

AMPTIAC

NBS REPORT

9771

U-200 NBS-543

90229

THERMAL CONDUCTIVITY STANDARD REFERENCE MATERIALS

FROM 4 TO 300 K: II. OSRM IRON-1265

J. G. Hust and L. L. Sparks

Reproduced From **Best Available Copy**

DISTRIBUTION STATEMENT A Approved for Public Release

Distribution Unlimited

20000828 064

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

> Institute for Basic Standards Boulder, Colorado 80302

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

27503-2750430

October 27, 1970

9771

THERMAL CONDUCTIVITY STANDARD REFERENCE MATERIALS

FROM 4 TO 300 K: II. OSRM IRON-1265

J. G. Hust and L. L. Sparks

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado, 80302

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington, D.C. 20234. Such permission is not needed, however, by the Government agency for which the Report has been specifically prepared if that agency wishes to reproduce additional copies for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

TABLE OF CONTENTS

								.I	Page
1.	Introduction	•		•	•	٠	•	•	2
2.	Apparatus and Data Analysis	•	•	•	•	•	•	•	3
3.	Specimen Characterization .	•	•	•	•	• .			3
4.	Results		•	•	•	•	•	•	5
5.	Discussion	•	•	•	•	•	•	•	7
6.	Acknowledgments	•	•	•	• .	•		•	7
7.	References	•	•	•	•	•	•	•	8

LIST OF TABLES

	Page
Residual resistivity ratio (para k/p4 k) of OSRM iron-1265	11
Basic semi-processed temperature gradient data for	
OSRM iron-1265	12
Basic semi-processed isothermal electrical resistivity	
data for OSRM iron-1265	17
Parameters in equations 1, 2, and 3 for OSRM iron-	
1265	18
Thermal conductivity deviations for OSRM iron-1265 .	19
Electrical resistivity deviations for OSRM iron-1265 .	26
Thermovoltage deviations for OSRM iron-1265	27
Transport properties of OSRM iron-1265	28
	Residual resistivity ratio $(\rho_{273\text{K}}/\rho_{4\text{K}})$ of OSRM iron-1265 Basic semi-processed temperature gradient data for OSRM iron-1265

LIST OF FIGURES

		Page
Figure 1.	Thermal conductivity deviations for OSRM iron-	
	1265	29
Figure 2.	Electrical resistivity deviations for OSRM iron-	
	1265	30
Figure 3.	Thermovoltage deviations for OSRM iron-1265.	31
Figure 4.	Thermal conductivity of OSRM iron-1265	32
Figure 5.	Electrical resistivity of OSRM iron-1265	33
Figure 6.	Lorenz ratio of OSRM iron-1265	34
Figure 7.	Thermopower of OSRM iron-1265	35

THERMAL CONDUCTIVITY STANDARD REFERENCE
MATERIALS FROM 4 to 300 K. II. OSRM IRON-1265*

J. G. Hust and L. L. Sparks

Cryogenics Division, NBS-Institute for Basic Standards, Boulder, Colorado, 80302

ABSTRACT

Thermal conductivity, electrical resistivity, Lorenz ratio, and thermopower data are reported for a specimen of OSRM iron-1265 for temperatures from 4 to 300 K. Variability of this iron was studied by means of electrical residual resistivity ratio measurements on 63 specimens. This study showed that with a two-hour anneal at 1000°C one can expect a thermal conductivity standard reference material which has variability of less than 1% in thermal conductivity.

KEY WORDS

Cryogenics, electrical resistivity, iron, Lorenz ratio, Seebeck effect, thermal conductivity, transport properties.

This work was carried out at the National Bureau of Standards under the sponsorship of the NASA-Space Nuclear Propulsion Office, Cleveland.

1. Introduction

Design and development engineers in the aerospace industry continue to have urgent need for thermal and mechanical property data for new materials. For most materials, especially new or uncommon alloys, measured values of thermal conductivity are not available and predictions cannot be made with adequate confidence. To help satisfy these needs, we have constructed an apparatus for the simultaneous measurement of thermal conductivity, electrical resistivity and thermopower. Measurements have been conducted on several aerospace alloys, Hust, et al.[1] Another phase of this program, to establish standard reference data on several standard reference materials has begun. We intend to measure several specimens of materials which appear to be useful as standards. For some materials, material variability may be so great that only standard specimens (not standard materials) will be useful. Standard reference specimens or materials are useful for intercomparison of existing apparatus, for debugging new apparatus, and for calibration of comparative apparatus. The apparent large differences between the results of various investigators for a given material (50% is not unheard of) is evidence of the need for intercomparisons, calibrations, and standardization. The availability of standard reference materials will result in more accurate and more permanent transport property data for technically important solids.

This paper contains the results of our measurements on the transport properties of an iron supplied by the National Bureau of Standards, Office of Standard Reference Materials (OSRM). This iron is designated as OSRM iron-1265. OSRM iron-1265 was investigated

primarily to find a material similar to Armco iron* but less variable.

2. Apparatus and Data Analysis

The apparatus is based on the axial one-dimensional heat flow method. The specimen is a cylindrical rod 3.6 mm in diameter and 23 cm long with an electric heater at one end and a temperature controlled sink at the other. The specimen is surrounded by glass fiber and a temperature controlled shield. Eight thermocouples are mounted at equally spaced points along the length of the specimen to determine temperature gradients in the range 4 to 300 K.

The experimental data are represented by arbitrary functions over the entire range and smooth tables are generated from these functions. The number of terms used to represent each of the data sets is optimized, through the use of orthonormal functions, so that none of the precision of the data is lost by underfitting nor are any unnecessary oscillations introduced by overfitting. A detailed description of this apparatus and the methods of data analysis is given by Hust, et al.[1]

3. Specimen Characterization

Density as measured by air and water weighings is 7.867 g/cm³ Rockwell hardness and grain size are B23.5 and 0.0507 mm respectively. Each of these values is for the material in the annealed state as described in the following discussion. The composition of OSRM iron-1265 is as follows:

The use in this paper of trade names of specific products is essential to a proper understanding of the work presented. Their use in no way implies any approval, endorsement, or recommendation by NBS. Armco iron is a registered trade name of a commercially pure iron produced by Armco Steel Corporation.

