Statistical Properties of Robust MDPs

Wenhao Yang

- 1 Introduction
- 2 Robust MDPs
- 3 Statistical Results
- 4 Further Discussion
- **6** Reference

- 1 Introduction
- Statistical Results
- 4 Further Discussion

Models may be sensitive to estimation errors.

- Models may be sensitive to estimation errors.
- Example: suppose $X \sim P$ and θ is the parameter of interest.

000

- Models may be sensitive to estimation errors.
- Example: suppose $X \sim P$ and θ is the parameter of interest. The population risk minimization is:

$$\min_{\theta} \mathbb{E}_P f(X; \theta); \ \theta^* \in \arg \max_{\theta} \mathbb{E}_P f(X; \theta).$$

- Models may be sensitive to estimation errors.
- Example: suppose $X \sim P$ and θ is the parameter of interest. The population risk minimization is:

$$\min_{\theta} \mathbb{E}_P f(X; \theta); \ \ \theta^* \in \arg\max_{\theta} \mathbb{E}_P f(X; \theta).$$

The empirical risk minimization is:

$$\min_{\theta} \mathbb{E}_{\widehat{P}_n} f(X; \theta) := \frac{1}{n} \sum_{i} f(X_i; \theta); \ \widehat{\theta}_n^* \in \arg \max_{\theta} \mathbb{E}_{\widehat{P}_n} f(X; \theta)$$

- Models may be sensitive to estimation errors.
- Example: suppose $X \sim P$ and θ is the parameter of interest. The population risk minimization is:

$$\min_{\theta} \mathbb{E}_P f(X; \theta); \ \theta^* \in \arg \max_{\theta} \mathbb{E}_P f(X; \theta).$$

The empirical risk minimization is:

$$\min_{\theta} \mathbb{E}_{\widehat{P}_n} f(X; \theta) := \frac{1}{n} \sum_{i} f(X_i; \theta); \ \widehat{\theta}_n^* \in \arg \max_{\theta} \mathbb{E}_{\widehat{P}_n} f(X; \theta)$$

• $\widehat{\theta}_n^*$ may vary a lot with estimation errors of \widehat{P}_n .

• One solution: introduce (distributional) robustness.

Introduction

- One solution: introduce (distributional) robustness.
- The population robust risk minimization:

$$\min_{\theta} \sup_{D(Q||P) \le \rho} \mathbb{E}_{Q} f(X; \theta); \text{ minimizer: } \theta_{r}^{*}.$$

- One solution: introduce (distributional) robustness.
- The population robust risk minimization:

$$\min_{\theta} \sup_{D(Q||P) \le \rho} \mathbb{E}_Q f(X; \theta); \text{ minimizer: } \theta_r^*.$$

The empirical robust risk minimization:

$$\min_{\theta} \sup_{D(Q||\widehat{P}_n) \leq \rho} \mathbb{E}_Q f(X; \theta); \text{ minimizer: } \widehat{\theta}_r^*.$$

Introduction

- One solution: introduce (distributional) robustness.
- The population robust risk minimization:

$$\min_{\theta} \sup_{D(Q||P) \le \rho} \mathbb{E}_Q f(X; \theta); \text{ minimizer: } \theta_r^*.$$

The empirical robust risk minimization:

$$\min_{\theta} \sup_{D(Q \| \widehat{P}_n) \leq \rho} \mathbb{E}_Q f(X; \theta); \text{ minimizer: } \widehat{\theta}_r^*.$$

• Why $\widehat{\theta}_r^*$ is less sensitive to randomness of \widehat{P}_n ?

Introduction

- One solution: introduce (distributional) robustness.
- The population robust risk minimization:

$$\min_{\theta} \sup_{D(Q||P) \le \rho} \mathbb{E}_{Q} f(X; \theta); \text{ minimizer: } \theta_{r}^{*}.$$

The empirical robust risk minimization:

$$\min_{\theta} \sup_{D(Q \| \widehat{P}_n) \leq \rho} \mathbb{E}_Q f(X; \theta); \text{ minimizer: } \widehat{\theta}_r^*.$$

- Why $\widehat{\theta}_r^*$ is less sensitive to randomness of \widehat{P}_n ?
- Image ρ is super large, like infinity.

- 1 Introduction
- 2 Robust MDPs
- Statistical Results
- 4 Further Discussion

• Same parameters with MDPs: $\langle S, A, P, R, \gamma \rangle$.

- Same parameters with MDPs: $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$.
- Additional parameters: uncertainty set \mathcal{P} .

Robust Markov Decision Processes

- Same parameters with MDPs: $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$.
- ullet Additional parameters: uncertainty set ${\cal P}.$
- Robust value function:

$$V_r^{\pi}(s) := \inf_{P \in \mathcal{P}} V_P^{\pi}(s).$$

- Same parameters with MDPs: $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$.
- Additional parameters: uncertainty set \mathcal{P} .
- Robust value function:

$$V_r^{\pi}(s) := \inf_{P \in \mathcal{P}} V_P^{\pi}(s).$$

• Robust Bellman operator \mathcal{T}_r^{π} :

$$\mathcal{T}_r^{\pi}V = R^{\pi} + \gamma \inf_{P \in \mathcal{P}} P^{\pi}V.$$

Introduction

Robust Markov Decision Processes

- Same parameters with MDPs: $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$.
- ullet Additional parameters: uncertainty set ${\cal P}.$
- Robust value function:

$$V_r^{\pi}(s) := \inf_{P \in \mathcal{P}} V_P^{\pi}(s).$$

• Robust Bellman operator \mathcal{T}_r^{π} :

$$\mathcal{T}_r^{\pi}V = R^{\pi} + \gamma \inf_{P \in \mathcal{P}} P^{\pi}V.$$

• Optimal robust Bellman operator \mathcal{T}_r :

$$\mathcal{T}_r V = \max_{\pi} R^{\pi} + \gamma \inf_{P \in \mathcal{P}} P^{\pi} V.$$

- Same parameters with MDPs: $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$.
- Additional parameters: uncertainty set \mathcal{P} .
- Robust value function:

$$V_r^{\pi}(s) := \inf_{P \in \mathcal{P}} V_P^{\pi}(s).$$

• Robust Bellman operator \mathcal{T}_r^{π} :

$$\mathcal{T}_r^{\pi}V = R^{\pi} + \gamma \inf_{P \in \mathcal{P}} P^{\pi}V.$$

• Optimal robust Bellman operator \mathcal{T}_r :

$$\mathcal{T}_r V = \max_{\pi} R^{\pi} + \gamma \inf_{P \in \mathcal{P}} P^{\pi} V.$$

• Both are γ -contraction. Fixed points are V_r^{π} and $V_r^* = \max_{\pi} V_r^{\pi}$.

Introduction

• Can we choose an arbitrary \mathcal{P} ?

- - No! It may be NP hard.[WKR13]

• Can we choose an arbitrary \mathcal{P} ?

- Can we choose an arbitrary \mathcal{P} ?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on \mathcal{P} :

- Can we choose an arbitrary \mathcal{P} ?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on \mathcal{P} :
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s, a} \mathcal{P}_{s, a}$.

- Can we choose an arbitrary \mathcal{P} ?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on \mathcal{P} :
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s, a} \mathcal{P}_{s, a}$.
 - s-rectangular: $\mathcal{P} = \bigotimes_{s} \mathcal{P}_{s}$.

- Can we choose an arbitrary \mathcal{P} ?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on \mathcal{P} :
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s, a} \mathcal{P}_{s, a}$.
 - s-rectangular: $\mathcal{P} = \bigotimes_s \mathcal{P}_s$.
- Example: *f*-divergence set:

- Can we choose an arbitrary \mathcal{P} ?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on \mathcal{P} :
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s, a} \mathcal{P}_{s, a}$.
 - s-rectangular: $\mathcal{P} = \bigotimes_s \mathcal{P}_s$.
- Example: f-divergence set:
 - $\mathcal{P}_{s,a} = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,s}(s')}) P_{s,a}(s') \leq \rho\}.$

- Can we choose an arbitrary P?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on P:
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s, a} \mathcal{P}_{s, a}$.
 - s-rectangular: $\mathcal{P} = \bigotimes_s \mathcal{P}_s$.
- Example: f-divergence set:
 - $\mathcal{P}_{s,a} = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \leq \rho\}.$
 - $\mathcal{P}_s = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{a \in A} \int_{s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \leq |\mathcal{A}| \rho \}.$

- Can we choose an arbitrary P?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on P:
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s,a} \mathcal{P}_{s,a}$.
 - s-rectangular: $\mathcal{P} = \bigotimes_{s} \mathcal{P}_{s}$.
- Example: f-divergence set:
 - $\mathcal{P}_{s,a} = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \leq \rho\}.$
 - $\mathcal{P}_s = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{a \in \mathcal{A}, s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \le |\mathcal{A}| \rho\}.$
- [WKR13] Optimal polices $\pi_r^* \in \arg\max_{\pi} V_r^{\pi}$:

- Can we choose an arbitrary \mathcal{P} ?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on \mathcal{P} :
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s, a} \mathcal{P}_{s, a}$.
 - s-rectangular: $\mathcal{P} = \bigotimes_s \mathcal{P}_s$.
- Example: *f*-divergence set:
 - $\mathcal{P}_{s,a} = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \leq \rho\}.$
 - $\mathcal{P}_{s} = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{a \in \mathcal{A}, s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \leq |\mathcal{A}| \rho \}.$
- [WKR13] Optimal polices $\pi_r^* \in \arg \max_{\pi} V_r^{\pi}$:
 - Stationary, deterministic under (s, a)-rectangular assumption.

- Can we choose an arbitrary P?
 - No! It may be NP hard.[WKR13]
- [WKR13] Most common assumption on \mathcal{P} :
 - (s, a)-rectangular: $\mathcal{P} = \bigotimes_{s,a} \mathcal{P}_{s,a}$.
 - s-rectangular: $\mathcal{P} = \bigotimes_{s} \mathcal{P}_{s}$.
- Example: f-divergence set:
 - $\mathcal{P}_{s,a} = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \le \rho\}.$
 - $\mathcal{P}_s = \{Q_{s,a} \in \Delta(\mathcal{S}) | \sum_{a \in \mathcal{A}, s' \in \mathcal{S}} f(\frac{Q_{s,a}(s')}{P_{s,a}(s')}) P_{s,a}(s') \le |\mathcal{A}| \rho\}.$
- [WKR13] Optimal polices $\pi_r^* \in \arg \max_{\pi} V_r^{\pi}$:
 - Stationary, deterministic under (s, a)-rectangular assumption.
 - Stationary, stochastic under s-rectangular assumption.

- 2 Robust MDPs
- 3 Statistical Results
 Non-asymptotic Results
 Asymptotic Results
- 4 Further Discussion
- 5 Reference

Data Generation Mechanism

Data Generation Mechanism

• P is always unknown!

Data Generation Mechanism

- P is always unknown!
- Generative model: for each (s, a), we obtain n samples $\{X_i^{(s,a)}\}_{i=1}^n \sim P_{s,a}(\cdot)$.

Introduction

Data Generation Mechanism

- P is always unknown!
- Generative model: for each (s, a), we obtain n samples $\{X_i^{(s,a)}\}_{i=1}^n \sim P_{s,a}(\cdot).$
- Estimation of $P: \widehat{P}_{s,a}(s') = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i^{(s,a)} = s').$

Introduction

Data Generation Mechanism

- P is always unknown!
- Generative model: for each (s, a), we obtain n samples $\{X_i^{(s,a)}\}_{i=1}^n \sim P_{s,a}(\cdot).$
- Estimation of $P: \widehat{P}_{s,a}(s') = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i^{(s,a)} = s').$
- $\widehat{\mathcal{P}} \to \mathcal{P}$, $\widehat{V}_r^{\pi} \to V_r^{\pi}$, $\widehat{V}_r^* \to V_r^*$.

Introduction

- 1 Introduction
- 3 Statistical Results Non-asymptotic Results
- 4 Further Discussion

Prior Results

Prior Results

 \bullet How many samples are sufficient to guarantee

$$\|V_r^* - \widehat{V}_r^*\|_{\infty} \le \varepsilon$$
?

Introduction

Prior Results

How many samples are sufficient to guarantee

$$\|V_r^* - \widehat{V}_r^*\|_{\infty} \le \varepsilon$$
?

• [ZBZ⁺21]: (s, a)-rectangular, $f(t) = t \log t$ (KL set), number of samples $\widetilde{\mathcal{O}}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|\exp(\frac{1}{\beta(1-\gamma)})}{\varepsilon^2(1-\gamma)^2\rho^2}\right)$.

Prior Results

How many samples are sufficient to guarantee

$$\|V_r^* - \widehat{V}_r^*\|_{\infty} \le \varepsilon$$
?

- [ZBZ⁺21]: (s, a)-rectangular, $f(t) = t \log t$ (KL set), number of samples $\widetilde{\mathcal{O}}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|\exp(\frac{1}{\beta(1-\gamma)})}{\varepsilon^2(1-\gamma)^2\rho^2}\right)$.
- It is counter-intuitive...

Lower Bound

Lower Bound

• A classic example with 2 states, 1 action:

Lower Bound

• A classic example with 2 states, 1 action:

Lower Bound

• A classic example with 2 states, 1 action:

$$p$$
 z_0 z_1

• Robust value function: $V_r^*(z_0) = \frac{1}{1 - \gamma g(p)}$,

Lower Bound

• A classic example with 2 states, 1 action:

$$p$$
 z_0 $1-p$ z_1 z_1

• Robust value function: $V_r^*(z_0) = \frac{1}{1-\gamma g(p)}$, where $g(p) = \inf_{D_f(q\parallel p) \leq \rho} q$ and $D_f(q\parallel p) = pf(p/q) + (1-p)f(1-p/1-q)$.

Lower bound

Lower bound

• Consider a perturbation from p to $p + \delta$:

Lower bound

• Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1-\gamma g(p+\delta)}-\frac{1}{1-\gamma g(p)}\geq \frac{\gamma \delta g'(p)}{(1-\gamma g(p))^2}=2\varepsilon.$$

Introduction

Lower bound

Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1 - \gamma g(p + \delta)} - \frac{1}{1 - \gamma g(p)} \ge \frac{\gamma \delta g'(p)}{(1 - \gamma g(p))^2} = 2\varepsilon.$$

• [AMK13] told us $n = \widetilde{\Omega}\left(\frac{p(1-p)g'(p)^2}{\varepsilon^2(1-\gamma g(p))^4}\right)$.

Introduction

Lower bound

Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1-\gamma g(p+\delta)}-\frac{1}{1-\gamma g(p)}\geq \frac{\gamma \delta g'(p)}{(1-\gamma g(p))^2}=2\varepsilon.$$

- [AMK13] told us $n = \widetilde{\Omega}\left(\frac{p(1-p)g'(p)^2}{\varepsilon^2(1-\gamma g(p))^4}\right)$.
- f(t) = |t-1|,

Introduction

Lower bound

Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1 - \gamma g(p + \delta)} - \frac{1}{1 - \gamma g(p)} \ge \frac{\gamma \delta g'(p)}{(1 - \gamma g(p))^2} = 2\varepsilon.$$

- [AMK13] told us $n = \widetilde{\Omega}\left(\frac{p(1-p)g'(p)^2}{\varepsilon^2(1-\gamma g(p))^4}\right)$.
- $f(t) = |t-1|, g(p) = p \rho/2,$

Lower bound

Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1-\gamma g(p+\delta)}-\frac{1}{1-\gamma g(p)}\geq \frac{\gamma \delta g'(p)}{(1-\gamma g(p))^2}=2\varepsilon.$$

- [AMK13] told us $n = \widetilde{\Omega}\left(\frac{p(1-p)g'(p)^2}{\varepsilon^2(1-\gamma g(p))^4}\right)$.
- f(t) = |t-1|, $g(p) = p \rho/2$, $n = \widetilde{\Omega}\left(\frac{1-\gamma}{\varepsilon^2}\min\{\frac{1}{(1-\gamma)^4},\frac{1}{\rho^4}\}\right)$.

Lower bound

• Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1 - \gamma g(p + \delta)} - \frac{1}{1 - \gamma g(p)} \ge \frac{\gamma \delta g'(p)}{(1 - \gamma g(p))^2} = 2\varepsilon.$$

- [AMK13] told us $n = \widetilde{\Omega}\left(\frac{p(1-p)g'(p)^2}{\varepsilon^2(1-\gamma g(p))^4}\right)$.
- f(t) = |t-1|, $g(p) = p \rho/2$, $n = \widetilde{\Omega}\left(\frac{1-\gamma}{\varepsilon^2}\min\{\frac{1}{(1-\gamma)^4},\frac{1}{\rho^4}\}\right)$.
- $f(t) = (t-1)^2$,

Lower bound

• Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1 - \gamma g(p + \delta)} - \frac{1}{1 - \gamma g(p)} \ge \frac{\gamma \delta g'(p)}{(1 - \gamma g(p))^2} = 2\varepsilon.$$

- [AMK13] told us $n = \widetilde{\Omega}\left(\frac{p(1-p)g'(p)^2}{\varepsilon^2(1-\gamma g(p))^4}\right)$.
- f(t) = |t-1|, $g(p) = p \rho/2$, $n = \widetilde{\Omega}\left(\frac{1-\gamma}{\varepsilon^2}\min\{\frac{1}{(1-\gamma)^4}, \frac{1}{\rho^4}\}\right)$.
- $f(t) = (t-1)^2$, $g(p) = p - \sqrt{\rho p(1-p)}$,

Lower bound

Consider a perturbation from p to $p + \delta$:

$$\frac{1}{1-\gamma g(p+\delta)}-\frac{1}{1-\gamma g(p)}\geq \frac{\gamma \delta g'(p)}{(1-\gamma g(p))^2}=2\varepsilon.$$

- [AMK13] told us $n = \widetilde{\Omega}\left(\frac{p(1-p)g'(p)^2}{\varepsilon^2(1-\gamma g(p))^4}\right)$.
- $f(t) = |t 1|, \ g(p) = p \rho/2, n = \widetilde{\Omega}\left(\frac{1 \gamma}{\varepsilon^2} \min\{\frac{1}{(1 \gamma)^4}, \frac{1}{\rho^4}\}\right).$
- $f(t) = (t-1)^2$. $g(p) = p - \sqrt{\rho p(1-p)}, n = \widetilde{\Omega}\left(\frac{1}{\varepsilon^2(1-\gamma)^2}\min\{\frac{1}{1-\gamma},\frac{1}{\rho}\}\right).$

Upper bound

Upper bound

• Okay...How about upper bound?

Introduction

Upper bound

- Okay...How about upper bound?
- No explicit expression of V_r^* ...

Upper bound

- Okay...How about upper bound?
- No explicit expression of V_r^* ...
- Let's take advantage of robust Bellman operator:

Introduction

Upper bound

- Okay...How about upper bound?
- No explicit expression of V_r^{*}...
- Let's take advantage of robust Bellman operator:

$$\|V_r^* - \widehat{V}_r^*\|_{\infty} \leq \frac{1}{1-\gamma} \sup_{\pi \in \Pi, V \in [0,1/1-\gamma]^{|\mathcal{S}|}} \|\mathcal{T}_r^{\pi}V - \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}.$$

Upper bound

- Okay...How about upper bound?
- No explicit expression of V_r^{*}...
- Let's take advantage of robust Bellman operator:

$$\|V_r^* - \widehat{V}_r^*\|_{\infty} \leq \frac{1}{1-\gamma} \sup_{\pi \in \Pi, V \in [0,1/1-\gamma]^{|\mathcal{S}|}} \|\mathcal{T}_r^{\pi}V - \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}.$$

Uniform analysis on V can be unnecessary. But no harm!

Upper bound

- Okay...How about upper bound?
- No explicit expression of V_r^{*}...
- Let's take advantage of robust Bellman operator:

$$\|V_r^* - \widehat{V}_r^*\|_{\infty} \leq \frac{1}{1-\gamma} \sup_{\pi \in \Pi, V \in [0,1/1-\gamma]^{|\mathcal{S}|}} \|\mathcal{T}_r^{\pi}V - \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}.$$

 Uniform analysis on V can be unnecessary. But no harm! $\log \mathcal{N}(\Pi, \|\cdot\|_1) \approx \log \mathcal{N}([0, 1/1 - \gamma]^{|\mathcal{S}|}, \|\cdot\|_{\infty}) \approx \Theta(|\mathcal{S}|).$

Further Discussion

Introduction

Upper bound

• For any fixed π , V, we need concentration inequality to bound $\|\mathcal{T}_r^{\pi}V - \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}$.

Upper bound

- For any fixed π , V, we need concentration inequality to bound $\|\mathcal{T}_r^{\pi}V - \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}$.
- How...? Randomness is hidden in the constraints.

Upper bound

- For any fixed π , V, we need concentration inequality to bound $\|\mathcal{T}_r^{\pi}V - \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}$.
- How...? Randomness is hidden in the constraints. Try dual.

Upper bound

- For any fixed π , V, we need concentration inequality to bound $\|\mathcal{T}_r^{\pi}V \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}$.
- How...? Randomness is hidden in the constraints. Try dual. By [Sha17]:

Upper bound

- For any fixed π , V, we need concentration inequality to bound $\|\mathcal{T}_r^{\pi}V \widehat{\mathcal{T}}_r^{\pi}V\|_{\infty}$.
- How...? Randomness is hidden in the constraints. Try dual. By [Sha17]:

$$(P)\inf_{D_f(Q||P)\leq\rho}\sum_sQ(s)V(s).$$

$$(D) \sup_{\lambda \geq 0, \eta \in \mathbb{R}} -\lambda \sum_{s} { extstyle P(s)} f^*(rac{\eta - V(s)}{\lambda}) - \lambda
ho + \eta.$$

