CMPEN 271 - Spring 2012

PSU ID: Name:

			\mathbf{S}	R	Q+	J	K	Q+
D	Q+	$T \parallel Q +$	0	0	Q	0	0	Q
0	0	0 Q	0	1	0	0	1	0
1	1	1 Q'	1	0	1	1	0	1
			1	1	X	1	1	Q'

- 1. $(1*10^{-6} \text{ pt.})$ Assuming a word size of 5 bits, interpret 10100 as a 2's complement number.
- c) -6
- d) -2
- e) None of the above.
- 2. $(1*10^{-6} \text{ pt.})$ Assuming a word size of 4 bits, determine the 2's complement representation of -7.
 - a) 1011
- b) 1101
- c) 1100
- d) 1001
- e) None of the above.
- 3. $(1*10^{-6} \text{ pt.})$ An If/Then statement represents which piece of hardware?
- b) mux
- c) comparator d) counter
- 4. $(1*10^{-6} \text{ pt.})$ How many 2:1 muxes are needed to construct a 4-bit wide 4:1 mux?
 - a) 8
- b) 12
- c) 18
- d) 24
- e) None of the above.

Questions 5-7 concern the construction of a bit-slice of a comparator. The questions will ask you to complete the entries in the truth table below denoted by a, b, and c.

G_{in}	L_{in}	E_{in}	x	y	G_{out}	L_{out}	E_{out}
0	0	1	1	0	a		
0	1	0	1	0		b	
1	0	1	1	0			c

- 5. $(1*10^{-6} \text{ pt.})$ What is the value of a?

 - a) 0 b) 1
- c) x
- 6. $(1*10^{-6} \text{ pt.})$ What is the value of b?
 - a) 0
- b) 1
- c) x
- 7. $(1*10^{-6} \text{ pt.})$ What is the value of c?
 - a) 0
- b) 1
- c) x

For questions 8-11 use the following figure

- 8. $(1*10^{-6} \text{ pt.})$ What is the value of Q1 at time 45
 - a) 0
- b) 1
- c) toggling
- 9. $(1*10^{-6} \text{ pt.})$ What is the value of Q1 at time 65
 - a) 0
- b) 1
- c) toggling
- 10. $(1*10^{-6} \text{ pt.})$ What is the value of Q2 at time 25
- b) 1
- c) toggling
- 11. $(1*10^{-6} \text{ pt.})$ What is the value of Q2 at time 75
 - a) 0
- b) 1
- c) toggling

You have a digital design which calls for a circuit to perform the following task.

```
if (sum > 18) z = sum-18
else if (sum > 12) z = sum-12
else if (sum > 6) z = sum-6
else z = sum
```

You have decided on the architecture shown below. Its your job to design to complete the truth table for the glue-logic box (only an arbitrary portion of the complete truth table is shown).

G6	G12	G18	select
1	1	0	a
1	0	0	b
1	1	1	С

- 12. $(1*10^{-6} \text{ pt.})$ What is the (decimal) value of a in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x
- 13. $(1*10^{-6} \text{ pt.})$ What is the (decimal) value of b in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x
- 14. $(1*10^{-6} \text{ pt.})$ What is the (decimal) value of c in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x

For questions 15,17 assume that a 4-bit up/down counter with parallel load has the following truth table. Complete the timing diagram below.

clk	c	$\mid D \mid$	Q^+	roll
$0,1,\downarrow$	XX	X	Q	1 if Q=15 and c=01
1	00	X	Q	0
1	01	X	Q+1	1 if Q=15 and c=01
1	10	X	Q-1	0
\uparrow	11	D	D	0

- 15. $(1*10^{-6} \text{ pt.})$ What is the value of Q at time 55?
 - a) 0000
- b) 0001
- c) 1110
- d) 1111
- e) none of the above
- 16. $(1*10^{-6} \text{ pt.})$ What is the value of Q at time 90?
 - a) 0000
- b) 0001
- c) 1110
- d) 1111
- e) none of the above
- 17. $(1*10^{-6} \text{ pt.})$ At which of the following times does roll=1
 - a) 30
- b) 50
- c) 70
- d) 90
- e) none of the above

You have a digital design which calls for a circuit to perform the following task.

for
$$(i=0; i<42; i++)$$
 total = $2*total + i$

You have decided on the architecture shown below. Its your job to finish the design. The box labeled "times 2" multiplies its input by 2 and outputs this value.

- 18. $(1*10^{-6} \text{ pt.})$ Which output of the comparator should be connected to the input of "box"?
 - a) G
- b) L
- c) E
- d) none of the above.
- 19. $(1*10^{-6} \text{ pt.})$ Assume that the counter has the truth table which is the same as question 15-17. What is the logic inside "box" to control the counter? Note, the output of the comparator is called "x."
 - a) $cnt_1 = 0$ and $cnt_0 = 0$
 - b) $cnt_1 = x'$ and $cnt_0 = 0$
 - c) $cnt_1 = 0$ and $cnt_0 = x'$
 - d) $cnt_1 = x$ and $cnt_0 = x'$
 - e) None of the above.
- 20. $(1*10^{-6} \text{ pt.})$ How many logic gates are required in the "times 2" box?
 - a) none
- b) a few
- c) some
- d) a lot
- e) infinite

For problems 21-25 use the following figure and timing diagram.

- 21. $(2*10^{-6} \text{ pts.})$ What is the value of P at time 15?
 - a) 0
- b) 3
- c) 4
- d) 6
- e) 11
- 22. $(2*10^{-6} \text{ pts.})$ What is the value of A_0 at time 25?
 - a) 3
- b) 5
- c) 7
- d) 8
- e) 10
- 23. $(2*10^{-6} \text{ pts.})$ What is the value of A_1 at time 35?
 - a) 8
- b) 11
- c) 14
- d) 15

d) 13

- e) 18
- 24. $(2*10^{-6} \text{ pts.})$ What is the value of Q at time 45?
 - a) 5
- b) 7
- c) 11
- e) 14
- 25. $(2*10^{-6} \text{ pts.})$ What is the value of M at time 55?
 - a) 2
- b) 5
- c) 7
- d) 8
- e) 9