```
Exerce 2
```

1) Premier encuple

a) $F = \{(x,y,j) \in \mathbb{R}^3 \mid x = y+j \text{ of } y-j = 0 \text{ for } \{y-j = 0 := 1\} \}$ donc F = { (23,3,3) | 3 ∈ IR} = Veck ((2,1,1)) on pose f = (2, 1, 1) $f \neq O_{RS}$ done (f) extlibra; e'est une base de F G= { (2a, -a, a) la E & (= Vect ((2,-1,1)) donc on tox g = (2,-1,1) g = OIR3 donc (g) est like et forme une base de G

b) f+g=(u, 0, 2), premons $k=(0, 0, 1) \in \mathbb{R}^3$ Monteons que 8=(f, f+g, h) est libre: Soient d, B, YER | & f+ B (f+g) + YR = 0 2 (2, 1, 1) + B(4,0,2) + 8(0,0,1)=(0,0,0) donc $\begin{cases} 2 \times 1 \times 1 & \text{of } B = 0 \\ 2 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\begin{cases} 3 \times 1 & \text{of } B = 0 \\ 4 \times 1 & \text{of } B = 0 \end{cases}$ $\alpha + 2\beta + \delta = 0$ $\beta =$

(ftg, h) est like (car ftg et h some deux vecteurs non colinearies) c) On toxe K = Veck ((f+g, k)) Or d'après le 116), la concatération des base (f) de Fet (f+g, l) de k
forme que 1 103 donc forme une base de K. forme une base de \mathbb{R}^3 , donc $F \oplus \mathbb{K} = \mathbb{R}^3 = \mathbb{E}$ Montions que (g. f+g, l) est une base de 1R3: Sneue d, B, & ER tels que dg + B(f+g) + 8l = 0m³

also $\begin{cases} 2d + k\beta = 0 \\ = 0 \end{cases} = \begin{cases} \beta = 0 \\ \delta = 0 \end{cases} \text{ or card } \begin{cases} \beta = 1 \\ \delta = 0 \end{cases} = \begin{cases} \beta = 0 \end{cases} = \begin{cases} \beta = 0 \\ \delta = 0 \end{cases} = \begin{cases} \beta = 0 \end{cases} = \begin{cases} \beta = 0 \\ \delta = 0 \end{cases} = \begin{cases} \beta = 0 \end{cases} = \begin{cases} \beta = 0 \\ \delta = 0 \end{cases} = \begin{cases} \beta = 0 \end{cases} = \delta \end{cases} = \begin{cases} \beta = 0 \end{cases} = \delta \end{cases} = \begin{cases} \beta = 0 \end{cases} = \delta \end{cases} = \delta \end{cases} = \begin{cases} \beta = 0 \end{cases} = \delta \end{cases} = \delta$

Or (g) est une base de G et [f+g, k] base de K

2) 2^{α} example:

7 (7)

a) $F = \{(x, y, z) \in \mathbb{R}^3 \mid zx = y + z\} = \{(x, y, 2x - y) \mid (y, x) \in \mathbb{R}^2\}$ $F = \text{Vect}((z, 0, z) \mid 0 \mid z = z)\}$ F = Vect ((1.0.2), (0.1.-1)) or u et v met deux vecteurs non colindais donc (u.v) ex line. v c'est une base de f (et dim f= 2) G = { (a, b-a, a+26) | (a, b) \in 1\text{1R}^2 } = Vect ((\(\left(\frac{1}{2}, -1, 1 \right), \(\frac{1}{2}, \frac{1}{2} \right) \)
(u', v') est lime (2 vecteur non colinéaries)

or (u', v') est litre (2 vecteurs non colinéaires)
ainn (u', v') est une base de G (et dim G = 2)

(x, y, z) & FAG (=) 3 (a, b) & R2 | (x, y, z) = (a, b-a, a+2b) at Lx = y+3 b) Soit (n, y, z) & IR3 (=) $\exists (a,b) \in \mathbb{R}^2$ | $\begin{cases} x = a \\ y = b - a \end{cases}$ | $\begin{cases} x = a \\ y = b - a \end{cases}$ | $\begin{cases} x = a \\ y = b - a \end{cases}$ | $\begin{cases} x = a \\ y = b - a \end{cases}$ | $\begin{cases} x = a \\ y = b - a \end{cases}$ | $\begin{cases} x = a \\ y = a + 2b \end{cases}$ | $\begin{cases} x = a \\ y = a + 2b \end{cases}$ | $\begin{cases} x = a \\ y = b - a \end{cases}$ | $\begin{cases} x = a \\ y = a \end{cases}$ | $\begin{cases} x = a \\ y = b - a \end{cases}$ | $\begin{cases} x = a \\ y = a \end{cases}$ | $\begin{cases} x = a \end{cases}$ | $\begin{cases} x = a \\ y = a \end{cases}$ | $\begin{cases} x = a \end{cases}$

On pox e= (3, -1, 2) (e) est like, c'est une base de FAG. c) . On rait que e CF et que dim F= 2; il ruffit de preude un vecteurf de F non colonéaire à e pour former une base de F. prenons : {= (1,0,2) = 11 (e, f) est libre et forme une base de F (card (e, f)=2 = dim F) De même, $e \in G$ et dim G = 2 donc on jeux franche g = (1, -1, 1) = uOn a alons: (e, q) est libre (Evecteurs de G non cohinéaires) = 11 card (e, g) = 2 = dim G donc (e, g) est um base de G. coud Fe = 3 = dim 123 done il suffit d) On fox K = Veck (f+g) de montrer que Fe est libre pour pouvoir dire que Fe est une base de l'R

de+ pf+ 8 (f+g) = d(3,-1,1)+ p(1,0,2)+ 8 (2,-1,3)= (0,0,0) $= \begin{cases} 3\alpha + \beta + 2x = 0 \\ -\alpha - x = 0 \end{cases} \Rightarrow \begin{cases} \beta - \delta = 0 \\ \alpha = -\delta \end{cases} \Rightarrow \begin{cases} \beta = \delta \end{cases} \begin{cases} \delta = 0 \\ \alpha = -\delta \end{cases} \Rightarrow \begin{cases} \beta = \delta \end{cases} \begin{cases} \delta = 0 \end{cases} \Rightarrow \begin{cases} \beta = \delta \end{cases} \begin{cases} \delta = 0 \end{cases} \Rightarrow \begin{cases} \beta = \delta \end{cases} \Rightarrow \begin{cases} \delta = \delta \end{cases} \Rightarrow \delta \end{cases} \Rightarrow \begin{cases} \delta = \delta \end{cases} \Rightarrow \begin{cases} \delta = \delta \end{cases} \Rightarrow \delta \end{cases} \Rightarrow \begin{cases} \delta = \delta \end{cases} \Rightarrow \delta \end{cases} \Rightarrow$ donc Fe est libre; Fe est une base de 183

Or (f+g) est une bare de K (1 seul verteurs non rue) et (e, f) basede ain's on peut dere que FAK = E De même; montions que Fe'= (e, g, f+g) est une base de 1R3 (aud Fi = 3 = dim R3 donc il suffit de montrer que F'est libre Soit d, B, 8 ER tels que de + Bg + 8 (4+g) = 0E

alon $d(3, -1, 3) + \beta(1, -1, 1) + \gamma(2, -1, 3) = (0, 0, 0)$ $\begin{cases}
 3d + \beta + 2Y = 0 & \text{Light } \\
 -d - \beta - 8 = 0 & \text{Light } \\
 7d + \beta + 38 = 0 & \text{Light }
 \end{cases}
 \begin{cases}
 4 + \beta + 8 = 0 & \text{Light } \\
 3d + \beta + 28 = 0 & \text{Light } \\
 7d + \beta + 38 = 0
 \end{cases}$ d'out $\begin{cases} \alpha + \beta + \delta = 0 & L_{1} \\ -2\beta - \delta = 0 & L_{2} + L_{2} - 3L_{4} = 0 \\ -6\beta - 1\delta = 0 & L_{3} + L_{4} \end{cases} = \begin{cases} \alpha + \beta + \delta = 0 \\ -2\beta - \delta = 0 & L_{3} + L_{2} - 3L_{2} \\ -\delta = 0 & L_{3} + L_{3} - 3L_{2} \end{cases} = \begin{cases} \alpha + \beta + \delta = 0 \\ -2\beta - \delta = 0 & L_{3} + L_{3} - 3L_{2} \end{cases} = 0$ ainti F' est libre; c'est une base de IR3 Or (e, g) base de G et (f+g) base de K

done GOK = IR3. a) (es,..., en) est like puisque c'est une base de FAG; on feut donc la compléter (dans F) en une bare de F (en prenant p-k vecteurs de F) Donc il eniste fatil for vectours dans F tels que (e., ., ea, feris folder (théorème de la base incomplète dans F, de dimension P) De même (en, .., ee) est libre et peut être complétée en une base de G Comme dim G = p , on ajoute p- & verteurs; soit (get 1 , gp) coux-ci.

