TD9: Statistique des trajectoires

Fabio Pietrucci, Alice Sinatra, Sorbonne Université

June 21, 2024

XXX: feedback studenti -¿ questo TD è poco chiaro (énoncé e probabilmente anche svolgimento), rivedere e chiarire!

1 Trajectoires de transition et paysages d'énergie libre

1.1

Le graphe ci-dessous représente l'énergie E(t) le long de la trajectoire d'un système à N particules, en contact avec un bain thermique, qui saute entre deux macroétats métastables A et B. Estimez la probabilité des états A et B, ainsi que les taux de transition $k_{A\to B}$ et $k_{B\to A}$.

1.2

Estimez $\frac{\Delta F_{AB}}{k_BT}$, $\frac{\langle \Delta E_{AB} \rangle}{k_BT}$, $\frac{\Delta S_{AB}}{k_B}$. Quel état est le plus entropique?

1.3

Supposez que la transition entre A et B soit bien décrite par un paramètre d'ordre $Q(\mathbf{r}_1,...,\mathbf{r}_N)$, plutôt que l'énergie : tracez schématiquement le paysage d'énergie libre F(Q) pour l'exemple de la question 1.1, tout en indiquant la position de l'état de transition.

1.4

Donnez à une constante près une expression de F(Q), telle que la probabilité d'un macroétat $p_Q \propto e^{-\beta F(Q)}$, en termes d'un intégrale temporelle de la trajectoire projetée $Q(\mathbf{r}_1(t),...,\mathbf{r}_N(t)) = Q$, et une autre sous forme d'intégrale dans l'espace des phases.

1.5

Les graphes ci-dessous illustrent la simulation d'un système complexe, analysée en projetant la trajectoire sur deux paramètres d'ordre potentiels Q_1 et Q_2 . Comment calculer $F(Q_1)$ et $F(Q_2)$ à partir de $F(Q_1, Q_2)$? Pourquoi la barrière entre les deux états métastables apparaît ou disparaît selon la variable utilisée? Quel est le meilleur paramètre d'ordre, et pourquoi?

2 Fonctions de corrélation à l'équilibre

Ecrivez une formule explicite qui permet de calculer la fonction de corrélation $C(t) = \langle \delta A(0)\delta A(t)\rangle/\langle \delta A^2\rangle$, avec $\delta A = A - \langle A\rangle$, à partir d'une trajectoire discrétisée de l'observable A, $\{A_i\}_{i=1,2,...,n}$ avec $t = i\Delta t$. Prenez le soin de moyenner par rapport au temps initiale de C(t), de façon à bien approximer la moyenne d'ensemble $\langle ... \rangle$.