

Company Context

Largest online marketplace Facilitates personal loans, business loans, and medical procedure financing Offers lower interest rates through fast online interface

The Challenge

- Significant credit loss due to loan defaults
- 'Charged-off' customers are primary defaulters
- Need to identify and mitigate risky loans

Our Objectives

- Identify key driving factors behind loan defaults
- Understand variables that strongly indicate default risk
- Develop insights to improve portfolio and risk assessment

Expected Outcome

- Reduced credit loss through targeted risk management
- Enhanced ability to identify high-risk loan applicants

"Turning Data into Actionable Insights for Smarter Lending"

Approach Overview

Load Data

df=pd.read_csv('loan.csv')
df.head(10)

	id	member_id	loan_amnt	funded_amnt	${\tt funded_amnt_inv}$	term	int_rate	installment	grade	sub_grade	•••	num_t1_90g_dpd_24r	n num_tl_op_p
0	1077501	1296599	5000	5000	4975.0	36 months	10.65%	162.87	В	B2		NaM	ı
1	1077430	1314167	2500	2500	2500.0	60 months	15.27%	59.83	С	C4		NaM	ı
2	1077175	1313524	2400	2400	2400.0	36 months	15.96%	84.33	С	C5		NaM	ı
3	1076863	1277178	10000	10000	10000.0	36 months	13.49%	339.31	С	C1		NaM	ı
4	1075358	1311748	3000	3000	3000.0	60 months	12.69%	67.79	В	В5		NaM	ı

Check Null Percentages

print(df.isnull().sum()/len(df)*100)

id 0.000000 member_id 0.000000 loan_amnt 0.000000 funded_amnt 0.000000 funded_amnt_inv 0.000000 tax_liens 0.098195 tot_hi_cred_lim 100.000000 total_bal_ex_mort 100.000000 total_bc_limit 100.000000 total_il_high_credit_limit 100.000000 Length: 111, dtype: float64

Find High Null Columns

```
Columns with null proportion > 40%:

['mths_since_last_delinq', 'mths_since_last_record', 'next_pymnt_d', 'mths_since_last_major_derog', 'annual_inc_joint', 'dti_joint', 'verification Columns with null proportion <= 40%:

['id', 'member_id', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'term', 'int_rate', 'installment', 'grade', 'sub_grade', 'emp_title', 'emp_lengleng', 'mage 'loan_amnt', 'funded_amnt', 'funded_amnt', 'funded_amnt', 'mage 'loan_amnt', 'mage 'loan
```

```
null_pctg=df.isnull().sum()/len(df)*100
high_null_cols=null_pctg[null_pctg>40].index.tolist()
low null cols=null pctg[null pctg<=40].index.tolist()</pre>
```

Removing High Null Columns

```
df_cleaned = df.drop(columns=high_null_cols)
print(f"Dropped {len(high_null_cols)} columns. New shape: {df_cleaned.shape}")
print("Dropped columns:", high_null_cols)
df = df cleaned
```

Changing Datatypes

```
# converting int_rate to float

df['int_rate']=df['int_rate'].str.rstrip('%').astype('float')

print(df['int_rate'].dtype)

print(df['int_rate'].head(10))

# converting revol_util to float

df['revol_util']=df['revol_util'].str.rstrip('%').astype(float)

print(df['revol_util'].dtype)

print(df['revol_util'].head(10))
```

```
Cleanup redundancy
# dropping rows with loan status 'Current'
df=df[df['loan status']!='Current']
df.shape
Remove Bias
df['emp title']=df['emp title'].fillna('Unknown')
Imputing
# imputing last pymnt d with 'Not paid'
df['last_pymnt_d']=df['last_pymnt_d'].fillna('Not paid')
```

Derived / Feature Extraction- Determining credit history length of applicants

```
# Calculate the credit score using the normalized columns
df['credit score'] = (
    (1 - df['delinq 2yrs norm']) * 0.35 + # Invert since lower is better
   (1 - df['pub rec bankruptcies norm']) * 0.35 + # Invert
    (1 - df['total rec late fee norm']) * 0.35 + # Invert
   (1 - df['collection recovery fee norm']) * 0.35 + # Invert
   (1 - df['revol util norm']) * 0.30 + # Invert since lower is better
   (df['credit history length norm'] * 0.15) + # Keep as is
   (df['total acc norm'] * 0.10) # Keep as is
```

Exploratory Data Analysis

Nature of Dataset

```
# Histogram
sns.histplot(data=df, x=col, ax=axes[i, 0])
axes[i, 0].set_title(f'Histogram of {col}')

# Box plot
sns.boxplot(data=df, x=col, ax=axes[i, 1])
axes[i, 1].set_title(f'Box Plot of {col}')
```


Exploratory Data Analysis

Percentage of Charged Off Loans

.fillna(0) * 100

```
# Calculate the percentage of charged off loans for each colu to the charged_off_percentage = (

df.groupby(col)['loan_status']

.value_counts(normalize=True)

.unstack()
```

"Higher charged off cases are observed for higher loan amounts"

Exploratory Data Analysis

Grade vs ChargeOff

plt.show()

```
fig, axes = plt.subplots(num_cols, 1, figsize=(10, 5 * num_cols))

for i, col in enumerate(filtered_columns):
    sns.countplot(data=df, x=col,
    ax=axes[i],order=df[col].value_counts().sort_values(ascending=False).index)
    axes[i].set_title(f'Count Plot of {col}')
    axes[i].tick_params(axis='x', rotation=90)

plt.tight_layout()
```


"Charge off rate increases as loan grade increases from A to G"

Bivariate Analysis - Comparisons

```
# Loop through each input column
for i, col in enumerate(input_columns):
    counts = df.groupby([col, 'loan_status']).size().unstack(fill_value=0)
    # Calculate the proportion of each category
    proportions = counts.div(counts.sum(axis=1), axis=0)
```

"Lower the income higher is the charge off rate"

"To reduce charge off, lower grade loans preferably

grade A need to be prioritized" (ref illustrations on next slide)


```
Multivariate Analysis - Across Income groups and Grades
pivot_table = df.pivot_table(
    index='annual_inc_category',
    columns='grade',
    values='loan_status',
    aggfunc=lambda x: (x == 'Charged Off').sum() / len(x) # Calculate the fraction of charged off
)
```

"Lower income groups should be provided lower grade Loans (A,B), vis-à-vis Lower interest rates" (ref illustrations on next slide)

Median employment length for different combinations of loan status and annual income # Calculate default rate

```
default_rates = (charged_off_counts / loan_counts) * 100
emp_length_pivot = df.pivot_table(
    index='annual_inc_category',
    columns='loan_status',
    values='emp_length',
    aggfunc='median'
```

"The difference in default rates between the lowest and highest income categories is significant (18.3% vs 10.9%), suggesting that income-based risk assessment could be valuable" (ref illustrations on next slide)

Statistical Test

Insights and Conclusions

Insights and Conclusions

Insights and Conclusions

