Stable Matching Problem

Problem (Stable Matching (informal))

Given n companies and m coop students,

- each company ranks the students based on their application (assume each student applied to each company), and
- each student ranks the companies based on his/her interests.

Find an assignment of students to companies that is **perfect**: "all positions filled and all students assigned" and **stable**: "no pair of a company and a student have a reason to make a new deal."

Definition (Instability)

All of the following holds:

- Student s_1 is assigned to company c_1 .
- Student s_2 is assigned to company c_2 .
- s_2 prefers c_1 over c_2
- c₁ prefers s₂ over s₁

Simplification: Stable Marriage Problem

Assumption: Assume each company has exactly one coop position (removing asymmetry).

Exercise

What condition n and m must satisfy if we want a *perfect* assignment?

We have a set M of n men (companies) and a set W of n women (students).

Every man ranks every woman, and vice versa.

The goal is to pair the men and women ("getting them married").

Definition (Matching)

A **matching** S is a set of ordered pairs from $M \times W$ such that each man and each woman appears at most once in S ("a collection of marriages between the men and the women").

Simplification: Stable Marriage Problem

Definition (Perfect matching)

A matching S is **perfect** if each man and each woman appear in **exactly one** pair in S.

Definition (Stable matching)

A matching S is **stable** if it is **perfect** and there is no **instability**.

Exercise

Rewrite the definition of instability using M, W, S notation.

Problem (Stable Marriage)

Given n men and n woman with their preferences, find a matching S that is **stable**.

Exercise

What is the solution if we only need a perfect matching?

Simplification: Stable Marriage Problem

Exercise

- **1** Generate an instance of this problem with 4 men m_1, m_2, m_3, m_4 and 4 women w_1, w_2, w_3, w_4 . For each man and woman, specify their preferences.
- Find a solution (stable matching) for your instance.
- Think about an algorithm that could solve any instance to this problem.

Definition (Algorithm)

- a finite set of instruction such that:
 - each step is stated precisely,
 - 2 the result of each step is uniquely defined and depends only on the input and the results of the previous steps,
 - 3 it stops after finitely many steps on every instance of the problem.