

Wassertanküberwachung über LoRaWAN

Autor: Fabian Bressel, Cynthia Rapp

Letzte Änderung: 21. Dezember 2018

Dateiname: Technische Spezifikation.docx

Version: 0.6

Inhaltsverzeichnis

A	utor:	Fabian Bressel, Cynthia Rapp	. 1
1. Einl		eitung	. 5
	1.1	Überblick	. 5
	1.2	Definitionen und Abkürzungen	. 5
	1.3	Vorhandene Dokumente	. 5
2.	. Pro	zessüberblick	. 6
	2.1	Realisierungsprozess	. 6
	2.2	Fachlicher Workflow	. 7
3.	. Syst	tem Architektur und Infrastruktur	. 9
	3.1	System Architektur	. 9
	3.2	System Infrastruktur	10
4.	Spe	zifikationen Software	11
	4.1	Überblick Komponenten	11
	4.2	Schnittstellen zwischen den Komponenten	12
	4.3	Beschreibung der Implementierung	12
	4.3.	1 F1: Log In	12
	4.3.	2 F2: Füllstand und Temperatur anzeigen	14
	4.3.	3 F3: Diagramme erstellen	16
	4.3.	4 F4: Füllstandregelung	17
	4.3.	5 F5: Fehlermeldung senden	19
	4.3.	6 F6: PDF-Protokoll erstellen / PDF-Datei exportieren	20
	4.3.	7 F7: Sensordaten senden	21
	4.3.	8 F8: Daten in DB speichern	2 3
5.	Spe	zifikationen Hardware	24
	5.1	Modell	24
	5.2	Schaltungspläne	25

Technische Spezifikation Wassertanküberwachung über LoRaWAN

Abbildungsverzeichnis

Abbildung 1: Diagramm des Realisierungsprozesses	6
Abbildung 2: Fachlicher WorkFlow Technischer Workflow	7
Abbildung 3: Technischer Workflow	8
Abbildung 4: Systemarchitektur	9
Abbildung 5: Spezialisierung Sensoren	10
Abbildung 6: Spezialisierung Aktoren	10
Abbildung 7: Komponentendiagramm	11
Abbildung 8: Log In Seite	12
Abbildung 9: Ablauf des Anmeldens auf der Webseite	13
Abbildung 10: Dashboard auf der Webseite	14
Abbildung 11: Ablauf des Abrufens der Daten	15
Abbildung 12: Diagramme erstellen auf der Webseite	16
Abbildung 13: Veränderung des Reglers an Tank 2	17
Abbildung 14: Ablauf der Füllstandänderung	18
Abbildung 15: Fenster mit Fehlermeldung	19
Abbildung 16: Protokolle erstellen auf der Webseite	20
Abbildung 17: Ablauf des Datensendens	22
Abbildung 18: Datenmodell	23
Abbildung 19: Einfache Darstellung des Modells	24
Abbildung 20: Schaltplan der Anlage	25
Abbildung 21: Schaltplan der Anlage	26
Tabellenverzeichnis	
Tabelle 1: Versionshistorie	4
Tabelle 2: Vorhandene Dokumente	
Tabelle 3: Zugriffsdaten	10
Tabelle 4: Beschreibung der Softwarekomponenten und deren Funktionen	11
Tabelle 5: Komponenten Log In	12
Tabelle 6: Komponenten Temperatur und Füllstand	14
Tabelle 7: Komponenten Diagramme	16
Tabelle 8: Komponenten Füllstandregelung	17
Tabelle 9:Komponenten Fehlermeldung	
Tabelle 10: Komponenten Protokoll	20
Tabelle 11: Komponenten Daten senden	
Tabelle 12: Komponenten Datenbank	23
- I U 40 - I I U	

Wassertanküberwachung über LoRaWAN

©Copyright bre-rap

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Versionshistorie:

Version	Datum	Verantwortlich	Änderung
0.1	04.12.18	Cynthia Rapp	Initiale Dokumentenerstellung
0.2	11.12.18	Fabian Bressel	Diagramme und Schaltpläne
0.3	19.12.18	Cynthia Rapp	Texte
0.4	19.12.18	Fabian Bressel	Bilder, Diagramme und Texte
0.5	20.12.18	Cynthia Rapp	Bilder, Text und Diagramme
0.6	21.12.18	Fabian Bressel	Diagramme und Texte

Tabelle 1: Versionshistorie

Wassertanküberwachung über LoRaWAN

1. Einleitung

1.1 Überblick

Um die Funktionalität des LoRaWAN auf dem Campus zu zeigen, wird ein Modell einer Wasseranlage gebaut, welches Werte wie den Wasserstand überträgt und auf einer Webseite ausgibt. Das Modell besteht aus Drei, mit Wasser gefüllten Säulen, die mit Temperatur- und Ultraschallsensoren für die Wasserstandermittlung, ausgestattet sind. Die aufgenommenen Werte werden über das LoRaWAN an die TTN-Cloud gesendet und in einer Datenbank gespeichert. Auf einer, mit Sicherheitsbeschränkung eingerichteten, Webseite lassen sich alle Werte in Echtzeit ablesen und auch in verschiedenen Ansichten, wie Diagrammen darstellen. Die Kommunikation zwischen Webseite und Arduino, über das LoRaWAN funktioniert in beide Richtungen, damit lassen sich auch die Werte der Wassertanks über abgebildete Regler verändern. Weitere Features, wie ein Errorlog und eine Ausgabe eines PDF-Protokolls sind ebenfalls auf der Webseite vorhanden.

1.2 Definitionen und Abkürzungen

LoRaWAN – Long Range Wide Area Network

TTN – The Things Network

1.3 Vorhandene Dokumente

Dokument	Autor	Datum
Lastenheft_Fachübergreifendes_Projekt	Cynthia Rapp, Fabian Bressel	06.11.18
Pflichtenheft_Wassertanküberwachung	Cynthia Rapp, Fabian Bressel	04.12.18

Tabelle 2: Vorhandene Dokumente

Wassertanküberwachung über LoRaWAN

Prozessüberblick

2.1 Realisierungsprozess

Um dieses Projekt zu realisieren ist zu allererst die Konstruktion des gesamten Systems erforderlich. Nach dem auch das Modell der der Wasseranlage konstruiert wurde, kann mit der Entwicklung begonnen werden. Diese Besteht aus Zwei Teilen: der Weboberfläche und dem Mikrokontroller.

Abbildung 1: Diagramm des Realisierungsprozesses

Wassertanküberwachung über LoRaWAN

հեա

2.2 Fachlicher Workflow

Abbildung 2: Fachlicher WorkFlow Technischer Workflow

Wassertanküberwachung über LoRaWAN

Abbildung 3: Technischer Workflow

Wassertanküberwachung über LoRaWAN

3. System Architektur und Infrastruktur

3.1 System Architektur

Die folgende Abbildung zeigt unsere System Architektur in Verbindung mit dem Anwender.

Abbildung 4: Systemarchitektur

Wassertanküberwachung über LoRaWAN

Abbildung 5: Spezialisierung Sensoren

Abbildung 6: Spezialisierung Aktoren

3.2 System Infrastruktur

Daten die benötigt werden um Zugriff auf den Server zu erhalten, worauf die Daten zu dem Webserver, sowie der Datenbank zu finden sind.

IP	141.45.92.216
Benutzer	student (mit Administratorrechten)
Passwort	N}N1d+,8DG[tAN p)Ka!

