Note: looks different from J: - ih K: above,
since in this basis Iz is diagonal. Otherwise, just
related by orthogonal change of basis.
• For General j, if $j \in \mathbb{Z}$, representation of $SO(3)$ since $e^{-\gamma k} 2\pi Ji = 1$ if $j + i\lambda \in \mathbb{Z}$, $e^{-\gamma k} 2\pi Ji = -1$, not a rep. of $SO(3)$.
3.3 Spherical harmonics
Consider functions on S2 = SV 11 2: 1212122 - 17
Consider functions on $S^2 = \{x, y, z : x^2 + y^2 + z^2 = 1\}$, (parameterized by Θ , Φ .)
An SO(3) rotation gives a linear transformation on the
set of functions on S2. The set of homogeneous
polynomials of degree Ninis invariant under sols)
set of Rinchians on S2. The set of homogeneous polynomials of degree N'is invariant under sol3) & must form a representation of sol3, hence of su(2).
Counting functions:
total.
Constant:
linew: X, y, Z
Quadratic: $\chi^2, y^2, z^2, \chi y, y \in \mathcal{F} \chi$ $6 = 5 + 1$ from $\chi^2 + y^2 + z^2$
tran x + q + Es
Total # of independent polynomials of degree N:
${\binom{N+2}{2}} + {\binom{N+2}{2}} = \sum_{\substack{k \text{ odd} \\ k \text{ odd}}} K = {\binom{N+1}{2}}$
Theorem: At degree N, acquire 2N+1 polynomials living in a spinjen representation.
Associated eigenfunctions of J2, J2: Yemlo, (6)

Can explicitly construct $\sqrt{2m(0, \phi)}$ from representative theory.

Defining $L = \overrightarrow{T} \times \overrightarrow{P}$, generators of SO(3) $L^{\dagger} = -ik \, \text{Eijk} \, \times \stackrel{?}{\partial} \times \overset{?}{\partial} \times$

Looking for functions solving $L^{2} Y_{em}(\theta, \phi) = K^{2} \ell(2+1) Y_{em}(\theta, \phi)$

Lz Yen(θ, φ) = Mm Yen (θ, φ).

From Los clearly Yem (0,0) = e imp Pen (0).

L+ Yea(0,4) = Kei(e+1) & [-lcoto + 20] Pen(0) = 0

=> Per = const. (SINO)

so Yea = Ce (ind) = ce (x+iy)2

Normalization $\int d\Omega |Y_{em}(\phi,\phi)|^2 = 1$

 $\Rightarrow Ce = \frac{(-1)^2}{2^2 l!} \sqrt{\frac{(2l+1)(2l)!}{4\pi}} \qquad [Sign by convention]$

Generale Yem by acting with L.

Yemlo, φ) = 21 L! \((20+1) \((2+m)! \) \(21 \) \(\frac{1}{4π} \((2-m)! \) \(\frac{1}{51N^m\theta} \) \(\frac{1}{6(cos \theta)^{2-m}} \) \((51N \theta)^2 \)

Ex:
$$\sqrt{100} = \sqrt{4\pi}$$
 ((0.50+)

 $\sqrt{11} = -\sqrt{\frac{3}{8\pi}} e^{i\phi}$ Sin $\Theta = -\sqrt{\frac{3}{8\pi}} [x + iy]$
 $\sqrt{10} = \frac{1}{12}e^{-i\phi}$ (i(cos Θ) $1 - \cos \Theta$) $\left(-\sqrt{\frac{2}{8\pi}}e^{i\phi}\right)$
 $= \sqrt{\frac{3}{4\pi}} \cos \Theta = \sqrt{\frac{3}{4\pi}} [x - iy]$
 $\sqrt{10} = \sqrt{\frac{3}{4\pi}} \cos \Theta = \sqrt{\frac{3}{8\pi}} [x - iy]$

1=2 : Homewerk

Functions on S^2 spanned by 10, m, $Yem(0, \phi) = \langle 0, \phi | 1, m \rangle$

Completeness:
$$\frac{1}{2\pi}\sum_{k=0}^{\infty}\frac{1}{m_{k-1}}\frac{1}{m_{k}(\theta,\phi)}\frac{1}{m_{k}(\theta',\phi')}=\frac{S(\theta-\theta')\delta(\theta-\phi')}{S(\theta-\phi')\delta(\theta-\phi')}$$

Application of spherical hormonics: separation of variables.

