Introduction to Biocomputing Tutorial

Week 10

Debartolo 319

Review

Parts of the function that you can change

 Naming rules of function and naming rules when running the function

Order of input parameters for function

```
Review
                                         State variables (change through time)
                                         Parameters
def ddSim(y,t0,r,K):
    # "unpack" lists containing state variables (y)
    N=\lambda[0]
    # calculate change in state variables with time, give parameter values
    # and current value of state variables
    dNdt=r*(1-N/K)*N
    # return list containing change in state variables with time
    return [dNdt]
### Define parameters, initial values for state variables, and time steps
params = (0.3, 10)
NO = [0.01]
times=range(0,600)
### Simulate the model using odeint
modelSim=spint.odeint(func=ddSim, y0=N0, t=times, args=params
```

Today's tutorial Q1

- Testing the effect of different r, K and N
- Steps:
 - load necessary packages
 - define the model custom function
 - set a "pool" of values for the parameter of interest
 - create a dataframe to store model output in
 - using a for loop simulate with the different values of the parameter of interest and store this information
 - plot

```
rs=[-0.1,0.1,0.4,0.8,1]
store_rs=pandas.DataFrame({"time":times,"r1":0,"r2":0,"r3":0,"r4":0,"r5":0})

for i in range(0,len(rs)):
    pars=(rs[i],K)
    sim=si.odeint(func=ddSim,y0=y0,t=times,args=pars)
    store_rs.iloc[:,i]=sim[:,0]
```

Today's tutorial Q2

- Epidemiological model
- N=S+I+R is a constant
- One direction

SIR model

The change of SIR through time

- How bad is the disease:
 - Maximum daily incidence
 - Maximum daily prevalence
 - Percent affected
 - Basic reproduction number

$$R_0 = \frac{\beta(S+I+R)}{\gamma}$$

SIR model

The change of SIR through time

- How bad is the disease:
 - Maximum daily incidence
 - Maximum daily prevalence
 - Percent affected
 - Basic reproduction number

$$R_0 = \frac{\beta(S+I+R)}{\gamma}$$

Announcements

- Office hour Thursday 3-5pm, Galvin 266
- No reading or quiz for Monday