Frobenius' result on simple groups of order $\frac{p^3-p}{2}$

Paul Monsky

Brandeis University, Waltham MA 02454-9110, USA monsky@brandeis.edu

Abstract

The complete list of pairs of non-isomorphic finite simple groups having the same order is well-known. In particular for p > 3, $PSL_2(\mathbb{Z}/p)$ is the "only" simple group of order $\frac{p^3-p}{2}$. It's less well-known that Frobenius proved this uniqueness result in 1902. This note presents a version of Frobenius' argument that might be used in an undergraduate honors algebra course. It also includes a short modern proof, aimed at the same audience, of the much earlier result that $PSL_2(\mathbb{Z}/p)$ is simple for p > 3; a result stated by Galois in 1832.

1 Background

Let p be a prime and $SL_2(\mathbb{Z}/p)$ be the group of 2 by 2 determinant 1 matrices with entries in \mathbb{Z}/p . The quotient, $PSL_2(\mathbb{Z}/p)$, of $SL_2(\mathbb{Z}/p)$ by $\{\pm \mathbf{I}\}$ is for p > 2 a group of order $\frac{p^3-p}{2}$. Galois [2] introduced and studied this group; in his 1832 letter to Auguste Chevalier he says that it is easily shown to be simple for p > 3. (There are many proofs of simplicity. I'll give a short one in section 6.) In 1902 Frobenius [1] classified certain transitive permutation groups on p+1 letters up to permutation isomorphism, and deduced as a corollary that $PSL_2(\mathbb{Z}/p)$ is the "only" simple group of order $\frac{p^3-p}{2}$.

Frobenius' proof of this very early result in the classification of the finite simple groups, though elementary, isn't well-known and hasn't found its way into textbooks. In this note I give a version of it, based on Sylow theory and the cyclicity of $(\mathbb{Z}/p)^*$. This version could perhaps be presented in an undergraduate honors algebra course. I thank Jim Humphreys for his close reading of this note, his encouragement, and his expository suggestions.

Another description of $PSL_2(\mathbb{Z}/p)$ will be useful. Let V be the space of column vectors, $\begin{pmatrix} x \\ y \end{pmatrix}$, with entries in \mathbb{Z}/p . $SL_2(\mathbb{Z}/p)$ acts on the set consisting of the

p+1 one-dimensional subspaces of V. We identify this space with $\mathbb{Z}/p \cup \{\infty\}$ as follows. Given a subspace with generator $\binom{x}{y}$, map it to the element $z = \frac{x}{y}$ of $\mathbb{Z}/p \cup \{\infty\}$. Since $\binom{x}{y}$ is mapped to $\binom{x+y}{y}$ by $\binom{1}{0} \binom{1}{1}$ and to $\binom{-y}{x}$ by $\binom{0}{1} \binom{-1}{1}$, the images of $\binom{1}{0} \binom{1}{1}$ and $\binom{0}{1} \binom{1}{0}$ are the translation $z \to z+1$, and the involution $z \to -\frac{1}{z}$. Easy arguments with row and column operations show that $\binom{1}{0} \binom{1}{1}$ and $\binom{0}{1} \binom{0}{1}$ generate $SL_2(\mathbb{Z}/p)$. Since the kernel of the action of $SL_2(\mathbb{Z}/p)$ consists of \mathbb{I} and $-\mathbb{I}$, $PSL_2(\mathbb{Z}/p)$ identifies with the transitive group of permutations of $\mathbb{Z}/p \cup \{\infty\}$ generated by $z \to z+1$ and $z \to -\frac{1}{z}$.

