Karatzas-Shreve solutions

2019年3月8日

目次

第1章	Martingales, Stopping Times, and Filtrations		
1.1	Stochastic Processes and σ -Fields	1	
1.2	Stopping Times	6	
1.3	Continuous Time Martingales	16	
	1.3.1 Fundamental Inequalities	16	
	1.3.2 Convergence Results	27	
	1.3.3 The Optional Sampling Theorem	32	
1.4	The Doob-Meyer Decomposition	40	
1.5	Continuous, Square-Integrable Martingales	61	
第2章	Brownian Motion	70	
2.1	The Consistency Theorem	72	
2.2	The Kolmogorov-Čentsov Theorem	74	
2.3	The Space $C[0, \infty)$, Weak Convergence, and the Wiener Measure	79	
2.4	Weak Convergence	81	
2.5	Tightness	83	
2.6	Convergence of Finite-Dimensional Distributions	88	
付録 A		94	
A.1	集合論理	94	
	A.1.1 言語	94	
	A.1.2 式の書き換え	113	
	A.1.3 対	115	
	A.1.4 合併	119	
	A.1.5 交叉	120	
	A.1.6 関係	123	
	A.1.7 順序数	135	
	A.1.8 再帰的定義	150	
	A.1.9 整礎集合	152	
A.2	数数	156	
	A.2.1 数の構成の一時的なメモ置き場	156	
	商集合の算法	156	
	同型定理	158	

目次 2

		算法の移し方
		整数
		有理数
		実数
		複素数
	A.2.2	整数
	A.2.3	有理数
	A.2.4	実数
	A.2.5	イデアル
	A.2.6	多項式環
	A.2.7	素元分解
	A.2.8	複素数
	A.2.9	代数閉包
A.3	選択公	理
A.4	基数	
	A.4.1	
A.5	位相メ	€
	A.5.1	位相
	A.5.2	分離公理
	A.5.3	可算公理
	A.5.4	商位相
	A.5.5	有向点族
	A.5.6	一様空間
	A.5.7	距離空間
	A.5.8	範疇定理
	A.5.9	連結性
A.6	位相線	型空間
	A.6.1	線型位相
	A.6.2	局所凸空間
	A.6.3	商空間の位相
	A.6.4	位相双対空間
A.7	測度	
	A.7.1	Lebesgue 拡大
	A.7.2	コンパクトクラス
	A.7.3	Dynkin 族定理
	A.7.4	上限下限
	A.7.5	有限加法的測度の拡張
	A.7.6	Kolmogorov の拡張定理
	A.7.7	Kolmogorov の連続変形定理
A.8	積分	
	A.8.1	着分

目次 3

	A.8.2 関数列の収束	284
	A.8.3 Radon 測度	286
A.9	Stieltjes 積分	286
	A.9.1 \mathbf{R}^d 上の Stieltjes 測度	286
	A.9.2 任意の区間上の Stieltjes 測度	
	A.9.3 Stieltjes 積分	
A.10	Fubini の定理	288
A.11	<i>L^p</i> 空間	292
A.12	複素測度	298
A.13	複素測度に関する積分	312
	A.13.1 極分解	312
	A.13.2 複素積分	315
A.14	条件付き期待値	315
A.15	正則条件付複素測度	319
A.16	一様可積分性	320
A.17	距離空間上の連続写像・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	321
	A.17.1 広義一様収束を定める距離	321
	A.17.2 正規族	326
付録 B	— ··	329
B.1	集合論理	
	B.1.1 関係	329
参考文献		330
		000
索引		331
付録 C		333
C.1	使用文字	333

第1章

Martingales, Stopping Times, and Filtrations

1.1 Stochastic Processes and σ -Fields

· Problem 1.5 修正·

Let *Y* be a modification of *X*, and suppose that every sample path of both processes are right-continuous sample paths. Then *X* and *Y* are indistinguishable.

証明. X,Y のパスの右連続性より

$$\{X_t = Y_t, \ \forall t \geq 0\} = \bigcap_{r \in \mathbf{Q} \cap [0, \infty)} \{X_r = Y_r\}$$

が成立するから、 $P(X_r = Y_r) = 1 (\forall r \ge 0)$ より

$$P(X_t = Y_t, \ \forall t \ge 0) = P\left(\bigcap_{r \in \mathbf{Q} \cap [0, \infty)} \{X_r = Y_r\}\right) = 1$$

が従う.

- Problem 1.7

Let *X* be a process with every sample path RCLL. Let *A* be the event that *X* is continuous on $[0, t_0)$. Show that $A \in \mathscr{F}_{t_0}^X$.

証明 (参照元:[2]). $[0,t_0)$ に属する有理数の全体を $\mathbf{Q}^* \coloneqq \mathbf{Q} \cap [0,t_0)$ と表すとき,

$$A = \bigcap_{m \ge 1} \bigcup_{\substack{p,q \in \mathbf{Q}^* \\ |p-q| < 1/n}} \left\{ \omega \in \Omega \mid |X_p(\omega) - X_q(\omega)| < \frac{1}{m} \right\}$$

が成立することを示せばよい.これが示されれば, $\omega \longmapsto \left(X_p(\omega), X_q(\omega)\right)$ の $\mathscr{F}^X_{t_0}/\mathscr{B}(\mathbf{R}^2)$ -可測性と

$$\Phi : \mathbf{R} \times \mathbf{R} \ni (x, y) \longmapsto |x - y| \in \mathbf{R}$$

の $\mathscr{B}(\mathbf{R}^2)/\mathscr{B}(\mathbf{R})$ -可測性より

$$\left\{\omega\in\Omega\mid\quad \left|X_p(\omega)-X_q(\omega)\right|<\frac{1}{m}\right\}=\left\{\omega\in\Omega\mid\quad \left(X_p(\omega),X_q(\omega)\right)\in\Phi^{-1}\left(B_{1/m}(0)\right)\right\}\in\mathcal{F}_{t_0}^X$$

が得られ $A \in \mathcal{F}_{t_0}^X$ が従う. $(B_{1/m}(0) = \{x \in \mathbf{R} \mid |x| < 1/m\}.)$

第一段 $\omega \in A^c$ を任意にとる. このとき或る $s \in (0,t_0)$ が存在して, $t \longmapsto X_t(\omega)$ は t=s において左側不連続である. 従って或る $m \ge 1$ については, 任意の $n \ge 1$ に対し 0 < s - u < 1/3n を満たす u が存在して

$$|X_u(\omega) - X_s(\omega)| \ge \frac{1}{m}$$

を満たす.一方でパスの右連続性より0 , <math>q - u < 1/3nを満たす $p,q \in \mathbf{Q}^*$ が存在して

$$\left|X_p(\omega) - X_s(\omega)\right| < \frac{1}{4m}, \quad \left|X_q(\omega) - X_u(\omega)\right| < \frac{1}{4m}$$

が成立する. このとき 0 < |p-q| < 1/n かつ

$$\left|X_p(\omega) - X_q(\omega)\right| \ge \left|X_p(\omega) - X_s(\omega)\right| - \left|X_s(\omega) - X_u(\omega)\right| - \left|X_q(\omega) - X_u(\omega)\right| \ge \frac{1}{2m}$$

が従い

$$\omega \in \bigcup_{m \ge 1} \bigcap_{n \ge 1} \bigcup_{\substack{p,q \in \mathbf{Q}^* \\ |p-q| < 1/n}} \left\{ \omega \in \Omega \mid |X_p(\omega) - X_q(\omega)| \ge \frac{1}{m} \right\}$$

を得る.

第二段 任意に $\omega \in A$ を取る. 各点で有限な左極限が存在するという仮定から,

$$X_{t_0}(\omega) \coloneqq \lim_{t \uparrow t_0} X_t(\omega)$$

と定めることにより *1 $t \longmapsto X_t(\omega)$ は $[0,t_0]$ 上で一様連続となる. 従って

$$\omega \in \bigcap_{m \ge 1} \bigcup_{n \ge 1} \bigcap_{\substack{p,q \in \mathbf{Q}^* \\ |p-q| < 1/n}} \left\{ \omega \in \Omega \mid \quad \left| X_p(\omega) - X_q(\omega) \right| < \frac{1}{m} \right\}$$

を得る.

Lemma2 for Exercise 1.8 -

 $T=\{1,2,3,\cdots\}$ を高々可算集合とし, S_i を第二可算公理を満たす位相空間, X_i を確率空間 (Ω,\mathscr{F},P) 上の S_i -値 確率変数とする $(i\in T)$. このとき,任意の並び替え $\pi:T\longrightarrow T$ に対して $S:=\prod_{i\in T}S_{\pi(i)}$ とおけば次が成立する:

$$\sigma(X_i; i \in T) = \left\{ \left\{ (X_{\pi(1)}, X_{\pi(2)}, \dots) \in A \right\} \mid A \in \mathcal{B}(S) \right\}. \tag{1.1}$$

証明.

 $^{^{-1}}$ 実際 $X_{t_0}(\omega)$ は所与のものであるが、いまは $[0,t_0]$ 上での連続性を考えればよいから便宜上値を取り替える.

第一段 射影 $S \longrightarrow S_{\pi(n)}$ を p_n で表す.任意に $t_i \in T$ を取り $n \coloneqq \pi^{-1}(i)$ とおけば,任意の $B \in \mathcal{B}(S_n)$ に対して

$$X_i^{-1}(B) = \left\{ (\cdots, X_{\pi(n)}, \cdots) \in p_n^{-1}(B) \right\} \in \left\{ \left\{ (X_{\pi(1)}, X_{\pi(2)}, \cdots) \in A \right\} \mid A \in \mathcal{B}(S) \right\}$$

が成り立つから $\sigma(X_i; i \in T) \subset \{\{(X_{\pi(1)}, X_{\pi(2)}, \cdots) \in A\} \mid A \in \mathcal{B}(S)\}$ が従う.

第二段 任意の有限部分集合 $j \in T$ と $B_i \in \mathcal{B}(S_{\pi(i)})$ に対し

$$\left\{ (X_{\pi(1)}, X_{\pi(2)}, \dots) \in p_j^{-1}(B_j) \right\} = X_{\pi(j)}^{-1}(B_j) \in \sigma(X_i; i \in T)$$

が成立するから

$$\left\{ p_i^{-1}(B_i) \mid \quad B_i \in \mathcal{B}(S_{\pi(i)}), \ i \in T \right\} \subset \left\{ A \in \mathcal{B}(S) \mid \quad \left\{ (X_{\pi(1)}, X_{\pi(2)}, \cdots) \in A \right\} \in \sigma(X_i; \ i \in T) \right\}$$

が従う. 右辺は σ -加法族であり、定理 A.7.22 より左辺は $\mathcal{B}(S)$ を生成するから前段と併せて (1.1) を得る.

Lemma3 for Exercise 1.8 -

 $X=\{\,X_t\,|\quad 0\leq t<\infty\,\}$ を確率空間 (Ω,\mathscr{F},P) 上の \mathbf{R}^d -値確率過程とする。任意の空でない $S\subset[0,\infty)$ に対し

$$\mathcal{F}_s^X := \sigma(X_s; s \in S)$$

とおくとき, 任意の空でない $T \subset [0,\infty)$ に対して次が成立する:

$$\mathcal{F}_T^X := \bigcup_{S \subset T: at \ most \ countable} \mathcal{F}_S^X. \tag{1.2}$$

証明. 便宜上

$$\mathcal{F} \coloneqq \bigcup_{S \subset T: at \ most \ countable} \mathcal{F}_S^X$$

とおく. まず、任意の $S \subset T$ に対し $\mathcal{F}_S^X \subset \mathcal{F}_T^X$ が成り立つから

$$\mathcal{F}\subset\mathcal{F}_T^X$$

が従う.また $\sigma(X_t) = \mathcal{F}_{\{t\}'}^X$, $(\forall t \in T)$ より

$$\bigcup_{t\in T}\sigma(X_t)\subset \mathcal{F}$$

が成り立つから、あとは $\mathcal F$ が σ -加法族であることを示せばよい。 実際、 $\mathcal F$ は σ -加法族の合併であるから Ω を含みかつ補演算で閉じる。 また $B_n\in\mathcal F$ 、 $n=1,2,\cdots$ に対しては、 $B_n\in\mathcal F_{S_n}^X$ を満たす高々可算集合 $S_n\subset T$ が対応して

$$\bigcup_{n=1}^{\infty} \mathcal{F}_{S_n}^X = \bigcup_{n=1}^{\infty} \sigma(X_s; \ s \in S_n) \subset \sigma\left(X_s; \ s \in \bigcup_{n=1}^{\infty} S_n\right)$$

が成り立つから,

$$\bigcup_{n=1}^{\infty} B_n \in \sigma \bigg(X_s; \ s \in \bigcup_{n=1}^{\infty} S_n \bigg) \subset \mathcal{F}$$

が従う. ゆえに \mathcal{F} は σ -加法族であり (1.2) を得る.

Exercise 1.8

Let X be a process whose sample paths are RCLL almost surely, and let A be the event that X is continuous on $[0,t_0)$. Show that A can fail to be in $\mathscr{F}^X_{t_0}$, but if $\{\mathscr{F}_t \mid t \geq 0\}$ is a fitration satisfying $\mathscr{F}^X_t \subset \mathscr{F}_t$, $t \geq 0$, and $\mathscr{F}^X_{t_0}$ contains all P-null sets of \mathscr{F} , then $A \in \mathscr{F}_{t_0}$.

証明.

第一段 高々可算な集合 $S=\{t_1,t_2,\cdots\}\subset [0,t_0]$ に対し、昇順に並び替えたものを $t_{\pi(1)}< t_{\pi(2)}<\cdots$ と表し

$$\mathcal{F}_S^X \coloneqq \left\{ \left. \left\{ (X_{t_{\pi(1)}}, X_{t_{\pi(2)}}, \cdots) \in B \right\} \mid \quad B \in \mathcal{B}((\mathbf{R}^d)^{\#S}) \right. \right\}$$

とおく. ただし S が可算無限の場合は $(\mathbf{R}^d)^{\#S} = \mathbf{R}^{\infty}$ である. このとき (1.1) より

$$\sigma(X_s;\ s\in S)=\mathcal{F}_S^X$$

が成り立ち, (1.2) より

$$\mathcal{F}_{t_0}^X = \sigma(X_t; \ 0 \le t \le t_0) = \bigcup_{S \subset [0,t_0]: at \ most \ countable} \mathcal{F}_S^X$$

が満たされる. すなわち, $\mathscr{F}^X_{t_0}$ の任意の元は $\{(X_{t_1},X_{t_2},\cdots)\in B\}$, $(t_1< t_2<\cdots)$ の形で表される.

第二段

Problem 1.10 unsolved -

Let X be a process with every sample path LCRL, and let A be the event that X is continuous on $[0, x_0]$. Let X be adapted to a right-continuous filtration $(\mathscr{F}_t)_{t\geq 0}$. Show that $A\in \mathscr{F}_{t_0}$.

証明.

第一段 $\mathbf{Q}^* \coloneqq \mathbf{Q} \cap [0, t_0]$ とおく. いま、任意の $n \ge 1$ と $r \in \mathbf{Q}^*$ に対し

$$B_n(r) := \bigcup_{m \ge 1} \bigcap_{k < m} \left\{ \omega \in \Omega \mid \left| X_r(\omega) - X_{r + \frac{1}{k}}(\omega) \right| \le \frac{1}{n} \right\}$$

と定めるとき,

$$A = \bigcap_{r \in \mathbf{Q}^*} \bigcap_{n \ge 1} B_n(r)$$

が成立することを示す. これが示されれば,

$$\left\{ \omega \in \Omega \mid \left| X_r(\omega) - X_{r + \frac{1}{k}}(\omega) \right| \le \frac{1}{n} \right\} \in \mathscr{F}_{r + \frac{1}{k}}, \quad (\forall r \in \mathbf{Q}^*, \ k \ge 1)$$

とフィルトレーションの右連続性から

$$B_n(r) \in \bigcap_{k > m} \mathscr{F}_{r+\frac{1}{k}} = \mathscr{F}_{r+} = \mathscr{F}_r$$

が従い $A \in \mathcal{F}_{t_0}$ が出る.

第二段

-Problem 1.16

If the process X is measurable and the random time T is finite, then the function X_T is a random variable.

証明.

$$\tau:\Omega\ni\omega\longmapsto (T(\omega),\omega)\in[0,\infty)\times\Omega$$

とおけば、任意の $A \in \mathcal{B}([0,\infty))$, $B \in \mathcal{F}$ に対して

$$\tau^{-1}(A \times B) = \{ \omega \in \Omega \mid (T(\omega), \omega) \in A \times B \} = T^{-1}(A) \cap B \in \mathscr{F}$$

が満たされる

$$\left\{A\times B\mid \quad A\in\mathcal{B}([0,\infty)),\ B\in\mathcal{F}\right\}\subset\left\{E\in\mathcal{B}([0,\infty))\otimes\mathcal{F}\mid \quad \tau^{-1}(E)\in\mathcal{F}\right\}$$

が従い τ の $\mathscr{F}/\mathscr{B}([0,\infty)) \otimes \mathscr{F}$ -可測性が出る. $X_T = X \circ \tau$ より X_T は可測 $\mathscr{F}/\mathscr{B}(\mathbf{R}^d)$ である.

Problem 1.17 -

Let X be a measurable process and T a random time. Show that the collection of all sets of the form $\{X_T \in A\}$ and $\{X_T \in A\} \cup \{T = \infty\}; A \in \mathcal{B}(\mathbf{R})$, forms a sub- σ -field of \mathscr{F} .

証明. X_T の定義域は $\{T < \infty\}$ であるから,

$$\mathcal{G} := \{ \{ T < \infty \} \cap E \mid E \in \mathcal{F} \}$$

とおけば、前問の結果より X_T は可測 $\mathscr{G}/\mathscr{B}(\mathbf{R})$ である. $\mathscr{G} \subset \mathscr{F}$ より

$$\mathcal{H} := \{ \{ X_T \in A \}, \{ X_T \in A \} \cup \{ T = \infty \} \mid A \in \mathcal{B}(\mathbf{R}) \}$$

に対して $\mathcal{H}\subset\mathcal{F}$ が成立する. あとは \mathcal{H} が σ -加法族であることを示せばよい. 実際, $A=\mathbf{R}$ のとき

$$\{X_T \in A\} \cup \{T = \infty\} = \{T < \infty\} \cup \{T = \infty\} = \Omega$$

となり $\Omega \in \mathcal{H}$ が従い, また

$$\{X_T \in A\}^c = \{X_T \in A^c\} \cup \{T = \infty\},\$$
$$(\{X_T \in A\} \cup \{T = \infty\})^c = \{X_T \in A^c\} \cap \{T < \infty\} = \{X_T \in A^c\}$$

より ${\mathcal H}$ は補演算で閉じる. 更に $B_n\in {\mathcal H}$ $(n=1,2,\cdots)$ を取れば,

$$\bigcup_{n=1}^{\infty} B_n = \left\{ X_T \in \bigcup_{n=1}^{\infty} A_n \right\}$$

或は

$$\bigcup_{n=1}^{\infty} B_n = \left\{ X_T \in \bigcup_{n=1}^{\infty} A_n \right\} \cup \left\{ T = \infty \right\}$$

が成立し $\bigcup_{n=1}^{\infty} B_n \in \mathcal{H}$ を得る.

1.2 Stopping Times

-[0,∞]の位相 -

 $[0,\infty]$ の位相は $[-\infty,\infty]$ の相対位相である. $\emptyset \neq O \subset [-\infty,\infty]$ が開集合であるとは、任意の $x \in O$ に対し、

- (O1) $x \in \mathbf{R}$ なら或る $\epsilon > 0$ が存在して $B_{\epsilon}(x) \subset O$ が満たされる,
- (O2) $x = \infty$ なら或る $a \in \mathbb{R}$ が存在して $(a, \infty] \subset O$ が満たされる,
- (O3) $x = -\infty$ なら或る $a \in \mathbb{R}$ が存在して $[-\infty, a) \subset O$ が満たされる,

で定義される. この性質を満たす O の全体に \emptyset を加えたものが $[-\infty,\infty]$ の位相であり,

$$[-\infty, r), \quad (r, r'), \quad (r, \infty], \quad (r, r' \in \mathbf{Q})$$

の全体が可算開基となる. 従って [0,∞] の位相の可算開基は

$$[0, r), (r, r'), (r, \infty], (r, r' \in \mathbf{Q} \cap [0, \infty))$$

の全体であり、写像 $\tau:\Omega\longrightarrow [0,\infty]$ が $\mathscr{F}/\mathscr{B}([0,\infty])$ -可測性を持つかどうかを調べるには

$$\{\tau < a\} = \tau^{-1}([0, a)) \in \mathscr{F}, \quad (\forall a \in \mathbf{Q} \cap [0, \infty))$$

が満たされているかどうかを確認すれば十分である.

- Problem 2.2 -

Let X be a stochastic process and T a stopping time of $\{\mathscr{F}_t^X\}$. Suppose that for some pair $\omega, \omega' \in \Omega$, we have $X_t(\omega) = X_t(\omega')$ for all $t \in [0, T(\omega)] \cap [0, \infty)$. Show that $T(\omega) = T(\omega')$.

証明 (参照元:[3]). ω,ω' を分離しない集合族 $\mathcal H$ を

$$\mathcal{H} := \{ A \subset \Omega \mid \{\omega, \omega'\} \subset A, \text{ or } \{\omega, \omega'\} \subset \Omega \setminus A \}$$

により定めれば、 \mathcal{H} は σ -加法族である. このとき、 $\{T=T(\omega)\}\in\mathcal{H}$ を示せばよい.

case1 $T(\omega) = \infty$ の場合, 任意の $A \in \mathcal{B}(\mathbf{R}^d)$ 及び $0 \le t < \infty$ に対して, 仮定より

$$\omega \in X_t^{-1}(A) \quad \Leftrightarrow \quad \omega' \in X_t^{-1}(A)$$

が成り立ち

$$\sigma(X_t; 0 \le t < \infty) \subset \mathcal{H}$$

となる. 任意の $t \geq 0$ に対し $\{T \leq t\} \in \mathscr{F}^X_t \subset \sigma(X_t; 0 \leq t < \infty)$ が満たされるから

$$\{T = \infty\} = \bigcap_{n=1}^{\infty} \{T \le n\}^c \in \sigma(X_t; \ 0 \le t < \infty) \subset \mathcal{H}$$

が成立し、 $\omega \in \{T = \infty\}$ より $\omega' \in \{T = \infty\}$ が従い $T(\omega) = T(\omega')$ を得る.

case2 $T(\omega) < \infty$ の場合, case1 と同様に任意の $0 \le t \le T(\omega)$ に対し $\sigma(X_t) \subset \mathcal{H}$ が満たされるから

$$\mathcal{F}^X_{T(\omega)}\subset\mathcal{H}$$

が成り立つ. $\{T=T(\omega)\}\in \mathscr{F}_{T(\omega)}^X$ より $\omega'\in \{T=T(\omega)\}$ が従い $T(\omega)=T(\omega')$ を得る.

Lemma for Proposition 2.3 —

 $(\mathcal{F}_t)_{t\geq 0}$ を可測空間 (Ω,\mathcal{F}) のフィルトレーションとするとき,任意の $t\geq 0$ 及び任意の点列 $s_1>s_2>\cdots>t, (s_n\downarrow t)$ に対して次が成立する:

$$\bigcap_{s>t}\mathcal{F}_s=\bigcap_{n=1}^\infty\mathcal{F}_{s_n}.$$

証明. 先ず任意の $n \ge 1$ に対して

$$\bigcap_{s>t}\mathcal{F}_s\subset\mathcal{F}_{s_n}$$

が成り立つから

$$\bigcap_{s>t} \mathcal{F}_s \subset \bigcap_{n=1}^{\infty} \mathcal{F}_{s_n}$$

を得る. 一方で、任意のs > t に対し $s \ge s_n$ を満たす n が存在するから、

$$\mathscr{F}_s\supset\mathscr{F}_{s_n}\supset\bigcap_{n=1}^\infty\mathscr{F}_{s_n}$$

が成立し

$$\bigcap_{s>t} \mathscr{F}_s \supset \bigcap_{n=1}^{\infty} \mathscr{F}_{s_n}$$

が従う.

 $(\mathcal{F}_{t+})_{t\geq 0}$ は右連続である.実際,任意の $t\geq 0$ で

$$\bigcap_{s>t} \mathcal{F}_{s+} = \bigcap_{s>t} \bigcap_{u>s} \mathcal{F}_u = \bigcap_{s>t} \mathcal{F}_s = \mathcal{F}_{t+}$$

が成立する.

- Corollary 2.4

T is an optional time of the filtration $\{\mathscr{F}_t\}$ if and only if it is a stopping time of the (right-continuous!) filtration $\{\mathscr{F}_{t+}\}$.

言い換えれば,確率時刻 T に対し

$$\{T < t\} \in \mathscr{F}_t, \ \forall t \ge 0 \quad \Leftrightarrow \quad \{T \le t\} \in \mathscr{F}_{t+}, \ \forall t \ge 0$$

が成り立つことを主張している.

証明. T が (\mathscr{F}_{t+}) -停止時刻であるとき,任意の $n\geq 1$ に対して $\{T\leq t-1/n\}\in\mathscr{F}_{(t-1/n)+}\subset\mathscr{F}_t$ が満たされるから

$$\{T < t\} = \bigcup_{n=1}^{\infty} \left\{ T \le t - \frac{1}{n} \right\} \in \mathscr{F}_t$$

が従う. 逆にTが (\mathscr{F}_t) -弱停止時刻 *2 のとき,任意の $m \geq 1$ に対し

$$\{T \le t\} = \bigcap_{n=m}^{\infty} \left\{ T < t + \frac{1}{n} \right\} \in \mathscr{F}_{t+1/m}$$

が成立するから

$$\{T \le t\} \in \bigcap_{n=1}^{\infty} \mathscr{F}_{t+1/n} = \mathscr{F}_{t+1}$$

を得る.

Problem 2.6

If the set Γ in Example 2.5 is open, show that H_{Γ} is an optional time.

証明. $\{H_{\Gamma} < 0\} = \emptyset$ であるから、以下 t > 0 とする. $H_{\Gamma}(\omega) < t \Leftrightarrow \exists s < t, X_s(\omega) \in \Gamma$ より

$$\{H_{\Gamma} < t\} = \bigcup_{0 \le s \le t} \{X_s \in \Gamma\}$$

となる. また全てのパスが右連続であることと Γ が開集合であることにより

$$\bigcup_{0 \leq s < t} \{X_s \in \Gamma\} = \bigcup_{\substack{0 \leq r < t \\ r \in \mathbb{Q}}} \{X_r \in \Gamma\}$$

が成り立ち $\{H_{\Gamma} < t\} \in \mathcal{F}_t$ が従う.

- Problem 2.7

If the set Γ in Example 2.5 is closed and the sample paths of the process X are continuous, then H_{Γ} is a stopping time.

証明.

第一段 \mathbf{R}^d 上の Euclid 距離を ρ で表し,

$$\rho(x,\Gamma) := \inf_{y \in \Gamma} \rho(x,y), \quad \Gamma_n := \left\{ x \in \mathbf{R}^d \mid \rho(x,\Gamma) < \frac{1}{n} \right\}, \quad (x \in \mathbf{R}^d, \ n = 1, 2, \cdots)$$

とおく. $\mathbf{R}^d \ni x \longmapsto \rho(x,\Gamma)$ の連続性より Γ_n は開集合であるから、Problem 2.6 の結果より $T_n \coloneqq H_{\Gamma_n}$ で定める T_n , $n=1,2,\cdots$ は (\mathcal{F}_t) -弱停止時刻であり、また $H\coloneqq H_{\Gamma}$ とおけば次の (1) と (2) が成立する:

^{*&}lt;sup>2</sup> optional time の訳語がわからないので弱停止時刻と呼ぶ.

(1)
$$\{H=0\} = \{X_0 \in \Gamma\},\$$

(2)
$$H(\omega) \le t \iff T_n(\omega) < t, \ \forall n = 1, 2, \cdots, \ (\forall \omega \in \{H > 0\}, \ \forall t > 0).$$

(1) と (2) 及び T_n , $n = 1, 2, \cdots$ が (\mathcal{F}_t)-弱停止時刻であることにより

$$\{H \leq t\} = \{H \leq t\} \cap \{H > 0\} + \{H = 0\} = \left\{\bigcap_{n=1}^{\infty} \{T_n < t\}\right\} \cap \{H > 0\} + \{H = 0\} \in \mathcal{F}_t, \quad (\forall t \geq 0)$$

が成立するから H は (\mathcal{F}_t) -停止時刻である.

第二段 (1) を示す. 実際, $X_0(\omega) \in \Gamma$ なら $H(\omega) = 0$ であり, $X_0(\omega) \notin \Gamma$ なら, Γ が閉であることとパスの連続性より

$$X_t(\omega) \notin \Gamma$$
, $(0 \le t \le h)$

を満たす h > 0 が存在して $H(\omega) \ge h > 0$ となる.

第三段 $\omega \in \{H > 0\}, t > 0$ として (2) を示す. まずパスの連続性より

$$T_n(\omega) < t \iff \exists s \leq t, X_s(\omega) \in \Gamma_n$$

が成り立つ. $H(\omega) \le t$ の場合, $\beta := H(\omega)$ とおけば, Γ が閉であることとパスの連続性より

$$X_{\beta}(\omega) \in \Gamma \subset \Gamma_n$$
, $(\forall n = 1, 2, \cdots)$

が満たされ $T_n(\omega) < t (\forall n \geq 1)$ が従う. 逆に、 $H(\omega) > t$ のとき

$$X_s(\omega) \notin \Gamma$$
, $(\forall s \in [0, t])$

が満たされ、パスの連続性と ρ の連続性より $[0,t] \ni s \mapsto \rho(X_s(\omega),\Gamma)$ は連続であるから、

$$d := \min s \in [0, t] \rho(X_s(\omega), \Gamma) > 0$$

が定まる. このとき 1/n < d/2 を満たす $n \ge 1$ を一つ取れば

$$X_s(\omega) \notin \Gamma_n$$
, $(\forall s \in [0, t])$

が成立する. 実際, 任意の $s \in [0,t]$, $x \in \Gamma_n$ に対し

$$\rho(X_s(\omega), x) \ge \rho(X_s(\omega), \Gamma) - \rho(x, \Gamma) \ge d - \frac{d}{2} = \frac{d}{2} > \frac{1}{n}$$

が満たされる. 従って $T_n(\omega) \geq t$ となる.

Lemma 2.9 の式変形について ——

第一の式変形は

$$\begin{split} \{T+S>t\} &= \{T=0,\, T+S>t\} + \{0 < T < t,\, T+S>t\} + \{T \ge t,\, T+S>t\} \\ &= \{T=0,\, T+S>t\} + \{0 < T < t,\, T+S>t\} + \{T \ge t,\, T+S>t,\, S=0\} \\ &+ \{T \ge t,\, T+S>t,\, S>0\} \\ &= \{T=0,\, S>t\} + \{0 < T < t,\, T+S>t\} + \{T>t,\, S=0\} + \{T \ge t,\, S>0\} \end{split}$$

である.

- Problem 2.10 -

Let T, S be optional times; then T + S is optional. It is a stopping time, if one of the following conditions holds:

- (i) T > 0, S > 0;
- (ii) T > 0, T is a stopping time.

証明. T,S が (\mathcal{F}_t) -弱停止時刻であるとすれば, 任意の t>0 に対し

$$\begin{split} \{T+S < t\} &= \{T=0, \ T+S < t\} + \{0 < T < t, \ T+S < t\} \\ &= \{T=0, \ S < t\} + \bigcup_{\substack{0 < r < t \\ r \in \mathbf{Q}}} \{0 < T < r, \ S < t-r\} \\ &\in \mathcal{F}_t \end{split}$$

が成り立つから T+S も (\mathcal{F}_t) -弱停止時刻である.

(i) この場合 $\{T + S \le 0\} = \emptyset$ である. また t > 0 なら

$$\{T+S>t\} = \{0 < T < t, \ T+S>t\} + \{T \geq t, \ T+S>t\} = \bigcup_{\substack{0 < r < t \\ r \in \mathbb{Q}}} \{r < T < t, \ S>t-r\} + \{T \geq t\} \in \mathcal{F}_t$$

が成立する.

(ii) この場合も $\{T+S \le 0\} = \emptyset$ であり、また t > 0 のとき

$$\begin{split} \{T+S>t\} &= \{0 < T < t, \ T+S>t\} + \{T \geq t, \ T+S>t\} \\ &= \{0 < T < t, \ T+S>t\} + \{T \geq t, \ T+S>t, \ S=0\} + \{T \geq t, \ T+S>t, \ S>0\} \\ &= \{0 < T < t, \ T+S>t\} + \{T>t, \ S=0\} + \{T \geq t, \ S>0\} \\ &\in \mathcal{F}_t \end{split}$$

が成立する.

Problem 2.13 -

Verify that \mathscr{F}_T is actually a σ -field and T is \mathscr{F}_T -measurable. Show that if $T(\omega) = t$ for some constant $t \ge 0$ and every $\omega \in \Omega$, then $\mathscr{F}_T = \mathscr{F}_t$.

証明.

第一段 \mathscr{F}_T が σ -加法族であることを示す.実際, $\Omega \cap \{T \leq t\} = \{T \leq t\} \in \mathscr{F}_t$, $(\forall t \geq 0)$ より $\Omega \in \mathscr{F}_T$ が従い,また

$$A^{c} \cap \{T \leq t\} = \{T \leq t\} - A \cap \{T \leq t\}, \quad \left\{\bigcup_{n=1}^{\infty} A_{n}\right\} \cap \{T \leq t\} = \bigcup_{n=1}^{\infty} (A_{n} \cap \{T \leq t\})$$

より \mathcal{F}_T は補演算と可算和で閉じる.

第二段 任意の $\alpha \ge 0$ に対し

$$\{T \leq \alpha\} \cap \{T \leq t\} = \{T \leq \alpha \land t\} \in \mathcal{F}_{\alpha \land t} \subset \mathcal{F}_t$$

が成立しTの $\mathscr{F}_T/\mathscr{B}([0,\infty])$ -可測性が出る.

第三段 $A \in \mathscr{F}_T$ なら $A = A \cap \{T \le t\} \in \mathscr{F}_t$ となり, $A \in \mathscr{F}_t$ については, 任意の $s \ge 0$ に対し $s \ge t$ なら

$$A \cap \{T \leq s\} = A \in \mathscr{F} \subset \mathscr{F}_s$$
,

s < t なら

$$A \cap \{T \leq s\} = \emptyset \in \mathscr{F}_s$$

が成り立ち $A \in \mathcal{F}_T$ が従う.

Exercise 2.14

Let T be a stopping time and S a random time such that $S \ge T$ on Ω . If S is \mathscr{F}_T -measurable, then it is also a stopping time.

証明. 任意の $t \ge 0$ に対し

$${S \le t} = {S \le t} \cap {T \le t} \in \mathscr{F}_t$$

が成立する.

- Problem 2.17 修正 —

Let T, S be stopping times and Z an $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -measurable, integrable random variable. Then

$$A \in \mathscr{F}_T \implies A \cap \{T \leq S\}, A \cap \{T < S\} \in \mathscr{F}_{S \wedge T},$$

and we have

- (i) $\mathbb{1}_{\{T \leq S\}} E(Z \mid \mathscr{F}_T) = \mathbb{1}_{\{T \leq S\}} E(Z \mid \mathscr{F}_{S \wedge T})$, *P*-a.s.
- (ii) $\mathbb{1}_{\{T < S\}} E(Z \mid \mathscr{F}_T) = \mathbb{1}_{\{T < S\}} E(Z \mid \mathscr{F}_{S \wedge T}), P-a.s.$
- (iii) $E(E(Z | \mathscr{F}_T) | \mathscr{F}_S) = E(Z | \mathscr{F}_{S \wedge T}), P\text{-a.s.}$

証明.

第一段 任意の $A \in \mathscr{F}_T$ に対し $A \cap \{T \leq S\} \in \mathscr{F}_{S \wedge T}$ が成り立つ. 実際,

$$A \cap \{T \le S\} \cap \{S \land T \le t\} = \left[A \cap \{T \le t\}\right] \cap \{T \le S\} \cap \{S \land T \le t\} \in \mathscr{F}_t, \quad (\forall t \ge 0)$$

が成立する. 同様に $A \cap \{T < S\} \in \mathcal{F}_{S \wedge T}$ も得られる.

第二段 任意の $A \in \mathcal{F}_T$ に対し、前段の結果より

$$\int_{A\cap \{T\leq S\}} Z\ dP = \int_{A\cap \{T\leq S\}} E\left(Z\mid \mathscr{F}_{S\wedge T}\right)\ dP$$

が従う. $\mathbb{1}_{\{T \leq S\}} E(Z \mid \mathscr{F}_{S \wedge T})$ も $\mathscr{F}_T/\mathscr{B}(\mathbf{R})$ -可測であるから (i) が得られ, 同様に (ii) も出る.

第三段 任意の $B \in \mathcal{F}_S$ に対し、第一段と第二段の結果により

$$\begin{split} \int_{B} E\left(E\left(Z\mid\mathcal{F}_{T}\right)\mid\mathcal{F}_{S}\right) \; dP &= \int_{B} E\left(Z\mid\mathcal{F}_{T}\right) \; dP = \int_{B\cap\{S< T\}} E\left(Z\mid\mathcal{F}_{T}\right) \; dP + \int_{B\cap\{T\leq S\}} E\left(Z\mid\mathcal{F}_{T}\right) \; dP \\ &= \int_{B\cap\{S< T\}} Z \; dP + \int_{B\cap\{T\leq S\}} E\left(Z\mid\mathcal{F}_{S\wedge T}\right) \; dP \\ &= \int_{B\cap\{S< T\}} E\left(Z\mid\mathcal{F}_{S\wedge T}\right) \; dP + \int_{B\cap\{T\leq S\}} E\left(Z\mid\mathcal{F}_{S\wedge T}\right) \; dP \\ &= \int_{B} E\left(Z\mid\mathcal{F}_{S\wedge T}\right) \; dP \end{split}$$

が成り立つ. $E(Z | \mathscr{F}_{S \wedge T})$ も $\mathscr{F}_S/\mathscr{B}(\mathbf{R})$ -可測であるから (iii) を得る.

- Proposition 2.18 修正 -

Let $X = \{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ be a progressively measurable process, and let T be a stopping time of the filtration $\{\mathscr{F}_t\}$. Then the random variable $X_T \mathbb{1}_{\{T < \infty\}}$ is \mathscr{F}_T -measurable, and the "stopped process" $\{X_{T \land t}, \mathscr{F}_t \mid 0 \le t < \infty\}$ is progressively measurable.

証明.

第一段 停止過程の発展的可測性を示す. $t \geq 0$ を固定する. このとき,全ての $\omega \in \Omega$ に対して $[0,t] \ni s \longmapsto T(\omega) \land s$ は連続であり、かつ全ての $s \in [0,t]$ に対し $\Omega \ni \omega \longmapsto T(\omega) \land s$ は $\mathscr{F}_t/\mathscr{B}([0,t])$ -可測であるから、 $[0,t] \times \Omega \ni (s,\omega) \longmapsto T(\omega) \land s$ は $\mathscr{B}([0,t]) \otimes \mathscr{F}_t/\mathscr{B}([0,t])$ -可測である. 従って、任意の $A \in \mathscr{B}([0,t])$ と $B \in \mathscr{F}_t$ に対し

$$\{ (s,\omega) \in [0,t] \times \Omega \mid \quad (T(\omega) \wedge s,\omega) \in A \times B \} = \{ (s,\omega) \in [0,t] \times \Omega \mid \quad T(\omega) \wedge s \in A \} \cap ([0,t] \times B) \\ \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t$$

が成り立つから、任意の $E \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t$ に対して

$$\{(s,\omega)\in[0,t]\times\Omega\mid (T(\omega)\wedge s,\omega)\in E\}\in\mathscr{B}([0,t])\otimes\mathscr{F}_t$$

が満たされ $(s,\omega) \mapsto (T(\omega) \land s,\omega)$ の $\mathscr{B}([0,t]) \otimes \mathscr{F}_t/\mathscr{B}([0,t]) \otimes \mathscr{F}_t$ -可測性を得る.

$$X(s,\omega) = X|_{[0,t]\times\Omega}(s,\omega), \quad (\forall (s,\omega)\in[0,t]\times\Omega)$$

かつ $X|_{[0,t]\times\Omega}$ は $\mathscr{B}([0,t])\otimes\mathscr{F}_t/\mathscr{B}(\mathbf{R}^d)$ -可測であるから, $[0,t]\times\Omega$ \ni (s,ω) \longmapsto $X(T(\omega)\wedge s,\omega)$ = $X|_{[0,t]\times\Omega}(T(\omega)\wedge s,\omega)$ の $\mathscr{B}([0,t])\otimes\mathscr{F}_t/\mathscr{B}(\mathbf{R}^d)$ -可測性が出る.

第二段 定理 A.10.1 (P. 289) より $\omega \longmapsto X(T(\omega) \wedge t, \omega)$ は $\mathscr{F}_t/\mathscr{B}(\mathbf{R}^d)$ であるから,任意の $B \in \mathscr{B}(\mathbf{R}^d)$ に対し

$$\{X_T \mathbb{1}_{\{T < \infty\}} \in B\} \cap \{T \le t\} = \{X_{T \land t} \in B\} \cap \{T \le t\} \in \mathscr{F}_t, \quad (\forall t \ge 0)$$

が成立し $X_T \mathbf{1}_{\{T<\infty\}}$ の $\mathscr{F}_T/\mathscr{B}(\mathbf{R}^d)$ -可測性を得る.

Problem 2.19

Under the same assumption as in Proposition 2.18, and with f(t, x); $[0, \infty) \times \mathbf{R}^d \longrightarrow \mathbf{R}$ a bounded, $\mathscr{B}([0, \infty)) \otimes \mathscr{B}(\mathbf{R}^d)$ -measurable function, show that the process $Y_t = \int_0^t f(s, X_s) \, ds$; $t \ge 0$ is progressively measurable with respect to $\{\mathscr{F}_t\}$, and Y_T is an \mathscr{F}_T -measurable random variable.

証明. $[0,t] \times \Omega \ni (s,\omega) \longmapsto f(s,X_s(\omega))$ が $\mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(\mathbf{R})$ -可測であれば、Fuini の定理より $\{Y_t,\mathcal{F}_t \mid 0 \leq t < \infty\}$ は適合過程となり、可積分性より $t \longmapsto Y_t(\omega)$ 、($\forall \omega \in \Omega$) が連続であるから Y の発展的可測性が従う、実際、

$$[0,t] \times \Omega \ni (s,\omega) \longmapsto (s,X_s(\omega)) = (s,X|_{[0,t] \times \Omega}(s,\omega))$$

による $A \times B$, $(A \in \mathcal{B}([0,\infty))$, $B \in \mathcal{B}(\mathbf{R}^d)$) の引き戻しは

$$\{([0,t]\cap A)\times\Omega\}\cap X|_{[0,t]\times\Omega}^{-1}(B)\in\mathscr{B}([0,t])\otimes\mathscr{F}_t$$

となるから、 $[0,t] \times \Omega \ni (s,\omega) \longmapsto f(s,X_s(\omega))$ は $\mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(\mathbf{R})$ -可測である.

- Problem 2.21 —

Verify that the class \mathscr{F}_{T+} is indeed a σ -field with respect to which T is measurable, that it coincides with $\{A \in \mathscr{F} \mid A \cap \{T < t\} \in \mathscr{F}_t, \ \forall t \geq 0\}$, and that if T is a stopping time (so that both \mathscr{F}_T , \mathscr{F}_{T+} are defined), then $\mathscr{F}_T \subset \mathscr{F}_{T+}$.

証明.

第一段 $\Omega \cap \{T \leq t\} = \{T \leq t\} \in \mathcal{F}_t, (\forall t \geq 0)$ より $\Omega \in \mathcal{F}_{T+}$ が従い, また

$$A^{c} \cap \{T \le t\} = \{T \le t\} - A \cap \{T \le t\}, \quad \left\{ \bigcup_{n=1}^{\infty} A_{n} \right\} \cap \{T \le t\} = \bigcup_{n=1}^{\infty} (A_{n} \cap \{T \le t\})$$

より \mathscr{F}_{T+} は補演算と可算和で閉じるから \mathscr{F}_{T+} は σ -加法族である. また,

$$\{T < \alpha\} \cap \{T \le t\} = \begin{cases} \{T < \alpha\}, & (\alpha \le t), \\ \{T \le t\}, & (\alpha > t), \end{cases} \in \mathcal{F}_{t+}, \quad (\forall t \ge 0)$$

より (\mathscr{F}_t) -弱停止時刻 T は $\mathscr{F}_{T+}/\mathscr{B}([0,\infty])$ -可測である.

第二段 任意の $t \ge 0$ に対し

$$A \cap \{T < t\} = \bigcup_{n=1}^{\infty} A \cap \left\{T \le t - \frac{1}{n}\right\}, \quad A \cap \{T \le t\} = \bigcap_{n=1}^{\infty} A \cap \left\{T < t + \frac{1}{n}\right\}$$

が成り立ち $\mathscr{F}_{T+} = \{A \in \mathscr{F} \mid A \cap \{T < t\} \in \mathscr{F}_t, \forall t \geq 0\}$ が従う.

第三段 T が (\mathscr{F}_t) -停止時刻であるとき、任意の $A \in \mathscr{F}_T$ に対し

$$A \cap \{T \le t\} \in \mathcal{F}_t \subset \mathcal{F}_{t+}, \quad (\forall t \ge 0)$$

となり $\mathscr{F}_T \subset \mathscr{F}_{T+}$ が成り立つ.

- Lemma: 弱停止時刻の可測性

T を (\mathscr{F}_t) -弱停止時刻とすれば、任意の $t \ge 0$ に対し $T \land t$ は $\mathscr{F}_t/\mathscr{B}([0,\infty))$ -可測である.

証明. 任意の $\alpha \ge 0$ に対し

$$\{T \wedge t \leq \alpha\} = \begin{cases} \Omega, & (t \leq \alpha), \\ \{T \leq \alpha\}, & (t > \alpha), \end{cases} \in \mathcal{F}_t$$

が成立する.

- Probelem 2.22 -

Verify that analogues of Lemmas 2.15 and 2.16 hold if T and S are assumed to be optional and \mathscr{F}_T , \mathscr{F}_S and $\mathscr{F}_{T \wedge S}$ are replaced by \mathscr{F}_{T+} , \mathscr{F}_{S+} and $\mathscr{F}_{(T \wedge S)+}$, respectively. Prove that if S is an optional time and T is a positive stopping time with $S \leq T$, and S < T on $\{S < \infty\}$, then $\mathscr{F}_{S+} \subset \mathscr{F}_T$.

証明.

第一段 $T \wedge t$, $S \wedge t$ は $\mathcal{F}_t/\mathcal{B}([0,\infty))$ -可測であるから、任意の $A \in \mathcal{F}_{S+}$ に対して

$$A \cap \{S \le T\} \cap \{T \le t\} = (A \cap \{S \le t\}) \cap \{S \land t \le T \land t\} \cap \{T \le t\} \in \mathscr{F}_{t+}, \quad (\forall t \ge 0)$$

となり $A \cap \{S \leq T\} \in \mathcal{F}_{T+}$ が成立する. 特に, Ω 上で $S \leq T$ なら $\mathcal{F}_{S+} \subset \mathcal{F}_{T+}$ が従う.

第二段 前段の結果より $\mathscr{F}_{(T\wedge S)+}\subset\mathscr{F}_{T+}\cap\mathscr{F}_{S+}$ が満たされる.一方で,任意の $A\in\mathscr{F}_{T+}\cap\mathscr{F}_{S+}$ に対し

$$A \cap \{T \land S \le t\} = (A \cap \{T \le t\}) \cup (A \cap \{S \le t\}) \in \mathscr{F}_{t+}, \quad (\forall t \ge 0)$$

が成り立ち $\mathcal{F}_{(T \wedge S)+} = \mathcal{F}_{T+} \cap \mathcal{F}_{S+}$ を得る. また

$$\{S < T\} \cap \{T \land S \leq t\} = \left(\bigcup_{\substack{0 \leq r \leq t \\ r \in \mathbb{Q} \cup \{t\}}} \{S \leq r\} \cap \{r < T\}\right) \cap \{S \leq t\} \in \mathscr{F}_{t+}, \quad (\forall t \geq 0)$$

により $\{S < T\} \in \mathscr{F}_{(T \land S)+}$ 及び $\{T < S\} \in \mathscr{F}_{(T \land S)+}$ となり, $\{T \le S\}$, $\{S \le T\}$, $\{T = S\} \in \mathscr{F}_{(T \land S)+}$ が従う. 第三段 T が停止時刻で $\{T < \infty\}$ 上で S < T が満たされているとき.任意の $A \in \mathscr{F}_{S+}$ に対し

$$A \cap \{T \le t\} = A \cap \{S < t\} \cap \{T \le t\} \in \mathcal{F}_t, \quad (\forall t \ge 0)$$

が成り立り $\mathcal{F}_{S+} \subset \mathcal{F}_T$ となる.

Problem 2.23 -

Show that if $\{T_n\}_{n=1}^{\infty}$ is a sequence of optional times and $T=\inf_{n\geq 1}T_n$, then $\mathscr{F}_{T+}=\bigcap_{n=1}^{\infty}\mathscr{F}_{T_n+}$. Besides, if each T_n is a positive stopping time and $T< T_n$ on $\{T<\infty\}$, then we have $\mathscr{F}_{T+}=\bigcap_{n=1}^{\infty}\mathscr{F}_{T_n}$.

証明. $T \leq T_n$, $(\forall n \geq 1)$ より $\mathscr{F}_{T_n} \subset \bigcap_{n=1}^{\infty} \mathscr{F}_{T_n}$ が成り立つ. 一方で $A \in \bigcap_{n=1}^{\infty} \mathscr{F}_{T_n}$ に対し

$$A \cap \{T < t\} = \bigcup_{n=1}^{\infty} A \cap \{T_n < t\} \in \mathscr{F}_t, \quad (\forall t > 0)$$

$$\tag{1.3}$$

が成り立つから、Problem 2.21 より $A \in \mathscr{F}_{T+}$ が従う。また $\{T < \infty\}$ 上で $T < T_n$, $(\forall n \geq 1)$ であるとき、Problem 2.22 より $\mathscr{F}_{T+} \subset \bigcap_{n=1}^{\infty} \mathscr{F}_{T_n}$ が従い,また T_n , $n \geq 1$ が停止時刻の場合も (1.3) は成立するので $\mathscr{F}_{T+} = \bigcap_{n=1}^{\infty} \mathscr{F}_{T_n}$ が出る。

Problem 2.24 修正 -

Given an optional time T of the filtration $\{\mathscr{F}_t\}$, consider the sequence $\{T_n\}_{n=1}^{\infty}$ of random times given by

$$T_n(\omega) = \begin{cases} +\infty; & \text{on } \{ \omega \mid T(\omega) \ge n \} \\ \frac{k}{2^n}; & \text{on } \{ \omega \mid \frac{k-1}{2^n} \le T(\omega) < \frac{k}{2^n} \} \text{ for } k = 1, \dots, n2^n, \end{cases}$$

for $n \ge 1$. Obviously $T_n \ge T_{n+1} \ge T$, for every $n \ge 1$. Show that each T_n is a stopping time, that $\lim_{n\to\infty} T_n = T$, and that for every $A \in \mathscr{F}_{T+}$ we have $A \cap \{T_n = (k/2^n)\} \in \mathscr{F}_{k/2^n}$; $n \ge 1, 1 \le k \le n2^n$.

証明.

第一段 $T_n(\omega) < \infty$ を満たす $\omega \in \Omega$ に対し、或る $1 \le j \le (n+1)2^{n+1}$ 、 $1 \le k \le n2^n$ が存在して

$$\frac{j-1}{2^{n+1}} \leq T(\omega) < \frac{j}{2^{n+1}}, \quad \frac{k-1}{2^n} \leq T(\omega) < \frac{k}{2^n}$$

となる. このとき

$$\frac{2k-2}{2^{n+1}} \le T(\omega) < \frac{2k-1}{2^{n+1}}$$

または

$$\frac{2k-1}{2^{n+1}} \le T(\omega) < \frac{2k}{2^{n+1}}$$

のどちらかであるから、すなわち i = 2k - 1 或は i = 2k であり

$$T(\omega) < \frac{j}{2^{n+1}} = T_{n+1}(\omega) \le \frac{2k}{2^{n+1}} = T_n(\omega)$$

が成立する. $T_n(\omega) = \infty$ の場合も併せて $T_n \ge T_{n+1} \ge T \ (\forall n \ge 1)$ を得る.

第二段 任意の $t \ge 0$ に対して

$$\{T_n \le t\} = \bigcup_{k/2^n < n \land t} \left\{ \omega \mid \frac{k-1}{2^n} \le T(\omega) < \frac{k}{2^n} \right\} \in \mathscr{F}_t, \quad (\forall t \ge 0)$$

が成り立つから T_n は (\mathcal{F}_t) -停止時刻である. また $\{T<\infty\}$ 上では $T(\omega)< n$ のとき

$$0 < T_n(\omega) - T(\omega) \le \frac{1}{2^n} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

となる.

第三段 任意の $A \in \mathcal{F}_{T+}$ に対して、Problem 2.21 より

$$A\cap\left\{T_n=\frac{k}{2^n}\right\}=A\cap\left\{T<\frac{k}{2^n}\right\}-A\cap\left\{T<\frac{k-1}{2^n}\right\}\in\mathcal{F}_{k/2^n}$$

が成り立つ.

1.3 Continuous Time Martingales

1.3.1 Fundamental Inequalities

Proposition 3.6

Let $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ be a martingale (respectively, submartingale), and $\varphi: \mathbf{R} \longrightarrow \mathbf{R}$ a convex (respectively, convex nondecreasing) function, such that $E |\varphi(X_t)| < \infty$ holds for every $t \ge 0$. Then $\{\varphi(X_t), \mathscr{F}_t \mid 0 \le t < \infty\}$ is a submartingale.

証明. $(X_t)_{t\geq 0}$ がマルチンゲールであり arphi が凸であるとき,Jensen の不等式より $P ext{-a.s.}$ の $\omega\in\Omega$ に対し

$$\varphi(X_s(\omega)) = \varphi(E(X_t \mid \mathscr{F}_s)(\omega)) \le E(\varphi(X_t) \mid \mathscr{F}_s)(\omega)$$

が成り立つ. $(X_t)_{t\geq 0}$ が劣マルチンゲールであり φ が凸かつ単調増大であるとき, P-a.s. の $\omega \in \Omega$ に対し

$$\varphi(X_s(\omega)) \le \varphi(E(X_t \mid \mathscr{F}_s)(\omega)) \le E(\varphi(X_t) \mid \mathscr{F}_s)(\omega)$$

が成り立つ.

Theorem 3.8 (i) —

Let $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ be a submartingale whose every path is right-continuous, let $[\sigma, \tau]$ be a subinterval of $[0, \infty)$, and let $\alpha < \beta$, $\lambda > 0$ be real numbers. We have the following results:

(i) First submartingale inequality:

$$\lambda \cdot P \left[\sup_{\sigma \le t \le \tau} X_t > \lambda \right] \le \int_{\substack{\sigma \le t \le \tau}} X_t > \lambda X_\tau \, dP, \tag{1.4}$$

and

$$\lambda \cdot P \left[\sup_{\sigma \le t \le \tau} X_t \ge \lambda \right] \le E(X_{\tau}^+).$$

証明. $n \ge 1$ に対し $[\sigma, \tau]$ を 2^n 等分に分割し

$$\begin{split} E_n &\coloneqq \left\{ \max k = 0, 1, \cdots, 2^n X_{\sigma + \frac{k}{2^n}(\tau - \sigma)} > \lambda \right\}, \\ E_n^0 &\coloneqq \left\{ X_\sigma > \lambda \right\}, \quad E_n^m \coloneqq \left\{ \max k = 0, 1, \cdots, m - 1 X_{\sigma + \frac{k}{2^n}(\tau - \sigma)} \leq \lambda, \; X_{\sigma + \frac{m}{2^n}(\tau - \sigma)} > \lambda \right\}, \quad (1 \leq m \leq 2^n) \end{split}$$

とおけば,

$$E_n^m \in \mathscr{F}_{\sigma + \frac{m}{2^n}(\tau - \sigma)} \subset \mathscr{F}_{\tau}, \quad E_n = \sum_{m=0}^{2^n} E_n^m, \quad (n = 1, 2, \cdots)$$

かつ、 $E_1 \subset E_2 \subset E_3 \subset \cdots$ と X のパスの右連続性より

$$\left\{\sup_{\sigma\leq t\leq \tau}X_t>\lambda\right\}=\bigcup_{n=1}^{\infty}\left\{\max k=0,1,\cdots,2^nX_{\sigma+\frac{k}{2^n}(\tau-\sigma)}>\lambda\right\}=\lim_{n\to\infty}E_n$$

が満たされ、また $\sup_{\sigma \le t \le \tau} X_t$ の $\mathscr{F}_{\tau}/\mathscr{B}([-\infty,\infty])$ -可測性も従う.Chebyshev の不等式と劣マルチンゲール性より

$$P(E_n) = \sum_{m=0}^{2^n} P(E_n^m) \le \frac{1}{\lambda} \sum_{m=0}^{2^n} \int_{E_n^m} X_{\sigma + \frac{m}{2^n}(\tau - \sigma)} dP \le \frac{1}{\lambda} \sum_{m=0}^{2^n} \int_{E_n^m} X_{\tau} dP = \frac{1}{\lambda} \int_{E_n} X_{\tau} dP$$

となるから、 $n \longrightarrow \infty$ として、測度の連続性と Lebesgue の収束定理より

$$P\left[\sup_{\sigma \le t \le \tau} X_t > \lambda\right] \le \frac{1}{\lambda} \int_{\sup_{\sigma \le t \le \tau} X_t > \lambda} X_\tau \, dP \le \frac{1}{\lambda} E(X_\tau^+)$$

を得る. 特に, 任意の $m \in \mathbb{N}$, $(\lambda > 1/m)$ に対して

$$P\left[\sup_{\sigma \leq t \leq \tau} X_t > \lambda - \frac{1}{m}\right] \leq \frac{1}{\lambda - 1/m} E(X_\tau^+)$$

が成り立ち, $m \longrightarrow \infty$ として

$$P\left[\sup_{\sigma \le t \le \tau} X_t \ge \lambda\right] \le \frac{1}{\lambda} E(X_{\tau}^+)$$

が従う.

Theorem 3.8 (ii) -

Second submartingale inequality:

$$\lambda \cdot P \left[\sup_{\sigma \le t \le \tau} X_t \le -\lambda \right] \le E(X_{\tau}^+) - E(X_{\sigma}).$$

証明. $n \ge 1$ に対し $[\sigma, \tau]$ を 2^n 等分に分割し

$$E_{n} := \left\{ \min k = 0, 1, \dots, 2^{n} X_{\sigma + \frac{k}{2^{n}}(\tau - \sigma)} < -\lambda \right\},$$

$$E_{n}^{0} := \left\{ X_{\sigma} < -\lambda \right\}, \quad E_{n}^{m} := \left\{ \min k = 0, 1, \dots, m - 1 X_{\sigma + \frac{k}{2^{n}}(\tau - \sigma)} \ge -\lambda, X_{\sigma + \frac{m}{2^{n}}(\tau - \sigma)} < -\lambda \right\}, \quad (1 \le m \le 2^{n})$$

として, また

$$T(\omega) := \begin{cases} \sigma + \frac{m}{2^n} (\tau - \sigma), & (\omega \in E_n^m, \ m = 0, 1, \cdots, 2^n), \\ \tau, & (\omega \in \Omega \backslash E_n), \end{cases} (\forall \omega \in \Omega)$$

により (\mathscr{F}_t)-停止時刻を定めれば、任意抽出定理 (P.32) より

$$\begin{split} E(X_{\sigma}) &\leq E(X_{T}) = \sum_{m=0}^{2^{n}} \int_{E_{n}^{m}} X_{\sigma + \frac{m}{2^{n}}(\tau - \sigma)} \, dP + \int_{\Omega \setminus E_{n}} X_{\tau} \, dP \leq \sum_{m=0}^{2^{n}} (-\lambda) P(E_{n}^{m}) + E(X_{\tau}^{+}) \\ &= -\lambda P(E_{n}) + E(X_{\tau}^{+}) \end{split}$$

が成立する. 移項して $n \longrightarrow \infty$ とすれば

$$P\left[\inf_{\sigma \le t \le \tau} X_t < -\lambda\right] \le \frac{1}{\lambda} \left\{ E(X_{\tau}^+) - E(X_{\sigma}) \right\}$$

が得られ, (i) の証明と同様にして

$$P\left[\inf_{\sigma \le t \le \tau} X_t \le -\lambda\right] \le \frac{1}{\lambda} \left\{ E(X_{\tau}^+) - E(X_{\sigma}) \right\}$$

が従う.

Lemma: Theorem 3.8 (iii) ——

確率過程 $X = \{X_t \mid 0 \le t < \infty\}$ のすべてのパスが右連続であるとき, $[\sigma, \tau]$ の 2^n 等分点を

$$F_n := \left\{ \tau_i^n \mid \tau_i^n = \sigma + \frac{i}{2^n} (\tau - \sigma), \ i = 0, 1, \cdots, 2^n \right\}, \quad n = 1, 2, \cdots$$

とおけば次が成立する:

$$U_{[\sigma,\tau]}(\alpha,\beta;X) = \sup_{n \in \mathbf{N}} U_{F_n}(\alpha,\beta;X), \quad D_{[\sigma,\tau]}(\alpha,\beta;X) = \sup_{n \in \mathbf{N}} D_{F_n}(\alpha,\beta;X).$$

Karatzas-Shreve 本文中では

$$\tau_1(\omega) = \min \{ t \in F \mid X_t(\omega) \le \alpha \}$$

と定めているが、

$$\tau_1(\omega) = \min \{ t \in F \mid X_t(\omega) < \alpha \}$$

と定める方がよい. 実際, こうでないと今の補題が従わない. また $\sigma_0 \equiv 0$, $\tau_0 \equiv 0$ と考える.

証明. $U_{[\sigma,\tau]}(\alpha,\beta;X) \leq \sup_{n\in\mathbb{N}} U_{F_n}(\alpha,\beta;X)$ が成立すれば主張を得る. いま、任意に有限部分集合 $F\subset [\sigma,\tau]$ を取り

$$\tau_1(\omega) := \min \{ t \in F \mid X_t(\omega) < \alpha \}, \quad \sigma_1(\omega) := \min \{ t \in F \mid t \ge \tau_1(\omega), X_t(\omega) > \beta \}, \dots$$

を定め、 $\omega \in \Omega$ を任意に取り $U_F(\alpha, \beta; X(\omega)) = j \ge 1$ と仮定する. このとき

$$X_{\sigma_i(\omega)}(\omega) < \alpha, \quad X_{\sigma_i(\omega)}(\omega) > \beta, \quad (i = 1, \dots, j)$$

が満たされ、 $t \longrightarrow X_t(\omega)$ の右連続性より、十分大きい $n \in \mathbb{N}$ に対して或る $t_i, s_i \in F_n$ 、 $(1 \le i \le j)$ が

$$\tau_1(\omega) \le t_1 < \sigma_1(\omega) \le s_1 < \dots < \tau_j(\omega) \le t_j < \sigma_j(\omega) \le s_j$$

かつ

$$X_{t_i}(\omega) < \alpha$$
, $X_{s_i}(\omega) > \beta$, $(\forall i = 1, \dots, j)$

を満たす. これにより

$$U_F(\alpha, \beta; X(\omega)) = j \le U_{F_n}(\alpha, \beta; X(\omega))$$

が従い、 ω の任意性より $U_F(\alpha,\beta;X) \leq \sup_{n \in \mathbb{N}} U_{F_n}(\alpha,\beta;X)$ が出る.

Theorem 3.8 (iii) —

Upcrossing and downcrossing inequalities:

$$EU_{[\sigma,\tau]}(\alpha,\beta;X) \leq \frac{E(X_\tau^+) + |\alpha|}{\beta - \alpha}, \quad ED_{[\sigma,\tau]}(\alpha,\beta;X) \leq \frac{E(X_\tau - \alpha)^+}{\beta - \alpha}.$$

証明.

第一段 有限部分集合 $F=\{t_1,\cdots,t_n\}\subset [\sigma,\tau]$ に対し

$$\tau_1(\omega) := \min \{ t \in F \mid X_t(\omega) < \alpha \}, \quad \sigma_1(\omega) := \min \{ t \in F \mid t \ge \tau_1(\omega), X_t(\omega) > \beta \}, \dots$$

で定める τ_i , σ_i , $(i=1,2,\cdots)$ が (\mathscr{F}_t) -停止時刻であることを示す.実際,任意の $t_i \in F$ に対して

$$\left\{\tau_{1} = t_{j}\right\} = \left[\bigcap_{k=1}^{j-1} \left\{X_{t_{k}} \geq \alpha\right\}\right] \cap \left\{X_{t_{j}} < \alpha\right\} \in \mathscr{F}_{t_{j}},$$

$$\vdots$$

$$\left\{\tau_{i} = t_{j}\right\} = \bigcup_{r=1}^{j-1} \left\{\sigma_{i-1} = t_{r}\right\} \cap \bigcap_{k=r}^{j-1} \left\{X_{t_{k}} \geq \alpha\right\}\right] \cap \left\{X_{t_{j}} < \alpha\right\} \in \mathscr{F}_{t_{j}},$$

$$\left\{\sigma_{i} = t_{j}\right\} = \bigcup_{r=1}^{j-1} \left\{\tau_{i} = t_{r}\right\} \cap \bigcap_{k=r}^{j-1} \left\{X_{t_{k}} \leq \beta\right\}\right] \cap \left\{X_{t_{j}} > \beta\right\} \in \mathscr{F}_{t_{j}}$$

が成立するから $\{\tau_i \leq t\} \in \mathcal{F}_t \ (\forall t \geq 0)$ が満たされる.

$$\tau_1(\omega) \coloneqq \min \left\{ t \in F \mid X_t(\omega) > \beta \right\}, \quad \sigma_1(\omega) \coloneqq \min \left\{ t \in F \mid t \geq \tau_1(\omega), X_t(\omega) < \alpha \right\}, \dots$$

により τ_i , σ_i , $(i=1,2,\cdots)$ を定めてもこれらは (\mathscr{F}_t) -停止時刻となる. 特に,

$$\{U_F(\alpha,\beta;X)=j\}=\{\sigma_j<\infty\}\cap\{\sigma_{j+1}=\infty\}\in\mathscr{F},\quad (j=0,1,2,\cdots)$$

が成立するから $U_F(\alpha, \beta; X)$ 及び $D_F(\alpha, \beta; X)$ の可測性が得られる.

第二段 補題の有限部分集合 $F_n \subset [\sigma, \tau]$ に対し

$$EU_{F_n}(\alpha, \beta; X) \le \frac{E(X_{\tau}^+) + |\alpha|}{\beta - \alpha}$$
(1.5)

が成立することを示せば, 単調収束定理より

$$EU_{[\sigma,\tau]}(\alpha,\beta;X) = E\left(\sup_{n \in \mathbb{N}} U_{F_n}(\alpha,\beta;X)\right) \le \frac{E(X_{\tau}^+) + |\alpha|}{\beta - \alpha}$$

が従う.実際, $j=U_{F_n}(\alpha,\beta;X(\omega))$ ならば $\sigma_j(\omega) \leq \tau < \tau_{j+1}(\omega)$ 或は $\tau_{j+1}(\omega) \leq \tau < \sigma_{j+1}(\omega)$ であるから

$$Z(\omega) \coloneqq \sum_{i=1}^{\infty} \left(X_{\tau_{i+1}(\omega) \wedge \tau}(\omega) - X_{\sigma_{i}(\omega) \wedge \tau}(\omega) \right) = \begin{cases} \sum_{i=1}^{j} \left(X_{\tau_{i+1}(\omega)}(\omega) - X_{\sigma_{i}(\omega)}(\omega) \right), & (\star 1), \\ \sum_{i=1}^{j-1} \left(X_{\tau_{i+1}(\omega)}(\omega) - X_{\sigma_{i}(\omega)}(\omega) \right) + \left(X_{\tau}(\omega) - X_{\sigma_{j}(\omega)}(\omega) \right), & (\star 2) \end{cases}$$

となり、 $X_{\tau_i} < \alpha, X_{\sigma_i} > \beta$ より

$$(\star 2) = \sum_{i=1}^{j-1} \left(X_{\tau_{i+1}(\omega)}(\omega) - X_{\sigma_i(\omega)}(\omega) \right) + \left(X_{\tau}(\omega) - \alpha \right) + \left(\alpha - X_{\sigma_j(\omega)}(\omega) \right) \le j(\alpha - \beta) + X_{\tau}^+(\omega) + |\alpha|$$
$$= U_{F_n}(\alpha, \beta; X(\omega))(\alpha - \beta) + X_{\tau}^+(\omega) + |\alpha|$$

及び

$$(\star 1) \le j(\alpha - \beta) \le j(\alpha - \beta) + X_{\tau}^{+}(\omega) + |\alpha| = U_{F_n}(\alpha, \beta; X(\omega))(\alpha - \beta) + X_{\tau}^{+}(\omega) + |\alpha|$$

が満たされ

$$EZ \leq (\alpha - \beta)EU_{F_{\sigma}}(\alpha, \beta; X) + E(X_{\tau}^{+}) + |\alpha|$$

が従う. $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ の劣マルチンゲール性と任意抽出定理 (P. 32) より

$$E\left(X_{\tau_{i+1}\wedge\tau}-X_{\sigma_{i}\wedge\tau}\right)\geq 0,\quad (i=1,\cdots,j)$$

が成り立つから、 $EZ \ge 0$ となり (1.5) が得られる.

第三段 $j=D_{F_n}(\alpha,\beta;X(\omega))$ ならば $\sigma_j(\omega)\leq \tau<\tau_{j+1}(\omega)$ 或は $\tau_{j+1}(\omega)\leq \tau<\sigma_{j+1}(\omega)$ であるから

$$Z(\omega) := \sum_{i=1}^{\infty} \left(X_{\sigma_{i}(\omega) \wedge \tau}(\omega) - X_{\tau_{i}(\omega) \wedge \tau}(\omega) \right) = \begin{cases} \sum_{i=1}^{j} \left(X_{\sigma_{i}(\omega)}(\omega) - X_{\tau_{i}(\omega)}(\omega) \right) + \left(X_{\tau}(\omega) - X_{\tau_{j+1}(\omega)}(\omega) \right), & (\star 3), \\ \sum_{i=1}^{j} \left(X_{\sigma_{i}(\omega)}(\omega) - X_{\tau_{i}(\omega)}(\omega) \right), & (\star 4) \end{cases}$$

 $\geq tab, X_{\tau_i} > \beta, X_{\sigma_i} < \alpha \downarrow b$

$$(\star 4) \leq \sum_{i=1}^{j} \left(X_{\sigma_i(\omega)}(\omega) - X_{\tau_i(\omega)}(\omega) \right) + \left(X_{\tau}(\omega) - \alpha \right)^+ = D_{F_n}(\alpha, \beta; X(\omega))(\alpha - \beta) + (X_{\tau}(\omega) - \alpha)^+$$

及び

$$(\star 3) \leq j(\alpha - \beta) \leq j(\alpha - \beta) + (X_{\tau}(\omega) - \alpha)^{+} = D_{F_{n}}(\alpha, \beta; X(\omega))(\alpha - \beta) + (X_{\tau}(\omega) - \alpha)^{+}$$

が満たされ

$$EZ \leq (\alpha - \beta)ED_{F_n}(\alpha, \beta; X) + E(X_{\tau} - \alpha)^+$$

が従う. $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ の劣マルチンゲール性と任意抽出定理 (P. 32) より

$$E(X_{\sigma_i \wedge \tau} - X_{\tau_i \wedge \tau}) \ge 0, \quad (i = 1, \dots, j+1)$$

が成り立つから、 $EZ \ge 0$ となり

$$ED_{F_n}(\alpha, \beta; X) \leq \frac{E(X_{\tau} - \alpha)^+}{\beta - \alpha}$$

が得られる.

- Theorem 3.8 (iv) —

Doob's maximal inequality:

$$E\left(\sup_{\sigma\leq t\leq\tau}X_t\right)^p\leq \left(\frac{p}{p-1}\right)^pE\left(X_\tau\right)^p,\quad p>1,$$

provided $X_t \ge 0$ a.s. P for every $t \ge 0$, and $E(X_\tau)^p < \infty$.

証明. パスの右連続性より

$$A := \{ \omega \mid X_t(\omega) < 0, \exists t \in [0, \infty) \} = \{ \omega \mid X_r(\omega) < 0, \exists r \in [0, \infty) \cap \mathbf{Q} \}$$

が成り立ち、仮定より P(A) = 0 である. ここで

$$Y_n(\omega) := \begin{cases} n \wedge \sup_{\sigma \le t \le \tau} X_t(\omega), & (\omega \in \Omega \backslash A), \\ 0, & (\omega \in A), \end{cases} (n = 1, 2, \cdots)$$

で Y_n を定めれば、 $\sup_{\sigma \leq t \leq \tau} X_t$ の $\mathscr{F}_{\tau}/\mathscr{B}([-\infty,\infty])$ -可測性より Y_n も $\mathscr{F}_{\tau}/\mathscr{B}([-\infty,\infty])$ -可測である.このとき

$$[0, n) \ni \lambda \longmapsto \mathbb{1}_{\{(\lambda, \omega)| \lambda < Y_n(\omega)\}}(\lambda, \omega)$$

は任意の $\omega \in \Omega$ に対し右連続,

$$\Omega \ni \omega \longmapsto \mathbb{1}_{\{(\lambda,\omega)|=\lambda < Y_n(\omega)\}}(\lambda,\omega)$$

は任意の $\lambda \in [0,n)$ に対し可測 $\mathcal{F}_{\tau}/\mathcal{B}([0,\infty))$ であるから

$$[0, n) \times \Omega \ni (\lambda, \omega) \longmapsto \mathbb{1}_{\{(\lambda, \omega)| \lambda < Y_n(\omega)\}}(\lambda, \omega)$$

は $\mathscr{B}([0,n))\otimes\mathscr{F}_{\tau}/\mathscr{B}([0,\infty))$ -可測である. q を p の共役指数として, Fubini の定理と (1.4) 及び Hölder の不等式より

$$\begin{split} \int_{\Omega} Y_{n}^{p} \, dP &= p \int_{\Omega} \int_{[0,n)} \lambda^{p-1} 1\!\!1_{\{(\lambda,\omega)| \quad \lambda < Y_{n}(\omega)\}}(\lambda,\omega) \, d\lambda \, dP \\ &= p \int_{[0,n)} \lambda^{p-1} P(Y_{n} > \lambda) \, d\lambda \\ &= p \int_{[0,n)} \lambda^{p-1} P\left(\sup_{\sigma \leq t \leq \tau} X_{t} > \lambda\right) \, d\lambda \\ &\leq p \int_{[0,n)} \lambda^{p-2} \int \sup_{\sigma \leq t \leq \tau} X_{t} > \lambda \, X_{\tau}(\omega) \, dP \, d\lambda \\ &= p \int_{\Omega} X_{\tau} \int_{[0,n)} \lambda^{p-2} 1\!\!1_{\{(\lambda,\omega)| \quad \lambda < Y_{n}(\omega)\}}(\lambda,\omega) \, d\lambda \, dP \\ &= \frac{p}{p-1} \int_{\Omega} X_{\tau} Y_{n}^{p-1} \, dP \\ &\leq \frac{p}{p-1} \left\{ \int_{\Omega} X_{\tau}^{p} \, dP \right\}^{1/p} \left\{ \int_{\Omega} Y_{n}^{p} \, dP \right\}^{1/q} \end{split}$$

が成り立つから, $\left\{\int_{\Omega}Y_{n}^{p}\;dP\right\}^{1/q}$ を移項して両辺をp乗すれば

$$\int_{\Omega} Y_n^p \ dP \le \left(\frac{p}{p-1}\right)^p \int_{\Omega} X_{\tau}^p \ dP$$

が得られる. $n \longrightarrow \infty$ として、単調収束定理より主張が従う.

Theorem 3.8 (v) -

Regularity of the paths: Almost every sample path $\{X_t(\omega) \mid 0 \le t < \infty\}$ is bounded on compact intervals; is free of discontinuities of the second kind, i.e., admits left-hand limits everywhere on $(0, \infty)$; and if the filtration (\mathscr{F}_t) satisfies the usual conditions, then the jumps are exhausted by a sequence of stopping times (Proposition 2.26).

証明.

第一段 コンパクト区間 $[\sigma, \tau]$ 上で P-a.s. にパスが有界であることを示す.実際,任意の $N \in \mathbb{N}$ に対して

$$\begin{split} P\left(\sup_{t\in[\sigma,\tau]}X_t\geq N\right) &\leq \frac{1}{N}EX_\tau^+,\\ P\left(\inf_{t\in[\sigma,\tau]}X_t\leq -N\right) &\leq \frac{1}{N}\left\{EX_\tau^+-EX_\sigma\right\} \end{split}$$

が成り立つから,

$$\begin{split} P\left(\sup_{t\in[\sigma,\tau]}X_t=\infty\right) &= \lim_{N\to\infty}P\left(\sup_{t\in[\sigma,\tau]}X_t\geq N\right) = 0,\\ P\left(\inf_{t\in[\sigma,\tau]}X_t=-\infty\right) &= \lim_{N\to\infty}P\left(\inf_{t\in[\sigma,\tau]}X_t\leq -N\right) = 0 \end{split}$$

となる. ここで

$$B^{(n)} := \left\{ -\infty = \inf_{t \in [0,n]} X_t \right\} \cup \left\{ \sup_{t \in [0,n]} X_t = +\infty \right\}, \quad (n = 1, 2, \cdots)$$

により P-零集合を定める.

第二段 P-a.s. にパスが各点で左極限を持つことを示す. いま, $n \ge 1$ として $\alpha < \beta$ に対し

$$A_{\alpha,\beta}^{(n)} := \left\{ \, \omega \in \Omega \mid \quad U_{[0,n]}(\alpha,\beta;X(\omega)) = \infty \, \right\}$$

とおくとき,

$$\left\{ \omega \in \Omega \mid \lim_{s \uparrow t} \inf_{s < u < t} X_u(\omega) < \lim_{s \uparrow t} \sup_{s < u < t} X_u(\omega), \ \exists t \in (0, n] \right\} \subset \bigcup_{\substack{\alpha < \beta \\ \alpha, \beta \in \mathbf{Q}}} A_{\alpha, \beta}^{(n)} =: A^{(n)}$$
 (1.6)

が成り立つ. 実際或る $t \in (0,n]$ で

$$\lim_{s \uparrow t} \inf_{s < u < t} X_u(\omega) < \lim_{s \uparrow t} \sup_{s < u < t} X_u(\omega)$$

となる場合,

$$\lim_{s\uparrow t}\inf_{s< u< t}X_u(\omega)<\alpha<\beta<\lim_{s\uparrow t}\sup_{s< u< t}X_u(\omega)$$

を満たす $\alpha, \beta \in \mathbf{Q}$ を取れば、任意の $N \in \mathbf{N}$ に対し或る点列 $0 < s_1 < t_1 < s_2 < t_2 < \cdots < s_N < t_N < t$ が存在して

$$X_{s_i}(\omega) < \alpha$$
, $X_{t_i}(\omega) > \beta$, $(i = 1, \dots, N)$

を満たす. 従って $\{s_1, t_1, \cdots, s_N, t_N\}$ を含む有限集合 $F \subset [0, n]$ に対し

$$N \le U_F(\alpha, \beta; X(\omega)) \le U_{[0,n]}(\alpha, \beta; X(\omega))$$

が成り立ち, Nの任意性より

$$U_{[0,n]}(\alpha,\beta;X(\omega))=\infty$$

が従い (1.6) が出る. すなわち $\omega \notin (A^{(n)} \cup B^{(n)})$ なら任意の $t \in (0,n]$ で $\lim_{s \uparrow t} X_s(\omega)$ が有限確定する.

$$A := \bigcup_{n=1}^{\infty} \left(A^{(n)} \cup B^{(n)} \right)$$

により零集合を定めれば $ω \in \Omega \backslash A$ に対するパスは RCLL である.

Problem 3.11 -

Let $\{\mathscr{F}_n\}_{n=1}^{\infty}$ be a decreasing sequence of sub- σ -fields of \mathscr{F} (i.e., $\mathscr{F}_{n+1} \subset \mathscr{F}_n \subset \mathscr{F}$, $\forall n \geq 1$), and let $\{X_n, \mathscr{F}_n \mid n \geq 1\}$ be a backward submartingale; i.e., $E|X_n| < \infty$, X_n is \mathscr{F}_n -measurable, and $E(X_n \mid \mathscr{F}_{n+1}) \geq X_{n+1}$ a.s. P, for every $n \geq 1$. Then $l := \lim_{n \to \infty} E(X_n) > -\infty$ implies that the sequence $\{X_n\}_{n=1}^{\infty}$ is uniformly integrable.

証明. $(X_n)_{n=1}^\infty$ は、或る (\mathscr{F}_n) -後退マルチンゲール $(M_n)_{n=1}^\infty$ と単調増大列 $(A_n)_{n=1}^\infty$ を用いて

$$X_n = M_n - A_n$$
, $(\forall n \ge 1)$

と分解できる. 実際,

$$A_0 := 0,$$

$$A_n := \sum_{i=1}^{n-1} E(X_i - X_{i+1} | \mathscr{F}_{i+1}), \quad (n = 2, 3, \dots)$$

とおけば, $(X_n)_{n=1}^\infty$ の後退劣マルチンゲール性により

$$E := \bigcap_{n=1}^{\infty} \{ \omega \ni \Omega \mid E(X_n - X_{n+1} \mid \mathscr{F}_{n+1})(\omega) < 0 \}$$

で定まる P-零集合 E に対し

$$0 \le A_1(\omega) \le A_2(\omega) \le \cdots \quad (\forall \omega \in \Omega \setminus E)$$

が満たされ

$$A_{\infty}(\omega) := \lim_{n \to \infty} A_n(\omega) \mathbb{1}_{\Omega \setminus E}(\omega), \quad (\omega \in \Omega)$$

が まで含めて確定する. すなわち A_∞ は可測 $\mathscr{F}/\mathscr{B}([0,\infty])$ である. また $EX_1 \geq EX_2 \geq \cdots \geq l > -\infty$ の仮定より

$$\int_{\Omega} A_n \ dP = \sum_{i=1}^{n-1} \int_{\Omega} E(X_i - X_{i+1} \mid \mathscr{F}_{i+1}) \ dP = \int_{\Omega} X_1 - X_n \ dP \le \int_{\Omega} X_1 \ dP - l, \quad (\forall n \ge 1)$$

となるから、単調収束定理より A_{∞} の可積分性が出る. 一方で

$$M_n := X_n + A_n$$
, $(n = 1, 2, \cdots)$

により $\{M_n\}_{n=1}^{\infty}$ を定めれば

$$E(M_n - M_{n+1} | \mathscr{F}_{n+1}) = E((X_n - X_{n+1}) + (A_n - A_{n+1}) | \mathscr{F}_{n+1})$$

$$= E((X_n - X_{n+1}) - E(X_n - X_{n+1} | \mathscr{F}_{n+1}) | \mathscr{F}_{n+1}) = 0, \quad P\text{-a.s.}, \quad n = 1, 2, \dots$$

となるから

$$E(M_1 | \mathscr{F}_n) = M_n$$
, P -a.s., $n = 1, 2, \cdots$

が従う. このとき, 任意の $\lambda > 0$ に対して

$$\int_{|X_n| > \lambda} |X_n| \, dP = \int_{|M_n - A_n| > \lambda} |M_n - A_n| \, dP$$

$$\leq 2 \int_{|M_n| > \lambda/2} |M_n| \, dP + 2 \int_{|A_n| > \lambda/2} |A_n| \, dP$$

$$\leq 2 \int_{|M_n| > \lambda/2} |M_n| \, dP + 2 \int_{|A_\infty| > \lambda/2} A_\infty \, dP, \quad (\forall n \ge 1)$$

が満たされ、 3 , $(M_n=E(M_1\,|\,\mathscr{F}_n))_{n=1}^\infty$ の一様可積分性 (補題) と A_∞ の可積分性より

$$\sup_{n\geq 1} \int_{|X_n|>\lambda} |X_n| \ dP \leq \sup_{n\geq 1} \int_{|M_n|>\lambda/2} |M_n| \ dP + 2 \int_{A_\infty>\lambda/2} A_\infty \ dP \longrightarrow 0 \quad (\lambda \longrightarrow \infty)$$

が成立し $(X_n)_{n=1}^{\infty}$ の一様可積分性が出る.

- Proposition 3.14 (i) ——

Let $X = \{X_t, \mathcal{F}_t \mid 0 \le t < \infty\}$ be a submartingale. We have the following:

(i) There is an event $\Omega^* \in \mathscr{F}$ with $P(\Omega^*) = 1$, such that for every $\omega \in \Omega^*$:

the limits
$$X_{t+}(\omega) \coloneqq \lim_{\substack{s\downarrow t\\s\in \mathbf{Q}}} X_s(\omega), \quad X_{t-}(\omega) \coloneqq \lim_{\substack{s\uparrow t\\s\in \mathbf{Q}}} X_s(\omega)$$
 exist for all $t\geq 0$ (respectively, $t>0$).

Proposition 3.14 (ii) -

(ii) The limits in (i) satisfy

$$E(X_{t+} | \mathscr{F}_s) \ge X_s$$
 a.s.P, for all $0 \le s \le t$.

証明. $0 \le s \le t$ とする. $t_n \downarrow t$ を満たす単調減少な有理点列 $(t_n)_{n=1}^\infty$ を取れば, $(X_{t_n})_{n=1}^\infty$ は (\mathscr{F}_{t_n}) -後退劣マルチンゲールであり、かつ

$$-\infty < EX_t \le \cdots \le EX_{t_2} \le EX_{t_1}$$

が満たされているから $(X_{t_n})_{n=1}^\infty$ は一様可積分である (Problem 3.11). いま,後退劣マルチンゲール性より

$$\int_A X_s \ dP \le \int_A X_{t_n} \ dP, \quad (\forall A \in \mathcal{F}_s, \ n = 1, 2, \cdots)$$

が従い、また (i) より $X_{t_n} \longrightarrow X_{t+}$ P-a.s. が成り立つから、一様可積分性と平均収束の補題より

$$E|X_{t+}| < \infty, \quad E|X_{t_n} - X_{t+}| \longrightarrow 0 \quad (n \longrightarrow \infty)$$
 (1.7)

となり

$$\int_A X_s \; dP \leq \int_A X_{t+} \; dP, \quad (\forall A \in \mathcal{F}_s)$$

が得られる.

 $|x+y| \mathbf{1}_{|x+y|>\lambda} = |x+y| \mathbf{1}_{|x+y|>\lambda \wedge |x| \geq |y|} + |x+y| \mathbf{1}_{|x+y|>\lambda \wedge |x| < |y|} \leq (|x|+|y|) \mathbf{1}_{|x|+|y|>\lambda \wedge |x| \geq |y|} + (|x|+|y|) \mathbf{1}_{|x|+|y|>\lambda \wedge |x| < |y|} \leq 2|x| \mathbf{1}_{2|x|>\lambda} + 2|y| \mathbf{1}_{2|y|>\lambda}.$

^{*3} 任意の $x, y \in \mathbf{R}$ と $\lambda > 0$ に対して次が成り立つ:

Proposition 3.14 (iii)

(iii) If \mathscr{F}_0 contains all the P-negligible events in \mathscr{F} , then $\{X_{t+}, \mathscr{F}_{t+} \mid 0 \le t < \infty\}$ is a submartingale with every path RCLL. *4

証明.

第一段 (1.7) より X_{t+} は可積分である.

第二段 $(X_{t+})_{t\geq 0}$ が (\mathscr{F}_{t+}) -適合であることを示す。任意に t < u を取るとき, $u_n \downarrow t$ を満たす単調減少な有理点列 $(u_n)_{n=1}^\infty$ に対し或る $N \geq 1$ が存在して $t < u_n < u$ $(\forall n > N)$ となるから $X_{u_n} \mathbf{1}_{\Omega^*}$ (n > N) は $\mathscr{F}_u/\mathscr{B}(\mathbf{R})$ -可測性を持つ *5 .

$$X_{t+} = \lim_{\substack{n \to \infty \\ n > N}} X_{u_n} \mathbb{1}_{\Omega^*}$$

より X_{t+} の $\mathcal{F}_u/\mathcal{B}(\mathbf{R})$ -可測性が従い,t < u の任意性より $\mathcal{F}_{t+}/\mathcal{B}(\mathbf{R})$ -可測性を得る.

第三段 任意の $0 \le s < t$ に対し $E(X_{t+} | \mathscr{F}_{s+}) \ge X_{s+}$ P-a.s. が成り立つことを示す.実際, $s_n \downarrow s$ を満たす単調減少な有理点列 $\{s_n\}_{n=1}^{\infty} \subset (s,t]$ を取れば,(ii) の結果より任意の $A \in \mathscr{F}_{s+} = \bigcap_{n=1}^{\infty} \mathscr{F}_{s_n}$ と $n \ge 1$ に対し

$$\int_A X_{t+} dP \ge \int_A X_{s_n} dP$$

が成立し、また $(X_{s_n})_{n=1}^{\infty}$ の一様可積分性より

$$E\left|X_{s_n}-X_{s+1}\right|\longrightarrow 0\quad (n\longrightarrow \infty)$$

となり

$$\int_A X_{t+} dP \ge \int_A X_{s+} dP, \quad (\forall A \in \mathscr{F}_{s+})$$

が従う.

第四段 $\{X_{t+} \mid 0 \le t < \infty\}$ の右連続性を示す. 任意の $t \ge 0$, $\omega \in \Omega^*$, $\epsilon > 0$ に対し, 或る $\delta > 0$ が存在して

$$|X_{t+}(\omega) - X_r(\omega)| < \epsilon, \quad (r \in (t, t + \delta) \cap \mathbf{Q})$$

が成立する. このとき, 任意の $s \in (t, t + \delta)$ に対し

$$|X_{s+}(\omega) - X_u(\omega)| < \epsilon$$

を満たす $u \in (s, t + \delta) \cap \mathbf{Q}$ が存在するから

$$|X_{t+}(\omega) - X_{s+}(\omega)| \le |X_{t+}(\omega) - X_u(\omega)| + |X_u(\omega) - X_{s+}(\omega)| < 2\epsilon$$

が従い $[0,\infty)$ $\ni t \longmapsto X_{t+}(\omega)$ の右連続性が得られる.

 $⁽X_{t+})_{t\geq 0}$ が (\mathscr{F}_{t+}) -適合であることを保証するためには $(\mathscr{F}_t)_{t\geq 0}$ の完備性が要る.また P-almost ではなく全てのパスが RCLL となる.

 $^{^{5}}$ フィルトレーションの完備性の仮定より $\mathbf{1}_{\Omega^{*}}$ は $\mathscr{F}_{u}/\mathscr{B}(\mathbf{R})$ -可測となる.

第五段 $\{X_{t+} \mid 0 \le t < \infty\}$ が各点で有限な左極限を持つことを示す。任意の t > 0, $\omega \in \Omega^*$, $\epsilon > 0$ に対し、或る $\delta > 0$ が存在して

$$|X_{t-}(\omega) - X_r(\omega)| < \epsilon, \quad (r \in (t - \delta, t) \cap \mathbf{Q})$$

が成立する. このとき, 任意の $s \in (t - \delta, t)$ に対し

$$|X_{s+}(\omega) - X_u(\omega)| < \epsilon$$

を満たす $u \in (s,t) \cap \mathbf{Q}$ が存在するから

$$|X_{t-}(\omega) - X_{s+}(\omega)| \le |X_{t-}(\omega) - X_u(\omega)| + |X_u(\omega) - X_{s+}(\omega)| < 2\epsilon$$

が従い

$$\lim_{s \uparrow t} X_{s+}(\omega) = X_{t-}(\omega)$$

を得る.

1.3.2 Convergence Results

Problem 3.16

Let $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ be a right-continuous, nonnegative supermatingale; then $X_\infty(\omega) = \lim_{t \to \infty} X_t(\omega)$ exists for P-a.e. $\omega \in \Omega$, and $\{X_t, \mathscr{F}_t \mid 0 \le t \le \infty\}$ is a supermartingale.

証明. $\{-X_t, \mathcal{F}_t \mid 0 \le t < \infty\}$ は右連続な (\mathcal{F}_t) -劣マルチンゲールとなり

$$\sup_{t \ge 0} E(-X_t)^+ = 0$$

が満たされるから、劣マルチンゲール収束定理により或るP-零集合Aが存在して

$$Z_{\infty} := \lim_{t \to \infty} (-X_t) \mathbb{1}_{\Omega \setminus A}$$

により $\mathscr{F}_{\infty}/\mathscr{B}(\mathbf{R})$ -可測な可積分関数 Z_{∞} が定まる. すなわち

$$X_{\infty} := \lim_{t \to \infty} X_t \mathbb{1}_{\Omega \setminus A}$$

により $\mathscr{F}_\infty/\mathscr{B}(\mathbf{R})$ -可測関数が定まり、かつ $X_\infty=-Z_\infty$ より X_∞ は可積分である.また Fatou の補題により任意の $t\geq 0$ 及び $A\in\mathscr{F}_t$ に対し

$$\int_A X_\infty dP \le \liminf_{\substack{n \to \infty \\ n > t}} \int_A X_n dP \le \int_A X_t dP$$

が成立するから $\{X_t, \mathcal{F}_t \mid 0 \le t \le \infty\}$ は優マルチンゲールである.

Exercise 3.18

Suppose that the filtration $\{\mathscr{F}_t\}$ satisfies the usual conditions. Then every right-continuous, uniformly integrable supermartingale $\{X_t,\mathscr{F}_t\mid 0\leq t<\infty\}$ admits the Riesz decomposition $X_t=M_t+Z_t$, a.s. P, as the sum of a right-continuous, uniformly integrable martingale $\{M_t,\mathscr{F}_t\mid 0\leq t<\infty\}$ and a potential $\{Z_t,\mathscr{F}_t\mid 0\leq t<\infty\}$.

条件を満たす二つの分解 $X_t = M_t + Z_t = M_t' + Z_t'$ a.s. $P_t(\forall t \geq 0)$ が存在する場合,次の意味で分解は一意である:

$$P(M_t = M'_t, Z_t = Z'_t, \forall t \ge 0) = 1.$$
(1.8)

証明.

第一段 M を構成する. いま, $t \ge 0$ を固定する. n > t を満たす $n \in \mathbb{N}$ と任意の $A \in \mathscr{F}_t$ に対し

$$\int_{A} E(X_{n+1} \mid \mathscr{F}_{t}) dP = \int_{A} X_{n+1} dP = \int_{A} E(X_{n+1} \mid \mathscr{F}_{n}) dP$$

$$\leq \int_{A} X_{n} dP = \int_{A} E(X_{n} \mid \mathscr{F}_{t}) dP$$

が成り立つから

$$E := \bigcup_{n>t} \{ \omega \in \Omega \mid E(X_n \mid \mathscr{F}_t)(\omega) < E(X_{n+1} \mid \mathscr{F}_t)(\omega) \}$$

として P-零集合が定まる. また, 同様に優マルチンゲール性より

$$F := \bigcup_{n > t} \{ \omega \in \Omega \mid E(X_n \mid \mathscr{F}_t)(\omega) > X_t(\omega) \}$$

も P-零集合である. このとき, 単調減少性より

$$X_t^* \coloneqq \lim_{n \to \infty} E\left(X_n \mid \mathscr{F}_t\right) \mathbb{1}_{\Omega \setminus (E \cup F)}$$

が $-\infty$ まで込めて確定し、 X_t^* は $\mathscr{F}_t/\mathscr{B}([-\infty,\infty])$ -可測であり

$$X_t(\omega) \ge X_t^*(\omega), \quad (\forall \omega \in \Omega \setminus (E \cup F))$$

を満たす. 単調収束定理と $\sup_{n\geq 1} E|X_n|<\infty$ (一様可積分性) より

$$E\left(X_{t}-X_{t}^{*}\right)=\int_{\Omega\setminus\left(E\cup F\right)}\lim_{n\to\infty}\left(X_{t}-E\left(X_{n}\mid\mathscr{F}_{t}\right)\right)\ dP=\lim_{n\to\infty}\int_{\Omega\setminus\left(E\cup F\right)}X_{t}-E\left(X_{n}\mid\mathscr{F}_{t}\right)\ dP=EX_{t}-\lim_{n\to\infty}EX_{n}<\infty$$

が成立するから X_t^* は可積分性であり P-a.s. に $|X_t^*| < \infty$ となる. ここで

$$X_t^{**} := X_t^* \mathbb{1}_{|X_t^*| < \infty}$$

により $\mathcal{F}_t/\mathscr{B}(\mathbf{R})$ -可測な可積分関数を定めれば、単調収束定理より

$$EX_t^{**} = \lim_{n \to \infty} \int_{\Omega} E(X_n \mid \mathscr{F}_t) dP = \lim_{n \to \infty} EX_n$$
 (1.9)

となる. 任意の $t \geq 0$ に対し X_t^{**} を定めれば、任意の $0 \leq s < t$ 及び $A \in \mathcal{F}_s$ に対して

$$\int_{A} X_{t}^{**} dP = \lim_{n \to \infty} \int_{A} E\left(X_{n} \mid \mathscr{F}_{t}\right) dP = \lim_{n \to \infty} \int_{A} E\left(X_{n} \mid \mathscr{F}_{s}\right) dP = \int_{A} X_{s}^{**} dP \tag{1.10}$$

が成り立つから $\left\{X_t^{**}, \mathscr{F}_t \mid 0 \le t < \infty\right\}$ はマルチンゲールである.マルチンゲール性より $[0, \infty)$ $\ni t \mapsto EX_t^{**}$ は定数であるから Theorem 3.13 により右連続な修正 $\left\{M_t, \mathscr{F}_t \mid 0 \le t < \infty\right\}$ が存在する.

第二段 まず $\lim_{t\to\infty} EX_t$ が存在することを示す。任意の単調増大列 $(t_k)_{k=1}^\infty$, $t_k\uparrow\infty$ に対し優マルチンゲール性より

$$\lim_{k\to\infty} EX_{t_k} = \inf_{k\geq 1} EX_{t_k}$$

が確定し、任意の $n \in \mathbb{N}$ に対し $n < t_k$ を満たすkが存在するから

$$\inf_{n\geq 1} EX_n \geq \inf_{k\geq 1} EX_{t_k}$$

が従う. 逆に任意の t_k に対し $t_k < n$ を満たす n が存在するから

$$\lim_{n\to\infty} EX_n = \inf_{n\geq 1} EX_n = \inf_{k\geq 1} EX_{t_k} = \lim_{k\to\infty} EX_{t_k}$$

が成立し、 $(t_k)_{k=1}^{\infty}$ の任意性から $\lim_{t\to\infty} EX_t$ が存在して

$$\lim_{t \to \infty} EX_t = \lim_{n \to \infty} EX_n \tag{1.11}$$

となる. 右連続な優マルチンゲール $\{Z_t, \mathcal{F}_t \mid 0 \le t < \infty\}$ を

$$Z_t := X_t - M_t, \quad (\forall t \ge 0)$$

により定めれば、(1.9) より任意の $t \ge 0$ に対し

$$E(X_t - M_t) = EX_t - EM_t = EX_t - \lim_{n \to \infty} EX_n$$

が成り立ち、(1.11) より

$$\lim_{t \to \infty} E(X_t - M_t) = \lim_{t \to \infty} EX_t - \lim_{n \to \infty} EX_n = 0$$

が満たされるから $\{Z_t, \mathcal{F}_t \mid 0 \le t < \infty\}$ はポテンシャルである.

第三段 分解の一意性を示す. 任意の $t \ge 0$ 及び $A \in \mathcal{F}_t$ に対し, (1.10) と M' のマルチンゲール性より

$$\int_A M_t \ dP = \lim_{\substack{n \to \infty \\ n > t}} \int_A X_n \ dP = \lim_{\substack{n \to \infty \\ n > t}} \left\{ \int_A M_n' - Z_n' \ dP \right\} = \lim_{\substack{n \to \infty \\ n > t}} \left\{ \int_A M_t' \ dP - \int_A Z_n' \ dP \right\}$$

が成立する. またポテンシャルは非負であるから

$$0 \leq \int_A Z_n' \, dP \leq \int_\Omega Z_n' \, dP \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち、 $M_t=M_t'$ P-a.s. 及び $Z_t=Z_t'$ P-a.s. が従う. パスの右連続性より (1.8) が出る.

Problem 3.19 -

Assume that \mathscr{F}_{∞} contains all the *P*-negligible events in \mathscr{F}^{*6} . Then the following three conditions are equivalent for a nonnegative, right-continuous submartingale $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$:

- (a) it is a uniformly integrable family of random variables;
- (b) it converges in L^1 , as $t \to \infty$;
- (c) it converges P a.s. (as $t \to \infty$) to an integrable random variable X_{∞} , such that $\{X_t, \mathscr{F}_t \mid 0 \le t \le \infty\}$ is a submartingale.

Observe that the implications (a) \Rightarrow (b) \Rightarrow (c) hold without the assumption of nonnegativity.

証明.

第一段 (a) ⇒ (b) を示す. 実際, 一様可積分性の同値条件の補題より

$$\sup_{t \ge 0} EX_t^+ \le \sup_{t \ge 0} E|X_t| < \infty$$

となるから、劣マルチンゲール収束定理より或る $\mathscr{F}_{\infty}/\mathscr{B}(\mathbf{R})$ -可測な可積分関数 X_{∞} が存在して

$$\lim_{t\to\infty} X_t = X_{\infty} \quad P\text{-a.s.}$$

が満たされる. 一様可積分性と平均収束の補題より, $t_n \uparrow \infty$ となる任意の単調増大列 $(t_n)_{n=1}^\infty$ に対して

$$E|X_{t_n} - X_{\infty}| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成立するから

$$E|X_t - X_{\infty}| \longrightarrow 0 \quad (t \longrightarrow \infty)$$

が従う.

第二段 (b) \Rightarrow (c) を示す. (b) の下で、或る可積分関数 X_* が存在して

$$E|X_n - X_*| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が満たされるから、或る部分列 $\left(X_{n_k}\right)_{k=1}^{\infty}$ と P-零集合 E が存在して

$$\lim_{k\to\infty} X_{n_k}(\omega) = X_*(\omega), \quad (\forall \omega \in \Omega \backslash E)$$

となる. $X_{n_k} \mathbb{1}_{\Omega \setminus E}$ は全て $\mathscr{F}_{\infty}/\mathscr{B}(\mathbf{R})$ -可測であるから,

$$X_{\infty} := \lim_{k \to \infty} X_{n_k} \mathbb{1}_{\Omega \setminus E}$$

とおけば X_∞ は $\mathscr{F}_\infty/\mathscr{B}(\mathbf{R})$ -可測,かつ $X_\infty=X^*$ P-a.s. より可積分であり

$$E|X_n - X_{\infty}| = E|X_n - X_*| \longrightarrow 0 \quad (n \longrightarrow \infty)$$
(1.12)

を満たす. 任意の $t \ge 0$ 及び $A \in \mathcal{F}_t$ に対し

$$\int_{A} X_{t} dP \le \int_{A} X_{n} dP, \quad (\forall n > t)$$
(1.13)

が成り立つから、(1.12)より

$$\int_{A} X_{t} dP \le \int_{A} X_{\infty} dP \tag{1.14}$$

が出る.

⁴⁶ 証明の第二段で出てくる E が \mathcal{F}_{∞} に属していなければならない.

第三段 $X_t \ge 0 \ (\forall t \ge 0)$ を仮定して $(c) \Rightarrow (a)$ を示す. 実際, 劣マルチンゲール性より

$$\int_{|X_t| > \lambda} |x_t| \ dP = \int_{X_t > \lambda} X_t \ dP \le \int_{X_t > \lambda} X_\infty \ dP$$

かつ

$$P(X_t > \lambda) \le \frac{1}{\lambda} E X_t \le \frac{1}{\lambda} E X_{\infty}$$

が成り立ち、 X_{∞} の可積分性より

$$\sup_{t\geq 0} \int_{|X_t|>\lambda} |x_t| dP \longrightarrow 0 \quad (\lambda \longrightarrow \infty)$$

となる.

Problem 3.20

Assume that \mathscr{F}_{∞} contains all the P-negligible events in \mathscr{F} . Then the following four conditions are equivalent for a right-continuous martingale $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$:

- (a),(b) as in Problem 3.19;
- (c) it converges P a.s. (as $t \to \infty$) to an integrable random variable X_{∞} , such that $\{X_t, \mathscr{F}_t \mid 0 \le t \le \infty\}$ is a martingale;
- (d) there exists an integrable random variable Y, such that $X_t = E(Y | \mathcal{F}_t)$ a.s. P, for every $t \ge 0$.

Besides, if (d) holds and X_{∞} is the random variable in (c), then

$$E(Y \mid \mathscr{F}_{\infty}) = X_{\infty} \quad \text{a.s. } P. \tag{1.15}$$

証明.

第一段 マルチンゲールは劣マルチンゲールであるから、Problem 3.19 より (a) \Rightarrow (b) が従う。また今の仮定の下では (1.13) と (1.14) の不等号が等号に代わり (b) \Rightarrow (c) となる。 $Y := X_{\infty}$ として (c) \Rightarrow (d) が得られ、一様可積分性と条件付き期待値に関する補題 (P. 321) より (d) \Rightarrow (a) が出る.

第二段 (1.15) を示す. いま, 任意の $t \ge 0$ 及び $A \in \mathcal{F}_t$ に対し

$$\int_A Y dP = \int_A X_t dP = \int_A X_\infty dP$$

が成立するから

$$\int_A Y dP = \int_A X_\infty dP, \quad (\forall A \in \bigcup_{t > 0} \mathscr{F}_t)$$

が従う、 $Y と X_{\infty}$ の可積分性より

$$\mathscr{D} := \left\{ A \in \mathscr{F}_{\infty} \mid \int_{A} Y \, dP = \int_{A} X_{\infty} \, dP \right\}$$

は Dynkin 族をなし乗法族 $\bigcup_{t>0} \mathscr{F}_t$ を含むから,Dynkin 族定理より

$$\int_A Y dP = \int_A X_\infty dP, \quad (\forall A \in \mathscr{F}_\infty)$$

が成立する.

1.3.3 The Optional Sampling Theorem

- Lemma: 離散時間の任意抽出定理

 $0=t_0 < t_1 < \cdots < t_n < \infty$ とし, $\left\{X_{t_i},\mathscr{F}_{t_i} \mid i=0,\cdots,n\right\}$ を劣マルチンゲール, $S,T:\Omega \longrightarrow \{t_0,t_1,\cdots,t_n,\infty\}$ を (\mathscr{F}_t) -停止時刻*7,Y を $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測関数として

$$X_T(\omega) := Y(\omega), \ (\forall \omega \in \{T = \infty\}), \quad X_S(\omega) := Y(\omega), \ (\forall \omega \in \{S = \infty\})$$

とおく. このとき,

- (a) $S,T < \infty$, a.s. P
- (b) Y が可積分かつ $E\left(Y \middle| \mathscr{F}_{t_i}\right) \geq X_{t_i}$ a.s. P, $(i=0,\cdots,n)$.

のいずれかのが満たされていれば次が成り立つ:

$$E(X_T \mid \mathscr{F}_S) \ge X_{S \wedge T}$$
 a.s. P . (1.16)

証明.

第一段 X_S が $\mathscr{F}_S/\mathscr{B}(\mathbf{R})$ -可測であることを示す. 任意の $t \geq 0$ に対して

$${X_S \in B} \cap {S \le t} = {X_{S \land t} \in B} \cap {S \le t}, \quad (\forall B \in \mathcal{B}(\mathbf{R}))$$

となるから $X_{S \wedge t}$ の $\mathcal{F}_t/\mathcal{B}(\mathbf{R})$ -可測性を言えばよい. $t_m \leq t < t_{m+1}$ の場合 (m=n なら $t_{m+1}=\infty)$,

$$X_{S \wedge t} = \sum_{t_i \le t} X_{t_i} \mathbb{1}_{\{S = t_i\}} = \sum_{i=0}^m X_{t_i} \mathbb{1}_{\{S = t_i\}}$$

と分解できる. 連続写像 $\varphi: \mathbf{R}^2 \ni (x,y) \longmapsto xy$ と $\psi: \mathbf{R}^{m+1} \ni (x_0,x_1,\cdots,x_m) \longmapsto x_0+x_1+\cdots+x_m$ を用いれば、

$$\{X_{t_i} \mathbb{1}_{\{S=t_i\}} \in B\} = \{(X_{t_i}, \mathbb{1}_{\{S=t_i\}}) \in \varphi^{-1}(B)\}, (\forall B \in \mathcal{B}(\mathbf{R}))$$

かつ

$$\{X_{S \wedge t} \in B\} = \left\{ \left(X_{t_0} 1\!\!1_{\{S = t_0\}}, \cdots, X_{t_m} 1\!\!1_{\{S = t_m\}} \right) \in \psi^{-1}(B) \right\}, \quad (\forall B \in \mathcal{B}(\mathbf{R}))$$

[』] $\{\mathscr{F}_{t_i}\}_{i=0}^n$ は $\{\mathscr{F}_t\}_{t\geq 0}$ の部分集合と考える.

が成り立つ. いま, ${f R}$ の第二可算性より ${\mathcal B}({f R}^2)={\mathcal B}({f R})\otimes {\mathcal B}({f R})$ が満たされ, かつ任意の $E,F\in {\mathcal B}({f R})$ に対して

$$\left\{\left(X_{t_i}, 1\!\!1_{\{S=t_i\}}\right) \in E \times F\right\} = X_{t_i}^{-1}(E) \cap \left\{1\!\!1_{\{S=t_i\}} \in F\right\} \in \mathcal{F}_t, \quad (\forall t_i \leq t)$$

となるから $X_{t_i} 1\!\!1_{\{S=t_i\}}$ の $\mathscr{F}_t/\mathscr{B}(\mathbf{R})$ -可測性が従う. 同様に $\mathscr{B}(\mathbf{R}^{m+1}) = \mathscr{B}(\mathbf{R}) \otimes \cdots \otimes \mathscr{B}(\mathbf{R})$ と

$$\{(X_{t_0} \mathbb{1}_{\{S=t_0\}}, \cdots, X_{t_m} \mathbb{1}_{\{S=t_m\}}) \in E_0 \times \cdots \times E_m\} = \bigcap_{i=0}^m \{X_{t_i} \mathbb{1}_{\{S=t_i\}} \in E_i\} \in \mathscr{F}_t, \quad (\forall E_i \in \mathscr{B}(\mathbf{R}), \ i = 0, \cdots, m)$$

より $X_{S\wedge t}$ は $\mathscr{F}_t/\mathscr{B}(\mathbf{R})$ -可測である. これより X_T の $\mathscr{F}_T/\mathscr{B}(\mathbf{R})$ -可測性及び $X_{S\wedge T}$ の $\mathscr{F}_{S\wedge T}/\mathscr{B}(\mathbf{R})$ -可測性も出る.

第二段 $S \le T$ と仮定して (1.16) を示す. 先ず

$$\int_{\Omega} |X_S| \ dP = \sum_{i=0}^n \int_{\{S=t_i\}} |X_{t_i}| \ dP + \int_{\{S=\infty\}} |Y| \ dP$$

より (a),(b) いずれの場合も X_S , X_T は可積分である. また、劣マルチンゲール性より任意の $A \in \mathscr{F}_S$ に対して

$$\begin{split} \int_{A \cap \{S=t_i\}} X_{t_i} \; dP &= \int_{A \cap \{S=t_i\} \cap \{T=t_i\}} X_{t_i} \; dP + \int_{A \cap \{S=t_i\} \cap \{T>t_i\}} X_{t_i} \; dP \\ &\leq \int_{A \cap \{S=t_i\} \cap \{T=t_i\}} X_T \; dP + \int_{A \cap \{S=t_i\} \cap \{T>t_i\}} X_{t_{i+1}} \; dP \\ &= \int_{A \cap \{S=t_i\} \cap \{T=t_i\}} X_T \; dP + \int_{A \cap \{S=t_i\} \cap \{T=t_{i+1}\}} X_T \; dP + \int_{A \cap \{S=t_i\} \cap \{T>t_{i+1}\}} X_{t_{i+1}} \; dP \\ &\cdots \\ &\leq \sum_{i=1}^n \int_{A \cap \{S=t_i\} \cap \{T=t_i\}} X_T \; dP + \int_{A \cap \{S=t_i\} \cap \{T>t_n\}} X_{t_n} \; dP \end{split}$$

及び

$$\int_{A\cap \{S=\infty\}} X_S \ dP = \int_{A\cap \{S=\infty\}} Y \ dP = \int_{A\cap \{S=\infty\}} X_T \ dP$$

が成り立つから, (a) の場合は

$$\int_{A \cap \{S=t_i\}} X_{t_i} dP \le \sum_{j=i}^n \int_{A \cap \{S=t_i\} \cap \{T=t_j\}} X_T dP = \int_{A \cap \{S=t_i\}} X_T dP,$$

(b) の場合は

$$\int_{A \cap \{S=t_i\}} X_{t_i} dP \leq \sum_{j=i}^n \int_{A \cap \{S=t_i\} \cap \{T=t_j\}} X_T dP + \int_{A \cap \{S=t_i\} \cap \{T>t_n\}} X_{t_n} dP
\leq \sum_{j=i}^n \int_{A \cap \{S=t_i\} \cap \{T=t_j\}} X_T dP + \int_{A \cap \{S=t_i\} \cap \{T>t_n\}} Y dP
= \sum_{j=i}^n \int_{A \cap \{S=t_i\} \cap \{T=t_j\}} X_T dP + \int_{A \cap \{S=t_i\} \cap \{T=\infty\}} Y dP
= \int_{A \cap \{S=t_i\}} X_T dP$$

となり、いずれの場合も

$$\int_A X_S \ dP = \sum_{i=0}^n \int_{A \cap \{S=t_i\}} X_{t_i} \ dP + \int_{A \cap \{S=\infty\}} X_S \ dP \le \sum_{i=0}^n \int_{A \cap \{S=t_i\}} X_T \ dP + \int_{A \cap \{S=\infty\}} X_T \ dP = \int_A X_T \ dP$$

が成立する. X_S の $\mathscr{F}_S/\mathscr{B}(\mathbf{R})$ -可測性より (1.16) を得る.

第三段 一般の S,T に対して (1.16) を示す。任意の $A \in \mathcal{F}_S$ に対し、Problem 2.17 (P. 11) と前段の結果より

$$\int_{A} E(X_{T} \mid \mathscr{F}_{S}) \ dP = \int_{A \cap \{S \leq T\}} E(X_{T} \mid \mathscr{F}_{S}) \ dP + \int_{A \cap \{S > T\}} E(X_{T} \mid \mathscr{F}_{S}) \ dP$$

$$= \int_{A \cap \{S \leq T\}} E(X_{T} \mid \mathscr{F}_{S \wedge T}) \ dP + \int_{A \cap \{S > T\}} X_{T} \ dP$$

$$\geq \int_{A \cap \{S \leq T\}} X_{S \wedge T} \ dP + \int_{A \cap \{S > T\}} X_{S \wedge T} \ dP$$

$$= \int_{A} X_{S \wedge T} \ dP$$

となり、 $X_{S\wedge T}$ の $\mathscr{F}_{S\wedge T}/\mathscr{B}(\mathbf{R})$ -可測性より (1.16) が出る.

Theorem 3.22 修正 -

Let $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ be a right-continuous submartingale, S, T be two optional times of the filtration $\{\mathscr{F}_t\}$, and Y be a $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -measurable function, and set

$$X_{U}(\omega) := Y(\omega) \quad (\forall \omega \in \{U = \infty\}).$$

for any random time *U*. Then, under either of the following two conditions;

- (a) There exists an $N \in \mathbb{N}$ such that S, T < N a.s. P,
- (b) Y is integrable and $X_t \le E(Y | \mathscr{F}_t)$ a.s. P, for every $t \ge 0$,

we have

$$E(X_T | \mathscr{F}_{S+}) \ge X_{S \wedge T}$$
 a.s. P .

If *S* is a stopping time, then \mathscr{F}_S can replace \mathscr{F}_{S+} above. In particular, $EX_T \ge EX_0$, and for a martingale with a last element we have $EX_T = EX_0$.

この修正により Problem 3.23 と Problem 3.24 の主張が従う.

証明.

第一段 X_S の $\mathscr{F}_{S+}/\mathscr{B}(\mathbf{R})$ -可測性を示す.Corollary 2.4 より S は (\mathscr{F}_{t+}) -停止時刻であり, $\{X_t,\mathscr{F}_{t+}\mid 0\leq t<\infty\}$ は発展的可測である.従って Proposition 2.18 (P. 12) より任意の $t\geq 0$ に対し $X_{S\wedge t}$ は $\mathscr{F}_{t+}/\mathscr{B}(\mathbf{R})$ -可測であり,

$${X_S \in B} \cap {S \le t} = {X_{S \land t} \in B} \cap {S \le t} \in \mathscr{F}_{t+}, \quad (\forall B \in \mathscr{B}(\mathbf{R}))$$

より X_S の $\mathscr{F}_{S+}/\mathscr{B}(\mathbf{R})$ -可測性が出る. S が (\mathscr{F}_t) -停止時刻のときは, $X_{S\wedge t}$ は $\mathscr{F}_t/\mathscr{B}(\mathbf{R})$ -可測性を持ち

$${X_S \in B} \cap {S \le t} = {X_{S \land t} \in B} \cap {S \le t} \in \mathscr{F}_t, \quad (\forall B \in \mathscr{B}(\mathbf{R}))$$

が従うから X_S は $\mathscr{F}_S/\mathscr{B}(\mathbf{R})$ -可測である.

第二段 任意の $n \ge N$ に対し

$$S_n(\omega) := \begin{cases} \infty & \text{if } S(\omega) \ge n, \\ \frac{k}{2^n} & \text{if } \frac{k-1}{2^n} \le S(\omega) < \frac{k}{2^n} \text{ for } k = 1, \dots, n2^n, \end{cases}$$

により停止時刻 S_n が定まる (Problem 2.24 修正版, P. 15). 同様に $(T_n)_{n\geq N}$ も構成すれば,補題より

$$\int_A X_{T_n} dP \ge \int_A X_{S_n \wedge T_n} dP, \quad (\forall A \in \mathscr{F}_{S_n}, \ \forall n \ge N)$$

が成立する. また $S(\omega) < \infty$ なら $S_n(\omega) \downarrow S(\omega)$, かつ $S(\omega) = \infty$ なら $S_n(\omega) = \infty$ であるから

$$S = \inf_{n > N} S_n$$

が満たされ、Problem 2.23 より

$$\mathscr{F}_{S+} = \bigcap_{n>N} \mathscr{F}_{S_n}$$

となり

$$\int_{A} X_{T_{n}} dP \ge \int_{A} X_{S_{n} \wedge T_{n}} dP, \quad (\forall A \in \mathscr{F}_{S+}, \ \forall n \ge N)$$
(1.17)

が成立する. S が停止時刻の場合は $\mathscr{F}_S \subset \mathscr{F}_{S+}$ であるから, (1.17) を \mathscr{F}_S に置き換えて成立する.

第三段 $(S_n)_{n\geq N}$, $(T_n)_{n\geq N}$ は単調減少列であるから $(\mathscr{F}_{T_n})_{n\geq N}$ と $(\mathscr{F}_{S_n\wedge T_n})_{n\geq N}$ も単調減少列であり, $\{X_{T_n},\mathscr{F}_{T_n}\mid n\geq N\}$ 及び $\{X_{S_n\wedge T_n},\mathscr{F}_{S_n\wedge T_n}\mid n\geq N\}$ は後退劣マルチンゲールとなる.かつ

$$\lim_{n\to\infty} EX_{T_n} \ge EX_0, \quad \lim_{n\to\infty} EX_{S_n \wedge T_n} \ge EX_0$$

が満たされているから、Problem 3.11 より $(X_{T_n})_{n\geq N}$, $(X_{S_n\wedge T_n})_{n\geq N}$ は一様可積分である.また $\{X_t\}$ の右連続性より

$$X_{T_n}(\omega) \longrightarrow X_T(\omega), \quad X_{S_n \wedge T_n}(\omega) \longrightarrow X_{S \wedge T}(\omega), \quad (\forall \omega \in \Omega)$$

が成り立つから,一様可積分性と平均収束の補題 (P. 321) より $X_T, X_{S \wedge T}$ の可積分性及び

$$E|X_T - X_{T_n}| \longrightarrow 0$$
, $E|X_{S \wedge T} - X_{S_n \wedge T_n}| \longrightarrow 0$, $(n \longrightarrow \infty)$

が従い

$$\int_A X_T dP \ge \int_A X_{S \wedge T} dP, \quad (\forall A \in \mathscr{F}_{S+})$$

が得られる. S が停止時刻の場合は \mathscr{F}_{S+} を \mathscr{F}_{S} に置き換えて成立する.

- Problem 3.25

A submartingale of constant expectation, i.e., with $E(X_t) = E(X_0)$ for every $t \ge 0$, is a martingale.

証明. 任意の $0 \le s < t$ に対し,

$$E(X_t \mid \mathscr{F}_s) - X_s \ge 0$$
, a.s. P

かつ

$$E(E(X_t | \mathscr{F}_s) - X_s) = EX_t - EX_s = EX_0 - EX_0 = 0$$

より

$$E(X_t \mid \mathscr{F}_s) - X_s = 0$$
, a.s. P

が従う.

A right-continuous process $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ with $E|X_t| < \infty$; $0 \le t < \infty$ is a submartingale if and only if for every pair $S \leq T$ of bounded stopping times of the filtration $\{\mathcal{F}_t\}$ we have

$$E(X_T) \ge E(X_S). \tag{1.18}$$

証明. (\Rightarrow) は任意抽出定理より従う. (\Leftarrow) を示す. 任意の $0 \le s < t$ 及び $A \in \mathscr{F}_s$ に対し,

$$T(\omega) \coloneqq t, \quad S(\omega) \coloneqq \begin{cases} s, & (\omega \in A), \\ t, & (\omega \in \Omega \backslash A) \end{cases}, \quad (\forall \omega \in \Omega)$$

により (\mathcal{F}_t) -停止時刻 $S \leq T$ を定めれば、(1.18) より

$$\int_A X_t dP = \int_\Omega X_T dP - \int_{\Omega \setminus A} X_t dP \ge \int_\Omega X_S dP - \int_{\Omega \setminus A} X_t dP = \int_A X_s dP$$

が成り立ち, $A \in \mathcal{F}_s$ の任意性より $E(X_t | \mathcal{F}_s) \geq X_s$ a.s. P となる.

Let T be a bounded stopping time of the filtration $\{\mathscr{F}_t\}$, which satisfies the usual conditions, and define $\tilde{\mathscr{F}}_t = \mathscr{F}_{T+t}; \ t \geq 0.$ Then $\{\tilde{\mathscr{F}}_t\}$ also satisfies the usual conditions.

- If $X = \{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is a right-continuous submartingale, then so is $\tilde{X} = \{\tilde{X}_t := X_{T+t} X_T, \tilde{\mathscr{F}}_t \mid 0 \le t < \infty\}$. $\tilde{X} = \{\tilde{X}_t, \tilde{\mathscr{F}}_t \mid 0 \le t < \infty\}$ is a right-continuous submartingale, with $\tilde{X}_0 = 0^{*8}$, then $X = 0^{*8}$.
- $\{X_t := \tilde{X}_{(t-T)\vee 0}, \mathscr{F}_t \mid 0 \le t < \infty \}$ is also a submartingale.

証明.

^{*8} $\tilde{X}_0 = 0$ a.s. P だと $X_t = \tilde{X}_{(t-T)\vee 0}$ が (\mathcal{F}_t) -適合となるかわからない.

第一段 $\{\hat{\mathscr{F}}_t\}$ が通常の条件 (usual conditions) を満たすことを示す. 実際,

$$\{N \in \mathcal{F} \mid P(N) = 0\} \subset \mathcal{F}_0 \subset \mathcal{F}_{T+t}, \quad (\forall t \ge 0)$$

より $\{\tilde{\mathscr{F}}_t\}$ は完備であり、また任意の $t \geq 0$ に対して $T+t = \inf_{n \geq 1} (T+t+1/n)$ より

$$\tilde{\mathscr{F}}_{t+} = \bigcap_{n=1}^{\infty} \tilde{\mathscr{F}}_{t+\frac{1}{n}} = \bigcap_{n=1}^{\infty} \mathscr{F}_{T+t+\frac{1}{n}} = \mathscr{F}_{(T+t)+}$$

となるが (Problem 2.23), $\{\mathcal{F}_t\}$ の右連続性より

$$A \cap \{T + t \le s\} \in \mathscr{F}_{s+}, \ \forall s \ge 0 \quad \Leftrightarrow \quad A \cap \{T + t \le s\} \in \mathscr{F}_{s}, \ \forall s \ge 0$$

が成立するから $\mathscr{F}_{(T+t)+} = \mathscr{F}_{T+t}$ が満たされ

$$\tilde{\mathscr{F}}_{t+} = \mathscr{F}_{T+t} = \tilde{\mathscr{F}}_t$$

を得る.

(i) の証明 X の右連続性より $ilde{X}$ は右連続である.また任意抽出定理より X_{T+t} は $\mathscr{F}_{T+t}/\mathscr{B}(\mathbf{R})$ -可測かつ可積分であり

$$E\left(\tilde{X}_{t} \mid \tilde{\mathscr{F}}_{s}\right) = E\left(X_{T+t} - X_{T} \mid \mathscr{F}_{T+s}\right) \geq X_{T+s} - X_{T} = \tilde{X}_{s}, \quad \text{a.s. } P, \; (0 \leq s < t)$$

が成立するから、 \tilde{X} は右連続劣マルチンゲールである.

(ii) の証明 $S_1 \leq S_2$ を有界な (\mathcal{F}_t) -停止時刻とするとき, $(S_i - T) \vee 0$ (j = 1, 2) は $(\tilde{\mathcal{F}}_t)$ -停止時刻である.実際,

$$\{(S_i - T) \lor 0 \le t\} \cap \{T + t \le u\} = \{S_i \land u \le (T + t) \land u\} \cap \{T + t \le u\} \in \mathscr{F}_u, \quad (\forall u \ge 0)$$

より $\{(S_i-T)\vee 0\leq t\}\in \mathscr{F}_{T+t}=\tilde{\mathscr{F}}_t\; (\forall t\geq 0)\;$ が成立する. $[0,\infty)\ni t\longmapsto \tilde{X}_{(t-T)\vee 0}(\omega)\;$ は右連続であり、また \tilde{X}_{t-T} が $\tilde{\mathscr{F}}_{t-T}=\mathscr{F}_{t}$ -可測かつ可積分であるから

$$X_t = \tilde{X}_{(t-T)\vee 0} = \tilde{X}_{t-T} \mathbb{1}_{\{T < t\}}$$

は $\mathcal{F}_t/\mathcal{B}(\mathbf{R})$ -可測かつ可積分である. 従って X は右連続可積分適合過程であり、Problem 3.26 より

$$EX_{S_1}=E\tilde{X}_{(S_1-T)\vee 0}\leq E\tilde{X}_{(S_2-T)\vee 0}=EX_{S_2}$$

が成り立つから、同じく Problem 3.26 より X の劣マルチンゲール性が出る.

Let $Z = \{ Z_t, \mathscr{F}_t \mid 0 \le t < \infty \}$ be a continuous, nonnegative martingale with $Z_\infty := \lim_{t \to \infty} Z_t = 0$, a.s. P. Then for every $s \ge 0$, b > 0:

(i)
$$P\left[\sup_{t \in \mathbb{R}} Z_t \ge b \mid \mathscr{F}_s\right] = \frac{1}{h} Z_s$$
, a.s. on $\{Z_s < b\}$.

(i)
$$P\left[\sup_{t>s} Z_t \ge b \,\middle|\, \mathscr{F}_s\right] = \frac{1}{b}Z_s, \quad \text{a.s. on } \{Z_s < b\}.$$
(ii)
$$P\left[\sup_{t\ge s} Z_t \ge b\right] = P[Z_s \ge b] + \frac{1}{b}E[Z_s 1_{\{Z_s < b\}}].$$

証明.

第一段 $\inf\{t \in [s,\infty) \mid Z_t(\omega) = b\} = \inf\{t \in [0,\infty) \mid Z_{t+s}(\omega) = b\} + s$ と Problem 2.7 より

$$T(\omega) := \inf \{ t \in [s, \infty) \mid Z_t(\omega) = b \}, (\forall \omega \in \Omega)$$

により (\mathcal{F}_t) -停止時刻が定まる. このとき

$$Z_T(\omega) = b, \quad (\forall \omega \in \{T < \infty\} \cap \{Z_s < b\})$$
(1.19)

بح

$$T(\omega) < \infty \iff \sup_{t>s} Z_t(\omega) \ge b, \quad (a.s.\omega \in \{Z_s < b\})$$
 (1.20)

が成立する. 実際, $\omega \in \{T < \infty\} \cap \{Z_s < b\}$ に対し, $Z_T(\omega) < b$ なら

$$\sup_{s \le t \le T(\omega)} Z_t(\omega) < b$$

となり、 $t \mapsto Z_t(\omega)$ の連続性より $T(\omega) < T(\omega)$ が従い矛盾が生じる. 逆に $Z_T(\omega) > b$ なら中間値の定理より

$$Z_t(\omega) = b$$
, $s < \exists t < T(\omega)$

となるから、 $T(\omega) \le t < T(\omega)$ という矛盾が生じ、(1.19) が出る. これにより、 $\omega \in \{Z_s < b\}$ に対し

$$T(\omega) < \infty \quad \Rightarrow \quad b = Z_T(\omega) \le \sup_{t>s} Z_t(\omega)$$

が成立する. 一方で $a.s.\omega \in \{Z_s < b\}$ で $Z_t(\omega) \longrightarrow 0$ となるから, $0 < \epsilon < b$ に対し或る t_0 が存在して

$$Z_t(\omega) < \epsilon$$
, $(\forall t > t_0)$

が満たされる. この場合

$$\sup_{t>s} Z_t(\omega) \ge b \quad \Rightarrow \quad \sup_{t \in [s,t_0]} Z_t(\omega) \ge b$$

となるから、連続性より $Z_t(\omega)=b$ を満たす $t\in (s,t_0)$ が存在し、 $T(\omega)\leq t$ が従い (1.20) が得られる. 第二段 (i) を示す。任意の $A\in \mathscr{F}_s$ と n>s に対し、任意抽出定理と (1.19) より

$$\int_{A \cap \{Z_s < b\}} Z_s \, dP = \int_{A \cap \{Z_s < b\}} Z_{T \wedge n} \, dP$$

$$= \int_{A \cap \{Z_s < b\}} Z_T \mathbb{1}_{\{T \le n\}} \, dP + \int_{A \cap \{Z_s < b\}} Z_n \mathbb{1}_{\{T > n\}} \, dP$$

$$= bP \left[A \cap \{Z_s < b\} \cap \{T \le n\} \right] + \int_{A \cap \{Z_s < b\}} Z_n \mathbb{1}_{\{T > n\}} \, dP$$

が成立する. ここで

$$P[A \cap \{Z_s < b\} \cap \{T \le n\}] \longrightarrow P[A \cap \{Z_s < b\} \cap \{T < \infty\}], \quad (n \longrightarrow \infty)$$

かつ $Z_n \mathbf{1}_{\{T>n\} \cap \{Z_s < b\}} < b$, $(\forall n > s)$ 及び

$$Z_n \mathbb{1}_{\{T>n\}} \longrightarrow Z_\infty \mathbb{1}_{\{T=\infty\}}, \quad (n \longrightarrow \infty)$$

が成り立つから、 $Z_{\infty} = 0$ a.s. P と Lebesgue の収束定理より

$$\int_{A \cap \{Z_s < b\}} Z_s \, dP = bP \left[A \cap \{Z_s < b\} \cap \{T < \infty\} \right] = b \int_{A \cap \{Z_s < b\}} \mathbb{1}_{\{T < \infty\}} \, dP$$

が得られる. 更に (1.20) より

$$\int_{A\cap \{Z_s < b\}} Z_s \ dP = b \int_{A\cap \{Z_s < b\}} \mathbb{1}_{\{\sup_{t > s} Z_t(\omega) \ge b\}} \ dP = b \int_{A\cap \{Z_s < b\}} P \left[\sup_{t > s} Z_t \ge b \ \middle| \ \mathscr{F}_s \right] \ dP$$

となるから、 $A \in \mathcal{F}_s$ の任意性より

$$P\left[\sup_{t>s} Z_t \ge b \mid \mathscr{F}_s\right] 1_{\{Z_s < b\}} = \frac{1}{b} Z_s 1_{\{Z_s < b\}}, \quad \text{a.s. } P$$

が出る.

第三段 (iii) を示す. $t \mapsto Z_t(\omega)$ の連続性より

$$\sup_{t>s} Z_t(\omega) \geq b \quad \Leftrightarrow \quad \sup_{t\geq s} Z_t(\omega) \geq b, \quad (\forall \omega \in \{Z_s < b\})$$

となるから

$$\begin{split} P\left[\sup_{t\geq s} Z_t \geq b\right] &= P\left[\left\{\sup_{t\geq s} Z_t \geq b\right\} \cap \left\{Z_s \geq b\right\}\right] + P\left[\left\{\sup_{t\geq s} Z_t \geq b\right\} \cap \left\{Z_s < b\right\}\right] \\ &= P\left[Z_s \geq b\right] + P\left[\left\{\sup_{t>s} Z_t \geq b\right\} \cap \left\{Z_s < b\right\}\right] \\ &= P[Z_s \geq b] + \frac{1}{b} E[Z_s \mathbb{1}_{\{Z_s < b\}}] \end{split}$$

が成立する.

Problem 3 29 修正

Let $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ be a continuous, nonnegative supermartingale and $T = \inf\{t \in [0,\tau] \mid X_t = 0\}$ (inf $\emptyset = \tau$) for some $\tau > 0$. Show that

$$X_{T+t} = 0$$
; $0 \le t < \infty$ hold a.s. $\{T < \tau\}$.

証明. (1.19)より

$$X_T(\omega) = 0, \quad (\forall \omega \in \{T < \tau\})$$

が満たされ、かつ $\{T < \tau\} \in \mathscr{F}_T$ であるから、任意抽出定理より

$$0 \le E(X_{T+t} \mathbb{1}_{\{T < \tau\}}) \le E(X_T \mathbb{1}_{\{T < \tau\}}) = 0, \quad 0 \le t < \infty$$

が成立し

$$X_{T+t} \mathbb{1}_{\{T < \tau\}} = 0$$
, a.s. P , $0 \le t < \infty$

となる. パスの連続性より

$$\left\{X_{T+t}1\!\!1_{\{T<\tau\}}=0,\; 0\leq t<\infty\right\}=\bigcap_{r\in \mathbb{Q}\cap[0,\tau)}\left\{X_{T+r}1\!\!1_{\{T<\tau\}}=0\right\}$$

が成り立ち主張が従う.

Exercise 3.30

Suppose that the filtration $\{\mathscr{F}_t\}$ satisfies the usual conditions and let $X^{(n)} = \{X_t^{(n)}, \mathscr{F}_t \mid 0 \le t < \infty\}$, $n \ge 1$ be an increasing sequence of right-continuous supermartingales, such that the random variable $\xi_t := \lim_{n \to \infty} X_t^{(n)}$ is nonnegative and integrable for every $0 \le t < \infty$. Then there exists an RCLL supermartingale $X = \{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ which is a modification of the process $\xi = \{\xi_t, \mathscr{F}_t \mid 0 \le t < \infty\}$.

1.4 The Doob-Meyer Decomposition

·martingale transform -

If $A = \{A_n, \mathscr{F}_n \mid n = 0, 1, \dots\}$ is predictable with $E|A_n| < \infty$ for every n, and if $\{M_n, \mathscr{F}_n \mid n = 0, 1, \dots\}$ is bounded martingale, then the martingale transform of A by M defined by

$$Y_0 = 0$$
 and $Y_n = \sum_{k=1}^n A_k (M_k - M_{k-1}); n \ge 1,$

is itself a martingale.

証明. $A_k(M_k-M_{k-1})$ $(k\leq n)$ は $\mathscr{F}_n/\mathscr{B}(\mathbf{R})$ -可測であるから $(Y_n)_{n=1}^\infty$ は (\mathscr{F}_n) -適合である. また

$$E|Y_n| = E\left|\sum_{k=1}^n A_k(M_k - M_{k-1})\right| \le \sum_{k=1}^n \left\{ \text{ess.sup}\left(|M_k(\omega)| + |M_{k-1}(\omega)|\right) \right\} E|A_k| < \infty$$

が成り立つ. 更に任意の $n \ge 0$ に対し

$$E(Y_{n+1} - Y_n \mid \mathscr{F}_n) = E(A_{n+1}(M_{n+1} - M_n) \mid \mathscr{F}_n) = A_{n+1}E(M_{n+1} - M_n \mid \mathscr{F}_n) = 0$$
, a.s. P

が満たされる.

Doob's decomposition

Any submartingale $\{X_n, \mathscr{F}_n \mid n = 0, 1, \cdots\}$ admits the unique decomposition $X_n = M_n + A_n$ as the summation of a martingale $\{M_n, \mathscr{F}_n\}$ and an predictable and increasing sequence $\{A_n, \mathscr{F}_n\}$, where

$$A_n = \sum_{k=0}^{n-1} E(X_{k+1} - X_k \mid \mathscr{F}_k), \text{ a.s. } P, n \ge 1.$$

証明.

第一段 Doob 分解が存在するとして、分解の一意性を示す、実際、分解が存在すれば

$$A_{n+1} - A_n = E(A_{n+1} - A_n \mid \mathscr{F}_n) = E(X_{n+1} - X_n \mid \mathscr{F}_n) - E(M_{n+1} - M_n \mid \mathscr{F}_n) = E(X_{n+1} - X_n \mid \mathscr{F}_n),$$
 a.s. P

が成立し、 $A_n (n \ge 1)$ は

$$A_n = \sum_{k=0}^{n-1} E(X_{k+1} - X_k \mid \mathscr{F}_k), \text{ a.s. } P$$

を満たすことになり分解の一意性が出る.

第二段 分解可能性を示す.

$$A_0 := 0, \quad A_n := \sum_{k=0}^{n-1} E(X_{k+1} - X_k \mid \mathscr{F}_k), \quad (n = 1, 2, \cdots)$$

と定めれば (A_n) は可予測かつ可積分であり,

$$A_{n+1} - A_n = E(X_{k+1} - X_k \mid \mathscr{F}_k) \ge 0$$
, a.s. $P(\forall n \ge 1)$

より増大過程である. また $M_n := X_n - A_n$ により (\mathscr{F}_n) -適合かつ可積分な過程を定めれば,

$$E(M_{n+1} - M_n \mid \mathscr{F}_n) = E((X_{n+1} - X_n) - (A_{n+1} - A_n) \mid \mathscr{F}_n)$$

= $E(X_{n+1} - X_n \mid \mathscr{F}_n) - E(E(X_{n+1} - X_n \mid \mathscr{F}_n) \mid \mathscr{F}_n) = 0$, a.s. P

が成り立つから $\{M_n, \mathcal{F}_n\}$ はマルチンゲールである.

Proposition 4.3 修正 -

An increasing random sequence A has a predictable modification if and only if it is natural.

証明. A が可予測な修正 \tilde{A} を持つとき、任意の有界マルチンゲール M に対して

$$\tilde{Y}_0 := 0, \quad \tilde{Y}_n := \sum_{k=1}^n \tilde{A}_k (M_k - M_{k-1}); \quad n \ge 1$$

は (\mathscr{F}_n) -マルチンゲールとなる.このとき $M_n \tilde{A}_n$ と $\sum_{k=1}^n M_{k-1} (\tilde{A}_k - \tilde{A}_{k-1})$ は可積分であり

$$0 = E\tilde{Y}_n = E\left[M_n\tilde{A}_n - \sum_{k=1}^n M_{k-1}(\tilde{A}_k - \tilde{A}_{k-1})\right] = E(M_nA_n) - E\sum_{k=1}^n M_{k-1}(A_k - A_{k-1}), \quad (\forall n \ge 1)$$

が成り立つから A はナチュラルである. 逆に A がナチュラルであるとき, 有界マルチンゲール M に対して

$$0 = E\left[M_n A_n - \sum_{k=1}^n M_{k-1} (A_k - A_{k-1})\right]$$

$$= E\left[A_n (M_n - M_{n-1})\right] - E\left[M_{n-1} A_{n-1} - \sum_{k=1}^{n-1} M_{k-1} (A_k - A_{k-1})\right]$$

$$= E\left[A_n (M_n - M_{n-1})\right], \quad (\forall n \ge 1)$$

が成り立つ. 一方で

$$E[M_{n-1}(A_n - E(A_n | \mathscr{F}_{n-1}))] = E[E(M_{n-1}(A_n - E(A_n | \mathscr{F}_{n-1})) | \mathscr{F}_{n-1})]$$

$$= E[M_{n-1}E(A_n - E(A_n | \mathscr{F}_{n-1}) | \mathscr{F}_{n-1})] = 0, \quad (\forall n \ge 1)$$

及び

$$E[E(A_n | \mathscr{F}_{n-1})(M_n - M_{n-1})] = E[E(E(A_n | \mathscr{F}_{n-1})(M_n - M_{n-1}) | \mathscr{F}_{n-1})]$$

$$= E[E(A_n | \mathscr{F}_{n-1})E(M_n - M_{n-1} | \mathscr{F}_{n-1})] = 0, \quad (\forall n \ge 1)$$

となるから

$$E[M_{n}(A_{n} - E(A_{n} | \mathscr{F}_{n-1}))] = E[A_{n}(M_{n} - M_{n-1})] + E[M_{n-1}(A_{n} - E(A_{n} | \mathscr{F}_{n-1}))] - E[E(A_{n} | \mathscr{F}_{n-1})(M_{n} - M_{n-1})] = 0, \quad (\forall n \ge 1)$$

が従う.ここで各 $n \ge 1$ に対し, $\mathscr{B}(\mathbf{R})/\mathscr{B}(\mathbf{R})$ -可測関数 $\mathrm{sgn} = 1\hspace{-.1cm}1_{(0,\infty)} - 1\hspace{-.1cm}1_{(-\infty,0)}$ を用いて

$$M_{k}^{(n)} := \begin{cases} \operatorname{sgn} \left(A_{n} - E\left(A_{n} \mid \mathscr{F}_{n-1} \right) \right), & (k \geq n), \\ E\left(\operatorname{sgn} \left(A_{n} - E\left(A_{n} \mid \mathscr{F}_{n-1} \right) \right) \mid \mathscr{F}_{k} \right), & (0 \leq k < n) \end{cases}$$

により有界マルチンゲール $M^{(n)}=\left\{M_k^{(n)},\mathscr{F}_k\mid k=0,1,\cdots
ight\}$ を定めれば,

$$0 = E\left[M_n^{(n)}(A_n - E\left(A_n \mid \mathscr{F}_{n-1}\right))\right] = E\left|A_n - E\left(A_n \mid \mathscr{F}_{n-1}\right)\right|, \quad (\forall n \ge 1)$$

が得られ

$$\tilde{A}_0 := 0, \quad \tilde{A}_n := E(A_n \mid \mathscr{F}_{n-1}); \quad n \ge 1$$

はAの可予測な修正となる.

・区別不能性によるパスの同値類 ---

区間* 9I \subset $[0,\infty)$ の上で右連続な確率過程の全体を RCSP(I) と書く.また $RCSP([0,\infty))$ は RCSP と書く.任意の $M=\{M_t\mid t\in I\}, N=\{N_t\mid t\in I\}\in RCSP(I)$ に対し,

$$\{M_t = N_t, \ \forall t \in I\} = \begin{cases} \bigcap_{r \in (I \cap \mathbf{Q}) \cup \{\sup I\}} \{M_r = N_r\}, & (\sup I \in I), \\ \bigcap_{r \in I \cap \mathbf{Q}} \{M_r = N_r\}, & (\sup I \notin I) \end{cases}$$

となるから $\{M_t = N_t, \forall t \in I\}$ は可測であり、このとき、

$$M \sim N \iff P(M_t = N_t, \ \forall t \in I) = 1$$
 (1.21)

により同値関係~が定まる.

 $^{^{*9}}$ この場合区間は $[a,b],(a,b),(a,b),(a,b),(a,\infty),(0 \le a < b < \infty)$ のいずれかと考える.

Definition 4.4 修正 -

Let $I \subset [0, \infty)$ be an interval. An adapted process $A = \{A_t, \mathscr{F}_t \mid t \in I\}$ is called increasing if for all $\omega \in \Omega$ we have

- (a) $A_0(\omega) = 0$
- (b) $t \mapsto A_t(\omega)$ is nondecreasing, right-continuous function,

and $E(A_t) < \infty$ holds for every $t \in I$. An increasing process is called integrable if $E(A_\infty) < \infty$, where $A_\infty = \lim_{t \to \sup I} A_t$. Since A is nondecreasing, $A_\infty = A_{(\sup I)^-}$ if $\sup I \in I$.

- Definition 4.5 修正 -

Let $I \subset [0, \infty)$ be an interval and $\alpha := \inf I$. An increasing processs $A = \{A_t, \mathscr{F}_t \mid t \in I\}$ is called natural if for every bounded, *RCLL* martingale $\{M_t, \mathscr{F}_t \mid t \in I\}$ we have

$$E\int_{(\alpha,t]} M_s \ dA_s = E\int_{(\alpha,t]} M_{s-} \ dA_s, \quad \text{for every } t \in (\alpha,\infty) \cap I.$$

Let us denote the subset of RCSP(I) as

$$NAT(I) := \{ A \in RCSP(I) \mid \text{natural } \}, \quad NAT := NAT([0, \infty)) \}$$

and the equivalent class of $A \in NAT$ in the meaning of (1.21) as $[A]_{NAT} \subset NAT$.

プロセスが RCLL とは全てのパスが RCLL であるということである。Theorem 3.8 によれば右連続な劣マルチンゲールは a.e. のパスが RCLL であるから,(1.21) の意味で同値である。A も全てのパスが右連続かつ単調非減少であるから,全ての $\omega \in \Omega$ に対し $\int_{(0,t]} M_s(\omega) \, dA_s(\omega)$ と $\int_{(0,t]} M_{s-}(\omega) \, dA_s(\omega)$ が定義される。たぶん余計な煩雑さを回避できる。

- RCLL なパスの不連続点は高々可算個 -

(S,d) を距離空間とする. 写像 $f:[0,\infty)\longrightarrow S$ について各点 $t\in[0,\infty)$ で右連続かつ各点 $t\in(0,\infty)$ で左極限が存在するとき,f の不連続点は存在しても高々可算個である.

証明. 各点 t>0 における f の左極限を f(t-) と書けば

$$f$$
 が $t \in (0, \infty)$ で不連続 \Leftrightarrow $d(f(t), f(t-)) > 0$

が成立するから、任意にT > 0を選び固定して

$$D(n) := \left\{ t \in (0,T] \mid \frac{1}{n+1} \le d(f(t), f(t-)) < \frac{1}{n} \right\}, \quad E(n) := \left\{ t \in (0,T] \mid n \le d(f(t), f(t-)) < n+1 \right\}$$

とおけば

となる. このとき D(n), E(n) は全て有限集合である. 実際, 或る n に対し D(n) が無限集合なら

$$\{t_k\}_{k=1}^{\infty} \subset D(n), \quad t_k \neq t_j \ (k \neq j)$$

を満たす可算集合が存在し、[0,T] のコンパクト性より或る部分列 $\left(t_{k_m}\right)_{m=1}^{\infty}$ は或る $y\in[0,T]$ に収束する. y=0 の場合、右連続の仮定より $1/2(n+1)>\epsilon>0$ に対し或る $\delta>0$ が存在して

$$d(f(0), f(t)) < \epsilon$$
, $(\forall 0 < t < \delta)$

が成り立つが、一方で $0 < t_{k_m} < \delta$ を満たす t_{k_m} が存在して

$$\frac{1}{n+1} - \epsilon < d(f(t_{k_m}), f(t_{k_m})) - d(f(0), f(t_{k_m})) \le d(f(0), f(t_{k_m})) < \epsilon$$

となり矛盾が生じる. y > 0 の場合も、 $1/2(n+1) > \epsilon > 0$ に対し或る $\delta > 0$ が存在して

$$d(f(y-),f(t))<\epsilon,\quad (\forall t\in (y-\delta,y))$$

となるが、f が y で右連続であるから (或は y = T のとき) $y - \delta < t_{k_m} \le y$ を満たす t_{k_m} が存在して

$$\frac{1}{n+1} - \epsilon < d(f(t_{k_m}-), f(t_{k_m})) - d(f(t_{k_m}-), f(y-)) \le d(f(y-), f(t_{k_m})) < \epsilon$$

が従い矛盾が生じる. よって任意の $n \ge 1$ に対して D(n) は有限集合であり、同様に E(n) も有限集合であるから D_T は高々可算集合である. f の不連続点の全体は $\bigcup_{T=1}^{\infty} D_T$ に一致するから高々可算個である.

- Remarks 4.6 (i) 修正 -

If A is an increasing and X a measurable process, then with $\omega \in \Omega$ fixed, the sample path $\{X_t(\omega) \mid 0 \le t < \infty\}$ is a measurable function from $[0, \infty)$ into \mathbf{R} . It follows that the Lebesgue-Stieltjes integrals

$$I_t^{\pm}(\omega) \coloneqq \int_{(0,t]} X_s^{\pm}(\omega) \, dA_s(\omega)$$

are well defined. If X is bounded, right-continuous and adapted to the filtration (\mathscr{F}_t) , then I is finite, right-continuous and (\mathscr{F}_t) -progressively measurable.

証明. X が $\mathcal{B}([0,\infty))\otimes \mathcal{F}/\mathcal{B}(\mathbf{R})$ -可測なら、補題 A.10.1 (P. 289) より $[0,\infty)\ni t\longmapsto X_t(\omega)$ は $\mathcal{B}([0,\infty))/\mathcal{B}(\mathbf{R})$ -可測である。また全ての $\omega\in\Omega$ に対し $t\longmapsto A_t(\omega)$ は右連続非減少であるから

$$\mu_{\omega}((a,b]) = A_b(\omega) - A_a(\omega), \quad (\forall (a,b] \subset [0,\infty)), \quad \mu_{\omega}(\{0\}) = 0$$

を満たす $([0,\infty),\mathcal{B}([0,\infty)))$ 上の σ-有限測度が唯一つ存在して

$$I_t^{\pm}(\omega) = \int_{(0,t]} X_s^{\pm}(\omega) \, dA_s(\omega) \coloneqq \int_{(0,t]} X_s^{\pm}(\omega) \, \mu_{\omega}(ds), \quad (0 < t < \infty)$$

及び $I_t\coloneqq I_t^+-I_t^-$ が定義される. 特に $\sup_{s\in(0,t]}|X_s^\pm|\leq B<\infty$ なら

$$\left|I_t^{\pm}\right| \leq BA_t$$

となるから I_t^\pm は有限確定する.X が有界かつ右連続 (\mathscr{F}_t) -適合であるとき,t>0 を固定し $t_j^{(n)}\coloneqq tj/2^n$ として

$$X_s^{(n)\pm} \coloneqq X_0 1\!\!1_{\{0\}}(s) + \sum_{i=0}^{2^n-1} X_{t_{j+1}^{(n)}} 1\!\!1_{\left(t_j^{(n)}, t_{j+1}^{(n)}\right]}(s)$$

とおけば右連続性より $X_s^{(n)\pm} \longrightarrow X_s^{\pm}$, $(\forall s \in [0,t])$ が成立し、かつ

$$I_t^{(n)\pm} \coloneqq \int_{(0,t]} X_s^{(n)\pm} \, dA_s = \sum_{j=0}^{2^n-1} X_{t_{j+1}^{(n)}} \left(A_{t_j^{(n)}} - A_{t_{j+1}^{(n)}} \right)$$

となり $I_t^{(n)\pm}$ の $\mathscr{F}_t/\mathscr{B}(\mathbf{R})$ -可測性が得られる. X が有界であるから Lebesgue の収束定理より

$$I_t^{\pm} = \lim_{n \to \infty} \int_{(0,t]} X_s^{(n)\pm} dA_s = \lim_{n \to \infty} I_t^{(n)\pm}$$

が成り立ち,定理 A.7.3 より I_t^\pm の $\mathscr{F}_t/\mathscr{B}(\mathbf{R})$ -可測性が従う.また t < T 及び $\{t_n\}_{n=1}^\infty \subset (t,T]$, $t_n \downarrow t$ に対して,Lebesgue の収束定理より

$$\lim_{n\to\infty}I_{t_n}^{\pm}=\lim_{n\to\infty}\int_{(0,T]}\mathbb{1}_{(0,t_n]}(s)X_s^{\pm}\,dA_s=\int_{(0,T]}\mathbb{1}_{(0,t]}(s)X_s^{\pm}\,dA_s=I_t^{\pm}$$

が成立し $t \mapsto I_t(\omega)$ の右連続性が出る. I は右連続 (\mathscr{F}_t) -適合過程であるから (\mathscr{F}_t) -発展的可測である.

- Remark 4.6 (ii) 修正 -

Every continuous, increasing process is natural. Indeed then, for every $\omega \in \Omega$ we have

$$\int_{(0,t]} (M_s(\omega) - M_{s-}(\omega)) dA_s(\omega) = 0 \quad \text{for every } 0 < t < \infty,$$

because every path $\{M_s(\omega) \mid 0 \le s < \infty\}$ has only countably many discontinuities (Theorem 3.8(v)).

証明. RCLL なパスの不連続点は高々可算個であり、連続な A で作る測度に対し一点集合は零集合となる.

·Iemma 47修正

If *A* is an increasing process and $\{M_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is a bounded, *RCLL* martingale, then

$$E(M_t A_t) = E \int_{(0,t]} M_s \, dA_s, \quad (\forall t > 0).$$
 (1.22)

証明. $t_j^{(n)} \coloneqq jt/2^n$, $(j=0,1,\cdots,2^n)$ として

$$M_s^{(n)} := \sum_{i=1}^{2^n} \mathbb{1}_{\left[t_{j-1}^{(n)}, t_j^{(n)}\right]}(s) M_{t_j^{(n)}}, \quad (\forall s \in (0, t])$$

とおけば、M のパスの右連続性より任意の $s \in (0,t]$ で $\lim_{n \to \infty} M_s^{(n)} = M_s$ となる. また

$$E\left[A_{t_{j-1}^{(n)}}\left(M_{t_{j}^{(n)}}-M_{t_{j-1}^{(n)}}\right)\right]=E\left[A_{t_{j-1}^{(n)}}E\left(M_{t_{j}^{(n)}}-M_{t_{j-1}^{(n)}}\right|\mathscr{F}_{t_{j-1}}\right)\right]=0,\quad (j=1,\cdots,2^n)$$

が満たされるから任意の $n \ge 1$ で

$$\begin{split} E \int_{(0,t]} M_s^{(n)} \, dA_s &= E \sum_{j=1}^{2^n} M_{t_j^{(n)}} \left(A_{t_j^{(n)}} - A_{t_{j-1}^{(n)}} \right) \\ &= E(M_t A_t) - \sum_{j=1}^{2^n} E \left[A_{t_{j-1}^{(n)}} \left(M_{t_j^{(n)}} - M_{t_{j-1}^{(n)}} \right) \right] \\ &= E(M_t A_t) \end{split}$$

が成立する. 仮定より $\sup_{s\geq 0}|M_s|\leq b<\infty$ を満たす b が存在して

$$\left| \int_{(0,t]} M_s^{(n)} dA_s \right| \le b(A_t - A_0) = bA_t, \quad (\forall n \ge 1)$$

となり、 A_t の可積分性と Lebesgue の収束定理より

$$\lim_{n \to \infty} E \int_{(0,t]} M_s^{(n)} dA_s = E \lim_{n \to \infty} \int_{(0,t]} M_s^{(n)} dA_s = E \int_{(0,t]} M_s dA_s$$

が従い (1.22) を得る.

- Definition 4.8 修正 -

Let us consider the class $\mathscr{S}(\mathscr{S}_a)$ such as

$$\mathscr{S} \coloneqq \left\{ T : \text{stopping time of } (\mathscr{F}_t) \mid \quad \textcolor{red}{T} < \infty \right\}, \quad \mathscr{S}_a \coloneqq \left\{ T : \text{stopping time of } (\mathscr{F}_t) \mid \quad \textcolor{red}{T} \leq a \right\}, \ (a > 0).$$

The right-continuous process $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is said to be of class D, if the family $\{X_T\}_{T \in \mathscr{S}}$ is uniformly integrable; of class DL, if the family $\{X_T\}_{T \in \mathscr{S}_a}$ is uniformly integrable, for every $0 < a < \infty$.

 $T \in \mathcal{S}(\text{resp. } \mathcal{S}_a)$, then $T(\omega) < \infty$ (resp. $\leq a$) for all $\omega \in \Omega$, not P-a.s. ω .

- Problem 4.9 修正 -

 $X = \{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is a right-continuous submartingale. Show that under any one of the following conditions, X is of class DL.

- (a) $X_t \ge 0$ a.s. for every $t \ge 0$.
- (b) X has the special form

$$X_t = M_t + A_t, \quad 0 \le t < \infty$$

suggested by the Doob-Meyer decomposition, where $\{M_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is a martingale and $\{A_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is an increasing process.

Show also that if \mathcal{F}_0 contains all the *P*-negligible events in \mathcal{F} and X is a uniformly integrable martingale, then it is of class D.

証明.

(a) 任意の $T \in \mathscr{S}_a$ に対して X_T は $\mathscr{F}_T/\mathscr{B}(\mathbf{R})$ -可測であるから (Proposition 2.18 修正),任意抽出定理より

$$\int_{\{X_T > \lambda\}} X_T dP \le \int_{\{X_T > \lambda\}} X_a dP, \quad (\forall \lambda > 0)$$

及び

$$P(X_T > \lambda) \le \frac{EX_T}{\lambda} \le \frac{EX_a}{\lambda}, \quad (\forall \lambda > 0)$$

が成立する. X_a が可積分であるから

$$\sup_{T \in \mathcal{S}_a} \int_{\{X_T > \lambda\}} X_T dP \longrightarrow 0 \quad (\lambda \longrightarrow \infty)$$

となり、 $(X_T)_{T \in \mathscr{S}_a}$ の一様可積分性が得られる.

(b) a > 0 とすれば、任意抽出定理より

$$M_T = E(M_a \mid \mathscr{F}_T)$$
, a.s. P , $(\forall T \in \mathscr{S}_a)$

が成り立つから、定理 A.16.3 (P. 321) より $(M_T)_{T \in \mathscr{S}_a}$ は一様可積分である.このとき

$$\begin{split} \int_{\{|X_T| > \lambda\}} |X_T| \; dP &\leq 2 \int_{\{|M_T| > \lambda/2\}} |M_T| \; dP + 2 \int_{\{|A_T| > \lambda/2\}} |A_T| \; dP \\ &\leq 2 \sup_{T \in \mathcal{S}_a} \int_{\{|M_T| > \lambda/2\}} |M_T| \; dP + 2 \int_{\{A_a > \lambda/2\}} A_a \; dP \\ &\longrightarrow 0 \quad (\lambda \longrightarrow \infty) \end{split}$$

が従い $(X_T)_{T \in \mathscr{S}_a}$ の一様可積分性が出る.

Xが一様可積分なマルチンゲールであるとき、Problem 3.20 より

$$X_t = E(X_{\infty} | \mathscr{F}_t)$$
, a.s. P , $(\forall t \ge 0)$

を満たす $\mathscr{F}_{\infty}/\mathscr{B}(\mathbf{R})$ -可測可積分関数 X_{∞} が存在し、任意抽出定理より

$$X_T = E(X_{\infty} | \mathscr{F}_T)$$
, a.s. P , $(\forall T \in \mathscr{S})$

が成り立つから X はクラス DL に属する.

- Problem 4.11 修正

Let (X, \mathscr{F}, μ) be a measure space and $\{f_n\}_{n=1}^{\infty}$ be a sequence of integrable complex functions on (X, \mathscr{F}, μ) which converges weakly in L^1 to an integrable complex function f. Then for each σ -field $\mathscr{G} \subset \mathscr{F}$ where $(X, \mathscr{G}, \mu|_{\mathscr{G}})$ is σ -finite, the sequence $E(f_n | \mathscr{G})$ converges to $E(f | \mathscr{G})$ weakly in L^1 .

証明. $\nu\coloneqq\mu|_{\mathscr{G}}$ とおく. 定理 $\mathbf{A}.14.4$ より任意の $g\in L^\infty(\mu)$ と $F\in L^1(\mu)$ に対して

$$\begin{split} \int_X gE\left(F \mid \mathcal{G}\right) \; d\mu &= \int_X E\left(gE\left(F \mid \mathcal{G}\right) \middle| \mathcal{G}\right) \; dv \\ &= \int_X E\left(g \mid \mathcal{G}\right) E\left(F \mid \mathcal{G}\right) \; dv \\ &= \int_X E\left(E\left(g \mid \mathcal{G}\right) F \middle| \mathcal{G}\right) \; dv \\ &= \int_X E\left(g \mid \mathcal{G}\right) F \; d\mu \end{split}$$

と $\|E\left(g\left|\mathscr{G}\right)\|_{L^{\infty}(\nu)} \le \|g\|_{L^{\infty}(\mu)}$ が成り立ち

$$\lim_{n\to\infty}\int_{X}gE\left(f_{n}\left|\mathcal{G}\right\rangle \ d\mu=\lim_{n\to\infty}\int_{X}E\left(g\left|\mathcal{G}\right\rangle f_{n}\ d\mu=\int_{X}E\left(g\left|\mathcal{G}\right\rangle f\ d\mu=\int_{X}gE\left(f\left|\mathcal{G}\right\rangle \ d\mu$$

となるから $E(f_n|\mathcal{G})$ は $E(f|\mathcal{G})$ に $L^1(\mu)$ で弱収束する.

Lemma for theorem 4.10 -

Let $I \subset [0, \infty)$ be an interval and $\{M_t, \mathscr{F}_t \mid t \in I\}$ be a right-continuous martingale, where the filtration $(\mathscr{F}_t)_{t \in I}$ is usual. If M is a difference of two natural processes $\{A_t, \mathscr{F}_t \mid t \in I\}$ and $\{B_t, \mathscr{F}_t \mid t \in I\}$, namely

$$M_t = A_t - B_t; \quad \forall t \in I,$$

then $P \{ M_t = 0 \mid \forall t \in I \} = 1$.

証明. $a_0 := \inf I$ として任意に $a \in I \cap (a_0, \infty)$ を取り,

$$t_j^{(n)} := a_0 + \frac{j}{2^n}(a - a_0), \quad (j = 0, 1, \dots, 2^n)$$

とおく.任意の有界かつ RCLL なマルチンゲール $\xi = \{\xi_t, \mathscr{F}_t \mid t \in I\}$ に対し

$$\xi_t^{(n)} := \sum_{j=1}^{2^n} \mathbb{1}_{\left[t_{j-1}^{(n)}, t_j^{(n)}\right]}(t) \, \xi_{t_{j-1}^{(n)}}, \quad (\forall t \in (a_0, a])$$

とおけば、任意の $\omega \in \Omega$ と $t \in (a_0, a]$ で

$$\lim_{n \to \infty} \xi_t^{(n)}(\omega) = \xi_{t-}(\omega)$$

が満たされるから Lebesgue の収束定理より

$$\lim_{n \to \infty} \int_{(a_0, a]} \xi_t^{(n)}(\omega) \, dA_t(\omega) = \int_{(a_0, a]} \xi_{t-}(\omega) \, dA_t(\omega),$$

$$\lim_{n \to \infty} \int_{(a_0, a]} \xi_t^{(n)}(\omega) \, dB_t(\omega) = \int_{(a_0, a]} \xi_{t-}(\omega) \, dB_t(\omega)$$

が成立する. また A_a , B_a の可積性と ξ の有界性により、再び Lebesgue の収束定理を適用すれば

$$E\left[\xi_{a}\left(A_{a}-B_{a}\right)\right] = E\left[\xi_{a}A_{a}\right] - E\left[\xi_{a}B_{a}\right] = E\int_{(a_{0},a]} \xi_{t-} dA_{t} - E\int_{(a_{0},a]} \xi_{t-} dB_{t}$$

$$= E\left[\lim_{n \to \infty} \int_{(a_{0},a]} \xi_{t}^{(n)} dA_{t}\right] - E\left[\lim_{n \to \infty} \int_{(a_{0},a]} \xi_{t}^{(n)} dB_{t}\right]$$

$$= \lim_{n \to \infty} E\left[\sum_{j=1}^{2^{n}} \xi_{t_{j-1}^{(n)}} \left(A_{t_{j}^{(n)}} - A_{t_{j-1}^{(n)}}\right)\right] - \lim_{n \to \infty} E\left[\sum_{j=1}^{2^{n}} \xi_{t_{j-1}^{(n)}} \left(B_{t_{j}^{(n)}} - B_{t_{j-1}^{(n)}}\right)\right]$$

$$= \lim_{n \to \infty} E\left[\sum_{j=1}^{2^{n}} \xi_{t_{j-1}^{(n)}} \left(M_{t_{j}^{(n)}} - M_{t_{j-1}^{(n)}}\right)\right]$$

が従い、このとき右辺は M のマルチンゲール性より

$$E\xi_{t_{j-1}^{(n)}}\left(M_{t_{j}^{(n)}}-M_{t_{j-1}^{(n)}}\right)=E\left[E\left(\xi_{t_{j-1}^{(n)}}\left(M_{t_{j}^{(n)}}-M_{t_{j-1}^{(n)}}\right)\middle|\mathscr{F}_{t_{j-1}^{(n)}}\right)\right]=E\left[\xi_{t_{j-1}^{(n)}}E\left(M_{t_{j}^{(n)}}-M_{t_{j-1}^{(n)}}\middle|\mathscr{F}_{t_{j-1}^{(n)}}\right)\right]=0$$

となるから

$$E\left[\xi_a\left(A_a - B_a\right)\right] = 0$$

が得られる. ξ を有界マルチンゲール $\{E(\operatorname{sgn}(A_a - B_a) | \mathcal{F}_t), \mathcal{F}_t | t \in I\}$ の RCLL な修正とすれば (usual 条件より Theorem 3.13 を適用)

$$0 = E[\xi_a (A_a - B_a)] = E[\operatorname{sgn}(A_a - B_a)(A_a - B_a)] = E[A_a - B_a]$$

が成り立ち、a > 0 の任意性及び A, B のパスの右連続性より

$$P\left[\left\{A_{t}=B_{t}\mid t\in I\right\}\right]=\begin{cases}P\left(\bigcap_{r\in\left(I\cap\mathbf{Q}\right)\cup\left\{\sup I\right\}}\left\{A_{r}=B_{r}\right\}\right)=1,&\left(\sup I\in I\right),\\P\left(\bigcap_{r\in I\cap\mathbf{Q}}\left\{A_{r}=B_{r}\right\}\right)=1,&\left(\sup I\notin I\right)\end{cases}$$

が出る.

- Theorem 4.10 (Doob-Meyer Decomposition) 修正 –

Let $\{\mathscr{F}_t\}$ satisfy the usual conditions. If the right-continuous submartingale $X = \{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is of class DL, then there exists a unique $[A]_{NAT}$ where X - A' is right-continuous martingale for every $A' \in [A]_{NAT}$. Further, if X is of class D, then M is a uniformly integrable martingale and A is integrable.

証明.

第一段 $[A]_{NAT}$ の一意性を示す.二つの右連続マルチンゲール M,M' とナチュラルな A,A' により

$$X_t = M_t + A_t = M'_t + A'_t, \quad \forall t > 0$$

と書けるとき,

$$B = \left\{ B_t := A_t - A_t' = M_t' - M_t, \mathcal{F}_t \mid 0 \le t < \infty \right\}$$

は Lemma の仮定を満たすマルチンゲールとなるから $[A]_{NAT} = [A']_{NAT}$ が従う.

第二段 任意の区間 [0,a] 上で分解の存在を示せば $[0,\infty)$ での分解が得られる、実際任意の $n \ge 1$ に対し

$$X_t = M_t^n + A_t^n, \quad (t \in [0, n])$$

と分解されるなら,m > n に対して

$$M_t^n + A_t^n = X_t = M_t^m + A_t^m, \quad (t \in [0, n])$$

となり、Lemma より或る P-零集合 $E_{n,m}$ が存在して、任意の $\omega \in \Omega \setminus E_{n,m}$ で

$$A_t^n(\omega) = A_t^m(\omega), \quad (\forall t \in [0, n])$$

が成立し、かつ $[0,n) \ni t \longmapsto A^n_t(\omega)$ が右連続非減少となる. ここで

$$E := \bigcup_{\substack{n,m \in \mathbf{N} \\ n < m}} E_{n,m}$$

により P-零集合を定めれば、任意の $\omega \in \Omega \backslash E$ 及び $t \geq 0$ に対して

$$A_t^n(\omega) = A_t^m(\omega), \quad (\forall m > n > t)$$

となり $\lim_{n\to\infty} A_t^n(\omega)$ が確定する. usual 条件より $E\in\mathcal{F}_0$ だから $A_t^n\mathbb{1}_{\Omega\setminus E}$ (n>t) は $\mathcal{F}_t/\mathcal{B}(\mathbf{R})$ -可測であり,

$$A_t := \lim_{n \to \infty} A_t^n \mathbb{1}_{\Omega \setminus E}, \quad (\forall t \ge 0)$$

で A_t を定めれば A_t は $\mathcal{F}_t/\mathcal{B}(\mathbf{R})$ -可測となる. また任意の $n \geq 1$ で

$$A_t = A_t^n \mathbb{1}_{\Omega \setminus E}, \quad (\forall t \in [0, n))$$

が成り立つから A_t は可積分であり, $[0,\infty)$ $\ni t \mapsto A_t(\omega)$ は右連続かつ非減少である. $\{\xi_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ を有界 RCLL マルチンゲールとすれば任意の t > 0 で

$$E\int_{(0,t]} \xi_s \, dA_s = E\int_{(0,t]} \xi_s \, dA_s^n = E\int_{(0,t]} \xi_{s-} \, dA_s^n = E\int_{(0,t]} \xi_{s-} \, dA_s, \quad (t < n)$$

が成立する.

$$M := X - A$$

とおけば $(M_t)_{t\geq 0}$ は (\mathscr{F}_t) -適合かつ可積分であり、任意の $0\leq s < t$ 及び t < n に対して

$$M_t = X_t - A_t^n \mathbb{1}_{\Omega \setminus E} = M_t^n$$
, $M_s = X_s - A_s^n \mathbb{1}_{\Omega \setminus E} = M_s^n$, a.s. P

となるから $E(M_t | \mathscr{F}_s) = M_s$ a.s. P が満たされる. 次段以降で [0,a] 上で分解の存在を示す.

第三段 $\{Z_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ を $\{E(X_a | \mathscr{F}_t), \mathscr{F}_t \mid 0 \le t < \infty\}$ の右連続な修正として (Theorem 3.13),

$$Y_t := X_t - Z_t, \quad (t \in [0, a])$$

により非正値の劣マルチンゲール $\{Y_t, \mathcal{F}_t \mid 0 \le t \le a\}$ を定め

$$\left\{Y_{t_j^{(n)}}, \mathscr{F}_{t_j^{(n)}} \mid t_j^{(n)} = \frac{j}{2^n} a, \ j = 0, 1, \cdots, 2^n\right\}, \quad n = 1, 2, \cdots,$$

で離散化すれば、離散時の Doob 分解 (P. 40) より

$$\begin{split} A_0^{(n)} &\coloneqq 0, \quad A_{t_j^{(n)}}^{(n)} \coloneqq \sum_{k=0}^{j-1} E\left(Y_{t_{k+1}^{(n)}} - Y_{t_k^{(n)}} \,\middle|\, \mathscr{F}_{t_k^{(n)}}\right);\\ M_{t_j^{(n)}}^{(n)} &\coloneqq Y_{t_j^{(n)}} - A_{t_j^{(n)}}^{(n)} \end{split}$$

により可予測な増大過程 $A^{(n)}$ とマルチンゲール $M^{(n)}$ に分解され, $Y_a=0$ a.s. P であるから

$$Y_{t_{j}^{(n)}} = A_{t_{j}^{(n)}}^{(n)} + M_{t_{j}^{(n)}}^{(n)} = A_{t_{j}^{(n)}}^{(n)} + E\left(M_{a}^{(n)} \middle| \mathscr{F}_{t_{j}^{(n)}}\right) = A_{t_{j}^{(n)}}^{(n)} - E\left(A_{a}^{(n)} \middle| \mathscr{F}_{t_{j}^{(n)}}\right), \quad \text{a.s. } P, \quad j = 0, 1, \dots, 2^{n}$$

となる.

第四段 $(Y_T)_{T \in \mathscr{S}_a}$ が一様可積分であることを示す. 先ず任意の $T \in \mathscr{S}_a$ に対し

$$Z_T = E(X_a \mid \mathscr{F}_T), \quad \text{a.s. } P \tag{1.23}$$

が成立する. 実際, 任意抽出定理より

$$\int_{A} Z_{T} dP = \int_{A} Z_{a} dP = \int_{A} X_{a} dP = \int_{A} E(X_{a} | \mathscr{F}_{T}) dP, \quad (\forall A \in \mathscr{F}_{T})$$

が従い (1.23) が得られる. $(E(X_a \mid \mathscr{F}_T))_{T \in \mathscr{S}_a}$ は定理 A.16.3 より一様可積分であるから $(Z_T)_{T \in \mathscr{S}_a}$ も一様可積分であり,また X がクラス DL に属しているので $(Y_T)_{T \in \mathscr{S}_a}$ の一様可積分性が従う.

であり、また X がクラス DL に属しているので $(Y_T)_{T\in\mathscr{S}_a}$ の一様可積分性が従う. 第五段 $\left(A_a^{(n)}\right)_{n=1}^\infty$ が一様可積分であることを示す.任意に $\lambda>0$ を取り

$$T_{\lambda}^{(n)} \coloneqq a \wedge \min \left\{ t_{j-1}^{(n)} \mid \quad A_{t_{j}^{(n)}}^{(n)} > \lambda \text{ for some } j, \ 1 \leq j \leq 2^{n} \right\}$$

とおけば、 $A^{(n)}$ の可予測性より任意の $t \ge 0$ で

$$\left\{T_{\lambda}^{(n)} \leq t\right\} = \bigcup_{j: t_{j-1}^{(n)} \leq t} \left\{T_{\lambda}^{(n)} = t_{j-1}^{(n)}\right\} = \bigcup_{j: t_{j-1}^{(n)} \leq t} \left[\bigcap_{k=1}^{j-1} \left\{A_{t_k^{(n)}}^{(n)} \leq \lambda\right\}\right] \cap \left\{A_{t_j^{(n)}}^{(n)} > \lambda\right\} \in \mathscr{F}_t$$

が成り立つから $T_{\lambda}^{(n)} \in \mathcal{S}_a$ が満たされ,また

$$\mu < \lambda \implies \left\{ T_{\lambda}^{(n)} < a \right\} \subset \left\{ T_{\mu}^{(n)} < a \right\} \tag{1.24}$$

及び

$$T_{\lambda}^{(n)}(\omega) < a \implies A_{T_{\lambda}^{(n)}}^{(n)}(\omega) \le \lambda$$
 (1.25)

も満たされる.

$$N \coloneqq \bigcup_{k=1}^{2^n} \left\{ E\left(Y_{t_k^{(n)}} - Y_{t_{k-1}^{(n)}} \,\middle|\, \mathscr{F}_{t_{k-1}^{(n)}}\right) < 0 \right\}$$

により P-零集合を定めれば, $\Omega \backslash N$ の上で $A_0^{(n)} \leq A_{t_i^{(n)}}^{(n)} \leq \cdots \leq A_a^{(n)}$ となるから

$$\left\{T_{\lambda}^{(n)} < a\right\} \cap (\Omega \backslash N) = \left\{A_a^{(n)} > \lambda\right\} \cap (\Omega \backslash N) \tag{1.26}$$

が従う.任意に $\Lambda \in \mathscr{F}_{T_{\lambda}^{(n)}}$ を取れば, $\Lambda \cap \left\{T_{\lambda}^{(n)} = t_{j-1}^{(n)}\right\} \in \mathscr{F}_{t_{i-1}^{(n)}}$, $(j=1,\cdots,2^n)$ より

$$\int_{\Lambda} Y_{T_{\lambda}^{(n)}} dP = \sum_{j=1}^{2^{n}} \int_{\Lambda \cap \left\{ T_{\lambda}^{(n)} = t_{j-1}^{(n)} \right\}} Y_{t_{j-1}^{(n)}} dP = \sum_{j=1}^{2^{n}} \int_{\Lambda \cap \left\{ T_{\lambda}^{(n)} = t_{j-1}^{(n)} \right\}} A_{t_{j-1}^{(n)}}^{(n)} - E\left(A_{a}^{(n)} \middle| \mathscr{F}_{t_{j-1}^{(n)}} \right) dP$$

$$= \sum_{j=1}^{2^{n}} \int_{\Lambda \cap \left\{ T_{\lambda}^{(n)} = t_{j-1}^{(n)} \right\}} A_{T_{\lambda}^{(n)}}^{(n)} - A_{a}^{(n)} dP$$

$$= \int_{\Lambda} A_{T_{\lambda}^{(n)}}^{(n)} - A_{a}^{(n)} dP \qquad (1.27)$$

が成立するから、(1.25) と (1.26) と併せて

$$\int_{\left\{A_{a}^{(n)} > \lambda\right\}} A_{a}^{(n)} \; dP = \int_{\left\{T_{\lambda}^{(n)} < a\right\}} A_{\tau_{\lambda}^{(n)}}^{(n)} \; dP - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP \leq \lambda P\left(T_{\lambda}^{(n)} < a\right) + \int_{\left$$

となる. 一方で (1.24), (1.25), (1.26), (1.27) より

$$\int_{\left\{T_{\lambda/2}^{(n)} < a\right\}} Y_{T_{\lambda/2}^{(n)}} dP = \int_{\left\{T_{\lambda/2}^{(n)} < a\right\}} A_{T_{\lambda/2}^{(n)}}^{(n)} - A_a^{(n)} dP$$

$$\leq \int_{\left\{T_{\lambda}^{(n)} < a\right\}} A_{T_{\lambda/2}^{(n)}}^{(n)} - A_a^{(n)} dP$$

$$\leq -\frac{\lambda}{2} P\left(T_{\lambda}^{(n)} < a\right)$$

が成立するから

$$\int_{\left\{A_a^{(n)} > \lambda\right\}} A_a^{(n)} \; dP \leq -2 \int_{\left\{T_{\lambda/2}^{(n)} < a\right\}} Y_{T_{\lambda/2}^{(n)}} \; dP - \int_{\left\{T_{\lambda}^{(n)} < a\right\}} Y_{T_{\lambda}^{(n)}} \; dP$$

となる. ここで

$$P\left(T_{\lambda}^{(n)} < a\right) = P\left(A_a^{(n)} > \lambda\right) \le \frac{EA_a^{(n)}}{\lambda} = \frac{-EM_a^{(n)}}{\lambda} = \frac{-EM_0^{(n)}}{\lambda} = \frac{-EY_0}{\lambda}$$

より $P\left(T_{\lambda}^{(n)} < a\right)$ は λ のみに依存して 0 に収束し,定理 A.16.1 と $(Y_T)_{T \in \mathscr{S}_a}$ の一様可積分性により

$$\sup_{n \in \mathbb{N}} \int_{\left\{A_a^{(n)} > \lambda\right\}} A_a^{(n)} \ dP \leq 2 \sup_{n \in \mathbb{N}} \int_{\left\{T_{\lambda/2}^{(n)} < a\right\}} \left| Y_{T_{\lambda/2}^{(n)}} \right| \ dP + \sup_{n \in \mathbb{N}} \int_{\left\{T_{\lambda}^{(n)} < a\right\}} \left| Y_{T_{\lambda}^{(n)}} \right| \ dP \longrightarrow 0 \quad (\lambda \longrightarrow \infty)$$

が従い $\left(A_a^{(n)}\right)_{n=1}^{\infty}$ が一様可積分性が出る.

第六段 Dunford-Pettis の定理より $\left(A_a^{(n)}\right)_{n=1}^\infty$ の或る部分列 $\left(A_a^{(n_k)}\right)_{k=1}^\infty$ は $L^1(P)$ で弱収束する.つまり或る $A_a\in L^1(P)$ が存在して任意の $\xi\in L^\infty(P)$ に対し

$$E\left(\xi A_a^{(n_k)}\right) \longrightarrow E(\xi A_a) \quad (k \longrightarrow \infty)$$

が成立する.

$$\Pi_n := \left\{ t_j^{(n)} \mid t_j^{(n)} = \frac{j}{2^n} a, \ j = 0, 1, \cdots, 2^n \right\}, \quad \Pi := \bigcup_{n=1}^{\infty} \Pi_n$$

とすれば、任意の $t\in\Pi$ に対し或る $K\geq 1$ が存在して $t\in\Pi_{n_k}$ $(\forall k>K)$ となり、Problem 4.11 より

$$E\left(\xi A_t^{(n_k)}\right) = E\xi\left\{Y_t + E\left(A_a^{(n_k)} \mid \mathscr{F}_t\right)\right\} \longrightarrow E\xi\left\{Y_t + E\left(A_a \mid \mathscr{F}_t\right)\right\} \quad (k > K, \ k \longrightarrow \infty)$$
 (1.28)

が成り立つから $A_t^{(n_k)}$ は $Y_t + E(A_a \mid \mathscr{F}_t)$ に弱収束する. ここで

$$\tilde{A}_t := Y_t + E(A_a \mid \mathscr{F}_t), \quad (t \in [0, a])$$

と定めれば $\{\tilde{A}_t, \mathscr{F}_t \mid 0 \le t \le a\}$ は劣マルチンゲールとなり、 $\{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ の右連続性より

$$[0,a] \ni t \longmapsto E[Y_t + E(A_a \mid \mathscr{F}_t)] = EX_t - EX_a + EA_a$$

は右連続であるから (Theorem 3.13), \tilde{A} の右連続な修正 $\{A_t, \mathscr{F}_t \mid 0 \le t \le a\}$ が得られる. 第七段 $t \longmapsto A_t(\omega)$ が a.s. に 0 出発かつ非減少であることを示す. 実際, $\xi = \mathrm{sgn}(A_0)$ として,(1.28) より

$$E|A_0| = E\xi A_0 = E\xi \tilde{A}_0 = \lim_{k \to \infty} E\xi A_0^{(n_k)} = 0$$

が成り立つから $A_0=0$ a.s. P が従う.また任意に $s,t\in\Pi$, (s< t) を取れば或る $K\geq 1$ が存在して $s,t\in\Pi_{n_k}$ $(\forall k>K)$ が満たされ, $A^{(n_k)}$ は増大過程であるから $\xi=1\!\!1_{\{A_s>A_t\}}$ として

$$E\xi(A_t-A_s)=E\xi\left(\tilde{A}_t-\tilde{A}_s\right)=\lim_{k\to\infty}E\xi\left(A_t^{(n_k)}-A_s^{(n_k)}\right)\geq 0$$

となり $P(A_s > A_t) = 0$ が成り立つ. $t \longmapsto A_t$ が右連続性であるから、P-零集合を

$$N := \left(\bigcup_{\substack{s,t \in \Pi \\ s < t}} \{A_s > A_t\}\right) \cup \{A_0 \neq 0\}$$

で定めれば $\Omega \backslash N$ 上で $t \longmapsto A_t$ は 0 出発非減少となり,N 上で $A \equiv 0$ と修正すれば A は増大過程となる. 第八段 A がナチュラルであることを示す. $\xi = \{\xi_t, \mathscr{F}_t \mid 0 \leq t \leq a\}$ を有界な RCLL マルチンゲールとすれば

$$\begin{split} E\xi_{a}A_{a}^{(n_{k})} &= E\left[\sum_{j=1}^{2^{n_{k}}} \xi_{t_{j-1}^{(n_{k})}} \left(A_{t_{j}^{(n_{k})}}^{(n_{k})} - A_{t_{j-1}^{(n_{k})}}^{(n_{k})}\right)\right] \\ &= E\left[\sum_{j=1}^{2^{n_{k}}} \xi_{t_{j-1}^{(n_{k})}} \left(Y_{t_{j}^{(n_{k})}} - Y_{t_{j-1}^{(n_{k})}}\right)\right] + E\left[\sum_{j=1}^{2^{n_{k}}} \xi_{t_{j-1}^{(n_{k})}} \left(E\left(A_{a}^{(n_{k})} \middle| \mathscr{F}_{t_{j}^{(n_{k})}}\right) - E\left(A_{a}^{(n_{k})} \middle| \mathscr{F}_{t_{j-1}^{(n_{k})}}\right)\right)\right] \\ &= E\left[\sum_{j=1}^{2^{n_{k}}} \xi_{t_{j-1}^{(n_{k})}} \left(A_{t_{j}^{(n_{k})}} - A_{t_{j-1}^{(n_{k})}}\right)\right] \end{split}$$

が任意の $k \ge 1$ で成り立ち (Proposition 4.3), $k \longrightarrow \infty$ として

$$E\xi_a A_a = E \int_{(0,a]} \xi_{s-} dA_s$$

が得られる。任意の $t \in (0,a]$ に対し $\xi^{(t)} = \left\{ \xi_s^{(t)} \coloneqq \xi_{t \wedge s}, \mathscr{F}_s \mid 0 \le s \le a \right\}$ も RCLL マルチンゲールであり $\xi_{s-}^{(t)} = \xi_{s-}, \quad (\forall s \in (0,t]),$ $\xi_{s-}^{(t)} = \xi_t, \quad (\forall s \in (t,a])$

より

$$E\xi_t A_t + E\xi_t (A_a - A_t) = E\xi_a^{(t)} A_a = E\int_{(0,a]} \xi_{s-}^{(t)} dA_s = E\int_{(0,t]} \xi_{s-} dA_s + E\xi_t (A_a - A_t)$$

となり

$$E\xi_t A_t = E \int_{(0,t]} \xi_{s-} dA_s, \quad (\forall t \in (0,a])$$

が成立する. よってAはナチュラルである.

第九段 $\{M_t := X_t - A_t, \mathscr{F}_t \mid 0 \le t \le a\}$ がマルチンゲールであることを示す。M の適合性と可積分性は X,A の それより従い,また任意に $0 \le s \le t \le a$ を取れば,任意の $A \in \mathscr{F}_s$ で

$$\int_{A} M_{s} dP = \int_{A} X_{s} - A_{s} dP = \int_{A} X_{s} - (Y_{s} - E(A_{a} \mid \mathscr{F}_{s})) dP$$

$$= \int_{A} X_{s} - (X_{s} - Z_{s} - E(A_{a} \mid \mathscr{F}_{s})) dP$$

$$= \int_{A} Z_{t} + E(A_{a} \mid \mathscr{F}_{t}) dP$$

$$= \int_{A} X_{t} - (X_{t} - Z_{t} - E(A_{a} \mid \mathscr{F}_{t})) dP$$

$$= \int_{A} M_{t} dP$$

が成立する.

Problem 4.13

Verify that a continuous, nonnegative submartingale is regular.

証明. Problem 4.9 より $(X_{T_n})_{n=1}^\infty$ は一様可積分であり,またパスの連続性より $X_{T_n} \longrightarrow X_T$ $(n \longrightarrow \infty)$ となるから,定理 A.16.2 より $\lim_{n\to\infty} EX_{T_n} = EX_T$ が成立する.

Theorem 4.14 修正 -

Suppose that $X = \{X_t \mid 0 \le t < \infty\}$ is a right-continuous submartingale of class DL with respect to the filtration $\{\mathcal{F}_t\}$, which satisfies the usual conitions, and let $[A]_{NAT}$ be of the Doob-Meyer decomposition of X. There exists a continuous version of A in $[A]_{NAT}$ if and only if X is regular.

証明.

第一段 A が連続であるとき,増大列 $\{T_n\}_{n=1}^\infty\subset\mathscr{S}_a$ と $T\coloneqq\lim_{n\to\infty}\in T_n\mathscr{S}_a$ に対し単調収束定理より

$$\lim_{n \to \infty} EA_{T_n} = E \lim_{n \to \infty} A_{T_n} = EA_T$$

が成立する. また任意抽出定理より

$$E(X_{T_n} - A_{T_n}) = E(X_T - A_T), \quad (\forall n \ge 1)$$

となるから

$$\lim_{n \to \infty} EX_{T_n} = \lim_{n \to \infty} E(X_{T_n} - A_{T_n}) + \lim_{n \to \infty} EA_{T_n} = E(X_T - A_T) + EA_T = EX_T$$

が従う.

第二段 以降 X がレギュラーであるとする.このとき任意の有界な停止時刻の増大列 (T_n) と $T:=\lim T_n$ に対し, X-A のマルチンゲール性と任意抽出定理,及び X のレギュラリティより

$$EA_{T_n} = EX_{T_n} - E(X_{T_n} - A_{T_n}) = EX_{T_n} - E(X_T - A_T)$$

$$\longrightarrow EX_T - E(X_T - A_T) = EA_T \quad (n \longrightarrow \infty)$$
(1.29)

が得られる. いま, 任意に $a \in \mathbb{N}$ を取り

$$\Pi_n := \left\{ t_j^{(n)} \mid t_j^{(n)} = \frac{j}{2^n} a, \ j = 0, 1, \cdots, 2^n \right\}, \quad \Pi := \bigcup_{n=1}^{\infty} \Pi_n$$

とおく. また任意に $\lambda \in \mathbb{N}$ を取り、各 $j=0,1,\cdots,2^n$ に対し

$$Y_t^{(n),j} := E\left(\lambda \wedge A_{t_{j+1}^{(n)}} \left| \mathcal{F}_t \right.\right), \quad (\forall t \geq 0)$$

によりマルチンゲール $\left\{Y_t^{(n),j}, \mathscr{F}_t \mid 0 \leq t < \infty \right\}$ を定めれば,

$$[0,\infty)\ni t\longmapsto EY_t^{(n),j}=E\left(\lambda\wedge A_{t_{j+1}^{(n)}}\right)$$

と Theorem 3.13 より RCLL な修正 $\tilde{Y}^{(n),j}$ が存在する. このとき各 $t \geq 0$ で

$$\int_{A} \tilde{Y}_{t}^{(n),j} \; dP = \int_{A} \lambda \wedge A_{t_{j+1}^{(n)}} \; dP \leq \lambda P(A), \quad (\forall A \in \mathcal{F}_{t})$$

となり、一方で各 $t \in \left[t_i^{(n)}, t_{i+1}^{(n)}\right]$ で

$$\int_{A} \tilde{Y}_{t}^{(n),j} dP = \int_{A} \lambda \wedge A_{t_{j+1}^{(n)}} dP \ge \int_{A} \lambda \wedge A_{t} dP, \quad (\forall A \in \mathscr{F}_{t})$$

となるから、各 i で

$$\begin{split} E_j &\coloneqq \left\{ \tilde{Y}_t^{(n),j} > \lambda \mid \quad \exists t \geq 0 \right\} \cup \left\{ \tilde{Y}_t^{(n),j} < \lambda \wedge A_t \mid \quad \exists t \in \left[t_j^{(n)}, t_{j+1}^{(n)} \right) \right\} \\ &= \left[\bigcup_{r \in [0,\infty) \cap \mathbf{Q}} \left\{ \tilde{Y}_r^{(n),j} > \lambda \right\} \right] \bigcup \left[\bigcup_{r \in \left[t_j^{(n)}, t_{j+1}^{(n)} \right) \cap \mathbf{Q}} \left\{ \tilde{Y}_r^{(n),j} < \lambda \wedge A_r \right\} \right] \end{split}$$

とおけば P-零集合 $E\coloneqq\bigcup_{j=0}^{2^n}E_j$ が定まる. usual 条件より $E\in\mathscr{F}_0$ であるから

$$\left\{ Z_t^{(n),j} \coloneqq \tilde{Y}_t^{(n),j} {1\!\!1}_{\Omega \backslash E}, \mathcal{F}_t \mid \quad 0 \le t < \infty \right\}$$

で定める $Y^{(n),j}$ のバージョン $Z^{(n),j}$ は

$$\omega \in \Omega \backslash E \quad \Longrightarrow \quad \begin{cases} Z_t^{(n),j}(\omega) \leq \lambda, & \forall t \geq 0, \\ Z_t^{(n),j}(\omega) \geq \lambda \land A_t(\omega), & \forall t \in \left[t_j^{(n)},t_{j+1}^{(n)}\right] \end{cases}$$

を満たす RCLL かつ有界なマルチンゲールとなり

$$\eta_t^{(n)} := \sum_{j=0}^{2^n-1} Z_t^{(n),j} \mathbb{1}_{\left[t_j^{(n)},t_{j+1}^{(n)}\right)}(t) + (\lambda \wedge A_a) \mathbb{1}_{\left[a,\infty\right)}(t), \quad (t \ge 0)$$

とおけば

$$\omega \in \Omega \setminus E \implies \begin{cases} \eta_t^{(n)}(\omega) \le \lambda, & (\forall t \ge 0), \\ \eta_t^{(n)}(\omega) \ge \lambda \wedge A_t(\omega), & (\forall t \in [0, a]) \end{cases}$$
 (1.30)

が成り立つ. また $\eta^{(n)}$ の右連続性, Corollary2.4, Problem2.5 及び usual 条件より

$$T_{\epsilon}^{(n)} := a \wedge \inf \left\{ t \geq 0 \mid \quad \eta_t^{(n)} - (\lambda \wedge A_t) > \epsilon \right\}$$

は \mathcal{S}_a に属する停止時刻となり、このとき

$$\varphi_n(t) := \begin{cases} t_{j+1}^{(n)}, & t_j^{(n)} \le t < t_{j+1}^{(n)}, \ j = 0, 1, \dots, 2^n - 1 \\ a, & t = a \end{cases}$$

を用いれば,任意抽出定理より

$$\begin{split} E\left(\eta_{T_{\epsilon}^{(n)}}\right) &= \sum_{j=0}^{2^{n}-1} \int_{\left\{t_{j}^{(n)} \leq T_{\epsilon}^{(n)} < t_{j+1}^{(n)}\right\}} Z_{T_{\epsilon}^{(n)}}^{(n),j} \; dP + \int_{\left\{T_{\epsilon}^{(n)} = a\right\}} \lambda \wedge A_{a} \; dP \\ &= \sum_{j=0}^{2^{n}-1} \int_{\left\{t_{j}^{(n)} \leq T_{\epsilon}^{(n)} < t_{j+1}^{(n)}\right\}} E\left(Z_{t_{j+1}^{(n)}}^{(n),j} \middle| \mathscr{F}_{T_{\epsilon}^{(n)}}\right) \; dP + \int_{\left\{T_{\epsilon}^{(n)} = a\right\}} \lambda \wedge A_{a} \; dP \\ &= \sum_{j=0}^{2^{n}-1} \int_{\left\{t_{j}^{(n)} \leq T_{\epsilon}^{(n)} < t_{j+1}^{(n)}\right\}} Z_{t_{j+1}^{(n)}}^{(n),j} \; dP + \int_{\left\{T_{\epsilon}^{(n)} = a\right\}} \lambda \wedge A_{a} \; dP \\ &= \sum_{j=0}^{2^{n}-1} \int_{\left\{t_{j}^{(n)} \leq T_{\epsilon}^{(n)} < t_{j+1}^{(n)}\right\}} \lambda \wedge A_{t_{j+1}^{(n)}} \; dP + \int_{\left\{T_{\epsilon}^{(n)} = a\right\}} \lambda \wedge A_{a} \; dP \\ &= \sum_{j=0}^{2^{n}-1} \int_{\left\{t_{j}^{(n)} \leq T_{\epsilon}^{(n)} < t_{j+1}^{(n)}\right\}} \lambda \wedge A_{\varphi_{n}\left(T_{\epsilon}^{(n)}\right)} \; dP + \int_{\left\{T_{\epsilon}^{(n)} = a\right\}} \lambda \wedge A_{\varphi_{n}\left(T_{\epsilon}^{(n)}\right)} \; dP \\ &= E\left(\lambda \wedge A_{\varphi_{n}\left(T_{\epsilon}^{(n)}\right)}\right) \end{split}$$

が従う. また $t \longmapsto \eta_t^{(n)} - (\lambda \wedge A_t)$ の右連続性より

$$T_{\epsilon}^{(n)}(\omega) < a \quad \Longrightarrow \quad \eta_{T_{\epsilon}^{(n)}}^{(n)}(\omega) - \left(\lambda \wedge A_{T_{\epsilon}^{(n)}}(\omega)\right) \geq \epsilon$$

となるから

$$E\left(\lambda \wedge A_{\varphi_{n}\left(T_{\epsilon}^{(n)}\right)} - \lambda \wedge A_{T_{\epsilon}^{(n)}}\right) = E\left(\eta_{T_{\epsilon}^{(n)}}^{(n)} - \lambda \wedge A_{T_{\epsilon}^{(n)}}\right)$$

$$= E\mathbb{1}_{\left\{T_{\epsilon}^{(n)} < a\right\}} \left(\eta_{T_{\epsilon}^{(n)}}^{(n)} - \lambda \wedge A_{T_{\epsilon}^{(n)}}\right) \ge \epsilon P\left(T_{\epsilon}^{(n)} < a\right) \tag{1.31}$$

が成立する.

第三段 $\left(\eta^{(n)}\right)_{n=1}^{\infty}$ は n に関して P-a.s. に減少していく.実際,任意の $t\in [0,a)$ に対し

$$t \in \left[t_j^{(n)}, t_{j+1}^{(n)}\right)$$

を満たす $0 \leq j \leq 2^n-1$ を取れば $t \in \left[t_{2j}^{(n+1)}, t_{2j+1}^{(n+1)}\right)$ 或は $t \in \left[t_{2j+1}^{(n+1)}, t_{2j+2}^{(n+1)}\right)$ となるから,任意の $A \in \mathscr{F}_t$ で

$$\int_{A} \eta_{t}^{(n)} dP = \int_{A} \lambda \wedge A_{t_{j+1}^{(n)}} dP \begin{cases} = \int_{A} \lambda \wedge A_{t_{2j+2}^{(n+1)}} dP \\ \ge \int_{A} \lambda \wedge A_{t_{2j+1}^{(n+1)}} dP \end{cases} = \int_{A} \eta_{t}^{(n+1)} dP$$

が成り立ち $\eta_t^{(n)} \geq \eta_t^{(n+1)}$, a.s. P が従う. $\eta^{(n)}, \eta^{(n+1)}$ のパスは右連続であるから

$$F_n := \left\{ \eta_t^{(n)} < \eta_t^{(n+1)} \mid \exists t \in [0, a) \right\} = \bigcup_{r \in [0, a) \cap \mathbf{O}} \left\{ \eta_r^{(n)} < \eta_r^{(n+1)} \right\}$$

で P-零集合が定まり, $F\coloneqq\bigcup_{n=1}^\infty F_n$ とおけば任意の $\omega\in\Omega\backslash F$ と $t\in[0,a]$ で $\left(\eta_t^{(n)}(\omega)\right)_{n=1}^\infty$ は減少し

$$T_{\epsilon}^{(1)} 1\!\!1_{\Omega \backslash F} \leq T_{\epsilon}^{(2)} 1\!\!1_{\Omega \backslash F} \leq \cdots \leq a$$

となる. usual 条件より $F \in \mathcal{F}_0$ であるから

$$\left\{T_{\epsilon}^{(n)} {1\!\!1}_{\Omega \backslash F} \leq t\right\} = \left\{T_{\epsilon}^{(n)} \leq t\right\} \cap (\Omega \backslash F) + F \in \mathscr{F}_t, \quad (\forall t \geq 0)$$

が成り立つので $T_{\epsilon}^{(n)}\mathbf{1}_{\Omega\setminus F}\in\mathscr{S}_a$ となり、単調増大性より

$$T_{\epsilon} := \lim_{n \to \infty} T_{\epsilon}^{(n)} \mathbb{1}_{\Omega \setminus F}$$

と定めれば $T_\epsilon \in \mathscr{S}_a$ も満たされる. 一方 $\varphi_n\left(T_\epsilon^{(n)}\right)$ についても

$$\left\{\varphi_n\left(T_{\epsilon}^{(n)}\right) \le t\right\} = \bigcup_{\substack{j: t_{i+1}^{(n)} \le t}} \left\{t_j^{(n)} \le T_{\epsilon}^{(n)} < t_{j+1}^{(n)}\right\} \in \mathscr{F}_t, \quad (\forall t \ge 0)$$

より $\varphi_n\left(T^{(n)}_\epsilon\right)\in\mathscr{S}_a$ が従い,また $\varphi_n(t)\geq t$ と $t\longmapsto \varphi_n(t)$ の増大性より

$$T_{\epsilon}^{(n)}(\omega) \leq \varphi_n\left(T_{\epsilon}^{(n)}(\omega)\right) \leq \varphi_n\left(T_{\epsilon}(\omega)\right), \quad (\forall \omega \in \Omega \backslash F)$$

が成立し、Aのパスの増大性と併せて

$$E\left(\lambda \wedge A_{T_{\epsilon}^{(n)}}\right) \leq E\left(\lambda \wedge A_{\varphi_{n}\left(T_{\epsilon}^{(n)}\right)}\right) \leq E\left(\lambda \wedge A_{\varphi_{n}\left(T_{\epsilon}\right)}\right)$$

が満たされる. このとき (1.29) より

$$\lim_{n \to \infty} E\left(\lambda \wedge A_{T_{\epsilon}^{(n)}}\right) = E\left(\lambda \wedge A_{T_{\epsilon}}\right)$$

が成り立ち、右辺も $\varphi_n(t) \downarrow t$ と A のパスの右連続性及び Lebesgue の収束定理より $E(\lambda \land A_{T_\epsilon})$ に収束するから

$$\lim_{n\to\infty} E\left(\lambda \wedge A_{\varphi_n\left(T_{\epsilon}^{(n)}\right)}\right) = E\left(\lambda \wedge A_{T_{\epsilon}}\right)$$

が得られる.

第五段 任意の $\omega \in \Omega$ と $n \ge 1$ に対し

$$T_{\epsilon}^{(n)}(\omega) < a \iff \sup_{0 \le t \le a} \left\{ (\lambda \wedge A_t(\omega)) - \eta_t^{(n)}(\omega) \right\} > \epsilon$$

が満たされ、また (1.30) より $\Omega\setminus E$ の上で $\eta_t^{(n)}$ – $(\lambda \wedge A_t) \geq 0$, $(\forall t \in [0,a])$ だから、(1.31) と前段の結果と併せて

$$\begin{split} P\left(\sup_{0\leq t\leq a}\left|\eta_t^{(n)}-(\lambda\wedge A_t)\right|>\epsilon\right)&=P\left(T_\epsilon^{(n)}< a\right)\\ &\leq \frac{1}{\epsilon}E\left(\lambda\wedge A_{\varphi_n\left(T_\epsilon^{(n)}\right)}-\lambda\wedge A_{T_\epsilon^{(n)}}\right)\longrightarrow \frac{1}{\epsilon}E\left(\lambda\wedge A_{T_\epsilon}-\lambda\wedge A_{T_\epsilon}\right)=0 \quad (n\longrightarrow\infty) \end{split}$$

が得られる.従って定理 A.8.12 より或る部分列 $(n_k)_{k=1}^\infty$ と P-零集合 G が存在して

$$\sup_{0 \le t \le a} \left| \eta_t^{(n_k)}(\omega) - (\lambda \wedge A_t(\omega)) \right| \longrightarrow 0 \quad (k \longrightarrow \infty), \quad (\forall \omega \in \Omega \backslash G)$$
(1.32)

が成立する.

第六段 A はナチュラルであり、 $Z^{(n),j}$ は有界かつ RCLL なマルチンゲールであるから

$$E \int_{\left(t_{j}^{(n)}, t_{j+1}^{(n)}\right]} Z_{s}^{(n), j} dA_{s} = E \int_{\left(0, t_{j+1}^{(n)}\right]} Z_{s}^{(n), j} dA_{s} - E \int_{\left(0, t_{j}^{(n)}\right]} Z_{s}^{(n), j} dA_{s}$$

$$= E \int_{\left(0, t_{j+1}^{(n)}\right]} Z_{s-}^{(n), j} dA_{s} - E \int_{\left(0, t_{j}^{(n)}\right]} Z_{s-}^{(n), j} dA_{s}$$

$$= E \int_{\left(t_{j}^{(n)}, t_{j+1}^{(n)}\right]} Z_{s-}^{(n), j} dA_{s}$$

が成立する. 従って

$$\xi_t^{(n)} := \sum_{j=0}^{2^n-1} Z_t^{(n),j} \mathbb{1}_{\left(t_j^{(n)},t_{j+1}^{(n)}\right]}(t), \quad (t \ge 0)$$

とおけば任意の $t \in (0,a]$ で $\xi_{t-}^{(n)}$ が存在し

$$E\int_{(0,a]} \xi_s^{(n)} dA_s = \sum_{i=0}^{2^n-1} E\int_{\left[t_i^{(n)},t_{i+1}^{(n)}\right]} Z_s^{(n),i} dA_s = \sum_{i=0}^{2^n-1} E\int_{\left[t_i^{(n)},t_{i+1}^{(n)}\right]} Z_{s-}^{(n),i} dA_s = E\int_{(0,a]} \xi_{s-}^{(n)} dA_s$$

が成立する.一方で $t \notin \Pi$ で $\xi_t^{(n)} = \eta_t^{(n)}, \ (\forall n \geq 1)$ であるから (1.32) より

$$\sup_{t \in (0,a] \setminus \Pi} \left| \xi_t^{(n_k)}(\omega) - \lambda \wedge A_t(\omega) \right| \longrightarrow 0 \quad (k \longrightarrow \infty), \quad (\forall \omega \in \Omega \setminus G)$$

が従い,これにより

$$\sup_{t \in (0,a]} \left| \xi_{t-}^{(n_k)}(\omega) - \lambda \wedge A_{t-}(\omega) \right| \longrightarrow 0 \quad (k \longrightarrow \infty), \quad (\forall \omega \in \Omega \backslash G)$$

も出る. 実際, $\omega \in \Omega \backslash G$ を固定すれば, 任意の $\epsilon > 0$ に対し或る $K = K(\omega, \epsilon) \ge 1$ が存在して

$$\sup_{t \in (0,a] \setminus \Pi} \left| \xi_t^{(n_k)}(\omega) - \lambda \wedge A_t(\omega) \right| < \epsilon, \quad (\forall k \ge K)$$

となり、このとき任意の $t \in (0, a]$ と $k \ge K$ で

$$\begin{aligned} \left| \xi_{t-}^{(n_k)}(\omega) - \lambda \wedge A_{t-}(\omega) \right| \\ &\leq \left| \xi_{t-}^{(n_k)}(\omega) - \xi_s^{(n_k)}(\omega) \right| + \left| \xi_s^{(n_k)}(\omega) - \lambda \wedge A_s(\omega) \right| + \left| \lambda \wedge A_s(\omega) - \lambda \wedge A_{t-}(\omega) \right| \\ &< \epsilon \end{aligned}$$

を満たす $s = s(t,k) \in (0,a] \backslash \Pi$, (s < t) が取れるから

$$\sup_{t \in (0,a]} \left| \xi_{t-}^{(n_k)}(\omega) - \lambda \wedge A_{t-}(\omega) \right| \le \epsilon, \quad (\forall k \ge K)$$

が成立する. $t\in\Pi$ なら或る N=N(t) で $t\in\Pi_N$ となるから $\xi_t^{(n)}=\lambda\wedge A_t$, P-a.s., $(\forall n\geq N)$ となり

$$H_t := \bigcup_{n>N} \left\{ \xi_t^{(n)} \neq \lambda \wedge A_t \right\}, \quad H := \bigcup_{t \in \Pi} H_t$$

により P-零集合 H を定めれば任意の $t \in [0,a]$ で

$$\lim_{k \to \infty} \xi_t^{(n_k)}(\omega) = \lambda \wedge A_t(\omega), \quad (\forall \omega \in \Omega \setminus (G \cup H))$$

となる. Lebesgue の収束定理より

$$E \int_{(0,a]} \lambda \wedge A_t \, dA_t = E \int_{(0,a]} \lambda \wedge A_{t-} \, dA_t$$

が得られ、A の単調非減少性より $A_{t-} \leq A_t$ であるから或る P-零集合 U_a が存在し、任意の $\omega \in \Omega \setminus U_a$ で

$$\int_{(0,a]} (\lambda \wedge A_t(\omega)) - (\lambda \wedge A_{t-}(\omega)) \, dA_t(\omega) = 0$$

が成立し (0,a] $\ni t \longmapsto \lambda \wedge A_t(\omega)$ の連続性が出る. a の任意性より $V_\lambda \coloneqq \bigcup_{a=1}^\infty U_a$ とおけば

$$(0,\infty)\ni t\longmapsto \lambda\wedge A_t(\omega), \quad (\forall\omega\in\Omega\backslash V_\lambda)$$

は連続となり、 λ も任意であるから $V\coloneqq\bigcup_{\lambda=1}^\infty V_\lambda$ として

$$(0, \infty) \ni t \longmapsto A_t(\omega), \quad (\forall \omega \in \Omega \backslash V)$$

は連続となる. $\tilde{A}\coloneqq A1\!\!1_{\Omega\setminus V}\in [A]_{NAT}$ が求める A のバージョンである.

- Problem 4.15 -

Let $X = \{X_t, \mathcal{F}_t \mid 0 \le t < \infty\}$ be a continuous, nonnegative process with $X_0 = 0$ a.s., and $A = \{A_t, \mathcal{F}_t \mid 0 \le t < \infty\}$ any continuous, increasing process for which

$$E(X_T) \leq E(A_T)$$

holds for every bounded stopping time T of $\{\mathscr{F}_t\}$. Introduce the process $V_t := \max 0 \le s \le tX_s$, consider a continuous, increasing function F on $[0, \infty)$ with F(0) = 0, and define $G(x) := 2F(x) + x \int_{(x,\infty)} u^{-1} dF(u)$; $0 < x < \infty$. Establish the inequalities

$$(4.14) \quad P[V_T \ge \epsilon] \le \frac{E(A_T)}{\epsilon}; \quad \forall \epsilon > 0$$

(4.15) (Lenglart inequality) $P[V_T \ge \epsilon] \le \frac{E(\delta \wedge A_T)}{\epsilon} + P[A_T \ge \delta]; \quad \forall \epsilon > 0, \ \delta > 0$

(4.16) $EF(V_T) \le EG(A_T)$

for any stopping time T of $\{\mathscr{F}_t\}$.

証明.

(1) X のパスの連続性と Problem 2.7 より

$$H_{\epsilon} := \inf \{ t \ge 0 \mid X_t \ge \epsilon \}$$

で (\mathscr{F}_t) -停止時刻が定まる. このとき

$$V_T(\omega) \ge \epsilon \implies X_t(\omega) \ge \epsilon, \quad \exists t \in [0, T(\omega)]$$

 $\implies H_{\epsilon}(\omega) \le t \le T(\omega)$

が成立するから、 $\{X_0=0\}\cap \{V_T\geq \epsilon\}$ 上で $\epsilon=X_{H_\epsilon}=X_{T\wedge H_\epsilon}$ となり

$$\epsilon P(V_T \geq \epsilon) = \int_{\{V_T \geq \epsilon\}} X_{T \wedge H_\epsilon} \, dP \leq E X_{T \wedge H_\epsilon} \leq E A_{T \wedge H_\epsilon} \leq E A_T$$

が得られる.

(2) $S_{\delta} \coloneqq \inf \{t \ge 0 \mid A_t \ge \delta \}$ により (\mathscr{F}_t) -停止時刻を定めれば, $A_{S_{\delta}} = \delta$ と $t \longmapsto A_t(\omega)$ の増大性より

$$A_T(\omega) < \delta \iff T(\omega) < S_{\delta}(\omega)$$

となるから

$$P(V_T \ge \epsilon, A_T < \delta) = P(V_{T \land S_{\delta}} \ge \epsilon, A_T < \delta) \le P(V_{T \land S_{\delta}} \ge \epsilon)$$
$$\le \frac{E(A_{S_{\delta} \land T})}{\epsilon} = \frac{E(A_{S_{\delta}} \land A_T)}{\epsilon} = \frac{E(\delta \land A_T)}{\epsilon}$$

が成立し、両辺に $P(V_T \ge \epsilon, A_T \ge \delta)$ を加えて Lenglart の不等式を得る.

(3) F は連続かつ非減少であるから Lebesgue-Stieltjes 積分が構成され、任意の $x \in [0,\infty)$ に対し

$$F(x) = \int_{[0,\infty)} 1_{[0,x]}(u) \, dF(u)$$

が満たされる.

$$(\omega, u) \longmapsto \mathbb{1}_{(0,V_T(\omega)]}(u)$$

は、u の関数として左連続であり、また ω の関数としては $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測であるから (Problem 1.16)、二変数 関数として $\mathscr{F}\otimes\mathscr{B}([0,\infty))/\mathscr{B}(\mathbf{R})$ -可測であり、このとき Fubini の定理より

$$EF(V_T) = \int_{[0,\infty)} E\left(\mathbb{1}_{[u,\infty)}(V_T)\right) dF(u)$$

$$= \int_{[0,\infty)} P(V_T \ge u) dF(u)$$

$$\leq \int_{[0,\infty)} \frac{E(u \land A_T)}{u} + P(A_T \ge u) dF(u)$$

$$= \int_{[0,\infty)} \frac{E(u \land A_T \mathbb{1}_{\{A_T \ge u\}})}{u} + \frac{E(u \land A_T \mathbb{1}_{\{A_T < u\}})}{u} + P(A_T \ge u) dF(u)$$

$$= \int_{[0,\infty)} 2P(A_T \ge u) + \frac{E(A_T \mathbb{1}_{\{A_T < u\}})}{u} dF(u)$$

$$= E(2F(A_T)) + E\left[A_T \int_{[0,\infty)} \frac{1}{u} \mathbb{1}_{(A_T,\infty)}(u) dF(u)\right]$$

$$= EG(A_T)$$

が得られる.

1.5 Continuous, Square-Integrable Martingales

- Processes of difference of two natural processes -

Let denote the space of processes represented by difference of two natural processes as

$$\mathscr{A} := \{ A^{(1)} - A^{(2)} \mid A^{(j)} : \text{natural}, j = 1, 2 \},$$

and the equivalent class of $A \in \mathcal{A}$ in the meaning of (1.21) in \mathcal{A} as $[A]_{\mathcal{A}}$. Similarly define

$$\mathscr{A}_{c} := \{ A^{(1)} - A^{(2)} \mid A^{(j)} : \text{ natural, continuous, } j = 1, 2 \}$$

and the equivalent class of $A \in \mathcal{A}_c$ in the meaning of (1.21) in \mathcal{A}_c as $[A]_{\mathcal{A}_c}$.

Definition 5.3 修正 -

For $X \in \mathcal{M}_2$, we define the quadratic variation of X to be the process $\langle X \rangle_t := A_t$, where A is the natural increasing process in the Doob-Meyer decomposition of x^2 . For $X \in \mathcal{M}_2^c$, the quadratic variation $\langle X \rangle$ of X to be natural increasing and continuous process.

- Problem 5.7 修正

Show that $\langle \cdot, \cdot \rangle$ is a bilinear form on \mathcal{M}_2 , i.e., for any members X, Y, Z of \mathcal{M}_2 and real numbers α , β , we have

- (i) $[\langle \alpha X + \beta Y, Z \rangle]_{\mathscr{A}} = [\alpha \langle X, Z \rangle + \beta \langle Y, Z \rangle]_{\mathscr{A}}.$
- (ii) $[\langle X, Y \rangle]_{\mathscr{A}} = [\langle Y, X \rangle]_{\mathscr{A}}.$
- (iii) $|\langle X, Y \rangle|^2 \le \langle X \rangle \langle Y \rangle$.
- (iv) For P-a.e. $\omega \in \Omega$,

$$\check{\xi}_{t}(\omega) - \check{\xi}_{s}(\omega) \leq \frac{1}{2} [\langle X \rangle_{t}(\omega) - \langle X \rangle_{s}(\omega) + \langle Y \rangle_{t}(\omega) - \langle Y \rangle_{s}(\omega)]; \quad 0 \leq s < t < \infty,$$

where $\check{\xi}_t$ denotes the total variation of $\check{\xi} := \langle X, Y \rangle$ on [0, t].

(v) For any stopping time T of $(\mathcal{F}_t)_{t\geq 0}$, we have

$$P\left(\langle X \rangle_{t \wedge T} = \left\langle X^T \right\rangle_t, \ \forall 0 \le t < \infty\right) = 1,$$

where $X_t^T := X_{t \wedge T}, \ (\forall t \ge 0).$

証明.

(i) t + 1 = 1, 2 (i) t = 1, 2 (ii) t = 1, 2 (iii) t = 1, 2

$$\left\langle \alpha X + \beta Y, Z \right\rangle = A^{(1)} - A^{(2)}, \quad \alpha \left\langle X, Z \right\rangle = B^{(1)} - B^{(2)}, \quad \beta \left\langle Y, Z \right\rangle = C^{(1)} - C^{(2)}$$

と表せるから

$$\left\langle \alpha X + \beta Y, Z \right\rangle - \left(\alpha \left\langle X, Z \right\rangle + \beta \left\langle Y, Z \right\rangle \right) = \left(A^{(1)} + B^{(2)} + C^{(2)} \right) - \left(A^{(2)} + B^{(1)} + C^{(1)} \right)$$

となり、P.48の補題より

$$\langle \alpha X + \beta Y, Z \rangle_t = \alpha \langle X, Z \rangle_t + \beta \langle Y, Z \rangle_t, \quad 0 \le t < \infty, \quad \text{a.s. } P$$

が従う.

(ii) $XY - \langle X, Y \rangle$ も $YX - \langle Y, X \rangle$ も右連続マルチンゲールであるから

$$\langle X, Y \rangle - \langle Y, X \rangle$$

も右連続マルチンゲールであり、P.48の補題より

$$\langle X, Y \rangle_t = \langle Y, X \rangle_t$$
, $0 \le t < \infty$, a.s. P

が従う.

(iii) Shwartz の不等式

Lemma 5.9

Let $X \in \mathcal{M}_2$ satisfy $|X_s| \le K < \infty$ for all $s \in [0, t]$, a.s. P. Let $\Pi = \{t_0, t_1, \dots, t_m\}$, with $0 = t_0 \le t_1 \le \dots \le t_m = t$, be a partition of [0, t]. Then $E\left(V_t^{(2)}(\Pi)\right)^2 \le 6K^4$.

証明. X のマルチンゲール性により,任意の $0 \leq s_0 \leq s_1 \leq \cdots \leq s_n < \infty$ に対して

$$E \sum_{k=1}^{n} |X_{s_{k}} - X_{s_{k-1}}|^{2} = \sum_{k=1}^{n} E \left\{ E \left(X_{s_{k}}^{2} - 2X_{s_{k}} X_{s_{k-1}} + X_{s_{k-1}}^{2} \middle| \mathscr{F}_{s_{k}} \right) \right\}$$

$$= \sum_{k=1}^{n} E \left\{ X_{s_{k}}^{2} - 2E \left(X_{s_{k}} \middle| \mathscr{F}_{s_{k}} \right) X_{s_{k-1}} + X_{s_{k-1}}^{2} \right\}$$

$$= \sum_{k=1}^{n} E \left(X_{s_{k}}^{2} - X_{s_{k-1}}^{2} \right)$$

$$= EX_{s_{n}}^{2} - EX_{s_{0}}^{2}$$

$$(1.33)$$

が成立する. いま,

$$E\left(V_{t}^{(2)}(\Pi)\right)^{2} = E\left\{\sum_{k=1}^{m}\left|X_{t_{k}} - X_{t_{k-1}}\right|^{2}\right\}^{2} = E\sum_{k=1}^{m}\left|X_{t_{k}} - X_{t_{k-1}}\right|^{4} + 2E\sum_{i=1}^{m-1}\sum_{j=i+1}^{m}\left|X_{t_{i}} - X_{t_{i-1}}\right|^{2}\left|X_{t_{j}} - X_{t_{j-1}}\right|^{2}$$

と分解すれば, $\left|X_{t_k}-X_{t_{k-1}}\right|^2 \leq 2\left(X_{t_k}^2+X_{t_{k-1}}^2\right)^2 \leq 2K^2$ と (1.33) より右辺第一項は

$$E\sum_{k=1}^{m} \left| X_{t_k} - X_{t_{k-1}} \right|^4 \le 2K^2 E\sum_{k=1}^{m} \left| X_{t_k} - X_{t_{k-1}} \right|^2 = 2K^2 E X_{t_m}^2 \le 2K^4$$

となる. また右辺第二項も (1.33) より

$$\begin{split} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} E \left| X_{t_{i}} - X_{t_{i-1}} \right|^{2} \left| X_{t_{j}} - X_{t_{j-1}} \right|^{2} &= \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} E \left[E \left(\left| X_{t_{i}} - X_{t_{i-1}} \right|^{2} \left| X_{t_{j}} - X_{t_{j-1}} \right|^{2} \middle| \mathscr{F}_{t_{j}} \right) \right] \\ &= \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} E \left[\left| X_{t_{i}} - X_{t_{i-1}} \right|^{2} E \left(\left| X_{t_{j}} - X_{t_{j-1}} \right|^{2} \middle| \mathscr{F}_{t_{j}} \right) \right] \\ &= \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} E \left| X_{t_{i}} - X_{t_{i-1}} \right|^{2} \left(X_{t_{j}}^{2} - X_{t_{j-1}}^{2} \right) \\ &= \sum_{i=1}^{m-1} E \left| X_{t_{i}} - X_{t_{i-1}} \right|^{2} \left(X_{t_{j}}^{2} - X_{t_{j}}^{2} \right) \\ &\leq 2K^{2}E \sum_{i=1}^{m-1} \left| X_{t_{i}} - X_{t_{i-1}} \right|^{2} \\ &\leq 2K^{4} \end{split}$$

となるから $E\left(V_t^{(2)}(\Pi)\right)^2 \leq 6K^4$ が出る.

Lemma 5.10

Let $X \in \mathcal{M}_2^c$ satisfy $|X_s| \leq K < \infty$ for all $s \in [0, t]$, a.s. P. For partitions Π of [0, t], we have

$$\lim_{\|\Pi\| \to 0} EV_t^{(4)}(\Pi) = 0.$$

証明.

第一段 任意の $\omega \in \Omega$ と $\delta > 0$ に対し

$$\sup \{ |X_r(\omega) - X_s(\omega)| \quad s, r \in [0, t], |s - r| < \delta \}$$

$$= \sup \{ |X_p(\omega) - X_q(\omega)| \mid p, q \in Q \cap [0, t], |q - p| < \delta \}$$
(1.34)

が成立する.実際,上限を取る範囲の大小関係より (左辺) \geq (右辺) が成り立ち,一方で任意の (左辺) $> \alpha > 0$ に対し $|X_r(\omega) - X_s(\omega)| > \alpha$ を満たす $s,r \in [0,t]$, $(|s-r| < \delta)$ を取れば,X のパスの連続性より

$$|X_r(\omega) - X_p(\omega)|, |X_s(\omega) - X_q(\omega)| < \frac{\beta - \alpha}{2}$$

を満たす $p,q \in \mathbf{Q} \cap [0,t]$, $(|p-q| < \delta)$ が存在して

$$|X_p(\omega) - X_q(\omega)| \ge |X_r(\omega) - X_s(\omega)| - |X_r(\omega) - X_p(\omega)| - |X_q(\omega) - X_s(\omega)| > \alpha$$

となり (1.34) が出る. (左辺) $\leq 2K$ より $m_t(X;\delta)$ は $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測である. また定理 A.7.12 より任意の a>0 で

$$m_t^a(X;\delta) := \sup \{ |X_p(\omega) - X_q(\omega)|^a \mid p, q \in Q \cap [0,t], |q-p| < \delta \}$$

が満たされる.

第二段 Hölder の不等式より、任意の ∏に対し

$$EV_{t}^{(4)}(\Pi) \leq E\left[V_{t}^{(2)}(\Pi) \cdot m_{t}^{2}(X; \|\Pi\|)\right] \leq \left\{E\left(V_{t}^{(2)}(\Pi)\right)^{2}\right\}^{1/2} \left\{Em_{t}^{4}(X; \|\Pi\|)\right\}^{1/2} \leq \sqrt{6}K^{2} \left\{Em_{t}^{4}(X; \|\Pi\|)\right\}^{1/2}$$

となる. 任意に $\|\Pi_n\| \longrightarrow 0$, $(n \longrightarrow \infty)$ を満たす分割列 $(\Pi_n)_{n=1}^{\infty}$ を取れば

$$\lim_{n\to\infty}m_t(X;\|\,\Pi_n\,\|)=0,\quad m_t(X;\|\,\Pi_n\,\|)\leq 2K,\; (\forall n\geq 1)$$

が成り立つから、Lebesgue の収束定理より

$$Em_t^4(X; ||\Pi_n||) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が従い $EV_t^{(4)}(\Pi_n)\longrightarrow 0\ (n\longrightarrow\infty)$ となる. $(\Pi_n)_{n=1}^\infty$ の任意性より補題の主張が得られる.

·Theorem 5.8

Let X be in \mathcal{M}_2^c . For partitions Π of [0,t], we have $\lim_{\|\Pi\|\to 0} V_t^{(2)} = \langle X \rangle_t$ (in probability); i.e., for every $\epsilon > 0$, $\eta > 0$ there exists $\delta > 0$ such that $\|\Pi\| < \delta$ implies

$$P\left[\left|V_t^{(2)}(\Pi) - \langle X \rangle_t\right| > \epsilon\right] < \eta.$$

証明.

第一段 $X^2 - \langle X \rangle$ のマルチンゲール性より任意の $0 \le s < t < \infty$ に対して

$$E\left((X_{t} - X_{s})^{2} - (\langle X \rangle_{t} - \langle X \rangle_{s}) \middle| \mathscr{F}_{s}\right) = E\left((X_{t} - X_{s})^{2} \middle| \mathscr{F}_{s}\right) - E\left(\langle X \rangle_{t} - \langle X \rangle_{s} \middle| \mathscr{F}_{s}\right)$$

$$= E\left(X_{t}^{2} - X_{s}^{2} \middle| \mathscr{F}_{s}\right) - E\left(\langle X \rangle_{t} - \langle X \rangle_{s} \middle| \mathscr{F}_{s}\right)$$

$$= 0, \quad \text{a.s. } P$$

となる. 従って、任意の $0 \le u < v \le s < t < \infty$ に対し

$$E\left|(X_v - X_u)^2 - (\langle X \rangle_v - \langle X \rangle_u)\right| \left|(X_t - X_s)^2 - (\langle X \rangle_t - \langle X \rangle_s)\right| < \infty$$

であれば

$$\begin{split} E\left[\left\{(X_v-X_u)^2-(\langle X\rangle_v-\langle X\rangle_u)\right\}\left\{(X_t-X_s)^2-(\langle X\rangle_t-\langle X\rangle_s)\right\}\right]\\ &=E\left[E\left(\left\{(X_v-X_u)^2-(\langle X\rangle_v-\langle X\rangle_u)\right\}\left\{(X_t-X_s)^2-(\langle X\rangle_t-\langle X\rangle_s)\right\}\middle|\mathscr{F}_s\right)\right]\\ &=E\left[\left\{(X_v-X_u)^2-(\langle X\rangle_v-\langle X\rangle_u)\right\}E\left(\left\{(X_t-X_s)^2-(\langle X\rangle_t-\langle X\rangle_s)\right\}\middle|\mathscr{F}_s\right)\right]\\ &=0 \end{split}$$

が成立する.

第二段 |X| 及び $\langle X \rangle$ のパスは全て連続であるから、Problem 2.7 より

$$T_n := \inf \{ t \ge 0 \mid |X_t| \lor \langle X \rangle_t \ge n \}$$

で (\mathscr{F}_t) -停止時刻の列 $(T_n)_{n=1}^\infty$ が定まる. このとき任意の $\omega \in \Omega$ で

$$\{t \ge 0 \mid |X_t(\omega)| \lor \langle X \rangle_t(\omega) \ge n+1\} \subset \{t \ge 0 \mid |X_t(\omega)| \lor \langle X \rangle_t(\omega) \ge n\}$$

となるから

$$T_n \leq T_{n+1}, \quad (\forall n \geq 1)$$

が成立し、また任意の K>0 に対し $\sup_{t\in[0,K]}|X_t(\omega)|\vee\langle X\rangle_t(\omega)< N$ を満たす $N\in \mathbf{N}$ を取れば $T_N(\omega)>K$ となり

$$\lim_{n \to \infty} T_n(\omega) = \infty, \quad (\forall \omega \in \Omega)$$
 (1.35)

が従う.

第三段 $X^{(n)}$ を $X_t^{(n)}\coloneqq X_{t\wedge T_n}$, $(\forall t\geq 0)$ で定めて,[0,t] の分割 $\Pi=\{t_0,t_1,\cdots,t_m\}$ に対し

$$V_t^{(2,n)}(\Pi) := \sum_{k=1}^m \left| X_{t_k}^{(n)} - X_{t_{k-1}}^{(n)} \right|^2$$

とおけば、 $\{t \leq T_n\}$ の上で $X_t = X_t^{(n)}$ となるから

$$V_t^{(2,n)}(\Pi)(\omega) = V_t^{(2)}(\Pi)(\omega), \quad (\forall \omega \in \{t \le T_n\})$$

$$\tag{1.36}$$

が成り立つ. $|X_{t \wedge T_n}| \lor \langle X \rangle_{t \wedge T_n} \le n$ であるから,Lemma 5.10 と第一段の結果及び $\langle X^{(n)} \rangle$ の連続性により

$$\begin{split} E\left|V_{t}^{(2,n)}(\Pi)-\left\langle X^{(n)}\right\rangle_{t}\right|^{2} &= E\left[\sum_{k=1}^{m}\left\{\left|X_{t_{k}}^{(n)}-X_{t_{k-1}}^{(n)}\right|^{2}-\left(\left\langle X^{(n)}\right\rangle_{t_{k}}-\left\langle X^{(n)}\right\rangle_{t_{k-1}}\right)\right\}\right]^{2} \\ &= E\sum_{k=1}^{m}\left\{\left|X_{t_{k}}^{(n)}-X_{t_{k-1}}^{(n)}\right|^{2}-\left(\left\langle X^{(n)}\right\rangle_{t_{k}}-\left\langle X^{(n)}\right\rangle_{t_{k-1}}\right)\right\}^{2} \\ &\leq 2E\sum_{k=1}^{m}\left|X_{t_{k}}^{(n)}-X_{t_{k-1}}^{(n)}\right|^{4}+2E\left(\left\langle X^{(n)}\right\rangle_{t_{k}}-\left\langle X^{(n)}\right\rangle_{t_{k-1}}\right)^{2} \\ &\leq 2EV_{t}^{(4,n)}(\Pi)+2nE\left[m_{t}\left(\left\langle X^{(n)}\right\rangle;\|\Pi\|\right)\right] \\ &\longrightarrow 0,\quad (\|\Pi\|\longrightarrow 0) \end{split}$$

が得られる.

第四段 任意に $\epsilon > 0$ と $\eta > 0$ を取る. (1.36) より任意の $n \ge 1$ で

$$P\left(\left|V_{t}^{(2)}(\Pi) - \langle X \rangle_{t}\right| > \epsilon\right) = P\left(\left\{\left|V_{t}^{(2)}(\Pi) - \langle X \rangle_{t}\right| > \epsilon\right\} \cap \left\{t > T_{n}\right\}\right) + P\left(\left\{\left|V_{t}^{(2,n)}(\Pi) - \left\langle X^{(n)} \right\rangle_{t}\right| > \epsilon\right\} \cap \left\{t \leq T_{n}\right\}\right)$$

$$\leq P(t > T_{n}) + P\left(\left|V_{t}^{(2,n)}(\Pi) - \left\langle X^{(n)} \right\rangle_{t}\right| > \epsilon\right)$$

が成立し、このとき (1.35) より或る $N \ge 1$ が存在して

$$P(t > T_n) < \frac{\eta}{2}, \quad (\forall n \ge N)$$

となり、前段の結果より或る $\delta > 0$ が存在して $\|\Pi\| < \delta$ なら

$$P\left(\left|V_t^{(2,N)}(\Pi) - \left\langle X^{(N)} \right\rangle_t \right| > \epsilon\right) \leq \frac{1}{\epsilon} E\left|V_t^{(2,N)}(\Pi) - \left\langle X^{(N)} \right\rangle_t \right| \leq \frac{1}{\epsilon} \left\{ E\left|V_t^{(2,N)}(\Pi) - \left\langle X^{(N)} \right\rangle_t \right|^2 \right\}^{1/2} < \frac{\eta}{2}$$

が満たされるから

$$\|\,\Pi\,\| < \delta \quad \Longrightarrow \quad P\left(\left|V_t^{(2)}(\Pi) - \langle X \rangle_t\right| > \epsilon\right) < \eta$$

が従う.

Theorem 5.13 修正 -

Let $X = \{X_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ and $Y = \{Y_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ be members of \mathscr{M}_2^c . There is a unique $[A]_{\mathscr{A}_c}$ such that $\{X_tY_t - \tilde{A}_t, \mathscr{F}_t \mid 0 \le t < \infty\}$ is a continuous martingale for every $\tilde{A} \in [A]_{\mathscr{A}_c}$.

証明. 定義より $\langle X,Y\rangle\in\mathscr{A}_c$ に対して $XY=\langle X,Y\rangle$ は連続マルチンゲールである. また $\langle X,Y\rangle$ と区別不能な $A\in\mathscr{A}_c$ を取れば、任意の $t\geq 0$ で

$$P(X_tY_t - \langle X, Y \rangle_t = X_tY_t - A_t) = 1$$

となるから XY-A もまた連続マルチンゲールとなる. $A,B\in\mathscr{A}_c$ に対し XY-A, XY-B が共にマルチンゲールとなるとき, A-B もマルチンゲールとなり, Theorem 4.14 の補題 (P. 48) より $[A]_{\mathscr{A}_c}=[B]_{\mathscr{A}_c}$ が従う.

Problem 5.17 -

Let X, Y be in $\mathcal{M}^{c,loc}$. Then there is a unique (up to indistinguishablility) adapted, continuous process of bounded variation $\langle X,Y\rangle$ satisfying $\langle X,Y\rangle_0=0$, such that $XY-\langle X,Y\rangle\in\mathcal{M}^{c,loc}$. If X=Y, we write $\langle X\rangle=\langle X,X\rangle$, and this process is nondecreasing.

証明.

Problem 5.19

- (i) A local martingale of class DL is a martingale.
- (ii)
- (iii)

証明.

(i) X を局所マルチンゲールとすれば、或る (\mathscr{F}_t) -停止時刻の列 $(T_n)_{n=1}^\infty$ と P-零集合 E が存在して

$$T_1(\omega) \leq T_2(\omega) \leq \cdots \longrightarrow \infty$$
, $(\forall \omega \in \Omega \backslash E)$

かつ全ての $n\geq 1$ で $\{X_{t\wedge T_n},\mathscr{F}_t\mid 0\leq t<\infty\}$ はマルチンゲールとなる. 任意に $t\geq 0$ を取れば $\{t\wedge T_n\}_{n=1}^\infty\subset \mathscr{S}_t$ となり,X はクラス DL に属しているから $(X_{t\wedge T_n})_{n=1}^\infty$ は一様可積分である. ここで $E\in\mathscr{F}_0$ かつ

$$X_t(\omega) = \lim_{n \to \infty} X_{t \wedge T_n}(\omega), \quad (\forall \omega \in \Omega \backslash E)$$

が成り立つから X_t は $\mathcal{F}_t/\mathcal{B}(\mathbf{R})$ -可測であり、また定理 $\mathbf{A}.16.2$ より X_t の可積分性及び

$$E|X_t - X_{t \wedge T_n}(\omega)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が従う. よって任意に $0 \le s < t < \infty$ を取れば

$$\int_A X_t \ dP = \lim_{n \to \infty} \int_A X_{t \wedge T_n} \ dP = \lim_{n \to \infty} \int_A X_{s \wedge T_n} \ dP = \int_A X_s \ dP, \quad (\forall A \in \mathscr{F}_s)$$

が満たされ、 $\{X_t, \mathcal{F}_t \mid 0 \le t < \infty\}$ のマルチンゲール性が得られる.

Definition 5.22 修正

 \mathcal{M}_2 and \mathcal{M}_2^c are vector spaces, where the additions and scalar multiplications are defined by

$$(X+Y)_t(\omega) := X_t(\omega) + Y_t(\omega), \quad (\alpha X)_t(\omega) := \alpha X_t(\omega), \quad (\forall X,Y \in \mathcal{M}_2 \text{ (resp. } \mathcal{M}_2^c), \ \forall \alpha \in \mathbf{R}).$$

Let denote the quotient space of \mathcal{M}_2 and \mathcal{M}_2^c with respect to the equivalent relation as in (1.21) (P. 42) by \mathfrak{M}_2 and \mathfrak{M}_2^c , and denote the elements of each space by $[X]_{\mathfrak{M}_2}$ and $[X]_{\mathfrak{M}_2^c}$. For any $[X]_{\mathfrak{M}_2}$, $[Y]_{\mathfrak{M}_2} \in \mathfrak{M}_2$, (resp. $[X]_{\mathfrak{M}_2^c}$, $[Y]_{\mathfrak{M}_2^c} \in \mathfrak{M}_2^c$) and $0 \le t < \infty$, we define a distance by

$$\begin{split} d\left([X]_{\mathfrak{M}_{2}},[Y]_{\mathfrak{M}_{2}}\right) &:= \sum_{n=1}^{\infty} 2^{-n} \left(\| \left[X_{n}\right] - \left[Y_{n}\right] \|_{L^{2}(P)} \wedge 1 \right), \\ d_{c}\left([X]_{\mathfrak{M}_{2}^{c}},[Y]_{\mathfrak{M}_{2}^{c}}\right) &:= \sum_{n=1}^{\infty} 2^{-n} \left(\| \left[X_{n}\right] - \left[Y_{n}\right] \|_{L^{2}(P)} \wedge 1 \right), \end{split}$$

where $\|\cdot\|_{L^2(P)}$ denotes the L^2 norm on $L^2(P) = L^2(\Omega, \mathscr{F}, P)$.

- Proposition 5.23 修正

- (1) Suppose that the filtration $\{\mathscr{F}_t\}$ satisfies the usual conditions. Then \mathfrak{M}_2 is a complete metric space under the preceding metric d.
- Suppose that for every $t \in [0, \infty)$, \mathscr{F}_t contains all the P-negligible events in \mathscr{F} . Then \mathfrak{M}_2^c is a complete metric space under the preceding metric d_c .

証明. 任意の $0 \le t < \infty$ に対し、 $L^2(\Omega, \mathscr{F}_t, P)$ における関数類を $[\cdot]_t$ と書く.

