X[,4]; DifM3 <- X[,6] - X[,5]
6 XDif <- cbind(DifIntRat, DifInf, DifGrowth, DifM3)
7 matplot(XDif, type = "1")
8 y \leftarrow DataMain[-c(1:13),17] # Var exchange rate depends on
       lag of other variables
9 plot(y, type = "1")
10 IRP \leftarrow c(1, 0, 0, 0); PPP \leftarrow c(0, 1, 0, 0)
11 Taylor \leftarrow c(0, 1, 1, 0); Money \leftarrow c(0, 0, 1, 1)
12 Models <- rbind(IRP, PPP, Taylor, Money)</pre>
13 TO <- 50
dma.test <- dma::dma(XDif, y, Models, lambda=.99, gamma=.99,
        initialperiod = T0)
15 plot(ts(dma.test[["pmp"]][,1], start = 2006, end = 2023,
       frequency = 12), type = "1", main = "Exchange rate
models", ylab = "Posterior model probability", ylim = c
       (0,1)) lines(ts(dma.test[["pmp"]][,2], start = 2006, end
        = 2023, frequency = 12), col = "red") lines(ts(dma.test
       [["pmp"]][,3], start = 2006, end = 2023, frequency = 12)
       , col = "green") lines(ts(dma.test[["pmp"]][,4], start =
        2006, end = 2023, frequency = 12), col = "blue") legend
       (x = 2009, y = 0.6, legend = c("IRP", "PPP", "Taylor")
       rule", "Money supply"), col = c("black", "red", "green",
        "blue"), lty=1:1, cex=0.8)
require(latex2exp)
17 plot_filtering_estimates <- function(df) {</pre>
    p <- ggplot(data = df, aes(x = t)) + geom_ribbon(aes(ymin</pre>
       = lower, ymax = upper), alpha = 0.5, fill = "blue") +
       geom_line(aes(y = mean), colour = "black", linewidth =
       0.8) + geom_hline(yintercept=0, colour = "red") + ylab(
       TeX("$\\beta_{Growth_t}^{Money}$")) + xlab("Time")
     print(p)
20 }
menathetaIRP <- dma.test[["thetahat"]][4,,4]</pre>
22 SDthetaIRP <- (dma.test[["Vtheta"]][4,,4])^0.5
23 LimInf <- menathetaIRP - 2*SDthetaIRP
24 LimSup <- menathetaIRP + 2*SDthetaIRP
25 library(ggplot2,tibble,dplyr)
26 df <- tibble(t = 1:214, mean = menathetaIRP, lower = LimInf,
        upper = LimSup)
27 Fig <- plot_filtering_estimates(df)</pre>
```

Figure 10.1 shows the posterior model probabilities. We see that at the beginning, between 2006 and 2007, the purchasing power parity theory (PPP) had the highest PMP (70% on average) to explain the annual variations of the COP/USD exchange rate. Then, the money supply theory (Money) got the highest PMP (80% on average) between 2008 and 2017. Finally, the interest rate parity got the highest PMP (80% on average) between 2018 and 2023.

Exchange rate models

FIGURE 10.1

Dynamic posterior model probability: Models to explain variations of the COP to USD exchange rate.

Figure 10.2 shows the dynamic posterior mean (black line) and credible interval (blue shadow) of the coefficient related to the differential of economic growths (Colombia vs the USA) in the money supply equation to explain the annual variations of the exchange rate. We observe that increasing this economic growth differential implies appreciation of the COP relatively to USD.

12. Perform a simulation of the dynamic logistic model, where there are 7 ($2^3 - 1$, the model without regressors is excluded) competing models originated from 3 regressors, $x_{tk} \sim N(0.5, 0.8^2)$, k = 2, 3, 4, and $\beta_1 = 0.5$, β_{2t} is a sequence from 1 to 2 in steps given by 1/T, $\beta_{3t} = \begin{cases} -1, & 1 < t \leq 0.5T \\ 0, & 0.5T < t \leq T \end{cases}$, and $\beta_4 = 1.2$. Then, $\mathbf{x}_t^{\mathsf{T}} \boldsymbol{\beta}_t = \beta_1 + \beta_{2t} x_{2t} + \beta_{3t} x_{3t} + \beta_4 x_{4t}$, where $P[Y_t = 1 | \mathbf{x}_t, \boldsymbol{\beta}_t] = \exp(\mathbf{x}_t^{\mathsf{T}} \boldsymbol{\beta}_t)/(1 + \exp(\mathbf{x}_t^{\mathsf{T}} \boldsymbol{\beta}_t))$, $t = 1, 2, \ldots, 1100$. Use the function logistic dma from the dma package to get the posterior model probabilities

FIGURE 10.2

State coefficient money supply theory: Differential of economic growths (Colombia vs the USA).

setting the forgetting parameter of the models equal to 0.99, and then to 0.95. Compare the results.

Answer

The following code shows the simulation exercise, and the results of the dynamic Bayesian model average of logistic models.

$R\ code.\ Dynamic\ Bayesian\ model\ average:\ Logit\ model$

```
rm(list = ls()); set.seed(010101)
2 T <- 1100; K <- 3
_{3} X <- matrix(rnorm(T*K, mean = 0.5, sd = 0.8), T, K)
  combs <- expand.grid(c(0,1), c(0,1), c(0,1))
B1 <- 0.5; B2t <- seq(1, 2, length.out=T)</pre>
6 a <- 0.5
7 B3t <- c(rep(-1,round(a*T)), rep(0,round((1-a)*T)))</pre>
8 B4 <- 1.2
9 yl \leftarrow B1 + X[,1]*B2t + X[,2]*B3t + X[,3]*B4
10 py <- \exp(y1)/(1 + \exp(y1))
11 y <- rbinom(T, 1, prob = py)
12 table(y)
13 TO <- 100
14 dma.test <- dma::logistic.dma(X, y, combs[-1,], lambda =</pre>
      0.99, alpha = 0.99, initialsamp = T0)
15 plot(dma.test[["pmp"]][7, -c(1:T0)], type = "1", col = "
      green", main = "Posterior model probability: Model all
      regressors vs model regressors 1 and 3", xlab = "Time",
      ylab = "PMP", ylim = c(0, 1))
16 lines(dma.test[["pmp"]][5,-c(1:T0)], col = "red")
17 legend(x = 0, y = 0.9, legend = c("Model: All regressors",
       Model: Regressors 1 and 3"), col = c("green", "red"),
      lty=1:1, cex=0.8)
18 dma.test1 <- dma::logistic.dma(X, y, combs[-1,], lambda =</pre>
      0.99, alpha = 0.95, initialsamp = T0)
19 plot(dma.test1[["pmp"]][7, -c(1:T0)], type = "1", col = "
       green", main = "Posterior model probability: Model all
      regressors vs model regressors 1 and 3", xlab = "Time",
      ylab = "PMP", ylim = c(0, 1))
20 lines(dma.test1[["pmp"]][5,-c(1:T0)], col = "red")
21 legend(x = 0, y = 0.9, legend = c("Model: All regressors",
       Model: Regressors 1 and 3"), col = c("green", "red"),
      lty=1:1, cex=0.8)
```

Figure 10.3 shows the posterior model probabilities of the model with all the regressors (green line), and the model with regressors 2 and 4 (red line), setting the forgetting parameter of the models equal to 0.99. In one hand, we see that the model with all regressors, which is the data generating process in the first period ($t \le 0.5T$), gets high posterior model probabilities. We see that the PMPs decrease around T = 700, whereas the change in the data generating process is at T = 550. This means that there is a lack to identify the data generating process, which is a consequence of the high forgetting parameter of the models. Consequently, the PMPs of the model with regressors 2 and 4 increases around T = 700, but it is lower than the

PMPs of the model with all regressors, despite that in this time period the data generating process is given by the model with regressors 2 and 4.

Figure 10.4 shows the posterior model probabilities using a forgetting parameter equal to 0.95. We can see that as the forgetting parameter decreases, the process of identifying the data generating process is faster, and consequently, the PMP of the model with regressors 2 and 4 increases around T=550, which is the turning point in the data generating process. This does not mean that we should set small forgetting parameters. These parameters should be set based on model performance, for instance, small mean squared error in a cross validation period.

Posterior model probability: Model all regressors vs model regressors 2 and 4

FIGURE 10.3

Posterior model probability: Dynamic Bayesian model average, forgetting parameter equal to 0.99.

13. Show that

$$\mathbb{E}\left[\frac{q(\boldsymbol{\theta})}{\pi(\boldsymbol{\theta}|\mathcal{M}_m)p(\boldsymbol{y}|\boldsymbol{\theta}_m,\mathcal{M}_m)}\bigg|\boldsymbol{y},\mathcal{M}_m\right] = \frac{1}{p(\boldsymbol{y}|\mathcal{M}_m)},$$

where the expected value is with respect to the posterior distribution given the model \mathcal{M}_m , and $q(\boldsymbol{\theta})$ is the proposal distribution whose support is $\boldsymbol{\Theta}$.

Answer

Posterior model probability: Model all regressors vs model regressors 1 and 3

FIGURE 10.4

Posterior model probability: Dynamic Bayesian model average, forgetting parameter equal to 0.95.

Given a probability density function $q(\theta)$, whose support is in Θ , then

$$\mathbb{E}\left[\frac{q(\boldsymbol{\theta})}{\pi(\boldsymbol{\theta}|\mathcal{M}_m)p(\boldsymbol{y}|\boldsymbol{\theta}_m,\mathcal{M}_m)}\Big|\boldsymbol{y},\mathcal{M}_m\right] = \int_{\boldsymbol{\Theta}}\left[\frac{q(\boldsymbol{\theta})}{\pi(\boldsymbol{\theta}|\mathcal{M}_m)p(\boldsymbol{y}|\boldsymbol{\theta}_m,\mathcal{M}_m)}\right]\pi(\boldsymbol{\theta}|\boldsymbol{y},\mathcal{M}_m)d\boldsymbol{\theta}$$

$$= \int_{\boldsymbol{\Theta}}\left[\frac{q(\boldsymbol{\theta})}{\pi(\boldsymbol{\theta}|\mathcal{M}_m)p(\boldsymbol{y}|\boldsymbol{\theta}_m,\mathcal{M}_m)}\right]\frac{\pi(\boldsymbol{\theta}|\boldsymbol{y},\mathcal{M}_m)p(\boldsymbol{y}|\boldsymbol{\theta}_m,\mathcal{M}_m)}{p(\boldsymbol{y}|\mathcal{M}_m)}d\boldsymbol{\theta}$$

$$= \frac{1}{p(\boldsymbol{y}|\mathcal{M}_m)}\int_{\boldsymbol{\Theta}}q(\boldsymbol{\theta})d\boldsymbol{\theta}$$

$$= \frac{1}{p(\boldsymbol{y}|\mathcal{M}_m)}.$$

Part III

Advanced methods: A brief introduction

11

Semi-parametric and non-parametric models

Solutions of Exercises

1. Simulate a semi-parametric regression where

$$y_i = 0.5x_{i1} - 1.2x_{i2} + \mu_i,$$

$$p(\mu_i) = 0.3\phi(\mu_i \mid -0.5, 0.5^2) + 0.7\phi(\mu_i \mid 1, 0.8^2).$$

Assume that x_{i1} and x_{i2} follow a standard normal distribution and that the sample size is 1,000. Perform inference in this model assuming that the number of components is unknown. Start with H=5 and use non-informative priors, setting $\alpha_{h0}=\delta_{h0}=0.01$, $\boldsymbol{\beta}_0=\mathbf{0}_2$, $\boldsymbol{B}_0=\boldsymbol{I}_2$, $\mu_{h0}=0$, $\sigma_{\mu0}^2=10$, and $\boldsymbol{\alpha}_0=[1/H\dots 1/H]^{\top}$. Use 6,000 MCMC iterations, a burnin period of 4,000, and a thinning parameter of 2. Compare the population parameters with the posterior estimates and plot the population density along with the posterior density estimate of $\boldsymbol{\mu}$ (the mean, and the 95% credible interval).

Answer

We can see from the posterior estimates that three components disappear after the burn-in iterations. The 95% credible intervals encompass the population values of all parameters, and the posterior density estimate closely matches the population density. See Figure 11.1, where the black line represents the population density, the blue line denotes the posterior mean density estimate, and the shaded light blue area corresponds to the 95% credible interval.

$R\ code.\ Simulation:\ Semi-parametric\ Gaussian\ mixture$

```
1 rm(list = ls()); set.seed(010101)
2 # Simulate data from a 2-component mixture model
3 n <- 1000
4 x1 <- rnorm(n); x2 <- rnorm(n)
5 B <- c(0.5, -1.2); X <- cbind(x1, x2)
6 z <- rbinom(n, 1, 0.3) # Latent class indicator
7 \text{ mu} \leftarrow \text{ifelse}(z == 0, rnorm(n, -0.5, 0.5), rnorm(n, 1, 0.8))
8 plot(density(mu))
9 y <- X%*%B + mu
10 # Hyperparameters
11 d0 <- 0.001; a0 <- 0.001
12 b0 <- rep(0, 2); B0 <- diag(2); B0i <- solve(B0)
13 mu0 <- 0; sig2mu0 <- 10
_{14} H <- 5; a0h <- rep(1/H, H)
15 # MCMC parameters
16 mcmc <- 2000
17 burnin <- 4000
18 tot <- mcmc + burnin
19 thin <- 2
_{20} # Gibbs sampling functions
21 PostSig2 <- function(Beta, muh, Xh, yh){</pre>
    Nh <- length(yh)
22
    an <- a0 + Nh
23
    dn \leftarrow d0 + t(yh - muh - Xh%*%Beta)%*%(yh - muh - Xh%*%Beta)
     sig2 \leftarrow invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
    return(sig2)
26
27 }
28 PostBeta <- function(sig2, mu, X, y, Psi){</pre>
    XtX <- matrix(0, 2, 2)</pre>
29
    Xty <- matrix(0, 2, 1)</pre>
    Hs <- length(mu)
31
    for(h in 1:Hs){
32
       idh <- which(Psi == h)
33
       if(length(idh) == 1){
34
         Xh <- matrix(X[idh,], 1, 2)</pre>
         XtXh <- sig2[h]^(-1)*t(Xh)%*%Xh</pre>
36
         yh <- y[idh]
37
         Xtyh <- sig2[h]^(-1)*t(Xh)%*%(yh - mu[h])</pre>
38
39
       }else{
40
         Xh <- X[idh,]</pre>
41
         XtXh \leftarrow sig2[h]^{(-1)*t}(Xh)%*%Xh
         yh <- y[idh]
42
         Xtyh <- sig2[h]^(-1)*t(Xh)%*%(yh - mu[h])</pre>
43
44
       XtX <- XtX + XtXh
45
       Xty <- Xty + Xtyh
46
47
    Bn <- solve(B0i + XtX)
48
    bn <- Bn%*%(B0i%*%b0 + Xty)
49
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
    return (Beta)
51
52 }
```

$R\ code.\ Simulation:\ Semi-parametric\ Gaussian\ mixture$

```
1 Postmu <- function(sig2h, Beta, Xh, yh){</pre>
    Nh <- length(yh)
    sig2mu \leftarrow (1/sig2mu0 + Nh/sig2h)^(-1)
    mun <- sig2mu*(mu0/sig2mu0 + sum((yh - Xh%*%Beta))/sig2h)</pre>
    mu <- rnorm(1, mun, sig2mu^0.5)</pre>
    return (mu)
7 }
8 PostBetas <- matrix(0, mcmc+burnin, 2)</pre>
9 PostPsi <- matrix(0, mcmc+burnin, n)</pre>
10 PostSigma2 <- list(); PostMu <- list()</pre>
PostLambda <- list(); Reg <- lm(y ~ X)</pre>
12 Beta <- Reg$coefficients[2:3]; Res <- Reg$residuals</pre>
plot(density(Res))
14 Resq <- quantile(Res, c(0.2, 0.4, 0.6, 0.8))
15 Id1 <- which (Res <= Resq[1])
16 Id2 <- which (Res > Resq[1] & Res <= Resq[2])
17 Id3 <- which (Res > Resq[2] & Res <= Resq[3])
18 Id4 <- which (Res > Resq[3] & Res <= Resq[4])
19 Id5 <- which(Res > Resq[4])
20 Nh \leftarrow rep(n/H, H); Lambda \leftarrow rep(1/H, H)
21 MU <- c(mean(Res[Id1]), mean(Res[Id2]), mean(Res[Id3]), mean
      (Res[Id4]), mean(Res[Id5]))
22 Sig2 <- c(var(Res[Id1]), var(Res[Id2]), var(Res[Id3]), var(
       Res[Id4]), var(Res[Id5]))
23 Psi <- rep(NA, n); Hs <- length(MU)
24 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
25 for(s in 1:tot){
    for(i in 1:n){
      lambdai <- NULL
27
       for(h in 1:Hs){
         lambdaih <- Lambda[h]*dnorm(y[i] - X[i,]%*%Beta, MU[h</pre>
29
      ], Sig2[h]^0.5)
         lambdai <- c(lambdai, lambdaih)</pre>
31
      Psi[i] <- sample(1:Hs, 1, prob = lambdai)
33
     PostPsi[s, ] <- Psi
34
    Hs <- length(table(Psi))</pre>
35
     for(h in 1:Hs){
36
37
      idh <- which (Psi == h)
       Sig2[h] <- PostSig2(Beta = Beta, muh = MU[h], Xh = X[idh
38
       ,], yh = y[idh])
      MU[h] <- Postmu(sig2h = Sig2[h], Beta = Beta, Xh = X[idh
       ,], yh = y[idh])
40
    PostSigma2[[s]] <- Sig2</pre>
41
    PostMu[[s]] <- MU
     Beta <- PostBeta(sig2 = Sig2, mu = MU, X = X, y = y, Psi =
43
       Psi)
44
     PostBetas[s,] <- Beta
    Lambda <- sort(MCMCpack::rdirichlet(1, a0h[1:Hs] + table(</pre>
45
      Psi)), decreasing = TRUE)
     PostLambda[[s]] <- Lambda
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
       "% done"))
48 }
49 close(pb)
```

$R\ code.\ Simulation:\ Semi-parametric\ Gaussian\ mixture$

