Curbe eliptice peste corpuri finite

Adrian Manea

9 noiembrie 2019

Cuprins

	DE ADĂUGAT/CLARIFICAT	1		
1	Preliminarii	3		
	1.1 Varietăți algebrice	3		
	1.2 Varietăți proiective	6		
	1.2.1 Aplicație aritmetică	8		
2	Curbe algebrice	10		
	2.1 Divizori	11		
	2.2 Teorema Riemann-Roch	12		
3		14		
	3.1 Ecuații Weierstrass	14		
	3.2 Structura de grup	16		
	3.3 Curbe eliptice	17		
4	0 W1 D 0 011 P 010 0 P 011 1 111110	18		
	4.1 Numărul punctelor raționale	18		
5	Algoritmul lui Schoof	20		
	Index	24		
	Bibliografie			

	_				
\mathbf{r}	ADA	$T \cap A \cap T$		ADIT	$\mathbf{r} \sim \mathbf{A} \mathbf{T}$
1) H	Δ \mathbf{I} \mathbf{I} Δ	(≟ Δ	/(1	ΔRIH	Ι(΄ Δ Ι
_ 1715	I I I I I I I I I I	$\cup \cup \cap \Box$. / 🔾 🗘	I M M I I I I	$1 \cup A \perp$

CURĂȚENIE! doar ce trebuie pentru curbe eliptice! pornește de la Schoof încoace	3
chiar e necesar? – păstrează minimum pt. Schoof!	14
cam puṭin	17
clarifică!	19
clarifică!	20
exemple + de luat din alte părți explicații	23
vezi si wiki	23

CURĂȚENIE! doar ce trebuie pentru curbe eliptice! pornește de la Schoof încoace

1.1 Varietăți algebrice

Începem prezentarea cu cîteva preliminarii privitoare la varietăți algebrice și alte noțiuni elementare de algebră comutativă.

Vom folosi următoarele notații și obiecte:

- K este un corp perfect, i.e. unul pentru care orice extindere algebrică este separabilă;
- \overline{K} este o închidere algebrică fixată a lui K;
- $\operatorname{Gal}(\overline{K}/K) = G_{\overline{K}/K}$ este grupul Galois al extinderi
i $K \subseteq \overline{K}.$

În majoritatea exemplelor, K va fi (o extindere algebrică a lui) \mathbb{Q} , \mathbb{Q} sau \mathbb{F}_p .

Definiție 1.1: *Spațiul afin* peste corpul *K* este mulțimea de *n*-tupluri:

$$\mathbb{A}^n = \mathbb{A}^n(K) = \{ P = (x_1, \dots, x_n) \in \overline{K}^n \}.$$

Similar, se defineste *spațiul punctelor K-raționale* din \mathbb{A}^n , care conține restricția $P \in K^n$.

Fie $\overline{K}[X] = \overline{K}[X_1, ..., X_n]$ un inel de polinoame în n nedeterminate și fie $I \subseteq \overline{K}[X]$ un ideal. Putem asocia fiecărui astfel de ideal o submultime a lui \mathbb{A}^n :

$$V_I = \{ P \in \mathbb{A}^n \mid f(P) = 0, \quad \forall f \in I \}.$$

Definiție 1.2: O multime algebrică afină este o multime de forma V_I ca mai sus.

Dacă V este o astfel de mulțime, *idealul* lui V este:

$$I(V) = \{ f \in \overline{K}[X] \mid f(P) = 0, \forall P \in V \}.$$

Spunem că o mulțime algebrică este *definită* peste K dacă idealul său I(V) poate fi generat de polinoame din K[X] și notăm aceasta cu V/K.

Dacă V este definită peste K, mulțimea punctelor K-raționale ale lui V este mulțimea:

$$V(K) = V \cap \mathbb{A}^n(K).$$

Observație 1.1: Conform teoremei bazei a lui Hilbert, idealele lui $\overline{K}[X]$ și K[X] sînt finit generate.

Fie *V* o multime algebrică și considerăm idealul:

$$I(V/K) = \{ f \in K[X] \mid f(P) = 0, \forall P \in V \} = I(V) \cap K[X].$$

Se poate observa că *V* este definită peste *K* dacă și numai dacă are loc relația:

$$I(V) = I(V/K) \cdot \overline{K}[X].$$

Presupunem acum că V este definită peste K și fie $f_1, \dots, f_m \in K[X]$, generatori ai idealului I(V/K). Rezultă că V(K) este mulțimea soluțiilor $x = (x_1, \dots, x_n)$ pentru ecuațiile polinomiale:

$$f_1(x) = \dots = f_m(x) = 0, \quad x_1, \dots, x_n \in K.$$

Exemplu 1.1: Fie V multimea algebrică din \mathbb{A}^2 dată de ecuatia $X^2 - Y^2 = 1$.

Atunci V este definită peste orice corp K.

Presupunem acum char $K \neq 2$. Rezultă $V(K) \simeq \mathbb{A}^1(K) - \{0\}$, o bijecție fiind, de exemplu:

$$\mathbb{A}^{1}(K) - \{0\} \longrightarrow V(K)$$
$$t \longmapsto \left(\frac{t^{2} + 1}{2t}, \frac{t^{2} - 1}{2t}\right).$$

Exemplu 1.2: Mulțimea algebrică $V: X^n + Y^n = 1$ este definită peste $\mathbb Q$ și, folosind Marea Teoremă a lui Fermat, pentru orice $n \geq 3$, are loc:

$$V(\mathbb{Q}) = \begin{cases} \{(1,0),(0,1)\}, & n \text{ impar} \\ \{(\pm 1,0),(0,\pm 1)\}, & n \text{ par} \end{cases}.$$

Exemplu 1.3: Mulțimea algebrică $V: X^2 = Y^3 + 17$ are multe puncte Q-raționale. De fapt, se poate arăta că $V(\mathbb{Q})$ este infinită. Cîteva exemple sînt:

$$V(\mathbb{Q}) = \{(3, -2), (378661, 5234), \left(\frac{2651}{512}, \frac{137}{64}\right)\}.$$

Definiție 1.3: O mulțime algebrică (afină) se numește *varietate algebrică (afină)* dacă I(V) este un ideal prim al lui $\overline{K}[X]$.

Remarcăm că dacă V este definită peste K, atunci este suficient să verificăm dacă I(V/K) este ideal prim al lui K[X].

Fie V/K o varietate, adică V este varietate definită peste K. Atunci inelul coordonatelor afine al V/K este:

$$K[V] = \frac{K[X]}{I(V/K)}.$$

De asemenea, deoarece I(V/K) este ideal prim, rezultă că K[V] este domeniu de integritate. Corpul său de fracții se notează K(V) si se numeste *corpul de funcții* al lui V/K.

Similar putem formula înlocuind K cu \overline{K} .

În plus, orice element al $\overline{K}[V]$ se defineste pînă la un element din $I(V/\overline{K})$, deci pînă la un polinom ce se anulează pe V. Rezultă că $f \in \overline{K}[V]$ induce o funcție $f: V \to \overline{K}$.

Definiție 1.4: Fie *V* o varietate algebrică.

Dimensiunea varietății, notată dim V, este gradul de transcendență al extinderii $\overline{K}(V)$ peste $\overline{K}.$

Exemplu 1.4: dim $\mathbb{A}^n = n$, deoarece $\overline{K}(\mathbb{A}^n) = \overline{K}(X_1, \dots, X_n)$.

Dacă $V \subseteq \mathbb{A}^n$ este dat de o ecuație polinomială neconstantă $f(X_1, \dots, X_n) = 0$, atunci dim V = n - 1.

Vom fi interesați de proprietatea de *netezime*, care se definește prin analogul condiției de existență a planului tangent:

Definiție 1.5: Fie V o varietate algebrică, $P \in V, f_1, \dots, f_m \in \overline{K}[X]$ o mulțime de generatori pentru I(V).

V se numește nesingulară (netedă) în P dacă matricea jacobiană $\left(\frac{\partial f_i}{\partial X_j}(P)\right)$ are rangul n – $\dim V$.

Exemplu 1.5: Fie V dată de o ecuație polinomială neconstantă $f(x_1, ..., x_n) = 0$.

Atunci dim V=n-1, deci P este singularitate dacă și numai dacă $\frac{\partial f}{\partial x_i}(P)=0, \forall 1 \leq i \leq n$. Totodată, f(P)=0, deci în total obținem n+1 condiții pe n nedeterminate.

Exemplu 1.6: Fie două varietăți:

$$V_1: Y^2 = X^3 + X$$
 si $V_2: Y^2 = X^3 + X^2$.

Punctele lor singulare trebuie să satisfacă:

$$V_1^{\text{sing}} : 3X^2 + 1 = 2Y = 0$$
 și $V_2^{\text{sing}} : 3X^2 + 2X = 2Y = 0$.

Rezultă că V_1 nu are singularități, dar V_2 are, originea (0,0).

Putem formula și o altă caracterizare a netezimii, prin funcții definite pe varietate. Fie P un punct arbitrar din V. Definim idealul $M_P ext{ } ext{$

$$M_P = \{ f \in \overline{K}[V] \mid f(P) = 0 \}.$$

Se poate observa că M_P este maximal, deoarece avem izomorfismul:

$$\overline{K}[V]/M_P \to \overline{K}$$
 $f \mapsto f(P).$

Rezultă că grupul factor M_P/M_P^2 este un \overline{K} -spațiu vectorial finit dimensional. Are loc:

Propoziție 1.1: Fie V o varietate algebrică.

Punctul $P \in V$ este nesingular dacă și numai dacă $\dim_{\overline{K}} M_P/M_P^2 = \dim V$.

Exemplu 1.7: Reluăm cazul anterior al varietăților V_1 și V_2 (exemplul 1.6) și fie P=(0,0).

În ambele cazuri, M_P este generat de X și Y, deci M_P^2 este generat de X^2 , XY și Y^2 . Pentru V_1 avem:

$$X = Y^2 - X^3 \equiv 0 \mod M_p^2$$

deci M_p^2 este generat doar de Y.

Dar pentru V_2 nu avem nicio relație netrivială între X și Y modulo M_p^2 , deci ambele nedeterminate sînt necesare ca generatori.

Rezultă că V_1 e netedă, dar V_2 nu este, deoarece dim $V_{1,2} = 1$.

Folosind idealul maximal, avem:

Definiție 1.6: *Inelul local* al varietății V în P, notat $\overline{K}[V]_P$, este localizatul în M_P , adică:

$$\overline{K}[V]_P = \{ F \in \overline{K}(V) \mid F = f/g, \quad f, g \in \overline{K}[V], g(P) \neq 0 \}.$$

Remarcăm că din F = f/g rezultă că F(P) = f(P)/g(P) este corect definită. Funcțiile din $\overline{K}[V]_P$ se numesc regulate (sau definite) în P.

1.2 Varietăți proiective

Definim varietățile proiective ca fiind colecția de linii ce trec prin originea unui spațiu afin de dimensiune imediat superioară.

Definiție 1.7: *Spațiul n-proiectiv* peste K, notat \mathbb{P}^n sau $\mathbb{P}^n(\overline{K})$, este multimea tuturor (n+1)-tuplurilor $(x_0, \dots, x_n) \in \mathbb{A}^{n+1}$, astfel încît cel puțin o coordonată x_i este nenulă modulo echivalența:

$$(x_0,\dots,x_n)\sim (y_0,\dots,y_n)\Longleftrightarrow \exists \lambda\in \overline{K}^\times \text{ a.î. } x_i=\lambda y_i, \forall i.$$

Clasa de echivalență $\{(\lambda x_0, \dots, \lambda x_n) \mid \lambda \in \overline{K}^*\}$ se notează $[x_0, \dots, x_n]$, iar x_0, \dots, x_n se numesc coordonatele omogene ale punctului respectiv în \mathbb{P}^n .

De asemenea, multimea punctelor K-rationale din \mathbb{P}^n este:

$$\mathbb{P}^n(K) = \{ [x_0, \dots, x_n] \in \mathbb{P}^n \mid x_i \in K \}.$$

Observație 1.2: Pentru $P = [x_0, ..., x_n] \in \mathbb{P}^n(K)$, nu rezultă că fiecare $x_i \in K$. În schimb, alegem un i cu $x_i \neq 0$ și rezultă că $x_i/x_i \in K$, pentru orice j.

Definiție 1.8: Fie $P = [x_0, ..., x_n] \in \mathbb{P}^n(\overline{K})$. Corpul minimal de definiție pentru P peste K este corpul:

$$K(P) = K(x_0/x_i, \dots, x_n/x_i), \quad \forall i, \text{ cu } x_i \neq 0.$$

Definiție 1.9: Un polinom $f \in \overline{K}[X]$ se numește *omogen de grad d* dacă:

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n), \quad \forall \lambda \in \overline{K}.$$

Un *ideal omogen* al lui $\overline{K}[X]$ este generat de polinoame omogene.

