

Chapter 06. TCP와 NAT

TCP & UDP 개요

목차

- Transport 계층
- TCP
- UDP
- 비교

Transport 계층

• 역할 End to End 서비스, 커넥션(연결)을 관리

Connection-oriented, Reliability, Flow control, Multiplexing

TCP & UDP, 소켓을 통한 프로세스별 통신

5 tuple = Source IP, Source Port, Dest IP, Dest Port, Protocol

Transport 계층

Port

전송 계층에서 사용되며 특정 프로세스를 구분하는 단위

0 ~ 65535

0 ~ 1023: well-known port, 1024 ~ 49151: registed port, 49152 ~ 65535: dynamic port

웹 TCP 80, FTP TCP 21

Process

Port

TCP/UDP

IP

No.		Time	Source	Destination	Protocol	Length	Info					
	157	2.294829	183.111.180.183	172.20.10.2	TCP	54	80 → 53	3676 [ACK]	Seq=104	Ack=43	Win=1432 Len=0	
<												
>	Frame :	157: 54 bytes	on wire (432 bits), 5	4 bytes captured (432	bits) o	n inte	rface \[Device\NPF	_{B7158E2	2F-587B	-4D49-AFAA-BA995AC18FAB}	, id 0
>	Etherne	et II, Src: 76	:b5:87:75:83:64 (76:b	5:87:75:83:64), Dst:	76:b5:87	:57:3a	:20 (76:	:b5:87:57:	3a:20)			
>	Interne	et Protocol Ve	rsion 4, Src: 183.111	.180.183, Dst: 172.20	.10.2							
>	Transm	ission Control	Protocol, Src Port:	80, Dst Port: 53676,	Seq: 104	, Ack:	43, Ler	n: 0				

• 정의

TCP(Transmission Control Protocol), 전송 제어 프로토콜

인터넷을 구성하는 핵심 프로토콜, 1981년 RFC 793 릴리즈

신뢰성을 기반으로 데이터를 에러 없이 전송, 1:1 통신

연결 지향, Connection-oriented, 패킷의 상태 정보를 확인하고 유지

에러 발생시 재전송을 요청하고 에러를 복구한다

Segment

Packet

• 헤더 포맷 20바이트

16						
	Source Port	Dest Port				
Sequence Number						
	Acknowledgement Number					
HLEN Reserved URG, ACK, PSH, RST,SYN, FIN		Window Size	7			
	Checksum Urgent Pointer					
Option & Padding						

• 헤더 포맷 - 상세

- 1. Source & Dest Port: 소스 포트와 목적지 포트
- 2. Sequence Number: 순서 번호, 패킷 순서화와 중복 패킷 방지
- 3. Acknowledgement Number: 승인 번호, 수신측에서 수신 확인하고 다음 송신 데이터 요청
- 4. HLEN: 20 ~ 60
- 5. TCP 제어 플래그: TCP 회선 및 제어 관리
- 6. Window Size: TCP 흐름 제어, 수신 버퍼의 여유 용량을 통보
- 7. Checksum: 데이터 무결성 확인
- 8. Urgent Pointer: 긴급 데이터를 알림
- 9. Option & Padding: 옵션, MSS 조절이나 타임스탬프

• **TCP 제어 플래그** 6가지로 구성되며 활성화 되는 값을 비트 "1"로 표현

URG	ACK	PSH	RST	SYN	FIN
-----	-----	-----	-----	-----	-----

1. URG: 긴급함을 알림, 긴급 데이터로 우선 순위를 높여 먼저 송신

2. ACK: 확인, 수신측에서 송신된 패킷을 정상적으로 받았음을 알림

3. PSH: 버퍼링 되지 않고 바로 송신

4. RST: 비정상 상황에서 연결을 끊음

5. SYN: 연결을 맺기 위해 보내는 패킷 000010

6. FIN: 정상 종료, 송신측에서 수신측에 연결 종료 요청

UDP

• 정의 UDP(User Datagram Protocol)

신뢰성은 낮으나 데이터 전송이 빠르다, 1980년 RFC 768 릴리즈

송신측은 일반적으로 데이터를 보내고 확인 안함, 1:n 통신 가능

Connectionless, 재전송 불가, 실시간 데이터 전송에 적합

스트리밍 서비스의 경우 전송 문제가 발생해도 재전송 보다는 실시간 데이터 전송이 중요

Segment

Packet

UDP

• 헤더 포맷

Source Port	Dest Port
Length	Checksum

16

31

1. Source Port: 출발지 포트

2. Dest Port: 목적지 포트

3. Length: 전체 데이터 길이 (header + data)

4. Checksum: 데이터 무결성 확인

비교

• 헤더 포맷 - PCAP

```
▼ Transmission Control Protocol, Src Port: 56176, Dst Port: 443, Seq: 1, Ack: 1, Len: 0

    Source Port: 56176
    Destination Port: 443
     [Stream index: 11]
     [TCP Segment Len: 0]
                           (relative sequence number)
    Sequence number: 1
    Sequence number (raw): 1662365292
     [Next sequence number: 1
                                 (relative sequence number)]
    Acknowledgment number: 1
                                 (relative ack number)
    Acknowledgment number (raw): 159938476
    0101 .... = Header Length: 20 bytes (5)
  > Flags: 0x010 (ACK)
    Window size value: 514
     [Calculated window size: 131584]
    [Window size scaling factor: 256]

∨ User Datagram Protocol, Src Port: 443, Dst Port: 59513

    Checksum: 0x2f0f [unverified]
                                                     Source Port: 443
    [Checksum Status: Unverified]
                                                     Destination Port: 59513
    Urgent pointer: 0
                                                     Length: 197
  > [SEQ/ACK analysis]
                                                     Checksum: 0xe6f2 [unverified]
  > [Timestamps]
                                                     [Checksum Status: Unverified]
                                                     [Stream index: 2]
                                                   > [Timestamps]
```

비교

• TCP & UDP

		L6				3
	Source Port	Dest Port				
	Sequence	e Number				
	Acknowledge	ment Num	ber		:	
HLEN	Reserved URG, ACK, PSH, RST,SYN, FIN		Windo	w Size		
	Checksum		Urgent	Pointer		
	Option &	Padding				

<u> </u>	1	:	:	16	:	:	:	:	:	31
	Source	Port				D	est Por	't		7
	Leng	gth				Ch	necksui	m		1

	TCP 20 Byte	UDP 8 Byte		
Protocol ID	6	17		
순서 확인	가능	불가능		
신뢰성	높음	낮음		
연결성	Connection-oriented	Connectionless		
제어	흐름 & 혼잡 제어 가능	없음		
속도 느리다		빠르다		

Wrap up

- Transport 계층은 소프트웨어 레벨로 End to End 서비스로 부르며 커넥션을 관리
- 대표적인 프로토콜로 TCP & UDP가 있으며 소켓을 통한 프로세스 별 통신
- 포트는 전송 계층에서 사용되는 특정 프로세스를 구분하는 단위로 범위는 0 ~ 65535 이다
- UDP(User Datagram Protocol)는 1980년 RFC 768 릴리즈, 1:n 가능 및 비 신뢰성 통신
- TCP(Transmission Control Protocol)는 1981년 RFC 793 릴리즈, 1:1 신뢰성 기반 통신

	TCP 20Byte	UDP 8Byte
Protocol ID	6	17
순서 확인	가능	불가능
신뢰성	높음	낮음
연결성	Connection-oriented	Connectionless
제어	흐름 & 혼잡 제어 가능	없음
속도	느리다	빠르다

