Strategic Concealment in Innovation Races

WATE-FL

Yonggyun (YG) Kim

Florida State University

Francisco Poggi

University of Mannheim

October 24, 2025

Introduction

- Consider firms racing for developing an innovative product
 - COVID vaccines, new software
- Innovation often involves interim breakthroughs (new technology)
 - mRNA technology, new algorithms

Option 1: Patent

- Disclose the new technology
- Secure exclusive rights
- Potentially license it to the rival

Option 2: Keep Secret

- Conceal the new technology
- Protecting it via prior-use defense to maintain a strategic advantage

- Consider firms racing for developing an innovative product
 - COVID vaccines, new software
- Innovation often involves interim breakthroughs (new technology)
 - mRNA technology, new algorithms

Option 1: Patent

- Disclose the new technology
- Secure exclusive rights
- Potentially license it to the rival

Option 2: Keep Secret

- Conceal the new technology
- Protecting it via prior-use defense to maintain a strategic advantage.

- Consider firms racing for developing an innovative product
 - COVID vaccines, new software
- Innovation often involves interim breakthroughs (new technology)
 - mRNA technology, new algorithms

Option 1: Patent

- Disclose the new technology
- Secure exclusive rights
- Potentially license it to the rival.

Option 2: Keep Secret

- Conceal the new technology
- Protecting it via prior-use defense to maintain a strategic advantage.

- Consider firms racing for developing an innovative product
 - COVID vaccines, new software
- Innovation often involves interim breakthroughs (new technology)
 - mRNA technology, new algorithms

Option 1: Patent

- Disclose the new technology
- Secure exclusive rights
- Potentially license it to the rival.

Option 2: Keep Secret

- Conceal the new technology
- Protecting it via prior-use defense to maintain a strategic advantage.

- Consider firms racing for developing an innovative product
 - COVID vaccines, new software
- Innovation often involves interim breakthroughs (new technology)
 - mRNA technology, new algorithms

Option 1: Patent

- Disclose the new technology
- Secure exclusive rights
- Potentially license it to the rival.

Option 2: Keep Secret

- Conceal the new technology
- Protecting it via prior-use defense to maintain a strategic advantage.

Patenting Decision

- Pro: Licensing the new technology enables faster, more efficient joint development (maximizes social welfare).
- Con: Disclosing the new technology allows the rival to adjust its R&D strategy, which improves the rival's outside option and weakens the patent holder's bargaining position.

Hold-up Problem

Patenting Decision

- Pro: Licensing the new technology enables faster, more efficient joint development (maximizes social welfare).
- Con: Disclosing the new technology allows the rival to adjust its R&D strategy, which improves the rival's outside option and weakens the patent holder's bargaining position.

Hold-up Problem

Patenting Decision

- Pro: Licensing the new technology enables faster, more efficient joint development (maximizes social welfare).
- Con: Disclosing the new technology allows the rival to adjust its R&D strategy, which improves the rival's outside option and weakens the patent holder's bargaining position.

Hold-up Problem

Patenting Decision

- Pro: Licensing the new technology enables faster, more efficient joint development (maximizes social welfare).
- Con: Disclosing the new technology allows the rival to adjust its R&D strategy, which improves the rival's outside option and weakens the patent holder's bargaining position.

Hold-up Problem

Main Questions & Preview of Results

- Main Questions:
 - How do the **form of the race** (e.g., stakes of winning) and the **intellectual property system** (e.g., prior-use defense) shape the choice to conceal?
 - What are the consequences for the social speed of innovation?
- Preview of the Main Result:
 - High stakes and strong prior-use defense induce firms to conceal their discovery of the new technology
 - As a result, this strategic concealment slows down the overall pace of innovation

Main Questions & Preview of Results

• Main Questions:

- How do the **form of the race** (e.g., stakes of winning) and the **intellectual property system** (e.g., prior-use defense) shape the choice to conceal?
- What are the consequences for the social speed of innovation?

• Preview of the Main Result:

- High stakes and strong prior-use defense induce firms to conceal their discovery of the new technology
- As a result, this strategic concealment slows down the overall pace of innovation

Main Questions & Preview of Results

• Main Questions:

- How do the **form of the race** (e.g., stakes of winning) and the **intellectual property system** (e.g., prior-use defense) shape the choice to conceal?
- What are the consequences for the social speed of innovation?