Fiecărui ideal omogen îi putem asocia o submulțime a \mathbb{P}^n :

$$V_I = \{ P \in \mathbb{P}^n \mid f(P) = 0, \text{ pentru orice } f \in I \text{ omogen } \}.$$

Definiție 1.10: O *mulțime (algebrică) proiectivă* este una de forma V_I ca mai sus. Idealul omogen al unei mulțimi proiective, notat I(V), este idealul lui $\overline{K}[X]$ generat de:

$$\{f \in \overline{K}[X] \mid f \text{ omogen }, f(P) = 0, \forall P \in V\}.$$

Similar putem descrie si V/K si $V(K) = V \cap \mathbb{P}^n(K)$.

Exemplu 1.8: O *dreaptă* în \mathbb{P}^2 este o mulțime algebrică dată de aX + bY + cZ = 0, cu $a, b, c \in \overline{K}$, nu toate nule.

Dacă, de exemplu, $c \neq 0$, atunci dreapta este definită peste orice corp care conține a/c și b/c. În general, un *hiperplan* în \mathbb{P}^n este dat de o ecuație:

$$a_0X_0 + a_1X_1 + \cdots + a_nX_n = 0$$
, $a_i \in \overline{K}$, nu toate nule.

Exemplu 1.9: Fie V în \mathbb{P}^2 dată de $X^2 + Y^2 = Z^2$.

Atunci, pentru orice corp K, cu char $K \neq 2$, avem $V(K) \simeq \mathbb{P}^1(K)$, de exemplu prin:

$$\mathbb{P}^{1}(K) \to V(K)$$
$$[s, t] \mapsto [s^{2} - t^{2}, 2st, s^{2} + t^{2}].$$

1.2.1 Aplicație aritmetică

Fie un punct din $\mathbb{P}^n(\mathbb{Q})$, de coordonate $[x_0, \dots, x_n], x_i \in \mathbb{Q}$.

Putem presupune că am înmulțit cu numitorul comun și am eliminat factorii comuni, deci putem presupune $x_i \in \mathbb{Z}$, $\gcd(x_i) = 1$. Rezultă că punctul P determină coordonatele omogene x_i , pînă la un semn.

În general, dacă un ideal al unei mulțimi algebrice definite peste \mathbb{Q} , V/\mathbb{Q} , este generat de polinoame omogene $f_1, \dots, f_m \in \mathbb{Q}[X]$, descrierea $V(\mathbb{Q})$ revine la a rezolva ecuațiile omogene:

$$f_1(x_0, ..., x_n) = ... = f_m(x_0, ..., x_n) = 0, \quad \gcd(x_i) = 1.$$

Exemplu 1.10: Fie $V: X^2 + Y^2 = 3Z^2$, definit peste \mathbb{Q} , dar $V(\mathbb{Q}) = \emptyset$. Într-adevăr, presupunem că $[x, y, z] \in V(\mathbb{Q})$, cu $x, y, z \in \mathbb{Z}$ și $\gcd(x, y, z) = 1$. Rezultă $x^2 + y^2 = 0 \mod 3$, dar cum -1 nu este pătrat modulo 3, rezultă că $x = y = 0 \mod 3$, deci $x^2, y^2 : 3^2$, adică $3 \mid z$, contradicție cu $\gcd(x, y, z) = 1$.

Așadar, ideea generală este că, pentru a arăta că $V(\mathbb{Q}) = \emptyset$, este suficient să arătăm că ecuațiile omogene corespunzătoare nu au soluții nenule *modulo p*, pentru orice prim p (sau pentru orice putere a unui prim).

Spus mai simplu, avem implicația $V(\mathbb{Q}) = \emptyset \Rightarrow V(\mathbb{Q}_p) = \emptyset$, pentru orice corp p-adic \mathbb{Q}_p . Mai departe, implicația poate continua cu $V(\mathbb{R}) = \emptyset$.

Însă reciproca este falsă! Se poate arăta că, pentru varietatea:

$$V: 3X^2 + 4Y^2 + 5Z^3 = 0,$$

avem $V(\mathbb{Q}_p) \neq \emptyset$, $\forall p$, dar $V(\mathbb{Q}) = \emptyset$.

Definiție 1.11: O mulțime algebrică proiectivă se numește *varietate proiectivă* dacă idealul omogen I(V) este prim în $\overline{K}[X]$.

Fie $f(Y) \in \overline{K}[Y]$. Definim:

$$f^*(x_0,...,x_n) = x_i^d f\left(\frac{x_0}{x_i},\frac{x_1}{x_i},...,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},...,\frac{x_n}{x_i}\right),$$

unde $d = \deg f$ este cel mai mic întreg care face f^* polinom.

Spunem că f^* este omogenizatul lui f în raport cu x_i .

Definiție 1.12: Fie $V \subseteq \mathbb{A}^n$ o mulțime algebrică afină, cu idealul I(V) și fie V o submulțime a \mathbb{P}^n prin:

$$V \subseteq \mathbb{A}^n \xrightarrow{\phi_i} \mathbb{P}^n$$

$$\phi_i(\gamma_1, \dots, \gamma_n) \mapsto [\gamma_1, \dots, \gamma_{i-1}, 1, \gamma_i, \dots, \gamma_n].$$

Închiderea proiectivă a lui V, notată \overline{V} , este mulțimea proiectivă al cărui ideal omogen $I(\overline{V})$ este generat de omogenizatele generatorilor lui I(V).

Punctele din $V - \overline{V}$ se numesc *puncte la infinit* din V.

Exemplu 1.11: Fie V proiectivă, definită de $Y^2 = X^3 + 17$.

Rezultă că V este dată în \mathbb{P}^2 de:

$$\overline{Y}^2 \overline{Z} = \overline{X}^3 + 17 \overline{Z}^3, \quad X = \overline{X}/\overline{Z}, Y = \overline{Y}/\overline{Z}.$$

Varietatea are un singur punct la infinit, [0, 1, 0], obținut din $\overline{Z}=0$. Rezultă:

$$V(\mathbb{Q}) = \{(x, y) \in \mathbb{A}^2(\mathbb{Q}) \mid y^2 = x^3 + 17\} \cup \{[0, 1, 0]\}.$$

Definiție 1.13: Fie V/K o varietate proiectivă și fie $\mathbb{A}^n \subseteq \mathbb{P}^n$ astfel încît $V \cap \mathbb{A}^n \neq \emptyset$. Atunci se definește:

$$\dim V = \dim(V \cap \mathbb{A}^n).$$

Corpul de funcții K(V) este corpul de funcții al $V \cap \mathbb{A}^n$.

