# Traitement des données sociodémographiques – EHCVM Sénégal 2018

#### 2025-05-21

## Table des matières

| 0.1  | Importation et création des identifiants          |
|------|---------------------------------------------------|
| 0.2  | Taille des ménages                                |
| 0.3  | Graphique : Distribution de la taille des ménages |
| 0.4  | Répartition par sexe                              |
| 0.5  | Structure par âge                                 |
| 0.6  | Pyramide des âges                                 |
| 0.7  | Statut matrimonial                                |
| 8.0  | Ethnies                                           |
| 0.9  | Religion                                          |
| 0.10 | Possession de téléphone                           |

### 0.1 Importation et création des identifiants

```
data <- read_dta("C:/Users/HP/Desktop/S4/COURS R/EXPOSE/s01_me_SEN2018.dta") %>%
    clean_names() %>%
    mutate(
      id_menage = paste(vague, grappe, menage, sep = "_"),
      id_individu = paste(id_menage, s01q00a, sep = "_")
)
n_menages <- n_distinct(data$id_menage)
n_individus <- nrow(data)
paste("Nombre total d'individus :", n_individus)</pre>
```

```
## [1] "Nombre total d'individus : 66119"
paste("Nombre total de ménages :", n_menages)
## [1] "Nombre total de ménages : 7156"
```

# 0.2 Taille des ménages

```
taille_menage <- data %>%
  group_by(id_menage) %>%
  summarise(taille = n()) %>%
  ungroup()
```

```
taille_menage %>%
  summarise(
    moyenne = mean(taille),
    mediane = median(taille),
    min = min(taille),
    max = max(taille)
  )
## # A tibble: 1 x 4
##
     moyenne mediane
                       min
##
       <dbl>
               <dbl> <int> <int>
## 1
        9.24
                   8
                         1
                               56
```

## 0.3 Graphique : Distribution de la taille des ménages

```
ggplot(taille_menage, aes(x = taille)) +
  geom_histogram(binwidth = 1, fill = "skyblue", color = "black") +
  labs(title = "Distribution de la taille des ménages", x = "Nombre de membres", y = "Fréquence")
```

# Distribution de la taille des ménages



| sexe  | n     | pourcentage |
|-------|-------|-------------|
| Femme | 35316 | 53.4        |
| Homme | 30802 | 46.6        |

## 0.4 Répartition par sexe

```
data <- data %>%
  filter(!is.na(s01q01)) %>%
  mutate(sexe = case_when(
    s01q01 == 1 ~ "Homme",
    s01q01 == 2 ~ "Femme",
    TRUE ~ "Autre"
))

sexe_tab <- data %>%
  count(sexe) %>%
  mutate(pourcentage = round(n / sum(n) * 100, 1))

gt(sexe_tab)

ggplot(sexe_tab, aes(x = sexe, y = pourcentage, fill = sexe)) +
  geom_bar(stat = "identity", width = 0.6) +
  labs(title = "Répartition par sexe", y = "Pourcentage") +
  theme_minimal()
```



#### 0.5 Structure par âge

```
data <- data %>%
  mutate(
    s01q03c = na_if(s01q03c, 9999)
  distinct(id_individu, .keep_all = TRUE) %>%
    age = if_else(vague == 1, 2018 - s01q03c, 2019 - s01q03c),
    tranche_age = case_when(
      age < 5 \sim "0-4",
      age < 15 ~ "5-14",
      age < 25 ~ "15-24",
      age < 45 ~ "25-44",
      age < 65 \sim "45-64",
      age >= 65 \sim "65+",
     TRUE ~ NA_character_ # pour les âges NA
    ),
    tranche_age = factor(tranche_age, levels = c("0-4", "5-14", "15-24", "25-44", "45-64", "65-
  )
table_tranche <- data %>%
```

| tranche_age | n     | pourcentage |
|-------------|-------|-------------|
| 0-4         | 8375  | 12.7        |
| 5-14        | 16707 | 25.3        |
| 15-24       | 11424 | 17.3        |
| 25-44       | 12753 | 19.3        |
| 45-64       | 7037  | 10.6        |
| 65+         | 2534  | 3.8         |
| NA          | 7288  | 11.0        |

```
count(tranche_age) %>%
  mutate(pourcentage = round(n / sum(n) * 100, 1))

gt(table_tranche)

ggplot(data, aes(x = tranche_age)) +
  geom_bar(fill = "#009E73") +
  labs(title = "Structure par tranche d'âge", x = "Tranche d'âge", y = "Effectif") +
  theme_minimal()
```

