Student Number: Name: Bryan Hoang

1. (10 points)

(a) Answer:

Proof. If a and b are cubic residues modulo p, then $p \nmid a$ and $p \nmid b$. Thus, $p \nmid ab$. We also have that $\exists c, d \in \mathbb{Z}$ such that

$$a \equiv c^3 \pmod{p}$$
 and $b \equiv d^3 \pmod{p}$.

It then follows that with $ab \in \mathbb{Z}$, $ab \equiv (cd)^3 \pmod{p}$. Therefore, ab is a cubic residue modulo p.

(b) **Answer:**

Example. Let p = 7, $a \equiv 2 \pmod{p}$, and $b \equiv 4 \pmod{p}$. Then $ab \equiv 3 \pmod{p}$. But

$$1^{3} \equiv 1 \pmod{p}$$

$$2^{3} \equiv 1 \pmod{p}$$

$$3^{3} \equiv 6 \pmod{p}$$

$$4^{3} \equiv 1 \pmod{p}$$

$$5^{3} \equiv 6 \pmod{p}$$

$$6^{3} \equiv 6 \pmod{p}$$

$$(ab)^{3} \equiv 1 \pmod{p}$$

Therefore, a, b, and ab are not cubic residues modulo p.

(c) **Answer:**

Proof.

Part 1. (\Rightarrow) First, let's suppose that a is a cubic residue modulo p. Then $\exists b \in \mathbb{Z} : a \equiv b^3 \pmod{p}$. We also have that since g is a primitive root modulo p, $\exists c \in \mathbb{Z} : b \equiv g^c \pmod{p}$. Let $x = \log_p(a)$. Then

$$\begin{cases} g^x \equiv a \pmod{p} \\ a \equiv b^3 \pmod{p} \end{cases}$$

$$\Rightarrow g^x \equiv b^3 \pmod{p}$$

$$g^x \equiv (g^c)^3 \pmod{p}$$

$$g^x \equiv g^{3c} \pmod{p}$$

$$\Rightarrow x = 3c$$

$$\Rightarrow 3 \mid x$$

$$\Rightarrow 3 \mid \log_a(a).$$

Part 2. (\Leftarrow) Next, suppose that $3 \mid \log_{\varrho}(a)$. Then $\exists b \in \mathbb{Z} : \log_{\varrho}(a) = 3b$. Letting $x = \log_{\varrho}(a)$, we have

$$g^x \equiv a \pmod{p}$$

 $g^{3b} \equiv a \pmod{p}$
 $(g^b)^3 \equiv a \pmod{p}$
 $c^3 \equiv a \pmod{p}$ where $c \equiv g^b \pmod{p}$ as g is a primitive root

Thus, a is a cubic residue modulo p.

(d) Answer:

Proof. Let $p \equiv 2 \pmod{3}$, let $a \in \mathbb{Z}$, and let g be a primitive root modulo p. Since $p \equiv 2 \pmod{3}$, then

Student Number: Name: Bryan Hoang

 $\exists b \in \mathbb{Z} : p = 3b + 2$. By Fermat's Little Theorem, it follows that

$$\begin{split} g^{p-1} &= g^{3b+1} \\ &\equiv 1 \pmod p \\ \Rightarrow g^{6b+2} &\equiv 1 \pmod p. \end{split}$$

Also since g is a primitive root modulo, $\exists c \in \mathbb{Z} : a = g^c \pmod{p}$. Then by the previous two results,

$$a \equiv g^c \equiv g^{c+3b+1} \equiv g^{c+6b+2} \pmod{p}$$
.

Exactly one of the elements in the set $\{c, c+3b+1, c+3b+2\}$ is divisible by 3. Let $x = \log_g(a)$ denote this element. Then $3 \mid x$. By part (c), we have that a is cube modulo p.