

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

MAIL STOP ASSIGNMENT
Attorney Docket No. 25555

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

PUNDT et al.

Serial No. 10/615,453

Filed: July 9, 2003

Title: **METHOD OF DETERMINING THE ADHESION PROPERTIES OF MATERIALS**

TRANSMITTAL LETTER

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

Submitted herewith for filing in the U.S. Patent and Trademark Office are the following:

- (1) Request for Priority under 35 U.S.C. Section 119;
- (2) Priority document.

Respectfully submitted,
NATH & ASSOCIATES PLLC

By:

Gary M. Nath
Registration No. 26,965
Marvin C. Berkowitz
Registration No. 47,421
Customer No. 20529

Date: December 1, 2003
NATH & ASSOCIATES PLLC
1030th 15th Street, NW - 6th Floor
Washington, D.C. 20005
GMN/MCB/ph

MAIL STOP PATENT APPLICATION
Attorney Docket No. 25555

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

PUNDT et al.

Serial No. 10/615,453

Art Unit: 2856

Filed: July 9, 2003

For: **METHOD OF DETERMINING THE ADHESION PROPERTIES OF MATERIALS**

REQUEST FOR PRIORITY UNDER 35 U.S.C. §119

Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

In the matter of the above-captioned application, notice is hereby given that the Applicant claims as priority date July 9, 2002, the filing date of the corresponding application filed in Germany, bearing Application Number 102 31 383.0.

A Certified Copy of the corresponding application is submitted herewith.

Respectfully submitted,
NATH & ASSOCIATES PLLC

By:
Gary M. Nath
Reg. No. 26,965
Marvin C. Berkowitz
Reg. No. 47,421
Customer No. 20529

Date: December 1, 2003

NATH & ASSOCIATES PLLC
6th Floor
1030 15th Street, N.W.
Washington, D.C. 20005
(202)-775-8383
GMN/MCB/ph

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 31 383.0

Anmeldetag: 09. Juli 2002

Anmelder/Inhaber: Universität Göttingen, Göttingen/DE

Bezeichnung: Verfahren zur Bestimmung der Hafteigenschaften von Materialien

IPC: G 01 N 19/04

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 23. September 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Brosig

Anmelderin: Universität Göttingen
Goßlerstraße
37073 Göttingen

Kronenstraße 30 Fon +49 (0)711 222 976-0
D-70174 Stuttgart +49 (0)711 228 11-0
Deutschland/Germany Fax +49 (0)711 222 976-76
 +49 (0)711 228 11-22
 e-mail mail@kronenpat.de
 www.kronenpat.de

Unser Zeichen: P 41 719 DE

09. Juli 2002 TM/nw

Beschreibung

Verfahren zur Bestimmung der Hafteigenschaften von Materialien

5

Die Erfindung betrifft ein Verfahren zur Bestimmung der Hafteigenschaften von mindestens zwei Materialien aneinander, insbesondere zur Bestimmung der Hafteigenschaften mindestens einer Beschichtung oder mindestens eines Films auf einem Substrat.

10

Die Frage, ob zwei Materialien überhaupt oder ausreichend fest aneinanderhaften, ist in vielen Bereichen der Industrie von großer Bedeutung.

Als Beispiele seien hier nur genannt zum einen die Haftung von Polymerfilmen, insbesondere Lacken auf Metallen oder Kunststoffen, z. B. in

15 der Automobilindustrie oder zum anderen die Haftung von Metallfilmen auf Polymeren, z. B. in der Lebensmittelindustrie (Milchtüten, Chipstüten und dergleichen). Ist die Haftung zwischen den gewählten Materialien

Dies ist für eine industrielle Anwendung nicht hinnehmbar. Es muß dann

20 gegebenenfalls aufwendig eine geeignete Materialkombination gefunden werden.

Um die Hafteigenschaften unterschiedlicher Materialien aneinander zu prüfen, sind aus dem Stand der Technik verschiedene Verfahren bekannt. So ist hier beispielsweise der sogenannte „pull-off“-Test zu nennen, bei dem ein aufgeklebter Stempel unter einer definierten Kraft senkrecht zu den verbundenen Materialien zieht. Weiter ist der sogenannte „adhesive tape“-Test bekannt, bei dem auf die verbundenen Materialien ein Klebestreifen aufgebracht und anschließend abgezogen wird. Schließlich gibt es auch sogenannte „scratch“-Tests, bei denen ein spitzer Gegenstand, z. B. eine Nadel, unter einer bestimmten Kraft ein Material zerkratzt. Eine Abwandlung solcher Techniken ist auch der sogenannte „indentation“-Test, bei dem eine scharfe Spitze in das Material gedrückt wird und die entstehenden Ränder bzw. die beim Herausziehen entstehende Form optisch untersucht werden. Darüber hinaus können auch andere Methoden wie Rastersondentechniken oder akustische Emissionstechniken zur Feststellung und Untersuchung von Schichtablösungen eingesetzt werden.

Die genannten Methoden haben verschiedene Nachteile. So gehen beim „adhesive tape“-Test oder beim „pull-off“-Test Materialeigenschaften des Klebers oder Klebestreifens in die Untersuchung ein, die nichts mit der eigentlichen Haftung der Materialien aneinander zu tun haben. Darüber hinaus arbeiten diese Tests und auch die beschriebenen Kratztechniken nicht zerstörungsfrei und sind oft schwer reproduzierbar. Die übrigen genannten Tests erfordern vergleichsweise aufwendige und teure Apparaturen. Alle genannten Methoden haben darüber hinaus den Nachteil, daß eine Quantifizierung der Hafteigenschaften nicht verlässlich möglich ist.

Weiter ist bekannt, daß auch die Aufnahme eines Absorbats in Schichtsysteme und Filmsysteme zur Ablösung dieser Schichten und Filme führen kann. Durch die Aufnahme des Absorbats, beispielsweise eines Gases wie Wasserstoff, entstehen mechanische Spannungen in der

Schicht, die letztendlich zur Ablösung dieser Schicht führen können. Als Literatur sei hier auf die Veröffentlichung von U. Laudahn et al. in „Journal of Alloys and Compounds“, 293-295 (1999), 490-494 verwiesen. Die genannten Untersuchungen gehen jedoch nicht über eine reine Beobachtung der induzierten mechanischen Spannungen hinaus.

Die Erfindung stellt sich die Aufgabe, die Hafteigenschaften von mindestens zwei Materialien aneinander zuverlässig und reproduzierbar zu bestimmen. Das entsprechende Verfahren soll dabei insbesondere für
10 die Bestimmung der Hafteigenschaften von Beschichtungen oder Filmen auf einem Substrat anwendbar sein. Vorzugsweise sollen über das Verfahren quantifizierbare Ergebnisse zugänglich sein, so daß Schichtsysteme vor ihrer industriellen Anwendung auf die jeweiligen Anforderungen der Hafteigenschaften getestet werden können.

15

Diese Aufgabe wird gelöst durch das Verfahren mit den Merkmalen des Anspruchs 1. Bevorzugte Ausführungen des Verfahrens sind in den abhängigen Ansprüchen 2 bis 26 dargestellt. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung
20 gemacht.

Gemäß der Erfindung ist das eingangs erwähnte Verfahren so ausgestaltet, daß mindestens ein Material, vorzugsweise die Beschichtung oder der Film, mit mindestens einem Absorbat beaufschlagt wird. Dann wird
25 mindestens eine kritische physikalische oder chemische Meßgröße bestimmt, bei der sich die beiden Materialien mindestens teilweise, insbesondere im wesentlichen vollständig, voneinander lösen. Durch die im Rahmen der Erfindung kontrolliert erfolgende Aufnahme des Absorbats in eines der beiden Materialien quillt dieses auf bzw. dehnt sich aus. Die
30 aufgrund der Haftung am anderen Material entstehenden mechanischen Spannungen führen zur mindestens teilweisen Ablösung der Materialien voneinander. Auf diese Weise läßt sich eine kritische physikalische oder

chemische Meßgröße bestimmen, die als Maß für die Hafteigenschaften der beiden Materialien aneinander dient.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei der kritischen Meßgröße um die Absorbatmenge, mit der eines der beiden Materialien, insbesondere die Beschichtung oder der Film, beaufschlagt wird. Wie später noch erläutert, lassen sich solche Absorbatmengen häufig auf einfache Weise bestimmen.

10

Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei der kritischen Meßgröße um die Krümmung eines Materials, vorzugsweise des Substrats, die aus der Beaufschlagung dieses Materials mit dem Absorbat resultiert. Auch solche Krümmungen lassen sich häufig auf einfache Weise bestimmen.

Es versteht sich, daß die Erfindung nicht auf die beiden genannten kritischen Meßgrößen (Absorbatmenge, Substratkrümmung) beschränkt ist.

