TRABALHANDO NA SEÇÃO MÉTODOS ...

Passo 13: Escrever a seção Métodos

Copiar o conteúdo para esta seção do arquivo conteudo.txt.

```
LaTeX
\section{Métodos}
\label{sec:metodos}
\subsection{Limiar de excitação}
Um neurônio biológico dispara quando a soma dos impulsos que ele recebe
ultrapassa seu limiar de excitação (\textit{threshold}) $\theta$.
Matematicamente, podemos modelar um neurônio $k$ pelo seguinte par de equações:
\begin{equation}
    v_k = b_k + \text{displaystyle } \sum_{j=1}^m w_{kj} x_j
\end{equation}
\begin{equation}
    y_k = \pi(v_k),
\end{equation}
em que
\begin{itemize}
    \item $x_1,x_2,\ldots,x_m$ são \textbf{sinais de entrada};
    \item $w_{k1}, w_{k2}, \ldots, w_{km}$ são \textbf{pesos sinápticos};
    \item $u_k$ é o \textbf{adicionador} ou \textbf{combinador linear};
    \item $b_k$ é o \textbf{bias}\footnote{0 \textit{bias} é um parâmetro externo
    de entrada x_0 e peso w_{k0} = b_k que tem o efeito de aumentar (se positivo)
    ou diminuir (se negativo) a entrada líquida da função de ativação.};
    \item $v_k$ é o \textbf{potencial de ativação};
    \item $\phi$ é a \textbf{função de ativação};
    \item $y_k$ é a \textbf{saída}.
\end{itemize}
Quando v_k > theta, o neurônio é ativado e produz uma saída. No caso do nó MCP,
y_k \in {0,1}
\subsection{Funções de ativação}
Uma função de ativação define a saída do nó. A mais básica é a Heaviside,
também conhecida como \textit{função de limiar}, definida na Eq. \eqref{eq:heaviside}.
\begin{equation}
\label{eq:heaviside}
\phi(v_k) =
\begin{cases}
1, & \text{se} \, v_k \geq 0 \\
0, \& \text{text}\{se\} \setminus, v_k < 0.
\end{cases}
\end{equation}
```

```
Outras funções de ativação são também utilizadas. A seguir, veremos mais dois exemplos.

\subsubsection{Função Relu}

A função Relu (\textit{rectified linear unit}) é definida como \begin{equation*} % sem referência. \phi(v_k) = \max\{ 0, v_k \}. \end{equation*}

\subsubsubsection{Função sigmoide}

A função sigmoide é definida como \begin{equation*} % sem referência. \phi(v_k) = \frac{1}{1} + \exp(-a v_k)}, \end{equation*}

onde $a$ é um parâmetro de suavização.
```

- Interpretar os comandos novos:
 - \circ \theta: inclusão da letra grega θ (ver mais letras gregas);
 - Por exemplo: \alpha, \beta, \Delta gera α, β, Δ
 - \$...\$: modo matemático em linha (inline)
 - Escreva entidades matemáticas simples com o modo matemático. Por exemplo, $\alpha + \beta = \Delta$
 - O modo matemático aplica-se a todo caracter simples, entretanto atente-se para algumas diferenças:

expressão	resultado	erro?
\$a\$	а	
\$ab\$	ab	
\$a b\$	ab	
\$ a b \$	ab	
\$a,b\$	a, b	
\$ab\$	ab	
\$a!b\$	a!b	
\$a\!b\$	do	
\$a~b\$	a b	
\$a\~b\$	a \~ b	sim
\$a~~b\$	a b	
\$a\ \b\$	<i>a</i> \b	sim
\$a\ \ b\$	a b	
\$a\\\b\$	a b	
\$a\\b\$	a b	
\$duas palavras\$	duaspalavras	
\$duas ∖, palavras\$	duas palavras	
<pre>\$\text{duas palavras}\$</pre>	duas palavras	
<pre>\$\text{duas palavras}\$</pre>	duas palavras	
\${a,b}\$	a, b	
\${{a,b}}\$	a, b	
\$\{a,b\}\$	$\{a,b\}$	
\$\{a,b}\$	\{a,b}	sim
\$(a,b)\$	(a,b)	
\$[a,b]\$	[a,b]	
\$[a,b)\$	[<i>a</i> , <i>b</i>)	
\$)a,b\}\$) <i>a</i> , <i>b</i> }	
\$\{\{a,b\}\}\$	$\{\{a,b\}\}$	
\$\{[(a,b)]\}\$	$\{[(a,b)]\}$	
\$a&b\$	a&b	sim
\$a\&b\$	a&b	

