PH2201

Basic Quantum Mechanics

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

T	Introduction	1
2	Duality of light 2.1 Blackbody radiation	
3	Duality of matter	4
	3.1 Matter waves	
	3.2 Double slit experiment with pellets	5
	3.3 Double slit experiment with electrons	5
	3.3.1 Spying on the electrons	5
4	Bohr's atomic model	6
5	Postulates of quantum mechanics	6
	5.1 The Schrödinger Equation	7
	5.2 Observables and operators	7
	5.3 The uncertainty principle	

1 Introduction

The quantum world differs from the classical world in many aspects, most of which we seldom encounter in our daily lives and are hence unintuitive.

- The physical world is not deterministic; uncertainty is intrinsic to the quantum world. This is sometimes illustrated by the Schrödinger's cat thought experiment.
- Both light and matter exhibit characteristics of waves as well as those of particles. However, a single object cannot exhibit both of these properties simultaneously.
- Physical quantities may be quantized they may be constrained to have discrete values rather than vary continuously.

2 Duality of light

2.1 Blackbody radiation

A blackbody is an object which absorbs all radiation incident on it, and reflects none. It also emits radiation of all frequencies.

Kirchoff's Law says that the rates of emission and absorption of radiation of a body in thermal equilibrium will be equal. By thermal equilibrium, we mean that the temperatures of the body and its surroundings are equal.

Proposition 2.1 (Stefan-Boltzmann Law). The power emitted by a blackbody is given by

$$P = \sigma A T^4$$
.

Here, $\sigma \approx 5.67 \times 10^{-8} \, \mathrm{J s^{-1} m^{-2} K^{-4}}$ is called the Stefan-Boltzmann constant.

We may break down the total energy density $\rho \propto T^4$ in terms of the contributions from each frequency, so

 $\rho = \int_0^\infty \rho(\nu) \, d\nu.$

It turns out that $\rho(\nu)$ is non-monotonic. This cannot be explained by classical mechanics (Rayleigh-Jean's Law), which predicts that $\rho(\nu)$ is unbounded with increasing frequency – the famous ultraviolet catastrophe.

Proposition 2.2 (Wien's Law). The positions of the peaks in $\rho(\nu)$ are described by

$$\lambda_{peak} = \frac{w}{T}.$$

Here, $w \approx 2.9 \times 10^{-3} \,\mathrm{mK}$.

Note that at $T \approx 300 \,\mathrm{K}$, the peak wavelength λ_{peak} is in the infrared range: this is why night vision googles are useful.

Consider a collection of electromagnetic waves in a blackbody cavity, with temperature T. This can be seen as the superposition of normal modes. The classical approach to the blackbody problem is to suppose that the energy density at a particular frequency is given by

$$\rho(\nu) = \langle E \rangle n(\nu),$$

where $n(\nu)$ is the number density of wave modes with frequency ν , and E is the average energy of the radiation.

The classical law of equipartition of energy gives

$$\langle E \rangle = k_B T,$$

where k_B is the Boltzmann constant.

The wavenumber of for modes within the cavity is given by

$$\boldsymbol{k} = \frac{2\pi}{L}\boldsymbol{n},$$

where $\mathbf{n} = (n_x, n_y, n_z)$ with integral components. Now,

$$\nu = \frac{c}{\lambda} = \frac{c}{L}n.$$

Treating n as a continuous variable and using $dV = 4\pi n^i dn$, we write

$$n(\nu) d\nu = \frac{8\pi}{c^3} \nu^2 d\nu.$$

This leads to the Rayleigh-Jean Law,

$$\rho(\nu) d\nu = \langle E \rangle n(\nu) d\nu = \frac{8\pi k_B T}{c^3} \nu^2 d\nu.$$
 (2.1)

Planck looked at the probability distribution for the energy,

$$P(E) = \frac{1}{k_B T} e^{-E/k_B T}.$$

This is the Boltzmann distribution. It can be shown that

$$\langle E \rangle = \frac{\int_0^\infty EP(E) dE}{\int_0^\infty P(E) dE} = k_B T,$$

which recovers the Rayleigh-Jean Law.