Es können grundsätzlich alle Meßgrößen gewählt werden, die bei teilweise oder vollständiger Ablösung der beiden Materialien voneinander bestimmbar sind.

Grundsätzlich ist es erfindungsgemäß möglich, die kritische physikalische oder chemische Meßgröße bei einmaliger Durchführung der Verfahrensschritte zu bestimmen. Dies ist insbesondere dann der Fall, wenn die Anfangsspannungen bei einer gewählten Materialkombination zu vernachlässigen sind. Dann ist nur eine Bestimmung/Messung je Materialkombination zur Bestimmung der Hafteigenschaften nötig. Erfindungsgemäß ist es jedoch bevorzugt, wenn die Verfahrensschritte mindestens zweimal, insbesondere mehrfach, durchgeführt werden. Dabei wird dann mindestens eine Materialstärke, insbesondere die Dicke der Beschichtung oder des Films, variiert. Je weniger häufig die Verfahrens-

schritte durchgeführt werden müssen, um so schneller lassen sich die Hafteigenschaften bei einer gewählten Materialkombination bestimmen. Dementsprechend ist es weiter bevorzugt, wenn die entsprechenden Verfahrensschritte pro Materialkombination nur zweimal durchgeführt
5 werden.

Bei dem erfindungsgemäßen Verfahren wird mit Hilfe der erhaltenen kritischen Meßgröße vorzugsweise die sogenannte Adhäsionsenergie (rechnerisch) bestimmt. Hierbei kann die entsprechende mathematische
10 Funktion je nach verwendeten Materialien und konkreter Aufgabenstellung hergeleitet werden. Insbesondere wird die Adhäsionsenergie dabei durch Bestimmung der Steigung eines Auftrags der kritischen Meßgröße über eine Funktion, vorzugsweise die reziproke Wurzel der Materialstärke bestimmt. Bei der Materialstärke handelt es sich dabei vorzugsweise
15 um die Dicke der Beschichtung oder des Films. Die erhaltene Adhäsionsenergie ist das direkte Maß für die Haftfähigkeit der beiden Materialien aneinander bzw. aufeinander. Die genaue Vorgehensweise bei diesen bevorzugten Ausführungsformen der Erfindung ergibt sich aus der weiteren Beschreibung sowie den Figuren.

20 Die Vorteile des erfindungsgemäßen Verfahrens zeigen sich insbesondere bei Materialverbundsystemen, bei denen die Dicke des ersten Materials, insbesondere der Beschichtung oder des Films klein gegenüber der Dicke des zweiten Materials, insbesondere des Substrats ist. Dies
25 entspricht genau den bevorzugten Anwendungsfällen, bei denen Hafteigenschaften von mindestens zwei Materialien aneinander oder aufeinander bestimmt werden sollen. Materialverbundsysteme, für die das erfindungsgemäße Verfahren in besonders bevorzugter Weise anwendbar ist, lassen sich über das Verhältnis E_s^2 / d definieren, mit E = Elastizitätsmodul des Substrats, s = Dicke des Substrats und d = Dicke der Beschichtung bzw. des Films. Entsprechende bevorzugte Werte für dieses
30

Verhältnis liegen zwischen 10^8 Pa·m und 10^{14} Pa·m, insbesondere zwischen 10^{10} Pa·m und 10^{13} Pa·m.

Grundsätzlich können mit dem erfindungsgemäßen Verfahren Materialverbundsysteme mit ganz unterschiedlichen Materialstärken untersucht werden. Es ist aber bevorzugt, wenn die Materialstärken, d. h. die Dicke sowohl des ersten Materials als auch des zweiten Materials, insbesondere der Beschichtung/des Films bzw. des Substrats, zwischen 1 nm (Nanometer) und 5 mm (Millimeter) betragen. Innerhalb dieser Bereiche sind für die Dicke des Substrats Werte zwischen 1 µm (Mikrometer) und 5 mm sowie für die Dicke der Beschichtung oder des Films Werte zwischen 1 nm und 1 µm zu nennen. Auch diese bevorzugt genannten Werte betreffen die bevorzugten Anwendungsfälle für die Bestimmung von Hafteigenschaften.

