

SUBJECT INDEX

228
Ac, in sediments 357
accelerator mass spectrometry 136
acetic acid, thermal origin 605
acid
 acetic 605
 oxalic 605
 propionic 605
acid tailings fluid 231
actinides, in Archean granite 37
activation analysis 329
activity
 alpha 55, 67
Adige River estuary, northern Italy 357
adsorption 231
 Cu 213
 Cu on $\delta\text{-MnO}_2$ 217
 salinity gradient effects 213
adularia 103
 alteration mineral in layered complex 73
Africa, Damara Orogen, Namibia 535
Ag, in geothermal waters 579
age dating, Canadian Shield groundwaters 136
age determination 135, 621
Al 103, 193
 in coal leachates 427
 in oilfield waters 613
 mobility 231
 in stream sediments 437
Alberta, Canada, Calgary 205
albite 103
albitite 285
aliphatic acid anions
 in formation waters 543
aliphatic acids 605
 $\alpha\beta\text{-homohopane}$ 305
alteration 649
 fracture-controlled 73
 history 37
 isotopic 135
 low temperature 137
 mineralogy 181
 minerals 135
 multiple 73
 post-magnetic 163
 rock, low temperature 3
amorphous ferric hydroxide 231
amphibole, calcic
 alteration mineral in layered complex 73
analysis of fluid inclusions 321
analytical methods
 thin-layer chromatography 227
 xrf 337
analytical model 535
 sedimentary basins 649
andesite
 anhydrite-bearing 337
 high-K 337
anhydrite 373, 495
 magmatic 337
 Sr isotopes 523
anorthosite 73, 93, 103
anorthosite-gabbro 103
apatite 205
Applied Geochemistry 1
aqueous 193
aquifer, Chalk, UK 251
Ar, in formation fluids 621
 ^{40}Ar 621
Ar-Ar dating
 adularia 73
 hornblende 73
Archean 37
As, in stream sediments 437
asphalt 305
Atikokan, Ontario, Canada 55, 67
atmosphere, input to Chalk aquifer 251
Au 535
 analysis 227
Australia
 Mt. Brockman, Northern Territory 385
 Northern Territory 133
 Northern Territory, Mt. Brockman 385
authigenic
 quartz 507

Ba 103
 in groundwater 417
Bayin Ebo, Inner Mongolia Autonomous Region, People's Republic of China 181
barite 417
 in salt dome cap rocks 523
basalt, trace 5 127
base metal deposits, origin 649
basinal brines, East Tennessee 321
 $\beta\beta\text{-hopane}$ 305
Be
 in coal leachates 427
 hydrothermal transportation 193
 $\text{Be}(\text{OH})_3$ 193
benzothiophenes, in sediments 297
Berkshire, United Kingdom 251
beryl, solubility with kaolinite and quartz 193
 ^{214}Bi , in sediments 357
biomarkers, crude oil 305
biosphere 139
biotite
 alteration mineral in layered complex 73
bitumen 305
bone phosphate, O isotopes 367

BOOK REVIEW

Applied Geochemistry in the 1980s 247
bottom sediments, marine 357
Br, in formation waters 373
brine 134, 563
Ca-Cl 373
 chemistry 459
 evolution 373
 mixing 134
 origin 459
 sulfate, Canadian Shield 133
 U mobility 285
butyric acid, thermal origin 605

C 25, 134, 136, 137, 143
 conversion to aliphatic acids 605
 in dolomitization models 629
 in hematite carbonatites 163
 in kidney stones 205

¹³C
 in groundwater 251
 in natural gas 621
¹⁴C analysis 136
 Ca 93, 103, 285
 in Archean granite 37
 in coal leachates 427
 in dolomitization models 629
 during hydrothermal alteration 181
 in fluid inclusions 321
 in formation waters 373, 543
 in hematite carbonatites 163
 in lavas and pumice 337
 mobility 231
 calcic amphibole 103
 calcite 81, 93, 103, 136, 495, 523, 629
 alteration mineral in layered complex 73
 in carbonatites 163
 fracture filling in gneiss 81
 in fractures 33
 Calgary, Alberta, Canada 205
 California, USA 135
 Imperial Valley 563
 Salton Sea 285
 San Joaquin Basin 613
 Canada
 Alberta, Calgary 205
 Manitoba 37, 134
 Whiteshell 127
 NE Ontario, Massey 73
 northern Saskatchewan 285
 Northwest Territories
 Pine Point 127
 Yellowknife 133, 134
 Ontario 93, 495
 Atikokan 55, 67
 Chalk River 81
 East Bull Lake, Massey, Canada 103
 NN, Eye-Dashwa Lakes pluton,
 Atikokan 55, 67
 Sudbury 133
 Precambrian Shield 136
 western sedimentary basin 373
 Canadian Shield 133, 137
 cap rock 523
 carbon dioxide 605
 carbonate 81, 347, 629
 complexation 275
 trace S 127
 carbonate rocks
 experimental hydrothermal alteration 181
 Illinois Basin 477
 carbonatite, with hematite 163
 carboxylic acid anions 613
 Carmmenellis, Cornwall, UK 11
 catastrophe theory 639
 Cd
 in coal leachates 427
 in stream sediments 437
 celestite 523
 Central Mississippi, USA 543
 CH₄ 133
 in Canadian Shield 136
 in fumarole gases 143
 chalk 251
 Chalk River, Ontario, Canada 81
 chelating agents 329
 chemical analysis 321
 chemistry, solution 181
 Chernobyl accident fallout 357
 Chernobyl, USSR 25
 Chiapas, Mexico 337
 Chivor, Colombia 193
 chlorite 103
 alteration mineral in layered complex 73
 Cl 93, 285
 in fluid inclusions 321
 in formation waters 373
 mobility 231
 soluble, in phosphorite 347
 clay
 alteration mineral in layered complex 73
 Cu adsorption 213
 clay minerals, illite 37
 climatic changes 347
 Climax, Colorado, USA 399
 Co 103
 in fumarole gases 143
 in stream sediments 437
 CO₂
 from decarbonatization 535
 in fumarole gases 143
 during hydrothermal alteration 181
 coal, weathering 427
 coal leachate 427
 coffinite 417
 Colombia
 Chivor 193
 Muzo 193
 Colorado, USA 55, 135, 231
 Climax 399
 complexation, organometallic 613
 complexes
 chloride 543
 of Pb and Zn 543
 computer code, MINTEQ 231
 congruent reactions 251
 contaminant plume 231
 contaminants, Nd migration 275
 contamination 649
 convection 639
 groundwater 11
 Cornwall, UK, Carnmenellis 11
 Cr 103
 in stream sediments 437
 crude oil
 migration 585
 noble gases 621
 cryptomelane 217
 crystalline rocks, Canadian Shield brines 133
 Cs 103
¹³⁴Cs, in sediments 357
¹³⁷Cs
 pollutants fate in sediments 357
 recent sedimentary processes 357
 in sediments 357
 Cu 535
 adsorption on clay 213
 adsorption on $\delta\text{-MnO}_2$ 217
 adsorption on Fe-Mn oxide 213
 adsorption on organic matter 213
 in coal leachates 427
 in geothermal brines 563
 in stream sediments 437
 cyclic deformation 103
 cystine stones, S isotopes 205

Damara Orogen, Namibia, Africa 535
 dating
¹⁴C in groundwater 134
 Ar-Ar 73
 K-Ar 73
 decrepitometry 535
 δMnO_2
 aging 217
 characterization of 217
 synthetic preparation 217
 desert environment 347
 diagenesis 373, 649
 clastic 613
 organic matter 305
 petroleum reservoirs 585
 sandstones 507
 dibenzothiophenes, in sediments 297
 dissolution
 feldspar 613
 dissolution 347, 507
 dissolved gases 136
 distribution coefficients 275
 dolomite 373, 495
 in carbonatites 163
 dolomitization models 629
 experimental hydrothermal alteration 181
 fluid inclusions 321
 hydrothermal origin 535
 drainage, acid mine 427
 Dubai 585