Tabelle 3: Zugriffsdaten

Wassertanküberwachung über LoRaWAN

4. Spezifikationen Software

4.1 Überblick Komponenten

Abbildung 7: Komponentendiagramm

SW Komponente	Funktionen	Sprache / Typ	Ort
Webseite	F1: Log In F2: Füllstand und Temperatur anzeigen F3: Diagramme erstellen F4: Füllstandregelung F5: Fehlermeldung senden F6: PDF-Protokoll erstellen	HTML, CSS, Java Script /.html, .css., .js	Web Server Datenbank
Arduino	F4: Füllstandregelung F7: Sensordaten senden F8: Daten in DB speichern	Arduino, .ino	
PDF-Export Datenbank	F6: PDF-Datei exportieren F2: Füllstand und Temperatur anzeigen F3: Diagramme erstellen F4: Füllstandregelung F8: Daten in DB speichern	PDF Datei, .pdf	Web Server

Tabelle 4: Beschreibung der Softwarekomponenten und deren Funktionen

Wassertanküberwachung über LoRaWAN

4.2 Schnittstellen zwischen den Komponenten

Die Datenübertragung zwischen dem Arduino und der Datenbank funktioniert über das LoRaWAN Netzwerk mithilfe des LoRaWAN Moduls, welches an dem Arduino angeschlossen ist. Der Webserver und die Datenbank befinden sich auf demselben Server weshalb diesbezüglich keine weiteren Schnittstellen erforderlich sind. Der Webserver schickt befehle an den Arduino ebenfalls über die TTN Cloud mithilfe von LoRaWAN. Die Webseite selbst ist eine grafische Schnittstelle, die es dem Nutzer ermöglicht die Daten aus dem System auszulesen und die Anlage fernzusteuern.

4.3 Beschreibung der Implementierung

4.3.1 F1: Log In

Um den Zugriff auf alle Daten und Funktionen zu erhalten, muss man sich als erstes im Log In Fester anmelden. Dazu gibt es zwei Felder: Eins für den Benutzernamen/Email-Adresse und eins für das Passwort. Mit dem *Log In*-Button wird der Log In Versuch gestartet. Bei erfolgreicher Anmeldung wird der Nutzer auf die Startseite, das *Dashboard* weitergeleitet. Bei erfolgloser Anmeldung wird der Nutzer zu einer Neuen Eingabe seiner Daten gebeten. Ein Account muss dafür im Vorfeld erstellt worden sein.

#	Komponente	Erforderliche Arbeiten
T1	Webseite	Vergleichen der eingaben der Nutzer mit denen der aus der
		Datenbank gestellten Parametern.
T4	Datenbank	Bereitstellen des Benutzernamens, sowie Passwort.

Tabelle 5: Komponenten Log In

Abbildung 8: Log In Seite

Wassertanküberwachung über LoRaWAN

Abbildung 9: Ablauf des Anmeldens auf der Webseite

Wassertanküberwachung über LoRaWAN

4.3.2 F2: Füllstand und Temperatur anzeigen

Auf dem Dashboard befindet sich ein visuelles Modell der Anlage, mit den Wasserrohren. Eindeutig sichtbar wird der Wasserstand, sowohl grafisch als auch numerisch dargestellt und mit Temperaturangabe versehen. Diese Daten aktualisieren sich jede Minute, wenn sie aus der Datenbank ausgelesen wurden. Die Ansicht lässt sich wechseln, zur Diagrammansicht.

#	Komponente	Erforderliche Arbeiten
T1	Webseite	Die Webseite zeigt die von der Datenbank gesendeten Parameter im auf dem Dashboard an. (Siehe Abbildung 12)
T4	Datenbank	Stellt die anzuzeigenden Parameter bereit

Tabelle 6: Komponenten Temperatur und Füllstand

Abbildung 10: Dashboard auf der Webseite

Wassertanküberwachung über LoRaWAN

Abbildung 11: Ablauf des Abrufens der Daten

Wassertanküberwachung über LoRaWAN

4.3.3 F3: Diagramme erstellen

Die Diagrammansicht, zu der man auch über den Pfad der *zuletzt erstellten Diagramme* gelangt, lassen sich mehrere Daten darstellen. Der Zeitraum ist frei wählbar oder Ein Tag, eine Woche oder ein Monat ist auszuwählen, um die erfassten Daten anzeigen zu lassen. Dabei lässt sich auch die Häufigkeit skalieren, z.B. auf jede Messung oder nur jede fünfte, je nach Benutzerbedürfnissen. Welche Daten in dem Diagramm zu sehen sind, ob nur die Temperaturen, die Wasserstände oder beides, ist auswählbar. Optional können Designtechnische Entscheidungen getroffen werden, wie Diagrammtyp oder Farben.

