Synthetic Financial Datasets For Fraud Detection - Project

In this project, I tackle the challenge of fraud detection in mobile-money ecosystems using PaySim - a large, high-fidelity synthetic dataset that mirrors real transaction flows and injected malicious behavior. The dataset can be found at https://www.kaggle.com/datasets/ealaxi/paysim1.

Headers

step - maps a unit of time in the real world. In this case 1 step is 1 hour of time. Total steps 744 (30 days simulation).

type - CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.

amount - amount of the transaction in local currency.

nameOrig - customer who started the transaction

oldbalanceOrg - initial balance before the transaction

newbalanceOrig - new balance after the transaction.

nameDest - customer who is the recipient of the transaction

oldbalanceDest - initial balance recipient before the transaction. Note that there is not information for customers that start with M (Merchants).

newbalanceDest - new balance recipient after the transaction. Note that there is not information for customers that start with M (Merchants).

isFraud - This is the transactions made by the fraudulent agents inside the simulation. In this specific dataset the fraudulent behavior of the agents aims to profit by taking control or customers accounts and try to empty the funds by transferring to another account and then cashing out of the system.

isFlaggedFraud - The business model aims to control massive transfers from one account to another and flags illegal attempts. An illegal attempt in this dataset is an attempt to transfer more than 200.000 in a single transaction.

NOTE: Transactions which are detected as fraud are cancelled, so for fraud detection these columns (oldbalanceOrg, newbalanceOrig, oldbalanceDest, newbalanceDest) must not be used.

Importing dependencies

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
from scipy.stats import pearsonr
from scipy.stats import shapiro
from scipy.stats import spearmanr
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from lightgbm.sklearn import LGBMClassifier
import xgboost as xgb
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, roc_auc_score, roc_curve
import joblib
```

Data Extraction and Unpacking

```
import zipfile
with zipfile.ZipFile('Synthetic Financial Datasets For Fraud Detection.zip', 'r') as zip:
    zip.extractall()
```

∨ Reading CSV

```
df_financial = pd.read_csv('PS_20174392719_1491204439457_log.csv')
df_financial.head(5)
```

$\overline{\Rightarrow}$	step		type	amount	nameOrig	oldbalanceOrg	g newbalanceOrig nameDe		oldbalanceDest	newbalance
	0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	0.0	
	1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	0.0	
	2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C553264065	0.0	
	3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C38997010	21182.0	
	4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	0.0	

Dataset Overview and Structure

```
df_financial.info()
```

```
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6362620 entries, 0 to 6362619
    Data columns (total 11 columns):
    # Column
                   Dtype
    0 step
                      int64
object
float64
    1
        type
     2 amount
     3 nameOrig object
     4 oldbalanceOrg float64
        newbalanceOrig float64
       nameDest
                       object
     6
     7 oldbalanceDest float64
    8 newbalanceDest float64
    9 isFraud int64
10 isFlaggedFraud int64
    dtypes: float64(5), int64(3), object(3)
    memory usage: 534.0+ MB
```

Data Cleaning - Missing Values and Duplicates