(1) $\left([X^{(k)}]_{\mathfrak{M}_2}\right)_{k=1}^{\infty}$ を Cauchy 列とすれば、 $|X^{(k)}-X^{(j)}|^2$ の劣マルチンゲール性より任意の $0 \le t \le n$ で

$$\begin{split} \left\| \left[\boldsymbol{x}_t^{(k)} \right]_t - \left[\boldsymbol{X}_t^{(j)} \right]_t \right\|_{L^2(\Omega, \mathcal{F}_t, P)} \wedge 1 &\leq \left\| \left[\boldsymbol{x}_n^{(k)} \right] - \left[\boldsymbol{X}_n^{(j)} \right] \right\|_{L^2(P)} \wedge 1 \\ &\leq 2^n d \left(\left[\boldsymbol{X}^{(k)} \right]_{\mathfrak{M}_2}, \left[\boldsymbol{X}^{(j)} \right]_{\mathfrak{M}_2} \right) \longrightarrow 0, \quad (k, j \longrightarrow \infty) \end{split}$$

となるから、定理 A.11.6 より或る $[X_t]_t \in L^2(\Omega, \mathscr{F}_t, P)$ が存在して

$$E\left|X_t^{(k)} - X_t\right|^2 \longrightarrow 0, \quad (k \longrightarrow \infty)$$

を満たす. 特に t=0 なら $X_t=0$, a.s. P が従う. Hölder の不等式より任意の $A\in \mathcal{F}_t$ で

$$\int_{A}\left|X_{t}^{(k)}-X_{t}\right|\ dP\leq\left(E\left|X_{t}^{(k)}-X_{t}\right|^{2}\right)^{1/2}\longrightarrow0,\quad(k\longrightarrow\infty)$$

が成り立つから、任意に $0 \le s < t$ を取れば

$$\int_A X_s \ dP = \lim_{k \to \infty} \int_A X_s^{(k)} \ dP = \lim_{k \to \infty} \int_A X_t^{(k)} \ dP = \int_A X_t \ dP, \quad (\forall A \in \mathscr{F}_s)$$

となり $X=\{X_t,\mathscr{F}_t\mid 0\leq t<\infty\}$ のマルチンゲール性が出る. Theorem 3.13 より X の RCLL な修正 $\tilde{X}\in\mathscr{M}_2$ が得られ,ここで任意に $\epsilon>0$ 及び $1/2^N<\epsilon/2$ を満たす N を取れば,或る $K\geq 1$ が存在して

$$\left\| \left[X_n^{(k)} \right] - \left[\tilde{X}_n \right] \right\|_{L^2(P)} < \frac{\epsilon}{2}, \quad (\forall k \ge K)$$

がすべての $n \le N$ で満たされるから

$$d\left([X^{(k)}]_{\mathfrak{M}_2}, [\tilde{X}]_{\mathfrak{M}_2}\right) < \epsilon, \quad (\forall k \geq K)$$

が従う.

第2章

Brownian Motion

Dynkin system theorem -

Let $\mathscr C$ be a collection of subsets of Ω which is closed under pairwise intersection. If $\mathscr D$ is a Dynkin system containing $\mathscr C$, then $\mathscr D$ also contains the σ -field $\sigma(\mathscr C)$ generated by $\mathscr C$.

証明. 定理 A.7.10 より $\sigma(\mathscr{C}) = \delta(\mathscr{C}) \subset \mathscr{D}$ となる.

- Problem 1.4 –

Let $X = \{X_t \mid 0 \le t < \infty\}$ be a stochastic process for which $X_0, X_{t_1} - X_{t_0}, \cdots, X_{t_n} - X_{t_{n-1}}$ are independent random variables, for every integer $n \ge 1$ and indices $0 = t_0 < t_1 < \cdots < t_n < \infty$. Then for any fixed $0 \le s < t < \infty$, the increment $X_t - X_s$ is independent of \mathscr{F}_s^X .

この主張の逆も成立する:

証明. 先ず任意の $s \le t \le r$ に対し $\sigma(X_t - X_s) \subset \mathscr{F}_r^X$ が成り立つ. 実際,

$$\Phi: \mathbf{R}^d \times \mathbf{R}^d \ni (x, y) \longmapsto x - y$$

の連続性と $\mathscr{B}(\mathbf{R}^d \times \mathbf{R}^d) = \mathscr{B}(\mathbf{R}^d) \otimes \mathscr{B}(\mathbf{R}^d)$ より、任意の $E \in \mathscr{B}(\mathbf{R}^d)$ に対して

$$(X_t - X_s)^{-1}(E) = \{ (X_t, X_s) \in \Phi^{-1}(E) \} \in \sigma(X_s, X_t) \subset \mathscr{F}_r^X$$
(2.1)

が満たされる. よって任意に $A_0 \in \sigma(X_0)$, $A_i \in \sigma(X_{t_i} - X_{t_{i-1}})$ を取れば, $X_{t_n} - X_{t_{n-1}}$ が $\mathscr{F}^X_{t_{n-1}}$ と独立であるから

$$P(A_0 \cap A_1 \cap \cdots \cap A_n) = P(A_0 \cap A_1 \cap \cdots \cap A_{n-1})P(A_n)$$

が成立する. 帰納的に

$$P(A_0 \cap A_1 \cap \cdots \cap A_n) = P(A_0)P(A_1) \cdots P(A_n)$$

が従い
$$X_0, X_{t_1} - X_{t_0}, \cdots, X_{t_n} - X_{t_{n-1}}$$
 の独立性を得る.

証明 (Problem 1.4).

第一段 Dynkin 族を次で定める:

$$\mathscr{D} := \{ A \in \mathscr{F} \mid P(A \cap B) = P(A)P(B), \forall B \in \sigma(X_t - X_s) \}.$$

いま、任意に $0 = s_0 < \cdots < s_n = s$ を取り固定し

$$\mathscr{A}_{s_0,\cdots,s_n} := \left\{ \bigcap_{i=0}^n A_i \mid A_0 \in \sigma(X_0), A_i \in \sigma(X_{s_i} - X_{s_j}), i = 1, \cdots, n \right\}$$

により乗法族を定めれば、仮定より $\sigma(X_{s_i}-X_{s_{i-1}})$ と $\sigma(X_t-X_s)$ が独立であるから

$$\mathscr{A}_{s_0,\cdots,s_n}\subset\mathscr{D}$$

が成立し、Dynkin 族定理により

$$\sigma(X_{s_0}, X_{s_1} - X_{s_0}, \cdots, X_{s_n} - X_{s_{n-1}}) = \sigma(\mathscr{A}_{s_0, \cdots, s_n}) \subset \mathscr{D}$$
(2.2)

が従う.

第二段 $\sigma(X_{s_0},X_{s_1}-X_{s_0},\cdots,X_{s_n}-X_{s_{n-1}})$ の全体が \mathscr{F}_s^X を生成することを示す。 先ず,(2.1) より

$$\bigcup_{\substack{n \ge 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}) \subset \mathscr{F}_s^X$$
(2.3)

が成立する. 一方で、任意の $X_r^{-1}(E)$ ($\forall E \in \mathcal{B}(\mathbf{R}^d)$, $0 < r \le s$) について、

$$\Psi: \mathbf{R}^d \times \mathbf{R}^d \ni (x, y) \longmapsto x + y$$

で定める連続写像を用いれば

$$X_r^{-1}(E) = (X_r - X_0 + X_0)^{-1}(E) = \left\{ (X_r - X_0, X_0) \in \Psi^{-1}(E) \right\}$$

となり、 $X_r^{-1}(E) \in \sigma(X_0, X_r - X_0)$ が満たされ

$$\sigma(X_r) \subset \sigma(X_0, X_r - X_0) \subset \sigma(X_0, X_r - X_0, X_s - X_r)$$
(2.4)

が出る. $\sigma(X_0) \subset \sigma(X_0, X_s - X_0)$ も成り立ち

$$\bigcup_{0 \le r \le s} \sigma(X_r) \subset \bigcup_{\substack{n \ge 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}})$$

が従うから、(2.3) と併せて

$$\mathscr{F}_{s}^{X} = \sigma \left(\bigcup_{\substack{n \ge 1 \\ s_{0} < \dots < s_{n}}} \sigma(X_{s_{0}}, X_{s_{1}} - X_{s_{0}}, \dots, X_{s_{n}} - X_{s_{n-1}}) \right)$$
 (2.5)

が得られる.

第三段 任意の $0 = s_0 < s_1 < \cdots < s_n = s$ に対し、(2.1)と(2.4)より

$$\sigma(X_{s_0}, X_{s_1} - X_{s_0}, \cdots, X_{s_n} - X_{s_{n-1}}) = \sigma(X_{s_0}, X_{s_1}, \cdots, X_{s_n})$$
(2.6)

が成り立つ.

第四段 二つの節点 $0=s_0<\cdots< s_n=s$ と $0=r_0<\cdots< r_m=s$ の合併を $0=u_0<\cdots< u_k=s$ と書けば

$$\sigma(X_{s_0}, \dots, X_{s_n}) \cup \sigma(X_{r_0}, \dots, X_{r_m}) \subset \sigma(X_{u_0}, \dots, X_{u_k})$$

が成り立つから

$$\bigcup_{\substack{n\geq 1\\s_0<\dots< s_n}} \sigma(X_{s_0},X_{s_1},\dots,X_{s_n})$$

は交演算で閉じている. 従って (2.2), (2.5), (2.6) 及び Dynkin 族定理により

$$\mathscr{F}_s^X = \sigma \left(\bigcup_{\substack{n \geq 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}) \right) = \sigma \left(\bigcup_{\substack{n \geq 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1}, \dots, X_{s_n}) \right) \subset \mathscr{D}$$

が従い定理の主張を得る.

2.1 The Consistency Theorem

Karatzas-Shreve より Bogachev の Measure Theory に載っている Kolmogorov の拡張定理の方が洗練された簡潔な証明になっているので頭に入りやすい.

定義 2.1.1 (K-正則). S を位相空間とし,P を (S, $\mathscr{D}(S)$) 上の確率測度とする。 $A \in \mathscr{D}(S)$ が P に関して K-正則であるとは,任意の $\epsilon > 0$ に対し或るコンパクト集合 $K \subset A$ が存在して

$$P(A-K)<\epsilon$$

が満たされることをいう. 任意の $A \in \mathcal{B}(S)$ が P に関して K-正則であるとき, P は K-正則であるという.

- 完備可分距離空間上の Borel 確率測度の正則性

(S,d) を完備可分距離空間とするとき、 $(S,\mathcal{B}(S))$ 上の任意の Borel 確率測度 P は次の意味で正則である:

$$P(A) = \inf \{ P(G) \mid A \subset G, G$$
 は開集合 $\} = \sup \{ P(K) \mid K \subset A, K$ はコンパクト $\}$ 、 $(\forall A \in \mathcal{B}(S))$.

証明.

第一段 S が P に関して K-正則であることを示す. S の可分性により稠密な部分集合 $\{x_n\}_{n=1}^\infty$ が存在する.

$$B_n^k := \left\{ x \in S \mid d(x, x_n) \le \frac{1}{k} \right\}, (n, k = 1, 2, \dots)$$

とおけば、任意の k に対して

$$P\left(S - \bigcup_{n=1}^{N} B_n^k\right) \longrightarrow 0, \quad (N \longrightarrow \infty)$$

が満たされる. いま, 任意に $\epsilon > 0$ を取れば各 k に対し或る $N_k \in \mathbb{N}$ が存在して

$$P\left(S - \bigcup_{n=1}^{N_k} B_n^k\right) < \frac{\epsilon}{2^{k+1}}$$

が成立し,

$$K := \bigcap_{k=1}^{\infty} \left[\bigcup_{n=1}^{N_k} B_n^k \right]$$

により K を定めれば、K は閉集合の積であるから閉、すなわち完備である. また

$$K \subset \bigcup_{n=1}^{N_k} B_n^k, \quad (\forall k = 1, 2, \cdots)$$

より K は全有界部分集合である. K は相対距離に関して完備かつ全有界であるから相対位相に関してコンパクトであり、従って S のコンパクト部分集合である. そして次が成立する:

$$P(S-K) = P\left(\bigcup_{k=1}^{\infty} \left[S - \bigcup_{n=1}^{N_k} B_n^k \right] \right) \le \sum_{k=1}^{\infty} P\left(S - \bigcup_{n=1}^{N_k} B_n^k \right) < \epsilon.$$

第二段 任意の $A \in \mathcal{B}(S)$ と $\epsilon > 0$ に対して,或る閉集合 F 及び開集合 G が存在して

$$F \subset A \subset G$$
, $P(G - F) < \epsilon$

を満たすことを示す.

 $\mathscr{B} := \{A \in \mathscr{B}(S) \mid \text{ 任意の } \epsilon \text{ に対し上式を満たす開集合と閉集合が存在する.} \}$

とおけば、 \mathscr{B} は $\mathscr{O}(S)$ を含む σ -加法族である。実際、任意の開集合 $G \neq \emptyset$ に対し

$$F_n := \left\{ x \in S \mid d(x, G^c) \ge \frac{1}{n} \right\}, (n = 1, 2, \dots)$$

により閉集合系 $(F_n)_{n=1}^{\infty}$ を定めれば $\bigcup_{n=1}^{\infty} F_n = G$ が成り立つから

$$\mathcal{O}(S) \subset \mathcal{B}$$

が従う. また前段の結果より $S \in \mathcal{B}$ となり、かつ

$$F \subset A \subset G \implies G^c \subset A^c \subset F^c$$

より $\mathcal B$ は補演算で閉じている. 更に $A_n\in\mathcal B$, $(n=1,2,\cdots)$ を取れば、任意の $\epsilon>0$ に対して

$$F_n \subset A_n \subset G_n$$
, $P(G_n - F_n) < \frac{\epsilon}{2^{n+1}}$

を満たす閉集合 F_n と開集合 G_n が存在し,

$$P\left(\bigcup_{n=1}^{\infty} G_n - \bigcup_{n=1}^{\infty} F_n\right) \le P\left(\bigcup_{n=1}^{\infty} (G_n - F_n)\right) < \epsilon$$

が成り立つから十分大きな $N \in \mathbb{N}$ に対して

$$P\left(\bigcup_{n=1}^{\infty} G_n - \bigcup_{n=1}^{N} F_n\right) < \epsilon$$

となる. $\bigcup_{n=1}^N F_n$ は閉集合であり $\bigcup_{n=1}^\infty G_n$ は開集合であるから $\bigcup_{n=1}^\infty A_n \in \mathcal{B}$ が従う.

第三段 任意の $A \in \mathcal{B}(S)$ と $\epsilon > 0$ に対し、或る閉集合 F と開集合 G 及びコンパクト集合 K が存在して

$$F \subset A \subset G$$
, $P(G - F) < \frac{\epsilon}{2}$, $P(S - K) < \frac{\epsilon}{2}$

を満たす. 特に $F \cap K$ はコンパクトであり、このとき $F \cap K \subset A \subset G$ かつ

$$P(G-F\cap K) \le P(G-F) + P(G-K) \le P(G-F) + P(S-K) < \epsilon$$

が成立する.

2.2 The Kolmogorov-Čentsov Theorem

Exercise 2.7 —

The only $\mathscr{B}((\mathbf{R}^d)^{[0,\infty)})$ -measurable set contained in $C[0,\infty)^d$ is the empty set.

証明.

第一段 $\mathscr{B}((\mathbf{R}^d)^{[0,\infty)}) = \sigma(B_t; 0 \le t < \infty)$ が成り立つことを示す. 先ず, 任意の $C \in \mathscr{C}$ は

$$C = \left\{ \omega \in (\mathbf{R}^d)^{[0,\infty)} \mid (\omega(t_1), \cdots, \omega(t_n)) \in A \right\}$$

= $\left\{ \omega \in (\mathbf{R}^d)^{[0,\infty)} \mid (B_{t_1}(\omega), \cdots, B_{t_n}(\omega)) \in A \right\}, (A \in \mathcal{B}((\mathbf{R}^d)^n))$

の形で表されるから $\mathscr{C} \subset \sigma(B_t; 0 \le t < \infty)$ が従い $\mathscr{B}((\mathbf{R}^d)^{[0,\infty)}) \subset \sigma(B_t; 0 \le t < \infty)$ を得る. 逆に

$$\sigma(B_t) \subset \mathscr{C}, \quad (\forall t \ge 0)$$

より $\mathscr{B}((\mathbf{R}^d)^{[0,\infty)})$ $\supset \sigma(B_t;\ 0 \le t < \infty)$ も成立し $\mathscr{B}((\mathbf{R}^d)^{[0,\infty)}) = \sigma(B_t;\ 0 \le t < \infty)$ が出る. 第二段 高々可算集合 $S = \{t_1, t_2, \cdots\} \subset [0, \infty)$ に対して

$$\mathcal{E}_S := \left\{ \left\{ \omega \in (\mathbf{R}^d)^{[0,\infty)} \mid (\omega(t_1), \omega(t_2), \cdots) \in A \right\} \mid A \in \mathcal{B}((\mathbf{R}^d)^{\#S}) \right\}$$

とおけば *1 , 座標過程 B は $(\omega(t_1), \omega(t_2), \cdots) = (B_{t_1}(\omega), B_{t_2}(\omega), \cdots)$ を満たすから

$$\mathcal{E}_S = \left\{ \{ (B_{t_1}, B_{t_2}, \cdots) \in A \} \mid A \in \mathcal{B}((\mathbf{R}^d)^{\#S}) \right\} =: \mathcal{F}_S^B$$

が成立する. 従って第一章の Lemma3 for Exercise 1.8 と前段の結果より

$$\mathcal{B}((\mathbf{R}^d)^{[0,\infty)}) = \sigma(B_t; \ 0 \le t < \infty) = \mathcal{F}^B_{[0,\infty)} = \bigcup_{S \subset [0,\infty): at \ most \ countable} \mathcal{F}^B_S$$
$$= \bigcup_{S \subset [0,\infty): at \ most \ countable} \mathcal{E}_S$$

を得る. すなわち, $\mathscr{B}((\mathbf{R}^d)^{[0,\infty)})$ の任意の元は $\left\{\omega\in(\mathbf{R}^d)^{[0,\infty)}\mid (\omega(t_1),\omega(t_2),\cdots)\in A\right\}$ の形で表現され, $A\neq\emptyset$ ならば $\left\{\omega\in(\mathbf{R}^d)^{[0,\infty)}\mid (\omega(t_1),\omega(t_2),\cdots)\in A\right\}$ $\not\subset C[0,\infty)^d$ となり主張が従う.

^{*1} S が可算無限なら $(\mathbf{R}^d)^{\#S} = \mathbf{R}^{\infty}$.

Theorem 2.8 and Problem 2.9 -

Suppose that a process $X = \{X_t \mid t \in [0,T]^d\}$ $(d \ge 1)$ on a probability space (Ω, \mathcal{F}, P) satisfies the condition

$$\forall s, t \in [0, T]^d$$
, $E|X_t - X_s|^{\alpha} \le C \|t - s\|^{d+\beta}$, where $\|\cdot\|$ is max norm

for some positive constants α , β , and C. Then there exists a continuous modification $\tilde{X} = \{\tilde{X}_t \mid t \in [0, T]^d\}$ of X, which is locally Hölder-continuous with exponent γ for every $\gamma \in (0, \beta/\alpha)$. More precisely, for every $\gamma \in (0, \beta/\alpha)$,

$$\forall \omega \in \Omega^*, \quad \sup_{\substack{0 < \|t-s\| < h(\omega) \\ s, t \in [0, T]^d}} \frac{\left| \tilde{X}_t(\omega) - \tilde{X}_s(\omega) \right|}{\|t-s\|^{\gamma}} \le \frac{2}{1 - 2^{-\gamma}}$$

for some $\Omega^* \in \mathscr{F}$ with $P(\Omega^*) = 1$ and positive random variable h, where Ω^* and h depend on γ .

証明.

第一段 N の任意の要素 n に対して

$$L_n = \left\{ \frac{kT}{2^n} \mid k = 0, 1, 2, \dots, 2^n - 1 \right\}$$

として $L = \bigcup_{n \in \mathbb{N}} L_n$ とおく. L は $[0,T]^d$ において稠密である. L_n の要素 s に対して

$$R_n(s) = \{ t \in L_n \mid ||t - s|| \le T2^{-n} \}$$

とおく、つまり、 $R_n(s)$ とは s の各成分を最大 $T2^{-n}$ だけ動かした順序対の集合である、いま、 L_n の要素数は 2^{nd} 、 L_n の各要素 s に対して $R_n(s)$ の要素数は 3^d である、Chebyshev の不等式より、任意の正数 ϵ に対して

$$P(|X_t - X_s| \ge \epsilon) \le \epsilon^{-\alpha} E|X_t - X_s|^{\alpha} \le C\epsilon^{-\alpha} ||t - s||^{d+\beta}$$

となり、特に $\epsilon = 2^{-\gamma n}$ かつ $||t - s|| \le T2^{-n}$ の場合は

$$P(|X_t - X_s| \ge 2^{-\gamma n}) \le C2^{-n(d+\beta-\alpha\gamma)}$$

が成り立つから,

$$P\left(\max_{s\in L_n \, \land t\in R_n(s)} |X_t - X_s| \geq 2^{-\gamma n}\right) = P\left(\bigcup_{s\in L_n \, t\in R_n(s)} \{|X_t - X_s| \geq 2^{-\gamma n}\}\right) \leq 3^d C T^{d+\beta} 2^{-n(\beta-\alpha\gamma)}$$

が成り立つ. $A_n = \left\{ \max_{s \in L_n \land t \in R_n(s)} |X_t - X_s| \ge 2^{-\gamma n} \right\}$ とおけば、 $\beta - \alpha \gamma > 0$ より $\sum_{n \in \mathbb{N}} P(A_n) < \infty$ となるから,Borel-Cantelli の補題より

$$N = \bigcap_{n \in \mathbf{N}} \bigcup_{k > n} A_k$$

は P-零集合となり,

$$\forall \omega \in \Omega \backslash N, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ N \le n \Longrightarrow \max_{s \in L_n \land t \in R_n(s)} |X_t(\omega) - X_s(\omega)| < 2^{-\gamma n}$$
 (2.7)

が満たされる.

第二段 $\Omega \setminus N$ の要素 ω に対して,(2.7) を満たす自然数 N のうち最小なもの与える写像を n^* と書く (順序数の整列性). つまり n^* は

$$n^* = \left\{ (\omega, n) : \omega \in \Omega \land n \in \mathbb{N} \land \right.$$

$$\forall m \in \mathbb{N} \left[n \le m \Longrightarrow \max_{s \in L_m \land t \in R_m(s)} |X_t(\omega) - X_s(\omega)| < 2^{-\gamma m} \right] \land$$

$$\forall N \in \mathbb{N} \left[\forall m \in \mathbb{N} \left[N \le m \Longrightarrow \max_{s \in L_m \land t \in R_m(s)} |X_t(\omega) - X_s(\omega)| < 2^{-\gamma m} \right] \Longrightarrow n \le N \right] \right\}$$

で与えられる写像である. 写像 n^* は $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測性を持つ. 実際, 任意の自然数 ℓ に対して

$$n^{*-1}(\ell) = \left\{ \bigcap_{n=\ell}^{\infty} A_n^c \right\} \cap \left\{ \bigcap_{1 \le j \le \ell-1} \bigcap_{n=j}^{\infty} A_n \right\}$$

を満たす. n* の定め方より

$$\forall \omega \in \Omega \backslash N, \ \forall n \in \mathbb{N}, \quad n^*(\omega) \le n \Longrightarrow \max_{s \in L_n \land t \in R_n(s)} |X_t(\omega) - X_s(\omega)| < 2^{-\gamma n}$$
 (2.8)

が成立する.

第三段 いま, $\Omega \setminus N$ の任意の要素 ω と $n^*(\omega) \le n$ を満たす任意の自然数 n が与えられたとすると,

$$\forall m \in \mathbb{N}, \quad n < m \Longrightarrow \forall s, t \in L_m \left[\|t - s\| < 2^{-n} \Longrightarrow |X_t(\omega) - X_s(\omega)| < 2 \sum_{j=n+1}^m 2^{-\gamma j} \right]$$

が成立する. 実際, m=n+1 ならば, L_{n+1} の任意の要素 s,t に対し $\|t-s\|<2^{-n}$ となるのは $t\in R_{n+1}(s)$ の場合のみであるから, (2.8) より

$$||t - s|| < 2^{-n} \Longrightarrow |X_t(\omega) - X_s(\omega)| < 2^{-\gamma(n+1)} < 2\sum_{j=n+1}^m 2^{-\gamma j}$$

 $\forall x \in M = M - 1$ $x \in M$

$$\forall s, t \in L_m \left[\|t - s\| < 2^{-n} \Longrightarrow |X_t(\omega) - X_s(\omega)| < 2 \sum_{j=n+1}^m 2^{-\gamma j} \right]$$

が成立すると仮定すると、 $\|t-s\| < 2^{-n}$ を満たす L_M の任意の要素 s,t に対し、

- $s_i < t_i$ ならば $s_i \le s_i' \le t_i' \le t_i$ を満たす $\{Tk/2^{M-1} \mid k \in \{0,1,\cdots,2^{M-1}\}\}$ の要素 s_i',t_i' を取り、
- $s_i = t_i$ のときは、 $s_i \in \left\{ Tk/2^{M-1} \mid k \in \{0,1,\cdots,2^{M-1}\} \right\}$ ならば $s_i' = s_i$, $t_i' = s_i$ とおき、 $s_i \notin \left\{ Tk/2^{M-1} \mid k \in \{0,1,\cdots,2^{M-1}\} \right\}$ ならば $s_i' = s_i 1/2^M$, $t_i' = s_i 1/2^M$ とおくとして $s' = (s_1',\cdots,s_d')$ と $t' = (t_1',\cdots,t_d')$ を定めれば、

$$s', t' \in L_{M-1} \land ||s - s'|| < 1/2^{M} \land ||t - t'|| < 1/2^{M} \land ||t' - s'|| < 1/2^{n}$$

が満たされるから

$$|X_s(\omega) - X_{s'}(\omega)| < 2^{-\gamma M}, \quad |X_{t'}(\omega) - X_t(\omega)| < 2^{-\gamma M}, \quad |X_{t'}(\omega) - X_{s'}(\omega)| < 2\sum_{i=u+1}^{M-1} 2^{-\gamma j}$$

となり

$$|X_t(\omega) - X_s(\omega)| < 2 \sum_{j=n+1}^{M} 2^{-\gamma j}$$

が成立する.

第四段 実確率変数 h を

$$h(\omega) = \begin{cases} 2^{-n^*(\omega)}, & (\omega \in \Omega \backslash N), \\ 0, & (\omega \in N) \end{cases}$$

で定める. このとき

$$\forall \omega \in \Omega \backslash N, \ \forall s, t \in L, \quad 0 < \|t - s\| < h(\omega) \Longrightarrow |X_t(\omega) - X_s(\omega)| < \frac{2}{1 - 2^{-\gamma}} \|t - s\|^{\gamma} \tag{2.9}$$

が成立する. いま $\Omega \setminus N$ の要素 ω と L の要素 s,t が任意に与えられたとして, $0<\|t-s\|< h(\omega)$ のとき, $\|t-s\|<2^{-n}$ を満たす最大の自然数 n を取れば

$$n^*(\omega) \le n \wedge 2^{-(n+1)} \le ||t - s|| < 2^{-n}$$

が成立し, 前段の結果より

$$|X_t(\omega) - X_s(\omega)| < 2\sum_{j=n+1}^{\infty} 2^{-\gamma j} = 2\frac{2^{-\gamma(n+1)}}{1 - 2^{-\gamma}} \le \frac{2}{1 - 2^{-\gamma}} \| t - s \|^{\gamma}$$

が従う.

第五段 X の連続な修正 \tilde{X} を構成する。 $\Omega \setminus N$ の要素 ω と $[0,T]^d$ の要素 t が任意に与えられたとき,t に収束する L の列 $\{s_n\}_{n\in\mathbb{N}}$ を取れば (2.9) より $\{X_{s_n}(\omega)\}_{n\in\mathbb{N}}$ は Cauchy 列をなす。従って $\lim_{n\in\mathbb{N}}X_{s_n}(\omega)$ が存在するが, (2.9) より $\lim_{n\in\mathbb{N}}X_{s_n}(\omega)$ は列 $\{s_n\}_{n\in\mathbb{N}}$ の取り方に依らずに確定する。この極限を $\tilde{X}_t(\omega)$ と書いて

$$\tilde{X} = \left\{ (x, y) : \exists \omega \in \Omega \exists t \in [0, T]^d [x = (t, \omega) \land \\ \omega \in \Omega \backslash N \Longrightarrow y = \tilde{X}_t(\omega) \land \\ \omega \in N \Longrightarrow y = 0] \right\}$$

で写像 \tilde{X} を定めれば、 \tilde{X} は

$$\forall \omega \in \Omega \setminus N, \ \forall s, t \in L, \quad 0 < \|t - s\| < h(\omega) \Longrightarrow |\tilde{X}_t(\omega) - \tilde{X}_s(\omega)| < \frac{2}{1 - 2^{-\gamma}} \|t - s\|^{\gamma}$$

を満たし、ゆえに t の写像と見て連続であり、かつ $[0,T]^d$ の任意の要素 t において、任意の正数 ϵ に対し

$$P\left(\left|X_{t}-\tilde{X}_{t}\right|>\epsilon\right)\leq P\left(\left|X_{t}-X_{s_{n}}\right|>\epsilon/2\right)+P\left(\left|X_{s_{n}}-\tilde{X}_{t}\right|>\epsilon/2\right)\longrightarrow0\quad(n\longrightarrow\infty)$$

が成立するから $P(X_t \neq \tilde{X}_t) = 1$ となる.

Corollary to Theorem 2.8 —

There is a probability measure P on $(\mathbf{R}^{[0,\infty)}, \mathcal{B}(\mathbf{R}^{[0,\infty)}))$, and a stochastic process $W = \{W_t, \mathcal{F}_t^W \mid t \geq 0\}$ on the same space, such that under P, W is a Brownian motion.

証明.

第一段 Corollary to Theorem 2.2 より, $(\mathbf{R}^{[0,\infty)},\mathscr{B}(\mathbf{R}^{[0,\infty)}))$ にただ一つの確率測度 P が存在して,

$$B = \left\{ (x,y) \mid \exists t \in [0,\infty) \exists \omega \in \mathbf{R}^{[0,\infty)} \left(x = (t,\omega) \land y = \omega(t) - \omega(0) \right) \right\}$$

で定める写像 B が P の下で

- $\mathbf{R}^{[0,\infty)}$ の任意の要素 ω に対して $B_0(\omega) = 0$,
- 任意の実数 s, t に対し、 $0 \le s < t$ ならば $B_t B_s$ は \mathscr{F}_s と独立、
- 任意の実数 s,t に対し、 $0 \le s < t$ ならば $P(B_t B_s)^{-1}$ は平均 0 で分散が t s の正規分布

となる. Theorem2.8 と Problem2.10 により、1 以上の任意の自然数 N に対し、[0,N] 上で B の修正 W^N が存在する.

$$\Omega_N = \left\{ \omega \in \mathbf{R}^{[0,\infty)} \mid \forall t \in [0,N] \cap \mathbf{Q}, \quad W_t^N(\omega) = B_t(\omega) \right\}$$
$$= \bigcap_{t \in [0,N] \cap \mathbf{Q}} \left\{ \omega \in \mathbf{R}^{[0,\infty)} \mid W_t^N(\omega) = B_t(\omega) \right\}$$

とおけば、 W^N は B の修正であるから $P(\Omega_N)=1$. ここで $\tilde{\Omega}=\bigcap_{N\in \mathbf{N}}\Omega_N$ とおく.0 以上の実数 t と $\tilde{\Omega}$ の要素 ω が任意に与えられたとき,t< N を満たす自然数 N を取れば,N 以上の任意の自然数 n で

$$\forall s \in [0, N] \cap \mathbf{Q}, \quad B_s(\omega) = W_s^N(\omega) \wedge B_s(\omega) = W_s^n(\omega)$$

となり、 $W^N(\omega)$ と $W^n(\omega)$ の連続性と定理 A.5.33 より $W^N(\omega)$ と $W^n(\omega)$ は [0,N] 上で一致する. すなわち

$$\forall n \in \mathbb{N}, \quad N \leq n \Longrightarrow W_t^n(\omega) = W_t^N(\omega)$$

が成り立つから、このとき $\lim_{n\to\infty}W_t^n(\omega)$ が確定する.

$$W_t(\omega) = \begin{cases} \lim_{n \to \infty} W_t^n(\omega), & (\omega \in \tilde{\Omega}), \\ 0, & (\omega \in \mathbf{R}^{[0,\infty)} \setminus \tilde{\Omega}) \end{cases}$$

で W を定めれば,W は B の修正となる.実際,0 以上の任意の実数 t に対し,t < N を満たす自然数 N を取れば

$$\forall \omega \in \tilde{\Omega}, \quad W_t(\omega) = W_t^N(\omega)$$

となり、 W^N が B の修正であるから

$$P(W_t \neq B_t) \le P(W_t \neq W_t^N) + P(W_t^N \neq B_t) = 0$$

が成立する. またこの t において, $W^N(\omega)$ の連続性から $W(\omega)$ の t での連続性が従う.

第二段 前段で定めた W が $(\mathbf{R}^{[0,\infty)}, \mathcal{B}(\mathbf{R}^{[0,\infty)}), P)$ の上の Brown 運動であることを示す.まず P-a.s. に $W_0 = B_0$ である.また $0 \le s < t$ を満たす任意の実数 s,t に対し,

$$\Omega' = \left\{ \omega \in \mathbf{R}^{[0,\infty)} \mid W_s(\omega) \neq B_s(\omega) \land W_t(\omega) \neq B_t(\omega) \right\}$$

とおく. $\mathcal{B}(\mathbf{R})$ の要素 E,F が任意に与えられたとして,

$$W_c^{-1}(F) \cap \Omega' = B_c^{-1}(F) \cap \Omega', \quad (W_t - W_s)^{-1}(E) \cap \Omega' = (B_t - B_s)^{-1}(E) \cap \Omega'$$

が成り立ち、かつ $P(\Omega') = 1$ であるから

$$P(W_{s}^{-1}(F)) = P(W_{s}^{-1}(F) \cap \Omega') = P(B_{s}^{-1}(F) \cap \Omega') = P(B_{s}^{-1}(F)),$$

$$P((W_{t} - W_{s})^{-1}(E)) = P((B_{t} - B_{s})^{-1}(E)),$$

$$P(W_{s}^{-1}(F) \cap (W_{t} - W_{s})^{-1}(E)) = P(B_{s}^{-1}(F) \cap (B_{t} - B_{s})^{-1}(E))$$
(2.10)

が従い, B の独立増分性と併せて

$$P(W_s^{-1}(F) \cap (W_t - W_s)^{-1}(E)) = P(B_s^{-1}(F) \cap (B_t - B_s)^{-1}(E))$$

$$= P(B_s^{-1}(F)) P((B_t - B_s)^{-1}(E))$$

$$= P(W_s^{-1}(F)) P((W_t - W_s)^{-1}(E))$$

となる. 以上で W の独立増分性が示された. また (2.10) から $W_t - W_s$ の分布は $B_t - B_s$ の分布に一致する.

2.3 The Space $C[0, \infty)$, Weak Convergence, and the Wiener Measure

Problem 4.1

Show that ρ defined by (4.1) is a metric on $C[0,\infty)^d$ and, under ρ , $C[0,\infty)^d$ is a complete, separable metric space.

以下、 $C[0,\infty)^d$ には ρ により広義一様収束位相を導入する.

証明. 付録の定理 A.17.4 により従う.

Problem 4.2

Let $\mathscr{C}(\mathscr{C}_t)$ be the collection of finite-dimensional cylinder sets of the form (2.1); i.e.,

$$C = \{ \omega \in C[0, \infty)^d \mid (\omega(t_1), \cdots, \omega(t_n)) \in A \}; \quad n \ge 1, A \in \mathcal{B}((\mathbf{R}^d)^n),$$

where, for all $i=1,\cdots,n$, $t_i\in[0,\infty)$ (respectively, $t_i\in[0,t]$). Denote by $\mathscr{G}(\mathscr{G}_t)$ the smallest σ -field containing $\mathscr{C}(\mathscr{C}_t)$. Show that $\mathscr{G}=\mathscr{B}(C[0,\infty)^d)$, the Borel σ -field generated by the open sets in $C[0,\infty)^d$, and that $\mathscr{G}_t=\varphi_t^{-1}\left(\mathscr{B}(C[0,\infty)^d)\right)=:\mathscr{B}_t\left(C[0,\infty)^d\right)$, where $\varphi_t:C[0,\infty)^d\longrightarrow C[0,\infty)^d$ is the mapping $(\varphi_t\omega)(s)=\omega(t\wedge s);\ 0\leq s<\infty$.

証明.

第一段 $w_0 \in C[0,\infty)^d$ とする. 任意に $w \in C[0,\infty)^d$ を取れば、w の連続性により $d(w_0,w)$ の各項について

$$\sup_{t \le n} |w_0(t) - w(t)| = \sup_{r \in [0, n] \cap \mathbf{Q}} |w_0(r) - w(r)| \quad (n = 1, 2, \dots)$$

とできる. いま, 任意に実数 $\alpha \in \mathbf{R}$ を取れば

$$\left\{w\in C[0,\infty)^d\mid \sup_{r\in[0,n]\cap\mathbf{Q}}|w_0(r)-w(r)|\leq\alpha\right\}=\bigcap_{r\in[0,n]\cap\mathbf{Q}}\left\{w\in C[0,\infty)^d\mid |w_0(r)-w(r)|\leq\alpha\right\}$$

が成立し、右辺の各集合は $\mathscr C$ に属するから 左辺 $\in \sigma(\mathscr C)$ となる. 従って

$$\psi_n: C[0,\infty)^d\ni w\longmapsto \sup_{r\in[0,n]\cap \mathbf{Q}}|w_0(r)-w(r)|\in \mathbf{R},\quad (n=1,2,\cdots)$$

で定める ψ_n は可測 $\sigma(\mathscr{C})/\mathscr{B}(\mathbf{R})$ である. $x \mapsto x \wedge 1$ の連続性より $\psi_n \wedge 1$ も $\sigma(\mathscr{C})/\mathscr{B}(\mathbf{R})$ -可測性を持ち,

$$d(w_0, w) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\psi_n(w) \wedge 1 \right)$$

により $C[0,\infty)^d \ni w \longmapsto d(w_0,w) \in \mathbf{R}$ の $\sigma(\mathscr{C})/\mathscr{B}(\mathbf{R})$ -可測性が出るから、任意の $\epsilon > 0$ に対する球について

$$\{w \in C[0,\infty)^d \mid d(w_0,w) < \epsilon\} \in \sigma(\mathscr{C})$$

が成り立つ、 $C[0,\infty)^d$ は第二可算公理を満たし、可算基底は上式の形の球で構成されるから、 $\mathscr{O}(C[0,\infty)^d)$ $\subset \sigma(\mathscr{C})$ が従い $\mathscr{B}(C[0,\infty)^d)$ $\subset \sigma(\mathscr{C})$ を得る、次に逆の包含関係を示す、いま任意に $n\in \mathbf{Z}_+$ と $t_1<\dots< t_n$ を選んで

$$\phi: C[0,\infty)^d \ni w \longmapsto (w(t_1),\cdots,w(t_n)) \in (\mathbf{R}^d)^n$$

で定める写像は連続である.実際,任意の一点 w_0 での連続性を考えると,任意の $\epsilon>0$ に対して $t_n\leq N$ を満たす $N\in \mathbf{N}$ を取れば, $d(w_0,w)<\epsilon/(n2^N)$ ならば $\sum_{i=1}^n|w_0(t_i)-w(t_i)|<\epsilon$ が成り立つ.よって ϕ は w_0 で連続であり

$$\mathcal{B}((\mathbf{R}^d)^n) \subset \left\{A \in \mathcal{B}((\mathbf{R}^d)^n) \mid \quad \phi^{-1}(A) \in \mathcal{B}(C[0,\infty)^d)\right\}$$

が出る. 任意の $C \in \mathcal{C}$ は, $n \in \mathbb{N}$ と時点 $t_1 < \cdots < t_n$ によって決まる写像 ϕ によって $C = \phi^{-1}(B)$ ($\exists B \in \mathcal{B}((\mathbf{R}^d)^n)$) と表現できるから, $\mathcal{C} \subset \mathcal{B}(C[0,\infty)^d)$ が成り立ち $\sigma(\mathcal{C}) \subset \mathcal{B}(C[0,\infty)^d)$ が得られる.

第二段 $t \ge 0$ とする. $C[0,\infty)^d$ の位相を $\mathcal{O}(C[0,\infty)^d)$ と書けば

$$\varphi_t^{-1}\left(\mathcal{B}(C[0,\infty)^d)\right) = \sigma\left(\left\{\,\varphi_t^{-1}(O)\mid \quad O\in\mathcal{O}(C[0,\infty)^d)\,\right\}\right)$$

が成り立つ. 任意の $\alpha \in \mathbb{R}$ と $r \ge 0$ に対して

$$\begin{cases}
w \in C[0, \infty)^{d} \mid |w_{0}(r) - (\varphi_{t}w)(r)| \leq \alpha \\
\end{cases} = \begin{cases}
w \in C[0, \infty)^{d} \mid |w_{0}(r) - (\varphi_{t}w)(r)| \leq \alpha \\
w \in C[0, \infty)^{d} \mid |w_{0}(r) - (\varphi_{t}w)(t)| \leq \alpha \\
\end{cases}, (r \leq t), \in \mathscr{C}_{t}$$

となるから

$$\psi_n^t : C[0,\infty)^d \ni w \longmapsto \sup_{r \in [0,n] \cap \mathbf{Q}} |w_0(r) - (\varphi_t w)(r)| \in \mathbf{R}, \quad (n=1,2,\cdots)$$

で定める ψ_n^t は可測 $\sigma(\mathcal{C}_t)/\mathcal{B}(\mathbf{R})$ である. $x \mapsto x \wedge 1$ の連続性より $\psi_n^t \wedge 1$ も $\sigma(\mathcal{C}_t)/\mathcal{B}(\mathbf{R})$ -可測性を持ち,

$$d(w_0, \varphi_t w) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\psi_n^t(w) \wedge 1 \right)$$

により $C[0,\infty)^d$ $\ni w \mapsto d(w_0, \varphi_t w) \in \mathbf{R}$ の $\sigma(\mathcal{C}_t)/\mathcal{B}(\mathbf{R})$ -可測性が出るから、任意の $\epsilon > 0$ に対する球について

$$\{w \in C[0,\infty)^d \mid d(w_0,\varphi_t w) < \epsilon\} \in \sigma(\mathcal{C}_t)$$

が成り立つ. 特に

$$\varphi_t^{-1}\left(\left\{\,w\in C[0,\infty)^d\mid\quad d(w_0,w)<\epsilon\,\right\}\right)=\left\{\,w\in C[0,\infty)^d\mid\quad d(w_0,\varphi_tw)<\epsilon\,\right\}$$

が満たされ、 $C[0,\infty)^d$ の第二可算性より

$$\varphi_t^{-1}(O) \in \sigma(\mathcal{C}_t), \quad (\forall O \in \mathcal{O}(C[0,\infty)^d))$$

が従う. ゆえに $\varphi_t^{-1}\left(\mathcal{B}(C[0,\infty)^d)\right)\subset\sigma\left(\mathscr{C}_t\right)$ となる.

2.4 Weak Convergence

いま、X を局所コンパクト Hausdorff 空間として

$$C_0(X) \coloneqq \left\{ f: X \longrightarrow \mathbf{C} \mid \quad$$
連続かつ、任意の $\epsilon > 0$ に対し $\overline{\left\{ x \in X \mid \quad |f(x)| \ge \epsilon \right\}}$ がコンパクト $\left\{ x \in X \mid \quad |f(x)| \ge \epsilon \right\}$

とおく.この $C_0(X)$ はノルム $\|f\|_{C_0(X)}\coloneqq\sup_{x\in X}|f(x)|$ により複素 Banach 空間となる.また $(X,\mathcal{B}(X))$ 上の複素 測度 μ について,その総変動 $|\mu|$ が正則測度であるとき μ は正則であるという.X 上の正則複素測度の全体を RM(X) と書き,総変動ノルム $\|\mu\|_{RM(X)}\coloneqq|\mu|(X)$ によりノルム位相を導入する.任意の複素測度 μ に対し

$$\Phi_{\mu}(f) \coloneqq \int_X f(x) \; \mu(dx)$$

により $C_0(X)$ 上の有界線型汎関数 Φ_{μ} が定まる.

定理 2.4.1 (Riesz の表現定理). X を局所コンパクト Hausdorff 空間とする. $C_0(X)$ に $\|\cdot\|_{C_0(X)}$ で位相を入れるとき、共役空間 $C_0(X)^*$ と書く. このとき $C_0(X)^*$ と RM(X) は

$$\Phi: RM(X) \ni \mu \longrightarrow \Phi_{\mu} \in C_0(X)$$

で定める対応関係 Φ により Banach 空間として等長同型となる.

 $C_0(X)^*$ に汎弱位相を入れるとき、汎関数列 $\left(\Phi_{\mu_n}\right)_{n=1}^\infty$ が Φ_{μ} に汎弱収束することと

$$\Phi_{\mu_n}(f) \longrightarrow \Phi_{\mu}(f) (n \longrightarrow \infty), \quad (\forall f \in C_0(X))$$

は同値になる. $C_0(X)^*$ の汎弱位相の Φ による逆像位相を RM(X) の弱位相と定めれば、 Φ は弱位相に関して位相同型となる. このとき、 $(\mu_n)_{n=1}^\infty$ が μ に弱収束することは $(\Phi_{\mu_n})_{n=1}^\infty$ が Φ_μ に汎弱収束することと同値になり、すなわち

$$\int_{Y} f(x) \, \mu_n(dx) \longrightarrow \int_{Y} f(x) \, \mu(dx) \, (n \longrightarrow \infty), \quad (\forall f \in C_0(X))$$

と同値になる. X 上の正則な確率測度の全体を $\mathcal{P}(X)$ と書けば $\mathcal{P}(X) \subset RM(X)$ となり、正則確率測度の列 $(P_n)_{n=1}^\infty$ が $P \in \mathcal{P}(X)$ に弱収束することは

$$\int_X f(x) \, P_n(dx) \longrightarrow \int_X f(x) \, P(dx) \, (n \longrightarrow \infty), \quad (\forall f \in C_0(X))$$

と同値になる.

Definition 4.3

It follows, in particular, that the weak limit P is a probability measure, and that it is unique.

証明. $f \equiv 1$ として

$$P(S) = \lim_{n \to \infty} P_n(S) = 1$$

が従うから P は確率測度である. また任意の有界連続関数 $f:S\longrightarrow \mathbf{R}$ に対し

$$\int_{S} f \ dP = \int_{S} f \ dQ$$

が成り立つとき、任意の閉集合 $A \subset S$ に対して

$$f_k(s) := \frac{1}{1 + kd(s, A)}, \quad (k = 1, 2, \cdots)$$

と定めれば $\lim_{k\to\infty} f_k = 1_A$ (各点収束) が満たされるから、Lebesgue の収束定理より

$$P(A) = \lim_{k \to \infty} \int_{S} f_k dP = \lim_{k \to \infty} \int_{S} f_k dQ = Q(A)$$

となり、測度の一致の定理より P=Q が得られる. すなわち弱極限は一意である.

lemma: change of variables for expectation ——

 (Ω, \mathscr{F}, P) を確率空間, (S, \mathscr{S}) を可測空間とする.このとき任意の有界 \mathscr{S}/\mathscr{B} -可測関数 f と \mathscr{F}/\mathscr{S} -可測写像 X に対して

$$\int_{\Omega} f(X) dP = \int_{S} f dP X^{-1}$$

が成立する.

証明. 任意の $A \in \mathcal{S}$ に対して

$$\int_{S} 1 \!\! 1_A dP X^{-1} = P(X^{-1}(A)) = \int_{O} 1 \!\! 1_{X^{-1}(A)} dP = \int_{O} 1 \!\! 1_A(X) dP$$

が成り立つから、任意の $\mathscr{S}/\mathscr{B}(\mathbf{R})$ -可測単関数 g に対し

$$\int_{\Omega} g(X) \, dP = \int_{S} g \, dP X^{-1}$$

となる。f が有界なら一様有界な単関数で近似できるので,Lebesgue の収束定理より

$$\int_{\Omega} f(X) dP = \int_{S} f dP X^{-1}$$

が出る.

Definition 4.4 -

Equivalently, $X_n \xrightarrow{\mathscr{D}} X$ if and only if

$$\lim_{n\to\infty} E_n f(X_n) = E f(X)$$

for every bounded, continuous real-valued function f on S, where E_n and E denote expectations with respect to P_n and P, respectively.

証明. 任意の有界実連続関数 $f:S\longrightarrow \mathbf{R}$ に対し

$$\int_{\Omega} f(X_n) \, dP_n = \int_{S} f \, dP_n X_n^{-1}, \quad \int_{\Omega} f(X) \, dP = \int_{S} f \, dP X^{-1},$$

が成り立つから、 $P_n X_n^{-1}$ が $P X^{-1}$ に弱収束することと $\lim_{n\to\infty} E_n f(X_n) = E f(X)$ は同値である.

Problem 4.5

Suppose $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables taking values in a metric space (S_1, ρ_1) and converging in distribution to X. Suppose (S_2, ρ_2) is another metric space, and $\varphi: S_1 \longrightarrow S_2$ is continuous. Show that $Y_n := \varphi(X_n)$ converges in distribution to $Y := \varphi(X)$.

証明. 任意の有界実連続関数 $f:S_2\longrightarrow \mathbf{R}$ に対し $f\circ \varphi$ は S_1 上の有界実連続関数であるから

$$\int_{S_2} f \, dP Y_n^{-1} = \int_{\Omega} f(Y_n) \, dP = \int_{\Omega} f(\varphi(X_n)) \, dP = \int_{S_1} f \circ \varphi \, dP X_n^{-1}$$

$$\longrightarrow \int_{S_1} f \circ \varphi \, dP X^{-1} = \int_{S_2} f \, dP Y^{-1} \quad (n \longrightarrow \infty)$$

が成立する.

2.5 Tightness

テキスト本文において $m^{T}(\omega, \delta)$ は

$$m^{T}(\omega, \delta) \coloneqq \max_{\substack{|s-t| \le \delta \\ 0 \le s, t < T}} |\omega(s) - \omega(t)|$$

で定められるが、max と書いて妥当であることを確認しておく. まず

$$D := \{ (s, t) \in \mathbf{R} \times \mathbf{R} \mid |s - t| \le \delta \land 0 \le s, t \le T \}$$

で定められる集合は $\mathbf{R} \times \mathbf{R}$ のコンパクト集合である. そして ω は連続写像であるから

$$\mathbf{R} \times \mathbf{R} \ni (s,t) \longmapsto \omega(s), \quad \mathbf{R} \times \mathbf{R} \ni (s,t) \longmapsto \omega(t)$$

は共に実連続写像である. 引き算は連続, 絶対値も連続であるから

$$\mathbf{R} \times \mathbf{R} \ni (s, t) \longmapsto |\omega(s) - \omega(t)|$$

は $\mathbf{R} \times \mathbf{R}$ から \mathbf{R} への連続写像であり、D のコンパクト性から D 上で最大値を取る.

Problem 4.8

Show that $m^T(\omega, \delta)$ is continuous in $\omega \in C[0, \infty)$ under the metric ρ of (4.1), is nondecreasing in δ , and $\lim_{\delta \downarrow 0} m^T(\omega, \delta) = 0$ for each $\omega \in C[0, \infty)$.

略証.

第一段 $m^T(\omega, \delta)$ が ω に関して連続であることを示す. まず大雑把に,

$$\left| \max_{x} |f(x)| - \max_{x} |g(x)| \right| \le \max_{x} |f(x) - g(x)|$$

が成立する. 実際,

$$\max_{x}|f(x)|-\max_{x}|g(x)|\leq \max_{x}|f(x)-g(x)|$$

が成り立つことを確認するには

$$|f(x_1)| = \max_{x} |f(x)|$$

なる x_1 を取り,

$$\begin{aligned} \max_{x} |f(x)| - \max_{x} |g(x)| &= |f(x_{1})| - \max_{x} |g(x)| \\ &\leq |f(x_{1})| - |g(x_{1})| \\ &\leq |f(x_{1}) - g(x_{1})| \\ &\leq \max_{x} |f(x) - g(x)| \end{aligned}$$

となることを見ればよい. f,g を入れ替えれば

$$\max_{x} |g(x)| - \max_{x} |f(x)| \le \max_{x} |f(x) - g(x)|$$

も成り立つから当初の主張を得る. よって ω_1, ω_2 を $C[0,\infty)$ の要素とすれば

$$\left|m^T(\omega_1,\delta)-m^T(\omega_2,\delta)\right| \leq \max_{\substack{|s-t|\leq \delta\\0\leq s,t\leq T}}\left|(\omega_1(s)-\omega_1(t))-(\omega_2(s)-\omega_2(t))\right|$$

が成立する. ところで, いま ϵ を任意に与えられた正数とし,

$$T \leq n$$

を満たす自然数nを取り

$$\rho(\omega_1,\omega_2) < 2^{-n}\epsilon$$

が満たされていると仮定すれば,

$$\sup_{0 \le t \le n} |\omega_1(t) - \omega_2(t)| < \epsilon$$

となるから

$$0 \le t \le T \Longrightarrow |\omega_1(t) - \omega_2(t)| < \epsilon$$

が満たされる. このとき

$$0 \le s, t \le T \Longrightarrow |(\omega_1(s) - \omega_1(t)) - (\omega_2(s) - \omega_2(t))|$$

$$\le |\omega_1(s) - \omega_2(s)| + |\omega_1(t) - \omega_2(t)|$$

$$< 2\epsilon$$

が成り立つので

$$\left| m^T(\omega_1, \delta) - m^T(\omega_2, \delta) \right| < 2\epsilon$$

が従い、 $m^{T}(\omega,\delta)$ の ω に関する連続性が得られた.

第二段 δ に関して非減少であることを示す. いま $0 < \delta \le \delta'$ とする.

$$(s,t) \longmapsto |\omega(s) - \omega(t)|$$

は

$$\{(s,t) \mid |s-t| \le \delta \land 0 \le s, t \le T\}$$

の上で最大値を取るのであるから,

$$|\tilde{s} - \tilde{t}| \le \delta \wedge 0 \le \tilde{s}, \tilde{t} \le T$$

かつ

$$|\omega(\tilde{s}) - \omega(\tilde{t})| = m^T(\omega, \delta)$$

を満たす \tilde{s} , \tilde{t} を取ることが出来るが,

$$|\tilde{s} - \tilde{t}| \le \delta'$$

も満たされるので

$$|\omega(\tilde{s}) - \omega(\tilde{t})| \in \{ |\omega(s) - \omega(t)| \mid |s - t| \le \delta \land 0 \le s, t \le T \}$$

となり

$$|\omega(\tilde{s}) - \omega(\tilde{t})| \le m^T(\omega, \delta')$$

が従う. よって

$$\delta \leq \delta' \Longrightarrow m^T(\omega, \delta) \leq m^T(\omega, \delta')$$

が示された.

第三段 $\lim_{\delta\downarrow 0}m^T(\omega,\delta)=0$ が成り立つことを示す. ϵ を任意に与えられた正数とする. ω は [0,T] 上で一様連続となるので

$$|s - t| \le \delta \Longrightarrow |\omega(s) - \omega(t)| < \epsilon$$

を満たす正数 δ が取れるが、このとき

$$\delta' \leq \delta$$

を満たす任意の正数 δ' に対しても

$$|s - t| \le \delta' \Longrightarrow |\omega(s) - \omega(t)| < \epsilon$$

となるから

$$\lim_{\delta \downarrow 0} m^T(\omega, \delta) = 0$$

が得られる.

- Theorem 4.10 -

略証.

第一段 η を任意に与えられた正数とする. $\{P_n\}_{n=1}^\infty$ は緊密なので、 $C[0,\infty)$ の或るコンパクト部分集合 K が存在して

$$\forall n \in \mathbf{N} (1 - \eta \leq P_n(K))$$

が満たされる. 他方で十分大きな正数 λ を取れば

$$\forall \omega \in K(|\omega(0)| \leq \lambda)$$

となる. これはすなわち

$$K \subset \{ \omega \mid |\omega(0)| \le \lambda \}$$

を表し,

$$\forall n \in \mathbf{N} \ \left(\left. P_n \left\{ \left. \omega \right. \right| \quad \lambda < \left| \omega(0) \right| \right. \right\} \leq P_n(C[0,\infty) \backslash K) \leq \eta \, \right)$$

が従う. また T,ϵ を任意に与えられた正数とすれば、或る正数 δ_0 が存在して

$$0 < \delta \le \delta_0 \Longrightarrow \forall \omega \in K \ (m^T(\omega, \delta) \le \epsilon)$$

が成立する. つまり

$$0<\delta\leq\delta_0\Longrightarrow K\subset\left\{\,\omega\mid\quad m^T(\omega,\delta)\leq\epsilon\,\right\}$$

が成り立つので,

$$0 < \delta \leq \delta_0 \Longrightarrow \forall n \in \mathbf{N} \ \left(P_n \left\{ \omega \mid \quad \epsilon < m^T(\omega, \delta) \right\} \leq P_n(C[0, \infty) \backslash K) \leq \eta \right)$$

が満たされる.

第二段

Problem 4.12 -

Suppose $\{P_n\}_{n=1}^{\infty}$ is a sequence of probability measures on $(C[0,\infty), \mathcal{B}(C[0,\infty)))$ which converges weakly to a probability measure P. Suppose, in addition, that $\{f_n\}_{n=1}^{\infty}$ is a uniformly bounded sequence of real-valued, continuous functions on $C[0,\infty)$ converging to a continuous function f, the convergence being uniform on compact subsets of $C[0,\infty)$. Then

$$\lim_{n\to\infty}\int_{C[0,\infty)}f_n(\omega)\,dP_n(\omega)=\int_{C[0,\infty)}f(\omega)\,dP(\omega).$$

略証.

第一段 $\{f_n\}_{n=1}^{\infty}$ は一様有界なので

$$\forall b \in \mathbf{N} \ \forall \omega \in C[0, \infty) \ (|f_n(\omega)| < b)$$

を満たす正数 b が存在する. $C[0,\infty)$ の各点 ω で

$$f_n(\omega) \longrightarrow f(\omega) \quad (n \longrightarrow \infty)$$

となるから

$$\forall \omega \in C[0, \infty) (|f(\omega)| < b)$$

が満たされる. すなわち f は有界連続であり、 $(P_n)_{n=1}^\infty$ が P に弱収束するので

$$\lim_{n \to \infty} \int_{C[0,\infty)} f \, dP_n = \int_{C[0,\infty)} f \, dP$$

が成立する.

第二段 前段の結果より

$$\left| \int_{C[0,\infty)} f \, dP_n - \int_{C[0,\infty)} f \, dP \right| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つから,

$$\left| \int_{C[0,\infty)} f_n \, dP_n - \int_{C[0,\infty)} f \, dP_n \right| \longrightarrow 0 \quad (n \longrightarrow \infty)$$
 (2.11)

が成り立つことを示せば定理の主張が得られる. $\{P_n\}_{n=1}^{\infty}$ は相対コンパクトであるから Prohorov の定理より緊密である. いま ϵ を任意に与えられた正数とすると, $C[0,\infty)$ の或るコンパクト部分集合 K が存在して

$$\forall n \in \mathbb{N} \ (P_n(C[0,\infty)\backslash K) < \epsilon)$$

となる. 他方で K 上で $(f_n)_{n=1}^\infty$ は f に一様収束するので、或る自然数 N を取れば

$$\forall n \in \mathbb{N} \ (N \le n \Longrightarrow \forall \omega \in K(|f_n(\omega) - f(\omega)| < \epsilon))$$

が満たされる. このとき

$$N \leq n \Longrightarrow \left| \int_{C[0,\infty)} f_n \, dP_n - \int_{C[0,\infty)} f \, dP_n \right|$$

$$\leq \int_{C[0,\infty)} |f_n - f| \, dP_n$$

$$\leq \int_K |f_n - f| \, dP_n + \int_{C[0,\infty)\setminus K} |f_n - f| \, dP_n$$

$$< \epsilon P_n(K) + 2bP_n(C[0,\infty)\setminus K)$$

$$< (1 + 2b)\epsilon$$

が成り立つので (2.11) が示された.

2.6 Convergence of Finite-Dimensional Distributions

標本路の表記の修正 (テキスト本文 2 行目) —

Suppose that X is a continuous process on some (Ω, \mathcal{F}, P) . For each ω , the function $t \mapsto X_t(\omega)$ is a member of $\mathbb{C}[0, \infty)^d$, which we denote by $X_{\bullet}(\omega)$.

$$0 \le t_1 < t_2 < \cdots < t_n < \infty$$

なる t_1, t_2, \cdots, t_n に対し,

$$\pi_{t_1,\dots,t_n}(w) = (w(t_1), w(t_2), \dots, w(t_n)), \quad (w \in C[0,\infty)^d)$$

で $C[0,\infty)^d$ から $(\mathbf{R}^d)^n$ への写像 π_{t_1,\cdots,t_n} を定める. このとき

$$C = \left\{ w \in C[0, \infty)^d \mid (w(t_1), \cdots, w(t_n)) \in A \right\}$$

なる形のシリンダー集合は

$$\pi_{t_1,\cdots,t_n}^{-1}(A)$$

に等しい. ここで座標過程 W を

$$W_t(w) = w(t), \quad (t \in [0, \infty), \ w \in C[0, \infty)^d)$$

で定め

$$\mathcal{C}' \coloneqq \left\{ \left. W_t^{-1}(A) \mid \quad t \in [0, \infty), \, A \in \mathcal{B}(\mathbf{R}^d) \right. \right\}$$

と定める.

$$W_t^{-1}(A) = \{ w \in C[0, \infty) \mid W_t(w) \in A \}$$

= \{ w \in C[0, \infty] \| w(t) \in A \}

であるから \mathscr{C}' は一次元シリンダー集合の全体である.

 $-\mathscr{C}'$ は $\mathscr{B}(C[0,\infty)^d)$ を生成する (テキスト本文 3 行目) -

 $\mathcal{B}(C[0,\infty)^d)$ is generated by the one-dimensional cylinder sets

略証. $\mathscr{C}' \subset \mathscr{C}$ は満たされているので

$$\mathscr{C} \subset \sigma(\mathscr{C}') \tag{2.12}$$

が成り立つことを示せばよい. Cを & の任意の要素とすれば,

$$0 \le t_1 < t_2 < \dots < t_n < \infty$$

なる t_1, t_2, \cdots, t_n と $\mathcal{B}((\mathbf{R}^d)^n)$ の要素 A を適当に取ることにより

$$C = \pi_{t_1, \dots, t_n}^{-1}(A)$$

となる. このとき

$$C \in \sigma(\mathscr{C}') \tag{2.13}$$

を言うために、 π_{t_1,\cdots,t_n} が $\sigma(\mathcal{C}')/\mathscr{B}((\mathbf{R}^d)^n)$ -可測であることを示す.

$$A_1 \times A_2 \times \cdots \times A_n$$
, $(A_i \in \mathcal{B}(\mathbf{R}^d), i = 1, 2, \cdots, n)$

に対しては

$$\pi_{t_1,\dots,t_n}^{-1}(A_1 \times A_2 \times \dots \times A_n) = \bigcap_{i=1}^n W_{t_i}^{-1}(A_i)$$

となるので

$$\pi_{t_1,\dots,t_n}^{-1}(A_1 \times A_2 \times \dots \times A_n) \in \sigma(\mathscr{C}')$$

が成立する. 従って

$$\left\{A_1\times A_2\times \cdots \times A_n\mid \quad A_i\in \mathcal{B}(\mathbf{R}^d),\; i=1,2,\cdots,n\right\}\subset \left\{B\in \mathcal{B}((\mathbf{R}^d)^n)\mid \quad \pi_{t_1,\cdots,t_n}^{-1}(B)\in \sigma(\mathcal{C}')\right\}$$

が成り立ち、右辺は σ -加法族であり左辺は $\mathcal{B}((\mathbf{R}^d)^n)$ を生成するので

$$\mathcal{B}((\mathbf{R}^d)^n) = \left\{\, B \in \mathcal{B}((\mathbf{R}^d)^n) \mid \quad \pi_{t_1, \cdots, t_n}^{-1}(B) \in \sigma\left(\mathcal{C}'\right) \right\}$$

が成立する. すなわち (2.13) が成り立ち, C の任意性から (2.12) が従う.

標本路の可測性 (テキスト本文 4 行目) ——

the random function $X_{\bullet}: \Omega \longrightarrow C[0,\infty)^d$ is $\mathscr{F}/\mathscr{B}(C[0,\infty)^d)$ -measurable.

略証. C を \mathscr{C}' の任意の要素とする. このとき $0 \le t < \infty$ なる或る t と $\mathscr{B}(\mathbf{R}^d)$ の或る要素 A によって

$$C = W_t^{-1}(A)$$

となる. ここで

$$C = \{ w \in C[0, \infty) \mid w(t) \in A \}$$

より

$$\forall \omega \in \Omega \ (X_{\bullet}(\omega) \in C \iff X_t(\omega) \in A)$$

が成り立つので

$$\{\omega \in \Omega \mid X_{\bullet}(\omega) \in C\} = \{\omega \in \Omega \mid X_{t}(\omega) \in A\}$$

が成り立ち、 X_t の $\mathscr{F}/\mathscr{B}(\mathbf{R}^d)$ -可測性より

$$\{\omega \in \Omega \mid X_t(\omega) \in A\} \in \mathscr{F}$$

が成り立つから

$$X^{-1}_{\bullet}(C) \in \mathscr{F}$$

が従う. C は任意に選ばれていたので

$$\mathscr{C}' \subset \left\{ C \in \sigma(\mathscr{C}) \mid X_{\bullet}^{-1}(C) \in \mathscr{F} \right\}$$

が成立し、右辺は σ -加法族であるから X_{\bullet} の $\mathscr{F}/\sigma(\mathscr{C}')$ -可測性が従う.

$$\sigma(\mathcal{C}') = \sigma(\mathcal{C}) = \mathcal{B}(C[0,\infty))$$

より X_{\bullet} の $\mathscr{F}/\mathscr{B}(C[0,\infty)^d)$ -可測性が示された.

- Theorem 4.15 修正 -

Let $\{X^{(n)}\}_{n=1}^{\infty}$ be a tight sequence of continuous processes, with each $X^{(n)}$ defined on $(\Omega^{(n)}, \mathscr{F}^{(n)}, P^{(n)})$, with the property that, whenever $0 \le t_1 < \dots < t_d < \infty$, then the sequence

$$\left(P^{(n)}\pi_{t_1,\dots,t_d}(X^{(n)}_{\bullet})^{-1}\right)_{n=1}^{\infty}$$

weakly converges to some probability measure on $\mathcal{B}(\mathbf{R}^d)$. Let

$$P_n := P^{(n)} X_{\bullet}^{(n)^{-1}}$$

. Then $\{P_n\}_{n=1}^{\infty}$ converges weakly to a measure P on $\mathscr{B}(C[0,\infty))$, under which the coordinate mapping process $W_t(\omega) \coloneqq \omega(t)$ on $C[0,\infty)$ satisfies

$$P^{(n)}\pi_{t_1,\dots,t_d}(X^{(n)}_{\bullet})^{-1} \xrightarrow{weak} P\pi_{t_1,\dots,t_d}(W_{\bullet})^{-1}, 0 \le t_1,\dots < t_d < \infty, \ d \ge 1.$$
 (2.14)

略証.

第一段 $\{P_n\}_{n=1}^{\infty}$ は緊密であり,全ての n で P_n は $\mathcal{B}(C[0,\infty))$ 上の確率測度であり, $(C[0,\infty),\rho)$ は完備可分距離空間であるから,Prohorov の定理より $(P_n)_{n=1}^{\infty}$ は弱収束する部分列 $(P_{n_i})_{i=1}^{\infty}$ を持つ.その弱極限を P と書く.

第二段 $(P_n)_{n=1}^\infty$ の任意の部分列が P に弱収束する部分列を含むなら, $(P_n)_{n=1}^\infty$ は P に弱収束する.これは列の収束の一般論である.実際, $(P_n)_{n=1}^\infty$ が P に弱収束しないとすれば,P の或る (弱位相に関する) 近傍が存在して,その近傍に入らない P_n が無限個取れる.そうして取った部分列のいかなる部分列も P に収束し得ない.

第三段 $(P_n)_{n=1}^\infty$ の任意の部分列が P に弱収束する部分列を含むことを示す. $\left(P_{n(k,1)}\right)_{k=1}^\infty$ を $(P_n)_{n=1}^\infty$ の部分列とする. このとき Prohorov の定理より弱収束する部分列 $\left(P_{n(k,2)}\right)_{k=1}^\infty$ およびその極限 Q が取れる. あとは

$$P = Q$$

が成立すれば良いが, これが成り立つには

$$\forall C \in \mathscr{C} \left(P(C) = Q(C) \right) \tag{2.15}$$

が成り立てば十分である. 実際、 8 は乗法族であるから Dynkin 族定理より

$$\delta(\mathcal{C}) = \sigma(\mathcal{C}) = \mathcal{B}(C[0,\infty))$$

が成立し ($\delta(\mathscr{C})$ は \mathscr{C} を含む最小の Dynkin 族), 他方で

$$\mathcal{D} := \{ C \in \mathcal{B}(C[0, \infty)) \mid P(C) = Q(C) \}$$

は Dynkin 族であるから

$$\mathscr{C} \subset \mathscr{D} \Longrightarrow \delta(\mathscr{C}) \subset \mathscr{D}$$

が成立し,併せれば

$$\forall C \in \mathcal{C}(P(C) = Q(C)) \Longrightarrow \mathcal{B}(C[0, \infty)) = \mathcal{D}$$

となる. いま C を \mathscr{C} の任意の要素とすれば,

$$0 \le t_1 < t_2 < \cdots < t_d < \infty$$

なる t_1, t_2, \cdots, t_d と $\mathcal{B}(\mathbb{R}^d)$ の要素 A によって

$$C = \{ \omega \in C[0, \infty) \mid (\omega(t_1), \omega(t_2), \cdots, \omega(t_d)) \in A \}$$

となる. 書き換えれば

$$C = \pi_{t_1, \dots, t_d}^{-1}(A)$$

となるので

$$P\pi_{t_1,\dots,t_d}^{-1} = Q\pi_{t_1,\dots,t_d}^{-1} \Longrightarrow P(C) = Q(C)$$

が成り立つ. すなわち, 時点 t_1, \cdots, t_d のあらゆる取り方に対して

$$P\pi_{t_1,\dots,t_d}^{-1} = Q\pi_{t_1,\dots,t_d}^{-1} \tag{2.16}$$

を示せば (2.15) が従う.

第四段 (2.16)を示す. f を

$$f: \mathbb{R}^d \longrightarrow \mathbf{R}$$

なる有界連続写像とすれば、 $f \circ \pi_{t_1, \cdots, t_d}$ は

$$f \circ \pi_{t_1, \cdots, t_d} : C[0, \infty) \longrightarrow \mathbf{R}$$

なる有界連続写像となる. 従って

$$\int_{C[0,\infty)} f \circ \pi_{t_1,\dots,t_d} dP_{n_i} \longrightarrow \int_{C[0,\infty)} f \circ \pi_{t_1,\dots,t_d} dP \quad (i \longrightarrow \infty),
\int_{C[0,\infty)} f \circ \pi_{t_1,\dots,t_d} dP_{n(k,2)} \longrightarrow \int_{C[0,\infty)} f \circ \pi_{t_1,\dots,t_d} dQ \quad (k \longrightarrow \infty)$$
(2.17)

が満たされるが、f は任意に選ばれていたので $\left(P_{n_i}\pi_{t_1,\cdots,t_d}^{-1}\right)_{i=1}^{\infty}$ と $\left(P_{n(k,2)}\pi_{t_1,\cdots,t_d}^{-1}\right)_{k=1}^{\infty}$ はそれぞれ $P\pi_{t_1,\cdots,t_d}^{-1}$ と $Q\pi_{t_1,\cdots,t_d}^{-1}$ に弱収束することになる.ところで定理の仮定から

$$\int_{\mathbb{R}^d} f \, dP^{(n)} \pi_{t_1, \cdots, t_d} (X_{\bullet}^{(n)})^{-1} \longrightarrow \int_{\mathbb{R}^d} f \, dP^* \quad (n \longrightarrow \infty)$$
(2.18)

を満たす $\mathcal{B}(R^d)$ 上の確率測度 P^* が存在する. すなわち

$$\begin{split} \int_{C[0,\infty)} f \circ \pi_{t_1,\cdots,t_d} \; dP_n &= \int_{C[0,\infty)} f \circ \pi_{t_1,\cdots,t_d} \; dP^{(n)} X_{\bullet}^{(n)^{-1}} \\ &\longrightarrow \int_{R^d} f \; dP^* \quad (n \longrightarrow \infty) \end{split}$$

が成立し, 収束列の部分列は同じ極限に収束するから

$$\int_{C[0,\infty)} f \circ \pi_{t_1,\dots,t_d} dP_{n_i} \longrightarrow \int_{R^d} f dP^* \quad (i \longrightarrow \infty),$$

$$\int_{C[0,\infty)} f \circ \pi_{t_1,\dots,t_d} dP_{n(k,2)} \longrightarrow \int_{R^d} f dP^* \quad (k \longrightarrow \infty)$$
(2.19)

が成立する.f は任意に選ばれていたので, $\left(P_{n_i}\pi_{t_1,\cdots,t_d}^{-1}\right)_{i=1}^{\infty}$ と $\left(P_{n(k,2)}\pi_{t_1,\cdots,t_d}^{-1}\right)_{k=1}^{\infty}$ が P^* に弱収束することが示された.弱極限の一意性より

$$P\pi_{t_1,\cdots,t_d}^{-1}=P^*=Q\pi_{t_1,\cdots,t_d}^{-1}$$

が成立する. 以上で (2.16) が示された. そして $(P_n)_{n=1}^\infty$ が P に弱収束することも示された. 他方で, (2.17) と (2.19) から

$$\int_{C[0,\infty)} f \circ \pi_{t_1,\cdots,t_d} dP = \int_{R^d} f dP^*$$

が成立し、これと (2.18) を併せれば

$$\int_{R^d} f \ dP^{(n)} \pi_{t_1, \cdots, t_d} (X^{(n)}_{\bullet})^{-1} \longrightarrow \int_{C[0, \infty)} f \circ \pi_{t_1, \cdots, t_d} \ dP \quad (n \longrightarrow \infty)$$

が成立する. ここで W_{\bullet} は $C[0,\infty)$ 上の恒等写像であるから

$$f \circ \pi_{t_1, \dots, t_d} = f \circ \pi_{t_1, \dots, t_d} \circ W_{\bullet}$$

が成立し,

$$\int_{\mathbb{R}^d} f \ dP^{(n)} \pi_{t_1, \cdots, t_d} (X^{(n)}_\bullet)^{-1} \longrightarrow \int_{C[0, \infty)} f \ dP \pi_{t_1, \cdots, t_d} (W_\bullet)^{-1} \quad (n \longrightarrow \infty)$$

が従う. f は任意に選ばれていたので (2.14) が示された.

付録A

このノートは横浜駅の工事のようにいつまでも終わらない. そして至る所にミッシングリンクが見られる.

A.1 集合論理

A.1.1 言語

まず言語 $\mathcal L$ というものを設定する. これは我々が創る世界のことばである. 以下は $\mathcal L$ を構成する要素である:

使用文字 使う文字は表 (P. 333) にあるものに限る.

定数記号 ∅

述語記号 =, €

論理記号 ⊥, ⇒, ∧, ∨, →

量化記号 ∀,∃

補助記号 [,],(,),{,},<,>,|

定義記号 $\stackrel{\text{def}}{\Longrightarrow}$, $\stackrel{\text{def}}{\Longleftrightarrow}$

日常言語において、"あm t 後右所 s ごぐふぉ s d"のように無作為に文字を並べただけでは意味不明な文字列が出来上がる。文字列は、何らかの規則に従って並ぶことで単語や文章として成立するのである。数学も同じで、一定の規則に従って並ぶ記号列のみを $\mathcal L$ の文章として扱う。 $\mathcal L$ において、名詞にあたるものは対象 (individual) と呼ばれる。述語とは対象同士を結ぶものであり、最小単位の文章を形成する。例えば s,t を対象とするとき

 $s \in t$

は \mathcal{L} の文章となり、日本語には "s は t の要素である" と翻訳される。 \mathcal{L} の文章を式 (formula) 或は論理式と呼ぶ。 論理記号とは式同士を繋ぐ役割を持つ。

院生「対象がどういうものであるかは後で判明しますが、今のところはその正体は伏せておいて、とりあえず対象は予め存在しているものとして話を進めます。また $\mathcal L$ の対象は記号列で表せないということも認めます。 $\mathcal L$ のを定数としましたが、これは記号 ' $\mathcal L$ ' が $\mathcal L$ の或る特別な対象に付けられた名称であるという意味です。見上げる太陽そのものと呼び名である文字列 '太陽' との関係のようです。また説明中は " $\mathcal L$ " を対象とする" のように書くことが多いですが、これは一時的に $\mathcal L$ を対象の一つに代用しているだけで、文字 ' $\mathcal L$ ' が対象であると言っているのではありません。このような代用記号のことを超記号と呼びます。式にも超記号を宣言することが多いです。」

対象および文字を項 (term) と呼び,対象を用いて作られていた式は対象を項に替えても式と呼ぶことにする.

A を式とし (上述の通り A とは超記号である) , A の中に文字 x が現れるとき,' $\forall xA'$ ' や ' $\exists xA'$ ' と書けば新しい記号 列が得られる.このとき文字 x は ' $\forall xA'$ で,或は ' $\exists xA'$ で量化されている (quantified) という.

項と式の構成法を形式的に書き直すと次のようになる.

項 = 言語 $oldsymbol{\mathcal{L}}$ の項であり,文字も $oldsymbol{\mathcal{L}}$ の項である.またそれらのみが $oldsymbol{\mathcal{L}}$ の項である.

式 • '⊥' は £ の式である.

- s,t を項とするとき, (s = t)' と $(s \in t)'$ はどちらも式である.
- A, B を式とするとき, A では量化されていないが B で量化されているといった文字が無いときに限り, $((A \land B)', (A \lor B)', (A \Longrightarrow B)'$ はいずれも式である.
- A を式とするとき, '($\rightarrow A$)' は式である.
- A を式とし、x を A に現れる文字とするとき、x が A で量化されていないときに限り '($\forall xA$)' と '($\exists xA$)' はどちらも式である.
- 以上の操作を繰り返して得られる記号列のみが式である.

院生「'A では量化されていないが B で量化されているといった文字が無いときに限り' という制限は何のためにあるのでしょうか。例えばこの制限を外すと

$$(\forall x((x \in x) \lor (\forall y(\exists x(y = x)))))$$

は式となりますが、同じ式で文字xは二回量化されています.これでは式を解釈するときに厄介なので、このような状況を排除するために制約を設けているのですね.では、'以上の操作を繰り返して得られる記号列のみが式である' はどういう意味でしょうか、例えば、最後の制限を外してしまうと

$$\exists (\rightarrow (\exists x (\forall y (x = y))))$$

という記号列が式であるか式でないかは判別できませんが、最後の規制によりこれは式ではないと判断できます。具体的な問題を考える際は上の例のような式は扱わないので、本稿においては殆どご利益の無い形式上の規制となりますが、体系の完全性など考察する際には必要な規制でしょう。」

院生「式の定義では、始めに最も簡単な形の式 (' \bot ' や's=t') を提示して、以降の段階で新しい式を作り出す手段 (論理記号による式の接合) を指定しています。このような定義を帰納的な定義 (inductive definition) と呼びます。プログラミングで言うところの for 文の操作と同じですね。」

A を式とし、a と x を項とする (ここでの A, a, x はどれも超記号である)。A が 't=a' という式である場合など式中に項 a が現れるとき、A に現れる全ての項 a を項 x に置き換えた式を

$$(x \mid a)A$$

で表す. 特に a が文字であり、かつ A に現れる文字で量化されていないものが a のみであるとき、 $(x \mid a) A$ を

A(x)

とも書く. このとき式 A 自体は $(a \mid a) A$ とも A(a) とも書ける.

いま言語 \mathcal{L} を設定したばかりであるが、例えば x のみが量化されていない式 A に対して

 $\{x \mid A(x)\}$

という記法を導入し (これを内包的記法 (intensional notation) と呼ぶ), これを対象として

$$s \in \{x \mid A(x)\}, t = \{x \mid A(x)\}$$

のように式に組み込んで扱いたい.そこで \mathcal{L} を言語 \mathcal{L}' に拡張する. \mathcal{L}' の使用文字,定数記号,述語記号,論理記号,量化記号,補助記号は \mathcal{L} のものをそのまま継承し,対象・項・式は次のように定める:

- 対象 A を \mathcal{L} の式とし、x を A に現れる文字とし、x のみが A で量化されていないとするとき、 $\{x \mid A(x)\}$ は \mathcal{L}' の対象である.

 - 以上のみが \mathcal{L}' の対象である.

項 言語 \mathcal{L}' の対象は \mathcal{L}' の項であり、文字も \mathcal{L}' の項である。またそれらのみが \mathcal{L}' の項である。

- 式 ↓ 」は L' の式である.
 - s,t を \mathcal{L}' の項とするとき、(s=t)' と $(s \in t)'$ はどちらも \mathcal{L}' の式である.
 - A,B を \mathcal{L}' の式とするとき,A では量化されていないが B で量化されているといった文字が無いときに限り,' $(A \land B)'$, ' $(A \lor B)'$, ' $(A \Longrightarrow B)'$ はいずれも \mathcal{L}' の式である.
 - $A \in \mathcal{L}'$ の式とするとき, $((\neg A)'$ は \mathcal{L}' の式である.
 - $A \in \mathcal{L}'$ の式とし、 $x \in A$ に現れる文字とするとき、x が A で量化されていないときに限り ' $(\forall x A(x))$ ' と ' $(\exists x A(x))$ ' はどちらも \mathcal{L}' の式である.
 - 以上の操作を繰り返して得られる記号列のみが \mathcal{L}' の式である.

院生「A を \mathcal{L} の式とするとき、文字 x が A に現れ、かつ x のみが A で量化されていないならば

$$\{x \mid A(x)\}$$

は \mathcal{L}' の対象であると決めましたが、いま A(x) の中に文字 y が現れないならば、式 A(y) には文字 y が現れ、かつ y のみが量化されていないことになりますから

$$\{y \mid A(y)\}$$

もまた \mathcal{L}' の対象となります。このとき ' $\{x \mid A(x)\}$ ' と ' $\{y \mid A(y)\}$ ' は x と y の違いを除いて同じ記号列になりますから,これらを同等な対象として扱いたいものです。同等とは等号で結ばれることですが,このことは後述する "類の公理" と "外延性の公理" により保証されます。

 \mathcal{L}' の式のうち、量化されていない文字を含まないものを閉式 (closed formula) と呼ぶ、定理として考察するものは全て閉式である。また数などの特別な対象や概念は枠線付きの定義により名前を付けていく、一度枠線付きの定義で名前を付けられた対象や概念は、それ以後は本稿においてその名前で通用する。他方、枠線付きの定義という手続きを踏まなくても、便宜のために説明や証明の途中で対象に名前を付けることがある。それは次のようなものである:

… いま
$$P \stackrel{\text{def}}{=} \{x \mid \forall t (x = t \lor x \in t)\}$$
 とおく. このとき...

記号 ' $\stackrel{\text{def}}{==}$ ' は定義記号と呼ばれ、右辺の類に左辺の記号列で名前を付けるという意味で使われる.このような文言は多くの説明や証明に出てくるが、実際上の効果として、以後の式に出てくる' $\{x \mid \forall t (x = t \lor x \in t)\}$ 'の部分を'P'で置き換えられるようになる.ただしその場合の定義はその説明や証明の中でのみ通用するものと約束する.

定義 A.1.1 (宇宙). $\mathbf{V} \stackrel{\text{def}}{=\!=\!=} \{x \mid x = x\}$ で定める \mathbf{V} を宇宙 (Universe) と呼ぶ.

院生「V はそもそも式に現れる記号ではありませんでしたが、 $\stackrel{\mathrm{def}}{=}$ の推薦で $\{x \mid x = x\}$ の代理人として市民権を得たのですね. このように既定の用語から定められる記号を派生記号と呼びます. さて宇宙という壮大な言葉が出てきましたが、後述する通り V は集合の全体のことですから、あらゆるものが集合で説明される現代数学にとって V はまさしく宇宙なのですね. また定理 A.1.107 で V の実態が明らかになるでしょう. 我々はこの定理で集合とは何者かという問いへの完全な答えを得ることになります. ところで、現実世界において人間が把握し得る最大の世界は宇宙空間でしょうが、数学では宇宙の外側を見ることが出来るのです. そこは真類と呼ばれるものの世界です. 実は宇宙そのものも真類の一つなのですが、その話も後述にまかせましょう. ちなみに、宇宙が V で表されるのは V0 Neumann の V1 に由来しています. 」

数学の式を日本語に翻訳するとき, 慣習上よく使われる訳し方があるので列挙する.

- 式a = b を "a はb に等しい" や "a とb は等しい" と翻訳する.
- 式 $a \in b$ を "a はb の要素である" や "a はb に属する" と翻訳する.
- 式 $(A) \Longrightarrow (B)$ を "A が成り立つならば B が成り立つ"と翻訳する.
- 式 ¬ (A) を

定義 A.1.2 (類・集合). \mathcal{L}' の対象のことを類 (class) と呼ぶ. また a を類とするとき

$$\operatorname{set}(a) \stackrel{\operatorname{def}}{\Longleftrightarrow} \exists x \, (\, a = x \,)$$

と定め、set(a) が成立すれば a を集合 (set) と呼び、 \rightarrow set(a) が成立すれば a を真類 (proper class) と呼ぶ.

院生「我々はまだ∃が持つ意味を規定していませんが、先に述べてしまうと上の定義は集合とはLの対象かLの対象に等しい類のことを指すと解釈できます。また後述することですが宇宙は集合の全体に一致します。つまりVの要素である類は集合であり、逆に類が集合であるならばVの要素であるのです。さてここで次の問題を考えましょう。集合であり真類でもある類や、集合でも真類でもない類は存在するのかという問題です。実は我々はまだこれに答える術を持っていません。質問を変えましょう。集合であり真類でもある類や集合でも真類でもない類の存在を禁止するにはどうしたら良いでしょうか?我々は、数学において中庸が無いということや矛盾が起きるということをどう表現しようかという問題に直面しているのです。この問題の解決への方便として推論規則 (rule of inference) を導入します。」

推論規則 A.1.3 (排中律). A を \mathcal{L}' の閉式とするとき次は定理である:

 $A \lor \neg A$.

院生「排中律の言明は"どんな閉式でも持ってくれば、その式に対して排中律が適用される"という意味です。このように無際限に存在し得る定理を一括して表す書き方を公理図式 (schema) と呼びます。」

いまa,bを類とするとき,

$$a \notin b \stackrel{\text{def}}{\Longleftrightarrow} \rightarrow a \in b$$

で a ∉ b を定める. 同様に

$$a \neq b \stackrel{\text{def}}{\Longleftrightarrow} \rightarrow a = b$$

で $a \neq b$ を定める.

院生「定義記号 $\stackrel{\mathrm{def}}{\Longrightarrow}$ と同様に、' $A \stackrel{\mathrm{def}}{\longleftrightarrow} B$ ' とは式 B を記号列 A で置き換えて良いという意味で使われます。また、式中に記号列 A が出てくるときは、暗黙裡にその A を B に戻して式を解釈します。 $\stackrel{\mathrm{def}}{\Longrightarrow}$ も $\stackrel{\mathrm{def}}{\longleftrightarrow}$ も略記することと同じですね。」

定理 A.1.4 (類は集合であるか真類であるかのいずれかに定まる). a を類とするとき次は定理である:

$$set(a) \lor \rightarrow set(a)$$
.

証明. 排中律を適用することにより従う.

排中律をそのまま適用することにより上の定理は導かれたが、"集合であり真類でもある類は存在しない"という主張はまだ得られない.以下はこの言明を証明することを目標にしてしばらく推論規則の話が続くが、提示される規則はどれも基本的すぎるあまり通常は無断で使用されてしまうものである.

ここで論理記号の名称を書いておく.

- 」を矛盾 (contradiction) と呼ぶ.
- V を論理和 (logical disjunction) と呼ぶ.
- ∧を論理積 (logical conjunction) と呼ぶ.
- ⇒ を含意 (implication) と呼ぶ.
- → を否定 (negation) と呼ぶ.

推論規則 A.1.5 (基本的な推論規則). A,B,C を \mathcal{L}' の閉式とするとき,次の規則を認める:

三段論法 A ならびに $A \Longrightarrow B$ が定理なら B は定理である.

演繹法則 A を公理に追加した下で B が定理であるなら, A を外した公理系で $A \Longrightarrow B$ は定理である.

論理和の導入イ $A \Longrightarrow (A \lor B)$ は定理である.

論理和の導入口 $A \Longrightarrow (B \lor A)$ は定理である.

論理積の導入 A,B が共に定理なら $A \land B$ は定理である.

論理積の除去イ $(A \land B) \Longrightarrow A$ は定理である.

論理積の除去口 $(A \land B) \Longrightarrow B$ は定理である.

場合分け法則 $A \Longrightarrow C \land B \Longrightarrow C$ が共に定理であるとき $(A \lor B) \Longrightarrow C$ は定理である.

院生「演繹法則について, "A を公理に追加する"ことを"A が成り立っていると仮定する"などの言明により示唆することが多いです。」

推論法則 A.1.6 (含意の反射律). A を \mathcal{L}' の閉式とするとき $A \Longrightarrow A$ は定理である.

証明. A を公理に追加すれば A は成立するので、演繹法則より $A \Longrightarrow A$ は定理である.

推論法則 A.1.7 (論理和・論理積の可換律). A,B を \mathcal{L}' の閉式とするとき次は定理である:

- $(A \lor B) \Longrightarrow (B \lor A)$.
- $(A \wedge B) \Longrightarrow (B \wedge A)$.

証明. \vee の導入により $A \Longrightarrow (B \vee A)$ と $B \Longrightarrow (A \vee B)$ は定理であるから、場合分け法則より

$$(A \lor B) \Longrightarrow (B \lor A)$$

は定理である。また、 \land の除去より $A \land B \Longrightarrow A \land A \land B \Longrightarrow B$ は定理であるから、いま $A \land B$ が成り立っていると 仮定すれば三段論法により $B \land A$ も定理となる。このとき $B \land A$ が定理となるので、演繹法則より

$$(A \land B) \Longrightarrow (B \land A)$$

は定理である.

推論法則 A.1.8 (含意の推移律). A,B,C を \mathcal{L}' の閉式とするとき, $A \Longrightarrow B$ と $B \Longrightarrow C$ が共に定理ならば $A \Longrightarrow C$ は定理である.

証明. $A \Longrightarrow B \land B \Longrightarrow C$ が共に定理であるとして、A が成り立っていると仮定する。このとき三段論法より B が定理となり、再び三段論法より C が定理となる。ゆえに $A \Longrightarrow C$ は定理である.

推論法則 A.1.9 (二式が同時に導かれるならその論理積が導かれる). A,B,C を \mathcal{L}' の閉式とするとき, $A \Longrightarrow B$ と $A \Longrightarrow C$ が共に定理ならば $A \Longrightarrow (B \land C)$ は定理である.

証明. $A \Longrightarrow B \ \ \, C$ が共に定理であるとき、A が成り立っていると仮定する。このとき三段論法より $B \ \ \, C$ が同時に成り立つので、論理積の導入より $B \land C$ が成り立つ、従って演繹法則より

$$A \Longrightarrow (B \land C)$$

が成立する.

推論法則 A.1.10 (含意は遺伝する). A,B,C を \mathcal{L}' の閉式とするとき以下が成り立つ:

- (a) $(A \Longrightarrow B) \Longrightarrow ((A \lor C) \Longrightarrow (B \lor C)).$
- (b) $(A \Longrightarrow B) \Longrightarrow ((A \land C) \Longrightarrow (B \land C)).$
- (c) $(A \Longrightarrow B) \Longrightarrow ((B \Longrightarrow C) \Longrightarrow (A \Longrightarrow C)).$
- (c) $(A \Longrightarrow B) \Longrightarrow ((C \Longrightarrow A) \Longrightarrow (C \Longrightarrow B)).$

証明.

(a) いま $A \Longrightarrow B$ が成り立っていると仮定する. 論理和の導入により

$$C \Longrightarrow (B \lor C)$$

は定理であるから, 含意の推移律より

$$A \Longrightarrow (B \lor C)$$

が従い,場合分け法則より

$$(A \lor C) \Longrightarrow (B \lor C)$$

が成立する. ここに演繹法則を適用して

$$(A \Longrightarrow B) \Longrightarrow ((A \lor C) \Longrightarrow (B \lor C))$$

が得られる.

(b) いま $A \Longrightarrow B$ が成り立っていると仮定する. 論理積の除去より

$$(A \land C) \Longrightarrow A$$

は定理であるから, 含意の推移律より

$$(A \land C) \Longrightarrow B$$

が従い, 他方で論理積の除去より

$$(A \land C) \Longrightarrow C$$

も満たされる. そして推論法則 A.1.9 から

$$(A \land C) \Longrightarrow (B \land C)$$

が成り立ち, 演繹法則より

$$(A \Longrightarrow B) \Longrightarrow ((A \land C) \Longrightarrow (B \land C))$$

が得られる.

(c) いま $A \Longrightarrow B$, $B \Longrightarrow C$ および A が成り立っていると仮定する.このとき三段論法より B が成り立つので再び 三段論法より C が成立する.ゆえに演繹法則より $A \Longrightarrow B \succeq B \Longrightarrow C$ が成り立っている下で

$$A \Longrightarrow C$$

が成立し, 演繹法則を更に順次適用すれば

$$(A \Longrightarrow B) \Longrightarrow ((B \Longrightarrow C) \Longrightarrow (A \Longrightarrow C))$$

が得られる.

(d) いま $A \Longrightarrow B$, $C \Longrightarrow A$ および C が成り立っていると仮定する. このとき三段論法より A が成り立つので再び 三段論法より B が成立し、ここに演繹法則を適用すれば、 $A \Longrightarrow B$ と $C \Longrightarrow A$ が成立している下で

$$C \Longrightarrow B$$

が成立する. 演繹法則を更に順次適用すれば

$$(A \Longrightarrow B) \Longrightarrow ((C \Longrightarrow A) \Longrightarrow (C \Longrightarrow B))$$

が得られる.

推論法則 A.1.11. A, B を \mathcal{L}' の閉式とするとき, $B \Longrightarrow (A \Longrightarrow B)$ は定理である.

証明. B を公理に追加した場合, A を公理に追加しても B は真であるから, このとき

$$A \Longrightarrow B$$

は定理となる. 従って演繹法則より $B \Longrightarrow (A \Longrightarrow B)$ は定理である.

推論規則 A.1.12 (矛盾に関する規則). A を \mathcal{L}' の閉式とするとき以下の式が成り立つ:

矛盾の発生 $A \ge \neg A$ が共に成り立つなら \bot が成り立つ: $(A \land \neg A) \Longrightarrow \bot$.

否定の導出 A が \bot を導くなら $\rightarrow A$ が成り立つ: $(A \Longrightarrow \bot) \Longrightarrow \rightarrow A$.

矛盾からはあらゆる式が導かれる $\bot \Longrightarrow A$.

院生「A を \mathcal{L}' の閉式とするとき,式 $A \Longrightarrow \bot$ を "A は偽である (false)" と翻訳します.」

$$(A \longleftrightarrow B) \stackrel{\mathrm{def}}{\longleftrightarrow} (A \Longrightarrow B \land B \Longrightarrow A)$$

により \iff を定め,式 ' $A \iff B'$ を " $A \ge B$ は同値である (equivalent)" と翻訳する.

推論法則 A.1.13 (同値記号の遺伝性質). A,B,C を \mathcal{L}' の閉式とするとき以下の式が成り立つ:

- (a) $(A \longleftrightarrow B) \Longrightarrow ((A \lor C) \longleftrightarrow (B \lor C)).$
- (b) $(A \Longleftrightarrow B) \Longrightarrow ((A \land C) \Longleftrightarrow (B \land C)).$
- (c) $(A \longleftrightarrow B) \Longrightarrow ((B \Longrightarrow C) \longleftrightarrow (A \Longrightarrow C)).$
- (d) $(A \Longleftrightarrow B) \Longrightarrow ((C \Longrightarrow A) \Longleftrightarrow (C \Longrightarrow B)).$

証明. まず (a) を示す. いま $A \longleftrightarrow B$ が成り立っていると仮定する. このとき $A \Longrightarrow B$ と $B \Longrightarrow A$ が共に成立し、他方で含意の遺伝性質より

$$(A \Longrightarrow B) \Longrightarrow ((A \lor C) \Longrightarrow (B \lor C)),$$
$$(B \Longrightarrow A) \Longrightarrow ((B \lor C) \Longrightarrow (A \lor C))$$

が成立するから三段論法より $(A \lor C) \Longrightarrow (B \lor C)$ と $(B \lor C) \Longrightarrow (A \lor C)$ が共に成立する. ここに \land の導入を適用すれば

$$(A \lor C) \Longleftrightarrow (B \lor C)$$

が成立し, 演繹法則を適用すれば

$$(A \Longleftrightarrow B) \Longrightarrow ((A \lor C) \Longleftrightarrow (B \lor C))$$

が得られる. (b)(c)(d) も含意の遺伝性を適用すれば得られる.

推論法則 A.1.14 (偽であることと否定は同値). A を \mathcal{L}' の閉式とするとき次が成り立つ:

$$(A \Longrightarrow \bot) \Longleftrightarrow \neg A.$$

証明. $\rightarrow A$ が成り立っていると仮定する. このとき A が成り立っていれば推論規則 A.1.12 より \bot が成立するから,演繹法則より

$$\neg A \Longrightarrow (A \Longrightarrow \bot)$$

が成り立つ. 一方で推論規則 A.1.12 より

$$(A \Longrightarrow \bot) \Longrightarrow \neg A.$$

が満たされているので $(A \Longrightarrow \bot)$ と $\to A$ は同値である.

推論法則 A.1.15 (二重否定の法則). A を \mathcal{L}' の閉式とするとき, $A \Longleftrightarrow \rightarrow \rightarrow A$ は定理である.

証明. A が成り立っていると仮定する. このとき $\rightarrow A$ が成り立っていれば \bot が定理となるので

$$\rightarrow A \Longrightarrow \bot$$

が成り立ち,否定の導出より ¬¬ A が定理となる.従って

$$A \Longrightarrow \neg \neg A$$

が得られる。逆に $\rightarrow \rightarrow A$ が成り立っていると仮定すると, $\rightarrow A$ が成り立っているなら \bot が定理となり,また \bot からはあらゆる閉式が導かれるので A も定理となる.ここに推論法則 A.1.8 を適用すれば

$$\rightarrow A \Longrightarrow A$$

が成り立つ. 反射律より $A \Longrightarrow A$ も定理であるから場合分け法則より

$$(A \lor \neg A) \Longrightarrow A$$

が成り立ち, 排中律より $A \lor \rightarrow A$ は正しいので三段論法より A は定理となる. これにより

$$\neg \neg A \Longrightarrow A$$

も得られた.

推論法則 A.1.16 (背理法の原理). A を \mathcal{L}' の閉式とするとき, $\rightarrow A \Longrightarrow \bot$ が成り立つならば A は定理である.

証明. $\rightarrow A \Longrightarrow$ \bot が成り立つとき,否定の導出より $\rightarrow \rightarrow A$ が成り立つが,二重否定の法則より A も成立する.

推論法則 A.1.17 (含意は否定と論理和で表せる). A,B を \mathcal{L}' の閉式とするとき,次が成り立つ:

$$(A \Longrightarrow B) \Longleftrightarrow (\neg A \lor B).$$

証明. $A \Longrightarrow B$ が成り立っていると仮定する. 含意の遺伝性質より

$$(A \Longrightarrow B) \Longrightarrow ((A \lor \neg A) \Longrightarrow (B \lor \neg A))$$

が満たされているから三段論法より $(A \lor \to A) \Longrightarrow (B \lor \to A)$ は定理となり、ここに排中律と三段論法を適用すれば $B \lor \to A$ が定理となる.ここで論理和の可換律より $\to A \lor B$ が成り立つので、演繹法則を適用して

$$(A \Longrightarrow B) \Longrightarrow (\neg A \lor B)$$

が得られる。また $\rightarrow A$ が成り立っていると仮定すると、この下で A を公理に追加すれば \bot が定理となり、 \bot からは B が導かれるので B も定理となる。従って演繹法則より

$$(\neg A) \Longrightarrow (A \Longrightarrow B)$$

が成り立つ. 一方で推論法則 A.1.11 より $B \Longrightarrow (A \Longrightarrow B)$ が定理であるから、場合分けの法則より

$$(\rightarrow A \lor B) \Longrightarrow (A \Longrightarrow B)$$

が成り立つ. 以上で $(A \Longrightarrow B) \Longleftrightarrow (\neg A \lor B)$ が得られた.

院生「A,B を \mathcal{L}' の閉式とするとき,A が偽であれば $\rightarrow A$ が成立する (推論規則 A.1.12) ので $\rightarrow A \lor B$ が成立します (推論規則 A.1.5). すなわちこのとき $A \Longrightarrow B$ が成り立つのですが,式の解釈としては "偽な式からはあらゆる式が導かれる" となりますね.この現象を空虚な真 (vacuous truth) と呼びます.」

推論法則 A.1.18 (対偶命題は同値). A,B を \mathcal{L}' の閉式とするとき,次が成り立つ:

$$(A \Longrightarrow B) \Longleftrightarrow (\neg B \Longrightarrow \neg A).$$

証明. 推論法則 A.1.17, 論理和の可換律, 二重否定の法則を順に用いれば

$$(A \Longrightarrow B) \longleftrightarrow (\neg A \lor B)$$

$$\iff (B \lor \neg A)$$

$$\iff (\neg \neg B \lor \neg A)$$

$$\iff (\neg B \Longrightarrow \neg A)$$

が成り立つ.

院生「対偶命題を述べるときには"対偶を取る"と表現することが多いです.」

推論法則 A.1.19 (De Morgan の法則). A, B を \mathcal{L}' の閉式とするとき,次が成り立つ:

- \rightarrow $(A \lor B) \Longleftrightarrow \rightarrow A \land \rightarrow B$.
- $\rightarrow (A \land B) \Longleftrightarrow \rightarrow A \lor \rightarrow B$.

証明. $A \Longrightarrow (A \lor B)$ は定理であるから、その対偶命題

$$\rightarrow (A \lor B) \Longrightarrow \rightarrow A$$

も定理となる. 同様に \rightarrow $(A \lor B) \Longrightarrow \rightarrow B$ は定理となるので, \rightarrow $(A \lor B)$ が成り立っていると仮定すれば \rightarrow $A \land \rightarrow B$ が成り立つ. ゆえに

$$\neg \ (A \lor B) \Longrightarrow \neg \ A \land \neg \ B$$

が得られる。また A が成り立っていると仮定すれば,この下で $\rightarrow A \land \rightarrow B$ が成り立っているなら A と $\rightarrow A$ が同時に成り立つことになるので \bot が成立する。つまり A が成り立っているとき

$$\neg A \land \neg B \Longrightarrow \bot$$

が成り立つが、このとき $\rightarrow (\rightarrow A \land \rightarrow B)$ が成り立つので

$$A \Longrightarrow \neg (\neg A \land \neg B)$$

が得られる. 同様にして

$$B \Longrightarrow \neg (\neg A \land \neg B)$$

105

も得られるから,場合分け法則より

$$(A \lor B) \Longrightarrow \neg (\neg A \land \neg B)$$

が成立する. この対偶を取れば

$$\rightarrow A \land \rightarrow B \Longrightarrow \rightarrow (A \lor B)$$

が出る. 以上で一つ目の式が示された. 一つ目の式で A を $\rightarrow A$ に、B を $\rightarrow B$ に置き換えると

$$\rightarrow \rightarrow A \land \rightarrow \rightarrow B \iff \rightarrow (\rightarrow A \lor \rightarrow B)$$

が得られるが, このとき二重否定の法則より

$$A \wedge B \iff \neg (\neg A \lor \neg B)$$

が成立し,対偶命題の同値性から

$$\rightarrow (A \land B) \iff (\rightarrow A \lor \rightarrow B)$$

は定理となる.

院生「以上で"集合であり真類でもある類は存在しない"という言明を証明する準備が整いました.」

定理 A.1.20 (集合であり真類でもある類は存在しない). a を類とするとき次が成り立つ:

$$\rightarrow$$
 (set $(a) \land \rightarrow$ set (a)).

証明. a を類とするとき、排中律より $\operatorname{set}(a) \lor \to \operatorname{set}(a)$ が成り立ち、論理和の可換律より

$$\rightarrow$$
 set $(a) \lor$ set (a)

も成立する. そして De Morgan の法則より

$$\rightarrow$$
 (\rightarrow set (a) \land \rightarrow set (a))

が成り立つが、二重否定の法則より $\rightarrow \rightarrow \operatorname{set}(a)$ と $\operatorname{set}(a)$ は同値となるので

$$\rightarrow$$
 (set (a) $\land \rightarrow$ set (a))

が成り立つ.

院生「次は量化記号が推論操作の上でどのような働きを持つのかを規定しましょう.」

推論規則 A.1.21 (量化記号に関する規則). A を \mathcal{L}' の式とし, x を A に現れる文字とするとき, x のみが A で量化されていないならば以下を認める:

 ε 記号の導入 $\varepsilon x A(x)$ は \mathcal{L} の或る対象に代用される.

存在記号の規則 $A(\varepsilon x A(x)) \Longleftrightarrow \exists x A(x)$ が成り立つ.

全称記号の規則 $A(\varepsilon x \to A(x)) \Longleftrightarrow \forall x A(x)$ が成り立つ.

存在記号の基本性質 τ を \mathcal{L} の対象とするとき $A(\tau) \Longrightarrow \exists x A(x)$ が成り立つ.

推論法則 A.1.22 (全称記号と任意性). A を \mathcal{L}' の式とし、x を A に現れる文字とし、x のみが A で量化されていないとする. このとき $\forall x A(x)$ が成り立つならば \mathcal{L} のいかなる対象 τ に対しても $A(\tau)$ が成り立つ. 逆に、 \mathcal{L} のいかなる対象 τ に対しても $A(\tau)$ が成り立てば $\forall x A(x)$ が成り立つ.

証明. τ を \mathcal{L} の任意の対象とすれば、存在記号に関する推論規則より

が成り立つから、推論法則 A.1.8 より $\rightarrow A(\tau) \Longrightarrow \rightarrow A(\varepsilon x \rightarrow A(x))$ が成り立つ. そして対偶を取って

$$A(\varepsilon x \to A(x)) \Longrightarrow A(\tau)$$

が成り立つ. 全称記号に関する推論規則より $A(\varepsilon x \to A(x))$ と $\forall x A(x)$ は同値であるから

$$\forall x A(x) \Longrightarrow A(\tau)$$

が成り立つ. 逆にいかなる対象 τ に対しても $A(\tau)$ が成り立つとき, 特に

$$A\left(\varepsilon x \rightarrow A(x)\right)$$

が成り立つので $\forall x A(x)$ も成り立つ.

院生「推論法則 A.1.22 を根拠にして、当面は $\forall x A(x)$ という式を " \pounds の任意の対象 x に対して A(x) が成立 する"と翻訳することにします。また後述する相等性の公理によれば、これは "任意の集合 x に対して A(x) が成立する"と翻訳しても同義です。」

推論法則 A.1.23 (量化記号の性質 (1)). A,B を \mathcal{L}' の式とし、x を A,B に現れる文字とするとき、x のみが A,B で量化されていないならば以下は定理である:

(a) \mathcal{L} の任意の対象 τ に対して $A(\tau) \iff B(\tau)$ となるとき次が成り立つ:

$$\exists x A(x) \Longleftrightarrow \exists x B(x).$$

(b) \mathcal{L} の任意の対象 τ に対して $A(\tau) \iff B(\tau)$ となるとき次が成り立つ:

$$\forall x A(x) \Longleftrightarrow \forall x B(x).$$

- (c) $\exists x \rightarrow A(x) \Longleftrightarrow \rightarrow \forall x A(x)$.
- (d) $\forall x \rightarrow A(x) \Longleftrightarrow \rightarrow \exists x A(x)$.

証明.

(a) いま, \mathcal{L} の任意の対象 τ に対して $A(\tau) \longleftrightarrow B(\tau)$ が満たされているとする. ここで $\exists x A(x)$ が成り立っていると仮定すると,

$$\tau \stackrel{\text{def}}{=} \varepsilon x A(x)$$

とおけば存在記号に関する規則 (推論規則 A.1.21) より $A(\tau)$ が成立し、他方で Λ の除去により

$$A(\tau) \Longrightarrow B(\tau)$$

が満たされるので $B(\tau)$ が成立する. 再び存在記号に関する規則より $\exists x B(x)$ が成り立つので

$$\exists x A(x) \Longrightarrow \exists x B(x)$$

が得られる. $A \ge B$ の立場を入れ替えれば $\exists x B(x) \Longrightarrow \exists x A(x)$ も得られる.

(b) いま、 \mathcal{L} の任意の対象 τ に対して $A(\tau) \longleftrightarrow B(\tau)$ が満たされているとする.ここで $\forall x A(x)$ が成り立っていると仮定すると、推論法則 A.1.22 より \mathcal{L} の任意の対象 τ に対して $A(\tau)$ が成立し、他方で

$$A(\tau) \Longrightarrow B(\tau)$$

が満たされるので $B(\tau)$ が成立する. このとき τ の任意性と推論法則 A.1.22 より $\forall x B(x)$ が成り立つから

$$\forall x A(x) \Longrightarrow \forall x B(x)$$

が得られる. $A \ \ \,$ $B \ \,$ の立場を入れ替えれば $\forall x B(x) \Longrightarrow \forall x A(x)$ も得られる.

(c) 推論規則 A.1.21 より

$$\exists x \rightarrow A(x) \iff \rightarrow A(\varepsilon x \rightarrow A(x))$$

は定理である. 同様に推論規則 A.1.21 より

$$A(\varepsilon x \to A(x)) \Longleftrightarrow \forall x A(x)$$

もまた定理であり、対偶を取れば

$$\rightarrow A(\varepsilon x \rightarrow A(x)) \Longleftrightarrow \rightarrow \forall x A(x)$$

が定理となるので $\exists x \rightarrow A(x) \iff \rightarrow \forall x A(x)$ を得る.

(d) 前段の結果より

$$\forall x \rightarrow A(x) \Longleftrightarrow \rightarrow \exists x \rightarrow A(x)$$

が成り立ち,また二重否定の法則と(a)より

$$\exists x \rightarrow A(x) \iff \exists x A(x)$$

も成り立つから、推論法則 A.1.8 と併せて

$$\forall x \rightarrow A(x) \Longleftrightarrow \rightarrow \exists x A(x)$$

が得られる.

公理 A.1.24 (外延性の公理). a,b を類とするとき,次が成り立つ:

$$\forall x (x \in a \iff x \in b) \Longrightarrow a = b.$$

定理 A.1.25 (任意の類は自分自身と等しい). a を類とするとき次が成り立つ:

$$a = a$$
.

証明. \mathcal{L} の任意の対象 τ に対して,推論法則 A.1.6 より

$$\tau \in a \Longleftrightarrow \tau \in a$$

が成り立つから, τの任意性と推論法則 A.1.22 より

$$\forall x \ (\ x \in a \Longleftrightarrow x \in b\)$$

が成り立つ. 従って外延性の公理より a = a が得られる.

公理 A.1.26 (類の公理). 以下を公理とする:

(イ) 要素となりうる類は集合である. つまり, a,b を類とするとき次が成り立つ.

$$a \in b \Longrightarrow \operatorname{set}(a)$$
.

(ロ) A を \mathcal{L} の式とし、x を A に現れる文字とし、t を A(x) に現れない文字とし、x のみが A で量化されていないとする. このとき次が成り立つ.

$$\forall t \ (t \in \{x \mid A(x)\} \iff A(t)).$$

定理 A.1.27 (£ の対象の内包的表記). 次が成り立つ:

$$\forall y \ (y = \{x \mid x \in y\}).$$

証明. τ を \mathcal{L} の任意の対象とすると類の公理より

$$\forall s \ (s \in \tau \iff s \in \{x \mid x \in \tau\})$$

が成り立つから, 外延性の公理より

$$\tau = \{ x \mid x \in \tau \}$$

が従う. τ の任意性と推論法則 A.1.22 より

$$\forall y \ (y = \{x \mid x \in y\})$$

を得る.

院生「集合は $\mathcal L$ の対象であるとは限りません. 例えば τ を $\mathcal L$ の対象とすれば

$$\tau = \{ x \mid x \in \tau \}$$

が成り立つので、推論規則 A.1.21 と集合の定義より $\{x \mid x \in \tau\}$ は集合であるとわかりますが、これは言語を L' に拡張した際に導入された表記なので L の対象ではありませんね。またこの例は '等しい' とはどういうことかについて或る示唆を与えています。数学において '等しい' とは'同一物である' わけではないということです。 τ と $\{x \mid x \in \tau\}$ は等しいですが明確な違いがありますね。数学において '等しい' とは'論理的に同質である' という意味です。それを形式的に述べたものが次の相等性の公理です。」

公理 A.1.28 (相等性の公理). A を \mathcal{L}' の式とし、x を A に現れる文字とし、x のみが A で量化されていないとする. このとき a, b を類とすれば次が成り立つ:

$$a = b \Longrightarrow (A(a) \Longleftrightarrow A(b)).$$

定理 A.1.29 (外延性の公理は同値関係で成立する). a,b を類とするとき,次が成り立つ:

$$\forall x \ (x \in a \iff x \in b) \iff a = b.$$

証明. a=b が成り立っていると仮定すれば、相等性の公理より $\mathcal L$ の任意の対象 τ に対して

$$\tau \in a \Longleftrightarrow \tau \in b$$

が満たされるから、推論法則 A.1.22 より

$$\forall x (x \in a \iff x \in b)$$

が成立する. よって演繹法則より

$$a = b \Longrightarrow \forall t \ (t \in a \Longleftrightarrow t \in b)$$

が成り立つ. 外延性の公理と併せれば定理の主張が得られる.

院生「等しい類同士は同じ £ の対象を要素に持つと示されましたが、このとき要素に持つ集合まで一致します。これは相等性の公理から明らかでしょうが、詳しくは部分類の箇所で説明いたしましょう。」

定理 A.1.30 (V は集合の全体である). a を類とするとき次が成り立つ:

 $set(a) \iff a \in V$.

証明. a を類とするとき, まず類の公理より

 $a \in \mathbf{V} \Longrightarrow \operatorname{set}(a)$

が得られる. 逆に $\exists x (a = x)$ が成り立っていると仮定する. このとき

 $\tau \coloneqq \varepsilon x (a = x)$

とおけば、定理 A.1.25 より $\tau = \tau$ となるので、類の公理より

 $\tau \in \mathbf{V}$

が成り立つ. そして相等性の公理より

 $a \in \mathbf{V}$

が従うから set $(a) \Longrightarrow a \in V$ も得られる.

定義 A.1.31 (空集合). ∅ を空集合 (empty set) と呼ぶ.

公理 A.1.32 (空集合の公理). ∅ は £ のいかなる対象も要素に持たない:

 $\forall x (x \notin \emptyset).$

院生「空集合は集合の系譜の起点となります. 聖書物語でいうところのアダムです.」

定理 A.1.33 ($\mathcal L$ のいかなる対象も要素に持たない類は空集合に等しい). a を類とするとき次が成り立つ:

 $\forall x \, (\, x \notin a \,) \Longleftrightarrow a = \emptyset.$

証明. a を類として $\forall x (x \notin a)$ が成り立っていると仮定する. このとき τ を \mathcal{L} の任意の対象とすれば $\tau \notin a$ と $\tau \notin \emptyset$ が共に満たされ、推論規則 A.1.5 より $\tau \notin a \lor \tau \in \emptyset$ と $\tau \notin a \lor \tau \in \emptyset$ が成り立ち、推論法則 A.1.17 より

 $\tau \in a \Longrightarrow \tau \in \emptyset, \quad \tau \in \emptyset \Longrightarrow \tau \in a$

が成り立つ. よって $\tau \in a \iff \tau \in \emptyset$ が成立し、 τ の任意性と推論法則 A.1.22 を適用して

$$\forall x (x \in a \iff x \in \emptyset)$$

が得られる. ゆえに外延性の公理より $a=\emptyset$ が成立し、演繹法則より

$$\forall x (x \notin a) \Longrightarrow a = \emptyset$$

が従う. 逆に $a=\emptyset$ が成り立っていると仮定する. ここで χ を $\mathcal L$ の任意の対象とすれば相等性の公理より

$$\chi \in a \Longrightarrow \chi \in \emptyset$$

が成立し、対偶を取れば $\chi \notin \emptyset \Longrightarrow \chi \notin a$ が成り立つ。空集合の公理より $\chi \notin \emptyset$ は満たされているので三段論法より $\chi \notin a$ が成立し、 χ の任意性と推論法則 A.1.22 より $\forall x (x \notin a)$ が成立する。ここに演繹法則を適用して

$$a = \emptyset \Longrightarrow \forall x (x \notin a)$$

も得られる.

定理 A.1.34 (空集合はいかなる類も要素に持たない). a,b を類とするとき次が成り立つ:

$$b = \emptyset \Longrightarrow a \notin b$$
.

証明. a,b を類とするとき, 類の公理より

$$a \in b \Longrightarrow \operatorname{set}(a)$$

が成立する. いま set(a) が成り立っていると仮定する. このとき $\tau \coloneqq \varepsilon x (a = x)$ とおけば存在記号に関する規則から $a = \tau$ が成り立つので、相等性の公理より $\tau \in b$ が従い、存在記号に関する規則より

$$\exists x (x \in b)$$

が成り立つ. よって演繹法則から

$$\operatorname{set}(a) \Longrightarrow \exists x (x \in b)$$

が成り立ち, 含意の推移律から

$$a \in b \Longrightarrow \exists x (x \in b)$$

が従う. この対偶を取り推論法則 A.1.23 を適用すれば

$$\forall x \, (x \notin b) \Longrightarrow a \notin b$$

が得られる. 定理 A.1.33 より $b = \emptyset \Longrightarrow \forall x (x \notin b)$ も成り立ち, 含意の推移律から

$$b = \emptyset \Longrightarrow a \notin b$$

が従う.

定義 A.1.35 (部分類). a,b を類とするとき,

$$a\subset b \stackrel{\mathrm{def}}{\Longleftrightarrow} \forall x\; (\; x\in a \Longrightarrow x\in b\;)$$

と定める. 式 $a \subset b$ を "a は b の部分類 (subclass) である" と翻訳し、特に a が集合である場合は "a は b の部分集合 (subset) である"と翻訳する. また類 a,b に対して次を定める:

$$a \subseteq b \stackrel{\text{def}}{\Longleftrightarrow} a \subset b \land a \neq b.$$

空虚な真の一例として次の結果を得る.

定理 A.1.36 (空集合は全ての類に含まれる). a を類とするとき次が成り立つ:

 $\emptyset \subset a$.

証明. a を類とする. τ を \mathcal{L} の任意の対象とすれば $\tau \notin \emptyset$ が成り立つから, 推論規則 A.1.5 を適用して

$$\tau \notin \emptyset \lor \tau \in a$$

が成り立つ. これは $\tau \in \emptyset \Longrightarrow \tau \in a$ が成り立つことと同値であり、 τ の任意性と推論法則 A.1.22 より

$$\forall x \ (x \in \emptyset \Longrightarrow x \in a)$$

が成立する. 以上から $\emptyset \subset a$ が得られる.

定理 A.1.37 (類はその部分類に属する全ての類を要素に持つ). a,b,c を類とすれば次が成り立つ:

$$a \subset b \Longrightarrow (c \in a \Longrightarrow c \in b).$$

証明. いま $a \subset b$ が成り立っているとする. このとき $c \in a$ が成り立っていると仮定すれば類の公理より $\operatorname{set}(c)$ が成り立つ. ここで

$$\tau \coloneqq \varepsilon x (c = x)$$

とおくと相等性の公理より $\tau \in a$ が成り立ち, $a \subset b$ と推論法則 A.1.22 から $\tau \in b$ が従う.再び相等性の公理を適用 すれば $c \in b$ が成り立つので,演繹法則より $a \subset b$ が成り立っている下で

$$c \in a \Longrightarrow c \in b$$

が成立する. 再び演繹法則を適用すれば定理の主張が得られる.

定理 A.1.38 (V は最大の類である). a を類とするとき次が成り立つ:

 $a \subset \mathbf{V}$.

証明. τ を $\mathcal L$ の任意の対象とすれば、定理 A.1.25 と類の公理より $\tau \in \mathbf V$ が成立するので、推論規則 A.1.5 より

$$\tau \notin a \lor \tau \in \mathbf{V}$$

が成立する. このとき推論法則 A.1.17 より $\tau \in a \Longrightarrow \tau \in V$ が成立し、 τ の任意性と推論法則 A.1.22 から

$$\forall x \ (x \in a \Longrightarrow x \in \mathbf{V})$$

が従う.

