Übung "Grundbegriffe der Informatik"

23.12.2011 Willkommen zur zehnten Übung zur Vorlesung Grundbegriffe der Informatik

Matthias Janke email: matthias.janke ät kit.edu

Organisatorisches

- ► Anmeldung für den Übungsschein nicht vergessen!
- ► Gestern waren 536 Personen angemeldet
- Anmeldung für die Klausur nicht vergessen!
- ▶ Gestern waren 297 Personen angemeldet
- Anmeldung über Studierendenportal: studium.kit.edu
- Online Klausur-Anmeldung möglich für: INFO, INWI, MATH, PHYS

Organisatorisches

- ▶ Heute zum letzten mal Webcast
- ► Ab 2012 keine Übertragung in -101
- ▶ Vorlesung/Übung nur direkt im HsaF

Überblick

Master-Theorem

Endliche Automater

Ergebnisse der Evaluation

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Drei Kochrezepte, in denen f(n) und $\log_b a$ eine Rolle spielen:

- Fall 1: Wenn $f(n) \in O(n^{(\log_b a) \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T(n) \in \Theta(n^{\log_b a})$.
- Fall 2: Wenn $f(n) \in \Theta(n^{\log_b a})$ ist, dann ist $T(n) \in \Theta(n^{\log_b a} \log n)$.
- Fall 3: Wenn $f(n) \in \Omega(n^{(\log_b a) + \varepsilon})$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt $af(n/b) \leq df(n)$, dann ist $T(n) \in \Theta(f(n))$.

5/92

Einfachster Fall:

$$T(1) = 1$$

 $T(n) = aT(n/b) : T(b^k) = a^k \Rightarrow T(n) = n^{\log_b a}$

Master-Theorem 6/92

Zweiteinfachster Fall:

$$T(n) = aT(n/b) + f(n)$$
, wobei $f(n)$ wenig ausmacht: $T(n) \in \Theta(n^{\log_b a})$

Master-Theorem 7/92

Zweiteinfachster Fall:

$$T(n) = aT(n/b) + f(n)$$
, wobei $f(n)$ wenig ausmacht: $T(n) \in \Theta(n^{\log_b a})$

Wenig ausmachen:

- ▶ Weniger als n^{log_b a}
- "Polynomial" weniger als n^{log_b a}

Master-Theorem 8/92

Zweiteinfachster Fall:

$$T(n) = aT(n/b) + f(n)$$
, wobei $f(n)$ wenig ausmacht:

$$T(n) \in \Theta(n^{\log_b a})$$

Wenig ausmachen:

$$f(n) \in O(n^c)$$
 mit $c < \log_b a$

Master-Theorem 9/92

Zweiteinfachster Fall:

$$T(n) = aT(n/b) + f(n)$$
, wobei $f(n)$ wenig ausmacht:

$$T(n) \in \Theta(n^{\log_b a})$$

Wenig ausmachen:

$$f(n) \in O(n^c)$$
 mit $c < \log_b a$

Abgleich mit Vorlesung:

$$c < \log_b a \Rightarrow \epsilon = \log_b a - c > 0 \Rightarrow f(n) \in O(n^{\log_b a - \epsilon})$$

Master-Theorem 10/92

Zweiteinfachster Fall:

$$T(n) = aT(n/b) + f(n)$$
, wobei $f(n)$ wenig ausmacht: $T(n) \in \Theta(n^{\log_b a})$
Nicht wenig genug: $f(n) = n^{\log_b a}/\log_2 n$

Master-Theorem 11/92

Beispiel:
$$T(n) = 2T(n/2) + (n/\log_2 n)$$

Beispiel:
$$T(n) = 2T(n/2) + (n/\log_2 n)$$

 $T(1) = 0$
 $T(2) = 2$
 $T(4) = 6$
 $T(8) = 44/3$
 $T(16) = 100/3$
 $T(32) = 1096/15$

Master-Theorem 13/92

Beispiel: $T(n) = 2T(n/2) + (n/\log_2 n)$ Oft hilfreich: Betrachte $T(n)/n^{\log_b a}$

Master-Theorem 14/92

Beispiel: $T(n) = 2T(n/2) + (n/\log_2 n)$ Oft hilfreich: Betrachte $T(n)/n^{\log_b a}$

Hier also T(n)/n

Master-Theorem 15/92

Beispiel:
$$T(n) = 2T(n/2) + (n/\log_2 n)$$

 $T(1)/1 = 0/1 = 0$
 $T(2)/2 = 2/2 = 1$
 $T(4)/4 = 6/4 = 3/2$
 $T(8)/8 = (44/3)/8 = 11/6$
 $T(16)/16 = (100/3)/16 = 25/12$
 $T(32)/32 = (1096/15)/32 = 137/60$

Master-Theorem 16/92

Beispiel: $T(n) = 2T(n/2) + (n/log_2n)$

Wenn man sonst nicht weiter weiß: Betrachte Differenzen!

Master-Theorem 17/92

Beispiel:
$$T(n) = 2T(n/2) + (n/\log_2 n)$$

$$T(1)/1 = 0/1 = 0$$
 $T(2)/2 = 2/2 = 1 o Differenz 1$
 $T(4)/4 = 6/4 = 3/2 o Differenz 1/2$
 $T(8)/8 = (44/3)/8 = 11/6 o Differenz 1/3$
 $T(16)/16 = (100/3)/16 = 25/12 o Differenz 1/4$
 $T(32)/32 = (1096/15)/32 = 137/60 o Differenz 1/5$

Master-Theorem 18/92

Beispiel:
$$T(n) = 2T(n/2) + (n/\log_2 n)$$

Vollständige Induktion liefert $T(2^k) = 2^k \cdot (\sum_{i=1}^k 1/i)$

Master-Theorem 19/92

```
Beispiel: T(n) = 2T(n/2) + (n/\log_2 n)
Vollständige Induktion liefert T(2^k) = 2^k \cdot (\sum_{i=1}^k 1/i)
\sum_{i=1}^k 1/i \in \Theta(\log k)
```

Master-Theorem 20/92

```
Beispiel: T(n) = 2T(n/2) + (n/\log_2 n)

Vollständige Induktion liefert T(2^k) = 2^k \cdot (\sum_{i=1}^k 1/i)

\sum_{i=1}^k 1/i \in \Theta(\log k)

Also T(n) \in \Theta(n\log_2(\log_2 n))
```

Master-Theorem 21/92

Fall 1: Wenn $f(n) \in O(n^{(\log_b a) - \varepsilon})$ für ein $\varepsilon > 0$ ist

▶ So etwas wie n/log_2n lässt sich nicht mit Fall 1 abdecken:

22/92

Dritteinfachster Fall:

$$T(n) = aT(n/b) + f(n)$$
, wobei $f(n)$ den größten Teil ausmacht. Dann $T(n) \in \Theta(f(n))$

Master-Theorem 23/92

Dritteinfachster Fall:

$$T(n) = aT(n/b) + f(n)$$
, wobei $f(n)$ den größten Teil ausmacht. Dann $T(n) \in \Theta(f(n))$

Größten Teil ausmachen:

•
$$f(n) \in \Omega(n^c)$$
 mit $c > \log_b a$

Master-Theorem 24/92

Überblick

Master-Theorem

Endliche Automaten

Ergebnisse der Evaluation

Zwei Arten: Moore und Mealy-Automaten

Zwei Arten: Moore und Mealy-Automaten Unterschied:

▶ Moore-Automaten: Ausgabefunktion hat ein Argument

27/92

Zwei Arten: Moore und Mealy-Automaten Unterschied:

- ▶ Moore-Automaten: Ausgabefunktion hat ein Argument
- ► Mealy-Automaten: Ausgabefunktion hat zwei Argumente

Zwei Arten: Moore und Mealy-Automaten Unterschied:

- ▶ Moore-Automaten: Ausgabefunktion hat ein Argument
- ► Mealy-Automaten: Ausgabefunktion hat zwei Argumente

Eselsbrücke: Anzahl der Argumente=Anzahl der Silben im Namen

Moore/Mealy-Automat mit Anfangszustand z_0 . Ausgabe bei Eingabe $w \in X^*$: Üblicherweise $g^{**}(z_0, w)$

Moore/Mealy-Automat mit Anfangszustand z_0 . Ausgabe bei Eingabe $w \in X^*$: Üblicherweise $g^{**}(z_0, w)$ Beachten Sie das z_0 !

Eingabe: abbababba, Ausgabe:

Eingabe: abbababba, Ausgabe:

Eingabe: abbababba, Ausgabe: x

Eingabe: abbababba, Ausgabe: x

Eingabe: abbababba, Ausgabe: xxyxxxyz

Eingabe: abbababba, Ausgabe: xxyxxxyz

Eingabe: abbababba, Ausgabe: xxyxxxyzx

Eingabe: abbababba, Ausgabe: xxyxxxyzx

Eingabe: abbababba, Ausgabe: xxyxxxyzxx

Eingabe: abbababba, Ausgabe: xxyxxxyzxx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyxx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyxx

abb ist ein bööööses Wort!

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

Eingabealphabet $X = \{a, b, c\}$, Ausgabealphabet $Y = \{a, b, c, x\}$.

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

Eingabealphabet $X = \{a, b, c\}$, Ausgabealphabet $Y = \{a, b, c, x\}$. Betrachte Wort *cbbaababbc*

Endliche Automaten

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Alles okay

ightarrow Ausgabe c

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Alles okay

ightarrow Ausgabe $\it cb$

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Alles okay

ightarrow Ausgabe cbb

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Könnte kritisch sein

ightarrow Ausgabe cbb

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababc Könnte kritisch sein, aber a davor okay

ightarrow Ausgabe $\it cbba$

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Alarmstufe Rot

ightarrow Ausgabe $\it cbba$

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Könnte kritisch sein, aber ab war okay

 $\rightarrow \mathsf{Ausgabe}\ \mathit{cbbaab}$

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Alarmstufe Rot

ightarrow Ausgabe $\it cbbaab$

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Böses Wort, ersetzen!