Planck's idea was to restrict E to discrete values; integral multiples of the frequency ν . This leads to

$$\langle E \rangle = \frac{\sum EP(E)}{\sum P(E)} = \frac{h\nu}{e^{h\nu/k_BT}-1}.$$

This gives us the Planck distribution.

Proposition 2.3 (Planck's Law). The spectral energy density of radiation emitted by a blackbody in thermal equilibrium is described by the distribution

$$\rho(\nu) \, d\nu = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/k_B T} - 1} \, d\nu.$$

Here, $h \approx 6.626 \times 10^{-34} \,\mathrm{J\,s}$ is called Planck's constant.

When $h\nu \ll 1$, we recover the Rayleigh-Jean limit. When $h\nu \gg 1$, we get the Wien limit. Now we calculate,

$$\rho = \int_0^\infty \rho(\nu) \, d\nu = \frac{8\pi^5 k_B^4}{15c^3 h^3} T^4,$$

which recovers the Stefan-Boltzmann Law with

$$\sigma = \frac{2\pi^5 k_B^4}{15c^2 h^3}.$$

Also, the maxima of the Planck distribution recovers Wien's Law, with

$$\nu_{max} \approx 2.8 \frac{k_B T}{h}.$$

2.2 Photoelectric effect

This reveals the dual nature of light. Classical optics relies on the wave nature of light, thus explaining phenomena such as interference and diffraction. This culminates in Maxwell's equations, which predict the wave nature of light as the propagation of oscillating electric and magnetic fields.

The photoelectric effect in the phenomenon in which light shining on a metal surface ejects electrons from it, thus producing a current. Suppose that the incident light has frequency ν , intensity I and this produces a current i. We can calculate the maximum kinetic energy of the emitted electrons $E_{max} = eV_0$ by adjusting an opposing potential V.

It turns out that for a constant intensity I, the photocurrent saturates at the same value. However, different frequencies ν produces different stopping potentials V_0 ; the greater the frequency, the greater the magnitude of the stopping potential. This turns out to have a linear relationship, with

$$E_{max} = eV_0 = h(\nu - \nu_0) = h\nu - \phi.$$
 (2.2)

The slope h is universal for all metals, while $\phi = h\nu_0$ varies between different metals. This shows that below a certain frequency ν_0 , we obtain no photocurrent, regardless of the intensity! This appears strange from a classical perspective, where the energy delivered by an electromagnetic wave is related to its intensity, not its frequency.

Einstein proposed that light strikes the metal in bundles of energy, all integral multiples of $h\nu$. There is also a minimum binding energy which must be overcome to liberate electrons from the metal surface – this cannot be paid in a continuous manner, since any partial energy given to an electron will be lost before the arrival of the next energy bundle. Thus, each energy bundle must carry a minimum energy $h\nu_0$ in order to liberate electrons and produce a photocurrent.

This establishes a particle-like mature of light. Each energy bundle, or particle of light, is called a photon.

3 Duality of matter

3.1 Matter waves

Louis de Broglie further hypothesised that matter also has a wave nature, with an associated wavelength of

$$\lambda_{matter} = \frac{h}{p}. (3.1)$$

This has been demonstrated by Davisson and Germer, where a stream of electrons exhibits diffraction.

This has some amazing implications. In the classical world, knowledge of a particle's position and momentum is enough to pinpoint its trajectory with arbitrary precision. However, the wavelike nature of matter would imply that we can no longer talk of a definite, localized position when we have knowledge of the particle's momentum! This uncertainty is inherent to quantum mechanics

Another consequence is the phenomenon of quantum tunnelling.

3.2 Double slit experiment with pellets

Consider Young's double slit experiment, this time with pellets sprayed from a gun at a wall with two slits. The other sides has a collector, which is moveable. Assume that the pellets do not break, and that they arrive in groups independent of the rate of firing. We want to find the probability that a pellet lands at a distance x from the centre of the screen.

