Sprawozdanie 100B

Michał Puchyr

15 października 2023

1 Cel ćwiczenia

- Pomiar rezystancji na opornikach oraz żarówce
- Zmierzenie wartości napięcia i natężenia na opornikach oraz żarówce
- Obliczenie oporu przy pomocy praw fizyki i porównanie go z wcześniejszymi pomiarami
- Zrozumienie praw fizyki związanych z prądem elektrycznym

2 Opis ćwiczenia

2.1 Wstęp teoretyczny

W obwodach prądu stałego rezystancja jest wielkością charakteryzującą relację między napięciem a natężeniem prądu elektrycznego. Oznacza to, że opór przewodnika elektrycznego jest wprost proporcjonalny do napięcia i odwrotnie proporcjonalny do nateżenia.

$$R = \frac{U}{I}$$

Gdzie:

R - rezystancja $[\Omega]$

U - napięcie między końcami przewodnika [V]

I - natężenie prądu elektrycznego [A]

Przyrządy i materiały wykorzystane do pomiarów:

- 2 mierniki uniwersalne M8906
- Zasilacz stabilizowany
- Przewody elektryczne
- Zestaw oporników z żarówką

Schemat układu nr 1 - do wyznaczenia rezystancji każdego z oporników za pomocą omomierza

Schemat układu nr2- do wyznaczenia napięcia i natężenia na opornikach za pomocą amperomierza i woltomierza

3 Pomiary układów

Pomiary oporu w układzie pierwszym									
Lp.	Opornik	Niepewność $[\Omega]$	$Zakres[\Omega]$	Opór $[\Omega]$					
1	R_1	1,0	200	165,20					
2		1,0	200	165,30					
3		1,0	200	164,90					
4		1,0	200	165,00					
5	R_2	0,8	200	122,60					
6		0,8	200	122,90					
7		0,8	200	123,00					
8		0,8	200	122,90					
9	Żarówka	0,3	200	13,90					
10		0,3	200	13,80					
11		0,3	200	13,90					
12		0,3	200	13,90					

Pomiary napięcia i natężenia w układzie drugim											
Lp.	Opornik	U[V]	u(U)[V]	$I[10^{-3}A]$	$u(I)[10^{-3}A]$	$R[\Omega]$	$U_c[\Omega]$	$R \text{ \'sr.}[\Omega]$	$\mathrm{u}(\overline{R})[\Omega]$		
1	R_1	3,210	0,020	19,50	0,20	164,7	1,9	163,97	0,09		
2		4,660	0,020	28,40	0,26	164,1	1,7				
3		6,190	0,020	37,70	0,32	164,2	1,6				
4		7,700	0,030	47,00	0,39	163,9	1,5				
5		9,340	0,030	57,10	0,46	163,6	1,5				
6		6,190	0,020	37,80	0,32	163,8	1,6				
7		4,650	0,020	28,40	0,26	163,8	1,7				
8		3,210	0,020	19,60	0,20	163,8	1,9				
9		7,700	0,030	47,00	0,39	163,9	1,5				
10		9,340	0,030	57,00	0,46	163,9	1,5				
11	R_2	3,200	0,020	26,20	0,24	122,2	1,3	122,11	0,05		
12		4,630	0,020	37,90	0,33	122,2	1,2				
13		6,160	0,020	50,40	0,41	122,3	1,1				
14		7,660	0,030	62,80	0,50	122,0	1,1				
15		9,290	0,030	76,20	0,59	122,0	1,1				
16		3,190	0,020	26,20	0,24	121,8	1,3				
17		4,630	0,020	37,90	0,33	122,2	1,2				
18		6,160	0,020	50,40	0,41	122,3	1,1				
19		7,650	0,030	62,70	0,50	122,1	1,1				
20		9,290	0,030	76,20	0,59	122,0	1,1				
21	Żarówka	3,160	0,020	43,50	0,36	72,7	0,7	93,89	4,68		
22		4,600	0,020	54,40	0,44	84,6	0,8				
23		6,130	0,020	63,70	0,50	96,3	0,9				
24		7,640	0,030	73,00	0,57	104,7	0,9				
25		9,280	0,030	82,70	0,64	112,3	1,0				
26		3,160	0,020	43,50	0,36	72,7	0,7				
27		4,600	0,020	54,40	0,44	84,6	0,8				
28		6,130	0,020	64,60	0,51	94,9	0,9				
29		7,640	0,030	73,70	0,57	103,7	0,9				
30		9,280	0,030	82,60	0,64	112,4	1,0				

Rezystancja w układzie drugim została obliczona przy użyciu prawa Ohma. Pomiary zostały wykonane przy zakresie $200 \mathrm{mA}$ i $20 \mathrm{V}.$

3.1 Wykres I = f(U)

3.1.1 Wykres dla pomiaru opornika R1

3.1.2 Wykres dla pomiaru opornika R2

Wykres dla pomiaru żarówki

3.2 Wyznaczenie oporu przy pomocy regresji liniowej

Wzory:

$$R = \frac{1}{a}$$

(Regresja liniowa została wyznaczona dla miliamperów stąd wynik należy pomnożyć przez 1000)

$$R = \frac{1}{24455} \cdot 1000 = 163.57\Omega$$

$$R = \frac{1}{8,206} \cdot 1000 = 121,86\Omega$$

Dla opornika R1 :
$$R = \frac{1}{6,1157} \cdot 1000 = 163,57\Omega$$
 Dla opornika R2 :
$$R = \frac{1}{8,206} \cdot 1000 = 121,86\Omega$$
 Dla żarówki :
$$R = \frac{1}{6,3573} \cdot 1000 = 157,29\Omega$$

4 Obliczenia

4.1 Niepewność typu A

Do obliczenia niepewności pomiarowej typu A został wykorzystany poniższy wzór

$$u_a(x) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n(n-1)}}$$
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Przykładowe obliczenia (dla pierwszego opornika z pomiaru drugiego):

$$\overline{x} = \frac{1}{10} \cdot (164, 7 + 164, 1 + 164, 2 + 163, 9 + 163, 6 + 163, 8 + 163, 8 + 163, 8 + 163, 9 + 163, 9) = 163, 97$$

$$u_a(x) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - 163, 92)^2}{10(10 - 1)}} = \sqrt{\frac{0, 84}{90}} = 0,09$$

Dla pierwszego opornika:

 $\overline{x} = 163,97\Omega$

$$u_a(x) = 0,09\Omega$$

Dla drugiego opornika:

 $\overline{x} = 122, 11\Omega$

$$u_a(x) = 0.05\Omega$$

Dla żarówki:

 $\overline{x} = 93,89\Omega$

 $u_a(x) = 4,68\Omega$

4.2 Niepewność typu B

Do obliczenia niepewności pomiaru napięcia (zakres 20V) przez miernik wykorzystano wzór

$$\pm 0.5\% rdg + 1dgt$$

Do obliczenia niepewności pomiaru natężenia (zakres 200mA) przez miernik wykorzystano wzór

$$\pm 1.2\% rdg + 1dgt$$

Do obliczenia niepewności pomiaru oporu (zakres 200Ω) przez miernik wykorzystano wzór

$$\pm 0.8\% rdq + 3dqt$$

Przykładowe obliczenia dla napięcia i natężenia :

$$u(U) = 3,21 \cdot 0.5\% + 0,01 = 0,02605 \approx 0,026$$

$$u(I) = 19,50 \cdot 1.2\% + 0,01 = 0,244 \approx 0,25$$

Aby wyliczyć niepewność typu B ostatecznie trzeba podzielić niepewność przez $\sqrt{3}$

$$u_b(U) = \frac{0,02605}{\sqrt{3}} = 0,015 \approx 0,02$$

$$u_b(I) = \frac{0.244}{\sqrt{3}} = 0.14 \approx 0.2$$

Przykładowe obliczenie niepewności oporu:

$$u(R) = 165, 20 \cdot 0.8\% + 3 \cdot 0, 1 = 1,62 \approx 1,7$$

$$u_b(R) = \frac{1,62}{\sqrt{3}} = 0,935 \approx 1,0$$

4.3 Niepewność typu C

Do obliczenia tej niepewności dla danego pomiaru wykorzystano wzór

$$u_c(R) = \sqrt{(\frac{\partial f}{\partial U})^2 u(U)^2 + (\frac{\partial f}{\partial I})^2 u(I)^2}$$

$$u_c(R) = \sqrt{(\frac{1}{I})^2 u(U)^2 + (\frac{-U}{I^2})^2 u(I)^2}$$

Przykładowe obliczenie:

$$u_c(R) = \sqrt{\left(\frac{1}{0,0195}\right)^2 \cdot 0,02^2 + \left(\frac{-3,21}{0,0195^2}\right)^2 \cdot 0,0002^2} = 1,88 \approx 1,9$$

5 Wnioski

Poprzez wykonanie pomiarów natężenia i napięcia w układach można zauważyć, że napięcie i natężenie w opornikach zwiększają się proporcjonalnie względem siebie co wynika z prawa Ohma. Poprzez pomiar pierwszy i porównanie wyników pomiaru drugiego można zaobserwować identyczność (z małymi odchyleniami) zmierzonego oporu z tym obliczonym przy pomocy wzoru.

Żarówka ze względu na zmienność temperatury nie zastosowuje się do prawa Ohma, opór zmieniał się w zależności od wielkości napięcia i natężenia nieliniowo. Opór zmierzony na żarówce jest znacząco różniący się od tego, wyliczonego przy pomocy prawa Ohma.

6 Bibliografia

• https://pl.wikipedia.org/wiki/Prawo_Ohma