Incremental Consensus based Collaborative Deep Learning

A short report on [?]

Nazarov Ivan

Skoltech

July 27, 2018

General Setting

Agents connected within a communication graph

want to collaboratively solve an optimization problem

Generic Optimisation in ML

Agents are nodes in a undirected connected graph G = (V, E)

Each node $v \in G$ has a set of objectives $S_v = (I_{vi} \colon \mathbb{R}^d \to \mathbb{R})_{i=1}^{m_v}$

- ▶ $l_{vi}(\theta) = \text{Loss}(x_{vi}, y_{vi}; \theta) \text{supervised learning}$
- ▶ $l_{vi}(\theta) = \text{Loss}(z_{vi}; \theta)$ unsupervised learning

Goal - to solve the global problem

$$\underset{\theta \in \Theta}{\text{minimize}} \quad \sum_{v \in G} \sum_{i \in v} I_{vi}(\theta). \tag{Glbl-P}$$

Distributed Optimisation in ML

Assumptions on G

- ▶ two-way communication: if $uv \in E$ then $vu \in E$
- ▶ for any $v \in G$ the neighbours $G_v = \{u \in G : vu \in E\}$
- single connected component

Assumptions on I_{vi} : γ_{vi} -smooth, proper and coercive

- $I_{i\nu}(y) \le I_{i\nu}(x) + \langle \nabla I_{i\nu}(x), y x \rangle + \frac{\gamma_{\nu i}}{2} \|y x\|^2 \text{ for all } y$
- $dom I_{vi} = \{\theta : I_{vi}(\theta)\} \neq \emptyset$
- coercive $I_{vi}(\theta) \to \infty$ as $\|\theta\| \to \infty$

Distriubuted and Decentralized Optimisation

Consensus problem

$$\begin{array}{ll} \underset{\theta_{\nu} \in \Theta}{\text{minimize}} & \sum_{v \in G} \sum_{i \in v} I_{vi}(\theta_{v}) \,. \\ \\ \text{subject to} & \theta_{v} = \theta_{u} \,, \forall v \in G \,\, \forall u \in \textit{G}_{v} \,. \end{array} \tag{Cons-P}$$

Equivalent problem: if A – symmetric adjacency matrix of G then

$$\label{eq:minimize} \begin{array}{ll} \underset{\theta \in \Theta^G}{\text{minimize}} & \sum_{v \in G} \sum_{i \in v} I_{vi}(\theta_v) \,. \\ \\ \text{subject to} & A\theta = \theta \,. \end{array}$$

The Optimization Updates in Distributed Optimization

Figure 1: Blue dots $(\theta_k^i \sim \theta_v^t)$ represent the current states; Green dots represent the private local optima $(\theta_*^i \sim \theta_v^*)$; Purple dot $(\theta_* \sim \theta^*)$ represents the ideal global optimal solution; another purple dot $\hat{\theta} \sim \hat{\theta}^t$ represents a possible consensus point.

Consensus Distributed SGD

CD-SGD update looks like this

$$\boldsymbol{\theta}_{v}^{t+1} \leftarrow \underbrace{\left\{\frac{1}{|\textit{G}_{v}|} \sum_{u \in \textit{G}_{v}} \boldsymbol{\theta}_{u}^{t}\right\}}_{\text{synchronisation step}} - \underbrace{\boldsymbol{g}_{v}^{t}(\boldsymbol{\theta}_{v}^{t})\boldsymbol{\eta}}_{\text{gradient step}},$$

where $g_{\scriptscriptstyle \mathcal{V}}^{\,t}(\theta_{\scriptscriptstyle \mathcal{V}}^{\,t})$ is the stochastic gradient of $\mathit{I}_{\scriptscriptstyle \mathcal{V}}$ at $\theta_{\scriptscriptstyle \mathcal{V}}^{\,t}$

$$\left. g_{v}^{t}(oldsymbol{ heta}_{v}^{t}) =
abla_{ heta} \hat{\mathbb{E}}_{l \sim \mathcal{S}_{v}} l(heta)
ight|_{ heta = oldsymbol{ heta}_{v}^{t}}.$$

Proposal of the paper

Instead of this ... (CDSGD)

$$oldsymbol{ heta}^{t+1} \leftarrow igl(oldsymbol{\sqcap} \otimes I_d igr) oldsymbol{ heta}^t - oldsymbol{oldsymbol{g}}(oldsymbol{ heta}^t) \eta \,.$$

... why not do this

$$oldsymbol{ heta}^{t+1} \leftarrow \left(oldsymbol{\sqcap}^{ au} \otimes I_d
ight) oldsymbol{ heta}^t - oldsymbol{g}(oldsymbol{ heta}^t) \eta \,,$$

thereby increasing the communication complexity by $\tau \geq 1$.

- ... and get
 - the incremental-CDSGD (i-CDSGD)

Results

Provide vanilla and momentum variants of Gradient Descent iterations

Prove convergence for $\tau \geq 1$ using Lyapunov stability analysis

Results: consensus bound

Consensus with fixed step size, i-CDSGD

If assumptions hold, then iterates of i-CDSGD satisfy the following inequality $\forall t \geq 1$, when $0 < \alpha \leq \frac{1}{\gamma_m}$,

$$\mathbb{E} \left\| \theta_{\nu}^{t} - \frac{1}{|G|} \sum_{\nu \in G} \theta_{\nu}^{t} \right\| \leq \frac{\omega \alpha h}{1 - \hat{\lambda}_{2}}, \tag{1}$$

where $s^t = \frac{1}{N} \sum_{v \in G} \theta_v^t$, $\hat{\lambda}_2$ is the second-largest eigenvalue of the matrix $\mathbf{Q} = (1 - \omega) \mathbf{P} + \omega I_{Nd}$, $\gamma_m = \max_{v \in G, i \in v} \gamma_{vi}$, B_m – upper bounds the variance of the.

Slide with bullet points

This is a bullet list of two points:

- ▶ Point one
- ► Point two

Slide with two columns

Text goes in first column.

Text goes in second column

Slide with table

Table 1: Caption for table one

Heading1	Heading2	Heading3
Row1	0.1	.01
Row2	0.2	.02
Row3	0.3	0.03
Row4	0.4	0.04

Slide with figure

Figure 2: Caption for figure one.

Slide with references

This is to reference a figure (Figure 2)
This it to reference a table (Table 1)
This is to cite an article [Ahmed and Kim, 2018]
This is to add an article to the references without mentioning in the text

References I

Ahmed, M. and Kim, D. (2018).

pcr: An R package for quality assessment, analysis and testing of qPCR data. $\textit{PeerJ},\ 2018(3).$