

Uncertainty-Aware Failure Detection for Imitation Learning Robot Policies

Chen Xu, Tony Khuong Nguyen, Patrick Miller, Robert Lee, Paarth Shah, Rares Andrei Ambrus, Haruki Nishimura, Masha Itkina

Motivation

Generative imitation learning policies are prone to failure:

Challenges:

- High-dimensional action and observation data.
- Demonstration data contains only successful trajectories.
- Diverse failure types occur during deployment.

Solution: A modular two-stage runtime failure detector

- Extracts scalar scores from high-dimensional data and uses conformal prediction to threshold when to alert failure.
- Requires no failure training data.
- Capable of detecting different kinds of failures.

Stage 1: Scalar Score Design

Desiderata:

1.One-class: No failure data is required.

2.Light-weight: Fast inference for real-time robot control.

3.Discriminative: Gap in scores between successes/failures.

Built on SOTA OOD detectors:

- (a) learned data density
- (b) second-order distribution
- (c) one-class discrinimator
- (d) posthoc metrics.

Proposed Framework

- Stage 1: Extract scalar detection scores given data in each rollout.
- Stage 2: Determine detection threshold using conformal prediction band.
- **Sequentially** detect failures if scores exceed thresholds.
- Alarm is raised when there are physical changes in the environment.

• Flexible to:

- Incorporating new scores and thresholding schema.
- Building on any imitation learning policy.

Stage 2: Sequential Threshold

- Construct thresholds as a one-sided conformal prediction band.
- Thresholds adapt
 temporally to score
 variations.
- Theoretically controls false positive rate.

Experimental Results

Failure

trajectory

Detection

threshold

Success

trajectory

Physically Meaningful Metric

Sudden rise in scores indicates failure has occurred.

(a) Simulation-Robomimic

(b) On-Robot-OOD **Quantitative comparison**

Top three: red > blue > green

SPARCOGPO DER ATPN CFM RND

- RND [1] learned scores perform best in Accuracy.
- No batch sampling; significantly faster than STAC [2].

(b) On-Robot-OOD

SPARCOGPO DER ATPN CFM RND

References