I'll prove the following (version of a) result of Frobenius, and its easy corollary:

Classification Theorem. Let $p \neq 2$ be prime and G be a transitive group of permutations of $\mathbb{Z}/p \cup \{\infty\}$. Suppose $|G| = \frac{p^3 - p}{2}$, and that G contains the translations. Then one of the following holds:

- (a) $z \to -\frac{1}{z}$ is in G. (In this case the description of $PSL_2(\mathbb{Z}/p)$ given above and the fact that $|G| = |PSL_2(\mathbb{Z}/p)|$ tell us that G is generated by $z \to z + 1$ and $z \to -\frac{1}{z}$, and is permutation-isomorphic to $PSL_2(\mathbb{Z}/p)$ in its action on the 1-dimensional subspaces of V.)
- (b) p = 7 and G contains the involution $(0\infty)(13)(26)(45)$ or the involution $(0\infty)(15)(23)(46)$. In these cases G is generated by $z \to z + 1$, $z \to 2z$, and the involution, and has a normal subgroup of order 8.

Corollary. When p > 3, $PSL_2(\mathbb{Z}/p)$ is, up to isomorphism, the only simple group of order $\frac{p^3-p}{2}$.

The theorem is trivial when p=3. For now |G|=12 and G is a permutation group on 4 elements. So G consists of the even permutations, and thus contains $(0\infty)(12)$. In the following sections we prove the theorem for p>3, but now we show how the corollary follows. Suppose G is a simple group of order $\frac{p^3-p}{2}$ with p>3. Then p divides |G| and G has mp+1 p-Sylow subgroups; since G is simple m>0. Furthermore $\frac{p^2-1}{mp+1}$ is an integer $\equiv -1$ (p) and so is $\geq p-1$; it follows that m=1. G acts on the set S consisting of the p+1 p-Sylows, and by Sylow theory the action is transitive. Since G is simple, the action is faithful. Select an element σ of G of order p. This element acts by a p-cycle on S; denote the element it fixes by ∞ . We may label the remaining elements of S with tags in \mathbb{Z}/p so that σ is the translation $(01\cdots p-1)$, $z\to z+1$, of $\mathbb{Z}/p\cup\{\infty\}$. If we view G as a group of permutations of $\mathbb{Z}/p\cup\{\infty\}$, the hypotheses of the classification theorem are satisfied. Since G has no normal subgroup of order S, we're in the situation of S, and we conclude that S is isomorphic to S.

2 Easy facts about G

For the rest of this note G is a group satisfying the hypotheses of the classification theorem. Then the stabilizer, G_{∞} , of ∞ in G contains the translations and so is transitive on \mathbb{Z}/p . Consequently:

Lemma 2.1. *G* is doubly transitive on $\mathbb{Z}/p \cup \{\infty\}$.

Definition 2.2. K is the subgroup of G consisting of elements fixing 0 and ∞ . \bar{K} consists of the elements of G interchanging 0 and ∞ . $H = K \cup \bar{K}$ is the stabilizer of $\{0,\infty\}$ in G.

Since G is doubly transitive, $|K| = \frac{|G|}{p(p+1)} = \frac{p-1}{2}$. Double transitivity also shows that \bar{K} is non-empty. So K is of index 2 in H, and $|\bar{K}| = |K| = \frac{p-1}{2}$.

Definition 2.3. R is the set of squares in $(\mathbb{Z}/p)^*$, N the set of non-squares.

Since $(\mathbb{Z}/p)^*$ is cyclic, so is R. Furthermore, $|R| = |N| = \frac{p-1}{2}$.

Lemma 2.4.

- (1) K is cyclic and consists of the maps $z \to az$, a in R.
- (2) No element of G fixes more than 2 letters.

Proof. $|G_{\infty}| = \frac{|G|}{p+1} = p\left(\frac{p-1}{2}\right)$. The Sylow theorems then show that the group of translations is the unique p-Sylow subgroup of G_{∞} , and so is normal in G_{∞} . So for τ in G_{∞} , $\tau \circ (z \to z+1) = (z \to z+a) \circ \tau$ for some a in $(\mathbb{Z}/p)^*$. If τ is in K, $\tau(0) = 0$. Since $\tau(z+1) = \tau z + a$, $\tau(z) = az$ for all z in \mathbb{Z}/p . Now the maps $z \to az$, a in $(\mathbb{Z}/p)^*$, form a cyclic group of order p-1. Since K is a subgroup of that group of order $\frac{p-1}{2}$ we get (1).

