Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application. Please cancel claims 14, 16-30, 32, 34 and 35.

1. (Currently amended) A compound of the general formula (I)

(I)
$$A - PO_3 - B$$

in which B is a radical of the general formula (II)

(II)
$$\begin{bmatrix} CH_2 \\ CH_2 \end{bmatrix}_n - \begin{pmatrix} CH_3 \\ R_3 \end{bmatrix} - (CH_2)_x - \begin{bmatrix} CH_2 - \begin{pmatrix} CH \\ OH \end{pmatrix}_y - CH_2 - O \end{bmatrix}_z$$

in which

n is an integer from 2 to 8;

m is 0, 1 or 2;

x is an integer from 0 to 8;

y is an integer from 1 to 4;

z is an integer from 0 to 5;

R₃ is an alkyl radical having 1 to 3 C atoms, which may be substituted by one or more hydroxyl groups;

and in which A is a radical selected from one of the formulae (III) to (IX):

in which g is an integer from 0 to 8; $p, q, r, s, t \ge 0$; $p \ge 0$; $q \ge 0$; $12 \le p + q \le 30$; and $8 \le s + t + r \le 26$;

where R_t and R_2 are each independently hydrogen, a saturated or unsaturated acyl or alkyl radical or a radical selected from one of the formulae (X), (XI), (XII), and (XIII), and at least one of R_t and R_2 is a radical selected from one of the formulae (X), (XI), (XII), and (XIII):

where $q \neq 8$ for p + q = 14, 16, 18 or 20, if neither of the radicals R_t and R_2 is a radical of the formula (XII), or if A is a radical of the formula (VIII), with the proviso that when A is a radical of the formula (VIII) and p + q is 12, q is not 4 and when p + q = 14, 16, 18 or 20, q is not 8; and

wherein, in A, the double bond is at a distance from O which does not appear in a naturally-occurring corresponding radical.

- 2. (Original) A compound as claimed in claim 1, in which the following applies to B: m = 1.
- (Original) A compound as claimed in claim 2, in which the following applies to B:
 m = 1;
 x = 1 to 3;
 z = 0.
- 4. (Original) A compound as claimed in claim 3, in which the following applies to B:

	m=1;
	x = 1;
	z = 0.
5.	(Original) A compound as claimed in claim 1, in which the following applies to B:
	m = 1;
	x = 0;
	y = 1;
	z = 1 to 5.
6.	(Original) A compound as claimed in claim 5, in which the following applies to B:
	m = 1;
	x = 0;
	y = 1;
	z = 1 to 3.
7.	(Original) A compound as claimed in claim 1, in which the following applies to B:
	m = 1;
	x=0;
	y = 2 to 4;
	z = 1.
8.	(Original) A compound as claimed in claim 1, in which the following applies to B:
	$\mathbf{m}=0;$
	x = 0;
	y = 1;
	z = 1 to 5.

9. (Original) A compound as claimed in claim 1, in which the following applies to B:

$$m = 0;$$

$$x = 0$$
;

$$y = 2 \text{ to } 4;$$

$$z = 1$$
.

10. (Previously presented) A compound as claimed in claim 1, in which the following applies to B:

$$R_3 = CH_3$$
.

11. (Previously presented) A compound as claimed in claim 1, in which the following applies to B:

$$R_3 = 1,2$$
-dihydroxypropyl.

12. (Previously presented) A compound as claimed in claim 1, in which the following applies to B:

$$n = 2 \text{ to } 6.$$

13. (Previously presented) A compound as claimed in claim 1, in which the following applies to B:

$$n = 3$$
.

- 14. Canceled.
- 15. (Currently amended) A compound as claimed in claim 14 1, in which A is a radical of the formula (VIII) and has 16 to 23 carbon atoms.
- 16-32. Canceled.

- 33. (Previously presented) A pharmaceutical composition, which comprises an active ingredient as claimed in claim 1, where appropriate together with pharmaceutically acceptable diluents, excipients, carriers and fillers.
- 34-42. Canceled.
- 43. (Currently amended) A compound according to claim 1, wherein A is a radical of formula (VIII), p is 9, q is 8, z is 0, x is 1, m is 1, n is 4 and R₃ is methyl.
- (Currently amended) A compound of the general formula (I)
 (I) A PO₃ B
 in which B is a radical of the general formula (II)

(II)
$$\begin{bmatrix} CH_2 \\ CH_2 \end{bmatrix}_n - \begin{bmatrix} CH_3 \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CE-I_2 - \begin{pmatrix} CH \\ OH \end{pmatrix}_y - CH_2 - O \end{bmatrix}_z - H$$

in which
n is an integer from 2 4 to 8;
m is θ , 1 or 2:
x is an integer from 0 to 8 1;
y is an integer from 1 to 4;
z is an integer from 0 to 5;

R₃ is an alkyl radical having 1 to 3 C atoms, which may be substituted by one or more is not

substituted by a hydroxyl groups;

and in which A is a radical selected from one of the formulae (III) to (IX):

in which

g is an integer from 0 to 8;

 $p, q, r, s, t \ge 0$;

 $p \ge 0$;

 $q \ge 0$;

 $12 \le p + q \le 30$ and

 $8 \le s + t + r \le 26;$

where R_t and R_2 are each independently hydrogen, a saturated or unsaturated acyl or alkyl-radical or a radical selected from one of the formulae (X), (XI), (XII), and XIII), and at least one of R_t and R_2 is a radical selected from one of the formulae (X), (XI), (XII), and (XIII):

where $q \neq 8$ for p + q = 14, 16, 18 or 20, if neither of the radicals R_1 and R_2 is a radical of the formula (XI) or (XIII), or if A is a radical of the formula (VIII), with the proviso that when A is a radical of the formula (VIII), z is 0, x is 1, m is 1, and R_3 is an alkyl radical having 1 C atom which is not substituted by a hydroxy group, and n is not 2 or 3 and wherein, in A, the double bond is at a distance from O which does not appear in a naturally-occurring corresponding radical.

45. (Currently amended) A compound of the general formula (I)

(I) A - PO₃ - B

in which B is a radical of the general formula (II)

U.S. Application No. 09/762,006 Response to Final Office Action of 9/23/03 Page 10

(11)
$$\begin{bmatrix} CH_2 \\ R_3 \end{bmatrix}_{m}^{CH_3} - (CH_2)_x - \begin{bmatrix} CH_2 - CH_2 \\ OH \end{pmatrix}_y - CH_2 -$$

in which
n is an integer from 2 to 8
m is 0, 1 or 2:
x is an integer from 0 to 8;
y is an integer rom 1 to 4;
z is an integer from 0 to 5;

 R_3 is an alkyl radical having 1 to 3 C atoms, which may be substituted by one or more hydroxyl groups;

and in which A is a radical selected from one of the formulae (III) to (IX):

in which

g is an integer from 0 to 8;

 $p, q, r, s, t \ge 0$

 $p \ge 0$;

 $q \ge 0$;

 $12 \le p + q \le 30$ and

 $8 \le s + t + r \le 26$;

where R_1 and R_2 are each independently hydrogen, a saturated or unsaturated acyl or alkyl radical or a radical selected from one of the formulae (X), (XI), (XII), and (XIII), and at least one of R_1 and R_2 is a radical selected from one of the formulae (X), (XI), (XII), and (XIII):

where $q \neq 8$ for p + q = 14, 16, 18 or 20, if neither of the radicals R_1 and R_2 is a radical of the formula (XII), or if A is a radical of the formula (VIII), with the proviso that when A is a radical of the formula (VIII), p + q is not 12, 13, 14 or 15 and when p + q = 16, 18 or 20, q is not 8, and wherein, in A, the double bond is at a distance from O which does not appear in a naturally-occurring corresponding radical.