Double-click (or enter) to edit

Project: Machine Learning of Salary and Demographic Factors Name: Shaohua Feng Supervisor:

Double-click (or enter) to edit

```
1 from google.colab import drive
3 # Mount Google Drive
4 drive.mount('/content/drive')
   Mounted at /content/drive
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
1 # read in data loaded in google drive
2 file_path_1 = '/content/drive/My Drive/adult.data'
3 adult_1= pd.read_csv(file_path_1,header=None)
4 file_path_2 = '/content/drive/My Drive/adult.test.txt'
5 adult_2= pd.read_csv(file_path_2,header=None)
6 adult=pd.concat([adult_1, adult_2], ignore_index=True)
1 # add column names
2 cols=['age','workclass','fnlwgt','education','education-num','marital-status','occupation','relationship','race','sex','capital-gain','capital-loss','hours-per-week','native-country','l
3 adult.columns=cols
4 adult.head(10)
```

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss	hours-per-week	native-country	1
0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<
1	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<
2	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<
3	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<
4	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<
5	37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<
6	49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<

^{1 #} add y column to data frame. y=1 for label '>50k' and y=0 for label '<=50k'

² adult['y']=np.where(adult['label']==' >50K',1,0)

³ adult.head(20)

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss	hours-per-week na
0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40
1	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13
2	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40
3	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40
4	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40
5	37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40
6	49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16
7	52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45
8	31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50
9	42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40
10	37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80
11	30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40
12	23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30
13	32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50
14	40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40

¹ print(adult.describe())

3

education

	age	fnlwgt	education-num	capital-gain	capital-loss						
coun	t 48842.000000	4.884200e+04	48842.000000	48842.000000	48842.000000						
mean	38.643585	1.896641e+05	10.078089	1079.067626	87.502314						
std	13.710510	1.056040e+05	2.570973	7452.019058	403.004552						
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000						
25%	28.000000	1.175505e+05	9.000000	0.000000	0.000000						
50%	37.000000	1.781445e+05	10.000000	0.000000	0.000000						
75%	48.000000	2.376420e+05	12.000000	0.000000	0.000000						
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000						
	hours-per-wee	ek :	y								
coun	t 48842.00000	00 48842.00000	0								
mean	40.42238	0.16053	8								
std	12.39144	4 0.36710	8								
min	1.00000	0.00000	0								
25%	40.00000	0.00000	0								
50%	40.00000	0.00000	0								
75%	45.00000	0.00000	0								
max	99.00000	1.00000	0								
<cla< td=""><td>ss 'pandas.core.</td><td>frame.DataFram</td><td>e'></td><td></td><td></td></cla<>	ss 'pandas.core.	frame.DataFram	e'>								
Rang	eIndex: 48842 en	itries, 0 to 48	841								
Data columns (total 16 columns):											
#	Column	Non-Null Coun	t Dtype								
0	age	48842 non-nul	l int64								
1	workclass	48842 non-nul	l object								
2	fnlwgt	48842 non-nul	l int64								
_											

