Chapter 4: Structures of Crystalline Solids

ISSUES TO ADDRESS...

- How do atoms assemble into solid structures in metallic, ceramic and polymeric materials?
- How do the structures of ceramic materials differ from those of metals?
- How do polymeric crystals accommodate the polymer chain?
- How does the density of a material depend on its structure?

 How can we stack metal atoms to minimize empty space?

2-dimensions

Now stack these 2-D layers to make 3-D structures

Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
 - Electron cloud shields cores from each other
- Have the simplest crystal structures.

We will examine three such structures...

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.

Coordination # = 6 (# nearest neighbors)

Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell*
Volume of unit cell
*assume hard spheres

APF for a simple cubic structure = 0.52

From Fig. 4.38

Callister's Materials Science and Engineering,
Adapted Version.

1 atom/unit cell

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # = 8

From Fig. 4.2, Callister's Materials Science and Engineering, Adapted Version.

2 atoms/unit cell: 1 center + 8 corners x 1/8
Chapter 4 - 6

Atomic Packing Factor: BCC

APF for a body-centered cubic structure = 0.68

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Coordination # = 12

From Fig. 4.1 Callister's Materials Science and Engineering, Adapted Version.

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Atomic Packing Factor: FCC

APF for a face-centered cubic structure = 0.74

maximum achievable APF

Close-packed directions: length = $4R = \sqrt{2} a$

Unit cell contains:

 $6 \times 1/2 + 8 \times 1/8$

= 4 atoms/unit cell

Fig. 4.1(a), Callister's Materials Science and Engineering, Adapted Version.

From

FCC Stacking Sequence

ABCABC... Stacking Sequence

• 2D Projection

A sites

B sites

FCC Unit Cell

C sites

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

• 2D Projection

• Coordination # = 12

Adapted Version.

6 atoms/unit cell

• APF = 0.74

ex: Cd, Mg, Ti, Zn

• c/a = 1.633

Theoretical Density, p

Density =
$$\rho = \frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$$

$$\rho = \frac{n A}{V_C N_A}$$

where n = number of atoms/unit cell

A = atomic weight

 V_C = Volume of unit cell = a^3 for cubic

 N_A = Avogadro's number

 $= 6.023 \times 10^{23} \text{ atoms/mol}$

Theoretical Density, p

volume

unit cell

• Ex: Cr (BCC)

$$A = 52.00 \text{ g/mol}$$

$$R = 0.125 \text{ nm}$$

$$n = 2$$

$$a = 4R\sqrt{3} = 0.2887 \text{ nm}$$

atoms
unit cell

2 52.00 $\rho = \frac{g}{mol}$

 $\rho_{\text{theoretical}} = 7.18 \text{ g/cm}^3$

 $\rho_{\text{actual}} = 7.19 \text{ g/cm}^3$

atoms

mol

Densities of Material Classes

Adapted Version.

Linear Density

 Linear Density of Atoms = LD = Unit length of direction vector

ex: linear density of Al in [110] direction

$$a = 0.405 \text{ nm}$$

atoms
$$LD = \frac{2}{\sqrt{2a}} = \frac{3.5 \text{ nm}^{-1}}{2}$$
length

Atomic Packing of Crystallographic Planes

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
 - a) Draw (100) and (111) crystallographic planes for Fe.
 - b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: At T < 912°C iron has the BCC structure.

From Fig. 4.2(c), Callister's Materials Science and Engineering, Adapted Version.

Radius of iron R = 0.1241 nm

Planar Density =
$$\frac{1}{a^2}$$
 = $\frac{1}{\left(\frac{4\sqrt{3}}{3}R\right)^2}$ = 12.1 $\frac{\text{atoms}}{\text{nm}^2}$ = $\frac{1.2 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}}{\text{Chapter 4 - 17}}$

Planar Density of (111) Iron

Solution (cont): (111) plane

1 atom in plane/ unit surface cell

atoms in plane

 $h = \sqrt{\frac{3}{2}}a$

- atoms above plane
- atoms below plane

area =
$$\sqrt{2}$$
 ah = $\sqrt{3}$ $a^2 = \sqrt{3} \left(\frac{4\sqrt{3}}{3} R \right)^2 = \frac{16\sqrt{3}}{3} R^2$

$$\frac{16\sqrt{3}}{3}R^2$$

$$= 7.0 \frac{\text{atoms}}{\text{nm}^2} =$$

$$0.70 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}$$

Section 4.9 – Polymorphism

 Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium

 α , β -Ti

carbon diamond, graphite

iron system

Ceramic Crystal Structures

Oxide structures

- oxygen anions much larger than metal cations
- close packed oxygen in a lattice (usually FCC)
- cations in the holes of the oxygen lattice

Site Selection

Which sites will cations occupy?

