INTRODUCTION TO RHADOOP

Janez Povh
EuroHPC Competence Center, February 3–4 2022

Schedule

Introduction to R

• Advanced and Big data management with R

Big data management with RHadoop

Timetable

March 4th	
13:00–13:15	Introduction to Day 2
13:15-14:00	Introduction to R
14:00-14:15	break
14:15-15:00	Advanced and Big data management with R
	Dana manipulations with apply functions apply, lapply, sapply, vapply, tapply, and mapply. Big Data management with function for efficient parallel loops parLapply, parSapply, mcLapply and foreachdopar.
15:00-15:15	break
15:15–16:00	Big data management with RHadoop Preparing and storing big data to HDFS using rhdfs library. Retriving from and managing big data in HDFS by plyrmr and rhdfs library.
16:00-16:15	break
16:15–17:00	Big data analysis with RHadoop Preparing map-reduce scripts to make basic data analysis tasks (extreme values, counts, mean values, dispersions, visualisations) using rhdfs library

Introduction to RHadoop

Outline/next

Schedule

Introduction to R

• Advanced and Big data management with R

Big data management with RHadoop

What is R

- Software for Statistical Data Analysis
- Based on S
- Programming Environment
- Interpreted Language
- Data Storage, Analysis, Graphing
- Free and Open Source Software

How to obtain R

- R current version 4.1.3 (released on 2021-11-01).
- http://cran.r-project.org
- Binary source codes
- Windows executables

Pros and Cons

Pros:

- Free and Open Source
- Strong User Community
- Highly extensible, flexible
- Implementation of high-end statistical methods
- Flexible graphics and intelligent defaults

Cons

- Steep learning curve
- Slow for large datasets

Data types

- R Supports virtually any type of data
- Numbers, characters, logicals (TRUE/ FALSE)
- Arrays of virtually unlimited sizes
- Simplest: Vectors and Matrices
- Lists: Can Contain mixed type variables
- Data Frame: Rectangular Data Set

Data structures in R

Linear

- vectors (all same type)
- lists (mixed types)

Rectangular

- data frame
- matrix

Running R

- I recommend RStudio, an IDE for R.
- It is available as RStudio Desktop and RStudio Server, which runs on a remote server and allows accessing RStudio using a web browser.

Figure 1: https://rstudio.com/products/rstudio/download/

RStudio on HPCFS

Sign in to RStudio
Username:
campus04
Password:
•••••
Stay signed in
Sign In

Figure 2: http://viz.hpc.fs.uni-lj.si/rstudio/auth-sign-in

RStudio on HPCFS

Before we start

Create directory for R scripts

```
work_dir=paste("/home", Sys.getenv("USER"), "resources", sep="/")
setwd(work_dir)
system("git pull")
```


- Open new script file CTRL+SHIFT+N
- Save the script file.

Create directory for R scripts

```
work_dir=paste("/home", Sys.getenv("USER"),"Rscripts/resources", sep="/")
work_dir=paste("/home", Sys.getenv("USER"),"Rscripts/big-data-training", sep="/")
data_dir=paste(work_dir,"data", sep="/")

#unlink(work_dir, recursive = TRUE)

ifelse(!dir.exists(work_dir), dir.create(work_dir), FALSE)
ifelse(!dir.exists(data_dir), dir.create(data_dir), FALSE)

setwd(work_dir)
system("git pull")
dir()
dir("data/")
```

Creating the first scrip file

Create and save simple data file

```
N=1000;
Data=data.frame(group=character(N),ints=numeric(N),reals=numeric(N))
Data$group=sample(c("a","b","c"), 1000, replace=TRUE);
Data$ints=rbinom(N,10,0.5);
Data$reals=rnorm(N);
head(Data)
Data
write.table(Data, file='Data/Data_Ex_1.txt', append = FALSE, dec = ".",col.names = TRUE)
ls()
rm(list = ls())
```

Load and analyse the data

Load data

```
Data_read <- read . table (file = 'data/Data_Ex_1.txt', header = TRUE)
# first few rows
head(Data_read)
#10 th row
Data_read[10,]
# column group
Data_read$group
Data_read[,1]
```


