Title

D. Zack Garza

Table of Contents

Contents

Table of Contents										2							
1	Lect	ture 12															3
	1.1	Brauer Groups								 	 		 	 			3

Table of Contents

1 Lecture 12

$\mathbf{1}$ | Lecture 12

1.1 Brauer Groups

Goal: for C a curve over $k = \overline{k}$, we've computed

$$H^{i}(C, \mathbb{G}_{m}) = \begin{cases} \mathcal{O}_{C}^{\times}(C) & i = 0 \\ \operatorname{Pic}(C) & i = 1 \\ 0 & i > 1 \end{cases}$$

Currently i > 1 is a mystery, so today we'll look at i = 2. Recall that we've reduced this to the Galois cohomology of the function field $H^i(k(C), \mathbb{G}_m)$ and of the strict Henselization $H^i(K_{\overline{x}}, \mathbb{G}_m)$.

Today we'll try to understand the Galois cohomology of a field with coefficient in \bar{k}^{\times} , or \mathbb{G}_m thought of as a sheaf on the étale site. We'll discuss i=2, and a general principle in group cohomology is that if one understands i=1,2 then one can often understand all degrees.

In general, H^1 has a geometric interpretation: torsors. H^2 is much harder: they classify more general objects called **gerbes**. A miracle is that $H^2(\mathbb{G}_m)$ has real meaning, and is very closely related to real physical objects (certain torsors). Recall that we defined the *cohomological Brauer group of X* (??) as

$$\operatorname{Br}^{\operatorname{coh}} \coloneqq \operatorname{Br}'(X) \coloneqq H^i(X_{\operatorname{\acute{e}t}}, \mathbb{G}_m)_{\operatorname{tors}}.$$

We also started defining the Brauer group by considering

 $\bigcup_n \left\{ \text{\'etale locally trivial PGL}_n \text{-torsors} \right\}.$

Lecture 12 3

¹The stalk of the structure sheaf, $\mathcal{O}_{C,x}$.