Ruhelage $\varphi_{0,1} = 0$ lautet $\frac{g}{\ell}\sin(\varphi) \approx \frac{g}{\ell}\sin(\varphi_{0,1}) + \frac{g}{\ell}\cos(\varphi_{0,1}) \cdot (\varphi - \varphi_{0,1}) = \frac{g}{\ell}(\varphi - \varphi_{0,1}) = \frac{g}{\ell}\Delta\varphi$

Linearisierung um die Hängelage: Die Linearisierung der Nichtlinearität um die

 $\Delta \ddot{\varphi} + \frac{g}{\ell} \Delta \varphi = 0$ $\Delta \ddot{\varphi} + \omega_0^2 \Delta \varphi = 0$ oder mit $\omega_0^2 = \frac{g}{\ell}$. Die DGL hat nun exakt die Form der Gl. (2.2), weshalb die Lösung

wobei $\Delta \varphi$ die Störung um die Ruhelage ist. Außerdem ist

direkt angegeben werden kann:
$$\varphi(t) = \varphi_0 \cos(\omega_0 t) + \frac{\dot{\varphi}_0}{\omega_0} \sin(\omega_0 t)$$

 $\Delta \ddot{\varphi} = \ddot{\varphi} - 0 = \ddot{\varphi}$

Interpretation: Für kleine Anfangswinkel φ_0 und kleine Anfangsgeschwindigkeiten $\dot{\varphi}_0$ bleibt die Lösung $\varphi(t)$ für alle Zeiten klein. Die Linearisierung beschriebt

das Systemverhalten gut. Linearisierung um die Überkopflage: Die Linearisierung der Nichtlinearität um

die Ruhelage
$$\varphi_{0,2}=\pi$$
 lautet
$$\frac{g}{\ell}\sin(\varphi)\approx\frac{g}{\ell}\sin(\varphi_{0,2})+\frac{g}{\ell}\cos(\varphi_{0,2})\cdot(\varphi-\varphi_{0,2})=-\frac{g}{\ell}(\varphi-\varphi_{0,2})=-\frac{g}{\ell}\Delta\varphi$$

 $\Delta \ddot{\varphi} - \frac{g}{\varrho} \Delta \varphi = 0$ Dies entspricht wegen des negativen Vorzeichens nicht der Form der Gl. (2.2), kann

aber trotzdem mithilfe eines Exponentialansatzes $\Delta \varphi = Ce^{\lambda t}$ gelöst werden. Dieser ergibt nach Einsetzen die Eigenwerte

 $\lambda_{1,2} = \pm \sqrt{\frac{g}{\ell}} = \pm \delta$