

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/54, 9/10, 15/81, 15/82, 1/16, 5/10, A01N 27/067, C12P 7/64

(11) International Publication Number: A2

WO 00/60095

(43) International Publication Date:

12 October 2000 (12.10.00)

(21) International Application Number:

PCT/EP00/02701

(22) International Filing Date:

28 March 2000 (28.03.00)

(30) Priority Data:

99106656.4 1 April 1999 (01.04.99) EP 10 June 1999 (10.06.99) EP 99111321.8 7 February 2000 (07.02.00) 60/180,687 US

(71) Applicant (for all designated States except US): BASF PLANT SCIENCE GMBH [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DAHLQVIST, Anders [SE/SE]; Hemmansvägen 2, S-244 66 Furulund (SE). STAHL, Ulf [SE/SE]; Liliegatan 7b, S-753 24 Uppsala (SE). LENMAN, Marit [SE/SE]; Revingegatan 13a, S-223 59 Lund (SE). BANAS, Antoni [SE/PL]; Wiolinowa 14, PL-08110 Siedlce (PL). RONNE, Hans [SE/SE]; Dirigentvägen 169, S-756 54 Uppsala (SE). STYMNE, Sten [SE/SE]; Torrlösa 1380, S-269 90 Svalöv (SE).
- (74) Agent: FITZNER, Uwe; Lintorfer Str. 10, D-40878 Ratingen (DE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

(57) Abstract

The present invention relates to the isolation, identification and characterization of nucleotide sequences encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, to the said enzymes and a process for the production of triacylglycerols.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	(E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
· CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
					-		

A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

- The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding enzymes catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.
- Triacylglycerol (TAG) is the most common lipid-based energy reserve in nature. The main pathway for synthesis of TAG is believed to involve three sequential acyl-transfers from acyl-CoA to a glycerol backbone (1, 2). For many years, acyl-CoA: diacylglycerol acyltransferase (DAGAT), which catalyzes the third acyl transfer reaction, was thought to be the only unique enzyme involved in TAG synthesis. It acts by diverting diacylglycerol (DAG) from membrane lipid synthesis into TAG (2). Genes encoding this enzyme were recently identified both in the mouse (3) and in plants (4, 5), and the encoded proteins were shown to be homologous to acyl-CoA: cholesterol acyltransferase (ACAT). It was also recently reported that another DAGAT exists in the oleaginous fungus Mortierella ramanniana, which is unrelated to the mouse DAGAT, the ACAT gene family or to any other known gene (6).

The instant invention relates to novel type of enzymes and their encoding genes for transformation. More specifically, the invention relates to use of a type of genes encoding a not previously described type of enzymes hereinafter designated phospholipid:diacylglycerol acyltransferases (PDAT), whereby this enzyme catalyses an acyl-CoA-independent reaction. The said type of genes expressed alone in transgenic organisms will enhance the total amount of oil (triacylglycerols) produced in the cells. The PDAT genes, in combination with a gene for the synthesis of an uncommon fatty acid will, when expressed in transgenic organisms, enhance the levels of the uncommon fatty acids in the triacylglycerols.

25

10

15

20

25

30

• 1)

There is considerable interest world-wide in producing chemical feedstock, such as fatty acids, for industrial use from renewable plant resources rather than non-renewable petrochemicals. This concept has broad appeal to manufacturers and consumers on the basis of resource conservation and provides significant opportunity to develop new industrial crops for agriculture.

There is a diverse array of unusual fatty acids in oils from wild plant species and these have been well characterised. Many of these acids have industrial potential and this has led to interest in domesticating relevant plant species to enable agricultural production of particular fatty acids.

Development in genetic engineering technologies combined with greater understanding of the biosynthesis of unusual fatty acids now makes it possible to transfer genes coding for key enzymes involved in the synthesis of a particular fatty acid from a wild species into domesticated oilseed crops. In this way individual fatty acids can be produced in high purity and quantities at moderate costs.

In all crops like rape, sunflower, oilpalm etc., the oil (i.e. triacylglycerols) is the most valuable product of the seeds or fruits and other compounds like starch, protein, and fibre is regarded as by-products with less value. Enhancing the quantity of oil per weight basis at the expense of other compounds in oil crops would therefore increase the value of crop. If genes, regulating the allocation of reduced carbon into the production of oil can be up-regulated, the cells will accumulate more oil on the expense of other products. Such genes might not only be used in already high oil producing cells, such as oil crops, but could also induce significant oil production in moderate or low oil containing crops such as e.g. soy, oat, maize, potato, sugarbeats, and turnips as well as in micro-organisms.

• h

Summary of the invention

Many of the unusual fatty acids of interest, e.g. medium chain fatty acids, hydroxy fatty acids, epoxy fatty acids and acetylenic fatty acids, have physical properties that are distinctly different from the common plant fatty acids. The present inventors have found that, in plant species naturally accumulating these uncommon fatty acids in their seed oil (i.e. triacylglycerol), these acids are absent, or present in very low amounts in the membrane (phospho)lipids of the seed. The low concentration of these acids in the membrane lipids is most likely a prerequisite for proper membrane function and thereby for proper cell functions. One aspect of the invention is that seeds of transgenic crops can be made to accumulate high amounts of uncommon fatty acids if these fatty acids are efficiently removed from the membrane lipids and channelled into seed triacylglycerols.

15

20

25

30

10

5

The inventors have identified a novel class of enzymes in plants catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the production of triacylglycerol through an acyl-CoA-independent reaction and that these enzymes (phospholipid:diacylglycerol acyltransferases, abbreviated as PDAT) are involved in the removal of hydroxylated, epoxygenated fatty acids, and probably also other uncommon fatty acids such as medium chain fatty acids, from phospholipids in plants.

This enzyme reaction was shown to be present in microsomal preparations from baker's yeast (*Saccharomyces cerevisiae*). The instant invention further pertains to an enzyme comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof. A so called ,knock out' yeast mutant, disrupted in the respective gene was obtained and microsomal membranes from the mutant was shown to totally lack PDAT activity. Thus, it was proved that the disrupted gene encodes a PDAT enzyme (SEQ ID NO. 1 and 2). Furtherm, this PDAT enzyme is

15

20

25

30

characterized through the amino acid sequence as set forth in SEQ ID NO 2 containing a lipase motif of the conserved sequence string FXKWVEA.

The instant invention pertains further to an enzyme comprising an amino acid sequence as set forth in SEQ ID NO. 1a, 2b or 5a or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

Further genes and/or proteins of so far unknown function were identified and are contemplated within the scope of the instant invention. A gene from Schizosaccharomyces pombe, SPBC776.14 (SEQ ID. NO. 3), a putative open reading frame CAA22887 of the SPBC776.14 (SEQ ID NO. 13) were identified.

Further Arabidopsis thaliana genomic sequences (SEQ ID NO. 4, 10 and 11) coding for putative proteins were identified, as well as a putative open reading frame AAC80628 from the A. thaliana locus AC 004557 (SEQ ID NO. 14) and a putative open reading frame AAD10668 from the A. thaliana locus AC 003027 (SEQ ID NO. 15) were identified.

Also, a partially sequenced cDNA clone from Neurospora crassa (SEQ ID NO. 9) and a Zea mays EST (Extended Sequence Tac) clone (SEQ ID NO. 7) and corresponding putative amino acid sequence (SEQ ID NO. 8) were identified. Finally, two cDNA clones were identified, one Arabidopsis thaliana EST (SEQ ID NO. 5 and corresponding predicted amino acid sequence SEQ ID NO. 6) and a Lycopersicon esculentum EST clone (SEQ ID NO. 12) were identified. Further, enzymes designated as PDAT comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO 2a, 3a, 5b, 6 or 7b containing a lipase motif FXKWVEA are contemplated within the scope of the invention. Moreover, an enzyme comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence are included within the scope of the invention.

•)

5

10

15

20

25

30

A functional fragment of the instant enzyme is understood to be any polypeptide sequence which shows specific enzyme activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the functional fragment can for example vary in a range from about 660 ± 10 amino acids to 660 ± 250 amino acids, preferably from about 660 ± 50 to 660 ± 100 amino acids, whereby the "basic number" of 660 amino acids corresponds in this case to the polypeptide chain of the PDAT enzyme of SEQ ID NO. 2 encoded by a nucleotide sequence according to SEQ ID NO. 1. Consequently, the "basic number" of functional fullength enzyme can vary in correspondance to the encoding nucleotide sequence.

5

A portion of the instant nucleotide sequence is meant to be any nucleotide sequence encoding a polypeptid which shows specific activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the nucleotide portion can vary in a wide range of about several hundreds of nucleotides based upon the coding region of the gene or a highly conserved sequence. For example the length varies in a range form about 1900 ± 10 to 1900 ± 1000 nucleotides, preferably form about 1900 ± 50 to 1900 ± 700 and more preferably form about 1900 ± 100 to 1900 ± 500 nucleotides, whereby the "basic number" of 1900 nucleotides corresponds in this case to the encoding nucleotide sequence of the PDAT enzyme of SEQ ID NO. 1. Consequently, the "basic number" of functional fullength gene can vary.

An allelic variant of the instant nucleotide sequence is understood to be any different nucleotide sequence which encodes a polypeptide with a functionally equivalent function. The alleles pertain naturally occurring variants of the instant nucleotide sequences as well as synthetic nucleotide sequences produced by methods known in the art. Contemplated are even altered nucleotide sequences which result in an enzyme with altered activity and/or regulation or which is resistant against specific inhibitors. The instant invention further includes natural or synthetic mutations of the originally isolated nucleotide

sequences. These mutations can be substitution, addition, deletion, inversion or insertion of one or more nucleotides.

A homologous nucleotide sequence is understood to be a complementary sequence and/or a sequence which specifically hybridizes with the instant nucleotide sequence. Hybridizing sequences include similar sequences selected from the group of DNA or RNA which specifically interact to the instant nucleotide sequences under at least moderate stringency conditions which are known in the art. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. This further includes short nucleotide sequences of e.g. 10 to 30 nucleotides, preferably 12 to 15 nucleotides. Included are also primer or hybridization probes.

15

20

25

30

5

10

A homologous nucleotide sequence included within the scope of the instant invention is a sequence which is at least about 40%, preferably at least about 50 % or 60%, and more preferably at least about 70%, 80% or 90% and most preferably at least about 95%, 96%, 97%, 98% or 99% or more homologous to a nucleotide sequence of SEQ ID NO. 1.

All of the aforementioned definitions are true for amino acid sequences and functional enzymes and can easily transferred by a person skilled in the art.

Isoenzymes are understood to be enzymes which have the same or a similar substrate specifity and/or catalytic activity but a different primary structure.

In a first embodiment, this invention is directed to nucleic acid sequences that encode a PDAT. This includes sequences that encode biologically active PDATs as well as sequences that are to be used as probes, vectors for transformation or cloning intermediates. The PDAT encoding sequence may

#1

encode a complete or partial sequence depending upon the intended use. All or a portion of the genomic sequence, cDNA sequence, precursor PDAT or mature PDAT is intended.

Further included is a nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 9b, 10, 10b or 11 or a portion, derivate, allele or homolog thereof. The invention pertains a partial nucleotide sequence corresponding to a fullength nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 5, 5b, 6b, 7, 8b, 9, 11b or 12 or a portion, derivate, allele or homolog thereof. Moreover, a nucleotide sequence comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 is contemplated within the scope of the invention.

15

20

25

30

The instant invention pertains to a gene construct comprising a said nucleotide sequences of the instant invention which is operably linked to a heterologous nucleic acid.

The term operably linked means a serial organisation e.g. of a promotor, coding sequence, terminator and/or further regulatory elements whereby each element can fulfill its original function during expression of the nucleotide sequence.

Further, a vector comprising of a said nucleotide sequence of the instant invention is contemplated in the instant invention. This includes also an expression vector as well as a vector further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell and/or the integration into the genome of the host cell.

In a different aspect, this invention relates to a method for producing a PDAT in a host cell or progeny thereof, including genetically engineered oil seeds, yeast and moulds or any other oil accumulating organism, via the expression of a construct in the cell. Cells containing a PDAT as a result of the production of the PDAT encoding sequence are also contemplated within the scope of the invention.

Further, the invention pertains a transgenic cell or organism containing a said nucleotide sequence and/or a said gene construct and/or a said vector. The object of the instant invention is further a transgenic cell or organism which is an eucaryotic cell or organism. Preferably, the transgenic cell or organism is a yeast cell or a plant cell or a plant. The instant invention further pertains said transgenic cell or organism having an altered biosynthetic pathway for the production of triacylglycerol. A transgenic cell or organism having an altered oil content is also contemplated within the scope of this invention.

Further, the invention pertains a transgenic cell or organism wherein the activity of PDAT is altered in said cell or organism. This altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme. Moreover, a transgenic cell or organism is included in the instant invention, wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.

15

20

In a different embodiment, this invention also relates to methods of using a DNA sequence encoding a PDAT for increasing the oil-content within a cell.

Another aspect of the invention relates to the accommodation of high amounts of uncomman fatty acids in the triacylglycerol produced within a cell, by introducing a DNA sequence producing a PDAT that specifically removes these fatty acids from the membrane lipids of the cell and channel them into triacylglycerol. Plant cells having such a modification are also contemplated herein.

•)

Further, the invention pertains a process for the production of triacylglycerol, comprising growing a said transgenic cell or organism under conditions whereby the said nucleotide sequence is expressed and whereby the said transgenic cells comprising a said enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol forming triacylglycerol.

Moreover, triacylglycerols produced by the aforementioned process are included in scope of the instant invention.

Object of the instant invention is further the use of an instant nucleotide sequence and/or a said enzyme for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids. The use of a said instant nucleotide sequence and/or a said enzyme of the instant invention for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism is also contemplated within the scope of the instant invention.

A PDAT of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide fragment obtainable from a microorganism, animal or plant source that demonstrates the ability to catalyse the production of triacylglycerol from a phospholipid and diacylglycerol under enzyme reactive conditions. By "enzyme reactive conditions" is meant that any necessary conditions are available in an environment (e.g., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

25

30

20

Other PDATs are obtainable from the specific sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic PDATs, including modified amino acid sequences and starting materials for synthetic-protein modelling from the examplified PDATs and from PDATs which are obtained through the use of such examplified sequences. Modified amino acid sequences include sequences that have been mutated, truncated,

4)

increased and the like, whether such sequences were partially or wholly synthesised. Sequences that are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

Further, the nucleic acid probes (DNA and RNA) of the present invention can be used to screen and recover "homologous" or "related" PDATs from a variety of plant and microbial sources.

10

5

Further, it is also apparent that a person skilled in the art can, with the information provided in this application, in any organism identify a PDAT activity, purify an enzyme with this activity and thereby identify a "non-homologous" nucleic acid sequence encoding such an enzyme.

15

20

25

30

The present invention can be essentially characterized by the following aspects:

- 1. Use of a PDAT gene (genomic clone or cDNA) for transformation.
- Use of a DNA molecule according to item 1 wherein said DNA is used for transformation of any organism in order to be expressed in this organism and result in an active recombinant PDAT enzyme in order to increase oil content of the organism.
 - Use of a DNA molecule of item 1 wherein said DNA is used for transformation of any organism in order to prevent the accumulation of undesirable fatty acids in the membrane lipids.
 - 4. Use according to item 1, wherein said PDAT gene is used for transforming transgenic oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, such as medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.

15

- 5. Use according to item 1, wherein said PDAT gene is used for transforming organisms, and wherein said organisms are crossed with other oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
- 6. Use according to item 1, wherein the enzyme encoded by said PDAT gene or cDNA is coding for a PDAT with distinct acyl specificity.
- 7. Use according to item 1 wherein said PDAT encoding gene or cDNA, is derived from *Saccharomyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 30% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
 - 8. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 40% or more *identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
 - Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 60% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
 - 10. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 80% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 25 11. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from plants or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence of PDAT from *Arabidopsis thaliana* or to the protein encoded by the fullength counterpart of the partial Zea mays, Lycopericon esculentum, or Neurospora crassa cDNA clones.

- 12. Transgenic oil accumulating organisms comprising, in their genome, a PDAT gene transferred by recombinant DNA technology or somatic hybridization.
- 13. Transgenic oil accumulating organisms according to item 12 comprising, in their genome, a PDAT gene having specificity for substrates with a particular uncommon fatty acid and the gene for said uncommon fatty acid.
- 14. Transgenic organisms according to item 12 or 13 which are selected from the group consisting of fungi, plants and animals.
- 15. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants.
- 16. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a storage organ specific promotor.
- 17. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a seed promotor.
 - 18. Oils from organisms according to item 12 17.

10

15

- 19. A method for altering acyl specificity of a PDAT by alteration of the nucleotide sequence of a naturally occurring encoding gene and as a consequence of this alternation creating a gene encoding for an enzyme with novel acyl specifity.
- 20. A protein encoded by a DNA molecule according to item 1 or a functional fragment thereof.
- 21. A protein of item 20 designated phospholipid:diacylglycerol acyltransferase.
- 25 22. A protein of item 21 which has a distinct acyl specificity.
 - 23. A protein of item 13 having the amino acid sequence as set forth in SEQ, ID NO. 2, 13, 14 or 15 (and the proteins encoded by the fullength or partial genes set forth in SEQ. ID. NO. 1, 3, 4, 5, 7, 9, 10, 11 or 12) or an amino acid sequence with at least 30 % homology to said amino acid sequence.
- 24. A protein of item 23 isolated from Saccharomyces cereviseae.

General methods:

(پ

5

10

15

20

25

30

Yeast strains and plasmids. The wild type yeast strains used were either FY1679 (MATα his3-Δ200 leu2-Δ1 trp1-Δ6 ura3-52) or W303-1A (MATa ADE2-1 can1-100 his3-11.15 leu2-3,112 trp1-1 ura3-1) (7). The YNR008w::KanMX2 disruption strain FVKT004-04C(AL), which is congenic to FY1679, was obtained from the Euroscarf collection (8). A 2751 bp fragment containing the YNR008w gene with 583 bp of 5' and 183 bp of 3' flanking DNA was amplified with 5'-W303-1A genomic DNA usina Tag polymerase from TCTCCATCTTCTGCAAAACCT-3' and 5'-CCTGTCAAAAACCTTCTCCTC-3' as primers. The resulting PCR product was purified by agarose gel electrophoresis and cloned into the EcoRV site of pBluescript (pbluescript-pdat). For complementation experiments, the cloned fragment was released from pBluescript by HindIII-SacI digestion and then cloned between the HindIII and SacI sites of pFL39 (9), thus generating pUS1. For overexpression of the PDAT gene, a 2202 bp EcoRI fragment from the pBluscript plasmid which contains only 24 bp of 5' flanking DNA was cloned into the BamHI site of the GAL1-TPK2 expression vector pJN92 (12), thus generating pUS4.

Microsomal preparations. Microsomes from developing seeds of sunflower (Helianthus annuus), Ricinus communis and Crepis palaestina were prepared using the procedure of Stobart and Stymne (11). To obtain yeast microsomes, 1g of yeast cells (fresh weight) was re-suspended in 8 ml of ice-cold buffer (20 mM Tris-Cl, pH 7.9, 10 mM MgCl₂, 1 mM EDTA, 5 % (v/v) glycerol, 1 mM DTT, 0.3 M ammonium sulfate) in a 12 ml glass tube. To this tube, 4 ml of glass beads (diameter 0.45-0.5 mm) were added, and the tube was then heavily shaken (3 x 60 s) in an MSK cell homogenizer (B. Braun Melsungen AG, Germany). The homogenized suspension was centrifuged at 20,000 x g for 15 min at 6°C and the resulting supernatant was again centrifuged at 100,000 x g for 2 h at 6°C. The 100,000 x g pellet was resuspended in 0.1 M potassium

4)

phosphate (pH 7.2), and stored at -80°C. It is subsequently referred to as the crude yeast microsomal fraction.

