STA355H1 - Assignment 4

1. (a) The NP test statistic is

$$T(X_1, \dots, X_n) = \frac{f(X_1, \dots, X_n; \mu = 0, \sigma^2 = 3)}{f(X_1, \dots, X_n; \mu = 0, \sigma^2 = 2)} = \frac{2^n \exp(-\sum_{i=1}^n X_i^2/6)}{3^n \exp(-\sum_{i=1}^n X_i^2/4)} = \frac{2^n}{3^n} \exp(\frac{1}{12} \sum_{i=1}^n X_i^2)$$

and by the NP lemma, the MP test rejects H_0 at level α if $\sum_{i=1}^n T(X_1, \ldots, X_n) \geq \eta$ where $\mathbb{P}_{\sigma^2=2}(\sum_{i=1}^n T(X_1, \ldots, X_n) \geq \eta) = \alpha$ for some η . Notice that since

$$\mathbb{P}_{\sigma^2=2}(\sum_{i=1}^n T(X_1,\ldots,X_n) \ge \eta) = \mathbb{P}_{\sigma^2=2}(\exp(\frac{1}{12}\sum_{i=1}^n X_i^2) \ge \frac{3^n \eta}{2^n}) = \mathbb{P}_{\sigma^2=2}(\sum_{i=1}^n X_i^2 \ge 12\ln(\frac{3^n \eta}{2^n}))$$

this is equivalent to rejecting H_0 at level α if $\sum_{i=1}^n X_i^2 \ge k := 12 \ln(3^n \eta/2^n)$.

(b) Define $Z_i \sim \mathcal{N}(0,1)$ and note that $\sum_{i=1}^{20} Z_i^2 \sim \chi^2(20)$. Since $Z_i = X_i/\sqrt{2}$ for $X_i \sim \mathcal{N}(0,2)$, we have $\sum_{i=1}^{20} X_i^2 = \sum_{i=1}^{20} 2Z_i^2 \sim 2\chi^2(20)$. Then,

$$\mathbb{P}_{\sigma^2=2}(\sum_{i=1}^n X_i^2 \ge k) = \mathbb{P}_{\sigma^2=2}(2\chi^2(20) \ge k) = 1 - \mathbb{P}_{\sigma^2=2}(\chi^2(20) < k/2) = 0.01$$

$$\Longrightarrow \mathbb{P}_{\sigma^2=2}(\chi^2(20) < k/2) = 0.99$$

which gives k = 2(37.57) = 75.14 using R; see the attached code and output.

- (c) Denote σ_1^2 as the σ^2 under H_1 . The test is UMP since $\mathbb{P}_{\sigma^2=2}(\sum_{i=1}^n X_i^2 \ge k) = \alpha$ stays the same and $T(X_1, \ldots, X_n)$ increases with σ_1^2 for the same k, thereby increasing the power.
- 2. (a) The prior distribution function is

$$\int_{-\infty}^{x} \pi(\theta) d\theta = \beta \lambda^{\beta} \int_{\lambda}^{x} \theta^{-\beta - 1} d\theta = -\lambda^{\beta} \theta^{-\beta} \Big|_{\lambda}^{x} = -\lambda^{\beta} x^{-\beta} + \lambda^{\beta} \lambda^{-\beta} = 1 - \lambda^{\beta} x^{-\beta} = F(x)$$

for $x > \lambda$ and to find the quantile function,

$$y = 1 - \lambda^{\beta} x^{-\beta} \implies x = (\frac{1 - y}{\lambda^{\beta}})^{-1/\beta} = \lambda (1 - y)^{-1/\beta} = F^{-1}(y)$$

for $y \in (0,1)$. For the one-sided credible intervals for θ , note that for $p \in (0,1)$, $\mathbb{P}(\lambda < \theta \le F^{-1}(p)) = p$ and $\mathbb{P}(\theta > F^{-1}(1-p)) = 1 - \mathbb{P}(\theta \le F^{-1}(1-p)) = 1 - (1-p) = p$, so the 100p% intervals are $(\lambda, F^{-1}(p)] = (\lambda, \lambda(1-p)^{-1/\beta}]$ and $[F^{-1}(1-p), \infty) = [\lambda p^{-1/\beta}, \infty)$.

For a two-sided credible interval for θ , note that $\mathbb{P}(F^{-1}(\frac{1-p}{2}) \leq \theta \leq F^{-1}(\frac{1+p}{2})) = \mathbb{P}(\theta \leq F^{-1}(\frac{1-p}{2})) - \mathbb{P}(\theta < F^{-1}(\frac{1-p}{2})) = \frac{1+p}{2} - \frac{1-p}{2} = p$, so the 100p% interval is $[F^{-1}(\frac{1-p}{2}), F^{-1}(\frac{1+p}{2})] = [\lambda(\frac{1+p}{2})^{-1/\beta}, \lambda(\frac{1-p}{2})^{-1/\beta}]$. In fact, this can be generalized to $[F^{-1}(o), F^{-1}(o+p)] = [\lambda(1-o)^{-1/\beta}, \lambda(1-o-p)^{-1/\beta}]$ for any $o \in (0, 1-p)$.

The prior mean is $\mathbb{E}(\theta|\beta>1) = \int_{-\infty}^{\infty} \theta \pi(\theta) d\theta = \beta \lambda^{\beta} \int_{\lambda}^{\infty} \theta^{-\beta} d\theta = \beta \lambda^{\beta} (-\frac{\theta^{1-\beta}}{1-\beta})|_{\lambda}^{\infty} = 0 + \beta \lambda^{\beta} \frac{\lambda^{1-\beta}}{1-\beta} = \beta \lambda/(1-\beta).$

3. (a) Assume that X_1, \ldots, X_n are independent. To find $\pi(\theta|x_1, \ldots, x_n)$,

$$\pi(\theta)p(x_1,\ldots,x_n;\theta) = \frac{\lambda^{\alpha}\theta^{\alpha-1}}{\Gamma(\alpha)}e^{-\lambda\theta}\prod_{i=1}^{n}\frac{\theta^{x_i}}{x_i!}e^{-\theta} = \frac{\lambda^{\alpha}\theta^{\alpha-1+\sum_{i=1}^{n}x_i}}{\Gamma(\alpha)\prod_{i=1}^{n}x_i!}e^{-\theta(\lambda+n)}$$

$$\int_{\mathbb{R}}\pi(s)p(x_1,\ldots,x_n;\theta)ds = \int_{0}^{\infty}\frac{\lambda^{\alpha}s^{\alpha-1+\sum_{i=1}^{n}x_i}}{\Gamma(\alpha)\prod_{i=1}^{n}x_i!}e^{-s(\lambda+n)}ds$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha)\prod_{i=1}^{n}x_i!}\int_{0}^{\infty}s^{\alpha-1+\sum_{i=1}^{n}x_i}e^{-s(\lambda+n)}ds$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha)\prod_{i=1}^{n}x_i!}\int_{0}^{\infty}\left(\frac{u}{\lambda+n}\right)^{\alpha-1+\sum_{i=1}^{n}x_i}e^{-u}\frac{du}{\lambda+n} \quad (1)$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha)(\lambda+n)^{\alpha+\sum_{i=1}^{n}x_i}\prod_{i=1}^{n}x_i!}\int_{0}^{\infty}u^{\alpha-1+\sum_{i=1}^{n}x_i}e^{-u}du$$

$$= \frac{\lambda^{\alpha}\Gamma(\alpha+\sum_{i=1}^{n}x_i)}{\Gamma(\alpha)(\lambda+n)^{\alpha+\sum_{i=1}^{n}x_i}\prod_{i=1}^{n}x_i!} \quad (2)$$

$$\pi(\theta|x_1,\ldots,x_n) = \frac{\pi(\theta)p(x_1,\ldots,x_n;\theta)}{\int_{\mathbb{R}}\pi(s)p(x_1,\ldots,x_n;\theta)ds} = \frac{\theta^{\alpha-1+\sum_{i=1}^{n}x_i}(\lambda+n)^{\alpha+\sum_{i=1}^{n}x_i}}{\Gamma(\alpha+\sum_{i=1}^{n}x_i)}e^{-\theta(\lambda+n)}$$

$$= g(\theta;\alpha+\sum_{i=1}^{n}x_i,\lambda+n)$$

where we used $u = s(\lambda + n)$ such that $du = (\lambda + n)ds$ in (1) and the definition of the Gamma function in (2). Note that this is only a valid density when $\sum_{i=1}^{n} x_i > \alpha$. Furthermore,

$$\lim_{\alpha \to 0} \pi(\theta | x_1, \dots, x_n) = e^{-\theta(\lambda + n)} \lim_{\alpha \to 0} \frac{\theta^{\alpha - 1 + \sum_{i=1}^n x_i} (\lambda + n)^{\alpha + \sum_{i=1}^n x_i}}{\Gamma(\alpha + \sum_{i=1}^n x_i)}$$

$$= e^{-\theta(\lambda + n)} \frac{\theta^{-1 + \sum_{i=1}^n x_i} (\lambda + n)^{\sum_{i=1}^n x_i}}{\Gamma(\sum_{i=1}^n x_i)} = g(\theta; \sum_{i=1}^n x_i, \lambda + n)$$

which is a proper density when $\sum_{i=1}^{n} x_i > 0$.

(b) First, noting that $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$,

$$\int_0^\infty \theta g(\theta; \alpha, \lambda) d\theta = \int_0^\infty \frac{\lambda^\alpha \theta^{\alpha - 1 + 1}}{\Gamma(\alpha)} e^{-\lambda \theta} d\theta = \frac{\alpha}{\lambda} \int_0^\infty \frac{\lambda^{\alpha + 1} \theta^{\alpha - 1 + 1}}{\Gamma(\alpha + 1)} e^{-\lambda \theta} d\theta$$
$$= \frac{\alpha}{\lambda} \int_0^\infty g(\theta; \alpha + 1, \lambda) d\theta = \frac{\alpha}{\lambda}$$

so $\mathbb{E}(\theta) = \alpha/\lambda$ since the prior density is $g(\theta; \alpha, \lambda)$ and similarly $\mathbb{E}(\theta|x_1, \dots, x_n) = (\alpha + \sum_{i=1}^n x_i)/(\lambda + n)$ since the posterior density is $g(\theta; \alpha + \sum_{i=1}^n x_i, \lambda + n)$.