1 Поверхности второго порядка

1.1 Общее уравнение

Определение. Поверхностью второго порядка называется множество точек трёхмерного аффинного или точечно-евклидова пространства, координаты которых в некоторой аффинной системе координат удовлетворяют уравнению F(x,y,z)=0, где

$$F(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y + 2a_{3}z + a_{0}z + a_{$$

причём хотя бы одно из чисел a_{11} , a_{22} , a_{33} , a_{12} , a_{13} , a_{23} отлично от нуля. Выражение F(x,y,z) - многочлен второй степени от переменных x,y,z. Уравнение F(x,y,z)=0 называется общим уравнением поверхности второго порядка.

Замечание. Точно так же определяются повехности второго порядка в аффинном или точечно-евклидовом пространстве произвольной конечной размерности n; они задаются многочленами второй степени от n переменных.

Теория поверхностей второго порядка аналогична теории кривых второго порядка.

1.2 Квадратичная часть и матрицы

С каждым многочленом F(x,y,z) связано $\kappa вадратичное$ отображение пространства (с данной системой координат) $f:A^3\to\mathbb{R}$, которое каждой точке X с координатами (x,y,z) ставит в соответствие число F(x,y,z). Говорят, что это отображение представлено многочленом F в данной системе координат. В другой системе координат многочлен, представляющий ту же функцию, станет другим.

Как и в случае линий второго порядка:

$$F(x,y,z) = \begin{pmatrix} x & y & z & 1 \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x & y & z \end{pmatrix} A_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} + 2 \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + a_0,$$

где

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_1 \\ a_{12} & a_{22} & a_{23} & a_2 \\ a_{13} & a_{23} & a_{33} & a_3 \\ a_1 & a_2 & a_3 & a_0 \end{pmatrix}$$

– большая матрица,

$$A_1 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

малая матрица (квадратичной части).

Определение.

$$F_1(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

называется $\kappa вадратичной частью многочлена <math>F$.

1.3 Закон изменения матриц при переходе к новой аффинной системе координат

Дословно так же, как в случае линий, доказывается, что при переходе к новой системе координат матрицы A и A_1 многочлена F, представляющие всё ту же функцию $f:A^3\to\mathbb{R}$, меняются по закону $A_1'=C^TA_1C$ и $A'=D^TAD$, где A_1' и A' – матрицы в новых координатах, C – матрица перехода от старого базиса к новому (её столбцы – координаты новых

начала координат в старой системе координа

В новой системе координат:

$$F^{'}(x^{'},y^{'},z^{'}) = \begin{pmatrix} x^{'} & y^{'} & z^{'} & 1 \end{pmatrix} A^{'} \begin{pmatrix} x^{'} \\ y^{'} \\ z^{'} \\ 1 \end{pmatrix} + 2 \begin{pmatrix} x^{'} & y^{'} & z^{'} \end{pmatrix} A^{'}_{1} \begin{pmatrix} a^{'}_{1} \\ a^{'}_{2} \\ a^{'}_{3} \end{pmatrix} + a_{0},$$

где буквы со штрихами – координаты, многочлен и матрицы в новой системе координат,

$$\begin{pmatrix} a_1' \\ a_2' \\ a_3' \end{pmatrix} = C^T \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

Приведение уравнений поверхностей второго 2 порядка к каноническому виду

2.1Алгоритм приведения уравнения к каноническому виду

Будем считать, что дело происходит в точечно-евклидовом пространстве \mathbb{R}^3 и многочлен F, представляющий квадратичное отображение $f:\mathbb{R}^3\to\mathbb{R}$, задан в прямоугольной системе координат. Это не умаляет общности: если задана не прямоугольная система координат, то мы всегда можем перейти в прямоугольную (по выписанным выше формулам), а если дело происходит в аффинном пространстве, то мы можем временно превратить его в евклидово, определив скалярное произведение в данной системе координат (в которой записана функ-

ция
$$F(x,y,z)$$
) по формуле $\begin{pmatrix} x_1\\y_1\\z_1 \end{pmatrix}, \begin{pmatrix} x_2\\y_2\\z_2 \end{pmatrix} \end{pmatrix} = x_1x_2 + y_1y_2 + z_1z_2$. Эта формула действительно

задаёт некоторое скалярное произведение, и наша система координат прямоугольна относительно него.

Совершенно так же (и из тех же соображений), как в случае линий, мы можем найти каноническую систему координат (прямоугольную!), в которой уравнение поверхности имеет простейший вид:

1. Решаем характеристическое уравнение $|A - \lambda E| = 0$, находим корни $\lambda_1, \lambda_2, \lambda_3$ - характеристические числа (собственные значения).

