大亚湾中微子实验绝对效率研究 Absolute $\bar{\nu}_e$ Detection Efficiency at Daya Bay

顾文强上海交通大学 Wenqiang Gu(SJTU) on behalf of the Daya Bay Collaboration

The Daya Bay Experiment

• Six 2.95GW_{th} nuclear reactor

Eight liquid scintillator detector

• Detector $\bar{\nu}_e$ via inverse beta decay (IBD)

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

• Relative flux + spectrum comparison between near/far sites gives world's best θ_{13} measurement

Measuring Absolute Reactor Flux

- How many neutrinos are coming out of nuclear reactor per fission?
- Current models are based on measurement of fission isotope beta spectra
- Direct measurement of flux at Daya Bay can serve as further validation of existing models, and as a benchmark for use by future reactor experiments

$ar{ u}_e$ Detection Efficiency: A Key Input

- Daya Bay has already detected well over 300,000 inverse beta decays
- Dominant error on flux measurement comes from efficiency uncertainty

Main idea

- Detection efficiency predicted by Monte Carlo (MC)
- But how good/bad is our MC? MC-data comparison.
- Major contributors to detection efficiency uncertainty:
 - ① Gd capture fraction
 - ② Gd-capture gammas detection efficiency
 - ③ $\bar{\nu}_e$ interactions outside the GdLS target

(I) Target Gd Capture Fraction

- 6 MeV delayed energy signal selection cut removes all non-Gd capture (nH & nC)
- Monte Carlo (MC) predicts Gd capture fraction, need constraint from calibration.
- Detector-center Gd fraction measured in many datasets, compared to MC

Data Set	$E_{rec,p}$ (MeV)	KE_n (MeV)	E_{γ} (MeV)	F_{Gd}	Unc _{stat}
Spallation n	=	range	range	85.7	0.2
AmC	0-4	3-5.5	-	85.4	0.15
AmBe	0-7	4-10	5	85.4	0.1
PuC, Ground State	0-4	3-7.5	_	85.5	<0.01
PuC, 1st Excited	0.5-1	<0.6	5		
PuC, 2 nd Excited	5.5-7	< 0.6	6.13	85.5	< 0.1
IBD MC	0.7-12	<0.1	I	85.7	<0.1

C

Target Gd Capture Fraction (cont')

 Full-volume fraction determined by Gd concentration, leakage of neutrons out of GdLS

 Full-volume Gd fraction measured with PuC neutron source deployed via articulating arm, compared to MC

• Total uncertainty ($\delta \epsilon / \epsilon$) of 0.95%

F_{Gd} versus R position of PuC neutron source, detector Z-center

(II) Gd Capture Detection Efficiency

- Gamma spectrum for nGd capture is complicated(~8MeV)
- GEANT4 provides good fit to data > 3MeV
- Treat region below 3 MeV (0.9% of MC nGd) with 100% uncertainty, since nH peak obscures nGd tail in data
- HPGe measurement of nGd \(\gamma \)s: a input from MC cross-check
- Total uncertainty ($\delta \epsilon / \epsilon$) of 0.97%

(III) Spill-In Contributions

- IBD candidates originating from $\bar{\nu}_e$ outside the target: estimated with MC. How about the systematic error?
- MC calibrated with high-energy AmC n source in LS: MC, data agree to 1%
- Tuning of neutron thermal scattering model (<4eV) impacts on both spill-in & neutron's capture time. So constrain spill-in with IBD neutron's capture time via data-MC comparison.
- These constraints give conservative uncertainty ($\delta \epsilon / \epsilon$) of 1.5%

Other Contributions

- High-efficiency cuts common between detectors:
 Ep, timing, and flasher cuts
- Muon-veto, multiplicity cut efficiencies vary with site; small uncertainty
- Target protons uncertainty from target mass, proton density measurements

Results and Future Improvements

- Total absolute detection efficiency common between all detectors of 80.6%
- Total efficiency is a major input in measuring abs. reactor flux at Daya Bay
- Looking to improve uncertainties through further analysis, collection of additional GdLS fullvolume calibration data
- Alternate event selection may minimize major uncertainty contributions

Input	ϵ	$\delta\epsilon/\epsilon$	
Target protons	-	0.47%	
Flasher cut	99.98%	0.01%	
Muon veto cut	-	0.02%	
Multiplicity cut	-	0.02%	
Capture ting cut	98.70%	0.12%	
Prompt energy cut	99.81%	0.10%	
Gd capture ratio	84.2%	0.95%	
nGd detection efficiency	92.7%	0.97%	
Spill-in correction	104.9%	1.50%	
Combined	80.6%	2.08%	

Thank you! 谢谢!

