~ TBuMC ~

Автор: Пицик Харитон

Лекция 3 сентября 2025г.

Глава І. Условные распределения.

Повторение необходимого.

Рассматриваем (Ω, F, \mathbb{P}) — множество элементарных исходов эксперимента. Элемент $A \subset \Omega$ является *случайным событием*, $F - \sigma$ -алгебра событий:

- $\Omega \in F$;
- $A \in F \to \overline{A} \in F$;
- $\{A_i\}_{i=1}^{\infty} \in F \Rightarrow \bigcup_{i=1}^{\infty} A_i \in F$.

 $P:F\to [0,1],$ т.е. P(A) — вероятность события A. Свойства:

- $P(A) \ge 0 \forall A \in F$;
- $P(\Omega) = 1;$
- $P(\bigsqcup_{i=1}^{\inf})P(A_i) = \sum_{i=1}^{\inf}P(A_i).$

Определение. Случайная величина: $\xi:\Omega \to \mathbb{R}$, такая что

$$\forall x \in \mathbb{R} \{ \omega : \xi(\omega) < x \} \in F$$

Функция распределения вероятностей

Для случайной величины ξ функция распределения выглядит следующим образом:

$$F_{\xi}(x) = P\{\omega : \xi(\omega) < x\}$$

Случайные величины делятся на дискретные, абсолютно непрерывные.

Дискретная случайная величина: $\{x_1, x_2, ..., x_n, ...\}$, задаётся числами

$$p_i = P\{\xi = x_i\};$$

$$p_{i} > 0;$$

$$\sum_{i=1}^{\infty} p_i = 1$$

Абсолютно непрерывная случайная величина: $\xi \in \mathbb{R}$ и пусть $f(x) - \phi$ ункция плотности распределения. Важно, что f(x) почти всюду = F'(x) Наиболее важным требованием является:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Двумерные случайные величины

Определение. Случайный вектор — это вектор $\overline{\xi}=(\xi_1,\xi_2,...,\xi_n)$, где $\xi_i,\xi=\overline{(1,n)}$ — случайные величины, ξ_i задана в (Ω_i) .

Случайный вектор $\overline{\xi}$ задаётся в (Ω,F,P) ; $\Omega=\Omega_1\times\Omega_2\times...\times\Omega_n$, где

- $F \sigma$ -алгебра,
- \mathbb{P} вероятностная мера.

Рассмотрим вектор с координатами (ξ, η) .

Определение. Функция распределения:

$$F_{\xi_n}(x,y) = P\{\omega : \xi(\omega) < x; \eta(\omega) < y\}$$

Свойства:

- 1. $\forall x, y \in \mathbb{R}0 \le F_{\xi,\eta}(x,y) \le 1$;
- 2. Если x_0,y_0 фиксированные, то $F_{\xi\eta}(x_0,y)$ неубывающая и непрерывная слева по y, а $F_{\xi\eta}(x,y)$ неубывающая и непрерывная слева по x;

3.
$$\begin{split} &\lim_{x\to +\infty} F(\xi\eta)(x,y) = F_{\eta}(y); \\ &\lim_{y\to +\infty} F_{\xi\eta}(x,y) = F_{\xi}(x); \\ &\lim_{x\to +\infty, y\to +\infty} F_{\xi\eta}(x,y) = 1; \\ &\lim_{x\to -\infty} F_{\xi\eta}(x,y) = \lim_{y\to -\infty} F_{\xi\eta}(x,y) = \lim_{x\to -\infty, y\to -\infty} F_{\xi\eta}(x,y) = 0 \end{split}$$

Определение. Случайный вектор называется дискретным, если ξ, η — дискретные случайные величины.

Случайные векторы (ξ,η) принимают значения (x_i,y_i) с вероятностями $p_{ij}=P\big\{\xi=x_i,\eta=y_j\big\},$ при этом $p_{ij}<0$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$$

Определение. Частные распределения имеют следующий вид:

$$p_i = P\{\xi = x_i\} = \sum_{j=1}^\infty p_{ij}$$

$$q_j = P\{\eta = y_j\} = \sum_{i=1}^{\infty} p_{ij}$$

Независимость величин

Определение. Случайные величины ξ , η называются независимыми, если

$$P\{\xi < x, \eta < y\} = P\{\xi < x\} * P\{\eta < y\}$$
, t.e. $F_{\xi\eta}(x,y) = F_{\xi}(x) * F_{\eta}(y)$

Аналогично $P(A \cap B) = P(A) * P(B) \Rightarrow A, B$ независимы.

