NYU CS-GY 6763: Algorithmic Machine Learning and Data Science

Fall 2023

Homework 3

Name: Solution key

Problem 1

We will solve this problem by bounding $\mathbb{E}[\|\mathbf{s} - \boldsymbol{\mu}\|_2^2]$ and applying Markov's inequality. We have:

$$\|\mathbf{s} - \boldsymbol{\mu}\|_2^2 = \|\frac{1}{k} \sum_{i=1}^k (\mathbf{x}_i - \boldsymbol{\mu})\|_2^2 = \frac{1}{k^2} \sum_{i=1}^k \|\mathbf{x}_i - \boldsymbol{\mu}\|_2^2 + \sum_{i \neq j} (\mathbf{x}_i - \boldsymbol{\mu})^T (\mathbf{x}_j - \boldsymbol{\mu}).$$

We want to apply linearity of expectation to the expression above to compute $\mathbb{E}[\|\mathbf{s} - \boldsymbol{\mu}\|_2^2]$. In particular, we are given that

$$\mathbb{E}\left[\sum_{i=1}^{k} \|\mathbf{x}_i - \boldsymbol{\mu}\|_2^2\right] = k\sigma^2$$

and claim that for all $i \neq j$,

$$\mathbb{E}\left[(\mathbf{x}_i - \boldsymbol{\mu})^T (\mathbf{x}_i - \boldsymbol{\mu})\right] = 0.$$

To see why this is the case note that, since \mathbf{x}_i and \mathbf{x}_i are independent,

$$\mathbb{E}\left[(\mathbf{x}_i - \boldsymbol{\mu})^T \mathbb{E}\left[(\mathbf{x}_j - \boldsymbol{\mu})\right]\right] = \mathbb{E}\left[(\mathbf{x}_i - \boldsymbol{\mu})^T 0\right] = 0.$$

So, overall we conclude that:

$$\mathbb{E}\left[\|\mathbf{s} - \boldsymbol{\mu}\|_2^2\right] = \frac{1}{k^2} \mathbb{E}\left[\sum_{i=1}^k \|\mathbf{x}_i - \boldsymbol{\mu}\|_2^2\right] = \frac{1}{k} \sigma^2.$$

Applying Markov's inequality, we have that:

$$\Pr[\|\mathbf{s} - \boldsymbol{\mu}\|_2^2 \ge \frac{1}{\delta} \frac{1}{k} \sigma^2] \le \delta.$$

Plugging in $k = \frac{1}{\delta \epsilon^2}$ and taking square roots on the both sides of the inequality inside the probability yields the bound.

Problem 2

We first prove a general result on the strong convexity and smoothness of the sum of two functions. Consider functions $f(\mathbf{x})$ and $h(\mathbf{x})$ that are α_1 -strongly convex, β_1 smooth, and α_2 -strongly convex,

 β_2 smooth, respectively. We have that:

$$\frac{\alpha_1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta_2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$
$$\frac{\alpha_2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le h(\mathbf{y}) - h(\mathbf{x}) - \nabla h(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta_2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

Adding the inequalities, we have:

$$\frac{\alpha_1 + \alpha_2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le f(\mathbf{y}) + h(\mathbf{y}) - (f(\mathbf{x}) + h(\mathbf{x})) - (\nabla f(\mathbf{x}) + \nabla h(\mathbf{x}))^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta_1 + \beta_2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

So, we conclude that the function $g(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$ is $(\alpha_1 + \alpha_2)$ -strongly convex.