# Structure par tranche d'âge



```
structure_menage <- data %>%
group_by(id_menage) %>%
```

```
summarise(
   enfants = sum(age < 15, na.rm = TRUE),
   vieux = sum(age >= 65, na.rm = TRUE),
   actifs = sum(age >= 15 & age < 65, na.rm = TRUE)
 ) %>%
 mutate(
   dep_ratio = round((enfants + vieux) / ifelse(actifs == 0, NA, actifs), 2)
  )
summary(structure_menage$dep_ratio)
##
      Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
                                                      NA's
## 0.0000 0.4000 0.8300 0.9974 1.3300 8.0000
                                                       191
```

## 0.6 Pyramide des âges

```
data <- data %>%
 mutate(
   sexe_label = case_when(
     s01q01 == 1 ~ "Homme",
     s01q01 == 2 ~ "Femme",
     TRUE ~ NA_character_
   )
 )
pyramide_data <- data %>%
 filter(!is.na(sexe_label)) %>%
  count(tranche_age, sexe_label) %>%
 mutate(effectif = if_else(sexe_label == "Homme", -n, n))
ggplot(pyramide_data, aes(x = tranche_age, y = effectif, fill = sexe_label)) +
 geom_bar(stat = "identity", width = 0.7) +
 coord_flip() +
 scale_y_continuous(labels = abs) +
  scale_fill_manual(values = c("Homme" = "#0072B2", "Femme" = "#D55E00")) +
 labs(title = "Pyramide des âges", x = "Tranche d'âge", y = "Effectif", fill = "Sexe") +
 theme_minimal()
```

| tranche_age | Homme | Femme | sex_ratio |
|-------------|-------|-------|-----------|
| 0-4         | 4232  | 4143  | 1.02      |
| 5-14        | 8280  | 8427  | 0.98      |
| 15-24       | 5356  | 6068  | 0.88      |
| 25-44       | 5368  | 7385  | 0.73      |
| 45-64       | 3138  | 3899  | 0.80      |
| 65+         | 1172  | 1362  | 0.86      |
| NA          | 3256  | 4032  | 0.81      |

# Pyramide des âges



#### ## Ratio de masculinité

```
sexe_age <- data %>%
  filter(s01q01 %in% c(1, 2)) %>%
  count(tranche_age, sexe = s01q01) %>%
  pivot_wider(names_from = sexe, values_from = n, values_fill = 0) %>%
  rename(Homme = `1`, Femme = `2`) %>%
  mutate(sex_ratio = round(Homme / Femme, 2))
gt(sexe_age)
```

#### 0.7 Statut matrimonial

```
data %>%
filter(!is.na(s01q07)) %>%
count(statut = s01q07) %>%
mutate(
  libelle = case_when(
     statut == 1 ~ "Célibataire",
     statut == 2 ~ "Marié(e) monogame",
     statut == 3 ~ "Marié(e) polygame",
     statut == 4 ~ "Union libre",
     statut == 5 ~ "Veuf(ve)",
     statut == 6 ~ "Divorcé(e)",
    statut == 7 ~ "Séparé(e)",
    statut == 11 ~ ".A"
  ),
  pourcentage = round(n / sum(n) * 100, 1)
 ) %>%
 ggplot(aes(x = reorder(libelle, -n), y = n, fill = libelle)) +
 geom_bar(stat = "identity") +
 labs(title = "Répartition du statut matrimonial", x = "Statut matrimonial", y = "Effectif")
 theme_minimal() +
 theme(legend.position = "none")
```

## Répartition du statut matrimonial



| ethnie            | n     | pourcentage |
|-------------------|-------|-------------|
| Wolof/Lébou       | 22098 | 33.8        |
| Poular            | 21564 | 32.9        |
| Sérère            | 7808  | 11.9        |
| Mandingue/Socé    | 4555  | 7.0         |
| Diola             | 3059  | 4.7         |
| Soninké           | 1281  | 2.0         |
| Autres ethnies    | 1253  | 1.9         |
| Bambara           | 1041  | 1.6         |
| Maure             | 902   | 1.4         |
| Mandiack/Mankagne | 725   | 1.1         |

