Analízis

Valós számok:

Tulajdonságok:

- 1) $a + b \rightarrow b$ ármely két valós szám összeadható, az összeg is valós szám lesz
- 2) $a + b = b + a \rightarrow az$ összeadás kommutatív
- 3) $(a + b) + c = a + (b + c) \rightarrow az$ összeadás asszociatív
- 4) $a + 0 = a \rightarrow a \ 0$ összeadásnál mindent helyben hagy
- 5) (létezik a) $a + (-a) = 0 \rightarrow minden számnak van ellentettje$
- 6) ab → bármely két szám összeszorozható, a szorzat is valós szám lesz
- 7) $ab = ba \rightarrow a \text{ szorzás kommutatív}$
- 8) $(ab)c = a(bc) \rightarrow a$ szorzás asszociatív
- 9) $a*1 = a \rightarrow \text{szorzásnál mindent helyben hegy}$
- 10) (létezik a^{-1} , $a \neq 0$) $a^* a^{-1} = 1 \rightarrow$ minden számnak van inverze, kivéve a nullának
- 11) $a(b+c) = ab + ac \rightarrow disztributivitás$
- 12) a < b; a = b; $a > b \rightarrow egyszerre csak egy állhat fenn$
- 13) $a < b \text{ \'es } b < c \rightarrow a < c$
- 14) $a < b \rightarrow a + c < b + c$
- 15) $a < b \text{ és } c > 0 \rightarrow ac < bc$
- 16) Archimédeszi axióma:

Minden a valós számra létezik olyan n egész szám, amire a < n \rightarrow bármely valós számra létezik nála nagyobb egész szám

Def: Az A halmaz (A egy valós részhalmaz) felülről korlátos, ha létezik olyan c, amelyre minden A-beli a -ra teljesül, hogy: a < c. Az ilyen tulajdonságú c az A halmaz felső korlátja

- 17) felülről korlátos számhalmaz felső korlátai között van legkisebb c = sup A → supremum → legkisebb felső korlát.
- 18) Def: Alulról korlátos halmaz → létezik alsó korlát

Alulról korlátos számhalmaz alsó korlátai között van legnagyobb $c = \inf A \rightarrow \inf$ infimum lgnagyobb felső korlát

Komplex számok:

$$i = \sqrt{-1}$$
$$i^2 = -1$$

algebrai leírás: z = a + ib, ahol a a valós rész

b az képzetes (imaginárius) rész

exponenciális alak: $z = re^{i*\phi}$, ahol r az origótól mért távolság

trigonometrikus alak: valós ϕ esetén $e^{i\phi} = \cos \phi + i*\sin \phi$. $e^{i\phi}$ pont az egységsugarú körön a pozitív x tengelyen pozitív forgásirányon ϕ szög alatt látszik

$$e^{i\phi 1} * e^{i\phi 2} = e^{i(\phi 1 + \phi 2)}$$
 $Z^n = r^n * e^{in\phi} = r^n * (\cos \phi + i * \sin \phi)^n$

Síkvektorok:

$$P_1\left(x_1;\,y_1\right)$$
-ből $P_2\left(x_2;\,y_2\right)$ -be menő vektor: \underline{v}

$$\underline{\mathbf{v}} = \langle \mathbf{x}_2 - \mathbf{x}_1; \ \mathbf{y}_2 - \mathbf{y}_1 \rangle$$

egységvektorok: $\underline{i} = <1; 0>$

$$i = <0; 1>$$

 $\langle v_1; v_2 \rangle = v_1 * i + v_2 * j \rightarrow v_1; v_2$ komponensű vektorok értelmezése

Skaláris szorzás:

$$\underline{\mathbf{v}} = \langle \mathbf{v}_1; \mathbf{v}_2 \rangle$$
 és $\mathbf{w} = \langle \mathbf{w}_1; \mathbf{w}_2 \rangle$ skalár szorzata $\underline{\mathbf{v}} \cdot \underline{\mathbf{w}} = \mathbf{v}_1 \cdot \mathbf{w}_1 + \mathbf{v}_2 \cdot \mathbf{w}_2$ ha $\underline{\mathbf{v}} = \underline{\mathbf{w}}, \underline{\mathbf{v}} \cdot \underline{\mathbf{v}} = |\mathbf{v}|^2$

 $v \cdot \underline{w} = |v| * |w| * \cos \alpha$

ha $\underline{\mathbf{v}} \cdot \underline{\mathbf{w}} = 0 \leftrightarrow$ ha $\underline{\mathbf{v}}$ és $\underline{\mathbf{w}}$ merőleges egymásra. A 0 vektor minden vektorra merőleges

Egyenes egyenlete:

- 1) ax + by = c. Ha P_0 az egyenesen $van \rightarrow ax_0 + by_0 = c$. Tehát az egyenes egyenlete $a(x-x_0) + b(y-y_0) = 0$ Azaz $\underline{n} = \langle a; b \rangle$, $PP_0 * \underline{n} = 0 \rightarrow az \underline{n}$ merőleges az egyenesre, $\underline{v} = \langle b; -a \rangle$, merőleges \underline{n} -re, ezért az egyenes irányvektora
- 2) két egyenes hajlásszöge ≡ normálisaik szöge

$$\cos \alpha = (n_1 * n_2)/|n_1| * |n_2|$$

Térvektorok:

$$\underline{\mathbf{v}} = \langle \mathbf{v}_1; \mathbf{v}_2, \mathbf{v}_3 \rangle = \mathbf{v}_1 * \underline{\mathbf{i}} + \mathbf{v}_2 * \underline{\mathbf{j}} + \mathbf{v}_3 * \underline{\mathbf{k}}$$

$$\underline{\mathbf{i}} = \langle 1; 0; 0 \rangle$$

$$\underline{\mathbf{i}} = \langle 0; 1; 0 \rangle$$

$$\underline{\mathbf{k}} = \langle 0; 0; 1 \rangle$$

Skaláris szorzás:

$$\underline{\mathbf{v}} \cdot \underline{\mathbf{w}} = v_1 * w_1 + v_2 * w_2 + v_3 * w_3 = |\underline{\mathbf{v}}| * |\underline{\mathbf{w}}| * \cos \alpha$$

$$\underline{\mathbf{u}} \cdot \underline{\mathbf{u}} = |\underline{\mathbf{u}}|^2$$
; $\underline{\mathbf{u}} \cdot \underline{\mathbf{v}} = 0$, ha $\underline{\mathbf{u}}$ merőleges $\underline{\mathbf{v}}$ -re

Tétel: \underline{u} egyértelműen felbomlik egy \underline{v} -vel párhuzamos és egy \underline{v} -re merőleges komponens összegére $\underline{u} = [(\underline{u} * \underline{v})/|\underline{v}^2|] * \underline{v} + \{\underline{u} - [(\underline{u} * \underline{v})/|\underline{v}^2|] * \underline{v}\}$

Az első komponens $[(\underline{u}*\underline{v})/|\underline{v}^2|]*\underline{v}$ az \underline{u} merőleges vetülete \underline{v} egyenesére, ennek hossza $|\underline{u}|*|\cos\alpha| = |\underline{u}\cdot\underline{v}|/|\underline{v}|$

Tétel: a determináns geometriai jelentése:

- a) a 2x2-es determináns (<a;b>, <c;d>) az <a;b>,<c;d> vektorok által kifeszített paralelogramma előjeles területe. Akkor pozitív, ha <a;b>-ből pozitív forgásirányban jutunk el <c;d> irányhoz.
- b) a 3x3-as determináns (a = $<a_1;a_2;a_3>$, b = $<b_1;b_2;b_3>$, c = $<c_1;c_2;c_3>$) az \underline{a} , \underline{b} , \underline{c} vektorok által kifeszített paralelepipedon előjeles térfogata, amely akkor pozitív, ha \underline{a} , \underline{b} , \underline{c} vektorok jobbrendszert alkotnak

Vektori szorzás:

$$\underline{\mathbf{v}} \times \underline{\mathbf{w}} = (\mathbf{v}_2 * \mathbf{w}_3 - \mathbf{v}_3 * \mathbf{w}_2) * \underline{\mathbf{i}} - (\mathbf{v}_1 * \mathbf{w}_3 - \mathbf{v}_3 * \mathbf{w}_1) * \underline{\mathbf{i}} + (\mathbf{v}_1 * \mathbf{w}_2 + \mathbf{v}_2 * \mathbf{w}_1) * \underline{\mathbf{k}}$$

Tétel: u x v geometriai jelentése:

 \underline{u} x \underline{v} hossza az \underline{u} és \underline{v} által kifeszített paralelogramma területe $\rightarrow |\underline{u}|^*|\underline{v}|^*\sin\alpha$, iránya, merőleges \underline{u} és \underline{v} síkjára úgy, hogy \underline{u} ; \underline{v} és \underline{u} x \underline{v} jobbrendszert alkosson

$$u \times v = - u \times v$$

<u>Térbeli egyenesek:</u>

 $P_0(x_0;y_0;z_0)$ és $\underline{v}=\langle v_1;v_2;v_3\rangle$ iránnyal párhuzamos egyenlete egy paraméteres egyenletrendszer: $P_0=t^*\underline{v}$, azaz (valós t esetén) $x=x_0^*tv_1$

$$y = y_0 *tv_2$$
$$z = z_0 *tv_3$$

t-t kifejezve

$$t = (x-x_0/v_1) = (y-y_0/v_2) = (z-z_0/v_3)$$

Ha például $v_2 = 0$, akkor $t = (x-x_0/v_1) = (y = y_0) = (z-z_0/v_3)$

Pont és egyenes távolsága:

$$d = |PS| * \sin \alpha = |PS \times v|/|v|$$

Sík egyenlete:

$$ax + by + cz = d$$

$$P_0(x_0; y_0; z_0) \text{ a sikon } van \rightarrow ax_0 + by_0 + cz_0 = 0$$

$$P(x; y; z)$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\underline{n} = \langle a; b; c \rangle \rightarrow \underline{n}^* P_0 P = 0$$

$$(a^2 + b^2 + c^2 > 0)$$

<u>n</u> a síkbeli összes irányra merőleges \rightarrow a sík normálvektora

Két sík metszetegyenese:

a metszetegyenes mindkét síkban benne lévő irány \to mindkét normálvektorra merőleges \underline{v} merőleges \underline{n}_1 ; $\underline{n}_2 \to \underline{v}$ párhuzamos \underline{n}_1 x \underline{n}_2 -vel, ha a két sík párhuzamos, akkor a normálvektorjaik komponensei megegyeznek

Pont és sík távolsága:

$$d = |PS| * \cos \alpha = |PS * \underline{n}|/|\underline{n}|$$

Számsorozat:

Def: $az\{a_n\}$ sorozat a valós L határértékhez konvergens, ha minden $\epsilon>0$ -hoz létezik olyan N természetes szám, hogy minden $n\geq N$ -re $|a_n - L|<\epsilon$, "a sorozat nagyon nagy indexű tagjai nagyon közel vannak a L-hez"

Jelölés: $\lim a_n = L \quad \text{vagy } a_n \to L$

 ϵ hibakorlát, N az ϵ hibakorláthoz tartozó küszöbindex \rightarrow nem egyértelmű (ha N jó, akkor N+1; N+2; ... is jó)

Def: Ha nincs olyan valós L, hogy $a_n \to L$, akkor $\{a_n\}$ sorozat divergens

Def: Végtelenhez divergens sorozatok $\lim_{n\to\infty} a_n = +\infty$ (ill. $a_n\to +\infty$) ha minden K>0 -hoz létezik olyan N, hogy minden $n\ge N$ -re $a_n>K$

Def: végtelenhez divergens sorozatok lim $a_n = -\infty$ (ill. $a_n \to -\infty$), ha minden K > 0 -hoz létezik olyan N, hogy minden $n \ge N$ -re $a_n < -K$

Részsorozat: az eredeti sorozatból valamilyen szabály szerint kivett elemek

$$1 \le n_1 < n_2 < n_3$$
 ... esetén az $\{a_{nk}\}_{k=1} = \{a_{n1}; a_{n2}; \dots \}$ sorozat a_n -nek részsorozata

Tétel: a részsorozat határértéke megegyezik az eredeti sorozat határértékével, tehát

ha $a_n \to L$, akkor bármely részsorozatra a $a_{nk} \to L$. Ez igaz $L = +\infty$ és $L = -\infty$ -re is. (A részsorozat nagy indexű elemei közel vannak L-hez)

Következmény: Ha egy sorozatnak két különböző értékben konvergens részsorozata van, akkor az eredeti sorozat divergens

Tétel: Határérték és alapműveletek

Ha
$$a_n \to A$$

 $b_n \to B$ (valós A;B esetén)
$$c^*a_n \to c^*A$$

$$a_n + /- b_n \to A + /- B \text{ (összeg határértéke egyenlő a határértékek összegével)}$$

$$a_n *b_n \to A^*B \text{ (szorzat határértéke egyenlő a határértékek szorzatával)}$$

$$\neq 0 \qquad a_n /b_n = A/B \text{ (hányados határértéke egyenlő a határértékek hányadosával)}$$

A határérték és a sorozat közti művelet felcserélhető

Kiegészítés: Ha A; B vagy mindkettő végtelen, akkor a szabályok érvényesek maradnak kivéve a ∞ - ∞ ; $0*\infty$; ∞/∞ -t, ekkor határozatlan a szituáció Tétel:

a') Ha
$$a_n \rightarrow +\infty$$
 és $c > 0$, akkor $c*a_n \rightarrow +\infty$
 $+\infty$ $c < 0$ $c*a_n \rightarrow -\infty$
 $-\infty$ $c > 0$ $c*a_n \rightarrow -\infty$
 $-\infty$ $c < 0$ $c*a_n \rightarrow +\infty$
ha $a_n \rightarrow +\infty$ és $b_n \rightarrow B \neq -\infty$ akkor $a_n + b_n -\infty$

ha
$$a_n \to +\infty$$
 és $b_n \to B \neq -\infty$, akkor $a_n + b_n \to +\infty$
 $a_n \to -\infty$ és $b_n \to B \neq +\infty$, akkor $a_n + b_n \to -\infty$

b') ha
$$a_n \to +\infty$$
 és $b_n \to B > 0$, akkor $a_n *b_n \to +\infty$

$$-\infty > 0 -\infty$$

$$-\infty < 0 +\infty$$

$$+\infty < 0 -\infty$$

$$\begin{array}{ccc} \text{Ha } b_n \rightarrow +\infty, \text{ akkor } 1/b_n \rightarrow 0 \\ & \text{-} \infty & 1/b_n \rightarrow 0 \\ \text{ha } b_n > 0; b_n \rightarrow 0 & 1/b_n \rightarrow +\infty \\ & < 0 & \text{-} \infty \end{array}$$

Tétel: Rendőrszabály

Ha $a_n \le b_n \le c_n$ minden n-re és ha $a_n \to L$ és $c_n \to L$, akkor $b_n \to L$

Spec: Ha
$$a_n \to +\infty$$
 és $a_n \le b_n$, akkor $b_n \to +\infty$
ha $c_n \to -\infty$ és $d_n \le c_n$, akkor $d_n \to -\infty$

A rendőrszabály alkalmazható:

$$\begin{array}{l} c^*a_n \rightarrow c^*A \\ a_n + /\text{-} \ b_n \rightarrow A + /\text{-} \ B \\ a_n *b_n \rightarrow A^*B \end{array}$$

és $B \neq 0$ esetén1 $a_n/b_n = A/B \ \ (ha \ B \neq 0, \ akkor \ b_n \neq 0, \ egy \ bizonyos \ indextől \\ kezdve \ n \geq n_0 \ -ra, \ véges \ számú \ olyan \ hányados \ lesz, \\ ami \ nem \ értelmezhető, \ mert \ b_n = 0)$