```
1 keep <- seq(burnin, tot, thin)</pre>
2 PosteriorBetas <- coda::mcmc(PostBetas[keep,])</pre>
3 summary(PosteriorBetas); plot(PosteriorBetas)
4 PosteriorPsi <- PostPsi[keep,]</pre>
5 Clusters <- sapply(1:length(keep), function(i){length(table(</pre>
      PosteriorPsi[i,]))})
6 PosteriorSIGMA <- matrix(NA, length(keep), 2)
7 PosteriorMU <- matrix(NA, length(keep), 2)</pre>
8 PosteriorLAMBDA <- matrix(NA, length(keep), 2)</pre>
9 1 <- 1
10 for (s in keep){
    PosteriorSIGMA[1,] <- PostSigma2[[s]][1:2]
    PosteriorMU[1,] <- PostMu[[s]][1:2]</pre>
    PosteriorLAMBDA[1,] <- PostLambda[[s]][1:2]
    1 <- 1 + 1
14
15 }
16 summary(coda::mcmc(PosteriorSIGMA))
17 summary(coda::mcmc(PosteriorMU))
18 summary(coda::mcmc(PosteriorLAMBDA))
19 mus <- seq(-3, 4, 0.01)
20 DensityEst <- function(par, eval){</pre>
    lambda1 <- par[1]; lambda2 <- par[2]
21
    mu1 <- par[3]; mu2 <- par[4]
22
    sd1 <- par[5]; sd2 <- par[6]
    Dens <- lambda1 * dnorm(eval, mu1, sd1) + lambda2 * dnorm(
24
      eval, mu2, sd2)
    return(Dens)
25
26 }
27 par <- cbind (PosteriorLAMBDA, PosteriorMU, PosteriorSIGMA
      ^0.5)
28 DensEval <- matrix(NA, length(keep), length(mus))</pre>
29 DensPop <- rep(NA, length(mus))</pre>
30 for(r in 1:length(mus)){
    for(l in 1:length(keep)){
31
      DensEval[1, r] <- DensityEst(par = par[1,], eval = mus[r</pre>
33
    DensPop[r] <- DensityEst(par = c(0.7, 0.3, -0.5, 1, 0.5,
34
      0.8), eval = mus[r])
35 }
36 library(dplyr); library(ggplot2); require(latex2exp)
37 DataDens <- tibble(t = mus, Pop = DensPop, lower = apply(
      DensEval, 2, quantile, probs = 0.025), upper = apply(
      DensEval, 2, quantile, probs = 0.975), meanT = colMeans(
      DensEval))
38 plot_filtering_estimates <- function(df) {</pre>
    p \leftarrow ggplot(data = df, aes(x = t)) + geom_ribbon(aes(ymin))
       = lower, ymax = upper), alpha = 1, fill = "lightblue")
      + geom_line(aes(y = Pop, color = "True Value"),
      linewidth = 0.5) + geom_line(aes(y = meanT, color = "
      Estimate"), linewidth = 0.5) +
    scale_color_manual(values = c("True Value" = "black", "
       Estimate" = "blue")) + xlab(TeX("$\\mu$")) + ylab("
      Density") + labs(title = "Density: Stochastic Errors",
       color = "") + theme_minimal()
42 }
43 plot_filtering_estimates(DataDens)
```


FIGURE 11.1 Posterior density estimate: Stochastic errors.

2. Use the dataset MarijuanaColombia.csv from our GitHub repository to perform inference on the demand for marijuana in Colombia. This dataset contains information on the (log) monthly demand in 2019 from the National Survey of the Consumption of Psychoactive Substances. It includes variables such as the presence of a drug dealer in the neighborhood (Dealer), gender (Female), indicators of good physical and mental health (PhysicalHealthGood and MentalHealthGood), age (Age and Age2), years of schooling (YearsEducation), and (log) prices of marijuana, cocaine, and crack by individual (LogPriceMarijuana, LogPriceCocaine, and LogPriceCrack). The sample size is 1,156.

Estimate a finite Gaussian mixture regression using non-informative priors, that is, $\alpha_0 = \delta_0 = 0.01$, $\boldsymbol{\beta}_0 = \mathbf{0}_K$, $\boldsymbol{B}_0 = \boldsymbol{I}_K$, and and $\boldsymbol{\alpha}_0 = [1/H \dots 1/H]^\top$, K is the number of regressors, 11 including the intercept. The number of MCMC iterations is 5,000, the burn-in is 1,000, and the thinning parameter is 2. Start with five potential clusters. Obtain the posterior distribution of the own-price elasticity of marijuana and the cross-price elasticities of marijuana demand with respect to the prices of cocaine and crack.

Answer:

The following code demonstrates how to perform inference in this model. The results indicate the presence of four clusters, with mean probabilities of 0.64, 0.14, 0.12 and 0.10, and 95% credible intervals of (0.60, 0.67), (0.12,0.16), (0.10,0.14) and (0.08, 0.12), respectively.

The 95% posterior credible interval for the own-price elasticities of the most representative group, which comprises two-thirds of the sample, is (-0.55, -0.26). Additionally, the 95% credible interval for the cross-price elasticities with respect to cocaine is (0.01, 0.35), while that with respect to crack is (0.07, 0.43).

These results suggest that marijuana is an inelastic good for these individuals and that there is substitution between marijuana and both cocaine and crack: an increase in the prices of the latter leads to higher marijuana demand in the most representative cluster of individuals. However, these findings should be interpreted with caution due to potential endogeneity issues that must be addressed for a rigorous scientific analysis. The primary goal of this exercise is pedagogical.

$R\ code.\ Marijuana\ in\ Colombia:\ Gaussian\ mixture$

```
1 rm(list = ls()); set.seed(010101)
2 Data <- read.csv("https://raw.githubusercontent.com/</pre>
       BEsmarter-consultancy/BSTApp/refs/heads/master/DataApp/
       MarijuanaColombia.csv")
3 attach(Data)
4 y <- LogMarijuana; X <- as.matrix(cbind(1, Data[,-1]))
5 Reg <- lm(y ~ X - 1); summary(Reg)</pre>
6 k <- dim(X)[2]; N <- dim(X)[1]
7 # Plot
8 library(ggplot2)
ggplot(Data, aes(x = LogMarijuana)) + geom_density(fill = "
blue", alpha = 0.3) + labs(title = "Density Plot", x = "
       y", y = "Density") + theme_minimal()
10 # Hyperparameters
11 d0 <- 0.001; a0 <- 0.001
12 b0 <- rep(0, k); B0 <- diag(k); B0i <- solve(B0)
13 H <- 5; a0h <- rep(1/H, H)
_{14} # MCMC parameters
15 mcmc <- 2000; burnin <- 500
16 tot <- mcmc + burnin; thin <- 2
17 # Gibbs sampling functions
18 PostSig2 <- function(Betah, Xh, yh){</pre>
    Nh <- length(yh); an <- a0 + Nh
19
    dn <- d0 + t(yh - Xh%*%Betah)%*%(yh - Xh%*%Betah)</pre>
    sig2 <- invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
    return(sig2)
22
23 }
24 PostBeta <- function(sig2h, Xh, yh){
    if(length(yh) == 1){
      Xh <- matrix(Xh, k, 1)
26
       Bn <- solve(B0i + sig2h^(-1)*Xh%*%t(Xh))</pre>
       bn \leftarrow Bn%*%(B0i%*%b0 + sig2h^(-1)*Xh%*%yh)
28
29
    }else{
       Bn <- solve(B0i + sig2h^(-1)*t(Xh)%*%Xh)</pre>
30
       bn \leftarrow Bn%*%(B0i%*%b0 + sig2h^(-1)*t(Xh)%*%yh)
31
32
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
33
    return (Beta)
34
35 }
36 PostBetas <- list(); PostSigma2 <- list(); PostLambda <-
37 PostPsi <- matrix(0, tot, N); Psi <- sample(1:H, N, replace
       = TRUE, prob = a0h)
38 Beta <- matrix(rep(Reg$coefficients, H), k, H); Hs <- H
```

R code. Marijuana in Colombia: Gaussian mixture

```
pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      tot, width = 300)
 2 for(s in 1:tot){
    Sig2 <- rep(NA, Hs)
     for(h in 1:Hs){
       idh <- which (Psi == h)
       Sig2[h] <- PostSig2(Betah = Beta[, h], Xh = X[idh,], yh
       = y[idh])
    Hs <- length(Sig2)
    Beta <- matrix(NA, k, Hs)
     for(h in 1:Hs){
       idh <- which(Psi == h)
Beta[, h] <- PostBeta(sig2h = Sig2[h], Xh = X[idh,], yh</pre>
12
       = y[idh])
13
    Lambda <- sort(MCMCpack::rdirichlet(1, a0h[1:Hs] + table(</pre>
      Psi)), decreasing = TRUE)
     for(i in 1:N){
      lambdai <- NULL
16
       for(h in 1:Hs){
17
         idh <- which (Psi == h)
18
         lambdaih <- Lambda[h]*dnorm(y[i], X[i,]%*%Beta[,h],</pre>
19
       Sig2[h]^0.5)
         lambdai <- c(lambdai, lambdaih)</pre>
20
21
       Psi[i] <- sample(1:Hs, 1, prob = lambdai)
22
23
24
    Hs <- length(table(Psi))</pre>
    PostBetas[[s]] <- Beta; PostSigma2[[s]] <- Sig2
     PostLambda[[s]] <- Lambda; PostPsi[s, ] <- Psi
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
27
       "% done"))
28 }
29 close(pb)
30 keep <- seq((burnin+1), tot, thin)</pre>
31 PosteriorPsi <- PostPsi[keep,]</pre>
32 Clusters <- sapply(1:length(keep), function(i){length(table(
      PosteriorPsi[i,]))})
33 NClus <- 4
34 PosteriorSIGMA <- matrix(NA, length(keep), NClus)
35 PosteriorBETA <- array(NA, c(k,NClus,length(keep)))</pre>
36 PosteriorLAMBDA <- matrix(NA, length(keep), NClus)</pre>
37 1 <- 1
38 for (s in keep){
   PosteriorSIGMA[1,] <- PostSigma2[[s]][1:NClus]
    PosteriorLAMBDA[1,] <- PostLambda[[s]][1:NClus]
40
    PosteriorBETA[,,1] <- PostBetas[[s]]</pre>
   1 <- 1 + 1
42
43 }
44 summary(coda::mcmc(PosteriorSIGMA)); summary(coda::mcmc(
      PosteriorLAMBDA))
45 for(l in 1:NClus){
   PosteriorBeta <- t(PosteriorBETA[,1,])
   colnames(PosteriorBeta) <- c("Ct", names(Data[,-1]))</pre>
    print(summary(coda::mcmc(PosteriorBeta)))
49 }
```

3. Get the posterior sampler in the semi-parametric setting using a Dirichlet process mixture:

$$y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta} + e_i$$
$$e_i \mid \mu_i, \sigma_i^2 \stackrel{iid}{\sim} N(\mu_i, \sigma_i^2),$$

Do not include the intercept in β to get flexibility in the distribution of the stochastic errors.

Let's assume $\beta \sim N(\beta_0, \mathbf{B}_0)$, $\sigma_i^2 \sim IG(\alpha_0/2, \delta_0/2)$, $\mu_i \sim N(\mu_0, \sigma_i^2/\beta_0)$, $\alpha \sim G(a, b)$ such that introducing the latent variable $\xi | \alpha, N \sim Be(\alpha + 1, N)$, allows to easily sample the posterior draws of $\alpha | \xi, H, \pi_{\xi} \sim \pi_{\xi}G(a + H, b - log(\xi)) + (1 - \pi_{\xi})G(a + H - 1, b - log(\xi))$, where $\frac{\pi_{\xi}}{1 - \pi_{\xi}} = \frac{a + H - 1}{N(b - log(\xi))}$, H is the number of atoms (mixture components).

Answer:

This mixture model can be expressed in a hierarchical structure:

$$e_i \mid \boldsymbol{\theta}_i \stackrel{ind}{\sim} f_{\boldsymbol{\theta}_i}$$
$$\boldsymbol{\theta}_i \mid G \stackrel{iid}{\sim} G$$
$$G \mid \alpha, G_0 \sim DP(\alpha G_0),$$

where $e_i = y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}$ and $\boldsymbol{\theta}_i = [\mu_i \ \sigma_i^2]^{\top}$.

Thus,

$$s_i \sim \sum_{h=0}^{\infty} \lambda_h \delta_h,$$

$$e_i \mid s_i, \boldsymbol{\theta}_{s_i} \sim N(\mu_{s_i}, \sigma_{s_i}^2),$$

where $\lambda_h = P(\boldsymbol{\theta}_i = \boldsymbol{\theta}_h^*)$.

The conditional posterior distribution of θ_i is

$$\begin{aligned} \boldsymbol{\theta}_{i} | \left\{ \boldsymbol{\theta}_{i'}, \boldsymbol{s}_{i'} : i' \neq i \right\}, e_{i}, \alpha \sim \sum_{i' \neq i} \frac{N_{h}^{(i)}}{\alpha + N - 1} f_{N}(e_{i} | \mu_{h}, \sigma_{h}^{2}) \\ + \frac{\alpha}{\alpha + N - 1} \int_{\mathcal{R}} \int_{0}^{\infty} f_{N}(e_{i} | \mu, \sigma^{2}) f_{N}\left(\mu \middle| \mu_{0}, \frac{\sigma^{2}}{\beta_{0}}\right) f_{IG}(\sigma^{2} | \alpha_{0}, \delta_{0}) d\sigma^{2} d\mu, \end{aligned}$$

where $N_h^{(i)}$ is the number of observations such that $s_{i'} = h$, $i' \neq i$.

Observe that the integral in the previous equation has exactly the same form as in the marginal likelihood presented in Section 3.2 in the book in the normal-normal/inverse gamma model. Thus,

$$p(e_i) = \int_{\mathcal{R}} \int_0^{\infty} f_N(e_i|\mu, \sigma^2) f_N\left(\mu \middle| \mu_0, \frac{\sigma^2}{\beta_0}\right) f_{IG}(\sigma^2 \middle| \alpha_0, \delta_0) d\sigma^2 d\mu$$
$$= \frac{\Gamma\left(\frac{\alpha_n}{2}\right)}{\Gamma\left(\frac{\alpha_0}{2}\right)} \frac{(\delta_0/2)^{\alpha_0/2}}{(\delta_n/2)^{\alpha_n/2}} \left(\frac{\beta_0}{\beta_n}\right)^{1/2} (\pi)^{-1/2},$$

where $\alpha_n = 1 + \alpha_0$, $\delta_n = \delta_0 + \frac{\beta_0}{1+\beta_0}(e_i - \mu_0)^2$ and $\beta_n = 1 + \beta_0$. Therefore, we sample s_i as follows,

$$s_i | \{ \mu_{i'}, \sigma_{i'}^2, \mathbf{s}_{i'} : i' \neq i \}, e_i, \alpha \sim \begin{cases} P(s_i = 0 | \cdot) = q_0^* \\ P(s_i = h | \cdot) = q_h^*, h = 1, 2, \dots, H^{(i)} \end{cases}$$

where $H^{(i)}$ is the number of clusters excluding i, which may have its own cluster (singleton cluster), $q_c^* = \frac{q_c}{q_0 + \sum_h q_h}$, $q_c = \{q_0, q_h\}$, $q_h = \frac{N_h^{(i)}}{\alpha + N - 1} f_N(e_i | \mu_h, \sigma_h^2)$ and $q_0 = \frac{\alpha}{\alpha + N - 1} p(e_i)$.

If $s_i=0$ is sampled, then $s_i=H+1$, and a new σ_h^2 is sampled from $IG(\alpha_n/2,\delta_n/2)$, a new μ_h is sample from $N(\mu_i,\sigma_h^2/\beta_n)$, where $\mu_i=\frac{e_i+\beta_0\mu_0}{1+\beta_0}$.

Discarding θ_h 's from last step, we use s and total number of components to sample σ_h^2 from

$$IG\left(\frac{\alpha_0+N_h}{2}, \frac{\delta_0+\sum_{i\in\mathcal{C}_h}(e_i-\bar{e})^2+\frac{\beta_0N_h}{\beta_0+N_h}(\bar{e}-\mu_0)^2}{2}\right),$$

where $\bar{e} = \frac{\sum_{i \in \mathcal{C}_h} e_i}{N_h}$, that is, the mean uses individuals in cluster \mathcal{C}_h . Note that when $N_h = 1$, $\delta_0 + \sum_{i \in \mathcal{C}_h} (e_i - \bar{e})^2 + \frac{\beta_0 N_h}{\beta_0 + N_h} (\bar{e} - \mu_0)^2$ is equal to δ_n .

We sample $\mu_h \mid \sigma_h^2, \boldsymbol{e} \sim N\left(\mu_{hn}, \frac{\sigma_h^2}{\beta_0 + N_h}\right)$, where $\mu_{hn} = \frac{\beta_0 \mu_0 + N_h \bar{e}}{\beta_0 + N_h}$, $h = 1, 2, \ldots, H$. Note that μ_{hn} is equal to μ_i when $N_h = 1$.

The posterior distribution of β is given by

$$\boldsymbol{\beta} \sim N(\boldsymbol{\beta}_n, \boldsymbol{B}_n),$$

where
$$\boldsymbol{B}_n = (\boldsymbol{B}_0^{-1} + \sum_{h=1}^{H} \sum_{i \in \mathcal{C}_h} \sigma_h^{-2} \boldsymbol{x}_i \boldsymbol{x}_i^{\top})^{-1}$$
 and $\boldsymbol{\beta}_n = \boldsymbol{B}_n (\boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0 + \sum_{h=1}^{H} \sum_{i \in \mathcal{C}_h} \sigma_h^{-2} \boldsymbol{x}_i (y_i - \mu_h))$.

4. Example: Exercise 1 and 3 continue

Perform inference in the simulation of the semi-parametric model of Exercise 1 using the sampler of Exercise 3. Use non-informative priors, setting $\alpha_0 = \delta_0 = 0.01$, $\beta_0 = \mathbf{0}_2$, $\mathbf{B}_0 = \mathbf{I}_2$, and a = b = 0.1. The number of MCMC iterations is 5,000, the burn-in is 1,000, and the thinning parameter is 2.

Answer:

The following code implements the Gibbs sampling algorithm to perform inference using the DPM in the semi-parametric simulation. From the summary statistics of the posterior chains, we can see that the 95% credible intervals encompass the population values. Figure 11.2 shows the posterior

density of the intercept associated with the second cluster. We observe bimodality, with the two modes located around the population means of the clusters.

$R\ code.\ Simulation:\ Semi-parametric\ Dirichlet\ process\ mixture$

```
1 rm(list = ls())
2 set.seed(010101)
3 # Simulate data from a 2-component mixture model
5 x1 <- rnorm(n); x2 <- rnorm(n)
_{6} B <- _{c} (0.5, -1.2)
7 X <- cbind(x1, x2)</pre>
8 z <- rbinom(n, 1, 0.3) # Latent class indicator</pre>
9 mu \leftarrow ifelse(z == 0, rnorm(n, -0.5, 0.5), rnorm(n, 1, 0.8))
10 y <- X%*%B + mu
11 k <- dim(X)[2]
12 N <- dim(X)[1]
13 # Hyperparameters
14 a0 <- 0.001; d0 <- 0.001
15 b0 <- rep(0, k); B0 <- diag(k)
16 B0i <- solve(B0)
17 a <- 0.1; b <- 0.1
18 mu0 <- 0
19 sig2mu0 <- 10
20 beta0 <- 0.1
21 # MCMC parameters
22 mcmc <- 5000; burnin <- 1000
23 tot <- mcmc + burnin; thin <- 2
24 # Gibbs sampling functions
25 PostSig2 <- function(Xh, yh, Beta){</pre>
    Nh <- length(yh)
    if (Nh == 1) {
27
      Xh <- matrix(Xh, k, 1)</pre>
28
      XhB <- t(Xh)%*%Beta
29
    }else{
30
31
      Xh <- matrix(Xh, Nh, k)</pre>
      XhB <- Xh%*%Beta
32
33
    eh <- matrix(yh, Nh, 1) - XhB
34
    an <- a0 + Nh
35
    dn \leftarrow d0 + sum((eh - mean(eh))^2) + beta0*Nh/(beta0 + Nh)*
      (mean(eh) - mu0)^2
     sig2 <- invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
38
    return(sig2)
39 }
40 Postmu <- function(sig2h, Beta, Xh, yh){
    Nh <- length(yh)
41
     if(Nh == 1){
       Xh <- matrix(Xh, k, 1)</pre>
43
      XhB \leftarrow t(Xh)\%*\%Beta
44
    }else{
45
      Xh <- matrix(Xh, Nh, k)</pre>
46
       XhB <- Xh%*%Beta
47
48
    eh <- matrix(yh, Nh, 1) - XhB
49
    sig2mu <- sig2h/(beta0 + Nh)
50
    mun <- (beta0*mu0 + Nh*mean(eh))/(beta0 + Nh)</pre>
51
    mu <- rnorm(1, mun, sig2mu^0.5)
53
    return (mu)
54 }
```

R code. Simulation: Semi-parametric Dirichlet process mixture

