Introduction to Time Series Econometrics

Econ 147

UCLA

Version 1.1

Reading

- Course slides
- Eric Zivot's book chapter on Time Series Concepts
- Eric Zivot's book chapter on Descriptive Statistics
- Optional: Chapter 2 (Linear Time Series Models) in Fan and Yao's book
- Optional: Chapter 4 (Exploratory Data Analysis), Chapter 9 (Time Series Models: Basics) and Chapter 10 (Time Series Models: Further Topics) in Ruppert's book

Stylized Patterns of Time Series Data

- Quickly mean-reverting (noisy) Vs Various degrees of persistence (trending or memory properties)
- time invariant Vs time-varying moments
- Transformation (e.g., 1st log-difference) do affect
- Linearity Vs Nonlinearity

Time Series Process

► Stochastic (Random) Process

$$\{\ldots, Y_1, Y_2, \ldots, Y_t, Y_{t+1}, \ldots\} = \{Y_t\}_{t=-\infty}^{\infty}$$

- sequence of random variables indexed by time
- Observed time series of length T

$$\{Y_1 = y_1, Y_2 = y_2, \dots, Y_T = y_T\} = \{y_t\}_{t=1}^T$$

Information Set

- $ightharpoonup \mathcal{F}_t$ is called an *information set*, when it contains all the information or stochastic process up to time t.
 - e.g., if we are interested in X_t , Y_t ,

$$\{\ldots, Y_1, Y_2, \ldots, Y_t\} \subset \mathcal{F}_t \text{ and }$$
$$\{\ldots, X_1, X_2, \ldots, X_t\} \subset \mathcal{F}_t.$$

Conditional Expectation given Information Set

We define the following conditional expectation of (continuous random variable) Y_t based on the information available up to time s < t.

$$E[Y_t|\mathcal{F}_s] = \int y f_{Y_t}(y|\mathcal{F}_s) dy,$$

where $f_{Y_t}(y|\mathcal{F}_s)$ denotes a conditional pdf of Y_t given \mathcal{F}_s .

▶ if the information up to time s is equal to the information of

$$\{\ldots,X_1,X_2,\ldots,X_s\}$$

then $f_{Y_t}(y|\mathcal{F}_s) = f_{Y_t}(y|X_s, \dots X_2, X_1, \dots)$ and hence

$$E[Y_t|\mathcal{F}_s] = E[Y_t|X_s, \dots X_2, X_1, \dots]$$

Conditional Expectation given Information Set

► The following Law of Iterated Expectations (LIE) holds

$$E\left[E\left[Y_{t}|\mathcal{F}_{s}\right]\right]=E\left[Y_{t}\right].$$

- ▶ The usual properties also hold for all s < t:
 - $E[aY_t + bZ_t|\mathcal{F}_s] = aE[Y_t|\mathcal{F}_s] + bE[Z_t|\mathcal{F}_s]$ (Linearity)
 - $E[Y_t Z_s | \mathcal{F}_s] = Z_s E[Y_t | \mathcal{F}_s]$

Conditional Expectation and Forecasting

- ightharpoonup We are often interested in "forecasting" based on information set \mathcal{F}_{t-1}
- ▶ Claim: $E[Y_t | \mathcal{F}_{t-1}]$ is the best prediction of Y_t given \mathcal{F}_{t-1}
- ▶ If \mathcal{F}_{t-1} contains too many random variables, $E\left[Y_{t}\middle|\mathcal{F}_{t-1}\right]$ will be difficult to analyze
- ▶ To model $E[Y_t | \mathcal{F}_{t-1}]$, we need determine
 - which (conditioning) variables should be included in \mathcal{F}_{t-1}
 - what is the function form given these variables

- Information Set and Conditional Expectation
 - ▶ Claim: $E[Y_t|\mathcal{F}_{t-1}]$ is the best prediction of Y_t given \mathcal{F}_{t-1}
 - ▶ Consider any alternative predictor U of Y_t based on the information set \mathcal{F}_{t-1}
 - lacksquare U is not random given \mathcal{F}_{t-1} since its information is in \mathcal{F}_{t-1}
 - Consider the MSE of the prediction:

$$E[|U - Y_t|^2] = E[|U - E[Y_t|\mathcal{F}_{t-1}] + E[Y_t|\mathcal{F}_{t-1}] - Y_t|^2]$$

