Question 1

$$\langle a_n \rangle$$
 is a real sequence; $\sigma_n := \frac{a_1 + a_2 + ... + a_n}{n}$

I $\lim \inf a_n \leq \lim \inf \sigma_n$

If a_n is unbounded below, then $\lim \inf a_n = -\infty \le \lim \inf \sigma_n$ So, let a_n be bounded below, thus LHS is a real number,

$$m := \lim \inf a_n$$

Now, if a_n is constant, and equal to a,

$$\forall n \in \mathbb{N} , \inf\{a_i | i \ge n\} = a = \frac{na}{n} = \sigma_n$$

Otherwise, if a_n is not constant, then,

$$\exists i, j \in \mathbb{N} \text{ such that(wlog) } a_i < a_j$$

Suppose if possible, $\lim \inf a_n = m > \lim \inf \sigma_n$. But, $\forall n \in \mathbb{N}$ such that $n \geq i, j$,

$$\sigma_n = \frac{a_1 + \dots + a_i + \dots + a_j + \dots + a_n}{n}$$

$$\implies \sigma_n \ge \frac{(n-2)m + a_i + a_j}{n} \ge \frac{(n-1)m + a_j}{n} > m$$

$$[\because m \le a_i < a_j]$$

Hence, inf
$$\sigma_n \ge \frac{(n-1)m + a_j}{n}$$

$$\implies \lim \inf \sigma_n \ge \lim_{n \to \infty} \frac{(n-1)m + a_j}{n} = m$$

But this contradicts the initial assumption.

II $\limsup a_n \ge \limsup \sigma_n$ If a_n is unbounded above, then $\limsup a_n = \infty \ge \limsup \sigma_n$.

So, let a_n be bounded above, thus LHS is a real number,

$$M := \lim \sup a_n$$

Now, if a_n is constant, and equal to a,

$$\forall n \in \mathbb{N} , \sup\{a_i | i \ge n\} = a = \frac{na}{n} = \sigma_n$$

Otherwise, if a_n is not constant, then,

$$\exists i, j \in \mathbb{N} \text{ such that(wlog) } a_i < a_j$$

Suppose if possible, $\limsup a_n = M < \limsup \sigma_n$ But,

$$\forall n \in \mathbb{N} \text{ such that } n \geq i, j,$$

$$\sigma_{n} = \frac{a_{1} + \dots + a_{i} + \dots + a_{j} + \dots + a_{n}}{n} \leq \frac{(n-2)M + a_{i} + a_{j}}{n}$$

$$\leq \frac{(n-1)M + a_{j}}{n}$$

$$< M \mid \because M > a_{i} > a_{i}$$

Hence, inf
$$\sigma_n \leq \frac{(n-1)M + a_j}{n}$$

$$\implies \lim \inf \sigma_n \le \lim_{n \to \infty} \frac{(n-1)M + a_j}{n} = M$$

But this contradicts the initial assumption.

Question 2

$$\lim \inf \frac{a_{n+1}}{a_n} \le \lim \inf (a_n)^{\frac{1}{n}} \le \lim \sup (a_n)^{\frac{1}{n}} \le \lim \sup \frac{a_{n+1}}{a_n}$$

I Showing that $\lim \inf \frac{a_{n+1}}{a_n} \leq \lim \inf (a_n)^{\frac{1}{n}}$ Case 1: $\lim \inf \frac{a_{n+1}}{a_n} = 0$

$$\forall n \in \mathbb{N}, a_n > 0 \implies (a_n)^{\frac{1}{n}} > 0$$
Thus, $\lim \inf (a_n)^{\frac{1}{n}} \ge 0 = \lim \inf \frac{a_{n+1}}{a_n}$

Case 2: $\lim \inf \frac{a_{n+1}}{a_n} = \infty$ So, for any $a \in \mathbb{N}$,

$$\exists M_a \in \mathbb{N} : n \ge M_a \implies \frac{a_{n+1}}{a_n} > a$$

Fix any a, and choose $n > M_a$. For any such n,

$$\frac{a_{n+1}}{a_n} > a \implies a_{n+1} > aa_n$$

$$\implies a_n > aa_{n-1} > a^2a_{n-2} > \dots > a^{n-M}a_M$$

$$\implies (a_n)^{\frac{1}{n}} > a(\frac{a_M}{a^M})^{\frac{1}{n}}$$

Now as for fixed a, $\frac{a_M}{a^M}$ is constant,

$$\lim_{n \to \infty} \left(\frac{a_M}{a^M}\right)^{\frac{1}{n}} = 1 \implies \lim_{n \to \infty} a\left(\frac{a_M}{a^M}\right)^{\frac{1}{n}} = a$$

