Statistical Analysis Using Structural Equation Models

EPsy 8266

Christopher David Desjardins

Research Methodology Consulting Center

2/7/19

Topics

- ► Logistic regression
- ▶ Probit regression

Alternative models

- Multiple regression is inappropriate for data that are not continuous (i.e, either interval or ratio)
- For dichotomous models, logistic regression or probit regression can be used.
- ► For data with more than 2 categories, multiple regression still is not appropriate. Consider multinomial or proportional odds model depending on scale.
- ▶ How many categories is enough for regression?

- In our example of schizophrenia, an individual could either be schizophrenic or not.
- ▶ This is akin to flipping a coin once.
- ▶ In both cases, we could say the outcome has a Bernoulli distribution, $Y \sim Bern(\pi)$.
- ▶ Equivalently, it has a Binomial distribution with a single trial, $Y \sim Bin(n = 1, \pi)$.
- \rightarrow π is the probability of a success (e.g., being schizophrenic or the coin being a heads) the expected value of Y.

► Presently, we are stuck at a 0 (no schizophrenia) or a 1 (schizophrenia).

- Presently, we are stuck at a 0 (no schizophrenia) or a 1 (schizophrenia).
- ▶ It would be ideal if we could take the 0s and 1s and link them to the real line.

- Presently, we are stuck at a 0 (no schizophrenia) or a 1 (schizophrenia).
- It would be ideal if we could take the 0s and 1s and link them to the real line.
- We could convert to an odds ratio.
- ▶ Odds ratio, $\Omega = \frac{\pi}{(1-\pi)}$ the ratio of successes to failures.

- ► Presently, we are stuck at a 0 (no schizophrenia) or a 1 (schizophrenia).
- It would be ideal if we could take the 0s and 1s and link them to the real line.
- We could convert to an odds ratio.
- ▶ Odds ratio, $\Omega = \frac{\pi}{(1-\pi)}$ the ratio of successes to failures.
- ▶ This doesn't quite get us there.

- Presently, we are stuck at a 0 (no schizophrenia) or a 1 (schizophrenia).
- It would be ideal if we could take the 0s and 1s and link them to the real line.
- We could convert to an odds ratio.
- ▶ Odds ratio, $\Omega = \frac{\pi}{(1-\pi)}$ the ratio of successes to failures.
- ► This doesn't quite get us there.
- ▶ What if we take the log?

▶ Log odds or logit of a success, log $\Omega = \log \left[\frac{\pi}{(1-\pi)} \right]$

- ▶ Log odds or logit of a success, $\log \Omega = \log \left[\frac{\pi}{(1-\pi)} \right]$
- By applying some algebra, we can also recover our probability of success (inverse link):

- ▶ Log odds or logit of a success, $\log \Omega = \log \left[\frac{\pi}{(1-\pi)} \right]$
- By applying some algebra, we can also recover our probability of success (inverse link):

$$\pi = rac{\exp(\log\Omega)}{1+\exp(\log\Omega)}$$

- ▶ Log odds or logit of a success, log $\Omega = \log \left\lfloor \frac{\pi}{(1-\pi)} \right\rfloor$
- By applying some algebra, we can also recover our probability of success (inverse link):

$$\pi = \tfrac{\exp(\log\Omega)}{1 + \exp(\log\Omega)}$$

▶ The log odds can be any real number.

Suppose we want to add some explanatory variables of schizophrenia (e.g., paranoia, which we'll call x_1).

Then, we can let the log odds of success (being schizophrenic) be represented by the linear function: $\beta_0 + \beta_1 x_1$.

We can plug this back into our equation:

$$\log \Omega = \beta_0 + \beta_1 x_1$$

Suppose we want to add some explanatory variables of schizophrenia (e.g., paranoia, which we'll call x_1).

Then, we can let the log odds of success (being schizophrenic) be represented by the linear function: $\beta_0 + \beta_1 x_1$.