```
print("Missing Values:")
print(df_financial.isnull().sum())
print("Null 'amount' Values:")
print((df_financial['amount'] == 0).sum())
print('Number of Duplicates: ',df_financial.duplicated().sum())
→ Missing Values:
     step
     type
     amount
    nameOrig
     oldbalanceOrg
    newbalanceOrig 0
     nameDest
    oldbalanceDest
    newbalanceDest
    isFraud
     isFlaggedFraud
     dtype: int64
     Null 'amount' Values:
     Number of Duplicates: 0
```

∨ Exploratory Data Analysis (EDA)

Let's take a look at the 16 transactions with null 'amount' values.

df_financial.loc[df_financial['amount'] == 0]

$\overline{\Rightarrow}$		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbal
	2736447	212	CASH_OUT	0.0	C1510987794	0.0	0.0	C1696624817	0.00	
	3247298	250	CASH_OUT	0.0	C521393327	0.0	0.0	C480398193	0.00	
	3760289	279	CASH_OUT	0.0	C539112012	0.0	0.0	C1106468520	538547.63	1
	5563714	387	CASH_OUT	0.0	C1294472700	0.0	0.0	C1325541393	7970766.57	7!
	5996408	425	CASH_OUT	0.0	C832555372	0.0	0.0	C1462759334	76759.90	
	5996410	425	CASH_OUT	0.0	C69493310	0.0	0.0	C719711728	2921531.34	2
	6168500	554	CASH_OUT	0.0	C10965156	0.0	0.0	C1493336195	230289.66	4
	6205440	586	CASH_OUT	0.0	C1303719003	0.0	0.0	C900608348	1328472.86	1;
	6266414	617	CASH_OUT	0.0	C1971175979	0.0	0.0	C1352345416	0.00	
	6281483	646	CASH_OUT	0.0	C2060908932	0.0	0.0	C1587892888	0.00	
	6281485	646	CASH_OUT	0.0	C1997645312	0.0	0.0	C601248796	0.00	
	6296015	671	CASH_OUT	0.0	C1960007029	0.0	0.0	C459118517	27938.72	
	6351226	702	CASH_OUT	0.0	C1461113533	0.0	0.0	C1382150537	107777.02	
	6362461	730	CASH_OUT	0.0	C729003789	0.0	0.0	C1388096959	1008609.53	10
	6362463	730	CASH_OUT	0.0	C2088151490	0.0	0.0	C1156763710	0.00	
	6362585	741	CASH_OUT	0.0	C312737633	0.0	0.0	C1400061387	267522.87	

Insight: Transactions with null 'amount' values are both fraudulent and withdrawals.

But is every fraudulent transaction a withdrawal with a null 'amount'?

df_financial.loc[df_financial['isFraud'] == 1]

\Rightarrow										
~		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	ne
	2	1	TRANSFER	181.00	C1305486145	181.00	0.0	C553264065	0.00	
	3	1	CASH_OUT	181.00	C840083671	181.00	0.0	C38997010	21182.00	
	251	1	TRANSFER	2806.00	C1420196421	2806.00	0.0	C972765878	0.00	
	252	1	CASH_OUT	2806.00	C2101527076	2806.00	0.0	C1007251739	26202.00	
	680		TRANSFER	20128.00	C137533655	20128.00	0.0	C1848415041	0.00	
	6362615	743	CASH_OUT	339682.13	C786484425	339682.13	0.0	C776919290	0.00	
	6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C1881841831	0.00	
	6362617	743	CASH_OUT	6311409.28	C1162922333	6311409.28	0.0	C1365125890	68488.84	
	6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.0	C2080388513	0.00	
	6362619	743	CASH_OUT	850002.52	C1280323807	850002.52	0.0	C873221189	6510099.11	
	8213 rows ×		lumns							

No.

Insight: Not every fraudulent transaction has a null 'amount'.

Let us examine the descriptive statistics of the dataset.

df_financial.describe()

>	step		amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	isF
	count	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6
	mean	2.433972e+02	1.798619e+05	8.338831e+05	8.551137e+05	1.100702e+06	1.224996e+06	1.290820e-03	2
	std	1.423320e+02	6.038582e+05	2.888243e+06	2.924049e+06	3.399180e+06	3.674129e+06	3.590480e-02	1
	min	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0
	25%	1.560000e+02	1.338957e+04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0
	50%	2.390000e+02	7.487194e+04	1.420800e+04	0.000000e+00	1.327057e+05	2.146614e+05	0.000000e+00	0
	75%	3.350000e+02	2.087215e+05	1.073152e+05	1.442584e+05	9.430367e+05	1.111909e+06	0.000000e+00	0
	max	7.430000e+02	9.244552e+07	5.958504e+07	4.958504e+07	3.560159e+08	3.561793e+08	1.000000e+00	1

It seems there are some outliers in the 'amount' statistics, possibly indicating fraudulent transactions. Let's examine the boxplot chart.

sns.boxplot(df_financial['amount'])

Since the linear scale is not appropriate, let's plot the 'amount' histogram for both legitimate and fraudulent transactions.

```
ax2.hist(fraud, bins=bins_f)
ax2.set_xscale('log')
ax2.set_title(' Fraudulent')
ax2.set_xlabel('Amount')

plt.tight_layout()
plt.show()
```


Insight: Fraudulent transactions tend to have higher values more frequently compared to legitimate transactions.

Let's examine the statistical differences between the two.

df_financial.groupby("isFraud").describe()

$\overline{\Rightarrow}$		step							amount		 newbalanceDe	
		count	mean	std	min	25%	50%	75%	max	count	mean	 75%
	isFraud											
	0	6354407.0	243.235663	142.140194	1.0	156.0	239.0	334.0	718.0	6354407.0	1.781970e+05	 1111975.345
	1	8213.0	368.413856	216.388690	1.0	181.0	367.0	558.0	743.0	8213.0	1.467967e+06	 1058725.220
	2 rows × 50	6 columns										

Insight: There are 6,354,407 legitimate and 8,213 fraudulent transactions.

Examining graphically transactions by type:

```
fig = px.histogram(df_financial, x='type', text_auto=True)
fig.update_layout(
    title='Transactions distribution by Type',
    title_x=0.5
)
fig.show()
```


Transactions distribution by Type

Breaking down into legitimate and fraudulent transactions:

```
df_financial.loc[df_financial["isFraud"] == 0, 'type'].value_counts()
```

```
type

CASH_OUT 2233384

PAYMENT 2151495

CASH_IN 1399284

TRANSFER 528812

DEBIT 41432
```

df_financial.loc[df_financial["isFraud"] == 1, 'type'].value_counts()

```
type

CASH_OUT 4116

TRANSFER 4097

dtype: int64
```

Insight: Fraudulent transactions are either withdrawals or transfers, and occur at approximately the same frequency. A clearer view is provided in the crosstab below.

11 auu_pcc.commins - [refirmace (%) , 11 auuument (%)]

print(fraud_pct)

\Rightarrow	Legitimate (%)	Fraudulent (%)
type		
CASH_IN	22.020686	0.00000
CASH_OUT	35.147009	50.11567
DEBIT	0.652020	0.00000
PAYMENT	33.858313	0.00000
TRANSFER	8.321972	49.88433
CASH_IN CASH_OUT DEBIT PAYMENT	35.147009 0.652020 33.858313	50.11567 0.00000 0.00000

Let's take a look at fraudulent and withdrawal transactions.

df_financial.loc[(df_financial['isFraud'] == 1) & (df_financial['type'] == 'CASH_OUT')]

$\overline{\Rightarrow}$		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	ne
	3	1	CASH_OUT	181.00	C840083671	181.00	0.0	C38997010	21182.00	
	252	1	CASH_OUT	2806.00	C2101527076	2806.00	0.0	C1007251739	26202.00	
	681	1	CASH_OUT	20128.00	C1118430673	20128.00	0.0	C339924917	6268.00	
	724	1	CASH_OUT	416001.33	C749981943	0.00	0.0	C667346055	102.00	
	970	1	CASH_OUT	1277212.77	C467632528	1277212.77	0.0	C716083600	0.00	
	6362611	742	CASH_OUT	63416.99	C994950684	63416.99	0.0	C1662241365	276433.18	
	6362613	743	CASH_OUT	1258818.82	C1436118706	1258818.82	0.0	C1240760502	503464.50	
	6362615	743	CASH_OUT	339682.13	C786484425	339682.13	0.0	C776919290	0.00	
	6362617	743	CASH_OUT	6311409.28	C1162922333	6311409.28	0.0	C1365125890	68488.84	
	6362619	743	CASH_OUT	850002.52	C1280323807	850002.52	0.0	C873221189	6510099.11	
	1116 rowe	x 11 co	lumne							

4116 rows × 11 columns

In CASH_OUT transactions, the recipient is an external entity (typically an ATM or merchant) whose name always starts with the letter 'M'. Here, we see that some CASH_OUT transactions start with the letter 'C', which technically is not a cash withdrawal — it would be a TRANSFER between customers. Let's check if there are any CASH_OUT transactions, whether fraudulent or legitimate, where the recipient starts with 'M'.

Insight: There is no 'merchant' or ATM as the destination for CASH_OUT transactions, which is incongruent.

→ Feature Engineering

Let's classify the transactions by type: Customer to Customer (C2C), Customer to Merchant (C2M), Merchant to Customer (M2C), and Merchant to Merchant (M2M).

```
df_financial['trans_direction'] = 'Unknown'

df_financial.loc[df_financial.nameOrig.str.startswith('C') & df_financial.nameDest.str.startswith('C'), 'trans_directi
df_financial.loc[df_financial.nameOrig.str.startswith('C') & df_financial.nameDest.str.startswith('M'), 'trans_directi
df_financial.loc[df_financial.nameOrig.str.startswith('M') & df_financial.nameDest.str.startswith('C'), 'trans_directi
df_financial.loc[df_financial.nameOrig.str.startswith('M') & df_financial.nameDest.str.startswith('M'), 'trans_directi
df_financial.head(5)
```


>	step		type amo		nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalance
	0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	0.0	
	1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	0.0	
	2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C553264065	0.0	
	3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C38997010	21182.0	
	4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	0.0	

Removing the origin and destination identifier columns to avoid potential overfitting in the ML model.

```
df_financial.drop(columns = ['nameOrig', 'nameDest'], axis = 'columns', inplace = True)
```

Adjusting the position of the 'trans_direction' column to improve table readability.

