

电子与通信工程实验中心 专业实验报告

实验名称 林英拟信号数字化 数字通信系统 建模与伤真

		实验课堂	堂表现			实验报告成绩	实验总成绩	教师签名
A ()	B ()	C ()			

课程名称:	观代编码技术实验
专业:	
学 号:	4
姓 名:	
指导教师:	都3
实验时间:	<u>ルパ</u> 年月日

电气与电子工程学院 电子与通信工程实验中心

、实验目的及要求 1. 章握 采样定 译
入字握脉冲编码调制的基本质、理。 3、利用Matlab/Simulink对模拟倍号的数字化进行仍真建模验证。
)、利用Matlab/Simulak 建大英与仍真数字通信系统。 乙硷证数字通信系统传输原理和数字信号处理方式 3、分析仍真结果
二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等) 计算机,Matlab软件
in the second of
is a second of the desired of the second of
the state of the s

3、在模拟信息数字化为式中,出现最早且应用最广泛的是脉冲编码调制,即PM编码,经过抽样,量化和编码3个步骤,将一个时间和信值都是续变换的模拟信号变成之进制数字信号

} 打破样:抽样是将模拟信息在时间上离散化。对于低通型信息,为抽样频率 fs≥2fn时,属于正常抽样,不会发生数谱混叠,对f,如fn时、属于处抽样,会混叠 2.量化:为保证在大的动态范围内数字电话话是具有足匀离的信噪比,人们 提出一种均匀量化的思想:在小信号时采用较小的量化问距,而在大信号时用 大的量化区间。在数学上、推均匀等价量化为对输入信号进行动态.范围区缩后 再进行均匀量化

3.PCM编码和解码:A律PCM数字电话系统中规定:传输话音频段为3000Hz到3400Hz,采样率为8000次/秒,对样值进行区划线后编码为8b比二进制数字序列因此,PCM编码输出的数码速度为64kbps.

在发送端,信源输出的准息,经过信源、编码得到个若干者教职值的者教时消息列,信源编码功能是:

(1):将模拟倍号转换为数字序列 (1):压缩编码、提高通信效率

的:加密编码,提高信息传输安全性

信源编码的输出序列将送入信道编码器,信通编码的功能是:

山负责对数字序列进行差钱控制编码,处分组编码,卷积编码,交织和扰乱等等,从抵抗信通中的噪声和干扰混高传输可靠性.

的对差错控制编码输出的数字序列进行码型变换,如单双极性变换,归零一不归零支换,差分编码, AML编码, HDB3编码等等,其目的是匹亚飞倍道传输特性,增加定时倍息、改变输出符号的统计特性并使之有一定的检错能力的 對輸出码型进行波形映射,从适应于带限传输信道,如针对带限信道的无事扰波形的成波,湿,按,部分向应成形波滤波等

如果数字通信系统中不使用调制器和解调器进价信号的基带一频带转换,则这样的系统称为数字基带传输系统

四、实验内容及步骤(包含简要的实验步骤流程)
根据系统最高频率计算系统频率及仿真步进。系统中基带信号最高频率为20012,年
样借了飲室为400012,故可将系统伤真采样等设为4000次/5图4000州区,则伤真多数0,00005
在此份真米科 数率下,频率为400H≥的采样窄脉冲事的一个周期6/0个份真采样点
根据以上分析建立系统模型(后附图)
当翰八模拟信号频带为(o.100)时, 查看伦英结果, 分析仍真结果
当输入模拟信号频带为10.250月,查看仿真结果,分析仿真结果
于政条样的过程估真
平顶条样过程中存在高频失真。这种由于脉冲展宽而产生的信息高频段衰减失真称为孔径效
在乘法器采样之后添加解发了系统作为保持器,没模拟债务最高频率为知识,伤
真平顶条棒过程并分析仿真结果
LA/D和D/A转换器的仿真
A10负责将模拟信号转换为数字信号。实用的A/D转换器件的输出数据形式可以是并约制
也可以是串行的、对串行和并行输出的8位A/D和D/A转换器进行的真转换范围值
为0到255,转换采样率1次/秒
3. 要求对A律压缩扩张模块和均匀量化器实现非均匀量化过程的伤真,观察
量化剂位的波形纤分科伤真结果
1基带传输码型没计,伤真得出单极不归零码,双极性不归零码以及单极性归
毫不8的波形
2. 仿真数字双相码,密勒码以及传号负转码 EMI)码编码输出波形
3、建立AMI编码的仿真模型
AMI码也称为传号交替反转码,其编码规则是"。"是零电子表示"I"用td
和一A电子交替更表示、仿真村奠型如图所示,其中以二进制器"Counter"模块
用分符号 1 公本/里 4 :+ 'Pa (a): 土草 th 1/8: 上来6/名 + + + 5 る 11 · 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
进行符号")"的奇偶统计、"Ralay"、核块将计数值较换为"土"、并提此控
制度号"」"的脉冲极性。AMZ码的解码很简单,对输入取绝对值后图
还原为工元归受码

五、实验结果及分析(包括程序或图表、结论陈述、数据记录及分析等,可附而) 1-3 采样定理 输入模拟信号频带为(0,100) 1-4 输入模拟信号频带为(0,250)

1-5 平顶采样过程的仿真

2-2、A/D 和 和 D/A 转换器的仿真 输入 255

2-3 输入为 256

上名在班出

转换值范围为 0 到 255,输入 256 报错填加一位增加编码长度即可

六、实验总结(包括心得体会、问题回答及实验改进意见,可附页)
2-3:车刷入没置为256. 查看信真结果,会出什么错误?反诚怎.么次才对?
转换值范围为0个255,输入256报转
改: 5噶加一個編码8长度图9可
2-4:车削入没置为一,查看仿真结果,会出现什么错误了应该怎么改大对?
转 超出范围报转
改: 改颇有符号数即可
,23
数字相码在一个码孔传输时间间隔内用两位双极性不归零脉冲表示
"1"和"0",即用"+1.一"表示门,用"-1.1"表示的,"+1.十"和"+1.+1"为禁用移
CM1码中规定:"O"用脉冲,"-1.H"表示,"I"则用交替用于1.H"和 -1,-1 "新
单极性到双极性的变换用通信模块中的Unipolar to Bipdar converter实
现, 13零码是不归零码和时极歌得出的. 反之, 由归零码到不归零码的转
换了采用采样保持器完成。