We can plug this back into our equation:

$$\log \Omega = \beta_0 + \beta_1 x_1$$

- ► The log-odds that a person with a paranoia score of x will be schizophrenic is $\beta_0 + \beta_1 x_1$.
- ► The odds that a person with a paranoia score of x will be schizophrenic is $\exp(\beta_0 + \beta_1 x_1)$.
- ► The probability that a person with a paranoia score of x will be schizophrenic is $\frac{\exp(\beta_0 + \beta_1 x_1)}{1 + \exp(\beta_0 + \beta_1 x_1)}$.


```
means.n1 <- subset(means, N > 1)
plot(Schizo ~ Pa, data = means.n1, xlab = "Paranoia", cex = sqrt(N / pi),
    ylab = "Prop. w/ Schizophrenia")
lines(lowess(means.n1$Pa, means.n1$Schizo), col = "red")
```



```
boxplot(Pa ~ Schizo, data = wuschiz,
    xlab = "Schizophrenia",
    ylab = "Paranoia")
```


Schizophrenia logistic regression

```
mod.lr <- glm(Schizo ~ Pa, data = wuschiz, family = "binomial")
summarv(mod.lr)
##
## Call:
## glm(formula = Schizo ~ Pa. family = "binomial", data = wuschiz)
##
## Deviance Residuals:
     Min
##
             10 Median 30
                                    Max
## -1.2560 -0.4778 -0.3818 -0.3098 2.6072
##
## Coefficients:
            Estimate Std. Error z value Pr(>|z|)
##
## Pa
          ## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 250.56 on 375 degrees of freedom
## Residual deviance: 229.23 on 374 degrees of freedom
## AIC: 233.23
##
## Number of Fisher Scoring iterations: 5
```

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

$$\log\hat{\Omega} = -5.56 + .052x_1$$

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

$$\log \hat{\Omega} = -5.56 + .052x_1$$

▶ How do interpret $\hat{\beta}_0$, $\hat{\beta}_1$?

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

$$\log \hat{\Omega} = -5.56 + .052x_1$$

▶ How do interpret $\hat{\beta}_0$, $\hat{\beta}_1$?

A one-unit increase in paranoia **increases** the log-odds of developing schizophrenia by .052 $(\hat{\beta}_1)$.

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

$$\log \hat{\Omega} = -5.56 + .052x_1$$

- ▶ How do interpret $\hat{\beta}_0$, $\hat{\beta}_1$?

 A one-unit increase in paranoia **increases** the log-odds of developing schizophrenia by .052 $(\hat{\beta}_1)$.
- ▶ What if we exponentiate $\hat{\beta}_0$, $\hat{\beta}_1$?

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

$$\log \hat{\Omega} = -5.56 + .052x_1$$

- ▶ How do interpret $\hat{\beta}_0$, $\hat{\beta}_1$?

 A one-unit increase in paranoia **increases** the log-odds of developing schizophrenia by .052 $(\hat{\beta}_1)$.
- ▶ What if we exponentiate $\hat{\beta}_0, \hat{\beta}_1$?

 A one-unit increase in paranoia **multiplies** the odds of success by 1.05 $(\hat{\beta}_1)$.

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

$$\log \hat{\Omega} = -5.56 + .052x_1$$

- ▶ How do interpret $\hat{\beta}_0$, $\hat{\beta}_1$?

 A one-unit increase in paranoia **increases** the log-odds of developing schizophrenia by .052 $(\hat{\beta}_1)$.
- ▶ What if we exponentiate $\hat{\beta}_0, \hat{\beta}_1$?

 A one-unit increase in paranoia **multiplies** the odds of success by 1.05 $(\hat{\beta}_1)$.

What are the odds of developing schizophrenia for participants with paranoia of 20, 30, and 40?

Logistic Curve

Logistic Curve

Where is the greatest rate of change in the probability of schizophrenia?

Important notes

- ► Increase is linear only in the log odds
- ▶ Increase is not linear for probability
 - Difference in the probability of schizophrenia is not the same between participants with paranoia of 50 and 60 and 100 and 110.
- Increase is multiplicative for the odds

Multiple logistic regression

Let's now try to predict the probability of being schizophrenia given paranoia and gender (coded 1 as male and 0 as female) (x_2) .

We can write this model as:

$$\log \Omega = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

```
means <- aggregate(Schizo ~ male, data = wuschiz, FUN = mean)
plot(male ~ Schizo, means, xlim = c(0, .5), yaxt = "n",
    ylab = "Gender", xlab = "Prop. w/ Schizophrenia")
axis(2, at=c(0, 1),labels=c("Female", "Male"))</pre>
```



```
mod.lr2 <- glm(Schizo ~ Pa + male, data = wuschiz, family = "binomial")
summary(mod.lr2)

##
## Call:
## glm(formula = Schizo ~ Pa + male, family = "binomial", data = wuschiz)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.1566 -0.5041 -0.3357 -0.2658 2.6947
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.27497 0.81450 -6.476 9.4e-11 ***
```

```
## Pa 0.03979 0.01273 3.125 0.00178 **

## male 0.84938 0.44376 1.914 0.05561 .

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 250.56 on 375 degrees of freedom

## Residual deviance: 225.39 on 373 degrees of freedom
```

ATC: 231.39

Number of Fisher Scoring iterations: 5

##

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$\log \hat{\Omega} = -5.274 + .039x_1 + 0.849x_2$$

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$\log \hat{\Omega} = -5.274 + .039x_1 + 0.849x_2$$

▶ How do we interpret $\hat{\beta}_2$?

