CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning

Fall 2023

Lecture 4: September 14

Lecturer: Csaba Szepesvári Scribes: Zixin Zhong

Note: ETEX template courtesy of UC Berkeley EECS dept. (link to directory)

Disclaimer: These notes have <u>not</u> been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Outline

1. Concentration inequalities:
Chernoff's inequality, multiplicative Chernoff's inequality; Bernett's inequality, Bernstein inequality

 PAC-learning: PAC learnability based on 'fitness'/union bounds

4.2 Concentration inequalities

Theorem 4.1 (Chernoff's Inequality). Let $X_1, \ldots, X_n \in [0,1]$ be i.i.d. random variables, $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$, $\mu = \mathbb{E}X_1$. We have

(a) $\forall \delta \in (0,1)$, with probability $1 - \delta$,

$$\bar{X}_n \le \mu + \sqrt{\frac{\log(1/\delta)}{2n}};$$

(b) $\forall \delta \in (0,1)$, with probability $1 - \delta$,

$$\bar{X}_n \ge \mu - \sqrt{\frac{\log(1/\delta)}{2n}}.$$

Proof. Since $X_1 \in [a,b]$ implies that X_1 is $\sigma(X_1)$ -SG with $\sigma(X_1) = \frac{b-a}{n}$, $X_1 \in [0,1]$ indicates that

$$\sigma(\bar{X}_n) = \frac{\sigma(X_1)}{\sqrt{n}} = \frac{1}{2\sqrt{n}}.$$

Applying this fact with Hoeffding inequality, the Chernoff's inequality is proven.

Theorem 4.2 (Multiplicative Chernoff's Inequality). Let $X_1, \ldots, X_n \in [0,1]$ be i.i.d. random variables, $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$, $\mu = \mathbb{E}X_1$. We have

(a) $\forall \delta \in (0,1)$, with probability $1 - \delta$,

$$\bar{X}_n \le \mu + \sqrt{\frac{2\mu \log(1/\delta)}{n}} + \frac{1}{3n};$$

(b) $\forall \delta \in (0,1)$, with probability $1-\delta$,

$$\bar{X}_n \ge \mu - \sqrt{\frac{2\mu \log(1/\delta)}{n}}.$$
 (*)

Remark 4.3.

- (a) How big can μ be? By (*): $\mu \leq \bar{X}_n + \sqrt{\frac{2\mu\log(1/\delta)}{n}}$.
- (b) Let

$$f(a,c) = \max\{u : u \le a + \sqrt{u \cdot c}\}, \text{ where } a = \bar{X}_n, \ c = \frac{2\log(1/\delta)}{n}.$$

Then

$$\begin{split} \mu + \frac{\log(1/\delta)}{2n} &\geq \sqrt{\frac{2\mu \log(1/\delta)}{n}} \text{ and equality holds when } \mu = \frac{\log(1/\delta)}{2n}, \\ \Rightarrow \inf_{0 < \gamma < 1} \gamma \mu + \frac{\log(1/\delta)}{2\gamma n} &= \sqrt{\frac{2\mu \log(1/\delta)}{n}}, \\ \Rightarrow \mu - \sqrt{\frac{2\mu \log(1/\delta)}{n}} &= \sup_{0 < \gamma < 1} (1 - \gamma)\mu - \frac{\log(1/\delta)}{2\gamma n}. \end{split}$$

Let $\gamma = 1/2$, then with (*) we have

$$\bar{X}_n \ge \frac{\mu}{2} - \frac{\log(1/\delta)}{n}.$$

Figure 4.1: Example: set $\gamma = 1/2$.

(c) When we apply γ that does not maximize the term $(1-\gamma)\mu - \frac{\log(1/\delta)}{2\gamma n}$, we cannot claim that we get a better 'convergence' rate, because when $n\to\infty$, $(1-\gamma)\mu - \frac{\log(1/\delta)}{2\gamma n}$ and \bar{X}_n converges to different values. In detail, \bar{X}_n converges to μ regardless of the value of γ , and $(1-\gamma)\mu - \frac{\log(1/\delta)}{2\gamma n}$ converges to $(1-\gamma)\mu \neq \mu$ when $0<\gamma<1$.

To say something about the convergence of \bar{X}_n , we need to have the coefficient of μ be 1.

Theorem 4.4 (Bernett's Inequality). Let X_1, \ldots, X_n be i.i.d. random variables. Set $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$ and $\mu = \mathbb{E}X_1$. If $X_1 - \mu \leq b$, with probability $1 - \delta$, we have

$$\bar{X}_n \le \mu + \sqrt{\frac{2\operatorname{Var}(X_1)\log(1/\delta)}{n}} + \frac{b}{3n}.$$

4.3 PAC-learning (L. Valiant)

Let function $f_*: \{0,1\}^d \to \{0,1\}, X_1, X_2, \dots, X_n \in \{0,1\}^d := \underline{2}^d$ be i.i.d. random variables drawn from distribution P_X , data set $D_n = \{(X_1, f_*(X_1)), \dots, (X_n, f_*(X_n))\}.$

Let
$$f_* \in \mathcal{F} \subset \underline{2}^{\underline{2}^d}$$
 and $f \in \underline{2}^{\underline{2}^d}$, $P_X^{f_*} := P(X_1, f_*X_1)$, and
$$L(f) = \mathbb{P}\left(f(X) \neq f_*(X)\right) = L(P_X^{f_*}, f),$$

$$l: \underline{2} \times \underline{2} \to \underline{2}, \quad l(y, y') = \mathbf{1}(y \neq y'),$$

$$L(P_X^{f_*}, f) = \int P(\mathrm{d}x, \mathrm{d}y) \ l(f(x), y).$$

Definition 4.5 (PAC-Learning). Fix $\mathcal{C}=(\mathcal{C}_d)_{d\geq 1}$, where $\mathcal{C}_d\subset\underline{2}^{\underline{2}^d}$. \mathcal{C} is **PAC-learnable** (Proabably Approximately Correctly) if \exists polynomial $p\in\mathbb{R}[x,y,z]$ and $\mathcal{A}=(\mathcal{A}_{n,d})_{n\geq 1,d\geq 1}$ where $\mathcal{A}_{n,d}:\left(\underline{2}^d\times\underline{2}\right)^n\to\underline{2}^{\underline{2}^d}$

s.t.
$$\forall \varepsilon \in (0,1), \ \delta \in (0,1), \ d \geq 1, \ P \in \mathcal{M}_1(\underline{2}^d), \ f_* \in \mathcal{C}_d,$$

$$n \geq \lceil p(1/\varepsilon, 1/\delta, d) \rceil,$$

$$X_1, X_2, \dots, X_n \sim P_X,$$

$$f_n = \mathcal{A}_{n,d} \left(\underbrace{(X_1, f_*(X_1)), \dots, (X_n, f_*(X_n))}_{D_n} \right),$$

we have

$$\mathbb{P}\left(L\left(P_X^{f_*}, f_n\right) \ge \varepsilon\right) \le \delta.$$

In other words, with probability $1 - \delta$, $\mathbb{P}\left(f_n(X) \neq f_*(x) | D_n\right) \leq \varepsilon$.

Remark 4.6. (a) Example:

$$\mathcal{C}_{\text{AND}}^d = \left\{ f : \underline{2}^d \to \underline{2} \mid \exists u \subset [d], \ \forall x \in \underline{2}^d : f(x) = \min_{j \in u} X_j \right\}.$$

(b) (i) $L(f_*) = 0$. (ii) When $Y_i = f_*(X_i)$, there is **NO** noise and this will make learning **faster**.