= $E[|U - E[Y_t|\mathcal{F}_{t-1}]|^2] + E[|Y_t - E[Y_t|\mathcal{F}_{t-1}]|^2]$

where the second equality is by

$$\begin{split} &E\left[(U - E\left[Y_{t} \middle| \mathcal{F}_{t-1} \right]) (Y_{t} - E\left[Y_{t} \middle| \mathcal{F}_{t-1} \right]) \middle| \mathcal{F}_{t-1} \right] \\ &= & (U - E\left[Y_{t} \middle| \mathcal{F}_{t-1} \right]) E[Y_{t} - E\left[Y_{t} \middle| \mathcal{F}_{t-1} \right] \middle| \mathcal{F}_{t-1} \right] \\ &= & (U - E\left[Y_{t} \middle| \mathcal{F}_{t-1} \right]) (E\left[Y_{t} \middle| \mathcal{F}_{t-1} \right] - E\left[Y_{t} \middle| \mathcal{F}_{t-1} \right]) = 0 \end{split}$$

Conditional Expectation and Forecasting

As an illustration, one may assume that

$$E\left[Y_{t}\middle|\mathcal{F}_{t-1}\right] = \beta_{0} + \beta_{1}X_{t-1}$$

- Two assumptions are imposed in the above equation
 - $ightharpoonup \mathcal{F}_{t-1}$ is identical to all the information about X_{t-1} , therefore

$$E\left[Y_{t}|\mathcal{F}_{t-1}\right] = E\left[Y_{t}|X_{t-1}\right]$$

$$E[Y_t|X_{t-1}] = \int y f_{Y_t}(y|X_{t-1}) dy = \beta_0 + \beta_1 X_{t-1}$$

▶ There are more flexible ways to model $E[Y_t | \mathcal{F}_{t-1}]$

Stationary Processes

- ▶ $\{Y_t\}$ is stationary if some aspects of its behavior are unchanged by shifts in time
- ▶ A stochastic process $\{Y_t\}_{t=1}^{\infty}$ is *strictly stationary* if, for any set of subscripts t_1, t_2, \ldots, t_r with any given finite integer r, the joint distribution of

$$(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_r})$$

is the same as the joint distribution of

$$(Y_{t_1+k}, Y_{t_2+k}, \ldots, Y_{t_r+k})$$

with any time shift k.

Stationary Processes

- ▶ For example, the distribution of (Y_1, Y_5) is the same as the distribution of (Y_{12}, Y_{16}) .
- ► For a strictly stationary process, *Y*_t has the same mean, variance and higher moments for all *t*, *if they exist*.
 - strict stationarity however does not require the existence of any moment
 - iid T(1) is strict stationary but no finite moment exist
 - some popular process in finance (e.g., IGARCH) could be strict stationary without a finite second moment
- Any function/transformation $g(\cdot)$ of a strictly stationary process, $\{g(Y_t)\}$ is also strictly stationary. E.g., if $\{Y_t\}$ is strictly stationary then $\{Y_t^2\}$ is strictly stationary.

Stationary Processes

- Strict stationarity is convenient, but sometimes hard to justify.
 - may be implausible for financial/macro time series data
- Joint distributions are also difficult to work with.
- ▶ It is therefore useful to introduce a simpler concept of stationarity which only characterizes the first two moments of the process.

Autocovariance and Autocorrelation

- ▶ Let $\{Y_t\}_{t=-\infty}^{\infty}$ be such that $E[|Y_t|^2] < \infty$ for all t
- ▶ $Cov(Y_t, Y_{t-j}) = E[(Y_t E(Y_t))(Y_{t-j} E(Y_{t-j}))] := \gamma_{t,j}$ is called the j-lag *autocovariance* and measures the direction of linear time dependence
- ▶ $Corr(Y_t, Y_{t-j}) := \rho_{t,j}$ is called the j-lag autocorrelation and measures the direction and strength of linear time dependence

$$Corr(Y_t, Y_{t-j}) = \rho_{t,j} = \frac{Cov(Y_t, Y_{t-j})}{\sqrt{Var(Y_t)Var(Y_{t-j})}}$$

Covariance (Weak) Stationary Processes

- ▶ A stochastic process $\{Y_t\}_{t=1}^{\infty}$ is covariance stationary if,
 - ► $E[|Y_t|^2] < \infty$ for all t
 - ► $E[Y_t] = \mu$ and $Var(Y_t) = \sigma^2$ for all t (time-invariant mean and variance)
 - ▶ $Cov(Y_t, Y_{t-j}) = \gamma_j$ depends on j and not on t (time-invariant covariance)

Covariance Stationary Processes

- Both stationarity concepts are used in practice.
- A strictly stationary process is covariance stationary if E[|Y_t|²] < ∞ for all t.
- ► However, if $E[|Y_t|^2]$ does not exist, we cannot use covariance stationarity concept.
- Strict stationarity can be defined without any finite moment condition.
 - Some financial time series may not have mean or variance.