East Bull Lake, Massey, Ontario, Canada 103
 Ecuador, Quito 205
 Editorial 1, 457
 EDTA 329
 effervescence 535
 Eh 399
 El Chichon Volcano, Chiapas, Mexico 337
 emerald deposits, origin 193
 England, Wealden Basin 585
 environmental geochemistry 357
 epidote
 alteration mineral in layered complex 73
 equilibria 579
 acid base 427
 chemical 459
 isotopic 135, 459
 radioactive 135
Erratum 453
 eruptive products, bulk composition 337
 evaporites 285
 dewatering 535
 residual brines 373
 experiment, flow 181
 exploration
 geochemical 385, 417
 gold 227
 Mississippi Valley-type deposits 321
 uranium 385
 extraction, Kiba 127
 Eye-Dashwa Lakes pluton,
 Atikokan, NW Ontario, Canada 55, 67

F, Na-F hydrothermal solutions 181
 faulting 103

Fe 137, 143
 in Archean granite 37
 in coal leachates 427
 Fe-Mn oxide 213
 in formation waters 543
 in geothermal brines 563
 in groundwater 251, 417
 in hematite carbonatites 163
 during hydrothermal alteration 181
 in lavas and pumice 337
 mobility 231
 in porphyry Mo deposits 399
 in stream sediments 437
 Fe-Mn oxide, Cu adsorption 213

Fe²⁺ 103

Fe³⁺ 103
 feldspar 67, 373
 Fen complex, Telemark, Norway 163
 ferrimolybdate 399
 fertilizers, use of fine crushed rocks 243
 Finnsjon, Sweden 25
 fluid flow 373
 equilibria 629
 in sedimentary basins 649
 fluid inclusions 373, 535, 585
 geothermal systems 563
 in Mississippi Valley-type deposits 321
 fluid systems 535
 formation water 563
 metal-rich 543
 organic geochemistry 613
 origin 373
 formic acid, thermal origin 605
 Forsmark, Sweden 25
 fossils, geochemical 305
 Four Corners area, Utah, USA 134
 fractures 33, 134, 135, 137
 control of groundwater circulation 11
 France, Massif Central 417

free energy, Be^+ , BeOH^+ , $\text{Be}(\text{OH})_2^0$ 193
 fumaroles, gas analyses 143

Ga 103
 gabbro 73, 93, 103, 137
 galena, control on metals 543
 gases
 atmospheric 136
 dissolved 136
 noble 3, 136, 137, 621
 geochemical exploration 385, 417

GEOCHRONOLOGY 3, 135, 137
 age dating
 Canadian Shield groundwaters 136
 age determination 135, 621
 Ar-Ar dating
 adularia 73
 hornblende 73
 K-Ar dating 73
 U-series 37
 geosphere/biosphere project 139
 geothermal 563, 649
 groundwater 329

geothermal systems
 thermo-diffusive mass transport model 639
 Gidea, Sweden 25
 glass, Np-doped 275
 global change 139
 gneiss 81
 calc-silicate 285
 semi-pelitic 285
 goethite 399, 427
 gossans 399
 gradient, chemical potential 639
 grain size, stream sediments 437
 granite 37, 137
 altered 127
 trace S 127
 weathered 55, 67
 granophyre 93
 groundwater 3, 5, 25, 33, 81, 93, 134, 137, 417
 Chalk aquifer 251
 dating 133, 134
 flow rates 134
 geothermal 329
 isotopes, Canadian Shield 136
 mapping circulation 11
 mixing 134
 oxidizing conditions 251
 quality management 251
 reducing conditions 251
 Gulf Coast, USA 523
 Gulf of Mexico 297
 continental slope and shelf 297
 gypsum 93, 427
 alteration mineral in layered complex 73

H 25, 134, 143
 isotopes in brines 459, 495
 isotopes in geothermal brines 563
 ^3H , association with hydrocarbons 133
 ^4H , association with hydrocarbons 133

H_2 , in fumarole gases 143

H_2S
 in formation waters 543
 in fumarole gases 143

hair, stable isotopes 205

halite 373

Hawaii, USA, Honolulu 205

HCO_3^- 93

He 137
 in soil gas 11
 in spring waters 11
 ^4He 621
 heat flow 11
 in sedimentary basins 649

