Calculus

Limits and Continuity

Limits	2
Limits of a Functions and Sequences	2
Properties of Limits	3
One-Sided Limit	3
Continuity	4
Continuous Functions	4
Intermediate Value Theorem	4
Limits Involving Infinity	5
Limits at Infinity and Infinite Limits	5
Asymptotes of functions	5

Derivatives

Applications of Derivatives

Integrals

Applications of Integrals

Transcendental Functions

Techniques of Integration

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

Limits and Continuity

Limits

- **Limit** $\lim_{x\to c}$: the value of a function (or sequence) approaches as the input (or index) approaches some value (informal definition).
 - Limits are used to define continuity ↓, derivatives ↓, and integrals ↓.

Limits of a Functions and Sequences

- § Limit of a function [%] | Limit of a sequence [%] | Essence of Calculus, E7
- Limit of a function: a fundament concept in calculus and analysis concerning the behavior L of a function near a particular input c, i.e.,

$$\lim_{x \to c} f(x) = L$$

- Reads as "f of x tends to L as x tends to c"
- \circ \mathcal{E} , δ **Limit of function**: a formalized definition, wherein f(x) is defined on an open interval I, except possibly at c itself, leading to above definition, if and only if:
 - For every real measure of closeness $\mathcal{E} > 0$, there exists a real corresponding $\delta > 0$, such that for all existing further approaches there exist a smaller \mathcal{E} , i.e.,

$$f: \mathbb{R} \to \mathbb{R}, \ c, L \in \mathbb{R} \Rightarrow \lim_{x \to c} f(x) = L$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \ (\exists \delta > 0 : \forall x \in I \ (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon))$$

- Functions do not have a limit when the function:
 - has a unit step, i.e., it "jumps" at a point;
 - is not bounded, i.e., it tends towards infinity;
 - or does not stay close to any single number, i.e., it oscillates too much.
- **Limit of a sequence**: the value that the terms of a sequence (x_n) "tends to" (and not to any other) as n approaches infinity (or some point), i.e.,

$$\lim_{n\to\infty} x_n = x$$

• \mathcal{E} Limit of sequence: for every measure of closeness \mathcal{E} , the sequence's x_n term eventually converge to the limit, i.e.,

$$\forall \varepsilon > 0 \ (\exists N \in \mathbb{N} \ (\forall n \in \mathbb{N} \ (n \geq N \Rightarrow |x_n - x| < \varepsilon)))$$

- · Convergent: when a limit of a sequence exists.
- Divergent: a sequence that does not converge.

Properties of Limits

- S List of limits 1 Squeeze theorem 3
- Operations on a single known limit: if $\lim_{x \to \infty} f(x) = L$ then:
 - $\cdot \lim_{x \to c} [f(x) \pm \alpha] = L \pm \alpha$
 - $\cdot \lim_{x \to c} \alpha f(x) = \alpha L$
 - $\lim_{x \to c} f(x)^{-1} = L^{-1}, L \neq 0$
 - $\cdot \lim_{x \to c} f(x)^n = L^n, n \in \mathbb{N}$
 - $\overline{\cdot \lim_{x \to c} f(x)^{n-1}} = L^{n-1}, n \in \mathbb{N}, \text{ if } n \in \mathbb{N}_e \Rightarrow L > 0$
- Operations on two known limits: if $\lim_{x\to c} f(x) = L_1$ and $\lim_{x\to c} g(x) = L_2$
 - $\cdot \lim_{x \to c} [f(x) \pm g(x)] = L_1 \pm L_2$
 - $\cdot \lim_{x \to c} [f(x)g(x)] = L_1 L_2$
 - $\lim_{x \to c} f(x)g(x)^{-1} = L_1 L_2^{-1}$
- **Squeeze theorem**: used to confirm the limit of a function via comparison with two other functions whose limits are easily known or computed.
 - Let / be an interval having the point c as a limit point.
 - Let g, f, and h, be functions defined on I, except possibly at c itself.
 - Suppose that $\forall x \in I \land x \neq c \Rightarrow g(x) \leq f(x) \leq h(x)$
 - And suppose that $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$
 - Then, $\lim_{x \to c} f(x) = L$
 - Essentially, the hard to compute limit of the "middle function" is found by finding two other easy functions that "squeeze" the middle function at that point.

One-Sided Limit

- One-Sided Limit %
- One-sided limit: one of two limits of f(x) as x approaches a specified point from either the left or from the right.
 - From the left: $\lim_{x\to c^-} = L$ From the right: $\lim_{x\to c^+} = L$
- o If the left and right limits exist and are equal, then

$$\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{-}} f(x) = L \wedge \lim_{x \to c^{+}} f(x) = L$$

 Limits can still exist, even if the function is defined at a different point, as long as both one-sided limits approach the same value near the given input.

Continuity

- Ontinuous function (2.5) Classification of discontinuities (1.5) Thomas' Calculus (2.5)
- Continuity of functions is one of the core concepts of topology, however, there are definitions in terms of limits that prove useful; the following is only a primer.

Continuous Functions

- o Continuous function: a function that does not have any abrupt changes in value.
 - I.e., a function is continuous if and only if arbitrarily small changes in its output can be assured by restricting to sufficiently small changes in its input.
- **Discontinuous**: when a function is not continuous at a point in its domain, leading to a discontinuity; there are three classifications:
 - **Removable**: when both one-sided limits $^{\uparrow}$ exist, are finite, and are equal, but the actual value of f(x) is not equal to the limit and equal to some other value.
 - · The discontinuity can be removed to regain continuity.
 - · Sometimes the term *removable discontinuity* is mistaken for *removable singularity*, or a "whole" in the function (the point is not defined elsewhere).
 - **Jump**: when a single limit does not exist because the one-sided limits exist and are finite, but not equal.
 - · Points can be defined at the discontinuity, but the function can not be made continuous
 - **Essential**: when at least one of two one-sided limits doesn't exist; can be the result of oscillating or unbounded functions.

Intermediate Value Theorem

- Intermediate Value Theorem %
- **Intermediate value theorem**: if f is a continuous function whose domain contains the interval [a, b], then it takes on any given value between f(a) and f(b) at some point within the intervals.
- Relevant deductions, i.e., important corollaries:
 - **Bolzano's theorem**: if a continuous function has values of opposite sign inside an interval, then it has a root in that interval.
 - The image of a continuous function over an interval is itself an interval.
- \circ Thus, the image set f(I) (which has no gaps) is also an interval, and it contains:

$$[\min(f(a), f(b)), \max(f(a), f(b))]$$

Limits Involving Infinity

- Limits involving infinity % | Thomas' Calculus (2.6) %
- Let $S \subseteq \mathbb{R}$, $x \in S$ and $f : S \mapsto \mathbb{R}$, then limits of these functions can approach arbitrarily large (\pm) values, providing a connection to asymptotes, and thus, analysis.

Limits at Infinity and Infinite Limits

• **Limits at infinity**: limits defined as $f(x) \pm infinity$ are defined much like normal limits:

$$\lim_{x \to -\infty} f(x) = L \qquad \lim_{x \to \infty} f(x) = L$$

• Formally, for all measures of closeness \mathcal{E} there exists a point c such that $|f(x) - L| < \mathcal{E}$ whenever x < c or x > c (respectively), i.e.,

$$\forall \varepsilon > 0 (\exists c (\forall x \{<, >\} c : |f(x) - L| < \varepsilon))$$

- Basic rules for rational functions $f(x) = p(x)q(x)^{-1}$, where p and q are polynomials, the degree of each is denoted as $\{p,q\}^{\circ}$, and the leading coefficients are denoted as P, Q, then:
 - $p^{\circ}>q^{\circ}\Rightarrow L$ is $\{+,-\}$ depending on the sign of the leading coefficients.
 - $p^{\circ} = q^{\circ} \Rightarrow LPQ^{-1}$
 - $p^{\circ} < q^{\circ} \Rightarrow L = 0$
- **Infinite limits**: the usual limit does not exist for a limit that grows out of bounds, however, limits with infinite values can be introduced:

$$\lim_{x\to c} f(x) = \infty$$
, i.e., $\forall n > 0 \ (\exists \delta > 0 : f(x) > n \Leftrightarrow 0 < |x-a| < \delta)$

Asymptotes of functions

- Asymptotes %
- **Asymptote**: a tangent line of a curve at a point at infinity; the distance between the curve and the line approaches zero as a coordinate tends to infinity.
- There are three kinds of asymptotes: *horizontal, vertical* and *oblique*; nature of the asymptote is dependent on a function's relation to infinity.
 - Horizontal asymptotes: a result of limits at infinity, i.e., when $x \to \pm \infty$
 - **Vertical asymptotes**: a result of infinite limits, i.e., when $x \to \pm a = \pm \infty$
 - **Oblique asymptotes**: when a linear asymptote is not parallel to either axis. f(x) is asymptotic to the straight line $y = mx + n(m \neq 0)$ if:

$$\lim_{x \to \pm \infty} [f(x) - (mx + n)] = 0$$

Derivatives

Applications of Derivatives

Integrals

Applications of Integrals

Transcendental Functions

Techniques of Integration

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

