Neural Networks

Dr. Jameel Malik

muhammad.jameel@seecs.edu.pk

Example Application

Handwriting Digit Recognition

Handwriting Digit Recognition

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

• The network *parameters* θ include the weight matrices and bias vectors from all layers

$$\theta = \{W^1, b^1, W^2, b^2, \cdots W^L, b^L\}$$

- Often, the model parameters θ are referred to as weights
- Training a model to learn a set of parameters θ that are optimal (according to a criterion) is one of the greatest challenges in ML

- Data preprocessing helps convergence during training
 - Mean subtraction, to obtain zero-centered data
 - o Subtract the mean for each individual data dimension (feature)
 - Normalization
 - o Divide each feature by its standard deviation
 - To obtain standard deviation of 1 for each data dimension (feature)
 - o Or, scale the data within the range [0,1] or [-1, 1]
 - E.g., image pixel intensities are divided by 255 to be scaled in the [0,1] range

Picture from: https://cs231n.github.io/neural-networks-2/

- Define a *loss function*/objective function/cost function $\mathcal{L}(\theta)$ that calculates the difference (error) between the model prediction and the true label
 - E.g., $\mathcal{L}(\theta)$ can be mean-squared error, cross-entropy, etc.

- For a training set of N images, calculate the total loss overall all images: $\mathcal{L}(\theta) = \sum_{n=1}^{N} \mathcal{L}_n(\theta)$
- Find the optimal parameters θ^* that minimize the total loss $\mathcal{L}(\theta)$

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Loss Functions

• Classification tasks

Training
examples

Pairs of N inputs x_i and ground-truth class labels y_i

Output Layer Softmax Activations [maps to a probability distribution]

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

Loss function

Cross-entropy
$$\mathcal{L}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \left[y_k^{(i)} \log \hat{y}_k^{(i)} + \left(1 - y_k^{(i)} \right) \log \left(1 - \hat{y}_k^{(i)} \right) \right]$$

Ground-truth class labels y_i and model predicted class labels \hat{y}_i

Loss Functions

• Regression tasks

Training
examples

Pairs of N inputs x_i and ground-truth output values y_i

Output Layer

Linear (Identity) or Sigmoid Activation

Loss function

Mean Squared Error
$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Mean Absolute Error
$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

Gradient Descent Algorithm

- Steps in the *gradient descent algorithm*:
 - 1. Randomly initialize the model parameters, θ^0
 - 2. Compute the gradient of the loss function at the initial parameters θ^0 : $\nabla \mathcal{L}(\theta^0)$
 - 3. Update the parameters as: $\theta^{new} = \theta^0 \alpha \nabla \mathcal{L}(\theta^0)$
 - \circ Where α is the learning rate
 - 4. Go to step 2 and repeat (until a terminating criterion is reached)

Gradient Descent Algorithm

- Gradient descent algorithm stops when a local minimum of the loss surface is reached
 - GD does not guarantee reaching a global minimum
 - However, empirical evidence suggests that GD works well for NNs

Mini-batch Gradient Descent

- It is wasteful to compute the loss over the entire training dataset to perform a single parameter update for large datasets
 - E.g., ImageNet has 14M images
 - Therefore, GD (a.k.a. vanilla GD) is almost always replaced with mini-batch GD
- Mini-batch GD (or Stochastic GD)
 - Approach:
 - \circ Compute the loss $\mathcal{L}(\theta)$ on a mini-batch of images, update the parameters θ , and repeat until all images are used
 - o At the next epoch, shuffle the training data, and repeat the above process
 - Mini-batch GD results in much faster training
 - Typical mini-batch size: 32 to 256 images
 - It works because the gradient from a mini-batch is a good approximation of the gradient from the entire training set

Mini-batch

- \succ Randomly initialize θ^0
- Pick the 1st batch $C = C^1 + C^{31} + \cdots$ $\theta^1 \leftarrow \theta^0 \eta \nabla C(\theta^0)$
- Pick the 2nd batch $C = C^2 + C^{16} + \cdots$ $\theta^2 \leftarrow \theta^1 \eta \nabla C(\theta^1)$:
- Until all mini-batches have been picked

one epoch

Repeat the above process

Stochastic Gradient Descent

- Stochastic gradient descent
 - SGD uses mini-batches that consist of a single input example
 - o E.g., one image mini-batch
 - Although this method is very fast, it may cause significant fluctuations in the loss function
 - o Therefore, it is less commonly used, and mini-batch GD is preferred
 - In most DL libraries, SGD typically means a mini-batch GD (with an option to add momentum)

Other Optimizers

- Add momentum and/or velocity/acceleration terms
 - SGD with momentum
 - Adagrad
 - Adam
 - Adam

```
# Adam
m,v = #... initialize caches to zeros
for t in xrange(1, big_number):
    dx = # ... evaluate gradient
    m = beta1*m + (1-beta1)*dx # update first moment
    v = beta2*v + (1-beta2)*(dx**2) # update second moment
    mb = m/(1-beta1**t) # correct bias
    vb = v/(1-beta2**t) # correct bias
    x += - learning_rate * mb / (np.sqrt(vb) + 1e-7)
```


Animation by Alec Radford

MNIST Digits Classification using MLP

MNIST Dataset

- A database of handwritten digits
 - Training set: 60,000 examples
 - Test set: 10,000 examples
 - Image size: **28x28**
 - Pre-processed data(e.g., the digits are placed in the center of image).
 - o Labels are provided.
- Input representation:
 - $28x28 = 784 \text{ values } (x_1, x_2, \dots, x_{784})$
- Output representation
 - One-hot encoding $(y_1, y_2, \dots, y_{10})$

MNIST Digits Classification using MLP

• One possible model

Softmax Layer

- In multi-class classification tasks, the output layer is typically a *softmax layer*
 - i.e., it employs a *softmax activation function*
 - If a layer with a sigmoid activation function is used as the output layer instead, the predictions by the NN may not be easy to interpret
 - o Note that an output layer with sigmoid activations can still be used for binary classification

A Layer with Sigmoid Activations

$$z_1 \xrightarrow{\mathbf{3}} \sigma \xrightarrow{\mathbf{0.95}} y_1 = \sigma(z_1)$$

$$z_3 \xrightarrow{-3} \sigma \qquad 0.05 \qquad y_3 = \sigma(z_3)$$

Softmax Operation

- The softmax layer applies softmax activations to output a probability value in the range [0, 1]
 - The values z inputted to the softmax layer are referred to as *logits*

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$