Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3212	К работе допущен
Студент <u>Марьин I</u>	Григорий Алексеевич	Работа выполнена
Преподаватель <u></u> Александрович	<u>Агабабаев Валентин</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследовать распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Случайная величина – результат измерения промежутка времени от нажатия на кнопку перезагрузки web страницы в браузере, до момента ее обновления

4. Метод экспериментального исследования.

Многократное прямое измерение времени обновления web страницы и проверка закономерностей распределения значений этой случайной величины.

5. Рабочие формулы и исходные данные.

- $\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + ... + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$ среднее арифметическое всех результатов измерений.
- $\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N (t_i \langle t \rangle_N)^2}$ выборочное среднеквадратичное отклонение.
- $\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$ максимальное значение плотности распределения.
- $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2}$ среднеквадратичное отклонение среднего значения.
- $\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$ нормальное распределение, описываемое функцией Гаусса.
- $\Delta t = t_{\alpha,N} \cdot \sigma_{(t)}$ доверительный интервал.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	0 - 5 c	0.005 с

7. Схема установки (перечень схем, которые составляют Приложение 1).

Ноутбук с открытым браузером Microsoft Edge, в котором открыта страница Gmail, и цифровой секундомер, с ценой деления не более 0.01 с. Первый прибор запускается кнопкой обновления страницы и загружается до момента появления новой кнопки обновления страницы, интервал времени загрузки которого многократно измеряется цифровым секундомером.

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Таблица 1. Результаты прямых измерений.

№	t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	2,39	-0,28	0,07706176
2	2,38	-0,29	0,08271376
3	2,76	0,09	0,00853776
4	2,11	-0,56	0,31091776
5	1,86	-0,81	0,65221776
6	2,18	-0,49	0,23775376
7	1,99	-0,68	0,45914176
8	2,69	0,02	0,00050176
9	3,36	0,69	0,47941776
10	2,11	-0,56	0,31091776
11	3,12	0,45	0,20466576
12	2,03	-0,64	0,40653376
13 14	3,04	0,37	0,13868176
15	2,03	-0,64	0,40653376 0,77018176
16	1,79 2,96	-0,88 0,29	0,77018176
17	2,49	-0,18	0,08349776
18	3,09	0,42	0,17842176
19	2,71	0,04	0,00179776
20	2,38	-0,29	0,08271376
21	3,09	0,42	0,17842176
22	2,73	0,06	0,00389376
23	2,59	-0,08	0,00602176
24	2,28	-0,39	0,15023376
25	2,23	-0,44	0,19149376
26	2,67	0,00	5,76E-06
27	2,54	-0,13	0,01628176
28	2,79	0,12	0,01498176
29	3,16	0,49	0,24245776
30	3,01	0,34	0,11723776
31	3,11	0,44	0,19571776
32	3,32	0,65	0,42562576
33	3,29	0,62	0,38738176
34	2,82	0,15	0,02322576
36	2,51	-0,16	0,02483776 0,02178576
37	2,52 2,67	-0,15 0,00	5,76E-06
38	2,84	0,00	0,02972176
39	2,55	-0,12	0,01382976
40	3,11	0,44	0,19571776
41	3,16	0,49	0,24245776
42	2,31	-0,36	0,12787776
43	2,22	-0,45	0,20034576
44	2,50	-0,17	0,02808976
45	2,77	0,10	0,01048576

46	3,33	0,66	0,43877376	
47	2,80	0,13	0,01752976	
48	3,32	0,65	0,42562576	
49	2,55	-0,12	0,01382976	
50	3,12	0,45	0,20466576	
	$\langle t \rangle_N = 2,668 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 1,021*10^{-14}$	$\sigma_N = 0.426c$	
			$ ho_{max}=$ 0,937 c^{-l}	

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

•
$$\langle t \rangle$$
N = $\frac{1}{50} \sum_{i=1}^{50} t_i N_i = 2,668$ с - среднее арифметическое значение

