Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil B: Kontextfreie Sprachen

10: Pumping-Lemma, Algorithmen und Abschlusseigenschaften

Version von: 22. Mai 2018 (12:11)

Einleitung

- In diesem Kapitel werden wir sehen, welche der angenehmen Eigenschaften der regulären Sprachen auch für die kontextfreien Sprachen gelten, und welche nicht
- Methoden zum Nachweis, dass eine Sprache nicht kontexfrei ist:
 - Es gibt ein Pumping-Lemma für kontextfreie Sprachen, das nur wenig komplizierter als das für reguläre Sprachen ist
 - Zum Satz von Nerode korrespondierende Resultate haben wir aber nicht
- Algorithmen:
 - Einige algorithmische Probleme für kontextfreie Sprachen lassen sich effizient lösen
 - Andere gar (!) nicht
- Abschlusseigenschaften:
 - Die Klasse der kontextfreien Sprachen ist unter weniger Operationen abgeschlossen als die Klasse der regulären Sprachen
 - Die Klasse der deterministisch kontextfreien Sprachen hat andere Abschlusseigenschaften als beide Klassen

Inhalt

- > 10.1 Das Pumping-Lemma für kontextfreie Sprachen
 - 10.2 Algorithmen für kontextfreie Sprachen
 - 10.3 Abschlusseigenschaften der kontextfreien Sprachen
 - 10.4 Deterministische Kellerautomaten

Pumping-Lemma für kontextfreie Sprachen

- Zur Erinnerung:
 - Das Pumping-Lemma für reguläre Sprachen beschreibt eine Abschlusseigenschaft, die jede reguläre Sprache hat
 - Es wird benutzt, um zu beweisen, dass eine gegebene Sprache nicht regulär ist
- Jetzt betrachten wir eine ähnliche Aussage für kontextfreie Sprachen
 - Der Beweis beruht darauf, dass "gleichartige Teile" eines Ableitungsbaumes beliebig oft wiederholt werden können
 - Das ist ähnlich wie beim Pumping-Lemma für reguläre Sprachen, nur etwas komplizierter

Pumping-Lemma: Vorbereitendes Beispiel

Beispiel: Grammatik

$$S
ightarrow AB\mid a \ A
ightarrow BC\mid a \ B
ightarrow AA\mid b \ C
ightarrow CB\mid c$$

Beispiel: Ableitung

Beispiel: "Mittelteil" wiederholen

Beispiel: "Mittelteil" löschen

Pumping-Lemma: Illustration (1/2)

Pumping-Lemma: Illustration (2/2)

Beispiel: v und x entfernen

 \boldsymbol{u}

 \boldsymbol{v}

 \boldsymbol{w}

ullet Weglassen des "Mittelteils" ergibt einen Ableitungsbaum für uwy

ullet Wiederholen des "Mittelteils" ergibt einen Ableitungsbaum für uvvwxxy

 \boldsymbol{w}

 \boldsymbol{v}

 \boldsymbol{x}

Pumping-Lemma für kontextfreie Sprachen (1/2)

Satz 10.1 (Pumping-Lemma)

- ullet Ist L kontextfrei, so gibt es ein $n\in\mathbb{N}$, so dass sich jeder String $z\in L$ mit $|z|\geqslant n$ so in z=uvwxy zerlegen lässt, dass gelten:
 - (1) $vx \neq \epsilon$,
 - (2) $|vwx| \leqslant n$,
 - (3) $uv^kwx^ky\in L$, für alle $k\geqslant 0$

Beweisskizze

- ullet Sei L eine kontextfreie Sprache
 - Sei $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ eine Grammatik für $oldsymbol{L}$ in Chomsky-Normalform
 - Sei $m\stackrel{ ext{ iny def}}{=} |V|$ die Anzahl der Variablen von G
- ullet Wir setzen $n\stackrel{ ext{ iny def}}{=} 2^{m+1}$
- ullet Sei $z\in L$ beliebig mit $|z|\geqslant n$
- ullet Sei T ein Ableitungsbaum für z

Pumping-Lemma für kontextfreie Sprachen (2/2)

Beweisskizze (Forts.)

- Da G in CNF ist, hat jeder innere Knoten von T höchstens zwei Kinder
 - lacktriangle Die Tiefe von T ist $\geqslant m+1$
- ullet Sei $oldsymbol{W}$ ein Weg maximaler Länge von der Wurzel von T zu einem Blatt von T
 - lacktriangleq W enthält mindestens m+1 mit Variablen markierte Knoten
 - ightharpoonup Unter den letzten m+1 dieser Knoten muss eine Variable $oldsymbol{X} \in oldsymbol{V}$ doppelt vorkommen
 - ightharpoonup Das aus dem oberen X abgeleitete Teilwort hat eine Länge $\leq 2^{m+1}$
 - Und: Der obere X-Knoten hat 2 Kinder und erzeugt deshalb einen echt größeren String als der untere X-Knoten
- ullet Also: $S \Rightarrow^* uXy \Rightarrow^* uvXxy$ $\Rightarrow^* uvwxy = z$ mit
 - $-u,v,w,x,y\in \Sigma^*$
 - $-v \neq \epsilon$ oder $x \neq \epsilon$
 - $|-|vwx|\leqslant 2^{m+1}=n$

Beweisskizze (Forts.)

