## École de Technologie Supérieure

#### Proposition

Projet de fin d'études Département de génie logiciel et des TI

# Optimisation des paramètres d'une éolienne en mouvement

Auteur : Pierre-Alexandre St-Jean <pa@stjean.me>

Superviseur : Dr. Christian Desrosiers <christian.desrosiers@etsmtl.ca>

#### Résumé

Le club étudiant Chinook, afin de continuer son succès en compétition améliore constament son éolienne. L'ajout d'un système mécanique et électronique de contrôle de l'angle d'attaque de celle-ci ainsi que du ratio de transmission permettron d'augmenter les performances du véhicule. Afin de commander ces nouveaux systèmes, un algorithme de contrôle doit être développé afin de géré ces systèmes. Le présent projet propose donc de caractériser l'éolienne puis de créer un tel algorithme de contrôle de l'éolienne à l'aide des algorithmes génétiques.

| ÉTS - Département de gé- | LOG792 - Proposition - Optimisation des |
|--------------------------|-----------------------------------------|
|                          | paramètres d'une éolienne en mouvement  |

9 mai 2013

# Table des matières

| Ré | ésumé                                                                                                        | Ι              |
|----|--------------------------------------------------------------------------------------------------------------|----------------|
| Ta | ble des matières                                                                                             | 2              |
| Ta | ble des figures                                                                                              | 2              |
| I  | Problématique et contexte                                                                                    | 3              |
| 2  | Objectifs du projet                                                                                          | 3              |
| 3  | Méthodologie                                                                                                 | 4              |
| 4  | Livrables et planification 4.1 Description des atéfacts                                                      | 8 8 9          |
| 5  | Risques 5.1 Risques et mitigation de ces risques                                                             | 10<br>10       |
| 6  | Techniques et Outils                                                                                         | II             |
| Ré | eférences                                                                                                    | II             |
| Aı | nnexes                                                                                                       | 12             |
| Aı | nnexe A Architecture Électrique du Chinook 3                                                                 | 12             |
| Αı | nnexe B Calcul de l'impact, la probabilité et de l'exposition aux risques B.1 Niveaux de probabilités/Impact | 13<br>13<br>13 |
| Ta | able des figures                                                                                             |                |
|    | Chinook 1 et 2                                                                                               | 3<br>4<br>5    |

#### Problématique et contexte

Le véhicule éolien Chinooki de l'ÉTS est un regroupement de personnes <sup>1</sup> qui analyse, conçoivent et construisent un véhicule propulsée par une éolienne. Le véhicule participe, chaque année, depuis deux ans à une compétition de véhicules de ce type qu'ils ont remportés l'année dernière. Cette année le véhicule doit être améliorer afin de pouvoir rester compétitif. Pour ce faire un système électronique de controle de l'angle d'attaque des pales de l'éolienne sera installé. La transmission du véhicule sera aussi modifiée afin de pouvoir être contrôllée électroniquement.



Figure 1 – Le Chinook 1 et le Chinook 2 en exposition dans le Hall A de l'ÉTS

Afin de pouvoir controller ces systèmes électroniques, des modèles de contrôle et d'optimisation de la puissance de l'éolienne doivent être créés. Les modèles théoriques applicables aux éoliennes standards doivent être modifiés afin de prendre en compte le fait que l'éolienne du Chinook est une éolienne mobile. Ainsi les systèmes de contrôles d'éoliennes fixes ne sont pas applicables dans le contexte d'une éolienne mobile.

### 2 Objectifs du projet

Le présent projet à pour but d'ammener l'éolienne du Chinook 3 [figure : 2] à opérer dans les conditions et à l'aide des paramètres d'opérations optimales. Pour ce faire, l'éolienne doit être caractérisé, un modèle de contrôle et d'optimisation de l'angle d'attaque  $(\beta)$  des pales et du ratio de transmission qui affecte la vitesse de rotation de l'éolienne  $(\omega)$  doit être conçu, analysé puis ce modèle doit être implanté dans le logiciel de la carte électronique de calcul.

<sup>1.</sup> http://chinookets.com

Le système de contrôle pourra, à tout moment, changer l'angle d'attaque des pales  $(\beta)$  où le ratio transmission afin d'atteindre les performances optimales de l'éolienne dans les conditions de vitesse du véhicule et de vitesse du vent.



Figure 2 – Rendu 3D du mat et du rotor du Chinook 3

Un tel modèle ainsi opérationnel dans les systèmes de contrôle du Chinook permettra au véhicule d'atteindre de meilleures vitesses et ce plus rapidement tout en permettant de conserver les vitesses atteintes et de mieux résister aux turbulences que par les années passées.

