04. Mai 1999/pl

Unser Zeichen: 9926 GBF
Neue internationale Patentanmeldung
Gesellschaft für Biotechnologische Forschung mbH (GBF)

Epothilonderivate, Verfahren zu deren Herstellung und deren Verwendung

Die vorliegende Erfindung betrifft allgemein Epothilonderivate, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Arzneimitteln und Pflanzenschutzmitteln. Insbesondere betrifft die Erfindung Epothilonderivate der nachfolgend dargestellten allgemeinen Formeln 2 bis 6 sowie deren Verwendung als Arzneimitteln und Pflanzenschutzmittel.

In den vorstehenden Formeln bedeutet:

 R^1 = ein H-Atom oder eine C_1 - bis C_8 -Alkylgruppe, vorzugsweise eine C_1 - bis C_6 -Alkylgruppe, besonders bevorzugt eine C_1 - bis C_4 -Alkylgruppe, insbesondere eine Methyl-, Ethyl-, Propyl- oder Butylgruppe,

 R^2 = ein monocyclischer Aromat, wie ein 5- oder 6-gliedriger Aromat (wie ein Phenylring) oder eine Vinylgruppe, die durch ein, zwei, drei, vier oder fünf, insbesondere ein oder zwei Halogenatome und/oder OR^4 - und/oder NR^5R^6 -Gruppen und/oder Alkyl- und/oder Alkenyl- und/oder Alkinylgruppen in orthound/oder meta- und/oder para-Stellung substituiert sein können, worin R^4 , R^5 und R^6 unabhängig voneinander dieselbe Bedeutung wie R^1 haben, aber von R^1 unabhängig sind, oder

 $R^2=$ ein monocyclischer 5- oder 6-gliedriger Heteraromat, der eines oder mehrere, insbesondere ein oder zwei O- und/oder N- und/oder S-Atome im Ring aufweisen kann und/oder OR^4- und/oder NR^5R^6- Gruppen und/oder Alkyl- und/oder Alkenyl- und/oder Alkinylgruppen als Substituenten aufweisen kann, worin R^4 , R^5 und R^6 wie vorstehend defniert sind. Insbesondere werden bei der Definition von R^2 C_1-C_6 Alkyl-, bzw. C_2-C_6 Alkenyl- und Alkinylgruppen, insbesondere C_1-C_4 Alkyl-, bzw. C_2-C_4 Alkenyl- und Alkinylgruppen bevorzugt. Als Alkylgruppen werden besonders Methyl-, Ethyl-, Propyl- und Butylgruppen und als Heteroaromaten 6-gliedrige Heteroaromaten bevorzugt,

Hal = ein Halogenatom wie Br oder I,

X-Y = eine Gruppe der Formel -CH₂CH-OP oder -CH=CH-, und

P = eine Schutzgruppe wie TMS.

Die erfindungsgemäßen Verbindungen können wie folgt hergestellt werden:

Verbindungen der Formel (2) können dadurch hergestellt werden, daß Verbindungen der Formel (1)

wie in der DE 195 42 986 beschrieben, umgesetzt werden, wobei die Reste wie vorstehend definiert sind. Insbesondere können dabei die folgenden Bedingungen (i), (iii) und gegebenenfalls (nach (i)) auch (ii) eingesetzt werden:

- (i) (a) O_3 in einem Lösungsmittel wie CH_2Cl_2 , und
 - (b) reduktive Aufarbeitung, z.B. mit Me₂S;
- (ii) (a) $(CH_3CO)_2O$, HCO_2H , NEt_3 , DMAP;
 - (b) DBU; und
 - (c) MeOH, NH3; und
- (iii) Me₃SiCl, NEt₃.

Verbindungen der Formel (3) sind dadurch zugänglich, daß eine Verbindung der Formel (2) mit einer Verbindung der Formel $HC[B(OR)_2]_3$, wie Tris(ethylendioxyboryl)methan, umgesetzt wird. Dabei kann R eine wie vorstehend definierte Alkyl- oder Alkenylgruppe sein.

