

ME2610 Engineering Mathematics and Programming

12th November 2020

Dr Edward Smith

Room 105
Howell Building

Summary

- Brief Recap
- Partial Differential Equation Temporal spatial
 - Initial condition
 - Boundary conditions
 - Convective terms and forcing
- Partial Differential Equation Two dimensional Laplace equations
 - Reminder of 2D fields and partial derivatives
 - Solution of Laplace's equation

Essential Matlab (EM) http://tinyurl.com/yy53shga

This session will be recorded

Learning Aims

- LO2: Understanding how to employ programming to solve basic engineering computational problems.
- LO4: Applying best-practice programming techniques to solve Mathematical models of Engineering problems.
- LO5: Understanding the usefulness of programming techniques in the process of solving Engineering problems.
- LO6: Presenting computational results in a clear and concise manner including validation and verification.

Registration and Questions

- Use the QR code to go to feedback
- You can ask questions or make comments at any time, either linked to your name (if you put it in) or anonymously (if you don't)

Plan for Course

Week	k ecture Nount M/		Lecture Content	Tutorial	Deadline	Date
1	1	1	Interpolation methods			29/09/2020
1	2	1	Introduction			29/09/2020
1	3	2	Interpolation methods			01/10/2020
1	4	2	Data types, matrices and arrays	TEST Matlab		01/10/2020
2	5	3	Interpolation methods	Basic arrays		06/10/2020
2	6	3	For and if statements	Matrices and simulatanous		06/10/2020
2	7	4	Root Finding	Interfaces and tests	\	08/10/2020
2	8	4	Functions and Interfaces	For and if statements	TEST Matlab	08/10/2020
						15/10/2020
4	9	5	Root Finding	Interpolation		20/10/2020
4	10	5	Interpolation Numerics	Interpolation		20/10/2020
4	11	6	Root Finding	Root finding	\	22/10/2020
4	12	6	Root Finding Numerics	Root finding	Functions	22/10/2020

Plan for Course

5	13	7	Integration Methods	Trapizum rule	l	27/10/2020
5	14	7	Integration Numerics	Simpson Rule		27/10/2020
5	15	8	Integration methods	Gauss integration	\	29/10/2020
5	16	9	Gauss integration	Gauss integration	Root/interpolation	29/10/2020
6	17	10	Diff. equations (integrating factors, order)	Basic Finite difference		03/11/2020
6	18	8	Intro Finite Difference	Basic Finite difference	1	03/11/2020
6	19	11	Diff. equations (integrating factors, order)	Basic Finite difference	\	05/11/2020
6	20	9	Explicit + 2nd order Finite Difference	Basic Finite difference	Integration	05/11/2020
7	21	12	Diff. equations (integrating factors, order)	1D ODE		10/11/2020
7	22	10	Implict Finite Difference	1D ODE	[10/11/2020
7	23	13	2D unsteady convection from 1st principles	SIR Equation	\	12/11/2020
7	24	11	2D Finite Difference	SIR Equation	1D ODE	12/11/2020
8	25	14	Vector functions/ Jacobian Newton-Raphson 2D	2D PDE		17/11/2020
8	26	12	Validation and Verification	2D PDE	I	17/11/2020
8	27	15	Vector functions/ Jacobian Newton-Raphson 2D	2D PDE		19/11/2020
8	28	16	Vector functions/ Jacobian Newton-Raphson 2D	2D PDE		19/11/2020
9	29	17	Laplace Transforms	Assignment help		24/11/2020
9	30	18	Laplace Transforms	Assignment help		24/11/2020
9	31	19	Laplace Transforms	Assignment help	V	26/11/2020
9	32	20	Laplace Transforms	Assignment help	Assignment 2D PDE	26/11/2020

Differential Equations

Equations which include derivatives are differential equations, e.g.

$$\frac{df}{dx} = 0 \qquad \qquad \frac{d^2f}{dx^2} = 0 \qquad \qquad \frac{d^2f}{dx^2} + f = 0$$

 These are the same as any other equation, for example the equation for a line or Newton's law

$$y = mx + c$$
 $F = ma$

Which can also be written as differential equations

$$y = \frac{dy}{dx}x + c F = m\frac{d^2r}{dt^2}$$

Approximating a Derivative

So instead we approximate by not taking the limiting case

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Numerical Solutions to 1st and 2nd Order Terms