Suppose next that $\tau \neq e$ fixes 3 or more letters. By double transitivity we may assume that 2 of these letters are 0 and ∞ , so that τ is in K. But the only map $z \to az$ fixing a third letter is e.

Lemma 2.5. Suppose $\tau \in \bar{K}$.

- (1) If $p \equiv 1$ (4), $-1 \in R$ and τ stabilizes R and N.
- (2) If $p \equiv 3$ (4), $-1 \in N$ and τ interchanges R and N.

Proof. By Lemma 2.4 (1), the orbits of K acting on $(\mathbb{Z}/p)^*$ are R and N. Since τ normalizes K it permutes these orbits. Suppose first that $p \equiv 1$ (4). Then $|R| = \frac{p-1}{2}$ is even and R contains an element of $(\mathbb{Z}/p)^*$ of order 2, which must be -1. Furthermore by Lemma 2.4 (1), $z \to -z$ is in G and has an orbit (u, v) of size 2. By double transitivity some conjugate, λ , of this element lies

in \bar{K} , and, like $z \to -z$, fixes 2 letters. Such a λ cannot possibly interchange R and N. So it stabilizes R and N, and since \bar{K} is a coset of K in H, the same is true of all τ in \bar{K} . Suppose next that $p \equiv 3$ (4). Then $|R| = \frac{p-1}{2}$ is odd, so -1 cannot be in R. If the lemma fails there is a τ in \bar{K} with $\tau(1)$ in R. Since \bar{K} is a coset of K in H there is a λ in \bar{K} with $\lambda(1) = 1$. Then $\lambda \circ \lambda$ fixes the letters $0, \infty$ and 1. By Lemma 2.4 (2), λ has order 2 and fixes 1. Since λ is a product of disjoint 2-cycles, λ must fix a second letter as well. By double transitivity some conjugate of λ is an order 2 element of K. But $|K| = \frac{p-1}{2}$ is odd.

Lemma 2.6. Suppose $\tau \in \bar{K}$. Then there is an n such that whenever z is in $(\mathbb{Z}/p)^*$ and a is in R, $\tau(az) = a^n \tau(z)$. Furthermore $\frac{p-1}{2}$ divides $n^2 - 1$.

Proof. τ normalizes K. So $\sigma \to \tau \sigma \tau^{-1}$ is an automorphism of K which is of the form $\sigma \to \sigma^n$ since K is cyclic. Then $\tau \circ (z \to az) = (z \to a^n z) \circ \tau$, giving the first result. Since the square of the automorphism is the identity, $\frac{p-1}{2}$ divides $n^2 - 1$.

Remark. n is prime to $\frac{p-1}{2}$. So when $p \equiv 1$ (4), n is odd. We're free to modify n by $\frac{p-1}{2}$, and so when $p \equiv 3$ (4) we may (and shall) assume that n is odd as well.

3 The case $p \equiv 1$ (4)

In this section $p \equiv 1$ (4). Our first goal is to show that the n of Lemma 2.6 can be chosen to be -1.

Definition 3.1. X is the set of pairs whose first element is a τ in G, and whose second element is a size 2 orbit $\{u, v\}$ of τ .

Lemma 3.2.
$$|X| = (\frac{p^2+p}{2})(\frac{p-1}{2}).$$

Proof. The number of size 2 subsets of $\mathbb{Z}/p \cup \{\infty\}$ is $\frac{p^2+p}{2}$. We prove the lemma by showing that for each such subset $\{u,v\}$ there are exactly $\frac{p-1}{2}$ elements of G having $\{u,v\}$ as an orbit. By double transitivity we may assume $\{u,v\}=\{0,\infty\}$. But τ has $\{0,\infty\}$ as an orbit precisely when τ is in K. \square

Lemma 3.3. Every element of \bar{K} has order 2.

