Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

Landmark A\*
- ALT

Implementa cija i testiranje

# Brzi algoritmi za problem najkraćeg puta

### Andrija Mandić

Prirodoslovno-matematički fakultet — Matematički odsjek

22. rujna 2021.

Teorija grafova

Problem najkraćeg puta u grafi

Klasični algoritm

Contraction Hierarchies CH

 $egin{array}{ll} Landmark & A \ - & ext{ALT} \end{array}$ 

Implementa cija i testiranje algoritama Problem najkraćeg puta široko primjenjiv u stvarnom svijetu:

- navigacijski sustavi, prometnice,
- web pretraživanje,
- usmjeravanja podataka na internetu,
- baze podataka.

Problem dijelimo u dvije faze:

- faza predprocesiranja,
- faza upita.

Klasični algoritm

Contraction Hierarchies CH

Landmark A\*
- ALT

Implementa cija i testiranje algoritama

# Sadržaj

- 1 Teorija grafova
- 2 Problem najkraćeg puta u grafu
- 3 Klasični algoritmi
- 4 Contraction Hierarchies CH
- **6** Landmark  $A^*$  ALT
- 6 Implementacija i testiranje algoritama

Problem najkraćeg puta u grafi

Klasični algoritm

Contraction Hierarchies CH

Landmark A
- ALT

Implementa cija i testiranje algoritama

# Osnovni pojmovi teorije grafova

### Definicija

Usmjereni težinski grafGje uređena trojka  $G=(V,E,\omega)$ , gdje je Vskup vrhova,  $E\subseteq V\times V$ skup bridova grafa G, te  $\omega\colon E\to R$ funkcija koja svakom bridu pridružuje njegovu težinu.

### Definicija

 $Put P = \langle v_0, v_1, v_2, \dots, v_k \rangle$  od vrha  $v_0$  do vrha  $v_k$  je niz vrhova redom povezanih bridovima. Težina puta iznosi:

$$\omega(P) = \sum_{i=0}^{i=k-1} \omega(v_i, v_{i+1}).$$

#### Brzi algoritmi za problem najkraćeg puta

Andrija Mandić

#### Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

Landmark A

Implementa cija i testiranje algoritama

# Osnovni pojmovi teorije grafova



Slika: Primjer usmjerenog grafa

### Definicija

 $Najkra\acute{c}i~put,$ tj. minimalnu težinsku udaljenost između vrhova  $u,v\in V$ označavamo s $d_G(u,v)$ te ona iznosi:

$$d_G(u,v) := \begin{cases} \min\{\,\omega(P) \mid P \text{ je put od } u \text{ do vrha } v \,\} & \text{ako} \\ & \text{postoji put } P \text{ od } u \text{ do vrha } v \\ +\infty & \text{inače} \end{cases}$$

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

 $Landmark A^{\dagger}$  - ALT

Implementa cija i testiranje algoritama

# Varijante problema

Vrijednosti koje mogu poprimiti težine bridova? Smiju li biti negativne? Kolika je očekivana gustoća grafa? Tražimo li aproksimativno ili egzaktno rješenje?

Problemi najkraćeg puta u grafu:

- Najkraći put iz jednog vrha (eng. Single-Source Shortest-Path Problem)
- Najkraći put do jednog odredišta (eng. Single-Destination Shortest-Path Problem)
- Najkraći put između dva vrha (eng. Single-Pair Shortest-Path problem)
- Najkraći put između svaka dva vrha (eng. All-Pairs Shortest-Paths Problem)

Teorija grafova

Problem najkraćeg puta u grafu

#### Klasični algoritmi

Contraction Hierarchies -CH

Landmark A° – ALT

Implementa cija i testiranje algoritama

# Dijkstrin algoritam – ideja

- Vrsta grafa: težinski graf s nenegativnim težinama bridova.
- Algoritam kreće iz početnog vrha te u svakoj iteraciji pronađe najkraći put do najbližeg do tad nepronađenog vrha.
- Skup svih vrhova idejno se dijeli na tri dijela: neposjećene, posjećene i obrađene vrhove.
- Iterativno se obnavlja polje D veličine |V|, te za svaki vrh v vrijedi  $D[v] \geq d_G(s, v)$ , gdje je s početni vrh. Jednakost vrijedi ukoliko je v obrađen.

