Эхний ном

Зохиогчийн нэр

2016 он

Бүлэг 1

Оршил бодлогууд

1. Бодит x тооны хувьд $\sec x - \operatorname{tg} x = 2$ бол $\sec x + \operatorname{tg} x$ -г ол.

Бодолт: $(\sec x + \tan x)(\sec x - \tan x)$ үржвэрийг авч үзье.

$$(\sec x + \tan x)(\sec x - \tan x) = \sec^2 x - \tan^2 x =$$

$$= \frac{1}{\cos^2 x} - \frac{\sin^2 x}{\cos^2 x} = \frac{1 - \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} = 1$$

Өөрөөр хэлбэл $\forall x \in D(f)$ хувьд $\sec^2 x - \operatorname{tg}^2 x = 1$ болно. Иймд

$$\sec x + \operatorname{tg} x = \frac{1}{\sec x - \operatorname{tg} x} = \frac{1}{2}$$

болно.

2. $0^{\circ} < \theta < 45^{\circ}$ бол

$$t_1 = (\operatorname{tg} \theta)^{\operatorname{tg} \theta},$$
 $t_2 = (\operatorname{tg} \theta)^{\operatorname{ctg} \theta},$ $t_3 = (\operatorname{ctg} \theta)^{\operatorname{tg} \theta},$ $t_4 = (\operatorname{ctg} \theta)^{\operatorname{ctg} \theta}$

тоонуудыг буурах эрэмбээр эрэмбэл.

Бодолт: $\forall a>1$ тооны хувьд $y=a^x$ функц өсөх функц ба 0< a<1 үед уг функц буурах функц юм. $0^\circ<\theta<45^\circ$ завсарт $\operatorname{ctg}\theta>1>\operatorname{tg}\theta>0$ учир $t_4>t_3,\,t_1>t_2$ ба $t_3>1>t_1$ болно. Өөрөөр хэлбэл $t_4>t_3>t_1>t_2$ болно.

- **3.** Тооцоол.
- (a) $\sin \frac{\pi}{12}, \cos \frac{\pi}{12}, \tan \frac{\pi}{12}$
- (b) $\cos^4 \frac{\pi}{24} \sin^4 \frac{\pi}{24}$
- (c) $\cos 36^{\circ} \cos 72^{\circ}$
- (d) $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}$

Бодолт:

(а) Давхар өнцөг болон нийлбэр ялгаварын томъёог ашиглавал

$$\sin\frac{\pi}{12} = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \sin\frac{\pi}{4}\cos\frac{\pi}{3} =$$

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\cos\frac{\pi}{12} = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4} =$$

$$= \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

$$\operatorname{tg}\frac{\pi}{12} = \frac{\sin\frac{\pi}{12}}{\cos\frac{\pi}{12}} = \frac{\frac{\sqrt{6} - \sqrt{2}}{4}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}} = 2 - \sqrt{3}$$

(b)

$$\cos^4 \frac{\pi}{24} - \sin^4 \frac{\pi}{24} = \left(\cos^2 \frac{\pi}{24} + \sin^2 \frac{\pi}{24}\right) \left(\cos^2 \frac{\pi}{24} - \sin^2 \frac{\pi}{24}\right) = 1 \cdot \cos \frac{\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

(c)

$$\cos 36^{\circ} - \cos 72^{\circ} = \frac{2(\cos 36^{\circ} - \cos 72^{\circ})(\cos 36^{\circ} + \cos 72^{\circ})}{2(\cos 36^{\circ} + \cos 72^{\circ})} = \frac{2\cos^{2} 36^{\circ} - 2\cos^{2} 72^{\circ}}{2(\cos 36^{\circ} + \cos 72^{\circ})}$$

Давхар өнцгийн томьёо ашиглавал

$$\frac{2\cos^2 36^\circ - 2\cos^2 72^\circ}{2\left(\cos 36^\circ + \cos 72^\circ\right)} = \frac{\cos 72^\circ + 1 - \cos 144^\circ - 1}{2\left(\cos 36^\circ + \cos 72^\circ\right)} = \frac{\cos 72^\circ + \cos 36^\circ}{2\left(\cos 36^\circ + \cos 72^\circ\right)} = \frac{1}{2}\cos^2 36^\circ + \cos^2 36^\circ + \cos$$

Дээрх тэнцэтгэлийг геометрийн аргаар баталж болно. Үүний тулд оройн өнцөг $\angle A=36^\circ$ ба талууд нь $AB=AC,\ BC=1$ байх адил хажуут гурвалжныг авч үзье. Уг гурвалжны $\angle B$ өнцгийн биссектрис AC талтай огтлолцох огтлолцлыг D гэвэл $BC=BD=AD=1, AB=2\cos 36^\circ$ ба $CD=2\cos 72^\circ$ болохыг та бүхэн бие даан батлаарай. Үр дүн нь дээрх тэнцэтгэлийн геометр баталгаа юм.

(d)

$$8 \sin 20^{\circ} \sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} = 8 \sin 20^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} =$$

= $4 \sin 40^{\circ} \cos 40^{\circ} \cos 80^{\circ} = 2 \sin 80^{\circ} \cos 80^{\circ} = \sin 160^{\circ} = \sin 20^{\circ}$

Эндээс

$$\sin 10^\circ \sin 50^\circ \sin 70^\circ = \frac{1}{8}$$

болно.

4. Илэрхийллийг хялбарчил.

$$\sqrt{\sin^4 x + 4\cos^2 x} - \sqrt{\cos^4 x + 4\sin^2 x}$$

Бодолт:

$$\sqrt{\sin^4 x + 4\cos^2 x} - \sqrt{\cos^4 x + 4\sin^2 x} = \sqrt{\sin^4 x + 4\left(1 - \sin^2 x\right)} - \sqrt{\cos^4 x + 4\left(1 - \cos^2 x\right)} =$$

$$= \sqrt{\left(2 - \sin^2 x\right)^2} - \sqrt{\left(2 - \cos^2 x\right)^2} = \left(2 - \sin^2 x\right) - \left(2 - \cos^2 x\right) = \cos^2 x - \sin^2 x = \cos 2x$$

5. Батал.

$$1 - \operatorname{ctg} 23^{\circ} = \frac{2}{1 - \operatorname{ctg} 22^{\circ}}$$

Бодолт:

$$(1 - \operatorname{ctg} 23^{\circ}) (1 - \operatorname{ctg} 22^{\circ}) = 2$$

болохыг баталья.

$$(1 - \operatorname{ctg} 23^{\circ}) (1 - \operatorname{ctg} 22^{\circ}) = \left(1 - \frac{\cos 23^{\circ}}{\sin 23^{\circ}}\right) \left(1 - \frac{\cos 22^{\circ}}{\sin 22^{\circ}}\right) = \frac{\sin 23^{\circ} - \cos 23^{\circ}}{\sin 23^{\circ}} \cdot \frac{\sin 22^{\circ} - \cos 22^{\circ}}{\sin 22^{\circ}} = \frac{\sqrt{2} \sin \left(23^{\circ} - 45^{\circ}\right) \sqrt{2} \sin \left(22^{\circ} - 45^{\circ}\right)}{\sin 23^{\circ} \cdot \sin 22^{\circ}} = \frac{2 \sin \left(-22^{\circ}\right) \sin \left(-23^{\circ}\right)}{\sin 23^{\circ} \sin 22^{\circ}} = \frac{2 \sin 22^{\circ} \sin 23^{\circ}}{\sin 23^{\circ} \sin 22^{\circ}} = 2 \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ}} = 2 \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ}} = 2 \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ} \sin 23^{\circ}} = 2 \sin 23^{\circ} \sin 23^{\circ}} = 2 \sin 23^{\circ} \cos 23^{\circ} \sin 23^{\circ}} = 2 \sin 23^{\circ} \cos 23^{\circ} \sin 23^{\circ}$$