15

Bei dem Absorbat, mit dem mindestens ein Material beaufschlagt wird, handelt es sich vorzugsweise um mindestens eine Flüssigkeit. Diese Flüssigkeit ist bei einer ersten Gruppe von weiter bevorzugten Ausführungsformen Wasser. Bei einer weiteren Gruppe von bevorzugten Ausführungsformen handelt es sich bei der Flüssigkeit um ein organisches Lösungsmittel, insbesondere um Dichlormethan oder Tetrachlormethan.

25

Bei anderen besonders bevorzugten Ausführungsformen der Erfindung handelt es sich bei dem Absorbat um mindestens ein Gas. Hier sind als bevorzugte Gase Kohlendioxid oder gasförmige Elemente, insbesondere Wasserstoff, zu nennen. Gerade Wasserstoff lässt sich auf einfache und reproduzierbare Weise in bestimmten Mengen in Materialien einbringen.

30

Grundsätzlich kann die Beaufschlagung eines Materials mit dem Absorbat erfindungsgemäß auf beliebige Weise erfolgen. Es ist jedoch zum einen bevorzugt, wenn die Beaufschlagung mit dem Absorbat direkt aus der Flüssigkeitsphase oder der Gasphase erfolgt. Zum anderen sind

Ausführungsformen besonders bevorzugt, bei denen die Beaufschlagung mit einem gasförmigen Absorbat, insbesondere mit Wasserstoff, durch die sogenannte elektrochemische Beladung erfolgt. Bei dieser Vorgehensweise wird das Gas, insbesondere der Wasserstoff, direkt an

5 dem zu beladenden Material elektrochemisch durch Ladungsfluß erzeugt, beispielsweise aus Wasserstoffionen in vorzugsweise sauren Lösungen. Dies wird im Zusammenhang mit den Figuren noch näher erläutert.

10 Erfindungsgemäß handelt es sich bei dem ersten Material, insbesondere bei dem Material der Beschichtung oder des Films, bevorzugt um ein Metall, insbesondere ein Edelmetall. Bei weiteren bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens handelt es sich bei dem ersten Material, insbesondere bei dem Material der Beschichtung

15 oder des Films, um ein Polymermaterial, insbesondere einen Lack.

Als zweites Material, insbesondere als Substrat wird erfindungsgemäß vorzugsweise ein Polymermaterial eingesetzt. Auf diese Weise betreffen diese Ausführungsformen insbesondere die Materialkombination Beschichtung/Film aus Metall auf Substrat aus Polymermaterial (Kunststoff).

Ebenfalls bevorzugt sind erfindungsgemäß Ausführungsformen, bei denen als zweites Material, insbesondere als Substrat, vorzugsweise ein Metall, eingesetzt wird. Diese Ausführungsformen umfassen die bevorzugten Materialkombinationen Beschichtung/Film aus Polymermaterial (Lack) auf Metallsubstrat.

Die Bestimmung der kritischen Meßgröße bei der teilweisen, insbesondere im wesentlichen vollständigen Ablösung der beiden Materialien voneinander, kann grundsätzlich auf beliebige Weise erfolgen. Vorzugsweise bestimmt man die kritische Meßgröße zu dem Zeitpunkt,

wenn lokal erstmals eine Ablösung der beiden Materialien voneinander stattfindet, beispielsweise durch Ausbildung einer Aufwölbung oder Hügels. Bei bevorzugten Ausführungsformen der Erfindung wird der Ablösevorgang der beiden Materialien (insbesondere Ablösung Beschichtung/Film vom Substrat) mit Hilfe optischer Methoden verfolgt. Im einfachsten Fall kann dies mit dem Auge geschehen, insbesondere mit Hilfe eines Lichtmikroskops oder einer entsprechenden anderen optischen Einrichtung (z. B. CCD-Kamera).

10 Eine andere bevorzugte Vorgehensweise beinhaltet die Bestimmung der Oberflächenrauhigkeit bzw. deren Veränderung beim Ablösevorgang. Diese Oberflächenrauhigkeit kann ebenfalls auf beliebige Weise bestimmt werden, wobei auch hier der Einsatz optischer Methoden bevorzugt ist. So können insbesondere die Oberflächenreflektivität oder das

15 Oberflächenstreuverhalten bzw. die Veränderung dieser Größen bestimmt werden.

Das erfindungsgemäße Verfahren ist auch für Materialkombinationen anwendbar, bei denen die beiden Materialien des Verbundes selbst kein

20 oder nur wenig Absorbat aufnehmen können. In diesen Fällen wird mindestens eine das Absorbat aufnehmende Beschichtung oder ein entsprechender Film mit einer das Absorbat nicht oder nur in geringer Konzentration aufnehmenden weiteren Beschichtung/Film festhaftend verbunden. Dann werden durch Beaufschlagung der das Absorbat aufnehmenden Beschichtung/Film mit dem Absorbat die Hafteigenschaften der das 'Absorbat nicht oder nur in geringer Konzentration aufnehmenden Beschichtung/Film am Substrat bestimmt. Diese Vorgehensweise wird im Zusammenhang mit den Figuren noch näher erläutert.