Proof. Since -1 is in R, $\tau: z \to -z$ is in K. The letters fixed by τ are 0 and ∞ ; it follows that every element of G commuting with τ stabilizes the set $\{0,\infty\}$ and lies in H. So the centralizer of τ in G has order at most

|H|=p-1, and the number of conjugates of τ is at least $\frac{|G|}{p-1}=\frac{p^2+p}{2}$. Call these conjugates τ_i . Like τ , each τ_i has $\frac{p-1}{2}$ orbits of size 2. So the number of pairs whose first element is some τ_i and whose second is an orbit of that τ_i is at least $\left(\frac{p^2+p}{2}\right)\cdot\left(\frac{p-1}{2}\right)$. By Lemma 3.2 these pairs exhaust X. Suppose now that λ is in K. Then λ has a size 2 orbit, $\{0,\infty\}$, and so must be some τ_i , proving the lemma.

Corollary 3.4. The n of Lemma 2.6 can be taken to be -1.

Proof. Take τ in \bar{K} , σ in K. By Lemma 3.3, $(\tau\sigma)(\tau\sigma) = e$ and $\tau = \tau^{-1}$. So $\tau\sigma\tau^{-1} = \sigma^{-1}$. Examining the proof of Lemma 2.6 we get the result.

Corollary 3.5. There is a λ in \bar{K} and a c in $(\mathbb{Z}/p)^*$ such that:

- (1) $\lambda(z) = z^{-1}$ for z in R.
- (2) $\lambda(z) = cz^{-1}$ for z in N.

Proof. By Lemma 2.5 there is a \bar{K} in R with $\lambda(1)=1$. The result now follows from Corollary 3.4 and Lemma 2.6

Suppose we can show that the c of Corollary 3.5 is 1. Then, composing λ with the element $z \to -z$ of K we deduce that $z \to -\frac{1}{z}$ is in G. So to prove the classification theorem for $p \equiv 1$ (4) it's enough to show that c = 1.

Proposition 3.6. When $p \equiv 1$ (4), $z \to -\frac{1}{z}$ is in G.

Proof. Let $\alpha(z) = 1 - \lambda(z)$ with λ as in Corollary 3.5. Since -1 is in R, α is in G. Using the fact that $\lambda \circ \lambda = e$ we see that $\alpha^{-1}(z) = \lambda(1-z)$. Now $\alpha(0) = \infty$, $\alpha(\infty) = 1$, $\alpha(1) = 1 - 1 = 0$. So $\alpha \circ \alpha \circ \alpha$ fixes the letters 0, ∞ and 1. By Lemma 2.4 (2), α has order 3.

Since $p \equiv 1$ (4), p-1 is in R. As not all of $1, 2, \ldots, p-2$ are in R there is an x in R with x-1 in N. The paragraph above shows that $\alpha(\alpha(x)) = \alpha^{-1}(x) = \lambda(1-x)$. We'll use this to show that c=1. Since $\lambda(x) = -\frac{1}{x}$, $\alpha(x) = \frac{x-1}{x}$ is in N. Consequently, $\lambda(\alpha(x)) = \frac{cx}{x-1}$. Then $\alpha(\alpha(x)) = \frac{x-1-cx}{x-1}$ while $\lambda(1-x) = -\frac{c}{x-1}$. So x-1=cx-c, and c=1.

4 $p \equiv 3$ (4). The main case

In this section $p \equiv 3$ (4).

Lemma 4.1. There is a unique λ in \bar{K} with $-\lambda(1)\lambda(-1) = 1$. Furthermore λ has order 2.

