REMARKS

The Claims have been amended to more clearly claim the invention. Claims 39-41 have been cancelled. Claim 42 has been amended to an independent claim. Support for the functional language added to claims 42 and 43 can be found in the Specification as filed, for example on page 93, under the information for DNA 26843-1389. No new matter has been added herewith. As a result of the claim amendments, Claims 42-51 are presented for further examination. The changes made to the specification and claims by the current amendment, including deletions and additions, are shown herein with deletions designated with a strikethrough and additions underlined.

As an initial matter Applicants submit that priority <u>has</u> been properly claimed to PCT/US00/23328, filed August 24, 2000 and Applicants hereby rely on this application for the effective filing date of <u>August 24, 2000</u>. As will be apparent from the discussions below and the Declaration by J. Christopher Grimaldi, filed herewith under 37 C.F.R. §1.132, Applicants submit that the results of PCR provide specific and substantial asserted utility for the claimed polypeptides in this invention. Since this utility was disclosed in PCT/US00/23328, the claims pending are fully entitled to the priority of August 24, 2000.

Further, the Examiner mistakenly states that the priority date for PCT/US00/23328 is 8/24/01. However, Applicants would like the Examiner to note that the above-identified patent application is a Continuation of the parent application which corresponds to PCT/US00/23328 which has a priority date of <u>August 24, 2000</u>. Applicants believe that the date 8/24/01 as stated in the Office Action was probably a typographical error by the Examiner.

Correction of Inventorship under 37 CFR §1.48(b)

Applicant requests that several inventors be deleted, as these inventors' inventions are no longer being claimed in the present application. The fee as set forth in § 1.17(i) is submitted herewith.

Objection to the Specification

The Specification has been amended to clarify priority information. The Examiner objected to the amendments filed 1/8/02 and 7/16/02 as introducing new matter. Applicants would like to clarify that the amendments to the Specification filed 1/8/02 were simply to correct inadvertent typographical errors. This can be readily appreciated by a search for the listed patents. US patent application 09/380138 was in fact filed 8/25/99, and not the incorrectly input

8/25/98 (the typographical errors are underlined). Similarly, PCT/US00/32378 should have been input as PCT/US00/32678. This can be readily appreciated by the fact that PCT/US00/32378 was not assigned to Genentech, nor are the inventors employed by Genentech or the same as those inventors for the above-identified patent application. Further, this information has been removed as not reflecting the priority for the elected invention. Applicants would like the Examiner to note that the priority information has been amended accordingly. Thus, no new matter was added by this amendment and Applicants request that the corrections be entered.

The amendment filed 7/16/02 adds four new provisional applications to the priority list. Applicants have cancelled this added information herein and would like the Examiner to note that this does not affect the claimed priority.

Rejection under 35 U.S.C. §§ 101 and 112, first paragraph

The Examiner asserts on pages 2-5 of the Office Action that the gene expression data disclosed in Example 18 of the present application and the table therein does not satisfy the utility requirements of 35 U.S.C.§101 for the polypeptide and further, that the gene expression data does not satisfy the utility requirement of 35 U.S.C.§112, first paragraph, for the polypeptide. Citing Pennica et al., the Examiner added that "no information is provided in the gene amplification data regarding the level of expression, activity, or role in cancer of the PRO180 polypeptide". The Examiner asserted that gene amplification does not always correlate or predict equivalent levels of polypeptide expression and concluded that, "absent evidence of the protein's expression including the correlation to a diseased state, one of skill in the art would be unable to predictably use the polypeptides in any diagnostic setting without undue experimentation." Applicants respectfully disagree.

Evidentiary Standard

An Applicant's assertion of utility creates a presumption of utility that will be sufficient to satisfy the utility requirement of 35 U.S.C. §101, "unless there is a reason for one skilled in the art to question the objective truth of the statement of utility or its scope." *In re Langer*, 503 F.2d 1380, 1391, 183 USPQ 288, 297 (CCPA 1974).

Compliance with 35 U.S.C. §101 is a question of fact. Raytheon v. Roper, 724 F.2d 951, 956, 220 USPQ 592, 596 (Fed. Cir. 1983) cert. denied, 469 US 835 (1984). The evidentiary standard to be used throughout ex parte examination in setting forth a rejection is a preponderance of the totality of the evidence under consideration. In re Oetiker, 977 F.2d 1443,

1445, 24 USPQ2d 1443, 1444(Fed. Cir. 1992). Thus, to overcome the presumption of truth that an assertion of utility by the applicant enjoys, the Examiner must establish that it is more likely than not that one of ordinary skill in the art would doubt the truth of the statement of utility. Only after the Examiner made a proper prima facie showing of lack of utility, does the burden of rebuttal shift to the applicant. The issue is then decided on the totality of evidence.

A prima facie case of lack of utility has not been established

The Examiner bases the conclusion of lack of utility on the fact that there is no supporting evidence that the polypeptide is overexpressed in tumor vs. normal cells and that this means that the PRO180 polypeptide encoding nucleic acid being expressed in tumor vs. normal does not equate to the use of the molecule for diagnosis as well as a therapeutic target. The standard, however, is not absolute certainty. The fact that in the case of a specific class of closely related molecules there seemed to be no correlation between gene expression and the level of mRNA/protein expression does not establish that it is more likely than not, in general, that such correlation does not exist. Indeed, the working hypothesis among those skilled in the art is that, if an mRNA is amplified in cancer, the encoded protein will be expressed at an elevated level (see Declaration of J. Christopher Grimaldi and the accompanying references). In fact, the expression of mRNA and protein are very highly correlated - even more so than gene amplification and protein expression, for example. In the majority of cases, when the mRNA is over-expressed, the gene product is also over-expressed. The references and the Declaration of J. Christopher Grimaldi. submitted herewith provide ample support for this statement.

The present application provides data showing that the mRNA for the PRO180 polypeptide in overexpressed in rectal tumors as compared with normal tissue. This data supports the claim that the present invention is useful in the diagnosis and treatment of cancer. Thus, Applicants have established the utility of the present invention.

Even if a prima facie case of lack of utility had been established, it should be withdrawn on consideration of the totality of evidence

Even if one assumes arguendo that it is more likely than not that there is no correlation between gene expression and increased protein expression, the claimed invention would still have a specific and substantial utility.

Enclosed is a Declaration by J. Christopher Grimaldi, an expert in the field of cancer biology and an inventor of the present invention. As Mr. Grimaldi explains,

Even if the protein expression did not correlate with the mRNA expression, this still provides significant information for cancer diagnosis and treatment. For example, if over-expression of gene product does not correlate with over-expression of mRNA in certain tumor types but does so in others, then identification of both gene expression and protein expression enables more accurate tumor classification and hence better determination of suitable therapy. In addition, absence of over-expression is crucial information for the practicing clinician. If a gene is over-expressed but the corresponding gene product is not over-expressed, the clinician accordingly will decide <u>not</u> to treat a patient with agents that target that gene product.

Accordingly, the PRO180 polypeptide has a substantial specific utility, and the present rejection should be withdrawn.

Rejection under 35 U.S.C. §112, first paragraph

Claims 39-51 were also rejected under 35 U.S.C.§112, first paragraph as not having a specific utility. However, for the reasons outlined above in response to the rejection under 35 U.S.C. §101, Applicants believe they have established the utility of the claimed invention and therefore respectfully request withdrawal of the rejection under 35 U.S.C. §112, first paragraph.

Rejection under 35 U.S.C. §112, second paragraph

The Examiner rejected Claims 39-51, because the Examiner believes that the protein identified as PRO180 is a soluble protein and would not have an extracellular domain. However, the data in Figure 2 of the Specification shows that an analysis of the sequence of PRO180 identifies a number of transmembrane domains. The specification as filed includes a definition of the ECD on page 16, lines 3-13 as being "essentially free of the transmembrane and cytoplasmic domains". This suggests that PRO180 does, in fact have an extracellular domain (ECD). Further, many secreted proteins may be expressed on the cell membrane at one time and secreted at others. Thus, Applicants submit that this rejection is improper and requests that it be withdrawn.

The Examiner rejected Claim 51 as being indefinite for reciting an "epitope tag", because the exact meaning of the language is not clear. However, the definition of "epitope tag" is clearly

set out in the Specification as filed on page 23, lines 24-30. Thus, Applicants submit that the claim is definite and requests that the rejection be withdrawn.

Rejection under 35 U.S.C. §112, first paragraph

The Examiner rejected Claims 39-43 and 50 because the Examiner believes that the claims drawn to polypeptides having 80%-99% sequence identity do not require that the protein have any biological activity. The claims have been amended to provide a biological activity, specifically, that "the nucleic acid encoding said polypeptide is amplified in rectal tumors." Accordingly, withdrawal of the rejection is respectfully requested.

The Examiner rejected Claims 39-44, and 49-51 as failing to provide an adequate written description of the deposit information.

Although the Specification on page 80, Example 4, Table 7 clearly identifies this deposit as made under the provisions of the Budapest Treaty (lines 51-53) and provides an ATCC accession number, the Examiner believes an affidavit or declaration by applicant or assignees or a statement by an attorney of record to be necessary. Thus, the following statement is included in this response: "These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures that all restrictions imposed by the depositor on the availability to the public of the deposited material will be irrevocably removed upon the granting of the pertinent U.S. patent, assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC § 122 and the Commissioner's rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 886 OG 638). Applicants would like the Examiner to note that this identical language can be found in the Specification on page 81, line 51 through page 82, line 6.

The Examiner has rejected Claims 39-43, and 50-51 as not being enabled with reference to the polypeptides having at least 80-99% amino acid sequence identity. However, as noted above, the following functional limitation has been included in the claims: "wherein the nucleic acid encoding said polypeptide is amplified in rectal tumors," and the claims have been limited to polypeptides having 95% or greater amino acid sequence identity.

Rejection under 35 U.S.C. §102(b)

Claims 39-45, 47, and 50-51 were rejected as being anticipated by Feng et al (WO 99/24836, published 5/99). However, Applicants submit that Feng et al is not an anticipating reference, because Feng et al discloses no utility and is therefore not enabled. The necessity for a prior art reference to be properly enabled was recently described by the Court of Appeals for the Federal Circuit (CAFC) in two cases: *Elan Pharmaceuticals, Inc. and Athena Neurosciences, Inc. v. Mayo Foundation for Medical Education and Research* 2003 U.S. Appl. LEXIS 20195 (Fed. Cir. 2003) and *Bristol-Myers Squibb v. Ben Venue Labs., Inc.* 246 F.3d 1368 (Fed. Cir. 2001).

In Elan Pharmaceuticals, Inc. and Athena Neurosciences, Inc. v. Mayo Foundation for Medical Education and Research 2003 U.S. Appl. LEXIS 20195 (Fed. Cir. 2003) the Elan patent claimed a transgenic rodent which contained a transgene encoding APP (A protein which is involved in Alzheimer's disease) having the Swedish mutation. The claims contained a further limitation that the processed protein had to be expressed in the brain in a detectable amount: "wherein it is processed to ATF-βAPP in a detectable amount in the brain..." The Mullan reference was cited as anticipatory prior art against this claim. The cited language was added to the claim to distinguish over the Mullan reference.

When again presented as an anticipatory reference, the Mullan reference was analyzed as to enablement. The argument was that the reference was not enabling without undue experimentation, so it could not be anticipatory. Although Mullan set out a number of methods for producing the transgenic mouse, the amount of experimentation to produce a workable transgenic mouse was found to be undue, because it would require trying every method until one was identified which would work. The court concluded that: "invalidity based on anticipation

requires that the assertedly anticipating disclosure enabled the subject matter of the reference and thus of the patented invention without undue experimentation."

Similarly, the prior art reference cited against the present application, Feng et al, does not teach or set out a utility. It merely discloses a sequence without any use therefore. The reference may set out numerous methods for identifying a utility, however, it is clear that the job of finding a utility for a sequence without further guidance is "undue experimentation". Thus, Feng et al is not enabled and therefore cannot anticipate the claimed invention. See also *Bristol-Myers Squibb* v. Ben Venue Labs., Inc. 246 F.3d 1368 (Fed. Cir. 2001) "For a prior art reference to anticipate a patent claim, the reference must also enable one of skill in the art to make and use the claimed invention."

Feng et al does not set out a utility for the disclosed sequence. It is clear from the Bristol-Myers case that enablement involves both making and <u>using</u> the claimed invention. If a utility is not disclosed it is not possible to teach one of skill in the art to use the claimed invention and the reference cannot be said to be anticipating. Thus, Feng et al is not anticipatory.

Thus, Applicants respectfully request withdrawal of the rejection under 35 U.S.C.§102(b).

Rejection under 35 U.S.C. §102(b)

Claims 39-51 are rejected as being anticipated by Baker et al. (WO 99/63088, published 12/99). However, as explained in the section entitled "Priority" above, the priority date for the claimed invention which provides a utility is, in fact, August 24, 2000, (not 8/24/01). Further, the Declaration under §1.131 being submitted herewith establishes that the presently claimed invention antedated the Baker et al. reference.

The Declaration and attached pages from two laboratory notebooks of J. Christopher Grimaldi (Notebook #33720 and the oligonucleotide binder) prove that the invention was conceived before the publication date of 12/99 for Baker et al., and diligently reduced to practice thereafter. Prior to November 24, 1999, the idea of investigating several newly discovered DNA sequences for their relevance was conceived, including developing primers and analyzing expression of the DNA sequences of interest in normal and tumor tissues. The enclosed notebook pages 18-19, dated November 24, 1999, show evidence of conception, in that many of the primers had already been made and that PCR reactions were performed. Page 19 of the laboratory notebook shows the expression of various DNA sequences in a variety of tissue types.

· Appl. No.

10/006,867

Filed

Dec. 6, 2001

After these initial experiments, the inventors continued to produce primers and to identify expression levels of other DNA sequences. The enclosed copy of a printed electronic file shows that many of the primers which had been previously identified were made on March 6, 2000, including the primers for DNA 26843, the DNA which is relevant to the presently claimed invention. This data shows diligence in reducing to practice following conception of the invention. Thereafter, the primers were tested for expression in various tissues (see the enclosed notebook page 3 showing gels dated June 13, 2000). This notebook page shows that the subject DNA is amplified in rectal tumors, as compared to normal tissue. Thus, the present invention was conceived at least as early as November 24, 1999, prior to the 12/99 publication date of Baker et al., and was diligently reduced to practice thereafter. Accordingly, withdrawal of the rejection under 35 U.S.C. § 102 is respectfully requested.

Conclusion

The present application is believed to be in condition for allowance, and action to that effect is respectfully requested. Should the Examiner have any further questions, please contact the undersigned at the telephone number appearing below.

Please charge any additional fees, including any fees for additional extension of time, or credit overpayment to Deposit Account No. 11-1410.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Datade

By:

y:

Jennifer A. Haynes

Registration No. 48,868

Agent of Record

Customer No. 30,313

(415) 954-4114

W:\DOC\$\JAH\JAH-6767.DOC 101403

DELETION OF INVENTORS.

Please correct the inventorship under 37 CFR §1.48(b) by removing the following inventors from the present application:

Dan L. Eaton, Ellen Filvaroff, Mary E. Gerritsen, and Colin K. Watanabe.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

: Eaton, et al.

10/006867

: December 6, 2001

SECRETED AND TRANSMEMBRANE

POLYPEPTIDES AND NUCLEIC ACIDS

ENCODING THE SAME

Examiner : Helms, L.

Group Art Unit : 1642

DECLARATION OF J. CHRISTOPHER GRIMALDI, UNDER 37 CFR §1.131

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

- I, J. Christopher Grimaldi, declare and state as follows:
- 1. I am a joint inventor of the invention claimed in the above-captioned patent application.
- 2. During the time period in which all of the events and activities described herein occurred, I was employed by Genentech, Inc., the assignee of the above-captioned application.
- 3. All of the events and activities described herein were performed by me personally, or by the other joint inventors, as part of our duties as employees of Genentech, Inc.
- 4. The invention claimed in the above-captioned patent application was conceived and reduced to practice prior to December 29, 1999 in the U.S. as described below.
- 5. Prior to December 29, 1999, I and the other co-inventors conceived of the invention claimed in the above-captioned patent application, and thereafter reduced the invention to practice, as evidenced by the enclosed copies of pages from my laboratory notebook, LB #33720 and the corresponding electronic file and binder with all of the oligonucleotide sequences. Prior to Növember 24, 1999, the idea of investigating several newly discovered DNA sequences for their relevance was conceived, including developing primers and analyzing expression of the DNA sequences of interest in normal and tumor tissues. The enclosed laboratory notebook pages 18-19, dated November 24, 1999, shows evidence of conception, in that many of the primers had already been made and that PCR reactions were performed. Page 19 of my laboratory notebook shows the expression of various DNA sequences in a variety of tissue types.
- 6. After these initial experiments, I continued to produce primers and to identify expression levels of other DNA sequences. The enclosed printed copy of an electronic file shows that many of the primers which had been previously identified were made on

March 6, 2000, including the primers for DNA 26843, the DNA which is relevant to the presently claimed invention. This data shows diligence in reducing to practice following conception of the invention. Thereafter, the primers were tested for expression in various tissues (see the enclosed page 3 from an oligonucleotide binder showing gels dated June 13, 2000). This page shows a series of gels in which the primers were used to determine tissue and tumor expression levels for the various DNA sequences. The levels are shown using a +, -, and +/- to indicate the amount of the specific mRNA which was detected. The expression data for DNA 26843 is shown in row 13 in this series of gels. This data shows that the DNA is amplified in rectal tumors, as compared to normal tissue. Actual reduction to practice therefore occurred on June 13, 2000. Thus, I conceived of the present invention at least as early as November 24, 1999, and was diligent in reducing the invention to practice on June 13, 2000.

7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

By: J. Christopher Grimaldi

W:\DOCS\JAH\JAH-6885.DOC

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

LABORATORY NOTEBOOK

Property of:

Genentech, inc.

NOTEBOOK NO33720
ISSUED TO Chris Grimaldi
ON_1114199
DEPARTMENT Molicular Biology
DETHIDNEN

—SCIENTIFIC NOTEBOOK CO.—
2831 LAWRENCE AVE.
P.O. BOX 238
STEVENSVILLE, MI 49127
616-429-8285

<62377.f2>GTGCTGCCCCGTTCAGTGTGA <62377.r2>GGCTGGAAGAGGTGCTGAGCTCCT <64966.f2>TCTGTAATGGCAGTTTGAGGTGGTATCAACAT om Page No.. <64966.r2>TAGGCACCAGACTAAGCTGATATTCATTTCCTG <66677.f2 OLI24981>TCGGCTTATTCCAGGGGTGTGTTTC <66677.r2 OLI24982>AGCAGTGCACATCACATCAACCTCTG <68862.f2\CAGCAAGTCTCGAAGTAATGCATTTGCTG <68862.r2 GGCACATTGCAGGGCTGAACAG <68883.f2>GGTTGGTGGCCTGGAGCTCTTCC <68883.r25ACGTGCACCACGGGCTCAATG <73775.f2>CTTCATGAGTGGTCGACTTATGGCTTTG <73775.r2/>CGCAATGTATTCTTGCTGCTTGTAGGAGA <76385.f2>GGAGAACACACCTCTGATGGACAAAGG <76385.r2/>GACACCATGAGTAGGCACGTTTGAGTCA <76395.f2>CCTTCCAGCTGCAAGTCCGTCC <76395.r2bGGGACAGGGACACTGAGAAGTTCGATG <76400.f2>CAGTCGATCCAGCTGCACCTTGTT <76400.r2>ACTCATAGTTCATCAGATGTACTGTTAGCCCTTG <77622.f2>CGAAGACTTCTCCATCCTGCTGGCAG <77622.r2>CATCGGAGCTGCTGCGACTCC <77623.f2>ATGCAGCTCGGCACTGGGCT <77623.r2>CAGGACTTCCCTAGGACAAGCGGTG <77624.f2>CCAGTTAAGCAATGTTGAAATCAGTTTGCATC <77624.r2>GTGTCCCTGCAGTGCCCACCT <77626.f2 OLI24984>CAGTGGTTGGAAGGACATGTTCAATGTG <77626.r2 OLI24985>ATCTGGATGTCTCCAATCTGGATGTGTG <77631.f2>ACCTGGAGGAGCTGCTGACTGCATTC <77631.r2>AGATGCGAGGAACATGGATGCAGG <79862.f2>AGAGGCCACAGAGGAGGAGAAGCA <79862.r2>GGACTGTGCTCTAATGGACGCAGACTC <80136.f2>CGTGGCCAGTGACTGCCAACTC <80136.r2>GACCAAACCCTCATGGAGACATTTCTCTG <19360.f2 OLI24987>TCAGTTCAATGCTGGTTTATGGAGCAATTTC <19360.r2 OLI24988>TCAGGCAGGTAAGTAAGGAGGTGGTGG <43305.f2\GGTTCTCCTGAAACTTCAAGGTCCCTG —><43305.tm)f>ACCTCAAAAGTCAGACAATTACTAGACACT <44174.f2 OLI24990>GGTACAACTCACGAATCCCTTCTACAGTATCTG <44174.r2 OLI24991>CCACTATGGACACCCAGATCGCC <45409.f2 OLI24992>GAAAAGAAAGGCATATCTGATGTCAGGAGGAC <45409.r2 OLI24993>CCTCTCTGAAGCATCCTGAACTATCAGGAG <47465.f2 OLI24994>GATGCAGCTGGAGGAGCAGCAG <47465.r2 OLI24995>CACCACACAGGCTCGAGCGTTTC <56049.f2>TCACTGGACCTAGAGAAAGAAGTGATCTGG <56049.r2>GACAGATACGTGTCCTGATCCTGTCACAAG <f2 OLI24996>GGATCTAGCAAGCACTGCAGGACTGTC <r2 OLI24997>GTACACTCTGCAACGCAAGTCACAGATG <57700.f2 OLI24998>CCACGATGCTGCATCTTGGCTC <57700.r2 OLI24999>GGGTACAGGACGTGCCTCCTGTTC <58799.f2>CATGTGGCTTTGCCCAGCCTG <58799.r2>GGGAGAGCTGCGTGGGAGCTT <59837.f2 OLI25000>CAGTCGGTGGACTCAGATCACAGTGG <59837.r2 OLI25001>GGATGTTGCCTTGTACAGCTGTGTCCTTC <59844.f2 OLI25002>CACTCCTCCACCAGGACTCGGAG <59844.r2 OLI25003>GGATTAGGGAAGCCAGCTGGGATG <59847.f2>CCACATCGAATACCGAGATGTGCG <59847.r2>GCCACGCAGCCCTGAATGC <60281.f2 OLI25005>GCCCTTTGCAGTTTGCCAGCC <60281.r2 OLI25006>CATGAGGGGAAACTGAGGGCAGG <60292.f2 OLI25007>CAGTCCACCATGATCCATCTGGGTC <60292.r2 OLI25008>CCTGTGCCACCACACACCATCC <80899.f2 OLI25009>GTGAGCTAACTGACACAATGAAACTGTCAG <80899.r2 OLI25010>GAACTCCTCAAGACCCAGGCAGAGTAGG To'Page No. <81754.f2 OLI25011>AGACAGAGTCTCACTCTGTCACCCAGG nessed & Understood <81754.r2 OLI25012>CCATAGCACAGCAGGGAGATGACAGTT <81757.f2 OLI25013>GTGAGTACTTGGTCACAGCCCTGGAG <81757.r2>GGTGTGTATTACAAACTCCTCCTTCGAGATGG