- ullet Idee: der am oberen X hängende Teilbaum kann an der Stelle des unteren $oldsymbol{X}$ eingefügt werden und umgekehrt
 - Das Einfügen des oberen Teilbaums am unteren $oldsymbol{X}$ kann wiederholt ausgeführt werden
- Für den formalen Beweis nutzen wir aus, dass gelten:
 - $X \Rightarrow^* vXx$ und
 - $-X \Rightarrow^* w$
- Also gilt auch:
 - $-S \Rightarrow^* uXy \Rightarrow^* uwy$ und
 - für jedes $k\geqslant 1$:

$$S \Rightarrow^* uXy \Rightarrow^* \ uvXxy \Rightarrow^* \cdots \ \Rightarrow^* uv^kXx^ky \Rightarrow^* uv^kwx^ky$$

- $ightharpoonup uv^kwx^ky\in L$

Pumping-Lemma: Beispiel

Beispiel: Grammatik

$$S
ightarrow AB\mid a \ A
ightarrow BC\mid a \ B
ightarrow AA\mid b \ C
ightarrow CB\mid c$$

Beispiel: Ableitung

- $\bullet \ u = bc, w = bc, y = bc$
- $\bullet v = a, x = c$

Beispiel: v und x wiederholen

Beispiel: v und x löschen

Pumping-Lemma: Anwendung (1/6)

- Wie beim regulären Pumping-Lemma betrachten wir eine Formulierung des Pumping-Lemmas, die sich besser zur Anwendung eignet
- Sie entsteht wieder einfach durch Kontraposition

Korollar 10.2

- Sei L eine Sprache
- ullet Angenommen, für jedes n>0 gibt es einen String $z\in L$ mit $|z|\geqslant n$ so dass für jede Zerlegung z=uvwxy mit
 - (1) $vx + \epsilon$,
 - $(2) |vwx| \leqslant n,$

ein $k\geqslant 0$ existiert mit $uv^kwx^ky\notin L$

Dann ist L nicht kontextfrei

- Bei der Anwendung des Pumping-Lemmas muss wieder darauf geachtet werden, an welchen Stellen im Beweis eine Wahl besteht und an welchen Stellen nicht:
 - n: keine Wahl, das folgende Argument muss für beliebige n funktionieren
 - z kann in Abhängigkeit von n frei in L gewählt werden $|z|\geqslant n$
 - Zerlegung z in uvwxy: hier besteht keine Wahl, das Argument muss für beliebige Zerlegungen gelten, die (1) und (2) erfüllen
 - kann frei gewählt werden
- Das ist analog zum regulären Pumping-Lemma
- Zu beachten:
 - Beim regulären Pumping-Lemma war $oldsymbol{u}oldsymbol{v}$ immer ein Präfix des Strings $oldsymbol{w}$
 - Beim kontextfreien Pumping-Lemma kann sich ${m vwx}$ irgendwo in ${m z}$ befinden

Pumping-Lemma: Anwendung (2/6)

Korollar 10.2

- ullet Sei L eine Sprache
- ullet Angenommen, für jedes n>0 gibt es einen String $z\in L$ mit $|z|\geqslant n$ so dass für jede Zerlegung z=uvwxy mit
 - (1) $vx + \epsilon$,
 - $|vwx| \leqslant n,$

ein $k\geqslant 0$ existiert mit $uv^kwx^ky\notin L$

Dann ist L nicht kontextfrei

Proposition 10.3

- Die beiden folgenden Sprachen sind nicht kontextfrei:
 - (a) $L_{abc}=\{a^mb^mc^m\mid m\geqslant 1\}$
 - (b) $oldsymbol{L}_{ ext{doppel}} = \{oldsymbol{w} \mid oldsymbol{w} \in \{oldsymbol{a}, oldsymbol{b}\}^*\}$

Beweis für Proposition 10.3 (a)

- Sei n beliebig
- ullet Wähle $z=a^nb^nc^n$
- ullet Sei $m{uvwxy}$ eine Zerlegung von $m{z}$ mit $m{u,v,w,x,y} \in \{m{a,b,c}\}^*$, die (1) und (2) erfüllt
- ullet Wegen (2) kann $oldsymbol{vx}$ nicht sowohl $oldsymbol{a}$ als auch $oldsymbol{c}$ enthalten
- $igsplus \#_{m{a}}(m{u}m{w}m{y}) = \#_{m{a}}(m{z}) ext{ oder} \ \#_{m{c}}(m{u}m{w}m{y}) = \#_{m{c}}(m{z})$
- $igspace{}{igspace{}{}} uwy
 otin L_{abc}$, da in uwy zumindest ein Zeichen weniger als n mal vorkommt, aber a oder c noch n mal vorkommen
- $ightharpoonup L_{abc}$ nicht kontextfrei

Pumping-Lemma: Anwendung (3/6)

Korollar 10.2

- Sei L eine Sprache
- ullet Angenommen, für jedes n>0 gibt es einen String $z\in L$ mit $|z|\geqslant n$ so dass für jede Zerlegung z=uvwxy mit
 - (1) $vx + \epsilon$,
 - (2) $|vwx| \leqslant n,$ ein $k \geqslant 0$ existiert mit

 $uv^kwx^ky\notin L$

Dann ist L nicht kontextfrei

Proposition 10.3

- Die beiden folgenden Sprachen sind nicht kontextfrei:
 - (a) $L_{abc}=\{a^mb^mc^m\mid m\geqslant 1\}$
 - (b) $oldsymbol{L}_{\mathsf{doppel}} = \{oldsymbol{w} oldsymbol{w} \mid oldsymbol{w} \in \{oldsymbol{a}, oldsymbol{b}\}^*\}$

Beweis für Proposition 10.3 (b)

- Sei n beliebig
- ullet Wähle $z=a^nb^na^nb^n$

₩ 4 "Blöcke"