В этом месте отличие (от случая линии): если нулевых корней ≤ 1 , то первые номера даём положительным λ (упорядочиваем по возрастанию), следующие – отрицательным (по убыванию), потом идёт 0 (если есть). Если получилось два нулевых корня, то $\lambda_1 = \lambda_3 = 0, \ \lambda_2 \neq 0$.

- 2. Для каждого i=1,2,3 решаем однородную систему уравнений $(A-\lambda_i E)\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$, находим ненулевое решение (оно обязательно существует, так как $|A-\lambda_i E|=0$). Если есть несколько линейно независимых решений (два или три), выбираем максимально возможное число линейно независимых решений так, чтобы они были взаимно ортогональны; другими словами, выбираем ортогональный базис в пространстве решений (мы знаем, что это возможно, поскольку какой-то базис есть всегда, а ортогонализировать базисы мы уже научились).
- 3. Нормируем полученные на предыдущем шаге решения (собственные векторы, соответствующие собственным значениям $\lambda_{\underline{1}}, \lambda_{\underline{2}}, \lambda_{\underline{3}}$): если $\bar{u_i}$ решение, соответствующее числу λ_i , то полагаем $\bar{e_i'} = \frac{\bar{u_i}}{|\bar{u_i}|}$. Векторы e_1', e_2', e_3' будут базисными векторами канонической системы координат. По построение они образуют ортонормированный базис.
- 4. Избавляемся от линейной части, насколько возможно. Выделяя полные квадраты и меняя начало координат: в новом базисе матрица A_1' диагональна, и если в выражении F'(x',y',z') есть, скажем, $a_{11}'x'^2+2a_1'x'$, то меняем x' на $x''+x_0'$, где x_0' число, первая координата нового начала координат в системе координат с новым базисом) так, чтобы было $a_{11}'x'^2+2a_1'x'=a_{11}'x''^2+c_1$, где c_1 константа.
- 5. Если удалось избавиться от всех линейных членов, то мы получили канонический вид уравнения, а заодно и каноническую систему координат: её базис – вектора $\vec{e_1}, \vec{e_2}, \vec{e_3},$ найденные на третьем шаге, а начало – точка O' с координатами x_0', y_0', z_0' (относительно системы координат со старым началом и новым базисом), найденным на четвёртом шаге. Если не удалось избавиться от, например, $a_3'z'$, то есть в квадратичной части F'(x',y',z') нет члена $a_33'z'^2$ (это означает, что $\lambda_3=0$), но от других линейных членов избавиться удалось, то сдвигаем начало координат по оси O'z' так, чтобы избавиться от всех накопившихся при избавлении от других линейных членов констант: $z'' = z''' - \frac{c_1 + c_2 + a_0}{a_3'}$. Ничего себе, оказывается кавычку можно было не экранировать... Надо теперь всё переделывать(((Третьей координатой нового начала координат (в системе координат с новым базисом и старым началом) будет $-\frac{c_1+c_2+a_0}{a_3'}$, а первыми двумя координатами будут x_0' и y_0' , найденные на шаге 4. Если не удалось избавиться от линейных членов с x и z (и тогда $\lambda_1 = \lambda_3 = 0$), то на четвёртом шаге получилось уравнение $\lambda_2 y''^2 + 2 a_1'' x'' + 2 a_3'' z'' + c_2 + a_0 = 0$, где c_2 – константа, которая вылезла при избавлении от $2a_2'y'$. В этом случае ещё раз меняем базис: $\bar{e_1''} = \left(\frac{a_1''}{\sqrt{a_1''^2 + a_3''^2}}, 0, \frac{a_3''}{\sqrt{a_1''^2 + a_3''^2}}\right), \ \bar{e_2''} = \bar{e_2'},$ $e_3'' = \left(\frac{a_3''}{\sqrt{a_1''^2 + a_3''^2}}, 0, -\frac{a_3''}{\sqrt{a_1''^2 + a_3''^2}}\right)$. Новый базис по-прежнему ортогональный, и после перехода к нему уравнение примет вид $\lambda_2 y'''^2 + 2a_1'''x''' + c = 0$. Остаётся избавиться от константы сдвигом по оси x'''.
- 6. В результате получим почти каноническую систему координат и простейшее уравнение поверхности. Его надо будет поделить на число (и, возможно, поменять направление некоторых базисных векторов и(или) поменять местами некоторые базисные векторы), чтобы получилось уравнение одно из семнадцати видов, перечисленных далее. Например, если получилось $y^2 = -2px$, для p > 0, надо поменять местами направления век-

тора \bar{e}_1'' (умножить его на -1), а если получилось $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$, надо поменять местами \bar{e}_1'' и \bar{e}_2'' .

