Coupled continuous systems

Random vibrations of coupled continuous systems

MG3416-Advanced Structural Acoustics - Lecture #5

$\acute{\rm E}$ Savin^{1,2}

¹Information Processing and Systems Dept. ONERA, France

²Mechanical and Environmental Engineering Dept. CentraleSupélec, France

October 20, 2021

Outline

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal expansion

Ext^{al} FSl

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summ

1 General case

- Notations and setting
- Modal expansion
- Energetic quantities
- Response to stationary random loads
- Basic SEA equations
- 2 Interaction of a structure with an acoustic cavity
 - Notations and setting
 - Modal expansion
- 3 Interaction of a structure with an external acoustic fluid
 - Notations and setting
 - Solving the fluid equations
 - Modal expansion
 - \blacksquare Stationary forced response to a random pressure field

Outline

Coupled continuous systems

É. Savir

Overview

Modal expansion Energetic quantities Stationary loads SEA basics

Int^{al} FSI Notation Modal

Ext^{al} FSI

Notations Fluid equations Modal expansion Stationary pressure

Summar

1 General case

- Notations and setting
- Modal expansion
- Energetic quantities
- Response to stationary random loads
- Basic SEA equations
- 2 Interaction of a structure with an acoustic cavity
 - Notations and setting
 - Modal expansion
- 3 Interaction of a structure with an external acoustic fluid
 - Notations and setting
 - Solving the fluid equations
 - Modal expansion
 - Stationary forced response to a random pressure field

Coupled continuous systems

É. Savir

Overview Notations Modal expansion Energetic quantities

Stationar loads SEA basi Int^{al} FSI Notations

Notations
Modal
expansion

Ext^{al} FS

Notations Fluid equations Modal expansion Stationary pressure

Summary

- The system occupying the domain Ω is devided into two sub-systems occupying the domains Ω_1 and Ω_2 .
- Their interface is $\Sigma = \partial \Omega_1 \cap \partial \Omega_2$ with $|\Sigma| \neq 0$.
- The displacement field in each sub-system r=1 or 2 is $u_r=u|_{\Omega_r}$, where u is the displacement field in Ω .

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads

Int^{ar} FSI Notation Modal

Ext^{al} FS

Notations Fluid equations Modal expansion Stationary pressure

Summai

■ They satisfy the following system derived from the VPP: Find $u_r \in C_r$, $r \in \{1, 2\}$, s.t.

$$\begin{bmatrix} \boldsymbol{M}_1 & \boldsymbol{M}_{12} \\ \boldsymbol{M}_{21} & \boldsymbol{M}_2 \end{bmatrix} \begin{pmatrix} \ddot{\boldsymbol{u}}_1 \\ \ddot{\boldsymbol{u}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{D}_1 & \boldsymbol{D}_{12} \\ \boldsymbol{D}_{21} & \boldsymbol{D}_2 \end{bmatrix} \begin{pmatrix} \dot{\boldsymbol{u}}_1 \\ \dot{\boldsymbol{u}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{K}_1 & \boldsymbol{K}_{12} \\ \boldsymbol{K}_{21} & \boldsymbol{K}_2 \end{bmatrix} \begin{pmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_1 \\ \boldsymbol{f}_2 \end{pmatrix} \;,$$

where the sets of admissible displacement fields C_r are:

$$C_r \subseteq \left\{ \boldsymbol{v}; \ \boldsymbol{v} \in L^2\left(\Omega_r\right), \ \boldsymbol{\nabla} \boldsymbol{v} \in L^2\left(\Omega_r\right), \ \mathrm{and} \ \boldsymbol{v}|_{\Gamma_{\mathrm{u}} \cap \partial \Omega_r} = \boldsymbol{0} \right\}.$$

- **Hypotheses**: the coupling operators are s.t.
- The mass coupling:

$$m_{\mathrm{c}} \begin{pmatrix} oldsymbol{u}_1 & oldsymbol{v}_1 \ oldsymbol{u}_2 & oldsymbol{v}_2 \end{pmatrix} = \left\langle oldsymbol{M}_{12} oldsymbol{u}_2, oldsymbol{v}_1
ight
angle_{\mathcal{C}_1', \mathcal{C}_1} + \left\langle oldsymbol{M}_{21} oldsymbol{u}_1, oldsymbol{v}_2
ight
angle_{\mathcal{C}_2', \mathcal{C}_2}$$

is symmetric $M_{12} \equiv M_{21}^{\mathsf{T}}$;

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{ar} FSI Notations Modal

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summar

■ They satisfy the following system derived from the VPP: Find $u_r \in C_r$, $r \in \{1, 2\}$, s.t.

$$\begin{bmatrix} \boldsymbol{M}_1 & \boldsymbol{M}_{12} \\ \boldsymbol{M}_{21} & \boldsymbol{M}_2 \end{bmatrix} \begin{pmatrix} \ddot{\boldsymbol{u}}_1 \\ \ddot{\boldsymbol{u}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{D}_1 & \boldsymbol{D}_{12} \\ \boldsymbol{D}_{21} & \boldsymbol{D}_2 \end{bmatrix} \begin{pmatrix} \dot{\boldsymbol{u}}_1 \\ \dot{\boldsymbol{u}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{K}_1 & \boldsymbol{K}_{12} \\ \boldsymbol{K}_{21} & \boldsymbol{K}_2 \end{bmatrix} \begin{pmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_1 \\ \boldsymbol{f}_2 \end{pmatrix} ,$$

where the sets of admissible displacement fields C_r are:

$$C_r \subseteq \{ \boldsymbol{v}; \, \boldsymbol{v} \in L^2(\Omega_r), \, \nabla \boldsymbol{v} \in L^2(\Omega_r), \text{ and } \boldsymbol{v}|_{\Gamma_{\mathrm{u}} \cap \partial \Omega_r} = \boldsymbol{0} \}$$
.

- **Hypotheses**: the coupling operators are s.t.
- The stiffness coupling:

$$k_{\rm c} \begin{pmatrix} \boldsymbol{u}_1 & \boldsymbol{v}_1 \\ \boldsymbol{u}_2 & \boldsymbol{v}_2 \end{pmatrix} = \langle \boldsymbol{K}_{12} \boldsymbol{u}_2, \boldsymbol{v}_1 \rangle_{\mathcal{C}'_1, \mathcal{C}_1} + \langle \boldsymbol{K}_{21} \boldsymbol{u}_1, \boldsymbol{v}_2 \rangle_{\mathcal{C}'_2, \mathcal{C}_2}$$

is symmetric $K_{12} \equiv K_{21}^{\mathsf{T}}$;

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads

Notations
Modal

 $\operatorname{Ext}^{\operatorname{al}}$ FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summai

■ They satisfy the following system derived from the VPP: Find
$$u_r \in C_r$$
, $r \in \{1, 2\}$, s.t.

$$\begin{bmatrix} \boldsymbol{M}_1 & \boldsymbol{M}_{12} \\ \boldsymbol{M}_{21} & \boldsymbol{M}_2 \end{bmatrix} \begin{pmatrix} \ddot{\boldsymbol{u}}_1 \\ \ddot{\boldsymbol{u}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{D}_1 & \boldsymbol{D}_{12} \\ \boldsymbol{D}_{21} & \boldsymbol{D}_2 \end{bmatrix} \begin{pmatrix} \dot{\boldsymbol{u}}_1 \\ \dot{\boldsymbol{u}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{K}_1 & \boldsymbol{K}_{12} \\ \boldsymbol{K}_{21} & \boldsymbol{K}_2 \end{bmatrix} \begin{pmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_1 \\ \boldsymbol{f}_2 \end{pmatrix} \;,$$

where the sets of admissible displacement fields C_r are:

$$C_r \subseteq \left\{ \boldsymbol{v}; \ \boldsymbol{v} \in L^2\left(\Omega_r\right), \ \boldsymbol{\nabla} \boldsymbol{v} \in L^2\left(\Omega_r\right), \ \mathrm{and} \ \boldsymbol{v}|_{\Gamma_{\mathrm{u}} \cap \partial \Omega_r} = \boldsymbol{0} \right\}.$$

- **Hypotheses**: the coupling operators are s.t.
- The gyroscopic coupling:

$$d_{\mathrm{c}}\left(egin{array}{c|c} oldsymbol{u}_1 & oldsymbol{v}_1 \ oldsymbol{u}_2 & oldsymbol{v}_2 \end{array}
ight) = \left\langle oldsymbol{D}_{12} oldsymbol{u}_2, oldsymbol{v}_1
ight
angle_{\mathcal{C}_1', \mathcal{C}_1} + \left\langle oldsymbol{D}_{21} oldsymbol{u}_1, oldsymbol{v}_2
ight
angle_{\mathcal{C}_2', \mathcal{C}_2}$$

is skew-symmetric $\boldsymbol{D}_{12} \equiv -\boldsymbol{D}_{21}^{\mathsf{T}}$.

General case

Eigenmodes and modal expansion

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summary

■ Spectral problem: Find $\lambda \in \mathbb{R}$ and $\phi \in \mathcal{C}_r^{\mathrm{b}}$ s.t.

$$\mathbf{K}_r \boldsymbol{\phi} = \lambda \mathbf{M}_r \boldsymbol{\phi} \,,$$

where $C_r^b \subset L^2(\Omega_r)$ is the set of admissible displacement fields in Ω_r when some boundary conditions are prescribed on the interface Σ .

- **■** Examples:
 - Craig-Bampton method (1968): $\phi|_{\Sigma} = 0$;
 - McNeal method (1971): $\sigma_r(\phi)n_r = 0$ on Σ ;
 - Gladwell method (1964): $\sigma_r(\phi)n_r = \lambda_r \mathcal{M}\phi|_{\Sigma}$ on Σ , for some $\mathcal{M} > 0$.
- Remark: this issue is marginally addressed in the SEA literature, because the choice of $C_r^{\rm b}$ has only a mild influence on the method.

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations

Modal expansion

Ext^{al} FS

Notations Fluid equations Modal expansion Stationary pressure

Summa

Hypothesis: it is assumed that this problem admits a countable set of solutions $(\lambda_{r1}, \phi_{r1})$, $(\lambda_{r2}, \phi_{r2})$... s.t. $0 < \lambda_{r1} \le \lambda_{r2} \le \ldots$ and $\{\phi_{r\alpha}\}_{\alpha \in \mathbb{N}^*}$ is an Hilbertian basis of the space $H_r = L^2_{\mu}(\Omega_r)$ of square integrable functions with respect to the unit mass measure $\mu_r(\mathrm{d}\boldsymbol{x}) = \mathbbm{1}_{\Omega_r} \frac{\varrho(\mathrm{d}\boldsymbol{x})}{M_r}$, with $M_r = \int_{\Omega_r} \varrho \mathrm{d}\boldsymbol{x}$:

$$\langle \boldsymbol{M}_r \boldsymbol{\phi}_{r\alpha}, \boldsymbol{\phi}_{r\alpha'} \rangle_{\mathcal{C}'_r, \mathcal{C}_r} = M_r \delta_{\alpha\alpha'},$$
$$\langle \boldsymbol{K}_r \boldsymbol{\phi}_{r\alpha}, \boldsymbol{\phi}_{r\alpha'} \rangle_{\mathcal{C}'_r, \mathcal{C}_r} = M_r \omega_{r\alpha}^2 \delta_{\alpha\alpha'},$$

where $\omega_{r\alpha}^2 = \lambda_{r\alpha}$.