48842 non-null object

4 education-num 48842 non-null int64

² adult.dtypes

³ adult.info()

```
marital-status 48842 non-null object
     6 occupation 48842 non-null object
    7 relationship 48842 non-null object
                        48842 non-null object
     8 race
    9 sex
                        48842 non-null object
    10 capital-gain 48842 non-null int64
    11 capital-loss 48842 non-null int64
    12 hours-per-week 48842 non-null int64
    13 native-country 48842 non-null object
    14 label
                        48842 non-null object
                        48842 non-null int64
    15 y
   dtypes: int64(7), object(9)
   memory usage: 6.0+ MB
1 # explore: find factor levels
2 print(adult['workclass'].unique())
3 print(adult['occupation'].unique())
4 print(adult['native-country'].unique())
5 print(type(adult['occupation']))
   ['State-gov' 'Self-emp-not-inc' 'Private' 'Federal-gov' 'Local-gov'
     ' ?' ' Self-emp-inc' ' Without-pay' ' Never-worked']
   [' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-specialty'
     'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
    ' Farming-fishing' ' Machine-op-inspct' ' Tech-support' ' ?'
' Protective-serv' ' Armed-Forces' ' Priv-house-serv']
    ['United-States' 'Cuba' 'Jamaica' 'India' '?' 'Mexico' 'South'
     'Puerto-Rico' 'Honduras' 'England' 'Canada' 'Germany' 'Iran'
     ' Philippines' ' Italy' ' Poland' ' Columbia' ' Cambodia' ' Thailand'
     ' Ecuador' ' Laos' ' Taiwan' ' Haiti' ' Portugal' ' Dominican-Republic'
     'El-Salvador' 'France' 'Guatemala' 'China' 'Japan' 'Yugoslavia'
     'Peru' 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago'
     'Greece' 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary'
     ' Holand-Netherlands']
    <class 'pandas.core.series.Series'>
1 adult['workclass']=adult['workclass'].replace(' ?',None)
2 adult['occupation']=adult['occupation'].replace(' ?',None)
3 adult['native-country']=adult['native-country'].replace(' ?',None)
1 print(adult['occupation'].unique())
2 print(adult['occupation'].unique())
3 print(adult['occupation'].unique())
    ['Adm-clerical' 'Exec-managerial' 'Handlers-cleaners' 'Prof-specialty'
     'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
     'Farming-fishing' 'Machine-op-inspct' 'Tech-support' None
     ' Protective-serv' ' Armed-Forces' ' Priv-house-serv']
    [' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-specialty'
     Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
     ' Farming-fishing' ' Machine-op-inspct' ' Tech-support' None
     ' Protective-serv' ' Armed-Forces' ' Priv-house-serv']
    [' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-specialty'
     'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
     'Farming-fishing' 'Machine-op-inspct' 'Tech-support' None
     ' Protective-serv' ' Armed-Forces' ' Priv-house-serv']
1 # check how many missing vales in columns workclass, occupation and native-country
2 print(adult['workclass'].isnull().sum())
```

```
3 print(adult['occupation'].isnull().sum())
4 print(adult['native-country'].isnull().sum())
   2799
   2809
   857
1 # charactegorical columns
2 cols_cat=['workclass','fnlwgt','education','marital-status','occupation','relationship','race','sex','native-country']
4 for x in cols_cat:
5 adult[x] = adult[x].astype('category')
6
   #print(x)
8 adult.dtypes
                         int64
   age
   workclass
                      category
   fnlwgt
                      category
   education
                      category
   education-num
                         int64
   marital-status
                      category
   occupation
                      category
   relationship
                      category
   race
                      category
   sex
                      category
   capital-gain
                         int64
   capital-loss
                         int64
   hours-per-week
                         int64
   native-country
                      category
   label
                        object
                         int64
   dtype: object
1 # delete missing value
2 adult_cleaned=adult.dropna()
3 print(len(adult_cleaned))
   45222
1 print("Check for NaN values:")
2 print(adult_cleaned.isna().any())
   Check for NaN values:
                      False
   age
   workclass
                      False
   fnlwgt
                      False
   education
                      False
   education-num
                      False
   marital-status
                      False
   occupation
                      False
   relationship
                      False
   race
                      False
   sex
                      False
   capital-gain
                      False
   capital-loss
                      False
   hours-per-week
                      False
   native-country
                      False
   label
                      False
```

```
False
    dtype: bool
1 # Grouped by factors
 2 factor_cols=['workclass','education','marital-status','occupation','relationship','race','sex','native-country']
4 for factor_col in factor_cols:
       # Group by the current factor column and calculate the mean
      grouped_data = adult.groupby(factor_col)['y'].mean().reset_index()
 6
      # Sort the grouped data by percentage of salary>50,000
9
       sorted_data = grouped_data.sort_values(by='y', ascending=False)
10
       # Print the results
11
      print(f"Grouped by {factor_col}:\n{sorted_data}\n")
12
13
      # plot the sorted data
14
      #plt.bar(sorted_data[factor_col], sorted_data['y'])
15
      #plt.xlabel(f'factor_col')
16
      #plt.ylabel('% salary>50,000')
17
       #plt.title(f'Group Mean from Highest to Lowest')
18
      #plt.show
19
20
21
22 ###############
23 #grouped df = df.groupby('Category')['Value'].mean().reset index()
25 # Sort the DataFrame by mean values
26 #sorted_df = grouped_df.sort_values(by='Value', ascending=False)
27
28 # Plot the sorted data
29 #plt.bar(sorted_df['Category'], sorted_df['Value'])
30 #plt.xlabel('Category')
31 #plt.ylabel('Mean Value')
32 #plt.title('Group Mean from Highest to Lowest')
33 #plt.show()
34
35
```

