In [1]:

```
%matplotlib inline
```

In [2]:

```
import numpy as np
import re
import matplotlib.pyplot as plt
import pandas as pd
import statsmodels.api as sm
```

Helper functions

In [3]:

```
def read data(file name, has header):
    f = open(file name, 'r')
    if has header:
        header = re.sub('["\n]', '', f.readline()).split('')
    matrix = []
    data = []
    for line in f:
        items = line.split(' ')
        if len(items) > 1:
            matrix.append(items[0])
            del items[0]
            data.append(list(map(float, items)))
    if has header:
        return (matrix, np.asmatrix(data), header)
    else:
        return matix, np.asmatrix(data)
```

In [4]:

```
def calc_avg_data(prefix, suffix ,files):
    avg_data = None
    for f in files:
        matrix, data, header = read_data(prefix + f + suffix, True)
        if avg_data is None:
            avg_data = data
        else:
            avg_data = avg_data + data
        avg_data = avg_data / len(files)
    return matrix, avg_data, header
```

```
In [5]:
```

```
def plot_relative_values(matrix, data, header):
    relative_data = data / data.max(1)
    fig = plt.figure(figsize = (400,data.shape[1]))
    ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
    ax.set_yticks(range(data.shape[1]))
    ax.set_yticklabels(header[1:(data.shape[1]+1)])
    ax.set_xticks([i for i in range(len(matrix))])
    ax.set_xticklabels(matrix, rotation=45, ha="right")
    plt.imshow(relative_data.T, interpolation='nearest', cmap="OrRd_r")
    plt.colorbar()
    plt.show()
```

In [6]:

```
def plot_statistics(matrix, data, header):
    fig = plt.figure(figsize = (444,24))
    for i in range(0, 24, 1):
        ax = plt.subplot(24, 1, i+1)
        ax.set_yticks([0])
        ax.set_yticklabels([header[i+1]])
        if i == 23:
            ax.set_xticks(range(len(matrix)))
            ax.set_xticklabels(matrix, rotation=45, ha="right")
        else:
            ax.get_xaxis().set_visible(False)
        plt.imshow(data.T[i-1,:], interpolation='nearest', cmap="OrRd_r")
        plt.colorbar()
```

Visualization of matrix vector multiplication runtime, format conversion runtime and matrix statistics

```
In [7]:
```

```
files = ["25615", "391750", "494030", "497461", "643522", "674742", "68520 3", "810763", "867607", "872897"]
```

In [8]:

```
matrix_matvec, avg_data_matvec, header_matvec = calc_avg_data("../stats/Mat
VecMultStats_", ".txt", files)
```

In [9]:

```
plot_relative_values(matrix_matvec, avg_data_matvec, header_matvec)
```

```
In [10]:
```

```
matrix_convert, avg_data_convert, header_convert = calc_avg_data("../stat
s/MatVecConvertStats_", ".txt", files)
```

In [11]:

```
plot_relative_values(matrix_convert, avg_data_convert, header_convert)
```

In [12]:

```
matrix_stats, avg_data_stats, header_stats = calc_avg_data("../stats/MtxSta
ts_", ".txt", files)
```

In [13]:

```
plot_statistics(matrix_stats, avg_data_stats, header_stats)
```

```
NOTE production to the state that the production of the state of the s
```

Investigating performance improvements on using different formats

In [14]:

```
print "Total time in nanoseconds for executing the matrix vector multiplica
tion (all test matrices) in CSR format only"
total_csr = avg_data_matvec[:,0].sum()
total_csr
```

Total time in nanoseconds for executing the matrix vector multiplication (all test matrices) in CSR format only

Out[14]:

3850490.8999999999

In [15]:

```
print "Total time in nanoseconds for executing the matrix vector multiplica
tion (all test matrices) in the fastest format always"
total_best = avg_data_matvec.min(1).sum()
total_best
```

Total time in nanoseconds for executing the matrix vector multiplication (all test matrices) in the fastest format always

Out[15]:

2538347.3000000003

```
In [16]:
print "Performance increase (speedup)"
total csr / total best
Performance increase (speedup)
Out[16]:
1.5169283178862087
In [17]:
#indices of the best format
indices = avg data matvec.argmin(1).A1
#conversion time from CSR to the best format (0 when CSR is best Format)
convert time = avg data convert[range(avg data convert.shape[0]), indices-
convert time[indices == 0] = 0
print "Total conversion time in nanoseconds when using best multiplication
format"
convert time.sum()
Total conversion time in nanoseconds when using best multiplica
tion format
Out[17]:
6069641.0
In [18]:
print "Performace decrease when adding conversion time to multiplication ti
me (speedup)"
total csr / (total best + convert time.sum())
Performace decrease when adding conversion time to multiplicati
on time (speedup)
Out[18]:
0.44731600065023319
```