Now, this just means that we have to count the number of pellets which reach the detector in a given time interval. Also, we expect that the probability distribution for two slits ought to be the sum of the distributions for the individual slits, obtained by closing one slit at a time. The distribution for a single slit looks something like a Gaussian, so their combination should also look like a broad Gaussian.

Note that this says nothing about phenomena such as interference.

3.3 Double slit experiment with electrons

Instead of using pellets, we now use electrons. These can be fired by heating a tungsten wire inside a box with a pinhole. Suppose that the detector at the other side produces a 'click' whenever an electron strikes it; all such clicks are identical and random. The electrons are also fired very slowly, so that there is only one electron passing through the slits and hitting the screen at a given time. This means that we hear distinct, separate clicks at random intervals, which means that an electron must have passed through one of the slits at random before impacting the screen.

What we observe is that over a long time, the probability distribution of the electrons is in the form of an interference pattern, just like with light waves. The strange thing is that if each electron passes through one slit at a time, the other slit ought to be 'closed' from its perspective, which means that we ought to have obtained the superposition of two Gaussians!

An attempt to explain this might be that the electrons follow some complex pathways incorporating both slits. On the other hand, the probability observed at the centre is greater than the sum of the probabilities for the single slits, and there are regions of zero probability on the screen where the single slit probabilities would suggest finite values. This would imply that closing a slit somehow increases the probabilities in one region and decreases that in another.

Thus, the electrons arrive at the screen as particles, but their distribution on the screen shows interference patterns just like those of a wave!

This suggests that a simple sum of the probabilities P_1 and P_2 from each of the slits is not enough. Analogous to the double slit experiment with light, we must assign complex probability amplitudes A_1 and A_2 , which we then add up.

$$P_1 = |A_1|^2$$
, $P_2 = |A_2|^2$, $P_{12} = |A_1 + A_2|^2$.

3.3.1 Spying on the electrons

Suppose that we repeat this experiment, but this time we place a detector on the slits. Thus, we can be sure which slit a given electron passes through. One way to do this is to place a light source in between the slits and the screen. When an electron passes through a slit, it will scatter some light which we see as a flash in the neighbourhood of the slit.

What happens is that the interference pattern disappears! The distribution now has two peaks, just like a classical particle would behave, i.e. we now have $P_1 + P_2$. We do indeed observe a single flash corresponding to each click, so we can pinpoint which slit a given electron on the screen corresponds to.

To see whether the light source is somehow disturbing the paths of the electrons, we make it dimmer and dimmer. Note that this merely changes the number of photons hanging around the slits, not their energy (which is $\propto h\nu$), so we do not expect the brightness of the flashes to change. Now, some clicks do not have a corresponding flash; some electrons are reaching the

screen unnoticed by our detector at the slits. The interference pattern at the screen gradually reappears, in the form P_{12} !

Now, the momentum imparted by the light photons obeys $p = h/\lambda$. By choosing a very large λ , we can have $p \to 0$, which ought to disturb the electrons to a lesser extent. When we do this, we still observe the classical pattern. However, when λ exceeds the order of the slit separation, we lose the ability to resolve which slit the electron passed through, i.e. the flashes cannot be identified with the correct slit. At this point, we get back the interference pattern.

Thus, there is no way to answer which slit each electron passed through while retaining the interference pattern! This is intrinsic to the quantum system, in the form of the Heisenberg uncertainty principle.

