Diffusion Models on Edge

Akash Haridas, Jazib Ahmad, Sumant Bagri University of Toronto



<u>Diffusion models:</u> SOTA model for image synthesis, also have applications in mobile apps and AR/VR



Start with an image of pure noise and iteratively <u>denoise</u> it using a U-Net



- Computationally expensive: Each generation takes up to 1000 denoising steps
- Challenge to run on cheap and low-power edge devices.
- Motivation: Utilize inexpensive edge devices for diffusion models, allowing these models to become more accessible and consume less energy.
- <u>Tradeoff:</u> Computation time vs Memory vs Power
- Goal: Measure this tradeoff and benchmark it for future work

# **Related Work**

# Performance Benchmarking.

- Deep Neural Networks and Deep Convolutional Neural Networks [1] have been benchmarked on edge devices such as Nvidia Jetson Nano and smartphones.
- However, no studies on implementing and benchmarking Diffusion Models on edge devices.

#### **Performance Optimization.**

 Pretrained models can be optimized through techniques such as model serialization, graph optimization, operator fusion and post-training quantization [2].

#### **Model Improvements.**

 Latent Diffusion Models and advanced sampling techniques are attempts to make the model itself more efficient.

#### References

[1] Baller, et al. Benchmarking deep neural networks on edge devices. IEEE International Conference on Cloud Engineering (IC2E), 2021 [2] Jacob, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.

[3] Karras, Tero, et al. "Elucidating the design space of diffusion-based generative models." arXiv preprint arXiv:2206.00364 (2022).

## Methods

Implementing and benchmarking a 330M-parameter Latent Diffusion Model on an NVIDIA Jetson Nano and an Android smartphone:

- 1. Create a custom LDM pipeline and load pretrained weights
- 2. Perform 16-bit quantization and JIT compilation
- 3. Graph level optimization using ONNX Runtime
- 4. Layer and Tensor fusion using TensorRT

#### **NVIDIA Jetson Nano**

- 1. Build custom docker images containing TensorRT and ONNX Runtime using NGC's pytorch container as base image
- 2. Create an evaluation pipeline accommodating the various optimizations
- 3. Run evaluation pipeline with **CUDA-CPU** synchronization
- Extract latency, memory and power metrics using tegrastats CLI.
- Future: Perform optimizations by creating TensorRT engines for Jetson Orin Nano

# Samsung Galaxy S22 8GB

- Obtain PyTorch binaries for Arm-v9 (aarch64) architecture and install it in a Linux environment inside the Termux terminal emulator.
- 2. Increase available memory by allocating additional swap memory.
- 3. Run model inference on the CPU, obtain power consumption by measuring battery discharge rate (mA).
- 4. Future: Quantize model down to INT8 for significant gains.

## **Experimental Results**

#### TensorRT Optimization Comparison

Latency Measurements



Denoising Loop Decoding



High-quality output produced on edge device

TensorRT Optimization Comparison Watt Unconditional LDM Pipeline Unconditional LDM Pipeline + TensorRT

| Performance Evaluation Summary |          |             |         |
|--------------------------------|----------|-------------|---------|
| Metric                         | RTX 3070 | Jetson Nano | Android |
| Latency (s)                    | 1.17     | 93.22       | 160.51  |
| Peak Memory (MB)               | 2032     | 2473        | 2379    |
| Power (W)                      | 101.43   | 3.73        | 3.52    |
| Total Energy (J)               | 118.67   | 347.71      | 564.96  |
| Relative Latency               | 1X       | 79.68X      | 137.18X |
| Relative Energy                | 1X       | 2.93X       | 4.76X   |