Example 5.3. Let $d \in \mathbb{C}$ and $S(t) = T_{d}(t)$ be given by (3.9). Then $|T_{d}(t)| = T_{|d|}(t)$ ($t \ge 0$).

<u>Proposition</u> 5.4. Let B be the generator of a disjointness preserving semigroup $(S(t))_{t\geq 0}$ on a Banach lattice E. Then B is <u>local</u>; i.e. (5.4) f $^{\perp}$ g implies Bf $^{\perp}$ g for all f $^{\in}$ D(B), g $^{\in}$ E.

<u>Proof.</u> Let $f \in D(B)$ and $g \in E$ such that $\inf\{|f|, |g|\} = 0$. Then |1/t(S(t)f - f)|, $|g| \le |1/tS(t)f|$, |g| + 1/t|f|, |g|

- = 1/t |S(t)f| | |g|
- $\leq 1/t |S(t)f| \wedge |S(t)g-g| + (1/t|S(t)f|) \wedge |S(t)g|$
- $= 1/t |S(t)f| \wedge |S(t)g g|$
- $\leq |S(t)g g|$.

Letting $t \to \infty$ one obtains $|Bf| \cdot |g| = 0$.

We now describe the relation between the generator of a disjointness preserving semigroup and the generator of the modulus semigroup.

П

Theorem 5.5. Assume that E is a complex Banach lattice with order continuous norm. Let $(S(t))_{t\geq 0}$ be a semigroup with generator B. The following assertions are equivalent.

- (i) $(S(t))_{t\geq 0}$ is disjointness preserving.
- (ii) There exists a semigroup $(T(t))_{t\geq 0}$ with generator A such that
- (5.5) $f \in D(B)$ implies $|f| \in D(A)$ and $Re((sign \overline{f})Bf) = A|f|$.

Moreover, if these equivalent conditions are satisfied, then T(t) = |S(t)| (t ≥ 0).

Remark. By B-II,Lemma 2.9 the relation (5.5) is equivalent to <Re((siĝn \bar{f})Bf), ϕ > = <|f|,A' ϕ > (f \in D(B), ϕ \in D(A')). b) It is remarkable that, in contrast with the situation considered in Theorem 3.8, here condition (ii) implies the positivity of (T(t)_{t \geq 0} without further assumptions.

The basic idea of the proof of Theorem 5.5 is to differentiate the equation |S(t)f| = T(t)|f| (where T(t) = |S(t)|, cf. (5.3)). For