Time Series Analysis of Global Temperature Anomalies

Wenchao Zhang 6 Jul, 2014

Abstract: Global climate change is no longer a widely disputed topic, there are many institutes have given the analysis of it. Among of them, the Intergovernmental Panel on Climate Change (IPCC) is the leading international body for the assessment of climate change. The purpose of this project is to attempt to fit global climate anomalies (respect to the mean 57.2F) to a time series model, and to project out future global temperatures. The goal is to identify an ARMA(resp. ARIMA) model to accurately model the average global temperature change and forecast it forward.

1. Introduction

The climate of planet Earth is unstable. Our evolutionary origins lie in the warm, relatively benign climate of equatorial Africa, but our ancestors battled the cold, harsh, and unforgiving climate of the last ice age in order to spread across the planet. One of the most significant accomplishments of our species is the discovery of fossil fuels and the means of turning the energy trapped within them into heat, transportation, and the basis for manufacturing and construction. NASA's GISS Surface Temperature Analysis (GISTEMP) has posted temperature deviations from the mean for the worldwide average temperature, where the mean is set to approximately 57.2F - the mean of temperatures for the period of 1951-1980. Their first published results (Hansen et al. 1981) showed that, contrary to impressions from northern latitudes, global cooling after 1940 was small, and there was net global warming of about 0.4°C between the 1880s and 1970s.

2. Description of Data

Our data is from National Oceanic and Atmospheric Administration, National Climatic Data Center (The Global Historical Climatology Network (GHCN-Monthly) data). The data is monthly global (From 90N to 90S) land and ocean temperature anomalies (with degrees °C). The Global Historical Climatology Network (GHCN-Monthly) data base contains historical temperature, precipitation, and pressure data for thousands of land stations worldwide. A positive anomaly indicates that the observed temperature was warmer than the reference value, while a negative anomaly indicates that the observed temperature was cooler than the reference value.

We first see a *Global Annual Mean Surface Air Temperature Change* in GISTEMP, line plot of global mean land-ocean temperature index, 1880 to present, with the base period 1951-1980. The dotted black line is the annual mean and the solid red line is the five-year

mean. The green bars show uncertainty estimates.

Global Land-Ocean Temperature Index

Annual Mean
5-year Running Mean

-.2

-.4

1880 1900 1920 1940 1960 1980 2000

3. Model Specification With ARMA

3.1 Data Statistics

Below shows a plot of temperature anomalies in month from 1880, Jan to 2011, Jun from the data we obtain,

Series: ANOMALY Sample 1 1584 Observations 1578							
Mean	0.015005						
Median	-0.024500						
Maximum	0.832300						
Minimum	-0.708200						
Std. Dev.	0.273153						
Skewness	0.519255						
Kurtosis	2.876294						
Jarque-Bera	71.91766						
Probability	0.000000						

3.2 Unit Root Test

From the plot, the data are not so big, so we need not take logarithms. On the other hand, it would seem that the process is not stationary, so we first give the unit root tests as follows:

Null Hypothesis: ANOMALY has a unit root
Exogenous: None

Lag Length: 4 (Automatic based on SIC, MAXLAG=23)

Š.		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-3.384688	0.0007
Test critical values:	1% level	-2.566433	
	5% level	-1.941025	
	10% level	-1.616564	

^{*}MacKinnon (1996) one-sided p-values.

The Augmented Dickey-Fuller test with no test equation shows that there is no unit root (i.e. Reject the Null Hypothesis).

Similar results given by the Dickey-Fuller test with trend equation, PP test without trend as well as with trend:

Null Hypothesis: ANOMALY has a unit root Exogenous: Constant, Linear Trend

Lag Length: 3 (Automatic based on SIC, MAXLAG=23)

2		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-7.158607	0.0000
Test critical values:	1% level	-3.963885	
	5% level	-3.412667	
	10% level	-3.128302	

^{*}MacKinnon (1996) one-sided p-values.

Null Hypothesis: ANOMALY has a unit root Exogenous: None Bandwidth: 13 (Newey-West using Bartlett kernel) Adj. t-Stat Prob.* -6.268191 Phillips-Perron test statistic 0.0000 Test critical values: 1% level -2.566429 5% level -1.941024 10% level -1.616564 *MacKinnon (1996) one-sided p-values. 0.010687 Residual variance (no correction) HAC corrected variance (Bartlett kernel) 0.007054 Null Hypothesis: ANOMALY has a unit root Exogenous: Constant, Linear Trend Bandwidth: 23 (Newey-West using Bartlett kernel) Adj. t-Stat Prob.* -16.82442 0.0000 Phillips-Perron test statistic 1% level Test critical values: -3.963873 5% level -3.412662 10% level -3.128299 *MacKinnon (1996) one-sided p-values. 0.009940 Residual variance (no correction) HAC corrected variance (Bartlett kernel) 0.017000

Even for the KPSS test, we will accept the null hypothesis that the anomaly of temperature is stationary.

8		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	3.864153
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000
*Kwiatkowski-Phillips-Schmidt-S	thin (1992, Table 1)	
Residual variance (no correction)	0.074568
HAC corrected variance (Bartlett)	1.97036	

To sum up, from the unit root tests we given above, we can make a conclusion that there is no unit root in temperature anomalies data.

3.3 Establish Models

We now obtain the SACF, SPACF of the raw data from EViews:

Date: 07/06/14 Time: 17:32 Sample: 1 1584 Included observations: 1578

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
4 3		1	0.924	0.924	1351.0	0.000
1	1	2	0.900	0.312	2632.1	0.000
1 2	1 🔤	3	0.884	0.175	3868.3	0.000
1	i i	4	0.872	0.123	5072.2	0.000
1	中	5	0.859	0.071	6242.6	0.000
1	ı j	6	0.849	0.056	7384.6	0.000
1	i i	7	0.843	0.076	8511.5	0.000
I .	i p	8	0.833	0.028	9613.0	0.000
1	i iji	9	0.822	0.011	10687.	0.000
1	i)	10	0.815	0.035	11744.	0.000
1	i)e	11	0.807	0.016	12780.	0.000
1 6 3	l ili	12	0.799	0.019	13797.	0.000
1	l li	13	0.789	-0.007	14790.	0.000
1	i i	14	0.780	-0.003	15760.	0.000
1	i iji	15	0.772	0.011	16712.	0.000
1	i i	16	0.766	0.016	17647.	0.000
1	l lip	17	0.762	0.041	18576.	0.000
1	l)	18	0.758	0.030	19495.	0.000
1	i i	19	0.759	0.063	20417.	0.000
1	10	20	0.757	0.037	21335.	0.000
1	i i	21	0.760	0.068	22260.	0.000
1	iji i	22	0.757	0.018	23178.	0.000
i a	ilg i	23	0.759	0.047	24101.	0.000
1	10	24	0.760	0.044	25028.	0.000
1	dı dı	25	0.750	-0.060	25930.	0.000
1	10	26	0.745	-0.010	26821.	0.000
1	de de	27	0.738	-0.030	27696.	0.000
J E J	ju ju	28	0.736	0.016	28567.	0.000
I STATE OF THE STA	l li	29	0.732	0.006	29430.	0.000
1	i) i)	30	0.732	0.027	30293.	0.000
1	ilit	31	0.729	0.005	31150.	0.000
1	ı l ı	32	0.730	0.041	32009.	0.000
1	10	33	0.732	0.050	32874.	0.000
1	l)	34	0.732	0.028	33738.	0.000
1	i)	35	0.733	0.038	34606.	0.000
3 5	i i	36	0.731	0.015	35470.	0.000

From the plot above, it seem that the raw data is not stationary since Autocorrelations don't decrease in a finite time, but this has been test from the previous unit root test. So we just follow the result. As for PACFs, the lags to drop off to near zero within a finite steps. So we can raise an ARMA model. Now we should compute the EACF of the raw data. I get help from TAOLUO to compute EACF in R, and get the following results:

From the above results, we can found an ARMA(1,2) model for temperature anomalies' data. Here, since the original data has been modified by the mean of temperature, we just need to establish a model without mean, or if we get a model with mean, the value is very small (I have tried to do that and get a constant term in 10^-4 level.) Then, we can get an ARMA(1,2) model with zero mean from Eviews,

Dependent Variable: ANOMALY Method: Least Squares Date: 07/06/14 Time: 17:46 Sample (adjusted): 2 1578

Included observations: 1577 after adjustments Convergence achieved after 9 iterations

