	Teste de Matemática A
	2023 / 2024
Teste N.º 2	
Matemática A	
12.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tir	·
	quilo que pretende que não seja classificado.
É permitido o uso de calculadora.	itana
Apresente apenas uma resposta para cada	
As cotações dos itens encontram-se no fina	i do enunciado.
Na resposta aos itens de escolha múltipla,	selecione a opção correta. Escreva na folha de
respostas o número do item e a letra que id	lentifica a opção escolhida.
Na resposta aos restantes itens, apresente	todos os cálculos que tiver de efetuar e todas
as justificações necessárias. Quando para	a um resultado não é pedida a aproximação,

apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone:
$$\pi rg$$
 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4\pi r^2$$
 $(r - raio)$

Volume de uma pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Volume de um cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Volume de uma esfera:
$$\frac{4}{3}\pi r^3$$
 $(r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Progressão geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$cos(a + b) = cos a cos b - sen a sen b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \, \in \, \{0,\dots,n-1\} \, \text{e} \, n \in \, \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Considere todos os números naturais de cinco algarismos que se podem formar com os algarismos de 0 a 5.

Destes números, quantos têm pelo menos dois algarismos iguais?

- **(A)** 5880
- **(B)** 6480
- **(C)** 7056
- **(D)** 10 800

- **2.** De uma linha *n* do triângulo de Pascal, sabe-se que:
 - a soma dos últimos quatro elementos é 176;
 - o quarto elemento da linha seguinte é igual a 165.

Qual é o maior elemento dessa linha?

- **(A)** 126
- **(B)** 210
- **(C)** 252
- **(D)** 462
- 3. Um grupo de alunos do 12.º ano vai visitar o convento de Mafra.

Dez desses alunos dispõem-se lado a lado, em linha reta, para tirar uma fotografia.

O Joaquim, a Margarida, a Helena e o Francisco são quatro desses alunos.

Determine a probabilidade de, ao serem dispostos, ao acaso, os dez alunos, a Margarida e a Helena ficarem juntas e o Joaquim e o Francisco ficarem separados?

Apresente o resultado com arredondamento às centésimas.

- **4.** Sejam E um conjunto finito, não vazio, e P uma probabilidade no conjunto $\mathcal{P}(E)$. Sejam A e B dois acontecimentos compatíveis, ambos de probabilidade não nula, tais que:
 - P(A) = 0.45
 - $P(\bar{A} \cup \bar{B}) = \frac{0.21}{P(A \cap B)}$
 - $P(B) = \frac{13}{16} P(A \cup B)$

Determine o valor de $P(\bar{A}|B)$.

Apresente o resultado na forma de fração irredutível.

5. Um saco contém seis bolas numeradas de 1 a 6, indistinguíveis ao tato.

Retiram-se, sucessivamente, com reposição, e ao acaso, três bolas do saco.

Qual é a probabilidade de a soma dos números inscritos nas três bolas retiradas ser igual a 6?

- (A) $\frac{5}{108}$
- **(B)** $\frac{1}{243}$
- (C) $\frac{1}{168}$
- (D) $\frac{1}{504}$

6. Na Universidade do Porto foi criada uma equipa de investigadores com o objetivo de conjeturar um modelo matemático que possa prever a evolução da emissão de gases poluentes, em Portugal, durante a próxima década.

A equipa é constituída por investigadores de várias áreas científicas, dos quais se sabe que $\frac{2}{5}$ são matemáticos.

Escolhem-se, ao acaso, dois investigadores desta equipa, para estarem presentes na conferência de imprensa do próximo Conselho de Ministros.

Sabe-se que a probabilidade de serem escolhidos dois investigadores matemáticos é $\frac{13}{95}$.

Determine o número de investigadores que constitui esta equipa.