Proj ct N ._ Book No. om Page No. <82302.f2 OLI25014>GTAGAGACAGGGTTTCATCATGTTGCTCATG <82302.r2 OLI25015>GGGTGGCTTTGCTTATCCTCCAGATG <82307.f2>TCCAAAGGCATCTACTACGTGCAGCTG <82307.r2>GTCCTCGCGCAGGTAGGCTTTCTC <82340.f2 OLI25016>GGTAGACGGAGAAGAGCACGTCGG <82340.r2 OLI25017>GCCGCTGCTAGATTTGCCAGATG <82364.f2 OLI25018>CCACCTACACCAGCCTACCTCTTGATTCC <82364.r2 OLI25019>CAGTCATGTCTGAGCGTCACTTTCCC <86571.f2 OLI25020>CCAGGATCCTGTCCTGTCCTGTAG <86571.r2 OLI25021>CCCAGCAGTAGCTCCATTGAGAATACAGTC <87991.f2 OLI25022>GGTCACCATGCACCAGCCAGTG <87991.r2 OLI25023>CTGGGTGCAGTACTTCAGCTCTCTGG <92219.f2 OLI25024>GAGGCTCTGTAAACCATGCAAGCTTGAG <92219.r2 OLI25025>GGTGCTTGCCACCCTGCACTCTAG <92238.f2 OLI25026>CTGGGATTATAGGCGTGACCACCATG <92238.r2 OLI25027>CTAAGACTCAGTGACCTACCCCACTGACAAG <92929.f2 OLI25028>TTCACGCTGGTGCTGAGACAGGAG <92929.r2 OLI25029>GTAACGCGCATGAGCTCTGAAGCATC <85066.f2 OLI25030>CATGACCAGGATCACAAAGTACTGGTCCTG <85066.r2 OLI25031>GCAGTTTCCTAATCGCTGACCTCACTG <96787.f2 OLI25032>GGAGGCTGTGCTGAGTTTGTGTGG <96787.r2 OLI25033>CTAAAGCCTCTAGGGAAGAATTCTTCTTTGCCTC <92505.f2 OLI25034>CTTACCTCCAGCTTCGAATCCGCTG <92505.r2 OLI25035>GGTTTCTATTGGGTTCCACACCAGAGGTAG <52722.f2 OLI25036>GGCAGAGTCTCCCGGAGCAGAG <52722.r2 OLI25037>GACACCTGCGCTATAGCAGCTGTTGTAG <35917.f2 OLI25038>GTGATCTGTGACCCGGTGGTGTG <35917.r2 OLI25039>CCACATCTGCAGGTGATACAGCTCATCTC <40592.f2 OLI25040>TGAAGAATGGCGAATCCATTGCCTC <40592.r2 OLI25041>CCAGCACAGCACACTCCTCTGGTC <38113.f2 OLI25042>GCCTGGCCGGCCTGAAACC <38113.r2 OLI25043>GCCTCTGCGTCTCCACGTGG <83144.f2 OLI25044>GCGGCGACCTCCAACCATG <83144.r2 OLI25045>TCTCCTCCGATCTCTGGGACACCTC To Page No. Pate Date

litnessed & Understood by me,

=		•			
ନ,,	wes .				
V	JCC1 6H	25H 26H 28H	2911 89	H 90H	153H
375'8 N		25 H 26H 28H	•	_	
		- 228++ 229+ 23			
X		25+28+ [26,			3
·		55,153,227,228,			
A	•	53+, 227+ 230+			7 7
44192 *		15++ 227++ 221	•		1
V52722 -	52092		(
34392	30876 6	H 25H 26H 28H	29 H 8	9-90-	153M
V35917 -	34415		·		
V40592 3	4398		~		-
44804 3	7162 2	28 + 230 +[25,15	3,227,	229]
J38113 _ 38	110	•	•		3
41234 💥 3	6363 25	+ 227 + 228 +	229+	230 + (153]
45410 4	0654 26	++, 153++227+1	228+	229 ++	230++
	The state of the s	· ·		***	***
					ga (
					-
The Po	ge 14-15 C	ontain te Sou	incing de	114 80	
Henry to	nut work	Clored ut GNF	1 500 1	Du 10	
Clones	12 807 mg	Royal 17 111	ars and	Lec h	- -
hute	book 3230	5 Ry 59 Son M	tal 13		
	++++				
				То	Page No
ssed & Understood by me,	Date	Invented by		Date	
	I 1			•	•

[]= not expressed in this library

```
26+ 255++ 153+ 227++ 229++ 230+
39616
           98+ 153++ 227++ 229++ [55,25]
 45451 6
           25++ 55+- 98++ 153++ 229++[
46964 V
           90+ 153+ 227++
 49807 1
          26++ 227++ 229+-
                                  2544-
  9816 V
                   255 tt 228+t
  17435 V
           94++ [99,154,135,294,301, 26,153,227,229,255
  74187 V
            227 + 154 + 301 225 - 229 399+
  18722 V
          301+ [227, 154, 255, 229, 399]
  17654 V
          301+4 229+ [227,255,154,368,399,294,135
  16621V
              6t7,5 tt, 24++,28++,29++, 89+, 153+
  30934 ~
           153+, 28+ [6,25,90]
  14813 V
-17637 V 229+ 399++ [255,301,154,227]
 80202 V 301 + [154, 227, 255, 247,135]
 17890
4 2537
 40649
. 49665
 67977
 52162 /26+- 227+- 247+ [153, 229, 255]
 43041
 35718 ..
 34023
```

SKILLEN MUSCIE, Kidney, Puncious, Spierry thymns
prostatestistis, orary Small interest ABLS

(colon-Published by Ines Pon

From Page No._

·	Project	Name	<u></u>	Source
92238	76348	J. Stinson	12/98	Incepte Purch
92929	85030	James Pan	12/98	Punh
96786	expression		h	10/2
85066	84664	A. Gooddard	Drp Floth	er 198
96787	84699	Samesfai	12/98	furch
9 2505	966	70 James Po	m 11/98	Purch
92			.,,	

Rg 16-18 Contain nors hadto determe Whiteh geres needed friends to be ordered. Twil noses were gherred by Clurs.

generated by sotuly using the Source dustry of your pase 12-13. I sout this data to dark to see the actual get protos look in the Source book.

	•		1 +	, V	John John		1 - 2017 Jan J	-11	Trody,	1556 1556	~·,	91. 94. 94. 94. 59	.01		
Sourcey &			المراجعة	34, 31	osto contra	~) _1rd	'40,	ه. دري	V Lue -	رهر	Jane Jane	a) h			19
		\ \	C _{LA} C	; , (V)	ا کی ا		Gr.	13	Lay.		wa.	14.51. 15.75	(Prain)		
Souring &	or put		λγ.,	~ ;	N _O 'Y				ر بر ک	~ · (a	ې "د			_
		د ۱۸٪	1/20	·0~	1,4	\ \X\(0)	.	·ALL	' NV	126	26	~ ~~~~		expected	_
DNA#		13/5!	<u>```</u>	<u> </u>	<u> </u>	. دیک	73	υ(· \	<u>~</u>	\\ \'\'	か、	73		size bp	-
19340		171	 		· · · · · ·	1	7	 	}	- 1	7	7.7	1.00	503	_
	}-	ļ	ナー	+	<u>~</u>	+-	キ	_	1	+)	<u>~</u>	777	428	-
58113	_	+	7-	+	 	+-	7	+-		+	} ~	=	,,,,,	444	-
432.05	7	++	7	+	++	+-	+-	+	+	+	+	+		321	
97.7.19			+-	-	-		_			+		<u> </u>		419	_
82340	+-	++	7	+	++	+) _	}-	+	+	+-	+		484	
80 36	+-	++	+	+	<u> </u>		+-	4-	+ -	+	++	+-		443	
THULL	++	++	+	7	+	+-	. }	+	<u> </u>	+	+	7) 	480	
68862	+	<u>+</u> _	+-	4-	7		+			7-	7	+	<u>. </u>	455	<u>`</u>
59847	<u> </u>	<u> </u>	++	~		<u> </u>	<u> </u>		<u> </u>	7	+-	7 -		410	-\
52722	<u> </u>	4-	+	}	++	4	+	<u>)</u>	4-	× 3	+-	+-		451	
6/6/22			+-	1-				1-	+-	トー	<i>†</i> :-	++		408	
74400	4+	++	7	+ .	+	+-	+-	++	• }	it	+	F		471	
79 462	_		, —	_		_	-	_	}	-				615	
82307	+)	†	}-	1	トー	+_	1	7	7	7	ナー		418	
87991	++		+-			_	_	<u> </u>	<u> </u>	t -	ナナ			448	
94787	_		-			_	~	-	_	1	ナー			1. 459	
84571			<u> </u>										ļ	457	_
82302						7-	+-		1	3-	_		<u> </u>	454	
77431	} -	7	+ +	+	+-	7-	}-	7+	+	7	+	+	<u> </u>	456	
59837	+ +M	77		7	+	+	T-	7 2 b	7	+	+	+		437	
44966	7	7 -	7-	+-	+	+-	3-	1-	+-	+-		+	r mil.	332	
44174	+ 4	# + +	++	+	+-	+	+	_	+-	+	+	+		4145	
58799	+-	-:	}-)	7	+	+-	+	+-	+-	7	,	388	
62377)							-	-	<u> </u>	<u> </u>	231	
76385	+					_		+						577	
77626	1		}	}-	7-	~	+-	7+		1-	+-			4726	
181757	1+		17-	_	<u> </u>	+-	}	+-	<u> </u>	7-	++	77			
85 lelele												-	Han.	779	
92929			-							_	+-	<u>·</u>	77,5	308	
57700		-	+		++	+-) .	+	7	+-		, "	353	
73 775	+	_	+	J T	7,5	-	F :	·	-			_	· .	474	
40428	++	++	++	++	++	++	++	ALC:	+	+	+	++	-	343	_ 1
48883	}	++		++					_			++		435	
77623			+-			-								449	_
80899			_		_		_		-					391	_
82364			+-	+-	++	7-	+-		++				<u></u>	375	-
92238								+-	<u> </u>					222 344	-∤.∥
56049								_						413	┥╻╿
92505			<u></u>					<u> </u>				+	<u> </u>	366	- -
17624	1	1-1	++	++		++	ナナ	T	. —	++	++	++	ļ <u></u>	317	
56055	7	++	7+	+	++	7	+	1+	+10	7-7	+	44		518	
			321		H-T-	'			1//	 					\Box
					 								1	1	2000

1 1 1

User:grim

oli.out3_6_2000

Tue Jan 6 15:24:10 PST 2004

xe12380 / XE12380

```
      xe12380
      User:grim Job: oli.out3_6_2000
      Date: Tue Jan 6 15:24:10 PST 2004

      xe12380
      User:grim Job: oli.out3_6_2000
      Date: Tue Jan 6 15:24:10 PST 2004

      xe12380
      User:grim Job: oli.out3_6_2000
      Date: Tue Jan 6 15:24:10 PST 2004

      xe12380
      User:grim Job: oli.out3_6_2000
      Date: Tue Jan 6 15:24:10 PST 2004
```

```
<16422.f10 OLI28176>AGTTGCAACTATGCTGGCAACTGGAGG
<16422.r10 OLI28177>CCCAGATGTTTCTTACTGGCTCCTCACTAATC
<16435.f10 OLI28178>GAGGCAACTAAAAAGGCTTCAAACGTTTTG
<16435.r10 OLI28179>CAAAATCAATAACGTCATCAGCTTCCTAACCATG
<23334.f10 OLI28180>CGTTGGTTGAAGGACCTAAATACCTGGC
<23334.rl0 OLI28181>CTTCTATCATCACCCAGCTGCATGACC
<26843.f10 OLI28182>GCAAGTTCATGCTCTGAGTCCTGAAGAG
<26843.r10 OLI28183>GGTGCAGTGTCATAGAGGGTTAATCCATG
<26844.fl0 OLI28184>CCAATTCTGAACATTCCCATCGTGC
<26844.r10 OLI28185>GTGCTGGGATTACAGGCGTGAGC
<26844.f10>CCAATTCTGAACATTCCCATCGTGC
<26844.r10>GTGCTGGGATTACAGGCGTGAGC
<30862.fl0 OLI28186>CACCTGAAGGTGATGCTCCTGGAAG
<30862.rl0 OLI28187>GCGGTTCCATCGCAGATGACC
<40621.fl0 OLI28188>CTGGCTGCCCATCATGACCTCC
<40621.rl0 OLI28189>CTCCTGCCTCAGCCTCCCGAGTAG
<44161.fl0 OLI28190>GAAGGACATGCGCGTGCAGAC
<44161.r10 OLI28191>GAGCTGGTGCTTTCCGCTGCC
<44694.f10 OLI28192>CCACAGCTGATACGGCATCCTGC
<44694.r10 OLI28193>CCAGAGTCTGCATGAGCACCAATG
<48320.fl0 OLI28194>CCTCACTAGCACCTGGAATGATGCTTTG
<48320.rl0 OLI28195>CACTCATAAGTTGCACATATGCTCCAAGGTC
<48334.f10 OLI28196>CAAGGAGGCAAAATTTTGACAGGGAAGG
<48334.r10 OLI28197>CTACACACAGAATAAGGTTGGGGAATTAAGCTG
<48606.f10 OLI28198>CAGCATGCCAGGCCTCACG
<48606.rl0 OLI28199>CTTTCTCAGGCCTCCTGGCCAATAG
<49141.f10 OLI28200>CCACGTATCTCATGTGCCGAATGTG
<49141.r10 OLI28201>GTGCAGCCTCACACTGCCTTCTCC
<49647.f10 OLI28202>GGCAGTGAACACATCTGATTTCCCACAG
<49647.r10 OLI28203>CCCTCAAAAGCCAGTTACATTACATGTTCACAG
<49819.f10 OLI28204>GGTTGCCATTCCATAGGTTTGGAGAGC
<49819.r10 OLI28205>GCATTCACCTACCTGTCTAACCCTCACATG
<49820.f10 OLI28206>GAGAAGCTGACTGAGGAAGGCTCTCCC
<49820.r10 OLI28207>CTACTGGAAGCAGGCACAGTGTCACTAGC
<53913.f10 OLI28208>GCTTCCGTCCCTGAATCCCTTCC
<53913.r10 OLI28209>GTGTGAAACTGCTTGGTGGCTGTTCC
<53978.fl0 OLI28210>GTGATGAATGGTCACACACCGATGCAC
<53978.r10 OLI28211>GAATCCTGGGGGATCAAATCATATGAATG
<53996.f10 OLI28212>CCAGATGGCACGACACTGCCATG
<53996.r10 OLI28213>CCAGAACAGCAGTGAGGCAGATTGATG
<56050.f10 OLI28214>GAAGGCTTCCTGCAGGAGCAGTCTG
<56050.r10 OLI28215>CAGGCCAGGTGAGAGAGTACAAGTCTTGC
<56110.f10 OLI28216>GTAGCCGGCTTGGCTTTTGTAATTGG
<56110.r10 OLI28217>GGATGGCTGAGTTTCGCACATTGTG
<56410.f10 OLI28218>CCTGAAGCTAGTCCAGCTAGTACACCACAAATC
<56410.r10 OLI28219>CAATCCTCCTGACTTGTCTTCCCTAAGTGC
<56436.f10 OLI28220>GAAATGGATTAGCCAACCAGGGCAAC
<56436.r10 OLI28221>GGAGCAGGAACCAACTCAATGCACAG
<56855.f10 OLI28222>GCAACTTACAGCTGCACCGACAGTTG
<56855.r10 OLI28223>GAGAGCACTGGAATGATTTAGGGGTGG
<56859.f10 OLI28224>GGCTGTCTTAGTACTTCGCCTGACAGTTGTC
<56859.r10 OLI28225>CCATCAACTATGTGATCCCAAAGCGC
<56860.f10 OLI28226>CTTCATGTGGCAGCAAGTTTTCGAGC
<56860.rl0 OLI28227>GAGACGCATGGGTGTAGCCTCAGG
<56865.f10 OLI28228>CTAACCAACTGGAAAAATGGATGAAACTCAATG
<56865.r10 OLI28229>GTCTGTCTGGGAAGCTGACTGCCAGAC
<56868.fl0 OLI28230>GGATTCCGAGAATCATTGTCATGTACATGC
<56868.r10 OLI28231>GTTCCCTCCTCATTCCTTAATGAGTGCTTG
<56869.fl0 OLI28232>CAACTTCGCCCTGGAGCAGCTCTTC
<56869.r10 OLI28233>CTCCAGCACCCTCAACATGATGTAGCC
```

```
<56870.f10 OLI28234>GAACTCGGAAGAGATGCTGTGGAATCC
<56870.r10 OLI28235>CCTGTCCCAGTAATGCCAACTTGGAG
<57699.f10 OLI28236>CCTACGGTGAGAAGCTTACCATAAGCTTGG
<57699.r10 OLI28237>CATGGCATGGCTACCGCTTCCTTAG
<57704.f10 OLI28238>GCCCCAATGCCAAGTACGTAATGAAG
<57704.r10 OLI28239>CAGTGTAAGCCAGCACACTGACCTCC
<57710.f10 OLI28240>CAGCCTCCAAGCCATCATCACCAAG
<57710.r10 OLI28241>GTCCTGAGCGACTGCCACCATG
<57711.f10 OLI28242>GCATCGAAGCCCGTGAAATCCAG
<57711.r10 OLI28243>GTCAGGCACTGTGGTGAAGGGAACG
<57827.f10 OLI28244>GCCATCAATGGACATGATCTTCGATATGG
<57827.r10 OLI28245>CCATGTTGTGGTTGGAGTCCAGGG
<57844.f10 OLI28246>CCGTGGAATGGAGTTGATCCCAACC
<57844.rl0 OLI28247>GCCTATCTAAGGTCCCTTGCTGCAAGG
<58723.f10 OLI28248>GATAAAACATGCAGCCACAGGCTCTCC
<58723.r10 OLI28249>GGACCAGACTGTACTGTGGCCATGTACAC
<58737.f10 OLI28250>GCACACATTAAGAACCTGTTACAGCTCATTGTTG
<58737.r10 OLI28251>GAAGGCTATCAGCACCTGCAACCAGC
<58743.f10 OLI28252>CACATGCGTCACATGGGCATTTC
<58743.r10 OLI28253>GTTCGCACCATTCTCCTGCCTCAG
<58846.f10 OLI28254>CCCAGCAGTGGGACAGCCAGAC
<58846.r10 OLI28255>CAAGACCTATGTTCTGGGGCAGCAGG
<58848.f10 OLI28256>GAACTCCCCACCTTTGCACGCTG
<58848.r10 OLI28257>GATGTGTCCTTCACTCACCCGCAGC
<58849.f10 OLI28258>CGAACACCTTGTACTGGGAGTTGAATCAG
<58849.r10 OLI28259>CATCACATAGCAGAGTTCCCTCAGCCCTG
<58850.f10 OLI28260>GCACCTGTCAAAGCCTAAAGTCACCATG
<58850.r10 OLI28261>CCACAGTGGAGTAAACCGTATTTGCTGG
<58853.f10 OLI28262>GGGACTGACCCTAGTCTGTGTCCATGC
<58853.r10 OLI28263>GGGATGCTGTATGGATAGGAAGGGATG
<58855.f10 OLI28264>CGAAGGATGGACATCCTGCAATGG
<58855.r10 OLI28265>GCTTAGAGACTCCACACAGACAGCCAAGG
<59211.f10 OLI28266>CAAGGTGACCTCGCAGGACACTGG
<59211.r10 OLI28267>CCTCCTGATCAGAAAGGGGCCTAACAG
<59213.f10 OLI28268>GAGGCTGACACCTTCATGTTTGGAGG
<59213.r10 OLI28269>CTCAGTGTGGTCTGGCAGGAACCG
<59497.f10 OLI28270>CCTGACCAAAAAATTCCCAGTAACCAGGC
<59497.r10 OLI28271>GTGGCCAAGTGGATAAAACAGTAGCAGTG
<59603.f10 OLI28272>CTGCTGTGGCTGCAGCTCTGC
<59603.r10 OLI28273>GACGCCAGGAAAACAGCCAGGTC
<59605.f10 OLI28274>GGAGTACCATCTTCCTCATGGGACCAG
<59605.r10 OLI28275>CATGGGAATTCAGTGGGACAACATCC
<59607.fl0 OLI28276>CCACTACATGAGCATCACCATCTTGGTC
<59607.r10 OLI28277>CTGGCCAGTGACTGTCAGGTTCTCTG
<59609.f10 OLI28278>CATTCCACTTGTGTCACTGCTTGGAACC
<59609.r10 OLI28279>GGCATTGTTAAGCAAGGGCAGCAGAAG
<59610.f10 OLI28280>CTGCCTCTCAGCCCTTACCTGATGC
<59610.r10 OLI28281>CCCTGAGTTGCGAAGTGGCAGTC
<59612.f10 OLI28282>GTGAGCGGATGGACCTAGCACTTCC
<59612.r10 OLI28283>GACAGCTACTACTCGCCAGGTGTGCTG
<59613.f10 OLI28284>GAATGCAGCAACACCAGCGATGC
<59613.r10 OLI28285>GACCTGTGACTCCCACTTACTGGGCAG
<59616.f10 OLI28286>GTCAGGAGCCTGAAATCAGGCTGACTTC
<59616.r10 OLI28287>TCCTCCAGGCCAATCCTGACCC
<59619.f10 OLI28288>GTGCATGTTCCCTGTCTGGTGCC
<59619.r10 OLI28289>GAGTCCCTGAGGTTGGAGTCCTAGCATAGC
<59625.f10 OLI28290>GTATTCTGCCCTGCGCATCCCAC
<59625.r10 OLI28291>GACTCCTCCAGTGGCACTGCAGCTC
<59827.f10 OLI28292>CACTGCAGCTGCGCACAGTCG
```