- 1. Size of sites
 - does the cation fit in the site
- 2. Stoichiometry
 - if all of one type of site is full the remainder have to go into other types of sites.
- 3. Bond Hybridization

Ionic Bonding & Structure

1. Size - Stable structures:

--maximize the # of nearest oppositely charged neighbors.

unstable

stable

From Fig. 4.10 Callister's Materials Science and Engineering, Adapted Version.

- Charge Neutrality:
 - --Net charge in the structure should be zero.

--General form:

m, p determined by charge neutrality

Coordination # and Ionic Radii

· Coordination # increases with

rcation ranion

Issue: How many anions can you arrange around a cation?

Figures and table from Callister's Materials Science and Engineering, Adapted Version.

Cation Site Size

• Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for O_H site (C.N. = 6)

$$2r_{\text{anion}} + 2r_{\text{cation}} = 2\sqrt{2}r_{\text{anion}}$$

$$r_{\text{anion}} + r_{\text{cation}} = \sqrt{2} r_{\text{anion}}$$
 $r_{\text{cation}} = (\sqrt{2} - 1) r_{\text{anion}}$

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = 0.414$$

Site Selection II

2. Stoichiometry

 If all of one type of site is full the remainder have to go into other types of sites.

Ex: FCC unit cell has 4 O_H and 8 T_D sites.

If for a specific ceramic each unit cell has 6 cations and the cations prefer O_H sites

4 in *O_H*

 $2 \text{ in } T_D$

Site Selection III

3. Bond Hybridization – significant covalent bonding

- the hybrid orbitals can have impact if significant covalent bond character present
- For example in SiC
 - $X_{Si} = 1.8$ and $X_C = 2.5$

% ionic character = 100 {1 - exp[-0.25(
$$X_{Si} - X_C)^2$$
]} = 11.5%

- ca. 89% covalent bonding
- both Si and C prefer sp³ hybridization
- Therefore in SiC get T_D sites

Example: Predicting Structure of FeO

 On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation Ionic	radius	(nm)	
--------------	--------	------	--

0.100

AI3+	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069

Anion

O ² -	0.140
CI-	0.181
F-	0.133

Answer:

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$$
$$= 0.550$$

based on this ratio,

$$--$$
coord # = 6

Rock Salt Structure

Same concepts can be applied to ionic solids in general.

Example: NaCl (rock salt) structure

From Fig. 4.11
Callister's Materials
Science and
Engineering,
Adapted Version.

$$^{\circ}$$
 Na⁺ $r_{\text{Na}} = 0.102 \text{ nm}$

$$r_{Cl} = 0.181 \text{ nm}$$

$$r_{\text{Na}}/r_{\text{CI}} = 0.564$$

 \therefore cations prefer O_H sites

MgO and FeO

MgO and FeO also have the NaCl

structure

- O²⁻ $r_{\rm O} = 0.140 \text{ nm}$
- Mg^{2+} $r_{Mg} = 0.072 \text{ nm}$

$$r_{\rm Mg}/r_{\rm O} = 0.514$$

 \therefore cations prefer O_H sites

From Fig. 4.11
Callister's Materials Science and Engineering, Adapted Version.

So each oxygen has 6 neighboring Mg²⁺

AX Crystal Structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

$$\frac{Cs^+}{r_{Cl^-}} = \frac{r_{Cs^+}}{0.181} = 0.939$$

: cubic sites preferred

So each Cs⁺ has 8 neighboring Cl⁻

From Fig. 4.12
Callister's Materials
Science and
Engineering,
Adapted Version.

AX Crystal Structures

Zinc Blende structure

o Zn²⁺ ○ S²⁻

From Fig. 4.13 Callister's Materials Science and Engineering, Adapted Version.

Ex: ZnO, ZnS, SiC

$$\frac{r_{Zn^{2+}}}{r_{O^{2-}}} = \frac{0.074}{0.140} = 0.529 \implies O_H??$$

- Size arguments predict Zn²⁺ in O_H sites,
- In observed structure Zn²⁺ in T_D sites
- Why is Zn^{2+} in T_D sites?
 - bonding hybridization of zinc favors T_D sites

So each Zn²⁺ has 4 neighboring O²⁻

AX₂ Crystal Structures

Fluorite structure

From Fig. 4.14

Callister's Materials Science and Engineering

Adapted Version.

- Calcium Fluorite (CaF₂)
- cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- antifluorite structure cations and anions reversed

ABX₃ Crystal Structures

Perovskite structure

Ex: complex oxide BaTiO₃

From Fig. 4.15 Callister's Materials Science and Engineering Adapted Version.

Mechanical Properties

We know that ceramics are more brittle than metals. Why?