```
1 PostBeta <- function(sig2, mu, X, y, Clust){</pre>
    XtX <- matrix(0, k, k); Xty <- matrix(0, k, 1)</pre>
    Hs <- length(mu)
    for(h in 1:Hs){
       idh <- which (Clust == h)
       if(length(idh) == 1){
         Xh <- matrix(X[idh,], k, 1); XtXh <- sig2[h]^(-1)*Xh%*</pre>
       %t(Xh)
         yh <- y[idh]; Xtyh <- sig2[h]^(-1)*Xh%*%(yh - mu[h])
       }else{
        Xh <- X[idh,]; XtXh <- sig2[h]^(-1)*t(Xh)%*%Xh</pre>
         yh <- y[idh]; Xtyh <- sig2[h]^(-1)*t(Xh)%*%(yh - mu[h
       1)
      XtX <- XtX + XtXh; Xty <- Xty + Xtyh
13
14
15
    Bn <- solve(B0i + XtX); bn <- Bn%*%(B0i%*%b0 + Xty)</pre>
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
16
17
     return(Beta)
18 }
19 PostAlpha <- function(Clust, alpha){</pre>
20
    H <- length(unique(Clust))</pre>
    psi <- rbeta(1, alpha + 1, N)
21
    pi.ratio <- (a + H - 1) / (N * (b - log(psi)))
    pi <- pi.ratio / (1 + pi.ratio)
23
     components <- sample(1:2, prob = c(pi, (1 - pi)), size =</pre>
      1)
    cs \leftarrow c(a + H, a + H - 1); ds \leftarrow b - log(psi)
     alpha <- rgamma(1, cs[components], ds)
    return(alpha)
27
28 }
29 LogMarLikLM <- function(xh, yh, Beta){</pre>
30
    xh \leftarrow matrix(xh, k, 1); ei \leftarrow c(yh - t(xh)%*%Beta)
    betan <- beta0 + 1; an <- a0 + 1
    dn \leftarrow d0 + beta0/(beta0 + 1)*(ei - mu0)^2
    \log y < (1/2) * \log (1/pi) + (a0/2) * \log (d0) - (an/2) * \log (dn) +
       0.5*log(beta0/betan) + lgamma(an/2)-lgamma(a0/2)
34
    return(logpy)
35 }
36 PostS <- function(Beta, SIGMA, MU, Alpha, Clust, i){
37
    N1 <- table(Clust[-i]); H <- length(N1)</pre>
    ei <- c(y[i] - t(X[i,])%*%Beta)
38
    qh <- sapply(1:H, function(h){(Nl[h]/(N+Alpha-1))*dnorm(ei
       , mean = MU[h], sd = SIGMA[h])})
    q0 \leftarrow (Alpha/(N+Alpha-1))*exp(LogMarLikLM(xh = X[i,], yh =
       y[i], Beta = Beta)
    qh \leftarrow c(q0, qh)
     Clust <- as.numeric(names(N1))</pre>
     si \leftarrow sample(c(0, Clust), 1, prob = qh)
43
     if(si == 0){si <- Clust[H] + 1</pre>
44
       Sig2New <- PostSig2(Xh = X[i,], yh = y[i], Beta = Beta)
45
       SIGMA <- c(SIGMA, Sig2New^0.5)
46
       MuNew <- Postmu(sig2h = Sig2New, Beta = Beta, Xh = X[i
       ,], yh = y[i])
       MU <- cbind(MU, MuNew)
    }else{si == si}
49
    return(list(si = si, MU = MU, SIGMA = SIGMA))
50
51 }
```

$R\ code.\ Simulation:\ Semi-parametric\ Dirichlet\ process\ mixture$

```
1 PostBetas <- matrix(NA, tot, k)</pre>
2 PostSigma <- list(); PostMu <- list()</pre>
3 Posts <- matrix(0, tot, N); PostAlphas <- rep(0, tot)</pre>
4 Clust <- sample(1:3, N, replace=T, prob = c(0.5, 0.3, 0.2))
5 Reg <- lm(y ~ X)
6 SumReg <- summary (Reg)
7 BETA <- Reg$coefficients[-1]</pre>
8 SIGMA <- rep(SumReg$sigma, 3)</pre>
9 MU <- rep(Reg$coefficients[1], 3)
10 Alpha <- rgamma(1, a, b)
11 pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      tot, width = 300)
12 for(s in 1:tot){
13
    for(i in 1:N){
      Rests <- PostS(Beta = BETA, SIGMA = SIGMA, MU = MU,</pre>
      Alpha = Alpha, Clust = Clust, i = i)
      Clust[i] <- Rests$si
      MU <- Rests$MU; SIGMA <- Rests$SIGMA
16
17
    sFreq <- table(Clust)
18
    lt <- 1
19
    for(li in as.numeric(names(sFreq))){
20
      Index <- which(Clust == li)</pre>
21
       if(li == lt){Clust[Index] <- li</pre>
22
      } else {Clust[Index] <- lt</pre>
23
24
      lt <- lt + 1
25
26
    Alpha <- PostAlpha(Clust = Clust, alpha = Alpha)
27
    N1 <- table(Clust); H <- length(N1)
28
    SIGMA <- rep(NA, H)
    MU <- rep(NA, H)
30
    1 <- 1
31
    for(h in unique(Clust)){
32
      Idh <- which(Clust == h)</pre>
33
       SIGMA[1] <- (PostSig2(Beta = BETA, Xh = X[Idh, ], yh = y
       [Idh]))^0.5
       MU[1] <- Postmu(Beta = BETA, sig2h = SIGMA[1]^2, Xh = X[
      Idh, ], yh = y[Idh])
      1 <- 1 + 1
36
37
    BETA <- PostBeta(sig2 = SIGMA, mu = MU, X = X, y = y,
38
      Clust = Clust)
    PostBetas[s,] <- BETA
    PostSigma[[s]] <- SIGMA
40
    PostMu[[s]] <- MU
    Posts[s, ] <- Clust
42
    PostAlphas[s] <- Alpha
    setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
44
       "% done"))
45 }
46 close(pb)
```

$R\ code.\ Simulation:\ Semi-parametric\ Dirichlet\ process\ mixture$

```
1 keep <- seq(burnin, tot, thin)</pre>
2 PosteriorBetas <- coda::mcmc(PostBetas[keep,])</pre>
3 summary(PosteriorBetas)
  plot(PosteriorBetas)
5 PosteriorPsi <- Posts[keep,]</pre>
  Clusters <- sapply(1:length(keep), function(i){length(table(</pre>
       PosteriorPsi[i,]))})
  table(Clusters)
8 PosteriorSIGMA <- matrix(NA, length(keep), 2)</pre>
9 PosteriorMU <- matrix(NA, length(keep), 2)</pre>
11 for (s in keep){
    PosteriorSIGMA[1,] <- PostSigma[[s]][1:2]</pre>
    PosteriorMU[1,] <- PostMu[[s]][1:2]</pre>
    1 <- 1 + 1
16 summary(coda::mcmc(PosteriorSIGMA))
17 summary(coda::mcmc(PosteriorMU))
18 plot(coda::mcmc(PosteriorMU))
19 DataMU2 <- data.frame(Posterior = PosteriorMU[,2])</pre>
20 library(ggplot2)
21 densMU <- ggplot(DataMU2, aes(x = Posterior)) + geom_density</pre>
       (fill = "blue", alpha = 0.3) + labs(x = "Intercept", y =
        "Density") + theme_minimal()
22 densMU
```

5. Example: Simulation exercise continues

Fix the label-switching problem of the simulation exercise of the DPM using random permutation of latent classes.

Answer:

A simple strategy to address label switching in this simulation exercise is to fix the number of clusters to three, given that this is the typical number of clusters obtained after performing the DPM. Recall that, according to the simulation setup, there are only two clusters:

$$p(y_i \mid \mathbf{x}_i) = 0.5\phi(y_i \mid 2 + 1.5x_i, 1^2) + 0.5\phi(y_i \mid -1 + 0.5x_i, 0.8^2).$$

Thus, we can use a finite Gaussian mixture model with H = 3.1

¹Another approach is to use finite Dirichlet processes [20, Chap. 2] and set a random permutation of latent classes.

$Semi-parametric\ and\ non-parametric\ models$

FIGURE 11.2 Posterior density estimate: Mean of the stochastic errors.

The following code illustrates the algorithm.

R code. Simulation: Random permutation of latent classes

```
1 rm(list = ls()); set.seed(010101)
2 # Simulate data from a 2-component mixture model
3 n <- 1000; x <- rnorm(n)
4 z <- rbinom(n, 1, 0.5)
5 y \leftarrow ifelse(z == 0, rnorm(n, 2 + 1.5*x, 1), rnorm(n, -1 +
      0.5*x, 0.8)
6 data <- data.frame(y, x)
7 # Hyperparameters
8 d0 <- 0.001; a0 <- 0.001
9 b0 <- rep(0, 2); B0 <- diag(2); B0i <- solve(B0)
10 H <- 3; a0h <- rep(1/H, H)
11 # MCMC parameters
12 mcmc <- 10000; burnin <- 2000
13 tot <- mcmc + burnin; thin <- 2
14 # Gibbs sampling functions
15 PostSig2 <- function(Betah, Xh, yh){</pre>
    Nh <- length(yh); an <- a0 + Nh
    dn <- d0 + t(yh - Xh%*%Betah)%*%(yh - Xh%*%Betah)
17
    sig2 \leftarrow invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
    return(sig2)
19
20 }
21 PostBeta <- function(sig2h, Xh, yh){</pre>
    Bn <- solve(B0i + sig2h^(-1)*t(Xh)%*%Xh)
22
    bn <- Bn\%*\%(B0i\%*\%b0 + sig2h^(-1)*t(Xh)\%*\%yh)
    Beta <- MASS::mvrnorm(1, bn, Bn)</pre>
    return(Beta)
25
26 }
27 PostBetas1 <- matrix(0, tot, 2)</pre>
28 PostBetas2 <- matrix(0, tot, 2)</pre>
PostBetas3 <- matrix(0, tot, 2)
30 PostSigma2 <- matrix(0, tot, H)
31 PostPsi <- matrix(0, tot, n)
32 PostLambda <- matrix(0, tot, H)
33 Reg <- lm(y ~ x)</pre>
34 SumReg <- summary (Reg)
35 BETA <- cbind(Reg$coefficients, Reg$coefficients, Reg$
       coefficients)
36 SIG2 <- rep(SumReg$sigma, H)
37 X <- cbind(1, x); Psi <- rep(NA, n)
38 Lambda1 <- 1/H; Lambda2 <- 1/H; Lambda3 <- 1/H
39 perutatms <- gtools::permutations(3, 3, 1:H)</pre>
```

R code. Simulation: Random permutation of latent classes

```
pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
      tot, width = 300)
2 for(s in 1:tot){
    for(i in 1:n){
      lambdai1 <- Lambda1*dnorm(y[i], X[i,]%*%BETA[,1], SIG2</pre>
       [1]^0.5)
      lambdai2 <- Lambda2*dnorm(y[i], X[i,]%*%BETA[,2], SIG2</pre>
       [2]^0.5)
       lambdai3 <- Lambda3*dnorm(y[i], X[i,]%*%BETA[,3], SIG2
       [3]^0.5)
      Psi[i] <- sample(1:H, 1, prob = c(lambdai1, lambdai2,
      lambdai3))
    NH <- NULL
    for(h in 1:H){
      Idh <- which (Psi == h)
12
      Nh <- length(Idh)
      NH <- c(NH, Nh)
13
      SIG2[h] <- PostSig2(Betah = BETA[,h], Xh = X[Idh,], yh
14
      = y[Idh])
      BETA[,h] <- PostBeta(sig2h = SIG2[h], Xh = X[Idh,], yh
15
      = y[Idh])
16
    Lambda <- sort(MCMCpack::rdirichlet(1, a0h + NH),</pre>
      decreasing = TRUE)
    IndPer <- sample(1:dim(perutatms)[1], 1)</pre>
    Clust <- perutatms[IndPer, ]</pre>
19
    SIG2 <- SIG2[Clust]
20
    BETA <- BETA[,Clust]</pre>
    Lambda <- Lambda [Clust]
22
23
    for(i in 1:n){
      if(Psi[i] == 1){
24
         Psi[i] <- Clust[1]
25
26
      }else{
         if(Psi[i] == 2){
27
           Psi[i] <- Clust[2]
         }else{
29
           Psi[i] <- Clust[3]
30
31
      }
32
33
    Lambda1 <- Lambda[1]; Lambda2 <- Lambda[2]; Lambda3 <-
34
      Lambda[3]
    PostPsi[s, ] <- Psi
    PostSigma2[s, ] <- SIG2</pre>
36
    PostBetas1[s,] <- BETA[,1]</pre>
    PostBetas2[s,] <- BETA[,2]</pre>
38
    PostBetas3[s,] <- BETA[,3]</pre>
    PostLambda[s,] <- Lambda
40
    setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
41
      "% done"))
42 }
43 close(pb)
```

R code. Simulation: Random permutation of latent classes

```
keep <- seq((burnin+1), tot, thin)
2 PosteriorBetas1 <- coda::mcmc(PostBetas1[keep,])</pre>
  PosteriorBetas2 <- coda::mcmc(PostBetas2[keep,])</pre>
  PosteriorBetas3 <- coda::mcmc(PostBetas3[keep,])</pre>
  PosteriorSigma2 <- coda::mcmc(PostSigma2[keep,])
  summary(PosteriorSigma2)
 PosteriorLambda <- coda::mcmc(PostLambda[keep,])
  summary(PosteriorLambda)
9 DataBetas <- data.frame(Cluster1 = as.numeric(</pre>
      PosteriorBetas1[,2]), Cluster2 = as.numeric(
      PosteriorBetas2[,2]), Cluster3 = as.numeric(
      PosteriorBetas3[,2]))
10 library(ggplot2)
11 dens1 <- ggplot(DataBetas, aes(x = Cluster1)) + geom_density</pre>
      (fill = "blue", alpha = 0.3) + labs(x = "Cluster 1", y =
       "Density") + theme_minimal()
12 dens2 <- ggplot(DataBetas, aes(x = Cluster2)) + geom_density</pre>
      (fill = "blue", alpha = 0.3) + labs(x = "Cluster 2", y
      = "Density") + theme_minimal()
dens3 <- ggplot(DataBetas, aes(x = Cluster3)) + geom_density</pre>
      (fill = "blue", alpha = 0.3) +
                                        labs(x = "Cluster 3", y
      = "Density") + theme_minimal()
14 library(ggpubr)
15 ggarrange(dens1, dens2, dens3, labels = c("A", "B", "C"),
      ncol = 3, nrow = 1, legend = "bottom", common.legend =
      TRUE)
```

Figure 11.3 shows the posterior density estimates of the three clusters. We observe that they have similar shapes, as they are targeting the same posterior distributions. There are two modes with large values around the population parameters, and an additional mode around 0. This occurs because we are forcing three clusters, even though the data-generating process contains only two.

6. Example: Simulation exercise continues II

Obtain the density estimate of y in the simulation exercise of the DPM, evaluated at x = 0.

Answer:

The following code shows how to perform inference, and get the density estimate using the DPM. Note that the density estimate is given by

FIGURE 11.3

Posterior density estimates slope parameter: Population values are 1.5 and 0.5.

$$y \mid \boldsymbol{\theta}_h, \boldsymbol{s}, \alpha \sim \sum_{h=1}^{H} \frac{N_h}{\alpha + N + 1} f_N(y | \boldsymbol{x}_h^{\top} \boldsymbol{\beta}_h, \sigma_h^2) + \frac{\alpha}{\alpha + N + 1} p(y),$$

where N_h is the number of individuals in cluster h, H is the total observed clusters after estimation, and p(y) is the marginal likelihood given in Section 11.1.2 in the book.

Figure 11.4 shows the density plots, population (black line), mean (blue line), and 95% credible interval (shaded blue). We observe that the DPM performs very well despite having more clusters than the actual data generating process.

R code. Simulation: Density from Dirichlet process mixture

```
1 rm(list = ls()); set.seed(010101)
2 # Simulate data from a 2-component mixture model
3 N <- 1000; x <- rnorm(N); z <- rbinom(N, 1, 0.5)
 4 y \leftarrow ifelse(z == 0, rnorm(N, 2 + 1.5*x, 1), rnorm(N, -1 +
       0.5*x, 0.8))
 5 X <- cbind(1, x); k <- 2
 6 data <- data.frame(y, x); Reg <- lm(y ~ x)
 7 SumReg <- summary(Reg)</pre>
 8 # Hyperparameters
9 a0 <- 0.001; d0 <- 0.001
10 b0 <- rep(0, k); B0 <- diag(k)
11 B0i <- solve(B0)
12 a <- 0.1; b <- 0.1
13 # MCMC parameters
14 mcmc <- 5000; burnin <- 1000
15 tot <- mcmc + burnin; thin <- 2
16 # Gibbs sampling functions
17 PostSig2 <- function(Xh, yh){</pre>
     Nh <- length(yh)
     yh <- matrix(yh, Nh, 1)
19
     if(Nh == 1){
20
       Xh <- matrix(Xh, k, 1)</pre>
21
       Bn <- solve(Xh%*%t(Xh) + B0i)
22
23
       bn <- Bn%*%(B0i%*%b0 + Xh%*%yh)
     }else{
24
       Xh <- matrix(Xh, Nh, k)</pre>
25
       Bn <- solve(t(Xh)%*%Xh + B0i)
26
       bn <- Bn\%*\%(B0i\%*\%b0 + t(Xh)\%*\%yh)
27
28
     Bni <- solve(Bn)
29
30
     an \leftarrow a0 + Nh
     dn \leftarrow d0 + t(yh)%*%yh + t(b0)%*%B0i%*%b0 - t(bn)%*%Bni%*%
31
     sig2 \leftarrow invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
33
     return(sig2)
34 }
35 PostBeta <- function(sig2h, Xh, yh){</pre>
     Nh <- length(yh)
yh <- matrix(yh, Nh, 1)
     if(Nh == 1){
38
       Xh <- matrix(Xh, k, 1)</pre>
       Bn \leftarrow solve(Xh%*%t(Xh) + B0i)
40
       bn \leftarrow Bn%*%(B0i%*%b0 + Xh%*%yh)
     }else{
42
       Xh <- matrix(Xh, Nh, k)</pre>
43
       Bn \leftarrow solve(t(Xh)%*%Xh + B0i)
       bn <- Bn%*%(B0i%*%b0 + t(Xh)%*%yh)
45
     Beta <- MASS::mvrnorm(1, bn, sig2h*Bn)</pre>
47
     return (Beta)
48
49 }
```

R code. Simulation: Density from Dirichlet process mixture

```
1 PostAlpha <- function(s, alpha){</pre>
    H <- length(unique(s))</pre>
    psi <- rbeta(1, alpha + 1, N)
    pi.ratio <- (a + H - 1) / (N * (b - log(psi)))
pi <- pi.ratio / (1 + pi.ratio)
     components <- sample(1:2, prob = c(pi, (1 - pi)), size =</pre>
      1)
     cs \leftarrow c(a + H, a + H - 1)
    ds <- b - log(psi)
alpha <- rgamma(1, cs[components], ds)</pre>
    return(alpha)
10
11 }
12 LogMarLikLM <- function(xh, yh){</pre>
13
    xh \leftarrow matrix(xh, k, 1)
    Bn \leftarrow solve(xh%*%t(xh) + B0i)
14
    Bni <- solve(Bn)
    bn \leftarrow Bn%*%(B0i%*%b0 + xh%*%yh)
    an <- a0 + 1
dn <- d0 + yh^2 + t(b0)%*%B0i%*%b0 - t(bn)%*%Bni%*%bn
17
    # Log marginal likelihood
19
     \log py \leftarrow (1/2) * \log (1/pi) + (a0/2) * \log (d0) - (an/2) * \log (dn) +
20
       0.5*log(det(Bn)/det(B0)) + lgamma(an/2)-lgamma(a0/2)
     return(logpy)
21
22 }
23 PostS <- function(BETA, SIGMA, Alpha, s, i){
    N1 <- table(s[-i]); H <- length(N1)</pre>
     qh <- sapply(1:H, function(h){(Nl[h]/(N+Alpha-1))*dnorm(y[
25
       i], mean = t(X[i,])%*%BETA[,h], sd = SIGMA[h])})
     q0 <- (Alpha/(N+Alpha-1))*exp(LogMarLikLM(xh = X[i,], yh =
       y[i]))
     qh \leftarrow c(q0, qh)
     Clust <- as.numeric(names(N1))</pre>
     si \leftarrow sample(c(0, Clust), 1, prob = qh)
29
     if(si == 0){
30
       si <- Clust[H] + 1
31
       Sig2New <- PostSig2(Xh = X[i,], yh = y[i])
       SIGMA <- c(SIGMA, Sig2New^0.5)
33
       BetaNew <- PostBeta(sig2h = Sig2New, Xh = X[i,], yh = y[</pre>
       il)
       BETA <- cbind(BETA, BetaNew)</pre>
35
36
    }else{si == si
37
    }
    return(list(si = si, BETA = BETA, SIGMA = SIGMA))
38
39 }
40 PostBetas <- list(); PostSigma <- list()
41 Posts <- matrix(0, tot, N); PostAlphas <- rep(0, tot)
42 S \leftarrow sample(1:3, N, replace = T, prob = c(0.5, 0.3, 0.2))
43 BETA <- cbind(Reg$coefficients, Reg$coefficients, Reg$
       coefficients)
44 SIGMA <- rep(SumReg$sigma, 3)
45 Alpha <- rgamma(1, a, b)
```

R code. Simulation: Density from Dirichlet process mixture