Bei der Umsetzung kommt gegebenenfalls eine starke Base, wie eine C_1-C_4 -Alkyl-Li-Verbindung (wie Butyllithium) oder eine $Di-C_1-C_4$ -alkylamin-Li-Verbindung (wie eine Dimethylaminlithium-verbindung) zum Einsatz. Die Umsetzung wird in der Regel bei

tiefen Temperaturen wie z.B. bei Temperaturen von weniger als von -30 °C, vorzugsweise bei Temperaturen von weniger als -50 °C, besonders bevorzugt bei Temperaturen von mindestens -78 °C durchgeführt. Weitere Reaktionsbedingungen können D. Schummer, G. Höfle in *Tetrahedron* 1995, 51, 11219 entnommen werden.

Beispielsweise wird eine Verbindung der Formel (2) mit Tris-(ethylendioxyboryl)methan und Butyllithium bei -78 °C zu einer Verbindung der Formel (3) umgesetzt.

Aus einer Verbindung der Formel (3) kann durch Umsetzung mit N-Jod- oder N-Bromsuccinimid, gegebenenfalls in einem polaren. Lösungsmittel, wie Acetonitril, eine Verbindung der Formel (4) hergestellt werden. Weitere Reaktionsbedingungen können der folgenden Literaturstelle entnommen werden: N.A. Petasis, I.A. Zavialor, Tetrahedron Lett. 1996, 37, 567.

Zur Herstellung einer Verbindung der Formel (5) kann eine Verbindung der Formel (3) im Rahmen einer Suzuki-Kopplung mit einer Verbindung der Formel R^2 -Z umgesetzt werden, wobei R^2 die vorstehend angegebenen Bedeutungen hat und Z ein Halogenatom oder eine Gruppe der Formel $-OSO_2CF_3$, -CH=CHI, $-CH=CHOSO_2CF_3$ sein kann. Insbesondere kann die Gruppe R^2 -Z die folgenden Strukturen aufweisen:

worin A^1 O, S, N oder C-Atome darstellt und die Substituenten O-,N- und C- den vorstehend beschriebenen Gruppen OR^4 -, NR^5R^6 -, und Alkyl-, Alkenyl- und/oder Alkinylgruppen entsprechen.

Insbesondere werden C_1 - C_6 Alkyl-, bzw. C_2 - C_6 Alkenyl- und/oder Alkinylgruppen, insbesondere C_1 - C_4 Alkyl-, bzw. C_2 - C_4 Alkenyl- und/oder Alkinylgruppen als Substituenten "C" bevorzugt. Als Alkylgruppen werden besonders Methyl-, Ethyl-, Propyl- und Butylgruppen bevorzugt.

Alternativ kann eine Verbindung der Formel (5), dadurch hergestellt werden, daß eine Verbindung der Formel (4) durch eine Stille-Kupplung mit R^2 -Sn R^3 umgesetzt wird, wobei R^2 wie vorstehend definiert ist und R^3 eine C_1 - bis C_6 -Alkylgruppe, vorzugsweise eine C_1 - bis C_4 -Alkylgruppe und besonders bevorzugt eine Methyl-, Ethyl-, Propyl- oder Butylgruppe ist. Außerdem kann die Verbindung R^2 -Sn R^3 3 eine der folgenden Strukturen aufweisen:

worin die Reste und Substituenten wie vorstehend definiert sind.

Erfindungsgemäß kann weiter eine Verbindung der Formel (6), dadurch hergestellt werden, daß von der Verbindung der Formel (5) die Schutzgruppe z.B. mit einer schwachen Säure, wie Zitronensäure oder Verbindungen wie TBAF, Pyridin x HF, entfernt wird. Gegebenenfalls kann dabei als Lösungsmittel ein Alkohol, wie Methanol, eingesetzt werden, wobei die Temperatur vorzugsweise auf Werte von z.B. 40 bis 60 °C, bevorzugt etwa 50 °C, eingestellt wird.