- ullet Sei uvwxy eine Zerlegung von z mit $u,v,w,x,y\in\{a,b\}^*$, die (1) und (2) erfüllt
- ullet Klar: falls |vx| ungerade ist, ist |uwy| auch ungerade, und deshalb $uwy
 otin L_{ ext{doppel}}$
- riangle Im Rest des Beweises sei |vx| also gerade

Pumping-Lemma: Anwendung (4/6)

Korollar 10.2

- Sei L eine Sprache
- ullet Angenommen, für jedes n>0 gibt es einen String $z\in L$ mit $|z|\geqslant n$ so dass für jede Zerlegung z=uvwxy mit
 - (1) $vx + \epsilon$,
 - (2) $|vwx| \leqslant n,$ ein $k \geqslant 0$ existiert mit $uv^kwx^ky \notin L$
- Dann ist L nicht kontextfrei

Proposition 10.3

- Die beiden folgenden Sprachen sind nicht kontextfrei:
 - (a) $L_{abc}=\{a^mb^mc^m\mid m\geqslant 1\}$
 - (b) $oldsymbol{L}_{\mathsf{doppel}} = \{oldsymbol{w} oldsymbol{w} \mid oldsymbol{w} \in \{oldsymbol{a}, oldsymbol{b}\}^*\}$

Beweis für Proposition 10.3 (b) (Forts.)

- Wir unterscheiden vier Fälle:
 - (1) vx enthält a's aus dem ersten Block möglicherweise aber auch andere Zeichen
 - (2) vx enthält b's aus dem zweiten Block, aber keine a's aus dem ersten Block

möglicherweise aber noch andere Zeichen

(3) ${m vx}$ enthält ${m a}$'s aus dem dritten Block aber keine Zeichen aus den ersten zwei Blöcken

vielleicht aber Zeichen aus dem vierten Block

- (4) vx enthält nur b's aus dem vierten Block aber keine Zeichen aus anderen Blöcken
- In allen vier Fällen zeigen wir:

$$\mathbf{1}^{ ext{st}}(m{u}m{w}m{y}) \, \mp \, \mathbf{2}^{ ext{nd}}(m{u}m{w}m{y})$$
 und damit $m{u}m{w}m{y}
otin m{L}_{ ext{doppel}}$

riangle Zur Erinnerung: ${f 1}^{
m st}({m w})$ bezeichnet die erste Hälfte eines Strings ${m w}$ und ${f 2}^{
m nd}({m w})$ bezeichnet die zweite Hälfte

Pumping-Lemma: Anwendung (5/6)

Korollar 10.2

- Sei L eine Sprache
- ullet Angenommen, für jedes n>0 gibt es einen String $z\in L$ mit $|z|\geqslant n$ so dass für jede Zerlegung z=uvwxy mit
 - (1) $vx + \epsilon$,
 - (2) $|vwx| \leqslant n,$ ein $k \geqslant 0$ existiert mit

 $uv^kwx^ky\notin L$

Dann ist L nicht kontextfrei

Proposition 10.3

- Die beiden folgenden Sprachen sind nicht kontextfrei:
 - (a) $L_{abc}=\{a^mb^mc^m\mid m\geqslant 1\}$
 - (b) $oldsymbol{L}_{\mathsf{doppel}} = \{oldsymbol{w}oldsymbol{w} \mid oldsymbol{w} \in \{oldsymbol{a}, oldsymbol{b}\}^*\}$

Beweis für Proposition 10.3 (b)

- ullet Zur Erinnerung: $z=a^nb^na^nb^n$ (4 "Blöcke")
- (1) $oldsymbol{vx}$ enthält $oldsymbol{a}$'s aus dem ersten Block
 - Möglicherweise enthält vx auch Zeichen aus dem zweiten Block
 - Da $|vwx| \leqslant n$ enthält vx keine Zeichen aus den letzten beiden Blöcken
 - lacktriangledown lacktriangledown uwy ist von der Form $a^ib^ja^nb^n$ mit i < n und $j \leqslant n$
 - Da $|vx|\leqslant n$ gilt: $3n\leqslant |uwy|<4n$
 - ightharpoonup Das letzte Zeichen von ${f 1}^{
 m st}({m u}{m w}{m y})$ ist ein ${m a}$ (aus dem dritten Block), aber das letzte Zeichen von ${f 2}^{
 m nd}({m u}{m w}{m y})$ ein ${m b}$
 - $lacktriangledown uwy
 otin L_{\mathsf{doppel}}$

Pumping-Lemma: Anwendung (6/6)

Beweis für Proposition 10.3 (b) (Forts.)

ullet Zur Erinnerung: $z=a^nb^na^nb^n$

₩ 4 "Blöcke"

- (2) vx enthält b's aus dem zweiten Block, aber keine a's aus dem ersten Block
 - ightharpoonup Da $|vwx|\leqslant n$ enthält vx keine b's aus dem vierten Block
 - lack lack uwy ist von der Form $a^nb^ia^jb^n$ mit *i < n und $j \leqslant n$ und $*i+j \geqslant n$
 - $lackbox{2}^{
 m nd}(m{u}m{w}m{y})$ endet mit einem Block der Form $m{b}^{m{n}}$, aber $m{1}^{
 m st}(m{u}m{w}m{y})$ enthält weniger als $m{n}$ $m{b}$'s
 - $ightharpoonup uwy
 otin L_{\mathsf{doppel}}$

Beweis für Proposition 10.3 (b) (Forts.)

- (3) ${m vx}$ enthält ${m a}$'s aus dem dritten Block aber keine Zeichen aus den ersten zwei Blöcken
 - $ightharpoonup uwy = a^n b^n a^i b^j$
 - $lacktriangledown a^n$ -Block in $\mathbf{1}^{\mathrm{st}}(oldsymbol{u}oldsymbol{w}oldsymbol{y})$, aber nicht in $\mathbf{2}^{\mathrm{nd}}(oldsymbol{u}oldsymbol{w}oldsymbol{y})$
 - $ightharpoonup uwy
 otin L_{\mathsf{doppel}}$
- (4) vx enthält nur b's aus dem vierten Block aber keine Zeichen aus anderen Blöcken
 - $\Rightarrow uwy = a^nb^na^nb^i$
 - $lack 1^{
 m st}(oldsymbol{u}oldsymbol{w}oldsymbol{y})$ beginnt mit $oldsymbol{a},\, oldsymbol{2}^{
 m nd}(oldsymbol{u}oldsymbol{w}oldsymbol{y})$ mit $oldsymbol{b}$
 - $ightharpoonup uwy
 otin L_{\mathsf{doppel}}$

Inhalt

- 10.1 Das Pumping-Lemma für kontextfreie Sprachen
- 10.2 Algorithmen für kontextfreie Sprachen
- - 10.2.2 Analyse-Algorithmen für kontextfreie Sprachen
- 10.3 Abschlusseigenschaften der kontextfreien Sprachen
- 10.4 Deterministische Kellerautomaten

Kontextfreie Sprachen: Umwandlungsalgorithmen

- Die folgenden Umwandlungen sind in linearer Zeit möglich und erzeugen Objekte linearer Größe:
 - kontextfreie Grammatik → Kellerautomat
 - Kellerautomat mit leerem Keller → Kellerautomat mit akzeptierenden Zuständen
 - Kellerautomat mit akzeptierenden Zuständen → Kellerautomat mit leerem Keller
- ullet Die Umwandlung eines Kellerautomaten ${\cal A}$ in eine Grammatik ist in Zeit ${\cal O}(|{\cal A}|^4)$ möglich
 - Dabei bezeichnet $|\mathcal{A}|$ die Größe der Transitionsfunktion, wobei jede Transition $\mathbf{1}+$ Länge des neuen Kellerstrings beiträgt

ullet Die Umwandlung einer kontextfreien Grammatik in eine CNF-Grammatik ist in Zeit $\mathcal{O}(|G|^2)$ möglich

wir hatten nur: $\mathcal{O}(|G|^4)$

- Bei der Umwandlung in Greibach-Normalform ist Vorsicht geboten:
 - Der Original-Algorithmus von Greibach kann im schlimmsten Fall eine Grammatik exponentieller Größe erzeugen
 - Es gibt Algorithmen, die immer eine Grammatik in GNF der Größe $\mathcal{O}(|G|^3)$ erzeugen [Rosenkrantz 67; Blum, Koch 98]

Inhalt

- 10.1 Das Pumping-Lemma für kontextfreie Sprachen
- 10.2 Algorithmen für kontextfreie Sprachen
 - 10.2.1 Umwandlungsalgorithmen
- 10.3 Abschlusseigenschaften der kontextfreien Sprachen
- 10.4 Deterministische Kellerautomaten

Leerheitstests für kontextfreie Sprachen

Def.: Leerheitsproblem für CFGs

Gegeben: Kontextfreie Grammatik G

Frage: Ist $L(G) \neq \emptyset$?

Def.: Leerheitsproblem für PDAs

Gegeben: Kellerautomat \mathcal{A}

Frage: Ist $L(A) \neq \emptyset$?

Satz 10.4

ullet Zu einer gegebenen kontextfreien Grammatik $m{G}$ lässt sich in linearer Zeit $m{\mathcal{O}}(|m{G}|)$ entscheiden, ob $m{L}(m{G}) \, \neq \, arnothing$ gilt

Beweisidee

- ullet $L(G) \neq arnothing$ gilt genau dann, wenn das Startsymbol S erzeugend ist
- ullet Das lässt sich bei geschickter Implementierung in Zeit $\mathcal{O}(|G|)$ testen

[Beeri, Bernstein 79]

- Leerheitstest für Kellerautomaten:
 - Wandle Kellerautomat in Grammatik um, dann Leerheitstest für Grammatik
 - Ein effizienterer "direkter" Algorithmus ist (mir) nicht bekannt

Endlichkeitstest für kontextfreie Sprachen

Def.: Endlichkeitsproblem für KFGs

Gegeben: Grammatik G

Frage: Ist $|m{L}(m{G})| < \infty$?

Satz 10.5

 Das Endlichkeitsproblem für kontextfreie Grammatiken in CNF kann in linearer Zeit entschieden werden

Beweis

- ullet Da G in CNF ist, hat G insbesondere keine nutzlosen Symbole
- Wir definieren zu G einen gerichteten Graphen H(G) (wie in CNF1):
 - Die Knoten von $oldsymbol{H}(oldsymbol{G})$ sind die Variablen von $oldsymbol{G}$
 - Ist $m{X} o m{Y} m{Z}$ eine Regel von $m{G}$, so hat $m{H}(m{G})$ die Kanten $(m{X}, m{Y})$ und $(m{X}, m{Z})$
- ullet Behauptung: L(G) ist genau dann unendlich, wenn H(G) einen gerichteten Kreis enthält

Beispiel

 G_1 :

 $H(G_1)$:

Beispiel

 $C \rightarrow a$

 G_2 :

 $oldsymbol{H(G_2)}$:

Beweisdetails im Anhang

Andere Tests für kontextfreie Sprachen

- Es gibt natürlich noch weitere Algorithmen für kontextfreie Grammatiken
- Es existieren aber auch Probleme, für die es keine Algorithmen gibt!
- Die folgenden algorithmischen Probleme für kontextfreie Grammatiken können nicht von Algorithmen gelöst werden:
 - (1) Ist $oldsymbol{L}(oldsymbol{G})$ eindeutig oder inhärent mehrdeutig?
 - (2) Ist G eindeutig?
 - (3) Ist $oldsymbol{L}(oldsymbol{G})$ deterministisch kontextfrei?