定理 A.1.39 (互いに互いの部分類となる類同士は等しい). a,b を類とするとき次が成り立つ:

 $a \subset b \land b \subset a \iff a = b$.

証明. $a \subset b \land b \subset a$ が成り立っていると仮定する. このとき τ を \mathcal{L} の任意の対象とすれば, $a \subset b$ と推論法則 A.1.22 より $\tau \in a \Longrightarrow \tau \in b$ が成立し、他方で $b \subset a$ と推論法則 A.1.22 より $\tau \in b \Longrightarrow \tau \in a$ が成立するので

$$\tau \in a \iff \tau \in b$$

が成り立つ. τ の任意性と推論法則 A.1.22 および外延性の公理より a=b が出るので, 演繹法則より

$$a \subset b \land b \subset a \Longrightarrow a = b$$

が得られる。逆に a=b が満たされていれば、 τ を $\mathcal L$ の任意の対象とすれば $\tau \in a \Longrightarrow \tau \in b$ と $\tau \in b \Longrightarrow \tau \in a$ が共に成り立つので、推論法則 A.1.22 より $a \subset b$ と $b \subset a$ が共に従う。よって演繹法則より

$$a = b \Longrightarrow a \subset b \land b \subset a$$

も得られる.

院生「定理 A.1.37 と定理 A.1.39 より、類 a,b が a=b を満たすならば、a と b は要素に持つ $\mathcal L$ の対象のみならず、要素に持つ類までも一致するのですね、これは要素となりうる類は集合であることと集合は $\mathcal L$ の或る対象に等しいことからの帰結です。」

A.1.2 式の書き換え

院生「我々は \mathcal{L} の式Aを用いて $\{x \mid A(x)\}$ の記法を導入しましたが、 \mathcal{L}' の式Bに対しても $\{x \mid B(x)\}$ の形で書けると便利なことが多いです。 ただし後者の記法はBと同値な \mathcal{L} の式B'によって

$$\{x \mid B(x)\} := \{x \mid B'(x)\}$$

で定められるものとします. \mathcal{L}' の式が与えられたらそれを或る手続きで \mathcal{L} の式に書き換えていくのですが, そこで真価を発揮するのは ϵ 記号です.]

a を類とするとき, a は $\mathcal L$ の対象であるか $\{x \mid A(x)\}$ の形をしている. そこで, 文字 x に対し

- a が \mathcal{L} の対象ならば $\varepsilon a(x) \stackrel{\text{def}}{\Longleftrightarrow} x \in a$,
- a が $\{x \mid A(x)\}$ の形をしていれば $\varepsilon a(x) \stackrel{\text{def}}{\Longleftrightarrow} A(x)$,

として記号列 $\varepsilon a(x)$ を定める. この記法は

$$\forall x \, (\, \varepsilon a(x) \Longleftrightarrow x \in a \,) \tag{A.1}$$

を満たすことを意図している. ϵ 記号を用いているのは、量化記号に関する推論規則で ϵ 記号を定めたときと導入の動機が似ているためである.

次に B を \mathcal{L}' の式として、B を \mathcal{L} の式に書き換える手続きを指定する.

step1 B が \mathcal{L} の式であるとき,

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} B$$

と定める. そうでない場合の対応を以下に示す.

step2 s,t を \mathcal{L}' の項として, B が

 $s \in t$

であるとき,

• s,t が共に \mathcal{L} の項であるとき

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} s \in t,$$

• s が \mathcal{L} の項ではなく, t が \mathcal{L} の項であるとき

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \varepsilon x (s = x) \in t,$$

• s が \mathcal{L} の項であり, t が \mathcal{L} の項でないとき

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \varepsilon t(s),$$

sもtも £ の項でないとき

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \varepsilon t(\varepsilon x (s=x)),$$

と定める. 一方で B が

$$s = t$$

であるとき,

• *s*, *t* が共に **ℒ** の項であるとき

$$\mathcal{L}B \stackrel{\text{def}}{\Longleftrightarrow} s = t,$$

• s が \mathcal{L} の項ではなく, t が \mathcal{L} の項であるとき, s が集合なら

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \varepsilon x \, (s=x) = t,$$

s が真類なら

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \forall u \; (\, \varepsilon s(u) \Longleftrightarrow u \in t \,) \,,$$

• s が \mathcal{L} の項であり, t が \mathcal{L} の項でないとき, t が集合なら

$$\mathcal{L}B \stackrel{\text{def}}{\Longleftrightarrow} s = \varepsilon x (t = x),$$

t が真類なら

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \forall u \ (u \in s \Longleftrightarrow \varepsilon t(u)),$$

• s も t も \mathcal{L} の項でないとき, s, t がどちらも集合なら

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \varepsilon x (s = x) = \varepsilon x (t = x),$$

s,t の一方でも真類なら

$$\mathcal{L}B \stackrel{\mathrm{def}}{\Longleftrightarrow} \forall u \; (\; \varepsilon s(u) \Longleftrightarrow \varepsilon t(u)),$$

と定める.

step3 P,Qを \mathcal{L}' の式として,Bが

$$P \vee Q$$
, $P \wedge Q$, $P \Longrightarrow Q$, $\rightarrow P$

であるとき,

$$\mathcal{L}P, \mathcal{L}Q$$

をそれぞれ P,Q から得られた \mathcal{L} の式として, 各場合に応じて

$$\mathcal{L}B \stackrel{\text{def}}{\Longleftrightarrow} \begin{cases} \mathcal{L}P \lor \mathcal{L}Q \\ \mathcal{L}P \land \mathcal{L}Q \\ \mathcal{L}P \Longrightarrow \mathcal{L}Q \\ \neg \mathcal{L}P \end{cases}$$

と定める.

B を \mathcal{L}' の式とし、x を B に現れる文字とし、B に現れる文字で x のみが量化されていないとき、

$$\{x \mid B(x)\} := \{x \mid \mathcal{L}B(x)\}$$

と定義する. このとき y を B(x) に現れない文字とすれば

$$\forall y \ (B(y) \iff y \in \{x \mid B(x)\})$$

が成立する.

A.1.3 対

推論法則 A.1.40 (量化記号の性質 (口)). A,B を \mathcal{L}' の式とし、x を A,B に現れる文字とするとき、x のみが A,B で量化されていないならば以下は定理である:

- (a) $\exists x (A(x) \lor B(x)) \Longleftrightarrow \exists x A(x) \lor \exists x B(x)$.
- (b) $\forall x (A(x) \land B(x)) \Longleftrightarrow \forall x A(x) \land \forall x B(x).$

証明.

(a) いま $c(x) \stackrel{\mathrm{def}}{\longleftrightarrow} A(x) \lor B(x)$ とおけば, $\exists x (A(x) \lor B(x))$ と $\exists x (C(x))$ は同じ記号列であるから

$$\exists x (A(x) \lor B(x)) \Longrightarrow \exists x C(x) \tag{A.2}$$

が成立する. また推論法則 A.1.8 より

$$\exists x C(x) \Longrightarrow C(\varepsilon x C(x)) \tag{A.3}$$

が成立する. $C(\varepsilon x C(x))$ と $A(\varepsilon x C(x)) \vee B(\varepsilon x C(x))$ は同じ記号列であるから

$$C(\varepsilon x C(x)) \Longrightarrow A(\varepsilon x C(x)) \vee B(\varepsilon x C(x))$$
 (A.4)

が成立する. ここで推論法則 A.1.8 と推論規則 A.1.5 より

$$A(\varepsilon x C(x)) \Longrightarrow \exists x A(x)$$

$$\Longrightarrow \exists x A(x) \lor \exists x B(x),$$

$$B(\varepsilon x C(x)) \Longrightarrow \exists x B(x)$$

$$\Longrightarrow \exists x A(x) \lor \exists x B(x)$$

が成立するので,場合分け法則より

$$A(\varepsilon x C(x)) \vee B(\varepsilon x C(x)) \Longrightarrow \exists x A(x) \vee \exists x B(x) \tag{A.5}$$

が成り立つ. (A.2) (A.3) (A.4) (A.5) に推論法則 A.1.8 を順次適用すれば

$$\exists x (A(x) \lor B(x)) \Longrightarrow \exists x A(x) \lor \exists x B(x)$$

が得られる. 他方, 推論規則 A.1.21 より

$$\exists x A(x) \Longrightarrow A(\varepsilon x A(x))$$

$$\Longrightarrow A(\varepsilon x A(x)) \lor B(\varepsilon x A(x))$$

$$\Longrightarrow C(\varepsilon x A(x))$$

$$\Longrightarrow C(\varepsilon x C(x))$$

$$\Longrightarrow \exists x C(x)$$

$$\Longrightarrow \exists x (A(x) \lor B(x))$$

が成立し、A を B に置き換えれば $\exists x B(x) \Longrightarrow \exists x (A(x) \lor B(x))$ も成り立つので、場合分け法則より

$$\exists x A(x) \lor \exists x B(x) \Longrightarrow \exists x (A(x) \lor B(x))$$

も得られる.

(b) 簡略して説明すれば

$$\forall x (A(x) \land B(x)) \iff \neg \exists x \rightarrow (A(x) \land B(x))$$
 (推論法則 A.1.23(c) の対偶)
$$\iff \neg \exists x (\neg A(x) \lor \neg B(x))$$
 (De Morgan の法則)
$$\iff \neg (\exists x \rightarrow A(x) \lor \exists x \rightarrow B(x))$$
 (前段の対偶)
$$\iff \neg (\neg \forall x A(x) \lor \neg \forall x B(x))$$
 (推論法則 A.1.23(c))
$$\iff \neg \neg \forall x A(x) \land \neg \neg \forall x B(x)$$
 (De Morgan の法則)
$$\iff \forall x A(x) \land \forall x B(x)$$
 (二重否定の法則)

となる.

定義 A.1.41 (対). a,b を類とするとき,

$$\{a,b\} := \{x \mid \forall s \ (s \in x \iff \varepsilon a(s)) \lor \forall t \ (t \in x \iff \varepsilon b(t))\}$$

で $\{a,b\}$ を定義し、これを a と b の対 (pair) と呼ぶ、特に $\{a,a\}$ を $\{a\}$ と書く、

a, *b* を類とするとき

$$\forall x \ (x = a \lor x = b \Longleftrightarrow \forall s \ (s \in x \Longleftrightarrow \varepsilon a(s)) \lor \forall t \ (t \in x \Longleftrightarrow \varepsilon b(t)))$$

が成立する. 従って

$$\forall x (x = a \lor x = b \Longleftrightarrow x \in \{a, b\})$$
(A.6)

が成立する. これで次の定理が得られた:

定理 A.1.42 (対はそこに書かれている要素しか持たない). $a \, b \, b$ を類とするとき次が成立する:

$$\forall x \, (\, x \in \{a,b\} \Longleftrightarrow x = a \lor x = b\,).$$

以上を根拠にして、 $\{a,b\}$ を

$$\{x \mid x = a \lor x = b\}$$

と表しても良いことにする. もとより, 対の定義はこちらの表記を正当化することを予期したものである.

院生「一般の類 a,b に対して、本来

$$\{x \mid x = a \lor x = b\}$$

は類として失格です。なぜならば、a,bの一方でも \mathcal{L} の対象ではない場合はそもそも

$$x = a \lor x = b$$

が \mathcal{L} の式でないからです。しかしいちいち ϵ 記号を使っていては見た目が煩雑になりますから、表記上は

$$\{x \mid x = a \lor x = b\}$$

も認めるのです.以後もこのように妥協する場面に直面するでしょうが,しかし ϵ 記号を用いれば正式な形 に書き直せるのですから解釈上の不具合は無いのです.」

公理 A.1.43 (対の公理). 集合同士の対は集合である. つまり, a,b を類とするとき次が成り立つ:

$$\operatorname{set}(a) \wedge \operatorname{set}(b) \Longrightarrow \operatorname{set}(\{a,b\}).$$

定理 A.1.44 (真類の対は空). a,b を類とするとき次が成り立つ:

- $(1) \quad \operatorname{set}(a) \Longrightarrow a \in \{a, b\}.$
- $(\Box) \longrightarrow \operatorname{set}(a) \land \longrightarrow \operatorname{set}(b) \Longleftrightarrow \{a,b\} = \emptyset.$

証明.

(イ) まず存在記号に関する規則より

$$\operatorname{set}(a) \Longrightarrow a = \varepsilon x (a = x)$$

も成り立つ. ここで set(a) が成り立っていると仮定して $\tau := \varepsilon x (a = x)$ とおけば、三段論法より $\tau = a$ が成立し、 \vee の導入より $\tau = a \vee \tau = b$ が成り立つ. (A.6) と推論法則 A.1.22 より $\mathcal L$ の対象である τ に対しては

$$\tau = a \lor \tau = b \Longleftrightarrow \tau \in \{a, b\}$$

が満たされるので、三段論法より $\tau \in \{a,b\}$ が成り立ち、相等性の公理より

$$a \in \{a, b\}$$

が従う. ここに演繹法則を適用すれば(i)が得られる.

(ロ) いま \rightarrow set (a) $\land \rightarrow$ set (b) が成り立っているとする. このとき推論法則 A.1.23 より

$$\forall x (a \neq x) \land \forall x (b \neq x)$$

が成り立ち,推論法則 A.1.40 より

$$\forall x (a \neq x \land b \neq x)$$

が成立する. ここで χ を $\mathcal L$ の任意の対象とすれば, (A.6) と推論法則 A.1.22 より

$$a = \chi \lor b = \chi \iff \chi \in \{a, b\}$$

が成立し, Λの除去と対偶命題の同値性から

$$a \neq \chi \land b \neq \chi \Longrightarrow \chi \notin \{a, b\}$$

が成り立つ. いま $a \neq \chi \land b \neq \chi$ が満たされているので三段論法より $\chi \notin \{a,b\}$ が成立し, χ の任意性と推論法則 A.1.22 より

$$\forall x (x \notin \{a,b\})$$

が成立する. このとき定理 A.1.33 より $\{a,b\} = \emptyset$ が従うので、演繹法則を適用して

$$\rightarrow \operatorname{set}(a) \land \rightarrow \operatorname{set}(b) \Longrightarrow \{a, b\} = \emptyset$$

が得られる. 一方で (i) の結果と定理 A.1.34 より

$$\operatorname{set}(a) \Longrightarrow a \in \{a, b\} \Longrightarrow \{a, b\} \neq \emptyset$$

が成り立ち、同様に $set(b) \Longrightarrow \{a,b\} \neq \emptyset$ も成り立つので場合分け法則より

$$\operatorname{set}(a) \vee \operatorname{set}(b) \Longrightarrow \{a, b\} \neq \emptyset$$

が成立する. この対偶を取り De Morgan の法則を適用すれば

$$\{a,b\} = \emptyset \Longrightarrow \rightarrow \operatorname{set}(a) \land \rightarrow \operatorname{set}(b)$$

も得られる.

院生「上の定理から**集合は或る類の要素である**という真な言明が得られます.実際,a を集合とすれば $\{a\}$ も集合となり,そして $a \in \{a\}$ が成り立ちますね.」

A.1.4 合併

定義 A.1.45 (合併). a を類とするとき

で $\bigcup a$ を定め、これをa の合併 (union) と呼ぶ.

類 a の合併も

$$\bigcup a := \left\{ \left. x \mid \exists t \left(\varepsilon a(t) \land x \in t \right) \right\} \right.$$

と定めるのが本式である. しかし

$$\forall x \ (\exists t \ (\varepsilon a(t) \land x \in t) \Longleftrightarrow \exists t \in a \ (x \in t))$$
(A.8)

が成立するので式 (A.7) を受け入れているのである. 実際,式 (A.1) より

$$\forall t \ (\varepsilon a(t) \iff t \in a)$$

が満たされるので、 χ と τ を $\mathcal L$ の任意の対象とすれば同値関係の遺伝性質より

$$\varepsilon a(\tau) \land \chi \in \tau \iff \tau \in a \land \chi \in \tau$$

が成立する. このとき τ の任意性と推論法則 A.1.23 より

$$\exists t (\varepsilon a(t) \land \chi \in t) \iff \exists t (t \in a \land \chi \in t)$$

が成立し、 χ の任意性と推論法則 A.1.22 より (A.8) が得られる. 正確さも大切だが、やはり判りやすい方が良い.

公理 A.1.46 (合併の公理). 集合の合併は集合である. つまり, a を類とするとき次が成り立つ:

$$\operatorname{set}(a) \Longrightarrow \operatorname{set}\left(\bigcup a\right).$$

定理 A.1.47 (空集合の合併は空). 次が成立する:

$$\bigcup \emptyset = \emptyset.$$

証明. χ と τ を $\mathcal L$ の任意の対象とすれば、空集合の公理と推論法則 A.1.22 より χ \notin \emptyset が成立し、さらに \vee の導入 より

$$\chi \notin \emptyset \lor \tau \notin \chi$$

が成立する. ここで χ の任意性と推論法則 A.1.22 より

$$\forall x (x \notin \emptyset \lor \tau \notin \emptyset)$$

が成り立つ. ここで推論法則 A.1.23 と De Morgan の法則より

$$\forall x (x \notin \emptyset \lor \tau \notin \emptyset) \Longleftrightarrow \forall x \rightarrow (x \in \emptyset \land \tau \in \emptyset)$$

$$\Longleftrightarrow \rightarrow \exists x (x \in \emptyset \land \tau \in \emptyset)$$

が成立するので、三段論法より $\rightarrow \exists x (x \in \emptyset \land \tau \in \emptyset)$ が成立する. 他方で合併の定義の対偶を取れば

$$\rightarrow \exists x \, (x \in \emptyset \land \tau \in \emptyset) \Longleftrightarrow \tau \notin \bigcup \emptyset$$

が満たされるので、再び三段論法より $\tau \notin \bigcup \emptyset$ が成立する. τ の任意性と推論法則 A.1.22 より

$$\forall t (t \notin \bigcup \emptyset)$$

が成立し, 定理 A.1.33 より

$$\bigcup \emptyset = \emptyset$$

が従う.

定理 A.1.48 (合併は任意の要素より大きい). a を類とするとき次が成立する:

$$\forall x (x \in a \Longrightarrow x \subset []a).$$

a,b を類とするとき、その対の合併を

$$a \cup b \stackrel{\mathrm{def}}{\Longleftrightarrow} \bigcup \{a, b\}$$

と書く.

定理 A.1.49. a,b を類とするとき次が成立する:

$$\forall x (x \in a \cup b \Longrightarrow x \in a \lor x \in b).$$

定理 A.1.50 (合併の可換律). a,b を類とするとき次が成立する:

$$a \cup b = b \cup a$$
.

A.1.5 交叉

定義 A.1.51 (交叉). a を類とするとき,

$$\bigcap a := \{ x \mid \forall t \in a (x \in t) \}$$

で $\bigcap a$ を定め、これを a の交叉 (intersection) と呼ぶ.

121

院生「交叉の正式な定義は

$$\bigcap a := \{ x \mid \forall t (\varepsilon a(t) \Longrightarrow x \in t) \}$$

です.」

定理 A.1.52 (空集合の交叉は宇宙となる). 次が成立する:

$$\bigcap \emptyset = \mathbf{V}.$$

証明. x を \mathcal{L} の任意の対象とするとき、空虚な真より

$$t \in \emptyset \Longrightarrow x \in t$$

は \mathcal{L} のいかなる対象 t に対してもに真となる. ゆえに $\forall t \in \emptyset$ ($x \in t$) が成立し

$$\forall x (x \in \bigcap \emptyset)$$

が従う. $\forall x (x \in \mathbf{V})$ と併せて $\bigcap \emptyset = \mathbf{V}$ を得る.

院生「 $\bigcup \emptyset$ が \emptyset に等しいのは受け容れられますが、 $\bigcap \emptyset$ が \mathbf{V} に等しいというのは不思議に感じられます.」

定理 A.1.53 (交叉は任意の元に含まれる). a を類とするとき次が成立する:

$$\forall x (x \in a \Longrightarrow \bigcap a \subset x).$$

a,b を類とするとき、その対の合併を

$$a \cap b := \bigcap \{a, b\}$$

と書く.

定理 A.1.54.

$$\forall x (x \in a \cap b \iff x \in a \land x \in b).$$

定理 A.1.55 (交叉の可換律).

$$a \cap b = b \cap a$$
.

定理 A.1.56 (対の交叉が空ならばその構成要素は共通元を持たない). a,b を類とするとき次が成立する:

$$a \cap b = \emptyset \Longrightarrow \forall x (x \in a \Longrightarrow x \notin b).$$

証明. いま $\exists x (x \in a \land x \in b)$ が成り立っているとする.

$$\chi := \varepsilon x (x \in a \land x \in b)$$

とおけば, 存在記号に関する規則より

$$\chi \in a \land \chi \in b$$

が成立し、 \land の除去により $\chi \in a$ と $\chi \in b$ が共に成立する. ここで τ を $\mathcal L$ の任意の対象とすれば定理 A.1.42 より

$$\tau \in \{a, b\} \Longrightarrow \tau = a \lor \tau = b$$

$$\tau = a \lor \tau = b \Longrightarrow \chi \in \tau$$

も満たされ, 含意の推移律より

$$\tau \in \{a, b\} \Longrightarrow \chi \in \tau$$

が従う. そして τ の任意性と推論法則 A.1.22 から

$$\forall t \ (t \in \{a, b\} \Longrightarrow \chi \in t)$$

が成立する. これにより

$$\chi \in a \cap b$$

が従い, 存在記号に関する規則より

$$\exists x \, (\, x \in a \cap b \,)$$

となるから定理 A.1.33 より

$$a \cap b \neq \emptyset$$

が従う. ここに再び演繹法則を適用すれば

$$\exists x (x \in a \land x \in b) \Longrightarrow a \cap b \neq \emptyset$$

が得られる. ところで σ を \mathcal{L} の任意の対象とすれば、De Morgan の法則と推論法則 A.1.17 より

$$\sigma \in a \land \sigma \in b \iff \neg (\sigma \notin a \lor \sigma \notin b)$$
$$\iff \neg (\sigma \in a \implies \sigma \notin b)$$

が成り立つので含意の推移律から

$$\sigma \in a \land \sigma \in b \iff \neg (\sigma \in a \implies \sigma \notin b)$$

となり、推論法則 A.1.23 より

$$\exists x (x \in a \land x \in b) \Longleftrightarrow \exists x \rightarrow (x \in a \Longrightarrow x \notin b)$$

が成立する. よって含意の推移律より

$$\exists x \rightarrow (x \in a \Longrightarrow x \notin b) \Longrightarrow a \cap b \neq \emptyset$$

が成立し、この対偶を取り推論法則 A.1.23 を適用すれば

$$a \cap b = \emptyset \Longrightarrow \forall x (x \in a \Longrightarrow x \notin b)$$

が出てくる.

定理 A.1.57.

証明.

(1) a^{-1} の任意の要素 t に対し或る V の要素 x,y が存在して

$$(x, y) \in a \land t = (y, x)$$

を満たす. $((x,y),(y,x)) \in f$ より $((x,y),t) \in f$ が成り立つから $t \in f*a$ となる. 逆に f*a の任意の要素 t に対して a の或る要素 x が存在して

$$x \in a \land (x, t) \in f$$

となる. x に対し V の或る要素 a,b が存在して x = (a,b) となるので

$$((a,b),t) \in f$$

となり、V の或る要素 c,d が存在して

$$((a,b),t) = ((c,d),(d,c))$$

となる. (a,b)=(c,d) より a=c かつ b=d となり,t=(d,c) かつ (d,c)=(b,a) より t=(b,a),従って $t\in a^{-1}$ が成り立つ.

A.1.6 関係

定義 A.1.58 (順序対). a, b を類とするとき,

$$(a,b) := \{\{a\}, \{a,b\}\}$$

で定義される類 (a,b) を a と b の順序対 (ordered pair) と呼ぶ.

定理 A.1.59 (集合の順序対は集合). a,b を類とするとき次が成り立つ:

$$\operatorname{set}(a) \wedge \operatorname{set}(b) \Longrightarrow \operatorname{set}((a,b)).$$

証明. 類 a,b が集合であると仮定する. このとき定理 A.1.44 より $\{a\}$ と $\{a$, $b\}$ は共に集合となり,再び定理 A.1.44 より $\{\{a\},\{a,b\}\}$ は集合となる.

定理 A.1.60 (順序対の相等性). a,b,c,d を類とするとき次が成り立つ:

$$\operatorname{set}(a) \wedge \operatorname{set}(b) \wedge \operatorname{set}(c) \wedge \operatorname{set}(d) \Longrightarrow ((a,b) = (c,d) \Longleftrightarrow a = c \wedge b = d).$$

定義 A.1.61 (Cartesian 積). 類 a,b に対し、 $a \times b$ を

$$a \times b := \{x \mid \exists s \in a \exists t \in b (x = (s, t))\}$$

で定め、これを a と b の Cartesian 積 (Cartesian product) と呼ぶ.

院生「しつこいですが、本来は ϵ 記号を用いて

$$a \times b := \{ y \mid \exists s, t (\varepsilon a(s) \wedge \varepsilon b(t) \wedge y = \varepsilon x (x = (s, t))) \}$$

と定めるのが正式です. しかしs,tを \mathcal{L} の対象とするとき,

$$s \in a \iff \epsilon a(s),$$

 $t \in b \iff \epsilon b(t),$
 $(s,t) = \epsilon x(x = (s,t))$

となり、 £ の任意の対象 y に対して

$$\exists s, t \ (\varepsilon a(s) \land \varepsilon b(t) \land y = \varepsilon x(x = (s, t)))$$

$$\iff \exists s \in a \ \exists t \in b \ (y = (s, t))$$

が満たされますから解釈上の不具合は無いのですね. また $a \times b$ は

$$\{(s,t) \mid s \in a \land t \in b\}$$

と簡略して書かれることも多いです.」

二つの類を用いて得られる最大の Cartesian 積は

$$\{x \mid \exists s, t (x = (s, t))\}$$

で与えられ,これは $\mathbf{V} \times \mathbf{V}$ に等しい.

定理 A.1.62 (V の Cartesian 積). 次が成り立つ:

$$\mathbf{V} \times \mathbf{V} = \{ x \mid \exists s, t (x = (s, t)) \}.$$

証明. $\mathbf{V} \times \mathbf{V}$ は形式的には $\{x \mid \exists s, t \in \mathbf{V}(x = (s, t))\}$ で定められるが、正式には

$$\{x \mid \exists s (s = s \land \exists t (t = t \land x = (s, t)))\}$$

で定められる. ここで χ を \mathcal{L} の任意の対象として

$$\exists s \ (s = s \land \exists t \ (t = t \land \chi = (s, t))) \Longleftrightarrow \exists s \ (\exists t \ (\chi = (s, t)))$$
(A.9)

が成り立つことを示す. いま $\exists s \ (s=s \land \exists t \ (t=t \land \chi=(s,t)))$ が成り立っていると仮定する. このとき

$$\sigma := \varepsilon s \ (s = s \land \exists t \ (t = t \land \chi = (s, t)))$$

とおけば存在記号に関する規則より

$$\sigma = \sigma \wedge \exists t (t = t \wedge \chi = (\sigma, t))$$

が成立し、このとき Λ の除去より $\exists t (t = t \land \chi = (\sigma, t))$ が成り立つので

$$\tau := \varepsilon t (t = t \wedge \chi = (\sigma, t))$$

とおけば

$$\tau = \tau \wedge \chi = (\sigma, \tau)$$

が成立する. Λ の除去より $\chi = (\sigma, \tau)$ となり, 存在記号に関する規則より

$$\exists t (\chi = (\sigma, t))$$

が成立し, 再び存在記号に関する規則から

$$\exists s \ (\exists t \ (\chi = (s,t)))$$

が成立する. ここで演繹法則を適用すれば

$$\exists s \ (s = s \land \exists t \ (t = t \land \chi = (s, t))) \Longrightarrow \exists s \ (\exists t \ (\chi = (s, t)))$$

が得られる. 逆に $\exists s (\exists t (\chi = (s,t)))$ が成り立っているとすると,

$$\sigma' := \varepsilon s \left(\exists t \left(\chi = (s, t) \right) \right)$$

とおけば存在記号に関する規則より

$$\exists t (\chi = (\sigma', t))$$

が成立し,

$$\tau' \coloneqq \varepsilon t \, (\, \chi = (\sigma', t) \,)$$

とおけば

$$\chi = (\sigma', \tau')$$

が成立する. ここで定理 A.1.25 より $\tau' = \tau'$ が満たされるので Λ の導入により

$$\tau' = \tau' \wedge \chi = (\sigma', \tau')$$

が成り立ち,存在記号に関する規則より

$$\exists t (t = t \land \chi = (\sigma', t))$$

が成り立つ. 同じく $\sigma' = \sigma'$ も満たされて

$$\sigma' = \sigma' \wedge \exists t (t = t \wedge \chi = (\sigma', t))$$

が成り立ち, 存在記号に関する規則より

$$\exists s \ (s = s \land \exists t \ (t = t \land \chi = (s, t)))$$

が成立する. ここに演繹法則を適用すれば

$$\exists s \ (\exists t \ (\chi = (s, t))) \Longrightarrow \exists s \ (s = s \land \exists t \ (t = t \land \chi = (s, t)))$$

が得られる.以上より式(A.9)が成立する.ところで類の公理より

$$\chi \in \mathbf{V} \times \mathbf{V} \iff \exists s \ (s = s \land \exists t \ (t = t \land \chi = (s, t))),$$

 $\chi \in \{x \mid \exists s, t \ (x = (s, t))\} \iff \exists s \ (\exists t \ (\chi = (s, t)))$

が成り立つので、含意の推移律から

$$\chi \in \mathbf{V} \times \mathbf{V} \Longleftrightarrow \chi \in \{ x \mid \exists s, t (x = (s, t)) \}$$

が成立する. そして χ の任意性と推論法則 A.1.22 から

$$\forall y \ (y \in \mathbf{V} \times \mathbf{V} \iff y \in \{x \mid \exists s, t \ (x = (s, t))\}\)$$

が従い,外延性の公理より定理の主張が得られる.

定義 A.1.63 (関係). $\mathbf{V} \times \mathbf{V}$ の部分類を関係 (relation) と呼ぶ. また類 a に対して

$$\operatorname{rel}(a) \stackrel{\operatorname{def}}{\Longleftrightarrow} a \subset \mathbf{V} \times \mathbf{V}$$

と定める.

いま, 関係 *E* を

$$E = \{ x \mid \exists s, t (x = (s, t) \land s = t) \}$$

と定めてみる. このとき E は次の性質を満たす:

- (a) $\forall x ((x, x) \in E)$.
- (b) $\forall x, y ((x, y) \in E \Longrightarrow (y, x) \in E).$
- (c) $\forall x, y, z \ ((x, y) \in E \land (y, z) \in E \Longrightarrow (x, z) \in E).$

性質 (a) を反射律と呼ぶ、性質 (b) を対称律と呼ぶ、性質 (c) を推移律と呼ぶ、

定義 A.1.64 (同値関係). a を類とし、R を関係とする. R が $R \subset a \times a$ を満たし、さらに

反射律 $\forall x \in a ((x, x) \in R)$.

対称律 $\forall x, y \in a ((x, y) \in R \Longrightarrow (y, x) \in R).$

推移律 $\forall x, y, z \in a \ ((x, y) \in R \land (y, z) \in R \Longrightarrow (x, z) \in R).$

も満たすとき,R を a 上の同値関係 (equivalence relation) と呼ぶ.

院生「集合 a に対して $R = E \cap (a \times a)$ とおけば R は a 上の同値関係となりますね.」

Eとは別の関係Oを

$$O = \{ x \mid \exists s, t (x = (s, t) \land s \subset t) \}$$

により定めてみる. このとき O は次の性質を満たす:

- (a) $\forall x ((x, x) \in O)$.
- (b') $\forall x, y ((x, y) \in O \land (y, x) \in O \Longrightarrow x = y).$
- (c) $\forall x, y, z \ ((x, y) \in O \land (y, z) \in O \Longrightarrow (x, z) \in O).$

性質 (b') を反対称律と呼ぶ.

定義 A.1.65 (順序関係). a を類とし、R を関係とする. R が $R \subset a \times a$ を満たし、さらに

反射律 $\forall x \in a ((x, x) \in R)$.

反対称律 $\forall x, y \in a ((x, y) \in R \land (y, x) \in R \Longrightarrow x = y).$

推移律 $\forall x, y, z \in a ((x, y) \in R \land (y, z) \in R \Longrightarrow (x, z) \in R).$

も満たすとき, R を a 上の順序 (order) と呼ぶ. a が集合であるときは対 (a,R) を順序集合 (ordered set) と呼ぶ. 特に

$$\forall x,y \in a \ (\ (x,y) \in R \lor (y,x) \in R \)$$

が成り立つとき、R を a 上の全順序 (total order) と呼ぶ.

院生「反射律と推移律のみを満たす関係を前順序 (preorder) と呼びます。また全順序は線型順序 (linear order) とも呼ばれます。また表記上の問題ですが,集合 R を集合 a 上の順序関係として

$$x \le y \iff (x, y) \in R$$

で記号 \leq を定めるとき、 (a, \leq) と順序対の形で表してこれを順序集合と呼ぶこともあります.」

定義 A.1.66 (上限).

定義 A.1.67 (整列集合). x が整列集合 (wellordered set) であるとは、x が集合 a と a 上の順序 R の対 (a, R) に 等しく、かつ a の空でない任意の部分集合が R に関する最小元を持つことをいう.またこのときの R を整列順序 (wellorder) と呼ぶ.

定理 A.1.68 (整列順序は全順序).

院生「A(x) という式を満たすような x が '唯一つ存在する' という概念を定義しましょう. 当然 A(x) を満たす x が存在していなくてはいけませんから $\exists x A(x)$ は満たされるべきですが,これに加えて 'y と z に対して A(y) と A(z) が成り立つなら y=z である' という条件を付けるのです.しかしこのままでは '唯一つである' ことを表す式は長くなりますから,新しい記号 $\exists !$ を用意して簡略します.その形式的な定義は下に述べます.ちなみに,'唯一つである' ことは '一意に存在する' などの言明によっても示唆されます.」

A を \mathcal{L}' の式とし、x を A に現れる文字とし、A に文字 y,z が現れないとするとき、

$$\exists! x A(x) \overset{\mathrm{def}}{\Longleftrightarrow} \exists x A(x) \land \forall y, z \, (A(y) \land A(z) \Longrightarrow y = z \,)$$

で 3! の意味を定める.

定義 A.1.69 (定義域・値・値域). a を類とするとき,

$$\mathrm{dom}\,(a) \coloneqq \left\{ \left. x \mid \exists y \, ((x,y) \in a) \right\}, \quad \mathrm{ran}\,(a) \coloneqq \left\{ \left. y \mid \exists x \, ((x,y) \in a) \right\} \right. \right\}$$

と定めて、dom(a) を a の定義域 (domain) と呼び、ran(a) を a の値域 (range) と呼ぶ. また

$$a(t) := \{ x \mid \exists y (x \in y \land (t, y) \in a) \}$$

とおき,これをtのaによる値 (value) と呼ぶ.

定義 A.1.70 (single-valued). a を類とするとき, a が single-valued であるということを

$$\operatorname{sing}\left(a\right) \stackrel{\operatorname{def}}{\Longleftrightarrow} \forall x,y,z\left(\left(x,y\right) \in a \wedge \left(x,z\right) \in a \Longrightarrow y=z\right)$$

で定める.

院生「写像とは single-valued な関係として定義されるので,」

定理 A.1.71 (値とは要素となる順序対の片割れである). a を類とするとき

$$\operatorname{sing}(a) \Longrightarrow \forall t \in \operatorname{dom}(a) \ ((t, a(t)) \in a).$$

略証. sing(a) が成り立っていると仮定する. このとき t を dom(a) の任意の要素とすれば、

$$(t, \eta) \in a$$

を満たす η が取れる.この η がa(t)に等しいことを示せば良い.いまxを任意の集合とする.

$$x \in \eta$$

が成り立っているとすると

$$\exists y (x \in y \land (t, y) \in a)$$

が従うので

$$x \in a(t)$$

となる. ゆえに先ず

$$x \in \eta \Longrightarrow x \in a(t)$$

が得られた. 逆に

$$x \in a(t)$$

が成り立っているとき,

$$\xi := \varepsilon y (x \in y \land (t, y) \in a)$$

とおけば

$$x \in \xi \land (t, \xi) \in a$$

が満たされるが、 $(t,\eta) \in a$ と sing(a) より

$$\xi = \eta$$

となるので, 相等性の公理から

$$x \in \eta$$

も成立する. ゆえに

$$x \in a(t) \Longrightarrow x \in \eta$$

も得られた。x の任意性と外延性の公理から

$$a(t) = \eta$$

が従う. このとき

$$(t, \eta) = (t, a(t))$$

となり、 $(t,\eta) \in a$ と相等性の公理から

$$(t,a(t)) \in a$$

が満たされる. 以上を総合すれば

$$\operatorname{sing}(a) \Longrightarrow \forall t \in \operatorname{dom}(a) \; ((t, a(t)) \in a)$$

が出る.

定理 A.1.72 (single-valued ならば値は一意). a を類とするとき

$$\operatorname{sing}\left(a\right) \Longrightarrow \forall s,t \in \operatorname{dom}\left(a\right) \left(s=t \Longrightarrow a(s)=a(t)\right).$$

略証 (証明 P. 329). $\sin g(a)$ が成り立っていると仮定する. s,t を $\mathrm{dom}(a)$ の任意の要素とすれば、定理 A.1.71 より

$$(s,a(s)) \in a \land (t,a(t)) \in a$$

が成立する. このとき

s = t

ならば

$$(s, a(s)) = (t, a(s))$$

となるので

$$(t, a(s)) \in a$$

が従い、sing(a)と $(t,a(t)) \in a$ から

$$a(s) = a(t)$$

が成立する. ゆえに

$$s = t \Longrightarrow a(s) = a(t)$$

が示された.

定義 A.1.73 (写像). f,a,b を類とするとき,以下の概念と \mathcal{L}' における派生記号を定める.

• *f* が写像 (mapping) であるということ:

$$\operatorname{fnc}(f) \stackrel{\operatorname{def}}{\Longleftrightarrow} \operatorname{rel}(f) \wedge \operatorname{sing}(f)$$
.

• *f* が *a* 上の写像であるということ:

$$f: \text{on } a \stackrel{\text{def}}{\iff} \text{fnc}(f) \wedge \text{dom}(f) = a.$$

f が a から b への写像であるということ:

$$f: a \longrightarrow b \stackrel{\text{def}}{\Longleftrightarrow} f: \text{on } a \land \text{ran } (f) \subset b.$$

• *f* が *a* から *b* への単射 (injection) であるということ:

$$f: a \xrightarrow{1:1} b \overset{\text{def}}{\Longleftrightarrow} f: a \longrightarrow b \land \forall x, y, z \, ((x,z) \in f \land (y,z) \in f \Longrightarrow x = y).$$

• f が a から b への全射 (surjection) であるということ:

$$f: a \xrightarrow{\rm onto} b \xleftarrow{\rm def} f: a \longrightarrow b \land \forall y \in b \, \exists x \in a \, ((x,y) \in f).$$

• *f が a から b* への全単射 (bijection) であるということ:

$$f: a \xrightarrow[\text{onto}]{1:1} b \xleftarrow{\text{def}} f: a \xrightarrow{1:1} b \land f: a \xrightarrow[\text{onto}]{\text{onto}} b.$$

定理 A.1.74 (定義域と値が一致する写像は等しい). f,g を類とするとき次が成り立つ:

$$\operatorname{fnc}(f) \wedge \operatorname{fnc}(g)$$

$$\Longrightarrow (\operatorname{dom}(f) = \operatorname{dom}(g) \wedge \forall t \in \operatorname{dom}(f) (f(t) = g(t)) \Longrightarrow f = g).$$

証明. いま $\left(\operatorname{fnc}\left(f\right) \wedge \operatorname{fnc}\left(g\right)\right) \wedge \left(\operatorname{dom}\left(f\right) = \operatorname{dom}\left(g\right)\right)$ と $\forall t \ \left(t \in \operatorname{dom}\left(f\right) \Longrightarrow f(t) = g(t)\right)$ が成り立っていると仮定する. このとき χ を $\mathcal L$ の任意の対象として $\chi \in f$ が満たされているとすれば、 $f \subset \mathbf V \times \mathbf V$ より

$$\exists s \ (\exists t \ (\chi = (s, t)))$$

が成立する. ここで $\sigma \coloneqq \varepsilon s \; (\exists t \, (\chi = (s,t)))$ とおけば存在記号に関する規則より

$$\exists t (\chi = (\sigma, t))$$

が成立し、更に $\tau \coloneqq \varepsilon t (\chi = (\sigma, t))$ とおけば

$$\chi = (\sigma, \tau)$$

が成立する. $\chi \in f$ と相等性の公理より

$$(\sigma, \tau) \in f$$

が従い, 存在記号に関する規則より

$$\exists y ((\sigma, y) \in f)$$

が成立するので

$$\sigma \in \text{dom}(f)$$

となる. このとき fnc(f) と定理??より

$$(\sigma, f(\sigma)) \in f$$

が成立し、 $(\sigma, \tau) \in f \land (\sigma, f(\sigma)) \in f$ と sing(f) が満たされるので

$$\tau = f(\sigma)$$

が成り立つ. 他方で $\forall t \ \big(t \in \mathrm{dom} \, \big(f\big) \Longrightarrow f(t) = g(t)\big)$ と推論法則 A.1.22 より

$$f(\sigma) = g(\sigma)$$

が満たされ, 相等性の公理より

$$\tau = g(\sigma)$$

が成り立つ. また $\sigma \in \text{dom}(f)$ と相等性の公理より

$$\sigma \in \text{dom}(g)$$

が成り立ち、定理??より

$$(\sigma,g(\sigma))\in g$$

となるが、 $\tau = g(\sigma)$ と定理 A.1.60 より

$$(\sigma, g(\sigma)) = (\sigma, \tau)$$

が満たされるので、相等性の公理より

$$(\sigma, \tau) \in g$$

が成り立ち、再び相等性の公理より $\chi \in g$ が成り立つ。ここで演繹法則を適用すれば

$$\chi \in f \Longrightarrow \chi \in g$$

が得られる. f と g の立場を替えれば $\chi \in g \Longrightarrow \chi \in f$ も得られ, χ の任意性と推論法則 A.1.22 より

$$\forall x (x \in f \iff x \in g)$$

が従う. そして外延性の公理より

$$f = g$$

が出てくる. 最後に演繹法則を二回適用すれば定理の主張が得られる.

定義 A.1.75 (反転). a を類とするとき, その反転 (inverse) を

$$a^{-1} := \{ x \mid \exists s, t (x = (s, t) \land (t, s) \in a) \}$$

で定める.

定義 A.1.76 (像・原像). a,b を類とするとき, b の a による像を

$$a * b := \{ y \mid \exists x \in b ((x, y) \in a) \}$$

で定める. また

$$a^{-1} * b$$

を b の a による原像と呼ぶ.

定理 A.1.77 (原像はそこに写される定義域の要素の全体). a,b を類とするとき,

$$a^{-1} * b = \{ x \mid \exists y \in b ((x, y) \in a) \}.$$

略証. $x \in a^{-1} * b$ の要素とすれば,

$$(y,x)\in a^{-1}$$

を満たすbの要素yが取れる.このとき

$$(x, y) \in a$$

となるので

$$\exists y \in b \, ((x,y) \in a)$$

が成立し

$$x \in \{x \mid \exists y \in b ((x, y) \in a)\}$$

が従う. 逆にxを $\{x \mid \exists y \in b((x,y) \in a)\}$ の要素とすれば、

$$(x, y) \in a$$

を満たすbの要素yが取れる.このとき

$$(y,x) \in a^{-1}$$

となるので

$$\exists y \in b ((y, x) \in a^{-1})$$

が成立し

$$x \in a^{-1} * b$$

が従う.

定理 A.1.78 (single-valued な類の像は値の全体). a,b を類とするとき,

$$\operatorname{sing}(a) \land b \subset \operatorname{dom}(a) \Longrightarrow a * b = \{x \mid \exists t \in b (x = a(t))\}.$$

定理 A.1.79 (像は制限写像の値域に等しい). a,b を類とするとき次が成り立つ:

$$a*b = \operatorname{ran}\left(a|_{b}\right).$$

定理 A.1.80 (空集合は写像である). 以下が成立する.

- (1) $\operatorname{fnc}(\emptyset)$.
- (\Box) dom $(\emptyset) = \emptyset$.
- $(\land \land)$ ran $(\emptyset) = \emptyset$.
- (二) ∅は単射である.

証明.

(イ) 定理 A.1.36 より

となるので \emptyset は関係である。またx,y,zを \mathcal{L} の任意の対象とすれば、定理A.1.34より

$$(x,y) \notin \emptyset$$

が成り立つので

$$((x,y) \notin \emptyset \lor (x,z) \notin \emptyset) \lor y = z$$

が成立する. 従って

$$(x, y) \in \emptyset \land (x, z) \in \emptyset \Longrightarrow y = z$$

が成立し、x,y,z の任意性より

$$\forall x, y, z \ ((x, y) \in \emptyset \land (x, z) \in \emptyset \Longrightarrow y = z)$$

が成り立つ. よって $sing(\emptyset)$ も満たされる.

(ロ) χ を \mathcal{L} の任意の対象とすれば

$$\chi\in\mathrm{dom}\left(\emptyset\right)\Longleftrightarrow\exists y\left(\left(\chi,y\right)\in\emptyset\right)$$

が成り立つので, 対偶を取れば

$$\chi \notin \text{dom}(\emptyset) \iff \forall y ((\chi, y) \notin \emptyset)$$

が従う. 定理 A.1.34 より

$$\forall y ((\chi, y) \notin \emptyset)$$

が満たされるので

$$\chi \notin \text{dom}(\emptyset)$$

が従い、 χ の任意性より

$$\forall x (x \notin \text{dom}(\emptyset))$$

が成立する. そして定理 A.1.33 より

$$\mathrm{dom}\,(\emptyset)=\emptyset$$

が得られる.

(二) 空虚な真により

$$\forall x, y, z \ ((x, z) \in \emptyset \land (y, z) \in \emptyset \Longrightarrow x = y)$$

が成り立つから ∅ は単射である.

定義 A.1.81 (空写像). ∅ を空写像 (empty mapping) とも呼ぶ.

定義 A.1.82 (合成). a,b を類とするとき, a と b の合成 (composition) を

$$a \circ b := \{x \mid \exists s, t \ (x = (s, t) \land \exists u \ ((s, u) \in a \land (u, t) \in b))\}$$

で定める.

A.1.7 順序数

院生「 $1,2,3,\cdots$ で表される数字は、集合論において

$$0 = \emptyset,$$

$$1 = \{0\} = \{\emptyset\},$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\},$$

$$3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\},$$

$$\vdots$$

で定められます.上の操作を受け継いで "頑張れば手で書き出せる" 類を自然数と呼びます. \emptyset は集合であり、対集合の公理がありますから 1 もまた集合です.そして和集合の公理を使えば 2 が集合であること,更には $3,4,\cdots$ と続く自然数が全て集合であることが判るでしょう.自然数の冪も自然数同士の集合演算もその結果は全て集合になり,我々はそのように素姓が明らかなもののみを集合として扱おうとしていたのです.しかし上の操作をいくら続けたところで "要素を数えられる" 集合しか作れません.上の帰納的な方法では "無限個の要素を持つ集合" は作れないのです.というわけで,有限と無限の隔たりを埋めるためには公理が要るでしょう.順序数とは自然数の拡張です.順序数の要素はまた順序数です.また順序数同士に対しては \in と \subseteq の概念が一致します.」

定理 A.1.83 (集合の帰納法). 次の (i)(ii) の主張は同値である:

(i) a を類とするとき

$$a \neq \emptyset \Longrightarrow \exists x \in a (x \cap a = \emptyset).$$

(ii) A を \mathcal{L}' の式,x を A に現れる文字,y,z を A に現れない文字とする.このとき,A に現れる文字で x の みが A で量化されていない場合

$$\forall x \ (\forall y \in x \ A(y) \Longrightarrow A(x)) \Longrightarrow \forall z A(z).$$

証明. A を \mathcal{L}' の式, x を A に現れる文字, y, z を A に現れない文字として, A に現れる文字で x のみが A で量化されていないとする. そして (i) の主張が正しいと仮定し

$$a := \{ x \mid \neg A(x) \}$$

とおく. いま (i) の主張より

$$a \neq \emptyset \Longrightarrow \exists x (x \in a \land x \cap a = \emptyset)$$

が満たされているが, 対偶を取れば

$$\forall x (x \notin a \lor x \cap a \neq \emptyset) \Longrightarrow a = \emptyset$$

が成り立つ. ここで

$$x \cap a \neq \emptyset \Longleftrightarrow \exists y \in x (y \in a),$$
$$(\exists y \in x (y \in a) \lor x \notin a) \Longleftrightarrow (\forall y \in x (y \notin a) \Longrightarrow x \notin a)$$

が成立することを使えば

$$\forall x (\forall y \in x (y \notin a) \Longrightarrow x \notin a) \Longrightarrow a = \emptyset$$

が成立する. ところで $\forall x (x \notin a \iff A(x))$ が満たされるので

$$\forall x \ (\forall y \in x \ A(y) \Longrightarrow A(x)) \Longrightarrow \forall z A(z).$$

を得る. 逆に (ii) が正しいと仮定する. a を類とすれば, (ii) の主張より

$$\forall x \ (\forall y \in x \ (y \notin a) \Longrightarrow x \notin a) \Longrightarrow \forall z \ (z \notin a)$$

が成立する. ここで対偶を取れば

$$\exists z (z \in a) \Longrightarrow \exists x (\forall y \in x (y \notin a) \land x \in a)$$

となり、 $a \neq \emptyset$ と $\exists z (z \in a)$ が同値であること、及び $x \cap a = \emptyset$ と $\forall y \in x (y \notin a)$ が同値であることと併せて

$$a \neq \emptyset \Longrightarrow \exists x \in a (x \cap a = \emptyset)$$

が従う.

公理 A.1.84 (正則性公理). a を類とするとき, a は空でなければ自分自身と交わらない要素を持つ:

$$a \neq \emptyset \Longrightarrow \exists x \in a (x \cap a = \emptyset).$$

院生「正則性公理は帰納法の公理とも呼ばれます. たしかに, 定理 A.1.83 を見れば正則性公理と同値な主張は数学的帰納法の究極の一般形となっていますね.」

推論法則 A.1.85 (論理和・論理積の結合律). A,B,C を \mathcal{L}' の閉式とするとき次が成り立つ:

- $(\mathcal{A}) \quad (A \vee B) \vee C \Longleftrightarrow A \vee (B \vee C).$
- $(\Box) \quad (A \land B) \land C \Longleftrightarrow A \land (B \land C).$

推論法則 A.1.86 (論理和・論理積の分配律). A,B,C を \mathcal{L}' の閉式とするとき次が成り立つ:

- $(\mathcal{A}) \quad (A \vee B) \wedge C \Longleftrightarrow (A \wedge C) \vee (B \wedge C).$
- $(\Box) \quad (A \land B) \lor C \Longleftrightarrow (A \lor C) \land (B \lor C).$

証明.

(イ) いま $(A \lor B) \land C$ が成立していると仮定する. このとき論理積の除去により $A \lor B \lor C$ が同時に成り立つ. ここで A が成り立っているとすれば、論理積の導入により

 $A \wedge C$

が成り立つので演繹法則より

 $A \Longrightarrow (A \land C)$

が成立する. 他方で論理和の導入より

 $(A \land C) \Longrightarrow (A \land C) \lor (B \land C)$

も成り立つので、含意の推移律から

 $A \Longrightarrow (A \land C) \lor (B \land C)$

が従う. A と B を入れ替えれば

 $B \Longrightarrow (B \land C) \lor (A \land C)$

が成り立つが, 論理和の可換律より

 $(B \land C) \lor (A \land C) \Longrightarrow (A \land C) \lor (B \land C)$

が成り立つので

 $B \Longrightarrow (A \land C) \lor (B \land C)$

が従う. よって場合分け法則から

 $(A \lor B) \Longrightarrow (A \land C) \lor (B \land C)$

が成立するが、いま $A \lor B$ は満たされているので三段論法より

 $(A \wedge C) \vee (B \wedge C)$

が成立する. ここに演繹法則を適用すれば

 $(A \lor B) \land C \Longrightarrow (A \land C) \lor (B \land C)$

が得られる.次に $A \land C$ が成り立っていると仮定する.このとき A が成り立つので $A \lor B$ も成立し、同時に C も成り立つので $(A \lor B) \land C$ が成立する.すなわち

 $A \wedge C \Longrightarrow (A \vee B) \wedge C$

が成立する. AとBを入れ替えれば

 $B \wedge C \Longrightarrow (A \vee B) \wedge C$

も成立するので

 $(A \land C) \lor (B \land C) \Longrightarrow (A \lor B) \land C$

が得られる.

(ロ) (イ) の結果を $\rightarrow A$, $\rightarrow B$, $\rightarrow C$ に適用すれば

$$(\neg A \lor \neg B) \land \neg C \Longleftrightarrow (\neg A \land \neg C) \lor (\neg B \land \neg C)$$

が得られる. ここで De Morgan の法則と同値記号の遺伝性質から

$$(\neg A \lor \neg B) \land \neg C \Longleftrightarrow \neg (A \land B) \land \neg C$$
$$\Longleftrightarrow \neg ((A \land B) \lor C)$$

が成立し,一方で

$$(\neg A \land \neg C) \lor (\neg B \land \neg C) \Longleftrightarrow \neg (A \lor C) \lor \neg (B \lor C)$$
$$\Longleftrightarrow \neg ((A \lor C) \land (B \lor C))$$

も成立するから、含意の推移律より

$$\rightarrow ((A \land B) \lor C) \Longleftrightarrow \rightarrow ((A \lor C) \land (B \lor C))$$

が従う. 最後に対偶を取れば

$$(A \land B) \lor C \Longleftrightarrow (A \lor C) \land (B \lor C)$$

が得られる.

推論法則 A.1.87 (選言三段論法). A,B,C を \mathcal{L}' の閉式とするとき次が成り立つ:

$$(A \lor B) \land \rightarrow B \Longrightarrow A.$$

証明. 分配律 (推論法則 A.1.86) より

$$(A \lor B) \land \neg B \Longrightarrow (A \land \neg B) \lor (B \land \neg B)$$

が成立する. ここで矛盾に関する規則から

$$B \land \neg B \Longrightarrow \bot$$

が満たされるので

$$(A \land \neg B) \lor (B \land \neg B) \Longrightarrow (A \land \neg B) \lor \bot$$

が従う. また, 論理積の除去より

$$(A \land \neg B) \Longrightarrow A$$

が成り立ち,他方で矛盾に関する規則より

$$\bot \Longrightarrow A$$

も成り立つから,場合分け法則より

$$(A \land \neg B) \lor \bot \Longrightarrow A$$

が従う. 以上の式と含意の推移律から

$$(A \lor B) \land \neg B \Longrightarrow A$$

が得られる.

定理 A.1.88 (いかなる類も自分自身を要素に持たない). a,b,c を類とするとき次が成り立つ:

- $(1) \quad a \notin a.$
- (\Box) $a \notin b \lor b \notin a$.
- ($\land \land$) $a \notin b \lor b \notin c \lor c \notin a$.

証明.

(1) a を類とする. まず類の公理の対偶より

$$\rightarrow$$
 set $(a) \Longrightarrow a \notin a$

が満たされる. 次にa が集合であるとする. このとき定理A.1.44 より

$$a \in \{a\}$$

が成り立つから, 正則性公理より

$$\exists x \; (\, x \in \{z\} \land x \cap \{a\} = \emptyset\,)$$

が従う. ここで $\chi := \varepsilon x \ (x \in \{a\} \land x \cap \{a\} = \emptyset)$ とおけば

$$\chi = a$$

となるので, 相等性の公理より

$$a \cap \{a\} = \emptyset$$

が成り立つ. $a \in \{a\}$ であるから定理 A.1.56 より $a \notin a$ が従い, 演繹法則から

$$\operatorname{set}\left(a\right)\Longrightarrow a\notin a$$

が得られる. そして場合分け法則から

$$\operatorname{set}(a) \lor \operatorname{set}(a) \Longrightarrow a \notin a$$

が成立し, 排中律と三段論法から

a ∉ a

が出る.

(ロ) 類の公理より

$$a \in b \Longrightarrow \operatorname{set}(a)$$

となり, 定理 A.1.44 より

$$\operatorname{set}\left(a\right)\Longrightarrow a\in\left\{ a,b\right\}$$

となるので,

$$a \in b \Longrightarrow a \in \{a, b\}$$

が成立する. また定理 A.1.56 より

$$a \in b \land a \in \{a, b\} \Longrightarrow \exists x \ (x \in b \land x \in \{a, b\})$$

$$\Longrightarrow b \cap \{a, b\} \neq \emptyset$$

が成立する. 他方で正則性公理より

$$a \in \{a, b\} \Longrightarrow \exists x \ (x \in \{a, b\})$$
$$\Longrightarrow \{a, b\} \neq \emptyset$$
$$\Longrightarrow \exists x \ (x \in \{a, b\} \land x \cap \{a, b\} = \emptyset)$$

も成立する. 以上を踏まえて $a \in b$ が成り立っていると仮定する. このとき

$$a \in \{a, b\}$$

が成立するので

$$b \cap \{a,b\} \neq \emptyset$$

も成り立ち、さらに

$$\exists x \ (x \in \{a,b\} \land x \cap \{a,b\} = \emptyset)$$

も満たされる. ここで

$$\chi \coloneqq \varepsilon x \ (x \in \{a, b\} \land x \cap \{a, b\} = \emptyset)$$

とおけば $\chi \in \{a,b\}$ から

$$\chi = a \lor \chi = b$$

が従うが, 相等性の公理より

$$\chi = b \Longrightarrow b \cap \{a, b\} = \emptyset$$

となるので、 $b \cap \{a,b\} \neq \emptyset$ と併せて

$$\chi \neq b$$

が成立する. 選言三段論法 (推論法則 A.1.87) より

$$(\chi = a \lor \chi = b) \land \chi \neq b \Longrightarrow \chi = a$$

となるから

 $\chi = a$

が従い, 相等性の公理より

 $a \cap \{a, b\} = \emptyset$

が成立する. いま類の公理より

 \rightarrow set $(b) \Longrightarrow b \notin a$

が満たされ,他方で定理 A.1.44 より

 $\operatorname{set}(b) \Longrightarrow b \in \{a,b\},$

 $a \cap \{a,b\}$ の仮定と定理 A.1.56 より

 $b \in \{a, b\} = \emptyset \Longrightarrow b \notin a$

が満たされるので

 $\operatorname{set}(b) \Longrightarrow b \notin a$

が成立する. 従って

 $b \notin a$

が従い, 演繹法則より

 $a \in b \Longrightarrow b \notin a$

が得られる. これは $a \notin b \lor b \notin a$ と同値である.

(ハ) $a \in b \land b \in c$ が満たされていると仮定すれば, a,b は集合であるから

 $a,b\in\{a,b,c\}$

が成立する. ゆえに $b \cap \{a,b,c\} \neq \emptyset$ と $c \cap \{a,b,c\} \neq \emptyset$ が従う. 他方, 正則性公理より

$$\tau \in \{a, b, c\} \land \tau \cap \{a, b, c\} = \emptyset$$

を満たす \mathcal{L} の対象 τ が取れる. ここで $\tau \in \{a,b,c\}$ より

$$\tau = a \vee \tau = b \vee \tau = a$$

が成り立つが、 $b \cap \{a,b,c\} \neq \emptyset$ と $c \cap \{a,b,c\} \neq \emptyset$ より $\tau \neq b$ かつ $\tau \neq c$ となる. よって $\tau = a$ となり

$$a \cap \{a, b, c\} = \emptyset$$

が従う. c が真類ならば類の公理より $c \notin a$ となり, c が集合ならば $c \in \{a,b,c\}$ となるので, いずれにせよ

 $c \notin a$

が成立する. 以上で

 $a \in b \land b \in c \Longrightarrow c \notin a$

が得られる.

院生「**V** ∉ **V** が成り立ちますから宇宙は集合ではないのですね.」

定義 A.1.89 (類の差). a,b を類するとき,a に属するが b には属さない集合の全体を a から b を引いた差類 (class difference) と呼び,これを $a \setminus b$ と書いて

$$a \backslash b := \{ x \mid x \in a \land x \notin b \}$$

で定める. 特に $a \setminus b$ が集合であるときこれを**差集合 (set difference)** と呼ぶ. また $b \subset a$ が満たされている場合, $a \setminus b$ を a から b を引いた固有差と呼ぶ.

 $set(a) \Longrightarrow set(a \backslash b)$

定義 A.1.90 (順序数). 類 a に対して

$$\operatorname{Tran}(a) \stackrel{\operatorname{def}}{\Longleftrightarrow} \forall s \, (s \in a \Longrightarrow s \subset a)$$

で $\operatorname{Tran}(a)$ を定め、 $\operatorname{Tran}(a)$ を満たす類 a を推移的類 (transitive class) と呼ぶ. また類 a に対して

$$\operatorname{Ord}(a) \stackrel{\operatorname{def}}{\Longleftrightarrow} \operatorname{Tran}(a) \wedge \forall t, u \in a \, (\, t \in u \vee t = u \vee u \in t \,)$$

により Ord(a) を定め,

$$ON := \{ x \mid Ord(x) \}$$

とおく. ON の要素を順序数 (ordinal number) と呼ぶ.

空虚な真の一例であるが、例えば 0 は順序数の性質を満たす。ここに一つの順序数が得られたが、いま仮に α を順序数とすれば

$$\alpha \cup \{\alpha\}$$

もまた順序数となることが直ちに判明する(実は

$$\forall \alpha \ (\alpha \in ON \iff \alpha \cup \{\alpha\} \in ON)$$

が成立するが, 証明は後述する). 数字の定め方から

$$1 = 0 \cup \{0\},\$$

$$2 = 1 \cup \{1\},\$$

$$3 = 2 \cup \{2\},\$$

$$\vdots$$

が成り立つから、数字は全て順序数である.以下、順序数の性質を列挙するが、長いので主張だけ先に述べておく.

- ON は推移的類である.
- $R := \{x \mid \exists \alpha, \beta \in ON(x = (\alpha, \beta) \land (\alpha \in \beta \lor \alpha = \beta))\}$ とおくと R は ON において整列順序となる.
- $a \subset ON$ かつ $a \in V$ なら、 $\bigcup a$ は a の順序 R に関する上限となる.

• ON は集合ではない.

定理 A.1.91. S を類とするとき

$$\operatorname{ord}\left(S\right)\Longrightarrow S\subset\operatorname{ON}.$$

 $S \in ON$ ならば ord (S) が成り立つので $S \subset ON$ となる. 従って ON は推移的類である.

定理 A.1.92 (順序数全体は推移的). tran (ON) が成立する.

証明. α を任意に選ばれた順序数とする. $\alpha = \emptyset$ ならば空虚な真により

$$\alpha \subset ON$$

が成り立つ. $\alpha \neq \emptyset$ の場合, α の任意の要素 x が順序数であることを示す. まず α は推移的であるから

$$x \subset \alpha$$

となり

$$\forall y, z \in x \ (y \in z \lor y = z \lor z \in y)$$

が成り立つ. また $\alpha \subset \mathbf{V}$ より $x \in \mathbf{V}$ も成り立つ. 最後に

Tran(x)

が成り立つことを示す. これは

$$\forall y, z \ (z \in y \land y \in x \Longrightarrow z \in x) \tag{A.10}$$

が成り立つことを示せばよい. いま y,z を任意に与えられた集合として

$$z \in y \land y \in x$$

が成り立っていると仮定すると, α の推移性より $z \in \alpha$ となるから

 $z \in x \vee z = x \vee x \in z$

が従う. ところで定理 A.1.88 より

$$z \in y \Longrightarrow y \notin z$$

が成り立つから、 $z \in y$ の仮定と併せて $y \notin z$ が従う. さらに

$$y \notin z \Longrightarrow z \neq x \lor y \notin x$$

が成り立つので $z \neq x \lor y \notin x$ も従う. $y \in x$ も仮定しているから $(z \neq x \lor y \notin x) \land y \in x$ も成り立ち,

$$(z \neq x \lor y \notin x) \land y \in x \Longrightarrow z \neq x$$

と併せて $z \neq x$ が満たされる. 他方で、同じく定理 A.1.88 より

$$z \in y \land y \in x \Longrightarrow x \notin z$$

が成立する. ゆえにいま

 $z \neq x \land x \notin z$

が成り立っているが、これは $\rightarrow (z = x \lor x \in z)$ と同値であり、かつ

$$(z \in x \lor z = x \lor x \in z) \land \rightarrow (z = x \lor x \in z) \Longrightarrow z \in x$$

が成り立つので $z \in x$ を得る. 以上より (A.10) が得られた.

定理 A.1.93 (ON において ∈ と ⊊ は同義). 次が成立する:

$$\forall \alpha, \beta \in ON (\alpha \in \beta \iff \alpha \subseteq \beta).$$

証明. α , β を任意に与えられた順序数とする. $\alpha \in \beta$ が成り立っているとすれば, β の推移性より

$$\alpha \subset \beta$$

が成り立つ. 同時に定理 A.1.88 より $\alpha \neq \beta$ となるから

$$\alpha \in \beta \Longrightarrow \alpha \subsetneq \beta$$

が成立する. 逆に $\alpha \subseteq \beta$ が成り立っているとすれば, 正則性公理より $\beta \setminus \alpha$ の或る要素 γ が

$$\gamma \cap (\beta \backslash \alpha) = \emptyset$$

を満たす. このとき $\alpha = \gamma$ が成り立つことを示す. x を α の任意の要素とすれば, x, γ は共に β に属するから

$$x \in \gamma \lor x = \gamma \lor \gamma \in x \tag{A.11}$$

が成り立つ. ところで相等性公理と α の推移性から

$$x = \gamma \land x \in \alpha \Longrightarrow \gamma \in \alpha,$$
$$\gamma \in x \land x \in \alpha \Longrightarrow \gamma \in \alpha$$

となるから,対偶を取れば

$$\gamma \notin \alpha \Longrightarrow x \neq \gamma \lor x \notin \alpha,$$
$$\gamma \notin \alpha \Longrightarrow \gamma \notin x \lor x \notin \alpha,$$

が従う. いま $\gamma \notin \alpha$ と $x \in \alpha$ が成り立っているので $x \neq \gamma$ と $\gamma \notin x$ が共に成立し, (A.11) と併せて

$$x \in \gamma$$

が出るから $\alpha \subset \gamma$ を得る. 逆に γ に任意の要素 x は

$$x \in \beta \land x \notin \beta \backslash \alpha$$

を満たすから、すなわち $x \in \beta \land (x \notin \beta \lor x \in \alpha)$ が満たされる。 ゆえに $x \in \alpha$ が成り立つから

$$\gamma \subset \alpha$$

を得る. 以上より $\gamma = \alpha$ となり、 γ は β の要素であるから α も β の要素となる. これで

$$\alpha \subseteq \beta \Longrightarrow \alpha \in \beta$$

も得られた.

定理 A.1.94 (ON の整列性).

$$R = \left\{ x \mid \exists \alpha, \beta \in \text{ON} \left(x = (\alpha, \beta) \land \left(\alpha \in \beta \lor \alpha = \beta \right) \right) \right\}$$

により R を定めると、R は ON 上の整列順序となる.

証明.

第一段 R が ON 上の順序関係であることを示す. 実際, 定理 A.1.93 より

$$R = \{ x \mid \exists \alpha, \beta \in ON (x = (\alpha, \beta) \land \alpha \subset \beta) \}$$

が成り立ち,かつ

$$\forall \alpha \in \mathrm{ON} \ (\ \alpha \subset \alpha \),$$

$$\forall \alpha, \beta \in \mathrm{ON} \ (\ \alpha \subset \beta \land \beta \subset \alpha \Longrightarrow \alpha = \beta \),$$

$$\forall \alpha, \beta, \gamma \in \mathrm{ON} \ (\ \alpha \subset \beta \land \beta \subset \gamma \Longrightarrow \alpha \subset \gamma \)$$

も成り立つから R は ON 上の順序である.

第二段 R が全順序であることを示す. つまり,

$$\forall \alpha, \beta \in ON (\alpha \in \beta \lor \alpha = \beta \lor \beta \in \alpha)$$
 (A.12)

が成り立つことを示す. いま α と β を任意に与えられた順序数とすれば, $\alpha \cap \beta$ もまた順序数となる. 定理 A.1.88 より $\alpha \cap \beta \notin \alpha \cap \beta$ となるから

$$\alpha \cap \beta \notin \alpha \vee \alpha \cap \beta \notin \beta$$

が成立する. いま $\alpha \cap \beta \subset \alpha$ は満たされているので定理 A.1.93 より

$$\alpha \cap \beta \in \alpha \vee \alpha \cap \beta = \alpha$$

が成立する. また $\alpha \cap \beta = \alpha \Longrightarrow \alpha \subset \beta$ となるから

$$\alpha \cap \beta \notin \alpha \Longrightarrow \alpha \subset \beta$$

を得る. 同様にして

$$\alpha \cap \beta \notin \beta \Longrightarrow \beta \subset \alpha$$

も得られ,場合分け法則より

$$\alpha \subset \beta \vee \beta \subset \alpha$$

が成立する. 定理 A.1.93 よりこれは

$$\alpha \in \beta \vee \alpha = \beta \vee \beta \in \alpha$$

と同値であるから (A.12) が成り立つ.

第三段 R が整列順序であることを示す。a を ON の空でない部分集合とするとき,正則性公理より a の或る要素 x が

$$x \cap a = \emptyset$$

を満たすが、このxがaの最小限である。実際、aの任意の要素yに対して前段の結果より

$$x \in y \lor x = y \lor y \in x$$

となるが、一方で $y \notin x$ も満たされるから

$$x \in y \lor x = y$$

が成り立つ. よって

$$\forall y \in a \; (\; (x,y) \in R \;)$$

が成立する.

順序数 α , β に対し、 $\alpha \in \beta$ であることを $\alpha < \beta$ と書き、 $\alpha \in \beta \lor \alpha = \beta$ であることを $\alpha \leq \beta$ と書く. すなわち

$$\alpha \leq \beta \iff (\alpha, \beta) \in R$$

が成り立つ. ただし R は定理 A.1.94 の順序 R である.

定理 A.1.95 (ON の部分集合は、その合併が上限となる).

$$\forall a \; (\; a \subset \mathrm{ON} \land a \in \mathbf{V} \Longrightarrow \bigcup a \in \mathrm{ON} \;).$$

証明. 和集合の公理より $\bigcup a \in \mathbf{V}$ となる. また順序数の推移性より $\bigcup a$ の任意の要素は順序数であるから、定理 A.1.94 より

$$\forall x,y \in \bigcup a \; (\; x \in y \lor x = y \lor y \in x \;)$$

も成り立つ. 最後に $\operatorname{Tran}(\bigcup a)$ が成り立つことを示す. b を $\bigcup a$ の任意の要素とすれば, a の或る要素 x に対して

$$b \in x$$

となるが、x の推移性より $b \subset x$ となり、 $x \subset \bigcup a$ と併せて

$$b \subset \bigcup a$$

が従う.

定理 A.1.96 (Burali-Forti). ON は集合ではない.

証明. aを類とするとき

$$\operatorname{ord}(a) \Longrightarrow (\operatorname{set}(a) \Longrightarrow a \in \operatorname{ON})$$
 (A.13)

が成り立つことを示す. いま $\operatorname{ord}(a)$ と $\operatorname{set}(a)$ が成立していると仮定する. このとき $\exists x \, (a=x)$ が成立するので

$$\tau := \varepsilon x (a = x)$$

とおけば $a = \tau$ となり、相等性の公理より

 $\operatorname{ord}(\tau)$

が成立する. ここで類の公理より

$$\operatorname{ord}(\tau) \Longleftrightarrow \tau \in \operatorname{ON}$$

が成り立つので $\tau \in ON$ が従い、再び相等性の公理から

 $a \in ON$

が成立する. 以上で式 (A.13) が得られた. ON は ord (ON) も ON ∉ ON (定理 A.1.88) も満たすので

$$\rightarrow$$
 set (ON)

が成立する.

定理 A.1.97 (順序数は自分自身との合併が後者となる).

(1) α が順序数であるということと $\alpha \cup \{\alpha\}$ が順序数であるということは同値である.

$$\forall \alpha \ (\alpha \in ON \iff \alpha \cup \{\alpha\} \in ON).$$

(2) α を順序数とすれば、ON において $\alpha \cup \{\alpha\}$ は α の後者である:

$$\forall \alpha \in ON \ (\forall \beta \in ON \ (\alpha < \beta \Longrightarrow \alpha \cup \{\alpha\} \le \beta)).$$

定義 A.1.98 (極限数). \emptyset でなく,またいずれの順序数の後者でもない順序数を極限数 (limit ordinal) と呼ぶ.類 α が極限数であるということを式で表せば

$$\alpha \in ON \land \alpha \neq \emptyset \land \forall \beta \in ON (\alpha \neq \beta \cup \{\beta\})$$

となるが、この α についての式を $\lim(\alpha)$ と略記する.

院生「ところで極限数は存在するものなのでしょうか. 残念ながら現時点では極限数の存在は保証されません. では次の無限公理を導入してみるとどうなるでしょうか.」

公理 A.1.99 (無限公理). 空集合を要素に持ち、かつ任意の要素の後者について閉じている集合が存在する:

 $\exists x \in V \; (\; \emptyset \in x \land \forall y \; (\; y \in x \Longrightarrow y \cup \{y\} \in x \;)\;).$

定理 A.1.100 (極限数は存在する).

 $\exists \alpha \in ON (\lim(\alpha)).$

証明. a を無限集合として $b=a\cap ON$ とおくとき, $\bigcup b$ が極限数となることを示す。 $\alpha\in\bigcup b$ なら或る集合 x が $x\in b\wedge \alpha\in x$ を満たす。このとき $\alpha\cup\{\alpha\}\in x$ または $\alpha\cup\{\alpha\}=x$ となるが,前者の場合は $\alpha\cup\{\alpha\}\in\bigcup b$,後者の 場合は $\alpha\cup\{\alpha\}\in x\cup\{x\}$ および $x\cup\{x\}\in a$ かつ $x\cup\{x\}\in ON$ より $x\cup\{x\}\in b$,ゆえに $\alpha\cup\{\alpha\}\in\bigcup b$,従って $Tran(\bigcup b)$ が成立.

院生「無限公理から極限数の存在が示されましたが、無限公理の代わりに極限数の存在を公理に採用しても無限公理の主張は導かれます。すなわち無限公理の主張と極限数が存在するという主張は同値なのです。本稿の流れでは極限数の存在を公理とした方が自然に感じられますね。しかし無限公理の方が主張が簡単ですし、他の書物ではこちらを公理としているようです。」

定義 A.1.101 (自然数). ON の整列性より,

 $\{x \mid \lim(x)\}$

の中で最小の順序数が存在するが, それを

ω

と書く. 自然数 (natural number) とは ω の要素の呼び名である.

院生「 ω とは最小の極限数ですから、その要素である自然数はどれも極限数ではありません。従って \emptyset を除く自然数は必ずいずれかの自然数の後者となっているのですね.」

定理 A.1.102 (超限帰納法). A を \mathcal{L}' の式, α を A に現れる文字, β を A に現れない文字とする. このとき, A に現れる文字で α のみが A で量化されていない場合, 次が成り立つ:

 $\forall \alpha \in ON \ (\forall \beta \in \alpha \ A(\beta) \Longrightarrow A(\alpha)) \Longrightarrow \forall \alpha \in ON \ A(\alpha).$

証明. 正則性公理と定理 A.1.83 より

 $\forall \alpha \ (\forall \beta \in \alpha \ (\beta \in ON \Longrightarrow A(\beta)) \Longrightarrow (\alpha \in ON \Longrightarrow A(\alpha))) \Longrightarrow \forall \alpha \ (\alpha \in ON \Longrightarrow A(\alpha))$

が成り立つ. このとき α を \mathcal{L} の任意の対象とすれば,

$$\forall \beta \in \alpha \ (\beta \in \text{ON} \Longrightarrow A(\beta)) \Longrightarrow (\alpha \in \text{ON} \Longrightarrow A(\alpha)),$$

$$\forall \beta \in \alpha \ (\beta \in \text{ON} \Longrightarrow A(\beta)) \land \alpha \in \text{ON} \Longrightarrow A(\alpha)$$

は同値であり、他方で順序数の要素は順序数である (定理 A.1.92) から

$$\forall \beta \in \alpha \ (\beta \in ON \Longrightarrow A(\beta)) \land \alpha \in ON,$$

 $\alpha \in ON \land \forall \beta \in \alpha \ A(\beta)$

も同値である. 従って

$$\alpha \in ON \land \forall \beta \in \alpha \ A(\beta) \Longrightarrow A(\alpha)$$

が成り立ち、またこれは

$$\alpha \in ON \Longrightarrow (\forall \beta \in \alpha \ A(\beta) \Longrightarrow A(\alpha))$$

と同値である. α の任意性より

$$\forall \alpha \in ON \ (\forall \beta \in \alpha \ A(\beta) \Longrightarrow A(\alpha)) \Longrightarrow \forall \alpha \in ON \ A(\alpha).$$

が得られる.

定理 A.1.103 (ω は最小の無限集合). ω は次の意味で最小の無限集合である:

$$\forall a \ (\emptyset \in a \land \forall x \ (x \in a \Longrightarrow x \cup \{x\} \in a) \Longrightarrow \omega \subset a).$$

証明. 超限帰納法で示す. いまaを

$$\emptyset \in a \land \forall x \ (x \in a \Longrightarrow x \cup \{x\} \in a)$$

を満たす類とし、また α を任意に与えられた順序数とする. $\alpha = \emptyset$ の場合は $\emptyset \in a$ より

$$\emptyset \in \omega \Longrightarrow \emptyset \in a$$

が成立する. $\alpha \neq \emptyset$ の場合, α の任意の要素 β に対して

$$\beta \in \omega \Longrightarrow \beta \in a$$

が成り立つと仮定する. このとき, $\alpha \in \omega$ なら α は極限数でないから $\alpha = \beta \cup \{\beta\}$ を満たす順序数 β が取れて, 仮定より $\beta \in a$ となり $\alpha \in a$ が従う. 以上で

$$\forall \alpha \in ON \ (\forall \beta \in \alpha \ (\beta \in \omega \Longrightarrow \beta \in a) \Longrightarrow (\alpha \in \omega \Longrightarrow \alpha \in a))$$

が得られた. 超限帰納法により

$$\forall \alpha \in ON (\alpha \in \omega \Longrightarrow \alpha \in a)$$

となるから $\omega \subset a$ が出る.

院生「定理 A.1.103 で示された ω の性質は数学的帰納法の原理 (the principle of mathematical induction) と呼ばれます。 高校数学だとドミノ倒しに喩えられる数学的帰納法ですが, なぜ数学的帰納法による証明が 正しいのか簡単に説明いたしましょう。」

A.1.8 再帰的定義

定理 A.1.104 (超限帰納法による写像の構成). 類 G を V 上の写像とするとき,

$$\forall \alpha \in \text{ON} (F(\alpha) = G(F|_{\alpha}))$$

を満たす ON 上の写像 F が唯一つ存在する.

証明.

第一段 与えられた $G:V\longrightarrow V$ に対して

$$K = \{ f \mid \exists \alpha \in ON \ (f : \alpha \longrightarrow V \land \forall \beta \in \alpha \ (f(\beta) = G(f|\beta))) \}$$

で K を定めるとき、 $F = \bigcup K$ が求める写像である.

第二段 F が写像であることを示す. まず K の任意の要素は $V \times V$ の部分集合であるから

$$F \subset V \times V$$

となる. x,y,z を任意の集合とする. $(x,y) \in F$ かつ $(x,z) \in F$ のとき、K の或る要素 f と g が存在して

$$(x, y) \in f \land (x, z) \in g$$

を満たすが、ここで f(x) = g(x) となることを言うために、 $\alpha = \text{dom}(f)$ 、 $\beta = \text{dom}(g)$ とおき、

$$\forall \gamma \in \text{ON} (\gamma \in \alpha \land \gamma \in \beta \Longrightarrow f(\gamma) = g(\gamma))$$
 (A.14)

が成り立つことを示す. いま γ を任意の順序数とする. $\gamma=\emptyset$ の場合は $f|_{\gamma}=\emptyset$ かつ $g|_{\gamma}=\emptyset$ となるから

$$f(\gamma) = G(\emptyset) = g(\gamma)$$

が成立する. $\gamma \neq \emptyset$ の場合は

$$\forall \xi \in \gamma \ (\xi \in \alpha \land \xi \in \beta \Longrightarrow f(\xi) = g(\xi))$$

が成り立っていると仮定する. このとき $\gamma \in \alpha \land \gamma \in \beta$ ならば順序数の推移性より γ の任意の要素 ξ は $\xi \in \alpha \land \xi \in \beta$ を満たすから

$$\forall \xi \in \gamma \ (f(\xi) = g(\xi))$$

が成立する. 従って

$$f|_{\gamma} = g|_{\gamma}$$

が成立するので $f(\gamma) = g(\gamma)$ が得られる. 超限帰納法より (A.14) が得られる. 以上より

$$y = f(x) = g(x) = z$$

第三段 $dom(F) \subset ON$ が成り立つことを示す. 実際

$$dom(F) = \bigcup_{f \in K} dom(f)$$

かつ $\forall f \in K (\text{dom}(f) \subset \text{ON})$ だから $\text{dom}(F) \subset \text{ON}$ となる.

第四段 $\operatorname{Tran}(\operatorname{dom}(F))$ であることを示す。実際任意の集合 x,y について

$$y \in x \land x \in dom(F)$$

が成り立っているとき、或る $f \in K$ で $x \in \text{dom}(f)$ となり、dom(f) は順序数なので、順序数の推移律から

$$y \in dom(f)$$

が従う. ゆえに $y \in \text{dom}(F)$ となる.

第五段 $\forall \alpha \in \text{dom}(F)$ ($F(\alpha) = G(F|_{\alpha})$) が成り立つことを示す.実際, $\alpha \in \text{dom}(F)$ なら K の或る要素 f に対して $\alpha \in \text{dom}(f)$ となるが, $f \subset F$ であるから

$$f(\alpha) = F(\alpha)$$

が成り立つ. これにより $f|_{\alpha} = f \cap (\alpha \times V) = F \cap (\alpha \times V) = F|_{\alpha}$ より

$$G(f|_{\alpha}) = G(F|_{\alpha})$$

も成り立つ. $f(\alpha) = G(f|_{\alpha})$ と併せて $F(\alpha) = G(F|_{\alpha})$ を得る.

第六段 α を任意の順序数として $\forall \beta \in \alpha \ (\beta \in \mathrm{dom}(F)) \Longrightarrow \alpha \in \mathrm{dom}(F)$ が成り立つことを示す. $\alpha = \emptyset$ の場合は

$$\forall f \in K \ (\operatorname{dom}(f) \neq \emptyset \Longrightarrow \emptyset \in \operatorname{dom}(f) \)$$

が満たされるので $\alpha \in \text{dom}(F)$ となる (定理??). $\alpha \neq \emptyset$ の場合,

$$\forall \beta \in \alpha \ (\beta \in \text{dom}(F))$$

が成り立っているとして $f = F|_{\alpha}$ とおけば、f は α 上の写像であり、 α の任意の要素 β に対して

$$f(\beta) = F|_{\alpha}(\beta) = F(\beta) = G(F|_{\beta}) = G(f|_{\beta})$$

を満たすから $f \in K$ である. このとき $f' = f \cup \{(\alpha, G(f))\}$ も K に属するので

$$\alpha \in \text{dom}(f') \subset \text{dom}(F)$$

が成立する. 超限帰納法より

$$\forall \alpha \in ON (\alpha \in dom(F))$$

が成立し, 前段の結果と併せて

$$ON = dom(F)$$

を得る.

第七段 F の一意性を示す. 類 H が

$$H: \mathrm{ON} \longrightarrow V \wedge \forall \alpha \in \mathrm{ON} \ (\ H(\alpha) = G(H|_{\alpha}) \)$$

を満たすとき、F = H が成り立つことを示す. いま、 α を任意に与えられた順序数とする. $\alpha = \emptyset$ の場合は

$$F|_{\emptyset} = \emptyset = H|_{\emptyset}$$

より $F(\emptyset) = H(\emptyset)$ となる. $\alpha \neq \emptyset$ の場合,

$$\forall \beta \in \alpha \ (F(\beta) = H(\beta))$$

が成り立っていると仮定すれば

$$F|_{\alpha} = H|_{\alpha}$$

が成り立つから $F(\alpha) = H(\alpha)$ となる. 以上で

$$\forall \alpha \in \mathrm{ON} \ \left(\ \forall \beta \in \alpha \ (\ F(\beta) = H(\beta) \ \right) \Longrightarrow F(\alpha) = H(\alpha) \ \right)$$

が得られた. 超限帰納法より

$$\forall \alpha \in ON (F(\alpha) = H(\alpha))$$

が従いF = Hが出る.

A.1.9 整礎集合

いま **V** 上の写像 *G* を

$$G(x) = \begin{cases} \emptyset & (\operatorname{dom}(x) = \emptyset) \\ x(\beta) \cup \operatorname{P}(x(\beta)) & (\exists \beta \in \operatorname{ON} \left(\operatorname{dom}(x) = \beta \cup \{\beta\} \right) \right) \\ \bigcup \operatorname{ran}(x) & \text{o.w.} \end{cases}$$

で定めると、定理 A.1.104 より

$$\forall \alpha \in \mathrm{ON} \; (\; R(\alpha) = G(R|_{\alpha}) \;)$$

を満たす ON 上の写像 R が唯一つ存在する. 以降しばらくはこの R が考察対象となる.

定理 A.1.105.

$$\forall \alpha \in ON \ (R(\alpha + 1) = P(R(\alpha)))$$

証明.

第一段 $R(\alpha+1) = R(\alpha) \cup P(R(\alpha))$ となることを示す.

第二段 α を任意に与えられた空でない順序数とするとき、

$$\forall \beta \in \alpha \ (R(\beta + 1) \subset P(R(\beta))) \Longrightarrow R(\alpha + 1) \subset P(R(\alpha))$$

が成り立つことを示す. いま

$$\forall \beta \in \alpha \ \left(R(\beta + 1) \subset P(R(\beta)) \right) \tag{A.15}$$

が成り立つと仮定する. x を $R(\alpha+1)$ の任意の要素とすれば, 前段の結果より

$$x \in R(\alpha) \lor x \subset R(\alpha)$$

となる. $x \in R(\alpha)$ であるとき、 α の或る要素 β に対し $x \in R(\beta)$ となる。前段の結果より $x \in R(\beta+1)$ となり、(A.15) より $x \in R(\beta)$ となるが、

$$x \subset R(\beta) \Longrightarrow x \subset R(\alpha),$$

 $x \subset R(\alpha) \Longrightarrow x \in P(R(\alpha))$

と併せて $x \in P(R(\alpha))$ が成り立つ. 一方で $x \in R(\alpha)$ であるときも $x \in P(R(\alpha))$ となるから

$$R(\alpha + 1) \subset P(R(\alpha))$$

が従う. 超限帰納法より定理の主張が得られる.

定義 A.1.106 (整礎集合). $\bigcup_{\alpha \in ON} R(\alpha)$ の要素を整礎集合 (well-founded set) と呼ぶ.

定理 A.1.107 (すべての集合は整礎的である). 次は定理である:

$$\mathbf{V} = \bigcup_{\alpha \in \mathrm{ON}} R(\alpha).$$

証明. いま, S を ON の空でない部分集合として

$$V \neq \bigcup_{\alpha \in S} R(\alpha) \Longrightarrow S \neq \mathrm{ON}$$

が成り立つことを示す. $V \neq \bigcup_{\alpha \in S} R(\alpha)$ であれば正則性公理より或る集合 a が存在して

$$a\in V\backslash\bigcup_{\alpha\in S}R(\alpha)\wedge a\cap V\backslash\bigcup_{\alpha\in S}R(\alpha)=\emptyset$$

を満たす. このとき

$$a\in\bigcup_{\alpha\in S}R(\alpha)\wedge a\subset\bigcup_{\alpha\in S}R(\alpha)$$

となる. ここで

$$f = \left\{ \left. x \mid \quad \exists s \in a \; (\; x = (s, \mu \alpha (s \in R(\alpha))) \;) \right. \right\}$$

と定めれば $f: a \longrightarrow ON$ が成り立つ. $\beta = \bigcup f(a)$ とおけば β は ON に属する. このとき

$$\forall t \ (t \in a \Longrightarrow t \in R(f(t)) \Longrightarrow t \in R(\beta))$$

となるから $a \subset R(\beta)$, そして定理 A.1.105 より $a \in R(\beta + 1)$ が従う.

$$\forall \alpha \in S \ (a \notin R(\alpha))$$

であったから $\beta+1 \notin S$ であり、ゆえに $S \neq ON$ となる.定理の主張は対偶を取れば得られる.

院生「

$$\mathbf{V} = \bigcup_{\alpha \in \mathrm{ON}} R(\alpha)$$

という美しい式は偶然得られた訳ではありません。John Von Neumann はこの結果を予定して正則性公理を導入したのです。さて、超限帰納法による写像の構成を応用して次は順序数の足し算と掛け算を定義しましょう。」

定理 A.1.108 (順序数の加法). α を ON から任意に選ばれた順序数として、 \mathbf{V} 上の写像 G_{α} を

$$G_{\alpha}(x) = \begin{cases} \alpha & (\operatorname{dom}(x) = \emptyset) \\ x(\beta) \cup \{x(\beta)\} & (\exists \beta \in \operatorname{ON} (\operatorname{dom}(x) = \beta \cup \{\beta\})) \\ \bigcup \operatorname{ran}(x) & \text{o.w.} \end{cases}$$

で定めるとき, 定理 A.1.104 より

$$\forall \beta \in \text{ON}\left(A_{\alpha}(\beta) = G_{\alpha}(A_{\alpha}|_{\beta})\right)$$

を満たす ON 上の写像 A_{α} が唯一つ存在する. ここで

$$\alpha + \beta = A_{\alpha}(\beta)$$

と書くと,次が成立する:

- $\forall \alpha, \alpha' \in ON \ (\alpha = \alpha' \Longrightarrow A_{\alpha} = A_{\alpha'}).$
- $\forall \beta \in ON (\alpha + \beta \in ON)$.
- $\alpha \in \omega$ のとき、 $\forall \beta \in \omega (\alpha + \beta \in \omega)$.

証明. いま β を任意に与えられた順序数とする. このとき,

$$\forall \gamma \in \beta \ (\alpha + \gamma \in ON)$$

が成り立っていると仮定すると、 $\beta = \gamma + 1$ と表せるとき

$$\alpha + \beta = G_{\alpha}(F_{\alpha}|_{\beta}) = F_{\alpha}(\gamma) + 1 = (\alpha + \gamma) + 1 \in ON$$

となり、 β が極限数のときは

$$\alpha + \beta = \sup_{\gamma \in \beta} (\alpha + \gamma) = \bigcup \left\{ \alpha + \gamma \mid \gamma \in \beta \right\} \in \text{ON}$$

となるので,

$$\forall \beta \in ON \ (\forall \gamma \in \beta \ (\alpha + \gamma \in ON) \Longrightarrow \alpha + \beta \in ON)$$

が得られた. 超限帰納法により

$$\forall \beta \in \text{ON} (\alpha + \beta \in \text{ON})$$

が成立する. また $\alpha \in \omega$ のとき,

$$a = \left\{ \beta \in \omega \mid \alpha + \beta \in \omega \right\}$$

とおけば

$$\emptyset \in a \land \forall x \ (\ x \in a \Longrightarrow x \cup \{x\} \in a\)$$

となるので $\omega \subset a$ が従う. よって

$$\forall \beta \in \omega \ (\alpha + \beta \in \omega)$$

も成り立つ.

定理 A.1.109 (加法の性質). 定理 A.1.108 で定めた加法は以下の性質を持つ:

- $\forall \alpha \in ON (\alpha + 0 = 0 + \alpha = \alpha)$,
- $\forall \alpha \in ON (\alpha + 1 = \alpha \cup \{\alpha\}),$
- $\forall \alpha, \beta, \gamma \in ON((\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)),$
- $\forall \alpha, \beta \in \omega \ (\alpha + \beta = \beta + \alpha)$,
- $\forall \alpha, \beta, \gamma \in ON (\beta \in \gamma \Longrightarrow \alpha + \beta \in \alpha + \gamma),$
- $\forall \alpha, \beta \in \beta \ (\alpha \in \beta \Longrightarrow \exists \gamma \in ON \ (\alpha + \gamma = \beta)).$

定理 A.1.110 (順序数の乗法). α を ON から任意に選ばれた順序数として、 \mathbf{V} 上の写像 G_{α} を

$$G_{\alpha}(x) = \begin{cases} 0 & (\operatorname{dom}(x) = \emptyset) \\ x(\beta) + \alpha & (\exists \beta \in \operatorname{ON} (\operatorname{dom}(x) = \beta \cup \{\beta\})) \\ \bigcup \operatorname{ran}(x) & \text{o.w.} \end{cases}$$

で定めるとき, 定理 A.1.104 より

$$\forall \beta \in \text{ON} (M_{\alpha}(\beta) = G_{\alpha}(M_{\alpha}|_{\beta}))$$

を満たす ON 上の写像 M_{α} が唯一つ存在する. ここで

$$\alpha \cdot \beta = M_{\alpha}(\beta)$$

と書くと、次が成立する:

- $\forall \beta \in ON (\alpha \cdot \beta \in ON)$.
- $\alpha \in \omega$ のとき、 $\forall \beta \in \omega \ (\alpha \cdot \beta \in \omega)$.

A.2 数

A.2.1 数の構成の一時的なメモ置き場

流れを把握していても思うように書けるとは限らない。満足いく体裁で書けるまで整理のためにメモだけ置いておく、 \mathcal{L}' の文法等にはこだわらず大雑把に、幾分か雑。

商集合の算法

商集合に対して、割る前の集合上の算法と整合的な算法を定義する. A を集合とし、 σ を A 上の算法とし、R を A 上の同値関係とし、A から A/R への商写像を π と書く. また

$$\pi(x) = \pi(x') \land \pi(y) = \pi(y') \Longrightarrow \pi(\sigma(x, y)) = \pi(\sigma(x', y'))$$

が満たされているとする. このとき

$$\sigma_{\pi} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \{ x \mid \exists s, t \in A \ (x = ((\pi(s), \pi(t)), \pi(\sigma(s, t)))) \}$$

と定めると、 σ_{π} は A/R 上の算法となり

$$\sigma_{\pi}(\pi(s), \pi(t)) = \pi(\sigma(s, t))$$

を満たす. 実際, $(x,y) \in \sigma_{\pi}$ かつ $(x,z) \in \sigma_{\pi}$ であれば, A の或る要素 s,t,s',t' が存在して

$$(x, y) = ((\pi(s), \pi(t)), \pi(\sigma(s, t)))$$

ح

$$(x, z) = ((\pi(s'), \pi(t')), \pi(\sigma(s', t')))$$

を満たすが,

$$(\pi(s), \pi(t)) = (\pi(s'), \pi(t'))$$

から

$$\pi(s) = \pi(s') \land \pi(t) = \pi(t')$$

が従い,

$$y = \pi(\sigma(s, t))) = \pi(\sigma(s', t'))) = z$$

となるので σ_{π} は写像である. また σ が可換なら σ_{π} も可換となる. 実際,

$$\sigma_{\pi}(\pi(x), \pi(y)) = \pi(\sigma(x, y)) = \pi(\sigma(y, x)) = \sigma_{\pi}(\pi(y), \pi(x))$$

が成り立つ. 同様に σ が結合的なら σ_{π} も結合的となる. 実際,

$$x = \pi(s)$$
, $y = \pi(t)$, $z = \pi(u)$

のとき

$$\sigma_{\pi} (\sigma_{\pi}(x, y), z) = \sigma_{\pi} (\pi(\sigma(s, t)), \pi(u))$$

$$= \pi (\sigma(\sigma(s, t), u))$$

$$= \pi (\sigma(s, \sigma(t, u)))$$

$$= \sigma_{\pi} (\pi(s), \pi(\sigma(t, u)))$$

$$= \sigma_{\pi} (x, \sigma_{\pi}(y, z))$$

が成り立つ、a を A の要素として

$$\forall x \in A (\sigma(a, x) = \sigma(x, a) = x)$$

を満たすとする. a を単位元と呼ぶが, このとき

$$\sigma_{\pi}(\pi(x), \pi(a)) = \pi(\sigma(x, a)) = \pi(x)$$

かつ

$$\sigma_{\pi}(\pi(a), \pi(x)) = \pi(\sigma(a, x)) = \pi(x)$$

が成り立つので $\pi(a)$ は A/R の単位元となる。 また A の要素 x,y,z に対して

$$\sigma(x,y) = \sigma(y,x) = z$$

となるとき,

$$\sigma_{\pi}(\pi(x), \pi(y)) = \pi(\sigma(x, y)) = \pi(z)$$

かつ

$$\sigma_{\pi}(\pi(y), \pi(x)) = \pi(\sigma(y, x)) = \pi(z)$$

が成り立つ. この関係は逆元は π で移した先でも逆元となることを示唆している.

同型定理

A, A' を集合, σ , σ' をそれぞれ A, A' 上の算法とし, f を A から A' への写像とする. f が

$$f(\sigma(x,y)) = \sigma'(f(x), f(y))$$

を満たすとき、f は (A,σ) から (A',σ') への準同型写像であるという.ここで A 上の同値関係を

$$N \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=\!\!\!=} \left\{ x \mid \quad \exists y,z \in A \ \left(f(y) = f(z) \wedge x = (y,z) \right) \right\}$$

で定める. そして A から A/N への商写像を π と書く. このとき

$$g(\pi(x)) = f(x)$$

で g を定めれば、g は A/N から f*A への全単射となる。実際、x,y を A/N の要素とすれば

$$x = \pi(s) \land y = \pi(t)$$

を満たす A の要素 s,t が存在し,

$$g(x) = g(y) \Longrightarrow f(s) = f(t) \Longrightarrow (s, t) \in N \Longrightarrow x = \pi(s) = \pi(t) = y$$

が成立するのでgは単射であり、またzをf*Aの要素とすれば

$$z = f(w)$$

を満たすAの要素wが存在し、

$$g(\pi(w)) = f(w) = z$$

が成り立つのでgは全射である。A/R上の算法を

$$\sigma_{\pi}(\pi(x),\pi(y))=\pi(\sigma(x,y))$$

で定めば

$$g(\sigma_{\pi}(\pi(x), \pi(y))) = g(\pi(\sigma(x, y)))$$

$$= f(\sigma(x, y))$$

$$= \sigma'(f(x), f(y))$$

$$= \sigma'(g(\pi(x)), g(\pi(y)))$$

が成り立つ. すなわち g は同型写像である.

算法の移し方

A,A' を集合とし、 σ を A 上の算法とし、h を A から A' への全単射とする。このとき

$$\sigma'(x,y) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} h\left(\sigma(h^{-1}(x),h^{-1}(y))\right)$$

により A' 上の算法を定めれば,

- (1) σ が可換なら σ' も可換となる.
- (2) σ が結合的なら σ' も結合的となる.
- (3) a が A の σ に関する単位元なら h(a) は A' の σ' に関する単位元となる.
- (4) A の要素 x の σ に関する逆元を -x と書けば h(-x) は h(x) の σ' に関する逆元となる. ただし A の σ に関する単位元を a とする.

証明.

(1) x, y を A' の要素とすれば

$$\sigma'(x, y) = h\left(\sigma(h^{-1}(x), h^{-1}(y))\right)$$
$$= h\left(\sigma(h^{-1}(y), h^{-1}(x))\right)$$
$$= \sigma'(y, x)$$

が成立する.

(2) x,y,z を A' の要素とすれば

$$\begin{split} \sigma'\left(\sigma'(x,y),z\right) &= \sigma'\left(h\left(\sigma(h^{-1}(x),h^{-1}(y))\right),z\right) \\ &= h\left(\sigma\left(h^{-1}\left(h\left(\sigma\left(h^{-1}(x),h^{-1}(y)\right)\right)\right),h^{-1}(z)\right)\right) \\ &= h\left(\sigma\left(\sigma\left(h^{-1}(x),h^{-1}(y)\right),h^{-1}(z)\right)\right) \\ &= h\left(\sigma\left(h^{-1}(x),\sigma\left(h^{-1}(y),h^{-1}(z)\right)\right)\right) \\ &= h\left(\sigma\left(h^{-1}(x),h^{-1}\left(h\left(\sigma\left(h^{-1}(y),h^{-1}(z)\right)\right)\right)\right) \\ &= \sigma'\left(x,h\left(\sigma(h^{-1}(y),h^{-1}(z)\right)\right) \\ &= \sigma'\left(x,\sigma'\left(y,z\right)\right) \end{split}$$

が成立する.

(3) x & A' の要素とすれば

$$\sigma'(x, h(a)) = h\left(\sigma(h^{-1}(x), a)\right)$$
$$= h\left(h^{-1}(x)\right)$$
$$= x$$

と

$$\sigma'(h(a), x) = h\left(\sigma(a, h^{-1}(x))\right)$$
$$= h\left(h^{-1}(x)\right)$$
$$= x$$

が成立する.

(4) *x を A'* の要素として

$$y = h \left(-h^{-1}(x) \right)$$

とおけば

$$\sigma'(x, y) = h\left(\sigma(h^{-1}(x), -h^{-1}(x))\right) = h(a)$$

と

$$\sigma'(y, x) = h\left(\sigma(-h^{-1}(x), h^{-1}(x))\right) = h(a)$$

が成立する.

整数

(S,o) を可換半群とするとき、 $S \times S$ 上の同値関係を

$$R \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \left. x \mid \quad \exists a,b,c,d \in S \left(\left. x = ((a,b),(c,d)) \wedge o(a,d) = o(b,c) \right) \right. \right\}$$

で定め,

$$G \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} S \times S/R$$

とおく、そして x,y を S の要素とするとき、(x,y) の同値類を [x,y] と書く、このとき

$$\sigma([x,y],[x',y']) = [o(x,x'),o(y,y')]$$

 σ で σ を定めると、 σ は可換律と結合律を満たす、実際、

$$\sigma\left([x,y],[x',y']\right) = \left[o(x,x'),o(y,y')\right] = \left[o(x',x),o(y',y)\right] = \sigma\left([x',y'],[x,y]\right)$$

と

$$\begin{split} \sigma\left(\sigma\left([x,y],[x',y']\right),[x'',y'']\right) &= \sigma\left(\left[o(x,x'),o(y,y')\right],[x'',y'']\right) \\ &= \left[o(o(x,x'),x''),o(o(y,y'),y'')\right] \\ &= \left[o(x,o(x',x''),o(y,o(y',y''))\right] \\ &= \sigma\left([x,y],\left[o(x',x''),o(y',y'')\right]\right) \\ &= \sigma\left([x,y],\sigma\left([x',y'],[x'',y'']\right)\right) \end{split}$$

が成り立つ. それから, o の可換律から

$$o(x, y) = o(y, x)$$

が成り立つので

$$((x,x),(y,y))\in R$$

となり,

$$[x, x] = [y, y]$$

が成立する. そこで

$$\zeta \stackrel{\mathrm{def}}{=} [x, x]$$

とおく. このとき

$$\sigma([x,y],\zeta) = \sigma(\zeta,[x,y]) = [x,y]$$

が満たされる. 実際, $\zeta = [z,z]$ より $([x,y],\zeta) = ([x,y],[z,z])$ となるから

$$\sigma([x, y], \zeta) = \sigma([x, y], [z, z])$$
$$= [o(x, z), o(y, z)]$$

となるが,

$$o(o(x, z), y) = o(x, o(z, y)) = o(x, o(y, z)) = o(o(y, z), x)$$

より (o(x,z),o(y,z)) と (x,y) は同値となるので

$$\sigma\left([x,y],\zeta\right)=[x,y]$$

が成立する. 同様にして

$$\sigma\left(\zeta,[x,y]\right)=[x,y]$$

も成立する. また [x,y] に対しては [y,x] が

$$\sigma([x,y],[y,x]) = \sigma([y,x],[x,y]) = \zeta$$

を満たす. そこで [y,x] を [x,y] の逆元と呼び

$$-[x,y] \stackrel{\mathrm{def}}{=} [y,x]$$

とおく. a を S の要素として

$$\varphi(x) = [o(x, a), a]$$

でSからGへの写像 φ を定めるとき,

$$\varphi(o(x, y)) = [o(o(x, y), a), a] = \sigma ([o(o(x, y), a), a], [a, a])$$

$$= [o(o(o(x, y), a), a), o(a, a)]$$

$$= [o(o(x, y), a), a), o(a, a)]$$

$$= [o(o(x, y), a), a), o(a, a)]$$

$$= [o(o(y, a), x), a), o(a, a)]$$

$$= [o(y, a), o(x, a), o(x, a), o(a, a)]$$

$$= \sigma ([o(y, a), a], [o(x, a), a])$$

$$= \sigma ([o(x, a), a], [o(y, a), a])$$

$$= \sigma (\varphi(x), \varphi(y))$$

及び

$$[x, y] = [o(x, o(a, a)), o(y, o(a, a))]$$

$$= [o(o(x, a), a), o(o(y, a), a)]$$

$$= [o(o(x, a), a), o(o(y, a), a)]$$

$$= [o(o(x, a), a), o(a, o(y, a))]$$

$$= \sigma ([o(x, a), a], [a, o(y, a)])$$

$$= \sigma (\varphi(x), -\varphi(y))$$

が成立する. 特に, o が簡約律を満たすなら φ は単射となる. 実際,

$$\varphi(x) = \varphi(y) \Longrightarrow [o(x,a), a] = [o(y,a), a]$$

$$\Longrightarrow o(o(x,a), a) = o(o(y,a), a)$$

$$\Longrightarrow o(x, o(a,a)) = o(x, o(a,a))$$

$$\Longrightarrow x = y$$

となる. いま o を簡約律と可換律を満たすとして,

$$\tilde{G} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} (G \backslash (\varphi * S)) \cup S$$

とおいて

$$h(x) = \begin{cases} x & (x \notin \varphi * S) \\ \varphi^{-1}(x) & (x \in \varphi * S) \end{cases}$$

とおくと、h は G から \tilde{G} への全単射となる. そして \tilde{G} 上の算法を

$$\tilde{\sigma}(x,y) = h\left(\sigma\left(h^{-1}(x), h^{-1}(y)\right)\right)$$

で定めるとhは同型写像となる。また

$$-x \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} h\left(-h^{-1}(x)\right)$$

と書く. このとき, x,y を S の要素とすれば

$$h^{-1}(x) = \varphi(x) \wedge h^{-1}(y) = \varphi(y)$$

となるので

$$\tilde{\sigma}(x, y) = h\left(\sigma\left(\varphi(x), \varphi(y)\right)\right) = h\left(\varphi(o(x, y))\right) = o(x, y)$$

が満たされる. すなわち $\tilde{\sigma}$ は σ の拡張となっている. また \tilde{G} の任意の要素 x は, 或る S の要素 y,z によって

$$x=h([y,z])$$

と書けるが、このとき

$$x = h \left(\sigma(\varphi(y), -\varphi(z)) \right)$$

$$= \tilde{\sigma} \left(h(\varphi(y)), h(-\varphi(z)) \right)$$

$$= \tilde{\sigma} \left(h(\varphi(y)), -h(\varphi(z)) \right)$$

$$= \tilde{\sigma}(y, -z)$$

が成立するので、 \tilde{c} の要素は S の要素に対する演算で表せる。この (\tilde{G},\tilde{c}) を S が生成する群と呼ぶ。 ω には加法と乗法が定まっているが、その最小の拡張となる環が整数環である。

整数環の性質:

- 整数環は順序環である.
- 整数環は Euclid 整域である.
- 任意の環に対して整数環からの準同型が存在する.

有理数

有理数体は整数環の分数体であるから分数体の構成法をメモしておく. (R,σ,μ) を整域として,その零元と単位元をそれぞれ ζ,ϵ で表す.また $R\times R\setminus\{\zeta\}$ 上の同値関係を

$$\Phi \stackrel{\mathrm{def}}{=\!=\!=} \left\{ x \mid \exists a,c \in R \, \exists b,d \in R \setminus \{\zeta\} \, \left(x = ((a,b),(c,d)) \wedge \mu(a,d) = \mu(b,c) \right) \right\}$$

で定め,

$$Q \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} (R \times R \setminus \{\zeta\})/\Phi$$

とおく、そして $(x,y) \in R \times R \setminus \{\zeta\}$ の同値類を [x,y] と書く、 $R \times R \setminus \{\zeta\}$ 上の算法を

$$\sigma_{P} \stackrel{\text{def}}{=} \left\{ x \mid \exists a, c \in R \, \exists b, d \in R \setminus \{\zeta\} \, \left(x = (((a,b),(c,d)),(\sigma(\mu(a,c),\mu(b,c)),\mu(b,d))) \right) \right\},$$

$$\mu_{P} \stackrel{\text{def}}{=} \left\{ x \mid \exists a, c \in R \, \exists b, d \in R \setminus \{\zeta\} \, \left(x = (((a,b),(c,d)),(\mu(a,c),\mu(b,d))) \right) \right\}$$

で定める. 煩雑でわかりづらいが, これは分数の計算法則

$$a/b + c/d = (ad + bd)/(bd), \quad a/b \cdot c/d = (ac)/(bd)$$

を一般形式化したものに過ぎない.

$$((a,b),(a',b')) \in \Phi \land ((c,d),(c',d')) \in \Phi$$

が成り立っているとき

$$(\sigma_P((a,b),(c,d)),\sigma_P((a',b'),(c',d'))) \in \Phi$$

が成り立つ. 実際

$$\mu(\mu(a,d), \mu(b',d')) = \mu(\mu(\mu(a,d),b'),d')$$

$$= \mu(\mu(d,a),b'),d')$$

$$= \mu(\mu(d,\mu(a,b')),d')$$

$$= \mu(\mu(d,\mu(a',b)),d')$$

$$= \mu(\mu(d,\mu(a',b)),d')$$

$$= \mu(\mu(d,\mu(b,a')),d')$$

$$= \mu(\mu(d,\mu(b,a')),d')$$

$$= \mu(\mu(d,b),\mu(a',d')$$

$$= \mu(\mu(a',b),\mu(a',d'))$$

$$= \mu(\mu(a',d'),\mu(d,b))$$

$$= \mu(\mu(a',d'),\mu(b,d))$$

かつ

$$\mu(\mu(c,b),\mu(b',d')) = \mu(\mu(b,c),\mu(b',d'))$$

$$= \mu(b,\mu(c,\mu(b',d')))$$

$$= \mu(b,\mu(c,\mu(d',b')))$$

$$= \mu(b,\mu(\mu(c,d'),b'))$$

$$= \mu(b,\mu(\mu(c',d),b'))$$

$$= \mu(b,\mu(\mu(d,c'),b'))$$

$$= \mu(b,\mu(d,\mu(c',b')))$$

$$= \mu(\mu(b,d),\mu(c',b'))$$

$$= \mu(\mu(c',b'),\mu(b,d))$$

が成り立つから

$$\mu \left(\sigma(\mu(a,d), \mu(c,b)), \mu(b',d') \right) = \sigma \left(\mu(\mu(a,d), \mu(b',d')), \mu(\mu(c,b), \mu(b',d')) \right)$$

$$= \sigma \left(\mu(\mu(a',d'), \mu(b,d)), \mu(\mu(c',b'), \mu(b,d)) \right)$$

$$= \mu \left(\sigma(\mu(a',d'), \mu(c',b')), \mu(b,d) \right)$$

が満たされる. 同時に

$$(\mu_P((a,b),(c,d)),\mu_P((a',b'),(c',d'))) \in \Phi$$

も満たされる. なぜならば,

$$\mu(\mu(a,c), \mu(b',d')) = \mu(a, \mu(c, \mu(b',d')))$$

$$= \mu(a, \mu(c, \mu(d',b')))$$

$$= \mu(a, \mu(\mu(c,d'),b'))$$

$$= \mu(a, \mu(b', \mu(c,d')))$$

$$= \mu(\mu(a,b'), \mu(c,d'))$$

$$= \mu(\mu(a',b), \mu(c',d))$$

$$= \mu(\mu(a',c'), \mu(b,d))$$

が成り立つからである. 以上より Q 上の算法は σ_P , μ_P から整合的に定められる. それらを σ_Q , μ_Q と書けば, σ_P , μ_P はそれぞれ可換かつ結合的であるから σ_Q , μ_Q もそれらの性質を持つ.

 (ζ, ϵ)

は σ_P に関する単位元であり,

 (ϵ, ϵ)

は μ_P に関する単位元である。実際,

$$\sigma_P((x,y),(\zeta,\epsilon)) = (\sigma(\mu(x,\epsilon),\mu(\zeta,y)),\mu(y,\epsilon)) = (\sigma(x,\zeta),y) = (x,y),$$

$$\sigma_P((\zeta,\epsilon),(x,y)) = (\sigma(\mu(\zeta,y),\mu(x,\epsilon)),\mu(\epsilon,y)) = (\sigma(\zeta,x),y) = (x,y)$$

が成り立ち, また

$$\mu_P((x,y),(\epsilon,\epsilon)) = (\mu(x,\epsilon),\mu(y,\epsilon)) = (x,y),$$

$$\mu_P((\epsilon,\epsilon),(x,y)) = (\mu(\epsilon,x),\mu(\epsilon,y)) = (x,y)$$

も成り立つ. よって

$$\zeta_{O} \stackrel{\text{def}}{=} [\zeta, \epsilon]$$

とおけば ζ_Q は σ_Q に関する単位元となり,

$$\epsilon_{O} \stackrel{\text{def}}{=} [\epsilon, \epsilon]$$

とおけば ϵ_Q は μ_Q に関する単位元となる. x と y を $R \times R \setminus \{\zeta\}$ の要素とすれば

$$[x, y] = \zeta_Q \iff x = \zeta$$

が満たされるので,

$$[x,y] \neq \zeta_Q$$

ならば

$$(y, x) \in R \times R \setminus \{\zeta\}$$

となり,

$$\mu_P([x,y],[y,x]) = [\mu(x,y),\mu(y,x)] = [\mu(x,y),\mu(x,y)] = \epsilon_Q$$

かつ

$$\mu_P([y,x],[x,y]) = [\mu(y,x),\mu(x,y)] = [\mu(x,y),\mu(x,y)] = \epsilon_Q$$

が成立する. 従って Q の非零元は可逆である. R から Q への環準同型を

$$\varphi(x) = [x, \epsilon]$$

で定める. このとき φ は単射である. 実際,

$$\varphi(x) = \varphi(y) \Longrightarrow [x, \epsilon] = [y, \epsilon] \qquad \Longrightarrow x = \mu(x, \epsilon) = \mu(\epsilon, y) = y$$

となる.

$$\tilde{Q} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} (Q \backslash \varphi * R) \cup R$$

とおいて

$$h(x) = \begin{cases} x & (x \notin \varphi * R) \\ \varphi^{-1}(x) & (x \in \varphi * R) \end{cases}$$

で Q から \tilde{Q} への全単射を定め,Q の算法を h により \tilde{Q} に移し,それらを $\tilde{\sigma}$, $\tilde{\mu}$ と書けば, $(\tilde{Q},\tilde{\sigma},\tilde{\mu})$ は体となる.

$$R \subset \tilde{Q},$$

$$\sigma \subset \tilde{\sigma},$$

$$\mu \subset \tilde{\mu}$$

となるので $(\tilde{Q}, \tilde{\sigma}, \tilde{\mu})$ は (R, σ, μ) の純粋な拡張であり、x を \tilde{Q} の任意の要素とすれば R の或る要素 s,t が存在して

$$h^{-1}(x) = [s, t] = \mu_P([s, \epsilon], [\epsilon, t]) = \mu_P(\varphi(s), \varphi(t)^{-1})$$

となり,

$$t^{-1} \stackrel{\mathrm{def}}{===} h(\varphi(t)^{-1})$$

とおけば

$$x = \tilde{\mu}(s, t^{-1})$$

と書ける. すなわち $(\tilde{Q}, \tilde{\sigma}, \tilde{\mu})$ は

$$R \subset \tilde{Q},$$

$$\sigma \subset \tilde{\sigma},$$

$$\mu \subset \tilde{\mu}$$

を満たす最小の体である. これを整域 (R,σ,μ) の分数体と呼ぶ. 分数体と名付けられたる所以は

$$s/t = \tilde{\mu}(s, t^{-1})$$

と表記すれば明らかである.

実数

実数体の構成はなかなかうまくいかない。Artin-Schreier 理論によれば順序体には実閉包が存在し、特に有理数体の実閉包が実数体として定められる。実閉包の存在の証明には Zorn の補題が使われる。他方で Dedeind 切断による実数の構成は選択公理を使わないので、この方法で実数体を構成すれば複素数体の構成までは選択公理なしで記述できる。しかし Dedeind 切断による方法は、厚顔無恥な言い方をすれば泥臭い。しかし Zorn の補題はまだ使いたくない。Artin-Schreier の定理は任意の順序体に対しての実閉包の存在を主張しているが、例えば Archimedes 的順序体の実閉包の存在は Zorn の補題なしで、華麗に証明できるのか?見通しが立たない。

もう一つ問題がある. 実閉体が least upper bound property を満たすかどうかがまだわからない. いかなる実閉体 も least upper bound property を満たすのか, 実閉体が Archimedes 的ならば least upper bound property を満たすのか, どういう状況でどう証明すれば良いのかまだ把握していない.

複素数

実数が構成できたとすれば、複素数体は R を単純拡大して得られる. そうして得られた複素数は

$$\alpha + \beta i$$

なる形で一意に表される。単純拡大とは別に $\mathbf{R} \times \mathbf{R}$ に適当な算法を導入して複素数体 (に同型な体) を構成する方法もあるが、単純拡大の方がエレガントに感じられる。

院生「エジソンは小学生の頃 1+1 が 2 になることを受け入れられず周りの大人を困らせたという逸話が有名ですが,彼の疑問はそもそも数とは何かという問題に帰着しますから,彼の質問攻めを受けた大人が回答に窮したのも無理はないでしょう.しかし数学徒を自任している者ならば,数とは何かと訊ねられたら正確に答える義務があります.さて我々が使える道具は集合論のみですが,前節までの集合論の言葉で数を説明するにはどうしたら良いでしょうか?小中高と無条件に受け入れ (させられ) てきた四則演算が成り立つ世界を,集合の宇宙の中に実現させるにはどうすれば良いのでしょうか?ここで本節の大まかな流れを説明いたしましょう.我々は自然数を ω の要素として定義し,馴染み深い数字を

```
\begin{aligned} 0 &= \emptyset, \\ 1 &= \{0\} = \{\emptyset\}, \\ 2 &= \{0, 1\} = \{\emptyset, \{\emptyset\}\}, \\ 3 &= \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\ &: \end{aligned}
```

で定めましたが、今度は ω に集合を継ぎ接ぎして複素数体にまで拡大するのが目標です。はじめに ω を整数環に拡張しますが、そこでは'半群を群にする操作'を応用します。整数環を有理数体に拡張する際には'環から体を作る操作'を応用し、有理数体を実数体に拡張する際には'Dedekind 切断'を行います。実数体が出来たら、最後にそれを'単拡大'して複素数体の出来上がりです。」

本稿では

$$\omega \subset \mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$$

となるように構成する. 当然,加減乗除も ON に定めた加法と乗法の純粋な延長として定めていく. '埋め込めば拡張となる' ように数を構成している文献もあるが,それでは詰めが甘くもどかしい.

A.2.2 整数

定義 A.2.1 (二項算法). a を類とするとき, $a \times a$ から a への写像を a 上の二項算法 (binary operation) や単に 算法 (operation) と呼ぶ.特に a が集合であれば,置換公理より a 上の算法は集合である.

二項算法については以降よく使う法則名があるので列挙する. いま, a を類とし, o を a 上の二項算法とする.

可換律 (commutative law) $\forall x, y \in a \ (o(x, y) = o(y, x)).$

結合律 (associative law) $\forall x, y, z \in a \ (o(o(x, y), z) = o(x, o(y, z))).$

簡約律 (cancellation law) $\forall x, y, z \in a \ (o(x, z) = o(y, z) \Longrightarrow x = y)$.

院生「前の節で順序数に対して加法と乗法を定義しましたが、加法も乗法も $ON \times ON$ 上の写像と見れば ON 上の二項算法となりますね、この算法は結合律は満たしますが可換律と簡約律を満たしません、しかし 二項算法を $\omega \times \omega$ 上に制限すれば可換律と簡約律も満たされます。」

定義 A.2.2 (半群). a を集合とし, o を a 上の二項算法とする. o が結合律を満たしているとき, 対 (a,o) を (代数的) 半群 (semigroup) と呼ぶ. また o が可換律を満たすとき (a,o) を可換半群と呼び, o が簡約律を満たすとき (a,o) を簡約的半群と呼ぶ.

定理 A.2.3 (ω は加法に関して半群となる). ω 上の二項算法を

$$\sigma := \{ x \mid \exists n, m \in \omega (x = ((n, m), n + m)) \}$$

で定めれば、 $(\boldsymbol{\omega}, \sigma)$ は簡約的可換半群となる. ただし + は定理 A.1.108 で定めたものである.

証明.

第一段 $\operatorname{dom}(\sigma) = \omega \times \omega$ となることを示す. χ を $\mathcal L$ の任意の対象として $\chi \in \operatorname{dom}(\sigma)$ が成り立っているとすれば

$$\exists y ((\chi, y) \in \sigma)$$

が成り立つから、ここで $\tau := \varepsilon y((\chi, y) \in \sigma)$ とおけば

$$(\chi, \tau) \in \sigma$$

が成立する. このとき ω の或る要素 n,m が存在して $(\chi,\tau)=((n,m),n+m)$ となるので

$$\chi = (n, m)$$

が成り立ち $\chi \in \omega \times \omega$ が従う. 逆に $\chi \in \omega \times \omega$ が成り立っているとすれば ω の或る要素 ν, μ が存在して $\chi = (\nu, \mu)$ が成り立ち, このとき

$$(\chi, \nu + \mu) \in \sigma$$

が成り立つので $\chi \in \text{dom}(\sigma)$ が従う. 以上で

$$\chi \in \text{dom}(\sigma) \iff \chi \in \omega \times \omega$$

が得られ、 χ の任意性と外延性の公理から $dom(\sigma) = \omega \times \omega$ が出る.

第二段 σ が写像であることを示す. \mathcal{L} の任意の対象 x,y,z に対して

$$(x, y) \in \omega \land (x, z) \in \sigma$$

が成り立っているとすれば、 ω の或る要素 n, m, v, μ が存在して

$$(x, y) = ((n, m), n + m) \land (x, z) = ((v, \mu), v + \mu)$$

が成立する. このとき x = (n, m) かつ $x = (v, \mu)$ より $(n, m) = (v, \mu)$ が従い, n = v かつ $m = \mu$ となるので

$$y=n+m=\nu+\mu=z$$

となる. よって σ は $\omega \times \omega$ 上の二項写像である. σ が ω への写像であることは定理 A.1.108 より従い, σ が可 換律, 結合律, 簡約律を満たすことは定理 A.1.109 より従う.

定義 A.2.4 (一般結合法則). 空でない集合 S に次を満たす二項演算 * : $S \times S \longrightarrow S$ が定義されているとき, a_1, a_2, a_3, a_4 を S の元として, a_1, a_2, a_3, a_4 の並びを替えずに * で評価していくと

$$(a_1 * (a_2 * a_3)) * a_4, \quad ((a_1 * a_2) * a_3) * a_4, \quad (a_1 * a_2) * (a_3 * a_4),$$

 $a_1 * (a_2 * (a_3 * a_4)), \quad a_1 * ((a_2 * a_3) * a_4)$

の5通りの評価法が考えうるが(括弧の中を優先して評価する),これは

$$a_1 * a_2 * a_3 * a_4$$

の3つの*に演算の順番を付けることに対応している。特に、この場合は*が結合律を満たしていれば5通りの評価は全て同値になる。一般にn個の $a_1,a_2,\cdots,a_n\in S$ を取りこれらに対してn-1回の評価を行うとき、 a_1,a_2,\cdots,a_n の並びを替えない限り演算の順番をどう設定しても得られる結果に影響しない(最終的な評価がただ一つに確定する)ならば、*は一般結合法則(generalized associative law)を満たすという。またその結果を

$$a_1 * a_2 * \cdots * a_n$$

と書く.

定理 A.2.5 (結合法則から一般結合法則が従う). (S,*) を半群とするとき * は一般結合法則を満たす.

証明. n>3 を選ぶとき、任意の k 個 $(3 \le k < n)$ の元に対する演算の結果が評価順に依存しないと仮定すると n 個の元に対する演算の結果も評価順に依存せず確定することを示す. $a_1,a_2,\cdots,a_n \in S$ に対し、並びを替えずに n-1 回評価するとき、n-1 回目の演算は

$$(a_1, a_2, \cdots, a_k \text{ に対する評価}) * (a_{k+1}, a_{k+2}, \cdots, a_n \text{ に対する評価})$$
 (A.16)

となる. ただしkは $1 \le k \le n-1$ を満たす. 仮定より第一項と第二項について

(第一項) =
$$(\cdots((a_1 * a_2) * a_3) \cdots) * a_k$$
,
(第二項) = $a_{k+1} * (\cdots(a_{n-2} * (a_{n-1} * a_n)) \cdots)$

が成り立つから、ここで*の結合律を繰り返し用いることにより

$$(A.16) = ((\cdots((a_1 * a_2) * a_3) \cdots) * a_k) * (a_{k+1} * (\cdots(a_{n-2} * (a_{n-1} * a_n)) \cdots))$$

$$= (((\cdots((a_1 * a_2) * a_3) \cdots) * a_k) * a_{k+1}) * (a_{k+2} * (\cdots(a_{n-2} * (a_{n-1} * a_n)) \cdots))$$

$$\vdots$$

$$= ((\cdots((a_1 * a_2) * a_3) \cdots) * a_{n-2}) * (a_{n-1} * a_n)$$

$$= (((\cdots((a_1 * a_2) * a_3) \cdots) * a_{n-2}) * a_{n-1}) * a_n$$

が得られる. 3個の元の演算は評価順に依らないから,数学的帰納法より*は一般結合法則を満たす.

定義 A.2.6 (商集合). a を集合とし、R を a 上の同値関係とする. x を a の要素とするとき

$$\{y \mid (y, x) \in R\}$$

をxのRに関する同値類 (equivalence class) と呼び, [x] などで表す. また

$$a/R := \{ x \mid \exists y \in a \ \forall z \ ((y, z) \in R \iff z \in x) \}$$

で定められる類 a/R を, a を R で割った**商集合 (quotient set)** と呼ぶ.

a が空であれば R も a/R も空となる.

院生「商"集合"と名前を付けましたが、集合であることは後で示します。また上の定義の設定の下では

$$a/R = \{ x \mid \exists y \in a (x = [y]) \}$$

が成り立ちます. これも後で証明しますが、商集合とは同値類の集まりであるということが判るでしょう.」

定理 A.2.7 (同値類の性質). a を集合とし,R を a 上の同値関係として,y を a の要素とするとき y の R に関する同値類を [y] で表す.このとき次が成り立つ:

- (1) $\forall y \in a \ ([y] \subset a)$
- (2) $\forall y \in a \ (y \in [y])$
- $(3) \quad \forall y, z \in a \ ((y, z) \in R \iff [y] = [z])$
- $(4) \qquad \forall y, z \in a \ ((y, z) \notin R \iff [y] \cap [z] = \emptyset)$

証明. a が空であれば空虚な真より (1)(2)(3)(4) は全て成立する. 以下では $a \neq \emptyset$ として証明する.

(1) s,t を \mathcal{L} の任意の対象とするとき, $s \in a$ であれば

$$t \in [s] \Longrightarrow (s,t) \in R$$

が成り立つ. $R \subset a \times a$ より

$$(s,t) \in R \Longrightarrow t \in a$$

が従い

$$t \in [s] \Longrightarrow t \in a$$

が得られる. tの任意性より

$$[s] \subset a$$

となり, s の任意性より (1) が出る.

(2) t を \mathcal{L} の任意の対象とするとき, $t \in a$ であれば

$$(t,t) \in R$$

となるから $t \in [t]$ が成立する. t の任意性より

$$\forall y \in a \ (y \in [y])$$

が得られる.

(3) s,t を \mathcal{L} の任意の対象として, $s,t \in a$ であると仮定する.

$$(s,t) \in R$$

が成り立っているとき, τ を \mathcal{L} の任意の対象とすれば

$$\tau \in [s] \iff (\tau, s) \in R$$

となり、R の推移律より $(\tau,s) \in R$ ならば $(\tau,t) \in R$ となるから

$$\tau \in [s] \Longrightarrow \tau \in [t]$$

が従う. 同様に $\tau \in [t] \Longrightarrow \tau \in [s]$ も成り立つので [s] = [t] となり

$$(s,t) \in R \Longrightarrow [s] = [t]$$

が得られる. 逆に [s] = [t] が成り立っているとき, $s \in [s]$ より $s \in [t]$ が従い

$$[s] = [t] \Longrightarrow (s, t) \in R$$

も得られる. s,t の任意性より (2) が出る.

(4) s,t を \mathcal{L} の任意の対象として, $s,t \in a$ であると仮定する.

$$[s] \cap [t] \neq \emptyset$$

が成り立っているとき, $[s] \cap [t]$ の要素を u とすれば

$$(s,u)\in R\wedge (u,t)\in R$$

となるので $(s,t) \in R$ が従う. ゆえに

$$(s,t) \notin R \Longrightarrow [s] \cap [t] = \emptyset$$

が得られる. 逆に $(s,t) \in R$ が成り立っているとき, (2) より [s] = [t] となるから

$$[s] \cap [t] \neq \emptyset \Longrightarrow (s,t) \in R$$

も得られる. s,t の任意性より (3) が出る.

院生「(1) の主張は同値類は空でないということですね。(2) の主張は同値な要素の同値類は一致するということで、(2) と(3) を併せれば同値類同士は一致していなければ交わらないと言えます。」

定義 A.2.8 (商写像). a を集合とし、R を a 上の同値関係として、y を a の要素とするとき y の R に関する同値 類を [y] で表す.このとき

$$f := \{ x \mid \exists t \in a \ (x = (t, [t])) \}$$

で定められる f を商写像 (quotient mapping) と呼ぶ.

院生「f が写像であることを述べる前に商写像と名前を付けましたが、以下に示す通り f は a から a/R への 全射となっています. また商写像は自然な全射 (natural surjection) や標準的全射 (canonical surjection) とも呼ばれます。」

定理 A.2.9 (商写像は全射である). a を集合とし、R を a 上の同値関係として、y を a の要素とするとき y の R に関する同値類を [y] で表す. このとき次が成り立つ:

$$\forall x \ (x \in a/R \Longleftrightarrow \exists y \in a \ (x = [y])). \tag{A.17}$$

172

特にaからa/Rへの商写像は写像であり、さらに言えば全射である.

証明. a が空である場合は a/R が空となるので、空虚な真より (A.17) が成り立つ、また商写像も空となり、空写像は空集合から空集合への全単射であるから主張は全て従う、以下では a が空でない場合で証明する.

定理 A.2.10 (商集合の性質). a を集合とし、R を a 上の同値関係として、y を a の要素とするとき y の R に関する同値類を [y] で表す. このとき次が成り立つ:

- (1) $a/R \in \mathbf{V}$
- (2) $a = \bigcup (a/R)$

証明. a が空であれば a/R は空となり (1) が成立する. また $\emptyset = \bigcup \emptyset$ より (2) も成立する. 以下では a が空でない場合で証明する.

- (1) a/R は a から a/R への商写像の値域であるから、置換公理より $a/R \in V$ が従う.
- (2) τ を \mathcal{L} の任意の対象とすれば、 $\tau \in a$ ならば

$$\tau \in [\tau]$$

となるから $\tau \in \bigcup (a/R)$ が成立する. ゆえに

$$\tau \in a \Longrightarrow \tau \in \bigcup (a/R)$$

が得られる. 逆に $\tau \in \bigcup (a/R)$ が成り立っているとすれば τ に対して a の或る要素 y が取れて $\tau \in [y]$ となるが, $[y] \subset a$ より $\tau \in a$ が従うので

$$\tau \in \bigcup (a/R) \Longrightarrow \tau \in a$$

も得られる. τ の任意性より $a = \bigcup (a/R)$ が出る.

定理 A.2.11 (半群の群への拡張). (a,o) を簡約的可換半群とするとき,次を満たす群 (G,Γ) が存在する:

- $a \subset G$.
- $\forall x, y \in a \ (o(x, y) = \Gamma(x, y)).$

定義 A.2.12 (整数). (ω, σ) が生成する群を (\mathbf{Z}, \cdot) で表す.そして \mathbf{Z} の要素を整数 (integer) と呼ぶ.

A.2.3 有理数

定理 A.2.13 (分数体). 環 R に対し、R が整域であるということと R が或る体の部分環であるということは同値である. R を整域とするとき、R を部分環として含む最小の体は R の分数体 (field of fractions) と呼ばれる.

Z は整域であるから、定理 A.2.13 より **Z** を部分環として含む体 F が存在する.**Z** の任意の要素 n に対し、n が 0 で なければ F の中に n^{-1} が存在するが、この乗法に関する逆元を用いれば **Z** を部分環として含む最小の体は

$$\{x \mid \exists n, m \in \mathbf{Z} (x = n \cdot m^{-1} \land m \neq 0)\}$$

と書ける. この集合を Q で表し, 有理数体 (field of rationals) と呼ぶ.

A.2.4 実数

定義 A.2.14 (Dedekind 切断). **Q** の任意の部分集合 A に対して, 順序対 ($\mathbf{Q} \backslash A$, A) が **Dedekind 切断 (Dedekind cut)** であるということを

順序対 ($\mathbf{Q} \backslash A$, A) が Dedekind 切断である \iff $A \neq \emptyset \land A \neq \mathbf{Q} \land$ $\forall x \in \mathbf{Q} \backslash A \ \forall y \in A \ (x < y) \land$ $\forall x \in A \ \exists y \in A \ (y < x)$

で定義する.

院生「Dedekind 切断とは数直線を左右に分割する操作をイメージしますね. 例えば

$$A = \left\{ q \in \mathbf{Q} \mid 0 < q \right\}$$

に対して $(\mathbf{Q}\backslash A,A)$ は Dedekind 切断となります。実数の構成においてこの集合 A は重要ですから,これを \mathbf{Q}_+ と表して後で使いましょう。上の定義では $(\mathbf{Q}\backslash A,A)$ が Dedekind 切断であるというとき A が最小元を もたないことを条件に入れましたが,ここは $(\mathbf{Q}\backslash A)$ が最大元を持たない'という条件に取り替えても構いません。」

いま $R = \{x \mid (\mathbf{Q} \setminus x, x) \text{ t Dedekind 切断である} \}$ として R を定め,

$$T = \{ x \mid \exists a, b \in R (x = (a, b) \land b \subset a) \}$$

と定める. この T は R 上の全順序となる. 任意の $a,b \in R$ に対して, $a \not\in b$ ならば或る有理数 x が $x \in a$ かつ $x \not\in b$

を満たす.このとき b の任意の要素 y に対して x < y となり, $x \in a$ かつ x < y より $y \in a$ となるので $b \subset a$ が成り立つ.ゆえに

$$\rightarrow (a \subset b) \Longrightarrow b \subset a$$

が得られた. これは $a \subset b \lor b \subset a$ と同値であるからT は全順序である.

さて、高校まで扱ってきた数は'切れ目'がありませんでした。つまり、まるで時間の流れのように数直線は '連続'していたのです。集合論のことばで'数の連続性'を規定するとどうなるでしょう。それには同値な条 件がいくつかありますが、今回述べるものは'上に有界な部分集合は上限を有する'という性質です。

X を R の部分集合で、 $X \neq \emptyset$ かつ X は R において上に有界であるとする.このとき $\bigcup X$ は X の上限となる.

定理 A.2.15. **Q** の部分集合 A に対して ($\mathbb{Q}\setminus A$, A) を Dedekind 切断とするとき,次が成り立つ:

- (1) $\forall q \in \mathbf{Q} \ (\exists a \in A \ (a < q) \iff q \in A).$
- (2) $\forall q \in \mathbf{Q} \ (\exists a \in \mathbf{Q} \backslash A \ (q < a) \Longrightarrow q \in \mathbf{Q} \backslash A \).$

証明. q を任意の有理数とすれば, A は最小元を持たないので

$$q \in A \Longrightarrow \exists a \in A \ (a < q)$$

となる. 逆に $q \notin A$ ならば A の任意の要素 a に対して q < a となるから,対偶を取って

$$\exists a \in A \ (a < q) \Longrightarrow q \in A$$

を得る. $q \notin \mathbf{Q} \setminus A$ ならば A の任意の要素 a に対して a < q となるから, 対偶を取って (2) を得る.

A.2.5 イデアル

院生「まず和の記号∑を定めましょう. 例えば、いま実数の列

$$a_0, a_1, a_2, a_3, \cdots$$

が与えられたとすれば、その n 個の和

$$a_0 + a_1 + \cdots + a_{n-1}$$

を∑を用いて

$$\sum_{i=1}^{n-1}a_i$$

と書くように定めれば便利です。n 個の和とは直感的には添え字を順に辿ってn 個の要素を合計すれば良いだけですが,その操作を \mathcal{L}' の言葉で表現しなくては数学ではありません。我々が使える道具の中で,順番に足すという再帰的な操作を表現するには写像の概念が最適でしょう。」

定理 A.2.16 (再帰定理). X を集合, a を X の要素とし、また ω の各要素 n に対して X から X への写像 φ_n が 定まっていて

$$\forall n, m \in \omega \ (n = m \Longrightarrow \varphi_n = \varphi_m)$$

が満たされているとする. このとき或る集合 f が一意的に存在して以下を満たす:

- $f: \omega \longrightarrow X$.
- f(0) = a.
- $\forall n \in \omega \ (f(n+1) = \varphi_n(f(n))).$

証明. $\omega \times X$ の部分集合で、(0,a) を要素に持ち、かつ ω の任意の要素 n と X の任意の要素 x に対して (n,x) を要素に持つなら $(n+1,\varphi_n(x))$ も要素に持つものの全体を \varnothing とおく、式で書けば

$$\mathcal{A} \coloneqq \left\{ A \mid A \subset \boldsymbol{\omega} \times X \right.$$

$$\wedge (0, a) \in A$$

$$\wedge \forall n \in \boldsymbol{\omega} \ \forall x \in X \ ((n, x) \in A \Longrightarrow (n + 1, \varphi_n(x)) \in A) \right\}$$

で定められる. そして定理の主張を満たす写像は

$$f := \bigcap \mathscr{A}$$

で与えられる. その定め方より $f \in \mathcal{A}$ であるから, あとは $\operatorname{dom}(f) = \omega$ と $\operatorname{sing}(f)$ が成り立つことを示せばよい.

第一段 $\operatorname{dom}(f) = \omega$ を示す. 実際, $(0,a) \in f$ より $0 \in \operatorname{dom}(f)$ であり、また任意の集合 n に対して $n \in \operatorname{dom}(f)$ と仮定すれば、X の或る要素 x が存在して $(n,x) \in f$ となるが、 $f \in \mathscr{A}$ であるから

$$(n+1, \varphi_n(x)) \in f$$

が成り立つので $n+1 \in \text{dom}(f)$ となる. よって定理A.1.103より $\text{dom}(f) = \omega$ が従う.

第二段 sing(f)を示すために

$$S := \left\{ n \in \omega \mid \forall x, y \in X ((n, x), (n, y) \in f \Longrightarrow x = y) \right\}$$

で定める S が ω と一致することを示す. まず, $a \neq x$ を満たす X の任意の要素 x に対して

$$(\boldsymbol{\omega} \times \boldsymbol{X}) \backslash (0, \boldsymbol{x}) \in \mathcal{A}$$

となるから

$$\forall x \in X \; (\; a \neq x \Longrightarrow (0,x) \notin f \;)$$

が得られ、 $0 \in S$ が従う.次に

$$\forall n \ (n \in S \Longrightarrow n+1 \in S)$$

が成り立つことを示す. いま n を任意に与えられた集合として $n \in S$ を仮定するとき, X の要素 x が唯一つ存在して $(n,x) \in f$ となる. ここで

$$B := (\boldsymbol{\omega} \times X) \setminus \{ (n, t) \mid t \in X \land t \neq x \}$$

とおくと、y を $\varphi_n(x) \neq y$ を満たす X の任意の要素とすれば

$$B \setminus (n+1, y) \in \mathcal{A}$$

が成り立つ. 実際, $(0,a) \in B$ かつ $(0,a) \neq (n+1,y)$ より

$$(0, a) \in B \setminus (n + 1, y)$$

となり、また ω の任意の要素 m と X の任意の要素 z に対して $(m,z) \in B \setminus (n+1,y)$ と仮定すれば、

• n = m OZE, (m, z) = (n, z) ZED,

$$x \neq z \Longrightarrow (n, z) \notin B$$

が満たされているから z=x となる. よって $(m+1,\varphi_m(z))=(n+1,\varphi_n(x))$ となり, $(n+1,\varphi_n(x))\neq (n+1,y)$ より

$$(m+1, \varphi_m(z)) \in B \setminus (n+1, y)$$

が成立する.

• $n \neq m$ ならば $(m+1, \varphi_m(z)) \neq (n+1, y)$ となるから

$$(m+1, \varphi_m(z)) \in B \setminus (n+1, y)$$

が成立する.

よって $n+1 \in S$ が成り立ち、定理A.1.103より $S = \omega$ が得られる.

最後に f の一意性を示す. g を

- $g: \omega \longrightarrow X$.
- g(0) = a.
- $\forall n \in \omega \ (g(n+1) = \varphi_n(g(n)))$

を満たす集合とすれば,

$$g(0) = f(0),$$

$$\forall n \in \omega \ \left(\ g(n) = f(n) \Longrightarrow g(n+1) = \varphi_n(g(n)) = \varphi_n(f(n)) = f(n+1) \ \right)$$

が成り立つから f = g が従う.

定義 A.2.17 (イデアル). (R, σ, μ) を環とするとき、R の部分集合 J が

- $\forall a, b \in I (\sigma(a, b) \in I)$
- $\forall a \in J \ \forall r \in R \ (\mu(r, a) \in J)$

を満たすとき、 J を R の左イデアル (left ideal) と呼ぶ. また二つ目の条件を

• $\forall a \in J \ \forall r \in R \ (\ \mu(a,r) \in J \)$

に取り替えた場合, J を R の右イデアル (right ideal) と呼ぶ. 左イデアルであり右イデアルでもある部分集合をイデアル (ideal) と呼ぶ.

考察対象は主に左イデアルである. 左右を反転させれば左イデアルに関する結果は右イデアルにも当てはまる.

定理 A.2.18 (左イデアルは加法に関して群をなす). (R, σ, μ) を環とし、J をこの環の左イデアルとするとき、

$$\sigma_I := \sigma|_{I \times I}$$

とおけば (J, σ_I) は可換群となる.

院生「つまり、左イデアルとは左側からの掛け算で閉じている加法部分群であると言えますね.」

A.2.6 多項式環

 (R,σ,μ) を可換環として、その零元と単位元をそれぞれ ζ と ϵ で表す。また $\zeta \neq \epsilon$ と仮定する。すなわち (R,σ,μ) は零環ではない。いま

$$\tilde{P} := \left\{ f \mid f : \omega \longrightarrow R \land \exists n \in \omega \ \forall m \in \omega \ (n < m \Longrightarrow f(m) = \zeta) \right\}$$

により集合 \tilde{P} を定める. \tilde{P} とは ω から R への写像のうち或る自然数以降は ζ に張り付いてしまう写像の全体である. a を R の要素として

$$\varphi_a := \{ x \mid \exists n \in \omega \ (n = 0 \Longrightarrow x = (0, a) \land n \neq 0 \Longrightarrow x = (n, \zeta) \}$$

として φ_a を定めれば、 φ_a は ω から R への写像であり

$$\varphi_a(n) = \begin{cases} a, & (n=0), \\ \zeta, & (n \neq 0) \end{cases}$$

を満たすから \tilde{P} の要素でもある. ここで

$$\varphi := \{ x \mid \exists a \in R \ (x = (a, \varphi_a)) \}$$

として φ を定めれば φ は R から \tilde{P} への埋め込み (単射環準同型) となる.

証明.

院生[以降も回りくどい説明が続きますから,ここで多項式環が得られる過程を簡略して述べましょう. いま

$$X := \{ x \mid \exists n \in \omega \ (n = 1 \Longrightarrow x = (1, \epsilon) \land n \neq 1 \Longrightarrow x = (n, \zeta) \}$$

とおくと, Xは

$$X(n) = \begin{cases} \epsilon, & (n=1), \\ \zeta, & (n \neq 1) \end{cases}$$

を満たす ω からRへの写像ですから \tilde{P} の要素です.Xを点列の様式で(不正確な書き方ですが直感的に解釈するには都合が良いでしょう)

$$(\zeta, \epsilon, \zeta, \zeta, \zeta, \cdots)$$

と書いてみましょう. すると X^2 や X^3 は

$$(\zeta, \zeta, \varepsilon, \zeta, \zeta, \cdots),$$

 $(\zeta, \zeta, \zeta, \varepsilon, \zeta, \cdots)$

と表すことが出来ますし、特に R の要素 a に対して $\varphi(a) \cdot X^n$ は

$$(\zeta, \zeta, \cdots, \zeta, a, \zeta, \zeta, \cdots)$$

と書くことが出来ますね。ここで f を \tilde{P} の要素とすれば、f は R の有限個の要素 $a_0,a_1,\cdots.a_m$ を用いて

$$(a_0, a_1, \cdots, a_m, \zeta, \zeta, \zeta, \cdots)$$

と表すことが出来ますから

$$f = \varphi(a_0) + \varphi(a_1) \cdot X + \varphi(a_2) \cdot X^2 + \dots + \varphi(a_m) \cdot X^m$$

が成り立つのです。こうして X の冪を有限個連ねた式が出来ましたが、これはまだ多項式の卵の段階です。 φ が余計ですから少し手を加えて整形しますと、多項式環というものが得られるという寸法です。」

上で作った \tilde{P} に対して

$$P := (\tilde{P} \setminus (\varphi * R)) \cup R$$

と定める. P とは \tilde{P} の R が埋め込まれた部分を R そのものに置き換えた集合である. また \tilde{P} から P への写像を

$$\begin{split} h \coloneqq \{ \, x \, | \quad \exists f \in \tilde{P} \, (\\ \quad \exists a \in R \, (\, f = \varphi(a) \,) \Longrightarrow x = (f, a) \\ \quad \land f \notin \varphi * R \Longrightarrow x = (f, f) \\ \quad) \, \} \end{split}$$

で定めればhは全単射となる。hは $\phi*R$ の要素には ϕ で対応するRの要素を当て、 $\phi*R$ の外側では恒等写像となっ

ている. また

$$\sigma_{P} := \left\{ x \mid \exists f, g \in P \ \left(\ x = ((f, g), h(h^{-1}(f) + h^{-1}(g))) \ \right) \right\},$$

$$\mu_{P} := \left\{ x \mid \exists f, g \in P \ \left(\ x = ((f, g), h(h^{-1}(f) \cdot h^{-1}(g))) \ \right) \right\}$$

と定めれば、 σ_P と μ_P をそれぞれ加法と乗法として (P,σ_P,μ_P) は可換環となる.

院生「下線部の証明の前に注意しておきます. σ_P も μ_P も定義式に括弧が多くて見づらいですが、見やすいように書けば P の要素 f,g に対して

$$\sigma_P(f,g) = h(h^{-1}(f) + h^{-1}(g)),$$

$$\mu_P(f,g) = h(h^{-1}(f) \cdot h^{-1}(g))$$

としているのです。 つまり,P 上の算法は h で \tilde{P} に引き戻して計算したものを再び h で移すことにより定めているのですね。 ゆえに,h が環同型となることは殆ど明らかでしょう。」

証明.

またこのとき $(\tilde{P}, \tilde{\sigma}, \tilde{\mu})$ と (P, σ_P, μ_P) は環としてhによって同型に対応する.

証明.

f を P から任意に選ばれた要素とするとき, $h^{-1}(f)$ は \tilde{P} の要素となるから,或る自然数 m 及び m+1 個の R の要素 a_0,a_1,\cdots,a_m が存在して

$$h^{-1}(f) = \varphi(a_0) + \varphi(a_1) \cdot X + \varphi(a_2) \cdot X^2 + \dots + \varphi(a_m) \cdot X^m$$

と書けるのは院生の独白で説明した通りである. h は環同型であるから,このとき

$$f = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_m \cdot X^m$$

が成り立つ. ゆえに P の任意の要素は R の要素を係数とする X の多項式として書ける. この (P, σ_P, μ_P) を R 上の多項式環 (polynomial ring) と呼び、特に P を

R[X]

と書く. また X のことを不定元 (indeterminate) と呼ぶ.

院生「例えばXをRの要素で置き換えれば,多項式はRの要素として見ることが出来ます。Xに具体的な要素を投入すれば結果がどうなるかは個々の場合については判明するでしょうが,式そのものの性質を分析することはできません。因数分解したり式の根が何かを調べたりするなど,多項式そのものを考察するにはXの式としての多項式が有用なのです。」

定理 A.2.19 (整域上の多項式環は整域). 整域の上の多項式環は整域である.

証明. (R,σ,μ) を整域とし、その多項式環を $(R[X],\tilde{\sigma},\tilde{\mu})$ をその多項式環とする。また (R,σ,μ) の零元と単位元を ζ,ϵ で表し、 $(R[X],\tilde{\sigma},\tilde{\mu})$ の零元と単位元を $\tilde{\zeta},\tilde{\epsilon}$ で表す。 f,g を R[X] の任意の要素とすれば、

$$f \neq \tilde{\zeta} \land g \neq \tilde{\zeta}$$

が満たされているとき

定理 A.2.20 (体の上の多項式環は Euclid 整域).

定理 A.2.21 (Euclid 整域は単項イデアル整域).

A.2.7 素元分解

定理 A.2.22 (同伴な要素が生成するイデアルは等しい). (R,σ,μ) を環とし、a,b を R の要素とする. このとき次が成り立つ:

$$a \sim b \Longrightarrow R \langle a \rangle = R \langle b \rangle$$
.

証明. $a \mid b$ ならば $b \in R\langle a \rangle$ となるから $R\langle b \rangle \subset R\langle a \rangle$ が成り立つ。同様に $b \mid a$ ならば $R\langle a \rangle \subset R\langle b \rangle$ となるので $a \sim b \Longrightarrow R\langle a \rangle = R\langle b \rangle$

が得られる.

定理 A.2.23 (単項イデアル整域において素元が生成するイデアルは極大イデアルである). (R,σ,μ) を単項イデアル整域するとき、p を (R,σ,μ) の素元とすれば、 $R\langle p\rangle$ は (R,σ,μ) の極大イデアルとなる.

証明. $I \in (R, \sigma, \mu)$ のイデアルで

$$R\langle p \rangle \subset I$$
 (A.18)

を満たすものとする. (R, σ, μ) は単項イデアル整域であるから I に対して R の或る要素 d が存在し

$$I = R \langle d \rangle$$

となるが、(A.18) より $p \in R \langle d \rangle$ となるので

$$d \mid p$$

が成り立つ. p は素元であるから $d\sim\epsilon\lor d\sim p$ となり (ただし ϵ は (R,σ,μ) の単位元を表す), 定理 A.2.22 より

$$d \sim 1 \Longrightarrow R \langle d \rangle = R \langle \epsilon \rangle = I$$
,

$$d \sim p \Longrightarrow R \left\langle d \right\rangle = R \left\langle p \right\rangle$$

が成り立つので場合分け法則より

$$I = R \lor I = R \langle p \rangle$$

が成立する. ゆえに $R\langle p \rangle$ は極大イデアルである.

A.2.8 複素数

K を体とするとき,K の上の多項式環 K[X] の任意の素元に対して,その式の解を含んでいる K の拡大体が存在する.そのことを保証するのが次の定理である.

定理 A.2.24 (単拡大). (K, σ, μ) を体とし、p を K 上の多項式環の素元とするとき、 (K, σ, μ) の拡大体で p

 \mathbf{R} 上の多項式環 $\mathbf{R}[X]$ において,多項式 $1+X^2$ は素元である.ゆえに $1+X^2$ が生成するイデアル $\mathbf{R}\left\langle 1+X^2\right\rangle$ は極大イデアルであり,そのイデアルで割った商環 $\mathbf{R}[X]/\mathbf{R}\left\langle 1+X^2\right\rangle$ は体となる.

A.2.9 代数閉包

A.3 選択公理

定義 A.3.1 (直積). a を類とし、h を a 上の写像とするとき、

$$\prod_{x \in a} h(x) := \left\{ f \mid \quad f : \text{on } a \land \forall x \in a \left(f(x) \in h(x) \right) \right\}$$

と定め, これをhの直積 (direct product) と呼ぶ.

定理 A.3.2 (選択公理と直積). 次は同値である.

- (1) $\forall a \exists f \ (f : \text{on } a \land \forall x \in a \ (x \neq \emptyset \Longrightarrow f(x) \in x))$
- $(\Box) \quad \forall a \, \forall h \, (h: \text{on} \, a \, \land \, \forall x \in a \, (h(x) \neq \emptyset) \Longrightarrow \prod_{x \in a} h(x) \neq \emptyset)$

証明.

第一段 a を集合, h を a 上の恒等写像とする. このとき

$$a' \coloneqq a \setminus \{\emptyset\},$$

 $h' \coloneqq h|_{a'}$

とおけば

$$\exists f \ \big(\, f : \mathrm{on} \, a' \wedge \forall x \in a' \, (\, f(x) \in h'(x) \,) \, \big)$$

が成立する.

$$f'' := \varepsilon f \left(f : \operatorname{on} a' \wedge \forall x \in a' \left(f(x) \in h'(x) \right) \right)$$

とおいて

$$f' \coloneqq f'' \cup \{(\emptyset, \emptyset)\},$$

$$f \coloneqq f'|_a$$

とおけば

$$\exists f \ (f : \text{on } a \land \forall x \in a \ (x \neq \emptyset \Longrightarrow f(x) \in x))$$

が成立する.

第二段 a を集合とし、h を

$$h: \text{on } a \land \forall x \in a \ (h(x) \neq \emptyset)$$

を満たす集合とする.

$$b := h * a$$

とおけば

$$\exists f \ (f : \text{on} \ b \land \forall x \in b \ (x \neq \emptyset \Longrightarrow f(x) \in x))$$

が成り立つので,

$$\tilde{f} := \varepsilon f \left(f : \text{on } b \land \forall x \in b \left(x \neq \emptyset \Longrightarrow f(x) \in x \right) \right)$$

とおいて

$$f \coloneqq \left\{ x \mid \exists s \in a \left(x = (s, \tilde{f}(h(s))) \right) \right\}$$

とおけば

$$f: \text{on } a \land \forall x \in a \ (f(x) \in h(x))$$

が成立する.

定義 A.3.3 (選択関数). a を集合とするとき,

$$f: \text{on } a \land \forall x \in a \ (x \neq \emptyset \Longrightarrow f(x) \in x)$$

を満たす写像 f を a 上の選択関数 (choice function) と呼ぶ.

院生 $\lceil a=\emptyset$ ならば空写像が a 上の選択関数となりますね。空集合だけでなく、どの集合の上にも選択関数が存在することを保証するのが選択公理です。」

公理 A.3.4 (選択公理). いかなる集合の上にも選択関数が存在する:

$$\forall a \,\exists f \, (f: \text{on } a \land \forall x \in a \, (x \neq \emptyset \Longrightarrow f(x) \in x)).$$

院生「整列可能定理の証明は幾分技巧的で見通しが悪いですから、はじめに直感的な解説をしておきましょう。 定理の主張は集合 a に対して順序数 α と写像 f で

$$f: \alpha \xrightarrow{1:1} a$$

を満たすものが取れるというものです. 順序数は

$$0, 1, 2, 3, \cdots$$

と順番に並んでいますから,まず 0 に対して a の何らかの要素 x_0 を対応させます.次は 1 に対して $a \setminus \{x_0\}$ の何らかの要素 x_1 を対応させ,その次は 2 に対して $a \setminus \{x_0, x_1\}$ の要素を対応させ… と,同様の操作を a の要素が尽きるまで繰り返します.操作が終了した時点で,それまでに使われなかった順序数のうちで最小のものを α とすれば,写像

$$f: \alpha \ni \beta \longmapsto x_{\beta} \in a$$

が得られるという寸法です。 $a\setminus\{\cdots\}$ の何らかの要素を対応させる'という不明瞭な操作を \mathcal{L}' のことばで表現する際に選択公理が使われますから整列可能定理は選択公理から導かれると言えますが,逆に整列可能定理が真であると仮定すれば選択公理の主張が導かれます。つまり (A.1 節で登場した公理体系の下で) 選択公理と整列可能定理は同値な主張となります。」

定理 A.3.5 (整列可能定理). 任意の集合は,或る順序数との間に全単射を持つ:

$$\forall a \; \exists \alpha \in \text{ON} \; \exists f \; \left(f : \alpha \xrightarrow[\text{onto}]{1:1} a \right).$$

次の主張は整列可能定理と証明が殆ど被るのでまとめて述べておく.

定理 A.3.6 (整列集合は唯一つの順序数に順序同型である). (a,O_W) を整列集合とするとき,或るただ一つの順序数 α と α から a への全単射 f が存在して

$$\gamma \leq \delta \Longrightarrow (f(\gamma), f(\delta)) \in O_W$$

を満たす.

証明. χ を任意に与えられた \mathcal{L} の対象とする.

第一段 $\chi = \emptyset$ の場合,

$$\emptyset: \emptyset \xrightarrow{1:1} \chi$$

が満たされるから

$$\exists f \left(f : \emptyset \xrightarrow{\text{onto}} \chi \right)$$

が成立し、∅はONの要素であるから

$$\exists \alpha \in \text{ON } \exists f \left(f : \alpha \xrightarrow[\text{onto}]{1:1} \chi \right)$$

が従う. 以上より

$$\chi = \emptyset \Longrightarrow \exists \alpha \in \operatorname{ON} \exists f \left(f : \alpha \xrightarrow[]{1:1} \chi \right)$$

が成り立つ.

第二段 $\chi \neq \emptyset$ の場合,

$$P := P(\chi) \setminus \{\chi\}$$

とおけば

$$\forall p \in P \, (\, \chi \backslash p \neq \emptyset \,)$$

が満たされるので、選択公理より

$$g: \operatorname{on} P \wedge \forall p \in P (g(p) \in \chi \backslash p)$$

を満たす写像 g が存在する.

$$G \coloneqq \left\{z \mid \exists s \; \left(\left(\operatorname{ran}(s) \in P \Longrightarrow z = (s, g(\operatorname{ran}(s))) \right) \land \left(\operatorname{ran}(s) \notin P \Longrightarrow z = (s, \emptyset) \right) \right) \right\}$$

で \mathbf{V} 上の写像 \mathbf{G} を定めれば

$$\forall \alpha \in \text{ON} \ (F(\alpha) = G(F|_{\alpha}))$$

を満たす類Fが存在して、Gの定め方より

$$\alpha \in \mathrm{ON} \Longrightarrow F(\alpha) = \begin{cases} g(F * \alpha) & (F * \alpha \subsetneq \chi) \\ \emptyset & (F * \alpha = a \lor F * \alpha \not\subset \chi) \end{cases}$$

が成立する.

$$\forall \alpha \in ON \ (F * \alpha \subseteq \chi \Longrightarrow g(F * \alpha) \in \chi)$$

が満たさるので

$$F: ON \longrightarrow \chi \cup \{\emptyset\}$$

が成立することに注意しておく. 以下, 適当な順序数 γ を選べば

$$F|_{\nu}$$

が γ から χ への全単射となることを示す.

第三段 S を類とするとき

$$\operatorname{ord}(S) \wedge \forall \alpha \in S \ (F * \alpha \neq \chi) \Longrightarrow \operatorname{set}(F * S) \wedge F|_{S} : S \xrightarrow[\text{onto}]{1:1} F * S \wedge \operatorname{set}(S) \tag{A.19}$$

が成り立つことを示す. いま

ord
$$(S) \land \forall \alpha \in S \ (F * \alpha \neq \chi)$$

が成り立っているとする. このとき

$$F(\emptyset) = g(\emptyset) \in \chi$$

が成立し、また α を任意の順序数とすれば、

$$\forall \beta \in \alpha \ (\beta \in S \Longrightarrow F(\beta) \in \chi)$$

が満たされているとき

$$\alpha \in S \Longrightarrow \alpha \subset S$$

$$\Longrightarrow \forall \beta \in \alpha (\beta \in S)$$

$$\Longrightarrow \forall \beta \in \alpha (F(\beta) \in \chi)$$

$$\Longrightarrow F * \alpha \subset \chi,$$

$$\alpha \in S \Longrightarrow F * \alpha \neq \chi$$

より

$$\alpha \in S \Longrightarrow F(\alpha) \in \chi$$

が成立する. よって超限帰納法より

$$\forall \alpha \in S (F(\alpha) \in \chi)$$

となる. 従って

$$F * S \subset \chi$$

が得られる. そして χ は集合であるから

$$set(F * S)$$

が出る.次に $F|_S$ が単射であることを示す.ord(S)から

$$S\subset \mathrm{ON}$$

が満たされるので、 β , $\gamma \in S$ に対して $\beta \neq \gamma$ ならば

$$\beta \in \gamma \vee \gamma \in \beta$$

が成り立つ. $\beta \in \gamma$ の場合

$$F(\gamma) = g(F * \gamma) \in \chi \backslash (F * \gamma)$$

が成り立つので

$$F(\gamma) \notin F * \gamma$$

が従う. 他方で

$$F(\beta) \in F * \gamma$$

が満たされるので

$$F(\gamma) \neq F(\beta)$$

が満たされる. よって

$$\beta \in \gamma \Longrightarrow F(\gamma) \neq F(\beta)$$

が成立する. β と γ を入れ替えれば

$$\gamma \in \beta \Longrightarrow F(\gamma) \neq F(\beta)$$

も得られるので,場合分け法則より

$$\beta \neq \gamma \Longrightarrow F(\gamma) \neq F(\beta)$$

が成り立つ. よって $F|_S$ は単射である. このとき

$$F|_S: S \xrightarrow{\text{onto}} F * S$$

となり

$$S = F|_{S}^{-1}(F * S)$$

が成り立つので, 置換公理より

が出る.

第四段 Burali-Forti の定理より

$$\rightarrow$$
 set (ON)

が成り立つので,式 (A.19) の対偶から

$$\rightarrow$$
 ord (ON) $\vee \exists \alpha \in ON (F * \alpha = \chi)$

が従う. 一方で

は正しいので,選言三段論法より

$$\exists \alpha \in ON (F * \alpha = \chi)$$

が成立する.

$$\gamma := \mu \alpha \ (F * \alpha = \chi)$$

とおけば式 (A.19) より

$$F|_{\gamma}: \gamma \xrightarrow{\text{onto}} \chi$$

が成り立つので,

$$\chi \neq \emptyset \Longrightarrow \exists \alpha \in \mathrm{ON} \; \exists f \; \left(f : \alpha \xrightarrow[]{1:1} \chi \right)$$

も得られた. 場合分け法則より

$$\chi = \emptyset \lor \chi \neq \emptyset \Longrightarrow \exists \alpha \in \text{ON } \exists f \left(f : \alpha \xrightarrow[\text{onto}]{1:1} \chi \right)$$

が成立し, 排中律から

$$\exists f \left(f : \alpha \xrightarrow[]{1:1} \chi \right)$$

は真となる。そして χ の任意性より定理の主張が出る。

院生「整列定理によりいかなる集合の上にも整列順序が定められます。実際、aを集合として

$$g \coloneqq \varepsilon f \left(f : \alpha \xrightarrow[]{\text{onto}} a \right)$$

とおき,

$$R := \left\{ x \mid \exists s, t \in a \ \left(g^{-1}(s) \subset g^{-1}(t) \land x = (s, t) \right) \right\}$$

でa上の関係を定めれば、Rはa上の整列順序となります。まさしく'整列可能'なのですね。」

A.4 基数

定義 A.4.1 (有限・可算・無限).

定理 A.4.2 (任意の無限集合は可算集合を含む).

$$\forall a \ (\exists \alpha \in ON \setminus \omega \ (\alpha \approx a) \Longrightarrow \exists b \ (b \subset a \land \omega \approx b)).$$

定義 A.4.3 (対等). a,b を類とするとき, a と b が対等である (equipotent) ということを

$$a \approx b \stackrel{\text{def}}{\Longleftrightarrow} \exists f \left(f : a \xrightarrow[\text{onto}]{1:1} b \right)$$

で定める.

定理 A.4.4 (対等関係は同値関係). V 上の関係 R を

$$R := \{x \mid \exists s, t (x = (s, t) \land s \approx t)\}$$

で定めるとき、R は V 上の同値関係となる.

定義 A.4.5 (濃度・基数). a を類とするとき, a と対等な順序数のうち最小のもの, つまり

$$\#a := \mu \alpha (a \approx \alpha)$$

で定める #a を a の濃度 (cardinal) と呼び,

$$\#\alpha = \alpha$$

を満たす順序数 α を基数 (cardinal number) と呼ぶ. また基数の全体を

$$CN := \{ x \mid \exists \alpha \in ON (\#\alpha = \alpha \land x = \alpha) \}$$

とおく.

院生「整列可能定理の結果より、全ての集合には濃度が定められるのですね.」

定理 A.4.6 (順序数はその濃度より小さくない).

$$\forall \alpha \in ON \ (\#\alpha \leq \alpha).$$

略証. α 上の恒等写像は α から α への全単射であるから

$$\alpha \in \{ \beta \mid \beta \in ON \land \beta \approx \alpha \}$$

が満たされる. 従って

 $\#\alpha \leq \alpha$

が成立する.

定理 A.4.7 (濃度は基数). 次が成り立つ:

$$\forall a \ (\# a = \# \# a).$$

略証. a を集合とする. まず定理 A.4.6 より

 $\#\#a \leq \#a$

が満たされる. 他方で

 $a \approx \#a \land \#a \approx \#\#a$

が成り立っているので

 $a \approx \#\# a$

が従い

 $\#a \le \#\#a$

も満たされる.

定理 A.4.8 (CN は濃度の全体である). 次が成り立つ:

$$CN = \{ x \mid \exists a (x = \#a) \}.$$

略証. α を CN の任意の要素とすれば

 $\alpha = \#\alpha$

となるから,

$$\exists a \ (\alpha = \#a)$$

が満たされ

$$\alpha \in \{x \mid \exists a (x = \#a)\}$$

が従う. 逆に α を $\{x \mid \exists a (x = \#a)\}$ の任意の要素とすれば、或る集合 a が存在して

$$\alpha = \#a$$

となる. このとき定理 A.4.7 より

$$\#a = \#\#a$$

が成り立つので

$$\exists \beta \in \mathrm{ON} \, (\, \#\beta = \beta \wedge \#a = \beta \,)$$

が満たされ

$$\alpha=\#a\in\mathrm{CN}$$

が従う.

定理 A.4.9. 次が成り立つ:

$$\forall a \, \forall b \, (a \approx b \iff \#a = \#b).$$

証明. $a \approx b$ が成り立っていると仮定する. このとき

$$\#a \approx a \wedge a \approx b$$

が成り立つので

 $\#a \approx b$

が従い,

 $\#b \le \#a$

となる. $a \ge b$ を入れ替えれば

 $\#a \leq \#b$

も得られ,

#a = #b

が成立する. 以上より

$$a \approx b \Longrightarrow \# a = \# b$$

が示された. 逆に #a = #b が成り立っていると仮定する. このとき

$$f_{1} := \varepsilon f \left(f : a \xrightarrow{\text{1:1}} \# a \right),$$

$$f_{2} := \left\{ x \mid \exists s \in \# a \left(x = (s, s) \right) \right\},$$

$$f_{3} := \varepsilon f \left(f : \# b \xrightarrow{\text{0nto}} b \right)$$

とおけば f_1 , f_2 , f_3 はどれも全単射であるから,

$$g := (f_3 \circ f_2) \circ f_1$$

はaからbへの全単射となる.よって $a \approx b$ が従い

$$\#a = \#b \Longrightarrow a \approx b$$

も示された.

定理 A.4.10 (集合が大きい方が濃度も大きい).

 $\forall a \, \forall b \, (a \subset b \Longrightarrow \#a \leq \#b).$

略証. a,b を集合として $a \subset b$ が成り立っていると仮定する.

 $\beta \coloneqq \#b$

とおいて

$$f: b \xrightarrow[\text{onto}]{1:1} \beta$$

なる *f* を取り

$$c := f * a$$

とおけば、c の順序型である順序数 α と

$$g: \alpha \xrightarrow[\text{onto}]{1:1} c$$

および

$$\forall \zeta, \eta \in \alpha \ (\zeta < \eta \Longrightarrow g(\zeta) < g(\eta))$$

を満たすgが取れる. このとき

$$\forall \zeta \in \alpha \ \big(\zeta \leq g(\zeta) \big)$$

が成り立つことが超限帰納法から示され,

$$\alpha \subset \beta$$

が従う.

$$\#a = \#c = \#\alpha \le \alpha \le \beta$$

から

$$\#a \leq \#b$$

が得られる.

定理 A.4.11 (真類の濃度は 0). a を類とするとき次が成り立つ:

$$\rightarrow$$
 set $(a) \Longrightarrow \#a = 0$.

定理 A.4.12 (対等な集合同士は冪も対等).

$$\forall a \ \forall b \ (a \approx b \Longrightarrow P(a) \approx P(b)).$$

略証. a,b を集合とし、 $a \approx b$ が成り立っているとする. このとき

$$f: a \xrightarrow{1:1} b$$

なる集合 ƒを取り

$$g := \{x \mid \exists s \in P(a) (x = (s, f * s))\}$$

で g を定めれば,

$$g: P(a) \xrightarrow[\text{onto}]{1:1} P(b)$$

192

が成立する. 実際, x,y を P(a) の任意の要素とすれば

$$x = y \Longrightarrow f * x = f * y$$

となるのでgは写像である。また

$$f * x = f * y$$

のとき

$$x = f^{-1} * (f * x) = f^{-1} * (f * y) = y$$

となるので g は単射である. そして z を P(b) の任意の要素とすれば,

$$w \coloneqq f^{-1} * z$$

とおけば

$$f * w = z$$

となるので g は全射である.

定理 A.4.13 (Cantor の定理). いかなる集合もその冪集合の濃度は真に大きい:

$$\forall a \ (\#a < \#P(a)).$$

定理 A.4.14 (CN は集合でない).

$$\rightarrow$$
 set (CN).

略証.

$$S \subset \mathrm{ON} \wedge \mathrm{set}(S) \Longrightarrow \# \left(\ \right) S \notin S$$

が成り立つことを示す.

定理 A.4.15 (自然数は基数). 次が成立する.

$$\omega \subset CN$$
.

定理 A.4.16 (ω は基数). 次が成立する.

$$\omega \in CN$$
.

定理 A.4.17. 有限基数を抜いた基数の全体を

$$\mathrm{ICN}\coloneqq\mathrm{CN}\backslash\omega$$

とおいて ('I' は Infinite の意), \mathbf{V} 上の写像 G を

$$G := \{ x \mid \exists s \ (x = (s, \mu \alpha (\alpha \in ICN \setminus ran(s))) \}$$

で定めるとき, 超限帰納法による写像の構成から

$$\forall \beta \in \text{ON} (F(\beta) = \mu \alpha (\alpha \in \text{ICN} \setminus F * \beta))$$

を満たす ON 上の写像 F が存在するが、この F は ON から ICN への順序同型となる。 つまり

$$F: \mathrm{ON} \xrightarrow[]{1:1} \mathrm{ICN} \wedge \forall \gamma, \delta \in \mathrm{ON} \left(\gamma < \delta \Longrightarrow F(\gamma) < F(\delta) \right)$$

が成立する.

略証. いま γ , δ を ON の要素として

 $\gamma < \delta$

であると仮定する. このとき

 $F * \gamma \subset F * \delta$

かつ

 $F(\delta) \in ICN \backslash F * \delta$

が満たされるので

 $F(\delta) \in ICN \backslash F * \gamma$

が成立する. 従って

 $F(\gamma) \le F(\delta)$

が成立する. 一方で

 $F(\gamma) \in F * \delta \wedge F(\delta) \in ICN \backslash F * \delta$

から

 $F(\gamma) \neq F(\delta)$

も満たされるので

 $F(\gamma) < F(\delta)$

が従う. 以上より

$$\forall \gamma, \delta \in \text{ON} (\gamma < \delta \Longrightarrow F(\gamma) < F(\delta))$$

が得られる. またこの結果より F が単射であることも従う.

A.4.1

定義 A.4.18.

定義 A.4.19 (族・系). x を集合 A から集合 B への写像とするとき,x を B の元の集まりと見做したものを "A を添数集合 (index set) とする B の族 (family) (或は系 (collection))" と呼び,x(a) の代わりに x_a として (x_a) や $(x_a)_{a\in A}$ と書き,A の元が具体的に書き並べられるときは (x_{a_1},x_{a_2},\cdots) などとも表記する。B の元の指す対象によっては族を点族,集合族 (系),或は関数族 (系) などと呼ぶ.

族 $(x_a)_{a\in A}$ は写像 x そのものと同一であるが、丸括弧を中括弧に替えた $\{x_a\}_{a\in A}$ は B の部分集合 $\{x_a\mid a\in A\}$ の別の記法であり、 $(x_a)_{a\in A}$ とは区別する.実際、族と集合の大きな違いは、 $(x_a)_{a\in A}$ の表記では重複する元も別個の存在と認めるのに対し、 $\{x_a\}_{a\in A}$ の表記では重複する元は区別しないことである.例えば $A=\mathbf{N}$, $B=\mathbf{R}$ に対して

$$x_n \coloneqq \begin{cases} 1 & (n : 奇数) \\ -1 & (n : 偶数) \end{cases}$$

と定めるとき、 $(x_n) = (1, -1, 1, -1, \cdots)$ と書ける一方で $\{x_n\} = \{-1, 1\}$ となる.

定理 A.4.20 (全射・単射・像・原像). f を集合 A から集合 B への写像とするとき,

- (1) 任意の $U \subset A$ に対し $f^{-1}(f(U)) \supset U$ が成立し、特に f が単射なら $f^{-1}(f(U)) = U$ となる.
- (2) 任意の $V \subset B$ に対し $f(f^{-1}(V)) \subset V$ が成立し、特に f が全射なら $f(f^{-1}(V)) = V$ となる.

証明.

- 任意の $x \in U$ で $f(x) \in f(U)$ となるから $x \in f^{-1}\left(f(U)\right)$ が成立する. f が単射であれば、任意の $x \in f^{-1}\left(f(U)\right)$ に対し $f(x) \in f(U)$ となるから或る $x_1 \in U$ で $f(x) = f(x_1)$ となり、単射性より $x = x_1 \in U$ が成り立つ.
- (2) 任意に $y \in f\left(f^{-1}(V)\right)$ を取れば、或る $x \in f^{-1}(V)$ で $y = f(x) \in V$ となる. f が全射であるとき、任意の $y \in V$ に対し或る $x \in A$ が y = f(x) を満たすから、 $x \in f^{-1}(V)$ となり $y \in f\left(f^{-1}(V)\right)$ が従う.

以下の内容は集合論理を勉強する前に書いたものなので雑. いずれ全面書き直す.

A.5 位相メモ

A.5.1 位相

定義 A.5.1 (位相). 集合 S の部分集合族 $\mathcal O$ が以下を満たすとき, $\mathcal O$ を S の位相 (topology), 或は開集合系と呼ぶ:

(O1) \emptyset , $S \in \mathcal{O}$,

$$(O2) \quad O_1, O_2 \in \mathscr{O} \quad \Longrightarrow \quad O_1 \cap O_2 \in \mathscr{O},$$

(O3)
$$\mathscr{U} \subset \mathscr{O} \implies \bigcup \mathscr{U} = \bigcup_{U \in \mathscr{U}} U \in \mathscr{O}.$$

また \mathcal{O} の元を S の開集合 (open set) と呼び、補集合が開である集合を閉集合 (closed set) と呼ぶ.

R (resp. C) において, 部分集合 O で

• $O = \emptyset$, 又は任意の $x \in O$ に対し或る $r_x > 0$ が存在して $\{y \in \mathbf{R} \text{ (resp. C)} \mid |x - y| < r_x\} \subset O$ となる を満たすものの全体を O とおくと,O は $\mathbf{R} \text{ (resp. C)}$ の位相となる.以後 \mathbf{R} と \mathbf{C} には暗黙の裡にこの位相が入る.

定義 A.5.2 (内部・閉包). 位相空間の部分集合 A に対し,A に含まれる最大の開集合を A の内部 (interior) と呼び A^{o} や A^{i} で表す.また A を含む最大の閉集合を A の閉包 (closure) と呼び \overline{A} や A^{a} で表す.特に,

$$A$$
 が開 \iff $A = A^{\circ}$, A が閉 \iff $A = \overline{A}$. (A.20)

定理 A.5.3 (内部の補集合は補集合の閉包). A を位相空間の部分集合とするとき次が成り立つ.

$$A^{ic} = A^{ca}$$
, $A^{cic} = A^a$, $A^{ci} = A^{ac}$.

証明. $A^i \subset A$ より $A^{ic} \supset A^c$ が従い, A^{ic} が閉であるから $A^{ic} \supset A^{ca}$ となる.一方で $A^c \subset A^{ca}$ より $A \supset A^{cac}$ が従い, A^{cac} は開であるから $A^i \supset A^{cac}$ すなわち $A^{ic} \subset A^{ca}$ となる.A を A^c に替えれば残りの関係も得られる.

定義 A.5.4 (近傍・基本近傍系). 空でない位相空間 S において, $x \in S$ と $U \subset S$ に対し

 $x \in U^{o}$

が満たされるとき U は x の近傍 (neighborhood) であるという. 同様に $A \subset S$ と $V \subset S$ に対し

 $A \subset V^{o}$

が満たされるとき、V は A の近傍であるという. 点 x の近傍全体 (近傍系 (neighborhood system) と呼ぶ) を $\mathscr{V}(x)$ と書くとき、S は x の最大の近傍であるから $\mathscr{V}(x)$ は空ではない. また $\mathscr{V}(x)$ の空でない部分集合 $\mathscr{U}(x)$ が

 $\forall V \in \mathcal{V}(x), \quad \exists U \in \mathcal{U}(x), \quad U \subset V$

を満たすとき、 $\mathcal{U}(x)$ を x の基本近傍系 (local base) と呼ぶ.

定理 A.5.5 (基本近傍系は開集合を決定する)。S を空でない位相空間, $\mathscr{U}(x)$ を点 x の基本近傍系とすれば

O が S の開集合 \iff $O=\emptyset$, 或は任意の $x\in O$ に対し $U\subset O$ を満たす $U\in \mathscr{U}(x)$ が存在するが成立する. すなわち、 $\{\mathscr{U}(x)\}_{x\in S}$ を基本近傍系とする S の位相は唯一つである.

証明. 空でない部分集合 O が開集合なら任意の $x \in O$ に対し O は x の近傍となるから、或る $U \in \mathcal{U}(x)$ が存在して $U \subset O$ を満たす.逆に任意の $x \in O$ に対し $U \subset O$ を満たす $U \in \mathcal{U}(x)$ が存在するとき、

 $x\in U^{\rm o}\subset O^{\rm o}$

となり $O = O^{\circ}$ が成立するから O は開集合である.

定理 A.5.6 (基本近傍系は位相を復元する).

- (1) (S, O) を空でない位相空間とし、各点 $x \in S$ に対し $\mathscr{U}(x)$ を基本近傍系とすれば以下が成り立つ:
 - (LB1) $\mathcal{U}(x)$ は空ではなく、また任意の $U \in \mathcal{U}(x)$ は $x \in U$ を満たす.
 - (LB2) 任意の $U, V \in \mathcal{U}(x)$ に対し或る $W \in \mathcal{U}(x)$ が存在して $W \subset U \cap V$ を満たす.
 - (LB3) 任意の $U \in \mathcal{U}(x)$ に対し或る $V \in \mathcal{U}(x)$ が存在し、 $V \subset U$ かつ任意の $y \in V$ に対し $W_y \subset U$ を満たす $W_y \in \mathcal{U}(y)$ が取れる.
- (2) 空でない集合 S の各点 x に対し (LB1)(LB2)(LB3) を満たす部分集合族 $\mathcal{U}(x)$ が与えられれば、

 $\mathcal{O} := \{ O \subset S \mid O = \emptyset,$ 或は任意の $x \in O$ に対し $U \subset O$ を満たす $U \in \mathcal{U}(x)$ が存在する $\}$

により S に位相が定まり、 $\{\mathscr{U}(x)\}_{x\in S}$ は (S,\mathscr{O}) において基本近傍系となる.

(3) 空でない位相空間 (S, \mathcal{O}) から基本近傍系 $\{\mathcal{U}(x)\}_{x \in S}$ を得れば、 $\{\mathcal{U}(x)\}_{x \in S}$ を基本近傍系とする位相を (2) の手続きで構成することにより \mathcal{O} を復元できる.

証明.

(1) 任意の $U \in \mathcal{U}(x)$ は x の近傍であるから (LB1) が満たされる. また $U, V \in \mathcal{U}(x)$ に対し

$$x \in U^{\circ} \cap V^{\circ} = (U \cap V)^{\circ}$$

となるから $U\cap V$ は x の近傍であり (LB2) も従う. 任意に $U\in \mathscr{U}(x)$ を取れば、 U° は x の開近傍であるから或る $V\in \mathscr{U}(x)$ で $V\subset U^\circ$ を満たすものが存在する. このとき任意の $y\in V$ に対し U° は y の開近傍となるから

$$W_y \subset U^{\circ} \subset U$$

を満たす $W_y \in \mathcal{U}(y)$ が取れる. 従って (LB3) も得られる.

(2) $\mathscr{U}(x)$ は空ではないから $S\in \mathscr{O}$ となる. また $O_1,O_2\in \mathscr{O}$ を取れば、任意の $x\in O_1\cap O_2$ に対し

$$x \in U_1 \subset O_1$$
, $x \in U_2 \subset O_2$

を満たす $U_1, U_2 \in \mathcal{U}(x)$ が存在し、(LB2) より或る $U_3 \in \mathcal{U}(x)$ に対して

$$U_3 \subset U_1 \cap U_2 \subset O_1 \cap O_2$$

が成り立つから $O_1 \cap O_2 \in \mathcal{O}$ となる. 任意に $\mathcal{G} \subset \mathcal{O}$ を取れば任意の $x \in \bigcup \mathcal{G}$ は或る $G \in \mathcal{G}$ の点であるから,

$$U \subset G \subset \bigcup \mathscr{G}$$

を満たす $U \in \mathcal{U}(x)$ が存在し $\bigcup \mathscr{G} \in \mathscr{O}$ が従う. よって \mathscr{O} は位相である. ところで, 任意の $U \in \mathcal{U}(x)$ に対し

$$U^{\circ} = \{ y \in U \mid \text{ 或る } W_y \in \mathcal{U}(y) \text{ が存在して } W_y \subset U \text{ となる} \} =: \tilde{U}$$
 (A.21)

が成立する. 実際 Ø の定義より

$$y \in U^{\circ} \implies$$
 或る $W_y \in \mathcal{U}(y)$ で $W_y \subset U^{\circ}$

となるから $U^{\circ} \subset \tilde{U}$ が従い、逆に $y \in \tilde{U}$ については、(A.21) の W_y に対して (LB3) より或る $X_y \in \mathcal{U}(y)$ が

$$X_y \subset W_y$$
, $z \in X_y \Longrightarrow 或る Y_z \in \mathcal{U}(z)$ で $Y_z \subset X_y \subset U$

を満たすから $X_{\nu}\subset \tilde{U}$ が従う. すなわち \tilde{U} は開集合であり、 $U^{\circ}\subset \tilde{U}$ と併せて (A.21) を得る. (LB3) より

$$V \subset U$$
, $y \in V \Longrightarrow$ 或る $W_y \in \mathcal{U}(y)$ で $W_y \subset U$

を満たす $V \in \mathcal{U}(x)$ が存在し、(LB1) と併せて

$$x \in V \subset \tilde{U} = U^{\circ}$$

が成り立つから任意の $U \in \mathcal{U}(x)$ は x の近傍である.そして W を x の任意の近傍とすれば, \mathcal{O} の定め方より或る $U \in \mathcal{U}(x)$ が $U \subset W^{\circ}$ を満たすから $\mathcal{U}(x)$ は x の基本近傍系である.

(3) 定理 A.5.5 より $\{\mathscr{U}(x)\}_{x\in S}$ を基本近傍系とする位相は唯一つであるから主張が従う.

定義 A.5.7 (集積点・密集点). 位相空間 S の点 x と部分集合 A について, x の任意の近傍 U に対し

$$(U \setminus \{x\}) \cap A \neq \emptyset$$

となるとき, x は A の集積点 (accumulation point) であるという. 同様に x の任意の近傍 U に対し

$$U \cap A \neq \emptyset$$

となるとき, x は A の密集点 (cluster point) であるという.

集積点と密集点の明確な違いは T_1 空間 (後述) において現れる.

定理 A.5.8 (閉である一点集合は集積点を持たない). 位相空間において、閉じている一点集合は集積点を持たない、特に $\{x\}$ が閉であるとき、x は $\{x\}$ の密集点ではあるが集積点ではない.

証明. 一点集合 $\{x\}$ が閉であるとする. このとき $y \neq x$ なら $U := \{x\}^c$ は y の開近傍となり

$$(U \setminus \{y\}) \cap \{x\} = \emptyset$$

を満たすから y は $\{x\}$ の集積点ではない. x は $\{x\}$ の集積点となりえないから $\{x\}$ は集積点を持たない.

定理 A.5.9 (閉集合は密集点集合). 位相空間 S の点 x と部分集合 A について次が成り立つ:

$$x \in \overline{A} \iff x \text{ は } A \text{ の密集点である}.$$
 (A.22)

特に、A が閉であることと A の密集点全体が A に一致することは同値になる.

証明. x の或る近傍 U が $U \cap A = \emptyset$ を満たすとき,定理 A.5.3 より

$$x \in U^i \subset A^{ci} = A^{ac}$$

となり $x \notin \overline{A}$ が従う. 逆に $x \notin \overline{A}$ なら \overline{A}^c は A と交わらない x の開近傍となるから (A.22) が出る. また (A.20) より

$$A$$
 が閉 \iff $A = \overline{A}$ \iff A の密集点全体が A に一致

が成立する.

定理 A.5.10 ($x \in \overline{A \setminus \{x\}}$ $\Longrightarrow x$ が A の集積点). 位相空間 S の点 x と部分集合 A について次が成り立つ:

$$x \in A \setminus \{x\}$$
 \iff x は A の集積点である.

証明. x の任意の近傍 U に対し $U \cap (A \setminus \{x\}) = (U \setminus \{x\}) \cap A$ となるから、定理 A.5.9 と併せて

$$x \in \overline{A \setminus \{x\}}$$
 \iff x の任意の近傍 U に対し $U \cap (A \setminus \{x\}) \neq \emptyset$

$$\longleftrightarrow$$
 x の任意の近傍 U に対し $(U\setminus\{x\})\cap A\neq\emptyset$ \longleftrightarrow x は A の集積点

が成立する.

定義 A.5.11 (相対位相). (S, \mathcal{O}) を位相空間, $M \subset S$ を部分集合, $i: M \longrightarrow S$ を恒等写像とするとき,

$$\mathscr{O}_M := \left\{ i^{-1}(O) = O \cap M \mid O \in \mathscr{O} \right\}$$

で定める \mathcal{O}_M を M の相対位相 (relative topology) と呼ぶ.また相対位相が定まった部分集合をもとの空間に対し部分位相空間 (topological subspace) と呼び,紛れが無ければ単に部分空間とも呼ぶ.

定義 A.5.12 (被覆・コンパクト・相対コンパクト・局所コンパクト・ σ -コンパクト).

• 集合 S の部分集合族 \mathcal{B} が S の被覆 (cover) であるとは,

$$S = \bigcup \mathcal{B}$$

を満たすことをいう. また可算 (有限) 個の部分集合から成る被覆を可算 (有限) 被覆と呼ぶ. 特に, 位相空間において開集合のみから成る被覆を開被覆 (open cover) と呼ぶ.

- 集合 S の被覆 \mathscr{B} に対し,その部分集合で S の被覆となるものを \mathscr{B} の部分被覆 (subcover) と呼ぶ.部分 被覆が有限 (可算) 集合であるときは有限 (可算) 部分被覆と呼ぶ.
- 位相空間において任意の開被覆が有限部分被覆を持つとき、その空間はコンパクトである (compact) という. 位相空間の部分集合は、その相対位相でコンパクト空間となるときコンパクト部分集合と呼ばれる.
- 位相空間の部分集合で、その閉包がコンパクトであるものを相対コンパクトな (relatively compact) 部分 集合という.
- 位相空間の任意の点がコンパクトな近傍を持つとき、その空間は局所コンパクトである (locally compact) という
- 位相空間においてコンパクト集合から成る可算被覆が存在するとき、その空間は σ -コンパクトであるという.

集合 S とその部分集合 A に対し,S の部分集合族 \mathscr{B} で $A \subset \bigcup \mathscr{B}$ を満たすものを A の 'S における被覆' と呼ぶ. \mathscr{B} の構成要素が S の開集合である場合は 'S における開被覆' と呼び,他に 'S における部分被覆' や 'S における有限被覆' といった言い方もする.

定理 A.5.13 (部分集合のコンパクト性). A を位相空間 S の部分集合とするとき次が成り立つ:

A がコンパクト部分集合 \iff A の S における任意の開被覆が (S における) 有限部分被覆を含む.

証明. A がコンパクト部分集合であるとき、 \mathcal{B} を A の S における開被覆とすれば

$$\{B \cap A \mid B \in \mathcal{B}\}\$$

は部分空間 A における開被覆となり、有限個の $B_1, B_2, \cdots, B_n \in \mathcal{B}$ により

$$A = \bigcup_{i=1}^{n} (B_i \cap A) \subset \bigcup_{i=1}^{n} B_i$$

となるから \Longrightarrow が従う. 逆に右辺が満たされているとき, $\mathscr A$ を A の相対開集合から成る A の被覆として

$$\mathscr{C} := \{ C \subset S \mid C \text{ is } S \text{ on 開集合で } C \cap A \in \mathscr{A} \}$$

とおけば,

$$\mathcal{A} = \{ C \cap A \mid C \in \mathcal{C} \}$$

が満たされる. このとき $\mathscr C$ は A を覆うから有限個の $C_1,C_2,\cdots,C_m\in\mathscr C$ で $A\subset\bigcup_{j=1}^m C_j$ となり,

$$A = \bigcup_{j=1}^{m} (A \cap C_j)$$

かつ $A \cap C_i \in \mathcal{A}$ が成り立つから A はコンパクトである.

定理 A.5.14 (コンパクト集合の閉部分集合はコンパクト). S を位相空間, K,F をそれぞれ S のコンパクト部分集合, 閉集合とするとき, $K \cap F$ は S のコンパクト部分集合である.

証明. $K \cap F$ の任意の (S における) 開被覆に $S \setminus F$ を加えれば K の (S における) 開被覆となるから,そのうち K の有限部分被覆を取ることができる. $S \setminus F$ を除けば $K \cap F$ の有限被覆が残り $K \cap F$ のコンパクト性が出る.

定義 A.5.15 (有限交叉性). 集合 S の部分集合族 $\mathscr S$ について,その任意の有限部分族 $\mathscr S$ $\subset \mathscr S$ が $\bigcap \mathscr S \neq \emptyset$ を満たすとき $\mathscr S$ は有限交叉性 (finite intersection property) を持つという.

定理 A.5.16 (コンパクト \iff 閉集合族が有限交叉的). S を位相空間, A を S の部分集合とするとき,

A がコンパクト部分集合 \iff 任意の S の閉集合族 $\mathscr F$ に対し、 $\{F\cap A\mid F\in\mathscr F\}$ が有限交叉性を持つなら $A\cap\bigcap\mathscr F\neq\emptyset$.

証明. 定理 A.5.13 より

A がコンパクト部分集合

- \longleftrightarrow $A \cap S$ における任意の開被覆が (S における) 有限部分被覆を含む
- \iff 任意の S の閉集合族 $\mathscr F$ に対し、 $A\cap\bigcap\mathscr F=\emptyset$ なら或る有限族 $\mathscr M$ \subset $\mathscr F$ で $A\cap\bigcap\mathscr M=\emptyset$
- 任意の S の閉集合族 \mathscr{F} に対し、 $\{F \cap A \mid F \in \mathscr{F}\}$ が有限交叉性を持つなら $A \cap \bigcap \mathscr{F} \neq \emptyset$

が従う.

定義 A.5.17 (連続・同相・開写像). f を位相空間 S から位相空間 T への写像とする.

• $x \in S$ において f(x) の任意の任意の近傍の f による引き戻しが x の近傍となるとき, f は点 x で連続である (continuous at a point x) という.

- T の任意の開集合の f による引き戻しが S の開集合となるとき,f を**連続写像 (continuous mapping)** と呼ぶ.
- f に逆写像 f^{-1} が存在し,f, f^{-1} が共に連続であるとき,f を同相写像 (homeomorphism) や位相同型写像,或は単に同相や位相同型と呼ぶ.また S, T 間に同相写像が存在するとき S と T は同相である (homeomorphic),或は位相同型であるという.
- S の任意の開集合の f による像が T の開集合となるとき、 f を開写像 (open mapping) と呼ぶ.

定理 A.5.18 (コンパクト集合の連続写像による像はコンパクト).

定理 A.5.19 (各点連続 \iff 連続). f を位相空間 S から位相空間 T への写像とするとき次が成り立つ:

f が連続 \iff f が S の各点で連続.

証明. f が連続であるとき、各点 $x \in S$ で f(x) の任意の近傍 U に対し $f(x) \in U^{\circ}$ が満たされるから $f^{-1}(U^{\circ})$ は x を含む開集合となる. $f^{-1}(U^{\circ})$ は $f^{-1}(U)$ に含まれる開集合であるから

$$x \in f^{-1}(U^{\circ}) \subset f^{-1}(U)^{\circ}$$

が成り立ち、従って f は x で連続である.逆に f が各点連続であるとき、T の任意の開集合 O に対し $f^{-1}(O)$ は任意の $x \in f^{-1}(O)$ の近傍となるから定理 A.5.5 より $f^{-1}(O)$ は開集合である.よって f は連続である.

定理 A.5.20 (部分空間と制限写像の連続性). S,T を位相空間, f を S から T への写像とする. また $g:S\longrightarrow f(S)$ を f の終集合を f(S) へ制限した写像とする. このとき次が成り立つ:

 $f:S\longrightarrow T$ が連続である \iff $g:S\longrightarrow f(S)$ が (f(S)) の相対位相に関して) 連続である.

証明. $U \coloneqq f(S)$ とおけば T の任意の開集合 O に対し

$$g^{-1}(U \cap O) = f^{-1}(U \cap O) = f^{-1}(O)$$

が成り立つから、f と g の連続性は一致する.

定理 A.5.21 (位相の生成). S を集合, \mathcal{M} を S の部分集合の族として

$$\mathscr{A} \coloneqq \left\{ \bigcap \mathscr{F} \mid \mathscr{F} \text{ は } \mathscr{M} \text{ の有限部分集合} \right\}$$

とおくとき, M を含む最小の位相は

$$\mathscr{O} \coloneqq \left\{ \bigcup \Lambda \mid \quad \Lambda \subset \mathscr{A} \right\} \cup \{S\}$$

で与えられる. ただし $\bigcap \emptyset = \emptyset$, $\bigcup \emptyset = \emptyset$ とする. この \emptyset を M が生成する S の位相と呼ぶ.

証明. \mathcal{O} は定め方より S と \emptyset を含む. また任意の $O_1 = \bigcup \Lambda_1$, $O_2 = \bigcup \Lambda_2 \in \mathcal{O}$, $(\Lambda_1, \Lambda_2 \subset \mathcal{A})$ に対し

$$\Lambda := \{ I \cap J \mid I \in \Lambda_1, J \in \Lambda_2 \} \subset \mathscr{A}$$

となるから

$$O_1\cap O_2=\bigcup_{I\in\Lambda_1,\ J\in\Lambda_2}I\cap J=\bigcup\Lambda\in\mathcal{O}$$

が成立する. 任意に $\emptyset \neq \mathscr{U} \subset \mathscr{O}$ を取れば、各 $U \in \mathscr{U}$ に $U = \bigcup \Lambda_U$ を満たす $\Lambda_U \subset \mathscr{A}$ が対応し、このとき

$$\bigcup_{U\in\mathcal{U}}\Lambda_U\subset\mathcal{A}$$

となるから

$$\bigcup \mathcal{U} = \bigcup \left(\bigcup_{U \in \mathcal{U}} \Lambda_U\right) \in \mathcal{O}$$

が従う. ℳ を含む任意の位相は ℳ を含みかつその任意和で閉じるから ♂ を含む.

定理 A.5.22 (Alexander の定理).

定義 A.5.23 (始位相). $f \in \mathscr{F}$ を集合 S から位相空間 (T_f, \mathcal{O}_f) への写像とするとき、全ての $f \in \mathscr{F}$ を連続にする 最弱の位相を S の \mathscr{F} -始位相 (initial topology) と呼ぶ. \mathscr{F} -始位相は次が生成する位相である:

$$\bigcup_{f\in\mathcal{F}}\left\{f^{-1}(O)\mid\quad O\in\mathcal{O}_f\right\}.$$

A.5.2 分離公理

定義 A.5.24 (位相的に識別可能・分離). S を位相空間とする.

- $x, y \in S$ に対し $x \notin \{y\}$ 或は $y \notin \{x\}$ が満たされるとき, $x \in Y$ は位相的に識別可能である (topologically distinguishable) という.
- $A,B \subset S$ に対し $\overline{A} \cap B = \emptyset$ かつ $A \cap \overline{B} = \emptyset$ が満たされるとき, $A \otimes B$ は分離される (separeted) という. 点と点,点と集合の分離は一点集合を考える.
- A, $B \subset S$ が近傍で分離される (separated by neighborhoods) とは, A, B が互いに交わらない近傍を持つことをいう.
- 閉集合 $A,B \subset S$ が関数で分離される (separated by a function) とは、或る連続関数 $f:S \longrightarrow [0,1]$ に よって $f(A) = \{0\}$, $f(B) = \{1\}$ が満たされることをいう.
- 閉集合 $A, B \subset S$ が関数でちょうど分離される (precisely separated by a function) とは、或る連続関数 $f: S \longrightarrow [0,1]$ によって $A = f^{-1}(\{0\})$, $B = f^{-1}(\{1\})$ が満たされることをいう.

定理 A.5.25 (位相的に識別可能な二点は相異なる). S を位相空間とするとき,任意の $x,y \in S$ に対し $x \succeq y \text{ が位相的に識別可能} \implies x \neq y.$

証明. x = y なら $y \in \{x\}$ かつ $x \in \{y\}$ となる. 後述の T_0 空間とは, この逆が満たされる位相空間である.

定理 A.5.26 (分離される集合は他方を含まない近傍を持つ). 位相空間 S において, $A,B \subset S$ が分離されることと

$$A \subset U$$
, $B \subset V$, $A \cap V = \emptyset$, $B \cap U = \emptyset$ (A.23)

を満たす開集合 *U,V* が存在することは同値である.

証明. $A,B \subset S$ が分離されるとき, $U \coloneqq \overline{B}^c$, $V \coloneqq \overline{A}^c$ とおけば (A.23) が成立する.逆に A,B に対し (A.23) を満たす開集合 U,V が存在するとき, $\overline{A} \subset V^c \subset B^c$ 及び $\overline{B} \subset U^c \subset A^c$ となるから A,B は分離される.

定理 A.5.27 (部分空間の互いに素な閉集合はもとの空間で分離される). S を位相空間, T を S の部分集合とする. このとき T 上の相対閉集合 A, B に対し, $A \cap B = \emptyset$ ならば $A \cap \overline{B} = \emptyset$ かつ $\overline{A} \cap B = \emptyset$ が成り立つ. ただし上線は S における閉包を表す.

証明. A,B は一方が空なら分離される. そうでない場合は対偶を示す. $A \cap \overline{B} \neq \emptyset$ のとき, $x \in A \cap \overline{B}$ を取り, U を

x の T における近傍とすれば、x の S における近傍 V で $U = T \cap V$ を満たすものが存在する. このとき

$$U \cap B = (T \cap V) \cap B = T \cap (V \cap B) = V \cap B$$

となるが、一方で $x \in \overline{B}$ と定理 A.5.9 より

 $V \cap B \neq \emptyset$

が成り立ち、B は T で閉じているから $x \in B$ が従う. 対称的に $\overline{A} \cap B \neq \emptyset$ の場合も $A \cap B \neq \emptyset$ が成立する.

定義 A.5.28 (分離公理).

- 任意の二点が位相的に識別可能である位相空間を T_0 空間, 或は Kolmogorov 空間という.
- 任意の二点が分離される位相空間を T_1 空間という.
- 任意の二点が近傍で分離される位相空間を T_2 空間, 或は Hausdorff 空間という.
- 任意の交わらない点と閉集合が近傍で分離される位相空間を正則 (regular) 空間という.
- T_0 かつ正則な位相空間を T_3 空間, 或は正則 Hausdorff 空間という.
- 任意の交わらない点と閉集合が関数で分離される位相空間を完全正則 (completely regular) 空間という.
- T_0 かつ完全正則な位相空間を $T_{31/2}$ 空間や完全正則 Hausdorff 空間, 或は Tychonoff 空間という.
- 任意の交わらない二つの閉集合が近傍で分離される位相空間を正規 (normal) 空間という.
- T_1 かつ正規な位相空間を T_4 空間, 或は正規 Hausdorff 空間という.
- 任意の部分位相空間が正規である位相空間を全部分正規 (completely normal) 空間という.
- T_1 かつ全部分正規な位相空間を T_5 空間, 或は全部分正規 Hausdorff 空間という.
- 任意の交わらない二つの閉集合が関数でちょうど分離される位相空間を完全正規 (perfectly normal) 空間という.
- T_1 かつ完全正規な位相空間を T_6 空間, 或は完全正規 Hausdorff 空間という.

定理 A.5.29 (T_1 空間とは一点集合が閉である空間). 位相空間 S に対し,以下は全て同値になる:

- (b) S が T_0 であり、位相的に識別可能な任意の二点が分離される.
- (c) S の任意の一点集合が閉である.
- (d) $x \in S$ が $A \subset S$ の集積点であることと x の任意の開近傍が A と交わることは同値になる.

証明. x が A の集積点であるとき、任意に x の近傍 U を取る. いま、x の或る開近傍 U_{n-1} と $x_{n-1} \in U_{n-1}$ 、($x \neq x_{n-1}$) が取れたとして、

$$U_n := U_{n-1} \cap (S \setminus \{x_{n-1}\})$$

は x の開近傍となり或る $x_n \in (U_{n-1} \setminus \{x\}) \cap A$ が取れる. $U_0 \coloneqq U^\circ$, $x_0 \in (U^\circ \setminus \{x\}) \cap A$ を出発点とすれば A は U の無限集合 $\{x_n\}_{n=1}^\infty$ を含む.

 T_1 空間でも Hausdorff であるとは限らない. 実際, N において

$$\{O \subset \mathbf{N} \mid O = \emptyset, \ \mathbf{X} \mid \mathbf{N} \setminus O \ \text{が有限集合} \}$$

で位相を定めるとき、一点集合は常に閉となるが、任意の空でない二つの開集合は必ず交叉する (そうでないと有限集合が無限集合を包含することになる) ので Hausdorff 空間とはならない.一方で Hausdorff 空間は常に T_1 である.

定理 A.5.30 ($T_2 \Longrightarrow T_1$). Hausdorff 空間は T_1 である.

証明. x を Hausdorff 空間の点とする. x と異なる任意の点 y に対して

$$x \in U_y$$
, $y \in V_y$, $U_y \cap V_y = \emptyset$

を満たす開集合 U_{y} , V_{y} が存在し、このとき

$$\{x\} = \bigcap_{y: x \neq y} V_y^c$$

となるから $\{x\}$ は閉である. つまり Hausdorff 空間は T_1 である.

定理 A.5.31 (Hausdorff 空間のコンパクト部分集合は閉). Hausdorff 空間のコンパクト部分集合は閉である.

証明. S を Hausdorff 空間, $K \subset S$ をコンパクト部分集合とするとき, 任意に $x \in S \setminus K$, $y \in K$ を取れば

$$x \in U_y$$
, $y \in V_y$, $U_y \cap V_y = \emptyset$

を満たす開集合 U_y 、 V_y が取れる. 或る $\{y_i\}_{i=1}^n \subset K$ に対し $K \subset \bigcup_{i=1}^n V_{y_i}$ となるから, $U \coloneqq \bigcap_{i=1}^n U_{y_i}$ とおけば

$$x \in U$$
, $U \subset \bigcap_{i=1}^{n} (S \backslash V_{y_i}) \subset S \backslash K$

が成立する. 従って $S\setminus K$ は開集合であり、Kは閉集合である.

定理 A.5.32 (Hausdorff 空間とは交わらない二つのコンパクト集合が近傍で分離される空間). 位相空間において、Hausdorff であることと、交わらない二つのコンパクト部分集合が近傍で分離されることは同値である.

証明. A,B を Hausdorff 空間の交わらないコンパクト集合とするとき,任意の $p \in A$ に対し

$$p \in U_p, \quad B \subset V_p, \quad U_p \cap V_p = \emptyset$$
 (A.24)

を満たす開集合 U_p, V_p が存在する. 実際任意の $q \in B$ に対し

$$p \in U_p(q), \quad q \in V_p(q), \quad U_p(q) \cap U_p(q) = \emptyset$$

を満たす開集合 $U_p(q)$, $U_p(q)$ が取れ、B のコンパクト性より或る $\{q_i\}_{i=1}^n \subset B$ で $B \subset \bigcup_{i=1}^n U_p(q_i)$ となるから、

$$U_p := \bigcap_{i=1}^n U_p(q_i), \quad V_p := \bigcup_{i=1}^n V_p(q_i)$$

とおけば (A.24) が成立する. A のコンパクト性より或る $\{p_j\}_{j=1}^m \subset A$ で $A \subset \bigcup_{j=1}^m U_{p_j}$ となるから,

$$U \coloneqq \bigcup_{j=1}^m U_{p_j}, \quad V \coloneqq \bigcap_{j=1}^m V_{p_j}$$

とおけば A と B は U, V により分離される. 逆の主張は一点集合がコンパクトであることより従う.

定理 A.5.33 (Hausdorff 空間値連続写像の等価域は閉). S を位相空間, T を Hausdorff 空間, f, g を S から T への連続写像とするとき, $E := \left\{x \in S \mid f(x) = g(x)\right\}$ は S で閉じている. 特に $\overline{E} = X$ なら f = g となる.

証明. 任意に $x \in \{x \in S \mid f(x) \neq g(x)\}$ を取れば、Hausdorff 性より

$$f(x) \in A$$
, $g(x) \in B$, $A \cap B = \emptyset$

を満たす T の開集合 A, B が存在する. $f^{-1}(A) \cap g^{-1}(B)$ は x の開近傍であり,

$$f^{-1}(A) \cap g^{-1}(B) \subset \{ x \in S \mid f(x) \neq g(x) \}$$

となるから $\{x \in S \mid f(x) \neq g(x)\}$ は S の開集合である. 従って E は閉である.

定理 A.5.34 ($T_3 \Longrightarrow T_2$). T_3 空間は Hausdorff である.

証明. T_3 空間は T_0 であるから、相異なる二点 x,y に対して $x \in \overline{\{y\}}$ 或は $y \in \overline{\{x\}}$ が成り立つ. 正則性より

$$f(x) = 0, \quad f(y) = 1$$

を満たす連続写像が存在し、x,y は $f^{-1}([0,1/2))$ と $f^{-1}((1/2,1])$ で分離される.

定理 A.5.35 (正則空間とは交わらないコンパクト集合と閉集合が近傍で分離される空間).

- (1) 位相空間において,正則性と,交わらないコンパクト集合と閉集合が近傍で分離されることは同値である.
- (2) $K, W, (K \subset W)$ をそれぞれ局所コンパクトな T_3 空間のコンパクト集合、開集合とするとき、相対コンパクトな開集合 U が存在して次を満たす:

$$K \subset U \subset \overline{U} \subset W$$
.

証明.

(1) K, F を正則空間のコンパクト集合、閉集合とするとき、 $K \cap F = \emptyset$ なら任意の点 $x \in K$ に対して

$$x \in U_x$$
, $F \subset V_x$, $U_x \cap V_x = \emptyset$

を満たす開集合 U_x , V_x が取れる. K はコンパクトであるから或る $\{x_i\}_{i=1}^n \subset K$ で $K \subset \bigcup_{i=1}^n U_{x_i}$ となり

$$K \subset U := \bigcup_{i=1}^{n} U_{x_i}, \quad F \subset V := \bigcap_{i=1}^{n} V_{x_i}, \quad U \cap V = \emptyset$$

が成立する. 逆の主張は一点集合がコンパクトであることにより従う.

(2) 任意の $x \in K$ に対し, $F_x \subset W$ を満たす閉近傍 F_x とコンパクトな近傍 C_x が存在する.或る $\{y_i\}_{i=1}^m \subset K$ で

$$K \subset \left(C_{y_1}^{\circ} \cap F_{y_1}^{\circ}\right) \cup \cdots \cup \left(C_{y_m}^{\circ} \cap F_{y_m}^{\circ}\right)$$

となるが、ここで $U := \bigcup_{i=1}^m C_{y_i}^\circ \cap F_{y_i}^\circ$ とおけば、Hausdorff 空間において C_{y_i} は閉じているから

$$\overline{U} \subset \bigcup_{i=1}^m C_{y_i}$$

が成り立つ. 定理 A.5.14 より \overline{U} のコンパクト性が得られ, かつこのとき

$$K \subset U \subset \overline{U} \subset \bigcup_{i=1}^m F_{y_i} \subset W$$

も満たされる.

定理 A.5.36 (完全正則なら正則).

定理 A.5.37 (完全正則空間とは交わらないコンパクト集合と閉集合が関数で分離される空間). 位相空間において、完全正則であることと、交わらないコンパクト集合と閉集合が関数で分離されることは同値である.

証明. K,C をそれぞれ完全正則空間 S のコンパクト部分集合と閉集合とする. 任意の $x \in K$ に対し

$$f_x(y) = \begin{cases} 0, & (y = x), \\ 1, & (y \in C) \end{cases}$$

を満たす連続写像 $f_x:S\longrightarrow [0,1]$ が存在し、K のコンパクト性より或る $x_1,x_2,\cdots,x_n\in K$ で

$$K \subset \bigcup_{i=1}^{n} \left\{ x \in K \mid f_{x_i}(x) < \frac{1}{2} \right\}$$

が成り立つ. $x \in K$ なら $\prod_{i=1}^n f_{x_i}(x) < 1/2$, $x \in C$ なら $\prod_{i=1}^n f_{x_i}(x) = 1$ となるから, $f \coloneqq \prod_{i=1}^n f_{x_i}$ として

$$g(x) \coloneqq 2 \max\left\{f(x), \frac{1}{2}\right\} - 1$$

により連続写像 $g:S \longrightarrow [0,1]$ を定めれば

$$g(x) = \begin{cases} 0, & (x \in K), \\ 1, & (x \in C) \end{cases}$$

が従う. すなわち K,C は g で分離される. 一点はコンパクトであるから逆の主張も得られる.

定理 A.5.38 (実数値関数の族が生成する始位相は完全正則). S を集合とし、 $\mathscr C$ を S から $\mathbf R$ への実数値関数の集合とする. このとき S は $\mathscr C$ -始位相により完全正則空間となる.

証明. S に \mathscr{C} -始位相を入れるとき, 任意の $x \in S$ と x を含まない (空でない) 始位相の閉集合 F に対して

$$x \in \bigcap_{i=1}^{n} f_i^{-1}(O_i) \subset S \backslash F$$

を満たす $f_i \in \mathcal{C}$ と \mathbf{R} の開集合 O_i , $(i=1,\cdots,n)$ が取れる. \mathbf{R} は完全正則であるから, 各 i で

$$g_i: \mathbf{R} \longrightarrow [0,1]$$

かつ

$$g_i(f_i(x)) = 1$$

かつ

$$r \in \mathbf{R} \backslash O_i \Longrightarrow g_i(r) = 0$$

を満たす連続写像 g_i が存在して,

$$y \in S \setminus f_i^{-1}(O_i) \Longrightarrow g_i(f_i(y)) = 0$$

が成立する.

$$x \in S \Longrightarrow h(x) = \min \left\{ g_1(f_1(x)), g_2(f_2(x)), \cdots, g_n(f_n(x)) \right\}$$

なる写像 h を定めれば, h は

$$h: S \longrightarrow [0,1]$$

を満たし、 \mathscr{C} -始位相に関して連続であり、h(x) = 1かつ F上で 0となる.

定理 A.5.39 (完全正則空間の位相は実連続写像全体の始位相に一致する). (S, \mathcal{O}) を位相空間とし,C(S) を実連続写像の全体とし,

209

$$\mathcal{Z} := \left\{ \bigcap_{f \in \mathcal{F}} f^{-1} * \{0\} \mid \mathcal{F} \subset C(S) \land \mathcal{F} \neq \emptyset \right\}$$

とおくとき,以下は同値となる:

- (a) S が完全正則である.
- (b) $S \cap C(S)$ -始位相が \mathcal{O} に一致する.
- (c) S の閉集合全体と $\mathscr Z$ が一致する.

証明.

 $(a) \Longrightarrow (c)$ S が完全正則であるとき、 $C = \emptyset$ なら

$$f: S \longrightarrow \{1\}$$

x = f(x), C = S(x)

$$f: S \longrightarrow \{0\}$$

なる f により

$$C = f^{-1} * \{0\}$$

となる. C が \emptyset でも S でもない閉集合であるとき、任意の $x \in S \setminus C$ に対し或る $f_x \in C(S)$ で

$$f_x(y) = \begin{cases} 1, & (y = x), \\ 0, & (y \in C) \end{cases}$$

を満たすものが存在する. このとき

$$C \subset \bigcap_{x \in S \setminus C} f_x^{-1} * \{0\}$$

となるが,一方で

$$x \notin C \Longrightarrow x \notin f_x^{-1} * \{0\}$$

も成り立つので

$$C = \bigcap_{x \in S \setminus C} f_x^{-1} * \{0\}$$

が成り立つ. 従って

$$C \in \mathcal{Z}$$

となる. 一方で $f \in C(S)$ に対し $f^{-1} * \{0\}$ は閉であるから $\mathscr Z$ は S の閉集合の族であり (c) が満たされる.

 $(c) \Longrightarrow (b)$ C(S) の要素は \mathcal{O} に関して連続であり、C(S)-始位相は C(S) のすべての要素を連続にする最弱の位相であるから、

$$C(S)$$
-始位相 $\subset \mathcal{O}$

が成り立つ. 一方で (c) が満たされているとき, O を \emptyset の要素とすると

$$S \setminus O = \bigcap_{f \in \mathscr{F}} f^{-1} * \{0\}$$

を満たす $\subset \{f^{-1}(\{0\}) \mid f \in C(S)\}$ の部分集合 $\mathscr F$ が存在して、

$$O = \bigcup_{f \in \mathcal{F}} f^{-1} * (\mathbf{R} \setminus \{0\})$$

となる. 各 f で $f^{-1}*(\mathbf{R}\setminus\{0\})$ は C(S)-始位相の要素であるから、その合併である O も C(S)-始位相の要素である. ゆえに (b) が従う.

 $(b) \Longrightarrow (a)$ 定理 A.5.38 より従う.

定理 A.5.40 (正規空間とは交わらない二つの閉集合が関数で分離される空間 (Urysohn の補題)). 位相空間において,正規性と,任意の交わらない二つの閉集合が関数で分離されることは同値である.

定理 A.5.41 (正則かつ正規なら完全正則). 正則かつ正規な (空でない) 位相空間は完全正則である.

証明. 点 x と空でない閉集合 F, $(x \notin F)$ に対し、正則なら x の閉近傍 E で $E \cap F = \emptyset$ を満たすものが取れる. 加えて正規なら、Urysohn の補題より E と F は関数で分離されるから x と F も関数で分離される.

定理 A.5.42 ($T_4 \Longrightarrow T_3$).

定理 A.5.43 ($T_6 \Longrightarrow T_5 \Longrightarrow T_4$). 完全正規空間は全部分正規である. 特に,全部分正規なら正規であるから $T_6 \Longrightarrow T_5 \Longrightarrow T_4$ となる.

証明. S を T_6 空間, T を S の部分位相空間, A, B を T の空でない閉集合とするとき, 定理 A.5.27 より

$$A \cap \overline{B} = \emptyset$$
, $\overline{A} \cap B = \emptyset$

となる. ただし上線はSにおける閉包を表す. 完全正規性より

$$\overline{A} = f^{-1}(\{0\}), \quad \overline{B} = g^{-1}(\{0\}), \quad \left(f^{-1}(\{1\}) = \emptyset = g^{-1}(\{1\})\right)$$

を満たす連続写像 $f,g:S\longrightarrow [0,1]$ が取れるから、ここで $h:S\longrightarrow \mathbf{R}$ を $h\coloneqq f-g$ で定めれば

$$\begin{cases} h(x) < 0, & (x \in A), \\ h(x) > 0, & (x \in B) \end{cases}$$

が成り立ち, $A\subset T\cap h^{-1}((-\infty,0))$ かつ $B\subset T\cap h^{-1}((0,\infty))$ より A,B は T における開近傍で分離される.

定義 A.5.44 (G_{δ} 集合・ F_{σ} 集合). 位相空間の部分集合で,開集合の可算交叉で表されるものを G_{δ} 集合,閉集合の可算和で表されるものを F_{σ} 集合と呼ぶ.特に,任意の閉集合が G_{δ} である空間では任意の開集合が F_{σ} となる.

定理 A.5.45 (完全正規空間とは正規かつ閉集合が全て G_δ である空間).

(1) F を完全正規空間の閉集合とすれば、次を満たす閉集合系 $(F_n)_{n=1}^{\infty}$ が存在する:

$$F = \bigcap_{n=1}^{\infty} F_n, \quad F_n^{\text{o}} \supset F_{n+1}.$$

(2) 位相空間において、完全正規であることと、正規かつ任意の閉集合が G_{δ} であることは同値である.

証明. S を完全正規空間, A, B を互いに交わらない S の閉集合とすれば, $A = f^{-1}(\{0\})$, $B = f^{-1}(\{1\})$ を満たす連続関数 $f: S \longrightarrow \mathbf{R}$ が存在する. このとき $U \coloneqq f^{-1}([0,1/2))$, $V \coloneqq f^{-1}([1/2,1])$ で開集合 U, V を定めれば

$$A \subset U$$
, $B \subset V$, $U \cap V = \emptyset$

となるから S は正規である. また F を閉集合とすれば或る連続関数 $g:S\longrightarrow \mathbf{R}$, $(\emptyset = g^{-1}(\{1\}))$ により

$$F = g^{-1}(\{0\}) = g^{-1}\left(\bigcap_{n=1}^{\infty} [0, n^{-1})\right) = \bigcap_{n=1}^{\infty} g^{-1}\left([0, n^{-1})\right)$$

が成立するから F は G_δ である. 特に,このとき $F_n \coloneqq g^{-1}\left(\left[0,n^{-1}\right]\right)$ とおけば

$$F = \bigcap_{n=1}^{\infty} g^{-1}\left(\left[0, n^{-1}\right]\right) = \bigcap_{n=1}^{\infty} F_n, \quad F_n^{\circ} \supset g^{-1}\left(\left[0, n^{-1}\right)\right) \supset g^{-1}\left(\left[0, (n+1)^{-1}\right]\right) = F_{n+1}$$

となり (1) の主張が得られる. 逆に S が正規かつ閉集合が全て G_δ であるとき, 任意の交わらない閉集合 A, B に対し $A=\bigcap_{n=1}^\infty U_n$, $B=\bigcap_{n=1}^\infty V_n$ を満たす開集合系 $(U_n)_{n=1}^\infty$, $(V_n)_{n=1}^\infty$ が取れて, 定理 A.5.40 より各 $n\geq 1$ で

$$f_n(A) = \{0\}, \quad f_n(S \setminus U_n) = \{1\}, \quad g_n(B) = \{0\}, \quad g_n(S \setminus V_n) = \{1\}$$

を満たす連続写像 $f_n, g_n: S \longrightarrow [0,1]$ が存在する.ここで連続写像を $f \coloneqq \sum_{n=1}^\infty 2^{-n} f_n, \ g \coloneqq \sum_{n=1}^\infty 2^{-n} g_n$ で定めれば

$$\begin{cases} f(x) = 0, & (x \in A), \\ f(x) > 0, & (x \notin A), \end{cases} \begin{cases} g(x) = 0, & (x \in B), \\ g(x) > 0, & (x \notin B), \end{cases}$$

となり, $h \coloneqq f/(f+g)$ とおけば $A = h^{-1}(\{0\})$, $B = h^{-1}(\{1\})$ が成立する.従って S は完全正規である.

定理 A.5.46 (連続な単射の引き戻しによる分離性の遺伝). S,T を位相空間とする. S から T への連続単射が存在するとき, T が T_k -空間 ($k=0,1,\cdots,6$) なら S もまた T_k -空間となる.

証明. 任意に異なる二点 $s_1, s_2 \in S$ を取れば単射性より $f(s_1) \neq f(s_2)$ となる. T の分離性より

A.5.3 可算公理

定理 A.5.47 (可算コンパクト性の同値条件).

定義 A.5.48 (開基). 位相空間 (S, \mathcal{O}) において、 \mathcal{O} の部分集合 \mathcal{B} で

$$\mathcal{O} = \left\{ \bigcup \mathcal{U} \mid \quad \mathcal{U} \subset \mathcal{B} \right\}$$

を満たすもの、ただし $\bigcup \emptyset = \emptyset$ 、を \emptyset の開基や基底、基 (base) と呼ぶ、基底は一意に定まるものではない、

定義 A.5.49 (可算公理). 位相空間 S において,任意の点が高々可算な基本近傍系を持つとき S は第一可算公理 (the first axiom of countability) を満たす,或は S は第一可算であるといい,S が高々可算な基底を持つとき S は第二可算公理 (the second axiom of countability) を満たす,或は S は第二可算であるという.

空集合 (要素数 0) を含む任意の有限位相空間は、その冪集合が有限集合であるから第二可算公理を満たす。

定理 A.5.50 (第二可算なら第一可算). 空でない第二可算空間は第一可算である.

証明. \mathscr{B} を空でない第二可算空間 S の可算基とするとき、任意の $x \in S$ に対して

$$\mathscr{U}(x) := \{ B \in \mathscr{B} \mid x \in B \}$$

で可算な基本近傍系が定まる. 実際 x の任意の近傍 U に対し或る $B \in \mathcal{B}$ で

$$x \in B \subset U^{o}$$

が成立し、定義より $B \in \mathcal{U}(x)$ が満たされる.

定義 A.5.51 (稠密・可分). 位相空間 S において, $\overline{M}=S$ を満たすような部分集合 M を S で稠密な (dense) 部分集合と呼ぶ.また高々可算かつ稠密な部分集合 M が存在するとき S は可分である (separable) という.

定理 A.5.52 (第二可算なら可分). 第二可算位相空間は可分である.

証明. \mathscr{B} を第二可算空間 S の可算基とするとき, $S=\emptyset$ なら \emptyset は S の唯一の部分集合であり, 要素数 0 かつ $\overline{\emptyset}=\emptyset=S$ を満たすから S は可分である. $S\neq\emptyset$ のとき, 選択関数 $\Phi\in\Pi$ $\mathscr{B}=\prod_{B\in\mathscr{B}}B$ を取り

$$M := \{ \Phi(B) \mid B \in \mathcal{B} \}$$

で可算集合を定めれば、任意の $x \in S$ 及び x の任意の近傍 U に対し $x \in B \subset U^o$ を満たす $B \in \mathcal{B}$ が存在して

$$\Phi(B) \in B \cap M \subset U \cap M$$

となるから、定理 A.5.9 より $S = \overline{M}$ が成立する.

定義 A.5.53 (局所有限). $\mathscr F$ を位相空間 S の部分集合族とする. 任意の $x \in S$ が $\mathscr F$ の高々有限個の元としか交叉 しない近傍を持つとき, $\mathscr F$ は局所有限 (locally finite) であるという. つまり, $\mathscr F$ が局所有限であることの論理 式で表現すると

 $\forall x \in S \exists V \in \mathcal{V}(x) \exists \mathcal{G} \in \mathcal{P}(\mathcal{F}) \ (\exists i \in \omega(\mathcal{G} \simeq i) \land \forall G \in \mathcal{G}(V \cap G \neq \emptyset) \land \forall F \in \mathcal{F} \backslash \mathcal{G}(V \cap F = \emptyset)).$

また \mathscr{F} が局所有限な部分集合族の高々可算個の合併で表されるとき、 \mathscr{F} は σ -局所有限であるという。

後述の一様位相空間 (距離空間や位相線型空間に共通する構造が定義された空間) の或るクラスは σ -局所有限な基底を持つ (定理 A.5.87). 従って以下のいくつかの定理はそのまま距離空間や第一可算位相線型空間に適用される.

定理 A.5.54 (σ -局所有限な基底が存在すれば第一可算). σ -局所有限な基底が存在する空でない位相空間は第一可算である.

証明. S を空でない位相空間, $\mathscr{B} = \bigcup_{n=1}^{\infty} \mathscr{B}_n$ を σ -局所有限な基底とする (各 \mathscr{B}_n は局所有限). 任意の $x \in S$ で

$$\mathscr{U}_n(x) := \{ B \in \mathscr{B}_n \mid x \in B \}, \quad \mathscr{U}(x) := \bigcup_{n=1}^{\infty} \mathscr{U}_n(x)$$

と定めれば、局所有限性より $\mathcal{U}_n(x)$ は有限であるから $\mathcal{U}(x)$ は高々可算である. また x の任意の近傍 U に対し

$$x \in B \subset U^{o}$$

を満たす $B \in \mathcal{B}$ が存在し、定義より $B \in \mathcal{U}(x)$ が成り立つから $\mathcal{U}(x)$ は x の高々可算な基本近傍系をなす。

定理 A.5.55 (可分空間の局所有限な開集合族は高々可算集合). S を空でない可分位相空間, M を S で稠密な高々可算集合, \mathcal{B} を S の空でない開集合から成る族とするとき,

$$\mathcal{B} = \bigcup_{m \in M} \{ B \in \mathcal{B} \mid m \in B \}$$
 (A.25)

が成立する. 特に \mathscr{B} が局所有限なら \mathscr{B} は高々可算集合である.

証明. 稠密性より任意の $E \in \mathcal{B}$ は $E \cap M \neq \emptyset$ を満たすから、 $m \in E \cap M$ で $E \in \{B \in \mathcal{B} \mid m \in B\}$ となり (A.25) が出る. \mathcal{B} が局所有限なら $\{B \in \mathcal{B} \mid m \in B\}$ は全て有限集合となり \mathcal{B} は高々可算集合となる.

定理 A.5.56 (σ -局所有限な基底が存在すれば、可分 \iff 第二可算). σ -局所有限な基底が存在する空でない位相 空間において、可分であることと第二可算であることは同値になる.

証明. 空でない可分位相空間において σ -局所有限な基底が存在するとき,定理 A.5.55 よりその基底は高々可算集合であるから第二可算性が満たされる. 逆に第二可算なら可分であるから定理の主張を得る.

定理 A.5.57 (正則かつ σ-局所有限な基底を持つ ⇒ 完全正規).

定義 A.5.58 (細分・パラコンパクト).

• \mathscr{A} と \mathscr{B} を或る集合の被覆とする. 任意の $B \in \mathscr{B}$ に対し $B \subset A$ を満たす $A \in \mathscr{A}$ が存在するとき, \mathscr{B} を \mathscr{A} の細分 (refinement) と呼ぶ. 位相空間において,被覆の細分で元が全て開 (閉) 集合であるものを開 (閉) 細分 (open(closed) refinement) と呼ぶ.

• 任意の開被覆が局所有限な開細分を持つ位相空間はパラコンパクト (paracompact) であるという.

定理 A.5.59 (正則空間の開被覆に対し、 σ -局所有限な開細分が存在する \iff 局所有限な開細分が存在する). S を正則空間、 $\mathscr S$ を S の開被覆とするとき、以下は全て同値になる:

- (a) $\mathscr S$ が σ -局所有限な開細分を持つ.
- (b) *劉* が局所有限な細分を持つ.

定理 A.5.60 (第二可算空間の任意の基底は可算基を内包する). \mathscr{B} を第二可算空間 S の任意の基底とするとき,或る可算部分集合 $\mathscr{B}_0 \subset \mathscr{B}$ もまた S の基底となる.

証明. \mathscr{D} を S の可算基とする. 任意の開集合 U に対し或る $\mathscr{B}_U \subset \mathscr{B}$ が存在して $U = \bigcup_{V \in \mathscr{B}_U} V$ を満たすから,

$$\mathcal{D}_{U} := \{ W \in \mathcal{D} \mid W \subset V, V \in \mathcal{B}_{U} \} \tag{A.26}$$

とおけば $U=\bigcup_{V\in \mathscr{B}_U}V=\bigcup_{V\in \mathscr{B}_U}\bigcup_{\substack{W\in \mathscr{D}_U\\W\subset V}}W\subset\bigcup_{W\in \mathscr{D}_U}W\subset U$ より

$$U = \bigcup_{W \in \mathcal{D}_{II}} W \tag{A.27}$$

が成り立つ. ここで (A.26) より任意の $W\in \mathcal{D}_U$ に対して $\{V\in \mathcal{B}\mid W\subset V\}\neq\emptyset$ であるから

$$\Phi_U \in \prod_{W \in \mathcal{D}_U} \{ \, V \in \mathcal{B} \, | \quad W \subset V \, \}$$

が取れる. $\mathscr{B}'_U \coloneqq \{\Phi_U(W) \mid \quad W \in \mathscr{D}_U \}$ とすれば $U = \bigcup_{W \in \mathscr{D}_U} W \subset \bigcup_{W \in \mathscr{D}_U} \Phi(W) \subset \bigcup_{V \in \mathscr{B}'_U} V \subset U$ より

$$U = \bigcup_{V \in \mathscr{B}_{II}'} V \tag{A.28}$$

が満たされ,

$$\mathcal{B}_0 \coloneqq \bigcup_{W \in \mathcal{D}} \mathcal{B}_W'$$

と定めれば \mathcal{B}_0 は求める S の可算基となる. 実際,任意の開集合 U に対し (A.27) と (A.28) より

$$U = \bigcup_{W \in \mathcal{D}_U} W = \bigcup_{W \in \mathcal{D}_U} \bigcup_{V \in \mathcal{B}_W'} V$$

となる.

定理 A.5.61 (局所コンパクト Hausdorff 空間が第二可算なら σ -コンパクト). S が第二可算性をもつ局所コンパクト Hausdorff 空間なら、次を満たすコンパクト部分集合の列 $(K_n)_{n=1}^{\infty}$ が存在する:

$$K_n \subset K_{n+1}^{\circ}, \quad S = \bigcup_{n=1}^{\infty} K_n.$$

証明. 任意の $x \in S$ に対して閉包がコンパクトな開近傍 U_x を取っておく. O を S の開集合系として

$$\mathscr{B} \coloneqq \left\{ U \in \mathscr{O} \mid \overline{U} \text{ } \vec{u} \text{ } \vec{u$$

とおけば、 \mathscr{B} は \mathscr{O} の基底となる. 実際, 任意の $O \in \mathscr{O}$ に対し $O \cap U_x \in \mathscr{B}$ かつ

$$O = \bigcup_{x \in O} O \cap U_x$$

となる.従って定理 A.5.60 より或る可算部分集合 $\{U_n\}_{n=1}^\infty\subset \mathcal{B}$ が \mathcal{O} の基底となる.いま, $K_1\coloneqq\overline{U_1}$ として,また コンパクト集合 K_n が選ばれたとして, K_n の有限被覆 $\mathcal{U}_n\subset \mathcal{B}_0$ を取り

$$K_{n+1} := \overline{U_{n+1}} \cup \bigcup_{V \in \mathcal{U}_n} \overline{V}$$

とすれば、 K_{n+1} はコンパクトであり $K_n \subset K_{n+1}^o$ を満たす。この操作で $(K_n)_{n=1}^\infty$ を構成すれば

$$S = \bigcup_{n=1}^{\infty} U_n \subset \bigcup_{n=1}^{\infty} K_n \subset S$$

が成立する.

A.5.4 商位相

定理 A.5.62 (商位相). 位相空間 (S, \mathcal{O}) に同値関係 ~ が定まっているとき, $x \in S$ からその同値類 $\pi(x)$ への対応

$$\pi: S \ni x \longmapsto \pi(x) \in S/\sim$$

を商写像 (quotient mapping) という. すなわち商写像は

$$x \sim y \iff \pi(x) = \pi(y)$$

を満たす、また、商写像を連続にする S/~ の最強の位相、つまり

$$\mathcal{O}(S/\sim) := \left\{ \left. V \subset S/\sim \right| \quad \pi^{-1}(V) \in \mathcal{O} \right. \right\}$$

で定まる位相を S/\sim の商位相 (quotient topology) という.

定理 A.5.63 (商空間が $T_1 \iff$ 同値類が元の空間で閉じている). S を位相空間, \sim を S 上の同値関係, $\pi:S \longrightarrow S/\sim$ を商写像とする. このとき次が成り立つ:

 S/\sim が T_1 空間である \iff 任意の $x \in S$ に対し $\pi(x)$ が S の閉集合である.

証明. 任意の $F \subset S/\sim$ に対し

$$F$$
 が閉 \iff $\pi^{-1}(F^c) = \pi^{-1}(F)^c$ が開 \iff $\pi^{-1}(F)$ が閉

となる. いま任意の $x \in S$ に対し $\pi(x) = \pi^{-1}(\pi(x))$ が満たされているから定理の主張を得る.

定理 A.5.64 (商写像が開なら、商空間が Hausdorff \iff 対角線集合が閉). S を位相空間、 \sim を S 上の同値関係、 $\pi:S\longrightarrow S/\sim$ を商写像とする. このとき、 π が開写像であれば次が成立する:

$$S/\sim$$
 が Hausdorff \iff $\{(x,y)\in S\times S\mid x\sim y\}$ が閉.

証明. S/\sim が Hausdorff であるとき, $x \nsim y$ を満たす $(x,y) \in S \times S$ に対し $\pi(x) \neq \pi(y)$ となるから

$$\pi(x) \in U$$
, $\pi(y) \in V$, $U \cap V = \emptyset$

を満たす S/\sim の開集合 U,V が取れる. このとき $\pi^{-1}(U) \times \pi^{-1}(V)$ は $S \times S$ の開集合であり

$$(x, y) \in \pi^{-1}(U) \times \pi^{-1}(V) \subset \{(s, t) \in S \times S \mid s \not\sim t\}$$

が成り立つから \Longrightarrow が得られる. 逆に $\{(s,t) \in S \times S \mid s \neq t\}$ が開集合であるとき, $\pi(x) \neq \pi(y)$ なら

$$(x, y) \in U \times V \subset \{(s, t) \in S \times S \mid s \not\sim t\}$$

を満たすSの開集合U,Vが存在し、このとき

$$\pi(x) \in \pi(U), \quad \pi(y) \in \pi(V), \quad \pi(U) \cap \pi(V) = \emptyset$$

となりかつ π が開写像であるから \longleftarrow が従う.

系 A.5.65 (Hausdorff \iff 対角線集合が閉). S を位相空間とするとき,

S が Hausdorff である \iff $\{(x,x) \mid x \in S\}$ が $S \times S$ で閉じている.

証明. 等号 = を同値関係と見れば S と S/= は商写像により同相となるから、定理 A.5.64 より

$$S$$
 が Hausdorff \iff $S/=$ が Hausdorff \iff $\{(x,x) \mid x \in S\}$ が閉

が成立する.

定義 A.5.66 ((位相的) 埋め込み写像). S,T を位相空間とするとき, S から T への (位相的) 埋め込み (embedding) とは、連続な単射 $i:S \longrightarrow T$ で、S と (相対位相を入れた) i(S) を i (の終集合を i(S) に制限した全単射) により同相とするものである.

定義 A.5.67 (コンパクト化). S をコンパクトではない位相空間, K をコンパクト位相空間として, S が K に稠密 に埋め込まれるとき, 言い換えれば, S から K への位相的埋め込み i が存在して i(S) が K で稠密となるとき, K を (埋め込み i による) S のコンパクト化 (compactification) と呼ぶ.

定理 A.5.68 (一点を追加すればコンパクト空間となる (Alexandroff 拡大)). S をコンパクトではない位相空間, x_∞ を S に属さない点とする. このとき $K \coloneqq S \cup \{x_\infty\}$ とおいて, K の部分集合 U で

- $x_{\infty} \notin U$ なら U は S の開集合
- $x_{\infty} \in U$ なら $K \setminus U$ は S で閉かつコンパクト

となるものの全体を O と定めれば、O は K 上の位相となり、K は S の (S から K への恒等写像による) コンパクト化となる. また以下が成立する:

- $(1) S h^{\xi} T_1 \iff K h^{\xi} T_1.$
- (2) S が局所コンパクト Hausdorff \iff K が Hausdorff.
- (3) S が Hausdorff であるとき、S の位相を含み、かつ K をコンパクト Hausdorff 空間とするような K 上の位相は O のみである.

証明.

第一段 \mathcal{O} が K 上の位相であることを示す. 先ず \emptyset (= $K\setminus K$) は S で開,閉及びコンパクトであるから $K,\emptyset\in\mathcal{O}$ となる. また $U,V\in\mathcal{O}$ を取れば,

- $x_{\infty} \notin U$ かつ $x_{\infty} \notin V$ なら U, V は S の開集合であるから $U \cap V \in \mathcal{O}$.
- $x_{\infty} \in U \text{ bol} x_{\infty} \notin V \text{ obs}, V' := V \setminus \{x_{\infty}\} \text{ bol} x$

$$K \backslash V = S \backslash V'$$

となり、 $K \setminus V$ は S で閉じているから V' は S の開集合であり $U \cap V = U \cap V' \in \mathcal{O}$ が従う.

• $x_{\infty} \in U$ かつ $x_{\infty} \in V$ のとき, $K \setminus (U \cap V) = (K \setminus U) \cup (K \setminus V)$ より $K \setminus (U \cap V)$ は S で閉かつコンパクトなので $U \cap V \in \mathcal{O}$ となる.

従って $\mathscr O$ は有限交叉で閉じる. 任意の $\mathscr U$ \subset $\mathscr O$ に対し $\mathscr U_1$:= $\{U \in \mathscr U \mid x_\infty \in U\}$, $\mathscr U_2$:= $\{U \in \mathscr U \mid x_\infty \notin U\}$ とおけば, $\mathscr U_2$ の元は S の開集合なので $x_\infty \notin \bigcup \mathscr U$ なら $\bigcup \mathscr U = \bigcup \mathscr U_2 \in \mathscr O$ となる. $x_\infty \in \bigcup \mathscr U$ のとき,

$$K \setminus \bigcup \mathscr{U} = \left(K \setminus \bigcup \mathscr{U}_1\right) \cap \left(S \setminus \bigcup \mathscr{U}_2\right) = \left(\bigcap_{U \in \mathscr{U}_1} K \setminus U\right) \cap \left(\bigcap_{U \in \mathscr{U}_2} S \setminus U\right)$$

より $K\setminus \bigcup \mathcal{U}$ は S で閉じ,また定理 A.5.14 より S でコンパクトでもあるから $\bigcup \mathcal{U} \in \mathcal{O}$ が従う.

第二段 S から K への恒等写像 i が埋め込みであることを示す. 実際 i は単射であり, また \emptyset が S の位相を含むから

i は開写像でもある. 任意に $U \in \mathcal{O}$ を取れば

 $\begin{cases} x_{\infty} \in U \Longrightarrow i^{-1}(U) = U \text{ は } S \text{ の開集合,} \\ x_{\infty} \notin U \Longrightarrow S \cap U = S \setminus (K \setminus U) \text{ か } O K \setminus U \text{ が } S \text{ の閉集合であるから } i^{-1}(U) = S \cap U \text{ は } S \text{ の開集合,} \end{cases}$

が成り立つからiの連続性も出る.

- 第三段 S が K で稠密であることを示す. S はコンパクトでないから $\{x_\infty\}$ は K の開集合ではなく, x_∞ の任意の近傍 は S と交わることになる. 従って定理 A.5.9 より $x_\infty \in \overline{S}$ となり $\overline{S} = K$ を得る.
- 第四段 K がコンパクトであることを示す。 \mathscr{B} を K の開被覆とすれば x_{∞} を含む $B_{\infty} \in \mathscr{B}$ が取れる。 $K \setminus B_{\infty}$ は S でコンパクトであり, $\{S \cap B \mid B \in \mathscr{B}\}$ は $K \setminus B_{\infty}$ の S における開被覆となるから,有限部分集合 $\mathscr{B}' \subset \mathscr{B}$ で

$$K\backslash B_{\infty}\subset\bigcup\mathscr{B}'$$

を満たすものが存在する. $K = B_{\infty} \cup \bigcup \mathscr{B}'$ が成り立つから K はコンパクトである.

第五段 (1) を示す. S が T_1 であるとき、任意の $x \in S$ に対し $\{x\}$ は S で閉かつコンパクトであるから K で閉じる. また $S \in \mathcal{O}$ より $\{x_\infty\} = K \setminus S$ は K で閉となり \Longrightarrow を得る. 逆に K が T_1 であるとき、任意の $x \in S$ に対し

$$S \setminus \{x\} = S \cap (K \setminus \{x\})$$

かつ右辺はSの開集合であるから $\{x\}$ はSの閉集合となり \longleftarrow を得る.

第六段 (2) を示す. S が局所コンパクト Hausdorff であるとして任意に相異なる二点 $x,y \in K$ を取れば, $x,y \in S$ なら x,y は S の開集合で分離されるが, S の開集合は K の開集合となるから x,y は K の開集合で分離されることになる. 一方で $x=x_\infty$ なら, y は S でコンパクト (かつ S の Hausdorff 性より閉) な近傍 C を持ち, $K\setminus C\in \mathcal{O}$ が従うから $K\setminus C$ は x_∞ の開近傍となる. よって \Longrightarrow を得る. 逆に K が Hausdorff であるとき, S は K の部分空間であるから S も Hausdorff となる. また任意の $x\in S$ に対し, x と x_∞ は K の開集合 U,V で分離されるが, このとき $K\setminus V$ は S で閉かつコンパクトとなり,

$$x \in (S \cap U) \subset K \setminus V$$

より $K \setminus V$ は x の S における近傍となるから S の局所コンパクト性も出る.

第七段

定理 A.5.69 (局所コンパクトなら $T_2 \longleftrightarrow T_{3\frac{1}{2}}$). 局所コンパクト Hausdorff 空間は Tychonoff である.

証明.

- 第一段 S をコンパクト Hausdorff 空間とするとき、S の閉集合はコンパクトとなるから定理 A.5.32 より S は正則 Hausdorff となり、Urysohn の補題より Tychonoff となる.
- 第二段 S をコンパクトではない局所コンパクト Hausdorff 空間とすれば、定理 A.5.68 より S は或るコンパクト Hausdorff 空間 K に埋め込まれる。前段より K は Tychonoff であり、S も Tychonoff となる。

A.5.5 有向点族

第一可算性が仮定された空間では可算個の点族 (点列) の収束を用いることでいくつかの位相的概念を記述できるが, 一般に位相空間では近傍が '多すぎる' ため位相概念を記述するのに点列では間に合わない. 有向点族の理論では,非可 算個の集合に或る種の '向き' を与えることでそれを添数集合とする点族に対し収束の概念が定式化され,一般の位相空 間における閉包や連続性,コンパクト性の概念を点族の収束により特徴づけることが可能となる.

定義 A.5.70 (有向集合). 空でない集合 Λ において任意の有限部分集合が上界を持つような前順序が定まっているとき、つまり次を満たす二項関係 \leq が定まっているとき、対 (Λ, \leq) を有向集合 (directed set) と呼ぶ:

(反射律) $\lambda \leq \lambda$, $(\forall \lambda \in \Lambda)$,

(推移律) $\lambda \le \mu, \mu \le \nu \implies \lambda \le \nu, (\forall \lambda, \mu, \nu \in \Lambda),$

(有向律) $M \subset \Lambda$ が有限集合なら $\mu \leq \lambda$, $(\forall \mu \in M)$ を満たす $\lambda \in \Lambda$ が取れる.

また $\lambda < \mu \stackrel{\text{def}}{\longleftrightarrow} \lambda \le \mu$ かつ $\lambda \ne \mu$ と定める.

正の自然数全体 N や実数全体 R は、通常の順序により有向集合となっている。また位相空間の一点の基本近傍系も

$$U \le V \iff U \supset V$$

により有向集合となる.

定義 A.5.71 (有向点族). 有向集合を添数集合とする点族 (P. 194) を有向点族 (net) と呼ぶ. (Λ, \leq) , (Γ, \leq) を有向集合, $(x_{\lambda})_{\lambda \in \Lambda}$ を有向点族とするとき,共終かつ序列を保つ写像 $f: \Gamma \longrightarrow \Lambda$: 言い換えると

(単調性) $\gamma \leq \xi \implies f(\gamma) \leq f(\xi), (\forall \gamma, \xi \in \Gamma),$

(共終性) $f(\Gamma)$ が非有界: 任意の $\lambda \in \Lambda$ に対し $\lambda \leq f(\gamma)$ を満たす $\gamma \in \Gamma$ が存在する

を満たす写像 f に対して, $\left(x_{f(\gamma)}\right)_{\gamma\in\Gamma}$ を (x_{λ}) の部分有向点族 (subnet) と呼ぶ:

特に N を有向集合とする有向点族を点列 (sequence) と呼ぶ. また点列 $(x_n)_{n\in\mathbb{N}}$ に対し

$$f: \mathbf{N} \ni k \longmapsto n_k \in \mathbf{N}, \quad (n_1 < n_2 < n_3 < \cdots)$$

で定まる部分有向点族 $(x_{n_k})_{k\in\mathbb{N}}$ を部分列 (subsequence) と呼ぶ. 一般の部分有向点族ではそれを定める写像 f に単射性を仮定していないが (cf. Tychonoff plank), 部分列は k < j なら $n_k < n_j$ が満たされるものと約束する. 従って点列の部分有向点族といってもそれが部分列となっているとは限らない.

定義 A.5.72 (有向点族の収束). $x=(x_\lambda)_{\lambda\in\Lambda}$ を位相空間 S と有向集合 (Λ,\leq) で定まる有向点族とする. 点 $a\in S$ において, a の任意の近傍 U に対し或る $\lambda_0\in\Lambda$ が存在して

$$\lambda_0 \le \lambda \implies x_\lambda \in U$$

となるとき, $(x_{\lambda})_{\lambda \in \Lambda}$ は a に収束する (converge) といい $x_{\lambda} \longrightarrow a$ と書く. また a を $(x_{\lambda})_{\lambda \in \Lambda}$ の極限 (limit) と呼 ぶ. $(x_{\lambda})_{\lambda \in \Lambda}$ が部分集合 A 上の有向点族であり,かつ A の点に収束するとき,' $(x_{\lambda})_{\lambda \in \Lambda}$ は A で収束する' という.

定理 A.5.73 (Hausdorff \iff 収束する有向点族の極限は一つ). S を二つ以上の元を持つ位相空間とするとき,

S が Hausdorff \iff S で収束する任意の有向点族の極限は一つ

となる. 特に、S が第一可算性を持てば有向点族を点列に替えて成立する:

$$S$$
 が Hausdorff \iff S で収束する任意の点列の極限は一つ. (A.29)

S が Hausdorff であるとき, S 上の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ と $a \in S$ に対して $x_{\lambda} \longrightarrow a$ を $\lim x_{\lambda} = a$ とも表記する.

証明. (Λ, \leq) を有向集合, $(x_{\lambda})_{\lambda \in \Lambda}$ を $a \in S$ に収束する有向点族とする. $a \neq b \in S$ に対して, S が Hausdorff なら

$$a \in U$$
, $b \in V$, $U \cap V = \emptyset$

を満たす a の近傍 U と b の近傍 V が取れるが、このとき或る $\lambda_0 \in \Lambda$ が存在して

$$\lambda_0 \le \lambda \implies x_\lambda \in U$$

が成り立つから、任意の $\mu_0 \in \Lambda$ に対し $\{\lambda_0, \mu_0\}$ の上界 $\lambda \in \Lambda$ で $x_\lambda \notin V$ となり $x_\lambda \not\longrightarrow b$ が従う.逆に S が Hausdorff でないとき、或る二点 $x,y \in S$, $(x \neq y)$ は近傍で分離されない.x,y それぞれの近傍の全体を \mathscr{U},\mathscr{V} として

$$\Gamma := \{ U \cap V \mid U \in \mathcal{U}, V \in \mathcal{V} \}$$

とおけば,

$$U \cap V \le X \cap Y \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad (U \cap V) \supset (X \cap Y)$$

により (Γ, \preceq) は有向集合となるから $z \in \prod \Gamma$ を取れば $z = (z_{\gamma})_{\gamma \in \Gamma}$ は S 上の有向点族をなす。任意の $U_0 \in \mathscr{U}$ に対し

$$U_0 = U_0 \cap S \leq U \cap V \quad \Longrightarrow \quad z_{U \cap V} \in U \cap V \subset U_0$$

となるから $(z_{\gamma})_{\gamma\in\Gamma}$ は x に収束し、対称的に y にも収束する.これで一般の場合に \longleftarrow が得られたが、いま S に第一可算性が仮定されていたとすると、 $\{U_n\}_{n\in\mathbb{N}}$ 、をそれぞれ x,y の可算な基本近傍系として

$$\tilde{U}_n := U_1 \cap U_2 \cap \cdots \cap U_n, \quad \tilde{V}_n := V_1 \cap V_2 \cap \cdots \cap V_n, \quad (\forall n \in \mathbb{N})$$

で単調減少な基本近傍系 $\{\tilde{U}_n\}_{n\in\mathbb{N}}$ と $\{\tilde{V}_n\}_{n\in\mathbb{N}}$ を定め $w\in\prod_{n\in\mathbb{N}}(\tilde{U}_n\cap\tilde{V}_n)$ を取れば、点列 $w=(w_n)_{n\in\mathbb{N}}$ は x,y の両方に収束する.従って (A.29) の \Longleftrightarrow も得られる.

定理 A.5.74 (有向点族が収束する \iff 任意の部分点族が収束する). $(x_{\lambda})_{\lambda \in \Lambda}$ を位相空間 S と有向集合 (Λ, \leq) で 定まる有向点族とし、また a を S の任意の点とするとき

$$(x_{\lambda})_{\lambda \in \Lambda}$$
 が a に収束する \iff $(x_{\lambda})_{\lambda \in \Lambda}$ の任意の部分有向点族が a に収束する (A.30)

が成立する. 特に $(x_{\lambda})_{\lambda \in \Lambda}$ が点列であるとき,右辺で部分有向点族を部分列に替えても同値関係は成立する.

証明. $(x_{\lambda})_{\lambda \in \Lambda}$ が a に収束するとき、a の任意の近傍 U に対し或る $\lambda_0 \in \Lambda$ が存在して

$$\lambda_0 \le \lambda \implies x_\lambda \in U$$

を満たす. $(y_{\gamma})_{\gamma\in\Gamma}$ を $(x_{\lambda})_{\lambda\in\Lambda}$ の部分有向点族とするとき、つまりこのとき或る有向集合 (Γ, \preceq) と $f:\Gamma\longrightarrow\Lambda$ により $y_{\gamma}=x_{f(\gamma)}$ と表せるが、f の共終性から $\lambda_0\leq f(\gamma_0)$ を満たす $\gamma_0\in\Gamma$ が存在し、f の単調性と \leq の推移律より

$$\gamma_0 \le \gamma \implies f(\gamma_0) \le f(\gamma) \implies \lambda_0 \le f(\gamma) \implies y_\gamma = x_{f(\gamma)} \in U$$

が従うから $(y_{\lambda})_{\gamma\in\Gamma}$ は a に収束する. 逆に $(x_{\lambda})_{\lambda\in\Lambda}$ が a に収束しないとき, a の或る近傍 V では任意の $\lambda\in\Lambda$ に対し

$$\lambda \le \mu, \quad x_{\mu} \notin V$$
 (A.31)

を満たす $\mu \in \Lambda$ が取れる. ここで

$$\Gamma \coloneqq \{ \lambda \in \Lambda \mid x_{\lambda} \notin U \}$$

とおけば、任意の有限集合 $M \subset \Gamma$ に対し Λ における上界 λ が存在するが、(A.31) より $\lambda \leq \mu$ を満たす $\mu \in \Gamma$ が取れるから (Γ, \leq) は有向集合となる。 恒等写像 $\Gamma \longrightarrow \Lambda$ は単調性と共終性を満たし、この場合の部分有向点族 $(x_{\gamma})_{\gamma \in \Gamma}$ は α に収束しないから (A.30) が出る。 $(x_{\lambda})_{\lambda \in \Lambda}$ が α に収束しない点列であるとき、任意の $n \in \mathbb{N}$ に対して

$$\langle n \rangle := \{ m \in \mathbb{N} \mid n < m, x_m \notin U \}$$

は空ではない. N の空でない部分集合の全体を ${\mathscr N}$ として選択関数 $\Phi \in \prod {\mathscr N}$ を取り

$$\begin{split} n_1 &\coloneqq \Phi(\langle 1 \rangle), \\ n_2 &\coloneqq \Phi(\langle n_1 \rangle), \\ n_3 &\coloneqq \Phi(\langle n_2 \rangle), \\ &\vdots \end{split}$$

で $\{n_k\}_{k\in\mathbb{N}}$ を定めれば、 $(x_{n_k})_{k\in\mathbb{N}}$ は a に収束しない部分列となる.

定理 A.5.75 (閉集合は有向点族の極限集合). A を位相空間 S の部分集合とするとき,

 $a \in \overline{A} \iff$ 或る有向集合 (Λ, \leq) と A 上の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ が存在して $x_{\lambda} \longrightarrow a$.

特にSが第一可算空間であるとき、右辺で有向点族を点列に替えて同値関係が成立する.

証明.

第一段 \Longrightarrow を示す. \mathscr{U} を a の基本近傍系とするとき,二項関係 \leq を

$$U \prec V \iff U \supset V$$

で定めれば (𝑢, ≤) は有向集合となる. 定理 A.5.9 より

$$a \in \overline{A} \iff$$
 任意の $U \in \mathcal{U}$ に対し $A \cap U \neq \emptyset$

が満たされ、いま $a\in \overline{A}$ と仮定しているから $x\in \prod_{U\in \mathscr{U}}(A\cap U)$ が取れて $x=(x_U)_{U\in \mathscr{U}}$ は A 上の有向点族となる.このとき a の任意の近傍 V に対し $U_0\subset V$ となる $U_0\in \mathscr{U}$ が存在して

$$\forall U \in \mathcal{U}; \quad U_0 \leq U \Longrightarrow x_U \in U \subset U_0 \subset V$$

となり $x_U \longrightarrow a$ が従う. $\mathscr U$ が高々可算集合であるとき、つまり $\mathscr U = \{U_n\}_{n\in\mathbb N}$ と表せるとき、

$$\tilde{U}_n := U_1 \cap U_2 \cap \cdots \cap U_n, \quad (n = 1, 2, \cdots)$$

で減少列 $\tilde{\mathscr{U}} := \{\tilde{U}_n\}_{n \in \mathbb{N}}$ を定めれば $\tilde{\mathscr{U}}$ も a の基本近傍系となり、 $y \in \prod_{n \in \mathbb{N}} (A \cap \tilde{U}_n)$ を取り

$$y_n := y(n), \quad (\forall n \in \mathbf{N})$$

とおけば、a の任意の近傍 V に対し $\tilde{U}_{n_0} \subset V$ となる $n_0 \in \mathbb{N}$ が存在して

$$\forall n \in \mathbb{N}; \quad n_0 \le n \Longrightarrow y_n \in \tilde{U}_n \subset \tilde{U}_{n_0} \subset V$$

が成り立ち $y_n \longrightarrow a$ となる.

第二段 \longleftarrow を示す. a に収束する A 上の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ が存在するとき,

$$a \in \overline{\{x_{\lambda} \mid \lambda \in \Lambda\}} \subset \overline{A}$$

が従う.

定理 A.5.76 (f が x で連続 $\Longleftrightarrow x$ に収束する有向点族の像点族が f(x) に収束). S,T を位相空間とするとき, $f:S\longrightarrow T$ が点 $s\in S$ で連続であるための必要十分条件は

(1) 任意の有向集合 (Λ, \leq) と任意の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ に対し,

$$x_{\lambda} \longrightarrow s \implies f(x_{\lambda}) \longrightarrow f(s).$$

(2) s が可算な基本近傍系を持つとき、任意の点列 $(x_n)_{n\in\mathbb{N}}$ に対し

$$x_n \longrightarrow s \implies f(x_n) \longrightarrow f(s).$$

証明.

(1) f が s で連続であるとき,f(s) の任意の近傍 V に対し $f^{-1}(V)$ は s の近傍となる.任意の有向集合 (Λ, \leq) と任意の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ に対し, $x_{\lambda} \longrightarrow s$ なら或る $\lambda_0 \in \Lambda$ が存在して

$$\lambda_0 \le \lambda \implies x_\lambda \in f^{-1}(V) \implies f(x_\lambda) \in V$$

となるから $f(x_{\lambda}) \longrightarrow f(s)$ となる. 逆に f が s で連続でないとき, $\mathscr U$ を s の基本近傍系とすれば

$$U \setminus f^{-1}(V) \neq \emptyset$$
, $(\forall U \in \mathcal{U})$

を満たす f(s) の近傍 V が存在して、このとき $x \in \prod_{U \in \mathcal{U}} U \setminus f^{-1}(V)$ が取れる。 \mathcal{U} において二項関係 \leq を

$$U_1 \leq U_2 \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad U_1 \supset U_2$$

で定めれば (\mathcal{U}, \leq) は有向集合となるから $x = (x_U)_{U \in \mathcal{U}}$ は有向点族をなし、

$$f(x_U) \notin V$$
, $(\forall U \in \mathcal{U})$

より $f(x_U) \longrightarrow f(s)$ であるが、一方で任意の $U_0 \in \mathcal{U}$ に対し

$$U_0 \le U \implies x_U \in U \subset U_0$$

が成り立つから $(x_U)_{U \in \mathcal{U}}$ は s に収束する.

(2) 点列は有向点族であるから (1) より必要性が従う. $\mathscr{U} = \{U_n\}_{n \in \mathbb{N}}$ を s の基本近傍系すれば、

$$\tilde{U}_n := U_1 \cap U_2 \cap \cdots \cap U_n, \quad (n = 1, 2, \cdots)$$

により単調減少な s の基本近傍系 $\left\{\tilde{U}_n\right\}_{n\in\mathbb{N}}$ が得られる. f が s で連続でないとき, f(s) の或る近傍 V で

$$\tilde{U}_n \setminus f^{-1}(V) \neq \emptyset, \quad (\forall n \in \mathbb{N})$$

が成り立ち, $x \in \prod_{n \in \mathbb{N}} \tilde{U}_n \setminus f^{-1}(V)$ を取れば $x = (x_n)_{n \in \mathbb{N}}$ は $x_n \longrightarrow s$ かつ $f(x_n) \not\longrightarrow f(s)$ を満たす.

定義 A.5.77 (無限に含まれる). (Λ, \leq) を有向集合, $(x_{\lambda})_{\lambda \in \Lambda}$ を集合 S 上の有向点族, $A \subset S$ とするとき,任意に $\lambda \in \Lambda$ を選んでも $x_{\mu} \in A$ を満たす $\lambda \leq \mu$ が取れることを ' $(x_{\lambda})_{\lambda \in \Lambda}$ は A に無限に含まれる (frequently in)' と いう.

定理 A.5.78 (有向点族が点 a の任意の近傍に無限に含まれる \iff a に収束する部分点族が存在).

- (1) $(x_{\lambda})_{\lambda \in \Lambda}$ を位相空間 S と有向集合 (Λ, \leq) で定まる有向点族とし,a を S の点とするとき, $(x_{\lambda})_{\lambda \in \Lambda}$ が a の任意の近傍に無限に含まれる \iff a に収束する $(x_{\lambda})_{\lambda \in \Lambda}$ の部分有向点族が存在する.
- (2) (1) において $\Lambda = \mathbf{N}$ かつ a が可算な基本近傍系を持つ場合,

 $(x_n)_{n\in\mathbb{N}}$ が a の任意の近傍に無限に含まれる \iff a に収束する $(x_n)_{n\in\mathbb{N}}$ の部分列が存在する.

証明.

第一段 (1) の \Longrightarrow を示す. $(x_{\lambda})_{\lambda \in \Lambda}$ が a の任意の近傍に無限に含まれるとき、 $\mathscr U$ を a の基本近傍系として

$$\Gamma := \{ (\lambda, U) \mid \lambda \in \Lambda, U \in \mathcal{U}, x_{\lambda} \in U \}$$

とおき、 Γ において二項関係 \leq を

$$(\lambda, U) \le (\mu, V) \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \lambda \le \mu \text{ in } U \supset V$$

で定めれば (Γ, \preceq) は有向集合となる.実際 $\lambda \leq \lambda$ かつ $U \supset U$ より $(\lambda, U) \preceq (\lambda, U)$, $(\forall (\lambda, U) \in \Gamma)$ となり,

$$(\lambda_1, U_1) \leq (\lambda_2, U_2), \ (\lambda_2, U_2) \leq (\lambda_3, U_3) \quad \Longrightarrow \quad \lambda_1 \leq \lambda_2, \ \lambda_2 \leq \lambda_3, \ U_1 \supset U_2, \ U_2 \supset U_3$$
$$\Longrightarrow \quad \lambda_1 \leq \lambda_3, \ U_1 \supset U_3$$
$$\Longrightarrow \quad (\lambda_1, U_1) \leq (\lambda_3, U_3)$$

より推移律も出る.また任意に有限個の $(\lambda_i,U_i)\in\Gamma$, $(i=1,2,\cdots,n)$ を取れば,或る $\lambda\in\Lambda$ と $U\in\mathscr{U}$ で

$$\lambda_i \leq \lambda$$
, $(1 \leq i \leq n)$; $\bigcap_{i=1}^n U_i \supset U$

となるが、このとき $\lambda \leq \mu$ かつ $x_{\mu} \in U$ を満たす $\mu \in \Lambda$ が存在して (μ, U) は $\{(\lambda_i, U_i)\}_{i=1}^n$ の上界となる.

$$f: \Gamma \ni (\lambda, U) \longmapsto \lambda \in \Lambda$$

は単調かつ共終であるから $(x_{f(\nu)})_{\nu\in\Gamma}$ は部分有向点族となり、任意の $(\lambda_0,U_0)\in\Gamma$ に対して

$$(\lambda_0, U_0) \le (\lambda, U) \implies x_{f(\lambda, U)} = x_\lambda \in U \subset U_0$$

が成り立つから $(x_{f(\gamma)})_{\gamma \in \Gamma}$ は a に収束する.

第二段 (2) の \Longrightarrow を示す. $\mathscr{U} = \{U_k\}_{k \in \mathbb{N}}$ を a の基本近傍系とすれば

$$V_k := U_1 \cap U_2 \cap \cdots \cap U_k$$
, $(k = 1, 2, \cdots)$

により単調減少な基本近傍系 $\{V_k\}_{k\in\mathbb{N}}$ が得られる. 任意の $n,k\in\mathbb{N}$ に対し

$$\langle n, k \rangle := \{ m \in \mathbb{N} \mid n < m, x_m \in V_k \}$$

とおけば $\langle n, k \rangle$ は空ではなく、選択関数 $\Phi \in \prod_{n,k \in \mathbb{N}} \langle n, k \rangle$ を取り

$$n_1 := \Phi(1, 1),$$

 $n_2 := \Phi(n_1, 2),$
 $n_3 := \Phi(n_2, 3),$
:

で $\{n_k\}_{k\in\mathbb{N}}$ を定めれば、 $(x_{n_k})_{k\in\mathbb{N}}$ は $(x_n)_{n\in\mathbb{N}}$ の部分列となり、任意の V_{k_0} に対して

$$k_0 \le k \implies x_{n_k} \in V_k \subset V_{k_0}$$

となるから $(x_{n_k})_{k\in\mathbb{N}}$ は a に収束する.

第三段 (1) の \longleftarrow を示す. 或る有向集合 (Θ, \unlhd) と単調かつ共終な $h: \Theta \longrightarrow \Lambda$ が存在して $(x_{h(\theta)})_{\theta \in \Theta}$ が a に収束するとき,任意に $\lambda \in \Lambda$ と a の近傍 U を取れば,或る $\theta_1 \in \Theta$ で $\lambda \leq h(\theta_1)$ となり,また或る $\theta_2 \in \Theta$ が存在して

$$\theta_2 \le \theta \implies x_{f(\theta)} \in U$$

が成り立つ. 有向律から θ_1 , $\theta_2 \unlhd \theta$ を満たす $\theta \in \Theta$ が取れるが, $\lambda \leq h(\theta)$ かつ $x_{h(\theta)} \in U$ が従うから $(x_{\lambda})_{\lambda \in \Lambda}$ は U に無限に含まれる. (2) においても,部分列は部分有向点族であるから \longleftarrow が成立する.

定理 A.5.79 (コンパクト \Longleftrightarrow 任意の有向点族が収束部分有向点族を持つ). 位相空間 S の部分集合 A に対し,

A がコンパクト部分集合 \iff A 上の任意の有向点族が A で収束する部分有向点族を持つ.

第一段 \implies を示す. 或る有向集合 (Λ, \leq) と A 上の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ で A で収束する部分有向点族を持たないもの が存在するとき,定理 A.5.78 より任意の $a \in A$ に対し或る $\lambda_a \in \Lambda$ と a の近傍 U_a が取れて

$$x_{\lambda} \notin U_a$$
, $(\lambda_a \leq \forall \lambda)$

が満たされる.このとき $\{U_a^o \mid a \in A\}$ は A の S における開被覆となるが,任意に有限個の $a_1, \cdots, a_n \in A$ を取っても $\{\lambda_{a_1}, \cdots, \lambda_{a_n}\}$ の上界 $\lambda \in \Lambda$ で

$$x_{\lambda} \in A$$
, $x_{\lambda} \notin U_{a_1} \cup U_{a_2} \cup \cdots \cup U_{a_n}$

となるから、 $\{U_a^\circ\mid a\in A\}$ は A の有限被覆を持たない.従って定理 A.5.13 より A はコンパクトではない.第二段 \iff を示す. $\mathscr F$ を S の閉集合族とし, $\{A\cap F\mid F\in \mathscr F\}$ が有限交叉的であるとする.

$$\mathfrak{M} \coloneqq \{ \mathcal{M} \mid \mathcal{M} \text{ は } \mathcal{F} \text{ o 空 o c v v h q R a h h h } \}$$

とおいて 3 上の二項関係 ≤を

$$\mathcal{M} \leq \mathcal{N} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \mathcal{M} \subset \mathcal{N}$$

で定めれば (\mathfrak{M}, \leq) は有向集合となる. 任意の $\mathscr{M} \in \mathfrak{M}$ で $A \cap \bigcap \mathscr{M} \neq \emptyset$ が満たされるから

$$x \in \prod_{\mathcal{M} \in \mathfrak{M}} \left(A \cap \bigcap \mathcal{M} \right)$$

が取れて、 $x=(x_M)_{M\in \mathbb{M}}$ は A 上の有向点族をなし、仮定より或る $p\in A$ が存在して $(x_M)_{M\in \mathbb{M}}$ の或る部分有向点族が p に収束する.このとき任意に $F\in \mathscr{F}$ を取れば、 $(x_M)_{M\in \mathbb{M}}$ は p の任意の近傍 U に無限に含まれるから

$$\{F\} \leq \mathcal{M}, \quad x_{\mathcal{M}} \in U$$

を満たす $\mathcal{M} \in \mathfrak{M}$ が存在し,

$$x_{\mathcal{M}} \in A \cap \bigcap \mathcal{M} \subset A \cap F$$

と併せて $U \cap F \neq \emptyset$ となる. U の任意性, 定理 A.5.9 と F が閉であることから

$$p \in \overline{F} = F$$

が従い、F の任意性から $p \in A \cap \bigcap \mathcal{F}$ が成り立つ。そして定理 A.5.16 より A のコンパクト性が出る。

一般の位相空間において部分集合 A がコンパクトであることの同値条件は A 上の任意の有向点族が A で収束する部分有向点族を持つことであったが,この条件で有向点族を点列に替えたもの,すなわち

• A 上の任意の点列が A で収束する部分列を持つ

という性質が成り立つとき、A は点列コンパクト (sequentially compact) な部分集合であるという.

定理 A.5.80 (点列コンパクト ⇒ 可算コンパクト).

A.5.6 一様空間

一様空間は後述する距離空間や位相線型空間の上位概念である。距離空間では距離により、位相線型空間では0ベクトル周りの近傍を任意の点に移すことにより、空間全体で共通する点同士の'近さ'の尺度が与えられる。一般の位相空間では点同士の'近さ'を相対的に比較することはできない (つまり点 x,y の'近さ'と点 a,b の'近さ'を比較する基準がない)が、一様構造が導入された空間では各点に共通する近傍概念が定義されるため'近さ'の相対比較が可能になり、一様連続、一様収束、完備、全有界といった性質が定式化される。

定義 A.5.81 (近縁系). S を集合とし、 Ψ を S 上の関係の族とする。 Ψ が次の (US1)~(US5) を満たすとき、これを S 上の近縁系 (system of entourages) や一様構造 (uniform structure) と呼び、対 (S,Ψ) を一様空間 (uniform space) と呼ぶ:

(US1) \forall は空でなく, また \forall の要素は S 上の恒等写像を含む:

$$\mathcal{V} \neq \emptyset \land \forall V \in \mathcal{V} (\{x \mid \exists s \in S (x = (s,s))\} \subset V).$$

$$\forall V \in \mathscr{V} (V^{-1} \in \mathscr{V}).$$

$$\forall U, V \in \mathcal{V} (U \cap V \in \mathcal{V}).$$

(US4) *𝑉* の任意の要素は 𝑉 の或る要素の合成を含む:

$$\forall V \in \mathscr{V} \exists W \in \mathscr{V} (W \circ W \subset V).$$

(US5) S 上の関係は Ψ の要素を含めばそれ自身も Ψ に属する:

$$\forall R \ (R \subset S \times S \land \exists V \in \mathscr{V} \ (V \subset R) \Longrightarrow R \in \mathscr{V}).$$

 Ψ の元を近縁 (entourage) と呼び,近縁 V が $V=V^{-1}$ を満たすとき V は対称である (symmetric) という.また基本近傍系と同様に Ψ の部分集合 $\mathscr U$ で Ψ の任意の近縁に対しそれに含まれる $\mathscr U$ の元が取れるとき, $\mathscr U$ を Ψ の基本近縁系 (fundamental system of entourages) と呼ぶ.

(US3) について、V に対し W を対称なものとして取ることができる. 実際 $U \in \mathcal{V}$ が $U \circ U \subset V$ を満たすとき、

$$W \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} U \cap U^{-1}$$

で $W \in \mathcal{V}$ を定めれば、W は対称であり $W \circ W \subset U \circ U \subset V$ となる.

定理 A.5.82 (近縁系は。により半群となる). 二項演算。は結合法則を満たし、また近縁系の中で閉じる (U,V が近縁なら $U\circ V$ も近縁).

証明. S を空でない集合, \mathscr{V} を S の近縁系とする. 任意の $U, V, W \subset S \times S$ で

$$(a,b) \in (U \circ V) \circ W \iff \exists c \in S; (a,c) \in U \circ V, (c,b) \in W$$

$$\iff \exists c, d \in S; (a, d) \in U, (d, c) \in V, (c, b) \in W$$

$$\iff \exists d \in S; (a, d) \in U, (d, b) \in U \circ W$$

$$\iff (a, b) \in U \circ (V \circ W)$$

となるから。は結合法測を満たす.また任意の $U, V \in \mathcal{V}$ に対し

$$(x, y) \in U \implies (x, y) \in U, (y, y) \in V \implies (x, y) \in U \circ V$$

より $U \subset U \circ V$ となるから $U \circ V \in \mathcal{V}$ が成り立つ.

従って $U_1, U_2, \cdots, U_n \subset S \times S$ に対し

$$U_1 \circ U_2 \circ \cdots \circ U_n \stackrel{\text{def}}{==} (\cdots ((U_1 \circ U_2) \circ U_3) \cdots) \circ U_n$$

と定めれば、定理 A.2.5 より左辺の評価は演算。の順番に依らないから、任意に $1 \le k \le m \le n$ を取れば

$$U_1 \circ U_2 \circ \cdots \circ U_n = (U_1 \circ \cdots \circ U_k) \circ (U_{k+1} \circ \cdots \circ U_m) \circ (U_{m+1} \circ \cdots \circ U_n)$$

が成立する.

定理 A.5.83. (S, \mathscr{V}) を一様空間とするとき、任意の $V \in \mathscr{V}$ に対し

$$W_x \times W_x \subset V$$
, $(\forall x \in S)$

を満たす対称な $W \in \mathcal{V}$ が存在する. ただし $W_x = \{y \in S \mid (x,y) \in W\}$ である.

証明. 近縁系の定義より $U \circ U \subset V$ を満たす $U \in \mathcal{Y}$ が存在する. ここで

$$W \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} U \cap U^{-1}$$

で対称な $W \in \mathcal{Y}$ を定めれば、任意の $x \in S$ に対し

$$y, z \in W_x \implies (x, y), (x, z) \in W \implies (y, x), (x, z) \in W \implies (y, z) \in V$$

が成立し $W_x \times W_x \subset V$ が得られる.

定理 A.5.84 (近縁系で導入する位相). au を集合 S の近縁系, au を au の基本近縁系とする. V_x を

$$V_x \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{\, y \in S \mid \quad (x,y) \in V \,\right\}, \quad (V \in \mathcal{V}, \; x \in S)$$

で定義するとき, 各 $x \in S$ で

$$\mathcal{U}(x) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \{ U_x \mid \quad U \in \mathcal{U} \}$$

とおけば $\{\mathscr{U}(x)\}_{x\in S}$ は定理 A.5.6 の (LB1)(LB2)(LB3) を満たす. このとき $\{\mathscr{U}(x)\}_{x\in S}$ が基本近傍系となる S の 位相が唯一つ定まるが、別の基本近縁系を用いても同じ位相が定まる.

証明. $\mathscr U$ は空でないから $\mathscr U(x)$ も空ではない.そして任意の $U \in \mathscr U$ は $\{(x,x) \mid x \in S\}$ を含むから $x \in U_x$ となり (LB1) が満たされる.また任意の U_x , $V_x \in \mathscr U(x)$ に対し或る $W \in \mathscr W$ で $W \subset U \cap V$ となるから, $W_x \subset U_x \cap V_x$ が従い (LB2) も出る.任意の $U_x \in \mathscr U(x)$ に対し定理 A.5.83 より

$$W_y \times W_y \subset U$$
, $(\forall y \in S)$

を満たす対称な $W \in \mathcal{Y}$ が存在する. $R \subset W$ を満たす $R \in \mathcal{U}$ を取れば

$$y \in R_x \implies y \in W_x \implies (x, y) \in W_x \times W_x \subset U \implies y \in U_x$$

となるから $R_x \subset U_x$ が成り立ち、このとき任意の $y \in R_x$ に対し

$$z \in R_y \quad \Longrightarrow \quad (y,z) \in W = W^{-1} \quad \Longrightarrow \quad (x,z) \in W_y \times W_y \subset U \quad \Longrightarrow \quad z \in U_x$$

より $R_y \subset U_x$ が満たされるから (LB3) も得られる.従って定理 A.5.5 と定理 A.5.6 より $\{\mathscr{U}(x)\}_{x\in S}$ が基本近傍系となる S の位相 $\tau_\mathscr{U}$ が唯一つ定まる.いま, \mathscr{U} を \mathscr{V} の別の基本近縁系として

$$\tilde{\mathcal{W}}(x) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \, \tilde{U}_x \mid \quad \tilde{U} \in \tilde{\mathcal{U}} \, \right\}, \quad (\forall x \in S)$$

とおけば, $\{\hat{\mathscr{U}}(x)\}_{x\in S}$ は $(S,\tau_{\mathscr{U}})$ における基本近傍系となる.実際,任意の $\tilde{U}_x\in \tilde{\mathscr{U}}(x)$ に対し或る $U\in \mathscr{U}$ で $U_x\subset \tilde{U}_x$ となるから \tilde{U}_x は x の近傍であり,一方で任意の $V_x\in \mathscr{U}(x)$ に対し或る $\tilde{V}\in \tilde{\mathscr{U}}$ で $\tilde{V}_x\subset V_x$ となるから $\tilde{\mathscr{U}}(x)$ は x の基本近傍系をなしている. $\{\tilde{\mathscr{U}}(x)\}_{x\in S}$ が基本近傍系となる位相は唯一つであるから $\tau_{\tilde{\mathscr{U}}}=\tau_{\mathscr{U}}$ が成り立っ.

定義 A.5.85 (一様位相). $\hspace{0.1cm} \mathscr{V} \hspace{0.1cm}$ を集合 $\hspace{0.1cm} S \hspace{0.1cm}$ の近縁系, $\hspace{0.1cm} \mathscr{U} \hspace{0.1cm}$ を $\hspace{0.1cm} \mathscr{V} \hspace{0.1cm}$ の基本近縁系とする. $\hspace{0.1cm} U \in \mathscr{U} \hspace{0.1cm}$ と $\hspace{0.1cm} x \in S \hspace{0.1cm}$ に対し $\hspace{0.1cm} U_x \hspace{0.1cm}$ を

$$U_x \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \, y \in S \mid \quad (x,y) \in U \, \right\}$$

で定義するとき, 定理 A.5.84 より

$$\mathscr{U}(x) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \{ U_x \mid U \in \mathscr{U} \}$$

を各点 x の基本近傍系とする位相が定まるが,別の基本近縁系を取っても同じ位相が定まるのでこれを '近縁系 $\mathscr V$ で導入する S の一様位相 (uniform topology)' と呼ぶ.S が元から位相空間であるとき, $\mathscr V$ で導入する位相と元の位相が一致することを ' $\mathscr V$ と元の位相が両立する (compatible)' という.

定理 A.5.86 (部分一様空間). (S, \mathscr{V}) を一様空間とするとき、任意の空でない部分集合 $A \subset S$ に対し

$$\mathcal{V}_A \xrightarrow{\operatorname{def}} \left\{ \left(A \times A \right) \cap V \mid \quad V \in \mathcal{V} \right\}$$

は A 上の近縁系となる.また S に $\mathscr V$ で位相を導入するとき,A 上の相対位相と $\mathscr V_A$ は両立する.

証明.

第一段 \mathscr{V}_A が定義 A.5.81 の (US1)~(US5) を満たすことを示す. 先ず $\mathscr{V} \neq \emptyset$ より $\mathscr{V}_A \neq \emptyset$ であり,

$$V \in \mathscr{V} \implies (a,a) \in V, (\forall a \in A) \implies (a,a) \in (A \times A) \cap V, (\forall a \in A)$$

となるから (US1) が満たされる. また任意に $E \in \mathcal{V}_A$ を取れば或る $V \in \mathcal{V}$ で $E = (A \times A) \cap V$ と表され,

$$(x,y) \in E^{-1} \iff (y,x) \in (A \times A) \cap V \iff (x,y) \in (A \times A) \cap V^{-1}$$

が成り立つから $E^{-1} \in \mathcal{V}_A$ が従い (US2) も満たされる. 任意の $U, V \in \mathcal{V}$ に対し

$$((A\times A)\cap U)\cap ((A\times A)\cap V)=(A\times A)\cap (U\cap V)\in \mathcal{V}_A$$

より (US3) が得られ、また $V \in \mathcal{V}$ に対し $W \circ W \subset V$ となる $W \in \mathcal{V}$ を取れば

$$(x,y),(y,z)\in (A\times A)\cap W \implies x,z\in A,\ (x,z)\in V \implies (x,z)\in (A\times A)\cap V$$

となるから (US4) が出る. $(A \times A) \cap V \subset R$, $(V \in \mathcal{V})$ を満たす任意の $R \subset A \times A$ に対し, $V \cup R \in \mathcal{V}$ より

$$R = (A \times A) \cap (V \cup R) \in \mathcal{V}_A$$

が成立し (US5) も従う.

第二段 \mathcal{V}_A で導入する A の位相を τ_A と書く. 任意の $a \in A$ と $V \in \mathcal{V}$ に対して

$$[(A \times A) \cap V]_a \stackrel{\text{def}}{=} \{ x \in A \mid (a, x) \in (A \times A) \cap V \}$$
$$= \{ x \in S \mid (a, x) \in V \} \cap A =: V_a \cap A$$

となる. $\{[(A \times A) \cap V]_a \mid V \in \mathcal{V}\}$ は τ_A における a の基本近傍系をなし, $\{V_a \cap A \mid V \in \mathcal{V}\}$ は A の相対位相における a の基本近傍系をなすが,両者が一致するので位相も一致する.

定理 A.5.87 (可算な基本近縁系を持てば σ -局所有限な基底が存在する). (S, \mathcal{V}) を一様空間とし、 \mathcal{V} が可算な基本 近縁系 $\{V_n\}_{n\in\mathbb{N}}$ を持つとする. また S に \mathcal{V} で一様位相を導入する. このとき、 \mathcal{S} を S の任意の開被覆 $(\emptyset \notin \mathcal{S})$ とすれば \mathcal{S} の開細分で σ -局所有限なものが存在する. 特に、S は σ -局所有限な基底を持つ.

証明.

第一段 Ψ の可算な基本近縁系 $\{U_n\}_{n\in\mathbb{N}}$ で,

$$U_{n+1} \circ U_{n+1} \circ U_{n+1} \subset U_n \subset V_n$$
, $(\forall n \in \mathbb{N})$

を満たし、かつ U_n が全て対称であるものが存在する.実際 V_1 に対し $\tilde{W}_1 \circ \tilde{W}_1 \subset V_1 \cap V_1^{-1}$ を満たす $\tilde{W}_1 \in \mathcal{Y}$ が取れるが、 \tilde{W}_1 に対しても或る $W_1 \in \mathcal{Y}$ で $W_1 \circ W_1 \subset \tilde{W}_1$ となり、このとき

$$W_1 \circ W_1 \circ W_1 \subset W_1 \circ W_1 \circ W_1 \circ W_1 \subset V_1 \cap V_1^{-1}$$

が成り立つ. ここで

$$U_1 \stackrel{\text{def}}{=\!\!\!=\!\!\!=} V_1 \cap V_1^{-1}, \quad U_2 \stackrel{\text{def}}{=\!\!\!=\!\!\!=} V_2 \cap V_2^{-1} \cap W_1 \cap W_1^{-1}$$

とおく. U_2 に対しても $W_2 \circ W_2 \circ W_2 \subset U_2$ を満たす $W_2 \in \mathcal{Y}$ が取れるから,ここで

$$U_3 \stackrel{\text{def}}{=\!\!\!=\!\!\!=} V_3 \cap V_3^{-1} \cap W_2 \cap W_2^{-1}$$

とおく. 帰納的に全ての $n \in \mathbb{N}$ に対して U_n が定義されるから $\{U_n\}_{n \in \mathbb{N}}$ を得る (再帰定理).

第二段 整列可能定理により $\mathscr S$ を整列集合にする全順序 \leq が存在する. ここで

$$E \prec F \iff E \leq F \text{ high } E \neq F$$

とする. 任意の $x \in S$ と $V \in \mathcal{V}$ に対し

$$V(x) \stackrel{\text{def}}{=} \left\{ y \in S \mid (x, y) \in V \right\}$$

と定義して、任意の $n \in \mathbb{N}$ と $E \in \mathcal{S}$ に対し

$$I_n(E) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \left\{ x \in S \mid U_n(x) \subset E \right\},$$

$$J_n(E) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} I_n(E) \bigvee_{F \prec E} F$$

として $\mathscr{S}_n \stackrel{\mathrm{def}}{=\!\!=\!\!=} \{E \in \mathscr{S} \mid J_n(E) \neq \emptyset\}$ とおく. \mathscr{S} の \preceq に関する最小元を M として $x \in M$ を一つ取れば,M は開集合であるから十分大きい n_0 で $U_{n_0}(x) \subset M$ となり,M の最小性より

$$x \in I_{n_0}(M) = J_{n_0}(M)$$

が成り立つので、少なくとも $n \ge n_0$ ならば \mathcal{S}_n は空でない. $\mathcal{S}_n \ne \emptyset$ のとき、任意の $E \in \mathcal{S}_n$ に対し

$$K_n(E) \stackrel{\text{def}}{=} \bigcup_{x \in I_n(E)} U_{n+1}(x)^{\text{o}}$$

により開集合を定めて $\mathcal{K}_n \stackrel{\text{def}}{=\!=\!=} \{ K_n(E) \mid E \in \mathcal{S}_n \}$ とおけば次が成立する:

- (1) 任意の $E \in \mathcal{S}_n$ に対し $K_n(E) \subset E$ となる.
- (2) 相異なる二元 $E, F \in \mathcal{S}_n$ に対し

$$(x, y) \notin U_{n+1}, \quad (\forall x \in K_n(E), y \in K_n(F)).$$

(3) 任意の $x \in S$ に対し, $U_{n+2}(x)$ は \mathcal{K}_n の二個以上の元と交わることはない. 実際,任意の $x \in K_n(E)$ に対し或る $x_0 \in J_n(E)$ が存在して

$$x \in U_{n+1}(x_0) \subset U_n(x_0) \subset E$$

となり (1) が出る. また任意に $x \in K_n(E)$ と $y \in K_n(F)$ を取れば或る $x_0 \in I_n(E)$ と $y_0 \in I_n(F)$ で

$$(x_0,x),(y,y_0)\in U_{n+1}$$

となるが、このとき $E \neq F$ とすると E < F 又は F < E ということになり、E < F とすれば $x_0 \in E$ かつ $y_0 \notin E$ が満たされるから $(x_0, y_0) \notin U_n$ が従う.そして $U_{n+1} \circ U_{n+1} \circ U_n$ より

$$(x,y) \notin U_{n+1}$$

が成立する. すなわち (2) も得られ、これと $y,z \in U_{n+2}(x) \Longrightarrow (y,z) \in U_{n+1}$ を併せて (3) も出る. ここで

$$\mathscr{K} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \bigcup_{\substack{n \in \mathbf{N} \\ \mathscr{L}_n \neq \emptyset}} \mathscr{K}_n$$

とおけば、 \mathcal{X} は \mathcal{Y} の σ -局所有限な開細分となる。実際 (1) より \mathcal{X} の元は全て \mathcal{Y} の元の部分集合であり、(3) より各 \mathcal{X}_n は局所有限である。また任意の $x \in S$ に対し、x を含む \mathcal{Y} の元のうち \preceq に関する最小元を E とすれば、十分大きい n で $U_n(x) \subset E$ となるから $x \in I_n(E)$ が従い、最小性より $F \prec E$ なら $x \notin F$ が満たされ

$$x \in J_n(E) \subset K_n(E)$$

が成立する. すなわち \mathscr{K} は S を覆っている.

第三段 任意の $n \in \mathbb{N}$ に対し $\{U_n(x)^{\circ} \mid x \in S\}$ は S の開被覆をなすから, σ -局所有限な開細分 \mathcal{B}_n が存在する.こ のとき任意に $B \in \mathcal{B}_{n+1}$ を取れば,或る $z \in S$ で $B \subset U_{n+1}(z)$ となるから

$$x, y \in B \implies (x, z), (z, y) \in U_{n+1} \implies (x, y) \in U_n$$
 (A.32)

が満たされる. いま, 任意に開集合 G と $x \in G$ を取れば, 或る $n \in \mathbb{N}$ で

$$U_n(x) \subset G$$

となる. 一方で \mathcal{B}_{n+1} は S を覆うから或る $B \in \mathcal{B}_{n+1}$ もまた x を含み, このとき (A.32) より

$$x \in B \subset U_n(x) \subset G$$

が成立する. 従って $\mathscr{B}\stackrel{\mathrm{def}}{=\!=\!=}\bigcup_{n\in\mathbb{N}}\mathscr{B}_n$ は S の基底となり,各 \mathscr{B}_n が σ -局所有限であるから \mathscr{B} も σ -局所有限となる. すなわち S は σ -局所有限な基底を持つ.

メモ:

- S を集合, \mathscr{F} を S 上の実数値関数の空でない集合とする.
- ℱ-一様位相を ℱ から作る近縁系で導入する S 上の一様位相とする.
- ℱ-一様位相と ℱ-始位相は一致していることは示せると思う.
- S に元から位相が入っていて,それによって完全正則空間となっているとする。C(S) を S 上の実数値連続関数の全体とすると,S の位相は C(S)-始位相に一致しているから C(S)-一様位相に一致している。すなわち完全正則なら一様化可能。
- S に近縁系 Ψ が定まっているとき、C(S) を Ψ に関して連続な S 上の実数値関数の全体とすると、C(S) で創る 近縁系と Ψ は一致するか?

定理 A.5.88 (写像の族で作る一様位相は始位相に一致する). S を集合とし、 (T, \mathcal{V}) を一様空間とし、T に \mathcal{V} で一様位相を導入する. \mathcal{U} を \mathcal{V} の基本近縁系とし、 \mathcal{U} の要素は全て対象であるとする. \mathcal{F} を S から T への写像の空でない集合とする. \mathcal{F} の要素 f と \mathcal{U} の要素 U に対して

$$V(f,U) \stackrel{\text{def}}{=} \{(x,y) \in S \times S \mid (f(x),f(y)) \in U \}$$

と定義し、V(f,U)の全体を

$$\mathcal{A} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ V(f,U) \mid \quad f \in \mathcal{F}, \ U \in \mathcal{U} \right\}$$

とおいて、 🖈 の空でない有限部分集合の交叉の全体を

$$\mathcal{B} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \bigcap A \mid \quad A \subset \mathcal{A}, \, A \neq \emptyset, \, \exists n \in \omega \, (A \approx n) \right\}$$

とおく. このとき

$$\mathcal{W} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \{ W \mid W \subset S \times S \land \exists B \in \mathcal{B} (B \subset W) \}$$

で定める \mathscr{W} は S 上の近縁系となり、 \mathscr{W} で導入する一様位相と \mathscr{F} -始位相は一致する.

略証.

第一段 \mathscr{W} が近縁系となることを示す。 $\mathscr{F} \neq \emptyset$ より、 f を \mathscr{F} の要素とすれば

$$V(f, T \times T) \in \mathcal{W}$$

となるので

$$\mathcal{W}\neq\emptyset$$

である. また任意の $f \in \mathcal{F}$ と $U \in \mathcal{U}$ で

$$x \in S \Longrightarrow (f(x), f(x)) \in U$$

 $\Longrightarrow (x, x) \in V(f, U)$

となるから

$$\{(x,x) \mid x \in S\} \subset V(f,U)$$

となり,

$$W \in \mathcal{W} \Longrightarrow \{(x, x) \mid x \in S\} \subset W$$

が従う. ゆえに定義 A.5.81 の (US1) が満たされる. W を W の要素とすれば

$$\bigcap_{i=1}^{n} V(f_i, U_i) \subset W$$

なる f_i と U_i が取れて

$$\left(\bigcap_{i=1}^n V(f_i,U_i)\right)^{-1}\subset W^{-1}$$

となるが、 U_i はどれも対称なので

$$\left(\bigcap_{i=1}^{n} V(f_i, U_i)\right)^{-1} = \bigcap_{i=1}^{n} V(f_i, r_i)^{-1} = \bigcap_{i=1}^{n} V(f_i, U_i)$$

が成り立ち

$$W^{-1} \in \mathcal{W}$$

が従い (US2) も満たされる. W, W'を W の要素とすれば

$$\bigcap A\subset W,\quad \bigcap A'\subset W'$$

なる \mathscr{A} の有限部分集合 A,A' が取れるが、このとき

$$\bigcap (A \cup A') \in \mathscr{B}$$

かつ

$$\bigcap (A \cup A') \subset W \cap W'$$

が成り立つので (US3) も満たされる. W を W の要素とすれば

$$\bigcap_{i=1}^{n} V(f_i, U_i) \subset W$$

なる f_i と U_i が取れるが、各 U_i に対して

$$\tilde{U}_i \circ \tilde{U}_i \subset U_i$$

を満たす $\mathscr U$ の要素 $\tilde U_i$ を取り

$$\tilde{W} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \bigcap_{i=1}^n V(f_i, \tilde{U}_i)$$

とおけば, 各iで

$$(x,z),(z,y) \in \tilde{W} \Longrightarrow (f_i(x),f_i(z)),(f_i(z),f_i(y)) \in \tilde{U}_i$$

 $\Longrightarrow (f_i(x),f_i(y)) \in U_i$
 $\Longrightarrow (x,y) \in V(f_i,U_i)$

が成り立つので

$$W \circ W \subset \bigcap_{i=1}^{n} V(f_i, U_i) \subset V$$

が成立する. ゆえに (US4) も満たされる. W は上位の包含関係で閉じるから (US5) も満たされる.

第二段 f を \mathscr{F} の要素とするとき,f が一様位相に関して S から T へ連続写像であることを示す.x を S の要素とし,V を x の近傍とする.このとき

$$\{t \in T \mid (f(x), t) \in U\} \subset V$$

を満たす 业 の要素 U が取れて

$$\left\{\,y\in S\mid\quad (f(x),f(y))\in U\,\right\}\subset f^{-1}*\left\{\,t\in T\mid\quad (f(x),t)\in U\,\right\}$$

が成立する.

$$\{y \in S \mid (f(x), f(y)) \in U\} = \{y \mid (x, y) \in V(f, U)\}$$

が成り立つので、ゆえに f(x) の任意の近傍は f によって x の近傍に引き戻されることになり、 f の x における連続性が従う、 x の任意性より f は S 上で連続である。以上より

が成り立つ. また O を W による一様位相での開集合とし, x を O の要素とすれば,

$$x\subset \bigcap_{i=1}^n V(f_i,U_i)_x\subset O$$

を満たす f_i と U_i が取れる.

$$V(f_i, U_i)_x = f_i^{-1} * \{ t \in T \mid (f_i(x), t) \in U_i \}$$

より $V(f_i,U_i)_x$ は始位相に関して x の近傍であるから $\bigcap_{i=1}^n V(f_i,U_i)_x$ も始位相に関して x の近傍である. ゆえに O は始位相に関して開集合である. 以上で

が示された.

定理 A.5.89 (一様位相空間は完全正則). 一様位相空間は完全正則である.

定理 A.5.90 (可算な基本近縁系を持つ一様位相空間はパラコンパクト).

証明. 可算な基本近縁系を持つ一様位相空間は完全正則であるから正則である. また任意の開被覆は σ -局所有限な開被覆を持つが. 正則空間においては局所有限な開被覆を持つことと同値になる.

定義 A.5.91 (一様化可能). 空でない位相空間が一様化可能 (uniformizable) であるとは、その位相と両立する近縁系が存在することをいう.

定理 A.5.92 (完全正則なら一様化可能). S を完全正則空間とし, $C(S, \mathbf{R})$ で S から \mathbf{R} への連続写像の全体を表す. $f \in C(S, \mathbf{R})$ と r > 0 に対し

$$V(f,r) \stackrel{\text{def}}{=} \{(x,y) \in S \times S \mid |f(x) - f(y)| < r \}$$

と定義し、V(f,U) の全体を

$$\mathcal{A} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \left\{ V(f,r) \mid \quad f \in C(S,\mathbf{R}), \ r > 0 \right\}$$

とおいて、 🖈 の空でない有限部分集合の交叉の全体を

$$\mathscr{B} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \bigcap A \mid A \subset \mathscr{A}, A \neq \emptyset, \exists n \in \omega (A \approx n) \right\}$$

とおく. このとき

$$\mathscr{V} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \{ V \mid V \subset S \times S \land \exists B \in \mathscr{B} (B \subset V) \}$$

はS上の近縁系となりSの位相と両立する.

証明. 定理 A.5.88 より $\mathscr V$ による一様位相と C(S)-始位相は一致する. そして完全正則性より C(S)-始位相は S の元の位相に一致する.

定理 A.5.93 (一様位相空間において $T_0 \longleftrightarrow T_{3\frac{1}{2}}$). (S, \mathscr{V}) を一様空間とし,S に一様位相を導入する.このとき 任意の $x,y \in S$ に対して

x,y が位相的に識別可能 \iff $(x,y) \notin \bigcap \mathscr{V} \iff x,y$ が近傍で分離される (A.33)

が成立する. 特に、S が T_0 であること、 $\bigcap \mathscr{V} = \{(x,x) \mid x \in S\}$ 、S が $T_{3\frac{1}{2}}$ であること、は全て同値になる.

証明. 任意の $V \in \mathcal{V}$ と $s \in S$ に対し

$$V_s \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \{ t \in S \mid (s, t) \in V \}$$

と定義する. $(x,y) \in \bigcap_{V \in \mathcal{V}} V$ なら任意の $V \in \mathcal{V}$ に対し

$$x \in V_y$$
, $y \in V_x$

となる. $\{V_x\}_{V\in\mathscr{V}}$ と $\{V_y\}_{V\in\mathscr{V}}$ はそれぞれ x,y の基本近傍系となるから定理 A.5.9 より $x\in\overline{\{y\}}$ かつ $y\in\overline{\{x\}}$ が従い

$$x,y$$
 が位相的に識別可能 \implies $(x,y) \notin \bigcap \mathcal{V}$

が出る。また或る $V\in \mathscr{V}$ で $(x,y)\notin V$ となるとき, $W\circ W\subset V$ を満たす対称な $W\in \mathscr{V}$ を取れば W_x,W_y はそれぞれ x,y の近傍となるが,これらは互いに素である。 実際 $W_x\cap W_y\neq\emptyset$ とすると, $z\in W_x\cap W_y$ を取れば $(x,z),(z,y)\in W$ から $(x,y)\in V$ が従い $(x,y)\notin V$ に矛盾する.よって

$$(x,y) \notin \bigcap \mathcal{V} \implies x,y$$
 が近傍で分離される

を得る. 近傍で分離される二点は位相的に識別可能であるから (A.33) が成立する. S が T_0 なら

$$\begin{cases} (x,y) \notin \bigcap \mathcal{V}, & (x \neq y), \\ (x,y) \in \bigcap \mathcal{V}, & (x = y), \end{cases} \quad (\forall x, y \in S)$$

となるから $\bigcap \mathscr{V} = \{(x,x) \mid x \in S\}$ が従う.このとき相異なる任意の二点は近傍で分離されるから S は Hausdorff 性を持ち,完全正則性と併せて $T_{3\frac{1}{2}}$ となる. $T_{3\frac{1}{2}}$ なら T_0 は満たされるから後半の主張を得る.

定義 A.5.94 (一様収束). S,T を空でない集合とし,T 上に近縁系 $\mathscr V$ が定まっているとする.また $(f_\lambda)_{\lambda\in\Lambda}$ を有向集合 (Λ,\leq) で添数付けた S から T への写像族,f を S から T への写像,及び A を S の部分集合とする.

• 任意の近縁 V に対し或る $\lambda_0 \in \Lambda$ が存在して、全ての $y \in A$ で

$$\lambda_0 \le \lambda \implies (f(y), f_{\lambda}(y)) \in V$$

となるとき, $(f_{\lambda})_{\lambda \in \Lambda}$ は A 上で f に一様収束する (uniformly converge) という.

- 任意の一点集合において一様収束することを各点収束 (pointwise convergence) という.
- S が位相空間であるとき、任意のコンパクト部分集合上で一様収束することを**コンパクトー様収束 (compact convergence)** や広義一様収束という.
- S が位相空間であるとき,各点 $x \in S$ で或る近傍 U(x) が取れて U(x) 上で一様収束することを局所一様収束 (locally uniform convergence) という.

定理 A.5.95 (連続写像が局所一様収束するなら極限写像も連続). S を位相空間, (T, \mathcal{V}) を一様空間として T に \mathcal{V} で位相を導入する. また (Λ, \leq) を有向集合, $(f_{\lambda})_{\lambda \in \Lambda}$ を S から T への連続写像族とし,f を S から T への写像とする. このとき $(f_{\lambda})_{\lambda \in \Lambda}$ が f に局所一様収束しているなら f も連続写像である.

証明. 任意に $x \in S$ を取れば、f(x) の任意の近傍 N に対し或る近縁 V が存在して

$$V_{f(x)} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{\, t \in T \mid \quad (f(x),t) \in V \,\right\} \subset N$$

を満たす. また V に対し或る対称な近縁 W で

$$(a,b),(b,c),(c,d) \in W \implies (a,d) \in V, (\forall a,b,c,d \in S)$$

を満たすものが取れる. この W に対して或る $\lambda_0 \in \Lambda$ と x の近傍 U(x) が存在し、全ての $y \in U(x)$ で

$$\lambda_0 \le \lambda \implies (f(y), f_{\lambda}(y)) \in W$$

となる. f_{λ_0} は連続であり $W_{f_{\lambda_0}(x)}$ は $f_{\lambda_0}(x)$ の近傍であるから, x の或る近傍 R(x) で

$$y \in R(x) \implies f_{\lambda_0}(y) \in W_{f_{\lambda_0}(x)}$$

が成り立ち,以上より

$$y \in U(x) \cap R(x) \implies (f(x), f_{\lambda_0}(x)), (f_{\lambda_0}(x), f_{\lambda_0}(y)), (f_{\lambda_0}(y), f(y)) \in W$$

$$\implies (f(x), f(y)) \in V$$

$$\implies f(y) \in N$$

が従い f の x での連続性が得られる. x の任意性と定理 A.5.19 より f は S で連続である.

定理 A.5.96 (局所コンパクト空間において,広義一様収束 \iff 局所一様収束). S を局所コンパクト空間, (T, \mathscr{V}) を一様空間として T に \mathscr{V} で位相を導入する. また (Λ, \leq) を有向集合, $(f_{\lambda})_{\lambda \in \Lambda}$ を S から T への写像族とし,f を S から T への写像とする. このとき

 $(f_{\lambda})_{\lambda \in \Lambda}$ が f に広義一様収束する \iff $(f_{\lambda})_{\lambda \in \Lambda}$ が f に局所一様収束する.

証明. 各点でコンパクトな近傍が取れるから \Longrightarrow が得られる. 逆に $(f_{\lambda})_{\lambda \in \Lambda}$ が f に局所一様収束すると仮定する. K を S のコンパクト部分集合として各点 $x \in K$ のコンパクトな近傍 U(x) を取れば、有限個の $x_1, x_2, \cdots, x_n \subset K$ で

$$K \subset U(x_1) \cup \dots \cup U(x_n)$$
 (A.34)

となる. 任意に近縁 $V \in \mathcal{V}$ を取れば、各 $i = 1, \cdots, n$ で或る $\lambda_i \in \Lambda$ が存在して

$$y \in U(x_i), \ \lambda_i \le \lambda \implies (f(y), f_{\lambda}(y)) \in V$$

が成り立つが、このとき有向律より $\{\lambda_1, \cdots, \lambda_n\}$ は上界 $\lambda_0 \in \Lambda$ を持つから、任意の $y \in \bigcup_{i=1}^n U(x_i)$ で

$$\lambda_0 \le \lambda \implies (f(y), f_{\lambda}(y)) \in V$$

が満たされる. (A.34) より $(f_{\lambda})_{\lambda \in \Lambda}$ は K 上で f に一様収束し、K の任意性から \longleftarrow が得られる.

定義 A.5.97 (一様連続性). (S,\mathcal{U}) と (T,\mathcal{V}) を一様空間として \mathcal{U},\mathcal{V} により S,T に一様位相を導入し, $f:S\longrightarrow T$ を写像とする. また A を S の部分集合とする. 任意の $V\in\mathcal{V}$ に対し或る $U\in\mathcal{U}$ が存在して

$$(x, y) \in (A \times A) \cap U \implies (f(x), f(y)) \in V$$

となるとき, f は A 上で一様連続である (uniformly continuous) という.

定理 A.5.98 (一様連続なら連続). (S,\mathcal{U}) と (T,\mathcal{V}) を一様空間として \mathcal{U},\mathcal{V} により S,T に一様位相を導入し、 $f:S\longrightarrow T$ を写像とする. また A を S の部分集合とする. このとき f が A 上で一様連続なら f は A 上で連続 $(f|_A$ が連続) である.

証明. 任意の $U \in \mathcal{U}, s \in S$ に対し

$$U_s \stackrel{\text{def}}{=} \{ y \in S \mid (s, y) \in U \}$$

と定義し、同様に $V \in \mathcal{V}$, $t \in T$ に対し V_t を定める. $x \in A$ を取れば、 f(x) の任意の近傍 N に対し或る $V \in \mathcal{V}$ で

$$V_{f(x)} \subset N$$

となる.このとき f が A で一様連続であるなら V に対し或る $U \in \mathcal{U}$ が存在して

$$(x, y) \in (A \times A) \cap U \implies (f(x), f(y)) \in V$$

が満たされるから,

$$y \in A \cap U_x \implies f(y) \in V_{f(x)} \subset N$$

が従い $f|_A$ の x での連続性が出る. x の任意性より f は A 上で連続である.

定理 A.5.99 (連続写像はコンパクト集合上で一様連続). (S,\mathcal{U}) と (T,\mathcal{V}) を一様空間として \mathcal{U},\mathcal{V} で S,T に一様位相を導入し, $f:S\longrightarrow T$ を連続写像とする.このとき f は任意のコンパクト部分集合上で一様連続となる.

証明. $K \in S$ のコンパクト部分集合とする. 任意の $M \in \mathcal{U}, s \in S$ に対し

$$M_s \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \{ x \in S \mid (s, x) \in M \}$$

と定義し、 $W \in \mathcal{V}$, $t \in T$ に対しても同様に W_t を定める. 任意に $V \in \mathcal{V}$ を取れば、定理 A.5.83 より或る $W \in \mathcal{V}$ で

$$W_t \times W_t \subset V$$
, $(\forall t \in T)$

となる. f は連続であるから任意の $s \in S$ に対し或る $N(s) \in \mathcal{U}$ が存在して

$$(s, x) \in N(s) \implies f(x) \in W_{f(s)}$$

が成り立つ. $M(s) \circ M(s) \subset N(s)$ を満たす対称な $M(s) \in \mathcal{U}$ を取れば、定理 A.5.13 より或る $x_1, \dots, x_n \in K$ で

$$K \subset \bigcup_{i=1}^n M(x_i)_{x_i}$$

となる. 近縁系は有限交叉で閉じるから

$$U \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \bigcap_{i=1}^n M(x_i)$$

は $\mathscr U$ の元であり、このとき任意に $(x,y) \in (K \times K) \cap U$ を取れば、或る i で $y \in M(x_i)_{x_i}$ となり、 (x_i,x_i) 、 $(x_i,y) \in M(x_i)$ より $(x_i,y) \in N(x_i)$ となる. 一方で $M(x_i)$ が対称であるから (x_i,y) 、 $(y,x) \in M(x_i)$ となり $(x_i,x) \in N(x_i)$ が満たされ、f(x)、 $f(y) \in W_{f(x_i)}$ が従うから $(f(x),f(y)) \in V$ が成立し f の K の上での一様連続性が出る.

定理 A.5.100 (擬距離空間の一様構造). (S,d) を擬距離空間とするとき,

$$\mathscr{V} \stackrel{\mathrm{def}}{=\!=\!=\!=} \{U \mid$$
或る正数 r が存在して $V(r) \subset U \}$, $(V(r) = \{(x,y) \in S \times S \mid d(x,y) < r \})$

とおけば γ はS上の一様構造となり、距離位相と両立する.

定理 A.5.101 (擬距離空間の Cauchy 列). (S,d) を擬距離空間とし,一様構造 $\mathscr V$ を定理 A.5.100 の要領で定めるとき,S の任意の点列 $(x_n)_{n\in\mathbb N}$ に対し, $(x_n)_{n\in\mathbb N}$ が Cauchy 列であることと

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \quad n, m \ge N \Longrightarrow d(x_n, x_m) < \epsilon$$
 (A.35)

が成り立つことは同値になる.

証明. 任意の ϵ と $n,m \in \mathbb{N}$ で

$$(x_n, x_m) \in V(\epsilon) \iff d(x_n, x_m) < \epsilon$$

となるから、 $(x_n)_{n\in\mathbb{N}}$ が Cauchy 列であるとき、任意の $\epsilon>0$ に対し或る $N\in\mathbb{N}$ が存在して

$$n, m \ge N \implies (x_n, x_m) \in V(\epsilon) \implies d(x_n, x_m) < \epsilon$$

が成り立つ. 逆に $(x_n)_{n\in\mathbb{N}}$ に対して (A.35) が満たされているとき, 任意の $V(\epsilon)\in\mathscr{V}$ に対し或る $M\in\mathbb{N}$ が存在して

$$n, m \ge N \implies d(x_n, x_m) < \epsilon \implies (x_n, x_m) \in V(\epsilon)$$

となるから $(x_n)_{n \in \mathbb{N}}$ は Cauchy 列である.

定理 A.5.102 (点列の擬距離に関する収束). 点列 $(x_n)_{n\in\mathbb{N}}$ が a に収束することと $d(x_n,a)\longrightarrow 0$ は同値.

定義 A.5.103 (Cauchy 有向点族・完備性). (S,\mathcal{V}) を一様空間, (Λ,\leq) を有向集合, $(x_{\lambda})_{\lambda\in\Lambda}$ を有向点族とする. $(x_{\lambda})_{\lambda\in\Lambda}$ が **Cauchy 有向点族 (Cauchy net)** であるとは,任意の近縁 $V\in\mathcal{V}$ に対し或る $\lambda_0\in\Lambda$ が存在して

$$\lambda_0 \le \lambda, \mu \implies (x_\lambda, x_\mu) \in V$$

となることをいう. 点列が Cauchy 有向点族をなすときはこれを Cauchy 列 (Cauchy sequence) と呼ぶ. S の空でない部分集合 A の上の任意の Cauchy 有向点族が A で収束するとき, A は S で完備である (complete) という.

定理 A.5.104 (収束する有向点族は Cauchy 有向点族). (S, \mathcal{V}) を一様空間, (Λ, \leq) を有向集合, $(x_{\lambda})_{\lambda \in \Lambda}$ を有向点族とする. $(x_{\lambda})_{\lambda \in \Lambda}$ が S で収束するとき, $(x_{\lambda})_{\lambda \in \Lambda}$ は Cauchy 有向点族をなしている.

証明. $a \in S$ を $(x_{\lambda})_{\lambda \in \Lambda}$ の極限 $(\mathcal{O} - \mathcal{O})$ とする. 任意の近縁 $V \in \mathcal{V}$ に対し或る対称な $W \in \mathcal{V}$ で $W \circ W \subset V$ を満たすものが取れるが, $W_a \stackrel{\mathrm{def}}{=} \{s \in S \mid (a,s) \in W\}$ は a の近傍であるから或る $\lambda_0 \in \Lambda$ が存在して

$$\lambda_0 \leq \lambda \implies x_\lambda \in W_a$$

となり、Wの対称性と併せて

$$\lambda_0 \le \lambda, \mu \implies (x_\lambda, a), (a, x_\mu) \in W \implies (x_\lambda, x_\mu) \in V$$

が成り立つ.

定理 A.5.105 (Hausdorff 一様位相空間の完備部分集合は閉). (S, \mathcal{V}) を一様空間として \mathcal{V} により S に位相を導入する. また A を S の完備な部分集合とする. このとき, S が Hausdorff なら A は S で閉じている.

証明. $A = \overline{A}$ を示す. 定理 A.5.75 より任意に $a \in \overline{A}$ を取れば或る A 上の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ が a に収束する. 定理 A.5.104 より $(x_{\lambda})_{\lambda \in \Lambda}$ は Cauchy 有向点族となるから A で収束し、Hausdorff 性から $a \in A$ となる (定理 A.5.73).

定理 A.5.106 (完備な一様空間の閉集合は完備).

定理 A.5.107 (Cauchy 有向点族の部分有向点族も Cauchy・部分点族の極限はもとの点族でも極限). (S, \mathscr{V}) を一様空間, (Λ, \leq) を有向集合, $(x_{\lambda})_{\lambda \in \Lambda}$ を Cauchy 有向点族とする.また (Γ, \leq) を有向集合, $f: \Gamma \longrightarrow \Lambda$ を共終かつ単調な写像とする.このとき部分有向点族 $(x_{f(\gamma)})_{\gamma \in \Gamma}$ もまた Cauchy 有向点族となり,任意の $a \in S$ に対し

$$x_{f(\gamma)} \longrightarrow a \implies x_{\lambda} \longrightarrow a.$$

定理 A.5.74 より一般に有向点族が点 a に収束するための必要十分条件はその任意の部分有向点族が a に収束すること であるが、Cauchy 有向点族の場合は半分収束点族をなしている (定理 A.5.104) から、一つでも収束する部分有向点族 が得られれば元の点族の収束も判明する.

証明. 任意の近縁 $V \in \mathcal{Y}$ に対し或る $\lambda_0 \in \Lambda$ が存在して

$$\lambda_0 \le \lambda, \mu \implies (x_\lambda, x_\mu) \in V$$

が成り立つ. 共終性より $\lambda_0 \leq f(\gamma_0)$ を満たす $\gamma_0 \in \Gamma$ が取れて, $\gamma_0 \leq \gamma$, ξ なら $f(\gamma_0) \leq f(\gamma)$, $f(\xi)$ となるから

$$\gamma_0 \leq \gamma, \xi \implies \left(x_{f(\gamma)}, x_{f(\xi)}\right) \in V$$

が従う.よって $(x_{f(\gamma)})_{\gamma\in\Gamma}$ は Cauchy 有向点族である.いま, $x_{f(\gamma)}\longrightarrow a$ とする.このとき任意の $U\in\mathcal{V}$ に対し $W\circ W\subset U$ を満たす $W\in\mathcal{V}$ を取れば,或る $\gamma_1\in\Gamma$ が存在して

$$\gamma_1 \leq \gamma \implies (a, x_{f(\gamma)}) \in W$$

となる. 一方で或る $\lambda_1 \in \Lambda$ が存在して

$$\lambda_1 \leq \lambda, \mu \implies (x_\lambda, x_\mu) \in W$$

となる. $\lambda_1 \leq f(\gamma_2)$ を満たす $\gamma_2 \in \Gamma$ を取り、 $\{\gamma_1, \gamma_2\}$ の上界を $\gamma_3 \in \Gamma$ とすれば、

$$\lambda_1 \leq \lambda \quad \Longrightarrow \quad \left(a, x_{f(\gamma_3)}\right), \left(x_{f(\gamma_3)}, x_{\lambda}\right) \in W \quad \Longrightarrow \quad (a, x_{\lambda}) \in U$$

が成り立ち $x_{\lambda} \longrightarrow a$ が従う.

定理 A.5.108 (可算な基本近縁系が存在するとき、完備 \iff 任意の Cauchy 列が収束する). (S, \mathscr{V}) を一様空間とし、 \mathscr{V} で S に位相を導入する. また A を S の空でない部分集合とする. \mathscr{V} が可算な基本近縁系を持つとき、

A が S で完備である \iff A 上の任意の Cauchy 列が A で収束する.

証明. \longleftarrow を示す. \checkmark が可算な基本近縁系 $\{V_n\}_{n\in\mathbb{N}}$ を持つとき,近縁系は有限交叉で閉じるから

$$U_n \stackrel{\text{def}}{=\!\!\!=\!\!\!=\!\!\!=} V_1 \cap V_2 \cap \cdots \cap V_n$$
, $(n = 1, 2, \cdots)$

により単調減少な arphi の基本近縁系 $\{U_n\}_{n\in\mathbb{N}}$ が定まる. $(x_\lambda)_{\lambda\in\Lambda}$ を A 上の Cauchy 有向点族として

$$X_{\lambda} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \left. x_{\mu} \right. \right| \quad \lambda \leq \mu \left. \right\}, \quad (\forall \lambda \in \Lambda)$$

とおけば、任意の $n \in \mathbb{N}$ で或る $\lambda_n \in \Lambda$ が存在して

$$X_{\lambda_n} \times X_{\lambda_n} \subset U_n$$

となる. 任意の $V \in \mathcal{V}$ に対し $W \circ W \subset V$ を満たす $W \in \mathcal{V}$ を取れば、或る $N \in \mathbb{N}$ で $U_N \subset W$ となるから

$$U_N \circ U_N \subset V$$

が成り立つ. また任意の $n,m \ge N$ に対し、有向集合の定義より $\lambda_n,\lambda_m \le \mu$ を満たす $\mu \in \Lambda$ が存在して

$$(x_{\lambda_n}, x_{\mu}) \in U_n \subset U_N, \quad (x_{\mu}, x_{\lambda_m}) \in U_m \subset U_N$$

となり $(x_{\lambda_n}, x_{\lambda_n}) \in V$ が従うから、 $(x_{\lambda_n})_{n \in \mathbb{N}}$ は Cauchy 列であり或る $a \in A$ に収束する.このとき

$$x_{\lambda} \longrightarrow a$$
 (A.36)

が成立する. 実際, 任意に a の近傍 B を取れば或る $\tilde{V} \in \mathcal{V}$ で

$$\tilde{V}_a \stackrel{\text{def}}{=} \left\{ x \in S \mid (a, x) \in \tilde{V} \right\} \subset B$$

となり、 $\tilde{W} \circ \tilde{W} \subset V$ を満たす $\tilde{W} \in \mathcal{Y}$ に対し或る $N_1 \in \mathbb{N}$ が存在して

$$n \ge N_1 \implies x_{\lambda_n} \in \tilde{W}_a \implies (a, x_{\lambda_n}) \in \tilde{W}$$

を満たす. また或る $N_2 \geq N_1$ で $U_{N_2} \subset \tilde{W}$ となるから

$$X_{\lambda_{N_2}} \times X_{\lambda_{N_2}} \subset U_{N_2} \subset \tilde{W}$$

が従い,このとき $(a,x_{\lambda_{N_2}})\in \tilde{W}$ かつ $(x_{\lambda_{N_2}},x)\in \tilde{W}$, $(\forall x\in X_{\lambda_{N_2}})$ より $(a,x)\in \tilde{V}$, $(\forall x\in X_{\lambda_{N_2}})$ となるから

$$X_{\lambda_{N_2}} \subset \tilde{V}_a \subset B$$

が得られ (A.36) が出る. A 上の任意の Cauchy 有向点族が A で収束するから A は S で完備である.

定義 A.5.109 (全有界). (S, \mathcal{V}) を一様空間とし,A を S の空でない部分集合とする.このとき,A が S で全有界 (totally bounded) であるとは,任意の近縁 $V \in \mathcal{V}$ に対し或る有限集合 $F_V \subset A$ が存在して

$$A \subset \bigcup_{x \in F_V} V_x$$

が満たされることを指す.ここで $V_x \stackrel{\mathrm{def}}{=\!=\!=} \left\{ y \in S \mid (x,y) \in V \right\}$ である.

定理 A.5.110 (全有界性の同値条件). (S, \mathcal{V}) を一様空間, A を S の空でない部分集合とする. このとき, A が S で全有界であることと, 任意の近縁 $V \in \mathcal{V}$ に対し A の空でない部分集合の有限族 \mathscr{F}_V で

$$A = \bigcup \mathscr{F}_V; \quad F \times F \subset V, \ (\forall F \in \mathscr{F}_V) \tag{A.37}$$

を満たすものが取れることは同値である.

証明. A が S で全有界であるとする. 任意に $V \in \mathscr{V}$ を取れば, 定理 A.5.83 より或る $W \in \mathscr{V}$ で

$$W_x \times W_x \subset V$$
, $(\forall x \in S)$

が成り立つ. 全有界性より W に対し或る有限集合 $F_W \subset A$ が存在して

$$A\subset\bigcup_{x\in F_W}W_x$$

となるが、このとき $\mathscr{F}_V \stackrel{\mathrm{def}}{=\!=\!=} \{W_x \cap A\}_{x \in F_W}$ は A の空でない部分集合の族で (A.37) を満たす. 逆に任意の近縁 $V \in \mathscr{V}$ に対して A の空でない部分集合の有限族 $\mathscr{F}_V \subset \mathscr{A}$ で (A.37) を満たすものが取れるとき, \mathscr{F}_V の各元から一点ずつ選んで集めた A の有限部分集合を F_V とすれば,任意の $F \in \mathscr{F}_V$ とF に属する $X \in F_V$ で

$$y \in F \implies (x, y) \in F \times F \subset V \implies y \in V_x$$

が成り立つから

$$A = \bigcup \mathcal{F}_V \subset \bigcup_{x \in F_V} V_x$$

が従い A の S での全有界性が出る.

定理 A.5.111 (全有界かつ可算な基本近縁系を持つ一様位相空間は可分かつ第二可算).

定理 A.5.112 (コンパクトなら全有界). (S, \mathscr{V}) を一様空間とし、 \mathscr{V} で S に位相を導入する. A を S の空でないコンパクト部分集合とするとき、A は全有界である.

証明. 任意の $V \in \mathcal{V}$ に対し $\{V_x^o\}_{x \in A}$ は A の S における開被覆となるから,A がコンパクトであれば

$$A \subset \bigcup_{x \in F_V} V_x^{\text{o}} \subset \bigcup_{x \in F_V} V_x$$

を満たす有限集合 $F_V \subset A$ が存在する. 従って A は S で全有界である.

定理 A.5.113 (完備かつ全有界 \iff コンパクト). (S, \mathcal{V}) を一様空間として \mathcal{V} で一様位相を導入するとき, S の任意の空でない部分集合 A に対し,

A が S で完備かつ全有界 \iff A がコンパクト.

証明.

第一段 \Longrightarrow を示す. A が S で全有界なら、任意の $V \in \mathcal{V}$ に対し A の空でない部分集合の有限族 \mathcal{F}_V で

$$A = \bigcup \mathscr{F}_V, \quad F \times F \subset V, \ (\forall F \in \mathscr{F}_V)$$

を満たすものが取れる. \mathscr{F}_V が生成する A の位相を τ_V と書けば、Alexander の定理より (A,τ_V) はコンパクトとなり、Tychonoff の定理より $\{(A,\tau_V)\}_{V\in\mathcal{V}}$ の直積位相空間 B もまたコンパクトとなる. 写像 $\delta:A\longrightarrow B$ を

$$\delta(x)(V) = x$$
, $(\forall V \in \mathcal{V}, x \in A)$

により定めれば、A 上の任意の有向点族 $(x_{\lambda})_{\lambda \in \Lambda}$ に対し $(\delta(x_{\lambda}))_{\lambda \in \Lambda}$ は B の有向点族となるから、B のコンパクト性より或る有向集合 (Γ, \preceq) と共終かつ序列を保つ写像 $f: \Gamma \longrightarrow \Lambda$ 、及び $b \in B$ が存在して

$$\delta(x_{f(\gamma)}) \longrightarrow b$$

となる。このとき $(x_{f(y)})_{y\in\Gamma}$ は A 上の Cauchy 有向点族をなす。実際,任意の $V\in\mathcal{V}$ に対して $b(V)\in F$ を満たす $F\in\mathcal{F}_V$ を取れば

$$b \in \operatorname{pr}_{V}^{-1}(F)$$

となり (ただし pr_V は B から (A,τ_V) への射影である), $\mathrm{pr}_V^{-1}(F)$ は b の開近傍であるから或る $\gamma_V \in \Gamma$ で

$$\gamma_V \le \gamma \implies \delta(x_{f(\gamma)}) \in \operatorname{pr}_V^{-1}(F) \implies x_{f(\gamma)} \in F$$

が成り立つ. 従って

$$\gamma_V \leq \gamma, \xi \implies \left(x_{f(\gamma)}, x_{f(\xi)}\right) \in F \times F \subset V$$

が得られる. いま A は S で完備であるから $(x_{f(\gamma)})_{\gamma\in\Gamma}$ は A で収束し,定理 A.5.79 より A のコンパクト性が出る.

第二段 A がコンパクトであれば、定理 A.5.112 より A は全有界であり、また A 上の任意の Cauchy 有向点族は A で収束する部分有向点族を持ち (定理 A.5.79)、このとき元の点族も A で収束する (定理 A.5.107).

定義 A.5.114 (同程度連続). X,Y を集合とし、 ψ_X,ψ_Y をそれぞれ X,Y 上の近縁系とする. また $\mathscr F$ を X から Y への写像の集合とする. x を X の要素とするとき, $\mathscr F$ が x において同程度連続 (equicontinuous) であるということを

$$\forall V \in \mathcal{V}_Y \exists U \in \mathcal{V}_X \, \forall f \in \mathcal{F} \, \forall y \in X \, ((x,y) \in U \Longrightarrow (f(x),f(y)) \in V)$$

で定める. また

$$\forall x \in X \ \forall V \in \mathcal{V}_Y \ \exists U \in \mathcal{V}_X \ \forall f \in \mathcal{F} \ \forall y \in X \ ((x, y) \in U \Longrightarrow (f(x), f(y)) \in V)$$

が成り立つとき \mathcal{F} は X上で同程度連続であるといい,

$$\forall V \in \mathcal{V}_Y \exists U \in \mathcal{V}_X \forall f \in \mathcal{F} \forall x, y \in X \ ((x, y) \in U \Longrightarrow (f(x), f(y)) \in V)$$

が成り立つとき ℱ は一様同程度連続 (uniformly equicontinuous) であるという.

A.5.7 距離空間

定義 A.5.115 ((擬) 距離関数・距離位相). 空でない *1 集合 S において,

(PM1) d(x, x) = 0, $(\forall x \in S)$

(PM2) $d(x, y) = d(y, x), (\forall x, y \in S)$

(PM3) $d(x, y) \le d(x, z) + d(z, y), \quad (\forall x, y, z \in S)$

を満たす関数 $d: S \times S \longrightarrow [0, \infty)$ を擬距離 (pseudometric) と呼ぶ. これらに加えて

• $d(x, y) = 0 \Longrightarrow x = y$, $(\forall x, y \in S)$

が満たされるとき d を距離 (metric) と呼び、S と (擬) 距離 d との対 (S,d) を (擬) 距離空間と呼ぶ. また

 $O \subset S$ が開集合である \iff

 $O \neq \emptyset$, 或は任意の $x \in O$ に対し或る $r_x > 0$ が存在して $\{y \in S \mid d(x,y) < r_x\} \subset O$ となる

で定める開集合系を(擬)距離位相と呼ぶ. d で入れる(擬)距離位相を d-位相とも書く.

距離が一様同値であることと距離から作られる近縁系が一致することは同値.

·同値であるが一様同値でない距離の例のコピー -

 $X = \mathbf{R}$, $d_1(x,y) = |x-y|$, $d_2(x,y) = |x^3-y^3|$ because $x \mapsto x^3$ isn't uniformly continuous on \mathbf{R} , these aren't uniformly equivalent; take x = n, y = n + 1/n, then $d_1(x,y) = 1/n$, $d_2(x,y) \ge 3$, so for $\epsilon = 3$, every δ fails by taking $1/n < \delta$. However, essentially because $x \mapsto x^3$ is continuous, they do generate the same topology.

??? https://math.stackexchange.com/questions/793816/example-of-metrics-that-generating-the-same-topology-but-not-uniformly-equivalen

定義 A.5.116 (球). (S,d) を擬距離空間とするとき、 $x \in S$ と r > 0 により

$$\left\{ y \in S \mid d(x, y) < r \right\}$$

で表される集合を (中心 x, 半径 r の) 開球 (open ball) と呼ぶ. < を \leq に替えたものは閉球 (closed ball) と呼ぶ.

定理 A.5.117 (開球・閉球はそれぞれ開集合・閉集合). 擬距離位相空間の開球は開集合, 閉球は閉集合である.

証明. (S,d) を擬距離空間とすれば任意の $x \in S$ で $d_x: S \ni y \longmapsto d(x,y)$ は連続であり、半径 r の開球は $d_x^{-1}([0,r))$ 、半径 r の閉球は $d_x^{-1}([0,r])$ と書けるからそれぞれ S の開集合、閉集合である.

 $^{^{*1}}$ S が空集合である場合, $S \times S$ の上で定義し得る写像は空写像のみである.空写像は距離の定義を満たす.

定理 A.5.118 (擬距離空間において開球全体は基底をなす). (S,d) を擬距離空間として擬距離位相を入れるとき、中心 x 半径 r の開球を $B_r(x)$ と書けば

$$\mathscr{B} := \left\{ B_{1/n}(x) \mid x \in S, \ n \in \mathbb{N} \right\}$$

は S の基底をなす. また S が可分であるとき, つまり S で稠密な高々可算集合 M が存在するとき,

$$\mathscr{B}_0 := \left\{ B_{1/n}(x) \mid x \in M, n \in \mathbb{N} \right\}$$

は S の高々可算な基底となる. すなわち可分な擬距離空間は第二可算である.

証明. 定理 A.5.117 より任意の $\mathcal{U} \subset \mathcal{B}$ に対し $\bigcup \mathcal{U}$ は開集合となる. 一方で O が開集合なら,任意の $x \in O$ に対し

$$B_{1/n_x}(x) \subset O$$

を満たす $n_x \in \mathbb{N}$ が存在して

$$O = \bigcup_{x \in O} B_{1/n_x}(x) \in \mathcal{B}$$

が従うから、 $\mathcal B$ は S の基底をなす。S で稠密な高々可算集合 M が存在するとき、任意の $x\in S$ と $n\in \mathbb N$ に対し

$$B_{1/(3n)}(x) \cap M \neq \emptyset$$

となるから、或る $m \in B_{1/(3n)}(x) \cap M$ と 1/(3n) < 1/N < 2/(3n) を満たす $N \in \mathbb{N}$ で

$$x \in B_{1/N}(m) \subset B_{1/n}(x), \quad B_{1/N}(m) \in \mathscr{B}_0$$

が成り立つ. すなわち任意の開集合は \mathcal{B}_0 の元の合併で表せるから \mathcal{B}_0 は S の基底となる.

定理 A.5.119 (擬距離位相は第一可算). (S,d) を擬距離空間として擬距離位相を導入すれば、任意の $x \in S$ に対して

$$\left\{\left\{\,y\in S\mid\quad d(x,y)<\frac{1}{n}\,\right\}\right\}_{n=1}^{\infty}$$

は x の基本近傍系となる. すなわち擬距離位相は第一可算空間を定める.

証明. U を x を近傍とすれば或る r > 0 で $\{y \in S \mid d(x,y) < r\} \subset U$ となる. このとき 1/n < r なら

$$\left\{ y \in S \mid d(x,y) < \frac{1}{n} \right\} \subset \left\{ y \in S \mid d(x,y) < r \right\} \subset U$$

が成り立つ.

定理 A.5.120 (擬距離関数の連続性). (S,d) を擬距離空間として擬距離位相を導入するとき,以下が成り立つ:

- (1) $S \times S \ni (x, y) \longmapsto d(x, y)$ は直積位相に関し連続である.
- (2) 任意の空でない部分集合 A に対し $S \ni x \mapsto d(x,A)$ は連続である. 特に A が閉なら

$$x \in A \iff d(x,A) = 0.$$

定理 A.5.121 (擬距離空間は完全正規). 任意の擬距離位相空間は完全正規である. 特に以下は全て同値である:

- (a) 擬距離が距離である.
- (b) 擬距離位相が T_0 である.
- (c) 擬距離位相が T_6 である.

証明.

第一段 (S,d) を擬距離空間として擬距離位相を入れるとき、A,B を交わらない S の閉集合として

$$f(x) := \frac{d(x,A)}{d(x,A) + d(x,B)}, \quad (\forall x \in S)$$

により $f: S \longrightarrow [0,1]$ を定めれば、定理 A.5.120 より f は連続であり

$$A = f^{-1}(\{0\}), \quad B = f^{-1}(\{1\})$$

が満たされるからSは完全正規である.

第二段 d が距離なら S は Hausdorff である. 実際, 相異なる二点 $x,y \in S$ に対し

$$B_{\epsilon}(x) \coloneqq \left\{ s \in S \mid \quad d(s,x) < \frac{\epsilon}{2} \right\}, \quad B_{\epsilon}(y) \coloneqq \left\{ s \in S \mid \quad d(s,y) < \frac{\epsilon}{2} \right\}, \quad (\epsilon \coloneqq d(x,y))$$

で交わらない開球を定めれば、x と y は $B_{\epsilon}(x)$ と $B_{\epsilon}(y)$ で分離される.従って距離位相は完全正規 Hausdorff となり $(a) \Longrightarrow (c)$ を得る.

第三段 位相空間が T_6 なら T_0 であるから $(c) \Longrightarrow (b)$ が従う. また S が T_0 であるとき、相異なる二点 x,y に対し $x \notin \overline{\{y\}}$ 又は $y \notin \overline{\{x\}}$ となるが、 $x \notin \overline{\{y\}}$ とすれば $\overline{\{y\}} \subset S \setminus B_r(x)$ を満たす r > 0 が存在し、 $d(x,y) \ge r > 0$ が成り立つから d は距離となる.これにより $(b) \Longrightarrow (a)$ が出る.

定理 A.5.122 (距離空間の部分空間の距離). (S,d) を距離空間,M を S の空でない部分集合とし,S に距離位相を入れる.このとき M の相対位相 \mathcal{O}_M は

$$d_M(x, y) := d(x, y), \quad (\forall x, y \in M)$$

で定める相対距離により導入する距離位相 \mathcal{O}_{d_M} と一致する.

証明. 任意の $x \in M$ とr > 0に対し

$$\left\{ y \in M \mid d_M(x,y) < r \right\} = M \cap \left\{ y \in S \mid d(x,y) < r \right\}$$

が成り立つから,相対開集合は d_M -開球の合併で表され,逆に d_M -開集合は M と d-開集合の交叉で表せる.

定理 A.5.123 (距離空間の高々可算直積の距離). $((S_n,d_n))_{n=1}^N$ を距離空間の族として距離位相を導入し、S をその直積位相空間とする. また $x \in S$ に対し x(n) を x_n と書く. このとき $N < \infty$ なら

$$d(x,y) \coloneqq \left\{ \sum_{n=1}^{N} d_n(x_n, y_n)^2 \right\}^{1/2}, \quad (\forall x, y \in S)$$

により、 $N = \infty$ なら

$$d(x,y) := \sum_{n=1}^{\infty} 2^{-n} \left(d_n(x_n, y_n) \wedge 1 \right), \quad (\forall x, y \in S)$$

により、S は距離化可能である.特に (S_n, d_n) が全て完備 (resp. 可分) なら (S, d) も完備 (resp. 可分) となる.

定理 A.5.124 (擬距離の距離化). (S,d) を擬距離空間とするとき, $x \sim y \stackrel{\text{def}}{\longleftrightarrow} d(x,y) = 0$ で S に同値関係が定まる. また商写像を $\pi: S \longrightarrow S/\sim$ と書けば

$$\rho(\pi(x),\pi(y))\coloneqq d(x,y),\quad (\forall \pi(x),\pi(y)\in S/\sim)$$

により S/\sim に距離 ρ が定まり, S の d-位相の商位相は S/\sim の ρ -位相に一致する.

証明.

第一段 ρ が well-defined であることを示す. 実際, $\pi(x) = \pi(x')$, $\pi(y) = \pi(y')$ ならば

$$d(x', y') \le d(x', x) + d(x, y) + d(y, y') = d(x, y) \le d(x, x') + d(x', y') + d(y', y) = d(x', y')$$

より d(x,y) = d(x',y') が成り立つから $\rho(\pi(x),\pi(y)) = \rho(\pi(x'),\pi(y'))$ が満たされる.

第二段 d-開球と ρ -開球をそれぞれ $B_d(x;r)$, $B_o(\pi(x);r)$, $(x \in S, r > 0)$ と書けば

$$\pi(B_d(x;r)) = B_o(\pi(x);r), \quad B_d(x;r) = \pi^{-1}(B_o(\pi(x);r))$$

が成り立つ. U を商位相の空でない開集合とすれば、定理 A.5.118 と定理 A.4.20 より

$$U = \pi \left(\pi^{-1}(U) \right) = \pi \left(\bigcup_{x \in \pi^{-1}(U)} B_d(x; r_x) \right) = \bigcup_{x \in \pi^{-1}(U)} B_\rho(\pi(x); r_x)$$

となるから U は ρ -開集合でもある. 同様に V を空でない ρ -開集合とすれば

$$\pi^{-1}(V) = \pi^{-1} \left(\bigcup_{\pi(x) \in V} B_{\rho} \left(\pi(x); \epsilon_{\pi(x)} \right) \right) = \bigcup_{\pi(x) \in V} B_{d} \left(x; \epsilon_{\pi(x)} \right)$$

が成り立つから V は商空間の開集合でもある. 従って商位相と ρ -位相は一致する.

定義 A.5.125 (距離化可能). 位相空間において、その位相と一致する距離位相を定める距離が存在するとき、その空間は距離化可能 (metrizable) であるという.

定理 A.5.126 (連続単射な開写像による距離化可能性の遺伝). X,Y を位相空間, $f:X\longrightarrow Y$ を連続単射な開写像とする. X が距離 d_X で距離化可能なら, f(X) の相対位相は次で定める d_Y により距離化可能である:

$$d_Y(f(x), f(y)) = d_X(x, y), \quad (\forall x, y \in X). \tag{A.38}$$

逆に f(X) の相対位相が或る距離 d_Y で距離化可能であるとき, (A.38) で定める d_X により X は距離化可能である.

証明. X に距離 d_X が定まっているとき、或は f(X) に距離 d_Y が定まっているとき、(A.38) で d_Y 或は d_X を定めればいずれも距離となる.このとき任意の $f(x_0)=y_0$ と r>0 に対し

$$B_r^X(x_0) := \left\{ x \in X \mid d_X(x_0, x) < r \right\}, \quad B_r^Y(y_0) := \left\{ y \in f(X) \mid d_Y(y_0, y) < r \right\}$$

とおけば

$$f(B_r^X(x_0)) = B_r^Y(y_0), \quad B_r^X(x_0) = f^{-1}(B_r^Y(y_0))$$
 (A.39)

が成立する. X が距離化可能であるとき, U を f(X) の相対開集合とすれば $f^{-1}(U)$ は X の開集合であるから

$$f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} B_{r_x}^X(x)$$

と表され, 定理 A.4.20 と (A.39) より

$$U = f\left(\bigcup_{x \in f^{-1}(U)} B_{r_x}^X(x)\right) = \bigcup_{x \in f^{-1}(U)} B_{r_x}^Y(f(x))$$

となるから U は d_Y による距離位相の開集合である。逆に V を d_Y による距離位相の開集合とすれば,(A.39) より $f^{-1}(V)$ は d_X による開球の和で書けるから X の開集合であり,f が全射開写像であるから $V=f\left(f^{-1}(V)\right)$ は f(X) の相対開集合である。後半の主張は f の逆写像 $f^{-1}:f(X)\longrightarrow X$ に対し前半の結果を当てはめて得られる.

定理 A.5.127 (距離化可能性の同値条件). 任意の位相空間について以下は同値である:

- (a) 擬距離化可能である.
- (b) 正則かつ σ -局所有限な基底を持つ.
- (c) 一様化可能であり、両立する近縁系は可算な基本近縁系を持つ.

特に,次もまた同値となる:

- (a') 距離化可能である.
- (b') 正則 Hausdorff (T_3) かつ σ -局所有限な基底を持つ.
- (c') Hausdorff 一様化可能であり、両立する近縁系は可算な基本近縁系を持つ.

証明. X を位相空間とする.

第一段 X が T_3 かつ σ -局所有限な基底を持てば X は T_4 かつ全ての閉集合は G_δ となる. X は局所有限な部分集合族 \mathscr{B}_n の合併 $\bigcup_{n=1}^\infty \mathscr{B}_n$ で表せる基底を有する. 任意の $n \in \mathbf{Z}_+$ 及び $B \in \mathscr{B}_n$ に対し

$$\begin{cases} f_{n,B}(x) > 0, & (x \in B), \\ f_{n,B}(x) = 0, & (x \in X \backslash B) \end{cases}$$

を満たす連続写像 $f_{n,B}: X \longrightarrow [0,1/n]$ が存在する.

$$J := \{ (n, B) \mid n \in \mathbf{Z}_+, B \in \mathcal{B}_n \}$$

とおいて

$$F(x) := (f_{n,B}(x))_{(n,B)\in I}$$

によりFを定めれば、Fは単射となる。また

$$d\left((x_j)_{j\in J},(y_j)_{j\in J}\right)\coloneqq\sup_{j\in J}|x_j-y_j|$$

により $[0,1]^J$ に距離を定めれば,F は X から $[0,1]^J$ への開写像かつ連続写像となる.任意の $x_0 \in X$ と $\epsilon > 0$ に対して

$$x \in W \implies d(F(x), F(x_0)) < \epsilon$$
 (A.40)

を満たす x_0 の開近傍 W が存在する. n を固定すれば或る x_0 の近傍 U_n は \mathcal{B}_n の高々有限個の元としか交わらない. 従って或る開近傍 $V_n \subset U_n$ が存在し、すべての $B \in \mathcal{B}_n$ で

$$x \in V_n \implies d(F(x), F(x_0)) < \epsilon$$
 (A.41)

が満たされる、 $1/N < \epsilon/2$ を満たす $N \in \mathbf{Z}_+$ を取り

$$W := V_1 \cap \cdots \cap U_N$$

とおけば、 $n \leq N$ の場合任意の $B \in \mathcal{B}_n$ で (A.41) が成立し、n > N の場合任意の $B \in \mathcal{B}_n$ で

$$d(F(x), F(x_0)) \le \frac{2}{n} < \epsilon, \quad (\forall x \in X)$$

となるから (A.40) が成り立つ.

A.5.8 範疇定理

定理 A.5.128 (Cantor の共通部分定理). S を Hausdorff 空間とし,K をコンパクト部分集合の族とする.このとき,K の空でない任意の有限部分族 \tilde{K} に対して $\cap \tilde{K} \neq \emptyset$ が成り立つなら $\cap K \neq \emptyset$ が成り立つ.

証明. $\bigcap \mathcal{K} = \emptyset$ ならば、任意に一つ \mathcal{K} の要素 K を取れば $K \subset \bigcup_{C \in \mathcal{K}} S \setminus C$ となり、K のコンパクト性より \mathcal{K} の或る有限部分族 \mathcal{K}' が存在して

$$K \subset \bigcup_{C \in \mathcal{K}'} S \backslash C = S \backslash \bigcap \mathcal{K}'$$

を満たされる. ここで K'' を K' に要素 K を加えた K の有限部分族とすれば

$$\bigcap \mathcal{K}'' = K \cap \bigcap \mathcal{K}' = \emptyset$$

が成り立つ. 対偶を取れば定理の主張を得る.

定義 A.5.129 (疎集合・第一類集合・第二類集合). 位相空間 S の部分集合 A が疎である (nowhere dense) とは A の閉包の内核が $\overline{A}^\circ = \emptyset$ を満たすことをいう. S が可算個の疎集合の合併で表せるとき S を第一類集合 (a set of the first category) と呼び,そうでない場合はこれを第二類集合と呼ぶ.

定理 A.5.130 (Baire の範疇定理). 空でない完備距離空間と局所コンパクト Hausdorff 空間は第二類集合である.

証明. $S \neq \emptyset$ を完備距離空間,或は局所コンパクト Hausdorff 空間とする.

第一段 $(V_n)_{n=1}^{\infty}$ を S で稠密な開集合系とするとき

$$\bigcap_{n=1}^{\infty} V_n = S, \tag{A.42}$$

となることを示す. 実際 (A.42) が満たされていれば,任意の疎集合系 $(E_n)_{n=1}^{\infty}$ に対して

$$V_n := \overline{E_n}^c, \quad n = 1, 2, \cdots$$

で開集合系 (V_n) を定めると定理 A.5.3 より

$$\overline{V_n} = \overline{E_n}^{ca} = \overline{E_n}^{ic} = \emptyset^c = S$$

となるから、 $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$ が従い $S \neq \bigcup_{n=1}^{\infty} \overline{E_n} \supset \bigcup_{n=1}^{\infty} E_n$ が成り立つ. 従って S は第二類である.

第二段 任意の空でない開集合 B_0 に対し $B_0 \cap (\bigcap_{n=1}^{\infty} V_n) \neq \emptyset$ となることを示せば (A.42) が従う. V_1 は稠密であるから $B_0 \cap V_1 \neq \emptyset$ となり、点 $x_1 \in B_0 \cap V_1$ を取れば、S が距離空間なら或る半径 < 1 の開球 B_1 が存在して

$$x_1 \in B_1 \subset \overline{B_1} \subset B_0 \cap V_1 \tag{A.43}$$

を満たす. S が局所コンパクト Hausdorff の場合も、定理 A.5.35 と定理 A.5.69 より (A.43) を満たす相対コンパクトな開集合 B_1 が取れる. 同様に半径 <1/n の開球、或は相対コンパクトな開集合 B_n と $x_n \in S$ で

$$x_n \in B_n \subset \overline{B_n} \subset B_{n-1} \cap V_n$$

を満たすものが存在する.このとき S が完備距離空間なら $(x_n)_{n=1}^\infty$ は Cauchy 列をなし,その極限点 x_∞ は

$$x_{\infty} \in \bigcap_{n=1}^{\infty} \overline{B_n}$$

を満たす. S が局所コンパクト Hausdorff 空間なら定理 A.5.128 より

$$\bigcap_{n=1}^{\infty} \overline{B_n} \neq \emptyset$$

となるから,いずれの場合も

$$\emptyset \neq \bigcap_{n=1}^{\infty} \overline{B_n} \subset B_0 \cap \left(\bigcap_{n=1}^{\infty} V_n\right)$$

が従い定理の主張が得られる.

補題 A.5.131 (同相写像に関して閉包 (内部) の像は像の閉包 (内部) に一致する). A を位相空間 S の部分集合, $h:S\longrightarrow S$ を同相写像とするとき次が成り立つ:

- (1) $h(A^a) = h(A)^a$.
- (2) $h(A^i) = h(A)^i$.

証明.

- (1) $h(A) \subset h(A^a)$ かつ $h(A^a)$ は閉であるから $h(A)^a \subset h(A^a)$ が従う.一方で任意の $x \in h(A^a)$ に対し x = h(y) を満たす $y \in A^a$ と x の任意の近傍 V を取れば, $h^{-1}(V) \cap A \neq \emptyset$ より $V \cap h(A) \neq \emptyset$ が成り立ち $x \in h(A)^a$ となる.
- (2) $h(A^i) \subset h(A)$ かつ $h(A^i)$ は開であるから $h(A^i) \subset h(A)^i$ が従う. 一方で任意の開集合 $O \subset h(A)$ に対し $h^{-1}(O) \subset A$ より $h^{-1}(O) \subset A^i$ となり, $O \subset h(A^i)$ が成り立つから $h(A)^i \subset h(A^i)$ が得られる.

定理 A.5.132 (第一類集合の性質). S を位相空間とする.

- (a) $A \subset B \subset S$ に対し B が第一類なら A も第一類である.
- (b) 第一類集合の可算和も第一類である.
- (c) 内核が空である閉集合は第一類である.
- (d) S から S への位相同型 h と $E \subset S$ に対し次が成り立つ:

$$E$$
 が第一類 \iff $h(E)$ が第一類.

証明.

- (a) $B = \bigcup_{n=1}^{\infty} E_n$ を満たす疎集合系 $(E_n)_{n=1}^{\infty}$ に対し $A \cap E_n$ は疎であり $A = \bigcup_{n=1}^{\infty} (A \cap E_n)$ となる.
- (b) $A_n \subset S$, $(n=1,2,\cdots)$ が第一類集合とし $(E_{n,i})_{i=1}^{\infty}$ を $A_n = \bigcup_{i=1}^{\infty} E_{n,i}$ を満たす疎集合系とすれば

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n,i=1}^{\infty} E_{n,i}$$

が成り立つ.

- (c) 内核が空である閉集合はそれ自身が疎であり、自身の可算和に一致する.
- (d) E が第一類のとき, $E = \bigcup_{i=1}^{\infty} E_i$ を満たす疎集合系 $(E_i)_{i=1}^{\infty}$ に対し定理 A.5.3 と補題 A.5.131 より

$$\emptyset = h(E_i^{ai}) = h(E_i^a)^i = h(E_i)^{ai}$$

が成り立つから $h(E_i)$ は疎であり,

$$h(E) = \bigcup_{i=1}^{\infty} h(E_i)$$

となるから h(E) も第一類である. h(E) が第一類なら $E = h^{-1}(h(E))$ も第一類である.

A.5.9 連結性

定理 A.5.133. R の任意の区間は連結である.

定理 A.5.134. 連結集合の連続写像による像は連結である.

定理 A.5.135 (弧状連結なら連結). 弧状連結位相空間は連結空間である.

証明. S を連結でない位相空間とする. このとき或る空でない開集合 U_1,U_2 が存在して

$$U_1 \cup U_2 = S$$
, $U_1 \cap U_2 = \emptyset$

を満たす. $x \in U_1$, $y \in U_2$ に対し f(0) = x, f(1) = y を満たす連続写像 $f: [0,1] \longrightarrow S$ が存在する場合,

$$f([0,1]) = (U_1 \cap f([0,1])) \cup (U_2 \cap f([0,1])), \quad (U_1 \cap f([0,1])) \cap (U_2 \cap f([0,1])) = \emptyset$$

となり f([0,1]) の連結性に矛盾する. 従って x,y を結ぶ道は存在しないから S は弧状連結ではない.

A.6 位相線型空間

A.6.1 線型位相

定理 A.6.1 (多変数連続写像は一変数だけの写像で連続). Λ を任意濃度の空でない集合とし、 $((S_{\lambda}, \tau_{\lambda}))_{\lambda \in \Lambda}$ を位相空間の族とする.

以降扱う線型空間はすべて体 Φ (= C, R) をスカラーとして考える.

定義 A.6.2 (位相線型空間). Φ 上の線型空間 X で定められる位相 τ が

(tvs1) $X \times X \ni (x,y) \longmapsto x + y \in X$ 及び $\Phi \times X \ni (\alpha,x) \longmapsto \alpha x \in X$ が τ 及びその直積位相に関し連続である. (tvs2) (X,τ) は T_1 位相空間である.

を満たすとき、 τ を X の線型位相 (vector topology) と呼び、 (X,τ) を位相線型空間 (topological vector space) と呼ぶ.

定理 A.6.3 (位相線型空間は T_3). X を位相線型空間とするとき、コンパクト部分集合 $K \subset X$ と閉集合 $C \subset X$ に対し、 $K \cap C = \emptyset$ なら或る 0 の開近傍 V が存在して次を満たす:

$$(K+V)\cap(C+V)=\emptyset. \tag{A.44}$$

実際は位相線型空間は一様化可能であるから Tychonoff である.

証明. $K = \emptyset$ なら $K + V = \emptyset$ となり (A.44) が成立する. $K \neq \emptyset$ の場合, 任意に $x \in K$ を取れば

定理 A.6.4 (平行移動・スカラ倍は連続). (X,τ) を位相線型空間とするとき以下が成立する.

- (1) 任意の $a \in X$ に対し $X \ni x \mapsto a + x \in X$ は同相写像である.
- (2) 任意の $\alpha \in \Phi$ に対し $X \ni x \mapsto \alpha x \in X$ は連続であり、特に $\alpha \neq 0$ のとき同相写像となる.
- (3) 任意の $x \in X$ に対し $\Phi \ni \alpha \mapsto \alpha x \in X$ は連続である.

証明. 連続性は定理 A.6.1 より従う.また,(1)(2) において $x \mapsto -a + x$, $x \mapsto \alpha^{-1}x$ が逆写像となる.

定理 A.6.5 (平行移動不変位相). au を線型空間 X の位相とする.任意の $V \subset X$ と $x \in X$ に対して

$$V \in \tau \iff x + V \in \tau$$

が満たされるとき、 τ は平行移動不変である (translation invariant) という。定理 A.6.4 より位相線型空間において平行移動は同相写像となるから線型位相は平行移動不変である。

定理 A.6.6 (位相線型空間は一様空間). \mathscr{B} を位相線型空間 (X,τ) の 0 ベクトルの均衡な基本近傍系とするとき,

$$\Phi \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \left\{ \left. \left\{ \left. \left(x,y \right) \right. \right| \quad x,y \in X, \ x-y \in B \right. \right\} \left. \right| \quad B \in \mathcal{B} \right\}$$

は近縁系となり、この近縁系が定める位相はτに一致する.

定理 A.6.7 (平行移動不変位相は 0 の基本近傍系で決まる). τ を線型空間 X の平行移動不変位相, $\mathscr U$ を $0 \in X$ の基本近傍系とするとき,任意の $x \in X$ に対して

254

$$\mathscr{U}(x) \stackrel{\mathrm{def}}{=} \{ x + U \mid U \in \mathscr{U} \}$$

は x の基本近傍系となる. すなわち次が成立する:

 $\tau = \{O \subset X \mid O = \emptyset, \text{ 或は任意} O x \in O \text{ に対} \cup x + U_x \subset O \text{ を満たす } U_x \in \mathcal{U} \text{ が存在する} \}.$

証明. V を x の任意の近傍とすれば定理 A.6.4 より $-x+V^{\circ}$ は 0 の開近傍となる.このとき或る $U\in\mathscr{U}$ が

$$U \subset -x + V^{\circ} \subset -x + V$$

を満たし $x + U \subset V$ が従うから $\mathcal{U}(x)$ はx の基本近傍系をなしている. このとき定理 A.5.6 より

 $O \in \tau$ \iff $O = \emptyset$, 或は任意の $x \in O$ に対し $U \subset O$ を満たす $U \in \mathcal{U}(x)$ が存在する \iff $O = \emptyset$, 或は任意の $x \in O$ に対し $x + U_x \subset O$ を満たす $U_x \in \mathcal{U}$ が存在する

が成立する.

定義 A.6.8 (平行移動不変距離・絶対斉次距離). d を線型空間 X 上に定まる距離とする.

(1) 次が満たされるとき d は平行移動不変である (invariant) という:

$$d(x+z,y+z) = d(x,y), \quad (\forall x,y,z \in X).$$

(2) 次が満たされるとき *d* は絶対斉次的である (absolutely homogeneous) という:

$$d(\alpha x, \alpha y) = |\alpha| d(x, y), \quad (\forall \alpha \in \Phi, \ x, y \in X).$$

定理 A.6.9 (平行移動不変距離による距離位相は平行移動不変). 線型空間 X に平行移動不変距離 d が定まっているとき,d による距離位相は平行移動不変となる.

証明. 任意の $\delta > 0$ と $a \in X$ に対し $B_{\delta}(a) \stackrel{\text{def}}{=\!=\!=} \{x \in X \mid d(x,a) < \delta\}$ と書けば、任意の $y \in X$ で

$$z \in y + B_{\delta}(a) \iff d(z - y, a) < \delta \iff d(z, y + a) < \delta \iff z \in B_{\delta}(y + a)$$

が成り立つ. 従って、部分集合 U が $U = \bigcup_{a \in U} B_{\delta_a}(a)$ と書けるとき任意の $x \in X$ に対し

$$x + U = \bigcup_{a \in U} (x + B_{\delta_a}(a)) = \bigcup_{a \in U} B_{\delta_a}(x + a)$$

となるから、U が開集合であることと x + U が開集合であることは同値になる.

定理 A.6.10 (絶対斉次的かつ平行移動不変な距離はノルムで導入する距離に限られる). ノルムで導入する距離は 絶対斉次的かつ平行移動不変であり、かつそのような距離はノルムで導入する距離に限られる.

証明. $\|\cdot\|$ を線型空間 X のノルムとするとき,

$$d(x,y) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \left\| x - y \right\|, \quad (\forall x,y \in X)$$

で距離を定めれば

 $d(x+z,y+z) = \|x+z-(y+z)\| = \|x-y\| = d(x,y), \quad d(\alpha x,\alpha y) = \|\alpha(x-y)\| = |\alpha|\|x-y\| = |\alpha|d(x,y)$ が成立する. 逆に X 上の距離 d が絶対斉次的かつ平行移動不変であるとき,

$$||x|| \stackrel{\text{def}}{=} d(x,0), \quad (\forall x \in X)$$

でノルムが定まる.実際 $\|\alpha x\| = d(\alpha x, 0) = |\alpha|d(x, 0) = |\alpha|\|x\|$ かつ

$$||x + y|| = d(x + y, 0) = d(x, -y) \le d(x, 0) + d(0, -y) = d(x, 0) + d(y, 0) = ||x|| + ||y||$$

が成立する.

定理 A.6.11 (ノルムで導入する距離位相は線型位相). $(X, \|\cdot\|)$ をノルム空間とするとき, $d(x,y) \stackrel{\text{def}}{=\!=\!=} \|x-y\|$ で定める距離 d による距離位相は線型位相となる.

証明. 距離位相は T_6 位相空間を定めるから X は定義 A.6.2 の (tvs2) を満たす. また

$$d(x + y, x' + y') \le d(x + y, x' + y) + d(x' + y, x' + y') = d(x, x') + d(y, y')$$

より加法の連続性が得られ,

$$d(\alpha x, \alpha' x') \le d(\alpha x, \alpha' x) + d(\alpha' x, \alpha' x')$$

=
$$d((\alpha - \alpha')x, 0) + |\alpha'|d(x, x') = |\alpha - \alpha'|d(x, 0) + |\alpha'|d(x, x')$$

よりスカラ倍の連続性も出る.

定理 A.6.12 (位相線型空間の連結性). 位相線型空間は連結である.

証明. 零元のみの空間は密着空間であるから連結である. $X \neq \{0\}$ を位相線型空間とするとき, 任意に $a,b \in X$ を取り

$$f:[0,1]\ni t\longmapsto a+t(b-a)\in X$$

と定めれば f は [0,1] から X への連続写像である.実際,定理 A.6.4 より $\Phi \ni t \longmapsto t(b-a)$ が連続であるから

$$g:[0,1]\ni t\longmapsto t(b-a)$$

は [0,1] の相対位相に関して連続であり、かつ $h: X \ni x \mapsto a + x$ もまた連続であるから $f = h \circ g$ の連続性が従う. よって X は弧状連結であるから定理 A.5.135 より連結である.

定義 A.6.13 (位相線形空間の有界集合). X を位相線型空間, E を X の部分集合とする. 0 の任意の近傍 V に対し或る S=S(V)>0 が存在して

$$E \subset tV$$
, $(\forall t > s)$

となるとき, E は有界であるという.

定理 A.6.14.

定義 A.6.15 (局所基・局所凸・局所コンパクト・局所有界). (X, τ) を位相線型空間とする.

- (1) $0 \in X$ の基本近傍系を X の局所基 (local base) と呼ぶ.
- (2) すべての元が凸集合であるような局所基が取れるとき、X は局所凸 (locally convex) であるという.
- (3) $0 \in X$ がコンパクトな近傍を持つとき、X は局所コンパクト (locally compact) であるという.
- (4) $0 \in X$ が有界な近傍を持つとき, X は局所有界 (locally bounded) であるという.

定義 A.6.16 (F-空間・Frechet 空間・ノルム空間). (X,τ) を位相線型空間とする。平行移動不変距離 d により X が距離化可能でかつ完備距離空間となるとき,X を F-空間と呼ぶ。局所凸な F-空間を Frechet 空間と呼び

定理 A.6.17 (部分空間が F-空間なら閉). (X,τ) を位相線形空間, $Y \subset X$ を部分空間とする. このとき Y が F-空間なら Y は τ -閉である.

証明.

定義 A.6.18 (集合の線型演算). X を体 Φ 上の位相線型空間, A, B を X の部分集合, α , β \in Φ とする. このとき

$$\alpha A + \beta B \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \, \alpha a + \beta b \mid \quad a \in A, \ b \in B \, \right\}$$

と書く.

定理 A.6.19. X を位相線型空間, A, B を部分集合とする.

- $(1) \alpha \overline{A} = \overline{\alpha A}$
- (2) $\alpha(A^{\circ}) = (\alpha A)^{\circ}$

証明.

(1) $\alpha = 0$ 或は $A = \emptyset$ の場合は両辺が $\{0\}$ 或は \emptyset となって等号が成立する. $\alpha \neq 0$ かつ $A \neq \emptyset$ の場合,

$$x \in \alpha \overline{A} \iff \alpha^{-1}x \in \overline{A}$$
 $\iff (\alpha^{-1}x + V) \cap A \neq \emptyset, \quad (\forall V: \text{ neighborhood of } 0)$
 $\iff (x + V) \cap \alpha A \neq \emptyset, \quad (\forall V: \text{ neighborhood of } 0)$
 $\iff x \in \overline{\alpha A}$

が成り立つ.

(2) $\alpha = 0$ 或は $A = \emptyset$ の場合は両辺が $\{0\}$ 或は \emptyset となって等号が成立する. $\alpha \neq 0$ かつ $A \neq \emptyset$ の場合,

$$x \in \alpha(A^{\circ})$$
 \iff $\alpha^{-1}x \in A^{\circ}$ \iff $\exists V$: neighborhood of 0, $\alpha^{-1}x + V \subset A$ \iff $x \in (\alpha A)^{\circ}$

が成り立つ.

定理 A.6.20 (斉次距離で距離化可能なら距離と位相の有界性は一致する). 位相線型空間 (X, τ) が斉次的な距離 d で距離化可能である場合,X の部分集合の d-有界性と τ -有界性は一致する.

証明. 任意の $\alpha > 0$, $\delta > 0$ に対し, $B_{\delta}(0) \stackrel{\text{def}}{=\!=\!=} \{x \in X \mid d(x,0) < \delta\}$ とおけば斉次性より

$$x \in \alpha B_{\delta}(0) \quad \Longleftrightarrow \quad d\left(\alpha^{-1}x,0\right) < \delta \quad \Longleftrightarrow \quad \alpha^{-1}d(x,0) < \delta \quad \Longleftrightarrow \quad x \in B_{\alpha\delta}(0)$$

が成立する. $\{B_r(0)\}_{r>0}$ は X の局所基となるから, $E \subset X$ が d-有界のときも τ -有界のときも $E \subset B_R(0)$ を満たす R>0 が存在する. E が d-有界集合である場合,任意に 0 の近傍 V を取れば或る r>0 で $B_r(0) \subset V$ となり

$$E \subset B_R(0) \subset B_t(0) = \frac{t}{r} B_r(0) \subset \frac{t}{r} V, \quad (\forall t > R)$$

が成立するから E は τ -有界集合である. 逆に E が τ -有界集合であるとき, 任意に $x \in X$ を取れば

$$E \subset B_R(0) \subset B_{d(x,0)+R}(x)$$

が成立するから E は d-有界集合である.

定理 A.6.21 (位相線型空間上の同程度連続性). X,Y を位相線型空間とし、 ζ_X,ζ_Y をそれぞれ X,Y の零元とし、 $\mathscr F$ を X から Y への線型写像の族とする. また $\mathscr B_X,\mathscr B_Y$ をそれぞれ X,Y の局所基とする. そして

$$\begin{split} \mathscr{V}_X & \xrightarrow{\operatorname{def}} \left\{ \left. V \mid \quad \exists B \in \mathscr{B}_X \left(\left\{ \left(x, y \right) \mid \quad x, y \in X \land y - x \in B \right\} \subset V \right) \right\}, \\ \mathscr{V}_Y & \xrightarrow{\operatorname{def}} \left\{ \left. V \mid \quad \exists B \in \mathscr{B}_Y \left(\left\{ \left(x, y \right) \mid \quad x, y \in Y \land y - x \in B \right\} \subset V \right) \right\} \right. \end{split}$$

で X,Y 上の近縁系を定める. このとき

- (a) $\forall x \in X \ \forall V \in \mathcal{V}_Y \ \exists U \in \mathcal{V}_X \ \forall f \in \mathcal{F} \ \forall y \in X \ ((x,y) \in U \Longrightarrow (f(x),f(y)) \in V)$
- (b) $\forall V \in \mathcal{V}_Y \exists U \in \mathcal{V}_X \forall f \in \mathscr{F} \forall y \in X ((\zeta_X, y) \in U \Longrightarrow (\zeta_Y, f(y)) \in V)$
- (c) $\forall B \in \mathcal{B}_Y \exists C \in \mathcal{B}_X \forall f \in \mathcal{F} (f * C \subset B)$
- (d) $\forall V \in \mathcal{V}_Y \exists U \in \mathcal{V}_X \forall f \in \mathcal{F} \forall x, y \in X ((x, y) \in U \Longrightarrow (f(x), f(y)) \in V)$

は全て同値である.

- 式(a)は ℱ が同程度連続であるということを表す.
- 式(b) は ℱ が零元において同程度連続であるということを表す.
- 式(c)は ℱの要素の像が一様に抑えられることを表す.
- 式(d)は ℱ が一様同程度連続であるということを表す.

この定理は、位相線型空間上の線型写像の集合については零元における同程度連続性から一様同程度連続性が導かれることを主張しているが、同じ主張は位相群で成立する、その場合 *ℱ* は群準同型写像の集合とすればよい。

略証. (a) から (b) は直ちに従う. (b) が成立しているとする. B を \mathcal{B}_{Y} の要素として取り,

$$V_B \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \big\{ (x,y) \mid \quad x,y \in Y \land y - x \in B \big\}$$

とおくと、 \mathscr{V}_X の或る要素 U が取れて

$$\forall f \in \mathscr{F} \ \forall y \in X ((\zeta_X, y) \in U \Longrightarrow (\zeta_Y, f(y)) \in V_B$$

 $\Longrightarrow f(y) \in B)$

が成立する. ゆえに

$$C \subset \{y \mid y \in X \land (\zeta_X, y) \in U\}$$

なる \mathcal{B}_X の要素 C を取れば

$$\forall f \in \mathscr{F} (f * C \subset B)$$

が従う.

次に (c) が成立しているとする. V を ¾ の要素とすると

$$\{(x,y) \mid x,y \in Y \land y - x \in B\} \subset V$$

を満たす \mathcal{B}_Y の要素 B が取れる. B に対し

$$\forall f \in \mathscr{F} (f * C \subset B)$$

を満たす \mathcal{B}_X の要素 C が取れるが,

$$U \stackrel{\text{def}}{=} \{ (x, y) \mid x, y \in X \land y - x \in C \}$$

とおくと

$$\forall f \in \mathcal{F} \, \forall x, y \in X \, ((x, y) \in U \Longrightarrow y - x \in C$$

$$\Longrightarrow f(y) - f(x) \in B$$

$$\Longrightarrow (f(x), f(y)) \in V)$$

が従う.一様同程度連続ならば同程度連続であるから定理の主張が得られる.

定理 A.6.22 (同程度連続な写像族の有界性). X,Y を位相線形空間, $\mathscr F$ を X から Y への連続線型写像の族とする。 $\mathscr F$ が同程度連続であるとき,

定理 A.6.23 (Banach-Steinhaus).

定理 A.6.24 (開写像原理). X

A.6.2 局所凸空間

定理 A.6.25 (近縁系で導入する一様位相が線型位相となるとき). (X,Φ,σ,μ) を線型空間とし, ζ を X の σ に関する単位元とし, ψ を X 上の近縁系とする。 ψ の基本近縁系 ψ で

- $\bigcap \mathcal{U} = \{(x, x) \mid x \in X\},$
- $\forall U \in \mathscr{U} (x + U_{\zeta} \subset U_x),$
- $\forall U \in \mathcal{U} \ \forall \alpha \in \Phi \ \exists V \in \mathcal{U} \ (\alpha \neq 0 \Longrightarrow V \subset \alpha U_{\zeta}),$
- $\forall U \in \mathcal{U} \ \forall \alpha \in \Phi \ (|\alpha| \le 1 \Longrightarrow \alpha U_{\zeta} \subset U_{\zeta}),$
- $\forall U \in \mathcal{U} \ (\forall x \in X \exists s \in]0, \infty[(x \in sU_{\zeta}))$

を満たすものが取れるとき、emにより導入する em X上の一様位相は線型位相となる。ただし

$$U_x \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \, y \mid \quad (x,y) \in U \, \right\}.$$

略証.

第一段 一様位相が不変位相であることを示す. x を X の要素とする. x において

$$\{U_x \mid U \in \mathscr{U}\}$$

は基本近傍系となるが.

$$\forall U \in \mathcal{U} \ (x + U_{\zeta} \subset U_x)$$

が満たされているので

 $\{x + U_{\zeta} \mid U \in \mathcal{U}\}\$

も x の基本近傍系となる. 従って一様位相は不変位相である.

第二段 加法 σ が (ζ,ζ) において連続となることを示す. B を ζ の近傍とすれば,

 $U_\zeta \subset B$

なる $\mathcal U$ の要素Uが取れる.また

 $W\circ W\subset U$

なる $\mathcal U$ の要素 W も取れる. このとき

 $W_{\zeta} \times W_{\zeta} \subset \sigma^{-1} * B$

が成立する. 実際,

 $(x,y) \in W_{\zeta} \times W_{\zeta} \tag{A.45}$

なる x, y に対し,

 $y \in W_{\zeta}$

から

 $x + y \in x + W_{\zeta}$

となり

 $x + y \in W_x$

が成り立つので,

 $(\zeta, x) \in W \land (x, x + y) \in W$

となり

 $(\zeta, x + y) \in W$

が従う. よって

 $x + y \in U_{\zeta}$

が成り立ち, (A.45) が示された.

第三段 x と α をそれぞれ X と Φ の要素として,スカラ倍 μ が (α,x) で連続となることを示す. B を αx の近傍とする.このとき

 $-\alpha x + B$

は ζ の近傍となるので,

 $U_{\zeta}\subset -\alpha x+B$

を満たす W の要素 U が取れる. U に対し

$$W \circ W \subset U$$

なる W の要素 W を取り,

$$x \in sW_{\zeta}$$

なる正数sを取り

$$t \stackrel{\text{def}}{=\!\!\!=\!\!\!=} s/(1+|\alpha|s)$$

とおく. このとき

$$y \in x + tW_{\zeta} \wedge |\beta - \alpha| < 1/s \Longrightarrow \beta y - \alpha x = \beta(y - x) + (\beta - \alpha)x$$

$$\in \beta tW_{\zeta} + (\beta - \alpha)sW_{\zeta}$$

$$\subset W_{\zeta} + W_{\zeta}$$

$$\subset U_{\zeta}$$

$$\subset -\alpha x + B$$

が成立する. ゆえに

$$y \in x + tW_{\zeta} \land |\beta - \alpha| < 1/s \Longrightarrow \beta y \in B$$

が成り立ち,

$$\mu^{-1} * B$$

が (α, x) の近傍であることが示された.

定義 A.6.26 (局所凸・Frechet 空間). 位相線型空間の 0 の基本近傍系で全ての元が凸であるものが存在するとき、その空間は局所凸である (locally convex) といいその基本近傍系を凸な基本近傍系という。また局所凸な F-空間を Frechet 空間と呼ぶ。

補題 A.6.27 (局所凸空間の直積は局所凸). Z を線型空間, $(X_{\lambda})_{\lambda \in \Lambda}$ を局所凸位相線型空間の族とし, $0 \in X_{\lambda}$ の基本近傍系 (全ての元は凸) を \mathcal{U}_{λ} と書く.また各 $\lambda \in \Lambda$ に対し写像 $f_{\lambda}: Z \longrightarrow X_{\lambda}$ が定まっているとする.このとき次が成り立つ:

(1) $0 \in \mathbb{Z}$ を含み、かつ定理のを満たすような集合系 \mathscr{U} を

$$\mathscr{U} \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \bigcap_{\Lambda \in H} f_{\lambda}^{-1}(V_{\lambda}) \mid \quad H \ \mathrm{ld} \ \Lambda \ \mathrm{o}$$
空でない有限部分集合, $V_{\lambda} \in \mathscr{U}_{\lambda} \right\}$

で定める.また任意の $V\in \mathscr{U}_{\lambda}$ に対し $f_{\lambda}^{-1}(V)$ が凸であるとき $(\forall \lambda \in \Lambda)$,

$$\mathscr{U}(x) \stackrel{\text{def}}{=} \{ x + U \mid U \in \mathscr{U} \}, (\forall x \in Z)$$

とおけば、 $\{\mathscr{U}(x)\}_{x\in\mathbb{Z}}$ を基本近傍系とする Z の位相がただ一つに定まり、Z の和を連続にする.

定理 A.6.28 (局所凸空間とはセミノルムの族で生成される空間).

A.6.3 商空間の位相

A.6.4 位相双対空間

定義 A.6.29 (位相双対空間・位相第二双対空間). X を位相線型空間とする.

(1) X 上の連続な線型形式, つまり X から Φ への連続線型写像の全体 X^* を位相双対空間 (topological dual space) と呼ぶ. また X^* の全ての元を連続にする最弱の位相を X の弱位相 (weak topology) と呼び $\sigma(X,X^*)$ と書く.

任意の $x \in X$ に対し $\varphi_x: X^* \ni x^* \longmapsto \langle x, x^* \rangle_{X,X^*}$ により X^* 上の線型形式 φ_x が定まる.このとき $\{\varphi_x \mid x \in X\}$ の元を全て連続にする最弱の位相を X の汎弱位相 (weak* topology) と呼び $\sigma(X^*,X)$ と書く.

定理 A.6.30.

定理 A.6.31 (弱位相は局所凸線型位相). (X,τ) :位相線型空間,X':X 上の連続線型形式の集合,このとき X'-始位相によって X は局所凸位相線型空間となる.

略証. X'-始位相と X' で作る近縁系で導入する一様位相は一致する. その近縁系は定理 A.6.25 の条件を満たすのでその一様位相は線型位相であり、また局所凸でもある.

A.7 測度

A.7.1 Lebesgue 拡大

定義 A.7.1 (Lebesgue 拡大). (X, \mathcal{B}, μ) を測度空間とするとき,

$$\overline{\mathcal{B}} \coloneqq \left\{ B \subset X \mid \exists A_1, A_2 \in \mathcal{B}, \text{ s.t.} \quad A_1 \subset B \subset A_2, \ \mu(A_2 \backslash A_1) = 0 \right\},$$

$$\overline{\mu}(B) \coloneqq \mu(A_1) \quad (\forall B \in \overline{\mathcal{B}}, \ A_1 \text{ as in above})$$

により得られる完備測度空間 $\left(X,\overline{\mathcal{B}},\overline{\mu}\right)$ を $\left(X,\mathcal{B},\mu\right)$ の Lebesgue 拡大と呼ぶ.

 $\overline{\mu}$ は well-defined である. 実際, $B \subset X$ に対し $A_1, A_2, B_1, B_2 \in \mathcal{B}$ が

$$A_1 \subset B \subset A_2$$
, $\mu(A_2 \backslash A_1) = 0$, $B_1 \subset B \subset B_2$, $\mu(B_2 \backslash B_1) = 0$,

を満たすとき, $A_1 \cup B_1 \subset B \subset A_2 \cap B_2$ となるが,

$$(A_2 \cap B_2) \cap (A_1 \cup B_1)^c \subset A_2 \backslash A_1$$

より $\mu(A_1 \cup B_1) = \mu(A_2 \cap B_2)$ が従い

$$\mu(A_2) = \mu(A_1) \le \mu(A_1 \cup B_1) = \mu(A_2 \cap B_2) \le \mu(B_2),$$

$$\mu(B_2) = \mu(B_1) \le \mu(A_1 \cup B_1) = \mu(A_2 \cap B_2) \le \mu(A_2)$$

が成り立つから $\mu(A_2) = \mu(B_2)$ が出る. また, 任意の $B \subset X$ について

$$\overline{\mathcal{B}} = \left\{ B \subset X \mid \exists A, N \in \mathcal{B}, \text{ s.t. } \mu(N) = 0, B \cap A^c, A \cap B^c \subset N \right\}$$
(A.46)

が成立する. 実際, $B \in \overline{\mathcal{B}}$ なら $A_1 \subset B \subset A_2$ かつ $\mu(A_2 \backslash A_1) = 0$ を満たす $A_1, A_2 \in \mathcal{B}$ が存在するから

$$A = A_2$$
, $N = A_2 \backslash A_1$

として (\subset) を得る. 逆に右辺を満たす A,N が存在するとき,

$$A \cap N^c \subset A \cap B \subset B \subset A \cup (A^c \cap B) \subset A \cup N$$

より $A_1 = A \cap N^c$, $A_2 = A \cup N$ として (\supset) を得る.

補題 A.7.2 (可分値写像による可測写像の一様近似). (X,\mathcal{B},μ) を測度空間, (S,d) を可分距離空間とする. このとき任意の $\mathcal{B}/\mathcal{B}(S)$ -可測写像 f に対し,S の可算稠密集合に値を取る $\mathcal{B}/\mathcal{B}(S)$ -可測写像列 $(f_n)_{n=1}^\infty$ が存在して,次の意味で f を一様に近似する:

$$\sup_{x \in X} d\left(f_n(x), f(x)\right) \longrightarrow 0 \quad (n \longrightarrow \infty). \tag{A.47}$$

証明. S の可算稠密な部分集合を $\{a_k\}_{k=1}^\infty$ とする. 任意の $n\geq 1$ に対し

$$B_n^k := \left\{ s \in S \mid d(s, a_k) < \frac{1}{n} \right\}, A_n^k := f^{-1} \left(B_n^k \right); (k = 1, 2, \dots)$$

とおけば,

$$\bigcup_{k=1}^{\infty} A_n^k = \bigcup_{k=1}^{\infty} f^{-1} \left(B_n^k \right) = f^{-1}(S)$$

より $X = \bigcup_{k=1}^{\infty} A_n^k$ が成り立つ. ここで

$$\tilde{A}_n^1 := A_n^1, \quad \tilde{A}_n^k := A_n^k \setminus \left(\bigcup_{i=1}^{k-1} A_n^i\right); \quad (k = 1, 2, \cdots)$$

として

$$f_n(x) := a_k, \quad (x \in \tilde{A}_n^k, \ k = 1, 2, \cdots)$$

により $\mathcal{B}/\mathcal{B}(S)$ -可測写像列 $(f_n)_{n=1}^{\infty}$ を定めれば,

$$d\left(f_n(x), f(x)\right) < \frac{1}{n}, \quad (\forall x \in X)$$

が満たされ (A.47) が従う.

定理 A.7.3 (T_6 空間に値を取る可測写像列の各点極限は可測). S を T_6 空間, (X,\mathcal{B}) を可測空間とする. $\mathcal{B}/\mathcal{B}(S)$ -可測写像列 $(f_n)_{n=1}^\infty$ が各点収束すれば, $f:=\lim_{n\to\infty}f_n$ で定める f もまた可測 $\mathcal{B}/\mathcal{B}(S)$ となる.

証明. S の任意の閉集合 A に対し、定理 A.5.45 より次を満たす閉集合の系 $(A_m)_{m=1}^\infty$ が取れる:

$$A = \bigcap_{m=1}^{\infty} A_m = \bigcap_{m=1}^{\infty} A_m^{\mathrm{o}}.$$

 $f(x) \in A$ なら任意の $m \in \mathbb{N}$ に対し或る $N = N(x, m) \in \mathbb{N}$ が存在して $f_n(x) \in A_m^o$, $(\forall n \geq N)$ となるから

$$f^{-1}(A) \subset \bigcap_{m>1} \bigcup_{N>1} \bigcap_{n>N} f_n^{-1}(A_m)$$
 (A.48)

が従う. $f(x) \notin A$ なら或る $m \ge 1$ で $f(x) \notin A_m$ となり、或る $N \in \mathbb{N}$ に対し $f_n(x) \notin A_m$ 、 $(\forall n \ge N)$ が成り立ち

$$f^{-1}(A^c) \subset \bigcup_{m \ge 1} \bigcup_{N \ge 1} \bigcap_{n \ge N} f_n^{-1}(A_m^c) \subset \bigcup_{m \ge 1} \bigcap_{N \ge 1} \bigcup_{n \ge N} f_n^{-1}(A_m^c)$$

が従う. (A.48) と併せれば

$$f^{-1}(A) = \bigcap_{m \ge 1} \bigcup_{N \ge 1} \bigcap_{n \ge N} f_n^{-1}(A_m) \in \mathcal{B}$$

が成立し、S の閉集合は f により \mathcal{B} の元に引き戻されるから f の $\mathcal{B}/\mathcal{B}(S)$ -可測性が出る.

定理 A.7.4 (拡大前後の可測性). (X,\mathcal{B},μ) を測度空間,その Lebesgue 拡大を $\left(X,\overline{\mathcal{B}},\overline{\mu}\right)$ と書き,(S,d) を可分距離空間とする.このとき,任意の写像 $f:X\longrightarrow S$ に対し次は同値である:

- (a) 或る $\mathcal{B}/\mathcal{B}(S)$ -可測写像 g が存在して μ -a.e. に f=g となる.
- (b) f は $\overline{\mathcal{B}}/\mathcal{B}(S)$ -可測である.

証明.

第一段 (a) が成立しているとき、 $\{f \neq g\} \subset N$ を満たす μ -零集合 $N \in \mathcal{B}$ が存在して

$$f^{-1}(E)\cap \left(g^{-1}(E)\right)^c\subset N,\quad g^{-1}(E)\cap \left(f^{-1}(E)\right)^c\subset N,\quad (\forall E\in \mathcal{B}(S))$$

が成り立つから、(A.46) より $f^{-1}(E) \in \overline{\mathcal{B}}$ が従い $(a) \Rightarrow (b)$ が出る.

第二段 f が $\overline{\mathcal{B}}/\mathscr{B}(S)$ -可測のとき、S の可算稠密な部分集合を $\{a_k\}_{k=1}^\infty$ とすれば、補題 A.7.2 より

$$f_n(x) = a_k, (x \in A_n^k, k = 1, 2, \cdots); \quad \sum_{k=1}^{\infty} A_n^k = X; \quad d(f_n(x), f(x)) < \frac{1}{n}, (\forall x \in X)$$

を満たす $\overline{\mathcal{B}}/\mathscr{B}(S)$ -可測写像列 $(f_n)_{n=1}^\infty$ と互いに素な集合 $\left\{A_n^k\right\}_{k=1}^\infty\subset\overline{\mathcal{B}}$ が存在する. 各 A_n^k に対し

$$E_{1,n}^k \subset A_n^k \subset E_{2,n}^k, \quad \mu\left(E_{2,n}^k - E_{1,n}^k\right) = 0$$

を満たす $E_{1,n}^k$, $E_{2,n}^k \in \mathcal{B}$ が存在するから、一つ $a_0 \in S$ を選び

$$g_n(x) := \begin{cases} a_k, & (x \in E_{1,n}^k, \ k = 1, 2, \cdots), \\ a_0, & (x \in N_n := X \setminus \sum_{k=1}^{\infty} E_{1,n}^k) \end{cases}$$

で $\mathcal{B}/\mathcal{B}(S)$ -可測写像列 $(g_n)_{n=1}^\infty$ を定めて $N\coloneqq\bigcup_{n=1}^\infty N_n$ とおけば

$$f_n(x) = g_n(x), \quad (\forall x \in X \backslash N, \ \forall n \ge 1)$$

が成り立つ. このとき $X \setminus N$ 上で $\lim_{n \to \infty} g_n(x)$ は存在し $\lim_{n \to \infty} f_n(x) = f(x)$ に一致するから,

$$g(x) := \begin{cases} \lim_{n \to \infty} g_n(x), & (x \in X \backslash N), \\ a_0, & (x \in N) \end{cases}$$

により $\mathcal{B}/\mathcal{B}(S)$ -可測写像 g を定めれば (a) が満たされる.

A.7.2 コンパクトクラス

定義 A.7.5 (コンパクトクラス). X を空でない集合, K をその部分集合族とする. K の任意の可算部分集合 $\{K_n\}_{n\in\mathbb{N}}$ に対して

$$\bigcap_{n\in\mathbb{N}}K_n=\emptyset\Longrightarrow\exists N\in\mathbb{N}\left[\bigcap_{n=1}^NK_n=\emptyset\right]$$

が成り立つとき, K は X 上のコンパクトクラス (compact class) と呼ばれる.

定理 A.7.6. Hausdorff 空間において、コンパクト部分集合から成る任意の族はコンパクトクラスとなる.

証明. Cantor の共通部分定理 (P. 249) より従う.

定理 A.7.7 (完全加法性の同値条件). $\mathcal B$ を集合 X の上の有限加法族, μ を $\mathcal B$ 上の有限加法的な正値測度として

- (a) (共通点性) $\{B_n\}_{n=1}^{\infty}\subset\mathcal{B}$ が $\mu(B_1)<\infty$, $B_n\supset B_{n+1}$, $\bigcap_{n=1}^{\infty}B_n=\emptyset$ なら $\lim_{n\to\infty}\mu(B_n)=0$.
- (b) $\{B_n\}_{n=1}^{\infty} \subset \mathcal{B} \not \to B_n \subset B_{n+1}, \ \bigcap_{n=1}^{\infty} B_n =: B \in \mathcal{B} \not \to \mu(B) = \infty \not \to \lim_{n \to \infty} \mu(B_n) = \infty.$
- (c) $\mu(X_n) < \infty$ かつ $\bigcup_{n=1}^{\infty} X_n = X$ を満たす $(X_n)_{n=1}^{\infty} \subset \mathcal{B}$ が存在するとき, $\mu(B) = \infty$ なら $\lim_{n \to \infty} \mu(B \cap X_n) = \infty$.

とおくとき,

- (1) $0 < \mu(X) < \infty$ なら μ が \mathcal{B} の上で完全加法性であることと (a) は同値である.
- (2) $\mu(X) = \infty$ なら μ が \mathcal{B} の上で完全加法性であることと (a) \wedge (b) は同値である.
- (3) $\mu(X) = \infty$ で μ が σ -有限的なら、 μ が \mathcal{B} の上で完全加法性であることと (a) \wedge (c) は同値である.

証明.

定理 A.7.8 (コンパクトクラスと共通点性). \mathcal{B} を集合 X の上の有限加法族, μ を \mathcal{B} 上の有限加法的正値測度とする. X 上にコンパクトクラス \mathcal{K} が存在して,任意の正数 ϵ と $0 < \mu(B) < \infty$ を満たす \mathcal{B} の任意の要素 B に対し,或る \mathcal{B} の要素 A と \mathcal{K} の要素 K が存在して

$$A \subset K \subset B \land \mu(B \backslash A) < \epsilon$$

が成り立つとき、 μ は共通点性 (定理 A.7.7 の (a)) を持つ.

証明. $(B_n)_{n\in\mathbb{N}}$ を $\mu(B_1)<\infty$ かつ $\bigcap_{n\in\mathbb{N}}B_n=\emptyset$ を満たす減少列とすれば、或る N で $\mu(B_N)=0$ となるとき

$$\forall n \in \mathbb{N}, \quad n \ge N \Longrightarrow \mu(B_n) \le \mu(B_N) = 0$$

が成り立ち $\lim_{n\to\infty}\mu(B_n)=0$ が従う. 全ての自然数 n で $0<\mu(B_n)$ となるなら、任意の正数 ϵ に対して

$$\forall n \in \mathbf{N}, \quad A_n \subset K_n \subset B_n \wedge \mu(B_n \backslash A_n) < \frac{\epsilon}{2^n}$$

を満たす \mathcal{B} の要素 A_n と \mathcal{K} の要素 K_n が存在する. このとき

$$\bigcap_{n\in\mathbb{N}}K_n\subset\bigcap_{n\in\mathbb{N}}B_n=\emptyset$$

が成り立つから、コンパクトクラスの性質より或る 1 以上の自然数 N が存在して $\bigcap_{n=1}^N A_n \subset \bigcap_{n=1}^N K_n = \emptyset$ が成立し、N 以上の任意の自然数 m で $B_m \subset \left(\bigcup_{n=1}^N B_n\right) \setminus \bigcup_{n=1}^N A_n = \bigcup_{n=1}^N \left(B_n \setminus \bigcup_{n=1}^N A_n\right) \subset \bigcup_{n=1}^N (B_n \setminus A_n)$ となるから

$$\forall m \in \mathbb{N}, \quad m \ge N \Longrightarrow \mu(B_m) \le \sum_{n=1}^N \mu(B_n \backslash A_n) < \epsilon$$

が従う.

A.7.3 Dynkin 族定理

定義 A.7.9 (乗法族・Dynkin 族). 集合 X の部分集合の族 $\mathscr A$ が任意の $A,B\in\mathscr A$ に対し $A\cap B\in\mathscr A$ を満たすとき $\mathscr A$ を X 上の乗法族 (π -system) という. X の部分集合の族 $\mathscr D$ が

- (D1) $X \in \mathcal{D}$,
- (D2) $A, B \in \mathcal{D}, A \subset B \implies B \setminus A \in \mathcal{D},$
- (D3) $\{A_n\}_{n=1}^{\infty} \subset \mathcal{D}, A_n \cap A_m = \emptyset (n \neq m) \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{D},$

を満たすとき, \mathcal{D} を X 上の Dynkin 族 (Dynkin system) という.

定義 A.7.10 (Dynkin 族定理). 集合 X 上の乗法族 $\mathscr A$ に対し、 $\mathscr A$ を含む最小の Dynkin 族を $\delta(\mathscr A)$ と書くとき、

$$\delta(\mathscr{A}) = \sigma(\mathscr{A}).$$

証明.

第一段 $\delta(\mathscr{C})$ が交演算で閉じていれば $\delta(\mathscr{C})$ は σ -加法族となる. 実際任意の $A \in \delta(\mathscr{A})$ に対し

$$A^c = X \backslash A \in \delta(\mathscr{A})$$

となるから、 $\delta(\mathscr{C})$ が交演算で閉じていれば任意の $A_n \in \delta(\mathscr{C})$ $(n=1,2,\cdots)$ に対し

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} A_1^c \cap A_2^c \cap \dots \cap A_{n-1}^c \cap A_n \in \delta(\mathscr{C})$$

が従う. σ -加法族は Dynkin 族であるから $\sigma(\mathscr{C}) \subset \delta(\mathscr{C})$ も成り立ち $\sigma(\mathscr{C}) = \delta(\mathscr{C})$ が得られる. 第二段 $\delta(\mathscr{C})$ が交演算について閉じていることを示す. いま,

$$\mathcal{D}_1 := \{ B \in \delta(\mathscr{C}) \mid A \cap B \in \delta(\mathscr{C}), \forall A \in \mathscr{C} \}$$

により定める \mathcal{D}_1 は Dynkin 族であり \mathscr{C} を含むから

$$\delta(\mathscr{C}) \subset \mathscr{D}_1$$

が成立する. 従って

$$\mathcal{D}_2 := \{ B \in \delta(\mathscr{C}) \mid A \cap B \in \delta(\mathscr{C}), \forall A \in \delta(\mathscr{C}) \}$$

により Dynkin 族 \mathcal{D}_2 を定めれば、 $\mathscr{C} \subset \mathcal{D}_2$ が満たされ

$$\delta(\mathscr{C}) \subset \mathscr{D}_2$$

が得られる. よって $\delta(\mathscr{C})$ は交演算について閉じている.

定理 A.7.11. 集合 X の部分集合族 $\mathcal D$ がの定義 A.7.9 の (D1),(D2) を満たしているとき, $\mathcal D$ が (D3) を満たすことと $\mathcal D$ が増大列の可算和で閉じることは同値である.

証明. \mathscr{D} が可算直和について閉じているとする. このとき単調増大列 $A_1 \subset A_2 \subset \cdots$ を取り

$$B_1 := A_1$$
, $B_n := A_n \setminus A_{n-1}$, $(n \ge 2)$

とおけば (D2) より $B_n \in \mathcal{D}$, $(\forall n \geq 1)$ が満たされ, $n \neq m$ なら $B_n \cap B_m = \emptyset$ となるから

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \in \mathscr{D}$$

が成立する. 逆に $\mathcal Q$ が増大列の可算和で閉じているとする. (D1)(D2) より互いに素な $A,B\in \mathcal Q$ に対し $A^c\in \mathcal Q$ 及び $A^c\cap B^c=A^c\backslash B\in \mathcal Q$ が成り立つから, $\mathcal Q$ の互いに素な集合列 $(B_n)_{n=1}^\infty$ を取れば

$$B_1^c \cap B_2^c \cap \cdots \cap B_n^c = \left(\cdots \left(\left(B_1^c \cap B_2^c \right) \cap B_3^c \right) \cap \cdots \cap B_{n-1}^c \right) \cap B_n^c \in \mathcal{D}, \quad (n = 1, 2, \cdots)$$

が得られる. よって

$$D_n := \bigcup_{i=1}^n B_i = X \setminus \left(\bigcap_{i=1}^n B_i^c\right), \quad (n = 1, 2, \cdots)$$

により \mathscr{D} の単調増大列 $(D_n)_{n=1}^{\infty}$ を定めれば

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} D_n \in \mathcal{D}$$

が成立する.

A.7.4 上限下限

定理 A.7.12 (上限の冪と冪の上限). 任意の空でない $S \subset [0,\infty)$ と t>0 に対し次が成立する:

$$(\sup S)^t = \sup \left\{ s^t \mid \quad s \in S \right\}.$$

証明. $S = \{0\}$ なら両辺 0 で一致するので、S は $\{0\}$ より真に大きいとする.このとき任意の $s \in S$ に対し $s^t \le (\sup S)^t$ となるから $\sup \{s^t \mid s \in S\} \le (\sup S)^t$ が従う.また任意の $(\sup S)^t > \alpha > 0$ に対し $s > \alpha^{1/t}$ を満たす $s \in S$ が存在し $(\sup S)^t \ge s^t > \alpha$ となるから $\sup \{s^t \mid s \in S\} = (\sup S)^t$ が得られる.

A.7.5 有限加法的測度の拡張

定理 A.7.13 (有限加法的な正値測度空間の生成). X を集合, $\mathcal A$ を集合 X 上の乗法族で X を含むものとする.

$$\mathcal{B} := \left\{ \sum_{i=1}^{n} I_i \mid I_i \in \mathcal{A}, \ n = 1, 2, \cdots \right\}$$

は $X \setminus I \in \mathcal{B}$, $(\forall I \in \mathcal{A})$ のとき X 上の有限加法族となる。また $I \in \mathcal{A}$ が $I = \sum_{j=1}^m J_j$, $(J_j \in \mathcal{A}, m \in \mathbb{N})$ で表されるとき $m(I) = \sum_{j=1}^m m(J_j)$ を満たすような写像 $m: \mathcal{A} \longrightarrow [0, \infty]$, $(m(\emptyset) = 0)$ が与えられれば,

$$\mu(B) := \sum_{i=1}^{n} m(I_i), \quad (B = I_1 + \dots + I_n \in \mathcal{B})$$

で定める μ は well-derined であり $\mathcal B$ の上の有限加法的な正値測度となる.

証明. $X \setminus I \in \mathcal{B}$, $(\forall I \in \mathcal{A})$ 及び $m : \mathcal{A} \longrightarrow [0, \infty]$ が与えられたとする. このとき $\emptyset = X \setminus X \in \mathcal{B}$ より $\emptyset \in \mathcal{A}$ である.

第一段 \mathcal{B} が有限加法族であることを示す. $\mathcal{A} \subset \mathcal{B}$ より $X \in \mathcal{B}$ となる. $A, B \in \mathcal{B}$ が

$$A = I_1 + I_2 + \dots + I_n, \quad B = J_1 + J_2 + \dots + J_m$$
 (A.49)

と表されているとき, $A \cap B = \emptyset$ なら

$$A + B = I_1 + I_2 + \dots + I_n + J_1 + J_2 + \dots + J_m \in \mathcal{A}$$
(A.50)

となり、そうでない場合 $I_i \cap J_i \in \mathcal{A}$ より

$$A \cap B = \sum_{i=1}^{n} \sum_{j=1}^{m} I_i \cap J_i \in \mathcal{B}$$
(A.51)

となるから \mathcal{B} は交演算で閉じ、 $X \setminus I_i \in \mathcal{B}$ であるから

$$X \setminus A = (X \setminus I_1) \cap \dots \cap (X \setminus I_n) \in \mathcal{B}$$
(A.52)

が従う. (A.50), (A.51), (A.52) より $A \cup B = A + B \cap (X \setminus A) \in \mathcal{B}$ が成り立ち, \mathcal{B} は集合和でも閉じる. 第二段 μ が well-defined かつ有限加法的であることを示す. 実際 (A.49) の $A, B \in \mathcal{B}$ に対して,A = B のとき

$$\sum_{i=1}^{n} m(I_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} m(I_i \cap J_j) = \sum_{j=1}^{m} \sum_{i=1}^{n} m(I_i \cap J_j) = \sum_{j=1}^{m} m(J_j)$$

が成り立つから μ は well-defined であり、また $A \cap B = \emptyset$ のとき

$$\mu(A + B) = m(I_1) + \dots + m(I_n) + m(J_1) + \dots + m(J_m) = \mu(A) + \mu(B)$$

となり μ の有限加法性が出る. μ は m の拡張であるから $\mu(\emptyset) = 0$ も従う.

定義 A.7.14 (外測度). X の冪集合 $\mathcal{P}(X)$ の上で定義される $[0,\infty]$ -値写像 μ が

(OM1) $\mu(\emptyset) = 0$, $0 \le \mu(A) \le \infty$, $(\forall A \subset X)$,

(OM2) (単調性) $A \subset B \implies \mu(A) \leq \mu(B)$,

(OM3) (劣加法性) $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n), (A_n \subset X, n = 1, 2, \cdots)$

を満たすとき, μ を X の外測度 (outer measure) と呼ぶ. また $A \subset X$ が

$$\mu(W) = \mu(A \cap W) + \mu(A^c \cap W), \quad (\forall W \in \mathcal{P}(X))$$

を満たすとき A は μ -可測集合であるという.

定理 A.7.15 (Caratheodory の拡張定理). μ を集合 X の外測度とし, \mathcal{B}^* を μ -可測集合の全体とする.このとき \mathcal{B}^* は \mathcal{B} を含む σ -加法族であり,また $\mu^* := \mu|_{\mathcal{B}^*}$ は \mathcal{B}^* の上の完備測度となる.

証明.

第一段 \mathcal{B}^* が σ -加法族であることを示す.

第二段 任意の $B \in \mathcal{B}$ が μ -可測であること, つまり任意の $W \subset X$ に対し

$$\mu(W) \ge \mu(W \cap B) + \mu(W \cap B^c) \tag{A.53}$$

となることを示せば $\mathcal{B} \subset \mathcal{B}^*$ が従う. 任意の $W \subset X$, $\epsilon > 0$ に対し

$$W \subset \bigcup_{n=1}^{\infty} B_n, \quad \sum_{n=1}^{\infty} \mu_0(B_n) < \mu(W) + \epsilon$$

を満たす $\{B_n\}_{n=1}^\infty\subset\mathcal{B}$ が存在する. このとき $W\cap B\subset\bigcup_{n=1}^\infty(B_n\cap B),\ W\cap B^c\subset\bigcup_{n=1}^\infty(B_n\cap B^c)$ より

$$\mu(W \cap B) \le \sum_{n=1}^{\infty} \mu_0(B_n \cap B), \quad \mu(W \cap B^c) \le \sum_{n=1}^{\infty} \mu_0(B_n \cap B^c)$$

となるから

$$\mu(W) + \epsilon \ge \sum_{n=1}^{\infty} \mu_0(B_n) = \sum_{n=1}^{\infty} \left\{ \mu_0(B_n \cap B) + \mu_0(B_n \cap B^c) \right\}$$
$$= \sum_{n=1}^{\infty} \mu_0(B_n \cap B) + \sum_{n=1}^{\infty} \mu_0(B_n \cap B^c)$$
$$\ge \mu(W \cap B) + \mu(W \cap B^c)$$

が成り立つ. ϵ の任意性より (A.53) が出る.

第三段 μ^* が完備測度であることを示す.

定理 A.7.16 (有限加法的な正値測度により定まる外測度). (X,\mathcal{B},μ_0) を有限加法的な正値測度空間とするとき,

$$\mu(A) := \inf \left\{ \sum_{n=1}^{\infty} \mu_0(B_n) \mid B_n \in \mathcal{B}, A \subset \bigcup_{n=1}^{\infty} B_n \right\}, \quad (\forall A \subset X)$$

で定める μ は X の外測度である. また μ_0 が $\mathcal B$ の上で完全加法的ならば μ は μ_0 の拡張となる.

証明.

第一段 μ が定義 A.7.14 の (OM1)(OM2)(OM3) を満たすことを示す. μ_0 の正値性より μ の正値性が従い、また

$$\mu(\emptyset) \le \sum_{n=1}^{\infty} \mu_0(B_n) = 0, \quad (B_n = \emptyset, \ n = 1, 2, \cdots)$$

となるから (OM1) を得る. X の部分集合 A, B, $(A \subset B)$ に対し

$$\left\{\{B_n\}_{n=1}^{\infty}\mid\quad B_n\in\mathcal{B},\;B\subset\bigcup_{n=1}^{\infty}B_n\right\}\subset\left\{\{B_n\}_{n=1}^{\infty}\mid\quad B_n\in\mathcal{B},\;A\subset\bigcup_{n=1}^{\infty}B_n\right\}$$

となるから $\mu(A) \leq \mu(B)$ が成り立ち (OM2) も得られる.

第二段 μ_0 が $\mathcal B$ の上で完全加法的であるとする. 任意に $B\in\mathcal B$ を取れば $B\subset B\cup\emptyset\cup\emptyset\cup\cdots$ より

$$\mu(B) \le \mu_0(B)$$

が成り立つ. 一方で $B \subset \bigcup_{n=1}^{\infty} B_n$ を満たす $\{B_n\}_{n=1}^{\infty} \subset \mathcal{B}$ に対し

$$B = \sum_{n=1}^{\infty} \left(B \cap \left(B_n \setminus \bigcup_{k=1}^{n-1} B_k \right) \right)$$

かつ $B\cap \left(B_n\setminus \bigcup_{k=1}^{n-1}B_k\right)\in \mathcal{B}$, $(\forall n\geq 1)$ が満たされるから, μ_0 の完全加法性より

$$\mu_0(B) = \sum_{n=1}^{\infty} \mu_0 \left(B \cap \left(B_n \setminus \bigcup_{k=1}^{n-1} B_k \right) \right) \le \sum_{n=1}^{\infty} \mu_0(B_n)$$

が成り立ち $\mu_0(B) \le \mu(B)$ が従う. よって任意の $B \in \mathcal{B}$ で $\mu_0(B) = \mu(B)$ となる.

定理 A.7.17 (測度の一致の定理). (X,\mathcal{B}) を可測空間, \mathcal{A} を \mathcal{B} を生成する乗法族とし, (X,\mathcal{B}) 上の測度 μ_1,μ_2 が \mathcal{A} 上で一致しているとする. このとき,

$$\mu_1(X_n) < \infty, \quad \bigcup_{n=1}^{\infty} X_n = X$$

を満たす増大列 $\{X_n\}_{n=1}^\infty\subset\mathcal{A}$ が存在すれば $\mu_1=\mu_2$ が成り立つ.

証明. 任意の $n = 1, 2, \cdots$ に対して

$$\mathcal{D}_n := \left\{ B \in \mathcal{B} \mid \mu_1(B \cap X_n) = \mu_2(B \cap X_n) \right\}$$

とおけば、 \mathcal{D}_n は \mathcal{A} を含む Dynkin 族であるから、Dynkin 族定理より

$$\mathcal{D}_n = \mathcal{B}, \quad (\forall n \ge 1)$$

となり

$$\mu_1(B) = \lim_{n \to \infty} \mu_1(B \cap X_n) = \lim_{n \to \infty} \mu_2(B \cap X_n) = \mu_2(B), \quad (\forall B \in \mathcal{B})$$

が従う.

定理 A.7.18 (Kolmogorov-Hopf). (X,\mathcal{B},μ_0) を有限加法的な正値測度空間とすれば、定理 A.7.16 より

$$\tilde{\mu}(A) \coloneqq \inf \left\{ \sum_{n=1}^{\infty} \mu_0(B_n) \mid B_n \in \mathcal{B}, \ A \subset \bigcup_{n=1}^{\infty} B_n \right\}, \quad (\forall A \subset X)$$

により X 上に外測度が定まる.このとき \mathcal{B}^* を $\tilde{\mu}$ -可測集合として $\mu^*\coloneqq \tilde{\mu}\big|_{\mathcal{B}^*}$, $\mu\coloneqq \tilde{\mu}\big|_{\sigma[\mathcal{B}]}$ おけば以下が成り立つ:

- (1) $\sigma[\mathcal{B}] \subset \mathcal{B}^*$ が成り立つ.
- (2) μ_0 が \mathcal{B} 上で σ -加法的なら μ は μ_0 の拡張となっている:

$$\mu_0(B) = \mu(B), \quad (\forall B \in \mathcal{B}).$$
 (A.54)

- (3) μ_0 が \mathcal{B} 上で σ -有限的であるとき, (A.54) を満たすような (X, $\sigma[\mathcal{B}]$) 上の測度は存在しても唯一つである.
- (4) μ_0 が \mathcal{B} 上で σ -加法的かつ σ -有限的ならば, μ は μ_0 の $(X, \sigma[\mathcal{B}])$ への唯一つの拡張測度であり,このとき $(X, \mathcal{B}^*, \mu^*)$ は $(X, \sigma[\mathcal{B}], \mu)$ の Lebesgue 拡大に一致する:

$$(X, \mathcal{B}^*, \mu^*) = (X, \overline{\sigma[\mathcal{B}]}, \overline{\mu}).$$
 (A.55)

証明.

- (1) の証明 定理 A.7.15 より \mathcal{B}^* は \mathcal{B} を含む σ -加法族であるから $\sigma[\mathcal{B}] \subset \mathcal{B}^*$ となる.
- (2) の証明 定理 A.7.16 より任意の $B \in \mathcal{B}$ で $\mu_0(B) = \tilde{\mu}(B) = \mu(B)$ が成り立つ.
- (3) の証明 σ -有限の仮定より,或る増大列 $X_1\subset X_2\subset\cdots$, $\{X_n\}_{n=1}^\infty\subset\mathcal{B}$ が存在して

$$\mu_0(X_n) < \infty \quad \bigcup_{n=1}^{\infty} X_n = X \tag{A.56}$$

が成り立つ. 一致の定理より、(A.54) を満たす $(X, \sigma[\mathcal{B}])$ 上の測度は存在しても一つのみである.

(4) の証明 (2) と (3) の結果より μ は μ_0 の唯一つの拡張測度である. 次に

$$\mathcal{B}^* = \overline{\sigma[\mathcal{B}]} \tag{A.57}$$

を示す. $E \in \overline{\sigma[\mathcal{B}]}$ なら或る $B_1, B_2 \in \sigma[\mathcal{B}]$ が存在して

$$B_1 \subset E \subset B_2$$
, $\mu(B_2 - B_1) = 0$

を満たす. このとき (1) より $\mu^*(B_2 - B_1) = 0$ であり、 $(X, \mathcal{B}^*, \mu^*)$ の完備性より $E \setminus B_1 \in \mathcal{B}^*$ が満たされ

$$E = B_1 + E \backslash B_1 \in \mathcal{B}^*$$

が従う. いま, (A.56) を満たす $\{X_n\}_{n=1}^\infty\subset\mathcal{B}$ を取り, $E\in\mathcal{B}^*$ に対して $E_n:=E\cap X_n$ とおく. このとき

$$\mu^*(E_n) \le \mu^*(X_n) = \mu_0(X_n) < \infty$$

となるから、任意の $k = 1, 2, \cdots$ に対して

$$E_n \subset \bigcup_{j=1}^{\infty} B_{k,j}^n, \quad \sum_{j=1}^{\infty} \mu_0\left(B_{k,j}^n\right) < \mu^*(E_n) + \frac{1}{k}$$

を満たす $\left\{B_{k,j}^n\right\}_{j=1}^\infty\subset\mathcal{B}$ が取れる.

$$B_{2,n} := \bigcap_{k=1}^{\infty} \bigcup_{j=1}^{\infty} B_{k,j}^n$$

とおけば $E_n \subset B_{2,n} \in \sigma[\mathcal{B}]$ であり、任意の $k = 1, 2, \cdots$ に対して

$$\mu^*(B_{2,n} - E_n) = \mu^*(B_{2,n}) - \mu^*(E_n) \le \mu^* \left(\bigcup_{j=1}^{\infty} B_{k,j}^n\right) - \mu^*(E_n)$$

$$\le \sum_{i=1}^{\infty} \mu^* \left(B_{k,j}^n\right) - \mu^*(E_n) < \mu^*(E_n) + \frac{1}{k} - \mu^*(E_n) = \frac{1}{k}$$

が成り立つから $\mu^*(B_{2,n}-E_n)=0$ となる. E_n を $B_{2,n}-E_n$ に替えれば

$$B_{2,n} - E_n \subset N_n$$
, $\mu(N_n) = 0$

を満たす $N_n \in \sigma[\mathcal{B}]$ が取れる.

$$B_{1,n} := B_{2,n} \cap N_n^c$$

とおけば、 $B_{1,n} \subset B_{2,n} \cap (B_{2,n} - E_n)^c = E_n$ より

$$B_{1,n} \subset E_n \subset B_{2,n}, \quad \mu(B_{2,n} - B_{1,n}) \le \mu(N_n) = 0$$

が成り立つから,

$$B_1 := \bigcup_{n=1}^{\infty} B_{1,n}, \quad B_2 := \bigcup_{n=1}^{\infty} B_{2,n}$$

として

$$B_1 \subset E \subset B_2$$
, $\mu(B_2 - B_1) \le \mu\left(\bigcup_{n=1}^{\infty} (B_{2,n} - B_{1,n})\right) = 0$

が満たされ、 $E \in \sigma[\mathcal{B}]$ が従い (A.57) が得られる. 同時に

$$\overline{\mu}(E) = \mu(B_1) = \mu^*(B_1) \le \mu^*(E) \le \mu^*(B_2) = \mu(B_2) = \overline{\mu}(E)$$

が成立するから、 $\overline{\mu} = \mu^*$ となり (A.55) が出る.

本稿では 'Cartesian 積' と '直積' は分けていて、Cartesian 積は \times で表される集合とし、直積は写像の集合としている。 'Cartesian 積' と '直積' で別に積 σ -加法族を定義する必要がある。

定義 A.7.19 (Cartesian 積上の σ -加法族). (A, \mathscr{F}_A) , (B, \mathscr{F}_B) を可測空間とするとき,

$$\mathscr{F}_A \otimes \mathscr{F}_B := \sigma(\{x \mid \exists a \exists b \ (x = a \times b \land a \in \mathscr{F}_A \land b \in \mathscr{F}_B)\})$$

と定め、これを \mathscr{F}_A と \mathscr{F}_B の積 σ -加法族 (product sigma-algebra) と呼ぶ.

$$\mathcal{F}_{A} \otimes \mathcal{F}_{B} \otimes \mathcal{F}_{C} := (\mathcal{F}_{A} \otimes \mathcal{F}_{B}) \otimes \mathcal{F}_{C},$$

$$\mathcal{F}_{A} \otimes \mathcal{F}_{B} \otimes \mathcal{F}_{C} \otimes \mathcal{F}_{D} := (\mathcal{F}_{A} \otimes \mathcal{F}_{B} \otimes \mathcal{F}_{C}) \otimes \mathcal{F}_{D},$$

$$\mathcal{F}_{A} \otimes \mathcal{F}_{B} \otimes \mathcal{F}_{C} \otimes \mathcal{F}_{D} \otimes \mathcal{F}_{E} := (\mathcal{F}_{A} \otimes \mathcal{F}_{B} \otimes \mathcal{F}_{C} \otimes \mathcal{F}_{D}) \otimes \mathcal{F}_{E},$$

$$\vdots$$

定義 A.7.20 (直積上の σ -加法族). Λ を集合とし, $((X_{\lambda},\mathscr{F}_{\lambda}))_{\lambda\in\Lambda}$ を可測空間の族とし,

$$X\coloneqq \prod_{\lambda\in\Lambda} X_\lambda$$

とおく. p_{λ} を λ 射影とするとき,

$$\bigotimes_{\lambda \in \Lambda} \mathcal{F}_{\lambda} := \sigma \left(\left\{ \left. x \mid \quad \exists \lambda \in \Lambda \, \exists A \in \mathcal{F}_{\lambda} \, \left(\left. x = p_{\lambda}^{-1} * A \right) \right. \right\} \right)$$

と定め、これを $(\mathcal{F}_{\lambda})_{\lambda \in \Lambda}$ の積 σ -加法族と呼ぶ.

定理 A.7.21 (積 σ -加法族を生成する加法族). Λ を空でない任意濃度の添字集合、 $((X_{\lambda},\mathscr{F}_{\lambda}))_{\lambda\in\Lambda}$ を可測空間の族とし, $X:=\prod_{\lambda\in\Lambda}X_{\lambda}$ とおく. \mathscr{B}_{λ} を X_{λ} を含み \mathscr{F}_{λ} を生成する乗法族とし, λ 射影を $p_{\lambda}:X\longrightarrow X_{\lambda}$ と書くとき,

$$\mathcal{A}\coloneqq\left\{igcap_{\lambda\in\Lambda'}p_{\lambda}^{-1}(A_{\lambda})\mid\quad A_{\lambda}\in\mathscr{B}_{\lambda},\,\Lambda'\!\colon\Lambda\,$$
の有限部分集合 $\right\}$

とおけば Я は乗法族となり,

$$\mathcal{B} := \left\{ \sum_{i=1}^{n} I_i \mid I_i \in \mathcal{A}, \ n = 1, 2, \cdots \right\}$$

により有限加法族が定まる. このとき次が成り立つ:

$$\bigotimes_{\lambda \in \Lambda} \mathcal{F}_{\lambda} = \sigma[\mathcal{A}] = \sigma[\mathcal{B}].$$

証明.

定理 A.7.22 (第二可算空間の直積 Borel 集合族). Λ を空でない高々可算集合, $(S_{\lambda})_{\lambda \in \Lambda}$ を空でない第二可算空間の族とする. $S := \prod_{\lambda \in \Lambda} S_{\lambda}$ とおいて直積位相を導入すれば,S も第二可算空間となりまた次が成立する:

$$\mathscr{B}(S) = \bigotimes_{\lambda \in \Lambda} \mathscr{B}(S_{\lambda}). \tag{A.58}$$

証明. 各 S_{λ} の開集合系及び可算基を \mathcal{O}_{λ} , \mathcal{B}_{λ} , S の開集合系を \mathcal{O} とし,また λ 射影を $p_{\lambda}:S\longrightarrow S_{\lambda}$ と書く.先ず,任意の $O_{\lambda}\in\mathcal{O}_{\lambda}$ に対して $p_{\lambda}^{-1}(O_{\lambda})\in\mathcal{O}$ が満たされるから

$$\mathcal{O}_{\lambda} \subset \left\{ A_{\lambda} \in \mathcal{B}(S_{\lambda}) \mid p_{\lambda}^{-1}(A_{\lambda}) \in \mathcal{B}(S) \right\}$$

が従い、右辺が σ-加法族であるから

$$\bigotimes_{\lambda \in \Lambda} \mathcal{B}(S_{\lambda}) = \sigma\left(\left\{p_{\lambda}^{-1}(A_{\lambda}) \mid A_{\lambda} \in \mathcal{B}(S_{\lambda}), \ \lambda \in \Lambda\right\}\right) \subset \mathcal{B}(S)$$

を得る. 一方で

$$\mathscr{B} \coloneqq \left\{ \bigcap_{\lambda \in \Lambda'} p_{\lambda}^{-1}(B_{\lambda}) \mid B_{\lambda} \in \mathscr{B}_{\lambda}, \, \Lambda' \subset \Lambda : finite \, subset \, \right\}$$

は ${\mathcal O}$ の基底の一つである.実際,任意に $O\in{\mathcal O}$ を取れば,任意の $x\in O$ に対し或る有限集合 $\Lambda'\subset\Lambda$ が存在して

$$x\in \bigcap_{\lambda\in\Lambda'}p_\lambda^{-1}(O_\lambda)\subset O$$

が成立するが、更に S_λ の第二可算性より或る $\mathcal{B}'_\lambda \subset \mathcal{B}_\lambda$ $(\lambda \in \Lambda')$ が存在して

$$x \in \bigcap_{\lambda \in \Lambda'} p_{\lambda}^{-1}(O_{\lambda}) = \bigcap_{\lambda \in \Lambda'} \bigcup_{B_{\lambda} \in \mathscr{B}'_{\lambda}} p_{\lambda}^{-1}(B_{\lambda})$$

が満たされる. すなわち, 任意の $O \in \mathcal{O}$ は

$$O = \bigcup_{E \in \mathcal{B}'} E, \quad (\exists \mathcal{B}' \subset \mathcal{B})$$

と表される. \mathscr{B} は高々可算の濃度を持ち *2 , $\mathscr{B} \subset \prod_{\lambda \in \Lambda} \mathscr{B}(S_{\lambda})$ が満たされるから

$$\mathscr{O}\subset \bigotimes_{\lambda\in\Lambda}\mathscr{B}(S_{\lambda})$$

が従い (A.58) を得る.

定理 A.7.23 (積測度). 測度空間の族 $((X_i,\mathscr{F}_i,\mu_i))_{i=1}^n$ に対し, $(\prod_{i=1}^n X_i,\bigotimes_{i=1}^n \mathscr{F}_i)$ 上の測度 μ で

$$\mu(A_1 \times \cdots \times A_n) = \mu_1(A_1) \cdots \mu_n(A_n), \quad (\forall A_i \in \mathcal{F}_i, i = 1, \cdots, n)$$

を満たすものが存在する.この μ を $(\mu_i)_{i=1}^n$ の積測度と呼び $\bigotimes_{i=1}^n \mu_i = \mu_1 \otimes \cdots \otimes \mu_n$ と書く.全ての μ_i が σ -有限となる.

証明. $\bigotimes_{i=1}^{n} \mathscr{F}_{i}$ を生成する乗法族を

$$\mathcal{A} := \{ A_1 \times \cdots \times A_n \mid A_i \in \mathcal{F}_i, i = 1, \cdots, n \}$$

 $^{^2}$ $L_0 \coloneqq \left\{ \Lambda' \mid \Lambda' \subset \Lambda : finite \ subset \right\}$ は高々可算集合である。実際, $\Lambda_n \coloneqq \Lambda \times \dots \times \Lambda \ (n \ \text{copies of} \ \Lambda)$ として $L \coloneqq \bigcup_{n=1}^{\#\Lambda} \Lambda_n$ とおき, $(x_1, \dots, x_n) \in L$ に対し $\{x_1, \dots, x_n\} \in L_0$ を対応させる $f: L \longrightarrow L_0$ を考えれば全射であるから $\#L_0 \le \#L \le \aleph_0$ が従う.

とおけば、定理 A.7.13 より

$$\mathcal{B} := \left\{ \sum_{i=1}^{n} I_i \mid I_i \in \mathcal{A}, \ n = 1, 2, \cdots \right\}$$

は $\prod_{i=1}^n X_i$ の上の加法族となり $\bigotimes_{i=1}^n \mathscr{F}_i$ を生成する.

定理 A.7.24 (完備測度空間の直積空間). $((X_i,\mathcal{B}_i,\mu_i))_{i=1}^n$ を σ -有限な測度空間の族とし, $(X_i,\mathcal{B}_i,\mu_i)$ の Lebesgue 拡大を (X_i,\mathfrak{M}_i,m_i) と書く. このとき次が成り立つ:

$$\left(X_1 \times \cdots \times X_n, \overline{\mathcal{B}_1 \otimes \cdots \otimes \mathcal{B}_n}, \overline{\mu_1 \otimes \cdots \otimes \mu_n}\right) = \left(X_1 \times \cdots \times X_n, \overline{\mathfrak{M}_1 \otimes \cdots \otimes \mathfrak{M}_n}, \overline{m_1 \otimes \cdots \otimes m_n}\right).$$

証明. $X\coloneqq\prod_{i=1}^nX_i,\;\mathcal{B}\coloneqq\bigotimes_{i=1}^n\mathcal{B}_i,\;\mathfrak{M}\coloneqq\bigotimes_{i=1}^n\mathfrak{M}_i,\;\mu\coloneqq\bigotimes_{i=1}^n\mu_i,\;m\coloneqq\bigotimes_{i=1}^nm_i$ と表記する.

第一段 $\mathcal{B}_i \subset \mathfrak{M}_i$, $(i=1,\cdots,n)$ より $\mathcal{B} \subset \mathfrak{M}$ が従う. このとき

$$\mu(B) = m(B), \quad (\forall B \in \mathcal{B})$$
 (A.59)

が成り立つことを示す. いま, σ -有限の仮定により各 i に対し

$$\mu_i(X_i^k) < \infty$$
, $X_i^k \in \mathcal{B}_i$, $(\forall k = 1, 2, \cdots)$, $X_1^k \subset X_2^k \subset \cdots$

を満たす増大列 $\left(X_{i}^{k}\right)_{k=1}^{\infty}$ が存在し,

$$X^k := X_1^k \times \cdots \times X_n^k, \quad (k = 1, 2, \cdots)$$

により \mathcal{B} の増大列 $(X^k)_{k=1}^{\infty}$ を定めれば

$$X = \bigcup_{k=1}^{\infty} X^k$$
, $\mu(X^k) = \mu_1(X_1^k) \cdots \mu_n(X_n^k) < \infty$; $(k = 1, 2, \cdots)$

が満たされる.ここで $\mathcal B$ を生成する乗法族を

$$\mathcal{A} := \{ B_1 \times \cdots \times B_n \mid B_i \in \mathcal{B}_i, i = 1, \cdots, n \}$$

とおけば、 $\mathcal A$ は $\left\{X^k\right\}_{k=1}^\infty$ を含み、かつ任意の $B_1 imes \cdots imes B_n \in \mathcal A$ に対して

$$\mu(B_1 \times \cdots \times B_n) = \mu_1(B_1) \cdots \mu_n(B_n) = m_1(B_1) \cdots m_n(B_n) = m(B_1 \times \cdots \times B_n)$$

となるから, 定理 A.7.17 より (A.59) が出る.

第二段 この段と次の段で $\left(X,\overline{\mathcal{B}},\overline{\mu}\right)$ が $\left(X,\mathfrak{M},m\right)$ の完備拡張であることを示す.まず

$$\mathfrak{M} \subset \overline{\mathcal{B}} \tag{A.60}$$

が成り立つことを示す. 任意の $E_i \in \mathfrak{M}_i$ に対し,

$$B_j^1 \subset E_j \subset B_j^2$$
, $\mu_j \left(B_j^2 - B_j^1 \right) = 0$

を満たす $B_i^1, B_i^2 \in \mathcal{B}_j$ が存在する.このとき,X から X_j への射影を p_j と書けば

$$p_j^{-1}\left(B_j^1\right)\subset p_j^{-1}(E_j)\subset p_j^{-1}\left(B_j^2\right),\quad p_j^{-1}\left(B_j^1\right),p_j^{-1}\left(B_j^2\right)\in\mathcal{B}$$

及び

$$\mu\left(p_{j}^{-1}\left(B_{j}^{2}\right) - p_{j}^{-1}\left(B_{j}^{1}\right)\right) = \mu_{1}(X_{1}) \cdots \mu_{j}\left(B_{j}^{2} - B_{j}^{1}\right) \cdots \mu_{n}(X_{n}) = 0$$

が成り立つから

$$p_j^{-1}(E_j)\in \overline{\mathcal{B}}$$

が従い.

$$E_1 \times \cdots \times E_n = \bigcap_{i=1}^n p_i^{-1}(E_i), \quad (E_i \in \mathfrak{M}_i, i = 1, \cdots, n)$$

と積 σ -加法族の定義より (A.60) が得られる.

第三段 任意の $E \in \mathfrak{M}$ に対し

$$m(E) = \overline{\mu}(E)$$

が成り立つことを示す. 実際, (A.60) より $E \in \mathfrak{M}$ なら $E \in \overline{\mathcal{B}}$ となるから,

$$B_1 \subset E \subset B_2, \quad \mu(B_2 - B_1) = 0, \quad \overline{\mu}(E) = \mu(B_1)$$
 (A.61)

を満たす B_1 , $B_2 \in \mathcal{B}$ が存在し、このとき (A.59) より

$$m(E - B_1) \le m(B_2 - B_1) = \mu(B_2 - B_1) = 0$$

が成立し

$$m(E) = m(B_1) = \mu(B_1) = \overline{\mu}(E)$$

が得られる.

第四段 前段の結果より $\left(X,\overline{\mathcal{B}},\overline{\mu}\right)$ は $\left(X,\mathfrak{M},m\right)$ の完備拡張であるから,

$$\overline{\mathfrak{M}} \supset \overline{\mathcal{B}}$$

を示せば定理の主張を得る. 実際, 任意の $E \in \overline{\mathcal{B}}$ に対し (A.61) を満たす $B_1, B_2 \in \mathcal{B}$ を取れば,

$$m(B_2 - B_1) = \mu(B_2 - B_1) = 0$$

が成り立ち $E \in \overline{\mathbb{M}}$ が従う.

A.7.6 Kolmogorov の拡張定理

確率空間を実数空間の上に作ってしまうと Kolmogorov の拡張定理の証明は論理的にも見た目の上でも煩雑になるようだが、Bogachev が説明する通り、コンパクトクラスの概念を使って一般化された Kolmogorov の拡張定理は主張のみならず証明も洗練されたものとなる.一見長い証明となるが、内容は抽象的で捉えやすい.

いま、T を空でない集合とし、T の任意の要素 t に対して可測空間 (X_t, \mathcal{B}_t) が定まっていて、 X_t は空ではないとする。T の空でない任意の有限部分集合の全体を $\mathcal F$ とおくとき、 $\mathcal F$ の任意の要素 Λ に対して

$$X_{\Lambda} = \prod_{t \in \Lambda} X_t, \quad \mathscr{B}_{\Lambda} = \bigotimes_{t \in \Lambda} \mathscr{B}_t$$

により可測空間 $(X_{\Lambda}, \mathcal{B}_{\Lambda})$ を定める. また

$$X \coloneqq \prod_{t \in T} X_t, \quad \mathcal{B} \coloneqq \bigotimes_{t \in T} \mathcal{B}_t$$

とおく. $\mathscr F$ の任意の要素 Λ,Λ' に対し, $\Lambda\subset\Lambda'$ であるとき $X_{\Lambda'}$ から X_{Λ} への射影を $\pi_{\Lambda',\Lambda}$ と書き,また X から X_{Λ} への射影を π_{Λ} と書く.以上が定理の準備となる.

定理の首脳部に入る前に次の補題を証明する.

補題 A.7.25 (射影の可測性). T の任意の空でない部分集合 Λ,Λ' に対し (有限性は要らない), $\Lambda \subset \Lambda'$ であるとき射影 $\pi_{\Lambda',\Lambda}$ は $\mathcal{B}_{\Lambda'}/\mathcal{B}_{\Lambda}$ -可測である. また射影 π_{Λ} は $\mathcal{B}/\mathcal{B}_{\Lambda}$ -可測である.

証明. Λ,Λ' を T の空でない部分集合とする. このとき,まず Λ の任意の要素 t に対し $\pi_{\Lambda,\{t\}}$ は X_{Λ} から X_{t} への射影であるから,直積 σ -加法族の定義より $\pi_{\Lambda,\{t\}}$ は $\mathcal{B}_{\Lambda}/\mathcal{B}_{t}$ -可測性を持つ.特に $\Lambda=T$ の場合

$$\pi_{\Lambda,\{t\}} = \pi_{\Lambda}, \quad \mathscr{B}_{\Lambda} = \mathscr{B}$$

であるから π_Λ の $\mathcal{B}/\mathcal{B}_\Lambda$ -可測性が得られる. また $\Lambda \subset \Lambda'$ であるとき, Λ の任意の要素 t と \mathcal{B}_t の任意の要素 B に対し

$$\pi_{\Lambda',\Lambda}^{-1}\left(\pi_{\Lambda,\{t\}}^{-1}(B)\right)=\pi_{\Lambda',\{t\}}^{-1}(B)\in\mathcal{B}_{\Lambda'}$$

が成立する. 従って

$$\bigcup_{t\in\Lambda}\left\{\pi_{\Lambda,\{t\}}^{-1}(B)\mid\quad B\in\mathcal{B}_t\right\}\subset\left\{B\in\mathcal{B}_\Lambda\mid\quad \pi_{\Lambda',\Lambda}^{-1}(B)\in\mathcal{B}_{\Lambda'}\right\}$$

となり、左辺は \mathscr{B}_{Λ} を生成し右辺は σ -加法族であるから $\pi_{\Lambda',\Lambda}$ の $\mathscr{B}_{\Lambda'}/\mathscr{B}_{\Lambda}$ -可測性が従う.

本節の主題は次の通りである. いま, $\mathscr P$ の任意の要素 Λ に対し, $(X_\Lambda,\mathscr B_\Lambda)$ 上に有限測度 μ_Λ が定まっていて

$$\forall \Lambda, \Lambda' \in \mathscr{F}, \quad \Lambda \subset \Lambda' \Longrightarrow \mu_{\Lambda'} \circ \pi_{\Lambda', \Lambda}^{-1} = \mu_{\Lambda}$$

が成り立っていると仮定する.この条件を Kolmogorov の両立条件 (consistency condition) と呼ぶ.加えて,T の 任意の要素 t に対して \mathcal{B}_t に含まれるコンパクトクラス \mathcal{K}_t が存在し,任意の正数 ϵ 及び $\mu_{\{t\}}(B)>0$ を満たす \mathcal{B}_t の 任意の要素 B に対して或る \mathcal{K}_t の要素 K で

$$K \subset B \land \mu_{\{t\}}(B \backslash K) < \epsilon$$

を満たすものが取れることも仮定する. このとき (X, \mathcal{B}) 上にただ一つの有限測度 μ が存在して次が成立する:

$$\forall \Lambda \in \mathscr{F}, \quad \mu \circ \pi_{\Lambda}^{-1} = \mu_{\Lambda}.$$

証明.

第一段 $\mathscr{R} = \bigcup_{\Lambda \in \mathscr{F}} \left\{ \pi_{\Lambda}^{-1}(B) \mid B \in \mathscr{B}_{\Lambda} \right\}$ で \mathscr{R} を定めれば、 \mathscr{R} は X 上の有限加法族となり \mathscr{B} を生成する.実際

$$X=\pi_{\Lambda}^{-1}(X_{\Lambda})\in\mathcal{R}$$

が成立し、また任意に $\mathcal R$ の要素 A を取れば、A は或る $\Lambda \in \mathcal F$ と $B \in \mathcal B_\Lambda$ を用いて

$$A = \pi_{\Lambda}^{-1}(B)$$

と表され、 $X_{\Lambda} \setminus B \in \mathcal{B}_{\Lambda}$ であるから

$$X \backslash A = \pi_{\Lambda}^{-1}(X_{\Lambda} \backslash B) \in \mathcal{R}$$

が成り立つ. また任意に $\mathscr R$ の要素 A, A' を取れば、或る $\mathscr F$ の要素 A と $\mathscr B_\Lambda$ の要素 B 及び或る $\mathscr F$ の要素 A' と $\mathscr B_{\Lambda'}$ の要素 B' を用いて

$$A = \pi_{\Lambda}^{-1}(B), \quad A' = \pi_{\Lambda}^{-1}(B')$$

と表され、このとき $\Lambda'' = \Lambda \cup \Lambda'$ とおけば

$$A=\pi_{\Lambda''}^{-1}\left(\pi_{\Lambda'',\Lambda}^{-1}(B)\right),\quad A'=\pi_{\Lambda''}^{-1}\left(\pi_{\Lambda'',\Lambda'}^{-1}(B')\right)$$

が成り立つ. 補題 A.7.25 より $\pi_{\Lambda'',\Lambda}^{-1}(B)$ と $\pi_{\Lambda'',\Lambda'}^{-1}(B')$ は共に $\mathscr{B}_{\Lambda''}$ に属するので

$$A \cup A' = \pi_{\Lambda''}^{-1} \left(\pi_{\Lambda'',\Lambda}^{-1}(B) \cup \pi_{\Lambda'',\Lambda'}^{-1}(B') \right)$$

となり $A \cup A' \in \mathcal{R}$ が成立する. 以上より \mathcal{R} は X 上の有限加法族をなしている. また T の任意の要素 t に対して $\{t\}$ は \mathcal{F} に属するから

$$\bigcup_{t \in T} \left\{ \pi_{\{t\}}^{-1}(B) \mid B \in \mathcal{B}_t \right\} \subset \mathcal{R}$$

が成り立ち,左辺は \mathscr{B} を生成するので $\mathscr{B}\subset\sigma(\mathscr{R})$ を得る.一方で \mathscr{F} の任意の要素 Λ に対し π_{Λ} は $\mathscr{B}/\mathscr{B}_{\Lambda}$ -可測である (補題 $\Lambda.7.25$) から $\mathscr{R}\subset\mathscr{B}$ も得られ,以上で

$$\sigma(\mathcal{R}) = \mathcal{B}$$

が出る.

第二段 μを

$$\mu = \left\{ \left. (x,y) \mid \quad \exists \Lambda \in \mathcal{F} \exists B \in \mathcal{B}_{\Lambda} \left(x = \pi_{\Lambda}^{-1}(B) \wedge y = P_{\Lambda}(B) \right) \right. \right\}$$

により定める. このとき μ は sigle-valued であり、 $\mathcal R$ 上の有限加法的測度となる. まず μ が single-valued であることを示す.

$$\pi_{\Lambda}^{-1}(B)=\pi_{\Lambda'}^{-1}(B')$$

であるとき, $\Lambda'' := \Lambda \cup \Lambda'$ とおけば

$$\pi_{\Lambda''}^{-1}\left(\pi_{\Lambda'',\Lambda}^{-1}(B)\right) = \pi_{\Lambda}^{-1}(B) = \pi_{\Lambda'}^{-1}(B') = \pi_{\Lambda''}^{-1}\left(\pi_{\Lambda'',\Lambda'}^{-1}(B')\right)$$

が成り立つから $\pi^{-1}_{\Lambda'',\Lambda}(B)=\pi^{-1}_{\Lambda'',\Lambda'}(B')$ が従い (定理 A.4.20), 整合性条件より

$$\mu_{\Lambda}(B) = \mu_{\Lambda''} \circ \pi_{\Lambda'',\Lambda}^{-1}(B) = \mu_{\Lambda''} \circ \pi_{\Lambda'',\Lambda'}^{-1}(B') = \mu_{\Lambda'}(B')$$

が満たされ μ の一意性を得る. 次に μ の加法性を示す.

$$\pi_{\Lambda_1}^{-1}(B_1) \cap \pi_{\Lambda_2}^{-1}(B_2) = \emptyset$$

であるとき, $\Lambda_3 := \Lambda_1 \cup \Lambda_2$ とおけば

$$\emptyset = \pi_{\Lambda_3}^{-1} \left(\pi_{\Lambda_3, \Lambda_1}^{-1}(B_1) \right) \cap \pi_{\Lambda_3} \left(\pi_{\Lambda_3, \Lambda_2}^{-1}(B_2) \right) = \pi_{\Lambda_3}^{-1} \left(\pi_{\Lambda_3, \Lambda_1}^{-1}(B_1) \cap \pi_{\Lambda_3, \Lambda_2}^{-1}(B_2) \right)$$

となるから $\pi_{\Lambda_3,\Lambda_1}^{-1}(B_1)\cap\pi_{\Lambda_3,\Lambda_2}^{-1}(B_2)=\emptyset$ が従い (全射の性質),

$$\begin{split} \mu\left(\pi_{\Lambda_{1}}^{-1}(B_{1}) \cup \pi_{\Lambda_{2}}^{-1}(B_{2})\right) &= \mu\left[\pi_{\Lambda_{3}}^{-1}\left(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1})\right) \cup \pi_{\Lambda_{3}}\left(\pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\right)\right] \\ &= \mu\left[\pi_{\Lambda_{3}}^{-1}\left(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1}) \cup \pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\right)\right] \\ &= \mu_{\Lambda_{3}}\left(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1}) \cup \pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\right) \\ &= \mu_{\Lambda_{3}}\left(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1})\right) + \mu_{\Lambda_{3}}\left(\pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\right) \\ &= \mu\left(\pi_{\Lambda_{1}}^{-1}(B_{1})\right) + \mu\left(\pi_{\Lambda_{2}}^{-1}(B_{2})\right) \end{split}$$

が成立する.

第三段 μ が $\mathscr R$ の上で完全加法的であることを定理 A.7.8 と併せて示す.

A.7.7 Kolmogorov の連続変形定理

定理 A.7.26 (Kolmogorov の連続変形定理). (X, \mathcal{F}) を空でない可測空間, μ をこの上の有限測度で $\mu(X) > 0$, (S, d) を完備距離空間, (T, ρ) を全有界距離空間として, 以下を仮定する:

- T の任意の要素 t に対して $\mathscr{B}(S)/\mathscr{F}$ -可測写像 $f_t: X \longrightarrow S$ が定まっている.
- 正の実数 α , β , C に対して

$$\forall s, t \in T, \quad \int_X d(f_s, f_t)^{\alpha} d\mu \le C \rho(s, t)^{1+\beta}$$

が成立している. ただし $d(f_s, f_t)$ とは写像 $X \ni x \mapsto d(f_s(x), f_t(x))$ を表す.

• 1以上の任意の自然数 n に対して、T は半径 1/n の球を適切に n 個取れば覆われる.

このとき、 $0<\gamma<eta/\alpha$ を満たす任意の実数 γ に対して或る μ -零集合 N が取れて、T の任意の要素 t に対して $\mathscr{B}(S)/\mathscr{F}$ -可測写像 g_t が存在し、X の任意の要素 x で写像 $T\ni t\longmapsto g_t(x)$ は連続となり、かつ

$$\forall t \in T$$
, $\mu(f_t \neq g_t) = 0$

が成立する. 加えて或る $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測写像 h も存在して,

$$\forall x \in X \setminus N, \ \forall s,t \in [0,T], \quad \rho(s,t) < h(x) \Longrightarrow d(g_s(x),g_t(x)) < \frac{2}{1-2^{-\gamma}}\rho(s,t)^{\gamma}$$

が成立する.

証明. 考察中

A.8 積分

A.8.1 積分

定理 A.8.1 (複素数値可測 \iff 実部虚部が可測). (X, \mathscr{F}) を可測空間, $f: X \longrightarrow \mathbf{C}$ とするとき, f が $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測であることと f の実部 u と虚部 v がそれぞれ $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測であることは同値である.

証明. $z \in \mathbb{C}$ に対し $x, y \in \mathbb{C}$ の組が唯一つ対応し z = x + iy を満たす. この対応関係により定める写像

$$\varphi: \mathbf{C} \ni z \longmapsto (x, y) \in \mathbf{R}^2$$

は位相同型である. 射影を $p_1: \mathbf{R}^2 \ni (x,y) \longmapsto x, p_2: \mathbf{R}^2 \ni (x,y) \longmapsto y$ とすれば

$$u = p_1 \circ \varphi \circ f$$
, $v = p_2 \circ \varphi \circ f$

となるから、f が $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測であるなら p_1,p_2,φ の連続性より

$$u^{-1}(A) = f^{-1} \circ \varphi^{-1} \circ p_1^{-1}(A) \in \mathcal{F}, \quad v^{-1}(A) = f^{-1} \circ \varphi^{-1} \circ p_2^{-1}(A) \in \mathcal{F}, \quad (\forall A \in \mathcal{B}(\mathbf{R}))$$

が成り立ち u,v の $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測性が従う. 逆に u,v が $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測であるとき,

$$f^{-1}(B) = \left\{ x \in X \mid (u(x), v(x)) \in \varphi(B) \right\} \in \mathcal{F}, \quad (\forall B \in \mathcal{B}(\mathbf{C}))$$

が成り立ち f の $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測性が出る.

定理 A.8.2 (和・積・商の可測性).

定理 A.8.3 (相対位相の Borel 集合族). (S, \mathcal{O}) を位相空間とする. 部分集合 $A \subset S$ に対して

$$\mathscr{B}(A) := \sigma [\{ A \cap O \mid O \in \mathscr{O} \}]$$

とおくとき次が成り立つ:

$$\mathscr{B}(A) = \{ A \cap E \mid E \in \mathscr{B}(S) \}.$$

また $A \in \mathcal{B}(S)$ なら $\mathcal{B}(A) \subset \mathcal{B}(S)$ となる.

R-値可測関数は、終集合 C に拡張すれば C-値可測関数となる.

定理 A.8.4 (単関数近似列の存在). (X, \mathcal{F}) を可測空間とする.

(1) 任意の ℱ/ℬ([0,∞])-可測写像 f に対し

$$0 \le f_1 \le f_2 \le \dots \le f;$$
 $\lim_{n \to \infty} f_n(x) = f(x), \ (\forall x \in X)$

を満たす $\mathscr{F}/\mathscr{B}([0,\infty))$ -可測単関数列 $(f_n)_{n=1}^{\infty}$ が存在する.

(2) 任意の $\mathcal{F}/\mathcal{B}(\mathbf{C})$ -可測写像 f に対し

$$0 \le |f_1| \le |f_2| \le \dots \le |f|; \quad \lim_{n \to \infty} f_n(x) = f(x), \ (\forall x \in X)$$

を満たす $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測単関数列 $(f_n)_{n=1}^{\infty}$ が存在する.

(3) (1) または (2) において、f が $E \in \mathcal{F}$ 上で有界なら $f_n \mathbb{1}_E$ は一様に $f \mathbb{1}_E$ を近似する:

$$\sup_{x \in E} |f_n(x) - f(x)| \longrightarrow 0 \quad (n \longrightarrow \infty).$$

定義 A.8.5 (複素数値可測関数の正値測度に関する積分). (X, \mathcal{F}, μ) を正値測度空間, f を $\mathcal{F}/\mathcal{B}(\mathbf{C})$ -可測関数とする. $u \coloneqq \operatorname{Re} f, v \coloneqq \operatorname{Im} f$ とおけば $|u|, |v| \le |f| \le |u| + |v|$ より

$$|f|$$
 が可積分 \iff u,v が共に可積分

が成り立つ. |f| が可積分のとき、f は可積分であるといい f の μ に関する積分を次で定める:

$$\int_X f \ d\mu \coloneqq \int_X u \ d\mu + i \int_X v \ d\mu.$$

定理 A.8.6 (Lebesgue の収束定理). (X, \mathscr{F}, μ) を正値測度空間, f, f_n $(n = 1, 2, \cdots)$ を $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測な可積分 関数とする. このとき, $f = \lim_{n \to \infty} f_n \mu$ -a.e. かつ

$$|f_n| \le g$$
, μ -a.e.

を満たす可積分関数 g が存在するとき

$$\int_X |f - f_n| \ d\mu \longrightarrow 0 \quad (n \longrightarrow \infty).$$

定理 A.8.7 (積分の線形性・積分作用素の有界性). (X,\mathscr{F}) を可測空間とし、 μ を \mathscr{F} 上の正値測度とする.

(1) 任意の $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測可積分関数 f,g と $\alpha,\beta\in\mathbb{C}$ に対して次が成り立つ:

$$\int_X \alpha f + \beta g \ d\mu = \alpha \int_X f \ d\mu + \beta \int_X g \ d\mu.$$

(2) 任意の $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測可積分関数 f に対して次が成り立つ:

$$\left| \int_{Y} f \ d\mu \right| \leq \int_{Y} |f| \ d\mu.$$

証明.

(1)

(2) $\alpha \coloneqq \int_X f d\mu$ とおけば、 $\alpha \neq 0$ の場合

$$|\alpha| = \frac{\overline{\alpha}}{|\alpha|} \int_X f \ d\mu = \int_X \frac{\overline{\alpha}}{|\alpha|} f \ d\mu$$

が成り立ち

$$|\alpha| = \operatorname{Re} |\alpha| = \operatorname{Re} \int_X \frac{\overline{\alpha}}{|\alpha|} f \ d\mu = \int_X \operatorname{Re} \frac{\overline{\alpha}}{|\alpha|} f \ d\mu \le \int_X |f| \ d\mu$$

が従う. $\alpha = 0$ の場合も不等式は成立する.

補題 A.8.8. S を実数の集合とする. $-S \coloneqq \{-s \mid s \in S\}$ とおくとき次が成り立つ:

$$\inf S = -\sup(-S), \quad \sup S = -\inf(-S).$$

証明. 任意の $s \in S$ に対して $-s \le \sup(-S)$ より $\inf S \ge -\sup(-S)$ となる. 一方で任意の $s \in S$ に対し $\inf S \le s$ より $-s \le -\inf S$ となり $\sup(-S) \le -\inf S$ が従うから $-\sup(-S) \ge \inf S$ も成り立ち $\inf S = -\sup(-S)$ が出る.

定理 A.8.9 (写像の値域は積分の平均値の範囲を出ない). (X, \mathscr{F}, μ) を σ -有限測度空間, $f: X \longrightarrow \mathbb{C}$ を $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測かつ μ -可積分な関数, $C \subset \mathbb{C}$ を閉集合とする. このとき

$$\frac{1}{\mu(E)} \int_{E} f \ d\mu \in C, \quad (\forall E \in \mathcal{F}, \ 0 < \mu(E) < \infty) \tag{A.62}$$

なら次が成り立つ:

$$f(x) \in C$$
 μ -a.e. $x \in X$.

 $C = \mathbf{R}$ なら f は殆ど至る所 \mathbf{R} 値であり, $C = \{0\}$ なら殆ど至る所 f = 0 である.

証明. σ -有限の仮定より次を満たす $\{X_n\}_{n=1}^{\infty} \subset \mathscr{F}$ が存在する:

$$\mu(X_n) < \infty, \ (\forall n \ge 1); \quad X = \bigcup_{n=1}^{\infty} X_n.$$

C = C なら $f(x) \in C$ ($\forall x \in X$) である. $C \neq C$ の場合, 任意の $\alpha \in C \setminus C$ に対し或る r > 0 が存在して

$$B_r(\alpha) := \{ z \in \mathbb{C} \mid |z - \alpha| \le r \} \subset \mathbb{C} \setminus \mathbb{C}$$

を満たす. ここで

$$E := f^{-1}(B_r(\alpha)), \quad E_n := E \cap X_n$$

とおけば、任意の $n \ge 1$ について $\mu(E_n) > 0$ なら

$$\left|\frac{1}{\mu(E_n)}\int_{E_n}f\ d\mu - \alpha\right| = \left|\frac{1}{\mu(E_n)}\int_{E_n}f - \alpha\ d\mu\right| \le \frac{1}{\mu(E_n)}\int_{E_n}|f - \alpha|\ d\mu \le r$$

となり (A.62) に反するから、 $\mu(E_n) = 0 \ (\forall n \ge 1)$ 及び

$$\mu(E) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right) \le \sum_{n=1}^{\infty} \mu(E_n) = 0$$

が従う. $\mathbb{C}\backslash\mathbb{C}$ は開集合であり $B_r(\alpha)$ の形の集合の可算和で表せるから

$$\mu\left(f^{-1}\left(\mathbf{C}\backslash C\right)\right)=0$$

が成り立ち主張が得られる.

定理 A.8.10 (可積分なら積分値を一様に小さくできる). (X, \mathscr{F}, μ) を正値測度空間, $f: X \longrightarrow \mathbb{C}$ を $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測関数とするとき, f が可積分なら, 任意の $\epsilon > 0$ に対して或る $\delta > 0$ が存在し次を満たす:

$$\mu(E) < \delta \implies \int_{E} |f| \, d\mu < \epsilon.$$

証明. $X_n \coloneqq \{|f| \le n\}$ により増大列 $(X_n)_{n=1}^\infty$ を定めれば単調収束定理より

$$\int_X |f| \ d\mu = \lim_{n \to \infty} \int_{X_n} |f| \ d\mu$$

となるから、任意の $\epsilon > 0$ に対し或る $n_0 \ge 1$ が存在して

$$\int_{X \setminus X_{n_0}} |f| \, d\mu < \epsilon$$

が成り立つ. このとき $\mu(E) < \delta := \epsilon/n_0$ なら

$$\int_E |f| \ d\mu = \int_{E \cap X_{u_0}} |f| \ d\mu + \int_{E \cap (X \setminus X_{u_0})} |f| \ d\mu \le n_0 \mu(E) + \int_{X \setminus X_{u_0}} |f| \ d\mu < 2\epsilon$$

が従う.

A.8.2 関数列の収束

定義 A.8.11 (概収束すれば測度収束する). (X, \mathscr{F}, μ) を正値有限測度空間とする. $(f_n)_{n=1}^{\infty}$, f を全て $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測関数とするとき, $\lim_{n\to\infty} f_n = f$, μ -a.e. なら $(f_n)_{n=1}^{\infty}$ は f に測度収束する.

証明. 任意の $\epsilon > 0$ に対し

$$A_{\epsilon}^n \coloneqq \big\{ |f_n - f| > \epsilon \big\}$$

とおけば、Lebesgue の収束定理より任意の $k \ge 1$ で

$$\epsilon \mu (A_{\epsilon}^n) \le \int_{A_{\epsilon}^n} |f_n - f| \wedge \epsilon \ d\mu \le \int_X |f_n - f| \wedge \epsilon \ d\mu \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成立する.

上の定理で有限性を外すときの反例を示す. $X=\mathbf{R},\;\mu$ を一次元 Lebesgue 測度とするとき,

$$f_n := \mathbf{1}_{\mathbf{R}\setminus(-n,n)}$$

で定める関数列 $(f_n)_{n=1}^{\infty}$ は零写像に各点収束するが、 $0 < \epsilon < 1$ に対し

$$\mu\left(f_n>\epsilon\right)=\mu((-\infty,-n]\cup[n,\infty))=\infty,\quad (\forall n\geq 1)$$

を満たすから測度収束しない.

定理 A.8.12 (測度収束列の概収束部分列). (X,\mathscr{F},μ) を正値測度空間, $(f_n)_{n=1}^\infty$, f を全て $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測関数とするとき, $(f_n)_{n=1}^\infty$ が f に測度収束するなら或る部分列 $(f_{n_k})_{k=1}^\infty$ は f に概収束する.

証明. $(f_n)_{n=1}^{\infty}$ が f に測度収束するとき, 任意の $k \geq 1$ に対し

$$\mu\left(|f_{n_k} - f| > \frac{1}{2^k}\right) < \frac{1}{2^k}$$

を満たす添数列 $n_1 < n_2 < n_3 < \cdots$ が取れる.

$$A_k := \left\{ |f_{n_k} - f| > \frac{1}{2^k} \right\}, \quad A := \bigcup_{k \ge 1} \bigcap_{j > k} A_j^c$$

とおけば、 $\mu(A^c) \leq \mu\left(\bigcup_{j>k} A_j\right)$ 、 $(\forall k \geq 1)$ かつ

$$\mu\left(\bigcup_{j>k} A_j\right) \le \sum_{j>k} \frac{1}{2^j} = \frac{1}{2^k}$$

より $\mu(A^c) = 0$ が従い, $x \in A$ なら或る k = k(x) が存在して

$$|f_{n_j}(x) - f(x)| \le \frac{1}{2^j}, \quad (\forall j > k)$$

となるから $\lim_{k\to\infty} f_{n_k}(x) = f(x)$ が満たされる.

定理 A.8.13 (平均収束すれば測度収束する). $p \in (0,\infty)$, (X,\mathscr{F},μ) を正値測度空間, $(f_n)_{n=1}^{\infty}$, f を全て $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測関数とするとき,

$$\int_{X} |f_n - f|^p \ d\mu \longrightarrow 0 \quad (n \longrightarrow \infty)$$

なら $(f_n)_{n=1}^{\infty}$ は f に測度収束する.

証明. 任意の $\epsilon > 0$ に対し

$$\epsilon^p \mu \left(|f_n - f| > \epsilon \right) \le \int_{\left\{ |f_n - f| > \epsilon \right\}} |f_n - f|^p d\mu \le \int_X |f_n - f|^p d\mu \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成立する.

定理 A.8.14 (Egorov).

A.8.3 Radon 測度

定理 A.8.15 (Riesz-Markov-Kakutani の表現定理).

定理 A.8.16 (正値 Borel 測度の正則性定理).

A.9 Stieltjes 積分

A.9.1 \mathbf{R}^d 上の Stielties 測度

R の左半開区間とは (a,b], $(-\infty \le a \le b \le \infty)$ を指す. ただし

$$(a,b] = \begin{cases} \emptyset, & a = b, \\ (-\infty,b], & a = -\infty, b < \infty, \\ (a,\infty), & -\infty < a, b = \infty, \\ (-\infty,\infty), & a = -\infty, b = \infty, \end{cases}$$

と考える. ここで $d \ge 1$ に対し $(a_1,b_1] \times (a_2,b_2] \times \cdots \times (a_d,b_d]$ の形の集合を \mathbf{R}^d の左半開区間として

$$\mathfrak{F} \coloneqq \left\{ \sum_{i=1}^n I_i \mid I_i \subset \mathbf{R}^d : 左半開区間, n = 1, 2, \cdots \right\}$$

とおけば、 $\mathfrak F$ は $\mathcal B(\mathbf R^d)$ を生成し、また定理 $\mathbf A.7.13$ より $\mathbf R^d$ の上の加法族となる。 $f_\lambda:\mathbf R\longrightarrow \mathbf R$ 、 $(\lambda=1,\cdots,d)$ を単調非減少関数として、任意の空でない左半開区間 $I=(a_1,b_1]\times (a_2,b_2]\times \cdots \times (a_d,b_d]\subset \mathbf R^d$ に対し

$$m_0(I) := \prod_{\lambda=1}^d \sup \left\{ f_\lambda(\beta_\lambda) - f_\lambda(\alpha_\lambda) \mid (\alpha_\lambda, \beta_\lambda] \subset (a_\lambda, b_\lambda], \ -\infty < \alpha_\lambda < \beta_\lambda < \infty \right\}$$

とおき, $I = \emptyset$ なら $m_0(I) := 0$ とすれば, 定理 A.7.13 より

$$\mu_0(F) := \sum_{i=1}^n m_0(I_i), \quad (\forall F = I_1 + I_2 + \dots + I_n \in \mathfrak{F})$$

により \Im 上の有限加法的測度が定まる. また、任意の $n \ge 1$ に対して

$$\mu_0((-n,n]\times\cdots\times(-n,n])=\prod_{\lambda=1}^d\left\{f_\lambda(n)-f_\lambda(-n)\right\}<\infty$$

となるから μ_0 は \mathfrak{F} 上で σ -有限的である.

定理 A.9.1 (右連続性と完全加法性). 単調非減少関数 $f_{\lambda}: \mathbf{R} \longrightarrow \mathbf{R}$, $(\lambda = 1, \cdots, d)$ を用いて定める μ_0 について,全ての f_{λ} が右連続であることと μ_0 が $\mathfrak F$ の上で完全加法的であることは同値である.

証明.

第一段

第二段 全ての f_{λ} が右連続であるとし,

$$I = (a_1, b_1] \times \cdots \times (a_d, b_d], \quad (-\infty \le a_{\lambda} \le b_{\lambda} \le \infty, \ \lambda = 1, \cdots, d)$$

を取る. $0 < \mu_0(I) < \infty$ のとき、任意の $\epsilon > 0$ に対し

$$I_{\epsilon} := (\alpha_{1,\epsilon}, \beta_{1,\epsilon}] \times \cdots \times (\alpha_{d,\epsilon}, \beta_{d,\epsilon}], \quad (-\infty < \alpha_{\lambda,\epsilon} < \beta_{\lambda,\epsilon} < \infty), \quad I_{\epsilon} \subset I, \quad \mu(I \setminus I_{\epsilon}) < \epsilon$$

を満たす左半開区間 I_{ϵ} が存在し,

$$I_{\epsilon} \subset K_{\epsilon} := \left[\alpha_{1,\epsilon}, \beta_{1,\epsilon}\right] \times \cdots \times \left[\alpha_{d,\epsilon}, \beta_{d,\epsilon}\right] \subset I$$

かつ K_{ϵ} はコンパクト集合である.

定理 A.7.6 より \mathbf{R}^d のコンパクト集合全体はコンパクトクラスとなるから、定理 A.7.8 より定理 A.7.7 の (a) が満たされる.

定義 A.9.2 (Lebesgue-Stieltjes 測度). 右連続かつ単調非減少な関数の族 $(f_{\lambda})_{\lambda=1}^d$ により構成する $(\mathbf{R}^d,\mathfrak{F},\mu_0)$ は,定理 A.7.15 と定理 A.7.16 より完備測度空間 $(\mathbf{R}^d,\mathfrak{M},\mu^*)$ に拡張される.この μ^* を $(f_{\lambda})_{\lambda=1}^d$ の d 次元 Lebesgue-Stieltjes 測度と呼び,特に f_{λ} が全て恒等写像の場合 d 次元 Lebesgue 測度と呼ぶ.

 f_{λ} が全て右連続であれば定理 A.7.18 より μ_0 は $(\mathbf{R}^d, \mathscr{B}(\mathbf{R}^d))$ の上の σ -有限測度 μ に一意に拡張され、このとき

$$\left(\mathbf{R}^{d},\overline{\mathcal{B}(\mathbf{R}^{d})},\overline{\mu}\right)=\left(\mathbf{R}^{d},\mathfrak{M},\mu^{*}\right)$$

が成立する. この拡張測度 μ を $(f_{\lambda})_{\lambda=1}^d$ の Borel-Stieltjes 測度と呼ぶ.

A.9.2 任意の区間上の Stieltjes 測度

 I_{λ} , $(\lambda = 1, \dots, d)$ を **R** の区間、つまり (a, b), (a, b], [a, b), [a, b], $(-\infty \le a \le b \le \infty)$ のいずれかとするとき、

$$I := I_1 \times \cdots \times I_d$$

の形の集合 I を ${\bf R}^d$ の区間と呼ぶ.いま,各 $\lambda=1,\cdots,d$ に対し, f_λ を I_λ 上で定義された右連続単調非減少な,ただし I_λ が有界なら I_λ 上で有界な関数として

$$a_{\lambda} := \inf \left\{ f_{\lambda}(x) \mid \inf I_{\lambda} < x < \sup I_{\lambda} \right\}, \quad b_{\lambda} := \sup \left\{ f_{\lambda}(x) \mid \inf I_{\lambda} < x < \sup I_{\lambda} \right\}$$

とおけば、 $\inf I_{\lambda} \in I_{\lambda}$ なら $a_{\lambda} = f_{\lambda}(\inf I_{\lambda})$ 、 $\sup I_{\lambda} \in I_{\lambda}$ なら $b_{\lambda} = f_{\lambda}(\sup I_{\lambda})$ であるから

$$\hat{f}_{\lambda}(x) := \begin{cases} a_{\lambda} & -\infty < x \le \inf I_{\lambda} \\ f_{\lambda}(x) & \inf I_{\lambda} < x < \sup I_{\lambda} \\ b_{\lambda} & \sup I_{\lambda} \le x < \infty \end{cases}$$

は f_{λ} の拡張となり、 $\left(\hat{f}_{\lambda}\right)_{\lambda=1}^{d}$ に対して Borel-Stieltjes 測度空間 $(\mathbf{R}^{d},\mathscr{B}(\mathbf{R}^{d}),\mu)$ が定まる.定理 A.8.3 より

$$\mathcal{B}(I) = \{ I \cap E \mid E \in \mathcal{B}(\mathbf{R}^d) \} \subset \mathcal{B}(\mathbf{R}^d)$$

が成り立つから,

$$\mu_I(I \cap E) := \mu(I \cap E), \quad (\forall E \in \mathscr{B}(\mathbf{R}^d))$$

とおけば $(I, \mathcal{B}(I), \mu_I)$ は測度空間となる.この μ_I もまた $(f_{\lambda})_{\lambda=1}^d$ の Borel-Stieltjes 測度と呼ぶ.

定理 A.9.3 (Borel-Stiletjes 測度の一意性). f_{λ} を区間 $I_{\lambda} \subset \mathbf{R}$ で定義された右連続な単調非減少関数, μ を $(f_{\lambda})_{\lambda=1}^d$ の Borel-Stieltjes 測度とするとき,任意の $(\alpha_1,\beta_1] \times \cdots \times (\alpha_d,\beta_d]$, $(-\infty < \alpha_{\lambda} < \beta_{\lambda} < \infty$, $(\alpha_{\lambda},\beta_{\lambda}] \subset I_{\lambda}$) に対して

$$\mu\left((\alpha_1, \beta_1] \times \dots \times (\alpha_d, \beta_d]\right) = \prod_{\lambda=1}^d \left\{ f_{\lambda}(\beta_{\lambda}) - f_{\lambda}(\alpha_{\lambda}) \right\}$$
(A.63)

が満たされる. また $(f_{\lambda})_{\lambda=1}^d$ に対し (A.63) を満たす $(I,\mathcal{B}(I))$ 上の測度は唯一つである.

A.9.3 Stieltjes 積分

定理 A.9.4 (Riemann-Stieltjes 積分との関係). $F:I\longrightarrow {f C}$ が右連続或は左連続なら

定理 A.9.5 (時間変更). $u:[a,b] \longrightarrow \mathbf{R}$ を非減少連続関数, $A:[u(a),u(b)] \longrightarrow \mathbf{R}$ を非減少右連続関数とするとき,任意の $\mathcal{B}([u(a),u(b)])/\mathcal{B}(\mathbf{R})$ -可測関数 f に対し

$$\int_{[a,b]} f(u(s)) \, dA_{u(s)} = \int_{[u(a),u(b)]} f(t) \, dA_t$$

が成立する. ここで左辺は $s \longrightarrow A(u(s))$ により作る Lebesgue-Stieltjes 測度による積分を表す.

A.10 Fubini の定理

(X, M), (Y, N) を可測空間とするとき、任意の $x \in X$ に対し

$$p_x: Y \ni y \longmapsto (x, y) \in X \times Y$$

で定める p_x は $N/M \otimes N$ -可測である. 実際, $A \in M$, $B \in N$ に対しては

$$p_x^{-1}(A \times B) = \begin{cases} \emptyset, & (x \notin A), \\ B, & (x \in A), \end{cases} \in \mathcal{N}$$

となるから.

$$\{A \times B \mid A \in \mathcal{M}, B \in \mathcal{N}\} \subset \{E \in \mathcal{M} \otimes \mathcal{N} \mid p_x^{-1}(E) \in \mathcal{N}\}$$

が従い p_x の $N/M \otimes N$ -可測性が出る. 同様に任意の $y \in Y$ に対し

$$q_y: X \ni x \longmapsto (x, y) \in X \times Y$$

で定める q_y は $M/M \otimes N$ -可測である.

補題 A.10.1 (二変数可測写像は片変数で可測). $(X, \mathcal{M}), (Y, \mathcal{N}), (Z, \mathcal{L})$ を可測空間とするとき, 写像 $f: X \times Y \mapsto Z$ が $\mathcal{M} \otimes \mathcal{N}/\mathcal{L}$ -可測であれば, 任意の $x_0 \in X$, $y_0 \in Y$ に対し

$$X\ni x\longmapsto f(x,y_0),\quad Y\ni y\longmapsto f(x_0,y)$$

はそれぞれ M/\mathcal{L} -可測, N/\mathcal{L} -可測である.

証明. $X \ni x \mapsto f(x,y_0)$ は $f \trianglerighteq q_{y_0}$ の合成 $f \circ q_{y_0}$ であり、 $Y \ni y \longmapsto f(x_0,y)$ は $f \circ p_{x_0}$ である.

補題 A.10.2. $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ を σ -有限な測度空間とするとき,任意の $Q \in \mathcal{M} \otimes \mathcal{N}$ に対し

$$\varphi_Q: X \ni x \longmapsto \int_Y \mathbb{1}_Q \circ p_x \, dv, \quad \psi_Q: Y \ni y \longmapsto \int_X \mathbb{1}_Q \circ q_y \, d\mu,$$

はそれぞれ $\mathcal{M}/\mathscr{B}([0,\infty])$ -可測, $\mathcal{N}/\mathscr{B}([0,\infty])$ -可測であり

$$\int_{X} \varphi_{Q} d\mu = (\mu \otimes \nu)(Q) = \int_{Y} \psi_{Q} d\nu \tag{A.64}$$

が成立する.

証明.

第一段 σ -有限の仮定より,

$$\bigcup_{n=1}^{\infty} X_n = X, \quad \bigcup_{n=1}^{\infty} Y_n = Y, \quad \mu(X_n), \ \nu(Y_n) < \infty; \ n = 1, 2, \cdots$$

を満たす増大列 $\{X_n\}_{n=1}^{\infty} \subset M$ と $\{Y_n\}_{n=1}^{\infty} \subset N$ が存在する. ここで

$$\mathcal{M}_n := \{ A \cap X_n \mid A \in \mathcal{M} \}, \quad \mathcal{N}_n := \{ B \cap Y_n \mid B \in \mathcal{N} \}$$

により X_n , Y_n 上の σ -加法族を定めて

$$\mathcal{D}_{n} := \left\{ Q_{n} \in \mathcal{M}_{n} \otimes \mathcal{N}_{n} \mid \quad \psi_{Q_{n}} : X \ni x \longmapsto \int_{Y} \mathbb{1}_{Q_{n}} \circ p_{x} \, dv \, \, \text{th}^{\sharp} \, \mathcal{M}/\mathcal{B}([0,\infty]) - 可測, \\ Q_{n} \in \mathcal{M}_{n} \otimes \mathcal{N}_{n} \mid \quad \psi_{Q_{n}} : Y \ni y \longmapsto \int_{X} \mathbb{1}_{Q_{n}} \circ q_{y} \, d\mu \, \, \text{th}^{\sharp} \, \mathcal{N}/\mathcal{B}([0,\infty]) - 可測, \\ \int_{X} \varphi_{Q_{n}} \, d\mu = (\mu \otimes \nu)(Q_{n}) = \int_{Y} \psi_{Q_{n}} \, d\nu \right\}$$

とおけば、 \mathcal{D}_n は $X_n \times Y_n$ 上の Dynkin 族であり

$$\{A \times B \mid A \in \mathcal{M}_n, B \in \mathcal{N}_n\} \subset \mathcal{D}_n$$

を満たすから $M_n \otimes N_n = \mathcal{D}_n$ が従う.

第二段 $M_n \otimes N_n = \{Q \cap (X_n \times Y_n) \mid Q \in M \otimes N \}$ より、任意の $Q \in M \otimes N$ に対して

$$Q_n := Q \cap (X_n \times Y_n) \in \mathcal{D}_n, (\forall n \ge 1), Q_1 \subset Q_2 \subset \cdots \longrightarrow Q$$

が従い, 単調収束定理より

$$\varphi_Q(x) = \int_Y 1\!\!1_Q \circ p_x \ d\nu = \lim_{n \to \infty} \int_Y 1\!\!1_{Q_n} \circ p_x \ d\nu = \lim_{n \to \infty} \varphi_{Q_n}(x), \quad (\forall x \in X)$$

となるから φ_O の $\mathcal{M}/\mathscr{B}([0,\infty])$ -可測性が出る. また,

$$\varphi_{Q_n}(x) = \int_Y \mathbb{1}_{Q_n} \circ p_x \ d\nu \le \int_Y \mathbb{1}_{Q_{n+1}} \circ p_x \ d\nu = \varphi_{Q_{n+1}}(x), \quad (n = 1, 2, \dots)$$

が満たされているから, 再び単調収束定理により

$$\int_X \varphi_Q \ d\mu = \lim_{n \to \infty} \int_X \varphi_{Q_n} \ d\mu = \lim_{n \to \infty} (\mu \otimes \nu)(Q_n) = (\mu \otimes \nu)(Q)$$

が得られる. 同様に ψ_O は $N/\mathscr{B}([0,\infty])$ -可測であり (A.64) を満たす.

定理 A.10.3 (Fubini). $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ を σ -有限な測度空間とする.

(1) $f: X \times Y \longrightarrow [0,\infty]$ を $\mathcal{M} \otimes \mathcal{N}/\mathscr{B}([0,\infty])$ -可測写像とするとき,

$$\varphi: X \ni x \longmapsto \int_{Y} f \circ p_x \, d\nu, \quad \psi: Y \ni y \longmapsto \int_{X} f \circ q_y \, d\mu$$

により定める φ , ψ はそれぞれ $M/\mathscr{B}([0,\infty])$ -可測, $N/\mathscr{B}([0,\infty])$ -可測であり,

$$\int_X \varphi \ d\mu = \int_{X \times Y} f \ d(\mu \otimes \nu) = \int_Y \psi \ d\nu$$

が成立する。

(2) $f: X \times Y \longrightarrow \mathbb{C}$ を $M \otimes N/\mathscr{B}(\mathbb{C})$ -可測な可積分関数とするとき,

定理 A.10.4 (n 変数関数の Fubini の定理). $((X_i, \mathcal{M}_i, \mu_i))_{i=1}^n$, $(n \ge 3)$ を σ -有限な測度空間の族とし,

$$\{i_1, \dots, i_k\} \cup \{j_1, \dots, j_h\} = \{1, 2, \dots, n\}, \quad \{i_1, \dots, i_k\} \cap \{j_1, \dots, j_h\} = \emptyset$$

を満たす添数列 i_1, \dots, i_k と j_1, \dots, j_h , $(1 \le k, h \le n-1)$ を任意に取り

$$Y := \prod_{i=1}^{n} X_{i}, \quad Y_{1} := \prod_{\ell=1}^{k} X_{i_{\ell}}, \quad Y_{2} := \prod_{\ell=1}^{h} X_{j_{\ell}},$$

$$\mathcal{N} := \bigotimes_{i=1}^{n} \mathcal{M}_{i}, \quad \mathcal{N}_{1} := \bigotimes_{\ell=1}^{k} \mathcal{M}_{i_{\ell}}, \quad \mathcal{N}_{2} := \bigotimes_{\ell=1}^{h} \mathcal{M}_{j_{\ell}},$$

$$\mu := \bigotimes_{i=1}^{n} \mu_{i}, \quad \nu_{1} := \bigotimes_{\ell=1}^{k} \mu_{i_{\ell}}, \quad \nu_{2} := \bigotimes_{\ell=1}^{h} \mu_{j_{\ell}}$$

とおく. また

$$p_{y_1}: Y_2 \ni y_2 \longmapsto (y_1, y_2), \ (\forall y_1 \in Y_1), \quad q_{y_2}: Y_1 \ni y_1 \longmapsto (y_1, y_2), \ (\forall y_2 \in Y_2)$$

とする. このとき、射影 $\pi_1: Y \longrightarrow Y_1$, $\pi_2: Y \longrightarrow Y_2$ に対し

$$\varphi: Y_1 \times Y_2 \ni (y_1, y_2) \longmapsto \pi_1^{-1}(y_1) \cap \pi_2^{-1}(y_2)$$

により $\varphi: Y_1 \times Y_2 \longrightarrow Y$ を定めれば φ は $N_1 \otimes N_2/N$ -可測であり,更に以下が成立する:

(1) $f: Y \longrightarrow [0,\infty]$ が $N/\mathscr{B}([0,\infty])$ -可測なら次が成り立つ:

$$\int_{Y} f \ d\mu = \int_{Y_{1}} \int_{Y_{2}} f \left(\varphi \left(p_{y_{1}}(y_{2}) \right) \right) \ \nu_{2}(dy_{2}) \ \nu_{1}(dy_{1}) = \int_{Y_{2}} \int_{Y_{1}} f \left(\varphi \left(q_{y_{2}}(y_{1}) \right) \right) \ \nu_{1}(dy_{1}) \ \nu_{2}(dy_{2}).$$

証明.

第一段 φ の $N_1 \otimes N_2/N$ -可測性を示す。実際, $\varphi: Y_1 \times Y_2 \longrightarrow Y$ が全単射であることより

$$\varphi^{-1}(E_1 \times \dots \times E_n) = \prod_{\ell=1}^k E_{i_\ell} \times \prod_{\ell=1}^h E_{j_\ell} \in \mathcal{N}_1 \otimes \mathcal{N}_2, \quad (\forall E_i \in \mathcal{M}_i, \ i = 1, \dots, n)$$
(A.65)

が成り立つから

$$\{E_1 \times \cdots \times E_n \mid E_i \in \mathcal{M}_i, i = 1, \cdots, n\} \subset \{E \in \mathcal{N} \mid \varphi^{-1}(E) \in \mathcal{N}_1 \otimes \mathcal{N}_2\}$$

となり、左辺は N を生成するから φ は $N_1 \otimes N_2/N$ -可測である.

第二段 $f = \mathbb{1}_E (E \in \mathcal{N})$ に対し

$$\int_Y f \ d\mu = \int_{Y_1 \times Y_2} f \circ \varphi \ d(\nu_1 \otimes \nu_2)$$

となることを示す. 実際, (A.65) より

$$\{E_1 \times \cdots \times E_n \mid E_i \in \mathcal{M}_i, i = 1, \cdots, n\} \subset \{E \in \mathcal{N} \mid \mu(E) = \nu_1 \otimes \nu_2 (\varphi^{-1}(E))\}$$

となるから、Dinkin 族定理より任意の $E \in \mathcal{N}$ に対して $\mu(E) = \nu_1 \otimes \nu_2 \left(\varphi^{-1}(E) \right)$ が成立し

$$\int_{Y} f \ d\mu = \mu(E) = \nu_1 \otimes \nu_2 \left(\varphi^{-1}(E) \right) = \int_{Y_1 \times Y_2} f \circ \varphi \ d(\nu_1 \otimes \nu_2)$$

が従う.

A.11 L^p 空間

測度空間を (X, \mathcal{F}, μ) とする. $\mathcal{F}/\mathcal{B}(\mathbf{C})$ -可測関数 f に対して

$$\|f\|_{\mathcal{L}^p} := \begin{cases} \inf\left\{r \in \mathbf{C} \mid |f(x)| \le r \quad \mu\text{-a.e.} x \in X\right\} & (p = \infty) \\ \left(\int_X |f(x)|^p \ \mu(dx)\right)^{1/p} & (0$$

により ||·||_{&P} を定め,

$$\mathcal{L}^p(X,\mathcal{F},\mu) \coloneqq \left\{ f: X \longrightarrow \mathbf{C} \mid \quad f: \text{ } \exists \, \mathcal{F}/\mathcal{B}(\mathbf{C}), \, \left\| f \right\|_{\mathcal{L}^p} < \infty \right\} \quad (1 \leq p \leq \infty)$$

で空間 $\mathcal{L}^p(X, \mathcal{F}, \mu)$ を定義する. $\mathcal{L}^p(\mu)$ とも略記する.

補題 A.11.1. 任意の $f \in \mathcal{L}^{\infty}(X, \mathcal{F}, \mu)$ に対して次が成り立つ:

$$|f| \le ||f||_{\mathcal{L}^{\infty}} \quad \mu$$
-a.e.

証明. $\mathscr{L}^{\infty}(X,\mathscr{F},\mu)$ の定義より任意の実数 $\alpha>\|f\|_{\mathscr{L}^{\infty}}$ に対して

$$\mu\left(\left\{x\in X\mid \quad |f(x)|>\alpha\right\}\right)=0$$

が成り立つから,

$$\left\{x \in X \mid |f(x)| > \left\|f\right\|_{\mathcal{L}^{\infty}}\right\} = \bigcup_{n=1}^{\infty} \left\{x \in X \mid |f(x)| > \left\|f\right\|_{\mathcal{L}^{\infty}} + \frac{1}{n}\right\}$$

の右辺は μ -零集合であり主張が従う.

定理 A.11.2 (Hölder の不等式). $1 \le p,q \le \infty$, p+q=pq $(p=\infty$ なら q=1) とする. このとき任意の $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測関数 f,g に対して次が成り立つ:

$$\int_{Y} |fg| \, d\mu \le \|f\|_{\mathcal{L}^{p}} \|g\|_{\mathcal{L}^{q}}. \tag{A.66}$$

証明. $\|f\|_{\mathcal{L}^p} = \infty$ 又は $\|g\|_{\mathcal{L}^q} = \infty$ なら (A.66) は成り立つから, $\|f\|_{\mathcal{L}^p} < \infty$ かつ $\|g\|_{\mathcal{L}^q} < \infty$ とする.

 $p = \infty$, q = 1 の場合 補題 A.11.1 により或る零集合 A が存在して

$$|f(x)g(x)| \le ||f||_{\mathscr{L}^{\infty}} |g(x)| \quad (\forall x \in X \backslash A).$$

が成り立つから,

$$\int_X |fg| \ d\mu = \int_{X \setminus A} |fg| \ d\mu \le \left\| f \right\|_{\mathcal{L}^{\infty}} \int_{X \setminus A} |g| \ d\mu = \left\| f \right\|_{\mathcal{L}^{\infty}} \left\| g \right\|_{\mathcal{L}^1}$$

が従い不等式 (A.66) を得る.

 $1 < p, q < \infty$ の場合 $||f||_{\varphi_p} = 0$ のとき

$$B := \left\{ x \in X \mid |f(x)| > 0 \right\}$$

は零集合であるから,

$$\int_X |fg| \ d\mu = \int_{X \setminus B} |fg| \ d\mu = 0$$

となり (A.66) を得る. $\|g\|_{\mathscr{L}^q}=0$ の場合も同じである. 次に $0<\|f\|_{\mathscr{L}^p}$, $\|g\|_{\mathscr{L}^q}<\infty$ の場合を示す. 実数値対数関数 $(0,\infty)$ $\ni t \mapsto -\log t$ は凸であるから,1/p+1/q=1 に対して

$$-\log\left(\frac{s}{p} + \frac{t}{q}\right) \le \frac{1}{p}(-\log s) + \frac{1}{q}(-\log t) \quad (\forall s, t > 0)$$

を満たし

$$s^{1/p}t^{1/q} \le \frac{s}{p} + \frac{t}{q} \quad (\forall s, t > 0)$$

が従う. ここで

$$F := \frac{|f|^p}{\|f\|_{\varphi^p}^p}, \quad G := \frac{|g|^q}{\|g\|_{\varphi^q}^q}$$

により可積分関数F,Gを定めれば、

$$F(x)^{1/p}G(x)^{1/q} \le \frac{1}{p}F(x) + \frac{1}{q}G(x) \quad (\forall x \in X)$$

が成り立つから

$$\frac{1}{\|f\|_{cop}} \int_{X} |fg| \, d\mu = \int_{X} F^{1/p} G^{1/q} \, d\mu \le \frac{1}{p} \int_{X} F \, d\mu + \frac{1}{q} \int_{X} G \, d\mu = \frac{1}{p} + \frac{1}{q} = 1$$

が従い, $\|f\|_{\mathscr{L}^p}\|g\|_{\mathscr{L}^q}$ を移項して不等式 (A.66) を得る.

定理 A.11.3 (Minkowski の不等式). $1 \le p \le \infty$ のとき、任意の $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測関数 f,g に対して次が成り立つ:

$$||f + g||_{\varphi_p} \le ||f||_{\varphi_p} + ||g||_{\varphi_p}.$$
 (A.67)

証明. $\|f+g\|_{\mathscr{L}^p}=0$, $\|f\|_{\mathscr{L}^p}=\infty$, $\|g\|_{\mathscr{L}^p}=\infty$ のいずれかが満たされていれば (A.67) は成り立つから, $\|f+g\|_{\mathscr{L}^p}>0$ かつ $\|f\|_{\mathscr{L}^p}<\infty$ かつ $\|g\|_{\mathscr{L}^p}<\infty$ の場合を考える.

p = ∞ の場合 補題 A.11.1 により

$$C \coloneqq \left\{ x \in X \mid |f(x)| > \left\| f \right\|_{\mathcal{L}^{\infty}} \right\} \cup \left\{ x \in X \mid |g(x)| > \left\| g \right\|_{\mathcal{L}^{\infty}} \right\}$$

は零集合であり,

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\varphi_{\infty}} + ||g||_{\varphi_{\infty}} \quad (\forall x \in X \setminus C)$$

が成り立ち (A.67) が従う.

p=1 の場合

$$\int_{X} |f + g| \ d\mu \le \int_{X} |f| + |g| \ d\mu = \|f\|_{\mathcal{L}^{1}} + \|g\|_{\mathcal{L}^{1}}$$

より (A.67) が従う.

