1. БД для больших данных

- а) В соответствие с вариантом, выбрать одну из БД: MongoDB, PostgreSQL;
- b) Установить на ПК и по предложенной модели данных создать БД;
- с) Заполнить БД несколькими тестовыми записями.

2. Работа с большими данными

- а) Поместить выданный по варианту набор данных в БД (из лаб. №1);
- b) Написать 3 запроса к БД, в соответствие с бизнес-кейсом.

3. Анализ и интерпретация данных

- а. В соответствие с набором данных из лаб. №2 рассчитать статистические характеристики признаков данных:
 - 1. медиана;
 - 2. мода;
 - 3. среднее;
 - 4. перцентили;
 - 5. стандартное отклонение;
 - 6. минимальное и максимальное значения;
 - 7. число пропущенных и уникальных значений.
- b) Визуализировать признаки, например, посмотреть распределение или сезонность, того или иного ряда;
- с) Провести вышеуказанные процедуры для очищенных (лаб №3) и неочищенных данных;
 - d) Построить практически значимые выводы.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Sklearn, Matplotlib

4. Очистка и трансформация данных

В соответствие с набором данных из лаб. №2 провести очистку данных:

- 1. удаление выбросов;
- 2. заполнение пропущенных значений;
- 3. исправление некорректных значений;
- 4. кодирование категориальных признаков.

Для реализации использовать язык программирования Python 3.х и библиотеки Pandas, Numpy, Sklearn.

5. Задача классификации и её метрики качества

- а) В соответствие с вариантом выбрать набор данных для задачи классификации;
 - b) Обучить на выбранном наборе данных несколько различных моделей:
 - 1. логистическая регрессия;
 - 2. наивный байесовский классификатор;
 - 3. метод К-ближайших соседей;
 - 4. метод опорных векторов;
 - 5. дерево решений;
 - с) С помощью обученных моделей сделать прогноз для тестовых данных;
 - d) Оценить прогноз каждой из обученных моделей по следующим метрикам:
 - 1. точность;
 - 2. полнота;
 - 3. f1-мера;
 - е) Сделать выводы по проделанным экспериментам;
 - f) Предоставить полученные в ходе обучения параметры моделей:
 - 1. веса;
 - 2. граф дерева решений;
- g) Определить наиболее подходящую метрику для оценки качества и обосновать свой выбор.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Sklearn

6. Задача кластеризации и её метрики качества

- а) В соответствие с вариантом выбрать набор данных для задачи кластеризации;
 - b) Обучить несколько различных моделей:
 - 1. метод К-средних;
 - 2. DBSCAN;
 - 3. OPTICS;
 - с) Оценить каждую из обученных моделей по следующим метрикам:
 - 1. Silhouette coefficient;
 - 2. Dunn Index;
 - 3. Davies Bouldin Index;
 - d) Сделать выводы по проделанным экспериментам;
 - е) Интерпретировать результаты метрик качества, визуализировать кластеры.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Sklearn, Matplotlib

7. Задача восстановления регрессии и её метрики качества

- а) В соответствие с вариантом выбрать набор данных для задачи восстановления регрессии;
 - b) Обучить несколько различных моделей:
 - 1. линейная регрессия;
 - 2. ridge-регрессия (регуляризация Тихонова);
 - 3. lasso-регрессия;
 - с) С помощью полученных моделей сделать прогноз для тестовых данных;
 - d) Оценить прогноз каждой из обученных моделей по следующим метрикам:
 - 1. средняя абсолютная ошибка;
 - 2. средняя квадратическая ошибка;
 - 3. коэффициент детерминации;
 - е) Сделать выводы по проделанным экспериментам;
 - f) Интерпретировать результаты метрик качества;
 - д) Предоставить параметры обученных моделей.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Sklearn

8. Композиции алгоритмов

- а) В соответствие с вариантом выбрать набор данных;
- b) Построить композиции базовых алгоритмов в зависимости от типа задачи (классификация или регрессия) с использованием трех подходов:
 - 1. boosting;
 - 2. bagging;
 - 3. голосование;
 - с) С помощью обученных моделей сделать прогноз для тестовых данных;
 - d) Оценить прогнозы по метрикам из лаб. №6 или лаб. №7;
- е) Сравнить приведенные методы построения композиций алгоритмов и сделать выводы. Уметь объяснить базовое устройство каждого из них.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Sklearn

9. Рекомендательные системы

- а) В соответствии с вариантом выбрать набор данных для построения рекомендательной системы;
 - b) Построить рекомендательную систему, используя один из подходов:
 - 1. подход, на основе анализа контента;
 - 2. коллаборативная фильтрация;
 - с) Составить рекомендации для 10 случайных пользователей из набора данных;
 - d) Сформулировать практически значимые выводы по результатам.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Sklearn

10. Нейронные сети: перцептрон с несколькими слоями

- а) В соответствие с вариантом выбрать набор данных;
- b) Построить и обучить перцептрон с несколькими слоями;
- с) Путем оценки модели по соответствующим типу задачи (классификация или регрессия) метрикам подобрать наилучшие гиперпараметры модели:
 - 1. число эпох;
 - 2. число слоёв;
 - 3. learning rate;
 - 4. batch-size;
 - 5. число нейронов в слое;
 - d) Отразить результаты обучения в таблице;
 - е) Привести график снижения ошибки в ходе обучения.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Keras, Matplotlib

