FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuștean, Alexandra Otiman, Andrei Sipoș

Seminar 10

(S10.1) Fie $n \in \mathbb{N}^*$. Notăm cu $Form_n$ mulțimea acelor $\varphi \in Form$ ce verifică faptul că

$$Var(\varphi) = \{v_0, ..., v_{n-1}\}.$$

Calculați numărul de elemente al mulțimii cât $Form_n/\sim$.

Demonstrație: Reamintim că pentru orice formulă φ , notăm cu $[\varphi]$ clasa de echivalență a lui φ , ce în cadrul nostru (mulțimea: $Form_n$; relația: \sim , de echivalență semantică) va fi mulțimea:

$$\{\psi \in Form_n \mid \psi \sim \varphi\}.$$

De asemenea, definim:

$$Bool_n := \{ f : \{0,1\}^n \to \{0,1\} \mid f \text{ funcție} \}.$$

Avem că $\{0,1\}^n$ are 2^n elemente, şi deci că mulțimea $Bool_n$, ce conține fiecare funcție booleană de n variabile, are 2^{2^n} elemente.

Considerăm funcția $\Psi_n : Form_n/\sim \to Bool_n$, definită, pentru orice $\varphi \in Form_n$, prin:

$$\Psi_n([\varphi]) := F_{\varphi}.$$

Din Propoziția 1.74.(ii).(b), rezultă că Ψ_n este bine definită şi injectivă, iar din Teorema 1.76 rezultă că Ψ_n este surjectivă. Aşadar, şi $Form_n/\sim$ are 2^{2^n} elemente.

(S10.2) Să se testeze dacă următoarele mulțimi de clauze sunt satisfiabile:

(i)
$$\{\{\neg v_0, v_1, \neg v_3\}, \{\neg v_2, \neg v_1\}, \{v_0, v_2\}, \{v_0\}, \{v_2\}, \{v_3\}\};$$

(ii)
$$\{\{v_0, v_1\}, \{\neg v_1, v_2\}, \{\neg v_0, v_2, v_3\}\}.$$

Demonstrație:

- (i) Presupunem că am avea un model e al mulțimii de clauze. Atunci $e(v_0) = e(v_2) = e(v_3) = 1$. Cum $e \models \{\neg v_0, v_1, \neg v_3\}$, avem că $e(v_1) = 1$. Dar atunci $e \not\models \{\neg v_2, \neg v_1\}$. Am obținut o contradicție. Rămâne că mulțimea de clauze din enunț este nesatisfiabilă.
- (ii) Fie evaluarea $e: V \to \{0,1\}$ astfel încât $e(v_0) = 1$, $e(v_1) = 0$, şi $e(v_i) = 1$ pentru orice $i \ge 2$. Atunci e satisface fiecare clauză din mulţime, deci este model pentru mulţimea de clauze. Aşadar, mulţimea de clauze din enunţ este satisfiabilă.

(S10.3) Să se determine mulțimea $Res(C_1, C_2)$ în fiecare din următoarele cazuri:

(i) $C_1 := \{v_1, \neg v_4, v_5\}; C_2 := \{v_4, v_5, v_6\};$

(ii) $C_1 := \{v_3, \neg v_4, v_5\}; C_2 := \{\neg v_3, v_1, v_6, v_4\};$

(iii) $C_1 := \{v_1, \neg v_3\}; C_2 := \{v_1, \neg v_2\}.$

Demonstraţie:

- (i) Putem alege doar $L := \neg v_4$, deci există un singur rezolvent, anume $\{v_1, v_5, v_6\}$.
- (ii) Putem rezolva clauzele, pe rând, după $L := v_3$ și $L := \neg v_4$, obținând așadar

$$Res(C_1, C_2) = \{ \{ \neg v_4, v_5, v_1, v_6, v_4 \}, \{ v_3, v_5, \neg v_3, v_1, v_6 \} \}.$$

(iii) Nu există L astfel încât $L \in C_1$ și $L^c \in C_2$, deci $Res(C_1, C_2) = \emptyset$.

