Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 2 of 2 returned.

1. Document ID: JP 03207703 A

L12: Entry 1 of 2

File: JPAB

Sep 11, 1991

PUB-NO: JP403207703A

DOCUMENT-IDENTIFIER: JP 03207703 A

TITLE: PREPARATION OF OLEFIN POLYMRIZATION CATALYST

PUBN-DATE: September 11, 1991

INVENTOR-INFORMATION:

NAME

COUNTRY

EWEN, JOHN

ELDER, MICHAEL J

ASSIGNEE-INFORMATION:

NAME

COUNTRY

FINA TECHNOL INC

APPL-NO: JP02288599

APPL-DATE: October 29, 1990

INT-CL (IPC): C08F 10/00; C07F 17/00; C08F 4/603

ABSTRACT:

PURPOSE: To obtain an inexpensive and high activity catalyst without by- producing a Lewis acid and with controlling the formation of a catalyst poison by bringing a metallocene neutral derivative into contact with an ionization ionic compound containing a carbonium, etc., and no active proton to ionize the metallocene derivative.

CONSTITUTION: An olefin is polymerized by a catalyst prepared by bringing a metallocene neutral derivative represented by the formula [Cp is (substituted) cyclopentadienyl; M is a group III, IV, V or VI metal; R is a hydride, a halogen, amido, hydrocarbyl; p is 1-4] into contact with an ionization ionic compound containing no active proton and simultaneously containing a carbonium, oxonium or sulfonium cation, its anion being not coordinated to a metallocene cation or being only loosely coordinated the metallocene cation and chemically non- reactive with the metallocene cation to ionize the metallocene and thus, forming an ion pair which acts as a catalyst.

COPYRIGHT: (C) 1991, JPO

Full Title Citation Front Review Classification Date Reference Sequences Little Comments Claims KWC Draw De

□ 2. Document ID: EP 426637 A, JP 3224789 B2, CA 2027123 A, JP 03207703 A, CN 1051311 A, EP 426637 B1, DE 69018376 E, ES 2071086 T3, CN 1105673 A, JP 2943310 B2, JP 11315111 A, KR 165843 B1, CA 2027123 C, EP 426637 B2

L12: Entry 2 of 2

File: DWPI

May 8, 1991

DERWENT-ACC-NO: 1991-135000

DERWENT-WEEK: 200172

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Metallocene catalysts for polymerisation of olefin(s) - by mixing neutral

metallocene cpd. with ionising cpd. like tri:phenyl-carbenium

tetra:kis:penta:fluoro:phenyl

INVENTOR: ELDER, M J; EWEN, J A ; EWEN, J

PATENT-ASSIGNEE:

ASSIGNEE

CODE

FINA TECHNOLOGY INC

COSD

PRIORITY-DATA: 1989US-0419046 (October 30, 1989)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGŲAGE	PAGES	MAIN-IPC
EP 426637 A	May 8, 1991		009	
JP 3224789 B2	November 5, 2001		007	C08F004/643
CA 2027123 A	May 1, 1991		000	
JP 03207703 A	September 11, 1991		000	
CN 1051311 A	May 15, 1991		000	
EP 426637 B1	April 5, 1995	E	014	C08F004/76
DE 69018376 E	May 11, 1995		000	C08F004/76
ES 2071086 T3	June 16, 1995		000	C08F004/76
CN 1105673 A	July 26, 1995		000	C08F010/00
JP 2943310 B2	August 30, 1999		800	C08F004/643
JP 11315111 A	November 16, 1999		007	C08F004/643
KR 165843 B1	March 20, 1999	•	000	C08F004/00
CA 2027123 C	September 4, 2001	E	000	C07F007/00
EP 426637 B2	September 26, 2001	E	000	C08F004/76

DESIGNATED-STATES: AT BE CH DE ES FR GB GR IT LI LU NL SE AT BE CH DE DK ES FR GB GR IT LI LU NL SE AT BE CH DE DK ES FR GB GR IT LI LU NL SE

CITED-DOCUMENTS: 1. Jnl. Ref; A3...199132 ; EP 277003 ; EP 277004 ; NoSR. Pub

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

EP 426637A

October 9, 1990

1990EP-0870174

JP 3224789B2

October 29, 1990 1990JP-0288599

Div ex

JP	3224789B2	October 29, 1990	1999JP-0057053	
JР	3224789B2		JP 11315111	Previous Publ.
JP	03207703A	October 29, 1990	1990JP-0288599	
EP	426637B1	October 9, 1990	1990EP-0870174	
DE	69018376E	October 9, 1990	1990DE-0618376	
DE	69018376E	October 9, 1990	1990EP-0870174	
DE	69018376E		EP 426637	Based on
ES	2071086T3	October 9, 1990	1990EP-0870174	
ES	2071086T3		EP 426637	Based on
CN	1105673A	October 30, 1990	1990CN-0108884	Div ex
CN	1105673A	October 30, 1990	1994CN-0118620	
JP	2943310B2	October 29, 1990	1990JP-0288599	
JР	2943310B2		JP 3207703	Previous Publ.
JР	11315111A	October 29, 1990	1990JP-0288599	Div ex
JP	11315111A	October 29, 1990	1999JP-0057053	
KR	165843B1	October 10, 1990	1990KR-0016063	
CA	2027123C	October 9, 1990	1990CA-2027123	
EP	426637B2	October 9, 1990	1990EP-0870174	