Lipid substrates. Radio-labeled ricinoleic (12-hydroxy-9-octadecenoic) and vernolic (12,13-epoxy-9-octadecenoic) acids were synthesized enzymatically from [1-14C]oleic acid and [1-14C]linoleic acid, respectively, by incubation with microsomal preparations from seeds of Ricinus communis and Crepis palaestina, respectively (12). The synthesis of phosphatidylcholines (PC) or phosphatidylethanolamines (PE) with ¹⁴C-labeled acyl groups in the sn-2 position was performed using either enzymatic (13), or synthetic (14) acylation of [14Cloleic, [14Clricinoleic, or [14Clvernolic acid. Dioleoyl-PC that was labeled in the sn-1 position was synthesized from sn-1-[14C]oleoyl-lyso-PC and unlabeled oleic acid as described in (14). Sn-1-oleoyl-sn-2-[14C]ricinoleoyl-DAG was synthesized from PC by the action of phospholipase C type XI from B. Cereus (Sigma Chemical Co.) as described in (15). Monovernoloyl- and divernolecyl-DAG were synthesized from TAG extracted from seeds of Euphorbia lagascae, using the TAG-lipase (Rizhopus arrhizus, Sigma Chemical Co.) as previously described (16). Monoricinoleoyl-TAG was synthesized according to the same method using TAG extracted from Castor bean.

20

25

30

15

10

Lipid analysis. Total lipid composition of yeast were determined from cells harvested from a 40 ml liquid culture, broken in a glass-bead shaker and extracted into chloroform as described by Bligh and Dyer (17), and then separated by thin layer chromatography in hexane/diethylether/acetic acid (80:20:1) using pre-coated silica gel 60 plates (Merck). The lipid areas were located by brief exposure to I₂ vapors and identified by means of appropriate standards. Polar lipids, sterol-esters and triacylglycerols, as well as the remaining minor lipid classes, referred to as other lipids, were excised from the plates. Fatty acid methylesters were prepared by heating the dry excised material at 85 °C for 60 min in 2% (v/v) sulfuric acid in dry methanol. The methyl esters were extracted with hexane and analyzed by GLC through a 50 m

x 0.32 mm CP-Wax58-CB fused-silica column (Chrompack), with methylheptadecanoic acid as an internal standard. The fatty acid content of each fraction was quantified and used to calculate the relative amount of each lipid class. In order to determine the total lipid content, 3 ml aliquots from yeast cultures were harvested by centrifugation and the resulting pellets were washed with distilled water and lyophilized. The weight of the dried cells was determined and the fatty acid content was quantified by GLC-analyses after conversion to methylesters as described above. The lipid content was then calculated as nmol fatty acid (FA) per mg dry weight yeast.

10

15

20

25

30

5

Enzyme assays. Aliquots of crude microsomal fractions (corresponding to 10 nmol of microsomal PC) from developing plant seeds or yeast cells were lyophilized over night. ¹⁴C-Labeled substrate lipids dissolved in benzene were then added to the dried microsomes. The benzene was evaporated under a stream of N₂, leaving the lipids in direct contact with the membranes, and 0.1 ml of 50 mM potassium phosphate (pH 7.2) was added. The suspension was thoroughly mixed and incubated at 30°C for the time period indicated, up to 90 min. Lipids were extracted from the reaction mixture using chloroform and separated by thin layer chromatography in hexane/diethylether/acetic acid (35:70:1.5) using silica gel 60 plates (Merck). The radioactive lipids were visualized and quantified on the plates by electronic autoradiography (Instant Imager, Packard, US).

<u>Yeast cultivation.</u> Yeast cells were grown at 28°C on a rotatory shaker in liquid YPD medium (1% yeast extract, 2% peptone, 2% glucose), synthetic medium (18) containing 2% (v/v) glycerol and 2% (v/v) ethanol, or minimal medium (19) containing 16 g/l of glycerol.

The instant invention is further characterized by the following examples which are not limiting:

10

15

20

25

30

4)

Acyl-CoA-independent synthesis of TAG by oil seed microsomes. A large number of unusual fatty acids can be found in oil seeds (20). Many of these fatty acids, such as ricinoleic (21) and vernolic acids (22), are synthesized using phosphatidylcholin (PC) with oleoyl or linoleoyl groups esterified to the sn-2 position, respectively, as the immediate precursor. However, even though PC can be a substrate for unusual fatty acid synthesis and is the major membrane lipids in seeds, unusual fatty acids are rarely found in the membranes. Instead, they are mainly incorporated into the TAG. A mechanism for efficient and selective transfer of these unusual acyl groups from PC into TAG must therefore exist in oil seeds that accumulate such unusual fatty acids. This transfer reaction was biochemically characterized in seeds from castor bean (Ricinus communis) and Crepis palaestina, plants which accumulate high levels of ricinoleic and vernolic acid, respectively, and sunflower (Helianthus annuus), a plant which has only common fatty acids in its seed oil. Crude microsomal fractions from developing seeds were incubated with PC having ¹⁴C-labeled oleoyl, ricinoleoyl or vernoloyl groups at the *sn-*2 position. After the incubation, lipids were extracted and analyzed by thin layer chromatography. We found that the amount of radioactivity that was incorporated into the neutral lipid fraction increased linearly over a period of 4 hours (data not shown). The distribution of [14C]acyl groups within the neutral lipid fraction was analyzed after 80 min (Fig. 1). Interestingly the amount and distribution of radioactivity between diffferent neutral lipids were strongly dependent both on the plant species and on the type of [14C]acyl chain. Thus, sunflower microsomes incorporated most of the label into DAG, regardless of the type of [14Clacyl group. In contrast, R. communis microsomes preferentially incorporated [14C]ricinoleoyl and [14C]vernoloyl groups into TAG, while [14C]oleyl groups mostly were found in DAG. C. palaestina microsomes, finally, incorporated only [14C]vernolyol groups into TAG, with [14C]ricinoleyl groups being found mostly as free fatty acids, and 114Clolevi groups in DAG. This shows that the high in vivo levels of ricinoleic acid and vernolic acid in the TAG pool of R. communis

15

20

25

30

4)

and *C. palaestina*, respectively, can be explained by an efficient and selective transfer of the corresponding acyl groups from PC to TAG in these organisms.

The in-vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean is summarized in table 1.

<u>PDAT: a novel enzyme that catalyzes acyl-CoA independent synthesis of TAG.</u> It was investigated if DAG could serve both as an acyl donor as well as an acyl acceptor in the reactions catalyzed by the oil seed microsomes. Therefore, unlabeled divernoloyl-DAG was incubated with either *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-DAG or *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-PC in the presence of *R. communis* microsomes. The synthesis of TAG molecules containing both [¹⁴C]ricinoleoyl and vernoloyl groups was 5 fold higher when [¹⁴C]ricinoleoyl-PC served as acyl donor as compared to [¹⁴C]ricinoleoyl-DAG (fig.1B). These data strongly suggests that PC is the immediate acyl donor and DAG the acyl acceptor in the acyl-CoA-independent formation of TAG by oil seed microsomes. Therefore, this reaction is catalyzed by a new enzyme which we call phospholipid : diacylglycerol acyltransferase (PDAT).

<u>PDAT activity in yeast microsomes.</u> Wild type yeast cells were cultivated under conditions where TAG synthesis is induced. Microsomal membranes were prepared from these cells and incubated with *sn*-2-[¹⁴C]-ricinoleoyl-PC and DAG and the ¹⁴C-labeled products formed were analyzed. The PC-derived [¹⁴C]ricinoleoyl groups within the neutral lipid fraction mainly were found in free fatty acids or TAG, and also that the amount of TAG synthesized was dependent on the amount of DAG that was added to the reaction (Fig.2). The *in vitro* synthesis of TAG containing both ricinoleoyl and vernoloyl groups, a TAG species not present *in vivo*, from exogenous added *sn*-2-[¹⁴C]ricinoleoyl-PC and unlabelled vernoloyl-DAG (Fig. 2, lane 3) clearly demonstrates the existence of an acyl-CoA-independent synthesis of TAG involving PC and DAG as

substrates in yeast microsomal membranes. Consequently, TAG synthesis in yeast can be catalyzed by an enzyme similar to the PDAT found in plants.

The PDAT encoding gene in yeast.

4)

5

10

15

20

25

30

A gene in the yeast genome (YNR008w) is known, but nothing is known about the function of YNR008w, except that the gene is not essential for growth under normal circumstances. Microsomal membranes were prepared from the yeast strain FVKT004-04C(AL) (8) in which this gene with unknown function had been disrupted. PDAT activity in the microsomes were assayed using PC with radiolabelled fatty acids at the sn-2 position. The activity was found to be completely absent in the disruption strain (Fig. 2 lane 4). Significantly, the activity could be partially restored by the presence of YNR008w on the single plasmid pUS1 (Fig. 2 lane 5). Moreover, acyl CODY phosphatidylethanolamine (PE) were efficiently incorporated into TAG by microsomes from the wild type strain whereas no incorporation occured from this substrate in the mutant strain (data not shown). This shows that YNR008w encodes a yeast PDAT which catalyzes the transfer of an acyl group from the sn-2 position of phospholipids to DAG, thus forming TAG. It should be noted that no cholesterol esters were formed from radioactive PC even in incubations with added ergosterols, nor were the amount of radioactive free fatty acids formed from PC affected by disruption of the YNR008w gene (data not shown). This demonstrates that yeast PDAT do not have cholesterol ester synthesising or phospholipase activities.

Increased TAG content in yeast cells that overexpress PDAT. The effect of overexpressing the PDAT-encoding gene was studied by transforming a wild type yeast strain with the pUS4 plasmid in which the gene is expressed from the galactose-induced GAL1:TPK2 promoter. Cells containing the empty expression vector were used as a control. The cells were grown in synthetic glycerol-ethanol medium, and expression of the gene was induced after either 2 hours (early log phase) or 25 hours (stationary phase) by the addition of

20

25

30

€1

galactose. The cells were then incubated for another 21 hours, after which they were harvested and assays were performed. We found that overexpression of PDAT had no significant effect on the growth rate as determined by the optical density. However, the total lipid content, measured as µmol fatty acids per mg yeast dry weight, was 47% (log phase) or 29% (stationary phase) higher in the PDAT overexpressing strain than in the control. Furthermore, the polar lipid and sterolester content was unaffected by overexpression of PDAT. Instead, the elevated lipid content in these cells is entirely due to an increased TAG content (Fig. 3A,B). Thus, the amount of TAG was increased by 2-fold in PDAT overexpressing early log phase cells and by 40% in stationary phase cells. It is interesting to note that a significant increase in the TAG content was achieved by overexpressing PDAT even under conditions (i.e. in stationary phase) where DAGAT is induced and thus contributes significantly to TAG synthesis. In vitro PDAT activity assayed in microsomes from the PDAT overexpressing strain was 7-fold higher than in the control strain, a finding which is consistent with the increased levels of TAG that we observed in vivo (Fig. 3C). These results clearly demonstrate the potential use of the PDAT gene in increasing the oil content in transgenic organisms.

<u>Substrate specificity of yeast PDAT.</u> The substrate specificity of yeast PDAT was analyzed using microsomes prepared from the PDAT overexpressing strain (see Fig. 4). The rate of TAG synthesis, under conditions given in figure 4 with di-oleoyl-PC as the acyl-donor, was 0.15 nmol per min and mg protein. With both oleoyl groups of PC labeled it was possible, under the given assay conditions, to detect the transfer of 11 pmol/min of [¹⁴C]oleoyl chain into TAG and the formation of 15 pmol/min of lyso-PC. In microsomes from the PDAT-deficient strain, no TAG at all and only trace amounts of lyso-PC was detected, strongly suggesting that yeast PDAT catalyses the formation of equimolar amounts of TAG and lyso-PC when supplied with PC and DAG as substrates. The fact that somewhat more lyso-PC than TAG is formed can be

10

15

20

25

30

4)

explained by the presence of a phospholipase in yeast microsomes, which produces lyso-PC and unesterified fatty acids from PC.

The specificity of yeast PDAT for different acyl group positions was investigated by incubating the microsomes with di-oleoyl-PC carrying a [14Clacyl group either at the sn-1 position (Fig. 4A bar 2) or the sn-2 position (Fig. 4A bar 3). We found that the major ¹⁴C-labeled product formed in the former case was lyso-PC, and in the latter case TAG. We conclude that yeast PDAT has a specificity for the transfer of acyl groups from the sn-2 position of the phospholipid to DAG, thus forming sn-1-lyso-PC and TAG. Under the given assay conditions, trace amounts of ¹⁴C-labelled DAG is formed from the sn-1 reversible action of a CDP-choline : by the labeled PC phosphotransferase. This labeled DAG can then be further converted into TAG by the PDAT activity. It is therefore not possible to distinguish whether the minor amounts of labeled TAG that is formed in the presence of di-oleoyl-PC carrying a [14C]acyl group in the sn-1 position, is synthesized directly from the sn-1-labeled PC by a PDAT that also can act on the sn-1 postion, or if it is first converted to sn-1-labeled DAG and then acylated by a PDAT with strict selectivity for the transfer of acyl groups at the sn-2 position of PC. Taken together, this shows that the PDAT encoded by YNR008w catalyses an acyl transfer from the sn-2 position of PC to DAG, thus causing the formation of TAG and lyso-PC.

The substrate specificity of yeast PDAT was further analyzed with respect to the headgroup of the acyl donor, the acyl group transferred and the acyl chains of the acceptor DAG molecule. The two major membrane lipids of *S. cerevisiae* are PC and PE, and as shown in Fig. 4B (bars 1 and 2), dioleoyl-PE is nearly 4-fold more efficient than dioleoyl-PC as acyl donor in the PDAT-catalyzed reaction. Moreover, the rate of acyl transfer is strongly dependent on the type of acyl group that is transferred. Thus, a ricinoleoyl group at the *sn*-2 position of PC is 2.5 times more efficiently transferred into TAG than an oleoyl

group in the same position (Fig. 4B bars 1 and 3). In contrast, yeast PDAT has no preference for the transfer of vernoloyl groups over oleoyl groups (Fig. 4B bars 1 and 4). The acyl chain of the acceptor DAG molecule also affects the efficiency of the reaction. Thus, DAG with a ricinoleoyl or a vernoloyl group is a more efficient acyl acceptor than dioleoyl-DAG (Fig. 4B bars 1, 5 and 6). Taken together, these results clearly show that the efficiency of the PDAT-catalyzed acyl transfer is strongly dependent on the properties of the substrate lipids.

5

10

15

20

25

30

PDAT genes. Nucleotide and amino acid sequences of several PDAT genes are given as SEQ ID No. 1 through 15. Futher provisional and/or partial sequences are given as SEQ ID NO 1a through 5a and 1b through 11b, respectively. One of the Arabidopsis genomic sequences (SEQ ID NO. 4) identified an Arabidopsis EST cDNA clone; T04806. This cDNA clone was fully characterised and the nucleotide sequence is given as SEQ ID NO. 5. Based on the sequence homology of the T04806 cDNA and the Arabidopsis thaliana genomic DNA sequence (SEQ ID NO 4) it is apparent that an additional A is present at position 417 in the cDNA clone (data not shown). Excluding this nucleotide would give the amino acid sequence depicted in SEQ ID NO. 12.

<u>Increased TAG content in seeds of Arabidopsis thaliana that express the yeast PDAT.</u> For the expression of the yeast PDAT gene in *Arabidopsis thaliana* an EcoRI fragment from the pBluescript-PDAT was cloned together with napin promotor (25) into the vector pGPTV-KAN (26). A plasmid (pGNapPDAT) having the yeast PDAT gene in the correct orientation was identified and transformed into *Agrobacterium tumefaciens*. These bacteria were used to transform *Arabidopsis thaliana* columbia (C-24) plants using the root transformation method (27). Plants transformed with an empty vector were used as controls.

First generation seeds (T1) were harvested and germinated on kanamycin containing medium. Second generation seeds (T2) were pooled from individual plants and their fatty acid contents analysed by quantification of their methyl

WO 00/60095 22 PCT/EP00/02701

esthers by gas liquid chromatography after methylation of the seeds with 2% sulphuric acid in methanol at 85 °C for 1,5 hours. Quantification was done with heptadecanoic acid methyl esters as internal standard.

From the transformation with pGNapPDAT one T1 plant (26-14) gave raise to seven T2 plants of which 3 plants yielded seeds with statistically (in a mean difference two-sided test) higher oil content than seeds from T2 plants generated from T1 plant 32-4 transformed with an empty vector (table 2).

References cited in the description:

5

20

- 1. Bell, R. M. & Coleman, R. A. (1980) Annu. Rev. Biochem. 49, 459-487.
- 2. Stymne, S. & Stobart, K. (1987) in *The biochemistry of plants: a comprehensive treatsie, Vol. 9*, ed. Stumpf, P. K. (Academic Press, New York), pp. 175-214.
 - 3. Cases, S. et al. (1998) Proc. Natl. Acad. Sci. U S A 95, 13018-13023.
 - 4. Hobbs, D. H., Lu, C. & Hills, M. J. (1999) FEBS Lett. 452, 145-9
- 5. Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. & Taylor, D. C. (1999)

 Plant J. 19, 645-653.
 - 6. Lardizabal, K., Hawkins, D., Mai, J., & Wagner, N. (1999) Abstract presented at the Biochem. Mol. Plant Fatty Acids Glycerolipids Symposium, South Lake Tahoe, USA.
 - 7. Thomas, B. J. & Rothstein, R. (1989) Cell 56, 619-630.
- 8. Entian, K.-D. & Kötter, P. (1998) Meth. Microbiol. 26, 431-449.
 - 9. Kern, L., de Montigny, J., Jund, R. & Lacroute, F. (1990) Gene 88, 149-157.
 - 10. Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) *Mol. Cell. Biol.* 11, 4876-4884.
 - 11. Stobart, K. & Stymne, S. (1990) in *Method in Plant Biochemistry, vol 4*, eds. Harwood, J. L. & Bowyer, J. R. (Academic press, London), pp. 19-46.
 - 12. Bafor, M., Smith, M. A., Jonsson, L., Stobrt, A. K. & Stymne, S. (1991) *Biochem. J.* **280**, 507-514.
 - 13. Banas, A., Johansson, I. & Stymne, S. (1992) Plant Science 84, 137-144.
 - 14. Kanda, P. & Wells, M. A. (1981) J. Lipid. Res. 22, 877-879.
- 25 15. Ståhl, U., Ek, B. & Stymne, S. (1998) Plant Physiol. 117, 197-205.
 - 16. Stobart, K., Mancha, M. & Lenman M, Dahlqvist, A. & Stymne, S. (1997) *Planta* **203**, 58-66.
 - 17. Bligh, E. G. & Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911-917.
 - 18. Sherman, F., Fink, G. R. & Hicks, J. B. (1986) in *Laboratory Course Manual for Methods in Yeast Genentics* (Cold Spring Harbor Laboratory)
 - 19. Meesters, P. A. E. P., Huijberts, G. N. M. and Eggink, G. (1996) Appl. Microbiol. Biotechnol. 45, 575-579.
 - 20. van de Loo, F. J., Fox, B. G. & Sommerville, C. (1993),in *Lipid metabolism in plants*, ed. Moore, T. S. (CRC Press, Inc.), pp. 91-126.
- 21. van de Loo, F. J., Broun, P., Turner, S. & Sommerville, S. (1995) Proc. Natl.

