ITD12011 Fysikk og kjemi

Løsningsforslag til Frivillig øving 2

Oppgave 1

Kretsen under har følgende komponentverdier:
$$U_1 = 5.0 \text{ V}$$
 $R_1 = R_2 = 2.0 \text{ K}\Omega$ $R_3 = R_4 = 5.6 \text{ K}\Omega$.

Hva blir spenningen U_2 ?

Beregner parallellkoblingen av R₂, R₃ og R₄.

Begynner først med (f.eks) parallellkoblingen av R₃ og R₄, som vi kan kalle R_{t1}:

$$R_{t1} = \frac{R_3 \cdot R_4}{R_3 + R_4} = \frac{5.6 \cdot 10^3 \cdot 5.6 \cdot 10^3}{5.6 \cdot 10^3 + 5.6 \cdot 10^3} = \frac{31.36 \cdot 10^6}{11.2 \cdot 10^3} = 2.8 \cdot 10^3 = 2.8 [K\Omega]$$

Deretter beregner vi parallellkoblingen av R_{t1} og R₂, som vi kan kalle R_{t2}:

$$R_{t2} = \frac{R_2 \cdot R_{t1}}{R_2 + R_{t1}} = \frac{2,0 \cdot 10^3 \cdot 2,8 \cdot 10^3}{2,0 \cdot 10^3 + 2,8 \cdot 10^3} = \frac{5,6 \cdot 10^6}{4,8 \cdot 10^3} = 1,17 \cdot 10^3 = 1,17 [K\Omega]$$

Vi har nå denne kretsen som vi bruker for å regne ut spenningen U₂:

$$U_1$$
 R_{12} U_2

$$U_2 = \frac{U_1}{R_1 + R_{12}} \cdot R_{12} = \frac{5 \cdot 1,17}{2,0 + 1,17} V = \frac{5,85}{3,17} V = 1,85V$$

Oppgave 2

Kretsen under har følgende komponentverdier:

$$U_1 = 5V$$
 $R_1 = 2,0K\Omega$ $R_2 = 1,2K\Omega$ $R_3 = 2,7K\Omega$ $R_4 = 5,6K\Omega$ $R_5 = 1,0K\Omega$ $R_6 = 47K\Omega$.

$$R_1$$
 R_2 R_3 R_5 R_6 R_6 R_6

a. Hva blir strømmen gjennom R_1 ?

Beregner først parallellkoblingen av R₄ og R₅, som vi kaller R₄₅:

$$R_{45} = \frac{R_4 \cdot R_5}{R_4 + R_5} = \frac{5.6 \cdot 1.0}{5.6 + 1.0} [K\Omega] = \frac{5.6}{6.6} [K\Omega] = 0.85 [K\Omega]$$

Regner så ut summen av R₄₅ og R₆ (de er jo koblet i serie), som vi kaller R₄₅₆:

$$R_{456} = R_{45} + R_6 = (0.85 + 47) [K\Omega] = 47.85 [K\Omega]$$

Dette gir oss denne figuren:

Regner ut parallellkoblingen av R_2 , R_3 og R_{456} . Begynner (f.eks) med å regne ut parallellkoblingen av R_2 og R_3 , som vi kaller R_{23} :

$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{1,2 \cdot 2,7}{1,2 + 2,7} [K\Omega] = 0.83 [K\Omega]$$

Deretter regner vi ut parallellkoblingen av R23 og R456, som vi kaller R_t:

$$R_{t} = \frac{R_{23} \cdot R_{456}}{R_{23} + R_{456}} = \frac{0.83 \cdot 47.85}{0.83 + 47.85} [K\Omega] = \frac{39.71}{48.68} [K\Omega] = 0.82 [K\Omega]$$

Dette gir oss denne figuren:

$$U_{1}$$
 R_{t} U_{R2}

Som vi bruker for å regne ut strømmen igjennom R₁, som vi kan kalle I:

$$I = U_1/(R_1+R_t) = 5/(2,0+0,82) = 5/2,82 = 1,77$$
 [mA]

b. Hva blir strømmen gjennom R_2 ?

Må først finne spenningen over R2. Det er I · Rt:

$$U_{R2} = 1,77 \cdot 0,82 = 1,45 \text{ [V]}$$

Strømmen igjennom R₂ er lik spenningen over R₂; U_{R2}, delt på motstanden R₂:

$$I_{R2}=U_{R2}/R_2=1,45[V]/1,2[K\Omega]=1,2 [mA]$$

c. Hva blir strømmen gjennom R₃?

Må først finne spenningen over R₃. Det er I · R_t:

$$U_{R3} = 1,77 \cdot 0,82 = 1,45 \text{ [V]}$$

Strømmen igjennom R₃ er lik spenningen over R₃; U_{R3}, delt på motstanden R₃:

$$I_{R3} = U_{R3}/R_3 = 1,45[V]/2,7[K\Omega] = 0,54 [mA]$$

d. Hva blir spenningen U_2 ?

Må først regne ut strømmen gjennom R_6 . Det er den samme som strømmen gjennom R_{456} . Den strømmen er:

$$I_{456} = U_{R2}/R_{456} = 1,45/47,85 = 0,03 \text{ [mA]}$$

$$U_2 = I_{456} \cdot R_6 = 0.03 \cdot 47 = 1.42 [V]$$