<59827.r10 OLI28293>GGTGCTCTGAGAAGAGGTCAGAATGGC

```
<59828.f10 OLI28294>CTGCCGACACCGGACTTCAGC
<59828.r10 OLI28295>GCCAGCCGACCTTTCTGTGGTG
<59853.fl0 OLI28296>CTCCTTAGCCCGTGTGAGCCTCAC
<59853.r10 OLI28297>GTGCAATCTCAGCTCACTGCAGCCTC
<59854.fl0 OLI28298>GGAGAGGCCACCGGGACTTCAG
<59854.r10 OLI28299>GGGGCCTGCTGAAAGACAGGGTC
<60283.f10 OLI28300>CTGTTTCTGATGTGGGGTTCCTCCAC
<60283.r10 OLI28301>CCATTGGCTTTCAAGGACCTTTCCCAAC
<60619.fl0 OLI28302>CAGGCCCAGTGGGTGGAATCTGTC
<60619.r10 OLI28303>CATCTCCCGAAGAGAGAGAGTCCCAACC
<60625.f10 OLI28304>CCAGGAACCTGAGCTAGGTCAAAGACG
<60625.r10 OLI28305>GTGAATAGCCCCATCCTCTTGACCTC
<60629.fl0 OLI28306>TGATCTGTCACCAAAGGAGGCCAACTC
<60629.r10 OLI28307>CAGGTATCAGTATGAAAAAGGATCTTTGTTCATCAC
<61755.f10 OLI28308>GAATGAGCCTATCAGCAGGGCTCTAGTTTC
<61755.r10 OLI28309>GGAAGCCAGAAGCCAGGAGGAGC
<64852.f10 OLI28310>CAAGCCCTGCAGACAGTCTGTCTCC
<64852.r10 OLI28311>GGCTGATGCTATCATATTGCTATGGACATTG
<66308.f10 OLI28312>CGACATCCAGGCCAAGGACCTG
<66308.r10 OLI28313>CATCCTTGGGATCTCATGGTTGGG
<68869.fl0 OLI28314>GCGTACTCCACAGTGCAGAGAGTCGC
<68869.rl0 OLI28315>GGCTATCCTAAGTACCTCATGAAGAGGGGGC
```


From: James Fitzgerald <jlfitz@gene.com>
Date: Tue Jan 6, 2004 3:43:31 PM US/Pacific

To: grim@gene.com Subject: oli.out3_6_2000

ala# Is -I ~grim/patent/oli.out3_6_2000

-rw-r---- 1 grim Cellgen 6697 Mar 6 2000 /va/Cellgen/grim/patent/oli.out3_6_2000

Looks to me like the content of this file was last changed on March 6, 2000.

and winstrard of the source of

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant

Eaton, et al.

Appl. No.

10/006867

Filed

December 6, 2001

For

SECRETED AND

TRANSMEMBRANE

POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

Examiner

Helms L.

Group Art Unit

1642

DECLARATION OF J. CHRISTOPHER GRIMALDI, UNDER 37 C.F.R. §1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

- I, J. Christopher Grimaldi, declare and say as follows:
- 1. I am a Senior Research Associate in the Molecular Biology Department of Genentech, Inc., South San Francisco, CA 94080.
- 2. I joined Genentech in January of 1999. From 1999 to 2003, I directed the Cloning Laboratory in the Molecular Biology Department. During this time I directed or performed numerous molecular biology techniques including qualitative Polymerase Chain Reaction (PCR) analyses. I am currently involved, among other projects, in the isolation of genes coding for membrane associated proteins which can be used as targets for antibody therapeutics against cancer. In connection with the above-identified patent application, I personally performed or directed the qualitative PCR analyses in the assay entitled "Tumor Versus Normal Differential Tissue Expression Distribution" which is described in EXAMPLE 18 in the specification that were used to identify differences in gene expression between tumor tissue and their normal counterparts.
- 3. My scientific Curriculum Vitae, including my list of publications, is attached to and forms part of this Declaration (Exhibit A).
- 4. Chromosomal aberrations, such as gene amplification, and chromosomal translocations are important markers of specific types of cancer and lead to the aberrant expression of specific genes and their encoded polypeptides. Gene amplification is a process in which specific regions of a chromosome are duplicated, thus creating multiple copies of certain genes that normally exist as a single copy. In addition, chromosomal translocations occur when

Appl. No. : 10/006867

Filed: December 6, 2001

two different chromosomes break and are rejoined to each other chromosome resulting in a chimeric chromosome which displays a different expression pattern relative to the parent chromosomes. Amplification of certain genes such as Her2/Neu [Singleton et al., Pathol. Annu., 27Pt1:165-190], or chromosomal translocations such as t(5;14), [Grimaldi et al., Blood, 73(8):2081-2085(1989); Meeker et al., Blood, 76(2):285-289(1990)] give cancer cells a growth or survival advantage relative to normal cells, and might also provide a mechanism of tumor cell resistance to chemotherapy or radiotherapy. If the chromosomal aberration results in the aberrant expression of a mRNA and the corresponding gene product (the polypeptide), as they do in the aforementioned cases, then the gene product is a promising target for cancer therapy, for example, by the therapeutic antibody approach.

- 5. Those who work in this field are well aware that in the vast majority of cases, when a gene is over-expressed, as evidenced by an increased production of mRNA, the gene product or polypeptide will also be over-expressed. It is unlikely that one identifies increased mRNA expression without associated increased protein expression. Stated in another way, two cell samples which have differing mRNA concentrations for a specific gene are expected to have correspondingly different concentration of protein for that gene. Techniques used to detect mRNA, such as Northern Blotting, Differential Display, in situ hybridization, quantitative PCR, Taqman, and more recently Microarray technology all rely on the dogma that a change in mRNA will represent a similar change in protein. If this dogma did not hold true then these techniques would have little value and not be so widely used. The use of mRNA quantitation techniques have identified a seemingly endless number of genes which are differentially expressed in various tissues and these genes have subsequently been shown to have correspondingly similar changes in their protein levels. Thus, the detection of increased mRNA expression is expected to result in increased polypeptide expression. The detection of increased polypeptide expression can be used for cancer diagnosis and treatment.
- 6. However, even in the rare case where the protein expression does not correlate with the mRNA expression, this still provides significant information useful for cancer diagnosis and treatment. For example, if over-expression of a gene product does not correlate with over-expression of mRNA in certain tumor types but does so in others, then identification of both gene expression and protein expression enables more accurate tumor classification and hence better determination of suitable therapy. In addition, absence of over-expression of the gene product in the presence of a particular over-expression of mRNA is crucial information for the practicing clinician. If a gene is over-expressed but the corresponding gene product is not significantly over-expressed, the clinician accordingly will decide <u>not</u> to treat a patient with agents that target that gene product.
- 7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

Appl. No. Filed

10/006867 December 6, 2001

Ву: _

J. Christopher Grimaldi,

12/8/2003

J. Christopher Grimaldi

1434-36th Ave. San Francisco, CA 94122 (415) 681-1639 (Home)

EDUCATION

University of California, Berkeley Bachelor of Arts in Molecular Biology, 1984

EMPLOYMENT EXPERIENCE

SRA Genentech Inc., South San Francisco; 1/99 to present

Previously, was responsible to direct and manage the Cloning Lab. Currently focused on isolating cancer specific genes for the Tumor Antigen (TAP), and Secreted Tumor Protein (STOP) projects for the Oncology Department as well as Immunologically relevant genes for the Immunology Department. Directed a lab of 6 scientists focused on a company-wide team effort to identify and isolate secreted proteins for potential therapeutic use (SPDI). For the SPDI project my duties were, among other things, the critically important coordination of the cloning of thousands of putative genes, by developing a smooth process of communication between the Bioinformatics, Cloning, Sequencing, and Legal teams. Collaborated with several groups to discover novel genes through the Curagen project, a unique differential display methodology. Interacted extensively with the Legal team providing essential data needed for filing patents on novel genes discovered through the SPDI, TAP and Curagen projects. My group has developed, implemented and patented high throughput cloning methodologies that have proven to be essential for the isolation of hundreds of novel genes for the SPDI, TAP and Curagen projects as well as dozens of other smaller projects.

Scientist DNAX Research Institute, Palo Alto; 9/91 to 1/99

Involved in multiple projects aimed at understanding novel genes discovered through bioinformatics studies and functional assays. Developed and patented a method for the specific depletion of eosinophils in vivo using monoclonal antibodies. Developed and implemented essential technical methodologies and provided strategic direction in the areas of expression, cloning, protein purification, general molecular biology, and monoclonal antibody production. Trained and supervised numerous technical staff.

Facilities

Manager Corixa, Redwood City; 5/89 - 7/91.

Directed plant-related activities, which included expansion planning, maintenance, safety, purchasing, inventory control, shipping and receiving, and laboratory management. Designed and implemented the safety program. Also served as liaison to regulatory agencies at the local, state and federal level. Was in charge of property leases, leasehold improvements, etc. Negotiated vendor contracts and directed the purchasing department. Trained and supervised personnel to carry out the above-mentioned duties.

SRA University of California, San Francisco Cancer Research Institute; 2/87-4/89.

Was responsible for numerous cloning projects including: studies of somatic hypermutation, studies of AIDS-associated lymphomas, and cloning of t(5;14), t(11;14), and t(8;14) translocations. Focused on the activation of hemopoietic growth factors involved in the t(5;14) translocation in leukemia patients..

Research Technician

Berlex Biosciences, South San Francisco; 7/85-2/87.

Worked on a subunit porcine vaccine directed against Mycoplasma hyopneumoniae. Was responsible for generating genomic libraries, screening with degenerate oligonucleotides, and characterizing and expressing clones in E. coli. Also constructed a general purpose expression vector for use by other scientific teams.

PUBLICATIONS

- 1. Hilary F. Clark, et al. "The Secreted Protein Discovery Initiative (SPDI), a Large-scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: a bioinformatics assessment." Genome Res. Vol 13(10), 2265-2270, 2003
- 2. Sean H. Adams, Clarissa Chui Sarah L. Schilbach, Xing Xian Yu, Audrey D. Goddard, J. Christopher Grimaldi, James Lee, Patrick Dowd, David A. Lewin, & Steven Colman BFIT, a Unique Acyl-CoA Thioesterase Induced in Thermogenic Brown Adiopose Tissue: Cloning, organization of the humanb gene and assessment of a potential link to obesity Biochemical Journal, Vol 360, 135-142, 2001
- 3. Szeto W, Jiang W, Tice DA, Rubinfeld B, Hollingshead PG, Fong SE, Dugger DL, Pham T, Yansura D, Wong TA, Grimaldi JC, Corpuz RT, Singh JS, Frantz GD, , Devaux B, Crowley CW, Schwall RH, Eberhard DA, Rastelli L, Polakis P, and Pennica D. "Overexpression of the Retenoic Acid-Responsive Gene Stra6 in Human Cancers and its Synergistic Activation by Wnt-1 and Retinoic Acid." Cancer Research Vol. 61(10), 4197-4205, 2001
- 4. Jeanne Kahn, Fuad Mehraban, Gladdys Ingle, Xiaohua Xin, Juliet E. Bryant, Gordon Vehar, Jill Schoenfeld, J. Christopher Grimaldi (incorrectly named as "Grimaldi, CJ"), Franklin Peale, Aparna Draksharapu, David A. Lewin, and Mary E. Gerritsen. "Gene Expression Profiling in an in Vitro Model of Angiogenesis." American Journal of Pathology Vol 156(6), 1887-1900, 2000.
- 5. Grimaldi JC, Yu NX, Grunig G, Seymour BW, Cottrez F, Robinson DS, Hosken N, Ferlin WG, Wu X, Soto H, O'Garra A, Howard MC, Coffman RL. "Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3). Journal of Leukocyte Biology; Vol. 65(6), 846-53, 1999
- 6. Oliver AM, Grimaldi JC, Howard MC, Kearney JF. "Independently ligating CD38 and Fc gammaRIIB relays a dominant negative signal to B cells." Hybridoma Vol. 18(2), 113-9, 1999

7. Cockayne DA, Muchamuel T, Grimaldi JC, Muller-Steffner H, Randall TD, Lund FE, Murray R, Schuber F, Howard MC. "Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses." Blood Vol. 92(4), 1324-33, 1998

1

- 8. Frances E. Lund, Nanette W. Solvason, Michael P. Cooke, Andrew W. Heath, J. Christopher Grimaldi, Troy D. Randall, R. M. E. Parkhouse, Christopher C Goodnow and Maureen C. Howard. "Signaling through murine CD38 is impaired in antigen receptor unresponsive B cells." European Journal of Immunology, Vol. 25(5), 1338-1345, 1995
- 9. M. J. Guimaraes, J. F. Bazan, A. Zolotnik, M. V. Wiles, J. C. Grimaldi, F. Lee, T. McClanahan. "A new approach to the study of haematopoietic development in the yolk sac and embryoid body." Development, Vol. 121(10), 3335-3346, 1995
- J. Christopher Grimaldi, Sriram Balasubramanian, J. Fernando Bazan, Armen Shanafelt, Gerard Zurawski and Maureen Howard. "CD38-mediated protein ribosylation." Journal of Immunology, Vol. 155(2), 811-817, 1995
- 11. Leopoldo Santos-Argumedo, Frances F. Lund, Andrew W. Heath, Nanette Solvason, Wei Wei Wu, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "CD38 unresponsiveness of xid B cells implicates Bruton's tyrosine kinase (btk) as a regulator of CD38 induced signal transduction." International Immunology, Vol 7(2), 163-170, 1995
- 12. Frances Lund, Nanette Solvason, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "Murine CD38: An immunoregulatory ectoenzyme." Immunology Today, Vol. 16(10), 469-473, 1995
- Maureen Howard, J. Christopher Grimaldi, J. Fernando Bazan, Frances E. Lund, Leopoldo Santos-Argumedo, R. M. E. Parkhouse, Timothy F. Walseth, and Hon Cheung Lee.
 "Formation and Hydrolysis of Cyclic ADP-Ribose Catalyzed by Lymphocyte Antigen CD38." Science, Vol. 262, 1056-1059, 1993
- 14. Nobuyuki Harada, Leopoldo Santos-Argumedo, Ray Chang, J. Christopher Grimaldi, Frances Lund, Camilynn I. Brannan, Neal G. Copeland, Nancy A. Jenkins, Andrew Heath, R. M. E. Parkhouse and Maureen Howard. "Expression Cloning of a cDNA Encoding a Novel Murine B Cell Activation Marker: Homology to Human CD38." The Journal of Immunology, Vol. 151, 3111-3118, 1993
- 15. David J. Rawlings, Douglas C. Saffran, Satoshi Tsukada, David A. Largaespada, J. Christopher Grimaldi, Lucie Cohen Randolph N. Mohr, J. Fernando Bazan, Maureen Howard, Neal G. Copeland, Nancy A. Jenkins, Owen Witte. "Mutation of Unique Region of Bruton's Tyrosine Kinase in Immunodeficient XID Mice." Science, Vol. 261, 358-360, 1993
- 16. J. Christopher Grimaldi, Raul Torres, Christine A. Kozak, Ray Chang, Edward Clark, Maureen Howard, and Debra A. Cockayne. "Genomic Structure and Chromosomal Mapping of the Murine CD40 Gene." The Journal of Immunology, Vol 149, 3921-3926, 1992
- 17. Timothy C. Meeker, Bruce Shiramizu, Lawrence Kaplan, Brian Herndier, Henry Sanchez, J. Christopher Grimaldi, James Baumgartner, Jacab Rachlin, Ellen Feigal, Mark Rosenblum and Michael S. McGrath. "Evidence for Molecular Subtypes of HIV-Associated Lymphoma:

- Division into Peripheral Monoclonal, Polyclonal and Central Nervous System Lymphoma." AIDS, Vol. 5, 669-674, 1991
- 18. Ann Grimaldi and Chris Grimaldi. "Small-Scale Lambda DNA Prep." Contribution to Current Protocols in Molecular Biology, Supplement 5, Winter 1989
- 19. J. Christopher Grimaldi, Timothy C. Meeker. "The t(5;14) Chromosomal Translocation in a Case of Acute Lymphocytic Leukemia Joins the Interleukin-3 Gene to the Immunoglobulin Heavy Chain Gene." Blood, Vol. 73, 2081-2085, 1989
- Timothy C. Meeker, J. Christopher Grimaldi, et al. "An Additional Breakpoint Region in the BCL-1 Locus Associated with the t(11;14) (q13;q32) Translocation of B-Lymphocytic Malignancy." Blood, Vol. 74, 1801-1806, 1989
- 21 Timothy C. Meeker, J. Christopher Grimaldi, Robert O'Rourke, et al. "Lack of Detectable Somatic Hypermutation in the V Region of the Ig H Chain Gene of a Human Chronic B Lymphocytic Leukemia." The Journal of Immunology, Vol. 141, 3994-3998, 1988

MANUSCRIPTS IN PREPARATION

 Sriram Balasubramanian, J. Christopher Grimaldi, J. Fernando Bazan, Gerard Zurawski and Maureen Howard. "Structural and functional characterization of CD38: Identification of active site residues"

PATENTS

- 1. "Methods for Eosinophil Depletion with Antibody to CCR3 Receptor" (US 6,207,155 B1).
- 2. "Amplification Based Cloning Method." (US 6,607,899)
- 3. Ashkenazi et al., "Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same." (this patent covers several hundred genes)
- 4. "IL-17 Homologous Polypeptides and Therapeutic Uses Thereof"
- 5. "Method of Diagnosing and Treating Cartilaginous Disorders."

MEMBERSHIPS AND ACTIVITIES

Editor Frontiers in Bioscience

Member DNAX Safety Committee 1991-1999

Biological Safety Affairs Forum (BSAF) 1990-1991 Environmental Law Foundation (ELF) 1990-1991

The t(5;14) Chr m somal Translocation in a Case of Acute Lymph cytic Leukemia J ins the Interleukin-3 Gene t the Immunoglobulin Heavy Chain Gene

By J. Christopher Grimaldi and Timothy C. Meeker

Chromosomal translocations have proven to be important markers of the genetic abnormalities central to the pathogenesis of cancer. By cloning chromosomal breakpoints one can identify activated proto-oncogenes. We have studied a case of B-lineage acute lymphocytic leukemia (ALL) that was associated with peripheral blood eosinophilia. The chromosomal translocation t(5;14) (q31;q32) from this sample was cloned and studied at the molecular level. This

KARYOTYPIC STUDIES of leukemia and lymphoma have identified frequent nonrandom chromosomal translocations. Some of these translocations juxtapose the immunoglobulin heavy chain (IgH) gene with important

Fig 1. DNA blots of the leukemia sample. The restriction fragment pattern of normal human DNA (N) and the leukemia sample (L) were compared using a human Jh probe. Rearranged bands are indicated by arrows. Sample L exhibits a single rearranged band with both Hind III/EcoRI and Sau3A restriction digests. The rearranged bands are less intense than the other bands because the majority of cells in the sample represent normal bone marrow elements.

translocation joined the immunoglobulin heavy chain joining (Jh) region to the promotor region of the interleukin-3 (IL-3) gene in opposite transcriptional orientations. The data suggest that activation of the IL-3 gene by the enhancer of the immunoglobulin heavy chain gene may play a central role in the pathogenesis of this leukemia and the associated eosinophilia.

c 1989 by Grune & Stratton, Inc.

protooncogenes, such as c-myc and bcl-2.1.2 In this way, the IgH gene can activate proto-oncogenes, resulting in disordered gene expression and a step in the development of cancer. The investigation of additional nonrandom translocations into the IgH locus allows us to identify new genes promoting the generation of leukemia and lymphoma.

A distinct subtype of acute lymphocytic leukemia (ALL) has been characterized by B-lineage phenotype, associated eosinophilia in the peripheral blood, and a t(5;14)(q31;q32) chromosomal translocation.3.4 This syndrome probably occurs in <1% of all patients with ALL. We hypothesized that the cloning of the translocation characteristic of this leukemia might allow the identification of an important gene on chromosome 5 that plays a role in the evolution of this disease. In this report we demonstrate that the interleukin-3 gene (IL-3) and the IgH gene are joined by this translocation.

