NORTHROP CORP NORWOOD MASS PRECISION PRODUCTS DEPT F/6 17/7
MICRO-ELECTROSTATIC GYRO (MESG). MESG SECOND SOURCE DEVELOPMENT--ETC(U)
AUG 76 W MERRITT, R WESTHAVER, K MILLO F33615-74-C-1105
PPD-E-76-10424 AFAL-TR-76-150 NL AD-A038 273 UNCLASSIFIED OF2 2 -0.0

AD A 038273

Adl

AD AD A038273

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963

AFAL-TR-76-150

MICRO-ELECTROSTATIC GYRO (MESG) MESG SECOND SOURCE DEVELOPMENT PROGRAM

Precision Products Department Northrop Corporation Norwood, MA 02062

Technical Report AFAL-TR-76-150

August 1976

Final Report

June 1974 - April 1976

Approved for public release; distribution unlimited.

AIR FORCE AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

Chily W. Egg (Engineers Name)

Title

(Engineer's Supervisor)

Title

FOR THE DIRECTOR

(Signature and Title)

Acting Chief

Reference Systems Branch

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	Final technical rept
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	SSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFALTR-76-150	
A. TITLE (and Bubillia)	5. TYPE OF REPORT & PERIOD COVER
Micro-Electrostatic Gyro (MESG)	Final Technical Report
MESG Second Source Development Program	June 1974 through April 1976
	PPD-E-76-10424
W. Merritt, et al R. Page Is	CONTRACT OR CRANT NUMBER(s)
P blockhains	(13)
Ti Kimillo F. Hallock	F33615-74-C-11Ø5 mil
PEAFORMING TAIGANIZATION NAME AND ADDRESS	10. PROGRAM ELFMENT, PROJECT, TAS
Precision Products Department	
Northrop Corporation	6664 93-26
100 Morse St., Norwood, MA 02062	Task Number A006
Air Force Avionics Laboratory (RWA)	Aug 76
Air Force Systems Command	13. NUMBER OF PAGES
Wright-Patterson Air Force Base Ohio 45433	181 (2) 192 p.
1 - MONITORING AGENCY NAME & ADDRESSIT BITTER FROM CONTROLL	ones) is secont version in the report
	154, DECLASSIFICATION DOWNGRACING
16 DISTRIBUTION STATEMENT (of this Report)	
	111/
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If d	APR 18 1977
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if a	APR 18 1977
	APR 18 1977
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If a	APR 18 1977 APR 18 1977 C
	APR 18 1977 APR 18 1977 C
	APR 18 1977 APR 18 1977 C
18. SUPPLEMENTARY NOTES	MISCHIVE C
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by blo	ck number)
19. KEY WORDS (Continue on reverse side If necessary and identify by blood Beryllium Billet Extrusion, Beryllium Oxide, Barrel Tumbling, Discharge Machining, Eloxing, Lapping, Rotor Fabrication, Ro	ck number) Cavity Fabrication, Chemical Etching, Electro-
19. KEY WORDS (Continue on reverse side If necessary and identify by blade Beryllium Billet Extrusion, Beryllium Oxide, Barrel Tumbling,	ck number) Cavity Fabrication, Chemical Etching, Electro-
19. KEY WORDS (Continue on reverse side If necessary and identify by blood Beryllium Billet Extrusion, Beryllium Oxide, Barrel Tumbling, Discharge Machining, Eloxing, Lapping, Rotor Fabrication, Ro	ck number) Cavity Fabrication, Chemical Etching, Electro-
19. KEY WORDS (Continue on reverse side If necessary and identify by blood Beryllium Billet Extrusion, Beryllium Oxide, Barrel Tumbling, Discharge Machining, Eloxing, Lapping, Rotor Fabrication, Ro	Cavity Fabrication, Chemical Etching, Electrotor/Cavity Measurements, Sputtering, Stock Res
19. KEY WORDS (Continue on reverse side if necessary and identify by blood Beryllium Billet Extrusion, Beryllium Oxide, Barrel Tumbling, Discharge Machining, Eloxing, Lapping, Rotor Fabrication, Ro Rate, Tantulum Wire, Vibratory Tumbling O. ABSTRACT (Continue on reverse side if necessary and identify by blood The objective of the MESG Program was to develop a compete and cavity sets. This was required in order to protect the Gove procedures, and techniques developed by the prime contractor	Cavity Fabrication, Chemical Etching, Electro- ctor/Cavity Measurements, Sputtering, Stock Res cat number) Int second source for the fabrication of MESG re- cernment's investment by insuring that the drawing (Autonetics Group, Rockwell International-AG)
19. KEY WORDS (Continue on reverse elde If necessary and identify by blad Beryllium Billet Extrusion, Beryllium Oxide, Barrel Tumbling, Discharge Machining, Eloxing, Lapping, Rotor Fabrication, Ro Rate, Tantulum Wire, Vibratory Tumbling 10. ABSTRACT (Continue on reverse elde If necessary and identify by blod The objective of the MESG Program was to develop a competer and cavity sets. This was required in order to protect the Gove procedures, and techniques developed by the prime contractor were correct, and to prevent AGRI from obtaining a sole source.	Cavity Fabrication, Chemical Etching, Electro- tor/Cavity Measurements, Sputtering, Stock Res A number) Int second source for the fabrication of MESG re- ternment's investment by insuring that the drawing (Autonetics Group, Rockwell International-AG the advantage.
19. KEY WORDS (Continue on reverse side if necessary and identify by blood Beryllium Billet Extrusion, Beryllium Oxide, Barrel Tumbling, Discharge Machining, Eloxing, Lapping, Rotor Fabrication, Ro Rate, Tantulum Wire, Vibratory Tumbling O. ABSTRACT (Continue on reverse side if necessary and identify by blood The objective of the MESG Program was to develop a compete and cavity sets. This was required in order to protect the Gove procedures, and techniques developed by the prime contractor	Cavity Fabrication, Chemical Etching, Electro- tor/Cavity Measurements, Sputtering, Stock Res A number) Int second source for the fabrication of MESG re- ternment's investment by insuring that the drawing (Autonetics Group, Rockwell International-AG the advantage.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

As preliminary to this major function, PPD; 1) reviewed (and updated and corrected, as required) a Reprocurement Data Package supplied by the Air Force to ensure its completeness and suitability; 2) established alternate sources for required raw materials and beryllium billet extrusions; and 3) procured or designed and fabricated baseline tooling and fixtures necessary to produce MESG rotors and cavities.

In its fabrication activity, PPD first built six rotor and cavity sets using materials supplied by the Air Force. After AF approval of this first lot, PPD then built four rotor and cavity sets using materials supplied from the alternate vendors. (A further requirement for 10 additional sets using alternate source material was deleted from the contract.)

Ancillary program activity included: 1) a Product Improvement Task in which PPD investigated and recommended alternate rotor/cavity processing and production techniques to reduce costs; 2) development of reliability and maintainability factors involved in fabrication; and 3) performance of a preliminary system safety analysis.

PPD believes that it has met or exceeded all the goals called out in the contract (and revisions thereto currently in process by AFAL) and is ready to perform as a competent second source for any future MESG rotor/cavity fabrication requirements.

UNCLASSIFIED

FOREWORD

This final report was prepared under Air Force Contract F33615-74-C-1105, Item 0002, Task A006. The report covers work performed by the Precision Products Department of the Northrop Corp., 100 Morse St., Norwood, Mass. 02062 for the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio.

The purpose of this development effort was to establish a second source for MICRO-Electrostatic gyro (MESG) rotors and cavities, to protect the Government's investment by insuring the drawings, procedures, and techniques obtained from Autonetics were correct, and to prevent Autonetics from obtaining a sole source advantage.

This program was conducted from June 1974 through April 1976 under the direction of the following personnel:

W. Merritt

MESG Program Manager

R. Westhaver

MESG Project Engineer

The principal contributors to this report were:

K. Millo

R. Pagels

F. Hallock

The cognizant Air Force Project Manager on this MESG program was Captain Walter Peterson, Jr., AFAL/RWM-666A.

Table of Contents

Section		Page
1	Summary	1
11	Task 1, Documentation Review	3
	Introduction	3
	Tooling	3
	10000 - 207, Rotor Lapping Machine, ESG	3
	10032 - 207, Comparator, Cavity Spherometer, ESG	4
	10039 - 207, Comparator, Cavity Spherometer, ESG	4
	10077 - 207, Cavity Holder (hand lapping)	4
	10078 - 207, Mask, Sputter	4
	10082 - 207, Cavity Grind Fixture	4
	10083 - 207, Probe, Temperature, Rotor Lapping Machine	4
	10089 - 207, Rotor Measuring Fixture, Talyrand	5
	10090 - 207, Bake Fixture, Rotor	5
	Specifications	5
	AA0109 - 051, Electroless Deposition of Nickel, Phosphorous	
	on Gold	
		5
	AB170 - 067, Beryllium, Extruded	5
	AL70030, Rotor, Hot Lapping Procedure for	6
	AL70032, Cavity, Rotor, Lapping Procedure for	7
	Drawings	8
	12698 - 302, Cavity, Rotor	8
	12699 - 302, Cavity, Rotor Plated	9
	12700 - 302, Cavity Assembly, Rotor	9
	12504 - 302, Rotor	9
111	Task 2, Establish Alternate Sources for Raw Materials	11
	Introduction	11
	Vendor Selection	11
	Details of KBI Extrusion	13
	Beryllium Oxide	15
	Material Specifications	16
	Conclusions	16
IV	Task 3, Tooling for Baseline Configuration	17
	Introduction	17
	PPD - Developed Tooling	17
v	Task 4, Fabrication	23
	Introduction	23
	Rotors	23
	Fabrication	23
	Measurements	27
	Rotor Yield	27
	Conclusions	29
	Cavities	31
	Fabrication	31
	Measurements	33
	Conclusion	33

(Table of Contents (Continued)

Page

28

35 40

46

Section

11

12

13

14

15

16

Two-Leg Cold Rotor Lap

Electro-Discharge Machine

Rotor Measurement Area

Rotor and Cavity Lapping Booths

Rotor and Cavity Set

Stock Removal Rate

VI	Table C. Dandord Improvement	37
VI	Task 5, Product Improvement	
	Introduction	37
	Stock Removal	37
	Tumbling Techniques	37
	Barrel Tumbling	38
	Vibratory Finishing	39
	Comparison of Tumbling Methods	39
VII	Reliability and Maintainability	41
	Reliability	41
	Rotors	41
	Cavities	42
	Tooling and Instrumentation	42
	Maintainability	42
VIII	System Safety	45
	Introduction	45
	Personnel Safety	45
	In-Process Precautions	48
Appendix A -	Listing of AGRI Tools, Drawings, and Specs	51
	PPD Material Specs	59
	KBI Letter, Process Specs and Extrusion Billet Assembly Drawing	75
	CSDL Test Results	105
	Letter from Coors Porcelain Company	129
The state of the s	Mass. Dept. of Labor Beryllium Notice	131
	MESG Final Data Packages (PPD) and AGRI Metrology Measurements	133
	List of Illustrations	
Figure		Page
1	Beryllium Extrusion	13
2	Analysis of KBI Beryllium Billet Extrusion	14
3	Cavity Slot Lapping Fixture	18
4	Cavity Roundness Check Fixture	18
5	Proficorder with Draft Shield	19
6	Etalon Micrometer	20
7	Cavity Inspection Fixture	20
8	Interferometer	21
9	Electro-Discharge Maching (EDM) Setup	25
10	Three Lee Retor Lee	26

Section 1

SUMMARY

The objective of this advanced development effort was to establish a second fabrication source for the rotors and cavities of the MICRO-Electrostatic Gyro (MESG). Work was performed by Northrop Corporation's Precision Products Department (PPD) under Contract Number F33615-74-C-1105, covering a time period from 3 June 1974 through 30 April 1976.

The Statement of Work called out six major tasks to be accomplished in meeting the program goals:

- Task 1. Documentation Package Review This task required that PPD review a Reprocurement Data Package supplied by the Air Force to determine its completeness and suitability for use in fabricating MESG rotors and cavities and associated tooling and fixtures. Altogether, 16 gyro drawings and revisions, 43 specifications and revisions, and 104 tool drawings and revisions were reviewed. The review revealed numerous mistakes, omissions, and/or need for clarifications in each category. These deficiencies have been corrected, and PPD now has in its possession all available and necessary documentation needed to comply with the MESG program.
- Task 2. Establish Alternate Sources for Raw Materials This task required that PPD establish MESG raw material and processing sources other than those being used by the Autonetics Group of Rockwell International (AGRI) in its prime contract activity. Four vendor surveys were conducted by PPD in completing this task. Two vendors were selected as possible new sources: Kawecki Berylco Ind., Inc. Reading, Pa. for beryllium stock, tantalum wire, and extrusions; and Brush Wellman Co., Elmore, Ohio for beryllium oxide discs. PPD also developed two material specifications (as part of this task) to completely define the material and inspection requirements.
- Task 3. Tooling for Baseline Configuration This task required that PPD either procure or design and fabricate the tooling and fixturing necessary to produce MESG rotors and cavities. Existing fixtures and tools were used "as-is" to the greatest extent possible; two fixtures were modified for use; and 16 items were especially developed for MESG.

- Task 4. Fabrication This task required that PPD fabricate six rotor and cavity sets using materials supplied by the Air Force. After AF approval, it required fabrication of four rotor and cavity sets using materials procured from the alternate sources developed in Task 2. A further requirement for fabrication of ten additional sets using alternate source material was deleted from the contract. The original six rotor and cavity sets were completed by May 1975. The four sets using alternate vendor material were completed in January 1976.
- Task 5. Product Improvement This task required that PPD investigate and recommend alternate rotor/cavity processing/production techniques to reduce costs. After preliminary consideration of several areas of investigation, emphasis was placed on new techniques for stock removal from eloxed rotors using barrel and vibratory tumbling. These techniques showed great potential for cost effective results in production.
- Task 6. Design Reviews Two design reviews were originally scheduled; however, this task was later deleted.

In addition to these specific numbered tasks, the SOW also required that:

- Careful consideration be given throughout the program to the factors of reliability
 and maintainability, and that a prediction of the degree of these factors be developed.
 This was completed with the development of a summary of reliability/maintainability
 factors.
- A preliminary system safety analysis be performed. Special precautions were incorporated:
 - to ensure personnel safety in all operations involving the processing of beryllium and beryllium oxide, and
 - b) to minimize loss of in-process parts from accidental causes.

PPD has completed and complied with all requirements in the SOW (and revisions to the contract currently in process by AFAL). This Final Technical Report documents all program activity, results, and recommendations.

Section II TASK 1, DOCUMENTATION PACKAGE REVIEW

INTRODUCTION

This task, as established by the SOW, required PPD to review a Reprocurement Data Package supplied by the Air Force and report on its completeness and suitability for fabricating MICRON rotors and cavities and associated tooling. The Data Package as received consisted of four piece-part drawings, 75 tooling drawings, and three process specifications. After these documents were reviewed, it became apparent that additional data referenced in the Data Package would be required and this data was requested. The review also revealed that some documentation, which PPD felt was required to completely define rotor fabrication, was not included. Such data included information on the billet extrusion process, and assembly drawing of the billet and tantalum wires, details of the billet showing size and location of the wire slots, oxidization process for the billet, and the billet assembly procedure. A total of 16 gyro drawings and revisions, 43 specifications and revisions, and 104 tool drawings and revisions have been reviewed.

A complete list of Documentation Data required to produce MESG rotors and cavities is given in Appendix A of this report. Shown is a list of AGRI tools, piece-part drawings, and specifications. Appendix B contains two Material Specifications developed by PPD during the Program.

The following comments on the Reprocurement Data Package were forwarded to the Air Force and resulted in changes to some of the drawings.

TOOLING

10000-207, Rotor Lapping Machine, ESG

All detail drawings indicated by the main assembly drawing have been received and have been found to be inadequate to produce a machine capable of hot lapping rotors.

Item 6 of this drawing shows two ¼-20 socket head screws, but does not specify the material; PPD thinks that the material should be teflon or nylon in order to minimize heat loss from the block. PPD also believes that item 65, Shield, is not properly placed and should be placed between item 4, Cartridge Holder, and item 5, Insulator, rather than item 4 and item 1, Base. This is recommended so that the heat radiated from the block to the shield has direct contact with the base plate, so that between the ¼-20 screws and the shield, the base plate becomes a large heat sink. In addition, nowhere in the parts list or on the drawing is reference made to placement, size, or capacity of the heater, sensor, and controller, required to maintain the rotor at lapping

temperature. PPD has learned from experience that assembly of the lapping machine is not altogether straightforward and believes a procedure should be written covering the assembly and checkout of the unit.

10032-207, Comparator, Cavity Spherometer, ESG

All detail drawings related to this assembly have been received. PPD has built this fixture and has found numerous mistakes and omission in the drawings which required revision before a workable instrument could be made. These deficiencies must be corrected before usable instrumentation can be fabricated. PPD has kept a set of red-lined drawings recording the required changes.

10039-207, Comparator, Cavity Equator, ESG

All detail drawings related to this assembly have been received. Based on experience PPD has gained in building this fixture, revisions in the drawings are required before usable instrumentation can be fabricated from these drawings. PPD has marked-up drawings.

10077-207, Cavity Holder (hand lapping)

An addition to this drawing is required to show the ball rotating fixture.

10078-207, Mask, Sputter

This mask does not adequately shield the back side of the cavity from extraneous sputtered material.

10080-207, Cavity Grind Fixture

This drawing reflects the fixture for cavity outside diameter grind and alignment. PPD noticed that according to this drawing, item 3, Alignment Ball, has been changed to 0.406235 dia. from 0.406241 dia. PPD feels that one rotor will not suffice for the concentric grinding and alignment operation because of the large variation in cavity diameters. We believe it will take 3 rotors of varying size in order to hold the alignment tolerance specified.

10083-207, Probe, Temperature - Rotor Lapping Machine

PPD questions how the probe is used in order to insure no rotor damage due to scratches, because there is no sphericity lapped into probe end. Also, the measurement of temperature may not be accurate due to this point contact.

10089-207, Rotor Measuring Fixture - Talyrond

The spherical diameter is shown as $0.405650 \pm 10 \mu in$. This is the diameter of the Marine rotor. The Micron rotor has two different diameters at 68° F. PPD questions whether the vacuum would be sufficient for all diameters. Because the rotor is oblate, it seems probable the rotor could move and also it may not seal the fixture; hence, the vacuum would be insufficient to hold the rotor.

PPD also questions the fact that the rotor seat is made from stainless steel. Even though it has a 2μ in, finish, the rotor has to be rotated for different scans. PPD believes the rotor could be damaged doing this.

10090-207, Bake Fixture, Rotor

This fixture specified a spherical diameter of 0.405650 which does not appear to be compatible with the 0.406050 and 0.405950 spherical diameters which the Micron rotors have when this fixture is used. Also, this fixture has no protection against the rotor falling out of the fixture; it should have some sort of counterbore or lip to catch the rotor if it rolls out of the fixture.

SPECIFICATIONS

AA0109-051, Electroless Deposition of Nickel - Phosphorous Plate on Gold

A procedure is required for reworking plated cavities, including the number of reworks permitted.

AB0170-067, Beryllium Extruded

Pg. 2, par. 1.0; The extrusion ratio for Micron of 25 to 1 should be specified.

Pg. 6, par. 4.2.3.2; The number of samples and their location for the thermal expansion anisotropy test should be specified. Also, the absolute coefficient of expansion is required in order to be able to correct finished rotor size for the temperature at which it is measured. The temperature over which these tests are run should also include points below room temperature. A value and tolerance of coefficients determined should be specified.

Pg. 6, par. 4.2.3.7; The diametral positions for the three wire extrusion are required.

AL70030, Rotor; Hot Lapping Procedure For

This document outlines the procedure for fabricating the MICRON rotor. The equipment listed is adequate as given except as noted below.

For sizing the rotors during the fabrication cycle, PPD uses air-buffered electronic indicators in place of the mechanical Mikrokator listed. PPD has found the electronic indicators offer superior repeatability over the Mikrokators. The equipment specified for measuring the rotor temperature (the Leeds and Northrop Potentiometer) is not complete because no description or drawing of the thermocouple probe used to contact the rotor is given.

In par. 3.1.6.1, the hot lap mixture as stated is incomplete.

In par. 3.2.1.1, minimum rotor size out of EDM is specified as 0.418 in. In conversations with AGRI, it was learned that rotors as small as 0.412 in. are processed. The actual determining factor of how small the rotor can be is the depth of pitting made by the Eloxing process; consequently rotors smaller than 0.418 can be used provided they are not pitted too badly.

In par. 3.2.3.1, the direction of rotation for the cycle drive and rotating disc is not specified.

In par. 3.2.3.2, if the pits and scratches appear to be too deep to clean up in subsequent lapping operations, the rotor must be rejected.

In par. 3.2.3.6, PPD prefers to use a soft felt-tipped pen rather than the Rapidograph pen specified because of the danger of scratching the ball with the Rapidograph.

In par. 3.2.3.7, a more definitive statement regarding exactly what is acceptable and rejectable in terms of wire condition is needed. X-ray pictures showing examples of acceptable and rejectable rotors should be provided.

In par. 3.2.4, PPD has added an additional lapping operation in which the rotor is lapped with 38-900 compound. PPD has found this additional step reduces the time required to remove scratches made by the 38-500 compound.

In par. 3.2.4.5, the reference temperature at which the ball size is to be determined should be stated. Room temperature is not accurate enough.

In par. 3.2.4,7, a tolerance should be placed on the 30 microinch oblateness. With the stated size tolerance, this could be interpreted to be \pm 15 microinches.

In par. 3.2.5.6, after obtaining the roundness sweeps, no criteria or information are given regarding how (or if) this information is to be used for accepting or rejecting a rotor. As this paragraph stands, the data obtained is for information purposes only.

In par. 3.2.7.9, the tolerances on the rotor diameters are given as \pm 5 microinches whereas in figure 2 and on drawing 12504-302, the tolerance is given as \pm 10 microinches. It is not known if this is intentional or an oversight.

Pg. 4 item 23, part number not identified.

Pg. 4 items 36, 37, and 38, not adequately identified or vendors specified.

Pg. 5 Environmental requirement, par. 3.1.2, the temperature specified of $72 \pm 5^{\circ}$ F disagrees with rotor drawing 12504-302 which specifies $75 \pm 5^{\circ}$ F.

Pg. 6 par. 3.2.1.3, specifies that a porcelain disc is used. This could bring about contamination from glass.

AL70032, Cavity, Rotor; Lapping Procedure For

This document outlines the procedures for fabricating the cavity halves after plating (P/N 12699-302) and the cavity matched set (P/N 12700-302).

Par. 3.2.1.1 calls for stripping and replating the cavity half if loose, blistered, or excessive plating is present. PPD needs to know if there is a limit to the number of times the plating can be stripped.

For par. 3.2.6, PPD will need a series of matched set control numbers for identifying the cavity sets.

In par. 2.1, Documents Required by this Specification include AA0110-003, Cleaning of Beryllium. The callout number is in error and should be AA0110-008.

The equipment listed in par. 2.3 is adequate to perform the task outlined with the following comments. Item 1, Lapping Machine, Cavity, Dwg. No. 10056-207 has not been built by PPD, nor is it actually needed. PPD has had good success lapping cavities with item 2 and 23 and intends to continue to use this equipment rather than item 1. Item 20, Master Cavity, is required for use in the Spherometer for sizing the cavities. PPD possesses a Master Cavity but requires a periodic recall system for certification through Autonetics Metrology.

In the equipment list, item 5 should be changed to reflect the drawing requirement for 1000 megohms resistance at 250 VDC. Par. 3.2.2.7 should also be changed to indicate the need for a megohmeter check.

The following comments apply to the procedure.

In par. 3.1.2, the temperature at which operations are to be performed is listed as $72 \pm 5^{\circ}$ F. This tolerance is too loose when sizing the cavities. A reference temperature at which the size is to apply should be stated with the actual temperature at which measurements are made being recorded. Piece-part dimensions would then be referenced to the standard temperature by computation.

Pg. 3 item 3, Rough Cavity Lapper: drawing number not specified.

Pg. 4, par. 3.1.3.1, Cleaning of Parts: the pressure of the spray that is used to clean parts is not specified.

Pg. 5, par. 3.1.5.2, Charging of cavity lap: the drawing number of the lap charge holder is not specified.

Pg. 8, par. 3.2.3.6, the lap "used for polishing cavities" requires further definition as to the lap used and the lapping compound. The temperature at which the cavity diameter dimension applies needs to be specified.

Pg. 8, par. 3.2.3.10, the equator location requires better definition.

Pg. 9, par. 3.2.4, Final Measurement: the roundness of each sweep should be specified.

Pg. 11, an explanation as to why the meter is set to read – 7 is required. Additional instructions and information such as coefficients of thermal expansion are required for size correction due to temperature.

Pg. 12, an explanation as to why the meter is set to read - 3.5 is required.

DRAWINGS

12698-302, Cavity, Rotor

 No surface finish designation for the equator plane is indicated on the revised drawing, whereas it was indicated on the previous version.

- 2. No roundness is specified for spherical dia.
- 3. No surface finish is specified for spherical dia.
- 4. There should be a definite surface specification for the equator, because it is difficult to check equator depth or hemisphere size unless this surface is lapped flat prior to measurement. The flatness should be 2 microinches.
- 5. The temperature at which the critical dimensions apply should be specified.

12699-302, Cavity, Rotor Plated

- Location of equator with respect to center of the 0.406250 spherical diameter requires clarification.
- 2. The temperature at which the critical dimensions apply should be specified.
- 3. Note 9; index mark should be on drawing 12700 and not on this drawing.
- 4. This drawing does not reflect roundness nor surface finish.
- 5. "Plate thru holes" will allow the plating to contact the Support Ring. Holes should be relieved to prevent this.

12700-302, Cavity Assembly, Rotor

A note on index mark location and dimensions should be added.

The machining of the 0.680 diameter and rear face of one cavity does not call out perpendicularity between the cavity OD and the step. This call-out is needed because it affects the operation of the external cavity alignment fixture.

12504-302, Rotor

Several comments are required on this drawing.

 There is no specification of roundness on the major diameter; consequently, roundness could be within the size tolerance of ± 5 microinches. PPD feels this should be specified.

- 2. Note 2 specifies a machining spec to be followed in fabricating the rotor. This spec, ST0115AA0010, is a general machining spec regarding tolerances, surface, finish, etc. and gives no information regarding the fabrication process. It would seem appropriate to add a note referencing AL700030 which is the hot-lapping procedure.
- 3. The intent of note 5 regarding the temperature at which final dimensions are to be measured is not clear. The 10°F tolerance allowed on the temperature represents a diameter change of approximately 26 microinches, or 2.6 times the allowable tolerance of the major diameter. Therefore, a part which is close to the nominal requirement could be brought into tolerance by merely changing the temperature at which the measurement is made. PPD needs to know if the nominal diameter dimensions specified are to apply at the 75°F with correction factors being applied to measurements made at other temperatures, or if the measurements can be made anywhere within the temperature range.
- 4. No surface finish is specified. PPD realizes the difficulty of specifying surface finishes of this type; however, this is a possible area of confusion between PPD and Autonetics when these parts are inspected. An agreement between AF, PPD, and AGRI should be reached regarding this requirement.
- The material called out on this drawing is beryllium rod. Rotors made from this
 material would contain no tatalum wire, obviously not the intent. This callout
 should be changed.

Section III

TASK 2, ESTABLISH ALTERNATE SOURCES FOR RAW MATERIALS

INTRODUCTION

This task required that PPD establish sources different than those being used by Autonetics for the critical materials and processes used to fabricate the MESG rotors and cavities. The materials and processes which require alternate sources and the sources used by Autonetics are listed below.

Material/Process	Source
Beryllium	Brush Wellman, Inc.
	14450 Nindry Ave.
	Lawndale, CA 90260
	Kawecki Berylco Ind., Inc.
	3711 Long Beach Blvd.
	Long Beach, CA 90807
Tantalum Wire	Norton Metals Division
	45 Industrial Place
	Newton, MA 02164
Beryllium Oxide	3-M Company
	Technical Ceramics Products
	6023 S. Garfield Avenue
	Los Angeles, CA 90040
	Ceradyne, Inc.
	8948 Fullbright Avenue
	Chatsworth, CA 91311

VENDOR SELECTION

Extrusion

PPD conducted vendor surveys to qualify possible new vendors. The vendors included:

Nuclear Metals Division

2229 Main Street Concord, MA 01742

- American Beryllium Company for both beryllium bar stock and beryllia blanks.
- Coors Company for beryllia blanks.
- Brush Wellman Company for beryllia blanks and the extrusion.
- Kawecki Berylco Company for beryllium stock, tantalum wire, and extrusions.

Several other sources were contacted for the extrusion; however, only Brush Wellman and Kawecki Berylco provided quotes. Both companies agreed to extrude the beryllium billet only from their own beryllium stock. After discussion with the Air Force, KBI was selected. While KBI was a secondary source of beryllium stock for Autonetics, it was equally improtant to develop another source for the extrusion.

PPD engineers visited KBI's facility on 14 February 1975 and discussed the requirements for alternate source. The major topic of the discussion concerned specific documents (AGRI's Drawings 12795, Billet, Extrusion; 12796, Extrusion Rotor and AGRI's Specification AB 0170-067).

KBI felt that they could meet the acceptance requirements of AB 0170-067 with two exceptions:

1. Paragraph 3.2.2.

Straightness could be met provided roll or die straightening was permitted.

