Time Series Prediction Part I

Dr. Andreas Maier

7/21/22

Time Series

- Clustering
 - Dynamic Time Warping
- Segmentation
 - Speech recognition
- Classification
- Anomaly/Outlier Detection
- Imputation
- Forecasting
 - Trajectory prediction
 - Stock Market prediction

- Univariate
- Multivariate
- Zerovariate
 - Delphi Method

"Prediction is the essence of intelligence, and that's what we're trying to do."

- Yann LeCun (2015)

3/19

"Prediction is very difficult, especially if it's about the future!"

- Niels Bohr

"What we can't predict, we call randomness."

- Albert Einstein

Understanding Randomness 1

Random walk cumulative sum of random numbers

Understanding Randomness 2

Walk of random walk cumulative sum of a random walk

Dr. Andreas Maier

Pearson correlation coefficient r

- Measures linear correlation between two sets of data
- \bullet Equal to the slope of a linear regression model (for standardized data $\sigma_x=\sigma_y=1)^1$

Autocorrelation 1

Pearson coefficients between time series and time shifted version of itself

Autocorrelation 2

Stationarity

Statistical properties don't change over time

- A stationary time series has no seasonality or trend.
- Many tools, statistical tests and models (ARIMA!) rely on stationarity.

11/19

Dr. Andreas Maier Time Series Prediction Part I 7/21/22

³Palachy (2019): Towards Data Science | Stationarity in time series analysis

Differencing

Partial autocorrelation 1

 \bullet Direct linear correlation r_k between y and x_k

$$\hat{y} = \phi_0 + 0 \cdot x_1 + \ldots + r_k x_k$$

ullet Partial correlation p_k between y and x_k

$$\hat{y}=\phi_0+\phi_1x_1+\ldots+p_kx_k$$

Dependency on x_1, x_2, \dots is absorbed into ϕ_1, ϕ_2, \dots

Partial correlation is linear correlation between y and x_k with indirect correlation to x_1, x_2, \dots removed.⁴

⁴Pen State: STAT 510 | Applied Time Series Analysis, chapter 2.2

Dr. Andreas Maier Time Series Prediction Part I 7/21/22

Partial autocorrelation 2

Autoregression model

ullet forecast y_t using a linear combination of past values

$$\hat{y}_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p}$$

- Autoregression means linear regression with lagged version of itself (similar to autocorrelation)
- AR(p) means $\phi_0,...,\phi_p \neq 0$
- Autoregressive process can be used to generate data from random white noise ϵ_t and fixed parameters ϕ_k

$$y_t = \epsilon_t + \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p}$$

 \bullet For $\phi_0=0$ and $\phi_1=1$ an AR(1) process is a random walk

Moving average model

- The name "moving average" is technically incorrect ⁵
- Better would be lagged error regression
- ullet forecast y_t using a linear combination of past forecast errors

$$\hat{y}_t = \theta_0 + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \ldots + \theta_q \epsilon_{t-q}$$

- MA(q) cannot be fitted like an ordinary least square (OLS), because the forecast errors are not known
- ullet Example algorithm: Set initial values for θ_k and ϵ_k , then
 - For i=1..N do
 - $\textbf{0} \ \ \text{Compute error terms for all} \ t \colon \ \epsilon_t = y_t \hat{y}_t$
 - 2 Run a regression of y_t against \hat{y}_t and update θ_k
 - Repeat

Dr. Andreas Maier

 Like(?) Iteratively_reweighted_least_squares or similar iterative process to estimate θ_k

⁵Stackexchange: why-are-maq-time-series-models-called-moving-averages

16/19

ARIMA

 Autoregressive integrated moving average model combines AR(p), differencing/integrating I(d) and MA(q)

$$\hat{y}_t = c + \phi_1 y_{t-1}^{(d)} + \ldots + \phi_p y_{t-p}^{(d)} + \theta_1 \epsilon_{t-1} \ldots + \theta_q \epsilon_{t-q}$$

Model	equivalent to
ARIMA(0,1,0)	Random Walk (with drift)
ARIMA(0,1,1)	simple exponential smoothing $ETS(A,N,N)$
ARIMA(1,0,0)	discrete Ornstein-Uhlenbeck process 6

• To find the best fitting ARIMA model one can use the

Box-Jenkins Method

- $oldsymbol{@}$ Use ACF plot and PACF plot to identify the parameter p and q
- Fitting the parameters of the ARIMA(p,d,q) model. This can be done with Hannan-Rissanen (1982) algorithm

 - 2 Compute error terms for all t: $\epsilon_t = y_t \hat{y}_t$
 - $\qquad \qquad \textbf{Regress} \ y_t \ \text{on} \ y_{t-1}^{(d)},..,y_{t-p}^{(d)},\epsilon_{t-1},...,\epsilon_{t-q}$
 - ${\bf 0}$ To improve accurancy optimally regress again with updated ϕ,θ from step 3

Other algorithms (maximizing likelihood) are often used in practice ^{7 8}

- Statistical model checking (analysis of mean, variance, (partial) autocorrelation, Ljung-Box test of residuals)
- Once the residuals look like white noise, do the forecast

Nowadays all these steps are automated by tools like AutoARIMA

⁷Brockwell, Davis (2016) Introduction to Time Series and Forecasting, chapter (2008)

Why???

- Why combine AR and MA?
 - Wold's theorem ?
- AR is analogeous to linear regression, but what is MA analogeous to outside of time series analysis?
- Why is ARIMA better than AR alone?

19 / 19

Dr. Andreas Maier Time Series Prediction Part I