heat flux, geothermal systems 639

hematite 399
 in Archean granite 37
 in carbonatites 163

Hf 103

Hg, in stream sediments 437

high-S magma 337

Hollister, North Carolina, USA 399

Honolulu, Hawaii, USA 205

hopanes 305

human body, isotope composition 205

humic 213

hydrocarbons 297
 association with He 133
 saturated 305

hydrodynamics, Palo Duro Basin 459

hydrogeochemistry 136, 639, 523
 carbonate 251
 hydrodynamics 459
 modelling 649

hydrothermal
 brines 373
 groundwater circulation 11
 surface fluids 579

hydrothermal alteration, experimental 181

hydrothermal deposits 285

hydrothermal fluid tracing 329

hydrothermal system 143

hydroxyl pyrolysis 605

hydroxide, Fe-Mo 399

hydroxybenzoic acid anions 613

Illinois Basin, USA 134

Illinois, USA 135

illite 213
 in Archean granite 37

ilsemannite 399

Imperial Valley, California, USA 563

In, chelates 329

incongruent reactions 251

inert gases, groundwater 251

inter-laboratory bias 337

inter-laboratory comparison, xrf analyses 337

intergranular pressure solution 507

interstitial waters 251

ion exchange 251

ionic strength, correction 275

iron hydroxides
 alteration mineral in layered complex 73

isotope dilution mass spectrometry 133

ISOTOPES 3

brine 495

^2H 103, 251
 in groundwater 134
 in calcite 81
 in human kidney stones 205

^{13}C
 Canadian Shield brines 133
 in groundwater 25

^{14}C , in groundwater 25

dating alteration events 135

disequilibria 55, 67

in formation waters 543

general 3, 5, 137

^3H 134, 251, 459, 495
 in formation waters 134

^2H , in groundwater 25

^3H , in groundwater 25

^3He in groundwater, Canadian Shield 136

^4He
 in groundwater, Canadian Shield 136
 in soil gas 11

ISOTOPES

21,22^{Ne} in groundwater, Canadian Shield 136
0 103, 134, 251, 459, 495
in calcite 81
in formation waters 134
in teeth and urinary stones 367
¹⁸O
Canadian Shield brines 133
in groundwater 25
Pa 134
Pb 136
Ra 134, 385
radioactive 5
radiogenic and stable 137
S 127, 523
in formation waters 134
in human kidney stones 205
in pyrite 81
³⁴S, Canadian Shield brines 133
Sr 81, 93, 459, 495, 477, 523
stable 5
H 563
O 563
S 563
Th 134
U 134
in groundwater 417
²³⁰Th in crystalline rocks 135
²³⁴U
in crystalline rocks 135
in Archean granite 37
²³⁸U
in crystalline rocks 135
in Archean granite 37
water-rock interaction 136
isotopic
equilibrium 135
variation 81, 563
Israel, Negev Desert, Zin area 347
Italy
north, Adige River estuary 357
northern Adriatic Sea 357

jarosite 399, 427
jordisite 399

K 103, 285
availability 243
during hydrothermal alteration 181
in Archean granite 37
in coal leachates 427
in fluid inclusions 321
in lavas and pumice 337
in synthetic $\delta\text{-MnO}_2$ 217
⁴⁰K, in sediments 357
K-Ar dating 73
K/Na ratio, in fluid inclusions 321
kaolinite, solubility with beryl and quartz 193
kidney stones 205
⁰ isotopes 367
kinetics, sorption and dissociation 275
Klipperas, Sweden, Taavinummanen 136
Kr, in formation fluids 621

table U 55
taumontite 81, 93, 103
alteration mineral in layered complex 73
layered complex 73
leaching 399
limestone 373
experimental hydrothermal alteration 181
in control of acid leachates 427

magmatic gases 143
major elements
in groundwater 251
in hematite carbonatites 163
manganese oxides 399
Manitoba, Canada 37, 134
Whiteshell 127
marble 285
Mascot-Jefferson City zinc district,
Tennessee, USA 321
mass transfer 231
Massey, NE Ontario, Canada 73
Massif Central, France 417

MEDICAL GEOCHEMISTRY
teeth and urinary stones 367
melanterite 427
metal sulfides, in salt dome cap rocks 523
metallogenesis 563
metamorphism 285, 563
retrograde 73
metasomatism, hydrothermal 181
metasomes, U deposits 285
Mexico
Chiapas 337
El Chichon Volcano 337
Mg 103, 285
in coal leachates 427
in dolomitization models 629
in formation waters 373
in hematite carbonatites 163
during hydrothermal alteration 181
in lavas and pumice 337
Mg/Ca ratio, in groundwater 251
Michigan, USA 495
migration, Mg in clayey sand 275
mineralogical effects, xrf analysis 337
minerals, ferromagnesian 67
minor elements, in groundwater 251
MINTEQ 231
Mississippi Valley ore deposits
source of metals 543
mixing
brine 134
groundwater 134
Mn 103
in coal leachates 427
Fe-Mn oxide 213
in formation waters 543
in geothermal brines 563
in stream sediments 437
mobility 231
preparation of $\delta\text{-MnO}_2$ 217

