

NASA TN D-3884

NASA TN D-3884

602	N 67-23793	(THRU)
FORM 60	(ACCESSION NUMBER)	(CODE)
ACILITY	(PAGES)	(CATEGORY)
L	(NASA CR OR TMX OR AD NUMBER)	(CATEGORI)

AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH 0.5-DIAMETER CHORD, SINGLE-SLOTTED FLAP, AND SINGLE PROPELLER 0.19 CHORD BELOW WING

by Marvin P. Fink

Langley Research Center

Langley Station, Hampton, Va.

AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH 0.5-DIAMETER CHORD, SINGLE-SLOTTED FLAP, AND SINGLE PROPELLER 0.19 CHORD BELOW WING

By Marvin P. Fink

Langley Research Center
Langley Station, Hampton, Va.

AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH

O.5-DIAMETER CHORD, SINGLE-SLOTTED FLAP, AND

SINGLE PROPELLER 0.19 CHORD BELOW WING

By Marvin P. Fink Langley Research Center

SUMMARY

An investigation has been made in the Langley full-scale (30- by 60-foot) tunnel to determine the longitudinal aerodynamic characteristics of a large-scale semispan V/STOL tilt-wing configuration with a single propeller which was tested for both modes of rotation. The model had a half-fuselage on which loads were measured separately. The wing had a chord-to-propeller-diameter ratio of 0.5, a 40-percent-chord single-slotted flap, an aspect ratio of 4.88 (2.44 for the semispan), a taper ratio of 1.0, and an NACA 4415 airfoil section.

The data have not been analyzed in detail, but have been examined to observe the predominant trends. It was found that the direction of propeller rotation had a very significant effect on the lift and descent capability (as determined from drag-lift ratios attainable without stalling of any part of the wing within the propeller slipstream) and that up-at-the-tip rotation gave the more favorable results. The use of a trailing-edge flap was also very effective in increasing the descent capability. The use of leading-edge flow-control devices was very effective in increasing the descent capability and lift for the case of down-at-the-tip propeller rotation where the characteristics without such devices were poor, but was much less effective for the case of up-at-the-tip propeller rotation where reasonably favorable results were achieved without leading-edge devices. For the most favorable combination of the configuration variables, descent angles of nearly 29° were achieved over the entire test range of power conditions.

INTRODUCTION

Most of the aerodynamic research that has been done on the tilt-wing propeller-driven V/STOL configuration in the past has been of an exploratory character and has been done with small-scale models. The interest in this type of airplane has now become so substantial, however, that there is need for large-scale systematic aerodynamic design data for this concept. A program has therefore been inaugurated at the Langley Research Center to provide such information by means of tests of a large-scale semispan tilt-wing-and-propeller model. The

results for the wing alone have been published in references 1 to 4. The results for the wing with a fuselage are presented in references 5 and 6 for the cases of a double-slotted and a single-slotted flap, respectively.

The results of the present tests are for the configuration of reference 6 (single-slotted flap), but with the propeller thrust axis located 19 percent of the wing chord below the chord plane. The model had a single propeller on the semispan wing, a chord-diameter ratio of 0.5, a single-slotted flap, a leading-edge slat, and fences. The investigation covered a range of angle of attack from 5° to 85° and a range of thrust coefficients (based on slipstream) from 0.30 to 0.90. Included in the investigation were tests with both directions of propeller rotation. The lift, drag, and pitching moments of the model were measured over the range of test conditions. The flow was observed by means of tufts on the upper surface of the wing. The results of this investigation are presented without detailed analysis in order to expedite their dissemination to industry and the military services.

SYMBOLS

The positive sense of forces, moments, and angles is shown in figure 1. The pitching-moment coefficients are presented with reference to the wing quarter-chord line. The coefficients are based on the dynamic pressure in the propeller slipstream. Conventional lift, drag, and pitching-moment coefficients based on the free-stream dynamic pressure can be obtained by dividing the slipstream coefficients by $1-C_{\rm T,s}$; for example, $C_{\rm L}=C_{\rm L,s}/(1-C_{\rm T,s})$. The thrust coefficient $C_{\rm T}'$ may be found from the equation $C_{\rm T}'=\left[C_{\rm T,s}(A/S)\right]/(1-C_{\rm T,s})$.

Measurements for this investigation were made in the U.S. Customary System of Units. Equivalent values are indicated herein in the International System (SI) in the interest of promoting the use of this system in future NASA reports. Factors relating the two systems of units used in this paper may be found in the appendix.

The coefficients and symbols used in this paper are defined as follows:

- A total propeller disk area, ft² (meters²)
- b propeller blade chord, ft (meters); also wing span, ft (meters)
- $C_{D,s}$ drag coefficient based on slipstream, D/q_sS
- $C_{
 m L}$ lift coefficient based on free airstream, m L/qS
- $C_{L,S}$ lift coefficient based on slipstream, L/q_SS
- C_{L,s(fus)} fuselage lift coefficient based on slipstream
- $c_{m.s}$ pitching-moment coefficient based on slipstream, M_Y/q_sSc

```
thrust coefficient based on slipstream,
CT,s
              thrust coefficient based on free airstream, T/qS
              wing chord, ft (meters)
              flap chord, ft (meters)
cf
              propeller diameter, ft (meters); also, total model drag, lbf
D
                 (newtons)
              thickness of propeller blade, ft (meters)
h
              total model lift, lbf (newtons)
L
              pitching moment, lbf-ft (newton-meters)
M_{Y}
              free-stream dynamic pressure, \frac{\rho V^2}{2}, \frac{1bf}{ft^2} \left(\frac{\text{newtons}}{\text{meter}^2}\right)
q
               slipstream dynamic pressure, q + \frac{T}{\pi D^2/\hbar}
qs
               radius of propeller blade, 2.83 ft (0.86 meter)
R
               radius to element on propeller blade, ft (meters)
r
               area of semispan wing, 19.6 ft<sup>2</sup> (1.82 meters<sup>2</sup>)
S
               propeller thrust, lbf (newtons)
T
               free-stream velocity, ft/sec (meters/sec)
               longitudinal distance, ft (meters)
X
               lower-surface ordinate, ft (meters)
У7.
               upper-surface ordinate, ft (meters)
yu
               vertical distance, ft (meters)
Z
               angle of attack, deg
α
               flight-path angle (positive for climb), deg
\delta_{f}
               flap deflection, deg
               mass density of air, \frac{\text{slugs}}{\text{ft3}} \left(\frac{\text{kilograms}}{\text{meter}^3}\right)
```

The model used in this investigation was a semispan model which would represent the left panel of the full-span wing and the left half of the fuse-lage. The principal dimensions of the wing are given in figure 2. A three-view drawing of the fuselage-wing combination is given in figure 3(a) and a cross-sectional view of the fuselage is shown in figure 3(b). The propeller-blade characteristics are given in figure 4, and a photograph showing the model mounted in the Langley full-scale tunnel is presented in figure 5.

The wing was mounted on the balance system in the tunnel so that the lift and drag of the wing were read directly about the wind axis. The wing pivoted about its quarter-chord point and its pitching moments were measured about this point, and are referred to this point in the data presentation as indicated by figure 1.

When the half-fuselage was added to the existing wing model it was necessary to cause the fuselage to move relative to the wing quarter-chord point in order to avoid structural conflict between the wing and the fuselage. The fuselage was consequently mounted on a parallel arm arrangement so that it moved as the wing angle of attack was varied. It moved as though it were pivoted at the 58-percent wing-chord station on the wing lower surface. The illustration in figure 3(a) shows the relationship of the wing to the fuselage at a given angle of the wing. The fuselage was not actually attached to the wing, however, and its forces did not register on the tunnel balance. Instead the load on the fuselage (lift only) was measured on separate strain-gage balances. At all times the fuselage remained at zero angle of attack relative to the airstream.

The basic structure of the wing consists of a heavy box-beam spar to which a power train to drive the propellers through spanwise shafting is attached, and around which various airfoil contours can be fitted. The propeller location was such that the propeller tip extended out to the wing tip. In the present investigation both directions of propeller rotation were tested. The propeller thrust was measured by a strain-gage balance which was a part of the propeller shaft. The output was fed through sliprings to an indicating instrument. The required values of thrust for each value of $C_{\hbox{\scriptsize T},s}$ were set by changing the speed of the drive motor. The blade angle at the 0.75R station of the propeller was held constant at 17° throughout the investigation. The propeller was located 0.19c below the wing chord plane and 0.65c ahead of the wing quarter-chord line as shown in figure 2(a). The thrust line was parallel to the wing chord plane.

The airfoil used for the wing was the NACA 4415 section with a 2.83 ft (0.86 m) chord. This chord length gave a ratio of wing chord to propeller diameter of 0.5. The reference area of the wing based on a semispan of 6.92 ft (2.11 m) was $19.6 \, \mathrm{ft}^2$ (1.82 m²) and did not include the area of the tip fairing.

The model had a 0.40c single-slotted trailing-edge flap. The ordinates and the positions for the various deflections are given in figure 2(c). The flap is illustrated in figure 2(c) for the 40° deflection.

The leading-edge slat shown in figure 2(b) was investigated in combination with the flap on this model. A slat deflection of 30° was used on all of the wing except that part of the wing which extended across the top of the fuselage, where the high position was used so that low angles of attack ($\alpha = 5^{\circ}$) could be obtained without the slat touching the fuselage. Otherwise the minimum angle of attack would have been about 15° .

Fences having a height of 0.20c and extending from 0.13c on the lower surface around the leading edge to about 0.75c on the upper surface were installed at two spanwise locations on the wing (see fig. 2(d)) in an attempt to confine the stall inboard of the propeller slipstream. When tests were made with fences on, both fences were installed.

TESTS

The tests were made for a range of single-slotted-flap deflections and with and without a leading-edge slat and fences. The specific configurations tested, together with a list of tables and figures in which data for each may be found, are given in the following table:

Direction			Flap		Fi	gure
of rotation	Configuration	de	deflection, Table δ_f , deg		Aerodynamic data	Fuselage lift coefficients
Up-at-tip	Basic leading edge	{	0 20 40 60	1 2 3 4	6 7 8 9	37 37 37 37
	Basic leading edge with fences on	{	20 40 60	5 6 7	10 11 12	38 38 38
	Inboard slat	{	20 40 60	8 9 10	13 14 15	39 39 39
	Inboard slat with fences on	{	20 40 60	11 12 13	16 17 18	40 40 40

]	Flap		Fig	gure
Direction of rotation	Configuration			Table	Aerodynamic data	Fuselage lift coefficients
Up-at-tip	Full-span slat with fences on	{	20 40 60	14 15 16	19 20 21	41 41 41
	Outboard slat with fences on	{	20 40 60	17 18 19	22 23 24	42 42 42
Down-at-tip	Basic leading edge	{	0 20 40 60	20 21 22 23	25 26 27 28	43 43 43 43
	Basic leading edge with fences on	{	40 60	24 25	29 30	7+7+ 7+7+
	Inboard slat	{	20 40 60	26 27 28	31 32 33	45 45 45
	Inboard slat with fences on	{	20 40 60	29 30 31	3 ⁴ 35 36	46 46 46

The tests were made over a range of thrust coefficients from 0.30 to 0.90. For any given test the thrust coefficient was held constant over the angle-of-attack range by adjusting the propeller speed to give the required thrust at each angle of attack. The angle-of-attack range was from 5° to that required to stall the wing or to develop a drag-lift ratio of about 0.3, whichever was lower. The test Reynolds number, based on the wing chord length and the velocity of the propeller slipstream, was about 2.38×10^{6} .

No tunnel-wall corrections have been applied to the data since surveys and analysis had indicated that there would be no significant correction, as explained in reference 1.

DISCUSSION

The data presented have not been analyzed in detail, but have been examined for general trends. One very general observation was that the force-test data could not be used as an indication of the occurrence or extent of wing stalling. The tuft-test results show that the onset of stalling over significant areas of the part of the wing within the propeller slipstream frequently occurs

considerably below or above the angle of attack for maximum lift coefficient. The data were examined, in particular, to determine the effect of the various test variables on descent capability - the descent capability being determined from the D/L values attainable prior to indication by the tufts of stalling of any part of the wing within the propeller slipstream.

Effect of Direction of Propeller Rotation

The force- and tuft-test data show that the up-at-the-tip direction of rotation consistently gave higher maximum lift and higher descent capability. In general, the tuft pictures show that rough flow and stalling (as indicated by areas on the wing where the tufts are swirling violently or have become very limp and are pointed in random directions) occurred at an angle of attack as much as 25° to 30° lower with down-at-the-tip rotation than with up-at-the-tip rotation for the higher thrust coefficient ($C_{\rm T,s}=0.90$). Down-at-the-tip propeller rotation consistently causes stalling (of the part of the wing in the slipstream) to start inboard of the nacelle, that is, behind the up-going blades. When stall occurred on the wing for the up-at-the-tip mode of rotation it occurred only outboard of the nacelle.

Effect of Leading-Edge Slat

Comparison of figures 7 to 9 with 13 to 15 for up-at-the-tip rotation and figures 26 to 28 with 31 to 33 for down-at-the-tip rotation gives the effect of the inboard section of the leading-edge slat. The force and tuft tests show that for both directions of propeller rotation the slat was beneficial in extending maximum lift to higher angles of attack (particularly for the lower thrust coefficients, $C_{\rm T,s} = 0.30$ and 0.60), although only for down-at-the-tip rotation did the slat give any appreciable increase in descent capability.

The effect of the full-span slat (figs. 19 to 21) was determined only for up-at-the-tip rotation. By comparison with the inboard-slat results (figs. 16 to 18), the tuft tests show that the outboard section of the slat reduced the tip stalling and produced an appreciable increase in both ${\rm C_{L,s}}$ and descent capability, which for the 60° flap deflection was nearly 23° for the range of thrust coefficients tested.

Effect of Fences

The effect of fences can be ascertained for both directions of propeller rotation for the model with the basic leading edge and with the leading-edge slat installed. Compare figures 7 to 18 for up-at-the-tip rotation and figures 26 to 36 for down-at-the-tip rotation. These results, as in previous investigations with the propeller thrust line above the wing chord, show that the fences were most effective for the case of down-at-the-tip mode of propeller rotation. In this case the wing has a tendency to stall inboard of the nacelle because of the rotation of the propeller slipstream, and the fences are effective in preventing the center-section stall from spreading and prematurely

triggering the stalling of the section of the wing in the propeller slipstream inboard of the nacelle. Specifically, the results of the present tests show that the fences with up-at-the-tip rotation caused some slight increase in lift and descent capability, the most improvement being shown for the 20° flap deflection; but for the case of down-at-the-tip propeller rotation, the fences gave significantly more descent capability over the range of flap deflection, particularly for the higher thrust coefficients.

Effect of Flap Deflection

There was a progressive increase in maximum lift coefficient and descent capability as flap deflection was increased. The greatest increment occurred with the deflection from 0° to 20° for either mode of propeller rotation, but it must be pointed out that for down-at-the-tip rotation the model with $\delta_{\rm f}=0$ had a negative descent capability ($\gamma=-22^{\circ}$). (See fig. 25.) With 20° of flap deflection (fig. 26), there was a change of approximately 21° in the positive direction, but still not enough to produce any noticeable descent capability. With up-at-the-tip rotation, increasing flap deflection from 0° to 20° increased the descent angle from about 9° to about 20°. With this direction of rotation, full-span slat, and fences, a descent capability of nearly 29° was obtained with 60° of flap deflection.

Fuselage Lift

The fuselage lifts plotted in figures 37 to 46 are presented in the same units as the wing lift coefficients. In general, the maximum fuselage lift occurred at about the angle of attack for maximum lift. This trend was true for the various flap deflections, and for both directions of propeller rotation. The inboard slat and fences had no appreciable effect on the fuselage loading.

CONCLUSIONS

An experimental investigation has been made to determine the longitudinal aerodynamic characteristics of a large-scale semispan V/STOL tilt-wing configuration with a single propeller which was tested for both modes of rotation. The model had a half-fuselage on which loads were measured separately. The following conclusions were drawn from the results of the investigation:

- 1. The direction of propeller rotation had a significant effect on the lift and descent capability attainable for most of the configurations tested, with the up-at-the-tip mode of propeller rotation giving the more favorable results.
- 2. Leading-edge stall-control devices were very effective in improving the descent capability for the down-at-the-tip mode of propeller rotation. With leading-edge slats and fences, almost as favorable results could be achieved with this mode of propeller rotation as with up-at-the-tip rotation.

3. The use of flaps was very effective in increasing the lift and the descent capability for either mode of rotation. With 40° or 60° flap deflection and with the most favorable combination of flow-control devices tested, descent angles of nearly 29° were achieved for the entire test range of power conditions.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 30, 1966,
721-01-00-11-23.

APPENDIX

CONVERSION FACTORS - U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General Conference on Weights and Measures, Paris, October 1960. (See ref. 7.) The following conversion factors are included in this report for convenience:

Physical quantity	U.S. Customary Unit	Conversion factor (*)	SI Unit
Area	ft ²	0.0929	meters ² (m ²)
Density	slugs/ft ³	515.38	kilograms/meter ³ (kg/m ³)
Force	lbf	4.448	newtons (N)
T are sub-la	f in.	0.0254	meters (m)
Length	ft	0.3048	meters (m)
Moment	lbf-ft	1.356	newton-meters (N-m)
Pressure	lbf/ft ²	47.88	newtons/meter ² (N/m ²)
Velocity	ft/sec	0.3048	meters/second (m/sec)

^{*}Multiply value given in U.S. Customary Unit by conversion factor to obtain equivalent value in SI Unit.

REFERENCES

- 1. Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on a Large Semispan Tilting Wing With 0.6-Diameter Chord, Fowler Flap, and Single Propeller Rotating Up at Tip. NASA TN D-2180, 1964.
- 2. Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on Large Semispan Tilting Wing With 0.6-Diameter Chord, Single-Slotted Flap, and Single Propeller Rotating Down at Tip. NASA TN D-2412, 1964.
- 3. Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on Large Semispan Tilting Wing With 0.6-Diameter Chord, Single-Slotted Flap, and Single Propeller Rotating Up at Tip. NASA TN D-1586, 1964.
- 4. Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on a Large Semispan Tilting Wing With 0.5-Diameter Chord, Double-Slotted Flap, and Both Left- and Right-Hand Rotation of a Single Propeller. NASA TN D-3375, 1966.
- 5. Fink, Marvin P.: Aerodynamic Data on a Large Semispan Tilting Wing With a 0.5-Diameter Chord, a Double-Slotted Flap, and Left- and Right-Hand Rotation of a Single Propeller, in Presence of Fuselage. NASA TN D-3674, 1966.
- 6. Fink, Marvin P.; and Mitchell, Robert G.: Aerodynamic Data on a Large Semispan Tilting Wing With a 0.5-Diameter Chord, a Single-Slotted Flap, and Both Left- and Right-Hand Rotation of a Single Propeller. NASA TN D-3754, 1967.
- 7. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors. NASA SP-7012, 1964.

TABLE 1.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{ extbf{f}}$ = 0°

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	Cm,s	CL,s	CD,s	C _{m,s}
a, aeg		C _{T,s} = 0.90			C _{T,s} = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75	0.234 .400 .567 .704 .850 .978 1.073 1.164 1.232 1.332 1.332 1.367 1.360 1.340 1.332	-1.147 -1.108 -1.070992913805698577457327189063 .062 .185 .306 .420	0.273 .297 .310 .315 .319 .315 .319 .321 .320 .315 .311 .309 .310 .306 .313	0.284 .465 .650 .831 .992 1.115 1.200 1.302 1.374 1.436 1.464 1.471 1.467 1.467	-1.004964917836745613479337199052 .094 .226 .360 .461 .534	0.243 .258 .276 .294 .293 .300 .293 .296 .293 .294 .289 .290 .298 .309
		$C_{T,s} = 0.60$			C _{T,s} = 0.30	
5 10 15 20 25 30 35 40 45 50	0.324 .542 .759 .984 1.174 1.303 1.395 1.427 1.469 1.475	-0.731 685 621 536 413 274 120 .062 .230 .392 .516	0.163 .195 .214 .233 .236 .228 .224 .191 .185 .176	0.395 .643 .908 1.148 1.333 1.404 1.308 1.357 1.322	-0.359 306 239 137 013 .141 .303 .473 .585	0.063 .100 .133 .138 .155 .102 .050 .049

(b) Fuselage data

a, deg	C _{L,s(fus)}							
a, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _T ,s = 0.60	C _T ,s = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.013 .012 .001 .020 .023 .030 .039 .047 .055 .055 .058 .054 .050 .046	0.011 .014 .021 .028 .034 .049 .064 .073 .079 .082 .087 .086	-0.005 .002 .014 .023 .032 .054 .074 .090 .092 .098	-0.025 023 015 .006 .025 .040 .055 .061				

TABLE 2.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{\mathbf{f}}$ = 20 $^{\circ}$

(a) Wing data

α, deg	CL,s	C _D ,s	C _{m,s}	$c_{\mathrm{L,s}}$	C _{D,s}	C _{m,s}
w, 40g		$C_{T,s} = 0.90$			C _{T,s} = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.517 .677 .837 .991 1.111 1.225 1.324 1.384 1.429 1.447 1.457 1.449 1.419 1.376 1.343	-1.048981910811696563419274137 .004 .119 .255 .351 .435 .508 .581	0.141 .150 .158 .149 .147 .140 .133 .130 .131 .132 .133 .153 .155 .159 .169	0.609 .808 1.007 1.181 1.324 1.455 1.520 1.565 1.597 1.591 1.545 1.510 1.465 1.402 1.333 1.134	-0.893 828 729 611 463 313 159 .004 .146 .275 .372 .473 .577 .635 .680 .641	0.083 .087 .087 .083 .079 .080 .075 .075 .074 .085 .108 .127 .152 .177 .202
		C _{T,s} = 0.60			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60	0.727 .996 1.256 1.486 1.675 1.735 1.762 1.766 1.735 1.698 1.665	-0.610 536 407 268 099 .069 .228 .381 .497 .610 .718 .737	0 .006 001 018 012 019 020 011 .007 .018 .042	0.876 1.180 1.524 1.797 2.022 2.010 1.968 1.647 1.489	-0.241 141 006 .161 .331 .520 .669 .771 .843	-0.127 115 117 126 136 144 155 165 147

α, deg	C _{L,s} (fus)								
w, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	CT,s = 0.60	C _T ,s = 0.30					
5 10 15 20 25 30 35 40 45 50 50 65 70 75 80	0.017 .011 .009 .009 .012 .020 .029 .037 .032 .031 .029 .027 .022 .014	0.029 .031 .030 .037 .050 .062 .080 .079 .075 .073 .068 .061 .054	0.037 .048 .057 .074 .083 .098 .106 .113 .114 .111 .102	0.035 .043 .054 .069 .080 .084 .098 .086					

TABLE 3.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{\mathbf{f}}$ = 40 $^{\circ}$

(a) Wing data

a, deg	CL,s	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
u, ucg		$C_{T,S} = 0.90$			C _T , _s = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.710 .855 1.005 1.136 1.264 1.361 1.429 1.469 1.480 1.480 1.420 1.333 1.295 1.242 1.189	-0.919849755634508361204061 .069 .198 .315 .395 .456 .513 .558 .618	0.076 .074 .075 .069 .068 .057 .054 .064 .077 .084 .108 .132 .155 .185	0.826 1.019 1.199 1.380 1.509 1.606 1.622 1.632 1.626 1.582 1.515 1.480 1.424 1.344 1.344	-0.767 676 555 411 252 093 .069 .214 .333 .416 .484 .601 .677 .697 .731	0.019 .023 .022 .011 .007 .003 .002 .010 .025 .060 .091 .100 .129 .162 .183
		$C_{T,S} = 0.60$		C _{T,s} = 0.30		
5 10 15 20 25 30 35 40 45 50 55 60	0.993 1.255 1.494 1.731 1.841 1.838 1.842 1.783 1.717 1.664 1.496	-0.472368229060 .120 .271 .420 .538 .626 .713 .764	-0.070 074 084 089 097 088 075 043 026 003 .020 .018	1.208 1.519 1.812 2.054 2.247 2.055 1.973 1.553 1.339	-0.075 .041 .191 .379 .568 .717 .836 .821	-0.199 192 203 214 214 185 191 149 150

a, deg	C _{L,s} (fus)								
u, ueg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _T ,s = 0.30					
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0007006002 .004 .009 .013 .013 .011 .012 .012 .005003010011002 .009	0.023 .024 .026 .033 .033 .035 .072 .072 .065 .059 .047 .045 .037	0.061 .064 .079 .093 .102 .113 .114 .107 .104 .098 .092	0.067 .078 .092 .100 .107 .098 .101 .069					

TABLE 4.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{\mathbf{f}}$ = 60°

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}	
		$C_{T,s} = 0.90$			$C_{T,s} = 0.80$		
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.880 .983 1.110 1.256 1.352 1.423 1.466 1.476 1.478 1.467 1.418 1.371 1.316 1.265 1.221 1.177	-0.743 668 548 412 262 117 .027 .169 .289 .398 .466 .497 .507 .518 .545 .597 .616	0.005 .011 .015 .003 002 0 018 .003 .011 .038 .078 .094 .133 .169 .194 .228	1.008 1.204 1.380 1.505 1.612 1.682 1.671 1.604 1.558 1.481 1.440 1.334 1.265 1.010	-0.582456322177012 .156 .289 .355 .425 .495 .609 .697 .762 .772 .615	-0.053 058 057 045 060 065 053 .004 .030 .048 .068 .088 .108	
		$C_{T,S} = 0.60$		C _{T,s} = 0.30			
5 10 15 20 25 30 35 40 45 50	1.255 1.499 1.684 1.881 1.951 1.853 1.802 1.696 1.611	-0.268 149 .015 .196 .377 .473 .564 .641 .705 .704	-0.157159148161158117071054020008	1.543 1.774 2.024 2.269 2.284 1.954 1.845 1.357	0.137 .267 .437 .646 .806 .826 .934 .846	-0.338 261 275 276 272 182 173 142	

(b) Fuselage data

a, deg	$^{ extsf{C}_{ extsf{L}}, extsf{s}}$ (fus)						
,,	C _{T,s} = 0.90	C _{T,S} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30			
5 10 15 20 25 35 40 45 50 55 66 70 75 80 85	-0.018014009007005004 .006 .004 .003005016022025023015	0.019 .019 .020 .027 .035 ,050 .065 .052 .045 .039 .032 .031	0.081 .083 .084 .089 .101 .102 .102 .088 .083	0.106 .116 .126 .125 .118 .086 .089			

TABLE 5.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, BASIC LEADING EDGE WITH FENCES ON,

AND
$$\delta_{f} = 20^{\circ}$$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	CL,s	C _{D,s}	Cm,s
a, acg		C _{T,s} = 0.90			$C_{\rm T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.515 .674 .832 .978 1.109 1.229 1.389 1.435 1.462 1.468 1.453 1.423 1.384 1.336 1.296	-1.039969895790678542398243095045184 .292391475542620640	0.137 .144 .151 .149 .139 .124 .120 .116 .112 .119 .135 .142 .157 .191 .228 .289	0.604 .805 1.001 1.179 1.341 1.468 1.550 1.616 1.633 1.584 1.521 1.446 1.393 1.326	-0.880 811 719 592 449 287 118 .062 .208 .345 .448 .498 .566 .640 .683	0.084 .089 .086 .085 .081 .076 .061 .050 .055 .066 .085 .123 .146 .174 .202
		$C_{T,S} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60	0.751 .988 1.258 1.493 1.707 1.821 1.890 1.923 1.892 1.865 1.796 1.407	-0.625 525 408 267 096 .108 .300 .475 .614 .744 .839 .797	0.002 .006 .003 004 012 041 049 046 028 003 .027	0.870 1.194 1.514 1.822 2.057 2.204 2.219 1.825	-0.222 130 .003 .176 .364 .590 .784	-0.129 111 127 138 147 173 192 178

(b) Fuselage data

α, deg	C _{L,s} (fus)						
u, deg	C _{T,s} = 0.90	C _T ,s = 0.80	C _T ,s = 0.60	C _{T,s} = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.018 .013 .008 .007 .011 .019 .025 .029 .028 .025 .016 .014 .012 002 015 021 049	0.029 .032 .033 .036 .044 .062 .078 .079 .071 .071 .068 .060	0.042 .055 .066 .079 .092 .111 .136 .140 .134 .125 .109	0.038 .055 .072 .090 .100 .125 .154 .127			

TABLE 6.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, BASIC LEADING EDGE WITH FENCES ON,

AND $\delta_{f} = 40^{\circ}$

(a) Wing data

α, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
		C _{T,s} = 0.90			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 65 70 75 80	0.699 .848 .993 1.124 1.256 1.347 1.425 1.470 1.495 1.503 1.476 1.436 1.395 1.349 1.313	-0.909842742618493343188034114247371455518579666723	0.070 .076 .077 .067 .065 .056 .050 .046 .044 .051 .063 .084 .105 .133 .173	0.832 1.011 1.208 1.388 1.526 1.622 1.676 1.700 1.683 1.641 1.557 1.488 1.420 1.351 1.263	-0.762667548402238062 .111 .274 .405 .509 .559 .613 .672 .717	0.015 .022 .019 .008 0 014 022 018 003 .030 .055 .095 .119 .158
		$C_{\rm T,s} = 0.60$			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45	1.006 1.256 1.502 1.730 1.882 1.957 1.977 1.957 1.920 1.597	-0.473 371 226 053 .143 .346 .524 .674 .785 .805	-0.075 076 092 088 104 116 118 099 058 051	1.203 1.518 1.812 2.075 2.276 2.315 2.235 1.720	-0.077 .049 .197 .385 .588 .814 .986	-0.198 206 212 207 221 236 238 188

(b) Fuselage data

α, deg	C _{L,s(fus)}							
2, 208	C _{T,s} = 0.90	$C_{\rm T,s} = 0.80$	C _{T,s} = 0.60	C _{T,s} = 0.30				
5 10 15 20 25 30 35 40 45 50 560 65 70 75 80	0.002 006 007 0 .004 .006 .010 .010 .005 002 002 003 010 024 037 050	0.026 .028 .032 .040 .047 .063 .068 .071 .063 .059 .046 .045 .045	0.064 .076 .090 .102 .119 .139 .142 .140 .130	0.075 .092 .104 .123 .139 .163 .152				

TABLE 7.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, BASIC LEADING EDGE WITH FENCES ON, $\Delta ND \quad \delta_{\rm f} \, = \, 60^{\rm O}$

(a) Wing data

a, deg	CL,s	C _{D,s}	C _m ,s	CL,s	C _{D,s}	C _{m,s}
a, aeg		CT,s = 0.90			CT,S = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.877 .986 1.117 1.259 1.351 1.418 1.468 1.493 1.513 1.484 1.440 1.397 1.327 1.286 1.246 1.190	-0.737663551403262114 .043 .205 .360 .464 .538 .558 .571 .606 .675	0.004 .016 .024 .007 .001 .003 002 007 004 .008 .040 .092 .118 .152 .189	1.011 1.207 1.378 1.498 1.611 1.682 1.705 1.676 1.621 1.553 1.454 1.398 1.323 1.259 1.022	-0.584456322169006 .172 .352 .467 .553 .593 .640 .731 .777 .789	-0.035 059 058 062 065 078 079 049 019 .018 .051 .065 .097
		$C_{T,S} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50	1.261 1.484 1.768 1.875 1.963 1.971 1.964 1.897 1.816	-0.271 148 .013 .203 .391 .572 .722 .835 .909 .849	-0.150151156160158156135106058058	1.521 1.784 2.041 2.245 2.375 2.310 2.187 1.447	0.133 .279 .434 .628 .836 1.024 1.172	-0.276 276 261 263 280 267 255 142

(b) Fuselage data

a, deg	^C L,s(fus)						
d, deg	C _{T,s} = 0.90	C _T ,s = 0.80	$C_{T,S} = 0.60$	C _T ,s = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75	-0.014013009006002 .001 0006007009014023032045056	0.024 .024 .032 .039 .049 .057 .060 .051 .038 .026 .026 .025 .025	0.082 .092 .099 .107 .120 .133 .131 .117 .107	0.115 .123 .137 .148 .158 .165 .142 .074			

TABLE 8.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, INBOARD SLAT, AND $\delta_{\mathbf{f}}$ = 20 $^{\circ}$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
		C _{T,S} = 0.90	•		$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.424 .580 .742 .906 1.035 1.163 1.279 1.374 1.427 1.434 1.410 1.392 1.354 1.310 1.266	-1.009963893805700575431274127 .009 .123 .217 .328 .409 .469 .531 .594	0.163 .164 .166 .163 .156 .145 .134 .116 .116 .115 .123 .137 .144 .167 .192 .232 .254	0.489 .692 .904 1.111 1.289 1.446 1.554 1.601 1.620 1.641 1.598 1.540 1.468 1.399 1.322	-0.868818728616482319153 .015 .158 .311 .419 .491 .557 .621	0.113 .122 .109 .106 .095 .085 .071 .075 .068 .087 .106 .132 .163
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45	0.580 .844 1.149 1.421 1.662 1.867 1.947 1.807 1.702 1.661	-0.605 530 430 286 116 .073 .249 .341 .505 .640	0.025 .022 .007 .001 015 024 024 .004 002	0.658 1.002 1.401 1.732 2.045 2.035 2.368 1.919 1.575	-0.227 1 ⁴ 9 019 .129 .316 .521 .729 .766 .785	-0.113 114 119 126 128 135 142 109 111

α, deg	C _{L,s} (fus)							
w, 40g	C _{T,S} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30				
5 10 15 20 25 30 35 40 45 50 550 65 70 75 80 85	0.021 .023 .017 .014 .021 .021 .025 .033 .034 .035 .038 .034 .024 .018	0.035 .041 .043 .046 .050 .059 .071 .081 .083 .075 .068 .060	0.034 .051 .059 .065 .078 .086 .095 .089 .091	0.031 .063 .054 .058 .063 .084 .093 .065 .053				

TABLE 9.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, INBOARD SIAT, AND $\delta_{ extsf{f}}$ = 40°

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
a, deg		C _{T,s} = 0.90			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 67 75 80 85	0.563 .724 .890 1.027 1.172 1.301 1.395 1.457 1.489 1.486 1.460 1.415 1.373 1.315 1.283 1.230	-0.937 878 791 675 545 391 230 066 .080 .205 .305 .383 .436 .488 .553 .582	0.115 .117 .106 .095 .075 .071 .052 .045 .046 .052 .067 .098 .125 .153 .177 .212	0.698 .922 1.134 1.346 1.539 1.665 1.714 1.699 1.698 1.707 1.630 1.565 1.478 1.408 1.313 1.100	-0.835 759 647 495 322 150 .103 .241 .369 .518 .587 .649 .689 .714 .743	0.083 .073 .066 .036 .028 -025 0 .051 .066 .092 .125 .160 .195 .217 .218
		$C_{\mathrm{T,s}} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50	0.799 1.086 1.417 1.672 1.894 2.016 2.031 1.777 1.787 1.757	-0.498401253092 .105 .313 .457 .460 .616 .743 .718	-0.050 056 075 080 097 105 .087 .002 .005 .027 .018	0.956 1.349 1.737 2.061 2.297 2.460 2.445 1.721 1.465	-0.121 .010 .163 .359 .566 .780 .946 .794 .827	-0.167 187 209 204 212 208 191 140

(b) Fuselage data

a doa	C _{L,s(fus)}							
α, deg	C _{T,s} = 0.90	C _T ,s = 0.80	$C_{\rm T,s} = 0.60$	C _{T,s} = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.014 .012 .018 .027 .023 .025 .030 .033 .029 .025 .019 .019 .009 003 009	0.031 .044 .043 .048 .056 .062 .071 .079 .071 .062 .050 .039 .052 .036 .021	0.051 .072 .098 .105 .109 .095 .092 .072 .045	0.062 .085 .086 .087 .109 .114 .106 .053 .032				

TABLE 10.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, INBOARD SLAT, AND $\delta_{\mathbf{f}}$ = 60°

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
w, acg		$C_{T,S} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 340 45 50 55 60 70 80 85	0.705 .840 .987 1.138 1.280 1.366 1.423 1.458 1.458 1.458 1.401 1.351 1.307 1.262 1.217 1.156 1.114	-0.823 746 639 497 323 158 002 .137 .249 .342 .423 .423 .423 .424 .482 .537 .587 .637	0.074 .069 .062 .030 .006 009 007 003 .006 .037 .049 .083 .124 .160 .193 .207	0.817 1.031 1.254 1.449 1.584 1.656 1.631 1.608 1.614 1.577 1.482 1.408 1.342 1.260 1.021	-0.653 551 390 212 028 .115 .217 .325 .455 .566 .615 .678 .706 .685 .587	0.009 0 035 052 068 064 032 0 .007 .038 .059 .084 .135 .171
		$C_{T,S} = 0.60$			C _{T,s} = 0.30	
5 10 15 20 25 30 35 40 45	1.039 1.293 1.593 1.839 1.987 2.035 1.854 1.637 1.435	-0.324 222 054 .171 .368 .524 .517 .481	-0.119111128156162139064 .019002	1.276 1.579 1.990 2.310 2.430 2.484 2.285 1.473	0.077 .195 .427 .663 .857 1.017 1.001	-0.248 252 274 289 286 258 180 100

α, deg	C _L ,s(fus)							
w, 408	CT,s = 0.90	$C_{\rm T,s} = 0.80$	C _T ,s = 0.60	C _T ,s = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 70 75 80 85	0.005 .010 .016 .022 .027 .028 .024 .030 .032 .026 .019 .011 005 012 018 .002	0.030 .037 .048 .048 .051 .061 .068 .070 .058 .040 .029 .034 .039 .027	0.064 .082 .087 .095 .100 .100 .092 .064 .056	0.091 .102 .114 .122 .124 .116 .081 .014				

TABLE 11.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, INBOARD SLAT WITH FENCES ON,

AND
$$\delta_{f} = 20^{\circ}$$

(a) Wing data

α, deg	CL,s	C _{D,s}	C _{m,s}	CL,s	C _{D,s}	C _{m,s}
d, deg		CT,s = 0.90			$C_{\rm T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.422 .582 .738 .897 1.036 1.163 1.277 1.370 1.424 1.459 1.471 1.444 1.378 1.332 1.271 1.225	-1.004965898813705589435271120 .030 .165 .269 .361 .440 .505 .557	0.159 .169 .172 .163 .162 .152 .137 .122 .116 .113 .111 .129 .143 .164 .195 .233	0.491 .682 .903 1.105 1.292 1.455 1.576 1.627 1.666 1.671 1.622 1.538 1.452 1.385 1.317	-0.872 809 725 617 477 310 123 .053 .207 .350 .453 .498 .536 .602 .640	0.114 .119 .109 .107 .090 .077 .061 .043 .049 .072 .096 .121 .152 .177 .201
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50	0.576 .849 1.154 1.442 1.679 1.874 1.996 1.987 1.896 1.774	-0.602 541 419 281 106 .090 .294 .473 .648	0.025 .021 .008 008 019 033 034 043 020 011	0.658 1.034 1.438 1.772 2.034 2.298 2.379 1.926 1.712	-0.235 137 021 .139 .329 .547 .766 .795 .882	-0.088116114127126131148120148

(b) Fuselage data

a, deg	^C L,s(fus)						
	C _{T,s} = 0.90	C _{T,s} = 0.80	$C_{\rm T,s} = 0.60$	C _T ,s = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.026 .027 .024 .022 .025 .026 .035 .036 .034 .025 .027 .025 .027	0.038 .042 .048 .049 .050 .059 .073 .076 .070 .067 .062 .060 .055 .050 .033	0.043 .060 .066 .072 .083 .092 .107 .119 .114	0.043 .073 .071 .074 .083 .094 .092 .066 .084			

TABLE 12.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, INBOARD SLAT WITH FENCES ON, ${\rm AND} \ \delta_{\bf f} \ = \ 40^{\, \rm O}$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
		$C_{T,S} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.549 .698 .867 1.018 1.155 1.286 1.374 1.446 1.480 1.483 1.475 1.424 1.372 1.335 1.314 1.216	-0.921867777660539383222045 .105 .246 .357 .426 .478 .531 .634 .598	0.115 .121 .107 .103 .086 .063 .053 .043 .037 .040 .058 .082 .112 .142 .178	0.641 .856 1.083 1.299 1.484 1.611 1.691 1.705 1.710 1.663 1.605 1.512 1.405 1.337 1.261	-0.781700584438264075 .107 .275 .417 .519 .585 .602 .635 .662 .685	0.065 .056 .042 .021 .005 013 027 024 004 .025 .065 .110 .124 .158 .195
		$C_{\rm T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45	0.799 1.084 1.405 1.698 1.887 2.058 2.095 2.059 1.999 1.683	0497 397 250 067 .131 .337 .529 .687 .801	-0.038 048 077 094 108 114 108 080 052 026	0.944 1.378 1.760 2.063 2.296 2.466 2.469 1.782	-0.116 .013 .170 .361 .573 .795 1.006 .851	-0.156183198199194209219176

(b) Fuselage data

α, deg	C _L ,s(fus)							
u, ueg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _T , _s = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 70 75 80	0.018 .019 .022 .024 .028 .029 .032 .030 .022 .013 .011 .010 .006 007 028 004	0.032 .043 .052 .052 .055 .064 .071 .064 .063 .054 .049 .041 .041	0.053 .075 .087 .093 .104 .109 .121 .123 .112	0.067 .100 .100 .103 .109 .111 .104 .075				

TABLE 13.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, INBOARD SLAT WITH FENCES ON,

AND
$$\delta_{f} = 60^{\circ}$$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
a, aeg		C _{T,s} = 0.90			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 70 75 80 85	0.671 .817 .966 1.115 1.246 1.350 1.425 1.466 1.478 1.460 1.423 1.369 1.319 1.285 1.256 1.246	-0.827751642504338160 .012 .175 .322 .454 .538 .540 .567 .593 .662 .625	0.079 .080 .057 .044 .019 005 014 018 012 005 .017 .067 .102 .156 .197 .276	0.818 1.024 1.258 1.440 1.583 1.671 1.703 1.689 1.655 1.583 1.501 1.391 1.323 1.253 1.063	-0.662551397206034 .141 .307 .470 .560 .607 .646 .693 .723 .700 .620	0.014 .002 031 053 070 064 063 022 .021 .051 .074 .111
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50	1.059 1.333 1.589 1.850 1.993 2.082 2.054 1.996 1.902 1.431 1.277	-0.326 208 051 .159 .378 .576 .735 .853 .922 .770 .747	-0.111117126149170153135092046013	1.282 1.615 1.986 2.233 2.397 2.570 2.528 1.582	0.075 .191 .399 .621 .844 1.045 1.185 .886	-0.304 237 252 265 274 235 202 115