Element	<u></u> %		Element	ppm
С	.010		В	1.5
Mn	.008		Pb	. 3
P	. 002		$Z\mathbf{r}$. 4
S	.008		Sb	. 5
Si	.013	·	Bi	. 1
Cu	.006	•.	Ag	. 02
Ni	.037		Ca	. 4
Cr	.007		Mg	< . 2
V	.0005		Se	<.02
Mo	.005		Te	<.05
w	.00005		Zn	2
Co	.007		02	60
Ti	.004		$\overline{N_2}$	10
As	.003		Ge	10
Sn	.0002			
A1	.002		H ₂	~ 1
Nb	<.0001		Се	. 02
Ta	<.001		La	.01
			\mathtt{Pr}	<.01

An extensive resistivity variability study was conducted on OSRM iron-1265, the object being to determine if it could be heat treated in such manner that the thermal conductivity would be the same for each specimen. This was achieved with a 2-hour, 1000°C anneal in either a vacuum or helium atmosphere. The results of this study are shown as residual resistivity ratios in table 1. The ratio given is resistivity at 273.15 K to resistivity at 4 K. Specimens labeled C2T, A6L, C5L, A1L, and A5T were obtained from 1/4" diameter rods; the remaining specimens were machined from 1-1/4" rods. Based on the 63 residual resistivity ratio measurements made on these specimens in various stages of heat treatment, the following is concluded: The large 1-1/4" diameter specimens are significantly different in residual resistivity

ratio from the smaller 1/4" diameter specimens in the as received condition. The ratio of the small rods is 22.01 \pm 0.20 while the ratio of the larger rods is 19.52 \pm 0.44.

Various heat treatments were tried to remove the differences in ratio of the two sets of rods. After 500°C for 1 hour the ratios increased but were still different (small rods = 23.53 ± 0.20 ; large rods = 22.14 ± 0.34). Raising the temperature to 1000°C for 2 hours produced rods which are indistinguishable, (small rods = 23.39 ± 0.28 ; large rods = 23.29 ± 0.20 ; all rods = 23.33 ± 0.24). The variation shown is 2s, where s is the estimated standard deviation, and includes material and measurement variability. In order to study the possibility of a change in these ratios with age, one set of rods was measured after about 50 days from the 1000°C treatment; no significant change was detected (ratio = 23.40 ± 0.20). It was also believed that aging could be simulated by heating to 400°C for $2\frac{1}{2}$ days; however, this changed the ratio to 24.94 ± 0.26 with no difference between the large and small rods. This change cannot be explained at the present time.

These measurements show that OSRM iron-1265 can be used as a thermal conductivity standard below room temperature with a variability of about 1% if annealed at 1000°C for 2 hours. We plan to measure some of these specimens from time to time during the next year to determine the effect of long term aging, i.e., more than 50 days.

4. Results

The transport properties of OSRM iron-1265, specimen A5T, were measured in the thermal conductivity apparatus. These data are presented in tables 2 and 3.

The experimental data were functionally represented with the following equations:

$$\ell n \lambda = \sum_{i=1}^{n} a_{i} \left[\ell n T\right]^{i+1}$$
 (1)

$$\rho = \sum_{i=1}^{m} b_i \left[\ell nT \right]^{i-1}$$
 (2)

$$S = \sum_{i=1}^{\ell} c_i [\ell nT']^i / T'; \qquad T' = \frac{T}{10} + 1$$
 (3)

where λ = thermal conductivity, ρ = electrical resistivity, S = thermopower, and T = temperature. Temperatures are based on the IPTS-68 scale above 20 K and the NBS P2-20 (1965) scale below 20 K. The parameters, a_i , b_i , and c_i , determined by least squares, are presented in table 4. Further details of this procedure are described by Hust, et al.[1] The deviations of the experimental data from these equations are given in tables 5 through 7 and in figures 1 through 3. The horizontal bars in figures 2 and 3 indicate the temperature span across the specimen for each run. The "observed" thermal conductivities are computed from the mean temperature gradients indicated by adjacent thermocouples. Calculated values of λ , ρ , S, and $L = \rho \lambda/T$ (Lorenz ratio) are presented in table 8 and in figures 4 through 7.

A detailed error analysis for this system has been presented previously by Hust, et al.[1] Based on this analysis of systematic and random errors the uncertainty estimates (with 95% confidence) are as follows:

thermal conductivity: 2.5% at 300 K, decreasing as T4 to

0.70% at 200 K, 0.70% from 200 K to

50 K, increasing inversely with tem-

perature to 1.5% at 4 K.

electrical resistivity:

0.25%

thermopower:

 $0.5\% + 0.2 \mu V/K$ at 4 K, 0.2% +

 $0.05 \,\mu V/K$ at 30 K, and 0.1% +

 $0.03 \mu V/K$ above 76 K.

The thermopower values given here are absolute values although our measurements were carried out with respect to normal silver wire. The absolute thermopowers of normal silver reported by Borelius, et al. [3] were used to convert the experimental data to the absolute scale.

5. Discussion

This iron is purer than the Armco iron previously measured. [2] The residual resistance ratio is near 23 compared to 13 for Armco iron. Also the Lorenz ratio shows a more pronounced dip at 65 K as is expected for a more pure material. A preliminary examination of the intrinsic resistivity, ρ_i , computed from Mathiessen's rule reveals a dependence of ρ_i on ρ_o . An attempt will be made in the future to correlate both the Lorenz ratios and apparent intrinsic resistivity changes with the residual resistivity.

6. Acknowledgments

We wish to thank R. E. Michaelis of NBS, OSRM for supplying these specimens along with helpful discussions. This measurement program has been carried out under the helpful guidance of R. L. Powell.

7. References

- 1. J. G. Hust, R. L. Powell, and D. H. Weitzel, "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys from 4 to 300 K," NBS Report 9732 (1969).
- 2. J. G. Hust," Thermal Conductivity Standard Reference Materials from 4 to 300 K. I. Armco Iron, NBS Report 9740 (1969).
- 3. G. Borelius, W. H. Keesom, C. H. Johansson, and J. O. Linde, "Establishment of an Absolute Scale for the Thermoelectric Force," Proc. Kon, Akad. Amsterdam 35, 10 (1932).

Notes Relating to Tables

Table 2

The data listed are, in part, card images of experimental data as read into the computer for data processing. These data are not clearly labelled. The following is a line by line explanation of this table:

1st line - Data identification.

2nd line - Thermocouple emfs (μV) .

3rd line - Seebeck emf (μV), specimen current (mA), specimen voltage drop (μV).

4th line - Sample heater voltage (μV), current (mA), platinum resistance thermometer voltage (μV), platinum resistance thermometer current (mA), cryogenic bath pressure (mm of Hg), room temperature (°C), code indicating type of cryogenic bath (1 = liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry icealcohol, 5 = ice-water).

5th line - Thermocouple temperatures (K).

6th line - Heater power (W), reference temperature (K), specimen resistance (Ω).

Table 3

The data listed are, in part, card images of experimental data as read into the computer for data processing. These data are not labelled clearly. The following is a line by line explanation of this table:

1st line - Data identification.

2nd line - Platinum resistance thermometer voltage (μV), cryogenic bath pressure (mm of Hg), room temperature (°C), platinum resistance thermometer current (mA), code indicating type of cryogenic bath (l = liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry icealcohol, 5 = ice-water), specimen current (mA), specimen voltage (μV), mean emf of eight thermocouples (μV).

3rd line - Reference temperature (K), specimen resistance (Ω), specimen temperature (K).

Tables 5, 6, and 7

These data are semi-processed computer output. Temperature is in Kelvin, thermal conductivity is in $Wm^{-1}K^{-1}$, electrical resistance is in ohms, and thermovoltage is in μV .

Table 1. Residual resistivity ratio $(\rho_{\textit{273 K}}/\rho_{\textit{4 K}})$ of OSRM iron-1265

Specimen			Ra	itio		
	As	500°C	500°C	1000°C	400°C	Aging
	received	l hr	$8\mathrm{hr}$	2 hr	$2\frac{1}{2}$ days	50 days
C2T	21.97(a)	23.53	24.12	23.31(e)	24.84	25.00
A6L	22.16			23.22(f)	24.85	24.97
C5L	21.94			23.40(f)		23.47
AlL	22.04			23.59(c)		23.52
A5T	22.03(b)			23.42(f)		23.42
2A-1-1	19.35	21.96	22.32	23.47(e)	25.12	25.24
2A-1-2	19.50			23.31(c)		23.35
2A-1-3	19.30					
2A-1-4	19.38			23.27(f)		
2A-3-1	19.77	21.83	22.25	23.20(e)	24.94	25.01
2A-3-2	19.92			23.20(c)		23.25(d)
2A-3-3	19.73					
2A-3-4	19.93					
2C-1-1	19.42	21.70	22.00	23.23(e)		23.44
2C-1-2	19.12			23.41(c)		23.40
2C-1-3	19.46					
2C-1-4	19.56				,	
2C-3-1	19.34	21.93	21.99	23.27(e)		23.40
2C-3-2	19.49					
2C-3-3	19.57					
2C-3-4	19.40					

⁽a) repeat measurement = 21.91

⁽b) ratio of A5T thermal conductivity specimen = 21.89

⁽c) these were heat treated in vacuum, the remaining were heated to 1000°C in a helium atmosphere (1 atm pressure).

⁽d) repeat measurements = 23.39, 23.31

⁽e,f) these were done in separate heat treatments to detect reproducibility of heat treatment

39. 70	÷.	980	8 2. 85	9.681	162.90	1.0	14.491		23. 154 24. 154
36.42	~	. 639	6.26	253	10	۰.		290.26	22. U 21. 880 INCE
	21.2	7 6 STANCE	045 9 14 76. 21.6	STANCE	253 10	22.0	STA	345 11 20 2	48 2 15TANG
.70 95	ž. 9	1 6.397 IMEN RESIS 6.4980-005	., 70 .69.0	4 8.804 IMEN RESIS 6.5080-005	8. 70 1: 137.	636.4	6 13.000 IMEN RESIS 6.5290-005	8.70 1	636.4 0 20.548 IMEN RESIS 6.6010-005
MAY 28	5	6.141 6.397 6.639 SPECIMEN RESISTANCE 6.4980-005	HAY 28 31.65 63	8.334 8.804 9.253 SPECIMEN RESISTANCE 6.5080-005	HAY 21	-0.0	12. 196 13.000 13. SPECIMEN RESISTANCE 6. 5290-005	43.03	0 656.4 22.0 19.150 20.548 21.880 SPECIMEN RESISTANCE 6.6010-005
4 0SPM	-0.0 636.3		RON OSRM MAY 28, 70 10 4, 32 61.65 69.04 -0.0 636.2		RON OSRM MAY 0.23 124.1	-0.0	لعة	IRON OSRH MAY 28, 70 13	_: :
OR 1RO1 25. (88	5.81 MPERAT	98 180 92 54	S 106 7.8 TEMPERAT 4.027	0.0. 1.0.	8 8 6 9 9	117 11.3 TEMPERAT	FOR 18(-0.00 ES 17.049 17.0 E TEMPERA
DATA F 21.65	13.00	ATURES 5.601 5.880 RENCE TEMPERATUR 4.027	DATA FOR 46. 15 13. 02	TURES 7.506 7.841 ENCE TEMPERATUR 4.027	DATA 96.98	-0.98 -0.99	ERAIONES 103 10.417 11.347 REFERENCE TEMPERATURE 4.027	DATA 189. 72	-0 10.049 16.049
11V17Y 67	200.00 6.1500	. IEMPERATURES 5.313 5.601 5.880 PEFERENCE TEMPERATURE 4.027	JCTIVITY 57.86 200.00		0CT 1V 1TV 78. 59	15, 5000	10.419 11.547 11.547 REFERENCE TEMPERATURE 4.027	11VITY 00.00	25.1800 -0.00 -0.101 -1.4.283 16.049 17.674 -1.4.283 16.049 17.674 -1.8.4.085 17.674
CONDUCT 17.	ا ا ا	10	CONDUC 37 7 2 7	فت "	CONDUC	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00ER 9.	CONDUC 15:	95 500 14 1002
THERMAL CONDUCTIVITY DATA FOR IRON OSPH MAY 28,70 950 8 13.69 17.67 21.65 25.64 29.07 32.79	-0.08 693129	THERMOCOUPLE 5.000 HEATER POWER 4.2627-005	THERMAL CONDUCTIVITY DATA FOR IRON OSRM MAY 28,70 1045 9 2 28,95 57.86 46.15 54.32 61.65 69.04 76.26 -0.07 200.00 13.02 -0.0 636.2 21.6	THERMOCOUPLE 6. 112 HEATER POWER 1. 0821-002	THERMAL CONDUCTIVITY DATA FOR IRON OSRM MAY 28, 70 1233 10 60.76 78.59 94.86 110.23 124, 13 137, 70 11	1746102	1. E. T. C.	THERMAL CONDUCTIVITY DATA FOR IRON OSRM MAY 28, 70 1345 11 125,22 159,45 189,72 217,82 245,03 267,20 2 1,14 200,00 13,20	2856895 25.1800 THERMOCOUPLE TEMPERATURES 12.245 14.283 16.04 HEATER POWER REFERENCE 7.1435-002
Į		폰 보7	: ₹	₽ ₩	; =	F	Ŧ ` Ť	i F	F I

Table 2 (continued)

76.00	2.0	24.245	150.63	28.646	301.47	57.77t	552. 71 2. 0	52.793
69.49	22.0	23. 793 ANCE	14 136.06	27. 772 ANCE	272.40	36. 014 ANCE	493.12	49.279 ANCE
THERMAL CONDUCTIVITY DATA FOR IRON OSRM JUNE : 1449 13 19.62 27.96 36.43 44.82 52.56 60.50	650.4	2. 644-002 REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1. 644-002 1. 9. 827	THERMAL CONDUCTIVITY DATA FOR IRON OSRM JUNE 1,70 1626 14 39,72 56,85 73,70 90,16 105,46 120,81 1 2,68 200,00 13,50 2,0 650,0 22	25.980 26.880 27.772 SPECIMEN RESISTANCE 6.7490-005	UNE 2, 70 1035 .69 242.59 648 6	32.453 34.236 36.014 SPECIMEN RESISTANCE 7.0110-005	THERMAL CONDUCTIVITY DATA FOR IRON OSRH JUNE 2, 70 16 148.37 208.24 266.01 322.71 378.23 434.69 52.77 200.00 15.67 5220315 46.2700 227.48 2.0 649.0	42.458 45.825 49.279 SPECIMEN RESISTANCE 7.8325-005
R IRON OSPH .	3 2.0	22.411. 22. PERATURE SF	P. 170N OSPH JUN 90, 16 105, 4	25.071 25. PERATURE SF	R IRON OSRM J 182. 64 212 2 2 2 6	30.652 32. PERATURE SF	R 180N OSRM 322, 71 378 7 2.0	
VITY DATA FO	200 219.7	19 21. 329 EFERENCE TEMP 19. 827	VITY DATA FO 15 75.70 1.00 15.5	ERMOCOUPLE TEMPERATURES 22.122 23.132 24.113 25.071 ATER POWER REFERENCE TEMPERATURE 6.6748-002 19.837	CTIVITY DATA FO 7, 70 150, 73 200, 00 14, 0 5, 5400 224, 4	THERMOCOUPLE TEMPERATURES 24.789 26.819 28.766 30.652 HEATER POWER REFERENCE TEMPERATURE 1.2532-001 19.956	46.24 26.01 208.24 266.01 200.00 15.67 46.2700 227.48	32.269 35.720 39.116. ER REFERENCE TEMPERATURE 1
PHAL CONDUCT)	726114 15.3	20.943 21.4 EATER POMER F 2.6444-002	THERMAL CONDUCTIVITY DATA 39, 72	THERMOCOUPLE TER 22, 122 23, 13 HEATER POWER F 5, 6748-002	MAL CONDUCTI 85.34 117.7 12.16 200 758734 33.3	THERMOCOUPLE TEMPERATURES 24.709 26.819 28.764 HEATER POWER REFERENCE 1 1.2532-001	THERMAL CONDUCTIVITY DATA 148.37 208.24 266.0 52.77 200.00 11 5220315 46.2700 22	28.700 32.26 HEATER POWER R 2.4154-001

1102. 32	8.0	83. 791	1102.32	85.789	144.61	3.0	83.837	~	o.	91.666
509 17 79 949.81	23.0	56 75.447 SISTANCE 304	49.85	648 75.446 SISTANCE 004	1403 2 . 13 127.26	21.9	82. 899 TANCE	3 253.02	9 .22	.785 89.715 ESISTANCE -004
THERMAL CONDUCTIVITY DATA FOR IRON OSPH JUNE 2,70 1509 17 250.48 352.85 456.98 566.07 683.03 809.79 94	2.0 648.2	60.463 67.656 75. SPECIMEN RESISTANCE 1.1310-004	THERMAL CONDUCTIVITY DATA FOR IRON OSRM JUNE 2,70 1620 18 250.50 352.90 456.94 565.92 682.97 809.69 9 262.37 200.00 22.62 7055354 62.4600 232.19 2.0 648.9 23	60.458 67.648 75. SPECIMEN RESISTANCE 1.1310-004	THERMAL CONDUCTIVITY DATA FOR IRON OSRM MAY 25, 70 1403 2 26.82 43.14 59.69 76.35 93.17 110.13	2.0 635.4	81.046 81.967 82. SPECIMEN RESISTANCE 1.8113-004	. ≻ 86	2.0 635.6	85.895 87.785 89 SPECIMEN RESISTANCE 2.0095-004
1 FOR IRON OS	22. 28 252. 28	6 55 TEMPE	35.94 565.92 22.62 232.19	1 53. TEMPERA 162	A FOR IRON 09	7.5	1 TEMPE . 949	TA FOR IRON OSRH HA. 08 147, 13 181. 50. 14	. S	FEFERIORES 53 82.178 84.022 REFERENCE TEMPERATURE 75.998
UCTIVITY DATA 52. 85 456. 9	200.00 62.4600 2		30CTIVITY DAT 352. 90 456. 200. 00 62. 4600		45.14 59.	20.6000 92	a	DUCTIVITY DA 79.53 113	28.9300 90	กัพ
THERMAL COND	262. 39 7055324	THERMOCOUPLE 34,913 41 HEATER POWER 4,4069-001	THERMAL COND 250.50 3 262.57 7055554	THERMOCOUPLE TEMPE 34.911 41.068 HEATER POWER REF 4.4068-001	THERMAL CONT	58.70 2326217	THERMOCOUPLE 77.419 7 HEATER POWER 4.7920-002	THERMAL CON	5267955	14EMULUUPLE 78.561 8 HEATER POWER 9.4542-002

615.92 3.0 108.755	1210.93 3.0 138.961	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	4.0
535.07 21.0 104.576 INCE	5 1043.58 22.2 130.669 ANCE	6 22.9 22.9 185.	415.41 22.1 212.020 ANCE
A FOR IRON OSRM MAY 26, 70 918 4 57. 59 26. 50 2. 0. 633. 5 5 92. 557 95. 478 100. 468 TEMPERATURE SPECIMEN RESISTA	56 981.50 635.8 635.8 122.544 CIHEN RESIST 3.4465-004	NOUCTIVITY DATA FOR IRON O 586.70 867.84 1168.22 150.00 85.71 73.4400 9416.20 PLE TEMPERATURES 197.735 122.073 137.065 197.735 122.073 137.065 WE'REFERENCE TEMPERATURE	THERMAL CONDUCTIVITY DATA FOR IRON OSRM JUNE 3 1600 19 66.76 123.84 181.70 239.60 297.90 356.29 411 259.87 158.00 148.08 3296.55 29.0500 54417.35 2.0 651.8 22. THERMOCOUPLE TEMPERATURES 195.865 158.523 201.211 203.897 206.596 209.294 212 HEATER POWEN REFERENCE TEMPERATURE SPECIMEN RESISTANCE 9.5750-002 192.750

{

						•	
38	_	Ē	8	•	710	538. 07 [°] 5. 0	8
969. 30	4	238. 591	8	~	280,710		296.998
863.54		674	60.		403	2.24	7 0
63	21.0	232. NRCE	0 21 1669.09	23	269. ANCE	25 £ 52 21.5	294. ANCE
THERMAL CONDUCTIVITY DATA FOR IRON OSRM JUNE 3 1927 20 157.08 254.38 573.96 494.34 616.16 799.78	2.0 651.6 21.0	199.275 204.717 245.215.788 221.378 226.986 232.674 EATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.9520-001 1:22.887	THERMAL CONDUCTIVITY DATA FOR IRON OSRM JUNE 4, 70 1600 21 245.61 470.22 702.44 937.44 1177.17 1420.17 1669.09 1921.62 1148.57 150.06 191.69	9.0	12.6.100 215.070 225.687 236.395 247.262 259.222 269.403 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 3.6995-001 193.256 1.2779-003	THERMAL CONDUCTIVITY CATA FOR IRON OSRM JUNE 5,70 1405 22 71.22 135.32 200.40 265.50 331.01 396.64 463.24 281.31 100.00 164.91 3297690 29.0000 50978.00 2.0 650.6 21.9	THERMOCOUPLE TEMPERATURES 276.512 279.374 282.279 285.186 208.111 291.041 294.014 MEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 9.5633-002 273.316
JUNE 1		SPECINE 1.0	1 JUNE 4	63	17.262 SPEC 19E 1.2	1 JUNE 5 531.01	98. 111 SPECINE 1. 6
RON OSPIT	8.	. 788 22 ATURE	RON OSR	~i	. 395 24 Ature	R IRON OSRF J 265.50 331 11 2.0	. 196 21 ATURE
A FOR 12	. 5. 5. 8. 8. 9.	0.245 215 NCE TEMPER 132.887	A FOR 1	23.00	5.687 236 CE TEMPER 193.256	A FOR 1 40 26 64.91 78.00	TEMPERATURES 9.374 282,279 285,186 REFERENCE TEMPERATURE 273,316
117 DAT 573.		210.2 FERENCE 13	117 DAT 702.	00 745 Cantage	225. G	117 CA 200.	ERATURE 1 282.2 FERENCE 23
MOUCT 1V	130. 41. 5 5.	204.717 ER RE	MOUCT 1V 470. 82	57.04 F TF	215.070 ER RE	35. 32 155. 32 100.	LE 1EMP 279.374 ER RE 2
FMAL CO 57.08	4709392 41.4500 34441 4709392 41.4500 34441	199.275 204.717 210.245 215.788 (FMAL COI	6485870 57,0400 34521	204, 678 2 EATER POWE 3, 6995-001	ERMAL CONDUCTIVITY CATA FOR 71.22 135.32 200.40 281.31 100.00 164.91 3297690 29.0000 50978.00	HERMOCOUPL 276. 512 2 EATER POWE 9. 5633-002
T.	7 4	}∯	¥2-	<u>ب</u> و ف	หมือ	E M	ሕ <u>ሦ</u> ຼጅ ቂ

Thermocouple Positions	2.2202 4.7594	4.7594	7.2989	9.8382
(cm from floating sink)	12.379 14.919	14.919		19.998
Specimen diameters (cm) between thermocouples starting from floating sink	0.36627	0.36627 0.36632 0.36619 0.36606	0.36619	0.36609

96	0. 63	27
ISOTHERMAL RESISTIVITY DATA FOR OSRM IRONMAY 28,70 915 7 -0.00 636.40 21.50 -0.00 1.00 200.00 12.99 4.96 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN TEMPERATURE 4.027 6.4950-005	ISOTHERMAL RESISTIVITY DATA FOR OSRM IROJUNE 1,70 1319 12 219.37 649.00 22.00 2.00 2.00 200,00 13.23 0 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN TEMPERATURE 19.917 6.6160-005	ISOTHERMAL RESISTIVITY DATA FOR IRON OSRM MAY 25,70 1147 1 9273.15 634.70 20.90 2.00 3.00 100.00 16.29 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN TEMPERATURE 75.984

```
COEFFICIENTS FOR

THERMAL

ELECTRICAL

CONDUCTIVITY

1. 48463068+001 1. 52995843-005 -4, 4205093+002
6. 93779265+001 -6, 57221842-005 2. 91385157+003
-1, 13470636+002 1. 28083500-004 -7, 88597272+003
1, 01420592+002 1. 28083500-004 -7, 88597272+003
2, 107700154-002 1. 17942860-004 -9, 71586106+003
2, 107700154-001 1, 17942860-004 -9, 71586106+003
2, 107700154-000 -6, 57740194-005 4, 92662120+003
-5, 27537674+000 2, 67952461-005 -1, 44644001+003
8 8 1839451-001 -8, 08115141-006 -1, 47175223+001
5, 85191930-003 -2, 95519976-007
-1, 59785857-004 3, 44469418-008
-2, 70952664-009
1, 28938040-010
```

Table 5. Thermal conductivity deviations for OSRM iron-1265.

