2005 april, 28th DM_AL_05_031

SPICE 50 ANG POLY/WELL CAPACITOR CMOS065 CPOLY25 V0.1

CMOS065 MOS MODELLING TEAM

CONTENTS

- □ Introduction
- **□** Corner generation
- **□** Extraction Conditions
- ☐ Main electrical characteristics
 - O N+/Nwell characteristics
 - O P+/Pwell characteristics

INTRODUCTION

- □ Based on silicon lot Q527AJA wafer , the models of 50Ang N+/Nwell and P+/PWell capacitors have been extracted.
- ☐ The extracted model has been centered with additionnal measurement data from Q536ZGV
- ☐ The 50Ang (P-Cell based) extrinsic capacitors have been added to the centered model, leading to the final model.
- ☐ The results of extracted, centered and final model are here presented.

CORNER GENERATION

The corners of the V0.1 50A poly/well capacitor model are realized on the base of 3 σ regarding the following technological tolerances:

Oxide thickness: +/- 2.5 Ang Poly over-etch: +/- 10.5 nm STI over-etch: +/- 15 nm Vfb deviation: +/- 17.88 mV Nsub deviation: x2 / x0.5 Oxide eps deviation: +/- 6% Silicon eps deviation: +/- 6%

STI oxide thickness deviation: +/- 300 Ang

EXTRACTION CONDITIONS

☐ Temperature: 25°C

□ Capacitors used for extraction

Width\Length	0.2 μ m	0.28 μ m	0.61 μm	1.07 μ m	10 μ m
Wd=0.38 μ m	Х	Х	X	Х	X
Wd=0.61 μ m	Х	Х	Х	Х	Х
Wd=1.07 μ m	Х	Х	Х	Х	Х
Wd=10 μm	Х	Х	X	Х	Х

Table 1: Matrix of capacitors used for analysis

☐ Method:

- O C-V measurement on matrix of capacitors and calibration structures
- O Intrinsic capacitance calculation per device, including raphael calibration values
- Modelisation of individual W,L devices
- O Parameter smoothing functions used for W,L scaling effects
- Final model integrating P-cell parasitic capacitors

Ext N+/Nwell CPOLY25: intrinsic oxide capacitance

Ext P+/Pwell CPOLY25: intrinsic oxide capacitance

CPOLY25: Q527AJA vs Q536ZGV

CPOLY25: CENTERED MODEL VS Q536ZGV - INTRINSIC

Centered N+/Nwell CPOLY25: intrinsic cap vs AJA

Centered P+/Pwell CPOLY25: intrinsic cap vs AJA

N+/Nwell CPOLY25 vo.1: lpe=0

P+/Pwell CPOLY25 vo.1: lpe=0

