三角関数と三角比

中学校で

f(x) = y = 2x + 1

のようにxにただの数字(1,2,3...)を代入して実数の値をとる関数を考えたと思う。 関数とは何かを、軽く復習しておく。

簡単には、

関数とは

ある値を変数(x など) に代入すると、規則や関係(式)に基づき、ある値を出力する、 式のことである。

以後現れる新しい記号(定義は後で)

 $\sin \theta$

 $\cos \theta$

 $\tan \theta$

は $\theta(\nu - \beta)$ の関数である。

でも、 θ はなんだよという方がいるだろう。

当然、今までやってきた関数というのは、 $y = x^2 + 3x + 2$

のように、多項式などの形だった。

今回も、表しかたが異なるだけで、上三つの記号もれっきとした関数である。

今、θという変数に代入するのは角度である。そしてどんな規則であるかを示したのが、

 \sin

cos

tan

の部分である。

- 三角比と三角関数の違いについても、先に言っておこう。
- 三角比は基本的に 0-180 度までの角度しか扱わない。
- 三角関数は三角比を-90度や420度のようにより広い角度に拡張したものである。

(また、三角関数では基本、弧度法という角度の新しい表し方を用いることが多い。)

次に $\sin\theta$ と $\cos\theta$ の定義のために単位円を定義する $(\tan\theta$ は $\sin\theta/\cos\theta$ で定まるので、考えなくてよい)

単位円ってなに

- 半径が 1 の円を「単位円」と呼びます。座標の原点(x = 0, y = 0)を中心に置くと、円の縁は常に「原点からの距離が 1」の点で出来上がります。 mathsisfun.com
 角度 θ の取りかた
 - 1. x 軸の正方向(右向き)を 0° (0 rad)として、反時計回りを正の向きに角度 θ を測ります。
 - 2. その角度で円周上に現れる点 P を考えます (上の図では黄色い点などが P)。

単位円において $\cos \theta$ と $\sin \theta$ は「座標そのもの」

名称 意味

図での見え方

cos 点 P の \mathbf{x} 座標(横方向の長 原点から P へ引いた半径を、 \mathbf{x} 軸に垂線を下ろし

 θ さ) た長さ

sin 点 P の y 座標(縦方向の長

同じ半径を、y 軸に垂線を下ろした長さ

 $\boldsymbol{\theta}$ \boldsymbol{z}

覚え方:「cos は horizontal (横)、sin は vertical (縦)」とだけ思い出せば OK です。 **どうしてそう言える?**

- 半径 = 1 の直角三角形ができる
 - 。 斜辺(半径)が1
 - 。 横の辺が $\cos \theta$
 - 。 縦の辺が $\sin \theta$
- ピタゴラスの定理より

$$\left(\cos\,\theta\right)^2 + \left(\sin\,\theta\right)^2 = 1$$

mathsisfun.com

単位円 ⇒ 直角三角形への"拡大コピー"

1. 単位円の三角形がお手本

前回見たように、半径 1 の単位円で

- 。 横の長さ = $\cos \theta$
- 。 縦の長さ $=\sin \theta$
- 斜辺(半径) = 1

という直角三角形ができます。

2. 拡大すると一般の直角三角形に

斜辺を 1→r 倍に引き伸ばせば、

- o 斜辺 = r
- \circ 横辺 = $r\cos\theta$
- \circ 縦辺 = $r \sin \theta$

となり、角度 θ はそのまま。

つまり「直角三角形は単位円の三角形を拡大しただけ」なので、**辺の比は拡大しても変わりません**。

直角三角形での三角比の定義

三角比	式 (直角三角形)	単位円と同じ意味
sin θ	(向かいの辺) (斜辺)	$\frac{r\sin\theta}{r}=\sin\theta$
cos θ	<u>(</u> 隣の辺) (斜辺)	$rac{r\cos heta}{r}=\cos heta$
tan θ	<u>(</u> 向かいの辺) (隣の辺)	$\frac{r\sin\theta}{r\cos\theta} = \frac{\sin\theta}{\cos\theta}$

上の図においては 単位円の半径を 2 倍にしたものとして考えるとよい。 $\theta=30^\circ\$ としてみれば、 $\sin\theta=1/2\cos\theta=\sqrt{3/2}$ がわかる。