Complete, telomere-to-telomere assembly of diploid human genomes and beyond

Sergey Koren

Biodiversity Genomics Academy October 2nd, 2024

The **Forefront** of **Genomics**°

Telomere-to-Telomere

 The human genome is finally finished!

8% was left after HGP

 Solved with combination of HiFi + ultra-long ONT

A new era of sequencing

Nanopore ultra-long sequencing

Nanopore UL

- >100 kb reads, up to 1 Mb
- 95% (Q13) read quality
- 99.9% (Q30+) assembly quality

Pros

- Length and throughput
- Reads span repeats

Cons

Lower base quality

Nanopore sequencing and assembly of a human genome with ultra-long reads. Jain et al. *Nature Biotechnology* (2018)

Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Shafin et al. *Nature Biotechnology* (2020)

PacBio circular consensus sequencing

PacBio HiFi

- 20 kb reads
- 99.9% (Q30) read quality
- 99.9999% (Q60+) assembly quality

Pros

- Near-perfect accuracy
- Reads distinguish repeats

Cons

Limited length and coverage

Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Wenger et al. *Nature Biotechnology* (2019)

HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Nurk et al. *Genome Research* (2020)

Two ways to resolve repeats: length

Nanopore UL read length distribution is long tailed

Two ways to resolve repeats: accuracy

HiFi reads are accurate

Best of both worlds

Integrating HiFi and ONT

- HiFi accurate assembly graph
 - Homopolymer compression (CAAAAT → CAT)
 - Alignment-based read cleaning and correction
 - Assembly graph from long perfect overlaps
- Nanopore long repeat resolution
 - Nanopore reads aligned to the graph
 - Correctly count, order, and orient the repeats
 - HiFi-based consensus minimizes error-prone polishing

Simplifying the HiFi graph

Walking simple paths

Aligning Nanopore reads

Manual analysis is time consuming

...and error prone

T2T-CHM13v2.0

P5 mis-assembly (~800 kb) ~20 kbp 100% identical

Can we automate this?

Verkko!

Long, accurate reads >99% idy, >10 kbp Compressed & corrected reads

TATTTTATACTCTACATGAAATATCAAA Uncompressed

TATATACTCTACATGATATCA Homopolymer compressed

Microsatellite

TACTACATGATCA

Microsatellite compressed

Sequencing recipe (per hap)

- 20-25x high accuracy
 - (Pac Bio HiFi, Duplex, HERRO)
- 15-20x ONT ultra-long (>100 kb)
- 20x Illumina Trio or Hi-C
- Available from conda

Verkko pipeline

- Read correction
- Sparse multiplex DBG
- ONT graph simplification
- Walk haplotypes
- Haplotype consensus

Verkko: telomere-to-telomere assembly of diploid chromosomes Rautiainen, et al. bioRxiv (2022)

State of the assembly, Sept 2024

Our assemblies are strong, 40/46 T2T scaffold average on 101 human samples

• 62x HiFi, 34x >100 kbp ONT (158x total), 68x Hi-C

Runtime (CPU h)

State of the assembly, Sept 2024

Another view, by chromosome, 52% T2T contig, 91% T2T scaffold

How do we know it's any good?

T2T QC

- T2T contigs and scaffolds
- QV
 - Merqury, yak
- Hamming & switch error rate
 - If trio data available
- Missing/duplicated core genes
 - Compleasm, busco
- non-T2T contiguity metrics
 - N50, L50
- Alignment-based evaluation
 - NucFreq, Flagger, VerityMap

Contigs from the middle of the chromosome

None of the metrics on the left helps to see that something is not right here!

QC: Not only summary metrics!

- Typically include detailed locations of problematic regions
 - yak trioeval: which contig has most switch errors? Are there lots of "small" switches causing hamming error or one big one?
 - compleasm: on which chromosome are the missing genes? On which scaffold are the duplicated genes?
- With verkko-generated assembly.scfmap and assembly.paths.tsv you can locate those problematic places in graph and sometimes see something interesting

Genome graphs are our friends

Graph, the "Good, the meh and the ugly"

Graph, the "Good, the meh and the ugly"

Graph, the "Good, the meh and the ugly"

NHGRI

What can go wrong?

Too few T2T, fragmented assembly

On the right: HiFi ultra-low input protocol problems

Phasing issues: large homozygous regions

- Different chromosomes of same bonobo sample
- Left is phased correctly (long nodes), right lots of unassigned (and so missing genes)

Heterozygosity level matters!

- Verkko can have problems with both very high and very low heterozygosity
- Sometimes this may even happen in the same sample!

Large tandem repeats

- Large (few Mb) tandem repeats is quite typical issue preventing verkko from T2T.
- Verkko/rukki heuristics stops because there are multiple large "blue" extensions for a large blue node here.
- Usually random walk will not add many errors here

"Biological" conclusions from graphs

- Part of chr6 on one of the haplotypes is partially replaced with chr3!
- Coverage confirms "triploidy" for half of chr3
- Still can be a cell line issue

Team T2T (...and many more)

