# A joint normal-binary(probit) model

IBC 2022 - 14th of July

Presenter: Margaux Delporte

Co-authors: Steffen Fieuws, Geert Molenberghs, Geert

Verbeke

### 1 Introduction

- ▶ Repeated measurement of multiple responses
- ▶ Joint analysis of the outcomes





# 2 Existing methodology

$$Y_{1ij} = b_{10i} + b_{11i}t_{ij} + X_{1i}\beta + \epsilon_{ij}$$

$$\Phi^{-1}(P(Y_{2ik} = 1)) = b_{20i} + b_{21i}t_{ik} + X_{2i}\beta$$

$$(b_{10i}, b_{11i}, b_{20i}, b_{21i})' \sim N \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} d_{11} & d_{21} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ d_{13} & d_{23} & d_{33} & d_{34} \\ d_{14} & d_{24} & d_{34} & d_{44} \end{pmatrix} \end{bmatrix}$$

$$\epsilon_{i} \sim N(\mathbf{0}, \Sigma_{i})$$

#### 3 Joint model

Allow correlation between the random effects of the mixed models



## 4 Results

| year(ABPA) |       |       |       |       |       |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| year(FEV)  | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
| 0          | 0.146 | 0.148 | 0.15  | 0.151 | 0.151 | 0.151 | 0.15  | 0.149 | 0.147 |
| 1          | 0.155 | 0.157 | 0.159 | 0.159 | 0.159 | 0.159 | 0.158 | 0.157 | 0.155 |
| 2          | 0.163 | 0.165 | 0.166 | 0.167 | 0.167 | 0.166 | 0.165 | 0.163 | 0.161 |
| 3          | 0.169 | 0.171 | 0.172 | 0.173 | 0.172 | 0.171 | 0.17  | 0.168 | 0.166 |
| 4          | 0.174 | 0.177 | 0.177 | 0.177 | 0.177 | 0.176 | 0.174 | 0.172 | 0.17  |
| 5          | 0.179 | 0.18  | 0.181 | 0.181 | 0.18  | 0.179 | 0.177 | 0.175 | 0.173 |
| 6          | 0.182 | 0.183 | 0.184 | 0.184 | 0.183 | 0.181 | 0.18  | 0.177 | 0.175 |
| 7          | 0.184 | 0.185 | 0.186 | 0.185 | 0.184 | 0.183 | 0.181 | 0.178 | 0.176 |
| 8          | 0.185 | 0.186 | 0.187 | 0.186 | 0.185 | 0.184 | 0.181 | 0.179 | 0.176 |

## 4 Results

|   |               |               |               | Acute ABPA   |              | Chronic ABPA |              |
|---|---------------|---------------|---------------|--------------|--------------|--------------|--------------|
| j | $Y_{1i(j-3)}$ | $Y_{1i(j-2)}$ | $Y_{1i(j-1)}$ | $E[Y_{1ij}]$ | PI $Y_{1ij}$ | $E[Y_{1ij}]$ | PI $Y_{1ij}$ |
| 3 |               |               |               | 62.67        | [49.9; 78.7] | 62.43        | [49.2;79.3]  |
| 4 |               |               |               | 62.38        | [49.7; 78.4] | 62.18        | [48.9;79.1]  |
| 5 |               |               |               | 62.14        | [49.4; 78.1] | 61.98        | [48.7;78.9]  |
| 6 |               | 64.9          |               | 61.96        | [49.3; 77.9] | 61.82        | [48.6;78.7]  |
| 7 |               |               |               | 61.82        | [49.1; 77.8] | 61.72        | [48.5;78.6]  |
| 8 |               |               |               | 61.73        | [49.1; 77.6] | 61.66        | [48.4;78.5]  |
|   |               |               |               |              |              |              |              |

## 4 Results

| _                |               |               |                                         | Acute        | Chronic      |
|------------------|---------------|---------------|-----------------------------------------|--------------|--------------|
| $\boldsymbol{j}$ | $Y_{1i(j-3)}$ | $Y_{1i(j-2)}$ | $Y_{1i(j-1)}$                           | $E[Y_{1ij}]$ | $E[Y_{1ij}]$ |
| 3                |               |               |                                         | 62.67        | 62.43        |
| 4                |               | •••           |                                         | 62.38        | 62.18        |
| 5                |               | 64.9          |                                         | 62.14        | 61.98        |
| 6                |               | •••           |                                         | 61.96        | 61.82        |
| 7                |               | •••           |                                         | 61.82        | 61.72        |
| 8                |               | •••           |                                         | 61.73        | 61.66        |
| 3                |               | •••           |                                         | 81.65        | 81.48        |
| 4                |               | •••           |                                         | 81.6         | 81.47        |
| 5                |               | 84            |                                         | 81.59        | 81.48        |
| 6                |               |               |                                         | 81.6         | 81.51        |
| 7                |               |               |                                         | 81.64        | 81.57        |
| 8                |               | •••           |                                         | 81.71        | 81.65        |
| 3                |               | •••           |                                         | 95.33        | 95.21        |
| 4                |               | •••           | • • • • • • • • • • • • • • • • • • • • | 95.45        | 95.36        |
| 5                |               | 97.7          |                                         | 95.61        | 95.52        |
| 6                |               | •••           |                                         | 95.75        | 95.7         |
| 7                |               |               |                                         | 95.92        | 95.88        |
| 8                |               | •••           |                                         | 96.08        | 96.05        |

#### 5 Conclusion and discussion

- Latent versus manifest correlations
- Time dependent covariates
  - Missing data
  - Characterization of the lag relationship
  - Endogenous or exogenous
  - Intermediate variable