M 383: Assignment 1

Nathan Stouffer

Problem. Begin with the statement "Multiplication of integers is associative." Rewrite the state with explicit quantifiers. Then form the negation of the statement. Finally, recast the negation in a form similar to the original statement.

Proof. The statement "Multiplication of integers is associative" can be rewritten with explicit qunatifiers as

$$\forall a, b, c \in \mathbb{Z}, a * (b * c) = (a * b) * c$$

The negation of the statement is

$$\exists a, b, c \in \mathbb{Z} \text{ such that } a * (b * c) \neq (a * b) * c$$

We can rewrite the negation (in words) as "Multiplication of integers is not always associative."

Problem. Prove that every subset of \mathbb{N} is either finite or countable. Conclude from this that there is no infinite set with cardinality less than that of \mathbb{N} .

Proof.

Problem. Prove that the rational numbers are countable.

Proof. We can prove that the rational numbers are countable by providing a one-to-one correspondence from $\mathbb N$ to $\mathbb Q$. Before showing that $\mathbb Q$ is countable, we give some notation. For a given $k \in \mathbb N$, let $Q_k = \{\pm j/k \mid j \in \mathbb N\}$. We then say that $U = \bigcup_{k=1}^\infty Q_k$. Then we can write the set of rational numbers as $\mathbb Q = \{0\} \bigcup U$.

Note that each Q_k is countable.

Problem. Show that if a countable subset is removed from an uncountable set, the remainder is still uncountable.

Proof.

Problem. Let A_1, A_2, A_3, \ldots be countable sets, and let their Cartesian product $A_1 \times A_2 \times A_3 \times \cdots$ be defined to be the set of all sequences (a_1, a_2, \ldots) where a_k is an element of A_k . Prove that the Cartesian product is uncountable. Show that the same conclusion holds if each of the sets A_1, A_2, \ldots has at least two elements.

Proof.