Table 1. Conditions used for determination of receptor affinity.

4	ריים ביים ביים ביים ביים ביים ביים ביים	(;;)	Inspecific bond	Inc	Incubation conditions	suo
Keceptor	Kadlollgand	דרממנע		Medium	Temperature	Time
5-HT _{1A}	[³ H]-8-OH-DPAT	Rat cerebral cortex	5-HT 10 µM	1	37°C	15 min
$5-HT_{2A}$	[³H]Ketanserine	Rat cerebral cortex	Cinanserine 1 μM	2	37°C	15 min
5-HT3	[³ H]LY 278584	Rat cerebral cortex	5-НТ 10 μМ	m	25°C	30 min
5-HT4	[³H]GR 113808	Rat striatum	5-HT 30 µM	4	37°C	30 min
5-HT,	[³ H]-5-CT	Rat hypothalamus	5-HT 10 µM	S	23°C	120 min
$lpha_1$	[3H]prazosin	Rat cerebral cortex	Phentolamine 10 µM	9	25°C	30 min
D_2	[³H]spiperone	Rat striatum	(±)Butaclamol 1 μΜ	7	37°C	15 min

Incubation medium:

- 1. MgSO, 5 mM and EDTA 0.5 mM in Tris-HCl 50 mM, pH 7.4
- 2. MgSO4 10 mM, EDTA 0.5 mM, ascorbic acid 0.1% and pargiline 10 μM in Tris-HCl 50 mM, pH 7.4
- Pargiline 10 μM , ascorbic acid 0.6 mM and CaCl₂ 5 mM in Tris-HCl 50 mM, pH 7.4
- 4. HEPES 50 mM, pH 7.4
- 5. CaCl₂ 4 mM, ascorbic acid 1 mg/mL, pargiline 0.01 mM and (-)pindolol 3 μ M in Tris-HCl 50 mM, pH 7.4
- 6. MgCl₂ 2.5 mM in Tris-HCl 50 mM, pH 7.4
- 7. NaCl 120 mM, KCl 5 mM, CaCl $_2$ 1 mM and ascorbic acid 5.7 mM in Tris-HCl 50 mM, pH 7.4

Table 2. Receptor affinity data obtained.

Compound				Λ ₁ ∺ ≝.≝. (nm)			
	5-HT _{1A}	5-HT _{2A}	5-HT ₃	5-HT4	5-HT,	α_1	D ₂
Н	1.23 ± 0.09	>10000	>10000	>10000	299.3 ± 7.7	121.1 ± 1.8	>1000
2	19.9 ± 6.0	>1000	>10000	>10000	492.7 ± 1.5	50.0 ± 6.2	>10000
m	13.2 ± 1.0	>1000	>10000	>10000	>1000	8.5 ± 0.6	>10000
4	ı +ı	>1000	>10000	>10000	168.8 ± 18.1	> 1000	>10000
ഗ	+1	>1000	>10000	>10000	123.0 ± 17.8	27.7 ± 4.0	>10000
9	+1	>1000	>10000	>10000	87.0 ± 3.1	26.3 ± 2.4	>10000
7	>1000	>1000	NA	>10000	>10000	49.6 ± 2.9	>10000
æ	51.01 ± 0.47	>1000	>10000	NA	8.04 ± 0.87	>10000	>10000
თ		>10000	>1000	>10000	>1000	> 1000	>10000
10	+1	>1000	>1000	>1000	>10000	> 1000	>10000
11		157.3 ± 0.65	>10000	594.3 ± 43.7	74.05 ± 7.3	99.05 ± 14	NA
12	25.5 ± 0.9	\sim	>1000	>10000	>1000	> 1000	>1000
13	9.8 ± 0.7	>10000	>10000	>1000	55.0 ± 0.3	26.9 ± 4.5	>10000
14	2.1 ± 0.6	41.5 ± 7.5	>1000	>10000	42.6 ± 4.4	30.9 ± 4.9	>1000
15	4.5 ± 0.2	38.5 ± 7.7	>10000	NA	19.9 ± 0.8	54.7 ± 1.8	>1000
16	>10000	>10000	>1000	>10000	>10000	>1000	>10000
17	>10000	NA	NA	NA	NA	>10000	NA
18	868.5 ± 23.1	>10000	NA	>10000	NA	>1000	>10000
19	73.9 ± 5.0	>1000	>10000	>10000	>10000	>1000	>10000
20	+1	>10000	>1000	>10000	>10000	>1000	>10000
21	00	>10000	>10000	>1000	>10000	>1000	>10000
5-HT	0.84 ± 0.27	5.9 ± 0.2	13.8 ± 2.4	53.8 ± 3.3	4.2 ± 0.5	ı	Ī
8-OH-DPAT	1.0 ± 0.1	1	ı	ı	83.8	ı	ı
Cinanserine	1	2.6 ± 0.4	ı	1	I	ı	ı
Ondansetron	1	ı	0.77 ± 0.01	ţ	ı	1	I
RS-39604	ı	1	ı	3.9 ± 0.2	i	1	1
5-CT					1.8 ± 0.6		
Phentolamine	ı	ţ	ı	1	ı	6.1 ± 0.1	ı
Butaclamol	ı	i	ı	1	1	1	49.0 ± 5.8