

Multi-crystal data collection capabilities at the ESRF

Olof Svensson

Data Analysis Unit / ISDD

Multi-crystal data collections implemented as workflows

- Mesh and collect interactive
- Fully automatic workflows:
 - MXPressE: Auto-mesh, X-ray centring, characterisation, data collection
 - MXPressO: Auto-mesh, X-ray centring, data collection 180 degrees
 - MXPressI: Auto-mesh, X-ray centring, characterisation, data collection 180 degrees with resolution from characterisation

MESH AND COLLECT

Manual grid selection in mxCuBE + initial parameters:

Diffraction signal detection	Dozor (macro-molecules)
Grid exposure time	0.1
Total oscillation range	1.0
Transmission	50.0
Take single snapshot at end of WF	true 🔻

2D X-ray grid :

MESHBEST OPTION (IGOR MELNIKOV)

MESH AND COLLECT

- Characterisation on strongest grid image(s)
- User input :

Data collection on found positions :

BEAMLINE EXPERT SYSTEM – PASSERELLE EDM

OUTLINE

MXPress diffraction plan choices:

- Type of experiment:
 - MXPressE: automesh, X-ray centring, (EDNA) characterization, data collection
 - MXPressO: automesh, X-ray centring, 180 degree standard data collection
 - MXPressI: automesh, X-ray centring, characterization, 180 degree data collection at resolution given by characterization (ranking resolution), data collection
 - MXPressM: Loop screening; automesh, 2D mesh
 - MXPressP: Pseudo helical; automesh, X-ray centring with many point detection, characterization on strongest position, full data collection on strongest position, partial data collections on remaining positions

Common choices:

- SAD / no SAD
- No positions
- Beam size
- Crystal space group and cell dimensions
- Crystal susceptibility to radiation damage

MXPRESS-STYLE WORKFLOWS

- Number of positions taken from ISPyB diffraction plan
- Auto mesh, max loop size
- 2D X-ray grid
- For every position :
 - Vertical centring 90 degrees apart from 2D mesh
 - Characterisation
 - Data collection

AUTO MESH

Auto loop centring with Lucid 2

Code on github: <u>https://github.com/olofsvensson/AutoMesh</u> (→ mxCuBE?)

PSEUDO-HELICAL

- Number of positions taken from ISPyB diffraction plan, default 5
- Initial 2D mesh on max loop size
- Normal characterization and full data collection on first position
- Pseudo-helical characterization for remaining points
- For remaining positions :
 - Vertical centring 90 degrees apart from 2D mesh
 - Partial data collection from pseudo-helical characterisation

NEW DEVELOPMENTS 2017

Dynamic aperture adjustment

- Aperture automatically set to match crystal size determined from X-ray centring
- Can be overridden by aperture desired by user

 Automatic recovery in case of detection of non-centred crystal

Auto selected beam size

ACKNOWLEDGEMENTS

- David von Stetten, Max Nanao, Sasha Popov, Daniele de Sanctis, Stéphanie Monaco, Didier Nurizzo, Matias Guijarro, Solange Delagenière, Alejandro de Maria, Marcus Oskarsson, Pascal Theveneau, Christoph Mueller-Dieckmann, Gordon Leonard, David Flot, Igor Melnikov and Antonia Beteva (ESRF)
- Matthew Bowler, Andrew McCarthy and Michael Hons (EMBL Grenoble)
- Erwin de Ley and Koen Heunick (Isencia, Belgium)
- The ESRF Data Analysis Unit, Beamline Control Unit and Structural Biology group

Further reading:

- Fully automatic characterization and data collection from crystals of biological macromolecules, Svensson, O., Malbet-Monaco, S., Popov, A., Nurizzo, D., & Bowler, M. W. (2015). Acta Crystallographica Section D: Biological Crystallography, 71(Pt 8), 1757–1767. http://doi.org/10.1107/S1399004715011918
- MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines, Ulrich Zander · Gleb Bourenkov · Alexander N Popov · Daniele De Sanctis · Olof Svensson · Andrew A Mccarthy · Ekaterina Round · Valentin Gordeliy · Christoph Mueller-Dieckmann · Gordon A Leonard, ACTA CRYSTALLOGRAPHICA SECTION D BIOLOGICAL CRYSTALLOGRAPHY 71(11):2328-2343 · NOVEMBER 2015