Assignment -3:

Let consider a sample dataset have one input (xi) and one output (yi), and number of samples 4. Develop a simple linear regression model using stochastic gradient descent optimizer.

X,a	y,a
0.12	3.4
0.6	4.2
0.8	4.6
	0.2

Do manual calculations for two iterations with first 2 samples.

Step 1: $x, y, m=1, c=-1, \eta=0.1, epochs=2, ns=2$ Step 2: 3ter=1

Step 3: sample = 1

Step 4:
$$\frac{\partial E}{\partial m} = -(y; -mx; -c)x;$$

= $-(3.4 - (1)(0.2) + 1)(0.2)$.
 $\frac{\partial E}{\partial m} = -0.84$

$$\frac{\partial E}{\partial c} = -(y, -mx, -c)$$

$$= -(3.4 - (1)(0.2) + 1)$$

$$\frac{\partial E}{\partial c} = -4.2$$

Step 5:
$$\Delta m = -\eta \frac{\partial E}{\partial \alpha m} = -(0.1)(-0.84) = 0.084$$

 $\Delta c = -\eta \frac{\partial E}{\partial c} = -(0.1)(-4.2) = 0.42$

Step 6: m=m+0m=1+0.084=1.084 $C = C + \Delta C = -1 + 0.42 = -0.58$ Step 7: sample = sample +1 = 1+1=2 Step 8: if (sample >ns)
2 > 2 false
goto step 4. Step 4: $\frac{\partial E}{\partial m} = -(3.8 - (1.084)(0.4) + 0.58)(0.4)$ $\frac{\partial E}{\partial m} = -1.5785$ $\frac{\partial E}{\partial c} = -(3.8 - (1.084)(0.4) + 0.58)$ $\frac{\partial E}{\partial c} = -3.9464$ Step 5: AM = - 1 dE = - (0.1)(-1.5785) AM = 0.1578 Ac = -(0.1)(-3.9464) = 0.3946 Step 6: m=m+AM = 1.084 + 0.1578 = 1.2418 $c = c + \Delta c = -0.58 + 0.3946 = -0.1854$ Step 7: sample = sample f = 2 + 1 = 3Step 8: "if (sample >ns) 3>2 True goto next step. Step 9: iten=iten+1=1+1=2 Step 10: if (iter > epochs) 2 > 2 false "
goto step 3

Step 3: sample = 1

Step 4:
$$\frac{\partial E}{\partial m} = -\left(3.4 - (1.12)(0.2) + 0.185\right)(0.2)$$
 $\frac{\partial E}{\partial m} = -0.668$
 $\frac{\partial E}{\partial m} = -\left(3.4 - (1.14)(0.2) + 0.185\right)$
 $\frac{\partial E}{\partial c} = -3.337$

Step 5: $\Delta m = -\eta \frac{\partial E}{\partial c} = -(0.1)(-0.663)$
 $\Delta m = 0.066$
 $\Delta c = -\eta \frac{\partial E}{\partial c} = -(0.1)(-3.337)$
 $\Delta c = 0.33$

Step 6: $m = m + \Delta m = 1.24 + 0.066 = 1.306$
 $c = c + \Delta c = -0.185 + 0.33 = 0.145$

Step 7: sample = sample + 1

Step 8: $2 + (3mple > ns)$
 $2 > 2 + false$
 $3 + (3mple > ns)$
 3

m = m + Am = 1,306+ 0.125 Step 6: m=1.431 C = C + AC = 0.145+ 0.313 c = 0.458 sample = sample +1 = 2 + 1 = 3 Step 7: if (sample > ns) Step 8: 3>2->True goto next step Step 9: "ter=iter+1 = 2+1=3 Step 10: if (iter > epochs) 3 > 2 True goto next step Step 11: print m & c m=1.431, a=0.458