Stat 607: HW1

- (1) For $u_1, v_1, u_2, v_2 \in \mathbb{R}^m$, show that $(u_1v_1')(u_2v_2') = u_2'v_1(u_1v_2')$ and that $(u_1v_1')u_2 = (v_1'u_2)u_1$.
- (2) If $A \in \mathbb{R}^{m \times n}$, show that $||A||_{\mathsf{F}} \leq \sqrt{\mathsf{Rank}(A)}||A||_2$. Show also that if A is of rank n, then $||A(A'A)^{-1}A'||_2 = 1$.
- (3) Show that for any matrix $A \in \mathbb{R}^{m \times m}$,

$$||A|_1 \le \sqrt{m} ||A||_2 \le n||A||_1$$
, and $||A||_{\infty} \le \sqrt{m} ||A||_2 \le m||A||_{\infty}$.

(4) In computing, the number of floating-point operations per second (FLOPS) is the most important measure of computer performance. Consider the following resource.

http://en.community.dell.com/techcenter

/high-performance-computing/w/wiki/2329

- (a) Read that paper and other online resources to understand how to compute the FLOPS of a computer.
- (b) Given a matrix $X \in \mathbb{R}^{m \times m}$, what in the number of floating-point operations needed to compute X^2 . Use this result to devise a simple simulation study to approximate the (double precision) FLOPS of your computer. Compare the result with the theoretical results you may find online.