A Bottom-up Hierarchical Approach for Joint Inference of Overlapping Social Circles and Missing User Information

Vignesh Kannan, Siddharth Kannan

Motivation

- Natural to think of social networks as being composed of many interconnected social circles
- Filtered sharing of content as decided by the user
- Strategic marketing and advertisements targeted at particular groups leading to higher financial returns
- Identify anomalies and terrorist connections in social circles for purposes of international
- Infer missing information about users from their memberships to different social circles and improve friend and page suggestions
- Facilitate the automated formation of online communities and forums to mobilize support for various causes.

Properties of Social Circles

- Social circles evolve in a hierarchical bottom-up fashion.
- Circles can overlap, or in other words, a user can belong to more than one circle.
- Strong circles can form within weak circles.
- Principle of homophily is captured by the framework.
- Users with many mutual friends are likely to be connected.

Principle of homophily: People who have similar attributes tend to be connected, and people who are conneced tend to have similar attributes.

Contribution

- A nonparametric (model-free) algorithm that is not limited by assumptions about data distribution that entail parametric approaches
- Ability to naturally infer the number of social circles without requiring it as input and therefore, very useful from a practical standpoint
- Uses both graph structure information and node attribute information
- Inbuilt mechanism to produce hierarchical, disjoint and overlapping circles
- Effective strategy to eliminate redundant circles formed
- Inference of potentially missing information in the user profile and thereby useful for recommending links between users

Dataset Description

Stanford Network Analysis Project (SNAP), Social circles: Facebook

- Number of nodes: 4039
- Number of edges: 88234

Number of ego-networks: 10

- Average clustering coefficient: 0.6055
- Anonymized feature values obscuring interpretation of features
 - Each feature is binary-valued

Approach

Time complexity: $O(T(ElogE + V^2(|max_members| + |max_membership|) + E|max_membership||max_members|))$

Updation

Check convergence TRUE

<u>Initialization and Sorting</u>:

- Initialize each node as a cluster. Hence **node** *i* is *Ci*.
- Sort the edges in decreasing order of cosine-similarity between attribute vectors of edge's nodes.

<u>Circle Formation - Iteration 1:</u>

- C1 and C2 overlap.
- C3 and C4 overlap.

Terminate

Merge Circles and Label Propagation:

- C1 and C2 have high IoU (overlap).
- C1 and C2 are merged into a single circle.
- Attributes propagate among circles.

Circle Formation - Iteration 2:

- node 2 is assigned to C4.
- C1 and C4 overlap.
- C3 and C4 overlap.

Results

Method		Average	Average
Link Type	Similarity	1 - BER	F1-score
Average Link	Cosine	0.6349	0.3112
Complete Link	Cosine	0.7019	0.3832
Average Link	Gaussian Kernel	0.6223	0.4247
Complete Link	Gaussian Kernel	0.7158	0.4667
McAuley et al. 2012		0.8400	0.5900

Sample performance of Complete Link + Gaussian Kernel on individual egonets

Egonet ID	1 - BER	F1-score
348	0.6687	0.3565
414	0.7264	0.4838
686	0.5305	0.5328
698	0.8877	0.7379

Sample performance of Complete Link + Cosine on individual egonets

Egonet ID	1 - BER	F1-score
348	0.6601	0.3686
414	0.7622	0.5165
686	0.6187	0.3461
698	0.7228	0.3982

Conclusion and Future Work

- Complete link better captures the formation of social circles than Average link, which is more aggressive than desired
- Gaussian kernel yields a better F1-score than Cosine similarity on an average
- Allowing label propagation promotes the formation of bigger circles in the ground truth
- Establishing interpretability of circles formed
- Need to account for one-hot features separately by normalizing them in Label Propagation step
- Work on theoretical convergence
- Experiment with other datasets lilke Google+ and Twitter