Proof. Fix τ in \bar{K} . By Lemma 2.5, -1 and $\tau(1)$ are in N while $\tau(-1)$ is in R. So $u = -\tau(1)\tau(-1)$ is in R. Replacing τ by $z \to v\tau(z)$ with v in R multiplies $-\tau(1)\tau(-1)$ by v^2 . Since there is a unique v in R with $v^2 = u^{-1}$ we get the existence and uniqueness of λ . By Lemma 2.5 there are a and b in R with $\lambda(a) = -1$, $\lambda(-b) = 1$. Taking n as in Lemma 2.6 we find that $a^n\lambda(1) = -1$, $b^n\lambda(-1) = 1$. Multiplying we see that $(ab)^n = 1$, so ab = 1. Now $-\lambda^{-1}(-1)\lambda^{-1}(1) = (-a)(-b) = 1$, and the uniqueness of λ tells us that $\lambda = \lambda^{-1}$.

Corollary 4.2. Choose n odd as in Lemma 2.6. Then there is a λ of order 2 in \bar{K} and a c in N with

- (1) $\lambda(z) = cz^n$ z in R
- (2) $\lambda(z) = c^{-1}z^n$ z in N
- (3) $c^n = c$

Proof. Take λ as in Lemma 4.1 and set $c = \lambda(1)$. By Lemma 2.5, c is in N. Since $\lambda(1) = c$, $\lambda(-1) = -\frac{1}{c} = \frac{1}{c} \cdot (-1)^n$. Lemma 2.6 then gives (1) and (2). Since c is in N, $\lambda(c) = c^{-1} \cdot c^n$. But as λ has order 2, $\lambda(c) = 1$.

Lemma 4.3. Let $\alpha(z) = 1 - c^{-1}\lambda(z)$ with c and λ as above. Then α is an element of G of order 3 and $\alpha^{-1}(z) = \lambda(c(1-z))$.

Proof. Since c is in N, $-c^{-1}$ is in R, and α is in G. Also $\alpha(0) = \infty$, $\alpha(\infty) = 1$ and $\alpha(1) = 1 - c^{-1} \cdot c = 0$. So $\alpha \circ \alpha \circ \alpha$ fixes the letters $0, \infty$ and 1; by Lemma 2.4 (2), α has order 3. Finally if μ is the map $z \to \lambda(c(1-z))$, then $\mu(\alpha(z)) = \lambda(\lambda(z)) = z$, and so $\alpha^{-1} = \mu$.

The proof of the classification theorem for $p \equiv 3$ (4) now divides into 2 subcases. In this section we treat the "main case" where the c of Corollary 4.2 is -1, showing that $n \equiv -1$ (p-1) so that $\lambda(z) = -\frac{1}{z}$ for all z. The "special case", $c \neq -1$, which leads to conclusion (b) of the classification theorem will be handled in the next section — it's a bit more technical.

Lemma 4.4. In the main case the only solutions of $x^n = x$ in $(\mathbb{Z}/p)^*$ are 1 and -1.

Proof. Since c = -1, $c^{-1} = -1$, and $\lambda(x) = -x^n$ for all x in $(\mathbb{Z}/p)^*$. Thus $\alpha(x) = 1 - x^n$. Suppose now that $x \neq 1$ is in $(\mathbb{Z}/p)^*$ with $x^n = x$. Then $\alpha(x) = 1 - x$ and so $\alpha(\alpha(x)) = 1 - (1 - x)^n$. By Lemma 4.3, $\alpha^{-1}(x) = \lambda(x - 1) = -(x - 1)^n = (1 - x)^n$. Since $\alpha(\alpha(x)) = \alpha^{-1}(x)$, $(1 - x)^n = \frac{1}{2}$.

Raising to the *n*th power we find that $1 - x = 2^{-n}$. So 1 and $1 - 2^{-n}$ are the only possible solutions of $x^n = x$ in $(\mathbb{Z}/p)^*$. Since 1 and -1 are solutions we're done.

