SECONDA ESERCITAZIONE

ESERCIZIO 1

Denotati con C, Z e N rispettivamente l'insieme dei numeri complessi, l'insieme dei numeri interi e l'insieme dei numeri naturali, si consideri in C il sottoinsieme degli *interi di Gauss*:

$$\mathbf{Z}[i] = \{ a + i b \mid a, b \in \mathbf{Z} \}$$

e sia ρ la relazione su $\mathbf{Z}[i]$ definita nel seguente modo:

$$\forall \ a,b,c,d \in Z \qquad (a+i\ b,c+i\ d) \in \rho :\Leftrightarrow \exists \ m,n \in N \quad c=ma,\, d=nb\,.$$

Provare che ρ è una relazione d'ordine e dire se è una relazione d'ordine totale.

ESERCIZIO 2

Sia $X = \{a, b, c, d, e\}$ e si consideri su X la relazione binaria R avente la seguente matrice di incidenza:

$$M_R = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1. Provare che esiste la minima relazione d'ordine \leq contenente R.
- Determinare elementi minimali e massimali di X rispetto alla relazione ≤ e dire se sono minimi o massimi.
- 3. Dimostrare che (X, \leq) non è un reticolo.
- 4. Determinare una relazione ρ contenente \leq tale che (X, ρ) sia un reticolo.
- 5. Dire se la chiusura simmetrica di \leq è una relazione d'equivalenza.
- 6. Provare che *R* è una funzione da *X* in *X*.
- 7. Dire se *R* ammette inversa destra e/o sinistra.
- 8. Verificare che \leq non è una funzione da X in X.

ESERCIZIO 3

Siano $X = \{a, b, c, d, e\}$ e $\rho \subseteq X \times X$ la relazione definita dal seguente grafo di incidenza:

- 1. Dimostrare che la chiusura riflessiva e transitiva $\overline{\rho}$ di ρ non è una relazione d'ordine e costruire una relazione d'ordine \leq contenuta in $\overline{\rho}$ e in nessun'altra relazione d'ordine contenuta in $\overline{\rho}$.
- 2. Trovare gli elementi minimali e massimali di X rispetto a \leq .
- 3. Verificare che X non è un reticolo rispetto a \leq e determinare una relazione T contenente \leq tale che (X,T) sia un reticolo.
- 4. ρ è una funzione?

ESERCIZIO 4

Siano $X = \{a, b, c\}$ e R la relazione su X avente la seguente matrice di incidenza:

$$M_{R} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Dimostrare che R non è una funzione e calcolare il numero di funzioni contenute in R. Quante di queste sono iniettive?