MATERIALS AND METHODS

Sample and DNA blots. A bone marrow aspirate from a representative patient with ALL (L1 morphology by French-American-British [FAB] criteria), peripheral eosinophilia (up to 20,000 per microliter with a normal value of <350 per microliter) and a t(5;14)(q31;q32) translocation was studied. Using published methods, genomic DNA was isolated and DNA blots were made. 5 Briefly, $10 \mu g$ of high molecular weight (mol wt) DNA were digested using an appropriate restriction enzyme and electrophoresed on a 0.8% agarose gel. The gel was stained with ethidium bromide, photographed, denatured, neutralized, and transferred to Hybond (Amersham, Arlington Heights, IL). After treatment of the filter with ultraviolet light, hybridization was performed. The filter was washed to a final stringency of 0.2% saturated sodium citrate (SSC) and 0.1% sodium lauryly sulfate (SDS) and exposed to film. The human Jh probe has been previously reported.6

Genomic library. The genomic library was made using pub-

From the Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco.

Submitted February 22, 1989; accepted March 8, 1989.

Supported by NIH Grant No. CA01102.

Address reprint requests to Timothy C. Meeker, MD, UCSF/ VAMC 111H, 4150 Clement St, San Francisco, CA 94121.

Dr Grimaldi's current address is Biostan Inc, 440 Chesapeake Dr. Seaport Centre, Redwood City, CA 94063.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

o 1989 by Grune & Stratton, Inc. 0006-4971/89/7308-0031\$3.00/0

lished methods.⁵ Approximately 100 µg of high mol wt genomic DNA were partially digested with the Sau3A restriction enzyme. Fragments from 9 to 23 kilobases (kb) in size were isolated on a sucrose gradient and ligated into phage EMBL3A (Strategene, San Diego). Recombinant phage were packaged, plated, and screened as previously reported.⁵

DNA sequencing. Fragments for sequencing were cloned into M13 vectors and sequenced by the chain termination method using Sequenase (United States Biochemical, Cleveland).⁷ All sequence data were derived from both strands.

RESULTS

We studied a bone marrow sample from a patient with ALL and associated peripheral eosinophilia. Karyotypic analysis showed the characteristic t(5;14)(q31;q32) translocation. These features define a distinctive subtype of ALL.^{3,4} The leukemic cells were analyzed for cell surface phenotype by immunofluorecence. They were positive for B1 (CD20), B4 (CD19), cALLA (CD10), HLA-DR, and terminal deoxynucleotidyl transferase (Tdt), but negative for surface immunoglobulin. This phenotypic profile describes an immature cell from the B-lymphocytic lineage.⁸

The leukemia DNA was analyzed by Southern blotting for rearrangements of the IgH gene. Using a human immunoglobulin Jh probe, a single rearranged band was detected by EcoRI, HindIII, SstI, Sau3A, and EcoRI plus HindIII restriction digests, suggesting rearrangement of one allele (Fig 1). The immunoglobulin Jh region from the other allele was presumably either deleted or in the germline configuration.

We hypothesized that the t(5;14)(q31;q32) juxtaposed a

growth-promoting gene on chromosome 5 with the immunoglobulin Jh region on chromosome 14. Therefore, a genomic library was made from the leukemic sample and screened with a Jh probe. Fifteen distinct positive clones were isolated and screened for the presence of the rearranged Sau3A fragment that was detected by DNA blotting. By this analysis, five clones appeared to represent the rearranged allele identified by DNA blots. One of these clones (clone no. 4) was chosen for further study and a detailed restriction map was generated. The EcoRI, HindIII/EcoRI, and SstI fragments from clone no. 4 that hybridized to the human Jh probe were also identical in size to the rearranged fragments from the leukemia sample, confirming that clone no. 4 represented the rearranged leukemic allele.

Phage clone no. 4 contained 3.7 kb of unknown origin joined to the IgH gene in the region of Jh4 (Fig 2). The IgH gene from Jh4 to the Cmu region appeared to be in germline configuration. Previously, the gene encoding hematopoietic growth factor IL-3 had been mapped to chromosome 5q31 so it was suspected that clone no. 4 might contain part of this gene. ⁹⁻¹² When the restriction map of human IL-3 and clone no. 4 were compared, they were identical for more than 3 kb (Fig 2).

We confirmed the juxtaposition of the IL-3 gene and the IgH gene by nucleic acid sequencing of the subcloned BstEII/HpaI fragment (Fig 2). The sequence of this fragment showed no disruption of the protein coding region or the messenger RNA of the IL-3 gene. The break in the IL-3 gene occurred in the promotor region, 452 base pairs (bp) upstream of the transcriptional start site (position 64, Fig

Fig 2. Breakpoint region: t(5;14)(q31;q32). Comparative mapping of phage clone no. 4, the germline IgJh region, and the germline IL-3 gene. The map of clone no. 4 is identical to that of IgH until it diverges in the region of Jh4 (at the dashed line), after which it is identical to the map of IL-3. The two genes are positioned in a head-to-head orientation. The Ig μ chain constant region (C μ), switch region (S μ), enhancer (E), and Jh segments are indicated (open symbols). The five exons (dark boxes) and four introns of the IL-3 gene are shown. The hatched box indicates the sequenced region.

Δ

3A). The break in the IgH gene occurred 2 bp upstream of the Jh4 region. Between the two breaks, 25 bp of uncertain origin (putative N sequence) were inserted. No sequences homologous to the immunoglobulin heptamer and nonamer could be identified in the IL-3 sequence (Fig 3B). Therefore, nucleic acid sequencing confirmed the juxtaposition of the IL-3 gene and the IgH gene. The sequence data clearly showed that the genes were positioned in opposite transcriptional orientations (head-to-head).

Available data also allowed us to determine the normal positions of the IL-3 gene and the GM-CSF gene in relation to the centromere of chromosome 5 (Fig 4). The IgH gene is known to be positioned with the variable regions toward the telomere on chromosome 14q.^{2,15} It has also been shown that

GM-CSF maps within 9 kb of IL-3 in the same transcriptional orientation. ¹⁶ Using this information and assuming a simple translocation event in our sample, we can conclude that the IL-3 gene is normally more centromeric, and the GM-CSF gene more telomeric on chromosome 5q (Fig 4). Furthermore, both are transcribed with their 5' ends toward the centromere.

DISCUSSION

In this report we have cloned a unique chromosomal translocation that appears to be a consistent feature of a rare, yet distinct, clinical form of acute leukemia. This translocation joined the promotor of the IL-3 gene to the IgH gene. Except for the altered promotor, the IL-3 gene appeared

		• *	
A	5 GGTGACCA 3 CCACTGGT	AGGGTTCCCTGGCCCAGTAGTCAAAGTAGTAGAGGTAATTCATCATAGCTGCGGATTAGCAGCGTGACCGGC 8: PCCCAAGGGACCGGGGTCATCAGTTTCATCATCCATTAAGTAGTAGTATCGACGCCTAATCGTCGCACTGGCCG	Ø
	5'TACCAGAC 3'ATGGTCTC	CAAACTCTCATCTGTTCCAGTGGCCTCCTGGCCACCCACC	Ø
	5 GTAGTCCA	**************************************	Ø
	5 ' GGGGTCC' 3 ' CCCCAGG	TCTCACCTGCTGCCATGCTTCCCATCTCTCATCCTCCTTGACAAGATGAAGTGATACCGTTTAAGTAATCTTT AGAGTGGACGACGGTACGAAGGGTAGAGAGTAGGAGGAACTGTTCTACTTCACTATGGCAAATTCATTAGAAA	10

	5'TTTCTTG 3'AAAGAAC	TTTCACTGATCTTGAGTACTAGAAAGTCATGGATGAATAATTACGTCTGTGGTTTTCTATGGAGGTTCCATGT 40 AAAGTGACTAGAACTCATGATCTTTCAGTACCTACTTATTAATGCAGACACCAAAAGATACCTCCAAGGTACA	30
	5 'CAGATAA 3 'GTCTATT	AGATCCTTCCGACGCCTGCCCACACCACCACCTCCCCCGCCTTGCCCGGGGTTGTGGGCACCTTGCTGCTG 4E TCTAGGAAGGCTGCGGACGGGTGTGGTGGTGGAGGGGGGGG	30
	5'CACA <u>TAT</u> 3'GTGTATA	${f A}$ AGGCGGGAGGTTGTTGCCAACTCTTC ${f A}$ GAGCCCCACGAAGGACCAGAACAAGACAGAGTGCCTCCTGCCGAT ${f 5}$ GTCCGCCCTCCAACAACAGGTTGAGAAGTCTCGGGGTGCTTCCTGGTCTTGTTCTGTCTCACGGAGGACGGCTA	66
	5 CCAAAC <u>A</u> 3 GGTTTGT	ATGAGCCGCCTGCCGTCCTGCTCCTGCTCCAACTCCTGGTCCGCCCGGACTCCAAGCTCCCATGACCCAGAC 64	46
	5'AACGTCC 3'TTGCAGC	CTTGAAGACAAGCTGGGTTAAC 3' 668 GAACTTCTGTTCGACCCAATTG 5'	
В	IgJh4	5 TGGCCCCAGTAGTCAAAGTAGTCACATTGTGGGAGGCCCCATTAAGGGGTGCACAAAAACCTGACTCT 3 ACCGGGGTCATCAGTTTCATCAGTGTAACACCCTCCGGGGTAATTCCCCCACGTGTTTTTGGACTGAGA	l'C lG
		+++++++++++++++++++	
	Cl.#4	5 TGGCCCCAGTAGTCAAAGTAGTAGAGGTAATTCATCATAGCTGCGGATTAGCAGCGTGACCGGCTACC 3 ACCGGGGTCATCAGTTCATCATCATCATCATAAGTAGTATCGACGCCTAATCGTCGCACTGGCCGATGC	
	11-3	5 GGCACCAAGAGATGTGCTTCTCAGAGCCTGAGGCTGAACGTGGATGTTTAGCAGCGTGACCGGCTACG3 CCGTGGTTCTCTACACGAAGAGTCTCGGACTCCGACTTGCACCTACAAATCGTCGCACTGGCCGATGC	
		(a) Alustrasida coguence of the BstEil/Hpsi fragment indicated on Fi	g 2.

Fig 3. Sequence of t(5;14)(q31;q32) breakpoint region. (A) Nucleotide sequence of the BstEll/Hpal fragment indicated on Fig 2. Nucleotides 1 to 36 represent the Jh4 coding region underlined on the coding strand. Nucleotides 39 to 63 are a putative N region. The sequence from position 64 to 668 is that of the germline IL-3 gene. The IL-3 TATA box (485), transcription start (515), and initiation methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) Comparative sequence of the t(5;14)(q31;q32) breakpoint region. The IgJh4 region is shown with its coding region, heptamer, and nonamer underlined. Clone no. 4 is shown with putative N region sequences underlined. The IL-3 sequence is also shown. A plus sign (+) denotes the identical nucleotide between sequences. No heptamer or nonamer is identified in the IL-3 sequence.

Fig 4. Diagram of the translocation. The normal chromosome 5q31 is shown with the GM-CSF gene telomeric to the IL-3 gene in the transcriptional orientation shown. On normal chromosome 14q32 the Vh regions are telomeric. The t(5;14)(q31;q32) translocation results in the head-to-head orientation of these genes. Symbols are defined in Fig 2. BP, breakpoint position.

intact as no deletions, insertions, or point mutations were detected by restriction mapping of the entire gene and sequencing of part of the gene. The IgH gene has been truncated at the Jh4 region, which places the immunoglobulin enhancer within 2.5 kb of the IL-3 gene. ^{17,18} This leads to the hypothesis that the enhancer is increasing transcription of a structurally normal IL-3 gene. The same mechanism is important for activation of the c-myc gene in some cases of Burkitt's lymphoma. ¹⁹ An alternate hypothesis is that the elimination of an upstream IL-3 promotor element is crucial to the activation of the IL-3 gene.

The proposed activation of the IL-3 gene suggests that an autocrine loop is important for the pathogenesis of this leukemia. Over-expression of the IL-3 gene coupled with

the presence of the IL-3 receptor in these cells could account for a strong stimulus for proliferation. In this regard, there are data indicating that immature B-lineage lymphocytes and B-lineage leukemias may express the IL-3 receptor.^{21,22}

An additional feature of this type of leukemia is the dramatic eosinophilia, consisting of mature forms. It has been hypothesized that the eosinophils do not arise from the malignant clone, but are stimulated by the tumor. ^{23,24} Because of the known effect of IL-3 on eosinophil differentiation, secretion of high levels of IL-3 by leukemic cells might have a role in the eosinophilia in this type of leukemia. ¹²

The data suggest that the recombination mechanism that is active in the IgH gene during normal differentiation has a role in this translocation. ^{13,14} This is supported by the breakpoint location at the 5' end of Jh4 and the presence of putative N-region sequences. On the other hand, no recombination signal sequence (heptamer and nonamer) was found in this region on chromosome 5, suggesting that additional factors also played a role. Further studies will elucidate the mechanism of this and other translocations.

In the leukemia we studied, it is possible that the immunoglobulin enhancer also activates the GM-CSF gene, since this gene is probably positioned only 14 kb away (Fig 4). This is known to be within the range of enhancer activation.²⁵ The interleukin-5 (IL-5) gene maps to chromosome 5q31.²⁶ Deregulation of the IL-5 gene by this translocation would act synergistically with IL-3 in the stimulation of eosinophil proliferation and differentiation.²⁷ These and other questions will be answered by the study of more patient samples. We plan to determine whether the t(5;14)(q31;q32) translocation is capable of activating multiple lymphokines simultaneously and whether they cooperate in the generation of this leukemia.

REFERENCES

- 1. Klein G, Klein E: Evolution of tumours and the impact of molecular oncology. Nature 315:190, 1985
- 2. Showe L, Croce C: The role of chromosomal translocations in B- and T-cell neoplasia. Annu Rev Immunol 5:253, 1987
- 3. Hogan T, Koss W, Murgo A, Amato R, Fontana J, VanScoy F: Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: Case report and literature review. J Clin Oncol 5:382, 1987
- 4. Tono-oka T, Sato Y, Matsumoto T, Ueno N, Ohkawa M, Shikano T, Takeda T: Hypereosinophilic syndrome in acute lymphoblastic leukemia with a chromosome translocation t(5q;14q). Med Pediatr Oncol 12:33, 1984
- 5. Meeker T, Grimaldi JC, O'Rourke R, Loeb J, Juliusson G, Einhorn S: Lack of detectable somatic hypermutation in the V region of the IgH gene of a human chronic B-lymphocytic leukemia. J Immunol 141:3394, 1988
- 6. Ravetch J, Siebenlist U, Korsmeyer S, Waldmann T, Leder P: Structure of the human immunoglobulin μ locus: Characterization of embryonic and rearranged J and D genes. Cell 27:583, 1981
- 7. Norrander U, Kempe T, Messing J, Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101, 1983
- 8. Foon K, Todd R: Immunologic classification of leukemia and lymphoma. Blood 68:1, 1986
- 9. LeBeau M, Epstein N, O'Brien SJ, Nienhuis AW, Yang Y-C, Clark S, Rowley J: The interleukin-3 gene is located on human

chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q. Proc Natl Acad Sci USA 84:5913, 1987

- 10. LeBeau M, Chandrasekharappi S, Lemons R, Schwartz J, Larson R, Arai N, Westbrook C: Molecular and cytogenetic analysis of chromosome 5 abnormalities in myeloid disorders, in cancer cells, in Proceedings of Molecular Diagnostics of Human Cancer. Cold Spring Harbor Laboratory, NY, 1989 (in press)
- 11. Ihle J, Weinstein Y: Immunological regulation of hematopoietic/lymphoid stem cell differentiation by interleukin-3. Adv Immunol 39:1, 1986
- 12. Clark S, Kamen R: The human hematopoietic colonystimulating factors. Science 236:1229, 1987
- 13. Bakhshi A, Wright J, Graninger W, Seto M, Owens J, Cossman J, Jensen J, Goldman P, Korsmeyer S: Mechanism of the t(14,18) chromosomal translocation: Structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396, 1987
- 14. Tsujimoto Y, Louie E, Bashir M, Croce C: The reciprocal partners of both the t(14,18) and the t(11,14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. Oncogene 2:347, 1988
- 15. Erikson J, Finan J, Nowell P, Croce C: Translocation of immunoglobulin VH genes in Burkitt lymphoma. Proc Natl Acad Sci USA 80:810, 1982
- 16. Yang Y-C, Kovacic S, Kriz R, Wolf S, Clark S, Wellems T, Nienhuis A, Epstein N: The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71:958, 1988
- 17. Gillies S, Morrison S, Oi V, Tonegawa S: A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717, 1983
- 18. Banerji J, Olson L, Schaffner W: A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729, 1983
 - 19. Hayday A, Gillies S, Saito H, Wood C, Wiman K, Hayward

- W, Tonegawa S: Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature 307:334, 1984
- 20. Sporn M, Roberts A: Autocrine growth factors and cancer. Nature 313:745, 1985
- 21. Palacios R, Steinmetz M: IL-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ line configuration, and generate B lymphocytes in vivo. Cell 41:727, 1985
- 22. Uckun F, Gesner T, Song C, Myers D, Mufson A: Leukemic B-cell precursors express functional receptors for human interleukin-3. Blood 73:533, 1989
- 23. Spitzer G, Garson O: Lymphoblastic leukemia with marked eosinophilia: A report of two cases. Blood 42:377, 1973
- 24. Catovsky D, Bernasconi C, Verkonck P, Postma A, Howss J, Berg A, Rees J, Castelli G, Morra E, Galton D: The association of eosinophilia with lymphoblastic leukemia or lymphoma: A study of seven patients. Br J Haematol 45:523, 1980
- 25. Wang X-F, Calame K: The endogenous immunoglobulin heavy chain enhancer can activate tandem Vh promoters separated by a large distance. Cell 43:659, 1985
- 26. Sutherland G, Baker E, Callen D, Campbell H, Young I, Sanderson C, Garson O, Lopez A, Vadas M: Interleukin-5 is at 5q31 and is deleted in the 5q-syndrome. Blood 71:1150, 1988
- 27. Warren D, Moore M: Synergism among interleukin-1, interleukin-3, and interleukin-5 in the production of eosinophils from primitive hemopoietic stem cells. J Immunol 140:94, 1988
- 28. Yang Y-C, Clark S: Molecular cloning of a primate cDNA and the human gene for interleukin-3. Lymphokines 15:375, 1988
- 29. Yang Y-C, Ciarletta A, Temple P, Chung M, Kovacic S, Witek-Giannotti J, Leary A, Kriz R, Donahue R, Wong G, Clark S: Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3, 1986

RAPID COMMUNICATION

Activation of the Interleukin-3 Gene by Chromosome Translocation in Acute Lymphocytic Leukemia With Eosinophilia

By Timothy C. Meeker, Dan Hardy, Cheryl Willman, Thomas Hogan, and John Abrams

The t(5;14)(q31;q32) translocation from B-lineage acute lymphocytic leukemia with eosinophilia has been cloned from two leukemia samples. In both cases, this translocation joined the lgH gene and the interleukin-3 (IL-3) gene. In one patient, excess IL-3 mRNA was produced by the leukemic cells. In the second patient, serum IL-3 levels were measured and shown to correlate with disease

macrophage colony stimulating factor (GM-CSF) or IL-5 expression. Our data support the formulation that this subtype of leukemia may arise in part because of a chromosome translocation that activates the IL-3 gene, resulting in autocrine and paracrine growth effects.

© 1990 by The American Society of Hematology.

activity. There was no evidence of excess granulocyte/

A NUMBER OF chromosome translocations have been associated with human leukemia and lymphoma. In many cases the study of these translocations has led to the discovery or characterization of proto-oncogenes, such as bcl-2, c-abl, and c-myc, that are located adjacent to the translocation.^{1,2} It is now widely understood that cancer-associated translocations disrupt nearby proto-oncogenes.

A distinct subtype of acute leukemia is characterized by the triad of B-lineage immunophenotype, eosinophilia, and the t(5;14)(q31;q32) translocation.^{3,4} Leukemic cells from such patients have been positive for terminal deoxynucleotidyl transferase (Tdt), common acute lymphoblastic leukemia antigen (CALLA), and CD19, but negative for surface or cytoplasmic immunoglobulin. In previous work, we cloned the t(5;14) breakpoint from one leukemic sample (Case 1) and determined that the IgH and interleukin-3 (IL-3) genes were joined by this abnormality.⁵ In this report, we extend those findings by showing that the t(5;14)(q31;q32) translocation from a second leukemia sample (Case 2) has a similar structure, and we report our study of growth factor expression in these patients.

MATERIALS AND METHODS

Samples and Southern blots. Case 1 has been described. Southern blots. Clinical features of Case 2 have been described in detail. DNA isolation and Southern blotting was done using previously described methods. Filters were hybridized with an immunoglobulin Jh probe, a 280 bp BamHI/EcoRI genomic IL-3 fragment, and an IL-3 cDNA probe. 18

Northern blots. RNA isolation and Northern blotting have been described. Briefly, Northern blots were done by separating 9µg total RNA on 1% agarose-formaldehyde gels. Equal RNA loading in each lane was confirmed by ethidium bromide staining. Blots were hybridized with an IL-3 cDNA probe extending to the Xho I site in exon 5, a 720 bp Sst I/Kpn I probe derived from intron 2 of the IL-3 gene, a 600 bp Nhe 1/Hpa I IL-5 cDNA probe, and a 500 bp Pst I/Nco I granulocyte-macrophage colony stimulating factor (GM-CSF) cDNA probe. 10-12

Polymerase chain reaction. Primers were designed with BamHI sites for cloning. One primer hybridized to the Jh sequences from the IgH gene (Primer 144:5'-TAGGATCCGACGGTGACCAGGGT), and the other hybridized to the region of the TATA box in the IL-3 gene (Primer 161: 5'-AACAGGATCCCGCCTTATATGTGCAG). Polymerase chain reaction (PCR) (95°C for 1 minute, 61°C for 30 seconds, and 72°C for 3 minutes) was done using 500 ng genomic DNA and 50 pmol of each primer in 100 μL containing 67 mmol/L Tris-HCl pH 8.8, 6.7 mmol/L MgCl₂, 10% dimethyl sulfoxide (DMSO), 170 μg/mL bovine serum albumin (BSA) (fraction V),

16.6 mmol/L ammonium sulfate, 1.5 mmol/L each dNTP and Taq polymerase (Perkin-Elmer, Norwalk, CT).¹³

Sequencing. Sequencing was done by chain termination in M13 vectors. As part of this study, we sequenced a subclone of a normal IL-3 promotor, covering 598 base pairs from a Sma I site at position -1240 (with respect to the proposed site of transcription initiation) to an Nhe I site at position -642. The plasmid containing this region was a gift from Naoko Arai of the DNAX Research Institute.