2. Paragraph 3.2.3.

Diameter — KBI felt the specification requirement could be met provided 0.002 to 0.004 in. of material could be etched off after the material was extruded. KBI agreed to quote on the extrusion based on the specifications and above exceptions. PPD stated that they would require documentation such as X-ray and other inspection criteria to assure compliance with drawings. KBI was also asked to submit a quote on preparing documentation required to control the extrusion process.

This meeting convinced PPD that KBI could supply the beryllium sleeve, beryllium rod, and tantalum wire and could extrude the beryllium billet after PPD did the machining and assembly.

DETAILS OF KBI EXTRUSION

The extrusion received from KBI consisted of the three sections shown in figure 1. The overall length of the extrusion was 113-7/8 inches. The nose and tail sections are not usable, so that the usable section of the extrusion is the 88-1/2 inch length of body. Examination of this section by X-ray showed that only one half of the body (nearest the tail end) had wires that were continuous. Figure 2 shows an analysis of the extrusion. The lower curve shows the diameter (left vertical scale) measured in two perpendicular directions every 2 inches along the length of the extrusion. The right vertical scale is the extrusion ratio calculated from the beryllium billet

Figure 1. Beryllium Extrusion

dimensions and the diameter measurements of the extrusion. It can be seen from this curve that the most uniform section of the extrusion is from 10 inches to 60 inches. However, the extrusion ratio for this length is 24.2, less than the desired ratio of 25.

The top curve shows the bolt circle radius established by the three tantalum wires. The left vertical scale is the wire bolt circle radius. The right vertical scale is the extrusion ratio calculated from the wire locations in the billet and the measured location of the wires in the extrusion. The wire bolt circle radius was measured on each end of five 7-1/2 in. long segments.

The specified wire length when the rotor diameter is 0.406050 in. is 0.203 ± 0.010 in. This length requires a wire bolt circle radius of 0.1728 to 0.1786. This was achieved in only one 7-1/2 in. length of the extrusion because the actual extrusion ratio was less than the required ratio of 25 to 1. KBI feels, and Northrop agrees, that this can be corrected in subsequent extrusions.

The extrusion process is defined by KBI drawing ZHC-4117, Rev. B, and by Standard Operating Procedures numbered:

614-310-05.001	730-975-05.001
614-310-05.002	730-988-05.001
614-310-05.003	1200-000-08.008
640-999-05.002	

Figure 2. Analysis of KBI Beryllium Billet Extrusion

These documents are included as appendix C.

A review of these documents raised questions on some of the procedures. KBI responded by letter, included as part of Appendix C.

Evaluation tests of the extrusion and the Brush Wellman beryllia discs were conducted by the Charles Stark Draper Laboratory, Cambridge, Massachusetts. The tests conducted were microyield strength and modulus of elasticity of two extrusion specimens, longitudinal and radial coefficient of expansion of one beryllium specimen and coefficient of expansion of one beryllium oxide specimen. The test reports are included as appendix D. The test results are as follows:

Micro-yield Strength

Sample	Micro-Yield Strength (2 x 10 ⁻⁶ offset)	Modulus of Elasticity
1	24,500 psi	42.1 × 10 ⁶ psi
2	16,000 psi	43.0×10^6 psi

Thermal Expansion (95°F to 210°F)

Sample	Coefficient of Thermal Expansion	
Beryllium Oxide	2.91 x 10 ⁻⁶ in/in/°F	
Beryllium - Longitudinal	7.87 x 10 ⁻⁶ in/in/°F	
Beryllium - Radial	$6.49 \times 10^{-6} \text{ in/in/}^{\circ}\text{F}$	

BERYLLIUM OXIDE

Coors Porcelain Company, Golden, Colorado, was originally selected to supply the beryllium oxide (Be O) discs for the cavities. These discs were 0.770 ± 0.010 dia. by 0.290 ± 0.010 long. The discs as received met all inspection requirements and were processed into cavities. Four cavity assemblies (P/N 12700-302) were manufactured from this material and shipped to Autonetics. During July of 1975, Coors informed PPD that after the end of 1975 they would no longer accept orders for this material (see appendix E). Northrop then selected another second source for the Be O material. The vendor selected was Brush Wellman, Elmore, Ohio. The discs received also met all inspection requirements, but were not processed into cavities due to a change in scope by the Air Force to Northrop's contract.

MATERIAL SPECIFICATIONS

Northrop developed two material specifications under this task to completely define the material and inspection requirements for beryllium and beryllia oxide. These specifications (see appendix B) are:

68848 Material Specification for Standard Grade Beryllium 68849 Material Specification for Dense Beryllia

CONCLUSIONS

Northrop feels that the material and extrusion supplied by KBI needs further evaluation. The low extrusion ratio and the discontinuity of the tantalum wire in the extrusion should be evaluated. Another problem that developed during the fabrication of rotors from this material was exhibited as voids or tear-out which occurred during lapping of the rotors.

Section IV TASK 3, TOOLING FOR BASELINE CONFIGURATION

INTRODUCTION

As noted in section II, approximately 75 tooling drawings were received as part of the Reprocurement Data Package. A list of these drawings is included in appendix A. Comments on major difficulties and/or inconsistencies in AGRI tooling have been provided in section II.

PPD-DEVELOPED TOOLING

Table I is a list of tooling and fixtures developed by PPD for MESG. Figures 3 through 8 are photographs of several pieces of purchased and PPD-developed equipments.

PPD-Developed Tooling for MESG

Table I

Tool No.	Title
96007	Holding Fixture Roundness Check (M)*
96252	Lapping Fixture, Cavity (M)*
96355	Protective Shield
96359	Rotor Holder
96360	Rotating Fixture, Cavity
96367	Cavity Holder
96370	Cleaning Fixture, Ball, Cavity
96395	Rotor Lapping Machine Modification
96397	Plating and Sputtering Fixtures
96399	Rotor Centering Fixture
96400	Miscellaneous Tooling
96401	Etalon Micrometer
96402	Chrome Target
96403	Gold Target
96404	Interferometer
96421	Cavity O. D. Grinding Fixture
96475	Rotor Holding Fixture, Mikrokator
96494	Proficorder Draft Shield

^{*(}M) = Northrop modified equipment

Figure 3. Cavity Slot Lapping Fixture

Figure 4. Cavity Roundness Check Fixture

Figure 5. Proficorder with Draft Shield

Figure 6. Etalon Micrometer

Figure 7. Cavity Inspection Fixture

Figure 8. Interferometer

Section V

TASK 4, FABRICATION

INTRODUCTION

This task originally required PPD to build three groups of rotors and cavities using the tooling covered in section IV and according to the data package discussed in section II.

The first group consisted of six rotor and cavity sets fabricated from raw material furnished by the Air Force. The raw material consisted of 12 eloxed rotors and 10 cavity sets in the preplate machined condition. After fabrication, the six rotor and cavity sets were evaluated by the Air Force and the fabrication techniques were approved. The second group of four rotor and cavity sets were then built using raw material obtained by PPD from alternate vendor sources. After approval of this group by the AF, a third group of 10 rotor and cavity sets was scheduled to be built using the alternate raw material. Due to a contract change, this third group was eliminated from the program. Hence, a total of 10 rotor and cavity sets were provided to the AF. Fabrication problems encountered in this task and their solutions are described in this section.

ROTORS

Fabrication

The rotor is a solid beryllium sphere about 0.4 inch in diameter. Embedded in the rotor are three tantalum wires sized and positioned to produce the mass unbalance required by the gyro pickoff. The fabrication cycle for the rotors (per Autonetics Spec AL 70030) begins with the extruded beryllium rod stock containing the tantalum wires. The rod, which is approximately 100 inches long, is cut into usable sections. The following steps are then performed.

- 1. The sections are X-rayed to determine wire continuity.
- 2. The rod ends are ground and polished and the wire ends located.
- 3. A center is located in each rod end based on the center of the wire-bolt circle.
- The rod OD is then machined concentric to the centers and the rod is ready for electro-discharge machining.

PPD performed these operations on the second source extruded rod with no serious problems.

The next operation performed in fabricating the rotor is electro-discharge machining. This process, in which material is removed by the eroding effect of an electric spark, is used because it produces little or no machining stresses in the work piece. The process is also referred to as eloxing or EDM.

The first series of rotors produced by PPD used material provided by and eloxed by Autonetics. Also provided were several lengths of extruded beryllium rod unsuitable for rotor use, but adequate for developing PPD's eloxing capability prior to receiving the actual second-source extrusion. This material was eloxed on PPD's EDM equipment using the special set up shown in figure 9. Both spindles rotate at specific speeds and directions. In operation, the electrode spindle moves down toward the beryllium rod almost to the point of contact. At this point, a spark is formed in the gap between the rod and electrode. The gap length, which may be in the order of several thousandths of an inch, is servo-controlled by the machine and is adjustable. Other parameters, such as gap voltage and current, duty cycle, and electrode OD and ID, can be controlled to achieve optimum cutting conditions. These parameters were varied until an acceptable rotor (i.e., between 0.410 and 0.412 inch diameter) with good surface finish was produced. Rotor-torotor size control was initially good, but in the course of the program, the electrode spindle was damaged resulting in excessive runout (about 0.001 inch). Not enough time was available to permit proper repair and the spindle was used with the runout problem. The rotors that were eloxed at PPD from beryllium obtained from the second source and used to fabricate shippable hardware had diameters that varied a maximum of 0.003 inch from piece to piece. The nominal diameter of these rotors was 0.412 in., and the surface finish was quite good. The spindle has since been repaired and is expected to yield more consistent parts in future operations. After eloxing, the rotors are rough-lapped in a "three-leg lapper" so called because there are three laps in contact with the rotor. This device is shown in figure 10. Successively finer lapping grits are used to bring the rotor to a diameter of 0.406050 at which point it is removed from the lapping machine, cleaned, and examined under 20 X to determine the surface finish quality. If excessive pits or scratches too deep to be removed in later operations are present, the rotor is rejected. If it is acceptable, the wire ends are located and marked with ink and the rotor is X-rayed to determine the wire lengths. Locating the wire ends is a tricky chore requiring a skilled operator but must be done in order to provide a means of orienting the rotor during X-ray. This is achieved by positioning the rotor so that the wires are horizontal as indicated by the ink dots. The X-ray is recorded on Polaroid film and the wire lengths read using a toolmaker's microscope. For the X-ray equipment used by PPD, a correction factor must be applied to the measured wire length. This is caused by divergence of the X-rays and amounts to about 1.5% or 0.003 inch. If for some reason X-rays are obtained at a different diameter than 0.406050, the wire lengths obtained must be corrected to what they would be at this diameter in order to have a common basis for comparison.

Figure 9. Electro-Discharge Machining (EDM) Setup

Figure 10. Three-Leg Rotor Lap

Cold lapping in the "two leg lapper' follows X-ray. This machine (see figure 11) is used to further reduce the rotor size. When the diameter is 0.405750 in., the lapping temperature is increased from room temperature to 147° F at which the remaining stock removal is performed. The rotor is lapped round at this temperature but because of the anisotropic temperature coefficient, is out of round by approximately 30 microinches when returned to room temperature. At this point the rotor is finish pitch-lapped in the three-leg lap machine to develop an optical finish; it is then cleaned and packaged.

Measurements

Size measurements are performed on the rotor at various times during the build cycle. The critical measurements are obtained just prior to final pitch lap and consist of size (diameter) and roundness. Rotor surface finish, although critical to ESG operation, is not specified quantitatively, but rather is arrived at through a subjective visual inspection under a microscope. Surface finish quality is designated as "good" "very good", etc., and depends on the skill and experience of the observer for legitimate results. Inspection records do not show surface finish quality.

Rotor size measurements consist of measuring the maximum and minimum diameters during final pitch lapping. This is done several times until a stock removal rate is established. When the rotor size is $0.405580 \pm 5\mu$ in. major and $0.405550 \pm 5\mu$ in. minor diameter, no further measurements are made. The final size is determined by lapping for a known period of time and, using the stock removal rate obtained previously, computing the final size. Ten μ in. of material are removed in this operation at which point no further lapping is performed.

A comparison of the rotor sizes obtained by PPD with those obtained by Autonetics' Metrology Department is given in table 11.

Agreement between PPD and AGRI for the first 7 rotors (Z series) varies from poor to excellent with no apparent trend or offset in the data. One rotor, Z16, shows the largest disagreement with both the maximum and minimum diameter sizes being below specification value. This measurement could possibly be in error. If some of the AGRI data was not in fact obtained at 68°F, there would be less variation in the results. The second group of 4 rotors (NA series) is expected to show improved correlation as techniques have been refined.

Rotor Yield

Rotor yield was significantly affected by problems associated with material. On the first group of six rotors shipped for twelve started, 17% were rejected for problems related to material. These problems included voids and inclusions in the material that could not be removed during subsequent lapping operations.

Figure 11. Two-Leg Cold Rotor Lap

On the rotors fabricated from material supplied and extruded by KBI, the reject rate for material-related causes was 36%, or about double the AF-supplied material rate, the major problems being tear-out during lapping, inclusions and voids. There appears to be a major difference in these materials, probably due to the manner in which they were processed. The exact causes are not presently known, but should be investigated and corrected for future program use.

Conclusions

The procedures presented in Autonetics' Specification AL70030 for lapping MESG rotors were followed closely during the program and were found to be adequate as presented. The actual execution of the various operations requires considerable skill and experience on the part of the operator for successful results. This is especially true in regard to the final lapping and measurement operations where loss of random motion in the lapping machine or improper measurement technique can result in a scrap rotor.

Table 5-1
PPD and AGRI Rotor Diameter Measurements

Rotor S/N	Max.	PPD Min.	Δ	Max.	AGRI Min.	Δ	Max Dia. Δ	Min Dia. Δ
Z13	0.405568	0.405540	28	0.405560	0.405532	28	- 8	- 8
Z16	0.405559	0.405531	28	0.405542	0.405522	20	- 17	- 9
Z18	0.405562	0.405535	27	0.405565	0.405549	16	+ 3	+14
Z20	0.405566	0.405539	27	0.405560	0.405535	25	- 6	- 4
Z21	0.405565	0.405535	30	0.405565	0.405540	25	0	+ 4
Z22	0.405568	0.405540	28	0.405565	0.405540	25	- 3	0
Z23	0.405571	0.405545	26	0.405563	0.405532	31	- 8	- 13
NA - 11	0.405570	0.405541	29	0.405566	0.405538	28	- 4	- 3
NA - 14	0.405565	0.405540	26	0.405567	0.405537	30	+ 2	- 3
NA - 16	0.405568	0.405538	30	0.405566	0.405538	28	- 2	0
NA - 22	0.405573	0.405547	26	0.405572	0.405546	26	- 1	- 1

Notes:

 Δ = Max. – Min. Dia.

△ Max. Dia. = AGRI max. - PPD Max.

Δ Min. Dia. = AGRI Min. - PPD Min.

All PPD measurements corrected to 68°F

All AGRI measurements are believed to be corrected to 68°F

Spec. value

Max. dia. 0.405570 ± 10 micro in. Min. dia. 0.405540 ± 10 micro in.

CAVITIES

Fabrication

The cavities were processed according to AGRI Spec. AL70032. The controlling drawings for the cavities were 12698, 12699 and 12700. Several problems were encountered during fabrication of the cavities in the areas of sputtering, slot-lapping and measurement.

The fabrication cycle for the cavities begins with the beryllia blank which is purchased as a disk (0.770-inch diameter by 0.290-inch thick). The blanks are examined for uniformity, cracks, surface defects and properties. They are then machined to shape and ready for lapping of the equator face and cavity.

The cavities are lapped to remove minimal material to improve the sphericity of the cavity and the flatness and location of the equator. Next the cavities are cleaned ultrasonically in a mixture of acetone, toluene and freon; washed in aqua regia at 150°F; rinsed in deionized water and finally baked at 1600°F. The parts are then sputtered; first with chromium on the beryllia to produce a continuous film, and then with gold on top of the chromium to provide a film approximately 50 microinches thick.

Masks are used on the cavities to limit the material being sputtered on the cavity and to produce a defined pattern on the equator. The cavities then receive a Niculoy plate on top of the gold and are ready for final lapping (per Autonetics Spec AL70032).

The equator face is lapped on a ceramic lapping plate first using 38-900 compound to remove the excess Niculoy. This is followed by lapping with No. ½ diamond compound to achieve flatness.

The piece is then rough-lapped using a hand-held cavity lapper and No. 6 diamond compound with Naptha as the vehicle. This operation brings the cavity to 0.40525 in.dia. The equator is lapped to this diameter. The rough lap process is continued using No. 3 diamond compound and Naptha and the cavity size brought to 0.40615 in. dia. The equator is lapped again to match the diameter.

Next, the cavity is lapped, using 38-900 compound, to remove plating from the cavity chamfer. After the chamfer is completed and inspected, the slots are lapped in the hemisphere to form the 4 plates. The slots are then inspected for symmetry, width, depth, cleanliness and cavity plate separation.

The cavity is now ready for final lapping of equator and hemisphere. The hemisphere is lapped to final size of 0.406250 ± 0.000010 inch diameter with No. 3 diamond compound and Naptha.

The equator is lapped to locate the center of the spherical diameter outside the part by 0.000005 ± 0.000003 in.

The cavity halves are assembled with the proper alignment rotor, the parts are scribed, and then ground to make the outside diameter of the 2 cavity halves concentric. The cavities are then disassembled and final measurements of size and roundness are made. At this point the cavities are finish pitch-lapped, then cleaned and packaged.

Sputtering

The sputtering problem manifested itself as inadequate adhesion between the chrome and gold sputtered material, resulting in lifting of the plating at the slot edges and near the equator. These cavities had been sputtered at PPD in a two-step operation in which the chrome target (used to deposit a layer of chrome on the cavity) is replaced by the gold target for depositing gold. Because of the type of equipment available at PPD, it was necessary to break the vacuum in the deposition chamber, thereby exposing the newly deposited chrome to the atmosphere and possible contamination. Concern was expressed by PPD's M&P Group that this could result in poor adhesion. However, when samples were tested per AGRI instructions, tensile strengths measured 3300 psi, exceeding the AGRI requirement of 2000 psi. Five cavity halves sputtered as described above were processed and lapped. Three failed for plating lifting indicating a serious problem existed, quite probably caused by the two-step sputtering process. Accordingly, an outside vendor with equipment that permitted one-step sputtering was found and cavities and samples processed. When tested, the samples exhibited a tensile strength of 5400 psi. The cavities were plated and lapped with no lifting problems, thereby demonstrating the necessity of using one-step sputtering. PPD has recently purchased new equipment capable of one-step sputtering and can now perform this operation in-house.

Slot-Lapping

The slots, which separate the cavity hemispheres into four equal parts, are cut into the plating just prior to finish lapping. On the first group of six cavity sets delivered, AGRI expressed concern about "dirty slots" which might indicate excessive amounts of plating material left in the slots. This could result in a lowering of resistance across the plates and degradation of gyro performance. These slots were lapped with aluminum oxide compound and Ferro-Tic laps. The second group of four cavities was lapped with Carboloy laps, a material used by AGRI which appeared to produce cleaner cuts on AGRI-made cavities. These laps seemed to produce slightly better looking slots. A requirement to check resistance between the plates was added for this group and when measured, all cavities exceeded the 1000 megohms resistance specified. None of the first group of cavities was rejected by AGRI for interplate resistance. Therefore, it appears

that although cavities produced by PPD do not have slots as clean as those produced by AGRI, they do meet drawing requirements and are usable parts.

Measurements

There are two critical measurements for the cavity halves: 1) the spherical diameter, and 2) the equator location. These measurements are made with comparators referencing a standard cavity calibrated by Autonetics.

Data obtained on the cavities at PPD and at AGRI is given in table III. Shown is the cavity set serial number, spherical diameter and equator location as measured by PPD and AGRI, and the difference of the measured diameter. Information on temperature at which measurements were made is also given where known.

Inspection of table III shows that cavity S/N's 1, 2, and 3 were measured by AGRI to be larger than measured at PPD. The remainder of the cavity sets show diameter agreement within reasonable limits. The discrepancy in the first three sets is believed to be caused by differences in the temperature at which the parts are measured at PPD and AGRI, and differences in the temperature coefficients of BeO used by PPD and AGRI. PPD has used $2.65 \times 10^{-6} \text{ in/in/}^{\circ}\text{F}$ as the temperature coefficient of BeO throughout the program, while AGRI has used $3.7 \times 10^{-6} \text{ in/in/}^{\circ}\text{F}$.

Measurements of temperature coefficient made on Brush Wellman BeO indicate that 2.8×10^{-6} in/in/°F is the correct value about room temperature. Starting with set NA0007, AGRI used this value to correct diameter size to 68° F, resulting in excellent agreement between PPD and AGRI for this set and NA0008.

An additional reason for lack of agreement between PPD and AGRI for the first series of cavities was lack of consistency in the calibrated size of the cavity master N-7. Several size values were obtained from AGRI for this master before consistent data was achieved.

Equator location correlation has been good except for the first three cavity halves shipped. This discrepancy was caused by a misinterpretation of the drawing callout as to whether the center of the hemisphere is located inside or outside of the part. The correct location is outside the part and by convention is given a negative sign.

Conclusion

PPD feels all problems involved in providing second source fabrication capability for MESG cavities have been solved. With PPD's procurement of one-step sputtering equipment, no further adhesion problems are expected. The cavity slots produced by PPD have met the requirements of the drawings and size, and equator location measurements made by PPD on the last cavity sets shipped have shown excellent agreement with AGRI.

Table III
PPD and AGRI Cavity Measurements

			PPD			AGI	RI		1	
Cavity Half S/N		Spherical Dia.		Equator Location	Meas. Temp. AGRI	Spherical Dia.		Equator Location	△ Dia.	\triangle Equ.
N0001 - 1	N1	0.406250	-	0.000004	?	0.406259	+	0.000006	+ 9	+10
N0001 - 3	N1	0.406250	-	0.000004	?	0.406259	+	0.000006	+ 9	+10
N0002 - 1	N2	0.406250	-	0.000005	?	0.406255	+	0.000002	+ 5	+ 7
N0002 - 3	N2	0.406250	-	0.000005	?	0.406260	-	0.000004	+10	+ 1
N0003 - 1	N3	0.406258	-	0.000002	82°F	0.406264	-	0.000004	+ 6	- 2
N0003 - 3	N3	0.406258	-	0.000002	82°F	0.406264	-	0.000001	+ 6	+ 1
N0004 - 1	N4	0.406248	-	0.000003	82°F	0.406250	-	0.000003	+ 2	0
N0004 - 3	N4	0.406248	-	0.000003	82°F	0.406252	-	0.000003	+ 4	0
N0005 - 1	N5	0.406245	-	0.000005	82°F	0.406246	-	0.000004	+ 1	+ 1
N0005 - 3	N5	0.406245	-	0.000003	82°F	0.406246	-	0.000001	+ 1	+ 2
N0006 - 1	N6	0.406245	-	0.000003	82°F	0.406247	-	0.000001	+ 2	+ 2
N0006 - 3	N6	0.406243	-	0.000004	82°F	0.406246	-	0.000002	+ 3	+ 2
NA0007 - 1	NA1	0.406254	-	0.000006	77°F	0.406251 *	-	0.000008	- 3	- 2
NA0007 - 3	NA9	0.406254	-	0.000006	77°F	0.406252 *	-	0.000006	- 2	0
NA0008 - 1	NA4	0.406246	-	0.000006	77°F	0.406246 *	-	0.000005	0	+ 1
NA0008 - 3	NA12	0.406246	-	0.000005	77°F	0.406245 *	-	0.000004	- 1	+ 1
NA009 - 1	NA2	0.406258	-	0.000005	?	0.406256	-	0.000004	-2	+ 1
NA009 - 3	NA10	0.406258	-	0.000005	?	0.406252	-	0.000000	- 6	+5
NA0010 - 1	NA3	0.406251	-	0.000004	?	0.406249	-	0.000003	-2	+ 1
NA0010 - 3	NA11	0.406250	-	0.000004	?	0.406248	-	0.000007	-2	-3

Notes: $\Delta = AGRI$ measurement - PPD measurement

Dimensions in inches except \triangle Dia. & \triangle Equ. is 10⁻⁶ inches On Equator Locations, + means Equator located inside the part.

All PPD measurements made between 68 and 73°F and corrected to 68°F Spec. Value

Dia. 0.406250 ± 10 microin. Equator - 0.000005 ± 3 microin.

*Corrected to 68°F at 2.8µ in/in/°F

Figure 12. Rotor and Cavity Set

Section VI TASK 5, PRODUCT IMPROVEMENT

INTRODUCTION

The purpose of this task was to investigate alternate rotor and cavity production techniques to effect reduced costs. Areas of investigation included automatic cavity machining, slot lap material, microinch measurement of rotors, rotor stock removal techniques, and improved lapping techniques.

After preliminary investigation of all these areas, PPD selected rotor stock removal techniques as its major effort because of its potential to achieve the most cost effective results. (The labor involved in fabricating one MESG rotor is very high.)

Stock Removal

PPD investigated several different methods to obtain stock removal at minimal labor cost. Chemical etching was considered, but such etching is not feasible because the beryllium and tantalum in the rotor do not etch at the same rate. Another method investigated for low cost stock removal was multi-lapping techniques. PPD did some preliminary investigation on designing new lapping machines to accommodate two and three rotors at the same time. This approach does seem feasible; however, the machine fabrication cost would have been beyond the scope of this program.

The electrical discharge machining of the extruded beryllium into rotors was evaluated and PPD found that the process could be controlled for size and surface finish to a smaller diameter than specified. Autonetics specified in specification AL 70030 (revised 12/11/74), that "Rotors must not be smaller than 0.418 inches in diameter following elox operation." PPD has determined that this size can be reduced by 0.008 in., thereby saving the labor involved to lap rotors this amount. Autonetics has concurred and revised its specification on 4/30/75 to read "smaller than 0.410 in." An estimated 27% of total lapping labor is saved by reducing the rotor size from 0.418 in. dia. to 0.410 in. dia.

TUMBLING TECHNIQUES

PPD concentrated its remaining effort on stock removal to an investigation of tumbling techniques. PPD engineers visited several metal finishing companies and supplied them with rotors to determine what could be accomplished by different tumbling methods. PPD also asked each company to determine stock removal rate, media, compounds and instruments used. This was accomplished and the results were very encouraging.

PPD pursued several parallel paths during this task. Companies expert in the field of metal finishing and stock removal were consulted. They included United States Products for both fine and aggresive compounds; Norton Company for advice on different types of media for the MESG application; Fortune Metal Finishing for investigation of and advice on different instrumentation.

PPD then purchased two different types of stock removal equipment; a barrel tumbler and a vibration tumbler. PPD also purchased several different types of media and stock removal compounds ranging from fine polishing compounds to coarse aggressive compounds. The media consisted of various shapes such as stars, triangles, random, round and oblate geometries made from different materials.

PPD also started an effort going in its own machine shop to remove metal and to determine the best media and compounds to be used. After trying many different types of media and compounds, PPD decided that it would be necessary to remove approximately 30 microinches of metal per hour in order for this approach to be cost effective. This will bring the rotor from EDM size to the point where it is ready to X-ray in about 1 week.

The following paragraphs describe the principles of barrel and vibrating tumbling.

Barrel Tumbling

The basic principle of barrel finishing is the removal of stock by the abrasive action of a rotating mass of material. The abrasive action is caused by a sliding movement of the upper layer of the work load relative to the barrel, and the direction in which it rotates. The parts or work load move upward with the rotation to a point where gravity overcomes the tendency of the work load to hold together. At this point the parts and media cascaded toward the lowest point of the barrel. The abrading action takes place within and directly under the sliding top layer. There is also some vertical abrasion which takes place due to continuous settling of the load. Height and thickness of the top layer and the extent of abrasive action varies with the speed and diameter of the barrel. This should be controlled to produce the thickest sliding layer without excessive cascading action which would cause damage such as pitting and impingement. The faster the barrel rotates, the greater the stock removal (up to the point where centrifugal force exceeds the sliding action caused by gravity). Impingement takes place at the bottom of the slide, before the parts are carried under the media mass.

Vibratory Finishing

The basic principle of vibratory finishing is stock removal by the vibratory action of abrasives against parts. The vibration of the barrel causes a rubbing action between the media, parts and compound. This action rectifies the vibration and produces a tumbling action. The result is that relative motion exists between parts and media in every part of the barrel. The size and shape of the media, amount of abrasive compound and amount of liquid carrier are very critical in determining the stock removal rate.

Comparison of Tumbling Methods

Although vibratory finishing removes stock at a slightly higher rate than barrel finishing, this method has disadvantages which offset the higher rate. The major disadvantage is additional surveillance due to the critical ratio of the amounts of media, abrasive compound and liquid carrier. This method also requires daily attendance due to evaporation of the liquid carrier while barrel finishing is a closed system so evaporation is not a problem.

The tumbling evaluation conducted was aimed at achieving 1) a satisfactory stock removal rate, and 2) improving the surface finish. The evaluation was confined to sizes and shapes of tumbling media and selection of tumbling abrasives. The liquid carrier used was deionized water. Although water has a deteriorative effect on beryllium it could be disposed of easily. The media material was aluminium oxide. The abrasives tried included silicon carbide, aluminum oxide, fused aluminum, corundum and garnet. These abrasives are either natural or artificial crystalline forces and vary in hardness of crystalline structure. The first abrasive tried was fused aluminum, a white aluminium oxide. This material is the 38 series of abrasives specified in AL 70030 for lapping rotors. The stock removal with this material was very low (5 to 10 micro-inches per hour). This aluminium oxide has a friable crystalline structure causing the particles to keep breaking down into smaller particles which will produce a good surface finish but ineffectual stock removal. Additional trials with other abrasives and media shapes resulted in the following selection of materials. The media is a ceramic oblique equilateral triangle 0.38 in. per side by 0.20 thick (Wisconsin Porcelin Company F3/8T). The abrasive is Corundum AC - 120 (manufactured by the United States Products Company) which has a softer crystalline structure than aluminum oxide. Moreover, the crystal shape produces much better cutting action, hence faster stock removal.

