CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 10 LUGLIO 2017

Svolgere i seguenti esercizi,

qiustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di reticolo complementato.

Esercizio 2. Per ciascuna delle uguaglianze qui elencate caratterizzare gli interi m per i quali essa si verifica.

$$(i) [3]_m + [5]_m = [17]_m;$$

(iii)
$$[3]_m \cdot [5]_m = [1]_m;$$

(iv) $[5]_m = [3]_m^{-1}.$

(i)
$$[3]_m + [5]_m = [17]_m;$$

(ii) $[3]_m \cdot [5]_m = [3]_m - [5]_m;$

$$(iv) [5]_m = [3]_m^{-1}.$$

Esercizio 3. Sia S un insieme.

- (i) $(\mathcal{P}(S), \triangle)$ è un gruppo abeliano; qual è il suo elemento neutro?
- (ii) E se $X \in \mathcal{P}(S)$, qual è il simmetrico di X in $(\mathcal{P}(S), \triangle)$?
- (iii) Quali elementi di $\mathcal{P}(S)$ sono cancellabili rispetto a \triangle ? E quali rispetto a \cup ?

Ricordando questi risultati, fissato un $A \in \mathcal{P}(S)$, si consideri l'operazione binaria * in $\mathcal{P}(S)$ definita da: per ogni $X, Y \in \mathcal{P}(S)$,

$$X * Y = X \triangle Y \triangle A$$
.

- (iv) *è associativa? È commutativa?
- (v) $(\mathcal{P}(S),*)$ ha elemento neutro? Se lo ha, quali sono i suoi elementi simmetrizabili?
- (vi) Se $A \neq \emptyset$ e $a \in A$, l'insieme $B = \{X \in \mathcal{P}(S) \mid a \in X\}$ è chiuso rispetto a *?

Esercizio 4. Si consideri l'applicazione $f:(a,b)\in\mathbb{Z}\times\mathbb{Z}\to a+b^2\in\mathbb{Z};$ sia \sim il suo nucleo di equivalenza.

- (i) f è iniettiva?
- (ii) f è suriettiva?
- (iii) Descrivere esplicitamente gli elementi di $[(0,0)]_{\sim}$.
- (iv) Verificare: $(\forall b \in \mathbb{Z})(\exists! a \in \mathbb{Z})((a,b) \in [(1,0)]_{\sim})$, descrivendo in modo esplicito un tale a in dipendenza da b.

Sia σ la relazione d'ordine definita in $\mathbb{N} \times \mathbb{N}$ ponendo, per ogni $x, y \in \mathbb{N} \times \mathbb{N}$,

$$x \sigma y \iff (x = y \lor f(x) < f(y)).$$

- (v) Determinare in $(\mathbb{N} \times \mathbb{N}, \sigma)$ gli eventuali elementi minimali, massimali, minimo, massimo.
- (vi) Descrivere i minoranti e i maggioranti di $X = \{(0,1),(1,0)\}$ e individuare, se esistono (o spiegare perché non esistono) inf X e sup X in $(\mathbb{N} \times \mathbb{N}, \sigma)$.
- (vii) $(\mathbb{N} \times \mathbb{N}, \sigma)$ è un reticolo?
- (viii) Sia $Y = \{(0,0), (0,1), (1,0), (0,3), (5,2), (5,3)\}$. Disegnare il diagramma di Hasse di (Y, σ) e stabilire se questo è un reticolo. Nel caso, (Y, σ) è distributivo? È complementato?
 - (ix) Trovare un sottoinsieme W di $\mathbb{N} \times \mathbb{N}$ tale che |W| = 8 e (W, σ) abbia il diagramma di Hasse disegnato a destra. Decidere se (W, σ) è un reticolo e se è isomorfo a $(\mathcal{P}(S), \subseteq)$ per qualche insieme S di cardinalità 3.

Esercizio 5. Determinare l'insieme T dei primi p tali che il polinomio $f_p = x^3 - x^2 + \bar{2}x + \bar{1} \in \mathbb{Z}_p[x]$ ammetta $-\bar{2}$ come radice. Per ogni $p \in T$, scrivere f_p come prodotto di polinomi monici irriducibili in $\mathbb{Z}_p[x]$.