

The title

Your name

Supervisor: Dr. A Anon

Submitted in partial fulfilment of the requirements for the degree of BSc Creative Computing of the University of London.

Department of Computing Goldsmiths, University of London

I certify that this dissertation, and the research to which it refers, are the result of my own work.

Abstract

Aim for around 200-300 words to highlight the main points and contributions of your project.

Acknowledgements

Contents

1	Intr	oduction	8											
	1.1	Motivation	8											
	1.2	Aim	8											
	1.3	Thesis structure	8											
	1.4	Contributions	8											
2	Bacl	kground	9											
	2.1	Background	9											
	2.2	Literature review	9											
3	Spec	cification and design	10											
	3.1	System design	10											
4	Imp	lementation	11											
	4.1	System architecture	11											
	4.2	Software implementation	11											
5	Software testing													
	5.1	Unit testing	13											
		5.1.1 Results	13											
	5.2	Load testing	13											
		5.2.1 Results	13											
6	Eval	luation	14											
	6.1	User testing	14											
	6.2	Results	14											
7	Con	clusions and further work	15											
	7.1	Summary of contributions	15											
	7.2	Further work	15											
Re	feren	aces	16											
Α	Note	ational conventions	17											

List of Tables

5.1	This is some example data	 13

List of Figures

6.1	User ratings						 									 		 		14

List of abbreviations

XXX something

Introduction

- 1.1 Motivation
- 1.2 Aim
- 1.3 Thesis structure

Chapter 7

1.4 Contributions

Contributions of this thesis are:

• Blah

Background

- 2.1 Background
- 2.2 Literature review

Foo (2017) propose... The state of the art... (Foo 2017).

Specification and design

3.1 System design

Diagrams would be good here.

Implementation

4.1 System architecture

4.2 Software implementation

Only include code where it is essential to make a point, e.g. a clever optimisation trick you implemented. Do not copy and paste lots of boilerplate code in your report, refer to your git repository.

Listing 4.1: Example of typesetting code with listing. Keep code snippets short!

```
# Generate example data.
np.random.seed(13)
                                 # Seed the random number generator.
n=50
                                 # Number of observations.
happiness_levels = ['very sad', 'sad', 'neutral', 'happy',
                     'very happy']
happiness\_prob = [0.05, 0.2, 0.3, 0.35, 0.1]
s = pd. Series (np.random.choice (happiness_levels, n,
                                p=happiness_prob),
              name = 'happiness')
# Set correct data type.
s = s.astype(
    pd.api.types.CategoricalDtype(
        ordered=True,
        categories = happiness_levels))
# Compute percentages.
pc = s.value_counts(sort=False, normalize=True) * 100
# Plot.
ax = pc.plot.bar(rot=0)
ax.yaxis.set_major_formatter(
    mpl.ticker.PercentFormatter(decimals = 0))
```

```
ax.set_xlabel('happiness raitings')
plt.show()
```

Software testing

- 5.1 Unit testing
- 5.1.1 Results

Table 5.1: This is some example data

	id	a	b
	0	1	2
	1	3	4
to	otal	4	6

- 5.2 Load testing
- 5.2.1 Results

Evaluation

6.1 User testing

6.2 Results

Figure 6.1 shows...

Figure 6.1: User ratings

Conclusions and further work

- 7.1 Summary of contributions
- 7.2 Further work

References

Foo, b. (2017). 'The title'. In: ένα καλό περιοδικό 35.3, pp. 4–7. doi: 10 . xxx/xxx . xx-xxx-xx-xx-xx-xx-xx.

Appendix A

Notational conventions

```
S = {...}
                             the set S
S \times S'
                             the Cartesian product of S and S'
|S|
                             the cardinality of S
                             the empty set
\mathbb{R}
                             real numbers
                             positive real numbers
\mathbb{R}^k
                             k-dimensional real vector space
\mathbb{Z}
                             integer numbers
                             positive integer numbers
\mathbb{N}
                             non-negative integer numbers
[x, y]
                             inclusive real-number interval between x and y
[x..y]
                             inclusive integer-number interval between x and y
\mathbf{v} = \langle ... \rangle
                             the vector \mathbf{v}
\mathbf{M} = [m_{ij}]
                             the matrix M
\mathbf{m}_{i}^{j} = \left\langle e_{1}, e_{2}, \dots, e_{j} \right\rangle
                             the ordered sequence of length j \in \mathbb{Z}^+, indexed by i \leq j
                             tuple concatenation: \langle 0, 1 \rangle \| \langle 2, 3 \rangle \rightarrow \langle 0, 1, 2, 3 \rangle
                             the symbol denoting undefined
```