•
$$\langle t \rangle$$
N = $\frac{1}{50} \sum_{i=1}^{50} t_i \, N_i = 2,668 \, \text{c}$ - среднее арифметическое значение
• $\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{50-1} \sum_{i=1}^{50} (t_i - 2,668)^2} = 0,426 \, \text{c}$ - среднеквадратическое

•
$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}} = \frac{1}{0.426\sqrt{2\pi}} = 0.937c^{-1}$$

отклонение

•
$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{50*49} \sum_{i=1}^{50} (t_i - 2,668)^2} = 0,06$$
 — Среднеквадратичное отклонение среднего

- $t_{\alpha.N} = 2.01$ коэффициент Стьюдента, $\alpha = 0.95$
- $\Delta t = t_{\alpha,N} \, \cdot \, \sigma_{\langle t \rangle} =$ 2,01 * 0,06 = 0,121 c доверительный интервал
- $t_{min}=1,79~c$, $t_{max}=3,36c$, $\sqrt{N}pprox 7$ для построения гистограммы используем 7 интервалов $\varDelta t=$

Таблица 2. Данные для построения гистограммы.

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, C^{-1}	t, c	ρ, c^{-l}
1,790	3	0,267	1,902	0,186
2,014	3			
2,014	7	0,625	2,131	0,417
2,238	/			
2,238	5	0,446	2,350	0,710
2,462	3			
2,462	10	0,893	2,574	0,915
2,686	10			
2,686	9	0,804	2,798	0,894
2,910				
2,910	9	0,804	3,022	0,663
3,134	9			
3,134	6	0,536	3,246	0,372
3,36	U			

Опытное значение плотности вероятности (четвертый интервал): $\frac{\Delta N}{N\Delta t} = \frac{14}{50 \cdot 0.224} = 1.25$ Нормальное распределение, описываемое функцией Гаусса: $\rho(2,574) = \frac{1}{0.426\sqrt{6.28}} exp(-\frac{(2,574-2,668)^2}{2*0.426^2}) = 0.8957 \ c^{-1}$

Таблица 3. Стандартные доверительные интервалы

Интервал, с		ΔN	ΔN	P	
	ОТ	до	Δ/V	$\frac{\Delta N}{N}$	P
$\langle t \rangle_N \pm \sigma$	2,444	2,892	19	0,38	0,683
$\langle t \rangle_N \pm 2\sigma$	2,220	3,116	33	0,66	0,954
$\langle t \rangle_N \pm 3\sigma$	1,996	3,340	46	0,92	0,997

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta_x = 0,005$$
 с; $\Delta t = t_{\alpha,\mathrm{N}} \cdot \sigma_{\langle t \rangle} \approx 2,01 \cdot 0,062 = 0,1246$; —доверительный интревал Погрешность с учетом погрешности прибора: $\Delta x = \sqrt{(\Delta t)^2 + (\frac{2}{3}\Delta_x)^2} \approx 0,1236$ с Относительная погрешность измерения: $\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\% = 4,7\%$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1 – Гистограмма и функция Гаусса

12. Окончательные результаты.

- Среднеквадратичное отклонение среднего значения $\sigma_{(t)} = 0.426$ с
- Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$: $t_{\alpha,N}=2.01$
- Доверительный интервал $\Delta t = 0.121 c$
- Среднее арифметическое всех результатов измерений $\langle t \rangle_N = 2,668 \ c$
- Выборочное среднеквадратичное отклонение: $\sigma_N = 0.062c$
- Максимальное значение плотности распределения $\rho_{max} = 0.937c^{-1}$

13. Выводы и анализ результатов работы.

Эксперимент по многократному измерению временного интервала (n=50) позволил эмпирически изучить закон распределения случайной величины. После статистической обработки данных и построения гистограммы было выполнено её сравнение с графиком функции нормального распределения. Наблюдаемое примерное совпадение формы гистограммы с гауссовой кривой свидетельствует о том, что исследуемая случайная величина подчиняется нормальному закону. Выполненная работа дала практическое понимание ключевых концепций теории распределения случайных величин.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).