Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Термодинамика и молекулярная физика

2.2.1. Исследование диффузии газов

Глаз Роман Сергеевич Группа Б01-007

Долгопрудный 2021

Содержание

1	Теоретическое введение	1
2	Экспериментальная установка	4
3	Ход работы	6
4	Заключение	11
5	Список используемой литературы	11

Цель работы: регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов. Определение коэффициента диффузии по результатам измерений.

Используемое оборудование: измерительная установка, форвакуумный насос, баллон с газом (гелий), манометр, источник питания, магазин сопротивлений, гальваномет.

1. Теоретическое введение

Диффузия – самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

В системе, состоящей из двух компонентов, плотность потока вещества в результате взаимной диффузии описывается законом Фика:

$$j_a = -D_{ab} \frac{\partial n_a}{\partial x}, \ j_b = -D_{ba} \frac{\partial n_b}{\partial x}, \tag{1}$$

где $D_{ba} = D_{ab} = D$ – коэффициент взаимной диффузии компонентов, $j_{a,b}$ = плотности потока частиц соответствующего сорта (количество частиц, пересекающих единичную площадку в единицу времени).

В работе исследуется диффузия примеси лёгкого газа (гелия) на фоне воздуха, поэтому концентрация воздуха в опыте значительно больше концентрации гелия, и её относительное изменение незначительно. В процессе работы будет описываться только диффузия примеси гелия на стационарном фоне воздуха.

Проведём теоретическую оценку величины коэффициента взаимной диффузии. В работа мала концентрация гелия, более того, масса атомов гелия много меньше массы молекул, составляющих воздух. При таких условиях перемешивание газов в эксперимента можно рассматривать как диффузию гелия на стационарном форне воздуха. Тогда коэффициент диффузии приблизительно равен

$$D = \frac{1}{3}\lambda \bar{v},\tag{2}$$

где λ - длина свободного пробега частиц гелия, $\bar{v}=\sqrt{\frac{8kT}{\pi m}}$ - их средняя тепловая скорость. В общем случае необходимо считать $\lambda=\frac{1}{n_\Sigma\sigma}$, где $n_\Sigma=n_{He}+n_B=\frac{P_\Sigma}{kT}$ - полная концентрация частиц, σ - среднее

сечение столкновения частиц гелия с воздухом. Также $\bar{v}=\sqrt{\frac{8kT}{\pi\mu}}$ - средняя скорость. Таким образом, теоретическая оценка предполагает, что коэффициент диффузии не зависит от пропорций элементов, а обратно пропорционален давлению $D\propto\frac{1}{P_{\Sigma}}$.

Рассмотрим процесс выравнивания концентрации в установке, она зависит от координат и времени во всей установке. Объём соединительной трубки мал по сравнению с с объёмами сосудов. Поэтому концентрации газов можно считать постоянной по всему объёму сосудов; считаем, что процесс выравнивания происходит только за счёт диффузии в трубке и является стационарным (так как считаем стационарным поток частиц). Величина этого стационарного потока $J=-DS\frac{\partial n}{\partial x}$, и он одинаковый во всём сечении трубки, тогда n(x) - линейная функция координаты и $\frac{dn}{dx}=\frac{\triangle n}{l}$ (l-длина трубки), получаем

$$J = -DS\left(\frac{n_1 - n_2}{l}\right) \tag{3}$$

Предположим, что установился линейный профиль концентрации и полученное соотношение справедливо в любой момент времени. Получаем квазистационарное приближение зависимости концентраций n_1 и n_2 от времени.

Через $\triangle n_1$ и $\triangle n_2$ обозначим изменения концентрации в объёмах V_1 и V_1 за время $\triangle t$. Тогда $V_1 \triangle n_1$ - изменение количества компонента в объёме V_1 , а $V_2 \triangle n_2$ - изменение количества этого компонента в объёме V_2 . По закону сохранения вещества следует, что $V_1 \triangle n_1 + V_2 \triangle n_2 = const$, поэтому $V_1 \triangle n_1 = -V_2 \triangle n_2$. Эти изменения происходят вследствие диффузии, поэтому

$$V_1 \triangle n_1 = -V_2 \triangle n_2 = J \triangle t = -DS\left(\frac{n_1 - n_2}{l}\right) \triangle t \tag{4}$$

Делим равенство на $\triangle t$

$$V_1 \frac{dn_1}{dt} = -DS\left(\frac{n_1 - n_2}{l}\right), V_2 \frac{dn_2}{dt} = -DS\left(\frac{n_1 - n_2}{l}\right)$$
 (5)

Делим первое уравнение на V_1 , второе на V_2 , вычтем равенства друг из друга:

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS \left(\frac{1}{V_1} + \frac{1}{V_2}\right)$$
 (6)

Введём новую переменную $\triangle n = n_1 - n_2$, проинтегрируем уравнение, получим

$$\Delta n = \Delta n_0 e^{\frac{-t}{\tau}},\tag{7}$$

где $\triangle n_0$ - разность концентраций примеси в начльный момент времени, а

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} \tag{8}$$

Видим, что разность концентраций убывает по экспоненциальному закону и тем быстрее, чем меньше τ - величина, определяющаяся геометрическими параметрами установки и величиной коэффициента диффузии.

Для проверки применимости квазистационарного течения убедимся, что время τ много больше характерного времени диффузии одной частицы вдоль трубки длиной l: $t_{diff} \sim \frac{l^2}{D} \ll \tau$.

Для измерения концентраций применяются датчики теплопроводности D_1 и D_2 (см. рис. 1) и используется зависимость теплопроводности газовой смеси от её состава. Тонкая проволока радиуса r, протянутая вдоль оси цилиндра радиуса R, нагревается током. Тепло от проволоки к стенке цилиндра передаётся главным образом впоследствие теплороводности газа, находящегося внутри цилиндра. Количество тепла переданного стенке цилиндра в единицу времени, определяется по формуле

$$Q = \kappa \frac{2\pi L}{\ln(R/r)} (T_1 - T_2), \tag{9}$$

где κ - теплопроводность, L - длина нити, T_1, T_2 - температуры проволочки и стенки. При Q=const температура проволоки и её сопротивление определяются теплопроводностью газа и, следовательно, его составом. Для измерения разности концентраций газов используется мостовая схема, представленная на рис. 2 (см. пункт 4).

В процессе диффузии разность концентраций убывает по экспоненциальному закону. По тому же закону изменяются во времени показания гальванометра:

$$U = U_0 e^{\frac{-t}{\tau}} \tag{10}$$

Измеряя экспериментально зависимость U(t), можно получить характерное время процесса τ , откуда определить коэффициент диффузии D.

2. Экспериментальная установка

Общий вид конструкции установки приведён на рис. 1. Установка состоит из двух сосудов V_1 и V_2 , соединённых краном K_3 , форвакуумного насоса Ф.Н. с выключателем, манометра и системы напуска гелия, состоящей из кранов K_6, K'_6, K_7 . Кран K_5 позволяет соединять форвакуумны насос либо с установкой, либо с атмосферой. Сосуды V_1 и V_2 соединены трубкой длины l и сечения S. Сосуды заполнены смесь двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии концентрации каждого из компонентов с течением времени выравниваются Между форвакуумным насосом и краном K_5 вставлен предохранительный баллон, защищающий кран и установку при неправильной её эксплуатации от попадания форвакуумного масла из насоса. Сосуды V_1 и V_2 можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этот служат краны K_1, K_2, K_4, K_5 . Манометр М регистрирует давление газа, до которого заполняют тот или иной сосуды. Кран K_4 изолирует форвакуумный насос от установки. Для подачи воздуха в установку служит кран K_5 . Дополнительный кран K_6' служит для вакуумной изоляции установки от системы подачи гелия. Краны K_4, K_5, K_6' обладают повышенной вакуумплотностью и хорошо изолируют установку от протечек.

Рис. 1: Установка для исследования взаимной диффузии газов

Для измерения разности концентраций газов используется мостовая схема, представленная на рисунке 2.

Здесь D_1, D_2 - датчики теплопроводности, расположенные в сосудах V_1 и V_2 . Сопротивления R_1, R_2, R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. Сопротивления R_1 и R_2 спарены (их подвижные контакты находятся на общей оси) и изменяются одновременно при повороте ручки грубой регулировки. Точная балансировка выполняется потенциометром R. Балансировку необходимо проводить перед каждым экспериментом заново: при этом установка заполняется чистым газом (воздухом без гелия) при давлении, близком «рабочему» (при котором затем будут проводится измерения).

Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью. При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси: $U \propto \Delta \kappa \propto \Delta n$

Рис. 2: Мостовая схема с датчиками теплопроводности для измерения разности концентраций газов

Гелий содержится в баллоне (не изображен на рис. 1) под давлением, превышающим атмосферное. Для предотвращения избыточного расхода гелия и его неконтролируемого проникания в установку предусмотрен металлический кран (K_7) , отделяющий её от баллона с гелием. Его открывают только на время непосредственного заполнения установки гелием, остальное время он должен быть закрыт. Для подачи малых порций гелия предусмотрен двухходовый кран с дозатором (рис. 4). При повороте рычажка в положение I гелий в небольшом количестве поступает

в дозатор (если открыт $_{7}$), а при повороте в положение II порция из дозатора поступает в установку.

Рис. 3: Кран K_6

3. Ход работы

Изучим схему установки и инструкции по откачке воздуха, напуске гелия и откачке воздуха для конкретной установки. Ознакомимся с расчётной программой, используемой для считывания данных с датчиков теплопроводности.

Включим питание датчиков теплопроводности и измерительного моста. Убедимся, что краны подачи гелия K_7, K_6' плотно закрыты. Откачаем установку до давления $\sim 0,1$ Торр. Для этого

- закроем краны K_4, K_5, K'_6 ;
- включим насос тумблером (расположен на насосе) и дадим ему откачать собственный объём (\sim 3–5 с);
- откроем кран K_4 , соединив с его помощью насос и установку;
- спустя 3-5 минут остановим откачку: отделим насос от установки краном K_4 ;
- выключим насос тумблером (насос снабжен встроенным обратным клапаном, препятствующим выбросу масла после остановки, поэтому соединять насос с атмосферой необходимости нет)

Сбалансируем измерительный мост при предполагаемом «рабочем» давлении (суммарном давлении смеси в эксперименте). В качестве начального рабочего давления возьмём $P_{\Sigma} \sim 40$ торр. Для этого

- \bullet подадим воздух краном K_5 непосредственно из атмосферы
- изолируем рабочие объёмы кранами K_1, K_2 (K_3 открыт)
- сбалансируем измерительный мост так, чтобы показания вольтметра флуктуировали в среднем около нулевого значения. Используем последовательно ручки регулировки «грубо», затем «точно». По достижении баланса переключатели моста установим на максимум. Диапазон измерений гальванометра переведём на 10мкА После балансировки и до окончания измерений при данном P∑ положения ручек регулировки не меняются

Заполним установку рабочей смесью: в сосуде V_1 находится воздух, а в сосуде V_2 - смесь воздуха с гелием. Давление должно быть одинаковым и равным рабочему давлению P_{Σ} . Заполнение производится в следующем порядке:

- \bullet откачаем всю установку до ~ 0.1 Торр
- изолируем объём V_1 , закрыв краны K_1 и K_3 (туда не должен попасть гелий!). После этого остановим откачку
- напустим в установку гелий до давления $P_{He} = 0, 1P_{\Sigma}$. Избыточное количество гелия при необходимости откачаем насосом. После этого изолируйте объём V_2 (краном K_2).
- перекроем подачу гелия (кран K_7) и откачаем гелий из всех патрубков. После чего остановим откачку.
- присоединим объём V_1 к установке (кран K_1) и заполним всю установку, исключая объём V_2 , воздухом (без гелия) до несколько избыточного по сравнению с рабочим давления ($\sim 1, 5P_{\Sigma}$ в зависимости от соотношения объёмов патрубков и сосудов.
- уравняем давление в сосудах V_1 и V_2 , направив поток воздуха с избыточным давлением в сосуд с гелием. Для этого откроем кран K_2 при уже открытом K_1 (кран K_3 всё ещё закрыт!) Поскольку газ при адиабатическом расширении остывает, необходимо держать краны K_1 и K_2 открытыми в течение некоторого времени (30-60 с),

чтобы дать давлениям выравняться при одинаковых температурах. Это время не должно быть слишком велико, чтобы диффузия гелия по патрубкам не привела к искажению приготовленного состояния.

• запишем точное значение установившегося рабочего давления P_{Σ} . Изолируем объёмы V_1 и V_2 , перекрыв краны K_1 и K_2 . Система должна быть готова к измерениям.

Процесс диффузии начнётся после открывания крана K_3 . Приготовим компьютерную программу по дополнительному описанию. Откроем K_3 и измерим, как меняются показания вольтметра с течением времени U(t). Измерение будем продолжать до тех пор, пока напряжение не упадет хотя бы на 30-50%.

Повторим измерения предыдщуих пунктов 2-6 при различных значениях рабочего давления в диапазоне 40-300 торр. Результаты измерений, снятые с компьтера, занесём в таблицу (см. приложения).

Построим графики зависимостей непосредственно изменений показания вольметра от времени. Некоторые эксперименты получились неудачными, из-за чего учитывать их не будем.

Построим графики зависисмотей показаний вольтметра от времени в логарифмическом масштабе. Теория предсказывает, что характер зависимости - обратная пропорциональность, модуль углового коэффициента уменьшается с повышением давления.

Значения коэффициентов наклона и их погрешности определим по методу наименьших квадратов:

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle lnU^2 \rangle - \langle lnU \rangle^2}{\langle t^2 \rangle - \langle t \rangle^2} - k^2}$$
 (11)

Коэффициент диффузии рассчитывается по формуле $D=-\frac{kVL}{2S}$, его ошибка будет составлять $\sigma_D=D\sqrt{(\frac{\sigma_V}{V})^2+(\frac{\sigma_k}{k})^2+(\frac{\sigma_L/S}{L/S})^2}$

Параметры установки: $V=360\pm0,5cm^3,\ L/S=(7,0\pm0,5)\frac{1}{cm}$.

P, Topp	$\frac{10^{-4}}{P}, \frac{1}{\text{Topp}}$	$-k \cdot 10^{-3}, \frac{1}{c}$	ε_k	$D, \frac{cm^2}{c}$	ε_D
55	180	8,26	0,037	10,40	0,080
169	59	2,76	0,011	3,48	0,072
200	50	2,33	0,013	1,97	0,072
293	34	1,63	0,058	1,35	0,092
447	22	1,11	0,073	0,92	0,102

Теперь убедимся в применимости модели квазистационарного приближения. Для этого должно выполняться то, что время процесса τ много больше характерного времени диффузии отдельной частицы вдоль трубки L (закон Эйнштейна–Смолуховского):

$$\tau = -\frac{1}{k} \gg \frac{L^2}{D} \tag{12}$$

Для проверки возьмём значение τ при давлении 55 Торр. Получаем $121\gg 1,25$ — выполняется.

Теперь убедимся в том, что сила тяжести не влияет на результаты эксперимента:

$$mgh \ll kT$$
 (13)

Нетрудно проверить, что записанное соотношение величин выполняется с большим запасом в данной ситуации, то есть наличие потенциальной энергии у молекул почти не сказывается на их поведение из-за большой кинетической энергии.

Построим графики зависимости коэффициента диффузии от величины, обратной давлению.

Рис. 4: D(1/P)

Из графика видно, что зависимость хороша аппроксимируется прямой (R>0,99).

Методом хи-квадрат найдём параметры графика:

$$k = 611, 1 \frac{\text{Topp} \cdot cm^2}{c}, \Delta k = 65, 1 \frac{\text{Topp} \cdot cm^2}{c}$$
 (14)

$$b = 0,5957 \frac{cm^2}{c}, \Delta b = 0,0705 \frac{cm^2}{c}$$
 (15)

Отсюда получим значение диффузии при атмосферном давлении: $D_P=0.581~cm^2/c,~\Delta D_P=0.083~cm^2/c$

Сравним полученное значения с табличными. При температуре 273 К значение коэффициента диффузии примеси гелия в воздухе составляет $0.66\ cm^2/c$. То есть можно видеть, что в пределах погрешности полученное экспериментальное значение совпадает с теоретическим.

Оценим длину свободного пробега молекулы гелия по формуле

$$\lambda = \frac{3D}{\bar{v}} = 3D\sqrt{\frac{\pi\mu}{8RT}} = 138 \text{ HM} \tag{16}$$

При нормальных условиях табличное значение для длины свободного пробега молекулы гелия равно 180 нм. Экспериментальное и теоретическое значения совпали по порядку величины.

Наконец, оценим эффективное сечение столконевний атомов гелия с частицами воздуха при температуре 300 K и давлении 10^5 Па:

$$\lambda = \frac{\Delta V}{\sigma} = \frac{1}{n\sigma} = \frac{kT}{P\sigma} \Rightarrow \sigma = \frac{kT}{P\lambda} = 3,00 \cdot 10^{-19} \text{ m}^2$$
 (17)

На самом деле эти рассуждения применимы, когда одна из молекул неподвижна. В случае относительного движения имеем значение, в $\sqrt{2}$ раза ниже полученного: $\sigma=2,12\cdot 10^{-19}~{\rm M}^2$

4. Заключение

В ходе работы было экспериментально определено значение коэффициента диффузии для примеси гелия в воздухе. Был проведён эксперимент, при котором измерялась зависимость показаний вольтметра, соединённого с датчиком, определяющим разность концентраций примеси и основного газа. Полученные значения зависимости коэффициента диффузии от давления были экстраполированы к прямой и экспериментаьно было получено значение коэффициента диффузии при атмосферном давлении. Все значения были близки с теоретическим значениям.

Причины расхождения теории и эксперимента следующие: температура, при которой проводился эксперимент, была равна 300 K, табличные значения определены для температуры 273 K, то есть полученное значение получилось ниже, как и предсказывает закон Аррениуса (зависимость D(T) в простом случае). Также следует учитывать, что при малейшем касании стола сбиваются настройки моста, из-за чего разность потенциалов почти постоянно была не точной (это можно видеть на построенных графиках).

5. Список используемой литературы

- Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
 - Описание лабораторных работ на кафедре общей физики МФТИ

Рис. 5: P = 55 Торр

Рис. 6: P = 169 Торр

Рис. 7: P = 200 Торр

Рис. 8: P = 293 Торр

Рис. 9: P = 447 Торр

Рис. 10: P = 55 Торр

Рис. 11: P = 169 Торр

Рис. 12: P = 200 Торр

Рис. 13: P = 293 Торр

Рис. 14: P = 447 Торр