Лекция №8

К экзамену пример графа отношения для которого выполнялось бы условие блокировки!

В случае если множество предпочитаемых решений не может быть сформировано, должно быть определенно множество максимальных решений Max_R(X)

Включение элемента:

- 1. Если $x_i > x_j \Rightarrow x_j \notin Max_R(X)$
- 2. Если $x_i \sim x_j$ и $x_i \in Max_R(X) \Rightarrow x_j \in Max_R(X)$
- 3. $x_i > x_j$, $x_i > x_i$, $x_i \sim x_j$

Формализация внешней устойчивости множества Max_R(X)

 $\forall x_j \in X \backslash Max_R(X) \text{ , } \exists x_i \in Max_R(X), \text{ } x_i > x_j$

Если множество Max_R(X) является внешне устойчивым, тогда максимальные решения могут быть интерпретированы как эффективные

Определение порядка решения для графовых моделей бинарных отношений План ответа на экзамене:

- 1. Вид графа отношения не строгого предпочтения (?)
- 2. Особенность графа отношения (он ацикличен)
- 3. Упорядочивание решений множества X реализуется на основе анализа источников либо приёмников

Стандартный синтаксис на основе анализа приёмников предполагает включение несравнимых (не доминируемый) решений в «середину» их последовательностей

Введение в аппарат теории полезности

Каждой альтернативе x_i ставится соответствие значение функции полезности U(xi). Значение функции полезности от x_i формируется в соответствии с предпочтениями, связывающими x_i с другими решениями. Эффективным решением будет то, у которого полезность максимальна.

 $x^*_i = arg max[x_i \in X](U(x_i))$

 $x_i^* = arg max[i=1..n](U(x_i)), n = IXI$

Данный способ предполагает наличие единственного признака. При наличии нескольких признаков для каждого из них формируется своя полезность, которая обобщается в многомерную полезность.

Многомерная полезность

Решение $x_i \in X$ характеризуется совокупностью признаков (т.е. определяются предпочтения по отдельным критериям). В случае если $x_i >_{K1} x_j$, $x_j >_{K2} x_i$, тогда для выделения эффективных решений используется аппарат аддитивной полезности.

По каждому критерию для решений x_i определяется значение, соответствующее значению функции одномерной полезности.

На основе значений одномерной полезности формируется система предпочтений для решений, использующая аддитивную полезность (выполняется суммирование значений одномерных полезностей). Эффективным будет решение с максимальным значением аддитивной полезности