- (4) Ist $oldsymbol{L}(oldsymbol{G})$ regulär?
- (5) Ist $L(G_1) \cap L(G_2) = \emptyset$?
- (6) Ist $oldsymbol{L}(oldsymbol{G_1}) \cap oldsymbol{L}(oldsymbol{G_2})$ kontextfrei?
- (7) Ist $L(G_1) \subseteq L(G_2)$?
- (8) Ist $L(G_1) = L(G_2)$?
- (9) Ist $L(G) = \Sigma^*$?
- Die genaue Bedeutung von "können nicht von Algorithmen gelöst werden" werden wir in Teil C der Vorlesung kennen lernen
 - Dort werden die Aussagen dann auch bewiesen

Inhalt

- 10.1 Das Pumping-Lemma für kontextfreie Sprachen
- 10.2 Algorithmen für kontextfreie Sprachen
- > 10.3 Abschlusseigenschaften der kontextfreien Sprachen
 - 10.4 Deterministische Kellerautomaten

Abschlusseigenschaften der kontextfreien Sprachen

- Die Klasse der kontextfreien Sprachen ist unter vielen Operationen abgeschlossen
 - ...aber nicht unter ganz so vielen wie die regulären Sprachen

Satz 10.6

- Die Klasse der kontextfreien Sprachen ist abgeschlossen unter
 - (a) Vereinigung,
 - (b) Konkatenation,
 - (c) dem *-Operator und
 - (d) dem +-Operator,

Beweis

ullet Seien L_1 und L_2 kontextfreie Sprachen mit Grammatiken

–
$$G_1=(V_1,\Sigma,S_1,P_1)$$
 und – $G_2=(V_2,\Sigma,S_2,P_2)$ mit $V_1\cap V_2=arnothing$

- Dann können wir Grammatiken konstruieren für:
 - (a) $L_1 \cup L_2$: durch Vereinigung der beiden Grammatiken und Hinzunahme einer neuen Startvariablen S mit $S o S_1 \mid S_2$
 - (b) L_1L_2 : durch Vereinigung der beiden Grammatiken und Hinzunahme einer neuen Startvariablen S mit $S o S_1S_2$
 - (c) L_1^* : durch Hinzunahme einer neuen Startvariablen S mit $S o S_1 S \mid \epsilon$
 - (d) L_1^+ : durch Hinzunahme einer neuen Startvariablen S mit $S o S_1 S \mid S_1$

Weitere Abschlusseigenschaften

Satz 10.7

- (a) Ist $oldsymbol{L}$ kontextfrei, so auch $\{oldsymbol{w^R}\midoldsymbol{w}\inoldsymbol{L}\}$
- (b) Ist $L\subseteq \Sigma^*$ kontextfrei, $h:\Sigma^* o \Gamma^*$ ein Homomorphismus, so ist auch h(L) kontextfrei
- (c) Ist $L\subseteq \Sigma^*$ kontextfrei, $h:\Gamma^* o \Sigma^*$ ein Homomorphismus, so ist auch $h^{-1}(L)$ kontextfrei

Beweisidee

- (a) Idee: Drehe die Regeln um
 - Sei G CNF-Grammatik für L
 - Ersetze X o YZ jeweils durch

 $X \rightarrow ZY$

- (b) Ersetze in der Grammatik für $m{L}$ jedes Vorkommen eines Terminalsymbols $m{\sigma} \in m{\Sigma}$ durch $m{h}(m{\sigma})$
- (c) Konstruktion eines Kellerautomaten ${\mathcal B}$ für $h^{-1}(L)$:
 - analog zum Beweis für endliche Automaten
 - Sei ${\mathcal A}$ Kellerautomat für L
 - Wenn ${\cal B}$ das Zeichen ${m \sigma}$ liest, simuliert er das Verhalten von ${\cal A}$ bei Eingabe ${m h}({m \sigma})$
 - ightharpoonup Neue Zustände, ϵ -Übergänge müssen beachtet werden

Fehlende Abschlusseigenschaften

Satz 10.8

- Die Klasse der kontextfreien Sprachen ist nicht abgeschlossen unter
 - (a) Durchschnitt,
 - (b) Komplement,
 - (c) Mengendifferenz

Beweis

- (a) ullet $L_1 \stackrel{ ext{def}}{=} \{a^nb^nc^m \mid n,m\geqslant 1\}$
 - $ullet L_2 \stackrel{ ext{ iny def}}{=} \{a^mb^nc^n \mid n,m\geqslant 1\}$
 - ullet L_1 und L_2 sind kontextfrei
 - $ullet egin{aligned} ullet L_1 \cap L_2 &= L_{abc} = \ \{a^nb^nc^n \mid n \geqslant 1\} \end{aligned}$

ist nicht kontextfrei

Proposition 12.3 (a)

- (b) Sonst ließe sich der Durchschnitt durch Kombination von Vereinigung und Komplement ausdrücken
- (c) Sonst ließe sich das Komplement darstellen als: $\Sigma^* L$ GTI / Schwentick / SoSe 18 B: 10. Pum

- Unter Durchschnittsbildung sind die kontextfreien Sprachen also nicht abgeschlossen
 - Insbesondere gibt es also keine Produktautomatenkonstruktion für zwei Kellerautomaten
 Warum eigentlich?
- Es gilt aber eine schwächere Abschlusseigenschaft:

Satz 10.9

ullet Ist L_1 kontextfrei und L_2 regulär, so ist $L_1 \cap L_2$ kontextfrei

Beweisidee

- ullet Sei ${\cal A}_1$ ein Kellerautomat für L_1
- ullet Sei ${\cal A}_2$ ein DFA für L_2
- ullet ${\mathcal B}$ sei der "Produktautomat" von ${\mathcal A}_1$ und ${\mathcal A}_2$
- \mathcal{A}_2 wirkt sich nur auf die Zustände aus, nicht auf den Kellerinhalt

Inhalt

- 10.1 Das Pumping-Lemma für kontextfreie Sprachen
- 10.2 Algorithmen für kontextfreie Sprachen
- 10.3 Abschlusseigenschaften der kontextfreien Sprachen
- > 10.4 Deterministische Kellerautomaten

Deterministische Kellerautomaten: Motivation

- Ein Nachteil von PDAs:
 - Algorithmisch zu entscheiden, ob ein gegebener PDA \mathcal{A} für einen gegebenen String w eine akzeptierende Berechnung hat, ist nicht so leicht
 - Es kann exponentiell viele verschiedene Berechnungen geben...
 - Der nahe liegende Algorithmus verwendet Backtracking und kann zu exponentiellem Aufwand führen

 Kapitel 11
- Frage: Gibt es zu jedem PDA einen äquivalenten deterministischen Kellerautomaten (DPDA)?
 - → Dazu müssen wir zuerst definieren, wann Kellerautomaten deterministisch sind

- PDAs haben zwei Quellen für Nichtdeterminismus:
- ullet Für einen Zustand p, ein gelesenes Eingabezeichen σ , und ein Kellersymbol au kann es in δ mehrere Transitionen geben:
 - $-\left(p,\sigma, au,q_1,w_1
 ight)$
 - $-\left(p,\sigma, au,q_2,w_2
 ight)$
 - Klar: in deterministischen Kellerautomaten darf es für jede Kombination von p, σ, τ nur eine Transition (p, σ, τ, q, w) in δ geben
- ullet PDAs können außerdem ϵ -Übergänge haben
 - Wir erlauben ϵ -Übergänge auch in DPDAs
 - Aber: es darf keine zwei verschiedenen Transitionen

 - $*(p,\epsilon, au,q_2,w_2)$ geben
 - Und: wenn es eine Transition (p,ϵ, au,q,w) gibt, so darf es für kein σ eine Transition (p,σ, au,q',w') geben

Deterministische Kellerautomaten: Beispiele

Beispiel

• Zur Erinnerung: der folgende Kellerautomat entscheidet die Sprache der wohlgeformten Klammerausdrücke über $\{\langle a \rangle, \langle /a \rangle, \langle b \rangle, \langle /b \rangle\}$:

- Der Automat akzeptiert mit leerem Keller
- Aber der Automat ist nicht deterministisch:

–
$$(d,\langle b \rangle,\#,d,\langle b \rangle \#) \in \delta$$
 und

$$-(d,\epsilon,\#,d,\epsilon)\in \delta$$

• Ein kritischer String:

$$\langle b \rangle \langle a \rangle \langle /a \rangle \langle /b \rangle \langle b \rangle \langle /b \rangle$$

- Wie soll es nach Lesen von $\langle b \rangle \langle a \rangle \langle /a \rangle \langle /b \rangle$ weitergehen?

Beispiel

- Dies ist ein deterministischer Kellerautomat mit akzeptierenden Zuständen für dieselbe Sprache
- ullet Nach Lesen von $\langle b
 angle \langle a
 angle \langle /a
 angle \langle /b
 angle$ geht er in einen akzeptierenden Zustand
- Wenn der String noch nicht zu Ende ist, kann er dann aber auch noch weitere Zeichen lesen

Deterministische Kellerautomaten: Definition

- Wir verwenden in der Definition von DPDAs die folgende Notation:
 - $oldsymbol{-} \underline{\delta(oldsymbol{p}, oldsymbol{\sigma}, oldsymbol{ au})} \stackrel{ ext{def}}{=} \{(oldsymbol{q}, oldsymbol{z}) \mid (oldsymbol{p}, oldsymbol{\sigma}, oldsymbol{ au}, oldsymbol{q}, oldsymbol{z}) \in oldsymbol{\delta}\}$
 - $oldsymbol{-} \underline{\delta(oldsymbol{p}, \epsilon, oldsymbol{ au})} \stackrel{ ext{def}}{=} \{(oldsymbol{q}, oldsymbol{z}) \mid (oldsymbol{p}, \epsilon, oldsymbol{ au}, oldsymbol{q}, oldsymbol{z}) \in oldsymbol{\delta}\}$

Definition

- Ein Kellerautomat
 - $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,s, au_0,F)$ heißt <u>deterministisch</u>, falls für alle $p\in Q,\sigma\in\Sigma, au\in\Gamma$ gilt:
 - $|-|\delta(p,\sigma, au)|+|\delta(p,\epsilon, au)|\leqslant 1$
- Eine Sprache heißt <u>deterministisch kontextfrei</u>, wenn sie von einem deterministischen Kellerautomaten entschieden wird

