Rajiv Gandhi Institute of Petroleum Technology

BTP PRESENTATION

FLOW ASSURANCE USING OLGA SOFTWARE

PETROLEUM ENGINEERING & GEO-SCI DEPARTMENT

SUBMITTED BY
RITESH RAGHUVANSHI - 20PE3035
MANOJ KUMAR L M - 20PE3018

FACULTY MENTOR
DR. SHAILESH KUMAR

INTRODUCTION

• Flow Assurance is a process that is used to ensure that hydrocarbon fluids are transmitted economically from the reservoir to the end user over the life of a project in any environment

CHEMICAL COMPOSITION

- Hydrates
- Wax
- Asphaltenes
- inorganic scale
- Naphthenates

MULTIPHASE COMPONENTS

- Oil
- Gas
- Water
- Sand

HEAT TRANSFER

 Understanding temperature profile

OLGA SOFTWARE

- OLGA is a modelling tool for the transportation of oil, natural gas and water in the same pipeline, so-called multiphase transportation.
- The name is short for "oil and gas simulator".
- It's a Transient Dynamic simulator

External Tool Used

 MultiFlash - For generating input fluid files in OLGA

Main windows displayed on the screen

- Components
- Model Browser
- Flow path Geometry Data
- Diagramatic Representation
- Tools

WAX DEPOSITION

 Wax Appearance Temperature (WAT) or Cloud Point is the temperature at which the first wax crystals form.

The primary component of wax in crude oils is n-paraffins (>C16)

CRUDE SAMPLES TAKEN

- SAMPLE A NORMAL CRUDE
- SAMPLE B WAXY CRUDE
- SAMPLE C ASHPALTENE

CRUDE SAMPLE - B

WAT	57.67 C
WAX (mol %)	3 x 10^-3

Temperature:	57.674	°C	Pressure:	1.000	atn
Number of Phases:	3		Solution Stability:	Stable	

Pha	hase Compositions				
	Component	OVERALL (mol fraction)	GAS (mol fraction)	LIQUID1 (mol fraction)	WAX (mol fraction)
95	N75	7.53524092e-07	0	4.901500656e-07	0.02021124295
96	N76	6.08947727e-07	0	3.582121533e-07	0.0166615013
97	N77	4.98981003e-07	0	2.679835734e-07	0.01387384609
98	N78	4.089413179e-07	0	2.038974279e-07	0.01150655073
99	N79	3.352039281e-07	0	1.645986575e-07	0.009453708429
100	N80+	9.607977285e-07	0	1.579749708e-07	0.02981457656
	Total	1	0.7331665312	0.2668026567	3.081209572e-05

WAX PRECIPITATION

- As the temperature decreases the amount of wax formation increases
- The temperature below which the wax starts appearing is the WAT
- As the pressure increases the amount of wax formation decreases

ASPHALTENE PRECIPITATION

- AOP The pressure at which asphaltene precipitation occurs at a given temperature.
- As the pressure decreases the asphaltene precipitation increases till bubble point
- Pressure below bubble point, asphaltene deposition starts to decrease

MULTIPHASE FLOW

- When the pressure and temperature of the crude reduces, gas starts evolving out of oil creating two phase flow in the pipelines
- Due to high velocity of gas, it blocks the passage of oil creating different flow regimes and ultimately reducing production

Churn Flow

Annular Flow

INPUT TOOLS & FUNCTIONS

PIPELINE GEOMETRY DATA

LENGTH	400 m
ELEVATION	400 m
SECTIONS	1
DIAMETER	0.12 m
ROUGHNESS	5 x 10^-5 m

MODEL BROWSER

STRUCTURAL	• MATERIAL • WALL
CASE DEFINITION	PVT FILEWAX FILEASPHALTENE FILE
FLOW COMPONENT	MASS FLOW RATETEMPERATUREPRESSURE
OUTPUT	 INTEGRATION TIME VARIABLES PROFILE DATA TREND DATA

COMPONENTS

INLET	CLOSED NODE
OUTLET	PRESSURE NODE
SOURCE	MASS FLOW
HEAT TRANSFER	OVERALL U VALUE

STEP 1 - INPUT DATA IN MODEL BROWSER

STEP 2 - DEFINE PIPELINE GEOMETRY

STEP 3 - RUN SIMULATION

OBSERVATIONS

CASE 1 - NO WAX DEPOSITION

EFFECT ON HEAT TRANSFER COEFFICIENT

PIPELINE BURRIED UNDER THE SOIL

PIPELINE LENGTH (m)

- Overall Heat Transfer coefficient increases with increase in flow rate
- · Its affected by the surrounding environment and thermal conductivity of soil

EFFECT ON HEAT TRANSFER COEFFICIENT

HEAT TRANSFER COEFFICIENT (W/m^2)

PIPELINE LENGTH (m)

- The value of overall heat transfer coefficient is less when compared to the pipeline burried under the soil
- Heat transfer in vacumn < Heat transfer in soil