MA Backcast: 0 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.989626	0.004072	243.0188	0.0000
MA(1)	-0.466351	0.025440	-18.33106	0.0000
MA(2)	-0.114514	0.025414	-4.505858	0.0000
R-squared	0.879259	Mean depend	0.015038	
Adjusted R-squared	0.879106	S.D. depende	0.273236	
S.E. of regression	0.095004	Akaike info cr	iterion	-1.867900
Sum squared resid	14.20648	Schwarz crite	-1.857697	
Log likelihood	1475.839	Hannan-Quin	-1.864108	
Durbin-Watson stat	1.985235			
Inverted AR Roots	.99			
Inverted MA Roots	.64	18		

i.e. We get a model as follows:

$$X = 0.989626X_{t-1} + a_t - 0.466351a_{t-1} - 0.114514a_{t-2}$$

The negative coefficients indicate that the current temperature is negatively correlated with prior temperatures. The P-Values of the coefficients are low and the R^2 of the model is (adjusted R-squared) 0.8791 and standard error 0.0095. The Durbin-Watson value is closer to 2. This model seems to be a good one. Then we consider some structures of this ARMA model. The meaning of this model is that the temperature anomaly relies on the previous month's data as well as the fluctuation for previous two month.

What's more, for the root of stationary and invertible equations, we have that the root of AR(1) is 0.989626, which is very closed to 1.

Inverse Roots of AR/MA Polynomial(s) 1.5 1.0 0.5 AR roots MA roots -0.5 -1.0

-0.5

0.0

0.5

1.0

1.5

From this token, we may consider that the raw date may have a unit root which is not significant, but we can try it for ARIMA model after that.

-1.0

3.3 Residual Test

Firstly, we have the residual plot (respect to original data) as follow:

-1.5

-1.5

Since we have analyzed the DW statistics for this ARMA(1,2) model that it is very closed to 2, so we have that there is almost no autocorrelations between the residual, while we can get more information as follows from the Ljung – Box test (Q) statistics:

Date: 07/06/14 Time: 19:39

Sample: 2 1578

Included observations: 1577

Q-statistic probabilities adjusted for 3 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ψ	i ile	1	0.007	0.007	0.0668	
i)	1)	2	0.030	0.030	1.4550	
ψ.	10	3	-0.021	-0.022	2.1782	
(i)	10	4	-0.013	-0.013	2.4383	0.118
di .	0	5	-0.032	-0.030	4.0243	0.134
ø	0	6	-0.046	-0.045	7.3810	0.061
iji	iji iji	7	-0.004	-0.003	7.4114	0.116
ı ı	III.	8	-0.005	-0.004	7.4483	0.189
ø	0	9	-0.029	-0.032	8.7944	0.185
ili	ili.	10	-0.006	-0.007	8.8457	0.264
ф.	10	11	-0.013	-0.014	9.1120	0.333
ib	il ili	12	0.003	-0.000	9.1267	0.426
ı(i)	10	13	-0.023	-0.024	9.9630	0.444
d)	0	14	-0.037	-0.040	12.172	0.351
ø	0	15	-0.041	-0.043	14.799	0.253
d)	dı dı	16	-0.052	-0.052	19.036	0.122
ď.	0	17	-0.033	-0.035	20.758	0.108
d)	di di	18	-0.051	-0.054	24.864	0.052
ψ.	ili ili	19	-0.012	-0.020	25.104	0.068
d)	1 0	20	-0.028	-0.037	26.354	0.068
i)	i ii	21	0.027	0.016	27.551	0.069
10	1 1	22	0.001	-0.010	27.554	0.092
1)] i	23	0.036	0.022	29.604	0.077

The fluctuations of the ACF and PACF of residuals are small and the p-value are significant for the previous. Furthermore, the chi-square statistic applied to the first 23 autocorrelation is $Q=29.604 < \chi^2_{23-3,0.05} = 31.41$. So we can claim that the residual is a white noise.

Series: Residuals Sample 2 1578 Observations 1577							
Mean	0.001265						
Median	0.000333						
Maximum	0.406166						
Minimum	-0.421849						
Std. Dev.	0.094935						
Skewness	-0.036103						
Kurtosis	4.179317						
Jarque-Bera	91.72896						
Probability	0.000000						

As for the normalization test of residuals, we can see that the skewness is almost zero while kurtosis is bigger that 3 and also from the Jarque-Bera statistics, we can get the conclusion that the residual is not normal distributed.

