DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Introdução às Redes de Comunicação

Trabalho 1 – Protocolos da Camada de Transporte

Ano Lectivo de 2015/2016

Data de entrega: O trabalho deverá ser entregue até dia 15/Nov/2015 no Inforestudante.

Grupos: Os trabalhos podem ser apresentados por grupos de até 2 alunos. Não se esqueça de incluir os nomes e números de aluno no relatório.

Avaliação: A avaliação será feita através de uma defesa presencial. Deverá ser entregue nessa altura um relatório impresso do trabalho.

Descrição do trabalho

Este trabalho pretende analisar e comparar a transmissão de dados usando os protocolos UDP e TCP. Para esta análise foi construída a rede da Fig. 1, a qual vai ser simulada recorrendo ao NS2.

Fig. 1 - Rede

Usando a rede especificada, o "Servidor 1" vai enviar ao "Receptor 1" um bloco de dados de 2MB, que começa a ser transmitido no instante 0.5 segundos. Ao mesmo tempo, entre o "Servidor 2" e os receptores 1 e 2, existe tráfego que corresponde a uma *stream* de dados que está a ser enviada por UDP (que também começa no instante 0.5 segundos). Dependendo do cenário considerado a *stream* de dados está activa ou desligada.

IRC 2015/2016

Características da rede

- Detalhes das ligações:
 - o Servidor 1 Router 4: ligação a 50Mb/s
 - o Servidor 2 Router 5: ligação a 0.1Gb/s
 - o Router 4 Router 5: Ligação a 200Mb/s
 - o Router 4 Router 6: Ligação a 1Gb/s
 - o Router 5 Router 6: ligação a 100Mb/s
 - o Router 6 Receptor 1: ligação a 40Mb/s
 - o Router 4 Receptor 2: Ligação a 10Mb/s
 - Os tempos de propagação são todos de 10 ms, com excepção da ligação entre o "Router 6" e o "Receptor 1" que será de 3ms.
 - o Todas as filas são do tipo *DropTail* com o tamanho por *default*. (Ver Nota 1).
 - o Todas as ligações são full-duplex.
 - o Será usado um protocolo de *routing* dinâmico (rtproto DV).

Cenários

- Cenário 1:
 - o Sem tráfego originado no "Servidor 2".
- Cenário 2:
 - o 2 streams de dados activas:
 - Servidor 2 Receptor 1: 3 Mb/s.
 - Servidor 2 Receptor 2: 3 Mb/s

Notas gerais

- Para efeitos de simulação, todo o tráfego do "Servidor 1" para o "Receptor 1" será criado usando o gerador de tráfego CBR existente no NS2 o qual gerará um pacote de dados com 2MB.
- Use o parâmetro rate_ do CBR para criar as *streams* de dados iniciadas no "Servidor 2". Este parâmetro fará com que o NS2 crie pacotes com o tamanho e cadência necessários para ocupar a largura de banda pretendida.
- O tráfego iniciado no "Servidor 2" será sempre UDP.
- Use sempre os valores por *default* para o tamanho das filas (excepto a do "Servidor 1"), dos pacotes e da janela TCP, excepto quando lhe for pedido explicitamente que os altere.
- Use na simulação o agente TCP e não o TCP/RFC793edu usado em fichas anteriores.
- Os dados por omissão usados no NS2 são guardados no ficheiro "./ns-2.35/tcl/lib/ns-default.tcl".
- Despreze todos os tempos de processamento existentes durante a transmissão dos dados.
- Apresente todos os cálculos realizados e indique sempre as unidades utilizadas.
- Justifique as respostas usando os conhecimentos que tem sobre os protocolos TCP e UDP.
- Adeque os tempos de simulação a cada uma das simulações executadas.
- Para analisar mais facilmente os cenários pode recorrer ao ficheiro 'trace analyzer.awk' que é fornecido com o enunciado (ver Nota 2).

Trabalho

- 1 Crie a rede de teste descrita.
 - 1.1 Minimize o número de ficheiros diferentes usados enviando por argumentos de linha os valores necessários para criar os vários cenários.
 - 1.2 Crie os nós e as ligações entre eles.
 - 1.3 Identifique cada fluxo de dados com uma cor diferente.
 - 1.4 Mostre as filas presentes em cada nó.

IRC 2015/2016 2

1.5 – Use o valor mínimo possível para a fila no "Servidor 1".

2 – Preencha a seguinte tabela com os dados retirados do NS2:

Tamanho por omissão das filas nos nós	
Tamanho por omissão dos pacotes TCP	
Tamanho por omissão dos pacotes UDP	
Tamanho por omissão da janela do TCP	

3 - Supondo o "Cenário 1":

3.1 - Determine o menor tempo total de transmissão do bloco de dados entre o "Servidor 1" e o "Receptor 1" usando TCP e UDP. No caso do TCP, use o menor valor possível da janela de transmissão para obter esse tempo. Preencha os resultados na tabela seguinte:

ТСР		UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos

3.2 – Quebre a ligação entre o "Router 4" e o "Router 6" no instante 0.6 segundos. Mantenha a ligação quebrada durante 0.1 segundos. Determine o menor tempo total de transmissão do bloco de dados entre o "Servidor 1" e o "Receptor 1" usando TCP e UDP. No caso do TCP, use o menor valor possível da janela de transmissão para obter esse tempo. Preencha os resultados na tabela seguinte:

ТСР		UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos

4 - Supondo o "Cenário 2":

4.1 - Determine o tempo total de transmissão do bloco de dados entre os "Servidor 1" e o "Receptor 1" usando TCP e UDP. Use o TCP com uma janela de transmissão igual a 20. Preencha os resultados na tabela seguinte:

TCP		UDP		
Tempo	Nº pacotes perdidos	Tempo Nº pacotes perdidos		

4.2 – Determine o tempo total de transmissão do bloco de dados entre os "Servidor 1" e o "Receptor 1" usando TCP e UDP. Use o TCP com uma janela de transmissão igual a 20. Quebre a ligação entre o "Router 4" e "Router 6" no instante 0.6 segundos. Mantenha-a quebrada durante 0.1 segundos. Preencha os resultados na tabela seguinte:

TCP		UDP		
Tempo	Nº pacotes perdidos	Tempo Nº pacotes perdido		

IRC 2015/2016 3

4.3 - Determine o menor tempo total de transmissão do bloco de dados entre os "Servidor 1" e o "Receptor 1" usando TCP e UDP. No caso do TCP, use o menor valor possível da janela de transmissão para obter esse tempo. No caso do UDP altere a velocidade da ligação (em múltiplos de 1 Mb) entre o "Servidor 1" e o "Router 4" para o valor que permita perder o menor número de pacotes. A velocidade só será alterada no caso do UDP, quando usar o TCP use os valores por omissão. Preencha os resultados na tabela seguinte:

ТСР		UDP			
Tempo min	Janela min	Nº pacotes enviados/recebidos	1 1		Velocidade S1-R4

- 5 Analise os resultados das perguntas anteriores de modo a comparar a performance entre uma ligação TCP e UDP.
- 6 Analise os problemas que a existência de cada uma das 2 *streams* UDP criam na ligação entre o "Servidor 1" e o "Receptor 1". Como poderiam esses problemas ser solucionados?

Nota 1

Se gerar o pacote de 2MB usando o gerador de tráfego CBR com um *packetSize*_ contendo a totalidade do ficheiro e um *maxpkts*_ de 1, isso criará uma quantidade de pacotes, UDP ou TCP, superior à capacidade da fila. Isso vai provocar a perda de todos os pacotes que não couberam inicialmente na fila da ligação. Para solucionar esse problema pode-se aumentar a fila da ligação para um número superior ao número total de pacotes em que os 2MB vão ser divididos, de modo a que nenhum se perca à partida. Determine o número de pacotes gerados inicialmente e use uma fila com o tamanho adequado.

Nota 2

Junto com o enunciado será disponibilizado o ficheiro 'trace_analyzer.awk' que lhe permitirá de uma forma rápida obter estatísticas sobre o tráfego enviado. Antes de correr este ficheiro terá de criar um ficheiro de *trace* no NS. De seguida apresenta-se um exemplo de como criar um ficheiro deste tipo:

```
set nt [open out.tr w]
$ns trace-all $nt
```

Para executar o ficheiro awk deverá executar o seguinte comando na consola:

```
awk -f trace_analyzer.awk type=<tipo_pacote> src=<origem>
dest=<destino> flow=<fluxo de pacotes> <ficheiro de trace>
```

Exemplos:

```
awk -f trace_analyzer.awk type=cbr src=0 dest=2 flow=1 trace.tr
awk -f trace analyzer.awk type=tcp src=0 dest=2 flow=1 trace.tr
```

Como resultado obterá a seguinte informação:

- Total sent número de pacotes enviados da origem em determinado fluxo
- Total received- número de pacotes recebidos no destino em determinado fluxo
- Lost packets número de pacotes perdidos
- Average delay média de atraso dos pacotes entre emissor e receptor
- *Total transmission time* diferença entre o tempo de chegada do último pacote e o tempo do envio do primeiro

IRC 2015/2016 4