Kryptographie

Fabio Oesch, Michael Künzli & Jan Fässler

4. Semester (FS 2013)

Inhaltsverzeichnis

1	Ma	thematische Grundlagen	1
	1.1	Modulare Division	1
	1.2	Modulares Potenzieren	1
		1.2.1 Theorie	1
		1.2.2 Beispiel	1
2	Kla	ssische Kryptographie	3
_	2.0	Repetition	3
	2.1	Klassische Verschlüsselungsverfahren	3
	2.2	Spezielles Bsp für Substitution Homophone Verschlüsselung	3
	2.3	Kasiski-Text (monographisch & polyalphabetisch)	3
	2.4	Playfair-Cipher	4
	2.5	Koinzidenzindex (index of coincidence)	4
	2.6	,	5
		· ·	5
		2.6.2 Kryptoanalysis des Vigenère-Cipher	5
	2.7	One-Time-Pad	7
	2.8	Kryptosysteme	7
	2.9	Kryptoanalysis	7
		2.9.1 Ciphertext-only attack	7
		2.9.2 known-plaintext attack	7
		2.9.3 chosen-plaintext attack	7
		2.9.4 chosen-ciphertext attack	8
3	Blo	ck-Cipher	9
•	3.1	Data Encription Standard (DES)	
	3.2	Modi von Block-Cipher	
		3.2.1 ECB-Modus (electronic code block)	
		3.2.2 CBC-Modus (cipher block chaining)	
		3.2.3 CFB-Modus (cipher feedback)	
1	RS_{A}	Δ -	12
-1	4.1	Schlüsselerzeugung	
	4.2	Verschlüsselung und Entschlüsselung	
		4.2.1 RSA ist ein Blockcipher	
			12

1 Mathematische Grundlagen

1.1 Modulare Division

Eine modulare Division hat die Form $a/b \mod n$, gesucht wird die ganze Zahl c im Intervall [0, n-1], welche die Gleichung $bc \equiv a \mod n$. Die modulare Division ist nur möglich, wenn qqT(b,n)=1.

Die modulare Division ist nur mognen, wenn ggr(o,n) =

Beispiel: $23/27 \mod 31$

Zuerst ggT(27,31) mittels euklidischem Algorithmus ermitteln:

```
31 = 1 * \frac{27}{4} + 4

27 = 6 * 4 + 3

4 = 1 * 3 + 1

3 = 3 * 1 + 0 \Longrightarrow ggT(27, 31) = 1 \longrightarrow \text{modulare Division m\"{o}glich}
```

Jetzt fahren wir mit dem erweiterten euklidischen Algorithmus fort, um c zu ermitteln:. Dafür müssen wir zuerst die lineare diophantische Gleichung 23 = 27c + 31x lösen:

```
1=4-1*3 1=4-1*(27-6*4) // ersetze 3 durch diese Klammer, indem man obigen Algorithmus rückwärts durchläuft 1=4-1*27+6*4=7*4-1*27 // ausmultiplizieren 1=7*(31-1*27)-1*27 // ersetze 4 durch Klammer 1=7*31-7*27) -1*27=7*31-8*27 // ausmultiplizieren 23*1=23*7*31+23*(-8)*27 // erweitern mit 23 \Rightarrow uns interessiert nur c=23*(-8)=-184 was der Restklasse 2 (von Modulo 31) entspricht. Dies ermittelt man, indem man zu -184 so oft 31 addiert, bis man eine positive Zahl erhält. Die gesuchte Gleichung lautet also: 27*2 \equiv 23 \mod 31.
```

1.2 Modulares Potenzieren

1.2.1 Theorie

Seien $a, b, n \in \mathbb{Z}$ und b, n > 1. Berechnen Sie $a^b \mod n$.

Da es für grosse b für den Taschenrechner nicht möglich ist dies zu berechnen verwenden wir ein spezielles Verfahren:

- 1.) binäre Darstellung von b
: $b = \sum_{i=0}^k \alpha_i 2^i \text{ mit } \alpha \in \{0,1\}.$
- 2.) Anwendung auf a: $a^b = a^{\sum_{i=0}^k \alpha_i 2^i} \\ a^b = \prod_{i=0}^k a^{\alpha_i 2^i} \\ a^b = a^{\alpha_k 2^k} * a^{\alpha_{k-1} 2^{k-1}} * a^{\alpha_{k-2} 2^{k-2}} \dots a^{\alpha_1 2} * a^{\alpha_0} \\ a^b = (\dots ((a^{a_k})^2 * a^{a_{k-1}})^2 \dots * a^{\alpha_1})^2 * a^{\alpha_0}$
- 3.) Das Verfahren besteht nun darin, den letzten Ausdruck von innen nach aussen auszuwerten und nach jeder Multiplikation das Resultat modulo n zu rechnen.

1.2.2 Beispiel

 $977^{2222} \mod 11$

- 1.) $2222_{10} \triangleright bin = 1000101011110_2$
- 2.) $(\dots (977)^2)^2)^2 * 977)^2)^2 * 977)^2)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2$

3.) Anwendung des Verfahren:

```
977
        \mod 11 = 9
9^{2}
         \mod 11 \quad = 4
4^{2}
         \mod 11 \quad = 5
5^2
         \mod 11 \quad = 3
3^2
         \mod 11
                 = 9
9*977
        \mod 11
                 =4
4^{2}
         \mod 11
                 = 5
5^{2}
         \mod 11
                 =3
3*977
         \mod 11
                 =5
5^2
         \mod 11
                 =3
3^2
         \bmod \ 11
                  = 9
9*977
4^2
         \mod 11
                  =4
         \mod 11
                  =5
5*977
         \mod 11
                 = 1
1^{2}
         \bmod \ 11
                 = 1
1 * 977
        \mod 11 = 9
         \mod 11 = 4
```

2 Klassische Kryptographie

2.0 Repetition

Alphabet endliche Mengen von Zeichen

Beispiel

$$\begin{split} \mathcal{A} &:= \{A, B, C, ..., Z\}, \ |\mathcal{A}| = 26 \\ \Sigma &:= \{0, 1\}, \ |\Sigma| = 2 \\ \mathcal{A}^* &:= \{\text{endliche W\"{o}rter \"{u}ber } \mathcal{A}\} \end{split}$$

Sprachen über \mathcal{A} : $L \subset \mathcal{A}^*$

2.1 Klassische Verschlüsselungsverfahren

Substitution Cipher	Transposition Cipher					
Einheiten werden ersetzt .	Einheiten werden vertauscht .					
	3	1	5	6	2	4
	K	О	Μ	Μ	E	H
	\mathbf{E}	U	\mathbf{T}	\mathbf{E}	A	В
	E	N	D	\mathbf{Z}	U	${ m M}$
	Z	Ο	Ο	A	В	\mathbf{C}
	$\Rightarrow \underbrace{\text{OUNO}}_{1} \underbrace{\text{EAUB}}_{2} \dots \text{ Bem.}$ Einheiten werden vertauscht (ABC ist Padding)					

monoalphabetisch $E: A \rightarrow B, x \mapsto E(x)$	polyalphabetisch $E: \mathcal{A} \to P(B), x \mapsto E(x)$
monographisch	polygraphisch
Buchstaben	Gruppen von Buchstaben

2.2 Spezielles Bsp für Substitution Homophone Verschlüsselung

Gegeben: $\Sigma := \{0, 1\}, B := \{a, b, c\}$

Information über die Sprache des Klartextes: Häufigkeit von $0:\frac{1}{3}$ Häufigkeit von $1:\frac{2}{3}$

$$E: \Sigma \to P(B)$$
$$0 \mapsto \{b\}$$
$$1 \mapsto \{a, c\}$$

 $\mathbf{Bsp:} \quad \begin{array}{ll} 10110110011 \\ \mathrm{abccbacbbaa} \end{array}$

2.3 Kasiski-Text (monographisch & polyalphabetisch)

Klartext TO BE OR NOT TO BE

Schlüssel NOW

 $\mathbf{p} = |\text{NOW}|$

TOB	EOR	NOT	TOB	Е
NOW	NOW	NOW	NOW	N
GCX	RCN	ACP	GCX	R

GCX kommt 2x for so können wir eine Annahme zur Periode p machen. Die Periode ist dann $c \cdot p$. Dies kann aber auch zufällig passieren.

2.4 Playfair-Cipher

 $\begin{array}{|c|c|c|c|c|} \hline HARYP \\ OTEBC \\ DFG\frac{1}{J}K \\ LMNQS \\ UVWXZ \\ \hline \end{array} \text{Schlüssel: Harry Potter, HAR} POTFER$

Klartext HALLO ZUSAMMEN**Bsp:** Preprocessed HALO ZUSAMENXSecret AR QU UD UV

- Falls 2 auf gleicher Zeile: Beide Buchstaben um eins nach rechts
- Falls 2 auf gleicher Spalte: Beide Buchstaben um eins nach unten
- Falls 2 nicht auf gleicher Zeile/Spalte: Man nimmt die Buchstaben die auf seiner Spalte und auf des anderen Zeile liegen.

$$\begin{array}{ccccc} L & M & N & Q \\ \downarrow & & \uparrow \\ U & V & W & X \end{array}$$

2.5 Koinzidenzindex (index of coincidence)

1. Gegeben

Alphabet Alphabet $\mathcal{A} := \{A, B, C, \dots, Z\}$ Sprache: Englisch

IC: Grösse, die von der Sprache abhängt, aber invariant ist gegenüber Cäsar-Verschiebungen.

Frage: Was bedeutet: Was bedeutet $IC_L := \sum_{1=1}^{26} P_i^2$ index of coincidence L: Language

Bemerkung:

Jede Sprache hat ihren eigenen Konzidenzindex

 $IC_{German} = 0.0766$

 $IC_{Arabic} = 0.0759$

 $IC_{flat} = 0.0385$ (Alle Buchstaben haben die gleiche häufigkeit: $p_1 = p_2 = ... = p_{26} = \frac{1}{26}$)

Je unregelmässiger die buchstabenhäufigkeit, umso grösser der Index.

2. Gegegen:

Sei F eine Buchstabenfolge der Länge n

Bsp: F = AXCAABCXA $n_1 = \#A's \text{ in } F$ $n_1 = \#B's \text{ in } F$:

Frage: Wie gross ist die Wahrscheinlichkeit zwei gleiche Buchstaben aus F herauszugreifen?

Definition
$$IC_F = \frac{\sum_1^{26} \binom{n_i}{2}}{\binom{n}{2}}$$

Bsp:

Alphabet
$$\Sigma := \{0, 1\}$$

 $F = 00110111101$
 $n_0 = 4$
 $n_1 = 7$
 $n = 11$
 $IC_F = \frac{4*3+7*6}{11*10} = 0.49$

Annahme $IC_F \xrightarrow[F \to \infty]{} IC_L$ (ist im Allgemeinen falsch)

Bemerkung

Permutation der Buchstaben

$$F \mapsto \text{Perm}(F)$$

 $F = \text{"AXCA..."} \mapsto \text{Perm}(F) = \text{"CBYC..."}$
 $IC_F = IC_{Perm(F)}$

2.6Vigenères Chipres

Berechnung der Schlüssellänge eines Vigenère-Cipher 2.6.1

Gegeben

C Vigenère-Chiffrat der Länge n Die Schlüssellänge sei p (unbekannt)

		$\stackrel{p}{\longrightarrow}$				
C_1	C_2	C_3	C_4		C_p	j)
C_{p+1}	C_{p+2}	C_{p+3}	C_{p+4}		C_{2p}	
C_{2p+1}	C_{2p+2}	C_{2p+3}	C_{2p+4}		C_{3p}	$\left. \right \left. \right \frac{n}{p}$
• • •						
C_{n-2}	C_{n-1}	C_n	-	-	-	J
\uparrow	7	7				

monoalphabetisch

alle Spalten = p, alle Zeilen = $\frac{n}{p}$, letzte Zeile = monoalphabetisch!

$$\alpha :=$$
 Anzahl Buchstabenpaare aus gleicher Spalte, $\alpha = \frac{n(\frac{p}{p}-1)}{2} = \frac{n(n-p)}{2p}$

 $\alpha:=$ Anzahl Buchstabenpaare aus gleicher Spalte, $\alpha=\frac{n(\frac{n}{p}-1)}{2}=\frac{n(n-p)}{2p}$ $\beta:=$ Anzahl Buchstabenpaare aus verschiedenen Spalten, $\beta=\frac{n(n-\frac{n}{p})}{2}=\frac{n^2(p-1)}{2p}$

