EQUILÍBRIO GERAL COMPUTÁVEL: IMPLEMENTANDO O MINIMAL NO R

Paulo Felipe Alencar

Sumário

1	Intr	odução		2
2			de Modelo para o Pacote emr olo: Oferta e Demanda	2
3	lmp	lement	tando o MINIMAL no R	3
	3.1	Dados	para o Modelo	3
	3.2	Implei	mentação	4
		3.2.1	Passos Iniciais	4
		3.2.2	Conjuntos (Sets)	6
		3.2.3	Preços	7
		3.2.4	Produção	11
		3.2.5	Famílias	13
		3.2.6	Investimento e Governo	15
		3.2.7	Demanda de segundo nível entre bens domésticos e importados	16
		3.2.8	Exportações	18
		3.2.9	Demanda por Fatores Primários	18
		3 2 10	Equilíbrios nos Mercados de Bens	22

Resumo

Este documento tem o objetivo de discutir a implementação de um modelo de equilíbrio geral simples no R usando o pacote 'emr'. Como exemplo, utiliza-se o MINIMAL que é um modelo desenvolvido com propósitos educacionais pelos criadores do GEMPACK. Este modelo é de um único país com múltiplos setores, múltiplas fontes de demanda e comércio internacional.

1. INTRODUÇÃO

O MINIMAL¹ (Horridge and Powell [2001]) é um modelo de equilíbrio geral simplificado utilizado em cursos introdutórios do GEMPACK. A partir desse modelo, é possível deixar claro como a teoria microeconômica do consumidor e do produtor podem ser combinadas para a construção de um modelo de equilíbrio geral.

Este modelo considera 7 setores, um investidor agregado, um agente representativo das famílias, exportações agregadas e o governo. Cada produto pode ser obtido a partir de fontes domésticas ou importadas.

2. ESTRUTURAS DE MODELO PARA O PACOTE EMR.

A definição dos modelos segue a lógica discutida em A simple structure for CGE models by Xiao-guang Zhang.

Exogenous

Endogenous

Defined

Undefined

(Constant)

Defining

MCCs

All equations

Figura 1. Estrutura das variáveis e das equações (Zhang, 2013)

Nessa abordagem, as variáveis exógenas e endógenas serão classificadas em dois tipos: definidas ou não-definidas. As variáveis exógenas, por definição, são definidas. As endógenas pode ser dos dois tipos. As variáveis definidas são aquelas que podem ser construídas a partir dos valores das demais variáveis, das chamadas equação de definição. Já as não-definidas são aquelas que os valores serão definidos a partir de condições de equilíbrio de mercado (MCCs).

¹https://www.copsmodels.com/minimal.htm

2.1 Exemplo: Oferta e Demanda

3. IMPLEMENTANDO O MINIMAL NO R

3.1 Dados para o Modelo

Os dados para o modelo são esquematizados conforme a Figura 2. O esquema é similar ao de uma matriz de insumo produto, na qual os elementos das linhas vendem para os elementos das colunas.

Absorption Matrix 2 5 1 3 Producers Investors Household Export Government **Total Sales** Size ← I Domestic С USE(commodity,"dom",user) Flows С mported USE(commodity,"imp",user) Flows C = Number of Commodities = 7 **FACTOR** Labour 1 (labour) = Number of Industries = 7 **FACTOR** 1 Capital (capital) Output 1 V1PTX tax

Figura 2. Base de Dados para o Minimal(Horridge and Powell [2001])

	Тах	on Im	ports
Size	←	1	\rightarrow
↑			
С	١	VOMT.	X
\downarrow			

Fica claro na 2 que existem duas fontes (sources) de fornecimento de produtos: doméstica e importada. Esse produtos são demandados pelos I setores produtores, pelos investidores, pelas famílias, pelas exportações² e pelo governo. As somas das linhas para produtos (commodities) domésticos ou importados serão denominadas de vendas (sales).

Adicionalmente, os fatores trabalhos e capital são demandados pelos produtores, e há uma taxação sobre a produção. Por fim, independente do demandante, existe um imposto de importação

²O fornecimento de produtos importados para exportação é igual a zero.

por produto. O valor arrecadado de imposto de importação será único por produto, o que resulta em uma única taxa de importação por produto.

A tabela apresentada na Figura 3 detalha um conjunto de valores para a Austrália a partir de dados de 1986-1987. Os valores estão a preços dos produtores. Ou seja, inclui qualquer imposto indireto que possa ter sido aplicada àquele fluxo. Para cada setor produtor, a sua produção (soma da respectiva coluna) tem que ser igual às suas vendas (soma da respectiva linha). Por exemplo, a produção do setor Agricultura-Mineração (AgricMining) foi igual 45.730, que é o mesmo valor de suas vendas.

Para as importações de produtos manufaturados (Manufacture), foi recolhido o montante de 5.787. O valor total importado desses produtos foi de 42.087 (este valor já inclui o imposto de importação), o que implica em uma taxa de importação de $15,94\%^3$.