Load data

```
# compute means and counts by groups
group count_ints mean_ints
a | 337 | 5.014837
b | 338 | 5.032544
c | 325 | 4.990769

# primitive solution
Group_lev=levels(Data_read$group)

Tab_summary=data.frame(group=character(3),count_ints=integer(3),mean_ints=numeric(3))
Tab_summary$group<-Group_lev
for (i in c(1:3)){
    sub_data = subset(Data_read,group==Group_lev[i])
    Tab_summary$count_ints[i]<-nrow(sub_data)
    Tab_summary$mean_ints[i]<-mean(sub_data$ints)
}</pre>
```


- Library dplyr: "select", "filter", "group by", "arrange", "mutate" and "summarize".
- Library magrittr: "%>%"

dplyr

```
llibrary(dplyr)
library(magrittr)
Tab_summary1<-group_by(Data_read,group) %>% dplyr::summarise(count_ints=n(),mean_ints=
    mean(ints))

# other operations on rows and columns
Data_read_group_ints<-Data_read %>% select(group,ints)
# add new variable reals/ints
Data_read<-mutate(Data_read,ratio=reals/ints)
Data_read<-Data_read %>% mutate(ratio1=ints/reals)
#arrange
#sort accordind to increasing group
Data_read<-Data_read %>% arrange(desc(group))
Data_read<-Data_read %>% arrange(group)
```

split, aggregate, sapply

```
s <- split(Data_read, Data_read$group)
Tab_summary1<-t(sapply(s, function(x) return(c(mean(x$ints),length(x$group)) )))
Tab_summary2<-cbind(aggregate(ints~group,data = Data_read,FUN=length),aggregate(ints~group,data = Data_read,group,data = Data_read,group),aggregate(ints~group,data = Data_read,group,data = Data_read,
```

Outline/next

Schedule

Introduction to R

• Advanced and Big data management with R

Big data management with RHadoop

Advanced and Big data management with R

apply, lapply, sapply

apply, lapply, sapply

```
apply(X, MARGIN, FUN)
Here:
-x: an array or matrix
-MARGIN=1: the manipulation is performed on rows
-MARGIN=2: the manipulation is performed on columns
-MARGIN=c(1,2): the manipulation is performed on rows and columns
-FUN: tells which function to apply. Built functions like mean, median, sum, min, max and even
user-defined functions can be applied
```

apply

For data constructed above (Data_read) compute row and columns means using apply

```
apply
```

```
Data_read<-read.table(file='data/Data_Ex_1.txt',header = TRUE)

Data_col_means_1 <- colMeans(Data_read[,-1])
Data_col_means_2 <- apply(Data_read[,-1],2,FUN =mean)

Data_row_means_1 <- rowMeans(Data_read[,-1])
Data_row_means_2 <- apply(Data_read[,-1],1,FUN =mean)

Data_both_squares <- apply(Data_read[,-1],c(1,2),FUN = function(x) return(x^2))</pre>
```

lapply

- lapply function takes list, vector or data frame as input and returns only list as output
- sapply function takes list, vector or data frame as input. It is similar to lapply function but returns only vector as output.

For data constructed above (Data_read) compute row and columns sums using lapply

lapply

```
Data_col_sums_1 <- apply(Data_read[,-1],2,FUN =sum)
Data_col_sums_2 <- lapply(Data_read[,-1],FUN =sum)

typeof(Data_col_sums_1)
typeof(Data_col_sums_2)

Data_abs <- lapply(Data_read[,-1],FUN =abs)
Data_sq <- lapply(Data_read[,-1],FUN = function(x){x^2})

typeof(Data_abs)
length(Data_abs)
length(Data_abs)
Introduction to Midadoop</pre>
```

sapply

For data constructed above (Data_read) compute row and columns sums using sapply

```
Data_col_sums_1 <- apply(Data_read[,-1],2,FUN = sum)
Data_col_sums_2 <- lapply(Data_read[,-1],FUN = sum)
Data_col_sums_3 <- sapply(Data_read[,-1],FUN = sum)

typeof(Data_col_sums_1)
typeof(Data_col_sums_2)
typeof(Data_col_sums_3)</pre>

Data_col_sums_4 <- lapply(list(Data_read$ints,Data_read$reals),FUN = sum)
Data_col_sums_5 <- sapply(list(Data_read$ints,Data_read$reals),FUN = sum)
Data_col_len_1 <- lapply(list(Data_read$ints,Data_read$reals),FUN = length)
Data_col_len_2 <- sapply(list(Data_read$ints,Data_read$reals),FUN = length)
Data_col_len_2 <- sapply(list(Data_read$ints,Data_read$reals),FUN = length)</pre>
```