First order derivatives

$$\frac{df}{dx} \approx \frac{f_{i+1} - f_i}{\Delta x}$$

Second order derivatives

$$\frac{d^2f}{dx^2} \approx \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

We write as code in the same way (rearranged to get i+1 value)

$$\frac{df}{dx} = a \qquad \qquad \text{f(i+1)} = \text{f(i)} + \text{a*dx}$$

$$\frac{d^2f}{dx^2} = b$$
 f(i+1) = 2*f(i) - f(i-1) + b*dx^2

Second Order - Initial Value Problem (Spring Mass)

Recall the spring mass system you studied in last years dynamics lab

Figure 2 – Free vibration of a mass-spring system shown fitted to the free vibration test frame.

 Put discrete forms in equations and rearrange to get x_{i+1} (using x0 and v0) and defining mass m, spring constant k and damping (rate oscillation decreases) c.

$$x_{i+1} = 2x_i - x_{i-1} - \frac{c}{m} \Delta t(x_i - x_{i-1}) - \Delta t^2 \frac{k}{m} x_i$$

Second Order - Initial Value Problem (Spring Mass)

 Put discrete forms in equations and rearrange to get x_{i+1} (using x0 and v0) and defining mass m, spring constant k and damping (rate

oscillation decreases) c.

```
m = 1; %Mass
c = 0.05; %Damping
k = 0.1; %Spring constant
x0 = 0; %Initial position
v0 = 1; %Initial velocity
x(1) = x0;
x(2) = v0*dt + x(1);
M = 1000; dt=0.1;
for i = 2:M
    x(i+1) = 2*x(i) - x(i-1) - dt*(c/m)*(x(i) - x(i-1)) - dt^2*(k/m)*x(i);
```


Figure 2 – Free vibration of a mass-spring system shown fitted to the free vibration

$$x_{i+1} = 2x_i - x_{i-1} - \frac{c}{m}\Delta t(x_i - x_{i-1}) - \Delta t^2 \frac{k}{m}x_i$$

Boundary Value Problem (flow between 2 walls)

- Iterate diffusive flow driven by gravity between two walls to steady state, v=0 at the walls x=0 and x=L with L=1, F_g=1 and nu=0.1
 - 2nd derivative models fluid diffusion with viscosity *v* (Greek nu)

Time Evolving Equations

- Partial differential equations can include changes in time and 3 dimensions in space – we will start with 1D and varying in time
 - We have a time evolving term on the left
 - We have a spatial diffusion term on the right

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2}$$

- We discretise this using the same formulas we have seen already
 - However, we denote time as a superscript
 - Spatial components are subscripts as previously

$$\frac{u_i^{t+1} - u_i^t}{\Delta t} = \nu \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{\Delta x^2}$$

Time Evolving Equations

- We discretise this using the same formulas we have seen already
 - However, we denote time as a superscript
 - Spatial components are subscripts as previously

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
u(end/2) = 1; utp1 = u;
%Iterate in time
for t=1:1000
    u(1) = 0; u(M) = 0;
    for i=2:M-1
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                 -2*u(i)+u(i-1))/dx^2;
    end
    plot(x,utp1); pause(0.1)
    u = utp1;
end
```

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2}$$

$$\frac{u_i^{t+1} - u_i^t}{\Delta t} = \nu \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{\Delta x^2}$$

$$u_i^{t+1} = u_i^t + \nu \Delta t \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{\Delta x^2}$$

Time Evolving Equations – initial conditions

• This models time evolving diffusion and the explicit iteration can now be though of as evolving the system in time – **initial values matter**

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
u(end/2) = 1; utp1 = u;
%Iterate in time
                                    Initial value
for t=1:1000
                                     of 1 in the
    u(1) = 0; u(M) = 0;
                                     middle
    for i=2:M-1
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                 -2*u(i)+u(i-1))/dx^2:
    end
    plot(x, utp1); pause(0.1)
    u = utp1;
end
```


Time Evolving Equations – initial conditions

 This models time evolving diffusion – the explicit iteration can now be though of as evolving the system in time - initial values matter

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
                                                     0.9
u(4*end/10)=1; u(5*end/10)=1; utp1 = u;
                                                     0.8
%Iterate in time
                                      2 values of 1
for t=1:1000
                                      in the
    u(1) = 0; u(M) = 0;
                                      middle
    for i=2:M-1
                                                     0.5
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                                                     0.4
                  -2*u(i)+u(i-1))/dx^2:
                                                     0.3
    end
                                                     0.2
    plot(x,utp1); pause(0.1)
                                                     0.1
    u = utp1;
end
                                                             0.2
                                                                    0.4
```


Time Evolving Equations – initial conditions

 This models time evolving diffusion – the explicit iteration can now be though of as evolving the system in time – initial values matter

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
u(:) = rand(100,1); utp1 = u;
%Iterate in time
                                    Random
for t=1:1000
                                    noise
    u(1) = 0; u(M) = 0;
    for i=2:M-1
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                 -2*u(i)+u(i-1))/dx^2:
    end
    plot(x,utp1); pause(0.1)
    u = utp1;
end
```


Time Evolving Equations – Applied Force

 Applying the force term used previously, we also get the same parabolic profile – this is the velocity evolving in time

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001; Fq=1;
x = linspace(0, L, M); u = zeros(M, 1);
utp1 = u;
%Iterate in time
for t=1:1000
    u(1) = 0; u(M) = 0;
    for i=2:M-1
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                 -2*u(i)+u(i-1))/dx^2 - dt*Fq;
    end
    plot(x,utp1); pause(0.1)
    u = utp1;
end
```


$$u_i^{t+1} = u_i^t + \nu \Delta t \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{\Delta x^2} + \Delta t F_g$$

Time Evolving Equations – Applied Force

 Applying the force term used previously, we also get the same parabolic profile (even when starting from different initial values)

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001; Fq=1;
x = linspace(0, L, M); u = zeros(M, 1);
u(:) = rand(100,1); utp1 = u;
%Iterate in time
                                    Random
for t=1:1000
                                    noise
    u(1) = 0; u(M) = 0;
    for i=2:M-1
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                 -2*u(i)+u(i-1))/dx^2 - dt*Fq;
    end
    plot(x,utp1); pause(0.1)
    u = utp1;
end
```


$$u_i^{t+1} = u_i^t + \nu \Delta t \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{\Delta x^2} + \Delta t F_g$$

Boundary Condition

• The values at the edge are the boundary conditions

We have previously set to zero to model the no-slip condition in a fluid

We could set to non-zero values to model a moving wall in a fluid

We can also choose more exotic boundary conditions

Moving Wall Boundary Conditions

 A channel with a moving wall (e.g. inside a bearing, the gap between an engine piston head and wall or a fluid film)

Periodic Boundary Conditions (BC)

 A channel with a moving wall (e.g. inside a bearing, the gap between an engine piston head and wall or a fluid film)

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
u(2) = 1; utp1 = u;
                           Copy one side to
%Iterate in time
                            other
for t=1:1000
    u(1) = u(M-1); u(M) = u(2);
    for i=2:M-1
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                 -2*u(i)+u(i-1))/dx^2:
    end
    plot(x,utp1); pause(0.1)
    u = utp1;
end
```


Periodic Boundary Conditions (BC)

A channel with a moving wall (e.g. inside a bearing, the gap between

an engine piston head and wall or a fluid film)

```
%Define coefficients
nu=0.1; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
u(5) = 1; utp1 = u;
                            Initial value of 1
%Iterate in time
                            near the edge
for t=1:1000
    u(1) = u(M-1); u(M) = u(2);
    for i=2:M-1
        utp1(i) = u(i) + dt*nu*(u(i+1) ...
                 -2*u(i)+u(i-1))/dx^2;
    end
    plot(x,utp1); pause(0.1)
    u = utp1;
end
```


Burgers Equation

- The same equation as before but we add in a convection term
 - Travelling Wave Solution

```
%Define coefficients
nu=0.01; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
u(1:end/2) = 1; utp1 = u;
%Iterate in time
for t=1:10000
    %Periodic
    u(1) = u(M-1); u(M) = u(2);
    for i=2:M-1
        utp1(i) = u(i) + dt*(u(i)*(u(i+1)-u(i))/dx ...
                        +nu*(u(i+1)-2*u(i)+u(i-1))/dx^2);
    end
    plot(x,utp1); pause(0.1)
                                  Note dt multiplies everything
    u = utp1;
                                       on right hand side
end
```

Burgers Equation

- The same equation as before but we add in a convection term
 - Travelling Wave Solution convected over periodic boundary while diffusing

```
%Define coefficients
nu=0.01; L=1; M = 100; dx = L/M; dt=0.0001;
x = linspace(0, L, M); u = zeros(M, 1);
u(1:end/2) = 1; utp1 = u;
%Iterate in time
for t=1:10000
    %Periodic
    u(1) = u(M-1); u(M) = u(2);
    for i=2:M-1
        utp1(i) = u(i) + dt*(u(i)*(u(i+1)-u(i))/dx ...
               +nu*(u(i+1)-2*u(i)+u(i-1))/dx^2);
    end
    plot(x,utp1); pause(0.1)
    u = utp1;
end
```


Recap

- This may seem like a lot, but we use the same code with small tweaks
 - Setting the initial field to zero, random numbers or some point value
 - Setting boundary values to zero (no slip) or a number (moving or heated wall, etc)
 - Using periodic boundaries so what goes out comes back in
 - Applying a force term to the time evolving solution so it is driven towards a particular solution (e.g. gravity accelerated)
 - Adding in a non-linear convective term

$$u_i^{t+1} = u_i^t + \Delta t \left[\underbrace{u_i^t \frac{u_{i+1}^t - u_i^t}{\Delta x}}_{\text{Convection}} + \underbrace{\nu \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{\Delta x^2}}_{\text{Diffusion}} + \underbrace{F_g}_{\text{Force}} \right]$$

Two Dimensional Field

Consider the example field described by an x-y polynomial

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

$$f(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

Two Dimensional Field

Consider the example field described by an x-y polynomial

 A 2D field is a function of two variables

$$f = f(x, y)$$

- Show here in 3D for visualisation
- Assumed to be a continuous function

Plotting a 2D Field in Excel

Plotted in Excel – create a grid of x and y values then plot f(x,y)

Plotting a 2D Field in MATLAB

Plotted in MATLAB – using meshgrid for x and y values then plot f(x,y)

```
= linspace(-5, 5., 100);
 = linspace(-5, 5., 100);
[X, Y] = meshgrid(x, y);
                               1 2 3
a = -0.2; b = 0.5; c=0.1;
d=0.5; e=0.; f=3.
f = a*X.^2 + b*X + c*Y.^2 + d*Y + e*X.*Y + f;
contourf(X, Y, f)
colorbar
surf(X, Y, f) %To get 3D like plot seen previously
```


Defining an element of a 2D Field

• Contour plot

$$f(x,y) = ax^{2} + bx + cy^{2} + dy + exy + f$$

- Limit is a continuous function
- Here a function of two variables

$$f = f(x, y)$$

 As we move in either x or y direction the value of f changes

Change in x keeping y constant (taken half way up element)

• Note we have dropped the $\Delta y/2$ terms for simplicity

$$\left. \frac{\partial f}{\partial x} \right|_{y \text{ constant}} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f(x, y + \Delta y)$$

$$\Delta y$$

$$f(x, y)$$

• Note we have dropped the $\Delta x/2$ terms for simplicity

$$\frac{\partial f}{\partial y}\Big|_{x \text{ constant}} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Consider a function of two variables

$$f = f(x, y)$$

Change in $\left. x \right|_{y \text{ constant}}$

Change in y $\left. \frac{\partial f}{\partial y} \right|_{x \text{ constant}}$

$$f(x,y) = ax^{2} + bx + cy^{2} + dy + exy + f$$

Consider the example field described by an x-y polynomial

$$f(x,y) = ax^{2} + bx + cy^{2} + dy + exy + f$$

We can calculate the derivatives at any point

$$\frac{\partial f}{\partial x}|_{y \text{ constant}} = 2ax + b + ey \qquad \qquad \frac{\partial f^2}{\partial x^2}|_{y \text{ constant}} = 2a$$

$$\frac{\partial f}{\partial y}|_{x \text{ constant}} = 2cy + d + ex \qquad \qquad \frac{\partial f^2}{\partial y^2}|_{y \text{ constant}} = 2c$$

Plotting the Derivative of a 2D Field


```
x = linspace(-5, 5., 100);
y = linspace(-5, 5., 100);
[X, Y] = meshgrid(x, y);
a = -0.2; b = 0.5; c=0.1;
d=0.5; e=0.; f=3.
dudx = 2*a*X + b + e*Y;
contourf(X, Y, dudx)
colorbar
```

$$\frac{\partial f}{\partial x}|_{y \text{ constant}} = 2ax + b + ey$$

Partial Derivatives Numerical Solutions

Previously we saw the first derivative for f=f(x) could be obtained from

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f_{i+1} - f_i}{\Delta x}$$

• We calculate the derivatives numerically in the same way as used in ordinary derivatives (note the subscript notation is used again but in 2D with i and j)

$$\frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \equiv \frac{f_{i+1, j} - f_{i, j}}{\Delta x}$$
$$\frac{\partial f}{\partial y} \approx \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \equiv \frac{f_{i, j+1} - f_{i, j}}{\Delta y}$$

Second Order Numerical Partial Derivatives

Previously we saw the second derivative for f=f(x) could be obtained from

$$\frac{d^2f}{dx^2} \approx \frac{f(x+\Delta x) - 2f(x) + f(x-\Delta x)}{(\Delta x)^2}$$

 The numerical approximation for partial second derivative of f=f(x,y) is obtained in the same way,

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f(x + \Delta x, y) - 2f(x, y) + f(x - \Delta x, y)}{(\Delta x)^2} = \frac{f_{i+1, j} - 2f_{i, j} + f_{i-1, j}}{(\Delta x)^2}$$
$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f(x, y + \Delta y) - 2f(x, y) + f(x, y - \Delta y)}{(\Delta y)^2} = \frac{f_{i, j+1} - 2f_{i, j} + f_{i, j-1}}{(\Delta y)^2}$$

Numerical vs Analytical Derivatives in 2D


```
x = linspace(-5, 5., 100);
y = linspace(-5, 5., 100);
[X, Y] = meshgrid(x, y);
a = -0.2; b = 0.5; c=0.1;
d=0.5; e=0.; f=3.
u = a*X.^2 + b*X + c*Y.^2 ...
     + d*Y + e*X.*Y + f;
dudx exact = 2*a*X + b + e*Y;
dx = X(1,2) - X(1,1);
dudx = diff(u, 1, 2)/dx
contourf(X, Y, dudx)
colorbar
```

$$\frac{\partial f}{\partial x}|_{y \text{ constant}} = 1$$

$$2ax + b + ey$$

Partial Differential Equations

 To describe the change in fields, we use partial differential equations which vary in space (2D here), for example Laplace's Equation:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

Often written using other notation,

$$\nabla^2 f = 0 \text{ or } \Delta f = 0 \text{ where } \nabla^2 \equiv \Delta \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

 $f_{xx} + f_{yy} = 0$ where subscripts denote derivatives

• In practice, fields are usually a function of three spatial coordinates and time (2D here for simplicity)

$$f = f(x, y, z, t)$$

Laplace's Equation

 Models the 2D diffusion in space using the sum of second order partial derivatives in x and y:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

- Note we have dropped the x=constant, y=constant for notational conciseness, but they are <u>always</u> implied by partial derivatives
- This equation describes the final state for the process of diffusion of a substance, such as ink in water, temperature in a metal, stress state in a material or concentration of a chemical in a mixture. It can also be solved to determine electromagnetic fields, potential fluid flow or gradients of pressure

Applications of Two and Higher Dimensional Equations

For heat conduction

For stress diffusion in solids

Applications of Two and Higher Dimensional Equations

For fluid dynamics

For electromagnetism

There are a number of analytical solutions to this equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

 But we will use a numerical approximation for the second derivative, adapted for 2D,

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f(x + \Delta x, y) - 2f(x, y) + f(x - \Delta x, y)}{(\Delta x)^2} = \frac{f_{i+1, j} - 2f_{i, j} + f_{i-1, j}}{(\Delta x)^2}$$

$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f(x, y + \Delta y) - 2f(x, y) + f(x, y - \Delta y)}{(\Delta y)^2} = \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2}$$

So we are solving

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

$$\frac{f_{i+1,j} - 2f_{i,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2} = 0$$

Which we rearrange to give

$$f_{i,j} = \frac{1}{2} \frac{(\Delta x)^2 (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \left[\frac{f_{i+1,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} + f_{i,j-1}}{(\Delta y)^2} \right]$$

$$f_{i,j} = \frac{1}{4} \left[\frac{f_{i+1,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} + f_{i,j-1}}{(\Delta y)^2} \right] \Delta x = \Delta y = 1$$

 Using cell indices, derivatives in each direction can be seen to use what is called a five point "stencil"

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f_{i+1,j} - 2f_{i,j} + f_{i-1,j}}{(\Delta x)^2}$$
$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2}$$

Solving 2D Finite Differences

For a 2D grid we exchange points in both x and y

The first
ever
"CFD"
used
students to
do the
calculations
and pass
the results
in 4
directions

Solving 2D Finite Differences

For a 2D grid we exchange points in both x and y

Solving 2D Finite Differences

Then we move to the next point

Boundary Conditions

 We need to choose values for the 4 boundaries to model different physical cases, for example an infinite fluid between two plates

 Recall in 1D example, we iterated for iter=1:100 back and forth between the boundaries until we got to a solution which stops changing

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

end

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

- Notice we use points either side so start from the edge of our domain (boundary)
- Boundary conditions based on what we know about the flow

• Iteration should proceeds until a solution is reached, convergence check:

using a loop in MATLAB (like root finding)

$$\left| \sum_{i=1}^{9} \sum_{j=1}^{9} f_{i,j} - \sum_{i=1}^{9} \sum_{j=1}^{9} f_{i,j}^{\text{Previous Iteration}} \right| < \epsilon$$

```
for iter=1:100
    for i=2:M-1
        for j=2:M-1
```


So we are solving

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

$$\frac{f_{i+1,j} - 2f_{i,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2} = 0$$

Which we rearrange to give

$$f_{i,j} = C \left[\frac{f_{i+1,j} + f_{i-1,j}}{\Delta x^2} + \frac{f_{i,j+1} + f_{i,j-1}}{\Delta y^2} \right]$$

$$C = \frac{1}{2} \frac{(\Delta x)^2 (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2}$$

MATLAB 2D code

$$C = \frac{1}{2} \frac{(\Delta x)^2 (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2}$$

```
M = 50; Lx = 1; Ly = 1;
dx = Lx/(M-1); dy = Ly/(M-1);
u = zeros(M, M);
u(M/2:M/2+1, M/2:M/2+1) = 1; un=u;
C = (1/2) *dx^2*dy^2/(dx^2 + dy^2);
for it =1:100
    %Loop over all points
    for j=2:M-1
         for i=2:M-1
              un(i,j)=C*((u(i+1,j)+u(i-1,j))/dx^2...
                          +(u(i,j+1)+u(i,j-1))/dv^2;
         end
                  f_{i,j} = C \left[ \frac{f_{i+1,j} + f_{i-1,j}}{\Delta x^2} + \frac{f_{i,j+1} + f_{i,j-1}}{\Delta x^2} \right]
    end
    u = un;
    %Enforce Boundary Condition
    u(:,1) = u(:,end-1); %Bottom Wall Boundary
    u(1,:) = u(end-1,:); %Left periodic BC
    u(end,:) = u(2,:); %Right periodic BC
    u(:,end) = u(:,2); %Top Wall Boundary
 end
```


Summary

- Brief Recap
- Partial Differential Equation Temporal spatial
 - Initial condition
 - Boundary conditions
 - Convective terms and forcing
- Partial Differential Equation Two dimensional Laplace equations
 - Reminder of 2D fields and partial derivatives
 - Solution of Laplace's equation

Essential Matlab (EM) http://tinyurl.com/yy53shga

Partial derivative example quite complex in EM as they use implicit

Other Boundary Conditions

- Direct (Dirichlet)
- Fluxes (Neumann)
- Mixed (Robin)
- Symmetry
- Periodic
 - Go out one side

72 ME5314-5542 Finite Element Analysis **Brunel University London**