CSI - 3105 Design & Analysis of Algorithms Course 5

Jean-Lou De Carufel

Fall 2020

Chapter 3: Graph Algorithms

A graph G is made of a set V of vertices (or nodes) together with a set E of edges. We write G = (V, E).

A graph is *undirected* if each edge in E is a pair $\{u, v\}$, where $u, v \in V$ and $u \neq v$.

(5)

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\}\}$$

Chapter 3: Graph Algorithms

A graph G is made of a set V of vertices (or nodes) together with a set E of edges. We write G = (V, E).

A graph is *directed* is each edge in E is an **ordered** pair (u, v), where $u, v \in V$ and $u \neq v$.

(5)

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1,2), (1,3), (2,3), (4,2)\}$$

Examples:

- A road map
- Facebook. Vertices are users. There is an edge $\{A, B\}$ if and only if A and B are "friends".
- WWW. Vertices are web pages. There is a directed edge (A, B) if and only if A has a link to B.

Examples:

Scheduling exams!

V = set of all courses taught this term

There is an edge $\{u, v\}$ if and only if there is at least one student taking both courses u and v.

Let C be the minimum number of colors needed such that

- each vertex gets one color.
- For each edge $\{u, v\}$, u and v have different colors.

Then we can make an exam schedule with C time slots 1, 2, ..., C: all vertices (i.e., courses) with color i have their exam in time slot i. In this way, there are no conflicts!

But computing *C* is very difficult...

In a graph G = (V, E), two vertices $u, v \in V$ are adjacent if there is an edge between u and v.

A vertex $u \in V$ is *incident* to an edge $e \in E$ if one of the two vertices of e is u.

The *degree* of a vertex $u \in V$ is equal to the number of edges incident to u.

When the graph is oriented, the *outdegree* of a vertex $u \in V$ is equal to the number of edges $e \in E$ such that u is the starting point of e. The *indegree* of a vertex $u \in V$ is equal to the number of edges $e \in E$ such that u is the endpoint of e.

When the graph is oriented, the *outdegree* of a vertex $u \in V$ is equal to the number of edges $e \in E$ such that u is the starting point of e. The *indegree* of a vertex $u \in V$ is equal to the number of edges $e \in E$ such that u is the endpoint of e.

Theorem (Handshaking Lemma)

Let G = (V, E) be a graph. then

$$\sum_{u\in V}\deg(u)=2|E|.$$

Proof:

When the graph is oriented, the *outdegree* of a vertex $u \in V$ is equal to the number of edges $e \in E$ such that u is the starting point of e. The *indegree* of a vertex $u \in V$ is equal to the number of edges $e \in E$ such that u is the endpoint of e.

Theorem (Handshaking Lemma)

Let G = (V, E) be a graph. then

$$\sum_{u\in V}\deg(u)=2|E|.$$

PROOF: Each edge is counted twice!

$$G = (V, E)$$
 $V = \{v_1, v_2, ..., v_n\}$

	A	B	C	D	E	F
A	[0	1	1	0	0	0
B	1	0	1	1	1	0
C	1	1	0	1	0	0
D	0	1	1	0	0	0
E	0	1	0	0	0	0
\overline{F}	$\begin{bmatrix} A \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	0	0	0
	_					-

 ${\bf Adjacency\ matrix}$

$$G = (V, E)$$
 $V = \{v_1, v_2, ..., v_n\}$

	A	B	C	D	E	${\cal F}$
A	0	1	0	0	0	0
B	0	0	0	1	0	0
C	1	1	0	0	0	0
D	0	0	1	0	0	0
E	0	1	0	0	0	0
F	0	0	0	D 0 1 0 0 0	0	0

Adjacency matrix

$$G = (V, E)$$
 $V = \{v_1, v_2, ..., v_n\}$

	A	B	C	D	E	F
A	0	1	0	0	0	0
B	0	0	0	1	0	0
C	1	1	0	0	0	0
D	0	0	1	0	0	0
E	0	1	0	0	0	0
F	0	0	0	D 0 1 0 0 0	0	0

Adjacency matrix

Advantage:

• In O(1) time, we can test if there is an edge between two given vertices.

$$G = (V, E)$$
 $V = \{v_1, v_2, ..., v_n\}$

	A	B	C	D	E	F
A	0	1	0	0	0	0
B	0	0	0	1	0	0
C	1	1	0	0	0	0
D	0	0	1	0	0	0
E	0	1	0	0	0	0
F	0	0	0	D 0 1 0 0 0	0	0

Adjacency matrix

Advantage:

• In O(1) time, we can test if there is an edge between two given vertices.

Disadvantage:

- Uses $\Theta(n^2)$ space for any graph.
- Finding all neighbours of a given vertex takes O(n) time.

$$G = (V, E)$$
 $V = \{v_1, v_2, ..., v_n\}$

Adjacency list

$$G = (V, E)$$

$$A \qquad F \qquad A \qquad B$$

$$B \qquad D$$

 $V = \{v_1, v_2, ..., v_n\}$

Adjacency list

Advantage:

- Uses $\Theta(|V| + |E|)$ space.
- Finding all neighbours of a vertex $u \in V$ takes $O(1 + \deg(u))$ time.

Advantage:

- Uses $\Theta(|V| + |E|)$ space.
- Finding all neighbours of a vertex $u \in V$ takes $O(1 + \deg(u))$ time.

Disadvantage:

• Testing if $\{u, v\}$ (or (u, v)) is an edge takes $O(1 + \deg(u))$ time.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○