Topic Models

Computational Linguistics: Jordan Boyd-Graber & Philip Resnik

University of Maryland

Example

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i}^{K} v_{k,i} + \lambda_i}$$
(1)

- Number of times document *d* uses topic *k*
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,\mathbf{w}_{d,n}} + \lambda_{\mathbf{w}_{d,n}}}{\sum_{i}^{K} \mathbf{v}_{k,i} + \lambda_i} \tag{1}$$

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(1)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i}^{K} v_{k,i} + \lambda_i}$$
(1)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i}^{K} v_{k,i} + \lambda_i}$$
(1)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(1)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

Documents and Initialization

You are trying to fit a topic model with V=5, K=3, $\alpha=1$, and $\lambda=1$. You have these documents and you initialize the topics randomly:

- Document 1: Adog₁ Bcat₂ Ccat₃ Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: Hiron₁ Iiron₃ Jpig₂ Kiron₂

Topic 1	Topic 2	Topic 3
^A dog	^B cat	^C cat
^D pig	^E hamburger	^F dog
^G hamburger	^J pig	[/] iron
^H iron	^K iron	

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 1, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger dog iron pig

Topic 2 :pig hamburger iron

cat

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 1, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger dog iron pig

Topic 2 :pig hamburger iron

cat

•
$$p(z_A = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

Assignments

$$Doc_1: z_A = 1, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger dog iron pig

Topic 2 :pig hamburger iron

cat

•
$$p(z_A = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_A = 2) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.333 \times 0.111 = 0.037 = 0.037$$

Assignments

$$Doc_1: z_A = 1, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger dog iron pig

Topic 2 :pig hamburger iron

cat

•
$$p(z_A = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_A = 2) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.333 \times 0.111 = 0.037 = 0.037$$

•
$$p(z_A = 3) = (\frac{1+1.000}{3+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.333 \times 0.250 = 0.083 = 0.083$$

Assignments

$$Doc_1: z_A = 1, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger dog iron pig

Topic 2:pig hamburger iron

cat

•
$$p(z_A = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_A = 2) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.333 \times 0.111 = 0.037 = 0.037$$

•
$$p(z_A = 3) = (\frac{1+1.000}{3+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.333 \times 0.250 = 0.083 = 0.083$$

Assignments

$$Doc_1: z_A = 1, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger dog iron pig

Topic 2 :pig hamburger iron

cat

Topic 3 :dog iron cat

•
$$p(z_A = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_A = 2) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.333 \times 0.111 = 0.037 = 0.037$$

•
$$p(z_A = 3) = (\frac{1+1.000}{3+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.333 \times 0.250 = 0.083 = 0.083$$

New assignment for (0, 0): 3

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger iron pig **Topic 2**:pig hamburger iron

cat

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger iron pig **Topic 2**:pig hamburger iron

cat

•
$$p(z_B = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

Assignments

$$Doc_1: z_A = 3, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron pig **Topic 2** :pig hamburger iron

cat

•
$$p(z_B = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_B = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

Assignments

$$Doc_1: z_A = 3, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron pig **Topic 2** :pig hamburger iron

cat

•
$$p(z_B = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_B = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_B = 3) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.500 \times 0.222 = 0.111 = 0.111$$

Assignments

$$Doc_1: z_A = 3, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron pig **Topic 2** :pig hamburger iron

cat

•
$$p(z_B = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_B = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_B = 3) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.500 \times 0.222 = 0.111 = 0.111$$

Assignments

$$Doc_1: z_A = 3, z_B = 2, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron pig **Topic 2** :pig hamburger iron

cat

Topic 3 :dog dog iron cat

•
$$p(z_B = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_B = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_B = 3) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.500 \times 0.222 = 0.111 = 0.111$$

New assignment for (0, 1): 3

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_C = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_C = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_C = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_C = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_C = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_C = 3) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.500 \times 0.222 = 0.111 = 0.111$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_C = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_C = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_C = 3) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.500 \times 0.222 = 0.111 = 0.111$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron pig **Topic 2** :pig hamburger iron **Topic 3** :dog dog iron cat cat

•
$$p(z_C = 1) = (\frac{1+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.333 \times 0.125 = 0.042 = 0.042$$

•
$$p(z_C = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_C = 3) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.500 \times 0.222 = 0.111 = 0.111$$

New assignment for (0, 2): 3

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron pig **Topic 2** :pig hamburger iron

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_D = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.167 \times 0.143 = 0.024 = 0.024$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_D = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.167 \times 0.143 = 0.024 = 0.024$$

•
$$p(z_D = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.167 \times 0.250 = 0.042 = 0.042$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_D = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.167 \times 0.143 = 0.024 = 0.024$$

•
$$p(z_D = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.167 \times 0.250 = 0.042 = 0.042$$

•
$$p(z_D=3) = \left(\frac{3+1.000}{3+3.000}\right) \times \left(\frac{0+1.000}{5+5.000}\right) = 0.667 \times 0.100 = 0.067 = 0.067$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

•
$$p(z_D = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.167 \times 0.143 = 0.024 = 0.024$$

•
$$p(z_D = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.167 \times 0.250 = 0.042 = 0.042$$

•
$$p(z_D=3) = \left(\frac{3+1.000}{3+3.000}\right) \times \left(\frac{0+1.000}{5+5.000}\right) = 0.667 \times 0.100 = 0.067 = 0.067$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 1$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron pig **Topic 2** :pig hamburger iron **Topic 3** :dog dog iron cat cat

•
$$p(z_D = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.167 \times 0.143 = 0.024 = 0.024$$

•
$$p(z_D = 2) = (\frac{0+1.000}{3+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.167 \times 0.250 = 0.042 = 0.042$$

•
$$p(z_D = 3) = (\frac{3+1.000}{3+3.000}) \times (\frac{0+1.000}{5+5.000}) = 0.667 \times 0.100 = 0.067 = 0.067$$

New assignment for (0, 3): 3

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger iron

Topic 2 :pig hamburger iron

Topic 3:pig dog dog iron cat

cat

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_F = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger iron

Topic 2 :pig hamburger iron

Topic 3 :pig dog dog iron cat

cat

•
$$p(z_E = 1) = (\frac{1+1.000}{2+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.400 \times 0.286 = 0.114 = 0.114$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_F = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron

Topic 2 :pig hamburger iron

Topic 3:pig dog dog iron cat cat

cai

•
$$p(z_E = 1) = (\frac{1+1.000}{2+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.400 \times 0.286 = 0.114 = 0.114$$

•
$$p(z_E = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_F = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger iron

Topic 2 :pig hamburger iron **Topic 3** :pig dog dog iron cat

cat

cai

•
$$p(z_E = 1) = (\frac{1+1.000}{2+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.400 \times 0.286 = 0.114 = 0.114$$

•
$$p(z_E = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_E = 3) = (\frac{1+1.000}{2+3.000}) \times (\frac{0+1.000}{6+5.000}) = 0.400 \times 0.091 = 0.036 = 0.036$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_F = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger iron Topic 2 :pig hamburger iron

Topic 3: pig dog dog iron cat cat

•
$$p(z_E = 1) = (\frac{1+1.000}{2+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.400 \times 0.286 = 0.114 = 0.114$$

•
$$p(z_E = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_E = 3) = (\frac{1+1.000}{2+3.000}) \times (\frac{0+1.000}{6+5.000}) = 0.400 \times 0.091 = 0.036 = 0.036$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 2, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger iron **Topic 2** :pig hamburger iron

Topic 3 :pig dog dog iron cat

cat

•
$$p(z_E = 1) = (\frac{1+1.000}{2+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.400 \times 0.286 = 0.114 = 0.114$$

•
$$p(z_E = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_E = 3) = (\frac{1+1.000}{2+3.000}) \times (\frac{0+1.000}{6+5.000}) = 0.400 \times 0.091 = 0.036 = 0.036$$