```
pb <- winProgressBar(title = "progress bar", min = 0, max =</pre>
       tot, width = 300)
 2 for(s in 1:tot){
    for(i in 1:N){
       Rests <- PostS(BETA = BETA, SIGMA = SIGMA, Alpha = Alpha
       , s = S, i = i)
       S[i] <- Rests$si
       BETA <- Rests$BETA; SIGMA <- Rests$SIGMA
     sFreq <- table(S)</pre>
    lt <- 1
9
     for(li in as.numeric(names(sFreq))){
       Index <- which(S == li)
if(li == lt){S[Index] <- li</pre>
       } else {S[Index] <- lt</pre>
13
14
15
       1t <- 1t + 1
16
     Alpha <- PostAlpha(s = S, alpha = Alpha)
    N1 <- table(S); H <- length(N1)</pre>
18
    SIGMA <- rep(NA, H)
19
    BETA <- matrix(NA, k, H)
20
21
    1 <- 1
22
     for(h in unique(S)){
       Idh \leftarrow which(S == h)
23
24
       SIGMA[1] \leftarrow (PostSig2(Xh = X[Idh, ], yh = y[Idh]))^0.5
       BETA[,1] <- PostBeta(sig2h = SIGMA[1]^2, Xh = X[Idh,],</pre>
25
       yh = y[Idh])
1 <- 1 + 1
26
27
    PostBetas[[s]] <- BETA
    PostSigma[[s]] <- SIGMA
29
    Posts[s, ] <- S
30
     PostAlphas[s] <- Alpha</pre>
31
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
33 }
34 close(pb)
seq((burnin+1), tot, thin)
36 PosteriorS<- Posts[keep,]</pre>
37 Clusters <- sapply(1:length(keep), function(i){length(table(
       PosteriorS[i,]))})
38 table (Clusters)
39 Clusters <- sapply(1:length(keep), function(i){table(</pre>
       PosteriorS[i,])})
40 PosteriorBeta <- PostBetas[keep]
41 PosteriorSigma <- PostSigma[keep]
42 PosteriorAlpha <- PostAlphas[keep]</pre>
```

$R\ code.\ Simulation:\ Density\ from\ Dirichlet\ process\ mixture$

```
1 DensityFunc \leftarrow function(yobs = 0, xobs = c(1, 0), s){
    dens <- NULL
    for(j in 1:length(Clusters[[s]])){
       densj <- Clusters[[s]][j]/(PosteriorAlpha[s] + N + 1) *</pre>
      dnorm(yobs, t(PosteriorBeta[[s]][,j])%*%xobs,
      PosteriorSigma[[s]][j])
       dens <- c(dens, densj)
6
    dens <- c(dens, PosteriorAlpha[s]/(PosteriorAlpha[s] + N +</pre>
       1) * exp(LogMarLikLM(yh = yobs, xh = xobs)))
    return(sum(dens))
9 }
10 xobs <- c(1, 0)
11 ys <- seq(-3, 5, 0.05)
12 pdfy <- 0.5*dnorm(ys, 2 + 1.5*xobs[2], 1) + 0.5*dnorm(ys, -1
       + 0.5*xobs[2], 0.8)
13 DensEval <- matrix(NA, length(keep), length(ys))</pre>
14 for(r in 1:length(ys)){
    for(l in 1:length(keep)){
      DensEval[1, r] <- DensityFunc(yobs = ys[r], xobs = xobs,</pre>
    }
17
18 }
19 library(dplyr)
20 library(ggplot2)
21 require(latex2exp)
22 DataDens <- tibble(t = ys, Pop = pdfy, lower = apply(</pre>
      DensEval, 2, quantile, probs = 0.025), upper = apply(
      DensEval, 2, quantile, probs = 0.975), meanT = colMeans(
      DensEval))
23 plot_filtering_estimates <- function(df) {</pre>
    p <- ggplot(data = df, aes(x = t)) + geom_ribbon(aes(ymin</pre>
      = lower, ymax = upper), alpha = 1, fill = "lightblue") +
       geom_line(aes(y = Pop, color = "True Value"), linewidth
        = 0.5) + geom_line(aes(y = meanT, color = "Estimate"),
      linewidth = 0.5) + scale_color_manual(values = c("True
       Value" = "black", "Estimate" = "blue")) + xlab(TeX("y"))
       + ylab("Density") + labs(title = "Density: Dependent
       variable", color = "") + theme_minimal()
    print(p)
26 }
27 plot_filtering_estimates(DataDens)
```

7. Example: Consumption of marijuana in Colombia continues II

Perform the application of marijuana consumption with the following spec-

FIGURE 11.4
Density from Dirichlet process mixture.

ification:

$$y_i = \boldsymbol{z}_i^{\top} \boldsymbol{\gamma} + f(Age_i) + \mu_i,$$

where y_i is the (log) marijuana monthly consumption, z_i represents the presence of a drug dealer in the neighborhood (Dealer), gender (Female), indicators of good physical and mental health (PhysicalHealthGood and MentalHealthGood), years of education (YearsEducation), and the (log) prices of marijuana, cocaine, and crack by individual.

Initially, set the knots as the percentiles $\{0,0.05,\ldots,0.95,1\}$ of age and use cubic B-splines. Then, apply the BIC approximation to perform variable selection in this model with non-informative conjugate priors, 5,000 MCMC iterations, and 5,000 burn-in iterations.

Do you think that using a linear regression with a second-degree polynomial in age provides a good approximation to the relationship found using splines in this application?

Answer:

The following code illustrates this exercise. We use the function *bicreg* from the package *BMA* to perform variable selection. Initially, we construct the design matrix, excluding the B-splines that cause perfect multicollinearity, and then select the variables with a posterior inclusion probability greater than 50%. This also corresponds to the model with the highest posterior probability.

After this, we proceed with inference using a linear regression with conjugate prior distributions. Figure 11.5 shows the fit, with the mean (blue line) and 95% credible intervals (shaded blue). This curve is simpler than the one using all the B-splines: there appears to be a hook-shaped pattern at the beginning, where teenagers consume less marijuana than individuals in their 20s to 50s. After age 55, consumption decreases significantly. Given this pattern, assuming a second-degree polynomial appears to be a reasonable choice.

R code. Simulation: Semi-parametric Dirichlet process mixture

```
1 rm(list = ls()); set.seed(010101)
2 library(splines); library(ggplot2)
3 Data <- read.csv("https://raw.githubusercontent.com/</pre>
       BEsmarter-consultancy/BSTApp/refs/heads/master/DataApp/
       MarijuanaColombia.csv")
4 attach (Data)
5 IdOrd <- order(Age); y <- LogMarijuana[IdOrd]</pre>
6 Z <- as.matrix(cbind(Data[IdOrd,-c(1, 6, 7)]))
7 x <- Age[IdOrd]</pre>
8 \text{ knots} \leftarrow \text{quantile}(x, \text{seq}(0, 1, 0.05))
9 BS <- bs(x, knots = knots, degree = 3, Boundary.knots =
      range(x), intercept = FALSE)
10 matplot(x, BS, type = "1", lty = 1, col = rainbow(ncol(BS)))
# Function to check if a column is constant
12 is_constant <- function(col) {</pre>
13
   return(length(unique(col)) == 1)
14 }
constant_columns <- apply(BS, 2, is_constant)</pre>
16 X <- cbind(BS[,-c(which(constant_columns == TRUE))], Z)</pre>
17 BMAglm <- BMA::bicreg(X, y, strict = FALSE, OR = 50)
18 summary (BMAglm)
19 idReg <- c(2, 23, 24, 27:29) # Relevant regressors, PIP >
       0.5
20 Xnew <- cbind(1, X[, idReg])</pre>
21 N <- dim(Xnew)[1]; k <- dim(Xnew)[2]
22 # Hyperparameters
23 d0 <- 0.001; a0 <- 0.001
^{24} b0 <- rep(0, k); c0 <- 1000
25 BO <- c0*diag(k); BOi <- solve(BO)
_{26} # MCMC parameters
27 mcmc <- 5000; burnin <- 5000
28 tot <- mcmc + burnin; thin <- 1
29 posterior <- MCMCpack::MCMCregress(y~Xnew-1, b0=b0, B0 =</pre>
       B0i, c0 = a0, d0 = d0, burnin = burnin, mcmc = mcmc,
       thin = thin)
30 summary(coda::mcmc(posterior))
_{\rm 31} # Predict values with 95% credible intervals
32 xfit <- seq(min(x), max(x), 0.2); H <- length(xfit)</pre>
_{33} i <- 675 # Pick a particular individual
34 idfit <- sample(1:N, H)
35 BSfit <- bs(xfit, knots = knots, degree = 3, Boundary.knots
       = range(x), intercept = FALSE)
36 Xfit \leftarrow cbind(1, BSfit[,c(2,23)], Z[rep(i, H),c(1,4:6)]) #
      Relevant regressors, PIP > 0.5
37 Fit <- matrix(NA, mcmc, H)
38 for(s in 1:mcmc){
    Fit[s,] <- Xfit%*%posterior[s,1:7]</pre>
39
40 }
41 plot_data <- data.frame(x = xfit, fit = colMeans(Fit),</pre>
       liminf = apply(Fit, 2, quantile, 0.025), limsup = apply(
      Fit, 2, quantile, 0.975))
43 ggplot() + geom_line(data = plot_data, aes(x, fit), color =
       "blue", linewidth = 1) + geom_ribbon(data = plot_data,
       aes(x, ymin = liminf, ymax = limsup), fill = "blue",
       alpha = 0.2) + labs(title = "B-Spline Regression with
       95% Confidence Interval", x = "Age",
44 y = "Log Marijuana") + theme_minimal()
```


12

Bayesian machine learning

Solutions of Exercises

1. Simulation exercise: the Bayesian LASSO continues

Program the Gibbs sampler for the Bayesian LASSO from scratch, assuming a hierarchical structure for the global shrinkage parameter, where both the shape and rate parameters are set to 1. Perform inference using this sampler in the Bayesian LASSO simulation exercise and compare the results with those obtained using the *monomun* package.

Answer

The following code illustrates how to implement the Gibbs sampler for the Bayesian LASSO. Overall, the results are very similar to those obtained using the *monomun* package (see Figure 12.1).

R code. Simulation: The Bayesian LASSO

```
1 rm(list = ls()); set.seed(10101)
2 library(monomvn)
3 # Parameters
_{4} n <- 500 # sample size
5 k <- 100 # number of predictors
6 s <- 10 # number of non-zero coefficients
7 # Generate design matrix
8 X <- matrix(rnorm(n * k), nrow = n, ncol = k)</pre>
9 # True beta: first s coefficients are non-zero, rest are
10 beta_true <- c(runif(s, -3, 3), rep(0, k - s))</pre>
11 # Generate response with some noise
12 sigma <- 1
13 y <- X %*% beta_true + rnorm(n, sd = sigma)</pre>
14 df <- data.frame(X,y)</pre>
15 ### Using monomvn ###
16 library (monomvn)
17 library(statmod)
18 # Fit model using Bayesian LASSO
19 fit <- monomvn::blasso(X, y, T = 5000, verb = 0)
20 # burn-in removal
21 burnin <- 1000
22 beta_samples <- fit$beta[(burnin + 1):5000, ] # exclude</pre>
      burn-in
23 intercept_samples <- fit$mu[(burnin + 1):5000] # intercept</pre>
      posterior draws
24 # Posterior mean of coefficients
25 beta_post_mean <- colMeans(beta_samples)</pre>
26 # Intercept summary
27 mean(intercept_samples)
28 quantile(intercept_samples, c(0.025, 0.975))
29 # Local shrinkage parameters
30 colMeans(is.na(fit$tau2i)) # proportion of NA values per
      coefficient
32 #### Gibss sampler ####
33 # Hyperparameters
34 r0 <- 1; d0 <- 1
35 # MCMC parameters
36 mcmc <- 5000; burnin <- 5000
37 tot <- mcmc + burnin; thin <- 1
38 # Posterior distributions programming the Gibbs sampling
39 # Standardized variables
40 W <- scale(X)
_{41} yh <- y - mean(y)
42 # Gibbs sampling functions
43 PostBeta <- function(sig2, tau2){
    Bn \leftarrow solve(diag(1/tau2) + t(W)%*%W)
    bn <- Bn\%*\%t(W)\%*\%yh
    Beta <- MASS::mvrnorm(1, bn, sig2*Bn)
    return (Beta)
48 }
```

R code. Simulation: The Bayesian LASSO

```
1 PostSig2 <- function(Beta, tau2){</pre>
    an <- n - 1 + k
    dn <- t(yh - W%*%Beta)%*%(yh - W%*%Beta) + t(Beta)%*%diag</pre>
      (1/tau2)%*%Beta
    sig2 \leftarrow invgamma::rinvgamma(1, shape = an/2, rate = dn/2)
    return(sig2)
6 }
7 PostTau2 <- function(sig2, Beta, lambda, p){</pre>
    mukn <- (lambda^2*sig2/Beta[p]^2)^0.5</pre>
    lambdan <- lambda^2
    tauk2k <- rinvgauss(1, mean = mukn, shape = lambdan)
    return(tauk2k)
11
12 }
13 PostLambda2 <- function(tau2){</pre>
    sh \leftarrow k + r0
14
    rat <-0.5 * sum(tau2) + d0
    lambda2 <- rgamma(1, shape = sh, rate = rat)
16
    return(lambda2^0.5)
17
18 }
19 PostBeta0 <- function(sig2){</pre>
    beta0 <- rnorm(1, mean = mean(y), sd = (sig2/n)^0.5)
20
21
    return(beta0)
22 }
23 PostBetas <- matrix(0, mcmc+burnin, k)
24 PostSigma2 <- rep(0, mcmc+burnin)</pre>
25 PostTaus2 <- matrix(0, mcmc+burnin, k)</pre>
26 PostLambda <- rep(0, mcmc+burnin)</pre>
27 PostBetas0 <- rep(0, mcmc+burnin)
28 Beta <- rep(0, k); tau2 <- rep(1, k); lambda <- 1
^{29} # create progress bar in case that you want to see
      iterations progress
30 pb <- winProgressBar(title = "progress bar", min = 0, max =
      tot, width = 300)
31 for(s in 1:tot){
    sig2 <- PostSig2(Beta = Beta, tau2 = tau2)
    PostSigma2[s] <- sig2</pre>
     Beta <- PostBeta(sig2 = sig2, tau2 = tau2)</pre>
    PostBetas[s,] <- Beta
     tau2 <- sapply(1:k, function(i){PostTau2(sig2 = sig2, Beta</pre>
        = Beta, lambda = lambda, p = i)})
     PostTaus2[s,] <- tau2</pre>
37
     lambda <- PostLambda2(tau2 = tau2)</pre>
    PostLambda[s] <- lambda
39
     beta0 <- PostBeta0(sig2 = sig2)
    PostBetas0[s] <- beta0
     setWinProgressBar(pb, s, title=paste( round(s/tot*100, 0),
42
        "% done"))
43 }
44 close(pb)
45 keep <- seq((burnin+1), tot, thin)
46 PosteriorBetas <- PostBetas [keep,]
47 summary(coda::mcmc(PosteriorBetas))
48 PosteriorBeta0 <- PostBetas0[keep]
49 summary(coda::mcmc(PosteriorBeta0))
50 PosteriorSigma2 <- PostSigma2[keep]</pre>
51 summary(coda::mcmc(PosteriorSigma2))
52 PosteriorTau2s <- PostTaus2[keep,]</pre>
53 summary(coda::mcmc(PosteriorTau2s))
54 PosteriorLambda <- PostLambda [keep]
55 summary(coda::mcmc(PosteriorLambda))
```


Bayesian LASSO (blasso): Shrinkage Effect

FIGURE 12.1 Comparison of LASSO performance: Package vs Gibbs from scratch.

2. [13] employ stochastic search variable selection (SSVS) to identify the main drivers of civil conflict in the post-Cold War era, considering a set of 35 potential determinants across 175 countries worldwide. We use a subset of their dataset provided in *Conflict.xlsx*, where the dependent variable

is *conflictcw*, a binary indicator of civil conflict. Perform SSVS using the *BoomSpikeSlab* package, specifically the *lm.spike* function, to identify the best subset of models.

Answer

The following code illustrates how to implement SSVS in this application, based on [13], using 15,000 iterations and the default settings for the hyperparameters. We find that infant mortality rate, population, peace, and political rights are the most relevant drivers of the incidence of civil conflict. *Peace* exhibits a negative 95% credible interval, while the other variables have positive credible intervals. The model with the highest posterior probability (30%) includes the first three regressors.

R code. Application: Drivers of civil conflict in the post-Cold War era using a linear model

```
2 set.seed(010101)
3 Data <- read.csv("https://raw.githubusercontent.com/</pre>
      BEsmarter-consultancy/BSTApp/refs/heads/master/DataApp/
      Conflict.csv", sep = ",", header = TRUE, quote = "")
  # Scale regressors
  W <- as.matrix(scale(Data[, -c(1, 2)]))
  niter <- 15000
    <- unlist(Data[, 2])</pre>
10 # Linear model
SSBoomLinear <- lm.spike(y ~ W, niter = niter)</pre>
12 Models <- SSBoomLinear$beta != 0</pre>
13 PIP <- colMeans(SSBoomLinear$beta != 0)
_{14} # Convert the logical matrix to a data frame and then to a
      tibble
15 df <- as.data.frame(Models); df_tbl <- as_tibble(df)</pre>
16 # Count identical rows
17 row_counts <- df_tbl %>% count(across(everything()), name =
       "frequency") %>% arrange(desc(frequency))
18 colnames(W)
19 # Get indices of best model
20 for(l in 1:5) {
    print(which(row_counts[1,] == 1))
    print(row_counts[1, dim(row_counts)[2]]/niter)
23 }
24 # Coefficients
25 SummarySS <- summary(coda::mcmc(SSBoomLinear$beta))</pre>
26 SummarySS
```

3. [36] proposes an SSVS approach for binary response models. Use the dataset *Conflict.xlsx*, where the dependent variable is *conflictcw*, to perform SSVS using the *BoomSpikeSlab* package, specifically the logit.spike function, in order to identify the best subset of models. Compare the results with those obtained in Exercise 2.

Answer

The following code illustrates how to implement SSVS in this application, based on [13], using 15,000 iterations and the default settings for the hyperparameters with a logit model.

We find that the results using a logit model are very similar to those ob-

tained with a linear model. Once again, infant mortality rate, population, peace, and political rights emerge as the most relevant drivers of the incidence of civil conflict. *Peace* exhibits a negative 95% credible interval, while the other variables have positive credible intervals. In this case, the model with the highest posterior probability (35%) includes infant mortality rate and peace. However, the model with the second-highest posterior probability (17%) includes the first three drivers.

R code. Application: Drivers of civil conflict in the post-Cold War era using a logit model

```
1 rm(list = ls())
  set.seed (010101)
3 Data <- read.csv("https://raw.githubusercontent.com/</pre>
       BEsmarter-consultancy/BSTApp/refs/heads/master/DataApp/
       Conflict.csv", sep = ",", header = TRUE, quote = "")
  # Scale regressors
  W <- as.matrix(scale(Data[, -c(1, 2)]))
  niter <- 15000
     <- unlist(Data[, 2])</pre>
10 # Logit model
11 SSBoomLogit <- logit.spike(y ~ W, niter = niter)</pre>
12 ModelsLogit <- SSBoomLogit$beta != 0</pre>
13 PIPLogit <- colMeans(SSBoomLogit$beta != 0)</pre>
_{14} # Convert the logical matrix to a data frame and then to a
      tibble
15 df <- as.data.frame(ModelsLogit); df_tbl <- as_tibble(df)</pre>
16 # Count identical rows
17 row_counts <- df_tbl %>% count(across(everything()), name =
       "frequency") %>% arrange(desc(frequency))
18 colnames(W)
19 # Get indices of best model
20 for(1 in 1:5) {
    print(which(row_counts[1,] == 1))
    print(row_counts[1, dim(row_counts)[2]]/niter)
23 }
24 # Coefficients
25 SummarySSlogit <- summary(coda::mcmc(SSBoomLogit$beta))</pre>
26 SummarySSlogit
```

4. Example: Simulation exercise K > N

Use the simulation setting from the Bayesian LASSO and SSVS examples, but now assume there are 600 features. This setup implies that the number

of features exceeds the sample size. In such a scenario, there is no unique solution to the least squares estimator because the determinant of $\mathbf{W}^{\top}\mathbf{W}$ is zero. This means the matrix is not invertible, and consequently, standard inference procedures based on the least squares estimator cannot be applied. On the other hand, Bayesian inference in this setup is well-defined because the prior helps regularize the problem, which is a key motivation for these methods.

Answer

The following code shows how to perform this exercise using the *bayesreg* and *BoomSpikeSlab* packages. We observe that both the Bayesian LASSO and SSVS perform well (see Figure 12.2) and allow for valid inference.

R code. Simulation: Performance of the Bayesian LASSO and SSVS when K > N