```
col = df_financial.pop('trans_direction')
df_financial.insert(loc=1, column='trans_direction', value=col)
df_financial.head(5)
```

$\overrightarrow{\Rightarrow}$	step	trans_direction	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFr
	0 1	C2M	PAYMENT	9839.64	170136.0	160296.36	0.0	0.0	
	1 1	C2M	PAYMENT	1864.28	21249.0	19384.72	0.0	0.0	
	2 1	C2C	TRANSFER	181.00	181.0	0.00	0.0	0.0	
	3 1	C2C	CASH_OUT	181.00	181.0	0.00	21182.0	0.0	
	4 1	C2M	PAYMENT	11668.14	41554.0	29885.86	0.0	0.0	

Let's look at the number of transactions by type.

```
fig = px.histogram(df_financial, x='trans_direction', text_auto=True)
fig.update_layout(
    title='Transaction Distribution by Origin-Destination (Customer-Merchant)',
    title_x=0.5
)
fig.show()
```


Transaction Distribution by Origin-Destination (Customer-Merchant)

Evaluating the amount of fraudulent and legitimate transactions by origin-destination type.

print('Number of fraud transactions according to trans_direction:\n', df_financial.loc[df_financial['isFraud'] == 1, 'troprint('Number of legitimate transactions according to trans_direction:\n', df_financial.loc[df_financial['isFraud'] == {

Number of fraud transactions according to trans_direction:
 trans_direction
 C2C 8213

Name: count, dtype: int64

Number of legitimate transactions according to trans_direction:

trans_direction C2C 4202912 C2M 2151495

Name: count, dtype: int64

Insight: Fraudulent transactions are either withdrawals or transfers and occur between Customer-to-Customer (C2C) accounts.

When a transaction is identified as fraud in the simulated system, it is not actually completed and is immediately canceled. Therefore, the balances before and after the transaction (the columns oldbalanceOrg, newbalanceOrig, oldbalanceDest and newbalanceDest) do not reflect any real movement for these cases. Therefore, to avoid data leakage, we will exclude these columns.

df_financial.drop(columns = ['oldbalanceOrg','newbalanceOrig','oldbalanceDest','newbalanceDest'], axis = 'columns', in
df_financial.head(5)

$\overline{\Rightarrow}$		step	trans_direction	type	amount	isFraud	isFlaggedFraud	
	0	1	C2M	PAYMENT	9839.64	0	0	11.
	1	1	C2M	PAYMENT	1864.28	0	0	
	2	1	C2C	TRANSFER	181.00	1	0	
	3	1	C2C	CASH_OUT	181.00	1	0	
	4	1	C2M	PAYMENT	11668.14	0	0	
	4 =							

Since categorical data does not have an inherent ordinal relationship, we will use one-hot encoding.

df_financial = pd.get_dummies(df_financial, prefix = ['trans_direction', 'type'], drop_first = True)
df_financial.head(5)

$\overline{\Rightarrow}$		step	amount	isFraud	isFlaggedFraud	trans_direction_C2M	type_CASH_OUT	type_DEBIT	type_PAYMENT	type_TRAN
	0	1	9839.64	0	0	True	False	False	True	F
	1	1	1864.28	0	0	True	False	False	True	F
	2	1	181.00	1	0	False	False	False	False	
	3	1	181.00	1	0	False	True	False	False	F
	4	1	11668.14	0	0	True	False	False	True	F

Splitting the dataset into training and testing parts.

```
x = df_financial.drop('isFraud', axis=1)
y = df_financial.isFraud

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.30, stratify = df_financial.isFraud)
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
```

Model building

We will now train four machine learning models and then add each one to a list.

```
rfc = RandomForestClassifier(
   n_estimators=15,  # number of trees in the forest
   lgbm = LGBMClassifier(
   boosting_type='gbdt',  # Gradient Boosting Decision Tree (LightGBM default)
   objective='binary',  # binary classification problem
random_state=8888  # different seed, to vary the pseudo-random
xgbr = xgb.XGBClassifier(
   # uses all cores for training
   n_jobs=-1,
   random_state=42,  # reproducibility
   learning_rate=0.1  # boosting learning rate (shrinkage)
logreg = LogisticRegression(
   solver='liblinear', # optimization algorithm (good for smaller datasets)
   random state=42
                     # seed for regularization/algorithm
rfc.fit(x_train, y_train)
lgbm.fit(x_train, y_train)
xgbr.fit(x_train, y_train)
logreg.fit(x_train, y_train)
classifiers = []
classifiers.append(rfc)
classifiers.append(lgbm)
classifiers.append(xgbr)
classifiers.append(logreg)
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: FutureWarning:
     'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.
     [LightGBM] [Info] Number of positive: 5749, number of negative: 4448085
     [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.221884 seconds.
```