Expression in Cos7 cells. A genomic IL-3 fragment from Case 1 was cloned into the pXM expression vector. 10 Briefly, the HindIII/Sal I fragment containing the IL-3 gene was subcloned from the previously described phage clone 4 into pUC18. 5 The 2.6 kb fragment extending from the Sma I site 61 bp upstream of the IL-3 transcription start to the Sma I site in the polylinker was cloned into the blunted Xho I site of pXM. The negative control construct was the pXM vector without insert. Plasmids were introduced into Cos7 cells by electroporation, and supernatant was collected after 48 hours in culture.

TF1 bioassay. TF-1 cells were passaged in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum, 2 mmol L-glutamine, and 1 ng/mL human GM-CSF. Samples and antibodies were diluted in this same medium lacking GM-CSF but containing penicillin and streptomycin. A 25 μ L volume of serial dilutions of patient serum was added to wells in a flat bottom 96-well microtiter plate. Rat anti-cytokine monoclonal antibody in a volume of 25 μ L was added to appropriate wells and preincubated for 1 hour at 37°C. Fifty microliters of twice washed TF-1 cells were added to each well, giving a final cell concentration of 1 \times 10⁴ cells per well (final volume, 100 μ L). The plate was incubated for 48 hours. The remaining cell viability was determined metabolically by the colori-

From the Division of Hematology/Oncology 111H, Department of Medicine, University of California and the Veterans Administration Medical Center, San Francisco, CA; the Center for Molecular and Cellular Diagnostics, Department of Pathology and Cell Biology, University of New Mexico, Albuquerque, NM; the Division of Hematology/Oncology, Department of Medicine, West Virginia University, Morgantown, WV; and DNAX Research Institute, Palo Alto, CA.

Submitted March 27, 1990; accepted April 19, 1990.

Supported in part by the University of California Cancer Research Coordinating Committee and University of New Mexico Cancer Center funding from the state of New Mexico. The DNAX Research Institute is supported by Schering-Plough.

Address reprint requests to Timothy C. Meeker, MD, Division of Hematology/Oncology 111H, Department of Medicine, University of California and the Veterans Administration Medical Center, 4150 Clement St, San Francisco, CA 94121.

© 1990 by The American Society of Hematology. 0006-4971/90/7602-0022\$3.00/0

Fig 1. Breakpoint sequences for Case 2. The germline IgJh5 region sequence (protein coding region and recombination signal sequences are underlined) is on top, the translocation sequence from Case 2 (PCR primer sequences and putative N region are underlined) is in the middle, and the germline IL-3 sequence, which we derived from a normal IL-3 clone, is on the bottom. + indicates that each sequence has the same nucleotide. The sequence documents the head-to-head joining of the IL-3 and IgH genes. The breakpoint in the IL-3 gene occurred at position —934 (*).

3 'GGGGAGAGACGTTTTGGAACGGATGACCCGGACCTGGACCGTTTAGGTACGAGTGTCTGCCCCTAGTTCTGGAGACGTTATGTTGACAGAGGACGGTTA

metric method of Mosmann using a VMax microtiter plate reader (Molecular Devices, Menlo Park, CA) set at 570 and 650 nm. 16

Cytokine immunoassays. These assays used rat monoclonal anti-cytokine antibodies (10 µg/mL) to coat the wells of a PVC microtiter plate. The capture antibodies used were BVD3-6G8, JES1-39D10, and BVD2-23B6, for the IL-3, IL-5, and GM-CSF assays, respectively. Patient sera were then added (undiluted and diluted 1:2 for IL-3, undiluted for IL-5, and undiluted and diluted 1:5 for GM-CSF). The detecting immunoreagents used were either mouse antiserum to IL-3 or nitroiodophenyl (NIP)-derivatized rat monoclonal antibodies JES1-5A2 and BVD2-21C11, specific for IL-5 and GM-CSF, respectively. Bound antibody was subsequently detected with immunoperoxidase conjugates: horseradish peroxidase (HRP)-labeled goat anti-mouse Ig for IL-3, or HRP-labeled rat (J4 MoAb) anti-NIP for IL-5 and GM-CSF. The chromogenic substrate was 3-3'azino-bis-benzthiazoline sulfonate (ABTS; Sigma, St Louis, MO). Unknown values were interpolated from standard curves prepared from dilutions of the recombinant factors using Softmax software available with the VMAX microplate reader (Molecular Devices).

RESULTS

Leukemic DNA from Case 2 was studied by Southern blotting. When digested with the *HindIII* restriction enzyme and hybridized with a human immunoglobulin heavy chain joining region (Jh) probe, a rearranged fragment at approximately 14 kb was detected (data not shown). When reprobed with either of two different IL-3 probes, a rearranged 14 kb

fragment, comigrating with the rearranged Jh fragment, was identified. When leukemic DNA was digested with *HindIII* plus *EcoRI*, a rearranged Jh fragment was detected at 6 kb. The IL-3 probes also identified a comigrating fragment of this size. These experiments indicated that the leukemic sample studied was clonal and that a single fragment contained both Jh and IL-3 sequences, suggesting a translocation had occurred.

To characterize better the joining of the IL-3 gene and the immunoglobulin heavy chain (IgH) gene, the polymerase chain reaction (PCR) was used to clone the translocation. A Jh primer and an IL-3 primer were designed to produce an amplified product in the event of a head-to-head translocation. While control DNA gave no PCR product, Case 2 DNA yielded a PCR-derived fragment of approximately 980 bp, which was cloned and sequenced.

The DNA sequence of the translocation clone from Case 2 confirmed the joining of the Jh region with the promotor of the IL-3 gene in a head-to-head configuration (Fig 1). Sequence analysis indicated that the breakpoint on chromosome 14 was just upstream of the Jh5 coding region. The breakpoint on chromosome 5 occurred 934 bp upstream of the putative site of transcription initiation of the IL-3 gene. We also determined that a putative N sequence of 17 bp was inserted between the chromosome 5 and chromosome 14 sequences during the translocation event. 17,18 Figure 2 shows

Fig 2. Relationship of chromosome 5 breakpoints to the IL-3 gene. This figure shows the two cloned breakpoints (arrows) in relation to the normal IL-3 gene. ^{8.10} One breakpoint occurred at position —462 and the other at —934 (arrows). In both circumstances, the translocations resulted in a head-to-head joining of the IgH gene and the IL-3 gene, leaving the mRNA and protein coding regions of the IL-3 gene intact. Boxes denote the five IL-3 exons; restriction enzymes are (B) BamHI, (P) Pst I, (H) Hpa I, (E) EcoRI, and (X) Xho I.

Fig 3. Documentation of IL-3 mRNA over-expression. A Northern blot was prepared and hybridized with a probe for IL-3. Lane 1 contained RNA from unstimulated peripheral blood lymphocytes (PBL) as a negative control. Lane 2 contained RNA from PBL stimulated for 4 hours with concanavalian A (ConA), and lane 3 contained RNA from PBL stimulated with ConA for 48 hours. As in the positive control lanes (2 and 3), a 1 kb band was identified in the leukemic sample from Case 1 (lane 4, lower arrow), suggesting aberrant expression of the IL-3 gene. In addition, the leukemic sample showed over-expression of an unspliced 2.9 kb IL-3 transcript (lane 4, upper arrow). We documented that this represented an unspliced precurser of the mature 1 kb transcript by showing that this band hybridized to a probe from intron 2 of the IL-3 gene. A similar 2.9 kb band was detected in lane 2, suggesting that an IL-3 mRNA of this size is sometimes detectable in normal mitogen-stimulated cells. Lane 5 through 10 represent RNA from six samples of B-lineage acute lymphocytic leukemia without the t(5:14) translocation, indicating that only the sample with the translocation exhibited IL-3 over-expression. Case 2 could not be analyzed by Northern blot because too few cells were available for study.

the locations of the two cloned breakpoints in relation to the IL-3 gene. The two chromosome 5 breakpoints were separated by less than 500 bp.

The genomic structure in Cases 1 and 2 suggested that a normal IL-3 gene product was over-expressed as a result of the altered promotor structure. This would predict that the IL-3 gene on the translocated chromosome was capable of making IL-3 protein. This prediction was tested by expressing a genomic fragment from the translocated allele of Case 1 containing all five IL-3 exons under the control of the SV40 promotor/enhancer in the Cos7 cell line. Cell supernatants were studied in a proliferation assay using the factor dependent erythroleukemic cell line, TF-1. The supernatants derived from transfections using the vector plus insert supported TF-1 proliferation, while supernatants from transfections using the vector alone were negative in this assay (data not shown). Furthermore, the biologic activity could be blocked by an antibody to human IL-3 (BVD3-6G8). This result showed that the translocated allele retained the ability to make IL-3 mRNA and protein.

The level of expression of IL-3 mRNA in leukemic cells from Case 1 was assessed. Northern blotting showed that the mature IL-3 mRNA (approximately 1 kb) and a 2.9 kb unspliced IL-3 mRNA were excessively produced by the leukemia (Fig 3). The 2.9 kb form of the mRNA is also present at low levels in normal peripheral blood T lymphocytes after mitogen activation (Fig 3). Several B-lineage acute leukemia samples without the t(5;14) translocation had undetectable levels of IL-3 mRNA in these experiments. In addition, although genes for GM-CSF and IL-5 map close to the IL-3 gene and might have been deregulated by the translocation, no IL-5 or GM-CSF mRNA could be detected in the leukemic sample (data not shown). 19,20

Three serum samples from Case 2 were assayed by immunoassay for levels of IL-3, GM-CSF, and IL-5 (Table 1). Serum IL-3 could be detected and correlated with the clinical course. When the patient's leukemic cell burden was

highest, the IL-3 level was highest. No serum GM-CSF or IL-5 could be detected.

Since the IL-3 immunoassay measured only immunoreactive factor, we confimed that biologically active IL-3 was present by using the TF-1 bioassay. This bioassay can be rendered monospecific using appropriate neutralizing monoclonal antibodies specific for IL-3, IL-5, or GM-CSF. We observed that sera from 1-16-84 and 3-14-84 contained TF-1 stimulating activity that could be blocked with anti-IL-3 MoAb (BVD3-6G8), but not with MoAbs to IL-5 (JES1-39D10) or GM-CSF (BVD2-23B6) (Fig 4; GM-CSF data not shown). The amount of neutralizable bioactivity in these two samples correlated very well with the difference in IL-3 levels obtained by immunoassay for these samples. Furthermore, the failure to block TF-1 proliferating activity with either anti-IL-5 or anti-GM-CSF was consistent with the inability to measure these factors by immunoassay and

Table 1. Peripheral Blood Counts and Growth Factor Levels at Different Times in Case 2

		Sample Date	
	11/15/83	1/16/84	3/14/84
Peripheral blood counts (cells/µL)	-		
WBC	81,800	116,500	12,300
Lymphoblasts	0	33,785	0
Eosinophils	46,626	73,080	615
Serum growth factor levels (pg/mL)			
IL-3	<444	7,995	1,051
GM-CSF	<15	<15	<15
IL-5	<50	<50	<50

Peripheral blood counts from Case 2 at three different time points with the corresponding growth factor levels quantified by immunoassay. The patient received chemotherapy between 1/16/84 and 3/14/84 to lower his leukemic burden.³ No serum samples were available for a similar analysis of Case 1.

Abbreviation: WBC, white blood cells.

Fig 4. Bioassay of serum IL-3. Leukemic patient sera were tested for bioactive IL-3 and IL-5 in the TF-1 proliferation assay. The reciprocal of the dilution is indicated on the horizontal axis and the optical density indicating the amount of proliferation is indicated on the vertical axis. Serum from all three time points was assayed simultaneously. The assay was rendered monospecific by using a 1 μg/mL final concentration of monoclonal rat anti-IL-3, BVD3-6G8 (■), or anti-IL-5, JES1-39D10 (Δ): □ indicates no MoAb. On 1/16/84 and 3/14/84, inhibition of proliferation was evident in the presence of anti-IL-3 antibody, documenting serum levels of IL-3 on those days. Serum IL-5 was not detected in this assay, as anti-IL-5 did not alter TF-1 proliferation.

indicated that these other myeloid growth factors were not detectably circulating in the serum of this patient.

DISCUSSION

In this report, we have extended our analysis of acute lymphocytic leukemia and eosinophilia associated with the t(5;14) translocation. In both cases we have studied, we have documented the joining of the IL-3 gene from chromosome 5 to the IgH gene from chromosome 14. The breakpoints on chromosome 5 are within 500 bp of each other, suggesting that additional breakpoints will be clustered in a small region of the IL-3 promotor. The PCR assay we have developed will be useful in the screening of additional clinical samples for this abnormality.

The finding of a disrupted IL-3 promotor associated with an otherwise normal IL-3 gene implied that this translocation might lead to the over-expression of a normal IL-3 gene product. In this work, we have documented that this is true. In addition, neither GM-CSF nor IL-5 are over-expressed by the leukemic cells. Furthermore, in one patient, serum IL-3 could be measured and correlated with disease activity. To our knowledge, this is the first measurement of human IL-3 in serum and its association with a disease process. The measurement of serum IL-3 in this and other clinical settings may now be indicated.

The finding of the IL-3 gene adjacent to a cancer-associated translocation breakpoint suggests that its activation is important for oncogenesis. It is our thesis that an autocrine loop for IL-3 is important for the evolution of this leukemia. The excessive IL-3 production that we have documented would be one feature of such an autocrine loop. The final proof of our thesis must await additional data. In particular, from the study of additional clinical samples, it will be necessary to document that the IL-3 receptor is present on the leukemic cells and that anti-IL-3 antibody decreases proliferation of the leukemia in vitro.

An important aspect of this work is the suggestion of a therapeutic approach for this disease. If an autocrine loop for IL-3 can be documented in this disease, attempts to lower circulating IL-3 levels or block the interaction of IL-3 with its receptor may prove useful. Because it is also possible that the eosinophilia in these patients is mediated by the paracrine effects of leukemia-derived IL-3, similar interventions may improve this aspect of the disease. Antibodies or engineered ligands to accomplish these goals may soon be available.

ACKNOWLEDGMENT

We thank Naoko Arai, Ken-ichi Arai, R. O'Rourke, J. Grimaldi, and T. O'Connell for technical assistance and/or helpful discussions.

REFERENCES

- 1. Klein G, Klein E: Evolution of tumours and the impact of molecular oncology. Nature 315:190, 1985
- Showe L, Croce C: The role of chromosomal translocations in B- and T-cell neoplasia. Ann Rev Immunol 5:253, 1987
- 3. Hogan T, Koss W, Murgo A, Amato R, Fontana J, VanScoy F: Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: Case report and literature review. J Clin Oncol 5:382, 1987
- 4. Tono-oka T, Sato Y, Matsumoto T, Ueno N, Ohkawa M, Shikano T, Takeda T: Hypereosinophilic syndrome in acute lymphoblastic leukemia with a chromosome translocation t(5q;14q). Med Ped Oncol 12:33, 1984
- 5. Grimaldi J, Meeker T: The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood 73:2081, 1989
- 6. McConnell T, Foucar K, Hardy W, Saiki J: Three-way reciprocal chromosomal translocation in an acute lymphoblastic leukemia patient with hypereosinophilia syndrome. J Clin Oncol 5:2042, 1987
- 7. Ravetch J, Siebenlist U, Korsmeyer S, Waldmann T, Leder P: Structure of the human immunoglobulin m locus: Characterization of embryonic and rearranged J and D genes. Cell 27:583, 1981
- 8. Otsuka T, Miyajima A, Brown N, Otsu K, Abrams J, Saeland S, Caux C, Malefijt R, Vries J, Meyerson P, Yokota K, Gemmel L,

. .71

- Rennick D, Lee F, Arai N, Arai K, Yokota T: Isolation and characterization of an expressible cDNA encoding human IL-3. J Immunol 140:2288, 1988
- 9. Sambrook J, Fritsch E, Maniatis T: Molecular Cloning. Cold Spring Harbor, NY, Cold Spring Harbor Press, 1989
- 10. Yang Y-C, Ciarletta A, Temple P, Chung M, Kovacic S, Witek-Giannotti J, Leary A, Kriz R, Donahue R, Wong G, Clark S: Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3, 1986
- 11. Yokota T, Coffman R, Hagiwara H, Rennick D, Takebe Y, Yokota K, Gemmell L, Shrader B, Yang G, Meyerson P, Luh J, Hoy P, Pene J, Briere F, Spits H, Banchereau J, Vries J, Lee F, Arai N, Arai K: Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA-enhancing factor and eosinophil colony-stimulating factor activities: Relationship to interleukin 5. Proc Natl Acad Sci USA 84:7388, 1987
- 12. Wong G, Witek J, Temple P, Wilkens K, Leary A, Luxenberg D, Jones S, Brown E, Kay R, Orr E, Shoemaker C, Golde D, Kaufman R, Hewick R, Wang E, Clark S: Human GM-CSF: Molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228:810, 1985
- 13. Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich H, Arnheim N: Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350, 1985
 - 14. Norrander U, Kempe T, Messing J: Construction of improved

- M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101, 1983
- 15. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, Piao Y, Miyazono K, Urabe A, Takaku F: Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol 140:323, 1989
- 16. Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55, 1983
- 17. Bakhshi A, Wright J, Graninger W, Seto M, Owens J, Cossman J, Jensen J, Goldman P, Korsmeyer S: Mechanism of the t(14;18) chromosomal translocation: Structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396, 1987
- 18. Tsujimoto Y, Louie E, Bashir M, Croce C: The reciprocal partners of both the t(14;18) and the t(11;14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. Oncogene 2:347, 1988
- 19. Yang Y-C, Kovacic S, Kriz R, Wolf S, Clark S, Wellems T, Nienhuis A, Epstein N: The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71:958, 1988
- 20. Sutherland G, Baker E, Callen D, Campbell H, Young I, Sanderson C, Garson O, Lopez A, Vadas M: Interleukin-5 is at 5q31 and is deleted in the 5q syndrome. Blood 71:1150, 1988
- 21. Sporn M, Roberts A: Autocrine growth factors and cancer. Nature 313:745, 1985

Clinical and Pathologic Significance of the c-erbB-2 (HER-2/neu) Oncogene

Timothy P. Singleton and John G. Strickler

The c-erbB-2 oncogene was first shown to have clinical significance in 1987 by Slamon et al, 79 who reported that c-erbB-2 DNA amplification in breast carcinomas correlated with decreased survival in patients with metastasis to axillary lymph nodes. Subsequent studies, however, of c-erbB-2 activation in breast carcinoma reached conflicting conclusions about its clinical significance. This oncogene also has been reported to have clinical and pathologic implications in other neoplasms. Our review summarizes these various studies and examines the clinical relevance of c-erbB-2 activation, which has not been emphasized in recent reviews. 37,38,55 The molecular biology of the c-erbB-2 oncogene has been extensively reviewed 37,38,55 and will be discussed only briefly here.

BACKGROUND

The c-erbB-2 oncogene was discovered in the 1980s by three lines of investigation. The neu oncogene was detected as a mutated transforming gene in neuroblastomas induced by ethylnitrosurea treatment of fetal rats. 8,73,74,78 The c-erbB-2 was a human gene discovered by its homology to the retroviral gene v-erbB. 33,49,76 HER-2 was isolated by screening a human genomic DNA library for homology with v-erbB. 24 When the DNA sequences were determined subsequently, c-erbB-2, HER-2, and neu were found to represent the same gene. Recently, the c-erbB-2 oncogene also has been referred to as NGL.

The c-erbB-2 DNA is located on human chromosome 17q21^{24,33,66} and codes for c-erbB-2 mRNA (4.6 kb), which translates c-erbB-2 protein (p185). This

protein is a normal component of cytoplasmic membranes. The c-erbB-2 oncogene is homologous with, but not identical to, c-erbB-1, which is located on chromosome 7 and codes for the epidermal growth factor receptor. The c-erbB-2 protein is a receptor on cell membranes and has intracellular tyrosine kinase activity and an extracellular binding domain. Electron microscopy with a polyclonal antibody detects c-erbB-2 immunoreactivity on cytoplasmic membranes of neoplasms, especially on microvilli and the non-villous outer cell membrane. In normal cells, immunohistochemical reactivity for c-erbB-2 is frequently present at the basolateral membrane or the cytoplasmic membrane's brush border. 22.62

There is experimental evidence that c-erbB-2 protein may be involved in the pathogenesis of breast neoplasia. Overproduction of otherwise normal c-erbB-2 protein can transform a cell line into a malignant phenotype. ²⁵ Also, when the neu oncogene containing an activating point mutation is placed in transgenic mice with a strong promoter for increased expression, the mice develop multiple independent mammary adenocarcinomas. ^{18,63} In other experiments, monoclonal antibodies against the neu protein inhibit the growth (in nude mice) of a neu-transformed cell line, ²⁶⁻²⁸ and immunization of mice with neu protein protects them from subsequent tumor challenge with the neutransformed cell line. ¹⁴ Some authors have speculated that the use of antagonists for the unknown ligand could be useful in future chemotherapy. ⁸⁵ Further review of this experimental evidence is beyond the scope of this article.