 $1 の場合 <math>q \in p$ の共役指数とする.

$$|f + g|^p = |f + g||f + g|^{p-1} \le |f||f + g|^{p-1} + |g||f + g|^{p-1}$$

が成り立つから、Hölder の不等式より

$$\begin{aligned} \|f + g\|_{\mathcal{L}^{p}}^{p} &= \int_{X} |f + g|^{p} d\mu \\ &\leq \int_{X} |f| |f + g|^{p-1} d\mu + \int_{X} |g| |f + g|^{p-1} d\mu \\ &\leq \|f\|_{\mathcal{L}^{p}} \|f + g\|_{\mathcal{L}^{p}}^{p-1} + \|g\|_{\mathcal{L}^{p}} \|f + g\|_{\mathcal{L}^{p}}^{p-1} \end{aligned}$$

$$(A.68)$$

が得られる. また $|f|^p$, $|g|^p$ の可積性と

$$|f + g|^p \le 2^p (|f|^p + |g|^p)$$

により $\|f+g\|_{\mathscr{L}^p}<\infty$ が従うから,(A.68) の両辺を $\|f+g\|_{\mathscr{L}^p}^{p-1}$ で割って (A.67) を得る.

以上の結果より $\mathscr{L}^p(X,\mathscr{F},\mu)$ は ${\bf C}$ 上の線形空間となる. 実際線型演算は

$$(f+g)(x) := f(x) + g(x), \quad (\alpha f)(x) := \alpha f(x), \quad (\forall x \in X, f, g \in \mathcal{L}^p(\mu), \alpha \in \mathbf{C})$$

により定義され、Minkowski の不等式により加法について閉じている.

補題 A.11.4. $1 \le p \le \infty$ に対し、 $\|\cdot\|_{\mathscr{L}^p}$ は線形空間 $\mathscr{L}^p(X,\mathscr{F},\mu)$ のセミノルムである.

証明.

半正値性 $\|\cdot\|_{\mathscr{L}^p}$ が正値であることは定義による. 一方で, $E \neq \emptyset$ を満たす μ -零集合 E が存在するとき,

$$f(x) := \begin{cases} 1 & (x \in E) \\ 0 & (x \in \Omega \backslash E) \end{cases}$$

で定める f は零写像ではないが $\|f\|_{\mathscr{L}^p} = 0$ となる.

同次性 任意に $\alpha \in \mathbb{C}$, $f \in \mathcal{L}^p(\mu)$ を取る. $1 \le p < \infty$ の場合は

$$\left(\int_X |\alpha f|^p \ d\mu\right)^{1/p} = \left(|\alpha|^p \int_X |f|^p \ d\mu\right)^{1/p} = |\alpha| \left(\int_X |f|^p \ d\mu\right)^{1/p}$$

により、 $p = \infty$ の場合は

$$\inf \left\{ r \in \mathbf{R} \mid \quad |\alpha f(x)| \le r \quad \mu\text{-a.e.} x \in X \right\} = |\alpha| \inf \left\{ r \in \mathbf{R} \mid \quad |f(x)| \le r \quad \mu\text{-a.e.} x \in X \right\}$$

により $\|\alpha f\|_{\varphi_p} = |\alpha| \|f\|_{\varphi_p}$ が成り立つ.

三角不等式 Minkowski の不等式より従う.

 \mathcal{L}^p はノルム空間ではないが、同値類でまとめることによりノルム空間となる.

可測関数全体の商集合 *ℱ/冤(C)*-可測関数全体の集合を

$$\mathcal{L}^{0}(X, \mathcal{F}, \mu) := \{ f : X \longrightarrow \mathbb{C} \mid f : \exists M \mathcal{F}/\mathcal{B}(\mathbb{C}) \}$$

とおく. $f,g \in \mathcal{L}^0(X,\mathcal{F},\mu)$ に対し

$$f \sim g \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad f = g \quad \mu\text{-a.e.}$$

により定める ~ は同値関係であり、 ~ による $\mathscr{L}^0(X,\mathscr{F},\mu)$ の商集合を $L^0(X,\mathscr{F},\mu)$ と表す。 **商集合における算法** $L^0(\mu)$ の元である関数類 (同値類) を [f] (f は関数類の代表) と表せば、 $L^0(\mu)$ は

$$[f] + [g] := [f + g], \quad \alpha[f] := [\alpha f], \quad ([f], [g] \in L^0(\mu), \ \alpha \in \mathbf{C}).$$

を線型演算として C 上の線形空間となる. また

$$[f][g] := [fg] \quad ([f], [g] \in L^0(\mu)).$$

を乗法として $L^0(\mu)$ は環となる. $L^0(\mu)$ の零元は零写像の関数類でありこれを [0] と書く. また単位元は恒等的に 1 を取る関数の関数類でありこれを [1] と書く. 減法は

$$[f] - [g] := [f] + (-[g]) = [f] + [-g] = [f - g]$$

により定める.

関数類の順序 $[f],[g] \in L^0(\mu)$ に対して次の関係 < (>) を定める:

$$[f] < [g] ([g] > [f]) \stackrel{\text{def}}{\Longleftrightarrow} f < g \quad \mu\text{-a.s.}$$

この定義は well-defined である. 実際任意の $f' \in [f]$, $g' \in [g]$ に対して

$$\{f' \ge g'\} \subset \{f \ne f'\} \cup \{f \ge g\} \cup \{g \ne g'\}$$

の右辺は零集合であるから

$$[f] < [g] \Leftrightarrow [f'] < [g']$$

が従う. < (>) または = であることを \le (\ge) と書くとき,任意の [f],[g],[h] \in $L^0(\mu)$ に対し,

• $[f] \leq [f]$ が成り立つ.

- $[f] \leq [g]$ かつ $[g] \leq [f]$ ならば [f] = [g] が成り立つ.
- $[f] \le [g], [g] \le [h]$ ならば $[f] \le [h]$ が成り立つ.

が満たされるから \leq は $L^0(\mu)$ における順序となる.

定義 A.11.5 (商空間におけるノルムの定義).

$$\|[f]\|_{L^p} := \|f\|_{\mathscr{L}^p} \quad (f \in \mathscr{L}^p(X, \mathscr{F}, \mu), \ 1 \le p \le \infty)$$

により定める $\|\cdot\|_{L^p}:L^0(X,\mathcal{F},\mu)\to\mathbf{R}$ は関数類の代表に依らずに値が確定する.そして

$$L^p(X,\mathcal{F},\mu) \coloneqq \left\{ \left[f \right] \in L^0(X,\mathcal{F},\mu) \mid \quad \left\| \left[f \right] \right\|_{L^p} < \infty \right\} \quad (1 \le p \le \infty)$$

として定める空間は $\|\cdot\|_{L^p}$ をノルムとしてノルム空間となる.

定理 A.11.6 (L^p は Banach 空間). ノルム空間 $L^p(X, \mathscr{F}, \mu)$ ($1 \le p \le \infty$) の任意の Cauchy 列 $([f_n])_{n=1}^\infty$ に対して ノルム収束極限 $[f] \in L^p(\mu)$ が存在する. また,このとき或る部分列 $([f_{n_k}])_{k=1}^\infty$ の代表 f_{n_k} は f に概収束する:

$$\lim_{k\to\infty} f_{n_k} = f, \quad \mu\text{-a.e.}$$

証明. 任意に Cauchy 列 $[f_n] \in L^p(\mu)$ $(n = 1, 2, 3, \dots)$ を取れば、或る $N_1 \in \mathbb{N}$ が存在して

$$||[f_n] - [f_m]||_{L^p} < \frac{1}{2} \quad (\forall n > m \ge N_1)$$

を満たす.ここで $m>N_1$ を一つ選び n_1 とおく.同様に $N_2>N_1$ を満たす $N_2\in \mathbf{N}$ が存在して

$$\|[f_n] - [f_m]\|_{L^p} < \frac{1}{2^2} \quad (\forall n > m \ge N_2)$$

を満たすから、 $m > N_2$ を一つ選び n_2 とおけば

$$\left\| \left[f_{n_1} \right] - \left[f_{n_2} \right] \right\|_{L^p} < \frac{1}{2}$$

が成り立つ. 同様の操作を繰り返して

$$\|[f_{n_k}] - [f_{n_{k+1}}]\|_{L^p} < \frac{1}{2^k} \quad (n_k < n_{k+1}, \ k = 1, 2, 3, \cdots)$$
 (A.69)

を満たす部分添数列 $(n_k)_{k=1}^{\infty}$ を構成する.

 $p = \infty$ の場合 $[f_{n_k}]$ の代表 f_{n_k} $(k = 1, 2, \cdots)$ に対して

$$A_{k} := \left\{ x \in X \mid |f_{n_{k}}(x)| > ||f_{n_{k}}||_{\mathscr{L}^{\infty}} \right\},$$

$$A^{k} := \left\{ x \in X \mid |f_{n_{k}}(x) - f_{n_{k+1}}(x)| > ||f_{n_{k}} - f_{n_{k+1}}||_{\mathscr{L}^{\infty}} \right\}$$

とおけば、補題 A.11.1 より $\mu(A_k) = \mu(A^k) = 0 (k = 1, 2, \cdots)$ が成り立つ.

$$A_{\circ} := \bigcup_{k=1}^{\infty} A_k, \quad A^{\circ} := \bigcup_{k=1}^{\infty} A^k, \quad A := A_{\circ} \cup A^{\circ}$$

として μ -零集合 A を定めて

$$\hat{f}_{n_k} := f_{n_k} \mathbb{1}_{X \setminus A} \quad (\forall k = 1, 2, \cdots)$$

とおけば各 \hat{f}_{n_k} は $\left[\hat{f}_{n_k}\right] = \left[f_{n_k}\right]$ を満たす有界可測関数であり、(A.69) より

$$\sup_{x \in X} |\hat{f}_{n_k}(x) - \hat{f}_{n_{k+1}}(x)| \le \|\hat{f}_{n_k} - \hat{f}_{n_{k+1}}\|_{\mathscr{L}^{\infty}} < \frac{1}{2^k} \quad (k = 1, 2, 3, \dots)$$

が成り立つ. このとき任意の $\epsilon>0$ に対し $1/2^N<\epsilon$ を満たす $N\in \mathbb{N}$ を取れば、 $\ell>k>N$ なら

$$\left| \hat{f}_{n_k}(x) - \hat{f}_{n_\ell}(x) \right| \le \sum_{j=k}^{\ell-1} \left| \hat{f}_{n_j}(x) - \hat{f}_{n_{j+1}}(x) \right| < \sum_{k>N} \frac{1}{2^k} = \frac{1}{2^N} < \epsilon \quad (\forall x \in X)$$

となるから、各点 $x \in X$ で $\left(\hat{f}_{n_k}(x)\right)_{k=1}^{\infty}$ は \mathbb{C} の Cauchy 列となり収束する.

$$\hat{f}(x) := \lim_{k \to \infty} \hat{f}_{n_k}(x) \quad (\forall x \in X)$$

として \hat{f} を定めれば、 \hat{f} は可測 $\mathscr{F}/\mathscr{B}(\mathbf{C})$ であり、且つ任意に $k \in \mathbf{N}$ を取れば

$$\sup_{x \in Y} |\hat{f}_{n_k}(x) - \hat{f}(x)| \le \frac{1}{2^{k-1}} \tag{A.70}$$

を満たす. 実際或る $y\in X$ で $\alpha\coloneqq |\hat{f}_{n_k}(y)-\hat{f}(y)|>1/2^{k-1}$ が成り立つと仮定すれば,

$$\left| \hat{f}_{n_k}(y) - \hat{f}_{n_\ell}(y) \right| \le \sum_{j=k}^{\ell-1} \sup_{x \in X} \left| \hat{f}_{n_j}(x) - \hat{f}_{n_{j+1}}(x) \right| < \sum_{j=k}^{\infty} \frac{1}{2^j} = \frac{1}{2^{k-1}} \quad (\forall \ell > k)$$

より

$$0<\alpha-\frac{1}{2^{k-1}}<\left|\hat{f}_{n_k}(y)-\hat{f}(y)\right|-\left|\hat{f}_{n_k}(y)-\hat{f}_{n_\ell}(y)\right|\leq \left|\hat{f}(y)-\hat{f}_{n_\ell}(y)\right|\quad (\forall \ell>k)$$

が従い各点収束に反する. 不等式 (A.70) により

$$\sup_{x \in X} |\hat{f}(x)| < \sup_{x \in X} |\hat{f}(x) - \hat{f}_{n_k}(x)| + \sup_{x \in X} |\hat{f}_{n_k}(x)| \le \frac{1}{2^{k-1}} + \|\hat{f}_{n_k}\|_{\mathscr{L}^{\infty}}$$

が成り立つから $[\hat{f}] \in L^{\infty}(\mu)$ が従い,

$$\left\| \left[f_{n_k} \right] - \left[\hat{f} \right] \right\|_{L^{\infty}} = \left\| \left[\hat{f}_{n_k} \right] - \left[\hat{f} \right] \right\|_{L^{\infty}} \le \sup_{x \in X} \left| \hat{f}_{n_k}(x) - \hat{f}(x) \right| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

により部分列 $\left(\left[f_{n_k}\right]\right)_{k=1}^\infty$ が $\left[\hat{f}\right]$ に収束するから元の Cauchy 列も $\left[\hat{f}\right]$ に収束する. $1\leq p<\infty$ の場合 $\left[f_{n_k}\right]$ の代表 $f_{n_k}\left(k=1,2,\cdots\right)$ は

$$f_{n_k}(x) = f_{n_1}(x) + \sum_{j=1}^k \left(f_{n_j}(x) - f_{n_{j-1}}(x) \right) \quad (\forall x \in X)$$

を満たし,これに対して

$$g_k(x) := |f_{n_1}(x)| + \sum_{j=1}^k |f_{n_j}(x) - f_{n_{j-1}}(x)| \quad (\forall x \in X, \ k = 1, 2, \cdots)$$

により単調非減少な可測関数列 $(g_k)_{k=1}^\infty$ を定めれば、Minkowski の不等式と (A.69) により

$$\|g_k\|_{\mathcal{L}^p} \le \|f_{n_1}\|_{\mathcal{L}^p} + \sum_{j=1}^k \|f_{n_j} - f_{n_{j-1}}\|_{\mathcal{L}^p} < \|f_{n_1}\|_{\mathcal{L}^p} + 1 < \infty \quad (k = 1, 2, \cdots)$$

が成り立つ. ここで

$$B_N := \bigcap_{k=1}^{\infty} \left\{ x \in X \mid g_k(x) \le N \right\}, \quad B := \bigcup_{N=1}^{\infty} B_N$$

とおけば $(g_k)_{k=1}^\infty$ は B 上で各点収束し $X \backslash B$ 上では発散するが, $X \backslash B$ は零集合である.実際

$$\int_{X} g_{k}^{p} d\mu = \int_{B} g_{k}^{p} d\mu + \int_{X \setminus B} g_{k}^{p} d\mu \le \left(\left\| f_{n_{1}} \right\|_{\mathcal{L}^{p}} + 1 \right)^{p}, \quad (k = 1, 2, \cdots)$$

が満たされているから、単調収束定理より

$$\int_{B} \lim_{k \to \infty} g_k^p d\mu + \int_{X \setminus B} \lim_{k \to \infty} g_k^p d\mu \le \left(\left\| f_{n_1} \right\|_{\mathcal{L}^p} + 1 \right)^p$$

が成り立ち $\mu(X \setminus B) = 0$ が従う. $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測関数 g, f を

$$g := \lim_{k \to \infty} g_k \mathbf{1}_B, \quad f := \lim_{k \to \infty} f_{n_k} \mathbf{1}_B$$

で定義すれば、 $|f| \leq g$ と g^p の可積分性により $[f] \in L^p(\mu)$ が成り立つ。また $|f_{n_k} - f|^p \leq 2^p g^p$ ($\forall k = 1, 2, \cdots$) が満たされているから、Lebesgue の収束定理により

$$\lim_{k \to \infty} \| [f_{n_k}] - [f] \|_{L^p}^p = \lim_{k \to \infty} \int_X |f_{n_k} - f|^p d\mu = 0$$

が従い、部分列の収束により元の Cauchy 列も [f] に収束する.

A.12 複素測度

定義 A.12.1 (複素測度). (X, \mathscr{F}) を可測空間とするとき, \mathscr{F} で定義される完全加法的な複素数値関数を (X, \mathscr{F}) 上の複素測度 (complex measure) という.

 λ を可測空間 (X, \mathcal{F}) の複素測度とする. 任意の全単射 $\sigma: \mathbf{N} \to \mathbf{N}$ に対し

$$(E :=) \sum_{i=1}^{\infty} E_i = \sum_{i=1}^{\infty} E_{\sigma(i)}$$

が成り立つから

$$\sum_{i=1}^{\infty} \lambda(E_i) = \lambda(E) = \sum_{i=1}^{\infty} \lambda(E_{\sigma(i)})$$

が従い、Riemann の級数定理より $\sum_{i=1}^{\infty} \lambda(E_i)$ は絶対収束する. ここで、

$$|\lambda(E)| \le \mu(E) \quad (\forall E \in \mathscr{F}) \tag{A.71}$$

を満たすような或る (X, \mathcal{F}) 上の測度 μ が存在すると考える. このとき μ は

$$\sum_{i=1}^{\infty} |\lambda(E_i)| \le \sum_{i=1}^{\infty} \mu(E_i) = \mu \left(\sum_{i=1}^{\infty} E_i\right)$$

を満たすから

$$\sup \left\{ \sum_{i=1}^{\infty} |\lambda(A_i)| \mid E = \sum_{i=1}^{\infty} A_i, \{A_i\}_{i=1}^{\infty} \subset \mathscr{F} \right\} \leq \mu(E), \quad (\forall E \in \mathscr{F})$$

が成立する. 実は,

$$|\lambda|(E) \coloneqq \sup \left\{ \sum_{i=1}^{\infty} |\lambda(A_i)| \mid E = \sum_{i=1}^{\infty} A_i, \{A_i\}_{i=1}^{\infty} \subset \mathscr{F} \right\}, \quad (\forall E \in \mathscr{F})$$
(A.72)

で定める $|\lambda|$ は (A.71) を満たす最小の有限測度となる (定理 A.12.3,定理 A.12.5).

定義 A.12.2 (総変動・総変動測度). 可測空間 (X, \mathcal{F}) 上の複素測度 λ に対し,(A.72) で定める $|\lambda|$ を λ の総変動測度 (total variation measure) といい, $|\lambda|(X)$ を λ の総変動 (total variation) という.

特に λ が正値有限測度である場合は $\lambda = |\lambda|$ が成り立つ。実際、任意の $E \in \mathcal{F}$ に対して

$$|\lambda|(E) = \sup \left\{ \sum_{i=1}^{\infty} |\lambda(A_i)| \mid E = \sum_{i=1}^{\infty} A_i, \{A_i\}_{i=1}^{\infty} \subset \mathscr{F} \right\} = \lambda(E)$$

が成立する.

定理 A.12.3 ($|\lambda|$ は測度). 可測空間 (X,\mathscr{F}) 上の複素測度 λ に対して,(A.72) で定める $|\lambda|$ は正値測度である.

証明. $|\lambda|$ の正値性は (A.72) より従うから, $|\lambda|$ の完全加法性を示す.いま,互いに素な集合列 $E_i \in \mathscr{F}$ $(i=1,2,\cdots)$ を取り $E:=\sum_{i=1}^\infty E_i$ とおく.このとき,任意の $\epsilon>0$ に対して E_i の或る分割 $(A_{ij})_{i=1}^\infty \subset \mathscr{F}$ が存在して

$$|\lambda|(E_i) \ge \sum_{i=1}^{\infty} |\lambda(A_{ij})| > |\lambda|(E_i) - \frac{\epsilon}{2^i}$$

を満たすから、 $E = \sum_{i,j=1}^{\infty} A_{ij}$ と併せて

$$|\lambda|(E) \ge \sum_{i,j=1}^{\infty} |\lambda(A_{ij})| \ge \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |\lambda(A_{ij})| > \sum_{i=1}^{\infty} |\lambda|(E_i) - \epsilon$$

となり、 $\epsilon > 0$ の任意性より

$$|\lambda|(E) \ge \sum_{j=1}^{\infty} |\lambda|(E_j)$$

が従う.一方で E の任意の分割 $(A_j)_{j=1}^\infty\subset \mathscr{F}$ に対し

$$\sum_{i=1}^{\infty} |\lambda(A_j)| = \sum_{i=1}^{\infty} \left| \sum_{j=1}^{\infty} \lambda(A_j \cap E_i) \right| \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |\lambda| (A_j \cap E_i) \le \sum_{j=1}^{\infty} |\lambda| (E_i)$$

が成り立つから、E の分割について上限を取って

$$|\lambda|(E) \le \sum_{i=1} |\lambda|(E_i)$$

を得る.

補題 A.12.4. z_1, \cdots, z_N を複素数とする.このとき、次を満たす或る部分集合 $S \subset \{1, \cdots, N\}$ が存在する:

$$\left| \sum_{k \in S} z_k \right| \ge \frac{1}{2\pi} \sum_{k=1}^N |z_k|.$$

証明. $i=\sqrt{-1}$ として、 $z_k=|z_k|\exp i\alpha_k$ $(-\pi \le \alpha_k < \pi, k=1,\cdots,N)$ を満たす α_1,\cdots,α_N を取り

$$S(\theta) := \{k \in \{1, \dots, N\} \mid \cos(\alpha_k - \theta) > 0\}, \quad (-\pi \le \theta \le \pi)$$

とおく. このとき, $\cos x + := 0 \lor \cos x \ (x \in \mathbf{R})$ とすれば

$$\left| \sum_{k \in S(\theta)} z_k \right| = |\exp -i\theta| \left| \sum_{k \in S(\theta)} z_k \right| = \left| \sum_{k \in S(\theta)} |z_k| \exp i(\alpha_k - \theta) \right|$$

$$\geq \operatorname{Re} \sum_{k \in S(\theta)} |z_k| \exp i(\alpha_k - \theta) = \sum_{k \in S(\theta)} |z_k| \cos(\alpha_k - \theta) = \sum_{k=1}^N |z_k| \cos(\alpha_k - \theta) + \sum_{k=1}^N |z_k| \cos(\alpha_k - \theta) = \sum_{k=1}^N |z_k|$$

が成り立ち、最右辺は θ に関して連続であるから最大値を達成する $\theta_0 \in [-\pi,\pi]$ が存在する. $S \coloneqq S(\theta_0)$ として

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \cos(\alpha_k - \theta_0) + \ge \sum_{k=1}^N |z_k| \cos(\alpha_k - \theta) + \quad (\forall \theta \in [-\pi, \pi])$$

となり, 積分して

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \frac{1}{2\pi} \int_{[-\pi,\pi]} \cos(\alpha_k - \theta) + d\theta$$
$$= \sum_{k=1}^N |z_k| \frac{1}{2\pi} \int_{[-\pi,\pi]} \cos\theta + d\theta = \frac{1}{2\pi} \sum_{k=1}^N |z_k|$$

が得られる.

定理 A.12.5 (複素測度の有界性). 可測空間 (X, \mathcal{F}) 上の複素測度 λ の総変動測度 $|\lambda|$ について次が成り立つ:

$$|\lambda|(X) < \infty$$
.

証明. $|\lambda|(X) = \infty$ と仮定して背理法により定理を導く.

第一段 或る $E \in \mathcal{F}$ に対し $|\lambda|(E) = \infty$ が成り立っているなら,

$$|\lambda(A)| > 1$$
, $|\lambda(B)| > 1$, $E = A + B$

を満たす $A, B \in \mathcal{F}$ が存在することを示す. いま, $t := 2\pi(1 + |\lambda(E)|)$ とおけば

$$\sum_{i=1}^{\infty} |\lambda(E_i)| > t$$

を満たす E の分割 $(E_i)_{i=1}^{\infty}$ が存在する. 従って或る $N \in \mathbb{N}$ に対し

$$\sum_{i=1}^{N} |\lambda(E_i)| > t$$

が成り立ち、補題 A.12.4 より

$$\left| \sum_{k \in S} \lambda(E_k) \right| \ge \frac{1}{2\pi} \sum_{k=1}^N |\lambda(E_k)| > \frac{t}{2\pi} > 1$$

を満たす $S \subset \{1,\cdots,N\}$ が取れる.ここで $A\coloneqq \sum_{k\in S} E_k$, $B\coloneqq E-A$ とおけば, $|\lambda(A)|>1$ かつ

$$|\lambda(B)| = |\lambda(E) - \lambda(A)| \ge |\lambda(A)| - |\lambda(E)| > \frac{t}{2\pi} - |\lambda(E)| = 1$$

が成り立つ. また,

$$|\lambda|(E) = |\lambda|(A) + |\lambda|(B)$$

より $|\lambda|(A)$, $|\lambda|(B)$ の少なくとも一方は ∞ となる.

第二段 いま, $|\lambda|(X) = \infty$ と仮定すると, 前段の結果より

$$|\lambda|(B_1) = \infty$$
, $|\lambda(A_1)| > 1$, $|\lambda(B_1)| > 1$, $X = A_1 + B_1$

を満たす $A_1, B_1 \in \mathcal{F}$ が存在する. 同様に B_1 に対しても

$$|\lambda|(B_2) = \infty$$
, $|\lambda(A_2)| > 1$, $|\lambda(B_2)| > 1$, $B_1 = A_2 + B_2$

を満たす $A_2, B_2 \in \mathcal{F}$ が存在する.繰り返せば $|\lambda(A_j)| > 1$ $(j=1,2,\cdots)$ を満たす互いに素な集合列 $(A_j)_{j=1}^\infty$ が構成され,このとき $\sum_{j=1}^\infty |\lambda(A_j)| = \infty$ となる.一方で Riemann の級数定理より $\sum_{j=1}^\infty |\lambda(A_j)| < \infty$ が成り立つから矛盾が生じ, $|\lambda|(X) < \infty$ が出る.

定理 A.12.6 (総変動測度は有限分割で表現できる). 可測空間 (X, \mathscr{F}) 上の複素測度 λ に対して次が成り立つ:

$$|\lambda|(E) = \sup \left\{ \sum_{i=1}^{n} |\lambda(A_i)| \mid E = \sum_{i=1}^{n} A_i, \{A_i\}_{i=1}^{n} \subset \mathscr{F}, n = 1, 2, \cdots \right\}, \quad (\forall E \in \mathscr{F}).$$

証明. 任意の $E \in \mathcal{F}$ で、 $E = \sum_{i=1}^n A_i$ に対し $A_{i+1} = A_{i+2} = \cdots = \emptyset$ とすれば $E = \sum_{i=1}^\infty A_i$ となるから

$$|\lambda|(E) \ge \sup \left\{ \sum_{i=1}^{n} |\lambda(A_i)| \mid E = \sum_{i=1}^{n} A_i, \{A_i\}_{i=1}^{n} \subset \mathcal{F}, n = 1, 2, \cdots \right\}$$
 (A.73)

が従う. 一方で $|\lambda|(E)>0$ の場合, $|\lambda|(E)>\alpha>0$ を満たす α を任意に取れば

$$|\lambda|(E) \ge \sum_{i=1}^{\infty} |\lambda(A_i)| > \alpha, \quad E = \sum_{i=1}^{\infty} A_i$$

を満たす $\{A_i\}_{i=1}^\infty\subset \mathcal{F}$ が存在し、このとき $B_n\coloneqq \sum_{i=n}^\infty A_i$ とおけば

$$0 \le \sum_{i=n}^{\infty} |\lambda(A_i)| - |\lambda(B_n)| \le \sum_{i=n}^{\infty} |\lambda(A_i)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

となるから、或る $n \ge 1$ で

$$|\lambda|(E) \ge \sum_{i=1}^{\infty} |\lambda(A_i)| \ge |\lambda(A_1)| + \dots + |\lambda(A_{n-1})| + |\lambda(B_n)| > \alpha$$

が満たされる. $E = A_1 + \cdots + A_{n-1} + B_n$ であるから, (A.73) と併せて

$$|\lambda|(E) = \sup \left\{ \sum_{i=1}^{n} |\lambda(A_i)| \mid E = \sum_{i=1}^{n} A_i, \{A_i\}_{i=1}^{n} \subset \mathscr{F}, n = 1, 2, \cdots \right\}$$

が得られる. $|\lambda|(E) = 0$ なら (A.73) で等号成立となる.

定理 A.12.7 (総変動ノルム). 可測空間 (X, \mathscr{F}) 上の複素測度の全体を $CM(X, \mathscr{F})$ と書くとき,

$$(\alpha\lambda+\beta\mu)(E):=\alpha\lambda(E)+\beta\mu(E),\quad (\lambda,\mu\in CM(X,\mathcal{F}),\;\alpha,\beta\in\mathbf{C},\;E\in\mathcal{F})$$

を線型演算として $CM(X, \mathcal{F})$ は線形空間となり、また

$$\|\lambda\|_{TV} := |\lambda|(X) \quad (\lambda \in CM(X, \mathscr{F}))$$

により $CM(X, \mathcal{F})$ にノルム $\|\cdot\|_{TV}$ が定まる. この $\|\cdot\|_{TV}$ を総変動ノルムという.

証明. $\|\cdot\|_{TV}$ がノルムであることを示す.

第一段 $\lambda = 0$ なら $\|\lambda\|_{TV} = |\lambda|(X) = 0$ となる. また $|\lambda(E)| \le |\lambda|(E) \le \|\lambda\|_{TV}$ より $\|\lambda\|_{TV} = 0$ なら $\lambda = 0$ が 従う.

第二段 任意の $\lambda \in CM(X, \mathcal{F})$ と $c \in \mathbb{C}$ に対し

$$\parallel c\lambda \parallel_{TV} = \sup \sum_i |(c\lambda)(E_i)| = \sup \sum_i |c\lambda(E_i)| = |c| \sup \sum_i |\lambda(E_i)| = |c| \parallel \lambda \parallel_{TV}$$

が成り立ち同次性が得られる.

第三段 $\lambda, \mu \in CM(X, \mathscr{F})$ を任意に取る. このとき、X の任意の分割 $X = \sum_{i=1}^{\infty} E_i \ (E_i \in \mathscr{F})$ に対して

$$\sum_{i=1}^{\infty}\left|(\lambda+\mu)(E_i)\right| = \sum_{i=1}^{\infty}\left|\lambda(E_i) + \mu(E_i)\right| \leq \sum_{i=1}^{\infty}\left|\lambda(E_i)\right| + \sum_{i=1}^{\infty}\left|\mu(E_i)\right| \leq \left\|\lambda\right\|_{TV} + \left\|\mu\right\|_{TV}$$

が成り立つから $\|\lambda + \mu\|_{TV} \le \|\lambda\|_{TV} + \|\mu\|_{TV}$ が従う.

可測空間 (X, \mathcal{F}) の上の完全加法的な \mathbf{R} -値関数を符号付き測度 (signed measure) という.

定義 A.12.8 (正変動と負変動・Jordan の分解). (X, \mathscr{F}) を可測空間とする. (X, \mathscr{F}) 上の符号付き測度 μ に対し

$$\mu^+\coloneqq\frac{1}{2}(|\mu|+\mu),\quad \mu^-\coloneqq\frac{1}{2}(|\mu|-\mu)$$

として正値有限測度 μ^+ , μ^- を定める. μ^+ (μ^-) を μ の正 (負) 変動 (positive (negative) variation) と呼び,

$$\mu = \mu^+ - \mu^-$$

を符号付き測度 μ の Jordan 分解 (Jordan decomposition) という. 同時に $|\mu| = \mu^+ + \mu^-$ も成り立つ.

定義 A.12.9 (絶対連続・特異). (X,\mathscr{F}) を可測空間, μ を \mathscr{F} 上の正値測度, $\lambda,\lambda_1,\lambda_2$ を \mathscr{F} 上の任意の測度とする.

• $\mu(E)=0$ ならば $\lambda(E)=0$ となるとき, λ は μ に関して絶対連続である (absolutely continuous) といい

$$\lambda \ll \mu$$

と書く.

或る A ∈ ℱ が存在して

$$\lambda(E) = \lambda(A \cap E), \quad (\forall E \in \mathscr{F})$$

が成り立つとき、 λ は A に集中している (concentrated on A) という. λ_1 が A_1 に、 λ_2 が A_2 に集中し、かつ $A_1 \cap A_2 = \emptyset$ であるとき、 λ_1, λ_2 は互いに特異である (mutually singular) といい

$$\lambda_1 \perp \lambda_2$$

と書く.

定理 A.12.10 (絶対連続性の同値条件). λ , μ をそれぞれ可測空間 (X, \mathscr{F}) 上の複素測度,正値測度とするとき,次は同値である:

- (1) $\lambda \ll \mu$,
- (2) $|\lambda| \ll \mu$
- (3) 任意の $\epsilon > 0$ に対し或る $\delta > 0$ が存在して $\mu(E) < \delta$ なら $|\lambda|(E) < \epsilon$ となる.

証明.

第一段 $(1) \Longleftrightarrow (2)$ を示す。任意の $E \in \mathscr{F}$ に対し $|\lambda(E)| \leq |\lambda|(E)$ より $(2) \Longrightarrow (1)$ が従う。また $\lambda \ll \mu$ のとき, $E \in \mathscr{F}$ の任意の分割 $E = \sum_{i=1}^{\infty} A_i$ に対し $\mu(E) = 0$ なら $\lambda(A_i) = 0$ ($\forall i \geq 1$) となり $(1) \Longrightarrow (2)$ が従う。

第二段 $(2) \Longleftrightarrow (3)$ を示す. 実際 (3) が満たされているとき, $\mu(E) = 0$ なら任意の $\delta > 0$ に対し $\mu(E) < \delta$ となるから $|\lambda|(E) < \epsilon$ ($\forall \epsilon > 0$) となり $|\lambda|(E) = 0$ が出る. 逆に (3) が満たされていないとき, 或る $\epsilon > 0$ に対して

$$\mu(E_n) < \frac{1}{2^{n+1}}, \quad |\lambda|(E_n) \ge \epsilon, \quad (n = 1, 2, \cdots)$$

を満たす $\{E_n\}_{n=1}^{\infty} \subset \mathcal{F}$ が存在する. このとき

$$A_n := \bigcup_{i=n}^{\infty} E_i, \quad A := \bigcap_{n=1}^{\infty} A_n$$

とおけば

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) \le \lim_{n \to \infty} \frac{1}{2^n} = 0$$

かつ

$$|\lambda|(A) = \lim_{n \to \infty} |\lambda|(A_n) \ge \lim_{n \to \infty} |\lambda|(E_n) \ge \epsilon$$

が成り立ち、対偶を取れば $(2) \Longrightarrow (3)$ が従う.

補題 A.12.11. (X, \mathcal{F}, μ) を σ -有限測度空間とするとき,0 < w < 1 を満たす可積分関数 w が存在する.

証明. $\mu(X) = 0$ なら w = 1/2 とすればよい. $\mu(X) > 0$ の場合, σ -有限の仮定より

$$0 < \mu(X_n) < \infty$$
, $(\forall n \ge 1)$, $X = \bigcup_{n=1}^{\infty} X_n$

を満たす $\{X_n\}_{n=1}^{\infty} \subset \mathcal{F}$ が存在する. ここで

$$w_n(x) := \begin{cases} \frac{1}{2^n \left(1 + \mu(X_n)\right)}, & x \in X_n, \\ 0, & x \in X \backslash X_n, \end{cases} \quad n = 1, 2, \cdots$$

に対して

$$w \coloneqq \sum_{n=1}^{\infty} w_n$$

と定めれば、任意の $x \in X$ は或る X_n に属するから

$$0 < w_n(x) \le w(x)$$

が成り立ち, かつ

$$w(x) = w_1(x) + \sum_{n=2}^{\infty} w_n(x) \le \frac{1}{2(1 + \mu(X_1))} + \frac{1}{2} < 1, \quad (\forall x \in X)$$

が満たされる. また単調収束定理より

$$\int_{X} w \ d\mu \le \sum_{n=1}^{\infty} \int_{X} w_n \ d\mu \le \sum_{n=1}^{\infty} \frac{\mu(X_n)}{2^n \left(1 + \mu(X_n)\right)} \le 1$$

となりwの可積分性が出る.

定理 A.12.12 (Lebesgue-Radon-Nikodym). (X, \mathscr{F}) を可測空間、 λ を (X, \mathscr{F}) 上の複素測度、 μ を (X, \mathscr{F}) 上の σ -有限正値測度 $(\mu(X) > 0)$ とするとき、以下が成立する:

Lebesgue 分解 λ は μ に関して絶対連続な λ_a 及び μ と互いに特異な λ_s に一意に分解される:

$$\lambda = \lambda_a + \lambda_s$$
, $\lambda_a \ll \mu$, $\lambda_s \perp \mu$.

密度関数の存在 λ_a に対し或る $g \in L^1(\mu) = L^1(X, \mathcal{F}, \mu)$ が唯一つ存在して次を満たす:

$$\lambda_a(E) = \int_E g \ d\mu, \quad (\forall E \in \mathscr{F}).$$

証明.

第一段 Lebesgue の分解の一意性を示す. $\lambda_a' \ll \mu \ \ \lambda_s' \perp \mu$ により

$$\lambda_a + \lambda_s = \lambda_a' + \lambda_s'$$

が成り立つとき,

$$\Lambda := \lambda_a - \lambda'_a = \lambda'_s - \lambda_s, \quad \Lambda \ll \mu, \quad \Lambda \perp \mu$$

となり $\Lambda = 0$ が従い分解の一意性が出る.

第二段 密度関数の一意性を示す. 実際, 可積分関数 f に対して

$$\int_E f \ d\mu = 0, \quad (\forall E \in \mathcal{F})$$

が成り立つとき、定理 A.8.9 より f = 0, μ -a.e. が成り立つ.

第三段 Lebesgue の分解と密度関数の存在を示す.

定理 A.12.13 (Vitali-Hahn-Saks). $(\lambda_n)_{n=1}^\infty$ を可測空間 (X,\mathscr{F}) の複素測度の列とするとき,任意の $E\in\mathscr{F}$ で

$$\lambda(E) := \lim_{n \to \infty} \lambda_n(E)$$

が確定すれば λ もまた (X, \mathscr{F}) 上の複素測度となる. また $(CM(X, \mathscr{F}), \|\cdot\|_{TV})$ は Banach 空間である.

証明. $\lambda_n \equiv 0 \ (\forall n \geq 1)$ なら $\lambda \equiv 0$ で複素測度となるから、或る $n \in E \in \mathcal{F}$ に対し $\lambda_n(E) \neq 0$ と仮定する.

第一段 (X, \mathcal{F}) 上の有限測度を

$$\mu := \sum_{n=1}^{\infty} \frac{1}{2^n (1 + \| \lambda_n \|_{TV})} |\lambda_n|$$

により定めるとき、任意の $\epsilon > 0$ に対して或る $\delta > 0$ が存在し

$$\mu(E) < \delta \implies |\lambda_n|(E) < \epsilon \ (\forall n \ge 1)$$
 (A.74)

となることを示す. 任意の $n \ge 1$ に対して $\lambda_n \ll \mu$ であるから Lebesgue-Radon-Nikodym の定理より

$$\lambda_n(E) = \int_E g_n \ d\mu, \quad (\forall E \in \mathscr{F})$$

を満たす $g_n \in L^1(\mu)$ が存在し、このとき

$$\left| \int_{E} g_n \ d\mu \right| \le |\lambda_n|(E) \le 2^n (1 + ||\lambda_n||_{TV}) \mu(E), \quad (\forall E \in \mathscr{F})$$

が成立するから定理 A.8.9 より

$$\|g_n\|_{L^{\infty}(u)} \le 2^n (1 + \|\lambda_n\|_{TV})$$

が従う. いま, 任意の $E \in \mathcal{F}$ に対し $f_E := [1_E]$ として

$$L := \{ f_E \mid E \in \mathscr{F} \}$$

とおけば、 $\mu(X) < \infty$ より $L \subset L^1(\mu)$ となり、また

$$d(f_E, f_{E'}) \coloneqq \left\| f_E - f_{E'} \right\|_{L^1(\mu)}$$

で定める距離 d により L は完備距離空間となる.実際,定理 A.11.6 より L の任意の Cauchy 列 $\left(f_{E_n}\right)_{n=1}^{\infty}$ に対し極限 $f \in L^1(\mu)$ が存在し,或る部分列 $\left(\mathbf{1}_{E_{n_k}}\right)_{k=1}^{\infty}$ は或る μ -零集合 A を除いて各点収束するから

$$\varphi \coloneqq \lim_{k \to \infty} \mathbf{1}_{E_{n_k}} \mathbf{1}_{X \setminus A}$$

に対し $E \coloneqq \{\varphi = 1\}$ とおけば $f = [\mathbb{1}_E] \in L$ が満たされる. ここで

$$\Phi_n: L\ni f_E\longmapsto \int_X |g_n|f_E\,d\mu$$

とおけば、任意の $E \in \mathcal{F}$ に対し $|\lambda_n|(E) \leq \Phi_n(f_E)$ が満たされ、また Hölder の不等式より

$$\left| \Phi_n(f_E) - \Phi_n(f_{E'}) \right| \le \int_X |g_n| |f_E - f_{E'}| \, d\mu \le \|g_n\|_{L^{\infty}(\mu)} \, d(f_E, f_{E'}), \quad (\forall f_E, f_{E'} \in L)$$

がとなるから Φ_n は L 上の連続写像である. いま $\epsilon > 0$ を任意に取れば, $\eta \coloneqq \epsilon/4$ に対して

$$F_n(\eta) := \left\{ f_E \in L \mid \sup_{k \ge 1} \left| \Phi_n(f_E) - \Phi_{n+k}(f_E) \right| \le \eta \right\} = \bigcap_{k \ge 1} \left\{ f_E \in L \mid \left| \Phi_n(f_E) - \Phi_{n+k}(f_E) \right| \le \eta \right\}$$

により定める $F_n(\delta)$ は閉集合であり、任意の $f_E \in L$ は

$$\sup_{k\geq 1} \left| \Phi_n(f_E) - \Phi_{n+k}(f_E) \right| \leq \left| \Phi_n(f_E) - \lambda(E) \right| + \sup_{k\geq 1} \left| \lambda(E) - \Phi_{n+k}(f_E) \right|$$
$$= \left| \lambda_n(E) - \lambda(E) \right| + \sup_{k\geq 1} \left| \lambda(E) - \lambda_{n+k}(E) \right|$$
$$\longrightarrow 0 \quad (n \longrightarrow \infty)$$

を満たすから

$$L = \bigcup_{n=1}^{\infty} F_n(\eta)$$

が成り立ち,Baire の範疇定理 (P. 250) より或る $F_{n_0}(\eta)$ は内点 f_{E_0} を持つ.つまり或る $\delta_0>0$ が存在して

$$d(f_{E_0}, f_E) < \delta_0 \quad \Rightarrow \quad \sup_{k>1} \left| \Phi_n(f_E) - \Phi_{n+k}(f_E) \right| \le \eta$$

となる. $\mu(E) < \delta_0$ ならば,

$$E_1 := E \cup E_0$$
, $E_2 := E_0 \setminus (E \cap E_0)$

とすれば
$$f_E = [\mathbb{1}_E] = [\mathbb{1}_{E_1} - \mathbb{1}_{E_2}] = [\mathbb{1}_{E_1}] - [\mathbb{1}_{E_2}] = f_{E_1} - f_{E_2}$$
 かつ

$$d(f_{E_0}, f_{E_1}) = \mu(E \setminus E_0) < \delta_0, \quad d(f_{E_0}, f_{E_2}) = \mu(E \cap E_0) < \delta_0$$

が満たされるから, $n > n_0$ なら

$$\begin{aligned} \left| \Phi_{n}(f_{E}) \right| &\leq \left| \Phi_{n_{0}}(f_{E}) \right| + \left| \Phi_{n}(f_{E}) - \Phi_{n_{0}}(f_{E}) \right| \\ &\leq \left| \Phi_{n_{0}}(f_{E}) \right| + \left| \Phi_{n}(f_{E_{1}}) - \Phi_{n_{0}}(f_{E_{1}}) \right| + \left| \Phi_{n}(f_{E_{2}}) - \Phi_{n_{0}}(f_{E_{2}}) \right| \\ &\leq \left| \Phi_{n_{0}}(f_{E}) \right| + 2\eta \end{aligned}$$

が従い、一方で $n=1,2,\cdots,n_0$ に対しては、定理 A.8.10 より或る $\delta_n>0$ が存在して

$$\mu(E) < \delta_n \Longrightarrow \Phi_n(f_E) = \int_E |g_n| \ d\mu < \frac{\epsilon}{2}$$

が成立し、 $\delta \coloneqq \min \{\delta_0, \delta_1, \cdots, \delta_{n_0}\}$ として

$$\mu(E) < \delta_n \Longrightarrow |\lambda_n|(E) \le \Phi_n(f_E) < \epsilon, \ (\forall n \ge 1)$$

が得られる.

第二段 λ の可算加法性を示す. 任意の互いに素な $A, B \in \mathcal{F}$ を取れば

$$\lambda(A+B) = \lim_{n \to \infty} \lambda_n(A+B) = \lim_{n \to \infty} \lambda_n(A) + \lim_{n \to \infty} \lambda_n(B) = \lambda(A) + \lambda(B)$$

となるから λ は有限加法的であり、このとき任意の互いに素な列 $\{E_i\}_{i=1}^\infty\subset \mathscr{F}$ に対し

$$\lambda \left(\sum_{i=1}^{\infty} E_i \right) = \lambda \left(\sum_{i=1}^{N} E_i \right) + \lambda \left(\sum_{i=N+1}^{\infty} E_i \right) = \sum_{i=1}^{N} \lambda(E_i) + \lambda \left(\sum_{i=N+1}^{\infty} E_i \right)$$

が任意の $N \ge 1$ について満たされるが,

$$\mu\left(\sum_{i=N+1}^{\infty} E_i\right) \longrightarrow 0 \quad (N \longrightarrow \infty)$$

と (A.74) より

$$\lambda \left(\sum_{i=N+1}^{\infty} E_i \right) \longrightarrow 0 \quad (N \longrightarrow \infty)$$

が従い

$$\lambda\left(\sum_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \lambda(E_i)$$

が得られる. よって λ は複素測度である.

第三段 $(\nu_n)_{n=1}^{\infty}$ を $CM(X, \mathscr{F})$ の Cauchy 列とすれば任意の $E \in \mathscr{F}$ で

$$|\nu_n(E) - \nu_m(E)| \le ||\nu_n - \nu_m||_{TV} \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

となるから、 \mathbf{C} の完備性より $\nu \coloneqq \lim_{n\to\infty} \nu_n$ で複素測度 ν が定まる. このとき

定理 A.12.14 (L^p の共役空間). $1 \le p < \infty$, q を p の共役指数とし、また (X, \mathscr{F} , μ) を σ -有限な正値測度空間と するとき、 $g \in L^q(\mu)$ に対して定める次の写像

$$\Phi_g: L^p(\mu) \ni f \longmapsto \int_X fg \ d\mu \tag{A.75}$$

は有界線形作用素となる. また

$$\Phi: L^q(\mu) \ni g \longmapsto \Phi_g \in (L^p(\mu))^*$$

で定める Φ は $\left(L^p(\mu)\right)^*$ から $L^q(\mu)$ への線型同型であり、次の意味で等長である:

$$\|g\|_{L^{q}(\mu)} = \|\Phi_g\|_{(L^{p}(\mu))^*}.$$
 (A.76)

 $p=\infty$ の場合, $\mu(X)<\infty$ かつ $\varphi\in \left(L^\infty(\mu)\right)^*$ に対し $\mathscr{F}\ni A\longmapsto \varphi(\mathbb{1}_A)$ が可算加法的ならば, φ に対し或る $g\in L^1(\mu)$ が唯一つ存在して $\varphi=\Phi_g$ と (A.76) を満たす.

証明.

第一段 Φ_g が (A.75) で与えられていれば、Hölder の不等式より

$$|\Phi_g(f)| \le ||g||_{L^q(\mu)} ||f||_{L^p(\mu)}$$

が成り立つから

$$\|\Phi_g\|_{(L^p(\mu))^*} \le \|g\|_{L^q(\mu)} \tag{A.77}$$

が従う. よって $\Phi_g \in (L^p(\mu))^*$ となる.

第二段 $\varphi \in (L^p(\mu))^*$ に対して $\Phi(g) = \varphi$ を満たす $g \in L^q(\mu)$ が存在するとき,g が φ に対して一意に決まることを示す. σ -有限の仮定より

$$\mu(X_n) < \infty, \ (\forall n \ge 1); \quad X = \bigcup_{n=1}^{\infty} X_n$$
 (A.78)

を満たす $\{X_n\}_{n=1}^{\infty} \subset \mathcal{F}$ が存在する. いま, $g,g' \in L^q(\mu)$ に対して

$$\int_X fg \ d\mu = \int_X fg' \ d\mu, \quad (\forall f \in L^p(\mu))$$

が成り立っているとすれば、任意の $E \in \mathcal{F}$ に対して $\mathbb{1}_{E \cap X_n} \in L^p(\mu)$ であるから

$$\int_{E\cap X_n} g - g' \, d\mu = 0, \quad (\forall n \ge 1)$$

となり、Lebesgue の収束定理より

$$\int_{F} g - g' \, d\mu = 0$$

が従い $L^q(\mu)$ で g = g' が成立する.

第三段 $1 \leq p < \infty$ の場合, $\mu(X) < \infty$ なら任意の $\varphi \in \left(L^p(\mu)\right)^*$ に対して $\Phi(g) = \varphi$ を満たす $g \in L^q(\mu)$ が存在することを示す.

$$\lambda(E) \coloneqq \varphi(\mathbb{1}_E) \tag{A.79}$$

により λ を定めれば

$$\lambda(A+B) = \varphi(\mathbb{1}_{A+B}) = \varphi(\mathbb{1}_A + \mathbb{1}_B) = \varphi(\mathbb{1}_A) + \varphi(\mathbb{1}_B) = \lambda(A) + \lambda(B)$$

となり λ の加法性が出る. また任意の互いに素な $\{E_n\}_{n=1}^{\infty} \in \mathcal{F}$ に対して

$$A_k := \sum_{n=1}^k E_n, \quad A := \sum_{n=1}^\infty E_n$$

とおけば

$$\left| \lambda(A) - \sum_{n=1}^{k} \lambda(E_n) \right| = |\lambda(A) - \lambda(A_k)| = \left| \varphi(\mathbb{1}_A - \mathbb{1}_{A_k}) \right|$$

$$\leq \left\| \varphi \right\|_{(L^p(\mu))^*} \left\| \mathbb{1}_A - \mathbb{1}_{A_k} \right\|_{L^p(\mu)} = \left\| \varphi \right\|_{(L^p(\mu))^*} \mu(A - A_k)^{1/p} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つから λ は複素測度である.また

$$|\lambda(E)| \le \|\varphi\|_{(L^p(\mu))^*} \mu(E)^{1/p}$$

より $\lambda \ll \mu$ となるから、Lebesgue-Radon-Nikodym の定理より

$$\varphi(\mathbb{1}_E) = \lambda(E) = \int_{\mathbb{Y}} \mathbb{1}_E g \ d\mu, \quad (\forall E \in \mathscr{F})$$
(A.80)

を満たす $g \in L^1(\mu)$ が存在する. φ の線型性より任意の単関数の同値類 f に対して

$$\varphi(f) = \int_{X} f g \ d\mu \tag{A.81}$$

が成立し、特に $f \in L^{\infty}(\mu)$ に対しては

$$B := \left\{ x \in X \mid |f(x)| > \left\| f \right\|_{L^{\infty}(\mu)} \right\}$$

とおけば $\mu(B)=0$ となり、有界可測関数 $f\mathbf{1}_{X\setminus B}$ を一様に近似する単関数列 $(f_n)_{n=1}^\infty$ が存在して

$$\left| \varphi(f) - \int_{X} f g \ d\mu \right| \leq \left| \varphi(f) - \varphi(f_{n}) \right| + \left| \int_{X} f_{n} g \ d\mu - \int_{X} f g \ d\mu \right|$$

$$\leq \left\| \varphi \right\|_{\left(L^{p}(\mu)\right)^{*}} \left\| f - f_{n} \right\|_{L^{p}(\mu)} + \int_{X} \left| f_{n} - f \right| \left| g \right| \ d\mu$$

$$\longrightarrow 0 \quad (n \longrightarrow \infty)$$

となるから (A.81) が成立する.

第四段 $p=\infty$, $\mu(X)<\infty$ の場合, $\varphi\in \left(L^p(\mu)\right)^*$ に対して $\mathscr{F}\ni A\longmapsto \varphi(1\!\!1_A)$ が可算加法的ならば (A.79) で定める λ は複素測度となり,前段と同じ理由で (A.80) を満たす $g\in L^1(\mu)$ が存在し

$$\varphi(f) = \int_{Y} f g \ d\mu, \quad (\forall f \in L^{\infty}(\mu))$$

が成立する. すなわち $\varphi=\Phi_g$ であり、このとき $f:=\mathbf{1}_{\{g\neq 0\}}\overline{g}/g\in L^\infty(\mu)$ に対して

$$\left\|\,g\,\right\|_{L^1(\mu)} = \int_X fg\;d\mu = \varphi(f) \le \left\|\,\varphi\,\right\|_{\left(L^\infty(\mu)\right)^*}$$

となるから、(A.77) と併せて (A.76) が満たされる. 以降は $p < \infty$ とする.

第五段 $g \in L^q(\mu)$ であることを示す。p=1 の場合,任意の $E \in \mathcal{F}$ に対して $f=1\!\!1_E$ とすれば,(A.81) より

$$\left| \int_{E} g \ d\mu \right| = \left| \varphi(\mathbf{1}_{E}) \right| \le \left\| \varphi \right\|_{\left(L^{p}(\mu)\right)^{*}} \mu(E)$$

が成立し

$$\|g\|_{L^{q}(\mu)} \le \|\varphi\|_{(L^{p}(\mu))^{*}}$$
 (A.82)

が従う. $1 の場合は <math>\alpha := \mathbb{1}_{\{g \neq 0\}} \overline{g}/g$ と

$$E_n := \{ x \in X \mid |g(x)| \le n \}, (n = 1, 2, \cdots)$$

に対して $f := \mathbf{1}_{E_n} |g|^{q-1} \alpha$ とおけば,

$$fg = 1_{E_n} |g|^q = |f|^p$$

が成り立ち $|f|^p \in L^\infty(\mu)$ となるから (A.81) より

$$\int_{X} \mathbb{1}_{E_{n}} |g|^{q} d\mu = \int_{X} f g d\mu = \varphi(f) \leq \|\varphi\|_{\left(L^{p}(\mu)\right)^{*}} \|f\|_{L^{p}(\mu)} = \|\varphi\|_{\left(L^{p}(\mu)\right)^{*}} \left\{ \int_{X} \mathbb{1}_{E_{n}} |g|^{q} d\mu \right\}^{1/p}$$

が従い

$$\left\{\int_X 1_{E_n} |g|^q d\mu\right\}^{1/q} \le \|\varphi\|_{\left(L^p(\mu)\right)^*}$$

が得られ, 単調収束定理より

$$\|g\|_{L^{q}(\mu)} \le \|\varphi\|_{(L^{p}(\mu))^{*}}$$
 (A.83)

が出る.

第六段 任意の $f \in L^p(\mu)$ に対して、単関数近似列 $(f_n)_{n=1}^\infty$ は (A.81) を満たすから、Hölder の不等式と Lebesgue の 収束定理より

$$\left| \varphi(f) - \int_{X} f g \ d\mu \right| \leq \left| \varphi(f) - \varphi(f_{n}) \right| + \left| \int_{X} f_{n} g \ d\mu - \int_{X} f g \ d\mu \right|$$

$$\leq \left\| \varphi \right\|_{\left(L^{p}(\mu)\right)^{*}} \left\| f - f_{n} \right\|_{L^{p}(\mu)} + \left\| f - f_{n} \right\|_{L^{p}(\mu)} \left\| g \right\|_{L^{q}(\mu)}$$

$$\longrightarrow 0 \quad (n \longrightarrow \infty)$$

となり

$$\varphi = \Phi(g)$$

が成り立つ. また, このとき (A.77) と (A.82) 或は (A.83) より

$$\|g\|_{L^q(\mu)} = \|\varphi\|_{(L^p(\mu))^*}$$

が満たされる.

第七段 $\mu(X) = \infty$ の場合,補題 A.12.11 の関数 w を用いて

$$\tilde{\mu}(E) := \int_{E} w \ d\mu, \quad (\forall E \in \mathscr{F})$$

により有限測度 $\tilde{\mu}$ を定める. このとき任意の $f \in L^p(\mu)$ に対して

$$F \coloneqq w^{-1/p} f$$

とおけば

$$\int_{X} |F|^{p} d\tilde{\mu} = \int_{X} |F|^{p} w d\mu = \int_{X} |f|^{p} d\mu$$
 (A.84)

が成立し,

$$L^p \ni f \longmapsto w^{-1/p} f \in L^p(\tilde{\mu})$$

は等長な線型同型となる.ここで任意の $\varphi \in \left(L^p(\mu)\right)^*$ に対して

$$\Psi(F) := \varphi\left(w^{1/p}F\right), \quad (\forall F \in L^p(\tilde{\mu}))$$

で線形作用素 Ψ を定めれば

$$|\Psi(F)| = \left| \varphi\left(w^{1/p}F\right) \right| \leq \left\| \varphi \right\|_{\left(L^p(\mu)\right)^*} \left\| w^{1/p}F \right\|_{L^p(\mu)} = \left\| \varphi \right\|_{\left(L^p(\mu)\right)^*} \left\| F \right\|_{L^p(\tilde{\mu})}$$

より $\Psi \in \left(L^p(\tilde{\mu})\right)^*$ が満たされ、かつ任意の $f \in L^p(\mu)$ に対して

$$\left|\varphi(f)\right| = \left|\Psi\left(w^{-1/p}f\right)\right| \leq \left\|\Psi\right\|_{\left(L^p(\mu)\right)^*} \left\|w^{-1/p}f\right\|_{L^p(\tilde{\mu})} = \left\|\Psi\right\|_{\left(L^p(\tilde{\mu})\right)^*} \left\|f\right\|_{L^p(\mu)}$$

も成り立ち

$$\|\varphi\|_{\left(L^p(\mu)\right)^*} = \|\Psi\|_{\left(L^p(\tilde{\mu})\right)^*}$$

が得られる. 前段までの結果より Ψ に対し或る $G \in L^q(\tilde{\mu})$ が存在して

$$\Psi(F) = \int_{\mathbf{x}} FG \, d\tilde{\mu}$$

が成立するから、任意の $f \in L^p(\mu)$ に対して

$$\varphi(f) = \Psi\left(w^{-1/p}f\right) = \int_X w^{-1/p} fGw \ d\mu = \begin{cases} \int_X fG \ d\mu, & (p=1), \\ \int_X fw^{1/q} G \ d\mu, & (1$$

が従い,

$$g := \begin{cases} G, & (p=1), \\ w^{1/q}G, & (1$$

とおけば (A.84) より $g \in L^q(\mu)$ となり、 $\varphi = \Phi(g)$ かつ

$$\|\varphi\|_{(L^{p}(\mu))^{*}} = \|\Psi\|_{(L^{p}(\tilde{\mu}))^{*}} = \|G\|_{L^{q}(\tilde{\mu})} = \|g\|_{L^{q}(\mu)}$$

が満たされる.

A.13 複素測度に関する積分

A.13.1 極分解

定理 A.13.1 (複素測度の極分解). 可測空間 (X, \mathscr{F}) 上の任意の複素測度 μ に対し、次の意味での極分解

$$\mu(E) = \int_{E} e^{i\theta} d|\mu|, \quad (\forall E \in \mathscr{F})$$

を満たす $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測関数 θ が存在する. $\lambda \not\equiv 0$ なら $e^{i\theta}$ は $L^1(|\mu|)$ の元として唯一つに決まる.

証明. $\mu \equiv 0$ なら $|\mu| \equiv 0$ より $\theta \equiv \pi$ でよい. $\mu \not\equiv 0$ の場合, Lebesgue-Radon-Nikodym の定理より

$$\mu(E) = \int_{E} h \ d|\mu|, \quad (\forall E \in \mathscr{F})$$

を満たす $[h] \in L^1(|\mu|)$ が唯一つ存在する. このとき $|\mu|(E) > 0$ なら

$$\frac{1}{|\mu|(E)}\left|\int_E h\ d|\mu|\right| = \frac{|\mu(E)|}{|\mu|(E)} \le 1$$

となるから、定理 A.8.9 より $|\mu|$ -a.e. に $|h| \le 1$ となる. また

$$E_r := \{|h| \le r\}$$

とおき $\{A_n\}_{n=1}^{\infty} \subset \mathscr{F}$ を E_r の任意の分割とすれば、

$$\sum_{n=1}^{\infty} |\mu(A_n)| = \sum_{n=1}^{\infty} \left| \int_{A_n} h \ d|\mu| \right| \le \sum_{n=1}^{\infty} \int_{A_n} |h| \ d|\mu| \le r \sum_{n=1}^{\infty} |\mu|(A_n) = r|\mu|(E_r)$$

が成り立つからr < 1なら $|\mu|(E_r) = 0$ となり

$$|\mu|(|h| < 1) = |\mu| \left(\bigcap_{n=1}^{\infty} E_{1-1/n}\right) = 0$$

が従う. よって $|\mu|$ -a.e. に |h|=1 となる. $\tilde{h}\coloneqq 1\!\!1_{\{|h|=1\}}h+1\!\!1_{\{|h|\neq 1\}}$ とおいて

$$\theta(x) \coloneqq \begin{cases} \operatorname{Arg} \tilde{h}(x), & (\tilde{h}(x) \neq -1), \\ \pi, & (\tilde{h}(x) = -1) \end{cases}$$

と定めれば $[h] = [e^{i\theta}]$ が成立する.

定義 A.13.2 (複素測度に関する積分). (X,\mathscr{F}) を可測空間, μ を (X,\mathscr{F}) 上の複素測度, f を $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測関数 とする. f が $|\mu|$ -可積分であるとき, 極分解 $d\mu=e^{i\theta}$ $d|\mu|$ を用いて

$$\int_E f \ d\mu \coloneqq \int_E f e^{i\theta} \ d|\mu|, \quad (\forall E \in \mathcal{F})$$

により f の μ に関する積分を定める.

 $\mu \neq 0$ なら極分解は定理 A.13.1 の意味で一意であるから μ に関する積分は well-defined である. $\mu \equiv 0$ なら $|\mu| \equiv 0$ であるから任意の可測写像は $|\mu|$ について可積分となり, μ に関する積分値は 0 で確定する (well-defined). また定義より

$$\int_E f \ d\mu = \int_E f e^{i\theta} \ d|\mu| = \int_X 1\!\!1_E f e^{i\theta} \ d|\mu| = \int_X 1\!\!1_E f \ d\mu, \quad (\forall E \in \mathscr{F})$$

が満たされる.

定理 A.13.3 (総変動測度の積分表現). (X, \mathscr{F}, μ) を正値測度空間, f を $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測な μ -可積分関数とするとき,

$$\lambda(E) := \int_{E} f \ d\mu, \quad (\forall E \in \mathscr{F})$$

で複素測度 λ を定めれば次が成り立つ:

$$|\lambda|(E) = \int_{E} |f| d\mu, \quad (\forall E \in \mathscr{F}).$$

定理 A.13.4 (積分の測度に関する線型性). (X, \mathscr{F}) を可測空間, μ, ν をこの上の複素測度とする. $f: X \to \mathbb{C}$ が $|\mu|$ と $|\nu|$ について可積分であるなら, $\alpha, \beta \in \mathbb{C}$ に対し $|\alpha\mu + \beta\nu|$ についても可積分であり,更に次が成り立つ:

$$\int_X f \ d(\alpha \mu + \beta \nu) = \alpha \int_X f \ d\mu + \beta \int_X f \ d\nu.$$

証明. 第一段 f が可測単関数の場合について証明する. $a_i \in \mathbb{C}$, $A_i \in \mathcal{M}$ $(i=1,\cdots,n,\sum_{i=1}^n A_i = X)$ を用いて

$$f = \sum_{i=1}^{n} a_i \mathbb{1}_{A_i}$$

と表されている場合,

$$\int_X f(x) (\alpha \mu + \beta \nu)(dx) = \sum_{i=1}^n a_i (\alpha \mu + \beta \nu)(A_i)$$

$$= \alpha \sum_{i=1}^n a_i \mu(A_i) + \beta \sum_{i=1}^n a_i \nu(A_i) = \alpha \int_X f(x) \mu(dx) + \beta \int_X f(x) \nu(dx)$$

が成り立つ.

第二段 f が一般の可測関数の場合について証明する. 任意の $A \in M$ に対して

$$\left| (\alpha \mu + \beta \nu)(A) \right| \le |\alpha| |\mu(A)| + |\beta| |\nu(A)| \le |\alpha| |\mu|(A) + |\beta| |\nu|(A)$$

が成り立つから、左辺で A を任意に分割しても右辺との大小関係は変わらず

$$|\alpha \mu + \beta \nu|(A) \le |\alpha||\mu|(A) + |\beta||\nu|(A)$$

となる. 従って f が $|\mu|$ と $|\nu|$ について可積分であるなら

$$\int_X |f(x)| |\alpha \mu + \beta \nu|(dx) \le |\alpha| \int_X |f(x)| |\mu|(dx) + |\beta| \int_X |f(x)| |\nu|(dx) < \infty$$

が成り立ち前半の主張を得る. f の単関数近似列 $(f_n)_{n=1}^\infty$ を取れば、前段の結果と積分の定義より

$$\left| \int_{X} f(x) (\alpha \mu + \beta \nu)(dx) - \alpha \int_{X} f(x) \mu(dx) - \beta \int_{X} f(x) \nu(dx) \right|$$

$$\leq \left| \int_{X} f(x) (\alpha \mu + \beta \nu)(dx) - \int_{X} f_{n}(x) (\alpha \mu + \beta \nu)(dx) \right|$$

$$+ |\alpha| \left| \int_{X} f(x) \mu(dx) - \int_{X} f_{n}(x) \mu(dx) \right| + |\beta| \left| \int_{X} f(x) \nu(dx) - \int_{X} f_{n}(x) \nu(dx) \right|$$

$$\to 0 \quad (n \to \infty)$$

が成り立ち後半の主張が従う.

定理 A.13.5 (積分の複素共役). (X, \mathscr{F}) を可測空間, μ を複素測度, $f: X \to \mathbb{C}$ を $|\mu|$ について可積分な $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測関数とするとき次が成り立つ:

$$\int_X f\ d\overline{\mu} = \overline{\int_X \overline{f}\ d\mu}.$$

証明. $u = \operatorname{Re} f$, $v = \operatorname{Im} f$, $\gamma = \operatorname{Re} \mu$, $\theta = \operatorname{Im} \mu$ とすれば, 定理 A.13.4 より

$$\begin{split} \int_X f \ d\overline{\mu} &= \int_X f \ d\gamma - i \int_X f \ d\theta \\ &= \int_X u \ d\gamma + i \int_X v \ d\gamma - i \int_X u \ d\theta + \int_X v \ d\theta \\ &= \overline{\int_X u \ d\gamma - i \int_X v \ d\gamma + i \int_X u \ d\theta + \int_X v \ d\theta} \\ &= \overline{\int_X \overline{f} \ d\gamma + i \int_X \overline{f} \ d\theta} \\ &= \overline{\int_X \overline{f} \ d\mu} \end{split}$$

が成立する.

A.13.2 複素積分

 γ を $[\alpha, \beta]$ から \mathbb{C} への区分的 C^1 関数,f を $X \coloneqq \operatorname{ran}(\gamma)$ から \mathbb{C} への $\mathcal{B}(X)/\mathcal{B}(\mathbb{C})$ 可測関数, λ を一次元 Lebesgue 測度とするとき,

$$\mu(E) := \int_{E} \gamma' \, d\lambda, \quad (E \in \mathcal{B}([\alpha, \beta]))$$

により $([\alpha, \beta], \mathcal{B}([\alpha, \beta]))$ 上に複素測度が定まる. このとき

$$\mu \gamma^{-1}(A) \coloneqq \mu \left(\gamma^{-1}(A) \right), \quad (A \in \mathcal{B}(X))$$

は $(X, \mathcal{B}(X))$ 上の複素測度となり

$$\int_X f \ d\mu \gamma^{-1} = \int_{[\alpha,\beta]} f(\gamma) \gamma' \ d\lambda$$

が成立する. γ に関する f の複素 (線) 積分を

$$\int_{\mathcal{V}} f \coloneqq \int_{X} f \ d\mu \gamma^{-1}$$

で定義する.

A.14 条件付き期待値

定義 A.14.1 (条件付き期待値). (X,\mathcal{F},μ) を測度空間, $f\in L^1(\mu)$ とする. 部分 σ -加法族 $\mathcal{G}\subset\mathcal{F}$ に対し $\nu\coloneqq\mu\big|_{\mathcal{G}}$ が σ -有限であるとき,

$$\lambda(A) := \int_A f \ d\mu, \quad (\forall A \in \mathscr{G})$$

により (X,\mathcal{G}) 上に複素測度 λ が定まり、 $\lambda \ll \nu$ であるから Lebesgue-Radon-Nikodym の定理より

$$\lambda(A) = \int_A g \, d\nu, \quad (\forall A \in \mathcal{G})$$

を満たす $g \in L^1(\nu) = L^1(X, \mathcal{G}, \nu)$ が唯一つ存在する. この g を \mathcal{G} で条件付けた f の条件付き期待値と呼び

$$g = E(f | \mathcal{G})$$

と書く.

 $f \in \mathcal{L}^1(\mu)$ が μ -a.e. に \mathbf{R} 値なら λ は正値測度となるから、定理 $\mathbf{A}.8.9$ より $E\left(f \middle| \mathcal{G} \right)$ も ν -a.e. に \mathbf{R} 値となる.

補題 A.14.2 (凸関数の片側微係数の存在). 任意の凸関数 $\varphi: \mathbf{R} \longrightarrow \mathbf{R}$ には各点で左右の微係数が存在する. 特に、凸関数は連続であり、すなわち Borel 可測である.

証明. 凸性より任意の x < y < z に対して

$$\frac{\varphi(y)-\varphi(x)}{y-x} \leq \frac{\varphi(z)-\varphi(x)}{z-x} \leq \frac{\varphi(z)-\varphi(y)}{z-y}$$

が満たされる. 従って、x を固定すれば、x に単調減少に近づく任意の点列 $(x_n)_{n=1}^\infty$ に対し

$$\left(\frac{f(x_n) - f(x)}{x_n - x}\right)_{n=1}^{\infty}$$

は下に有界な単調減少列となり下限が存在する. x に単調減少に近づく別の点列 $(y_k)_{k=1}^\infty$ を取れば

$$\inf_{k \in \mathbb{N}} \frac{f(y_k) - f(x)}{y_k - x} \le \frac{f(x_n) - f(x)}{x_n - x} \quad (n = 1, 2, \dots)$$

より

$$\inf_{k\in\mathbb{N}}\frac{f(y_k)-f(x)}{y_k-x}\leq\inf_{n\in\mathbb{N}}\frac{f(x_n)-f(x)}{x_n-x}$$

が成立し, (x_n) , (y_k) の立場を変えれば逆向きの不等号も得られる.すなわち極限は点列に依らず確定し, φ は x で右側微係数を持つ.同様に左側微係数も存在し,特に φ の連続性及び Borel 可測性が従う.

定理 A.14.3 (Jensen の不等式). (X, \mathscr{F}, μ) を測度空間, $\mathscr{G} \subset \mathscr{F}$ を部分 σ -加法族とし, $\mu|_{\mathscr{G}}$ が σ -有限であるとする. このとき, 任意の $\mathscr{F}/\mathscr{B}(\mathbf{R})$ -可測関数 f と凸関数 $\varphi: \mathbf{R} \longrightarrow \mathbf{R}$ に対し, $f, \varphi(f)$ が μ -可積分なら次が成立する:

$$\varphi\left(E\left(f\left|\mathscr{G}\right)\right) \leq E\left(\varphi(f)\left|\mathscr{G}\right)\right.$$

証明. φ は各点 $x \in \mathbf{R}$ で右側接線を持つから,それを $\mathbf{R} \ni t \longmapsto a_x t + b_x$ と表せば,

$$\varphi(t) = \sup_{r \in \mathbf{Q}} \{ a_r t + b_r \} \quad (\forall t \in \mathbf{R})$$
(A.85)

が成立する. よって任意の $r \in \mathbf{Q}$ に対して

$$\varphi(f(x)) \ge a_r f(x) + b_r$$

が満たされるから

$$E(\varphi(f)|\mathscr{G}) \ge a_r E(f|\mathscr{G}) + b_r \quad \mu\text{-a.e.}, \quad \forall r \in \mathbf{Q}$$

が従い, 各 $r \in \mathbf{Q}$ に対し

$$N_r := \left\{ x \in X \mid E\left(\varphi(f) \middle| \mathcal{G}\right)(x) < a_r E\left(f \middle| \mathcal{G}\right)(x) + b_r \right\}$$

とおけば $\mu(N_r) = 0$ かつ

$$E\left(\varphi(f)\left|\mathcal{G}\right\rangle(x)\geq a_{r}E\left(f\left|\mathcal{G}\right\rangle(x)+b_{r},\quad\forall r\in\mathbf{Q},\;x\notin\bigcup_{r\in\mathbf{Q}}N_{r}$$

となる. r の任意性と (A.14) より

$$E(\varphi(f)|\mathcal{G}) \ge \varphi(E(f|\mathcal{G})), \quad \mu\text{-a.e.}$$

が得られる.

定理 A.14.4 (条件付き期待値の性質). (X, \mathcal{F}, μ) を測度空間, \mathcal{H}, \mathcal{G} を \mathcal{H} \subset \mathcal{G} を満たす \mathcal{F} の部分 σ -加法族と し, $\theta \coloneqq \mu|_{\mathcal{H}}$, $\gamma \coloneqq \mu|_{\mathcal{G}}$ がそれぞれ σ -有限測度であるとする.このとき以下が成立する:

(1) $E(\cdot|\mathscr{G})$ は $L^1(X,\mathscr{F},\mu)$ から $L^1(X,\mathscr{G},\gamma)$ への有界線形作用素であり、次を満たす:

$$|E(f|\mathcal{G})| \le E(|f||\mathcal{G}), \quad (\forall f \in L^1(\mu)).$$
 (A.86)

(2) $f \in L^1(\mu), g \in L^0(\gamma)$ に対して、 $gf \in L^1(\mu)$ なら $gE(f|\mathcal{G}) \in L^1(\gamma)$ であり

$$E\left(gf\left|\mathscr{G}\right) = gE\left(f\left|\mathscr{G}\right). \tag{A.87}$$

(3) $f \in L^1(\mu)$ に対して

$$E(E(f|\mathcal{G})|\mathcal{H}) = E(f|\mathcal{H}).$$

(4) $f \in L^1(\mu) \cap L^p(\mu)$ に対し、 $1 \le p < \infty$ のとき

$$|E(f|\mathscr{G})|^p \le E(|f|^p|\mathscr{G})$$

が満たされ、 $1 \le p \le \infty$ のとき

$$\|E\left(f\mid\mathscr{G}\right)\|_{L^{p}(\gamma)} \le \|f\|_{L^{p}(\mu)} \tag{A.88}$$

も成立する. すなわち $E(\cdot|\mathcal{G})$ は $L^1(\mu)\cap L^p(\mu)$ から $L^1(\gamma)\cap L^p(\gamma)$ への有界線形作用素である.

証明.

(1) 任意の $\alpha_1, \alpha_2 \in \mathbb{C}$, $f_1, f_2 \in L^1(\mu)$ と $A \in \mathcal{G}$ に対して

$$\begin{split} \int_{A} E\left(\alpha_{1} f_{1} + \alpha_{2} f_{2} \,\middle|\, \mathcal{G}\right) \,\,d\gamma &= \int_{A} \alpha_{1} f_{1} + \alpha_{2} f_{2} \,\,d\mu = \alpha_{1} \int_{A} f_{1} \,\,d\mu + \alpha_{2} \int_{A} f_{2} \,\,d\mu \\ &= \alpha_{1} \int_{A} E\left(f_{1} \,\middle|\, \mathcal{G}\right) \,\,d\gamma + \alpha_{2} \int_{A} E\left(f_{2} \,\middle|\, \mathcal{G}\right) \,\,d\gamma = \int_{A} \alpha_{1} E\left(f_{1} \,\middle|\, \mathcal{G}\right) + \alpha_{2} E\left(f_{2} \,\middle|\, \mathcal{G}\right) \,\,d\gamma \end{split}$$

が成立するから、 $L^1(\nu)$ で

$$E(\alpha_1 f_1 + \alpha_2 f_2 | \mathcal{G}) = \alpha_1 E(f_1 | \mathcal{G}) + \alpha_2 E(f_2 | \mathcal{G})$$

となり $E(\cdot|\mathscr{G})$ の線型性が出る. いま, $f \in L^1(\mu)$, $g \in L^\infty(\gamma)$ に対して

$$E(gf|\mathscr{G}) = gE(f|\mathscr{G}). \tag{A.89}$$

が成り立つことを示す. 実際, 任意の $A,B \in \mathcal{G}$ に対して

$$\int_{A} \mathbb{1}_{B} f \ d\mu = \int_{A \cap B} f \ d\mu = \int_{A \cap B} E \left(f \left| \mathcal{G} \right| \right) \ d\gamma = \int_{A} \mathbb{1}_{B} E \left(f \left| \mathcal{G} \right| \right) \ d\gamma$$

となるから、g の単関数近似列 $(g_n)_{n=1}^{\infty}$, $(g_n \in L^{\infty}(\gamma), |g_n| \leq |g|)$ に対して

$$\int_{A} g_{n} f \ d\mu = \int_{A} g_{n} E\left(f \middle| \mathcal{G}\right) \ d\gamma, \quad (\forall n \ge 1)$$

が成り立ち、 $gf \in L^1(\mu)$ かつ $gE\left(f \middle| \mathscr{G}\right) \in L^1(\gamma)$ であるから Lebesgue の収束定理より

$$\int_{A} gE(f|\mathcal{G}) d\gamma = \int_{A} gf d\mu = \int_{A} E(gf|\mathcal{G}) d\gamma$$

が従い (A.14) が得られる. ここで $f \in L^1(\mu)$ に対し

$$\alpha \coloneqq \mathbb{1}_{\left\{E\left(f \,\middle|\, \mathcal{G}\right) \neq 0\right\}} \frac{\overline{E\left(f \,\middle|\, \mathcal{G}\right)}}{\left|E\left(f \,\middle|\, \mathcal{G}\right)\right.\right|}$$

により $\alpha \in L^{\infty}(\gamma)$ を定めれば、任意の $A \in \mathcal{G}$ に対して

$$\begin{split} \int_{A} |E\left(f \,\middle|\, \mathcal{G}\right)| \, d\gamma &= \int_{A} \alpha E\left(f \,\middle|\, \mathcal{G}\right) \, d\gamma = \int_{A} E\left(\alpha f \,\middle|\, \mathcal{G}\right) \, d\gamma \\ &= \int_{A} \alpha f \, d\mu \leq \int_{A} |f| \, d\mu = \int_{A} E\left(|f| \,\middle|\, \mathcal{G}\right) \, d\gamma \end{split}$$

が成り立つから、(A.14.4) 及び $E(\cdot|\mathscr{G})$ の有界性が得られる.

(2) $(g_n)_{n=1}^{\infty}$ を g の単関数近似列とすれば、単調収束定理と (A.14) より

$$\int_X |g| E\left(|f| \left| \mathcal{G}\right) \right| d\gamma = \lim_{n \to \infty} \int_X |g_n| E\left(|f| \left| \mathcal{G}\right) \right| d\gamma = \lim_{n \to \infty} \int_X |g_n| |f| \, d\mu = \int_X |g| |f| \, d\mu$$

となり $gE\left(f\left|\mathscr{G}\right)$ の可積分性が従う. 従って、Lebesgue の収束定理より任意の $A\in\mathscr{G}$ に対して

$$\int_{A} gE\left(f \mid \mathcal{G}\right) d\gamma = \lim_{n \to \infty} \int_{A} g_{n}E\left(f \mid \mathcal{G}\right) d\gamma = \lim_{n \to \infty} \int_{A} g_{n}f d\mu = \int_{A} gf d\mu$$

が成り立ち (A.14.4) が得られる.

(3) 任意の $A \in \mathcal{H}$ に対して

$$\int_{A} E\left(f \,\middle|\, \mathcal{H}\right) \,d\theta = \int_{A} f \,d\mu = \int_{A} E\left(f \,\middle|\, \mathcal{G}\right) \,d\gamma = \int_{A} E\left(E\left(f \,\middle|\, \mathcal{G}\right) \,\middle|\, \mathcal{H}\right) \,d\theta$$

が成立する.

(4) $1 \le p < \infty$ の場合, (A.14.4) と Jensen の不等式より

$$|E\left(f\left|\mathcal{G}\right)|^{p}\leq E\left(|f|\left|\mathcal{G}\right|^{p}\leq E\left(|f|^{p}\left|\mathcal{G}\right)\right)$$

が成り立つ. $p = \infty$ の場合は任意の $A \in \mathcal{G}$ に対して

$$\int_{A} \left| E\left(f \left| \mathcal{G}\right) \right| \ d\gamma \le \int_{A} \left| f \right| \ d\mu \le \mu(A) \left\| f \right\|_{L^{\infty}} = \gamma(A) \left\| f \right\|_{L^{\infty}}$$

となり、 $1 \le p < \infty$ の場合も込めて (A.14.4) が従う.

定理 A.14.5. (1) $X_n \leq X_{n+1} X_n \longrightarrow X a.s.P E(X_n \mid \mathscr{G}) \longrightarrow E(X \mid \mathscr{G}) a.s.P$

- (2) $X_n \ge 0 E (\liminf X_n \mid \mathscr{G}) \le \liminf E (X_n \mid \mathscr{G})$
- (3) $|X_n| \le Y |X_n \longrightarrow X | a.s.P | E(X_n | \mathcal{G}) \longrightarrow E(X | \mathcal{G}) | a.s.P$

A.15 正則条件付複素測度

定義 A.15.1 (正則条件付複素測度). (X, \mathscr{F}) を可測空間, $\mathscr{G} \subset \mathscr{F}$ を部分 σ -加法族, μ を \mathscr{F} 上の複素測度とするとき,次の (1)(2)(3) を満たす写像

$$\mu(\cdot \mid \mathscr{G})(\cdot) : \mathscr{F} \times X \ni (A, x) \longmapsto \mu(A \mid \mathscr{G})(x) \in \mathbf{C}$$

を $\mathcal G$ の下での μ の正則条件付複素測度 (regular conditional complex measure of μ with respect to $\mathcal G$) と呼ぶ:

- (1) 任意の $x \in X$ で $\mathscr{F} \ni A \mapsto \mu(A \mid \mathscr{G})(x)$ は複素測度である.
- (2) 任意の $A \in \mathcal{F}$ で $X \ni x \mapsto \mu(A \mid \mathcal{G})(x)$ は $\mathcal{G}/\mathcal{B}(\mathbf{C})$ -可測かつ $|\mu|$ -可積分である.
- (3) 任意の $A \in \mathcal{F}$ と $B \in \mathcal{G}$ に対し次を満たす:

$$\mu(A \cap B) = \int_{B} \mu(A \mid \mathscr{G}) \ d|\mu|.$$

定理 A.15.2 (正則条件付複素測度の一意性). (X, \mathscr{F}) を可測空間, $\mathscr{G} \subset \mathscr{F}$ を部分 σ -加法族, μ を \mathscr{F} 上の複素測度とし, μ に対し \mathscr{G} の下での正則条件付複素測度 $\mu(\cdot | \mathscr{G})(\cdot)$ と $\nu(\cdot | \mathscr{G})(\cdot)$ が存在しているとする. このとき, \mathscr{F} が可算族で生成されるなら, 或る $|\mu|$ -零集合 $N \in \mathscr{G}$ が存在して次が成立する:

$$\mu(A \mid \mathcal{G})(x) = \nu(A \mid \mathcal{G})(x), \quad (\forall A \in \mathcal{F}, \ \forall x \in X \backslash N).$$

証明. ℱ を生成する可算族を ℳ とし,

$$\mathscr{U} := \left\{ \bigcap_{i=1}^{n} A_i \mid A_i \in \mathscr{A}, \ n = 1, 2, \cdots \right\}$$

により可算乗法族を定める. $\mathscr A$ は $\mathscr F$ を生成するから $\sigma(\mathscr U)=\mathscr F$ となり, 任意の $U\in\mathscr U$ に対し

$$\int_{B} \mu(U \mid \mathcal{G}) d|\mu| = \int_{B} \nu(U \mid \mathcal{G}) d|\mu|, \quad (\forall B \in \mathcal{G})$$

が満たされるから $N_U \coloneqq \left\{ \mu(U \mid \mathscr{G}) \neq \nu(U \mid \mathscr{G}) \right\}$ は \mathscr{G} の $|\mu|$ -零集合となる. $N \coloneqq \bigcup_{U \in \mathscr{U}} N_U$ とおけば

$$\mathcal{D} \coloneqq \left\{ A \in \mathcal{F} \mid \quad \mu(A \mid \mathcal{G})(x) = \nu(A \mid \mathcal{G})(x), \ \forall x \in X \backslash N \right\}$$

により Dynkin 族が定まり, $\mathscr D$ は $\mathscr U$ を含むから Dynkin 族定理より定理の主張が従う.

定理 A.15.3 (正則条件付複素測度の存在). (X, \mathscr{F}) を可測空間, $\mathscr{G} \subset \mathscr{F}$ を部分 σ -加法族, μ を \mathscr{F} 上の複素測度 とする. また \mathscr{F} が可算族で生成され,かつ或るコンパクトクラス \mathscr{K} が存在して,任意の $\varepsilon > 0$ と $A \in \mathscr{F}$ に対し

$$A_{\epsilon} \subset K_{\epsilon} \subset A$$
, $|\mu|(A \backslash A_{\epsilon}) < \epsilon$

を満たす $K_{\epsilon} \in \mathcal{K}$, $A_{\epsilon} \in \mathcal{F}$ が取れると仮定する. このとき \mathcal{G} の下での μ の正則条件付複素測度が存在する.

A.16 一様可積分性

定理 A.16.1 (一様可積分性の同値条件). (X,\mathscr{F},μ) を測度空間とし, $\mu(X)<\infty$ とする. 任意の添数集合 Λ に対して $(f_{\lambda})_{\lambda\in\Lambda}$ を $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測関数の族とするとき,次の (1) と (2) は同値である:

(1) $(f_{\lambda})_{\lambda \in \Lambda}$ が一様可積分.

(2)

$$\sup_{\lambda \in \Lambda} \int_{X} |f_{\lambda}| \, d\mu < \infty \tag{A.90}$$

かつ, 任意の $\epsilon > 0$ に対し或る $\delta > 0$ が存在して次を満たす:

$$\mu(B) < \delta \Rightarrow \sup_{\lambda \in \Lambda} \int_{B} |f_{\lambda}| d\mu < \epsilon.$$
 (A.91)

証明.

第一段 $(1) \Rightarrow (2)$ を示す. 任意の a > 0 に対して

$$\int_X |f_\lambda| \ d\mu = \int_{\{|f_\lambda| > a\}} |f_\lambda| \ d\mu + \int_{\{|f_\lambda| \le a\}} |f_\lambda| \ d\mu \le \sup_{\lambda \in \Lambda} \int_{\{|f_\lambda| > a\}} |f_\lambda| \ d\mu + a\mu(X)$$

が成り立ち、一様可積分性より或る a>0 に対して

$$\sup_{\lambda \in \Lambda} \int_{\{|f_{\lambda}| > a\}} |f_{\lambda}| \ d\mu < \infty$$

となるから (A.16.1) が従う. また任意の $B \in \mathcal{F}$ に対して

$$\int_{B} |f_{\lambda}| \ d\mu = \int_{\{|f_{\lambda}| > a\} \cap B} |f_{\lambda}| \ d\mu + \int_{\{|f_{\lambda}| \le a\} \cap B} |f_{\lambda}| \ d\mu \le \sup_{\lambda \in \Lambda} \int_{\{|f_{\lambda}| > a\}} |f_{\lambda}| \ d\mu + a\mu(B)$$

が成り立つから、任意の $\epsilon > 0$ に対して

$$\sup_{\lambda \in \Lambda} \int_{\{|f_{\lambda}| > a\}} |f_{\lambda}| \ d\mu < \frac{\epsilon}{2}$$

を満たす a>0 を取り $\delta\coloneqq \epsilon/(2a)$ とおけば (A.16.1) が成立する.

第二段 $(2) \Rightarrow (1)$ を示す. 任意の a > 0 に対して

$$\mu(|f_{\lambda}| > a) \le \frac{1}{a} \int_{X} |f_{\lambda}| \ d\mu \le \frac{1}{a} \sup_{\lambda \in \Lambda} \int_{X} |f_{\lambda}| \ d\mu$$

が成立するから、(A.16.1) を満たす $\delta > 0$ に対し或る $a_0 > 0$ が存在して

$$\mu(|f_{\lambda}| > a) < \delta$$
, $(\forall \lambda \in \Lambda, \forall a > a_0)$

となり

$$\int_{\{|f_{\lambda}|>a\}} |f_{\lambda}| \ d\mu < \epsilon, \quad (\forall \lambda \in \Lambda, \ \forall a>a_0)$$

が従う.

定理 A.16.2 (一様可積分性と平均収束). (X, \mathscr{F}, μ) を σ -有限測度空間とし, $(f_n)_{n=1}^{\infty}$ を $\mathscr{F}/\mathscr{B}(\mathbf{C})$ -可測関数の族とする. $(f_n)_{n=1}^{\infty}$ が μ -a.e. に \mathbf{C} で収束するとき,つまり或る零集合 A が存在して,

$$f := \lim_{n \to \infty} f_n \mathbb{1}_A$$

により $\mathscr{F}/\mathscr{B}(\mathbb{C})$ -可測関数が定まるとき、次の (1) と (2) は同値である:

- (1) $(f_n)_{n=1}^{\infty}$ が一様可積分.
- (2) f は μ -可積分で次を満たす:

$$\int_X |f - f_n| \ d\mu \longrightarrow 0 \quad (n \longrightarrow \infty).$$

定理 A.16.3 (一様可積分性と条件付き期待値). (X,\mathscr{F},μ) を測度空間とする。部分 σ -加法族 $\mathscr{G}\subset\mathscr{F}$ に対し $\mu|_{\mathscr{G}}$ が σ -有限なら, μ -可積分関数 $f:X\longrightarrow \mathbf{R}$ に対し $(E(f|\mathscr{G}))_{\mathscr{G}\subset\mathscr{F}}$ は一様可積分である。

証明. 定理 A.14.4 より

$$\int_{\left|E\left(f\mid\mathcal{G}\right)\right|>\lambda}\left|E\left(f\mid\mathcal{G}\right)\right|\ d\mu\leq\int_{E\left(\left|f\right|\mid\mathcal{G}\right)>\lambda}E\left(\left|f\right|\mid\mathcal{G}\right)\ d\mu=\int_{E\left(\left|f\right|\mid\mathcal{G}\right)>\lambda}\left|f\right|\ d\mu$$

が成り立つ. また X の可積分性より, 任意の $\epsilon > 0$ に対して或る $\delta > 0$ が存在し

$$\mu(B) < \delta \Rightarrow \int_{B} |f| d\mu < \epsilon$$

が満たされる. いま, Chebyshev の不等式より

$$\mu\left(E\left(\left|f\right|\left|\mathcal{G}\right)>\lambda\right)\leq\frac{1}{\lambda}\int_{X}E\left(\left|f\right|\left|\mathcal{G}\right)\;d\mu=\frac{1}{\lambda}\int_{X}\left|f\right|d\mu$$

となるから、 $\epsilon > 0$ に対し或る $\lambda_0 > 0$ が存在して

$$\sup_{\mathscr{G}\subset\mathscr{F}}\mu\left(E\left(\left|f\right|\left|\mathscr{G}\right)>\lambda\right)<\delta,\quad\left(\forall\lambda>\lambda_{0}\right)$$

が満たされ

$$\sup_{\mathscr{G}\subset\mathscr{F}}\int_{E(|f|\,|\,\mathscr{G})>\lambda}|f|\,d\mu<\epsilon,\quad (\forall \lambda>\lambda_0)$$

が従う.

A.17 距離空間上の連続写像

A.17.1 広義一様収束を定める距離

 (X,d_X) , (Y,d_Y) を距離空間とし、距離位相を導入して

$$C(X,Y) := \{ f : X \longrightarrow Y \mid f$$
 は連続写像 $\}$

とおく. このとき $K \subset X$ をコンパクト集合とすれば,

$$\rho_K(f,g) \coloneqq \sup_{x \in K} d_Y(f(x),g(x)), \quad (f,g \in C(X,Y))$$

により定める ρ_K は C(X,Y) の擬距離となる. 実際, f(K), g(K) は Y のコンパクト部分集合であるから

$$\operatorname{diam}(f(K)) = \sup_{y,y' \in f(K)} d_Y(y,y') < \infty,$$

及び $\operatorname{diam}(g(K)) < \infty$ が成り立ち、任意に $x_0 \in K$ を取れば

$$\begin{split} \sup_{x \in K} d_Y(f(x), g(x)) & \leq \sup_{x \in K} d_Y(f(x), f(x_0)) + d_Y(f(x_0), g(x_0)) + \sup_{x \in K} d_Y(g(x_0), g(x)) \\ & \leq \operatorname{diam}(f(K)) + d_Y(f(x_0), g(x_0)) + \operatorname{diam}(g(K)) < \infty \end{split}$$

となるから ρ_K は $[0,\infty)$ 値である。また d_Y が対称性と三角不等式を満たすから ρ も対称性を持ち三角不等式を満たす。いま、X が σ -コンパクトであると仮定する。つまり

$$K_1 \subset K_2 \subset K_3 \subset \cdots, \quad \bigcup_{n=1}^{\infty} K_n = X$$
 (A.92)

を満たすコンパクト部分集合の増大列 $(K_n)_{n=1}^\infty$ が存在するとき, $\rho_n=\rho_{K_n}$ とすれば

$$\rho_n(f,g) = 0 \ (\forall n \ge 1) \implies f = g$$

が成り立つから,

$$\rho(f,g) := \sum_{n=1}^{\infty} 2^{-n} \left(1 \wedge \rho_n(f,g) \right), \quad (f,g \in C(X,Y))$$
(A.93)

により C(X,Y) 上に距離 ρ が定まる. 特に、定理 A.5.61 より X が可分かつ局所コンパクトなら

$$K_n \subset K_{n+1}^{\circ}, \quad X = \bigcup_{n=1}^{\infty} K_n \tag{A.94}$$

を満たすコンパクト部分集合の列 $(K_n)_{n=1}^{\infty}$ が存在するから ρ が定義される.

定理 A.17.1 (広義一様収束を定める距離). (X,d_X) を可分な局所コンパクト距離空間, (Y,d_Y) を距離空間とし, (A.17.1) を満たす $(K_n)_{n=1}^\infty$ で ρ を定めるとき, $f,f_n\in C(X,Y)$ に対して次が成り立つ.

$$(f_n)_{n=1}^{\infty}$$
 が f に広義一様収束する \iff $\rho(f,f_n) \longrightarrow 0$ $(n \longrightarrow \infty)$.

定理 A.17.2 (C(X,Y) の可分性). (X,d_X) を σ -コンパクト距離空間, (Y,d_Y) を可分距離空間とするとき, C(X,Y) は ρ により可分距離空間となる.

証明.

第一段 三段にわたり、コンパクト集合 $K \subset X$ に対して或る高々可算集合 $D(K) \subset C(X,Y)$ があり、任意の $\epsilon > 0$ と $f \in C(X,Y)$ に対して次を満たす $g \in D(K)$ が存在することを示す:

$$d_Y(f(x), g(x)) < \epsilon, \quad (\forall x \in K).$$
 (A.95)

 $x \in X$ の半径 $\delta > 0$ の開球を $B_{\delta}(x)$ と書けば,K のコンパクト性より任意の $m \in \mathbb{N}$ に対し

$$K \subset \bigcup_{i=1}^{k(m)} B_{1/m}(x_i^m)$$

を満たす $\left\{x_1^m,\cdots,x_{k(m)}^m\right\}\subset K$ が存在する。また Y は Lindelöf 性を持つから,任意の $\ell\geq 1$ に対し

$$\mathcal{U}_{\ell} \coloneqq \left\{ U_j^{\ell} \mid \quad U_j^{\ell} : open, \; \operatorname{diam}\left(U_j^{\ell}\right) < \frac{1}{\ell}; \; j = 1, 2, \cdots \right\}, \quad Y = \bigcup_{j=1}^{\infty} U_j^{\ell}$$

を満たす開被覆 \mathcal{U}_ℓ が存在する. 一方で、 $f \in C(X,Y)$ は K 上で一様連続であるから

$$C_{m,n} \coloneqq \left\{ f \in C(X,Y) \mid \quad$$
 任意の $x,x' \in K$ に対し $d_X(x,x') < \frac{1}{m} \Rightarrow d_Y(f(x),f(x')) < \frac{1}{n} \right\}$

とすれば

$$C(X,Y) = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} C_{m,n}$$
(A.96)

が成り立つ. いま、任意に m,n,ℓ 及び $i=(i_1,\cdots,i_{k(m)})\in \mathbf{N}^{k(m)}$ を取り

$$D_{m,n,\ell}^i := \left\{ g \in C_{m,n} \mid g(x_j^m) \in U_{i_j}^\ell, \ (\forall j = 1, \cdots, k(m)) \right\}$$

とおけば、例えば $i=(1,\cdots,1)\in \mathbf{N}^{k(m)}$ と $y\in U_1^\ell$ に対して恒等写像 $g:X\longrightarrow \{y\}$ は $g\in D_{m,n,\ell}^i$ となるから

$$\Phi_{m,n,\ell} \in \prod_{\substack{i \in \mathbf{N}^{k(m)} \\ D_{m,n,\ell}^i \neq \emptyset}} D_{m,n,\ell}^i$$

が存在する. ここで

$$D_{m,n,\ell} := \left\{ \left. \Phi_{m,n,\ell}(i) \mid \quad i \in \mathbf{N}^{k(m)} \right. \right\}$$

により $D_{m,n,\ell}$ を定めて

$$D_{m,n} := \bigcup_{\ell=1}^{\infty} D_{m,n,\ell}, \quad D(K) := \bigcup_{m,n=1}^{\infty} D_{m,n}$$

とおく.

第二段 任意の $f \in C_{m,n}$ と $\epsilon > 0$ に対し或る $g \in D_{m,n}$ が存在して

$$d_Y\left(f(x_j^m), g(x_j^m)\right) < \epsilon, \quad (\forall j = 1, \dots, k(m))$$

を満たすことを示す. 実際, $1/\ell < \epsilon$ となる ℓ に対し \mathcal{U}_ℓ は Y の被覆であるから,

$$f(x_j^m) \in U_{i_j}^{\ell}, \quad (\forall j = 1, \dots, k(m))$$

となる $i=(i_1,\cdots,i_{k(m)})\in \mathbf{N}^{k(m)}$ が取れる. 従って $D^i_{m,n,\ell}\neq\emptyset$ であり,

$$g := \Phi_{m,n,\ell}(i)$$

に対して

$$d_Y\left(f(x_j^m), g(x_j^m)\right) < \frac{1}{\ell} < \epsilon, \quad (\forall j = 1, \dots, k(m))$$

が成立する.

第三段 D(K) が (A.17.1) を満たすことを示す。任意に $f \in C(X,Y)$ と $\epsilon > 0$ を取れば,(A.17.1) より $1/n < \epsilon/3$ を満たす n 及び或る m に対して $f \in C_{m,n}$ となる。このとき,前段の結果より或る $g \in D_{m,n} \subset D(K)$ が存在して

$$d_Y\left(f(x_j^m),g(x_j^m)\right)<\frac{\epsilon}{3},\quad (\forall j=1,\cdots,k(m))$$

を満たす. $f,g \in C_{m,n}$ より任意の $x \in B_{1/m}(x_i^m)$ に対して

$$d_Y\left(f(x), f(x_j^m)\right), d_Y\left(g(x), g(x_j^m)\right) < \frac{1}{n} < \frac{\epsilon}{3}$$

が成り立ち、任意の $x \in K$ は或る $B_{1/m}(x_i^m)$ に含まれるから、

$$d_Y\left(f(x),g(x)\right) \le d_Y\left(f(x),f(x_j^m)\right) + d_Y\left(f(x_j^m),g(x_j^m)\right) + d_Y\left(g(x),g(x_j^m)\right)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

が従い (A.17.1) が出る.

第四段 $(K_n)_{n=1}^{\infty}$ を (A.17.1) を満たすコンパクト集合列とすれば、各 K_n に対し $D(K_n)$ が存在し、

$$D := \bigcup_{n=1}^{\infty} D(K_n)$$

と定めれば D は C(X,Y) で高々可算かつ稠密となる。実際、任意の $\epsilon>0$ と $f\in C(X,Y)$ に対して、

$$\sum_{n=N+1}^{\infty} 2^{-n} < \frac{\epsilon}{2}$$

を満たす $N \ge 1$ を取れば,

$$\rho_N(f,g)<\frac{\epsilon}{2}$$

を満たす $g \in D(K_N) \subset D$ が存在するから

$$\rho(f,g) = \sum_{n=1}^{N} 2^{-n} \left(1 \wedge \rho_n(f,g) \right) + \sum_{n=N+1}^{\infty} 2^{-n} \left(1 \wedge \rho_n(f,g) \right)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$< \epsilon$$

が成り立つ.

定理 A.17.3 (C(X,Y) の完備性). (X,d_X) を可分な局所コンパクト距離空間, (Y,d_Y) を距離空間, $(f_n)_{n=1}^\infty$ を C(X,Y) の列とし, (A.17.1) を満たす $(K_n)_{n=1}^\infty$ で ρ を定める. このとき各点 $x\in X$ で $\lim_{n\to\infty} f_n(x)$ が存在すれば

$$f := \lim_{n \to \infty} f_n \in C(X, Y), \quad \rho(f, f_n) \longrightarrow 0 \quad (n \longrightarrow \infty)$$
(A.97)

が成立する. 特に (Y, d_Y) が完備なら C(X, Y) は ρ により完備距離空間となる.

付録 A 325

証明.

第一段 任意の $j \ge 1$ に対し

$$\rho_i(f_n, f) \longrightarrow 0 \quad (n \longrightarrow \infty)$$
 (A.98)

が成り立つことを示す。実際、任意の $\epsilon > 0$ に対し或る $N \ge 1$ が存在して

$$\rho_j(f_n,f_m)<\frac{\epsilon}{2}\quad (\forall n,m\geq N)$$

が満たされ、また f の定め方より任意の $x \in K_i$ に対し

$$d_Y(f_m(x), f(x)) < \frac{\epsilon}{2}$$

を満たす $m \ge N$ が存在するから,

$$d_Y(f_n(x),f(x)) \leq d_Y(f_n(x),f_m(x)) + d_Y(f_m(x),f(x)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \quad (\forall n \geq N)$$

が従い

$$\rho_i(f_n, f) \le \epsilon, \quad (\forall n \ge N)$$

が成立する.

第二段 f の連続性を示す。任意に $\epsilon > 0$ と $x \in X$ 及び $x \in K_i^o$ を満たす K_i を取れば,(A.17.1) より

$$\rho_j(f_n,f)<\frac{\epsilon}{3}$$

を満たす $n \ge 1$ が存在する. また f_n の連続性より x の或る開近傍 W が存在して

$$d_Y(f_n(x), f_n(x')) < \frac{\epsilon}{3}, \quad (\forall x' \in W)$$

となるから,

$$d_{Y}(f(x), f(x')) \leq d_{Y}(f(x), f_{n}(x)) + d_{Y}(f_{n}(x), f_{n}(x')) + d_{Y}(f_{n}(x'), f(x')) < \epsilon, \quad (\forall x' \in W \cap K_{i}^{\circ})$$

が従い f の x における連続性が出る.

第三段 (A.17.3) を示す. 任意の $\epsilon > 0$ に対し,

$$\sum_{k=k_0+1}^{\infty} 2^{-k} < \frac{\epsilon}{2}$$

を満たす $k_0 \ge 1$ が存在する. また (A.17.1) より或る $n_0 \ge 1$ が存在して

$$\rho_{k_0}(f_n, f) < \frac{\epsilon}{2}, \quad (\forall n \ge n_0)$$

となるから

$$\rho(f_n, f) < \epsilon, \quad (\forall n \ge n_0)$$

が成立する.

付録 A 326

定理 A.17.4 (C(X,Y) の完備可分性). (X,d_X) を可分な局所コンパクト距離空間, (Y,d_Y) を完備距離空間とする. このとき (A.17.1) を満たす $(K_n)_{n=1}^\infty$ で ρ を定めれば, C(X,Y) は ρ により完備可分距離空間となる.

証明. 定理 A.17.2 と定理 A.17.3 より従う.

A.17.2 正規族

定義 A.17.5 (正規族). (X, d_X) , (Y, d_Y) を距離空間, $\mathscr{F} \subset C(X, Y)$ とする. \mathscr{F} の任意の列 $(f_n)_{n=1}^{\infty}$ が X で広義一様収束する (収束先が連続写像である必要はない) 部分列を含むとき, \mathscr{F} を正規族 (normal family) という.

定理 A.17.6 (正規族の相対コンパクト性). (X,d_X) を可分な局所コンパクト距離空間, (Y,d_Y) を距離空間とし, (A.17.1) を満たす $(K_n)_{n=1}^\infty$ で ρ を定め C(X,Y) に距離位相を導入する. このとき $\mathcal F$ を C(X,Y) の部分集合とすれば

 \mathscr{F} は正規族である $\iff \mathscr{F}$ は相対コンパクトである

が成り立つ.

定義 A.17.7 (一様同程度連続). (X,d_X) , (Y,d_Y) を距離空間, $\mathscr{F} \subset C(X,Y)$ とする. 任意の $\epsilon > 0$ に対し

$$d_X(p,q) < \delta \implies d_Y(f(p),f(q)) < \epsilon, \ (\forall f \in \mathscr{F})$$

を満たす $\delta > 0$ が存在するとき、 \mathcal{F} は一様同程度連続である (uniformly equicontinuous) という.

定理 A.17.8 (Ascoli-Arzela). (X, d_X) を可分な局所コンパクト距離空間とし、 (Y, d_Y) を距離空間とし、 $\mathscr F$ をC(X,Y) の部分集合とするとき、

$$\mathscr{F}$$
 が正規族である \Longleftrightarrow
$$\begin{cases} \mathscr{F} \text{ が任意のコンパクト集合 } K \subset X \text{ で一様同程度連続,} \\ \text{各点 } x \in X \text{ で} \overline{\left\{ f(x) \mid f \in \mathscr{F} \right\}} \text{ がコンパクトである.} \end{cases}$$
 (A.99)

証明.

第一段 $E = \{x_n\}_{n=1}^{\infty}$ を X で可算稠密な集合とし、 \mathscr{F} が (A.17.8) 右辺の仮定を満たしているとする. $K \subset X$ を任意のコンパクト集合とすれば、一様同程度連続性より任意の $\epsilon > 0$ に対し或る $\delta > 0$ が存在して

$$p, q \in K, d_X(p, q) < \delta \implies \sup_{f \in \mathscr{F}} d_Y(f(p), f(q)) < \frac{\epsilon}{3}$$

が成立する. また半径 $\delta/2$ の K の開被覆 B_1, \cdots, B_M が存在し、E は稠密であるから

$$p_i \in B_i \cap E$$
, $j = 1, \dots, M$

を選んでおく. 任意に $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}$ を取れば,

$$\overline{\left\{f_n(x_1)\mid n=1,2,\cdots\right\}}\subset\overline{\left\{f(x)\mid f\in\mathscr{F}\right\}}$$

より $\overline{\{f_n(x_1)\}_{n=1}^\infty}$ はコンパクトであるから収束部分列 $\{f_{n(k,1)}(x_1)\}_{k=1}^\infty$ が存在する.同様に $\{f_{n(k,1)}(x_2)\}_{k=1}^\infty$ の或る部分列 $\{f_{n(k,2)}(x_2)\}_{k=1}^\infty$ は Y で収束し,繰り返せば部分添数系

$${n(k,1)}_{k=1}^{\infty} \supset {n(k,2)}_{k=1}^{\infty} \supset {n(k,3)}_{k=1}^{\infty} \supset \cdots$$

が構成される. n(k):=n(k,k), $(\forall k\geq 1)$ とおけば任意の $x_i\in E$ に対して $\left\{f_{n(k)}(x_i)\right\}_{k=i}^\infty$ は収束列 $\left\{f_{n(k,i)}(x_i)\right\}_{k=1}^\infty$ の部分列となるから収束し,従って或る $N\geq 1$ が存在して

$$u, v > N \implies d_Y \left(f_{n(u)}(p_j), f_{n(v)}(p_j) \right) < \frac{\epsilon}{3}, \ (\forall j = 1, 2, \cdots, M)$$

を満たす. 任意に $x \in K$ を取れば或る j で $x \in B_i$ かつ $d_X(x, p_i) < \delta$ となるから, u, v > N なら

$$d_{Y}(f_{n(u)}(x), f_{n(v)}(x)) \leq d_{Y}\left(f_{n(u)}(x), f_{n(u)}(p_{j})\right) + d_{Y}\left(f_{n(u)}(p_{j}), f_{n(v)}(p_{j})\right) + d_{Y}\left(f_{n(v)}(p_{j}), f_{n(v)}(x)\right)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} < \epsilon$$
(A.100)

が成り立つ. $\{f_{n(k)}(x)\}_{k=1}^{\infty}$ は相対コンパクトであるから $\lim_{k\to\infty} f_{n(k)}(x) =: f(x) \in Y$ が存在し、(A.17.2) より $(f_{n(k)})_{k=1}^{\infty}$ は f に K で一様収束するから $\mathscr F$ は正規族である.

第二段 X の可分性と定理 A.5.61 より

$$K_n \subset K_{n+1}^{\circ}, \quad X = \bigcup_{n=1}^{\infty} K_n$$

を満たすコンパクト部分集合の列 $(K_n)_{n=1}^\infty$ が存在するから、これに対し (A.17.1) の距離 ρ を定める. $\mathscr F$ が正規族であるなら $\mathscr F$ は ρ に関して全有界となるから、任意の $\epsilon>0$ に対して

$$\mathscr{F} = \bigcup_{i=1}^{N} \left\{ f \in \mathscr{F} \mid \rho(f, f_i) < \epsilon \right\}$$

を満たす $\{f_i\}_{i=1}^N\subset \mathcal{F}$ が存在する. $K\subset X$ がコンパクトなら或る n で $K\subset K_n$ となり、或る $\delta>0$ が存在して

$$p, q \in K, d_X(p, q) < \delta \implies d_Y(f_i(p), f_i(q)) < \epsilon, (\forall i = 1, \dots, N)$$

が成り立つから、任意の $f \in \mathcal{F}$ に対し $\rho(f, f_i) < \epsilon$ を満たす f_i を取れば

$$p,q \in K, d_X(p,q) < \delta \implies d_Y(f(p),f(q)) \le d_Y(f(p),f_i(p)) + d_Y(f_i(p),f_i(q)) + d_Y(f_i(q),f(q))$$

$$\le 2^n \epsilon + \epsilon + 2^n \epsilon$$

$$= (2^{n+1} + 1)\epsilon$$

となる. すなわち $\mathscr F$ は任意のコンパクト部分集合上で一様同程度連続である. また任意の $x\in X$ に対し

$$\Gamma(x) \coloneqq \left\{ f(x) \mid \quad f \in \mathcal{F} \right\}$$

とおくとき, 任意の $\{w_n\}_{n=1}^{\infty} \subset \overline{\Gamma(x)}$ に対して

$$f_n(x) \in \Gamma(x), \quad d_Y(f_n(x), w_n) < \frac{1}{n}, \quad n = 1, 2, \dots$$

を満たす $ig(f_n(x)ig)_{n=1}^\infty$ を取れば, $\mathscr S$ が正規族であるから収束部分列 $ig(f_{n_k}(x)ig)_{k=1}^\infty$ が存在して

$$\lim_{k\to\infty} f_{n_k}(x) = \lim_{k\to\infty} w_{n_k} \in \overline{\Gamma(x)}$$

が成り立つから $\overline{\Gamma(x)}$ はコンパクトである.

付録 B

証明のページ

B.1 集合論理

B.1.1 関係

証明 (定理 A.1.72).

参考文献

- [1] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus second edition, 1998.
- [2] C. Chen, Study Notes in Matheamtics, available from http://www.stat.purdue.edu/~chen418/study_research/StochasticCalculus-note2.pdf, 2018/05/20.
- [3] Mathematics Stack Exchange, A question about stochastic processes and stopping times, available from https://math.stackexchange.com/questions/84271/a-question-about-stochastic-processes-and-stopping-times, 2018/05/20.
- [4] 現代集合論入門, 竹内外史
- [5] 数学原論 集合論 1, ブルバキ
- [6] 代数系入門, 松坂和夫

索引

T ₀ 空間, 197 T ₁ 空間, 197
T ₂ 空間, 197 T ₃ 空間, 197
13 空间, 197 T ₄ 空間, 197
T ₅ 空間, 197
T ₆ 空間, 197
T _{3½} 空間, 197
Cartesian 積, 119
Cauchy 有向点族, 228
Cauchy 列, 228
Dedekind 切断, 166
Frechet 空間, 246
Hausdorff 空間, 197
Kolmogorov の両立条件, 263
single-valued, 123
Tychonoff 空間, 197
值, 123
位相, 188
位相線型空間, 241
位相的に識別可能, 196
位相同型写像, 194
一様位相,220
一様化可能, 223
一様空間, 218 一様構造, 218
一様収束, 225
一様連続, 226
イデアル , 169
宇宙, 91
埋め込み , 209
開基, 204
開球, 233
開紹分, 206
開写像, 194 開集合, 188
開集合系, 188
開被覆, 192 可換律, 160
各点収束, 225
可算被覆, 192
可分, 204
関係, 121
関数族 (系), 187
関数でちょうど分離される, 196 関数で分離される, 196
完全正規 Hausdorff 空間, 197
完全正規空間, 197
完全正則 Hausdorff 空間, 197

```
完全正則空間,197
完備, 228
簡約律,160
合併, 114
含意,93
基, 204
基数, 181
基底, 204
帰納的な定義,90
極限, 211
極限数, 141
局所一様収束,225
局所コンパクト, 192
局所凸, 246
局所有限, 205
距離, 233
近縁,218
近縁系, 218
近傍, 189
近傍系, 189
近傍で分離される, 196
偽, 96
擬距離, 233
空虚な真, 99
空写像,128
空集合, 105
系, 187
結合律,160
項,89
広義一様収束,225
交叉, 115
固有差, 136
コンパクト,192
コンパクトー様収束, 225
コンパクト化, 209
コンパクトクラス,250
細分,206
差集合, 136
差類, 136
式,89
\sigma-局所有限, 205
\sigma-コンパクト, 192
自然数,142
自然な全射, 165
写像, 125
集合,92
集合族 (系), 187
集積点, 190
商位相, 207
商写像, 164, 207
商集合, 163
真類,92
順序, 122
順序集合,122
順序数,136
順序対,118
推移的類, 136
```

索引 332

推論規則, 92 正規 Hausdorff 空間, 197
正規 Hausdorff 空間, 197
T 把 应 图 107
正規空間, 197
整数,166
工以工 1 公 中間 400
正則 Hausdorff 空間, 197
正則空間, 197
整礎集合, 147
整列集合, 122
整列順序, 122
正717限/17,122
線型位相, 241
線型順序, 122
選択関数, 175
絶対斉次的 , 243
全射, 125
前順序, 122
全順序, 122
主順///, 122
全単射, 125
全部分正規 Hausdorff 空間, 197
全部分正規空間, 197
△去田 001
全有界, 231
相対位相, 192
相対コンパクト , 192
族, 187
*
対称 , 218
対象, 89
対等, 180
多項式環, 172
唯一つ存在する, 122
単射, 125
第一可算公理 , 2 04
第二可算公理 , 2 04
稠密, 204
直積, 174
対, 112
添数集合, 187
点族, 187
点列 , 211
HT0[-> 6 h] 047
点列コンパクト , 217
同相, 194
同相写像, 194
同相写像, 194
同相写像, 194 同值, 96
同值,96
同値, 96 同値関係, 121
同値, 96 同値関係, 121 同値類, 163
同値, 96 同値関係, 121 同値類, 163
同値, 96 同値関係, 121 同値類, 163 内部, 188
同値, 96 同値関係, 121 同値類, 163 内部, 188
同値,96 同値関係,121 同値類,163 内部,188 濃度,181
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161
同値,96 同値関係,121 同値類,163 内部,188 濃度,181
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否で変,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分空間,192
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定 7,93 標準削度,283 不定元,172 部分位相空間,192 部分集合,107
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定 7,93 標準削度,283 不定元,172 部分位相空間,192 部分集合,107
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否複覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分空間,192 部分集合,107 部分被覆,192
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定 7,93 標準削度,283 不定元,172 部分位相空間,192 部分集合,107
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定 7,93 被覆,192 標準的全射,165 複瀬)度,283 不定元,172 部分位相空間,192 部分空間,192 部分集合,107 部分被覆,192 部分有向点族,211
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定 7,93 被覆,192 標準的全射,165 被源度,283 不定元,172 部分位相空間,192 部分空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分類,107
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定 7,93 被覆,192 標準的全射,165 複瀬)度,283 不定元,172 部分位相空間,192 部分空間,192 部分集合,107 部分被覆,192 部分有向点族,211
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆準的全射,165 複深準的全射,165 複不定元,172 部分位相空間,192 部分空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分列,107 部分列,211
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分空間,192 部分整間,192 部分複覆,192 部分複覆,192 部分有向点族,211 部分列,107 部分列,211 分数体,166
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆準的全射,165 複深準的全射,165 複不定元,172 部分位相空間,192 部分空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分列,107 部分列,211
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分集局,107 部分類,192 部分類,107 部分刻,211 分数体,166 (集合が)分離される,196
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分空間,192 部分集高,107 部分類,107 部分類,211 分数体,166 (集合が)分離される,196 閉球,233
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分空間,192 部分集高,107 部分類,107 部分類,211 分数体,166 (集合が)分離される,196 閉球,233
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分空間,192 部分集合,107 部分被覆,192 部分類,107 部分列,211 分数体,166 (集合が)分離される,196 閉球,233 平行移動不変,243
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分列,211 分数体,166 (集合が)分離される,196 閉球,233 平行移動不変,243 閉式,91
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分列,211 分数体,166 (集合が)分離される,196 閉球,233 平行移動不変,243 閉式,91
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分列,211 分数体,166 (集合が)分離される,196 閉球,233 平行移動不変,243 閉式,91 閉集合,188
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分列,211 分数体,166 (集合が)分離される,196 閉球,233 平行移動不変,243 閉式,91
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデ,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分集合,107 部分被覆,192 部分類,107 部分類,211 分数体,166 (集成)33 平行移動不変,243 閉式,91 閉集合,188 閉包,188
同値,96 同値関係,121 同値類,163 内部,188 濃度,181 半群,161 パラコンパクト,206 左イデアル,169 否定,93 被覆,192 標準的全射,165 複素測度,283 不定元,172 部分位相空間,192 部分集合,107 部分被覆,192 部分有向点族,211 部分列,211 分数体,166 (集合が)分離される,196 閉球,233 平行移動不変,243 閉式,91 閉集合,188

密集点,190 無限に含まれる,215 矛盾,93 有限交叉性,193 有限交叉性,193 有限集合,211 有向点族,211 有向点族の収束,211 有理数体,166 量化,89 両立,220 類,92 連続,194 連続写像,194 論理式,89 論理積,93 論理和,93

付録C

C.1 使用文字

英字 (大)	英字 (小)	希字 (大)	希字 (小)	希字 (変)
Α	а	A	α	
В	b	В	β	
С	С	Γ	γ	
D	d	Δ	δ	
Е	е	Е	ϵ	ε
F	f	Z	ζ	
G	8	Н	η	
Н	h	Θ	θ	9
I	i	I	ι	
J	j	K	κ	
K	k	Λ	λ	
L	1	М	μ	
М	т	N	ν	
N	n	Ξ	ξ	
0	0	0	О	
P	р	П	π	ω
Q	9	P	ρ	Q
R	r	Σ	σ	ς
S	S	T	τ	
T	t	Υ	υ	
U	и	Φ	φ	
V	υ	X	χ	
W	w	Ψ	ψ	φ
X	x	Ω	ω	
Υ	у			
Z	Z			