## 3 Méthodologie

La méthode utilisé dans ce projet sera adapté à partir de plusieurs méthode d'optimisation par algorithme génétique, entre autres celles provennant de [RPo8] et de [OB12]. Ces méthodes seront appliqués selon des processus de génie logiciel (développement dirigé par les spécifications, etc...). Tout au long du projet

des pratiques provennant de méthodes agiles tel que Kanban<sup>2</sup> et Scrumm<sup>3</sup>

Premièrement, le facteur de conversion de l'éolienne  $(C_n)$  doit être caractérisé. Pour ce faire on doit récupérer des données expérimentales de l'éolienne selon plusieurs paramètres puis on doit trouver une équation qui régit ces données. Afin de trouver l'équation, une régression de style "Curve-Fitting" tel que décrite dans [RPo8] à la section 12.2 sera utilisée.

Lorsque le comportement de l'éolienne sera caractérisé, un modèle mathématique de contrôle de l'éolienne sera généré à l'aide d'un algorithme génétique. La méthode décrite dans [OB12] sera améliorée et adaptée afin de convenir au contexte d'utilisation du Chinook et cette méthode sera utilisée afin de générer le modèle mathématique de contrôle.

Suite à la création de la formule de contrôle et à partir de l'architecture électrique et logiciel [Annexe A] du Chinook 3, on peut inclure ces équations à l'intérieur du Chinook dans la carte électronique de calcul [figure 3]. Les équations donneront en sortie : l'angle d'attaque et le ratio de transmission à appliquer. Ces données seront envoyés aux systèmes qui contrôlent les moteurs.



Figure 3 – Carte électronique d'acquisition de données, de surveillance du courant électrique et de calcul de l'angle d'attaque des pales et du ratio de transmission

Des tests sur route seront ensuite effectué avec le Chinook afin de valider si les modèles calculés à partir d'algorithmes génétiques fonctionnent.

<sup>2.</sup> https://en.wikipedia.org/wiki/Kanban\_(development)

<sup>3.</sup> https://en.wikipedia.org/wiki/Scrum\_(development)

Afin de permettre à l'éolienne de se comporter correctement lorsqu'elle est dans un autre état qu'en régime permanent, des états supplémentaires seront ajoutés à l'algorithme de contrôle, par exemple : lorsque la voiture va plus vite que l'éolienne (poussée) ou lorsqu'elle est à l'arrêt.

En résumé, le projet consiste en :

- La récolte de données sur l'éolienne à différent  $\beta$  et  $\lambda$
- La caractérisation du facteur de conversion de puissance de l'éolienne  $(C_p)$ , c'est à dire le ratio entre la puissance du vent fournie à l'éolienne et la puissance de sortie de celle-ci
- L'adaptation et l'amélioration de la méthode de [OB12] afin qu'elle convienne au contexte du Chinook. Cette méthode génere un modèle mathématique de contrôle de l'éolienne
- l'implémentation du modèle mathématique de contrôle de l'éolienne dans la carte électronique de calcul
- Les tests sur route afin de valider la méthode

9 mai 2013 7

# 4 Livrables et planification

#### 4.1 Description des atéfacts

| Artéfact                 | Description                                                             |  |
|--------------------------|-------------------------------------------------------------------------|--|
| Proposition de projet    | Le présent document qui décris sommairement                             |  |
|                          | en quoi consistera le projet, ça planification et la                    |  |
|                          | façon dont il sera exécuté.                                             |  |
| Rapport d'étape          | Document décrivant l'avancement du projet et                            |  |
|                          | la façon dont le projet est analyser et conçu                           |  |
| Rapport final            | Document décrivant le projet dans son                                   |  |
|                          | ensemble.                                                               |  |
| Présentation             | Préparation et mise en page de la présentation                          |  |
|                          | du projet au département de Génie Logiciel et                           |  |
| Article                  | des TI à la fin de la session Article scientifique décrivant la méthode |  |
| Titlele                  | utilisée pour caractériser l'éolienne et créer                          |  |
|                          | l'algorithme d'optimisation                                             |  |
| Spécifications           | Documents de spécifications des différents                              |  |
| opecinications           | sous-projets que ce projet génère.                                      |  |
| Carte électronique :     | Implémentation permettant de faire fonctionner                          |  |
| implémentation de base   | tout les composantes de la carte électronique et                        |  |
| imprementation de suce   | prêt à accueillir la fonction de calcul. Cet                            |  |
|                          | implémentation permet de faire fonctionner les                          |  |
|                          | modules de communication soit le XBEE, le                               |  |
|                          | module CAN et le module de USB-SERIAL.                                  |  |
|                          | L'implémentation permettra aussi de faire                               |  |
|                          | fonctionner le module de mémoire morte                                  |  |
|                          | (EEPROM), le module de surveillance électrique                          |  |
|                          | et le module d'horloge (realtime clock).                                |  |
| Carte électronique :     | Implémentation du logiciel d'optimisation                               |  |
| Logiciel d'optimisatione | génétique à l'intérieur de la carte électronique                        |  |
| zogreter a openmouerene  | en language C                                                           |  |
| Programme de             | Programme d'algorithme génétique faisant une                            |  |
| caractérisation de       | opération de Curve-fitting                                              |  |
| l'éolienne               | 1 8                                                                     |  |
| Outils de simulation     | Outils mathématiques permettant de simuler le                           |  |
|                          | fonctionnement de l'éolienne dans des                                   |  |
|                          | conditions réelles.                                                     |  |
| Algorithme génétique     | Algorithme permettant d'optimiser les                                   |  |
| d'optimisation           | paramètres de l'éolienne selon des conditions                           |  |
| D ( 11 1)                | quasi réelles d'opération                                               |  |
| Données de banc d'essai  | Données récoltés en fixant certains paramètres                          |  |
| Algorithme génétique     | de l'éolienne.<br>Algorithme permettant de caractérisé la               |  |
| de caractérisation de    | fonction de puissance de l'éolienne en fonction                         |  |
| l'éolienne               | des données récoltés                                                    |  |
| _1 colletifie            | des données récoites                                                    |  |

