$f_J(2220)$

$$I^{G}(J^{PC}) = 0^{+}(2^{++} \text{ or } 4^{++})$$

OMITTED FROM SUMMARY TABLE

Needs confirmation. See our mini-review in the 2004 edition of this *Review*, PDG 04.

$f_J(2220)$ MASS

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
2231.1± 3.5 OUR	AVERAGE					
$2235 \ \pm \ 4 \ \pm \ 6$	74	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$	
2230 $\begin{array}{ccc} + & 6 \\ - & 7 \end{array} \pm 16$	46	BAI	96 B	BES	$e^+e^- o J/\psi o$	
					$_{\gamma}$ K $^{+}$ K $^{-}$	
2232 $^{+}_{-}$ $^{8}_{7}$ ± 15	23	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma K_S^0 K_S^0$	
$2235 ~\pm~4~\pm~5$	32	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma p \overline{p}$	
2209 $^{+17}_{-15}$ ± 10		ASTON	88F	LASS	$11 \ K^- p \rightarrow \ K^+ K^- \Lambda$	
2230 ± 20		BOLONKIN	88	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$	
2220 ± 10	41	¹ ALDE			38–100 $\pi p \rightarrow n \eta \eta'$	
$2230~\pm~6~\pm14$	93	BALTRUSAIT.	86 D	MRK3	$e^+e^- ightarrow \gamma K^+K^-$	
$2232 \ \pm \ 7 \ \pm \ 7$	23	BALTRUSAIT.	.86 D	MRK3	$e^+e^- ightarrow \gamma K^0_S K^0_S$	
• • • We do not use the following data for averages, fits, limits, etc. • •						
$2223.9 \pm \ 2.5$		² VLADIMIRSK.	08	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n + m\pi^0$	
2246 ± 36		BAI	98H	BES	$J/\psi \rightarrow \gamma \pi^0 \pi^0$	
${}^{1}_{2}$ ALDE 86B uses ${}^{2}_{3}$ 2 2 2 2 2 2 2 2 2 2 2	data from Systematio	both the GAMS uncertaities not	-2000 t evalı	and GA uated	MS-4000 detectors.	

*f*_J(2220) WIDTH

<i>VALUE</i> (MeV)	CL% EVTS	DOCUMENT ID		TECN	COMMENT
23 ⁺ 7 OUR AV	ERAGE				
$19^{+}_{-}\ 11^{+}_{11}\pm 12$	74	BAI	96 B	BES	$e^+e^- ightarrow J/\psi ightarrow \gamma \pi^+ \pi^-$
$20^{+}_{-}\ {\overset{20}{15}}\!\pm\!17$	46	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma K^+K^-$
$20^{+}_{-}\ {}^{25}_{16}\!\pm\!14$	23	BAI	96 B	BES	$e^{+\stackrel{'}{e^{-}}} \rightarrow J/\psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$
15^{+}_{-} $^{12}_{9}\pm$ 9	32	BAI	96 B	BES	$e^+e^- ightarrow J/\psi ightarrow $
60^{+107}_{-57}		ASTON	88F	LASS	$11 K^- p \rightarrow K^+ K^- \Lambda$
80± 30		BOLONKIN	88	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$
$26^{+}_{-}\ {}^{20}_{16}\!\pm\!17$	93	BALTRUSAIT.	. .86 D	MRK3	$e^+e^- \rightarrow \gamma K^+K^-$
$18^{+}_{-}\ \begin{array}{l} 23 \\ 15 \end{array} \pm 10$	23	BALTRUSAIT.	. .86 D	MRK3	${\rm e^+e^-} \rightarrow \gamma {\rm K}_S^0 {\rm K}_S^0$

• • • We do not use the following data for averages, fits, limits, etc. • • •

Created: 5/30/2017 17:21

$f_J(2220)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	ππ	not seen
Γ_2	$\pi^+\pi^-$	not seen
Γ ₃	$K\overline{K}$	not seen
Γ_4	$\rho \overline{\rho}$	not seen
Γ_5	$\gamma\gamma$	not seen
Γ_6	$\eta \eta'(958)$	seen
Γ_7	$\phi \phi$	not seen
Γ ₈	$\eta\eta$	not seen

$f_J(2220) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{total}$	$\Gamma_3\Gamma_5/\Gamma$
--	---------------------------

VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
< 1.4	95	¹ ACCIARRI	01н	L3	$\gamma \gamma \rightarrow K_S^0 K_S^0$, $E_{cm}^{ee} =$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

< 5.6	95	$^{ m 1}$ GODANG	97	CLE2	$\gamma \gamma \rightarrow K_S^0 K_S^0$
< 86	95	¹ ALBRECHT	90 G	ARG	$\gamma \gamma \rightarrow K^+K^-$
<1000	95	² ALTHOFF	85 B	TASS	$\gamma \gamma$, K $\overline{K}\pi$

$$\frac{\Gamma(\pi\pi)\times\Gamma(\gamma\gamma)/\Gamma_{\text{total}}}{\text{\tiny $VALUE\ (eV)$}} \underline{\text{\tiny $CL\%$}} \underline{\text{\tiny $DOCUMENT\ ID$}} \underline{\text{\tiny $TECN$}} \underline{\text{\tiny $COMMENT$}}$$

<2.5 95 ALAM 98C CLE2 $\gamma \gamma \rightarrow \pi^+ \pi^-$

$f_J(2220) \Gamma(i)\Gamma(p\overline{p})/\Gamma^2(total)$

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\pi\pi)/\Gamma_{\text{total}}$

 $\Gamma_4/\Gamma \times \Gamma_1/\Gamma$

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
<18	95	¹ AMSLER	01	CBAR	1.4–1.5 $p\overline{p} \rightarrow \pi^0\pi^0$
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
<(11-42)	99	² HASAN	96	SPEC	1.35–1.55 $p\overline{p} \rightarrow$
					$_{\pi}+_{\pi}-$

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\phi\phi)/\Gamma_{\text{total}}$

 $\Gamma_4/\Gamma \times \Gamma_7/\Gamma$

Created: 5/30/2017 17:21

VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT
<6	95	³ EVANGELIS 98	SPEC	$1.1-2.0 \ \rho \overline{\rho} \rightarrow \phi \phi$

HTTP://PDG.LBL.GOV

Page 2

 $^{^{1}\}operatorname{Assuming}\ J^{P}=2^{+}.$ $^{2}\operatorname{True}$ for $J^{P}=0^{+}$ and $J^{P}=2^{+}.$

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma$	$-(\eta\eta)/\Gamma_{\rm t}$	total			$\Gamma_4/\Gamma imes \Gamma_8/\Gamma$
VALUE (units 10^{-5})	CL%	DOCUMENT	ID	TECN	COMMENT
<i>VALUE</i> (units 10 ^{−5}) <4	95	$^{ m 1}$ AMSLER	01	CBAR	1.4–1.5 $p\overline{p} \rightarrow \eta \eta$
1 For $J^{P}=2^{+}$ in	the mass	range 2222-2240	MeV and	d the to	tal width between 10 and
20 MeV					eV and the total width of
$_{15}^{-1}$ MeV.	$a J^{-} = 4$	in the mass ran	ige 2220-	-2245 IVI	ev and the total width of
$\frac{15 \text{ MeV.}}{3 \text{ For } J^P = 2^+, \text{ th}}$	ne mass of	2235 MeV and th	ne total w	idth of I	15 MeV.
		2220) BRANCH			_
$\Gamma(\pi\pi)/\Gamma_{\text{total}}$					Γ ₁ /Γ
VALUE		<u>DOCUMENT</u>	ID	СОММЕ	NT
not seen		$^{ m 1}$ DOBBS	15	$J/\psi ightarrow$	$\gamma \pi \pi$
not seen				,	$\rightarrow \gamma \pi \pi$
¹ Using CLEO-c da	ata but no	t authored by the	CLEO C	ollaborat	ion.
$\Gamma(\overline{K})/\Gamma_{total}$					Г ₃ /Г
VALUE		<u>DOCUMENT</u>	ID	СОММЕ	NT
not seen		¹ DOBBS	15	$J/\psi ightarrow$	$\gamma K \overline{K}$
not seen		¹ DOBBS	15	ψ (2 S)	$\rightarrow \gamma K \overline{K}$
$^{ m 1}$ Using CLEO-c da	ata but no	t authored by the	CLEO C	ollaborat	ion.
$\Gamma(\pi\pi)/\Gamma(K\overline{K})$					Γ_1/Γ_3
VALUE		DOCUMENT ID	ΤΕСΝ	<u>COMI</u>	• -
1.0 ± 0.5		BAI 9	6B BES	e^+e	$^- ightarrow \; J/\psi ightarrow \; \gamma 2\pi$, $K \overline{K}$
$\Gamma(p\overline{p})/\Gamma_{ m total}$					Γ ₄ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID	TE	ECN CO	OMMENT
• • • We do not use					
not seen		¹ AUBERT	07AV B	ABR B	$\rightarrow p \overline{p} K^{(*)}$
not seen		WANG	05A BI	ELL B	$+ \rightarrow \overline{p}pK^+$
<3.0	95	² EVANGELIS	97 SF	PEC 1.	96-2.40 $\overline{p}p \rightarrow K_S^0 K_S^0$
<1.1	99.7	³ BARNES	93 SF	PEC 1.	96-2.40 $\overline{p}p \rightarrow K_S^0 K_S^0$ 3-1.57 $\overline{p}p \rightarrow K_S^0 K_S^0$
< 2.6		³ BARDIN	87 CI	NTR 1.	$3-1.5 \overline{p}p \rightarrow K^+K^-$
<3.6	99.7	³ SCULLI	87 CI	NTR 1.	$29\text{-}1.55 \; \overline{p}p \rightarrow K^+K^-$
$\frac{1}{2}$ Assuming $\Gamma < 30$		D		<u>—</u> .	
² Assuming $\Gamma \sim 2$					
³ Assuming $\Gamma = 30$)-35 MeV,	$J^{r}=2^{+}$ and B((2220)ر ا	$\rightarrow KF$	(6) = 100%.
$\Gamma(p\overline{p})/\Gamma(K\overline{K})$					Γ_4/Γ_3
VALUE		DOCUMENT ID			MENT
0.17 ± 0.09		BAI 9	6в BES	e^+e	$- \rightarrow J/\psi \rightarrow \gamma p \overline{p}, K \overline{K}$