Figure 13 shows typical stock removal rate on an MESG rotor of 0.410 in. diameter. The stock removal starts at 28 microinches per hour and decreases to about one-half that rate in 70 hours. This shows that the abrasive has broken down to the point where it is worn out

and should be replaced. The stock removal rate can be increased by about a factor of four by optimizing the speed of the tumbling barrel and its diameter. The life of the abrasive can probably be increased by changing the media from ceramic to a softer material. The fluid carrier could be a liquid such as Varsol or Soddard Solvent.

The tumbling process shows considerable promise as a cost effective method to replace the hand lapping procedure presently being used. Further evaluation work is required to completely define this operation and determine the maximum material that can be removed before lapping is required. An estimated 38% of the total lapping labor could be saved by reducing the rotor size from 0.410 in. diameter to 0.406 in. diameter by the tumbling process. The 0.406 in. diameter is the point where hot lapping starts.

Figure 13. Stock Removal Rate

Section VII RELIABILITY AND MAINTAINABILITY

RELIABILITY

The rotor/cavity subassembly is the most critical item within the MESG instrument. The fine finishes and extreme tolerances in a difficult geometrical configuration demand an inordinate amount of attention during the fabrication cycle. As automated tools and machines do not yet exist to produce these parts, a high degree of interface becomes necessary between the parts, tools, and operator. Of these three, the operator is the least reliable element, yet remains the most important because of his versatility and decision-making capability. The tools, fixtures, and processes are as reliable as is possible at this stage (state-of-the-art) in the life of the gyro.

Rotors

There are many causes affecting the fabrication yield of rotors. No specific tool, fixture, or process can be charged as being individually responsible for this yield, because rotor quality is not established until the final stages of rotor fabrication. Should the rejection cause be material-related, only the grossest of imperfections can be detected prior to the rotor reaching a high level of polish. At this time, material flaws, too small to be seen by X-ray and easily hidden by electrical discharge machining, are exposed.

Perhaps the second highest cause for rejection is a scratch or gouge too deep for removal during the final stages of lapping. Fixturing and measuring equipment has been chosen with prevention of damage in mind. In the instances where the rotor comes into contact with hard materials, the surface finish of these materials and/or the contact pressure, are held to a level to prevent damage to the parts. In other instances, the material in contact is chosen for softness. In both cases cleanliness is paramount since a hard particle, minute in size, can cause sufficient damage to destroy the usefulness of a part.

The most important fabrication technique is that of lapping. It is here that the skill of the operator is applied. The operator, in charging the lap, establishing lap pressure, and assessing the effectiveness of the lapping operation, provides the judgement factor that cannot be economically built into the tools. While the lapping compounds are closely controlled for size, they do offer the potential of destructive damage should an oversized particle appear in the compound. The total effectiveness of this operation depends upon the capability, training, and most importantly, the motivation of the operator.

Cavities

The causes affecting cavity yield are also numerous. The largest fallout occurred in sputtering and plating closely followed by slot-lapping. A narrow-wall carboloy lap, instead of Ferro-Tic, resolved the problem of plating lifting at this operation. The area of sputtering and plating has received considerable attention and should show improved yield on future orders. A full discussion of cavity fabrication problems is provided in section 5.

Tooling and Instrumentation

Reliability of these items was improved by a number of means. Etalon micrometers have carbide anvils to increase life and permit relapping if required. Master cavities have been made of beryllia, secondary standards of tungsten carbide. Sheffield Accutrons were obtained with ruby sensor tips and ceramic anvils for long life and stability. Air buffered electronic instruments replaced mechanical contact type Mikrocators. Ceramic lapping plates are used for their characteristics of easy cleaning, non-embedding surfaces, and ability to retain flatness, thereby allowing use with different compounds without requiring grinding as a cleaning operation.

MAINTAINABILITY

Maintainability of the tools and fixtures is relatively easy. The most complicated maintenance task is that related to the relapping of anvils or flat plates. The critical natures of the rotors and cavities and operations require frequent maintenance to preserve the reliability of the operation. Bearings of the two and three-leg lapping machines are (and must be) lubricated between fabrication lots. At the same time, drive belts, and laps, must be inspected and replaced or reconditioned. Scheduled for inspection at less frequent intervals are the flat plates and inspection anvils. As no high rate of production has yet taken place, a rigid schedule of maintenance has not been established. Table IV summarizes the Reliability/Maintainability factors.

Table IV
Summary of Reliability/Maintainability Factors

Tool	Reliability	Maintainability
Holding Fixture Roundness Check	High	Low Incidence
Lapping Fixture Cavity	High	Low Incidence
Rotor Holder	Moderately Low	Unnecessary
Rotating Fixture, Cavity	Moderately High	Low Incidence
Cavity Holder	Moderately High	Low Incidence
Cleaning Fixtures, Rotors and Cavities	Moderately High	Moderately Low
Rotor Lapping Machine (Hot Lapper)	Moderate	High Maintenance Required
Plating and Sputtering Fixtures	Moderately Low	High Maintenance Required
Rotor Centering Fixture	Not Used on This Order,	Therefore Not Evaluated
Etalon Micrometer	Moderately Low	High Maintenance Required
Chrome and Gold Targets	High	Low Incidence
Interferometer	High	Low Incidence
Cavity O.D. Grind Fixture	Moderately High	Low Incidence
3 Leg Lap	Moderate	High Maintenance Required
2 Leg Cold Lap	Moderate	High Maintenance Required
Cavity Automatic Lapper	Moderate	Moderate
Cavity Hand-held Lap	Moderate	Moderate
Rotary Proficorder	High	High Maintenance Required
Rotor Measuring Instruments	Extremely High	Moderately High
Cavity Measuring Instruments	Moderate	High Incidence

Section VIII SYSTEM SAFETY

INTRODUCTION

Item 2.2 of the SOW required PPD to perform a preliminary system safety analysis with the objective of minimizing unintentional catastrophic failure and physical harm to bystanders. Since over-all system responsibility does not rest with PPD, this portion of the safety requirement is not applicable. However, because of the hazards associated with machining beryllium and beryllia, certain safety precautions were required to protect personnel and these efforts are reported in this section. In addition, due to the extremely fragile nature of the parts being fabricated, numerous precautions were taken in designing the work areas and tooling and in handling the parts.

PERSONNEL SAFETY

If inhaled in high concentrations, beryllium and beryllium oxide dust or fumes can cause serious illness or death. Chronic effects due to exposure over long periods of time can also occur. Therefore, it is essential to protect workers performing operations that can generate dust or fumes.

Dust can be generated during rotor and cavity lapping operations. Fumes can be generated during the electro-discharge machining (EDM) of the rotors from the extruded beryllium rod. To protect operators from the potential dangers involved with these operations, special enclosures or work areas were provided. Standards established by the Massachusetts Department of Labor and Industries, Division of Occupational Hygiene were used to design the work areas (see appendix F for complete details). A consulting engineer with experience in these areas was also employed to consult on PPD's design of the work areas and to perform the analyses on air samples taken in the various areas.

For EDM operations on the rotor, a special Plexiglas shield was designed and built to enclose the entire dielectric fluid tank. Any fumes or dust particles generated during EDM are carried off by the vacuum ports and hose. This possibly contaminated air is piped into a special plant beryllium vacuum system. The air is then filtered to remove particles and vented to atmosphere. It should be noted at this point that all operations involving beryllium or beryllia are performed "wet", that is in the presence of lapping slurries or dielectric fluid. This greatly reduces the possibility of air-borne particles. Figure 14 is a photo of the Electro-Discharge Machine.

Lapping operations on the rotor and cavities are carried out in specially modified booths shown in figure 15. The faces of the booths are covered with Plexiglas into which circular access ports have been cut. A 6-inch diameter main vacuum pipe extends the length of the rotor booth and

Figure 14. Electro Discharge Machine

Figure 15. Rotor and Cavity Lapping Booths

is connected to the plant's central beryllium vacuum system. The pipe is fitted with four vacuum ports along its length which are opened according to which booth is in use. Access to the lapping machines is achieved by use of the access ports through which the operator extends his arms as required. With this system, opening only the access ports required, 200 cu. ft./min./ sq. ft. of opening can be achieved. Venting for the cavity work booth, located next to the rotor booths, is accomplished by an extension of the 6-inch vacuum main.

Air -borne beryllium particles in the room are measured with two beryllium monitors mounted above the rotor booths. The monitors are sampled once a week by PPD's medical department. All concentrations have measured well below the maximum allowable 2.0 micrograms per cubic meter.

Personnel engaged in beryllium work are required to undergo a physical examination administered by the company medical department once a year. Successful completion of the examination results in issuance of a "beryllium clearance" to work in areas designated as beryllium areas. Personnel who do not possess a beryllium clearance are not permitted to enter the designated areas. Personnel working in the lapping room wear booties and smocks and when engaged in lapping wear rubber gloves. When leaving the lapping room, personnel are required to wash their hands thoroughly to remove any dust particles that may have adhered to their hands. These precautions, adhered to in the MESG lapping area, as well as other beryllium areas in the plant, have resulted in an excellent safety record for all personnel involved.

IN-PROCESS PRECAUTIONS

The rotor and cavity set is the heart of the MESG. Consequently, the fabrication and measurement process require very stringent controls in order to insure a quality end product. These controls during the fabrication process involved quality of lapping compound to insure that no contaminants are present in compound during lapping operations. (Even minute particles of contamination will scratch the rotor or cavity.) Cleaning of parts is very critical before changing compounds. The rotors are fabricated from beryllium and can be damaged very easily from dents, scratches, digs, gouges and particle tearout. The rotors go through many lapping operations and are handled many times during fabrication, which makes the probability of damage very high. Therefore, PPD has made a maximum effort to incorporate safety features into all fabrication fixturing (e.g., special handling tweezers for removing rotors from the lapping instruments and special tweezers for cavity handling). Every lapping instrument has been covered with foam rubber to insure that no damage results to a rotor if it falls or is dropped from laps while being handled near instruments. Each operator wears rubber gloves while fabricating and cleaning rotors. All of the handling tools and instruments have been designed with safety of the part in mind, and are made from Teflon, Nylon, or rubber. All tools are cleaned prior to

placing any part on or in them. All laps, holding fixtures, handling tools, and glassware have been identified so that no part can get placed in an area that would result in damage to the part. Scratches in the rotor can result from improper lapping pressure, handling, and contaminated compounds. Dents and dings usually occur during the measurement process, typically as a result of excessive stylus pressure, and dropping or mishandling the rotor or cavity. PPD has investigated potential hazards during measurement and taken steps to eliminate them. Each rotor measurement instrument and the table top work area have been covered with foam rubber. The cavity measurement area is also covered with foam rubber and parts are handled with gloves and special tweezers. Rotors are protected from damage on the proficorder by drawing a slight vacuum on the rotor holding fixture which is also covered with foam rubber. The cavity is protected by clamping the part in the fixture. Figure 16 is a photograph of the rotor measurement area.

All these efforts have resulted in minimum loss of in-process parts from accidental causes.

Figure 16. Rotor Measurement Area

Appendix A

Listing of AGRI Tools, Drawings, and Specs

TOOLS

Number	Title
10000-207	Rotor Lapping Machine
10001-207	Base, Rotor Lapping Machine
10002-207	Cartridge Holder, Rotor Lapping Machine
10003-207	Insulator, Rotor Lapping Machine
10004-207	Shaft, Rotor Lapping Machine
10005-207	Cap, Rotor Lapping Machine
10006-207	Spindle, Rotor Lapping Machine
10007-207	Body, Rotor Lapping Machine
10008-207	Bushing, Rotor Lapping Machine
10009-207	Clamp, Rotor Lapping Machine
10010-207	Adapter, Rotor Lapping Machine
10011-207	Pin, Rotor Lapping Machine
10012-207	Lap, Rotor Lapping Machine
10013-207	Lock Pin, Cartridge, Rotor Lapping Machine
10014-207	Washer, Rotor Lapping Machine
10015-207	Plate, Rotor Lapping Machine
10016-207	Wheel, Rotor Lapping Machine
10017-207	Trunnion, Rotor Lapping Machine
10018-207	Shaft, Crank, Rotor Lapping Machine
10019-207	Spacer, Rotor Lapping Machine
10020-207	Block, Rotor Lapping Machine
10021-207	Slide, Rotor Lapping Machine
10022-207	Way, Rotor Lapping Machine

Number Title 10023-207 Clamp, Rotor Lapping Machine 10024-207 Handle, Rotor Lapping Machine 10025-207 Bushing, Rotor Lapping Machine 10026-207 Block, Rotor Lapping Machine 10027-207 Pully Motor, Rotor Lapping Machine 10028-207 Cam, Slide, Rotor Lapping Machine 10029-207 Shim, Motor, Rotor Lapping Machine 10030-207 Bracket, Rotor Lapping Machine 10031-207 Shield, Rotor Lapping Machine 10032-207 Comparator, Cavity Spherometer 10033-207 Head Spherical Dia. Comp. 10034-207 Tip, Spherical Dia. Comp. 10035-207 Tip and Weight, Spherical Dia. Comp. 10036-207 Support Ring, Spherical Dia. Comp. ESG 10037-207 Nut , Collet, Spherical Dia. Comp. ESG 10038-207 Cartridge Holder, Spherical Dia. Comp. 10039-207 Comparator, Cavity Equator ESG 10040-207 Head, Comp. Cavity Equator 10041-207 Tip, Comp. Cavity Equator 10042-207 Comparator, Cavity Equator Chamfer 10043-207 Head, Cavity Equator Chamfer 10044-207 Pin, Cavity Equator Chamfer Comp. 10045-207 Gage, Cavity Equator Chamfer 10046-207 Ring Set Master, Cavity Comp. 10047-207 Disc. Set Master, Cavity Comp.

Slot Lapping Fixture

10048-207

Number Title 10049-207 Holder, Slot Lapping Fixture 10050-207 Base, Slot Lapping Fixture 10051-207 Retainer, Slot Lapping Fixture 10052-207 Rotator, Slot Lapping Fixture 10053-207 Alignment Gage, Slot Lapping Fixture 10054-207 Cutter, Slot Lapping Fixture 10055-207 Slide, Slot Lapping Fixture 10056-207 Cavity Lapping Machine 10057-207 Holder, Cavity Lapping Machine 10058-207 Lap, Cavity Machine 10059-207 Spindle, Cavity Lapping Machine 10060-207 Spindle, Cavity Lapping Machine 10061-207 Collar Driver, Cavity Lapping Machine 10062-207 Adapter, Cavity Lapping Machine 10063-207 Standoff, Cavity Lapping Machine 10064-207 Plate, Side, Cavity Lapping Machine 10065-207 Gusset, Cavity Lapping Machine 10066-207 Arm, Connecting Cavity Lapping Machine 10067-207 Bracket Assembly, Cavity Lapping Machine 10068-207 Indicator, Cavity Lapping Machine 10069-207 Crank, Cavity Lapping Machine 10070-207 Arm, Cavity Lapping Machine 10071-207 Block, Pillow, Cavity Lapping Machine 10072-207 Shaft, Cavity Lapping Machine 10073-207 Bracket, Cavity Lapping Machine 10074-207 Base, Cavity Lapping Machine Indexing Fixture Pot Chuck 10075-207

Number	<u>Title</u>
10076-207	Electrode Elox
10077-207	Cavity Holder
10078-207	Mask, Sputter
10079-207	Cavity Holder Talyrond
10080-207	Cavity Grind Fixture
10081-207	Shield Rotor Lapping Machine
10082-207	Cover Rotor Lapping Machine
10083-207	Probe, Temp Rotor Lapping Machine
10085-207	Lap Charging Fix
10089-207	Rotor Measuring Fixture - Talyrond
10090-207	Bake Fixture, Rotor
10205-217-1	Ball Holder (Bake out)
10206-217	Cavity Holder
66532-207	Rotor Cleaning Fixture
66533-207	Cavity Cleaning Fixture

GYRO DRAWINGS

Number	<u>Title</u>
12504-302	Rotor
12698-302	Cavity, Rotor
12699-302	Cavity, Rotor (Plated)
12700-302	Cavity Assembly, Rotor
12795-302	Billet Extrusion Rotor
12796-302	Extrusion Rotor

SPECIFICATIONS

Number	Title
AA0103-004	Electrical discharge machining
AA0104-001	Marking of electrical & mechanical items
AA0109-008	Electrodeposition of a copper strike upon base metal
AA0109-009	Deposition of electroless nickel phosphorous plate
AA0109-023	Preparation of basis metal for final plating
AA0109-050	Sputter deposition of chromium & gold on beryllium oxide
AA0109-051	Electroless deposition of nickel-phosphorous plated gold
AA0110-008	Cleaning of beryllium
AA0110-028	Solvent vapor degreasing
AA0110-032	Abrasive cleaning
AA0110-035	Solvent and detergent cleaning inertial instrument components
AA0111-003	Thermal treatment of beryllium
AA0115-003	Determination of magnetic susceptibility for plating used in precision instruments
AA0117-004	Handling of flammable and dangerous liquids and chemicals
AA0117-005	Safety & environmental health requirements for the machining and handling of beryllium alloys & compounds
AA0115-006	Ceramic, beryllium oxide, cense
AB0170-067	Beryllium extruded (for precision instrument applications)
AB0210-007	Trichlorotrifluorethane (type TF) solvent, high purity grade.
AB0210-008	Solvent, petroleum
AL70030	Hot lapping procedure for rotor

Title Number Cavity lapping procedure AL70032 Tolerances, surface finish and standard configurations ST0115AA0010 ST0115AA0089 Radiographic inspection Requirements for clean rooms, clean work stations, ST0115AA0103 and controlled areas ST0115AA0114 Penetrant inspection, general requirements for ST0140AB0012 Grease ball and roller bearing, sodium base ST0170AB0002 Beryllium billet, bar and shapes

Appendix B

PPD Material Specs

DASH	APPLIC	ATION			REVISION		
NO.	NEXT ASSY	USED ON	LTR	DESCRIPT	ION	DATE	APVD
,		ESG	A	Released per	DER 2698-A	4 FEB 75	DBA

NOTE:

Only the item described on this drawing when procured from the vendor(s) listed hereon is approved by Northrop Corporation Electronics Division, Norwood, Massachusetts, for use in the applications specified hereon. A substitute item shall not be used without prior testing and approval by Northrop, Rockwell International or the U. S. Air Force.

								5	SC)(JF	20	E		C	C	1	IT	F	RC)L		D	R	Δ	V	V	1	10	3
REV				de																										
SH	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
REV ST	TAT	JS	RE	/	A	A	A	A	A	A	A	A																		
OF SH	EETS		SH		1	2	3	4	5		7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
CHR C ENGR APVD APVD APVD	DB	1	th	Le Li	Le To		31,3	A 7	25 - 's			ST	DR	DAR	D (GRA S F	DE	BE	ERY:		UM	EI rw	1AT	M	CS ass	Divi ach	sior	n 1 e t t :	s	
CUSTO	1	len	M	*	-		31)	75	A			8								68	848	3		_					
										SC/	LE		NO	NE												SH	1	of	8	3

1. SCOPE

1.1 This specification defines the requirements for standard grade beryllium block intended for gyro applications.

2. APPLICABLE DOCUMENTS

2.1 The following documents of the issue in effect on the date of invitation for bids, form a part of this specification to the extent specified herein.

SPECIFICATIONS

Military MIL-I-6866 Inspection, Penetrant Method of

STANDARDS

Society
American Society for Testing and Materials
Standard Methods of Test or Approved Equivalent
Military
MIL-STD-453 Inspection, Radiographic
Federal FED-STD-151 Metals, Test Methods

When a requirement of an applicable document is in conflict with one specified herein, the requirement specified herein shall apply. When a requirement specified on a drawing or purchase order is in conflict with one specified herein, the requirement specified on the drawing or purchase order shall apply.

3. REQUIREMENTS

- 3.1 <u>Material</u>. The materials used shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed herein.
- 3.2 <u>Material Composition</u>. The material supplied shall be hot pressed from -325 mesh virgin powder.
- 3.3 <u>Condition</u>. The material shall be supplied hot pressed to meet the mechanical property requirements of this specification. Standard surface finish shall be 125 microinches AA, maximum.
- 3.4 <u>Chemical Composition</u>. The material shall conform to the following chemical composition:

	Weight	Percent	
Constituent	Min.	Max.	
Party 11 in the	00.0		
Beryllium	98.0		
Beryllium Oxide	0.7	2.0	
Aluminum		0.14	
Carbon		0.15	
Iron		0.18	
Magnesium		0.08	
Silicon		0.10	
Other metallic impurities		0.04	
each as determined by normal	spectrog	raphic method	s.

3.5 <u>Mechanical Properties</u>. Material supplied per this specification shall have the following mechanical properties in the transverse direction at room temperature. See paragraph 6.1.

Ultimate tensile strength, psi 40,000 min. Yield strength (0.2% offset), psi 30,000 min. Elongation (% in 1 inch) 1.0 min.

- 3.6 <u>Density</u>. The density shall not be less than 99 percent of theoretical density nor more than 101 percent of theoretical density based on the beryllium and beryllium oxide content.
- 3.7 <u>Soundness</u>. Radiographic and/or visual indications (voids and/or inclusions) shall conform to the requirements as established below.
- 3.7.1 <u>Maximum Dimensions of Any Indication</u>. Any dimension of an indication measured in the plane of the radiograph shall not exceed 0.030 inch.
- 3.7.2 <u>Maximum Average Dimensions of Any Indication</u>. The average dimensions of an indication shall not exceed 0.015 inch. The average dimension of an indication shall be the arithmetic average of the maximum and minimum dimensions measured in the plane of the radiograph.
- 3.7.3 Total Combined Volume of All Indications. The total combined volume per cubic inch of all indications with an average dimension larger than 0.001 inch shall not exceed the volume of a sphere of 0.020 inch diameter.
- 3.7.4 <u>Banding</u>. Low density radiographic traces caused by banding or striation shall not vary in film density by more than 5% as compared to surrounding areas of comparable section thickness. See paragraph 6.1

- 3.8 <u>Grain Size</u>. The average grain size shall not exceed 30 microns.
- 3.9 <u>Tolerances</u>. Material furnished under this specification shall conform to the dimensions and dimensional tolerances established by the purchase order and applicable drawings. If tolerances are not specified by the purchase order the following standard tolerances shall apply.

Diameter, Width or Thickness, Inches	Tol.Inch
Up to 3, inclusive	-0 + 1/64
Over 3 to 20, inclusive	-0 + 1/16
Over 20	-0 + 1/4
Length, Inches	
Up to 20, inclusive	-0 + 1/8
Over 20	-0 + 1/4

4. QUALITY ASSURANCE

- Quality Control. The supplier is responsible for the maintenance of adequate quality control necessary to ensure that the material supplied meets the requirements of this specification. The supplier shall afford the purchaser all reasonable facilities, including access to relevant inspection records when required, to satisfy him that material is being furnished in accordance with this specification.
- 4.2 Quality Conformance Tests. Tests for acceptance of individual lots shall consist of tests for:
 - a. Chemical composition.
 - b. Mechanical properties.
 - c. Density.
 - d. Soundness.
 - e. Grain Size.
- 4.2.1 <u>Chemical Composition</u>. Each lot shall be tested for conformance to the chemical compostion requirements as specified in 3.4.
- 4.2.2 <u>Mechanical Properties</u>. Each lot shall be tested for conformance to the mechanical properties of 3.5.

STANDARD GRADE BERYLLIUM, MATERIAL SPECIFICATION FOR	Ä	889	32	(68848	
DIEGITION TOX	SCALE	NONE	REV	A	SHEET	4

- 4.2.3 <u>Density</u>. Each lot shall be tested for conformance to the requirements of 3.6.
- 4.2.4 <u>Soundness</u>. Each lot shall be tested for conformance to the requirements of 3.7 on a test blank of material, 1/2 inch thick.
- 4.2.5 <u>Grain Size</u>. Each lot shall be tested for conformance to the requirement in 3.8.
- 4.3 Test Methods
- 4.3.1 <u>Chemical Composition</u>. Samples shall be tested to ASTM Standard Methods of Test or approved equivalent.
- 4.3.2 <u>Mechanical Properties</u>. Samples shall be tested in accordance with ASTM E8 and Federal Test Method No. 151.
- 4.3.3 <u>Density</u>. Samples shall be tested in accordance with ASTM B-311.
- 4.3.4 Soundness. Radiographic inspection of samples to a penetrameter sensitivity of 2% shall be performed in accordance with MIL-STD-453. Penetrant inspection of samples shall be performed in accordance with MIL-I-6866.
- 4.3.5 Grain Size. Samples shall be tested in accordance with ASTM Ell2, Section 7b.
- Test Report. Unless otherwise specified, the manufacturer shall furnish a certified test report in duplicate to the Northrop Electronics Buyer referred to on the Purchase Order, giving the results of tests required to determine conformance with the chemical, mechanical and physical property requirements specified herein of the hot pressed powder lot or lots from which the parts were made. The test report shall be signed by the Director of the Laboratory in which the tests are conducted, or by any person designated by him.

5. PREPARATION FOR DELIVERY

5.1 <u>Packing</u>. All material shall be packed in accordance with the best practice so as to insure against the occurrence of toxicological hazards during normal shipment.

- Marking. All shipments shall be marked with a description of the contents, the quantity contained therein, the name of the manufacturer, and the Northrop Electronics specification and Purchase Order numbers.
- 5.2.1 A "hazardous material" warning label shall be posted conspicuously on all packages or lots of this material, such as:

WARNING

Beryllium Product
Hazardous Dusts Produced
when Machined, Filed or Ground

6. NOTES

6.1 Definitions

- 6.1.1 Longitudinal direction is parallel to the direction of pressing and the transverse direction is in a plane 90° to the longitudinal direction.
- Samples. The term samples shall denote material produced integrally with a block and for purposes of quality assurance testing pursuant to the requirements of section 3. Samples shall be located in a block such that they bracket the block as shown in Figures 1 and 2, or such that they are otherwise representative of the block.
- 6.1.3 Lot. The term lot shall denote material submitted for inspection at one time which meets all of the following conditions:
 - (a) Shall be of a single size and configuration.
 - (b) Shall be from a single block.
- 6.1.4 <u>Block</u>. The term block shall denote a scalped hot-pressing, or a portion thereof, from which samples are taken and from which blanks are taken.
- 6.1.5 Blanks. The term blanks shall denote pieces(of a block)whose dimensions are such that a discrete number of parts are intended to be produced therefrom.
- 6.1.6 <u>Banding</u>. The term banding shall denote relatively large areas of a radiograph which vary in radiographic density as compared to the surrounding area. Such bands are sometimes referred to as variable density areas or striations. The term banding does not encompass discretely resolvable radiographic indications of inclusions or voids.

FIGURE 1 -- CYLINDRICAL BLOCKS

FIGURE 2 -- RECTANGULAR BLOCKS

APPROVED TABLE I SOURCES OF SUPPLY

NORTHROP PART NUMBER	VENDOR		
	NAME AND ADDRESS	CODE IDENT NO.	VENDOR PART
68848-001	Kawecki Berylco Industries, Inc. P. O. Box 1462 Reading, Pa. 19603		

STANDARD GRADE BERYLLIUM, MATERIAL SPECIFICATION FOR

SCALE

None

68848

SHEET

DASH APPLICA		ATION		REVISION		
NO.	NEXT ASSY	USED ON	LTR	DESCRIPTION	DATE	APVD
		ESG	A	Released per DER 2698B	10 FEB 75	D8A

NOTE:

Only the item described on this drawing when procured from the vendor(s) listed hereon is approved by Northrop Corporation Electronics Division, Norwood, Massachusetts, for use in the applications specified hereon. A substitute item shall not be used without prior testing and approval by Northrop, Rockwell International or the U.S. Air Force.

										_		107								ART										
									5	Ol		R	CI	E	($\mathcal{L}($	1(JT	IF	?()L)(7	$\langle \triangle$	V	\bigvee	11	1	7
REV																														1
SH	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	,
REV S	TAT	US	RE	V	A	A	Α	Α	A	А	A	A																		
OF SH	EET?	5	SH		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	1
ENGR	1.0	Qu.	Ja	le	lo	K	7,	E8.	75	_	1	NC)F	RT	HI	RC	DF	•			No	EI	lectr	Toni	Cor ics ass	Divi	isior	n e t t	S	
APVD APVD	Ri	1/2	2	odo -	7		10	FEB	75	-	M	ATE	RII	AL	SPI	ECI	FI	CAT	101	N F										
NORTI	HRO	45	A	-		_		47.		SIZ			B 8				-			•	5884	49					-			
6001	JIVIL		FFV	_		,	1			_	_	-	_																	

SCOPE

This specification records the procurement requirements for one type of beryllia intended for inertial gyro applications. It is a dense grade with high thermal conductivity, good resistance to thermal shock and chemical inertness.

APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of invitation for bids, form a part of this apecification to the extent specified herein.

SPECIFICATIONS

Military

MIL-I-6866

Inspection, Penetrant Method

of

MIL-I-10

Insulating Materials, Electrical, Ceramic

STANDARDS

Society

ASTM Standard Methods of Test

When a requirement of the applicable document is in conflict with one specified herein, the requirement specified herein shall apply. When a requirement on the drawing or Purchase Order is in conflict with one specified herein, the requirement specified on the drawing or Purchase Order shall apply.

