Neural Networks – Part II PHYS 250 (Autumn 2024) – Lecture 15

David Miller

Department of Physics and the Enrico Fermi Institute University of Chicago

November 21, 2024

Outline

Reminders from last time

We embarked on a whirlwind introduction to neural networks.

Neural networks and machine learning

Context and perspective

- We discussed the general issue of training computers to discover, identify,
 and analyze patterns of interest in datasets
- Categorized tasks that make use of this idea: classification, regression, generation, clustering, anomaly detection

Neural networks as a tool

- Introduced both the **modeling** perspective as well as the **biological** perspective on what a neural network achieves
- Described the **structure and function** of a neuron
- Began discussing the mathematical properties of a neural network

Today we will build our own networks! But first, I just wanted to follow-up on some points and questions from last time.

Outline

Brief history of machine learning

Taken from Harry Ide on InnovationLaboratory.com (18 May 2018):

Brief history of machine learning

Taken from Harry Ide on InnovationLaboratory.com (18 May 2018):

Brief history of neural networks

Taken from this talk on SlideShare:

Outline

Single layer perceptron

- $\vec{x} = (x_1, x_2, \dots, x_n)$ is an input feature vector of length n i.e. the attributes of the data, e.g. voltages
- $\vec{w} = (w_1, w_2, \dots, w_n)$ is the weight vector with w_0 reserved as a bias
 - becomes a matrix for multiple layers
- Σ indicates summation (or matrix mult.): $z = \sum w_i x_i \ (x_0 = 1)$
- \bullet f is the activation function, or non-linearity: f(z)
- y = f(z) is the output

Sigmoid as activation function

As we discussed, a typical function for a **single layer perceptron** is the **sigmoid**.

Here, we plot both the function itself, as well as its derivative, since that will be important when evaluating the **backpropagation** of weights in order to update the neural network.

Training a single layer perceptron

Given j objects \vec{x}_j in dataset, each with **known values of** f, d_j

- Calculate the output: $y_i = f(\vec{w} \cdot \vec{x}_i)$
- Determine the error: $\epsilon_j = d_j y_j$
- Update the weights: $w_i^{\text{new}} = w_i + r(\epsilon_j \cdot \vec{x}_j)_i$

Choosing the learning rate r is where the derivative is used. It's not important for the single-layer perceptron, but is **essential** for a network.

Multi-layer perceptron (MLP)

Input layer Hidden laver

Output layer

Given j objects \vec{I}_j in dataset, each with features $\vec{I} = (I_1, I_2, \cdots, I_n)$ and known outputs \vec{d}_j at each output node o, $\vec{d} = (d_1, d_2, \cdots, d_o)$

- Calculate the h outputs of hidden layer: $v_h = f(\sum w_{ih}I_i)$
- Calculate the o outputs of output layer: $y_o = f(\sum w_{ho}v_h)$
- Determine the error at output each node o: $\epsilon_o = d_o y_o$
- Determine the total error for data object j: $\mathcal{E}_j = \frac{1}{2} \sum_o \epsilon_o^2$
- Determine change in weights for output neuron y_o : $\Delta w_{oh} = -\eta \frac{\partial \mathcal{E}}{\partial z_o} v_h = \eta \epsilon_o f'(z_o)$

LeCun, Bengio, Hinton, "Deep learning"

Nature volume 521, pages 436-444 (28 May 2015)

Outline

What is classification?

Slides stolen from colleague Ben Nachmann

Classification

Goal: Given a *feature vector*, return an integer indexed by the set of possible *classes*.

In most cases, we care about *binary* classification in which there are only two classes (signal versus background)

There are some cases where we care about *multi-class classification*

What is classification?

Classification

Goal: Given a *feature vector*, return an integer indexed by the set of possible *classes*.

In practice, we don't just want one classifier, but an entire set of classifiers indexed by:

True Positive Rate = signal efficiency = Pr(label signal | signal) = sensitivity

True Negative Rate = 1 - background efficiency = rejection = Pr(label background | background) = specificity

For a given TPR, we want the lowest possible TNR!

Binary classification (I)

Input feature x

Binary classification (II)

Binary classification (III)

Binary classification (IV)

Binary classification (V)

Binary classification (VI)

In this simple case, the log LL is proportional to x:

no need for non-linearities!

o neca for non integrities

Threshold cut is optimal

Is the simple threshold cut optimal?

Binary classification (VII)

"Realistic" classification (I)

What if the distribution of x is complicated?

"Realistic" classification (II)

A threshold on x would be sub-optimal

In this case, LL is highly non-linear (**non-monotonic**) function of x

Input feature x

"Realistic" classification (III)

ROC is worse than the Gaussians, but that is expected since the overlap in their PDFs is higher.