3.2 Implementação

3.2.1 Passos Iniciais

Inicialmente, é preciso carregar o pacote emr:

```
library(emr)
# Carregar o tidyverse para manipulação dos dados
library(tidyverse)
```

Adicionalmente, também é necessário ler os dados que servirão de base para o modelo. Os dados foram exportados do formato HAR do GEMPACK para csv. Nessa conversão, as diversas tabelas são empilhadas em um único csv, sendo separadas por uma linha denominada de *HEADER*.

Dessa forma, vamos inicialmente identificar os *headers*:

```
minimal_headers <- read_lines('../dados/minimal.csv')
minimal_headers[str_detect(minimal_headers, "Header")]

## [1] "!Header: USE , dimensions: COM*SRC*USER [7*2*11], description: USE matrix"
## [2] "!Header: 1FAC, dimensions: FAC*IND [2*7], description: Wages and profits"
## [3] "!Header: OTAR, dimensions: COM [7], description: Import tax revenue"
## [4] "!Header: 1PTX, dimensions: IND [7], description: Production tax revenue"
## [5] "!Header: ARM , dimensions: COM [7], description: Armington elasticities"
## [6] "!Header: P028, dimensions: IND [7], description: Primary factor substitution elasticity
## [7] "!Header: P018, dimensions: COM [7], description: Export demand elasticities"</pre>
```

A Tabela 1 detalha em quais linhas as tabelas se iniciam de fato e quantas linhas de dados existem em cada tabela. Por exemplo, a tabela USE, que contém os dados de uso por produto, origem e usuário, inicia-se na linha 2 e encerra na linha 156, sendo 154 linhas de dados e uma com os títulos de cada coluna. Para, ler essa tabela, podemos executar o seguinte código:

 $^{^{3}5787/(42087 - 5787).}$

Figura 3. Base de Dados para Austrália (Milhões 1986-1987)

						A 11 TT.						
				Industries		All Oscis			Final Demands	mands		
	AgricMining	AgricMining Manufacture	Utilities	Construction TradeTranspt FinanProprty	[radeTranspt F	inanProprty	Services	Investment	Households	Exports	Government	Total
Domestic												
AgricMining	5502	14658	1839	689	143	52	641	210	2316	18975	705	45730
Manufacture	4587	30009	643	12486	10200	3061	6947	10150	38537	10587	57	127264
Utilities	1345	2045	3261	176	626	2814	2037	0	3573	21	150	16401
Construction	68	55	13	0	438	1708	381	33809	0	29	3679	40201
TradeTranspt	2958	11539	694	3353	8892	3052	5680	4563	38211	9269	582	88793
FinanProprty	1754	6545	622	1886	9623	9819	6111	2412	33641	886	1221	74520
Services	403	1595	92	290	1316	1586	2210	18	28653	345	44293	80801
Imported												
AgricMining	233	1677	1	49	7	3	145	6	340		9	2470
Manufacture	1305	12411	184	2518	2322	832	3232	9491	9792		0	42087
Utilities	1	2	2	0	1	3	2	0	3		0	14
Construction	0	1	0	0	3	0	8	89	0		2	82
Trade Transpt	104	259	11	34	703	142	258	41	1011		36	2599
FinanProprty	06	302	19	29	328	274	209	39	176		4	1470
Services	26	451	7	55	117	99	774	29	200		81	2312
Labour	10779	22512	3594	15008	35532	17095	43346					147866
Capital	11337	6329	4293	2160	10409	28873	4612					68043
Production tax	5217	16844	1126	1468	7780	5140	4208					41783
Fotal Cost	45730	127264	16401	40201	88793	74520	80801	60839	156959	40112	50816	782436
Tax on imports	497	5787	0	0	0	27	52					

```
USE <- read_csv(
  file = '../dados/minimal.csv',
  skip = 1,
  n_max = 154,
  col_types = 'cccd'
)
head(USE)</pre>
```

```
## # A tibble: 6 x 4
##
    COM
                  SRC
                        USER
                                    Value
##
     <chr>
                  <chr> <chr>
                                    <dbl>
## 1 AgricMining dom
                        AgricMining 5502
## 2 Manufacture dom
                        AgricMining 4587
## 3 Utilities
                  dom
                        AgricMining
                                     1345
## 4 Construction dom
                        AgricMining
                                       89
## 5 TradeTranspt dom
                        AgricMining
                                     2958
## 6 FinanProprty dom
                        AgricMining
                                    1754
```

Tabela 1. Posição de Cada Header no Arquivo minimal.csv

Nome	Início	Fim	Nº de Linhas
USE	2	156	154
1FAC	158	172	14
0TAR	174	181	7
1PTX	183	190	7
ARM	192	199	7
P028	201	208	7
P018	210	217	7

As demais tabelas serão importadas quando necessárias.

3.2.2 Conjuntos (Sets)

Aqui, iremos definir os conjuntos de índices que são utilizados pelas variáveis do modelo. Por exemplo, a variável de produção é definida por produto (*commodity*) pertencente ao conjunto COM, que é composto pela descrição de todos os produtos.

Para implementação do modelo, precisaos de uma lista nomeada sets, na qual cada elemento recebe o nome do conjunto e seus possíveis valores.

