WFA8433-Natural Resource & Conservation Decision Making

Class 6. Types of decision making philosophies in natural resources; Structuring and quantifying objectives; Decision making and working with stakeholders

Housekeeping

- Suggested readings:
 - Conroy & Peterson Chapter(s): 1-3
- Assignment(s): Structuring Objectives more to follow
- Group work: if time allows
 - Identifying project/problem

Challenge for you

• Can you think of an <u>efficient</u> way to get probabilities for ALL 80 paths?

We can use each flip to learn... Learning by doing!

Hypotheses

- 1. Fair: probability of head = 50%
- 2. Unfair: probability of heads = 30%

<u>Each</u> flip provides additional information to learn from.

ment School and the Decision-Theoretic Adaptive Management School.

	Adaptive management decision making methods				
Variable	Gunderson's et al. (1995) AEAM	Possingham's (2000) SDM	CAMNet (2004)	Williams et al.'s (2007) DOI AM Protocol	SEI (2007)
Stakeholder involvement emphasis	Yes; entire process	Yes; for objectives	Yes; entire process	Yes; for objectives	Yes; entire process
2. Define objectives	Yes	Yes	Yes; Key decision points	Yes	Yes
3. Multiple actions	Yes	Yes	Yes	Yes	Yes
4. Predict consequences	Yes; multiple competing laypothesis and modeling	Yes; decision-making protocol	Conceptual modeling; rarely predictive	Yes	No
5. Specify constraints	Yes: specifically policy	Yes	Yes	Yes	Yes
6. Acknowledge uncertainty		Yes	Yes	Yes	No
7. Explicit experimentation	Yes	No	Yes	Yes	Yes
8. Monitoring	Yes	Yes	Yes	Yes	Yes
9. Active learning emphasis	Yes	No	Yes	Yes	No
Order of variables	1.4.5.2.3.6.7.8.9	2.3.5.6.4	1.2.4.6.7.8	2.3.4.5.6.7.8	1.2.3.5.7.8

Decision have to be made

Decision have to made regardless of certainty and information

- · 2 dominant philosophies of ARM
 - Decision theoretic -
 - Resilience-experimentalist ARM
- * Learning about system resilience cap
- * Emphasis on shared understanding among stakeholders during the entire process

Resilience-experimentalist ARM

- Learning about system resilience capacity of system to return to a state
- Emphasis on shared understanding among stakeholders during the entire process

My perception(s): Resilienceexperimentalist

- Longer to implement, front loading on learning by experimentation
 - Complicated models
 - Subject to partial controllability issues, what if experiment fails?
 - Can you completely control river flows?
 - Can you completely control burn intensity?
- Examples
 - Glen Canyon management
 - Florida Everglades
- · Integrate learning into decision?

My perception(s): Decision Theoretic

- Quickerprocess-if problems, objectives, and alternatives are clear and STAKEHOLDER buy in
- More efficient emphasis on decision, objectives, and simple models
- Helpful to have a 'champion'
- Examples
 - Black duck management
 - Lemhi Bull Trout
 - Red Knots and Horseshoe Crabs

Why are ARM Philosophies Important?

- Conflict views in how ARM should proceed
- Which one is right? ... it depends...
- Conflicting guidance from Science Advisory Panels

ARM - Uncertainty

- Deals with structural uncertainty
- LOTS of uncertainty in how to <u>actually</u> do it...
- Can it be a formal process?

"Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it..." (Dan Ariely, Duke University)

Some preliminaries

decisions
0.1, 0.2, 0.3, 8 0.4
**Sustainable...
evaluate over
an "infinite" time
horizon

Harvest rate

Abundance	Optimal**
	harvest rate
500-750	ś
750-1000	ś
1000-1250	ś
1250-1500	ś
1500-1750	ś
1750-2000	ś

Structural uncertainty

Where learning occurs

- Effect of harvest: Additive, Compensatory, Partially compensatory
- Important as you can't harvest populations with additive mortality as hard as compensatory ones!