Если есть цель сохранить ориентацию системы координат, то может понадобиться ещё один шаг: надо посмотреть, какой определитель у произведения всех матриц перехода (т.е. у матрицы перехода от самого первого к самому последнему базису) и если он -1, поменять направление (умножить на -1) вектор $e_2^{"}$ (линейных членов с y в каноническом уравнении не бывает, так что это ничего не испортит).

Обоснуем первый шаг.

Утверждение. Для любой симметричной матрицы A_1 размера 3×3 характеристический многочлен $|A - \lambda E|$ имеет три корня.

Доказательство. Будем трактовать матрицу A_1 , как матрицу квадратичной части многочлена второй степени, представляющего квадратичную функцию $f: \mathbb{R}^3 \to \mathbb{R}$ на евклидовом пространстве в некотором ортонормированном базисе $\bar{e_1}, \bar{e_2}, \bar{e_3}$. Пусть

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Заметим, что $a_{ij} = \bar{e_i}^T A_1 \bar{e_j} = \bar{e_j}^T A_1 \bar{e_i}$ (потому что $\bar{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\bar{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\bar{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$). Пусть

$$A' = \begin{pmatrix} a'_{11} & a'_{12} & a'_{13} \\ a'_{12} & a'_{22} & a'_{23} \\ a'_{13} & a'_{23} & a'_{33} \end{pmatrix}$$

– матрица квадратичной части многочлена, представляющего ту же функцию f в другом базисе $\bar{e_1'}, \bar{e_2'}, \bar{e_3'}$. Заметим, что по-прежнему $a_{ij}' = \bar{e_i'}^T A_1' \bar{e_j'} = \bar{e_j'}^T A_1' \bar{e_i'}$, потому что $A_1' = C^T A_1 C$ и $\bar{e_i} = C \bar{e_i'}$, где C – матрица перехода.

Отсюда вытекает, что, во-первых, матрица A_1' по-прежнему симметрична, а во-вторых, если $\bar{e_i'}^T A_1 \bar{e_i'} = 0$, то $a_{ii}' = 0$.

Любой многочлен третьей степени имеет хотя бы один корень. Пусть λ_1 – корень многочлена $|A_1 - \lambda E|$. Тогда у матрицы A_1 существует собственный вектор \bar{x} с собственным значением λ_1 : $A_1\bar{x} = \lambda_1\bar{x}$. Заметим, что для любого вектора \bar{y} , ортогонального вектору \bar{x} , имеем $\bar{y}^T A_1 \bar{x} = \bar{y}^T \lambda_1 \bar{x} = \lambda_1(\bar{y}, \bar{x}) = 0$.

Выберем в пространстве любой ортонормированный базис $\bar{e_1'}, \bar{e_2'}, \bar{e_3'}$ с первым вектором $\bar{e_1'} = \frac{\bar{x}}{|\bar{x}|}$. В этом базисе

$$A_1' = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & a_{22}' & a_{23}' \\ 0 & a_{23}' & a_{33}' \end{pmatrix}.$$

Характеристический многочлен $|A_1' - \lambda E| = (\lambda_1 - \lambda)((a_{22}' - \lambda)(a_{33}' - \lambda) - a_{23}'^2)$ имеет три корня (мы уже проверяли, что дискриминант уравнения $(a_{22}' - \lambda)(a_{33}' - \lambda) - a_{23}'^2 = 0$ неотрицателен для любых $a_{22}', a_{33}', a_{23}'$, когда рассматривали двумерный случай).

Осталось заметить, что $|A_1'-\lambda E|=|A_1-\lambda E|$, потому что матрица перехода C ортогональна (т.е. $C^T=C^{-1}$) и $A_1'=C^TA_1C$:

$$|A_1' - \lambda E| = |C^T A_1 C - \lambda E| = |C^{-1} C_1 C - C^{-1} (\lambda E) C| = |C^{-1} (A_1 - \lambda E) C| = |C^{-1} (A_1 - \lambda E) C| = |C^{-1} (A_1 - \lambda E) C| = |A_1 - \lambda E|.$$

Следовательно, характеристический многочлен $|A_1 - \lambda E| = 0$ матрицы A_1 имеет те же три корня.

Как и в двумерном случае, при переходе к новой прямоугольной системе координат (при условии, что старая система, в которой задано уравнение поверхности, тоже прямоугольная) не меняются:

- Характеристический многочлен $|\chi_{A_i}(\lambda)| = |A_1 \lambda E|$ (мы это только что показали);
- Определитель $\delta = |A_1|$ (потому что $|A_1'| = |C^T A_1 C| = |C^T| |A_1| |C| = |C^{-1}| |A_1| |C| = \frac{1}{|C|} |A_1| |C| = |A_1|$, а также потому, что это свободный член в характеристическом многочлене);
- след $S = a_{11} + a_{22} + a_{33}$ матрицы A_1 (потому что это коэффициент при λ^2 в характеристическом многочлене);
- $\det A = |A|$ (потому что $A' = D^T A D$ и $|D| = 1 \cdot |C| = \pm 1$).