Observație 1.3: Pentru alegeri diferite ale lui \mathbb{A}^n , obținem izomorfisme canonice între rezultate.

Similar, *netezimea* în varietăți proiective V se traduce în $V \cap \mathbb{A}^n$.

CURBE ALGEBRICE

Printr-o *curbă algebrică* vom înțelege o varietate proiectivă de dimensiune 1. Vom lucra, în general, cu curbe netede.

Notațiile specifice sînt:

- *C*/*K*: curba *C* este definită peste corpul *K*;
- $\overline{K}(C)$: corpul de funcții al lui C peste K;
- $\overline{K}[C]_P$: inelul local al lui C în punctul P;
- M_P : idealul maximal al inelului local $\overline{K}[C]_P$.

Definiție 2.1: Fie C o curbă și $P \in C$ un punct neted.

Valuarea normalizată pe $\overline{K}[C]_P$ este dată de:

$$\operatorname{ord}_{P}: \overline{K}[C]_{P} \to \mathbb{N} \cup \{\infty\}$$
$$\operatorname{ord}_{P}(f) = \sup\{d \in \mathbb{Z} \mid f \in M_{P}^{d}\}.$$

Folosind $\operatorname{ord}_P(f/g) = \operatorname{ord}_P(f) - \operatorname{ord}_P(g)$, putem extinde valuarea la \mathbb{Z} .

Un *uniformizator* pentru C în P este orice funcție $t \in \overline{K}(C)$, cu ord $_P t = 1$, adică t este generator pentru dealul M_P .

Pentru C și P ca mai sus, fie $f \in \overline{K}(C)$. Se definește ordinul lui f în P prin $ord_P f$. Dacă ordinul este pozitiv, spunem că f are zero în P; altfel, f are singularitate (pol) în P. Dacă ordinul este pozitiv, spunem că C este definită în P și putem calcula f(P). Altfel, $f(P) = \infty$.

Exemplu 2.1: Reluăm unul dintre exemplele anterioare (exemplul 1.6):

$$C_1: Y^2 = X^3 + X, \quad C_2: Y^2 = X^3 + X^2.$$

Ambele curbe au cîte o singularitate la infinit. Fie P = (0,0). Atunci C_1 este netedă în P, dar C_2 nu este.

Idealul maximal M_P al lui $\overline{K}[C_1]_P$ are proprietatea că M_P/M_P^2 este generat de Y, deci:

$$\operatorname{ord}_{P} Y = 1$$
, $\operatorname{ord}_{P} X = 2$, $\operatorname{ord}_{P} (2Y^{2} - X) = 2$,

ultima egalitate rezultînd din $2Y^2 - X = 2X^3 + X$.

2.1 Divizori

Definiție 2.2: Fie C o curbă algebrică. *Grupul divizorilor* curbei, notat DivC, este grupul abelian liber (\mathbb{Z} -modulul) generat de punctele de pe C.

Deci orice $D \in DivC$ este o sumă formală:

$$D=\sum_{P\in C}n_P(P),$$

unde $n_P \in \mathbb{Z}$ și $n_P = 0$ pentru majoritatea $P \in C$.

Gradul divizorului D se definește prin:

$$\deg D = \sum_{P \in C} n_P.$$

Divizorii de grad 0 formează un subgrup al Div(C), pe care îl notăm și definim astfel:

$$Div^{0}(C) = \{D \in Div(C) \mid \deg D = 0\}.$$

Presupunem acum că avem o curbă netedă C și fie $f \in \overline{K}(C)^*$. Atunci putem asocia un divizor fiecărei funcții f prin:

$$\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_P(f)(P).$$

În plus, cum fiecare ord $_P$ definește o valuare, aplicația de mai sus se poate extinde la:

$$\operatorname{div}: \overline{K}(C)^{\times} \to \operatorname{Div}(C),$$

care devine un morfism de grupuri abeliene. Acțiunea lui este similară aplicației care trimite un element dintr-un corp de numere în idealul care-l conține. De aceea, noțiunea se poate generaliza și sîntem conduși la definițiile de mai jos.

Definiție 2.3: Un divizor $D \in \text{Div}(C)$ se numește *principal* dacă este de forma D = div f, pentru un anumit f ca mai sus.

Doi divizori se numesc *echivalenți liniar*, notat $D_1 \sim D_2$, dacă $D_1 - D_2$ este un divizor principal. *Grupul Picard* (sau grupul claselor de divizori) pentru curba C, notat Pic(C), este grupul factor al Div(C) modulo subgrupul divizorilor principali.

Cu aceste noțiuni, se poate demonstra simplu:

Propoziție 2.1: Fie C o curbă netedă și fie $f \in \overline{K}(C)^{\times}$.

- $\operatorname{div} f = 0$ dacă și numai dacă $f \in \overline{K}^*$;
- $\deg(divf) = 0$.

Exemplu 2.2: În \mathbb{P}^1 , fiecare divizor de grad 0 este principal. Într-adevăr, fie $D = \sum n_P(P)$ un divizor de grad 0. Atunci fie $P = [\alpha_P, \beta_P] \in \mathbb{P}^1$ și rezultă că D este divizor pentru funcția:

$$\prod_{P\in\mathbb{P}^1}(\beta_PX-\alpha_PY)^{n_P}.$$

Dar $\sum n_P = 0$, ceea ce asigură că această funcție aparține $K(\mathbb{P}^1)$ și rezultă că aplicația deg : $\operatorname{Pic}(\mathbb{P}^1) \to \mathbb{Z}$ este un izomorfism.

Reciproca este de asemenea adevărată, i.e. dacă C este o curbă netedă iar $\text{Pic}(C) \simeq \mathbb{Z}$, atunci $C \simeq \mathbb{P}^1$.

Exemplu 2.3: Presupunem că lucrăm într-un corp cu char $K \neq 2$ și fie $e_1, e_2, e_3 \in \overline{K}$ trei elemente distincte. Definim curba:

$$C: y^2 = (x - e_1)(x - e_2)(x - e_3).$$

Se poate verifica ușor că această curbă este netedă și că are un singur punct la infinit, pe care îl notăm P_{∞} . Pentru i = 1, 2, 3, fie $P_i = (e_i, 0) \in C$. Atunci obținem:

$$div(x - e_i) = 2P_i - 2P_{\infty}$$

 $div(y) = P_1 + P_2 + P_3 - 3P_{\infty}.$

Rezultă din cele de mai sus că grupul divizorilor principali este un subgrup al $\mathrm{Div}^0 C$. Definim partea de grad 0 a grupului Picard pentru curba C ca fiind grupul factor al $\mathrm{Div}^0 C$ modulo subgrupul divizorilor principali. Notăm acest grup cu $\mathrm{Pic}^0 C$.