-	#	Komponente	Erforderliche Arbeiten
	T1	Webseite	Berechnen der Diagramme
-	T4	Datenbank	Bereitstellen der Daten

Tabelle 7: Komponenten Diagramme

Abbildung 12: Diagramme erstellen auf der Webseite

Wassertanküberwachung über LoRaWAN

4.3.4 F4: Füllstandregelung

Neben jeder der digitalen Wassersäulen auf dem Dashboard befindet sich ein Regler, der sich einzeln verstellen lässt. Sobald das passiert, sendet das System den Befehl der Wasserstandregulierung zusammen mit dem neu eingestellten Wert über das LoRaWAN an den Arduino. Dieser gleicht den Ist-Füllstand mit dem gesendeten Soll-Füllstand und schaltet dann die Pumpen entsprechend. Die Pumpe, die Wassertank mit der passenden Säule verbindet, lässt dann Wasser ab oder füllt Wasser auf, bis das Ist dem Soll entspricht. Sobald der Wasserstand dann korrekt ist, wird der Wert wieder regulär in die Datenbank gespeichert und so auf dem Bildschirm angeglichen.

#	Komponente	Erforderliche Arbeiten
T1	Webseite	Senden der Steuerbefehle an den Arduino über das TTN-Netzwerk mithilfe von LoRaWAN.
T2	Arduino	Eingehende Steuerbefehle an die Pumpen übertragen und somit den Wasserstand regulieren.
T4	Datenbank	Speichern und Abrufen von Daten.

Tabelle 8: Komponenten Füllstandregelung

Abbildung 13: Veränderung des Reglers an Tank 2

Wassertanküberwachung über LoRaWAN

Abbildung 14: Ablauf der Füllstandänderung

Wassertanküberwachung über LoRaWAN

4.3.5 F5: Fehlermeldung senden

Wenn eines der vordefinierten Szenarien aus dem Pflichtenheft eintritt, muss das System eine Fehlermeldung ausgeben, in Form einer einfachen Benachrichtigung. Ein Fenster geht auf und informiert über das entsprechende Szenario und gibt hilfreiche Lösungsansätze und das Problem zu beheben. Es gibt die Möglichkeit seine Email-Adresse einzugeben, um diese Fehlermeldung auch zusätzlich noch per Mail zu erhalten. Mit Bestätigen schließt sich das Fenster. Der Fehler, der durch das Szenario ausgelöst wurde, wird im Errorlog mit Zeitstempel gespeichert. Zu diesem Errorlog gelangt man über das Dashboard.

#	Komponente	Erforderliche Arbeiten
T1	Webseite	Anzeigen der Fehlermeldung und versenden dieser über E-Mail

Tabelle 9:Komponenten Fehlermeldung

Abbildung 15: Fenster mit Fehlermeldung

4.3.6 F6: PDF-Protokoll erstellen / PDF-Datei exportieren

Über das Dashboard gelangt man auf die Option ein Protokoll von den erfassten Daten erstellen zu können. Dort kann man auch die zuletzt erstellten Protokolle und deren Speicherpfade sehen. Das Protokoll kann ähnlich dem Diagramm nach persönlichen Vorlieben gestaltet werden. Es können Fehlermeldungen mit eingebunden werden und auch Diagramme, zusätzlich zu den Datenreihen aus einem bestimmten Zeitraum. Das Protokoll wird dann in eine PDF exportiert und kann so lokal abgespeichert werden.