Бодолт: Котангенсийн өнцгүүдийн нийлбэрийн томьёогоор

$$\frac{\operatorname{ctg} 22^{\circ} \operatorname{ctg} 23^{\circ} - 1}{\operatorname{ctg} 22^{\circ} + \operatorname{ctg} 23^{\circ}} = \operatorname{ctg} (22^{\circ} + 23^{\circ}) = \operatorname{ctg} 45^{\circ} = 1$$

Эндээс $\operatorname{ctg} 22^{\circ} \operatorname{ctg} 23^{\circ} - 1 = \operatorname{ctg} 22^{\circ} + \operatorname{ctg} 23^{\circ} irc$ буюу

$$1 - \operatorname{ctg} 22^{\circ} - \operatorname{ctg} 23^{\circ} + \operatorname{ctg} 22^{\circ} \operatorname{ctg} 23^{\circ} = 2$$

болно. Өөрөөр хэлбэл

$$(1 - \operatorname{ctg} 23^{\circ}) (1 - \operatorname{ctg} 22^{\circ}) = 2$$

болно.

6.

$$\frac{\sqrt{3}-1}{\sin x} + \frac{\sqrt{3}+1}{\cos x} = 4\sqrt{2}$$

тэгшитгэлийн $(0, \frac{\pi}{2})$ завсар дахь бүх шийдийг ол.

Водолт: Бодлого 3(a) дээр бид $\cos\frac{\pi}{12}=\frac{\sqrt{2}+\sqrt{6}}{4}$ ба $\sin\frac{\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}$ болохыг харсан. Эдгээрийг тэгшитгэлд орлуулвал

$$\frac{\frac{\sqrt{3}-1}{4}}{\sin x} + \frac{\frac{\sqrt{3}+1}{4}}{\cos x} = \sqrt{2} \Rightarrow \frac{\sin\frac{\pi}{12}}{\sin x} + \frac{\cos\frac{\pi}{12}}{\cos x} = 2 \Rightarrow$$

$$\Rightarrow \sin\frac{\pi}{12}\cos x + \cos\frac{\pi}{12}\sin x = 2\sin x\cos x \Rightarrow$$

$$\Rightarrow \sin\left(\frac{\pi}{12} + x\right) = \sin 2x \Rightarrow \begin{bmatrix} \frac{\pi}{12} + x = 2x \\ \frac{\pi}{12} + x = \pi - 2x \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{\pi}{12} \\ x = \frac{11\pi}{36} \end{bmatrix}$$

7.

8.
 \triangle ABC-ны хувьд $\sin\frac{A}{2} \leq \frac{a}{b+c}$ болохыг харуул.

Бодолт: Гурвалжны хувьд синусын өргөтгөсөн теорем ёсоор

$$\frac{a}{b+c} = \frac{\sin A}{\sin B + \sin C}$$

Синусуудын нийлбэрийн томьёо болон давхар өнцгийн томьёог ашиглавал

$$\frac{a}{b+c} = \frac{2\sin\frac{A}{2}\cos\frac{A}{2}}{2\sin\frac{B+C}{2}\cos\frac{B-C}{2}} = \frac{\sin\frac{A}{2}}{\cos\frac{B-C}{2}}$$

Энд $0 \leq |B-C| < 180^{\circ} \Rightarrow 0 < \cos \frac{B-C}{2} \leq 1$ тул

$$\frac{\sin\frac{A}{2}}{\cos\frac{B-C}{2}} \ge \sin\frac{A}{2} \Rightarrow \frac{a}{b+c} \ge \sin\frac{A}{2}$$

болно. Үүнтэй адилаар

$$\sin \frac{B}{2} \le \frac{b}{c+a}$$
 for $\sin \frac{C}{2} \le \frac{c}{a+b}$

болно.

9. $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ завсрыг I гэе. [-1,1] завсарт тодорхойлогдсон $f(\sin 2x)=\sin x+\cos x$ чанарыг хангах f функцийг ол. I завсарт $f\left(\tan^2 x\right)$ функцийг хялбарчил.

Бодолт:

$$[f(\sin 2x)]^2 = (\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2\sin x \cos x = 1 + \sin 2x$$

 $x\in I$ байх үед $\sin 2x\in [-1,1]$ байна. $\sin 2x=t$ гэвэл $t\in [-1,1]$ ба $[f(t)]^2=1+t$ болно. Эндээс $f(t)=\sqrt{1+t}$ болно.

 $-\frac{\pi}{4} \leq x \geq \frac{\pi}{4}$ үед $-1 \leq \operatorname{tg} x \geq 1x$ байх ба $0 \geq \operatorname{tg}^2 x \geq 1$ тул

$$f(tg^2 x) = \sqrt{1 + tg^2 x} = \sqrt{1 + \frac{\sin^2 x}{\cos^2 x}} = \sqrt{\frac{\cos^2 x + \sin^2 x}{\cos^2 x}} = \frac{1}{\cos x} = \sec x$$

болно.

10. $\forall x \in \mathbb{R}; \forall k \in \mathbb{N} \text{ уед}$

$$f_k(x) = \frac{1}{k} \left(\sin^k x + \cos^k x \right)$$

бол

$$f_4(x) - f_6(x) = \frac{1}{12}$$

болохыг батал.

Бодолт: Бид уг тэнцэтгэлийг $12f_4(x) - 12f_6(x) = 1$ гэж баталья.

$$12 \cdot \frac{1}{4} \left(\sin^4 x + \cos^4 x \right) - 12 \cdot \frac{1}{6} \left(\sin^6 x + \cos^6 x \right) = 3 \left(\sin^4 x + \cos^4 x \right) - 2 \left(\sin^6 x + \cos^6 x \right) =$$

$$= 3 \left[\left(\sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x \right] - 2 \left(\sin^2 x + \cos^2 x \right) \left(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x \right) =$$

$$= 3 - 6 \sin^2 x \cos^2 x - 2 \left[\left(\sin^2 x + \cos^2 x \right)^2 - 3 \sin^2 x \cos^2 x \right] = 3 - 2 = 1$$

11. [AIME 2004, Jonathan Kane] 15×34 хэмжээтэй ABCD тэгш өнцөгтод нэгж радиустай тойрог агуулагдана. Тэгвэл уг тойрог AC диагональтай огтлолцохгүй байх магадлалыг ол.

Бодолт:

12. [AMC12, 1999] ABC гурвалжны хувьд

C өнцгийн хэмжээг ол.

Бодолт: Өгөгдсөн хоёр тэгшитгэлийн квадратуудын нийлбэрийг олбол

$$24 (\sin A \cos B + \cos A \sin B) = 12 \Rightarrow \sin(A+B) = \frac{1}{2}$$

$$\angle C = 180^{\circ} - \angle A - \angle B \Rightarrow \sin C = \sin(A+B) \Rightarrow \begin{bmatrix} \angle C = 30^{\circ} \\ \angle C = 150^{\circ} \end{bmatrix}$$

болно. Гэвч $\angle C=150^\circ$ үед $\angle A<30^\circ\Rightarrow 3\sin A+4\cos B<\frac{3}{2}+4<6$ болж зөрчилдөнө. Иймд бодлогын хариу $\angle C=30^\circ$ болно.

13.
$$\forall a \neq \frac{k\pi}{2}, k \in \mathbb{Z}$$
 хувьд

$$tg 3a - tg 2a - tg a = tg 3a tg 2a tg a$$

болохыг батал.

Бодолт: Дээрх тэнцэтгэл дараах тэнцэтгэлтэй эквивалент юм.

$$tg 3a(1 - tg 2a tg a) = tg 2a + tg a$$

$$tg 3a = \frac{tg 2a + tg a}{1 - tg 2a tg a}$$

$$tg 3a = tg(2a + a)$$

Тэмдэглэл: Ерөнхий тохиолдолд $a_1, a_2, a_3 \neq \frac{k\pi}{2}, k \in \mathbb{Z}$ тоонуудын хувьд $a_1 + a_2 + a_3 = 0$ бол $\operatorname{tg} a_1 + \operatorname{tg} a_2 + \operatorname{th} a_3 = \operatorname{tg} a_1 \operatorname{tg} a_2 \operatorname{tg} a_3$ тэнцэтгэл биелнэ. Үүний баталгаа 13 ба 20 дугаар бодлоготой төстэйгөөр батлагдах тул дасгал болгон бие даан хийж гүйцэтгээрэй.

14.
$$a,b,c,d \in [0,\pi]$$
 тоонууд

$$\sin a + 7\sin b = 4(\sin c + 2\sin d)$$
$$\cos a + 7\cos b = 4(\cos c + 2\cos d)$$

тэнцэтгэлүүдийг хангадаг бол

$$2\cos(a-d) = 7\cos(b-c)$$

болохыг батал.

Бодолт: Өгөгдсөн тэнцэтгэлүүдийг дараах хэлбэрт бичье.

$$\sin a - 8\sin d = 4\sin c - 7\sin b$$
$$\cos a + 7\cos b = 4\cos c - 7\cos b$$

Эдгээрийн квадратуудын нийлбэрийг эмхтгэвэл

$$1 + 64 - 16(\cos a \cos b + \sin a \sin b) = 16 + 49 - 56(\cos b \cos c + \sin b \sin c)$$
$$2\cos(a - d) = 7\cos(b - c)$$

15.

$$\sin(x-y) + \sin(y-z) + \sin(z-x)$$

илэрхийллийг нэг гишүүнтээр илэрхийл.

Бодолт: Синусуудын нийлбэрийн томьёогоор

$$\sin(x-y) + \sin(y-z) = 2\sin\frac{x-z}{2}\cos\frac{x+z-2y}{2}$$

Давхар өнцгийн томьёогоор

$$\sin(z-x) = 2\sin\frac{z-x}{2}\cos\frac{z-x}{2}$$

болно. Иймд

$$\sin(x-y) + \sin(y-z) + \sin(z-x) = 2\sin\frac{x-z}{2} \left[\cos\frac{x+z-2y}{2} - \cos\frac{z-x}{2}\right] =$$

$$= -4\sin\frac{x-z}{2}\sin\frac{z-y}{2}\sin\frac{x-y}{2} = -4\sin\frac{x-y}{2}\sin\frac{y-z}{2}\sin\frac{z-x}{2}$$

Тэмдэглэл: Ерөнхий тохиолдолд a+b+c=0 байх $a,b,c\in\mathbb{R}$ тоонуудын хувьд

$$\sin a + \sin b + \sin c = -4\sin\frac{a}{2}\sin\frac{b}{2}\sin\frac{c}{2}$$

тэнцэтгэл биелнэ. Энэ бодлого нь a=x-y; b=y-z; c=z-x байх тухайн тохиолдол юм.

16. Батал.

$$(4\cos^2 9^\circ - 3)(4\cos^2 27^\circ - 3) = tg\,9^\circ$$

Бодолт:

$$\cos 3x = 4\cos^3 x - 3\cos x \Rightarrow 4\cos^2 x - 3 = \frac{\cos 3x}{\cos x}, \forall x \neq (2k+1) \cdot 90^\circ$$

болно. Иймд

$$(4\cos^2 9^{\circ} - 3)(4\cos^2 27^{\circ} - 3) = \frac{\cos 27^{\circ}}{\cos 9^{\circ}} \cdot \frac{\cos 81^{\circ}}{\cos 27^{\circ}} = \frac{\cos 81^{\circ}}{\cos 9^{\circ}} = \frac{\sin 9^{\circ}}{\cos 9^{\circ}} = \operatorname{tg} 9^{\circ}$$

болно.

17. $a,b \geq 0, \quad 0 < x < \frac{\pi}{2}$ байх бодит тоонуудын хувьд

$$\left(1 + \frac{a}{\sin x}\right) \left(1 + \frac{b}{\cos x}\right) \ge \left(1 + \sqrt{2ab}\right)^2$$

болохыг батал.

Bodoлт: Тэнцэтгэл бишийн хоёр талын хаалтуудыг задлан нийлбэр хэлбэрт бичвэл

$$1 + \frac{a}{\sin x} + \frac{b}{\cos x} + \frac{ab}{\sin x \cos x} \ge 1 + 2ab + 2\sqrt{2ab}$$

болно. Кошийн тэнцэтгэл бишээр

$$\frac{a}{\sin x} + \frac{b}{\cos x} \ge \frac{2\sqrt{ab}}{\sqrt{\sin x \cos x}}$$

Давхар өнцгийн томьёогоор $\sin x \cos x = \frac{1}{2} \sin 2x \le \frac{1}{2}$ учир

$$\frac{2\sqrt{ab}}{\sqrt{\sin x \cos x}} \ge 2\sqrt{2ab} \Rightarrow \frac{ab}{\sin x \cos x} \ge 2ab$$

болно. Сүүлийн 3 тэнцэтгэл бишийг ашиглавал

$$1 + \frac{a}{\sin x} + \frac{b}{\cos x} + \frac{ab}{\sin x \cos x} \ge 1 + 2ab + 2\sqrt{2ab}$$

болох нь батлагдана.

18. $\triangle ABC$ - ны хувьд $\sin A + \sin B + \sin C \le 1$ бол $\min (A+B,B+C,C+A) < 30^\circ$ гэж батал.

Бодолт: Бид $A \geq B \geq C$ гэе. Тэгвэл $B+C < 30^\circ$ гэж батлах шаардлагатай болно. Синусын теорем болон гурвалжны тэнцэтгэл бишийн (b+c>a) чанар ёсоор $\sin B + \sin C > \sin A$ гэдгээс $\sin A + \sin B + \sin C > 2\sin A$ болно. Өгөгдсөн нөхцлийг ашиглавал $2\sin A < 1$ буюу $\sin A < \frac{1}{2}$ болно. A өнцгийн хэмжээ гурвалжны бусад өнцгөөсөө их учир $A \geq \frac{A+B+C}{3} = 60^\circ$ болно. Иймд $A > 150^\circ$ учир $B+C < 30^\circ$ болох нь батлагдлаа.

19. ABC гурвалжны хувьд батал.

(a)
$$\operatorname{tg} \frac{A}{2} \operatorname{tg} \frac{B}{2} + \operatorname{tg} \frac{B}{2} \operatorname{tg} \frac{C}{2} + \operatorname{tg} \frac{C}{2} \operatorname{tg} \frac{A}{2} = 1$$

(b)
$$\operatorname{tg} \frac{A}{2}\operatorname{tg} \frac{B}{2}\operatorname{tg} \frac{C}{2} \leq \frac{\sqrt{3}}{9}$$

Бодолт:

(а) Тангенсуудын нийлбэрийн томьёогоор

$$\begin{split} \operatorname{tg}\frac{A}{2} + \operatorname{tg}\frac{B}{2} &= \operatorname{tg}\frac{A+B}{2}\left(1 - \operatorname{tg}\frac{A}{2}\operatorname{tg}\frac{B}{2}\right) \\ A+B+C &= 180^{\circ} \text{ тул } \frac{A+B}{2} = 90^{\circ} - \frac{C}{2} \Rightarrow \operatorname{tg}\frac{A+B}{2} = \operatorname{ctg}\frac{C}{2} \text{ болно. Иймд} \\ \operatorname{tg}\frac{A}{2}\operatorname{tg}\frac{B}{2} + \operatorname{tg}\frac{B}{2}\operatorname{tg}\frac{C}{2} + \operatorname{tg}\frac{C}{2}\operatorname{tg}\frac{A}{2} = \\ &= \operatorname{tg}\frac{A}{2}\operatorname{tg}\frac{B}{2} + \operatorname{tg}\frac{C}{2}\operatorname{ctg}\frac{C}{2}\left(1 - \operatorname{tg}\frac{A}{2}\operatorname{tg}\frac{B}{2}\right) = \\ &= \operatorname{tg}\frac{A}{2}\operatorname{tg}\frac{B}{2} + 1 - \operatorname{tg}\frac{A}{2}\operatorname{tg}\frac{B}{2} = 1 \end{split}$$

болж батлагдлаа.

(b) Кошийн тэнцэтгэл биш ёсоор

$$1 = \operatorname{tg} \frac{A}{2} \operatorname{tg} \frac{B}{2} + \operatorname{tg} \frac{B}{2} \operatorname{tg} \frac{C}{2} + \operatorname{tg} \frac{C}{2} \operatorname{tg} \frac{A}{2} \ge$$

$$\geq 3\sqrt[3]{\left(\operatorname{tg} \frac{A}{2} \operatorname{tg} \frac{B}{2} \operatorname{tg} \frac{C}{2}\right)^{2}}$$

Эндээс

$$\operatorname{tg} \frac{A}{2} \operatorname{tg} \frac{B}{2} \operatorname{tg} \frac{C}{2} \le \frac{\sqrt{3}}{9}$$

болох нь батлагдана.

Tэм θ эглэл: (a) -ийн эквивалент хэлбэр нь

$$\operatorname{ctg} \frac{A}{2} + \operatorname{ctg} \frac{B}{2} + \operatorname{ctg} \frac{C}{2} = \operatorname{ctg} \frac{A}{2} \operatorname{ctg} \frac{B}{2} \operatorname{ctg} \frac{C}{2}$$

юм.

20. Хурц өнцөгт $\triangle ABC$ -ны хувьд

(a)
$$\operatorname{tg} A + \operatorname{tg} B + \operatorname{tg} C = \operatorname{tg} A \operatorname{tg} B \operatorname{tg} C$$

(b)
$$\operatorname{tg} A \operatorname{tg} B \operatorname{tg} C \ge 3\sqrt{3}$$

болохыг батал.

Бодолт:

(а) Тангенсуудын нийлбэрийн томьёо ашиглавал

$$\operatorname{tg} A + \operatorname{tg} B + \operatorname{tg} C = \operatorname{tg}(A + B)(1 - \operatorname{tg} A \operatorname{tg} B) + \operatorname{tg} C = \operatorname{tg}(180^{\circ} - C)(1 - \operatorname{tg} A \operatorname{tg} B) + \operatorname{tg} C = -\operatorname{tg} C + \operatorname{tg} A \operatorname{tg} B \operatorname{tg} C + \operatorname{tg} A \operatorname{tg} B \operatorname{tg} C$$

болно. Өөрөөр хэлбэл $\operatorname{tg} A + \operatorname{tg} B + \operatorname{tg} C = \operatorname{tg} A \operatorname{tg} B \operatorname{tg} C$ болж батлагдлаа.

(b) Кошийн тэнцэтгэл биш ёсоор

$$\operatorname{tg} A + \operatorname{tg} B + \operatorname{tg} C \ge 3\sqrt[3]{\operatorname{tg} A \operatorname{tg} B \operatorname{tg} C}$$

(а) -г ашиглавал

$$\operatorname{tg} A \operatorname{tg} B \operatorname{tg} C \ge 3\sqrt[3]{\operatorname{tg} A \operatorname{tg} B \operatorname{tg} C}$$

$$(\operatorname{tg} A \operatorname{tg} B \operatorname{tg} C)^{\frac{2}{3}} \ge 3 \Rightarrow \operatorname{tg} A \operatorname{tg} B \operatorname{tg} C \ge 3\sqrt{3}$$

болно.

Тэмдэглэл: $A+B+C=m\pi$ ба $A,B,C\neq\frac{k\pi}{2}$ байх A,B,C өнцгүүдийн хувьд (a) тэнцэтгэл биелнэ. Энд $k,m\in\mathbb{Z}$ болно.

21. $\triangle ABC$ -ны хувьд $\operatorname{ctg} A\operatorname{ctg} B + \operatorname{ctg} B\operatorname{ctg} C + \operatorname{ctg} C\operatorname{ctg} A = 1$ гэж батал.

Эсрэгээр нь xy+yz+zx=1 байх $x,y,z\in\mathbb{R}$ тоонуудын хувьд $\operatorname{ctg} A=x,\operatorname{ctg} B=y,\operatorname{ctg} C=z$ байх $\triangle ABC$ оршино гэж батал.

Бодолт: $\triangle ABC$ -ныг тэгш өнцөгт гурвалжин ба $\angle A=90^\circ$ гэе. Тэгвэл $\cot g \ a=0$ ба $B+C=90^\circ$ гэдгээс $\cot B \cot C=1$ болно. Өөрөөр хэлбэл тэгш өнцөгт гурвалжны хувьд тэнцэтгэл батлагдлаа. Одоо тэгш өнцөгт биш гурвалжны хувьд баталъя. Өгөгдсөн тэнцэтгэлийг $\cot A \cot B \cot C$

$$\operatorname{tg} A + \operatorname{tg} B + \operatorname{tg} C = \operatorname{tg} A \operatorname{tg} B \operatorname{tg} C$$

болно. Дээрх тэнцэтгэл үнэн болохыг бид баталсан билээ. (20-р бодлого)

22. $\triangle ABC$ -ны хувьд

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} + 2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} = 1$$

болохыг батал. Эсрэгээр нь x,y,z<1 байх эерэг бодит тоонуудын хувьд

$$x^2 + y^2 + z^2 + 2xyz = 1$$

чанарыг хангаж байвал $x=\sin\frac{A}{2},y=\sin\frac{B}{2},z=\sin\frac{C}{2}$ байх $\triangle ABC$ оршино гэж батал.

Bodoлm: Хэрвээ бид өгөгдсөн хоёр дахь тэгшитгэлийн x-ийг квадрат тэгшитгэлийн шийд олох аргаар олвол

$$x = \frac{-2yz + \sqrt{4y^2z^2 - 4(y^2 + z^2 - 1)}}{2} = -yz + \sqrt{(1 - y^2)(1 - z^2)}$$

болно. Бид $y = \sin u, z = \sin v, 0^{\circ} < u, v < 90^{\circ}$ орлуулга хийвэл

$$x = -\sin u \sin v + \cos u \cos v = \cos(u+v)$$

болно.

23. $\triangle ABC$ -ны хувьд батал.

(a)
$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \le \frac{1}{8}$$

(b)
$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} \ge \frac{3}{4}$$

(c)
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} \le \frac{9}{4}$$

(d)
$$\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} \leq \frac{3\sqrt{3}}{8}$$

(e)
$$\csc \frac{A}{2} + \csc \frac{B}{2} + \csc \frac{C}{2} \ge 6$$

Бодолт:

(а) Бодлого 8 дээр бид

$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \le \frac{abc}{(a+b)(b+c)(c+a)}$$

болохыг баталсан.

