CS6923 Machine Learning

Homework 3

Shang-Hung Tsai

Part 2

1.

(a) Local minimum = -0.364224 Global minimum = 1.595315

(b) With
$$x = -1$$
, $\eta = 0.001$, *iteration* = 5

After iteration 1, the x = -0.866000

After iteration 2, the x = -0.776295

After iteration 3, the x = -0.710922

After iteration 4, the x = -0.660782

After iteration 5, the x = -0.620972

With
$$x = -1$$
, $\eta = 0.001$, iteration = 1000

last 5 iterations:

After iteration 996, the x = -0.364224

After iteration 997, the x = -0.364224

After iteration 998, the x = -0.364224

After iteration 999, the x = -0.364224

After iteration 1000, the x = -0.364224

The value of x has converged at -0.364224. The gradient descent found a local minimum.

(c) With
$$x = 2$$
, $\eta = 0.001$, *iteration* = 5

After iteration 1, the x = 1.894000

After iteration 2, the x = 1.823848

After iteration 3, the x = 1.774085

After iteration 4, the x = 1.737261

After iteration 5, the x = 1.709229

With
$$x = 2$$
, $\eta = 0.001$, *iteration* = 1000

last 5 iterations:

After iteration 996, the x = 1.595315

After iteration 997, the x = 1.595315

After iteration 998, the x = 1.595315

After iteration 999, the x = 1.595315

After iteration 1000, the x = 1.595315

The value of x has converged at 1.595315. The gradient descent found a global minimum.

(d) With x = -1, $\eta = 0.01$, *iteration* = 1000

first 5 iterations:

After iteration 1, the x = 0.340000

After iteration 2, the x = 0.380221

After iteration 3, the x = 0.444663

After iteration 4, the x = 0.549356

After iteration 5, the x = 0.720866

last 5 iterations:

After iteration 996, the x = 1.595315

After iteration 997, the x = 1.595315

After iteration 998, the x = 1.595315

After iteration 999, the x = 1.595315

After iteration 1000, the x = 1.595315

The learning rate was higher than the learning rate in the first experienment. The value of x jumped over to the other valley and found the global minimum.

(e) The learning rate is too high. The value of x bounced around significantly and eventually went overflow.

2.

(a)

η	0.001	0.01	0.05	0.1	0.5	1.0	1.5
Cross- entropy error (training)	102.695001	152.485400	759.863202	930.220967	1024.835574	1047.440783	1056.344492
Classification error (training)	0.283333	0.361111	0.361111	0.366667	0.366667	0.366667	0.366667
$ w _2$	2.615655	6.596876	32.759741	65.007503	324.261856	649.271428	973.892726

(b)

i && ii.

λ	0	0.05	0.1	0.2	0.3	0.4	0.5
Cross-entropy error (training)	102.695	102.884414	103.072320	103.443651	103.809079	104.168684	104.522549
Classification error (training)	0.283333	0.283333	0.283333	0.283333	0.277778	0.277778	0.277778
Classification error (cross-validation)	0.333333	0.333333	0.333333	0.327778	0.327778	0.327778	0.327778
$ w _2$	2.615655	2.609749	2.603857	2.592117	2.580435	2.568810	2.557242

(c) As we increase the value of λ , the cross-entropy increases. However, classification error on the training set and cross-validation decrease. The value of $||w||_2$ gradually decreases. This is as expected, because the regularized term will penalize high weight values. Therefore, we see a drop in the $||w||_2$ values. Even though cross-entropy error increases, it actually prevents the classifier from overfitting and helps to generalize better.

3.

The possible problem with this approach is overfitting. If we perform cross-validation on the whole training set for different values of λ , and then choose the λ than yielded the smallest classification error, the λ we choose will fit too closely to the training set.

A better solution is to divide the dataset into three parts: training set, validation set, and test set. We use training set to train several classifiers with different λ values, and use validation set to pick the λ than yielded the smallest classification error. Finally, we compute classification error on the test set.