Рассмотрим подробнее. Для дискретных случайных величин:

$$p_{ij} = p_i p_j$$

Для абсолютно непрерывных случайных величин:

$$f_{\xi\eta}(x,y) = f_\xi(x) f_\eta(y)$$

Определение. Случайный вектор (ξ, η) называется абсолютно непрерывным, если

$$F_{\xi\eta}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi\eta}(u,v) du dv$$

Определение. Частные распределения имеют следующий вид:

$$f_{\xi}(x) = \int_{-\infty}^{\infty} f_{\xi\eta}(x, y) dy;$$

$$f_{\eta}(y) = \int_{-\infty}^{\infty} f_{\xi\eta}(x, y) dx.$$

Теорема. Случайные величины ξ,η независимы тогда и только тогда, когда

$$f_{\varepsilon_n}(x,y) = f_{\varepsilon}(x)f_n(y)$$

Пусть установлено, что случайные величины — зависимы. Определение. Пусть $F_{\xi\eta}(x,y)$ — функция распределения вектора (ξ,η) , а $F_{\xi}(x)$ — функция распределения случайной величины ξ . Условным распределением случайной величины η относительно случайной величины ξ называется распределение со следующей функцией:

$$\begin{split} F_{\eta\mid\xi}(x,y) &= \frac{F_{\xi\eta}(x,y)}{F_{\xi}(x)} \text{ при } F_{\xi}(x) > 0; \\ F_{\eta\mid\xi}(x,y) &= 0 \text{ при } F_{\xi}(x) = 0. \end{split}$$

В частности, для дискретной случайной величины:

$$Pig\{\eta=y_j\mid \xi=x_iig\}=rac{P\{\xi=x_i,\eta=y_j\}}{P\{\xi=x_i\}},$$
 или $Pig\{\eta=y_j\mid \xi=x_iig\}=rac{P_{ij}}{p_i}$

А для абсолютно непрерывной случайной величины:

$$f_{\eta\mid\xi}(x,y)=rac{f_{\xi\eta}(x,y)}{f_{\eta}}(x)$$
 для $f_{\xi}(x)>0.$ Заметим, что $f_{\xi\eta}(x,y)=f_{\xi}(x)*f_{\eta\mid x}(x,y).$

Т.о. условное распределение является случайной величиной. Наша задача — найти следующую связь: $\eta = f(\xi)$.

Определение. Условным математическим ожиданием случайной величины η относительно случайной величины ξ называется случайная величина

$$M_{\eta \mid \xi = x_i} = \sum_{i=1}^{\infty} y_i * P\{\eta = y_i \mid \xi = x_i\}$$

с распределением $P\{\xi = x_i\}$. Построим ряд распределения:

$M_{\eta \mid \xi} = x_i$	m_1	m_2	 m_n
$P\{\xi=x_i\}$	p_1	p_2	 p_n

Определение. Условным математическим ожиданием абсолютно непрерывной случайной величины η относительно случайной величины ξ называется

$$M_{\eta \; | \; \xi} = \int_{-\infty}^{\infty} y f_{\eta \; | \; \xi}(x,y) dy$$
с функцией плотности $f_{\xi}(x).$

Покажем, что $M\left(M_{\eta + \xi}\right) = M\eta$. Действительно,

$$\begin{array}{l} M\Big(M_{\eta\mid\xi}\Big) = \int_{-\infty}^{\infty} \Big(M_{\eta\mid\xi}\Big) f_{\xi}(x) dx = \int_{-\infty}^{\infty} \Big(\int_{-\infty}^{\infty} f_{\eta\mid\xi}(x,y) dy\Big) f_{\xi}(x) dx = \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{\eta\mid\xi}(x,y) = f_{\eta}(x) dx dy = f_{\eta\xi}(x,y) \end{array}$$

$$= \textstyle \int_{-\infty}^{\infty} y \Big(\textstyle \int_{-\infty}^{\infty} f_{\xi\eta}(x,y) dx \Big) dy = \textstyle \int_{-\infty}^{\infty} y f_{\eta}(y) dy = M \eta.$$

Аналогично $M(M_{\eta \mid \xi}) = M\eta$.

 $(M\xi,M\eta)$ — центр распределения двумерной случайной величины (ξ,η) .

Лекция 10 сентября 2025 года

Определение. Условное мат ожидание

$$M_{\eta \mid \xi} = \int_{-\infty}^{\infty} y dF_{\eta \mid \xi}(x, y)$$

- случайная величина с функцией распределения $F_{\varepsilon}(x)$

Свойства:

- 1. $M_{\xi \mid \xi} = \xi$;
- 2. $M\xi\eta \mid \xi = \eta M\eta \mid \xi$;
- 3. $Mg(\xi)|\xi = g(\xi);$
- 4. $M(M\eta|\xi) = M\eta$
- 5. ξ, η независимые, то $M\eta | \xi = M\eta$

Определение. Функцией регрессии $g(\xi) = M\eta \mid \xi$. Функция регрессии используется для оценки $\hat{\eta} = g(\xi)$, где

- $\hat{\eta}$ прогнозное / оценка η ;
- η наблюдаемое значение.

У нас есть двумерное распределение (ξ,η) , и мы предполагаем существование некоторой функции f(x): $\eta=f(\xi)$.

Теорема. (о наилучшей оценке) (ξ,η) - некоторая двумерная случайная величина, при этом ξ,η - зависимые. Тогда наилучшей в смысле метода наименьших квадратов (МНК) оценкой связи ξ,η является функция регрессии

$$g(\xi) = M\eta | \xi$$

т.е.
$$M(\eta-g(\xi))^2=\min_{f(x)}M(\eta-f(\xi))^2$$

Доказательство. Рассмотрим произвольную функцию $M(\eta-f(\xi))^2=M(\eta-g(\xi)+g(\xi)-f(\xi))^2=M(\eta-g(\xi))^2+M(g(\xi)-f(\xi))^2+2M(\eta-g(\xi))M(g(\xi)-f(\xi))=$

Рассмотрим удвоенное произведенеие:

$$2M(\eta-g(\xi))M(g(\xi)-f(\xi))=M(g(\xi)-f(\xi)M(\eta-g(\xi))|\xi)=M((g(\xi)-f(\xi))\underbrace{M\eta|\xi}_{0}-\underbrace{Mg(\xi)\mid\xi}_{0}\mid\xi$$

$$=M(\eta-f(\xi))^2=\underbrace{M(\eta-g(\xi))^2}_{\geq 0}+\underbrace{M(g(\xi)-f(\xi))^2}_{\geq 0}\geq M(\eta-g(\xi))^2 \text{ (Разложили дисперию в сумму, сравнили с одним из слагаемых.) Ч.И.Т.Д.}$$

Линейная регрессия, уравнение линейной регрессии

Пусть $\eta = a\xi + b = M\eta \mid \xi$. Задача: оценить коэффициенты a,b методом наименьших квадратов.

$$\begin{split} &M(\eta - \hat{\eta}^2 \to \min_{a,b} \\ &M(\eta - a\xi - b)^2 = L(a,b) \\ &\frac{\partial L(a,b)}{\partial a} = \frac{\partial}{\partial a} M(\eta - a\xi - b)^2 = (-2)M(\eta - a\xi - b) * \eta = (-2)M(\eta\xi - a\xi^2 - b\xi) = (-2)[M\eta\xi - aM\xi^2 - bM\xi] = 0 \\ &\frac{\partial L(a,b)}{\partial b} = (\partial)(\partial b)M[\eta - a\xi - b]^2 = (-2)M(\eta - a\xi - b) = (-2)(M\eta - aM\xi - b) = 0 \\ &\begin{cases} M\eta - aM\xi - b = 0 \\ M\xi\eta - aM\xi^2 - bM\xi = 0 \end{cases} \\ &M\xi\eta - aM\xi^2 - (M\eta - aM\xi)M\xi = 0 \\ &M\xi\eta - aM\xi^2 - M\xiM\eta - a(M\xi)^2 = 0 \end{cases} \\ &M(M\xi - aM\xi^2 - M\xiM\eta - a(M\xi)^2 = 0) \\ &a(M\xi - (M\xi)^2) = M\xi\eta - \underbrace{M\xiM\eta}_{cov(\eta,\xi)} \\ &a = \frac{cov(\xi,\eta)}{D\xi} * \frac{\sqrt{D\eta}}{\sqrt{D\eta}} = \underbrace{\frac{cov(\xi,\eta)}{\sqrt{D\xi\sqrt{D\eta}}}}_{corr} * \frac{\sqrt{D\eta}}{\sqrt{D\eta}} = r\frac{\partial\eta}{\partial\xi} \end{cases}$$