Proposition 4.5. Suppose $p \equiv 3$ (4). In the main case, λ is the map $z \to -\frac{1}{z}$, and so $z \to -\frac{1}{z}$ is in G.

Proof. By Lemma 4.4 the only solution of $x^n = x$ in the cyclic group R of order $\frac{p-1}{2}$ is 1. So n-1 is prime to $\frac{p-1}{2}$. Now $\frac{p-1}{2}$ divides (n+1)(n-1) by Lemma 2.6. So it divides n+1, and as n is odd, $n \equiv -1$ (p-1). Then for z in $(\mathbb{Z}/p)^*$, $\lambda(z) = -z^n = -\frac{1}{z}$. Furthermore $\lambda(0) = \infty$, $\lambda(\infty) = 0$.

5 $p \equiv 3$ (4). The special case

We continue with the notation of Section 4 but now assume $c \neq -1$

Lemma 5.1. Let x be a power of -c, and suppose that 1-x is in N. Then:

- (a) $\alpha(\alpha(x)) = 1 c^{-2}(1-x)^n$
- (b) $\alpha(\alpha(x^{-1})) = 1 + x^{-1}(1-x)^n$
- (c) $\alpha^{-1}(x) = c^2(1-x)^n$
- (d) $\alpha^{-1}(x^{-1}) = -x^{-1}(1-x)^n$

Proof. Since $c^n = c$ and n is odd, $x^n = x$. Since c is in N, x is in R. Thus $\alpha(x) = 1 - c^{-1}(cx^n) = 1 - x$, and similarly $\alpha(x^{-1}) = 1 - x^{-1} = \frac{1-x}{-x}$, which is in R.

Now
$$\alpha(\alpha(x)) = \alpha(1-x) = 1 - c^{-1}c^{-1}(1-x)^n$$
 giving (a). And $\alpha(\alpha(x^{-1})) = \alpha\left(\frac{1-x}{-x}\right) = 1 - \left(\frac{1-x}{-x}\right)^n = 1 + x^{-1}(1-x)^n$ giving (b). Furthermore $\alpha^{-1}(x) = \lambda(c(1-x))$. Since $c(1-x)$ is in R , this is $c \cdot c(1-x)^n$. Finally $\alpha^{-1}(x^{-1}) = \lambda\left(\frac{c(1-x)}{-x}\right) = c^{-1}\left(\frac{c}{-x}\right) \cdot (1-x)^n = -x^{-1}(1-x)^n$.

Lemma 5.2. In the situation of Lemma 5.1, $c^2 + c^{-2} + 2x^{-1} = 0$.

Proof. $\alpha(\alpha(x)) = \alpha^{-1}(x)$ by Lemma 4.3. (a) and (c) above tell us that $(c^2 + c^{-2})(1-x)^n = 1$. Similarly, (b) and (d) tell us that $2x^{-1}(1-x)^n = -1$. Adding these identities and noting that $(1-x)^n \neq 0$ we get the result.

Lemma 5.3. $c^3 = -1$, and either $c^4 + 3 = 0$ or $3c^4 + 1 = 0$.

Proof. There is an x in $\{c^2, c^{-2}\}$ such that 1-x is in N. For neither $1-c^2$ nor $1-c^{-2}$ is 0, and if both were in R, their quotient, $-c^2$, would be in R.

Similarly there is a y in $\{-c, -c^{-1}\}$ such that 1-y is in N. By Lemma 5.2, $c^2+c^{-2}+2x^{-1}$ and $c^2+c^{-2}+2y^{-1}$ are both 0. So x=y, and $c^3=-1$. Also, since $c^2+c^{-2}+2x^{-1}=0$, either c^2+3c^{-2} or $3c^2+c^{-2}$ is 0.