for loop

Let us compute sums of all elements of 12 random matrices of order $3000\times3000\,$

```
for
```

```
N=3000
set.seed(2021)
sum_rand=rep(0,11);
tic()
for (i in c(1:12)){
    A=randn(N,N)
    sum_rand[i]=sum(A)
}
time_for=toc()
```

foreach do loop

Let us compute sums of all elements of 12 random matrices of order $3000\times3000\,$

```
N=3000
set.seed(2021)
sum_rand=rep(0,11);
tic()
foreach (i = c(1:12)) %do% {
    A=randn(N,N)
    sum_rand[i]=sum(A)
}
time_foreach=toc()
```

Parallel foreach dopar loop

Let us compute sums of all elements of 12 random matrices of order 3000×3000 using foreach ...dopar from foreach and doParallel

Do you observe any difference?

Parallel foreach dopar loop

Let us compute sums of all elements of 12 random matrices of order 3000×3000 using foreach ...dopar from foreach, doParallel. Create cluster!

```
N=3000
set.seed(2021)
registerDoParallel(12) # use multicore, set to the number of our cores - needed for
    foerach dopar

sum_rand=rep(0,11);
tic()
foreach (i = c(1:12)) %dopar% {
    A=randn(N,N)
    sum_rand[i]=sum(A)
}
time_foreach_dopar_1=toc()
registerDoSEQ()
```

Library parallel

- encapsulates existing libraries multicore, snow
- two ways of parallelization:
 - The socket approach: launches a new version of R on each core via networking (e.g. the same as if you connected to a remote server), but the connection is happening all on your own computer.
 - pros: (i) Works on any system (including Windows); (ii) Each process on each node is unique so it can't cross-contaminate.
 - cons: (i) Each process is unique so it will be slower (ii) Things such as package loading need to be done in each process separately. Variables defined on your main version of R don't exist on each core unless explicitly placed there. (iii) More complicated to implement.
 - use parLapply, parSapply

Library parallel

- The forking approach copies the entire current version of R and moves it to a new core.
 - (i) Faster than sockets. (ii) Because it copies the existing version of R, your entire workspace exists in each process. (iii) Easy to implement.
 - Cons (i) Only works on POSIX systems (Mac, Linux, Unix, BSD) and not Windows. (ii) it can cause issues specifically with random number generation or when running in a GUI (such as RStudio). This doesn't come up often.
- use mclapply

Parallel versions of lapply

By using library parallel and parSapply, mclapply compute sums of all elements of 12 random matrices of order 3000×3000 . Create cluster!

parallel versions of apply

```
mat_sum<-function(x){
    A=rand(x)
    return(sum(A))
}
tic()
time_lapply<-system.time({
    set.seed(2021)
    sum_rand_lapply=lapply(rep(3000,12),FUN=mat_sum)
    time_lapply=toc()
})
time_sapply<-system.time({
    set.seed(2021)
    sum_rand_sapply=sapply(rep(3000,12),FUN=mat_sum)
})</pre>
```

Parallel versions of lapply

parallel versions of apply

```
time_mcLapply <- system.time({
  set.seed(2021)
  sum_rand_mcLapply=mclapply(X=rep(3000,12),FUN=mat_sum,mc.cores = 12)
1)
time_parLapply <- system.time({
  clust <- makeCluster(12, type="PSOCK")
  set.seed(2021)
  sum_rand_parLapply=parLapply(c1,rep(3000,1000),fun=mat_sum)
  stopCluster(clust)
1)
time_parSapply <- system.time ({
  clust <- makeCluster(12, type="PSOCK")
  set.seed(2021)
  sum_rand_parSapply=parSapply(cl,rep(3000,20),FUN=mat_sum)
  stopCluster(clust)
1)
```