Доказательство минимума самостоятельно, следуя соответствуя теореме.

Уравнение регрессии имеет вид:

$$\begin{split} \eta &= r \frac{\partial \eta}{\partial \xi} * \xi + M \eta - r \frac{\partial \eta}{\partial \xi} M \xi \\ \eta &= M \eta + r \frac{\partial \eta}{\partial \xi} (\xi - M \xi) \end{split}$$

Уравнение регрессии в отклонениях:

$$\eta - M \eta = r \frac{\partial \eta}{\partial \xi} (\xi - M \xi)$$
 график $(M \xi, M \eta)$

Оффтоп. О практике, как решать задачи.

Дано 2мерное распределение (ξ, η)

ξ,η	1	2	5
-1	.1	.2	.1
1	.4	0	.1

ξ	-1	1	p
0.4	0.6		

η	1	2	5
q	.5	.2	.3

Построить условное распределение $\eta \mid \xi$

Для
$$\{\eta = -1\}, p = 0.4$$

η	1	2	5
$P\{\eta -1\}$	1/4	2/4	1/4

$$M\eta \mid (\xi = -1) = 1 * \frac{1}{4} + 2 * \frac{1}{2} + 5 * \frac{1}{4} = 1 + 1.5 = 2.5$$

Для
$$\{\eta=1\}, p=0.6$$

η	1	2	5
$P\{\eta \mid 1\}$	2/3	0	1/3

$$M(M\eta|\xi) = \frac{5}{2} * \frac{2}{5} + \frac{7}{3} * \frac{3}{=} 1 + \frac{7}{5} = 1 + 1.4 = 2.4$$

Итоговая таблица:

$M\eta \xi$	2.5
$\frac{7}{3}$	p
0.4	0.6

Лекция 17 сентября 2025г.

Предельные теоремы. Последовательности случайных величин

Пусть $\left\{\xi_i\right\}_{i=1}^{\infty}$ — последовательноть случайных величин $(\Omega,\mathbb{F},\mathbb{P})$

Определение. Последовательность ξ_i сходится по вероятности к случайной величине ξ , если

$$\forall \varepsilon > 0P \Big\{ w \mid \xi_{i(x)} - \xi(w) < \varepsilon \Big\} \underset{i \to \infty}{\rightarrow} = 1$$

ипи

$$\forall \varepsilon > 0P\{|\xi_i - \xi| \ge \varepsilon\} \underset{i \to \infty}{\to} 0$$

Обозначение: $\xi_i \stackrel{p}{\to} \xi$

Определение. Последовательность случайных величин $\left\{\xi_i\right\}_{i=1}^\infty$ сходится по распределению к случайной величине ξ , если во всех точках непрерывности функции $F_\xi(x)$ функция $F_{n(x)} \to F_\xi(x)$.

Можно обозначать $F_n(x) \Rightarrow F(x)$, или $\xi_i \stackrel{d}{\to} \xi$, или $P\{w: \xi_i(w) < x\} \to P\{w: \xi(w) < x\}$.

Определение. Последовательность $\left\{\xi_i\right\}_{i=1}^\infty$ сходится почти наверное к случайной величине ξ , если

$$P\big\{w:\xi_{i(w)}\to\xi(w)\big\}=1$$

Определение. Последовательность $\left\{\xi_i\right\}_{i=1}^\infty$ сходится в среднем к ξ , если $M|\xi_i|<+\infty,$ $M|\xi|<+\infty$

$$M|\xi_i - \xi|^2 \underset{i \to \infty}{\longrightarrow} 0, \, \xi_i \underset{l,i,m}{\longrightarrow} \xi$$
 (limit in mean).

