Stone-Čech 紧致化原理

极大滤子空间

全文默认 X 为无限集. 回顾先前介绍滤子时给出极大滤子的若干性质:

- 1. 存在 (比某一给定 \mathcal{F}_0 细的) 极大滤子.
- 2. 对于极大滤子, 以下叙述等价:
 - a. 罗 为极大滤子,
 - b. $\forall A, B \subset X, A \cup B \in \mathscr{F}$ 推出 $A \in \mathscr{F}$ 或 $B \in \mathscr{F}$.
 - c. $\forall A \subset X$, $\{A, A^c\} \cap \mathscr{F} \neq \emptyset$.
- 3. \mathscr{U} 为 X 上极大滤子, $\{A_i\}_{i=1}^N \subset \mathcal{P}(X)$ 使得 $\bigcup_{i=1}^N A_i \in \mathscr{U}$, 则存在一个 $A_j \in \mathscr{U}$.
- 4. \mathscr{U} 为极大滤子, 若 $A \subset X$ 与 \mathscr{U} 中所有元素均有无空的交, 则 $A \in \mathscr{U}$.
- 5. (X,τ) 为拓扑空间, 有以下等价叙述:
 - a. (X,τ) 为紧拓扑空间,
 - b.X上一切极大滤子收敛,
 - c. $\cap \{\overline{A} \mid A \in \mathscr{F}\} \neq \emptyset$, \mathscr{F} 为任意给定的滤子.

Def. 记 βX 为 X 上极大滤子所成的集合.

Def. 记 $[A] := \{ \mathscr{U} \in \beta X \mid A \in \mathscr{U} \}$, 即一切包含 A 的极大滤子. 函数为

$$[\cdot]: \mathcal{P}(X)
ightarrow \mathcal{P}(eta X), A \mapsto [A].$$

Ex1. [·] 保持 $(\mathcal{P}(X), \subset)$ 上序结构, 即 $[A] \subset [B]$ ([A] = [B]) 当且仅当 $A \subset B$ (A = B).

Ex2. $[A \cup B] = [A] \cup [B]$, $[A \cap B] = [A] \cap [B]$, $[A^c] = [A]^c$. { $[A \mid A \subset X]$ } 构成 βX 的拓扑基.

Prop. $[\cdot]$ 并不总兼容无穷情形. 例如取 $X = \mathbb{N}$, $A_n = \{1, n+1, n+2, \ldots\}$. 则

$$[\cap_{n=1}^{\infty}A_n]=[\{1\}]=\uparrow\{1\}.$$

另一方面, $[A_n]$ 中元素总是补集有限 ($\forall n \in \mathbb{N}$), 从而 (实际上为一般结论, **Ex3**)

$$[\cap_{n=1}^{\infty}A_n]\supset\cap_{n=1}^{\infty}[A_n].$$

事实上, 根据 $[A^c] = [A]^c$ 可知 $[\cup_{n=1}^{\infty} A_n] \subset \cup_{n=1}^{\infty} [A_n]$.

Prop. [A] 既开又闭,且 βX 为紧致集.

Proof. 前一论断是因为 $[A] = [A^c]^c$. 对后一论断, 假设 $\{[A_i]\}_{i \in I}$ 为不含有限子覆盖的开覆盖 (任意开集可由若干拓扑基之并生成), 即

$$[\cup_{k=1}^{N} A_{i_k}] = \cup_{k=1}^{N} [A_{i_k}]
eq eta X = [X].$$

故 $\bigcap_{k=1}^N A_{i_k}^c \neq \emptyset$, 因此 $\{A_i^c\}_{i \in I}$ 生成极大滤子 \mathcal{U}_0 . 取 A_i 使得 $\mathcal{U}_0 \in [A_i]$, 从而 A_i 与 A_i^c 均属于 \mathcal{U}_0 , 矛盾!

Def. 称 \mathcal{U}_x 为 $x \in X$ 生成的主极大滤子, 若且仅若 \mathcal{U} 为包含 x 的最小滤子. 兹有约定 $\mathcal{U}_x = x$, 从而 $X \subset \beta X$ 为子空间.

Prop. $x \in X$ 在 βX 中孤立, 但 X 在 βX 中稠密.

Proof. 即证明 \mathscr{U}_x 为 βX 中孤立点, $\overline{\{\mathscr{U}_x\mid x\in X\}}=\beta X$. 注意到 $[\{x\}]=\{\mathscr{U}_x\}$ 既开又闭,从而 \mathscr{U}_x 在 βX 中孤立.

对任意 $\mathcal{U} \in \beta X$, 包含 \mathcal{U} 的基本开邻域 [A] 满足 $A \in \mathcal{U}$. 由于 A 非空, 故存在 $x \in A$, 即 $\mathcal{U}_x \in [A]$. 从而 X 在 βX 中稠密.

实际上, $x \in A \in \mathcal{U}_x \in [A]$. 是以可见双对偶给出的典范嵌入 $x \mapsto \mathcal{U}_x$, $A \mapsto [A]$.

Prop. 实际上, βX 中 $\overline{A} = [A]$.

Proof. 即证明 $\overline{\{\mathscr{U}_x\mid x\in A\}}=[A]$. 这是显然的.

Def. 称 βX 为 X 的 Stone-Čech 紧致化. 更严格地, 即 X 在同构于 $\{\mathscr{U}_x\}_{x\in X}$ 的意义下在极大滤子空间上的紧化.

Ex3. X 为有限集时, X 一定为 Stone-Čech 紧致的, 即 $X = \beta X$.

As we mentioned before, sequences do not characterise neither continuity nor compactness. One counterexmple for the former is,

$$i:(X, au) o (X,\mathcal{P}(X))$$

is sequentially continuous (two topologies have the same convergent sequence) yet not continuous. Here

$$egin{aligned} \eta &:= \mathcal{P}(X \setminus \{x_0\}), \ au &:= \eta \cup \{A \cup \{x_0\} \mid A \in \eta, |A^c| \leq \omega\}. \end{aligned}$$

One counterexample for the latter is the Stone-Čech compactification for the non-compact matric space. Since no sequences converge to a point in $\beta X \setminus X$ and X is not sequentially compact, βX is not sequentially compact. However, βX is indeed compact!