■ Notations: $r, s \in \{1, 2\}$, $\alpha, \alpha' \in \mathbb{N}^*$ are generic modes for the r^{th} sub-system, and $\beta, \beta' \in \mathbb{N}^*$ are generic modes for the s^{th} sub-system.

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{ar} FSI Notations Modal

Ext^{al} FSI

Fluid equations Modal expansion Stationary pressure

Summary

■ Consequently, the solution $u_r \in \mathcal{C}_r^{\mathrm{b}}$ can be expanded on the eigenbasis $\{\phi_{r\alpha}\}_{\alpha \in \mathbb{N}^*}$ as:

$$u_r(x,t) = \sum_{\alpha=1}^{\infty} q_{r\alpha}(t) \phi_{r\alpha}(x),$$

- Introducing $\mu_r(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} \mu_r(\mathrm{d}\boldsymbol{x})$ (the scalar product in H_r), the generalized coordinates $\{q_{r\alpha}\}_{\alpha \in \mathbb{N}^*}$ are: $q_{r\alpha} = \mu_r(\boldsymbol{u}, \boldsymbol{\phi}_{r\alpha})$.
- The μ_r -norm $\|\boldsymbol{u}\|_{\mu_r} = \sqrt{\mu_r(\boldsymbol{u}, \boldsymbol{u})}$ is obtained as:

$$\|\boldsymbol{u}(\cdot,t)\|_{\mu_r} = \left(\sum_{\alpha=1}^{+\infty} (q_{r\alpha}(t))^2\right)^{\frac{1}{2}} < +\infty.$$

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Intal FSI
Notations
Modal

Ext^{al} FSI Notations

Fluid equations Modal expansion Stationary pressure

Summary

■ Hypothesis (Basile): the eigenmodes $\{\phi_{r\alpha}\}_{\alpha\in\mathbb{N}^*}$ diagonalize the damping operator as well:

$$\langle \boldsymbol{D}_r \boldsymbol{\phi}_{r\alpha}, \boldsymbol{\phi}_{r\alpha'} \rangle_{\mathcal{C}'_r, \mathcal{C}_r} = M_r \eta_{r\alpha} \omega_{r\alpha} \delta_{\alpha\alpha'},$$

where for $r \in \{1, 2\}$:

- $\omega_{r\alpha}$: the "blocked" (angular) frequency of the α^{th} mode of the r^{th} sub-system,
- $\xi_{r\alpha}$: the modal critical damping rate of the α^{th} mode of the r^{th} sub-system,
- $\eta_{r\alpha} = 2\xi_{r\alpha}$: the modal loss factor of the α^{th} mode of the r^{th} sub-system.

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{ar} FSI Notation Modal

Ext^{al} FSI

Fluid equations Modal expansion Stationary pressure

Summar

• Owing to the Basile hypothesis, the generalized coordinates $\{q_{r\alpha}\}_{\alpha\in\mathbb{N}^*}$ satisfy:

$$M_{r}(\ddot{q}_{r\alpha}(t) + \eta_{r\alpha}\omega_{r\alpha}\dot{q}_{r\alpha}(t) + \omega_{r\alpha}^{2}q_{r\alpha}(t)) = f_{r\alpha}(t)$$
$$-\sum_{\beta=1}^{+\infty} (\mu_{\alpha\beta}\ddot{q}_{s\beta}(t) + \gamma_{\alpha\beta}\dot{q}_{s\beta}(t) + \kappa_{\alpha\beta}q_{s\beta}(t)), \quad t \in \mathbb{R},$$

with
$$q_{r\alpha}(0) = \mu_r(\boldsymbol{u}_0, \boldsymbol{\phi}_{r\alpha}), \ \dot{q}_{r\alpha}(0) = \mu_r(\boldsymbol{v}_0, \boldsymbol{\phi}_{r\alpha}),$$
 and:

$$f_{r\alpha} = \langle \boldsymbol{f}_r, \boldsymbol{\phi}_{r\alpha} \rangle_{\mathcal{C}'_r, \mathcal{C}_r},$$

$$\mu_{\alpha\beta} = \langle \boldsymbol{M}_{rs} \boldsymbol{\phi}_{s\beta}, \boldsymbol{\phi}_{r\alpha} \rangle_{\mathcal{C}'_r, \mathcal{C}_r} = \langle \boldsymbol{M}_{sr} \boldsymbol{\phi}_{r\alpha}, \boldsymbol{\phi}_{s\beta} \rangle_{\mathcal{C}'_s, \mathcal{C}_s},$$

$$\gamma_{\alpha\beta} = \langle \boldsymbol{D}_{rs} \boldsymbol{\phi}_{s\beta}, \boldsymbol{\phi}_{r\alpha} \rangle_{\mathcal{C}'_r, \mathcal{C}_r} = -\langle \boldsymbol{D}_{sr} \boldsymbol{\phi}_{r\alpha}, \boldsymbol{\phi}_{s\beta} \rangle_{\mathcal{C}'_s, \mathcal{C}_s},$$

$$\kappa_{\alpha\beta} = \langle \boldsymbol{K}_{rs} \boldsymbol{\phi}_{s\beta}, \boldsymbol{\phi}_{r\alpha} \rangle_{\mathcal{C}'_r, \mathcal{C}_r} = \langle \boldsymbol{K}_{sr} \boldsymbol{\phi}_{r\alpha}, \boldsymbol{\phi}_{s\beta} \rangle_{\mathcal{C}'_s, \mathcal{C}_s}.$$

Energetic quantities Definitions

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notation

expansion

Ext^{al} FS

Notations Fluid equations Modal expansion Stationary pressure

Summa

Definition

■ The mechanical energy of the coupled system $r \in \{1, 2\}$:

$$\mathcal{E}(t) = \mathcal{E}_{1}(t) + \mathcal{E}_{2}(t) + \sum_{\alpha=1}^{+\infty} \sum_{\beta=1}^{+\infty} (\mu_{\alpha\beta} \dot{q}_{1\alpha}(t) \dot{q}_{2\beta}(t) + \kappa_{\alpha\beta} q_{1\alpha}(t) q_{2\beta}(t)) ,$$

where
$$\mathcal{E}_r(t) = \frac{1}{2} M_r \sum_{\alpha=1}^{+\infty} \left[(\dot{q}_{r\alpha}(t))^2 + \omega_{r\alpha}^2 (q_{r\alpha}(t))^2 \right].$$

- The dissipated power: $\Pi_{\rm d}(t) = \Pi_{\rm d1}(t) + \Pi_{\rm d2}(t)$, where $\Pi_{\rm dr}(t) = M_r \sum_{\alpha=1}^{+\infty} \eta_{r\alpha} \omega_{r\alpha} (\dot{q}_{r\alpha}(t))^2$.
- The input power: $\Pi_{\text{IN}}(t) = \Pi_{\text{IN}1}(t) + \Pi_{\text{IN}2}(t)$, where $\Pi_{\text{IN}r}(t) = \sum_{\alpha=1}^{+\infty} f_{r\alpha}(t)\dot{q}_{r\alpha}(t)$.

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations
Modal
expansion

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summary

■ The powers exchanged by the sub-systems:

$$\Pi_{12}(t) = (\text{force } 1 \to 2) \times (\text{celerity } 2)
= -\sum_{\alpha=1}^{+\infty} \sum_{\beta=1}^{+\infty} \dot{q}_{2\beta}(t) \left(\mu_{\alpha\beta} \ddot{q}_{1\alpha}(t) - \gamma_{\alpha\beta} \dot{q}_{1\alpha}(t) + \kappa_{\alpha\beta} q_{1\alpha}(t) \right) ;$$

$$\Pi_{21}(t) = (\text{force } 2 \to 1) \times (\text{celerity } 1)
= -\sum_{\alpha=1}^{+\infty} \sum_{\beta=1}^{+\infty} \dot{q}_{1\alpha}(t) \left(\mu_{\alpha\beta} \ddot{q}_{2\beta}(t) + \gamma_{\alpha\beta} \dot{q}_{2\beta}(t) + \kappa_{\alpha\beta} q_{2\beta}(t) \right) .$$

Energetic quantities Power balance

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations ^{Modal}.

Ext^{al} FS

Fluid equations Modal expansion Stationary pressure

Summary

■ The instantaneous power of the overall system:

$$\Pi(t) = \dot{\mathcal{E}}(t) = \dot{\mathcal{E}}_1(t) + \dot{\mathcal{E}}_2(t) - \Pi_{12}(t) - \Pi_{21}(t) ,$$

■ The instantaneous power balance reads:

$$\dot{\mathcal{E}}_1(t) + \dot{\mathcal{E}}_2(t) = \Pi_{\rm IN}(t) - \Pi_{\rm d}(t) + \Pi_{12}(t) + \Pi_{21}(t) ,$$

or for each sub-system:

$$\dot{\mathcal{E}}_r(t) = \Pi_{\text{IN}r}(t) - \Pi_{\text{d}r}(t) + \Pi_{sr}(t), \quad s \neq r \in \{1, 2\}.$$

Stationary excitations Definition of the stationary loads

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal

Ext^{al} FSl

Notations Fluid equations Modal expansion Stationary pressure

. Dibliography ■ **Data**: $(\mathbf{F}_{r,t}, t \in \mathbb{R}), r \in \{1, 2\}$, are second order, centered stochastic processes defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , with values in $[L^2(\Omega_r)]^3$, and m.s.s.

Hypotheses:

■ $\exists \omega \mapsto S_{F_r}(\omega; x, y) : \mathbb{R} \to \mathbb{C}^{3\times 3}, x, y \in \Omega_r$, Hermitian, positive, integrable on \mathbb{R}_{ω} , and s.t.:

$$egin{aligned} oldsymbol{S_{F_r}}(\omega;oldsymbol{x},oldsymbol{y}) &= oldsymbol{S_{F_r}}(\omega;oldsymbol{x},oldsymbol{x})^* \ oldsymbol{S_{F_r}}(-\omega;oldsymbol{x},oldsymbol{y}) &= oldsymbol{S_{F_r}}(\omega;oldsymbol{x},oldsymbol{y}) \otimes \mathbb{1}_{I_0 \cup \underline{I_0}}(\omega)\,, \end{aligned}$$

where:

$$I_0 \cup \underline{I}_0 = \left[\omega_0 - \frac{\Delta\omega}{2}, \omega_0 + \frac{\Delta\omega}{2}\right] \bigcup \left[-\omega_0 - \frac{\Delta\omega}{2}, -\omega_0 + \frac{\Delta\omega}{2}\right] \,.$$

 \bullet $(\mathbf{F}_{1,t}, t \in \mathbb{R})$ and $(\mathbf{F}_{2,t}, t \in \mathbb{R})$ are uncorrelated:

$$\mathbb{E}\{\boldsymbol{F}_{1,t}\otimes\boldsymbol{F}_{2,t'}\}=\boldsymbol{0}\,,\quad\forall(t,t')\in\mathbb{R}\times\mathbb{R}\,.$$

Stationary excitations

Forced responses of the coupled system

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal expansion

Ext^{al} FSI
Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summai

■ The sub-system forced responses $t \mapsto \boldsymbol{u}_r^f(\cdot,t)$ for $r \in \{1,2\}$ are modelized by stochastic processes $(\boldsymbol{U}_{r,t}, t \in \mathbb{R})$ the properties of which are derived from filtering and mean-square derivation (see Lecture #1 part A).