Created: 5/30/2017 17:21

$f_J(2220)$ REFERENCES

DOBBS 1 VLADIMIRSK 0	15 08	PR D91 052006 PAN 71 2129	S. Dobbs <i>et al.</i> V.V. Vladimirsky <i>et al.</i>	(NWES) (ITEP)
12/12/11/11/01/11/10		Translated from YAF 71		(=.)
AUBERT 0	D7AV	PR D76 092004	B. Aubert et al.	(BABAR Collab.)
WANG 0)5A	PL B617 141	MZ. Wang et al.	(BELLE Collab.)
PDG 0)4	PL B592 1	S. Eidelman <i>et al.</i>	(PDG Collab.)
ACCIARRI 0)1H	PL B501 173	M. Acciarri et al.	(L3 Collab.)
AMSLER 0)1	PL B520 175	C. Amsler et al.	(Crystal Barrel Collab.)
ALAM 9	98C	PRL 81 3328	M.S. Alam et al.	(CLEO Collab.)
BAI 9	98H	PRL 81 1179	J.Z. Bai <i>et al.</i>	(BES Collab.)
EVANGELIS 9	98	PR D57 5370	C. Evangelista et al.	(JETSET Collab.)
EVANGELIS 9	97	PR D56 3803	C. Evangelista et al.	(LEAR Collab.)
GODANG 9	97	PRL 79 3829	R. Godang et al.	(CLEO Collab.)
BAI 9	96B	PRL 76 3502	J.Z. Bai <i>et al.</i>	(BES Collab.)
HASAN 9	96	PL B388 376	A. Hasan, D.V. Bugg	(BRUN, LOQM)
BARNES 9	93	PL B309 469	P.D. Barnes et al.	(PS185 Collab.)
ALBRECHT 9	90G	ZPHY C48 183	H. Albrecht et al.	(ARGUS Collab.)
ASTON 8	38F	PL B215 199	D. Aston et al.	(SLAC, NAGO, CINC, INUS) JP
BOLONKIN 8	38	NP B309 426	B.V. Bolonkin et al.	(ITEP, SERP)
ALDE 8	37C	SJNP 45 255	D. Alde <i>et al.</i>	
		Translated from YAF 45		,
	37	PL B195 292	G. Bardin <i>et al.</i>	(SACL, FERR, CERN, PADO+)
	37	PRL 58 1715	J. Sculli <i>et al.</i>	(NYU, BNL)
-	36B	PL B177 120	D.M. Alde <i>et al.</i>	(SERP, BELG, LANL, LAPP)
	36D	PRL 56 107	R.M. Baltrusaitis	(CIT, UCSC, ILL, SLAC+)
ALTHOFF 8		ZPHY C29 189	M. Althoff et al.	(TASSO Collab.)

- OTHER RELATED PAPERS ----

DEL-AMO-SA... 100 PRL 105 172001

P. del Amo Sanchez et al.

(BABAR Collab.)

Created: 5/30/2017 17:21