No 285
 in porphyry deposits 399

mobility
 elemental 136
 U 285

model, thermo-diffusive mass transport 639
 modelling 193, 231, 629
 isotopic 81
 sedimentary basins 649
 transport of Np 275
 U-etching 55, 67
 U-leaching 55, 67
 water-rock interaction 523

models, dolomitization 629

molybdenite, in porphyry deposits 399

Mt. Brockman, Northern Territory, Australia 385

muons 133

Muzo, Colombia 193

 N 143

n-alkanes 305

Na 93, 103, 285
 in Archean granite 37
 in coal Teachates 427
 in fluid inclusions 321
 during hydrothermal alteration 181

Na-F, hydrothermal solutions 181

Na/Ca ratio, in fluid inclusions 321

NaCl 649

Namibia, Damara Orogen, Africa 535

natural gas
 noble gases 621
 origin 621

Nb 103
 in formation fluids 621

Negev Desert, Zin area, Israel 347

neutrons 133

New Zealand
 Ngawha Springs 305
 North Island 579
 White Island 143

Ngawha Springs, New Zealand 305

NH₃, in fumarole gases 143

Ni 103
 in stream sediments 437

nitrate, Negev Desert, Israel 347

NO₃, soluble, in phosphorite 347

noble gases 621

North America
 USA, Illinois, Illinois Basin 477
 Hollister 399

North Island, New Zealand 579

North Sea, offshore Norway 585

northern Adriatic Sea, Italy 357

Northern Territory, Australia 133

Northwest Territories
 Pine Point 127
 Yellowknife, Canada 133, 134

Norway
 offshore 585
 Telemark, Fen complex 163

Np, migration in clayey sand 275

NTA 329

nuclear energy 139

nuclear waste 139

O 25, 134, 143
 isotopes in brines 459, 495
 isotopes in geothermal brines 563
 isotopes in teeth and urinary stones 367

O₂, in groundwater 251

oil
 crude 305
 diesel 305
 seep 305

Ontario, Canada 93, 495
 Chalk River 81
 East Bull Lake, Massey 103
 NE, Massey, Canada 73
 NW, Eye-Dashwa Lakes pluton,
 Atikokan 55, 67
 Sudbury, Canada 133

ore 563
 Mississippi Valley-type 321

ore deposits
 origin, Mississippi Valley-type 543
 volcanic-hosted 143

ore-forming processes
 hematite carbonatites 163

organic acids, synthesis 605

organic geochemistry 305

organic matter
 Cu adsorption 213
 oxidized 347

organometallic complexes 613

outgassing 133

oxalate stones, C isotopes 205

oxalic acid 605

oxidation 285, 399
 sulfide 579

oxides
 Fe/Mn 213
 major-element 337

 Pa 55

paleoclimatic interpretations, O isotopes 367

paleohydrogeology 347

paragenetic sequence
 in weathered Mo deposits 399

particle-size effects, xrf analysis 337

Pb 55, 535
 deposits, origin 649
 in formation waters 543
 in geothermal brines 563
 in stream sediments 437

Penrose Conference 457

People's Republic of China, Belyn Ebo
 Inner Mongolia Autonomous Region 181

permeability 11

petroleum 305, 477
 migration 585

pH 193, 399
 in dolomitization models 629

phosphorite ores, pollution 347

Pine Point, Northwest Territories, Canada 127

pitchblende 285

plagioclase 93

plutonic rocks 133

plutons 136

pollution 231
 phosphorite ores 347
 thermal springs 305

porosity
 in dolomitization models 629
 enhanced 613
 sandstones 507
 porphyry molybdenite deposit 399
 powellite 399
 Precambrian Shield, Canada 136
 precious metal deposits, origin 143
 prehnite
 alteration mineral in layered complex 73
 propionic acid, thermal origin 605
 Pu 133
 pumpellyite
 alteration mineral in layered complex 73
 pumping, seismic 103
 pyrite 81, 427
 in porphyry Mo deposits 399

quartz 67, 103
 alteration mineral in layered complex 73
 hydrothermal origin 535
 megacrystals 535
 solubility with beryl and kaolinite 193
 Quito, Ecuador 205

