

TTC-2446-V 14 May 1992 CLEO '92 Post Deadline Paper

Blue Cesium Faraday and Voigt Filters

J. Menders, P. Searcy, K. Roff, S. Bloom, E. Korevaar Thermo Electron Technologies Corporation 9550 Distribution Avenue San Diego, CA 92121-2305 (619) 578-5885

Approved to public released Dismouton Unimited

Sponsored by:

NAWC under N62269-90-C-0516, and ONR under N00014-89-C-0068

We would like to thank:

Mike Conterino and Bill Sharpf, NAWC Guy Beaghler and Greg Adams, NOSC

19950802 028

ULTRA-NARROW MAGNETO-OPTIC ATOMIC LINE FILTERS FOR LASER RECEIVERS

- Background limited laser receivers require ultra-narrow linewidth filters to reach quantum limited operation
- submarine laer communication
- free space communication
- remote sensing
- Like the conventional absorptive/re-emissive atomic line filters (ALF), the M-0 ALFs
 - operate at discrete atomic absorption lines
 - have Doppler limited passbands
- However, M-0 ALFs are imaging filters with
 very high peak transmission
 - wide field-of-view
- instantaneous response

TOPICS

- Principles of resonant magneto-optic filter operation
- Modelling approach to magneto-optic filters
- The Faraday and Voigt filters
- Setup for spectrum measurements
- · Faraday filter spectra measured and calculated
- Voigt filter spectra measured and calculated
- Off axis transmission measurements and predictions at 455 nm
- The Faraday filter field-of-view

PRINCIPLES OF RESONANT MAGNETO-OPTIC FILTER OPERATION

• The magneto-optic element transforms vertical into horizontal polarization over a narrow spectral band

· In-band light is transmitted; out-of-band light is blocked

FARADAY AND VOIGT EFFECTS IN ATOMIC VAPORS PROVIDE RESONANT MAGNETO-OPTIC ELEMENTS

FILTER TRANSMISSION SPECTRUM CALCULATION

Atoms in a Magnetic Field

• Cs,
$$6^25_{1/2} \rightarrow 7^2 \, p_{3/2}$$
, $\lambda = 455 \, nm$

•
$$H' = (hyperfine \sim \vec{l} \cdot \vec{J}) + (Zeeman \sim \vec{B} \cdot \vec{J})$$

$$E_{FMF}$$
 (B), $\mid FM_F >$

•
$$P_{ij}(\sigma_{+}), P_{ij}(\sigma_{-}), P_{ij}(\pi)$$

Vapor Optical Coefficients

 $(V), g_D(v)$

$$\alpha (\sigma_{+}), \alpha (\sigma_{-}), \alpha (\pi)$$

•
$$\alpha(\sigma_+)$$
, $\alpha(\sigma_-)$, $\alpha(\pi)$

Propagation Eigen Modes

• n_i (k), s (k)

Transmission Spectrum

•
$$\vec{E}(z) \sim \widehat{\varepsilon}_1 E_1$$
 (0) $e^{i(n_1k_0z)} + \widehat{\varepsilon}_2 E_2$ (0) $e^{i(n_2k_0z)}$

Cs 6s_{1/2} - 7p_{3/2} (455 nm) HYPERFINE AND ZEEMAN SPLITTING

REFRACTIVE INDICES AND ABSORPTION

THE LEFT- AND RIGHT CIRCULAR POLARIZATION ANALYSIS IS SPECIFIC TO PROPAGATION ALONG B

- In general, other directions have varying eigen-polarizations and -indices
- A simple dielectric tensor w.r.t. the \hat{R} , \hat{L} , z basis describes the Faraday effect for a field along z

where $\varepsilon_o = n_z^2$ and $\varepsilon_B = n_r^2 n_r^2$

Maxwell's equations lead to a matrix form of the wave equation

$$\begin{cases} \begin{bmatrix} -s \xi - s \xi & s_x \cdot s_y & s_x \cdot s_z \\ \vdots & \vdots & \vdots \\ s_x \cdot s_y & -s \xi - s \xi & s_y \cdot s_z \end{bmatrix} + [\epsilon] \end{cases} \stackrel{\overrightarrow{t}}{E} = 0. \quad \overrightarrow{k} = [\overrightarrow{k} \widehat{s}]$$

• Eigen - indices $n_i^2 = \varepsilon_i$ are determined from $|\{...\}| = 0$.

TWO PROPAGATION DIRECTIONS YIELD SIMPLE EIGEN INDICES AND POLARIZATIONS

- Propagation along \vec{B} (Faraday Effect)

– Circular polarizations $\hat{\mathsf{R}},\hat{\mathsf{L}}$

Circular indices n_R, n_L

- Propagation perpendicular to $\vec{\mathsf{B}}$ (Voigt effect)

Linear polarizations [^]/_y, [^]/_z

 $-n_y = \frac{1}{2} (n_R + n_L); n_z = n_\pi$

Similar to birefringence

OFF-AXIS TRANSMISSION EXPERIMENTS

- · This cell and field arrangement avoids the complication of variations in Fresnel losses
- Transmission spectra do not reflect pathlength increases with $\boldsymbol{\theta}$

BLUE SOURCE

FILTER TRANSMISSION MEASUREMENT SET-UP

- The beam and the cell remain fixed

 - The solenoid rotates to set θ Crossed polarizers "roll" to set \varnothing

BLUE FARADAY FILTER (內 B) SPECTRA ARE WELL PREDICTED

Optimum conditions minimize bandwidth and maximize transmission

Additional broadening becomes apparent at temperature T ≥ 200° C

BLUE FILTER TRANSMISSION vs. θ AT ϕ = 45°

Cs, 455 nm with $T = 140^{\circ}$ C, B = 200 G, L = 1 in.

OPTIMIZED VOIGT FILTER CALCULATION

- High transmission (15%) and narrow bandwidth (0.6 GHz) The optimum Voigt filter transmission spectrum occurs at a higher temperature than the optimum Faraday filter spectrum

JII

BLUE FARADAY FILTER FIELD-OF-VIEW ASSESSMENT

A heuristic argument led to wide FOV expectations:

since Z =
$$\frac{L}{\cos \theta}$$
 and $\Delta n \approx \vec{B} \cdot \vec{k} = B k \cos \theta$, we expect $z \Delta n \sim const$

- Approach to FOV assessment
- Anchor off-axis modelling to experiments
- -- z fixed in experiments
- Calculate FOV ($z = L/\cos \theta$)

WE HAVE ANALYZED THE SENSITIVITY OF A TYPICAL BLUE PASSBAND IN DETAIL

NORMALIZED TRANSMISSION SPECTRA CONTOURS OVER FIELD ANGLE FOR A PASSBAND NEAR 455 nm

- Faraday filter operated at 180° C, 50 G, 1 cm
 - Horizontal slices give spectra at fixed angle
 Passband position is independent of angle
 - Vertical slices give T vs. θ
- Peak transmission decreases by 10% for $\theta = 31^{\circ}$

CONCLUSIONS

- Ultra-narrowband blue Faraday and Voigt filter spectra have been observed
- Spectra agree with our predictions
 - Near unity transmission
- 1 GHz passbands- 3 GHz integrated transmission
- We predicted and observed a new type of ultra-narrowband filter -the "Voigt filter"
- Transverse magnet geometries may lead to higher packing densities
- A typical blue Faraday filter passband is insensitive to field angles up to 35°