3

5

6

7

8 9

10

```
40
                        Yugosiavia 0.2608/0
   23
                            Japan 0.260870
   0
                          Cambodia 0.250000
   21
                            Italy 0.238095
   8
                          England 0.236220
   1
                           Canada 0.214286
   10
                           Germany 0.213592
   29
                       Philippines 0.206780
   16
                             Hong 0.200000
   4
                             Cuba 0.181159
   2
                            China 0.163934
   38
                     United-States 0.163602
   11
                           Greece 0.163265
   17
                          Hungary 0.157895
   33
                          Scotland 0.142857
   34
                            South 0.139130
   30
                           Poland 0.137931
   20
                          Ireland 0.135135
   36
                          Thailand 0.100000
   22
                          Jamaica 0.094340
   6
                          Ecuador 0.088889
   24
                             Laos 0.086957
   37
                   Trinadad&Tobago 0.074074
   32
                       Puerto-Rico 0.065217
   31
                          Portugal 0.059701
   39
                          Vietnam 0.058140
   7
                       El-Salvador 0.058065
   13
                            Haiti 0.053333
   15
                         Honduras 0.050000
   28
                             Peru 0.043478
   26
                         Nicaragua 0.040816
   25
                           Mexico 0.034700
   12
                        Guatemala 0.034091
   3
                         Columbia 0.023529
   5
                Dominican-Republic 0.019417
   27
        Outlying-US(Guam-USVI-etc) 0.000000
   14
                Holand-Netherlands 0.000000
1 \ \text{\# I} am very interested in the relationship between salary level and race and education combination
2 factor_columns = ['race', 'education']
4 for combination in adult.groupby(factor_columns):
     group_name = combination[0]
     group_data = combination[1]
     mean_salary = group_data['y'].mean()
     print(f"Factors: {', '.join(f'{col}={val}' for col, val in zip(factor_columns, group_name))} | Salary>50,000: {mean_salary}")
```

```
Factors: race= Black, education= 5th-6th | Salary>50,000: 0.0
   Factors: race= Black, education= 7th-8th | Salary>50,000: 0.022222222222222223
   Factors: race= Black, education= 9th | Salary>50,000: 0.036036036036036036
   Factors: race= Black, education= Assoc-acdm | Salary>50,000: 0.11801242236024845
   Factors: race= Black, education= Bachelors | Salary>50,000: 0.19047619047619047
   Factors: race= Black, education= Doctorate | Salary>50,000: 0.5625
   Factors: race= Black, education= HS-grad | Salary>50,000: 0.048314606741573035
   Factors: race= Black, education= Masters | Salary>50,000: 0.27972027972027974
   Factors: race= Black, education= Preschool | Salary>50,000: 0.0
   Factors: race= Black, education= Prof-school | Salary>50,000: 0.38095238095238093
   Factors: race= Black, education= Some-college | Salary>50,000: 0.07977736549165121
   Factors: race= Other, education= 10th | Salary>50,000: 0.09090909090909091
   Factors: race= Other, education= 11th | Salary>50,000: 0.0
   Factors: race= Other, education= 12th | Salary>50,000: 0.0
   Factors: race= Other, education= 1st-4th | Salary>50,000: 0.0
   Factors: race= Other, education= 5th-6th | Salary>50,000: 0.043478260869565216
   Factors: race= Other, education= 7th-8th | Salary>50,000: 0.0
   Factors: race= Other, education= 9th | Salary>50,000: 0.0
   Factors: race= Other, education= Assoc-acdm | Salary>50,000: 0.2
   Factors: race= Other, education= Assoc-voc | Salary>50,000: 0.0
   Factors: race= Other, education= Bachelors | Salary>50,000: 0.1
   Factors: race= Other, education= HS-grad | Salary>50,000: 0.01904761904761905
   Factors: race= Other, education= Masters | Salary>50,000: 0.15384615384615385
   Factors: race= Other, education= Preschool | Salary>50,000: 0.0
   Factors: race= Other, education= Prof-school | Salary>50.000: 0.8
   Factors: race= Other, education= Some-college | Salary>50,000: 0.08235294117647059
   Factors: race= White, education= 10th | Salary>50,000: 0.046632124352331605
   Factors: race= White, education= 11th | Salary>50,000: 0.03367003367003367
   Factors: race= White, education= 12th | Salary>50,000: 0.05242718446601942
   Factors: race= White, education= 1st-4th | Salary>50,000: 0.025510204081632654
   Factors: race= White, education= 5th-6th | Salary>50,000: 0.02891566265060241
   Factors: race= White, education= 7th-8th | Salary>50,000: 0.04645476772616137
   Factors: race= White, education= 9th | Salary>50,000: 0.03600654664484452
   Factors: race= White, education= Assoc-acdm | Salary>50,000: 0.17178362573099415
   Factors: race= White, education= Assoc-voc | Salary>50,000: 0.18469217970049917
   Factors: race= White, education= Bachelors | Salary>50,000: 0.28646573784475404
   Factors: race= White, education= Doctorate | Salary>50,000: 0.5247148288973384
   Factors: race= White, education= HS-grad | Salary>50,000: 0.11518637484126391
   Factors: race= White, education= Masters | Salary>50,000: 0.370954003407155
   Factors: race= White, education= Preschool | Salary>50,000: 0.0
   Factors: race= White, education= Prof-school | Salary>50,000: 0.5106951871657754
   Factors: race= White, education= Some-college | Salary>50,000: 0.13510603940144256
1 # correlation matrix
2 cor matrix = adult cleaned.corr()
3 print(cor matrix)
                       age education-num capital-gain capital-loss \
                  1.000000
                                0.037623
                                             0.079683
                                                          0.059351
   age
   education-num
                 0.037623
                                1.000000
                                             0.126907
                                                          0.081711
   capital-gain
                  0.079683
                                0.126907
                                             1.000000
                                                         -0.032102
   capital-loss
                  0.059351
                                0.081711
                                            -0.032102
                                                          1.000000
   hours-per-week 0.101992
                                0.146206
                                             0.083880
                                                          0.054195
                  0.182661
                                0.260062
                                             0.168588
                                                          0.115861
                  hours-per-week
   age
                       0.101992 0.182661
   education-num
                       0.146206 0.260062
   capital-gain
                       0.083880 0.168588
   capital-loss
                       0.054195 0.115861
```

hours-per-week 1.000000 0.177195 y 0.177195 1.000000