```
1 rm(list = ls()); set.seed(10101)
2 library(BoomSpikeSlab)
3 library(dplyr)
4 library(tibble)
5 library(bayesreg)
6 # Parameters
7 n <- 500 # sample size
_{8} k <- 600 # number of predictors
9 s <- 10
           # number of non-zero coefficients
10 # Generate design matrix
11 X <- matrix(rnorm(n * k), nrow = n, ncol = k)
12 # True beta: first s coefficients are non-zero, rest are
      zero
13 beta_true <- c(runif(s, -3, 3), rep(0, k - s))</pre>
_{14} # Generate response with some noise
15 sigma <- 1
16 y <- X %*% beta_true + rnorm(n, sd = sigma)</pre>
17 df <- data.frame(X,y)
18 ### Using BoomSpikeSlab ###
19 #Scale regressors
20 W <- scale(X); yh <- y - mean(y)
21 niter <- 5000
22 #####Estimate model#######
23 # Least squared
24 Reg <- lm(y ~ X)
25 summary (Reg)
26 ## BLASSO ##
27 # Fit the model
28 fit <- bayesreg::bayesreg(y ~ X, data = df, model = "
      gaussian", prior = "lasso"
29 n.samples = niter, burnin = 1000)
30 # Check summary
31 summary(fit)
32 # Extract posterior means of beta
33 beta_post_meanLASSO <- rowMeans(fit$beta)
35 ## SSVS ##
36 SSBoomNew <- lm.spike(yh ~ W - 1, niter = niter)
37 # Coefficients
38 SummarySS <- summary(coda::mcmc(SSBoomNew$beta))
_{\rm 39} # Extract posterior means of beta
40 beta_post_meanSSVS <- SummarySS$statistics[, 1]</pre>
42 # Compare true vs estimated
43 plot(beta_true, beta_post_meanLASSO, pch = 19, col = "
      steelblue",
44 xlab = "True beta", ylab = "Posterior mean of beta",
45 main = "Bayesian LASSO and SSVS")
46 abline(0, 1, col = "red", lty = 2)
47 # Add another set of posterior means
48 points(beta_true, beta_post_meanSSVS, pch = 17, col = "
      darkorange")
49 # Add legend
50 legend("topleft", legend = c("BLASSO", "SSVS"),
51 col = c("steelblue", "darkorange"),
52 \text{ pch} = c(19, 17), \text{ bty} = "n")
```


Bayesian LASSO and SSVS: K > N

BLASSO **SSVS** Posterior mean of beta 0 ? 0 -2 -1 True beta

FIGURE 12.2 Performance of the Bayesian LASSO and SSVS: K > N.

5. Simulation exercise: the BART model continues

Compute Friedman's partial dependence functions [6] for all variables in the BART model simulation example, and plot the posterior mean along with the 95% credible intervals.

Answer

The following code illustrates how to compute the posterior distribution of Friedman's partial dependence functions. Figures 12.3 and 12.4 display the results for variables 1 and 10. From the simulation setup, we know that variable 1 is relevant, whereas variable 10 is irrelevant. This is reflected in the partial dependence functions: the function for variable 10 is flat, indicating no effect, while the function for variable 1 shows a positive relationship with the outcome variable.

R code. Simulation: Partial dependence functions from BART models

```
1 rm(list = ls()); set.seed(10101)
2 library(BART); library(ggplot2); library(dplyr); library(
       tidyr)
3 N <- 500; K <- 10
_{\rm 4} # Simulate the dataset
5 MeanFunct <- function(x){</pre>
    f \leftarrow 10*\sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x
       [,5]
    return(f)
8 }
9 sig2 <- 1
10 e <- rnorm(N, 0, sig2^0.5)
11 X <- matrix(runif(N*K),N,K)</pre>
12 y <- MeanFunct(X[,1:5]) + e</pre>
13 # Hyperparameters
14 alpha <- 0.95; beta <- 2; k <- 2
15 v <- 3; q <- 0.9; J <- 200
16 # MCMC parameters
17 MCMCiter <- 1000; burnin <- 100; thinning <- 1
18 # Partial dependence function
19 BARTfit \leftarrow wbart(x.train = X, y.train = y, base = alpha,
power = beta, k = k, sigdf = v, sigquant = q, ntree = J,
21 ndpost = MCMCiter, nskip = burnin, keepevery = thinning)
22 k <- 1; L <- 20
23 x <- seq(min(X[, k]), max(X[, k]), length.out = L)
24 X.test <- X
25 X.test[,k] <- x[1]
26 for(j in 2:L){
    X.k <- X
   X.k[,k] <- x[j]
  X.test <- rbind(X.test, X.k)</pre>
30 }
31 pred <- predict(BARTfit, X.test)</pre>
32 partial <- matrix(nrow = MCMCiter, ncol = L)</pre>
33 for(j in 1:L) {
h \leftarrow (j - 1) * N + 1:N
    partial[, j] <- apply(pred[, h], 1, mean)</pre>
35
37 partial_df <- as.data.frame(partial)</pre>
38 partial_df$draw <- 1:nrow(partial_df)</pre>
39 long_df <- pivot_longer(partial_df, cols = -draw, names_to =</pre>
        "x", values_to = "value")
40 long_df$x <- as.numeric(gsub("V", "", long_df$x))
41 summary_df <- long_df %>% group_by(x) %>%
42 summarise (mean = mean(value), lower = quantile(value, 0.025)
       , upper = quantile(value, 0.975)
43 )
44 ggplot(summary_df, aes(x = x, y = mean)) + geom_line(color =
       "blue") + geom_ribbon(aes(ymin = lower, ymax = upper),
       fill = "lightblue", alpha = 0.4) + labs(x = "Grid point"
       , y = "Partial effect", title = "Partial Dependence
       Function with 95% Intervals") + theme_minimal()
```


FIGURE 12.3 Partial dependence function: Variable 1.

FIGURE 12.4 Partial dependence function: Variable 10.

6. Simulation exercise: The Gaussian Process simulation continues

Simulate the process

$$f_i = \sin(2\pi x_{i1}) + \cos(2\pi x_{i2}) + \sin(x_{i1}x_{i2}) + \mu_i,$$

where $\mu_i \stackrel{\text{i.i.d.}}{\sim} N(0, 0.1^2)$, $x_{ik} \sim U(0, 1)$ for k = 1, 2, and the sample size is 500.

Define a grid of 20 evenly spaced values between 0 and 1 for each covariate x_{ik} , and use this grid to perform prediction.

Estimate the hyperparameters of the Gaussian Process by maximizing the log marginal likelihood. Then, use the km function from the DiceKriging package to fit the Gaussian Process, fixing the noise variance at the value that maximizes the log marginal likelihood.

Finally, use the fitted model to predict the outputs on the grid points, and produce a 3D plot showing the predicted surface along with the training data points.

Answer

We use the Cholesky decomposition to optimize time calculating the inverse of the covariance matrix. In particular, let $\mathbf{K} \in \mathbb{R}^{N \times N}$ be a symmetric positive definite matrix. Then, it admits a Cholesky decomposition:

$$\mathbf{K} = \mathbf{L} \mathbf{L}^{\mathsf{T}}$$
.

where L is a lower triangular matrix with positive diagonal entries.

The determinant of **K** can be computed using the Cholesky factor:

$$\det(\mathbf{K}) = \det(\mathbf{L}\mathbf{L}^{\top}) = \det(\mathbf{L})^2.$$

Since \mathbf{L} is lower triangular, its determinant is the product of its diagonal elements:

$$\det(\mathbf{K}) = \left(\prod_{i=1}^{N} L_{ii}\right)^{2}.$$

Equivalently, the log-determinant is:

$$\log |\mathbf{K}| = 2\sum_{i=1}^{N} \log L_{ii}.$$

The inverse of K can also be computed using the Cholesky factor:

$$\mathbf{K}^{-1} = (\mathbf{L}\mathbf{L}^{\top})^{-1} = (\mathbf{L}^{\top})^{-1}\mathbf{L}^{-1}.$$

This is useful computationally because triangular systems can be solved efficiently via forward and backward substitution:

- (a) Solve $\mathbf{L}\mathbf{z} = \mathbf{b}$ for \mathbf{z} (forward solve),
- (b) Solve $\mathbf{L}^{\top}\mathbf{x} = \mathbf{z}$ for \mathbf{x} (backward solve),

then, $\mathbf{x} = (\mathbf{L}^{\top})^{-1}\mathbf{z} = (\mathbf{L}^{\top})^{-1}\mathbf{L}^{-1}\mathbf{b} = (\mathbf{L}\mathbf{L}^{\top})^{-1}\mathbf{b} = \mathbf{K}^{-1}\mathbf{b}$. Thus, we avoid computing the matrix inverse, which requires $O(N^3)$ operations. Instead, it is more efficient and numerically stable to solve triangular systems of equations, which arise naturally from the Cholesky decomposition.

The following code shows how to perform this exercise, and Figure 12.5 displays the 3D plot.

$f_i = \sin(2\pi x_{i1}) + \cos(2\pi x_{i2}) + \sin(x_{i1}x_{i2}) + \mu_i$ and Gaussian process

```
1 rm(list = ls()); set.seed(10101)
2 library(fields); library(DiceKriging); library(ggplot2)
3 # Simulate training data
4 n_train <- 500
5 x1 <- runif(n_train); x2 <- runif(n_train)</pre>
6 X_{train} \leftarrow data.frame(x1 = x1, x2 = x2)
7 \text{ sig} \leftarrow 0.1; u \leftarrow rnorm(n_train, mean = 0, sd = sig)
8 # True function without noise
9 f_train <- sin(2 * pi * X_train$x1) + cos(2 * pi * X_train$</pre>
      x2) + sin(X_train$x1 * X_train$x2)
10 y_train <- scale(f_train + u)</pre>
# Empirical Bayes: Optimize the log marginal likelihood
12 log_marginal_likelihood <- function(par, X, y) {</pre>
    sigma2_f <- par[1]; 12 <- par[2]; sigma2_n <- par[3]; n <-
     # Ensure parameters are positive
    if (sigma2_f <= 0 | 12 <= 0 | sigma2_n <= 0) return(Inf)</pre>
     # Squared exponential kernel
    dists <- rdist(X)</pre>
    K \leftarrow sigma2_f * exp(-0.5 * (dists^2) / 12)
    # Add noise variance + jitter for numerical stability
    K \leftarrow K + (sigma2_n + 1e-8) * diag(n)
20
    # Cholesky decomposition
    L <- tryCatch(chol(K), error = function(e) return(NULL))</pre>
22
    if (is.null(L)) return(Inf)
     alpha <- backsolve(t(L), forwardsolve(L, y)) #--> K^{-1}y
    log_det_K <- 2 * sum(log(diag(L)))</pre>
26
    lml <- -0.5 * t(y) %*% alpha - 0.5 * log_det_K - 0.5 * n *
       log(2 * pi)
     return(-as.numeric(lml)) # Negative log-marginal
      likelihood
28 }
29 par0 <- rep(1, 3)
30 ResOpt <- optim(par = par0, fn = log_marginal_likelihood,</pre>
       method = "L-BFGS-B", lower = c(1e-5, 1e-5), X = X_train,
       y = y_train)
31 theta_hat <- ResOpt$par</pre>
32 sigma2_f_hat <- theta_hat[1]; 12_hat <- theta_hat[2]; sigma2</pre>
       _n_hat <- theta_hat[3]</pre>
33 # Grid for prediction
34 grid_points <- 20
35 x1_seq <- seq(0, 1, length.out = grid_points)</pre>
36 x2_seq <- seq(0, 1, length.out = grid_points)</pre>
37 X_{new} \leftarrow expand.grid(x1 = x1_{seq}, x2 = x2_{seq})
38 # Fit Gaussian Process
39 fit_km <- km(design = X_train, response = y_train, covtype =
        "gauss", noise.var = rep(sigma2_n_hat, n_train))
40 # Predict GP surface
41 pred <- predict(fit_km, newdata = X_new, type = "UK")</pre>
42 z_pred <- matrix(pred$mean, nrow = grid_points, ncol = grid_</pre>
      points)
43 # Plot
44 persp3d(x = x1\_seq, y = x2\_seq, z = z\_pred, col = "lightblue")
       ", alpha = 0.7, xlab = "x1", ylab = "x2", zlab = "GP"
      Mean")
45 points3d(x = X_train$x1, y = X_train$x2, z = y_train, col =
      "red", size = 8)
```


FIGURE 12.5 Simulation: $f_i = \sin(2\pi x_{i1}) + \cos(2\pi x_{i2}) + \sin(x_{i1}x_{i2}) + \mu_i$ and Gaussian process

Approximate Bayesian methods

Solutions of Exercises

1. g-and-k distribution for financial returns continues I

Simulate a dataset following the specification given in the g-and-k distribution for financial returns example. Set $\theta_1 = 0.8$, a = 1, b = 0.5, g = -1, and k = 1, with a sample size of 500, and use the same priors as in that example. Implement the ABC accept/reject algorithm from scratch using one million prior draws, selecting the 1,000 draws with the smallest distance.¹

- Perform a linear regression adjustment using the posterior draws of our ABC-AR algorithm (ABC-AR-Adj).
- Compare the results with those obtained using the ABC-AR implementation in the *EasyABC* package, ensuring that the computational time is relatively similar between both implementations.
- Compare the posterior results of ABC-AR, ABC-AR-Adj and EasyABC with the population values.

Answer:

The following code implements our ABC-AR algorithm, following the steps outlined in the ABC-AR Algorithm of the book. Users can observe that a linear regression adjustment is applied; however, due to multicollinearity issues, one summary statistic is omitted in the prediction step (see the *abc* package for alternative regression adjustments).

Figure 13.1 presents the posterior distributions of θ_1 , g, and k using both our ABC implementations and the EasyABC package. We observe that our algorithms provide less information about θ_1 compared to the EasyABC implementation. Conversely, our algorithms offer more information about g and k than the EasyABC function. Additionally, regression adjustment helps center the posterior distributions of g and k around the population parameters. But, this is no the case regarding θ_1 . Moreover, applying regression adjustment introduces a degree of smoothness to the distributions.

¹Note that this setting does not satisfy the asymptotic requirements for Bayesian consistency. However, it serves as a pedagogical exercise.

Overall, in all implementations, the 95% credible intervals encompass the population values.

FIGURE 13.1

Posterior distributions using approximate Bayesian computation accept/reject: g-and-k distribution.

$R\ code.\ Approximate\ Bayesian\ computation\ accept/reject\ algorithm:\ g-and-k\ distribution\ simulation$

```
1 rm(list = ls()); set.seed(010101)
 _{2} # Simulate g-and-k data
 3 RGKnew <- function(par) {</pre>
          z <- NULL
          theta <- par[1]; a <- par[2]; b <- par[3]; g <- par[4]; k
               <- par [5]
          e \leftarrow rnorm(n + 1)
          for(t in 2:(n + 1)){
              zt \leftarrow e[t] + theta * e[t-1]
 9
               z <- c(z, zt)
10
11
          zs \leftarrow z / (1 + theta^2)^0.5
          x \leftarrow a + b * (1 + 0.8 * (1 - exp(-g * zs)) / (1 + 
12
                zs))) * (1 + zs^2)^k * zs
13
          return(x)
14 }
15 # Summary statistics
16 SumSt <- function(y) {</pre>
          Oct <- quantile(y, c(0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
                 0.875))
           eta1 <- Oct[6] - Oct[2]
          eta2 <- (Oct[6] + Oct[2] - 2 * Oct[4]) / eta1
19
          eta3 <- (Oct[7] - Oct[5] + Oct[3] - Oct[1]) / eta1
          autocor <- acf(y, lag = 2, plot = FALSE)</pre>
21
22
          autocor[["acf"]][2:3]
          Etay <- c(Oct, eta1, eta2, eta3, autocor[["acf"]][2:3])</pre>
23
          return(Etay)
24
25 }
26 # Population parameters
27 theta1 <- 0.8; a <- 1; b <- 0.5; g <- -1; k <- 1
28 parpop \leftarrow c(theta1, a, b, g, k)
29 n <- 500
30 y <- RGKnew(par = parpop)
31 ##### ABC Function#####
32 ABC <- function(S, a, y) {
          prior <- cbind(runif(S,-1,1), runif(S,0,5), runif(S,0,5),</pre>
              runif(S,-5,5), runif(S,-0.5,5))
         Z <- apply(prior, 1, RGKnew)
EtasZ <- apply(Z, 2, SumSt)</pre>
35
          Etay <- SumSt(y)</pre>
          Dist <- sapply(1:S, function(1) {</pre>
37
               dist(rbind(Etay, EtasZ[, 1]))
38
          })
39
40
          OrdPrior <- prior[order(Dist), ]</pre>
          SelPrior <- OrdPrior[1:round(S * a), ]</pre>
          SelSumSt <- t(EtasZ)[1:round(S * a), ]</pre>
42
43
          return(list(SelPrior = SelPrior, SelSumSt = SelSumSt))
44 }
45 S <- 1000000
46 a <- 0.001
47 tick <- Sys.time()
48 ResABC \leftarrow ABC(S = S, a = 0.001, y = y)
49 tock <- Sys.time()
50 tock - tick
51 PostABC_ARown <- ResABC[["SelPrior"]]</pre>
```

$R\ code.\ Approximate\ Bayesian\ computation\ accept/reject\ algorithm:\ g-and-k\ distribution\ simulation$

```
1 # Regression adjusted ABC
2 X <- ResABC[["SelSumSt"]]-matrix(SumSt(y), S*a, 12, byrow =
3 PostABC_ARownRegAd <- PostABC_ARown
4 for(j in 1:5){
    Reg <- lm(PostABC_ARown[,j] ~ X)</pre>
    # Coefficient of regressor 9 is na.
    PostABC_ARownRegAd[,j] <- PostABC_ARown[,j] - X[,-9]%*%Reg
       $coefficients[-c(1,9)]
8 }
9 RGKnewSum <- function(par) {</pre>
10
    z <- NULL
     theta <- par[1]; a <- par[2]; b <- par[3]; g <- par[4]; k
       <- par[5]
     e <- rnorm(n + 1)
12
     for(t in 2:(n + 1)){
      zt \leftarrow e[t] + theta * e[t-1]
14
15
       z \leftarrow c(z, zt)
16
    zs \leftarrow z / (1 + theta^2)^0.5
17
    x \leftarrow a + b * (1 + 0.8 * (1 - exp(-g * zs)) / (1 + exp(-g * zs))
       zs))) * (1 + zs^2)^k * zs
    Etaz <- SumSt(x)</pre>
    return(Etaz)
20
21 }
22 sum_stat_obs <- SumSt(y)</pre>
23 toy_prior <- list(c("unif",-1,1), c("unif",0,5), c("unif",</pre>
       0,5), c("unif", -5,5), c("unif", -0.5,5))
24 library (EasyABC)
25 tick <- Sys.time()</pre>
26 ABC_AR <- ABC_rejection(model=RGKnewSum, prior=toy_prior,
27 summary_stat_target = sum_stat_obs, nb_simul=260000, tol =
       0.00385,
28 progress_bar = TRUE)
29 tock <- Sys.time()</pre>
30 tock - tick
31 PostABC_AR <- coda::mcmc(ABC_AR$param)
32 # Summary
33 summary(coda::mcmc(PostABC_ARown))
34 summary(coda::mcmc(PostABC_ARownRegAd))
35 summary(coda::mcmc(PostABC_AR))
```

R code. Approximate Bayesian computation accept/reject algorithm: g-and-k distribution simulation