Autocorrelation of Stationary Processes

- Let $\{Y_t\}_{t=-\infty}^{\infty}$ be covariance stationary process, then $Var(Y_t) =$ $Var(Y_{t-i}) = \sigma^2$
- $ightharpoonup Var(Y_t) = Cov(Y_t, Y_t) := \gamma_0 = \sigma^2$, so

$$Corr(Y_t, Y_{t-j}) = \rho_j = \frac{Cov(Y_t, Y_{t-j})}{\sqrt{Var(Y_t)Var(Y_{t-j})}} = \frac{\gamma_j}{\sigma^2} = \frac{\gamma_j}{\gamma_0}$$

- ▶ Autocorrelation Function (ACF): ρ_i as a function of j
- ▶ The sample ACF: $\hat{\rho}_i$ as a function of j where

$$\widehat{
ho}_j = rac{\widehat{\gamma}_j}{\widehat{\gamma}_0} ext{ for } |j| < \mathcal{T},$$

$$\widehat{\gamma}_j = (T-j)^{-1} \sum_{t=1}^{T-j} (Y_t - \overline{Y}) (Y_{t+j} - \overline{Y}), \ \overline{Y} = T^{-1} \sum_{t=1}^{T} Y_t$$

▶ Plot of $\hat{\rho}_i$ against j - commonly used "Descriptive Statistics"

ACF in R

▶ The *R*-function to plot the sample ACF is

$$acf(x, lag.max = m)$$

where x is a data vector, m is the number of lags

Goldman Sachs

Autocovariance and Autocorrelation

- ► Absence or presence of autocorrelation is sometimes indicated as the absence of presence of statistical dependence
 - ▶ Is this correct? No!
- In terms of strength of "linear dependence measure"
 - uncorrelated time series process: autocorrelation is zero (e.g., iid)
 - (linearly) dependent time series process: autocorrelation is not zero

Why stationarity is important

- If some distributional aspects are time invariant, e.g. $E\left(Y_{t}\right)=\mu$ then we can use all T observations to estimate $E\left(Y_{t}\right)$ using, say $\frac{1}{T}\sum_{t=1}^{T}Y_{t}$
- ▶ If not, for example, in unit root model below $E(X_t)$ changes over time.
 - \triangleright then each observation x_t comes from a different distribution
 - we cannot use conventional statistical methods to do inference.

IID Process

- "IID" = "Independent and Identically Distributed"
- $Y_t \sim \text{IID} (0, \sigma^2)$ is strictly AND covariance stationary, Why?
- ▶ $Cov(Y_t, Y_s) = 0$ for any $t \neq s$, so is uncorrelated.

- ▶ To introduce martingale difference sequence, we first need a concept of Martingale.
- ▶ A time series process $\{Y_t\}$ is called a martingale process (MG henceforth) if

$$E[Y_t|\mathcal{F}_{t-1}] = Y_{t-1}$$
 for all t ,

i.e., the current value is the best predictor of the next value of this process.

 MG hypothesis has been traditionally assumed for stock price index (or its transformation, such as log)

▶ A time series process $\{d_t\}$ is called a *martingale difference sequence* (MDS henceforth) if it is a difference of martingale processes, i.e.,

$$d_t = Y_t - Y_{t-1}$$
 for all t ,

where Y_t is MG.

 \triangleright Equivalently, d_t is MDS if

$$E[d_t|\mathcal{F}_{t-1}]=0$$
 for all t .

- ▶ The above definition for MDS is a very general one, so we can even allow for nonstationary process as long as it satisfies $E\left[d_t|\mathcal{F}_{t-1}\right]=0$.
- ▶ For example, we can allow a non-stationarity in the second moment such as $d_t \sim mds\left(0,\sigma^2(t)\right)$ where $\sigma^2(t)$ is a timevarying function.
- Many researchers now believe time-varying (conditional or unconditional) volatility in financial market, so the MDS structure is very useful in time series/finance applications.

- ▶ If we want to restrict our attention to "covariance stationary process", the following subclass among MDS can be employed:
- ▶ A time series process $\{d_t\}$ is called a MDS with constant variance if

$$E\left[d_tig|\mathcal{F}_{t-1}
ight]=0$$
 and $Var(d_t)=E\left(d_t^2
ight)=\sigma^2$ for all $t.$

- We use a natural expression for this process: $d_t \sim MDS \left(0, \sigma^2\right)$ and this is another example of *uncorrelated* covariance stationary process.
- See Examples in lecture note.

