Deep Learning for Microscopy Image Analysis in Materials Science: Advancing Research and Education Workshop

Data Augmentation Techniques

Dr. Shradha Agarwal, Tommy Wong

Data from Wang et al. (2019) https://doiorg.utk.idm.oclc.org/10.1016/j.mtla.2018.100183

Rationale: more varied data → less overfitting

Electron microscopy experiments yield (relatively) small datasets : requires augmentation

Use a sliding window cropper to enhance the dataset

Rotate, flip, resize the image to increase variability Original

Flipped/Mirrored

Rotated 180 degrees

Zoomed in

Adding noise to simulate noises during imaging

Original

Gaussian

Background noise

Poisson

Contrast

Jitter

Blur

Salt & pepper

Different ways of implementing augmentation

Roboflow.com web GUI

Augmentation Options Augmentations Per Image The number of derived images you want to generate for each source image. Image Level Augmentations Flip Add horizontal or vertical flips to help your model be insensitive to subject orientation. Horizontal Vertical O-Degree Rotations Add 90-degree rotations to help your model be insensitive to camera orientation. Clockwise Counter Clockwise Counter Clockwise

Add variability to positioning and size to help your model be more resilient to subject translations and camera position

Add variability to rotations to help your model be more resilient to camera roll

AtomAl Python functions github.com/pycroscopy/atomai

AtomAI

Deep Learning for Microscopy

Upside Down

Augmentation demonstration

https://github.com/shradhautk/AI-MICROSCOPY-WORKSHOP/blob/main/Day2_Education_Day/Data_Augmentation/DL_for_Microscopy_Data_Augmentation.ipynb