New assignment for (1, 0): 1

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger

hamburger iron

Topic 2 :pig iron

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger

hamburger iron

Topic 2 :pig iron

•
$$p(z_F = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.600 \times 0.125 = 0.075 = 0.075$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger

hamburger iron

Topic 2 :pig iron

Topic 3 :pig dog dog iron cat

cat

•
$$p(z_F = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.600 \times 0.125 = 0.075 = 0.075$$

•
$$p(z_F = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger

hamburger iron

Topic 2 :pig iron

•
$$p(z_F = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.600 \times 0.125 = 0.075 = 0.075$$

•
$$p(z_F = 2) = {0+1.000 \choose 2+3.000} \times {0+1.000 \choose 2+5.000} = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_F = 3) = (\frac{0+1.000}{2+3.000}) \times (\frac{1+1.000}{5+5.000}) = 0.200 \times 0.200 = 0.040 = 0.040$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger

hamburger iron

Topic 2 :pig iron

•
$$p(z_F = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.600 \times 0.125 = 0.075 = 0.075$$

•
$$p(z_F = 2) = {0+1.000 \choose 2+3.000} \times {0+1.000 \choose 2+5.000} = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_F = 3) = (\frac{0+1.000}{2+3.000}) \times (\frac{1+1.000}{5+5.000}) = 0.200 \times 0.200 = 0.040 = 0.040$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 3, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger

hamburger iron

Topic 2 :pig iron

Topic 3:pig dog dog iron cat cat

•
$$p(z_F = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.600 \times 0.125 = 0.075 = 0.075$$

•
$$p(z_F = 2) = {0+1.000 \choose 2+3.000} \times {0+1.000 \choose 2+5.000} = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_F = 3) = (\frac{0+1.000}{2+3.000}) \times (\frac{1+1.000}{5+5.000}) = 0.200 \times 0.200 = 0.040 = 0.040$$

New assignment for (1, 1): 1

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger hamburger dog iron

Topic 2 :pig iron

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog iron

Topic 2 :pig iron

•
$$p(z_G = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.600 \times 0.250 = 0.150 = 0.150$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger hamburger dog iron **Topic 2**:pig iron

•
$$p(z_G = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.600 \times 0.250 = 0.150 = 0.150$$

•
$$p(z_G = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog iron Topic 2 :pig iron

•
$$p(z_G = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.600 \times 0.250 = 0.150 = 0.150$$

•
$$p(z_G = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_G = 3) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{5+5.000}) = 0.200 \times 0.100 = 0.020 = 0.020$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog iron Topic 2 :pig iron

•
$$p(z_G = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.600 \times 0.250 = 0.150 = 0.150$$

•
$$p(z_G = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_G = 3) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{5+5.000}) = 0.200 \times 0.100 = 0.020 = 0.020$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog iron
Topic 2 :pig iron

Topic 3 :pig dog iron cat cat

•
$$p(z_G = 1) = (\frac{2+1.000}{2+3.000}) \times (\frac{1+1.000}{3+5.000}) = 0.600 \times 0.250 = 0.150 = 0.150$$

•
$$p(z_G = 2) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{2+5.000}) = 0.200 \times 0.143 = 0.029 = 0.029$$

•
$$p(z_G = 3) = (\frac{0+1.000}{2+3.000}) \times (\frac{0+1.000}{5+5.000}) = 0.200 \times 0.100 = 0.020 = 0.020$$

New assignment for (1, 2): 1

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger hamburger dog iron

Topic 2 :pig iron

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog iron
Topic 2 :pig iron

•
$$p(z_H = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog iron
Topic 2 :pig iron

•
$$p(z_H = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_H = 2) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.500 \times 0.286 = 0.143 = 0.143$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger hamburger dog iron **Topic 2**:pig iron

•
$$p(z_H = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_H = 2) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.500 \times 0.286 = 0.143 = 0.143$$

•
$$p(z_H = 3) = (\frac{1+1.000}{3+3.000}) \times (\frac{1+1.000}{5+5.000}) = 0.333 \times 0.200 = 0.067 = 0.067$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger hamburger dog iron **Topic 2**:pig iron