REQUIREMENTS

- Material. The material used shall be natural mineral so compounded that, when pressed, extruded or otherwise processed, then fused or sintered by heat, it provides an insulating compound meeting the requirements of this specification.
- 3.2 <u>Chemical Composition</u>. The material shall consist of 99.5% beryllia, nominal.

3.3 Uniformity

3.3.1 Acceptable uniformity for this grade of material depends upon all of the following.

MATERIAL SPECIFICATION FOR DENSE BERYLLIA

A 88932

68849

SCALE NONE

REV

SHEET 2

- 3.3.2 <u>Cracks</u>. The material shall not exhibit any crack to normal vision when tested in accordance with 4.2 and 4.2.1.
- 3.3.3 Surface Defects. Surface defects (defects other than cracks or discolorations) shall be defined as discontinuities or depressions in the surface of the material which are visible to normal vision when tested in accordance with 4.2 and 4.2.1. (Normal vision will generally be considered capable of observing surface defects 0.010 inch in diameter and larger). A visible surface defect which is not a discontinuity shall not be cause for rejection.
- 3.3.4 <u>Discolorations</u>. The material shall not exhibit to normal vision any discoloration due to contamination where the discoloration appears as discolored areas surrounding cores or nodules of foreign materials (i.e., iron spots, grinding media and similar contamination). Discolorations not containing cores or nodules of foreign material, such as pink chrome stains, shall not constitute basis for rejection of the material.
- 3.4 <u>Dimensions and Tolerances</u>. Unless otherwise specified on the drawing or purchase order, tolerances shall be ± 0.005 inch or $\pm 1\%$ of the specified dimension, whichever is greater.

3.5 Properties

3.5.1 When tested in accordance with the specified methods, this material shall conform to MIL-I-10, Class I423, with the exceptions or additions specified in Table I.

TABLE I

EXCEPTIONS OR ADDITIONS TO MIL-I-10, CLASS 1423

Property	Value	Test Method Paragraph
*Apparent Specific Gravity, gm/cc, minimum	2.85	4.2
Cracks and Surface Defects	As specified on drawing	4.2 & 4.2.1
Thermal Conductivity at 106°C, cal/sec(cm ²)(degree C/cm) mining	0.42 mum	4.2

*Specific gravity shall be taken for each lot of substrates. Other test methods such as "sink float" are satisfactory for acceptance requirements, provided the results correlate with those using ASTM C-20, the governing specification.

MATERIAL SPECIFICATION FOR DENSE
BERYLLIA

DWG CODE IDENT NO.

88932
68849

SCALE NONE REV A SHEET 3

QUALITY ASSURANCE

- Quality Control. The supplier is responsible for the maintenance of adequate quality control necessary to ensure that the material supplied meets the requirements of this specification. The supplier shall afford the purchaser all reasonable facilities, including access to relevant inspection records when required, to satisfy him that material is being furnished in accordance with this specification. In addition, the manufacturer shall furnish the purchaser one properly identified sample specimen with each lot of material shipped that is representative of the manufacture and heat treatment of the lot.
- 4.1.1 Lot. A lot shall be defined as material pressed from a blend of one batch of powder. If a shipment is made from more than one lot, the purchaser may choose to consider this shipment as a single lot or may separate the shipment into lots for acceptance purposes.
- 4.2 <u>Test Methods</u>. Tests for acceptance of individual lots shall be conducted in accordance with those specified in Table II.

TABLE II TEST METHODS

	Requirement	Test
Property	Paragraph	Method
Cracks & Surface Defects	3.3.2,3.3.3,3.3.4	MIL-I-6866
Thermal Conductivity	3.5.1	ASTM C-408
Apparent Specific Gravity	3.5.1	ASTM C-20
Flexural Strength	3.5.1	ASTM D-116

4.2.1 Cracks and Surface Defects

- 4.2.1.1 Rack parts to reduce surface contact prior to immersion in dye penetrant. The parts shall remain submerged for 4 to 6 minutes.
- 4.2.1.2 After removing from dye tank, allow parts to drain for 5 to 10 minutes prior to rinsing (spray or dip) in tap water to remove unwanted concentrations of dye. Dry in circulating air dryer at 150 to 170°F until dry.

MATERIAL SPECIFICATION FOR DENSE BERYLLIA CODE IDENT NO. 88932 68849

- 4.2.1.3 Inspect for cracks and surface defects by transmitted light (275 foot candles, minimum, at workpiece) using normal 20/20 vision.

 Magnification may be used for "screening" prior to inspection to reduce operator fatigue. Room lighting should not exceed 30 foot candles at the work area. In addition, the area immediately around the substrate being viewed should be masked to shield direct light from the inspector's eyes.
- 4.2.1.4 Incident light (angle of incidence less than 5° to surface of substrate) shall be used to detect surface defects such as pits, voids and scores.
- 4.2.1.5 Questionable cracks or surface defects shall be verified by the use of magnification up to 30X to determine and/or verify the extent and nature of the defect.
- Test Reports. When specifically required on the contract or Purchase Order, the manufacturer shall furnish a certified test report in duplicate to the Northrop Electronics Buyer referred to on the Purchase Order, giving the results of tests required to determine conformance with the Chemical, Mechanical, Density and Thermal conductivity requirements specified herein. The test report shall be signed by the Director of the Laboratory in which the tests are conducted, or by any person designated by him.

PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. The material shall be packaged in accordance with the manufacturer's commercial practice to assure safe delivery by common carrier and prevent contamination by dirt, moisture or other foreign material during normal handling.

5.2 Marking

5.

- All shipments shall be marked with a description of the contents, the quantity contained therein, the name of the manufacturer and the Northrop Electronics Specification and Purchase Order numbers. In addition, all parts contained in each shipment shall be marked with the manufacturer's lot or batch number that will identify the processing details to which the parts have been subjected.
- 5.2.2 The material shall be marked or tagged with a suitable warning notice to the effect that the material may be toxic when ground or filed.

MATERIAL SPECIFICATION FOR DENSE BERYLLIA SCALE NONE REV A SHEET 5

6. NOTES

- 6.1 <u>Definitions</u>. The following definitions for terms used in this specification shall apply:
- Roughness. The smallest irregularities on the surface of the substrate, the heights of which are of the order of ten micro-inches. Roughness Width refers to the distance between repetitive patterns of these fine spaced irregularities. Thus, the roughness width cutoff value established the distance on the surface (in inches) which is used in computing the arithmetic average deviation (AA) of the roughness heights from the mean value.
- Maviness. Irregularities in the surfaces which are more widely spaced than the roughness irregularities. The waviness height is usually specified as the peak-to-valley distance in inches. Waviness width is the distance along the surface in inches which is included in computing the maximum peak-to-valley distance.
- 6.1.3 Camber. The gross deviation of the substrate from a plane surface. The total of the curvature of the substrate as a whole plus out-of-parallelism. A convenient method of specifying the camber is to determine the ratio of the difference between thickness of the part measured as a whole and the thickness at one point to the length of the part (See Figure 1).
- 6.1.4 <u>Projections</u>. Any localized irregularities in the substrate surface which have a convex curvature. Projections are not periodic as is the roughness and have heights at least 10 times the arithmetic average surface roughness.
- 6.1.5 Scratch. A concave surface irregularity which is at least 10 times greater in extent in one direction than in all other directions.

11.

MATERIAL SPECIFICATION FOR DENSE BERYLLIA

A 88932

NONE

68849

SHEET

REV A

SCALE

$$Camber = \frac{(d - t)}{\ell}$$

1

NOTE: All dimensions in inches.

- where t = Average part or lot thickness as measured with ball or poin micrometer.
 - d = Part thickness measured with flange micrometer or parallel plates encompassing the entire surface or TIR value obtained with a dial indicator system.

& = Part length.

Figure 1 - Cross Section of Ceramic Substrate

MATERIAL SPECIFICATION FOR DENSE BERYLLIA

SCALE NONE REV A SHEET 7

APPROVED

TABLE I SOURCES OF SUPPLY

	VENDOR									
NORTHROP PART NUMBER	NAME AND ADDRESS	CODE IDENT NO.	VENDOR PART							
	Brush-Wellman, Inc. Elmore, Ohio 43416									
	Coors Porcelain Co 600 Ninth Street Golden, Colorado 80401									
	i sala del mostro e in interfer La francia del mos									
	COMPANY CONTRACTOR OF THE CONTRACTOR OF T	200 - 200 ON - O - O								
	There is not a second the second									
		To execute								

MATERIAL	SPECIFICATION	FOR	DENSE
	BERYLLIA		

Ä	88932
---	-------

68849		9	84	8	6	
-------	--	---	----	---	---	--

CALE	NON

Appendix C

KBI Letter, Process Specs and Extrusion Billet Assembly Drawing

KAWECKI BERYLCO INDUSTRIES, INC.

P. O. Box 1462, Reading, Pa. 19603 Telephone: 215 / 929-0781

February 26, 1976

Mr. R. O. Westhaver Northrop Electronics Division 100 Morse Street Norwood, Mass. 02062

Dear Bob:

The following is in confirmation of my verbal communication of February 24, 1976 concerning questions outstanding from our meeting of December 23, 1975 to discuss the KBI process specification package supplied to Northrop Electronics for co-extruded beryllium rod containing tantalum wires:

1. Can design

The plug is chamfered to lead the extrusion billet into the guide cone and die. The chamfer was not continued to the outer can wall since it was felt that in the initial stages of upsetting the billet the chamfer would be lost anyway.

The can wall is 0.5 inches thick so that the extrusion billet can be accommodated in an existing extrusion press liner.

A spacer ring is included only at the back of the extrusion billet assembly to avoid non-uniform pressure on the billet from weld build-up around the evacuation tube.

2. Reference SOP 614-310-05.001
Diameter 0.62 + 0.030 - 0.000 inches in the title is correct according to attachment A exception 2 of the order.

Page 2, Inspection of Billets, dimension 0.D. 4.250 ± 0.030 inches does include measurement of the copper plating. The length dimension is incorrect as written in the SOP and should read 7.0 inches minimum to 7.5 inches maximum.

Temperature as recorded in Figure 6 shows that temperature and time tolerances in section 3a, page 2 of the SOP were achieved.

KAWECKI BERYLCO INDUSTRIES, INC. Reading, Pa. 19603

Mr. R. O. Westhaver

-2-

February 26, 1976

3. Reference SOP 730-975-05.001

On page 4 of this SOP after Paragraph 3.3 the title "Color Etch" should have been inserted. The extrusion was processed as called out in Paragraphs 3.4 through 3.12 of this SOP and subjected to etching for 3 minutes only. This etching procedure removes approximately 0.0005 inch maximum of metal per surface.

4. Tooling

The code on the photographs of the tooling previously submitted to Northrop Electronics is explained as follows:

RMI C-815-1 Guide cone
RMI DI-114 Die
RMI 144-2 Runout guide
Die angle is 45 degrees

5. Extrusion Billet Temperature Measurement

The temperature of the extrusion billet is measured in the furnace during pre-heating only. The temperature is not measured again after removal of the billet from the furnace.

The foreign body detected in the tail of the extrusion could conceivably be the remainder of the stem attached to the outer can for evacuation purposes.

6. Future Developments

It is suggested that prior to future extrusion campaigns KBI and Northrop Electronics consult together to determine potential means of improving the yield and properties of the co-extruded rod. It should be remembered that this may necessitate the purchase of new tooling and the use of additional trial runs. Trial runs could conceivably be made using a beryllium billet only.

I hope these explanations satisfactorily complete our current obligations to Northrop Electronics on this phase of the program. If I can be of any further assistance in this connection and for any future program, please let me know. I hope that I shall be seeing you again in the near future.

With very best regards,

R. C. Fullerton-Batten

Technical Manager, Beryllium Programs

- 76 -

18-26-75

STANDARD OPERATING PROCEDURE KBI - HAZLETON PLANT

Prepared by Date Prod Dept Approximate Prod Dept Approximate Pacil Engr. Appr. Date	Date E 28-7" Date Black Is Page of August 25, 1975 Date Plant Manager Appr. Date
Title: Extrusion of KBI Beryllium Billet Assemblies Diameter Rod	ZHC4117 Rev. B into 0.62 +.030 inch 000
General Purpose: Outline procedures and practices to be folloextrude Beryllium Canned Billets into rods f	wed at RMI Ashtabula, Ohio Extrusion Plant to or KBI
Equipment: 3850 Ton "Lowey" Horizontal Extrusion Press and Auxiliary Equipment Sunbeam Fce. with auxiliary controls gas fired	Tooling: GPO-Lubricant Fishe 604-D Lubricant Die Ring DR-95 Dummy Blocks DU-469-4 Guide Cones C-815-1
notify his foreman or supervisor of the pro on his run record and/or routing sheet. H his required operational techniques withou	e instructions contained herein, he MUST, (1) blem as well as, (2) make a note of the problem e SHOULD NOT take corrective action or alter trist having supervisory permission. The action to prevent, (a) personal injury, (b) loss
Equipment Continued: Industrial Heating Equipment - Tooling Fce.	Tooling Continued: Dies DIH-3R1, D1-114 with A-1687 filler piec

Stem ST-55-1 & SH-10-1 & ST-38-2
Run Out Guide Re-144-2 = 1.660" x 1.250" x 84
Lg.
Assorted Hand tools & inspect. tools
Wheelco Controller
Easterline Angus recorder for PSI

Container 3856 (4.450 S.SF.S)

Liner Holder No. 26-2

Bolster BO-53

Liner No. 74-2

This proprietary information is released for cutplant use by:

Official Copies:

Plant Manager

/ Dat

See last page

Prod.Supr. Qual.Assur. Facil.Engr.

with Auxiliary Controls - gas fired

Sling type hanger with monorail

Graphite Cannisters

Oper Are.

Originator Document Fi

FORM # BH-1-A

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number:	Rev:	Page	of
614-310-05.001		2	3

Inspection of Billets

Beryllium canned billets that have been welded and copper sprayed will be dimensionally inspected and weighed and data will be recorded on production control cards (See Figure 1).

(a) Dimensions - O.D. 4.250 + .030 -- Length 7.5" min. to 8.0" max.

Extrusion Preparation

- (1) Upon receipt of production notification, production engineering shall issue orders Figures 2, 3, & 4 to have the press changed in time to start the production campaign. After changing the press liner and stem, maintenance supervisor shall check the two for concentric alignment. Maximum variation of \pm .050" will be allowed between stem and liner.
- (2) Production engineering will also issue Figure 2, 3, & 4 to cover all supplies and tooling necessary for the campaign. Tooling is inspected upon receipt from OSV and placed in tool crib. After the tooling is used it is inspected before being returned to tool crib with production engineering making final disposition if it does not conform to print.
- (3) Billet Pre-heating
 - (a) Coat canned billet with GP-0 Lubricant, place it in graphite cannister. Place graphite lid on top of cannister and place in Sunbeam furnace controlled at 1600° +.025 F on low fire temperature. Time in furnace at __.000 temperature must be a minimum of $2\frac{1}{2}$ hours and a maximum of 4 hours.
 - (b) Minor tooling, dummy block pre-heat to 600° F. Tooling is placed in tooling furnace the night previous and heated at 600° F overnight.
 - (c) Container temperature set at 720°F on Wheelco controller.

Extrusion Conditions

- (1) Tooling Lubrication Fiske D
- (2) Ram Speed 40 60 I.P.M.
- (3) End of ingot having sealed off tube against press stem.
- (4) Extrusion air cooled in run-out trough.

Procedure

Remove cone from tooling furnace and place it into liner by use of the ram in front of die.

Cost liner and cone with Fiske : D Lubricant.

1 UKNI # BII-I-A

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number:		Rev:	Page	of
614-310-05.001	F1*		3	13

Remove graphite container from Sunbeam furnace, remove lid and dump out of cannister. Using sling type hanger on monorail, transfer billet to the press and place on billet lift with sealed tube stem facing the press stem. Insert billet into liner. Dummy block is positioned by dummy block lift and inserted into liner. Move stem forward and extrude billet through 7 ft. guide tube into runout trough until one-half of 2" long plug is extruded. Move die forward, push rod backout of die and shear off stud rod with Maco Shear. Allow rod to cool down below red heat before transferring it to insulation material on floor.

Data taken during the extrusion will be recorded on Figure 1 with psi chart from Esterline Angus recorder Figure 5 showing pressing during the push. Speed of ram is automatically set and read from a dial gage on extrusion press control equipment. Time at temperature for billet will be recorded from a thermocouple in the billet Figure 6 and thermocouple in the furnace Figure 7.

Distribution:
HEFuhrmeister
DKSchoenly
WOFrauson
JAtherton
DHeiser

_		

XT 1179	BRLET CLASS	OM NOE		PUPCHASE OF	CHIPPED W.	
30,00		such! Rion	to Tud. Inc	105-17-30)	-30182	
	CLOSER NO.			247AUSION NO.		CHECK AEIGHT
5/8	Beoglium	1	0.869"	O.D.	13 gm	;
明の一切が	3545403	FUR. 10 C. 1	27	FE MANAS		
	1ST CYCLE	IN 250 CYCLE	YOLE CUT	Z	3PO CYCLE OUT	10. PL 11. PL
	TIME	1 × 1 × 1	1.NE	W 7	3	
4,522		E.A.SED		035450		
5.2.5	DUENCH	OUTS.CH	CULS OF THE	00,000 18.40,	5.50	
	TENARKS TOIL	f				
FRONT OUR CAN	· or	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DIMETER FEAR	MAX FRONT WALL V	WALL LIE, A. CE REAR	S Comments
471 2 4759	2	•				2/4"
	700		000/	5/1/45	8/2/1/200	7 101AL
CONTRACTOR OF THE PARTY OF THE	1/14	8 A	S. S. S.	00010		
	ONE TEMPO OF	PSI STAPT MSO	RSZX	776=70	TONS	
20 No. 20	VALCREL NO.	P SI HUN /230	1	SES TOWS	50.2	1005 TEBC
1	WANDREL TEMP.	ELTH TIME S. 2	(NB)			
	PARCES GUT	Sec. S.	NSP.	RIMARKS		
3	MAX MIN MIN	OLANETER REAR MIN	FRONT WIN	MIN WAX MIN	17 N O 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MAX PEAR MIN
,	7	-		4	2	,
55.4 1.55, LENGTH	SON FULL TINGTH	Non Stot A	CRIENTATION SECT A	INSP INITIALS	Sadavija	
L. L.		161 40.	SOI NO	DESTINATION		TOTAL ALIGHT
LENGTH	2 1					
LENETHOF BUTT	F BUTT DY					
Od FRONT	0.860		F161			

BEST AVAILABLE COPY

1.	PRE-	-EXTRUSION PROCESSING
	Α.	Inspection 100%
	В.	Surface Treatment COAT WITH GP-O + HEAT IN KBI SUPPLIED CANISTER
II.	EXT	RUSION CONDITIONS Probe CANISTER
	۸.	Meating Conditions 1. Heating Furnace Type Sunbram - 1000 F low FIRE Collet Temp Temp. Time-Max. Min. Q-/2 hrs. 2. Container Temp. Indicator Set At 720 F EXACT leading Time Time. Indicator Set At 120 F EXACT leading Time.
	В.	Ram Speed 60 1Pm
	c.	Estimated Force 1400 TONS
	D.	Extrusion Lubricant Fiske 604-D Modified
	E.	Extrusion Quench AIR Cool
	F.	Extrusion Stamping Ruw # 1179
	G.	Health-Safety Required
	н.	Special Inspection Procedure Chamerea 4/ENGTh
III	. <u>P</u>	OST EXTRUSION PROCESSING
	۸.	Cutting 1. Finish Length //// Advise — None 2. Number of Samples None 3. Identification Stamp on FRONT FACE 4. Diagram
	В.	Straightening NowE
	c.	Cleaning News
	D.	Cleaning Nowe Pickling NowE Pickling NowE SET MANUABLE COP
IV	. SHI	IPPING AND ACCOUNTABILITY .
	Α.	Quality Requirements BEST EFFORTS 1. Addressee Kaweck, Brayloo Ind. Inc. Harrick Pa. 18201 2. Attention: Dim Atherton Brayllium Div. 10.70, 429 3. Job Identification 6.0. F. 4-30182 4. Special Container Description Package, Orazetzielek 5. Type of Carrier First Production Conskon
٧.	VC	COUNTABILITY
	٨.	Extrusion Weights ObTAIN GMSS
	В.	Forms 101
		Special Metals Packing List
	n,	Type of Seran Menocal . Sharmer - Competer

ASHTABULA EXTRUSION PLANT . Fic 3
P.O. BOX 579

PLANNED EXTRUSION PROJECT

WORK ORDER NO. 156/ EXTRUSION NO. U-1086 DATE 7-8-75
CUSTOMER Kawecki BERYLOOTNO, TNC. WORK AUTHORIZATION NO. H-30182 MATERIAL M. Id STEEL-Clad BERY 1111
OBJECTIVE TO EXTRUCE LOC.
EXTRUSION DETAIL:
SIZE OF BILLETS -1300" ODX 10.0" Level.
LINER DIAMETER 4.4.50" SS.F.S.
REDUCTION RATIO 24.2:1
DIMENSIONS OF EXTRUDED SHAPE: 0.869" dia. Fod
NUMBER OF PIECES
DIFFICULTIES ANTICIPATED: Possible clad TCARING
FOOLS OR EQUIPMENT TO BE PURCHASED BEFORE EXTRUSION: MINOR Tooling
ENTATIVE EXTRUSION DATE 7-10-75 Thurs. 2NDO6
EMARKS: (Including Special Detail)
immercial Order

SIGNATURE (C) I III

RMI NO. 1561 U NO. 1086 EXTRUSION DATE 7-10-75 ENGINEER HENDERSON LINER SIZE 4. 450 "SSES. Mild Steel Clad Bray hum 1 pc to 0,869" dia. to d
PRINT TYPE OUTSIDE INSIDE THREAD NUMBER TOOL NAME REQUIRED NO. NO. DIA. DIA. SIZE LENGTH HARDNESS REMARKS KOYUX 30-53 /1.730 2,500 4,625 BOLSTERS 4.440 1.583 C-815 -1 1.429 CONES DI H-3R1- 1 97.50 3,985 3.000 01-11-1 3,000 0.869 1.500 DIES FILLER PIECE FOR RELIEF OF DIH-3R A-16X7 1,480 1.125 DIE BACKERS DR-95 11.730 9.760 1.750 DIE RINGS 4,440 Solid 1/2"x45° clm= DU-469-4 3,0 DUMMY BLOCKS MANDRELS BUTT SHEARING FOLLOWER BLOCKS SPECIAL EQUIPMENT & REMARKS: () INDICATES ASSEMBLIES Poller CONVEYOR & MANCO ShrARS Container No. 26-2 711-2 +5H-10-1 Liner Holder No.
Liner No.
Stem No.

57-55-1
Die Head No. RUNOUT GUIDE NO. Re. - 144-2 = 1,6100 x REMARKS: 1,250" 84,0" Mandrel Holder No. Repair Head No. Reducer Adapter No. Mand. Hold. Cooling Pipe No. and Size Cooling Pipe Connector No.

DIDI AVAILABIT

Fic 5

KBI - Beryllium Billet No. XT1179

Date: 7-10-75

Low Fire Billet Temperature Check

Time	Temperature ^O F	Comments
Load:		
11:45 a.m		
12:00 a.m.	1510	
12:10 p.m.	1590	
12:20 p.m.	1595	
12:30 p.m.	1600	
12:40 p.m.	1600	
12:50 p.m.	1600	
13:00 p.m.	1600	
13:10 p.m.	1610	
13:20 p.m.	1600	
13:30 p.m.	1600	
13:40 p.m.	1600	
13:50 p.m.	1600	
14:00 p.m.	1600	
14:10 p.m.	1600	
14:30 p.m.	1600	
15:00 p.m.	1600	
15:10 p.m.	1600	

Signed: J. Atherton

Fig. 6

BEST AVAILABLE COPY

Form # RH-1

STANDARD OPERATING PROCEDURE KBI - HAZLETON PLANT

Prepared by Date Prod. Dept. Appr. Mfg. Engr. Appr. Date Facil. Engr. Appr. Qual. Assur Appr. Date Title:	Date Date Effective: Page of 1 2 Date 9/10/75 1 2 Date Plant Manager Appr. Date
General Purpose: Establishment of a standard method to be for sealing off and copper spraying of KBI Bill	allowed by production in the evacuating.
Equipment: Wheelabrator air blast equip. or sand blasting equip Metco Type 2MC Plasma flame spray or Metco Type BC metallizing gun vac. system manifold with fore pump - Muffle type fce. with temperature controller	Tooling: Copper powder or copper wire - aluminum oxide or sand - oxyacetylene torch - asbestos gloves - firebrick
notify his foreman or supervisor of the pro- on his run record and/or routing sheet. H his required operational techniques without	blem as well as, (2) make a note of the problem e SHOULD NOT take corrective action or alter first having supervisory permission. The action to prevent, (a) personal injury, (b) loss
1.0 Procedure:	
1.1 Place welded and leaked checked assemb diameter steel tubing to stick out app	ly into muffle type furnace allowing 3/8 inch roximately 25".
1.2 Affix evacuation tubes on vacuum syste and evacuate to less than 10 microns.	m manifold. Start vacuum pump, open valves
1.3 Close door or seal opening around stee 6 hours at 1650 +25°F. After 6 hours, - 0 off leaving vacuum on.	l tube and turn furnace on, run for a minimum of if vacuum is 10 microns or less turn the power
1.4 Open furnace or remove seal around tub should be less than 10 microns before	e to permit rapid cooling of billet. Vacuum proceeding to 1.5.
This proprietary information is released for	coutplant use by:
Official Copies	Plant Manager Date

Originator Document P. 7

Prod.Supr. Qual.Assur. Facil.Fngr Oper Assur. 87-

FORM # BH-1-A

STANI	DARD	OPERATING	PROCEDURE
	IFD T	TINDI DOON	DIANIM

Number: Rev: Page of 2 2

- KBI- HAZLETON PLANT
- 1.5 Remove billet still connected to the vacuum system to a flat table or floor. Place anvil under stem, approximately $1\frac{1}{2}$ from face of tail plug. Using oxyacetylene torch heat a portion (3" long) of the steel tube above the anvil to a red heat. With a flat face hammer, flatten the heated portion of the tube. Adjust torch to maximum heat and point concentration and severe tube through center of flattened area by making a fusion weld.
- 1.6 Using either a Wheelabrator air blaster or sand blasting equipment, blast the O.D. with either aluminum oxide or sand to remove the oxidized steel and other contaminants.
- 1.7 Copper spray the O.D. six to ten mils on a side using either a Metco Type 2MC Plasma flame spray with Metco Type 55 powder or Metco Type BC metallizing green or thin equivalents.

Rev. by Date Description

STANDARD OPERATING PROCEDURE KBI - HAZLETON PLANT

Qual. Assur. Appr. Date Dumbed Date	All though	
Title: Assemble and Welding of KBI Billet Assembly ZHC-4117 Rev		Dat
Welder Sales 300 ampere D.CA.C. welded liquid ni	hield or goggles - welding trogen - helium - welding weld 65 or equivalent - ste	glove

If at any time an operator cannot follow the instructions contained herein, he MUST, (1) notify his foreman or supervisor of the problem as well as, (2) make a note of the problem on his run record and/or routing sheet. He SHOULD NOT take corrective action or alter his required operational techniques without first having supervisory permission. The exception to this rule would be emergency action to prevent, (a) personal injury, (b) loss of material, or, (c) equipment damage.

1.0 Procedure

- 1.1 Weld 3/8" diameter x .060 wall x 27" long low carbon steel tube (Item 4) to inner surface of Item 2 using TIG welding with Linde oxyweld 65 rod or equivalent.
- 1.2 Place inner surface or plug over orifice of leak detector. Seal O.D. of plug to top of leak detector with "Silly Putty" or equivalent. Plug end of tube opposite welded end and pump down assembly. Flood helium gas around tube where it projects from 2" long plug. While pulling vacuum on welded joint, no helium detected the welded joint is satisfactory. Remove plug from end of tube and remove part from leak detector.
- 1.3 Steel stamp XT number on outer surface of 2" long steel plug.
- 1.4 Glass bead blast I.D. of steel can Item 3, inner surfaces of Item 1 & 2, and all surfaces of Item 5 at a maximum pressure of 40 psi until all contamination is removed
- 1.5 Assemble per SOP 730-988-05.001 for solid billet, placing face of beryllium billet containing a horizontal piece of tantalum next to Item 1 or the nose of the assembly

This proprietary information is released for outplant use by:

Official Copies:

Flant Manager Do

FORM. # BH-1-1

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number: Rev: Page 2

- 1.5 continued -- Place washer on other end of billet before inserting Item 2. ..
- 1.6 Locate plugs approximately 1/4" into both ends of assembly in contact with the beryllium billet and weld plugs into place using either manual shielded arc with E7018 rod or TIG weld with Linde Oxyweld 65 rod or equivalent.
- 1.7 Connect 3/8 inch diameter steel tube into helium leak detector. Pump down assemble and flood each welded joint with helium separately, no helium detected on the leak detector the assembly is welded satisfactorily.