- Consider method of deformation (will learn later in chapters on mechanical properties – Chapter 9 and 10)
 - slippage along slip planes
 - in ionic solids this slippage is very difficult
 - too much energy needed to move one anion past another anion

Ceramic Density Computation

Number of formula units/unit cell

$$\rho = \frac{n'(\Sigma A_{\rm C} + \Sigma A_{\rm A})}{V_{\rm C} N_{\rm A}}$$

Volume of unit cell

Silicate Ceramics

Most common elements on earth are Si & O

- SiO₂ (silica) structures are quartz, crystobalite, & tridymite
- The strong Si-O bond leads to a strong, high melting material (1710°C)

Amorphous Silica

- Silica gels amorphous SiO₂
 - Si⁴⁺ and O²⁻ not in well-ordered lattice
 - Charge balanced by H⁺ (to form OH⁻) at "dangling" bonds
 - very high surface area > 200 m²/g
 - SiO₂ is quite stable, therefore unreactive
 - makes good catalyst support

From Fig. 4.20 Callister's Materials Scie and Engineering Adapted Version.

Silica Glass

- Dense form of amorphous silica
 - Charge imbalance corrected with "counter cations" such as Na⁺
 - Borosilicate glass is the pyrex glass used in labs
 - better temperature stability & less brittle than sodium glass

Silicates

 Combine SiO₄⁴⁻ tetrahedra by having them share corners, edges, or faces

 Cations such as Ca²⁺, Mg²⁺, & Al³⁺ act to neutralize & provide ionic bonding

Layered Silicates

- Layered silicates (clay silicates)
 - SiO₄ tetrahedra connected together to form 2-D plane

- (Si₂O₅)²⁻
- So need cations to balance charge

From Fig. 4.22 Callister's Materials Science and Engineering, Adapted Version.

Layered Silicates

Kaolinite clay alternates (Si₂O₅)²⁻ layer with

Note: these sheets loosely bound by van der Waal's forces

Layered Silicates

- Can change the counterions
 - this changes layer spacing
 - the layers also allow absorption of water
- Micas KAI₃Si₃O₁₀(OH)₂
- Bentonite
 - used to seal wells
 - packaged dry
 - swells 2-3 fold in H₂O
 - pump in to seal up well so no polluted ground water seeps in to contaminate the water supply.

Carbon Forms

- Carbon black amorphous surface area ca. 1000 m²/g
- Diamond
 - tetrahedral carbon
 - hard no good slip planes
 - brittle can cut it
 - large diamonds jewelry
 - small diamonds
 - often man made used for cutting tools and polishing
 - diamond films
 - hard surface coat tools, medical devices, etc.

From Fig. 4.24
Callister's Materials Science and Engineering
Adapted Version.

Carbon Forms - Graphite

layer structure – aromatic layers

From Fig. 4.26
Callister's Materials Science and Engineering
Adapted Version.

- weak van der Waal's forces between layers
- planes slide easily, good lubricant

Carbon Forms – Fullerenes and Nanotubes

- Fullerenes or carbon nanotubes
 - wrap the graphite sheet by curving into ball or tube
 - Buckminister fullerenes
 - Like a soccer ball C_{60} also C_{70} + others

Polymer Crystallinity

Ex: polyethylene unit cell

- Crystals must contain the polymer chains in some way
 - Chain folded structure

From Fig. 4.31 Callister's Materials Science and Engineering Adapted Version.

From Fig. 4.29
Callister's Materials Science and Engineering
Adapted Version.
Chapter 4 - 4

Polymer Crystallinity

Polymers rarely 100% crystalline

 Too difficult to get all those chains aligned crystalline

region

 % Crystallinity: % of material that is crystalline.

- -- TS and E often increase with % crystallinity.
- -- Annealing causes crystalline regions to grow. % crystallinity increases.

amorphous region

From Fig. 14.11, *Callister 6e.* (Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

Region of high

Chapter 4 -

Polymer Crystal Forms

Single crystals – only if slow careful growth

From Fig. 4.30
Callister's Materials Science and Engineering
Adapted Version

Polymer Crystal Forms

Spherulites – crossed polarizers

Maltese cross

From Fig. 4.33
Callister's Materials Science and Engineering
Adapted Version

Section 4.20 - X-Ray Diffraction

Electromagnetic Spectrum

- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings < λ
- Spacing is the distance between parallel planes of atoms.

X-Rays to Determine Crystal Structure

Incoming X-rays diffract from crystal planes.

From Fig. 4.35 Callister's Materials Science and Engineering, Adapted Version.

Measurement of critical angle, θ_c , allows computation of planar spacing, d.

X-ray intensity (from detector)

X-Ray Diffraction Pattern

Diffraction pattern for polycrystalline α -iron (BCC)

From Fig. 3.20, Callister 5e.

SUMMARY

- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Crystallographic directions and planes are related to atomic linear densities and planar densities.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).

SUMMARY

- Ceramic materials have covalent & ionic bonding.
- Ceramic structures are based on charge neutrality and maximizing # of nearest oppositely charged neighbors
- Ceramic structures may be predicted based on the ratio of the cation and anion radii
- Polymer structures were described, in particular the spherulitic structure of semicrystalline polymer
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems: