Chapitre 14

Développements limités

Sommaire

I	Développements limités	
	1) Définition	
	2) Formule de Taylor-Young	
	3) Développements usuels en 0	
II	Propriétés	
	1) Généralités	
	2) Règles de calculs	
	3) Développements usuels (compléments)	
III	Applications	
	1) Recherche d'une limite	
	2) Étude locale d'une fonction au voisinage d'un point	
	3) Étude locale au voisinage de l'infini	
	4) Recherche d'un équivalent	
IV	Solution des exercices	

DÉVELOPPEMENTS LIMITÉS

Définition

Définition 14.1

Soit $f: I \to \mathbb{C}$ une fonction et soit $a \in I$ ou une borne réelle de I. Soit $n \in \mathbb{N}$, on dit que f admet un développement limité d'ordre n en a (ou un $dl_n(a)$) lorsqu'il existe un polynôme P de degré au plus n

$$f(x) = P(x-a) + o((x-a)^n).$$

Si c'est le cas, alors le polynôme P(x - a) est appelé **partie régulière** du $dl_n(a)$.

Remarque 14.1 -

- On notera $\mathbb{C}_n[X]$ l'ensemble des polynômes de degré au plus n et à coefficients complexes.
- On a P(x a) = $\sum_{k=0}^{n} a_k (x a)^k$, dans la pratique on **ne développe jamais** les termes $(x a)^k$.
- Le reste du $dl_n(a)$, c'est à dire $o((x-a)^n)$ peut aussi se mettre sous la forme $(x-a)^n \varepsilon(x)$ où $\lim_{x\to a} \varepsilon(x) = 0$.
- C'est le reste qui donne l'ordre du $dl_n(a)$.

Exemples:

- On sait que $\sin(x) \sim x$, donc $\sin(x) = x + o(x)$, c'est un dl₁(0) de $\sin(x)$, la partie régulière est x.
- Pour $x \neq 0$, $e^{-\frac{1}{x^2}} = o(x^2)$, c'est un dl₂(0), la partie régulière est nulle.

Formule de Taylor-Young

Définition 14.2 (polynôme de Taylor et reste)

Soit $f: I \to \mathbb{C}$ une fonction, et soit $a \in I$, si f possède des dérivées jusqu'à l'ordre n en a, alors on appelle polynôme de Taylor de f en a à l'ordre n, la fonction polynomiale notée $T_{n,f,a}$ définie par :

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

La différence f(x) – $T_{n,f,a}(x)$ est notée $R_{n,f,a}(x)$ est appelée **reste** de f en a à l'ordre n.

Remarque 14.2 – Si f est n+1 fois dérivable en a, alors $\left[T_{n+1,f,a}(x)\right]'=T_{n,f',a}(x)$.

👺 Théorème 14.1

Si f est définie et continue au voisinage de a et si $f(x) = o((x-a)^n)$ avec $n \in \mathbb{N}$, alors au voisinage de a, on a $\int_{a}^{x} f(t) dt = o((x-a)^{n+1}).$

Preuve : On écrit $f(t) = (t - a)^n \alpha(t)$ avec $\lim_{t \to 0} \alpha(t) = 0$. On se donne $\varepsilon > 0$, dans un voisinage V de a on aura $|f(t)| \le 1$ $|t-a|^n \varepsilon$, pour x > a dans V, on obtient $\left| \int_a^x f(t) dt \right| \le \varepsilon \int_a^x (t-a)^n dt = \varepsilon \frac{(x-a)^{n+1}}{n+1} < (x-a)^{n+1} \varepsilon$. De même pour x < a dans V, on vérifie que $\left| \int_a^x f(t) dt \right| < |x-a|^{n+1} \varepsilon$. Ce qui montre que $\lim_{x \to a} \frac{\int_a^x f(t) dt}{(x-a)^{n+1}} = 0$ et donc $\int_a^x f(t) dt = o(x-a)^{n+1}$.

🔁 Théorème 14.2 (formule de Taylor-Young)

Soit $n \in \mathbb{N}$, soit $f : I \to \mathbb{C}$ une fonction de classe \mathscr{C}^n sur l'intervalle I et $a \in I$, on $a : R_{n,f,a}(x) = o((x-a)^n)$,

c'est à dire : $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$.