11. Свёрточные нейронные сети

- а) В соответствие с вариантом выбрать набор данных;
- b) Построить и обучить свёрточную нейронную сеть;
- с) Путем оценки построенной модели по метрикам классификации подобрать наилучшие гиперпараметры:
 - 1. число эпох;
 - 2. размер свёрточного фильтра;
 - 3. learning rate;
 - 4. batch-size;
 - 5. размер свёрточного слоя;
 - d) Отразить результаты обучения в таблице;
 - е) Вывести график снижения ошибки в ходе обучения.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Keras, Matplotlib

12. Рекуррентные нейронные сети

- а) В соответствие с вариантом выбрать набор данных;
- b) построить и обучить рекуррентную нейронную сеть.
- с) Путем оценки модели по метрикам классификации подобрать наилучшие гиперпараметры:
 - 1. число эпох
 - 2. размер рекуррентного слоя
 - 3. learning rate
 - 4. batch-size
 - 5. число рекуррентных слоёв.
 - d) Отразить результаты обучения в таблице
 - е) вывести график снижения ошибки в ходе обучения
- f) Внутри группы оценить применимость сверточных и рекуррентных нейронных сетей для задач классификации текста и изображений.

Для реализации использовать язык программирования Python 3.x и библиотеки Pandas, Numpy, Keras, Matplotlib

Наборы данных для лабораторных 2, 3, 4 (работа с данными)

Nº	оры данных для лаоораторных 2, 3, 4 Датасет	Запросы	
1	Данные по штрафам за парковку в Нью-Йорке https://www.kaggle.com/new-york-city/n yc-parking-tickets	 Число штрафов сгруппированные по штатам; Наиболее частый тип кузова, получающий штраф; Среднее число штрафов в день по штату. 	
2	Данные о заболеваемости COVID-19 https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset	 Число смертей за 1-й месяц наблюдения по странам; Наиболее "заражаемые" штаты США; Число заражений по дням за последние 30 дней наблюдения. 	
3	Данные о скачиваниях и рейтингах приложений в Google play https://www.kaggle.com/lava18/google-play-store-apps	 Список категорий приложений с наиболее высоким рейтингом (средним); Максимальное число отзывов для платных и бесплатных приложений; Наиболее популярный жанр для приложений дороже 5 долларов. 	
4	Данные о статистике суицидов по странам с 1985 по 2016 годы https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016	 Самые частотные страны по суициду из ТОП10 низкого ВВП; Среднее число суицидов для мужчин и женщин в год вашего рождения; Самые частотные возрастные категории по суициду. 	
5	Данные по БУ авто с Craiglist https://www.kaggle.com/austinreese/craigslist-carstrucks-data	 Средняя цена авто по марке производителя Список наиболее дешевых марок для 6-цилиндровых авто Число авто дешевле 5000\$ по годам выпуска 	

Наборы данных для лабораторных 5, 6, 8, 10 (классификация и кластеризация)

Nº	Датасет	Описание
1	Walmart Recruiting: Trip Type Classification https://www.kaggle.com/c/walmart-recruiting-trip-type-classification/data	Данные о посещениях магазина Walmart покупателями. Целевой признак: тип посещения магазина.
2	IEEE-CIS Fraud Detection https://www.kaggle.com/c/ieee-fraud-detection/data	Данные об онлайн-транзакциях. Целевой признак: является ли транзакция мошеннической
3	Home Credit Default Risk https://www.kaggle.com/c/home-credit-defaul t-risk/data	Данные о заемщиках банка. Целевой признак: способен ли заёмщик выплатить кредит

Наборы данных для лабораторных 7, 8, 10 (регрессия)

Nº	Датасет	Описание
1	House Prices: Advanced Regression Techniques https://www.kaggle.com/c/house-prices -advanced-regression-techniques/data	Данные о продаваемых домах и их характеристиках. Целевой признак: цена дома
2	Restaurant Revenue Prediction https://www.kaggle.com/c/restaurant-re venue-prediction/data	Данные о ресторанах, их местоположении, типе и т.д. Целевой признак: выручка ресторана за год
3	Sberbank Russian Housing Market https://www.kaggle.com/c/sberbank-russian-housing-market/data	Данные о купленной недвижимости в России и макроэкономике России. Целевой признак: стоимость недвижимости

Наборы данных для лабораторной 9 (рекомендательные системы)

Nº	Датасет	Описание
1	Expedia Hotel Recommendations https://www.kaggle.com/c/expedia-hot el-recommendations/data	Данные о пользователях сайта Expedia. Необходимо "рекомендовать" тип отеля, наиболее подходящий для пользователя.
2	Airbnb New User Bookings https://www.kaggle.com/c/airbnb-recr uiting-new-user-bookings	Данные о пользователях сайта Airbnb. Необходимо "рекомендовать" страну, в которой пользователь сделает свою первую бронь.

Наборы данных для лабораторных 11, 12

Nº	Датасет	Описание
1	MNIST database https://www.kaggle.com/c/digit-recognizer/data	Классификация цифр на изображениях
2	IMDB movie Reviews https://www.kaggle.com/lakshmi25npathi/imdb-dataset -of-50k-movie-reviews	Классификация эмоциональной окраски текстового отзыва фильма