- Hypothesis Testing
 - 1. Hypothesis Tests and Types of Errors
 - 2. P-Values and Tests of Means
 - 3. Mean Differences and Difference in Means
 - Difference in Mean
 - Mean Difference(Paired Comparison)
 - 4. Tests of Variance, Correlation, and Independence

Hypothesis Testing

key words: types of errors, H0 and H1, p-value, difference in means, differences in variances, mean differences, population means, population variance, correlation, independent, Adjusted Significance

1. Hypothesis Tests and Types of Errors

- Hypothesis is stated with <u>population parameters</u>, testing whether a hypothesis is reasonable statement and shouldn't be rejected or not.
- Procedure:
 - 1. state the hypothesis(one/two-tailed, H0 & H1)
 - 2. select the test statistics
 - 3. specify the significant level
 - 4. state the decision rule
 - 5. collect samples, calculate the sample statistics and critical value
 - 6. Comparison and make a decision
- Null and Alternative Hypothesis
 - $\circ H0$
 - researchers want to reject
 - actually tested as basis for selecting the test statistics
 - 通常叙述中带等号
 - ∘ *H*1:
 - ullet if there is sufficient evidence to reject H0

- The hypothesis the researcher want to access
- 不能带=
- One-tailed VS Two-tailed Test
 - Mainly depend on the testing purpose deviation on one or two side of hypothesized value
 - Critical value(or Rejection area):
 - Reject *H*0 if (*Decision Rule*)
 - test statistics > upper critical value OR
 - test statistics < lower critical value
 - critical value= $\pm z_{\alpha/2}$, for two-tailed test with z-score
 - critical value= $\pm z_{\alpha}$, for one-tailed test with z-score with interests in upper-tail(+) or lower-tail(-) tests respectively
- Test Statistics, Type I and Type II Error, Significant Level, Power
 - Test Statistics:
 - calculated from <u>sampled data</u>, while critical value gained from test statistics distribution and significant level
 - The comparison between test statistics and critical value is important step of decision making.
 - \Rightarrow Calculation: $test\ statistics = \frac{sample\ statistic hypothesized\ value}{standard\ error\ of\ the\ sample\ statistics}$
 - sample statistics: point estimation of population parameter
 - standard error: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt[2]{n}}$ (known) or $s_{\bar{x}} = \frac{s}{\sqrt[2]{n}}$ (unknown)
- Typel and Typell Error
 - \circ Typel Error: True H_0 is rejected, lpha, false positive
 - \circ Typell Error: Not reject the false H_0 , β
 - Relationship:
 - sample size(n) and $Significant level(\alpha)$ together determine the Typell Error.
 - \bullet $\alpha \uparrow$, $\beta \downarrow$, $1 \beta \uparrow$, $n \uparrow$
- Power of Test
 - Definition: correctly rejecting false H_0 , 1β
 - Usage: when multiple test statistics, power decides which to use. Test statistic
 with the highest power is selected.
- Decision Rule Explanation

- Decision Rule: whether reject H_0 or fail to reject H_0 based on the test statistic distribution and significant level.
- Confidence Intervals & Hypothesis Test:
 - are linked with critical value
 - {[sample statistic- critical value * standard error]} ≤ population parameter
 ≤ {[sample statistic+ critical value * standard error]}
 - -critical value≤test statistics≤critical value
- Statistical Significant
 - Not means always economical significance.

2. P-Values and Tests of Means

- p-value:
 - Definition:
 - the probability of getting a test statistic that will reject H_0
 - the **smallest** level of significance for H_0 can be rejected.
 - Position: the **area** from test statistic to (negative) infinity tail, which can be compared with significant level α . If $< \alpha$, reject H_0 .
 - OR compare the **critical value** with **test statistic** to make decision. If |critical value| < |test statistic|, reject H_0 .
- Significant of Test among Multiple Tests
 - Normally, we reject H_0 when there are more than 5 false positives with 100 tests, with $\alpha = 0.5$. For multiple tests:
 - Process
 - lacktriangledown rank p-values in ascending order which are < pre-set lpha
 - calculate adj. significance for each test
 - Formula: Adjusted Significance= α * (Rank of p-value/Numbers of Tests)
 - compare the calculated results and reported p-values
 - if adjusted significance ≥ reported p-value (the ranking values), treat those tests as actual rejections.
- Tests of Means

- o t-Test
 - test statistics: $t_{n-1} = \frac{\bar{x} \mu_0}{\frac{s}{2/n}}$
 - Usage Condition:
 - Unknown population variance
 - n < 30, normal distribution
 - $n \ge 30$, with any types of distribution(CLT)
- o z-Test
 - test statistics:

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{2\sqrt{n}}}$$

Usage Condition: normally distributed with known variance

$$z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt[2]{n}}}$$

- very large sample size, unknown population variance
- in this case, use t-test is better.

3. Mean Differences and Difference in Means

• Two Population Means Test

Difference in Mean

- Condition
 - respectively in normally distributed populations iid
 - o unknown but equal variance
 - o test whether these two means are equal
- T-statistic:

$$t = \frac{\bar{x_1} - \bar{x_2}}{\sqrt[2]{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

- total degree of freedom= $n_1 + n_2 2$
- Hypothesis:
 - Normally state as $H_0: \mu_1 \mu_2 = 0$, $H_1: \mu_1 \mu_2 = 0$, and we need to declare the specific representations of μ_1 and μ_2

Mean Difference(Paired Comparison)

- test the hypothesis that the **mean of differences in the pairs** are $0.(\mu_{dz}=0)$
- Usage condition:
 - samples are dependent, depending on some other factor.
 - o normally distributed samples
- Hypothesis:

$$\circ H_0: \mu_d = \mu_{dz}, H_1: \mu_d = \mu_{dz}$$

- μ_d : mean of population of paired differences
- μ_{dz} : hypothesized mean of paired differences, commonly 0.
- Test Statistic:

$$\circ t = \frac{\bar{d} - \mu_{dz}}{s_{\bar{d}}}$$

- degree of freedom= n-1
- \bar{d} : sample mean difference = $\frac{1}{n} \sum_{i=1}^{n} d_i$
- $s_{\bar{d}}$: standard error of mean difference= $\frac{s_d}{\sqrt[2]{n}}$
- s_d : sample standard deviation= $\sqrt[2]{\frac{\sum_{i=1}^{n}(d_i-\bar{d})^2}{n-1}}$

4. Tests of Variance, Correlation, and Independence

- Tests of Single Population Variance
 - Hypothesis:

•
$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 = \sigma_0^2$$

- Test Statistics:
 - use Chi-square distribution(χ^2), asymmetrical and ~normal distribution with df \uparrow
 - range: $[0, \infty]$
 - test statistics: $\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma_0^2}$
 - degree of freedom: n-1
- Tests of Two Population Variances Equality
 - Condition Usage:
 - iid
 - two normally distributed populations

- Hypothesis:
 - $H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 = \sigma_2^2$
 - $\blacksquare \ \, \text{OR} \, H_0 : \sigma_1^2 \leq \sigma_2^2, H_1 : \sigma_1^2 > \sigma_2^2; H_0 : \sigma_1^2 \geq \sigma_2^2, H_1 : \sigma_1^2 < \sigma_2^2$
- F-test:
 - ullet F-distribution: right-skewed,the shape depends on dfs, range: $[0,\infty]$
 - Test Statistics: $F = \frac{s_1^2}{s_2^2}$
 - The ratio of sample variances
 - s_1^2 or s_2^2 : variance of sample of n_1 or n_2 observations drawn from population 1,2
 - Degree of freedom: $n_1 1(df_1$, numerator) and $n_2 1(df_2$, denominator)
 - Put the larger variance on numerator, for having right tail graph and getting a convenient critical value
 - sample variance equal, F = 1; upper critical value>1; lower critical value<1.
 - lower critical value is the reciprocal of the upper critical value
 - While, practically, we only have the upper critical value, by putting larger sample variance in numerator.
- Parametric and Nonparametric Tests
 - Parametric Tests
 - assumptions depend on <u>population distribution</u> and <u>population</u> <u>parameters</u>
 - Nonparametric Tests
 - used concern about quantity without carrying about any parameters or the parametric tests cannot be applied for improper assumption or unfitted dataset
 - data are ranked other than values
 - hypothesis not involve parameters of population
 - the *distribution* of random variable requirement is not met.
- Test of Correlation
 - o measure the strength of linear relationship between two variables
 - Condition: two normal distributed populations
 - Test Statistic: $t_{(n-2)} = \frac{r\sqrt[2]{n-2}}{\sqrt[2]{1-r^2}}$
 - r: sample correlation
 - n: sample size

- degree of freedom: n-2
- Hypothesis: population correlation(ρ)=0
- Other correlation coefficient describes the strength of **non-linear** relationship:
 - Spearman rank correlation test:
 - non-parametric test
 - test whether two sets of ranks are correlated
 - if 2nd and 3rd value is the equal, take the average (2+3)/2 = 2.5

$$r_S = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2-1)}$$

- r_s : rank correlation
- d_i : difference between two ranks
- Test of Independence with Contingent Table Data
 - Contingent Table: combination of two characteristics. We can test whether these two characteristics are independent with each other.
 - Chi-square test statistic: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{i,j} E_{i,j})^2}{E_{i,j}}$
 - r: numbers of row
 - c: numbers of column
 - $lackbox{ }O_{i,j}$: the number of observations in cell i,j, observed frequency
 - $E_{i,j}$: the expected number of observations for cell i,j
 - $E_{i,j}$ = (total for row i * total column for j)/total for all
 - degree of freedom: (r-1)(c-1)