If
$$V(r)$$
 is spherically symmetric, $H\psi = E\psi$

for
$$H = \frac{p^2}{zm} + V(r)$$

rolutions $\psi_{e,e,m} = \frac{u_{e,e}(r)}{r} Y_{e,m}(\Theta, \phi)$

where
$$\left[-\frac{K^2}{2m}\frac{d^2}{dr^2} + \left[\frac{K^2l(H)}{2mr^2} + V(r)\right]\right]$$
 $U \in L(r) = E$ $U \in L(r)$

reduces to 11 problem with new potestial (HW)

3.4 Addition of angular momenta

Reducible representations

A representation \mathcal{D} of an algebra \mathfrak{I} , $\mathcal{D}(K):\mathcal{H}\to\mathcal{H}$ $\forall K\in\mathfrak{I}$ is reducible if $\mathcal{H}=\mathcal{H},\oplus\mathcal{H}_2$,

where

A(K) = DI(K) & DZ(K).

D.(K): H. -> A.

AK+ 9

Dr(K): Dr - H2

i.e., A(K) is block-diagonal YK.

$$\begin{pmatrix} \mathcal{A}_1 & O \\ O & \tilde{\mathcal{A}}_2 \end{pmatrix}$$

The representation is inreducible if this is not possible.

Spin j reps are all ineducible representations of SU(2). Any other representation is a direct sum of imps.

Question: Coiver two systems, one (H.) with spin j., the other (Hz) with spin jz, how can we classify angular momentum of the combined system [recall tensor product spaces]

One basis: IM, m2> = 1j1, m, > @ 1j2, m2>.

Total angular momentum is given by $J_i = J_i^{(i)} + J_i^{(2)} \qquad \begin{bmatrix} = J_i^{(i)} \otimes \mathbf{1} + \mathbf{1} \otimes J_i^{(2)} \end{bmatrix}$ $J^2 = J_{01}^2 + J_{02}^2 + 2J_{03}^2 \cdot J_{02}^2.$ Now, $[J^2, J_2^{(i)}] \neq 0,$

so J² not a good quantum number in basis lji, m.; jz; mz)

For total system, want to diagonalize J2, Jz. use total j, m as quantum numbers.

What are possible values of j.m given j., je?

Example: two spin-1/2 particles (j= jz=1/2)

States d Jz eigenvalues (M=M,+Mz)

states

1++>

1

1++> 1 1+-> 1-+> 0 1--> -1

Clearly, quantum numbers are those of

one spin-1 multiplet (m=-1,0,1)one $spin \phi$ multiplet (m=0)

So another basis is 1j, m>= 11,12, 10,07.

What are coefficients for a change of basis

Clebsch-Gordon coefficients

Can calculate by recursian, using J-.

(up to sign)

$$= (J_{-}^{(1)} + J_{-}^{(2)}) | ++ \rangle$$

$$= k(1+-) + 1-+ \rangle$$

$$J_{-}|1,0\rangle = K(2|1,-1)$$

$$= (J_{-}^{"}+J_{-}^{"})_{R}^{"}(1+,-)+(-,+)$$

$$= t_{V}2|1--\rangle$$

By orthogonality,

$$|0,0\rangle = \sqrt{2}(1+-)-1-+)$$
 [sup to convertional]

Check:
$$J_{2}|0,0\rangle = O$$

 $J^{2}|0,0\rangle = (J_{00}^{2} + J_{(2)}^{2} + 2J_{00}^{2} \cdot J_{(2)}^{2})_{12}(++>-/-+>)$
 $= (2-1)_{12}(1+->-1-+>) = C.$

Generally, add spin j., spin je - ossume jizje wlog. Diagondize in m= mi+me

<u>m</u>	# states	States
$j_1 + j_2$	1	M1=j1, M2=j27
J1+ j2-1	2	lji, jz-1), lj1, jz>
$j_1 + j_2 - 1$ $j_1 + j_2 - 2$ \vdots	3	lj., j2-2), lj1, j2-17, lj2, j2)
j j2	2/2+1	1 j., - j2), 1 j2 j2, j2)
	(2)2+1)	
j2 - j,	2)2+1	$ 2j_2-j_1,-j_2\rangle -j_1,j_2\rangle$
J2-),-1	2 j2	$ 2j_2-j_1,-j_2\rangle \dots -j_1, j_2\rangle$ $ 2j_2-j_1-1,-j_2\rangle \dots -j_1, j_2-1\rangle$
- j1 - j2 + 1	2	[-j++1,-j2) [-j1,-j2+1)
-),-)2	<u> </u>	1-j.,-j2>

Gives all states associated with one spin-j multiplet for each j: | ji-jul < j < ji+jz

Counting # of states
$$(j_1 \ge j_2)$$

 $j_1 + j_2$
 $j_2 = (j_1 + j_2 + 1)^2 - (j_1 - j_2)$
 $j_2 = (2j_1 + 1)(2j_2 + 1)$

Can calculate all Clebschi (j, m | j, m.; j2, m2) using J-1 recursively as between

First set $|j=j_1+j_2|, M=j_1+j_2| = |j_1, M=j_1| j_2, M_2=j_2|$ Construct $|j_1+j_2|, M>$ using J=. $|j_1+j_2-1|, M>$ using J=. etc...

Conerally, $\langle j, m | j_1, m_1; j_2, m_2 \rangle = 0$ unless m= m, + mz, |j,-je/2 j & j,+jz. Another useful example: j=1, jz=1/2 (spin-1/2 particle with orbital angular momentum) Expect $|j=1|^{2}, m=|_{2}+m, >= \alpha |_{m, 1/2} + \beta |_{m+1}, -|_{2}$ act with J/K2 (l+1/2)(l+3/2)[x/m,1/2>+B/M,+1,-1/2>] = $(L^2 + S^2 + 2L_2S_2 + L_1S_- + L_-S_+)[\alpha | m_1, \frac{1}{2} + \beta | m_1 + 1, -\frac{1}{2})$ $= \left[\alpha \left[l(l+1) + \frac{3}{4} + m_i \right] + \beta \sqrt{l(l+1) - m_i(m+1)} \right] / m_i 1/2$ $+ \left[\frac{3}{4} + \frac{3}{4} + m_i \right] + \beta \sqrt{l(l+1) - m_i(m+1)} \right] / m_i 1/2$ $\Rightarrow \alpha(l-m_1) = \beta\sqrt{(l+m+1)(l-m)} \qquad \left[\begin{array}{c} f_{n,n} & |m_n|/h \\ \text{or} & |m+1,-1/2 \end{array}\right]$ $\frac{\alpha}{\beta} = \sqrt{\frac{l+m+1}{l-m}}$ Normalization: $\chi^2 + \beta^2 = 1 \implies \alpha = \sqrt{\frac{l+m+1}{2l+1}} \beta = \sqrt{\frac{l-m}{2l+1}}$ $\int_{0}^{\infty} |j| = |j| + |j| = \sqrt{\frac{l+m+1}{2l+1}} |m|, |j| + \sqrt{\frac{l-m}{2l+1}} |m+j| - |j| = \sqrt{\frac{l+m+1}{2l+1}} |m+j| - |j| = \sqrt{\frac{l$

) = l-1/2, m=m,-1/2) = - (l+m,+1 | m+1/2) + (l-m, | M, d, +1/2) Vy orthogonality. Last time: discussed Clobsch-Gordon coefficients Given Hj. & Hjz. CG coeffs give transformation between bases $|j,m\rangle$ eigenvectors of J^2 , J_2 $|j,m\rangle$ eigenvectors of J_z^2 , J_z^2 . $\mathcal{D}^{(j_1)} \otimes \mathcal{D}^{(j_2)} = \mathcal{D}^{(j_1 + j_2)} \oplus \mathcal{D}^{(j_1 + j_2 - 1)} \oplus \cdots \oplus \mathcal{D}^{(1j_1 - j_2 1)}$ Dum. (R) = (jum. jeme) D(R) | j., m; je, me'> $= \underbrace{Z' \langle j, m, j, m, j, m, j, m, m', j, m', j_1, m', j_2, m_2' \rangle}_{mm'} \langle j, m', j_1, m', j_2, m_2' \rangle (x)$ Should how to compute Si, M JiMijumz recursively. Closed form expression (Racah, etc.) $\langle j, M, j, j, 2, M, 2 | j, M \rangle = \sum_{m, + M, 2, m} \sqrt{2j+1} \left[\frac{(j_1+j_2-j_1)!(j_1-j_2+j_1)!(-j_1+j_2+j_1)!}{(j_1+j_2+j_1+1)!} \right]_{k}^{l_k}$ [(j+m,)!(j,-m)!(j+m)!(j-m)!(j+m)!(j-m)!] x $= \frac{1}{[n!(j_1+j_2-j-n)!(j_1-m_1-n)!(j_2+m_2-n)!(j_2-j_2+m_1+n)!(j_2-j_3-m_2+m)!}$ (Som over all integers \$\frac{1}{2}\$ one nonnegative.

Note: all CG's we real Note: symm under perm of $(-1)^{(1+j)-m}$ $(-1)^{(1+j)-m}$ (-1