Insgesamt kann die Verbindung der Formel (6) durch die vorstehend beschriebenen Schritte (Epothilon A oder B \rightarrow (2) \rightarrow (3) \rightarrow

(4) \rightarrow (5) \rightarrow (6) oder Epothilon A oder B \rightarrow (2) \rightarrow (3) \rightarrow (5) \rightarrow (6)) hergestellt werden.

Weiter werden erfindungsgemäß Arzneimittel offenbart, die mindestens eine der Verbindungen (2), (3), (4), (5) oder (6) und gegebenenfalls übliche Träger, Verdünnungsmittel und Adjuvantien enthalten.

Insbesondere können derartige Verbindungen auch als Cytostatica und für den Pflanzenschutz in der Landwirtschaft und/oder Forstwirtschaft und/oder im Gartenbau eingesetzt werden, wobei sie gegebenenfalls zusammen mit einem oder mehreren üblichen Trägern, Adjuvantien und/oder Verdünnungsmitteln verwendet werden.

Beispiele

Synthese der Ketonderivate 2

Detaillierte Beschreibung siehe DE 195 42 986 A1.

Synthese der Alkenylboronsäurederivate 3

(s. auch D. Schummer, G. Höfle Tetrahedron 1995, 51, 11219)

Typisches Beispiel ($R^1 = H$, $X-Y = CH_2CHOTMS$):

Tris(ethylendioxyboryl)methan (0,30 g, 1,5 mmol) wurde in CH_2Cl_2/THF (1:1; 4 ml) gelöst vorgelegt und unter Inertgas auf -78° C gekühlt. Bei dieser Temperatur wurde innerhalb von 10 min Buthyllithium (1,6 M-Lsg in Hexan; 0,73 ml, 1,2 mmol) zugetropft. Nach 2 h wurde Keton 2 (81 mg, 0,15 mmol) in CH_2Cl_2/THF (1:1; 2 ml) zugegeben, auf Raumtemperatur erwärmt und 17 h lang gerührt. Nach Versetzen mit MeOH (2 ml) wurde die klare Reaktionslösung mittels präparativer HPLC (Lichro-

prep RP-18, CH_3CN/H_20 75 : 25) gereinigt. Es wurden 57 mg (65 %) Alkenylboronsäure 3 als E/Z-lsomerengemisch (6 : 4) erhalten.

Ausgewählte typische Daten: LC-MS (ESI-MS): 585 (M++ H); ¹H-NMR: (300 MHz, CD₃OD): E-Isomer: 1,91(S, 3H), 5,16 (d, 1H, 10Hz), 5,49 (s, 1H), Z-Isomer; 1,85 (d, 3H, 1,1 Hz), 4,93 (s, 1H), 5,26 (d, 1H, 9,6 Hz)

Synthese der Iodvinylderivate 4

(s. auch N.A. Petasis, I.A. Zavialor, Tetrahedron Lett. 1996, 37, 567)

Typisches Beispiel ($R^1 = H$, $X-Y = CH_2CHOTMS$):

Bei Raumtemperatur wurde eine Lösung von Alkenylboronsäure 3 (12 mg, 21 μmol; E/Z 9:1) in CH₃CN (150 μl) unter Inertgas und Lichtausschluß mit N-lodsuccinimid (6,0 mg, 27 μmol) versetzt und 3 h gerührt. Nach Einengen wurde der Rückstand mittels präparativer Dünnschichtchromatographie (SiO₂, CH₂Cl₂/MeOH 95: 5) gereinigt. Es wurden 9 mg (66 %) des lodvinyl-Derivats 4 als E/Z-Isomerengemisch (9:1) isoliert.

Ausgewählte typische Daten: LC-MS (ESI-MS): $667 (M^+ + H); ^1H- NMR: (300 MHz, CDCl_3): E-Isomer: 1,82 (d, 3H, 1,1 Hz), 5,36 (d, 1H, 11 Hz), 6,43 (s, 1H), Z-Isomer: 1,84 (d, 3H, 1,1 Hz), 5,54 (d, 1H, 10,5 Hz), 6,09 (s, 1H)$

Suzuki-Kupplung der Alkenylboronsäure 3

(s. auch A. Suzuki, Acc. Chem. Res. 1982, 15, 178; A. Torrado,S. Lopez, R. Alvarez, A. R. De Lera Synthesis, 1995, 285)

Typisches Beispiel ($R^1 = H$, $X-Y = CH_2CHOTMS$, $R^2 = Ph$):

Eine Lösung von Alkenylboronsäure 3 (12 mg, 21 µmol; E/Z 2: 8) und Thalliumethanolat (2M-Lsg in EtOH; 12 µl, 24 µmol) in THF (150 µl) wurde 15 min bei Raumtemperatur gerührt, dann eine Lösung von Phenyliodid (4,0 µl, 6,0 mg, 29 µmol) und Tetrakis(triphenylphosphino)palladium (7,1 mg, 6,2 µmol) in THF (150 µl) in 30 min zugetropft und erneut 30 min gerührt. Nach Reinigung mittels präparativer Dünnschichtchromatographie (SiO₂, CH₂Cl₂/Et₂O 95 : 5) wurde das phenylanaloge Epothilon 5 (10 mg, 79 %, E/Z 2 : 8) als farbloser Feststoff erhalten.

Ausgewählte typische Daten: LC-MS (ESI-MS): 617 (M^+ + H); 1 H-NMR: (300 MHz, CDCl₃): E-Isomer: 1,87 (d, 3H, 1,4 Hz), 5,35 (d, 1H, 10,7 Hz), 6,54 (s, 1H), Z-Isomer: 1,80 (d, 3H, 1,5 Hz), 5,61 (d, 1H, 10,2 Hz), 6,41(s, 1H)

Stille-Kupplung der Iodvinylderivate 4

(s. auch K.C. Nicolaou, Y. He, F. Roschangar, N. P. King, D. Vourloumis, T. Li Angew. Chem. 1998, 110, (1/2), 89)

Patentansprüche

Epothilonderivat der Formel (2)

worin R^1 ein H-Atom oder eine C_1 - bis C_8 -Alkylgruppe, X-Y eine Gruppe der Formel -CH₂CH-OP oder -CH=CH-, und P eine Schutzgruppe ist.

2. Epothilonderivat der Formel (3)

worin die Reste wie in Anspruch 1 definiert sind.

3. Epothilonderivat der Formel (4)

worin die Reste R^1 , X-Y und P wie in Anspruch 1 definiert sind, und Hal ein Halogenatom wie Br oder J ist.

4. Epothilonderivat der Formel (5)

worin die Reste R^1 , X-Y und P wie in Anspruch 1 definiert sind und

 R^2 ein monocyclischer Aromat oder eine Vinylgruppe ist, die durch Halogenatome und/oder OR^4 - und/oder NR^5R^6 - und/oder Alkinylgruppen in ortho- und/oder

meta- und/oder para-Stellung substituiert sein können, oder ein monocyclischer 5- oder 6-gliedriger Heteraromat ist, der eines oder mehrere 0- und/oder N- und/oder S-Atome im Ring aufweisen kann und/oder OR⁴- und/oder NR⁵R⁶- und/oder Alkyl-, Alkenyl- und/oder Alkinylgruppen als Substituenten aufweisen kann, wobei die Reste R⁴, R⁵ und R⁶ unabhängig voneinander wie R¹ in Anspruch 1 definiert sind, aber von R¹ unabhängig sind.

5. Epothilonderivat der Formel (6)

worin die Reste wie in Anspruch 4 definiert sind.

