

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2017

Løsningsforslag — Øving 2

Seksjon 2.1

- 5 a) Ja, mengdene har de samme elementene.
 - **b)** Nei, fordi $1 \notin \{\{1\}\}$.
 - c) Nei, fordi $\emptyset \notin \emptyset$.
- **24** a) Potensmengden til enhver mengde inneholder alltid \emptyset . Dermed kan ikke \emptyset være potensmengden til en mengde (siden $\emptyset \notin \emptyset$).
 - b) Dette er potensmengden til $\{a\}$.
 - c) Dette er ikke en potensmengde fordi $\{\emptyset\} \subseteq \{\emptyset, a\}$, men $\{\emptyset\}$ er ikke et element i mengden vi ser på. Alternativt kan vi med en gang si at dette ikke er en potensmengde fordi den har kardinalitet 3, som ikke er en potens av 2.
 - d) Dette er potensmengden til {a, b}.

Seksjon 2.2

- [18] c) Vi må vise at ethvert element i (A B) C også er et element i A C. Anta at x er i (A B) C. Da er x i A B, men ikke i C. Siden $x \in A B$, vet vi at $x \in A$. Siden vi har etablert at $x \in A$, men $x \notin C$, har vi bevist at $x \in A C$.
 - d) Bruker bevis ved kontradiksjon. For å vise at mengden på venstre side er tom er det nok å anta at x er et element i den mengden, vise at dette leder til en kontradiksjon (selvmotsigelse), og dermed slutte at ingen slik x eksisterer. Anta at

$$x \in (A - C) \cap (C - B)$$
.

Da er $x \in A - C$ og $x \in C - B$. Det første utsagnet impliserer per definisjon at $x \notin C$, mens det andre impliserer at $x \in C$. Dette er en selvmotsigelse. Mengden på venstre side må derfor være tom.

For å telle antall elementer i $A \cup B \cup C$ teller vi først antall elementer i hver mengde og summerer dem sammen. Men nå har vi telt elementene i $A \cap B, A \cap C$ og $B \cap C$ to ganger. Derfor trekker vi fra antall elementer i hvert av disse snittene. Men nå har vi trukket fra for masse, ettersom elementene i $A \cap B \cap C$ har blit telt tre ganger og trukket fra tre ganger. Derfor legger vi til slutt til antall elementer i $A \cap B \cap C$.

Alternativt kan man bruke formelen $|X \cup Y| = |X| + |Y| - |X \cap Y| \mod X = A \cup B$ og Y = C.

Seksjon 2.3

- 12 Vi ser på en funksjon $f: \mathbb{Z} \to \mathbb{Z}$.
 - a) f(n) = n 1 er injektiv, for hvis n 1 = m 1, så er n = m.
 - **b)** $f(n) = n^2 + 1$ er ikke injektiv, fordi f. eks. f(-1) = 2 = f(1).
 - c) $f(n) = n^3$ er injektiv, for hvis $n^3 = m^3$ kan vi ta tredjeroten på begge sider og få n = m.
 - d) $f(n) = \lceil \frac{n}{2} \rceil$ er ikke injektiv, fordi f. eks. f(1) = 1 = f(2).
- Oppgaven er litt løst formulert i boka. Du kan anta at $a, b, c, d \in \mathbb{R}$ er konstanter, og se på f og g som funksjoner fra \mathbb{R} til \mathbb{R} . Vi regner ut

$$(f \circ g)(x) = f(g(x)) = f(cx+d) = a(cx+d) + b = (ac)x + (ad+b)$$

for $x \in \mathbb{R}$. På samme måte finner vi

$$(g \circ f)(x) = (ac)x + (cb + d).$$

Funksjonene $f \circ g$ og $g \circ f$ har samme domene og kodomene, så de er like hvis og bare hvis de tar samme verdi for alle $x \in \mathbb{R}$. Fra utregningene over ser vi at de er like hvis og bare hvis ad + b = cb + d. Altså er betingelsen ad + b = cb + d nødvendig og tilstrekkelig for at $f \circ g = g \circ f$.

- Husk at $(a,b) = \{x \in \mathbb{R} | a < x < b\}$, $(a,\infty) = \{x \in \mathbb{R} | x > a\}$ og $(-\infty,b) = \{x \in \mathbb{R} | x < b\}$ for $a,b \in \mathbb{R}$ når vi jobber med reelle tall.
 - a) $f^{-1}(\{1\}) = \{x \in \mathbb{R} | x^2 = 1\} = \{-1, 1\}.$
 - **b)** $f^{-1}((0,1)) = \{x \in \mathbb{R} | 0 < x^2 < 1\} = (-1,0) \cup (0,1).$
 - c) $f^{-1}((4,\infty)) = \{x \in \mathbb{R} | x^2 > 4\} = (-\infty, -2) \cup (2, \infty).$

Seksjon 2.4

12 c) Vi setter inn og får

$$-3a_{n-1} + 4a_{n-2} = -3(-4)^{n-1} + 4(-4)^{n-2}$$

$$= -3(-4)^{n-1} - (-4)(-4)^{n-2}$$

$$= -3(-4)^{n-1} - (-4)^{n-1}$$

$$= -4(-4)^{n-1}$$

$$= (-4)^n$$

$$= a_n.$$

Dette viser at $a_n = (-4)^n$ er en løsning av rekurrensligningen.

33 d)
$$\sum_{i=0}^{2} \sum_{j=1}^{3} ij = \sum_{i=0}^{2} (i+2i+3i) = \sum_{i=0}^{2} 6i = 0+6+12 = 18.$$

Seksjon 2.5

La B være en tellbar mengde. Vi vil vise at dersom $A \subseteq B$, så er A også tellbar. Vi deler opp beviset i flere tilfeller (cases).

Tilfelle 1: Hvis B er en endelig mengde og $A \subseteq B$, da er også A endelig. Så A er tellbar i dette tilfellet.

Tilfelle 2: Anta at B er en tellbar uendelig mengde. Hvis A er en endelig delmengde av B, da er A tellbar. Anta derfor at $A \subseteq B$ og at A har uendelig mange elementer. Siden B er tellbar kan vi liste opp elementene i B som

$$b_1, b_2, b_3, b_4, \dots$$

Siden A er en delmengde av B består A av noen av elementene i denne følgen. Disse kan listes i samme rekkefølge som de forekommer i følgen over, og dette gir en liste over elementene i A. Dermed er A tellbar.

Alternativt bevis I: Et mer formelt bevis som formaliserer idéen over kan gis som følger. Anta som over at B er tellbar uendelig og at A er en uendelig delmengde av B. Siden B er tellbar uendelig finnes det en bijeksjon $f: \mathbb{N} \to B$. Vi vil bruke f til å finne en bijeksjon $g: \mathbb{N} \to A$. La

$$n_0 = \min\{n \in \mathbb{N} | f(n) \in A\}.$$

 n_0 er altså det minste naturlige tallet som gir oss et element i delmengden A når vi plugger det inn i funksjonen f. (At dette er veldefinert følger av Velordningsprinsippet

 1 og at A er ikke-tom.) La videre

$$n_1 = \min\{n \in \mathbb{N} | n > n_0 \land f(n) \in A\},$$

$$n_2 = \min\{n \in \mathbb{N} | n > n_1 \land f(n) \in A\},$$

$$\vdots$$

$$n_k = \min\{n \in \mathbb{N} | n > n_{k-1} \land f(n) \in A\}.$$

Hvert steg er veldefinert fordi A er en uendelig mengde (så vi finner alltid et element til i A). Vi definerer nå

$$g(m) = f(n_m)$$
 for $m \in \mathbb{N}$.

For å vise at g er en bijeksjon kan vi argumentere som følger. Gitt et element $a \in A$, da er $a \in B$ siden $A \subseteq B$. Siden f er surjektiv finnes det et naturlig tall N med f(N) = a. Siden $f(N) \in A$ vil N forekomme som en av n_m 'ene over hvis vi bare følger prosedyren lenge nok. Og da får vi $g(m) = f(n_m) = f(N) = a$, så g er surjektiv. Hvis g(m) = g(m'), da er $f(n_m) = f(n_{m'})$. Og siden f er injektiv har vi at $n_m = n_{m'}$. Følgen n_k er konstruert slik at $n_k < n_{k+1}$ for alle k, så eneste mulighet for at $n_m = n_{m'}$ er at m = m'. Dette viser at g er injektiv. Vi har nå vist at g er en bijeksjon, som viser at A har samme kardinalitet som \mathbb{N} . Så A er tellbar.

Alternativt bevis II: Den kanskje mest elegante måten å bevise dette på er skissert under.

- 1. Vis, ved å bruke Velordningsprinsippet, at enhver uendelig undermengde av \mathbb{N} har samme kardinalitet som \mathbb{N} .
- 2. Bruk dette til å vise at en mengde A er tellbar hvis og bare hvis det finnes en injektiv funksjon $f: A \to \mathbb{N}$.
- 3. Vis at sammensetningen av to injektive funksjoner er injektiv.
- 4. Gitt en tellbar mengde B, en injektiv funksjon $f: B \to \mathbb{N}$ og en delmengde $A \subseteq B$. La $\iota: A \to B$ betegne funksjonen $\iota(a) = a$. Observer at ι er injektiv og at $f \circ \iota$ gir en injektiv funksjon fra A til \mathbb{N} .

¹Velordningsprinsippet: Enhver ikke-tom delmengde av de naturlige tallene har et minste tall.