b) Soit H tel que H (F+6) = E mais dim (F+6) = dim F + dim G - dim FAG

Alors dim H + dim (F+6) = n = dim E ; mais dim (F+6) = P + P - R 1'où dim H = n - dim (F+6) = n - 3p + 4 = 10)

c) $B = (e_1, \dots, e_k, f_{k+1}) \cdots f_p \cdot f_{k+1} \cdot f_{k+1} \cdot f_{k+2} \cdot \dots f_p \cdot f_{k+2$ Ainsi coud B=n = dim E B est libre: Il suffit de montrer que B est libre: $\frac{\sum_{i=1}^{R} \alpha_i e_i + \sum_{i=0+A}^{R} \beta_i (f_i + g_i)}{\epsilon + G} + \sum_{i=0}^{R} \gamma_i R_i = O_E$ or (F + 6) (H = E donc for unicité de la décomposition de 0 = on a : \(\frac{k}{i=k+1} \beta_i (\frac{1}{4} + g_i) = 0 \) \(\frac{k}{i=1} \) \(\frac{k}{i=1} \) \(\frac{k}{i=1} \) nais (ha,..., ha) est litre (base de H) donc Vicelhall puis la famille &=(e1,..., en fam) fp) base de F

BG=(e1,...en, gen) gp)

(e1,...en) base de FNG

£

Z d; ei + Z B; fi = -> B; q; or on a: $\sum_{i=k+1}^{k} \beta_i e_i + \sum_{i=k+1}^{k} \beta_i e_i = \sum_{i=k+1}^{k} \beta_i e_i$ $X \in F$ $X \in F \cap G$ $X \in F \cap G$ $X \in F \cap G$ $X = \sum_{i=k+1}^{k} \beta_i e_i$ $X = \sum_{i=k+1}^{k} \beta_i e_i$ $X = \sum_{i=k+1}^{k} \beta_i e_i$ $X \in F \cap G$ $X \in F \cap$ et comme BG est libre on en déduit que VIETELL, PJ, B = 0 et VIETI, LI, NI=0 d'où X= OE Pifi = OE

d'où Z diei + Z Pifi = OE mais comme BF est libre on en conclut VIETI, LT die 01 et Vie [A+1,p], Bi=0 d) ID ruffit de voir que B = (BF, BK)
or K = Vect (fee, + 36... or K = Vect (fun + 96+1) - 1 fo+ 91, ha, ... An) = Vect (BK)
et Bk est line et Bk est line can Exert une sous-famille de B qui est l'bre.

Ainsi Bk est une box 1.11 Ainni BK est une base de K Or B est la concaténation de BF et BK et forme une base de E donc FAK=E.

Remanque: On june répondre à la question 3) c) de cette autre façon: B = (ex, ... , ex, fare , fare, ... , fp, kot Jan , fare fare ... , fr+gp, ko, ... ko) . coud B = p + (p. 4+ n = 2p + n - k = 2p + (n - 2p+ L) - k = n = dim E . Il suffit de montre que 8 est générative de E pour que ce soit une On on noit que (F+G) & H = E (d'aprin 3) b); Soit xEE done $\exists (f,g,A) \in F_{X}G_{X}H \mid x = (f+g)+k$ puis BF = (e1,..., ex, fatt 1..., fg) est une base de F donc 3 (da, ..., dplEIKP 1 f = dreat ... + decat decifers) ... + dpfp at BG = (e1,..., ek, gurs,..., gp) set une base de G donc ∃ (p1,..., p) ∈ K 1 9 = pre++.. + pre= + pre++... + pre= et enfin (h,.., ha) est une base de H donc Ainh: $x = \frac{1}{4} + \frac{1}{9} + \frac{1}{8} = \frac{1}{2} \lambda_{i} e_{i} + \frac{1}{2} \mu_{i} e_{i} + \frac{$ = (Ya, .., Yn) EKA | h= Yaka + .. + Ynka ? J'ou x E. Vect (B) mais Vect (B) CE (on Best use famile du leve ain Vect (8) = E et 8 cet générative de E.

Exercia 2:

done P(n) N 4 n 5 done deg P = 5 et le coef dominant de P Ainn P(n) = 18 (2+4) (2+4)(2-4)

a) Ce n'est pas : la combe 1 con elle s'amule en 1 et non P . La combe 2 can il y a une racine double en -1 (tyte

horizontale) or P'(-1) # 0. · La cour be 3 can la fonction requérentée ne n'annule fas en

c'est la combe 4 deg l'= 4 donc l'sannule auplus 4 fois dans R 3) deg P = 5 dome

on sue la combe 7, il y a 6 tytes horizontales donc 6 jeros