Preuve: Par récurrence sur n: pour n = 0 f(x) = f(a) + (f(x) - f(a)), et f(x) - f(a) = o(1), car f est continue en a. Supposons le théorème démontré au rang n, et supposons f de classe \mathcal{C}^{n+1} sur I, alors f' est de classe \mathcal{C}^n , l'hypothèse de récurrence s'applique à f': $f'(t) = T_{n,f',a}(t) + o((t-a)^n)$, en intégrant entre a et x, on obtient $f(x) - f(a) = \sum_{k=0}^{n} \frac{f'^{(k)}(a)}{(k+1)!} (x-a)^{k+1} + o((x-a)^{n+1})$, en appliquant le théorème précédent pour l'intégration du o, un changement d'indice donne alors $f(x) = f(a) + \sum_{k=0}^{n} \frac{f'^{(k)}(a)}{(k+1)!} (x-a)^{k+1} + o((x-a)^{n+1}) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^{n+1}).$

Remarque 14.3 – Sous les mêmes hypothèses, on peut écrire qu'il existe une fonction ε telle que : $f(x) = T_{n,f,a}(x) + (x-a)^n \varepsilon(x)$ avec $\lim_{x \to a} \varepsilon(x) = 0$.

👺 Théorème 14.3

Soit $f: I \to \mathbb{C}$ et soit $a \in I$, si f est de classe \mathscr{C}^n sur l'intervalle I, alors f admet un $dl_n(a)$ et sa partie régulière est $T_{n,f,a}(x)$, c'est à dire son polynôme de Taylor en a à l'ordre n. Si f est de classe \mathscr{C}^{∞} sur I, alors f admet un dl en tout point de I et à n'importe quel ordre.

Développements usuels en 0

-À retenir

$$\begin{cases} -(1+x)^{\alpha} = \sum\limits_{k=0}^{n} \binom{\alpha}{k} x^k + o(x^n), \text{ où } \binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}, \text{ formule des coefficients du binôme} \\ \text{généralisée. En particulier} : \frac{1}{1+x} = \sum\limits_{k=0}^{n} (-1)^k x^k + o(x^n). \end{cases}$$

PROPRIÉTÉS

Généralités 1)

Théorème 14.4 (troncature)

Si f admet un $dl_n(a)$ alors pour tout entier $p \in [0; n]$, f admet un $dl_p(a)$ dont la partie régulière s'obtient en tronquant la partie régulière du $dl_n(a)$ au degré p.

Preuve : Celle-ci est simple et laissée en exercice.

\bigstarExercice 14.1 Comment s'écrit le $dl_n(0)$ d'un polynôme?

Théorème 14.5 (unicité du dl)

Si f admet un $dl_n(a)$ alors celui-ci est unique.

Preuve : Par récurrence sur n. Au rang 0 c'est évident avec un passage à la limite. Supposons l'unicité montrée au rang n-1. Si f a deux $dl_n(a)$, alors par troncature elle a deux $dl_{n-1}(a)$, ils sont donc égaux, ce qui donne après simplification $\alpha_n(x-a)^n + o((x-a)^n) = \beta_n(x-a)^n + o((x-a)^n)$, en simplifiant par $(x-a)^n$ (pour $x \neq a$), et par passage à la limite en a, on obtient $\alpha_n = \beta_n$ et on a bien l'unicité au rang n.

Changement de variable

On peut toujours se ramener en a = 0:

- On pose u = x - a, on a alors f(x) = f(u + a) = g(u), d'où:

$$f$$
 admet un $dl_n(a) \iff \exists P \in \mathbb{C}_n[X], f(x) = P(x-a) + o((x-a)^n)$
 $\iff \exists P \in \mathbb{C}_n[X], g(u) = P(u) + o(u^n)$
 $\iff g$ admet un $dl_n(0)$.

- Si f est définie au voisinage de $\pm \infty$: on pose $u = \frac{1}{x}$, on a alors $f(x) = f(\frac{1}{u}) = g(u)$. Si g admet un dl_n(0); alors il existe un polynôme P ∈ $\mathbb{C}_n[X]$ tel que $g(u) = P(u) + o(u^n)$, ce qui donne $f(x) = P(\frac{1}{x}) + o(\frac{1}{x^n})$, on dit alors que f admet un développement asymptotique en $\frac{1}{x}$ d'ordre n en $\pm \infty$, on remarquera que la partie régulière n'est pas un polynôme en x mais en $\frac{1}{x}$.

🛂 Théorème 14.6

- f admet un $dl_0(a)$ si et seulement si f admet une limite finie en a.
- f admet un $dl_1(a)$ si et seulement si f admet un prolongement continu dérivable en a.
- Si f admet un $dl_n(0)$, alors la partie régulière a la même parité que f.

Preuve : Celle-ci est simple et laissée en exercice.

Attention!

Une fonction peut avoir un $\mathrm{dl}_2(a)$ sans être deux fois dérivable en a.

Exercice 14.2 Montrer que la fonction définie par $f(x) = x^3 \sin(\frac{1}{x})$ avec f(0) = 0, admet un $d_2(0)$ (dont la partie régulière est nulle), mais f' n'est pas dérivable en 0, donc f n'est pas deux fois dérivable en 0 (et donc f' n'a pas de DL en 0).

2) Règles de calculs

🛂 Théorème 14.7

 $Si\ f,g\ admettent\ un\ \mathrm{dl}_n(0),\ f(x)=\mathrm{P}(x)+\underset{0}{o}(x^n)\ et\ g(x)=\mathrm{Q}(x)+\underset{0}{o}(x^n),\ avec\ \mathrm{P},\mathrm{Q}\in\mathbb{C}_n[\mathrm{X}].$

- − DL d'une combinaison linéaire : $\forall \lambda \in \mathbb{C}, \lambda f + g$ admet un dl_n(0) dont la partie régulière en $\lambda P(x) + g$
- DL d'un produit : $f(x) \times g(x)$ admet un $dl_n(0)$ dont la partie régulière est $[P(x)Q(x)]_n$ (polynôme $P(x) \times Q(x)$ tronqué au degré n).
- DL d'une composée : si $\lim_{x\to 0} g(x) = 0$, alors f(g(x)) admet un $\mathrm{dl}_n(0)$ dont la partie régulière est
- Intégration des DL : si f' admet un $\mathrm{dl}_n(0)$ dont la partie régulière est $\mathrm{P}(x)$, alors f admet un $\mathrm{dl}_{n+1}(0)$
- dont la partie régulière est : $f(0) + \int_0^x P(t) dt$.

 Inversion d'un DL : $si \lim_{x \to 0} f(x) = a \neq 0$, alors $\frac{1}{f(x)}$ admet un $dl_n(0)$ qui s'obtient en composant le $\mathrm{dl}_n(0)$ de $\frac{1}{1+u}$ avec celui de $\frac{f(x)-a}{a}$, et en multipliant par $\frac{1}{a}$.

Preuve: Donnons un exemple pour la composition avec n = 2: $f(x) = a + bx + cx^2 + x^2u(x)$ et $g(x) = \alpha x + \beta x^2 + x^2v(x)$, avec u et v de limite nulle en 0, on en déduit en composant : $f(g(x)) = a + b(\alpha x + \beta x^2 + x^2v(x)) + c(\alpha x + \beta x^2 + x^2v(x))$ $v(x)^2 + (\alpha x + \beta x^2 + x^2 v(x))^2 u(g(x))$, ce qui donne après avoir développer et regrouper les puissances de x strictement supérieures à 2 : $f(g(x)) = a + b\alpha x + [b\beta + c\alpha^2]x^2 + o(x^2)$, on peut vérifier que la partie régulière est la troncature au

Pour l'intégration cela découle de la propriété déjà établie : $\int_0^x o(t^n) dt = o(x^{n+1})$.

Pour $\frac{1}{f(x)}$: comme $a \neq 0$, on a $\frac{1}{f(x)} = \frac{1}{a} \frac{1}{1 + \frac{f(x) - a}{a}}$, et $\frac{f(x) - a}{a} \xrightarrow[x \to 0]{}$ 0, donc la règle de composition s'applique.

Il n'y a pas de propriété de dérivation de DL. Par exemple, on vérifiera que la fonction définie par $f(x) = x^2 \sin(\frac{1}{x})$ $avec\ f(0)=0$, $admet\ un\ dl_1(0)\ (dont\ la\ partie\ régulière\ est\ nulle)$, mais $f'\ n'a\ pas\ de\ limite\ fine\ en\ 0$, $donc\ f'\ n'a\ pas\ n'a\ pa$

Développements usuels (compléments)

Pour $x \neq 1$, on a $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$, on en déduit :

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{1-x} = \sum_{k=0}^{n} x^k + o(x^n).$$

En substituant -x à x, on obtient :

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n).$$

En intégrant ce dernier développement entre 0 et x, on obtient :

$$\ln(1+x) = \sum_{k=0}^{n} (-1)^k \frac{x^{k+1}}{k+1} + o(x^{n+1}).$$

En substituant x^2 à x dans l'avant dernier, on obtient :

$$\frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + o(x^{2n+1}) \text{ c'est un dl}_{2n+1}(0).$$

En intégrant ce dernier développement entre 0 et x, on obtient :

$$\arctan(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o_0(x^{2n+2}).$$

On a:

$$\frac{1}{\sqrt{1+x}} = \sum_{k=0}^{n} {\binom{-1/2}{k}} x^k + o(x^n).$$

Or $\binom{-1/2}{k} = (-1)^k \frac{1 \times 3 \times \dots \times (2k-1)}{k!2^k} = (-1)^k \frac{\binom{2k}{k}}{4^k}$, on a finalement :

$$\frac{1}{\sqrt{1+x}} = \sum_{k=0}^{n} (-1)^k \frac{\binom{2k}{k}}{4^k} x^k + o(x^n).$$

On en déduit que :

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k} x^{2k} + o(x^{2n+1}).$$

En intégrant entre 0 et x, obtient :

$$\arcsin(x) = \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k (2k+1)} x^{2k+1} + o(x^{2n+2}).$$

et:

$$\arccos(x) = \frac{\pi}{2} - \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k (2k+1)} x^{2k+1} + o(x^{2n+2}).$$

Exemples:

- Calculer un dl₃(0) de $\exp(\sin(x))$. On a $\sin(x) = x - \frac{x^3}{6} + o(x^3)$ et $\exp(u) = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + o(u^3)$. Comme $\lim_{x \to 0} \sin(x) = 0$, on peut appliquer le théorème de composition, et composer les parties régulières jusqu'à l'ordre 3, ce qui donne $\exp(\sin(x)) = 1 + x + \frac{x^2}{2} + o(x^3)$.
- Calculer un dl₄(0) de $(1 + \sin(x))^x$. L'expression est égale à $\exp[x\ln(1 + \sin(x))]$. Un dl₃(0) de $\sin(x)$ est $\sin(x) = x - \frac{x^3}{6} + o(x^3)$, et $\ln(1 + u) = u - \frac{u}{2} + \frac{u^3}{3} + o(u^3)$, on obtient par composition, $\ln(1 + \sin(x)) = x - \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$ et donc $x\ln(1 + \sin(x)) = x^2 - \frac{x^3}{2} + \frac{x^4}{6} + o(x^4)$. On a également $\exp(v) = 1 + v + \frac{v^2}{2} + o(v^2)$, d'où par composition : $\exp[x\ln(1 + \sin(x))] = 1 + x^2 - \frac{x^3}{2} + 2\frac{x^4}{3} + o(x^4)$.
- Calculer un dl₅(0) de tan(x): On a tan(x) = $\sin(x) \times \frac{1}{\cos(x)}$. $\sin(x) = x \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)$. D'autre part $\frac{1}{\cos(x)} = \frac{1}{1+u}$ avec $u = \cos(x) 1$, comme $u \to 0$, on pourra donc composer, $\cos(x) 1 = -\frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$ et $\frac{1}{1+u} = 1 u + u^2 + o(u^2)$, ce qui donne : $\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + 5\frac{x^4}{24} + o(x^5)$. On effectue ensuite le produit avec le dl de $\sin(x)$, ce qui donne $\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$.

Autre méthode: on a $\tan(x) = 0 + o(1)$, d'où $1 + \tan(x)^2 = 1 + o(1)$, en intégrant, on obtient $\tan(x) = x + o(x) = x \times (1 + o(1))$. Puis on recommence: $1 + \tan(x)^2 = x^2 \times (1 + o(1))^2 = x^2 \times (1 + o(1)) = 1 + x^2 + o(x^2)$ et donc $\tan(x) = x + \frac{x^3}{3} + o(x^3) = x \times (1 + \frac{x^2}{3} + o(x^2))$, mais alors $1 + \tan(x)^2 = x^2 \times (1 + \frac{x^2}{3} + o(x^2))^2 = x^2 \times (1 + \frac{2x^2}{3} + o(x^2)) = 1 + x^2 + \frac{2x^4}{3} + o(x^4)$, et donc $\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$... etc

III APPLICATIONS

1) Recherche d'une limite

Exemple: Soit $f(x) = \frac{x^2 - 1 - 2x \ln(x)}{x(x-1)\ln(x)}$, calculer $\lim_{x \to 1} f(x)$.

Il s'agit bien d'une forme indéterminée, on ramène le problème en 0 en posant u=x-1, ce qui donne $f(x)=\frac{u^2+2u-2(1-u)\ln(1+u)}{u(1+u)\ln(1+u)} \sim \frac{u^2+2u-2(1+u)\ln(1+u)}{u^2}$. On cherche alors un dl₂(0) du numérateur, ce qui donne $o(u^2)$, on a donc $f(x)=f(1+u) \sim 0$ (1) et donc la limite cherchée est nulle.

★Exercice 14.3 Calculer $\lim_{x \to +\infty} x^2 \ln(\frac{x}{1+x}) + x - 1$.

Étude locale d'une fonction au voisinage d'un point

Si f a un dl₂(a), $f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + o((x - a)^2)$, alors on voit que $\lim_{x \to a} f(x) = a_0$, on peut donc prolonger f par continuité en a, en posant $f(a) = a_0$ (si ce n'est pas déjà fait!). Le taux d'accroissement en a s'écrit : $\frac{f(x)-a_0}{x-a} = a_1 + o(1)$, donc ce prolongement est dérivable en a et $f'(a) = a_1$. L'équation de la tangente à la courbe au point d'abscisse a est $y = a_1(x - a) + a_0$, et l'étude de la position courbe-tangente se fait en étudiant le signe de $f(x) - [a_0 + a_1(x - a)] = (x - a)^2 [a_2 + o(1)]$, d'où la discussion :

- si $a_2 > 0$: alors au voisinage de a on a $[a_2 + o(1)] > 0$ et donc $f(x) > a_0 + a_1(x a)$, i.e. la courbe est au-dessus de sa tangente **au voisinage** de *a*.
- si $a_2 < 0$: c'est la situation inverse.
- si $a_2 = 0$: on ne peut rien dire, il faut aller plus loin dans le développement limité. Dans la pratique on s'arrête au premier terme non nul de degré supérieur ou égal à 2.

★Exercice 14.4 Soit $f(x) = \frac{x \ln(x)}{x^2 - 1}$, effecter une étude locale en a = 1.

Étude locale au voisinage de l'infini

Si f est définie au voisinage de ∞ et admet une limite infinie, alors on peut étudier la branche infinie de f de la manière suivante : on pose $g(x) = \frac{f(x)}{x}$, on se ramène en 0 en posant u = 1/x, ce qui donne g(x) = g(1/u) = uf(1/u), et on cherche un dl₂(0) de cette expression : $uf(1/u) = a_0 + a_1u + a_2u^2 + o(u^2)$, ce qui donne en revenant à x, $f(x) = a_0x + a_1 + a_2\frac{1}{x} + o(\frac{1}{x})$, d'où $\lim_{x\to\infty} f(x) - [a_0x + a_1] = 0$, donc la droite d'équation $y = a_0x + a_1$ est asymptote à C_f au voisinage de ∞ . Pour la position courbe-asymptote, on étudie la différence : $f(x) - [a_0x + a_1] = \frac{1}{x}[a_2 + o(1)]$, l'étude du signe se fait comme dans le paragraphe précédent si $a_2 \neq 0$. Lorsque $a_2 = 0$ il faut aller plus loin dans le développement pour avoir le signe.

Remarque 14.4 – Dans la pratique, on n'est pas obligé de passer par la fonction $\frac{f(x)}{x}$, en travaillant directement sur f(x).

Exercice 14.5 $f(x) = \sqrt[3]{\frac{x^4}{x-3}}$ au voisinage $de + \infty$.

4) Recherche d'un équivalent

👺 Théorème 14.8

Si f admet un $dl_n(a)$, alors f(x) est équivalente en a au terme **non nul de plus bas degré** de la partie régulière, s'il existe.

Preuve: Soit $a_p(x-a)^p$ le premier terme non nul, on a alors $f(x) = a_p(x-a)^p + o((x-a)^p) = (x-a)^p [1 + o(1)]$, ce qui prouve l'équivalence annoncée.

Remarque 14.5 –

- En se ramenant en 0, on peut également trouver un équivalent d'une fonction en $\pm\infty$.
- Avec ce théorème, on retrouve tous les équivalents dits « classiques ».

★Exercice 14.6 Équivalent en 0 de la fonction $f(x) = \frac{\arcsin(x)}{\sqrt{1-x^2}} - \frac{3x}{3-2x^2}$.

SOLUTION DES EXERCICES

Solution 14.1 Il suffit de le tronquer au degré n, la somme des termes suivants est un $o(x^n)$.

Solution 14.2 On a $f(x) = o(x^2)$ qui un $dl_2(0)$ de f, on en déduit que f est dérivable en 0 avec f'(0) = 0. Pour $x \neq 0$, on a $f'(x) = 2x^2 \sin(\frac{1}{x}) - x\cos(\frac{1}{x}), \ d'où \ \frac{f'(x) - f'(0)}{x - 0} = 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x}), \ or \ cette \ fonction \ n'a \ pas \ de \ limite \ en \ 0 \ car \ si \ on \ prend \\ u_n = \frac{1}{n\pi}, \ alors \cos(\frac{1}{u_n}) = (-1)^n \ n'a \ pas \ de \ limite, \ alors \ que \ 2u_n \sin(\frac{1}{u_n}) \to 0. \ Donc \ f \ n'est \ pas \ deux \ fois \ dérivable \ en \ 0.$ **Solution 14.3** Il s'agit bien d'une forme indéterminée, on se ramène en 0 en posant u=1/x, on a alors $f(x)=f(\frac{1}{u})=\frac{-1}{u^2}\ln(1+u)+\frac{1}{u}-1$, ce qui donne $f(\frac{1}{u})=\frac{-1}{2}+o(1)$, et donc la limite cherchée est $\frac{-1}{2}$.

Solution 14.4 On pose u = x - 1 d'où $f(x) = f(1 + u) = \frac{\ln(1 + u)}{u}(1 + u) \frac{1}{2[1 + u/2]}$, le calcul donne $f(x) = f(1 + u) = \frac{1}{2} - \frac{u^2}{12} + o(u^2)$. On en déduit que f se prolonge par continuité en 1 en posant $f(1) = \frac{1}{2}$, ce prolongement est dérivable en 1 et f'(1) = 0, de plus, au voisinage de 1, la courbe est en-dessous de la tangente. On a donc un maximum local en 1.

Solution 14.5 On voit que f est définie au voisinage $de + \infty$ et que $f(x) \underset{+\infty}{\sim} x$, il y a donc une branche infinie de direction asymptotique y = x. Posons $u = \frac{1}{x}$, on a alors $f(x) = f(\frac{1}{u}) = \frac{1}{u}(1 - 3u)^{-1/3} = \frac{1}{u}(1 + u + 2u^2 + o(u^2))$, d'où $f(x) = x + 1 + \frac{2}{x} + o(\frac{1}{x})$. Donc la droite d'équation y = x + 1 est asymptote à la courbe de f en $+\infty$, et au voisinage de $+\infty$ la courbe de f est au-dessus.

Solution 14.6 On $a \frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3x^4}{8} + o(x^5)$, en intégrant on obtient $\arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + o(x^5)$, en effectuant le produit, il vient que : $\frac{\arcsin(x)}{\sqrt{1-x^2}} = x + \frac{2x^3}{3} + \frac{8x^5}{15} + o(x^5)$. D'un autre côté, on $a \frac{3x}{3-2x^2} = x \frac{1}{1-2x^2/3} = x[1 + \frac{2x^2}{3} + \frac{4x^4}{9} + o(x^4)] = x + \frac{2x^3}{3} + \frac{4x^5}{9} + o(x^5)$. Finalement, on $a f(x) = \frac{4x^5}{45} + o(x^5)$, et donc $f(x) \approx \frac{4x^5}{45}$.