#### FA 1.5 - 1 Funktion skizzieren - OA - MK

1. Skizziere den Graph einer Funktion mit folgenden Eigenschaften:

\_\_\_\_/1 FA 1.5

Definitions menge: [-3;4], Wertemenge: [1;3], Maximum: (0/3)



#### FA 1.5 - 2 Funktionseigenschaften erkennen - MC - BIFIE

2. Gegeben ist die Funktion f mit  $f(x) = x^3 - 2x + 3$ .

FA 1.5

Kreuze die beiden für die Funktion f zutreffenden Aussagen an!





#### FA 1.5 - 3 Polynomfunktion 4. Grades - MC - BIFIE

3. Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f, die vom Grad 4 ist.



Kreuze die beiden für die Funktion f zutreffenden Aussagen an!

| Die Funktion besitzt drei Wendepunkte.                                      |             |
|-----------------------------------------------------------------------------|-------------|
| Die Funktion ist symmetrisch bezüglich der y-Achse.                         | $\boxtimes$ |
| Die Funktion ist streng monoton steigend für $x \in [0; 4]$ .               |             |
| Die Funktion besitzt einen Wendepunkt, der gleichzeitig auch Tiefpunkt ist. |             |
| Die Funktion hat drei Nullstellen.                                          | $\boxtimes$ |

#### FA 1.5 - 4 Monotonie einer linearen Funktion - LT - BIFIE

4. Gegeben ist die Gerade mit der Gleichung y=-2x+4. Auf dieser Geraden \_\_\_\_/1 liegen die Punkte  $A=(x_A|y_A)$  und  $B=(x_B|y_B)$ . FA 1.5

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

| 1           |             |
|-------------|-------------|
| $y_A < y_B$ |             |
| $y_A = y_B$ |             |
| $y_A > y_B$ | $\boxtimes$ |

| 2                |   |
|------------------|---|
| monoton steigend |   |
| monoton fallend  | × |
| konstant         |   |

### FA 1.5 - 5 Achsenschnittpunkte eines Funktionsgraphen - $\operatorname{MC}$ - $\operatorname{BIFIE}$

5. Der Graph einer reellen Funktion f hat für  $x_0 = 3$  einen Punkt mit der x-Achse gemeinsam.

Kreuze diejenige Gleichung an, die diesen geometrischen Sachverhalt korrekt beschreibt.

$$f(0) = 3$$

$$f(3) = 3$$

$$f(3) = 0$$

$$f(3) = x_0$$

$$f(0) = -3$$

$$f(x_0) = 3$$

### FA 1.5 - 6 Argumente - OA - BIFIE

6. Gegeben ist der Graph einer reellen Funktion f.

\_\_\_\_/1

FA 1.5



Gib alle Argumente  $x \in [-3; 9]$  an, für die gilt:  $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ .

#### FA 1.5 - 7 Nullstellen einer Funktion - OA - BIFIE

7. Eine Funktion ist durch die Gleichung  $f(x) = x \cdot (x-1) \cdot (x+1)$  gegeben.

\_\_\_\_/1

FA 1.5

Kennzeichne im gegebenen Koordinatensystem alle Nullstellen des Funktionsgraphen durch Punkte.



#### FA 1.5 - 8 Polynomfunktion skizzieren - OA - BIFIE

- - Ihr Graph ist zur y-Achse symmetrisch.
  - Im Intervall  $(-\infty; -2)$  ist die Funktion streng monoton fallend.
  - Ihre Wertemenge ist  $[-4; \infty)$ .
  - $\bullet$  Die Stelle x=2 ist eine lokale Extremstelle.
  - $\bullet$  An der Stelle x=0 berührt der Graph die x-Achse.

Skizziere den Graphen einer Polynomfunktion vierten Grades mit den oben angegebenen Eigenschaften im nachstehenden Koordinatensystem!



### FA 1.5 - 9 Funktionseigenschaften - MC - BIFIE

9. Gegeben ist der Graph einer reellen Funktion f, der die x-Achse an den Stellen  $_{1}$   $x_{1}=2, x_{2}=4$  und  $x_{3}=9$  schneidet.



Kreuze die zutreffende(n) Aussage(n) an.

| f ist im Intervall [2; 4] monoton fallend.         |   |
|----------------------------------------------------|---|
| f(2) = f(9)                                        | × |
| f(1) > f(1)                                        | × |
| Zu jedem $x \in [3; 9]$ gibt es genau ein $f(x)$ . | × |
| Zu jedem $f(x) \in [3; 0]$ gibt es genau ein $x$ . |   |

#### FA 1.5 - 10 Symmetrie - LT - BIFIE

10. Gegeben ist eine Potenzfunktion der Form  $f(x) = a \cdot x^2 + b$  mit  $a \neq 0, b \in \mathbb{R}$ , \_\_\_\_\_/1  $n \in \mathbb{Z} \setminus \{0\}$ .

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

| 1)            |             |
|---------------|-------------|
| gerade Zahl   | $\boxtimes$ |
| ungerade Zahl |             |
| negative Zahl |             |

| 2              |             |
|----------------|-------------|
| zur x-Achse    |             |
| zur y-Achse    | $\boxtimes$ |
| zur 1. Mediane |             |

### FA 2.1 - 11 Lineare Funktion - OA - BIFIE - Kompetenzcheck 2016

11. Der Graph der Funktion f ist eine Gerade, die durch die Punkte P=(2/8) \_\_\_\_\_/1 und Q=(4/4) verläuft. FA 1.5

Gib eine Funktionsgleichung der Funktion f an.

$$f(x) =$$

$$f(x) = -2x + 12$$

# FA 1.5 - 12 Funktionseigenschaften erkennen - MC - Matura 2015/16 - Haupttermin

12. Gegeben ist der Graph einer Polynomfunktion f dritten Grades.

\_\_\_\_/ -

FA 1.5



Kreuze die für den dargestellten Funktionsgraphen von f zutreffende(n) Aussage(n) an.

| Die Funktion $f$ ist im Intervall (2; 3) monoton steigend.                  |             |
|-----------------------------------------------------------------------------|-------------|
| Die Funktion $f$ hat im Intervall (1; 2) eine lokale Maximumstelle.         |             |
| Die Funktion $f$ ändert im Intervall $(-1; 1)$ das Krümmungsverhalten.      | $\boxtimes$ |
| Der Funktionsgraph von $f$ ist symmetrisch bezüglich der senkrechten Achse. |             |
| Die Funktion $f$ ändert im Intervall $(-3; 0)$ das Monotonieverhalten.      | ×           |

# FA 1.5 - 13 Den Graphen einer Polynomfunktion skizzieren - OA - Matura 2014/15 - Haupttermin

13. Eine Polynomfunktion f hat folgende Eigenschaften:

\_\_\_\_/1

FA 1.5

- Die Funktion ist für  $x \leq 0$  streng monoton steigend.
- Die Funktion ist im Intervall [0; 3] streng monoton fallend.
- Die Funktion ist für  $x \geq 3$  streng monoton steigend.
- Der Punkt P = (0|1) ist ein lokales Maximum (Hochpunkt).
- Die Stelle 3 ist eine Nullstelle.

Erstelle anhand der gegebenen Eigenschaften eine Skizze eines möglichen Funktionsgraphen von f im Intervall [-2;4].



# FA 1.5 - 14 Quadratische Funktion und ihre Nullstellen - OA - Matura 2014/15 - Kompensationsprüfung

14. Skizziere den Graphen einer möglichen quadratischen Funktion, die in  $P = ___/1$  (0|-1) ein lokales Minimum (einen Tiefpunkt) hat, und gib die Anzahl der FA 1.5 Nullstellen dieser Funktion an.



Diese Funktion hat jedenfalls zwei Nullstellen.

## FA 1.5 - 15 Funktionen vergleichen - MC - Matura 2014/15 - Kompensationsprüfung

15. Gegeben sind fünf reelle Funktionen f, g, h, i und j. Kreuze jene Funktionsgleichung(en) an die im gesamten Definitionsbereich monoton steigend ist/sind.

FA 1.5

| $f(x) = 3x \text{ mit } x \in \mathbb{R}$           | $\boxtimes$ |
|-----------------------------------------------------|-------------|
| $g(x) = x^3 \text{ mit } x \in \mathbb{R}$          | $\boxtimes$ |
| $h(x) = 3^x \text{ mit } x \in \mathbb{R}$          | $\boxtimes$ |
| $i(x) = \sin(3x) \text{ mit } x \in \mathbb{R}$     |             |
| $j(x) = \frac{1}{3}x \text{ mit } x \in \mathbb{R}$ | ×           |

## FA 1.5 - 16 Graphen und Funktionstypen - ZO - Matura 2015/16 - Nebentermin 1

16. Im Folgenden sind die Graphen von vier Funktionen dargestellt. Weiters sind \_\_\_\_\_/1 sechs Funktionstypen angeführt, wobei die Parameter  $a, b \in \mathbb{R}$  sind. FA 1.5

Ordne den vier Graphen jeweils den entsprechenden Funktionstyp (aus A bis F)



| A | $f(x) = a \cdot b^x$             |
|---|----------------------------------|
| В | $f(x) = a \cdot x^{\frac{1}{2}}$ |
| С | $f(x) = a \cdot \frac{1}{x^2}$   |
| D | $f(x) = a \cdot x^2 + b$         |
| Е | $f(x) = a \cdot x^3$             |
| F | $f(x) = a \cdot x + b$           |

## FA 1.5 - 17 Waagrechte Asymptote - MC - BIFIE - Kompetenzcheck 2016

17. Gegeben sind fünf Funktionsgleichungen.

\_\_\_\_/1

Welche dieser Funktionen besitzt/besitzen eine waagrechte Asymptote?

FA 1.5

Kreuze die zutreffende(n) Funktionsgleichung(en) an.

| $f_1(x) = \frac{2}{x}$                |             |
|---------------------------------------|-------------|
| $f_2(x) = 2^x$                        |             |
| $f_3(x) = \frac{x}{2}$                |             |
| $f_4(x) = \left(\frac{1}{2}\right)^x$ | $\boxtimes$ |
| $f_5(x) = x^{\frac{1}{2}}$            |             |

## FA 1.5 - 18 Krümmungsverhalten einer Polynomfunktion - MC - Matura 2016/17 - Haupttermin

18. Der Graph einer Polynomfunktion dritten Grades hat im Punkt T=(-3|1) ein lokales Minimum, in H=(-1|3) ein lokales Maximum und in W=(-2|2) FA 1.5 einen Wendepunkt.

In welchem Intervall ist diese Funktion linksgekrümmt (positiv gekrümmt)? Kreuze das zutreffende Intervall an!

| $(-\infty;2)$   |             |
|-----------------|-------------|
| $(-\infty; -2)$ | $\boxtimes$ |
| (-3; -1)        |             |
| (-2;2)          |             |
| $(-2;\infty)$   |             |
| $(3;\infty)$    |             |