GEOLOGICAL SURVEY

Table No. 1-Group 2. West Virginia Spring Waters-General Information (Continued).

	149 148	H H H	5 5		H	Spring
WEBSTER COUNTY 152 Wm. Smith Well, Dorrtown, Webster Springs, W. Va. John Hoover, Webster Springs, W. Va	C. D. Buzzard Spring, 1.1 mi. S. E. of Dunmore, along Highway A. A. Buzzard, Dunmore, W. Va. Sherman Gibson, Frost, W. Va. O Adam Moore Chalybeate, Head of Sharp Run. Adam Moore, Campbelltown, W. Va. James A. Sharp, Campbelltown, W. Va.	Big Spring, Linwood, W. Va	Borland Mineral Wells, at town of same name Mineral Wells, at town of same name	WOOD COUNTY	LEWIS COUNTY Alum Spring, Alum Bridge, W. Va	Name and Location
a. John Hoover, Webster Springs, W. Va	A. A. Buzzard, Dunmore, W. Va. Sherman Gibson, Frost, W. Va. Adam Moore, Campbelltown, W. Va. James A. Sharp, Campbelltown, W. Va.	Eugene Gatewood, Slaty Fork, W. Va Withrow McClintock, Marlinton, W. Va Porter Sharp, Onoto, W. Va Garfield Grimes, Dunmore, W. Va	Adı	T Lowitt Parkershire W. Va.	Chas. Stark, Alum Bridge, W. Va	Owner
Alderson Limestone of Greenbrier Greenbrier Scries	Salina. Helderberg Limestone Maccrady Series. Basal Greenbrier.	Greenbrier Limestone Basal Greenbrier Basal Greenbrier Helderberg-Oriskany Contact	Salt Sand		Conemaugh	Geological Formation
1460 71.5' deep	2600 2500 2450	2940 3450 2500 2550	600 300' deep	700	800	Eleva- tion
1-12-36	12-7-35 12-6-35 12-7-35 12-7-35	12- 7-35 9-24-35 12- 7-35 12- 7-35	12-27-35	12-27-35	1-12-36	Date Observed
0.5	500 0.5 1000	100		0.5	0.25	Estimated Gallons per minute
\$	2 2 2 2	58 50 50	ž.	53	-	Tem- perature °F.
18	*	TANDO			-	er 11

POCAHONTAS COUNTY

Cave Spring, Linwood, W. Va	44 Big Spring, Linwood, W. Va
	1. 2

WEBSTER COUNTY

152 Wm. Smith Well, Dorrtown, Webster Springs, W Va.

Va. John Hoover, Webster Springe, W. Va	A. A. Buzzard, Dunmore, W. Va. Sberman Gibson, Frost, W. Va. Adam Moore, Campbelltown, W. Va. James A. Sharp, Campbelltown, W. Va.	Withrow McClintock, Marlinton, W. Va. Porter Sharp, Onoto, W. Va. Va. Garfield Grimes, Dunmore, W. Va.	C. T. Leavitt, Parkersburg, W. Va. Betty Waite Estate, W. H. Wolfe, Adm., Parkersburg, W. Va.	Chas. Stark, Alum Bridge, W. Va.	Owner
Alderson Limestone of Greenbrier Greenbrier Series	Salina Helderberg Limestone Maccrady Series Basal Greenbrier	Greenbrier Limestone Basal Greenbrier Basal Greenbrier Helderberg-Oriskany Contact	Salt Sand.	Conemaugh	Geological Formation
1460 71.5′ deep	2600 2500 2350 2450	2940 3450 2500 2550	700 600 300' deep	800	tion (
1-12-36	12-7 -35 12- 6-35 12- 7-35 12- 7-35	12- 7-35 9-24-35 12- 7-35 12- 7-35	12-27-35 12-27-35	1-12-36	Observed
	_	35 300 35 2000 35 500 35 75	0.51	0.25	per
0.5	O1	55 55 56 57 58	· · · · · · · · · · · · · · · · · · ·	5	perature oF.
46	55 50	8 9 8 9		WEST VIRG	1

West Virginia Spring Waters-Chemical Analyses-in parts per million (Continued)

H H H H		HHH		uu		15	11
Beaver Creek Sulphur Spring, 6 mi. W. of Huntersville, W. Va. Curry Spring, 0.3 mi. E. of Huntersville, W. Va. Dummore Drinking Spring, Dunmore, W. Va. Dummore Meadow Springs, Dunmore, W. Va.	POCAHONTAS COUNTY Averill Spring, Hepsedam, W. Va.	Falling Spring, about 0.5 mi. W. of Lone Poplar Spring. Phoenburger Spring, 5 mi. S. of Franklin, W. Va. Thera Spring, Reunion Grounds.	PENDLETON COUNTY	Spring Run Spring, Head of Johnson Run	GRANT COUNTY	HARDY COUNTY Bowneth Link Spring, about 4 mi. W. of Mathias, W. Va	Name and Location
14 21 8	\$	1.6		13 8		88	Loss Loss
5 175 71 182 198	170	128 93		416 146		213	Solids after Evap- eration
7. 7. 9.4	18.	-1 00 51 to 00 51		6 13		36	Sio,
(2.0) (0.9) 2.3	60	1.6 (0.95) (0.7)		O1 10			AD ,O,
0.63		0.38				trace	3
4 4 2 3	22	38 8 9		104 47			Ç.
10. 1.3 8.4	٥٠ ن	60 P #		6.4		4.00	Mg
5 4 2 2 3 2 3 1 5 3 1 7 8	13	*6.6 1.9		* * * *		66	N p
0.21		0.88				2.9	×
	122	129 85		205		209	нсо,
24 55 55	6.9	5.8		140		26	80.
24 6.3 1.3 0.63 45 0.86 55 0.95	0.9	0.79 0.65		1.7		1.9	9
: #000	ယ	0.75 0.75		1.5		None	NO.
None None	None	None None None		None		+	В С 170
262 112 225 243	e 195.8	195.35 134.82 182.76		490.7 223.1		25	Total Of Deter- mined Constit- uents
2 2 2 2 2	JBM	5 JBM 2 JBM 6 JBM	-	JBM H		HAH	Analyst

Table No.