Ra 33, 137
 226 in groundwater 385, 417
 Ra 136
 in sediments 357
 in surface anomalies 385
 radioactive equilibrium 135
 radioactive waste 136
 fallout and natural 357
 surface 385
 radioactivity 133
 radionuclides 133
 distribution
 sediment property relations 357
 subsurface production of 133
 rainwater 251
 rare earth elements 137
 in Archean granite 37
 in hematite carbonatites 163
 Rb 103, 523
 reaction rates 143
 reconnaissance prospecting 227
 redox potential 143, 427
 redox processes 143, 251
 redox systems, in groundwater 417
 retardation 275
 rocks
 crystalline
 U and Th isotopes 135
 gneissic
 Grenville 81
 Precambrian 81
 granitic 25
 igneous 135
 plutonic 137
 Tertiary 305

^{103}Ru , in sediments 357
 ^{106}Ru , in sediments 357

S 134, 143, 427
 in fluid inclusions 321
 in formation waters 543
 in geothermal brines 563
 in geothermal waters 579
 isotopes in brines 523
 isotopes in geothermal brines 563
 in kidney stones 205
 native 399
 trace in granites 127
 S compounds, in sediments 297
 S/Cl ratio, in fluid inclusions 321
 salinity, hydrothermal brines 563
 salt domes 523
 Salton Sea
 California, USA 285
 geothermal system 563
 San Joaquin Basin, California, USA 613
 sand, clayey 275
 sandstone
 calcite-bearing 231
 diagenesis 507
 porosity 507
 quartzose 507
 source of Sr^+ 477
 U-bearing 385

Saskatchewan, northern, Canada 285
 Sb, in stream sediments 437
 Sc 103
 scanning electron microscopy 321
 scapolite 285
 Se, in stream sediments 437
 seawater 477
 sedimentary basins, Michigan Appalachian 495
 sedimentary rocks 347
 sediments
 benzothiophenes 297
 dibenzothiophenes 297
 Early Proterozoic evaporative 285
 trace elements 437
 seepage, use of dibenzothiophenes 297
 shale
 New Albany 477
 source of Sr^+ 477

St 103, 193
 during hydrothermal alteration 181
 in oilfield waters 613
 SO_2 , in fumarole gases 143

SO_4
 isotopes, in granite 127
 mobility 231
 soluble, in phosphorite 347
 solubility
 beryl 193
 kaolinite 193
 solution 193
 aqueous 285, 347, 399
 hydrothermal 373, 563, 579
 Soret coefficient 639
 sorption, Mn in clayey sand 275
 speciation, aqueous and solid 275
 sphalerite
 control on metals 543
 in Mississippi Valley-type deposits 321

sphene 67
 spring waters, ^4He 11

springs
 Ra isotopes 385
 thermal 305
 Sr 93, 103, 137, 477
 in groundwater 251
 isotopes in brines 459, 495, 523
 ^{86}Sr , ^{87}Sr , in brines 477, 495
 Sri Lanka 243
 stability theory formalism 639
 steranes 305
 Stripa Project, Sweden 25, 33
 struvite 205
 Sudbury, Ontario, Canada 133
 sulfate 427
 sulfide oxidation, in geothermal waters 579
 supergene enrichment 399
 surface area 437
 surface water 133
 surveys, soil gas He 11
 suspended matter
 riverine, estuarine and marine 357
 Sweden
 Finnsjön 25
 Forsmark 25
 Gideå 25
 Klipperas
 Taavinumnanen 136
 Stripa 25
 Stripa Project 33
 Symposium Proceedings 1
 system, $\text{BeO}\text{-}\text{Al}_2\text{O}_3\text{-SiO}_2\text{-H}_2\text{O}$ 193

Ta 103
 Taavinumnanen, Klipperas, Sweden 136
 Tc 133
 teeth, O isotopes 367
 Telemark, Norway, Fen complex 163
 temperature oscillations 639
 temperature perturbations
 in sedimentary basins 649
 Tennessee, USA
 Mascot-Jefferson City zinc district 321
 Texas Panhandle, USA 459
 Th 33, 55, 67, 103, 137
 in Archean granite 37
 in groundwater dating 133
 in hematite carbonatites 163
 leaching by groundwater 136

^{230}Th 136
 in Archean granite 37
 Th/U ratio, in Archean granite 37

^{230}Th / ^{234}U ratio 33, 37
 radioactive waste disposal 136
 thermal history, petroleum reservoirs 585
 thermal stability, in chelates 329
 thermo-diffusion 639
 thermodynamics
 approximate calculations 181
 aqueous solutions, saturated 629
 thiosulfate, in geothermal waters 579

Ti 103
 in stream sediments 437

Tl 208
 in sediments 357

trace elements
 in hematite carbonatites 163
 in stream sediments 437
 speciation studies 217
 tracer 329
 transport
 chemical 103
 equation 275
 triple layer sorption 231
 triterpanes 305
 tritium, groundwater 251

U 33, 55, 67, 103, 133, 137
 in Archean granite 37
 in groundwater 385, 417
 in groundwater dating 133
 labile 67
 leaching by groundwater 136
 mobility 285

^{234}U 136

^{234}U / ^{238}U ratio 33, 37

U-series
 disequilibrium 134, 136
 geochronology 37

UK
 Berkshire 251
 Cornwall, Carnmenellis 11
 uraninite 285, 417

uric acid, C isotopes 205
 urinary stones
 O isotopes 367
 S, trace 205
 stable isotopes 205

USA
 California 135
 Salton Sea 285
 San Joaquin Basin 613
 Central Mississippi 543
 Colorado 55, 135, 231
 Climax 399
 Gulf Coast 585, 523
 Gulf of Mexico 297
 Hawaii, Honolulu 205
 Illinois 135
 Illinois Basin 134, 477
 Imperial Valley, California 563
 Michigan 495
 North Carolina, Hollister 399
 Tennessee
 Mascot-Jefferson City 321
 zinc district 321
 Texas Panhandle 459
 Utah, Four Corners area 134
 Wyoming 55, 135

USSR
 Chernobyl 25
 Chernobyl accident fallout 357
 Utah, Four Corners area, USA 134

V 103
 volcanic brines 143
 volcanic gas equilibria 143
 volcanic gases 143

waste
 nuclear 3
 nuclear fuel 93, 103
 radioactive 25, 55, 67, 275
 radioactive 55
waste disposal 5
 radioactive 136
water
 connate 251
 diagenesis 629, 649
 formation 373, 477
 Silurian and Devonian 477
 geothermal 285, 563, 649
 ground 385, 399, 649
 marine 477
 O isotopes 367
 oilfield 613
water table 399
water-rock interaction
 acidic tailings fluid-bedrock 231
 fumaroles 143
 Gulf Coast, USA 523
 Illinois Basin 477
 Michigan, Appalachian Basins 495
 radioactive waste disposal 136
 radiogenic and noble gases 136
weathering 135
 chemical 37, 55, 67, 427
 porphyry Mo deposits 399
wedellite 205
western Canada sedimentary basin 373
whewellite 205
White Island, New Zealand 143
Whiteshell, Manitoba, Canada 127
Wyoming, USA 55, 135

Xe, in formation fluids 621

Y, in hematite carbonatites 163
Yellowknife,
 Northwest Territories, Canada 133, 134

Zin area Negev Desert, Israel 347
zircon 67
Zn
 in coal leachates 427
 deposits, origin 649
 in formation waters 543
 in geothermal brines 563
 in Mississippi Valley-type deposits 321
 mobility 231
 in stream sediments 437
Zr 103

AUTHOR INDEX
(Book Review - BR, Erratum - E)

Adediran S.A. 213
 Albertazzi S. 357
 Andersen T. 163
 Anderson G.M. 193
 Andrews J.N. 251
 Appleyard E.C. 285
 Baldwin D.K. 103
 Bath A.H. 251
 Beaucaire C. 417
 Behr H.-J. 535
 Bidoglio G. 275
 Bornhorst T.J. 337
 Borre D. 103
 Bosch A. 621
 Bottomley D.J. 81
 Brake S. 399
 Brooks J.M. 297
 Cappis J.H. 133
 Carothers W.M. 543
 Cathles L.M. 649
 Chrysikopoulos C.V. 329
 Cook J.M. 251
 Cramer J.J. 37
 Curtis D.B. 133
 Dai J.H. 427
 Darling W.G. 251
 Davis A. 231
 Davis S.N. 133
 Dickson B.L. 385
 Dissanayake C.B. 243
 Dollar P. 495
 Durrance E.M. 11
 Edmunds W.M. 251
 Elders W.A. 563
 Eldridge C.S. 563
 Elrick K.A. 437
 Farwell S.O. 227
 Fenderinger N.J. 427
 Fisher R.S. 459
 Frape S.K. 133, 134, 495
 Fries T.L. 543
 Fritz P. 133, 134
 Fyfe W.S. 139
 Gascoyne M. 3, 37, 93, 137
 Giblin A.M. 285, 385
 Giggenbach W.F. 143
 Gold T. 133
 Gregory R.G. 11
 Hathon L.A. 507
 Haynes F.M. 321
 Heimann R.B. 639
 Helz G.R. 427

Hetherington E.A. 477
 Hieke Merlin O. 357
 Hitchon B. 1, 457
 Horowitz A.J. 437
 Houseknecht D.W. 507
 Hurst S.D. 523
 Ivanovich M. 134
 Jackson T.J. 523
 Kaback D.S. 399
 Kagei C.T. 227
 Kamineni D.C. 73, 93, 103, 137
 Karlsson F. 25
 Keerthisinghe G. 243
 Kennicutt II M.C. 297
 Kerrich R. 103
 Kesler S.E. 321
 Kharaka Y.K. 543
 Kijak P.J. 427
 Kimball B.A. 134
 Kinniburgh D.G. 251
 Kolodny Y. 367
 Kramer J.R. 213, 217
 Kreitler C.W. 459
 Krouse H.R. 127, 205
 Kruger P. 329
 Kyle J.R. 523
 Lacerda C.P. 297
 Lamothe P.J. 543
 Lathan A.G. 55, 67
 Law L.M. 543
 LeAnderson P.J. 399
 Levinson A.A. 205, 367
 Lundegard P.D. 605
 Luz B. 367
 MacDonald, I. 134
 MacGowan D.B. 613
 Maest A.S. 543
 Magaritz M. 347
 Mazor E. 621
 McCrack G.F. 73
 McGee J.J. 337
 McKibben M.A. 563
 McLarty E. 103
 McLimans R.J. 585
 McNutt R.H. 93, 495
 Menegazzo Vitturi L. 357
 Miles D.L. 251
 Milton G.M. 33
 Molinaroli E. 357
 Morgan-Jones M. 251
 Nesbitt H.W. 134
 Niwas J.M. 243

Offermann P. 275
 Perrin K.E. 133
 Peterman Z.E. 135
 Piggott D. 205
 Posey H.H. 523
 Price P.E. 523
 Pushkar P. 477
 Radway J.C. 427
 Renders P.J. 193
 Roded R. 347
 Rokop D.J. 133
 Ronen D. 347
 Rose W.I. 337
 Rosenthal E. 347
 Rosholt J.N. 135
 Ross J.D. 136
 Runnels D.D. 231
 Saltelli A. 275
 Schmidt-Munn A. 535
 Schrader E.L. 399
 Schwarcz H.P. 55, 67, 136
 Senftle J.T. 605
 Smith R.E. 247 (BR)
 Snelling A.A. 385
 Snodgrass W.J. 217
 Spencer R.J. 373
 Stone D. 73
 Stroes-Gascoyne S. 217
 Stuckless J.S. 136
 Stueber A.M. 477
 Surdam R.C. 613
 Taggart, Jr. J.E. 337
 Tassi Pelati L. 357
 Thivierge R.H. 103
 Tilling R.I. 337
 Touhouat P. 417
 Tullborg E.-L. 136
 Ueda A. 127, 205
 Vandergraaf T.T. 5, 137
 Webster J.G. 579
 Wei J. 181
 Weston R.J. 305
 Wikberg P. 25
 Williams A.E. 563
 Wood J.R. 629
 Woolhouse A.D. 305
 Xiong D. 181
 Zeng Y. 181