4 Bohr's atomic model

Recall Rutherford's experiment where he fired α particles at a gold foil, which established the existence of a very small region of positive charge in the centre of every atom (the nucleus), surrounded by negatively charged electrons. This raises the problem of the stability of the electron orbits – an accelerating charge must radiate energy, that too over a wide range of frequencies. On the other hand, radiation emitted by an atom is always observed at discrete frequencies. For example, the wavelengths emitted by hydrogen are given by the Rydberg constant.

$$\frac{1}{\lambda} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right). \tag{4.1}$$

Bohr's idea was that the angular momenta of the electrons are quantized. We set

$$L = pr = mvr = n\hbar.$$

In a sense, an electron forms a standing wave in its orbit, with a circumference of $n\lambda$. By balancing the Coulomb and centripetal forces, we can write

$$r = \frac{4\pi\epsilon_0 \hbar^2}{me^2} n^2 = a_0 n^2.$$

Here, $a_0 \approx 5.29 \times 10^{-11}$ m is called the Bohr radius. As a result,

$$E_n = \frac{1}{2}mv^2 - \frac{e^2}{4\pi\epsilon_0 r} \approx -13.6 \frac{1}{n^2} \text{ eV}.$$

The energies emitted by electrons are now restricted to differences of these energy levels, so

$$h\nu = E_m - E_n.$$

5 Postulates of quantum mechanics

- 1. Associated with each classical outcome of a quantum experiment is a probability amplitude, Ψ , which is not directly observable.
- 2. The probability distribution is given by $P = |\Psi|^2$, which is observable. For any physically interpretable wavefunction Ψ , we demand that $|\Psi|^2$ is normalizable. Thus,

$$\int |\Psi|^2 \, dV = 1.$$

3. For a system with many classical outcomes, we write

$$\Psi = \sum_{i=1}^{\infty} \Psi_i.$$

Thus, the probability distribution P carries signatures of the probabilities $P_i = |\Psi_i|^2$. For example when we have n = 2 outcomes,

$$P = |\Psi_1 + \Psi_2|^2 = P_1 + P_2 + 2\sqrt{P_1 P_2} \cos \delta.$$

5.1 The Schrödinger Equation

Proposition 5.1. The wavefunction Ψ must obey the differential equation

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\boldsymbol{r},t) \right] \Psi(\boldsymbol{r},t) = i\hbar \frac{\partial}{\partial t} \Psi(\boldsymbol{r},t).$$

Consider the simpler case where V(r) has no time dependence. To solve this equation, we often perform separation of variables,

$$\Psi(\mathbf{r},t) = \psi(\mathbf{r}) T(t).$$

As a result, we observe that

$$-\frac{1}{\psi}\frac{\hbar^2}{2m}\nabla^2\psi+V=\frac{i\hbar}{T}\frac{dT}{dt}=\text{constant}.$$

The time part is solved by $T(t) = e^{-iEt/\hbar}$, where the constant is denoted as E. Note that we have shown $\Psi(\mathbf{r},t) = \psi(\mathbf{r})e^{-iEt/\hbar}$, so

$$|\Psi|^2=\Psi^*\Psi=\psi^*\psi=|\psi^2|,$$

The spatial part must now satisfy

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi.$$

which is called the time independent Schrödinger equation. The Hamiltonian operator is defined as

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V,$$

so the spatial part of the equation says $\hat{H}\psi = E\psi$. For convenience, we deal with only one spatial dimension here on.

5.2 Observables and operators

Definition 5.1 (Expectation value). The expectation value of any linear operator \hat{A} is defined as

$$\langle \hat{A} \rangle = \int_{-\infty}^{+\infty} \psi^* \hat{A} \psi \, dx.$$

Example. For example, the position, momentum, and energy operators are given by

$$\hat{x} = x, \qquad \hat{p}_x = -i\hbar \frac{\partial}{\partial x}, \qquad \hat{E} = i\hbar \frac{\partial}{\partial t}.$$

This covers all physically observable quantities, and are thus called observables. Note that these are all linear operators.