Tétel: Bernoulli-egyenlőtlenség

$$x > -1 \rightarrow (1+x)^n \ge 1+nx$$
 $n \ge 1$

Tétel:
$$a_n \to A$$
; $a_n \ge 0$ esetén $\sqrt{(a_n)} \to \sqrt{(A)}$; $\sqrt[k]{(a_n)} \to \sqrt^k \sqrt{(A)}$ $k = 1; 2; ...$ $(\sqrt[k]{x}; \sqrt[3]{x}; ...; \sqrt[k]{x}$ függvények folytonosak)

Nevezetes határértékek:

- 2. Ha a > 0, akkor $\sqrt[n]{a} \rightarrow 1$

3.
$$q^n \rightarrow +\infty$$
 ha $q > 1$
 $\rightarrow 1$ ha $q = 1$
 $\rightarrow 0$ ha $|q| < 1$
divergens, ha $q \le -1$

 $4. \ a^n/n! \rightarrow 0$

5.
$$n^k/a^n \rightarrow 0$$
 ha a>1; k = 0;1;2; ...

6. $(\log_a n)/n$ $a > 0; a \ne 1$

Def: $\{a_n\}$ monoton növekvő, ha $a_n \le a_{n+1}$ minden n-re. Szig mon nő, ha $a_n < a_{n+1}$ minden n-re.

Csökkenés hasonlóan

Tétel: Monoton sorozatnak van határértéke, azaz:

- a) Ha $\{a_n\}$ mon. növő és felülről korlátos, akkor a sorozat határértéke $a_n \to \sup\{a_1; \, a_2; \,$
 - b) Ha $\{a_n\}$ mon növő és felülről nem korlátos, akkor $a_n \to +\infty$
 - a') Ha $\{a_n\}$ csökken és alulról korlátos, akkor van határértéke: $a_n \rightarrow \inf \{a_1; a_2; ...\}$
 - b') Ha $\{a_n\}$ csökken és alulról nem korlátos, akkor van határértéke: $a_n \rightarrow -\infty$

Def: $\lim_{n \to \infty} (1 + 1/n)^n = \mathbf{e} = 2.71...$

Tétel: $\lim (1 - 1/n)^n = 1/e$

Tétel: $(1 + c/n)^n \rightarrow e^c$

Függvények:

x-ekből

...}

Minden $x \in A$ -hoz $(A \subset R)$ tartozik egy f(x) valós szám, amire $f:A \to valós$ számok (minden A-beli x helyhez tartozik egy valós f(x) érték)

 $D(f) = A \rightarrow \text{értelmezési tartomány (ha csak képlet van, D(f) azokból az áll, amire a képlet értelmes)}$

 $R(f) = \{f(x): x \in A\} \rightarrow \text{értékkészlet}$

Az f(x) függvény:

- a) periodikus p periódussal, ha f(x+p) = f(x) (minden x-re, p>0)
- b) páros, ha f(-x) = f(x) (minden x-re)
- c) páratlan, ha f(-x) = -f(x) (minden x-re)
- d) monoton nő (csökken), ha x < y; $x,y \in D(f)$ esetén $f(x) \le f(y)$ ($f(x) \ge f(y)$)
 - e) szig mon nő (csökken), ha $x;y \in D(f)$ esetén f(x) < f(y) (f(x) > f(y))
 - f) konvex, ha bármely x < y -ra a grafikonja az (x; f(x)) és (y; f(y)) pontok közötti szakasz alatt tart
 - g) konkáv, ha bármely x < y -ra a grafikonja az (x; f(x)) és (y; f(y)) pontok közötti szakasz felett tart

Az f(x) grafikonja: $G(f) = \{\langle x; f(x) \rangle; x \in D(f)\}$

Az f(x) függvény injektív, ha $x \neq y$; $f(x) \neq f(y)$ (ha különböző értékeket különböző helyeken képez) Injektív függvény esetén az R(f) értékkészleten definiálható az inverzfüggvény:

$$f^{-1}$$
: $R(f) \rightarrow D(f) \subset R$
 $f^{-1}(y) = x \Leftrightarrow f(x) = y \text{ (az x-ből y lesz)}$

Megj: az inverz függvény grafikonja az eredeti függvény grafikonból az y = x egyenesre való tükrözéskor keletkezik

Összetett (közvetett) függvény:

$$g^{\circ}f: , g \text{ k\"or } f' \text{ fontos a sorrend}$$

$$D(g^{\circ}f) = \{x: x \in D(f) \text{ \'es } f(x) \in D(g)\}$$

$$(g^{\circ}f)(x) = g(f(x))$$

Alapműveletek függvényekkel:

$$\begin{array}{l} c * f \rightarrow D(f) \\ f +/- g \rightarrow D(f) \cap D(g) \\ f * g \rightarrow D(f) \cap D(g) \\ f/g \rightarrow D(f) \cap D(g) \cap \{x : g(x) \neq 0\} \end{array}$$

Függvény határérték:

Def: Legyen $x_0 \in (a;b)$

Legyen f(x) értelmezve $(a;b)\setminus\{x_0\}$

Az f(x) függvény x_0 pontbeli határértéke a $L \in R$ szám, ha minden $\epsilon > 0$ -hoz létezik egy olyan $\delta > 0$, hogy $x \in (a;b)$; $0 < |x-x_0| < \delta$ esetén $|f(x)-L| < \epsilon$ (Ha x nagyon közel van x_0 -hoz, de nem egyenlő vele, akkor f(x) nagyon közel van L-hez)

Jelölés:
$$\lim_{x \to x_0} f(x) = L$$
 $\lim_{x \to x_0} f = L$ $\lim_{x \to x_0} f(x) \to L$, ha $x \to x_0$; $x \neq x_0$