α, deg	C _{L,s} (fus)					
u, deg	CT,s = 0.90	C _T ,s = 0.80	C _T ,s = 0.60	C _T ,s = 0.30		
5 10 15 20 25 30 35 40 45 50 55 60 67 75 80 85	0.006 .012 .020 .030 .039 .033 .026 .018 .018 .019 .016 .002007017034056 .009	0.033 .042 .054 .058 .060 .060 .062 .053 .036 .027 .022 .021 .027	0.068 .085 .096 .099 .107 .110 .119 .102 .089 .045	0,101 .114 .124 .118 .128 .130 .131 .062		

TABLE 14.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, FULL-SPAN SLAT WITH $\text{FENCES ON, AND} \quad \delta_{\mathbf{f}} \, \approx \, 20^{\circ}$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
		CT,s = 0.90			$C_{T,s} = 0.80$	
5 10 15 20 25 30 340 45 50 55 60 67 75 80 85	0.400 .561 .729 .884 1.026 1.153 1.268 1.363 1.422 1.456 1.453 1.391 1.356 1.318 1.259	-0.996952897805700577429269113 .034 .163 .259 .347 .422 .491 .547	0.156 .156 .156 .157 .149 .133 .118 .110 .110 .112 .127 .137 .160 .192 .225 .259	0.465 .666 .892 1.096 1.284 1.445 1.564 1.662 1.670 1.666 1.619 1.549 1.466 1.393 1.333 1.253	-0.862 811 728 614 475 309 120 .057 .215 .348 .455 .516 .558 .624 .666	0.106 .113 .107 .101 .084 .073 .059 .058 .074 .099 .131 .158 .170 .211
		$C_{T,s} = 0.60$			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60 65	0.518 .811 1.135 1.427 1.671 1.875 1.995 1.995 1.965 1.965 1.963 1.763 1.620	-0.601 534 427 279 103 .087 .295 .478 .623 .769 .868 .921 .939	0.028 .014 .006 011 018 022 016 017 004 .016 .063 .099 .121	0.562 .979 1.410 1.732 2.043 2.300 2.392 2.466 2.331 2.246	-0,249154026 .132 .327 .546 .777 .986 1.101 1.242	-0.073 114 121 122 128 122 146 114 085 072

(b) Fuselage data

α, deg	C _{L,s} (fus)							
w, weg	C _{T,s} = 0.90	$C_{T,s} = 0.80$	CT,s = 0.60	C _T ,s = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 70 75 80 85	0.027 .029 .025 .024 .026 .026 .032 .033 .023 .025 .025 .025 .021 .008 001 .014	0.040 .046 .047 .047 .050 .057 .072 .075 .071 .065 .062 .058 .054 .053	0.042 .061 .068 .075 .081 .086 .105 .119 .134 .101 .090	0.033 .072 .055 .075 .079 .091 .094 .125 .129				

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
w, acg		C _{T,s} = 0.90			C _{T,s} = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.515 .672 .840 .993 1.148 1.284 1.381 1.445 1.445 1.473 1.423 1.375 1.329 1.227 1.176	-0.941876801681547384226048094 .245 .362 .417 .474 .538 .619 .603	0.113 .125 .120 .098 .088 .058 .055 .040 .039 .042 .060 .087 .107 .142 .177 .189	0.601 .838 1.058 1.293 1.486 1.622 1.698 1.722 1.717 1.687 1.620 1.524 1.420 1.368 1.290	-0.798 725 611 452 269 089 .103 .274 .415 .525 .589 .605 .643 .695 .724	0.072 .060 .051 .022 .003 013 020 016 .003 .028 .076 .111 .131 .173
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60	0.737 1.049 1.402 1.680 1.904 2.061 2.105 2.067 2.023 1.957 1.836 1.689	-0.523 419 262 073 .124 .337 .530 .693 .805 .921 .972 .991	-0.028054080095105101102072039 0 .052 .085	0.867 1.316 1.728 2.046 2.306 2.478 2.509 2.426 2.305 2.144	-0.144 003 .155 .346 .562 .796 1.017 1.170 1.248 1.181	-0.158194202196193199194173109063

α, deg	C _L ,s(fus)						
	C _{T,S} = 0.90	C _{T,S} = 0.80	C _T ,s = 0.60	CT,s = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.023 .021 .022 .023 .026 .028 .029 .032 .021 .013 .010 .008 .004 004 004	0.038 .041 .051 .033 .055 .063 .071 .063 .057 .054 .048 .039 .039	0.048 .072 .087 .096 .106 .112 .128 .122 .113 .093 .075	0.061 .099 .098 .104 .113 .113 .108 .118 .123			

TABLE 16.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, FULL-SPAN SLAT WITH FENCES ON, AND $\delta_{\rm f}$ = 60°

(a) Wing data

a, deg	CL,s	C _{D,s}	Cm,s	C _{L,s}	C _{D,s}	C _{m,s}
		$C_{T,S} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.626 .800 .940 1.093 1.236 1.354 1.418 1.465 1.466 1.463 1.402 1.358 1.308 1.278 1.244	-0.831 754 649 517 344 158 0 .178 .307 .450 .511 .537 .549 .603 .655 .625	0.087 .081 .069 .047 .023 008 005 014 009 007 .029 .067 .112 .155 .191	0.747 .971 1.231 1.426 1.578 1.660 1.711 1.700 1.654 1.586 1.498 1.336 1.265 1.198	-0.647 577 399 219 042 .133 .307 .473 .561 .651 .648 .694 .741 .738 .736 .736	0.013 .005 038 054 063 061 057 025 .016 .061 .068 .114 .165 .199
		$C_{\mathrm{T,S}} = 0.60$			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60	0.966 1.267 1.562 1.823 1.991 2.081 2.055 1.997 1.924 1.830 1.693 1.536	-0.367 234 065 .149 .363 .577 .728 .853 .948 1.010 1.031 1.019	-0.088105121145159138115074046 .010 .051	1.166 1.538 1.933 2.209 2.391 2.528 2.513 2.387 2.163 1.963	0.039 .164 .386 .623 .840 1.056 1.199 1.319 1.354 1.329	-0.225 222 250 250 258 232 190 151 109 031

(b) Fuselage data

a, deg	C _{L,s(fus)}							
a, acg	C _T ,s = 0.90	C _{T,s} = 0.80	C _T ,s = 0.60	C _T ,s = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.009 .013 .018 .024 .031 .030 .025 .015 .015 .020 .014 .001007019033	0.013 .015 .020 .021 .021 .022 .023 .018 .013 .011 .008 .006	0.056 .083 .096 .098 .103 .109 .116 .102 .086 .071 .050	0.088 .115 .116 .121 .123 .114 .121 .124 .106				

TABLE 17.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, OUTBOARD SLAT WITH FENCES ON,

AND
$$\delta_{f} = 20^{\circ}$$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
a, acg		C _{T,s} = 0.90			C _{T,s} = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.507 .665 .830 .983 1.112 1.229 1.328 1.395 1.448 1.469 1.456 1.418 1.388 1.344 1.308	-1.051986902806684550404250100 .041182289390481555	0.124 .136 .133 .134 .123 .112 .110 .102 .104 .108 .122 .138 .153 .178	0.589 .788 .991 1.179 1.344 1.468 1.553 1.625 1.625 1.656 1.642 1.597 1.528 1.465 1.410 1.346 1.262	-0.892 815 725 597 456 294 117 .053 .212 .339 .444 .518 .579 .655 .700 .736	0.073 .077 .083 .084 .072 .068 .057 .058 .057 .069 .095 .121 .148 .174 .215
		$C_{T,S} = 0.60$,	$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60 65	0.699 .967 1.222 1.516 1.698 1.823 1.871 1.900 1.895 1.864 1.824 1.730 1.619	-0.617 532 412 274 088 .109 .302 .484 .625 .739 .864 .937	-0.010004006011019034044046022 .010 .037 .074 .104	0.822 1.162 1.502 1.789 2.064 2.203 2.205 2.200 2.141 1.645	-0.226 133 010 .163 .353 .589 .784 .967 1.090 .987	-0.136131130141135171174165136102

(b) Fuselage data

3 - 15	CL,s(fus)						
a, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	$C_{\rm T,s} = 0.30$			
5	0.017	0.030	0.039	0.037			
10	.011	.031	.053	.052			
15	.009	.032	.064	.073			
20	.008	.039	.075	.089			
25	.010	.047	.089	.102			
30 35 40	.019	.065	.116	.142			
35	.028	.079	.130	.155			
40	.025	.081	.140	.153			
45	.024	.080	.133	.140			
50	.019	.073	.121	.081			
55	.010	.071	.111				
60	.009	.069	.097				
65	.003	.061	.082				
70	004	.055	}				
7 5	017	.043					
80	037	.016					

TABLE 18.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, OUTBOARD SLAT WITH FENCES ON, ${\rm AND} \quad \delta_{\bf f} \, \approx \, ^{1}\!\! 40^{\circ}$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _m ,s	C _{L,s}	C _{D,s}	C _{m,s}
		$C_{T,S} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.680 .832 .982 1.117 1.257 1.356 1.443 1.484 1.502 1.507 1.483 1.445 1.406 1.354 1.327	-0.92585275763850035420303500241366450511586694751	0.060 .065 .066 .064 .055 .046 .043 .042 .043 .050 .058 .087 .110 .143 .175	0.800 .996 1.191 1.371 1.526 1.608 1.668 1.673 1.635 1.573 1.490 1.432 1.361 1.285	-0.770681565414248070 .103 .268 .399 .507 .566 .620 .693 .740 .757	0.011 .015 .010 .004 .005 003 018 007 .004 .038 .075 .092 .134 .167
		$C_{T,S} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60	0.955 1.226 1.479 1.718 1.888 1.963 1.965 1.978 1.923 1.848 1.746 1.641	-0.478380232057 .136 .340 .521 .686 .793 .888 .963	-0.075 079 092 090 100 115 108 090 054 012 .015	1.170 1.479 1.791 2.065 2.292 2.327 2.291 2.200 2.108 1.540	-0.099 .023 .183 .373 .591 .820 1.007 1.137 1.228 1.033	-0.207 208 206 207 215 240 226 197 157 093

(b) Fuselage data

a, deg	C _{L,s(fus)}						
a, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.005 005 007 004 001 .007 .006 .001 003 006 005 012 026 039 048	0.027 .025 .033 .039 .049 .061 .066 .070 .063 .057 .049 .042 .036	0.064 .074 .084 .101 .115 .137 .142 .137 .124 .109	0.071 .087 .107 .116 .135 .162 .151 .146 .127			

TABLE 19.- AERODYNAMIC DATA FOR UP-AT-TIP ROTATION, OUTBOARD SLAT WITH FENCES ON,

AND
$$\delta_{f} = 60^{\circ}$$

(a) Wing data

a dog	C _{L,s}	C _D ,s	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
a, deg		C _{T,s} = 0.90			C _{T,S} = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.864 .990 1.130 1.246 1.349 1.420 1.475 1.500 1.508 1.488 1.451 1.381 1.285 1.248 1.199	-0.761 665 555 422 283 134 .027 .192 .335 .454 .529 .566 .575 .613 .696 .741	0.008 .005 .006 004 003 001 012 004 .012 .045 .074 .121 .157 .188	0.998 1.204 1.362 1.501 1.630 1.687 1.713 1.691 1.628 1.564 1.456 1.401 1.342 1.273 1.202	-0.585 473 340 190 017 .161 .328 .467 .552 .609 .630 .736 .804 .803	-0.055 063 055 051 053 066 063 043 009 .032 .061 .073 .103
		C _{T,s} = 0.60			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55 60	1.219 1.451 1.674 1.853 1.957 1.991 1.961 1.901 1.827 1.718 1.619 1.510 1.393	-0.283167001 .185 .370 .575 .722 .832 .931 .996 1.061 1.049 1.022	-0.148156140151149144128082048027 .001 .053	1.463 1.732 1.992 2.216 2.379 2.304 2.229 2.070 1.946 1.760	0.116 .242 .410 .612 .827 1.020 1.200 1.281 1.326 1.321	-0.276265260255264256255209148107

- 3	^C L,s(fus)						
α, deg	C _{T,S} = 0.90	C _{T,s} = 0.80	C _{T,S} = 0.60	$C_{\rm T,s} = 0.30$			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	-0.013 013 012 006 005 0 0 004 010 011 013 016 029 037 047 062	0.022 .025 .030 .039 .0147 .054 .057 .045 .030 .023 .038 .021 .016 .020	0.082 .089 .096 .105 .117 .132 .131 .114 .097 .077 .066 .050	0.104 .118 .132 .142 .156 .161 .141 .121 .102			

TABLE 20.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{ extbf{f}} = 0^{\circ}$

(a) Wing data

	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
α, deg	2,5	C _{T,s} = 0.90		1,5	C _{T,s} = 0.80	ш,5
5 10 15 20 25 30 35 40 45 50 55 60 65 70	0.279 .430 .570 .714 .848 .937 1.051 1.149 1.225 1.287 1.312 1.325 1.320 1.295 1.283	-1.128 -1.095 -1.050984909815701580460328207080 .031 .139 .237	0.267 .281 .291 .311 .318 .295 .320 .320 .312 .321 .320 .320 .329 .334	0.304 .477 .659 .835 .985 1.090 1.189 1.300 1.365 1.360 1.336 1.295 1.277	-0.996950908827738618485341202058 .040 .135 .229 .346	0.238 .253 .277 .291 .288 .293 .294 .298 .298 .288 .281 .291 .302
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55	0.358 .571 .794 .991 1.187 1.281 1.283 1.331 1.342 1.338 1.322	-0.734 696 631 534 428 285 135 .006 .118 .235 .363	0.169 .207 .215 .229 .232 .224 .201 .210 .206 .209 .205	0.423 .683 .925 1.089 1.178 1.176 1.271 1.254 1.215	-0.356 325 256 142 027 .093 .267 .400 .498	0.066 .111 .133 .133 .115 .095 .098 .073 .062

(b) Fuselage data

a, deg	CL,s(fus)							
a, aeg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _T ,s = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 65 70	0.003 009 014 007 013 .008 .007 .003 .003 .007 .010 .006 .007	0.006 0 004 0 .007 .020 .027 .030 .037 .039 .038 .039 .039	-0.005 .001 .004 .017 .022 .035 .043 .057 .062 .062	-0.026 024 020 006 004 .003 .028 .028				

TABLE 21.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{ extbf{f}}$ = 20 $^{\circ}$

(a) Wing data

a, deg	CL,s	CD,s	C _{m,s}	CL,s	C _{D,s}	C _{m,s}
a, deg		C _{T,s} = 0.90			CT,8 = 0.80	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	0.583 .747 .884 1.022 1.128 1.215 1.301 1.415 1.413 1.416 1.381 1.333 1.296 1.256 1.211	-1.043983902817711586456316190068 .060 .158 .228 .290 .360 .436 .529	0.129 .140 .139 .154 .147 .151 .152 .151 .160 .158 .164 .169 .190 .213 .238 .263	0.661 .860 1.046 1.222 1.342 1.421 1.483 1.537 1.502 1.376 1.305 1.263 1.223	-0.886 817 726 619 493 343 169 009 .122 .157 .213 .293 .379 .448	0.087 .100 .105 .096 .096 .106 .088 .095 .091 .094 .124 .137 .164
		$C_{\mathrm{T,s}} = 0.60$			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55	0.790 1.034 1.299 1.508 1.627 1.643 1.591 1.523 1.448 1.392	-0.608539424297142 .016 .173 .268 .363 .452	0.002 .015 .019 .006 .011 .003 016 .007 .027 .039 .058	0.919 1.233 1.522 1.780 1.931 1.453 1.412 1.327	-0.213 133 021 .139 .321 .368 .520 .708	-0.122 107 099 117 119 151 164 158

	C _L ,s(fus)							
α, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	-0.025044037037031022016013006 0 .009014014018023026031	-0.006018015011 .004 .027 .048 .054 .051 .038 .038 .035 .039	0.025 .026 .030 .047 .056 .070 .070 .071 .058 .044	0.044 .043 .049 .064 .072 .031 .046 .048				

TABLE 22.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{ extbf{f}}$ = 40 $^{\circ}$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
		$C_{T,s} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.750 .905 1.051 1.157 1.258 1.341 1.416 1.448 1.453 1.441 1.409 1.370 1.370 1.273 1.142	-0.942 861 777 666 547 402 263 125 .003 .105 .196 .276 .329 .407 .421	0.067 .068 .080 .081 .072 .068 .074 .089 .083 .097 .110 .133 .210 .187	0.883 1.077 1.244 1.406 1.514 1.567 1.623 1.649 1.534 1.380 1.297 1.259 1.206 1.147	-0.778692572436302133 .039 .186 .264 .252 .304 .386 .458	0.018 .035 .024 .027 .023 .088 .018 .021 .043 .064 .100 .124 .194
		$c_{T,s} = 0.60$			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55	1.034 1.312 1.548 1.749 1.808 1.759 1.617 1.492 1.434 1.347 1.258	-0.489381248082 .075 .227 .315 .385 .467 .536	-0.061 059 075 075 074 070 052 019 .008 .025 .053	1.243 1.558 1.840 2.068 2.097 1.504 1.371	-0.092 .021 .171 .363 .524 .533 .629	-0.198 182 202 212 207 195 176

(b) Fuselage data

2 3-2	C _{L,s(fus)}							
α, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 65 70 80	-0.048049053046038033029027025027032042055066 .043	-0.026030024010 .004 .028 .045 .049 .028 .016 .009	0.035 .040 .046 .066 .070 .074 .064 .053 .036 .019	0.073 .066 .083 .088 .084 .034 .052				

TABLE 23.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, BASIC LEADING EDGE, AND $\delta_{\mathbf{f}} = 60^{\circ}$

(a) Wing data

α, deg	C _{L,s}	C _{D,s}	C _{m,s}	CL,s	C _D ,s	C _{m,s}
	C _{T,S} = 0.90			C _{T,s} = 0.80		
5 10 15 20 25 30 35 40 45 50 55 60 65 70	0.944 1.079 1.192 1.290 1.376 1.437 1.479 1.470 1.431 1.412 1.357 1.277 1.256 1.269	-0.764 678 567 452 309 169 032 .092 .188 .304 .366 .367 .427	0.012 .020 .024 .012 .021 .025 .027 .030 .060 .068 .080 .124 .145	1.112 1.267 1.432 1.544 1.597 1.627 1.641 1.583 1.392 1.277 1.207 1.154 1.100	-0.593 483 357 208 055 .100 .247 .341 .313 .328 .381 .453 .488	-0.049059046049056042030 .001 .043 .058 .080 .105
	C _{T,S} = 0.60			C _{T,S} = 0.30		
5 10 15 20 25 30 35 40 45 50	1.304 1.548 1.791 1.871 1.808 1.699 1.522 1.424 1.353 1.248	-0.392 317 191 005 .154 .280 .378 .407 .472 .530 .582	-0.135 124 143 141 137 110 084 039 002 .039 .050	1.526 1.853 2.069 2.159 1.551 1.399 1.269	-0.104 255 426 589 .552 .647 .724	-0.248 260 251 245 190 173 170

a, deg	C _{L,s} (fus)						
	C _{T,s} = 0.90	CT,s = 0.80	C _{T,s} = 0.60	CT,s = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65	-0.055 058 057 051 043 042 040 032 030 042 061 066 081 096	-0.020 025 015 0 .014 .026 .037 .038 .002 013 015 016 039	0.055 .049 .057 .066 .064 .069 .037 .009 006	0.101 .123 .120 .098 .012 .022 .007			

Table 24.- Aerodynamic data for down-at-tip rotation, basic leading edge with fences on, and $~\delta_{\bf f}=~40^{\circ}$

(a) Wing data

a, deg	CL,s	C _{D,s}	C _{m,s}	CL,s	CD,s	C _m ,s
w, 4cg		$C_{T,s} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70	0.738 .899 1.038 1.172 1.279 1.377 1.447 1.508 1.541 1.540 1.507 1.466 1.414 1.340 1.266	-0.923 846 746 637 514 370 204 037 .113 .256 .388 .500 .585 .644	0.065 .065 .078 .071 .073 .068 .059 .053 .052 .061 .072 .082 .105	0.876 1.067 1.242 1.412 1.551 1.638 1.709 1.738 1.709 1.565 1.584 1.235	-0.773 682 571 427 268 088 .098 .274 .414 .534 .610 .366	0.018 .032 .027 .026 .014 003 008 010 .007 .029 .062 .126
		$C_{T,S} = 0.60$			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45	1.033 1.303 1.554 1.753 1.898 1.942 1.914 1.450 1.326 1.272	-0.473 379 252 077 .112 .303 .477 .386 .441 .508	-0.066 064 077 080 094 104 106 060 030 001	1.229 1.543 1.839 2.115 2.296 2.313 1.633 1.284	-0.088 .029 .167 .379 .583 .799 .754 .720	-0.191 187 193 218 226 252 209 172

(b) Fuselage data

	C _L ,s(fus)							
α, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30				
5 10 15 20 25 30 35 40 45 50 55 60 65 70	-0.036 042 042 036 028 021 018 014 011 005 .004 .013 001 005 001	-0.005 002 0 .006 .019 .036 .046 .054 .056 .066 .049 .023	0.043 .055 .056 .071 .088 .102 .105 .053 .031	0.064 .072 .088 .098 .127 .134 .063				

TABLE 25.~ AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, BASIC LEADING EDGE $\text{WITH FENCES ON, AND} \quad \delta_{\mathbf{f}} = 60^{\circ}$

(a) Wing data

a dog	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
a, deg		CT,s = 0.90			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60	0.935 1.071 1.196 1.309 1.403 1.477 1.524 1.537 1.529 1.495 1.447 1.379 1.312	-0.763 678 566 439 292 123 .030 .180 .318 .442 .545 .629	-0.003 .012 .016 .011 .008 004 008 004 002 .018 .033 .050	1.081 1.245 1.420 1.597 1.662 1.715 1.726 1.717 1.665 1.593 1.504 1.236	-0.606499364168012 .157 .322 .470 .572 .683 .750 .567	-0.042 043 045 068 068 053 059 041 009 .013 .042 .107
		$C_{T,s} = 0.60$			$C_{T,s} = 0.30$	
5 10 15 20 25 30 35 40 45	1.282 1.527 1.779 1.954 2.004 1.972 1.875 1.355	-0.311 183 010 .196 .373 .521 .656 .466	-0.125 149 153 159 155 133 125 047 010	1.519 1.786 2.045 2.312 2.313 1.611	0.100 .219 .387 .665 .829 .735	-0.252 236 243 299 275 204

	CL,s(fus)						
α, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _T ,s = 0.60	C _T ,s = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65	-0.046046040032024015015020020020020020020	0,001 .003 .022 .024 .038 .048 .051 .052 .069 .071 .060	0.057 .059 .070 .084 .087 .112 .107 .022 007	0.099 .099 .120 .131 .118 .058			

TABLE 26.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, INBOARD SLAT, AND $\delta_{\mathbf{f}}$ = 20 $^{\circ}$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
		$C_{T,s} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.522 .685 .850 .986 1.101 1.201 1.252 1.325 1.368 1.381 1.399 1.418 1.399 1.362 1.309 1.255	-1.051982921817714605487349219098035 .177 .285 .435 .492	0.115 .126 .134 .139 .143 .145 .145 .143 .148 .162 .168 .178 .206 .228	0.615 .809 1.012 1.192 1.332 1.432 1.528 1.555 1.557 1.523 1.473 1.438 1.360	-0.910 839 758 644 519 377 249 076 .057 .193 .285 .370 .476 .559	0.079 .093 .100 .103 .108 .113 .105 .104 .114 .130 .158 .180 .213
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55	0.693 .957 1.255 1.483 1.666 1.813 1.878 1.777 1.774 1.688 1.611	-0.624 556 452 322 158 .009 .188 .305 .466 .583 .656	0.004 .019 .022 .027 .027 .022 .026 .040 .040 .049	0.748 1.126 1.462 1.785 2.045 2.261 2.349 2.208 1.997	-0.256 182 048 .090 .269 .491 .690 .810	-0.118 097 094 095 093 101 102 083 078

	C _{L,s(fus)}						
α, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.172 .170 .172 .170 .169 .170 .171 .173 .174 .175 .176 .176	0.014 .001 004 0 .010 .020 .036 .041 .040 .043 .040 .034 .013 003	0.051 .040 .045 .058 .063 .068 .064 .068	0.063 .058 .043 .040 .051 .073 .079 .062			

TABLE 27.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, INBOARD SIAT, AND $\delta_{\mathbf{f}}$ = 40 $^{\circ}$

(a) Wing data

α, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
ω, ασο		CT,s = 0.90			$C_{\rm T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70	0.721 .863 1.006 1.133 1.236 1.304 1.327 1.363 1.378 1.375 1.375 1.377 1.351 1.323 1.282	-0.928861760654543422305168059 .055 .174 .274 .341 .415	0.138 .078 .074 .078 .076 .090 .087 .098 .108 .116 .130 .143 .165 .194	0.803 1.034 1.208 1.384 1.472 1.533 1.549 1.557 1.555 1.459 1.405 1.362 1.291	-0.777701583459322176026 .110 .226 .325 .391 .449 .583 .668	0.014 .029 .022 .026 .036 .038 .037 .046 .062 .090 .124 .158 .164
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45	0.929 1.245 1.524 1.737 1.898 1.955 1.854 1.769 1.718 1.642	-0.503 404 269 103 .073 .243 .359 .490 .605 .695	-0.057 063 069 063 066 061 046 007 .011	1.077 1.453 1.791 2.081 2.271 2.400 2.368 2.113	-0.095 .015 .161 .349 .551 .746 .894	-0.190 192 186 186 194 182 158 119

(b) Fuselage data

	CL,s(fus)						
α, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	$C_{T,S} = 0.30$			
5 10 15 20 25 30 35 40 45 50 55 60 65 70	-0.034 035 039 034 029 022 018 016 013 021 035 038 039 036 038	0011007 .001 .014 .027 .042 .034 .027 .023 .001003012006	0.048 .045 .046 .053 .062 .066 .060 .054 .047	0.080 .081 .062 .072 .083 .086 .069 .0 ¹ 17			

TABLE 28.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, INBOARD SLAT, AND $\delta_{\mathbf{f}}$ = 60°

(a) Wing data

α, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _{D,s}	C _{m,s}
۵, ۵۵,		$C_{T,S} = 0.90$			$C_{\rm T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65	0.906 1.063 1.191 1.281 1.345 1.364 1.377 1.379 1.360 1.352 1.313 1.275 1.244 1.217	-0.772 685 570 467 324 159 118 0 .100 .205 .264 .329 .420 .580	-0.004 002 .006 .014 .016 .037 .052 .060 .069 .082 .108 .129 .141	1.066 1.273 1.433 1.551 1.583 1.549 1.557 1.540 1.505 1.461 1.398 1.327	-0.614 506 370 242 104 .022 .144 .264 .350 .423 .463 .536	-0.058051050037027004 .017 .030 .061 .095 .118 .149
		$C_{T,S} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45	1.259 1.504 1.748 1.892 1.998 1.932 1.774 1.654	-0.326 165 045 .109 .301 .433 .469 .546	-0.145 144 126 114 107 078 031 004	1.439 1.694 1.986 2.226 2.344 2.364 2.153	0.103 .233 .404 .585 .783 .937 .958	-0.260 251 230 227 217 189 135

	C _{L,s(fus)}						
a, deg	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _T ,s = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70	-0.034 048 048 036 027 021 020 020 020 045 054 052 058 043	-0.002 013 006 .015 .022 .028 .025 .019 .013 .002 012 029	0.059 .047 .049 .055 .066 .065 .048 .034	0.033 .024 .023 .025 .026 .023 .013			

TABLE 29.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, INBOARD SLAT $\mbox{WITH FENCES ON, AND} \quad \delta_{\bf f} \, = \, 20^{\rm O}$

(a) Wing data

a, deg	CL,s	CD,s	C _{m,s}	CL,s	CD,s	C _m ,s
, w, weg		$C_{T,s} = 0.90$			$C_{T,s} = 0.80$	
5 10 15 20 25 30 35 40 45 50 55 60 65 70	0.546 .707 .864 1.013 1.139 1.243 1.347 1.435 1.489 1.535 1.527 1.518 1.481 1.428	-1.049995909812700575435278129 .032 .160 .299 .418 .518	0.118 .123 .126 .134 .135 .132 .131 .129 .133 .145 .153 .164 .185	0.619 .837 1.041 1.228 1.378 1.507 1.612 1.699 1.754 1.731 1.709 1.622 1.525 1.453	-0.897829745634503343167 .016 .190 .343 .485 .579 .633	0.083 .086 .102 .102 .101 .105 .097 .094 .097 .105 .122 .153 .189
		$C_{T,s} = 0.60$			$C_{T,S} = 0.30$	
5 10 15 20 25 30 35 40 45 50 55	0.698 .993 1.281 1.516 1.732 1.914 2.010 1.989 1.982 1.890 1.773	-0.633 554 454 311 146 .047 .257 .439 .590 .715 .795	0.002 .008 .020 .017 .023 .016 .013 .009 .028 .046	0.757 1.131 1.510 1.808 2.084 2.277 2.397 2.410	-0.267 164 040 .110 .300 .529 .747 .945	-0.107 113 081 100 102 122 132 119

	CL,s(fus)						
a, deg	C _{T,S} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	$C_{T,s} = 0.30$			
5 10 15 20 25 30 35 40 45 50 55 60 65 70	-0.016032029030033009022017013009016015018	0.010002006003 .006 .016 .032 .050 .046 .057 .061 .054 .034	0.124 .123 .123 .122 .121 .119 .117 .117 .117 .116	0.076 .076 .073 .072 .069 .066 .065			

Table 30.- Aerodynamic data for down-at-tip rotation, inboard slat $\text{with fences on, and} \quad \delta_{\mathbf{f}} = 140^{\rm O}$

(a) Wing data

a, deg	CL,s	C _{D,s}	C _{m,s}	CL,s	C _{D,s}	C _{m,s}
,	C _{T,s} = 0.90			C _{T,s} = 0.80		
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.720 .873 1.024 1.163 1.279 1.367 1.464 1.529 1.562 1.569 1.548 1.502 1.447 1.382 1.308	-0.933 848 757 651 524 381 220 049 .104 .258 .387 .497 .590 .665 .715	0.063 .058 .066 .066 .061 .058 .058 .046 .048 .063 .072 .091 .104 .125 .151	0.839 1.044 1.244 1.414 1.557 1.678 1.763 1.814 1.819 1.753 1.691 1.594 1.481	-0.789700597446290116 .084 .266 .433 .555 .660 .727	0.014 .025 .028 .019 .017 .008 004 003 .021 .034 .075 .106
	C _{T,8} = 0.60		C _{T,S} = 0.30			
5 10 15 20 25 30 35 40 45 50 55	0.972 1.264 1.555 1.768 1.934 2.068 2.102 2.017 1.958 1.833 1.702	-0.511 397 268 096 .092 .294 .489 .644 .769 .859 .916	-0.059065073070070075076059029 .005	1.095 1.466 1.816 2.103 2.332 2.416 2.431 2.364 1.767	-0.104 .013 .157 .348 .574 .793 .963 1.102 .867	-0.183 192 182 186 188 191 170 149 063

α, deg	CL,s(fus)					
	C _{T,s} = 0.90	C _{T,s} = 0.80	C _{T,s} = 0.60	C _{T,s} = 0.30		
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	-0.0380430420380320260260230190130140240260020050015	0.173 .154 .155 .155 .155 .155 .156 .156 .156 .157 .158	0.049 .049 .055 .061 .069 .082 .096 .087 .085	0.090 .088 .080 .090 .097 .075 .084 .096		