• Preview of the Main Result:

- High stakes and strong prior-use defense induce firms to conceal their discovery of the new technology
- As a result, this strategic concealment slows down the overall pace of innovation

Model

Model: Preliminaries

- Two risk-neutral firms $i \in \{A, B\}$ race to develop an innovative product
- ullet Continuous and infinite time $t\in [0,\infty)$
- Two technologies to develop the product:
 - An old technology L
 - ullet A **new** technology H (not accessible at the beginning)
- At t, each firm (w/o new technology) allocates a unit of resources to:
 - Research σ_t^i
 - ullet Development $(1-\sigma_t^i)$
- Resource allocation is not observable to the rival firm

Model: Preliminaries

- Two risk-neutral firms $i \in \{A, B\}$ race to develop an innovative product
- Continuous and infinite time $t \in [0, \infty)$
- Two technologies to develop the product:
 - An old technology L
 - ullet A **new** technology H (not accessible at the beginning)
- At t, each firm (w/o new technology) allocates a unit of resources to:
 - Research σ_t^i
 - Development $(1 \sigma_t^i)$
- Resource allocation is not observable to the rival firm

• Two paths toward the product development

Old Technology

New Technology

Partial Allocation

Model: Payoffs

- \bullet The first firm to successfully develop the innovative product receives Π
 - \bullet e.g., Π is a transitory monopoly profit
- The rival firm gets zero and the race stops
- Firms pay a flow cost c until the race stops
- Firms do not discount the future
- Thus, the final payoff of Firm *i* is:

$$\mathbb{1}_{\{i ext{ develop the product first}\}}\cdot \mathsf{\Pi} - c\cdot \mathsf{7}$$

where T is the time at which the race stops

Model: Payoffs

- \bullet The first firm to successfully develop the innovative product receives Π
 - \bullet e.g., Π is a transitory monopoly profit
- The rival firm gets zero and the race stops
- Firms pay a flow cost c until the race stops
- Firms do not discount the future
- Thus, the final payoff of Firm *i* is:

$$\mathbb{I}_{\{i ext{ develop the product first}\}}\cdot \Pi - c\cdot 7$$

where T is the time at which the race stops

Model: Payoffs

- ullet The first firm to successfully develop the innovative product receives Π
 - \bullet e.g., Π is a transitory monopoly profit
- The rival firm gets zero and the race stops
- ullet Firms pay a flow cost c until the race stops
- Firms do not discount the future
- Thus, the final payoff of Firm *i* is:

$$\mathbb{1}_{\{i \text{ develop the product first}\}} \cdot \Pi - c \cdot T$$

where T is the time at which the race stops

Model: Information and Patenting

- Recall that a firm's resource allocation is unobservable to the rival
- Informational settings about intermediate breakthroughs
 - Public progress: a firm can observe whether its rival has discovered the new technology
 - Private progress: a firm cannot observe the rival's progress
- A firm with the new technology can apply for a patent and such patent application is observable to the rival.
 - The subgame following the patent application will be addressed later

Model: Information and Patenting

- Recall that a firm's resource allocation is unobservable to the rival
- Informational settings about intermediate breakthroughs
 - Public progress: a firm can observe whether its rival has discovered the new technology
 - Private progress: a firm cannot observe the rival's progress
- A firm with the new technology can apply for a patent and such patent application is observable to the rival.
 - The subgame following the patent application will be addressed later.

Model: Information and Patenting

- Recall that a firm's resource allocation is unobservable to the rival
- Informational settings about intermediate breakthroughs
 - Public progress: a firm can observe whether its rival has discovered the new technology
 - Private progress: a firm cannot observe the rival's progress
- A firm with the new technology can apply for a patent and such patent application is observable to the rival.
 - The subgame following the patent application will be addressed later.