•
$$p(z_H = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_H = 2) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.500 \times 0.286 = 0.143 = 0.143$$

•
$$p(z_H = 3) = (\frac{1+1.000}{3+3.000}) \times (\frac{1+1.000}{5+5.000}) = 0.333 \times 0.200 = 0.067 = 0.067$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 1, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1:hamburger hamburger dog iron **Topic 2**:pig iron

Topic 3 :pig dog iron cat cat

•
$$p(z_H = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_H = 2) = (\frac{2+1.000}{3+3.000}) \times (\frac{1+1.000}{2+5.000}) = 0.500 \times 0.286 = 0.143 = 0.143$$

•
$$p(z_H = 3) = (\frac{1+1.000}{3+3.000}) \times (\frac{1+1.000}{5+5.000}) = 0.333 \times 0.200 = 0.067 = 0.067$$

New assignment for (2, 0): 2

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron

•
$$p(z_1 = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_F = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron

•
$$p(z_l = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_1 = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron

•
$$p(z_l = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_1 = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

•
$$p(z_1 = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.167 \times 0.111 = 0.019 = 0.019$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron

•
$$p(z_l = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_1 = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

•
$$p(z_1 = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.167 \times 0.111 = 0.019 = 0.019$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 3, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron

Topic 3 :pig dog iron cat cat

•
$$p(z_l = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_1 = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

•
$$p(z_l = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.167 \times 0.111 = 0.019 = 0.019$$

New assignment for (2, 1): 2

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

•
$$p(z_J = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2: z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron iron

•
$$p(z_J = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_J = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.667 \times 0.125 = 0.083 = 0.083$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

•
$$p(z_J = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_J = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.667 \times 0.125 = 0.083 = 0.083$$

•
$$p(z_J = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.167 \times 0.222 = 0.037 = 0.037$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

•
$$p(z_J = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_J = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.667 \times 0.125 = 0.083 = 0.083$$

•
$$p(z_J = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.167 \times 0.222 = 0.037 = 0.037$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron iron **Topic 3** :pig dog cat cat

•
$$p(z_J = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_J = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.667 \times 0.125 = 0.083 = 0.083$$

•
$$p(z_J = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{1+1.000}{4+5.000}) = 0.167 \times 0.222 = 0.037 = 0.037$$

New assignment for (2, 2): 2

- Document 1: ^Adog₁ ^Bcat₂ ^Ccat₃ ^Dpig₁
- Document 2: ^Ehamburger₂ ^Fdog₃ ^Ghamburger₁
- Document 3: ^Hiron₁ ^Iiron₃ ^Jpig₂ ^Kiron₂

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(2)

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

•
$$p(z_K = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron iron

•
$$p(z_K = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_K = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

•
$$p(z_K = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_K = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

•
$$p(z_K = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.167 \times 0.111 = 0.019 = 0.019$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

•
$$p(z_K = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_K = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

•
$$p(z_K = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.167 \times 0.111 = 0.019 = 0.019$$

Assignments

$$Doc_1: z_A = 3, z_B = 3, z_C = 3, z_D = 3$$

$$Doc_2 : z_E = 1, z_F = 1, z_G = 1$$

$$Doc_3: z_H = 2, z_I = 2, z_J = 2, z_K = 2$$

Topics

Topic 1 :hamburger hamburger dog

Topic 2 :pig iron iron iron **Topic 3** :pig dog cat cat

•
$$p(z_K = 1) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{3+5.000}) = 0.167 \times 0.125 = 0.021 = 0.021$$

•
$$p(z_K = 2) = (\frac{3+1.000}{3+3.000}) \times (\frac{2+1.000}{3+5.000}) = 0.667 \times 0.375 = 0.250 = 0.250$$

•
$$p(z_K = 3) = (\frac{0+1.000}{3+3.000}) \times (\frac{0+1.000}{4+5.000}) = 0.167 \times 0.111 = 0.019 = 0.019$$

New assignment for (2, 3): 2