Graduate Program in Software CSIS 734-01: Data Mining & Predictive Analytics

Assignment #9 (100 points)

<u>Due Date: May 12th, 2018</u>

1) What are the Silhouette coefficients for the following 7 points and their clustering results?

Data	Cluster	Silhouette Coefficient
1	1	
2	1	
5	1	
11	1	
12	2	
20	3	
21	3	

Definitions

Internal cohesion

Find the distance of each point to all others in the same cluster, then average them.

Center

Find the center by averaging their locations

External cohesion

Find the distance of each point to the centers of the other clusters, you take minimum to penalize it

Silhouette coefficient

Sq = (Eq - Iq) / Max(Eq, Iq) 1 is the best, -1 is the worse

Equations:

	Α	В	С	D	E	F
	Internal				External	Silhouette
1	Data	Clust	Cohesion	Center	Cohesion	Coefficient
2	1	1	=((A3-A2)+(A4-A2)+(A5-A2))/3	=AVERAGE(\$A\$2:\$A\$5)	=MIN((D6-A2),(D7-A2))	=(E2-C2)/MAX(C2,E2)
3	2	1	=((A3-A2)+(A4-A3)+(A5-A3))/3	=AVERAGE(\$A\$2:\$A\$5)	=MIN((D6-A3),(D7-A3))	=(E3-C3)/MAX(C3,E3)
4	5	1	=((A4-A2)+(A4-A3)+(A5-A4))/3	=AVERAGE(\$A\$2:\$A\$5)	=MIN((D6-A4),(D7-A4))	=(E4-C4)/MAX(C4,E4)
5	11	1	=((A5-A4)+(A5-A3)+(A5-A2))/3	=AVERAGE(\$A\$2:\$A\$5)	=MIN((D7-A5),(D6-A5))	=(E5-C5)/MAX(C5,E5)
6	12	2	0	=A6	=MIN((D7-A6),(A6-D5))	=(E6-C6)/MAX(C6,E6)
7	20	3	=(A8-A7)/1	=AVERAGE(\$A\$7:\$A\$8)	=MIN((A7-D6),(A7-D5))	=(E7-C7)/MAX(C7,E7)
8	21	3	=(A8-A7)/1	=AVERAGE(\$A\$7:\$A\$8)	=MIN((A8-D6),(A8-D5))	=(E8-C8)/MAX(C8,E8)

Answers:

		Internal		External	Silhouette
Data	Cluster	Cohesion	Center	Cohesion	Coefficient
1	1	5.00	4.75	11.00	0.55
2	1	4.33	4.75	10.00	0.57
5	1	4.33	4.75	7.00	0.38
11	1	8.33	4.75	1.00	-0.88
12	2	0.00	12.00	7.25	1.00
20	3	1.00	20.50	8.00	0.88
21	3	1.00	20.50	9.00	0.89

Visual:

2) Use the following distance table to draw two dendrograms: one use single-link method and another one uses complete-link method.

Distance table

	Α	В	С	D	E
Α	0	1	4	5	6
В	1	0	3	4	5
C	4	3	0	1	2
D	5	4	1	0	1
E	6	5	2	1	0

Single-link

min of min distances among clusters

CD-E has shortest distance 1

4 (A, B), (C, D, E) d(A, B), (C, D, E) = 3 AB-CDE has shortest distance 3

Dendogram using Single-link method

Distance table

	Α	В	С	D	E
Α	0	1	4	5	6
В	1	0	3	4	5
C	4	3	0	1	2
D	5	4	1	0	1
Ε	6	5	2	1	0

Complete-link

min of max distances among clusters

- 1 ((A, B), (C), (D), (E)) A-B has shortest distance 1
- 2 ((A, B), (C, D), (E)) C-D has shortest distance 1 $e.g. AB \rightarrow C max(4,3) = 4$
- 3 (A, B, C, D), (E)

$$d(A, B), (C, D) = 5, d(A, B), (E) = 6, d(C, D), (E) = 2$$

CD-E has the shortest distance 2

4 (A, B), (C, D, E)

d(A, B), (C, D, E) = 6 AB-CDE has the shortest distance 6

Dendogram using Complete-link method

as.dist(distanceTable) hclust (*, "complete")