Parallel versions of lapply

parallel versions of apply

```
times_apply <-rbind(time_lapply, time_sapply, time_parLapply, time_parSapply, time_mcLapply)
> times_apply[,1:3]
               user.self sys.self elapsed
time_lapply
                    5.120
                             0.954
                                      6.072
                             0.885
                                      5.932
time_sapply
                    5.049
time_parLapply
                   0.076
                            0.209
                                    47.999
time_parSapply
                   0.021
                            0.105
                                    4.286
time_mcLapply
                    0.003
                             0.040
                                     0.531
```

- Parallel for-loop (foreach...dopar). Cluster created by registerDoParallel(N) and registerDoSEQ(). Library foreach, doParalel needed.
- Parallel apply: parLapply, parSapply, mcLapply need library parallel.

Outline/next

Schedule

Introduction to R

• Advanced and Big data management with R

Big data management with RHadoop

Big data management with RHadoop

The goals of the second part

- Demonstrating basic data management operations with RHadoop;
- By few examples showing basic data analysis with RHadoop;

Motivation

- Do data analysis (statistics), do not bother with low level settings
- Stay within R (and RStudio)

Overall picture

Figure 3:

https://www.r-bloggers.com/slides-and-replay-from-r-and-hadoop-webinar/

Overall picture

First little example

content...

Setting up RHadoop using terminal window


```
export LD_LIBRARY_PATH=/opt/apps/software/Java/1.7.0_80/lib:${LD_LIBRARY_PATH}
```

export PATH=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/bin:\${PATH}

export PATH=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/sbin:\${PATH}

export LD_LIBRARY_PATH=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/lib:\${LD_LIBRARY_PATH}

export HADOOP_HOME=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/share/hadoop/mapreduce

export PATH=/opt/apps/software/Java/1.7.0_80:\${PATH}

export JAVA_HOME=/opt/apps/software/Java/1.7.0_80

Rhadoop

5 R packages provided by RevolutionAnalytics¹²:

- rhdfs basic connectivity to the Hadoop Distributed File System (browse, read, write, and modify files stored in HDFS)
- rhbase basic connectivity to the HBASE distributed database, using the Thrift server.
- plyrmr enables the R user to perform common data manipulation operations, as found in plyr and reshape2
- rmr2 allows R developer to perform statistical analysis in R via Hadoop MapReduce functionality on a Hadoop cluster.
- ravro adds the ability to read, write and manipulate avro files from local and HDFS file system.

https://github.com/RevolutionAnalytics

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

Setting up the Rhadoop - cnt.

- Establish the connectivity to the Hadoop Distributed File System by loading the library rhdfs. library(rhdfs)
- Load libraries to work with Hadoop MapReduce library(rmr2)
- Initialize HDSF hdfs.init().
- All together:

Basic data operations with RHadoop.

List files in the root directory of DFS hdfs.ls("/")

```
> hdfs.ls("/")
permission owner
                                                                            file
                       group
                                  size
                                                 modtime
1 -rw-r--r- hadoop supergroup 184814018 2021-09-25 22:16
                                                                /BigData_reg_class
2 -rw-r--r-- hadoop supergroup
                                33602002 2021-09-25 22:16
                                                                         /CEnetBig
3 -rw-r--r- hadoop supergroup 476054348 2021-09-25 22:16 /electricity-energy.txt
4 drwxrwxrwx hadoop supergroup
                                       0 2021-09-28 02:14
                                                                              /tmp
5 drwxr-xr-x hadoop supergroup
                                       0 2021-09-25 11:49
                                                                              /user
```

Basic data operations with RHadoop.

