pip install seaborn Requirement already satisfied: seaborn in /usr/local/lib/python3.11/dist Requirement already satisfied: numpy!=1.24.0,>=1.20 in /usr/local/lib/py Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.11/ Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in /usr/local/lib Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11 Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/pytho Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/pytho Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3 Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/di Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/py Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11 Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3. Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dis import kagglehub # Download latest version path = kagglehub.dataset download("danofer/compass") print("Path to dataset files:", path) Downloading from https://www.kaggle.com/api/v1/datasets/download/danofer 2.72M/2.72M [00:00<00:00, 3.20MB/s]Extracting files... Path to dataset files: /root/.cache/kagglehub/datasets/danofer/compass/v 4 # Import necessary libraries for data manipulation and modeling import numpy as np

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from fairlearn.metrics import MetricFrame, demographic_parity_difference

```
# ===========
# Phase 1: Data Ingestion & Preprocessing
```

Load the COMPAS dataset (download at: https://www.kaggle.com/datasets/danofe df = pd.read_csv('/content/compas-scores-raw.csv')

dҒ

TypeError TypeError Value •••

Please explain the error:

ValueError: DataFrame values must be nume

The traceback indicates a ValueError:

Hypothesis

DataFrame values must be numerical. originating from the aif360.datasets.StructuredDataset constructor. The underlying cause appears to be an attempt to convert a pandas DataFrame containing non-numerical values (specifically, the string 'Male') to a float64 data type.

Looking at the code, you are creating a StandardDataset using the df aif360 DataFrame. This DataFrame includes the original Sex_Code_Text_column, which contains string values like 'Male' and 'Female', and the Ethnic_Code_Text column which contains strings like 'Caucasian' and 'African-American'. The AIF360 StandardDataset (which inherits from StructuredDataset) expects all data to be numerical. While you created a new 'sex' column with numerical values (0 and 1), the original Sex_Code_Text column is still present in df_aif360, causing the conversion error. Similarly, the Ethnic_Code_Text column used to create the 'race' column for the protected attribute is also still in the DataFrame.

Suggested Changes

To fix this, you need to ensure that the DataFrame passed to the StandardDataset constructor only contains numerical columns. You should drop the original string columns (Sex_Code_Text and Ethnic_Code_Text) after you have created the numerical 'sex' and 'race' columns.

Modify the DataFrame to include the der $df_aif360 = df.copy()$ df_aif360['race'] = df_aif360['Ethnic_Coc # In IBM AIF360, the target column is 'r ϵ privileged_groups = [{'race': 'Caucasian' unprivileged_groups = [{'race': 'African-

filter the dataset to only include two df aif360 = df aif360[df aif360['race'].i

Drop the original non-numerical columns df_aif360 = df_aif360.drop(columns=['Sex_


```
# Convert to StandardDataset
dataset = StandardDataset(
    df_aif360,
    label_name='recidivism',
    favorable_classes=[0],
    protected_attribute_names=['race'],
    privileged_classes=[['Caucasian']]
)
```

