RANDOM_FOREST_CLASSIFICATION

```
import pandas as pd
import numpy as np
import seaborn as sns
```

Loading the Data set

```
df = sns.load_dataset('penguins')
df.head()
```

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Fe
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Fe
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Fe

Next steps: Generate code with df View recommended plots

```
df.shape
```

(344, 7)

df.info()

```
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):
                      Non-Null Count Dtype
# Column
0
    species
                      344 non-null
                                      object
                      344 non-null
1
    island
                                      object
    bill_length_mm
                      342 non-null
                                      float64
    bill_depth_mm
                      342 non-null
                                      float64
    flipper_length_mm 342 non-null
                                      float64
                                      float64
    body_mass_g
                      342 non-null
                      333 non-null
                                      object
    sex
```

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(4), object(3)
memory usage: 18.9+ KB

df.isnull().sum()

 species
 0

 island
 0

 bill_length_mm
 2

 bill_depth_mm
 2

 flipper_length_mm
 2

 body_mass_g
 2

 sex
 11

 dtype: int64

Drop the null values

 ${\tt df.dropna(inplace=True)}$

df.isnull().sum() #checking

```
species 0
island 0
bill_length_mm 0
bill_depth_mm 0
flipper_length_mm 0
body_mass_g 0
sex 0
dtype: int64
```

Feature Engineering to convert all categorical values into numerical

ONE HOT ENCODING

firstly will apply to SEX column

```
df.sex.unique()
```

```
array(['Male', 'Female'], dtype=object)
```

pd.get_dummies(df['sex'], dtype=int).head()

	Female	Male	
0	0	1	ıl.
1	1	0	
2	1	0	
4	1	0	
5	0	1	

sex = pd.get_dummies(df['sex'], drop_first = True, dtype=int).head() #to avoid colinearity

applying to ISLAND

df.island.unique()

array(['Torgersen', 'Biscoe', 'Dream'], dtype=object)

pd.get_dummies(df['island'], dtype = int).head()

	Biscoe	Dream	Torgersen			
0	0	0	1	ılı		
1	0	0	1			
2	0	0	1			
4	0	0	1			
5	0	0	1			

island = pd.get_dummies(df['island'],dtype = int, drop_first=True).head()

Combining the above two data frames to the original df

new_data = pd.concat([df, island, sex], axis =1)

new_data.head()

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	Dream	Torgersen	Male	\blacksquare
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male	0.0	1.0	1.0	ıl.
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female	0.0	1.0	0.0	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female	0.0	1.0	0.0	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female	0.0	1.0	0.0	
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0	Male	0.0	1.0	1.0	

Next steps: Generate code with new_data

View recommended plots

Drop repeated columns

```
new_data.drop(columns=['sex', 'island'], axis =1, inplace =True)
new data.head()
         species bill_length_mm bill_depth_mm flipper_length_mm body_mass_g Dream Torgersen Male
                                                                                                                 扁
      0
           Adelie
                              39.1
                                              18.7
                                                                 181.0
                                                                              3750.0
                                                                                        0.0
                                                                                                    1.0
                                                                                                          1.0
                              39.5
                                                                 186.0
                                                                              3800.0
      1
           Adelie
                                              17.4
                                                                                        0.0
                                                                                                    1.0
                                                                                                          0.0
      2
                                                                              3250.0
           Adelie
                              40.3
                                              18.0
                                                                 195.0
                                                                                        0.0
                                                                                                    1.0
                                                                                                          0.0
      4
           Adelie
                              36.7
                                              19.3
                                                                 193.0
                                                                              3450.0
                                                                                        0.0
                                                                                                    1.0
                                                                                                          0.0
           Adelie
                              39.3
                                              20.6
                                                                 190.0
                                                                              3650.0
                                                                                        0.0
                                                                                                    1.0
                                                                                                          1.0
 Next steps:
              Generate code with new_data
                                               View recommended plots
new_data.rename(columns = {'Male':'Sex'}, inplace = True)
new_data.head()
         species bill_length_mm bill_depth_mm flipper_length_mm body_mass_g Dream Torgersen Sex
                                                                                                               \overline{\mathbf{H}}
      0
           Adelie
                              39.1
                                              18.7
                                                                 181.0
                                                                              3750.0
                                                                                        0.0
                                                                                                    1.0
                                                                                                         1.0
                                                                                                                th
      1
           Adelie
                              39.5
                                              17.4
                                                                 186.0
                                                                              3800.0
                                                                                        0.0
                                                                                                         0.0
                                                                                                    1.0
      2
           Adelie
                              40.3
                                              18.0
                                                                 195.0
                                                                              3250.0
                                                                                        0.0
                                                                                                         0.0
                                                                                                    1.0
      4
                                                                              3450.0
           Adelie
                              36.7
                                              19.3
                                                                 193.0
                                                                                        0.0
                                                                                                         0.0
                                                                                                    1.0
      5
                              39.3
                                              20.6
                                                                 190.0
                                                                              3650.0
           Adelie
                                                                                        0.0
                                                                                                    1.0 1.0
              Generate code with new_data
 Next steps:
                                               View recommended plots
Creating separate target variable
Y = new_data.species
Y.head()
     0
          Adelie
          Adelie
     1
     2
          Adelie
     4
          Adelie
          Adelie
     Name: species, dtype: object
Y.unique()
     array(['Adelie', 'Chinstrap', 'Gentoo'], dtype=object)
Y = Y.map({ 'Adelie':0, 'Chinstrap':1, 'Gentoo':2})
Y.head()
     0
          a
     1
          0
     2
          0
     4
          0
     Name: species, dtype: int64
Dropping th Target Variable Species Y to create input variable X
new_data.drop('species', inplace = True, axis =1)
new_data.head()
```

```
bill\_length\_mm \ bill\_depth\_mm \ flipper\_length\_mm \ body\_mass\_g \ Dream \ Torgersen \ Sex
0
               39.1
                                 18.7
                                                     181.0
                                                                   3750.0
                                                                               0.0
                                                                                            1.0
                                                                                                 1.0
                                                                                                        11.
1
               39.5
                                 17.4
                                                     186.0
                                                                   3800.0
                                                                               0.0
                                                                                           1.0
                                                                                                 0.0
2
               40.3
                                 18.0
                                                     195.0
                                                                   3250.0
                                                                               0.0
                                                                                           1.0
                                                                                                 0.0
                                                                   3450.0
4
               36.7
                                 19.3
                                                     193.0
                                                                               0.0
                                                                                           1.0
                                                                                                 0.0
5
               39.3
                                20.6
                                                     190.0
                                                                   3650.0
                                                                               0.0
                                                                                           1.0 1.0
```

```
Next steps:
              Generate code with new_data
                                            View recommended plots
X= new data
X.isnull( ).sum()
     bill_length_mm
                            a
     bill_depth_mm
                            0
     flipper_length_mm
                            0
     body_mass_g
                            0
     Dream
                          328
     Torgersen
                          328
                          328
     Sex
     dtype: int64
X['Dream'].fillna(0, inplace = True)
X['Torgersen'].fillna(0, inplace = True)
X['Sex'].fillna(0, inplace = True)
X.isnull( ).sum()
     bill_length_mm
     bill_depth_mm
                          0
     flipper_length_mm
                          0
     body_mass_g
     Dream
                          0
     Torgersen
                          0
     Sex
                          0
     dtype: int64
Everything's in numerical and we have X and Y.. Next step Splitting Dataset into Training and Test Data
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size =0.2, random_state=0)
Training RANDOM FOREST CLASSIFICATION on training data set
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 5, criterion = 'entropy', random_state = 0)
classifier.fit(X_train, Y_train)
                                 RandomForestClassifier
     RandomForestClassifier(criterion='entropy', n_estimators=5, random_state=0)
Predicting
y_pred = classifier.predict(X_test)
y_pred
     array([0, 0, 2, 0, 0, 0, 1, 2, 2, 1, 2, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0,
            2, 2, 2, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 2, 2, 0, 0,
            0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0,
```

Metrics

```
from sklearn.metrics import confusion_matrix, accuracy_score

cm = confusion_matrix(Y_test, y_pred)

cm
    array([[39, 0, 0],
        [ 1, 9, 0],
        [ 0, 0, 18]])

accuracy_score(Y_test, y_pred)
    0.9850746268656716

Start coding or generate with AI.
```