Now, consider the function $h(x) = \lambda ||\mathbf{x}||_2^2$. The function has gradient $2\lambda \mathbf{x}$. So we have that:

$$h(\mathbf{y}) - h(\mathbf{x}) - \nabla h(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) = \lambda \|\mathbf{y}\|_2^2 - \lambda \|\mathbf{x}\|_2^2 - 2\lambda \mathbf{x}^T (\mathbf{y} - \mathbf{x})$$
$$= \lambda \|\mathbf{y}\|_2^2 + \lambda \|\mathbf{x}\|_2^2 - 2\lambda \mathbf{x}^T (\mathbf{y})$$
$$= \lambda \|\mathbf{x} - \mathbf{y}\|_2^2.$$

In other words, the function is 2λ -strongly convex and 2λ -smooth, so has condition number 1. We conclude that $g(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$ is $(\alpha_1 + 2\lambda)$ -strongly convex, so is convex. Furthermore, g's condition number is:

$$\frac{\beta_1 + 2\lambda}{\alpha_1 + 2\lambda} \le \frac{\beta_1 + 2\frac{\beta_1}{\alpha_1}\lambda}{\alpha_1 + 2\lambda} = \frac{\beta_1}{\alpha_1}.$$

In the first inequality, we used that $\beta_1/\alpha_1 \geq 1$.

Problem 3

- (a) Call the separation oracles for A and B. If the element is in both sets, it is in $A \cap B$. Otherwise, at least one of the oracles returned a separating hyperplane; return either of these. That hyperplane separates \mathbf{x} from either A or B, so clearly separates it from $A \cap B$.
- (b) We can check in O(n) time if the point \mathbf{x} is in the ℓ_1 ball by adding up the magnitude of it's entries. If the point is outside the ℓ_1 ball, return the vector $\mathbf{s} = \text{sign}(\mathbf{x})$ which has a 1 in index i if x_i is positive and otherwise has a negative 1. We have that $\mathbf{s}^T\mathbf{x} = \|\mathbf{x}\|_1 > 1$ since \mathbf{x} is not in the ℓ_1 ball. On the other hand, we always that $\mathbf{s}^T\mathbf{y} \leq \|\mathbf{y}\|_1$. Specifically, $\mathbf{s}^T\mathbf{y} = \sum_{i=1} \pm 1 \cdot |y_i| \leq \sum_{i=1} |y_i| = \|\mathbf{y}\|_1$. So, $\mathbf{s}^T\mathbf{y} \leq 1$ for all u in \mathcal{A} . So $(\mathbf{s}, 1)$ determines a valid separating hyperplane. And \mathbf{s} can be computed in O(n) time.
- (c) Let $\mathbf{y} = \operatorname{Proj}_A(\mathbf{x})$. If $\mathbf{y} = \mathbf{x}$ then we are in the set and don't need to return anything. Otherwise, return $(\mathbf{a}, \mathbf{a}^T \mathbf{x})$ as our separating hyperplane, where $\mathbf{a} = \mathbf{x} \mathbf{y}$

Our goal is to prove that, for all $\mathbf{z} \in \mathcal{A}$,

$$\mathbf{z}^{T}(\mathbf{x} - \mathbf{y}) < \mathbf{x}^{T}(\mathbf{x} - \mathbf{y})$$

To do so, first observe that, for any $\mathbf{z} \in \mathcal{A}$, the angle between the vectors $\mathbf{x} - \mathbf{y}$ and $\mathbf{z} - \mathbf{y}$ must be greater than or equal to 90 degrees. I.e. that $(\mathbf{x} - \mathbf{y})^T (\mathbf{z} - \mathbf{y}) \leq 0$. To see that this

is the case, draw a triangle between $\mathbf{x}, \mathbf{y}, \mathbf{z}$. If the angle was acute, we could draw a line from \mathbf{x} that meets the line between \mathbf{y} and \mathbf{z} at a 90 degree angle. This line would both be in the convex set (since by definition every point on the line between \mathbf{y} and \mathbf{z} is) and also be closer to \mathbf{x} than \mathbf{y} , contradicting the fact that \mathbf{y} is \mathbf{x} 's projection on to the set.

If the angle between $\mathbf{x} - \mathbf{y}$ and $\mathbf{z} - \mathbf{y}$ is greater than 90 degrees, we have that:

$$(\mathbf{z} - \mathbf{y})^T (\mathbf{x} - \mathbf{y}) < 0 \le (\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y}).$$

Adding $\mathbf{y}^T(\mathbf{x} - \mathbf{y})$ to both sides of the inequality proves our goal. I.e., we have shown that for $\mathbf{a} = \mathbf{x} - \mathbf{y}$, for all $\mathbf{z} \in \mathcal{A}$, $\mathbf{a}^T \mathbf{z} < \mathbf{a}^T \mathbf{x}$, so we have a valid separating hyperplane.

(d) We still choose $\mathbf{a} = \mathbf{x} - \mathbf{y}$ as in the previous subproblem. To prove this is a valid separating hyperplane, it suffices to show that for all \mathbf{z}' in the ϵ -neighborhood of \mathcal{A} , that $\mathbf{a}^T \mathbf{z}' < \mathbf{a}^T \mathbf{x}$ when \mathbf{x} is not in the ϵ -neighborhood of \mathcal{A} . To prove this, first note that \mathbf{z}' can always be written as the sum $\mathbf{z}' = \mathbf{z} + \mathbf{w}$ where \mathbf{z} is a point in \mathcal{A} and $\|\mathbf{w}\|_2 \leq \epsilon$.

By the same analysis as above, we have that $(\mathbf{x} - \mathbf{y})^T \mathbf{z} < \mathbf{x}^T (\mathbf{x} - \mathbf{y}) - \|\mathbf{x} - \mathbf{y}\|_2^2$. We then bound:

$$(\mathbf{x} - \mathbf{y})^T \mathbf{z}' = (\mathbf{x} - \mathbf{y})^T \mathbf{z} + (\mathbf{x} - \mathbf{y})^T \mathbf{w}$$
 (1)

$$\leq \mathbf{x}^{T}(\mathbf{x} - \mathbf{y}) - \|\mathbf{x} - \mathbf{y}\|_{2}^{2} + (\mathbf{x} - \mathbf{y})^{T}\mathbf{w}$$
 (2)

$$\leq \mathbf{x}^{T}(\mathbf{x} - \mathbf{y}) - \|\mathbf{x} - \mathbf{y}\|_{2}^{2} + \epsilon \|\mathbf{x} - \mathbf{y}\|_{2}. \tag{3}$$

The last inequality follows from Cauchy-Schwarz. Finally, since \mathbf{x} is not in the ϵ neighborhood, $\|\mathbf{x} - \mathbf{y}\|_2 > \epsilon$, so $\|\mathbf{x} - \mathbf{y}\|_2^2 > \epsilon \|\mathbf{x} - \mathbf{y}\|_2$ and thus we conclude that :

$$(\mathbf{x} - \mathbf{y})^T \mathbf{z}' < \mathbf{x}^T (\mathbf{x} - \mathbf{y}) - 0,$$

which completes the argument.

Problem 4

We start with basically the same analysis from class, where we showed using convexity that:

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta \|\nabla f(\mathbf{x}^{(i)})\|_2^2}{2}.$$

See e.g. Slide 50 on Lecture 6. They don't need to reprove this from scratch.

Now, plug in $\eta = \frac{f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)}{\|f(\mathbf{x}^{(i)})\|_2}$. We get:

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2(f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*))} \cdot \|\nabla f(\mathbf{x}^{(i)})\|_2^2 + \frac{f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)}{2}.$$

Using that $\|\nabla f(\mathbf{x}^{(i)})\|_2^2 \leq G^2$, we have:

$$\frac{f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)}{2} \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2(f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*))} \cdot G^2.$$

And multiplying through by $2(f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*))$, we have:

$$(f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*))^2 \le \left(\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2 \right) \cdot G^2$$

Now we use a telescoping sum argument as before to get that:

$$\sum_{i=0}^{T-1} (f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*))^2 \le \left(\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \right) \cdot G^2 \le \|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 \cdot G^2 \le R^2 \cdot G^2.$$

I.e.

$$\frac{1}{T} \sum_{i=0}^{T} (f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*))^2 \le \frac{R^2 G^2}{T}.$$

This implies that the average squared error is less than or equal to R^2G^2/T , so there must be some i such that $(f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*))^2 \leq R^2G^2/T$. We conclude that:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le RG/\sqrt{T}$$
.