```
library(ggplot2); library(latex2exp)
2 Sp <- 1000
4 df1 <- data.frame(Value = c(PostABC_AR[1:Sp,1], PostABC_
      ARown[1:Sp,1], PostABC_ARownRegAd[1:Sp,1]), Distribution
       = factor(c(rep("EasyABC", Sp), rep("ABC", Sp), rep("
      ABCAdj", Sp))))
5 dentheta <- ggplot(df1, aes(x = Value, color = Distribution)</pre>
      ) + geom_density(linewidth = 1) + geom_vline(xintercept
      = theta1, linetype = "dashed", color = "red", linewidth
      = 1) +
6 labs(title = TeX("Posterior density plot: $theta$"), x = TeX
      ("$theta$"), y = "Posterior density") + scale_color_
      manual(values = c("blue", "red", "green")) + theme_
      minimal() +
7 theme(legend.title = element_blank())
9 df2 <- data.frame(Value = c(PostABC_AR[1:Sp,4], PostABC_
      {\tt ARown\,[1:Sp\,,4]\,,\ PostABC\_ARownRegAd\,[1:Sp\,,4])\,,\ Distribution}
       = factor(c(rep("EasyABC", Sp), rep("ABC", Sp), rep("
      ABCAdj", Sp))))
10 deng <- ggplot(df2, aes(x = Value, color = Distribution)) +</pre>
        geom_density(linewidth = 1) + geom_vline(xintercept =
      g, linetype = "dashed", color = "red", linewidth = 1) +
      labs(title = TeX("Posterior density plot: g"), x = TeX("
      $g$"), y = "Posterior density") +
scale_color_manual(values = c("blue", "red", "green")) +
      theme_minimal() + theme(legend.title = element_blank())
13 df3 <- data.frame(Value = c(PostABC_AR[1:Sp,5], PostABC_</pre>
      {\tt ARown\,[1:Sp\,,5]\,,\,\,PostABC\_ARownRegAd\,[1:Sp\,,5])\,,\,\,Distribution}
       = factor(c(rep("EasyABC", Sp), rep("ABC", Sp), rep("
      ABCAdj", Sp))))
14 denk <- ggplot(df3, aes(x = Value, color = Distribution)) +
        geom_density(linewidth = 1) + geom_vline(xintercept =
      k, linetype = "dashed", color = "red", linewidth = 1) +
15 labs(title = TeX("Posterior density plot: k"), x = TeX("$k$"
      ), y = "Posterior density") +
16 scale_color_manual(values = c("blue", "red", "green")) +
      theme_minimal() + theme(legend.title = element_blank())
18 library(ggpubr)
19 ggarrange(dentheta, deng, denk, labels = c("A", "B", "C"),
      ncol = 3, nrow = 1,
20 legend = "bottom", common.legend = TRUE)
```

2. Simulation: g-and-k distribution continues

Perform the simulation example of the Bayesian synthetic likelihood presented in the book, using the same population parameters and setting $M=500,\,S=6,000$, with burn-in and thinning parameters set to 1,000 and 5, respectively. Use the BSL package in ${\bf R}$ to perform inference using the vanilla, unbiased, semi-parametric, and misspecified (mean and variance) versions of BSL. Compare the posterior distributions of the methods with the true population parameters.

Answer:

The following code shows how to perform inference in this exercise. The results using the semi-parametric and misspecified settings in mean are very different compared to the other methods. In general, the performance of these methods are not good in this particular exercise and setting.

Figure 13.2 shows the posterior plots of the vanilla, unbiased and misspecified in variance settings. All the 95% credible intervals encompass the population variables; the posterior distributions of a, b and k are really good.

FIGURE 13.2

Posterior distributions using Bayesian synthetic likelihood: Simulation exercise g-and-k distribution.

R code. Bayesian synthetic likelihood: Simulation exercise q-and-k distribution.

```
1 rm(list = ls()); set.seed(010101)
 2 library(BSL)
 _{\rm 3} # Simulate g-and-k data
  4 RGKnew <- function(par) {</pre>
          z <- NULL
          theta <- par[1]; a <- par[2]; b <- par[3]; g <- par[4]; k
               <- par[5]
          e \leftarrow rnorm(n + 1)
          for(t in 2:(n + 1)){
              zt \leftarrow e[t] + theta * e[t-1]
 9
               z \leftarrow c(z, zt)
10
11
          zs <- z / (1 + theta^2)^0.5
12
          x \leftarrow a + b * (1 + 0.8 * (1 - exp(-g * zs)) / (1 + 
13
                 zs))) * (1 + zs^2)^k * zs
14
          return(x)
15 }
# Summary statistics
SumSt <- function(y) {</pre>
          Oct <- quantile(y, c(0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
                 0.875))
           eta1 <- Oct[6] - Oct[2]
19
          eta2 <- (Oct[6] + Oct[2] - 2 * Oct[4]) / eta1
eta3 <- (Oct[7] - Oct[5] + Oct[3] - Oct[1]) / eta1
20
          autocor <- acf(y, lag = 2, plot = FALSE)</pre>
22
          autocor[["acf"]][2:3]
         Etay <- c(Oct[4], eta1, eta2, eta3, autocor[["acf"]][2:3])</pre>
24
25
          return (Etay)
26 }
27 # Prior function
28 LogPrior <- function(par){</pre>
          LogPi <- log(par[1] > -1 & par[1] < 1 & par[2] > 0 & par
                [2] < 5 & par[3] > 0 & par[3] < 5 & par[4] > -5 & par[4]
                  < 5 & par[5] > -0.5 & par[5] < 5)
30 return(LogPi)
31 }
_{32} # Population parameters
33 theta1 <- 0.8; a <- 1; b <- 0.5; g <- -1; k <- 1
34 parpop <- c(theta1, a, b, g, k)</pre>
35 K <- 5
36 n <- 500
37 y <- RGKnew(par = parpop)</pre>
38 # Algorithm parameters
_{\rm 39} M <- 200 # Number of iterations to calculate mu and sigma
_{40} S <- 1100 # Number of MCMC iterations
41 burnin <- 100 # Burn in iterations
42 thin <- 2 # Thining parameter
43 keep <- seq(burnin + 1, S, thin)
44 par0 <- c(0.5, 2, 1, 0, 1)
45 Modelgk <- newModel(fnSim = RGKnew, fnSum = SumSt, theta0 =
               par0, fnLogPrior = LogPrior, verbose = FALSE)
46 validObject(Modelgk)
 47 keep <- seq(burnin + 1, S, thin)
48 tune <- 0.1 # Tuning parameter RW MH
49 simgk \leftarrow simulation(Modelgk, n = M, theta = par0, seed = 10)
par(mfrow = c(2, 3))
```

R code. Bayesian synthetic likelihood: Simulation exercise g-and-k distribution.

```
1 # Check if the summary statistics are roughly normal
2 for (i in 1:6){
    eval <- seq(min(simgk$ssx[, i]), max(simgk$ssx[, i]),</pre>
       0.001)
    densnorm <- dnorm(eval, mean = mean(simgk$ssx[, i]), sd(</pre>
       simgk$ssx[, i]))
    plot(density(simgk$ssx[, i]), main = "", xlab = "")
    lines(eval, densnorm, col = "red")
8 Lims <- matrix(c(-1, 0, 0, -5, -0.5, 1, rep(5, 4)), 5, 2)
9 tick <- Sys.time()
10 Resultsgk \leftarrow bsl(y = y, n = M, M = S, model = Modelgk,
       covRandWalk = tune*diag(5),
nethod = "BSL", thetaNames = expression(theta, a, b, g, k),
12 logitTransformBound = Lims, plotOnTheFly = TRUE)
13 tock <- Sys.time()</pre>
14 tock - tick
15 PostChain <- coda::mcmc(Resultsgk@theta[keep,])
16 CovarRWnew <- var(PostChain)</pre>
_{\rm 17} M <- 500 # Number of iterations to calculate mu and sigma
18 S <- 6000 # Number of MCMC iterations
_{\rm 19} burnin <- 1000 # Burn in iterations
_{20} thin <- 5 # Thining parameter
21 keep <- seq(burnin + 1, S, thin)
22 tune <- 1 # Tuning parameter RW MH
23 ModelgkNew <- newModel(fnSim = RGKnew, fnSum = SumSt, theta0
        = par0, fnLogPrior = LogPrior, verbose = FALSE)
24 logitTransform <- function(par, a, b){</pre>
   logtrans <- log((par - a)/(b - par))
   return(logtrans)
26
27 }
28 ParTrans <- matrix(NA, dim(PostChain)[1], 5)
29 for (j in 1:5) {
    ParTrans[,j] <- logitTransform(par = PostChain[,j], a =</pre>
      Lims[j,1], b = Lims[j,2])
32 CovarRW <- var(ParTrans)
33 # Vanilla BLS
34 tick <- Sys.time()
35 ResultsgkVanila <- bsl(y = y, n = M, M = S, model =
      ModelgkNew, covRandWalk = tune*CovarRW, method = "BSL",
      thetaNames = expression(theta, a, b, g, k),
      logitTransformBound = Lims, plotOnTheFly = TRUE)
36 tock <- Sys.time()
37 tock - tick
38 # Unbiased BLS
39 tick <- Sys.time()</pre>
40 ResultsgkuBLS <- bsl(y = y, n = M, M = S, model = ModelgkNew
       , covRandWalk = tune * CovarRW ,
41 method = "uBSL", thetaNames = expression(theta, a, b, g, k),
42 logitTransformBound = Lims, plotOnTheFly = TRUE)
43 tock <- Sys.time()
44 tock - tick
```

R code. Bayesian synthetic likelihood: Simulation exercise q-and-k distribution.

```
1 # Semi-parametric BLS
2 tick <- Sys.time()</pre>
_3 ResultsgksemiBLS <- bsl(y = y, n = M, M = S, model =
       ModelgkNew, covRandWalk = tune * CovarRW, method = "
      semiBSL", thetaNames = expression(theta, a, b, g, k),
4 logitTransformBound = Lims, plotOnTheFly = TRUE)
5 tock <- Sys.time()</pre>
6 tock - tick
7 # Misspecified BLS in mean
8 tick <- Sys.time()</pre>
9 ResultsgkmisspecBLSmean <- bsl(y = y, n = M, M = S, model =</pre>
      ModelgkNew, covRandWalk = tune * CovarRW, method = "
      BSLmisspec", thetaNames = expression(theta, a, b, g, k),
10 logitTransformBound = Lims, misspecType = "mean", tau = 0.5,
       plotOnTheFly = TRUE)
tock <- Sys.time()</pre>
12 tock - tick
13 # Misspecified BLS in variance
14 tick <- Sys.time()
15 ResultsgkmisspecBLSvar <- bsl(y = y, n = M, M = S, model =
      ModelgkNew, covRandWalk = tune*CovarRW, method = "
      BSLmisspec", thetaNames = expression(theta, a, b, g, k),
16 logitTransformBound = Lims, misspecType = "variance", tau =
      0.5, plotOnTheFly = TRUE)
17 tock <- Sys.time()
18 tock - tick
19 # Summary all models
20 gkResults <- list(ResultsgkVanila, ResultsgkuBLS,
      {\tt ResultsgksemiBLS} \;, \; {\tt ResultsgkmisspecBLSmean} \;,
      {\tt ResultsgkmisspecBLSvar)}
21 names(gkResults) <- c("BSL", "uBSL", "semiBLS", "missBSLmean
      ", "missBSLvar")
22 t(sapply(gkResults, summary))
23 combinePlotsBSL(gkResults, which = 2, thetaTrue = parpop,
      thin = thin, options.linetype = list(values = 1:8),
      options.size = list(values = rep(1, 8)), options.theme =
       list(plot.margin = grid::unit(rep(0.03, 4), "npc"),
      axis.title = ggplot2::element_text(size = 12), axis.text
       = ggplot2::element_text(size = 8),
24 legend.text = ggplot2::element_text(size = 12)))
_{25} # semi BSL and miss BSL mean are totally different to other
      methods
26 gkResultsNew <- list(gkResults[["BSL"]], gkResults[["uBSL"
      ]], gkResults[["missBSLvar"]])
27 names(gkResultsNew) <- c("BSL", "uBSL", "missBSLvar")</pre>
28 combinePlotsBSL(gkResultsNew, which = 2, thetaTrue = parpop,
       thin = thin, options.linetype = list(values = 1:8),
       options.size = list(values = rep(1, 8)), options.theme =
       list(plot.margin = grid::unit(rep(0.03, 4), "npc"),
       legend.text = ggplot2::element_text(size = 12)))
```

3. Simulate a multinomial logit model (see Section 6.5 in the book) with 3 alternatives, 2 alternative-specific regressors, and 1 individual-specific regressor. The population parameters for the alternative-specific regressors are -0.3 and 1.2, while the population values for the individual-specific regressor are 0.3, 0, and 0.5. All regressors are assumed to follow a standard normal distribution, and the sample size is 1,000.

Perform inference using the INLA package, and note that the Poisson trick should be used for multinomial models in this exercise (see [31] for details).

Answer:

R code. Multinomial model in INLA: Simulation exercise.

```
1 rm(list = ls()); set.seed(010101)
2 library(INLA)
_3 beta1 <- -0.3; beta2 <- 1.2; gamma <- c(0.3, 0, 0.5)
4 param <- c(beta1, beta2, gamma); n <- 1000
5 # Alternative specific regressors
6 x11 <- rnorm(n); x12 <- rnorm(n); x13 <- rnorm(n)
7 x21 <- rnorm(n); x22 <- rnorm(n); x23 <- rnorm(n)</pre>
8 # Individual specific regressor
9 Z <- rnorm(n)
10 Multinom.sample = function(N){
    Y <- matrix(NA, ncol = 3, nrow = n)
    for(i in 1:n){
      V1 <- beta1*x11[i] + beta2*x21[i] + gamma[1]*Z[i]
13
      V2<- beta1*x12[i] + beta2*x22[i] + gamma[2]*Z[i]
      V3 <- beta1*x13[i] + beta2*x23[i] + gamma[3]*Z[i]
      probs <- c(V1, V2, V3)
16
17
      probs <- exp(probs)/sum(exp(probs))</pre>
      samp <- rmultinom(1, N, prob = probs)</pre>
18
      Y[i,] = as.vector(samp)
19
20
    colnames(Y ) = c("Y1", "Y2", "Y3")
21
    return(Y)
22
23 }
24 Y <- Multinom.sample(1)
25 df <- data.frame(cbind(Y, x11, x12, x13, x21, x22, x23, Z))
26 Data.structure = function(df){
    Data = matrix(NA, ncol = 6, nrow = n*3)
27
    for(i in 1:n){
28
      # simulated variable
      Data[((i-1)*3+1):(i*3), 1] = c(df$Y1[i], df$Y2[i], df$Y3
30
      # alternative specific with generic coeff
31
      Data[((i-1)*3+1):(i*3), 2] = c(df$x11[i], df$x12[i], df$
32
      x13[i])
33
      # alternative specific with generic coeff
      Data[((i-1)*3+1):(i*3), 3] = c(df$x21[i], df$x22[i], df$
      x23[i])
      # individual specific with alternative coeff
35
      Data[((i-1)*3+1):(i*3), 4] = rep(df$Z[i],3)
36
      # choice situation index
37
38
      Data[((i-1)*3+1):(i*3), 5] = rep(i,3)
      # choice alternative index
39
      Data[((i-1)*3+1):(i*3), 6] = c(1, 2, 3)
40
41
42
    Data = data.frame(Data)
    names(Data) = c('Y', "X1", "X2", "Z", 'phi', 'alt.idx')
    return(Data)
44
45 }
46 formula = Y ~ -1 + X1 + X2 + f(phi, initial = -10, fixed = <math>T
      ) + f(alt.idx, Z, fixed = T, constr = T)
47 Data = Data.structure(df)
48 model = inla(formula, data = Data, family = 'Poisson')
49 result = rbind(model$summary.fixed[1:5], model$summary.
      random$alt.idx[2:6])
50 result = cbind(result, true = param)
```

$R\ code.\ Multinomial\ model\ in\ INLA:\ Simulation\\ exercise.$

4. Get the expression for the ELBO in the linear regression model with conjugate family.

Answer:

$$\begin{split} & \operatorname{ELBO}(q(\boldsymbol{\beta}, \sigma^2)) = \mathbb{E}_{\boldsymbol{\beta}, \sigma^2}[\log p(\boldsymbol{y}, \boldsymbol{\beta}, \sigma^2 \mid \boldsymbol{X})] - \mathbb{E}_{\boldsymbol{\beta}, \sigma^2}[\log q(\boldsymbol{\beta}, \sigma^2)] \\ & = \mathbb{E}_{\boldsymbol{\beta}, \sigma^2}[\log p(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^2, \boldsymbol{X}) + \log \pi(\boldsymbol{\beta} \mid \sigma^2) + \log(\sigma^2)] \\ & - \mathbb{E}_{\boldsymbol{\beta}, \sigma^2}[\log q(\boldsymbol{\beta}) + \log q(\sigma^2)] \\ & = \mathbb{E}_{\boldsymbol{\beta}, \sigma^2}\left[-\frac{N}{2}\log(2\pi) - \frac{N}{2}\log\sigma^2 - \frac{1}{2\sigma^2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \\ & - \frac{K}{2}\log(2\pi) - \frac{K}{2}\log(\sigma^2) - \frac{1}{2}\log|\boldsymbol{B}_0| - \frac{1}{2\sigma^2}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)^{\top}\boldsymbol{B}_0^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_0) \\ & - (\alpha_0/2 + 1)\log\sigma^2 - \frac{\delta_0}{2\sigma^2} + \alpha_0/2\log(\delta_0/2) - \log\Gamma(\alpha_0/2) \right] \\ & - \left\{ \mathbb{E}_{\boldsymbol{\beta}, \sigma^2}\left[\frac{K}{2}\log\mathbb{E}_{\sigma^2}(1/\sigma^2) - \frac{1}{2}\log|\boldsymbol{B}_n| - \frac{1}{2}\mathbb{E}_{\sigma^2}(1/\sigma^2)(\boldsymbol{\beta} - \boldsymbol{\beta}_n)^{\top}\boldsymbol{B}_n^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_n) \right. \\ & - \frac{K}{2}\log(2\pi) - (\alpha_n/2 + 1)\log\sigma^2 - \frac{\delta_n}{2\sigma^2} + \alpha_n/2\log(\delta_n/2) - \log\Gamma(\alpha_n/2) \right] \right\} \\ & = -\frac{N}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{B}_0| + \frac{1}{2}\log|\boldsymbol{B}_n| + \alpha_0/2\log(\delta_0/2) \\ & - \alpha_n/2\log(\delta_n/2) - \log\Gamma(\alpha_0/2) + \log\Gamma(\alpha_n/2) - \frac{K}{2}\log\mathbb{E}_{\sigma^2}(1/\sigma^2) \\ & + \frac{1}{2}\mathbb{E}_{\sigma^2}(1/\sigma^2)\mathbb{E}_{\boldsymbol{\beta}}\left[(\boldsymbol{\beta} - \boldsymbol{\beta}_n)^{\top}\boldsymbol{B}_n^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_n)\right] \\ & = -\frac{N}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{B}_0| + \frac{1}{2}\log|\boldsymbol{B}_n| + \alpha_0/2\log(\delta_0/2) \\ & - \alpha_n/2\log(\delta_n/2) - \log\Gamma(\alpha_0/2) + \log\Gamma(\alpha_n/2) - \frac{K}{2}\log(\alpha_n/\delta_n) \\ & + 0.5tr\left\{Var(\boldsymbol{\beta})\boldsymbol{B}_n^{-1}\right\} \end{split}$$

We take into account in the fourth equality that the terms collecting $\log \sigma^2$ and $\frac{1}{2\sigma^2}$ cancel out by the definitions of α_n and δ_n , respectively.

5. Linear regression continues

Perform inference in the linear regression example using stochastic variational inference via the automatic differentiation variational inference (ADVI) approach [16], implemented in rstan package. In particular, consider the model $y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta} + \mu_i$, assuming non-informative independent priors: $\boldsymbol{\beta} \sim N(\boldsymbol{\beta}_0, \boldsymbol{B}_0)$ and $\sigma^2 \sim \text{IG}(\alpha_0/2, \delta_0/2)$, where $\boldsymbol{\beta}_0 = \mathbf{0}_3$, $\boldsymbol{B}_0 = 1000\boldsymbol{I}_3$, and $\alpha_0 = \delta_0 = 0.01$. The sample size is one hundred thousand.

Answer:

The posterior mean values are very close to the population parameters, but the 95% credible intervals are too narrow and do not contain the true values.

R code. Stochastic variational inference: Simulation exercise linear regression.