Para resolver este problema, percorra as seguintes etapas:

- equacione o problema;
- resolva a equação, sem utilizar a calculadora, a não ser para efetuar eventuais cálculos numéricos.
- 7. Seja E o espaço amostral associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos possíveis tais que $P(A \cap B) \neq 0 \ (A \subset E \ e \ B \subset E)$.

Prove que:

$$P(\overline{A \cup B}) + \frac{P(A|B) - P(A)P(A \cap B)}{P(B) - P(\overline{A} \cap B)} = \frac{1}{P(B)} - P(A \cap B)$$

8. Num determinado ginásio praticam-se três modalidades de treino: treino individualizado, aulas de grupo e aulas de pilates.

A equipa de staf f desse ginásio é constituída por 22 elementos, dos quais 8 são professores de treino individualizado, 10 são professores de aulas de grupo e 4 são professores de pilates. Cada um deles professor é de uma única modalidade.

Vão ser escolhidos, ao acaso, 8 elementos que constituirão uma equipa responsável pela organização do evento anual de team building.

Pretende-se que essa equipa seja formada por:

- elementos das três modalidades:
- exatamente 3 professores de treino individualizado;
- pelo menos 3 professores de pilates.

Uma expressão que permite determinar o número de equipas distintas responsáveis pela organização do evento anual de team building é a seguinte:

$${}^8C_3 \times \left({}^{10}C_2 \times {}^4C_3 + 10 \right)$$

Explique esta expressão no contexto descrito.

9. Na figura está representado, num referencial o.n. 0xyz, o prisma hexagonal reto [ABCDEFGHIJKL], cujas bases são hexágonos regulares.

Sabe-se que os vértices A e B pertencem ao semieixo positivo Ox e o vértice F pertence ao semieixo positivo Oy.

Escolhem-se, ao acaso, três vértices do prisma.

Em qual das seguintes opções se encontra a probabilidade de o plano definido por esses três vértices ser perpendicular ao eixo Ox.

(A) $\frac{2}{11}$

(B) $\frac{6}{11}$

- **(D)** $\frac{6}{55}$

10. Considere duas caixas, C_1 e C_2 .

A caixa C_1 tem doze bolas, distinguíveis apenas pela cor, das quais cinco são brancas e sete são pretas. A caixa C_2 tem dezanove bolas, também apenas distinguíveis pela cor, umas brancas e as restantes são pretas.

Considere a experiência que consiste em retirar, simultaneamente e ao acaso, duas bolas da caixa C_1 , colocá-las na caixa C_2 e, em seguida, retirar, também ao acaso, uma bola da caixa C_2 . Sejam X e Y os acontecimentos:

X: "As bolas retiradas da caixa C_1 são de cor diferente."

Y: "A bola retirada da caixa C_2 é branca."

Sabe-se que $P(Y|X) = \frac{3}{7}$.

Indique, justificando, quantas bolas brancas e quantas bolas pretas existiam inicialmente na caixa C_2 .

11. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{2x^3 - 4x^2 + 8x - 16}{x^2 + x - 6} & \text{se } x > 2\\ \frac{16}{5} & \text{se } x = 2\\ \frac{x^2 - 4}{2 - \sqrt{14 - 5x}} & \text{se } x < 2 \end{cases}$$

11.1 Considere a sucessão de termo geral $u_n = \frac{2n^2+1}{n}$.

Qual é o valor do $\lim f(u_n)$?

- **(A)** 2
- **(B)** $\frac{16}{5}$
- **(C)** 0
- **(D)** +∞
- **11.2** Averigue, sem recorrer à calculadora, se f é contínua em x = 2.

12. Resolva este item sem recorrer à calculadora.

Considere a função f, de domínio $]-\infty,3[$, definida por:

$$f(x) = \frac{2 - \sqrt{x^2 + 1}}{x - 3}$$

O gráfico da função f admite uma assíntota vertical e uma assíntota horizontal.

Determine uma equação de cada uma dessas assíntotas.

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.1	11.2	12.	Pontos
10	10	18	20	10	18	20	18	10	18	10	18	20	200