Из доказанного выше утверждения вытекает, что описанный алгоритм (6 шагов) действительно работает, и с его помощью можно привести любое уравнение поверхности второго порядка к одному из перечисленных на следующих страницах видов, называемых каноническими уравнениями поверхностей второго порядка. При этом мы сначала приводим уравнение к простейшему виду переходом к новой системе координат, которая называется канонической, а затем "причёсываем" простейшее уравнение (делим на подходящее число), чтобы привести его к каноническому виду.

Замечание. При "причёсывании" δ, Δ, S (а также $\chi_{A_i}(\lambda)$) могут измениться, но стать нулевыми, если были ненулевыми, они не могут.

Канонических уравнений – 17, а поверхностей – 1.

2.2 Канонические уравнения поверхностей второго порядка

1. $a \ge b \ge c > 0$, a, b, c - полуоси:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 – эллипсоид;

2. $a \ge b \ge c > 0$:

$$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = -1$$
 — мнимый эллипсоид;

3. $a \ge b \ge c > 0$:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 – мнимый конус;

4. $a, b, c > 0, a \ge b$:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 — однополостный гиперболоид;

5. $a, b, c > 0, a \ge b$:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
 – двуполостный гиперболоид;

6.
$$a, b, c > 0, a \ge b$$
:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 – конус;

7.
$$p \geqslant q > 0$$
:

$$\frac{x^2}{p} + \frac{y^2}{q} = 2z -$$
эллиптический параболоид;

8.
$$p \ge q > 0$$
:

$$\frac{x^2}{p} - \frac{y^2}{q} = 2z$$
 – гиперболический параболоид;

9.
$$a \geqslant b > 0$$
, a, b - полуоси:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 – эллиптический цилиндр;

10.
$$a \ge b > 0$$
:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
 — мнимый эллиптический цилиндр;

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 — пара мнимых пересекающихся плоскостей;

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 – гиперболический цилиндр;

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 — пара пересекающихся плоскостей;

14. p > 0, p – фокальный параметр:

$$y^2 = 2px$$
 — параболический цилиндр;

15.
$$a \neq 0$$
:

$$y^2 = a^2$$
 — пара параллельных плоскостей;

16.
$$a \neq 0$$
:

$$y^2 = -a^2$$
 – пара мнимых параллельных плоскостей;

$$y^2 = 0$$
 — пара совпадающих плоскостей.

Пока что просто украдено из интернета:

Название поверхности	Каноническое уравнение	Схемати- ческое изо- бражение	Название поверхности	Каноническое уравнение	Схемати- ческое изо- бражение
Эллипсоид (в частности, эллипсоид вращения	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$		Эллиптический параболоид	$z = \frac{x^2}{2p} + \frac{y^2}{2q}$	9
и сфера)		0	Гиперболи- ческий пара- болоид	$z=\frac{x^2}{2p}-\frac{y^2}{2q}$	M
Однополостный гиперболоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	周	Эллиптический цилиндр	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	
Двухполостный гиперболоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	Θ	Гиперболи- ческий цилиндр	$\frac{x^2}{a^2} - \frac{y^2}{b^2} \approx 1$	
Конус второго порядка	$\frac{x^2}{a^2} + \frac{\dot{y}^2}{b^2} - \frac{z^2}{c^2} = 0$	8	Параболи- ческий цилиндр	$y^2 = 2px$	
Название поверхности	Каноническое уравнение	Схемати- ческое изо- бражение	Название поверхности	Каноническое уравнение	Схемати- ческое изо- бражение
Пара пересекающихся плоскостей	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$		Мнимый эллипсоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$	
			Миимый эллиптический цилиндр	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	
Пара параллельных плоскостей	$\frac{x^2}{a^2}-1$		Пара мнимых параллельных плоскостей	$\frac{x^2}{a^2} = -1$	
Пара совпадающих плоскостей	$x^2 = 0$				1
Мнимый конус второго порядка с действительной вершиной (0; 0; 0)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$				

Замечание. $\partial Muncoud$ — сплющенная поверхность, полученная вращением эллипса, нарисованного в плоскости Oxy, вокруг оси Ox.

Однополостный гиперболоид – сплющенная поверхность, полученная вращением гиперболы,

нарисованной в плоскости Oxz, вокруг оси Oz.

Двуполостный гиперболоид – сплющенная поверхность, полученная вращением гиперболы, нарисованной в плоскости Oxy, вокруг оси Oz. Konyc – сплющенная поверхность, полученная вращением пары пересекающихся прямых, нарисованных в плоскости Oxz, вокруг Oz. Вершина конуса в начале координат, направляющая кривая – эллипс с полуосями a и b в плоскости z=c.

Эллиптический параболоид — вращение параболы в плоскости Oxz вокруг Oz и сплющивание.

Гиперболический параболоид (дословно) – вешаем параболу рогами вниз на параболу рогами вверх и водим туда-сюда, оставляя в вертикальном положении. Сечения горизонтальными плоскостями – гиперболы, поэтому гиперболический.

3 Центры поверхностей второго порядка

Все дальнейшие определения и рассуждения аналогичны случаю линий.

3.1 Определение

Определение. Точка O аффинного или точечно-евклидова пространства называется *центром симметрии* множества M (в том же пространстве), если для любой точки $X \in M$ симметричная ей относительно O точка X' (т.е. такая точка, что O является серединой отрезка [XX'], т.е. $\overrightarrow{OX} = \overrightarrow{OX'}$) тоже принадлежит множеству M.

Определение. Точка O трёхмерного аффинного пространства, имеющая координаты (x_0,y_0,z_0) в некоторой системе координат называется *центром* поверхности второго порядка, заданной уравнением $F(x,y,z)=a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz+2a_{23}yz+2a_{1}x+2a_{2}y+2a_{3}z+a_{0}$ в той же системе координат, если её координаты удовлетворяют системе уравнений

$$\begin{cases} a_{11}x_0 + a_{12}y_0 + a_{13}z_0 + a_1 = 0, \\ a_{21}x_0 + a_{22}y_0 + a_{23}z_0 + a_2 = 0, \\ a_{31}x_0 + a_{32}y_0 + a_{33}z_0 + a_3 = 0. \end{cases}$$

Замечание. Свойство точки пространства быть или не быть центром данной поверхности не зависит от выбора системы координат, в которой заданы координаты этой точки и уравнение поверхности.

3.2 Связь с центром симметрии

Теорема. Точка O трёхмерного аффинного (или точечно-евклидова) пространства является центром симметрии непустой поверхности второго порядка тогда и только тогда, когда она является центром этой поверхности.

Доказательство. \Leftarrow Доказывается точно так же, как в двумерном случае (переносом начала координат в точку O). \Rightarrow Аналогично двумерному случаю: переносим начало координат в O (центр симметрии) и видим, что многочлен F(x,y,z) превращается в многочлен $F'(x',y',z') = \cdots + 2a_1'x' + 2a_2'y' + 2a_3'z' + a_0'$, где

$$a_1' = a_{11}x_0 + a_{12}y_0 + a_{13}z_0 + a_1,$$

$$a_2' = a_{21}x_0 + a_{22}y_0 + a_{23}z_0 + a_2,$$

$$a_3' = a_{31}x_0 + a_{32}y_0 + a_{33}z_0 + a_3,$$

 $a_0' = F(x_0, y_0, z_0).$

Пусть (x', y', z') – любая точка на поверхности. Поскольку O (новое начало координат) – центр симметрии поверхности, видим, что (-x', -y', -z') тоже принадлежит поверхности, т.е.

$$F'(x', y', z') = 0 \Leftrightarrow F'(-x', -y', -z') = 0,$$

откуда

$$F'(x', y', z') - F'(-x', -y', -z') = 4a_1'x' + 4a_2'y' + 4a_3'z' = 0.$$

Значит, либо $a_1'=a_2'=a_3'=0$ (и тогда O - центр), либо вся поверхность лежит на плоскости $a_1'x'+a_2'y'+a_3'z'=0$ (это плоскость, если $a_1'^2+a_2'^2+a_3'^2\neq 0$).

(Доказывается рассмотрением пересечений плоскостей с поверхностями, примеры ниже) На плоскости лежит либо мнимый конус (точка), либо пара мнимых пересекающихся плоскостей (прямая), либо пара совпадающих плоскостей; пустое множество не рассматриваем (см. формулировку теоремы).

- 1. Мнимый конус состоит из одной точки, она же центр симметрии. В канонической системе координат она имеет координаты (0,0,0). Вычисляя координаты центра в той же системе, снова получаем (0,0,0).
- 2. Пара мнимых пересекающихся плоскостей $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$. Центры симметрии составляют прямую x = y = 0, все они являются центрами.
- 3. Пара совпадающих плоскостей: все точки поверхности центры симметрии, и все удовлетворяют уравнениям центра.

Замечание. У поверхности есть ровно 1 центр тогда и только тогда, когда $\delta \neq 0$ (см. систему уравнений для центра).

Определение. Поверхности с $\delta = 0$ называются *центральными*, остальные называются *нецентральными*.

Замечание. Ни одного центра нет только у параболоидов и параболического цилиндра. Во всех остальных случаях любой центр можно взять за начало канонической системы координат.

4 Сечения поверхностей второго порядка плоскостями

Параметрические уравнения плоскости:

$$\begin{cases} x = x_0 + ua_1 + vb_1, \\ y = y_0 + ua_2 + vb_2, \\ z = z_0 + ua_3 + vb_3. \end{cases}$$

Замечание. Для любой поверхности второго порядка пересечение с плоскостью задаётся во внутренних координатах плоскости уравнением линии второго порядка, или прямой (если коэффициенты при квадратах обнулятся), или всей плоскости (если уравнение будет иметь вид 0=0), или пустое множество (если уравнение имеет вид c=0, где $c\neq 0$, в этом случае уравнение не является уравнением линии второго порядка).

Конус 4.1

Мы уже рассматривали конические сечения плоскостями, не проходящими через начало канонической системы координат (центр). Сечения плоскостями, проходящими через центр пары пересекающихся прямых, или прямые, или точка. Записав уравнение конуса в канонической системе координат, видим, что если плоскость π проходит через вершину конуса (точку (0,0,0)) и $(x,y,z) \in \pi \cap$ конус, $(x,y,z) \neq (0,0,0)$, то $(\lambda x, \lambda y, \lambda z) \in \pi \cap$ конус \Rightarrow ecли π пересекает конус не только в вершине, то π содержит прямую \Rightarrow это пересекающиеся, или паралельные, или совпадающие прямые. Параллельные прямые не возможны, остальные варианты возможны.

4.2Эллипсоид

Сечения эллипсоида – точки и эллипсы. Действительно, подставив выражения для x, y, z из параметрических уравнений плоскости в уравнение эллипсоида, видим, что во внутренних координатах u и v плоскости уравнение пересечения будет уравнением линии второго порядка. В случае эллипсоида эта линии ограничена, следовательно, это либо эллипс, либо точка, либо пустое множество. Все три варианта возможны (легко привести примеры соответствующих плоскостей).

Однополостный гиперболоид 4.3

Напомним, $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. Сечение плоскостью z = 0 – эллипс (внутренние координаты этой плоскости $u = x, \ v = y$). Сечения плоскостями (ТРЕБУЕТ ПРАВОК) $x = h \neq \pm a$ и $y = h \neq a$ $\pm b$ – гиперболы (внутренние координаты u = y и v = z или u = x и y = z соответственно),

т.к.
$$(1,0,0),\ (0,1,0)$$
 – базис на плоскости и её параметрические уравнения:
$$\begin{cases} x=u,\\ y=v,\\ z=0. \end{cases}$$
 (т.к. $z=0$.

за начало координат можно взять точку (0,0,0) – она принадлежит плоскости). Сечение плоскостями $x = \pm a$ и $y = \pm b$ – пары пересекающихся прямых. Плоскость $\frac{x}{a} - \frac{z}{c} = -1$: пересечение задаётся системой уравнений

$$\begin{cases} \frac{x}{a} - \frac{z}{c} = -1, \\ \left(\frac{x}{a} - \frac{z}{c}\right)\left(\frac{x}{a} + \frac{z}{c}\right) = 1 - \frac{y^2}{b^2}. \end{cases}$$

Подставялем первое уравнение во второе: $\frac{y^2}{b^2}=1+\frac{x}{a}+\frac{z}{c}$. Поскольку $\frac{z}{c}=\frac{x}{a}+1$, получаем $\frac{y^2}{b^2}=2+\frac{2x}{a}$. За направляющие векторы (базис) плоскости можно взять $\left(\frac{c}{\sqrt{a^2+c^2}},0,\frac{a}{\sqrt{a^2+c^2}}\right)$, (0,1,0)(так сложно, потому что хотим, чтобы система координат была прямоугольной). Точка (0,0,c) принадлежит плоскости. Параметрические уравнения плоскости:

$$\begin{cases} x = u \cdot \frac{c}{\sqrt{a^2 + c^2}}, \\ y = v, \\ z = c + u \cdot \frac{a}{\sqrt{a^2 + c^2}}. \end{cases}$$

Подставляем в $\frac{y^2}{b^2}=2+\frac{2x}{a}$, получаем уравнение параболы во внутренних координатах плоскости. Плоскость $\frac{x}{a}-\frac{z}{c}=0$: аналогично получаем $\frac{y^2}{b^2}=1$ и пару параллельных прямых. Итак, возможны пара пересекающихся прямых, пара параллельных прямых, эллипс, ги-

пербола, парабола.

Точка и прямая получиться не могут. Чтобы убедиться в этом, применим аффинную замену координат: $x=ax',\ y=by',\ z=cz'.$ Уравнение превратится в $x^2+y^2-z^2=1$ (штрихи не пишем для простоты). Пусть $M(x_0,y_0,z_0)$ – любая точка. В другой аффинной системе координат, которая получается из нашей, заменой вида $x=x'\cos\varphi+y'\sin\varphi,\ y=-x'\sin\varphi+y'\cos\varphi,\ z=z'.$ Это не поворот, т.к. система координат уже не прямоугольная! Здесь $\sin\varphi,\cos\varphi$ – просто какие-то числа A,B со свойством $A^2+B^2=1$. Координаты этой же точки имеют вид $(x_1,0,z_0)$. При этом уравнение поверхности остаётся тем же (проверяется подстановкой выражений для x,y,z). Штрихов снова не пишем. Если точка M лежит на поверхности, то $x_1^2-z_0^2=1$. Снова заменим координаты:

$$\begin{cases} x = x_1 x' - z_0 z', \\ y = y', \\ z = -z_0 x' + x_1 z'. \end{cases}$$

В новой системе координат M имеет координаты (1,0,0), а уравнение поверхности всё то же: $x'^2 + y'^2 - z'^2 = 1$ (проверяется подстановкой).

Итак, нам надо доказать, что, во-первых, точка M, имеющая координаты (1,0,0) в некоторой аффинной системе координат, не является пересечением множества точек, заданного в той же системе координат уравнением $x^2+y^2-z^2=1$ с плоскостью и, во-вторых, (неразборчиво) прямая, проходящая через M, не является пересечением этого множества с плоскостью. Пусть

$$\begin{cases} x = 1 + \alpha t, \\ y = \beta t, \\ z = \gamma t. \end{cases}$$

— параметрические уравнения прямой, проходящей через M (тогда (α,β,γ) — направляющий вектор). Подставив выражения для x,y,z в $x^2+y^2-z^2=1$, получим $(\alpha^2+\beta^2-\gamma^2)t^2+2\alpha t=0$. Это уравнение имеет решение t=0. Она не имеет других решений тогда и только тогда, когда $\alpha=0$ и $\alpha^2+\beta^2-\gamma^2\neq 0$. Следовательно, если любая прямая лежащая в плоскости и проходящая через M, пересекает поверхность только в точке M, то направляющие векторы всех прямых в плоскости имеют вид $(0,\beta,\gamma)$. Значит, сама плоскость должна иметь уравнение x=0. Однако пересечение этой плоскости с поверхностью содержит все точки с координатами (0,y,z), удовлетворяющими условию $y^2-z^2=1$ (таких точек много).

Если же мы хотим, чтобы наша прямая целиком содержалась в поверхности, то все t должны быть решениями уравнения

$$(\alpha^2 + \beta^2 - 1)t^2 + 2\alpha t = 0.$$

Это так $\Leftrightarrow \alpha = \alpha^2 + \beta^2 - 1 = 0 \Leftrightarrow \begin{cases} \alpha = 0, \\ b = \pm 1. \end{cases}$ Таким образом, если прямая (неразборчиво) с

направляющим вектором (α, β, γ) содержится в поверхности, то и прямая с неколлинеарным ему направляющим вектором $(\alpha, -\beta, \gamma)$ тоже в ней содержится – получаем в пересечении две прямые, одна получиться не может.

Попутно доказали

Теорема. Через каждую точку однополостного гиперболоида проходят ровно две (пересекающиеся) прямые. Таким образом, однополостный гиперболоид является объединением прямых. Они называются прямолинейными образующими.

Замечание. Все прямолинейные образующие однополостного гиперболоида можно разделить на два класса так, что прямые из разных классов скрещиваются и гиперболоид является объединением прямых из одного (любого) класса.

4.4 Двуполостный гиперболоид

Напомним, $\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$. Сечения горизонтальными плоскостями z=h – эллипсы, или точки, или пустое множество. Сечения плоскостями x=h и y=h – гиперболы.

Рассмотрим плоскость $\frac{x}{a} - \frac{z}{c} = -1$. Её пересечение с гиперболоидом:

$$\begin{cases} \frac{x}{a} - \frac{z}{c} = -1, \\ \left(\frac{x}{a} - \frac{z}{c}\right)\left(\frac{x}{a} + \frac{z}{c}\right) + \frac{y^2}{b^2} = -1. \end{cases} \Rightarrow \frac{y^2}{b^2} = \frac{2x}{a}.$$

Нормаль нашей плоскости: $\left(\frac{1}{a},0,-\frac{1}{c}\right)$. Значит, за её направляющие векторы (базис) можно взять $\left(\frac{c}{\sqrt{a^2+c^2}},0,\frac{a}{\sqrt{a^2+c^2}}\right)$, (0,1,0). Точка (0,0,c) принадлежит плоскости, следовательно, параметрические уравнения плоскости:

$$\begin{cases} x = u \cdot \frac{c}{\sqrt{a^2 + c^2}}, \\ y = v, \\ z = c + u \cdot \frac{a}{\sqrt{a^2 + c^2}}. \end{cases}$$

Подставляем в $\frac{y^2}{b^2} = \frac{2x}{a}$, получаем уравнение параболы во внутренних координатах плоскости. Прямые в двуполостном гиперболоиде не содержатся: если прямая пересекает плоскость z=0, то она не содержится в гиперболоиде, т.к. гиперболоид не содержит точек с третьей координатой 0; если прямая параллельна плоскости z=0, то она лежит в плоскости вида z=h, а пересечения таких плоскостей с гиперболоидом прямых не содержат.