White Noise Processes

White Noise Process is uncorrelated by definition:

$$Y_t \sim WN(0, \sigma^2)$$
 $E[Y_t] = 0, \ Var(Y_t) = \sigma^2$
 $Cov(Y_t, Y_s) = 0 \ for \ t \neq s$

- ▶ Here, $Y_t \sim WN(0, \sigma^2)$ represents an uncorrelated process with mean zero and variance σ^2 .
- ▶ Similarly to MDS, WN can be very general if we do not impose constant conditional variance. For example, Y_t and Y_s can exhibit non-linear dependence (e.g. Y_t^2 can be correlated with Y_s^2) but still can be WN.

Relations

► IID is stronger than MDS

$$Y_t \sim \text{IID}(0, \sigma^2) \Rightarrow Y_t \sim \text{MDS}(0, \sigma^2)$$

► MDS (with constant variance) is stronger than White Noise (with constant variance)

$$Y_t \sim \text{MDS}(0, \sigma^2) \Rightarrow Y_t \sim \text{WN}(0, \sigma^2)$$

► These three processes are commonly used for time series data with no (or negligible) evidence of correlation

Testing White Noise Assumption

- \vdash H_0^* : $Y_t \sim WN(0, \sigma^2)$
- ▶ One important implication of H_0 is

$$\begin{split} \rho_j &=& \frac{\operatorname{Cov}(Y_t, Y_{t-j})}{\sqrt{\operatorname{Var}(Y_t)\operatorname{Var}(Y_{t-j})}} \\ &=& \frac{\operatorname{Cov}(Y_t, Y_{t-j})}{\operatorname{Var}(Y_t)} = 0 \text{ for any } j \neq 0 \end{split}$$

lacktriangle We can test the following null hypothesis implied by H_0^*

$$H_0: \sum_{j=1}^m \rho_j^2 = 0$$

where $m \geq 1$ is a prescribed integer.

- ▶ Under H_0 any consistent estimator of $\sum_{j=1}^m \rho_j^2$ should be close to zero
- One popular statistic for testing H_0 is the Ljung-Box statistic

Testing White Noise Assumption

- $H_0: \sum_{j=1}^m \rho_j^2 = 0$
- ▶ Given data $\{Y_t\}_{t=1}^T$, we can estimate ρ_j as

$$\widehat{
ho}_j = rac{\widehat{\gamma}_j}{\widehat{\gamma}_0} ext{ for } |j| < T$$

where

$$\widehat{\gamma}_j = (T-j)^{-1} \sum_{t=1}^{T-j} (Y_t - \overline{Y}) (Y_{t+j} - \overline{Y}), \ \overline{Y} = \sum_{t=1}^{T} Y_t$$

► The Ljung-Box statistic is

$$Q_m = (T+2) \sum_{i=1}^{m} (1-j/T) \widehat{\rho}_j^2$$

• We reject H_0 for large values of Q_m

Testing White Noise Assumption

- $ightharpoonup H_0: \sum_{j=1}^m \rho_j^2 = 0$
- The Ljung-Box statistic:

$$Q_m = (T+2) \sum_{j=1}^{m} (1-j/T) \widehat{\rho}_j^2$$

- ▶ The critical value of the Ljung-Box test depends on the theoretical distribution of Q_m under H_0
- ▶ Q_m is approximated a Chi-square random variable with degree of freedom m if $Y_t \sim IID(0, \sigma^2)$
- ▶ One popular choice is $\chi^2_{1-\alpha}(m)$: the $(1-\alpha)$ -quantile of the Chi-square distribution with degree of freedom m

Ljung-Box Test in R

▶ The *R*-function to perform the Ljung-Box test is

$$Box.test(x, lag = m, type = "Ljung")$$

where x is a data vector and m is the number of lags prescribed in the Ljung-Box statistic

Ljung-Box Test of GS, AIG and S&P500

Ljung-Box Test on Monthly CC Returns

	m=2	m = 5	m = 10	m = 20
L-B	3.2939	3.4261	5.6956	17.693
C.V.	5.9914	11.071	18.307	31.410
L-B	2.3800	36.563	55.296	69.829
C.V.	5.9914	11.071	18.307	31.410
L-B	2.2937	4.4088	7.4415	11.754
C.V.	5.9914	11.071	18.307	31.410
	C.V. L-B C.V.	L-B 3.2939 C.V. 5.9914 L-B 2.3800 C.V. 5.9914 L-B 2.2937	L-B 3.2939 3.4261 C.V. 5.9914 11.071 L-B 2.3800 36.563 C.V. 5.9914 11.071 L-B 2.2937 4.4088	L-B 3.2939 3.4261 5.6956 C.V. 5.9914 11.071 18.307 L-B 2.3800 36.563 55.296 C.V. 5.9914 11.071 18.307 L-B 2.2937 4.4088 7.4415

- Idea: create a stochastic process that exhibits multi-period geometrically decaying linear time dependence
- ► AR(1) Model (mean-adjusted form)

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t, -1 < \phi < 1$$

 $\varepsilon_t \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$

- AR(1) model is covariance stationary if $|\phi| < 1$ (see the supplementary note for derivation)
- $\varepsilon_t \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$ could be replaced by $\varepsilon_t \sim \text{mds } N(0, \sigma_{\varepsilon}^2)$ or $\varepsilon_t \sim \text{WN } N(0, \sigma_{\varepsilon}^2)$
- normal distribution assumption is not necessary

Properties

$$E[Y_t] = \mu$$

$$var(Y_t) = \sigma_Y^2 = \frac{\sigma_{\varepsilon}^2}{1 - \phi^2}$$

$$\gamma_j = cov(Y_t, Y_{t-j}) = \phi \gamma_{j-1} = \phi^j \sigma_Y^2$$

$$\rho_j = corr(Y_t, Y_{t-j}) = \frac{\gamma_j}{\gamma_0} = \frac{\phi^j \sigma_Y^2}{\sigma_Y^2} = \phi^j$$

Note: Since $|\phi| < 1$

$$\lim_{j\to\infty}\rho_j=\lim_{j\to\infty}\phi^j=0.$$

► AR(1) Model (regression model form)

$$Y_{t} - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_{t} \Rightarrow$$

$$Y_{t} = \mu - \phi\mu + \phi Y_{t-1} + \varepsilon_{t}$$

$$= c + \phi Y_{t-1} + \varepsilon_{t}$$

where

$$c = (1 - \phi)\mu \Rightarrow \mu = \frac{c}{1 - \phi}$$

Remarks:

Regression model form is convenient for estimation by linear regression.

- ► The AR(1) model is a good description for the following time series
- Interest rates on U.S. Treasury securities, dividend yields, unemployment
- Growth rate of macroeconomic variables
 - Real GDP, industrial production, productivity
 - Money, velocity, consumer prices
 - Real and nominal wages

Time Series

- Modeling Time Series Data

- Autoregressive and Moving Average Models

10

- Idea: Create a stochastic process that only exhibits one period linear time dependence
- ► MA(1) Model

$$Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}, \quad -\infty < \theta < \infty$$
$$\varepsilon_t \sim iid \ N(0, \sigma_{\varepsilon}^2)$$

Properties

$$E[Y_t] = \mu + E[\varepsilon_t] + \theta E[\varepsilon_{t-1}]$$

= \mu + 0 + 0 = \mu

The normal assumption is not necessary. The iid assumption can be replaced by MDS or WN.

Properties

Time Series

$$var(Y_t) = \sigma^2 = E[(Y_t - \mu)^2]$$

$$= E[(\varepsilon_t + \theta \varepsilon_{t-1})^2]$$

$$= E[\varepsilon_t^2] + 2\theta E[\varepsilon_t \varepsilon_{t-1}] + \theta^2 E[\varepsilon_{t-1}^2]$$

$$= \sigma_{\varepsilon}^2 + 0 + \theta^2 \sigma_{\varepsilon}^2 = \sigma_{\varepsilon}^2 (1 + \theta^2)$$

$$cov(Y_t, Y_{t-1}) = \gamma_1 = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})]$$

$$= E[\varepsilon_t \varepsilon_{t-1}] + \theta E[\varepsilon_t \varepsilon_{t-2}]$$

$$+ \theta E[\varepsilon_{t-1}^2] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-2}]$$

$$= 0 + 0 + \theta \sigma_{\varepsilon}^2 + 0 = \theta \sigma_{\varepsilon}^2$$

Properties

$$cov(Y_t, Y_{t-2}) = \gamma_2 = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-2} + \theta \varepsilon_{t-3})]$$

$$= E[\varepsilon_t \varepsilon_{t-2}] + \theta E[\varepsilon_t \varepsilon_{t-3}]$$

$$+ \theta E[\varepsilon_{t-1} \varepsilon_{t-2}] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-3}]$$

$$= 0 + 0 + 0 + 0 = 0$$

Similar calculation show that

$$cov(Y_t, Y_{t-j}) = \gamma_j = 0 \text{ for } j > 1.$$

MA(1) Model

$$Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}, -\infty < \theta < \infty$$