West Virginia Spring Waters—Chemical Analyses—in parts per million (Continued).

SPRINGS OF WEST VIRGINIA

-	38 Dunmore Pool Supply Springs, Dunmore, W. Va	Dunmore Pool	8
:	37 Dunmore Meadow Springs, Dunmore, W. Va	Dunmore Mea	37
:	36 Dunmore Drinking Spring, Dunmore, W. Va	Dunmore Drin	36
:	Curry Spring, 0.3 mi. E. of Huntersville, W. Va	Curry Spring,	35
:	W. Va	W. Va	
e,	34 Beaver Creek Sulphur Spring, 6 mi. W. of Huntersville,	Beaver Creek	34
•	Averill Spring, Hepsedam, W. Va	Averill Spring,	33
	POCAHONTAS COUNTY	POCAHO	
	Pitsenbarger Spring, 5 mi. S. of Franklin, W. Va	Pitsenbarger & Thorn Spring,	31 32

Table No. 4. West Virginia Spring Waters—Chemical Analyses—in parts per million (Continued).

2882		88898		828		t	***	No. of Street, or other Persons and Street, o
Jodiice Spring, Salt Sulphur Springs, W. Va. Old Sweet Spring, Sweet Springs, W. Va. Red Sulphur Spring, Red Sulphur Springs, W. Va. Salt Sulphur Spring, Salt Sulphur Springs, W. Va.	MONROE COUNTY	Alvon Springs Nos. 1 and 2, Alvon, W. Va. Black Sulphur Springs, White Sulphur Springs, W. Va. Blue Sulphur Spring, Blue Sulphur Springs, W. Va. Chalybeate Spring, White Sulphur Springs, W. Va. White Sulphur Spring, White Sulphur Springs, W. Va.	GREENBRIER COUNTY	Addison MeLanghlin Well, Webster Springs, W. Va. Fork Lick Spring, Webster Springs, W. Va. W. B. Tracy Well, Webster Springs, W. Va.	WEBSTER COUNTY	(No estimate) Warwick Sulphur Spring, Edray, W. Va.	POCAHONTAS COUNTY (Cont.) McLaughlin Springs, Hepsedam, W. Va. Minnebaha Spring, Minnebaha Springs, W. Va. Peter McCarthy Spring, 6 mi. N. E. of Huntersville, W. Va.	Name and Location
15 85 E 87		8 155 121 16 338		430 632		57 29	19	Igni- tion Loss
2672 813 310 3278		88 2218 1652 88 2057		6102 5497		370	70 162	Solids after Evap- oration
29 17 18 4		24.5		E E		5 17 5.4	5 9	SiO ₂
3.1		2.0				2.0		(Fe, Al) 303
0 %		1.1		0.09		0.005	8.0	Fe
430 298 49		25 299 299 7		155		. 5 84 84	40	Ca
99 58 142		4.5 125. 1.9 84.		38 46		18	6.5	Mg
236 36 373		5 2.2 22.2 119. 9 2.4		2006		9.8	O1 60 60 60	Na
11.0		1 4 1 2 2		69.		2.6	3.5	×
339 715 261		205 Acid 236		244		120	115	нсо,
1378		5.1 1416. 815 43 1355		4 51		438	7.2	80,
93. 27. 2.2		1 1.9 17. 58. trace		51 3459. 4.5 3167.		2.3	2 0.4	Q
None None 0.3		0.25 None None None		C1 65		None 0.2	1.7	NO.
9.6 None 18.2		Non 12.5 7.2 Non 9.4		20.		None 7.2	None None	H %
2548.73 1588.1 495.02 3320.21		None 136.8 12.5 2255.8 7.2 1565.46 None 64.41 9.4 2149.4		6058.39		ne 789.705	be 107.63	Total Of Deter- mined Constit- uents
нун нун нун нун		нан нан нан нан		HAH HAH		об НАН ЈВМ	HAH HAH	Analyst

44 | Fork Lick Spring, Webster Springs, W. Va..... 45 |W. B. Tracy Well. Webster Spring 41 | Peter McCarthy Spring, 6 mi. N. E. of Huntersville, W. 40 | Minnehaha Spring, Minnehaha Springs, W. Va..... Addison McLaughlin Well, Webster Springs, W. Va... Warwick Sulphur Spring, Edray, W. Va... McLaughlin Springs, Hepsedam, W. Va. (No estimate).... WEBSTER COUNTY POCAHONTAS COUNTY (Cont.) Name and Location

Spring No. 34. Beaver Creek Sulphur Spring.

Location: 6 miles west of Huntersville, Pocahontas County,

Physical Data.

Elevation: 2470'. Geological Horizon:

Portage

Rate of flow: Temperature: Date observed, 6-2-35, Date observed, 9-24-35, 59.0°

Owner: Lee Simms, Huntersville, W. Va.

Chemical Analysis

Analyst: John B. McCue

Total of determined constituents	Hydrogen sulfide gas (H.S)	Nitrate (NO ₈)	0	Ξ,	Bicarbonate (HCO.)	Potassium (K)	20	Magnesium (Mg)	Calcium (Ca)	ron (Fe)	Ferric oxide and Alimina (E. A.)

unprinterted.

Comments: This is one of the very few sulphur waters in a county noted for the number and variety of its springs. It is located near the new Watoga State Park and is in a very poor condition. If cleaned out and properly curbed, it might prove very popular with vacationists visiting the Park.

Spring No. 35. Curry Spring.

Location: By roadside at home of Sherman P. Curry, 0.3 mile east of Huntersville, Pocahontas County.

Physical Data.

Elevation: 2260'.
Geological Horizon: Helderberg Limestone.
Geological Horizon: Helderberg Limestone.
Temperature: Date observed, 6-2-35, 49.1° F.; 9-23-25, 50.5° F.
Rate of flow: Date observed: 6-2-35, 30 gallons per minute.
Owner: Sherman P. Curry, Huntersville we ve

Spring No. 34. Beaver Creek Sulphur Spring.

Location: 6 miles west of Huntersville, Pocahontas County.

Physical Data.