25

30 Aus der Darstellung der zuletzt beschriebenen bevorzugten Ausführungsformen ergibt sich, daß die Erfindung nicht auf die Untersuchung von Materialkombinationen aus zwei Materialien beschränkt ist. Vor-

zugsweise ist zur Bestimmung der Hafteigenschaften ein Schichtaufbau (einschließlich des Substrats) aus zwei bis vier, insbesondere zwei oder drei, Schichten bevorzugt.

- 5 Das erfindungsgemäße Verfahren hat den Vorteil, daß durch die kontrollierte Beaufschlagung eines Materials in einem Schichtaufbau die Haft-eigenschaften zweier Materialien aneinander oder aufeinander einfach und reproduzierbar bestimmt werden können. Wird die Absorbatkonzen-tration gezielt nur bis zur teilweisen Ablösung der Materialien voneinan-
10 der erhöht, so erfolgt die Bestimmung der Hafteigenschaften quasi zer-störungsfrei. Die mit Hilfe des erfindungsgemäßen Verfahrens erhal-tenen Aussagen ermöglichen es, die Hafteigenschaften von Materialsy-
stemen bereits im Vorfeld gezielt zu untersuchen. Außerdem sind quan-titative Aussagen möglich, die eine gezielte Vorabauswahl bestimmter
15 Materialkombinationen ermöglichen.

Die beschriebenen Merkmale und weitere Merkmale der Erfindung er-gehen sich aus der nachfolgenden Beschreibung von bevorzugten Aus-führungsformen in Verbindung mit den Unteransprüchen und den Zeich-nungen. Hierbei können die einzelnen Merkmale jeweils für sich oder zu
20 mehreren in Kombination miteinander verwirklicht sein.

In den Zeichnungen zeigen:

- 25 Fig. 1 die schematische Darstellung eines Verbundsystems aus
· zwei Materialien während der Aufnahme des Absorbats in
· das obere der beiden Materialien,
- Fig. 2 den Schichtaufbau der im Beispiel erläuterten Ausführungs-
30 formen des erfindungsgemäßen Verfahrens,

Fig. 3 die Morphologieentwicklung der Oberfläche des Schichtaufbaus der im Beispiel erläuterten Ausführungsform des erfindungsgemäßen Verfahrens, und

5 Fig. 4 die Bestimmung der Adhäsionsenergie bei der im Beispiel erläuterten Ausführungsform des erfindungsgemäßen Verfahrens.

In Fig. 1 ist das dem erfindungsgemäßen Verfahren zugrundeliegende

10 Prinzip mit einer einfachen Darstellung schematisch erläutert.

Zwei Materialien 1 und 2 haften bei Bildung eines entsprechenden Verbundsystems aneinander. Durch die in Fig. 1a) nicht näher dargestellte Aufnahme eines Absorbats, beispielsweise Wasserstoff, in die obere

15 Schicht (Material 1) werden dort hohe, durch die Pfeile dargestellte, Spannungen in dieser Schicht erzeugt. Dies führt gemäß Fig. 1b) zu einer Ablösung der oberen Schicht (Material 1) von der unteren Schicht/Substrat (Material 2) über die in Fig. 1b) dargestellte Länge δl . Über diese Länge geht die Haftung zwischen Material 1 und Material 2 verloren,

20 mit der maximalen Höhe h des abgelösten Teils des Materials 1 (wie in Fig. 1b) dargestellt).

Beispiel

25 Es werden dünne Palladium/Niob/Palladium-Schichtfolgen durch Argon-Sputtering auf Polycarbonat-Substraten von 250 μm Dicke abgeschieden. Dazu werden zunächst die Polycarbonat-Substrate kurz mit Isopropanol gereinigt. Die Metallfilme werden bei Raumtemperatur in einer Ultrahochvakuumkammer (10^{-10} mbar) bei 10^{-4} mbar Argongas-Druck hergestellt. Dabei ergibt sich der in Fig. 2 dargestellte Schichtaufbau.

