Redes Neurais artificiais aplicadas a processos químicos

Otimização preditiva de adsorventes para a captura de CO₂

Um estudo de modelagem com Multilayer Perceptron (MLP) aplicado a sílicas mesoporosas do tipo SBA-15

Discente: Cauã Lourenço Valotto

Docente: Dr. Tiago Dias Martins

Diadema - 2025

Variação da temperatura da superfície global

Fonte: Adaptado de NASA. Global Temperature. [S. I.], [2024?]. Disponível em: https://climate.nasa.gov/vital-signs/carbon-dioxide/. Acesso em: 24 jul. 2025. Acesso em: 24 jul. 2025.

Concentração de CO₂ na atmosfera

Fonte: Adaptado de NASA. Carbon Dioxide. [S. l.], [2024]. Disponível em: https://climate.nasa.gov/vital-signs/carbon-dioxide/. Acesso em: 24 jul. 2025.

Contents lists available at SciVerse Science Direct

Microporous and Mesoporous Materials

MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption

Arnošt Zukal, Jakub Pastva, Jiří Čejka*

J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic

Fonte: ZUKAL, Arnošt; PASTVA, Jakub; ČEJKA, Jiří. 2013.

Fonte: OJEDA-LÓPEZ et al. (2015).

Fonte: ZUKAL, Arnošt; PASTVA, Jakub; ČEJKA, Jiří. 2013.

Propriedades fisico-quimicas dos adsorventes de CO2							
Sample code	MgO (mg/g)	K2CO3(mg/g)	Sbet (m2/g)	Vme (cm3/g)	Dme(nm)		
SBA-15	0	0	660	1,03	10,2		
Mg-SBA-15	38	0	464	0,65	9,2		
Mg/K-SBA-15	38	43	257	0,49	8,7		

Adsorção de CO2 - Isotermas

Material ▼	Adsorvato ▼	Temperatura 💌	Finalidade 🔻
Mg-SBA-15	Carbon Dioxide	213	Treino
Mg-SBA-15	Carbon Dioxide	273	Treino
MgK-SBA-15	Carbon Dioxide	273	Treino
MgK-SBA-15	Carbon Dioxide	293	treino
SBA-15	Carbon Dioxide	293	Treino
Mg-SBA-15	Carbon Dioxide	293	Treino
Mg-SBA-15	Carbon Dioxide	293	Simulação
MgK-SBA-15	Carbon Dioxide	293	Treino
MgK-SBA-15	Carbon Dioxide	313	Simulação
Mg-SBA-15	Carbon Dioxide	333	Treino
MgK-SBA-15	Carbon Dioxide	333	Treino

Correlograma

met SBA-15

Fonte: VIRGINIO, S. A. (2020)

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Modelo

Entrada:

Temperatura (K)
pressão (bar)
MgO (mg/g)
K₂CO₃
S_{bet} (m²/g)
V_{me} (cm³/g)
D_{me} (nm)

Propriedades físicoquímicas dos sólidos

Resultados: 6-3-5-1

Métricas do modelo

	MAPE(%)	MSE	Correlação (R)
Teste	1,73	0,0141	0,9998
Treino	1,37	0,0089	0,9999
Validação	3,64	0,0748	0,9985

Mg-SBA-15-293K

Resultados: 6-3-5-1

Métricas do modelo

	MAPE(%)	MSE	Correlação (R)
Teste	2,23	0,00478	0,9991
Treino	1,53	0,0212	0,9997
Validação	4,74	0,0205	0,9997

Fonte: Do autor, 2025.

MgK-SBA-15 -313K

Resultados: Predição sólido

Simulação vs Experimental (Mg-SBA-15) - 293K

Simulação vs Experimental (MgK-SBA-15) - 313K

Conclusão

O modelo MLP foi desenvolvido com êxito para prever a adsorção de CO₂ em sílicas SBA-15.

Capacidade de Generalização

A validação com dados de simulação provou que o modelo aprendeu as relações físico-químicas do processo, prevendo isotermas com alta fidelidade.

Ferramenta para Inovação

O modelo pode ser utilizado como uma ferramenta de triagem virtual, acelerando a descoberta de novos materiais e otimizando a pesquisa experimental.

Trabalhos Futuros

Expandir o dataset para incluir outras famílias de sílicas (SBA-16, MCM-48) e aplicar algoritmos de otimização sobre o modelo para encontrar a composição ideal do material de forma automática.

Referências

ZUKAL, Arnošt; PASTVA, Jakub; ČEJKA, Jiří. MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous and Mesoporous Materials, [S. I.], v. 167, p. 44–50, 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S1387181112003561. Acesso em: 26 jul. 2025.

VIRGINIO, Sueli de Andrade. Sílica do tipo SBA-15 sintetizada por radiação gama e sua aplicação em compósitos de resina epóxi. 2020. Dissertação (Mestrado em Tecnologia Nuclear – Aplicações) – Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, 2020.

OJEDA-LÓPEZ, Reyna et al. SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio. [S. I.]: Springer Science+Business Media New York, 2015. Disponível em: https://doi.org/10.1007/s10934-015-9942-z. Acesso em: 26 jul. 2025.