Abaixo listamos todos os conjuntos:

• IND: indústrias;

- SRC: origem (doméstica ou importada);
- COM: produtos;
- USER: usuários (fontes de demanda);
- IMPUSER: usuários que demandam produtos importados;
- FINALUSER: usuários que compõem a absorção final da economia;
- FAC: fatores primários (capital e trabalho).

Abaixo, o código para criar os conjuntos.

```
IND <- c("AgricMining", "Manufacture", "Utilities", "Construction",</pre>
         "TradeTranspt", "FinanProprty", "Services")
COM <- c("AgricMining", "Manufacture", "Utilities", "Construction",
         "TradeTranspt", "FinanProprty", "Services")
SRC <- c("dom", "imp")</pre>
USER <- c("AgricMining", "Manufacture", "Utilities", "Construction",</pre>
          "TradeTranspt", "FinanProprty", "Services", "Investment",
          "Households", "Government", "Exports")
IMPUSER <- c("AgricMining", "Manufacture", "Utilities", "Construction",</pre>
              "TradeTranspt", "FinanProprty", "Services", "Investment",
              "Households", "Government")
FINALUSER <- setdiff(USER, IND)
FAC <- c("Labour", "Capital")</pre>
sets <- list(</pre>
 IND = IND,
 COM = COM,
 SRC = SRC,
 USER = USER,
 IMPUSER = IMPUSER,
 FINALUSER = FINALUSER,
 FAC = FAC
)
```

3.2.3 Preços

Inicialmente, vamos definir os preços dos produtos $c \in COM$ fornecidos pelas fontes $s \in SRC$:

$$P_{cs} = \begin{cases} P1TOT_c \times PTX_c & \text{se } s = \text{dom} \\ PWORLD_c \times \phi \times \text{mtx}_c & \text{se } s = \text{imp,} \end{cases}$$
 (1)

em que P_{cs} é o preço do produto c de origem s, P1TOT $_c$ é o custo (marginal) de produção do produto c, PTX $_c$ é o poder da imposto sobre a produção (1 + imposto sobre a produção), PWORLD $_c$ é o preço internacional do produto c, ϕ é a taxa de câmbio⁴ e mtx $_c$ é o poder da tarifa sobre a importação do produto c.

No GEMPACK, as equações são reescritas utilizando a forma de variação percentual. Aqui, vamos utilizar a chamada exact-hat algebra. As variáveis serão reescritas em variações. Assim, por exemplo, denotamos a variação exata de uma variável x como $\hat{x} = \frac{x'}{x}$, em que x é o valor inicial e x' é o valor no novo equilíbrio.

Assim, iremos reescrever 1 como:

$$\hat{P}_{cs} = \begin{cases} P1\hat{T}OT_c \times P\hat{T}X_c & \text{se } s = \text{dom} \\ PW\hat{O}RLD_c \times \hat{\phi} \times \hat{mtx}_c & \text{se } s = \text{imp,} \end{cases}$$
 (2)

Adicionalmente, ao consumir o bem c de duas diferentes fontes (doméstica e importada), os demandantes estão consumindo um bem composto com preço P_{cu}^s definido como:

$$\hat{P}_{cu}^{s} = \sum_{s \in SRC} SRCSHARE_{cus} \hat{P}_{cs}, \quad c \in COM, u \in IMPUSER$$

em que SRCSHARE_{cus} é participação da origem s no dispêndio do usuário u em produtos c.

Antes de começarmos a definir os parâmetros, as variáveis e as equações, precisamos definir as listas que guardarão esses componentes do modelo:

```
params <- list()
variables <- list()
equations <- list()</pre>
```

Agora, vamos começar a definir os parâmetros das equações acima.

```
params[["PTX"]] <- create_param(
  value = 1,
  indexes = sets['IND'],
  desc = "Variação no poder do imposto sobre a produção"
)

params[["PWORLD"]] <- create_param(
  value = 1,
  indexes = sets['COM'],
  desc = "Variação no preço internacional do produto c"</pre>
```

⁴A taxa de câmbio é usada como numerário no modelo

```
params[["PHI"]] <- create_param(</pre>
  value = 1,
  indexes = "PHI",
  desc = "Variação na taxa de câmbio"
)
params[["MTX"]] <- create_param(</pre>
  value = 1,
  indexes = sets['COM'],
  desc = "Variação no poder da tarifa de importação do produto c"
)
SRCSHARE <- USE %>%
  filter(USER %in% IMPUSER) %>%
  group_by(COM, USER) %>%
  mutate(SRCSHR = Value/sum(Value),
         SRCSHR = ifelse(is.nan(SRCSHR), 0, SRCSHR)) %>%
  select(COM, SRC, USER, SRCSHR)
params[["SRCSHARE"]] <- create_param(</pre>
  value = SRCSHARE,
  indexes = sets[c("COM", "SRC", "IMPUSER")],
  desc = "Participação da origem s no consumo do produto c pelo usurário u"
)
```

Consideramos que $PWORLD_c$ é um parâmetro, ou seja, é exógeno. Isto significa que foi assumido que os preços internacionais são dados, a demanda do país analisado não tem poder para alterar os preços internacionais.

O segundo passo para esse bloco é definir as variáveis. Iremos definir as variáveis \hat{P}_{cs} e \hat{P}_{cu}^s . A variável P1 \hat{T} OT não será definida agora por dois motivos, pois não temos uma equação para definir o seu valor. Veremos adiante que o valor de P1 \hat{T} OT é encontrada a partir de um equação de equilíbrio de mercado (mcc) que define que P1 \hat{T} OT tem que ser igual à variação do custo de produção (lucro zero).

```
variables[["p"]] <- create_variable(
  value = 1,
  indexes = sets[c("COM","SRC")],
  type = "defined",
  desc = "Variação no preço do produto c de origem s"
)</pre>
```

```
variables[["p_s"]] <- create_variable(
  value = 1,
  indexes = sets[c("COM", "IMPUSER")],
  type = "defined",
  desc = "Variação no índice de preço do bem composto c para o usuário u"
)</pre>
```

Por último, iremos definir as equações.

```
equations[["E_p"]] <- create_equation(</pre>
  'if(s == "dom"){
   p[c,s] = p1tot[c] * PTX[c]
 } else {
   p[c,s] = PWORLD[c] * PHI * MTX[c]
 }',
  indexes = c("c in COM", "s in SRC"),
 type = "defining",
 desc = "Variação no preço do produto c de origem s"
)
equations[["E_p_s"]] <- create_equation(</pre>
  'p_s[c,u] = sum(SRCSHARE[c,u] * p[c,])',
  indexes = c('c in COM', 'u in IMPUSER'),
 type = "defining",
  desc = "Variação no índice de preço do bem composto c para o usuário u"
)
```

Note que para o somatório usamos a função sum() do R. Além disso, tem-se que SRCSHARE tem 3 dimensões e queremos somar em relação a origem, que é a segunda dimensão. Então, omitimos o índice de origem (SRC) e a soma ocorrerá nessa dimensão.

Além dos preços para os produtos c, existem os mercados de trabalho (labor) e de capital que possuem seus respectivos preços, $P1LAB_i$ (salário) e $P1CAP_i$ (remuneração do capital). Note que, inicialmente, esses preços estão indexados à indústria que utiliza o fator de produção. Isto ocorre quando assumimos que o fator de produção é específico da indústria. Se o fator de produção tem mobilidade entre os setores, haverá um único preço para o fator de produção e o índice i será removido. Isso dependerá do fechamento que será escolhido.

Além desses preços, o modelo considera índices de preços da cesta de consumos do investimento (P2TOT), das famílias (P3TOT) e do governo (P5TOT). Estes índices serão posrteriormente definidos dentro do seu respectivo bloco.

3.2.4 Produção

A estrutura de produção utilizada no minimal é apresentada na Figura . . . A estrutura adotada considera um primeiro nível em que o produtor demanda bens intermediários (commodities) e o fator primário, que é uma combinação de capital e trabalho. É assumida uma tecnologia do tipo Leontief. Dessa forma, pode-se definir o primeiro nível da produção como:

$$X1TOT_{i} = \min \left\{ \frac{X_{c\{c \in COM\}i}}{A_{c\{c \in COM\}i}}, \frac{X1PRIM_{i}}{A1PRIM_{i}} \right\}, i \in IND,$$
(3)

em que X1TOT_i é a produção total da i-ésima indústria, X_{ci} é a demanda pelo produto c pela indústria i e X1PRIM_i é a demanda por fatores primários pela indústria i. A_{ci} e A1PRIM podem ser entendidos como coeficientes técnicos da matriz de insumo-produto. Isto é, necessita-se A_{ci} unidades do produto c para se produzir uma unidade de i.

Para essa tecnologia, tem-se as seguintes funções de demanda:

• Demanda por bens intermediários (compostos)⁵:

$$X_{ci} = A_{ci} \times X1TOT_i, i \in IND, c \in COM$$

• Demanda por valor adicionado:

$$X1PRIM_i = A1PRIM_i \times X1TOT_i$$

Essas equações, facilmente, podem ser reescritas em variações exatas:

• Demanda por bens intermediários:

$$\hat{X}_{ci} = \hat{A}_{ci} \times X1\hat{T}OT_i, i \in IND, c \in COM$$

• Demanda por valor adicionado:

$$X1P\hat{R}IM_i = A1P\hat{R}IM_i \times X1\hat{T}OT_i$$

Na sequência, vamos definir os parâmetros \hat{A}_{ci} e A1PRIM_i. Como estamos usando em variação, o valor inicial desses parâmetros é igual a 1.

```
params[["A"]] <- create_param(
  value = 1,
  indexes = sets[c('COM', 'IND')],
  desc = "Variação do coeficiente técnico para o produto c usado pela indústria i"
)

params[["A1PRIM"]] <- create_param(
  value = 1,</pre>
```

 $^{{}^{5}}$ Os bens intermediários compostos são uma composição entre produtos domésticos e importados.

```
indexes = sets['IND'],
  desc = "Variação do coeficiente técnico para o fator primário usado pela indústria i"
)
```

Agora, vamos definir as variáveis \hat{X}_{ci} (uso do produto composto c pela indústria i) e X1P̂RIM $_i$ (uso do fator primário composto). Aqui, existe um detalhe, o uso do produto c pode ser feito pelas indústrias ou pelos demais usuários de demandam importações (IMPUSER). Dessa forma, na definição da variável \hat{X}_{ci} , vamos utilizar o conjunto IMPUSER ao invés do conjunto IND. Deixando mais claro, iremos definir

$$\hat{X}_{cu}, \ c \in \text{COM}, u \in \text{IMPUSER}$$

$$\hat{X}_{cu} = \begin{cases} \hat{X}_{ci} & \text{se } u \in \text{IND} \\ \hat{X}_{c,\text{HH}} & \text{se } u = \text{Households} \\ \hat{X}_{c,\text{GOV}} & \text{se } u = \text{Governement} \\ \hat{X}_{c,\text{INV}} & \text{se } u = \text{Investment} \end{cases}$$

Ambas as variáveis são definidas, pois possuem equações que definem os seus valores.

```
# chamamos de x de x_s (composto de várias sources s)
variables[["x_s"]] <- create_variable(
  value = 1,
  indexes = sets[c("COM", "IMPUSER")],
  type = "defined",
  desc = "Variação no uso do composto c por impuser"
)

variables[["x1prim"]] <- create_variable(
  value = 1,
  indexes = sets[c('IND')],
  type = "defined",
  desc = "Uso do fator primário composto por indústria"
)</pre>
```

Finalmente, iremos definir as equações. Note que temos a equação de uso para o produto composto c para os usuários industriais. Assim, iremos utilizar o índice i in IND ($i \in IND$).

```
equations[["E_x_s_ind"]] <- create_equation(
   'x_s[c,i] = A[c,i] * x1tot[i]',
   indexes = c('c in COM', 'i in IND'),
   type = "defining",
   desc = "Variação do uso do composto c por indústria"
)</pre>
```

```
equations[["E_x1prim"]] <- create_equation(
  'x1prim[i] = a1prim[i] * x1tot[i]',
  indexes = 'i in IND',
  type = "defining",
  desc = "Uso do fator primário composto por indústria"
)</pre>
```

Perceba que ainda não especificamos a variável $X1\hat{T}OT_i$. Ela será especificada em momento oportuno, mas vale antecipar que essa variável é do tipo mcc. Por quê? Perceba que, na Equação 3, $X1TOT_i$ é função dos usos de bens intermediários e fatores primários. No entanto, a quantidade demandada desses bense fatores dependem de X1TOT. Dessa forma, X1TOT não pode ser definida. Precisaremos de uma condição de equilibrio de mercado para encontrar o seu valor no novo equilíbrio. Isto será feito posteriormente.

Adicionalmente, por enquanto, não entraremos nos detalhes sobre a demanda no segundo nível (escolha entre bens domésticos e importados), tendo em vista que a forma da demanda é comum independente do usuário (indústrias, família, governo etc.).

3.2.5 Famílias

Para as famílias, que serão representadas como HH, assume-se um agente representativo com preferências do tipo Cobb-Douglas sobre um conjunto de produtos (compostos) e uma restrição orçamentária. Isto é:

$$U = \prod_{c \in \text{COM}} X_{c, \text{HH}}^{\alpha_c}$$

$$s.a. \sum_{c \in \text{COM}} P_{c, \text{HH}} X_{c, \text{HH}} = \text{W3TOT},$$

em que $X_{c,\text{HH}}$ é quantidade demandada do bem composto c pelas famílias (HH), $P_{c,\text{HH}}$ é o índice de preço do bem composto c para as famílias e W3TOT é renda nominal das famílias. Adicionalmente, $\sum_{c \in \text{COM}} \alpha_c = 1$.

Para esse tipo de preferência, sabe-se que, a partir da maximização de utilidade do consumidor, que a função de demanda ótima é:

$$X_{c, \text{HH}} = \alpha_c \frac{\text{W3TOT}}{P_{c, \text{HH}}}, \ c \in \text{COM}.$$

Em variações, a demanda das famílias é escrita da seguinte forma:

$$\hat{X}_{c,\text{HH}} = \frac{\text{W3}\hat{\text{TOT}}}{\hat{P}_{c,\text{HH}}}, \ c \in \text{COM}.$$

Por fim, definimos o dispêndio real das famílias (X3TOT) como:

$$X3\hat{T}OT = \frac{W3\hat{T}OT}{P3\hat{T}OT},$$

em que P3TOT é o índice de preços associado à cesta de consumo das famílias. O índice P3TOT é uma média ponderada dos preços de cada bem composto c para as famílias:

$$P3TOT = \sum_{c \in COM} SHARE_{c,HH}P_{c,HH}.$$

em que $SHARE_{c,HH}$ é a participação do bem c no dispêndio das famílias.

Especificado a estrutura das famílias no modelo, vamos definir, primeiramente, o parâmetro ${\rm SHARE}_{c.{\rm HH}}.$

```
# calcula os shares
SHARE_HH <- USE %>%
  filter(USER == "Households") %>%
  group_by(COM) %>%
  summarise(Value = sum(Value)) %>%
  mutate(SHARE = Value/sum(Value)) %>%
  select(COM, SHARE)

params[["SHARE_HH"]] <- create_param(
  value = SHARE_HH,
  indexes = sets['COM'],
  desc = "Participação do bem c no dispêndio das famílias"
)</pre>
```

No fechamento do modelo que será adotado, o dispêndio real das famílias $(X3\hat{T}OT)$ será exógeno. Portanto, o definiremos como um parâmetro do modelo.

```
params[["X3TOT"]] <- create_param(
  value = 1,
  indexes = "X3TOT",
  desc = "Variação no dispêndio real das famílias"
)</pre>
```

Com essa definição, temos que:

$$W3\hat{T}OT = X3\hat{T}OT \times P3\hat{T}OT.$$

Isto é, a variação da renda das famílias tem que ser igual a variação do dispêndio real vezes a variação dos preços para as famílias.

Lembrando que a variável $\hat{X}_{c,\text{HH}}$ já está incluída na variável x_s , vamos definir as demais variáveis desse bloco:

```
variables[["w3tot"]] <- create_variable(
  value = 1,
  indexes = "w3tot",
  type = "defined",
  desc = "Variação da renda nominal das famílias"</pre>
```

```
variables[["p3tot"]] <- create_variable(
  value = 1,
  indexes = "p3tot",
  type = "defined",
  desc = "Variação no índice de preços das famílias"
)</pre>
```

Finalmente, vamos definir as equações:

```
equations[["E_x_s_hh"]] <- create_equation(</pre>
  'x_s[c, "Households"] = w3tot/p_s[c, "Households"]',
  indexes = c('c in COM'),
  type = "defining",
  desc = "Variação do uso do composto c pelas famílias"
)
equations[["E_w3tot"]] <- create_equation(
  'w3tot = X3TOT * p3tot',
 type = "defining",
  desc = "Variação na renda (dispêndio) nominal das família"
)
equations[["E_p3tot"]] <- create_equation(</pre>
  'p3tot = sum(SHARE_HH[] * p_s[,"Households"])',
 type = "defining",
  desc = "Variação do índice de preços das famílias"
)
```

3.2.6 Investimento e Governo

No MINIMAL, não é assumida nenhuma estrutura específica para o dispêndio em investimento ou do governo. Será assumido, que essas duas fontes de demandas são exógenas. Ou seja, $\hat{X}_{c,\text{INV}} = 1$ e $\hat{X}_{c,\text{GOV}} = 1$. Portanto, iremos apenas defini-los como parâmetros, que poderão ser utilizados posteriormente como fontes de choques do modelo.

```
params[["X_S_INV"]] <- create_param(
  value = 1,
  indexes = sets["COM"],
  desc = "Variação na demanda de investimento por produto c"
)
params[["X_S_GOV"]] <- create_param(</pre>
```

```
value = 1,
indexes = sets["COM"],
desc = "Variação na demanda do governo por produto c"
)
```

Também definimos as equações que capturarão esses choques.

```
equations[["E_x_s_inv"]] <- create_equation(
    'x_s[c, "Investment"] = X_S_INV[c]',
    indexes = 'c in COM',
    type = "defining",
    desc = "Variação no uso do composto c para investimento"
)

equations[["E_x_s_gov"]] <- create_equation(
    'x_s[c, "Government"] = X_S_GOV[c]',
    indexes = 'c in COM',
    type = "defining",
    desc = "Variação no uso do composto c pelo governo"
)</pre>
```

3.2.7 Demanda de segundo nível entre bens domésticos e importados

Até o momento, apresentamos a demanda⁶ das indústrias, das famílias, do governo e do investimento pelos bens compostos. Nessa parte, vamos definir a demanda do nível inferior. Nesse nível, o consumidor escolhe alocar o seu consumo total entre o produto doméstico e o produto importado.

É assumida uma função de agregação CES, com elasticidade de substituição σ_i , que combina os produtos domésticos e importados. Nesse caso, a variação na demanda por cada produto, por fonte e por usuário, \hat{X}_{csu} , é dada pela seguinte função de demanda:

$$\hat{X}_{csu} = \left(\frac{\hat{P}_{cs}}{\hat{P}_{cu}}\right)^{-\sigma_i} \hat{X}_{cu}^s, \quad c \in \text{COM}, \ s \in \text{SRC}, \ s \in \text{IMPUSER}$$
(4)

em que \hat{P}_{cs} é a variação do preço do produto c fornecido pela fonte s. Já \hat{P}_{cu} é o preço médio (índice de preço) do produto c para o usuário u.

