Machine Learning and Artificial Intelligence

Lab 06 – K-Means clustering

Unsupervised Learning

- Unsupervised? We Cannot provide information about the ground truth state of the features to the model.
- Why? We do not have annotations for our data.
- Clustering: Study of the features of our patterns with the aim of creating different groups.

Clustering Approaches

Partitioning methods:

- Partitions objects into K clusters while minimizing a cost function.
- Example: K-Means

Density-based methods:

- Find regions with high *density* that are separated from other regions with low *density*.
- Example : Mean-Shift

Hierarchical methods:

- They form a tree structure (dendrogram) of clusters where a new cluster consists of a merge (or division) of previously defined clusters.
- Es: Linkage

K-means

- A priori: Decide the number of clusters. This is a hyperparameter.
- Each cluster is represented by the average of the points that are part of it (centroid).
- How does it work?
 - Start with an initial, random guess of centroids (cluster centers).
 - Each iteration assigns each pattern to the nearest centroid.
 - Update the centroids as the mean of the observations belonging to that cluster.
 - Repeat until convergence.

1. k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

 k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

Demonstration of the standard algorithm

 The centroid of each of the k clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

A concrete problem

• 3D shape segmentation: identify different parts of the body

