Симметричные криптосистемы

Основы информационной безопасности

Дудырев Г.А.

Российский университет дружбы народов им. Патриса Лумумбы, Москва, Россия

Докладчик

- Дудырев Глеб Андреевич
- НПИбд-01-22
- Российский университет дружбы народов
- [1132222003@pfur.ru]
- https://github.com/GlebDudyrev

Цель

Целью данного доклада заключается в изучении симметричных криптосистем, необходимо понять, что такое симметричные криптосистемы, как они работают и каких видов бывают. Рассмотреть наиболее популярные алгоритмы симметричных криптосистем, а также посмотреть какие атаки на подобные системы существуют.

Введение

Симметричные криптосистемы, также известные как секретные криптосистемы, представляют собой криптографические алгоритмы, которые используют один и тот же секретный ключ как для шифрования, так и для дешифрования. Они широко используются для защиты конфиденциальных данных в различных приложениях, в том числе:

- Шифрование данных в транзите (например, сетевая связь, передача файлов)
- Шифрование данных в состоянии покоя (например, шифрование базы данных, шифрование файлов)
- Цифровые подписи (в сочетании с хэш -функцией)

Принцип работы симметричных алгоритмов шифрования

Симметричным можно считать любой шифр, который использует один секретный ключ для шифрования и расшифрования данных.

Принцип работы симметричных алгоритмов шифрования

Например, если мы хотим передать зашифрованное сообщение нашему другу, то вместе с этим сообщением по защищенному каналу нам необходимо будет передать секретный ключ(например таблицу, ставящую в соответсвие одному символу другой) с помощью которого мы зашифровали наше сообщение, чтобы друг смог получить исходный текст. Важно отметить, чтобы получатель смог воспользоваться секретным ключом, он должен знать **алгоритм** шифрования, который использовал отправитель.

Классические примеры симметричных алгоритмов шифрования

Классическими примерами симметричных криптографических алгоритмов, являются:

- Простая перестановка
- Одиночная перестановка по ключу
- Двойная перестановка
- Перестановка «Магический квадрат»

Виды симметричных

криптосистем

Виды симметричных криптосистем

Симметричные алгоритмы разделяют на два вида: блочные и потоковые шифры.

Блочные криптосистемы

Блочные алгоритмы шифруют данные блоками фиксированной длины (64, 128 или другое количество бит в зависимости от алгоритма). Если все сообщение или оставшаяся часть меньше длины блока, то сообщение дополняется предустмотренными алгоритмом символами, которые называются дополнением.

Блочные криптосистемы

Блочные криптосистемы

Наиболее известными алгоритмами этого класса являются:

- AES
- DES
- 3DES

У блочных алгоритмов существуют различные режимы работы, такие как:

- ECB (Electronic Codebook)
- CBC (Cipher Block Chaining):
- CFB (Cipher Feedback):
- · OFB (Output Feedback):

Потоковые шифры

Потоковое шифрование данных предполагает обработку каждого бита информации с использованием гаммирования, то есть изменения этого бита с помощью соответствующего ему бита псевдослучайной секретной последовательности чисел, которая формируется на основе ключа и имеет ту же длину, что и шифруемое сообщение.

Потоковые шифры

Популярные симметричные

алгоритмы

DES

DES был разработан IBM в 1970-х годах по заказу Национального бюро стандартов США. Его принятие в качестве официального стандарта шифрования в 1977 году было важной вехой в развитии криптографии.

3DES

3DES был разработан в качестве ответа на растущую уязвимость оригинального DES алгоритма. Основная идея заключалась в том, чтобы увеличить длину ключа и, соответственно, криптографическую стойкость шифра.

AES

AES был выбран в качестве нового стандарта симметричного блочного шифрования, чтобы заменить устаревающий DES и 3DES. Этот выбор был сделан Национальным институтом стандартов и технологий (NIST) в 2001 году после обширного процесса оценки и тестирования различных кандидатов.

AES

AES Structure

19/28

RC4

RC4 (Rivest Cipher 4) - это потоковый шифр, который был разработан Роном Ривестом для компании RSA Data Security (ныне RSA Security) в 1987 году. Шифр был секретным до тех пор, пока в 1994 году не был анонимно опубликован в интернете, после чего он получил широкое распространение.

Figure 7: RC4

ChaCha20

ChaCha20 – это высокопроизводительный потоковый шифр, разработанный криптографом Даниэлем Бернштейном. ChaCha20 представляет собой эволюцию другого его шифра Salsa20 и является одним из немногих потоковых шифров, которые рекомендуются к использованию на сегодняшний день.

ChaCha20

Figure 8: ChaCha20

Способы атак на симметричные криптосистемы

Симметричные криптосистемы, хотя и являются важными инструментами для обеспечения конфиденциальности и целостности данных, имеют ряд уязвимостей, которые могут быть использованы злоумышленниками для атак.

Способы атак на симметричные криптосистемы

Заключение

В заключение доклада о симметричных криптосистемах можно сказать, что эти системы играют ключевую роль в обеспечении цифровой безопасности и конфиденциальности на современном этапе развития информационных технологий.

Список литературы

1. Шенец Н. Н. Криптографические методы защиты информации. Симметричные криптосистемы: учебное пособие для студентов высших учебных заведений, обучающихся по УГСН 10.00. 00 «Информационная безопасность» по программам подготовки бакалавров, магистров, специалистов. — 2022. URL: https://elib.spbstu.ru/dl/2/i22-282.pdf/info (дата обращения: 03.05.2024).

Список литературы

- 2. Тимофеев А. М. Симметричные криптосистемы: стандарт DES. Лабораторный практикум: учебно-методическое пособие. – 2024. URL: https://ru.wikipedia.org/wiki/Блочный_шифр (дата обращения: 03.05.2024).
- 3. Берников Владислав Олегович Сравнительный анализ криптостойкости симметричных алгоритмов шифрования // Труды БГТУ. Серия 3: Физико-математические науки и информатика. 2020. №1 (230). URL: https://cyberleninka.ru/article/n/sravniteInyy-analiz-kriptostoykosti-simmetrichnyhalgoritmov-shifrovaniya (дата обращения: 03.05.2024).