Ampliació de Matemàtiques Tema 3. Integrals de superfície

Lali Barrière Departament de Matemàtiques - UPC

Enginyeria de Sistemes Aeroespacials Enginyeria d'Aeroports Enginyeria d'Aeronavegació EETAC

Continguts

3.1 Superfícies parametritzades

3.2 Integrals de superfície de camps escalars

3.3 Integrals de superfície de camps vectorials

3.1 Superfícies parametritzades

Definició Una superfície és el lloc geomètric d'un punt que es mou amb dos graus de llibertat a l'espai.

- Forma implícita. F(x, y, z) = 0
- Forma explícita. z = f(x, y)

Definició Una superfície parametritzada és una aplicació contínua d'un recinte del pla D en \mathbb{R}^3

$$\phi: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(u,v) \longmapsto (x(u,v), y(u,v), z(u,v))$$

La superfície S associada a ϕ és $S = \phi(D)$.

Si x(u,v), y(u,v) i z(u,v) són \mathcal{C}^1 , diem que la superfície ϕ (o S) és \mathcal{C}^1 .

Vectors tangents i pla tangent a una superfície en un punt

Producte vectorial

$$\vec{u}_1 = (x_1, y_1, z_1) \\ \vec{u}_2 = (x_2, y_2, z_2) \implies \vec{u}_1 \times \vec{u}_2 = (y_1 z_2 - y_2 z_1, z_1 x_2 - z_2 x_1, x_1 y_2 - x_2 y_1)$$

- $||\vec{u}_1 \times \vec{u}_2|| = ||\vec{u}_1|| \cdot ||\vec{u}_2|| \cdot \sin \alpha$, on α és l'angle entre els dos vectors.
- La direcció de $\vec{u}_1 \times \vec{u}_2$ és perpendicular als dos vectors \vec{u}_1 i \vec{u}_2 , i el sentit ve donat per la regla de la mà dreta.

Definició Si

$$\phi: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(u,v) \longmapsto (x(u,v), y(u,v), z(u,v))$$

és una superfície parametritzada \mathcal{C}^1 , els vectors

$$\vec{T_u} = \frac{\partial \phi}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \ \mathbf{i} \ \vec{T_v} = \frac{\partial \phi}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)$$

són els vectors tangents fonamentals de la superfície en el punt $\phi(u,v)$.

Definició Diem que ϕ és una parametrització regular en un punt (u_0, v_0) si $\vec{T}_u(u_0, v_0) \times \vec{T}_v(u_0, v_0) \neq (0, 0, 0)$.

Diem que $\phi: D \to \mathbb{R}^3$ és regular si és regular en tots els punts de D.

Vector normal a la superfície

- $\vec{T}_u \times \vec{T}_v$ defineix la direcció normal a la superfície en el punt $\phi(u,v)$.
- $ightharpoonup ec{N} = rac{ec{T_u} imes ec{T_v}}{||ec{T_u} imes ec{T_v}||}$ és un vector normal unitari.
- ► El sentit del vector normal ens indica l'orientació de la parametrització.

Pla tangent

El pla tangent a ϕ en el punt $\phi(u_0,v_0)=(x_0,y_0,z_0)$ és el pla determinat pel punt i els vectors tangents $\vec{T}_u(u_0,v_0)$ i $\vec{T}_v(u_0,v_0)$. La seva equació es pot escriure:

$$(x - x_0, y - y_0, z - z_0) \cdot (\vec{T}_u(u_0, v_0) \times \vec{T}_v(u_0, v_0)) = 0$$

Orientació

Hi ha superfícies que no es poden orientar.

Treballem amb superfícies orientables.

En una superfície orientable, canviar d'ordre les variables dóna lloc a un canvi d'orientació.

Si la superfície és tancada, l'orientació de dins cap a fora s'anomena orientació positiva.

3.2 Integrals de superfície de camps escalars

Definició

Si $\phi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ és una superfície parametritzada \mathcal{C}^1 , i $f:\mathbb{R}^3\to\mathbb{R}$ és un camp escalar continu, la integral de f sobre ϕ és:

$$\iint_{\phi} f \, dS = \iint_{D} f(\phi(u, v)) ||\vec{T}_{u} \times \vec{T}_{v}|| \, du \, dv$$

La integral de superfície d'un camp escalar NO depèn de la parametrització de la superfície.

Interpretació física

- ▶ Si f = 1, la integral de superfície ens dóna l'àrea de la superfície.
- ▶ Si *f* és una densitat superficial de massa, la integral ens dóna la massa total de la superfície.

3.3 Integrals de superfície de camps vectorials

Definició

Si $\phi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ és una superfície parametritzada \mathcal{C}^1 , i $\vec{F}:\mathbb{R}^3\to\mathbb{R}^3$ és un camp vectorial continu, la integral de f sobre ϕ és:

$$\iint_{\phi} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(\phi(u, v)) \cdot (\vec{T}_{u} \times \vec{T}_{v}) \, du \, dv$$

La integral de superfície d'un camp vectorial canvia de signe segons l'orientació.

Interpretació física

- ▶ Si \vec{F} és el camp de velocitats d'un fluid, $\iint_{\phi} \vec{F} \cdot d\vec{S}$ ens indica la quantitat de fluid que passa a través de la superfície, en la direcció que indica el vector normal, per unitat de temps, o flux.
- ▶ Si \vec{F} és el camp de elèctric o magnètic, la integral $\iint_{\phi} \vec{F} \cdot d\vec{S}$ s'anomena el flux del camp \vec{F} .

Flux d'un camp escalar

En alguns casos es parla també de flux de camps escalars. Per exemple, si la funció ens dóna la temperatura a cada punt, parlem del flux de calor.

Si $f:\mathbb{R}^3 \to \mathbb{R}$ és un camp escalar i S una superfície, el flux de f a través de S és:

$$\iint_{S} \vec{\nabla} f \cdot d\vec{S}$$

Relació entre la integral de superfície de camps vectorials i camps escalars

 $\vec{F}: \mathbb{R}^3 o \mathbb{R}^3$ camp vectorial.

Definim $f: \mathbb{R}^3 \to \mathbb{R}$ sobre la superfície $\phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ com:

$$f(\phi(u,v)) = \vec{F}(\phi(u,v)) \cdot \frac{\vec{T}_u \times \vec{T}_v}{||\vec{T}_u \times \vec{T}_v||}$$

Aleshores:

$$\iint_{\phi} f \, dS = \iint_{\phi} \vec{F} \cdot d\vec{S}$$

La integral de superfície d'un camp vectorial és la integral de superfície del camp escalar obtingut en projectar el camp sobre el vector normal a la superfície.