CIS 3223 Homework 2

Name:

Dr Anthony Hughes

Temple ID (last 4 digits:

1 (6 pts) Show that $\sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)$

$$\int_{1}^{\infty} \frac{1}{x} dx = \ln x \Big|_{1}^{n} = \ln n - \ln t = O(\log n)$$

- 2 (9 pts) Determine the following:
- (a) 4231 (mod 19)

18

(b) -75 (mod 19)

1

(c) $19^7 \pmod{17}$

197 (mod 17) = 2 (mod 17)

= 128 (mod 17)

= 9

3 (15 pts) Apply the non-recursive **division algorithm** to find the quotient and remainder when 100 is divided by 7. **Show all steps** (diagram carefully).

x = 100 y = 7

	digit	q	r	$r \ge y$
0		0	0	
	\	00	0	12
7	l	0	2 3	F
3 6	0	20	Q Q	F
	٥	0 0	12 12 5	T
12	1	2 2 3	10	て
50	O	6 6 7	8 8 1	て
160	\Diamond	14	2 2	
100				

quotient <u>14</u> remainder <u>2</u>

4 (15pts) Use the **extended Euclidean algorithm** (using matrices) to find integers s and t such that $91s + 11t = \gcd(91, 11)$ (show all steps).

a = 91,		b = 11		$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
a	b	q	r	Q		
91	1(8	3	$\begin{bmatrix} 0 & 1 \\ 1 & -8 \end{bmatrix}$		
(1	3	3	2	$\begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -8 \end{bmatrix} = \begin{bmatrix} 1 & -8 \\ -3 & 75 \end{bmatrix}$		
3	2	l	l	$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -8 \\ -3 & 25 \end{bmatrix} = \begin{bmatrix} -3 & 25 \\ 4 & -33 \end{bmatrix}$		
2	l	2	6	$ \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} -3 & 25 \\ 4 & -33 \end{bmatrix} = \begin{bmatrix} 4 & -33 \\ -11 & 91 \end{bmatrix} $		
$compute first \stackrel{?}{:} 91 \boxed{4} +11 \boxed{-33} = \boxed{1}$						

5 (5 pts). Exercise 1.10

$$(a \equiv b \pmod{N}, M \mid N) \Rightarrow a \equiv b \pmod{M}$$

$$a \equiv b \pmod{N} \Rightarrow N \mid a - b \Rightarrow a - b = Ns, s \in \mathbb{Z}$$

$$M \mid N \Rightarrow N = Mt, t \in \mathbb{Z}$$

$$Now a - b = Ns = (Mt)s$$

$$= M(ts)$$

$$Thus M \mid a - b \quad sunce ts \in \mathbb{Z} \quad and so$$

$$a \equiv b \pmod{M}$$