- Acad. Sci. U S A 95, 6743-6747.
- 22. Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P-O., Sjödahl, S., Green, A., and Stymne, S. (1998) *Science* **280**, 915-918.
- 23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997) *Nucl. Acids Res.* 24, 4876-4882.
 - 24. Saitou, N. & Nei, M. (1987) Mol. Biol. Evol. 4, 406-425.
 - 25. Stålberg, K., Ellerström, M., Josefsson, L., & Rask, L. (1993) *Plant Mol. Biol.* 23, 671
- 26. Becker, D., Kemper, E., Schell, J., Masterson, R. (1992) Plant Mol. Biol. 20, 1195
 - 27.D. Valvekens, M. Van Montagu, and Van Lusbettens (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5536

Description of Figures

FIG. 1.

5

10

15

Metabolism of 14C-labeled PC into the neutral lipid fraction by plant microsomes. (A) Microsomes from developing seeds of sunflower. R. communis and C. palaestina were incubated for 80 min at 30°C with PC (8 nmol) having oleic acid in its sn-1 position, and either ¹⁴C-labeled oleic. ricinoleic or vernolic acid in its sn-2 position. Radioactivity incorporated in TAG (open bars), DAG (solid bars), and unsterified fatty acids (hatched bars) was chromatography followed by electronic auantified usina thin laver autoradiography, and is shown as percentage of added labeled substrate. (B) Synthesis in vitro of TAG carrying two vernoloyl and one [14C]ricinoleoyl group by microsomes from R. communis. The substrates added were unlabeled divernoloyI-DAG (5 nmol), together with either sn-1-oleoyI-sn-2-[14C]ricinoleoyI-DAG (0.4 nmol, 7700 dpm/nmol) or sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC (0.4 nmol, 7700 dpm/nmol). The microsomes were incubated with the substrates for 30 min at 30°C, after which samples were removed for lipid analysis as described in the section "general methods". The data shown are the average of two experiments.

20

25

30

FIG. 2.

PDAT activity in yeast microsomes, as visualized by autoradiogram of neutral lipid products separated on TLC. Microsomal membranes (10 nmol of PC) from the wild type yeast strain FY1679 (lanes 1-3), a congenic yeast strain (FVKT004-04C(AL)) that is disrupted for YNR008w (lane 4) or the same disruption strain transformed with the plasmid pUS1, containing the YNR008w gene behind its native promotor (lane 5), were assayed for PDAT activity. As substrates, we used 2 nmol *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-PC together with either 5 nmol of dioleoyl-DAG (lanes 2, 4 and 5) or *rac*-oleoyl-vernoleoyl-DAG (lane 3). The enzymatic assay and lipid analysis was performed as described in Materials and Methods. The cells were precultured for 20 h in liquid YPD

medium, harvested and re-suspended in an equal volume of minimal medium (19) containing 16 g/l glycerol. The cells were then grown for an additional 24 h prior to being harvested. Selection for the plasmid was maintained by growing the transformed cells in synthetic medium lacking uracil (18). Abbreviations: 1-OH-TAG, monoricinoleoyl-TAG; 1-OH-1-ep-TAG, monoricinoleoyl-monovernoloyl-TAG; OH-FA, unesterified ricinoleic acid.

Fig. 3.

5

10

15

20

25

30

Lipid content (A,B) and PDAT activity (C) in PDAT overexpressing yeast cells. The PDAT gene in the plasmid pUS4 was overexpressed from the galactoseinduced GAL1-TPK2 promotor in the wild type strain W303-1A (7). Its expression was induced after (A) 2 hours or (B) 25 hours of growth by the addition of 2% final concentration (w/v) of galactose. The cells were then incubated for another 22 hours before being harvested. The amount of lipids of the harvested cells was determined by GLC-analysis of its fatty acid contents and is presented as µmol fatty acids per mg dry weight in either TAG (open bar), polar lipids (hatched bar), sterol esters (solid bar) and other lipids (striped bar). The data shown are the mean values of results with three independent yeast cultures. (C) In vitro synthesis of TAG by microsomes prepared from yeast cells containing either the empty vector (vector) or the PDAT plasmid (+ PDAT). The cells were grown as in Fig. 3A. The substrate lipids dioleoyl-DAG (2.5 nmol) and sn-1-oleoyl-sn-2-[14C]-oleoyl-PC (2 nmol) were added to aliquots of microsomes (10 nmol PC), which were then incubated for 10 min at 28 °C. The amount of label incorporated into TAG was quantified by electronic autoradiography. The results shown are the mean values of two experiments.

FIG. 4.

Substrate specificity of yeast PDAT. The PDAT activity was assayed by incubating aliquots of lyophilized microsomes (10 nmol PC) with substrate lipids at 30°C for 10 min (panel A) or 90 min (panel B). Unlabeled DAG (2.5 nmol) was used as substrates together with different labeled phospholipids, as shown

in the figure. (A) Sn-position specificity of yeast PDAT regarding the acyl donor substrate. Dioleoyl-DAG together with either sn-1-[14C]oleoyl-sn-2-[14C]oleoyl-PC (di-[14C]-PC), sn-1-[14C]oleoyl-sn-2-oleoyl-PC (sn1-[14C]-PC) or sn-1-oleoylsn-2-[14C]oleoyl-PC (sn2-[14C]-PC). (B) Specificity of yeast PDAT regarding phospholipid headgroup and of the acyl composition of the phospholipid as well as of the diacylglycerol. Dioleoyl-DAG together with either sn-1-oleoyl-sn-2-[14C]oleovi-PC (oleovi-PC), sn-1-oleovi-sn-2-[14C]oleovi-PE (oleovi-PE), sn-1oleovl-sn-2-[14C]ricinoleovl-PC (ricinoleoyl-PC) or sn-1-oleoyl-sn-2-[14C]vernoloyl-PC (vernoloyl-PC). In the experiments presented in the 2 bars to the far right, monoricinoleoyl-DAG (ricinoleoyl-DAG or mono-vernoloyl-DAG (vernoloyl-DAG) were used together with sn-1-oleoyl-sn-2-[14C]-oleoyl-PC. The label that was incorporated into TAG (solid bars) and lyso-PC (LPC, open bars) was quantified by electronic autoradiography. The results shown are the mean values of two experiments. The microsomes used were from W303-1A cells overexpressing the PDAT gene from the GAL1-TPK2 promotor, as described in Fig. 3. The expression was induced at early stationary phase and the cells were harvested after an additional 24 h.

20 TAB.1:

5

10

15

25

30

In vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean. Aliquots of microsomes (20 nmol PC) were lyophilised and substrate lipids were added in benzene solution: (A) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and where indicated 1.6 nmol unlabelled DAG; (B) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and 5 nmol unlabelled di-ricinoleoyl-PC and (C) 0.25 nmol [14C]-PC (4000 dpm/nmol) and 5 nmol unlabelled DAG. The benzene was evaporated by N₂ and 0.1 ml of 50 mM potassium phosphate was added, thoroughly mixed and incubated at 30 °C for (A) 20 min.; (B) and (C) 30 min.. Assays were terminated by extraction of the lipids in chloroform. The lipids were then separated by thin layer chromatography on silica gel 60 plates

(Merck; Darmstadt, Germany) in hexan/diethylether/acetic 35:70:1.5. The radioactive lipids were visualised and the radioactivity quantified on the plate by electronic autoradiography (Instant Imager, Packard, US). Results are presented as mean values of two experiments.

5

Radioactivity in different triacylglycerols (TAG) species formed. Abbreviations used: 1-OH-, mono-ricinoleoyl-; 2-OH, di-ricinoleoyl-; 3-OH-, triricinoleoyl; 1-OH-1-ver-, mono-ricinoleoly-monovernoleoyl-; 1-OH-2-ver-, mono-ricinoleoyl-divernoleoyl-. Radiolabelled DAG and PC were prepared enzymatically. The radiolabelled ricinoleoyl group is attached at the sn-2-position of the lipid and unlabelled oleoyl group at the sn-1-position. Unlabelled DAG with vernoleoyl- or ricinoleoyl chains were prepared by the action of TAG lipase (6) on oil of Euphorbia lagascae or Castor bean, respectively. Synthetic di-ricinoleoyl-PC was kindly provided from Metapontum Agribios (Italy).

15

20

10

TAB.2:

Total fatty acids per mg of T2 seeds pooled from individual *Arabidopsis thaliana* plants transformed with yeast PDAT gene under the control of napin promotor (26-14) or transformed with empty vector (32-4).

* = stastistical difference between control plants and PDAT transformed plants in a mean difference two-sided test at $\alpha = 5$.

Description of the SEQ ID:

SEQ ID NO. 1: Genomic DNA sequence and suggested amino acid sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, with GenBank accession number Z71623 and Y13139, and with nucleotide ID number 1302481.

SEQ ID NO. 2: The amino acid sequence of the suggested open reading frame YNR008w from Saccharomyces cerevisiae.

10 SEQ ID NO. 3: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 4: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AB006704.

15

30

- SEQ ID NO. 5: Nucleotide sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806, and nucleotide ID number 315966.
- SEQ ID NO. 6: Predicted amino acid sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806.
 - SEQ ID NO. 7: Nucleotide and amino acid sequence of the Zea mays EST clone with GenBank accession number Al491339, and nucleotide ID number 4388167.
- 25 SEQ ID NO. 8: Predicted amino acid sequence of the Zea mays EST clone with GenBank accession number Al491339, and nucleotide ID number 4388167.
 - SEQ ID NO. 9: DNA sequence of part of the Neurospora crassa EST clone W07G1, with GenBank accession number Al398644, and nucleotide ID number 4241729.

SEQ ID NO. 10: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AC004557.

SEQ ID NO. 11: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AC003027.

SEQ ID NO. 12: DNA sequence of part of the Lycopersicon esculentum cDNA clone with GenBank accession number Al486635.

10 SEQ ID NO. 13: Amino acid sequence of the Schizosaccharomyces pombe putative open reading frame CAA22887 of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 14: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAC80628 derived from the Arabidopsis thaliana locus with GenBank accession number AC004557.

SEQ ID NO 15: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAD10668 derived from the Arabidopsis thaliana locus with GenBank accession number AC003027.

Further provisional and/or partial sequences are defined through the following SEQ IDs:

25 SEQ ID NO. 1a: The amino acid sequence of the yeast ORF YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 2a: Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AC004557).

SEQ ID NO. 3a: Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AB006704).

SEQ ID NO. 4a: The corresponding genomic DNA sequence and amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae.

SEQ ID NO. 5a: The amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae derived form the corresponding genomic DNA sequence.

10

SEQ ID NO. 1b: Genomic DNA sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, genebank nucleotide ID number 1302481, and the suggested YNR008w amino acid sequence.

15

30

SEQ ID NO. 2b: The suggested amino acid sequence of the yeast gene YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 3b: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 4b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AB006704.

25 SEQ ID NO. 5b: Nucleotide sequence and the corresponding amino acid sequence of the Arabidopsis thaliana EST-clone with genebank accession number T04806, and ID number 315966.

SEQ ID NO. 6b: Nucleotide and amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 7b: Amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 8b: DNA sequence of part of the Neurospora crassa cDNA clone WO7G1, ID number 4241729.

SEQ ID NO. 9b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC004557.

10 SEQ ID NO. 10b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC003027.

SEQ ID NO. 11b: DNA sequence of part of the Lycopersicon esculentum cDNA clone with genebank accession number Al486635.

15

20

25

Claims

- 1. An enzyme catalysing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.
- 2. An enzyme according to claim 1, comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

10

20

25

- 3. An enzyme according to claims 1 or 2 designated as phospholipid:diacylglycerol acyltransferase (PDAT).
- 4. An enzyme according to claims 1 to 3, comprising an amino acid sequence as set forth in SEQ ID No. 1a, 2b or 5a or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
 - 5. An enzyme according to claims 1 to 4, comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID No. 2a, 3a, 5b, 6, 7b, 8, 13, 14 or 15 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
 - 6. An enzyme according to claims 1 to 5, comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence.
- 7. A nucleotide sequence encoding an enzyme catalysing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to

diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

- 8. A nucleotide sequence according to claim 7 encoding an enzyme designated as phospholipid:diacylglycerol acyltransferase (PDAT).
 - 9. A nucleotide sequence according to claims 7 or 8, selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 9b, 10, 10b or 11 or a portion, derivate, allele or homolog thereof.

10

10. A partial nucleotide sequence corresponding to a fullength nucleotide sequence according to claims 7 to 9, selected from the group consisting of sequences as set forth in SEQ ID No. 5, 5b, 6b, 7, 8b, 9, 11b or 12 or a portion, derivate, allele or homolog thereof.

15

11. A nucleotide sequence according to claims 7 to 10, comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12.

- 12. A gene construct comprising a nucleotide sequence according to claims 7 to 11 operably linked to a heterologous nucleic acid.
- 13. A vector comprising a nucleotide sequence according to claims 7 to 11 or a gene construct according to claim 12.
 - 14. A vector according to claim 13, which is an expression vector.
- 15. A vector according to claims 13 or 14, further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell or the integration into the genome of the host cell.

16. A transgenic cell or organism containing a nucleotide sequence according to claims 7 to 11 and/or a gene construct according to claim 12 and/or a vector according to claims 13 to 15.

5

- 17. A transgenic cell or organism according to claim 16 which is an eucaryotic cell or organism.
- 18. A transgenic cell or organism according to claims 16 or 17 which is a yeast cell or a plant cell or a plant.
 - 19. A transgenic cell or organism according to claims 16 to 18 having an altered biosynthetic pathway for the production of triacylglycerol.
- 15 20. A transgenic cell or organism according to claims 16 to 19 having an altered oil content.
 - 21. A transgenic cell or organism according to claims 16 to 20 wherein the activity of PDAT is altered.

- 22. A transgenic cell or organism according to claims 16 to 21 wherein the altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme.
- 23. A transgenic cell or organism according to claims 16 to 22 wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.
- 24. A process for the production of triacylglycerol, comprising growing a transgenic cell or organism according to claims 16 to 23 under conditions

whereby the said nucleotide sequence according to claims 7 to 11 is expressed.

- 25. Triacylglycerols produced by a process according to claim 24.
- 26. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids.
- 27. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism.

Figurs

1/6

Fig. 1:

Radioactivity in ricinoleoyl-vernoloyl-TAG (% of added)

Fig 2

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Tob 4:

			mol % of ad	mol % of added [14C] -acyl group in TAG(1)	up in TAG(1)	
Substrate added [14C]-lipId(2)	unlabeiled lipid ⁽²⁾	1-OH-TAG	2-OH-TAG	1-OH-1-ver-TAG	1-OH-1-ver-TAG 1-OH-2-ver-TAG	3-0H-TAG
A mono-[14C]-ricinoleoyl-DAG mono-ricinoleoyl-DAG	mono-ricinoleoyl-DAG	2,8	12,4	ı	ı	ı
A mono-[14C]-ricinoleoyl-DAG mono-vernoleoyl-DAG	mono-vernoleoyl-DAG	3,2	12,1	1,3	t	•
A mono-[14C]-ricinoleoyl-DAG di-vernoleoyl-DAG	di-vernoleoyl-DAG	4	10	9'0	1,2	1
A mono-[14C]-ricinoleoyl-DAG di-ricinoleoyl-PC	di-ricinoleoyi-PC	6,0	24,8	1		
B mono-[¹⁴ C]-ricinoleoyl-PC	none	8'9	8,0		ı	7,4
C mono-[14C]-ricinoleoyl-PC	di-oleoyl-DAG	8,6	8'6	•	,	5,0
C mono-f 14C1-ricinoleoyl-PC	mono-ricinoleoyl-DAG	2,7	16,7	1	1	6,1
C mono-f 14Cl-ricinoleoyl-PC	di-ricinoleoyl-DAG	4,5	9,4	•	ı	9,5
C mono-f ¹⁴ Cl-ricinoleoyl-PC	mono-vernoleoyl-DAG	0,9	11,5	6,01	0,5	7,4
C mono-[14C]-ricinoleoyl-PC	di-vernoleoyi-DAG	2'9	10,8	- 	. 8,4	6,8

Tab. 2:

T1 plant deviation	T2 plant number	nmol fatty acids per mg seed	standard
32-4	1	1277	<u>+</u> 11 (n=2)
<i>32-4</i>	4	1261	<u>+</u> 63 (n=3)
	5	1369	$\pm 17 (n=3)$
	6	1312	±53 (n=4)
	7	1197	<u>+</u> 54 (n=5)
	8	1240	<u>+</u> 78 (n=4)
	9	1283	$\pm 54 (n=5)$
	10	1381	±35 (n=5)
26-14	1	1444	±110 (n=4)
20-14	2	1617*	$\pm 109 (n=4)$
	3	1374	$\pm 37 \text{ (n=2)}$
	5	1562*	±70 (n=4)
	6	1393	±77 (n=4)
	7	1433	±98 (n=4)
	8	1581*	±82 (n=4)

Sequence Listing

<210: <211: <212: <213: <221 <222	> 198 > ger > Sad > CD	nomi ccha		ces (cere	visia	ae									
	ggc									aac Asn						48
gat Asp	gaa Glu	aac Asn	aat Asn 20	aaa Lys	GJA	ggt Gly	tct Ser	gtt Val 25	cat His	aac Asn	aag Lys	cga Arg	gag Glu 30	agc Ser	aga Arg	96
										cat His						144
					Lys					ggc Gly						192
										aga Arg 75						240
										ctt Leu					Phe	288
				Val					Ser					Asn	ttt Phe	336
			a Asp					ТУг					Lys		gtt Val	384
		Glr					Phe					e Glr			aac / Asn	432

Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300									2	, ,,							
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 165 170 175 atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 190 Val Ile 185 190 Val Ile 186 185 190 Val Ile 186 185 190 Val Ile 187 200 205 205 gga agt ttt tac atg ctg aga agt tct gg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 200 205 gga agt ttt tac atg ctg aga aca acg gtt atg gat aat ttt tg aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 230 235 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 270 270 ggc tat gga ccc aat aaa atg acg agt gtt tc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agc ct Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 280 285 gca tat tta gat cta gaa aga cgc gat agg tact tta acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Arg Arg Arg Arg Tyr Phe Thr Lys Leu Lys 290 290 295 300 att gga cat tct atg gat tct cac caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 310 315 320 att gga cat tct atg gat tct ag ggt tcc cag att act ttt act ttt act gaa aga ctg att gga cat tct atg ggg tcc cat act ctt acg aaa tcg att gga cat tct atg ggt tcc cag att act ctt acg aaa tgg 10 Ala Tyr Phe Met Lys Trp	tac	tcc	aca	tct	tct	tta	gat	gat	ctc	agt	gaa	aat	ttt	gcc	gtt	ggt	480
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 165 170 175 atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 190 gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 265 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 275 280 285 gca tat tta gat cca gaa aga cg gt agg tat gat gat gg agg ct agg ct Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac tta cac aga gcc Glu Cln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	Tyr	Ser	Thr	Ser	Ser	Leu	qaA	Asp	Leu	Ser		Asn	Phe	Ala	Val		
Lys Gln Leu Leu Arg Asp Tyr Asn 1le Glu Ala Lys His Pro Val Val Val 165	145					150					155					160	
Lys Gln Leu Leu Arg Asp Tyr Asn 1le Glu Ala Lys His Pro Val Val Val 165	aaa	caa	ctc	tta	COL	σat	tat	aat	atc	gag	acc	aaa	cat	cct	gtt	gta	528
atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att 180																	
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 190 gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg 624 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg 672 672 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg 672 gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 225 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg acc 220 220 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg acc 220 220 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc 225 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc 225 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc 225 250 gca ggg tat tgg att tgg acc aaa ggt ttc caa aat ctg gga gta att 235 255 gca ggg tat tgg att tgg acc aaa ggt gt gcg tat gat tgg agg gt atc 230 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg gct tat gat tgg agg gct atc 235 265	-					-	-										
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 190 gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg 624 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg 672 672 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg 672 gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 225 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg acc 220 220 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg acc 220 220 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc 225 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc 225 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc 225 250 gca ggg tat tgg att tgg acc aaa ggt ttc caa aat ctg gga gta att 235 255 gca ggg tat tgg att tgg acc aaa ggt gt gcg tat gat tgg agg gt atc 230 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg gct tat gat tgg agg gct atc 235 265								200	~~~	a++	~ ~~	200	+ ~~	aas	att	art	576
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 2215 220 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa ggt ttc caa aat ctg gag gt att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Arg Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10																	3,0
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg 624 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 200 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg 672 gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac 720 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac 235 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 225 230 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc 768 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att 235 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att 240 gc tat gaa ccc aat aaa atg acg agt gct gct gcg tat gat tgg agg ctt 255 gc tat gaa ccc aat aaa atg acg agt gct gct gcg tat gat tgg agg ctt 866 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta agg 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aaa gtt tgt tta 295 300	1100	102			• • • •		502										
Gly Asp Asp Glu Cys Asp Ser Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 672 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt gas agg ctt atg atg tta gat cta gaa caa agg acg agt act tta acg aag cta agg ctc atg tta gat tta gat cta gaa caa agg acg agt act tta acg aag cta agg cta atg acg agg tat tta gat tta gat tta gat tta gat tta gat tta gat agg acg agg tat atg acg agg tat atg acg agg tat tta acg aag cta agg acg acg at atg acg agg tat tta acg aag cta aagg acg ata tta acg acg agg tat tta acg aag cta aagg acg ata tta acg acg acg acg acg acg acg acg acg ac										•							
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg 672 (Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gat gga cat tct atg ggt ctc cag att atc ttt tac ttt atg aaa tgg 10 ctt gat gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tgg aca aat tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tgg aca aaa tcg aaa tgg 10 ctt gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat tgg 10 ctt gga cat tct tat gggt ctt cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat caa cag ggt ctt gga cat ctt atg gat tct cag att atc ttt tac ttt atg aaa tgg 10 ctt gga cat caa cag ggt ctt gaa cag atc atc caa ctg ggt ctt g																	624
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	Gly	Asp		Glu	Cys	Asp	Ser		Ala	His	Phe	Arg		Arg	Leu	Trp	
Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220			195					200					205				
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	gga	agt	ttt	tac	atg	ctg	aga	aca	atg	gtt	atg	gat	aaa	gtt	tgt	tgg	672
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac 720 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp																	
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp		210					215					220	ı				
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 240 ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp										2.5	~~+						720
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp																	720
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp		_	1112	Val	riec			, 110	. 010								
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255 gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp																	
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 270 270 265 270 270 270 270 270 270 270 270 270 270																	768
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tcc cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	Phe	Thr	Leu	Arg			a Glr	ı Gly	Phe			Thr	Asp	ТУ			
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp					245	5				250)				25:	•	
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270 ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	gca	a ggg	r tat	tgg	att	tgg	g aac	: aaa	gtt	: ttc	caa	a aat	cto	gga	a gta	a att	816
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp																	
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag 91. Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta 96 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp				260)			,	265	5				270) ·		
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285 gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag 91. Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta 96 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	~~~						- -	* 200		- ~~+	- 46	- Fat	- aat	- ta	T 200	T CEF	864
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag 91. Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp																	00
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta 96 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	0	-1-				,						1				_	
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300 gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta 96 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp																	
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta 96 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp																	91
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta 96 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	Ala			ı Ası) Le	ı Gl			J As	o Arg	TY:			r Ly:	s Le	u Lys	
Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp		290	J				29	o				301	J				
Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320 att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	gaa	a caa	a ato	gaa	a cto	g tt	t ca	t ca	a tt	g ag	t gg	t gaa	a aaa	a gt	t tg	t tta	96
att gga cat tot atg ggt tot cag att atc ttt tac ttt atg aaa tgg 10 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp									•								
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	309	5				31	0				31	5 .				320	
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	_ *		_												~ ~~	s +~~	1.0
																	10
	T T (≃ GT]	, ut;	5 5 E			y se	_ 31.					11'				

							5,,	,,							
					ctt Leu										1056
					ttc Phe										1104
					gct Ala 375										1152
Gln					Ala					Glu				tca Ser 400	1200
				Lys					Trp					tca Ser	1248
			Gly					Tr					Ser	tct Ser	1296
		o Ala					ı Thi					Asr		att E Ile	1344
	e Gl					Ası					a Ası			a atg r Met	1392
s As					t Th					r Pro				c caa u Gln 480	1440
				u Gl					у Ту					a gaa u Glu 5	
			s As					s Ly					n Pr	a atg o Met	
		o Le					o Hi					r Cy		a tac e Tyr	

ggg (ata	aac	aac	cca	act	gaa	agg	gca	tat	gta	tat	aag	gaa	gag	gat	1632
Gly																
	530					535	_		_		540	-				
	330					J J J										
											~~~	200	224	<b>~</b> 33	CCF	1680
gac																1000
Asp	Ser	Ser	Ala	Leu	Asn	Leu	Thr	Ile	Asp	Tyr	GIu	Ser	гĀг	GIN		
545					550					555					560	
gta	ttc	CEC	acc	σασ	aaa	gac	gga	acc	gtt	ccg	ctc	gtg	gcg	cat	tca	1728
Val	Dhe	Len	ጥካተ	Glu	Glv	Asp	Glv	Thr	Val	Pro	Leu	Val	Ala	His	Ser	
vai	FILE	neu	1111				U-1		570					575		
				565					3,0							
															~~~	1776
atg	tgt	cac	aaa	tgg	gcc	cag	ggt	gct	tca	ccg	tac	aac	-	gcc	gga	1110
Met	Cys	His	Lys	Trp	Ala	Gln	Gly	Ala	Ser	Pro	Tyr	Asn	Pro	Ala	Gly	
			580	ı				585					590			
att	aac	att	act	att	ata	gaa	atg	aaa	cac	cag	сса	gat	cga	ttt	gat	1824
T10	200	1/21	ጥኮን	· T1e	Val	Glu	Met	Lvs	His	Gln	Pro	Ast	Arg	Phe	qaA s	
116	A51						600					605			_	
		595)				800					001	•			
																1072
ata	cgt	ggt:	gga	a gca	a aaa	ago	gcc	gaa	cac	gta	gad	ato	: Ctc	gge	agc	1872
Ile	Arg	g Gly	/ Gly	/ Ala	a Lys	s Ser	Ala	Glu	His	Wal	. Ası	, Ile	e Leu	1 G13	y Ser	
	610)				615	5				620	כ				
aca	gad	T EEG	a aa	c gai	t tac	ato	ttg	, aaa	att	gca	a ago	c ggt	aat	gg.	c gat	1920
															y Asp	
		ı ne	u AS	n no,	63					63		•		•	640	
625	•				031	J				05.	-					
																1968
															t cag	±300
Lev	ı Va	1 G1	u Pr	o Ar	g Gl:	n Le	u Se	r Ası	n Le	u Se	r Gl	n Tr	p Va		r Gln	
				64	5		•		65	0				65	5	
ato	ı cc	c tt	c cc	a at	g ta	a										1986
-	-			o Me	_											
ne (- FL	J F11	66		_											
			90	Ų												

<210> 2 <211> 661 <212> PRT <213> Saccharomyces cerevisiae <400> 2 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 25 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly 40 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 60 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 70 75 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 85 90 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 110 105 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 120 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 135 140 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 150 155 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 170 165 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 185 180 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 200 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 220 215 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 225 230 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 250 245 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 270 265 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 280 275 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 295 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 315

SUBSTITUTE SHEET (RULE 26)

330

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp

Val	Glu	Ala	Glu	Gly	Pro	Leu	Tyr	Gly	Asn	Gly	Gly	Arg	Gly	Trp	Val
			340					345					350		
Asn	Glu	His	Ile	Asp	Ser	Phe	Ile	Asn	Ala	Ala	Gly	Thr	Leu	Leu	Gly
		355					360					365			
Ala	Pro	Lys	Ala	Val	Pro	Ala	Leu	Ile	Ser	Gly	Glu	Met	Lys	Asp	Thr
	370					375					380				
Ile		Leu	Asn	Thr	Leu	Ala	Met	Tyr	Gly	Leu	Glu	Lys	Phe	Phe	Ser
385					390			-	-	395		_			400
	Tla	G111	Ara	Val		Met	T.e.11	Gln	Thr		Glv	Glv	Ile	Pro	Ser
Arg	116	GIU	n. y	405	ט גַע	1100			410		023	1		415	
14 = E	•	D	T	Gly	01	C 1	37-7	т1 о			7.55	Mor	Tue		Sar
Met	Leu	Pro			GIU	GIU	vaı			GTĀ	ASD	Mec	430	Ser	Ser
_		_	420		_	_	_	425		m1		01		Dh -	*1.
Ser	Glu			Leu	Asn	ASN		Thr	Asp	unr	туг		ASI	Pne	TIE
		435					440	_		_	_	445	_		
Arg	Phe	Glu	Arg	Asn	Thr			Ala	Phe	Asn			Leu	Thr	Met
	450					455					460				
Lys	Asp	Ala	. Ile	Asn	Met	Thr	Leu	Ser	Ile	Ser	Pro	Glu	Trp	Leu	Gln
465					470					475					480
Arg	Arg	Val	His	Glu	Gln	Tyr	Ser	Phe	Gly	Tyr	Ser	Lys	Asn	Glu	Glu
				485					490)				495	
Glu	Leu	Arg	Lys	Asn	Glu	Leu	His	His	Lys	His	Trp	Ser	Asn	Pro	Met
			500					505				•	510		
Glu	. Val	. Pro	Leu	ı Pro	Glu	. Ala	Pro	His	Met	: Lys	: Ile	Tyr	Cys	Ile	Tyr
		515					520			_		525			
GIV	r Val			Pro	ጥከተ	Glu			TVI	val	Tvr			Glu	Asp
GLy	530		. no.		,	535			1-		540				
λ			- 77:	a Tou	. Ac-			- 1 12	. Δετ	י דער			· Lvs	Gln	Pro
549		. 36:	. Alc	ı nec	550					559				0111	560
			. mb	- 01.				. The	- 17 ⁻			, t/a1	7.T =	uic	
va.	L Pne	e re	ı ımı			ASI) GIÀ	1111) nec	ı vaı	. Alo	575	Ser
	_			565					570		_	•	.		
Met	СУ	s His													Gly
)									590		
Ile	e Ası	n Va	l Th	r Ile	val	l Glu	ı Met	Lys	s His	s Gli	n Pro			, Phe	a Asp
		59					600					605			
Ile	e Ar	g Gly	y G1	y Ala	a Lys	s Se	r Ala	a Gl	ı Hi	s Va	l Ası	o Ile	e Leu	ı Gly	ser Ser
	61	0				619	5				620	כ			
A1	a G1	ı Le	u As:	n Ası	y Ty	r Ile	e Le	Ly:	s Il	e Ala	a Sei	r Gly	Asr	ı Gly	/ Asp
62	5				630	0	•			63	5				640
Le	u Va	1 Gl	u Pr	o Arg	g Gl:	n Le	ı Se	r Ası	n Le	u Se	r Gl	a Tr	val	l Se	Gln
				649					65					655	
Me	t Pr	o Ph	e Pr	o Mei											
					-										

A matter was a second of the s <211> 2312 <212> genomic DNA <213> Schizosaccharomyces pombe 2400× 3 ATGGCGTCTT CCAAGAAGAG CAAAACTCAT AAGAAAAAGA AAGAAGTCAA ATCTCCTATC GACTTACCAA ATTCAAAGAA ACCAACTCGC GCTTTGAGTG AGCAACCTTC AGCGTCCGAA ACACAATCTG TTTCAAATAA ATCAAGAAAA TCTAAATTTG GAAAAGATT GAATTTTATA TTGGGCGCTA TTTTGGGAAT ATGCGGTGCT TTTTTTTCG CTGTTGGAGA CGACAATGCT GTTTTCGACC CTGCTACGTT AGATAAATTT GGGAATATGC TAGGCTCTTC AGACTTGTTT GATGACATTA AAGGATATTT ATCTTATAAT GTGTTTAAGG ATGCACCTTT TACTACGGAC AAGCCTTCGC AGTCTCCTAG CGGAAATGAA GTTCAAGTTG GTCTTGATAT GTACAATGAG GGATATCGAA GTGACCATCC TGTTATTATG
GTTCCTGGTG TTATCAGCTC AGGATTAGAA AGTTGGTCGT TTAATAATTG
CTCGATTCCT TACTTTAGGA AACGTCTTTG GGGTAGCTGG TCTATGCTGA 450 500 CTCGATTCCT TACTTTAGGA AACGTCTTTG GGGTAGCTGG TCTATGCTGA AGGCAATGTT CCTTGACAAG CAATGCTGGC TTGAACATTT AATGCTTGAT AAAAAAACCG GCTTGGATCC GAAGGGAATT AAGCTGCGAG CAGCTCAGGG GTTTGAAGCA GCTGATTTTT TTATCACGGG CTATTGGATT TGGAGTAAAG GTTTGAAGCA GCTGATTTTT TTATCACGGG CTATTGGATT TGGAGTAAAG
TAATTGAAAA CCTTGCTGCA ATTGGTTATG AGCCTAATAA CATGTTAAGT GCTTCTTACG ATTGGCGGTT ATCATATGCA AATTTAGAGG AACGTGATAA ATATTTTCA AAGTTAAAAA TGTTCATTGA GTACAGCAAC ATTGTACATA AGAAAAAGGT AGTGTTGATT TCTCACTCCA TGGGTTCACA GGTTACGTAC
TATTTTTTA AGTGGGTTGA AGCTGAGGGC TACGGAAATG GTGGACCGAC
TTGGGTTAAT GATCATATTG AAGCATTTAT AAATGTGAGT CTCGATGGTT
GTTTGACTAC GTTTCTAACT TTTGAATAGA TATCGGGATC TTTGATTGGA 1050 950 1000 1100 GCACCCAAAA CAGTGGCAGC GCTTTTATCG GGTGAAATGA AAGATACAGG TATTGTAATT ACATTAAACA TGTTAATATT TAATTTTTGC TAACCGTTTT

AAGCTCAATT GAATCAGTTT TCGGTCTATG GGTAAGCAAT AAATTGTTGA

GATTTGTTAC TAATTTACTG TTTAGTTTGG AAAAATTTT TTCCCGTTCT

GAGGTATATT CAAAAATACA AATGTGCTCT ACTTTTTCTA ACTTTTAATA

GAGAGCCATG ATGGTTCGCA CTATGGGAGG AGTTAGTTCT ATGCTTCCTA

AAGGAGGCGA TGTTGTATGG GGAAATGCCA GTTGGGTAAG AAATATGTGC

TGTTAATTTT TTATTAATAT TTAGGCTCCA GATGATCTTA ATCAAACAAA

TTTTTCCAAT GGTGCAATTA TCGATATAG AGAAGACATT GATAAGGACC

ACGATGAATT TGACATAGAT GATGCATTAC AATTTTTAAA AAATGTTACA

GATGACGATT TTAAAGTCAT GCTAGCGAAA AATTATTCCC ACGGTCTTGC

TTGGACTGAA AAAGAAGTGT TAAAAAATAA CGAAATGCCG TCTAAATGGA TATTGTAATT ACATTAAACA TGTTAATATT TAATTTTTGC TAACCGTTTT 1150 TTGGACTGAA AAAGAAGTGT TAAAAAATAA CGAAATGCCG TCTAAATGGA 1650

2312

CCTAGAAATT AA

<210> 4 <211> 3685 <212> genomic DNA <213> Arabidopsis thaliana <400> 4 ATGCCCCTTA TTCATCGGAA AAAGCCGACG GAGAAACCAT CGACGCCGCC 150 250 300 350 400 450 500 550 600 650 700 750 800 850 TCAATTTCAA AGTTTCACAT CGAGTTTATT CACATGTCTT GAATTTCGTC CATCCTCGTT CTGTTATCCA GCTTTGAACT CCTCCCGACC CTGCTATGGA TATATTAAAA AAAAAGTGTT TTGTGGGTTG CATCTTTGTT ACGATCTGCA
TCTTCTTCTT TCGGCTCAGT GTTCATGTTT TTGCTATGGT AGAGATGGGC
AATGTTATTG TTGATGGTAA CAGTGGTATA GTTGATAGTA TCTTAACTAA
TCAATTATCT CTTTGATTCA GGCCTCTATG TTGGGTGGAA CACATGTCAC
TTGACAATGA AACTGGGTTG GATCCAGCTG GTATTAGAGT TCGAGCTGTA

1350 TCAGGACTCG TGGCTGCTGA CTACTTTGCT CCTGGCTACT TTGTCTGGGC 1400 AGTGCTGATT GCTAACCTTG CACATATTGG ATATGAAGAG AAAAATATGT 1450 ACATGGCTGC ATATGACTGG CGGCTTTCGT TTCAGAACAC AGAGGTTCTT 1500 TTCTCATCGT TCTTTCTATT ATTCTGTTCC ATGTTACGTT TCTTTCTTCA 1550 TTACTTAAGG CTTAAATATG TTTCATGTTG AATTAATAGG TACGTGATCA 1600 GACTCTTAGC CGTATGAAAA GTAATATAGA GTTGATGGTT TCTACCAACG 1650 GTGGAAAAAA AGCAGTTATA GTTCCGCATT CCATGGGGGT CTTGTATTTT 1700 CTACATTTTA TGAAGTGGGT TGAGGCACCA GCTCCTCTGG GTGGCGGGGG 1750 TGGGCCAGAT TGGTGTGCAA AGTATATTAA GGCGGTGATG AACATTGGTG GACCATTTCT TGGTGTTCCA AAAGCTGTTG CAGGGCTTTT CTCTGCTGAA GCAAAGGATG TTGCAGTTGC CAGGTATTGA ATATCTGCTT ATACTTTTGA TGATCAGAAC CTTGGCTCTG GAACTCAAAG TTATTCTACT AAATATCAAT TCTAATAACA TTGCTATATT ATCGCTGCAA CTGACATTGG TTGATTATTT 2000 TTGCTGCTTA TGTAACTGAA ACTCTCTTGA GATTAGACAA ATGATGAATT 2050 GATAATTCTT ACGCATTGCT CTGTGATGAC CAGTTTCTTA GCTTCGACGA 2100 TAACATTTGT CATACTGTCT TTTGGAGGGC ATTGAATTTT GCTATGGAAA 2150 GCGCTGGAGC TTCCATGCTT GCATTCTTTA CCAATTAGCG TTATTCTGCT 2200 GCGCTGGAGC TTCCATGCTT GCATTCTTTA CCAATTAGCG TTATTCTGCT
TCTTTCAATT TTCTTGTATA TGCATCTATG GTCTTTATT TCTTCTTAAT
TAAAGACTCG TTGGATTAGT TGCTCTATTA GTCACTTGGT TCCTTAATAT 2300
AGAACTTTAC TTTCTTCGAA AATTGCAGAG CGATTGCCC AGGATTCTTA 2350
GACACCGATA TATTTAGACT TCAGACCTTG CAGCATGTAA TGAGAATGAC 2400
ACGCACATGG GACTCAACAA TGTCTATGTT ACCGAAGGGA GGTGACACGA 2450
TATGGGGCGG GCTTGATTGG TCACCGGAGA AAGGCCACAC CTGTTGTGGG 2500
AAAAAGCAAA AGAACAACGA AACTTGTGGT GAAGCAGGT AAAACGGAGT 2550
TTCCAAGAAA AGTCCTGTTA ACTATGGAAG GATGATATCT TTTGGGAAAG 2600
AAGTAGCAGA GGCTGCGCCA TCTGAGATTA ATAATATTGA TTTTCGAGTA 2650 AAGTAGCAGA GGCTGCGCCA TCTGAGATTA ATAATATTGA TTTTCGAGTA
AGGACATATA AATCATAATA AACCTTGTAC ATTTTGTGAT TGTATGATGA
ATATCTGTAC ATTTTATCTG GTGAAGGGTG CTGTCAAAGG TCAGAGTATC
CCAAATCACA CCTGTCGTGA CGTGTGGACA GAGTACCATG ACATGGGAAT
TGCTGGGATC AAAGCTATCG CTGAGTATAA GGTCTACACT GCTGGTGAAG

CTATAGATCT	ACTACATTAT	GTTGCTCCTA	AGATGATGCC	GCGTGGTGUC		2300	•
GCTCATTTCT	CTTATGGAAT	TGCTGATGAT	TTGGATGACA	CCAAGTATCA		2950	
AGATCCCAAA	TACTGGTCAA	ATCCGTTAGA	GACAAAGTAA	GTGATTTCTT		3000	
GATTCCAACT	GTATCCTTCG	TCCTGATGCA	TTATCAGTCT	TTTTGTTTTC		3050	
GGTCTTGTTG	GATATGGTTT	TCAGCTCAAA	GCTTACAAAG	CTGTTTCTGA		3100	
GCCTTTCTCA	AAAAGGCTTG	CTCAGTAATA	TTGAGGTGCT	AAAGTTGATA		3150	
CATGTGACTC	TTGCTTATAA	ATCCTCCGTT	TGGTTTGTTC	TGCTTTTTCA		3200	
GATTACCGAA	TGCTCCTGAG	ATGGAAATCT	ACTCATTATA	CGGAGTGGGG		3250	
ATACCAACGG	AACGAGCATA	CGTATACAAG	CTTAACCAGT	CTCCCGACAG	3300		
TTGCATCCCC	TTTCAGATAT	TCACTTCTGC	TCACGAGGAG	GACGAAGATA		3350	
GCTGTCTGAA	AGCAGGAGTT	TACAATGTGG	ATGGGGATGA	AACAGTACCC		3400	
GTCCTAAGTG	CCGGGTACAT	GTGTGCAAAA	GCGTGGCGTG	GCAAGACAAG		3450	
ATTCAACCCT	TCCGGAATCA	AGACTTATAT	AAGAGAATAC	AATCACTCTC		3500	
CGCCGGCTAA	CCTGTTGGAA	GGGCGCGGGA	CGCAGAGTGG	TGCCCATGTT		3550	
GATATCATGG	GAAACTTTGC	TTTGATCGAA	GATATCATGA	GGGTTGCCGC		3600	
CGGAGGTAAC		TAGGACATGA	CCAGGTCCAC	TCTGGCATAT		3650	
TTGAATGGTC	GGAGCGTATT	GACCTGAAGC	TGTGA	3685			

<210>	5	
<211>	2427	
<212>	CDNA	
<213>	Arabidopsis	thaliana

<400> 5						
AGAAACAGCT	CTTTGTCTCT	CTCGACTGAT	CTAACAATCC	CTAATCTGTG		50
TTCTAAATTC	CTGGACGAGA	TTTGACAAAG	TCCGTATAGC	TTAACCTGGT		100
TTAATTTCAA	GTGACAGATA	TGCCCCTTAT	TCATCGGAAA	AAGCCGACGG		150
AGAAACCATC	GACGCCGCCA	TCTGAAGAGG	TGGTGCACGA	TGAGGATTCG		200
CAAAAGAAAC	CACACGAATC	TTCCAAATCC	CACCATAAGA	AATCGAACGG		250
AGGAGGGAAG	TGGTCGTGCA	TCGATTCTTG	TTGTTGGTTC	ATTGGGTGTG		300
TGTGTGTAAC	CTGGTGGTTT	CTTCTCTTCC	TTTACAACGC	AATGCCTGCG		350
AGCTTCCCTC	AGTATGTAAC	GGAGCGAATC	ACGGGTCCTT	TGCCTGACCC		400
GCCCGGTGTT	AAGCTCAAAA	AAAGAAGGTC	TTAAGGCGAA	ACATCCTGTT	450	
GTCTTCATTC	CTGGGATTGT	CACCGGTGGG	CTCGAGCTTT	GGGAAGGCAA		500
ACAATGCGCT	GATGGTTTAT	TTAGAAAACG	TTTGTGGGGT	GGAACTTTTG		550
GTGAAGTCTA	CAAAAGGCCT	CTATGTTGGG	TGGAACACAT	GTCACTTGAC		600
AATGAAACTG	GGTTGGATCC	AGCTGGTATT	AGAGTTCGAG	CTGTATCAGG		650
ACTCGTGGCT	GCTGACTACT	TTGCTCCTGG	CTACTTTGTC	TGGGCAGTGC		700
			AAGAGAAAAA			750
GCTGCATATG	ACTGGCGGCT	TTCGTTTCAG	AACACAGAGG	TACGTGATCA		800
GACTCTTAGC	CGTATGAAAA	GTAATATAGA	GTTGATGGTT	TCTACCAACG		850
GTGGAAAAA	AGCAGTTATA	GTTCCGCATT	CCATGGGGGT	CTTGTATTTT		900
CTACATTTTA	TGAAGTGGGT	TGAGGCACCA	GCTCCTCTGG	GTGGCGGGGG		950
TGGGCCAGAT	TGGTGTGCAA	AGTATATTAA	GGCGGTGATG	AACATTGGTG	1000	
GACCATTTCT	TGGTGTTCCA	AAAGCTGTTG	CAGGGCTTTT	CTCTGCTGAA		1050
GCAAAGGATG	TTGCAGTTGC	CAGAGCGATT	GCCCCAGGAT	TCTTAGACAC		1100
CGATATATTT	AGACTTCAGA	CCTTGCAGCA	TGTAATGAGA	ATGACACGCA		1150
CATGGGACTC	AACAATGTCT	ATGTTACCGA	AGGGAGGTGA	CACGATATGG		1200
CCCCCCCTTC	ATTGGTCACC	GGAGAAAGGC	CACACCTGTT	GTGGGAAAAA		1250
GCAAAAGAAC	AACGAAACTT	GTGGTGAAGC	AGGTGAAAAC	GGAGTTTCCA		1300
AGAAAAGTCC	TGTTAACTAT	GGAAGGATGA	TATCTTTTGG	GAAAGAAGTA		1350
GCAGAGGCTG	CGCCATCTGA	GATTAATAAT	ATTGATTTTC	GAGGTGCTGT		1400
CAAAGGTCAG	AGTATCCCAA	ATCACACCTG	TCGTGACGTG	TGGACAGAGT		1450
ACCATGACAT	GGGAATTGCT	GGGATCAAAG	CTATCGCTGA	GTATAAGGTC		1500
TACACTGCTG	GTGAAGCTAT	AGATCTACTA	CATTATGTTG	CTCCTAAGAT		1550
GATGGCGCGT	CGTGCCGCTC	ATTTCTCTTA	TGGAATTGCT	GATGATTTGG		1600
ATGACACCAA	GTATCAAGAT	CCCAAATACT	GGTCAAATCC	GTTAGAGACA		1650
AAATTACCGA	ATCCTCCTGA	GATGGAAATC	TACTCATTAT	ACGGAGTGGG		1700
CATACCAACC	CAACGAGCAT	ACGTATACAA	GCTTAACCAG	TCTCCCGACA		1750
CTTCCATCC	CTTTCACATA		CTCACGAGGA	GGACGAAGAT		1800
ACCTCTCTC	AACCAGGAGT	TTACAATGTO	GATGGGGATG	AAACAGTACC		1850
CCTCCTAACT	CCCCCCTAC	TGTGTGCAAA	AGCGTGGCGT	GGCAAGACAA		1900
CATTCAACCC	TOUCCECA ATT	· AAGACTTATA	TAAGAGAATA	CAATCACTCT		1950
CCCCCCCCT	ACCTCTTCC	AGGGCGCGGG	ACGCAGAGTG	GTGCCCATGT		2000
TCATATCATC	CCAAACTTTC		AGATATCATO	AGGGTTGCCG		2050
CCCCACCTA	CCCCTCTCAT	P ATAGGACATO	ACCAGGTCCA	CTCTGGCATA		2100
TOGGRAGGIAN	CCCACCCTA	TCACCTCAAC	CTGTGAATAT	CATGATCTCT		2150
TITOWATOG	COGROCATA	L TOUCCIONNO		AAGAGAGATC		2200
TIMMGCIGIC	. CIGICAGCII	CUCAUCAUCA Y YIGIGWYIC		CTCACAAAGA		2250
ATCATCAATT	. CAICAICAI	CTCCICAICA	T CTCAATACCT	CTTTAATATT		2300
AGUL I'GAGAA	L CMXXXMMXM	A CARMCCMAMI.	·	ACGATAACAC		2350
A A A COMPOSI	L COMPOSITATI	ה שהלמשמת להיה. פי הצפור הרוצו,	TEATGILLOF	ATCAATTTGT		2400
	A AAAAAAAAAA		. IGICAAAAGC	2427		
GGGTTAAAA	AMAMAMAAA	- annanna				

11 / 53

<210> 6					
<211> 671					
<212> PRT					
<213> Arabidopsis thali	.ana				
<400> 6					
MPLIHRKKPT EKPSTPPSEE V	<i>I</i> VHDEDSQKK	PHESSKSHHK	KSNGGGKWSC	50	
IDSCCWFIGC VCVTWWFLLF L	LYNAMPASFP	QYVTERITGP	LPDPPGVKLK	100	
KEGLKAKHPV VFIPGIVTGG I	LELWEGKQCA	DGLFRKRLWG	GTFGEVYKRP	150	
		ADYFAPGYFV	WAVLIANLAH	200	
IGYEEKNMYM AAYDWRLSFQ N	NTEVRDOTLS	RMKSNIELMV	STNGGKKAVI	250	
	APLGGGGGPD	WCAKYIKAVM	NIGGPFLGVP	300	
· • • • • • • • • • • • • • • • • • • •	APGFLDTDIF	RLQTLQHVMR	MTRTWDSTMS	350	
		NETCGEAGEN		400	
		SIPNHTCRDV		450	
	HYVAPKMMAR			500	
GIIGIADINA IIIIGEIIIDEE .	YSLYGVGIPT		SPDSCIPFQI	550	
	DGDETVPVLS	AGYMCAKAWR		600	
		GNFALIEDIM		650	
		GNFALTEDIA 671			
IGHDQVHSGI FEWSERIDLK	L.	0/1	•		

<210> 7

<211> 643

<212> cDNA

<213> Zea mays

<221> CDS

<222> (1)..(402)

<400> 6

CGG GAG AAA ATA GCT GCT TTG AAG GGG GGT GTT TAC TTA GCC GAT GGT 48
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15

GAT GAA ACT GTT CCA GTT CTT AGT GCG GGC TAC ATG TGT GCG AAA GGA 96 Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 30

TGG CGT GGC AAA ACT CGT TTC AGC CCT GCC GGC AGC AAG ACT TAC GTG 144
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45

AGA GAA TAC AGC CAT TCG CCA CCC TCT ACT CTC CTG GAA GGC AGG GGC 192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60

ACC CAG AGC GGT GCA CAT GTT GAT ATA ATG GGG AAC TTT GCT CTA ATT 240 Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80

GAG GAC GTC ATC AGA ATA GCT GCT GGG GCA ACC GGT GAG GAA ATT GGT 288 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

GGC GAT CAG GTT TAT TCA GAT ATA TTC AAG TGG TCA GAG AAA ATC AAA 336 Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110

TTG AAA TTG TAA CCTATGGGAA GTTAAAGAAG TGCCGACCCG TTTATTGCGTTCC 391 Leu Lys Leu 115

AAAGTGTCCT GCCTGAGTGC AACTCTGGAT TTTGCTTAAA TATTGTAATT TTTCACGC 449
TTCATTCGTC CCTTTGTCAA ATTTACATTT GACAGGACGC CAATGCGATA CGATGTTG 507
TACCGCTATT TTCAGCATTG TATATTAAAC TGTACAGGTG TAAGTTGCAT TTGCCAGC 565
TGAAATTGTG TAGTCGTTTT CTTTACGATT TAATANCAAG TGGCGGAGCA GTGCCCCA 623
AGCNAAAAAA AAAAAAAAAA

<210> 8 <211> 115

<212> PRT

<213> Zea mays

<400> 8

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 30

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val 35 40 45

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110

Leu Lys Leu 115

			 .			
<210> 9						
<211> 616						
<212> cDNA						
<213> Neuros	pora crass	a				
<400> 9						
ggtggcgaag a	cganggcgg	aagttggagg	ctaacgagaa	tgacnctcgg	50	
agatggatct a	ccctctaga	gacacgacta	ccnttgcacc	cagcctcaag	100	
gtntacngtt t	ntatgggta	ggaagccgac	ggagcgagcc	tacatctatc	150	
tggcgcccga t	cccgggacg	acaacgcatc	tttagatgac	gatcgatacg	200	
actttgactn a	ggggcacat	tgaccacggt	gtgattttgg	gcgaaggcga	250	
tggcacagtg a	accttatga	gtttggggta	cctgtgcaat	aaggggtgga	300	
aaatgaagag a	tacaatcct	gcgggctcaa	aaataaccgt	ggtcgagatg	350	
ccgcatgaac c					400	
tcacgtggat a					450	
tggcggcagg t	cgaggcgat	acaattgagg	attttattac	tagtaatatt	500	
cttaaatatg t	agaaaaggt	tgaaatttat	gaagagtaat	taaatacggc	550	
acataggtta c	ctcaatagta	tgactaatta	aaaaaaatt	ttttttctaa	600	
aaaaaaaaa a			616	į		

<210> 10 <211> 1562 <212> genomic DNA <213> Arabidopsis thaliana <400> 10 ATGAAAAAA TATCTTCACA TTATTCGGTA GTCATAGCGA TACTCGTTGT GGTGACGATG ACCTCGATGT GTCAAGCTGT GGGTAGCAAC GTGTACCCTT 100 TGATTCTGGT TCCAGGAAAC GGAGGTAACC AGCTAGAGGT ACGGCTGGAC 150 AGAGAATACA AGCCAAGTAG TGTCTGGTGT AGCAGCTGGT TATATCCGAT 200 AGAGAATACA AGCCAAGTAG TGTCTGGTGT AGCAGCTGGT TATATCCGAT
TCATAAGAAG AGTGGTGGAT GGTTTAGGCT ATGGTTCGAT GCAGCAGTGT
TATTGTCTCC CTTCACCAGG TGCTTCAGCG ATCGAATGAT GTTGTACTAT
GACCCTGATT TGGATGATTA CCAAAATGCT CCTGGTGTCC AAACCCGGGT
TCCTCATTTC GGTTCGACCA AATCACTTCT ATACCTCGAC CCTCGTCTCC
GGTTAGTACT TTCCAAGATA TATCATTTTG GGACATTTGC ATAATGAACA 250 300 350 400 450 AAATAGACAT AAATTTGGGG GATTATTGTT ATATCAATAT CCATTTATAT
GCTAGTCGGT AATGTGAGTG TTATGTTAGT ATAGTTAATG TGAGTGTTAT
GTGATTTTCC ATTTTAAATG AAGCTAGAAA GTTGTCGTTT AATAATGTTG 500 550 600 CTATGTCATG AGAATTATAA GGACACTATG TAAATGTAGC TTAATAATAA 650 GGTTTGATTT GCAGAGATGC CACATCTTAC ATGGAACATT TGGTGAAAGC TCTAGAGAAA AAATGCGGGT ATGTTAACGA CCAAACCATC CTAGGAGCTC 700 750 800 CATATGATTT CAGGTACGGC CTGGCTGCTT CGGGCCACCC GTCCCGTGTA GCCTCACAGT TCCTACAAGA CCTCAAACAA TTGGTGGAAA AAACTAGCAG 850 900 CGAGAACGAA GGAAAGCCAG TGATACTCCT CTCCCATAGC CTAGGAGGAC TTTTCGTCCT CCATTTCCTC AACCGTACCA CCCCTTCATG GCGCCGCAAG
TACATCAAAC ACTTGTTGC ACTCGCTGCG CCATGGGGTG GGACGATCTC 950 1000 TCAGATGAAG ACATTTGCTT CTGGCAACAC ACTCGGTGTC CCTTTAGTTA 1050 ACCCTTTGCT GGTCAGACGG CATCAGAGGA CCTCCGAGAG TAACCAATGG CTACTTCCAT CTACCAAAGT GTTTCACGAC AGAACTAAAC CGCTTGTCGT 1100 1150 AACTCCCCAG GTTAACTACA CAGCTTACGA GATGGATCGG TTTTTTGCAG TTAACAGAGG AGCTGATGAC TCCGGGAGTG CCAGTCACTT GCATATATGG GAGAGGAGTT GATACACCGG AGGTTTTGAT GTATGGAAAA GGAGGATTCG ATAAGCAACC AGAGATTAAG TATGGAGATG GAGATGGGAC GGTTAATTTG GCGAGCTTAG CAGCTTTGAA AGTCGATAGC TTGAACACCG TAGAGATTGA TGGAGTTTCG CATACATCTA TACTTAAAGA CGAGATCGCA CTTAAAGAGA
TTATGAAGCA GATTCAATT ATTAATTATG AATTAGCCAA TGTTAATGCC GTCAATGAAT GA

* WO 00/60095 PCT/EP00/02701

<210>--11----<211> 3896 <212> genomic DNA <2135 ARABIGOPSIS thaliana</p>
<400 - 11</p>
ATTOGAGCCA ATTCGAMATIC AGTANCGGCT TECTTCACCG TCATCGCGT
TOTATCTCTTC ATTTCCGCTG GCCGAACTGC
GGTGGAGGAC GACTCCGAGC CTATCGGGTA TARTCATTCC GGGATTTCGC
TCGACCGACC TACGAGCGT GTCGATCCTT GACTGCCAT CACCTCGGT
GGACTTCAAT CCGCTCGACC TCGTATGGGT ATARCATTCC GGGATTTCGC
GGACTTCAAT CCGCTCGACC TCGTATGGGT AGACACCACT AGGTCCGTT
AATTCCAACT CCGCCGCC CTATTCTGGTC GACCGGTCA CTTGATTGAT
AATTCCAACT GCACAGGT ACGGTCTCGA ACTGGGTCA CTTGATTGAT
AATTCCAACT GCACAGGT ACGGTCTCGA TCTGAGTTA AGGTCCATT
AAAACAGCTG ACTCGGCGG TGTTTCCCAT GCTTTTGGT TCCTTAATTGAT
AAAACAGCTG ACTCGGCGG TGTTTCCCAT GCTTTTGGT TCCTAAATG
AAAACAGCTG ACTCGGCGG TGTTTCCCAT GCTTTTGGT TCCTAAATG
AAAACAGCTG ACTCGGCGG TGTTTCCCAT GCTTTTGGT TCCTAAATG
AAAACAGCTG TGTATCTCT TGTTTGTGT TTCTTTTTCA CACTGAACTG
CCAAGTTTTCA GAGTCCTCA ATAGTAGTTA
CAAGTTTTACA CTTCTTTCTG CTTCAACTG
CTTGTGGCATT TAAATCAAAC GACCATCCC AGTGTAAGTCA ACGTGATGGA
CCAAGTTTACAG CTTCTTTCTG CTTCAACTG
CTGTGTAAAAC GACCATCAC CAGATTGGAT CAGCCTGACC AGTGGTTTAAG
TTTCGGACTTT TAAATCAAACA GACCATCAC CAGATTGGAT TAACAGGTAG
AGGCCAACTAC CAGAATTGGAT CCAGGTTTAAGT TCACGCCTGAC
AGTGGTTTT CAGCCAACA CAGAATTGGAT CCAGGTTACA TAACAGGTAG
TTTCGACTATT TCTCTTCTTT TGAGTTTTCT TCAATTTTGATTTTCAACTCTTTT
CGAAATTGGAAG TTCATTAATT TGGTCAATTTT TCAGCCACC
TTTTCAACATT CTGGAAAGA TCCATTAACT TGGTGAATTTT TCACCAAC
CAAATTGGAAG CTGTCATAAC GATTGGATT TCACCAAC
CAAATTGGAA GAGCGTGAC CTTTACTTTCT AAACAGTTAA GACCTGACAC TAACCTTTCAC CAGCCTGAC TAACCTTTCAACAGCTAAC TAACCTCTTCAACAGCTAAC TAACCTTTCAC CAGCCTGAC TAACCTTTCAC CAGCCTCAAC TAACCTTTCAC CAGCCTCAAC TAACCTCTTCAC CAGCCTCAAC TAACCTCTTCAC CAGCCTCAAC TAACCTCTTCAC CAGCCTCAAC TAACCTCTTCAC CAGCCTCAAC TAACCTCTTCAC CAGCCTCAAC TAACCTCTTCAC TACCTCAAC TAACCTCTTCAACTCTCTTCAACAGCTAC TTCAACACCTCAC TTCAACCTCAC TTCAACCTCAC TACCTCTAACTCCTCTTCTAACACC TCCACCTACC TTCAACCTCAC TACCCTCAACAC CACTTAAACCC TCCACCTACC TTCAACCTCC TCCACCTACC TCCACCTAC <213> Arabidopsis thaliana <400> 11 1750 1950 2000 2050 2100 2200 2250 2300 2350 2400