Nesse bloco, precisamos criar o parâmetro σ_i , que é a também chamado de elasticidade de Armington. Os valores dessas elasticidades estão no header ARM. Usamos o código abaixo para importar essa tabela.

```
ARM <- read_csv(
  file = '../dados/minimal.csv',
  skip = 191,</pre>
```

⁶O componente de exportação demanda apenas o bem doméstico.

```
n_max = 7,
col_types = 'cd'
)
ARM
```

```
## # A tibble: 7 x 2
##
    COM
                  Value
    <chr>
##
                  <dbl>
## 1 AgricMining
                      2
## 2 Manufacture
                      2
## 3 Utilities
                      2
## 4 Construction
## 5 TradeTranspt
                      2
## 6 FinanProprty
                      2
## 7 Services
                      2
```

Então, podemo criar este parâmetro.

```
params[["SIGMA"]] <- create_param(
  value = ARM,
  indexes = sets[c("COM")],
  desc = "Elasticidade de Armington"
)</pre>
```

Por fim, define-se a variável \hat{X}_{csu} e a equação para os usuários pertencentes ao conjunto IMPUSER.

```
variables[["x"]] <- create_variable(
  value = 1,
  indexes = sets[c("COM","SRC","USER")],
  type = "defined",
  desc = "Demand by commodity, source and user"
)

equations[["E_x_impuser"]] <- create_equation(
  'x[c,s,u] = x_s[c,u]*(p[c,s]/p_s[c,u])^(-SIGMA[c])',
  indexes = c('c in COM', 's in SRC', 'u in IMPUSER'),
  type = "defining",
  desc = "Demand by commodity, source and impuser"
)</pre>
```

Perceba que a variável foi definida para todos os usuários. No entanto, na Equação 4, está definida equação para $u \in \text{IMPUSER}$. Isto deve-se ao fato de que a demanda para o usuário *Exports* será definida de outra forma.

3.2.8 Exportações

Para as exportações, é assumida uma função de elasticidade constante com parâmetro $\mathrm{EXP_ELAST}_c$ para o produto c. A demanda externa pelo produto doméstico depende do preço relativo entre o preço doméstico e o preço internacional daquele produto:

$$\hat{X}_{c \ dom \ exp} = F\hat{4}Q_c \left(\frac{\hat{P}_{c \ dom}}{\hat{\phi} \ \text{PWORLD}}\right)^{-\text{EXP ELAST}_c}, \quad c \in \text{COM},$$

em que $F\hat{4}Q_c$ é um shift na demanda externa.

Abaixo, definimos este bloco.

```
EXP_ELAST <- read_csv(</pre>
  file = '../dados/minimal.csv',
  skip = 209,
 n_{max} = 7,
  col_types = 'cd'
params[["EXP_ELAST"]] <- create_param(</pre>
  value = EXP_ELAST,
  indexes = sets["COM"],
 desc = "Elasticidade da demanda por exportações"
)
params[["F4Q"]] <- create_param(</pre>
 value = 1,
 indexes = sets[c("COM")],
 desc = "Shift na demanda externa para o produto c"
)
equations[["E_x_exp"]] <- create_equation(</pre>
  'x[c,"dom","Exports"] = F4Q[c]*(p[c,"dom"]/(PHI*PWORLD[c]))^(-EXP_ELAST[c])',
  indexes = 'c in COM',
  type = "defining",
  desc = "Variação das exportações do produto c"
```

3.2.9 Demanda por Fatores Primários

Na parte da produção, vimos como cada indústria define a quantidade de fator primário que será utilizada para atingir uma determinada produção. Todavia, cada indústria pode escolher um mix diferente entre os fatores de produção capital e trabalho. Para essa alocação, também é utilizada

uma função de agregação CES, com elasticidade substituição σ_i^{1PRIM} . Assim, pode-se definir a demanda (em variações) por trabalho e capital na indústria i como:

$$\begin{aligned} \mathbf{X}1\hat{\mathbf{L}}\mathbf{A}\mathbf{B}_{i} &= \left(\frac{\mathbf{P}1\hat{\mathbf{L}}\mathbf{A}\mathbf{B}}{\mathbf{P}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_{i}}\right)^{-\sigma_{i}^{1\mathrm{PRIM}}} \mathbf{X}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_{i}, \quad i \in \mathbf{IND} \quad \mathbf{e} \\ \mathbf{X}1\hat{\mathbf{C}}\mathbf{A}\mathbf{P}_{i} &= \left(\frac{\mathbf{P}1\hat{\mathbf{C}}\mathbf{A}\mathbf{P}_{i}}{\mathbf{P}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_{i}}\right)^{-\sigma_{i}^{1\mathrm{PRIM}}} \mathbf{X}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_{i}, \quad i \in \mathbf{IND}, \end{aligned}$$

em que X1LÂB_i é a variação da demanda por trabalho pela indústria i, P1LÂB é o salário nominal, P1PRIM_i é a variação do índice de preços dos fatores primários para a indústria i, X1PRIM_i é a variação da demanda por fatores primários da indústria i, X1ĈAP_i é a variação da demanda por capital pela indústria i e P1ĈAP_i é a remuneração do capital na indústria i.

A variável $P1PRIM_i$ é calculada da seguinte forma:

$$P1\hat{P}RIM_i = SHAREPRIM_{lab,i} \times P1\hat{L}AB + SHAREPRIM_{cap,i} \times P1\hat{C}AP_i$$

Note que o índice da i foi retirado de P1LÂB (salário), pois no fechamento adotado assume-se que o trabalho tem perfeita mobilidade entre os setores. Diferentemente, o capital será assumido fixo dentro de cada indústria. Ademais, consideraremos que no curto prazo a variação do salário real (RŴ) é fixa (exógena) e a variação do nível de emprego (\hat{L}) é endógena, o que implica que P1LÂB deve variar na mesma proporção de P3TÔT. Então, temos mais duas equações:

$$\begin{aligned} \text{P1}\hat{\mathbf{L}}\mathbf{A}\mathbf{B} &= \hat{\mathbf{RW}}\times \text{P3}\hat{\mathbf{T}}\text{OT} \\ \hat{L} &= \sum_{i\in \text{IND}} \text{SHARE } \mathbf{L}\mathbf{A}\mathbf{B}_i\times \mathbf{X1}\hat{\mathbf{L}}\mathbf{A}\mathbf{B}_i \end{aligned}$$

Primeiro, definimos os parâmetros desse bloco.

```
SIGMA1PRIM <- read_csv(
    file = "../dados/minimal.csv",
    skip = 200,
    n_max = 7,
    col_types = 'cd'
)

params[["SIGMA1PRIM"]] <- create_param(
    value = SIGMA1PRIM,
    indexes = sets["IND"],
    desc = "Elasticidade de subsituição entre os fatores de produção"
)

FAC <- read_csv(
    file = "../dados/minimal.csv",</pre>
```

```
skip = 157,
 n_max = 14
  col_types = 'ccd'
SHAREPRIM <- FAC %>%
  group_by(IND) %>%
  mutate(SHAREPRIM = Value/sum(Value)) %>%
  select(FAC, IND, SHAREPRIM)
params[["SHAREPRIM"]] <- create_param(</pre>
  value = SHAREPRIM,
  indexes = sets[c("FAC", "IND")],
  desc = "Part. de cada fator no uso do fator primário por indústria"
SHARELAB <- FAC %>%
  filter(FAC == "Labour") %>%
  mutate(SHARELAB = Value/sum(Value)) %>%
  select(IND, SHARELAB)
params[["SHARELAB"]] <- create_param(</pre>
  value = SHARELAB,
  indexes = sets["IND"],
  desc = "Part. de cada indústria no uso do fator trabalho"
params[["RW"]] <- create_param(</pre>
  value = 1,
 indexes = "rw",
  desc = 'Variação no salário real'
)
# O capital é fixo na indústria (exógeno)
params[["X1CAP"]] <- create_param(</pre>
  value = 1,
  indexes = sets["IND"],
  desc = "Variação no uso de capital por indústria"
```

Na sequência, definimos as variáveis.

```
variables[["x1lab"]] <- create_variable(
  value = 1,</pre>
```

```
indexes = sets[c('IND')],
 type = "defined",
  desc = "Variação no emprego por indústria"
variables[["p1lab"]] <- create_variable(</pre>
 value = 1,
 indexes = "p1lab",
 type = "defined",
 desc = "Variação no salário nominal"
)
variables[["p1cap"]] <- create_variable(</pre>
 value = 1,
 indexes = sets['IND'],
 type = "defined",
 desc = "Variação na remuneração do capital por indústria i"
)
variables[["p1prim"]] <- create_variable(</pre>
 value = 1,
 indexes = sets['IND'],
 type = "defined",
 desc = "Variação no índice de preço do fator primário composto por indústria i"
)
variables[["1"]] <- create_variable(</pre>
  value = 1,
  indexes = "emprego",
 type = "defined",
 desc = "Variação no emprego total"
```

Por fim, vamos definir as equações⁷.

```
equations[["E_x1lab"]] <- create_equation(
  'x1lab[i] = x1prim[i]*(p1lab/p1prim[i])^(-SIGMA1PRIM[i])',
  indexes = c('i in IND'),
  type = "defining",
  desc = "Variação no emprego por indústria"
)</pre>
```

⁷A equação para a remuneração do capital foi invertida para isolar $P1\hat{C}AP_i$.

```
equations[["E_p1lab"]] <- create_equation(</pre>
  'p1lab = RW * p3tot',
 type = "defining",
 desc = "Variação no salário nominal"
equations[["E_p1cap"]] <- create_equation(</pre>
  'p1cap[i] = p1prim[i] * (x1cap[i]/x1prim[i])^(-1/SIGMA1PRIM[i])',
 type = "defining",
 desc = "Variação no salário nominal"
)
equations[["E_p1prim"]] <- create_equation(</pre>
  'p1prim[i] = SHAREPRIM["Labour",i] * p1lab +
               SHAREPRIM["Capital",i] * p1cap[i]',
  indexes = c('i in IND'),
 type = "defining",
 desc = "Variação no índice de preço do fator primário para indústria i"
equations[["E_1"]] <- create_equation(</pre>
  'l = sum(SHARELAB * x1lab)',
 type = "defining",
 desc = "Variação no emprego total"
```

3.2.10 Equilíbrios nos Mercados de Bens

REFERÊNCIAS

Mark Horridge and Alan Powell. Minimal - a simplified general equilibrium model. Technical report, Centre of Policies Studies and the Impact Project, 2001.