(S10.4) Derivați prin rezoluție clauza $C := \{v_0, \neg v_2, v_3\}$ din mulțimea

$$\mathcal{S} := \{\{v_0, v_4\}, \{\neg v_1, \neg v_2, v_0\}, \{\neg v_4, v_0, v_1\}, \{\neg v_0, v_3\}\}.$$

Demonstraţie: Notăm:

$$C_{1} := \{v_{0}, v_{4}\}$$

$$C_{2} := \{\neg v_{1}, \neg v_{2}, v_{0}\}$$

$$C_{3} := \{\neg v_{4}, v_{0}, v_{1}\}$$

$$C_{4} := \{\neg v_{0}, v_{3}\}$$

$$C_{5} := \{v_{0}, v_{1}\}$$

$$C_{6} := \{\neg v_{1}, \neg v_{2}, v_{3}\}$$

$$C_{7} := \{v_{0}, \neg v_{2}, v_{3}\}$$
(rezolvent al C_{5}, C_{6})
(rezolvent al C_{5}, C_{6})

Avem, aşadar, că secvenţa $(C_1, C_2, \ldots, C_6, C_7 = C)$ este o derivare prin rezoluţie a lui C din S.

(S10.5) Să se deriveze prin rezoluție clauza $C := \{ \neg v_0, v_2 \}$ din forma clauzală a unei formule în FNC echivalente semantic cu:

$$\varphi := ((v_0 \wedge v_1) \to v_2) \wedge (v_0 \to v_1)$$

Demonstrație: Înlocuind implicațiile și aplicând legile de Morgan, obținem că:

$$\varphi \sim (\neg(v_0 \land v_1) \lor v_2) \land (\neg v_0 \lor v_1)$$

$$\sim (\neg v_0 \lor \neg v_1 \lor v_2) \land (\neg v_0 \lor v_1),$$

o formulă în FNC pe care o notăm cu φ' , a cărei formă clauzală este

$$S_{\varphi'} = \{C_1 := \{\neg v_0, \neg v_1, v_2\}, C_2 := \{\neg v_0, v_1\}\}.$$

Din faptul că $v_1 \in C_2$ și $\neg v_1 \in C_1$, avem că

$$C := (C_1 \setminus \{\neg v_1\}) \cup (C_2 \setminus \{v_1\}) = \{\neg v_0, v_2\}$$

este un rezolvent al clauzelor C_1 și C_2 . Cum C_1 și C_2 sunt în $\mathcal{S}_{\varphi'}$, avem așadar că (C_1, C_2, C) este o derivare prin rezoluție a lui C din $\mathcal{S}_{\varphi'}$, forma clauzală a lui φ' , formulă în FNC echivalentă semantic cu φ .

(S10.6) Să se arate, folosind rezoluția, că formula:

$$\varphi := (v_0 \lor v_2) \land (v_2 \to v_1) \land \neg v_1 \land (v_0 \to v_4) \land \neg v_3 \land (v_4 \to v_3)$$

este nesatisfiabilă.

Demonstrație: Înlocuind implicațiile, obținem că:

$$\varphi \sim (v_0 \vee v_2) \wedge (\neg v_2 \vee v_1) \wedge \neg v_1 \wedge (\neg v_0 \vee v_4) \wedge \neg v_3 \wedge (\neg v_4 \vee v_3),$$

o formulă în FNC pe care o notăm cu φ' . Notând:

$$C_1 := \{v_0, v_2\}$$

$$C_2 := \{\neg v_2, v_1\}$$

$$C_3 := \{\neg v_1\}$$

$$C_4 := \{\neg v_0, v_4\}$$

$$C_5 := \{\neg v_3\}$$

$$C_6 := \{\neg v_4, v_3\}$$

se observă că $\mathcal{S}_{\varphi'} = \{C_1, C_2, C_3, C_4, C_5, C_6\}$. Notând mai departe:

$C_7 := \{\neg v_2\}$	(rezolvent al C_2 , C_3)
$C_8 := \{v_0\}$	(rezolvent al C_1, C_7)
$C_9 := \{v_4\}$	(rezolvent al C_4 , C_8)
$C_{10} := \{v_3\}$	(rezolvent al C_6 , C_9)
$C_{11} := \square$	(rezolvent al C_5 , C_{10})

avem că secvența $(C_1, C_2, \ldots, C_{11})$ este o derivare prin rezoluție a lui \square din $\mathcal{S}_{\varphi'}$, de unde, aplicând Teorema 1.93, rezultă că $\mathcal{S}_{\varphi'}$ este nesatisfiabilă. Din Propoziția 1.87, rezultă că φ' este nesatisfiabilă, deci și φ , care este echivalentă semantic cu φ' , este nesatisfiabilă. \square

(S10.7) Să se ruleze algoritmul Davis-Putnam pentru intrarea:

$$\{\{\neg v_0, \neg v_1, v_2\}, \{\neg v_3, v_1, v_4\}, \{\neg v_0, \neg v_4, v_5\}, \{\neg v_2, v_6\}, \{\neg v_5, v_6\}, \{\neg v_0, v_3\}, \{v_0\}, \{\neg v_6\}\}.$$

Demonstrație: Notând mulțimea de clauze de mai sus cu \mathcal{S} , obținem următoarea rulare:

```
i := 1
               S_1 := S
P1.1.
               x_1 := v_0
              T^1_1 := \{\{v_0\}\}
              T_1^0 := \{ \{ \neg v_0, \neg v_1, v_2 \}, \{ \neg v_0, \neg v_4, v_5 \}, \{ \neg v_0, v_3 \} \}
               U_1 := \{\{\neg v_1, v_2\}, \{\neg v_4, v_5\}, \{v_3\}\}
P1.2.
               S_2 := \{ \{ \neg v_3, v_1, v_4 \}, \{ \neg v_2, v_6 \}, \{ \neg v_5, v_6 \}, \{ \neg v_6 \}, \{ \neg v_1, v_2 \}, \{ \neg v_4, v_5 \}, \{ v_3 \} \}
P1.3.
               i := 2; goto P2.1
P1.4.
P2.1.
               x_2 := v_1
              T_2^1 := \{ \{ \neg v_3, v_1, v_4 \} \}
              T_2^0 := \{\{\neg v_1, v_2\}\}
              U_2 := \{\{\neg v_3, v_4, v_2\}\}
P2.2.
               S_3 := \{ \{ \neg v_2, v_6 \}, \{ \neg v_5, v_6 \}, \{ \neg v_6 \}, \{ \neg v_4, v_5 \}, \{ v_3 \}, \{ \neg v_3, v_4, v_2 \} \}
P2.3.
P2.4.
               i := 3; \text{ goto } P3.1
P3.1.
               x_3 := v_2
              T_3^1 := \{\{\neg v_3, v_4, v_2\}\}
              T_3^0 := \{\{\neg v_2, v_6\}\}
P3.2.
               U_3 := \{\{\neg v_3, v_4, v_6\}\}
               S_4 := \{ \{ \neg v_5, v_6 \}, \{ \neg v_6 \}, \{ \neg v_4, v_5 \}, \{ v_3 \}, \{ \neg v_3, v_4, v_6 \} \}
P3.3.
               i := 4; goto P4.1
P3.4.
P4.1.
               x_4 := v_3
              T_4^1 := \{\{v_3\}\}
              T_4^0 := \{\{\neg v_3, v_4, v_6\}\}
P4.2.
               U_4 := \{\{v_4, v_6\}\}
               S_5 := \{ \{\neg v_5, v_6\}, \{\neg v_6\}, \{\neg v_4, v_5\}, \{v_4, v_6\} \}
P4.3.
               i := 5; goto P5.1
P4.4.
P5.1.
               x_5 := v_4
              T_5^1 := \{\{v_4, v_6\}\}
              T_5^0 := \{\{\neg v_4, v_5\}\}
P5.2.
               U_5 := \{\{v_5, v_6\}\}
               S_6 := \{ \{ \neg v_5, v_6 \}, \{ \neg v_6 \}, \{ v_5, v_6 \} \}
P5.3.
                 i := 6; goto P6.1
P5.4.
```

$$x_6 := v_5$$
 $T_6^1 := \{\{v_5, v_6\}\}$
 $T_6^0 := \{\{-v_5, v_6\}\}$
 $P_6 := \{\{v_6\}\}$
 $P_6 := \{\{v_6\}\}$
 $P_6 := \{\{v_6\}\}$
 $P_6 := \{\{v_6\}\}\}$
 $P_6 := \{\{v_6\}\}\}$
 $P_7 := \{\{v_6\}\}$
 $P_7 := \{v_6\}$
 $P_7 := \{v_6\}$
 $P_7 := \{v_7 :=$

(S10.8) Există o derivare prin rezoluție a lui \square din mulțimea de clauze $\mathcal{S} := \{C_1 := \{v_0, \neg v_1\}, C_2 := \{\neg v_0, v_1\}\}$? Justificați.

Demonstrație: Fie mulțimea de clauze $S' := \{C_1, C_2, C_3 := \{v_0, \neg v_0\}, C_4 := \{v_1, \neg v_1\}\}.$

Observăm că $\mathcal{S}\subseteq\mathcal{S}'$ și că:

$$Res(C_1, C_1) = \emptyset$$

$$Res(C_1, C_2) = \{C_3, C_4\}$$

$$Res(C_1, C_3) = \{C_1\}$$

$$Res(C_1, C_4) = \{C_1\}$$

$$Res(C_2, C_2) = \emptyset$$

$$Res(C_2, C_3) = \{C_2\}$$

$$Res(C_2, C_4) = \{C_2\}$$

$$Res(C_3, C_3) = \{C_3\}$$

$$Res(C_3, C_4) = \emptyset$$

$$Res(C_4, C_4) = \{C_4\}$$

Am arătat, deci, că pentru orice $D_1, D_2 \in \mathcal{S}'$, $Res(D_1, D_2) \subseteq \mathcal{S}'$ (*). Presupunem prin absurd că există o derivare prin rezoluție a lui \square din \mathcal{S} și fie aceasta $(C'_1, \ldots, C'_n = \square)$. Demonstrăm prin inducție completă că pentru orice $i \in \{1, \ldots, n\}, C'_i \in \mathcal{S}'$. Fie un astfel

de i. Din definiția derivării, avem că ori $C_i' \in \mathcal{S} \subseteq \mathcal{S}'$, ceea ce rezolvă problema, ori există j,k < i cu $C_i' \in Res(C_j',C_k')$. Din ipoteza de inducție completă, $C_j',C_k' \in \mathcal{S}'$, iar din (*) avem $Res(C_j',C_k') \subseteq \mathcal{S}'$, deci $C_i' \in \mathcal{S}'$. Am obținut că $C_n' = \square \in \mathcal{S}'$, ceea ce este o contradicție. Rămâne că nu există o derivare prin rezoluție a lui \square din \mathcal{S} .

(S10.9) Demonstrați, folosindu-vă de proprietățile satisfacerii semantice și de aplicarea sistematică (i.e., via algoritmul Davis-Putnam) a regulii rezoluției:

$$\{\neg v_2, v_2 \to \neg v_3, v_3 \to v_4\} \vDash (\neg v_3 \to \neg (v_1 \to v_2)) \lor (v_1 \to (v_3 \land v_4)) \lor v_4.$$

Demonstrație: Aplicând Propoziția 1.33.(i), condiția din enunț este echivalentă cu faptul că mulțimea de formule:

$$\{\neg v_2, v_2 \to \neg v_3, v_3 \to v_4, \neg((\neg v_3 \to \neg(v_1 \to v_2)) \lor (v_1 \to (v_3 \land v_4)) \lor v_4)\}$$

este nesatisfiabilă și, mai departe, din Propoziția 1.34.(i), cu faptul că formula:

$$\neg v_2 \land (v_2 \rightarrow \neg v_3) \land (v_3 \rightarrow v_4) \land \neg((\neg v_3 \rightarrow \neg(v_1 \rightarrow v_2)) \lor (v_1 \rightarrow (v_3 \land v_4)) \lor v_4)$$