 $\varepsilon_t \sim iid \ N(0, \sigma_{\varepsilon}^2)$

Properties

$$egin{aligned} E[Y_t] &= \mu \ ext{var}(Y_t) &= \sigma_Y^2 = \sigma_arepsilon^2(1+ heta^2) \ \gamma_j &= ext{cov}(Y_t, Y_{t-j}) = \left\{egin{array}{l} heta \sigma_arepsilon^2, & |j| = 1 \ 0, & |j| > 1 \end{array}
ight. \
ho_j &= ext{corr}(Y_t, Y_{t-j}) = \left\{egin{array}{l} heta \sigma_arepsilon^2, & |j| = 1 \ 0, & |j| > 1 \end{array}
ight. \end{aligned}$$

Result: MA(1) is covariance stationary for any value of θ

► Example: MA(1) model for overlapping returns

Let r_t denote the 1-month cc return and assume that

$$r_t \sim \text{iid } N(\mu_r, \sigma_r^2)$$

Consider creating a time series of 2-month cc returns using

$$r_t(2) = r_t + r_{t-1}$$

These 2—month returns observed monthly overlap by 1 month

$$r_t(2) = r_t + r_{t-1}$$

 $r_{t-1}(2) = r_{t-1} + r_{t-2}$
 $r_{t-2}(2) = r_{t-2} + r_{t-3}$
:

Claim: The stochastic process $\{r_t(2)\}$ follows a MA(1) process

Time Series

Modeling Time Series Data
Autoregressive and Moving Average Models

ARMA Processes

► ARMA (1,1) model

$$egin{array}{lcl} Y_t - \mu & = & \phi(Y_{t-1} - \mu) + arepsilon_t + heta arepsilon_{t-1}, \ |\phi| < 1 \ arepsilon_t & \sim & MDS \ (0, \sigma_arepsilon^2) \end{array}$$

- ▶ If $\theta = 0$, then ARMA(1,1) becomes AR(1)
- If $\phi=0$, then ARMA(1,1) becomes MA(1)
- ▶ Therefore, ARMA(1,1) is a more general time series model

► ARMA (1,1) model

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t + \theta \varepsilon_{t-1}, \varepsilon_t \sim MDS(0, \sigma_{\varepsilon}^2), |\phi| < 1$$

Properties

$$\begin{split} E[Y_t] &= \mu \\ \text{var}(Y_t) &= \sigma_Y^2 = \frac{1 + \theta^2 + 2\phi\theta}{1 - \phi^2} \sigma_{\varepsilon}^2 \\ \gamma_j &= \text{cov}(Y_t, Y_{t-j}) = \begin{cases} \frac{(1 + \phi\theta)(\phi + \theta)\sigma_{\varepsilon}^2}{1 - \phi^2}, & |j| = 1 \\ \phi \gamma_{j-1}, & j \ge 2 \\ \gamma_{-j}, & j \le -2 \end{cases} \\ \rho_j &= \text{corr}(Y_t, Y_{t-j}) = \begin{cases} \frac{(1 + \phi\theta)(\phi + \theta)}{1 + \theta^2 + 2\phi\theta}, & |j| = 1 \\ \phi \rho_{j-1}, & j \ge 2 \\ \rho_{-j}, & j \le -2 \end{cases} \end{split}$$

Proof of the above results are in the supplemental notes.

Time Series Modeling Time Series Data Autoregressive and Moving Average Models

Monthly Log_Prices of Goldman Sachs and AIG (2010.1 - 2017.11)

Monthly CC Returns of Goldman Sachs and AIG (2010.1-2017.11)

Nonstationary Processes

- $ightharpoonup \{Y_t\}$ is nonstationary if it is not stationary
 - lacktriangledown nonstationary in mean (1st moment): $E(Y_t) = \mu\left(t
 ight) = \mu_t$
 - time-varying or structural break
 - nonstationary in variance (2nd moment): $\mathrm{var}(Y_t) = \sigma^2(t) = \sigma_t^2$
- "level" of many economic time series, such as stock price, GDP, CPI, consumption, etc. are nonstationary.
 - often take the first difference.
 - cc return is the first difference of log price, so may be (mean) stationary.

Nonstationary Processes

Deterministically trending process

$$Y_t = \beta_0 + \beta_1 t + \varepsilon_t$$
, $\varepsilon_t \sim MDS \ (0, \sigma_{\varepsilon}^2)$
 $E[Y_t] = \beta_0 + \beta_1 t$ depends on t

► A detrending transformation may yield a stationary process:

$$X_t = Y_t - \beta_0 - \beta_1 t = \varepsilon_t$$

Nonstationary Processes

Unit Root (Random Walk) Model

$$egin{aligned} Y_t &= Y_{t-1} + arepsilon_t, \; arepsilon_t \sim \mathit{mds}(0, \sigma_arepsilon^2), \ &= Y_0 + \sum_{j=1}^t arepsilon_j, \; ext{if assume} \; Y_0 = 0 \ &\Rightarrow \mathrm{var}(Y_t) = \sigma_arepsilon^2 imes t \; ext{depends on } t \end{aligned}$$

A differencing transformation may yield a stationary process

$$\Delta Y_t = Y_t - Y_{t-1} = \varepsilon_t$$

Prototypical model for log of stock price and cc return

Nonstationary and Stationary AR Processes

- lacksquare Unit Root (Random Walk) Model: AR(1) with $\phi=1$
 - "a news or shock" impact does not decay at all
- lacktriangle Stationary AR(1) Model: AR(1) with $|\phi| < 1$
 - "a news or shock" impact decay exponentially
- ▶ Testing $H_0: \phi = 1$ Versus $H_0: \phi < 1$ is VERY IMPORTANT
 - "Unit Root Test": well developed

Observed Sample:

$$\{X_1 = x_1, \dots, X_T = x_T\} = \{x_t\}_{t=1}^T$$

are observations generated by the stochastic process

Descriptive Statistics

Data summaries (statistics) to describe certain features of the data, to learn about the unknown pdf, f(x), and to capture the observed dependencies in the data

Monthly CC Returns of Goldman Sachs (2000.1 – 2017.11)

Monthly CC Returns of AIG (2000.1 – 2017.11) Repsity ACF

Histograms

Goal: Describe the shape of the distribution of the data $\{x_t\}_{t=1}^T$ Histogram Construction:

- 1. Order data from smallest to largest values
- 2. Divide range into N equally spaced bins

$$[-|-|-|\cdots|-|-|$$

- 3. Count number of observations in each bin
- 4. Create bar chart (optionally normalize area to equal 1)

R Functions

Function	Description		
hist()	compute histogram		
density()	compute smoothed histogram		

Note: The density() function computes a smoothed (kernel density) estimate of the unknown pdf at the point x using the formula

$$\hat{f}(x) = \frac{1}{Tb} \sum_{t=1}^{T} k \left(\frac{x - x_t}{b} \right)$$

 $k(\cdot) = \text{kernel function}$

b = bandwidth (smoothing) parameter

where $k(\cdot)$ is a pdf symmetric about zero (typically the standard normal distribution).

Empirical Quantiles/Percentiles

Percentiles:

For $\alpha \in [0,1]$, the $100 \times \alpha^{th}$ percentile (empirical quantile) of a sample of data is the data value \hat{q}_{α} such that $\alpha \cdot 100\%$ of the data are less than \hat{q}_{α} .

Quartiles

```
\hat{q}_{.25}= first quartile \hat{q}_{.50}= second quartile (median) \hat{q}_{.75}= third quartile \hat{q}_{.75}-\hat{q}_{.25}= interquartile range (IQR)
```

R functions

Function	Description		
sort()	sort elements of data vector		
min()	compute minimum value of data vector		
max()	compute maximum value of data vector		
range()	compute min and max of a data vector		
quantile()	compute empirical quantiles		
median()	compute median		
summary()	compute summary statistics		

Sample Statistics

Plug-In Principle: Estimate population quantities using sample statistics

Sample Average (Mean)

$$\frac{1}{T}\sum_{t=1}^{I}x_{t}=\bar{x}=\hat{\mu}_{x}$$

Sample Variance

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^2 = s_x^2 = \hat{\sigma}_x^2$$

Sample Standard Deviation

$$\sqrt{s_x^2} = s_x = \hat{\sigma}_x$$

Sample Skewness

$$\frac{1}{T-1}\sum_{t=1}^{T}(x_t-\bar{x})^3/s_x^3=\widehat{skew}$$

Sample Kurtosis

$$\frac{1}{T-1} \sum_{t=1}^{I} (x_t - \bar{x})^4 / s_x^4 = \widehat{kurt}$$

Sample Excess Kurtosis

$$\widehat{kurt} - 3$$

R Functions

IX I UIICLIOIIS				
Function	Package	Description (compute)		
mean()	base	sample mean		
<pre>colMeans()</pre>	base	column means of matrix		
<pre>var()</pre>	stats	sample variance		
sd()	stats	sample standard deviation		
skewness()	PerformanceAnalytics	sample skewness		
<pre>kurtosis()</pre>	PerformanceAnalytics	sample excess kurtosis		
Note: Use the P function apply () to apply functions over rows or				

Note: Use the R function apply(), to apply functions over rows or columns of a matrix or data.frame

Empirical Cumulative Distribution Function

Recall, the CDF of a random variable X is

$$F_X(x) = \Pr(X \le x)$$

The empirical CDF of a random sample is

$$\hat{F}_X(x) = \frac{1}{n} (\#x_i \le x)$$
=
$$\frac{\text{number of } x_i \text{ values } \le x}{\text{sample size}}$$

Use the R function ecdf()

Comparing Empirical CDF to Normal Distribution

Question: Does observed data come from a normal distribution?

Standardize data to have zero mean and variance one

$$z_i = \frac{x_i - \bar{x}}{s_x}$$

- lacksquare Sort standardized data from smallest to largest values: $\{z_{(1)},\ldots,z_{(n)}\}$
- lacktriangle Compute standard normal CDF at each sorted value: $\Phi(z_{(i)})$
- ▶ Plot $\hat{F}_Z(z_{(i)})$ and $\Phi(z_{(i)})$ against sorted data

Quantile-Quantile (QQ) Plots

A QQ plot is useful for comparing your data with the quantiles of a distribution (usually the normal distribution) that you think is appropriate for your data. You interpret the QQ plot in the following way:

- If the points fall close to a straight line, your conjectured distribution is appropriate
- If the points do not fall close to a straight line, your conjectured distribution is not appropriate and you should consider a different distribution

Function	Package	Description
qqnorm()	stats	QQ-plot against normal distribution
qqline()	stats	draw straight line on QQ-plot
qqPlot()	car	QQ-plot against specified distribution

Outliers

- Extremely large or small values are called "outliers"
- Outliers can greatly influence the values of common descriptive statistics. In particular, the sample mean, variance, standard deviation, skewness and kurtosis
- Percentile measures are more robust to outliers: outliers do not greatly influence these measures (e.g. median instead of mean; IQR instead of SD)

$$IQR = q_{.75} - q_{.25}$$

Moderate Outlier

$$\hat{q}_{.75} + 1.5 \cdot IQR < x < \hat{q}_{.75} + 3 \cdot IQR$$

 $\hat{q}_{.25} - 3 \cdot IQR < x < \hat{q}_{.25} - 1.5 \cdot IQR$

Extreme Outlier

$$x > \hat{q}_{.75} + 3 \cdot IQR$$
$$x < \hat{q}_{.25} - 3 \cdot IQR$$

Boxplots

A box plot displays the locations of the basic features of the distribution of one-dimensional data—the median, the upper and lower quartiles, outer fences that indicate the extent of your data beyond the quartiles, and outliers, if any.

Function	Package	Description
boxplot()	graphics	box plot multiple series
<pre>chart.Boxplot()</pre>	Performance Analytics	box plot asset returns

Monthly CC Returns of Goldman Sachs (2000.1 – 2017.11)

Monthly CC Returns of AIG (2000.1 – 2017.11)

Bivariate Descriptive Statistics

$$\{\ldots,(X_1,Y_1),(X_2,Y_2),\ldots(X_T,Y_T),\ldots\}=\{(X_t,Y_t)\}$$

covariance stationary bivariate stochastic process with realized values

$$\{(x_1, y_1), (x_2, y_2), \dots (x_T, y_T)\} = \{(x_t, y_t)\}_{t=1}^T$$

Scatterplot

XY plot of bivariate data R functions: plot(), pairs()

Sample Covariance

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})(y_t - \bar{y}) = s_{xy} = \hat{\sigma}_{xy}$$

Sample Correlation

$$\frac{s_{xy}}{s_x s_y} = r_{xy} = \hat{\rho}_{xy}$$

Function	Package	Description
var()	stats	compute sample variance-covariance matrix
cov()	stats	compute sample variance-covariance matrix
cor()	stats	compute sample correlation matrix

Time Series Descriptive Statistics

Sample Autocovariance

$$\hat{\gamma}_j = \frac{1}{T-j} \sum_{t=j+1}^T (x_t - \bar{x})(x_{t-j} - \bar{x}), \ j = 1, 2, \dots$$

Sample Autocorrelation

$$\hat{
ho}_j = rac{\hat{\gamma}_j}{\hat{\sigma}^2}, \ j=1,2,\ldots$$

Sample Autocorrelation Function (SACF)

Plot $\hat{\rho}_i$ against j

Function	Package	Description (plot)
acf()	stats	sample autocorrelations
<pre>chart.ACF()</pre>	Performance Analytics	sample autocorrelations
<pre>chart.ACFplus()</pre>	Performance Analytics	sample autocorrelations

- Probability and statistics
- Essential time series concepts and models
 - stationarity
 - uncorrelated process in time series data
 - dependent processes (AR and MA models)
- Useful descriptive statistics for financial time series:
 - acf, qqplot, boxplot and histogram (density estimator)
- Explore some finance models next topics