PERCENT DEVIATION -0.7 1.2 -0.6 1.8 -1.0 0.8	9 PERCENT DEVIATION -1.3 -0.4 -0.5 -0.5	PERCENT DEVIATION -0.9 -0.2 -0.2 -0.5 -0.5
28, 70, 950, 8 CALCULATED THERNAL CONDUCTIVITY 3, 51+001 5, 52+001 5, 71+001 5, 89+001 4, 05+001 4, 57+001	28, 70 1045 CALCULATED THERMAL CONDUCTIVITY 4. 16+001 4. 55+001 5. 23+001 5. 84+001 6. 12+001	28, 70, 1233, 1 CALCULATED THERMAL CONDUCTIVITY 5, 72+001 6, 41+001 7, 53+001 7, 53+001 8, 11+001 8, 53+001 9, 04+001
R IRON OSRM MAY OBSERVED THERMAL CONDUCTIVITY 3.28+001 5.56+001 5.68+001 5.96+001 4.01+001 4.25+001	R IRON OSRH MAY OBSERVED THERMAL CONDUCTIVITY 4.11+001 4.88+001 5.55+001 5.81+001 6.09+001	R IRON OSRH HAY OBSSENVED THERMAL CONDUCTIVITY 5. 67+001 6. 47+001 7. 02+001 7. 69+001 8. 12+001 8. 55+001 8. 97+001
CONDUCTIVITY DATA FOR IEMPERATURE URE DIFFERENCE C 0.313 7 0.289 1 0.279 1 0.279 1 0.256 9 0.256 9 0.242 9 0.242	CONDUCTIVITY DATA FOR TEMPERATURE URE DIFFERENCE CO. 635 7 0.559 4 0.559 7 0.493 9 0.470 9 0.428 9 0.428	CONDUCTIVITY DATA FOR TEMPERATURE URE DIFFERENCE C. 3 1.151 5.0 930 5.2 0.850 5.2 0.850 6.804 5.2 0.727
THERMAL CONDUC MENAN TEMPERATURE 5. 156 5. 741 6. 011 6. 018 6. 518 6. 759	THERMAL CONDUC HEAN TEMPERATURE 6.430 7.027 7.574 8.087 8.569 9.028 9.028	THERMAL CONDUC HEAN TEMPERATURE 8.833 9.913 10.882 11.772 11.72 13.582 14.128

. Table 5 (continued)

PEDCENT	DEVIATION		6. 0	6.0	7 0-	· -	. u		-0.1	f	PERCENT	DEVIATION		9.0-	0.1-	-1.3	9	9.0	-0.7	9.0-	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	PERCENT	DEVIATION		-0.W	-0.5	6.0 <u>-</u>		9.0	-0.3	-0.2	
MAY 28, 70 1345 11	THERMAL	CONDUCTIVITY	8.52+001	9. 66+001	1, 06+002	1.15+002	1, 22+002	1 29+002	1.35+002	JUNE 1 1449 13	CALCULATED	THERMAL	CONDUCTIVITY	1. 29+002	1, 31+002	1. 34+002	1.36+002	1. 38+002	1,40+002	1. 42+002	JUNE 1, 70 1626 14	ӟ	THERMAL	CONDUCTIVITY	1. 36+002	1.40+002	1.44+002	1.48+002	1.51+002	1. 54+002	1.57+002	
FOR IRON OSRM I	THERMAL		8.45+001	9, 75+001	1.06+002	1.17+002	1.23+002	1.29+002	1.35+002	FOR IRON OSRM	OBSERVED	THERMAL	CONDUCT IV ITY	1.28+002	1.30+002	1.32+002	1.38+002	1.39+002	1.39+002	1.41+002	FOR IRON OSRM	OBSERVED	THERMAL	CONDUCTIVITY	1.35+002	1.39+002	1.43+002	1.51+002	1.52+002	1.54+002	1.56+002	
CONDUCTIVITY DATA TEMPERATURE	DIFFERENCE		2.038	1. 766	1.625	1.475	1.398	1.332	1.274	CONDUCTIVITY DATA	TEMPERATURE	DIFFERENCE			•	•	٧.	0.460	0.459	0.452	CONDUCTIVITY DATA	TEMPERATURE	DIFFERENCE		1.010			0.909		0.892	0.874	
THERMAL CONDI	TEMPERATURE		20.00	15.166		18.412	19.849	21.214	22.517	THERMAL CONDU	ÆA	TEMPERATURE		21.191	21.684	22.170	25.642			24.019		HEAN	TEMPERATURE		22.627	23.623	24.592	25.525	26.430		28.209	

Table 5 (continued)

PERCENT DEVIATION -0.0 -0.3 -0.5 -0.3	PERCENT DEVIATION 0.2 -0.4 -0.5 0.7 0.7	PERCENT DEVIATION -0.2 -0.6 -0.1 -0.1
JUNE 2, 70 1032 15 CALCULATED THERMAL CONDUCTIVITY 1, 49+002 1, 56+002 1, 61+002 1, 65+002 1, 65+002 1, 65+002 1, 71+002 1, 71+002 1, 71+002	CALCULATED THERMAL CONDUCTIVITY 1. 63+002 1. 63+002 1. 73+002 1. 73+002 1. 73+002 1. 75+002 1. 65+002 1. 65+002	JUNE 2, 70 1509 17 CALCULATED THERMAL CONDUCTIVITY 1, 73+002 1, 72+002 1, 66+002 1, 57+002 1, 47+002 1, 37+002 1, 37+002 1, 37+002
FOR IRON OSRM J OBSERVED THERMAL CONDUCTIVITY 1.49+002 1.55+002 1.69+002 1.69+002 1.69+002 1.70+002 1.70+002	FOR IRON OSRM J OBSERVED THERMAL CONDUCTIVITY 1.63+002 1.63+002 1.71+002 1.71+002 1.74+0	FOR IRON OSRM J 0BSERVED THERMAL CONDUCTIVITY 1. 73+002 1. 71+002 1. 51+002 1. 54+002 1. 55+002 1. 55+002 1. 55+002 1. 55+002 1. 56+002 1. 56+002 1. 56+002
CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 2 030 2 1.947 3 1.887 1.887 5 1.783 5 1.777	CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 5 3.569 5 3.451 6 3.514 6 3.514	CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 00 6.154 2 6.209 2 6.209 2 6.412 6 6.412 6 7.75 6 7.75 2 7.193
THERMAL CONDUME NE AN TEMPERATURE 25.804 27.792 29.709 31.553 345 35.125 36.892	THERMAL CONDU- PEAN TEMPERATURE 30, 485 37, 418 44, 141 47, 552 51, 036	THERMAL CONDUME NEAN TEMPERATURE 37.990 44.172 50.482 57.076 64.060 71.552 79.619

Table 5 (continued)

	DIFFERENCE		THERMAL	IHERMAL	DEVIATION
	75.	CONDUCTIVI	DUCTIVITY	CONDUCTIVITY	<
	6.204	1.7.	1+002	1. 72+002	9 9
	6.406	1.66	. 66+002	1.66+002	-0
	6.780	-	7+002	1.57+002	- 0
	7.191	- 4	48+002	1.47+002	9.0
	7, 798	1.30	. 36+002	1.37+002	-0.2
	8. 343	1.2	7+002	1.27+002	0.1
7.	CONDUCTIVITY DATA	FOR IRO	IRON OSRM MAY		:
蓝	TEMPERATURE	085		CALCULATED	PERCENT
015	DIFFERENCE	¥.	THERMAL	THERMAL	DEVIATION
		CONDUCTIVI	TIVITY	CONDUCTIVITY	
	•		29+002	1. 29+002	-0.1
	906.0	- -	27+002	1.28+002	-0.5
	٠	- 2	7+002	1.27+002	0
		2	5+002	1.26+002	0.0-
	٠	1.2	5+002	1. 25+002	0.5
	٠	 	24+002	1.24+002	-0-
	0.938	1.2	23+002	1.23+002	-0.5
TIVI	CONDUCTIVITY DATA	FOR IRO	IRON OSRM MAY	Y 25.70 1736 3	
떕	TEMPERATURE	088	OBSERVED	CALCULATED	PERCENT
DIFF	DIFFERENCE	Œ	THERMAL	THERMAL	DEVIATION
	į		ONDOCT IVITY	CONDUCTIVITY	
	1. 791	<u>۔</u> ۔	27+002	1.27+002	-0.1
	1.826		. 25+002	1.25+002	-0 -0.5
	1.844	<u>.</u> -	1+002	1.24+002	0
	1.873		2+005	1. 22+002	0
	1.890	2	1+002	1.20+002	4
	1.929	= :	3+002	1.18+002	-0.5
	1.951	-	7+002	1.17+002	- 0-

Table 5 (continued)

PERCENT -0.1 -0.1 -0.5 0.1 0.1 -0.1 -0.1	DEVIATION -0.0	PERCENT DEVIATION 0.2 -0.4 -0.5 -0.5 -0.5
26, 70 918 4 CALCULATED THERMAL CONDUCTIVITY 1, 23+002 1, 20+002 1, 17+002 1, 11+002 1, 11+002 1, 11+002 1, 09+002 1, 09+002	THERMAL CONDUCTIVITY 1. 18+002 1. 15+002 1. 09+002 1. 05+002 1. 05+002 9. 92+001 9. 70+001	7 26, 70 1655 6 CALCULATED THERMAL CONDUCTIVITY 1. 10+002 1. 03+002 9. 84+001 9. 48+001 9. 18+001 8. 93+001 8. 93+001
R IRON OSRH MAY 08SERVED THERMAL. CONDUCTIVITY 1. 23+002 1. 19+002 1. 17+002 1. 12+002 1. 12+002 1. 10+002 1. 12+002 1. 18+002	THERMAL CONDUCTIVITY 1. 18+002 1. 15+002 1. 05+002 1. 05+002 9. 91+001 9. 91+001	R IRON OSRM MAY OBSERVED THERMAL CONDUCTIVITY 1. 10+002 1. 03+002 9. 46+001 9. 20+001 8. 89+001 8. 68+001
CONDUCTIVITY DATA FOR TEMPERATURE URE DIFFERENCE C(8 3.621 8 3.739 7 3.820 8 5.739 7 5.820 8 5.930 7 6.108 5 4.108 5 4.108 CONDUCTIVITY DATA FOR TEMPERATURE	DIFFERENCE 6. 799 7. 142 7. 591 7. 665 7. 854 8. 124 8. 293	CONDUCTIVITY DATA FOR IEMPERATURE DIFFERENCE C 8 13.395 4 14.338 9 14.991 9 16.991 9 16.597
THERMAL CONDUC HEAN TEMPERATURE 85.188 86.868 90.647 94.518 98.473 102.522 106.665 THERMAL CONDUC HEAN	TEMPERATURE 89.093 96.063 103.329 110.857 118.617 134.815	HERMAL 101.03 114.90 129.56 160.70 193.81

PERCENT	DEVIATION	, G	5.0					-0.3	:	PERCENT	DEVIATION			-0.3		0.5		7 0-			PERCENT	DEVIATION					0,			
JUNE 3 1600 19 CALCULATED	COMPLICATIVE	8, 66+001	8. 62+001	8.59+001		8.53+001			JUNE 4 1027 20	CALCULATED		CONDUCTIVITY	8. 60+001	8.54+001	8. 48+001				27+0	JUNE 4. 70 1600 2	ATED	THERMAL	CONDUCTIVITY	8.51+001	8, 40+001	8. 30+001	8. 22+001	8. 14+001	06+0	
£ 0	THERMAL	8.68+001	8.58+001	8.60+001	8.56+001	8.56+001	8.47+001		FOR IRON OSRM	OBSERVED	THERMAL	CONDUCT IVITY	8.64+001	8.51+001	•		•	8.28+001		FOR IRON OSRM		THERMAL	_		8.40+001	8. 33+001	ņ	8.14+001	7.98+001	7.88+001
IVITY DATA	DIFFERENCE	2.658	2.689	2.685	2.699	2.638	2.727	2.731	•	TEMPERATURE	DIFFERENCE			5.528			•		•			DIFFERENCE			؈	۲.	10.867	10.961	11.181	11.307
THERMAL CONDU	TEMPERATURE	197, 194	199.867			•	210.657	213, 386		#EAN	TEMPERATURE		201.996	207.481	213.017	218.583	224.;82	229.830	235.533	THERMAL CONDU	EAN	TEMPERATURE			220.379	231.041	241.829	252. 742	263.813	275.057