Use code with caution

Rate this answer 🖒 🖓

```
df.shape
→ (60843, 28)
df.columns
Index(['Person_ID', 'AssessmentID', 'Case_ID', 'Agency_Text',
             'FirstName', 'MiddleName', 'Sex_Code_Text', 'Ethnic_Code_Text', 'DateOfBirth', 'ScaleSet_ID', 'ScaleSet', 'AssessmentReason',
             'Language', 'LegalStatus', 'CustodyStatus', 'MaritalStatus',
             'Screening_Date', 'RecSupervisionLevel',
      'RecSupervisionLevelText',
              'Scale_ID', 'DisplayText', 'RawScore', 'DecileScore',
      'ScoreText',
              'AssessmentType', 'IsCompleted', 'IsDeleted'],
            dtype='object')
# Select relevant columns for recidivism prediction
df = df[['Sex_Code_Text', 'Ethnic_Code_Text', 'DecileScore']]
# Create binary target variable based on DecileScore.
df['recidivism'] = df['DecileScore'].apply(lambda x: 1 if x >= 5 else 0)
<ipython-input-20-7e5a3f675c1e>:2: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-d">https://pandas.pydata.org/pandas-d</a>
```

```
df['recidivism'] = df['DecileScore'].apply(lambda x: 1 if x >= 5 else
# Encode categorical variables:
# Map Sex_Code_Text to numeric (for example, if values are 'Male' and 'Femal
df['sex'] = df['Sex_Code_Text'].map({'Male': 1, 'Female': 0})
 → <ipython-input-21-8c228176162a>:3: SettingWithCopyWarning:
           A value is trying to be set on a copy of a slice from a DataFrame.
           Try using .loc[row_indexer,col_indexer] = value instead
           See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-d">https://pandas.pydata.org/pandas-d</a>
               df['sex'] = df['Sex_Code_Text'].map({'Male': 1, 'Female': 0})
# The sensitive attribute is 'Ethnic_Code_Text'.
sensitive_attr = df['Ethnic_Code_Text']
# Define feature matrix X and target vector y.
# We use 'sex' and 'DecileScore' as features.
X = df[['sex', 'DecileScore']]
y = df['recidivism']
\# Split the dataset into training and testing sets (70%/30% split).
X_train, X_test, y_train, y_test, s_train, s_test = train_test_split(
        X, y, sensitive_attr, test_size=0.3, random_state=42)
     Phase 2: Baseline Modeling with Fairlearn
 from fairlearn.metrics import MetricFrame
import numpy as np
def evaluate_fairness(y_true, y_pred, sensitive_features):
         mf = MetricFrame(
                 metrics={'prediction_mean': lambda y_true, y_pred: np.mean(y_pred)},
                 y_true=y_true,
                 y_pred=y_pred,
                  sensitive_features=sensitive_features
         )
         demographic_parity_diff = mf.by_group['prediction_mean'].max() - mf.by_group['prediction_me
         return mf.by_group, demographic_parity_diff
baseline_results = {}
models = \{\}

✓ 1. Logistic Regression

lr = LogisticRegression(max_iter=1000)
lr.fit(X_train, y_train)
lr_preds = lr.predict(X_test)
```

```
baseline_results['Logistic Regression'] = {
    'accuracy': accuracy_score(y_test, lr_preds),
    'fairness': evaluate_fairness(y_test, lr_preds, s_test)
models['Logistic Regression'] = lr
2. Decision Tree
dt = DecisionTreeClassifier(random_state=42)
dt.fit(X_train, y_train)
dt_preds = dt.predict(X_test)
baseline_results['Decision Tree'] = {
    'accuracy': accuracy_score(y_test, dt_preds),
    'fairness': evaluate_fairness(y_test, dt_preds, s_test)
models['Decision Tree'] = dt

✓ (3) Random Forest

rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
rf_preds = rf.predict(X_test)
baseline_results['Random Forest'] = {
    'accuracy': accuracy_score(y_test, rf_preds),
    'fairness': evaluate_fairness(y_test, rf_preds, s_test)
models['Random Forest'] = rf
    4. Support Vector Machine (with linear kernel for
   interpretability)
svm = SVC(kernel='linear', probability=True, random_state=42)
svm.fit(X_train, y_train)
svm_preds = svm.predict(X_test)
baseline_results['SVM'] = {
    'accuracy': accuracy_score(y_test, svm_preds),
    'fairness': evaluate_fairness(y_test, svm_preds, s_test)
models['SVM'] = svm
# Display baseline results.
for model_name, result in baseline_results.items():
    print(f"\nModel: {model_name}")
    print("Accuracy:", round(result['accuracy'], 3))
    print("Fairness metric (dp_diff) by group:")
    print(result['fairness'][0])
    print("Overall fairness metric:", round(result['fairness'][1], 3))
\overline{2}
     Model: Logistic Regression
     Accuracy: 1.0
     Fairness metric (dp_diff) by group:
                       prediction_mean
     Ethnic_Code_Text
     African-Am
                              0.545455
                              0.425878
     African-American
     Arabic
                              0.166667
     Asian
                              0.168421
```

```
Caucasian
                         0.250339
Hispanic
                         0.208868
Native American
                         0.352113
Oriental
                         0.200000
Other
                         0.160000
Overall fairness metric: 0.385
Model: Decision Tree
Accuracy: 1.0
Fairness metric (dp_diff) by group:
                  prediction_mean
Ethnic_Code_Text
African-Am
                         0.545455
African-American
                         0.425878
Arabic
                         0.166667
Asian
                         0.168421
Caucasian
                         0.250339
                         0.208868
Hispanic
Native American
                         0.352113
Oriental
                         0.200000
0ther
                         0.160000
Overall fairness metric: 0.385
Model: Random Forest
Accuracy: 1.0
Fairness metric (dp_diff) by group:
                  prediction mean
Ethnic_Code_Text
African-Am
                         0.545455
African-American
                         0.425878
Arabic
                         0.166667
Asian
                         0.168421
Caucasian
                         0.250339
Hispanic
                         0.208868
Native American
                         0.352113
Oriental
                         0.200000
Other
                         0.160000
Overall fairness metric: 0.385
Model: SVM
Accuracy: 1.0
Fairness metric (dp_diff) by group:
                  prediction_mean
Ethnic_Code_Text
African-Am
                         0.545455
                         0.425878
African-American
Arabic
                         0.166667
```

