

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits
- Others

Step Response of RC Circuit

 When a DC source is suddenly applied to a RC circuit, the circuit response is known as the step response.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The Unit Step *u(t)*

 A step function is one that maintains a constant value before a certain time and then changes to another constant afterwards.

switching time may be shifted to $t = t_0$ by

$$u(t - t_0) = \begin{cases} 0, & t < t_0 \\ 1, & t > t_0 \end{cases}$$

Equivalent Circuit of Unit Step

 The unit step function has an equivalent circuit to represent when it is used to switch on a source.

Step Response of the RC Circuit

Lecture 5

Step Response of the RC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

This is known as the <u>complete response</u>, or total response.

45

Complete response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The complete response

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

can be written as:

$$v = v_n + v_f$$

 V_s V_s

0

Complete response = natural response + forced response independent source

or

$$v = v_n + v_f$$

where

$$v_n = V_o e^{-t/\tau}$$

and

$$v_f = V_s(1 - e^{-t/\tau})$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or disp

Another Perspective

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

 Another way to look at the response is to break it up into the <u>transient response</u> and the <u>steady state response</u>:

$$v(t) = \underbrace{v(\infty)}_{\text{steady } v_{ss}} + \underbrace{[v(0) - v(\infty)]e^{-t/\tau}}_{\text{transient } v_t}$$

Step Response of the RL Circuit

Step Response of the RL Circuit

- We will use the transient and steady state response approach.
- We know that the <u>transient response will</u> be an exponential:

$$i_{t} = Ae^{-t/\tau}$$

 After a sufficiently long time, the current will reach the steady state:

$$i_{ss} = \frac{V_s}{R}$$

Lecture 5

Step Response of RL Circuit

This yields an overall response of:

$$i = Ae^{-t/\tau} + \frac{V_s}{R}$$

$$i(0^+) = i(0^-) = I_0 \qquad A = I_0 - \frac{V_s}{R}$$

$$i(t) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-t/\tau}$$

General Procedure of Finding RC/RL Response with D.C. sources

1. Identify the variable of interest

- For RL circuits, it is usually the inductor current $i_L(t)$.
- For RC circuits, it is usually the capacitor voltage $v_c(t)$.

2. Determine the initial value of the variable at t_0

• Recall that $i_L(t)$ and $v_c(t)$ are continuous variables:

$$i_L(t_0^+) = i_L(t_0^-)$$
 and $v_c(t_0^+) = v_c(t_0^-)$

3. Determine the final value of the variable (as $t \rightarrow \infty$)

If needed, recall an inductor behaves like a short circuit in steady state $(t \rightarrow \infty)$ & that a capacitor behaves like an open circuit in steady state $(t \rightarrow \infty)$.

4. Calculate the time constant for the circuit

- **r** = CR for an RC circuit where R is the Thévenin equivalent resistance "seen" by the capacitor.
- $\tau = L/R$ for an RL circuit, where R is the Thévenin equivalent resistance "seen" by the inductor.

[Source: Berkeley] Lecture 5

Response Form of Basic First-Order Circuits

Example

• The switch has been in position A for a long time. At t=0, the switch moves to B. Find v(t).

Example

• Find i(t) in the circuit for t > 0. Assume that the switch has been closed for a long time.