3.4 Forecast

Compare the actual data of January 2011 to June and 95% prediction confidence intervals. The actual data are included in the prediction confidence intervals. It means that the forecasting results are good, so we conclude the model adequately describes the land temperature time series.

Forecast in Jan 2011 to Jun 2011

Forecast	Real
0.4701	0.4731
0.4326	0.4046
0.4102	0.4373
0.4873	0.572
0.5004	0.4992
0. 4913	0.5677

4. Alternative Model ARIMA

We have talked about the stationary of the ARMA model before. Since our invert root for AR is very closed to 1, hence, we try to do this model through ARIMA. Taking First Differences produces a plot that appears more stationary as shown below.

To determine what type of ARIMA model is most appropriate, it is first necessary to get sample autocorrelations. Below is a Correlogram for the first 36 lags of the 1st difference.

Date: 07/06/14 Time: 14:50 Sample: 1 1584 Included observations: 1577

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
I I		1	-0.342	-0.342	184.62	0.000	
Q t		2	-0.059	-0.199	190.11	0.000	
d i		3	-0.026	-0.139	191.15	0.000	
(I)	di.	4	0.006	-0.081	191.21	0.000	
III.	Q ₁	5	-0.010	-0.064	191.37	0.000	
(i		6	-0.033	-0.084	193.15	0.000	
r j u	•	7	0.017	-0.047	193.61	0.000	
i j i	100	8	0.011	-0.022	193.80	0.000	
d i	di di	9	-0.025	-0.044	194.77	0.000	
ılı	(1	10	0.007	-0.027	194.86	0.000	
ų i	di di	11	-0.008	-0.033	194.97	0.000	
r i li	il il	12	0.018	-0.006	195.51	0.000	
i i	1 10	13	-0.008	-0.010	195.60	0.000	
3[10]	1 10	14	-0.012	-0.023	195.84	0.000	
ile	0	15	-0.007	-0.030	195.91	0.000	
ii.	di di	16	-0.019	-0.050	196.50	0.000	
ili	di di	17	0.006	-0.038	196.55	0.000	
Q t	Di.	18	-0.029	-0.068	197.88	0.000	
nji.	0	19	0.014	-0.045	198.20	0.000	
Q I	di di	20	-0.029	-0.077	199.57	0.000	
10	di di	21	0.034	-0.029		0.000	
di	i di	22	-0.027	-0.059		0.000	
ji.	0	23	0.001	-0.053		0.000	
10	10	24	0.081	0.052	213.04	0.000	
Q i	10	25	-0.038	0.004	215.31	0.000	
nic.	il ili	26	0.015	0.023	215.66	0.000	
di	1	27	-0.035		217.64	0.000	
r i r	4	28		-0.011	217.89	0.000	
1	d (1)	6.000.00	-0.019	125 C. TOOLS	218.46	0.000	
ile	1 1	30		-0.011		0.000	
d i	l di	000,654	-0.026		219.83	0.000	
ili:	d	1,000	-0.008		219.93	0.00	
Hi.	1 0	33		-0.035	220.51	0.00	
ili	1 1	34605.83	-0.007		220.60	0.00	
HE.	1	35		-0.023	220.86	0.00	
(fr	1	36		-0.019	220.92	0.00	

As hoped, the sample autocorrelation approaches zero fairly quickly then oscillates about zero as lag increases. Since the lags of PACF to drop off to near zero, it does seem to support a moving average model.

More precisely, we compute the EACF of the first difference of anomalies, and get the following results:

A	१/।	NΑ												
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	X	X	Q	0	8	S	0	0	0	0	0	0	0	0
1	Х	X	0	a	0	0	0	0	0	0	0	0	0	0
2	X	X	0	0	D	o	0	0	0	0	0	0	0	0
3	Х	Х	0	0	0	Q	0	0	0	0	0	0	0	0
4	X	X	X	X	X	0	P	0	0	0	0	0	0	0
5	X	X	X	X	X	X	0	P	0	0	0	0	0	0
6	X	Х	Х	х	0	X	0	0	b	0	0	0	0	0
7	Х	X	X	Х	Х	Х	0	0	0	0	0	0	0	0

I.e. We obtain an ARIMA(0,1,2), we can get an ARIMA(0,1,2) model with zero mean from Eviews, and we obtain:

Dependent Variable: DIFFE1_ANOMAL Method: Least Squares Date: 07/06/14 Time: 20:58

Sample: 1 1572

Included observations: 1572

Convergence achieved after 7 iterations

MA Backcast: -10

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MA(1)	-0.474025	0.025052	-18.92157	0.0000
MA(2)	-0.122621	0.025086	-4.888033	0.0000
R-squared	0.183585	Mean depend	0.000260	
Adjusted R-squared	0.183065	S.D. depende	0.105405	
S.E. of regression	0.095269	Akaike info cr	-1.862946	
Sum squared resid	14.24971	Schwarz crite	rion	-1.856126
Log likelihood	1466.275	Hannan-Quir	-1.860411	
Durbin-Watson stat	1.982669			
Inverted MA Roots	.66	19		

Also, we can do the unit root test of first difference, and of course get no unit root "as the same to" raw data, what's more, we can see that the inverted MA root is smaller than 1. So In this form, we have the formula for ARIMA:

$$X - X_{t-1} = a_t - 0.4740251a_{t-1} - 0.122621a_{t-2}$$

the negative coefficients indicate that the current temperature is negatively correlated with prior temperatures. Although the P-Values of the coefficients are low, the R^2 of the model is only 0.18, showing only approximate 50% correlation between the prior values and the predicted value. This seems to indicate that there are explanatory variables present other than prior years.

As a diagnostic test, it is important to look at the residuals to see if the error terms are normally distributed. Below is a histogram of the residuals.

Date: 07/06/14 Time: 21:06

Sample: 1 1572

Included observations: 1572

Q-statistic probabilities adjusted for 2 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ф	ill.	1	0.008	0.008	0.0927	3
iþ	i)	2	0.034	0.034	1.9676	
ili i	10	3	-0.020	-0.020	2.5703	0.109
ili i	10	4	-0.014	-0.015	2.8699	0.238
ďi	0	5	-0.037	-0.035	4.9811	0.173
d i	0	6	-0.049	-0.048	8.8177	0.066
10	ili.	7	-0.010	-0.008	8.9811	0.110
10	10	8	-0.011	-0.009	9.1621	0.165
di .	di di	9	-0.035	-0.037	11.093	0.135
ılı	10	10	-0.012	-0.014	11.313	0.185
ılı	10	11	-0.020	-0.021	11.929	0.217
iji	1/1	12	-0.005	-0.009	11.971	0.287
dı .	dı.	13	-0.032	-0.034	13.571	0.258
di	01	14	-0.046	-0.051	16.916	0.153
di	Oi Oi	15	-0.049	-0.053	20.776	0.077
di	di	16	-0.059	-0.062	26.340	0.023
di	di.	17	-0.041	-0.045	28.955	0.016
di	01	18	-0.057	-0.065	34.149	0.005
ili	0	19	-0.019	-0.032	34.747	0.007
di	di di	20	-0.034	-0.049	36.601	0.006
1	ije -	21	0.021	0.003	37.339	0.007
1	ale:	22	-0.004	-0.023	37.363	0.011
ıb	il ili	23		0.008	38.886	0.010

The fluctuations of the ACF and PACF of residuals are small and the p-value are significant for the previous. So we may get the same conclusion that the residual is a white noise.

Now we make forecast for this model in January 2011 to June and 95% prediction confidence intervals.

Since in Dec 2010 is 0.3838, hence we can obtain the forecast as follows:

Forecast in Jan 2011 to Jun 2011

Forecast	Real
0.5633	0.4731
0.4667	0.4046
0.4061	0.4373
0.5308	0.572
0.5205	0.4992
0.5075	0.5677

It's easy to see that the ARMA model make a better forecast. So we choose the first model.

5. Conclusion

In conclusion, a look at the Partial Autocorrelation corrolegram suggests that global temperature follows a ARMA(1,2) model. Negative coefficients seem to suggest that a higher than average year will be followed by a lower than average year, and vice-versa. The difference of this two methods is not significant, since the coefficient for backward anomalies is very closed to 1. The result is interesting, that there is no unit root when we test the raw data, but in reality, maybe it contains a trend. However, I think the first one model is better, since the R^2 is very well. There does, however seem to be an overall drift that may continue into the future. It is important to point out that although this study was done with all data from 1880 through 2011, an inspection of the data may suggest that the pattern from 1960 and on seems different from before 1960, and it may be more appropriate to consider just data from 1960 and on when projecting future temperature patterns.