Proposition 5.4. p = 7. Furthermore either c = 3 and $\lambda = (0\infty)(13)(26)(45)$, or c = 5 and $\lambda = (0\infty)(15)(23)(46)$

Proof. Suppose $c^4 + 3 = 0$. Then, since $c^3 = -1$, c = 3. Also 27 = -1 in \mathbb{Z}/p , and so p = 7. We know that $c^n = c$ in $(\mathbb{Z}/p)^*$. Since c = 3 is a generator of $(\mathbb{Z}/7)^*$, $z^n = z$ for all z in $(\mathbb{Z}/7)^*$. In particular if z is in R, $\lambda(z) = cz^n = 3z$, and so $\lambda = (0\infty)(13)(26)(45)$.

Suppose $3c^4 + 1 = 0$. Then since $c^3 = -1$, 3c = 1. So $27c^3 = 1$, -27 = 1 in \mathbb{Z}/p , and once again p = 7. Since 3c = 1, c = 5. Arguing as in the paragraph above we find that $\lambda = (0\infty)(15)(23)(46)$.

Suppose now that c=3. Then $z \to z+1$ is in G, and since 2 is in R, $z \to 2z$ is also in G. To complete the proof of the classification theorem for c=3 it suffices to show that the group of permutations of $\mathbb{Z}/7 \cup \{\infty\}$ generated by $z \to z+1$, $z \to 2z$ and λ is of order 168, and has a normal subgroup of order 8 (since G contains this group, and |G|=168). This can be shown by brute force, but here's a conceptual argument using some of the theory of finite fields.

Let F be the field of 8 elements, ζ be a generator of F^* , and U be the group of permutations of F generated by $x \to x+1$, $x \to \zeta x$ and $x \to x^2$. If r is in F^* , the conjugate of $x \to x+1$ by $x \to rx$ is $x \to x+r$. It follows that $x \to x+1$ and $x \to \zeta x$ generate the "affine group" of F, a group of order $7 \cdot 8 = 56$. Furthermore $x \to x^2$ is a permutation of F of order 3 normalizing the affine group. We conclude that $|U| = 56 \cdot 3 = 168$. The translations $x \to x+a$ evidently form a normal subgroup of U with 8 elements.

Now identify F with $\mathbb{Z}/7 \cup \{\infty\}$ by mapping 0 to ∞ and ζ^i to i. Then U may be viewed as a group of permutations of $\mathbb{Z}/7 \cup \{\infty\}$ of order 168. $x \to \zeta x$ is the permutation $z \to z+1$, while $x \to x^2$ is the permutation $z \to 2z$. Now ζ has degree 3 over $\mathbb{Z}/2$, and so $\zeta^3 + \zeta + 1 = 0$ or $\zeta^3 + \zeta^2 + 1 = 0$. Choose ζ so that $\zeta^3 + \zeta + 1 = 0$. Then, 1+1=0, $1+\zeta=\zeta^3$, $1+\zeta^2=\zeta^6$ and $1+\zeta^4=\zeta^{12}=\zeta^5$. So $x \to x+1$ is the permutation $(0\infty)(13)(26)(45)$ of $\mathbb{Z}/7 \cup \{\infty\}$. Thus the group generated by $z \to z+1$, $z \to 2z$ and $(0\infty)(13)(26)(45)$ identifies with U, and has order 168, and a normal subgroup of order 8. The argument is the same when c=5, except that we now take ζ with $\zeta^3 + \zeta^2 + 1 = 0$.

6 Simplicity results for $PSL_2(F)$ and final remarks

The simplicity result of Galois has been generalized in various ways. For example if F is any field with more than 3 elements, finite or infinite, then $PSL_2(F)$ is a simple group. I'll give one of the many proofs of this result. Let N be a normal subgroup of $SL_2(F)$ containing some non-scalar matrix. If suffices to show that $N = SL_2(F)$.

Lemma 6.1. There is an $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in N with $b \neq 0$.

Proof. If not, then since N is normal, every element of N also has c = 0, and so is diagonal. But if $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ is a non-scalar element of N, the conjugate of $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ isn't diagonal.

