GATE - 2009 - CE

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 37 - 48

- 1) Water flows through a 100 mm diameter pipe with a velocity of 0.015 m/sec. If the kinematic viscosity of water is 1.13×10^{-6} m²/sec, the friction factor of the pipe material is
 - a) 0.0015
 - b) 0.032
 - c) 0.037
 - d) 0.048
- 2) A rectangular open channel of width 4.5 m is carrying a discharge of 100 m³/sec. The critical depth of the channel is
 - a) 7.09 m
 - b) 3.69 m
 - c) 2.16 m
 - d) 1.31 m
- 3) Water ($\gamma_w = 9.879 \text{ kN/m}^3$) flows with a flow rate of 0.3 m³/sec through a pipe AB of 10 m length and of uniform cross section. The end 'B' is above end 'A' and the pipe makes an angle of 30°to the horizontal. For a pressure of 12 kN/m² at the end 'B', the corresponding pressure at end 'A' is
 - a) 12.0 kN/m^2
 - b) 17.0 kN/m²
 - c) 56.4 kN/m²
 - d) 61.4 kN/m^2
- 4) An agricultural land of 437 ha is to be irrigated for a particular crop. The base period of the crop is 90 days and the total depth of water required by the crop is 105 cm. If a rainfall of 15 cm occurs during the base period, the duty of irrigation water is
 - a) 437 ha/cumec
 - b) 486 ha/cumec
 - c) 741 ha/cumec

1

d) 864 ha/cumec

5) The correct match of Column I with Column II is

Column I	Column II		
P. Coriolis effect	1. Rotation of earth		
Q. Fumigation	2. Lapse rate and vertical temperature profile		
R. Ozone layer	3. Inversion		
S. Maximum mixing depth (mixing height)	4. Dobson		

- a) P-2, Q-1, R-4, S-3
- b) P-2, Q-1, R-3, S-4
- c) P-1, Q-3, R-2, S-4
- d) P-1, Q-3, R-4, S-2
- 6) A horizontal flow primary clarifier treats wastewater in which 10%, 60% and 30% of particles have settling velocities of 0.1 mm/s, 0.2 mm/s and 1.0 mm/s respectively. What would be the total percentage of particles removed if clarifier operates at a Surface Overflow Rate (SOR) of 43.2 m³/m²·d?
 - a) 43 %
 - b) 56 %
 - c) 86 %
 - d) 100 %
- 7) An aerobic reactor receives wastewater at a flow rate of 500 m³/d having a COD of 2000 mg/L. The effluent COD is 400 mg/L. Assuming that wastewater contains 80% biodegradable waste, the daily volume of methane produced by the reactor is
 - a) 0.224 m^3
 - b) 0.280 m³
 - c) 224 m^3
 - d) 280 m^3
- 8) The correct match of $Column\ I$ with $Column\ II$ is

Column I	Column II	
P. Grit chamber	1. Zone settling	
Q. Secondary settling tank	2. Stoke's Law	
R. Activated sludge process	3. Aerobic	
S. Trickling Filter	4. Contact stabilisation	

- a) P-1, Q-2, R-3, S-4
- b) P-2, Q-1, R-3, S-4
- c) P-1, Q-2, R-4, S-3

- d) P-2, Q-1, R-4, S-3
- 9) Which of the following stress combinations are appropriate in identifying the critical condition for the design of concrete pavements ?

Type of Stress	Location	
P. Load	1. Corner	
Q. Temperature	2. Edge	
	3. Interior	

- a) P-2, Q-3
- b) P-1, Q-3
- c) P-3, Q-1
- d) P-2, Q-2
- 10) A crest vertical curve joins two gradients of (+3%) and (-2%) for a design speed of 80 km/h and the corresponding stopping sight distance of 120 m. The height of driver's eye and the object above the road surface are 1.20 m and 0.15 m respectively. The curve length (which is less than stopping sight distance) to be provided is
 - a) 120 m
 - b) 152 m
 - c) 163 m
 - d) 240 m
- 11) On a specific highway, the speed-density relationship follows the Greenberg's model $\left[v = v_f \ln\left(\frac{k_j}{k}\right)\right]$, where v_f and k_j are the free flow speed and jam density respectively. When the highway is operating at a capacity, the density obtained as per this model is
 - a) $e \cdot k_j$
 - b) k_j
 - c) $\frac{k}{2}$
 - d) $\frac{k_j}{e}$
- 12) A three-phase traffic signal at an intersection is designed for flows shown in the figure below. There are six groups of flows identified by the numbers 1 through 6. Among these 1, 3, 4, and 6 are through flows and, 2 and 5 are right turning. Which phasing scheme is **not feasible**?

Combination choice	Phase I	Phase II	Phase III
P	1, 4	2, 5	3, 6
Q	1, 2	4, 5	3, 6
R	2, 5	1, 3	4, 6
S	1, 4	2, 6	3, 5

- a) Pb) Qc) Rd) S