Кошийн тэнцэтгэл бишийг ашиглавал

$$(a+b)(b+c)(c+a) \ge (2\sqrt{ab})(2\sqrt{bc})(2\sqrt{ca}) = 8abc$$

болно. Үүнийг орлуулвал

$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \le \frac{1}{8}$$

болно.

(b) (a) хэсгийн тэнцэтгэлийг бодлого 22 дээрх

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} + 2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} = 1$$

тэнцэтгэлтэй ашиглавал

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} \ge 1 - \frac{1}{4} = \frac{3}{4}$$

болж батлагдлаа.

(c) (b) хэсгийн тэнцэтгэл бишд $\sin^2 x = 1 - \cos^2 x$ орлуулга хийвэл

$$3 - \cos^2 \frac{A}{2} - \cos^2 \frac{B}{2} - \cos^2 \frac{C}{2} \ge \frac{3}{4}$$
$$\cos^2 \frac{A}{2} - \cos^2 \frac{B}{2} - \cos^2 \frac{C}{2} \le 3 - \frac{3}{4}$$
$$\cos^2 \frac{A}{2} - \cos^2 \frac{B}{2} - \cos^2 \frac{C}{2} \le \frac{9}{4}$$

болно.

(d) (d) хэсгийн тэнцэтгэл бишд кошийн тэнцэтгэл биш ашиглавал

$$\cos^{2} \frac{A}{2} + \cos^{2} \frac{B}{2} + \cos^{2} \frac{C}{2} \ge 3\sqrt[3]{\cos^{2} \frac{A}{2} \cos^{2} \frac{B}{2} \cos^{2} \frac{C}{2}}$$
$$3\sqrt[3]{\cos^{2} \frac{A}{2} \cos^{2} \frac{B}{2} \cos^{2} \frac{C}{2}} \le \frac{9}{4}$$
$$\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \le \frac{3\sqrt{3}}{8}$$

болно.

(e) 8-р бодлогыг ашиглавал $\csc\frac{A}{2}\geq\frac{b+c}{a}=\frac{b}{a}+\frac{c}{a}$ болно. Үүнтэй адилаар $\csc\frac{B}{2}\geq\frac{a}{b}+\frac{c}{b}$ ба $\csc\frac{C}{2}\geq\frac{a}{c}+\frac{b}{c}$ байна. Кошийн тэнцэтгэл биш ашиглавал

$$\csc \frac{A}{2} + \csc \frac{B}{2} + \csc \frac{C}{2} \ge \frac{b}{a} + \frac{c}{a} + \frac{a}{b} + \frac{c}{b} + \frac{a}{c} + \frac{b}{c} \ge$$
$$\ge 6\sqrt[6]{\frac{b}{a} \frac{c}{a} \frac{a}{b} \frac{c}{b} \frac{a}{c} \frac{b}{c}} = 6$$

болж батлагдав.

Тэмдэглэл: (а) -г өөр аргаар баталъя. Бодлогын нөхцлөөр $\sin\frac{A}{2}$, $\sin\frac{B}{2}$, $\sin\frac{C}{2}$ бүгд эерэг тоонууд. $t=\sqrt[3]{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}$ гэе. Тэгвэл бид $t\leq\frac{1}{2}$ гэж батлахад хангалттай. Кошийн тэнцэтгэл бишээр

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} \ge 3t^2$$

22-р бодлогод орлуулвал $3t^2 + 2t^3 \le 1$ болно. Иймд

$$2t^{3} + 3t^{2} - 1 \le 0$$
$$(t+1)(2t^{2} + t - 1) \le 0$$
$$(t+1)^{2}(2t-1) \le 0$$

Эндээс харвал $t \leq \frac{1}{2}$ болж (a) батлагдлаа.

24. $\triangle ABC$ -ны хувьд

(a)
$$\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C$$

(b)
$$\cos 2A + \cos 2B + \cos 2C = -1 - 4\cos A\cos B\cos C$$

(c)
$$\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2\cos A\cos B\cos C$$

(d)
$$\cos^2 A + \cos^2 B + \cos^2 C + 2\cos A\cos B\cos C = 1$$

болохыг батал.

Эсрэгээр нь 0 < x, y, z < 1 эерэг бодит тоонууд

$$x^2 + y^2 + z^2 + 2xyz = 1$$

чанарыг хангаж байвал $x=\cos A, y=\cos B, z=\cos C$ байх хурц өнцөгт $\triangle ABC$ оршино гэж харуул.

Водолт: $\cos 2x = 1 - 2\sin^2 x = 2\cos^2 x - 1$ ашиглавал (c) болон (d) -гийн баталгаа (b)-гээс хялбархан мөрдөн гарна. Иймд бид (a) болон (b) -гийн баталгааг харуулъя.

(a) Синусуудын нийлбэрийн томьёо болон $A+B+C=180^\circ$ тэнцэтгэлийг ашиглавал

$$\sin 2A + \sin 2B + \sin 2C = 2\sin(A+B)\cos(A-B) + \sin 2C =$$
= $2\sin C\cos(A-B) + 2\sin C\cos C = 2\sin C\left[\cos(A-B) - \cos(A+B)\right] =$
= $2\sin C \cdot [-2\sin A\sin(-B)] = 4\sin A\sin B\sin C$

болж батлагдлаа.

(b) Косинусуудын нийлбэрийн томьёо болон $A+B+C=180^\circ$ тэнцэтгэлийг ашиглавал

$$\cos 2A + \cos 2B + \cos 2C = 2\cos(A+B)\cos(A-B) + \cos^2 C - 1 =$$

$$= -2\cos C\cos(A-B) + \cos^2 C - 1 = -2\cos C(\cos(A-B) - \cos C) - 1 =$$

$$= -2\cos C(\cos(A-B) + \cos(A+B)) - 1 = -4\cos A\cos B\cos C - 1$$

болж батлагдлаа.

Тэмдэглэл: (d) -гийн сонирхолтой баталгааг харуулъя. Доорх систем тэгшитгэлийг авч үзье.

$$-x + (\cos B)y + (\cos C)z = 0$$
$$(\cos B)x - y + (\cos A)z = 0$$
$$(\cos C)x + (\cos A)y - z = 0$$

Тригонометрийн нийлбэр ялгаварын томъёог ашиглавал уг систем тэгшитгэлийн тэгээс ялгаатай шийд нь $(x,y,z)=(\sin A,\sin C,\sin B)$ болохыг хялбархан олж болно. Иймд уг системийн тодорхойлогч нь тэг болно. Өөрөөр хэлбэл

$$\begin{vmatrix} -1 & \cos B & \cos C \\ \cos B & -1 & \cos A \\ \cos C & \cos A & -1 \end{vmatrix} = -1 + 2\cos A\cos B\cos C + \cos^2 A + \cos^2 B + \cos^2 C = 0$$

болж батлагдана.

25. $\triangle ABC$ -ны хувьд

- (a) $4R = \frac{abc}{[ABC]}$
- (b) $2R^2 \sin A \sin B \sin C = [ABC]$
- (c) $2R^2 \sin A \sin B \sin C = r(\sin A + \sin B + \sin C)$
- (d) $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
- (e) $a\cos A + b\cos B + c\cos C = \frac{abc}{2B^2}$

Бодолт:

(а) Синусын өргөтгөсөн теоремоор

$$R = \frac{a}{2\sin A} = \frac{abc}{2bc\sin A} = \frac{abc}{4[ABC]}$$

(b) $2R^{2} \sin A \sin B \sin C = \frac{1}{2} (2R \sin A)(2R \sin B)(\sin C) = \frac{1}{2} ab \sin C = [ABC]$

(c) $2R^2 \sin A \sin B \sin C$ -г авч үзье.

$$2R^2 \sin A \sin B \sin C = [ABC] = \frac{1}{2}bc \sin A = \frac{a+b+c}{2} \cdot r$$

болно. Синусын өргөтгөсөн теорем ашиглавал

$$2R^2 \sin A \sin B \sin C = rR(\sin A + \sin B + \sin C)$$

болно.

