EA - 721 Princípio de Controle e Servomecanismo - Turma U Primeira Prova - 02/04/2014

- Necessário devolver a folha de questões junto com a prova
- Prova individual, sem consulta
- Para sistemas de segunda ordem, sem zeros: $exp(-\xi w_n t_e)$ define tempo de estabilização t_e , $M_p = exp(\frac{-\pi \xi}{\sqrt{1-\xi^2}})$, $t_s =$ tempo de subida $\cong \frac{1.8}{w_n}$, $t_p =$ tempo de pico $= \frac{\pi}{w_d}$ onde $w_d = w_n \sqrt{1-\xi^2}$, $tan(26.56^0) = .5$; tan(63.43) = 2; $tan(71.56^0) = 3$

Primeira Questão:

Considere o sistema de controle mostrado na figura 1, com: $G(s) = \frac{K}{s+a}$, $G_c(s) = 1$ e H(s) = 4. A resposta deste sistema à entrada degrau de amplitude unitária está mostrada na figura 2.

- (1.5) a) Determine K, $a \in G(s)$.
- (1.0) b) Considere agora, entrada rampa de inclinação 1, $G(s) = \frac{K}{s(s+a)}$, $G_c(s) = 2$ e H(s) = 1 e calcule o erro de regime em função de K e a.

Figure 1: Figura das Questões 1, 2, 3 e 4

Segunda Questão:

Seja um sistema de controle da figura 1, com: $G(s) = \frac{s+a}{s(s+b)}$, $G_c(s) = K$ e H(s) = 1.

- ullet (1.5) a) Determine os valores de K, a e b, tal que o sistema de malha fechada satisfaça:
 - Erro de regime à entrada rampa de inclinação 2, igual a 0.2.
 - Tempo de subida t_s ≅ 0.3 seg.
 - Tempo de estabilização (precisão de 1%) ≅ 1.02 seg.
- (1.0) b) Ache o erro de regime do sistema em questão (o mesmo do ítem a), à entrada degrau unitário e à entrada rampa de inclinação 3 e esboce as respostas y(t), indicando o erro de regime e o tempo de estabilização.

Terceira Questão:

Seja o sistema de controle da figura 1, com: $G(s) = \frac{2}{s(s+a)}$, $G_c(s) = K$ e $H(s) = K_r$. A figura 3 mostra a resposta $y(t) = \mathcal{L}^{-1}[Y(s)]$ deste sistema a uma entrada $r(t) = \mathcal{L}^{-1}[R(s)] = \text{degrau unitário}$.

- (0.5) a) Ache Mp (em porcentagem) e, a partir dele, determine o valor de ξ .
- (0.5) b) Ache o tempo de estabilização e, a partir dele, determine a frequência natural ω_n .
- (1.5) c) Determine os valores de K, K_r, a e a função de transferência.

Quarta Questão:

Considere o sistema de controle mostrado na figura $1 \text{ com } G(s), G_c(s) \text{ e } H(s)$ dados nos ítens abaixo. Utilizando o critério de Routh-Hurwitz, verifique se existe valores de $K \in [0, +\infty)$ que mantém o sistema de malha fechada estável. Se sim, ache os valores de K que satisfazem a condição de stabilidade do sistema e malha fechada. Se não, determine o número de pólos do sisteam de malha fechada no semi-plano direito.

- (1.5) a) $G(s) = \frac{1}{s(s^3+3s^2+K^2s^2+3K)}$, $G_c(s) = K e H(s) = 1$.
- (1.0) b) $G(s) = \frac{2s(s+1)}{s^3(s+1)+4}$, $G_c(s) = K \in H(s) = 1$.

Figure 2: Figura da Questão 1

Figure 3: Figura da Questão 3

Figure 4: M_p por ξ