#### 4.2 Planification

| Tâche                                             | Début - Fin                      | Effort |
|---------------------------------------------------|----------------------------------|--------|
| Fiche de renseignement                            | 26 Mars 2013                     | ıh     |
| Proposition de projet                             | 6 Mai 2013 - 12 Mai 2013         | 15h    |
| Rapport Étape                                     | 12 Mai 2013 - 21 Juin 2013       | 25h    |
| Rapport Final                                     | 21 Juin 2013 - 31 Juillet 2013   | 30h    |
| Présentation                                      | 21 Juin 2013 - 31 Juillet 2013   | 5h     |
| Article                                           | 12 Mai 2013 - 31 Juillet 2013    | 25h    |
| Planification du projet                           | 8 Mai 2013 - 31 Juillet 2013     | 5h     |
| Compétition Racing Aeolus 2013                    | 17 Août                          |        |
| Rencontre avec professeur supervi-                | (Au besoin)                      |        |
| seur                                              |                                  |        |
| Mise en place de l'environnement de               | 12 Mai - 18 Mai                  | 5h     |
| développement                                     | N/ 1 11                          | 1      |
| Spécification du projet                           | 12 Mai - 1 Juillet               | 15h    |
| Programme de caractérisation de l'éo-             |                                  |        |
| lienne<br>Récolte de données                      |                                  |        |
| Caractérisation de l'éolienne                     |                                  |        |
| Outils de simulation                              |                                  |        |
| Programme génétique d'optimisation                |                                  |        |
| Carte électronique : implémentation               | 10 mars 2013 - 20 Mai 2013       | 30h    |
| de base<br>Carte électronique : ajout du logiciel | 1 Juillet 2013 - 31 Juillet 2013 | 20h    |
| d'optimisation                                    |                                  |        |
| Tests sur route                                   |                                  |        |

## 5 Risques

#### 5.1 Risques et mitigation de ces risques

| Risque                  | Description & Mitigation                           |  |
|-------------------------|----------------------------------------------------|--|
| Risque que la           | Ce risque peut-être mitigé en ayant un bon suivi   |  |
| préparation du véhicule | de l'avancement et de la construction du           |  |
| ne respecte pas les     | véhicule et en offrant de l'aide si nécéssaire.    |  |
| _délais                 |                                                    |  |
| Complexité du           | Le domaine de l'application des énegies            |  |
| domaine d'application   | éoliennes et de la mécanique des fluides est un    |  |
|                         | domaine complexe, ce risque peut être mitigé en    |  |
|                         | ayant les bons renseignements en main.             |  |
|                         | Plusieurs ressources sont disponible, soit à       |  |
|                         | l'intérieur du club étudiant Chinook ou auprès     |  |
|                         | des professeurs spécialisés dans ce domaine.       |  |
| Manque de données       | En s'assurant d'obtenir assez de données lors des  |  |
|                         | sorties de banc d'essai, ce risque est facillement |  |
|                         | évitable.                                          |  |
| Non fonctionnement      | Ce risque peut être évité en se renseignant sur    |  |
| de la méthode           | l'application et la pertinance de la méthode       |  |
| d'optimisation          | utilisée. Toutefois, la méthode manuelle de        |  |
|                         | contrôle reste toujours disponible.                |  |
| Complexité du projet    | Ce risque peut être évité en se documentant        |  |
|                         | correctement sur les méthodes utilisés et en       |  |
|                         | s'assurant de la compréhension de ces méthodes     |  |