Model: Parametric Assumptions

1. Developing with the old technology is profitable:

$$\Pi > \frac{c}{\lambda_L} \quad \Longleftrightarrow \quad \pi := \frac{\lambda_L \Pi}{c} > 1. \tag{1}$$

- \bullet π represents the stake of winning the race.
- 2. The research is a high-stakes trade-off:

$$\frac{1}{2\mu} + \frac{1}{\lambda_H} < \frac{1}{2\lambda_L} < \frac{1}{\mu} + \frac{1}{2\lambda_H} \tag{2}$$

- The new technology is much superior
- The research is difficult

Model: Parametric Assumptions

1. Developing with the old technology is profitable:

$$\Pi > \frac{c}{\lambda_L} \quad \Longleftrightarrow \quad \pi := \frac{\lambda_L \Pi}{c} > 1. \tag{1}$$

- \bullet π represents the stake of winning the race.
- 2. The research is a high-stakes trade-off:

$$\frac{1}{2\mu} + \frac{1}{\lambda_H} < \frac{1}{2\lambda_L} < \frac{1}{\mu} + \frac{1}{2\lambda_H}$$

- The new technology is much superior
- The research is difficult

(2)

Model: Parametric Assumptions

1. Developing with the old technology is profitable:

$$\Pi > \frac{c}{\lambda_L} \quad \Longleftrightarrow \quad \pi := \frac{\lambda_L \Pi}{c} > 1. \tag{1}$$

- π represents the stake of winning the race.
- 2. The research is a high-stakes trade-off:

$$\frac{1}{2\mu} + \frac{1}{\lambda_H} < \frac{1}{2\lambda_L} < \frac{1}{\mu} + \frac{1}{2\lambda_H} \iff \mu < \lambda_\star := \mu \lambda_H \left(\frac{1}{\lambda_L} - \frac{1}{\mu} - \frac{1}{\lambda_H}\right) < \lambda_H \tag{2}$$

- The new technology is much superior
- The research is difficult

- Planner can control the resource allocations and observe research progress
- Planner's goal is to max joint profit ⇔ min expected completion time
- First-Best Case: firms do research and the new technology is immediately shared

- Planner can control the resource allocations and observe research progress
- Planner's goal is to max joint profit ⇔ min expected completion time
- First-Best Case: firms do research and the new technology is immediately shared

- Planner can control the resource allocations and observe research progress
- Planner's goal is to max joint profit ⇔ min expected completion time
- First-Best Case: firms do research and the new technology is immediately shared

- Planner can control the resource allocations and observe research progress
- Planner's goal is to max joint profit ⇔ min expected completion time
- First-Best Case: firms do research and the new technology is immediately shared

- Planner can control the resource allocations and observe research progress
- Planner's goal is to max joint profit ⇔ min expected completion time
- First-Best Case: firms do research and the new technology is immediately shared

First-Best Outcome

- Planner can control the resource allocations and observe research progress
- Planner's goal is to *max* joint profit \Leftrightarrow *min* expected completion time
- First-Best Case: firms do research and the new technology is immediately shared

First-Best Outcome

- Planner can control the resource allocations and observe research progress
- Planner's goal is to max joint profit ⇔ min expected completion time
- First-Best Case: firms do research and the new technology is immediately shared

Benchmarks: Non-patentable

Technology

Benchmark 1: Constant Development Rate

- As benchmarks, we focus on resource allocation strategies without patenting decisions
- \bullet Suppose that Firm j develops the product at a constant rate λ

► Illustration

Proposition 1

Suppose that Firm j's development rate is λ

- (a) if $\lambda < \lambda_{\star}$, Firm *i* conducts research;
- (b) if $\lambda > \lambda_{\star}$, Firm i develops with the old technology

Benchmark 1: Constant Development Rate

- As benchmarks, we focus on resource allocation strategies without patenting decisions
- \bullet Suppose that Firm j develops the product at a constant rate λ

▶ Illustration

Proposition 1

Suppose that Firm j's development rate is λ

- (a) if $\lambda < \lambda_{\star}$, Firm *i* conducts research;
- (b) if $\lambda > \lambda_{\star}$, Firm i develops with the old technology

Benchmark 1: Constant Development Rate

- As benchmarks, we focus on resource allocation strategies without patenting decisions
- \bullet Suppose that Firm j develops the product at a constant rate λ

▶ Illustration

Proposition 1

Suppose that Firm j's development rate is λ :

- (a) if $\lambda < \lambda_{\star}$, Firm *i* conducts research;
- (b) if $\lambda > \lambda_{\star}$, Firm *i* develops with the old technology.