Im vorliegenden Fall betragen die Schichtdicken der sich oberhalb und unterhalb der Niob-Schicht befindenden Palladium-Schichten jeweils 10 nm. Die obere Palladium-Schicht dient dabei der Verhinderung der Oxidation der Niob-Schicht und zur Erleichterung einer Wasserstoffaufnahme (Absorbat = Wasserstoff) in die Niob-Schicht. Innerhalb der Niob-Schicht sollen die inneren Spannungen erzeugt werden, damit sich die unterhalb der Niob-Schicht angeordnete Palladium-Schicht vom Polycarbonat-Substrat ablöst. Untersucht werden also die Hafteigenschaften der (unteren) Palladium-Schicht am Polycarbonat-Substrat. Im Beispiel werden Niob-Schichten von 10 nm, 30 nm, 100 nm und 200 nm Dicke mit niedrigen Abscheideraten von 1,6 nm/min hergestellt.

Alle erhaltenen Schichtaufbauten werden vor Beladung mit Wasserstoff im Lichtmikroskop untersucht. Sie weisen im wesentlichen glatte Metalloberflächen auf mit lediglich wenigen Kratzern, die von dem Polycarbonat-Substrat herrühren.

Anschließend wurde der Schichtaufbau durch die (quasi als „Fenster“ dienende) obere Palladium-Schicht mit Wasserstoff elektrochemisch beladen. Zu diesem Zweck wird eine Lösung von Glycerin und Phosphorsäure (2:1) verwendet. Diese elektrochemische Beladung stellt eine einfache Methode dar, da die in den Schichtaufbau aufgenommene Wasserstoffkonzentration einfach durch Messung der elektrischen Ladung über das Faradaysche Gesetz bestimmt werden kann (R. Kirchheim, Prog. Mat. Sci. 32 (1988), 261-325). In der genannten Literaturstelle ist auch ein entsprechender apparativer Aufbau dargestellt. Um die Aufnahme des Wasserstoffs verfolgen zu können, wurde die entsprechende Probe auf das Gestell eines optischen Mikroskops aufgebaut. Die Änderung der Oberflächenstruktur während der Beladung mit Wasserstoff wurde in-situ mit einer CCD-Kamera optisch verfolgt.

Die Ergebnisse dieser optischen Verfolgung sind in Fig. 3 dargestellt. Daraus ergeben sich die Aufnahmen der CCD-Kamera während der Wasserstoffbeladung von a) 0 H/Nb bis zu h) 0,68 H/Nb. Der unter den Konzentrationsangaben dargestellte Balken entspricht jeweils der Länge
5 von 100 µm. Fig. 3 stellt dabei das Ergebnis des erfindungsgemäßigen Verfahrens für eine Niob-Schichtdicke von 100 nm dar.

Wie Fig. 3 zeigt, sind zu Anfang (0 H) nur die vom Substrat herrührenden wenigen Kratzer zu sehen. Durch Beladen mit Wasserstoff und Aufnahme des Wasserstoffs in die Niob-Schicht über die zuoberst angeordnete Palladium-Schicht werden die Spannungen in der Schichtebene des Niobs sukzessive erhöht. Dabei bleibt die Oberfläche des Schichtaufbaus bis zu einer Wasserstoffkonzentration von 0,14 H/Nb im wesentlichen unverändert. Oberhalb dieser Konzentration tauchen zusätzlich
15 lineare Linien auf, wie dies durch den Pfeil in Fig. 3b) angedeutet ist. Hier findet also eine erste Rißbildung statt. Durch Wechsel der Beleuchtungsverhältnisse im Lichtmikroskop und durch zusätzliche Versuche in einem Interferenzmikroskop konnte festgestellt werden, daß hier in der Tat ein Abheben der Oberfläche vonstatten geht. Bei weiterer Erhöhung
20 der Wasserstoffkonzentrationen erstrecken die Linien sich weiter über die gesamte Oberfläche, wie in Fig. 3d) bis 3h) dargestellt ist. Außerdem erhöht sich die Linienbreite mit der Wasserstoffkonzentration. Schließlich wird eine netzförmige Oberflächenstruktur erreicht, die mit zunehmender Wasserstoffkonzentration immer feinmaschiger wird. Durch optische Kontrolle wird eine kritische Wasserstoffkonzentration festgelegt,
25 bei der sich die oberen Schichten erstmals lokal vom Polycarbonat-Substrat ablösen. Dabei wird im vorliegenden Fall die erste sichtbare Aufwölbung zur Festlegung dieser kritischen Konzentration herangezogen.