Teorija grafova

Problem najkraćeg puta u grafu

#### Klasični algoritmi

Contraction Hierarchies CH

Landmark A\*
- ALT

Implementa cija i testiranje algoritama

# Dijkstrin algoritam – ideja

- $oldsymbol{0}$  Pronađi vrh v najbliži početnom, a da u njemu nisi bio  $(posje\acute{e}en$  ali neobrađen).
- 2 Zabilježi da si bio u vrhu v obrada.
- $oldsymbol{3}$  Pokušaj do svih vrhova ići preko vrha v i popraviti rješenje.

Ponavljaj dok postoji takav vrhv.

Problem najkraćeg puta u grafu

#### Klasični algoritmi

Contraction Hierarchies CH

Landmark A - ALT

Implementa cija i testiranje algoritama

# Pretraživanje $A^*$

- Koristi heurističku funkciju  $\pi_t \colon V \to \mathbf{R}$  kako bi usmjerio pretraživanje prema ciljnom vrhu t.
- Algoritam sličan kao kod Dijkstrinog pretraživanja. Razlika je odabir novog vrha u iteraciji s najmanjom vrijednosti procjene ukupne duljine puta:  $k(v) = D[v] + \pi_t(v)$ .

Teorija grafova

Problem najkraćeg puta u graft

#### Klasični algoritmi

Contraction Hierarchies CH

Landmark A

Implementa cija i testiranje algoritama

### Definicija

Neka su zadani graf  $G=(V,E,\omega)$  i funkcija  $\pi\colon V\to \mathbf{R}$ . Reducirana funkcija težine bridova s obzirom na funkciju  $\pi$  definira se kao:

$$\omega_{\pi}(v, w) = \omega(v, w) - \pi(v) + \pi(w).$$

### Lema

Neka je zadan graf  $G = (V, E, \omega)$ , funkcija  $\pi \colon V \to \mathbb{R}$  i pripadna reducirana funkcija težine bridova  $\omega_{\pi}$ . Za proizvoljan put  $P = \langle v, x_1, \dots, x_k, w \rangle$  vrijedi:

$$\omega_{\pi}(P) = \omega(P) + \pi(w) - \pi(v).$$

Teorija grafova

Problem najkraćeg puta u grafu

#### Klasični algoritmi

Contraction Hierarchies CH

Landmark A

Implementa cija i testiranje algoritama

### Definicija

Funkciju  $\pi\colon V\to \mathbf{R}$  nazivamo izvedivom ako je njena reducirana funkcija težine nenegativna za svaki brid grafa G, tj.  $\omega_{\pi}(v,w)\geq 0$  za svaki  $(v,w)\in E$ .

Primjer izvedive heurističke funkcije: euklidska udaljenost.

### Lema

Neka je funkcija  $\pi\colon V\to \mathbf{R}$  izvediva takva da za neki vrh  $t\in V$  vrijedi  $\pi(t)\leq 0$ . Tada za svaki vrh  $v\in V$  vrijedi nejednakost  $\pi(v)\leq d_G(v,t)$ .

#### Klasični algoritmi

Contraction Hierarchies CH

 $Landmark A^* - ALT$ 

Implementa cija i testiranje algoritama

# Pretraživanje $A^*$

- Pretraživanje koje odabir novog vrha temelji na najmanjoj vrijednosti  $k(v) = D[v] + \pi_t(v)$  ekvivalentno je Dijkstrinom algoritmu s reduciranom funkcijom težine  $\omega_{\pi_t}$ .
- Težina brida (u, v) zamjenjuje se s  $\omega(u, v) \pi_t(u) + \pi_t(v)$ .
- $d_{\omega}(v,t) = d_{\omega_{\pi_t}}(v,t) + \pi_t(v) \pi_t(t)$ .
- Korektnost  $A^*$  algoritma: izvedivost funkcije  $\pi_t$ , tj.  $\omega_{\pi}(u,v) \geq 0$ , za svaki  $(u,v) \in E$  + Dijkstin algoritam.

Teorija grafova

Problem najkraćeg puta u grafu

#### Klasični algoritmi

Contraction Hierarchies CH

Landmark A\*
- ALT

Implementa cija i testiranje algoritama

# Dvosmjerno pretraživanje

- Pretraga unaprijed.
- Pretraga unazad.
- Alterniranje koraka pretraživanja ili paralelno izvođenje odabirom najprikladnijeg vrha.

Teorija grafova

Problem najkraćeg puta u grafi

#### Klasični algoritmi

Contraction Hierarchies CH

Landmark A
- ALT

Implementa cija i testiranje

# Uvjeti zaustavljanja

### Dijkstrina dvosmjerna pretraga:

- $\bullet\,$ zaustavlja se kada je neki vrhvobrađen u pretrazi unaprijed i unazad.
- duljina nakraćeg puta iznosi  $\min\{D_s[w] + D_t[w] \colon w \text{ posjećen u obje pretrage}\}.$

### Dvosmjerno pretraživanje $A^*$ :

- konzistentne heuristike  $\pi_t + \pi_s = const.$  zaustavljenje nakon obrađivanja istog vrha u obje pretrage.
- simetrični pristup ukoliko jedno od pretraživanja obradi vrh v za koji  $D_s[v] + \pi_t(v) \ge \mu$  ili kada nema posjećenih vrhova za obradu. Vrijednost  $\mu$  je duljina trenutnog pronađenog rješenja.

Teorija grafova

Problem najkraćeg puta u grafu

#### Klasični algoritmi

Contraction Hierarchies -CH

Landmark A'
- ALT

Implementa cija i testiranje

# Ilustracija prostora pretrage



Slika: Usporedba prostora pretrage klasičnog i dvosmjernog Dijkstrinog pretraživanja.

Teorija grafova

Problem najkraćeg puta u grafi

Klasični algoritm

#### Contraction Hierarchies CH

Landmark A

Implementa cija i testiranje algoritama

# Contraction Hierarchies – ideja

Hijerarhijski pristup problemu.

### Predprocesiranje:

- računanje hijerarhije vrhova, funkcija  $rank: V \to N$ .
- dodavanje novih potrebnih bridova prečaca.

### Faza upita:

- dvosmjerno Dijkstrino pretraživanje.
- obje pretrage proširuju se na vrhove uzlazno po rank vrijednosti.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

#### Contraction Hierarchies CH

Landmark A\*

Implementa cija i testiranje algoritama

# Kontrakcija vrha

- Osnovni postupak faze predprocesiranja.
- Izbacuje se vrh i njemu incidentni bridovi iz trenutnog grafa.
   Dodaju se svi potrebni bridovi kako bi se sačuvali najkraći putovi u preostalom grafu.

### Izbacivanje vrha v:

- neka su  $\{u_1, u_2, \dots, u_l\}$  ulazni vrhovi,  $(u_i, v) \in E$ ,
- neka su  $\{w_1, w_2, \dots, w_k\}$  izlazni vrhovi,  $(v, w_j) \in E$ ,
- za svaki par u, w dodajemo brid (u, w) težine  $\omega(u, v) + \omega(v, w)$  ukoliko je put  $\langle u, v, w \rangle$  jedini najkraći put od u do v,
- $\bullet$  izbacimo vrh v i njegove incidentne bridove.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies -CH

Landmark A\*
- ALT

Implementa cija i testiranje algoritama

# Kontrakcija vrha – primjer



Slika: Primjer grafa prije (a) i poslije (b) kontrakcije vrha v.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

#### Contraction Hierarchies CH

Landmark A\*
- ALT

Implementa cija i testiranje algoritama

# Raspored vrhova

- Potrebno provesti kontrakciju nad svim vrhovima.
- Trenutni grafovi  $G_i$ , rezultantni graf  $G^*$ .
- Funkcija rank odgovara poretku kontrakcije vrhova.