Elevation: 2470'. Geological Horizon:

Geological Horizon: Portage Group Shale.
Temperature: Date observed, 6-2-35, 57.2° F.; 9-24-35, 59.0°
Rate of flow: Date observed, 6-2-35, 0.5 gallon per minute.
Owner: Lee Simms, Huntersville, W. Va.

Chemical Analysis.

Analyst: John B. McCue.

	Hydrogen sulfide gas (H.S)	te (NO	Chloride (CI).	Sulfate (SO,	Blcarbonate (HCO ₃)	Potassium (K.	Sodium (Na)	Magnesium (Mg)	Calcium (Ca)	ron (Fe)	erric oxide and		remuion loss	Solids after evaporation
	lfide	3)			(HC	2		(Mg	=		and	:		eva
. 0	288	:	:		(10		:	3						pora
. ;	H		:							:	Alumina (Fe, Al)2O2)	:	:	tion
,	S			:	:				:		a ()	:	-	
					:		:	:	:		Fe, 1		:	:
			:		:			:	:	-	A1)2	:		
:		:	:	:				:			000)			
					:	:			:		:	:		:
:				:								:	:	:
:			-			:							:	:
1												1		per
1	0	0.05	6.	24.	156.	2	19.	10.	30.0	_	(2.0)	=	6	per Milli 175.0

Remarks: Calcic-sodic-sulphuretted.

Comments: This is one of the very few sulphur waters in a county noted for the number and variety of its springs. It is located near the new Watoga State Park and is in a very poor condition. If cleaned out and properly curbed, it might prove very popular with vacationists visiting the Park.

Spring No. 35. Curry Spring.

Location: By roadside at home of Sherman P. Curry, 0.3 mile east of Huntersville, Pocahontas County.

Physical Data.

Elevation: 2260'.

Geological Horizon: Helderberg Limestone.

Temperature: Date observed, 6-2-35, 49.1° F.; 9-23-25, 50.5° F.

Rate of flow: Date observed: 6-2-35, 30 gallons per minute.

Owner: Sherman P. Curry, Huntersville, W. Va.

Spring No. 34. Beaver Creek Sulphur Spring.

Location: 6 miles west of Huntersville, Pocahontas County.

Physical Data.

Elevation: 2470'.

Geological Horizon: Portage Group Shale.

Temperature: Date observed, 6-2-35, 57.2° F.; 9-24-35, 59.0° F.

Rate of flow: Date observed, 6-2-35, 0.5 gallon per minute.

Owner: Lee Simms, Huntersville, W. Va.

Chemical Analysis,

Analyst: John B. McCue.

Solids after evaporation. Ignition loss..... Constituent.

> per Million. 175.0 Parts

ver summe, and the symme, W. Va.

Chemical Analysis.

Analyst: John B. McCue.

Total of determined constituents	Hydrogen sulfide gas (H ₂ S)	Mitrate (NO ₃)	Vistantiae (CI)	Chloria (SO ₄)	Calfett (CO)	Ricarbonet (IICO)	Potossium (V)	Sodium (Na)	Magnesium (Ma)	Calcium (Ca)	Iron (Fe)	Ferric oxide and Alumina (F. A)	Cilian (Cin)	Ignition loss	Constituent.	
262.25	2.4	0.05	6.3	24.0	156.0	2.2	19.0	10.0	30.0	1.3	(2.0)	11.0	6.5	175.0	Parts per Million.	

Comments: This is one of the very few sulphur waters in a county noted for the number and variety of its springs. It is located near the new Watoga State Park and is in a very poor condition. If cleaned out and properly author it might

Remarks: Calcic-sodic-sulphuretted.

2.4												9	70	H	_	SO	rogen sulfide gas (H ₂ S)	mo	e	fic.	=	35	-	er	0.0	Hydrogen sulfide gas (H ₂ S)	d	7
0																					<u>ي</u> ,	Z	0		0	Nitrate (NO ₃)	F	-
24		*	:		:																=	0	- 2	D	d c	Chloride (Cl)	0	3
156.							:						:				50	C	- 2	5	5,	50	n	- =	5 0	Sulfate (SO.)	70 6	5 5
2.					:					:	-							5.	5:		. >	-	==		311	Potassium (K)	5	. 0
19.	-			-					-	:	-				-		-	-			12	2	-		. 3	Sodium (Na)	8	, v
TO.								*		-								0	ó	1	١,	4		-	- 5	ı	6	

Remarks: Calcic-sodic-sulphuretted.

Comments: This is one of the very few sulphur waters in a county noted for the number and variety of its springs. It is located near the new Watoga State Park and is in a very poor condition. If cleaned out and properly curbed, it might prove very popular with vacationists visiting the Park.

Spring No. 35. Curry Spring.

east of Huntersville, Pocahontas County. Location: By roadside at home of Sherman P. Curry, 0.3 mile

Physical Data.

Temperature: Elevation: 2260'. Rate of flow: Geological Horizon: Date observed: 6-2-35, 30 gallons per minute.

near the new Watoga State Park and is in a very poor condition. If cleaned out and properly curbed, it might prove very popular with vacationists visiting the Park.

Spring No. 35. Curry Spring.

east of Huntersville, Pocahontas County. Location: By roadside at home of Sherman P. Curry, 0.3 mile

Physical Data.

Elevation: 2260'.

Geological Horizon: Helderberg Limestone.
Temperature: Date observed, 6-2-35, 49.1° F.; 9-23-25, 50.5° F.
Rate of flow: Date observed: 6-2-35, 30 gallons per minute.
Owner: Sherman P. Curry, Huntersville, W. Va.

Chemical Analysis.

Analyst: John B. McCue.

Total of determined constituents	Hydrogen sulfide gas (H2S)	Manganese (Mn)	Nitrate (NO ₃)	Chloride (Cl)	Sulfate (SO ₄)	Bicarbonate (HCO ₃)	Potassium (K)	Sodium (Na)	Magnesium (Mg)	Calcium (Ca)	Iron (Fe)	Ferric oxide and Alumina (Fe, Al) O.)	Silica (SiO ₂)	Ighteron ross	Solids after evaporation	Constituent.
112.12	None	None	0.75	0.63	1.3	75.0	0.21	2.3	1.3	23.0	0.63	(0.9)	7.0	1.8	71.0	Parts ner Million

Remarks: Very few solids for a limestone water.

