## **EXERCÍCIOS DE REVISÃO P1**

1) Determine o caminho mínimo para chegar do nó A até o nó B na rede abaixo pelo método de programação dinâmica:



2) Seja X uma variável aleatória discreta com a função de probabilidades dada por:

| X | 1    | 2    | 3    | . 4  | 5    |
|---|------|------|------|------|------|
| Р | 0,31 | 0,16 | 0,22 | 0,25 | 0,06 |

- a) Mostre que P(X) é uma função discreta de probabilidades;
- b) Calcular a média e a variância da distribuição.
- c) Calcule P( $2 \le X < 5$ ).
- 3) A probabilidade de uma pessoa ficar imunizada ao tomar uma dose de uma determinada vacina contra gripe é de 0,7. Sabendo que 4 pessoas tomaram uma dose dessa vacina, determine a probabilidade de:
- a) 3 pessoas terem ficado imunizadas;
- b) Mais de 2 terem ficado imunizadas;
- c) No mínimo 1 e no máximo 3 terem ficado imunizadas;
- d) Todas terem sido imunizadas.
- 4) Considere dois eventos A e B sabendo que P(A) = 1/2, P(B) = 1/4 e  $P(A \cap B) = 1/5$ , determine:
  - a)  $P(A \cup B)$
  - b) P(A | B)
  - c) P(B | A)
  - d)  $P(A \cup B^c)$
- 5) Sendo X uma variável seguindo o Modelo Uniforme Discreto, com os valores no conjunto {1, 2, 3, ..., 10}, pergunta –se:
- a) P(  $X \ge 7$ );
- b) P(  $3 \le X \le 7$ );
- c) P( X < 2 ou X  $\ge$  8);
- d) P( $X \ge 5$  ou X > 8);
- e) P(X > 3 e X < 6);
- f) P(  $X \le 9 \mid X \ge 6$ ).
- 6) Sendo X uma variável discreta seguindo o Modelo Binomial com parâmetros n = 15 e p = 0,4; pergunta –se:
- a)  $P(X \ge 14)$ ;
- b)  $P(8 < X \le 10)$ ;
- c)  $P(X < 2 \text{ ou } X \ge 11);$
- d)  $P(X \ge 11 \text{ ou } X > 13);$
- e) P(X > 3 e X < 6);
- f)  $P(X \le 13 \mid X \ge 11)$ .

- 7) Uma certa doença pode ser curada através de procedimento cirúrgico em 80% dos casos. Dentre os que têm essa doença sorteamos 15 pacientes submetidos à cirurgia. Fazendo alguma suposição que julgar necessária, responda qual a probabilidade de:
- a) Todos serem curados?
- b) Pelo menos 2 não serem curados?
- c) Ao menos 10 ficarem livres da doença?
- 8) Calcule a função distribuição F(X) da variável X nos casos:
- a) X é Bernoulli com p = 0,6;
- b)  $X \sim b(4; 0.20)$ ;
- c)  $X \sim b(8; 0,10)$ .
- 9) Sendo X ~ G(0,4), calcule:
- a) P(X = 3);
- b)  $P(2 \le X < 4)$ ;
- c)  $P(X > 1 | X \le 2)$ ;
- d)  $P(X \ge 1)$ .
- 10)Uma moeda equilibrada é lançada sucessivamente, de modo independente, até que ocorra a primeira cara. Seja X a variável aleatória que conta o número de lançamentos anteriores à ocorrência de cara. Determine:
- a)  $P(X \le 2)$ ;
- b) P(X > 1);
- c)  $P(3 < X \le 5)$ ;
- d) Quantas vezes deve, no mínimo, ser lançada a moeda para garantir a ocorrência de cara com pelo menos 80% de probabilidade?
- e)
- 11) A aplicação de fundo anti –corrosivo em chapas de aço de 1m² é feita mecanicamente e pode produzir defeitos (pequenas bolhas na pintura), de acordo com uma variável aleatória Poisson de parâmetro λ = 1 por m². Uma chapa é sorteada ao acaso para ser inspecionada., pergunta –se a probabilidade de:
- a) Encontrarmos pelo menos 1 defeito;
- b) No máximo 2 defeitos serem encontrados:
- c) Encontrarmos de 2 a 4 defeitos;
- d) Não mais de 1 defeito ser encontrado.
- 12) Uma variável H segue o modelo Hipergeométrico com parâmetro n = 10, m = 5 e r = 4. Determine:
- a) P(H = 2);
- b)  $P(H \le 1)$ ;
- c) P(H > 0).

## FORMULÁRIO:

$$P(A) = \frac{n(A)}{n(\Omega)} \qquad \qquad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A).P(B)$$
 Eventos independentes.  $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ 

$$E(x) = \bar{x} = \mu = \sum_{i=1}^{n} x_i \cdot p_i$$
  $var(X) = E(x^2) \cdot p_i - \mu^2 = \sum_{i=1}^{n} x_i^2 \cdot p_i$   $\sigma = \sqrt{var(x)}$ 

$$L(x) = x - \mu - \sum_{l=1}^{n} x_l \cdot p_l \qquad \text{tot} \quad (x) - L(x) \cdot p_l \quad \mu - \sum_{l=1}^{n} x_l \cdot p_l \qquad 0 - \sqrt{1}$$

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$
 ;  $com \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$   $p/X \sim b(n, p)$ 

$$P(X=a) = 1/k \text{ com } a = 1,2,...,k \text{ para } X \sim U(k)$$