Virtual Memory	9.3	Consider the page table shown in Figure 9.30 for a virtual and physical addresses and with 256-byte page frames is <i>D</i> , <i>E</i> , <i>F</i> (that is, <i>D</i> is at the head of the and <i>F</i> is last). Convert the following virtual addresses to their equadresses in hexadecimal. All numbers are given that for a page frame indicates that the page is not in	ages. The the list, E equivaler in hexad	e list of free is second, nt physical lecimal. (A	
		• 9EF 0 C	Page	Page Frame	
			0	-	
		• 111 2 1 1	1	2	
		• 700	2	C	
			3	A	
		• 700 • 0FF	5	4	
		C 1 -	6	3	
			7 -	-	
			8 <u>9</u>	B 0	
		F	Figure 9.30 Pa	ge table for Exercise 9.3	3.———

+ 0.09 (1 m) + 0.01 (6.8 (2m) + 0.2 (0.5 (1D) + 0.5 (2D))

= 3,4006 x10-5

= 3 4.006 MSeC

9.7 Consider the two-dimensional array	9.7	9.7	7	Consi	ider	the	two	-dim	ensi	onal	array	7.	A
---	-----	-----	---	-------	------	-----	-----	------	------	------	-------	----	---

where A [0] [0] is at location 200 in a paged memory system with pages of size 200. A small process that manipulates the matrix resides in page 0 (locations 0 to 199). Thus, every instruction fetch will be from page 0.

For three page frames, how many page faults are generated by the following array-initialization loops? Use LRU replacement, and assume

that page frame 1 contains the process and the other two are initially empty.

a. for (int
$$j = 0$$
; $j < 100$; $j++$) $f = 0$ 000 $f = 0$ 000 for (int $i = 0$; $i < 100$; $i++$)
$$A[i][j] = 0;$$

b. for (int
$$i = 0$$
; $i < 100$; $i++$)

for (int $j = 0$; $j < 100$; $j++$)

 $A[i][j] = 0$;

inner 0.5 x 100 = 50

	1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.																				
		a 1	algo: Rem	rithr emb	ns, as	ssun at al	ning 1 fra	g one	, tw	o, th	ree,	r for four emp	, fiv	e, six	ι, an	d se	ven	fram	es?		
			•]	LRU	repla	cem	ent												_		
					repla																
					mal 1																
	1	_		-		-				1	_	2			2	_	1	0	2	_	
	1,	2,	3,	4,	2,	Ι,	5,	6,	2,	1,	2,	, 3,	7,	, 6,	3,	2,	1,	2,	3,	6.	
L																					

Consider the following page reference string:

Assume that we have a demand-paged memory. The page table is held in registers. It takes 8 milliseconds to service a page fault if an empty frame

9.21 Consider the following page reference string:

Assuming demand paging with three frames, how many page faults would occur for the following replacement algorithms?

- LRU replacement
- FIFO replacement
- Optimal replacement

19

7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0, 1.

7	7	7	1		3	B	3	7	7	7	5	5	5	2	7	2	1
	2	2	2	2	2	L	2	5	1	1	1	2	7	S	N	لى	3
		3	3	5	6	6	6	6	6	0	0	0	6	6	6	0	0

» 1,2%,X,8,X,8,X,X,8,8,X,b,23,6

7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0, 1.

7	7	7	1	1	1	6	6	6	0	0	0	6	6	6	0	O
	2	2	2	5	5	9	7	7	7	5	5	5	2	2	2	1
		3	3	3	4	7	7	1	1	1	4	7	7	3	3	Ŋ

optimal

7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0, 1.

7	7	7	1	- 1	l	_			1	l)		
	S	2	2	5	5	5	5		5	C	6	2	3	
		3	3	3	7	6	7		0	O	0	0	U	

- 9.22 The page table shown in Figure 9.32 is for a system with 16-bit virtual and physical addresses and with 4,096-byte pages. The reference bit is set to 1 when the page has been referenced. Periodically, a thread zeroes out all values of the reference bit. A dash for a page frame indicates the page is not in memory. The page-replacement algorithm is localized LRU, and all numbers are provided in decimal.
 - a. Convert the following virtual addresses (in hexadecimal) to the equivalent physical addresses. You may provide answers in either hexadecimal or decimal. Also set the reference bit for the appropriate entry in the page table.

0xE12C off(d 0x3/2 C x A A 9 D ox 5 9 D 9 ox 5 0 0 1 C x F 0 0 1 C

- b. Using the above addresses as a guide, provide an example of a logical address (in hexadecimal) that results in a page fault.
- c. From what set of page frames will the LRU page-replacement algorithm choose in resolving a page fault?

Page	Page Frame	Reference Bit	
0	9	0	\cup
1		0	
2	F 14	0	1
3	A 10	01	1
4	, <u> </u>	0	
5	D 13	0	
6	8	0	
7		01	
(8)	_	0	\cap
9	0	0	7
H 10	5	01	C-
B 11	(4)	0	\cup
(12)	_	0	\lambda
1) (13)	_	0	<u> </u>
F 14	3	01	γ
	2	0	

Figure 9.32 Page table for Exercise 9.22.

9.31 Consider a demand-paging system with a paging disk that has an average access and transfer time of 20 milliseconds. Addresses are translated through a page table in main memory, with an access time of 1 microsecond per memory access. Thus, each memory reference through the page table takes two accesses. To improve this time, we have added an associative memory that reduces access time to one memory reference if the page-table entry is in the associative memory.

Assume that 80 percent of the accesses are in the associative memory and that, of those remaining, 10 percent (or 2 percent of the total) cause page faults. What is the effective memory access time?