Proposition

- $(U_{r,t}, t \in \mathbb{R}), r \in \{1, 2\}, \text{ are second order, centered stochastic processes defined on } (\Omega, \mathcal{F}, P), \text{ indexed on } \mathbb{R}, \text{ with values in } \mathcal{C}_r^{\mathrm{b}}, \text{ and mean-square stationary.}$
- The same holds for their mean-square derivatives $(\dot{\mathbf{U}}_{r,t}, t \in \mathbb{R})$ and $(\ddot{\mathbf{U}}_{r,t}, t \in \mathbb{R})$, with values in H_r and $\mathcal{C}_r^{b'}$ respectively.

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{ar} FSI
Notations
Modal

Ext^{al} FSI

Fluid equations Modal expansion Stationary pressure

Summary

■ The instantaneous power balance reads:

$$\dot{\mathcal{E}}_{1,t} + \dot{\mathcal{E}}_{2,t} = \Pi_{\text{IN},t} - \Pi_{\text{d},t} + \Pi_{12,t} + \Pi_{21,t} \,,$$

or for each sub-system:

$$\dot{\mathcal{E}}_{r,t} = \Pi_{\mathrm{IN}r,t} - \Pi_{\mathrm{d}r,t} + \Pi_{sr,t} \,, \quad s \neq r \in \{1,2\} \,, \label{eq:energy_energy}$$

as equalities of second-order random variables.

■ From the foregoing results, $\mathbb{E}\{\dot{\mathcal{E}}_{r,t}\}=0$ for both sub-systems and $\mathbb{E}\{\Pi_{12,t}\}=-\mathbb{E}\{\Pi_{21,t}\}$; hence:

$$\mathbb{E}\{\Pi_{\mathrm{IN},t}\} = \mathbb{E}\{\Pi_{\mathrm{d},t}\},$$

$$\mathbb{E}\{\Pi_{\mathrm{IN}r,t}\} = \mathbb{E}\{\Pi_{\mathrm{d}r,t}\} + \mathbb{E}\{\Pi_{rs,t}\}.$$

Basic SEA equations

Average power flow

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads

SEA basics

Notation Modal

Ext^{al} FS

Fluid equations Modal expansion Stationary pressure

Summar

$$\mathbb{E}\{\Pi_{rs,t}\} = \sum_{\alpha=1}^{+\infty} \sum_{\beta=1}^{+\infty} \int_{I_0 \cup \underline{I}_0} a_{r,\alpha}^{s,\beta}(\omega) \left[E_{\alpha\alpha}^r(\omega) - E_{\beta\beta}^s(\omega) \right] d\omega$$
$$+ \sum_{\alpha=1}^{+\infty} \sum_{\beta=1}^{+\infty} \left(\sum_{\substack{\alpha' = 1 \\ \alpha' \neq \alpha}}^{+\infty} \int_{I_0 \cup \underline{I}_0} C_{r,\alpha\alpha'}^{s,\beta}(\omega) E_{\alpha\alpha'}^r(\omega) d\omega \right)$$

It can be shown that:

where:

$$E_{\alpha\alpha'}^{r}(\omega) = \Re\{\omega^{2} M_{r} S_{\alpha\alpha'}^{r} \widehat{\mathbb{h}}_{r\alpha}(\omega) \widehat{\mathbb{h}}_{r\alpha'}^{*}(\omega)\},$$

$$S_{\alpha\alpha'}^{r} = \frac{1}{M_{r}} \int_{\Omega_{r}} \int_{\Omega_{r}} \left(S_{r}(\boldsymbol{x}, \boldsymbol{y}) \phi_{r,\alpha'}(\boldsymbol{y}), \phi_{r,\alpha}(\boldsymbol{x}) \right) d\boldsymbol{x} d\boldsymbol{y},$$

 $\hat{\mathbf{h}}_{r\alpha}(\omega) = \left[M_r (\omega_{r\alpha}^2 - \omega^2 + i\eta_{r\alpha}\omega_{r\alpha}\omega) \right]^{-1}.$

 $- \sum_{\beta'=1}^{+\infty} \int_{I_0 \cup \underline{I}_0} C_{s,\beta\beta'}^{r,\alpha}(\omega) E_{\beta\beta'}^s(\omega) d\omega$

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads

SEA basics

Int^{al} FSI Notation Modal expansion

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summa

- The formula can be simplified invoking two assumptions:
 - Either "rain-on-the-roof" excitations, $S_{\alpha\alpha'}^r = S_{r\alpha}\delta_{\alpha\alpha'}$ for some $S_{r\alpha} > 0$;
 - 2 Or "weak coupling", s.t. $\mathcal{E}(t) \simeq \mathcal{E}_1(t) + \mathcal{E}_2(t)$ neglecting the contribution of the coupling operators to the mechanical energy of the overall system.
- Then:

$$\mathbb{E}\{\Pi_{rs,t}\} = \sum_{\alpha=1}^{+\infty} \sum_{\beta=1}^{+\infty} \int_{I_0 \cup \underline{I}_0} a_{r,\alpha}^{s,\beta}(\omega) \left[E_{\alpha\alpha}^r(\omega) - E_{\beta\beta}^s(\omega) \right] d\omega.$$

■ The coefficients $a_{r,\alpha}^{s,\beta}(\omega) = a_{s,\beta}^{r,\alpha}(\omega)$ (and $C_{r,\alpha\alpha'}^{s,\beta}(\omega)$) are independent of the loads.

Basic SEA equations

Average power flow

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

SEA Dasic

Notations
Modal
expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summai

Let
$$\mathscr{I}_r = \{\alpha; \ \omega_{r\alpha} \in I_0\}, \text{ for } r \in \{1, 2\}.$$

- **Hypotheses** (wideband excitations):
 - $i \quad \xi_{r\alpha} \ll 1, \ \forall \alpha \in \mathscr{I}_r, \ r \in \{1, 2\};$
 - ii $\Delta \omega \gg b_{r\alpha} = \pi \xi_{r\alpha} \omega_{r\alpha}, \ \forall \alpha \in \mathscr{I}_r, \ r \in \{1, 2\};$
 - The average mechanical energy of the stationary forced response for each sub-system is due to the modes in \mathscr{I}_r solely, $r \in \{1, 2\}$.
- Then:

$$\mathbb{E}\{\Pi_{rs,t}\} \simeq \sum_{\alpha \in \mathscr{I}_r} \sum_{\beta \in \mathscr{I}_s} a_{r,\alpha}^{s,\beta}(\omega_0) \left[\frac{\pi S_{r\alpha}}{D_{r\alpha}} - \frac{\pi S_{s\beta}}{D_{s\beta}} \right].$$

■ This is the analog of the result obtained for the two-DOFs system, summing the contributions of all modes of each sub-system within the frequency band of analysis I_0 .

Outline

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads

Int^{al} FSI Notations

Modal expansion

Notations

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summar

- 1 General case
 - Notations and setting
 - Modal expansion
 - Energetic quantities
 - Response to stationary random loads
 - Basic SEA equations
- 2 Interaction of a structure with an acoustic cavity
 - Notations and setting
 - Modal expansion
- 3 Interaction of a structure with an external acoustic fluid
 - Notations and setting
 - Solving the fluid equations
 - Modal expansion
 - Stationary forced response to a random pressure field

Internal fluid-structure interaction Notations and setting

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations Modal

Ext^{al} FSl

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summa

■ The structure: we consider small perturbations $u_1(x,t)$ around a static equilibrium $x \in \Omega_1$ considered as the reference configuration.

■ The structure occupying Ω_1 is constituted by linear, memoryless viscoelastic materials:

$$\sigma_1(\boldsymbol{x},t) = \mathbf{C}_1^{\mathrm{e}} \boldsymbol{\epsilon}_1(\boldsymbol{x},t) + \mathbf{C}_1^{\mathrm{v}} \dot{\boldsymbol{\epsilon}}_1(\boldsymbol{x},t), \quad (\boldsymbol{x},t) \in \Omega_1 \times \mathbb{R},$$

where $\epsilon_1 = \nabla \otimes_s u_1$ is the small strain tensor, σ_1 the Cauchy stress tensor, $\mathbf{C}_1^{\mathrm{e}}$ the elasticity tensor, $\mathbf{C}_1^{\mathrm{v}}$ the viscosity tensor, and ϱ_1 the density.

Internal fluid-structure interaction Notations and setting

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI

Notations Modal expansion

Ext^{al} FSI

Fluid equations
Modal expansion
Stationary

Summar

Bibliography

The balance of momentum, boundary conditions and initial conditions read:

$$\left\{ \begin{array}{ll} \mathbf{Div}\boldsymbol{\sigma}_1 + \varrho_1\boldsymbol{g}_1 = \varrho_1\frac{\partial^2\boldsymbol{u}_1}{\partial t^2} & \text{in } \Omega_1\,, \\ \boldsymbol{u}_1 = \boldsymbol{0} & \text{on } \Gamma_{\mathrm{u}}\,, \\ \boldsymbol{\sigma}_1\boldsymbol{n} = \boldsymbol{\tau}_1 & \text{on } \Gamma_{\sigma}\,, \\ \boldsymbol{\sigma}_1\boldsymbol{n} = -p_2\boldsymbol{n} & \text{on } \Sigma\,, \\ \boldsymbol{u}_1(\cdot,0) = \boldsymbol{u}_0 & \text{in } \Omega_1\,, \\ \dot{\boldsymbol{u}}_1(\cdot,0) = \boldsymbol{v}_0 & \text{in } \Omega_1\,, \end{array} \right.$$

where n is the unit outward normal to $\partial \Omega_1$.

Notations and setting

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations Modal expansion

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summar

■ The acoustic fluid: homogeneous, compressible, inviscid, gravity effects are neglected. It occupies the bounded domain Ω_2 where $\partial\Omega_2 = \Sigma$.

- Irrotational motion $\nabla \times v_2 = 0$, s.t. the fluid velocity v_2 reads $v_2 = \nabla \psi_2$ and the fluid pressure reads $p_2 = -\rho_2 \partial_t \psi_2 + \pi$.
- The static correction:

$$\pi = \frac{\varrho_2 c_2^2}{|\Omega_2|} \int_{\Sigma} \boldsymbol{u}_1 \cdot \boldsymbol{n} \, \mathrm{d}\sigma,$$

where ϱ_2 : fluid density, c_2 : sound speed, accounts for the pressure variation induced by a static deformation of Σ .

■ **Hypothesis**: π is negligible (*e.g.* air cavity).

Internal fluid-structure interaction Notations and setting

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI
Notations

Ext^{al} FS

Fluid equations Modal expansion Stationary pressure

Summai

■ The linearized Euler equation, boundary conditions and initial conditions yield for the velocity potential ψ_2 :

$$egin{aligned} \left\{ egin{aligned} & rac{1}{c_2^2} rac{\partial^2 \psi_2}{\partial t^2} - \Delta \psi_2 = g_2 & ext{in } \Omega_2 \,, \ & rac{\partial \psi_2}{\partial oldsymbol{n}} = \dot{oldsymbol{u}}_1 \cdot oldsymbol{n} & ext{on } \Sigma \,, \ & \psi_2(\cdot,0) = 0 & ext{in } \Omega_2 \,, \ & \dot{\psi}_2(\cdot,0) = 0 & ext{in } \Omega_2 \,. \end{aligned}
ight.$$

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI

Notations Modal expansion

Ext^{al} FSI

Fluid equations Modal expansion Stationary pressure

Summar

■ The Virtual Power principle (VPP) on the sets of admissible fields

$$C_{1} = \left\{ \boldsymbol{v}; \, \boldsymbol{v} \in L^{2}\left(\Omega_{1}\right), \, \boldsymbol{\nabla} \boldsymbol{v} \in L^{2}\left(\Omega_{1}\right), \, \text{and} \, \boldsymbol{v}|_{\Gamma_{u}} = \boldsymbol{0} \right\},$$

$$C_{2} = \left\{ \phi; \, \phi \in L^{2}\left(\Omega_{2}\right), \, \boldsymbol{\nabla} \phi \in L^{2}\left(\Omega_{2}\right), \, \text{and} \, \int_{\Omega_{2}} \phi \, \mathrm{d}\boldsymbol{x} = 0 \right\},$$

reads: Find $(\boldsymbol{u}_1, \psi_2) \in \mathcal{C}_1 \times \mathcal{C}_2$ s.t.

$$\begin{split} \int_{\Omega_1} \varrho_1 \ddot{\boldsymbol{u}}_1 \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \int_{\Omega_1} \boldsymbol{\sigma}_1(\boldsymbol{u}_1) : \boldsymbol{\epsilon}(\boldsymbol{v}) \, \mathrm{d}\boldsymbol{x} - \int_{\Sigma} \varrho_2 \dot{\psi}_2(\boldsymbol{n} \cdot \boldsymbol{v}) \, \mathrm{d}\boldsymbol{\sigma} \\ &= \int_{\Omega_1} \varrho_1 \boldsymbol{g}_1 \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \int_{\Gamma_{\boldsymbol{\sigma}}} \boldsymbol{\tau}_1 \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{\sigma} \,, \quad \forall \boldsymbol{v} \in \mathcal{C}_1 \,, \\ \int_{\Omega_2} \frac{\varrho_2}{c_2^2} \ddot{\psi}_2 \phi \, \mathrm{d}\boldsymbol{x} + \int_{\Omega_2} \varrho_2 \boldsymbol{\nabla} \psi_2 \cdot \boldsymbol{\nabla} \phi \, \mathrm{d}\boldsymbol{x} + \int_{\Sigma} \varrho_2 (\dot{\boldsymbol{u}}_1 \cdot \boldsymbol{n}) \phi \, \mathrm{d}\boldsymbol{\sigma} \\ &= \int_{\Omega_2} \varrho_2 g_2 \phi \, \mathrm{d}\boldsymbol{x} \,, \quad \forall \phi \in \mathcal{C}_2 \,. \end{split}$$

4 D F A P F A B F A B F

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI

Notations Modal expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationar
pressure

Summar

■ The structural mass, stiffness and damping bilinear forms:

$$m_1(\boldsymbol{u}, \boldsymbol{v}) = \langle \boldsymbol{M}_1 \boldsymbol{u}, \boldsymbol{v} \rangle_{\mathcal{C}_1', \mathcal{C}_1} = \int_{\Omega_1} \varrho_1 \boldsymbol{u} \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x},$$

$$k_1(\boldsymbol{u}, \boldsymbol{v}) = \langle \boldsymbol{K}_1 \boldsymbol{u}, \boldsymbol{v} \rangle_{\mathcal{C}_1', \mathcal{C}_1} = \int_{\Omega_1} \mathbf{C}_1^{\mathrm{e}}(\boldsymbol{\epsilon}(\boldsymbol{u})) : \boldsymbol{\epsilon}(\boldsymbol{v}) \, \mathrm{d}\boldsymbol{x},$$

$$d_1(\boldsymbol{u}, \boldsymbol{v}) = \langle \boldsymbol{D}_1 \boldsymbol{u}, \boldsymbol{v} \rangle_{\mathcal{C}_1', \mathcal{C}_1} = \int_{\Omega_1} \mathbf{C}_1^{\mathrm{v}}(\boldsymbol{\epsilon}(\boldsymbol{u})) : \boldsymbol{\epsilon}(\boldsymbol{v}) \, \mathrm{d}\boldsymbol{x},$$

define the positive definite, symmetric mass M_1 , stiffness K_1 and damping D_1 operators of $\mathcal{L}(\mathcal{C}_1, \mathcal{C}'_1)$ (the set of continuous operators), where $\langle \boldsymbol{f}, \boldsymbol{v} \rangle_{\mathcal{C}'_1, \mathcal{C}_1}$ defines the duality product of $\boldsymbol{f} \in \mathcal{C}'_1$ and $\boldsymbol{v} \in \mathcal{C}_1$, and \mathcal{C}'_1 is the dual space of \mathcal{C}_1 (the set of linear forms).

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI

Notations Modal expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summa

■ The fluid mass and stiffness bilinear forms:

$$m_{2}(\psi,\phi) = \langle \boldsymbol{M}_{2}\psi,\phi\rangle_{\mathcal{C}'_{2},\mathcal{C}_{2}} = \int_{\Omega_{2}} \frac{\varrho_{2}}{c_{2}^{2}} \psi \phi \,\mathrm{d}\boldsymbol{x},$$
$$k_{2}(\psi,\phi) = \langle \boldsymbol{K}_{2}\psi,\phi\rangle_{\mathcal{C}'_{2},\mathcal{C}_{2}} = \int_{\Omega_{2}} \varrho_{2} \boldsymbol{\nabla}\psi \cdot \boldsymbol{\nabla}\phi \,\mathrm{d}\boldsymbol{x},$$

define the positive definite, symmetric mass M_2 and stiffness K_2 operators of $\mathcal{L}(\mathcal{C}_2, \mathcal{C}'_2)$.

■ The gyroscopic coupling linear form on $C = C_1 \times C_2$:

$$d_{c}\begin{pmatrix} \boldsymbol{u} & \boldsymbol{v} \\ \psi & \phi \end{pmatrix} = \left\langle \boldsymbol{\Omega} \boldsymbol{u} & \boldsymbol{v} \\ \psi & \phi \right\rangle_{\mathcal{C}',\mathcal{C}} = -\int_{\Sigma} \varrho_{2} \psi(\boldsymbol{v} \cdot \boldsymbol{n}) \, d\sigma + \int_{\Sigma} \varrho_{2} \phi(\boldsymbol{u} \cdot \boldsymbol{n}) \, d\sigma$$

is skew-symmetric (thus conservative).

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations Modal

Ext^{al} FS

Notations Fluid equations Modal expansion Stationary pressure

Summary

■ By the Riesz theorem, $\exists ! f_1 \in C_1'$ and $\exists ! f_2 \in C_2'$ s.t.

$$\begin{split} f_1(\boldsymbol{v}) &= \langle \boldsymbol{f}_1, \boldsymbol{v} \rangle_{\mathcal{C}_1', \mathcal{C}_1} = \int_{\Omega_1} \varrho_1 \boldsymbol{g}_1 \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \int_{\Gamma_{\sigma}} \boldsymbol{\tau}_1 \cdot \boldsymbol{v} \, \mathrm{d}\sigma \,, \quad \forall \boldsymbol{v} \in \mathcal{C}_1 \,, \\ f_2(\phi) &= \langle f_2, \phi \rangle_{\mathcal{C}_2', \mathcal{C}_2} = \int_{\Omega_2} \varrho_2 g_2 \phi \, \mathrm{d}\boldsymbol{x} \,, \qquad \forall \phi \in \mathcal{C}_2 \,. \end{split}$$

■ Then the VPP reads:

$$\begin{bmatrix} \boldsymbol{M}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M}_2 \end{bmatrix} \begin{pmatrix} \ddot{\boldsymbol{u}}_1 \\ \ddot{\boldsymbol{\psi}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{D}_1 & \boldsymbol{\Omega}_{12} \\ \boldsymbol{\Omega}_{21} & \boldsymbol{0} \end{bmatrix} \begin{pmatrix} \dot{\boldsymbol{u}}_1 \\ \dot{\boldsymbol{\psi}}_2 \end{pmatrix} + \begin{bmatrix} \boldsymbol{K}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{K}_2 \end{bmatrix} \begin{pmatrix} \boldsymbol{u}_1 \\ \boldsymbol{\psi}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_1 \\ \boldsymbol{f}_2 \end{pmatrix} \;,$$

"in the sense of distributions", with some prescribed initial conditions.

■ This is the situation addressed beforehand, when the mass and stiffness coupling operators vanish:

$$M_{12} = M_{21} = 0$$
, $K_{12} = K_{21} = 0$.

Eigenmodes and modal expansion

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notation Modal

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

D1111 1

■ Spectral problem for the structure: Find $\lambda \in \mathbb{R}$ and $\phi \in C_1$ s.t.

$$\mathbf{K}_1 \boldsymbol{\phi} = \lambda \mathbf{M}_1 \boldsymbol{\phi} \,.$$

It admits a countable set of solutions $(\lambda_{1,1}, \phi_{1,1})$, $(\lambda_{1,2}, \phi_{1,2})$... s.t. $0 < \lambda_{1,1} \le \lambda_{1,2} \le \ldots$ and $\{\phi_{1\alpha}\}_{\alpha \in \mathbb{N}}^*$ is an Hilbertian basis of the space $H_1 = L^2_{\mu}(\Omega_1)$ of square integrable functions with respect to the unit mass measure $\mu_1(\mathrm{d}\boldsymbol{x}) = \mathbbm{1}_{\Omega_1} \frac{\varrho_1 \mathrm{d}\boldsymbol{x}}{M_1}$, with $M_1 = \int_{\Omega_1} \varrho_1 \mathrm{d}\boldsymbol{x}$:

$$m_1(\phi_{1\alpha}, \phi_{1\alpha'}) = M_1 \delta_{\alpha\alpha'},$$

$$k_1(\phi_{1\alpha}, \phi_{1\alpha'}) = M_1 \lambda_{1\alpha} \delta_{\alpha\alpha'}.$$

• $\{\phi_{1\alpha}\}_{\alpha\in\mathbb{N}^*}$ are the structural modes in vacuo, which are assumed (Basile) to diagonalize the damping operator D_1 as well.

Eigenmodes and modal expansion

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notation Modal

Ext^{al} FS

Fluid equations Modal expansion Stationary pressure

■ Spectral problem for the acoustic cavity: Find $\lambda \in \mathbb{R}$ and $\phi \in C_2$ s.t.

$$K_2 \phi = \lambda M_2 \phi$$
.

■ It admits a countable set of solutions $(\lambda_{2,1}, \phi_{2,1})$, $(\lambda_{2,2}, \phi_{2,2})$... s.t. $0 < \lambda_{2,1} \le \lambda_{2,2} \le \ldots$ and $\{\phi_{2\beta}\}_{\alpha \in \mathbb{N}^*}$ is an Hilbertian basis of the space $H_2 = L^2(\Omega_2)$ of square integrable functions with respect to the scalar product $\mu_2(\psi, \phi) = \int_{\Omega_2} \psi \phi \, \mathrm{d} \boldsymbol{x}$, with $M_2 = \int_{\Omega_2} \varrho_2 \mathrm{d} \boldsymbol{x}$:

$$m_2(\phi_{2\beta}, \phi_{2\beta'}) = \frac{\varrho_2}{c_2^2} \mu_2(\phi_{2\beta}, \phi_{2\beta'}) = \frac{M_2}{c_2^2} \delta_{\beta\beta'},$$

$$k_2(\phi_{2\beta}, \phi_{2\beta'}) = \frac{M_2}{c_2^2} \lambda_{2\beta} \delta_{\beta\beta'}.$$

• $\{\phi_{2\beta}\}_{\beta\in\mathbb{N}^*}$ are the rigid-wall acoustic modes.

Eigenmodes and modal expansion

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations
Modal

Ext^{al} FS

Fluid equations Modal expansion Stationary pressure

Summary

■ Consequently, the solution $u_1 \in C_1$ can be expanded on the eigenbasis $\{\phi_{1\alpha}\}_{\alpha \in \mathbb{N}^*}$ as:

$$u_1(\boldsymbol{x},t) = \sum_{\alpha=1}^{\infty} q_{1\alpha}(t) \phi_{1\alpha}(\boldsymbol{x}), \quad (\boldsymbol{x},t) \in \Omega_1 \times \mathbb{R},$$

■ Likewise, the solution $\psi_2 \in \mathcal{C}_2$ can be expanded on the eigenbasis $\{\phi_{2\beta}\}_{\beta \in \mathbb{N}^*}$ as:

$$\psi_2(\boldsymbol{x},t) = \sum_{\beta=1} q_{2\beta}(t)\phi_{2\beta}(\boldsymbol{x}), \quad (\boldsymbol{x},t) \in \Omega_2 \times \mathbb{R}.$$

Eigenmodes and modal expansion

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal

Ext^{al} FS

Notations Fluid equations Modal expansion Stationary pressure

Summary

■ The associated mechanical energies for both sub-systems are:

$$\mathcal{E}_{1}(t) = \frac{M_{1}}{2} \sum_{\alpha=1}^{+\infty} \left[(\dot{q}_{1\alpha}(t))^{2} + \omega_{1\alpha}^{2}(q_{1\alpha}(t))^{2} \right],$$

$$\mathcal{E}_2(t) = \frac{M_2}{2c_2^2} \sum_{\alpha=1}^{+\infty} \left[(\dot{q}_{2\alpha}(t))^2 + \omega_{2\alpha}^2 (q_{2\alpha}(t))^2 \right],$$

where $\omega_{r\alpha} = \sqrt{\lambda_{r\alpha}}$ is the "blocked" (natural) frequency of the α^{th} mode of the r^{th} sub-system–*i.e.* the α^{th} structural mode in vacuo for r = 1 or the α^{th} rigid-wall acoustic mode for r = 2.

Internal fluid-structure interaction Stationary forced responses

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notation Modal

Ext^{al} FSl

Notations Fluid equations Modal expansion Stationary pressure

■ The average mechanical energies of the forced responses under mean-square stationary random loads are:

$$\mathbb{E}\{\mathcal{E}_{1,t}\} = M_1 \int_{\mathbb{R}} \omega^2 \operatorname{Tr} \mathbf{S}_{U_1}(\omega) d\omega,$$

$$\mathbb{E}\{\mathcal{E}_{2,t}\} = \frac{M_2}{c_2^2} \int_{\mathbb{R}} S_{P_2}(\omega) d\omega,$$

where $\omega \mapsto S_{U_1}(\omega)$ is the spectral density matrix of the structure displacement, and $\omega \mapsto S_{P_2}(\omega)$ is the spectral density function of the fluid pressure.

Outline

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal expansion

$\operatorname{Ext}^{\operatorname{al}}$ FSI

Notations Fluid equations Modal expansion Stationary pressure

Summa:

- 1 General case
 - Notations and setting
 - Modal expansion
 - Energetic quantities
 - Response to stationary random loads
 - Basic SEA equations
- 2 Interaction of a structure with an acoustic cavity
 - Notations and setting
 - Modal expansion
- 3 Interaction of a structure with an external acoustic fluid
 - Notations and setting
 - Solving the fluid equations
 - Modal expansion
 - Stationary forced response to a random pressure field

External fluid-structure interaction Notations and setting

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal expansion

Ext^{al} FSI Notations

Notations
Fluid
equations
Modal
expansion
Stationar

o diffillar y

- The structure: we consider small perturbations $u_s(x,t)$ around a static equilibrium $x \in \Omega_s$ considered as the reference configuration.
- The structure occupying Ω_s is constituted by linear, memoryless viscoelastic materials:

$$\sigma_{s}(\boldsymbol{x},t) = \mathbf{C}_{s}^{e} \boldsymbol{\epsilon}_{s}(\boldsymbol{x},t) + \mathbf{C}_{s}^{v} \dot{\boldsymbol{\epsilon}}_{s}(\boldsymbol{x},t), \quad (\boldsymbol{x},t) \in \Omega_{s} \times \mathbb{R},$$

where $\epsilon_s = \nabla \otimes_s u_s$ is the small strain tensor, σ_s the Cauchy stress tensor, \mathbf{C}_s^e the elasticity tensor, \mathbf{C}_s^v the viscosity tensor, and ϱ_s the density.

External fluid-structure interaction Notations and setting

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notation Modal

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion

Summa

Ribliography

The balance of momentum, boundary conditions and initial conditions read:

$$\left\{ \begin{array}{ll} \mathbf{Div}\boldsymbol{\sigma}_{\mathrm{s}} + \varrho_{\mathrm{s}}\boldsymbol{g}_{\mathrm{s}} = \varrho_{\mathrm{s}}\frac{\partial^{2}\boldsymbol{u}_{\mathrm{s}}}{\partial t^{2}} & \mathrm{in}\;\Omega_{\mathrm{s}}\,, \\ \boldsymbol{u}_{\mathrm{s}} = \mathbf{0} & \mathrm{on}\;\Gamma_{\mathrm{u}}\,, \\ \boldsymbol{\sigma}_{\mathrm{s}}\boldsymbol{n} = \boldsymbol{\tau}_{\mathrm{s}} & \mathrm{on}\;\Gamma_{\boldsymbol{\sigma}}\,, \\ \boldsymbol{\sigma}_{\mathrm{s}}\boldsymbol{n} = -p_{\mathrm{f}}\boldsymbol{n} & \mathrm{on}\;\Gamma\,, \\ \boldsymbol{u}_{\mathrm{s}}(\cdot,0) = \boldsymbol{u}_{0} & \mathrm{in}\;\Omega_{\mathrm{s}}\,, \\ \dot{\boldsymbol{u}}_{\mathrm{s}}(\cdot,0) = \boldsymbol{v}_{0} & \mathrm{in}\;\Omega_{\mathrm{s}}\,, \end{array} \right.$$

where n is the unit outward normal to $\partial \Omega_s$.

External fluid-structure interaction Notations and setting

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI
Notations

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summar

■ The acoustic fluid: homogeneous, compressible, inviscid, gravity effects are neglected.

Irrotational motion $\nabla \times \mathbf{v}_{\rm f} = \mathbf{0}$, s.t. the fluid velocity $\mathbf{v}_{\rm f}$ reads $\mathbf{v}_{\rm f} = \nabla \psi_{\rm f}$ and the fluid pressure reads $p_{\rm f} = -\varrho_{\rm f} \partial_t \psi_{\rm f}$, where the velocity potential $\psi_{\rm f}$ satisfies:

$$\left\{ \begin{array}{ll} \frac{1}{c_{\rm f}^2} \frac{\partial^2 \psi_{\rm f}}{\partial t^2} - \Delta \psi_{\rm f} = g_{\rm IN} & \text{in } \Omega_{\rm f} \,, \\ \\ \frac{\partial \psi_{\rm f}}{\partial \boldsymbol{n}} = \dot{\boldsymbol{u}}_{\rm s} \cdot \boldsymbol{n} & \text{on } \Gamma \,, \\ \psi_{\rm f}(\cdot,0) = 0 & \text{in } \Omega_{\rm f} \,, \\ \dot{\psi}_{\rm f}(\cdot,0) = 0 & \text{in } \Omega_{\rm f} \,, \end{array} \right.$$

with $\varrho_{\rm f}$: fluid density, $c_{\rm f}$: sound speed.

External fluid-structure interaction Decomposition of the velocity potential

Coupled continuous systems

É. Savii

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Intal FSI
Notation
Modal

Ext^{al} FSI Notations

Fluid equations Modal expansion Stationary

Summar

 Ω_{f} Ψ_{rad}

■ The velocity potential reads:

$$\psi_{\rm f}(\boldsymbol{x},t) = \psi_{\rm IN}(\boldsymbol{x},t) + \psi_{\rm d0}(\boldsymbol{x},t) + \psi_{\rm rad}(\boldsymbol{x},t), \quad (\boldsymbol{x},t) \in \Omega_{\rm f} \times \mathbb{R},$$

where:

- ψ_{IN} : incident potential (data);
- ψ_{d0} : diffracted potential, the structure being motionless;
- $\psi_{\rm rad}$: radiated potential.

External fluid-structure interaction Decomposition of the velocity potential

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSi Notation Modal

Ext^{al} FS

Notations

equations
Modal
expansion
Stationary

pressure

Summar

■ The diffracted potential ψ_{d0} satisfies:

$$\begin{cases} \frac{1}{c_{\rm f}^2} \frac{\partial^2 \psi_{\rm d0}}{\partial t^2} - \Delta \psi_{\rm d0} = 0 & \text{in } \Omega_{\rm f} \,, \\ \frac{\partial \psi_{\rm d0}}{\partial \boldsymbol{n}} = - \frac{\partial \psi_{\rm IN}}{\partial \boldsymbol{n}} & \text{on } \Gamma \,. \end{cases}$$

External fluid-structure interaction Decomposition of the velocity potential

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads

Intal FS: Notation Modal

Ext^{al} FS

Ext^{ai} FS

Fluid equations Modal expansion

Stationary pressure

Summa

 Ω n ψ_{IN} ∞

■ The radiated potential $\psi_{\rm rad}$ satisfies:

$$\left\{ egin{array}{l} rac{1}{c_{
m f}^2}rac{\partial^2\psi_{
m rad}}{\partial t^2} - \Delta\psi_{
m rad} = 0 & {
m in}\;\Omega_{
m f}\,, \ rac{\partial\psi_{
m rad}}{\partialm{n}} = \dot{m{u}}_{
m s}\cdotm{n} & {
m on}\;\Gamma\,. \end{array}
ight.$$

Decomposition of the velocity potential

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notation Modal

Ext^{al} FSI Notations

Fluid equations Modal expansion Stationary pressure

Summai

■ The incident potential ψ_{IN} satisfies:

$$\frac{1}{c_{\rm f}^2} \frac{\partial^2 \psi_{\rm IN}}{\partial t^2} - \Delta \psi_{\rm IN} = g_{\rm IN}(\boldsymbol{x}, t), \quad (\boldsymbol{x}, t) \in \mathbb{R}^3 \times \mathbb{R},$$

for some sound source g_{IN} in the full physical space.