```
1 library(rstan)
2 # --- Simulated data ---
3 N <- 100000; K <- 2; B <- rep(1, K + 1); sig2 <- 1
4 X <- cbind(1, matrix(rnorm(N * K), N, K))
5 y <- X %*% B + rnorm(N, 0, sig2^0.5)
6 # --- Priors --
7 b0 <- 0; B0 <- 1000; a0 <- 0.01; d0 <- 0.01
8 # --- Prepare data for Stan ---
9 data_list <- list(</pre>
10 N = N,
11 K = K + 1, # K+1 because of the intercept
12 X = X
y = as.vector(y),
14 b0 = b0,
15 B0 = B0
16 \ a0 = a0,
17 d0 = d0
18 )
19 # --- Stan model compilation ---
20 stan_model_code <- "
21 data {
    int < lower = 0 > N:
                            // number of data points
22
    int<lower=0> K;
                             // number of predictors
23
    matrix[N, K] X;
                             // predictor matrix
    vector[N] y;
                            // response vector
25
real b0;
                             // location parameter prior on beta
    real < lower = 0 > B0;
                            // variance parameter prior on beta
27
    real < lower = 0 > a0;
                            // shape parameter prior on sigma^2
// rate parameter prior on sigma^2
28
    real < lower = 0 > d0;
29
30 }
31 parameters {
vector[K] beta;
                             // coefficients of the linear model
    real < lower = 0 > sigma2; // variance parameter (sigma^2)
33
34 }
35 model {
36 // Priors
    beta ~ normal(b0, B0);
                                   // Normal prior on beta
37
    sigma2 ~ inv_gamma(a0/2, d0/2); // Inverse Gamma prior
39
    // Likelihood
40
41
    y ~ normal(X * beta, sqrt(sigma2)); // Normal likelihood
      with linear predictor
42 }
43 generated quantities {
vector[N] y_pred;
45 for (n in 1:N) {
      y_pred[n] = normal_rng(dot_product(X[n], beta), sqrt(
46
       sigma2));
47
48 }
49 II
```

R code. Stochastic variational inference: Simulation exercise linear regression.

6. Let's retake the mixture regression model of Chapter 11, that is, the simple regression mixture with two components such that $z_{i1} \sim \text{Ber}(0.5)$, consequently, $z_{i2} = 1 - z_{i1}$, and assume one regressor, $x_i \sim N(0,1)$, $i = 1, 2, \ldots, 1,000$. Then,

$$p(y_i \mid \mathbf{x}_i) = 0.5\phi(y_i \mid 2 + 1.5x_i, 1^2) + 0.5\phi(y_i \mid -1 + 0.5x_i, 0.8^2).$$

Let's set $\alpha_{h0} = \delta_{h0} = 0.01$, $\boldsymbol{\beta}_{h0} = \mathbf{0}_2$, $\boldsymbol{B}_{h0} = \boldsymbol{I}_2$, and $\boldsymbol{a}_0 = [1/2 \ 1/2]^{\top}$.

Perform VB inference in this model using the CAVI algorithm.

Answer:

The likelihood function in this model is $p(\boldsymbol{y} \mid \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) = \prod_{i=1}^N \prod_{h=1}^H \phi(y_i \mid \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_h, \sigma_h^2)^{z_{ih}}$, and $\pi(\boldsymbol{z} \mid \boldsymbol{\lambda}) = \prod_{i=1}^N \prod_{h=1}^H \lambda_h^{z_{ih}}$, $\boldsymbol{\lambda} \sim Dir(\boldsymbol{a}_0)$, $\boldsymbol{\beta}_h \sim N(\boldsymbol{\beta}_{h0}, \boldsymbol{B}_{h0})$ and $\sigma_h^2 \sim IG(\alpha_{h0}/2, \delta_{h0}/2)$. In this notation, $\boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2$ and $\boldsymbol{\lambda}$ stacks all the latent indicators, all locations and scale parameters of each cluster, and all the probabilities, respectively.

Let's work with the mean-field variational family $q(\boldsymbol{z}, \boldsymbol{\lambda}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) = q(\boldsymbol{z})q(\boldsymbol{\lambda}) \prod_{h=1}^{H} q(\boldsymbol{\beta}_h) \prod_{h=1}^{H} q(\sigma_h^2).$

Then,

$$\log q(\boldsymbol{z}) = \mathbb{E}_{\boldsymbol{\lambda},\boldsymbol{\beta},\boldsymbol{\sigma}^{2}} \left[\log p(\boldsymbol{y},\boldsymbol{z},\boldsymbol{\beta},\boldsymbol{\sigma}^{2}) \right] + c_{1}$$

$$= \mathbb{E}_{\boldsymbol{\lambda},\boldsymbol{\beta},\boldsymbol{\sigma}^{2}} \left[\log p(\boldsymbol{y} \mid \boldsymbol{z},\boldsymbol{\beta},\boldsymbol{\sigma}^{2}) + \log \pi(\boldsymbol{z} \mid \boldsymbol{\lambda}) \right] + c_{2}$$

$$= \mathbb{E}_{\boldsymbol{\lambda},\boldsymbol{\beta},\boldsymbol{\sigma}^{2}} \left[\sum_{i=1}^{N} \sum_{h=1}^{H} z_{ih} \left\{ -0.5 \log 2\pi - 0.5 \log \sigma_{h}^{2} - \frac{1}{2\sigma_{h}^{2}} (y_{i} - \boldsymbol{x}_{i}\boldsymbol{\beta}_{h})^{2} + \log \lambda_{h} \right\} \right] + c_{2}$$

$$= \sum_{i=1}^{N} \sum_{h=1}^{H} \psi_{ih} \log \rho_{ih} + c_{2}.$$

Thus, $q(z) = \prod_{i=1}^{N} \prod_{h=1}^{H} r_{ih}^{z_{ih}}$, such that $\mathbb{E}_{z_{ih}}[z_{ih}] = r_{ih}$, where $r_{ih} = \frac{\rho_{ih}}{\sum_{j=1}^{H} \rho_{ij}}$, and

$$\log \rho_{ih} = -0.5 \log 2\pi - 0.5 \mathbb{E}_{\sigma_h^2} \log \sigma_h^2 - 0.5 \mathbb{E}_{\sigma_h^2} \left(\frac{1}{\sigma_h^2}\right) \mathbb{E}_{\boldsymbol{\beta}_h} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_h)^2 + \mathbb{E}_{\lambda_h} \log \lambda_h.$$

$$\log q(\lambda) = \mathbb{E}_{z,\beta,\sigma^{2}} \left[\log p(y, z, \beta, \sigma^{2}) \right] + c_{1}$$

$$= \mathbb{E}_{z} \left[\log \pi(z \mid \lambda) + \log \pi(\lambda) \right] + c_{2}$$

$$= \mathbb{E}_{z} \left[\sum_{i=1}^{N} \sum_{h=1}^{H} z_{ih} \log \lambda_{h} + \sum_{h=1}^{H} (a_{h0} - 1) \log \lambda_{h} \right] + c_{3}$$

$$= \sum_{i=1}^{N} \sum_{h=1}^{H} \mathbb{E}_{z_{ih}} [z_{ih}] \log \lambda_{h} + \sum_{h=1}^{H} (a_{h0} - 1) \log \lambda_{h} + c_{3}$$

$$= \sum_{i=1}^{N} \sum_{h=1}^{H} r_{ih} \log \lambda_{h} + \sum_{h=1}^{H} (a_{h0} - 1) \log \lambda_{h} + c_{3}$$

$$= \sum_{h=1}^{H} \left(\sum_{i=1}^{N} r_{ih} + a_{h0} - 1 \right) \log \lambda_{h} + c_{3}.$$

This implies that $q(\lambda)$ is Dirichlet with parameters $a_{hn} = a_{h0} + \sum_{i=1}^{N} r_{ih}$.

$$\log q(\boldsymbol{\beta}_h) = \mathbb{E}_{\boldsymbol{\lambda}, \boldsymbol{z}, \boldsymbol{\sigma}^2} \left[\log p(\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) \right] + c_1$$

$$= \mathbb{E}_{\boldsymbol{z}, \boldsymbol{\sigma}^2} \left[\log p(\boldsymbol{y} \mid \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) + \log \pi(\boldsymbol{\beta}_h) \right] + c_2$$

$$= \mathbb{E}_{\boldsymbol{z}, \boldsymbol{\sigma}^2} \left[\sum_{i=1}^{N} \sum_{h=1}^{H} z_{ih} \left\{ -\frac{1}{2\sigma_h^2} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_h)^2 \right\} -0.5(\boldsymbol{\beta}_h - \boldsymbol{\beta}_{h0})^{\top} \boldsymbol{B}_{h0}^{-1} (\boldsymbol{\beta}_h - \boldsymbol{\beta}_{h0}) \right] + c_3.$$

Following same steps as those to obtain the posterior distribution,

and taking into account the expected values, we have that $q(\boldsymbol{\beta}_h)$ is $N(\boldsymbol{\beta}_{hn}, \boldsymbol{B}_{hn})$, where $\boldsymbol{B}_{hn} = \left(\boldsymbol{B}_{h0}^{-1} + \mathbb{E}_{\sigma_h^2} \left(\frac{1}{\sigma_h^2}\right) \sum_{i=1}^N r_{ih} \boldsymbol{x}_i \boldsymbol{x}_i^{\top}\right)^{-1}$ and $\boldsymbol{\beta}_{hn} = \boldsymbol{B}_{hn} \left(\boldsymbol{B}_{h0}^{-1} \boldsymbol{\beta}_{h0} + \mathbb{E}_{\sigma_h^2} \left(\frac{1}{\sigma_h^2}\right) \sum_{i=1}^N r_{ih} \boldsymbol{x}_i y_i\right)$.

$$\begin{split} \log q(\sigma_h^2) &= \mathbb{E}_{\boldsymbol{\lambda}, \boldsymbol{z}, \boldsymbol{\beta}} \left[\log p(\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) \right] + c_1 \\ &= \mathbb{E}_{\boldsymbol{z}, \boldsymbol{\beta}} \left[\log p(\boldsymbol{y} \mid \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) + \log \pi(\sigma_h^2) \right] + c_2 \\ &= \mathbb{E}_{\boldsymbol{z}, \boldsymbol{\beta}} \left[\sum_{i=1}^{N} \sum_{h=1}^{H} z_{ih} \left\{ -0.5 \log \sigma_h^2 - \frac{1}{2\sigma_h^2} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_h)^2 \right\} \\ &- (\alpha_{h0}/2 + 1) \log \sigma_h^2 - \frac{\delta_{h0}}{2\sigma_h^2} \right] + c_1. \end{split}$$

Collecting terms we see that $q(\sigma_h^2)$ is $IG(\alpha_{hn}/2, \delta_{hn}/2)$, where $\alpha_{hn} = \sum_{i=1}^N r_{ih} + \alpha_{h0}$ and $\delta_{hn} = \sum_{i=1}^N r_{ih} \mathbb{E}_{\boldsymbol{\beta}_h} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_h)^2 + \delta_{h0}$.

Note that the previous results imply that $\mathbb{E}_{\sigma_h^2}\left(\frac{1}{\sigma_h^2}\right) = \alpha_{hn}/\delta_{hn}$, $\mathbb{E}_{\boldsymbol{\beta}_h}(y_i - \boldsymbol{x}_i^{\top}\boldsymbol{\beta}_h)^2 = (y_i - \boldsymbol{x}_i^{\top}\boldsymbol{\beta}_{hn})^2 + \boldsymbol{x}_i^{\top}\boldsymbol{B}_{hn}\boldsymbol{x}_i$, and

$$\log \rho_{ih} = -0.5 \log 2\pi - 0.5 \mathbb{E}_{\sigma_h^2} \log \sigma_h^2 - 0.5 \mathbb{E}_{\sigma_h^2} \left(\frac{1}{\sigma_h^2}\right) \mathbb{E}_{\boldsymbol{\beta}_h} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_h)^2 + \mathbb{E}_{\lambda_h} \log \lambda_h$$

$$= -0.5 \log 2\pi - 0.5 (\log(\delta_{hn}/2) - \psi(\alpha_{hn}/2)) - 0.5 (\alpha_{hn}/\delta_{hn}) (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_{hn})^2$$

$$+ \boldsymbol{x}_i^{\top} \boldsymbol{B}_{hn} \boldsymbol{x}_i^{\top} + \psi(a_{hn}) - \psi \left(\sum_{h=1}^{H} a_{hn}\right),$$

where ψ is the digamma function.

In addition, the evidence lower bound (ELBO) is given by

$$\begin{split} & \operatorname{ELBO}(q(\boldsymbol{\theta})) = \mathbb{E}_{q} \left[\log p(\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2}) \right] - \mathbb{E}_{q} [\log q(\boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2})] \\ & = \mathbb{E}_{q} \left[\log p(\boldsymbol{y} \mid \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2}) + \log \pi(\boldsymbol{z} \mid \boldsymbol{\lambda}) + \log \pi(\boldsymbol{\lambda}) + \sum_{h=1}^{H} (\log \pi(\boldsymbol{\beta}_{h}) + \log \pi(\boldsymbol{\sigma}_{h}^{2})) \right] \\ & - \mathbb{E}_{q} \left[\log q(\boldsymbol{z}) + \log \pi(\boldsymbol{\lambda}) + \sum_{h=1}^{H} (\log q(\boldsymbol{\beta}_{h}) + \log \pi(\boldsymbol{\sigma}_{h}^{2})) \right] \\ & = \mathbb{E}_{q} \left[\sum_{i=1}^{N} \sum_{h=1}^{H} z_{ih} \left\{ -0.5 \log(2\pi) - 0.5 \log \sigma_{h}^{2} - 0.5 \frac{1}{\sigma_{h}^{2}} (y_{i} - \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}_{h})^{2} \right\} \right. \\ & + \sum_{i=1}^{N} \sum_{h=1}^{H} z_{ih} \log \lambda_{h} + \sum_{h=1}^{H} \left\{ -\frac{K}{2} \log(2\pi) - 0.5 \log |\boldsymbol{B}_{h0}| - 0.5 (\boldsymbol{\beta}_{h} - \boldsymbol{\beta}_{h0})^{\top} \boldsymbol{B}_{h0}^{-1} (\boldsymbol{\beta}_{h} - \boldsymbol{\beta}_{h0}) \right\} \\ & + \sum_{h=1}^{H} \left\{ -(\alpha_{h0}/2 + 1) \log \sigma_{h}^{2} - \frac{\delta_{h0}}{2\sigma_{h}^{2}} + (\alpha_{h0}/2) \log(\delta_{h0}/2) - \log \Gamma(\alpha_{0}/2) \right\} \right] \\ & - \mathbb{E}_{q} \left[\sum_{i=1}^{N} \sum_{h=1}^{H} z_{ih} \log r_{ih} - \log B(\boldsymbol{a}_{n}) + \sum_{h=1}^{H} (a_{hn} - 1) \log \lambda_{h} \right. \\ & + \sum_{h=1}^{H} \left\{ -\frac{K}{2} \log(2\pi) - 0.5 \log |\boldsymbol{B}_{hn}| - 0.5 (\boldsymbol{\beta}_{h} - \boldsymbol{\beta}_{hn})^{\top} \boldsymbol{B}_{hn}^{-1} (\boldsymbol{\beta}_{h} - \boldsymbol{\beta}_{hn}) \right\} \\ & + \sum_{h=1}^{H} \left\{ -(\alpha_{hn}/2 + 1) \log \sigma_{h}^{2} - \frac{\delta_{hn}}{2\sigma_{h}^{2}} + (\alpha_{hn}/2) \log(\delta_{hn}/2) - \log \Gamma(\alpha_{hn}/2) \right\} \right]. \end{split}$$

The first part of this expression, that is, $\mathbb{E}_q \left[\log p(\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) \right]$, is given by

$$\sum_{i=1}^{N} \sum_{h=1}^{H} r_{ih} \left\{ -0.5 \log(2\pi) - 0.5 (\log(\delta_{hn}/2) - \psi(\alpha_{hn}/2)) - \frac{\alpha_{hn}}{2\delta_{hn}} [(y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_{hn})^2 + \boldsymbol{x}_i^{\top} \boldsymbol{B}_{hn} \boldsymbol{x}_i] \right\} + \\
\sum_{i=1}^{N} \sum_{h=1}^{H} r_{ih} \log r_{it} + \sum_{h=1}^{H} \left\{ -\frac{K}{2} \log(2\pi) - 0.5 \log |\boldsymbol{B}_{h0}| - tr(\boldsymbol{B}_{hn} \boldsymbol{B}_{h0}^{-1}) - (\boldsymbol{\beta}_{hn} - \boldsymbol{\beta}_{h0})^{\top} (\boldsymbol{\beta}_{hn} - \boldsymbol{\beta}_{h0}) \right\} + \\
\sum_{h=1}^{H} \left\{ -(\alpha_{h0}/2 + 1) (\log(\delta_{hn}/2) - \psi(\alpha_{hn}/2)) - \frac{\delta_{h0}}{2} \frac{\alpha_{hn}}{\delta_{hn}} + (\alpha_{h0}/2) \log(\delta_{h0}/2) - \log \Gamma(\alpha_{0}/2) \right\}.$$

The second part of the ELBO, that is, $\mathbb{E}_{q}[\log q(\boldsymbol{z}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2})]$ is given by $\sum_{i=1}^{N} \sum_{h=1}^{H} r_{ih} \log r_{ih} - \log B(\boldsymbol{a}_{n}) + \sum_{h=1}^{H} (a_{hn} - 1) \left(\psi(a_{hn}) - \psi\left(\sum_{h=1}^{H} a_{hn}\right) \right) + \sum_{h=1}^{H} -\frac{K}{2} (\log(2\pi) + 1) - 0.5 \log |\boldsymbol{B}_{hn}| + (\alpha_{hn}/2 + 1) \psi(\alpha_{hn}/2) - 0.5 \alpha_{hn} - \log(\delta_{hn}/2) - \log \Gamma(\alpha_{hn}/2)$. We use

$$\mathbb{E}_{\beta_h}[(\beta_h - \beta_{hn})^{\top} \boldsymbol{B}_{hn}^{-1}(\beta_h - \beta_{hn})] = tr \left\{ \mathbb{E}_{\beta_h}(\beta_h - \beta_{hn})^{\top} \boldsymbol{B}_{hn}^{-1}(\beta_h - \beta_{hn}) \right\}$$

$$= \mathbb{E}_{\beta_h}[tr \left\{ (\beta_h - \beta_{hn})^{\top} \boldsymbol{B}_{hn}^{-1}(\beta_h - \beta_{hn}) \right\}]$$

$$= tr \left\{ \mathbb{E}_{\beta_h}[(\beta_h - \beta_{hn})(\beta_h - \beta_{hn})^{\top} \boldsymbol{B}_{hn}^{-1}] \right\}$$

$$= tr \left\{ Var(\beta_h) \boldsymbol{B}_{hn}^{-1} \right\}$$

$$= tr \left\{ I_K \right\}$$

$$= K$$

R code. Variational Bayes: Mixture Gaussian regression.

```
1 rm(list = ls())
2 set.seed(010101)
_{3} # Simulate data from a 2-component mixture model
4 n <- 1000
5 K <- 2; H <- 2
6 x <- rnorm(n)
7 z <- rbinom(n, 1, 0.5) # Latent class indicator
y \leftarrow ifelse(z == 0, rnorm(n, 2 + 1.5*x, 1), rnorm(n, -1 + 1.5*x)
      0.5*x, 0.8)
9 X <- cbind(1,x)
10 # Iterations
11 S <- 10000
12 ##### From scratch ######
13 # Hyperparameters
14 b0h <- rep(0, K); B0h <- diag(1000,K); B0hi <- solve(B0h)
15 a0h <- 0.01; d0h <- 0.01; a0 <- rep(1/H, H)
16 # Innitial values
^{17} dhn <- c(50, 50); ahn <- c(500, 500)
18 bhn <- matrix(c(2, 1.5, -1, 0.5), K, H)
19 Bhn <- array(c(1,0,0,1,1,0,0,1), c(K, K, H))
20 an <- c(500, 500)
21 VarParPsi <- function(dhn, ahn, bhn, Bhn, an){</pre>
    logrhoih <- matrix(NA, n, H)
22
    for(i in 1:n){
      for(h in 1:H){
24
        logrhoih[i,h] \leftarrow -0.5*log(2*pi) - 0.5*(log(dhn[h]/2) -
        digamma(ahn[h]/2)) -
         0.5*(ahn[h]/dhn[h])*((y[i] - t(X[i,])%*%bhn[,h])^2 + t
       (X[i,])%*%Bhn[,,h]%*%X[i,]) +
        digamma(an[h]) - digamma(sum(an))
27
28
29
    rhoih <- exp(logrhoih - apply(logrhoih, 1, max))</pre>
30
    rih <- rhoih / rowSums(rhoih)
31
32
    return(rih)
33 }
34 Rih <- VarParPsi(dhn = dhn, ahn = ahn, bhn = bhn, Bhn = Bhn,
35 VarParLambda <- function(rih){</pre>
   an <- a0 + colSums(rih)
37
   return(an)
38 }
39 VarParLambda(rih = Rih)
40 VarParBetah <- function(ahn, dhn, rh){
    rXX <- matrix(0, K, K)
41
    rXy <- matrix(0, K, 1)
    for(i in 1:n){
43
      rXXi <- rh[i] *X[i,]% * %t(X[i,])
      rXX <- rXX + rXXi
45
      rXyi <- rh[i] *X[i,] *y[i]
46
      rXy <- rXy + rXyi
47
48
49
    Bhn <- solve(B0hi + ahn/dhn * rXX)
    bhn \leftarrow Bhn%*%(B0hi%*%b0h + ahn/dhn * rXy)
50
    return(list(bhn = bhn, Bhn = Bhn))
52 }
```

R code. Variational Bayes: Mixture Gaussian regression.

