Plesu Catalin

EX. 1. Pentru graful reprezentat în figura 1, să se determine drumurile hamiltoniene.

1. Matricea de adiacenta

	X1	X2	X3	X4	X5	X6
X1	0	0	0	0	0	0
X2	1	0	1	0	0	1
Х3	1	0	0	1	0	0
X4	0	0	0	0	1	1
X5	1	1	0	0	0	1
X6	0	0	1	0	0	0

2. Matricea drumurilor + puterea de atingere a varfurilor + suma

	X1	X2	Х3	X4	X5	X6	P(x _i)
X1	0	0	0	0	0	0	0
X2	1	1	1	1	1	1	6
Х3	1	0	0	1	1	1	4
X4	1	1	1	0	1	1	5
X5	1	1	1	0	0	1	4
X6	0	0	1	0	0	0	1
						$\sum p(x_i)$	20

4.Comparăm
$$\sum P(x_i)$$
 cu n $\frac{n(n-1)}{2}$ Compararea 20 != 6(6-1)/2 = 15 nu avem un drum hamiltonian

EX. 2. Pentru graful reprezentat în figura 2, să se arate că nu există un drum hamiltonian; să se găsească un număr minim de arce ce vor trebui adăugate, astfel încît, să existe în graful dat un drum hamiltonian.

1. Matricea de adiacenta

	X1	X2	Х3	X4	X5	X6	X 7
X1	0	0	0	0	0	0	0
X2	1	0	1	0	0	1	1
Х3	1	0	0	0	0	0	0
X4	0	0	1	0	1	0	0
X5	0	0	1	0	0	0	0
X6	1	0	1	0	1	0	0
X7	1	0	0	0	0	0	0

2. Matricea drumurilor + puterea de atingere a varfurilor + suma

	X1	X2	X 3	X4	X5	X6	X7	P(x _i)
X1	0	0	0	0	0	0	0	0
X2	1	0	1	0	1	1	1	5
Х3	1	0	0	0	0	0	0	1
X4	1	0	1	0	1	0	0	3
X5	1	0	1	0	0	0	0	2
X6	1	0	1	0	1	0	0	3
X7	1	0	0	0	0	0	0	1
							$\sum p(x_i)$	15

3. Suma puterilor de atingere a varfurilor $\sum p(x_i) = 15$

dupa adaugarea arcelor (3, 7) si (6, 4)

	X1	X2	Х3	X4	X5	X6	X7	P(x _i)
X1	0	0	0	0	0	0	0	0
X2	1	0	1	1	1	1	1	6
Х3	1	0	0	0	0	0	1	2
X4	1	0	1	0	1	0	1	4
X5	1	0	1	0	0	0	1	3
X6	1	0	1	1	1	0	1	5
X7	1	0	0	0	0	0	0	1
							$\sum p(x_i)$	21

4.Comparăm
$$\sum P(x_i)$$
 cu n $\frac{n(n-1)}{2}$

rezulta ca putem avea un drum hamiltonian.

Compararea puterea de atingere a varfurilor
$$\sum p(x_i) = 21 \text{ si n(n-1)/2} = 7(7-1) / 2 = 21 \text{ si}$$

Drumul merge prin varfurile: 2645371

EX. 3

3. Să se determine drumul hamiltonian în graful G = (X, U), $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ $U = \{(x_1, x_2), (x_1, x_3), (x_2, x_4), (x_2, x_3), (x_4, x_5), (x_4, x_6), (x_5, x_1), (x_6, x_3), (x_6, x_5)\}$

1. Matricea de adiacenta

	X1	X2	Х3	X4	X5	X6
X1	0	1	1	0	0	0
X2	0	0	1	1	0	0
Х3	0	0	0	0	0	0
X4	0	0	0	0	1	1
X5	1	0	0	0	0	0
X6	0	0	1	0	1	0

2. Matricea drumurilor + puterea de atingere a varfurilor + suma

	X1	X2	Х3	X4	X5	X6	P(x _i)
X1		1	1	1			3
X2			1	1	1	1	4
Х3							0
X4	1		1		1	1	4
X5	1	1	1				3
X6	1		1		1		3
						$\sum p(x_i)$	17

