

Major vs. trace elements, units of measurement

	ZV14	ZV85	ZV10		ZV14	ZV85	ZV10
Major element oxides (wt %)			Selected	lected trace elements (ppm)			
SiO ₂	48.91	45.26	45.26	Ni	470	1110	1460
TiO ₂	0.45	0.33	0.29	Cr	2080	2770	2330
Al_2O_3	9.24	6.74	6.07	V	187	140	118
Fe ₂ O ₃	2.62	2.13	1.68	Y	10	6	6
FeO	8.90	8.66	8.70	Zr	21	16	14
MnO	0.18	0.17	0.17	Rb	3.38	1.24	1.38
MgO	15.32	22.98	26.21	Sr	53.3	32.6	31.2
CaO	9.01	6.94	6.41	Ba	32	12	10
Na ₂ O	1.15	0.88	0.78	Nd	2.62	1.84	2.31
K ₂ O	0.08	0.05	0.04	Sm	0.96	0.68	0.85
P_2O_5	0.03	0.02	0.02	n //			
S	0.04	0.05	0.05		nic isotope r		
H ₂ O+	3.27	3.41	2.20	εNd 87×86	+2.4	+2.4	+2.5
H ₂ O-	0.72	0.57	0.28	°'Sr/°°S	Sr 0.7056	0.70511	0.70501
CO ₂	0.46	0.84	1.04	Stable i	sotope ratios	(0/00)	
Total	100.38	99.03	99.20	$\delta^{18}O$	+7.3	+7.0	+6.8

Major-elements

wt. % of
oxides
(comes from the
days of wet
chemistry
analysis)

Trace elements

• ppm, ppb, ppt (by weight)

Fractional crystallization

8.5: Generalized mixing

Table contains compositions of three ideal rock-forming minerals making up a model olivine gabbro:

wt. %	SiO ₂	Al_2O_3	FeOt	MgO	CaO	Na ₂ O
Pl	50.54	31.70	0.00	0.00	14.36	3.40
Ol	39.19	0.00	18.75	42.06	0.00	0.00
Di	55.49	0.00	0.00	18.61	25.90	0.00

• Calculate whole-rock geochemical composition of gabbro that contains 50 % Pl, 30 % Ol and 20 % Di by weight.

https://www.virtualmicroscope.org/content/olivine-gabbro-huntly

8.5: Generalized mixing

This is a simple calculation leading to a matrix multiplication of a vector with mineral proportions (m) by a matrix of mineral compositions (C_c) stored in the datafile.

$$\overrightarrow{C_S} = \begin{pmatrix} c_S^{SiO_2} \\ c_S^{Al_2O_3} \\ \vdots \\ c_S^{Na_2O} \end{pmatrix}$$

$$\overrightarrow{C_{S}} = \begin{pmatrix} c_{S}^{SiO_{2}} \\ c_{S}^{Al_{2}O_{3}} \\ \vdots \\ c_{S}^{Na_{2}O} \end{pmatrix} \qquad \overrightarrow{\overline{C_{C}}} = \begin{pmatrix} c_{Pl}^{SiO_{2}} & c_{Ol}^{SiO_{2}} & c_{Di}^{SiO_{2}} \\ c_{Pl}^{Al_{2}O_{3}} & c_{Ol}^{Al_{2}O_{3}} & c_{Di}^{Al_{2}O_{3}} \\ \vdots & \vdots & \vdots \\ c_{Pl}^{Na_{2}O} & c_{Ol}^{Na_{2}O} & c_{Di}^{Na_{2}O} \end{pmatrix} \qquad \overrightarrow{m} = \begin{pmatrix} m_{Pl} \\ m_{Ol} \\ m_{Di} \end{pmatrix}$$

$$\overrightarrow{m{m}} = egin{pmatrix} m_{Pl} \\ m_{Ol} \\ m_{Di} \end{pmatrix}$$

$$\overrightarrow{C_S} = \overrightarrow{\overline{C_C}} \times \overrightarrow{m}$$
 ~ Eq. [6.14]

Matrix multiplication in R is implemented via the %*% operator.

8.2: Fractional crystallization (direct)

Table contains analyses of Sázava tonalite (Janoušek et al. 2004) and some of its rock-forming minerals (Janoušek et al. 2000):

wt. %	Tonalite	Pl	Bt	Amp
SiO_2	55.09	53.41	35.32	45.35
TiO ₂	0.75	0	2.11	1.39
Al_2O_3	17.59	29.48	15.31	9.47
FeOt	7.73	0.09	23.56	18.57
MgO	3.52	0	9.05	9.82
CaO	8.2	11.27	0.01	11.92
Na ₂ O	2.83	5.05	0.1	1.08
K ₂ O	2.04	0.12	9.81	1.02

- Calculate the composition of residual melt after 20% fractional crystallization of a cumulate consisting of 50 % Pl, 30 % Bt and 20 % Amp by weight.
- What is the composition of the cumulate?

8.2: Fractional crystallization (direct)

For each element j in the unfractionated/primitive magma (C_0) , fractionated magma (C_i) and the crystallizing cumulate (C_s) can be written a mass-balance equation [Eq. 6.6]:

$$C_0^j = (1 - F_C)C_L^j + F_CC_S^j$$

Where degree of fractionation (F_c) is related to the mass fraction of melt (*F*) in the system:

$$F_C = (1 - F)$$

And also:
$$C_S^j = \sum_{i=1}^n (m_i c_i^j)$$
 Eq. [6.8] $\overrightarrow{C_S} = \overrightarrow{\overline{C_C}} \times \overrightarrow{m}$

$$\overrightarrow{C_S} = \overrightarrow{\overline{C_C}} \times \overrightarrow{m}$$

$$\sum_{i=1}^{n} m_i = 1$$

$$C_L^j = \frac{C_0^j - C_S^j F_c}{(1 - F_c)}$$
 Eq. [8.2]

9.4: "Normative" calculations (reversed Ex. 8.5)

wt. %	gabbro	Pl	Ol	Di	
SiO ₂	48.125	50.54	39.19	55.49	
Al_2O_3	15.85	31.7	0	0	
FeO	5.625	0	18.75	0	
MgO	16.34	0	42.06	18.61	
CaO	12.36	14.36	0	25.9	
Na ₂ O	1.7	3.4	0	0	

gabbro_modal2.data

• Given the analyses of a gabbro and its mineral constituents (Table), estimate the wt. % of individual minerals using the least-square method.

9.4: "Normative" calculations (reversed Ex. 8.5)

Defining

 $(C_s = \text{crystallizing cumulate}, C_t = \text{fractionated magma}, C_0 = \text{unfractionated/primitive magma},$ m =mass proportions of minerals in the cumulate):

$$\overrightarrow{C_{S}} = \begin{pmatrix} c_{S}^{SiO_{2}} \\ c_{S}^{Al_{2}O_{3}} \\ \vdots \\ c_{S}^{Na_{2}O} \end{pmatrix} \qquad \overrightarrow{\overline{C_{C}}} = \begin{pmatrix} c_{Pl}^{SiO_{2}} & c_{Ol}^{SiO_{2}} & c_{Di}^{SiO_{2}} \\ c_{Pl}^{Al_{2}O_{3}} & c_{Ol}^{Al_{2}O_{3}} & c_{Di}^{Al_{2}O_{3}} \\ \vdots & \vdots & \vdots \\ c_{Pl}^{Na_{2}O} & c_{Ol}^{Na_{2}O} & c_{Di}^{Na_{2}O} \end{pmatrix} \qquad \overrightarrow{m} = \begin{pmatrix} m_{Pl} \\ m_{Ol} \\ m_{Di} \end{pmatrix}$$

$$\overrightarrow{\boldsymbol{m}} = \begin{pmatrix} m_{Pl} \\ m_{Ol} \\ m_{Di} \end{pmatrix}$$

Allows a matrix formulation of:

$$\overrightarrow{C_S} = \overrightarrow{C_C} \times \overrightarrow{m}$$
 ~ Eq. [6.14]

That can be solved for m by the least-squares method.

9.4: "Normative" calculations (reversed Ex. 8.5)

In R the least-squares method is implemented by the function lsfit setting intercept = FALSE, so that the model passes through the origin.

$$\overrightarrow{C_S^*} = \overline{\overline{C_C}} \times \overrightarrow{m^*}$$

The value of mean squared residuals (R²) represents an useful measure for goodness of fit:

$$R^2 = \left| \overrightarrow{C_S}^* - \overrightarrow{C_S} \right|^2 = \min.$$

9.1: Fractional crystallization (reversed Ex. 8.2)

wt. %	tonalite	dif. magma	Pl	Bt	Amp
SiO_2	55.09	57.270	53.41	35.32	45.35
TiO ₂	0.75	0.710	0	2.11	1.39
Al_2O_3	17.59	16.681	29.48	15.31	9.47
FeOt	7.73	6.956	0.09	23.56	18.57
MgO	3.52	3.230	0	9.05	9.82
CaO	8.2	8.245	11.27	0.01	11.92
Na ₂ O	2.83	2.845	5.05	0.1	1.08
K ₂ O	2.04	1.748	0.12	9.81	1.02

sazava fc2.data

• Given the compositions of the parental magma (tonalite), differentiated melt and crystallizing minerals (Table), estimate (by the least-square method) the degree of fractional crystallization and mineral proportions in the cumulate.

9.1: Fractional crystallization (reversed Ex. 8.2)

Setting

 $(C_0 = \text{unfractionated/primitive magma}, C_I = \text{fractionated magma}, C_{PI}, C_{BI}, C_{Amp} = \text{mass}$ proportions of plagioclase, biotite, amphibole in the crystallizing cumulate, F = melt fraction left in the system, m = mass proportions of minerals in the cumulate):

$$\overrightarrow{C_0} = \begin{pmatrix} C_0^{SiO_2} \\ C_0^{TiO_2} \\ \vdots \\ C_0^{K_2O} \end{pmatrix} = \begin{bmatrix} C_L^{SiO_2} c_{Pl}^{SiO_2} & c_{Bt}^{SiO_2} & c_{Amp}^{SiO_2} \\ C_L^{TiO_2} c_{Pl}^{TiO_2} & c_{Bt}^{TiO_2} & c_{Amp}^{TiO_2} \\ \vdots & \vdots & \vdots \\ C_L^{K_2O} c_{Pl}^{K_2O} & c_{Bt}^{K_2O} & c_{Amp}^{K_2O} \\ C_L^{K_2O} c_{Pl}^{K_2O} & c_{Bt}^{K_2O} & c_{Amp}^{K_2O} \end{pmatrix} \overrightarrow{f'} = \begin{pmatrix} (F) \\ (1-F)m_{Pl} \\ (1-F)m_{Bt} \\ (1-F)m_{Amp} \end{pmatrix}$$

$$\overrightarrow{f'} = \begin{pmatrix} (F) \\ (1-F)m_{Pl} \\ (1-F)m_{Bt} \\ (1-F)m_{Amp} \end{pmatrix}$$

Allows a matrix formulation:

$$\overrightarrow{C_0} = \overrightarrow{C} \times \overrightarrow{f'}$$
 Eq. [6.27]

That can be solved for $\overline{f'}$ by the least-squares method.