Deterministisch kontextfreie Sprachen: Akzeptiermechanismen

Satz 10.10

- (a) Zu jedem DPDA ${\cal A}$, der mit leerem Keller akzeptiert, gibt es es einen DPDA ${\cal B}$, der mit akzeptierenden Zuständen akzeptiert und ${m L}({\cal B}) = {m L}({\cal A})$ erfüllt
- (b) Die Umkehrung gilt nicht

Beweisidee

- (a) Die Konstruktion aus Satz 9.1 (a) erzeugt aus einem DPDA wieder einen DPDA
- (b) Von einem DPDA mit leerem Keller akzeptierte Sprachen sind **präfixfrei**:
 - ullet Sie enthalten keine Strings $oldsymbol{u}$ und $oldsymbol{v}$, für die $oldsymbol{u}$ echtes Präfix von $oldsymbol{v}$ ist
 - Denn: nach dem Lesen von $m{u}$ ist der Keller leer, der Automat kann den Rest von $m{v}$ also gar nicht mehr lesen
 - DPDAs mit leerem Keller gibt es also nicht einmal für jede reguläre Sprache

 \mathbb{Z}^* z.B.: Σ^*

- Es gilt aber:
 - wenn L präfixfrei ist und einen DPDA mit akzeptierenden Zuständen hat
 - dann hat L auch einen DPDA mit leerem Keller

Det. kontextfreie Sprachen: Komplementabschluss (1/2)

Satz 10.11

 Die Klasse der deterministisch kontextfreien Sprachen ist abgeschlossen unter Komplementbildung

Beweisidee

- ullet Sei ${\cal A}$ ein deterministischer Kellerautomat für Sprache L
- ullet Grundidee: Der Automat ${\mathcal B}$ für \overline{L} entstehe durch Vertauschung akzeptierender und ablehnender Zustände in ${\mathcal A}$

Beweisidee (Forts.)

• Komplikationen:

- (1) A könnte anhalten, ohne die Eingabe ganz zu lesen,
- (1a) weil \mathcal{A} in einer Konfiguration keine Transition hat,
- (1b) weil vorzeitig eine Konfiguration mit leerem Keller erreicht wird, oder
- (1c) weil nur noch eine (unendliche) Folge von ϵ -Übergängen möglich ist
- (2) \mathcal{A} könnte akzeptieren mit einer Berechnung der Art:

$$(s,w, au_0) \vdash_{\mathcal{A}}^* (q_1,\epsilon,lpha) \vdash_{\mathcal{A}}^* (q_2,\epsilon,eta)$$
 mit $q_1 \in F$ und $q_2 \notin F$ $imes$ oder umgekehrt

In diesem Fall darf ${\cal B}$ nicht akzeptieren, obwohl am Ende der Zustand $q_2 \notin {\cal F}$ erreicht wird!

Det. kontextfreie Sprachen: Komplementabschluss (2/2)

Beweisidee (Forts.)

- (1) Für das Problem von Berechnungen, die nicht die ganze Eingabe lesen, hat ${\cal B}$ einen zusätzlichen Zustand q_+ , in dem der Rest der Eingabe gelesen und dann akzeptiert wird
 - Die Frage ist nur: wie erkennt ${\cal B}$, dass er in den Zustand q_+ übergehen muss?
 - (1a) Hat ${\cal A}$ für Zustand p, Eingabezeichen σ und Kellersymbol au keine Transition, so geht ${\cal B}$ in den Zustand q_+ über
 - (1b) Um Konfigurationen mit leerem Keller zu vermeiden (und zu erkennen), verwendet ${\cal B}$ ein neues unterstes Kellersymbol
 - Ähnlich der Umwandlung von Kellerautomaten in Satz 9.1 (a) und 9.1 (b)
 - (1c) Die Menge der Paare (p, τ) , die zu unendlichen Folgen von ϵ -Transitionen führen, lässt sich berechnen
 - $*~\mathcal{B}$ geht für diese Paare in q_+ über

Beweisidee (Forts.)

- (2) ${\cal B}$ merkt sich immer, ob seit der letzten Nicht- ϵ -Transition schon ein akzeptierender Zustand von ${\cal A}$ gesehen wurde
- ightharpoonup Mit diesen Ideen lässt sich ein korrekter Automat für das Komplement von $m{L}(m{\mathcal{A}})$ konstruieren
- Details finden sich beispielsweise im Buch von Ingo Wegener

Det. kontextfreie Sprachen: Vereinigung und Durchschnitt

Satz 10.12

Die Klasse der deterministisch kontextfreien Sprachen ist nicht abgeschlossen unter Vereinigung und Durchschnitt

Beweis

- Seien wieder
 - $L_1 := \{a^nb^nc^m \mid n,m\geqslant 1\}$ und
 - $L_2 := \{a^mb^nc^n \mid n,m\geqslant 1\}$
- ullet L_1 und L_2 sind sogar deterministisch kontextfrei
- ullet Aber: $L_1 \cap L_2$ ist noch nicht einmal kontextfrei
- ➡ Die deterministisch kontextfreien Sprachen sind nicht unter Durchschnitt abgeschlossen
- ➡ Die deterministisch kontextfreien Sprachen sind nicht unter Vereinigung abgeschlossen
 - Sonst wären sie wegen De Morgan und dem Komplementabschluss auch unter Durchschnitt abgeschlossen

Nicht alle kontextfreien Sprachen haben einen DPDA

- Die Klasse der kontextfreien Sprachen hat also andere Abschlusseigenschaften als die Klasse der deterministisch kontextfreien Sprachen
 - die beiden Klassen sind verschieden
 - die deterministisch kontextfreien Sprachen bilden eine echte Teilklasse der Klasse der kontextfreien Sprachen
- Wir betrachten nun ein Beispiel einer kontextfreien Sprache, die nicht deterministisch kontextfrei ist
- Zur Erinnerung:
 - $L_{\mathsf{diff}} = \{ m{w} \in \{m{a}, m{b}\}^* \mid \mathbf{1}^{\mathsf{st}}(m{w}) \neq \mathbf{2}^{\mathsf{nd}}(m{w}) \}$ ist kontextfrei
 - $m{L}_{\mathsf{doppel}} = \{m{w} \mid m{w} \in \{m{a}, m{b}\}^*\}$ ist nicht kontextfrei
- ullet Sei L_{undoppel} das Komplement von L_{doppel}
- ullet Also: $L_{ ext{undoppel}}$ enthält alle Strings ungerader Länge sowie alle Strings aus $L_{ ext{diff}}$

Proposition 10.13

ullet L_{undoppel} ist kontextfrei aber nicht deterministisch kontextfrei

Beweisskizze

- ullet Dass $L_{
 m doppel}$ nicht kontextfrei ist, haben wir in Proposition 12.3 (b) schon bewiesen
- ullet Also kann $L_{
 m undoppel}$ nicht deterministisch kontextfrei sein, sonst wäre es ja auch $L_{
 m doppel}$

Komplementabschluss

- ullet Andererseits ist L_{undoppel} die Vereinigung
 - einer regulären Sprache (Strings ungerader Länge) und
 - der kontextfreien Sprache $L_{
 m diff}$ und damit kontextfrei

Verhältnis zu anderen Klassen

Satz 10.14

- (a) Jede reguläre Sprache ist deterministisch kontextfrei
- (b) Es gibt deterministisch kontextfreie Sprachen, die nicht regulär sind
- (c) Es gibt kontextfreie Sprachen, die nicht deterministisch kontextfrei sind

Beweisidee

- (a) Jeder DFA kann als deterministischer PDA mit akzeptierenden Zuständen interpretiert werden, der seinen Keller nicht verwendet
- (b) Beispiel: $\{a^nb^n\mid n\geqslant 0\}$
- (c) Beispiele:
 - ullet L_{undoppel}

Proposition 10.13

ullet $oldsymbol{L}_{\mathsf{rev}}$

Beweis etwas komplizierter

Verhältnis der Modelle

Zusammenfassung

- Das Pumping-Lemma für kontextfreie Sprachen ist ein Hilfsmittel um nachzuweisen, dass eine gegebene Sprache nicht kontextfrei ist
- Es gibt einige stärkere Versionen des Pumping-Lemmas, wie zum Beispiel Ogden's Lemma

siehe Buch von Ingo Wegener

- Die kontextfreien Sprachen haben etwas weniger günstige algorithmische und Abschlusseigenschaften als die regulären Sprachen
- Insbesondere gibt es Fragen, die sich algortihmisch gar nicht lösen lassen
- Deterministische Kellerautomaten sind echt schwächer als Kellerautomaten und echt stärker als endliche Automaten

Literatur für dieses Kapitel

Effiziente Umwandlung in GNF:

- Daniel J. Rosenkrantz. Matrix equations and normal forms for context-free grammars. *J. ACM*, 14(3):501–507, 1967
- Norbert Blum and Robert Koch. Greibach normal form transformation revisited. *Inf. Comput.*, 150(1):112–118, 1999

Leerheitstest für kontextfreie Grammatiken:

 Catriel Beeri and Philip A. Bernstein. Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst., 4(1):30–59, 1979

• Pumping-Lemma:

 Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase structure grammars. *Z. Phonetik, Sprachwiss. Kommunikationsforsch.*, 14:143–172, 1961

Endlichkeitstest für kontextfreie Sprachen: Beweisdetails

Beweis (Forts.)

• Zu zeigen:

 $oldsymbol{L}(oldsymbol{G})$ unendlich \Longleftrightarrow $oldsymbol{H}(oldsymbol{G})$ hat Kreis

- Sei $G=(V,\Sigma,S,P)$
- Wir zeigen zuerst: "←"
- Da H(G) einen Kreis hat, gibt es eine Variable X mit $X \Rightarrow_G^* vXx$, für gewisse $v,x \in \Sigma^*$ mit $vx \neq \epsilon$
 - * Denn: die Anwendung der Regeln, die die Kanten des Kreises ergeben haben, liefert $X \Rightarrow_G^* \alpha X \beta$ für gewisse $\alpha, \beta \in V^*$
 - * Alle in α, β vorkommenden Variablen lassen sich zu nichtleeren Strings ableiten
- Da $oldsymbol{X}$ nützlich ist, gilt
 - $st X \Rightarrow_G^st w$ für ein $w \in \Sigma^st$
 - $*~S\Rightarrow_G^* uXy$, für gewisse $u,y\in \Sigma^*$
- lacktriangledown alle (unendlich vielen) Strings der Form $uv^kwx^ky, k\geqslant 0$ sind in L

Beweis (Forts.)

- Wir zeigen jetzt: "⇒"
- ullet Sei $m\stackrel{ ext{ iny def}}{=}|V|$
- ullet Wenn L(G) unendlich viele Strings enthält, enthält L(G) insbesondere einen String w mit $|w|>2^{m+1}$
- ullet Wie im Beweis des Pumping-Lemmas muss deshalb auf einem Weg eines Blattes des Ableitungsbaumes zu w eine Variable X mehrfach vorkommen
- lacktriangledown X liegt in $oldsymbol{H}(oldsymbol{G})$ auf einem Kreis
- ➡ Behauptung