Сходимость в среднем — частный случай L сходимости.

Теорема. (Связь сходимости по вероятности и в среднем) Если $\xi_n \underset{l \to \infty}{\longrightarrow} \xi$, то $\xi_n \overset{p}{\to} \xi$

Доказательство. Воспользуемся неравенством Чебышева

$$\begin{split} &\forall \varepsilon > 0P\{|\xi - M\xi| < \varepsilon\} \geq 1 - \frac{M(\xi - M\xi)^2}{\varepsilon^2} \\ &\forall \varepsilon > 0P\{|\xi_n - \xi| < \varepsilon\} \geq 1 - \frac{M(\xi - M\xi)^2}{\varepsilon^2} \underset{l \text{ i.m.}}{\to} \ 0 \geq 1 \end{split}$$

Теорема. Из сходимости по вероятности следует сходимость по распределению.

$$\left(\xi_n \stackrel{p}{\to} \xi\right) \to \left(\xi_n \stackrel{d}{\to} \xi\right)$$

Доказательство. Пусть верно

$$\forall \varepsilon > 0P\{|\xi_n - \xi| \ge \xi\} \underset{n \to \infty}{\to} 0$$

Требуется доказать, что $F_{n(x_0)} o F(x_0)$, x_0 — точка непрерывности $F_\xi(x)$

 x_0 — т. непрерывности $F_{\varepsilon}(x)$.

Пусть $x' < x_0 < x''$.

$$\begin{array}{l} F_{n(x')} = P\{\xi_n < x'\} = P\{(\xi_n < x') \cap (\xi < x' \cap \xi_n \geq x_0)\} \leq P\{\xi_n < 0\} + P\{|\xi_n - \xi| \geq (x_0 - x')\} \leq \lim_{n \to \infty, x' \to x_0} F_{n(x_0)} \end{array}$$

$$\begin{split} F_n(x_0) &= P\{\xi_n < x_0\} = P\{(\xi_n < x_0) \cap (\xi < x'' \cup (\xi \ge x'')\} = P\{(\xi_n < x_0 \cap \xi < x'')\} + P\{(\xi_n < x_0) \cap (\xi > x'')\} \end{split}$$

$$\leq P\{\xi < x'\} + P\{|\xi_n - \xi| \geq \varepsilon(x_0 x'')\} \leq \lim_{n \to \infty} F_{\varepsilon}(x'')$$

$$F_{\xi(x')} \leq \underline{\lim}_{n \to \infty} F_{n(x_0)} \leq \lim_{n \to \infty} F_{n(x_0)} \leq F_{\xi}(x'')$$

Теорема. Если $\xi_n \stackrel{d}{\to} c$, то $\xi_n \stackrel{p}{\to} c$

Доказательство. Рассмотрим функцию распределения константы от x.

$$F_{c(x)} = \left\{ \begin{smallmatrix} 0x \leq c \\ 1x > c \end{smallmatrix} \right.$$

Получили
$$\forall \varepsilon > 0 P\{|\xi_n - c| < \varepsilon\} \ge 1$$
, но $P\{A\} \le 1 = \lim_{n \to \infty} P\{(\xi_n - c) < \varepsilon\} = 1, \xi_n \stackrel{p}{\to} c$

Лекция 1 октября 2025г.

Математическая статистика

Выборка и её характеристики

Пусть ξ — наблюдаемая случайная величина. Будем обозначать через $L(x,\theta)$ —закон распределения вероятностей, θ — параметры распределения.

Пример: $\xi \sim N(a,\sigma 2)$ — нормальное распределение. Если $\xi \sim N(\theta_1,\theta_2)$ и параметры θ_1,θ_2 — неизвестные соответственно a,σ^2 .

Пусть за случайной величиной ξ произведено n наблюдений. Обозначим как $X_1, X_2, ..., X_n$ случайные величины, распределённые также как ξ . Будем считать, что эти величины независимы по условиям эксперимента.

 X_i — независимые одинаково распределённые случайные величины (н о р сл в).

$$X_1, X_2, ..., X_n \sim \xi(\sim L(x, \theta))$$

Основная задача математической статистики состоит в том, чтобы по результатам наблюдений $X_1, X_2, ..., X_n$ сделать выводы о вероятностных характеристиках.

Определение. Последовательность $\overline{X_n} = (X_1, X_2, ..., X_n)$ случайных величин $\sim L_\xi(x, \theta)$ называется выборкой из распределения случайной величины ξ .

$$\mathbb{X}_n = \left\{\overline{X_n} = (X_1,...,X_n)\right\}$$
 — выборочным пространством.

Определение. Множество $(x_1, x_2, ..., x_n)$ значений случайных величин $(X_1, ..., X_n)$ называется реализацией выборки (выборка).

Генеральной совокупностью значений ξ называется множество всех возможных случайных значений случайной величины ξ . Тогда $(x_1,x_2,...,x_n)$ — выборочная совокупность.

$$\xi$$
 — рост студента СГУ, $N=30583, R$ — средний рост студента.

N ещё называют объёмом генеральной совокупности.

Выборка: (175; 160; ...; 180)

 $\overline{r},\overline{R}$ — выборочное среднее, генеральное среднее. Очевидно, что $\overline{r}<>\overline{R}$. Наша задача сводится к $\overline{r}pprox\overline{R}$.

Выборка должна быть репрезентативной (т.е. отражать закономерности генеральной выборки).

злая клубника.

Определение. Вариационным рядом x_i в неубывающем порядке $x_1^* \le x_2^* \le ... \le x_n^*; x_1^* = \min\{x_1,...,x_n\}, x_n^* = \max\{x_1,...,x_n\}$

Определение. Интервальным вариационным рядом называется таблица вида $(x_i; x_{i+1}]$

$\left[(x_i;x_{i+1}]\right]$	[x_1, x_2]	$(x_2,x_3]$	•••	$\left(x_m, x_{m+1}\right)$
n_i	n_1	n_2		n_m

 n_i — частота — количество наблюдений в $(x_i, x_{i+1}]$. ($n = \sum_{i=1}^m n_i$ — объём выборки)

 x_i — варианта

m — количество групп (интервалов).

Оптимальное количество вычисляется по формуле Стёрджесса:

$$m = [1 + 3.3221 \lg n] = [1 + \log_2 n]$$

Гистограмма частот: злая клубника не разрешила.

Гистограмма позволяет оценить распределение случайной величины ξ .

Определение. Точечным вариационным рядом называется таблица

x_1	x_2		x_m	n_1
n_2		n_m		

 x_i — варианта, n_i — частоты, m — количество групп.ф

Полигон частот:

Определение. Эмпирической функцией распределения ξ называется

$$\overline{F}_n(x) = rac{1}{n} \sum_{i=1}^n e(x-X_i)$$
 или $\overline{F}_n(x) = rac{\mu_n(x)}{n}.$

 $\mu_n(x)$ — количество экспериментов выборки < x.

Свойства:

- 1. $\forall x \in \mathbb{R}0 \leq \overline{F}_n(x) \leq 1$;
- 2. $\overline{F}_n(x)$ ступенчатая, кусочно непрерывная;

- 3. При $x < x_1$ б $\overline{F}_n(x) = 0$, при $x > x_n$, $\overline{F}_n(x) = 1$;
- 4. Случайная величина $\mu_n(x)$ $Bin\big(n;F_\xi(x)\big);$ 5. $M\overline{F}_n(x)=F_\xi(x);D\overline{F}_n(x)=F_\xi(x)\big(1-F_\xi(x)\big)$

Для (4):

Действительно, при x рассмотрим случайное событие $\{x_i < x\}$ т.к. $x_i \sim \xi$:

$$P\{x_i < x\} = P\{\xi < x\} = F_\xi(x) \forall x.$$

Следовательно,
$$M\mu_n(x)=n*p=n*F_\xi(x),$$
 $D\mu_n(x)=npq=n*F_\xi(x)*\left(1-F_\xi(x)\right)$

6. Теорема Гливенко: $\overline{F}_n(x) - \stackrel{p}{\longrightarrow} F_\xi(x)$