				•		
GGTTATTACT	TTGCCCCAAG	TGGCAAACCT	TATCCTGATA	ATTGGATCAT		2900
CACGGATATC	ATTTATGAAA	CTGAAGGTTC	CCTCGTGTCA	AGGTAATTTT		2950
CCGCAATGGC	AGAAGTAAAA	CAGGAAGGCA	AAGTCTTCTG	TATCAGTCTA		3000
GTGGCATGTT	ATCTCAGTTG	CATAAGCAAA	TTATTAAACA	ACTAAAATTT		3050
AAGTACTTTT	TTATCATTCC	TTTTGAGCTT	AGTGGATGAT	CAGTGGCTTA		3100
AAGTGGGAAG	AGGTGTTGCA	TGAAACATGA	CACTTGTATC	AAAGATAACT		3150
AGCAAAACAA	AACTAACCCA	TTTCTGAATT	${\tt TCATATTATT}$	AGGAGTAGTC		3200
GTGCTTTTAA	AAAATTTGTT	TTAAGAAACC	GAAAAACTAG	TTCATATCTT		3250
GATTGTGCAA	TATCTGCAGG	TCTGGAACTG	TGGTTGATGG	GAACGCTGGA	33,00	
CCTATAACTG	GGGATGAGAC	GGTAAGCTCA	GAAGTTGGTT	TTGAAATTAT	·	3350
CTTCTTGCAA	ACTACTGAAG	ACTAAGATAA	TACTTGCTTC	TGGAACACTG		3400
CTTGCTATGT	TCTCTAGTAC	ACTGCAATAT	TGACTCTCCG	CTACTTTTAT		3450
TGATTATGAA	ATTGATCTCT	TATAGGTACC	CTATCATTCA	CTCTCTTGGT		3500
GCAAGAATTG	GCTCGGACCT	AAAGTTAACA	TAACAATGGC	TCCCCAGGTA		3550
CTCTTTTTTA	GTTCCTCACC	TTATATAGAT	CAAACTTTAA	GTGTACTTTT		3600
CTGGTTATGT	GTTGATTTAC	CTCCAATTTG	TTCTTTCTAA	AAATCATATA		3650
TCTCTGTACT	CCTCAAGAAC	TTGTATTAAT	CTAAACGAGA			3700
GAAAATAAAA	CAACAGCCAG	AACACGATGG	AAGCGACGTA			3750
TAAATGTTGA	TCATGAGCAT	GGGTCAGACA				3800
GCACCAAGGG	TTAAGTACAT		•			3850
GGGGAAGAGA	ACCGCAGTCT	GGGAGCTTGA	TAAAAGTGGG	TATTAA	3896	

<210> 12 <211> 709 <212> cDNA <213> Lycopersicon escul	entum			
<400> 12				
CTGGGGCCAA AAGTGAACAT	AACAAGGACA	CCACAGTCAG	AGCATGATGT	50
TCAGATGTAC AAGTGCATCT	AAATATAGAG	CATCAACATG	GTGAAGATAT	100
CATTCCCAAT ATGACAAAGT	TACCTACAAT	GAAGTACATA	ACCTATTATG	150
AGGATTCTGA AAGTTTTCCA	GGGACAAGAA	CAGCAGTTTG	GGAGCTTGAT	200
AAAGCAAATC ACAGGAACAT	TGTCAGATCT	CCAGCTTTGA	TGCGGGAGCT	250
GTGGCTTGAG ATGTGGCATG	ATATTCATCC	TGATAAAAAG	TCCAAGTTTG	300
TTACAAAAGG TGGTGTCTGA	TCCTCACTAT	TTTCTTCTAT	AAATGTTTGA	350
GTTTGTATTG ACATTGTAAG	TATTGCAACA	AAAAGCAAAG	CGTGGGCCTC	400
TGAGGGATGA GGACTGCTAT	TGGGATTACG	GGAAAGCTCG	ATGTGCATGG	450
GCTGAACATT GTGAATACAG	GTTAGAATAT	TCAAATTATA	TTTTGCAAAA	500
TATTCTCTTT TTGTGTATTT	AGGCCACCTT	TCCCCGGTCA	CAACGATGCA	550
GATATGTATT CGGGGATGTT	CACCTGGGAC	AGAGTTGCAG	ATTGAAGAGT	600
TCTACATCTC ACATCCTGTC	ACACTATGTG	TGATATTTAA	GAAACTTTGT	650
TTGGCGGAAC AACAAGTTTG	CACAAACATT	TGAAGAAGAA	AGCGAAATGA	700
TTCAGAGAG		709)	

<210> 13

<211> 623

<212> PRT

<213> Schizosaccharomyces pombe

<400> 13

MASSKKSKTHKKKKEVKSPIDLPNSKKPTRALSEQPSASETQSVSNKSRKSKFGKRLNFILGAILGICGA70

FFFAVGDDNAVFDPATLDKFGNMLGSSDLFDDIKGYLSYNVFKDAPFTTDKPSQSPSGNEVQVGLDMYNE140

GYRSDHPVIMVPGVISSGLESWSFNNCSIPYFRKRLWGSWSMLKAMFLDKQCWLEHLMLDKKTGLDPKGI210

KLRAAQGFEAADFFITGYWIWSKVIENLAAIGYEPNNMLSASYDWRLSYANLEERDKYFSKLKMFIEYSN280

IVHKKKVVLISHSMGSQVTYYFFKWVEAEGYGNGGPTWVNDHIEAFINISGSLIGAPKTVAALLSGEMKD350

TGIVITLNILEKFFSRSERAMMVRTMGGVSSMLPKGGDVAPDDLNQTNFSNGAIIRYREDIDKDHDEFDI420

DDALQFLKNVTDDDFKVMLAKNYSHGLAWTEKEVLKNNEMPSKWINPLETSLPYAPDMKIYCVHGVGKPT490

ERGYYYTNNPEGQPVIDSSVNDGTKVENGIVMDDGDGTLPILALGLVCNKVWQTKRFNPANTSITNYEIK560

HEPAAFDLRGGPRSAEHVDILGHSELNEIILKVSSGHGDSVPNRYISDIQEIINEINLDKPRN 623

<210> 14

<211> 432

<212> PRT

<213> Arabidopsis thaliana

<400> 14
MKKISSHYSVVIAILVVVTMTSMCQAVGSNVYPLILVPGNGGNQLEVRLDREYKPSSVWCSSWLYPIHKK70
SGGWFRLWFDAAVLLSPFTRCFSDRMMLYYDPDLDDYQNAPGVQTRVPHFGSTKSLLYLDPRLRDATSYM140
EHLVKALEKKCGYVNDQTILGAPYDFRYGLAASGHPSRVASQFLQDLKQLVEKTSSENEGKPVILLSHSL210
GGLFVLHFLNRTTPSWRRKYIKHFVALAAPWGGTISQMKTFASGNTLGVPLVNPLLVRRHQRTSESNQWL280
LPSTKVFHDRTKPLVVTPQVNYTAYEMDRFFADIGFSQGVVPYKTRVLPLTEELMTPGVPVTCIYGRGVD350
TPEVLMYGKGGFDKQPEIKYGDGDGTVNLASLAALKVDSLNTVEIDGVSHTSILKDEIALKEIMKQISII420
NYELANVNAVNE

- <210> 15
- <211> 552
- <212> PRT
- <213> Arabidopsis thaliana

<400> 15

MGANSKSVTASFTVIAVFFLICGGRTAVEDETEFHGDYSKLSGIIIPGFASTQLRAWSILDCPYTPLDFN70

PLDLVWLDTTKLLSAVNCWFKCMVLDPYNQTDHPECKSRPDSGLSAITELDPGYITGPLSTVWKEWLKWC140

VEFGIEANAIVAVPYDWRLSPTKLEERDLYFHKLKLTFETALKLRGGPSIVFAHSMGNNVFRYFLEWLRL210

EIAPKHYLKWLDQHIHAYFAVGAPLLGSVEAIKSTLSGVTFGLPVSEGTARLLSNSFASSLWLMPFSKNC280

KGDNTFWTHFSGGAAKKDKRVYHCDEEEYQSKYSGWPTNIINIEIPSTSARELADGTLFKAIEDYDPDSK350

RMLHQLKKYVPFFVIRNIAHRSSLAGFLLYHDDPVFNPLTPWERPPIKNVFCIYGAHLKTEVGYYFAPSG420

KPYPDNWIITDIIYETEGSLVSRSGTVVDGNAGPITGDETVPYHSLSWCKNWLGPKVNITMAPQILIGKI490

KQQPEHDGSDVHVELNVDHEHGSDIIANMTKAPRVKYITFYEDSESIPGKRTAVWELDKSGY

552

5 ·

10

50

Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25 30

30 Asm His Ile His His Glm Glm Gly Leu Gly His Lys Arg Arg Gly 35 40 45

Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 50 55

Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80

Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 40 85 90 95

Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 100 105

45 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 115 120 125

Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ale Gly Asn 130 135.

Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145 150 150

Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 55 165 170 170

Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Tro Gly Val Ile 180 185

60 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205

	Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215	
5	Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Ash 240	
	Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe 11e 255	
10	Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 270 260	
15	Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 285 275	
	Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 300 290 295	
20	Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 320 315 305 310 310 310 310 310 310 310	
25	Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp 335 325	
25	Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val 340 340 340 340 340 340 340	
30	Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly 365 355 360 360 360 360 360 360 360 360	
	Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375 370 375 370 375	
35	390	
4(Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 415 405	
71	Met Leu Pro Lys Gly Glu Glu Val 112 225 430	
4	Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 445 45 435	
	Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 450 450 450 450 450 450 450 450 450	
:	50 Lys Asp Ala Ile Asm Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Glu 480 475 465	
	Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu Glo Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu Glo Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu Glo Arg Arg Pro Me	
	55 Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Me 500 500 500 500 500 500 500	
	Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Ty 60 515	-

		530					232				. Val						
5	545					220					7 Tyr 555						
					56:)				•							
10				58	0					_	r Pro	•					
			59	5				00	•		s Gl						
15		61	.0				0.1	_			is Va						
20	62	5				0.3	U				le Al 63						
	Le	u Va	al G	lu P	ro A1	rg Gl 15	n Le	u Se	er A	sn L 6	eu Se 50	er G	in Tr	ئ∨ رج	al S 6	er G 55	ln
25	M€	et P	ro P	ne P 6	rc M	et											
30	<: <	211> 212>	200 387 PR1		psis	tha	lian	a			·						
35	v V	400 al (· 2 Gly :	Ser 1	Asn (/al T 5	Āī ē	ro I	.eu	Ile :	Leu V 10	al I	520 G	ly A	Asn (Gly 1 15	Gly
	P	sn (Gln	ren (Glu 1 20	Val P	rg I	en j	Asp	Arg 25	Glu 1	Āī I	∴ys :	ero s	Ser 30	Ser	Val
40		מבי	Cys	Ser 35	Ser '	Trp I	Leu :	(Ar	9 <u>7</u> 0	Ile	<u> His</u> I	Lys :	ŗì.	Ser (Gly	GļĀ	TIP
4:	5	Phe	Arg 50	Leu	Trp	Phe .	Asp (Ala 55	Ala	Val	Leu :	Leu	Ser 50	PTC	Phe	Thr	Arg
	,	Cys 65	Phe	Ser	Asp	Arg	Met 70	Met	Leu	Tyr	īāī	Asp 75	Pro	Asp	Гел	Asp	Asp 08
5	0	TYI	Gln	Asn	Ala	P=0 85	GŢĀ	Val	Gln	Thr	Arg 90	Val	220	His	Phe	Gl <u>y</u> 95	Ser
		Thr	Ļys	Ser	Leu 100	Leu	ፌች።	Leu	Asp	Pro 105	Arg	Leu	Arg	Asp	Ala 110	The	Ser
5	5 .	TY:	Met	Glu 115	His	Leu	LsV	Lys	<u> </u>	Leu	Glu	Lys	lys	Cys 125	Gly	īĀī	· Val
ć	50	Ast.	Asp 130	Gln	Thr	Ile	ren	Gly 135	Ala	. Pro	īyr	Asp	Phe 140	Arg	<u>ara</u>	Gly	, Le

	Ala 145	Ala	a S	er (Gly	His	Pro 150	Ser	Arg	Val	Ala	Ser 155	Gln	Phe	Leu	Gln	Asp 160	
5		Ly	s G	ln	Leu	Vai 165	Glu	Lys	Thr	Ser	Ser 170	Glu	Asn	Glu	Gly	Lys 175	Pro	
	Val	Il	e I	ren	Leu 180	Ser	His	Ser	Leu	Gly 185	Gly	Leu	Phe	Val	Leu 190	His	Phe	
10	Leu	As	m 1	Arg 195	Thr	Thr	Pro	Ser	Trp 200	Arg	Arg	Lys	Tyr	Ile 205	Lys	His	Phe	
1.5		21	LO					215					220				Thr	
15	225						230					23.	,				Leu 240	
20						24:	•				23	o .						
					260)				20	_						Pro	
25				275	,				28	u					_		o Il∈	
30		2	90					29	5				20	•			o Leu	
30	30	5					31	U				ن د					r Gly 320	
35						32	5				٥.							
					34	0				٠.	£ J						l As	
40				35	5				؛ د	5 U			•	•			al Gl	
45			As: 370		y Va	al Se	er Hi	Ls Ti	r S	er I	le L	eu L	ys As 3	ਤਾ G: 30	lu I	Le A	la Lė	ıu
73	Ly	/s 85	Glu	ı Il	.e													
50	<: <:	211 212	> : 2> :	3 A 3 8 9 PRT Arai	oido	psis	<u>tha</u>	lian	a.									
55	· <	400 eu 1]> [-}	3 s Ly	ys G	ilu G	ly L S	eu L	λε y								le P: 15	
60))	ly	<u> </u>	.e V	al T	h= G 20	ily G	ly L	eu G	ilu I	.eu : 25	(ZZ)	Glu G	ly I	ys G	ln C	ys A	la

	Asp	Gì	. Y	Leu 35	Phe	Α×	g I	ys	Arg	L	eu 40	Trp	G.	Ly (Gly	Thr	Ph 4	e I	en	Cys	TT	P
5	Val	5	50						20)						•						
	Ile 65	A	rg	Val	Arg	A.	la '	Val 70	Ser	· G	ly	Let	ı V	al	Ala 75	Ala	As	g g	ľYľ	Phe	A]	.a 30
10	Pro	G	ļ	TYT	Phe	V	al 85	Trp	Ala	2 T	/al	Le	ıI	1e 90	Ala	Asn	. Le	eu 2	Ala	His 95	I	le
	Gly	T	λī	Glu	Gl:	ı L	ys	Asn	Met	: 7	ŗy <u>~</u>	Me 10	t A 5	la	Ala	TYI	· A.	qz	T <u>∵p</u> 110	Arg	L	en
15	Ser	. Ē	he	Gln 115	As:	n I	hr	Glu	Ar	g į	Asp 120	G1	n T	hr	Leu	Sez	- A 1	rg 25	Met	Lys	S	er
20	Asn	1 1	le .30	Glu	ı Le	u M	let	Vai	Se 13	<u>r</u> '	Thr	As	n (3ly	Gly	Ly:	s L	, ys	Ala	Va.	LI	le
	Val 145	L 5	220	His	s Se	r 1	Met	Gly 150	Va	1	Leu	Ty	<u> </u>	Phe	Leu 153	Hi:	s F	he	Met	Ly	s T 1	09. تت
25	۷a	1 (Glu	. Ala	l Pr	:o	<u>Ala</u> 165	Pro	Le	ыu	Gly	g Gl	y (Gly 170	. GJ	/ G1:	y E	520	qzA	17	р С 5	, , ,
	Ala	a :	Lys	Ty:	= Il 18	.е : 30	Lys	Ala	e Va	1	Met	- As 18	sn 35	Ile	e Gly	y Gl	Υ :	Pro	Phe 190	Le)	u C	Sly
30	٧a	1	₽≚c	Ly 19	s A: 5	La	Val	Ala	a Gi	ΓĀ	Le:	0 7 5)	ne	Sez	- Al	a Gl	u 2	Al= 205	Lys	a As	i q	Met
35	Ar	g	Met 21	Th	<u>- A</u>	rg	The	TY	p A:	sp 15	Se	r T	hr	Met	: Se	r Me	10	Leu	Pro	o Ly	s (Gly
	G1 22	.y :5	As;	T'n	ı I	le	TIF	G1 23	y G. 0	ly	Le	u A	gz	T	p Se 23	r P: 5	0	Glu	Le	ı Pı		Asn 240
40	Al	.a	22	o Gl	.u M	et	Glu 243	ı Il	e T	λŢ	Se	r L	eu	Ту 25	∓ G1 0	y Va	11	Gly	· Il	e P: 25	5	Thx
	G1	Lu	Ar	g Al	La T	50 50	Va:	<u>1</u> Ту	T L	ys	Le	iu A 2	.sn 65	G1	n Se	r P	ro	Asp	Se 27	r C:	/5	Ile
45	P:	-0	P'n	.e G:	Ln I 75	le	Ph	e Ti	ır S	er	28	.a H 30	is	Gl	u Gl	u A	ςz	G1t 285	. As	p S	er	Cys
50	L	eu	Ly 29	s A	la C	lly	۷a	1 T	/= } 2	.s. 29 =	ı Va	el s	\sp	Gl	y As	≅p G 3	1u 00	Thi	. Va	.1 ?	ro	Val
	<u>r</u> . 3	eu 05	S€	er A	la (Hy	ሚሃ	— Мя 3:	et ([ys	s Al	La I	ŗys	<u> A1</u>	.a T:	ج A 15	īā	G1:	/ Ly	s T	<u>-</u>	Arg 320
55	•	he	: As	in P	ro :	Ser	: G1 32		le I	ŗŅs	s Tì	<u> </u>	[y=	33	Le Ai	rg G	lu	TY	r As	in H 3	is 35	Ser
	?	ro) P:	ro A	ìa.	As: 340	: Le	ar P	eu (Gli	u G	ly :	A.T. 9 3 4 5	G.	Ly T	ar G	ln	Se	r G]	у А 0	iа	#is
60) V	'al	. A.	sp I		-		.y A	sn :	Ph	e A	la :	Leu	ı I	le G	lu A	gz	I1	e Ma	et P	<u>_</u> ==	Val

	355 360 365	
A	la Ala Gly Gly Asm Gly Ser Asp Ile Gly His Asp Gln Val His Ser 370 375	
	Sly Ile Phe Glu Trp 385	
•	<210> 4Q <211> 1986 <212> DNA <213> Saccharomyces cerevisiae	
15	<220> <221> CDS <222> (1)(1983)	
20	atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat too atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat too Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 10	48
25	gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25	96
30	aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt. Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly 45 35	144
30	att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 50 55	192
35	aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg Lys Arg Asp Gly Asm Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80	240
40	att tto att oft ggt goa tto tta ggt gta ott ttg cog ttt ago ttt Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 85 90	288
45	ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 100 105	336
50	gta aat tit gat toa oit aaa gtg tat ttg gat gat tgg aaa gat gtt Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val	384
J U	ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac Leu Pro Gin Gly Ile Ser Ser Phe Ile Asp Asp Ile Gin Ala Gly Asn 130	432
55		480
60	The same and gar are all cat cut gut gua	528

		165	170	175	
5	atg gtt cct ggt Met Val Pro Gly 180		acg gga att ga Thr Gly Ile Gl 185	aa agc tgg gga gtt att lu Ser Trp Gly Val Ile 190	576
•		tgc gat agt Cys Asp Ser	tct gcg cat to Ser Ala His Pi 200	tt cgt aaa cgg ctg tgg he Arg Lys Arg Leu Trp 205	624
10		atg ctg aga Met Leu Arg 215	aca atg gtt a Thr Met Val M	tg gat aaa gtt tgt tgg et Asp Lys Val Cys Trp 220	672
15		atg tta gat Met Leu Asp 230	Bio Gia in a	ggt ctg gac cca ccg aac Ny Leu Asp Pro Pro Asn 235 240	720
20		t gca gca cag g Ala Ala Gln 245	ggc ttc gaa t Gly Phe Glu S 250	cca act gat tat ttc atc Ser Thr Asp Tyr Phe Ile 255	768
25	gca ggg tat tg Ala Gly Tyr Tr 26	p lie Trp Asn	aaa gtt ttc o Lys Val Phe 0 265	caa aat ctg gga gta att Gln Asn Leu Gly Val Ile 270	815
-	ggc tat gaa cc Gly Tyr Glu Pr 275	c aat aaa atg o Asn Lys Met	g acg agt gct g Thr Ser Ala 2 280	gcg tat gat tgg agg ctt Ala Tyr Asp Trp Arg Let 285	: 864 1
30		it cta gaa aga sp Leu Glu Arg 29	G Wid Was was	tac ttt acg aag cta aa Tyr Phe Thr Lys Leu Ly 300	g 912 s
35	gaa caa atc ga Glu Gln Ile Gl 305	aa ctg ttt ca lu Lau Phe Hi 310	S Glii Leu sa-	ggt gaa aaa gtt tgt tt Gly Glu Lys Val Cys Le 315	a 960 u 0
40		ct atg ggt to er Met Gly Se 325	t cag att atc r Gln Ile Ile 330	ttt tac tit atg aaa tg Phe Tyr Phe Met Lys Tr 335	g 1008 P
45	Val Glu Ala G	aa ggc cct ct lu Gly Pro Le 40	et tac ggt aat eu Tyr Gly Asn 345	Gly Gly Arg Gly Trp Va 350	t 1056
	aac gaa cac a Asm Glu His I 355	ta gat tca to le Asp Ser Pr	ic att aat gca ne Ile Asn Ala 360	gca ggg acg ctt ctg gg Ala Gly Thr Leu Leu G 365	gc 1104 Ly
50		ila Val Pro A.	ct cta att agt la Leu Ile Ser 75	ggt gaa atg aaa gat a Gly Glu Met Lys Asp T 380	nr 1152
55		eat acg tta galass Thr Leu Al	cc aty tat ggt la Met Tyr Gly	ttg gaa aag tto tto t Leu Glu Lys Phe Phe S 395 4	ca 1200 er 00
60		aga gca aaa a Arg Val Lys M 405	tg tia caa acg et Leu Gln Thr 410	tigg ggt ggt ata coa to the Tro Gly Gly Ile Pro S	ca 1248 er

	atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct 129 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420 425	96
5	tca gag gat gca ttg aat aac act gac aca tac ggc aat ttc att 134 Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 445	4.4
10	cga ttt gaz agg aat acg agc gat gct ttc aac aaa aat ttg aca atg 13 Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 450	92
15		40
20	aga aga gta cat gag cag tac tog tto ggo tat too aag aat gaa gaa 19 Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 495	188
_0	gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg 1 Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505	536
25	gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac 1 Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	.584
30		L632
35	gac too tot got otg aat ttg acc atc gac tac gaa agc aag caa cot Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 560 545	1680
40	gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg ctc to gtg gcg ctc gtg gcg ctc to gtg gcg ctc gtg gcg ctc to gtg gcg ctc to gtg gcg ctc gtg gcg gc	1728
	atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585	1776
45	att aac grt act att grg gaa atg aaa cat tag cou son Asp Arg Phe Asp Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 605	1824
5(Ile Arg Gly Gly Ala Lys Ser Ala Glu als val may 610 615	1872
5	geg gag tig aac gat tac atc tig aaa att gca age ggt aat ggc gat 5 Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630	1920
6	ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Tro Val Ser Gln 655	1962

1986

atg ccc ttc cca atg taa Met Pro Phe Pro Met 660

			•	000													
5	<210: <211: <212: <213:	> 66 > PR	1	romy:	ces (cere\	risia	ıe									
10	1				5							Gln					
15				20					2.3			Lys					
	Asn	Ľis	Ile 35	His	His	Gln	Gln	Gly 40	Leu	Gly	His	Lys	Arg 45	Arg	Arg	Gly	
20	Ile	Ser 50	Gly	Ser	Ala	Lys	Arg 55	Asn	Glu	Arg	Gly	Lys 60	Asp	Phe	ÇZA	Arg	
25	Lys 65	Arg	Asp	Gly	Asn	Gly 70	Arg	Lys	Arg	Trp	Arg 75	Asp	Ser	Arg	Arg	Leu 80	
	Ile	Phe	Ile	Leu	Gly 85	Ala	Phe	Leu	Gly	Val 90	Lev	Leu	Pro	Phe	Ser 95	Phe	
30	Gly	Ala	TYT	His 100	Val	His	Asn	Ser	Asp 105	Sez	: Asī) Leu	Phe	Asp 110	Asn	Phe	
	Val	Asn	Phe	Asp	Ser	Leu	Lys	Val	Tyr	Lev	ı Ası	a Asp	Trp 125	Lys	qzA	Val	
35	Leu	Pro 130	Gln	Gly	·Ile	. Ser	Ser 135	Phe	: Ile	e Ası	o Asi	p Ile 140	Gln	Ala	Gly	Asn	
40	Tyr 145	Ser		:-Seː	Ser	Leu 150	Asp	Asī	Lev	ı Se:	r Gl	u Asī S	ı Phe	e Ala	val	160	
			n Leu	ı Lev	Arg	; Asp	Tyr	AS:	n Ile	e Gl	u Al O	a Ly:	s His	s Pro	Va. 17	L Val	
45	Met	. Vai	l Pro	Gl ₂	y Val	l Ile	e Ser	Th	= Gl; 18	y Il 5	e Gl	u Se	- T-7	9 Gly	y Vai	i Ile	
	Gly	/ As	p Asi 199		ı Cy:	s As	o Se≥	s se	- Al 0	a Hi	s Ph	e Ar	을 <u>다</u> 았	s Ar	g Le	u Trp	
50	Gl	/ Se 21	r Pho		- Ma	t Le	1 Arg	g i <u>rh</u> 5	r Me	t Va	l Me	et As 22	0 5 FĀ	s Va	l Cy	s Tro	
55	ье 22	ı Ly		s Va	l Me	t Lev 23	u As; O	p Pr	o Ġl	u Tì	1= G. 2:	Ly Le 35	e As	ē br	o Pi	o Asn 240	
			r Le	u Ar	g Al 24	a Al	a Gi	n Gl	y Ph	le Gi 2:	Lu Si 50	er Th	r As	TY	- Ph 25	ie Ile is	;
60	Al	a Gl	у ту	T TT 25	p Il O	e Tr	p As	n Ly	rs Vs 25	11 P) 55	ne G	ln As	n Le	au Gl 27	.y V≊ '0	ıl Ile	<u> </u>
				45	5					•							

	Gly	Tyr	Glu 275	Pro	Asn	Lys	Met	Thr 280	Ser	Ala	Ala	Tyr	Asp 285	Trp	Arg	Leu
5	Ala	Tyr 290	Leu	qzA	Leu	Gľu	Arg 295	Arg	qzA	Arg	Tyr	Phe 300	Thr	Lys	Leu	Lys
10	Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	Gln	Leu	Ser	Gly 315	Glu	Lys	Val	Cys	Leu 320
10	Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	Ile 330	Phe	TYT	Phe	Met	Lys 335	Trp
15	Val	Glu	Ala	Glu 340	Gly	Pro	Leu	TYT	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
٠.	Asn	Glu	His 355	Ile	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
20	Ala	Pro 370		Ala	Va1	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
	Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
25	Arg	Ile	Glu	Arg	Val 405		Met	Leu	Gln	Thr 410	Tro	Gly	Gly	Ile	Pro 415	Ser
30	Met	. Lev	Pro	Lys 420	Gly	Glu	Glu	Val	11e	Tr	Gly	Asp	Met	Lys 430	Ser	Ser
	Sez	Glu	Asp 435		Leu	Asn	Asn	Asn 440	Thr	Asī	Thr	Tyr	Gly 445	Asn	Phe	· Ile
35	Αzg	9he		Arg	, Asi	Thr	: Ser 455	Asp	Ala	Phe	Asn	Lys 460	Ası	l Leu	Thr	Met
40	Lys 46		Ala	ı Ile	a Asi	1 Met		Lev	: Ser	: Ile	9 Sez 475	Pro	Glu	ı Tış	Leu	480
40	Arg	g Arq	y Val	L His	5 Glu 485		. Tyr	Ser	Phe	Gly 49) Y TYI	: Ser	Ly:	a Asi	495	Glu 5
45	Glı	ı Le	ı Arç	500		n Glu	ı Lev	ı His	5 His	Ly:	s His	TI	Se	r Ası 510	r Pro	Met
	Gl	u Va	l Pro 519	o Lei	u Pro	o Gl	ı Ala	Pro . 520	o His	s Me	t Lys	s Ile	⊋ Ty:	r Cys 5	s Ile	e Tyr
50	Gl	y Va 53		n Ası	n Pro	idT o	= Glu 535		g Ala	a Ty	r Val	1 Ty:	r Ly:)	s Gl:	ı Gl	ı Asp
	As; 54		r Se:	r Al	a Le	u As: 55	n Leu O	ı Thi	r Iļ	e As	TYT 9	r Gli	ı Se	r Ly	s Gl	n Pro 560
55	۷a	l Ph	e Le	u Th	r Gl 56		y As	Gl:	y Th:	- Va 57	1 Pro	o Le	u Va	l Ala	R Hi	s Ser 5
60	Me	t Cy	s Hi	s Ly 58	s Tr		a Gl:	n Gl	y Ala 58	a Se 5	r 9r:	о Ту	r As	n Pro	o Al	a Gly

			595					600	Lys				-			
5	Ile	Arg 610	Gly	Gly	Ala	Lys	Ser 615	Ala	Glu	His	Val	Asp 620	Ile	Leu	Gly	Ser
	625					630			Lys		•••					
10	Leu	Val	Glu	Pro	Arg 645	Gln	Leu	Ser	Asn	Leu 650	. Ser	Gln	Trp	Val	Ser 655	Glr
15	Met	Pro	Phe	910 660		•										

```
SEQUENCE LISTING
```

<110> Stymne Dr., Sten <120>

<130>

< 144 >

<141>

<150>

<210> 1 b

<211> 1986

<212> genomic DNA

<2113> Saccharomyces cerevisiae

<221> CDS

<222> (1) .. (1983)

<400> 1

atg ego aca ong tin oga aga aat gto ong sac ola aag agt gan nen Met Gly Thr Lou Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Scr

gat gas and sat san ggg ggt tot gtt cat has mag cgn gag age aga Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 25 20

are one att cat can can eag ega the ege cat and aga aga agg egt Ast His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg ,Gly 40 35

att agt ggc agt gca aga aga aat gag cgt ggc aaa gat tte gac agg 192 The Ser Gly Ser Ala Lys Arg Azn Glu Arg Gly Lys Asp Phe Asp Arg 50

and ago gao ggg aac ggt aga and ogt tog aga gat too aga aga etg Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 75 70 £ 5

att too att cot ggt goa the tha ggt goe ett tig cog tit age tot 288 The Pho The Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 90 25

ggo got the cat got cat hat ago gat ago ghe tog the gad has the 33€ Gly Ala Tyr His Val His Ash Ser Asp Ser Asp Leu Phe Asp Ash Phe 105 100

gta aat tit gat toa out and gig tat tig gat gat tig aaa gat git 384 Val Asn Phe Asp Sor Leu Lys Val Tyr Lou Asp Asp Trp Lys Asp Val 115 120 125
ete eca cau ggt ata agt teg tit att gat gat att eag get ggt aac 432 Leu Pro Gln Gly Ile Ser Ser Pre Ile Asp Asp Ile Gln Ala Gly Asn 130 135
tac tes aca tes tes gas gas etc ags gas aas tes ges get ggt 180 Tyr Sor Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145 150 150
DAN CAR CTC TEA CGT GAT TAT ART ATC GAG GCC DAN CAT CUT GLT GLT GLT SEO Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ale Lys His Pro Val Val 175
acg got cot ggt gto att tot acg ggs att gas ago tgg ggs got tot 576 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185
gga gao gat gag tgo gat agr bot gog car ttt cgt amm ecq ctg tgg 624 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lym Arg Leu Trp 195
gga agt tit tac atg ctg aga aca atg git atg gat aaa git tgt tgg 672 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215
tig aas cat gos atg tis gat cot gas aca ggt otg gad cos cog aad 720 Lou Lys Mis Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 240
tit acg cta cgt gca gca cag ggt the gas tea act gat tat the atc 768 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255
goa gag that tag abb tag abc has got too can hab one gan go hat the sis als als Gly Tym Top lie Top Asn Lys Val Phe Glm Asn Leu Gly Val lie 250
ggo tat gas out est eas and and ago got gog tat gat tog ago out - 864 Gly Tym Glu Pro Ash Lys Met Thr Sem Ala Ala Tym Asp Top And Leu 255 250

gea tat tra gat era gaa aga ege gat agg tae trt acg ang eta ang 912 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 295 100
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta 960 Glu Gln Ile Glu Leu Phe Kis Gln Leu Ser Gly Glu Lys Val Cys Leu. 315 320
att gga cat tot atg ggt tot cag att atc ttt tac ttt atg all tgg 1008 Ile Gly Kis Ser Met Gly Ser Gla Ile Ile Phe Tyr Phe Met Lys Trp 335
gto gag got gas ggo cot ott tac ggt aat ggt ggt ogt ggo tgg gtt 1056 Val Glu Als Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val 345
axc gas cac ata gat toa too att aat goa goa ggg acg ott otg ggc 1104 Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Lou Leu Gly 355
got oca aag goa git oca got ota att agt ggt gaa atg aaa gat acc 1152 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375
att caa tta aat acg tta god atg tat ggd ttg gaa aag ttd ttd tca 1200 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 395 400
aga att gag aga gta aam atg tta caa acg tgg ggt ggt ata cca tca 1248 Arg Ile Glu Arg Val bys Met Leu Gln Thr Trp Gly Gly Ile Pro Scr 415
atg cth cca ang gga gan grg gto att tgg ggg gnt atg mag tch tct 1296 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 430
toa gas gat goa tog aat aac aac act gac aca tac ggc aat toc act 1344 Sar Glu Asp Ala Leu Asp Asp Thr Asp Thr Tyr Gly Asp Phe Ile 445
ogs tit gas agg sat acg ago gat got too aso has ast tog see atg 1392 Arg Phe Glu Arg Ash Thr Ser Asp Ala Phe Ash Lys Ash Leu Thr Met 450
aar gad god att aad atg ada tta tog arr toa cot gan tog etc caa 1440 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 480

aga Arç	YZG YZG	gta Val	ca Hi	s G	as c lu c 85	ag Sln	tac Tyr	tcg Sez	ttc Phe	99 61 49	y T	yr s	er :	Lys	aat Asr	G1 45	u	gaa Glu		1488
Glu	cca Lou	aga Arg	L Ly So	's A	at (Glu	cta Leu	cac His	CAC Ris EOS	Ly	ig c ke H	ac (tgg Irp	ser	As: S10		ro	atg Met		1536
gsa Glu	gta Val	Pro	o L:	:t c :u I	ca Pro	gaa Glu	gct Ala	970 520	His	at S Ma	ig a	ys	acc	tat Ty= 525	Cy:	: a s I	ta le	Tyz	•	1584
cjà 235	gtg Val	As	c a. n A	ac (cca Pro	act Thr	gaa Glu 535	agg Arg	ge: Al:	2 T;	Āz j si š	gta Val	tat Tyr 540	Lys	ga:	2 S U G	ag Lu	gat	:	1632
920 249	563	: tc : Se	r A	ct .l=	cts Leu	aat Asn SSO	Lev	aco Thi	= = E = E1	e 7	.5Ç	tac Tyr 555	Glu	ago Se:	: aa : Ly	g c	aa In	00: Pro	٠	1680
gt: Val	t tt	c ct e lo	in 1	hr	gag Glu SES	Gl;	gad / Asi	o GJ.	a ac	ir V	;tt /21 570	5,20 CCG	ctc	gt: Vai	5 59 L Al	. 2.	cat Hie 575	35	a ¥	1728
at; Me	g tg t Cy	t cz s X:	is 1	ras Eso	Cgg Trp	gc:	c cas	s es	y A.	:= (} != !	cca Ser	DI0	Ty	e er ea	n 2:	=t =0 90	gcc	: 61	a Y	1776
at Il	t aa e As	n V	tt . al ! 95	act Thr	att	gt Va	g ga l Gl	a at u Me	t L	ss ys :	cac Xis	Glr	r CC	a ga o As o a	א פי	 35	ttt Phi	: 5ª	it Sp	1824
at Il	a cg Az 61	g G	gc	Gjy	SCE	a ao a Ly	.a 29 rs Se 61	e ge r Al	ee g	aa lu	His	gta Val	a ga l As 62	D 7:	c c Le I	tc	gg:	c as	5c	1872
59 AJ 62	.a G	ag t	eu ueu	aac asr	gat	t ta p Ty s:	/T I	c t le L	tg z eu I	iys Iaa	att	55. Al 63	a Se	E G	gt a ly A	iet Len	gg Gl	· ~	a t 5 p 4 0	1920
E:	eu.V	tc s al (gag Glu	52: CC:	2 CS 2 AI 64	E G	as t ls L	tg t eu S	et :	ist Asn	tts Lev 650	: Se	2 G	ig t In T	55 S	gtt Val	5 e		ag	1952