Tétel: legyen $x_0 \in (a;b)$, f(x) értelmezett $(a;b) \setminus \{x_0\}$ -on. Akkor $\lim_{x \to x_0} f(x) = L \leftrightarrow \text{bármely } x_n \to x_0$,

 $x_n \neq x_0$; $x_n \in (a;b)$ sorozatra $f(x_n) \to L$ (a függvényértékek közelednek L-hez, ha a sorozat közeledik x_0 -hoz

Tétel: Függvényhatárértékek és alapműveletek

Ha lim
$$f_1 = L_1$$
, lim $f_2 = L_2$, akkor lim $c*f_1 = c*L_1$; lim $(f_1 +/-f_2) = L_1 +/-L_2$; $x_0 \qquad x_0 \qquad x_0 \qquad x_0$ lim $(f_1*f_2) = L_1*L_2$; és $L_2 \neq 0$ esetén lim $(f_1/f_2) = L_1/L_2 \rightarrow Azt$ is állítjuk, ha $L_2 \neq 0$, akkor $x_0 \qquad x_0$ létezik olyan $\delta > 0$, hogy $0 < |x - x_0| < \delta$ esetén $f_2(x) \neq 0$, tehát $f_1(x)/f_2(x)$ értelmes minden ilyen x-re

Tétel: Rendőrszabály

Ha
$$\lim_{x_0} f = \lim_{x_0} h = L$$
 és létezik olyan $\delta > 0$, hogy $f(x) \le g(x) \le h(x)$, minden $0 < |x - x_0| < \delta$ -ra, akkor a közrefogott g függvény is $\lim_{x \to \infty} g = L$

Tétel:
$$\limsup_{x \to 0} \sin x = 0$$
 $\lim_{x \to 0} \cos x = 1$ $\lim_{x \to 0} (\sin x)/x = 1$

$$\lim_{x \to 0} (1 - \cos x)/x = 0 \qquad \lim_{x \to 0} (1 - \cos x)/x^2 = \frac{1}{2} \qquad (1 - \cos 2\alpha)/2 = \sin^2 \alpha$$

 \mathbf{x}_0

$$\lim_{x\to a} x=a \quad \text{ definíció } \delta=\ \epsilon \text{ -n\'al }$$

$$\lim_{x\to a} p(x) = p(a)$$
 a polinom határértéke ugyanaz, mint a behelyettesítési érték

Def: Racionális tört függvény két polinom hányadosa

$$\lim_{x \to a} p(x)/q(x) = p(a)/q(a) \quad \text{ ha } q \neq 0$$

$$\lim_{\substack{x \to a \\ \text{lim } x \to a}} \sqrt{x} = \sqrt{a} \qquad \qquad \text{ha } a > 0, \ k = 2;3; \dots$$

$$\lim_{\substack{x \to a \\ \text{ha } a > 0}} x^{n/k} = a^{n/k} \qquad \qquad \text{ha } a > 0$$

$$\lim_{x \to a} \sin x = \sin a \qquad \qquad \lim_{x \to a} \cos x = \cos a$$

Féloldali határérték:

Legyen f(x) értelmezett (a; a+r) szakaszon r > 0-ra. Akkor $\lim_{x \to a^+} f(x) = L$, azt jelenti, hogy minden $\epsilon > 0$ -hoz van olyan $\delta > 0$, hogy $a < x < a + \delta$ esetén $|f(x) - L| < \epsilon$. "ha $x \neq a$, de

jobbról nagyon megközelítheti x az a-t, akkor f(x) is nagyon megközelíti L-t" \rightarrow jobboldali határérték

Def: Ha f(x) értelmezett (a-r; a)-n, akkor $\lim_{x\to a^-} f(x) = L$ jelentése, hogy minden $\varepsilon > 0$ -hoz van olyan

 $\delta \geq 0,$ hogy $a-\delta \leq x \leq a$ esetén $|f(x)-L| \leq \epsilon$

Tétel: $\lim_{x\to a} f(x) = L \leftrightarrow \lim_{x\to a^+} f(x) = L \text{ és } \lim_{x\to a^-} f(x) = L$

Végtelen határérték:

Def: $\lim_{x \to a} f(x) = +\infty$, ha minden K>0-hoz van olyan $\delta > 0$, hogy $0 < |x - a| < \delta$ esetén f(x) > K

 $\lim_{x \to a} f(x) = -\infty, \text{ ha minden } K > 0 - \text{hoz van olyan } \delta > 0, \text{ hogy } 0 < |x - a| < \delta \text{ eset\'en } f(x) \le K$

Pl: $\lim_{x \to 0} 1/x^2 = +\infty$

Def: $\lim_{x\to a^+} f(x) = +\infty$, ha minden K>0-hoz van olyan $\delta > 0$, hogy $a < x < a + \delta$ esetén f(x) > K (f(x) < -K)

im $f(x) = +\infty$, ha minden K>0-hoz van olyan $\delta > 0$, hogy $a - \delta < x < a$ esetén f(x) > K $x \to a$. $(-\infty)$

A végtelenben vett határérték:

Def: $\lim_{x \to +\infty} f(x) = L$ azt jelenti, hogy minden $\varepsilon > 0$ -hoz van olyan K > 0, hogy x > K esetén $|f(x) - L| < \varepsilon$

f(x) minden nagyon nagy számra ($+\infty$ -be menő félegyenesen) értelmezve van

 $\lim_{x\to -\infty} f(x) = L \text{ azt jelenti, hogy minden } \epsilon > 0 \text{-hoz van olyan } K > 0 \text{, hogy } x < -K \text{ eset\'en } |f(x) - L| \le \epsilon$

Ha a végtelenben vett határérték végtelen:

 $\lim_{x\to +\infty} f(x) = +\infty \text{ azt jelenti, hogy minden } K > 0 \text{-hoz van olyan } M > 0 \text{, hogy } x > M \text{ eset\'en } f(x) > K$ (f(x) < -K)

 $\lim_{x\to -\infty} f(x) = +\infty \text{ azt jelenti, hogy minden } K > 0 \text{-hoz van olyan } M > 0 \text{, hogy } x < -M \text{ esetén } f(x) > K$ (f(x) < -K)

Tétel: valamennyi határértékre érvényes:

- a) átviteli elv → függvény és sorozat határértékre
- b) Rendőrszabály
- c) határérték és alapműveletek felcserélhetősége

Def: $x_0 \in R$ környezete:

Bármely $x_0 \in (a;b)$ nyílt intervallum

 $+\infty$ környezete bármely [K; $+\infty$) félegyenes

 $-\infty$ környezete bármely $(-\infty; K]$ félegyenes

 x_0 jobboldali környezete bármely $[x_0; x_{0+r})$ balról zárt intervallum

 x_0 baloldali környezete bármely (x_{0-r} ; x_0] jobbról zárt intervallum

Def: Legyen x_0 és L valós szám vagy $+\infty$ és $-\infty$. Akkor lim f(x) = L akkor és csak akkor, ha az L

bármely K_L környezetében megadható x_0 -nak olyan K_{x0} környezete, hogy $x \in K_{x0}$; $x \neq x_0$ esetén $f(x) \in K_L$ (minden K_L -hez létezik K_{x0})

Ha féloldali határérték:

 $\lim_{x\to x_0+(-)} f(x) = L$ definíciója ugyanaz, csak ott K_{x0} jobboldali (baloldali) környezete

Folytonosság:

Def: f(x) folytonos az x_0 -ban, ha $\lim_{x\to x_0} f(x) = f(x_0)$ "a határérték ugyanaz, mint a behelyettesítési érték ugyanabban a pontban"

- f(x) jobbról (balról) folytonos x_0 -ban, ha $\lim_{x \to x} f(x) = f(x_0)$ ($\lim_{x \to x} f(x) = f(x_0)$
- f(x) folytonos [a;b]-n, ha a-ban jobbról, b-ben balról folytonos és minden $x \in (a;b)$ -ben folytonos (tehát az intervallum minden pontjában folytonos)

Megjegyzés:

- 1) Ha f(x) folytonos x_0 -ban, akkor értelmezett x_0 egy környezetében Ha f(x) jobbról (balról) folytonos x_0 -ban, akkor értelmezett x_0 egy jobboldali (baloldali) környezetében
- 2) $\lim_{x\to x_0} f(x) = f(x_0) = f(\lim_{x\to x_0} x)$ "folytonos függvény, ha felcserélhető a határérték képzéssel" f(x) folytonos x_0 -ban akkor és csak akkor, ha minden $x_n\to x_0$ sorozatra $f(x_n)\to f(x_0)$ "a határérték kép a kép határértéke"
- 3) f(x) folytonos x_0 -ban akkor és csak akkor, ha minden $\epsilon > 0$ -hoz van olyan $\delta > 0$, hogy $|x x_0| < \delta$ esetén $|f(x) f(x_0)| < \epsilon$ (" $f(x_0)$ bármely $K_{f(x_0)}$ környezetében van x_0 -nak olyan K_{x_0} környezete, hogy $x \in K_{x_0}$ esetén $f(x) \in K_{f(x_0)}$ (azaz $f(K_{x_0} \subset K_{f(x_0)})$

Tétel: Ha f(x) és g(x) folytonos x_0 -ban, akkor $c^*f(x)$; f(x) +/- g(x); $f(x)^*g(x)$ is folytonos. Illetve $g(x)\neq 0$ esetén f(x)/g(x) is folytonos x_0 -ban

Féloldali illetve intervallumbeli folytonosság hasonlóan

Tétel: Közvetett függvény folytonossága

f(x) folytonos x_0 -ban és g(x) folytonos $f(x_0)$ -ban, akkor a g°f függvény folytonos x_0 -ban. Ha $x \to x_0$, akkor $g(f(x_n)) \to g(f(x_0))$, mert g folytonos $f(x_0)$ -ban és $f(x_n) \to f(x_0)$

Tétel: inverz függvény folytonossága

- a) Ha f(x) folytonos és szig mon nő [a;b]-n, akkor az f^{-1} :[f(b); f(a)] \rightarrow [a;b] is folytonos (és szig mon nő)
- b) Ha f(x) folytonos és szig mon csökkenő [a;b]-n, akkor f^{-1} :[f(b); f(a)] \rightarrow [a;b] is folytonos (és szig mon csökkenő)

Példák folytonos függvényekre:

- Konstans függvény folytonos
- f(x) = x folytonos R-en, mert $x_n \to x_0$ -hoz, $f(x_n) \to f(x_0)$
- $\sin x$; $\cos x$ folytonosak R-en, azaz $\sin (x_0) = \lim_{x \to x_0} \sin x$; $\cos (x_0) = \lim_{x \to x_0} \cos x$
 - köv: tan x folytonos, ha $x \neq (k+1/2)\pi$
 - cot x folytonos, ha $x \neq k\pi$
- |x| folytonos R-en \rightarrow ha f(x) folytonos x_0 -ban, akkor $|f(x_0)|$ is az
- $(x*\sin x)/(x^2+2)$ folytonos R-en
- ⁿ√x folytonos x ≥0 félegyenesen illetve páratlan n esetén folytonos az egész számegyenesen