Benchmark 2: Public Research Progress

Fall-Back Strategy

- 1. Research if the rival does not possess the new technology;
- 2. Switch to developing with the old technology once the rival discovers

Benchmark 2: Public Research Progress

Fall-Back Strategy

- 1. Research if the rival does not possess the new technology;
- 2. Switch to developing with the old technology once the rival discovers

Proposition 2

Suppose that research progress is public information, the new technology is not patentable, and Assumptions (1) and (2) hold.

Then, the **fall-back strategy** is the symmetric Nash equilibrium with the shortest expected duration (SDSNE).

• When progress is private, firms cannot condition strategies to the rival's progress

Strategy: $\sigma: \mathbb{R}_+ o [0,1]$

• When progress is private, firms cannot condition strategies to the rival's progress

Strategy: $\sigma: \mathbb{R}_+ \to [0,1]$

• When progress is private, firms cannot condition strategies to the rival's progress

Research Strategy

• When progress is private, firms cannot condition strategies to the rival's progress

Proposition 3

Suppose that research progress is private information, the new technology is not patentable, and Assumptions (1) and (2) hold.

Then, the **research strategy** is the symmetric Nash equilibrium with the shortest expected duration (SDSNE).

Strategic Adjustments

• Firm B strategically reacts to Firm A's progress:

• Such reaction is not feasible when progress is private information

• Now we consider firms' patenting decisions.

• Now we consider firms' patenting decisions.

Possible Scenarios

Concealment

Patent revoked

Patented

• Now we consider firms' patenting decisions.

► Illustration

• Possible Scenarios

Patented

• Now we consider firms' patenting decisions.

► Illustration

Possible Scenarios

• Now we consider firms' patenting decisions.

► Illustration

Possible Scenarios

• Now we consider firms' patenting decisions.

► Illustration

Possible Scenarios

• Now we consider firms' patenting decisions.

► Illustration

• Possible Scenarios

- When a firm discovers the new technology at τ , the patenting strategy is $G(t|\tau)$, the probability that the firm files a patent by t
- Immediate Patenting: $G(\tau|\tau) = 1$
- Mixed Patenting: $\exists T > 0$ and $\eta > 0$ such that

$$G(t| au) = egin{cases} 0, & ext{if } au < t < T \ 1 - e^{-\eta(t-T)}, & ext{if } au < T \leq t \ 1 - e^{-\eta(t- au)}, & ext{if } T \leq au \leq t \end{cases}$$

- When a firm discovers the new technology at τ , the patenting strategy is $G(t|\tau)$, the probability that the firm files a patent by t
- Immediate Patenting: $G(\tau|\tau) = 1$
 - The first to discover the new technology immediately patents & licenses
 - The first-best outcome is implemented
- Mixed Patenting: $\exists T > 0$ and $\eta > 0$ such that

$$G(t| au) = egin{cases} 0, & ext{if } au < t < T, \ 1-e^{-\eta(t-T)}, & ext{if } au < T \leq t, \ 1-e^{-\eta(t- au)}, & ext{if } T \leq au \leq t, \end{cases}$$

- When a firm discovers the new technology at τ , the patenting strategy is $G(t|\tau)$, the probability that the firm files a patent by t
- Immediate Patenting: $G(\tau|\tau) = 1$
- Mixed Patenting: $\exists \ T > 0$ and $\eta > 0$ such that

$$G(t| au) = egin{cases} 0, & ext{if } au < t < T, \ 1-e^{-\eta(t-T)}, & ext{if } au < T \leq t, \ 1-e^{-\eta(t- au)}, & ext{if } T \leq au \leq t, \end{cases}$$

- When a firm discovers the new technology at τ , the patenting strategy is $G(t|\tau)$, the probability that the firm files a patent by t
- Immediate Patenting: $G(\tau|\tau)=1$
- Mixed Patenting: $\exists \ T > 0$ and $\eta > 0$ such that

$$G(t| au) = egin{cases} 0, & ext{if } au < t < T, \ 1 - e^{-\eta(t-T)}, & ext{if } au < T \leq t, \ 1 - e^{-\eta(t- au)}, & ext{if } T \leq au \leq t, \end{cases}$$

Theorem

Suppose that firms' research progress is private information, the new technology is patentable, and Assumptions (1) and (2) hold.

The SDSNE is characterized as in the following figure.