```
You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 527

[LightGBM] [Info] Number of data points in the train set: 4453834, number of used features: 8

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.001291 -> initscore=-6.651203

[LightGBM] [Info] Start training from score -6.651203
```

Model Evaluation

```
results = []
for clf in classifiers:
    name = clf.__class__.__name_
    # class and probability prediction
   y_pred = clf.predict(x_test)
   y_proba = clf.predict_proba(x_test)[:,1]
    # metrics
   print(f"\n=== {name} ===")
   print(classification_report(y_test, y_pred, digits=4))
    auc = roc_auc_score(y_test, y_proba)
    print(f"ROC AUC: {auc:.4f}")
    results.append((name, auc))
# 2) ROC curves side by side
plt.figure(figsize=(8,6))
for clf in classifiers:
    y_proba = clf.predict_proba(x_test)[:,1]
    fpr, tpr, _ = roc_curve(y_test, y_proba)
    auc = roc_auc_score(y_test, y_proba)
    plt.plot(fpr, tpr, label=f"{clf.__class__.__name__} (AUC = {auc:.2f})")
plt.plot([0,1],[0,1], 'k--', lw=1)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curves Comparativas")
plt.legend(loc="lower right")
plt.tight_layout()
plt.show()
# 3) Identify and save the best model
best_name, best_auc = max(results, key=lambda x: x[1])
best_model = next(m for m in classifiers if m.__class__.__name__ == best_name)
print(f"\nBest model: {best_name} with AUC = {best_auc:.4f}")
joblib.dump(best_model, "best_fraud_model.pkl")
```


=== RandomF	Forest	Classifier	===							
		ecision		f1-score	support					
	ρ.	001011		500. 0	эмрро. с					
	0	0.9992	0.9998	0.9995	1906322					
	1	0.7203	0.3470	0.4684	2464					
accurad	CV			0.9990	1908786					
macro av	-	0.8597	0.6734	0.7339	1908786					
weighted av	_	0.9988	0.9990	0.9988	1908786					
J	0									
ROC AUC: 0	.7936									
		ython3.11/	dist-pac	kages/sklea	rn/utils	/depreca	tion.py:	151: Fu	tureWarn	ing:
			'	0 ,		'				0
'force all	finit	e' was ren	amed to	'ensure_all	finite'	in 1.6	and will	be rem	oved in :	1.8.
	_			_	_					
/usr/local	/lib/p	vthon3.11/	dist-pac	kages/sklea	rn/utils	/depreca	tion.pv:	151: Fu	tureWarn	ing:
, , ,	- / [,		8-1,	, ,	,				0
'force all	finit	e' was ren	amed to	'ensure_all	finite'	in 1.6	and will	be rem	oved in :	1.8.
	_			_	_					
=== LGBMCla	assifi	er ===								
202020			recall	f1-score	support					
	ρ.	001011		500.0	эмрро. с					
	0	0.9990	0.9998	0.9994	1906322					
	1	0.5860	0.1976	0.2956	2464					
	_	0.3000	0.1370	0.2330	2101					
accurac	CV			0.9988	1908786					
macro av	-	0.7925	0.5987	0.6475	1908786					
weighted av	_	0.9984	0.9988	0.9985	1908786					
weighted a	٧8	0.550-	0.5500	0.5505	1500700					
ROC AUC: 0	8855									
1100 71001 0	.0055									
=== XGBClas	ssifie	r ===								
Adbera.			recall	f1-score	support					
	Pi	CCISION	I CCUII	11 30010	заррог с					
	0	0.9989	1.0000	0.9995	1906322					
	1	0.9227	0.1745	0.2935	2464					
	_	0.5227	0.1/43	0.2000	2404					
accurac	CV			0.9989	1908786					
macro av	-	0.9608	0.5872	0.6465	1908786					
	0			0.9985	1908786					
weighted av	vg	0.9988	0.9989	0.9965	1900/00					
ROC AUC: 0	OFF									
NOC AUC. 0	. 5550									
=== Logisti	i cPoan	ossion								
LUGISU.		ecision		f1 ccono	support					
	þi.	ECTZIOII	recarr	f1-score	Support					
	0	0.9987	1.0000	0.9993	1906322					
	1				2464					
	Т	0.1818	0.0024	0.0048	2404					
accurac	CV			0.9987	1908786					
	-	0 5003	0 5013							
macro av	_	0.5903	0.5012	0.5021	1908786					
weighted av	vg	0.9977	0.9987	0.9981	1908786					
DOC ALIC: O	0005									