INT-CL (IPC): B01J 31/12; C07F 7/00; C07F 17/00; C08F 4/00; C08F 4/60; C08F 4/603; C08F 4/64; C08F 4/643; C08F 4/76; C08F 10/00

RELATED-ACC-NO: 1995-089291;1997-447966

ABSTRACTED-PUB-NO: EP 426637A

BASIC-ABSTRACT:

Metallocene catalysts for the polymerisation of olefins esp. polypropylene are prepd. by mixing in a neutral solvent e.g. toluene, an ionising agent with a neutral metallocene cpd. The ionising ionic cpd. does not contain any active protons and is a carbonium, oxonium of sulphonium type cation. The anion associated with this cation is not coordinated or only loosely coordinated to the metallocene cation and is chemically unreactive to it. Neutral metallocene cpds. are selected from materials with the general formula Cp2MRp where Cp is a cyclopentadienyl or a substd. cyclopentadienyl gp., each Cp being the same or different M is a Group III, IV or VI metal, R is a hydride, halogen, amide or hydrocarbyl radical where R can be the same or diff. but only one R=H and p=1-4.

USE/ADVANTAGE - Olefin polymerisation catalysts can be prepd. having a high activity and which produce no Lewis base type side products. Methylaluminoxane is unnecessary as a co-catalyst in the polymerisation of PP and the resultant polymers are free from aluminium oxide. The polymer is also free from undesirable and toxic amines.

EP 426637B
EOUIVALENT-ABSTRACTS:

ABSTRACTED-PUB-NO:

Metallocene catalysts for the polymerisation of olefins esp. polypropylene are prepd. by mixing in a neutral solvent e.g. toluene, an ionising agent with a neutral metallocene cpd. The ionising ionic cpd. does not contain any active protons and is a carbonium, oxonium of sulphonium type cation. The anion associated

with this cation is not coordinated or only loosely coordinated to the metallocene cation and is chemically unreactive to it. Neutral metallocene cpds. are selected from materials with the general formula Cp2MRp where Cp is a cyclopentadienyl or a substd. cyclopentadienyl gp., each Cp being the same or different M is a Group III, IV or VI metal, R is a hydride, halogen, amide or hydrocarbyl radical where R can be the same or diff. but only one R=H and p=1-4.

USE/ADVANTAGE - Olefin polymerisation catalysts can be prepd. having a high activity and which produce no Lewis base type side products. Methylaluminoxane is unnecessary as a co-catalyst in the polymerisation of PP and the resultant polymers are free from aluminium oxide. The polymer is also free from undesirable and toxic amines.

CHOSEN-DRAWING: Dwg.0/0ne

TITLE-TERMS: METALLOCENE CATALYST POLYMERISE OLEFIN MIX NEUTRAL METALLOCENE COMPOUND IONISE COMPOUND TRI PHENYL CARBENIUM TETRA PENTA FLUORO PHENYL

DERWENT-CLASS: A17 E12

CPI-CODES: A02-A06; A02-A07; A04-G01A; A04-G03A; E05-L; E05-M; E05-N; E05-P;

CHEMICAL-CODES:

Chemical Indexing M3 *01*

Fragmentation Code

A400 A422 A500 A540 A600 A672 A923 A940 C000 C100

C101 C710 C801 C802 C803 C804 C805 C806 C807 G010

G011 G012 G013 G019 G020 G021 G022 G029 G030 G031

G032 G033 G034 G035 G036 G037 G039 G040 G100 G111

G112 G113 G211 G299 G310 G399 G551 G599 H721 H722

H723 J011 J012 J013 J014 J371 J372 J373 M121 M122

M124 M126 M129 M132 M135 M144 M210 M211 M212 M213

M214 M215 M216 M220 M221 M222 M223 M224 M225 M226

M231 M232 M233 M240 M250 M280 M281 M282 M283 M311

M312 M313 M314 M315 M316 M320 M321 M322 M323 M331 M332 M333 M340 M342 M351 M391 M392 M393 M411 M510

M520 M530 M531 M532 M533 M542 M720 M730 M903 M904

N512 N513 Q121

Markush Compounds

199119-B3301-C 199119-B3301-P 199119-B3302-C 199119-B3302-P 199119-B3303-C

199119-B3303-P

UNLINKED-DERWENT-REGISTRY-NUMBERS: 0326S; 0964S

POLYMER-MULTIPUNCH-CODES-AND-KEY-SERIALS:

Key Serials: 0034 3003 0206 0073 0076 0079 0082 0085 0088 0091 0094 0097 0172 0175 0178 0181 0227 0232 0233 0248 2051 2066 3207 3208 2073 2074 2093 2096 2318 2667 2675 2676

Multipunch Codes: 014 02- 034 041 046 050 07& 08& 08- 09& 09- 10& 10- 13- 15& 17& 17- 18& 18- 19& 20- 260 273 278 316 347 351 355 525 528 546 57& 58& 604 608 62- 679 688 689 691 693

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1991-058132

⑩ 日本国特許庁(JP)

① 特許出願公開

◎ 公開特許公報(A) 平3-207703

30 Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)9月11日

C 08 F 10/00 C 07 F 17/00 C 08 F 4/603

MFG

8619-4H 8016-4 J

審査請求 未請求 請求項の数 2 (全8頁)

図発明の名称

オレフイン重合触媒の製造法

②特 願 平2-288599

20出 願 平2(1990)10月29日

優先権主張

€2 24 BB ±12.

30日9天国(US)9419046

個発 明 者

ジョン・ユーエン

アメリカ合衆国テキサス州77058ヒユーストン・ケントウ

ツドアベニュー 16615

⑫発 明 者

勿出

願人

マイケル・ジエイ・エ

アメリカ合衆国テキサス州77546フレンズウツド・ストー

ルダー

ンレツジ 706

フイナ・テクノロジ ー・インコーポレーテ アメリカ合衆国テキサス州75221ダラス・ピーオーポツク

ス 410

ッド

個代 理 人

弁理士 小田島 平吉

明報書

1. [発明の名称]

オレフイン重合触媒の製造法

2. [特許請求の範囲]

1. a) イオン化イオン性化合物をメタロセン の中性誘導体と混合し、そして

b) メタロセンがイオン化イオン性化合物によってイオン化され且つメタロセンカチオンが触媒として働くイオン対が生成するように、イオン化イオン性化合物及びメタロセンの中性誘導体を接触させる、

ことを含んでなる、但し

メタロセンの中性誘導体が一般式

Cp₂MRp

[式中、Cpはシクロペンタジエニル又は置換シクロペンタジエニル基であり、各 Cpは 同一でも異なってもよく、M は第 II、IV、 V 又は VI 族の金属であり、R はヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各R は同一でも異なってもよく、但し1つの

R \mathcal{L} that L F \mathcal{L} F \mathcal{L} F \mathcal{L} F \mathcal{L} T \mathcal{L} \mathcal{L} A \mathcal{L} T \mathcal{L} T \mathcal{L} S \mathcal{L} T \mathcal{L} S \mathcal{L} T \mathcal{L} S \mathcal{L} T \mathcal{L} S \mathcal{L} T \mathcal{L} T \mathcal{L} S \mathcal{L} S \mathcal{L} T \mathcal{L} S \mathcal{L} S \mathcal{L} S \mathcal{L} T \mathcal{L} S $\mathcal{L$

のものであり、

イオン化イオン性化合物は活性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロセンカチオンに配位せず或いはゆるくしか配位せず且つメタロセンカチオンと化学的に反応しない、触媒の製造法。

2. a) イオン化イオン性化合物をメタロセン の中性誘導体と混合し、

b) メタロセンがイオン化イオン性化合物によってイオン化され且つメタロセンカチオンが触媒として働くイオン対が生成するように、イオン化イオン性化合物及びメタロセンの中性誘導体を接触させ、そして

c) この触媒を重合条件下にオレフインと接触させる、

ことを含んでなる、伹し

メタロセンの中性誘導体が一般式

Cp2MRp

[式中、Cpはシクロペンタジエニル文は置換シクロペンタジエニル基であり、各 Cpは同一でも異なってもよく、Mは第Ⅲ、IV、V又はVI族の金属であり、R はヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各Rは同一でも異なってもよく、但し1つのRだけはヒドリドであり、そしてpは1~4である]

のものであり、

イオン化イオン性化合物は活性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロセンカチオンに配位せず或いはゆるくしか配位せず且つメタロセンカチオンと化学的に反応しない、オレフインの重合法。

3. [発明の詳細な説明]

本発明は、一般に触媒の製造法及び特にオレフ

オレフイン、特にプロピレンは重合して種々の 影響、即ちアイソタクチック、シンジオタクチッ ク及びアタクチックのポリオレフインを生成する。 アイソタクチックポリプロピレンは、主に同一の 立体配置の及び少しだけの無規則な短い反転の反 復単位を主領中に含む。アイソタクチックポリプ ロピレンは構造的に