30

Die Filmablösung und die auftretenden Muster werden für verschiedene Niob-Filmdicken untersucht, was zu vergleichbaren optischen Ergebnis-

sen wie in Fig. 3 führt. Auch hier werden die kritischen Wasserstoffkonzentrationen bestimmt, bei denen sich die oberen Schichten erstmals lokal vom Substrat abgelöst haben. Dünner Niob-Schichten nehmen vergleichsweise höhere Wasserstoffkonzentrationen auf, bevor die Film-
5 ablösung startet und sich die entsprechenden netzförmigen Aufwölbungen ausbilden.

Die Auswertung der erhaltenen Ergebnisse für verschiedene Schichtdicken ist in Fig. 4 dargestellt. Dort ist die kritische Absorbatkonzentration
10 (bezeichnet mit c^*) als Funktion der reziproken Materialdicke $1/\sqrt{d}$ (d = Schichtdicke des Niob) aufgetragen. Aus der Steigung dieses Auftrags, nämlich $\sqrt{(1-\nu) \cdot \gamma / (\alpha_H^2 E)}$ mit ν Poisson-Zahl des Niob, α_H Materialausdehnungskonstante des Niob, E Elastizitätsmodul des Niob, ergibt sich die Adhäsionsenergie γ . Diese ist das Maß für die Haftung zweier Materialien aufeinander. Im Falle des hier diskutierten Beispiels wurde die Adhäsionsenergie von Palladium (untere Schicht gemäß Fig. 2) und Polycarbonat-Substrat zu $1,8 \text{ J/m}^2$ bestimmt. Lediglich zum Vergleich ist in
15 Fig. 3 noch der Verlauf einer Geraden eingezeichnet, die einer Adhäsionsenergie von 5 J/m^2 entsprechen würde.

20

Die obigen Ausführungen zeigen, daß das erfindungsgemäße Verfahren geeignet ist, die Hafteigenschaften von zwei Materialien aneinander oder aufeinander vergleichsweise einfach zu bestimmen. Über die kritische Meßgröße können quantitativ Werte, beispielsweise für die Adhäsionsenergie, erhalten werden, so daß Voraussagen über die Haftung verschiedener Materialien aneinander/aufeinander ermöglicht werden. Dies macht das erfindungsgemäße Verfahren für viele technische Anwendungen, in der solche Voraussagen erwünscht sind, interessant.
25

30

Patentansprüche

1. Verfahren zur Bestimmung der Hafteigenschaften von mindestens zwei Materialien aneinander, insbesondere zur Bestimmung der Hafteigenschaften mindestens einer Beschichtung oder mindestens eines Films aus mindestens einem ersten Material auf einem Substrat aus einem zweiten Material, wobei mindestens ein Material, vorzugsweise mindestens eine Beschichtung oder mindestens ein Film mit mindestens einem Absorbat beaufschlagt wird und mindestens eine kritische physikalische oder chemische Meßgröße bestimmt wird, bei der sich die Materialien voneinander, vorzugsweise mindestens eine Beschichtung oder mindestens ein Film vom Substrat, mindestens teilweise, insbesondere im wesentlichen vollständig ablösen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der kritischen Meßgröße um die beaufschlagte Absorbatmenge handelt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der kritischen Meßgröße um die aus der Beaufschlagung mit dem Absorbat gegebenenfalls resultierende Substratkrümmung handelt.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verfahrensschritte mindestens zweimal, insbesondere mehrfach durchgeführt werden, wobei mindestens eine Materialstärke, insbesondere die Dicke der Beschichtung oder des Films, variiert wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mit Hilfe der kritischen Meßgröße die sogenannte Adhäsionsenergie bestimmt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Adhäsionsenergie bestimmt wird durch Bestimmung der Steigung eines Auftrags der kritischen Meßgröße über eine Funktion, vorzugsweise die reziproke Wurzel, der Materialstärke, insbesondere Dicke der Beschichtung oder des Films.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Beschichtung oder des Films klein gegenüber der Dicke des Substrats ist.
8. Verfahren nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 7, dadurch gekennzeichnet, daß das Verhältnis $E s^2/d$ zwischen $10^8 \text{ Pa}\cdot\text{m}$ und $10^{14} \text{ Pa}\cdot\text{m}$, vorzugsweise zwischen $10^{10} \text{ Pa}\cdot\text{m}$ und $10^{13} \text{ Pa}\cdot\text{m}$, beträgt, mit E = Elastizitätsmodul des Substrats, s = Dicke des Substrats und d = Dicke der Beschichtung bzw. des Films.
9. Verfahren nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet, daß die Materialstärke, insbesondere die Dicke der Beschichtung oder des Films bzw. des Substrats zwischen 1 nm und 5 mm beträgt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Dicke des Substrats zwischen 1 μm und 5 mm und die Dicke der Beschichtung oder des Films zwischen 1 nm und 1 μm beträgt.