este nesatisfiabilă. Aplicând transformări sintactice succesive, obținem că formula de mai sus este echivalentă, pe rând, cu:

$$\neg v_2 \wedge (\neg v_2 \vee \neg v_3) \wedge (\neg v_3 \vee v_4) \wedge \neg (\neg \neg v_3 \vee \neg (\neg v_1 \vee v_2) \vee \neg v_1 \vee (v_3 \wedge v_4) \vee v_4),$$

$$\neg v_2 \wedge (\neg v_2 \vee \neg v_3) \wedge (\neg v_3 \vee v_4) \wedge \neg \neg \neg v_3 \wedge \neg \neg (\neg v_1 \vee v_2) \wedge \neg \neg v_1 \wedge \neg (v_3 \wedge v_4) \wedge \neg v_4,$$

$$\neg v_2 \wedge (\neg v_2 \vee \neg v_3) \wedge (\neg v_3 \vee v_4) \wedge \neg v_3 \wedge (\neg v_1 \vee v_2) \wedge v_1 \wedge \neg (v_3 \wedge v_4) \wedge \neg v_4,$$

$$\neg v_2 \wedge (\neg v_2 \vee \neg v_3) \wedge (\neg v_3 \vee v_4) \wedge \neg v_3 \wedge (\neg v_1 \vee v_2) \wedge v_1 \wedge (\neg v_3 \vee \neg v_4) \wedge \neg v_4,$$

$$\neg v_2 \wedge (\neg v_2 \vee \neg v_3) \wedge (\neg v_3 \vee v_4) \wedge \neg v_3 \wedge (\neg v_1 \vee v_2) \wedge v_1 \wedge (\neg v_3 \vee \neg v_4) \wedge \neg v_4,$$

ultima formulă fiind în FNC și corespunzându-i forma clauzală:

$$\mathcal{S} := \{\{v_2\}, \{\neg v_2, \neg v_3\}, \{\neg v_3, v_4\}, \{\neg v_3\}, \{\neg v_1, \neg v_2\}, \{v_1\}, \{\neg v_3, \neg v_4\}, \{\neg v_4\}\}, \{\neg v_4\}, \{\neg v_$$

despre care vom arăta că este nesatisfiabilă, încheind astfel demonstrația (prin aplicarea Propoziției 1.87). Folosim mulțimea \mathcal{S} ca intrare a algoritmului Davis-Putnam, a cărui

rulare se produce după cum urmează.

$$i := 1$$

$$S_1 := \{\{v_2\}, \{\neg v_2, \neg v_3\}, \{\neg v_3, v_4\}, \{\neg v_3\}, \{\neg v_1, \neg v_2\}, \{v_1\}, \{\neg v_3, \neg v_4\}, \{\neg v_4\}\}\}$$

$$P1.1. \quad x_1 := v_1$$

$$T_1^1 := \{\{v_1\}\}$$

$$T_1^0 := \{\{\neg v_1, \neg v_2\}\}$$

$$P1.2. \quad U_1 := \{\{\neg v_2\}\}\}$$

$$P1.3. \quad S_2 := \{\{v_2\}, \{\neg v_2, \neg v_3\}, \{\neg v_3, v_4\}, \{\neg v_3\}, \{\neg v_3, \neg v_4\}, \{\neg v_4\}, \{\neg v_2\}\}\}$$

$$P1.4. \quad i := 2; \text{ goto } P2.1$$

$$P2.1. \quad x_2 := v_2$$

$$T_2^1 := \{\{v_2\}\}$$

$$T_2^0 := \{\{\neg v_2, \neg v_3\}, \{\neg v_2\}\}$$

$$P2.2. \quad U_2 := \{\{\neg v_3\}, \Box\}$$

$$P2.3. \quad S_3 := \{\{\neg v_3, v_4\}, \{\neg v_3, \neg v_4\}, \{\neg v_4\}, \{\neg v_3\}, \Box\}$$

$$P2.4. \quad \Box \in S_3 \Rightarrow S \text{ este nesatisfiabilă.}$$

Rămâne, deci, că \mathcal{S} este nesatisfiabilă.