Я сразу скачала файлы версии hg19, поэтому часть с изменением версии и сравнением гистограмм пропустим.

Дальше построила гистограммы распределения пиков:

Получаем, что пиков в файлах 33755 и 27346, соответственно. Чтобы убрать слишком длинные, я установила пороги в 5000кб и 3000кб. После фильтрации получаем гистограммы:

Осталось 33748 и 27336 пиков, то есть 7 и 10 пиков отфильтровались.

Дальше строим график того, где располагаются пики:

Теперь объединяем два отфильтрованных файла командой: cat *.filtered.bed | sort -k1,1 -k2,2n | bedtools merge > H3K9me3_SK-N-SH.merge.hg19.bed

Загружаем все на гитхаб и оттуда в геномный браузер:

Видим, что есть участки, где данные пересекаются, например, на 19 хромосоме:

Запишем место: chr19:37,973,598-37,976,489

Далее строим гистограмму длин для вторичной структуры ДНК. Получилось 19394 пика.

Строим график того, куда попадает вторичная структура ДНК:

(Очень странно, что бОльшая часть попала в промотеры, а на предыдущих графиках было <=2%...)

Пересекаем merge c DeepZ с помощью команды: bedtools intersect -a DeepZ.bed -b H3K9me3_SK-N-SH.merge.hg19.bed > H3K9me3_SK-N-SH.intersect_with_DeepZ.bed

У меня как-то особенно неудачно получилось....

```
asbogdanova_2@laboratory01:~/github/hse21_H3K9me3_G4_human/data$ wc -1 * 19394 DeepZ.bed
33755 H3K9me3_SK-N-SH.ENCFF501EUA.hg19.bed
33748 H3K9me3_SK-N-SH.ENCFF501EUA.hg19.filtered.bed
27346 H3K9me3_SK-N-SH.ENCFF709THW.hg19.bed
27336 H3K9me3_SK-N-SH.ENCFF709THW.hg19.filtered.bed
301 H3K9me3_SK-N-SH.intersect_with_DeepZ.bed
53766 H3K9me3_SK-N-SH.merge.hg19.bed
```

Ну, ладно, всего 301 пик.

H3K9me3_SK-N-SH.intersect_with_DeepZ

Number of peaks = 301

Добавляем данные в геномный браузер:

Вот на 1 хромосоме осталось пересечение с DeepZ

chr1:18,081,703-18,081,908

chr1:18,085,402-18,086,121

Ссылка на сессию в геномном браузере:

http://genome.ucsc.edu/s/bbogdanovaalina/hse21 H3K9me3 G4 hum

Проассоциируем пики с генами, получилось всего 24 уникальных гена и 36 пиков, которые с ними ассоциируются.

В целом, по такому маленькому кол-ву генов вряд ли можно получить статистически значимый результат...

	Homo sapiens (REF)		Client Te	ext Box Input (F	liera	rchy) NEW!	②)
30 biological process complete	#	# <u>ex</u>	spected F	old Enrichment	+/-	raw P value	▲ FDR
atty_acid_elongation, monounsaturated fatty_acid	Z	2	.01	> 100	+	2.89E-05	1.14E-01
atty_acid_elongation_polyunsaturated_fatty_acid	Z	2	.01	> 100	+	2.89E-05	1.52E-01
atty acid elongation	13	2	.01	> 100	+	8.39E-05	1.89E-01
phingolipid biosynthetic process	99	3	.09	32.85	+	1.08E-04	2.13E-01
ery long-chain fatty acid biosynthetic process	13	2	.01	> 100	+	8.39E-05	2.21E-01
atty acid metabolic process	330	4	.30	13.14	+	2.16E-04	2.28E-01
atty acid elongation, saturated fatty acid	Z	2	.01	> 100	+	2.89E-05	2.28E-01
ong-chain fatty acid metabolic process	117	3	.11	27.79	+	1.74E-04	2.29E-01
atty acid biosynthetic process	124	3	.11	26.22	+	2.06E-04	2.32E-01
Insaturated fatty acid metabolic process	<u>107</u>	3	.10	30.39	+	1.35E-04	2.36E-01
ong-chain fatty-acyl-CoA biosynthetic process	<u>19</u>	2	.02	> 100	+	1.67E-04	2.40E-01
noleic acid metabolic process	<u>21</u>	2	.02	> 100	+	2.01E-04	2.45E-01
plefinic compound metabolic process	<u>113</u>	3	.10	28.78	+	1.58E-04	2.49E-01
nembrane lipid biosynthetic process	138	3	.13	23.56	+	2.80E-04	2.60E-01
Ilpha-linolenic acid metabolic process	<u>13</u>	2	.01	> 100	+	8.39E-05	2.65E-01
ong-chain fatty-acyl-CoA metabolic process	<u>25</u>	2	.02	86.72	+	2.79E-04	2.75E-01
atty_acyl-CoA biosynthetic process	<u>31</u>	2	.03	69.93	+	4.18E-04	3.67E-01
phingolipid metabolic process	<u>164</u>	3	.15	19.83	+	4.60E-04	3.83E-01

Судя по количеству генов, самая значимая категория - процесс расщепления и синтеза жирных кислот.