#	Komponente	Erforderliche Arbeiten
T1	Webseite	Oberfläche zum Bestimmen der Daten, welche in der PDF abgebildet werden sollen. Zusammenstellen des in PDF umzuwandelnde Dokument.
T3	PDF-Export	Umwandeln der Daten in ein PDF
T4	Datenbank	Bereitstellen der Daten

Tabelle 10: Komponenten Protokoll

Abbildung 16: Protokolle erstellen auf der Webseite

Wassertanküberwachung über LoRaWAN

4.3.7 F7: Sensordaten senden

Jede Minute wird der Wert jedes Temperatursensors und Ultraschallsensors ausgelesen. Die Entfernung wird in den Wasserstand (%) umgewandelt und dann zusammen mit der Temperatur vom Arduino über das LoRaWAN an die TTN-Cloud gesendet.

#	Komponente	Erforderliche Arbeiten
T2	Arduino	Senden der Daten in die TTN Cloud.

Tabelle 11: Komponenten Daten senden

Formatierung der vom Arduino gesendeten Nachricht an das LoRaWAN Netzwerk:

level: < value >; temp: < value >; error: < errorcodes >: < message >

Wassertanküberwachung über LoRaWAN

Abbildung 17: Ablauf des Datensendens

Wassertanküberwachung über LoRaWAN

4.3.8 F8: Daten in DB speichern

Der Webserver empfängt die Daten aus der TTN Cloud und speichert diese in der Datenbank ab. Die Datenbank dient lediglich zum sortierten speichern der Daten.

	#	Komponente	Erforderliche Arbeiten
	T1	Webseite	Daten aus der TTN Cloud an die Datenbank weitergeben.
ľ	T4	Datenbank	Speichern der Daten.

Tabelle 12: Komponenten Datenbank

Data
+ id*: int[PK] + data: varchar(50) + date: datetime

Abbildung 18: Datenmodell

Wassertanküberwachung über LoRaWAN

5. Spezifikationen Hardware

5.1 Modell

Abbildung 19: Einfache Darstellung des Modells

Wassertanküberwachung über LoRaWAN

5.2 Schaltungspläne

Abbildung 20: Schaltplan der Anlage

Abbildung 21: Schaltplan der Anlage

Technische Spezifikation
Wassertanküberwachung über LoRaWAN

5.3 Einzelteile

Name	Beschreibung	Anwendung	Schnittstellen & Spannungsbelegung	Bild
Arduino Uno Microcontroller- Board	Mikrocontrollerboard, basierend auf dem Atmel Mega 328P	Entwicklerboard, Steuerung, Regelung, Berechnungen	28 Digitale Input/ Output Pins Davon: 12 PWM Output 4 UART, 12 Mhz Quarz, USB-A Verbindung, ICSP Header, Reset Button, DC 9V/GND	N. I. C.
Lora Shield v95	Erweiterungsmodul für den Arduino	Ermöglicht dem Arduino über LoRaWAN zu kommunizieren	Antennenanschluss, Digitalpins, PWM- Analog-Pins DC 5V/GND	
NTC - Temperatursensor	Edelstahl Temperatursensor von -30°C - +105°C	Messen der Wassertemperatur	5V Betriebsspannung 10kOhm Grundwiderstand Abweichung ca. 1%	
Relais-Platine	4 unabhängig voneinander agierende Relais	Schalten der 230 V Wechselspannung mit dem Arduino	5V Betriebsspannung 4 Relais	TO THE PROPERTY OF THE PROPERT
Renkforce 5W Zimmerbrunnen- pumpe	5W Tauchpumpe	Ermöglicht die Wassertanks zu befüllen.	230 V Wechselstrom	

Wassertanküberwachung über LoRaWAN

Ultraschallsensor ST1099	Ultraschallsensor zur Abstandsmessung	Misst den abstand zum Wasser, um die Füllhöhe des Tanks zu bestimmen	5V Betriebsspannung, 2cm -400cm Arbeitsbereich, 0,3 cm Abweichung	HC-SR04
TRU Components TC-TS250 Drucktaster	Drucktaster zum vorrübergehenden schließen eines Kontaktes	Signal an den Arduino senden zum Aktivieren der Pumpe.	4 Pins, 2 jeweils verbunden	

Tabelle 13: Einzelteile