3. Suma puterilor de atingere a varfurilor $\sum p(x_i) = 17$

4.Comparăm
$$\sum P(x_i)$$
 cu n $\frac{n(n-1)}{2}$ Compararea 17 != 6(6-1)/2 = 15 nu avem un drum hamiltonian

4. Să se determine drumurile hamiltoniene în graful $G = (X, U), X = \{x_1, x_2, x_3, x_4\}$

$$U = \{(x_1, x_2), (x_2, x_4), (x_2, x_3), (x_3, x_2), (x_3, x_1), (x_3, x_4), (x_4, x_1), (x_4, x_3)\}$$

1. Matricea de adiacenta

1. 1. 1. Lutilicea ac acia									
	X1	X2	Х3	X4					
X1	0	1	0	0					
X2	0	0	1	1					
Х3	1	1	0	1					
X4	1	0	1	0					

2. Matricea drumurilor + puterea de atingere a varfurilor + suma

	X1	X2	Х3	X4	P(x _i)
X1		1	1	1	3
X2	1	1	1	1	4
Х3	1	1	1	1	4
X4	1	1	1	1	4
				$\sum p(x_i)$	15

3. Suma puterilor de atingere a varfurilor $\sum p(x_i) = 15$

4.Comparăm $\sum_{i} P(x_i)$ cu n $\frac{n(n-1)}{2}$

compararea 15 este cu mult mai mare de 6 nu ar trebui sa avem un drum hamiltonian totusi drumul 4 3 1 2 este posibil

nu avem un drum hamiltonian

EX. 5.

5. Să se determine drumul hamiltonian în graful G = (X, U), $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ $U = \{(x_1, x_2), (x_1, x_5), (x_2, x_3), (x_2, x_5), (x_3, x_4), (x_5, x_3), (x_5, x_6), (x_6, x_3), (x_6, x_4)\}$

1. Matrice de adiacenta

	X1	X2	Х3	X4	X5	X6
X1		1			1	
X2			1		1	
Х3				1		
X4						
X5			1			1
X6			1	1		

2. Matricea drumurilor + puterea de atingere a varfurilor + suma

_						P			
	X1	X2	Х3	X4	X5	X6	P(x _i)		
X1		1	1	0	1	1	4		
X2			1	0	1	1	3		
Х3				1			1		
X4						_	0		
X5		0	1	1	1	1	4		
X6			1	1	0		2		
					15	$\sum p(x_i)$	14		

Comparăm
$$\sum P(x_i)$$
 cu n $\frac{n(n-1)}{2}$ 14!=15

nu avem un drum hamiltonian

EX. 6. Să se determine drumurile hamiltoniene pentru graful reprezentat în figura 3.

Figura 3

1. Matricea de adiacenta

	X1	X2	Х3	X4	X5	X6	X7	X8
X1		1	1		1			
X2					1	1	1	
Х3	1	1		1			1	
X4	1	1			1	1		
X5						1	1	
X6							1	1
X 7								
X8					1	1	1	

2. Matricea drumurilor + puterea de atingere a varfurilor + suma

	X1	X2	Х3	X4	X5	X6	X7	X8	P(x _i)
X1	1	1	1	1	1	1	1	0	7
X2					1	1	1	1	4
Х3	1	1	1	1	1	1	1	0	7
X4	1	1	1	0	1	1	1	1	7
X5					0	1	1	1	3
X6					1	1	1	1	4
X7									0
X8					1	1	1	1	4
							28	$\sum p(x_i)$	36

Comparăm
$$\sum P(x_i)$$
 cu n $\frac{n(n-1)}{2}$ 36 != 28

5. un traseu care poate fi parcus : 1 3 4 2 6 8 5 7 dar nu avem un drum hamiltonian