Parameter uncertainty

- Survival
- · Recruitment
- Current population abundance

Implement decision, monitor, and compare 100 118 Critter 120 abundance 0.33 933 100 0.00 Additive P. Compensatory 0.33 988 0.76 115 0.99 0.33 103 0.24 128 0.00 Compensatory

The ARM Provides A Process To

- · Use management actions to learn
- · Integrate monitoring data
- Inform research needs
- Improve decisions
- Include public participation & values

In the context of your decisions!

NATURAL RESOURCE DECISION MAKING DEPENDS ON OBJECTIVES

For <u>both</u> SDM and ARM Need to structure them...

Easy... I know my objectives

- · Rarely the case
- 2 types
 - Fundamental: DM truly values and wants
 - Mean: means to achieving fundament objectives
- Need to istinguish between the 2
- Clarity and specificity is <u>KEY</u>
- · Rejection of objectives due to perceived conflict,
 - Could be treated as tradeoffs if articulated
- Tunnel vision of DMs restrict objectives to ones the perceive to be achievable or feasible – limits creativity

Are the Objectives Clear?

- 1. Maximize native biodiversity
- 2. Maximize native plant diversity
- 3. Maximize native bird diversity
- 4. Reduce non-native predators
- 5. Reduce possum numbers
- 6. Reduce exotic plant numbers

Linguistic Uncertainty

Maximize native bird diversity?

- Abundance? Richness?
 How do you define that?
- How about:
- Number of flightless bird species
- Number of seabird species
- Number of raptor species

Fundamental Objectives Hierarchy Fundamental Objectives Hierarchy Maximize Notive Biodiversity Maximize Notive bird diversity Mumber of seabird species Number of raptor species Attributes

Fundamental objectives types

- Competing-objective can be satisfied but not enough resources
- 2. Conflicting-direct conflict, satisfying one objective has a detrimental effect on another
- Hidden-Important but unspecified, if all objectives are satisfied will the problem be solved? No, then there are hidden objectives
- 4. Stranded-No connection to means objectives, therefore you cannot fulfill objectives

Problem

Detection of rabid feral cats in Starkville has alarmed residents. Citizens have petitioned the city mayor to eradicate cat populations in light of recent rabies detections and perceived negative impacts of feral cats on native birds. In response cat lovers and animal cruelty groups have petitioned the mayor to prevent any eradication programs.

group	first
N-G conservation organizations (eg TNC)	1 Carolina
Local animal control authority	2 Terrel C
Local animal control authority	3 Stephen C
Animal welfare organizations (eg PETA)	4 Giancarlo
Animal welfare organizations (eg PETA)	5 Daniel
Concerned members of the general public	6 Mariela Ga
Animal welfare organizations (eg PETA)	7 Chelsea Gi
Concerned members of the general public	8 Emmet
Animal welfare organizations (eg PETA)	9 Bryant
Concerned members of the general public	10 Hunter
Animal welfare organizations (eg PETA)	11 Matthew
Concerned members of the general public	12 Johannah M
Local animal control authority	13 Leah
N-G conservation organizations (eg TNC)	14 Marian
Local animal control authority	15 Ciera
Representatives from local governments	16 Michael
N-G conservation organizations (eg TNC)	17 Bradley Ric
Concerned members of the general public	18 Andrew Sh
Concerned members of the general public	19 Andrew
Local animal control authority	20 Shannon W
Local animal control authority	21 Trevvon

Homework-01

- Due by next Friday by 5 pm
- Please submit as a PDF you can use whatever you would like to create the figure (e.g., word, powerpoint). Create a means objectives network (maximum 25 objectives please) of your personal career aspirations. Identify your fundamental objectives and be sure to include two or more means objectives for each fundamental objective. DO NOT FORGET to use the key phrases.