#### 0.8 Ethnies

```
data <- data %>%
 mutate(ethnie_lib = case_when(
    s01q16 == 1 ~ "Wolof/Lébou",
    s01q16 == 2 ~ "Sérère",
    s01q16 == 3 ~ "Poular",
    s01q16 == 4 ~ "Soninké",
    s01q16 == 5 ~ "Diola",
    s01q16 == 6 ~ "Mandingue/Socé",
    s01q16 == 7 ~ "Balante",
    s01q16 == 8 ~ "Bambara",
    s01q16 == 9 ~ "Malinké",
    s01q16 == 10 ~ "Autres ethnies",
    s01q16 == 11 ~ "Naturalisé",
    s01q16 == 12 ~ "Mandiack/Mankagne",
    s01q16 == 13 ~ "Maure",
    s01q16 == 101 ~ ".A"
  ))
ethnie_table <- data %>%
  filter(!is.na(ethnie_lib)) %>%
  count(ethnie = ethnie_lib, sort = TRUE) %>%
 mutate(pourcentage = round(n / sum(n) * 100, 1)) %>%
 head(10)
gt(ethnie_table)
ggplot(ethnie_table, aes(x = reorder(ethnie, n), y = n)) +
  geom_bar(stat = "identity", fill = "#56B4E9") +
  coord_flip() +
  labs(title = "Top 10 des ethnies", x = "Ethnie", y = "Effectif") +
  theme_minimal()
```





#### 0.9 Religion

```
data <- data %>%
 mutate(religion_lib = case_when(
    s01q14 == 1 ~ "Musulman",
    s01q14 == 2 ~ "Chrétien",
    s01q14 == 3 ~ "Animiste",
    s01q14 == 4 ~ "Autre religion",
    s01q14 == 5 ~ "Sans religion"
 ))
religion_table <- data %>%
  filter(!is.na(religion_lib)) %>%
  count(religion = religion_lib, sort = TRUE) %>%
 mutate(pourcentage = round(n / sum(n) * 100, 1))
gt(religion_table)
ggplot(religion_table, aes(x = reorder(religion, n), y = n)) +
 geom_bar(stat = "identity", fill = "#F0E442") +
  coord_flip() +
 labs(title = "Répartition selon la religion", x = "Religion", y = "Effectif") +
```

| religion       | n     | pourcentage |
|----------------|-------|-------------|
| Musulman       | 63524 | 96.1        |
| Chrétien       | 2402  | 3.6         |
| Animiste       | 74    | 0.1         |
| Autre religion | 54    | 0.1         |
| Sans religion  | 54    | 0.1         |

#### theme\_minimal()



# 0.10 Possession de téléphone

```
data <- data %>%
  mutate(tel_possede = case_when(
    s01q36 == 1 ~ "Oui",
    s01q36 == 2 ~ "Non",
    TRUE ~ "Non renseigné"
  ))

tel_table <- data %>%
  filter(!is.na(tel_possede)) %>%
```

Effectif

```
count(tel_possede, sort = TRUE) %>%
mutate(pourcentage = round(n / sum(n) * 100, 1))
knitr::kable(tel_table, caption = "Distribution de la possession de téléphone")
```

Table 1: Distribution de la possession de téléphone

| tel_possede   | n     | pourcentage |
|---------------|-------|-------------|
| Oui           | 25701 | 38.9        |
| Non renseigné | 20307 | 30.7        |
| Non           | 20110 | 30.4        |

```
ggplot(tel_table, aes(x = reorder(tel_possede, n), y = n)) +
  geom_bar(stat = "identity", fill = "#D55E00") +
  coord_flip() +
  labs(title = "Possession de téléphone", x = "Possède un téléphone", y = "Effectif") +
  theme_minimal()
```





```
tel_par_age <- data %>%
  filter(!is.na(tel_possede)) %>%
  count(tranche_age, tel_possede) %>%
  group_by(tranche_age) %>%
```

```
mutate(pct = round(n / sum(n) * 100, 1))
gt(tel_par_age)

ggplot(tel_par_age, aes(x = tranche_age, y = pct, fill = tel_possede)) +
    geom_bar(stat = "identity", position = "dodge") +
    labs(title = "Possession de téléphone selon l'âge", y = "Pourcentage") +
    theme_minimal()
```

# Possession de téléphone selon l'âge



| tel_possede   | n     | pct   |
|---------------|-------|-------|
| 0-4           |       |       |
| Non renseigné | 8375  | 100.0 |
| 5-14          |       |       |
| Non           | 7134  | 42.7  |
| Non renseigné | 9232  | 55.3  |
| Oui           | 341   | 2.0   |
| 15-24         |       |       |
| Non           | 5297  | 46.4  |
| Non renseigné | 2     | 0.0   |
| Oui           | 6125  | 53.6  |
| 25-44         |       |       |
| Non           | 2316  | 18.2  |
| Non renseigné | 6     | 0.0   |
| Oui           | 10431 | 81.8  |
| 45-64         |       |       |
| Non           | 1578  | 22.4  |
| Non renseigné | 1     | 0.0   |
| Oui           | 5458  | 77.6  |
| 65+           |       |       |
| Non           | 1103  | 43.5  |
| Oui           | 1431  | 56.5  |
| NA            |       |       |
| Non           | 2682  | 36.8  |
| Non renseigné | 2691  | 36.9  |
| Oui           | 1915  | 26.3  |