FORM # BH-1-A

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number:		Rev:	Page	0
614-310-05.003	*13.4		2	1

- 1.5 continued -- Place washer on other end of billet before inserting Item 2.
- 1.6 Locate plugs approximately 1/4" into both ends of assembly in contact with the beryllium billet and weld plugs into place using either manual shielded arc with E7018 rod or TIG weld with Linde Oxyweld 65 rod or equivalent.
- 1.7 Connect 3/8 inch diameter steel tube into helium leak detector. Pump down assembly and flood each welded joint with helium separately, no helium detected on the leak detector the assembly is welded satisfactorily.

OF AD AD38273

MICROCORY RESOLUTION TEST CHAR

STANDARD OPERATING PROCEDURE KBI - HAZLETON PLANT

Exethetan 19124114 OScrywy	Number: Rev: 640-999-05.002
Prepared by Date Prod Dept Appr. 10/3/24 Prod Dept Appr. Mfg. Engr. Appr. Date Facil. Engr. Appr.	Page of September 20, 1974
Mfg. Engr. Appr. Date Facil. Engr. Appr. Date Facil. Engr. Appr. Date Facil. Engr. Appr. Date Facil. Engr. Appr. Date	Date April Date Date
Title:	
Decladding of Lockalloy and Beryllium Extrusi	ons
This procedure covers the decladding of Locka	Coles at salah mada SA No mada Mada SA
Equipment:	Tooling:
Stainless steel decladder & auxiliary equip. Drawings HB-5994-5-6-7 6" x 6" x 50" long	Acid resistant gloves
fiberglas tray Spent acid tank - exhaust duct	Acid resistant apron Soapstone
system Electric pump - Serfilco Model PP8200-BOP	Face shield
notify his foreman or supervisor of the pro- on his run record and/or routing sheet. He	e instructions contained herein, he MUST, (1) blem as well as, (2) make a note of the problem a SHOULD NOT take corrective action or alter t first having supervisory permission. The

exception to this rule would be emergency action to prevent, (a) personal injury, (b) loss of material, or, (c) equipment damage.

1.0 General:

This procedure covers the decladding of lockalloy and beryllium extrusions.

2.0 Procedure:

- 2.1 Upon receipt of the cut extrusions from OSV, identity scribed on the end, Process Engineering will check and retain identity of parts to be declad against operation route sheet and forward information to Production Control.
- 2.2 Inspection will list all numbers on the routing sheet and issue the routing sheet to Production. NOTE: In some cases it will be necessary to have a separate routing for each piece. EXAMPLE: HUGHES TUBING.
- 2.3 Turn on light and exhaust system at decladder. (Figure 1 (HB-5995) is a schematic of the decladder showing location of valves and gages referred to in this SOP. Valves and gages are also labeled on the machine).

This proprietary informa	tion is released for outpla	nt use by:	1 1111
	Official Copies:	Plant Manager	Date
A. Baymor E. Ferko E. Fuhrmeister	B. Kingree R. Leshko	W. Frauson J. Wambold J. Atherton	D. Sterba

Prod.Supr. Qual. Assur, Tacil, Ingr

Originator Document File

FORM.# BH-1-A

STANDARD OPERATING PROCEDURE

Number: Rev: Page of 2 4

KBI- HAZLETON PLANT

- 1.4 Put on acid resistant apron, face shield and acid resistant gloves.
- 2.5 Check to make sure all valves are closed.
- 2.6 Open lid of decladder storage tank. Place water hose inside of storage tank, turn on water and fill tank to line marked on inside of tank (approx. 90 gallons).
- 2.7 Turn off water, remove hose, close all lids and securely fasten with toggle clamps. All valves on decladder should be closed.
- 2.8 If electrical pump is available, obtain same and proceed per Para. 2.9. If electrical pump is not available, proceed as per supplement at end of SOP.
- 2.9 Obtain electrical pump and extension cord from the electrical shop. Remove cap from 55 gallon drum of 42 Baume Nitric Acid. NOTE: NO ACID OTHER THAN NITRIC ACID SHOULD BE PUMPED INTO THE DECLADDER OR IT'S PUMPING SYSTEM. Flush pump throughly with water before using. Insert electrical pump intake into drum.
- 2.10 Place outlet hose into decladder storage tank. Close lid.
- 2.11 Plug into electrical outlet, start pump and pump until drum is empty.
- 2.12 Remove pump from drum and flush pump throughly with water. Remove outlet hose from decladder storage tank and rinse throughly.
- 13 Turn on Worthite pump. Open valve 'A' when pressure gage reads 10-15 pounds, then open valve 'C'.
- 2.14 Place material to be declad onto racks in decladder. Charge the following number of parts: (Maximum)
 - a) Lockalloy straps 35, b) Lockalloy angles 18, c) Beryllium clad with steel
- 2.15 Close and lock all lids.
- 2.16 If temperature of acid is not at 140-150°F, open main steam valve, outside of decladder enclosure and open valve in 'L'. When temperature reaches 140-150°F, close valve 'L' and main steam valve.
- 2.17 Close valve 'C'.
- 2.18 Open valve 'D'. Acid will now fill tank, come out over the overflow into the storage tank. Regulate valve 'D' to have a slight flow of acid over the overflow. If temperature of acid exceeds 175°F, or if heavy fumes are inside of decladder dump acid into storage tank as follows:

Quickly close valve 'A' and 'D' open 'G' and 'C', pumping acid into decladder storage tank. Allow to cool 140° F before pumping back into decladder.

				_
Rev.	by	Date	Description	

FORM.# BH-1-A

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number:	Rev:	Page	of
640-999-05.002		3	4

- 2.19 Allow to run 1-12 hours.
- 2.20 Close valve 'A' and 'D'.
- 2.21 Open valve 'G' and 'C'. (acid will now flow back into the storage tank)
- 2.22 When decladder is empty, i.e. all acid is in storage tank. Stop Worthite pump. Open lid and rinse pieces with water. Drain rinse water into floor drain by opening large exit valve.
- 2.23 Turn parts 180°.
- 2.24 Close and lock all lids, closs all valves. Start Worthite pump.
- 2.25 Open valve 'A' and 'D'. Repeat steps 2.17 through 2.21.
- 2.26 Visually examine all pieces for steel on beryllium or copper on lockalloy. If all steel has been removed rinse, air dry and mark identification of piece on outside of part with soapstone. Send to decontamination for cleaning prior to sending to dimensional inspection. Pieces containing steel should be charged back into decladder with the next load. If all copper has been removed, proceed to step 2.26. If copper is still present on lockalloy, charge pieces back into decladder with the next load. If no other pieces are present, declad scrap pieces or put some iron into the solution.
- 2.27 In the fiberglas tank, mix up a solution by volume of 0.25% hydrofluoric acid 25.0% nitric acid, remainder water. Immerse lockalloy parts into solution, if staining or discoloration occurs return to decladder. If staining or discoloration do not occur, rinse, air dry, and mark identification on outside surface of part with soapstone and send to dimensional inspection.
- 2.28 The acid added in 2.11 will normally take care of two loads of part. If it gets too weak, add approximately 20 gallons of acid per steps 2.8 through 2.12 and discard after two loads of parts have been declad, per para. 2.29.
- 2.29 To empty spend acid all valves closed start pump, close valves 'A' and 'D', open valves 'G' and 'C' pumping the acid into the decladder storage tank. Close valves 'G' and 'C'. If the temperature of the acid is below 130°F, open valve 'A' and when pressure gage reads 10-15 pounds open valve 'H'. After pumping out all acid, close valve 'H', close valve 'A' and stop pump.

F					•
F					
			é		
Rev.	by	Date		Description	

FORM.# BH-1-A

SUPPLEMENT TO SOP

STANDARD	OPERATING	PROCEDURE
KBI-	HAZLETON	PLANT

Number: 640-999-05.002

Rev:	Page	of
	4	4

FILLING OF DECLADDER WITH ACID USING DECLADDER PUMP

- 2.8 Remove cap from 55 gallon drum of 42 Baume Nitric Acid (NOTE: NO ACID OTHER THAN NITRIC ACID SHOULD BE PUMPED INTO THE DECLADDER OR IT'S PUMPING SYSTEM). Place acid intake line into acid drum.
- 2.9 Turn on Worthite pump.
- 210. Open valve 'A'. When pressure gage reads 10-15 pounds, open valve 'C'. Water will start circulating, wait a few minutes, open valve 'E'.
- 2.11 Slowly close valve 'A', acid will start pumping into the decladder storage tank. Pump approximately 55 gallons into decladder, second line on inside of tank. Close valve 'E'.
- 2.12 Open valve 'A'.
- 2.13 Remove inlet hose from acid drum and rinse off with water.
- 2.14 Place material.
- 3.0 Keep work area clean at all times and clean up area at completion of decladding operation.
- 3.1 Turn off light and exhaust system.
 - Superintendent and foremen shall enforce this procedure.

Distribution:

LVelky PKempchinsky Operators Posting (1) 10/13/75 Date

STANDARD OPERATING PROCEDURE KBI - HAZLETON PLANT

Ulunby

Number:

730-975-05.001 Date Effective: October 10, 1975

Plant Manager Appr.

Rev:

Page

Etching of Beryllium Sh	eet and Extruded Products	
General Purpose:	AND A RESERVE AND A SECURITION OF THE SECURITION OF	
To define procedures ar wrought products.	d practices to be followed by produc	tion on etching of sheets and
Equipment:	Tooling:	
See below		
notify his foreman o on his run record an	erator cannot follow the instructions of supervisor of the problem as well and/or routing sheet. He SHOULD NOT conal techniques without first having s	s, (2) make a note of the problem I take corrective action or alter supervisory permission. The
exception to this rul	e would be emergency action to preven	ent, (a) personal injury, (b) loss
exception to this rul of material, or, (c) Equipment:	e would be emergency action to preven	ent,(a) personal injury, (b) loss
exception to this rul of material, or, (c) Equipment: Etchant mixtureMaster Tank I 34" x 47"	e would be emergency action to prevent equipment damage. Mix prepared by the Chemistry Labor Tank II 30" x 65"	Tank III 38" x 105"
exception to this rul of material, or, (c) Equipment: Etchant mixtureMaster Tank I	e would be emergency action to prevent equipment damage. Mix prepared by the Chemistry Labor Tank II 30" x 65" 2" water - 64,000 c.c.	atory:
exception to this rul of material, or, (c) Equipment: Etchant mixtureMaster Tank I 34" x 47" 2" water - 52,000 c.c. Master Mix - 3,650 c.c. Master Mix as supplied	e would be emergency action to prevent equipment damage. Mix prepared by the Chemistry Labor Tank II 30" x 65" 2" water - 64,000 c.c. Master Mix - 4,550 c.c. by the laboratory will be in 2½ gall pratory when empty. A 4,000 c.c. gra	Tank III 38" x 105" 2" water - 130,000 c.c. Master Mix - 9,100 c.c. on plastic containers. Please
exception to this rul of material, or, (c) Equipment: Etchant mixtureMaster Tank I 34" x 47" 2" water - 52,000 c.c. Master Mix - 3,650 c.c. Master Mix as supplied return them to the labe personnel mixing up tar	e would be emergency action to prevent equipment damage. Mix prepared by the Chemistry Labor Tank II 30" x 65" 2" water - 64,000 c.c. Master Mix - 4,550 c.c. by the laboratory will be in 2½ gall pratory when empty. A 4,000 c.c. gra	Tank III 38" x 105" 2" water - 130,000 c.c. Master Mix - 9,100 c.c. on plastic containers. Please
exception to this rul of material, or, (c) Equipment: Etchant mixtureMaster Tank I 34" x 47" 2" water - 52,000 c.c. Master Mix - 3,650 c.c. Master Mix as supplied return them to the labor personnel mixing up tan CAUTION: ALWAYS POUR A	e would be emergency action to prevent equipment damage. Mix prepared by the Chemistry Labor Tank II 30" x 65" 2" water - 64,000 c.c. Master Mix - 4,550 c.c. by the laboratory will be in 2½ gall pratory when empty. A 4,000 c.c. grades. CID INTO WATER Eisting exhaust hoods Wilgard rubbover safety glasses rubber apron	Tank III 38" x 105" 2" water - 130,000 c.c. Master Mix - 9,100 c.c. con plastic containers. Please aduated cylinder is provided for
exception to this rul of material, or, (c) Equipment: Etchant mixtureMaster Tank I 34" x 47" 2" water - 52,000 c.c. Master Mix as supplied return them to the labor personnel mixing up tan CAUTION: ALWAYS POUR A Tanks and trays with exgloves face shielf of tester and 0-1" microme	e would be emergency action to prevent equipment damage. Mix prepared by the Chemistry Labor Tank II 30" x 65" 2" water - 64,000 c.c. Master Mix - 4,550 c.c. by the laboratory will be in 2½ gall pratory when empty. A 4,000 c.c. grades. CID INTO WATER Eisting exhaust hoods Wilgard rubbover safety glasses rubber apron	Tank III 38" x 105" 2" water - 130,000 c.c. Master Mix - 9,100 c.c. on plastic containers. Please duated cylinder is provided for per gloves 26-675 and small cloth reversely before the containers.

1 ORM # BH-1-A

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number:		Rev:	Page	O
730-975-05.001	.1.		2	1

Equipment Continued:

Respirator with yellow cartridge - Timer with sweep second hand - Baron Blakeslee Degreaser (Model HD-730 with appropriate racks) -- Demineralized water for tank make-ups and rinsing.

1.0 General:

This specification covers the etching of cross-rolled beryllium sheet and extruded products. It's intent is to define procedures and practices to be followed by production of the above products.

2.0 Procedure: (Etching .003 per side)

- 2.1 Make-up etchant tank to formula outlined above.
- 2.2 Obtain production sheet from inspection and record number to retain identity. Ascertain that sheet is within tolerance required before etching.
- 2.3 Put on rubber gloves.
- 2.4 Place a ground piece of beryllium end stock in tank and measure material removed in (5) minutes.
- 2.5 Clean sheet either with zyglo cleaner or by degreasing it in Baron Blakeslee Degreaser.
- 2.6 After the sheet is dry, examine it visually for defects such as pits, pimples, etc. and if defects are found bring it to the attention of the foreman, who should contact the Inspection Department.
- 2.7 Dip acceptable sheet into demineralized water, rinse and then place it into Tank I, II, III in the horizontal position, grasp sheet by edges and move it up an down in the acid. After 1/2 of the time calculated for etching, lift one corner of the sheet and measure it with micrometer. After measuring the sheet turn it over and etch it for the same period of time and measure it again. Repeat this operation until sheet is with specification.
- 2.8 Remove sheet from etching tank and rinse it by dipping several times into the rinse tank until no further action from the acid is seen.
- 2.9 Remove sheet from rinse tank and place on wooden blocks on grating. Wipe off smut using a cloth and lots of water carefully. Turn sheet over and repeat process.
- 2.10 Thoroughly rinse sheet on both sides using the hose with demineralized water.
- 2.11 Transfer sheet to the table where two 2" x 4" grooved wooden blocks are setting. Place long side of sheet in grooves of blocks allowing water to drain.

Rev. by Date Description

FORM # BH-1-A

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Ni.mber:		Rev:	Page	of
730-975-05.001	.1.		1 2	1

- 2.12 Remove gloves and starting at top of sheet use Cadillac hot air blower and traverse towards bottom of sheet until one side is dry.
- 2.13 Using Kimwipes, grab end of sheet and turn it over so reverse side can be dried by repeating step 2.12.
- 2.14 While sheet is still in grooves in wooden blocks, using 0-1 inch micrometer determine thickness of sheet at all four corners and middle of sheet sides. If a .003" per side has been removed, wrap in brown paper and transport to inspection.
- 2.15 If less than .003" per side has been removed, calculate how much was removed in time allowed and place sheet back in tank for appropriate time to remove .003" per side repeating steps 2.14 through 3.1.

Caution; Beryllium sheet is susceptible to stains and precautions must be observed.

- a. Wilgard rubber guards must be worn in handling the sheet and should be kept as clean as possible.
- b. Each time gloves comes in contact with acid, rinse in water after completing the operation being carried out.
- c. If gloves contact the sheet and rub the smut locally do not re-etch until the whole sheet is cleaned of smut as outlines in 2.8 and 2.10, 2.11 and 2.12.

3.0 Maintenance of Etching Bath and Rinse Tank:

3.1 Add acid to the etching baths as follows:

Every shift before etching bring water level up to 2" and add acid as described 3.1.1 below.

3.1.2 After etching the approximate square inches of beryllium sheet as prescribed below add acid as described below:

Tank I: $30'' \times 30'' = 900$ square inches Tank II: $20'' \times 60'' = 1200$ square inches Tank III: $30'' \times 80'' = 2400$ square inches

Rev. by Date	Description	

FORM. # BH-1-A

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Rev: Page of 4 4

In either 3.1 or 3.12 add acid as follows:

Tank I: Master Mix - 600 c.c.

Tank II: Master Mix - 1000 c.c.

Tank III: Master Mix - 1650 c.c.

- 3.2 Demineralized water rinse tank should be dumped twice a week and cleaned out.
- 3.3 When using rinse tank allow a slow stream of water flowing into it to help skim top off.
- 3.4 Obtain production parts from inspection and record number to retain identity. Ascertain that parts are within tolerance.
- 3.5 Put on rubber gloves.
- 3.6 Clean parts with zyglo cleaner.
- 3.7 After the part is dry, examine it visually for defects, such as pits, pimples etc. If defects are found bring to the attention of the foreman, who should contact the Inspection Department.
- 3.8 Dip acceptable part into demineralized water rinse, and then place it into Tank I, II, III in horizontal position. If it is a flat part, allow it to etch for l^1_2 mins., turn it over and etch the other side l^1_2 minutes. If it is round, rotate it in the bath for three minutes.
- 3.9 Remove part from etching tank, rinse it by dipping several times in demineralized water until no further action takes place.
- 3.10 Wipe off smut using a cloth and lots of water.
- 3.11 Rinse in demineralized water.
- 3.12 Dry in air or by use of a hot air dryer.

STANDARD OPERATING PROCEDURE KBI - HAZLETON PLANT

Eddluton 1914173	Prod. Dept. Appr. Date	Number: 730-988-05.001	Rev
Mig. Engr. Appr. / Date	Facil. Engr. Appr. Date	Date Effective: Page September 4, 1973	re of
Ale Fulrmente 9 H/73 Qual. Assur. Appr. Date	Januare Jahr/13	Plant Manager Appr. / 1	Date

Assembly of Extrusion Billets

General Purpose:

To define procedures and pratices to be followed for Assembly of Extrusion Billets

Equipment:

Baron B lakeslee Degreaser (Model HD-730 with appropriate racks) Rubber Gloves Small Cloth Gloves Assembly Table with Exhaust Hood Paper Towels - Zyglo Cleaner 20-7

Tooling:

Steel Stamps Hammer Marking Pen Brown Paper Tape Paint Brushes of various sizes and lengths

If at any time an operator cannot follow the instructions contained herein, he MUST, (1) notify his foreman or supervisor of the problem as well as, (2) make a note of the problem on his run ord and/or routing sheet. He SHOULD NOT take corrective action or alter his required operational techniques without first having supervisory permission. The exception to this rule, of course, would be emergency action to prevent, (a) personal injury, (b) loss of material, or, (c) equipment damage.

1.0 General:

This procedure covers the application of parting compound into various surfaces of extrusion assembly parts and the assembly of same.

2.0 Procedure:

2.1 Parting Compound Mix

PROPRIETARY MIXTURE

Mixture prepared by first mixing the dry powders, then pouring them into lacquer while stirring.

NOTE: The above mixture has attendancy to settle; therefore stir it before and while using it.

ws proprietary information is released for outplant use by:

Official Copies:

Plant Manager

G. Tockto

J. Wambold

J. Atherton

D. Jessel

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number:	Rev:	page	of
730-988-05.001		2	1 2

- 2.2 Obtain beryllium billets, low carbon steel cans and plugswith appropriate paperwork from Inspection.
- 2.3 Place billets, cans and plugs into appropriate degreasing racks and degrease parts. Cool. Zyglo cleaner can be used as an alternative method for cleaning by spraying the article with zyglo and wiping dry with paper towels.
- 2.4 Steel Stamp XT numbers, at least 1/4" high, on plug containing vent hole according to data issued by Production Control.
- 2.5 Mix parting compound as outlined above in 2.1.
- 2.6 Tape inside and outside of can to an approximate depth of 1/4" to prevent parting compound on these surfaces to allow easier and better welded joints.
- 2.7 Apply one coat of parting compound, by brushing, onto surfaces indicated in Table I.
- 2.8 Air dry.
- 2.9 Apply second coat of parting compound.
- 2.10 Air dry.
- 2.11 Check that vent hole is open.
- 2.12 Place beryllium billet inside of can. In case of the "two canned billet," place small diameter tube inside of beryllium billet. Place plugs in both ends, tape to hold.
- 2.13 Wrap in brown paper, mark XT number on paper and tape paper securely.
- 2.14 Take to shipping for shipment to OSV.

TARFT

14 De ...

- 101 -

STANDARD OPERATING PROCEDURE KBI - HAZLETON PLANT

Prepared by Date Prod. Dept Appr. /8/28/75 Mfg. Engr., Appr. / Date Facil. Engr. Appr. / J. S. L. S. Date Qual. Assur. Appr. / Date	//Date - 1/1-11	Number: 1200-000-08.008 Date Effective: 8-28-75 Plant Manager Appr.	Page of 2
Title: Manufacturing process for beryllium bille into an extrusion rotor ADRI 12796-302 or	et ADRI 12795 12839-302 w	5-302 or 12838-302 to be o hichever is applicable.	converted
General Purpose: To provide a manufacturing pro ADRI 12796-302 or 12839-302 is produced from ber (which rotor and billet to be designated on cust	yllium bille	t ADRI 12795-302 or 12838	rotor 3-302
Lagrapment:	Tooling:		

If at any time an operator cannot follow the instructions contained herein, he MUST, (1) notify his foreman or supervisor of the problem as well as, (2) make a note of the problem on his run record and/or routing sheet. He SHOULD NOT take corrective action or alter his required operational techniques without first having supervisory permission. The exception to this rule would be emergency action to prevent, (a) personal injury, (b) loss of material, or, (c) equipment damage.

Department	Oper. #	Description
616	10	Receive billet from supplier.
735	15	Inspect-verify billet to Dwg. ADRI 12795-302 (12838-302).
735	25	Inspect canning components, Items 1,2,3,4 & 5 per KBI Dwg. ZHC-4117 Rev. B.
611	26	Ship to KBI Reading Research Items 2 & 4 of KBI Dwg. ZHC-4117 Rev. B.
KBI Res.		
Dept.	30	Assemble, weld & leak check Items 2 & 4 Dwg. ZHC-4117 Rev. B SOP 614-310-05.003.
KBI Res.		
Dept.	31	Return assembly of Items 2 & 4 to Hazleton.

This proprietary information is released for outplant use by:

See last page

Official Copies;

Flant Manager

Date

I. Assur Field Inut

Originates Days

STANDARD OPERATING PROCEDURE KBI- HAZLETON PLANT

Number: Rev: Page of 2 2

NDI- HAZLE	TON PLANT	
Department	Oper. #	Description
730	40	Assemble Items 1,2,3,4 & 5 per KBI Dwg. ZHC-4117 Rev. B and SOP $614-310-05.003$.
611	41	Ship to KBI Reading Research.
KBI Res. Dept.	50	Weld and leak check assembly per KBI Dwg. ZHC-4117 Rev. B & SOP 614-310-05.003.
KBI Res. Dept.	60	Evacuate assembly and seal off per SOP 614-310-05.002.
KBI Res.		
Dept.	70	Copper spray all over per SOP 614-310-05.002.
735	75	Visual inspection of billet assembly for copper spray coating per KBI Dwg. ZHC-4117 Rev. B.
611	80	Ship to Reactive Metals, Inc., Ashtabula, Ohio referencing P.O. numbers.
OSV	90	Extrude per SOP 614-310-05.001. Identify heat number, nose and tail of extrusion and return to KBI Hazleton.
616	100	Receive extrusion from OSV.
735	105	Inspect for straightness per ABO 170-067 (no. rev.) Para. 3.2.2
730	110	Crop 11" from nose and 33" from tail. Identify with heat number nose and tail on all pieces.
640	120	Declad per SOP 640-999-05.002. Retain identify of nose, tail and heat number on al pieces.
730	121	Color etch per SOP 730-975-05.001.
735	125	Final inspect per ABO-170-067 (no rev.) per Para. 3.2.2; 3.2.3 and exception on attachment A of P.O. (note 2), 3.2.4 and x-ray per note 5 of attachment A of P.O.
611	130	Ship to customer on P.O.

Distribution - HEFuhrmeister - JWambold - JEAtherton - WMarz - SGoldstein

۲		<u>-</u>
Rev. by Date	Description	
	100	

Extrusion Billet Assembly KBI Dwg. ZHC-4117, Rev. B

Appendix D

CSDL Tests Results

68 Albany Street, Cambridge, Massachusetts 02139 Telephone (617) 258- 4095

18 March, 1976

JJM-17

Mr. F. A. Hallock Northrop Corporation Electronics Division 100 Morse Street Norwood, MA 02062

Reference: Northrop P.O. 26907, CSDL Account 70222

Dear Mr. Hallock:

Regarding the above purchase order, you will find enclosed our report on the micro-yield strength of two specimens of extruded beryllium plus the tabluated data.

Very truly yours,

John & McCarthy

JJM/nlc Attachments

CC:

J. Palmieri

J. Stemniski

J. Lanfranchi (Contracts Office)

MICRO-YIELD STRENGTH OF EXTRUDED BERYLLIUM

Purpose

Two specimens of extruded beryllium were tested to determine the 2×10^{-6} offset micro-yield strength.

Results

The values of 2 x 10^{-6} offset micro-yield strength and modulus of elasticity (E) are:

Sample Number	MYS (2 x 10 ⁻⁶ offset) (psi)	E (psi)
1	24,500	42.1 x 10 ⁶
2	16,000	43.0 x 10 ⁶

Specimen Preparation

Specimens were supplied to C. S. Draper Lab machined to drawing SK 740060 (Figure 1). The specimens were tested in the "as-machined" condition; they were not stress relieved or chemically etched.

Two epoxy-backed foil strain gages (Micro-Measurements MA-06-125AD-120) were installed on each specimen. They were located at mid-length, parallel with the center line, and oriented at 180° to each other. The gages were cemented with M-Bond-600 epoxy cement using a pressure and cure schedule recommended by the manufacturer (Micro-Measurements) for transducer applications.

Test Procedure

The tests were conducted on a CSDL-designed lever type testing machine using a standard load-unload method. Strain rate was approximately .025 inches/inch/min. for loading and unloading. Full

Page 2

load was maintained only long enough to record loaded strain (approximately 1 minute). The specimen remained unloaded for 1 to 2 minutes between load increments.

Strain measurements were made by means of BLH Electronics
Model 1200 Digital Strain Indicator. The sensitivity of the
instrument was 1 micro-strain and the maximum apparent drift during
the tests was 2 micro-strain. The two strain gages of the specimen
under test were connected as opposite arms of a full bridge configuration; the gages on the second specimen, which served as a
temperature compensator, completed the bridge. With this arrangement, the indicated strain was equal to twice the average actual strain

The compensating specimen was located in close proximity to the active specimen and both were enclosed in a styrofoam box to reduce temperature fluctuations. The specimens were allowed to equilbrate in temperature for several hours before the test was started; test temperatures were 82° and 78°F, respectively.

Results

The stress-residual strain curves are shown as Figure 2 and 3. The modulus of elasticity was calculated from the elastic portion of the stress-strain curve.

John J. McCarthy Metallurgist

JJM/nlc Attachments

Page 2

load was maintained only long enough to record loaded strain (approximately 1 minute). The specimen remained unloaded for 1 to 2 minutes between load increments.

Strain measurements were made by means of BLH Electronics
Model 1200 Digital Strain Indicator. The sensitivity of the
instrument was 1 micro-strain and the maximum apparent drift during
the tests was 2 micro-strain. The two strain gages of the specimen
under test were connected as opposite arms of a full bridge configuration; the gages on the second specimen, which served as a
temperature compensator, completed the bridge. With this arrangement, the indicated strain was equal to twice the average actual strain.

The compensating specimen was located in close proximity to the active specimen and both were enclosed in a styrofoam box to reduce temperature fluctuations. The specimens were allowed to equilbrate in temperature for several hours before the test was started; test temperatures were 82° and 78°F, respectively.

Results

The stress-residual strain curves are shown as Figure 2 and 3. The modulus of elasticity was calculated from the elastic portion of the stress-strain curve.

John J. McCarthy Metallurgist

JJM/nlc Attachments

SPEC AREA - . 05 Sp. M. DEL TERT CONTRACT 110. 26907 P.E.L. TEST METALLURGY GROUP

SPECIMEN NO. #/ MATERIAL BERYLLIAM S 200 EXTRADED DATE 2/20/76 TECHNICIAN DMS

GAGE FACTOR 2.105 \$ 0.5% GAGE TYPE MA-06-125 AD

TIME	LOAD	STRESS P.S.I.	NO-LOAD S. I. R'DING	LOADED S.I. R'DING	RES. STRAIN	LOADED STRAIN	TEMP.	
					PLASTK	TOTAL		
	6.245	125	25005		0	0		
	-0	1442		24.00.5		1/0:20145		
	50	1,000	2500.5	2458.5	0	49+2-14.5		
	100	2 400	Nive	24095		91:2-45.5		
	100	2,000	2500.5	FIIIS	0	11:2-43.3		
	1,-,	3 040	a selection	2360.5	3.4	V40+2-70		
	150	3,000	2500.B	300.5	0			
	200	4,000		23/3		1875:2-937	EX STATE	
	-	4,000	25005		0			
	250	5,000		22655	100	235+1=	and St	
		3,000	2500.5		0			
	300	6,000		22.18		282 : 2 : 141		
		9	2500-5		0			
	350	7,000		2170.5		330:2=165		
-		/	2500-5		0	03831		Carrier I
	400	1,000	0.2	2123.5	1:2:5	377:2=/88.5	528	
			2501.5				64 01	
	450	9,000	250.	2075.5	1:22.5	425:2212.5	222	
		/	2501.5					
	500	10,000	2501.5	2028.5	/-25	472:2-236		
			2501.3	3 394	/3	ASSESSE	11 2 (3)	
	516	1000		1770		10.8	MAT	

SPECIMEN NO. #/
MATERIAL 5700 BE EXTRUDED
DATE 2/28/76
TECHNICIAN DMS

GAGE FACTOR 2.105 ± 0.5% GAGE TYPE MA-06-125AD

LOAD	PSI	S. I. R'DING	S.I. R'DING	RES, STRAIN	LOADED STRAIN	TEMP.	
				PLASTIC	TOTAL		
550	11,000		19805				
3	/	2501.5		1:25	520:2-260		_
575	11 500		1956.5			81.4	
513	11,500	2501.5	1126.5	1+2= -5	544:1-272	011	
			1932.5				
609	12,000	2501.5	11,12.5	1:2-:5	568:1-184		
			10.00		CG 2 '2		
615	12,500	2501.5	1908.5	1:2:5	592:2-296		
650	13,000	2501.5	1885.5	1 + 2 + 7.5	615+2-307.5		
					1.28		
675	13,500	25015	1859.5		641-2-320.5		
		2501.5		1:2= :5	131		_
700	14,000	45	1835.5		665-2-3325		
		2501	A- 1875	.5:225			_
715	14,500		1811.5		689:2=344.5		
	7	2501		.5: 2.25			
750	15,000		1787.5		713+2=356.5		
750	7	2501		.5+2=.25	\$ 5.5 VI		
775	(5.53)		1764		7345-2-368	2	
113	15,500	2501	707	·5+1=-15			
809	16 400		1738.5		762 - 381	N/ N N	
,	16,000	2500.5	7 20.3	0	7 301		
825	16,500		1714.5		786: 2 = 393		
0-5	16,500	2500.5	114.3	0	100. 2-317	and the same	

SPECIMEN NO. #/
MATERIAL 5200 Be. EXTRNOED
DATE 1/20/74
TECHNICIAN DMS

GAGE FACTOR 2.105 ±0.5% GAGE TYPE MA-06-125 AD

TIME	LOAD	STRESS P.S.I	NO-LOAD S. I. R'DING	LOADED S.I. R'DING	RES. STRAIN	LOADED STRAIN	TEMP.	
					PLASTIC	TOTAL		
	820	17,000		1690.5		810:2-405		
	-	' /	25005		0			
	875	12-12		16655		835:2-417.5	-	
	3/3	17,500	25005	7 002.0	0	177		
	0.0	14 000		16425		858-2-429		
	900	18,000	1500.5	7077.3	0	0.30, 2-4-1		
		500		16180		970 :		
	925	18,500	2500.5	1618.5	0	882:2=441		
				100.15		Callande		
	950	19,000	2500	15945	.5 12 - 25	906-2-453		
-								
	975	19,500	24995	1572.5	1:2-5	928-2-464		
			7/1.5					
	1,000	20,000	2499.5	15515	/+2.5	947:2=474.5	81.5	
	1025					0-		
	1050	20,500	2499.5	15245	1:2:5	976-2=488		
	1050		-111.3					
	1400	21,000	24995	15035	1:2:5	997:2=498.		
	1175							
	MESO	28,500	1.190	1478.5	1+2-15	1012:2-5	11	
	1100		2499.5		7-15			
	isua	22,000	21/00	1458.5		1042:2=5	V	
	1125		2499.5		1:2:5			
	1180	27,500		1437.5		1066 12 = 531	5	
		7	2479		1.5 - 2 75			

SPECIMEN NO. #/
MATERIAL BE S 200 EXTRNOED
DATE 2/20/74
TECHNICIAN DMS

GAGE FACTOR 2.015 + 0.5%

TIME	LOAD	STRESS PSI	NO-LOAD S. I. R'DING	S.I. R'DING	RES. STRAIN	LOADED STRAIN	TEMP.	
					PLASTIC	MIAL		
	1150	23,000		14105		1099:2=545		
	1100	129	2498.5		2-2-1			
	11.7/	22 = 2		12015	a in the	111111111111111111111111111111111111111		
	11/5	23,500	2497.5	13863	3:2 - 1.5	1114:2-557		
			-///					
	1200	24,000		1361.5		1139+2-569	.5	
		,	2497.5		37.5			
	1225	24,500	3,000	13345		1166+2-583		
	1665	14,500	2496.5	757.5	4:2:2			
	10.53			12.2				
	1250	25,000	2495.5	1312.5	5 ÷ 2 = 2.5	1188-2=594		
			24/3.3		3 - 2 - 2.5			
	1275	25,500		1289.5		1211 =2-60	7.5	
		23,3	2495.5		5 - 2 - 2.5			
	1300	26,000		12655		1235:2=617.	5	
	17.	29,00	2494.5	1200	6-2-3			
			<u> </u>					
	1325	26,500	2494.5	12425	6:2=3	1258 - 2 - 62	1	
		27,000	29/4.5		6 - 2 - 5			
	1350.	37,500		12/2.5		1288:2=64	4	
			2493.5		7:2-3.5			
		27,500					_	
	1375	28,000	24925	1191.5	8:2:4	1309:2-65	2.5	
		28,000	7412.5		0:04			
	1400	28,500	- 7	1167.5		1335 +2 = 66	7.5	
			2490.5		10-2=5			
		28,500					77 554 541	assill.
,	425	9.7,500	2.100	1142.5	*	1358:2-679	13	
			2489.5		11+2=5.5			

T.P. # 4876

- 114 -

SPECIMEN NO. # 1

MATERIAL BE \$ 200 EXTRUDED

DATE 2/2/7*

TECHNICIAN DIMS

GAGE FACTOR GAGE TYPE

TIME	LOAD	STRESS	NO-LOAD S. I. R'DING	S.I. R'DING	RES, STRAIN	LOADED STRAIN	TEMP.	
	.0	29,000			PLASTIC	TOTAL		
	1450	39,000		1117.5		1383-2-69	1.5	
			2488.5		12:2-6			
	1	30,500						
	1475		0.67	1091.5	-	1409:2-70	D45	
			2487.5		13:2=6.5			
	1500	30,000		10/35		11177 1217	-	
	120	31,00	2485.5	1063.5	15:2:75	1437 - 2= 7	18.5	
	-	31500	2700.5		15 7 2 7.5			
	1525	34,500		1042.5		1458-12-7	79	
	1000		2483.5	10/200	17 +2-8.5	156 /	-	
		31,000	1 2 3					
	1550	37,000		1010.5		1490:2=7	45	
			2480.5	A State of	20:1-10			
		32,000						
	1600	22,000		962.5		1548-2-7	74	
		,	2478.5		22=7=11			
		33,000					70.12	
	1650	34,000		912	-	1588.5:23	174.2	
			2474.5		26:23			
		34,000		250		16415×2	=0207	
	1700	35,000	1.110-	859	n +cc	16412 × 2	010.	
		,	2469.5		31:275.5			
	1700	35,000		900		1700.5:2	-8502	
	1750	3t,000	2464.5	800	36-2-18	1700.5 72	050.2	
		36,000	2904.3		78.2.70			
	1500	39,000		744		17565 -2	-878.2	
		/	2456.5		44:2:22	1		
		38,000	-,58.2					
	1325	38,000		696			8204	
	1,0,		2448.5		52: 2 = 26	1809.5:2 =	904.7	
P#								

WEIGHT OF LOWER GRIY 6.243 165.

SPEC. DIA. #1 0.2522" GAGE ALEA. #2 0.252 2"

P.E.L.TEST METALLURGY GROUP

SPECIMEN NO. #2 NORTHRUP CONRECT 26907 DATE 2/18/76 # 2 30 -00

GAGE FACTOR 2.105 105% GAGE TYPE MA-06-125AD

T.P. # 4876

2 DO FIRST STEAM INDICATOR READING DECEASES

TIM	E LOAD	STRESS	NO-LOAD S. I. R'DING	LOADED S.I. R'DING	RES. STRAIN	LOADED STRAIN	FEMP. PLASTIC	STRAIN
	NEW H				PLASTIC &	TOTAL		SHALLE
	6.245	125	3400		0	0	0	0
	EKIPS	1,00			DI	VIDE BY 2		
	1	-				<u> </u>		
	25	500	2.1.5.5	3382		18	0	9
-	+	 	3400		0			
	50	1000		3359		41	0	20.5
	130	1000	3400		0	17'		10.5
	75	1500		3336		64	0	32
	1		3400		0			
	1	2000		33/2		00		. ,
	100	2,000	3400	22/2	0	88	0	44
	1	1	2400					
	125	2500		3289		///	0	55.5
4	1/23		3400		0			J.J.
	1-0			2011				
	150	3,000	3401	3266	- 1	134	- 0.5	67
-	1-	1	7401					
	175	3500		3242		158	0	79
	1/3	3300	3400		0			//
		201		72.10			1999	
	200	4000	2001	3219			- 0.5	90.5
-	+	 "	3401		-1	181		70.5
	201	4500		3/97				
	225	7500	3401	2.77	-1	203	-1	101.5
		1000						Mi issui
	250	5000	7 .	3174		226	-/	113
-	-		3401.5		-1.5			
	213	5500		3151		249		124.5
	1	2500	3401.5		-1.5		-/	124.5

- 116 -

GAGE FACTOR 2.105 ± 0.5% SPECIMEN NO. #2 MATERIAL S 200 BELYLLIUM EXTRADED GAGE TYPE DATE 2/18/76
TECHNICIAN DMS

TIME	LOAD	STRESS	NO-LOAD S. I. R'DING	LOADED S.I. R'DING	RES, STRAIN	LOADED STRAIN	TEMP.	TOTAL STRAIL
	300	6000	3401.5	3128	- 1.5	272	-1	136
	325	6500	3401.5	3104	-1.5	293	-1	146.5
	350	7,000	3401.5	3081	- 1.5	319	-1	-159.5
	375	7,500		3057	-1.5	343	-/	171.5
	400	8,000	3401.5	30 3 3	-1.5	367	-1	183.5
	425	8500	3401	3009	-1	391	-0.5	195.5
	450	9,000	3401	2986	-1	414	-0.5	207
	475	9500		2962	0	438	0	219
	500	10,000	3399.5	2939	+.5	461	0	2305
	:385	10,500	3399,5	29/6	+.5	484	0	242
	18	11,000	3 3 9 9.5	2892	+.5	508	0	254
	13.0%	11,500	3399.5	2868	+.5	532	0	266

SPECIMEN NO. #2 MATERIAL S 200 BERYLLIUM EMANDED DATE 2/15/76 TECHNICIAN

GAGE FACTOR GAGE TYPE

TIME	LOAD	STRESS	NO-LOAD S. I. R'DING	S.I. R'DING	RES, STRAIN	LOADED STRAIN	RES. STAM, IEMP. PLASTIC	HOTAL STRAIN
	400	12,000	3398.5	2843	+1.5	557	+1	278.5
	2 241	12,500	3398.5	2819	+1.5	581	+1	290.5
	151	13,000	3398.5	2798	+1.5	602	+/	301
	2.151	13,500	3398	2774	+2	626	+)	3/3
		14,000	3397.5	2748	+2.5	652	+1	326
	E 7 94	14,500	3397	2723	+ 3	677	+1.5	338.5
	ÇOS	15,000	3397	2701	+3	699	+1.5	349.5
	813	15,500	3396.5	2677	+3.5	723	+2	361.5
	2502	16,000	3396	2651	+ 4	749	たる	374.5
	7,7	16,500		2629	+4	77/	*2	385.5
	4724	17,000	3395	2606	+5	794	+ 2.5	397
	992	17,500	33945	2583	+5.5	817	+3	408.5

SPECIMEN NO. #7 MATERIAL 5200 Be EVIRUOED GAGE TYPE

GAGE FACTOR

UAIL	5/11/1	5
	NICIAN	

TIME	LOAD	STRESS	NO-LOAD S. I. R'DING	LOADED S.I. R'DING	RES, STRAIN	LOADED STRAIN	TEMP.	TOTAL
		18,000	3374.5	2556	+5.5	844	+3	422
		18,500	3394	2531	+6	769	+3	4345
		19,000	2293.5 3293.5	2510 3505	+6.5	871	+ 35	445.5
		19,500	3392.5	2492	+7.5	908	+4	454
	2.33	20,000	1392 3392	2482	+8	936	+4	468
	24.7	20,500	3391.5	2438	+8.5	962	+4.5	481
		21,000	3390.5	2413	+9.5	987	+5	493.5
		24,500	3390	2392	+/0	1008	+5	504
	32	22,000	3389.5	2369	+10.5	1031	+5.5	516
365	77	22,500						
	>	23,000	3388.5	2319	+11.5	1081	+6	540.5
		23500						

SPECIMEN NO. TO MATERIAL BE S 200 EXTENDED

GAGE FACTOR
GAGE TYPE

TECHNICIAN DAS

A RES, STRAIN NO-LOAD LOADED LOADED S.I. R'DING TUTAL STRAIN LOAD STRESS S. 1. TIME TEMP. R'DING STRAIN IT C THE 564.5 1129 24,000 2271 +6 3378 112 2218 1182 25,000 591 +7 +13.5 3386.5 2170 1230 615 26,000 77.5 3385 +15 2126 1274 637 27000 +8.5 3383 +17 2075 28,000 1325 664.5 +9.5 3381 +19 29001 2027 686.5 1373 +10.5 3379 +21 1778 1422 711 30,000 +12.5 +24 3375.5 1924 1472 31,000 738 715 3370.5 +29.5 1876 1524 762 32,000 -14.5 3367.5 + 32.5 787.5 1825 1575 33,000 +18.5 33635 +36.5 8135 1627 34,000 +21 33585 +41.5 840.5 1681 35,000 +24.5 3351.5 +48.5

BEST AVAILABLE COPY

T D # AATE

The same of

68 Albany Street, Cambridge, Massachusetts 02139 Telephone (617) 258-

13 April, 1976 JJM-21

Mr. F. A. Hallock Northrop Corporation Electronics Division 100 Morse Street Norwood, MA 02062

Reference: Northrop P. O. 26906, CSDL Account 70221

Dear Mr. Hallock:

Regarding the above purchase order, you will find enclosed our report on the thermal expansion of beryllium and beryllium-oxide samples. Tabulated data is also enclosed.

Very truly yours,

John J. McCarthy Metallurgist

JJM/nlc Attachments

cc:

J. Palmieri

J. Stemniski

J. Lanfranchi

THERMAL EXPANSION OF BERYLLIUM AND BERYLLIUM-OXIDE

FROM 95 TO 210F

Purpose

Thermal expansion was determined as a function of temperature for specimens of beryllium and beryllium-oxide. Values were determined in the radial direction for the beryllium-oxide specimen and in the radial and longitudinal directions for the beryllium specimen.

Results

Coefficients of thermal expansion for the temperature interval 95 to 210F are as follows:

Sample	Coefficient of Thermal Expansion
	(95 to 210F)
Beryllium Oxide	2.91 x 10 ⁻⁶ Per OF
Beryllium (Longitudinal)	7.9 x 10 ⁻⁶ Per °F
Beryllium (Radial)	6.5 x 10 ⁻⁶ Per °F

Expansion is also plotted as a function of temperature.

Specimen Preparation

Specimens were supplied to C. S. Draper Lab in the form of right circular cylinders; they were tested as received. The beryllium specimen was 5/8 inch diameter by 5/8 inch long; the beryllium-oxide specimen was 0.7 inch diameter by 0.3 inch long.

Epoxy-backed foil strain gages (Micro-Measurements MA-06-125AD-120) were used to measure expansion. Two gages were installed on the beryllium specimen, one on the outer diameter with the gage axis parallel to the axis of the cylinder, the other centered on the transverse surface. A single gage was installed on the transverse surface of the beryllium oxide sample. The gages were

bonded with M-Bond-600 epoxy cement; they were wired with a 3-wire arrangement.

Test Procedure

The strain gage method for determining coefficient of expansion is described by W. T. Bean (1). The test specimen of known thermal expansion characteristics was N.B.S. Standard Reference Material 731 (Borosilicate Glass). Strain gages from the same lot were installed on the standard reference material and the specimen under test. An N.B.S. calibrated thermometer was used for temperature measurement instead of individual temperature sensors.

The specimens under test and the standard reference material were tied to the thermometer with the strain gages located close to the bulb. The assembly was immersed in a silicone oil bath which was stirred and temperature controlled by means of a Haake Type EC Thermostat.

The strain gages were connected in a quarter-bridge configuration through a low resistance switch box to a BLH Model 1200 Digital Strain Indicator using a 3-wire hook-up. The specimens were temperature stabilized in the oil bath over night at the first test temperature. Strain gage readings were taken for the standard reference material and the test specimens and the temperature was recorded. The thermostat was then re-set to the next test temperature. The heating rate was approximately 1°F per minute and the test temperature was held constant for 10 minutes before taking readings.

(1) "Linear Thermal Expansion Coefficient of Materials Measured with Strain Gages", W. T. Bean, Strain Gage Readings, Vol. V No. 5; Dec. - Jan. 1962-63.

Using the method described in reference 1, a gage characteristics curve was constructed from the standard reference material strain gage readings. Working from this curve and the apparent strain readings from the test specimens, an expansion curve was constructed for each test specimen. The expansion curves are attached as Figure 1. The coefficient of thermal expansion was calculated from the expansion curve using the following equation:

$$\alpha_{T_1T_2} = \frac{\Delta \operatorname{Strain}_{T_2T_1}}{T_2^{-T_1}}$$

69 1871 158

		-	-	-	100						-	-	-				1	1
				13564	LLIUM 64	BERYLLIUM GAGE #1	BEL	PYLLIU	BERYLLIUM GAGE	7,	86	POST#3	m	DISC	MBS	POST# A	44	
3WI1	BATH TEMP.	STEM TEMP.	CORR.ºF	EXPANSION HIGH LOW		AVE. A EXPANSIONEDPANSION		EX PANSION IGH LOW		AVE. A EXPANSION EXPANSION	EXPAN	EXPANSION IGH LOW	AVE. AVE.	XPANSION	EX PANS ION HIGH LOW		AVE. AVE.	ta index
2.30		35.4	95.7	208	203	803.5 0	1639	1	1638 1638.5	0	721	076	920 920.5	0	2109	2109 2108 2108.5	108.5	0
10.00		326	99.7	810	808	9,5108 6	/636	+	1635 1635.5 - 3	- 3	806	707	707 7075-13	-13	2093	1093 2092 20925-16	1092.5	9/-
NY 10:30		43.0	109.4	817	9/8	816 5 713	1631	1630	16305	8	869	898	845 33	53	2041 2040 20405 -68	20405	5.040	89.
10:50		42.9	1300	824	843	823 823.5 20	1623	+-+	1621 1622	-12	K24 528		8245-96	36	1986	1986 1985 19855 -123	5.586	-123
37.11		54.0	422	829	828	828.5.25	797	16/3	1616 1615 1615.5-23	-23	786	785	285-735-135	135	1936	1936 1935 1935.5 -123	335.5	80%
12:10	9	503	(41.3	836	835	5 835.5 32	7097	+ +	1606 16065 32	.32	233	232	725-188	88/	1876	1875 18755-233	5.528	-333
7/1 1.00		65.3	147.5	839	638	838.5.35	125	551 6	01- 586, 8651 6651	-40	696	51,9	6955 -228	225	1834	1833 1833 5 -275	833.5	-275
1.30		20.8	159.4	342	148	841.5.138	885/	158	1587 13875-51	-57	643	869	222 349 869	37.3	1764 1783 17835 325	1283 1	7835	-325
7.50		76.8	120.2	845 84		14.5.648 4	157	7 157	1572 1576 1576 5-62	79-	592	2.28	598.5 322	322	1734 1732 17325 326	1732 /	7325	376
715		82.2	1800	843	848	3485 45	7957	1566	1566.5-72	-7.2	553	552	550.5 388	388	689/	024 1688 16115 420	511.5	430
2.40		828	1202	854	853	3 853.5 50	1552	15.5	552 1556 15565-82	-87	506	505	505 505 5 415	415	1646 1645 1645.5 463	15/19/	5.549	463
3:10	2	27.8	13.6	857	856	856.5 53	645	11	1548 15485-70	-30	397	497	- 5694	-456	///9/	1610 1405 -498	5.00	864.
004		28.2	210.1	598	863	863.5.760	0,55	1111	1539 1539 5-99	-99	8117	4/3	4135	507	1269 /	1568 1568.5		-540
RT, State CHECK RISTING	1	31.4	70.5	17.5	774	774.5	/634	1633	3 1433.5		0/0/	6001	10075		17/12	Sapre 0411 1455	2905	

	CORR. F TEMP. 1094 129.2 141.3 141.3 141.3 142.5 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800	MBS GLASS BRANSION HIGH LOW CRANSION 4221 4220 42205-0 4211 4210 42205-0 4211 4210 42205-0 4172 4172 4171 4125-49 4172 4172 4172 4175-7-135 3998 3996 3997 -2135 3998 3996 3897 -2135 3950 3948 3849 -3715 3756 3753 37547 -417 3756 3753 37547 -415-8	EXPANSION AVE. A HIGH LOW BY	AVE. A BORDALIS ION EXPANS ION CONTRACTOR AND ION CONTRACTOR AN	EXPANSION HIGH LOW	POST# 3 ON AVE. A ON EXPANSION EXPANSION .	HIGH L	POST#4
--	--	---	--	--	-----------------------	---	--------	--------

Appendix E

Letter from Coors Porcelain Company

COORS PORCELAIN COMPANY

GOLDEN, COLORADO 80401

(303) 279-6565

July 17, 1975

Northrup Nortronics Division of the Northrup Corp. 100 Morse Street Norwood, Mass.

BEST AVAILABLE COPY

Attention: Purchasing Dept.

Gentlemen:

COORS PORCELAIN COMPANY has produced beryllium oxide products for approximately fifteen years. As you might or might not know, the operation has not contributed to profits. To the contrary, it has consistently operated at a loss. In our opinion, as we project raw material costs, the ever increasing need for environment protection and other costs attendent to manufacturing beryllium oxide products, the future looks less and less attractive.

Although we intend to maintain a facility capability to supply our own internal needs - primarily related to our metallizing operation in view of the above, we have decided to discontinue the manufacture of beryllium oxide products for customers other than ourselves just as soon as practicable.

You have been, and we hope you will continue to be, a valued customer of COORS PORCELAIN COMPANY. While we suspect this decision comes as a surprise to you, we want to minimize any potential disruption to your operations. In order to give you time to qualify other sources we will accept any orders you wish to place for products we have manufactured in the past through August 29th. The one condition that we would impose on those orders is that they be scheduled for delivery no later than December 24, 1975.

We regret the fact that it is necessary to drop the product line. It has not been a decision that was made easily. We have, in fact, debated it for a considerable amount of time. Having reached that decision our prime concern now is to minimize the impact on you while

July 17, 1975 Page Two

at the same time achieving our goal of eliminating production of product for outside customers as soon as possible. We hope that approaching it as outlined above will accomplish that goal.

I trust that we will be able to continue the relationship we have enjoyed for many years in serving you in our other product lines.

Very truly yours,

COORS PORCELAIN COMPANY

· C. C. Merdenest

C. E. Nordquist Col

Sales and Marketing

BEST AVAILABLE COPY

Appendix F

Mass. Dept. of Labor Beryllium Notice

BERYLLIUM

HAZARD CLASSIFICATION HIGHLY TOXIC-USE EXTREME PRECAUTIONS WHEN DUST OR FUME IS PRESENT.

GENERAL Beryllium occurs naturally in the mineral beryl, a beryllium aluminum silicate. Metallic beryllium in a pure state is expensive but is employed in guidance control and optical instrumentation, propulsion (solid rocket fuel), structures. X-ray tube windows and certain other nuclear and scientific applications.

Copper-beryllium and other alloys containing up to 5% beryllium are being extensively used for a variety of industrial purposes in automotive products, computers and business machines, electronics, process industries, communication, aerospace, power distribution equipment and in tools and special equipment.

Beryllium oxide is a good conductor of heat and an electrical insulator. It is used in the manufacture of ceramics, in parts for the electronics industry, crucibles and thermal coatings. It finds applications in the nuclear industry and in special individual plastics.

Special beryllium compounds find a minor use in intermetallic compounds, such as organics, chemicals, and at one time was an ingredient of the coating in fluorescent tubing employed for lamps and signs.

The most active beryllium compounds are water-soluble salts, such as the sulfate and the fluoride. Dust and fumes from beryllium metal, beryllium alloys, and finely divided beryllium oxide are also harmful. So far as is known, there is little hazard associated with the handling of the naturally-occurring beryllium mineral, beryl.

HARMFUL EFFECTS (1) PULMONARY

- (A) Acute. A relatively brief exposure to high concentrations of beryllium dust or fume may be followed by sudden shortness of breath, cough, cyanosis, fever, chest pain, and an X-ray picture resembling pneumonia. This acute form of the disease, if not fatal, subsides usually in one to three months. If the worker returns to the same occupational environment, recurrent episodes may ensue.
- (B) Chronic. In the chronic or delayed form of the illness, the symptoms may develop at any time from a few months to years after the last exposure. The onset is gradual, with loss of weight, loss of appetite, shortness of breath, and cough. X-ray films will show a characteristic pattern of nodular changes. The course is protracted and usually but not always progressive. Death in those severely affected and not properly treated follows a period of progressive weight loss, shortness of breath, and heart failure.
 - (2) SKIN. Skin lesions caused by beryllium and certain of its compounds are:
 - (A) Contact dermatitis and skin ulcers.
- (B) Subcutaneous granulomas resulting from beryllium particles penetrating the skin appear as localized small tumors which disappear when the foreign material is removed.
- MAXIMUM ALLOWABLE For continuous exposure over an eight-hour period, two micrograms (0.002 milligram) beryllium per cubic meter of air.
- PROTECTIVE MEASURES All operations giving off dust or fume of beryllium or its compounds should be enclosed or supplied with effective local exhaust ventilation.

Handling of beryllium oxide or beryllium powder should be done in a booth ventilated at not less than 200 cfm. per square foot of opening. If noticeable dust is produced, an enclosed dry box should be used if practicable.

Although the melting of copper-beryllium alloy produces very little beryllium fume a ventilated hood over the furnace is recommended.

High-speed machining operations with beryllium at cut-off wheels, surface grinder and centerless grinders should be enclosed as much as possible and exhaust ventilated at not less than 200 cfm. processing the square foot of opening.

Milling, drilling, polishing and similar machining operations of beryllium should be provided with local exhaust ventilation so as to produce a control velocity of 150 fpm. at the point of operation Beryllium alloys usually do not require special ventilation for machining operations, but dry grinding and polishin processes should be exhausted.

In the grinding of beryllium alloys, the grinding wheel should be hooded it accordance with the bulletin entitled, "Standard Hoods for Grinding, Buffing and Polishing", published by the Division. The air volumes exhausted should be at least 25% greater than those specified for regular grinding.

For operations of short duration involving exposure to beryllium dust, approved air-line respirators or filter-type respirators approved for use against highly toxic dust or fumes may be worn.

MEDICAL CONTROL

Personnel working with beryllium or its compounds should be under close medica supervision, with particular attention to lungs, skin and general health. Once berylliosis of the lungs has been recognized, removal from exposure and, where indicated, steroid therapy are required.

MASSACHUSETTS DEPARTMENT OF LABOR AND INDUSTRIES DIVISION OF OCCUPATIONAL HYGIENE

Appendix G

MESG Final Data Packages (PPD) and AGRI Metrology Measurements

MICRON

	Section and tensors	8	Control	s/N	NAI	//
	Rotor P/N 12504-302 Rev	1 (3-28-75)	ELL	- 100 - 100 - 1		
1)	Major Dia. 405570±.000005	is .4053	570 A	T 68°	0.A.	Date 1-2-76
2)	Minor Dia. 405540+.000010	is .4055	541 A	T :68°	0	1-2-76
3)	Surface Finish	is Not Specif	Fied A	T ·		
4)	Roundness Requirements	is Not Specif	fied A	т. •		
	76/4/0 244		DCASR _	(STEEL)	1-,	2.76

MICRON

		Control S/N NA 14
	Rotor P/N 12504-302 Rev 1	(3-28-75)
1)	Major Dia. 405570±.000005	is .405566 AT 68° AS 2/11/76
2)	Minor Dia. 405540±.000010	is .405540 AT 68 0 AL 2/11/76
3,	Surface Finish	is Not Specified AT °
4)	Roundness Requirements	is Not Specified AT °
		DCASR B/11/76

MICRON

		Control S,	N NA 16
	Rotor P/N 12504-302 Rev		ADEROOM MAN 20 ME WA
1)	Major Dia. 405570±.000005	is . 405568 AT	63° Q.A. Date
	Minor Dia. 405540±.000010	is .405536 AT	68° 1-2-76
3)	Surface Finish	is Not Specified AT	•
4)	Roundness Requirements	is Not Specified AT	•
		DCASR	1-2-76

MICRON

		Control S/N NA 22			
	Rotor P/N 12504-302 Rev 1	(3-28-75)			
1)	Major Dia. 405570±.000005	is .405573	_AT 68	o A. Date 2/1/16	
2)	Minor Dia. 405540±.000010	is .405547	_at 69	· 2/11/16	
31	Surface Finish	is Not Specified	_AT	•	
4)	Roundness Requirements	is Not Specified	_AT	•	
				C The Control of the	
		DCASR		2/11/76	

MICRON

	NA Server	Contro	ol S/N	273
**	Rotor P/N 12504-302 Rev O		_AT <i>68</i> °	O.A. Date 5-7-75
=)(linor Dia. 405540±.000010	is 405540	_AT 68 °	5-7-15
.) 5	Surface Finish	is Not Specified	AT °	NA
:) F	Roundness Requirements	is Not Specified	_AT °	N/A
		DCASE	G 50 (5)15	

MICRON

	Contr	col S/N	Z /6
Rotor P/N 12504-302 Rev	Oriq		
Major Dia. 405570±.000005	is .\$05571	AT 72.5	Q.A. Date 1-31-15
Minor Dia. 405540±.000010	is .405543	AT 72.5 °	1-31-75
Surface Finish	is Not Specified	• TA	
Roundness Requirements	is Not Specified	AT °	
		1	اخت
	DCAS		
			2/4/75

. MICRON

FINAL DATA PACKAGE

	GA II ave tembe	Contr	ol S/N	2 18
	Rotor P/N 12504-302 Rev	Driq		
1.	Major Dia. 405570±.000005	is .405512	AT 72°.	2/21/75
2)	Minor Dia. 405540±.000010	is .405545	_AT 72 °	ap1/75
3)	Surface Finish	is Not Specified	AT °	
4)	Roundness Requirements	is Not Specified	AT °	

DCASR (5) (1-4 2-27-75)

MICRON

FINAL DATA PACKAGE

Control S/N Z- 20

DCASR (511) 4/4/75

				•	
Rotor P/N 12504-302 RevO: Major Dia. 405570±.000005	is 405571	(9 AT 7/	 • F	Q.A.	Date 3-19-75
) Minor Dia. 405540±1000010	is , 403 544 (508)	AT 71		<u> </u>	379-75
) Surface Finish	is Not Specified	_AT	•	NA	
Roundness Requirements	is Not Specified	_AT	•	NA	

Perfect

MICRON

FINAL DATA PACKAGE

		Co	ontrol S/N	2 21	
	Rotor P/N 12504-302 Rev				
	Marian Ria 4055701 000005	365	AT 76	of Q.A.	Date 3-20-15
1)	Major Dia. 405570±.000005	,	,		3-20-15
2;	Minor Dia. 405540+,000010	is .405 538 (4	AT 70	of A	3-20-75
					*
3)	Surface Finish	is Not Specified	TA	° N/A	
4)	Roundness Requirements	is Not Specified	TA	· N/A	
			6		, ,
		I	CASR	4) 4/	4/15

1 Ding (0)

MICRON

FINAL DATA PACKAGE

Rotor P/N 12504-302 Rev	Orig : 568 (567)	69	Q.A. Date
Major Dia. 405570±.000005	is .405573 (Tas)	19 AT 71	of 3-24-15
Minor Dia. 405540+,000010	is .405545 (++7)	AT 7/	oF <u>3-24-75</u>
Surface Finish	is Not Specified	_AT	· N/A -
Roundness Requirements	is Not Specified	_AT	· N/A
	DCASR		4/4/75

Control S/N Z-22

Souther

MICRON

			Contro	ol s/N	223	
	Rotor P/N 12504-302 Rev	Oriq '	95000 A 6 00 0000			
:)	Major Dia. 405570±.000005	i <u>s</u>	.405571	_AT 68°	ACT)	Date <u>5-8-7</u> 5
:)	Minor Dia. 405540±.000010	is	.405545	_AT 68 °	_	5-8-75
	Surface Finish	is Not	Specified	AT °	NA	
٠,	Roundness Requirements	is Not	Specified	O	NA	
			DCASI	R 0515)	693.0

MICRON

FINAL DATA PACKAGE

Control S/N Nocol

	Cavity Assy. Rotor 12700-302 Rev.		
)	Spherical cavities to be aligned	Q.A.	Date
,	concentric with in .000050 At At	-835	2/3/7
)	Visual of index mark		2/1/7
1	-16 on 0.750 Dim.	443	2/3/2
)	.750 Min. Dia 100% Clean Up		2/3/2
)	.005 Clean Up Max	£ 23	2/2/2
)	0.680 +000040	40°3	2/3/7
)	Part Identification and tagging	(3)	2/3/2

DCASR _		_
DATE _	2/4/25	_

MICRON

BEST_AVAILABLE COPY

Control S/N N 0001

1) 2) 3) 5) 5) 6) 7) 9)	Cavity Rotor Plated 126 .406250±000010 Equator Position .00000 Flatness .000002 Symmetry At3 1.0005 4 P: 90°0' ± 0°5' 4 Places Index Mark 90° ± 10° x .050 Max Plating .010 ± .001 Slot Visual of Plating a)	05 <u>+</u> 000003	is 406250 is .000004 is 4/10 000002 is 4/10 000002		DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
14.			Plating Equato		1-2/3/22
			ace and cavity		2/3/72
	c)	4 holes not		0.4	2/3/75
.0)	Roundness 10 u		is	AT °	
			0.000		
			. DCASR		
				2/1/2	LO_UENBANCO
			DATE _	2/4/7)
				Control S/N	1/2001
	Cavity Rotor Plated 120	599-302-3 Re	N/	0.A	
1)	Cavity Rotor Plated 126	599 - 302-3 Re		- ATZLS	. DATE
1)	.406250 ± 000010		is .406250	Q,A	DATE = 3/75
			is .400250	Q,A ATZ2.5°	. DATE
2)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [A:5:.0005] 4 PI	05 ± 000003	is .406250	Q,A AT72.5° AT72.5° AT72.5° AT72.5°	DATE 2/3/75 2/3/75
2) 3) 4) 5)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [A:B: .0003] 4 P: 90°0' ± 0 5' 4 places	05 <u>+</u> 000003	is <u>.400250</u> is <u>.000004</u> is <u>"/w.66602</u>	Q,A AT72.5° AT72.5° AT72.5° AT72.5°	DATE 2/3/75 2/3/75 2/3/75
2) 3) 4) 5)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [2:5:.0005] 4 P) 90°0' ± 0 5' 4 places Index mark 90° ± 10° X.	05 <u>+</u> 000003	is <u>.400250</u> is <u>.000004</u> is <u>"/w.66602</u>	Q,A AT72.5° AT72.5° AT72.5° AT72.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
2) 3) 4) 5) 6)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [A:B:.0005] 4 P1 90°0' ± 0 5' 4 places Index mark 90° ± 10° X050 Max Plating	05 <u>+</u> 000003	is <u>.400250</u> is <u>.000004</u> is <u>"/w.66602</u>	AT 72.5° AT 22.5° AT 22.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [A:B: .0003] 4 P1 90°0' ± 0 5' 4 places Index mark 90° ± 10° X .050 Max Plating .010 ± .001 Slot	05 <u>+</u> 000003 laces .005 to .015	is .400250 is .000004 is \(\frac{w}{\lorentheta}\).00002 is \(\frac{\sqrt{\lorentheta}}{\lorentheta}\).00002	AT 72.5° AT 22.5° AT 22.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
2) 3) 4) 5) 6)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [2:5:.0005] 4 PT 90°0' ± 0 5' 4 places Index mark 90° ± 10° X. .050 Max Plating .010 ± .001 Slot Visual of Plating a)	05 <u>+</u> 000003 laces .005 to .015	is .400250 is .000004 is "/w.00002 is *//w.0005	AT 72.5° AT 72.5° AT 72.5° AT 72.5° AT 72.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [2:5:.0005] 4 PT 90°0' ± 0 5' 4 places Index mark 90° ± 10° X. .050 Max Plating .010 ± .001 Slot Visual of Plating a)	laces 05 ± 000003 1aces 005 to .015 Plate through Continuous F	is .400250 is .000004 is */w.00002 is */w.0005	AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [A:B: .0005] 4 P1 90°0' ± 0 5' 4 places Index mark 90° ± 10° X .050 Max Plating .010 ± .001 Slot Visual of Plating a) b)	D5 ± 000003 Laces .005 to .015 Plate through Continuous F	is .400250 is .000004 is .000004 is .000004 is .000002 is .00002	AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [A:B:.0005] 4 P: 90°0' ± 0 5' 4 places Index mark 90° ± 10° X050 Max Plating .010 ± .001 Slot Visual of Plating a) b)	laces 05 ± 000003 1aces 005 to .015 Plate through Continuous F	is .400250 is .000004 is "/w.00002 is "/w.0005 4 holes Plating Equato ace and Cavity plated	AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry [A:B: .0005] 4 P1 90°0' ± 0 5' 4 places Index mark 90° ± 10° X .050 Max Plating .010 ± .001 Slot Visual of Plating a) b)	D5 ± 000003 Laces .005 to .015 Plate through Continuous F	is .400250 is .000004 is .000004 is .000004 is .000002 is .00002	AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5° AT Z2.5°	DATE 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75 2/3/75

MICRON

	Control	S/N _	MOOZ
Cavity Assy. Rotor 12700-302 Rev.			
Spherical cavities to be aligned		Q.A.	Date
	72 °		2/20/1=
Visual of index mark		<u>(1)</u>	2/26/7
- 16 on 0.750 Dim.	•	(ALL)	2/26/1
.750 Min. Dia 100% Clean Up		1	2/26/7
.005 Clean Up Max		13	2/26/1.
0.680 +000		A ,	2/26/7.
Part Identification and tagging	Record.	a	2/26/

DCASR	(0)	
	05715	
DATE	2-27-75	

MICRON DATA PACKAGE COPY

		Control S/N	NO002
	Cavity Rotor Plated 12699-302-1 Rev	. 0-	. DATE
1)	.406250±000010 is .466250	AT 7/ 0	2/27/7
2)	Equator Position .000005 +000003 is .00000		2/27/7
3)	Flatness .000002 is .00000		2/27/2
4)	Symmetry AIB 1.0005 4 Places is w/w .000	5 60	2/27/
5)	90°0' ± 0°5' 4 Places	73	2/27/2
6)	Index Mark 90° ± 10° x .005 to .015	Cia	2/27/7
7)	.050 Max Plating	1	1 2/25/1
3)	.010 ± .001 Slot	· (1)	2/27/7
9)	Visual of Plating a) Plate through 4 holes	(A)	1 2/27/7
	b) Continuous Plating Equator	or A	
	Slot spot face and cavity	(Cit)	2/27/7
	c) 4 holes not plated	(4-)	2/27/72
0)	Roundness 10 u is <u>w/w 000005</u>	_ AT 7/ ° (35)	2/27/7
	DCASR		
	DATE	OC. D. O'EM DI	
		Control S/N	N0002
	and the second s	alco about the said .	
	Cavity Rotor Plated 12699-302-3 Rev	Q.A.	DATE
1)	.406250 ± 000010 is .406250		2/27/1
2)	Equator Position .000005 + 000003 is .00000		2/27/7
3)	Flatness .000002 is .00000		= 127/7
4)	Symmetry ABL.0005 4 Places is W/W.000	3 3	2/37/7
5)	90°0' ± 0 5' 4 places	-42	2/37/7
6)	Index mark 90° ± 10° X.005 to .015	-(1)	2/27/72
7)	.050 Max Plating	-	2/27/12
8)	.010 ± .001 Slot		2/27/75
9)	Visual of Plating a) Plate through 4 holes	_(A:-)	2/37/2
	b) Continuous Plating Equato		1 0/10/10
	Slot spot face and Cavity	711	- 3/22/12
~1	c) 4 Holes not plated	2520	1/07/7
.0)	Roundness 10 µ is w/w .Ccccc	(3)	
	DCASR	- FECT	
		1315	-
	DATE	2-2	7-75

MICRON

FINAL DATA PACKAGE

Cavity Assy. Rotor 12700-302 Rev.

Spherical cavities to be aligned concentric with in .000050

isual of index mark

16 On 0.750 Dim.

750 Min. Dia 100% Clean Up

.005 Clean Up Max

0.680 +000
-.040

Part Identification and tagging

DATE 4/4/75

Control S/N Noco3

MICRON

				Control	S/N	N0003
	Cavity Rotor Plated 12	699-302-1 Re	v		Q.A.	DATE
11)	.406250 <u>+</u> 000010		is .406258	_ AT 68°	(1)	4-4-75
2)	Equator Position .0000	05±000003	is000002		1	4-4-75
3)	Flatness .000002		is .000002		6	4-4-75
4)	Symmetry [AIB 1.0005] 4 P.	laces	is w/w .0005		AS	4-4-75
5)	90°0' ± 0°5' 4 Places				7	4-4-75
6)	Index Mark 90° ± 10° x	.005 to .015			(A)	4-4-75
7)	.050 Max Plating				(22)	4-4-72
8)	.010 ± .001 Slot		···· · ·		(Ač4)	4-4-75
9)	Visual of Plating a)	Plate through	4 holes		(ALA)	4-4-75
	b)		lating Equator			
	-,		ce and cavity		ASA	4-4-75
	c)	4 holes not			M	4-4-75
.0)	Roundness 10 u	4 Holes hot	is <u>.000005</u>	- AT 100		7.12
,	noundiness to b		1500000)		1	
			DCASR	(c)	8	
			DCHOK _	- 600	/	
			DATE	1/1	1/25	
	•	1				
		•				
		•	•	Control	: .	10003
		•		Control	s/n	10003
	Cavity Rotor Plated 120	699 – 302–3 Re	v		Q.A.	/0003 DATE
1)	Cavity Rotor Plated 126 .406250 <u>+</u> 000010	599-302-3 Re	vis_ <u>-406258</u>	- AT 68 °	2A.	
1)				AT 68°	A.	DATE
	.406250 ± 000010		is <u>.406258</u>	- AT 68 °	A.	DATE 4-4-75
2)	.406250 <u>+</u> 000010 Equator Position .00000	05 ± 000003	is	AT 68 ° AT 68 °	A.	DATE 4-4-75 4-4-75
2)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry A B .0005 4 P	05 ± 000003	is <u>.406258</u> is <u>000002</u> is <u>.000002</u>	AT 68 ° AT 68 °	A.	DATE 4-4-75 4-4-75 4-4-75
2) 3) 4) 5)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry A B 1.0005 4 P: 90°0' ± 0°5' 4 places	05 <u>+</u> 000003	is <u>.406258</u> is <u>000002</u> is <u>.000002</u>	AT 68 ° AT 68 °	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4)	.406250 ± 000010 Equator Position .00006 Flatness .000002 Symmetry A B .0005 4 P 90°0' ± 0 5' 4 places Index mark 90° ± 10° X	05 <u>+</u> 000003	is <u>.406258</u> is <u>000002</u> is <u>.000002</u>	AT 68 ° AT 68 °	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .00006 Flatness .000002 Symmetry A B .0005 4 P: 90°0' ± 0 5' 4 places Index mark 90° ± 10° X .050 Max Plating	05 <u>+</u> 000003	is <u>.406258</u> is <u>000002</u> is <u>.000002</u>	AT 68 ° AT 68 °	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7)	.406250 \pm 000010 Equator Position .00000 Flatness .000002 Symmetry $\boxed{A} \boxed{B} \boxed{.0005} 4$ P: 90°0' \pm 0 5' 4 places Index mark 90° \pm 10° X .050 Max Plating .010 \pm .001 Slot	05 <u>+</u> 000003 laces .005 to .015	is <u>.406258</u> is <u>.000002</u> is <u>.000002</u> is <u>w/w.0005</u>	AT 68 ° AT 68 °	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7)	.406250 \pm 000010 Equator Position .00000 Flatness .000002 Symmetry $\boxed{A} \ \boxed{B} \ \boxed{.0005} \ 4$ P. 90°0' \pm 0 5' 4 places Index mark 90° \pm 10° X .050 Max Plating .010 \pm .001 Slot Visual of Plating a)	05 <u>+</u> 000003 laces .005 to .015	is -406258 is000002 is000002 is000002 4 holes	AT 68 ° AT 68 ° AT 68 °	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7)	.406250 \pm 000010 Equator Position .00000 Flatness .000002 Symmetry $\boxed{A} \boxed{B} \boxed{.0005} 4$ P: 90°0' \pm 0 5' 4 places Index mark 90° \pm 10° X .050 Max Plating .010 \pm .001 Slot	05 ± 000003 laces .005 to .015 Plate through Continuous P	is -406258 is000002 is .000002 is000003 4 holes lating Equator	AT 68° AT 68° AT 68°	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7)	.406250 \pm 000010 Equator Position .00006 Flatness .000002 Symmetry $\boxed{A \mid B \mid .0005}$ 4 P: 90°0' \pm 0 5' 4 places Index mark 90° \pm 10° X .050 Max Plating .010 \pm .001 Slot Visual of Plating a) b)	05 ± 000003 laces .005 to .015 Plate through Continuous P Slot spot fa	is -406258 is000002 is .000002 is _W/w.0005 4 holes lating Equator ce and Cavity	AT 68° AT 68° AT 68°	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry A B .0005 4 P. 90°0' ± 0 5' 4 places Index mark 90° ± 10° X .050 Max Plating .010 ± .001 Slot Visual of Plating a) b)	05 ± 000003 laces .005 to .015 Plate through Continuous P	is -406258 is -000002 is -000002 is w/w.0005 4 holes lating Equator ce and Cavity plated	AT 68° AT 68° AT 68°	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7)	.406250 \pm 000010 Equator Position .00006 Flatness .000002 Symmetry $\boxed{A \mid B \mid .0005}$ 4 P: 90°0' \pm 0 5' 4 places Index mark 90° \pm 10° X .050 Max Plating .010 \pm .001 Slot Visual of Plating a) b)	05 ± 000003 laces .005 to .015 Plate through Continuous P Slot spot fa	is -406258 is000002 is .000002 is _W/w.0005 4 holes lating Equator ce and Cavity	AT 68° AT 68° AT 68°	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry A B .0005 4 P. 90°0' ± 0 5' 4 places Index mark 90° ± 10° X .050 Max Plating .010 ± .001 Slot Visual of Plating a) b)	05 ± 000003 laces .005 to .015 Plate through Continuous P Slot spot fa	is -406258 is -000002 is -000002 is <u>w/w.ooo5</u> 4 holes lating Equator ce and Cavity plated is <u>.000006</u>	AT 68° AT 68° AT 68°	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position .00000 Flatness .000002 Symmetry A B .0005 4 P. 90°0' ± 0 5' 4 places Index mark 90° ± 10° X .050 Max Plating .010 ± .001 Slot Visual of Plating a) b)	05 ± 000003 laces .005 to .015 Plate through Continuous P Slot spot fa	is -406258 is -000002 is -000002 is w/w.0005 4 holes lating Equator ce and Cavity plated	AT 68° AT 68° AT 68°	A.	DATE 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75

MICRON

FINAL DATA PACKAGE

Control S/N N0004

Cavity Assy. Rotor 12700-302 Rev.		
	Q.A.	Date
Spherical cavities to be aligned concentric with in .000050 At 68	A34	4-4-15
and the second of the second o		
Visual of index mark	(Act)	4-4-15
16 on 0.750 Dim.		4-4-75
750 Min. Dia 100% Clean Up	A	
750 Min. Dia 100% Clean Up	(ASA)	4-4-75
.005 Clean Up Max		4-4-75
0.680 +000	_	4.4.75
Part Identification and tagging		W.W. ==
rate identification and tagging		17.73

DCASR		
DATE _	4/4/15	

MICRON

Cavity Rotor Plated 12699-302-1 Rev 1.			•		Control S/N _	N0004
DCASR DATE 1	2) 3) 4) 5) 6) 7) 8)	.406250±000010 Equator Position .0000 Flatness .000002 Symmetry AIE 1.0005 4 P 90°0' ± 0°5' 4 Places Index Mark 90° ± 10° x .050 Max Plating .010 ± .001 Slot Visual of Plating a) b)	05±000003 laces .005 to .01 Plate throug Continuous Slot spot f	is .406.248 is .00000.3 is .00000.2 is w/w.0005 h 4 holes Plating Equator ace and cavity plated	AT 68° AT	DATE 4-4-45 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75 4-4-75
Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010	0)	Roundness 10 L		1s <u>. 000005</u>	- AT 68	
Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010				DCASE	(05,14 8)	
Control S/N <u>Nooo4</u> Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010				· Dansk _	111	/
Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010				DATE	1/4/75	
Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010						
Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010						
Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010						
1) .406250 ± 000010 2) Equator Position .000005 ± 000003 is					- 1 - 1 - /sr	1/2221
					Control S/N _	N0004

MICRON

FINAL DATA PACKAGE

Control S/N NO005

	Cavity Assy. Rotor 12700-302 Rev.		
		Q.A.	Date
	Spherical cavities to be aligned concentric with in .000050 .000010 At 68	(AGI)	5-9-75
	Concentrate with in .000050	-	
	Visual of index mark	(ALA)	5-9-75
•	16 on 0.750 Dim.	ASA)	5-9-75
	.750 Min. Dia 100% Clean Up	ACA	5-9-15
	.005 Clean Up Max		5-9-75
	0.630 +000	164	5-9-75
	Part Identification and tagging		5-9-75

MICRON

		N0005
2) Equator Position .000005±000003 is .000005 2) Flatness .000002 is .000002 4) Symmetry AIB 1.0005 4 Places is Who.0005 3) 90°0° ± 0°5° 4 Places 4) Index Mark 90° ± 10° x .005 to .015 7) .050 Max Plating 3) .010 ± .001 Slot 9) Visual of Plating a) Plate through 4 holes .b) Continuous Plating Equator Slot spot face and cavity	AT 68	DATE 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75
c) 4 holes not plated is .000007	ATT (CO ATT)	5-9-75
is <u>.000007</u>	HI 68 (30)	5-9-75
DCASR	(6.54	7
DATE	C9 MAY 1975	
Co	ontrol S/N	N0005
Cavity Rotor Plated 12699-302-3 Rev 1) .406250 ± 000010 is .406245 2) Equator Position .000005 ± 000003 is .000003 3) Flatness .000002 is .000002 4) Symmetry AIBI.0005 4 Places is W/w .0005 1) 90°0' ± 0 5' 4 places 7 Index mark 90° ± 10° X.005 to .015 80000 Nax Plating 9000 1 ± .001 Slot 1) Visual of Plating a) Plate through 4 holes 810 Continuous Plating Equator 810 Slot spot face and Cavity 810 Continuous Plated 1000000 1	AT 68 ° (ASA) AT 68 ° (ASA) AT 68 ° (ASA) (ASA)	DATE 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75

MICRON

FINAL DATA PACKAGE

Cavity Assy. Rotor 12700-302 Rev. Q.A. Date) Spherical cavities to be aligned concentric with in .000050 .000010) Visual of index mark 5-9-75 16 On 0.750 Dim. 5-9-75 .750 Min. Dia 100% Clean Up 5-9-75 .005 Clean Up Max 5-9-75 0.680 +000 5-9-75) Part Identification and tagging 5-9-75

DCASR		
	(0.0)	
DATE	09 MAY 1975	

Control S/N NOOO6

MICRON

		NOOCE
(a) (b) (c) (d) (d) (d) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	Cavity Rotor Plated 12699-302-1 Re .406250±000010 Equator Position .000005±000003 Flatness .000002 Symmetry AIE 1.0005 4 Places 90°0' ± 0°5' 4 Places Index Mark 90° ± 10° x .005 to .015 .050 Max Plating .010 ± .001 Slot Visual of Plating a) Plate through 4 holes b) Continuous Plating Equator Slot spot face and cavity c) 4 holes not plated Roundness 10 u is000005 AT 68°	DATE 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75
	DOLOR.	
	DCASR	
	DATE	
	DATE	
	Control S/N	
		NODOG
		N0006
1) 2) 3) 4) 5) 5) 5) 8)	Cavity Rotor Plated 12699-302-3 Rev .406250 ± 000010 is .406243 AT 68° A Equator Position .000005 ± 000003 is .600004 AT 68° A Flatness .000002 is .600002 AT 68° Symmetry AIBI.0005 4 Places is W/A.0005 90°0' ± 0 5' 4 places Index mark 90° ± 10° X.005 to .015 .050 Max Plating .010 ± .001 Slot Visual of Plating a) Plate through 4 holes b) Continuous Plating Equator Slot spot face and Cavity c) 4 Holes not plated Roundness 10 µ DCASR	A. DATE 5-9-75 5-9-75 5-9-75
2) 3) 4) 5) 5) 7) 8)	Cavity Rotor Plated 12699-302-3 Rev .406250 ± 000010 is .406243 AT 68° A Equator Position .000005 ± 000003 is .600004 AT 68° A Flatness .000002 is .600002 AT 68° A Symmetry A B 1.0005 4 Places is w/w.0005 90°0' ± 0 5' 4 places Index mark 90° ± 10° X.005 to .015 .050 Max Plating .010 ± .001 Slot Visual of Plating a) Plate through 4 holes b) Continuous Plating Equator Slot spot face and Cavity c) 4 Holes not plated Roundness 10 \(\mu \) is \(\textit{po00005} \) AT 68° \(\textit{A} \)	A. DATE 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75 5-9-75

MICRON

		Contro	1 S/N NA	0007
		(NA 1 7	NA9)
	Cavity Assy. Rotor 12700-302 Rev/			
	Sphorical cavition to be aliened		Q.A.	Date
	Spherical cavities to be aligned concentric with in .000050 W/w .000010 At	68°		1-2-76
	Visual of index mark		AGE .	1-2-76
	16 on 0.750 Dim.			1-2-76
-	.750 Min. Dia 100% Clean Up			1-2-76
	.005 Clean Up Max			1-2-76
	0.680 +000040			1-2-76
	Part Identification and tagging		<u>ACA</u>	1-2-76

	()	
DCASR _	0515	
DATE	1-2-76	

MICRON

		FINAL DATA	PACKAGE			NA 0007
				Control		NA-1
				CONCLOS	3/N	
	Cavity Rotor Plated	12699-302-1	Rev 2/3-28-75	-)	Q.A.	DATE
1)	.406250±000010		is .406254	,	- /:	1-2-76
2)	Equator Position .00	0005+000003	is .000001		morning the day house	1-2-76
3)	Flatness .000010 conve	x	is W/W 104" CON		e	1-2-76
4)	Symmetry AIE 1.0005 4	Places.	is W/W .0005		>	1-2-76
5)	90°0' ± 0°5' 4 Places				<	1-2-76
6)	Index Mark 90° ± 10°	x .005 to .03	15		11.	1-2-76
7)	.050 Max Plating				10	1-2-76
3)	.005 ±.001		• •		·	1-2-76
9)	Visual of Plating a	Plate through	gh 4 holes			1-2-76
	b) Continuous	Plating Equato	r	^	
		Slot spot i	face and cavity		(1)	1-2-76
	c.	4 holes not	plated ,		(4)	1-2-76
10)	Roundness 10 u.		is NA	AT	0 ,	1-2-76
				250	ice;	STEED SELVER
			DCASR			
			DATE	/.	-2-76	
			DATE			
	Cavity Rotor Plated	12699-302-3		Control	s/n _/	
11	Cavity Rotor Plated :	12699-302-3 I	Rev 2 (3-28-7	Control	s/n _/	DATE
1)	.406250 ± 000010		Rev 2 (3-28-7- is 4062524	Control	s/n _/	DATE 1-2-76
2)	.406250 ± 000010 Equator Position .000	0005 <u>+</u> 000003	Rev 2 (3-28-7- is 4062574 is 000006	Control AT 68 AT 68	S/N _/	DATE 1-2-76 1-2-76
2)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex	0005 <u>+</u> 000003	Rev 2 (3-28-7- is 406257 is 000006 is 4/10/10/10/10/10/10/10/10/10/10/10/10/10/	Control AT 68 AT 68	S/N _/	DATE 1-2-76 1-2-76 1-2-76
2) 3) 4)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry AIB [.0005] 4	0005 <u>+</u> 000003	Rev 2 (3-28-7- is 4062574 is 000006	Control AT 68 AT 68	S/N _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry AB .0005 4 90°0' ± 0 5' 4 places	0005 <u>+</u> 000003 Places	Rev 2 (3-28-7- is .406254 is .000006 is w/w.out.to.	Control AT 68 AT 68	S/N _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry [A]B[.0005] 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10°	0005 <u>+</u> 000003 Places	Rev 2 (3-28-7- is .406254 is .000006 is w/w.out.to.	Control AT 68 AT 68	S/N _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry AB .0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating	0005 <u>+</u> 000003 Places	Rev 2 (3-28-7- is .406254 is .000006 is w/w.out.to.	Control AT 68 AT 68	S/N _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001	Places x.005 to .019	Rev 2 (3-28-7- is .406254 is .000006 is 4/1016 told is 4/10005	Control AT 68 AT 68	S/N _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry AB .0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001 Visual of Plating a	Places x.005 to .019	Rev 2 (3-28-7- is .406357- is .000006 is \(\frac{1}{1} \text{N.0005} \) is \(\frac{1}{1} \text{N.0005} \)	Control AT 68 AT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001	Places X.005 to .019 Plate through	Rev 2 (3-28-7- is .4062574 is .000006 is \(\frac{1}{10000000000000000000000000000000000	Control AT 68 AT 68 AT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001 Visual of Plating a	Places X.005 to .019 Plate through Continuous Slot spot	Rev 2 (3-28-7) is 4061524 is 000006 is 400005 is 40005	Control AT 68 AT 68 AT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001 Visual of Plating a b	Places X.005 to .019 Plate through Continuous Slot spot	Rev 2 (3-28-7) is 4061574 is 000006 is 400005 is 40005	Control AT 68 AT 68 AT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001 Visual of Plating a	Places X.005 to .019 Plate through Continuous Slot spot	Rev 2 (3-28-7- is .4063574 is .000006 is W/W.0005 is W/W.0005	Control AT 68 AT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001 Visual of Plating a b	Places X.005 to .019 Plate through Continuous Slot spot	Rev 2 (3-28-7) is 4061574 is 000006 is 400005 is 40005	Control AT 68 AT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001 Visual of Plating a b	Places X.005 to .019 Plate through Continuous Slot spot	Rev 2 (3-28-7- is .406254 is .000006 is .000006 is .00005 gh 4 holes Plating Equato face and Cavity t plated is	Control AT 68 AT 68 WEAT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position .000 Flatness .000010 convex Symmetry ABL.0005 4 90°0' ± 0 5' 4 place: Index mark 90° ± 10° .050 Max Plating .005 ±.001 Visual of Plating a b	Places X.005 to .019 Plate through Continuous Slot spot	Rev 2 (3-28-7- is .406254 is .000006 is .000006 is .00005 gh 4 holes Plating Equato face and Cavity t plated is	Control AT 68 AT 68 WEAT 68	s/n _/	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76

MICRON

	Contro	I S/N	1000
		(NA 4 9	(NA12-)
	Cavity Assy. Rotor 12700-302 Rev/		
		Q.A.	Date
11	concentric with in .000050 w/w .000010 At _68		1-2-7/
2)	Visual of index mark	1	1-2-7
3)	16 on 0.750 Dim.	<u></u>	1-2-7
4)	.750 Min. Dia 100% Clean Up		1-2-7
5)	.005 Clean Up Max		1-2.7
6)	0.680 +000	<u></u>	1-2-71
7)	Part Identification and tagging		1-2-7

DONCE	500	
DCASR _		
DATE _	1-2-76	

. MICRON

		•	FINAL DATA	PACKAG	E			NA 0008
						Control	S/N	NA-4
1) 2) 3) 4) 5) 6) 7) 8) 9)	Cavity Rotor Plate .406250±000010 Equator Position . Flatness .000010 Symmetry A B .0005 90°0' ± 0°5' 4 Place Index Mark 90° ± 1 .050 Max Plating .005 ± .001 Visual of Plating Roundness 10 u	0000 eow v] 4 P ces 0° x	05 <u>+</u> 000003 cx laces	is 4 is wind i	Equator cavity	AT 68 AT 68 WAT 68	0	DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76
						Control	s/N _	NA 0008 NA - 12
	Cavity Rotor Plates. 406250 ± 000010 Equator Position Flatness 000010 C Symmetry AB 0005 90°0' ± 0 5' 4 place Index mark 90° ± 1 050 Max Plating 005 ± 001 Visual of Plating	0000 0.00 4 P.	05 <u>+</u> 000003 × laces	is wind in the second is a second in the second in the second in the second is a second in the second in t	3-28-75) 406246 000005 1104 Conv. N.0005 Equator Cavity	AT 68 AT 68 EXAT 68	Q.A.	
2) 3) 4) 5) 6) 7) 8)	.406250 ± 000010 Equator Position Flatness 000010 C Symmetry A B 1.0005 90°0' ± 0 5' 4 place Index mark 90° ± 1.050 Max Plating 005 ± .001	00000 000000 00000000000000000000000	05 ± 000003 x laces .005 to .015 Plate through Continuous P: \$10t spot face	is wind in the control of the co	3-28-75) 406246 000005 100 Conv N . 0005	AT 68 AT 68 EXAT 68	Q.A.	NA - 12 DATE 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76 1-2-76

MICRON

FINAL DATA PACKAGE

Control S/N

(NA 2 & NA 10 Cavity Assy. Rotor 12700-302 Rev. 1 (3-28-75) Spherical cavities to be aligned . w/w 000010 1) Visual of index mark 16 on 0.750 Dim. .750 Min. Dia 100% Clean Up .005 Clean Up Max 5) 0.680 +000 6) Part Identification and tagging 7) 8) 1000 megohms min. test DCASR

MICRON

			FINAL DATA	A PACKAGI	E			111 0000
					(Control		NA 0009 NA 2
	Cavity Rotor Plate	ed 126	99-302-1	Rev 2 (3-		control	O A	. DATE
1)	.406250+.000010	4 120	55-502-1		406258	AT 68		2/11/16
2)	Equator Position .	.00000	5+.000003		000005		· ////	2/11/16
3)	Flatness .000010				V JOH CONVE			
4)	Symmetry A B .0005		aces				(1:4)	2/11/76
5)	90°0' ± 0°5' 4 Pla						(N)	2/11/16
6)	Index Mark 90° ± 1	LO° x	.005 to .0	15			(ACA)	2/11/76
7)	.050 Max Plating						(A54)	2/11/76
8)	$.005 \pm .001$ Slot						(ASU)	2/11/76
9)	Visual of Plating		Plate through	_			(A64)	2/11/16
			Continuous		-		M	11.6
			Slot spot				NOW.	2/11/16
10)	Roundness 10 u	c)	4 holes no	t plated	NIA	λT	(A64)	- 2/11/16
10)	Roundless to u			15	~ [4	- 11		
					DCASR			
					DATE			
								NA 0009
						Control	s/N	NA 0009 NA 10
	Cavity Rotor Plate	ed 126	99-302-3	Rev 2 (3			Q.A	
1)	Cavity Rotor Plate	ed 126	99-302-3			AT 68	. 0,4	NA 10
1)				is	3-28-75) 406258	AT 68 AT 68	· 24	NA 10
	.406250 + 000010 Equator Position . Flatness .000010	.00000	5 <u>+</u> 000003	is is	3-28-75) 406258 000005	AT 68 AT 68	· 24	NA 10 DATE 2/11/76
2) 3) 4)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry A B .0005	.00000	5 <u>+</u> 000003	is is	3-28-75) 406258	AT 68 AT 68	· 24	NA 10 DATE 2/11/76 2/11/76
2) 3) 4) 5)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB .0005 90°0' ± 0 5' 4 pla	.00000 3 4 Pl	05 <u>+</u> 000003	is is is is	3-28-75) 406258 000005	AT 68 AT 68	· 24	NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB .0005 90°0' ± 0 5' 4 pla Index mark 90° ± 1	.00000 3 4 Pl	05 <u>+</u> 000003	is is is is	3-28-75) 406258 000005	AT 68 AT 68	· 24	NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB.0005 90°0' ± 0 5' 4 pla Index mark 90° ± 1 .050 Max Plating	.00000 3 4 Pl	05 <u>+</u> 000003	is is is is	3-28-75) 406258 000005	AT 68 AT 68	· 24	NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8)	.406250 \pm 000010 Equator Position . Flatness .000010 Symmetry AB .0005 90°0' \pm 0 5' 4 pla Index mark 90° \pm 1 .050 Max Plating .005 \pm .001 Slot	.00000 5 4 Pl aces 10° X.	05 <u>+</u> 000003 aces 005 to .01	isisisisis	3-28-75) 40G258 000005 10M CONVEN V 0005	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB.0005 90°0' ± 0 5' 4 pla Index mark 90° ± 1 .050 Max Plating	.00000 5 4 Pl aces 10° X.	05 <u>+</u> 000003 aces 005 to .01	isisisisis	3-28-75) 406258 000005 104 CONVO	AT 68 AT 68	· 24	NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8)	.406250 \pm 000010 Equator Position . Flatness .000010 Symmetry AB .0005 90°0' \pm 0 5' 4 pla Index mark 90° \pm 1 .050 Max Plating .005 \pm .001 Slot	.00000 5 4 Pl aces 10° X.	aces 005 to .01 Plate throw	isisis	8-28-75) 406258 000005 100 (00005 0 0005 es	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8)	.406250 \pm 000010 Equator Position . Flatness .000010 Symmetry AB .0005 90°0' \pm 0 5' 4 pla Index mark 90° \pm 1 .050 Max Plating .005 \pm .001 Slot	.00000 5 4 Pl aces 10° X.	aces 005 to .01 Plate throughout Continuous Slot spot	isisis	8-28-75) 406258 000005 100 (00005 0 0005 es	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB.0005 90°0' ± 0 5' 4 pla Index mark 90° ± 1 .050 Max Plating .005 ± .001 Slot Visual of Plating	.00000 5 4 Pl aces 10° X.	aces 005 to .01 Plate throw	isisis	8-28-75) 406258 000005 100 (00005 0 0005 es	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8)	.406250 \pm 000010 Equator Position . Flatness .000010 Symmetry AB .0005 90°0' \pm 0 5' 4 pla Index mark 90° \pm 1 .050 Max Plating .005 \pm .001 Slot	.00000 5 4 Pl aces 10° X.	aces 005 to .01 Plate throughout Continuous Slot spot	isisis	8-28-75) 406258 000005 100 (00005 0 0005 es	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB.0005 90°0' ± 0 5' 4 pla Index mark 90° ± 1 .050 Max Plating .005 ± .001 Slot Visual of Plating	.00000 5 4 Pl aces 10° X.	aces 005 to .01 Plate throughout Continuous Slot spot	isisis	8-28-75) 406258 000005 100 (00005 0 0005 es	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB.0005 90°0' ± 0 5' 4 pla Index mark 90° ± 1 .050 Max Plating .005 ± .001 Slot Visual of Plating	.00000 5 4 Pl aces 10° X.	aces 005 to .01 Plate throughout Continuous Slot spot	isisis	8-28-75) 406258 000005 104 CONVEY 0005 Equator Cavity N/A DCASR _	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76
2) 3) 4) 5) 6) 7) 8) 9)	.406250 ± 000010 Equator Position . Flatness .000010 Symmetry AB.0005 90°0' ± 0 5' 4 pla Index mark 90° ± 1 .050 Max Plating .005 ± .001 Slot Visual of Plating	.00000 5 4 Pl aces 10° X.	aces 005 to .01 Plate throughout Continuous Slot spot	isisis	8-28-75) 406258 000005 100 CONVEY 0 0005 Equator Cavity N/A	AT 68 AT 68		NA 10 DATE 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76 2/11/76

MICRON

			Contro	ol S/N	14 0010
				(NA3 ;	NA 11)
	Cavity Assy. Rotor 12700-302 Rev. 1 (3-28-75)				
1)	Spherical cavities to be aligned concentric with in .000050 W/W 0000/0	At	68 °	Q.A.	2/11/26
2)	Visual of index mark			A64	2/11/76
3)	16 on 0.750 Dim.			A64)	2/11/76
4 ,	.750 Min. Dia 100% Clean Up			AGA	2/11/76
5)	.005 Clean Up Max			(A64)	2/11/76
6)	0.680 +000040			A64	2/11/70
7)	Part Identification and taggi			AG4	2/11/76
8)	1000 megohms min. test		~	AGA	2/11/76
	DCASR _	(0)	8 612	144 F 700 700	
	DATE	2/11/	76		

MICRON

FINAL DATA PACKAGE

NA 0010

	Control S/N NO.3
1) 2) 3) 4) 5) 6) 7) 8)	Cavity Rotor Plated 12699-302-1 Rev 2 (3-28-75)
9)	Visual of Plating a) Plate through 4 holes b) Continuous Plating Equator Slot spot face and cavity c) 4 holes not plated
10)	Roundness 10 u is N/A AT °
	DCASR
	DATE
	Control S/N
1) 2) 3) 4) 5) 6) 7) 8) 9)	Cavity Rotor Plated 12699-302-3 Rev 2 (3-28-75) .406250 ± 000010 Equator Position .000005 ± 000003 is
	DATE 2/11/7 6

STATE OF CALIFORNIA MEASUREMENT SYSTEM

METROLOGY LABORATORY DATA REPORT

ITEM Nortronics Cavities & Roto	NUMBER N	Toted
SUBMITTED BY H. Bump	DEPT244	
TB410. @ 680F		
CHARACTERISTIC	TOLERANCE	MEASUREMENT
Spherical Diameter		
A0001 Cavity 12699-302-1	$.406250 \pm .000010$ in.	.406259 in.
Cavity 12699-302-3	$.406250 \pm .000010$ in.	.406259 in.
Cavity N-1	.406250 ± .000010 in.	.406272 in.
Rotor #7	.405650 \pm .000010 in.	.405648 in.
Rotor #2	Not Specified	.405572 in.
7-16		. 405572
Equator Location		.405522
Cavity 12699-302-1	000005 ± .000003 in.	+.000006 in.
Cavity 12699-302-3	000005 ± .000003 in.	+.000006 in.
Cavity N-1	000005 ± .000003 in.	.000000 in.
Sphericity		
Cavity 12699-302-1	.000003 in. TIR	.000005 in. TIR
Cavity 12699-302-3	.000003 in. "	.000003 in. "
Cavity N-1	.000003 in. "	.000002 in. "
Rotor #2 Rotor #7 COMMENTS:	.000005 in. "	.000003 in. TIR Max
Sphericity meets requirements of	000010 inch allowable Bell	mouth

JOB NU	MBER:	
DATE: _	2-26-75	
PAGE _1	_OF _2	

G. Kuhn
K. Lund the Tunk

STATE OF CALIFORNIA MEASUREMENT SYSTEM

METROLOGY LABORATORY DATA REPORT

	ITEM	NUMBER		
	SUBMITTED BY	DEPT		
	CHARACTERISTIC	TOLERANCE	MEASUREMENT	
	Flatness		to paterioral teatrories	
/NA0001	Cavity 12699-302-1 Cavity 12699-302-3	.000010 in.	.000003 in.	
	Cavity 12699-302-3	es 620000 - "0.053000.	.000002 in.	
	N-1 Cavity	n	.000002 in.	
	• 10 10000			
	Roundness	Not specified		
	Z-16 Rotor			
	Over wires		.000012 in.	
	90° to wires		.000006 in.	
		a second	2.00000 (1940)	
	COMMENTS:			
	JOB NUMBER:		as restore dos	
	DATE:	PREPARED BY		
	PAGE 2 OF 2	VERIFIED	BY	

STATE OF CALIFORNIA MEASUREMENT SYSTEM

METROLOGY LABORATORY DATA REPORT

TEM Nortronics Cavit	ies & Rotor	Rotor NUMBER		Noted	
SUBMITTED BY H. B	ump	DEPT	244		
CHARACTERISTIC	. TOL	ERANCE	. MEASUR	EMENT	
Spherical Diameter		•			
Cavity N0002-1	.406250	± .000010 in.	.406255 i	n.	
Cavity N0002-3	.406250	± .000010 in.	.406260 i	n.	
Rotor Z18	Not Speci	fied			
Maximum			. 405565 i	n. ,	
Minimum	maling	1000	.405549 i	n.	
Equator Location		*			
Cavity N0002-1	000005	± .000003 in.	+.000002 i	n.	
Cavity N0002-3	0 00005	= .000003 in.	000004 i	n.	
Sphericity					
Cavity N0002-1	.000003	in.	.000003 i	n.	
Cavity N0002-3	.000003	in.	.000005 i	n.	
Flatness					
Cavity N0002-1	0.000010	in.	.000005 i	n.	
Cavity N0002-3	0.000010	in.	.000003 i	n.	
COMMENTS:					
*Cavity set (N0002-1 an	d N0002-2) was f	ound to have	nickel plate on t	he hack	

*Cavity set (N0002-1 and N0002-2) was found to have nickel plate on the back side of the cavity halves. The nickel plating extends thru the cavity holes and would cause electrode short circuit to ground.

H. L. Bump 3/20/75

JOB NU	MBER:	
DATE:	03-18-75	_
PAGE _	1 OF 2	

PREPARED BY G. Kuhn
VERIFIED BY

950. A. 7 RFV 2/77

^{*}Same observation made on first cavity set N0001.

ITEM Nortronics Cavities &	Rotor	NUMBER	Noted		
SUBMITTED BY H. Bump		DEPT	244		
CHARACTERISTIC	TOLE	RANCE		MEASUREMEN	T
Roundness					
Rotor Z-18 Over wires	,				
Position 1				000010 :-	
Position 2				.000019 in.	
90° to wir				.000002 in.	
COMMENTS:					
•					
JOB NUMBER:					
DATE: 03-18-75		PREPARE	D BY	G. Kuhn	
PAGE 2 OF 2		VERIFIED		Columb	

METROLOGY LABORATORY DATA REPORT

CHARACTERISTIC TOLEI Spherical Diameter Mot Special Maximum Minimum COMMENTS:	RANCE	.40	ASUREMENT 15542 15522
Maximum Minimum	fied		
Minimum			
OMMENTS			
ONNENTS:			
ONNENTS:			
OMMENTS:	,		
O.M. III WIS			
OB NUMBER:			

PAGE _1_0F _1

METROLOGY LABORATORY DATA REPORT

ITEM Northrup Cavities and I	Rotors NUMBER _	Noted		
SUBMITTED BY H. Bum	DEPT	244		
CHARACTERISTIC	TOLERANCE		MEASUREMENT	
Spherical Diameter	*		Angella (Alexandra)	
Cavity N005-1	.406250 ± .000010 in.		.406246 in.	
Cavity N005-3	.406250 ± .000010 in.		.406246 in.	
Cavity N006-1	.406250 ± .000010 in.		.406247 in.	
Cavity N006-3	.406250 ± .000010 in.		.406246 in.	
Master #7	Not Specified		.406265 in.	
BeO Master	Not Specified		.406258 in.	
Rotor Z23	Not Specified			
Maximum			.405563 in.	
Minimum			.405532 in.	
Rotor Z13				
Maximum			.405560 in.	
Minimum			.405532 in.	
Equator Location				
Cavity N005-1	000005 ± .000003 in.		000004 in.	
Cavity N005-3	000005 ± .000003 in.		000001 in.	
Cavity N006-1	000005 ± .000003 in.		000001 in.	
COMMENTS: All measuremen	ts corrected to 68°F.			

JOB NUMBER:

DATE: 5-15-75

PAGE 1 OF 3

PREPARED BY G. Kuhn
VERIFIED BY

ITEM Northrup Cavi	ities and Re	otors	NUMBER	Noted		
	H. Bump		DEPT	244		
CHARACTERIST	ric .	TOI	LERANCE		MEASUREME	NT
Equator Location						
Cavity N006-3		000003	5 ± .000003 in.		000002 in.	
Master #7		000005	5 ± .000003 in.		+.000007 in.	•
BeO Master	*	000000	± .000003 in.		000007 in.	
Sphericity						
Cavity N005-1		. 00	00003 in.		.000003 in.	
Cavity N005-3			00003 in.		.000002 in.	
Cavity N006-1,			00003 in.		.000002 in.	
Cavity N006-3		.00	00003 in.		.000002 in.	
Roundness Rotor Z-23		No	t Specified			
Over Wires Position 1					.000014 in.	
Position 2					.000014 in.	
90° to Wires					.000002 in.	
COMMENTS:						
JOB NUMBER:						
DATE: 5-I5-75 PAGE 2 OF 3					G. Kuhn	
PAGE 2 OF 3			¥ 1/1(11 / 11.		144	

UBMITTED BY H. Bump	DEPT	244
CHARACTERISTIC	TOLERANCE	MEACUDEMENT
CHARACTERISTIC .	TOLERANCE	MEASUREMENT
Roundness	Not Specified	Section 1995 Percentage
Rotor Z-13		
Over Wires		
Position 1		.000015 in.
Position 2		.000015 in.
90° to Wires		.000003 in.
MMENTS:		
B NUMBER:		
TE:5-15-75	PREPAREI	BYG. Kuhn
GE 3 OF 3		BY

METROLOGY LABORATORY DATA REPORT

ITEM NORTHRUP CAVITIES & ROTOPS	NUMBER		NOTED
SUBMITTED BY H. BIMP	DEPT	244	
CHARACTERISTIC T	OLERANCE		MEASUREMENT
Spherical Diameter .40625	0 ±.000010 in.		
N003-1			.406264 in.
NO03-3			.406264 in.
1004-1			.406250 in.
NOO4-3			.406252 in.
Equator Location0000	05 =.000003 in.		
N003-1			000004 in.
NO03-3		÷.	000001 in.
NOC4-1			000003 in.
NOC4-3			000003 in.
Sphericity .00000	3 in.		
11003-1			.000002 in.
11003-3			in.
1004-1			.000002 in.
NOON-3 BEST AVAIL	ARTE CODI	1	.000002 in.

COMMENTS: Revised 05-20-75 to include spherical diameter of Rotors Z-20, 2-21 and Z-22. All measurements corrected to 68°F.

DATE: ___05-20-75 PAGE _1_OF _3__ VERIFIED BY C. Kuhn

ITEM	NUMBER	
SUBMITTED BY	DEPT	
CHARACTERISTIC	TOLERANCE	MEASUREMENT
Roundness	Not arecified	S version with the
Rotor Z-20		
Over wires		the state of
Position 1		.000017 in.
Position 2		.000015 in.
90° to wires		.000002 in.
Rotor 7-21		and sold
Over wires		
Position 1		.000013 in.
Position 2		.000013 in.
90° to wires		.000003 in.
Rotor Z-22		
Over wires		
Position 1		.000015 in.
Position 2		.000014 in.
90° to wires		.000001 in.
COMMENTS:		
COMMENTS.		
JOB NUMBER:		
DATE: 5=20-75	PREPARE	D BY
PAGE 2 OF 3		BY

TEM	NUMBER	
SUBMITTED BY	DEPT	
CHARACTERISTIC	TOLERANCE	MEASUREMENT
SMURICAL DIAMETER	Not specified	
Rotor %-20		
Minimum		.405535 in.
Maximum		.405560 in.
Rotor 7-21		
Minimum		.405540 in.
Maximum		.405565 in.
Rotor 2-22		
Minimum		.405540 in.
Maximum	VC00 -	.405565
BEST	AVAILABLE COPY	
OMMENTS:		
OB NUMBER:		
DATE:	PREPARED B	Υ
PAGE _ OF _ '		

METROLOGY LABORATORY DATA REPORT

ITEMNorthrup ESG Cavities	NUMBER	Noted
SUBMITTED BY H. Bump	DEPT	244
CHARACTERISTIC	TOLERANCE	MEASUREMENT
SPHERICAL DIAMETER	Not Specified	spierrary lestinosis
B-1		.406245 in
B-2		.406268 in
#7		.406266 in
EQUATOR LOCATION	Not Specified	
B-1		+.000005 in
B-2		000002 in
#7		+.000011 in
SPHERICITY	Not Specified	
B-1		.000002 in TIR
B-2		.000003 in TIR
#7		.000004 in TIR
COMMENTS. Cavity thermal coe	efficients of expansion	

Comments: Cavity thermal coefficients of expansion Beo 1.5 \mu in/.40625 in/°F

Stainless Stell 2.5 \mu in/.40625 in/°F

Mechanite 2.7 \mu in/.40625 in/°F

VERIFIED BY G, Kuhn
VERIFIED BY

	ITEM Northrup ESG Parts	NUMBER Noted	
	SUBMITTED BY II. Bump	DEPT244	
	CHARACTERISTIC	TOLERANCE	MEASUREMENT
j	Spherical Diameter		
	NA1		.406251 inch
	NA9		.406252
	NA4		.406246
	NA12		.406245
	B-1		.406243
	N-7		.406260
y	Equator Location	Not Specified	
	NAI		000008 inch
	NA9		000006
	. NA4		000005
	NA12		000004
	B-I		+.000006
	N-7		+.000014
	COMMENTS: All measurements	s corrected to 68°F	
	BeO = 2.8 Min/in/oF	used:	
	Stainless Steel = 5.6 pin/i	n/°F	
	JOB NUMBER:		
	DATE: January 12, 1976	· PREPARED B	Y K. J. Lund
	PAGE _1_OF _3_	VERIFIED BY	25 June

,	ITEM Northrup ESG Parts	NUMBER	
	SUBMITTED BY	DEPT	
	CHARACTERISTIC	TOLERANCE	MEASUREMENT
Cavity	Sphericity	Not Specified	
	NA1		.000002 inch
	NA9		.00C002
	NA 4		.000003
	NA 12		.000003
	B-l		.000003
	N-7		.000005
Ci y	Bellmouth	Not Specified	
	NA1		.000010 inch
	NA9		.000007
	NA4		.000010
	NA12		.000013
	B-1		.000007
	N-7		.000005
	COMMENTS:		
,			
	JOB NUMBER:		
		DREDARED DV	
	DATE:	PREPARED BY VERIFIED BY	200
	PAGE 2_OF _2_	VERIFIED BY	

Not Specified Not Specified Not Specified Nall Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Nall Position Not Specified Not Specified Nall Position Not Specified Not Specified Nall Not Specified Not Specif	TOLERANCE MEASUREMENT Not Specified .405552 inch .405552 inch
Not Specified Not Specifie	Not Specified .405552 inch .405552 inch Not Specified .000014 inch .000014 .000013 .000001 .000014
NA11 .4055 NA16 .4055 otor Sphericity Not Specified NA11 Position 1 Position 2 .0000 Position 3 .0000 90° to Wires .0000 NA16 .0000 Position 1 .0000 Position 2 .0000 Position 2 .0000 Position 3 .0000 Position 3 .0000	.405552 inch .405552 inch Not Specified .000014 inch .000014 .000013 .000001 .000014
NA 16 .4055 otor Sphericity Not Specified NA 11 Position 1 Position 2 .0000 Position 3 .0000 90° to Wires .0000 NA 16 .0000 Position 1 .0000 Position 2 .0000 Position 2 .0000 Position 3 .0000	.405552 inch Not Specified .000014 inch .000014 .000013 .000001 .000014
NAII Position 1 Position 2 Position 3 Position 1 Position 1 Position 2 Position 3 Position 1 Position 1 Position 2 Position 2 Position 3	Not Specified .000014 inch .000014 .000013 .000001 .000014
NAII Position 1 Position 2 .0000 Position 3 .0000 90° to Wires .0000 NAI6 .0000 Position 1 .0000 Position 2 .0000 Position 3 .0000	.000014 inch .000014 .000013 .000001 .000014
NAII Position 1 Position 2 .0000 Position 3 .0000 90° to Wires .0000 NAI6 .0000 Position 1 .0000 Position 2 .0000 Position 3 .0000	.000014 inch .000014 .000013 .000001 .000014
Position 1 Position 2 .0000 Position 3 .0000 90° to Wires .0000 NA16 .0000 Position 1 .0000 Position 2 .0000 Position 3 .0000	.000014 .000013 .000001 .000014
Position 3 .0000 90° to Wires .0000 NA16 .0000 Position 1 .0000 Position 2 .0000 Position 3 .0000	.000014 .000013 .000001 .000014
90° to Wires .0000 NA16 .0000 Position 1 .0000 Position 2 .0000 Position 3 .0000	.000013 .000001 .000014
NA16 .0000 Position 1 .0000 Position 2 .0000 Position 3 .0000	.000001 .000014
Position 1 .0000 Position 2 .0000 Position 3 .0000	.000014
Position 2 .0000 Position 3 .0000	
Position 3 .0000	.000014
90° to Wires .0000	.000014
	.000001
COMMENTS: (1) Average Diameter of Major and Minor Axes	er of Major and Minor Axes

METROLOGY LABORATORY DATA REPORT

ITEM Northrup ESG Parts	NUMBER Noted	
SUBMITTED BY H. Bump	DEPT	
CHARACTERISTIC	TOLERANCE	MEASUREMENT
CAVITY SPHERICAL DIAMETER	Not Specified	
NA #10		.406252 inch
NA #2		.406256 inch
NA #11		.406248 inch
. NA #3		.406249 inch
CAVITY EQUATOR LOCATION	Not Specified	
NA#10		.000000 inch
NA #2		000004 inch
NA #11		000007 inch
NA #3		000003 inch
CAVITY SPHERICITY	Not Specified	
NA #10		.000002 inch TIR
NA #2		.000003 inch TIR
NA #11		.000004 inch TIR
NA #3		.000003 inch TIR
COMMENTS:		
		Read 880 17 hy 7
JOB NUMBER:	**	
DATE: _3-22-76	PREPAR	RED BY G. Kuhn

VERIFIED BY

PAGE _1_OF _15_

ITEM Northrup ESG Parts	NUMBER	
SUBMITTED BY	DEPT	
CHARACTERISTIC	TOLERANCE	MEASUREMENT
CAVITY BELLMOUTH	Not Specified	
NA #10		.000005 inch
NA#2		.000007 inch
NA #11		.000008 inch
. NA #3		.000007 inch
ROTOR SPHERICAL DIAMET	${ m TER}^{(1)}$ Not Specified	
NA-14		.405552 inch
NA-22		.405559 inch
ROTOR SPHERICITY	Not Specified	
NA-14		
Position #1		.000015 inch TIR
Position #2		.000015 inch TIR
Position #3		,000015 inch TIR
90° to wires		.000001 inch TIR
COMMENTS: (1) Average Dis	ameter of Major and Minor Axes	
IOD NIMIDED.		
JOB NUMBER: DATE: 03-22-76	PREPARED BY	
PAGE 2 OF 15	VERIFIED BY	26 Jan

METROLOGY LABORATORY DATA REPORT

ITEM Northrup ESG Parts	NUMBER	
SUBMITTED BY	DEPT	
CHARACTERISTIC	TOLERANCE	MEASUREMENT
ROTOR SPHERICITY	Not Specified	
NA -22		
Position #1		.000014 inch TIR
Position #2		.000012 inch TIR
Position #3 90° to wires		.000013 inch TIR .000002 inch TIR

COMMENTS:

JOB NUMBER: _______
DATE: __03-22-76

PAGE 3 OF 15

PREPARED BY

VERIFIED BY

