

KERNEL OPERATIONS WITH SYMBOLIC TENSORS ON THE GPU IN R

Ghislain Durif² & Benjamin Charlier¹ & Chloé Serre-Combe¹ & <u>Amélie Vernay</u>^{1,*}

¹IMAG, Université de Montpellier, CNRS UMR 5149, Montpellier, France

²LBMC, ENS de Lyon, CNRS UMR 5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France

^{*}amelie.vernay@umontpellier.fr

A motivating example

For i = 1, ..., M we want to compute the **reduction**

$$a_i = \sum_{j=1}^{N} K(\mathbf{x}_i, \mathbf{y}_j) b_j, \tag{1}$$

with

- ▶ source points $y_1, ..., y_N \in \mathbb{R}^D$ with associated weights $b_1, ..., b_N \in \mathbb{R}$
- ▶ target points $\mathbf{x}_1 \dots, \mathbf{x}_M \in \mathbb{R}^D$
- a Gaussian kernel $K(\mathbf{x}_i, \mathbf{y}_j) = \exp\left(-\|\mathbf{x}_i \mathbf{y}_j\|_2^2\right)$

A motivating example

For i = 1, ..., M we want to compute the **reduction**

$$a_i = \sum_{j=1}^{N} K(\mathbf{x}_i, \mathbf{y}_j) b_j, \tag{1}$$

with

- ▶ source points $y_1, ..., y_N \in \mathbb{R}^D$ with associated weights $b_1, ..., b_N \in \mathbb{R}$
- ▶ target points $\mathbf{x}_1 \dots, \mathbf{x}_M \in \mathbb{R}^D$
- ► a Gaussian kernel $K(\mathbf{x}_i, \mathbf{y}_i) = \exp(-\|\mathbf{x}_i \mathbf{y}_i\|_2^2)$

Limitations of basic routines

- ► computation of all the elements $(K(\mathbf{x}_i, \mathbf{y}_i))_{i,j} \to \mathcal{O}(MN)$ time complexity
- ► storage as a dense $M \times N$ matrix $\rightarrow \mathcal{O}(MN)$ memory usage

A motivating example

For i = 1, ..., M we want to compute the **reduction**

$$a_i = \sum_{j=1}^{N} K(\mathbf{x}_i, \mathbf{y}_j) b_j, \tag{1}$$

with

- ▶ source points $y_1, ..., y_N \in \mathbb{R}^D$ with associated weights $b_1, ..., b_N \in \mathbb{R}$
- ▶ target points $\mathbf{x}_1 \dots \mathbf{x}_M \in \mathbb{R}^D$
- ► a Gaussian kernel $K(\mathbf{x}_i, \mathbf{y}_i) = \exp(-\|\mathbf{x}_i \mathbf{y}_i\|_2^2)$

Limitations of basic routines

- ► computation of all the elements $(K(\mathbf{x}_i, \mathbf{y}_i))_{i,j} \to \mathcal{O}(MN)$ time complexity
- ► storage as a dense $M \times N$ matrix $\rightarrow \mathcal{O}(MN)$ memory usage

ightarrow Impossible in high dimension! \leftarrow

What RKeOps can do

KeOps: Kernel Operations

What RKeOps can do

RKeOps: Kernel Operations in R

- Perform fast reductions of very large arrays (M, $N \simeq 10^6$),

- Perform fast reductions of very large arrays (M, $N \simeq 10^6$),
- ► with effortless computation on GPU without memory overflow,

- Perform fast reductions of very large arrays (M, $N \simeq 10^6$),
- with effortless computation on GPU without memory overflow,
- with automatic differentiation up to arbitrary orders.

- Perform fast reductions of very large arrays (M, $N \simeq 10^6$),
- with effortless computation on GPU without memory overflow,
- with automatic differentiation up to arbitrary orders.

In short, RKeOps offers gains on runtime and memory usage by performing on-the-fly compilation with symbolic matrices.

 \rightarrow https://www.kernel-operations.io \leftarrow

Symbolic matrices: Matrices whose entries are given by a mathematical formula.

Symbolic matrices: Matrices whose entries are given by a mathematical formula.

RKeOps LazyTensors: Wrappers around R data arrays that embody symbolic matrices.

Symbolic matrices: Matrices whose entries are given by a mathematical formula.

RKeOps LazyTensors: Wrappers around **R** data arrays that embody symbolic matrices.

- 1. import RKeOps
- 2. create LazyTensors with your data
- 3. perform any kinds of reduction using friendly R native syntax

Let us perform the Gaussian reduction (1) with RKeOps: $\left[\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j\right]_{i=1}^{M}$

Total running time of the script: 4.373 sec. ¹

^{1.} using 16 cores of an Intel Xeon Gold 6142 processor

Let us perform the Gaussian reduction (1) with RKeOps: $\left[\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j\right]_{i=1}^{M}$

```
# Create large point clouds
N <- 10<sup>5</sup>: D <- 15
x <- matrix(rnorm(N*D), N, D)
v <- matrix(rnorm(N*D), N, D)</pre>
b <- matrix(rnorm(N*D), N, D)
```

Total running time of the script: 4.373 sec. ¹

^{1.} using 16 cores of an Intel Xeon Gold 6142 processor

Let us perform the Gaussian reduction (1) with RKeOps: $\left[\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j\right]_{i=1}^{M}$

```
# Create large point clouds
N <- 10<sup>5</sup>: D <- 15
x <- matrix(rnorm(N*D), N, D)
v <- matrix(rnorm(N*D), N, D)</pre>
b <- matrix(rnorm(N*D), N, D)
# Turn dense arrays into symbolic matrices
x i <- LazyTensor(x, "i")
y_j <- LazyTensor(y, "j")</pre>
b j <- LazyTensor(b, "j")</pre>
K ij \leftarrow \exp(-sum((x i - y j)^2)) # symbolic N×N Gaussian kernel
```

Total running time of the script: 4.373 sec. ¹

^{1.} using 16 cores of an Intel Xeon Gold 6142 processor

Let us perform the Gaussian reduction (1) with RKeOps: $\left[\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j\right]_{i=1}^{M}$

```
# Create large point clouds
N <- 10<sup>5</sup>: D <- 15
x <- matrix(rnorm(N*D), N, D)
v <- matrix(rnorm(N*D), N, D)</pre>
b <- matrix(rnorm(N*D), N, D)
# Turn dense arrays into symbolic matrices
x i <- LazyTensor(x, "i")
y_j <- LazyTensor(y, "j")</pre>
b j <- LazyTensor(b, "j")</pre>
K ij \leftarrow \exp(-sum((x i - y j)^2)) # symbolic N×N Gaussian kernel
# Call sum() reduction to trigger the computation
a i <- sum(K ij * b j, index = "j")
dim(a i); class(a i)
# [1] 100000 15
# [1] "matrix" "arrav"
```

Total running time of the script: 4.373 sec. 1

1. using 16 cores of an Intel Xeon Gold 6142 processor

Generic reduction with RKeOps

RKeOps supports all kinds of reduction. For $1 \le i \le M$, compute

$$\left[\mathsf{Reduction}_{j=1,\ldots,\mathsf{M}} \textit{F}(\mathbf{p}^1,\mathbf{p}^2,\ldots,\mathbf{x}_i^1,\mathbf{x}_i^2,\ldots,\mathbf{y}_j^1,\mathbf{y}_j^2,\ldots) \right]_{i=1,\ldots,\mathsf{M}}$$

where

- ▶ "Reduction" can be any reduction over a dimension (Sum, Max, ArgMax, LogSumExp...)
- ► F is a vector-valued formula
- x_i^1, x_i^2, \dots are vector variables indexed by i
- y_i^1, y_i^2, \dots are vector variables indexed by j
- p^1, p^2, \dots are vector parameter fixed across indices

2. https://github.com/getkeops/keops/blob/main/rkeops/vignettes/LazyTensor_rkeops.Rmd

Generic reduction with RKeOps

RKeOps supports all kinds of reduction. For $1 \le i \le M$, compute

$$\left[\mathsf{Reduction}_{j=1,\ldots,\mathsf{M}} \textit{F}(\mathsf{p}^1,\mathsf{p}^2,\ldots, \mathsf{x}_i^1,\mathsf{x}_i^2,\ldots, \mathsf{y}_j^1,\mathsf{y}_j^2,\ldots) \right]_{i=1,\ldots,\mathsf{M}}$$

where

- ▶ "Reduction" can be any reduction over a dimension (Sum, Max, ArgMax, LogSumExp...)
- ► F is a vector-valued formula
- x_i^1, x_i^2, \dots are vector variables indexed by i
- y_i^1, y_i^2, \dots are vector variables indexed by j
- p^1, p^2, \dots are vector parameter fixed across indices

The full range of reductions and operations provided by RKeOps is available in the vignette².

2. https://github.com/getkeops/keops/blob/main/rkeops/vignettes/LazyTensor_rkeops.Rmd

Generic reduction with RKeOps

RKeOps supports all kinds of reduction. For $1 \le i \le M$, compute

$$\left[\mathsf{Reduction}_{j=1,\ldots,\mathsf{M}} \textit{F}(\mathbf{p}^1,\mathbf{p}^2,\ldots,\mathbf{x}_i^1,\mathbf{x}_i^2,\ldots,\mathbf{y}_j^1,\mathbf{y}_j^2,\ldots) \right]_{i=1,\ldots,\mathsf{M}}$$

where

- ▶ "Reduction" can be any reduction over a dimension (Sum, Max, ArgMax, LogSumExp...)
- ► F is a vector-valued formula
- x_i^1, x_i^2, \dots are vector variables indexed by i
- y_i^1, y_i^2, \dots are vector variables indexed by j
- p^1, p^2, \dots are vector parameter fixed across indices

The full range of reductions and operations provided by RKeOps is available in the vignette ².

Note: RKeOps also supports reductions on complex data!

2. https://github.com/getkeops/keops/blob/main/rkeops/vignettes/LazyTensor_rkeops.Rmd

Example I - K-means clustering

At each iteration, compute $\underset{j=1,...,K}{\operatorname{argmin}} \|\mathbf{x}_i - \mathbf{c}_j\|$ for i = 1,...,N, where \mathbf{c}_j is the centroid of cluster j.

Example of 50-means clustering with $N=10^5$ points in \mathbb{R}^2 and the Euclidean distance. Time for 10 iterations on CPU: 2.224 sec. (0.222 sec. per iteration)

Example II - Kernel interpolation

For $\lambda \in \mathbb{R}_+$, let us solve a linear system of the form

$$a^* = \underset{a}{\text{argmin}} \frac{1}{2} \langle a, (\lambda Id + K)a \rangle - \langle a, b \rangle = (\lambda Id + K)^{-1}b$$

where **K** is a symmetric, positive definite linear operator defined with a symbolic formula.

Example of 1D interpolation with a Gaussian kernel matrix on $N = 10^4$ points.

Time to perform the interpolation with a precision of 10^{-6} on CPU: 13 sec.

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}}\mathbf{a} = \partial_{\mathbf{y}}(a_i)_{i=1,...,M} = \partial_{\mathbf{y}}\left(\sum_{j=1}^{N} k(\mathbf{x}_i,\mathbf{y}_j)b_j\right)_{i=1,...,N}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps → provides an autodiff engine for formulae wrapped in **Grad()**:

Total running time of the script: 11.975 sec.³

using 16 cores of an Intel Xeon Gold 6142 processor

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}} \mathbf{a} = \partial_{\mathbf{y}} (a_i)_{i=1,...,M} = \partial_{\mathbf{y}} \left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j \right)_{i=1,...,M}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- Gradient Reduction(Expt-spars(x,y)) * N., 0,, y, e)*
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec.³

3. using 16 cores of an *Intel Xeon Gold 6142* processor

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}} \mathbf{a} = \partial_{\mathbf{y}} (a_i)_{i=1,...,M} = \partial_{\mathbf{y}} \left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j \right)_{i=1,...,M}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- Gradient Reduction(Expt.sqbist(x,y)) & N., 01, y, 01
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec. ³

3. using 16 cores of an *Intel Xeon Gold 6142* processor

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}} \mathbf{a} = \partial_{\mathbf{y}} (a_i)_{i=1,...,M} = \partial_{\mathbf{y}} \left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j \right)_{i=1,...,M}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- 'Grad(Sum_Reduction(Exp(-SqDist(x,y)) * b , 0), y, e)'
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec. 3

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}} \mathbf{a} = \partial_{\mathbf{y}} (a_i)_{i=1,...,M} = \partial_{\mathbf{y}} \left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j) b_j \right)_{i=1,...,M}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- 'Grad(Sum_Reduction(Exp(-SqDist(x,y)) * b , 0), y, e)'
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec. 3

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}}\mathbf{a} = \partial_{\mathbf{y}}(a_i)_{i=1,...,M} = \partial_{\mathbf{y}}\left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j)b_j\right)_{i=1,...,N}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- 'Grad(Sum_Reduction(Exp(-SqDist(x,y)) * b , 0), y, e)'
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec. ³

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}}\mathbf{a} = \partial_{\mathbf{y}}(a_i)_{i=1,...,M} = \partial_{\mathbf{y}}\left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j)b_j\right)_{i=1,...,N}$$

RKeOps LazyTensors \rightarrow do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- 'Grad(Sum_Reduction(Exp(-SqDist(x,y)) * b , 0), y, e)'
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec. 3

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}}\mathbf{a} = \partial_{\mathbf{y}}(a_i)_{i=1,...,M} = \partial_{\mathbf{y}}\left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j)b_j\right)_{i=1,...,N}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- 'Grad(Sum_Reduction(Exp(-SqDist(x,y)) * b , 0), y, e)'
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec. 3

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}}\mathbf{a} = \partial_{\mathbf{y}}(a_i)_{i=1,...,M} = \partial_{\mathbf{y}}\left(\sum_{j=1}^{N} k(\mathbf{x}_i, \mathbf{y}_j)b_j\right)_{i=1,...,N}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- 'Grad(Sum_Reduction(Exp(-SqDist(x,y)) * b , 0), y, e)'
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec. ³

What if we need the gradient of $\mathbf{a} = (a_1, \dots, a_M)$, say with respect to \mathbf{y} ?

$$\partial_{\mathbf{y}}\mathbf{a} = \partial_{\mathbf{y}}(a_i)_{i=1,...,M} = \partial_{\mathbf{y}}\left(\sum_{j=1}^{N} k(\mathbf{x}_i,\mathbf{y}_j)b_j\right)_{i=1,...,M}$$

RKeOps LazyTensors → do not support automatic differentiation (yet!)

KeOps \rightarrow provides an autodiff engine for formulae wrapped in **Grad()**:

```
# Define a formula with a gradient
formula_grad <- 'Grad(Sum_Reduction(Exp(-SqDist(x,y)) * b , 0), y, e)'
variables <- c('x = Vi(15)', 'y = Vj(15)', 'b = Vj(15)', 'e = Vi(15)')
# Compile the corresponding operator
gaussian_kernel_grad <- keops_kernel(formula_grad, variables)
# Declare a new tensor used as the input of the gradient operator
e <- matrix(rnorm(N*D), N, D)
# Computation
res <- gaussian_kernel_grad(list(x, y, b, e))</pre>
```

Total running time of the script: 11.975 sec.³

3. using 16 cores of an Intel Xeon Gold 6142 processor

Technical specifications

KeOps 4 Core library

- ► written in C++/Python
- dependencies: a C++ compiler (g++, clang) and nvrtc headers provided by CUDA for GPU computing

Benjamin Charlier et al. "Kernel Operations on the GPU, with Autodiff, without Memory Overflows". In: Journal of Machine Learning Research 22.74 (2021), pp. 1–6. URL: http://jmlr.org/papers/v22/20-275.html.

^{5.} Kevin Ushey, JJ Allaire, and Yuan Tang. reticulate: Interface to 'Python'. https://rstudio.github.io/reticulate/, https://github.com/rstudio/reticulate. 2023.

Technical specifications

KeOps ⁴ Core library

- written in C++/Python
- dependencies: a C++ compiler (g++, clang) and nvrtc headers provided by CUDA for GPU computing

PyKeOps Python binders for KeOps (both NumPy and PyTorch)

^{4.} Benjamin Charlier et al. "Kernel Operations on the GPU, with Autodiff, without Memory Overflows". In: Journal of Machine Learning Research 22.74 (2021), pp. 1–6. URL: http://jmlr.org/papers/v22/20-275.html.

^{5.} Kevin Ushey, JJ Allaire, and Yuan Tang. reticulate: Interface to 'Python'. https://rstudio.github.io/reticulate/, https://github.com/rstudio/reticulate. 2023.

Technical specifications

KeOps 4 Core library

- ► written in C++/Python
- dependencies: a C++ compiler (g++, clang) and nvrtc headers provided by CUDA for GPU computing

PyKeOps Python binders for KeOps (both NumPy and PyTorch)

RKeOps R binder for KeOps

- ► since v.2.0, directly uses PyKeOps through reticulate 5
- ► GPU computing directly inside **R**: just type **rkeops_use_gpu()**!
- ► soon on the CRAN, already available on github:

```
install.packages("remotes")
remotes::install_github("getkeops/keops", subdir = "rkeops")
```

- 4. Benjamin Charlier et al. "Kernel Operations on the GPU, with Autodiff, without Memory Overflows". In: Journal of Machine Learning Research 22.74 (2021), pp. 1–6. URL: http://jmlr.org/papers/v22/20-275.html.
- 5. Kevin Ushey, JJ Allaire, and Yuan Tang. reticulate: Interface to 'Python'. https://rstudio.github.io/reticulate/, https://github.com/rstudio/reticulate. 2023.

Benchmark I - Gaussian convolution

Runtimes 6 for Gaussian convolution with N samples in \mathbb{R}^{15} .

6. CPU: 16 cores of an Intel Xeon Gold 6142 processor. GPU: Nvidia A10.

Runtimes 7 for 10-Nearest Neighbors search with N samples in \mathbb{R}^3 .

7. CPU: 16 cores of an Intel Xeon Gold 6142 processor. GPU: Nvidia A10.

Take home message

RKeOps: Fast kernel operations on GPU without memory overflow and with automatic differenciation, directly inside R

- full documentation, tutorials, examples, benchmarks and more at https://www.kernel-operations.io
- active development and open contributions at https://github.com/getkeops/keops/blob/main/rkeops/
- remotes::install_github("getkeops/keops", subdir = "rkeops")
- ► available on CRAN soon!

Thank you for your attention! Questions?

References i

- [1] Benjamin Charlier et al. "Kernel Operations on the GPU, with Autodiff, without Memory Overflows". In: Journal of Machine Learning Research 22.74 (2021), pp. 1–6. URL: http://jmlr.org/papers/v22/20-275.html.
- [2] Kevin Ushey, JJ Allaire, and Yuan Tang. reticulate: Interface to 'Python'. https://rstudio.github.io/reticulate/, https://github.com/rstudio/reticulate. 2023.