What happens if ψ is an eigenstate of \hat{A} , with eigenvalue λ ? Note that $\hat{A}\psi = \lambda\psi$, so

$$\langle \hat{A} \rangle = \int_{-\infty}^{+\infty} \lambda \psi^* \psi \, dx = \lambda.$$

Proposition 5.2 (Ehrenfest's Theorem). The expectation values obey classical laws. For instance,

$$\frac{d}{dt}\langle p\rangle = \langle -\frac{\partial}{\partial x}V\rangle.$$

Proof. We start by calculating

$$\begin{split} \hat{p}\hat{H} - \hat{H}\hat{p} &= \left(-i\hbar\frac{\partial}{\partial x}\right) \left(\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right) - \left(\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right) \left(-i\hbar\frac{\partial}{\partial x}\right) \\ &= -\frac{i\hbar^3}{2m}\frac{\partial^3}{\partial x^3} - i\hbar\frac{\partial}{\partial x}V + \frac{i\hbar^3}{2m}\frac{\partial^3}{\partial x^3} + i\hbar V\frac{\partial}{\partial x} \\ &= -i\hbar\frac{\partial}{\partial x}V + i\hbar V\frac{\partial}{\partial x} \\ &= -i\hbar\frac{\partial V}{\partial x}. \end{split}$$

Now,

$$\frac{d\langle p\rangle}{dt} = \int \frac{\partial \psi^*}{\partial t} \hat{p}\psi \, dx + \int \psi^* \frac{\partial \hat{p}}{\partial t} \psi \, dx + \int \psi^* \hat{p} \frac{\partial \psi}{\partial t} \, dx.$$

The central term is just $\langle \partial \hat{p}/\partial t \rangle$, which is zero. From the Schrödinger equation, we can write

$$\hat{H}\psi = i\hbar \frac{\partial \psi}{\partial t}, \qquad (\hat{H}\psi)^* = \psi^* \hat{H} = -i\hbar \frac{\partial \psi^*}{\partial t}.$$

Thus,

$$\frac{d\langle p\rangle}{dt} = \frac{1}{i\hbar} \int \psi^*(\hat{p}\hat{H} - \hat{H}\hat{p})\psi \, dx = \langle -\frac{\partial V}{\partial x} \rangle. \quad \Box$$

Definition 5.2 (Commutator). The commutator of two linear operators \hat{A} and \hat{B} is defined as

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}.$$

In a statistical distribution, the first, second, third and fourth moments deal with the mean, standard deviation, skew and kurtosis. Skew is a measure of symmetry, and kurtosis is a measure of peakedness.

5.3 The uncertainty principle

Proposition 5.3 (Heisenberg's Uncertainty Principle). The standard deviations of the position and momentum are related as

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}.$$

More generally, for any two Hermitian operators,

$$\sigma_A \sigma_B \ge \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|.$$

Proof. We evaluate the following expression using integration by parts.

$$i\hbar \int \frac{d\psi^*}{dx} \psi x \, dx = -i\hbar \int \psi^* \psi \, dx - i\hbar \int \frac{d\psi}{dx} \psi^* x \, dx = -i\hbar + \left[i\hbar \int \frac{d\psi^*}{dx} \psi x \, dx \right]^*$$

Thus,

$$2i\operatorname{Im}\int i\hbar \frac{d\psi^*}{dx}\psi x\ dx = -i\hbar.$$

Since $z^*z \ge b^2$, where z = a + ib, we must have

$$4\left[\int i\hbar \frac{d\psi^*}{dx} \psi x \, dx\right]^2 \ge \hbar^2.$$

Cauchy Schwarz gives

$$\int x\psi^* \ x\psi \ dx \ \int \left(i\hbar \frac{\partial \psi^*}{\partial x}\right) \left(-i\hbar \frac{\partial \psi}{\partial x}\right) \ dx \ge \left[\int i\hbar \frac{d\psi^*}{dx} \psi x \ dx\right]^2 \ge \frac{\hbar^2}{4}.$$

In other words,

$$\langle x^2 \rangle \langle p^2 \rangle \ge \frac{\hbar^2}{4}.$$

By writing $\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2$ and $\sigma_p^2 = \langle p^2 \rangle - \langle p \rangle^2$, and by choosing $\langle x \rangle = \langle p \rangle = 0$, we arrive at the Heisenberg uncertainty principle,

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}.$$

Another uncertainty relation is the energy-time uncertainty,

$$\sigma_E \sigma_t \geq \frac{\hbar}{2}.$$