### Određivanje poretka temelji se na:

- razlici bridova (eng. edge difference),
- uniformnosti (eng. uniformity).

### Obnavljanje prioriteta vrhova:

- lijeno ažuriranje (eng. lazy update),
- ažuriranje susjeda (eng. neighbors recomputing),
- periodično ažuriranje (eng. periodically rebuilding).

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies -

Landmark A\*

Implementacija i testiranje algoritama

# Utjecaj redoslijeda kontrakcija



Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

#### Contraction Hierarchies CH

Landmark A'
- ALT

Implementa cija i testiranje algoritama

# Faza upita CH

### Definiramo:

- $rastu\acute{c}i\ podgraf$  $G^*_{\uparrow} = (V, \{(u, v) \in E^* : rank(u) < rank(v)\}, \omega^*_{\uparrow}),$
- $padaju\acute{c}i\ podgraf$   $G^*_{\downarrow}=(V,\{(u,v)\in E^*\colon rank(u)>rank(v)\},\omega^*_{\downarrow}).$

Pronalazak najkraćeg puta od vrha s do vrha t provodi se:

- ① Dijkstrinim pretraživanjem unaprijed u grafu  $G_{\uparrow}^*$ , počevši od vrha s rezultat polje  $D_s$ ,
- 2 Dijkstrinim pretraživanjem unazad u grafu  $G^*_{\downarrow}$ , s početkom u vrhu t rezultat polje  $D_t$ ,
- 3 računanjem  $d_G(s,t) = \min\{D_s[v] + D_t[v] : v \in I\}$ , gdje je I skup svih obrađenih vrhova u obje pretrage.
- 4 rekonstrukcijom najkraćeg puta (ukoliko je potrebno).

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies -

Landmark A\*

Implementacija i testiranje

# Faza upita CH – primjer



Teorija grafova

Problem najkraćeg puta u graf

Klasični algoritm

Contraction Hierarchies CH

### Landmark A\* - ALT

Implementa cija i testiranje algoritama

# $Landmark A^* - ideja$

Ciljno orijentirani pristup problemu.

### Definicija

Vrh  $v \in V$  nazvat ćemo orijentirom ukoliko su poznate vrijednosti najkraćih putova do i od svih preostalih vrhova u grafu G.

### ALT algoritam:

- koristi poznate udaljenosti vezane za orijentire i ideju nejednakosti trokuta kako bi se dobila preciznija izvediva heuristička funkcija  $\pi_t$ ,
- fazu upita realizira  $A^*$  pretraživanjem s heurističkom funkcijom dobivenom predprocesiranjem.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

### Landmark A\* - ALT

Implementa cija i testiranje algoritama

### Modificirana nejednakost trokuta





$$d_G(l,t) \le d_G(l,u) + d_G(u,t) \implies d_G(u,t) \ge d_G(l,t) - d_G(l,u)$$
  
 $d_G(u,l) \le d_G(u,t) + d_G(t,l) \implies d_G(u,t) \ge d_G(u,l) - d_G(t,l)$ 

$$\pi_{t,l}(u) := \max(d_G(l,t) - d_G(l,u), d_G(u,l) - d_G(t,l)) \le d_G(u,t)$$

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies -CH

Landmark A\*
- ALT

Implementa cija i testiranje algoritama

# Odabir vrhova orijentacije

### Načini odabira vrhova:

- slučajni odabir vrhova,
- pohlepni najudaljeniji odabir vrhova,
- planarni odabir vrhova.

Teorija grafova

Problem najkraćeg puta u grafi

Klasični algoritm

Contraction Hierarchies CH

### Landmark A\* - ALT

Implementa cija i testiranje algoritama

# Faza upita ALT

Neka je L odabrani skup vrhova orijentacije. Za proizvoljan vrhu, heurističku procjenu udaljenosti do ciljnog vrha t definiramo izrazom:

$$\begin{split} \pi_t(u) := & \max_{l \in L} \pi_{t,l}\left(u\right) \\ = & \max_{l \in L} \big\{ \max(d_G(l,t) - d_G(l,u), d_G(u,l) - d_G(t,l)) \big\}. \end{split}$$

### Lema

Za zadani skup vrhova orijentacije L, ciljni vrh $t \in V$ , funkcija  $\pi_t$  je izvediva.

Faza upita provodi se  $A^*$  pretraživanjem s definiranom heurističkom funkcijom  $\pi_t$ .

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies

### Landmark A\* - ALT

Implementacija i testiranje

# Faza upita ALT – primjer

Pronalazak najkraćeg puta od vrha B do ciljnog vrha I. Skup orijentira  $L = \{A, D\}$ .



Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

### Landmark A\* - ALT

Implementa cija i testiranje algoritama

# Faza upita ALT – primjer

Pronalazak najkraćeg puta od vrha B do ciljnog vrha I. Skup orijentira  $L = \{A, D\}$ .

| $u \rightarrow$           | A  | В | $\mathbf{C}$ | D | $\mathbf{E}$ | $\mathbf{F}$ | G  | Η | Ι  |
|---------------------------|----|---|--------------|---|--------------|--------------|----|---|----|
| $d_G(A, u), d_G(u, A)$    | 0  | 3 | 5            | 6 | 9            | 8            | 10 | 7 | 11 |
| $d_G(D,u), d_G(u,D)$      | 6  | 3 | 2            | 0 | 3            | 2            | 10 | 4 | 8  |
| $\pi_{I,A}\left(u\right)$ | 11 | 8 | 6            | 5 | $^2$         | 3            | 1  | 4 | 0  |
| $\pi_{I,D}\left(u\right)$ | 2  | 5 | 6            | 8 | 5            | 6            | 2  | 4 | 0  |
| $\pi_{I}\left(u\right)$   | 11 | 8 | 6            | 8 | 5            | 6            | 2  | 4 | 0  |
| $d_G(u,I)$                | 11 | 8 | 6            | 8 | 11           | 10           | 10 | 4 | 0  |
| $d_G(B,u)$                | 3  | 0 | 2            | 3 | 6            | 5            | 7  | 4 | 8  |

Tablica: Prikaz vrijednosti najkraćih putova i njihovih procjena, u upitu iz primjera.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

Landmark A'
- ALT

Implementacija i testiranje algoritama

# Implementacija i testiranje algoritama

- Uspoređuju se Dijkstrin, Contraction Hierarchies i Landmark
   A\* algoritmi.
- Faza upita pronalazak vrijednosti najkraćeg puta između 1000 slučajno odabranih parova vrhova.
- Skupovi podataka dobiveni su iz prometnih mreža.
- Pri implementaciji korišten je programski jezik Java.

|                      | Savezna država      | Broj vrhova | Broj bridova |
|----------------------|---------------------|-------------|--------------|
| NY                   | New York            | 264 346     | 730 100      |
| COL                  | Colorado            | 435666      | 1 042 400    |
| FLA                  | Florida             | 1070376     | 2687902      |
| $\operatorname{CAL}$ | Kalifonija i Nevada | 1890815     | 4630444      |

Tablica: Prikaz informacija o skupovima podataka cestovnih mreža.

Klasični algoritm

Contraction Hierarchies CH

Landmark A'
- ALT

Implementacija i testiranje algoritama

### Contraction Hierarchies

Trenutne grafove  $G_i$  te završni graf G realiziramo u jednoj strukturi, ignorirajući izbačene vrhove i bridove.

- Označimo za  $v \in V$  s  $|V_{in,v}|$  broj ulaznih, te s  $|V_{out,v}|$  broj izlaznih vrhova.
- Procjena razlike bridova:  $ED_v = |V_{in,v}| \cdot |V_{out,v}| - |V_{in,v}| - |V_{out,v}|.$
- Označimo s  $N_v$  broj obrisanih susjeda pojedinog vrha v.

Brzi algoritmi za problem najkraćeg puta

#### Andrija Mandić

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

 $Landmark A^* - ALT$ 

Implementacija i testiranje algoritama



Slika: Usporedba ukupnog broja bridova rezultantnog grafa  $G^*$  dobivenog različitim vrijednostima prioriteta vrhova. Korišten COL skup podataka.

Teorija grafova

Problem najkraćeg puta u grafi

Klasični algoritmi

Contraction Hierarchies CH

Landmark A\*
- ALT

Implementacija i testiranje algoritama

|       | Prioritet | Dodano bridova | $t_{predproc}$     | $t_{pUpit}$ | $N_{pObradeno}$ |  |
|-------|-----------|----------------|--------------------|-------------|-----------------|--|
| N     | N         | 1 722 113      | 29 min 10.35 s     | 3.407  ms   | 246.11          |  |
| ED    | ED        | 767267         | 14 min 31.47 s     | 3.716  ms   | 672.46          |  |
| EDN   | ED + N    | 929 317        | 16 min 36.30 s     | 3.430  ms   | 402.42          |  |
| 2EDN  | 2ED + N   | 866 272        | $16 \min 5.85 s$   | 3.429  ms   | 444.11          |  |
| 3ED2N | 3ED + 2N  | 888 866        | 16 min 27.91 s     | 3.458  ms   | 459.94          |  |
| RND   | nasumično | 6921552        | 12 h 35 min 2.06 s | 58.991  ms  | 2761.80         |  |

Tablica: Prikaz informacija o predprocesiranju i fazi upita za različite načine određivanja prioriteta vrhova pri odabiru za kontrakciju. Korišten COL skup podataka.

Brzi algoritmi za problem najkraćeg puta

#### Andrija Mandić

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

 $Landmark A^* - ALT$ 

Implementacija i testiranje algoritama





Slika: Usporedba prosječnog stupnja vrha trenutnog grafa dobivenog kontrakcijom vrhova. Korišten COL skup podataka.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

Landmark A\*
- ALT

Implementacija i testiranje algoritama

### Landmark $A^*$

- Najudaljeniji pohlepni pristup problem računanja vrha najudaljenijeg od trenutnog skupa orijentacije. Rješenje: modificirana Dijkstrina pretraga s više početnih vrhova.
- Za vrh orijentacije l za svaki  $u \in V$  računanje vrijednosti:  $d_G(l, u)$  (pretraga unaprijed) i  $d_G(u, l)$  (pretraga unazad).
- Računanje vrijednosti funkcije  $\pi_t$  samo ukoliko je zaista potrebno.

Brzi algoritmi za problem najkraćeg puta

> Andrija Mandić

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritmi

Contraction Hierarchies CH

Landmark A<sup>3</sup>
- ALT

Implementacija i testiranje algoritama

|        | $t_{predproc}$      | $t_{pUpit}$ | $N_{pObradeno}$ | Procjena |
|--------|---------------------|-------------|-----------------|----------|
| ALT-1  | $0.85 \; { m s}$    | 72.801  ms  | 108 954.04      | 54.63%   |
| ALT-2  | 1.44 s              | 68.549  ms  | 100 044.24      | 68.73%   |
| ALT-4  | $2.78 \; s$         | 49.895  ms  | 64907.34        | 74.73%   |
| ALT-8  | $5.38 \mathrm{\ s}$ | 31.819  ms  | 32381.95        | 86.64%   |
| ALT-16 | $10.12 \; s$        | 34.121  ms  | 23657.20        | 88.13%   |
| ALT-24 | $18.95 { m \ s}$    | 37.683  ms  | 18 309.01       | 90.73%   |
| ALT-32 | 24.02  s            | 42.102 ms   | 16 888.85       | 91.41%   |

Tablica: Odabir vrhova orijentacije: slučajan način. Skup podataka nad kojim je provedena usporedba je COL.