 $\gamma :=$ Anzahl gleicher Buchstabenpaare aus $C, IC_L = \frac{\gamma}{\binom{n}{2}}$

$$\gamma = \alpha \cdot IC_L + \beta \cdot IC_{\text{flat}}$$

$$p = \frac{n(IC_L - IC_{flat})}{IC_C \cdot (n-1) + IC_L - n \cdot IC_{\text{flat}}}$$

5

Kryptoanalysis des Vigenère-Cipher

1) Schlüssellänge p p=1,2,3,...

- Einleitung des Cipher-Tests in p Abschnitte
- Berechnung des IC des Abschnitts
- Wähle p mit $IC \sim IC_2$ (oder hoch)
- 2) Sei s,t zwei Strings über dem Alphabet A.

$$s = s_1, s_2, s_3,s_k$$

$$t = t_1, t_2, t_3, ..., t_l$$

Wieder zählen wir $n_1(s) := A$ in s, $n_3(t) = C$ in t

Def.
$$MIC(s,t) := \frac{\sum_{i=1}^{\infty} 26n_i(s) * n_i(t)}{k * l}$$

Bsp.

$$n_1(s) = 3, n_1(t) = 3$$

$$n_2(s) = 1, n_2(t) = 3$$

$$n_3(s) = 2, n_3(t) = 3$$

$$\rightarrow MIC(s,t) = \frac{1}{6*9}[3*3+1*3+2*3]$$

Idee: s,t zwei cipher-Text mit Cäsar Cerschlüsselung

Wenn beide mit dem gleichen Schlüssel verschlüsselt werden

$$\rightarrow MIC(s,t) \rightsquigarrow IC_L$$

Sonst:
$$MIC(s,t) \rightsquigarrow IC_{flat}$$

3.) Anwendung auf Cipher Text

Schlüssellänge p sei 5

 $c_1, c_2, ..., c_5$ Abschnitte des Cipher Text

$$MIC(c_i, c_j + k)$$

Tabelle:				
(i,j);k	0	1	2	
(1,2)				
(1,3)				
(1,4)				
(1,5)				
(2,3)			x	$\rightarrow MIC(c_2, c_3 + k)$
(2,4)				
(2,5)				
(3,4)				
(3,5)				
(4,5)				

Bsp

$$c_1$$
: AXBM...

$$c_3$$
: ABXHE...

4.) Wir suchen Einträge in der Tabelle, die hoch sind (>0.06)

$$MIC(s,t) = \frac{1}{kl} \sum_{i=1}^{26} n_i(s) n_i(t), |s| = k, |t| = l$$

zb: $MIC(c_2, c_3 + 22 > 0.06 \iff c_2 \sim c_3 + 22 \Rightarrow \boxed{\beta_2 - \beta_3 = k}$

Notation $s \sim t \iff s$ und t sind mit dem gleichen Shift aus zwei Klartexten entstanden.

6

Bsp. $klar_1 \sim klar_2$

$$klar_1 \xrightarrow{\beta_1} c_1 \mid c_1 = klar_1 + \beta_1$$

$$klar_2 \xrightarrow{\beta_2} c_2 \mid c_2 = klar_2 + \beta_2$$

Wir suchen die grossen Werte von $MIC(c_i, c_j + k)$

$$MIC(c_i, c_j + k)$$
 gross $\iff c_i \sim c_j + k$

$$c_i = klar_i + \beta_i \sim klar_i + \beta_j + k = \frac{k}{\beta_i} + \frac{\beta_j}{\beta_j}$$

$$\begin{cases} & \text{sind } \frac{\text{bekannt}}{k_{12} = \beta_2 - \beta_1} \\ & k_{13} = \beta_3 - \beta_1 \\ & k_{52} = \beta_2 - \beta_5 \end{cases} \text{Auflösen nach } \beta_1$$

Schlüsselwort: β_1 , β_2 ,..., β_p = β_1 , $\beta_1 + k_{12}$,..., Ausprobieren: $\beta_1 = 0, 1, \ldots, 25$

2.7 One-Time-Pad

Klartext: $p_1p_2p_3p_4p_5\cdots =$ $0101\dots$ Schlüssel: $k_1k_2k_3k_4k_5\cdots =$ 0110... $\Sigma = \{0, 1\}$ $c_1 c_2 c_3 c_4 c_5 \cdots = p_1 \oplus k_1$ ciphertext: 1 0011...

2.8 Kryptosysteme

Kryptosystem: (P, C, K, e, d)

P Menge der Klartexte

C Menge der Geheimtexte

 ${f K}$ Menge der Schlüssel

$$\begin{array}{l} e: K \times P \rightarrow C \\ d: K \times C \rightarrow P \end{array}$$

 $\forall k \in K \ \forall p \in P : d(k, e(k, p)) = p$ $\rightarrow \forall k \varepsilon K : e(k, -) \text{ ist injektiv}$

 $\rightarrow \forall k \varepsilon K : d(k, -) \text{ ist surjektiv}$

2.9 **Kryptoanalysis**

Ciphertext-only attack

Gegeben $c_i = e_k(p_i)$, i=1, ..., n

Gesucht p_i , i= 1, ...,n oder k

2.9.2 known-plaintext attack

Gegeben $(p_i, c_i = e_k(p_i)), i=1, ..., n$

Gesucht k

chosen-plaintext attack

Gegeben $(p_i, c_i = e_k(p_i)), i=1, ..., n$ p_i nach Wahl des Kryptoanalytikers

Gesucht k

Verwendung DIE Attacke gegen jedes Public-Key System

2.9.4 chosen-ciphertext attack

 Gegeben $(p_i, p_i = d_k(c_i))$, i=1, ..., n c_i nach Wahl des Kryptoanalytikers

 $\mathbf{Gesucht} \;\; \mathbf{k}$

3 Block-Cipher

Alphabet

$$\Sigma = \{0, 1\}$$

$$\Sigma^n := \Sigma \times \Sigma \times \cdots \times \Sigma$$

Definition

Ein Block - Cipher ist eine **injektive** Abbildung $C: K \to Perm(\Sigma^n)$ wobei K der Schlüsselraum ist.

Bsp.

$$\begin{array}{l} n=3 \\ \Sigma^3=\Sigma\times\Sigma\times\Sigma \\ \left\{ \begin{array}{ccc} 000 & \nearrow & 000 \\ 001 & \rightarrow & 001 \\ \dots & & \dots \\ 111 & \searrow & 111 \\ & \uparrow \text{Schlüssel} \end{array} \right\} l \end{array}$$

Frage:

Wie gross ist der Schlüsselraum K maximal? $|K| \leq (2^n)!$

3.1 Data Encription Standard (DES)

$$\begin{array}{ccc} \text{Lucifer} & \text{Schlüssellänge} & 128 \\ \downarrow & & \\ \text{DES} & \text{Schlüssellänge} & 56 \\ & \text{Blocklänge} & 64 \\ \end{array}$$

Die f-Funktion:

3.2 Modi von Block-Cipher

Sei
$$\Sigma := \{0, 1\}$$

 $p = c = \Sigma^4 = \{\square\square\square\square\}$
 $k = \text{Permutation von } \Sigma^4$
 $k = \pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$

Vor- und Entschlüsselung

Sei
$$m = 0101 \in p$$
 (Klartext)
 $e_k(m) = e_k(0101) = 1010 = c$

3.2.1 ECB-Modus (electronic code block)

$$m = \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2}| \underbrace{1100}_{m_3} |101^*$$

$$\xrightarrow[m_1]{e_k} \xrightarrow[c_1]{e_c}$$

Bem:

- 1. $m_1 = m_3 \Rightarrow c_1 = c_3$
- 2. Vertauschen der Ciphertext-Blöcke wird nicht notwendigerweise erkannt