Thus,

$$\forall \epsilon > 0, \exists K \in \mathbb{N} : n > K \implies a(\frac{a_M}{a^M})^{\frac{1}{n}} > a - \epsilon$$

And hence, in particular, $a(\frac{a_M}{a^M})^{\frac{1}{n}} > a-1$ for any natural number a.

$$(a_n)^{\frac{1}{n}} > a(\frac{a_M}{a^M})^{\frac{1}{n}} > a - 1 \implies \lim_{n \to \infty} (a_n)^{\frac{1}{n}} = \infty$$

$$\therefore \lim \inf \frac{a_{n+1}}{a_n} = \infty = \lim \inf (a_n)^{\frac{1}{n}}$$

Case 3: $\liminf \frac{a_{n+1}}{a_n} = a \in \mathbb{R}$ So, $\forall \epsilon > 0, \exists M \in \mathbb{N} : n > M \implies \frac{a_{n+1}}{a_n} > a - \epsilon$

$$a_n > (a - \epsilon)a_{n-1} > (a - \epsilon)^2 a_{n-2} > \dots > (a - \epsilon)^{n-M} a_M$$

$$\implies (a_n)^{\frac{1}{n}} > (a - \epsilon)(\frac{a_M}{a^M})^{\frac{1}{n}}$$

But, as $\lim_{n\to\infty} \left(\frac{a_M}{a^M}\right)^{\frac{1}{n}} = 1$,

$$(a_n)^{\frac{1}{n}} > (a - \epsilon)(\frac{a_M}{a^M})^{\frac{1}{n}} > (a - \epsilon)(1 - \epsilon) = a - (1 + a)\epsilon + \epsilon^2$$

$$\implies (a_n)^{\frac{1}{n}} > a - (1 + a)\epsilon$$

But as this holds for every $\epsilon > 0$,

$$\lim \inf (a_n)^{\frac{1}{n}} \ge a - 0 = \lim \inf \frac{a_{n+1}}{a_n}$$

II
$$\limsup (a_n)^{\frac{1}{n}} \leq \limsup \frac{a_{n+1}}{a_n}$$

Case 1: $\limsup \frac{a_{n+1}}{a_n} = \infty$
As $\limsup (a_n)^{\frac{1}{n}} \leq \infty = \limsup \frac{a_{n+1}}{a_n}$, done

Case 2: $\limsup \frac{a_{n+1}}{a_n} = -\infty$

$$\lim \sup \frac{a_{n+1}}{a_n} = -\infty \implies \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = -\infty$$

But, as all a_n are positive, so is their raito, and hence it cant be unbounded below.

Case 3:
$$\limsup \frac{a_{n+1}}{a_n} = a \in \mathbb{R}$$

So, $\forall \epsilon > 0, \exists M \in \mathbb{N} : n > M \implies \frac{a_{n+1}}{a_n} < a + \epsilon$
 $a_n < (a + \epsilon)a_{n-1} < (a + \epsilon)^2 a_{n-2} < \dots < (a + \epsilon)^{n-M} a_M$
Now, as $(\frac{a_M}{a^M})^{\frac{1}{n}}$ is constant,

$$\exists K \in \mathbb{N} : n \ge K \implies \left(\frac{a_M}{a^M}\right)^{\frac{1}{n}} < 1 + \epsilon$$

$$\implies (a_n)^{\frac{1}{n}} < (a + \epsilon)\left(\frac{a_M}{a^M}\right)^{\frac{1}{n}} < (a + \epsilon)(1 + \epsilon) = a + (a + 1)\epsilon + \epsilon^2$$
Thus,

$$\lim \sup (a_n)^{\frac{1}{n}} \le a + (a+1)\epsilon + \epsilon^2 < a + (a+1)(1+\epsilon)\epsilon,$$

but as this holds for every $\epsilon > 0$,

$$\lim \inf (a_n)^{\frac{1}{n}} \le a = \lim \inf \frac{a_{n+1}}{a_n}$$

Question 3

 $a_n \& b_n$ are bounded, non-negative sequences; $a_n \to a > 0$ I $\limsup a_n b_n = a \limsup b_n$

Question 4

I $\lim \inf \frac{a_{n+1}}{a_n} > 1 \implies a_n \nrightarrow 0$ and $\lim \sup |a_n| > 0$ II $\lim \sup \frac{a_{n+1}}{a_n} < 1 \implies a_x \to 0$ where $a_n > 0$

III Some convergant sequences are:

(a)
$$a_n := 1$$

IV Some divergent sequences are:

(a)
$$a_n := n$$

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{n} = 1 + \frac{1}{n}$$

This tends to 1 [for $\epsilon = \frac{1}{n}$, take $\delta = \frac{1}{n+1}$] But the sequence diverges [to ∞].