4.5 Гиперболический параболоид

Напомним, $\frac{x^2}{p^2} - \frac{y^2}{q^2} = 2z$, p, q > 0. Пересечение с плоскостью y = 0 – парабола (рогами вверх); с плоскостями вида x = h – тоже параболы (рогами вниз).

Пусть Ax + By + Cz + D = 0 – не вертикальная плоскость, т.е. $C \neq 0$. Тогда можно считать, что C = 1 (иначе поделим на C). Введём на плоскости координаты u, v:

$$\begin{cases} x = u, \\ y = v, \\ z = -D - Au - Bv. \end{cases}$$

Получилась аффинная – не прямоугольная – система координат на плоскости, начало которой в точке (0,0,-D).

Подставляем в уравнение поверхности: $\frac{u^2}{p} - \frac{v^2}{q} + 2(D + Au + Bv) = 0$. Имеем $\delta < 0$, причём знак δ не меняется при аффинных заменах координат. Следовательно, если мы перейдём к прямоугольной системе координат, в плоскости, по-прежнему, получим уравнение с $\delta < 0$ ($|A_1'| = |C^T||A_1||C| = |A_1||C|^2$). При этом D можно подобрать так, чтобы было $\Delta = 0$ или $|\Delta \neq 0$, следовательно, могут получиться и гиперболы, и пары пересекающихся прямых в пересечении.

Пусть теперь плоскость вертикальна. Тогда она имеет уравнение Ax+By+D=0. Сечения плоскостями x=h знаем, следовательно, считаем, что $B\neq 0$. Параметрические уравнения плоскости:

$$\begin{cases} x = u, \\ y = -\frac{D}{B} - u \cdot \frac{A}{B}, \\ z = v. \end{cases}$$

Подставляем в уравнение поверхности, получаем $\frac{u^2}{p} - \frac{-\frac{D}{B} - u \cdot \frac{A}{B}}{q} = 2v$. Коэффициент при u^2 : $\frac{1}{p} - \frac{\frac{A^2}{B^2}}{q}$. Если он не равен нулю, то получили уравнение с $\delta = 0$ и $\Delta \neq 0$ (в аффинных координатах плоскости). Знаки δ и Δ (и равенство или не равенство нулю определителя Δ) не меняются при аффинных заменах координат, поэтому если коэффициент при u^2 не равен нулю, то получили параболу, а если равен нулю, то получили прямую (не пару совпадающих прямых!).

Рассмотрели все возможные расположения секущей плоскости, следовательно, эллипс, точка, пустое множество и пара параллельных прямых получиться в пересечении не могут.

Teopema. Через каждую точку гиперболического параболоида проходят две прямые, содержащиеся в нём (прямолинейные образующие).

Доказательство. Аффинной заменой координат приведём уравнение к виду $x^2 - y^2 = z$. Возьмём точку $M(x_0, y_0, z_0)$ на параболоиде (тогда $x_0^2 - y_0^2 = z_0$). Параметрические уравнения прямой, проходящей через M:

$$\begin{cases} x = x_0 + \alpha t, \\ y = y_0 + \beta t, \\ z = z_0 + \gamma t. \end{cases}$$

 (α, β, γ) - направляющий вектор прямой. Подставляем в уравнение параболоида, получаем:

$$(\alpha^2 - \beta^2)t^2 + (2\alpha x_0 - 2\beta y_0 - \gamma)t = 0$$

Все t являются решениями (т.е. прямая целиком содержится в параболоиде) тогда и только тогда, когда

$$\begin{cases} \alpha^2 - \beta^2 = 0, \\ 2\alpha x_0 - 2\beta y_0 - \gamma = 0. \end{cases}$$

Решая эту систему, получаем два неколлинеарных направляющих вектора (α, β, γ) : $(1, 1, 2(x_0 - y_0))$ и $(1, -1, 2(x_0 + y_0))$ (и, конечно, пропорциональные им ненулевые векторы).

4.6 Остальное

В случаях других поверхностей при рассмотрении сечений плоскостями вида x = h, y = h и т.п. рассуждения аналогичны (надо рассматривать внутренние координаты плоскости).