

Optimizing the ALMA Research Proposal Process with Machine Learning

Brendan Puglisi, Arnav Boppudi, Kaleigh O'Hara, Noah McIntire, Ryan Lipps

Table of Contents

- About ALMA
- Project Significance
- Data Discussion
- Model
- Limitations & Assumptions
- Conclusions

ALMA Observatory

- The ALMA Observatory is located in the Atacama Desert in northern Chile
- The state-of-the-art radio telescope array consists of 66 high-precision antennas that observe electromagnetic radiation outside of visible light

Project Significance

- ALMA is open to anyone to use, based on a proposal process
- Reduce the time and effort required for researchers to prepare proposals
- Our work will help the astronomy community by simplifying the technical aspects of proposal writing, leading to more precise and effective observations

Data Discussion

- Two types of projects:
 - Spectral Line and Continuum
- Line projects require specific measurement setup

Spectral Line Measurements Target Variable

Project Title and Abstract Predictor Variable

4,586
Previous Projects

67,439
Total Measurements

Data Discussion Cont.

 Distribution of measurements across band shows that the vast majority exist in band 3 and 6 and in the lower frequency ranges.

3,628
Line Projects

75%
Have fewer than 13 measurements

450
Outlier projects have more than 26 measurements

82%
Have measurements in only one frequency band

Model Prediction Pipeline

O1 Project Classification: Logistic Regression

- Vectorize title and abstract using TF-IDF
- Vector used as features to classify a project as either line or continuum
- Only projects with line observations are of interest to us
- Accuracy of 90.02%
- Correctly predicted line 96.41% of the time
- Correctly predicted continuum 59.42%
 of the time

	Predicted Continuum	Predicted Line
True Continuum	104	71
True Line	26	699

ROC Curve (AUC=0.9133)

O2 Project Grouping: LDA

- Generate 50 topics
- Group projects into topics generated by LDA
- Projects are assigned to their "max topic"
- Topic 25 most heavily weighted words:bar, gmcs, molecular, spiral, galaxy
- Topic 37 most heavily weighted words:
 mass, chemical, chain, protostars, wccc

O3 Measurement Clustering: HDBSCAN

- Cluster measurements for projects within each LDA topic
- Accounts for different densities in measurement distribution
 - Keeps clusters representative of overall measurement distribution
- Ensure clusters are not too large
- Average noise 14.59 ± 0.05%
- Score clusters with count of measurements and projects

HDBSCAN Generated Clusters for Topic 25

132 Clustered Measurements with 7 Noise Measurements

O4 Band Prediction: Multinomial Naïve Bayes

- Text Preprocessing:
 - Remove stop words
 - Lemmatize text
 - TF-IDF Vectorization
- Unweighted Model:
 - Fit the data according to the percent of instances of each band
- Weighted Model:
 - Specify prior probabilities to improve accuracy for less common bands

Unweighted Results	Weighted Results	
73.55%	69.70%	

SCHOOL of DATA SCIENCE

05 Combined Method

- Combine HDBSCAN and Band
 Classification (weighted) to filter
 HDBSCAN's predictions with Band
 Classification predictions
- Yields more precise results, predicting fewer and narrower "areas of interest"

Combined Method				
Predicts >= 1 "Area of Interest" for Projects	Measurements Captured per Project			
67.17%	44.72%			

 Project Code	HDBSCAN Prediction	Band Classification (weighted) Prediction	Combined (unweighted) Prediction
 017.1. 00786. S	Band: [Frequency Range] 3: [89.105	<u>Bands:</u> 6 7	Band: [Frequency Range] 6: [213.095 220.395] 6: [227.095 231.490] 7: [355.090 357.225] 7: [344.980 345.180] 7: [345.785 345.815]

Limitations & Assumptions

- Limitations
 - Difficulty measuring success
 - Did not have full research papers to train on
- Assumption
 - All "areas of interest" already exist in the data
 - LDA topics are salient and discriminant
 - Optimal weights were calculated

Conclusions

- Combined (weighted) process is useful
 - Researchers submitting projects to ALMA
 - Proposal reviewers
 - Understanding of project proposals
 - Recommendations for proposed projects
- Applicable and adaptable to telescopes beyond ALMA
 - Expand Line/Continuum
 classification to Very Large Array
 (VLA) in New Mexico

Acknowledgements

Antonios Mamalakis, Faculty Mentor

Adele Plunkett, Sponsor

Capstone Team

Arnav Boppudi

Ryan Lipps

Kaleigh O'Hara

Noah McIntire

Brendan Puglisi

Citations

LDA Graphic:

M. Bakrey, "All About Latent Dirichlet Allocation (LDA) in NLP," Medium, 01-Nov-2020. [Online]. Available:

https://mohamedbakrey094.medium.com/all-about-latent-dirichlet-allo cation-lda-in-nlp-6cfa7825034e. [Accessed: 26-April-2024].

HDBSCAN Example Graph Code:

"HDBSCAN clustering with sklearn," Scikit-learn, [Online]. Available: https://scikit-learn.org/stable/auto_examples/cluster/plot_hdbscan.ht ml#sphx-glr-auto-examples-cluster-plot-hdbscan-py. [Accessed: 26-April-2024].