The c-erbB-2 activation most likely occurs at an early stage of neoplastic development. This hypothesis is supported by the presence of c-erbB-2 activation in both in situ and invasive breast carcinomas. In addition, studies of metastatic breast carcinomas usually demonstrate uniform c-erbB-2 activation at multiple sites in the same patient, ^{11,12,39,41,52} although c-erbB-2 activation has rarely been detected in metastatic lesions but not in the primary tumor. ^{57,69,107} Even more rarely, c-erbB-2 DNA amplification has been detected in a primary breast carcinoma but not in its lymph node metastasis. ⁵ In patients who have bilateral breast neoplasms, both lesions have similar patterns of c-erbB-2 activation, but only a few such cases have been studied. ¹¹

MECHANISMS OF c-erbB-2 ACTIVATION

The most common mechanism of c-erbB-2 activation is genomic DNA amplification, which almost always results in overproduction of c-erbB-2 mRNA and protein. 17,34,65,81 The c-erbB-2 amplification may stabilize the overproduction of mRNA or protein through unknown mechanisms. Human breast carcinomas with c-erbB-2 amplification contain 2 to 40 times more c-erbB-2 DNA^{4,5} and 4 to 128 times more c-erbB-2 mRNA^{34,90} than found in normal tissue. Most human breast carcinomas with c-erbB-2 amplification have 2 to 15 times more c-erbB-2 DNA. Tumors with greater amplification tend to have greater overproduction. 17,52,65 The non-mammary neoplasms that have been studied tend to have

similar levels of c-erbB-2 amplification or overproduction relative to the corresponding normal tissue.

The second most common mechanism of c-erbB-2 activation is overproduction of c-erbB-2 mRNA and protein without amplification of c-erbB-2 DNA.81 The quantities of mRNA and protein usually are less than those in amplified cases and may approach the small quantities present in normal breast or other tissues. 17,50.52 The c-erbB-2 protein overproduction without mRNA overproduction or DNA amplification has been described in a few human breast carcinoma cell lines. 47

Other rare mechanisms of c-erbB-2 activation have been reported. Translocations involving the c-erbB-2 gene have been described in a few mammary and gastric carcinomas, although some reported cases may represent restriction fragment length polymorphisms or incomplete restriction enzyme digestions that mimic translocations. ^{31,65,75,84,80,108} A single point mutation in the transmembrane portion of neu has been described in rat neuroblastomas induced by ethylnitrosurea. ^{9,55} The mutated neu protein has increased tyrosine kinase activity and aggregates at the cell membrane. ^{10,83,98} Although there has been speculation that some of the amplified c-erbB-2 genes may contain point mutations, ⁴⁶ none has been detected in primary human neoplasms. ^{11,53,81}

TECHNIQUES FOR DETECTING c-erbB-2 ACTIVATION

Detection of c-erbB-2 DNA Amplification

Amplification of c-erbB-2 DNA is usually detected by DNA dot blot or Southern blot hybridization. In the dot blot method, the extracted DNA is placed directly on a nylon membrane and hybridized with a c-erbB-2 DNA probe. In the Southern blot method, the extracted DNA is treated with a restriction enzyme, and the fragments are separated by electrophoresis, transferred to a nylon membrane, and hybridized with a c-erbB-2 DNA probe. In both techniques, c-erbB-2 amplification is quantified by comparing the intensity (measured by densitometry) of the hybridization bands from the sample with those from control tissue.

Several technical problems may complicate the measurement of c-erbB-2 DNA amplification. First, the extracted tumor DNA may be excessively degraded or diluted by DNA from stromal cells. Second, the c-erbB-2 DNA probe must be carefully chosen and labeled. For example, oligonucleotide c-erbB-2 probes may not be sensitive enough for measuring a low level of c-erbB-2 amplification, because diploid copy numbers can be difficult to detect (unpublished data). Third, the total amounts of DNA in the sample and control tissue must be compensated for, often with a probe to an unamplified gene. Many studies have used control probes to genes on chromosome 17, the location of c-erbB-2, to correct for possible alterations in chromosome number. Identical results, however, are obtained by using control probes to genes on other chromosomes, 5.65,80 with rare exception. To Studies using control probes to the beta-

١,

The second of th

globin gene must be interpreted with caution, because one allele of this gene is deleted occasionally in breast carcinomas.³

Amplification of c-erbB-2 DNA was assessed by using the polymerase chain reaction (PCR) in one recent study. 32 Oligoprimers for the c-erbB-2 gene and a control gene are added to the sample's DNA, and PCR is performed. If the sample contains more copies of c-erbB-2 DNA than of the control gene, the c-erbB-2 DNA is replicated preferentially.

Detection of c-erbB-2 mRNA Overproduction

Overproduction of c-erbB-2 mRNA usually is measured by RNA dot blot or Northern blot hybridization. Both techniques require extraction of RNA but otherwise are analogous to DNA dot blot and Southern blot hybridization. Use of PCR for detection of c-erbB-2 mRNA has been described in two recent abstracts. 69,102

Overproduction of c-erbB-2 mRNA can be measured by in situ hybridization. Sections are mounted on glass slides, treated with protease, hybridized with a radiolabeled probe, washed, treated with nuclease to remove unbound probe, and developed for autoradiography. Silver grains are seen only over tumor cells that overproduce c-erbB-2 mRNA. Negative control probes are used. 65,86,106 Our experience indicates that these techniques are relatively insensitive for detecting c-erbB-2 mRNA overproduction in routinely processed tissue. Although the sensitivity may be increased by modifications that allow simultaneous detection of c-erbB-2 DNA and mRNA, in situ hybridization still is cumbersome and expensive (unpublished data).

All of the above c-erbB-2 mRNA detection techniques have several problems that make them more difficult to perform than techniques for detecting DNA amplification. One major problem is the rapid degradation of RNA in tissue that is not immediately frozen or fixed. In addition, during the detection procedure, RNA can be degraded by RNase, a ubiquitous enzyme, which must be eliminated meticulously from laboratory solutions. Third, control probes to genes that are uniformly expressed in the tissue of interest need to be carefully selected.

Detection of c-erbB-2 Protein Overproduction

The most accurate methods for detecting c-erhB-2 protein overproduction are the Western blot method and immunoprecipitation. Both techniques can document the binding specificity of various antibodies against c-erhB-2 protein. In Western blot studies, protein is extracted from the tissue, separated by electrophoresis (according to size), transferred to a membrane, and detected by using antibodies to c-erbB-2. In immunoprecipitation studies, antibodies against c-erbB-2 are added to a tumor lysate, and the resulting protein-antibody precipitate is separated by gel electrophoresis and stained for protein. Both Western blot and immunoprecipitation are useful research tools but currently are not practical for diagnostic pathology. Two recent abstracts have described an enzyme-linked immunosorbent assay (ELISA) for detection of c-erbB-2 protein. 19,45

Overproduction of c-erbB-2 protein is most commonly assessed by various immunohistochemical techniques. These procedures often generate conflicting results, which are explained at least partially by three factors. First, various studies have used different polyclonal and monoclonal antibodies. Because some polyclonal antibodies recognize weak bands in addition to the c-erbB-2 protein band on Western blot or immunoprecipitation, the results of these studies should be interpreted with caution. 22,36,47,61 Even some monoclonal antibodies immunoprecipitate protein bands in addition to c-erbB-2 (p185).30,59,56 Second, tissue fixation contributes to variability between studies. For example, some antibodies detect c-erbB-2 protein only in frozen tissue and do not react in fixed tissue. In general, formalin fixation diminishes the sensitivity of immunohistochemical methods and decreases the number of reactive cells. 81,86 When Bouin's fixative is used, there may be a higher percentage of positive cases.22 Third, minimal criteria for interpreting immunohistochemical staining are generally lacking. Although there is general agreement that distinct crisp cytoplasmic membrane staining is diagnostic for c-erbB-2 activation in breast carcinoma, the number of positive cells and the staining intensity required to diagnose c-erbB-2 protein overproduction varies from study to study and from antibody to antibody. Degradation of c-erbB-2 protein is not a problem because it can be detected in intact form more than 24 hours after tumor resection without fixation or freezing.64

ACTIVATION OF c-erbB-2 IN BREAST LESIONS

Incidence of c-erbB-2 Activation

Most studies of c-erbB-2 oncogene activation do not specify histological subtypes of infiltrating breast carcinoma. Amplification of c-erbB-2 DNA was found in 19.1 percent (519 of 2715) of invasive carcinomas in 25 studies (Table 1), and c-erbB-2 mRNA or protein overproduction was detected in 20.9 percent (566 of 2714) of invasive carcinomas in 20 studies. Twelve studies have documented c-erbB-2 mRNA or protein overproduction in 15 percent (88 of 604) of carcinomas that lacked c-erbB-2 DNA amplification.

The incidence of c-erbB-2 activation in infiltrating breast carcinoma varies with the histological subtype. Approximately 22 percent (142 of 650) of infiltrating ductal carcinomas have c-erbB-2 activation, as expected from the above data. Other variants of breast carcinoma with frequent c-erbB-2 activation are inflammatory carcinoma (62 percent, 54 of 87), Paget's disease (82 percent, 9 of 11), and medullary carcinoma (22 percent, 5 of 23). In contrast, c-erbB-2 activation is infrequent in infiltrating lobular carcinoma (7 percent, 5 of 73) and tubular carcinoma (7 percent, 1 of 15).

The c-erbB-2 protein overproduction is present in 44 percent (44 of 100) of ductal carcinomas in situ and especially comedocarcinoma in situ (68 percent, 49 of 72). The micropapillary type of ductal carcinoma in situ also tends to have c-erbB-2 activation, 40,54,68 especially if larger cells are present. The greater fre-

ĵ

Spirite Anticon and Agent Carte Propries and Carte Car

TABLE 1. c-erbB-2 ACTIVATION IN MALIGNANT HUMAN BREAST NEOPLASMS

TABLE 1. Calib's Activation in Marketina Tollian Brillan Activation	AN DALASI MEST LASINS		
Histological Diagnosis	c-erbB-2 DNA Amplification•	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction
Carcinoma, not otherwise specified	146/526,81 52/310,17	42/180,69 49/126,36	118/728,650
	52/291, 109 28/176,87	19/62 tf 19/57,50	58/330,170 47/313,86
	17/157,113 22/141,35	3/11,50 6/10,56 3/931	17/195,11 32/191,56
	14/136,57 12/122,4		31/185,101 34/102,42
	19/103,79 15/95,90		24/53,52b 23/47,13
	15/86,111 17/73,77		22/45, 11/36,
	16/66,42 6/61,50		7/24, 91 1/1061
	11/57,52 10/57,65		
	13/51,13 8/49,21		
	10/38,82 12/36,94		
	1/25,15 7/24,91		
	7/15,31 7/10,94 2/10 ¹⁰⁷		
Carchoma, type not specified but lacking c-erbB-2	1	18/136,81 14/73,34	16/231,176 18/136,81
DNA amplification		8/16,65 0/8,90 1/4,31	13/35,13 14/29,526
		D/38e	1/28,82 3/24,94
			0/170
Infitrating ductal carcinoma	21/118,823/107,34	35/9534	22/137,40 14/93,30
	17/50,4 7/3750		9/3488
	14/53 (comedo-		
	cardinoma)18		
	3/33 (tubuloductai		
	carcinoma) ¹⁴		

a Modeling on a subsequence 20-1	33/80,362	46/7536	2/625
	1	1	5/6,40 2/3,54 2/292
rager's disease	0/5.16 0/182	ı	1/940
Tubular carcinoma Medullary carcinoma	2/4,16 0/134	0/124	1/12,40 1/3,84 1/2,92 0/139
Mindipolis Carcinoma	0/1,16 0/189	ì	1/2 ⁶⁸
	0/283	1	1
Invasive papinary carcinoma Infiltrating lobular carcinoma	1/15,16 0/634	1/54	2/27, ⁹² 0/12, ⁴⁰ 0/9, ³⁹ 1/5 ⁸⁸
Nammary fibrosarcoma	0/189	ı	l
"Benjan cystosaroma"	ı	ļ	0/168
County of section of the section of	3/5%	1	
	0/234	1/24	33/74,40 10/2430
Ductal CIS, solid or comedo type	I	1	20/33, ^{es} 19/29, ^{s2} 10/10 ⁵⁴
ond veillenoring of the	l	Į	10/1066
Ductal CIS, micropabillary or cribiform type	1	1	1(focal)/14 ⁵⁴
Control Of another of calculations and the	1	1	0/16,72 1/9,68 0/340
Lobular CIS	ì	1	0/1640
Shown as rumber of cases with activation/number of cases studied; reference is given as a superscript of these protein studies used Wastern blots; the rest used immunohistochemical methods.	tudied; reference is given as a supersor unchistochemical methods.	ript.	

Allegan Constitution

172 T.P. SINGLETON AND J.G. STRICKLER

quency of c-erbB-2 protein overproduction in comedocarcinoma in situ, compared with infiltrating ductal carcinoma, could be explained by the fact that many infiltrating ductal carcinomas arise from other types of intraductal carcinoma, which show c-erbB-2 activation infrequently. Others have speculated that carcinoma in situ with c-erbB-2 activation tends to regress or to lose c-erbB-2 activation during progression to invasion. 40,68,92 Infiltrating and in situ components of ductal carcinoma, however, usually are similar with respect to c-erbB-2 activation, 11,39 although some authors have noted more heterogeneity of the immunohistochemical staining pattern in invasive than in in situ carcinoma. 40,42,88 Activation of c-erbB-2 is infrequent in lobular carcinoma in situ. If lesions contain more than one histological pattern of carcinoma in situ, the c-erbB-2 protein overproduction tends to occur in the comedocarcinoma in situ but may include other areas of carcinoma in situ. 42,54,68 Overproduction of c-erbB-2 protein in ductal carcinoma in situ correlates with larger cell size and a periductal lymphoid infiltrate. 68

Activation of c-erbB-2 has not been identified in benign breast lesions, including fibrocystic disease, fibroadenomas, and radial scars (Table 2). Strong membrane immunohistochemical reactivity for c-erbB-2 has not been described in atypical ductal hyperplasia, although weak accentuation of membrane staining has been noted infrequently. ^{39,42,54} In normal breast tissue, c-erbB-2 DNA is diploid, and c-erbB-2 is expressed at lower levels than in activated tumors. ^{34,35,65,88}

These preliminary data suggest that c-erbB-2 activation may not be useful for resolving many of the common problems in diagnostic surgical pathology. For example, c-erbB-2 activation is infrequent in tubular carcinoma and radial scars. In addition, because c-erbB-2 activation is unusual in atypical ductal hyperplasia, cribriform carcinoma in situ, and papillary carcinoma in situ, detection of c-erbB-2 activation in these lesions may not be helpful in their differential diagnosis. The histological features of comedocarcinoma in situ, which commonly overproduces c-erbB-2, are unlikely to be mistaken for those of benign lesions. Activation of

TABLE 2. c-erbB-2 ACTIVATION IN BENIGN HUMAN BREAST LESIONS

Histological Diagnosis	c-erb9-2 DNA Amplifications	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction
Fibrocystic disease	0/1093	_	0/32,39 0/9,88 0/888
Atypical ductal hyperplasia		_	2(weak)/21,54 1(cytoplasmio)/1336
Benign ductal hyperplasia		_	0/1239
Sclerosing adenosis			0/439
Fibroadenomas	0/16, ³⁴ 0/6, ⁸³ 0/2, ²¹ 0/1 ⁹¹	0/6,55 0/334	0/21, ³⁹ 0/10, ⁸⁶ 0/8, ⁸⁸ 0/3 ⁴²
Radial scars	-		0/2239
Blunt duct adenosis			0/1439
"Breast mastosis"	_	0/335	

^{*}Shown as number of cases with activation/number of cases studied; reference is given as a superscript.

c-erbB-2, however, does favor infiltrating ductal carcinoma over infiltrating lobular carcinoma. Further studies of these issues would be useful.

Correlation of c-erbB-2 Activation With Pathologic Prognostic Factors Multiple studies have attempted to correlate c-erbB-2 activation with various pathologic prognostic factors (Table 3). Activation of c-erbB-2 was correlated with lymph node metastasis in 8 of 28 series, with higher histological grade in 6 of 17 series, and with higher stage in 4 of 14 series. Large tumor size was not associated with c-erbB-2 activation in most studies (11 of 14). Tetraploid DNA content and low proliferation, measured by Ki-67, have been suggested as prognostic factors and may correlate with c-erbB-2 activation.^{6,7}

Correlation of c-erbB-2 Activation With Clinical Prognostic Factors

Various studies have attempted also to correlate c-erbB-2 activation with clinical features that may predict a poor outcome (Table 4). Activation of c-erbB-2 correlated with absence of estrogen receptors in 10 of 28 series and with absence of progesterone receptors in 6 of 18 series. In most studies, patient age did not correlate with c-erbB-2 activation, and, in the rest of the reports, c-erbB-2 activation was associated with either younger or older ages.

Correlation of c-erbB-2 Activation With Patient Outcome

Slamon et al^{78,81} first showed that amplification of the c-erbB-2 oncogene independently predicts decreased survival of patients with breast carcinoma. The correlation of c-erbB-2 amplification with poor outcome was nearly as strong as the correlation of number of involved lymph nodes with poor outcome. Slamon et al also reported that c-erbB-2 amplification is an important prognostic indicator only in patients with lymph node metastasis. ^{79,81}

A large number of subsequent studies also attempted to correlate c-erbB-2 activation with prognosis (Table 5). In 12 series, there was a correlation between c-erbB-2 activation and tumor recurrence or decreased survival. In five of these series, the predictive value of c-erbB-2 activation was reported to be independent of other prognostic factors. In contrast, 18 series did not confirm the correlation of c-erbB-2 activation with recurrence or survival. Four possible explanations for this controversy are discussed below.

One problem is that c-erbB-2 amplification correlates with prognosis mainly in patients with lymph node metastasis. As summarized in Table 5, most studies of patients with axillary lymph node metastasis showed a correlation of c-erbB-2 activation with poor outcome. In contrast, most studies of patients without axillary metastasis have not demonstrated a correlation with patient outcome. Table 6 summarizes the studies in which all patients (with and without axillary metastasis) were considered as one group. There is a trend for studies with a higher percentage of metastatic cases to show an association between c-erbB-2 activation and poor outcome. Thus, most of the current evidence suggests that c-erbB-2 activation has prognostic value only in patients with metastasis to lymph nodes.

