Oefeningen talen en automaten - Reeks 1

Oefeningen bij 1.5, 2.0, 2.1, 2.2.

- 1. Zijn volgende uitspraken waar of niet waar:
 - a. $\{e_{,1,11,101,1001}\}$ is een taal over het alfabet $\{a\ b\ c_{,\,,\,,1,0}\}$.

waar

- b. de alfabetten $\{a\ b\ c, ,\}$ en $\{0,1\}$ hebben 2 talen gemeenschappelijk. Niet waar
- 2. Ontwerp een DFA (dus geen twee verschillende DFA's) die **enkel** de 2 woorden "in" en "input" herkent (dus niet die woorden in een willekeurige string).

Staat	i	n	p	u	T	Einde
q0	q1	X	X	X	X	X
q1	X	q2	X	X	X	X
q2 ("in")	X	X	q3	X	X	"in"
q3	X	X	X	q4	X	X
q4	X	X	X	X	q5	X
q5	X	X	X	X	X	"input"
("input")						

- 3. Ontwerp over het alfabet $\{x,y\}$ de volgende DFA's:
 - a. de automaat die alle strings over dit alfabet aanvaardt

Staat	X	у	Einde
q0	q0	q0	✓

b. de automaat die strings bestaande uit een even aantal x'en (maar geen y's) aanvaardt

Staat	X	y	einde
q0	q1	X	√ (even # x)
q1	q0	X	x (oneven # x)

c. de automaat die strings van x'en en y's, met een even aantal x'en, aanvaardt

Staat	X	y	einde
q0	q1	q 0	√ (even # x)
q1	q0	X	x (oneven # x)

d. de automaat die de lege taal over dit alfabet aanvaardt

Staat	X	y	Einde
q0	q0	q0	X

e. $\overline{\text{de automaat die de taal } \{\epsilon\}}$ over dit alfabet aanvaardt

Staat	X	y	einde
q0	q1	q1	✓ (lege string
			geaccepteerd)
q1	q1	q1	X

4. Maak een transitie diagram voor de DFA die de volgende taal over het alfabet {0,1} aanvaardt.

 $L = \{x00 \mid x \text{ is een willekeurige string van 0'en en 1'en }\}$

Staat	0	1	einde
q0	q1	q0	X
q1	q2	q0	X
q2	q2	q0	✓

5. Welke taal wordt aanvaard door de DFA met volgende transitie tabel.

De DFA accepteert een taal die bestaat uit strings die eindigen in toestand B, wat overeenkomt met strings die een oneven aantal B's bevatten.

6. Construeer de *product* automaat (doorsnede) voor de 2 onderstaande automaten, waarbij de "bogen" bepaald worden door de 2 automaten in parallel te laten lopen (cfr. winkel-bank voorbeeld uit 2.1). Welke taal wordt door deze *product* automaat aanvaard?

	0		0	1
→ A	A	→ D	Е	D
В	В	*E	D	Е
*C	С			

Toestand	0	1	accepteert?
(A,D)	(A,E)	(B,D)	X
(A,E)	(A,D)	(B,E)	X
(B,D)	(B,E)	(C,D)	X
(B,E)	(B,D)	(C,E)	X
(C,D)	(C,E)	(A,D)	X
(C,E)	(C,D)	(A,E)	✓

De taal bestaat uit alle binaire strings die:

- 1. Eindigen op "1" of "11" (voor de eerste automaat)
- 2. Een oneven aantal 0'en bevatten (voor 2^{de} automaat)

7. Bewijs dat $d_{\hat{x}}(qxy,) = dd_{\hat{x}}(qxy,)$, voor elke staat q en strings x en y.

Hint: inductie op de lengte van y.