Table 5 (continued)

	PERCENT	DEVIATION		T.	- 0	0.5	7.0	9.5	-0.5	- 5.5
JUNE 5, 70 1405 22	CALCULATED	THERMAL	CONDUCTIVITY							
FOR IRON OSRM	OBSERVED	THERMAL	CONDUCT IV ITY	8.05+001	7.93+001	7,93+001	7.89+001	7.87+001	7, 76+001	7,72+001
JCTIVITY DATA	MEAN TEMPERATURE	DIFFERENCE		2.862	2.906	2.907	2.925	2.930	2.973	2.984
THERMAL CONDU	F AN	TEMPERATURE		277.943	280.856	283, 733	286.648	289.576	292.528	295.506

Table 6. Electrical resistivity deviations for OSRM iron-1265.

PERCENT DEVIATION 0.00	0.000	6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	500000
CALCULATED RESISTANCE 6. 498-005 6. 508-005	6. 529-005 6. 602-005 6. 669-005 6. 749-005	7, 015-005 7, 826-005 1, 131-004 1, 811-004	2. 4008-004 3. 448-004 5. 713-004 9. 872-004	1.278-003 1.649-003 6.495-003 1.628-005
08SERVED RESISTANCE 6.498-005 6.508-005	6.529-005 6.671-005 6.71-005 6.749-005	7.833-005 7.833-005 1.131-004 1.811-004	2. 493-004 3. 447-004 5. 714-004 9. 872-004	1.278-003 1.649-003 6.495-005 6.616-005
TEMPERATURE RANGE 1.880 3.569	10.233 3.302 6.524	24.093 24.093 48.878 48.877 6.418	53, 104 53, 268 107, 968 18, 887	76.033 20.486 0.000 0.000
MEAN TEMPERATURE 5.987 8.026	11.644 18.184 22.625 25.476	57, 851 57, 851 57, 846 80, 601	205.265 205.265 205.265	242.106 286.680 4.422 19.853 76.128

Table 7. Thermovoltage deviations for OSRM iron-1265

DEVIATION	0, 10	-0.10	00 0-	60.0	-0.12	-0.16		0. 15		-0.03	0.0	0.04	-0.01	0.02	-0.00	-0.05	0.01	0.01	-0 02
CALCULATED THERMOVOLTAGE	-0. 18	0.03	0.00	1.05	0.89	2.84	12. 22	52. 62	262. 43	262, 41	58.62	128.73	305.83	688.20	1594. 28	299. 93	613, 13	1148.36	281, 33
OBSERVED THERMOVOLTAGE	_	-0.07			0.77	2.68	12. 16	52. 77	262.39	262. 37	58. 70	128. 77	305.82	688. 22	1594, 28	299. 87	613, 14	1148, 37	281, 31
LOWER TEMPERATURE	5.000	6.112	8.258	12.245	20.943	22. 122	24. 789	28.700	34.913	34, 911	77.419	78.561	81.377	85.693	94, 341	195.865	199.275	204.678	276, 512
UPPER TEMPERATURE	6.880	9.681	14,491	23.154	24.245	28.646	57, 771	52.793	83, 791	83, 789	83.837	91.666	108, 755	138.961	202.309	214. 752	238.391	280,710	296, 938

Table 8. Transport properties of OSRM iron-1265

Temp	Thermal Conductivity	Electrical Resistivity	Lorenz ratio $\times 10^8$ (V^2/K^2)	Thermo-
(K)	$(Wm^{-1}K^{-1})$	(n ohm m)	(V /K)	(μV/K)
6	38.8	3.867	2.50	-0.06
7	45.3	3.870	2.50	0.02
8	51.8	3.851	2.49	0.04
9	58.2	3.845	2.49	0.04
10	64.7	3.852	2.49	0.04
12	77.4	3.873	2.50	0.08
14	89.7	3.887	2.49	0.15
16	101	3.896	2.47	0.24
18	113	3.905	2.45	0.35
20	123	3.920	2.42	0.46
25	146	3.988	2.33	0.78
30	162	4.098	2.21	1.20
35	171	4.264	2.08	1.75
40	173	4.501	1.95	2.44
45	171	4.836	1.84	3.23
50	167	5.279	1.76	4.09
55	160	5.847	1.70	5.01
60	153	6.542	1.67	5.94
65	145	7.367	1.65	6.88
70	139	8.322	1.65	7.80
75	132	9.379	1.66	8.68
80	127	10.56	1.67	9.52
85	122	11.88	1.70	10.31
90	117	13.27	1.73	11.05
95	114	14.76	1.77	11.74
100	110	16.32	1.80	12.37
110	105	19.69	1.88	13.47
120	101	23.30	1.97	14.37
130	98.3	27.07	2.05	15.10
140	95.8	30.97	2.12	15.67
150	93.8	34.97	2.19	16.10
160	92.0	39.10	2.25	16.41
170	90.3	43.23	2.30	16.63
180	88.9	47.47	2.34	16.76
190	87.5	51.78	2.38	16.82
200	86.2	56.13	2.42	16.81
220	84.0	65.16	2.49	16.64
240	82.3	74.45	2.55	16.31
260	80.8	84.19	2.62	15.83
280	79.3	94.29	2.67	15.23

Figure 1. Thermal conductivity deviations for OSRM iron-1265

Figure 2. Electrical resistivity deviations for OSRM iron-1265

Figure 3. Thermovoltage deviations for OSRM iron-1265

Figure 4. Thermal conductivity of OSRM iron-1265

Figure 5. Electrical resistivity of OSRM iron-1265

Figure 6. Lorenz ratio of OSRM iron-1265

Figure 7. Thermopower of OSRM iron-1265