Syntaks og semantik

Lektion 4

20 februar 2007

Forord

Administrivia

NFA

NFA vs. RE

Non-deterministiske endelige automater

NFAs og regulære udtryk Administrivia

Der skulle nu være nok Sipsere i boghandelen

 Deadline for aflevering af syntaksopgave-erstatnings-opgavestilling (for PE-studerende) er *i dag*!

næste gang: spørgetime!

Administrivia NFA

NFA vs. RE

3/21

en 5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er Definition 1.37: En nondeterministisk endelig automat (NFA) er

Q: en endelig mængde af tilstande

Σ : input-alfabetet

③ δ : \mathbf{Q} × $(\Sigma \cup \{\varepsilon\})$ → $\mathcal{P}(\mathbf{Q})$: transitions-funktionen

 $q_0 \in Q$: starttilstanden $F \subseteq Q$: mængden af accepttilstande

 $y_1,y_2,\ldots,y_m\in\Sigma\cup\{arepsilon\}$ og $r_0,r_1,\ldots,r_m\in Q$ således at M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og

 $W = y_1 y_2 \dots y_m$ og

② $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., m-1, og ③ $r_m \in F$.

4/21

2/21

Administrivia

NFA

Administrivia NFA NFA vs. RE

- enhver DFA er også en NFA
- enhver NFA kan laves om til en DFA der genkender samme sprog (delmængdekonstruktionen)
- et sprog er defineret til at være regulært hvis der er en DFA der genkender det
- et sprog er regulært hvis og kun hvis der er en NFA der genkender det
- konstruere en ny NFA ud fra de givne NFAs) regulære sprog er lukket under ∪, ∘, * (vises ved at
- regulære sprog er lukket under ∩ og ⁻ (komplement) (vises konstruktionerne virker kun for DFAs!) ved at konstruere en ny DFA ud fra de givne DFAs:
- NFAs er generelt mere simple at fremstille
- men nogen gange kan det være nødvendigt at arbejde med DFAs - eksempel: opgave 1.13

Administrivia NFA NFA vs. RE

5/21

NFA ⇒ RE

Bevises ved strukturel induktion:

da er det regulært.

Lemma 1.55: Hvis et sprog beskrives ved et regulært udtryk

- konvertér de basale regulære udtryk til NFAs
- brug lukningsegenskaber til at konvertere sammensætninger af NFAs sammensætninger af regulære udtryk til
- Smart

beskrives ved et regulært udtryk. I dag: Lemma 1.60: Hvis et sprog er regulært, da kan det

(Bevises ved at generalisere NFAs til GNFAs.)

beskrives ved et regulært udtryk. ⇒ Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan

6/21

NFA ⇒ RE Ikke-regulære sprog

Regulære og ikke-regulære sprog

Regulære sprog genereres af regulære udtryk Ikke-regulære sprog

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da

Ikke-regulære sprog

7/21

findes et regulært udtryk R over Σ således at L = [R].

automater (GNFA) regulære udtryk: generaliserede nondeterministiske endelige Nøgle til beviset: Ny slags maskiner der kombinerer NFA og

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- lacksquare $\delta: (Q \setminus \{q_t\}) imes (Q \setminus \{q_0\}) o \mathcal{R}:$ transitions-funktionen
- (a) $q_0 \in Q$: starttilstanden (b) $q_f \in Q$: accepttilstanden

et givet alfabet Σ . Notation: $\mathcal{R}=\mathcal{R}(\Sigma)=$ mængden af alle regulære udtryk over

bruges ikke til andet.) (Bemærk at GNFAs introduceres kun for det her bevis. De

8/21

Definition 1.64: En GNFA er en 5-tupel $(Q,\Sigma,\delta,q_0,q_f)$, hvoi delene er

lacksquare $q_f \in Q$: accepttilstanden

Ligesom NFAs, men

- med kun én accepttilstand
- med regulære udtryk på transitionerne i stedet for tegn
- med transitioner fra enhver tilstand til enhver tilstand (også sig selv), bortset fra at
- starttilstanden ikke har indgående transitioner, og at
- accepttilstanden ikke har udgående transitioner

9/21

Ikke-regulære sprog

NFA ⇒ RE

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor

NFA ⇒ RE

- Q : en endelig mængde af tilstande
- Σ : input-alfabetet
- ⓐ δ : $(Q \setminus \{q_f\}) \times (Q \setminus \{q_0\})$ → \mathcal{R} : transitions-funktionen
- $oldsymbol{a} q_0 \in Q$: starttilstanden
- **S** $q_t \in Q$: accepttilstanden

GNFAen accepterer et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og

 $y_1, y_2, \ldots, y_m \in \Sigma^*$ (!) og $r_0, r_1, \ldots, r_m \in Q$ således at

 $W = y_1 y_2 \dots y_m$ og

- $r_0 = q_0,$
- **2** $y_{i+1} \in [\![\delta(r_i, r_{i+1})]\!]$ for alle i = 0, 1, ..., m-1, og

Bevisidé: konvertér en DFA til en GNFA og så GNFAen til et regulært udtryk ved at fjerne én tilstand ad gangen.

10/21

NFA ⇒ RE Ikke-regulære sprog

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = \llbracket R \rrbracket$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$
- (a) Lav en ny starttilstand q_0 og en ny accepttilstand q_f , med ε -transitioner fra q_0 til den gamle starttilstand og fra alle gamle accepttilstande til q_f .
- (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
- (c) Indsæt Ø-transitioner hvor der mangler pile.

Eksempel 1.68':

Ikke-regulære sprog

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Nonvertér *M* til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$:
- (a) Lav en ny starttilstand q₀ og en ny accepttilstand q_f, med ε-transitioner fra q₀ til den gamle starttilstand og fra alle gamle accepttilstande til q_f.
- (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels
- (c) Indsæt 0-transitioner hvor der mangler pile.

 $Q = Q_1 \cup \{q_0, q_f\}$

$$\delta(q,q') = \begin{cases} \varepsilon & \text{hvis } q = q_0 \text{ eller } q' = q_f \\ a_1 \cup a_2 \cup \dots \cup a_k & \text{hvis } q, q' \in Q_1 \text{ og } \delta_1(q,a_i) = q' \\ & \text{for alle } i = 1, 2, \dots, k \end{cases}$$

hvis $q,q'\in Q_1$ og $\delta_1(q,a)\neq q'$ for alle $a\in \Sigma$

(c)

12/21

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$
- Konvertér G til et regulært udtryk R:
- CONVERT(G):
- Lad k = |Q| antallet af tilstande i G.
- **2** Hvis k = 2, returnér $\delta(q_0, q_t)$
- Vi har k > 2. Lad $q_{rip} \in Q \setminus \{q_0, q_f\}$.

Lad $Q'=Q\setminus\{q_{\mathsf{rip}}\}$, og definér $\delta': \left(Q'\setminus\{q_f\}\right)\times \left(Q'\setminus\{q_0\}\right) \to \mathcal{R}$ på følgende måde:

NFA ⇒ RE

Ikke-regulære sprog

13/21

findes et regulært udtryk R over Σ således at L = [R]. Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$
- Konvertér G til et regulært udtryk R:

CONVERT(G):

- Lad k = |Q| antallet af tilstande i G.
- **a** Hvis k = 2, returnér $\delta(q_0, q_f)$.
- Vi har k > 2. Lad $q_{rip} \in Q \setminus \{q_0, q_t\}$.

Lad $\mathbf{Q}' = \mathbf{Q} \setminus \{q_{\mathsf{rip}}\}$, og definér $\delta' : \left(\mathbf{Q}' \setminus \{q_f\}\right) \times \left(\mathbf{Q}' \setminus \{q_0\}\right) \to \mathcal{R}$ på følgende måde:

For $q \in Q' \setminus \{q_f\}$ og $q' \in Q' \setminus \{q_0\}$ lad $R_1 = \delta(q, q_{\text{rip}}), R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}),$ $R_3 = \delta(q_{\text{rip}}, q')$ og $R_4 = \delta(q, q')$, og lad $\delta'(q, q') = R_4 \cup R_1(R_2)^*R_3$.

a Returnér Convert $(G' = (Q', \Sigma, \delta', q_0, q_t))$

14/21

Ikke-regulære sprog

NFA ⇒ RE lkke-regulære sprog

findes et regulært udtryk R over Σ således at $\mathit{L} = \llbracket R
rbracket$ Lemma 1.60: Givet et alfabet Σ og et regulært sprog $\mathcal{L}\subseteq \Sigma^*$, da

Bevis: Lad $M=(Q_1,\Sigma,\delta_1,q_1,F_1)$ være en DFA med $\llbracket M
rbracket = L$.

- Konvertér *M* til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$
- Konvertér G til et regulært udtryk R.
- **3** Vis at [M] = [R]:
- Vis at [M] = [G]: nemt
- \circ Vis at [G] = [R]
- Hvis k = |Q| = 2: $Q = \{q_0, q_t\}$, og $R = \delta(q_0, q_t)$
- Hvis k > 2: Vis at [G] = [G']

NFA ⇒ RE Ikke-regulære sprog

Ikke alle sprog er regulære. F.x. sproget $\{0^n1^n \mid n \in \mathbb{N}\}$:

en uendelig automat!

Pumping Lemma: en egenskab ved alle regulære sprog

⇒ Hvis et sprog ikke har den egenskab, kan det ikke være

NFA ⇒ RE Ikke-regulære sprog

NFA ⇒ RE

Ikke-regulære sprog

har længde mindst p kan opsplittes i tre stykker, s = xyz, med findes der et (naturligt) tal p således at ethvert ord $s \in A$ der Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$

For ethvert regulært sprog A findes $p \in \mathbb{N}_0$ således at for ethvert $s \in A \text{ med } |s| \ge p$ tindes en opsplitning s = xyz således at for alle $i \in \mathbb{N}_0$ |y| > 0 og $|xy| \le p$ og $xy'z \in A$.

17/21

Ikke-regulære sprog

 $NFA \Rightarrow RE$

har længde mindst p kan opsplittes i tre stykker, s = xyz, med findes der et (naturligt) tal p således at ethvert ord $s \in A$ der Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy'z \in A$ for alle $i \in \mathbb{N}_0$

regulært, og lad p være pumpelængden. Lad $s = 0^{\rho}1^{\rho}$, da er Bevis (ved modstrid; kortere end i bogen!): Antag at B er Eksempel 1.73: Sproget $B = \{0^n 1^n \mid n \in \mathbb{N}\}$ er ikke regulært.

indeholde 0er, og pga. |y| > 0 indeholder y mindst ét 0 pumpelemmaets betingelser. Pga. $|xy| \le p$ kan y kun Lad s = xyz være en opsplitning af s som opfylder

Sidste betingelse i lemmaet siger bl.a. at ordet $xyyz \in A$, men dette ord indeholder for mange 0er. Modstrid!

> findes der et (naturligt) tal p således at ethvert ord $s \in A$ der Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A

har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$

og lad p = |Q|. Lad $s = s_1 s_2 \dots s_n \in A \text{ med } |s| \ge p$. Bevis: Lad $M = (Q, \Sigma, \delta, q_0, F)$ være en DFA der genkender A,

der er i M! tilstande. Men n+1>p, så der er flere tilstande i følgen end Mens M læser s, kommer den igennem en følge af n+1

Dvs. der er en tilstand der optræder to gange i følgen – en

den del der læses i løkken, og z den del der læses efter løkken, kan vi gennemløbe løkken i gange og genkende strengen xy'z. Hvis vi tager x til at være den del af s der læses før løkken, y

NFA ⇒ RE Ikke-regulære sprog

19/21

har længde mindst p kan opsplittes i tre stykker, s = xyz, med findes der et (naturligt) tal p således at ethvert ord $s \in A$ der Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy'z \in A$ for alle $i \in \mathbb{N}_0$.

og lad p = |Q|. Lad $s = s_1 s_2 \dots s_n \in A \text{ med } |s| \ge p$. Bevis: Lad $M=(Q,\Sigma,\delta,q_0,F)$ være en DFA der genkender A

Lad $r_1, r_2, \dots, r_{n+1} \in Q$ således at $r_1 = q_0, r_{n+1} \in F$, og

således at $1 \le j < \ell \le p+1$ og $r_j = r_\ell$. Vi har $n+1 \ge p+1$, og |Q|=p. Derfor findes indices j og ℓ $r_{i+1} = \delta(r_i, s_i)$ for alle *i*.

vi $|y| \ge 0$, og $\ell \le p+1$ medfører $|xy| \le p$. Lad $x=s_1\dots s_{j-1},\,y=s_j\dots s_{\ell-1},\,z=s_\ell\dots s_n.$ Pga. $j<\ell$ har

M, og ordet den genkender er xy'z. Eftersom $\delta(r_{\ell-1}, s_{\ell-1}) = r_j$, er enhver følge $(r_1,\ldots,r_{j-1})(r_j,\ldots,r_{\ell-1})'(r_\ell,\ldots,r_{n+1})$ en accepterende følge for

NFA ⇒ RE Ikke-regulære sprog

Eksempel 1.74: Sproget

 $C=\{w\mid \text{antallet af 0 i } w \text{ er lig med antallet af 1}\}\subseteq\{0,1\}^*$ er ikke regulært.

(Samme bevis som for eksempel 1.73)

Bemærkning (opgave 1.48): Sproget $D = \{w \mid \text{antallet af 01 i } w \text{ er lig med antallet af 10} \} \subseteq \{0,1\}^*$ er regulært!

(Men kun over alfabetet $\{0,1\}$; hvis alfabetet f.x. er $\{0,1,2\}$, er D ikke regulært ...)

Bevis: