PWM模块

程晨闻 电气工程学院

> 通用定时器

- 通用定时器的用途
 - · 时间测量 (电网电压频率测量, 超声波测距)
 - ・ 定时控制 (舵机控制、晶闸管触发)
- TM4C1294的通用定时器模块
 - ・8个定时器模块,每个模块有2个16位定时器,可级联
- 32位单次/周期计数功能
 - ・类比SysTick和看门狗
- 16位边沿定时功能
 - ・管脚边沿触发
 - ·计数值捕捉存放于GPTMTnR寄存器

➤ 脉冲宽度调制 (Pulse Width Modulation, PWM)

- 简称: 脉宽调制
- 将模拟信号变换为脉冲电压的技术
- 一般变换后脉冲的周期固定,但一个周期内脉冲的宽度会依模拟信号的大小而改变,从而使一个周期内的脉冲的平均电压与给定模拟信号呈线性关系

➤ 脉冲宽度调制 (Pulse Width Modulation, PWM)

- PWM脉冲一般由载波和调制波比较获得
- **载波一般为锯齿波或三角波**
- 锯齿波或三角波的周期被称为载波周期(PWM period)或开关周 期(Switching period),记为*T*_s
- 调制波为一个载波周期内,期望输出的电压平均值
- 一个载波周期内,输出高电平的时间所占的比例,称作占空比 $D(Ducy\ Cycle),\ D=T_{ON}/T_s$

東南大學電

.nttp://ee.seu.edu.cn

- Buck变换器

- Boost变换器

- 同步整流变换器

- 电压源逆变器

> PWM脉冲的生成方式

- 自然采样法

- 常用模拟器件实现
- 载波与调制波实时比较

> PWM脉冲的生成方式

- 规则采样法

• 利用微控制器实现PWM的常用技术,广泛应用于测量,通信,功率控制与变换等许多领域

• 按照一定的规则对调试波进行采样,其余时间调制波

不变

- 提供了4个PWM发生器
- 每个PWM发生器有一个16位计数器
- 使用规则采样法生成8路PWM输出信号
 - 四个PWM发生器分别是PWM_GEN_0, PWM_GEN_1,
 PWM_GEN_2和PWM_GEN_3
 - PWM_GEN_0产生PWM0和PWM1
 - PWM_GEN_1产生PWM2和PWM3
 - PWM_GEN_2产生PWM4和PWM5
 - PWM_GEN_3产生PWM6和PWM7

- 提供了4个PWM发生器
- 使用规则采样法生成8路PWM输出信号

n

- PWM发生器

由计数器模块、比较器模块、信号发生器模块、死区发生器模块、控制寄存器、中断控制器、故障处理等模块组成

- PWM发生器----计数器

- 用计数器模拟载波,可以模拟锯齿波,也可以模拟三角波
- 16位计数
- · 计数器的计数值(COUNT)从O开始计数,计数的最大值记做 LOAD,
- 计数到0,发出zero信号;计数到LOAD,发出load信号
- Dir信号指示计数方向

- PWM发生器----比较器

• PWM发生器的比较器模块中,有两个比较寄存器,计做 COMPA和COMPB,用于模拟调制波

- PWM发生器----比较器

- PWM发生器的比较器模块中,有两个比较寄存器,计做COMPA和COMPB,用于模拟调制波
- 计数器在计数的过程中,不断的跟这两个寄存器的值比较
 - ❖如果计数值 (COUNT) 与COMPA相等,就产生compA事件
 - » 如果当前计数器正在向下计数,那么产生的compA事件称作 ADown
 - » 如果当前计数器正在向上计数,那么产生的compA事件,称作 AUp
 - ❖如果计数值 (COUNT) 与COMPB相等,就产生compB事件
 - » 如果当前计数器正在向下计数,那么产生的compB事件称作 BDown
 - » 如果计数器正在向上计数,那么产生的compB事件,称作BUp

- PWM发生器----比较器

- PWM发生器的比较器模块中,有两个比较寄存器,计做COMPA 和COMPB,用于模拟调制波
- 计数器在计数的过程中,不断的跟这两个寄存器的值比较

http://ee.seu.edu.cn

- PWM发生器----比较器

- PWM发生器的比较器模块中,有两个比较寄存器,计做COMPA和COMPB,用于模拟调制波
- 计数器在计数的过程中,不断的跟这两个寄存器的值比较

- PWM发生器----信号发生器

load、zero、compA (AUp、ADown) 、compB (BUp、BDown) 、dir这几个事件在信号发生器中经过处理,产生PWM信号pwmA和pwmB

- PWM发生器----信号发生器

load、zero、compA (AUp、ADown) 、compB (BUp、BDown) 、dir这几个事件在信号发生器中经过处理,产生PWM信号pwmA和pwmB

AUp: 设置pwmA为高电平

Adown: 设置pwmA为低电平

占空比D= (LOAD-COMPA) /LOAD

BUp: 设置pwmB为高电平

Bdown: 设置pwmB为低电平

D= (LOAD-COMPB) /LOAD

- PWM发生器----死区发生器

同步整流变换器和电压源逆变器需要带死区的互补PWM信号,驱动一个桥臂的上管和下管

- PWM发生器----死区发生器

- 死区发生器对pwmA和pwmB信号进行整形,插入死区,产生pwmA'和pwmB'信号
 - 如果不使用死区功能,死区发生器处于<mark>直通</mark>模式,pwmA信号 直接变成pwmA'信号。pwmB信号直接变成pwmB '信号
 - 如果使用死区功能,**pwmB信号被忽略**;死区发生器实际上是一个延迟开通单元,延迟开通的时间可以设定

- PWM输出控制逻辑
 - PWM发生器模块最终产生的信号为pwmA'和pwmB'
 - PWM_GEN_0产生的pwmA'和pwmB'信号记作pwm0A'和pwm0B'
 - PWM_GEN_1产生的pwmA'和pwmB'信号记作pwm1A'和pwm1B'
 - PWM_GEN_2产生的pwmA'和pwmB'信号记作pwm2A'和pwm2B'
 - PWM_GEN_3产生的pwmA'和pwmB'信号记作pwm3A'和pwm3B'
 - PWM输出控制逻辑模块可以控制pwmXA'和pwmXB' (X=0,1,2,3) 信号最终是否输出到M0PWMY (Y=0,1,2,3,4,5,6,7)引脚上

- PWM输出控制逻辑

• PWM输出控制逻辑模块可以控制pwmXA'和pwmXB'(X=0,12,3) 信号最终是否输出到M0PWMY(Y=0,1,2,3,4,5,6,7)引脚上

谢谢!