Instance

Number of Descriptions

arch/arch_1	85	eggplant/eggplant_1	82
arch/arch_2	86	eggplant/eggplant_2	82
arch/arch_3	85	eggplant/eggplant_3	86
arch/arch_4	86	eggplant/eggplant_4	85
banana/banana_1	85	lemon/lemon_1	77
banana/banana_2	87	lemon/lemon_2	82
banana/banana_3	85	lemon/lemon_3	84
banana/banana_4	86	lemon/lemon_4	87
cabbage/cabbage_1	85	lime/lime_1	77
cabbage/cabbage_2	87	lime/lime_2	82
cabbage/cabbage_3	85	lime/lime_3	83
cabbage/cabbage_4	86	lime/lime_4	86
carrot/carrot_1	84	orange/orange_1	81
carrot/carrot_2	85	orange/orange_2	83
carrot/carrot_3	84	orange/orange_3	84
carrot/carrot_4	84	orange/orange_4	86
corn/corn_1	83	plum/plum_1	80
corn/corn_2	85	plum/plum_2	83
corn/corn_3	84	plum/plum_3	83
corn/corn_4	87	plum/plum_4	84
cube/cube_1	83	potato/potato_1	81
cube/cube_2	82	potato/potato_2	83
cube/cube_3	84	potato/potato_3	81

cube/cube_4	85	potato/potato_4	84
cuboid/cuboid_1	84	semicylinder/semicylinder_1	81
cuboid/cuboid_2	87	semicylinder/semicylinder_2	83
cuboid/cuboid_3	86	semicylinder/semicylinder_3	80
cuboid/cuboid_4	87	semicylinder/semicylinder_4	83
cucumber/cucumber_1	83	tomato/tomato_1	86
cucumber/cucumber_2	85	tomato/tomato_2	77
cucumber/cucumber_3	86	tomato/tomato_3	84
cucumber/cucumber_4	87	tomato/tomato_4	86
cylinder/cylinder_1	83	triangle/triangle_1	86
cylinder/cylinder_2	86	triangle/triangle_2	78
cylinder/cylinder_3	85	triangle/triangle_3	83
cylinder/cylinder_4	87	triangle/triangle_4	86

Words with TF-IDF value above 50.0[IDF = math.log(72/count in all documents, TF = count in one doc)

['cylinder', 'apple', 'yellow', 'carrot', 'lime', 'blue', 'lemon', 'purple', 'orange', 'banana', 'red', 'cube', 'triangle', 'corn', 'triangular', 'cucumber', 'half', 'cabbage', 'ear', 'tomato', 'potato', 'rectangular', 'cob', 'green', 'eggplant']

```
rgbWords = ['yellow', 'blue', 'purple', 'orange', 'red', 'green']
shapeWords = ['cylinder', 'cube', 'triangle', 'triangular', 'rectangular']
objWords = ['cylinder', 'apple', 'carrot', 'lime', 'lemon', 'orange', 'banana', 'cube', 'triangle', 'corn', 'cucumber', 'cabbage', 'tomato', 'potato', 'cob', 'eggplant']
```

Words with TF-IDF value above 30.0

Above + ['wedge', 'head', 'square', 'block', 'roma', 'circle', 'arch', 'rectangle']

DataSet: 18 categories and 4 instances = 72 instances

Every instance has 3-10 images

One description is for one instance, which means one description is for 3-10 images.

Train - Test Split

75-25% split

Select one instance from every category for testing.

That means there will be **18 instances for testing** and 54 instances for training.

18 instances -> around 60-75 images for testing

Test Verification

Input: Test instance Names, test image names, tokens, probability score matrix, extracted meaningful tokens for testing Category for testing(color, shape or object)

PREPROCESSING

Extract meaningful tokens

Now: one of:

rgbWords = ['yellow', 'blue', 'purple', 'orange', 'red', 'green']
shapeWords = ['cylinder', 'cube', 'triangle', 'triangular', 'rectangular']
objWords = ['cylinder', 'apple', 'carrot', 'lime', 'lemon', 'orange', 'banana', 'cube',
'triangle', 'corn', 'cucumber', 'cabbage', 'tomato', 'potato', 'cob', 'eggplant']

Other possibilities:

- Anything that occurs > 5 times
- Terms selected by tf*idf
- Terms selected by POS tagging
- ...what else?

TRAINING OCCURS

TESTING, PHASE 1 (PRE-PROCESSING PREDICTIONS):

Run all classifiers over all test images and predict class membership

1 classifier per token in training data set, minus stopwords (including low frequency words)

For each token, choose a classifier type to test:

For each classifier type

For each token

Decide if token is meaningful for that classifier type

Now: hardcoded in list above

Other possibilities:

- Performance on training set
- Web search? POS stuff? etc.

TESTING, PHASE 2 (VERIFICATION):

For every classifier type:

For meaningful tokens

Select positive instances from test set

Select negative instances from test set

Test every token 10 times:

Require 4-6 images for testing

Select 1-4 images from positive instance set

Select 1-2 images from negative instance set

If the probability (from phase 1) is above 0.5, it is considered as

'PASS'/SELECTED

Calculate precision, recall and f1 score

Get selected images from the probability matrix

We have relevant images, which are positive images

Calculate overall precision, recall and f1 score

How to Select positive instance for verification

If an instance is described by a token for more than 4 times, that instance will be considered as positive instance of the token

How to select negative instance for verification

For every token c,

arrayNegInstance = all the instances which are not described by this token

For every positive instance of c,

Find negative instances using Doc2Vec

Embed descriptive-documents as paragraph vectors

Find cosine distances

Choose a negative , $\,\,^2\!\!\!/_{\!\!3}$ rd of all instances which are farthest from the positive

instance

arrayNegInstance = intersection(neg instance, arrayNegInstance)

arrayNegInstance - list of negative instances