

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Lectures 4 & 5 - Voltage & Current
Division Rules; Concept of Short Circuit &
Open Circuit

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Voltage Division Rule

It is applicable to Series Networks

$$V_1 = I_S * R_1$$

 $V_2 = I_S * R_2$

•

•

$$V_n = I_S * R_n$$

By KVL,

$$V_S = V_1 + V_2 + ... + V_n$$

Voltage Division Rule

Hence,
$$I_S = \frac{V_S}{(R_1 + R_2 + \dots + R_n)}$$

Therefore,

$$V_1 = \frac{V_S * R_1}{(R_1 + R_2 + \dots + R_n)}$$

•

$$V_n = \frac{V_S * R_n}{(R_1 + R_2 + \dots + R_n)}$$

Equivalent Series Resistance

$$I_{S} = \frac{V_{S}}{R_{eq}}$$

$$I_{S} = \frac{V_{S}}{(R_{1} + R_{2} + \dots + R_{n})}$$

$$R_{eq} = R_1 + R_2 + ... + R_n$$

Current Division Rule

It is applicable to Parallel Networks

$$I_1 = \frac{V_S}{R_1}$$

$$I_2 = \frac{V_S}{R_2}$$

By KCL,
$$I_S = I_1 + I_2$$

$$I_S = V_S^* \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Current Division Rule

$$V_S = I_S * \frac{R_1 * R_2}{(R_1 + R_2)}$$

$$I_1 = I_s * \frac{R_2}{(R_1 + R_2)}$$

$$I_2 = I_s * \frac{R_1}{(R_1 + R_2)}$$

Equivalent Parallel Resistance

In general, For n Resistors in Parallel,

$$\frac{1}{R_{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)$$

Current Division Rule – More than two resistors in Parallel

- Obtain R_{eq} using $\frac{1}{R_{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)$
 - Find V using $V = I_S * R_{eq}$
- Use Ohm's Law to find branch currents

Numerical Example – Finding Equivalent Resistance

Find the equivalent resistance between A & B

Solution:

Numerical Example – Finding Equivalent Resistance

Solution: (Continued..)

Open Circuit

An Open Circuit has Infinite resistance.

Current through the Open Circuit is Zero.

Voltage across the Open Circuit can be any finite value.

Open Circuit

Short Circuit

A Short Circuit has Zero resistance.

Voltage across a Short Circuit is Zero.

Current through the Short Circuit can be any finite value.

Current through a Dead Short Circuit is dangerously high.

Short Circuit

Numerical Example – Open & Short Circuits

Find the equivalent resistance between X & Y if

i)
$$R_a = \infty \& R_b = \infty$$

ii)
$$R_a = 0 \& R_b = \infty$$

iii)
$$R_a = \infty \& R_b = 0$$

iv)
$$R_a = 0 \& R_b = 0$$

Numerical Example – Open & Short Circuits

Solution:

Case i)
$$R_a = \infty \& R_b = \infty$$

All the resistors are in series. Hence, $R_{xy} = 28\Omega$

Numerical Example – Open & Short Circuits

Solution:

Case ii)
$$R_a = 0 \& R_b = \infty$$

$$R_{XY} = 8\Omega$$

Numerical Example – Open & Short Circuits

Solution:

Case iv)
$$R_a = 0 \& R_b = 0$$

$$R_{xy} = 5.143\Omega$$

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu