Eric Pitman Summer Workshop in Computational Science

5. Visualizing Data

Statistic Visualisation Pattern science Neurocompanting

Plotting Data

Plotting is another way to explore a dataset, visually:

- What's in the dataset?
- What does it mean?
- What if there's a lot of it?

Some Plot Types

- Pie Chart
 - Display proportions of different values for a variable
- Bar Plot
 - Display counts of values for a categorical variable
- Histogram, Density Plot
 - Display counts of values for a binned, numeric variable
- Scatter Plot
 - y vs. x
- Box Plot
 - Display distributions over different values of a variable

Barplot: Counts of Categorical Values

Barplot: Counts of Categorical Values

Ideal cut diamonds by Color

ideal=diamonds[diamonds\$cut=="Ideal","color"]

Histogram: Frequencies of Numeric Values

hist(Cars93\$RPM,

xlab="engine RPM",

main="histogram of engine RPM",

col="red")

Histogram and Density Binning

Kernel Density Plot

density plot of engine RPM

plot(density(Cars93\$RPM), xlab="engine RPM", main="density plot of engine RPM", col="red")

Density Plot

Scatterplot with Regression Lines

Scatterplot: Numeric Data, y vs. x

plot(formula=price~carat, data=diamonds, col="darkblue", pch=20, main="Diamond Price with Size")

Box (and Whisker) Plot

- The box extends from Q1 to Q3
- The *median*, Q2, is marked inside the box
- The whiskers extend to the min and max
 - Whiskers: required to lie within 1.5×(IQR)
 - Outliers: beyond 1.5×(IQR)

Boxplot: Data Symmetry?

Box (and Whisker) Plot

Mileage by Gear Number

boxplot(formula=mpg~gear, data=mtcars, main="Mileage by Gear Number", xlab="Number of Gears", ylab="Miles Per Gallon", col=c("red","green","blue"))

GIS plot

Approach to Plotting

- Remember, you're getting to know your data.
- Don't be afraid to tinker and play.
- Sometimes the outcomes are silly (make sure you learn something!)

Horsepower in Cars93 Dataset

pie(table(Cars93\$Horsepower))

Interlude

Complete plotting exercises.

Open in the RStudio source editor:

<workshop>/exercises/5-exercises-plotting-basic.R

Interlude++

When you have done your plotting exercises...

Read flowing-data's "Rules not to Break"

http://flowingdata.com/2015/08/11/real-chart-rules-to-follow

If you want to experiment further with R and RStudio, you can install them on your favorite operating system at home.

First, install R:

http://cran.r-project.org/

Then, install the Rstudio IDE:

http://www.rstudio.com/ide/