6/1/2021 cs149.stanford.edu/fall20

[Home] [Feed] [Course Info] [Lectures/Readings] [Login]

Stanford CS149, Fall 2020

PARALLEL COMPUTING

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, parallel processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good parallel programs requires an understanding of key machine performance characteristics, this course will cover both parallel hardware and software design.

Basic Info

Tues/Thurs 2:30-3:50pm

Virtual Course Only

Instructors: Kayvon Fatahalian and Kunle Olukotun

See the **course info** page for more info on policies and logistics.

Fall 2020 Schedule

Sep 15	Why Parallelism? Why Efficiency? Motivations for parallel chip decisions, challenges of parallelizing code
Sep 17	A Modern Multi-Core Processor Forms of parallelism: multicore, SIMD, threading + understanding latency and bandwidth
Sep 22	Parallel Programming Abstractions Ways of thinking about parallel programs, and their corresponding hardware implementations, ISPC programming
Sen 24	Parallel Programming Basics

cs149.stanford.edu/fall20

Thought process of parallelizing a program in data parallel and shared address space models

6/1/2021 cs149.stanford.edu/fall20

Sep 29	Performance Optimization I: Work Distribution and Scheduling Achieving good work distribution while minimizing overhead, scheduling Cilk programs with work stealing
Oct 01	Performance Optimization II: Locality, Communication, and Contention Message passing, async vs. blocking sends/receives, pipelining, increasing arithmetic intensity, avoiding contention
Oct 06	GPU architecture and CUDA Programming CUDA programming abstractions, and how they are implemented on modern GPUs
Oct 08	Data-Parallel Thinking Data parallel thinking: map, reduce, scan, prefix sum, groupByKey
Oct 13	Distributed Computing using Spark Producer-consumer locality, RDD abstraction, Spark implementation and scheduling
Oct 15	Cache Coherence Definition of memory coherence, invalidation-based coherence using MSI and MESI, false sharing
Oct 20	Memory Consistency + Implementation Synchronization Consistency vs. coherence, relaxed consistency models and their motivation, acquire/release semantics, implementing locks and atomic operations
Oct 22	Fine-Grained Synchronization and Lock-Free Programming Fine-grained snychronization via locks, basics of lock-free programming: single-reader/writer queues, lock-free stacks, the ABA problem, hazard pointers
Oct 27	Midterm Exam good luck to everyone
Oct 29	Transactional Memory Motivation for transactions, design space of transactional memory implementations, lazy-optimistic HTM
Nov 03	Heterogeneous Parallelism and Hardware Specialization Energy-efficient computing, motivation for heterogeneous processing, fixed-function processing, FPGAs, mobile SoCs
Nov 05	Domain-Specific Programming Systems Motivation for DSLs, case study on Halide image processing DSL
Nov 10	Parallel Graph Processing Frameworks + How DRAM Works GraphLab, Ligra, and GraphChi, streaming graph processing, graph compression
Nov 12	Programming for Hardware Specialization Performance programming for FPGAs and CGRAs

cs149.stanford.edu/fall20 2/3

6/1/2021 cs149.stanford.edu/fall20

Nov 17	Efficiently Evaluating DNNs
	Scheduling convlayers, exploiting precision and sparsity, DNN acelerators (e.g., GPU TensorCores, TPU)
Nov 19	Parallel DNN Training + Course Wrap Up
	Enjoy your Winter holiday break!

Programming Assignments

Sep 25	Assignment 1: Analyzing Parallel Program Performance on a Quad-Core CPU
Oct 8	Assignment 2: Scheduling Task Graphs
Oct 23	Assignment 3: A Simple Renderer in CUDA
Nov 10	Assignment 4: Big Graph Processing in OpenMP
Nov 19	Assignment 5: Optional Assignment

Written Assignments

Written Assignment 1	Oct 6
Written Assignment 2	Oct 13
Written Assignment 3	Oct 20
Written Assignment 4	Nov 5
Written Assignment 5	Nov 17

Copyright 2020 Stanford University

cs149.stanford.edu/fall20 3/3