Irracionális kitevős hatvány:

Tétel: Legyen x > 0; $a \in R$, $r_n \in Q$, $r_n \rightarrow a$

Akkor $\{x^m\}$ sorozat konvergens és határértéke független az $r_n \rightarrow a$ sorozat megválasztásától. Jelölés: $x^a = \lim x^m$

Az így definiált x_a függvényre teljesülő tulajdonságok:

a) x^a folytonos x > 0 félegyenesen

b)
$$x^a$$
 szig mon nő, ha $a > 0$, csökken, ha $a < 0$
 $x^{a1+a2} = x^{a1} * x^{a2}; x^{a1*a2} = (x^{a1})^{a2}; (x_1 * x_2)^a = x_1^a * x_2^a$

Tétel: Exponenciális függvény: a^x

Ha a > 0, akkor a^x folytonos az egész számegyenesen, szig mon nő, ha a > 1szig mon csökken, ha a < 1

Tétel: Logaritmus függvény

Legven a > 0; $a \ne 1$, akkor $\log_a x$ az x^a inverz függvénye, ezért $\log_a x$ folytonos és szig mon nő,

ha a > 1. szig mon csökken, ha 0 < a < 1

Spec: $\log_e x = \ln x$ (természetes logaritmus)

Nevezetes határértékek:

$$\lim_{x \to +\infty} x/a^x = 0 \quad \text{ha } a > 1$$

$$\lim_{x \to +\infty} P(x)/a^x = 0$$
, ha $a > 1$

$$n/a^n \rightarrow 0$$
 $n^k/a^n \rightarrow 0$

$$\lim_{x \to 0} (1+x)^x = \mathbf{e}$$

$$\lim_{x \to 0} (\log(1+x))/x = 1 \qquad \qquad \lim_{x \to 0} (e^x - 1)/x = 1$$

$$\lim_{x \to 0} (e^x - 1)/x = 1$$

Szakadási helyek osztályozása:

Def: Ha f nem folytonos x_0 -ban, de értelmezve van x_0 egy környezetében (kivéve esetleg az x_0 pontot), akkor f(x)-nek x₀-ban szakadása van

x₀ -beli szakadás

- a) megszűntethető, ha van véges határértéke x₀ pontban
- b) ugrás, ha léteznek féloldali határértékek, ezek végesek, de nem egyenlők, tehát létezik $\lim f(x)$ és $\lim f(x)$
- c) másodfokú szakadás, ha lim f(x) és lim f(x) közül legalább az egyik nem létezik, $x \rightarrow x_0 +$ vagy végtelen

Tétel: Ha f(x) monoton nő c egy környezetében, akkor c-ben léteznek a féloldali határértékek $\lim f(x) \le f(c) \le \lim f(x)$

Ha f(x) monoton csökkent

 $\lim f(x) \ge f(c) \ge \lim f(x)$

х→с-

Köv: Monoton függvények szakadási helye csak szakadás lehet (megszüntethető és másodfajú szakadása nem lehet)

Korlátos és zárt intervallumon folytonos függvények tulajdonságai:

Def: $f \in C[a;b]$ jelentése: f folytonos a korlátos [a;b] szakaszon

Tétel Ha $f \in C[a;b]$, akkor

- 1) f(x) korlátos (Weierstrass 1. tétele)
- 2) f(x) felveszi maximumát és minimumát, tehát létezik legnagyobb és legkisebb függvény érték (Weierstrass 2. tétele)
- 3) Az f(a) és f(b) közötti minden érték is függvényérték (Bolzano tétele)

Megj: Ha $f \in C$ [a;b], akkor az R(f) értékkészlet is korlátos zárt intervallumon

Ha az intervallum (ahol f folytonos) nem korlátos, vagy nem zárt, akkor 1); 2) nem igaz

Differenciál számítás:

Def: Legyen f(x) értelmezett a egy környezetében

Ha létezik a $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ véges határérték, akkor f(x) differenciálható a-ban, és a-beli

differenciálhányadosa (deriváltja) f'(a) = $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

Egyéb jelölés: df/dx; d/dx f

Pl. Egyenes deriváltja a meredeksége

Def: (f(x) - f(a))/(x-a) (különbségi hányados) = $\tan \alpha \rightarrow \text{iránytangens} \equiv \text{az egyenes meredeksége}$

A derivált f'(a) = $\lim_{x\to a} \tan \alpha$. tehát ha f(x) differenciálható a-ban, akkor <a;f(a)> és az <x;f(x)>

pontokon át rajzolt egyeneseknek van egy határhelyzete \rightarrow f(x) 'a' ponthoz tartozó érintőegyenese. Ennek meredeksége f '(a)

 $y = f(a) + f'(a)(x-a) \rightarrow az$ érintőegyenes egyenlete

 $\lim_{x\to a} \epsilon(x)/(x-a) = 0 \to az$ egyenes közelít egy határhelyzethez, ami érintőegyenes

Tétel: Ha f(x) differenciálható a-ban és az $\epsilon(x)$ függvényt az $f(x) = f(a) + f'(a)(x-a) + \epsilon(x)$ egyenlőséggel definiáljuk, akkor $\lim \epsilon(x)/(x-a) = 0$

Megj.: ϵ (x) sokkal kisebb (x-a)-nál, ha x közel van a-hoz, akkor $f(x) \approx f(a) + f'(a)(x-a) \to a$ hiba (x-a)-nál sokkal kisebb

Az f(x) grafikonját <a; f(a)> kis környezetében kinagyítva majdnem egyenest f(a) meredekséggel. A függvény belesimul az érintőegyenesébe

Tétel: Ha van olyan A konstans, hogy $f(x) = f(a) + A(x-a) + \varepsilon(x)$ -vel definiált $\varepsilon(x)$ függvényre $\lim \varepsilon(x)/(x-a) = 0$, akkor f(x) differenciálható a-ban és f'(a) = A

töréspontban nincs derivált, a differenciálható függvénynek folyamatosan kell haladnia

Def: Féloldali derivált

látunk.

$$f'_{+}(a) = \lim_{x \to a^{+}} (f(x) - f(a))/(x-a) \to jobb \text{ oldali derivált}$$

$$f'_{-}(a) = \lim_{x \to a^{-}} (f(x) - f(a))/(x-a) \to bal \text{ oldali derivált}$$

Tétel: f(x) differenciálható a-ban, ha jobbról és balról vett deriváltja létezik és egyenlő töréspont akkor van, ha a féloldali deriváltak léteznek, de nem egyenlők Ha f(x) jobbról ill. balról differenciálható a-ban, akkor a korábban definiált ϵ ϵ ϵ 0 (lim ϵ 0 (ϵ 1)/(ϵ 2)/(ϵ 3) ϵ 4 (ϵ 4)/(ϵ 4) ϵ 5 (ϵ 5)/(ϵ 6) ϵ 6 (ϵ 8)/(ϵ 8) ϵ 9 (ϵ 8)/(ϵ 9)/(ϵ 9) ϵ 9 (ϵ 9)/(ϵ 9)/(ϵ 9) ϵ 9 (ϵ 9)/(ϵ 9)/(ϵ 9) ϵ 9 (ϵ 9)/(ϵ

Tétel: A differenciálható függvény folytonos

Ha f(x) differenciálható (jobbról- ill. balról differenciálható) a-ban, akkor folytonos (jobbról ill. balról folytonos) a-ban

f(x) = |x| folytonos, de 0-ban nem differenciálható

Differenciálhatóság \xrightarrow{d} folytonosság

A deriválás technikája:

konstans függvény deriváltja 0

Tétel: összeg, szorzat, hányados deriválása

Ha f(x) és g(x) differenciálható x-ben, akkor c*f(x); f(x) +/- g(x); f(x)*g(x)és $g \neq 0$ esetén f(x)/g(x) is deriválható a-ban

$$(c*f)'(a) = c*f'(a)$$

 $(f+/-g)'(a) = f'(a) +/-g'(a)$
 $(f*g)'(a) = f'(a)*g(a) + f(a)*g'(a)$
 $(f/g)'(a) = [f'(a)*g(a) - f(a)*g'(a)]/g^2(a)$

f(x) = x deriváltja bármely pontban 1

$$d/d(x) x^{n} = n*x^{n-1}$$

$$d/d(x) \sin x = \cos x$$

$$d/d(x) \cos x = -\sin x$$

$$d/d(x) \tan x = 1/\cos^2 x$$
 ha $x \neq (k + \frac{1}{2})*\pi$

$$x \neq (k + \frac{1}{2})*\pi$$

$$d/d(x) \ cot \ x = -1/sin^2 \ x \qquad \qquad ha \ x \neq k*\pi$$

ha
$$x \neq k*\pi$$

$$d/d(x) \ln x = 1/x$$

$$d/d(x) \log_a x = 1/(x*\ln a)$$
 ha $x > 0$ és $0 < a \ne 1$

ha
$$x > 0$$
 és $0 < a \ne 1$

$$d/d(x) (g^{\circ}f)(a) = g'(f(a))*f'(a)$$

(a külső függvény deriváltja f(a) helyen, szorozva belső függvény deriváltja)

$$d/d(x) \ln (\sin x) = \cot x$$

Tétel: Inverz függvény deriválási szabálya

Ha f(x) szig mon (a;b)-n, $x_0 \in (a;b)$ -ben differenciálható és $f'(x_0) \neq 0$, akkor f^{-1} is differenciálható

$$y_0 = f(x_0)$$
-ban és $(f^{-1})'(y_0) = 1/f'(x_0)$, ahol $f(x_0) = y_0$

Mivel
$$x_0 = f^{-1}(y_0)$$
, ezért

Mivel
$$x_0 = f^{-1}(y_0)$$
, ezért $(f^{-1})'(y_0) = 1/[f'(f^{-1}(y_0))] \rightarrow f^{-1} = 1/(f'\circ f^{-1})$

$$d/d(x) e^x = e^x$$

 $d/d(x) e^{x} = e^{x}$ \rightarrow deriváltja saját maga

$$d/d(x) a^x = a^{x} \ln a$$
 ha $a > 0$

ha
$$a > 0$$

$$d/d(x) x^{\alpha} = \alpha * x^{\alpha-1}$$
 ha $x > 0$ és $\alpha \in R$

ha
$$x > 0$$
 és $\alpha \in R$

$$d/d(x) \sin(\cos x) = \cos(\cos x) * (-\sin x)$$