Patent vs. Concealment: Intuition

- Why does β matter?
 - Higher β increases the incentive to conceal the new technology as the concealed technology is more likely to be protected.
- Why does π matter?
 - Patent → information revealed → rival's outside option changes
 → license fee is determined given that the rival is developing w/ old tech
 - ullet When π is high, a firm wants the rival *squander* its time in research

Patent vs. Concealment: Intuition

- Why does β matter?
 - Higher β increases the incentive to conceal the new technology as the concealed technology is more likely to be protected.
- Why does π matter?
 - Patent \rightarrow information revealed \rightarrow rival's outside option changes
 - ightarrow license fee is determined given that the rival is developing w/ old tech.
 - ullet When π is high, a firm wants the rival *squander* its time in research

Patent vs. Concealment: Intuition

- Why does β matter?
 - Higher β increases the incentive to conceal the new technology as the concealed technology is more likely to be protected.
- Why does π matter?
 - $\bullet \ \ \mathsf{Patent} \to \mathsf{information} \ \mathsf{revealed} \to \mathsf{rival's} \ \mathsf{outside} \ \mathsf{option} \ \mathsf{changes}$
 - ightarrow license fee is determined given that the rival is developing w/ old tech.
 - ullet When π is high, a firm wants the rival squander its time in research

Patent vs. Concealment: Takeaways

- Firms' patenting decisions crucially depend on the stake of winning the race (π) and the prior-use defense level (β)
 - When β is low or π is *small*, the new technology is patented and licensed (Outcome is equivalent to the **First-Best** outcome)
 - When β is high and π is *high*, firms conceal their discoveries (Outcome is equivalent to the **Private progress** benchmark)

Implications

- The first-best outcome can be achieved by lowering either π or β (e.g., imposing tax in the innovative product market; shifting the patent system from 'first-to-invent' (high prior-use defense) to 'first-to-file' (no prior-use defense))
- ullet Caveat: too low π may induce the firms to exit the race

Patent vs. Concealment: Takeaways

- Firms' patenting decisions crucially depend on the stake of winning the race (π) and the prior-use defense level (β)
 - When β is low or π is *small*, the new technology is patented and licensed (Outcome is equivalent to the **First-Best** outcome)
 - When β is high and π is *high*, firms conceal their discoveries (Outcome is equivalent to the **Private progress** benchmark)

Implications

- The first-best outcome can be achieved by lowering either π or β (e.g., imposing tax in the innovative product market; shifting the patent system from 'first-to-invent' (high prior-use defense) to 'first-to-file' (no prior-use defense))
- \bullet Caveat: too low π may induce the firms to exit the race

Related Literature and Conclusion

Literature on Patent vs. Secrecy

Empirical Studies

- Many surveys indicate that companies regard secrecy as more effective than patents (Hall, Helmers, Rogers, Sena '14)
- Theoretical Literature: Structural Limitations of Patent
 - Filing a patent is costly
 - Patent protection is limited (e.g., Denicolo, Franzoni '04)
 - Patent can be infringed (e.g., Anton, Yao '04)
- This paper: Strategic Advantage of Secrecy
 - By concealing research progress, firms can hinder their rivals from adjusting R&D strategies

Conclusion

- We study firms' strategic incentives to conceal their interim technology
 - We introduce an innovation race model with multiple paths
 - We characterize the equilibrium behaviors of firms when their research progress is public or private information
 - We study firms' patenting behavior: Under a strong prior-use defense,
 Prize of winning the race ↑ ⇒ Incentives to conceal ↑ ⇒ Socially inefficient

Conclusion

- We study firms' strategic incentives to conceal their interim technology
 - We introduce an innovation race model with multiple paths
 - We characterize the equilibrium behaviors of firms when their research progress is public or private information
 - We study firms' patenting behavior: Under a strong prior-use defense,
 Prize of winning the race ↑ ⇒ Incentives to conceal ↑ ⇒ Socially inefficient

Thank you!

Appendix

Benchmark: Constant Development Rate

Comparison between two paths

PDF of the completion time without race

Long Run:

 By comparing the expected completion time:

 $\mathsf{Research} \succ \mathsf{Development}$

Short Run:

 By comparing the prob. of completion in the near future:

Research \prec Development