List files in the home directory of each user hdfs.ls("/user/campus01")

```
hdfs.ls("/user/campus01")
permission
                                               modtime
             owner group
                                 size
     file
1 -rw-r--r- campus01 hadoop 12466 2020-09-16 06:47 /user/campus01/
     OurSmallData
2 -rw-r--r- campus01 hadoop 18836041094 2020-09-11 09:16 /user/campus01/safecast.
     CSV
3 -rw-r--r- campus01 hadoop 336031560 2020-09-15 15:30
                                                             /user/campus01/
     wiki321MB
4 drwxr-xr-x campus01 hadoop
                                      0 2020-09-15 15:30 /user/campus01/wordcount_
     011 t.
```

Moving data around - FileZilla


```
sftp://campus04@forge.fs.uni-li.si - FileZilla
File Edit View Transfer Server Bookmarks Help New version available!
W-BTT# CBQ LUFQ OA
Host: sftp://forge.fs.uni- Username: smpus04 Password: ••••• Port:
                                                                           Quickconnect +
Status:
          Connecting to forge.fs.uni-li.si...
Status:
          Connected to forge.fs.uni-li.si
          Retrieving directory listing...
Status:
Status:
          Listing directory /home/campus04
Status:
          Directory listing of "/home/campus04" successful
Status:
          Retrieving directory listing of "/home/campus04/R"...
Status:
          Listing directory /home/campus04/R
Status:
          Directory listing of */home/campus04/R* successful
Local site: C:\Users\ipovh\Documents\RESEARCH\Matlab\ipcode\cases\
                                                                                                                       Remote site: /home/campus04/R
                                                                                                                                   ? Glasba
                           cases
                              BiaBin
                                                                                                                                   ? Javno
                                                                                                                                     MPI
                              - bw
                                Cedric Josz
                                                                                                                                   Predloge
                                                                                                                                   ? Prejemi
                                FMF_IzPogOptim
                                                                                                                                   ? Slike
```

Moving data around with Linux

Copy from other account

cp /home/campus01/R/data/iris.csv /home/campusxx/R/data/iris.csv

Copy from internet

curl -o /home/campus01/R/data/iris.csv
https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/
639388c2cbc2120a14dcf466e85730eb8be498bb/iris.csv

Moving data around with Linux or RHadoop

Copy from internet address or local folder to hdfs within RHadoop

Introduction to RHadoop 47/72

Create and store data in HDFS

Use small data created at the beginning and stored as

```
file_name = paste("/home", Sys.getenv("USER"),'myRscripts','Data_Ex_1.txt', sep="/")
Data_read<-read.table(file=file_name,header = TRUE)

myDFS_File=paste("/user", Sys.getenv("USER"), "OurSmallData", sep="/")
hdfs.rm(myDFS_File)
OurSmallData=to.dfs(Data_read, myDFS_File,format="native")
SmallData1_DFS=from.dfs(OurSmallData)
system("hdfs fsck /user/campusO1/OurSmallData")</pre>
```

CEnetBig

CEnetBig contains data about customers of company X: for each customer we have one row containing

- ID of the customer:
- the values of their bills for period January 2016-December 2016;
- type of product that they have;

```
id 2016_1 2016_2 2016_3 2016_4 2016_5 2016_6 2016_7 2016_8 2016_9 2016_10 2016_11 2016_12 type
[1,] 100373 137.66 141.57 128.83 133.00 97.39 116.62 123.97 156.83 90.50 98.62 118.61 152.34 4
[2,] 100194 98.32 119.40 120.30 105.67 90.26 80.13 80.62 108.63 104.30 123.31 101.93 140.85 2
[3,] 100565 127.60 133.79 90.15 62.33 87.96 92.20 72.04 113.69 65.95 82.69 85.72 121.81 2
```

HDFS statistics for CEnetBig

- From RStudio system("hdfs fsck /CEnetBig")
- From command line: hadoop fsck /CEnetBig

```
> system("hdfs fsck /CEnetBig")
Connecting to namenode via http://viz.hpc:50070
FSCK started by campus01 (auth:SIMPLE) from /10.0.2.99 for path /CEnetBig at Tue
     Sep 28 07:45:39 CEST 2021
.Status: HEALTHY
Total size: 33602002 B
Total dirs: 0
Total files: 1
Total symlinks:
Total blocks (validated): 1 (avg. block size 33602002 B)
Minimally replicated blocks: 1 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks:
Missing replicas: 0 (0.0 %)
Number of data-nodes:
Number of racks:
FSCK ended at Tue Sep 28 07:45:39 CEST 2021 in 2 milliseconds
The filesystem under path '/CEnetBig' is HEALTHY
```