Comments: Curbed with concrete and covered with a wooden roof. A ram, operated by the flow, pumps water for Mr. Curry's use.

Chemical Analysis.

ndol	:JsylanA
	John

Constituent. Solids after evaporation Ignition loss Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Calcium (Ca) Sodium (Mg) Bicarbonate (HCO.) Solidate (SO.) Solidate (SO.) Solidate (SO.) Solidate (SO.) L.3 Solidate (SO.) So	112.12	Total of determined constituents
Constituent Constituent Solids after evaporation 11.0 Solids after evaporation 12.0 Ignition loss 12.0 Silica (SiO.) 12.0 Iton (Fe) 12.0 Calcium (Ca) 12.3 Sodium (Mg) 12.3 Solidate (SO.) 1	əuoN	Hydrogen sulfide gas (H.S)
Constituent. Solids after evaporation Solids after evaporation Solids after evaporation Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Ferric oxide and Alumina (Fe, Al).O.) Ferric oxide and Alumina (Fe, Al).O.) Sodium (Ca) Sodium (Ca) 1.3 23.0 1.3 23.0 1.3 25.0 1.3 25.0 1.3 25.0 1.3 25.0 1.3 25.0 1.3 25.0 1.3 25.0 1.3 26.0 1.3 26.0 1.3 27.0 1.3 28.0 1.3 29.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3 20.0 1.3	Mone	Mangangse (Mn)
Constituent Constituent Solids after evaporation Ti.0 Ti.0 I.8	67.0	(OAC
Constituent. Solids after evaporation Solids after evaporation Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Galcium (Fe) Magnesium (Mg) Sodium (Ma) Potassium (M) Solidate (HCO.) Sulfate (SO.) Sulfate (SO.) Sulfate (SO.) 1.3 2.3 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5		Chloride (Cl)
Solids after evaporation Solids after evaporation (Fe, Al), O. Solids after evaporation Issa Solids (Fe, Al), O. Solids and Alumina (Fe, Al), O. Solid (Mg) Solid (Mg		Sulfate (SO,)
Constituent. Solids after evaporation Solids after evaporation Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Tool (Pe) Calcium (Ca) Magnesium (Mg) Sodium (Mg) Sodium (Mg) Sodium (Mg) Sodium (Mg) Sodium (Mg)		Bicarbonate (HCO:)
Constituent. Solids after evaporation Solids after evaporation Solids after evaporation Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Ton (Fe) Calcium (Ca) Sa.0 23.0 Calcium (Ca) Magnesium (Mg)	12.0	(X) muissatoq
Constituent. Solids after evaporation Solids after evaporation Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Ton (Fe) Calcium (Ca) Magnesium (Mg) Magnesium (Mg)		Sodium (aV) muibos
Constituent. Solids after evaporation Ignition loss Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Iron (Fe) Calcium (Ca) Calcium (Ca)		Magnesium (Mg) muisengaM
Constituent. Solids after evaporation Solids after evaporation Silica (SiO.) Silica (SiO.) Ferric oxide and Alumina (Fe, Al).O.) Ferric oxide and Alumina (Fe, Al).O.)		(0)
Constituent. Solids after evaporation 1.8 Solids after evaporation 1.8 Ignition loss 7.0	89.0	(~1)
Constituent. Solids after evaporation 1.8 Solids after evaporation 1.8 Ignition loss 7.0	(6.9)	Ferric oxide and Alumina (Fe, Al),O.)
Constituent. ger Million. Solids after evaporation 71.0	0.7	(sOis) goilig
Constituent. Solids after evaporation 71.0	8.1	Ignition loss
Constituent, per Million,	0.17	Solids after evaporation and a shilos
	per Mullion,	

Remarks: Very few solids for a limestone water.

roof. A ram, operated by the flow, pumps water for Mr. Curry's use. Comments: Curbed with concrete and covered with a wooden

Spring No. 36. Dunmore Spring (Drinking).

Location: Dunmore, Pocahontas County.

Physical Data.

Geological Horizon: Bossardville-Helderberg Limestone contact.

Temperature: Date observed, 6-2-35, 30 gallons per minute.

Rate of flow: Date observed, 6-2-35, 30 gallons per minute.

Owner: J. W. Price, M. D., Marlinton, W. Va. Elevation: 2500'.

Chemical Analysis.

2.2 45.0 8.4 2.8 114.0 45.0	Silica (SiO ₂) Ferric oxide and Alumina (Fe, Al) ₂ O ₃) Calcium (Ca) Magnesium (Mg) Sodium (Na) and Potassium (K) Bicarbonate (HCO ₂)
Parts per Million. 122.0 21.0 21.0	Analyst: John B. McCue. Constituent. Solids after evaporation Ignition loss

Remarks: Very few solids for a limestone water.

roof. A ram, operated by the flow, pumps water for Mr. Curry's use. Comments: Curbed with concrete and covered with a wooden

Spring No. 36. Dunmore Spring (Drinking).

Location: Dunmore, Pocahontas County.

Physical Data.

Geological Horizon: Bossardville-Helderberg Limestone contact. Temperature: Date observed, 6-2-35, 63.0° F.; 9-2-35, 62.5° F. Rate of flow: Date observed, 6-2-35, 30 gallons per minute. Owner: J. W. Price, M. D., Marlinton, W. Va. Elevation: 2500'.

Chemical Analysis.

Analyst: John B. McCue.

Tota	myuroge	Hadrangan	Mondate	Chloride	21.
Total of determined constituents	animae iii	ese (Mn)	(LNOS)	Chioride (CI)	100
mined c	gas (na	· · · · · ·			
onstitue	3)				
nts					
225.76	None	Trace	0.10	0.86	

that have stood several months show no deposited sediment. mineral content varies but little from year to year. See att analysis. Comments: This is a fine, potable water for table use. See attached Samples ent. The

Remarks: Calcic-

-sodic-alkaline.

Spring No. 36. **Dunmore Drinking Spring** Prichard Spring). Reece

Location: 0.8 mile southeast of Dunmore, Pocahontas County.

Physical Data.

Geological Horizon: Bossardville Limestone,

Chemical Analysis.

Analyst: В. В. Kaplan, Survey Chemist.

Total		Sulphur t	Sulfate (Carbonate	Magnesium (Mg)	Ignition loss.	
Total of determined constituents	(b)	Sulphur trioxide (SO)	SOL	Carbonate (CO.)	m (Ma)	constituent.	
ined con	Os)	2:					
stituents		*******					
-						per.	
160.16	48.66	23.74	49.02	6.02	32.72	per Million. 66.44	Dante

analysis quoted in "Detailed Report on Pocahontas County", W. Va. Geological Survey, (1929).

Spring No. 37. Meadow Spring.

Location: At Dunmore, Pocahontas County.

Physical Data.

Elevation: 2500'.
Geological Horizon: Bossardville-Helderberg Limestone contact.
Temperature: Date observed, 5-2-35, 66.2° F.
Rate of flow: Date observed, 5-2-35, 200 gallons per minute.
Owner: J. W. Price, M. D., Marlinton, W. Va.

Chemical Analysis.

Analyst: John B. McCue.

SPRINGS OF WEST VIRGINIA

Remarks: Calcic-sodic-alkaline.	Total of determined constituents	Hydrogen sulfide gas (H2S)	Manganese (Mn)	Nitrate (NO ₂)	Chloride (Cl)
	225.76	None	Trace	0.10	0.86

that have stood several months show no deposited sediment. The mineral content varies but little from year to year. See attached analysis. Comments: This is a fine, potable water for table use. Samples

Spring No. 36. Dunmore Drinking Spring (Reece Prichard Spring).

Location: 0.8 mile southeast of Dunmore, Pocahontas County.

Physical Data.

Geological Horizon: Bossardville Limestone.

analysis. mineral content varies but little from year to year. See attached that have stood several months show no deposited sediment. The

Spring No. 36. Dunmore Drinking Spring (Reece Prichard Spring).

Location: 0.8 mile southeast of Dunmore, Pocahontas County.

Physical Data.

Geological Horizon: Bossardville Limestone.

Chemical Analysis.

Analyst: B. B. Kaplan, Survey Chemist.

160.16	Total of determined constituents
48.66	Sulphur trioxide (SO ₃)
23.74	ulfate (SO ₄)
49.02	Carbonate (CO ₃)
6.02	Magnesium (Mg)
32.72	Calcium (Ca)
66.44	Ignition loss
Parts per Million.	Constituent.

Remarks: Recalculated to p. p. m. by B. R Drake from an analysis quoted in "Detailed Report on Pocahontas County", W. Va. Geological Survey, (1929).

Spring No. 37. Meadow Spring.

Remarks: Kecalculated to p. p. m. by B. R Drake from an analysis quoted in "Detailed Report on Pocahontas County", W. Va. Geological Survey, (1929).

Spring No. 37. Meadow Spring.

Location: At Dunmore, Pocahontas County.

Physical Data.

Elevation: 2500'.

Geological Horizon: Bossardville-Helderberg Limestone contact. Temperature: Date observed, 5-2-35, 66.2° F. Rate of flow: Date observed, 5-2-35, 200 gallons per minute. Owner: J. W. Price, M. D., Marlinton, W. Va.

Chemical Analysis.

Analyst: John B. McCue.

Remarks: Calcic-alkaline-sodic.	Total of determined constituents	Hydrogen sulfide gas (H ₂ S)	Manganese (Mn)	Nitrate (NO:)	:	Sulfate (SO ₄)	Bicarbonate (HCO ₃)	Sodium (Na) and Potassium (K)	Magnesium (Mg)	Calcium (Ca)	Ferric oxide and Alumina (Fe, Al)2O3)	Silica (SiO ₂)	Constituent. Solids after evaporation Ignition loss
	243.35	None	Trace	Trace	0.95	55.0	114.0	3.1	9.5	49.0	2.4	9.4	Par's per Million. 198.0 14.0

Spring No. 38. Upper Spring.

Comments: Rises in a meadow beyond No. 36. Is not used and is not protected in any manner.

Location: At Dunmore, Pocahontas County.

not protected in any manner. Commence: Acces in a incanon beyond ivo. 56. Is not used and

Spring No. 38. Upper Spring.

Location: At Dunmore, Pocahontas County.

Physical Data.

Elevation: 2500'.

Geological Horizon: Bossardville-Helderberg Limestone contact. Temperature: Date observed, 9-23-35, 62.5° F.

Owner: J. W. Price, M. D., Marlinton, W. Va.

thanks for the gift of this water. The owners have erected the swimming pool just mentioned, a bath-house, and a tastefully designed refreshment stand near by, making the spot very attractive to vacationists and passers-by. Cress is grown for sale in the water flowing from this spring and periwinkles thrive in it—one of the few places in West Virginia where they may be found. See photoa dam in 1933 so that water would flow by gravity to a swimming pool. In the pool of the spring, Mrs. Anna Price Hunter erected a statue from her own design, which represents an Indian giving Comments: The level of the pool of this spring was raised by

Spring No. 39. Largest McLaughlin Spring.

Location: Near Hepsedam State Fish Hatchery, Pocahontas

swimming pool just mentioned, a bath-house, and a tastefully designed refreshment stand near by, making the spot very attractive to vacationists and passers-by. Cress is grown for sale in the water flowing from this spring and periwinkles thrive in it—one of the few places in West Virginia where they may be found. See photothanks for the gare of this water. The owners have erected

Spring No. 39. Largest McLaughlin Spring.

County. Location: Near Hepsedam State Fish Hatchery, Pocahontas

Physical Data.

Elevation: 2360'

Geological Horizon: Greenbrier Limestone. Temperature: Date observed, 6-2-35, 50.2° F.; 9-24-35, 52.5° F.

Rate of flow: Date observed, 6-2-35, 2000 gallons per minute. Owner: Bank of Marlinton, Marlinton, W. Va.

Chemical Analysis.

Analyst: Homer A. Hoskins.

		Manganese (Mn) Hydrogen sulfide gas (H ₂ S)	(Ma)	Chloride (C1)		Ricarbonate (HCO.)	K)	Sodium (Na)	Magnesium (Mg)	Calcium (Ca)		Silica (SiO ₂)	Ignition loss	Solids after evaporation
--	--	--	------	---------------	--	--------------------	----	-------------	----------------	--------------	--	----------------------------	---------------	--------------------------

Comments: Typical of the large springs of the basal Greenbrier. Flow averages 1500 to 2000 gallons per minute and varies seasonally somewhat, but never goes dry. Unprotected.

None								rogen sulfide gas (H ₂ S)	-				-	T)	1	1	S	90	-	de	1	Ë	10	en	03	Hydrogen sulfide gas (H ₂ S)	×
None		-		-				-						2	1	-			-	=	9		ĕ	es	20	langanese (Mn)	50
1.7				***************************************			-			-				-			*		1	•	2	6	5		9	Nitrate (NOa)	24
0.4			-					-		-	-	-	*	-	-		-				-	3	-		de	Chloride	=
7.2			-	-	-	. *		-		*		-	-	-		-		-		-	-	36	U	_	.0	Sulfate (SO.	2
0.00	The state of the s		7	-	-	-		-									*	-	1	1	-	> '	2		3		3

somewhat, but never goes dry. Unprotected. Flow averages 1500 to 2000 gallons per minute and varies seasonally Comments: Typical of the large springs of the basal Greenbrier.

Spring No. 40. Minnehaha Spring.

Location: At Minnehaha Springs, Pocahontas County.

Physical Data.

Elevation: 2340'.

Geological Horizon: Marcellus-Oriskany contact.
Temperature: Date observed, 6-1-35, 70.5° F.; 9-23-35, 72.0° F.
Rate of flow: Date observed, 6-1-35, 1000 gallons per minute.
Owner: Richter & Johnson, Washington, D. C.

Chemical Analysis.

200	Mag	Cale	Iron	Silica (SiO ₂)	Igni	Constituent. Solids after evaporation
	n	ü		20	tic	Constituent.
3	es	m	T	-	n	2 2
	E		e	Si	_	ft
2	3	0	-	0	00	eı
		2		-	S	. 6
1	0	~				ev
В	1					89 .
В	10					7
В	_		•	•		0
В	•					7
8						20
88			-			至.
и						0
п						B
8						
и	*			•		
ш		•				
п						
8						
8						
88						
В						
В						
88	0		•			
8	•	•	•			
88		-	•		1	
B						
83						
8						
и						
и						
	*	-	*			
	-	*	-	-		
88	300					
В						
8						
56	6.5	40.0	0.84	10.0	13.0	per Million. 162.0

Spring No. 40. Minnehaha Spring.

Location: At Minnehaha Springs, Pocahontas County.

Physical Data.

Elevation: 2340'.

Geological Horizon: Marcellus-Oriskany contact.

Temperature: Date observed, 6-1-35, 70.5° F.; 9-23-35, 72.0° F. Rate of flow: Date observed, 6-1-35, 1000 gallons per minute. Owner: Richter & Johnson, Washington, D. C.

Chemical Analysis.

Potassium (K)	Sodium (Na)	Magnesium (Mg)	Calcium (Ca)	Iron (Fe)	Silica (SiO ₂)	Ignition loss	Solids after evaporation	Constituent.
				:			ĭ	
							2	
							Ξ.	
			:			:	20	
							-	
				;				
			:		:		:	
		•						
						:		
						:	:	
3.5	5.6	6.5	40.0	0.84	10.0	13.0	162.0	Parts per Million

Rate of flow: Date observed, 6-2-35, 2000 gallons per minute. Owner: Bank of Marlinton, Marlinton, W. Va.

Chemical Analysis.

Analyst: Homer A. Hoskins.

Hydrogen sulfide gas (H-S)	Manganese (Mn)	Nitrate (NOs)	(C1)	Sulfate (SO.)	Bicarbonate (HCO:)	Potassium (K)	Sodium (Na)	Magnesium (Mg)	Calcium (Ca)	Iron (Fe)	Silica (SiOz)	Ignition loss	Solids after evaporation	Constituent.
(H.S													011	
)														
											:			
				:						:				

Comments: Typical of the large springs of the basal Greenbrier. Flow averages 1500 to 2000 gallons per minute and varies seasonally somewhat, but never goes dry. Unprotected.

Spring No. 40. Minnehaha Spring.

Location: At Minnehaha Springs, Pocahontas County.

Physical Data.

Elevation: 2340°.
Geological Horizon: Marcellus-Oriskany contact.
Geological Horizon: Marcellus-Oriskany contact.
Temperature: Date observed, 6-1-35, 70.5° F.; 9-23-35, 72.0°
Rate of flow: Date observed, 6-1-35, 1000 gallons per minute.
Owner: Richter & Johnson, Washington, D. C. 2340'. H

Chemical Analysis.

Potassium (Sodium (Na	Magnesium	Calcium (Ca	Iron (Fe)	Silica (SiO.)	Constituent Solids after ev Ignition loss	
×	-	-	~			nt.	
~		\simeq				. 85	
		10				. =	
						. 8	
						· H	
						. 20	
						. C.	
						. 0	
						. 5	
3.0	0.0	6.0	40.0	0.84	10.0	per Millio 162.0 13.0	

Tota	drogen	mgan	itrate	ploride	liste	JCBT DOHAU
-			1.0		100	STATE
-	perme	1	ìŝ	38	38	2"
8	8	F.				3
3	B					3
В	1					9
letermined	/A	à				
	Ĭ,	î.				
8	-	ħ				
B						
Į.						
1						
*						
-						
III [8	7			2	ű.

Remarks: Very similar to Dunmore S.

ming pool and a small, but very comforts making the spot ideal for a restful vac analysis was found in the literature; it is of which is but there Comments: no other surrounded This spring arises over protection. but very comfortable a restful vacation -CORCE There are a Separate Sep Milks H

Spring No. 40. Minnehaha Springs

Location: Minnehaha Springs, Pucahontas County

Physical Data.

Elevation: 2330 B.
Geological Horizon: Marcellus-Oriskany
Temperature: 72 F.
Rate of flow: 1040 gallons per minute.
Owner: W. A. H. Hobbs.

Chemical Analysis.

Analyst: B. B. Kaplan, W. Va. Geological Survey.

viiia (AII)	June	2	6	(80.)	ate (IIII I	R	mm	6	xide	SiO.	los
		9	3	5	8	K	=	-	2			8 3
	1	M	-	9	Z	*				8		. *
-	5	-	1.5		м	1	50	9		_		
	VIII)		1	-	1	7		ы	1	7		
			'	1	4	500		*		ᇹ	4	
2	0			7	1	200			-	В.		
		+		40	1					Ε.		
1										2		
			119		1	7				м		
1					90	**				8		
					3			20		Fe.		
		*	+ 1							gr.		
										2		
										м		
			1							ш		
		-								9		
		1								Sec.		
		1										

Remarks: Recalculated to p. p. m. or analysis in "Detailed Report on Pocahontas logical Survey, (1929).

Remarks: Very similar to Dunmore Springs	Total of determined constituents	Hydrogen sulfide gas (H ₂ S)	Manganese (Mn)	MILITARE (1	Vitario (Chloride (CI)	Bicarbonate (HCO ₃)
V	of	sul	(F	2	35	3	5 %
ery	det	fide	(nI	3)	-		H
simil	ermin	gas					(°)
ar	led	H				:	
to	col	S		:	:	:	i
Dur	nstit						
mor	uents						
e SI						:	
oring							
Sú.		:					0
	217.14	None	Trace	0.2	1.5	34.0	115.0

but there is no other protection. There are a small, housed swimming pool and a small, but very comfortable hotel on the premises, making the spot ideal for a restful vacation. Only one previous analysis was found in the literature; it is attached hereto. Comments: This spring arises over a large area, a large part of which is surrounded by a concrete wall to impound the water,

Spring No. 40. Minnehaha Springs.

Location: Minnehaha Springs, Pocahontas County.

Spring No. 40. Minnehaha Springs.

Location: Minnehaha Springs, Pocahontas County.

Physical Data.

Elevation: 2330' B.
Geological Horizon: Marcellus-Oriskany.
Temperature: 72° F.
Rate of flow: 1040 gallons per minute.
Owner: W. A. H. Hobbs.

Chemical Analysis.

Analyst: B. B. Kaplan, W. Va. Geological Survey.

Silica (SiO ₂) Ferric oxide and Alumina (Fe, Al) ₂ O ₃) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)
Silica (SiO ₂) Ferric oxide and Alumina (Fe, Al) ₂ O ₃) Calcium (Ca)

Remarks: Recalculated to p. p. m. by B. R. Drake from an analysis in "Detailed Report on Pocahontas County", W. Va. Geological logical Survey, (1929).

Spring No. 41. Peter McCarthy Spring.

hontas County. Location: 6 miles N. E. of Huntersville off Browns Creek, Poca-

Physical Data.

Elevation: 2513'.

Geological Horizon: Bossardville Limestone.
Temperature: Date observed, 9-25-35, 63.5° F.
Rate of flow: Date observed, 9-25-35, 300 gallons per minute.
Owner: Peter McCarthy Heirs, Huntersville, W. Va.

Chemical Analysis.

Analyst: Homer A. Hoskins.

Remarks: Calcic-sodic-alkaline	· Total of determined constituents	, one (11	Hydrogen sulfide one (H.C)	Manganese (Mn)	Nitrate (NO.)		3	Bicarbonate (HCO.)	Potassium (K)	Sodium (Na)	Magnesium (Mo)	Calcium (Ca)	Iron (Fe)	Constituent. Solids after evaporation
-alkaline.	constituents	3N)	2)	***************************************	***************************************		***************************************			***************************************	***************************************	***************************************	***************************************	1
	789.705	None	None	None	2.3	438.0	120.0	2.6	9.8	45.0	155.0	0.005	17.0	Parts per Million. 666.0

Comments: There are really two springs, and they are warm, so warm that they never freeze until everything else around is frozen, and then only in very cold weather. (Mr. Moody Moore, informant). They are entirely unprotected.

Spring No. 42. Warwick Sulphur Spring.

Location: E. R. Sharp farm, 1 mile southeast of Onoto, Poca-

Physical Data.

Elevation: 2430.

Geological Horizon: Greenbrier-Maccrady contact.
Temperature: Date observed, 6-2-35, 56° F.; 9-24-35, 60°
Rate of flow: Date observed, 6-2-35, 0.5 gallon per minute.

9-24-35, 0.25 gallon per minute.

Owner: E. R. Sharp, Marlinton, W. Va. minute;

SPRINGS OF WEST VIRGINIA

Spring No. 41. Peter McCarthy Spring.

hontas County. Location: 6 miles N. E. of Huntersville off Browns Creek, Poca-

Physical Data.

Elevation: 2513'.

Geological Horizon: Bossardville Limestone.
Temperature: Date observed, 9-25-35, 63.5° F.
Rate of flow: Date observed, 9-25-35, 300 gallons per minute.
Owner: Peter McCarthy Heirs, Huntersville, W. Va.

Chemical Analysis.

Analyst: Homer A. Hoskins.

Solids after evaporation Constituent.

per Million. 666.0 Paris

Silica (SiO2)

Owner: Peter McCarthy Heirs, Huntersville, W. Va.

Chemical Analysis.

Analyst: Homer A. Hoskins.

	Portal City
789.705	Total of determined constituents
None	Hydrogen sulfide gas (H ₂ S)
None	Manganese (Mn)
None	Nitrate (NO ₃)
2.3	Chloride (Cl)
438.0	Sulfate (So ₄)
120.0	Bicarbonate (HCO ₃)
2.6	Potassium (K)
9.8	Sodium (Na)
45.0	Magnesium (Mg)
155.0	Calcium (Ca)
0.005	Iron (Fe)
17.0	Silica (SiO ₂)
666.0	Solids after evaporation
Parts per Million.	Constituent.

Remarks: Calcic-sodic-alkaline.