Solving the fluid equations Exterior Helmholtz problem

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI
Notations
Modal
expansion

Ext^{al} FSI
Notations
Fluid
equations
Modal
expansion
Stationary

Summary

■ The exterior Helmholtz problem:

$$\left\{ \begin{array}{ccc} \Delta \psi + k_{\rm f}^2 \psi = 0 & & \text{in } \Omega_{\rm f} \,, \\ \frac{\partial \psi}{\partial \boldsymbol{n}} = \boldsymbol{v} & & \text{on } \partial \Omega_{\rm f} \,, \\ |\psi| = O\left(\frac{1}{r}\right) \,, & \left|\frac{\partial \psi}{\partial \boldsymbol{r}} + \mathrm{i} k_{\rm f} \psi\right| = O\left(\frac{1}{r^2}\right) & & \text{as } r = \|\boldsymbol{x}\| \to +\infty \,, \end{array} \right.$$

where $k_{\rm f} = \frac{\omega}{c_{\rm f}}$, and $\partial \Omega_{\rm f} = \Gamma$ is actually the interface between the fluid and the structure.

■ Sommerfeld radiation conditions "at infinity": the radiated waves are almost plane and do not propagate toward Γ .

Solving the fluid equations Boundary impedance

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations Modal

Modal expansion Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summai

■ The exterior Helmholtz problem admits a unique solution
$$\forall k_f \in \mathbb{R}$$
, hence:

■ There exists a linear operator $\mathscr{B}_{\Gamma}(k_{\mathrm{f}}): \mathcal{C}'_{\Gamma} \to \mathcal{C}_{\Gamma}$ s.t.:

$$\psi|_{\Gamma}(\omega) = \mathscr{B}_{\Gamma}(k_{\rm f})v$$
, on Γ ;

■ There exists a linear operator $\mathscr{R}_{\boldsymbol{x}}(k_{\mathrm{f}}): \mathcal{C}'_{\Gamma} \to \mathbb{C}$ s.t.:

$$\psi(\boldsymbol{x},\omega) = \mathscr{R}_{\boldsymbol{x}}(k_{\mathrm{f}})v, \quad \boldsymbol{x} \in \Omega_{\mathrm{f}},$$

with \mathcal{C}_{Γ} : the set of admissible fields on Γ (\mathcal{C}'_{Γ} : its dual).

- $\mathbf{Z}_{\Gamma}(\omega) = -\mathrm{i}\omega \varrho_{\mathrm{f}} \mathscr{B}_{\Gamma}(k_{\mathrm{f}})$ is the acoustic impedance boundary operator.
- $\mathbf{Z}_{x}(\omega) = -\mathrm{i}\omega \varrho_{\mathrm{f}} \mathcal{R}_{x}(k_{\mathrm{f}})$ is the radiation impedance operator.

Solving the fluid equations Boundary impedance

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations ^{Modal}.

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summar

■ The boundary impedance $\mathbf{Z}_{\Gamma}(\omega)$ is symmetric and reads:

$$\mathrm{i}\omega oldsymbol{Z}_{\Gamma}(\omega) = -\omega^2 oldsymbol{M}_{\Gamma}\left(rac{\omega}{c_\mathrm{f}}
ight) + \mathrm{i}\omega oldsymbol{D}_{\Gamma}\left(rac{\omega}{c_\mathrm{f}}
ight)\,,$$

where:

- The reactive part $\omega \mapsto \operatorname{Tr} M_{\Gamma}\left(\frac{\omega}{c_f}\right)$ (left) is generally unsigned, though it is positive if $\mathbb{R}^3 \setminus \overline{\Omega}_f$ is convex;
- The resistive part $\omega \mapsto \operatorname{Tr} \mathbf{D}_{\Gamma}\left(\frac{\omega}{c_{\mathrm{f}}}\right)$ (right) is positive.

Solving the fluid equations

Consequences for the velocity potential

Coupled continuous systems

É. Savii

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summar

■ Diffracted velocity potential:

$$\begin{split} \widehat{\psi}_{d0}(\omega)|_{\Gamma} &= -\mathscr{B}_{\Gamma}(k_{\mathrm{f}}) \frac{\partial \widehat{\psi}_{\mathrm{IN}}}{\partial \boldsymbol{n}} \quad \boldsymbol{x} \in \Gamma \,, \\ \widehat{\psi}_{d0}(\boldsymbol{x}, \omega) &= -\mathscr{R}_{\boldsymbol{x}}(\omega) \frac{\partial \widehat{\psi}_{\mathrm{IN}}}{\partial \boldsymbol{n}} \quad \boldsymbol{x} \in \Omega_{\mathrm{f}} \,. \end{split}$$

Radiated velocity potential:

$$\begin{aligned} \widehat{\psi}_{\mathrm{rad}}(\omega)|_{\Gamma} &= \mathrm{i} \omega \mathscr{B}_{\Gamma}(k_{\mathrm{f}}) (\widehat{\boldsymbol{u}}_{\mathrm{s}}(\omega) \cdot \boldsymbol{n}) & \boldsymbol{x} \in \Gamma \,, \\ \widehat{\psi}_{\mathrm{rad}}(\boldsymbol{x}, \omega) &= \mathrm{i} \omega \mathscr{R}_{\boldsymbol{x}}(\omega) (\widehat{\boldsymbol{u}}_{\mathrm{s}}(\omega) \cdot \boldsymbol{n}) & \boldsymbol{x} \in \Omega_{\mathrm{f}} \,. \end{aligned}$$

■ The (linear) scattering operator $\mathcal{T}_{\Gamma}(\omega) \equiv \mathbf{I} - \mathscr{B}_{\Gamma}(k_{\rm f})\partial_{\mathbf{n}}$ s.t.:

$$(\hat{\psi}_{IN}(\omega) + \hat{\psi}_{d0}(\omega))|_{\Gamma} = \mathcal{T}_{\Gamma}(\omega)\hat{\psi}_{IN}(\omega)|_{\Gamma}.$$

Solving the structure problem Virtual Power Principle

Coupled continuous systems

Modal

■ The Virtual Power Principle (VPP) on the set of admissible displacement fields:

$$C_{s} = \{ \boldsymbol{v}; \, \boldsymbol{v} \in L^{2}(\Omega_{s}), \, \boldsymbol{\nabla} \boldsymbol{v} \in L^{2}(\Omega_{s}), \, \text{and} \, \boldsymbol{v}|_{\Gamma_{u}} = \boldsymbol{0} \} ,$$

reads for the structure, in the frequency domain: Find $\hat{\boldsymbol{u}}_{s} \in \mathcal{C}_{s}$ s.t.

$$-\omega^{2} \int_{\Omega_{s}} \varrho_{s} \widehat{\boldsymbol{u}}_{s} \cdot \overline{\boldsymbol{v}} \, d\boldsymbol{x} + i\omega \int_{\Omega_{s}} \mathbf{C}_{s}^{v} \boldsymbol{\epsilon}(\widehat{\boldsymbol{u}}_{s}) : \boldsymbol{\epsilon}(\overline{\boldsymbol{v}}) \, d\boldsymbol{x} + \int_{\Omega_{s}} \mathbf{C}_{s}^{e} \boldsymbol{\epsilon}(\widehat{\boldsymbol{u}}_{s}) : \boldsymbol{\epsilon}(\overline{\boldsymbol{v}}) \, d\boldsymbol{x}$$
$$-i\omega \int_{\Gamma} \varrho_{f} \widehat{\psi}_{f}(\overline{\boldsymbol{v}} \cdot \boldsymbol{n}) \, d\sigma = \int_{\Omega_{s}} \varrho_{s} \widehat{\boldsymbol{g}}_{s} \cdot \overline{\boldsymbol{v}} \, d\boldsymbol{x} + \int_{\Gamma_{\sigma}} \widehat{\boldsymbol{\tau}}_{s} \cdot \overline{\boldsymbol{v}} \, d\sigma , \quad \forall \boldsymbol{v} \in \mathcal{C}_{s} .$$

Solving the structure problem Virtual Power Principle

Coupled continuous systems

Modal

■ The structural mass, stiffness and damping bilinear forms:

$$egin{aligned} m_{\mathrm{s}}(oldsymbol{u},oldsymbol{v}) &= \langle oldsymbol{M}_{\mathrm{s}}oldsymbol{u},oldsymbol{v}
angle_{\mathcal{C}_{\mathrm{s}}',\mathcal{C}_{\mathrm{s}}} &= \int_{\Omega_{\mathrm{s}}} arrho_{\mathrm{s}}oldsymbol{u}\cdot\overline{oldsymbol{v}}\,\mathrm{d}oldsymbol{x}\,, \\ k_{\mathrm{s}}(oldsymbol{u},oldsymbol{v}) &= \langle oldsymbol{K}_{\mathrm{s}}oldsymbol{u},oldsymbol{v}
angle_{\mathcal{C}_{\mathrm{s}}',\mathcal{C}_{\mathrm{s}}} &= \int_{\Omega_{\mathrm{s}}} oldsymbol{\mathbf{C}}_{\mathrm{s}}^{\mathrm{e}}(oldsymbol{\epsilon}(oldsymbol{u}) : oldsymbol{\epsilon}(\overline{oldsymbol{v}})\,\mathrm{d}oldsymbol{x}\,, \\ d_{\mathrm{s}}(oldsymbol{u},oldsymbol{v}) &= \langle oldsymbol{D}_{\mathrm{s}}oldsymbol{u},oldsymbol{v}
angle_{\mathcal{C}_{\mathrm{s}}',\mathcal{C}_{\mathrm{s}}} &= \int_{\Omega_{\mathrm{s}}} oldsymbol{\mathbf{C}}_{\mathrm{s}}^{\mathrm{v}}(oldsymbol{\epsilon}(oldsymbol{u})) : oldsymbol{\epsilon}(\overline{oldsymbol{v}})\,\mathrm{d}oldsymbol{x}\,, \end{aligned}$$

The boundary coupling bilinear form:

$$b_{\Gamma}(\boldsymbol{u}, \boldsymbol{v}; \omega) = \langle \boldsymbol{Z}_{\Gamma}(\omega) \boldsymbol{u}, \boldsymbol{v} \rangle_{\mathcal{C}'_{s}, \mathcal{C}_{s}} = \int_{\Gamma} (\boldsymbol{Z}_{\Gamma}(\omega) \boldsymbol{u} \cdot \boldsymbol{n}, \overline{\boldsymbol{v}} \cdot \boldsymbol{n}) d\sigma.$$

Solving the structure problem Virtual Power Principle

Coupled continuous systems

expansion

■ By the Riesz theorem, $\exists! \hat{f}_s, \hat{f}_{IN} \in \mathcal{C}'_s$ s.t.

