NEWTON INTERPOLATION METHOD:

• FORWARD DIFFERENCE:

Formula:

$$P = \frac{x - x_o}{h}$$

$$\mathbf{Y(x)} = y_o + p\Delta y_o + \frac{p(p-1)}{2!}.\Delta^2 y_o + \frac{p(p-1)(p-2)}{3!}.\Delta^3 y_o + \frac{p(p-1)(p-2)(p-3)}{4!}.\Delta^4 y_o..$$

EXAMPLE:

Find solution using Newton's Forward Difference Formula

Х	F(x)
1891	46
1901	66
1911	81
1921	93
1931	101

X=1895

SOLUTION:

The value of table for x and y

Х	1891	1901	1911	1921	1931
У	46	66	81	93	101

Newton's forward difference table is

Х	У	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
1891	46				
		20			
1901	66		-5		
		15		2	
1911	81		-3		-3
		12		-1	
1921	93		-4		
		8			

1931	101		

The value of x at you want to find the f(x):x=1895

$$h=x_1-x_0$$

$$P = \frac{x - x_0}{h} = \frac{1895 - 1891}{10} = 0.4$$

Newton's forward difference interpolation formula is

$$\mathbf{y(x)} = y_o + p\Delta y_o + \frac{p(p-1)}{2!} \cdot \Delta^2 y_o + \frac{p(p-1)(p-2)}{3!} \cdot \Delta^3 y_o + \frac{p(p-1)(p-2)(p-3)}{4!} \cdot \Delta^4 y_o$$

$$y \text{ (1895)} = 46 + 0.4 \times 20 + \frac{0.4(0.4 \times 1)}{2} \times -5 + \frac{0.4(0.4 - 1)(0.4 - 2)}{6} \times 2 + \frac{0.4(0.4 - 1)(0.4 - 2)(0.4 - 3) \times -3}{24}$$

Solution for newton's forward interpolation method y (1895) =54.8528