Comments: There are really two springs, and they are warm, so warm that they never freeze until everything else around is frozen, and then only in very cold weather. (Mr. Moody Moore, informant). They are entirely unprotected.

Spring No 47 W.

Remarks: Calvie sodie alkaline,

Commended There are really two springs, and they are warm, so warm that they never freeze until everything else around is freeze, and then only in very cold weather. (Mr. Moody Moore, informant). They are entirely unprotected.

Spring No. 42. Warwick Sulphur Spring.

horkes County. Location: E. R. Sharp farm, I mile southeast of Onoto, Pora-

Physical Data.

Elicwadiioms

8-24-35, 6.25 gallon per minute. CERTAIN Geological Horizon: Greenbrier-Maccrady contact.

Temperature: Date observed, 6-2-35, 56 F.; 9-24-35, 60 F.

Rate of flow: Date observed, 6-2-35, 0.5 gallon per minute; E. R. Sharp, Marlinton, W. Va.

Chemical Analysis.

Analyst: John B. McCue.

Remarks: Sulphuretted-calcic-sodic.

Comments: Taken as typical of the shale waters, although the flow is small and varies quite a bit. Unprotected. Compare with No. 34. These (34 and 42) were the only sulphur springs visited in this county and are perhaps the only ones.

Spring No. 43. Addison McLaughlin Well.

County. Location: Below Court-House at Webster Springs,

Physical Data.

Geological Horizon: Greenbrier Limestone.
Temperature: Date observed, 6-6-35, 55.0° F.; 10-2-35, 54.5°
Rate of flow: Date observed, 6-6-35, 5 gallons per minute.
Owner: J. M. Hoover et al., Webster Springs, W. Va. Geological Horizon:

Chemical Analysis.

Chemical Analysis.

Analyst: John B. McCue.

Constituent,	Parts per Million.
Solids after evaporation	370.0
Ignition loss	52.0
Silica (SiO ₂)	5.4
Ferric oxide and Alumina (Fe, Al)2O3)	2.0
Calcium (Ca)	84.0
Magnesium (Mg)	18.0
Sodium (Na) and Potassium (K)	12.0
Bicarbonate (HCO ₃)	221.0
Sulfate (SO ₄)	107.0
Chloride (Cl)	11.0
Nitrate (NO ₃)	0.2
Manganese (Mn)	
Hydrogen sulfide gas (H ₂ S)	
Total of determined constituents	467.8

Remarks: Sulphuretted-calcic-sodic.

Comments: Taken as typical of the shale waters, although the

34. These and are perhaps the only ones.

Spring No. 43. Addison McLaughlin Well.

Location: Below Court-House at Webster Springs, Webster County.

Physical Data.

Elevation: 1462'.

Geological Horizon: Greenbrier Limestone.

Temperature: Date observed, 6-6-35, 55.0° F.; 10-2-35, 54.5° F.

Rate of flow: Date observed, 6-6-35, 5 gallons per minute.

Owner: J. M. Hoover et al., Webster Springs, W. Va.

Chemical Analysis.

Constituent. Solids after evaporation	1000
Silica (SiO ₂)	14.0
Iron (Fe)	0.09
Calcium (Ca)	155.0 46.0
Magnesium (Mg)	20000
Sodium (Na) Potassium (K)	57.0

Plate XXVI.—Minnehaha Spring.—This spring, located at the village of the same name in Pocahontas County, supplies a fine indoor swimming pool and a comfortable hotel. The waters are said to have real medicinal value in the treatment of rheumatism and stomach disorders.—Photo by Hoskins.

Plate XXVII.—Dunmore Spring.—This beautiful spring rises at Dunmore, Pocahontas County, in the valley where Lord Dunmore's war was fought. Many improvements have been made by Mrs. Anna Price Hunter, who designed and erected the beautiful statue pictured here.—Photo by Hoskins.

Plate XXVIII.—The McLaughlin Spring.—The waters of this spring can not all be seen because they issue from many crevices in the rock and flow under a mat of vegetation to the stream below. However, it is one of the largest springs in the State and illustrative of the many which water the lands of Pocahontas County. This spring is located at Hepsedam, near Marlinton. A fish hatchery is close by.—Photo by Hoskins.

Plate XXIX.—State Fish Hatchery at Hepsedam.—This fish hatchery, located in Pocahontas County, is supplied by the waters of Averill spring, indicating an important use of spring water in the State. There are several other hatcheries in West Virginia, namely at Petersburg, Ridge and Leetown, all dependent on unfailing springs for their water supply. Without these our streams would soon be fished completely barren of trout and bass .- Photo by courtesy of Major Shawhan.

Pendleton	136	Eagle Rock Spring
Pendleton	137	Dry Run Spring
Randolph	138	Corley No. 9 (Coal Test Well)
Barbour	139	Talbott Heirs No. 2 Test Well
Pleasants	140	Abe Samberson Spring (Well)
Lewis	141	Alum Spring
Wood	142	Borland Mineral Wells
Wood	143	Mineral Wells
Pocahontas	33	Averill Spring
Pocahontas	34	Beaver Creek Sulphur Spring
Pocahontas	35	Curry Spring
Pocahontas	36	Dunmore Drinking Spring
Pocahontas	37	Dunmore Meadow Spring
Pocahontas	38	Dunmore Pool Supply Spring
Pocahontas	39	McLaughlin Spring
Pocahontas	. 40	Minnehaha Spring
Pocahontas	41	Peter McCarthy Spring
Pocahontas	42	Warwick Sulphur Spring
Pocahontas	144	Linwood Big Spring
Pocahontas	145	Cave Spring
Pocahontas	146	Cochrane Spring

- 32. A System of Analysis for Oil Field Waters, 1928, C. E. Reistle, Jr., and E. C. Lane, Tech. Paper No. 432, U. S. Bureau of Mines.
- 33. Historical Sketches of Pocahontas County, 1901, William T. Price, Price Bros., Marlinton, W. Va.
- 34. West Virginia Handbook and Manual, 1924, John T. Harris, Jarrett Printing Co., Charleston, W. Va.

WEST VIRGINIA ENCYCLOPEDIA