$$egin{aligned} f_{\mathrm{s}}(oldsymbol{v}) &= \left\langle \hat{oldsymbol{f}}_{\mathrm{s}}, oldsymbol{v}
ight
angle_{\mathcal{C}_{\mathrm{s}}', \mathcal{C}_{\mathrm{s}}} = \int_{\Omega_{\mathrm{s}}} arrho_{\mathrm{s}} \hat{oldsymbol{g}}_{\mathrm{s}} \cdot \overline{oldsymbol{v}} \, \mathrm{d}oldsymbol{x} + \int_{\Gamma_{\sigma}} \hat{oldsymbol{ au}}_{\mathrm{s}} \cdot \overline{oldsymbol{v}} \, \mathrm{d}\sigma \,, \ f_{\mathrm{IN}}(oldsymbol{v}) &= \left\langle \hat{oldsymbol{f}}_{\mathrm{IN}}, oldsymbol{v}
ight
angle_{\mathcal{C}_{\mathrm{s}}', \mathcal{C}_{\mathrm{s}}} = - \int_{\Gamma} \mathcal{T}_{\Gamma}(\omega) \widehat{p}_{\mathrm{IN}}(\overline{oldsymbol{v}} \cdot oldsymbol{n}) \, \mathrm{d}\sigma \,, \quad orall oldsymbol{v} \in \mathcal{C}_{\mathrm{s}} \,. \end{aligned}$$

■ Then the VPP in the frequency domain reads:

$$\begin{split} \left[-\omega^2 \left(\boldsymbol{M}_{\mathrm{s}} + \boldsymbol{M}_{\Gamma} \left(\frac{\omega}{c_{\mathrm{f}}} \right) \right) + \mathrm{i}\omega \left(\boldsymbol{D}_{\mathrm{s}} + \boldsymbol{D}_{\Gamma} \left(\frac{\omega}{c_{\mathrm{f}}} \right) \right) + \boldsymbol{K}_{\mathrm{s}} \right] \hat{\boldsymbol{u}}_{\mathrm{s}}(\omega) \\ &= \hat{\boldsymbol{f}}_{\mathrm{s}}(\omega) + \hat{\boldsymbol{f}}_{\mathrm{e}}(\omega) + \hat{\boldsymbol{f}}_{\mathrm{IN}}(\omega) \,, \end{split}$$

"in the sense of distributions".

 $\hat{\boldsymbol{f}}_{c}(\omega) = \boldsymbol{D}_{s}\boldsymbol{u}_{0} + \boldsymbol{M}_{s}(\mathrm{i}\omega\boldsymbol{u}_{0} + \boldsymbol{v}_{0})$ is an equivalent load accounting for the initial conditions.

Eigenmodes and modal expansion

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal

Ext^{al} FSI

Fluid equations
Modal expansion

Summa

Bibliography

■ Spectral problem: Find $\lambda \in \mathbb{R}$ and $\phi \in C_s$ s.t.

$$K_{\rm s}\phi = \lambda M_{\rm s}\phi$$
.

■ It admits a countable set of solutions $(\lambda_{s1}, \phi_{s1})$, $(\lambda_{s2}, \phi_{s2})$... s.t. $0 < \lambda_{s1} \le \lambda_{s2} \le \ldots$ and $\{\phi_{s\alpha}\}_{\alpha \in \mathbb{N}^*}$ is an Hilbertian basis of the space $H_s = L^2_{\mu}(\Omega_s)$ of square integrable functions with respect to the unit mass measure $\mu_s(\mathrm{d}\boldsymbol{x}) = \mathbbm{1}_{\Omega_s} \frac{\varrho_s \mathrm{d}\boldsymbol{x}}{M_s}$, with $M_s = \int_{\Omega_s} \varrho_s \mathrm{d}\boldsymbol{x}$:

$$m_{\rm s}(\phi_{\rm s\alpha}, \phi_{\rm s\beta}) = M_{\rm s}\delta_{\alpha\beta},$$

$$k_{\rm s}(\phi_{\rm s\alpha}, \phi_{\rm s\beta}) = M_{\rm s}\omega_{\rm s\alpha}^2\delta_{\alpha\beta},$$

where $\omega_{s\alpha}^2 = \lambda_{s\alpha}$.

• $\{\phi_{s\alpha}\}_{\alpha\in\mathbb{N}^*}$ are the structural modes in vacuo.

Eigenmodes and modal expansion

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI
Notations
Modal
expansion

Ext^{al} FSI
Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summar

■ Consequently, the solution $u_s \in C_s$ can be expanded on the eigenbasis $\{\phi_{s\alpha}\}_{\alpha\in\mathbb{N}^*}$ as:

$$oldsymbol{u}_{ ext{s}}(oldsymbol{x},t) = \sum_{lpha=1}^{\infty} q_{lpha}(t) oldsymbol{\phi}_{ ext{s}lpha}(oldsymbol{x}) \,.$$

■ Introducing $\mu_s(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega_s} \boldsymbol{u} \cdot \boldsymbol{v} \mu_s(\mathrm{d}\boldsymbol{x})$ (the scalar product in H_s), the generalized coordinates $\{q_\alpha\}_{\alpha \in \mathbb{N}^*}$ are:

$$q_{\alpha} = \mu_{\rm s}(\boldsymbol{u}_{\rm s}, \boldsymbol{\phi}_{\rm s\alpha})$$
.

• The μ -norm $\|\boldsymbol{u}_{\mathrm{s}}\|_{\mu} = \sqrt{\mu_{\mathrm{s}}(\boldsymbol{u}_{\mathrm{s}}, \boldsymbol{u}_{\mathrm{s}})}$ is obtained as:

$$\|\boldsymbol{u}_{\mathrm{s}}(\cdot,t)\|_{\mu} = \left(\sum_{\alpha=1}^{+\infty} (q_{\alpha}(t))^{2}\right)^{\frac{1}{2}} < +\infty.$$

Eigenmodes and modal expansion

Coupled continuous systems

Modal expansion

Hypothesis (Basile): the eigenmodes $\{\phi_{s\alpha}\}_{\alpha\in\mathbb{N}^*}$ diagonalize the damping operator as well:

$$d_{\rm s}(\phi_{\rm s\alpha},\phi_{\rm s\beta}) = M_{\rm s}\eta_{\rm s\alpha}\omega_{\rm s\alpha}\delta_{\alpha\beta},$$

where:

- $\omega_{s\alpha}$: the (angular) eigenfrequency of the α^{th} mode in vacuo.
- $\xi_{s\alpha}$: the modal critical damping rate of the α^{th} mode in vacuo,
- $\eta_{s\alpha} = 2\xi_{s\alpha}$: the modal loss factor of the α^{th} mode in vacuo.

Eigenmodes and modal expansion

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notations Modal

Ext^{al} FSI

Fluid equations Modal

expansion Stationary pressure

• Owing to the Basile hypothesis, the generalized coordinates $\{q_{\alpha}\}_{{\alpha}\in\mathbb{N}^*}$ satisfy in the frequency domain:

$$M_{s}(-\omega^{2} + i\eta_{s\alpha}\omega_{s\alpha}\omega + \omega_{s\alpha}^{2})\widehat{q}_{\alpha}(\omega) = \widehat{f}_{\alpha}(\omega)$$
$$-\sum_{\beta=1}^{+\infty} (-\omega^{2}M_{\alpha\beta}(\omega) + i\omega D_{\alpha\beta}(\omega))\widehat{q}_{\beta}(\omega)$$

where
$$\hat{f}_{\alpha} = \langle \hat{\boldsymbol{f}}_{s} + \hat{\boldsymbol{f}}_{e} + \hat{\boldsymbol{f}}_{IN}, \phi_{s\alpha} \rangle_{\mathcal{C}'_{s},\mathcal{C}_{s}}$$
, and:

$$M_{\alpha\beta}(\omega) = \left\langle \boldsymbol{M}_{\Gamma} \left(\frac{\omega}{c_{f}} \right) \phi_{s\alpha}, \phi_{s\beta} \right\rangle_{\mathcal{C}'_{s},\mathcal{C}_{s}},$$

$$D_{\alpha\beta}(\omega) = \left\langle \boldsymbol{D}_{\Gamma} \left(\frac{\omega}{c_{f}} \right) \phi_{s\alpha}, \phi_{s\beta} \right\rangle_{\mathcal{C}'_{c},\mathcal{C}_{s}}.$$

■ The generalized coordinates get coupled by the boundary impedance operator.

External fluid-structure interaction Wet eigenfrequencies

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Notation:

Modal expansion

Notations Fluid equations Modal

Modal expansion Stationar pressure

Summa

Bibliography

■ The frequency response function of the structure coupled to the fluid reads:

$$\hat{\mathbf{h}}_{\mathrm{tot}}(\omega) = \left[-\omega^2 \left(\boldsymbol{M}_{\mathrm{s}} + \boldsymbol{M}_{\Gamma} \left(\frac{\omega}{c_{\mathrm{f}}} \right) \right) + \mathrm{i}\omega \left(\boldsymbol{D}_{\mathrm{s}} + \boldsymbol{D}_{\Gamma} \left(\frac{\omega}{c_{\mathrm{f}}} \right) \right) + \boldsymbol{K}_{\mathrm{s}} \right]^{-1} \,.$$

■ The "wet" eigenfrequencies of the structure coupled to the fluid are the solutions of:

$$\det\left[-\omega^2\left(\boldsymbol{M}_{\mathrm{s}}+\boldsymbol{M}_{\Gamma}\left(\frac{\omega}{c_{\mathrm{f}}}\right)\right)+\boldsymbol{K}_{\mathrm{s}}\right]=0.$$

■ This eigenvalue problem is often approached by:

$$\left[1 + \frac{M_{\alpha\alpha}(\omega)}{M_{\rm s}}\right]\omega^2 = \omega_{\rm s\alpha}^2\,,$$

neglecting the off-diagonal terms.

Forced response of the structure

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal

Ext^{al} FS

Fluid equations Modal expansion Stationary

pressure

Summar

■ We consider
$$f_e \equiv 0$$
 and $f_s \equiv 0$, focusing on the structure forced response to a random incident pressure field.

- **Data**: $(P_t, t \in \mathbb{R})$ is a second order, centered stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , with values in $L^2(\Gamma)$, and mean-square (m.s.) stationary.
- Hypothesis: It is characterized by its cross spectral density function $\omega \mapsto S_P(\omega; \boldsymbol{x}, \boldsymbol{y}) : \mathbb{R} \to \mathbb{R}_+, \boldsymbol{x}, \boldsymbol{y} \in \Gamma$, which is positive, even, integrable on \mathbb{R}_{ω} , and s.t.:

$$S_P(\omega; \boldsymbol{x}, \boldsymbol{y}) = S_P(\omega; \boldsymbol{y}, \boldsymbol{x})$$

$$S_P(\omega; \boldsymbol{x}, \boldsymbol{y}) = S_{\text{IN}}(\boldsymbol{x}, \boldsymbol{y}) \otimes \mathbb{1}_{I_0 \cup \underline{I}_0}(\omega),$$

where:

$$I_0 \cup \underline{I}_0 = \left[\omega_0 - \frac{\Delta\omega}{2}, \omega_0 + \frac{\Delta\omega}{2}\right] \bigcup \left[-\omega_0 - \frac{\Delta\omega}{2}, -\omega_0 + \frac{\Delta\omega}{2}\right].$$

Forced response of the structure

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basic

Int^{al} FSI Notations Modal

Ext^{al} FSI

Fluid equations Modal expansion Stationary pressure

Summar

■ The forced response of the structure $t \mapsto u_s^f(\cdot, t)$ is modelized by a stochastic process $(U_t^f, t \in \mathbb{R})$ the properties of which are derived from filtering and mean-square derivation (see Lecture #1 part A).