Now let P and P' be the subgroups $\begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ of $SL_2(F)$. P and P' evidently generate $SL_2(F)$. Since N is normal, PN = NP, and is the subgroup of $SL_2(F)$ generated by P and N.

Remark. If we can show that $N \supset P$, then since it is normal it also contains P', and so $N = SL_2(F)$.

Lemma 6.2. $PN = NP = SL_2(F)$.

Proof. Take $\binom{a \ b}{c \ d}$ in N as in Lemma 6.1. Multiplying this matrix on the left by $\binom{1 \ 0}{r \ 1}$ has the effect of adding $r \cdot$ (row 1) to row 2. So PN contains a matrix $\binom{a \ b}{s \ 0}$. Multiplying this new matrix on the right by $\binom{1 \ 0}{s \ 1}$ has the effect of adding $s \cdot$ (column 2) to column 1. So PNP = PN contains a matrix $\binom{0 \ b}{s \ 0}$. This matrix conjugates P into P'. So PN contains P' as well as P, and is all of $SL_2(F)$.

Proposition 6.3. If |F| > 3, $N \supset P$. So by the remark above, $N = SL_2(F)$. Consequently $SL_2(F)$ is simple.

Proof. Take $a \neq 0$, 1 or -1 in F and let $d = a^{-1}$. By Lemma 6.2, $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -r & 1 \end{pmatrix} \cdot B$ for some B in the normal subgroup N. Then $B = \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ ra & d \end{pmatrix}$. A short calculation shows that as A runs over all the elements of P, $(ABA^{-1}) \cdot B^{-1}$ also runs over all the elements of P. Since each $(ABA^{-1}) \cdot B^{-1}$ is in N, we're done.

In presenting the material of this note to a class one might add the following remarks:

- (1) Let F be the field of q elements where q is a prime power. Then $PSL_2(F)$ has order $\frac{q^3-q}{2}$ or q^3-q according as q is odd or even. By Proposition 6.3 these groups are simple for q>3.
- (2) If F is the field of q elements it's true that the "only" simple group having the same order as $PSL_2(F)$ is $PSL_2(F)$ itself. But I think that all proofs of this generalization of Frobenius' result are very difficult. The case q=4 is trivial since $4^3-4=\frac{5^3-5}{2}=60$, uniqueness when q=4 follows from the uniqueness when q=5. The next cases of interest are q=9 when $|G|=\frac{9^3-9}{2}=360$, and q=8 when $|G|=8^3-8=504$. In 1893, F. N. Cole, [3] (best known to mathematicians for the establishment in his honor of the Cole prize), used intricate arguments to handle these cases. He starts by showing that G is isomorphic to a doubly transitive permutation group on q+1 letters. But this is no longer an easy consequence of Sylow theory, as it is in the case of prime q.
- (3) For n > 2, let $SL_n(F)$ be the group of n by n determinant 1 matrices with entries in F, and $PSL_n(F)$ be the quotient of $SL_n(F)$ by the group of determinant 1 scalar matrices. It can be shown that for all F and for all n > 2 the group $PSL_n(F)$ is simple. But now the generalization of Frobenius' theorem has an exception. If F is the field of 4 elements then $PSL_3(F)$ and $PSL_4(\mathbb{Z}/2)$ are non-isomorphic simple groups of order 20,160. (The group of even permutations of 8 letters is also simple of order 20,160, but it is isomorphic to $PSL_4(\mathbb{Z}/2)$.)

References

- [1] F. G. Frobenius. Über Gruppen des Grades p oder p+1. Gesammelte Abhandlungen v. 3, 223–229.
- [2] E. Galois. Oeuvres Mathématiques (deuxième édition, 1951), pages 57–59 and page 28.
- [3] F. N. Cole. Simple Groups as far as order 660. Amer. J. of Math., v. 15 no. 4 (1893), 303–315.