Fairlearn Mitigation

```
# Simulate Fairlearn bias mitigation: assume dp_diff improves from 0.42 to a
epochs = np.arange(1, 21)
simulated_fairness = 0.42 * np.exp(-0.2 * epochs) + 0.15 # Final value ~0.2

plt.figure(figsize=(8, 5))
plt.plot(epochs, simulated_fairness, marker='o', linestyle='-', color='blue'
plt.xlabel('Epochs')
plt.ylabel('Simulated Fairness Metric (dp_diff)')
plt.title('Figure 1: Simulated Fairlearn Fairness Improvement')
plt.grid(True)
plt.savefig('fairlearn_fairness_improvement.png')
plt.show()
```


IBM AI Fairness 360 (AIF360) Mitigation:

pip install aif360

```
→ Collecting aif360

       Downloading aif360-0.6.1-py3-none-any.whl.metadata (5.0 kB)
     Requirement already satisfied: numpy>=1.16 in /usr/local/lib/python3.11/
     Requirement already satisfied: scipy>=1.2.0 in /usr/local/lib/python3.11
     Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.
     Requirement already satisfied: scikit-learn>=1.0 in /usr/local/lib/pytho
     Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/d
     Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11
     Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.
     Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.1
     Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/py
     Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python
     Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11
     Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/pytho
     Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/pytho
     Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3
     Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/di
     Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dis
     Downloading aif360-0.6.1-py3-none-any.whl (259 kB)
                                                259.7/259.7 kB 4.1 MB/s eta
     Installing collected packages: aif360
     Successfully installed aif360-0.6.1
from aif360.datasets import StandardDataset
from aif360.metrics import BinaryLabelDatasetMetric
from aif360.algorithms.preprocessing import Reweighing
    WARNING:root:No module named 'inFairness': SenSeI and SenSR will be unav
     pip install 'aif360[inFairness]'
# Modify the DataFrame to include the derived binary target variable.
df_aif360 = df.copy()
df_aif360['race'] = df_aif360['Ethnic_Code_Text']
```

```
# In IBM AIF360, the target column is 'recidivism', and favorable outcome is
privileged_groups = [{'race_Caucasian': 1}]
unprivileged_groups = [{'race_Caucasian': 0}]
# filter the dataset to only include two groups.
df_aif360 = df_aif360[df_aif360['race'].isin(['Caucasian', 'African-American
df_numeric = pd.get_dummies(df_aif360)
dataset = StandardDataset(
   df_numeric,
   label_name='recidivism',
   favorable_classes=[0],
    protected_attribute_names=['race_Caucasian'], # or whatever the new one-H
    privileged_classes=[[1]] # adjust based on your one-hot encoding
df.loc[priv, attr] = privileged_values[0]
# Calculate disparate impact metric before mitigation.
metric_before = BinaryLabelDatasetMetric(dataset,
                                       privileged_groups=privileged_groups,
                                       unprivileged_groups=unprivileged_grou
disparate_impact_before = metric_before.disparate_impact()
print("AIF360 - Disparate Impact before mitigation:", round(disparate_impact_t
→ AIF360 - Disparate Impact before mitigation: 0.762
# Apply the Reweighing algorithm.
RW = Reweighing(unprivileged groups=unprivileged groups, privileged groups=pri
dataset transf = RW.fit transform(dataset)
metric_after = BinaryLabelDatasetMetric(dataset_transf,
                                      privileged_groups=privileged_groups,
                                      unprivileged_groups=unprivileged_group
disparate_impact_after = metric_after.disparate_impact()
print("AIF360 - Disparate Impact after mitigation:", round(disparate_impact_af
```

→ AIF360 - Disparate Impact after mitigation: 1.0

Enter a prompt here

+

0/2000

Gemini can make mistakes so double-check responses and use code with caution. <u>Learn more</u>