Setting $T = R^2 G^2 / \epsilon^2$ yields the desired result.

Problem 5

1. To solve this problem, we show that $\sum_{i=1}^n \|\mathbf{x}_i\|_2^2 = \frac{1}{2n} \sum_{i,j} \mathbf{D}_{i,j}$.

$$\sum_{i,j} \mathbf{D}_{i,j} = \sum_{i} \sum_{j} \|\mathbf{x}_i\|_2^2 + \|\mathbf{x}_j\|_2^2 - 2\mathbf{x}_i^T \mathbf{x}_j = \sum_{i} \sum_{j} \|\mathbf{x}_i\|_2^2 + \|\mathbf{x}_j\|_2^2 - 2\mathbf{x}_i^T \sum_{j} \mathbf{x}_j.$$

By our assumption that our points are centered around the origin, $\sum_{j} \mathbf{x}_{j} = \mathbf{0}$, so we conclude

$$\sum_{i,j} \mathbf{D}_{i,j} = \sum_{i,j} \|\mathbf{x}_i\|_2^2 + \|\mathbf{x}_j\|_2^2 = 2n \sum_i \|\mathbf{x}_i\|_2^2.$$

2. Similarly, using the same assumption, we can have that for any i,

$$\sum_{j} \mathbf{D}_{i,j} = \sum_{j} \|\mathbf{x}_{i}\|_{2}^{2} + \|\mathbf{x}_{j}\|_{2}^{2} - 2\mathbf{x}_{i}^{T}\mathbf{x}_{j} = n\|\mathbf{x}_{i}\|_{2}^{2} + \sum_{j} \|\mathbf{x}_{j}\|_{2}^{2}.$$

So we can compute $\|\mathbf{x}_i\|_2^2$ via the formula $\|\mathbf{x}_i\|_2^2 = \frac{1}{n} \left(\sum_j \mathbf{D}_{i,j} - \sum_j \|\mathbf{x}_j\|_2^2 \right)$. The second term in parenthesis we can compute using Part 1.

3. Using the norms calculated from part (b), we can form the a matrix N where;

$$\mathbf{N}_{i,j} = \|\mathbf{x}_i\|_2^2 + \|\mathbf{x}_j\|_2^2.$$

Let $\mathbf{M} = (\mathbf{N} - \mathbf{D})/2$. Notice that \mathbf{M} 's entries satisfy $\mathbf{M}_{i,j} = \mathbf{x}_i^T \mathbf{x}_j$. \mathbf{M} 's i^{th} diagonal entry equals $\|\mathbf{x}_i\|_2^2$. So, it suffices to return any $\mathbf{W} \in \mathbb{R}^{n \times d}$ such that $\mathbf{W}\mathbf{W}^T = \mathbf{M}$. \mathbf{W} 's rows will have the same pairwise distances as the points in \mathbf{X} , and thus solve the problem.

To find such a \mathbf{W} , we can factor \mathbf{M} using the SVD. Since it is symmetric, we will get a factorization of the form $\mathbf{V}\Sigma\mathbf{V}^T$. Only d of Σ 's diagonal entries will be nonzero since \mathbf{M} is rank d (since $\mathbf{M} = \mathbf{X}\mathbf{X}^T$). So we can we can truncate this factorization to get $\mathbf{V}_d\Sigma_d\mathbf{V}_d^T = \mathbf{M}$ where $\mathbf{V}_d \in \mathbb{R}^{n \times d}$ $\Sigma_d \in \mathbb{R}^{d \times d}$. Then we return $\mathbf{W} = \mathbf{V}_d\sqrt{\Sigma_d}$.