(d) Косинусын теоремоор

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

байна. Хагас өнцгийн теоремоор

$$\sin^2 \frac{A}{2} = \frac{1 - \cos A}{2} = \frac{1}{2} - \frac{b^2 + c^2 - a^2}{4bc} = \frac{a^2 - (b^2 + c^2 - 2bc)}{4bc} =$$

$$= \frac{a^2 - (b - c)^2}{4bc} = \frac{(a - b + c)(a + b - c)}{4bc} =$$

$$= \frac{(2p - 2b)(2p - 2c)}{4bc} = \frac{(p - b)(p + b)}{bc}$$

болно. Энд $p=rac{a+b+c}{2}$ болно. Өөрөөр хэлбэл

$$\sin\frac{A}{2} = \sqrt{\frac{(p-b)(p+b)}{bc}}$$

болно. Нөгөө 2 өнцөг дээр мөн адилаар томьёог олон үржвэрийг олвол

$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{(p-a)(p-b)(p-c)}{abc} = \frac{p(p-a)(p-b)(p-c)}{pabc}$$

болно. Героны томьёогоор

$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{[ABC]^2}{pabc}$$

болох ба

$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{[ABC]}{p}\frac{[ABC]}{abc} = r\cdot\frac{1}{4R}$$

болж батлагдлаа.

(e) Синусын өргөтгөсөн теоремоор $a\cos A=2R\sin A\cdot\cos A=R\sin 2A$ болно. Үүнтэй адилаар $b\cos B=R\sin 2B$ болох ба $c\cos C=R\sin 2C$ болно. (a) болон (b) хоёрыг ашиглавал

$$4R\sin A\sin B\sin C = \frac{abc}{2R^2}$$

болно. Иймд одоо бид

$$\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C$$

гэж батлахад хангалттай болно. Бид дээрх тэнцэтгэлийг 24-р бодлогоор батласан билээ.

26. $\triangle ABC$ -ны хагас периметрийг p гэе. Тэгвэл

(a)
$$p = 4R\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

(b)
$$p \le \frac{3\sqrt{3}}{2}R$$

болохыг батал.

Бодолт:

(a) Бид $p=\frac{[ABC]}{r}$ томъёог мэдэх билээ. Уг томьёонд 25-р бодлогын (b) болон (d)-г орлуулвал

$$p = \frac{R \sin A \sin B \sin C}{2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}$$

болно. Давхар өнцгийн теорем ашиглавал

$$p = 4R\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

болж батлагдлаа.

(b) 23-р бодлогын (d) хэсэг болон дээрх тэнцэтгэлийг ашиглан батлана.

27. $\triangle ABC$ -ны хувьд

(a)
$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

(b)
$$\cos A + \cos B + \cos C \leq \frac{3}{2}$$

болохыг харуул.

Бодолт:

28. $\triangle ABC$ -ны хувьд

(a)
$$\cos A \cos B \cos C \leq \frac{1}{8}$$

(b)
$$\sin A \sin B \sin C \leq \frac{3\sqrt{3}}{8}$$

(c)
$$\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$$

(d)
$$\cos^2 A + \cos^2 B + \cos^2 C \ge \frac{3}{4}$$

(e)
$$\sin^2 A + \sin^2 B + \sin^2 C \le \frac{9}{4}$$

(f)
$$\cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}$$

(g)
$$\sin 2A + \sin 2B + \sin 2C \le \frac{3\sqrt{3}}{2}$$

болохыг батал.

Бодолт:

29.
$$x \neq \frac{k\pi}{6}, (k \in \mathbb{Z})$$
 бол

$$\frac{\operatorname{tg} 3x}{\operatorname{tg} x} = \operatorname{tg} \left(\frac{\pi}{3} - x \right) \operatorname{tg} \left(\frac{\pi}{3} + x \right)$$

болохыг батал.

Бодолт: Гурван давхар өнцгийн томъёогоор

болж батлагдлаа.

30. [AMC12P 2002]

$$(1 + \operatorname{tg} 1^{\circ})(1 + \operatorname{tg} 2^{\circ}) \cdots (1 + \operatorname{tg} 45^{\circ}) = 2^{n}$$

байх *п*-г ол.

Бодолт 1:

$$1 + \operatorname{tg} k^{\circ} = 1 + \frac{\sin k^{\circ}}{\cos k^{\circ}} = \frac{\cos k^{\circ} + \sin k^{\circ}}{\cos k^{\circ}} =$$
$$= \frac{\sqrt{2 \sin(45^{\circ} + k^{\circ})}}{\cos k^{\circ}} = \frac{\sqrt{2} \cos(45^{\circ} - k^{\circ})}{\cos k^{\circ}}$$

Иймээс

$$(1 + \lg k^{\circ})(1 + \lg(45^{\circ} - k^{\circ})) = \frac{\sqrt{2}\cos(45^{\circ} - k^{\circ})}{\cos k^{\circ}} \cdot \frac{\sqrt{2}\cos k^{\circ}}{\cos(45^{\circ} - k^{\circ})} = 2$$

болох ба цаашилбал

$$(1 + \operatorname{tg} 1^{\circ})(1 + \operatorname{tg} 2^{\circ}) \cdots (1 + \operatorname{tg} 45^{\circ}) = (1 + \operatorname{tg} 1^{\circ})(1 + \operatorname{tg} 44^{\circ})(1 + \operatorname{tg} 2^{\circ})(1 + \operatorname{tg} 43^{\circ}) \cdots (1 + \operatorname{tg} 22^{\circ})(1 + \operatorname{tg} 23^{\circ})(1 + \operatorname{tg} 45^{\circ}) = 2^{23}$$

Иймд n=23 болно.

Бодолт 2:

$$(1 + \operatorname{tg} k^{\circ})(1 + \operatorname{tg}(45^{\circ} - k^{\circ})) = 1 + [\operatorname{tg} k^{\circ} + \operatorname{tg}(45^{\circ} - k^{\circ})] + \operatorname{tg} k^{\circ} \operatorname{tg}(45^{\circ} - k^{\circ}) = 1 + \operatorname{tg} 45^{\circ} [1 - \operatorname{tg} k^{\circ} \operatorname{tg}(45^{\circ} - k^{\circ})] + \operatorname{tg} k^{\circ} \operatorname{tg}(45^{\circ} - k^{\circ}) = 2$$

болох ба

$$(1 + \operatorname{tg} 1^{\circ})(1 + \operatorname{tg} 2^{\circ}) \cdots (1 + \operatorname{tg} 45^{\circ}) = (1 + \operatorname{tg} 1^{\circ})(1 + \operatorname{tg} 44^{\circ})(1 + \operatorname{tg} 2^{\circ})(1 + \operatorname{tg} 43^{\circ}) \cdots (1 + \operatorname{tg} 22^{\circ})(1 + \operatorname{tg} 23^{\circ})(1 + \operatorname{tg} 45^{\circ}) = 2^{23}$$

Иймд n = 23 болно.

31. [AIME 2003] Координатын хавтгайд A=(0,0); B=(b,2) цэгүүд өгчээ. ABCDEF зөв зургаан өнцөгтийн $\angle FAB=120^\circ, AB\|DE, BC\|EF, CD\|FA$ байх ба оройнуудын y тэнхлэг дээрх координатын олонлог нь 0,2,4,6,8 болно. Зургаан өнцөгтийн талбай $m\sqrt{n}$ бол m+n-г ол. Энд m,n>0 ба n нь ямар ч анхны тооны квадратад хуваагдахгүй болно.

