Inteligență computațională - laborator

Regula delta

Regula delta este o metodă de instruire supervizată care se aplică unei rețele monostrat de perceptroni de tip continuu. În figura de mai jos avem o retea care folosește la intrare pattern-uri cu două componente. Întotdeauna se adaugă o intrare suplimentară cu valoarea constantă -1. Între intrări și ieșiri se realizează toate legăturile posibile. În exemplul nostru se obţin 3x3 conexiuni notate prin w_{ii} , unde j este indicele perceptronului, iar i este indicele intrării. De exemplu, conexiunea care leagă intrarea 1 de perceptronul 2 este w_{21} , conexiunea care leagă intrarea suplimentară cu perceptronul 3 este w₃₃.

Funcţia de activare a perceptronilor este continuă. Vom folosi varianta continuă bipolară care are formula $f(net) = \frac{2}{1+e^{-net}} - 1$.

Algoritmul de mai jos implementează regula delta:

- 1. Se citesc pattern-urile de instruire \mathbf{y}_1 , \mathbf{y}_2 ,..., \mathbf{y}_N și ieșirile dorite \mathbf{d}_1 , \mathbf{d}_2 ,..., \mathbf{d}_N . Se scalează toate valorile din setul de date. Se stabileşte numărul M de intrări și numărul K de perceptroni. Se iniţializează ponderile \mathbf{w}_{ii} cu valori aleatoare din intervalul [-1;1]. Se inițializează constanta de instruire c. Se stabilește eroarea maximă E_{max} . Se inițializează
- 2. Având un pattern $\mathbf{y}_p = [y_{p1}, \dots, y_{pi}, \dots, y_{pM}]$ dintre cele n, se calculează ieşirile fiecărui perceptron:

$$o_j = f(w_{j1}y_{p1} + w_{j2}y_{p2} + ... + w_{jM}y_{pM}), j = 1...K,$$

unde K este numărul de perceptroni, M este numărul de intrări, iar f este funcția de activare bipolară.

3. Se actualizează toate ponderile rețelei conform regulii:

$$W_{jj}^{(t+1)} = W_{jj}^{(t)} + c(d_{pj} - o_j)(1 - o_j^2)y_{pj}$$

 $\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + c(d_{pj} - o_j)(1 - o_j^2) y_{pi},$ unde $\mathbf{d}_p = [d_{p1}, \dots, d_{pj}, \dots, d_{pK}]$ reprezintă ieșirile dorite pentru pattern-ul \mathbf{y}_p .

Se calculează eroarea cumulată:

$$E^{(t+1)} = E^{(t)} + (d_{p1} - o_1)^2 + (d_{p2} - o_2)^2 + \dots + (d_{pK} - o_K)^2.$$

- 5. Se revine la pasul 2 cu un nou vector de instruire, până la epuizarea setului de N pattern-
- 6. Dacă $E > E_{max}$, se revine la pasul 2 pentru o nouă epocă de instruire în care se reiau toate pattern-urile de instruire și se reinițializează *E*=0.

Implementați regula delta pentru o rețea de K=3 perceptroni care folosește pattern-uri bidimensionale cărora li se adaugă a treia intrare -1, y_1 , y_2 ... y_9 cu ieșirile dorite d_1 , d_2 ... **d**9:

Inteligență computațională - laborator

45	85	1	-1	-1
50	43	-1	1	-1
40	80	1	-1	-1
55	42	-1	1	-1
200	43	-1	-1	1
48	40	-1	1	-1
195	41	-1	-1	1
43	87	1	-1	-1
190	40	-1	-1	1

Aceste pattern-uri reprezintă lăţimea şi înălţimea unor obiecte de mobilier asemnănătoare celor din imaginea de mai jos, iar cele trei clase sunt codificate astfel:

- scaunele prin (1, -1, -1)
- mesele prin (-1, 1, -1)
- paturile prin (-1, -1, 1).

La final afișați pattern-urile de instruire și răspunsurile celor trei perceptroni pentru fiecare pattern.