2ND YEAR - ENSIA

PRE-TUTORIAL EXERCISE

Before the tutorial session, you need to work on the following questions:

- Prove by Induction : If $C(n) = 1^3 + 2^3 + \cdots + n^3$, Then : $C(n) = \frac{1}{4}n^2(n+1)^2$.
- If C is a set with c elements, how many elements are in the power set of C? Prove by Induction.

FXFRCISFS

Exercise C1 (Logic and Proofs):

Prove the following statements:

- 1. By Contrapositive(Contraposition): If n is an integer for which n² is odd, then n is odd.
- 2. By Contradiction: If n is an integer for which n^2 is odd, then n is odd.
- 3. By Contradiction: The Square Root of 2 is Irrational. Hints, an Irrational number is the one that we cannot write as a ratio of two integers.

Exercise C2 (Sets and Functions):

- 1. Write formal descriptions of the following sets.
 - a. The set containing all natural numbers that are less than 5
 - b. The set containing the string aba
 - c. The set containing the empty string
- 2. If A has a elements and B has b elements, how many elements are in $A \times B$? Explain your answer.

Exercise C3 (Languages):

- 1. Given the following formal definition of the language L over the alphabet $\{0,1\}$, such that L = $\{w \mid w = w^R, w^R \text{ is the reversed string of } w \}$
 - a. Is this language finite
 - b. List examples of words from this Language.
- 2. Enumerate a few words from this language. Given the following language $L = \{x \mid \text{there is } w \text{ such that } xw=\text{algeria}\}$. Enumerate all possible strings belonging to the language L.
- 3. Show using mathematical induction that for every $x \in \{a, b\}^*$ such that x begins with a and ends with b, x contains the substring ab.
- 4. Consider the language L of all strings of a's and b's that do not end with b and do not contain the substring bb.
 - a. Is the language L finite?
 - b. Find a finite language S such that $L = S^*$.
- 5. Give an example of two languages L_1 and L_2 such that $L_1^* \cup L_2^* \neq (L_1 \cup L_2)^*$

Exercise P1 (Optional):

Prove the following:

- 1. By Contrapositive: For every three positive integers i, j, and n, if i*j=n, then $i \le \sqrt{n}$ or $j \le \sqrt{n}$
- 2. By Direct Proof: If n is an odd integer, then n² is an odd integer
- 3. By Induction that for every integer $n \ge 4$, $n! > 2^n$.
- 4. By Contradiction : There exists no integers a and b for which 21a + 30b = 1
- 5. $n \in N$. If $2^n 1$ is prime, then n is prime
- 6. Without using Induction, find the formula for $1^3 + 2^3 + 3^3 + 4^3 + ... + n^3 = ?$

Exercise P2 (Optional):

- 1. Let L_1 and L_2 be subsets of $\{a, b\}^*$.
 - a. Show that if $L_{\scriptscriptstyle 1} \,\subseteq\, L_{\scriptscriptstyle 2}$, then $L_{\scriptscriptstyle 1}^{\,*} \,\subseteq\, L_{\scriptscriptstyle 2}^{\,*}$.
 - b. Show that $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$.
- 2. Let L_1 , L_2 , and L_3 be languages over some alphabet . In each case below, two languages are given. Say what the relationship is between them. (Are they always equal? If not, is one always a subset of the other?) Give reasons for your answers, including counterexamples if appropriate.
 - a. L_1 (L_2 \cap L_3) **vs** L_1 L_2 \cap L_1 L_3
 - b. $L_1^* \cap L_2^*$ **vs** $(L_1 \cap L_2)^*$
 - c. $L_1^* L_2^*$ **vs** $(L_1 L_2)^*$

Exercise P4 (Optional):

Pages of a book are numbered sequentially starting with 1. If the total number of decimal digits used is equal to 1578, how many pages are there in the book?

Exercise P5 (Optional):

Find the error in the following proof that $\mathbf{2} = \mathbf{1}$.: Consider the equation a = b. Multiply both sides by a to obtain $a^2 = ab$. Subtract b^2 from both sides to get : $a^2 - b^2 = ab - b^2$. Now factor each side, (a + b)(a - b) = b(a - b), and divide each side by (a - b) to get a + b = b. Finally, let a and b equal 1, which shows that a = b.

Exercise P6 (Optional):

Without the help of a computer or calculator, find the total sum of the digits in all integers from 1 to a million, inclusive.

Exercise P7 (Optional):

Suppose A is a set having n elements.

- 1. How many relations are there on A?
- 2. How many reflexive relations are there on A?
- 3. How many symmetric relations are there on A?
- 4. How many relations are there on A that are both reflexive and symmetric?

Exercise P8 (Optional):

There are five items of different weights and a two-pan balance scale with no weights. Order the items in increasing order of their weights, making no more than seven weighings.