TABLE 31.- AERODYNAMIC DATA FOR DOWN-AT-TIP ROTATION, INBOARD SLAT WITH FENCES ON, AND $\delta_{\mbox{f}}=60^{\circ}$

(a) Wing data

a, deg	C _{L,s}	C _{D,s}	C _{m,s}	C _{L,s}	C _D ,s	C _{m,s}
u, 40g	C _{T,s} = 0.90			C _{T,S} = 0.80		
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.928 1.079 1.193 1.306 1.414 1.492 1.529 1.568 1.556 1.532 1.484 1.430 1.352 1.266 1.185	-0.774686570435305133 .016 .180 .324 .448 .572 .662 .727 .764 .793	-0.006 .006 .007 0 .011 0 .012 .012 .012 .029 .040 .060 .069 .094 .126	1.067 1.254 1.431 1.592 1.668 1.730 1.765 1.761 1.708 1.652 1.566 1.436 1.324 1.255 1.183	-0.622514382207044 .132 .304 .462 .563 .687 .759 .783 .834 .921 .929	-0.057 051 045 059 051 042 031 .008 .031 .061 .092 .099 .123 .184 .234
	C _{T,s} = 0.60		C _T , _S = 0.30			
5 10 15 20 25 30 35 40 45 50 55	1.256 1.552 1.789 1.948 2.062 2.099 2.062 1.974 1.889 1.720 1.594 1.061	-0.321190018 .148 .344 .528 .679 .806 .914 .973 1.016	-0.143 142 154 141 130 117 098 046 026 0	1.476 1.758 2.023 2.225 2.287 2.416 2.139	0.083 .219 .384 .570 .787 .978 .955	-0.268 248 231 219 242 206 140

(b) Fuselage data

α, deg	C _{L,s} (fus)						
	C _{T,s} = 0.90	C _{T,s} = 0.80	$C_{T,S} = 0.60$	C _{T,S} = 0.30			
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	-0.049051042025025022024026028029028029028041039036	-0.008010 .002 .015 .023 .028 .028 .032 .031 .042019010005 .013	0.055 .048 .060 .069 .077 .092 .094 .087 .075 .063 .038	0.108 .103 .098 .096 .085 .077 .043			

Figure 1.- The positive sense of forces, moments, and angles.

(a) Principal dimensions in inches; numbers in parentheses are centimeters.

Figure 2.- Principal dimensions and cross-sectional views of the model.

(b) Sectional views of leading-edge-slat configuration.

Figure 2.- Continued.

(c) Sectional view of trailing-edge flap.

Figure 2.- Continued.

(d) Sectional view and location of fences.

Figure 2.- Concluded.

Figure 3.- Three-view drawing of the wing and fuselage and a cross section of the fuselage showing the strain-gage setup.

(b) Cross section of fuselage showing strain-gage setup.

Figure 3.- Concluded.

Figure 4.- Propeller blade-form curves.

Figure 5.- Photograph of model.

Figure 6.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, basic leading edge, and $\delta_{\rm f}=0^{0}$.

(a) Aerodynamic characteristics.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 6.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 6.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 6.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 6.- Concluded.

Figure 7.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, basic leading edge, and $\delta_{\rm f}=200$.

(b) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.90.$ Figure 7.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 7.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$.

Figure 7.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 7.- Concluded.

Figure 8.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, basic leading edge, and $\delta_{\rm f}=40^{\circ}$.

(a) Aerodynamic characteristics.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 8.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$.

Figure 8.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 8.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 8.- Concluded.

Figure 9.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, basic leading edge, and $\delta_{\rm f}=60^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 9.- Continued.

68

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 9.- Continued.

(d) Flow characteristics; $C_{\text{T,S}} = 0.60$. Figure 9.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 9.- Concluded.

Figure 10.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, basic leading edge, fences on, and $\delta_{\rm f}=20^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 10.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 10.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 10.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 10.- Concluded.

Figure 11.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, basic leading edge, fences on, and $\delta_{\rm f} = 40^{\circ}$.

(a) Aerodynamic characteristics.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 11.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 11.- Continued.

(d) Flow characteristics; $C_{T,s} = 0.60$, Figure 11.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 11.- Concluded.

Figure 12.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, basic leading edge, fences on, and $\delta_{\rm f}=60^{\circ}$.

(a) Aerodynamic characteristics.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 12.- Continued.

(c) Flow characteristics; $C_{\text{T,S}} = 0.80$. Figure 12.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 12.- Continued.

(e) Flow characteristics; $C_{T,s} = 0.30$. Figure 12.- Concluded.

Figure 13.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, inboard slat on, and $\delta_{\rm f}=20^{\circ}$.

(b) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.90.$ Figure 13.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 13.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 13.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 13.- Concluded.

Figure 14. Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, inboard slat on, and $\delta_{\rm f}=40^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 14.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$.

Figure 14.- Continued.

(d) Flow characteristics; $C_{T,s} = 0.60$. Figure 14.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 14.- Concluded.

Figure 15.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, inboard slat on, and $\delta_{\rm f}=60^{\circ}$.

(a) Aerodynamic characteristics.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 15.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 15.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$.

Figure 15.- Continued.

(e) Flow characteristics; $C_{T,s} = 0.30$. Figure 15.- Concluded.

Figure 16.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, inboard slat on, fences on, and $\delta_{\rm f}=20^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 16.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 16.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 16.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 16.- Concluded.

Figure 17.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, inboard slat on, fences on, and $\delta_{\rm f} = 40^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 17.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 17.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 17.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 17.- Concluded.

Figure 18.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, inboard slat on, fences on, and $\delta_{\rm f}=60^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 18.- Continued.

(c) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.80.$ Figure 18.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 18.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 18.- Concluded.

Figure 19.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, full-span slat on, fences on, and $\delta_f = 20^\circ$.

(b) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.90.$ Figure 19.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 19.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 19.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 19.- Concluded.

Figure 20. - Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, full-span slat on, fences on, and $\delta_{\rm f} = 40^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 20.- Continued.

(c) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.80.$ Figure 20.- Continued.

(d) Flow characteristics; $\rm C_{T,\,S}=0.60.$ Figure 20.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 20.- Concluded.

Figure 21.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, full-span slat on, fences on, and $\delta_{\rm f}=60^\circ$.

(b) Flow characteristics; $C_{\text{T,S}} = 0.90$. Figure 21.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 21.- Continued.

(d) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.60.$ Figure 21.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 21.- Concluded.

Figure 22.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, outboard slat on, fences on, and $\delta_{\rm f}=20^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 22.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 22.- Continued.

(d) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.60.$ Figure 22.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 22.- Concluded.

Figure 23.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, outboard slat on, fences on, and $\delta_{\rm f} = 40^{\circ}$.

(b) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.90.$ Figure 23.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 23.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 23.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 23.- Concluded.

Figure 24.- Aerodynamic and flow characteristics of the wing with the propeller rotating up at the tip, outboard slat on, fences on, and $\delta_{\rm f}=60^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 24.- Continued.

(c) Flow characteristics; $C_{T,\,S}=0.80.$ Figure 24.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 24.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 24.- Concluded.

Figure 25. Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, basic leading edge, and $\delta_{\rm f}=0^{\circ}$.

147

(b) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.90.$ Figure 25.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 25.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 25.- Continued.

(e) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.30.$ Figure 25.- Concluded.

Figure 26.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, basic leading edge, and $\delta_f = 20^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 26.- Continued.

(c) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.80.$ Figure 26.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 26.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 26.- Concluded.

Figure 27.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, basic leading edge, and $\delta_{\rm f}=40^{\rm o}$.

(b) Flow characteristics; $C_{T,S} = 0.90$.

Figure 27.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 27.- Continued.

(d) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.60.$ Figure 27.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 27.- Concluded.

Figure 28.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, basic leading edge, and $\delta_{\rm f}=60^\circ$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 28.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 28.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 28.- Continued.

(e) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.30.$ Figure 28.- Concluded.

Figure 29.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, basic leading edge, fences on, and $\delta_f = 40^\circ$.

(b) Flow characteristics; $C_{T,S} = 0.90$.

Figure 29.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 29.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 29.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 29.- Concluded.

Figure 30.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, basic leading edge, fences on, and $\delta_{\mathrm{f}}=60^{\mathrm{O}}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 30.- Continued.

(c) Flow characteristics; $C_{T,S}=0.80$. Figure 30.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 30.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 30.- Concluded.

Figure 31.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, inboard slat on, and $\delta_{\rm f} = 20^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$.

Figure 31.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$.

Figure 31.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 31.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 31.- Concluded.

Figure 32. Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, inboard slat on, and $\delta_{\mathrm{f}} = 40^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 32.- Continued.

(c) Flow characteristics; $C_{\text{T,S}} = 0.80$. Figure 32.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 32.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 32.- Concluded.

Figure 33. Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, inboard slat on, and $\delta_{\rm f}=60^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 33.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$.

Figure 33.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 33.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 33.- Concluded.

Figure 34.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, inboard slat on, fences on, and $\delta_f = 20^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 34.- Continued.

(c) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.80.$ Figure 34.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 34.- Continued.

(e) Flow characteristics; $C_{T,s} = 0.30$. Figure 34.- Concluded.

Figure 35. Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, inboard slat on, fences on, and $\delta_f = 40^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 35.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 35.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 35.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.30$. Figure 35.- Concluded.

Figure 36.- Aerodynamic and flow characteristics of the wing with the propeller rotating down at the tip, inboard slat on, fences on, and $\delta_{\rm f}=60^{\circ}$.

(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 36.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.80$. Figure 36.- Continued.

(d) Flow characteristics; $C_{T,S} = 0.60$. Figure 36.- Continued.

(e) Flow characteristics; $C_{T,S}=0.30$. Figure 36.- Concluded.

Figure 37.- Fuselage lift coefficient for up-at-the-tip rotation and basic leading edge.

Figure 38.- Fuselage lift coefficient for up-at-the-tip rotation, basic leading edge, and fences on.

Figure 39.- Fuselage lift coefficient for up-at-the-tip rotation and inboard slat on.

Figure 40.- Fuselage lift coefficient for up-at-the-tip rotation, inboard slat on, and fences on.

Figure 41.- Fuselage lift coefficient for up-at-the-tip rotation, full-span slat on, and fences on.

Figure 42.- Fuselage lift coefficient for up-at-the-tip rotation, outboard slat on, and fences on.

Figure 43.- Fuselage lift coefficient for down-at-the-tip rotation and basic leading edge.

Figure 44.- Fuselage lift coefficient for down-at-the-tip rotation, basic leading edge, and fences on.

 $^{\rm C}$ T, s

Figure 45.- Fuselage lift coefficient for down-at-the-tip rotation and inboard slat on.

Figure 46.- Fuselage lift coefficient for down-at-the-tip rotation, inboard slat on, and fences on.

10-5-67

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546