глеплевмеТ

32. Тооны машин дээрх урвууг олдог товчлуур эвдэрсэн гэж саная. Тэгвэл тригонометрийн sin, cos, tg, arcsin, arccos, arctg товчлууруудыг ашиглан аливаа тооны урвууг олж болохыг харуул.

Водолт: $0<\theta<\pi/2$ өнцгийн хувьд $\arccos\sin\theta=\pi/2-\theta$ ба $\mathrm{tg}\left(\frac{\pi}{2}-\theta\right)=\frac{1}{\mathrm{tg}\,\theta}$ байна. $\mathrm{tg}\,\theta$ функцийн утгын муж нь $E(\mathrm{tg}\,\theta)$: $[0,\inf[$ байх тул дурын x>0 тооны хувьд

$$\operatorname{tg} \operatorname{arccos} \sin \operatorname{arctg} x = \operatorname{tg} \left(\frac{\pi}{2} - \operatorname{arctg} x \right) = \frac{1}{x}$$

болно. Уг бодлогын өөр нэг хариу нь tg arcsin cos arctg болно.

33. $\triangle ABC$ -ны хувьд $A-B=120^\circ$ ба R=8r бол C-г ол.

Бодолт: 25-р бодлогын (d)-г ашиглавал

$$2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{1}{16}$$

болох ба синусуудын нийлбэрийн томъёогоор

$$\left(\cos\frac{A-B}{2} - \cos\frac{A+B}{2}\right)\sin\frac{C}{2} = \frac{1}{16}$$

болно. $A - B = 120^{\circ}$ болохыг тооцвол

$$\left(\frac{1}{2} - \sin\frac{C}{2}\right) \sin\frac{C}{2} = \frac{1}{16}$$
$$\left(\frac{1}{4} - \sin\frac{C}{2}\right)^2 = 0$$

болно. Эндээс үзвэл $\sin\frac{C}{2}=\frac{1}{4}$ болох ба $\cos C=1-2\sin^2\frac{C}{2}=\frac{7}{8}$ болно.

34. $\triangle ABC$ -ны хувьд

$$\frac{a-b}{a+b} = \operatorname{tg} \frac{A-B}{2} \operatorname{tg} \frac{C}{2}$$

батал.

Бодолт: Синусын теорем болон синусуудын ялгаварын томъёог хэрэглэвэл

$$\frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B} = \frac{2\sin\frac{A-B}{2}\cos\frac{A+B}{2}}{2\sin\frac{A+B}{2}\cos\frac{A-B}{2}} =$$
$$= \operatorname{tg}\frac{A-B}{2}\operatorname{ctg}\frac{A+B}{2} = \operatorname{tg}\frac{A-B}{2}\operatorname{tg}\frac{C}{2}$$

болно.

35. $\triangle ABC$ -ны хувьд $\frac{a}{b}=2+\sqrt{3}$ ба $C=60^\circ$ бол A болон B өнцгийн хэмжээг ол.

Бодолт: Өмнөх бодлогын үр дүнг ашиглавал

$$\frac{\frac{a}{b} - 1}{\frac{a}{b} + 1} = \operatorname{tg} \frac{A - B}{2} \operatorname{tg} \frac{C}{2}$$

болно. Өөрөөр хэлбэл

$$\frac{1+\sqrt{3}}{\sqrt{3}+3} = \operatorname{tg}\frac{A-B}{2} \cdot \frac{1}{\sqrt{3}}$$

гэдгээс tg $\frac{A-B}{2}=1$ болно. Иймд $A-B=90^\circ$ болох ба $A+B=180^\circ-C=120^\circ$ тул $A=105^\circ$ ба $B=15^\circ$ болно.

36. a, b, c нь -1 болон 1-ээс ялгаатай бодит тоонууд ба a + b + c = abc бол

$$\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2} = \frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$$

болохыг батал.

 \pmb{Bodonm} : Бид 20-р бодлогын **Тэмдэглэл**-ийг эргэн харья. $A+B+C=m\pi$ ба $A,B,C\neq\frac{k\pi}{2}$ байх A,B,C өнцгүүдийн хувьд

$$\operatorname{tg} A + \operatorname{tg} B + \operatorname{tg} C = \operatorname{tg} A \operatorname{tg} B \operatorname{tg} C$$

гэсэн тэнцэтгэл биелнэ. Энд $m, k \in \mathbb{Z}$ болно.

 $a=\lg x, b=\lg y, c=\lg z$ гэе. Тэгвэл бодлогын a+b+c=abc нөхцлөөс $\lg(x+y+z)=0$ болно. Эндээс давхар өнцгийн тангенсийн томьёогоор

$$tg(2x + 2y + 2z) = \frac{2tg(x + y + z)}{1 - tg^2(x + y + z)} = 0$$

болох тул

$$\operatorname{tg} 2x + \operatorname{tg} 2y + \operatorname{tg} 2z = \operatorname{tg} 2x \operatorname{tg} 2y \operatorname{tg} 2z$$

болно. Давхар өнцгийн тангенсийн томьёогоор задалж бичвэл

$$\frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x} + \frac{2 \operatorname{tg} y}{1 - \operatorname{tg}^2 y} + \frac{2 \operatorname{tg} z}{1 - \operatorname{tg}^2 z} = \frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x} \cdot \frac{2 \operatorname{tg} y}{1 - \operatorname{tg}^2 y} \cdot \frac{2 \operatorname{tg} z}{1 - \operatorname{tg}^2 z}$$

болох ба a, b, c -г орлуулвал

$$\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2} = \frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$$

болно.

37. $\triangle ABC$ гурвалжин адил хажуут байх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь

$$a\cos B + b\cos C + c\cos A = \frac{a+b+c}{2}$$

болохыг батал.

Водолт: Синусын өргөтгөсөн теоремоор $a=2R\sin A, b=2R\sin B, c=2R\sin C$ байна. Тэгвэл дээрх тэнцэтгэл

$$2\sin A\cos B + 2\sin B\cos C + 2\sin C\cos A = \sin A + \sin B + \sin C$$

$$\sin(A+B) + \sin(A-B) + \sin(B+C) + \sin(B-C) + \sin(C+A) + \sin(C-A) = \sin A + \sin B + \sin C$$

болно. Энд $A+B+C=180^\circ$ гэдгээс $\sin(A+B)=\sin C,\,\sin(B+C)=\sin A,\,\sin(C+A)=\sin B$ болох тул

$$\sin(A - B) + \sin(B - C) + \sin(C - A) = 0$$

болно. 15-р бодлогын үр дүнг ашиглавал

$$4\sin\frac{A-B}{2}\sin\frac{B-C}{2}\sin\frac{C-A}{2} = 0$$

болно. Эндээс $\triangle ABC$ адил хажуут гурвалжин байх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь

$$a\cos B + b\cos C + c\cos A = \frac{a+b+c}{2}$$

болох нь батлагдлаа.

38. $a = \frac{2\pi}{1999}$ бол дараах илэрхийллийн утгыг тооцоол.

$$\cos a \cos 2a \cos 3a \cdots \cos 999a$$

Бодолт: Бидний олох илэрхийллийн утгыг P гээд $Q=\sin a\sin 2a\sin 3a\cdots\sin 999a$ гэе. Тэгвэл

$$2^{9}99PQ = (2\sin a\cos a)(2\sin 2a\cos 2a)\cdots(2\sin 999a\cos 999a) =$$

$$= \sin 2a\sin 4a\sin 6a\cdots\sin 1998a =$$

$$= (\sin 2a\sin 4a\sin 6a\cdots\sin 998a)\left[-\sin(2\pi - 1000a)\right]\cdot\left[-\sin(2\pi - 1002a)\right]\cdot$$

$$\cdot\left[-\sin(2\pi - 1004a)\right]\cdots\left[-\sin(2\pi - 1998a)\right] =$$

$$= \sin 2a\sin 4a\cdots\sin 998a\sin 997a\cdots\sin a = Q$$

 $Q \neq 0$ гэдэг нь ойлгомжтой тул $P = \frac{1}{2^999}$ болно.

39. $\alpha, \beta \neq \frac{k\pi}{2}$ ба $k \in \mathbb{Z}$ бол

$$\frac{\sec^4\alpha}{\operatorname{tg}^2\beta} + \frac{\sec^4\beta}{\operatorname{tg}^2\alpha}$$

илэрхийллийн хамгийн бага утгыг ол.

 ${\it Fodonm:}\ a={
m tg}^{lpha}, b={
m tg}^2\, lpha$ гэе. Тэгвэл a,b>0 тоонуудын хувьд

$$\frac{(a+1)^2}{b} + \frac{(b+1)^2}{a}$$

илэрхийллийн хамгийн бага утгыг олоход хангалттай болно.

$$\frac{(a+1)^2}{b} + \frac{(b+1)^2}{a} = \frac{a^2 + 2a + 1}{b} + \frac{b^2 + 2b + 1}{a} =$$

$$= \left(\frac{a^2}{b} + \frac{1}{b} + \frac{b^2}{a} + \frac{1}{a}\right) + 2\left(\frac{a}{b} + \frac{b}{a}\right)$$

болно. Кошийн тэнцэтгэл бишээр

$$\left(\frac{a^2}{b} + \frac{1}{b} + \frac{b^2}{a} + \frac{1}{a}\right) + 2\left(\frac{a}{b} + \frac{b}{a}\right) \ge 4\sqrt[4]{\frac{a^2}{b} \cdot \frac{1}{b} \cdot \frac{b^2}{a} \cdot \frac{1}{a}} + 4\sqrt{\frac{a}{b} \cdot \frac{b}{a}} = 8$$

болно. Дээрх тэнцэтгэл бишийн тэнцэх нөхцөл нь a=b=1 болно. Өөрөөр хэлбэл $\alpha=\pm 45^\circ+k\cdot 180^\circ,\ \beta=\pm 45^\circ+k\cdot 180^\circ,\ k\in\mathbb{Z}$ үед өгөгдсөн илэрхийлэл хамгийн бага утгаа буюу 8 гэсэн утга авна.

40. $0 < x < \frac{\pi}{2}$ бол

$$\frac{(\sin x)^{2y}}{(\cos x)^{y^2/2}} + \frac{(\cos x)^{2y}}{(\sin)^{y^2/2}} = \sin 2x$$

тэгшитгэлийг хангах бүх (x,y) хос шийдийг ол.

Бодолт: Кошийн тэнцэтгэл бишээр

$$\frac{(\sin x)^{2y}}{(\cos x)^{y^2/2}} + \frac{(\cos x)^{2y}}{(\sin y^{2/2})} \ge 2(\sin x \cos x)^{y-y^2/4}$$

гэдгээс

$$2\sin x \cos x = \sin 2x \ge 2(\sin x \cos x)^{y-y^2/4}$$

болно. $\sin x \cos x < 1$ учир $1 \le y - y^2/4 \Rightarrow (1 - y/2)^2 \le 0$ болно. Дээрх тэнцэтгэл бишүүдийн тэнцэх нөхцлийг авч үзвэл y = 2 ба $\sin x = \cos x$ болох тул өгөгдсөн тэгшитгэлийн цор ганц хос шийд нь $(x,y) = (\frac{\pi}{4},2)$ болно.

41. $\cos 1^{\circ}$ иррационал тоо болохыг батал.

Водолт: Эсрэгээр нь $\cos 1^{\circ}$ рационал тоо гэе. Тэгвэл дурын $n \geq 1$ тооны хувьд

$$\cos(n^{\circ} + 1^{\circ}) + \cos(n^{\circ} - 1^{\circ}) = 2\cos n^{\circ}\cos 1^{\circ}$$

тэнцэтгэл биелэх тул математик индукцын зарчим ёсоор $\cos 2^{\circ}$, $\cos 3^{\circ} \cdots$ тоонууд рационал тоо болно. Гэвч $\cos 30^{\circ}$ иррационал тоо болохыг бид мэдэх тул зөрчилд хүрнэ. Иймд $\cos 1^{\circ}$ рационал тоо биш болох нь батлагдлаа.

42. [USAMO 2002 proposal by Cecil Rousseau] Хэрвээ $x_1^2 + x_2^2 = y_1^2 + y_2^2 = c^2$ бол

$$S = (1 - x_1)(1 - y_1) + (1 - x_2)(1 - y_2)$$

илэрхийллийн хамгийн их утгыг ол.

Бодолт: x_1, x_2 хоёрыг P цэгийн координатууд гэвэл бодлогын нөхцлөөс P цэг координатын эх дээр төвтэй c радиустай тойрог дээр оршино. Иймд бид

 $x_1=c\cos\theta,\,x_2=c\sin\theta$ гэж илэрхийлж болно. Үүнтэй адилаар $y_1=c\cos\phi,\,y_2=c\sin\phi$ болно. Тэгвэл

$$S = 2 - c(\cos\theta + \sin\theta + \cos\phi + \sin\phi) + c^2(\cos\theta\cos\phi + \sin\theta\sin\phi) =$$

$$= 2 - \sqrt{2}c\left[\sin(\theta + \pi/4) + \sin(\phi + \pi/4)\right] + c^2\cos(\theta - \phi) \le$$

$$\le 2 + 2\sqrt{2}c + c^2 = (\sqrt{2}c^2 + c^2)$$

болно. Тэнцэх нөхцөл нь $\theta = \phi = 5\pi/4$. Өөрөөр хэлбэл $x_1 = x_2 = y_1 = y_2 = \frac{-c\sqrt{2}}{2}$ үед өгөгдсөн илэрхийллийн утга хамгийн их буюу $S = (\sqrt{2} + c)^2$ болно.

43. Дурын $0 < a, b < \frac{\pi}{2}$ тоонуудын хувьд

$$\frac{\sin^3 a}{\sin b} + \frac{\cos^3 a}{\cos b} \ge \sec(a - b)$$

тэнцэтгэл бишийг батал.

Водолт: Тэнцэтгэл бишийн хоёр талыг $\sin a \sin b + \cos a \cos b = \cos(a-b)$ тэнцэтгэлээр үржвэл

$$\left(\frac{\sin^3 a}{\sin b} + \frac{\cos^3 a}{\cos b}\right)(\sin a \sin b + \cos a \cos b) \ge 1$$

болно. Тэнцэтгэл бишийн зүүн талын хаалтыг задалж кошийн тэнцэтгэл биш ашиглавал

$$\sin^4 a + \frac{\cos^3 a \sin a \sin b}{\cos b} + \frac{\sin^3 a \cos a \cos b}{\sin b} + \cos^4 a \ge$$

$$\ge \sin^4 a + 2\sqrt{\cos^4 a \sin^4 a} + \cos^4 = (\sin^2 a + \cos^2 a)^2 = 1$$

болж батлагдав.

44. Хэрэв $\sin \alpha \cos \beta = -\frac{1}{2}$ бол $\cos \alpha \sin \beta$ -гийн боломжит бүх утгыг ол.

Бодолт: