

SISTEMA DISTRIBUIDO

NOMES:

Caroline Yumi Uehara Lucas Kenji Uezu Leonardo de Jesus Diz Conde Victor Yuji Saito

BLOCKCHAIN

Agenda de Hoje

- História
- Algoritmos de consenso
- Smart contract e Dapp
- POC

História

Linha do tempo

BLOCKCHAIN

Block 10
Prev_Hash Timestamp

Tx_Root Nonce

Block 11
Prev_Hash Timestamp

Tx_Root Nonce

Block 12
Prev_Hash Timestamp

Tx_Root Nonce

Breve Introdução

- Rede/Arquitetura P2P
- Ledger (livro-razão)
- Hashes

ALGORITMOS DE CONSENSO

Os mais utilizados são:

- Proof of Work
- Proof of Stake
- Practical Byzantine Fault Tolerance
- Delegate Proof of Stake

Utilizado na blockchain Neo:

Delegated Byzantine Fault Tolerance

PROOF OF WORK

- Surgiu em 1993
- Funções vinculados à memória
- Bitcoin
 - Rede da blockchain
 - Validação de 50%
 - Mineração
- Vantagens e Desvantagens
 - Fácil validação
 - Difícil de calcular
 - Alto custo de energia

PROOF OF STAKE

- Conceito
 - Surgiu em 2012
 - Sorteio de usuário para gerar o próximo hash
 - Proporcional
 - Validação do hash
- Consome menos recursos computacionais

DELEGATE PROOF OF STAKE

- Surgiu em 2014
- Evolução do Proof of Stake
- Usuários da blockchain podem votar em quem deve fazer a validação do hash gerado
- Usuários que tentarem forjar o hash serão punidos

PRACTICAL BYZANTINE FAULT TOLERANCE

- Byzantine Fault
 - 1978
 - Condição particular
 - Computação distribuída
 - Inconsistências
 - Apresenta sintomas diferentes para diferentes observadores
- Vantagens
 - Seguro em ambientes assíncronos
 - Defesa contra Byzantine Fault

DELEGATED BYZANTINE FAULT TOLERANCE

- Utilizado na Blockchain Neo
- Baseado no PracticalByzantine Fault Tolerance
- Participação em larga escala
- Votação

Smart Contracts e Dapp

- Atomicidade das operações
- Armazenados na blockchain
 - Transparência
 - Imutável
- Dapp

ATIVIDADE PRÁTICA

NO LABORATÓRIO

PROPOSTA:

Criar um Smart Contract básico em Python para uma rede privada blockchain Neo.

LINK GITHUB:

Referências:

- ALIAGA, Y. E. M.; HENRIQUES, M. A. A. Uma comparação de mecanismos de consenso em blockchains. University of Campinas. Campinas. 2017.
- HABER, S.; STORNETTA, W. S. How to time-stamp a digital document. Journal of Cryptology, p. 99-111, 1991. Disponivel em:
 - https://link.springer.com/content/pdf/10.1007/BF00196791.pdf. Acesso em: 11 Junho 2022.
- BAYER, D.; HABER, S.; STORNETTA, W. S. Improving the Efficiency and Reliability of Digital, Março 1992. Disponivel em: https://www.math.columbia.edu/ ~bayer/papers/Timestamp_BHS93.pdf>. Acesso em: 11 Junho 2022.
- BACK, A. Hashcash A Denial of Service Counter-Measure. hashcash.org, 1 Agosto 2002. Disponivel em:
 - http://www.hashcash.org/papers/hashcash.pdf. Acesso em: 12 Junho 2022.

Referências:

- ALIAGA, Y. E. M.; HENRIQUES, M. A. A. Uma comparação de mecanismos de consenso em blockchains. University of Campinas. Campinas. 2017.
- IBM. IBM. What are smart contracts on blockchain?, 11 Junho 2022. Disponivel em: https://www.ibm.com/topics/smart-contracts.
- NAKAMOTO, S. bitcoin. Bitcoin: A Peer-to-Peer Electronic Cash System, 21 Outubro 2008. Disponivel em: https://bitcoin.org/bitcoin.pdf. Acesso em: 4 Junho 2022.
- https://docs.neo.org/v2/tutorials/en-us/7-consensus/3-PBFT_and_DBFT.html

OBRIGADO.