11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem Absorbat um mindestens eine Flüssigkeit handelt.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß es sich bei dem Absorbat um Wasser handelt.
13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß es sich bei dem Absorbat um ein organisches Lösungsmittel, insbesondere um Dichlormethan oder Tetrachlormethan handelt.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem Absorbat um mindestens ein Gas handelt.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß es sich bei dem Absorbat um Kohlendioxid handelt.
16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß es sich bei dem Absorbat um ein gasförmiges Element, insbesondere um Wasserstoff, handelt.
17. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, daß die Beaufschlagung mit dem Absorbat direkt aus der Flüssigkeits- oder Gasphase erfolgt.
18. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß die Beaufschlagung mit dem Gas durch elektrochemische Beladung erfolgt.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem ersten Material, insbesonde-

re bei dem Material der Beschichtung oder des Films um ein Metall, insbesondere ein Edelmetall, handelt.

20. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß es sich bei dem ersten Material, insbesondere bei dem Material der Beschichtung oder des Films um ein Polymermaterial, insbesondere einen Lack, handelt.
21. Verfahren nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 19, dadurch gekennzeichnet, daß es sich bei dem zweiten Material, insbesondere bei dem Substrat, um ein Polymermaterial handelt.
22. Verfahren nach einem der Ansprüche 1 bis 20, insbesondere nach Anspruch 20, dadurch gekennzeichnet, daß es sich bei dem zweiten Material, vorzugsweise bei dem Substrat, um ein Metall handelt.
23. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Bestimmung der kritischen Meßgröße der Ablösevorgang der beiden Materialien, insbesondere der Beschichtung oder des Films vom Substrat, optisch verfolgt wird, insbesondere mit Hilfe eines Lichtmikroskops.
24. Verfahren nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 23, dadurch gekennzeichnet, daß zur Bestimmung der kritischen Meßgröße der Ablösevorgang der beiden Materialien, insbesondere der Beschichtung oder des Films vom Substrat, die Oberflächenrauhigkeit verfolgt wird, insbesondere durch Bestimmung der Oberflächenreflektivität und/oder des Oberflächenstreuverhaltens.

25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine das Absorbat aufnehmende Beschichtung/Film mit mindestens einer das Absorbat nicht oder nur in geringer Konzentration aufnehmenden weiteren Beschichtung/Film festhaftend verbunden ist und durch Beaufschlagung der das Absorbat aufnehmenden Beschichtung/Film mit dem Absorbat die Hafteigenschaften der das Absorbat nicht oder nur in geringer Konzentration aufnehmenden Beschichtung/Film am Substrat bestimmt wird.
26. Verfahren nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 25, dadurch gekennzeichnet, daß zur Bestimmung der Hafteigenschaften einschließlich des Substrats ein Schichtaufbau aus zwei bis vier, vorzugsweise zwei oder drei, Schichten vorgesehen ist.

- - - - -

Zusammenfassung

Bei einem Verfahren zur Bestimmung der Hafteigenschaften von mindestens zwei Materialien aneinander wird mindestens ein Material mit einem Absorbat beaufschlagt und eine kritische Meßgröße bestimmt, bei der sich die Materialien voneinander mindestens teilweise, insbesondere im wesentlichen vollständig ablösen. Vorzugsweise werden Filme/ Beschichtungen auf Substraten untersucht. Durch Auswertung der Meßergebnisse lassen sich beispielsweise Adhäsionsenergien quantitativ bestimmen. Damit sind Voraussagen über die Haftung unterschiedlicher Materialien aufeinander/aneinander möglich.

a)

b)

Fig. 1

Fig. 2

Fig. 3

P41719 DE

4/4

Fig. 4