计算物理学作业一

许嘉琪 物理学院 1500011417

October 12, 2017

1 数值误差的避免

(a)

由于在机器中浮点数运算是不满足结合律的,因此对于公式中给出的求和 $\sum_{i=1}^{N} x_i$ 采用不同顺序进行求和,所得出的结果的误差大小也不同。我们只需要找到给定样本 $x_1, x_2, ..., x_N$ 下,使得舍入误差取到最大值的求和顺序即可。记所有元素之和为S.考虑:

$$x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus ... x_N = S \cdot \left[1 + \sum_{i=2}^{N-1} \frac{\sum_{j=1}^{i} x_j}{S} \epsilon_i\right]$$

式中用 ϵ_i 来表示第i次加法所带来的相对舍入误差大小。在最近舍入下,它们应该不大于机器误差的一半: $\epsilon_i \leq \frac{\epsilon_M}{2}$ 观察这个式子,可以发现最先被求和的数对误差的贡献系数越多,因此采用从最大数开始计算,按数值大小递减的顺序进行加法可以使得舍入误差取到最大值。为了更加方便的给出误差上界,我们把式子中的所有 x_i 均取为样本中的最大值: x_m 。这样:

$$S \cdot \left[1 + \sum_{i=2}^{N-1} \frac{\sum_{j=1}^{i} x_j}{S} \epsilon_i\right] \le S \cdot \left[1 + \sum_{i=2}^{N-1} \frac{ix_m}{S} \epsilon_i\right] = S\left[1 + \frac{(N-2)(N+1)x_m \epsilon_M}{4S}\right]$$

最后计算平均值 $\overline{x} = \frac{S}{N} = \overline{x}[1 + \frac{(N-2)(N+1)x_m\epsilon_M}{4S}]$ 因此, \overline{x} 的舍入误差的最大可能的上限为

$$\frac{(N-2)(N+1)}{2N} \cdot \frac{\epsilon_M}{2} \approx (N/2) \frac{\epsilon_M}{2}$$

(b)

考虑到抵消现象,第一个公式是更为准确的。当N较大的时候,两个公式的主要计算部分在于求和。对于第一个公式,求和项为 $\sum_{i=1}^N x_i^2$;对于第二个公式,求和项为 $\sum_{i=1}^N (x_i-\overline{x})^2$ 。当所求数据集的方差较小的时候,第二个求和公式的每一项都是两个大数相减得到的小数的平方,这会导致减法结果的有效数字减少,虽然没有发生舍入,但误差仍然变大。相比而言,第一个公式的平方项求和就不会出现抵消现象。

(c)

证明:

- 1. 首先, 当n = 0时 $I_0 = \int_0^1 dx \frac{1}{x+5} = \ln(x+5) \Big|_0^1 = \ln 6 \ln 5$
- 2. 再考虑递推: $I_n = \int_0^1 dx (\frac{x^n}{x+5}) = \int_0^1 dx (\frac{x^{(n-1)(x+5-5)}}{x+5}) = -5 \int_0^1 dx \frac{x^{n-1}}{x+5} + \int_0^1 x^{n-1} dx = -5I_{n-1} + \frac{1}{n}$
- 3. 如果 I_0 有一个微小的误差 $e_0 = \epsilon$,则根据递推式: $e_k = 5e_{k-1}$ 即,误差将在每次递推计算后放大5倍。这一点可以用实际测试来得到验证(见Figure 1):从结果中可以看到:当 I_0 只出现了不到1%的偏差,误差将在递推的过程中传递放大。当进行第9次递推计算后,误差已经达到了 $0.001*5^9$ 的量级。结论得到了很好的验证。

```
>>> I0 = math.log(6/5,math.e)
0.1823215567939546
>>> def recursion(i0,n):
        k=1
        for k in range(1.n):
                i0=1/k-5×i0
                print(i0)
>>> recursion(I0.10)
0.08839221603022707
0.05803891984886467
0.03430632955495011
0.02846835222524946
0.024324905540419356
0.02123261515504607
0.018836924224769652
0.0169264899872628
>>> recursion(I0-0.001,10)
0.09339221603022707
0.033038919848864645
0.1681387340890101
-0.5906936704450505
3.1534683522252527
 15.600675094459598
78.14623261515513
-390.6061630757756
1953.1419264899891
```

Figure 1:python code

2 矩阵的模与条件数

(a)计算矩阵A的行列式,说明A的确不是奇异矩阵

由于A是上三角矩阵,A的行列式即为A所有对角元元素之积: $det(A) = 1 \neq 0$

(b) 给出矩阵的逆矩阵 A^{-1} 的形式

考虑A中某元素 A_{ij} 的代数余子式:

- 1. 如果i = j,余子式为 $A^{(n-1)\times(n-1)}$ 的行列式,等于1。
- 2. 如果i < j,即对角线右上方的元素,它们余子式均为零。原因是当第i行被删除之后,元素 $A_{(i+1)i} = 0$ 会移动到对角线的位置,而删除第j (j_i) 列的操作仍然然保持矩阵为上三角矩阵。因此,代数余字式为零。这就说明 A^{-1} 同样也为一个上三角矩阵。
- 3. 如果i > j,即对角线左下方的元素,它们的余子式不为零,我们通过逆矩阵的直接定义来求出它们的值: $AA^{-1} = I$ 考虑 A^{-1} 的第j列元素,由于这一列数组和A本身的第i行(i¿j)数组进行点乘要等于零,再考虑到A第i行元素的特点,我们可以推断出 $A_{jj}^{-1} = 1$, $A_{(j-1)j}^{-1} = 1$ 同时有: $A_{kj}^{-1} = \sum_{i=k+1}^{j} A_{ij}^{-1}$,即:每个右上角的元素等于它下方所有元素之和(又因为其实两个值均为1,则每个元素等于下方元素的2倍)。因此,我们可以得出 A^{-1} ,比如 $A^{-1} = A^{-1} = A^{-1}$

$$\begin{pmatrix} 1 & 1 & 2 & 4 & 8 \\ 0 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(C)

在实数域上考虑此问题。观察到 $||A||_p$ 的定义是与任取的向量x模长之比,我们不妨取在p模定义下的单位向量作为不同的x,直接寻找 $||Ax||_p$ 的上确界即可。考虑到无穷模的形式: $||x||_\infty = (\sum_{i=1}^n |x_i|^\infty)^{\frac{1}{\omega}} = \max|x_i|$ 。这样,只要x中的元素的绝对值都不大于1,就有||x|| = 1。假设列向量b = Ax,那么在||x|| = 1的约束下,A的无穷模就等于 $\max b_i$ 。又由于x中的元素的绝对值都不大于1,那么b中元素的最大值为 $\max \sum_{i=1}^n |a_{ij}|$ 。证明完毕。

(d)

证明:首先,根据定义,幺正矩阵满足 $UU^\dagger=I$ 。若考虑欧式模可以看出: $||x||_2^2=x^\dagger x$ 。因此有:

$$||Ux||^2 = (Ux)^{\dagger}Ux$$
$$= x^{\dagger}U^{\dagger}Ux$$
$$= x^{\dagger}Ix = ||x||^2$$

同理 $||U^{\dagger}x|| = ||x||$.因此证明了:

$$||U|| = \frac{||Ux||}{||x||} = 1 = ||U^{\dagger}||$$

再证明:对于任意复数域上的矩阵A:

$$||UA|| = sup \frac{||UAx||}{||x||} = sup \frac{||Ax||}{||x||} = ||A||$$

因此 $K_2(UA) = ||A|| \cdot ||A^{-1}|| = K_2(A)$

(e)

考虑(a)中的矩阵: A的无穷模为: $||A||_{\infty} = \max \sum_{j=1}^{n} |a_{ij}| = 1; A^{-1}$ 的无穷模为: $||A^{-1}||_{\infty} = \max \sum_{j=1}^{n} |a_{ij}^{-1}| = 2^{n-1}$ 。因此,矩阵的条件数为:

$$K_{\infty}(A) = 1 \cdot 2^{n-1} = 2^{n-1}$$

3 Hilbert 矩阵

(a)

为了使得D取极小值,我们首先求D对某一个 c_i 的偏导数:

$$\frac{\partial D}{\partial c_j} = \int_0^1 dx [2(\sum_{i=1}^n c_i x^{i-1} - f(x) \cdot x^{j-1})]$$

令其等于零:

$$0 = \int_0^1 dx \left[\sum_{i=1}^n c_i x^{i+j-2} - f(x) x^{j-1} \right]$$

即:

$$\sum_{i=1}^{n} \frac{x^{i+j-1}}{i+j-1} = \int_{0}^{1} dx f(x) x^{j-1}$$

与题目中提供的形式做对比: $\sum_{i=1}^{n} H_{ij}c_j = b_j$ 可以得到:

$$(H_n)_{ij} = \frac{1}{i+j-1}$$

$$b_i = \int_0^1 f(x)x^{i-1}dx$$

(b)

为了证明 $c^T H_n c \ge 0$ 我们回到Hilbert矩阵的定义:

$$H_n \cdot c = b$$

这样我们可以根据在(a)问中已求出的b的形式表达:

$$c^{T}H_{n}c = \sum_{i} c_{i} \int_{0}^{1} f(x)x^{i-1}dx$$
$$= \int_{0}^{1} \sum_{i} c_{i}f(x)x^{i-1}dx$$
$$= \int_{0}^{1} f(x) \cdot (\sum_{i} c_{i}x_{i-1})dx$$

对于任意的 $c_i(i=1,2...n)$,我们总可以取 $f(x) = \sum_{i=1}^n c_i x^{i-1}$ 。这样,上式就化为:

$$c^T H_n c = \int_0^1 f^2(x) dx > = 0$$

仅当f(x) = 0即 $c_i = 0$ (i=1,2...n)时,等号成立。

根据线性代数的知识,半正定的实对称矩阵一定可以对角化,并且每一个特征值都大于零。这就足以说明Hilbert 矩阵是非奇异的。

(c)

对题目中已经给出的 $det(H_n)$ 表达式求 \log ,不难算出:

$$log(H_n) = \sum_{i=1}^{n-1} (2n - 3i)log(i) - \sum_{i=n}^{2n-1} (2n - i)log(i)$$

再一次,我们运用python进行计算,所得的结果见Table 1:

Table 1: 取对数估算 $det(H_n)$

n	H(n)
---	------

11	11(11)
1	1.000000000E+00
2	8.33333333E-02
3	4.629629630E-04
4	1.653439153E-07
5	3.749295133E-12
6	5.367299887E-18
7	4.835802624E-25
8	2.737050114E-33
9	9.720234312E-43
10	2.164179226E-53

```
import math
def H(n):
    logH=0
    for i in range(1, n):
        logH = logH + (2*n - 3*i)*math.log(i, math.e)
    for i in range(n, 2*n):
        logH = logH - (2*n - i)*math.log(i, math.e)
    return math.exp(logH)
for i in range(1,11):
    print(H(i))
```

Figure 2:python code

(d)

利用c++进行编程, 我们将在三种不同设定下, 分析得到的结果见table 2、3:

如Table 2,而当 $n \geq 7$ 之后,两个算法已经都不能给出正确的结果(Cholesky的偏离更大一些)。取float类型变量使得机器精度较低,在这种情况下,两种算法的表现较为类似。

从Table 3中结果可以看到,在这种设定下,Cholesky分解在n=4的时候开始出现偏移;而GEM方法直到n=8都可以给出精确解。可以说,加入支点遴选的GEM是更精确的算法。可能的原因为:

- 1. Cholesky分解法需要的运算次数明显多于GEM分解,由于计算分解矩阵H时带来误差。
- 2. 由于在C++语言中,我给矩阵元使用了long double类型,机器精度相当高,这样GEM方法获得优势。
- 3. 而考虑到Cholesky算法中需要多次开平方运算,其运算精度较低,产生了很大的误差。

	m 11	0 77 11 6	・ 米と+占 本丰	보고 a uita	4 <i>5 5</i> + FF	
1		e 2: Table 2				<i>C</i>
n=1	x1	x2	x3	x4	x5	x6
GEM	1					
CHO	1					
2						
GEM	-2	6				
СНО	-2	6				
3						
GEM	2.99999	-23.9999	29.9999			
СНО	2.99999	-23.9999	29.9999			
4						
GEM	-4.00003	60.00005	-180.002	140.001		
CHO	-3.99992	59.9993	-179.999	139.999		
5						
GEM	4.99808	-119.963	629.832	-1119.74	629.869	
CHO	4.99651	-119.935	629.72	-1119.58	629.92	
6						
GEM	-5.83079	205.338	-1649.18	4961.18	-6214.1	2738.49
СНО	5.81654	204.95	-1646.61	4954.49	-6206.7	2735.56

Table 3: Table 3: 数据类型使用long double,开根计算使用float精度的结果										
n=1	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10
GEM	1									
СНО	1									
2										
GEM	-2	6								
CHO	-2	6								
3										
GEM	3	-24	30							
CHO	3	-24	30							
4										
GEM	-4	60	-180	140						
СНО	-3.99998	59.9998	-180	140						
5										
GEM	5	-120	630	-1120	630					
СНО	4.99994	-119.999	629.996	-1119.99	629.998					
6										
GEM	-6	210	-1680	5040	-6300	2772				
СНО	-6.00005	210.003	-1680.02	5040.06	-6300.07	2772.3				
7										
GEM	7	-336	3780	-16800	34650	-33264	12012			
СНО	7.00273	-336.109	3781.03	-16804	34657.2	-33270.1	12014			
8										
GEM	-8	504	-7560	46200	-138600	216216	-168168	51480		
СНО	-8.02289	505.15	-7574.31	46274.7	-138795	216486	-168356	51532.3		
9										
GEM	9.14037	-728.952	14003.3	-111862	453938	-1015950	1269070	-828321	219920	
СНО	9	-720	13860	-110800	450450	-1009010	1261260	-823680	218790	
10										
GEM	-10	990	-23760	240240	-1261260	3783780	-6726720	7001280	-3938220	923780
СНО	-11.0391	1074.71	-25493.2	255539	-1332600	3976400	-7038170	7298620	-4092730	957461

第三中设定是数据类型使用long double,并且两个算法的运算精度也都是long double精度。为了简明起见在这里只给出n=11时的程序运行结果:

Figure 3:c++ prompt

可以看出,两种方法给出的结果是基本相同的,这说明在机器精度较高的情况下,两种方法的稳定性都不错。但是,在 x_3 的精确解应该为:38610,但是在这里的结果是38609.9,说明任然存在误差。解决的办法需要重新定义分数类,获得分数间的无损乘除法。