Investigating influence of matrix statistics on multiplication runtime of different formats (using linear regression)

```
In [19]:
Y = avg_data_matvec / np.linalg.norm(avg_data_matvec)

In [20]:
Y_header = header_matvec
del Y_header[0]
```

In [21]:

```
df_Y = pd.DataFrame(Y, columns = Y_header)
```

In [22]:

```
norm_x = np.ones_like(avg_data_stats)

for i in range(avg_data_stats.shape[1]):
    norm_x[:, i] = avg_data_stats[:, i] / np.linalg.norm(avg_data_stats[:, i])

X = sm.add_constant(norm_x)
```

In [23]:

```
X_header = header_stats
X_header[0] = "const"
df_X = pd.DataFrame(X, columns = X_header)
```

In [24]:

```
#removing statistics that cause linear regression to fail (they have NaN el
ements)
del df_X[X_header[20]]
del df_X[X_header[19]]
del df_X[X_header[18]]
X = np.delete(X, 20, axis=1)
X = np.delete(X, 19, axis=1)
X = np.delete(X, 18, axis=1)
```

In [25]:

```
model = sm.OLS(df_Y['CSR'], df_X)
results = model.fit()
print results.summary()
```

OLS Regression Results

```
===========
Dep. Variable:
                                   CSR
                                         R-squared:
0.104
Model:
                                   OLS
                                         Adj. R-squared:
0.053
Method:
                        Least Squares
                                        F-statistic:
2.037
                      Sun, 13 Sep 2015
                                       Prob (F-statistic):
Date:
0.00486
Time:
                              14:50:23
                                        Log-Likelihood:
1113.6
No. Observations:
                                   389
                                         AIC:
-2183.
Df Residuals:
                                   367
                                         BIC:
-2096.
Df Model:
                                    21
```

nonrobust

Covariance Type:

	====		
		std err	t
P> t [95.0% Conf. Int.]			
const	0 0102	0.009	1 160
0.247 -0.007 0.027		0.003	1.100
wa dimension	0 1725	0.205	-0.842
0.400 -0.576 0.231	312,23	00200	
lower bandwidth	0.0720	0.061	1.182
0.238 -0.048 0.192			
upper_bandwidth	0.0268	0.034	0.797
0.426 -0.039 0.093			
max_bandwidth	-0.0709	0.071	-1.005
0.316 -0.210 0.068			
average_bandwidth	0.0897	0.077	1.169
0.243 -0.061 0.241			
	-0.1089	0.069	-1.573
0.117 -0.245 0.027			
		0.035	-4.387
0.000 -0.219 -0.084		1 00 104	0.600
max_row_length 0.534 -3.19e+04 1.66e+04		1.23e+04	-0.623
		1 220+04	-0.623
min_row_length 0.534 -3.19e+04 1.66e+04	-/6/4.1030	1.236+04	-0.023
		0.029	0.034
0.973 -0.055 0.057		0.029	0.034
zero row number		0.044	0.320
0.749 -0.072 0.100		00011	0.020
diag domi column percentage		0.075	0.130
0.896 -0.137 0.157			
diag_domi_row_percentage	0.0121	0.073	0.165
0.869 -0.132 0.156			
Frobenius_norm	-13.0053	20.152	-0.645
0.519 -52.633 26.623			
sym_part_Frobenius_norm	12.8071	19.825	0.646
0.519 -26.177 51.791			
nonsym_part_Frobenius_norm		0.342	0.591
0.555 -0.470 0.875			
matching_elements_number	-0.0003	0.065	-0.005
0.996 -0.127 0.127		0 0 7 5	
nonzero_number_in_skyline		0.076	-1.093
0.275 -0.231 0.066		0 072	2 252
nonzero_number_of_lower_part 0.019 0.028 0.311		0.072	2.352
nonzero number of upper part		0.051	1.838
0.067 -0.007 0.195		0.031	1.030
nonzero number of maindiag	0.0256	0.083	0.309
0.758 -0.137 0.189		0.003	0.509
=======================================		========	
=========			
Omnibus:	852.290	Durbin-Watso	on:
2.121			
Prob(Omnibus):	0.000	Jarque-Bera	(JB):
1480668.112			
Skew:	16.257	Prob(JB):	

0.00

303.491 Cond. No. Kurtosis:

2.44e+07

Warnings:

- [1] Standard Errors assume that the covariance matrix of the er rors is correctly specified.
- [2] The smallest eigenvalue is 6.66e-13. This might indicate th at there are

strong multicollinearity problems or that the design matrix is singular.

