CS302 Assignment 3

1. (15 points) Give the runtime for each of the following

```
(a) for (int i = 0; i < n; i++)
for (int j = 0; j < n * n; j++)
    std::cout << "Insert generic message here\n";</pre>
```

```
(b) for (int i = 1; i < n; i = 2 * i) for (int j = n; j > 0; j = j / 3) std::cout << "Is this the krusty krab?\n";
```

```
(c) for (int i = 0; i < sqrt(n); i++)
for (j = 0; j < i; j++)
std::cout << "NO THIS IS PATRICK!!!\n";</pre>
```

- 2. Prove or disprove each of the following
 - (a) (5 points) $2^{\sqrt{n}} = O(2^n)$

(b) (5 points) $\Theta(\log^k n) = O(n)$ where k is any constant larger than 1, hint: what is the derivative of $\ln^k n$?

(c) (5 points) If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

3. (10 points) If we are given an unsorted list of size n, and we wish to perform a series of searches. Suppose algorithm \mathcal{A} is to sort the array first using merge sort and then performing several binary searches, and suppose algorithm \mathcal{B} is to use linear search several times, at least how many searches would we need to have in order for algorithm \mathcal{A} to have a better runtime over algorithm \mathcal{B} ? Please show your explanation/work.

4. (15 points) Rearrange the following functions from smallest asymptotic growth rate to the largest asymptotic growth, if any functions have the same asymptotic growth rate, please indicate that (use < to denote the function on the right has a larger growth rate and use = to denote same growth rate, for example $n < n^2$ and 3n = 4n)

an iteration of the outer loop finishes.	following list, show the steps of the inner loop and show when $5,7,1,3,10,2,0 \label{eq:first}$								

6.	(15 points)	Perform	mergesort	on the	following	list,	draw	the recursive	tree t	o shows	how	the	problem
	is broken u	p and hov	w the merg	e is do	ne.								

10, 11, 5, 16, 33, 21, 12, 9, 5, 40, 18, 22, 13, 4, 13, 1

7. (15 points) Show the execution of quicksort on the following link, please choose the leftmost element in each list as the pivot.
5, 1, 8, 2, 11, 7, 4, 12, 9