として表現される。

アイソタクチックポリプロピレンは、非晶(非 結晶)状態の重合体とかなり異なる結晶融点及び 他の望しい物理性を有する非常に結晶性の重合体 である。

シンジオタクチック重合体は主に正確に交互の 立体異性体の単位を含み、構造式

によって表わされる。

反復単位の立体配置が規則的でない重合体鎖は

インを重合させるための触媒の製造法に関する。

要するに本発明はイオン性メタロセン化合物の新規な製造法に関する。この化合物はオレフィン、主にプロピレンの重合に対する触媒として有用である。この方法は中性メタロセン化合物をイオン化がある。このイオン化がある。このイオン化ができ合有せず、カルボニウム、オキソニウム又はスルホニウムカチオンはではないはゆるくしか配位です。よたメタロシアニンカチオンと化学的に反応しない。1つのそのような化合物はトリフェニルカルベニウムテトラキス(ペンタフルオルフェニル)ボロネートである。

本発明による触媒の製造法は、高活性の触媒を 製造し、そして触媒活性を禁止しうる副生物を生 成しない。この新規な合成法はルイス塩基を生成 しないきれいな反応である。本方法は第17 族のメ タロセン誘導体からメチルアニオンを除去するこ とによって活性触媒を生成する。

アタクチック重合体である。商業的な用途において、典型的にはアタクチック重合体のある割合は アイソタクチック形を含んで製造される。

オレフインの重合は基本的にはチーグラーーナッタ触媒を用いる。チーグラーーナッタ触媒のある 種はメチルアルミノキサンを共触媒とする第Ⅳ族 のメタロセン化合物である。オレフインの重合に 対するチーグラーーナッタ触媒が第Ⅳ族のメタロ セン化合物をイオン性化合物と一緒にすることに よって製造しうることが示されている。

$$Cp*_{2}N^{-}R+[C][A] \rightarrow Cp*_{2}^{*}N-R[A]^{-}+L[C]$$

【式中、Cpーペンタメチルシクロペンタジ エニル、

M一第Ⅳ族金属

Rーアルキル

し一配位子

[C]-カチオン

[A]ポテニオン]。

得られる化合物は触媒として作用するメタロセン

カチオンである。イオン性化合物のカチオン[C] はメタロセンと反応してイオン対を生成する。ア ニオン[A]は配位しておらず、或いはカチオンメ タロセンと弛くにだけ配位している。

次の反応は上記反応を行なうために使用された。
1 電子酸化 - この方法は「カチオン性ジシクロペンタジエニルジルコニウム(IV)アルキル錯体」、
M. ボフマン(Bochmanm) L. M. ウイルソン(Vilson)、 J. ケム・ソク・コミュン(Chen. Soc. Commun.)、 1610~1611(1985):「カチオン性アルキルビス(シクロペンタジエニル)チタニウム錯体」、M. ボフマン、L.ウイルソン(Vilson)、オルガノメタリックス(Organometallics)、 6、2556~2563(1987):カチオン性アルキルビス(シクロペンタジエニル)チタン錯体における挿入反応、M. ボフマン(Bochmanm)、L.ウイルソン(Vilson)、オルガノメタリックス、7、1147~1154(1987)によって例示されている。

ヨーロッパ特許第277,003号は、ターナ

がこの発明を例示する:

トリ(n - ブチル)アンモニウムテトラ(ペンタ フルオロフエニル)ホウ素+ビス(シクロペンタ ジエニル)ジルコニウムジメチル →

[Cp₂ZrMe] [BPh₄] + CH₄+トリ (n-ブチル) N。

プロトン化反応の副生物はルイス塩蓋(アミン) であり、そのいくつかはカチオンに配位すること ができ、従って触媒活性を妨害する。出発物質は 触媒毒となる特別なアミンが生成するのを避ける ために注意深く選択しなければならない。更に触 媒及びこの触媒で製造される重合体は望しくない 且つ有毒な残存アミンを含有する。

ー(Turner)の、プロトン化法によって製造される 触媒についての研究に関する。ビス(シクロペン タジエニル)金属化合物は、プロトンを供与しう るカチオン及び複数のホウ素原子を有するアニオ ンをもつ化合物と組合せられる。例えば次の反応 はこの発明を例示する:

 \forall ス(シクロベンタジエニル)ハフニウムジメチル+N、N-ジメチルアニリニウムピス(7、8-ジカルバウンデカボレート)コバルテート(皿)
→ [$Cp_{1}HfMe$] [B] + CH_{4} +N、N-ジメチルアニリン。