|        | $t_{predproc}$ | $t_{pUpit}$ | $N_{pObradeno}$ | Procjena |
|--------|----------------|-------------|-----------------|----------|
| ALT-1  | 1.88 s         | 84.902  ms  | 107504.52       | 64.38%   |
| ALT-2  | 3.43 s         | 49.380  ms  | 66754.56        | 74.93%   |
| ALT-4  | 6.74 s         | 31.579  ms  | 37 339.80       | 86.50%   |
| ALT-8  | 10.84 s        | 27.876  ms  | 27 601.40       | 90.44%   |
| ALT-16 | 19.48 s        | 34.789  ms  | 22 308.64       | 92.13%   |
| ALT-24 | 24.02 s        | 37.632  ms  | 18 563.00       | 93.25%   |
| ALT-32 | 35.81  s       | 43.861  ms  | 17 637.13       | 93.80%   |

Tablica: Odabir vrhova orijentacije: pohlepni najudaljeniji pristup. Skup podataka nad kojim je provedena usporedba je COL.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Contraction Hierarchies CH

Landmark A'
- ALT

Implementacija i testiranje algoritama

# Usporedba rezultata

- Usporedba i provjera duljine najkraćeg puta. Rekonstrukcija puta nije potrebna.
- Prioriteti vrhova CH algoritma 2EDN.
- Broj vrhova orijentacije ALT algoritma iznosi 8.

|          | $t_{predproc}$    | $t_{pUpit}$          | $N_{pObradeno}$ |
|----------|-------------------|----------------------|-----------------|
| Dijkstra | 0 s               | 94.460  ms           | 132288.81       |
| CH       | $13 \min 58.97 s$ | $4.348~\mathrm{ms}$  | 664.06          |
| ALT      | 5.11 s            | $13.575~\mathrm{ms}$ | 12989.65        |

Tablica: Usporedba algoritama na skupu podataka NY koji sadrži 264 346 vrhova i 730 100 bridova.

Teorija grafova

Problem najkraćeg puta u grafi

Klasični algoritm

Contraction Hierarchies CH

Landmark A\*
- ALT

Implementacija i testiranje algoritama

|          | $t_{predproc}$                     | $t_{pUpit}$          | $N_{pObradeno}$ |
|----------|------------------------------------|----------------------|-----------------|
| Dijkstra | 0 s                                | 140.809  ms          | 222503.23       |
| CH       | $15~\mathrm{min}~56.85~\mathrm{s}$ | $3.429~\mathrm{ms}$  | 444.11          |
| ALT      | 10.84  s                           | $27.876~\mathrm{ms}$ | 27601.40        |

Tablica: Usporedba algoritama na skupu podataka COL koji sadrži  $435\,666$ vrhova i $1\,042\,400$  bridova.

|          | $t_{predproc}$          | $t_{pUpit}$ | $N_{pObradeno}$ |
|----------|-------------------------|-------------|-----------------|
| Dijkstra | 0 s                     | 375.670  ms | 530 997.30      |
| CH       | 2  h  39  min  17.98  s | 8.842  ms   | 251.83          |
| ALT      | 20.53  s                | 66.844  ms  | 62278.29        |

Tablica: Usporedba algoritama na skupu podataka FLA koji sadrži 1070 376 vrhova i 2687 902 bridova.

|          | $t_{predproc}$     | $t_{pUpit}$ | $N_{pObradeno}$ |
|----------|--------------------|-------------|-----------------|
| Dijkstra | 0 s                | 741.203 ms  | 918261.76       |
| CH       | 4 h 50 min 28.70 s | 10.59  ms   | 686.33          |
| ALT      | 42.11 s            | 124.364  ms | 103718.06       |

Tablica: Usporedba algoritama na skupu podataka CAL koji sadrži 1890 815 vrhova i 4630 444 bridova.

Teorija grafova

Problem najkraćeg puta u grafu

Klasični algoritm

Cu Cu

Landmark A\*
- ALT

Implementacija i testiranje algoritama

# Hvala na pažnji!