Marco V. Bayas

Noviembre 11, 2022

Ecuaciones no lineales

$$f(x) = 0$$
 $f(x)$ no lineal en x

La resolución requiere métodos numéricos

Ejemplo:

$$an\sqrt{a-x} + \sqrt{rac{a}{x}-1} = 0$$
 , $0 < x < a$

Sin raíces

Con raíces

$$f(x,y)=0$$
$$g(x,y)=0$$

Método de Newton-Raphson:

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \bigg|_{x_0, y_0} \Delta x + \frac{\partial f}{\partial y} \bigg|_{x_0, y_0} \Delta y + \cdots$$
$$g(x,y) = g(x_0, y_0) + \frac{\partial g}{\partial x} \bigg|_{x_0, y_0} \Delta x + \frac{\partial g}{\partial y} \bigg|_{x_0, y_0} \Delta y + \cdots$$

Si la solución (x_r, y_r) está en la vecindad de (x_0, y_0) , entonces:

$$f(x_r, y_r) \approx f(x_0, y_0) + \frac{\partial f}{\partial x} \bigg|_{x_0, y_0} \Delta x + \frac{\partial f}{\partial y} \bigg|_{x_0, y_0} \Delta y \approx 0$$
$$g(x_r, y_r) \approx g(x_0, y_0) + \frac{\partial g}{\partial x} \bigg|_{x_0, y_0} \Delta x + \frac{\partial g}{\partial y} \bigg|_{x_0, y_0} \Delta y \approx 0$$

Método de Newton-Raphson:

$$\underbrace{f(x_0, y_0) + \frac{\partial f}{\partial x}\Big|_{x_0, y_0}}_{f_0} \underbrace{(x_r - x_0) + \frac{\partial f}{\partial y}\Big|_{x_0, y_0}}_{\Delta x} \underbrace{(y_r - y_0)}_{\Delta y} = 0$$

$$\underbrace{g(x_0, y_0) + \frac{\partial g}{\partial x}\Big|_{x_0, y_0}}_{g_x} \underbrace{(x_r - x_0) + \frac{\partial g}{\partial y}\Big|_{x_0, y_0}}_{\Delta x} \underbrace{(y_r - y_0)}_{\Delta y} = 0$$

Sistema de ecuaciones lineales para Δx y Δy

$$\begin{bmatrix} f_x & f_y \\ g_x & g_y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = - \begin{bmatrix} f_0 \\ g_0 \end{bmatrix}$$

$$\rightarrow \ x_r = x_0 - \frac{f_0 \, g_y - g_0 \, f_y}{f_x \, g_y - g_x \, f_y} \quad , \quad y_r = y_0 - \frac{g_0 \, f_x - f_0 \, g_x}{f_x \, g_y - g_x \, f_y}$$

Método de Newton-Raphson:

Algoritmo

Requerimientos:

- f(x,y), f'(x,y), g(x,y) y g'(x,y)
- Estimación inicial (x_0, y_0)
- 1. Definir la estimación inicial: (x_0, y_0) y la tolerancia δ
- 2. Para cada valor de $k \ge 0$
 - Determinar el sistema de ecuaciones lineales para Δx y Δy
 - Resolver el sistema de ecuaciones y encontrar Δx y Δy
 - Evaluar

$$x_{k+1} = x_k + \Delta x_k$$

$$y_{k+1} = y_k + \Delta y_k$$

3. Repetir el paso 2 hasta que $|x_{k+1} - x_k| + |y_{k+1} - y_k| < \delta$

Ejercicio:

$$e^x - 3y - 1 = 0$$
$$x^2 + y^2 - 4 = 0$$

$$\begin{bmatrix} e^{x_k} & -3 \\ 2x_k & 2y_k \end{bmatrix} \begin{bmatrix} \Delta x_k \\ \Delta y_k \end{bmatrix} = \begin{bmatrix} e^{x_k} - 3y_k - 1 \\ x_k^2 + y_k^2 - 4 \end{bmatrix}$$

Búsqueda de la solución :

$$x_{k+1} = x_k + \Delta x_k$$
 , $y_{k+1} = y_k + \Delta y_k$

Busqueda de la solución.

$$e^{x} - 3y - 1 = 0$$

 $x^{2} + y^{2} - 4 = 0$
 $x_{0} = 10$
 $y_{0} = 10$

Iteraciones: 15 x = -1.97926 y = -0.28727

Generalización

$$F_{i}(x_{1}, x_{2}, ..., x_{N}) = F_{i}(\mathbf{x}) = 0 \qquad i = 1, ..., N$$

$$\rightarrow F_{i}(\mathbf{x}_{r}) \approx F_{i}(\mathbf{x}) + \sum_{j=1}^{N} \underbrace{\frac{\partial F_{i}}{\partial x_{j}}}_{J_{ij}} \Delta x_{j}$$

En notación matricial:

$$\begin{aligned} \textbf{F}(\textbf{x}_r) &\approx \textbf{F}(\textbf{x}) + \textbf{J} \cdot \Delta \textbf{x} \approx \textbf{0} \\ &\rightarrow \textbf{J} \cdot \Delta \textbf{x} = -\textbf{F}(\textbf{x}) \quad \text{y} \quad \Delta \textbf{x} = -\textbf{J}^{-1} \cdot \textbf{F}(\textbf{x}) \\ &\textbf{x}_r = \textbf{x}_0 + \Delta \textbf{x} \end{aligned}$$

Esquema iterativo:

$$\mathbf{x}_{k+1} \approx \mathbf{x}_k + \Delta \mathbf{x}_k$$

Métodos globalmente convergentes

$${f F}({f x})=0$$
 ${f x}_{k+1}={f x}_k+\Delta{f x}_k$, $\Delta{f x}_k=-{f J}_k^{-1}\cdot{f F}({f x}_k)$

Estrategia para la aceptación de Δx_k

- ▶ Minimización de $f = \mathbf{F}(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x})$

Actualización:

$$\mathbf{x_{k+1}} = \mathbf{x}_k + \lambda \Delta \mathbf{x}_k$$
 , $0 < \lambda < 1$

Escoger λ tal que:

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k) + \alpha \nabla \mathbf{f} \cdot (\mathbf{x}_{k+1} - \mathbf{x}_k)$$
 , $0 < \alpha < 1$