MATH 137 Fall 2020: Practice Assignment 3

Q01. Assuming $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$ where $a_n \ge 0$ and $b_n \ge 0$, determine

$$\lim_{n\to\infty} \left(a_n \sin(n) + b_n \cos(n) \right)$$

Proof. First, notice that given a convergent sequence $\{k_n\}$ with limit L, by the product and constant arithmetic rules for limits of sequences, $\{-k_n\}$ has limit -L. Therefore, $\lim_{n\to\infty} -a_n = \lim_{n\to\infty} -b_n = 0$.

Now, consider the term $a_n \sin n$. Because $-1 \le \sin n \le 0$ and $a_n \ge 0$, $-a_n \le a_n \sin n \le a_n$. By the squeeze theorem, $a_n \sin n \to 0$.

Applying the same argument to $\{b_n\}$, we find $b_n \cos n \to 0$.

By the sum rule,
$$\lim_{n\to\infty} (a_n \sin(n) + b_n \cos(n)) = 0 + 0 = 0.$$

Q02. Let's examine how absolute values and limits interact.

(a) The statement

If
$$\lim_{n \to \infty} |a_n| = |L|$$
 then $\lim_{n \to \infty} a_n = L$.

is false in general. Provide a counter-example.

Proof. Let $a_n = 1$ if n is even, and $a_n = -1$ otherwise. $|a_n|$ is constant for all n, so the limit is that constant, i.e. 1. However, a_n clearly has no limit.

(b) The statement

If
$$\lim_{n \to \infty} a_n = L$$
 then $\lim_{n \to \infty} |a_n| = |L|$.

is true. Show this using the definition of limits.

Hint: $||a| - |b|| \le |a - b|$. (Even though it is not necessary for this question, you should be able to show that the hint is true.)

Proof. Let $\epsilon > 0$. There is then an N such that $n \geq N$ implies $|a_n - L| > \epsilon$. We must find an N so $n \geq N$ implies $||a_n| - |L|| > \epsilon$. Consider the same N and the hint:

$$||a_n| - |L|| \le |a_n - L| < \epsilon$$

(c) Is the statement

If
$$\lim_{n\to\infty} |a_n| = 0$$
 then $\lim_{n\to\infty} a_n = 0$.

true? If so, argue why, if not, provide a counterexample.

Proof. Let $\epsilon > 0$. There is then an N such that $n \ge N$ implies $||a_n| - 0|| < \epsilon$. However, $||a_n| - 0| = ||a_n|| = |a_n| = |a_n - 0|$. This means that $n \ge N \implies |a_n - 0| < \epsilon$, which is precisely what must be shown to prove that $a_n \to 0$.

Q03. Compute the following limits using any method.

(a)
$$\lim_{n \to \infty} \frac{\sin(n^2)}{n^2}$$

Proof. First, consider the limit of $\frac{1}{n^2}$. This is trivially zero (let $N=\epsilon^{-1/2}$). By the constant multiple rule, $-\frac{1}{n^2}\to 0$ as well.

Now, recall that $-1 \le \sin n^2 \le 1$ for all n. Since $\frac{1}{n^2} \ge 0$, we can also say that $-\frac{1}{n^2} \le \frac{\sin n^2}{n^2} \le \frac{1}{n^2}$ for all n. By the squeeze theorem, the limit is 0.

(b)
$$\lim_{n \to \infty} \frac{3n - (-1)^n}{n}$$

Proof. Let $a_n = \frac{3n - (-1)^n}{n}$.

When n is odd, $(-1)^n = -1$, so $a_n = \frac{3n+1}{n}$. Otherwise, $(-1)^n = 1$, so $a_n = \frac{3n-1}{n}$.

The limits of both of these are 3, since $\frac{3n\pm 1}{n} = 3 \pm \frac{1}{n}$, and $\frac{1}{n}$ converges to zero.

Notice that $\frac{3n+1}{n} > \frac{3n-1}{n}$ for all n. Therefore, $\frac{3n+1}{n} \geq a_n \geq \frac{3n-1}{n}$ for all n. By the squeeze theorem, the limit is 3.

(c)
$$\lim_{n \to \infty} \frac{n!}{n^n}$$

Hint: Write $n! = 1 \cdot 2 \cdot 3 \dots n$ and $n^n = n \cdot n \cdot n \dots n$ and use the fact that $0 < \frac{n!}{n^n}$

Proof. Let $a_n = \frac{n!}{n^n}$. Expand using the definitions of the factorial and exponentiation:

$$a_n = \frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \dots n}{n \cdot n \cdot n \dots n} = \frac{1}{n} \cdot \frac{2}{n} \dots \frac{n-1}{n} \cdot \frac{n}{n} = \frac{1}{n} \cdot \frac{2}{n} \dots \frac{n-1}{n} = \prod_{k=1}^{n-1} \frac{k}{n}$$

For each term in the product, since k is constant with respect to n, $\frac{k}{n} \to k \frac{1}{n} \to 0$. By the product rule for limits, $a_n \to \prod 0 = 0$.

(d)
$$\lim_{n \to \infty} \frac{3n^3 + 2n^2 - n - 1}{n^3 + n + 3}$$

Proof. Divide through by n^3 and cancel all trivially zero terms:

$$\lim_{n \to \infty} \frac{3n^3 + 2n^2 - n - 1}{n^3 + n + 3} = \lim_{n \to \infty} \frac{\frac{3n^3}{n^3} + \frac{2n^2}{n^3} - \frac{n}{n^3} - \frac{1}{n^3}}{\frac{n^3}{n^3} + \frac{n}{n^3} + \frac{3}{n^3}}$$

$$= \lim_{n \to \infty} \frac{3 + \frac{2}{n} - \frac{1}{n^2} - \frac{1}{n^3}}{1 + \frac{1}{n^2} + \frac{3}{n^3}}$$

$$= \lim_{n \to \infty} \frac{3 + 0 - 0 - 0}{1 + 0 + 0}$$

$$= 3$$

(e)
$$\lim_{n \to \infty} \frac{n^2 - 2n - 6}{n + 1}$$

Proof. Let $a_n = \frac{n^2 - 2n - 6}{n + 1}$. Perform polynomial division to find $a_n = n - 3 - \frac{3}{1 + n}$. Notice that $\frac{3}{1 + n} \le 3$, so $a_n \ge n - 6$. n - 6 obviously diverges, so a_n diverges to ∞ . \square

Q04. Define a sequence $\{a_n\}$ by $a_1 = 1$ and $a_{n+1} = \frac{7 + a_n}{6}$ for $n \ge 1$.

(a) By induction, show that $\{a_n\}$ is an increasing sequence that is bounded above by 2.

Proof. Let n = 1. $a_n = 1$ and $a_{n+1} = \frac{7+1}{6} = \frac{4}{3}$. Therefore, $a_1 < a_2 < 2$. Suppose that $a_n < a_{n+1} < 2$ for some n. Then,

$$a_n < a_{n+1} < 2$$

$$7 + a_n < 7 + a_{n+1} < 9$$

$$\frac{7 + a_n}{6} < \frac{7 + a_{n+1}}{6} < \frac{3}{2}$$

$$a_{n+1} < a_{n+2} < 2$$

By induction, $a_n < a_{n+1} < 2$ for all n. Therefore, $\{a_n\}$ is increasing and bounded above by 2.

(b) Prove that this sequence is convergent and find $\lim_{n\to\infty} a_n$.

Proof. By the monotone convergence theorem, because $\{a_n\}$ is non-decreasing and bounded above, it must converge. We can therefore let $L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$.

$$L = \lim_{n \to \infty} \frac{7 + a_n}{6}$$

$$= \frac{7 + \lim_{n \to \infty} a_n}{6}$$

$$= \frac{7 + L}{6}$$

$$6L = 7 + L$$

$$L = \frac{7}{5}$$

Q05. Define a sequence $\{a_n\}$ by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + a_n}$ for $n \ge 1$.

(a) By induction, show that $\{a_n\}$ is an increasing sequence that is bounded above by 3.

Proof. Let n=1, so $a_n=\sqrt{2}$ and $a_{n+1}=\sqrt{2+\sqrt{2}}\approx 1.85$. As required, $a_n< a_{n+1}<3$.

Suppose $a_n < a_{n+1} < 3$ for some n. Then,

$$a_n < a_{n+1} < 3$$

$$2 + a_n < 2 + a_{n+1} < 5$$

$$\sqrt{2 + a_n} < \sqrt{2 + a_{n+1}} < \sqrt{5}$$

By induction, $a_n < a_{n+1} < 3$ for all n. Therefore, $\{a_n\}$ is increasing and bounded above by 3.

(b) Prove that this sequence is convergent and find $\lim_{n\to\infty} a_n$.

Proof. By the monotone convergence theorem, because $\{a_n\}$ is bounded above and non-decreasing, it converges to a limit L. Recall that if $a_n \to L$, then $a_{n+1} \to L$:

$$L = \lim_{n \to \infty} \sqrt{2 + a_n}$$

$$= \sqrt{2 + \lim_{n \to \infty} a_n}$$

$$= \sqrt{2 + L}$$

$$L^2 = 2 + L$$

$$0 = L^2 - L - 2$$

$$0 = (L - 2)(L + 1)$$

So L is either -1 or 2. Notice the recursive definition of a_n uses a square root, so $a_n \geq 0$. Therefore, L must be 2.