Upper bound

- For any fixed π , V, we need concentration inequality to bound $\|\mathcal{T}_{r}^{\pi}V-\widehat{\mathcal{T}}_{r}^{\pi}V\|_{\infty}$
- How...? Randomness is hidden in the constraints. Try dual. By [Sha17]:

$$(P) \inf_{D_f(Q\|P) \le \rho} \sum_s Q(s) V(s).$$
 $(D) \sup_{\lambda > 0, \eta \in \mathbb{R}} -\lambda \sum_s P(s) f^*(\frac{\eta - V(s)}{\lambda}) - \lambda \rho + \eta.$

Next: calculations...

Non-asymptotic Results

Upper bound

• Consider three f: |t-1|, $(t-1)^2$, $t \log t$, in (s, a)-rectangular assumption.

Non-asymptotic Results

Introduction

- Consider three $f: |t-1|, (t-1)^2, t \log t$, in (s, a)-rectangular assumption.
- Upper bound $\widetilde{\mathcal{O}}\left(\frac{|\mathcal{S}|^2|\mathcal{A}|}{\varepsilon^2\rho^2(1-\gamma)^4}\right)$.

Non-asymptotic Results

Introduction

- Consider three $f: |t-1|, (t-1)^2, t \log t$, in (s, a)-rectangular assumption.
- Upper bound $\widetilde{\mathcal{O}}\left(\frac{|\mathcal{S}|^2|\mathcal{A}|}{\varepsilon^2\rho^2(1-\gamma)^4}\right)$.
- For $f(t) = t \log t$, an additional parameter $(\min_{P^*(s'|s,a)>0} P^*(s'|s,a))^{-1}.$

- Consider three f: |t-1|, $(t-1)^2$, $t \log t$, in (s, a)-rectangular assumption.
- Upper bound $\widetilde{\mathcal{O}}\left(\frac{|\mathcal{S}|^2|\mathcal{A}|}{\varepsilon^2\rho^2(1-\gamma)^4}\right)$.
- For $f(t) = t \log t$, an additional parameter $(\min_{P^*(s'|s,a)>0} P^*(s'|s,a))^{-1}$.
- Wait... Why infinity when $\rho \rightarrow 0$?

- Consider three $f: |t-1|, (t-1)^2, t \log t$, in (s, a)-rectangular assumption.
- Upper bound $\widetilde{\mathcal{O}}\left(\frac{|\mathcal{S}|^2|\mathcal{A}|}{\varepsilon^2\rho^2(1-\gamma)^4}\right)$.
- For $f(t) = t \log t$, an additional parameter $(\min_{P^*(s'|s,a)>0} P^*(s'|s,a))^{-1}$.
- Wait... Why infinity when $\rho \to 0$?
- By fact $V_r^* o V^*$ when ho o 0, alternative bound:

$$\|V_r^* - \widehat{V}_r^*\|_{\infty} \leq \mathcal{O}\left(\frac{h(
ho)}{(1-\gamma)^2}\right) + \widetilde{\mathcal{O}}\left(\sqrt{\frac{|\mathcal{S}|}{(1-\gamma)^4 n}}\right).$$

- 1 Introduction
- 3 Statistical Results Asymptotic Results
- 4 Further Discussion

Asymptotic Normality

• Confidence length of non-asymptotic results is $O_P(\sqrt{\log n/n})$.

- Confidence length of non-asymptotic results is $O_P(\sqrt{\log n/n})$.
- The non-asymptotic upper bound is not tight.

- Confidence length of non-asymptotic results is $O_P(\sqrt{\log n/n})$.
- The non-asymptotic upper bound is not tight.
- In large sample regime, rate of $||V_r^* \widehat{V}_r^*||_{\infty}$ is $O_P(1/\sqrt{n})$.

Asymptotic Normality

- Confidence length of non-asymptotic results is $O_P(\sqrt{\log n/n})$.
- The non-asymptotic upper bound is not tight.
- In large sample regime, rate of $||V_r^* \widehat{V}_r^*||_{\infty}$ is $O_P(1/\sqrt{n})$.
- Fix a π , by CLT and delta method:

$$\sqrt{n}(\widehat{\mathcal{T}}_r^{\pi}V_r^{\pi}-\mathcal{T}_r^{\pi}V_r^{\pi})\stackrel{d}{\to} \mathcal{N}(0,\Lambda^{\pi}).$$

Asymptotic Normality

- Confidence length of non-asymptotic results is $O_P(\sqrt{\log n/n})$.
- The non-asymptotic upper bound is not tight.
- In large sample regime, rate of $||V_r^* \widehat{V}_r^*||_{\infty}$ is $O_P(1/\sqrt{n})$.
- Fix a π , by CLT and delta method:

$$\sqrt{n}(\widehat{\mathcal{T}}_r^{\pi}V_r^{\pi}-\mathcal{T}_r^{\pi}V_r^{\pi})\stackrel{d}{\to}\mathcal{N}(0,\Lambda^{\pi}).$$

• LHS = $-\widehat{M}^{\pi} \cdot \sqrt{n}(V_r^{\pi} - \widehat{V}_r^{\pi}) + o_P(\sqrt{n} \|\widehat{V}_r^{\pi} - V_r^{\pi}\|_{\infty})$, where \widehat{M}^{π} is the derivative of functional $I - \widehat{T}_r^{\pi}$ at V_r^{π} .

- Confidence length of non-asymptotic results is $O_P(\sqrt{\log n/n})$.
- The non-asymptotic upper bound is not tight.
- In large sample regime, rate of $\|V_r^* \widehat{V}_r^*\|_{\infty}$ is $O_P(1/\sqrt{n})$.
- Fix a π , by CLT and delta method:

$$\sqrt{n}(\widehat{\mathcal{T}}_r^{\pi}V_r^{\pi}-\mathcal{T}_r^{\pi}V_r^{\pi})\stackrel{d}{\to}\mathcal{N}(0,\Lambda^{\pi}).$$

- LHS = $-\widehat{M}^{\pi} \cdot \sqrt{n}(V_r^{\pi} \widehat{V}_r^{\pi}) + o_P(\sqrt{n} \|\widehat{V}_r^{\pi} V_r^{\pi}\|_{\infty})$, where \widehat{M}^{π} is the derivative of functional $I \widehat{T}_r^{\pi}$ at V_r^{π} .
- Notice $\sqrt{n}(V_r^{\pi}-\widehat{V}_r^{\pi})=O_P(1)$ and prove \widehat{M}^{π} is consistent to M^{π} :

- Confidence length of non-asymptotic results is $O_P(\sqrt{\log n/n})$.
- The non-asymptotic upper bound is not tight.
- In large sample regime, rate of $\|V_r^* \widehat{V}_r^*\|_{\infty}$ is $O_P(1/\sqrt{n})$.
- Fix a π , by CLT and delta method:

$$\sqrt{n}(\widehat{\mathcal{T}}_r^{\pi}V_r^{\pi}-\mathcal{T}_r^{\pi}V_r^{\pi})\stackrel{d}{\to}\mathcal{N}(0,\Lambda^{\pi}).$$

- LHS = $-\widehat{M}^{\pi} \cdot \sqrt{n}(V_r^{\pi} \widehat{V}_r^{\pi}) + o_P(\sqrt{n} \|\widehat{V}_r^{\pi} V_r^{\pi}\|_{\infty})$, where \widehat{M}^{π} is the derivative of functional $I \widehat{T}_r^{\pi}$ at V_r^{π} .
- Notice $\sqrt{n}(V_r^{\pi} \widehat{V}_r^{\pi}) = O_P(1)$ and prove \widehat{M}^{π} is consistent to M^{π} :

$$\sqrt{n}(\widehat{V}_r^{\pi} - V_r^{\pi}) \stackrel{d}{\to} \mathcal{N}(0, (M^{\pi})^{-1} \Lambda^{\pi} (M^{\pi})^{-\top}).$$

Asymptotic Results

Further Discussion

Asymptotic Results

Asymptotic Normality

• What about $\sqrt{n}(\widehat{V}_r^* - V_r^*)$?

Asymptotic Normality

- What about $\sqrt{n}(\widehat{V}_r^* V_r^*)$?
- Need uniqueness assumption of $\pi^* \in \arg\max V_r^{\pi}$.

- What about $\sqrt{n}(\widehat{V}_r^* V_r^*)$?
- Need uniqueness assumption of $\pi^* \in \arg\max V_r^{\pi}$. And replace π with π^* .

- What about $\sqrt{n}(\widehat{V}_r^* V_r^*)$?
- Need uniqueness assumption of $\pi^* \in \arg\max V_r^\pi$. And replace π with π^* .
- If not. Still \sqrt{n} rate, but not asymptotic normal.

Asymptotic Results

Introduction

Asymptotic Normality

- What about $\sqrt{n}(\hat{V}_r^* V_r^*)$?
- Need uniqueness assumption of $\pi^* \in \arg\max V_r^{\pi}$. And replace π with π^* .
- If not. Still \sqrt{n} rate, but not asymptotic normal. The asymptotic distribution be like:

$$\bigvee_{\pi\in\Pi^*}\mathcal{N}(0,(M^\pi)^{-1}\Lambda^\pi(M^\pi)^{-\top}),$$

where $x \lor y = \max\{x, y\}$.

Asymptotic Normality

- What about $\sqrt{n}(\widehat{V}_r^* V_r^*)$?
- Need uniqueness assumption of $\pi^* \in \arg\max V_r^{\pi}$. And replace π with π^* .
- If not. Still \sqrt{n} rate, but not asymptotic normal. The asymptotic distribution be like:

$$\bigvee_{\pi \in \Pi^*} \mathcal{N}(0, (M^{\pi})^{-1} \Lambda^{\pi} (M^{\pi})^{-\top}),$$

where $x \vee y = \max\{x, y\}$.

How to do inference?

Further Discussion

- Statistical Results
- 4 Further Discussion

0

Discussion

Discussion

 How to construct an efficient robust estimator in linear MDPs?

- How to construct an efficient robust estimator in linear MDPs?
- E.g. $P = \Phi \theta$, $\Phi \in \mathbb{R}_+^{|\mathcal{S}||\mathcal{A}| \times r}$ is known and $\theta \in \mathbb{R}_+^{r \times |\mathcal{S}|}$ is unknown. Offline dataset with coverage rate σ .

Discussion

- How to construct an efficient robust estimator in linear MDPs?
- E.g. $P = \Phi \theta$, $\Phi \in \mathbb{R}_+^{|\mathcal{S}||\mathcal{A}| \times r}$ is known and $\theta \in \mathbb{R}_+^{r \times |\mathcal{S}|}$ is unknown. Offline dataset with coverage rate σ .
 - Estimation of θ may be dependent on |S|.

Discussion

- How to construct an efficient robust estimator in linear MDPs?
- E.g. $P = \Phi \theta$, $\Phi \in \mathbb{R}_{+}^{|S||A| \times r}$ is known and $\theta \in \mathbb{R}_{+}^{r \times |S|}$ is unknown. Offline dataset with coverage rate σ .
 - Estimation of θ may be dependent on |S|.
 - Least squares: $\mathbb{E}\|\widehat{\theta} \theta\|_2^2 \leq \mathcal{O}(\sqrt{\frac{|\mathcal{S}|r^{5/2}}{n\sigma^2}})$. (Can we reduce it?)
- Currently the methods are model-based. $(\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|))$ memory space).

- How to construct an efficient robust estimator in linear MDPs?
- E.g. $P = \Phi \theta$, $\Phi \in \mathbb{R}_{+}^{|S||A| \times r}$ is known and $\theta \in \mathbb{R}_{+}^{r \times |S|}$ is unknown. Offline dataset with coverage rate σ .
 - Estimation of θ may be dependent on |S|.
 - Least squares: $\mathbb{E}\|\widehat{\theta} \theta\|_2^2 \leq \mathcal{O}(\sqrt{\frac{|\mathcal{S}|r^{5/2}}{n\sigma^2}})$. (Can we reduce it?)
- Currently the methods are model-based. ($\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|)$) memory space). Can we derive a model-free algorithm? (Tadashi and I are working on it.)

- 1 Introduction
- 2 Robust MDPs
- 3 Statistical Results
- 4 Further Discussion
- **5** Reference

- [AMK13] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen.
 Minimax pac bounds on the sample complexity of reinforcement learning with a generative model.
 Machine learning, 91(3):325–349, 2013.
- [Sha17] Alexander Shapiro.
 Distributionally robust stochastic programming.

 SIAM Journal on Optimization, 27(4):2258–2275, 2017.
- [WKR13] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes.

 Mathematics of Operations Research, 38(1):153–183, 2013.

[ZBZ+21] Zhengqing Zhou, Qinxun Bai, Zhengyuan Zhou, Linhai Qiu, Jose Blanchet, and Peter Glynn.
Finite-sample regret bound for distributionally robust offline tabular reinforcement learning.
In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, pages 3331–3339, 2021.

Thanks!