```
1 VarParSigma2h <- function(bhn, Bhn, rh){</pre>
    ahn \leftarrow a0h + sum(rh); dhnterm \leftarrow 0
    for(i in 1:n){
       dhntermi <- rh[i]*((y[i] - t(X[i,])%*%bhn)^2 + t(X[i,])%
       *%Bhn%*%X[i,])
       dhnterm <- dhnterm + dhntermi
    dhn <- dhnterm + d0h; return(list(ahn = ahn, dhn = dhn))</pre>
8 }
9 multivariate_beta <- function(alpha) {</pre>
    prod_gammas <- sum(sapply(alpha, lgamma))</pre>
10
    sum_alpha <- sum(alpha)</pre>
    gamma_sum_alpha <- lgamma(sum_alpha)</pre>
12
13
    return(prod_gammas - gamma_sum_alpha)
14 }
15 ELBO <- function(rih, dhn, ahn, bhn, Bhn, an){</pre>
    LogLikh <- 0; LogPrioPsih <- 0
    LogPriorBeta <- 0; LogPriorSig2 <- 0
17
    for(h in 1:H){
      for(i in 1:n){
19
         LogLikih \leftarrow rih[i, h]*(-0.5*log(2*pi) - 0.5*(log(dhn[h
20
      ]/2) - digamma(ahn[h]/2)) - 0.5*(ahn[h]/dhn[h])*((y[i])
        t(X[i,])%*%bhn[,h])^2 + t(X[i,])%*%Bhn[,,h]%*%X[i,]))
         LogLikh <- LogLikh + LogLikih
         LogPrioPsiih <- rih[i, h]*(digamma(an[h]) - digamma(
22
       sum(an)))
         LogPrioPsih <- LogPrioPsih + LogPrioPsiih
23
24
       LogPriorBetah \leftarrow -0.5*K*log(2*pi) - 0.5*log(det(B0h)) -
25
      sum(diag(Bhn[,,h]%*%B0hi)) - t(bhn[,h] - b0h)%*%B0hi%*%(
      bhn[,h] - b0h)
      LogPriorBeta <- LogPriorBeta + LogPriorBetah
       LogPriorSig2h \leftarrow -(a0h/2+1)*(log(dhn[h]/2) - digamma(ahn
27
       [h]/2) - 0.5*d0h*(ahn[h]/dhn[h]) + (a0h/2)*log(d0h/2) -
        lgamma(a0h/2)
      LogPriorSig2 <- LogPriorSig2 + LogPriorSig2h
29
    LogJoint <- LogLikh + LogPrioPsih + LogPriorBeta +
30
      LogPriorSig2
     logqPsi <- 0; logqLambda <- 0; logqBeta <- 0;logqSig2 <- 0
31
    for(h in 1:H){
       for(i in 1:n){
33
34
         logqPsiih <- rih[i, h] * log(rih[i, h])</pre>
         logqPsi <- logqPsi + logqPsiih
35
36
       logqLambdah <- (an[h] - 1)*(digamma(an[h]) - digamma(sum
37
       (an)))
       logqLambda <- logqLambda + logqLambdah
      logqBetah <- -0.5*K*log(2*pi + 1) - 0.5*log(det(Bhn[,,h
39
      logqBeta <- logqBeta + logqBetah</pre>
40
      logqSig2h \leftarrow -log(dhn[h]/2) + (ahn[h]/2+1)*digamma(ahn[h]/2+1)
41
      ]/2) - ahn[h]/2 - lgamma(ahn[h]/2)
      logqSig2 <- logqSig2 + logqSig2h</pre>
42
43
44
    logqLambda <- logqLambda - multivariate_beta(alpha = an)</pre>
    logq <- logqPsi + logqLambda + logqBeta + logqSig2
ELBO <- LogJoint - logq</pre>
45
46
    return (ELBO)
47
48 }
```

R code. Variational Bayes: Mixture Gaussian regression.

```
1 # Initial values
2 fit_lm1 <- lm(y ~ x)
3 bhn[,1] <- coef(fit_lm1)</pre>
4 bhn[,2] <- coef(fit_lm1) + rnorm(K, 0, 0.5)
5 Bhn[,,1] <- diag(0.1, K); Bhn[,,2] <- diag(0.1, K)
6 ahn \leftarrow rep(10, H); dhn \leftarrow rep(10, H)
7 \text{ an } \leftarrow c(300, 700)
8 ELBOs <- rep(NA, S)</pre>
9 ELBOs[1] <- ELBO(rih = Rih, dhn = dhn, ahn = ahn, bhn = bhn,
        Bhn = Bhn, an = an)
10 epsilon <- 1e-5
11 for(s in 2:S){
    Rih <- VarParPsi(dhn = dhn, ahn = ahn, bhn = bhn, Bhn =
      Bhn, an = an)
    an <- VarParLambda(rih = Rih)
    bhn <- matrix(NA, K, H)
14
    Bhn <- array(NA, c(K, K, H))
    for(h in 1:H){
16
      EnsVarParBetah <- VarParBetah(ahn = ahn[h], dhn = dhn[h</pre>
      ], rh = Rih[,h])
      bhn[,h] <- EnsVarParBetah[["bhn"]]</pre>
18
      Bhn[,,h] <- EnsVarParBetah[["Bhn"]]</pre>
19
20
    ahn <- rep(NA, H)
21
    dhn <- rep(NA, H)
22
    for(h in 1:H){
23
      EnsVarParSig2h <- VarParSigma2h(bhn = bhn[,h], Bhn = Bhn</pre>
24
       [,,h], rh = Rih[,h])
       ahn[h] <- EnsVarParSig2h[["ahn"]]
      dhn[h] <- EnsVarParSig2h[["dhn"]]</pre>
26
27
    ELBOs[s] <- ELBO(rih = Rih, dhn = dhn, ahn = ahn, bhn =</pre>
28
      bhn, Bhn = Bhn, an = an)
     # Check if lower bound decreases
    if (ELBOs[s] < ELBOs[s - 1]) { message("Lower bound</pre>
      decreases!\n")}
    # Check for convergence
    if (ELBOs[s] - ELBOs[s - 1] < epsilon) { break }</pre>
32
    # Check if VB converged in the given maximum iterations
33
    if (s == S) {warning("VB did not converge!\n")}
34
35 }
36 plot(ELBOs[1:s], type = "l", main = "ELBO over iterations",
      ylab = "ELBO", xlab = "Iteration")
37 Sig21 <- MCMCpack::rinvgamma(S, ahn[1]/2, dhn[1]/2)
38 summary (coda::mcmc(Sig21))
39 Sig22 <- MCMCpack::rinvgamma(S, ahn[2]/2, dhn[2]/2)
40 summary(coda::mcmc(Sig22))
41 Beta1 <- MASS::mvrnorm(S, mu = bhn[,1], Sigma = Bhn[,,1])
42 summary(coda::mcmc(Beta1))
43 Beta2 <- MASS::mvrnorm(S, mu = bhn[,2], Sigma = Bhn[,,2])
44 summary(coda::mcmc(Beta2))
45 Lambda <- MCMCpack::rdirichlet(S, alpha = an)
46 summary (coda::mcmc(Lambda))
```

Bibliography

- [1] Jim Albert. *Bayesian Computation with R.* Use R! Springer, New York, NY, 2nd edition, 2009.
- [2] R. Baath. Package bayesboot, 2018.
- [3] Thomas Bayes. LII. an essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. *Philosophical transactions of the Royal Society of London*, 53:370–418, 1763.
- [4] W. Chang. Web Application Framework for R: Package shiny. R Studio, 2018.
- [5] T. Conley, C. Hansen, and P. Rossi. Plausibly exogenous. *The Review of Economics and Statistics*, 94(1):260–272, 2012.
- [6] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. *Annals of Statistics*, 29(5):1189–1232, 2001.
- [7] J. Geweke. *Bayesian Statistics*, chapter Evaluating the accuracy of sampling-based approaches to calculating posterior moments. Clarendon Press, Oxford, UK., 1992.
- [8] John Geweke. Getting it right: Joint distribution tests of posterior simulators. *Journal of the American Statistical Association*, 99(467):799–804, 2004.
- [9] N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel approach to nonlinear/non-gaussian bayesian state estimation. *IEE Proceedings F* (Radar and Signal Processing), 140(2):107–113, 1993.
- [10] P. Heidelberger and P. D. Welch. Simulation run length control in the presence of an initial transient. *Operations Research*, 31(6):1109–1144, 1983.
- [11] H. Jeffreys. *Theory of Probability*. Oxford University Press, London, 1961.
- [12] M. Jetter and A. Ramírez Hassan. Want export diversification? Educate the kids first. *Economic Inquiry*, 53(4):1765–1782, 2015.

292 Bibliography

[13] Michael Jetter, Rafat Mahmood, Christopher F. Parmeter, and Andrés Ramírez-Hassan. Post-cold war civil conflict and the role of history and religion: A stochastic search variable selection approach. *Economic Mod*elling, 114:105907, 2022.

- [14] Valen E Johnson and David Rossell. On the use of non-local prior densities in bayesian hypothesis tests. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 72(2):143–170, 2010.
- [15] G. Karabatsos. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation. *Behavior Research Methods*, 49:335–362, 2016.
- [16] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic differentiation variational inference. *Journal* of machine learning research, 18(14):1–45, 2017.
- [17] Alex Lenkoski, Anna Karl, and Andreas Neudecker. Package ivbma, 2013.
- [18] Dennis V Lindley. A statistical paradox. Biometrika, 44(1/2):187–192, 1957.
- [19] Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. Package MCM-Cpack, 2018.
- [20] P. Müller, F. Quintana, A. Jara, and T. Hanson. Bayesian Nonparametric Data Analysis. Springer, New York, 2015.
- [21] Martyn Plummer, Nicky Best, Kate Cowles, Karen Vines, Deepayan Sarkar, Douglas Bates, Russell Almond, and Arni Magnusson. *Output Analysis and Diagnostics for MCMC*, 2016.
- [22] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021.
- [23] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023.
- [24] Adrian Raftery, Jennifer Hoeting, Chris Volinsky, Ian Painter, and Ka Yee Yeung. *Package BMA*, 2012.
- [25] A.E. Raftery and S.M. Lewis. One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Statistical Science, 7:493–497, 1992.
- [26] Andrés Ramírez-Hassan. Dynamic variable selection in dynamic logistic regression: an application to internet subscription. *Empirical Economics*, 59(2):909–932, 2020.

Bibliography 293

[27] Andrés Ramírez-Hassan and Daniela A Carvajal-Rendón. Specification uncertainty in modeling internet adoption: A developing city case analysis. *Utilities Policy*, 70:101218, 2021.

- [28] Andrés Ramírez-Hassan and David T Frazier. Testing model specification in approximate bayesian computation using asymptotic properties. *Journal of Computational and Graphical Statistics*, 33(3):1–14, 2024.
- [29] P. Rossi. Package bayesm, 2017.
- [30] Peter E. Rossi, Greg M. Allenby, and Robert McCulloch. *Bayesian Statistics and Marketing*. John Wiley and Sons, Hoboken, NJ, 2005.
- [31] Francesco Serafini. Multinomial logit models with inla. R-INLA Tutorial. https://inla.r-inla-download.org/r-inla.org/doc/vignettes/multinomial.pdf, 2019.
- [32] M. Serna Rodríguez, A. Ramírez Hassan, and A. Coad. Uncovering value drivers of high performance soccer players. *Journal of Sport Economics*, 20(6):819–849, 2019.
- [33] A. F. M. Smith. A General Bayesian Linear Model. *Journal of the Royal Statistical Society. Series B (Methodological).*, 35(1):67–75, 1973.
- [34] Stan Development Team. shinystan: Interactive visual and numerical diagnostics and posterior analysis for Bayesian models., 2017. R package version 2.3.0.
- [35] Samuel Thomas and Wanzhu Tu. Learning hamiltonian monte carlo in r. *The American Statistician*, 75(4):403–413, 2021.
- [36] Regina Tüchler. Bayesian variable selection for logistic models using auxiliary mixture sampling. *Journal of Computational and Graphical Statistics*, 17(1):76–94, 2008.
- [37] P. Woodward. BugsXLA: Bayes for the common man. *Journal of Statistical Software*, 14(5):1–18, 2005.
- [38] Jeffrey M. Wooldridge. *Introductory Econometrics: A Modern Approach*. Cengage Learning, Mason, Ohio: South-Western, fifth edition, 2012.
- [39] A. Zellner. Introduction to Bayesian inference in econometrics. John Wiley & Sons Inc., 1996.

Appendix

296 Appendix

TABLE 13.1 Libraries and commands in BEsmarter GUI.

Univariate models				
Model	Library	Command	Reference	
Normal	MCMCpack	MCMCregress	[19]	
Logit	MCMCpack	MCMClogit	[19]	
Probit	bayesm	rbprobitGibbs	[29]	
Multinomial(Mixed) Probit	bayesm	rmnpGibbs	[29]	
Multinomial(Mixed) Logit	bayesm	rmnlIndepMetrop	[29]	
Ordered Probit	bayesm	rordprobitGibbs	[29]	
Negative Binomial(Poisson)	bayesm	rnegbinRw	[29]	
Tobit	MCMCpack	MCMCtobit	[19]	
Quantile	MCMCpack	MCMCquantreg	[19]	
Bayesian bootstrap	bayesboot	bayesboot	[2]	
	tivariate mo	dels		
Model	Library	Command	Reference	
Multivariate	bayesm	rmultireg	[29]	
Seemingly Unrelated Regression	bayesm	rsurGibbs	[29]	
Instrumental Variable	bayesm	rivGibbs	[29]	
Bivariate Probit	bayesm	rmvpGibbs	[29]	
Hierarchic	al longitudin			
Model	Library	Command	Reference	
Normal	MCMCpack	MCMChregress	[19]	
Logit	MCMCpack	MCMChlogit	[19]	
Poisson	MCMCpack	MCMChpoisson	[19]	
	an model ave	raging		
Model	Library	Command	Reference	
Normal (BIC)	BMA	bic.glm	[24]	
Normal (MC ³)	BMA	MC3.REG	[24]	
Normal (instrumental variables)	ivbma	ivbma	[17]	
Logit (BIC)	BMA	bic.glm	[24]	
Gamma (BIC)	BMA	bic.glm	[24]	
Poisson (BIC)	BMA	bic.glm	[24]	
Diagnostics				
Diagnostic	Library	Command	Reference	
Trace plot	coda	traceplot	[21]	
Autocorrelation plot	coda	autocorr.plot	[21]	
Geweke test	coda	geweke.diag	[21]	
Raftery & Lewis test Heidelberger & Welch test	coda coda	raftery.diag heidel.diag	[21] [21]	

TABLE 13.2 Datasets templates in folder *DataSim*.

Univariate models				
Model	Data set file	Data set simulation		
Normal	11SimNormalmodel.csv	11SimNormal.R		
Logit	12SimLogitmodel.csv	12SimLogit		
Probit	13SimProbitmodel.csv	13SimProbit.R		
Multinomial(Mixed) Probit	14SimMultProbmodel.csv	14SimMultinomialProbit.R		
Multinomial (Mixed) Logit	15SimMultLogitmodel.csv	15SimMultinomialLogit.R		
Ordered Probit	16SimOrderedProbitmodel.csv	16SimOrderedProbit.R		
Negative Binomial(Poisson)	17SimNegBinmodel.csv	17SimNegBin.R		
Tobit	18SimTobitmodel.csv	18SimTobit.R		
Quantile	19SimQuantilemodel.csv	19SimQuantile.R		
Bayesian bootstrap	41SimBootstrapmodel.csv	41SimBootstrapmodel.R		
	Multivariate models			
Model	Data set file	Data set simulation		
Multivariate	21SimMultivariate.csv	21SimMultReg.R		
Seemingly Unrelated Regression	22SimSUR.csv	22 Sim SUR.R		
Instrumental Variable	23SimIV.csv	23 Sim IV.R		
Bivariate Probit	24SimMultProbit.csv	24SimMultProbit.R		
	rarchical longitudinal models			
Model	Data set file	Data set simulation		
Normal	31SimLogitudinalNormal.csv	31SimLogitudinalNormal.R		
Logit	32SimLogitudinalLogit.csv	32SimLogitudinalLogit.R		
Poisson	33SimLogitudinalPoisson.csv	33SimLogitudinalPoisson.R		
Bayesian model averaging				
Model	Data set file	Data set simulation		
Normal (BIC)	511SimNormalBMA.csv	511SimNormalBMA.R		
Normal (MC^3)	512SimNormalBMA.csv	512SimNormalBMA.R		
Normal (instrumental variables)	513SimNormalBMAivYXW.csv 513SimNormalBMAivZ.csv	513SimNormalBMAiv.R		
Logit (BIC)	52SimLogitBMA.csv	52 Sim Logit BMA.R		
Gamma (BIC)	53SimGammaBMA.csv	53 Sim Gamma BMA.R		
Poisson (BIC)	53SimPoissonBMA.csv	53SimPoissonBMA.R		

298 Appendix

TABLE 13.3 Real datasets in folder *DataApp*.

Univariate models				
Model	Data set file	Dependent variable		
Normal	1ValueFootballPlayers.csv	log(Value)		
Logit	2HealthMed.csv	Ĥosp		
Probit	2HealthMed.csv	Hosp		
Multinomial(Mixed) Probit	Fishing.csv	mode		
Multinomial(Mixed) Logit	Fishing.csv	mode		
Ordered Probit	2 Health Med.csv	MedVisPrevOr		
Negative Binomial(Poisson)	2HealthMed.csv	MedVisPrev		
Tobit	1ValueFootballPlayers.csv	log(ValueCens)		
Quantile	1ValueFootballPlayers.csv	$\log(\text{Value})$		
Bayesian bootstrap	1ValueFootballPlayers.csv	$\log(Value)$		
	Multivariate models			
Model	Data set file	Dependent variable		
Multivariate	4Institutions.csv	logpcGDP95 and PAER		
Seemingly Unrelated Regression	5Institutions.csv	logpcGDP95 and PAER		
Instrumental Variable	6Institutions.csv	logpcGDP95 and PAER		
Bivariate Probit	7 Health Med.csv	y = [Hosp SHI]'		
Hie	erarchical longitudinal models			
Model	Data set file	Dependent variable		
Normal	8PublicCap.csv	$\log(gsp)$		
Logit	9VisitDoc.csv	DocVis		
Poisson	9VisitDoc.csv	DocNum		
Bayesian model averaging				
Model	Data set file	Dependent variable		
Normal (BIC)	10ExportDiversificationHHI.csv	avghhi		
Normal (MC ³)	10ExportDiversificationHHI.csv	avghhi		
Normal (instrumental variables)	11ExportDiversificationHHI.csv	avghhi and avglgdpcap		
, ,	12ExportDiversificationHHIInstr.csv	avgiiii and avgigdpcap		
Logit (BIC)	13InternetMed.csv	internet		
Gamma (BIC)	14ValueFootballPlayers.csv	log market value		
Poisson (BIC)	15Fertile2.csv	ceb		