

Background: Consolidate Wind Conditions Mesoscale Modeling Stream

Background: **Moving forward** (m/s into MW)

More and more realistic turbulence Able to determine shear and veer Accurate tails (high and low winds) Everything within the 10' life A safer site classification tool Arr. of Toul Indistinguishable model and observation Plug power curve & wake deficit

- WRF-LES: Real terrain / Real Conditions
- □ One complete year (52660x 10')
- ☐ Turbulence enable simulations
- □ 100m resolution
- □ 10' sampling output (4hz time-setps)
- Outputs: average wind speed, direction, STD, shear, veer, stability and other meteo variables (icing classes)
- Any position within the windfarm
- □ Plug a Power Curve & Wakes Deficit
- 3-5 days computing time for one year

Check references: Alex Monternes at AMET SOC Turbulence Workshop

Alos works by Branko Kosovic (NCAR) and Mark Zagar (Vestas)

→ Wake model

- WS Deficit binned look-up table at Wind Turbine Locations
 - ☐ Wind speed vs Wind Directions vs Intensity of Turbulence
- Jensen family wake model (like WAsP Park)
- Wake merging = sum of squares
- Expansion factor as function of the Intensity of Turbulence
 - Anyhow, this is an active topic of research (complex vs light schools)

More details? Check works of Paula Doubrawa

WRF-LES @100m - 10' avg Turbulence enable

Wind Observations (short period)

Wake Modeling (Jessen) **Power Curves**

Standard (inner)Non standard
(outer)

Non-environmental

Curtailment

Environmental

- CHALLENGES:
 - Computing time & robustness
 - Accuracy
 - Limited Bias correction
 - Wake ()
 - Turbulence & shear
 - Environmental conditions & Real Power Curve (PCWG)

IDEAL
65 sites

WRF-LES

Power Curves

Observations

Comparison of 10' WRF-LES (100m) vs Observation times series One complete year Observed measurements == hub height Standard atmosphere 4 differentes model (~2MW)

Quantiles across 65 sites	P25	P50	P75
Annual Wind Speed bias [%]	-7.1	-2.6	2.68
Annual Yield bias [%]	-9.90	-3.0	3.8
Daily Power Correlation, R2 (365 days)	0.72	0.77	0.82
Monthly Power Correlation, R2 (12 months)	0.75	0.86	0.92

REAL

5 Farms

10' WRF LES Time Series

Wake Modeling

(Jensen inspired)

Power Curves

Standard (inner)

Non-environmental

5 Real Windfarms Location: Brazil (NE), Spain (Center), UK (Onshore) & Germany (North / Forest) Nominal Power: 30-50 MW

One year of observed hourly aggregated production data

Layout / CT & CP (air density)

WRF-LES 10' wind conditions including intensity of turbulence Wake model (standard - no tuning) - lu

Windfarm	Annual Yield Mean Error [%]	Daily R2	Monthly R2
Flat	-4.9	0.78	0.85
Forrest	-5.6	0.72	0.82
Maritime	-6.8	0.75	0.86
Complex	-5.6	0.80	0.83
Complex	-104	0.69	0.75

CONTEXT: No Observation employed to callibrate the modeling stream, WRF-LES

