109 學年度第二學期 材料熱力學二 期末考

 $R = 8.314 \, I \, K^{-1} \, mol^{-1} = 0.082 \, L \, atm \, K^{-1} mol^{-1}$

- 1 A regular solution contains A and B, which obeys $\Omega = 18000 \, J \, mol^{-1}$. Answer the following questions at 900 K.
 - 1.1 (5%) Calculate the critical temperature.
 - 1.2 (5%) Determine the spinodal compositions by the calculation, not from the curve.
 - 1.3 **(10%)** Plot the curve of $\Delta G^M vs. X_R$.
 - 1.4 **(10%)** Plot the curve of $a_B vs X_B$.
- A and B are mutually dissolved in the liquid phase and the solid phase. Some thermal properties of A and B are given by:

	Melting Point (K)	$\Delta H_m^0 (J \ mol^{-1})$
Α	1100	11000
В	1700	13000

Set that the liquid phase and the solid phases are ideal and have the same heat capacities.

- 2.1 (10%) Plot $\Delta G_{(s)}^M \ vs. X_B$ and $\Delta G_{(l)}^M \ vs. X_B$ at 1400 K when $G_{A(l)}^0$ and $G_{B(s)}^0$ equal zero.
- 2.2 (10%) Plot $\Delta G_{(s)}^M vs. X_B$ and $\Delta G_{(l)}^M vs. X_B$ at 1400 K when $G_{A(l)}^0$ and $G_{B(l)}^0$ equal zero.
- 2.3 **(10%)** Plot the phase diagram with respect to X_B .
- 2.4 **(10%)** Plot the curve of $a_A vs. X_B$ with respect to pure solid A and the curve of $a_A vs. X_B$ with respect to pure liquid A at 1400 K. Please **label** the length of a_A at $X_A = 1$ for each curve.
- 2.5 **(10%)** Plot the curve of $a_B vs. X_B$ with respect to pure solid B and the curve of $a_A vs. X_B$ with respect to pure liquid B at 1400 K. Please **label** the length of a_B at $X_B = 1$ for each curve.
- The phase diagram of the A-B binary system is shown on the right-hand side. If the liquid solution obeys the **positive deviation solution** and the solid solution is the **ideal solution**, please roughly plot the curves of $a_A \ vs. \ x_B$ and $a_B \ vs. \ X_B$ at various temperatures.
 - 3.1 (5%) At T₁, set pure solid A and pure liquid B as the standard points.
 - 3.2 **(5%)** At T₂, set pure solid A and pure solid B as the standard points.
 - 3.3 (5%) At T_E (Eutectic T), set pure solid A and pure solid B as the standard points.
 - 3.4 (5%) At T₃, set pure solid A and pure solid B as the standard points.

1.4

2.2

2.3

