B-15 (ANSYS)

Формулировка задачи:

 $\ \ \, \mathcal{L}$ ано: Ферма с жёстким брусом нагружена сосредоточенной силой в точке D.

E – модуль упругости материала;

A – площадь поперечного сечения.

l – длина пролёта;

F – внешняя сила;

Найти: 1) V_K – вертикальное перемещение точки K;

2) W_F - работу силы F.

Аналитический расчёт (см. В-15) даёт следующие решения:

$$W_F = U = \frac{11}{24} \cdot \frac{F^2 \cdot l}{E \cdot A} = 0,4583 \cdot \frac{F^2 \cdot l}{E \cdot A} \quad .$$

$$\begin{split} N_{l} &= \frac{11}{12} \cdot F = 0,9167 \cdot F \quad ; \\ N_{2} &= -\frac{1}{12} \cdot F = -0,08333 \cdot F \quad ; \\ N_{3} &= \frac{2}{12} \cdot F = 0,1667 \cdot F \quad ; \\ N_{4} &= \frac{1}{12} \cdot F = 0,08333 \cdot F \quad ; \\ v_{A} &= -\frac{10}{12} \cdot \frac{F \cdot l}{E \cdot A} = -0,8333 \cdot \frac{F \cdot l}{E \cdot A} \quad ; \\ v_{B} &= -\frac{4}{12} \cdot \frac{F \cdot l}{E \cdot A} = -0,3333 \cdot \frac{F \cdot l}{E \cdot A} \quad ; \\ v_{C} &= +\frac{1}{12} \cdot \frac{F \cdot l}{E \cdot A} = -0,08333 \cdot \frac{F \cdot l}{E \cdot A} \quad ; \\ v_{C} &= +\frac{2}{12} \cdot \frac{F \cdot l}{E \cdot A} = +0,1667 \cdot \frac{F \cdot l}{E \cdot A} \quad ; \end{split}$$

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Puc. 1.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

 $\underline{Peшeнue\ 3a\partial a uu}$: Приравняв E, A, F и l, к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

No	Действие	Результат		
1	Задаём параметры расчёта — базовые величины задачи:U_M > Parameters > Scalar Parameters >l=1	Scalar Parameters		
2	Первая строчка в таблице конечных элементов — плоский балочный BEAM3, вторая строчка —плоский фермовый LINK1: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter C_P > ET,2,LINK1 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types: Type 1 BEAM3 Type 2 LINK1 Add Options Delete Close Help		

№	Действие		Результат
5	Координаты точек конструкции: Определяемся с координатами точек (узлов фермы).	$S(0,4\cdot l,0)$ $D(0,3\cdot l,0)$ $A(0,2\cdot l,0)$	$G(a,4\cdot l,0)$ $B(a,2\cdot l,0)$ $K(\frac{3}{2}\cdot a,2\cdot l,0)$ $\frac{a}{2} \qquad \frac{a}{2}$ $C(2\cdot a,2\cdot l,0)$ $H(2\cdot a,0,0)$

No	Действие		Резу	ультат			
	Конечноэлементная модель						
№	Конечноэлементная модель V3лы 1, 2, 3, 4, 5, 6, 7 и 8 в точках A, B, K, C, S, D, G и H соответственно: M_M> Preprocessor> Modeling> Create> Nodes> In Active CS > NODE пишем 1 X, Y, Z пишем 0, 2*l, 0 > Apply > NODE пишем 2 X, Y, Z пишем al, 2*l, 0 > Apply > NODE пишем 3 X, Y, Z пишем 3/2*al, 2*l, 0 > Apply > NODE пишем 4 X, Y, Z пишем 4 X, Y, Z пишем 2*al, 2*l, 0 > Apply > NODE пишем 5 X, Y, Z пишем 0, 4*l, 0 > Apply > NODE пишем 6 X, Y, Z пишем 0, 3*l, 0 > Apply > NODE пишем 7	1 NODES NODE NUM	Peay .5 .6 .1	ультат .7	.3	.4	
	X,Y,Z пишем al,4*l,0 > Apply > NODE пишем 8 X,Y,Z пишем 2*al,0,0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit						

No	Действие	Результат
7	Конечные элементы — упругие стержни фермы: M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes [TYPE]установить "2" [MAT]установить "2" [REAL]установить "2" > OK M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 5 и 6 > Apply > 6 и 1 > Apply > 7 и 2 > Apply > 4 и 8 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 E-N 5 7 1 6 3 2 1 2 .3 4 4 4 8
8	Конечные элементы — отрезки жёсткого бруса: M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes [TYPE]установить "1 BEAM3" [MAT]установить "1" > OK M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 1 и 2 > Apply > 2 и 3 > Apply > 3 и 4 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 E-N 5 7 1 6 3 2 1 5 2 6 3 7 4 4 4 XX X 8

N₂	Действие	Результат			
	Расчёт				
12	Запускаем расчёт: М_M > Solution > Solve > Current LS Синхронно появляются два окна: белое информационное и серое исполнительное. Белое закрываем, на сером нажимаем ОК. Расчёт пошёл. Когда он закончится, появится окно «Solution is done!». Закройте это окно. Расчёт окончен.	STATUS Command SS			
	Просмотр результатов				
13	Деформированная форма конструкции:M_M > General Postproc > Plot Results >> Deformed Shape >KUND установить Def + undeformed> OKU_M > PlotCtrls > Style > Displacement Scaling >DMULT устанавливаем "User specified"User specified factor увеличиваем втри раза с 0.2182 до 1> ОКЧёным цветом начерчена недеформированная форма фермы, цветными линиями- ферма после нагружения (масштаб перемещений выбирается автоматически).	DISPLACEMENT STEP=1 SUB =1 TITM=1 DMX =.916592 1 3 6 2 2 6 3 7 4 4			

№	Действие	Результат
14	Вертикальные перемещения точек жёсткого бруса: М_М > General Postproc > List Results > Nodal Solution > Nodal Solution > Y-Component of displacement > OK Вертикальное перемещение точки A (узла №1) $UY = -0.8332 \cdot \frac{F \cdot l}{E \cdot A}$ (отрицательное, то есть вниз), вертикальное перемещение точки B (узла №2) $UY = -0.3332 \cdot \frac{F \cdot l}{E \cdot A}$ (отрицательное, то есть вниз) , вертикальное перемещение точки K (узла №3) $UY = -0.08316 \cdot \frac{F \cdot l}{E \cdot A}$ (отрицательное, то есть вниз) и вертикальное перемещение точки C (узла №4) $UY = +0.1668 \cdot \frac{F \cdot l}{E \cdot A}$ (положительное, то есть вверх) совпадают с результатом аналитического расчёта (рис. I ., числа, выделенные синим цветом) с точностью до сотых долей процента.	PRINT U NOOAL SOLUTION PER NODE ******* POST1 NODAL DEGREE OF FREEDOM LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM ***********************************

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.