 \rightarrow Ausgabe *cbbaabxxx*

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

cbbaababbc Alles Okay

ightarrow Ausgabe *cbbaabxxxc*

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

Zustände: Alles Okay, Könnte Kritisch sein, Alarmstufe Rot, Böses Wort!

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

Zustände: Alles Okay, Könnte Kritisch sein, Alarmstufe Rot, Böses Wort!

f	OK	KK	AR	BW
а	KK	KK	KK	KK
b	OK	AR	BW	OK
С	OK	OK	KK BW OK	OK

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

Zustände: Alles Okay, Könnte Kritisch sein, Alarmstufe Rot, Böses Wort!

g	OK	KK	AR	BW
a	ϵ	а	ab	ϵ
b	b	ϵ	XXX	b
С	С	ac	abc	С

abb ist ein bööööses Wort!

Falls *abb* in längerem Wort auftaucht, soll es durch *xxx* ersetzt werden.

Zustände: Alles Okay, Könnte Kritisch sein, Alarmstufe Rot, Böses Wort!

Feststellung: OK und BW machen das Gleiche!

Eingabe aababcabb

Eingabe aababcabb Ausgabe aababcxxx

Eingabe aababcab

Eingabe aababcab Ausgabe aababc

Eingabe aababcab Ausgabe aababc Allgemeines Problem: Endlicher Automat kann nicht feststellen, ob zuletzt gelesenes Zeichen letztes Zeichen war! Randfälle beachten!

Überblick

Master-Theorem

Endliche Automater

Ergebnisse der Evaluation

- Übung geht nur 45 Minuten
- ▶ hilfreiche Beispiele / Bezug zu Übungsblättern
- Webcast
- ► Folien sind online verfügbar
- ▶ Inhalte der Veranstaltung / Aufgaben
- Nichts

- ▶ Übung geht nur 45 Minuten
- ▶ hilfreiche Beispiele / Bezug zu Übungsblättern
- ► Webcast
- ► Folien sind online verfügbar
- ▶ Inhalte der Veranstaltung / Aufgaben
- Nichts

- ▶ Übung geht nur 45 Minuten
- ▶ hilfreiche Beispiele / Bezug zu Übungsblättern
- ► Webcast
- ► Folien sind online verfügbar
- ▶ Inhalte der Veranstaltung / Aufgaben
- Nichts

- ▶ Übung geht nur 45 Minuten
- ▶ hilfreiche Beispiele / Bezug zu Übungsblättern
- Webcast
- ▶ Folien sind online verfügbar
- ▶ Inhalte der Veranstaltung / Aufgaber
- Nichts

- Übung geht nur 45 Minuten
- ▶ hilfreiche Beispiele / Bezug zu Übungsblättern
- Webcast
- Folien sind online verfügbar
- ▶ Inhalte der Veranstaltung / Aufgaben
- Nichts

- Übung geht nur 45 Minuten
- ▶ hilfreiche Beispiele / Bezug zu Übungsblättern
- Webcast
- Folien sind online verfügbar
- ▶ Inhalte der Veranstaltung / Aufgaben
- Nichts

- ▶ Übung geht nur 45 Minuten
- Vorlesung
- ► Schmatzen des Übungsleiters / "Naja"
- ▶ keine guten Beispiele
- unübersichtliche Folien
- Beweise
- ► Hörsaal zu weit von Haltestelle entfernt

- ▶ Übung geht nur 45 Minuten
- Vorlesung
- ► Schmatzen des Übungsleiters / "Naja"
- ▶ keine guten Beispiele
- unübersichtliche Folien
- Beweise
- ► Hörsaal zu weit von Haltestelle entfernt

- ▶ Übung geht nur 45 Minuten
- Vorlesung
- Schmatzen des Übungsleiters / "Naja"
- ▶ keine guten Beispiele
- ▶ unübersichtliche Folien
- Beweise
- ► Hörsaal zu weit von Haltestelle entfernt

- ▶ Übung geht nur 45 Minuten
- Vorlesung
- Schmatzen des Übungsleiters / "Naja"
- ▶ keine guten Beispiele
- unübersichtliche Folien
- Beweise
- ► Hörsaal zu weit von Haltestelle entfernt

- Übung geht nur 45 Minuten
- Vorlesung
- Schmatzen des Übungsleiters / "Naja"
- keine guten Beispiele
- unübersichtliche Folien
- Beweise
- Hörsaal zu weit von Haltestelle entfernt

- ▶ Übung geht nur 45 Minuten
- Vorlesung
- Schmatzen des Übungsleiters / "Naja"
- ▶ keine guten Beispiele
- unübersichtliche Folien
- Beweise
- Hörsaal zu weit von Haltestelle entfernt

- Übung geht nur 45 Minuten
- Vorlesung
- Schmatzen des Übungsleiters / "Naja"
- ▶ keine guten Beispiele
- unübersichtliche Folien
- Beweise
- Hörsaal zu weit von Haltestelle entfernt

Das wars für heute...

Themen für das zehnte Übungsblatt:

- ▶ Master-Theorem
- Mealy- und Moore-Automaten

Schöne Feiertage!