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$\log \hat{\Omega} = -5.274 + .039x_1 + 0.849x_2$$

- ▶ How do we interpret $\hat{\beta}_2$?
- ► The log odds for a male being schizophrenic are .849 higher than for a female holding paranoia constant.

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$\log \hat{\Omega} = -5.274 + .039x_1 + 0.849x_2$$

- ▶ How do we interpret $\hat{\beta}_2$?
- ► The log odds for a male being schizophrenic are .849 higher than for a female holding paranoia constant.
- ▶ How do we interpret $\exp(\hat{\beta}_2)$?

$$\log \hat{\Omega} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$\log \hat{\Omega} = -5.274 + .039x_1 + 0.849x_2$$

- ▶ How do we interpret $\hat{\beta}_2$?
- ► The log odds for a male being schizophrenic are .849 higher than for a female holding paranoia constant.
- ▶ How do we interpret $\exp(\hat{\beta}_2)$?
- ► The odds of of a male being schizophrenic are 2.33 times the odds of being schizophrenic for a female

Probit regression

For probit regression, the outcome is analyzed using a **probit function**.

$$Pr(Y=1|X) = \phi(\beta_0 + \beta_1 x_2 + ...)$$

 ϕ is the cumulative distribution function of the standard normal distribution.

Your book also motivates the use of a probit model as a normal latent variable, Y^* , such that

$$Y = \begin{cases} 1 & \text{if } Y^* \ge 0 \\ 0 & \text{if } Y^* < 0 \end{cases}$$

where $\hat{Y^*}$ is the metric of z-scores and

$$\hat{\pi} = \phi(\hat{Y}^*)$$

This last equation is the **normal ogive model**.

Probit Regression

```
mod.pb <- glm(Schizo ~ Pa + male, data = wuschiz,
            familv = "binomial"(link = "probit"))
summarv(mod.pb)
##
## Call:
## glm(formula = Schizo ~ Pa + male, family = binomial(link = "probit"),
      data = wuschiz)
##
## Deviance Residuals:
##
      Min 1Q Median 3Q
                                     Max
## -1.1041 -0.5081 -0.3446 -0.2602 2.7385
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.894533   0.428276   -6.759   1.39e-11 ***
        ## Pa
## male 0.405230 0.215896 1.877 0.06052 .
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 250.56 on 375 degrees of freedom
## Residual deviance: 225.71 on 373 degrees of freedom
## AIC: 231.71
##
## Number of Fisher Scoring iterations: 5
```

$$\hat{\pi} = \phi \left(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \right)$$

$$\hat{\pi} = \phi \left(-2.89 + .021x_1 + 0.405x_2 \right)$$

$$\hat{\pi} = \phi \left(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \right)$$

$$\hat{\pi} = \phi \left(-2.89 + .021 x_1 + 0.405 x_2 \right)$$

▶ How do we interpret $\hat{\beta}_1$?

$$\hat{\pi} = \phi \left(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \right)$$

$$\hat{\pi} = \phi \left(-2.89 + .021 x_1 + 0.405 x_2 \right)$$

- ▶ How do we interpret $\hat{\beta}_1$?
- ► For one-unit increase in paranoia, the z-score for being schizophrenic increases .021.

$$\hat{\pi} = \phi \left(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \right)$$

$$\hat{\pi} = \phi \left(-2.89 + .021 x_1 + 0.405 x_2 \right)$$

- ▶ How do we interpret $\hat{\beta}_1$?
- ► For one-unit increase in paranoia, the z-score for being schizophrenic increases .021.
- ▶ How do we interpret $\hat{\beta}_2$?

$$\hat{\pi} = \phi \left(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \right)$$

$$\hat{\pi} = \phi \left(-2.89 + .021x_1 + 0.405x_2 \right)$$

- ▶ How do we interpret $\hat{\beta}_1$?
- For one-unit increase in paranoia, the z-score for being schizophrenic increases .021.
- ▶ How do we interpret $\hat{\beta}_2$?
- ▶ Being male increases the z-score of being schizophrenic by .405 relative to females.

Activity

Rerun the regression of predicting schizophrenia given hypochondriasis, hypomania, and gender as a logistic regression and probit regression.

How are the results similar?

How are the results different?

Practice interpreting the parameters