Observatiile de mai sus pot fi puse în această formă: există un sir exact scurt:

$$1 \to \overline{K}^{\times} \to \overline{K}(C)^{\times} \xrightarrow{\operatorname{div}} \to \operatorname{Div}^{0}C \to \operatorname{Pic}^{0}C \to 0.$$

2.2 Teorema Riemann-Roch

Fie *C* o curbă. Definim o ordine parțială pe grupul divizorilor:

Definiție 2.4: Un divizor $D = \sum n_P(P)$ se numește *efectiv* sau pozitiv, notat $D \ge 0$, dacă $n_P \ge 0$ pentru orice punct $P \in C$.

Mai departe, pentru orice divizori $D_1, D_2 \in \text{Div}(C)$, putem scrie $D_1 \ge D_2$ dacă diferența $D_1 - D_2$ este un divizor efectiv.

Exemplu 2.4: Fie $f \in \overline{K}(C)^{\times}$ o funcție care este regulată peste tot, mai puțin într-un punct $P \in C$ și presupunem că acolo are un pol de ordin cel mult n în P. Aceste cerințe pot fi puse mai simplu în forma:

$$\operatorname{div} f \geq -n(P)$$
.

Similar, dacă scriem div $f \ge (Q) - n(P)$, afirmăm că f are un zero în Q.

Definiție 2.5: Fie $D \in \text{Div}C$. Asociem divizorului D o mulțime de funcții:

$$\mathcal{L}(D) = \{ f \in \overline{K}(C)^{\times} \mid \operatorname{div} f \ge -D \} \cup \{0\}.$$

Multimea $\mathcal{L}(D)$ formează un spațiu vectorial finit dimensional peste \overline{K} și notăm $\ell(D) = \dim_{\overline{K}} \mathcal{L}(D)$.

Teoremă 2.1 (Riemann-Roch): Fie C o curbă netedă și fie K_C un divizor canonic pe C. Atunci există un întreg $g \ge 0$, numit genul curbei C, astfel încît pentru orice divizor $D \in \text{Div}(C)$, are loc:

$$\ell(D) - \ell(K_C - D) = \deg D - g + 1.$$

CURBE ELIPTICE

3.1 Ecuații Weierstrass

chiar e necesar? - păstrează minimum pt. Schoof!

Vom studia în special curbe eliptice, care sînt curbe de gen 1, cu un punct-bază specificat. Vom vedea că orice astfel de curbă poate fi gîndită ca locul geometric în \mathbb{P}^2 al unei ecuații cubice cu un punct, punctul bază, pe linia de la infinit. Apoi, după o schimbare de coordonate, orice curbă eliptică se poate prezenta sub forma:

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$
.

În acest caz, punctul bază este O = [0, 1, 0], iar $a_i \in \overline{K}$.

Studiem acum curbele eliptice care sînt date cu formule explicite, numite *ecuații Weierstrass*. Pentru simplificarea notației, vom lucra cu coordonatele neomogene, x = X/Z și y = Y/Z și atunci, putem scrie curba:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

ținînd cont și de un punct O = [0, 1, 0] la infinit. Ca în cazul oricărei varietăți, dacă $a_i \in K$, spunem că avem o curbă E definită peste K.

Presupunem că lucrăm cu char $(\overline{K}) \neq 2$ și atunci putem simplifica ecuația, cu substituția:

$$y \mapsto \frac{1}{2} (y - a_1 x - a_3),$$

care conduce la ecuatia:

$$E: y^2 = 4x^3 + b_2x^2 + 2b_4x + b_6$$

cu notațiile:

$$b_2 = a_1^2 + 4a_4$$
, $b_4 = 2a_4 + a_1a_3$, $b_6 = a_3^2 + 4a_6$.

Mai definim si:

$$b_8 = a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2$$

$$c_4 = b_2^2 - 24 b_4$$

$$c_6 = -b_2^3 + 36 b_2 b_4 - 216 b_6$$

$$\Delta = -b_2^2 b_8 - 8 b_4^3 - 27 b_6^2 + 9 b_2 b_4 b_6$$

$$j = c_4^3 / \Delta$$

$$\omega = \frac{dx}{2y + a_1 x + a_3} = \frac{dy}{3x^2 + 2a_2 x + a_4 - a_1 y}.$$

Relațiile simple între aceste cantități sînt:

$$4b_8 = b_2b_6 - b_4^2$$
, și $1728\Delta = c_4^3 - c_6^2$.

Mai departe, dacă char $\overline{K} \neq 2, 3$, putem face substituția:

$$(x,y)\mapsto\left(\frac{x-3b_2}{36},\frac{y}{108}\right),$$

care elimină termenul cu x^2 și ajungem la:

$$E: y^2 = x^3 - 27c_4x - 54c_6.$$

Definiție 3.1: Cantitatea Δ se numește *discriminantul* ecuației Weierstrass, cantitatea j se cheamă j-invariantul curbei eliptice, iar ω este *invariantul diferențial* asociat ecuației.

Considerăm acum o situație generală. Fie $P = (x_0, y_0)$ un punct arbitrar care satisface o ecuație de tip Weierstrass:

$$f(x, y) = y^2 + a_1 x y + a_3 y - x^3 - a_2 x^2 - a_4 x - a_6 = 0$$

si mai presupunem că P este o singularitate pentru curba f(x, y) = 0, deci

$$\frac{\partial f}{\partial x}(P) = \frac{\partial f}{\partial y}(P) = 0.$$

Rezultă că există coeficienți $\alpha, \beta \in \overline{K}$ astfel încît dezvoltarea Taylor a polinomului f(x, y) în jurul lui P se poate scrie:

$$f(x, y) - f(x_0, y_0) = ((y - y_0) - \alpha(x - x_0))((y - y_0) - \beta(x - x_0)) - (x - x_0)^3.$$

Definiție 3.2: Folosind notațiile de mai sus, singularitatea P se numește nod dacă $\alpha \neq \beta$, iar în acest caz, curbele:

$$y - y_0 = \alpha(x - x_0)$$
 si $y - y_0 = \beta(x - x_0)$

se numesc tangentele în P. Reciproc, dacă $\alpha = \beta$, spunem că P este virf (eng. cusp), caz în care tangenta la P este dată de:

$$y-y_0=\alpha(x-x_0).$$

3.2 Structura de grup

Fie E o curbă eliptică dată de o ecuație Weierstrass. Rezultă că $E \subseteq \mathbb{P}^2$ conține puncte P = (x, y) care satisfac ecuația Weierstrass, împreună cu punctul O = [0, 1, 0] de la infinit.

Fie $L \subseteq \mathbb{P}^2$ o dreaptă. Atunci, deoarece ecuația are gradul 3, dreapta L intersectează E în exact 3 puncte, pe care le notăm P, Q, R.

Definiție 3.3: Fie $P, Q \in E$ și fie L dreapta prin P și Q (dacă P = Q, atunci L este tangenta în P). Fie R un al treilea punct de intersecție a lui L cu E.

Fie L' dreapta prin R și O. Atunci L' intersectează E în R, O și un al treilea punct. Acest al treilea punct se notează $P \oplus Q$.

Operația este ilustrată în figura 3.1.

Figura 3.1: Adunarea punctelor pe o curbă eliptică, [Silverman, 2009], p. 51

Cu acestea, se obține că (E, \oplus) formează un grup abelian, cu elementul neutru O = [0, 1, 0]. Pentru simplitate, în continuare vom nota operațiile cu notațiile obișnuite, $\oplus \mapsto +, \ominus \mapsto -$.

Exemplu 3.1: Fie curba eliptică E/\mathbb{Q} :

$$E: y^2 = x^3 + 17.$$

Calcule simple găsesc cîteva puncte cu coordonate întregi:

$$P_1 = (-2, 3), P_2 = (-1, 4), P_3 = (2, 5), P_4 = (4, 9), P_5 = (8, 23).$$

Folosind operația de grup, se pot verifica relațiile:

$$P_5 = -2 \cdot P_1, \quad P_4 = P_1 - P_3.$$

Se poate arăta că orice punct rațional $P \in E(\mathbb{Q})$ poate fi scris sub forma:

$$P = mP_1 + nP_3, \quad m, n \in \mathbb{Z},$$

ceea ce ne arată că $E(\mathbb{Q}) \simeq \mathbb{Z} \times \mathbb{Z}$.

3.3 Curbe eliptice

Fie *E* o curbă netedă de gen 1.

Definiție 3.4: O *curbă eliptică* este o pereche (E, O), alcătuită dintr-o curbă nesingulară E de gen 1 și un punct $O \in E$.

Curba se numește definită peste corpul K, notat E/K, dacă E este o curbă definită peste K, iar $O \in E(K)$.

Relevanta ecuatiei Weierstrass reiese din:

Propoziție 3.1: Fie E o curbă eliptică definită peste K.

(a) Există funcțiile $x, y \in K(E)$ astfel încît aplicația:

$$\phi: E \to \mathbb{P}^2, \quad \phi = [x, y, 1]$$

dă un izomorfism între E/K și o curbă dată de o ecuație Weierstrass:

$$C: Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$$

cu coeficienții $a_1, \ldots, a_6 \in K$ și $\phi(O) = [0, 1, 0]$.

Funcțiile x, y se numesc coordonatele Weierstrass ale curbei eliptice E.

(b) Orice două ecuații Weierstrass pentru curba fixată E sînt legate printr-o schimbare de variabile de forma:

$$X = u^2 X' + r$$
, $Y = u^3 Y' + su^2 X' + t$,

pentru $u \in K^{\times}$, $r, s, t \in K$.

(c) Reciproc, orice curbă cubică netedă C dată de o ecuație Weierstrass ca în (a) este o curbă eliptică definită peste K, cu punctul bază O = [0, 1, 0].

Corola 3.1: Fie E/K o curbă eliptică cu coordonatele Weierstrass x, y ca în teoremă. Atunci:

$$K(E) = K(x, y)$$
 si $[K(E) : K(x)] = 2$.

cam puțin...

CURBE ELIPTICE PESTE CORPURI FINITE

Considerăm acum cazul particular al curbelor eliptice definite peste corpuri finite \mathbb{F}_q . Cea mai importantă noțiune este aceea a numărului punctelor raționale.

Notațiile pe care le folosim sînt:

- *q*, o putere a unui prim *p*;
- \mathbb{F}_q , un corp finit cu q elemente;
- $\overline{\mathbb{F}}_q$, o închidere algebrică a lui \mathbb{F}_q .

4.1 Numărul punctelor raționale

Fie E/\mathbb{F}_q o curbă eliptică definită peste un corp finit. Vrem să estimăm numărul punctelor din $E(\mathbb{F}_q)$ (notat $\#E(\mathbb{F}_q)$) sau, echivalent, una sau mai multe soluții ale ecuației:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \quad (x, y) \in \mathbb{F}_q^2.$$

Deoarece fiecare valoarea a lui x conduce la cel mult 2 valori pentru y, o margine superioară este:

$$\#E(F_q) \leq 2q+1.$$

Dar o ecuație pătratică aleatorie are șanse mici de a fi rezolvabilă în \mathbb{F}_q deci ne așteptăm ca marginea superioară să conțină q, nu 2q.

Rezultatul de mai jos a fost formulat ca o conjectură de E. Artin și demonstrat de H. Hasse în anii 1930:

Teoremă 4.1 (Hasse): Fie E/\mathbb{F}_q o curbă eliptică definită peste un corp finit. Atunci:

$$|\#E(\mathbb{F}_q) - q - 1| \le 2\sqrt{q}.$$

Demonstrație. Fie o ecuație Weierstrass pentru E în \mathbb{F}_q și fie:

$$\phi: E \to E, \quad (x, y) \mapsto (x^q, y^q)$$

morfismul Frobenius de putere q. Grupul Galois $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ este generat de aplicația de putere q pe $\overline{\mathbb{F}}_q$, deci pentru orice punct $P \in E(\overline{\mathbb{F}}_q)$, are loc:

$$P \in E(\mathbb{F}_q) \iff \phi(P) = P.$$

Rezultă $E(\mathbb{F}_q) = \ker(1 - \phi)$, deci:

$$#E(\mathbb{F}_q) = #\operatorname{Ker}(1 - \phi) = \operatorname{deg}(1 - \phi).$$

Aplicația de putere pe $\operatorname{End}(E)$ este o formă pătratică pozitiv definită și cum $\deg \phi = q$, rezultă inegalitatea dorită folosind Cauchy-Schwarz.

Exemplu 4.1: Fie \mathbb{F}_q un corp finit cu q impar. Putem folosi teorema Hasse pentru a estima diverse caractere pe \mathbb{F}_q . Definim:

$$f(x) = ax^3 + bx^2 + cx + d \in K[x]$$

un polinom cubic, cu rădăcini distincte în $\overline{\mathbb{F}}_q$ și fie:

$$\chi: \mathbb{F}_q^{\times} \longrightarrow \{\pm 1\}$$

caracterul netrivial de ordin 2, adică $\chi(t)$ = 1 dacă și numai dacă t este un pătrat în \mathbb{F}_q^{\times} .

Putem extinde χ la \mathbb{F}_q definind $\chi(0)=0$ și putem folosi χ pentru a număra punctele \mathbb{F}_q -raționale de pe curba eliptică:

$$E: y^2 = f(x).$$

Fiecare $x \in \mathbb{F}_q$ produce 0, 1 sau 2 puncte $(x, y) \in E(\mathbb{F}_q)$, în funcție de faptul dacă f(x) este pătrat, ne-pătrat sau nulă în \mathbb{F}_q . Rezultă, folosind și punctul de la infinit:

$$#E(\mathbb{F}_q) = 1 + \sum_{x \in \mathbb{F}_q} (1 + \chi(f(x)))$$
$$= 1 + q + \sum_{x \in \mathbb{F}_q} \chi(f(x))$$

Folosind exemplul de mai sus, împreună cu teorema Hasse, obținem:

Corola 4.1: Folosind notațiile și contextul de mai sus, avem:

$$\left|\sum_{x\in\mathbb{F}_q}\chi(f(x))\right|\leq 2\sqrt{q}.$$

clarifică!

ALGORITMUL LUI SCHOOF

clarifică!

Există o abordare algoritmică pentru a număra punctele unei curbe eliptice definită peste un corp finit. Știm din teorema lui Hasse (teorema 4.1) că:

$$#E(\mathbb{F}_q) = q + 1 - a_1, \quad |a_q| \le 2\sqrt{q}.$$

Pentru aplicații criptografice, însă, este util să avem o metodă eficientă de a calcula numărul de puncte din $E(\mathbb{F}_q)$.

Pentru simplitate, vom presupune că lucrăm cu q impar și că E este dată de ecuația Weierstrass de forma:

$$E: y^2 = f(x) = 4x^3 + b_2x^2 + 2b_4x + b_6,$$

pentru care mare parte din rezultatele folosite vor fi valabile și în caracteristică 2, cu mici modificări.

Există o metodă directă, dar deloc simplă, de a calcula numărul de puncte, care folosește simboluri Legendre:

$$a_q = \sum_{x \in \mathbb{F}_q} \left(\frac{f(x)}{q} \right),\,$$

dar fiecare simbol Legendre se calculează folosind reciprocitatea pătratică în $O(\log q)$ pași, deci în total avem $O(q \log q)$ pași, adică un algoritm exponențial.

În continuare, descriem un algoritm care calculează # $E(\mathbb{F}_q)$ în timp polinomial, i.e. $O(\log^c q)$, cu c fixat, independent de q. Ideea acestui algoritm este să se calculeze $a_q \mod \ell$ pentru prime mici ℓ și apoi să se folosească lema chineză a resturilor pentru a recompune a_q .

Fie aplicația:

$$\tau: E(\overline{\mathbb{F}_q}) \to E(\overline{\mathbb{F}_q}), \quad (x, y) \mapsto (x^q, y^q),$$

aplicația Frobenius de putere q, deci știm că are loc:

$$\tau^2 - a_a \tau + q = 0$$

în End(E). În particular, pentru $P \in E(\mathbb{F}_a)[\ell]$, are loc:

$$\tau^{2}(P) - [a_{q}]\tau(P) + [q]P = O,$$

deci dacă punem P = (x, y) și presupunem $P \neq O$, avem:

$$(x^{q^2}, y^{q^2}) - [a_q](x^q, y^q) + [q](x, y) = O.$$

Deoarece am presupus că P = (x, y) are ordinul ℓ , rezultă:

$$[a_q](x^q, y^q) = [n_\ell](x^q, y^q),$$

pentru un $n_{\ell} \equiv a_q \mod \ell$ și $0 \le n_{\ell} < \ell$.

Similar, putem calcula [q](x, y) prin a reduce q modulo ℓ mai întîi.

Nu trebuie să știm exact valoarea lui n_{ℓ} , deci pentru orice întreg între 0 și ℓ calculăm $[n](x^q, y^q)$ pentru orice punct $(x, y) \in E[\ell] - \{O\}$ și verificăm dacă satisface:

$$[n](x^q, y^q) = (x^{q^2}, y^{q^2}) + [q](x, y).$$

Problema care apare este că punctele din $E[\ell]$ sînt definite peste extinderi destul de mari ale lui \mathbb{F}_q , deci va trebui să lucrăm cu toate punctele de ℓ -torsiune simultan. Pentru aceasta, folosim polinomul $\psi_\ell(x) \in \mathbb{F}_q[x]$, ale cărui rădăcini sînt coordonatele x ale punctelor nenule de ℓ -torsiune din E (presupunem, pentru simplitate, $\ell \neq 2$). Acest polinom are gradul $\frac{1}{2}(\ell^2-1)$ și se poate calcula simplu (v. Ex. 3.7, pagina 105). Acum putem lucra în inelul factor:

$$R_{\ell} = \frac{\mathbb{F}_q[x,y]}{\psi_{\ell}(x), y^2 - f(x)}.$$

Rezultă că, dacă avem o putere neliniară a lui y, putem înlocui y^2 cu f(x) și dacă avem o putere x^d , mai mare decît $\frac{1}{2}(\ell^2-1)$, putem împărți la $\psi_\ell(x)$ și luăm doar restul. Astfel, nu lucrăm niciodată cu polinoame de grad mai mare decît $\frac{1}{2}(\ell^2-3)$.

Scopul va fi să calculăm $a_q \mod \ell$ pentru suficiente prime ℓ și apoi să găsim a_q . Teorema lui Hasse (4.1) ne dă $|a_q| \le 2\sqrt{q}$, deci este suficient să luăm primele $\ell \le \ell_{\max}$ astfel încît:

$$\prod_{\ell \le \ell_{\max}} \ell \ge 4\sqrt{q}.$$

Teoremă 5.1 (Algoritmul Schoof): Fie E/\mathbb{F}_q o curbă eliptică. Algoritmul descris la 1 este unul în timp polinomial pentru a calcula $\#E(\mathbb{F}_q)$. Mai precis, calculează $\#E(\mathbb{F}_q)$ în $O(\log^8 q)$ pași.

Algorithm 1 Algoritmul lui Schoof

```
ightharpoonup returnează #E(\mathbb{F}_a)
 1: procedure Schoof(q, a)
          A \leftarrow 1
 2:
          \ell \leftarrow 3
 3:
          while A < 4\sqrt{q} do
 4:
                while n = 0, 1, 2, ..., \ell - 1 do
 5:
                     if (x^{q^2}, y^{q^2}) + [q](x, y) = [n](x^q, y^q) then break
 6:
 7:
                end while
 8:
                A \leftarrow \ell \cdot A
 9:
                n_{\ell} = n
10:
                \ell \leftarrow \text{urm \ atorul prim} \ \ell
11:
          end while
12:
          Lema Chineză \Rightarrow a \equiv n_{\ell} \mod \ell, \forall n_{\ell}
13:
          returnează #E(\mathbb{F}_q) = q + 1 - a
14:
15: end procedure
```

Demonstrație. Arătăm că timpul de rulare pentru algoritmul Schoof este $O(\log^8 q)$. Mai întîi:

(a) Cel mai mare număr prim ℓ folosit în algoritm are proprietatea $\ell \leq O(\log q)$:

Teorema de distribuție a numerelor prime poate fi rescrisă în forma:

$$\lim_{x \to \infty} \frac{1}{x} \sum_{\substack{\ell \le x \\ l \text{ prim}}} \log \ell = 1.$$

Rezultă $\prod_{\ell < x} \ell \simeq e^x$, deci pentru a face ca produsul să fie mai mare decît $4\sqrt{q}$, este suficient să luăm $x \simeq \frac{1}{2} \log(16q)$.

(b) Înmulțirea în inelul R_{ℓ} se poate face în $O(\ell^4 \log^2 q)$ operații pe biți:

Elementele inelului R_{ℓ} sînt polinoame de grad $O(\ell^2)$. Înmulțirea între două astfel de polinoame și reducerea modulo $\psi_{\ell}(x)$ consumă $O(\ell^4)$ operații elementare (adunări și înmulțiri) în corpul \mathbb{F}_q . Similar, înmulțirea în \mathbb{F}_q consumă $O(\log^2 q)$ operați pe biți.

Rezultă că operațiile de bază în R_{ℓ} consumă $O(\ell^4 \log^2 q)$ operații pe biți.

(c) Sînt necesare $O(\log q)$ operații în inelul R_ℓ pentru a reduce x^q, y^q, x^{q^2} și y^{q^2} în inelul R_ℓ : În general, sînt necesare $O(\log n)$ operații pentru a calcula puterile x^n și y^n în R_ℓ . Dar aceste operații sînt făcute o singură dată, iar apoi putem stoca punctele de forma:

$$(x^{q^2}, y^{q^2}) + [q \mod \ell](x, y)$$
 și (x^q, y^q)

pe care apoi le folosim în pasul 4 al algoritmului Schoof.

Folosind operațiile elementare de mai sus, putem estima timpul de rulare pentru algoritmul Schoof. Din (a), obținem că avem nevoie doar de ℓ prime care sînt mai mici decît $O(\log q)$ și cum există $O\left(\frac{\log q}{\log\log q}\right)$ asemenea prime, rezultă că liniile 4-12 din algoritmul lui Schoof se execută de atîtea ori. Apoi, de fiecare dată cînd se intră în bucla controlată de A, se execută bucla controlată de n (liniile 5-8) de $\ell = O(\log q)$ ori.

Mai departe, cum $\ell = O(\log q)$, din afirmația (b) de mai sus, rezultă că operațiile de bază din R_ℓ durează $O(\log^6 q)$ operații pe biți. Valoarea $[n](x^q, y^q)$ din linia 6 a algoritmului se poate calcula în O(1) operații în R_ℓ , știind valoarea anterioară $[n-1](x^q, y^q)$.

Rezultă că numărul total de pași este:

$$\underbrace{O(\log q)}_{\text{bucla A}} \cdot \underbrace{O(\log q)}_{\text{bucla n}} \cdot \underbrace{O(\log^6 q)}_{\text{operații pe biți}} = O(\log^8 q) \text{ operații pe biți.}$$

Am demonstrat, deci, că algoritmul lui Schoof calculează $\#E(\mathbb{F}_q)$ în timp polinomial.

Remarcăm că cele mai costisitoare etape sînt calculele în inelul R_{ℓ} , care este o extindere a lui \mathbb{F}_q , de grad $2\ell^2$. Așadar, deși marginea pentru ℓ este liniară în $\log q$, pentru valori mari ale lui q, și marginea pentru ℓ și dimensiunea inelului R_{ℓ} peste \mathbb{F}_q sînt mari.

Exemplu: Fie $q \approx 2^{256}$, o valoare utilizată în practică în aplicații criptografice. Rezultă:

$$\prod_{\ell \leq 103} \ell \simeq 2^{133} > 4\sqrt{q} = 2^{130},$$

deci cel mai mare prim ℓ utilizat de algoritmul lui Schoof este ℓ = 103.

Rezultă că un element din $V = \mathbb{F}_q[x]/\psi_\ell(x)$ este reprezentat de un \mathbb{F}_q -vector de mărime $103^2 \simeq 2^{13}$, iar fiecare element al \mathbb{F}_q este un număr pe 256 biți. Așadar, elementele din V ocupă aproximativ 2^{22} biți, adică mai mult de 16 kB. Mărimea nu este nerezonabilă pentru computerele moderne, totuși calcule intensive în inele ale căror elemente se stochează pe 16 kB durează considerabil.

exemple + de luat din alte părți explicații

vezi și wiki

INDEX

C	polinom		
corp	omogen, 7		
minimal, 7	omogenizat, 8		
curbe			
divizori, 11	S		
gen, 13	spațiu		
	afin, 3		
D	proiectiv, 6		
divizor	spațiul		
echivalență liniară, 11	punctelor raționale, 3		
efectiv, 12	_		
grupul Picard, 11	T		
principal, 11	teorema		
	Riemann-Roch, 13		
I	U		
invariant Weierstrass	_		
diferențial, 15	uniformizator, 10		
discriminant, 15	V		
j, 15	valuare		
N	normalizată, 10		
M	varietate		
multime	afină, 5		
algebrică afină, 4	dimensiune, 5		
algebrică definită, 4	netedă, 5		
proiectivă, 7	proiectivă, 8		
P	-		
Γ	închidere proiectivă, 8		

[Husemoller, 2004] Husemoller, D. (2004). Elliptic Curves. Springer.

[Silverman, 1994] Silverman, J. (1994). Advanced Topics in the Arithmetic of Elliptic Curves. Springer.

[Silverman, 2009] Silverman, J. (2009). The Arithmetic of Elliptic Curves. Springer.

[Washington, 2008] Washington, L. (2008). *Elliptic Curves, Number Theory and Cryptography*. Chapman and Hall.