数值分析课程上机实验题目

实验一

第一章上机题1: 用 MATLAB 编程实现例 1.4,绘出图 1-2,体会两种误差对结果的不同影响.

第一章上机题3: 编程观察无穷级数

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

的求和计算.

- (1) 采用 IEEE 单精度浮点数, 观察当 n 为何值时, 求和结果不再变化, 将它与理论分析的结论进行比较 (注: 在MATLAB 中可用 single 命令将变量转成单精度浮点数).
 - (2) 用 IEEE 双精度浮点数计算 (1) 中前 n 项的和, 评估 IEEE 单精度浮点数计算结果的误差.
- (3) 如果采用 IEEE 双精度浮点数, 估计当 n 为何值时求和结果不再变化, 这在当前做实验的计算机上大概需要多长的计算时间?

实验二

第二章上机题2: 编程实现阻尼牛顿法. 要求: (1) 设定合适的阻尼因子初始值 λ_0 及迭代判停准则; (2) 阻尼因子 λ 用逐次折半法更新; (3) 打印每个迭代步的最终 λ 值及近似解; (4) 请用其他方法 (如 fzero 函数) 验证结果, 并考虑采用阻尼与不采用阻尼算法的效果差别. 用所编程序求解:

(1)
$$x^3 - x - 1 = 0$$
, \mathbb{R} $x_0 = 0.6$.

(2)
$$-x^3 + 5x = 0$$
, \mathbb{R} $x_0 = 1.35$.

第二章上机题3: 利用 2. 6. 3 节给出的 fzerotx 程序,在 MATLAB 中编程求第一类的零阶贝塞尔函数 $J_0(x)$ 的零点. $J_0(x)$ 在MATLAB 中通过 besselj(0,x) 得到. 试求 $J_0(x)$ 的前10个正的零点, 并绘出函数 曲线和零点的位置.

实验三

第三章上机题6: 编程生成 Hilbert 矩阵 \mathbf{H}_n (见例 3. 4),以及 n 维向量 $\mathbf{b} = \mathbf{H}_n \mathbf{x}$,其中 \mathbf{x} 为所有分量 都是 1 的向量. 用 Cholesky 分解算法求解方程 $\mathbf{H}_n \mathbf{x} = \mathbf{b}$,得到近似解 $\hat{\mathbf{x}}$,计算残差 $\mathbf{r} = \mathbf{b} - \mathbf{H}_n \hat{\mathbf{x}}$ 和 误差 $\Delta \mathbf{x} = \hat{\mathbf{x}} - \mathbf{x}$ 的 ∞ -范数.

- (1) 设 n=10, 计算 $||\mathbf{r}||_{\infty}$ 、 $||\Delta\mathbf{x}||_{\infty}$.
- (2) 在右端项上施加 10^{-7} 的扰动然后解方程组, 观察残差和误差的变化情况.
- (3) 改变 n 的值为 8 和 12 , 求解相应的方程, 观察 $||\mathbf{r}||_{\infty}$ 、 $||\Delta\mathbf{x}||_{\infty}$ 的变化情况. 通过这个实验说明了什么问题?

实验四

第四章上机题2: 考虑常微分方程的两点边值问题:

$$\begin{cases} \varepsilon \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} = a, & (0 < a < 1) \\ y(0) = 0, & y(1) = 1 \end{cases}$$

它的精确解为

$$y=rac{1-a}{1-e^{-1/arepsilon}}(1-e^{-rac{x}{arepsilon}})+ax,$$

为了把微分方程离散, 把[0,1]区间n等分, 令 $h=\frac{1}{n}$,

$$x_i = ih, \ (i = 1, 2, \cdots, n-1),$$

得到有限差分方程

$$arepsilon rac{y_{i-1}-2y_i+y_{i+1}}{h^2}+rac{y_{i+1}-y_i}{h}=a,$$

简化为

$$(arepsilon+h)y_{i+1}-(2arepsilon+h)y_i+arepsilon y_{i-1}=ah^2,$$

从而离散后得到的线性方程组的系数矩阵与右端向量为

$$\mathbf{A} = egin{bmatrix} -(2arepsilon+h) & arepsilon+h \ arepsilon & -(2arepsilon+h) & arepsilon+h \ arepsilon & -(2arepsilon+h) & \ddots & & \ arepsilon & \ddots & \ddots & arepsilon+h \ & arepsilon & -(2arepsilon+h) \end{bmatrix}, \; \mathbf{b} = egin{bmatrix} ah^2 \ dots \ ah^2 - arepsilon-h \end{bmatrix}.$$

(1) 对 $\varepsilon=1$, $a=\frac{1}{2}$, n=100 , 分别用雅可比, G-S 和 SOR 方法求线性方程组的解, 要求前 3 位数字不变时停止迭代, 然后比较与精确解的误差.

(2) 对 $\varepsilon = 0.1$, $\varepsilon = 0.01$, $\varepsilon = 0.0001$ 考虑同样的问题.

实验五

第五章上机题1: 用幂法求下列矩阵按模最大的特征值 λ_1 及其对应的特征向量 \mathbf{x}_1 , 使 $|(\lambda_1)_{k+1}-(\lambda_1)_k|<10^{-5}$.

(1)
$$\mathbf{A} = \begin{bmatrix} 5 & -4 & 1 \\ -4 & 6 & -4 \\ 1 & -4 & 7 \end{bmatrix}$$
.

(2)
$$\mathbf{B} = \begin{bmatrix} 25 & -41 & 10 & -6 \\ -41 & 68 & -17 & 10 \\ 10 & -17 & 5 & -3 \\ -6 & 10 & -3 & 2 \end{bmatrix}.$$

第五章上机题3: 设
$$\mathbf{A}=\begin{bmatrix}0.5&0.5&0.5&0.5\\0.5&0.5&-0.5&-0.5\\0.5&-0.5&0.5&-0.5\\0.5&-0.5&0.5&0.5\end{bmatrix}$$
 , 在 MATLAB 中实现基本的 QR 算法, 观察矩阵

序列收敛的情况, 然后解释观察到的现象

第五章上机题4: 采用带原点位移的 QR 算法计算
$$\mathbf{A}=\begin{bmatrix} 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & 0.5 \end{bmatrix}$$
的特征值, 观察迭

代过程的收敛情况,与上机题 3 的实验结果做比较.

实验六

第六章上机题3: 对物理实验中所得下列数据

t_i	1	1.5	2	2.5	3.0	3.5	4	
y_i	33.40	79.50	122.65	159.05	189.15	214.15	238.65	
t_i	4.5	5	5.5	6	6.5	7	7.5	8
y_i	252.2	267.55	280.50	296.65	301.65	310.40	318.15	325.15

- (1) 用公式 $y = a + bt + ct^2$ 做曲线拟合.
- (2) 用指数函数 $y = ae^{bt}$ 做曲线拟合.
- (3) 比较上述两条拟合曲线, 哪条更好?

第六章上机题8:已知直升飞机旋转机翼外形曲线的采样点坐标如下:

x	0.520	3.1	8.0	17.95	28.65	39.62	50.65	78	104.6	156.6
y	5.288	9.4	13.84	20.20	24.90	28.44	31.10	35	36.9	36.6
x	208.6	260.7	312.50	364.4	416.3	468	494	507	520	
y	34.6	31.0	26.34	20.9	14.8	7.8	3.7	1.5	0.2	

以及两端点的 1 阶导数值 $y_0'=1.865$ 48 和 $y_n'=-0.046$ 115.

利用第一种边界条件的三次样条插值函数计算翼型曲线在 x=2,30,130,350,515 各点上的函数值及 1 阶导数、2 阶导数的近似值.

实验七

第七章上机题4: 用数值积分方法近似计算

$$\ln 2 = \int_1^2 \frac{1}{x} \mathrm{d}x$$

及圆周率

$$\pi = 4 \int_0^1 \frac{1}{1+x^2} \mathrm{d}x.$$

(1) 用复合 Simpson 求积公式计算,要求绝对误差限小于 $\frac{1}{2} \times 10^{-8}$,试根据积分余项估计步长 h 的 取值范围. 按要求选择一个步长进行计算,观察数值结果与误差要求是否相符.

(提示: 可利用 MATLAB 的符号运算工具箱求函数的高阶导数表达式, 详见命令 diff、syms 的帮助文档.)

(2) 用下面的复合 Gauss 公式计算近似积分

$$egin{split} \int_a^b f(x) \mathrm{d}x = & rac{h}{2} \sum_{i=0}^{n-1} \left[f\left(x_{i+rac{1}{2}} - rac{h}{2\sqrt{3}}
ight) + f\left(x_{i+rac{1}{2}} + rac{h}{2\sqrt{3}}
ight)
ight] \ & + rac{(b-a)h^4}{4320} f^{(4)}(\xi_1), \quad \xi_1 \in (a,b), \end{split}$$

其中, h=(b-a)/n , $x_{i+\frac{1}{2}}=x_i+\frac{h}{2}$. 复合 Gauss 积分的思想是: 将 [a,b] 做等距划分, 即 $x_i=a+ih,\ (i=0,1,2,\cdots,n)$, 然后在每个子区间内应用两点 Gauss 公式. 试对步长 h 做先验估计 (误差要求与 (1) 同), 并计算近似积分.