Лекция 8. Кластеризация Основы интеллектуального анализа данных

Полузёров Т. Д.

БГУ ФПМИ

- 🚺 Постановка задачи
 - Типы кластерных структур
 - Меры качества

2 K-means

OBSCAN

Иерархическая кластеризация

Постановка задачи

Дано∶

 \mathbb{X} — пространтсов объектов $X = \{x_1, \dots, x_\ell\}$ — обучающая выборка

 $ho: \mathbb{X} imes \mathbb{X} o [0,+\infty]$ — функция расстояния между объектами

Необходимо:

Определить множество кластеров $\mathbb Y$ и построить алгоритм $a:\mathbb X\to\mathbb Y$ так, чтобы:

- каждый кластер состоял из близких объектов
- объекты разных кластеров были сущетсвенно различны

Это задача **кластеризации** — частный случай задач обучения без учителя.

Некорректность задачи кластеризации

Особенности задачи:

- точной постановки задачи нет
- непонятно как выбрать меру качества кластеризации
- априорно неизвестно число кластеров
- ullet результат сильно зависит от меры расстояния ho

Пример: сколько здесь кластеров?

Цели кластеризации

- Упростить обработку данных, разбить все множество X на группы схожих объектов, чтобы работать с каждой группой отдельно
- Сократить объем данных, оставить по одному представителю от группы
- Выделить нетипичные объекты,
 которые не относятся ни к одному из кластеров
- Построить иерархию множества объектов

Типы кластерных структур

перемычки между кластерами

разреженный фон из нетипичных объектов

перекрывающиеся кластеры

Типы кластерных структур

- кластеры определяются субъективно
- каждый метод кластеризации имеет свои ограничения и способен работать только на некоторых типах кластеров

Метрическое пространство

Пусть известны только расстояния между объектами. $a_i = a(x_i)$ — метка кластера объекта x_i

• Среднее внутрикластерное расстояния

$$F_0 = \frac{\sum_{i < j} [a_i = a_j] \rho(x_i, x_j)}{\sum_{i < j} [a_i = a_j]} \to \min$$

• Среднее межкластерное расстояние

$$F_1 = \frac{\sum_{i < j} [a_i \neq a_j] \rho(x_i, x_j)}{\sum_{i < j} [a_i \neq a_j]} \to \max$$

• Их отношение

$$\frac{F_0}{F_1} \to \min$$

Векторное пространство

Если объекты задаются вектором $x_i \in \mathbb{R}^n$

• Сумма средних внутрикластерных расстояний

$$\Phi_0 = \sum_{a \in \mathbb{Y}} \frac{1}{|X_a|} \sum_{i: a_i = a} \rho(x_i, \mu_a) \to \min$$

где $X_a = \{x_i \in X | a_i = a\}$ — кластер a, μ_a — центр кластера a

• Сумма межкластерных расстояний

$$\Phi_1 = \sum_{a,b \in \mathbb{Y}} \rho(\mu_a, \mu_b) \to \max$$

• отношение

$$rac{arPhi_0}{arPhi_1}
ightarrow \min$$

Алгоритм: K-средник (K-means)

Algorithm 1: K-means

Input: X^{ℓ} , \overline{K}

Output: центры кластеров $\mu_a, a = 1, \dots, K$

- 1 случайно инициализировать $\mu_a, a = 1, \dots, K$
- 2 while не перестанут изменяться μ_a do

отнести каждый x_i к ближайшему центру

$$a_i := \arg\min_{a \in \mathbb{Y}} ||x_i - \mu_a||$$

вычислить новые положения центров

$$\mu_a := \frac{\sum_{i=1}^{\ell} [a_i = a] x_i}{\sum_{i=1}^{\ell} [a_i] [a]}, a \in \mathbb{Y}$$

Неудачные примеры K-means

Причина — неудачное начальное приближение или существенная негауссовость кластеров

Алгоритм: DBSCAN

Density-Based Spatian Clustering of Applications with Noise

Зафиксируем 2 параметра:

- ε размер окрестности
- тараметр плотности

$$arepsilon$$
-окресность точки $x\in U$ есть $U_{arepsilon}(x)=\{u\in U:
ho(x,u)\leq arepsilon\}$

3 типа объектов:

- ullet корневой имеет плотную окрестность, $|U_arepsilon| \geq m$
- граничный не корневой, но в окрестности корневого
- шумовой все остальные

Типы точек

Algorithm 2: DBSCAN

```
Input: X^{\ell}, \varepsilon, m
  Output: разбиение на кластеры, определение шумовых объектов
1 U := X — неразмеченные объектов k := 0 — номер кластера
2 while U \neq \emptyset do
      взять случайный объект x \in U
      if U_{\varepsilon}(x) < m then
          пометить шумовой
      else
          k++ — создать новый кластер, K:=U_{\varepsilon}(x)
          while K \neq \emptyset do
              x^{'} := K.pop() — не помеченый и не шумовой
              if U_{\varepsilon}(x') \geq m then
10
                \mid K.add(U_{arepsilon}(x^{'})) и пометить x^{'} как корневой
11
              else
                  пометить x^{\prime} как граничный
13
```

K-means vs DBSCAN

R_{UV} — мера расстояния между кластерами U и V

Algorithm 3: Иерархическая кластеризация

Дендрограмма

Итого

- Кластеризация частный случай обучения без учителя
- Ключевая концепция близость похожих объектов
- Изначально задача поставлена некорректно
- Каждый алгоритм подходит для определенного типа кластеровной структуры