

Introduction to Astronomical Programming

Kyle R. Murphy 2018-01-29 UMCP – NASA GSFC

About Me

Kyle R. Murphy krmurphy@umd.edu

http://www.astro.umd.edu/~krmurphy1/ASTR288

- Office: ATL 0251A
 - Based at NASA Goddard
- Office Hours: Monday 3:00 pm 4:00 pm (before class)
 - Confirm office hours (often off campus).
 - Additional times can be set up by email if needed.

About Me

Magnetospheric Physicist

- Space weather
 - Solar Wind
 - Radiation Belts
 - Aurora

- C++ and Python
- IDL (scientific analysis, similar to Matlab)

Course Format

Introduce students to Scientific and Astronomical Programming.

- Lectures will occur during most classes.
 - Class time will also be used to work through in-class problems/examples (learn by doing).

Homework

- Will be assigned throughout the course at natural stopping points.
- 4-5 assignments generally due at the start of class.
- End-of-term project and presentation in place of a written final exam.

Course Format

Learning Assessments	Category Weight
Participation:	10%
Assignments:	90%

Fi	nal Grad	e Cu	toffs						
+	97.00%	+	87.00%	+/	77.00%	/+	67.00%		
A	94.00%	В	84.00%	С	74.00%	D	64.00%	F	<60.0%
-	90.00%	-	80.00%	//-	70.00%	-	60.00%		

Participation:

 Attendance and in class exercises

Homework

As the class progresses homework will become more difficult. As such there will be a cumulative marking scheme for homework, i.e., total points on all homework.

Resources

Won't be using a textbook.

For coding the web is an excellent resource for all questions; debugging, installation, code description, manuals, etc.

- Google
- Wikipedia
- http://www.stackoverflow.com, Any Questions
- https://git-scm.com/doc, Git
- http://codecademy.com, Python, Git
- https://www.tutorialspoint.com, C, Python

What we'll cover

Unix

- Shell (we will use bash but others exist), shell scripting
- File system (/, /usr/bin, \$HOME, etc.)
- Window managers, desktop environments
- Editors (emacs, vi, gedit, pico, sublime, atom, visual studio, and many others), people have strong opinions but I do not!
- Base commands (cd, mkdir, ls, ssh...)
- Tools
 - Unix Tools (Is, cp, mkdir ...)
 - Community Tools (git, gcc, g++, python, IDL, Matlab, R, ...)

Scripting

- Python
- ipython
- Jupyter

Numerical Methods and Data Analysis

Open Source Software

Final Project

What we won't cover

- Parallel Programing (OpenMP, MPI, CUDA)
- Machine Learning
- Word processing

Schedule

			Торіс		
Week 1		Jan 21 – Jan 27	No Class		
Week 2	Lecture 1	Jan 28 – Feb 3	Introduction and Assessments		
Week 3	Lecture 2	Feb 4 – Feb 10	Unix (shells, files and directories), GIT		
Week 4	Lecture 3	Feb 11 – Feb 17	More on Unix (file commands, scripting, permissions)		
Week 5	Lecture 4	Feb 18 – Feb 24	Unix/Python (remote access, paths, variables, miniconda)		
Week 6	Lecture 5	Feb 25 – Mar 3	Python (jupyter, variable types, control flow)		
Week 7	Lecture 6	Mar 4 – Mar 10	Python (arrays, plotting) Guest Lecture		
Week 8	Lecture 7	Mar 11 – Mar 17	Python scientific programming and numerical methods		
Week 9	Lecture 8	Mar 18 – Mar 24	Spring Break, no lecture		
Week 10	Lecture 9	Mar 25 – Mar 31	Python scientific programming and numerical methods		
Week 11	Lecture 10	Apr 1 – Apr 7	Python scientific programming and numerical methods		
Week 12	Lecture 11	Apr 8 – Apr 14	Python scientific programming and numerical methods		
Week 13	Lecture 12	Apr 15 – Apr 21	Python scientific programming and numerical methods		
Week 14	Lecture 13	Apr 22 – Apr 28	Python scientific programming and numerical methods		
Week 15	Lecture 14	Apr 29 – May 5	Final Presentations		
Week 16	Lecture 15	May 6 – May 12	Last class, recapping (continued presentations if required).		

Topics we can cover:

• Root finding, curve fitting, numerical integration, numerical differentiation, timeseries analysis, image processing, plotting, and multidimensional arrays.

Hardware

Lab machines:

- Master: ursa.astro.umd.edu
- Nodes: lab001, lab002, ... lab013
- Printer: labs.astro.umd.edu

Virtual machines:

- virtualbox
- vmware

Your own machine:

- Linux (Ubuntu, Redhat, Fedora, Mint, debian, gentoo...) You can dual-boot if you want.
- Mac OS X

Windows

putty, Windows10 bash (Ubuntu), VNC viewer

Activity - 1

Write on a piece of paper:

- Your Name
- 2. Your year
- 3. Your Major
- 4. Do you plan to use your own computer? If so what operating system do you have?
- 5. Why are you taking this course?
 - fun, requirement, etc.
- 6. What grade are you hoping to get?
- 7. What did you like about previous classes? What didn't you like?
- 8. What are your expectations of this class?