### 5.2 Impact, probabilité et exposition aux risques

| Risque                                                            | Impact | Probabilité | Exposition |
|-------------------------------------------------------------------|--------|-------------|------------|
| Risque que la préparation du véhicule                             | Élevé  | Élevé       | 0.3734     |
| ne respecte pas les délais<br>Complexité du domaine d'application | Moyen  | Haut        | 0.1698     |
| Manque de données                                                 | Haut   | Faible      | 0.0679     |
| Non fonctionnement de la méthode                                  | Haut   | Faible      | 0.0679     |
| d'optimisation<br>Complexité du projet                            | Moyen  | Bas         | 0.0309     |

La façon de calculer l'impact des risques et leur probabilités est faite selon la méthode de PÉRIL <sup>4</sup>. Voir les tableaux en [Annexe B] afin de voir les calculs.

#### 6 Techniques et Outils

- Des pratiques de méthodes agiles et itératives provennant de Kanban, Scrumm et autres seront utilisées tout au long du projet.
- Les spécifications logiciel et du projet seront écrites à l'aide la de la méthode (Specification by example) décrite dans [Adzii].
- Formattage des documents de remise à l'aide des logiciels libres LATEXet de XALATEXet des nombreux paquetages disponibles (CTAN 5).
- Tout les documents et codes sources seront gérés avec le système de gestion de versions GIT <sup>6</sup>.
- Le service de partage de fichiers Dropbox sera utilisé afin de partager plusieurs fichers entre différents postes et différentes personnes.
- Github <sup>7</sup> sera utilisé comme plateforme d'hôte et de collaboration de code source.
- Trello <sup>8</sup> sera utilisé comme plateforme de gestion du projet. L'outil sera utiliser pour faire le suivi et la planification du projet.
- Mathematica sera utilisé

#### Références

- [Adzii] Gojko Adzic. Specification by Example: How Successful Teams Deliver the Right Software. Manning Publications, 2011.
- [OB12] Mohamed Cherkaoui Ouissam Belghazi. Pitch angle control for variable speed wind turbines using genetic algorithm controller. *Journal of Theoretical and Applied Information Technology*, 39. No. 1:005 -- 010, 2012.
- [RPo8] Nicholas F. McPhee Riccardo Poli, William B. Langdon. A field guide to genetic programming. 2008.

<sup>4.</sup> http://msdn.microsoft.com/en-us/magazine/dd315417.aspx

<sup>5.</sup> http://www.ctan.org/

<sup>6.</sup> http://git-scm.org

<sup>7.</sup> https://github.com

<sup>8.</sup> https://trello.com

#### Annexes

# A Architecture Électrique du Chinook 3



# B Calcul de l'impact, la probabilité et de l'exposition aux risques

Voici les tableaux représentant le calcul de l'impact, la probabilité et l'exposition des risques selon la méthode de PERIL.

#### B.1 Niveaux de probabilités/Impact

| Terme | Définition                                                          |  |  |
|-------|---------------------------------------------------------------------|--|--|
| Haut  | Risque qui aurait une forte probabilité ou dont l'impact risquerait |  |  |
|       | de mettre le bon bon déroulement du projet en jeu (retard de plu-   |  |  |
|       | sieurs jours)                                                       |  |  |
| Moyen | Risque qui aurait une moyenne probabilité de survenir ou dont       |  |  |
|       | l'impact risquerait de retarder le projet de quelques jours.        |  |  |
| Bas   | Risque qui aurait une faible probabilité de survenir ou dont l'im-  |  |  |
|       | pact risquerait de ne peu ou pas retarder le projet (quelques       |  |  |
|       | heures).                                                            |  |  |

#### B.2 Calcul de Probabilité/Impact

| NI:    | C-11                                  | Probabilité |
|--------|---------------------------------------|-------------|
| Niveau | Calcul                                | ou Impact   |
| Haut   | $\frac{1+\frac{1}{2}+\frac{1}{3}}{3}$ | 0.6111      |
| Moyen  | $\frac{\frac{1}{2} + \frac{1}{3}}{3}$ | 0.2777      |
| Bas    | $\frac{\frac{1}{3}}{3}$               | 0.1111      |

#### B.3 Exposition au risque

L'exposition au risque est la probabilité multipliée par l'impact

|       | Haut   | Moyen  | Bas    |
|-------|--------|--------|--------|
| Haut  | 0.3734 | 0.1698 | 0.0679 |
| Moyen | 0.1698 | 0.0712 | 0.0309 |
| Bas   | 0.0679 | 0.0309 | 0.0123 |