Cálculo Avanzado

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Práctica: Unidad 12.

Tema: Ecuaciones en derivadas parciales.

Profesor Titular: Manuel Carlevaro. **Ayudante de Primera:** Christian Molina.

Ejercicio 1.

Aproxime utilizando diferencias finitas la ecuación en derivadas parciales elíptica

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4, \quad 0 < x < 1, \ 0 < y < 2$$

con las condiciones de frontera:

$$u(x,0) = x^2$$
, $u(x,2) = (x-2)^2$, $0 \le x \le 1$
 $u(0,y) = y^2$, $u(1,y) = (y-1)^2$, $0 \le y \le 2$

Use h=k=1/2 y compare los resultados con la solución exacta $u(x,y)=(x-y)^2$.

Ejercicio 2.

Aproxime utilizando diferencias finitas la ecuación en derivadas parciales elíptica

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 1 < x < 2, \ 0 < y < 1$$

con las condiciones de frontera:

$$u(x,0) = 2 \ln x$$
, $u(x,1) = \ln(x^2 + 1)$, $1 \le x \le 2$
 $u(1,y) = \ln(y^2 + 1)$, $u(2,y) = \ln(y^2 + 4)$, $0 \le y \le 1$

Use h=k=1/3 y compare los resultados con la solución exacta $u(x,y)=\ln(x^2+y^2)$.

Ejercicio 3.

Aproxime utilizando diferencias finitas hacia adelante la ecuación en derivadas parciales parabólica

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 < x < 2, \ 0 < t < T$$

con las condiciones de frontera:

$$u(0,t) = u(2,t) = 0, \ 0 < t; \ u(x,0) = \sin\frac{\pi}{2}x, \ 0 \le x \le 2$$

Use n=2 (puntos en x), T=0.1 y m=4 (divisiones de t). Compare los resultados con la solución exacta $u(x,t)=\exp[-(\pi^2/4)t]\sin(\pi x/2)$.