

3. STANDARDOWE TYPY ŚWIATEŁ

Zestaw świateł standardowych w programie Autodesk 3ds Max obejmuje trzy podstawowe typy źródeł w grafice komputerowej: punktowe, reflektorowe i kierunkowe. Dodatkowo mamy do dyspozycji światło atmosferyczne (*Skylight*) oraz dwa źródła, których nazwa poprzedzona jest literami "mr" (są to źródła dedykowane silnikowi renderującemu mental ray, dlatego nie będziemy ich omawiać w tym miejscu).

3.1 Światło punktowe (Omni Light)

Ten rodzaj źródła światła emituje promienie równomiernie we wszystkich kierunkach poczynając od punktu swojego umiejscowienia w scenie. Światło punktowe świetnie imituje "otwarte" źródła (żarówka, świeczka itp.). Najczęściej stosowane jest do "ogólnego" oświetlenia sceny i doświetlenia obszarów zacienionych (z odpowiednio dobraną wartością zanikania). Oprócz podstawowych opcji wspólnych dla wszystkich świateł ten typ nie oferuje dodatkowej rolety z parametrami (Rys.3.1).

Rys.3.1 Punktowe źródło światła.

3.2 Światło reflektorowe (Spot Light)

Światło reflektorowe możemy traktować jako specyficzny przypadek światła punktowego, gdy kierunek rozchodzenia się promieni ograniczony jest przez podany kąt (Rys.3.2). Uzyskany w ten sposób snop światła rozszerza się w miarę oddalania od pozycji źródła w scenie i świeci w nieskończoność (jeśli nie ustalimy tłumienia). Możemy zdecydować czy reflektor ma przybrać kształt okręgu czy prostokąta (opcja *Circle/Rectangle*), oraz określić stopniowe zanikanie natężenia na krawędziach (parametry *Hotspot i Falloff*). Ten typ światła doskonale nadaje się do symulacji takich źródeł jak latarka, lampka czy halogeny. W programie rozróżniono dwa typy reflektorów:

- Target Spot (wycelowany)
- Free Spot (swobodny)

Jedyną różnicą pomiędzy powyższymi typami jest przyłączenie do reflektora obiektu pomocniczego w postaci celownika mającego ułatwić ustawienie kierunku świecenia reflektora w scenie. Parametr *Targeted* określa odległość celownika od źródła.

Rys.3.2 Reflektorowe źródło światła

3.3 Światło kierunkowe (Direct Light)

Światło kierunkowe w odróżnieniu od reflektorowego emituje równolegle biegnące promienie, dlatego obszar oświetlenia nie powiększa się wraz z odległością od źródła. Podobnie jak w przypadku reflektora możemy zdefiniować kształt i rozmiary źródła (Rys.3.3). Użytkownik ma również do dyspozycji dwa typy źródła: wycelowane i swobodne.

Rys.3.3 Kierunkowe źródło światła

3.4 Światło atmosferyczne

Światło atmosferyczne (*Skylight*) ma za zadanie naśladować oświetlenie rozpraszane w atmosferze okołoziemskiej. Symulacja zachowania tego światła odbywa się przy wykorzystaniu sfery o nieskończonym promieniu, rozpiętej wokół sceny. Umiejscowienie jak również zorientowanie takiego źródła w scenie nie ma żadnego wpływu na efekt oświetlenia. Korzystając z tego rodzaju światła mamy do dyspozycji niewielką ilość parametrów (Rys.3.4). Możemy zdefiniować jego natężenie (*Multiplier*), pokrycie chmurami (opcja *Maps*), oraz liczbę promieni przypadających na próbkę podczas generowania cieni (*Rays per Sample* w sekcji *Render*). Utworzone w ten sposób źródło światła pozwala uzyskać bardzo dobre efekty w scenach z otwartą przestrzenią. Niestety od razu zaobserwujemy wydłużony czas renderingu. Najlepsze rezultaty oświetlenia atmosferycznego osiągniemy w połączeniu z algorytmem renderującym *Light Tracer*.

Rys.3.4 Światło atmosferyczne (Skylight).

