Real-Time Programming

Farhang Nemati Spring 2016

P-Timed Petri Nets

• Assume a place is associated with time interval d. When a token is added to the place it has to stay for d time units in the place until it can be available

Timed Petri Nets

- Extend the Petri net model with time to model timing attributes of a system. Either of the followings:
- P-Timed: Associate a constant number with every place. The number indicates the time interval that the place takes, i.e., the time a token has to stay in the place before it can be available
- T-Timed: Associate a constant number with every transition. The number indicates time interval that the transition takes
- Any of P-Timed or T-Timed Petri net models can be transformed to the other one. Thus we only consider one of them (P-Timed)

P-Timed Petri Nets

Example

P-Timed Petri Nets Example

Reachability Graph for P-Timed Petri Nets; Example

• {T1,T2}/0 means that both T1 and T2 are fired at the beginning

Reachability Graph for P-Timed Petri Nets

- For each individual token in a place the time it needs to spent in the place has to be recorded
- On each arrow we write the followings:
 - The transitions that are fired
 - The minimum time that takes to transfer from one marking to another one
- A marking is shown by a rectangle in which the followings are written:
 - The number of tokens in each place
 - The remaining time for each token to be ready

P-Timed Petri Nets

- Every limited P-Timed Petri net without effective conflicts has a periodic behavior meaning that after a constant period it is repeated. Such a Petri net is said to have a stationary behavior
- Example of a conflict (only one of the transitions can be fired):

P-Timed Petri Nets

- Maximum Speed: If any transition is fired as soon as tokens in its input-places are available, the Petri net is executed in maximum speed
- Firing Frequency: The firing frequency of a transition is the number firings it performs in one time unit

P-Timed Petri Nets; Exercise

• Assuming the following Petri net executes with maximum speed, draw its reachability graph

- What is the period of the net?
- What is the firing frequency of T1?

Colored Petri Nets

- So far all tokens have been identical
- Let look at an example

Colored Petri Nets; Motivation cl1 works (• cl2 works server waiting cl1 done cl2 done server receive cl1 ready for request cl2 ready for request request server handles cl1 sends request ■cl2 sends request request request handled ready to receive ready to receive response server ready response to response receive response receive response response to cl1 response to cl2

Colored Petri Nets;

Colored Petri Nets

- In a colored Petri net:
 - Each token may have a color.
 - The color is a metaphor to differentiate values of tokens, i.e., a color represents the value of a token
 - Transitions are sensitive to colors, i.e., they distinguish between different colors. A transition might be enabled by **some** of the colored tokens
 - An arc is associated with a function with colored tokens as its parameters, e.g., f(red) = green or f(green) = 2reads. If no function is specified, each token remains at it is, e.g., f(red)=red, f(green) = green, etc.

Colored Petri Nets

• Example1, the arcs are not specified with function

Colored Petri Nets

 \bullet Example2, an arc is specified with a function that transforms the

colors

Colored Petri Nets

• Example2, an arc is specified with a function that transforms the colors

- T1(g) is fired
 - Remove f(g)=g from P1
 - Add f(g)=g to P2

Colored Petri Nets

• Example2, an arc is specified with a function that transforms the colors

- T1(g) is fired
 - Remove f(g)=g from P1
 - Add f(g)=g to P2
- T3(g) is fired
 - Remove f(g)=g from P2
 - Add f(g)=r to P2

Colored Petri Nets

• Example2, an arc is specified with a function that transforms the colors

- T1(g) is fired
 - Remove f(g)=g from P1
 - Add f(g)=g to P2
- T3(g) is fired
 - Remove f(g)=g from P2
 - Add f(g)=r to P2
- T2(r) is fired
 - Remove f(r)=r from P2
 - Add f(r)=r to P1

Colored Petri Nets

 \bullet Example3, three arcs are specified with functions that transform the

colors

Coloured Petri Nets

• Example3, two arcs are specified with functions that transforms the colours

- T1(g) is fired
 - Remove f(g)=r from P1
 - Add f(r)=r to P2

Coloured Petri Nets

• Example3, two arcs are specified with functions that transforms the colours

- T1(g) is fired
 - Remove f(g)=r from P1
 - Add f(r)=r to P2
- T2(r) is fired
 - Remove f(r)=r from P2
 - Add f(r)=g to P1