ATION OF DerbB-2 ACTIVATION WITH PATHOLOGIC PROGNOSTIC FACTORS IN BREAST CARCINOMA

C-erbB-2 mRNA Overproduction (104)35 (92)34 (9)31 (50)50 (51)50 (53)55 (63)55 (86)35 (65)35	TABLE 3. CONRELATIO	NOT CEIGGE AND IN	ABLE 3. CORRELATION OF CEIDER ACTION		
 <0.05 (118)\$\sigma (105)^{3} (49)^{21}\$ (104)\$\sigma (49)^{21}\$ (103)\$\sigma (45)^{11}\$ (122)\$\sigma (45)^{11}\$ (122)\$\sigma (45)^{12}\$ (122)\$\sigma (45)^{11}\$ (122)\$\sigma (45)^{11}\$ (123)\$\sigma (45)^{11}\$ (124)\$\sigma (45)^{11}\$ (125)\$\sigma (45)^{12}\$ (125)\$\sigma (41)^{23}\$ (122)\$\sigma (41)^{23}\$ <li< th=""><th>December 10 Factor</th><th>ã</th><th>c-erbB-2 DNA Amplification^b</th><th>c-erbB-2 mRNA Overproduction</th><th>c-erbB-2 Protein Overproduction</th></li<>	December 10 Factor	ã	c-erbB-2 DNA Amplification ^b	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction
90		30.07	(118)35 (105)34 (49)21	(104)35 (92)34 (9)31	(350)856 (36)13
Solution	Metastasis to	0.05-0.15	(103)79 (86)79 (58)111	1	(189)
(122)* (85)% (50)** (50)** (47)** (41)*** (50)** (47)** (41)*** (280)*** 0.05-0.15 (86)*** (44)*** (45)*** (45)*** (51)*** (51)*** (51)*** (51)*** (51)*** (51)*** (51)*** (51)*** (41)*** (53)*** (41)*** (41)*** (53)*** (41)*** (53)*** (47)** (13)*** (95)*** (55)*** (47)*** (13)*** (95)*** (55)*** (47)*** (13)*** (95)*** (55)*** (47)*** (13)*** (95)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (55)*** (56)*** (57)*** (57)*** (58)*** (58)*** (58)*** (58)*** (58)*** (59)*** (50)*** (50)*** (50)*** (66)*** (65)** (65)*** (65)*** (65)*** (65)*** (65)*** (65)*** (65)*** (65)**	axillary lympa	>0.05	(279)17 (176)57 (157)113	%(SO)	(329) % (261) % (382)
(50)*(47)*** (41)**** <0.05	nodes	;	$(122)^4 (85)^{90} (50)^{52}$		(185) to (102) (201)
 <0.05 (280)¹⁷ 0.05-0.15 (86)³⁸ (176)⁴⁷ (157)¹¹³ (103)³⁸ (64)³⁷ (58)¹¹¹ (45)²¹ <0.05 (300)¹⁷ (64)³⁷ (58)¹¹¹ (56)²⁸ >0.05-0.15 (176)⁴⁷ (57)¹¹³ (84)³⁶ (61)³⁶ (52)⁶⁷ (41)³⁸ (41)³⁹ (47)³¹ (15)³¹ (53)⁴⁸ (65)³⁸ (55)³⁸ (122)⁴ (113)³⁴ (95)⁴⁹ (86)³⁸ (65)³⁸ (58)³¹¹ (50)⁴⁴ (41)³⁸ 			(50)44 (47)13 (41)83		
0.05-0.15 (86) ⁷⁴ -0.05 -0.15 (176) ¹⁶⁷ (157) ¹¹³ (103) ⁷⁸ (51) ²⁶ -0.05 (300) ¹⁷ (64) ⁷⁷ (58) ¹¹¹ -0.05-0.15 (56) ²⁴ -0.05 -0.05		300/	71(086)	l	(330)17c (189)82
20.05-0.15	Larger size	0.00	(202) 82(98)	1	1
(64)77 (58)111 (45)21 <0.05 (300)17 (64)77 (58)111 0.05-0.15 (56)22 >0.15 (176)97 (157)113 (84)399 (61)29 (53)21 (52)27 (41)391 (15)31 0.05-0.15 (122)4 (113)34 (95)49 (86)35 (55)35 (58)111 (50)44 (41)39		0.05-0.15	(178)87 (157)113 (103)78	(51)%	(350)85c (185)101 (34)92
 <0.05 (300)** (64)** (58)*** 0.05-0.15 (56)*** (50)*** (157)*** (184)*** (61)*** (53)*** (52)*** (61)*** (53)*** (53)*** (61)*** (15)** (63)*** (65)*** (65)*** (65)*** (58)*** (55)** 		6	(64)77 (58)111 (45)21		
C0.05 (300)*** (35)************************************			(1)	ļ	(349)170
0.05-0.15 (56) ²² >0.15 (176) ²⁷ (157) ¹¹³ (84) ³⁹ (61) ²⁹ (52) ²⁷ (52) ²⁷ (41) ²⁹ (41) ²⁹ (47) ²³ (15) ²¹ (53) ²⁴ (53) ²⁴ (53) ²⁵ (50) ²⁵ (53) ²⁶ (53) ²⁶ (53) ²⁶ (53) ²⁶ (65) ²⁷ (65) ²⁸ (70) ²⁴ (113) ²⁴ (95) ²⁹	Higher stade	<0.05	(300),, (64),, (20)		1
>0.15 (176) ⁸⁷ (157) ¹¹³ (84) ⁹⁹ (61) ⁹⁰ (52) ⁹⁷ (41) ⁹⁹ (41) ⁹⁹ (41) ⁹⁹ (41) ⁹⁹ (41) ⁹⁹ (41) ⁹⁹ (53) ⁹⁹ (53) ⁹⁹ (53) ⁹⁹ (53) ⁹⁹ (53) ⁹⁹ (65) ³⁹ (65) ³⁹ (65) ³⁹ (58) ³¹ (58) ³¹ (58) ³¹ (58) ³² (58) ³³ (58) ³⁴ (41) ³⁹		0.05-0.15	₂₅ (95)	I	
(61) ³⁶ (52) ⁵⁷ (41) ³⁶ (47) ³³ (47) ³⁴ (15) ³⁴ 0.05-0.15 >0.15 (122) ⁴ (113) ³⁴ (95) ⁴⁰ (86) ³⁵ (55) ³⁵ (58) ³⁴ (41) ³⁰		>0.15	(176)87 (157)113 (84)90	1	m(ac) m(Z01)
 (41)⁹⁰ <0.05 (47)¹³ (15)³¹ (53)⁴⁶ (65)³⁵ (122)⁴ (113)³⁴ (95)⁴⁰ (86)³⁵ (65)³⁵ (58)¹¹¹ (50)⁴⁴ (41)²⁰)	(61) ⁵⁰ (53) ⁷¹ (52) ⁵⁷		
<pre><0.05 <0.05 0.05-0.15 0.05-0.15 (122)** (113)*** (95)*** (165)*** (122)*** (165)*** (165)*** (165)***</pre>			(41)89		!
0.05-0.15 (122)4 (113)34 (95)70 (86)35 (65)35 (58)11 (50)11 (50)11 (50)11 (50)11	List of biotological	<0.05	(47)13 (15)31	₅₉ (53)	(176)101 (168)11 (38)13
>0.15 (122)* (113)** (95)** (86)** (65)** (58)** (58)** (58)** (58)** (58)** (58)** (58)**	The section of the se	0.05-0.15	1	1	
	grade	20.00-05.15 51.0≤	(122)4 (113)34 (95)30	(86) ³⁵ (65) ³⁵	(290) 36 (189) 35 (102)
)	(58)111 (50)44 (41)20		

A correlation is statistically significant at <0.05, equivocal at best between 0.05 and 0.15, and not statistically significant at >0.15.
 All our expectation is statistically significant at <0.05, equivocal at best between 0.15, and not statistical more than one group of patients.
 By Western blot method; all other protein studies used immunohistochemical methods.

		c-erbB-2 DNA	c-erbB-2 mRNA	c-erbB-2 Protein
Prognostic Factor	ā.	Amplification	Overproduction	Overproduction
Absence of estrogen	<0.05	(253)109 (141)35 (109)34 (86)78 (50)44 (47)13	(104)35	(350)*** (330)*** (185)***
siconia.	7 0 7 7	1	1	1
	>0.03-0.13	(157)113 (122)1 (103)79	$(180)^{69} (62)^{65} (62)^{35}$	(290)86 (172)11 (51)626
		(95) ⁵⁰ (64) ⁷⁷ (61) ⁵⁰	(57)50	(38)13
		(58)111 (53)21 (51)52		
		(41)80		
Absence of progester-	<0.05	(253)109 (141)35 (109)34	ı	(350)850 (306)170
one recentors		1 (20)		
	0.05-0.15	(86)73 (49)52	i	!
	>0.15	(157)113 (122)* (103)79	(180) (103) 35 (62) 65	(90)11 (49)52c
		(64)77	(56)35	
Age (monorageal efable)	<0.05	1	{	(younger: 330) ¹⁷⁶ (older: 56) ⁵²⁶
(menoparaginali)	0.05-0.15	(younger: 86)72	!	1
	>0.15	(230)17 (176)87 (157)113	(62)65	(350)85° (290)86 (189)92
		$(122)^4 (116)^{24} (103)^{79}$		$(162)^{11}(45)^{92}$
		(95)80 (64)77 (58)111		
		(56)52 (53)21 (49)13		
		(41)82 (15)31		

*A correlation is statistically significant at <0.05, equivocal at best between 0.05 and 0.15, and not statistically significant at >0.15

*Numbers inside parentheses are the number of patients in an individual study; superscript is the reference. Some studies analyzed more than one group of patients.

**Some studies analyzed more than one group of patients in an individual methods.

176 T.P. SINGLETON AND J.G. STRICKLER

TABLE 5. CORRELATION OF c-erbb-2 ACTIVATION WITH OUTCOME IN PATIENTS WITH BREAST CARCINOMA

			Number of Pati	ents		
ρι	Type of c-erbB-2 Activation ^b	Total	With Metastastis to Axillary Lymph Nodes	No Metastasis	Statistical Analysis	Reference
<0.05	DNA	176			М	87
<0.05	DNA	61			U	50
<0.05	DNA	57			U	65
<0.05	DNA	41			U	93
<0.05	mRNA	62			U	65
<0.05	Protein	102			M	101
<0.05	DNA		345		M	81
<0.05	DNA		120		บ	17
<0.05	DNA ·		91		υ	87
<0.05	DNA		86		M	79
<0.05	Protein-WB		350		M	85
<0.05	Protein		62	44	U	101
0.05-0.15	DNA	57			U	111
0.05-0.15	Protein	189			М	92
0.05-0.15	Protein		120		U	86
>0.15	DNA	130			U	113
>0.15	DNA	122			M	4
>0.15	DNA	50			U	44
>0.15	mRNA	57			υ	50
>0.15	Protein	290			M	86
>0.15	Protein	195			U	11
>0.15	Protein	102			U	39
>0.15	Protein		137		บ	17
>0.15	DNA			181	M	81
>0.15	DNA			159	U	17
>0.15	DNA			73	U	87
>0.15	Protein-WB			378	U	85
>0.15	Protein-WB			192	U	17
>0.15	Protein			141	υ	86
>0.15	Protein			41	U	40

[&]quot;The endpoints of these studies were tumor recurrence or decreased survival or both. Correlation between cerbB-2 activation and a poorer patient outcome is statistically significant at <0.05, is of equivocal significance at 0.05 to 0.15, and is not significant at >0.15.

^{*}Shown as variable measured. Letters "WB" indicate assay by Western biot; the other protein studies used immunohistochemical methods.

cM = multivariate statistical analysis; U = univariate statistical analysis.

TABLE 6. PERCENTAGE OF BREAST CARCINOMAS WITH METASTASIS COMPARED WITH PROGNOSTIC SIGNIFICANCE OF c-erbB-2 ACTIVATION

P for correlation of c-erbB-2 activation with patient outcome.

Each study's percentage of breast carcinomas with metastasis is compared with the correlation between c-erbB-2 activation and outcome. These data include only those studies that considered, as one group, all breast cancer patients, whether or not they had axillary metastasis. Superscripts are the references. In parentheses are the types of c-erbB-2 activation. P values are interpreted as in Table 3.

A second problem is that various types of breast carcinoma are grouped together in many survival studies. Because the current literature suggests that c-erbB-2 activation is infrequent in lobular carcinoma, studies that combine infiltrating ductal and lobular carcinomas may dilute the prognostic effect of c-erbB-2 activation in ductal tumors. In addition, most studies do not analyze inflammatory breast carcinoma separately. This condition frequently shows c-erbB-2 activation and has a worse prognosis than the usual mammary carcinoma, but it is an uncommon lesion.

A third potential problem is the paucity of studies that attempt to correlate c-erbB-2 activation with clinical outcome in subsets of breast carcinoma without metastasis. Two recent abstracts reported that in patients without lymph node metastasis who had various risk factors for recurrence (such as large tumor size and absence of estrogen receptors), c-erbB-2 overexpression predicted early recurrence.^{22,87} In patients with ductal carcinoma in situ, one small study found no association between tumor recurrence and c-erbB-2 activation.⁴⁰

A fourth problem is the lack of data regarding whether the prognosis correlates better with c-erbB-2 DNA amplification or with mRNA or protein overproduction. Most studies that find a correlation between c-erbB-2 activa-

tion and poor patient outcome measure c-erbB-2 DNA amplification (Table 5), and breast carcinoma patients with greater amplification of c-erbB-2 may have poorer survival. 79,81 Recent studies suggest that amplification has more prognostic power than overproduction, 17,34,35 but the clinical significance of c-erbB-2 overproduction without DNA amplification deserves further research. 17,52 Few studies have attempted to correlate patient outcome with c-erbB-2 mRNA overproduction, and many studies of c-erbB-2 protein overproduction use relatively less reliable methods such as immunohistochemical studies with polyclonal antibodies.

Comparison of c-erbB-2 Activation With Other Oncogenes in Breast Carcinoma

Other oncogenes that may have prognostic implications in human breast cancer are reviewed clsewhere. 71,106 This section will be restricted to a comparison between the clinical relevance of c-erbB-2 and these other oncogenes.

The c-myc gene is often activated in breast carcinomas, but c-myc activation generally has less prognostic importance than c-erbB-2 activation. 21,34,77,87,83 One study found a correlation between increased mRNAs of c-erbB-2 and c-myc, although other reports have not confirmed this. 34,105 Subsequent research, however, could demonstrate a subset of breast carcinomas in which c-myc has more prognostic importance than c-erbB-2.

The gene c-erbB-1 for the epidermal growth factor receptor (EGFR) is homologous with c-erbB-2 but is infrequently amplified in breast carcinomas. To Overproduction of EGFR, however, occurs more frequently than amplification and may correlate with a poor prognosis. In studies that have examined both c-erbB-2 and EGFR in the same tumor, c-erbB-2 has a stronger correlation with poor prognostic factors. 35,52 Studies have tended to show no correlation between amplification of c-erbB-2 and c-erbB-1 or overproduction of c-erbB-2 and EGFR, although at the molecular level EGFR mediates phosphorylation of c-erbB-2 protein. 51,52,61,68,100 Recent reviews describe EGFR in breast carcinoma. 43,100

The genes c-erbA and ear-1 are homologous to the thyroid hormone receptor, and they are located adjacent to c-erbB-2 on chromosome 17. These genes are frequently coamplified with c-erbB-2 in breast carcinomas. The absence of c-erbA expression in breast carcinomas, however, is evidence against an important role for this gene in breast neoplasia. 90 Amplification of c-erbB-2 can occur without ear-1 amplification, and these tumors have a decreased survival that is similar to tumors with both c-erbB-2 and ear-1 amplification. 87 Consequently, c-erbB-2 amplification seems to be more important than amplification of c-erbA or ear-1.

Other genes also have been compared with c-erbB-2 activation in breast carcinomas. One study found a significant correlation between increased c-erbB-2 mRNA and increased mRNAs of fos, platelet-derived growth factor chain A, and Ki-ras. ¹⁰⁶ Allelic deletion of c-Ha-ras may indicate a poorer prognosis in breast carcinoma. ²¹ but it has not been compared with c-erbB-2 activation. Some studies have suggested a correlation between advanced stage or recurrence of breast carcinoma and activation of any one of several oncogenes. ^{21,113}

ACTIVATION OF c-erbB-2 IN NON-MAMMARY TISSUES

Incidence of c-erbB-2 Activation in Non-Mammary Tissues

Table 7 summarizes the normal tissues in which c-erbB-2 expression has been detected, usually with immunohistochemical methods using polyclonal anti-

TABLE 7. PRESENCE OR ABSENCE OF c-erbB-2 mRNA OR c-erbB-2 PROTEIN IN NORMAL HUMAN TISSUES

Tissues With c-erbB-2 mRNA	Tissues Producing c-erbB-2 Proteins	Tissues Lacking c-erbB-2 mRNA	Tissues Lacking c-erbB-2 Protein
Skin ²⁴	Epidermis ⁵⁵ External root sheath ⁵⁵ Eccrine sweat gland ⁵⁶		
	Fetal oral mucosa ^{s2} Fetal esophagus ^{s2}		Postnatal oral mucosata Postnatal esophagusta
Stomach ²⁴	Stomach ^{22,62} Fetal intestine ^{62s}		
Jejunum ²⁴	Small intestine ^{22,62}		
Colon ²⁴	Colon ^{22,62}		
Kidney ²⁴	Fetal kidney ^{62s}	Kidneys ¹⁰⁴	Giomerulus ⁶² Postnatal Bowman's capsule ⁶ Postnatal proximal tubule ⁶²
	Fetal proximal tubule ⁶² Distal tubule ⁶²		Postidia proxima todalo
	Fetal collecting duct ⁶² Fetal renal pelvis ⁶² Fetal ureter ⁵²		Postnatal collecting ducter Postnatal renal pelviser Postnatal fetal ureterer
Liver ²⁴	Hepatocytes ²² Pancreatic acini ²² Pancreatic ducts ^{22,62}		Liver ^{62,95}
	Endocrine cells of islets of Langerhans ²²		Pancreatic islets ⁶²
Lung ²⁴	Fetal trachea [©]		Postnatal trachea ⁶²
	Fetal bronchioles ⁶² Bronchioles ⁶⁹		Postnatal bronchioles ⁶²
			Postnatal alveolis2,99
Fetal brain ²⁴			Postnatal brainea
	Fetal ganglion cells62		Postnatal ganglion cells [©]
Thyroid		•	
Uterus ²⁴			
	Ovary ¹²		
	Blood vessels42		Endothelium ⁶²
Placenta ²⁴			Adrenocortical cells ⁶² Postnatal thymus ⁶² Fibroblasts ⁶² Smooth muscle cells ⁶²
			Cardiac muscle cells ^{A2}

^{*}This protein study used Western blots; the rest used immunohistochemical methods.

bodies. Only a few studies have been performed, and some of these do not demonstrate convincing cell membrane reactivity in the published photographs. The interpretations in these studies, however, are listed, with the caveat that these findings should be confirmed by immunoprecipitation or Western or RNA blots. Production of c-erbB-2 has been identified in normal epithelium of the gastrointestinal tract and skin. Discrepancies regarding c-erbB-2 protein in other tissues could be due, at least in part, to differences in techniques.

The data on c-erbB-2 activation in various non-maminary neoplasms should be interpreted with caution, because only small numbers of tumors have been studied, usually by immunohistochemical methods using polyclonal antibodies. Studies using cell lines have been excluded, because cell culture can induce amplification and overexpression of other genes, although this has not been documented for c-erbB-2.

Activation of c-erbB-2 has been identified in 32 percent (64 of 203) of ovarian carcinomas in eight studies (Table 8). One abstract⁴⁵ stated that ovarian carcinomas contained significantly more c-erbB-2 protein than ovarian non-epithelial malignancies. Another report⁸¹ showed that 12 percent of ovarian carcinomas had c-erbB-2 overproduction without amplification.

Activation of c-erbB-2 has been identified in 20 percent (40 of 198) of gastric adenocarcinomas in seven studies, including 33 percent (21 of 64) of

TABLE 8. c-erbB-2 ACTIVATION IN HUMAN GYNECOLOGIC TUMORS

Turnor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Over- production	c-erbB-2 Protein Over- production
Ovary—carcinoma, not otherwise specified	31/120,81 1/11,57 0/5,107 0/5,84 0/3,112 0/2,72 0/1110	23/6761	23/73, ¹² 36/72 ⁸¹
Ovary-serous (papillary) carcinoma	2/7,110 1/7,112 0/672	_	-
Ovary-endometrioid carcinoma	0/3110		
Ovary—mucinous carcinoma	1/2,110 0/172		_
Ovary—clear cell carcinoma	0/2,112 0/172	-	
Ovary—mixed epithelial carcinoma	0/272	_	
Ovary-endometrioid borderline tumor	0/172	-	_
Ovary—mucinous borderline tumor	0/372	_	_
Ovary—serous cystadenoma	0/472	<u></u>	_
Ovary-mucinous cystadenoma	0/272		_
Ovary—sclerosing stromal tumor	0/172	_	_
Ovary—fibrothe∞ma	0/172	_	_
Uterus-endometrial adenocarcinoma	0/4,64 0/1110	_	_

^{*}Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used Immunohistochemical methods.

intestinal or tubular subtypes and 9 percent (4 of 47) of diffuse or signet ring cell subtypes (Table 9). Activation of c-erbB-2 has been detected in 2 percent (6 of 281) of colorectal carcinomas, although an additional immunohistochemical study detected c-erbB-2 protein in seven of eight tissues fixed in Bouin's solution. One study found greater immunohistochemical reactivity for c-erbB-2 protein in colonic adenomatous polyps than in the adjacent normal epithelium, using Bouin's fixative. Lesions with anaplastic features and progression to invasive carcinoma tended to show decreased immunohistochemical reactivity for c-erbB-2 protein. Percentage of the seven and cholangiocarcinomas (46 of 63 cases) reacted with antibodies against c-erbB-2 in one study, but some of these "positive" cases showed only diffuse cytoplasmic staining, which

TABLE 9. c-erbB-2 ACTIVATION IN HUMAN GASTROINTESTINAL TUMORS

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 Protein Over- production
Esophagus—squamous cell carcinoma	0/1107	0/181
Stomach—carcinoma, poorly differentiated	0/22108	_
Stomach—adenocarcinoma	2/24,64 2/9,107 2/8,111 2/8,67 0/1108	4/27,29 3/1061
Stomach—carcinoma, intestinal or tubular type	5/10108	16/5429
Stomach—carcinoma, diffuse or signet ring cell type	0/2108	4/4529
Colorectum—carcinoma	2/49,84 1/45,111 1/45,57 1/45,80 0/40,81 0/32,107 0/382	1/22,56 7/8220
Colon—villous adenoma	0/150	
Colon—tubulovillous adenoma	0/560	_
Colon—tubular adenoma	0/7%	19/1922
Colon—hyperplastic polyp	0/160	_
Intestine—leiomyosarcoma	-	0/151
Hepatocellular carcinoma	0/12111	12/14,95 0/261
Hepatoblastoma	0/157	
Cholangiocarcinoma	_	46/63 ⁹⁵
Pancreas—adenocarcinoma	-	2/80,410 0/261
Pancreas—acinar carcinoma	-	0/141
Pancreas—clear cell carcinoma	_	0/241
Pancreas—large cell carcinoma	_	0/341
Pancreas—signet ring carcinoma		0/141
Pancreas—chronic inflammation	-	0/14416

^{*}Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods. No studies analyzed for c-erbB-2 mRNA.

Tissues fixed in Bouin's solution.

[&]quot;Only cases with distinct membrane staining are interpreted as showing c-erbB-2 overproduction.