但し [B] は7.8 - ジカルバウンデカボランである。

ョーロッパ特許第277.004号は、ターナーの、プロトン化法によって製造される触媒についての研究に関する。ビス(シクロペンタジエニル)金属化合物は、金属化合物の配位子と不可逆的に反応するカチオン及び金属又は金属性イオンの周囲に複数の親油性基をもつアニオンを有するイオン性化合物と一緒にされる。例えば次の反応

べくメタロセン化合物と共に添加する。MAOの機能はアルキル化を開始し、メタロセン化合物のイオン化を促進する。共触媒は触媒活性を減ずる毒物を減少させる捕捉剤である。現在公知の方法は大過剰のMAOの添加を必要とする。MAOは比較的高価という欠点がある。これは触媒系を高価格にする。

従って本発明の目的はオレフインの重合に対す る改良された触媒の製造法を提供する。

また本発明の目的は比較的高活性な触媒の製造 法を提供する。

また本発明の目的はルイス塩基を副生物として 有さないメタロセンカチオンを合成することであ **

更に本発明の目的は触媒毒として生成するかも 知れない副生物を制御するために出発原料を選択 することの必要性を排除することである。

更に本発明の目的はプロピレンの重合における 共触媒としてのメチルアルミノキサン(MAO) を排除することである。 更に本発明の目的は酸化アルミニウムを含まない 重合体を製造することである。

また本発明の目的は望ましくない且つ有毒なア ミンを含まない重合体を製造することである。

これらの及び他の目的はイオン化剤例えばトリフェニルカルペニウムテトラキス(ペンタフルオルフェニル)ポロネートをメタロセンの誘導体と混合し、そしてこの混合物をオレフインに添加することによって達成される。

本発明はメタロセンを、活性プロトンを含有しない且つメタロセンのカチオンに配位しない又はゆるくしか配位しないアニオンを有するイオン化剤でイオン化することによるオレフインの重合用の触媒を製造することに関する。またそのアニオンはこのアニオンと反応もしない。

本新規な合成法において、イオン化イオン性化 合物はメタロセンの中性誘導体と混合され、次の 反応式に従って反応する:

Cp:MRp+[C*][A*] → [Cp:MRp-1]*[A*]*+R[C*] [式中、Cpはシクロペンタジエニル又は置

セン1モル:イオン化化合物 2 モルである。最も 好適なモル比はメタロセン1モル:イオン化化合 物1モルである。混合後に、混合物を重合を行な う条件下にオレフインに添加する。好適なオレフ インはエチレン及びプロピレンであり、プロピレ ンが最も好適である。

カルボニウム、オキソニウム又はスルホニウム アニオンを含有するイオン性化合物例えばトリフ エニルカルベニウムテトラキス(ペンタフルオル フエニル)ボロネートをメタロセンの中性誘導体 と混合する。トリフエニルカルベニウムテトラキ ス(ペンタフルオルフエニル)ボロネートはメタ ロセンをイオン化するイオン化剤として働く。こ の結果カチオン性メタロセン化合物が生成する。

トリフェニルカルベニウムテトラキス(ペンタ フルオルフェニル)ボロネート[PhaC][BPh*。] は次の反応式で製造される:

 $Ph_*CCl+LiBPh_* \rightarrow [Ph_*C][BPh_*]$ + LiCl

[式中、Phはフエニルであり、そしてPh*は

換シクロペンタジエニル基であり、各 C pは
同一でも異なってもよく、M は第Ⅲ、Ⅳ、Ⅴ
又は VI 族の金属であり、R はヒドリド、ハロ
ゲン、アミド又はヒドロカルビル基であり、
各 R は同一でも異なってもよく、但し1つの
R だけはヒドリドであり、そしてpは1~4
であり、C*はカルボニウム、オキソニウム
又はスルホニウムカチオンであり、そして A
*はメタロセンのカチオンに配位しない又は
ゆるくしか配位しない且つ [C p₂M R p-₁]
と化学的に反応しないアニオンである]。

各反応物はメタロセンカチオンに配位しない又はゆるくしか配位しない溶媒中に入れられる。そのような溶媒の例はトルエン及び塩化メチレンである。好適な溶媒はトルエンである。 2 つの反応物を同一の溶媒に別々に溶解し、そしてメタロセン10モル:イオン化化合物1モル〜メタロセン1モル:イオン化化合物1モルの範囲にあるモル比で室温下に一緒に混合する。好適なモル比はメタロセン2モル:イオン化化合物1モル〜メタロ

ペンタフルオルフエニルである]。

トリフエニルカルベニウムはカチオンである。テトラキス (ペンタフルオルフエニル) ボロネートはアニオンである。

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネートは次の実験室法で製造した。PhaCC127.1ミリモルの、塩化メチレン150cc中明黄色溶液を、塩化メチレン350cc中にスラリーとしたLiB(CoF4)425gに25℃で滴下した。複色のスラリーを30分間撹拌し、濾過した。[PhaC][BPh*4]及びLiC1を含有する固体を塩化メチレンで洗浄した。一緒にした洗浄液及び濾液を75ccまで濃縮し、次いで迅速に撹拌しながらベンタン400cc中へ管を通して導入した。固体をベンタンで数回及び少量のトルエンで数回洗浄し、[PhaC][BPh*4]の明黄色の粉末を得た。収量は20g(75%)であった。

