A glimpse of Kuratowski's 14-Set Problem

The Original Problem

Problem. Let $S \in \mathcal{P}(\mathbb{R}^n)$. Let k, I and c be unary operators such that

$$k(S)=\overline{S}, \quad I(S)=S, \quad c(S)=\mathbb{R}^n-S.$$

Prove that there at most 14 sets generated by S.

Proof Sketch.

Step I The unary operator $i(S) = S^{\circ}$ can be generated by k and c, i.e., ckc = i.

Step II Let $\langle I, i, c, k \rangle$ be the free semigroup, which consists of i^2 , icik, k^3i , etc.

Let M be the quotient semigroup $\langle I,i,c,k \mid$ reduction of set operators \rangle . For instance, $I^k=I, c^3=c, i^2=i$ under such quotient relations. Then, $\{xS\mid x\in M\}$ consists of all possible sets generated by S.

Step III Utilise the relations ic = ck, kc = ci, $c^2 = I$, to move the word c to the initial of any $y \in M$. For instance, $cikci = ki^2$.

Step IV Prove that $i^2 = i$, $k^2 = k$, ik = ikik, ki = kiki.

Step V Find that $M = \{I, i, k, ik, ki, iki, kik, c, ci, ck, cik, cki, ciki, ckik\}$

Ex1 We define $x \leq y$ for each $x, y \in M$ whenever $x(S') \subset y(S')$ for each $S \in \mathbb{R}^n$, where x < y whenever $x(S') \subseteq y(S')$. Find the partially ordered structure of M.

Step VI Find an S such that M(S) consists of 14 distinct sets. For simplicity, one can just find the union of all pairwise disjoint examples which verifying the partially ordered structure.

Further Exploration

Ex2 Let $S \in \mathcal{P}(\mathbb{R}^n)$. Let k, I and c be unary operators defined above. Let \wedge be the binary operator defined as $\wedge(S_1, S_2) = S_1 \cap S_2$. State a similar problem and solve it.

Hint:

Website for creating commutative diagram.