- 6. Epothilonderivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß R^1 , R^4 , R^5 und R^6 ein H-Atom oder eine C_1 bis C_6 -Alkylgruppe, vorzugsweise eine C_1 bis C_6 -Alkylgruppe ist.
- 7. Epothilonderivat nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Substituenten des monocyclischen Aromaten und/oder Heteroaromaten C_{1-6} -Alkyl- bzw. C_{2-6} -Alkenyl bzw. C_{2-6} -Alkinylgruppen, vorzugsweise C_{1-4} -Alkyl- bzw. C_{2-4} -Alkenyl bzw. C_{2-4} -Alkinylgruppen sind und die Halogenatome Fluor-, Chlor-, Brom- oder Jodatome sind.
- 8. Epothilonderivat nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß der Aromat bzw. Heteroaromat 1, 2 oder 3 Substituenten und der Heteroaromat 1, 2 oder mehr und insbesondere 1, 2, 3, oder 4 Heteroatome aufweist.

- 9. Verfahren zur Herstellung einer Verbindung der Formel (3), dadurch *gekennzeichnet*, daß eine Verbindung der Formel (2) mit einer Verbindung der Formel HC[B(OR)₂]₃ umgesetzt wird, wobei die Reste wie in einem der vorstehenden Ansprüche definiert sind und R wie R¹ definiert aber von R¹ unabhängig ist.
- 10. Verfahren zur Herstellung einer Verbindung der Formel (4), dadurch *gekennzeichnet*, daß eine Verbindung der Formel (3) mit N-Iod- oder N-Bromsuccinimid umgesetzt wird und die Reste wie in einem der vorstehenden Ansprüche definiert sind.
- 11. Verfahren zur Herstellung einer Verbindung der Formel (5), dadurch *gekennzeichnet*, daß eine Verbindung der Formel (3) durch eine Suzuki-Kopplung mit einer Verbindung der Formel R²-Z umgesetzt wird, wobei R² wie in einem der vorstehenden Ansprüche definiert ist und Z ein Halogenatom oder eine Gruppe der Formel -OSO₂CF₃, -CH=CHI, -CH=CHOSO₂CF₃ sein kann.
- 12. Verfahren zur Herstellung einer Verbindung der Formel (5), dadurch gekennzeichnet, daß eine Verbindung der Formel (4) durch eine stillen Kupplung mit R^2 -SNR 3 3 umgesetzt wird, wobei R^2 wie in einem der vorstehenden Ansprüche definiert ist und R^3 eine C_1 bis C_6 -Alkylgruppe, vorzugsweise eine C_{1-4} -Alkylgruppe, besonders bevorzugt eine Methyl-, Ethyl-, Propyl- oder Butyl-gruppe ist.
- 13. Verfahren zur Herstellung einer Verbindung der Formel (6), dadurch gekennzeichnet, daß von einer Verbindung der Formel(5) die Schutzgruppe entfernt wird.
- 14. Verfahren zur Herstellung einer Verbindung der Formel (6), dadurch *gekennzeichnet*, daß es die Verfahrensstufen umfaßt, die in den Ansprüchen 9, 10, 11 oder 12 und 13 offenbart sind, wobei die Reste wie in den vorstehenden Ansprüchen definiert sind.

- 15. Arzneimittel, das mindestens eine der in den Ansprüchen 1 bis 8 beschriebenen Verbindungen und gegebenenfalls übliche Träger, Verdünnungsmittel und/oder Adjuvantien enthält.
- 16. Arzneimittel nach Anspruch 15, dadurch gekennzeichnet, daß es sich um ein Cytostaticum handelt.
- 17. Pflanzenschutzmittel in der Landwirtschaft und/oder Forstwirtschaft und/oder im Gartenbau, das mindestens eine der in den Ansprüchen 1 bis 8 beschriebenen Verbindungen und gegebenenfalls übliche Träger, Verdünnungsmittel und/oder Adjuvantien enthält

Zusammenfassung

Die vorliegende Erfindung betrifft Epothilonderivate, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Arzneimitteln und Pflanzenschutzmitteln.