In [26]:

```
model = sm.OLS(df Y['ModCSR'], df X)
results = model.fit()
print results.summary()
```

OLS Regression Results

______ _____ Dep. Variable: ModCSR R-squared: 0.019 Model: OLS Adj. R-squared: -0.037Method: Least Squares F-statistic: 0.3382 Date: Sun, 13 Sep 2015 Prob (F-statistic): 0.998 14:50:23 Log-Likelihood: Time: 749.41 No. Observations: AIC: 389 -1455. Df Residuals: 367 BIC: -1368. Df Model: 21 Covariance Type: nonrobust ______ coef std err [95.0% Conf. Int.] P>|t| ______ 0.0088 0.022 0.393 const 0.695 -0.035 0.053 rc dimension -0.1733 0.523 -0.331 0.740 0.855 -1.201 lower bandwidth 0.155 0.1002 0.645 0.406 0.519 -0.205 upper bandwidth -0.0194 0.086 -0.226 -0.188 0.149 0.821 0.0044 0.180 0.024 max bandwidth 0.981 -0.3500.358

-0.0043

0.381

0.196

-0.022

-0.389

average bandwidth

0.983

.9.2015	Perfor	mancePlots
max_column_length	-0.0700	0.177 -0.397
0.692 -0.417 0.277		
min_column_length	-0.1305	0.088 -1.481
0.139 -0.304 0.043		
max_row_length		3.14e+04 0.158
0.875 -5.68e+04 6.68e+04		
min_row_length		3.14e+04 0.158
0.875 -5.68e+04 6.68e+04		
zero_column_number	-0.0160	0.073 -0.220
$0.82\overline{6}$ -0.159 0.127		
zero_row_number	0.0502	0.111 0.452
0.652 -0.168 0.269		
diag_domi_column_percentage	0.0549	0.191 0.288
0.774 -0.321 0.430		
diag_domi_row_percentage	0.0705	0.187 0.377
0.706 -0.297 0.438		
Frobenius_norm	-7.7421	51.393 -0.151
0.880 -108.803 93.319		
sym_part_Frobenius_norm	7.6438	50.557 0.151
0.880 -91.775 107.062		
nonsym_part_Frobenius_norm	0.0970	0.872 0.111
0.912 -1.619 1.813		
matching_elements_number	-0.0062	0.165 -0.038
0.970 -0.330 0.318		
nonzero_number_in_skyline	-0.1010	0.193 -0.524
0.600 -0.480 0.278		
nonzero_number_of_lower_part	0.1960	0.184 1.066
0.287 -0.165 0.557		
nonzero_number_of_upper_part	0.0745	0.131 0.570
0.569 -0.183 0.332		
nonzero_number_of_maindiag	-0.0303	0.212 -0.143
0.886 -0.446 0.386		
=======================================		
==========		
Omnibus:	854.441	Durbin-Watson:
1.170		
Prob(Omnibus):	0.000	Jarque-Bera (JB):
1376601.008		•
Skew:	16.408	<pre>Prob(JB):</pre>
0.00		
Kurtosis:	292.577	Cond. No.
2.44e+07		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 6.66e-13. This might indicate th at there are

strong multicollinearity problems or that the design matrix is singular.

In [27]:

```
model = sm.OLS(df_Y['Jagged'], df_X)
results = model.fit()
print results.summary()
```

OLS Regression Results				
=======================================				
Dep. Variable:		Jagged	R-squared:	
0.097		5 5	4	
Model:		OLS	Adj. R-squar	red:
0.046			J 1	
Method:	Least	Squares	F-statistic:	
1.881		_		
Date:	Sun, 13 S	Sep 2015	Prob (F-stat	istic):
0.0113				
Time:	1	4:50:23	Log-Likeliho	ood:
946.16				
No. Observations:		389	AIC:	
-1848.				
Df Residuals:		367	BIC:	
-1761.				
Df Model:		21		
Covariance Type:		nrobust		
			========	========
			std err	t
P> t [95.0% Con	nf Int 1	coei	stu ell	L
F> C [95:0% COI				
const		0.0163	0.013	1.210
0.227 -0.010	0.043	0.0100	0.010	1,77
rc dimension		-0.3041	0.315	-0.965
	0.316			
lower bandwidth		0.1069	0.094	1.141
0.254 -0.077	0.291			
upper_bandwidth		0.0375	0.052	0.725
0.469 -0.064	0.139			
max_bandwidth		-0.0943	0.109	-0.869
0.386 -0.308	0.119			
average_bandwidth		0.0978	0.118	0.828
0.408 -0.134	0.330			
max_column_length		-0.1707	0.106	-1.603
0.110 -0.380	0.039			
min_column_length 0.000 -0.327		-0.2228	0.053	-4.194
		-1.229e+04	1.9e+04	-0.649
0.517 -4.96e+04		1 220-104	1 0-104	0 (10
min_row_length		-1.229e+04	1.9e+04	-0.649
0.517 -4.96e+04			0 044	0 025
zero_column_number 0.972 -0.088		-0.0015	0.044	-0.035
	0.065	0.0314	0.067	0.469
zero_row_number 0.639 -0.100	0 163	0.0314	0.007	0.409
diag domi column per		0.0567	0.115	0.492
0.623 -0.170	_	0.0307	0.113	0.472
diaa dami waa nawaan		0 0120	Λ 113	A 11E