Passo 14: Analisar o ambiente equation

• Inserimos equações com o ambiente equation

\begin{equation}
...
\end{equation}

• Referenciamos com \label

```
\begin{equation}
\label{eq:nome}
...
\end{equation}
```

• Inserimos elementos matemáticos sem a necessidade do par \$...\$

```
LaTeX
\begin{equation}
\label{eq:nome}
    v_k = b_k + \displaystyle \sum_{j=1}^m w_{kj} x_j
\end{equation}
```

• O que temos na equação do neurônio $v_k = b_k + \text{displaystyle } \sum_{j=1}^m w_{kj} x_j$

$$v_k = b_k + \sum_{j=1}^m w_{kj} x_j$$

- subscritos:
 - v_k, b_k, w_{kj}, x_j
- o somatória:
 - \sum_{j=1}^m
- o sobrescrito:
 - {j=1}^m
- o comando de estilo:
 - \displaystyle
- o operadores:
 - **+**, =
- Podemos combinar tudo isso e construir qualquer expressão matemática. Vejamos:

expressão	resultado	erro?
\$c_d\$	c_d	
\$c^d\$	c^d	
\$ce^d\$	ce^d	
\${ce}^d\$	ce^d	
\$(ce)^d\$	$(ce)^d$	
\$c^d_f\$	c_f^d	
\$ce^d_f\$	ce_f^d	
\$(ce)^d_f\$	$(ce)_f^d$	
\$2^d + 3^e\$	$2^d + 3^e$	
\$2^d + 3e_fg\$	$2^d + 3_f^e g$	
\$2^d^e\$	2^d^e	erro
\${2^d}^e\$	2^{d^e}	
\$(g^h_j)_1\$	$(g_j^h)_1$	
\$A_{a=1}^b\$	$A_{a=1}^b$	
\$A_{a=1}^{b=2}\$	$A_{a=1}^{b=2}$	
\$\sum\$	Σ	
\$\Sigma\$	Σ	
\$\sum_{i=1}^2\$	$\sum_{i=1}^{2}$	
\$\prod\$	П	
\$\Pi\$	П	
\$\pi\$	π	
\$\prod_{i=1}^2\$	$\prod_{i=1}^2$	
$\sum_{i=1}^2 i + \frac{i=1}^2 i = 5$	$\sum_{i=1}^{2} i + \prod_{i=1}^{2} i = 5$	
\$e^{\pii}\$	$e^{ackslash ext{pii}}$	erro
\$e^{{\pi}i}\$	$e^{\pi i}$	
\$e^{i\pi}\$	$e^{i\pi}$	
$e^{{\pi}_{i}} - 1 = 0$	$e^{\pi i} - 1 = 0$	

• Operadores aritméticos

expressão	resultado
$a+b-(c.d) \leq f$	$a + b - (c.d) \div e = f$
\$4 \div 3 \neq -1\$	$4 \div 3 \neq -1$

Passo 15: Criar lista não ordenada com itemize

• Criamos listas não ordenadas com o seguinte bloco

```
begin{itemize}
  \item A
  \item B
  ...
\end{itemize}
```

Passo 16: Preencher lista combinando modo matemático e texto

• Escrevendo sequencias:

```
\item $x_1,x_2,\ldots,x_m$ são \textbf{sinais de entrada};
```

Sequencias finitas ou infinitas podem ser indicadas com ... e variantes

expressão	resultado	conveniente?
\$\$		não
\$\ldots\$		sim
\$a,\ldots,b\$	a, \ldots, b	sim
\$a_1,a_2,\ldots,a_n\$	a_1, a_2, \ldots, a_n	sim
<pre>\$\cdots\$</pre>		
\$a,\cdots,b\$	a, \cdots, b	não
<pre>\$[a \cdots b]\$</pre>	$[a \cdots b]$	sim
\$.\$		
\$\cdot\$		
a.b = ab	a.b = ab	
\$a \cdot b \neq \$	$a \cdot b$	

• Decorações para representar matrizes, vetores e entidades da Álgebra Linear

expressão	resultado
\$\vdots\$	÷
<pre>\$\ddots\$</pre>	·
\$\colon\$:
<pre>\$a:b \neq a \colon b\$</pre>	$a:b\neq a:b$

• Vetor linha

expressão	resultado
\$[v_1 v_2 \cdots v_n]^T\$	$[v_1v_2\cdots v_n]^T$
\$[v_1 \ \ v_2 \ \ \cdots \ \ v_n]^T\$	$\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}^T$

Vetores

expressão	resultado	comentário
\$\vec{v}\$	\overrightarrow{v}	notação de Gibbs
\$\bf{v}\$	V	notação de Gibbs (variante)
<pre>\$\underline{v}\$</pre>	<u>v</u>	notação de Gibbs (variante)
\$v_i\$	v_i	notação de Einstein

• Letras gregas

\item \$\phi\$ é a \textbf{função de ativação}

LaTeX

expressão	resultado
\$\alpha\$	α
\$\beta\$	β
\$\gamma\$	γ
\$\delta\$	δ
<pre>\$\epsilon\$</pre>	ϵ
<pre>\$\varepsilon\$</pre>	arepsilon
\$\zeta\$	ζ
\$\eta\$	η
\$\theta\$	θ
\$\vartheta\$	θ
\$\iota\$	ı
\$\kappa\$	κ
\$\lambda\$	λ
\$\mu\$	μ
\$\nu\$	ν
\$\xi\$	ξ
\$\pi\$	π
\$\varpi\$	\overline{w}
\$\rho\$	ρ
\$\varrho\$	Q

• Relacionais

Quando $v_k > \theta$, o neurônio é...

LaTeX

expressão	resultado
\$>\$	>
\$<\$	<
\$\leq\$	≤
\$\geq\$	<u>></u>
\$=\$	=
\$\neq\$	≠

• Conjuntos

LaTeX

expressão	resultado
\$\in\$	€
<pre>\$\notin\$</pre>	∉
\$\subset\$	C
<pre>\$\supset\$</pre>	D
\$\cup\$	U
\$\cap\$	Λ
<pre>\$\bigcup\$</pre>	U
<pre>\$\bigcap\$</pre>	\cap

Passo 17: Incluir entidades matemáticas especiais com amsmath

Para ter acesso a um novo ferramental matemático, carregaremos o pacote amsmath

```
\documentclass[10pt,journal,compsoc]{IEEEtran}
...
\usepackage{amsmath,amssymb,bm} % entidades matemáticas <---
```

amssymb e bm carregam uma sorte de novos símbolos

Passo 18: Construir definição de função com condições/restrições

```
LaTeX
\begin{equation}
\label{eq:heaviside}
\phi(v_k) =
\begin{cases}
1, & \text{se} \, v_k \geq 0 \\
0, & \text{se} \, v_k < 0.
\end{cases}
\end{equation}</pre>
```

$$\phi(v_k) = \begin{cases} 1, & \text{se } v_k \ge 0 \\ 0, & \text{se } v_k < 0. \end{cases}$$

• O bloco cases permite-nos criar múltiplas definições para uma entidade

```
$$f(x) =
\begin{cases}
x, & \text{se} \, x > 1 \\
\sqrt{x}, & \text{se} \, 0 < x \leq 1 \\
0, & \text{se} \, x = 0 \\
x^3, & \text{se} \, -1 \le x < 0 \\
\cos(x), & \text{se} \, x < -1
\end{cases}$$</pre>
```

$$f(x) = \begin{cases} x, & \text{se } x > 1\\ \sqrt{x}, & \text{se } 0 < x \le 1\\ 0, & \text{se } x = 0\\ x^3, & \text{se } -1 \le x < 0\\ \cos(x), & \text{se } x < -1 \end{cases}$$

- A função de & e \\
 - & é um separador
 - ∘ \\\ é uma quebra de linha
- Outras construções com & e \\
 - · Equações alinhadas

b = 2c = 3

Sistemas de equações

```
$$\begin{cases} \ a_{11}x_1 + a_{12}x_2 + a_{1n}x_3 &=& b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{2n}x_3 &=& b_2 \\ \vdots &\vdots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + a_{mn}x_3 &=& b_m \end{cases}$$$$ \qquad \[ a_{11}x_1 + a_{12}x_2 + a_{1n}x_3 = b_1 \]
```

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{1n}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{2n}x_3 &= b_2 \\ \vdots &\vdots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + a_{mn}x_3 &= b_m \end{cases}$$

Passo 19: Reconhcer equações sem numeração

• Podemos remover a numeração de equações adicionando um * após o bloco equation. Por exemplo:

```
A função Relu (\textit{rectified linear unit}) é definida como \begin{equation*} % sem referência. \phi(v_k) = \max\{ 0, v_k \}. \end{equation*}
```

Passo 20: Fazer referência a equações no texto com referencia

\label{eq:heaviside}

LaTeX

- Podemos eferenciá-la no texto com
 - \ref{eq:heaviside} : forma sem parênteses. Compilará, por exemplo, como Eq. 3
 - \eqref{eq:heaviside} : forma com parênteses. Compilará, por exemplo, como Eq. (3)

Passo 21: Compreender elementos matemáticos adicionais

- Alguns elementos adicionais aparecem na definição das funções de ativação do texto
 - Funções

expressão	resultado
\$\max\$	max
<pre>\$\min\$</pre>	min
<pre>\$\exp\$</pre>	exp

Frações

expressão	resultado
\$\frac{1}{2}\$	$\frac{1}{2}$
\$\dfrac{1}{2}\$	$\frac{1}{2}$

Funções logarítmicas

resultado
ln
log

Álgebra linear

expressão	resultado
\$\det\$	det
<pre>\$\dim\$</pre>	dim
\$\deg\$	deg

Análise

expressão	resultado
\$\sup\$	sup
<pre>\$\inf\$</pre>	inf
\$\limsup\$	lim sup
\$\liminf\$	lim inf

• Funções trigonométricas (inversas)

expressão	resultado
\$\sin\$	sin
\$\cos\$	cos
\$\tan\$	tan
\$\sec\$	sec
\$\csc\$	csc
\$\sinh\$	sinh
\$\cosh\$	cosh
\$\tanh\$	tanh
<pre>\$\arcsin\$</pre>	arcsin
\$\arccos\$	arccos

Suplemento: como escrever matrizes e determinantes?

• Matrizes simples

```
$$\begin{matrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn} \\
\end{matrix}$$
```

$$a_{11}$$
 a_{12} ... a_{1n}
 a_{21} a_{22} ... a_{2n}
 \vdots \vdots \vdots \vdots
 a_{m1} a_{m2} ... a_{mn}

• Matrizes com parênteses

```
$$\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}$$
```

$$\left(egin{array}{ccccccc} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}
ight)$$

Matrizes com colchetes

```
$\text{\lambda} \text{\lambda} \text
```

Matrizes com chaves

```
$$\begin{Bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{Bmatrix}$$
```

Determinantes

• Normas de matrizes

```
$$\begin{\matrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn} \\
\end{\matrix}$$
```