3.2.2 CBC-Modus (cipher block chaining)

$$m = \underset{\text{Länge n}}{m_1} | m_2 | \dots, n : \text{Blocklänge}$$

$$\mathbf{Bsp:} \ m = \underbrace{1100}_{m_1} | \underbrace{0110}_{m_2} | \underbrace{1100}_{m_3} | 101$$

$$IV = \text{Initialvektor (i.a. bekannt)}$$

$$C_0 := IV$$

$$C_1 := e_k(C_0 \oplus m_1)$$

$$C_2 := e_k(C_1 \oplus m_2)$$

$$c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$$

$$c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$$

Entschlüsselung: $c_1 \oplus d_k(c_2) = c_1 \oplus d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2$

$$\begin{split} m &= \underset{\text{Länge n}}{m_1} | m_2, \ n : \text{Blocklänge} \\ IV &= \text{Initialvektor (i.a. bekannt)} \\ c_0 &:= IV, \ c_1 := e_k(c_0 \oplus m_1), \ c_2 := e_k(c_1 \oplus m_2) \\ c_1 \oplus d_k(c_2) &= d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2 \\ \mathbf{Bsp:} \ m &= \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2} |\underbrace{1100}_{m_3} | 101, \ IV = c_0 = 1110 \\ c_1 &= e_k(c_0 \oplus m_1) = e_k(0010) = 0001 \end{split}$$

$$c_2 = e_k(c_1 \oplus m_2) = e_k(0111) = 1011$$

 $c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$

Bem:

- 1. $m_1 = m_3 \Rightarrow c_1 = c_3$
- 2. Vertauschen kann bemerkt werden
- 3. Übertragungsfaktor machen sich bemerkbar

3.2.3 CFB-Modus (cipher feedback)

$$m = \underbrace{\tilde{m_1}}_{\text{Länge}=r} |\tilde{m_2}|\tilde{m_3}|\dots, n$$
: Cipher Block-Länge (DES: 64) und $\boxed{0 < r \le n}$

4 RSA

4.1 Schlüsselerzeugung

PK = (n,e)
SK = (n,d)
Wir wählen zwei (grosse) Primzahlen p,q
$$\in \mathbb{R}^*$$
. $\varphi \neq q$
 $n = p * Q$
 $\varphi(n) = (p-1)(q-1) // \varphi(n) = |\mathbb{Z}_n^*|$
Wir wählen $e \in \mathbb{Z}_{\varphi(n)}^* // \operatorname{ggT}(e,\varphi(n)) = 1$
 $d := e^{-1}$ in $\mathbb{Z}_{\varphi(n)}^* // \operatorname{ed}=1$ in $\mathbb{Z}_{\varphi(n)}^* \Leftrightarrow \operatorname{ed} \equiv 1 \operatorname{mod} \varphi(n)$
 $\Longrightarrow \varphi(n)|(ed-1)$
 $\Longrightarrow |\exists k \in \mathbb{Z} : e*d + k*\varphi(n)| = 1$
 $d := e^{-1} \in \mathbb{Z}_{120}^* : ed + k\varphi(n) = 1$
Beispiel:
 $p = 11, q = 13$
 $n = p * q = 143$
 $\varphi(n) = 120 = 2^3 * 3 * 5$
 $e := 7 \Rightarrow \operatorname{PK}=(143,7)$
 $\mathbb{Z}_n = \{0, 1, 2, 3, \dots, n-1\}$

$\Longrightarrow (*) \underbrace{e}_{7} * (-17) + 1 * \underbrace{\varphi(n)}_{120} = 1 \text{ // mod } \varphi(n) \Rightarrow \boxed{d \equiv (-17) \text{ mod } \varphi(n)}$

120 = q*7 + r

4.2 Verschlüsselung und Entschlüsselung

4.2.1 RSA ist ein Blockcipher

4.2.2 Beweis

1 17

Fall 1:

ggT(m,n)=1
$$(m^e)^d=m \text{ in } \mathbb{Z}_n$$
 Weil ggT(m,n)=1 existiert das Inverse von m:
$$\underbrace{m^{ed-1}=1}_{\text{Das ist zu Zeigen!}} \text{ in } \mathbb{Z}_n$$

$$e*d+k*\varphi(n)=1$$
// Konstruktion des Schlüssel
$$\Rightarrow e*d-1=-k*\varphi(n): m^{ed-1}=m^{-k*\varphi(n)}=(m^{-k})=1$$
// Satz von Euler-Fermat

Fall 2:

$$ggT(m,n)\neq 1 \Rightarrow m = l * p \text{ oder } m = k * q$$