CSE	320	Spring	2014
- ~ -		~	

Homework #2 Quiz Version 1

Name:	
No calculators, notes, or textbooks allowe	ed. Show all your work for full credit.
Time limit: 20 mins	

$$Z \{A,B,C,D,E\} = ABC'D'E' + A'BC'D + CDE$$

<u>Problem 1 [5 points]:</u> Implement the Z using <u>one</u> 4-input (2-bit selector) multiplexor and the <u>minimal</u> number of 2-input (1-bit selector) multiplexors.

Problem 2 [5 points]: Implement the Z using one 16-input (4-bit selector) multiplexor.

$Z \{A,B,C,D,E\} = ABC'D'E' + A'BC'D + CDE$

<u>Problem 3 [10 points]:</u> Implement Z using a 4-input decoder and the minimal number of AND and/or OR gates.

Problem 2 [4 points]:

Z = xy'z' + xy'z + xyz' + x'yz' + x'y'z

Implement Z using 2-input multiplexors (1-selector). DO NOT SIMPLIFY THE INITIAL EXPRESSION. You may simplify the subexpressions into the MUX.

Name:	ID:

No calculators, notes, or textbooks allowed. Show all your work for full credit. <u>Time limit:</u> 20 mins

Problem 1: Short answer

- a. [2 pts] When performing division of two 12-bit integer numbers, how many clock cycles (iterations of the algorithm) are required?
- b. [2 pts] When performing multiplication, which of the following registers is shifter to the <u>left</u> by 1 bit?
 - ☐ Multiplicand

□ Product

□ Multiplier

<u>Problem 2:</u> Consider the following 1-bit ALU with the following delay times for each operation.

Cor	ntrol		Delay for	Delay CarryIn to
C_1	C_{θ}	Operation	Result (ns)	CarryOut (ns)
0	0	A + B + CarryIn	3	2
0	1	A XOR B	3	-
1	0	A OR B	2	-
1	1	SLTZ	1	-

a. [4 pts] What is the delay time to complete each operation in the 3-bit ALU?

A + B + Carry_in

A XOR B

A OR B

SLTZ

b. [2 points] Which operation determines the overall delay (critical path) of the 3-bit ALU?

<u>Problem 3 [10 points]:</u> Implement the 1-bit ALU with XOR and NAND gates and a single 4-input (2-bit selector) multiplexor. Assume only uncomplemented variables are given. (Hint: Build required gates from NAND gates)

Control		
C_1	C_{θ}	Operation
0	0	A + B + CarryIn
0	1	A XOR B
1	0	A OR B
1	1	SLTZ

Name:	<i>ID</i> :

No calculators, notes, or textbooks allowed. Show all your work for full credit. <u>Time limit:</u> 20 mins

1. Assume the original multicycle datapath is altered to support a register file with only 1 read data port as shown on the handout. Modify the finite state machine control to indicate the control signals for the new datapath.

CSE 320 Spring 20.	14
--------------------	----

Homework #5 Quiz Version A

Name:	
	ulators, notes, or textbooks allowed. Show all your work for full credit. nit: 20 mins
Suppos	 e we have two machine implementations of the same instruction set architecture, on which we execute Program P. Machine 1 (M1) has a clock rate of 3.0GHz & takes an average of 2.0 clock cycles per instruction (CPI) for P. Machine 2 (M2) has a clock rate of 2.5GHz & has a CPI of 1.2 for P.
(a)	If program P executes in 8 million instructions (on both machines), how long will it take to run Program P on Machine 1? on Machine 2?
(b)	Calculate the average MIPS ratings for each machine, M1 and M2.
(c)	Suppose that the 8 million instructions implemented on M1 fall into two performance classes, the first (Class A) takes 1 clock cycle to execute, while the second (Class B) takes 3 clock cycles to execute. How many Class B instructions are executed when program P is run?

<u>Problem 2:</u> Consider two machines with the same instruction set, Machine A and Machine B. Machine B runs floating-point instructions 5 times faster than machine A. Program Q takes 80 seconds to run on machine A and spends 1/4 its time in floating-point instructions. How much faster is machine B (over machine A) at executing this program?

Name:ID:

No calculators, notes, or textbooks allowed. Show all your work for full credit. <u>Time limit:</u> 15 mins

Consider the following MIPS code

sw \$4, 20 (\$6) sub \$3, \$4, \$6 add \$5, \$3, \$2 1w \$7, 100 (\$5) lw \$8, 20 (\$7) add \$3, \$7, \$8

(a) What type of hazards occurs in the code above? Where do they occur?

(b) Assume, there is **no forwarding** in the pipeline. Label the instructions and insert stalls (bubbles) to eliminate all hazards (ie. There should be no forwarding lines)


```
sw $4, 20 ($6)
sub $3, $4, $6
add $5, $3, $2
lw $7, 100 ($5)
lw $8, 20 ($7)
add $3, $7, $8
```

(c) Assume there **is forwarding** in the pipeline. Label the instructions; show the forwarding paths and\or stalls needed to execute the code.

(d) Can the code be reordered in order to improve performance? If Yes, Show how. If not, why?