182 T.P. SINGLETON AND J.G. STRICKLER

TABLE 10. c-erbB-2 ACTIVATION IN HUMAN PULMONARY TUMORS

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 Protein Overproduction
Non-small cell carcinoma	2/60,75 0/6061	1/8459
Epidermoid carcinoma	0/13,52 0/10,57 0/620	3/5**
Adenocarcinoma	0/21,82 1/13,20 0/7,111 0/7,67 0/3107	4/1299
Large cell carcinoma	0/9.82 0/620	
Small cell carcinoma	<u> </u>	0/26,58 0/399
Carcinoid tumor	0/162	0/399

Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods. No studies analyzed for c-erbB-2 mRNA.

does not indicate c-erbB-2 activation in breast neoplasms. Stalso, some pancreatic carcinomas and chronic pancreatitis tissue had cytoplasmic immunohistochemical reactivity for c-erbB-2 protein, in addition to the rare case of pancreatic adenocarcinoma with distinct cell membrane staining. 1

Tables 10 through 14 summarize the studies of c-erbB-2 activation in other neoplasms. The c-erbB-2 oncogene is not activated in most of these tumors. Activation of c-erbB-2 has been detected in 1 percent (4 of 299) of pulmonary non-small cell carcinomas in nine studies, although one additional report⁵⁰ found c-erbB-2 protein overproduction in 41 percent (7 of 17). Renal cell carcinoma had c-erbB-2 activation in 7 percent (2 of 30) in four studies. Overproduction of c-erbB-2 protein was described in one transitional cell carcinoma of the urinary bladder, a grade 2 papillary lesion. Squamous cell carcinoma and basal cell carcinoma of the skin may contain c-erbB-2 protein, but it is not clear

TABLE 11. c-erbB-2 ACTIVATION IN HUMAN HEMATOLOGIC PROLIFERATIONS

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Over- production	c-e <i>rb</i> B-2 Protein Over- production
Hematologic malignancies	0/23111	_	_
Malignant lymphoma	0/9,57 0/3107	0/11	0/15**
Acute leukemia	0/1457		_
Acute lymphoblastic leukemia	0/1107	_	_
Acute myeloblastic leukemia	0/3107		_
Chronic leukemia	0/1957	_	_
Chronic lymphocytic leukemia	0/6107		
Chronic myelogenous leukemia	0/8107	-	_
Myeloproliferative disorder	0/157		_

^{*}Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

c-erbB-2 ONCOGENE

183

TABLE 12. c-erbB-2 ACTIVATION IN HUMAN TUMORS OF SOFT TISSUE AND BONE

Tumor Type	c-erbB-2 DNA Amplification
Sarcoma	0/10,111 0/857
Malignant fibrous histiocytoma	0/1107
Liposarcoma	0/3107
Pleomorphic sarcoma	0/1107
Rhabdomyosarcoma	0/1107
Osteogenic sarcoma	0/2,107 0/257
Chondrosarcoma	0/1107
Ewing's sarcoma	0/157
Schwannoma	0/157

[&]quot;Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. No studies analyzed for c-erbB-2 mRNA or c-erbB-2 protein.

whether the protein level is increased over that of normal skin. 56 Thyroid carcinomas and adenomas can have low levels of increased c-erbB-2 mRNA. One abstract described low-level c-erbB-2 DNA amplification in one of ten salivary gland pleomorphic adenomas. 48

Correlation of c-erbB-2 Activation With Patient Outcome

Very few studies have attempted to correlate c-erbB-2 activation in non-mammary tumors with outcome. Slamon et al⁸¹ showed that c-erbB-2 amplification or overexpression in ovarian carcinomas correlates with decreased survival, especially when marked activation is present. However, they did not report the stage, histological grade, or histological subtype of these neoplasms. Another study of stages III and IV ovarian carcinomas found a correlation between decreased survival and c-erbB-2 protein overproduction, but not between survival and histological grade. One abstract stated that c-erbB-2 protein overproduction in 10 of 16 pulmonary adenocarcinomas correlated with decreased disease-free interval. Another abstract described a tendency for immunohisto-

TABLE 13. c-erbB-2 ACTIVATION IN HUMAN TUMORS OF THE URINARY TRACT®

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Over- production	c-erbB-2 Protein Over- production
Kidney—renal cell carcinoma	1/5,57 1/4,107 0/584	0/16104	_
Wilms' tumor	0/457	_	-
Prostate-adenocarcinoma	_	-	0/2359
Urinary bladdercarcinoma			1/4858

[&]quot;Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

184 T.P. SINGLETON AND J.G. STRICKLER

TABLE 14. c-erbB-2 ACTIVATION IN MISCELLANEOUS HUMAN TUMORS

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Over- production
Skin-malignant melanoma	_	_	0/1058
Skin, head and neck—squamous cell carcinoma	0/7107	_	_
Site not stated—squamous cell carcinoma	0/8,57 0/278	_	_
Salivary gland—adenocarcinoma	1/178	***	_
Parotid gland—adenoid cystic carcinoma	_	_	0/161
Thyrold—anaplastic carcinoma	0/11	0/11	
Thyroid—papillary carcinoma	0/51	3(low levels)/51	
Thyroid—adenocarcinoma	0/184		
Thyrold—adenoma	0/21	1(low levels)/21	_
Neuroblastoma	0/35,81 0/9,57 0/176		
Meningioma	0/257		

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

chemical reactivity for e-erbB-2 protein to correlate with higher grades of prostatic adenocarcinoma. ⁹⁷ Additional prognostic studies of ovarian carcinomas and other neoplasms are needed.

SUMMARY

Activation of the c-erbB-2 oncogene can occur by amplification of c-erbB-2 DNA and by overproduction of c-erbB-2 mRNA and c-erbB-2 protein. Approximately 20 percent of breast carcinomas show evidence of c-erbB-2 activation, which correlates with a poor prognosis primarily in patients with metastasis to axillary lymph nodes. Studies that have attempted to correlate c-erbB-2 activation with other prognostic factors in breast carcinoma have reported conflicting conclusions. The pathologic and clinical significance of c-erbB-2 activation in other neoplasms is unclear and should be assessed by additional studies.

REFERENCES

- Aasland R, Lillehaug JR, Male R, et al. Expression of oncogenes in thyroid tumors: Coexpression of c-erbB2/neu and c-erbB. Br J Cancer. 57:358, 1988
- Akiyama T, Sudo C, Ogawara H, et al. The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. Science. 232:1644, 1986

- 3. Ali IU, Lidereau R, Theillet C, Callahan R. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science. 238:185, 1987
- 4. Ali IU, Campbell G, Lidereau R, Callahan R. Amplification of c-erbB-2 and aggressive human breast tumors. Science. 240:1795, 1988
- Ali IU, Campbell G, Lidereau R, Callahan R. Lack of evidence for the prognostic significance of c-erbB-2 amplification in human breast carcinoma. Oncogene Res. 3:139, 1988
- Bacus SS, Bacus JW, Slamon DJ, Press MF. HER-2/neu oncogene expression and DNA ploidy analysis in breast cancer. Arch Pathol Lab Med. 114:164, 1990
- Bacus SS, Ruby SG, Weinberg DS, et al. HER-2/neu oncogene expression and proliferation in breast cancers. Am J Pathol. 137:103, 1990
- 8. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 319:226, 1986
- Bargmann CI, Hung MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell. 45:649, 1986
- Bargmann CI, Weinberg RA. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J. 7:2043, 1988
- 11. Barnes DM, Lammie GA, Millis RR, et al. An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. Br J Cancer. 58:448, 1988
- 12. Berchuck A, Kamel A, Whitaker R, et al. Overexpression of *HER-2/neu* is associated with poor survival in advanced epithelial ovarian cancer. *Cancer Res.* 50:4087, 1990
- Berger MS, Locher GW, Saurer S, et al. Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res. 48:1238, 1988
- Bernards R, Destree A, McKenzie S, et al. Effective tumor immunotherapy directed against an oncogene-encoded product using a vaccinia virus vector. Proc Natl Acad Sci USA. 84:6854, 1987
- 15. Biunno I, Pozzi MR, Pierotti MA, et al. Structure and expression of oncogenes in surgical specimens of human breast carcinomas. Br J Cancer. 57:464, 1988
- 16. Borg Å, Linell F, Idvall I, et al. Her2/neu amplification and comedo type breast carcinoma. Lancet. 1:1268, 1989
- 17. Borg Å, Tandon AK, Sigurdsson H, et al. HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res. 50:4332, 1990
- Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell. 57:931, 1989
- Carney WP, Retos C, Petit D, et al. Quantitation of the neu oncogene protein using a monoclonal antibody based immunoassay (abstract). Mod Pathol. 3:15A, 1990
- Cline MJ, Battifora H. Abnormalities of protooncogenes in non-small cell lung cancer: Correlations with tumor type and clinical characteristics. Cancer. 60:2669, 1987
- Cline MJ, Battifora H, Yokota J. Proto-oncogene abnormalities in human breast cancer: Correlations with anatomic features and clinical course of disease. J Clin Oncol. 5:999, 1987
- 22. Cohen JA, Weiner DB, More KF, et al. Expression pattern of the neu (NGL) geneencoded growth factor receptor protein (p185^{nep}) in normal and transformed epithelial tissues of the digestive tract. Oncogene. 4:81, 1989
- 23. Colnaghi MI, Miotti S, Andreola S, et al. New prognostic factors in breast cancer (abstract). Am Assoc Cancer Res Ann Meeting. 30:230A, 1989

186 T.P. SINGLETON AND J.G. STRICKLER

- Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 230:1132, 1985
- 25. Di Fiore PP, Pierce JH, Kraus MH, et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 237:178, 1987
- Drebin JA, Link VC, Weinberg RA, Greene MI. Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. Proc Natl Acud Sci USA. 83:9129, 1986
- Drebin JA, Link VC, Greene MI. Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene. 2:273, 1988
- Drebin JA, Link VC, Greene MI. Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene. 2:387, 1988
- Falck VG, Gullick WJ. c-erhB-2 oncogene product staining in gastric adenocarcinoma. An immunohistochemical study. J Pathol. 159:107, 1989
- Fendly BM, Winget M, Hudziak RM, et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/ neu gene product. Cancer Res. 50:1550, 1990
- 31. Fontaine J. Tesseraux M. Klein V. et al. Gene amplification and expression of the neu (c-erbB-2) sequence in human mammary carcinoma. Oncology. 45:360, 1988
- 32. Frye RA, Benz CC, Liu E. Detection of amplified oncogenes by differential polymerase chain reaction. Oncogene. 4:1153, 1989
- 33. Fukushige SI, Matsubara KI, Yoshida M, et al. Localization of a novel v-erhB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol. 6:955, 1986
- 34. Guerin M, Barrois M, Terrier MJ, et al. Overexpression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: Correlation with poor prognosis. Oncogene Res. 3:21, 1988
- 35. Guerin M, Gabillot M, Mathieu MC, et al. Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: Prognostic significance. Int J Cancer. 43:201, 1989
- 36. Gullick WJ, Berger MS, Bennett PLP, et al. Expression of the c-erbB-2 protein in normal and transformed cells. Int J Cancer. 40:246, 1987
- Gullick WJ, Venter DJ. The c-erbB2 gene and its expression in human cancers. In: Waxman J, Sikora K, eds. The Molecular Biology of Cancer. Boston, Blackwell Sci Publ; 1989: 38-53
- 38. Gullick WJ. Expression of the c-erbB-2 proto-oncogene protein in human breast cancer. Recent Results Cancer Res. 113:51, 1989
- Gusterson BA, Machin LG, Gullick WJ, et al. c-erbB-2 expression in benign and malignant breast disease. Br J Cancer. 58:453, 1988
- Gusterson BA, Machin LG, Gullick WJ, et al. Immunohistochemical distribution of c-erbB-2 in infiltrating and in situ breast cancer. Int J Cancer. 42:842, 1988
- 41. Hall PA, Hughes CM, Staddon SL, et al. The c-erbB-2 proto-oncogene in human pancreatic cancer. J Pathol. 161:195, 1990
- Hanna W, Kahn HJ, Andrulis I, Pawson T. Distribution and patterns of staining of neu oncogene product in benign and malignant breast diseases. Mod Pathol. 3:455, 1990
- 43. Harris AL, Nicholson S. Epidermal growth factor receptors in human breast cancer.

- In: Lippman ME, Dickson RB, eds. Breast Cancer: Cellular and Molecular Biology. Boston, Kluwer Academic Publ; 1988: 93-118
- Heintz NH, Leslie KO, Rogers LA, Howard PL. Amplification of the c-erhB-2 oncogene and prognosis of breast adenocarcinoma. Arch Pathol Lab Med. 114:160, 1990
- 45. Huettner P, Carney W, Delellis R, et al. Quantification of the neu oncogene product in ovarian neoplasms (abstract). Mod Pathol. 3:46A, 1990
- Hung MC, Yan DH, Zhao X. Amplification of the proto-neu oncogene facilitates oncogenic activation by a single point mutation. Proc Natl Acad Sci USA. 86:2545, 1989
- 47. Hyncs NE, Gerber HA, Saurer S, Groner B. Overexpression of the c-erbB-2 protein in human breast tumor cell lines. J Cell Biochem. 39:167, 1989
- Kahn HJ, Hanna W, Auger M, Andreulis I. Expression and amplification of neu oncogene in pleomorphic adenoma of salivary glands (abstract). Mod Pathol. 3:50A, 1990
- King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 229:974, 1985
- King CR, Swain SM, Porter L, et al. Heterogeneous expression of erb B-2 messenger RNA in human breast cancer. Cancer Res. 49:4185, 1989
- Kokai Y, Dobashi K, Weiner DB, et al. Phosphorylation process induced by epidermal growth factor receptor alters the oncogenic and cellular neu (NGL) gene products. Proc Natl Acad Sci USA. 85:5389, 1988
- Lacroix H, Iglehart JD, Skinner MA, Kraus MH. Overexpression of erbB-2 or EGF receptor proteins present in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional metastases. Oncogene. 4:145, 1989
- Lemoine NR, Staddon S, Dickson C, et al. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene. 5:237, 1990
- Lodato RF, Maguire HC, Greene MJ, et al. Immunohistochemical evaluation of cerbB-2 oncogene expression in ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Mod Pathol. 3:449, 1990
- 55. Maguire HC, Greene MI. The neu (c-erbB-2) oncogene. Semin Oncol. 16:148, 1989
- Maguire HC, Jaworsky C, Cohen JA, et al. Distribution of neu (c-erbB-2) protein in human skin. J Invest Dermatol. 89:786, 1989
- 57. Masuda H, Battifora H, Yokota J, et al. Specificity of proto-oncogene amplification in human malignant diseases. *Mol Biol Med.* 4:213, 1987
- 58. McCann A, Dervan PA, Johnston PA, et al. c-erbB-2 oncoprotein expression in primary human tumors. Cancer. 65:88, 1990
- McKenzie SJ, Marks PJ, Lam T, et al. Generation and characterization of monoclonal antibodies specific for the human neu oncogene product, p185. Oncogene. 4:543, 1989
- Meltzer SJ, Ahnen DJ, Battifora H, et al. Protooncogene abnormalities in colon cancers and adenomatous polyps. Gastroenterology. 92:1174, 1987
- 61. Mori S, Akiyama T, Morishita Y, et al. Light and electron microscopical demonstration of c-erbB-2 gene product-like immunoreactivity in human malignant tumors. Virchows Arch [B]. 54:8, 1987
- 62. Mori S, Akiyama T, Yamada Y, et al. C-erbB-2 gene product, a membrane protein commonly expressed in human fetal epithelial cells. Lab Invest. 61:93, 1989
- 63. Muller WJ, Sinn E, Pattengale PK, et al. Single-step induction of mammary

T.P. SINGLETON AND J.G. STRICKLER

- adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 54:105, 1988
- Ong G, Gullick W, Sikora K. Oncoprotein stability after tumor resection. Br J Cancer. 61:538, 1990
- Parks HC, Lillycrop K, Howell A, Craig RK. C-erbB2 mRNA expression in human breast tumors: Comparison with c-erbB2 DNA amplification and correlation with prognosis. Br J Cancer. 61:39, 1990
- Popescu NC, King CR, Kraus MH. Localization of the erbB-2 gene on normal and rearranged chromosomes 17 to bands q12-21.32. Genomics. 4:362, 1989
- 67. Press MF, Pike MC, Paterson MC, et al. Overexpression of HER-2/neu. protooncogene in node negative breast cancer: Correlation with increased risk of early recurrent disease (abstract). Mod Pathol. 3:80A, 1990
- Ramachandra S, Machin L, Ashley S, et al. Immunohistochemical distribution of eerbB-2 in in situ breast carcinoma: A detailed morphological analysis. J Pathol. 161:7, 1990
- Rio MC, Bellocq JP, Gairard B, et al. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene ERBB2. Proc Natl Acad Sci USA. 84:9243, 1987
- Robinson R, Kern J, Weiner D, et al. p185^{new} expression in human lung non-small cell carcinomas: An immunohistochemical study with clinicopathologic correlation (abstract). Mod Pathol. 3:85A, 1990
- 71. Rochlitz CF, Benz CC. Oncogenes in human solid tumors. In: Benz C, Liu E, eds. Oncogenes. Boston, Kluwer Academic Publ; 1989: 199-240
- Sasano H, Garret CT, Wilkinson DS, et al. Protooncogene amplification and tumor ploidy in human ovarian neoplasms. Hum Pathol. 21:382, 1990
- Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: An erb-Brelated gene encoding a 185,000-M_r tumor antigen. Nature. 312:513, 1984
- Schechter AL, Hung MC, Vaidyanathan L, et al. The neu gene: An erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science. 229:976, 1985
- Schneider PM, Hung MC, Chiocca SM, et al. Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res. 49:4968, 1989
- Semba K, Kamata N, Toyoshima K, Yamamoto T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA. 82:6497, 1985
- Seshadri R, Matthews C, Dobrovic A, Horsfall DJ. The significance of oncogene amplification in primary breast cancer. Int J Cancer. 43:270, 1989
- Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 290:261, 1981
- Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235:177, 1987
- 80. Slamon DJ, Clark GM. Amplification of c-erbB-2 and aggressive human breast tumors. Science. 240:1795, 1988
- Slamon DJ. Godolphin W, Jones LA, et al. Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science. 244:707, 1989

- Slebos RJC, Evers SG, Wagenaar SS, Rodenhuis S. Cellular protooncogenes are infrequently amplified in untreated non-small cell lung cancer. Br J Cancer. 59:76, 1989
- Stern DF, Kamps MP, Cao H. Oncogenic activation of p185^{neu} stimulates tyrosine phosphorylation in vivo. Mol Cell Biol. 8:3969, 1988
- 84. Tal M, Wetzler M, Josefberg Z, et al. Sporadic amplification of the HER2/neu protooncogene in adenocarcinomas of various tissues. Cancer Res. 48:1517, 1988
- 85. Tandon AK, Clark GM, Chamness GC, et al. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol. 7:1120, 1989
- Thor AD, Schwartz LH, Koerner FC, et al. Analysis of c-erbB-2 expression in breast carcinomas with clinical follow-up. Cancer Res. 49:7147, 1989
- 87. Tsuda H, Hirohashi S, Shimosato Y, et al. Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbB-2/ear-1. Cancer Res. 49:3104, 1989
- 88. Tsutsumi Y, Naber SP, DeLellis RA, et al. Neu oncogene protein and epidermal growth factor receptor are independently expressed in benign and malignant breast tissues. Hum Pathol. 21:750, 1990
- 89. Tsutsumi Y, Stork PJ, Wolfe HJ. Detection of DNA amplification and mRNA overexpression of the neu oncogene in breast carcinomas by polymerase chain reaction (abstract). Mod Pathol. 3:101A, 1990
- Van de Vijver M, van de Bersselaar R, Devilee P, et al. Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol. 7:2019, 1987
- 91. Van de Vijver MJ, Mooi WJ, Wisman P, et al. Immunohistochemical detection of the new protein in tissue sections of human breast tumors with amplified new DNA. Oncogene. 2:175, 1988
- 92. Van de Vijver MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer: Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 319:1239, 1988
- Varley JM, Swallow JE, Brammar WJ, et al. Alterations to either c-erbB-2 (neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis.
 Oncogene. 1:423, 1987
- Venter DJ, Tuzi NL, Kumar S, Gullick WJ. Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: Immunohistological assessment correlates with gene amplification. Lancet. 2:69, 1987
- 95. Voravud N, Foster CS, Gilbertson JA, et al. Oncogene expression in cholangiocarcinoma and in normal hepatic development. *Hum Pathol.* 20:1163, 1989
- Walker RA, Senior PV, Jones JL, et al. An immunohistochemical and in situ hybridization study of c-myc and c-erbB-2 expression in primary human breast carcinomas. J Pathol. 158:97, 1989
- 97. Ware JL, Maygarden SJ, Koontz WW, Strom SC. Differential reactivity with anti-cerbB-2 antiserum among human malignant and benign prostatic tissue (abstract). Am Assoc Cancer Res Ann Meeting. 30:437A, 1989
- 98. Weiner DB, Liu J, Cohen JA, et al. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 339:230, 1989
- Weiner DB, Nordberg J, Robinson R, et al. Expression of the neu gene-encoded protein (p185^{neu}) in human non-small cell carcinomas of the lung. Cancer Res. 50:421, 1990

190 T.P. SINGLETON AND J.G. STRICKLER

- 100. Wells A. The epidermal growth factor receptor and its ligand. In: Benz C, Liu E, eds. Oncogenes. Boston, Kluwer Academic Pub; 1989: 143-168
- 101. Wright C, Augus B. Nicholson S, et al. Expression of c-erbB-2 oncoprotein: A prognostic indicator in human breast cancer. Cancer Res. 49:2087, 1989
- 102. Wu A, Colombero A, Low J, et al. Analysis of expression and mutation of the erbB-2 gene in breast carcinoma by the polymerase chain reaction (abstract). Mod Pathol. 3:108A, 1990
- 103. Yamamoto T, Ikawa S, Akiyama T, et al. Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor. Nature. 319:230, 1986
- 104. Yao M, Shuin T, Misaki H, Kubota Y. Enhanced expression of c-myc and epidermal growth factor receptor (C-erhB-1) genes in primary human renal cancer. Cancer Res. 48:6753, 1988
- 105. Yarden Y, Weinberg RA. Experimental approaches to hypothetical hormones: Detection of a candidate ligand of the neu protooncogene. Proc Natl Acad Sci USA. 86:3179, 1989
- Yee LD, Kaeinski BM, Carter D. Oncogene structure, function and expression in breast cancer. Semin Diagn Pathol. 6:110, 1989
- Yokota J, Yamamoto T, Toyoshima K, et al. Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet. 1:765, 1986
- 108. Yokota J, Yamamoto T, Miyajima N, et al. Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular adenocarcinoma of the stomach and are often accompanied by amplification of the v-erbA homologue. Oncogene. 2:283, 1988
- 109. Zeillinger R, Kury F, Czerwenka K, et al. HER-2 amplification, steroid receptors and epidermal growth factor receptor in primary breast cancer. Oncogene. 4:109, 1989
- Zhang X, Silva E, Gershenson D, Hung MC. Amplification and rearrangement of c-erbB proto-oncogenes in cancer of human female genital tract. Oncogene. 4:985, 1989
- 111. Zhou D, Battifora H, Yokota J, et al. Association of multiple copies of the c-erbB-2 oncogene with spread of breast cancer. Cancer Res. 47:6123, 1987
- 112. Zhou D, Gonzalez-Cadavid N, Ahuja H, et al. A unique pattern of proto-oncogene abnormalities in ovarian adenocarcinomas. Cancer. 62:1573, 1988
- 113. Zhou D, Ahuja H, Cline MJ. Proto-oncogene abnormalities in human breast cancer: c-erbB-2 amplification does not correlate with recurrence of disease. Oncogene. 4:105, 1989