メタロセンの中性誘導体は一般式 Cp₁MRp [式中、Cpはシクロペンタジエニル又は置換シクロペンタジエニル基であり、各Cpは同一でも異なってもよく、Mは第Ⅲ、IV、V又はVI族の金属であり、好ましくは第IV族の金属例えばチタン、ハフニウム又はジルコニウム、最も好ましくは高触媒活性に対してジルコニウム及び高分子量に対してハフニウムであり、Rはヒドリド、ハロゲン、アミドマはヒドロカルビル基例えば炭素数1~20のアルキル、アリール、アルケニル、アルケニル、アルケール、アルケールであり、各Rは同一でも異なってもよく、但しRがヒドリドならば1つのRだけがヒドリドであり、そしてpは1~4である]

のものである。好適なメタロセンの中性誘導体は、 エチレンピス(テトラヒドロインデニル)ジルコ ニウムジメチル、エチレンピス(インデニル)ジ ルコニウムジメチル及びイソプロピリデン(シク ロペンタジエニルー1ーフルオレニル)ジルコニ ウムジメチルである。最も好適なメタロセンの中

混合物を注射器により21 のジッパークレーブ
(Zipperclave)反応器に添加した。この反応器に
プロピレン1.01 を添加した。反応器の温度を
70℃に設定した。反応器の内容物を撹拌した。
60分間の重合期間中温度は70℃のままであった。次いでプロピレンを反応器から放出させた。
反応器の内容物をアセトンで洗浄し、真空炉中で
乾燥した。

この重合体を融点に関して分析した。融点は示 差掃査熱量計(DSC)によった。結果を第Ⅰ表 に示す。

実施例Ⅱ

トリフエニルカルペニウムテトラキス(ペンタフルオルフエニル)ボロネート40mg及びEt(IndH₄)ZrMe₁20mgを用いる以外実施例Iの方法に従った。結果を第I表に示す。

実施例皿

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネート30mg及びEt(IndH₄)2rMe:15mgを用いて実施例Iの方法を

性誘導体はエチレンビス (インデニル) ジルコニ ウムジメチルである。

オレフインの重合は、メタロセンを用いるオレフインの重合に対して公知の手段により、例えばパルク、スラリー又は気相での重合により行なわれる。ポリプロピレンの場合、重合温度は-80~150~、好ましくは25~90~、最も好ましくは50~80~の範囲である。

本発明を一般的に記述してきたが、次の実施例は本発明の特別な例として且つその実施と利点を示すために与えられる。従って実施例は例示のために与えられ、いずれの場合にも本明細書又は特許求の範囲を限定する意図をもたないことが理解される。

実施例Ⅰ

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネート 5 5 mgをトルエン 5 ccに溶解した。 Et(IndH4): ZrMe:をトルエン5 ccに溶解した。 2 つの溶液を室温で 5 分間一緒に混合して明賞色の溶液を得た。

繰り返した。反応器の温度を80℃に設定したが、 温度は80℃のままであった。結果を第1表に示 す。

実施例Ⅳ

トリフエニルカルベニウムテトラキス(ペンタフルオルフエニル)ボロネート60mg及びEt(IndH4)ZrMex60mgを用いて実施例Iの方法を繰り返した。反応器の温度を50℃に設定したが、温度は100℃に上昇した。反応時間は10分であった。結果を第Ⅰ表に示す。

実施例V

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネート 5 5 mg及び E t(IndH₄) Z rMe₂ 5 5 mgを用いて実施例 I の方法を繰り返した。反応器の温度を50℃に設定したが、温度は160℃に上昇した。反応時間は10分であった。結果を第 I 表に示す。

実施例VI

トリフエニルカルベニウムテトラキス (ペンタ フルオルフエニル) ポロネート100≡g及び E t (Ind): ZrMe: 60 mgを用いて実施例Iの方法を 繰り返した。反応器の温度を50℃に設定したが、 温度は50℃のままであった。結果を第I表に示 す。

実施例切

トリフェニルカルベニウムテトラキス(ペンタフルオルフェニル)ボロネート100mg及びEt (Ind)₂ZrMe₂60mgを用いて実施例Iの方法を 繰り返した。反応器の温度を50℃に設定したが、 温度は50℃のままであった。結果を第I裏に示す。

実施例证

トリフェニルカルベニウムテトラキス(ベンタフルオルフェニル)ボロネート120mg及びiPr (Cp-1-Flu)ZrMe₂80mgを用いて実施例Iの 方法を繰り返した。反応器の温度を70℃に設定 したが、温度は100℃以上に上昇した。結果を 第1表に示す。

客族例区

トリフエニルカルベニウムテトラキス(ペンタ

	4	50	60	10	
	5	50	55	10	
	Et(Ind),ZrH	E 1	[Ph:C][BPh*4]		
	6	60	100	60	
	7	60	100	30	
	iPr(Cp-1-Flu)	ZrMe:	[PhaC][BPh*4]		
	8	80	120	5	
	9	60	100	60	
1	10	40	60	60	

- Et(E₄Ind)₂ZrWe₂=エチレンビス(テトラヒドロインデニル)ジルコニウムジメチル
 Et(Ind)₂ZrWe₂ =エチレンビス(インデニル)ジルコニウムジメチル
 - iPr(Cp-1-Flu)ZrHe₁=イソプロピリデン(シ クロペンタジエニルー1-フルオレニル)ジ ルコニウムジメチル
- ** [Ph_{*}C][BPh*₄]=トリフエニルカルベニウム テトラキス(ベンタフルオルフエニル)ボロ ネート

フルオルフェニル)ボロネート100mg及びiPr (Cp-1-Flu)ZrMez60mgを用いて実施例Iの 方法を繰り返した。反応器の温度を70℃に設定 したが、温度は78℃以上に上昇した。結果を第 I 表に示す。

実施例X

トリフエニルカルベニウムテトラキス(ベンタフルオルフエニル)ボロネート 6 0 mg及びi Pr (Cp-1-F1u) Z rMe₂ 4 0 mgを用いて実施例 I の 方法を繰り返した。反応器の温度を 7 0 ℃に設定 した。結果を第 I 表に示す。

本発明の方法を用いる上述の実験から次の結果 を得た。

第Ⅰ表

実施例 番号	触媒↑	イオ	ン化剤**	時間 <u>分</u>
	Et(IndH4) 2Z	rle z	[PhaC][8Ph*	4]
1		40	55.	60
2		20	40	60
3		15	30	80

実施例	温度	収量	直續
番号	℃	g	უ
1	70	9	138
2	50	55	138
3	80	45	131
4	50*	74	134
5	50*	135	; -
6	50	19	137
7	50	11	134
8	70*	224	115
. 9	70**	51	
10	70***	186	119

- * 制御できない反応;ピーク反応温度>100℃
- ** 発熱;ピーク反応温度78℃

*** 発無

本発明によって記述した方法は、オレフインの 重合における触媒として使用される。本発明によ る触媒の製造法は、高活性を有する触媒を生成し、 そして触媒活性を禁止しうる副生物を減ずる。こ の新規な合成法はルイス塩基を生成しないきれい な反応である。本方法は第Ⅳ族のメタロセン誘導 体からメチルアニオンを除去することによって活 性な触媒を生成する。

明らかに本発明の多くの改変及び変化は上記の数示を参考にして可能である。それ故に特許請求の範囲内において、本発明は本明細書に特に記述したもの以外にも実施しうることを理解すべきである。

本発明の特徴及び態様は以下の通りである。

- 1. a) イオン化イオン性化合物をメタロセン の中性誘導体と混合し、そして
- b) メタロセンがイオン化イオン性化合物によってイオン化され且つメタロセンカチオンが触媒として働くイオン対が生成するように、イオン化イオン性化合物及びメタロセンの中性誘導体を接触させる、

ことを含んでなる、但し

メタロセンの中性誘導体が一般式

C D . M R D

[式中、Cpはシクロペンタジエニル又は置

- 4. メタロセンの中性誘導体とイオン性化合物のモル比がメタロセン10モル:イオン化化合物1モルからメタロセン1モル:イオン化化合物10モルまでの範囲にある上記3の方法。
- 5. メタロセンの中性誘導体とイオン性化合物のモル比がメタロセン2モル:イオン化化合物1モルからメタロセン1モル:イオン化化合物2モルまでの範囲にある上記4の方法。
- 6. メタロセンの中性誘導体とイオン性化合物 のモル比がメタロセン1モル:イオン化化合物1 モルである上記5の方法。
- 7. 金属がチタン、ジルコニウム及びハフニウムからなる群から選択される第Ⅳ族の金属である上記4の方法。
 - 8. 金属がハフニウムである上記7の方法。
 - 9. 金属がジルコニウムである上記了の方法。
- 10. Rが炭素数1~20のアルキル基、アリール基、アルケニル基、アルキルアリール基及びアリールアルキル基からなる群から選択されるヒドロカルビル基である上記9の方法。

換シクロペンタジエニル基であり、各Cpは同一でも異なってもよく、Mは第回、IV、V 又はVI族の金属であり、Rはヒドリド、ハロ ゲン、アミド又はヒドロカルビル基であり、 各Rは同一でも異なってもよく、但し1つの Rだけはヒドリドであり、そしてpは1~4 である!

のものであり、

イオン化イオン性化合物は活性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロセンカチオンに配位せず或いはゆるくしか配位せず且つメタロセンカチオンと化学的に反応しない、 触媒の製造法。

- 2. 混合前に、イオン化イオン性化合物を、メ タロセンカチオンに配位しない又はゆるくしか配 位しない溶媒に溶解する上配1の方法。
- 3. 混合前に、メタロセンの中性誘導体を別に同一の溶媒に溶解する上記2の方法。
- 11. メタロセンの中性誘導体がエチレンビス (テトラヒドロインデニル) ジルコニウムジメチル、エチレンビス (インデニル) ジルコニウムジメチル及びイソプロビリデン (シクロペンタジエニルー1-フルオレニル) ジルコニウムジメチルからなる群から選択される上記10の方法。
- 12. メタロセンの中性誘導体がエチレンビス (インデニル) ジルコニウムジメチルである上記 11の方法。
- 13. イオン性化合物がトリフエニルカルベニ ウムテトラキス (ペンタフルオルフエニル) ボロ ネートである上記12の方法。
 - 14. 溶媒がトルエンである上記13の方法。
- 15. a) イオン化イオン性化合物をメタロセンの中性誘導体と混合し、
- b)メタロセンがイオン化イオン性化合物によってイオン化され且つメタロセンカチオンが触媒として働くイオン対が生成するように、イオン化イオン性化合物及びメタロセンの中性誘導体を接触させ、そして

c) この触媒を重合条件下にオレフインと接触させる、

ことを含んでなる、但し

メタロセンの中性誘導体が一般式

Cp₂MRp

[式中、Cpはシクロペンタジエニル又は置換シクロペンタジエニル基であり、各 Cpは同一でも異なってもよく、M は第Ⅲ、Ⅳ、V 又は VI族の金属であり、R はヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各 R は同一でも異なってもよく、但し1つのR だけはヒドリドであり、そしてpは 1~4である]

のものであり、

イオン化イオン性化合物は活性プロトンを含有 せず且つカルボニウム、オキソニウム又はスルホ ニウムカチオンを含み、そして

イオン化イオン性化合物のアニオンは、メタロ センカチオンに配位せず或いはゆるくしか配位せ ず且つメタロセンカチオンと化学的に反応しない、

- 22. 金属がハフニウムである上記21の方法。23. 金属がジルコニウムである上記21の方
- 24. Rが炭素数1~20のアルキル基、アリール基、アルケニル基、アルキルアリール基及びアリールアルキル基からなる群から選択されるヒドロカルビル基である上配23の方法。
- 25. メタロセンの中性誘導体がエチレンピス (テトラヒドロインデニル) ジルコニウムジメチル、エチレンピス (インデニル) ジルコニウムジ メチル及びイソプロピリデン (シクロペンタジエ ニルー1ーフルオレニル) ジルコニウムジメチル からなる群から選択される上配24の方法。
- 26. メタロセンの中性誘導体がエチレンビス (インデニル) ジルコニウムジメチルである上記 25の方法。

27. イオン性化合物がトリフエニルカルベニ ウムチトラキス (ペンタフルオルフエニル) ポロ ネートである上配26の方法。

28.溶媒がトルエンである上記27の方法。

オレフインの重合法。

16. 混合前に、イオン化イオン性化合物を、 メタロセンカチオンに配位しない又はゆるくしか 配位しない溶媒に溶解する上記15の方法。

17. 混合前に、メタロセンの中性誘導体を別に同一の溶媒に溶解する上記16の方法。

18. メタロセンの中性誘導体とイオン性化合物のモル比がメタロセン10モル:イオン化化合物1モルからメタロセン1モル:イオン化化合物10モルまでの範囲にある上記17の方法。

19. メタロセンの中性誘導体とイオン性化合物のモル比がメタロセン2モル:イオン化化合物 1モルからメタロセン1モル:イオン化化合物2 モルまでの範囲にある上記18の方法。

20. メタロセンの中性誘導体とイオン性化合物のモル比がメタロセン1モル:イオン化化合物 1モルである上配19の方法。

21. 金属がチタン、ジルコニウム及びハフニウムからなる群から選択される第Ⅳ族の金属である上記18の方法。

29. -80~150℃の範囲の反応温度で開 始する上記28の方法。

30.25~90℃の範囲の反応温度で開始する上記29の方法。

31.50~80℃の範囲の反応温度で開始する上記30の方法。

特許出願人 フイナ・テクノロジー・インコーポ レーテツド

代 理 人 弁理士 小田島 平