Proposition

■ $(U_t^f, t \in \mathbb{R})$ is a second order, centered stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , with values in C_s , and mean-square stationary s.t.:

$$S_{U}(\omega; x, y) = \hat{\mathbb{h}}_{tot}(\omega) \mathcal{T}_{x}(\omega) S_{P}(\omega; x, y) \mathcal{T}_{y}(\omega)^{*} \hat{\mathbb{h}}_{tot}(\omega)^{*}.$$

The same holds for its mean-square derivatives $(\dot{\boldsymbol{U}}_t^f,\,t\in\mathbb{R})$ and $(\ddot{\boldsymbol{U}}_t^f,\,t\in\mathbb{R})$, with values in $H_{\rm s}$ and $\mathcal{C}_{\rm s}'$ respectively, s.t. $\boldsymbol{S}_{\dot{\boldsymbol{U}}}(\omega)=\omega^2\boldsymbol{S}_{\boldsymbol{U}}(\omega),\,S_{\ddot{\boldsymbol{U}}}(\omega)=\omega^4\boldsymbol{S}_{\boldsymbol{U}}(\omega).$

Forced response of the structure

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summary

Likewise, the modal forced responses $t \mapsto q_{\alpha}^{f}(t)$ for $\alpha \in \mathbb{N}^{*}$ are modelized by stochastic processes $(Q_{\alpha,t}^{f}, t \in \mathbb{R})$ the properties of which are derived from filtering and mean-square derivation (see Lecture #1 part A).

Proposition

- $(Q_{\alpha,t}^f, t \in \mathbb{R})$ is a \mathbb{R} -valued second order, centered stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , and mean-square stationary.
- The same holds for its mean-square derivatives $(\dot{Q}_{\alpha,t}^f, t \in \mathbb{R})$ and $(\ddot{Q}_{\alpha,t}^f, t \in \mathbb{R})$.

Forced response of the structure

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI

Notations

Modal

expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary

Summar

■ The finite-dimensional $\mathbb{C}^{N\times N}$ frequency response function $\widehat{\mathbb{h}}_{tot}^{N}(\omega)$ of the structure coupled to the fluid:

$$[\hat{\mathbf{h}}_{\mathrm{tot}}^{N}(\omega)]^{-1} = [\hat{\mathbf{h}}_{\mathrm{s}}^{N}(\omega)]^{-1} + [\hat{\mathbf{h}}_{\Gamma}^{N}(\omega)]^{-1} \,,$$

where for $0 < \alpha, \beta \leq N$:

$$[\hat{\mathbf{h}}_{\mathbf{s}}^{N}(\omega)]_{\alpha\beta}^{-1} = M_{\mathbf{s}}(\omega_{\mathbf{s}\alpha}^{2} - \omega^{2} + i\eta_{\mathbf{s}\alpha}\omega_{\mathbf{s}\alpha}\omega)\delta_{\alpha\beta},$$

$$[\hat{\mathbf{h}}_{\mathbf{r}}^{N}(\omega)]_{\alpha\beta}^{-1} = -\omega^{2}M_{\alpha\beta}(\omega) + i\omega D_{\alpha\beta}(\omega).$$

■ The $\mathbb{C}^{N\times N}$ power spectral density matrix $\boldsymbol{S}_{\boldsymbol{Q}}$ of the \mathbb{R}^{N} -valued stochastic process $\boldsymbol{Q}_{t}^{f} = (Q_{1,t}^{f}, \dots Q_{N,t}^{f})^{\mathsf{T}}$ thus reads:

$$S_{\mathbf{Q}}(\omega) = \widehat{\mathbb{h}}_{\mathrm{tot}}^{N}(\omega) S_{\mathrm{IN}}(\omega) \widehat{\mathbb{h}}_{\mathrm{tot}}^{N}(\omega)^{*} \otimes \mathbb{1}_{I_{0} \cup \underline{I}_{0}}(\omega),$$

with the $\mathbb{R}^{N \times N}$ symmetric real matrix S_{IN} :

$$[S_{ ext{IN}}(\omega)]_{lphaeta} = \int_{\Gamma} \int_{\Gamma} \left(S_{ ext{IN}}(oldsymbol{x},oldsymbol{y}) \mathcal{T}_{oldsymbol{y}}(\omega) oldsymbol{\phi}_{eta}(oldsymbol{y}), \mathcal{T}_{oldsymbol{x}}(\omega) oldsymbol{\phi}_{lpha}(oldsymbol{x})
ight) \, \mathrm{d}oldsymbol{x} \mathrm{d}oldsymbol{y} \, .$$

Energetics of the stationary forced response

Coupled continuous systems

É. Savin

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notations Modal

Ext^{al} FSI

Notations Fluid equations Modal expansion Stationary

·

Summa:

bliography

■ The average mechanical energy of the structure:

$$\mathbb{E}\{\mathcal{E}_t\} = \frac{1}{2} \int_{I_0 \cup \underline{I}_0} \omega^2 \operatorname{Tr} \left[\left(\boldsymbol{M}_s + \boldsymbol{M}_{\Gamma} \left(\frac{\omega}{c_f} \right) \right) \boldsymbol{S}_{\boldsymbol{Q}}(\omega) \right] d\omega$$

$$+ \frac{1}{2} \int_{I_0 \cup \underline{I}_0} \operatorname{Tr} \left[\boldsymbol{K}_s \boldsymbol{S}_{\boldsymbol{Q}}(\omega) \right] d\omega$$

$$\stackrel{\text{def}}{=} |\Omega_s| \int_{I_0 \cup I_s} \omega^2 (\varrho_s + \varrho_{\text{rad}}(\omega_0)) \operatorname{Tr} \boldsymbol{S}_{\boldsymbol{Q}}(\omega) d\omega ,$$

where $\varrho_{\rm rad}(\omega_0)$ is an equivalent added density.

■ The average radiated power:

$$\mathbb{E}\{\Pi_{\mathrm{rad},t}\} = \int_{I_0 \cup \underline{I}_0} \omega^2 \operatorname{Tr} \left[\boldsymbol{D}_{\Gamma} \left(\frac{\omega}{c_{\mathrm{f}}} \right) \boldsymbol{S}_{\boldsymbol{Q}}(\omega) \right] d\omega$$

$$\stackrel{\text{def}}{=} \omega_0 \eta_{\mathrm{rad}}(\omega_0) \mathbb{E}\{\mathcal{E}_t\},$$

where $\eta_{\rm rad}(\omega_0)$ is an equivalent added loss factor.

Energetics of the stationary forced response

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI
Notations
Modal
expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary

pressure

Summary

■ The average dissipated power thus reads:

$$\mathbb{E}\{\Pi_{d,t}\} = \int_{I_0 \cup \underline{I}_0} \omega^2 \operatorname{Tr} \left[\boldsymbol{D}_s \boldsymbol{S}_{\boldsymbol{Q}}(\omega) \right] d\omega$$
$$= \frac{M_s}{M_s + \varrho_{\mathrm{rad}}(\omega_0) |\Omega_s|} \omega_0 \eta_s(\omega_0) \mathbb{E}\{\mathcal{E}_t\},$$

where $\eta_s(\omega_0)$ is the average structural loss factor in I_0 .

■ The average input power:

$$\mathbb{E}\{\Pi_{\mathrm{IN},t}\} = \Re e \int_{I_0 \cup I_0} i\omega \operatorname{Tr}\left[\widehat{\mathbf{h}}_{\mathrm{tot}}^N(\omega) \boldsymbol{S}_{\mathrm{IN}}(\omega)\right] d\omega.$$

Power balance for the stationary forced response

Coupled continuous systems

Stationary

The instantaneous power balance reads:

$$\dot{\mathcal{E}}_t = \Pi_{\text{IN},t} - \Pi_{\text{d},t} - \Pi_{\text{rad},t} \,,$$

as an equality of second-order random variables.

• Considering the mathematical expectation with $\mathbb{E}\{\mathcal{E}_t\} = \text{Constant and } \mathbb{E}\{\dot{\mathcal{E}}_t\} = 0$:

$$\mathbb{E}\{\Pi_{\mathrm{IN},t}\} = \mathbb{E}\{\Pi_{\mathrm{d},t}\} + \mathbb{E}\{\Pi_{\mathrm{rad},t}\}$$
$$= \omega_0 \eta_{\mathrm{tot}}(\omega_0) \mathbb{E}\{\mathcal{E}_t\},$$

where:

$$\eta_{\rm tot}(\omega_0) = \eta_{\rm rad}(\omega_0) + \eta_{\rm s}(\omega_0) \sqrt{\frac{M_{\rm s}}{M_{\rm s} + \varrho_{\rm rad}(\omega_0)|\Omega_{\rm s}|}}$$

if ω_0 is somehow close to a "wet" eigenfrequency.

Summary

Coupled continuous systems

É. Savii

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^a FSI Notation Modal expansion

Ext^{al} FSI

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

Summary

- The power flow between two coupled sub-systems is roughly proportional to the difference of their mechanical energies, provided that:
 - 1 The sub-systems are weakly dissipative;
 - 2 Their coupling is conservative;
 - They are loaded by uncorrelated "rain-on-the-roof" noises, the bandwidths of which are large with respect to the equivalent bandwidths of the sub-systems modes.
- This framework is applicable to the interaction of a structure with a cavity filled with an acoustic fluid.
- The average radiated power of a structure coupled to an acoustic fluid is proportional to its mechanical energy.

 This effect is characterized by an equivalent added loss factor in the energy balance.
- **Outlook**: formulation for *n* coupled sub-systems.

Bibliography

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notation Modal expansion

Ext^{al} FS

Notations
Fluid
equations
Modal
expansion
Stationary
pressure

- D. Clouteau, R. Cottereau, É. Savin: Structural Dynamics and Acoustics. École Centrale Paris, Châtenay-Malabry (2008).
- R.R. Craig, M.C.C. Bampton, "Coupling of substructures for dynamic analyses", AIAA J. 6(7), 1313-1319 (1968).
- H.G. Davies, "Exact solutions for the response of some coupled multimodal systems", J. Acoust. Soc. Am. **51**(1), 387-392 (1972).
- G.M.L. Gladwell, "Branch mode analysis of vibrating systems", J. Sound Vib. 1(1), 41-59 (1964).
- R.H. McNeal, "A hybrid method of component mode synthesis", Comput. Struct. 1(4), 581-601 (1971).
- G. Maidanik, "Response of ribbed panels to reverberant acoustic fields", J. Acoust. Soc. Am. **34**(6), 809-826 (1962).
- G. Maidanik, "Response of coupled dynamic systems", *J. Sound Vib.* **46**(4), 561-583 (1976).

Bibliography

Coupled continuous systems

É. Savir

Overview
Notations
Modal
expansion
Energetic
quantities
Stationary
loads
SEA basics

Int^{al} FSI Notation Modal

Ext^{al} FS

Fluid equations
Modal expansion
Stationar

Summary

- G. Maidanik, "Variations in the boundary conditions of coupled dynamic systems", J. Sound Vib. 46(4), 585-589 (1976).
- H. Morand, R. Ohayon, "Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results", *Int. J. Num. Methods Engng.* **14**(5), 741-755 (1979).
- R. Ohayon, C. Soize: Structural Acoustics and Vibration. Academic Press, London (1998).