

# Improving the data efficiency in self-supervised representation learning

Roberto Halpin Gregorio

May 9, 2022



## Learning Representations

- Not all data is numerical but machine learning needs numerical representations!
- For different data types, want to learn meaningful representations that are:
  - Model parsable
  - Efficient / compact
  - Informative for downstream tasks



## Making Learning Easier

# Cartesian coordinates Polar coordinates > $\theta$

 $\mathbf{x}$ 

Goodfellow



## Unsupervised Representation Learning

- Given a set of unlabeled data, can we learn about the structure of said data?
  - Clustering
  - Data compression / Dimensionality reduction

- Self-supervised learning
  - Branch of unsupervised learning that uses a created pretext
    task to learn representations of the data



# Self-supervised Learning (SSL)

#### • Pretext Task

- Pre-designed tasks for networks to solve.
- Learning the objective function produces useful features.

#### • Downstream Task

- Applications of interest where the pretrained model can be utilized.
- Greatly benefit from the pretrained models when training data are scarce.



# Self-supervised Learning (SSL)

• RotNet (Gidaris et al. 2018)





## Why self-supervised learning in vision?

- Images are in a continuous, high-dimensional space.
- No need for labeled data.
- Longtail problem.
  - Most labeled images correspond to very few label classes.





#### Common workflow

- 1. Pretext task used to train model.
  - a. Unlabeled images.
- 2. Extract representation network.
- 3. Representation network used for downstream tasks.





- Contrastive Learning
  - Learn an embedding space where
    - Similar (positive) sample pairs stay close to each other.
    - Dissimilar (negative) sample pairs are far apart.





## • Contrastive Learning

- Learn an embedding space where
  - Similar (positive) sample pairs stay close to each other.
  - Dissimilar (negative) sample pairs are far apart.
- How to create positive and negative sample pairs?
- How do we create the embedding space with these desired properties?



• SimCLR (Chen et al. 2020)

#### A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen 1 Simon Kornblith 1 Mohammad Norouzi 1 Geoffrey Hinton 1



• SimCLR (Chen et al. 2020)





• How to identify the important invariances and symmetries?



- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?



- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?
- Requires a large amount of pre-training iterations (time inefficient).



- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?
- Requires a large amount of pre-training iterations (time inefficient).
- Requires a large amount of data to learn good quality representations (data inefficient).



- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?
- Requires a large amount of pre-training iterations (time inefficient).
- Requires a large amount of data to learn good quality representations (data inefficient).



- Focus on reducing the amount of real data needed.
- Standard approach is to use data augmentation.
- Most SSL methods use simple random data transformations:
  - Flipping
  - Cropping
  - Color jittering
  - Gaussian blur



• Idea: Generate fake images using our real training data and use these fake images as data augmentation.



• Idea: Generate fake images using our real training data and use these fake images as data augmentation.

• **Goal:** Be able to beat the performance on the original, real dataset.



• Idea: Generate fake images using our real training data and use these fake images as data augmentation.

• **Goal:** Be able to beat the performance on the original, real dataset.

• **Requirement:** A generative model that produces *good* samples when trained with limited data.



## Problem Setup

- 1. Given an image dataset X without labels.
- 2. Train a generative model on X to generate a set of fake images Z.
- 3. Use  $X \cup Z$  to pretrain a self-supervised representation learner, such as SimCLR.



## Generating the fake data

- Generative Adversarial Networks (GAN)
- StyleGAN2
  - Unconditional generative image modeling.
  - Know for good image quality.
- Data-efficient GANs
  - Framework that improves GAN training efficiency.



#### Cornell University





CIFAR-10 Real Images

CIFAR-10 Fake Images







#### Linear Evaluation Protocol

1. Freeze the pretrained representation network.





- 1. Freeze the pretrained representation network.
- 2. Attach a linear classifier on top of the frozen representation.





- 1. Freeze the pretrained representation network.
- 2. Attach a linear classifier on top of the frozen representation.
- 3. Train the linear classifier using a labeled train dataset.





- 1. Freeze the pretrained representation network.
- 2. Attach a linear classifier on top of the frozen representation.
- 3. Train the linear classifier using a labeled train dataset.
- 4. Evaluate the classifier's accuracy on a test dataset.





## Experimental Setup

- Datasets
  - CIFAR-10/100 (+ STL-10 & Tiny ImageNet)
- SSL Algorithm
  - SimCLR (+ MoCo)
- Generative Model
  - Data Efficient StyleGAN2



## Experimental Setup

- Datasets
  - CIFAR-10/100 (+ STL-10 & Tiny ImageNet)
- SSL Algorithm
  - SimCLR (+ MoCo)
- Generative Model
  - Data Efficient StyleGAN2
- Data Hyperparameters
  - How many labeled samples (real)?
  - How many generated samples (fake)?



## Learning Efficiency

• How quickly does this method train representations that perform well?

- Fix the compute of both this method and the baseline during pretraining, what do we observe in terms of accuracy?
- In the low data regime, there is a possibility that this method also improves the learning efficiency.



Questions?

Thank you!