.9.2015			Perfor	mancePlots	
arag_aomi_row_percentage		-0.0129	0.113	-0.112	
0.909	-0.234	0.209			
Frobenius_	_		-14.7531	30.992	-0.476
0.634	-75.697	46.191			
sym_part_F	robenius_no	rm	14.5314	30.488	0.477
	-45.422				
	ct_Frobenius	_	0.2257	0.526	0.429
0.668	-0.809	1.260			
matching_e	elements_num		0.0011	0.099	0.011
0.991	-0.194	0.197			
nonzero_nu	umber_in_sky	line	-0.1102	0.116	-0.949
0.343	-0.339	0.118			
nonzero_nu	umber_of_low	er_part	0.2595	0.111	2.341
0.020	0.042	0.477			
nonzero_nu	umber_of_upp	er_part	0.1526	0.079	1.934
0.054	-0.003	0.308			
nonzero_nu	umber_of_mai	ndiag	0.0242	0.128	0.190
0.849	-0.227	0.275			
		======	=======		
Omnibus:			833.494	Durbin-Watso	on:
2.078					
Prob(Omnik	ous):		0.000	Jarque-Bera	(JB):
1268355.57	70			-	` ,
Skew:			15.494	Prob(JB):	
0.00				,	
Kurtosis:			281.016	Cond. No.	
2.44e+07					

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.66e-13. This might indicate th at there are

strong multicollinearity problems or that the design matrix is $\ensuremath{\operatorname{singular}}$.

In [28]:

```
model = sm.OLS(df_Y['Ellpack'], df_X)
results = model.fit()
print results.summary()
```

OLS Regression Results

=========						
Dep. Variable:	Ellpack	R-squared:				
0.085						
Model:	OLS	Adj. R-squared:				
0.033						
Method:	Least Squares	F-statistic:				
1.633						
Date:	Sun, 13 Sep 2015	Prob (F-statistic):				
0.0398						
Time:	14:50:23	Log-Likelihood:				

967.08

No. Observations: 389 AIC:

-1890.

Df Residuals: 367 BIC:

-1803.

Df Model: 21

DI Model:			21		
Covariance T					
=========				=======	
=========	=======			_	
			coef	std err	t
P> t [9					
const				0.013	-0.024
0.981					
rc_dimension				0.299	0.040
0.968		0.599			
lower_bandwid				0.089	0.400
0.689		0.210			
upper_bandwid	dth		-0.0187	0.049	-0.382
0.703					
max_bandwidtl			0.0451	0.103	0.438
0.661	-0.157	0.247			
average_band			-0.0538	0.112	-0.481
0.631	-0.274				
max_column_le			0.0512	0.101	0.508
0.612					
min_column_le	ength		0.0218	0.050	0.433
0.666	-0.077	0.121			
max_row_leng	th	_	6747.3447	1.8e+04	-0.376
0.707 -4					
min_row_leng			6747.3462	1.8e+04	-0.376
0.707 -4					
zero_column_n	number		-0.0129	0.042	-0.308
0.758					
zero_row_numl			0.0097	0.063	0.153
0.879					
diag_domi_co				0.109	0.193
0.847	-0.193	0.236			
diag_domi_ro			-0.0588	0.107	-0.551
0.582	-0.269	0.151			
Frobenius_no:	rm		0.2387	29.369	0.008
0.994	-57.514	57.991			
sym_part_Frol			-0.2522	28.892	-0.009
0.993	-57.066	56.562			
nonsym_part_1	Frobenius_n	orm	0.0135	0.499	0.027
0.978	-0.967	0.994			
matching_elem	ments_numbe	r	-0.0330	0.094	-0.350
0.726	-0.218	0.152			
nonzero_numbe	er_in_skyli	ne	0.0288	0.110	0.262
0.794	-0.188	0.245			
nonzero_numbe	er_of_lower	_part	0.0624	0.105	0.595
0.553	-0.144	0.269			
nonzero_numbe	er_of_upper	_part	0.0596	0.075	0.796
0.426	-0.087	0.207			
nonzero_numbe	er_of_maind	iag	0.0649	0.121	0.537
0.592	-0.173	0.303			

Omnibus: 889.195 Durbin-Watson:

2.011

Prob(Omnibus): 0.000 Jarque-Bera (JB):

1849129.897

Skew: 17.898 Prob(JB):

0.00

Kurtosis: 338.863 Cond. No.

2.44e+07

==========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.66e-13. This might indicate th at there are

strong multicollinearity problems or that the design matrix is singular.