HDFS statistics for CEnetBig

From RStudio system("hdfs fsck /user/jpovh/safecast.csv")

```
Connecting to namenode via http://viz.hpc:50070
FSCK started by campus01 (auth:SIMPLE) from /10.0.2.99 for path /user/campus01/
     safecast.csv at Wed Sep 16 07:39:21 CEST 2020
.Status: HEALTHY
Total size: 18836041094 B
Total dirs: 0
Total files: 1
Total symlinks:
Total blocks (validated): 141 (avg. block size 133588943 B)
Minimally replicated blocks: 141 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 3
Average block replication: 3.0
Corrupt blocks:
Missing replicas: 0 (0.0 %)
Number of data-nodes: 16
Number of racks:
FSCK ended at Wed Sep 16 07:39:21 CEST 2020 in 10 milliseconds
The filesystem under path '/user/campus01/safecast.csv' is HEALTHY
```

Introduction to RHadoop

CEnetBig

Load data into active memory:

```
CEnetBig <- from . dfs ("/CEnetBig")
```

CEnetBig is a key-value pair with void key.

```
> CEnetBig$key
NULL.
> CEnetBig$val[1:3,]
id 2016_1 2016_2 2016_3 2016_4 2016_5 2016_6 2016_7 2016_8 2016_9 2016_10 2016_11
     2016_12 type
[1,] 100373 137.66 141.57 128.83 133.00 97.39 116.62 123.97 156.83 90.50
                                                                            98.62
      118.61 152.34
[2.] 100194 98.32 119.40 120.30 105.67
                                        90.26 80.13
                                                      80.62 108.63 104.30
                                                                           123.31
      101.93 140.85
[3,] 100565 127.60 133.79 90.15 62.33 87.96 92.20 72.04 113.69 65.95
                                                                            82.69
       85.72 121.81
```

First Big Data challenge

Goal: In the column 2016_1 find the maximum value.

Use:
$$\max\{\bigcup_i A_i\} = \max_i \{\max A_i\}.$$

$$9 = \max\{1, 5, 4, 7, 9, 2, 3, 5\}$$
$$= \underbrace{\max\{1, 5, 4, 7\}, \max\{9, 2, 3, 5\}}_{\max}$$

Suppose XX is submatrix of CEnetBig of 1st 100 rows. We find the maximum of column 2016_1 by

```
XX=CEnetBig$val[1:100,]
M=max(XX[,"2016_1"])
```

Finding maximum by Map-Reduce

MAP:

```
mapper = function (., X) {
    M=max(X[,"2016_1"]);
    keyval(1,M)
}
```

• REDUCE:

```
reducer = function(k, A) {
  keyval(k, list(Reduce("max", A))) # take maximum of maxima
}
```

Finding maximum by Map-Reduce - cnt.

MAP-REDUCE:

```
GlobalMaxMR = from.dfs(
  mapreduce(
  input = "/CEnetBig",
  map = mapper,
  reduce = reducer
)
)
```

• Final code:

```
GlobMax =GlobalMaxMR$val
```

Result

```
> GlobalMaxMR$val
[[1]]
[1] 243.25
```

inding maximum, number of map calls and block such


```
mapper2 = function (., X) {
  M = max(X[,"2016_1"]);
  keyval(1:3, list(1, M, dim(X)[1]))
reducer2 = function(k, A) {
  if(k==1){}
    keyval(k, list(Reduce("+", A))) # take sum
  } else if (k==2) {
    keyval(k, list(Reduce("max", A))) # take maximum of maxima
  } else {
    keyval(k, A)
GlobalMaxNumMR = from.dfs(
  mapreduce (
    input = "/CEnetBig",
    map = mapper2,
    reduce = reducer2
```

Finding maximum, number of map calls and block sizes - cnt.


```
> GlobalMaxNumMR
$key
[1] 1 2 3 3 3 3 3 3 3 3 3 3 3 3
$val
$val[[1]]
[1] 12
$val[[2]]
[1] 243.25
$val[[3]]
[1] 89285
$val[[4]]
[1] 89284
$val[[5]]
[1] 80356
$val [[10]]
[1] 89285
$val [[11]]
[1] 89285
$val [[12]]
```

Introduction to RHadoop

Second Big Data challenge

Goal: Compute the mean value of the column 2016_1 ...

Note: $\bar{x} = \sum_i X_i / n$

Suppose XX is submatrix of CEnetBig of 1st 100 rows. We find mean value of column 2016_1 by

```
XX=CEnetBig$val[1:100,]
m=mean(XX[,"2016_1"])
```

• If s_i and n_i are sums and sizes of blocks of data, respectively, then the mean value of all data is

$$\bar{x} = \frac{\sum_{i} s_{i}}{\sum_{i} n_{i}}$$

Finding mean value by Map-Reduce

MAP:

```
mapper_mean = function (., X) {
    n=nrow(X);
    mi=sum(X[,2]);
    keyval(1:2,list(n,mi));
}
```

• REDUCE:

```
reducer_mean = function(k, A) {
  keyval(k,list(Reduce('+', A)))
}
```

Finding mean value by Map-Reduce - cnt.

MAP-REDUCE:

```
Block_means <- from.dfs(
mapreduce(
  input = "/CEnetBig",
  map = mapper_mean,
  reduce = reducer_mean
)
)</pre>
```

• Final code:

```
GlobalMean=Block_means$val[[2]]/Block_means$val[[1]]
```

Result

```
> GlobalMean
[1] 129.4716
```

Third Big Data challenge

Goal: Compute the variance of σ^2 of the CEnetBig[,3] .

Note:
$$\sigma^2 = \frac{\sum_k (X_{k,2} - \bar{x}_2)^2}{n} = \frac{\sum_k X_{k,2}^2}{n} - \bar{x}_2^2$$
.

Third Big Data challenge - cnt.


```
mapper_var = function (., X) {
  n=nrow(X):
  mi = sum (X[,2]);
  si = sum(X[,2]^2);
  kevval(1:3, list(n, mi, si)):
reducer var = function(k, A) {
  keyval(k,list(Reduce('+', A)))
Block_var <- from.dfs(
  mapreduce(
    input = "/CEnetBig",
    map = mapper_var,
    reduce = reducer_var
globalVar=Block_var$val[[3]]/Block_var$val[[1]]-(Block_var$val[[2]]/Block_var$val[[1]])^2
> globalVar
[1] 595,1341
```

Fourth Big Data challenge

Goal: Compute the covariance matrix Σ of the CEnetBig[,2:13] .

Note:
$$\Sigma_{ij} = \frac{\sum_k (X_{ik} - \bar{x}_i)(X_{jk} - \bar{x}_j)}{n} = \frac{1}{n} (\tilde{X}^T \tilde{X})_{ij}$$
.

Suppose XX is submatrix of CEnetBig of 1st 100 rows and with columns '2016_1',..., '2016_12'. We find covariance matrix of XX

```
XX=CEnetBig$val[1:100,2:13]
Sigma=cov(XX)
```

Note: Naive approach will visit the data several times.

Third Big Data challenge - cnt.


```
> Sigma
2016 1
        2016 2 2016 3
                          2016 4
                                   2016 5 2016 6
                                                     2016 7
                                                               2016 8
                                                                        2016 9 2016 10
      2016 11 2016 12
2016_1 554.66627 197.7795 144.7789 131.1854 249.1535 124.1262 252.6528 53.31369
     199.2839 120.2593 257.9729 158.0299
2016 2 197.77949 687.8934 302.7297 307.0862 266.9029 261.8073 280.3199 252.36691
     274.6391 247.4709 310.5588 140.8925
2016_3 144.77895 302.7297 762.0102 284.1748 247.8277 175.4163 283.0150 217.00145
     321.8898 244.9201 413.3578 173.4369
2016_4 131.18542 307.0862 284.1748 605.7750 169.2399 253.4410 292.7296 209.68617
     283.8475 247.4226 422.2579 219.1580
       249.15355 266.9029 247.8277 169.2399 541.3642 171.9361 227.3288 194.71391
     293.5147 218.3279 253.6789 219.2686
2016_6 124.12617 261.8073 175.4163 253.4410 171.9361 567.5522 232.6065 183.04757
     219.4846 192.3792 272.8218 140.0295
2016 7 252.65276 280.3199 283.0150 292.7296 227.3288 232.6065 681.2422 261.19614
     293.7390 211.6760 450.0655 208.6689
        53.31369 252.3669 217.0015 209.6862 194.7139 183.0476 261.1961 639.62214
2016 8
     260,6902 101,4208 189,6450 187,1990
2016_9 199.28392 274.6391 321.8898 283.8475 293.5147 219.4846 293.7390 260.69023
     635.4909 186.6704 370.9400 294.8569
2016 10 120.25931 247.4709 244.9201 247.4226 218.3279 192.3792 211.6760 101.42076
     186,6704 706,0847 296,6746 169,5678
2016_11 257.97290 310.5588 413.3578 422.2579 253.6789 272.8218 450.0655 189.64504
     370.9400 296.6746 877.7393 243.8821
2016 12 158.02993 140.8925 173.4369 219.1580 219.2686 140.0295 208.6689 187.19898
     294.8569 169.5678 243.8821 561.2406
```

Covariance matrix - cnt.

Some mathematics:

$$\Sigma_{ij} = \frac{\sum_{k} (X_{ik} - \bar{x}_i)(X_{jk} - \bar{x}_j)}{n} = \frac{\sum_{k} X_{ik} X_{jk}}{n} - \bar{x}_i \bar{x}_j.$$

$$\Sigma = \frac{1}{n} X^T X - \bar{x} \bar{x}^T$$

• Block structure: Suppose we decompose

$$X = \left[\begin{array}{c} X^1 \\ X^2 \\ \vdots \\ X^k \end{array} \right]$$

where X^i is a block of X having n_i rows.

The "tough" product rewrites as

$$X^TX = \sum_{i=1}^k (X^i)^T X^i.$$

Covariance matrix - cnt.

• Similarly: if n_i , s_i are row-sizes and column sums of blocks X^i

$$\bar{x} = \frac{\sum_{i} s_{i}}{\sum_{i} n_{i}}.$$
 (1)

```
mapperSS = function (., X) {
    ni=nrow(X);
    si=colSums(X[,2:13]);
    SSi=t(X[,2:13])%+%X[,2:13];
    keyval(1:3,list(ni,si,SSi));
}
```

REDUCE:

```
reducerSS = function(k, A) {
  keyval(k,list(Reduce('+', A)))
}
```

Covariance matrix - cnt.

MAP-REDUCE:

```
CovMatrixRaw <- from.dfs(
mapreduce(
  input = "/CEnetBig",
  map = mapperSS,
  reduce = reducerSS
)
)</pre>
```

Final code

```
meanVec <- CovMatrixRaw$val[[2]]/CovMatrixRaw$val[[1]]
CovMat <- CovMatrixRaw$val[[3]]/CovMatrixRaw$val[[1]] -outer(meanVec,meanVec)
```

MOOC

Visit our MOOC:

Challenge

Count the number of consumers with total consumption larger than 1500.

Challenge

For each type find a list of consumers having this type of contract.

Word count example

Count the words in text document by Map-Reduce

Word count

```
library(readr)
library(rmr2)
library(rhdfs)
hdfs.init()
#rmr.options(backend = "local")
rmr.options(backend = "hadoop")
ebookLocation_hdfs <- "/public/ullyses.txt"
wikiLocation_hdfs <- "/public/wiki_1k_lines"
m <- mapreduce(input = ebookLocation_hdfs,
                output = ebookLocation_hdfs,
               input.format = "text",
               map = function(k, v){
                 words <- unlist(strsplit(v, split = "[[:space:][:punct:]]"))</pre>
                 words <- tolower(words)
                 words <- gsub("[0-9]", "", words)
                 words <- words [words != ""]
                 wordcount <- table(words)
                 keyval (
                   key = names(wordcount),
                   val = as.numeric(wordcount)
Introduction to RHadeduce = function(k, counts){
             1 1 1 1
```

Word count example

Count the words in text document by Map-Reduce

Word count

```
Retrieve results and prepare to plot
x <- from.dfs(m)
dat <- data.frame(
  word = keys(x),
  count = values(x)
dat <- dat[order(dat$count, decreasing=TRUE), ]</pre>
> head(dat, 6)
    word count
825
    the 15130
121
      of 8260
201
         7285
     and
          6581
152
      to 5043
93
      in
          5004
```