1986

Met Pro Phe Pro Met

<210> 2 lg

```
<211> 651
 <212> PRT
. <213> Saccharomyces carevisiae
 <400> 2
 Met Gly Thr Lou Phe Arg Arg Asn Val Gln Asn Gln Lys Sar Asp Ser
 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
                                 25
  Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly
                              40
  Ile Ser Gly Ser Alz Lys Arg Asn Glu Arg Gly Lys Asp Pne Asp Arg
                      . 55
  Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
                                          75
  Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Lau Pro Pho Ser Phe
                      70
                                      90
  Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
                                 105
   Val Asn Pho Asp Ser Lou Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
                              120
   Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
                          135
   Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Vel Gly
                                          155
   Lys Glm Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
                       150
                                       170
    Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
                                   185
    Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Lou Trp
                               200
    Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
                                              220
                           215
    Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
                                           235
    Phe Thr Leu Arg Alz Ala Glm Gly Phe Glu Ser Thr Asp Tyr Phe Ile
                        230
                    245
                                       250
     Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
                                   2€5
     Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
                               290
     Als Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
```

Giu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu

. 295

310

305

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Mcc Lys Trp
Ile Cly His Ser Met Gly Ser Gin IIE IIE FAC 170
125 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val 345
Val Glu Ala Glu Gly Pro Leu Tyr Gly Ask Gly Gly 115
340 345 Leu Leu Gly
Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Lou Gly 355
355 360 The same and the same a
355 360 360 Ala pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Mat Lys Asp The 380
375 375 Bho Phe Ser
375 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Pho Phe Ser 395 400
395 390 390 TIO PRO SAT
390 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 415
405
405 Mer Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Mct Lys Ser Ser 430
425
420 420 Ser Glu Asp Ala Leu Ash Ash Ash Thr Asp Thr Tyr Gly Ash Phe Ile 445
Ser Glu Asp Ald Los 11-11-14-1445
435 435 Arg Pho Glu Arg Asn Thr Ser Asp Ala Phe Asn Lyz Asn Leu Thr Met 460
Arg Pho Git Arg Ash 1112 224 460
450 455 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 475 480
Lys Asp Ala IIe Ash Net 1112 200 475
465 470 Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 495
Are Are Val His GIU CIR 192 501 495
485 Glu Lou Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Mct 505 510
Glu Lou Arg Lys Ash Gld Hed Has 505
500 Fig Mat Lys Ile Tyr Cys Ile Tyr
Gly Val Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Gly Val Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Gly Val Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Ann Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Ann Ann Ann Pro The Glu Ann Ann Ann Ann Ann Ann Ann Ann Ann An
Gly Val Ash Pro The Glu Arg Ala 112 van 540
535 Asp Ser Ser Ala Leu Ash Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 555
Asp Ser Ser Ala Leu Ash Leu Thr lie Asp 37560
545 550 Ser Lev Val Ala His Ser
545 S50 S45 Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
565 STO TUT Ash Pro Ala Gly
565 Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 585 586
585 SEC SEC SEC AND AND AND AND AND AND
S80 S85 Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 605
595 600 The Leu Gly Ser
595 Ele Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 620
615 615 620
615 615 Ala Glu Leu Asn Asp Tyr Ele Leu Lys Ile Ala Ser Gly Asn Gly Asp 640
A18 G14 HEL MAN (NF -7) 635
625 630 Con Trp Val Ser Gln Trp Val Ser Gln Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln Leu Ser Gln Trp Val Ser Gln Trp Va
Leu Val Glu Pro Ary Gin Double 550
645
Met Pro Pro Met

<210> 3 b <211> 2312 <212> genomic DNA <213> Schizosaccharomyces.pombe <400> 3	
NTEGCGTCTT CCAAGAACAG CAAAACTCAT AAGAAAAGA AAGAAGTCAA	50
ATCTCCTATC GACTTACCAR ATTCAAAGAA ACCAACTCGC GCTTTGAGTG	100
AGCARCETTE AGEGTEEGAA ACACAATETG TTTCAAATAA ATCAAGAAAA	150
TCTAAATTTG GAAAAGATT GAATTITATA TTGGGCGCTA TTTTGGGAAT	200
ATGCGGTGCT TTTTTTTCG CTGTTGGAGA CGACAATGCT GTTTTCGACC	250
CTGCTACGTT AGATARATTT GGGARTATGC TAGGCTCTTC AGACTTGTTT	300
GATCACATTA AAGGATATTT ATCTTATAAT GTGTTTAAGG ATGCACCTTT	350
TACTACGGAC AASCETTCGC AGTETECTAG CGGAAATGAA GTTCAAGTTG	400
GICTIGATAT GTACAATGAG GGATATCGAA GTGACCATCC TGTTATTATG	450
GTTCCTGGTG TTATCAGCTC AGGATTAGAA AGTTGGTCGT TTAATAATTG	500
CTCGATTCCT TACTTTAGGA AACGTCTTTG GGGTAGCTGG TCTATGCTGA	550
AGGCAATGTT CCTTGACAAG CAATGCTGGC TTGAACATTT AATGCTTGAT	600
AAAAAACCG GCTTGGATCC GAAGGGAATT AAGCTGCGAG CAGCTCAGGG	650
GTTTGAAGCA GCTGATTTTT TTATCACGGG CTATTGGATT TGGAGTAAAG	700
TAATTGAAAA CCTTGCTGCA ATTGGTTATG AGCCTAATAA CATGTTAAGT	750
GCTTCTTACG ATTGGCGGTT ATCATATGCA AATTTAGAGG AACGTGATAA	200
ATATTITTCA ANGITARANA IGTICATIGA GIACAGCARC ATIGIACATA	850
AGAAAAGGT AGTGTTGATT TCTCACTCCA TGGGTTCACA GGTTACGTAC	900
TATTTTTTA AGTGGGTTGA AUUUUAGUGC TACGGAAATG GTGGACCAC	950
TIGGGTTAAT GATCATATTG AAGCATTTAT AAATGTGAGT CTCGATGGTT	1000
GTTTGACTAC GTTTCTAACT TTTGAATAGA TATCGGGATC TTTGATTGGA	1050
GCACCCAAAA CAGTGGCAGC GCTTTTATCG GGTGAAATGA AAGATACAGG	1100
TATIGTARTI ACATTARACA TGTTARTATT TARTTTTTGC TARCCGTTTT	1150
ANGCTCARTT GRATCHGTTT TOGGTCTATG GGTARGCART AARTTGTTGA	1200
GATFIGURAC TANTITACTS TITASTITES AAAAATTITT TICCCCTTCI	5250
GAGGTATATT CAAAAATACA AATGTGCTCT ACTTTTCTA ACTTTTAATA	1300
GAGAGECATG ATGGTTEGEA CTATGGGAGG AGTTAGTTET ATGETTEETA	1350
AAGGAGGCGA TGTTGTATGG GGAAATGCCA GTTGGGTAAG AAATATGTGC	1400

GTTAATTTT TTATTAATAT TTAGGCTCCA GATGATCTTA ATCAAACAAA	1450
TTTTCCNAT GGTGCAATTA TTCGATATAG AGAAGACATT GATAAGGACC	1500
ACGATGARTT TGACATAGAT GATGCATTAC AATTITIAAA AAATGTTACA	1550
SATGACGATT TTAAAGTCAT GCTAGCGAAA AATTATTCCC ACGGTCTTGC	1600
FIGGACIGAA AAAGAAGIGI TAAAAAATAA CGAAATGCCG TCTAAATGGA	7,620
TRANTCCGCT AGAAGTARGA ACATTARAGT TACTARATTA TACTRACCCA	1700
ANTAGACTAG TOTTCCTTAT GCTCCTGATA TGANAATTTA TTGCGTTCAC	1750
CGGGTCGGAA AACCAACTGA GAGAGGTTAT TATTATACTA ATAATCCTGA	1900
GGGGCAACCT GTCATTGATT CCTCGGTTAA TGATGGAACA AAAGTTGAAA	1850
ATGTGAGAGA ATTTATGTTT CAAACATTCT ATTAACTGTT TTATTAGGGT	1900
ATTGTTATGG ATGATGGTGA TGGAACTTTA CCAATATTAG CCCTTGGTTT	1950
GGTGTGCAAT AAAGTTTGGC AAACAAAAAG GTTTAATCCT GCTAATACAA	3000
GTATCACARA TTATGARATO ARGCATGARC CTGCTGCGTT TGATCTGAGA	2050
GGAGGACCTC GCTCGGCAGA ACACGTCGAT ATACTTGGAC ATTCAGAGCT	2100
ARRIGHATGT TOATTTTACC TTACRARTTT CTATTACTAR CTCTTGARAT	2150
AAGGANATTA TTTTAAAAGT TTCATCAGGC CATGGTGACT CGGTACCAAA	2200
CCGTTATATA TCAGATATCO AGTACGGACA TAAGTTTTGT AGATTGCAAT	2250
TAACTAACTA ACCGAACAGG GAAATAATAA ATGAGATAAA TCICGATAAA	2300
	2312
CCTAGAAATT AA	

<210> 4 b <211> 3685 <212> genomic DNA <213> Arabidopsis thaliana <400> 4

ATGCCCCTTA TTCATCGGAA AAAGCCGACG GAGAAACCAT CGACGCCGCC 50 ATCTGAAGAG GTGGTGCACG ATGAGGATTC GCAAAAGAAA CCACACGAAT 100 CTTCCARATC CCACCATAG ARATCGARCG GAGGAGGGAR GTGGTCGTGC 150 ATCGATTCTT GTTGTTGGTT CATTGGGTGT GTGTGTAA CCTGGTGGTT 200 TETTETETE CTTTACAACG CAATGECTGE GAGETTEECT CAGTATGTAA . 250 CGGAGCGNAT CACGGGTCCT TTGCCTGACC CGCCCGGTGT TAAGCTCAAA. 300 AAAGAAGGTC TTAAGGCGAA ACATCCTGTT GTCTTCATTC CTGGGATTGT 350 CACCGGTGGG CTCGAGCTTT GGGAAGGCAA ACAATGCGCT GATGGTTTAT 400 TAGARARCG TITGTGGGGT GGARCTTTTG GTGRAGTCTR CARREGTGR 450 500 GCTCARCAAT TCTCACTCTT CCTTTATATT GGGATTTGGA TTGGATCTGA TGAGATONOG CACTTGTTGC TTCTTCAACA TCACTCAAAC TTTAATTCCA 550 TGTTTGTCTG TCTTACTCTT TACTTTTTTT TTTTTTTGAT GTGAAACGCT 600 ATTITCTIAN GAGACTATTT CTGTATGTGT AAGGTAAGCG TTCCAAGGAC 650 700 GTANTGGCT TEGACTATTT CTGTTTGATT GTTANCTTTA GGATATANA TAGCTGCCTT GGAATTTCAA GTCATCTTAT TGCCAAATCT GTTGCTAGAC 750 500 ATGCCCTAGA GTCCGTTCAT AACAAGTTAC TTCCTTTACT GTCGTTGCGT GTAGATTTAG CTTTGTGTAG CGTATARTGA AGTAGTGTTT TATGTTTTGT 250 900 TGGGAATAGA GAAGTTCTAA CTACATCTGT GGAAAGTGTG TICAGGCTGT GATAGAGGAC TGTTGCTTTA TTATTCAACT ATGTATATGT GTAATTAAAG 950 CTAGTTCCTT TTTGATCTTT CAGCTCARTG TGCTTTTCTC AATTTTTTTC 1000 1050 TONATTICAA AGTITCACAT CGAGTTTATT CACATGTCTT GAATTTCGTC CATCCTCGTT CTGTTATCCA GCTTTGAACT CCTCCCGACC CTGCTATGGA 1100 1150 TATATTAAAA AAAAAGTGTT TTGTGGGTTG CATCTTTGTT ACGATCTGCA TOTICTTCTT TOGGCTCAGT GTTCATGTTT TTGCTATGGT AGAGATGGGC 1200 ARTGITATIG TIGHTGGTAR CAGTGGTATA GITGATAGTA TOTTARCTAR 1250 TCAATTATCT CITTGAITCA GGCCTCTATG TIGGGTGGAA CACATGTCAC 1300 TIGACAATGA AACTGGGTTG GATCCAGCTG GTATTAGAGT TCGAGCTGTA 1350

TCAGGACTCG TGGCTGCTGA CTACTTTGCT CCTGGCTACT TTGTCTGGGC	1400.
TCAGGACTCG TGGCTGCTGA CTACTITGG TGAAGAG AAAAATATGT	1450
AGTGCTGATT GCTAACCTTG CACATATTGG ATATGAAGAG AAAAATATGT	1500
ACATGGCTGC ATATGACTGG CGGCTTTCGT TTCAGAACAC AGAGGTTCTT	1550
TTCTCATCGT TCTTTCTATT ATTCTGTTCC ATGTTACGTT TCTTTCTTCA	7600
TINETARGE CTTANATATE TITCATETTE NATTAATAGE TACGICATET	1650
THE CONTRACT COTATGAAAA GTAATATAGA GTTGATGGTT TCTACCAAAA	1700
CTCCARRR AGCAGTTATA GTTCCGCATT CCATGGGGGT CTIGIATIO	
CTACATTTA TGARGEGGT TGAGGCACCA GCTCCTCTGG GIGGCGGGG	1750
TGGGCCAGAT TGGTGTGCAA AGTATATTAA GGCGGTGATG AACATTGGTG	1900
GACCATITCT TGGTGTTCCA AAAGCTGTTG CAGGGCTTTT CTCTGCTGAA	1850
GACATITET IGGIGITEDA TA	1900
GCAAAGGATG TTGCAGTIGC CACCTOM TGATCAGAAC CTTGGCTCTG GAACTCAAAG TTATTCTACT AAATATCAAT	1950
TGATCAGAAC CTTGGCTCTG GAACTCAGTT TCTAATAACA TTGCTATATT ATCGCTGCAA CTGACATTGG TTGATTATTT TCTAATAACA TTGCTATATT ATCGCTGCAA CTGACATTGGATT	2000
TCTANTANCA TTGCTATATT ATCCCTGCA CATTAGACAA ATGATGAATT	2050
TCTARTARCA IIGCIRTO	2100
GATAATTCTT ACGCATTGCT CTGTGATGAC CAGTTTCTTA GCTTCGACGA	2150
TAACATTIGT CATACTGTCT TITGGAGGGC ATTGAATTTT GCTATGGAAA	2200
GCGCTGGAGC TTCCATGCTT GCATTCTTTA CCAATTAGCG TTATTCTGCT	2250
TOTTCAATT TTCTTGTATA TGCATCTATG GTCTTTATT TCTTCTTAAT	2300
TARGACTOG TIGGATTAGI TGCTCTATTA GICACTIGGI TCCTTAATAT	2350
AGAINGTE A TET CTICGAA AATTGCAGAG CGATTGCCCC AGGAITGT	2400
TATTIAGACT TOAGACCTTG CAGCATGTAA IGAGAAATTA	2450
A CONTRACTOR CACTORACAN TOTOTATOTT ACCORAGGGA GUIGACATON	
THE PROPERTY OF THE PROPERTY O	2500
ACADCA ACTIGIGGE GARGEAGGIG ACTION	2550
TICCAAGAAA AGTECTGTTA ACTATGGAAG GATGATATCT TITGGGAAAG	2500
TTCCAAGAAA RETUCTETTA POOR ATAATATTEA TTTTCGAGTA AAGTAGCAGA GGCTGCGCCA TCTGAGATTA ATAATATTGA TTTTCGAGTA	2650
AAGTAGCAGA GGCTGCGCCA TCTGAGTTTTTTTGTTGAT TGTATGATGA AGGACATATA AATCATAATA AACCTTGTAC ATTTTTGTGAT TGTATGATGA	2700
ASSACATATA AATCATAATA AAUSTIGIAC AASSACATATA	2750
AEGACKIAIR ARTCASSTORE GTGAAGGGTG CTGTCAAAGG TCAGAGTATC	2300
ATATOTETAC ATTITATORY OF THE ACATEGRAAT CORANTOROR COTGTOGTOR COTGTOGRACA GROTACORT COTGTORAG	28,50
TGCTGGGATC AAAGCTATCG CTGAGTATAA GGTCTACACT GCTGGTGAAG	

TATAGATCT ACTACATIAT GTTGCTCCTA AGATGATGGC GCGTGGTGCC	2900
CYCATTICT CTTATGGAAT TGCTGATGAT TTGGATGACA CCAAGTATCA	2950
CYCATTICT CITATGGAR! ISCIGATOR! FOR CACABAGTAA GIGATTICTT	3000
GATCCCAAA TACTGGTCAA ATCCGTTAGA GACAAAGTAA GTGATTTCTT	3050
SATTCCAACT GTATCCTTCG TCCTGATGCA TTATCAGTCT TTTTGTTTTC	3100
SGICTTGTTG GATATGGTTT TCAGCTCAAA GCTTACAAAG CTGTTTCTGA	1150
SCCTTTCTCA AAAAGGCTTG CTCAGTAATA TTGAGGTGCT AAAGTTGATA	
CATCHERTE TEGETTATAA ATCCTCCGTT TGGTTTGTTC TGCTTTTTCA	3200
GAITACCGNA TGCTCCTGAG ATGGAAATCT ACTCATTATA CGGAGTGGGG	3250
ATACCAACGG AACGAGCATA CGTATACAAG CTTAACCAGT CTCCCGACAG	3300
ATACCAACGG ARCGAGCRIN COMMINGED TORCGAGGAG GACGAAGATA TTGCATCCC TTTCAGATAT TCACTTCTGC TCACGAGGAG GACGAAGATA	3350
TTGCATCCCC TTTCAGATAT TCACTTCCCC ATCCGGATGA AACAGTACCC	3400
GCTGTCTGAA AGCAGGAGTT TACAATGTGG ATGCGGATGA AACAGTACCC	3450
GTCCTAAGTG CCGGGTACAT GTGTGCAAAA GCGTGGCGTG	3500
ATTENACECT TEEGGAATEN AGACTTATAT AAGAGAATAC AATEACTETE	3550
CGCCGGCTAA CCTGTTGGAA GGGCGCGGGA CGCAGAGTGG TGCCCATGTT	•
GATATCATGG GARACTTTGC TTTGATCGAR GATATCATGR GGGTTGCCGC	3600
CGGAGGTAAC GGGTCTGATA TAGGACATGA CCAGGTCCAC TCTGGCATAT	3550
TIGAATGGTC GGAGCGTATT GACCTGAAGC TGTGA	3685
TIGAATGGTC GGAGCGIAII GAGGG	

210>	5 b	•														
211>	402	2														
212:	. cD	AL														
213:	Ar	bide	psis	; cha	liar	ıa										
:220:			_													
	CD:	S						•								
222	· (1:	20).	. (402	2)												
< 400																
	-					,				6 ct	א א ידירי	TGTG	TTCT	AAAT	TĊ	60
NGAA	ACAG	CICT	TIGI	CICI	CIC	GACT	GATC	TAAC	AATC	C C1.	~~:~					
											2 2 77 -	TC22	GTGA	CAGA	T	119
CTGG	ACGA	GATT	TGAC.	DAA_A	TCC	GTAT	AGCI	TAAC	CTGG	T. T.	MU					
										CAC	222	CCA	TCG	ACG	CCG	167
ATG	CCC	CTT	ATT	CAT	CGG	AAA.	AAG	CCG	ACG	03.11	Lage	Pro	Ser	Thr	Pro	
Met	Pro	Leu	Ile	His	Arg	ny s	TÃP	=		-	-					
									~ » ~	TCG	CAA	AAG	AAA	CCA	CAC	215
CCA	TCT	GAA	GAG	GTG	GTG	CAC	GAT	GAU	245	502	Gla	LVS	Lys	Pro	His	
Pro	SCT	Glu	Glu	Vel	Val	HTE	wab		, _. .							
										220	CG3	GGA	GGG	A_AG	TGG	263
GAA	TCT	TCC	AAA	TCC	CAC	CAT	AAG	NAM.	100	A C D	Glv	Gly	Gly	Lys	Trp	
Glu	ser	Ser	LVE	Ser	Kls	r. I =	ב ענים				_					
										000	TITT	GTG	TGT	GTA	ACC	. 311
TCG	TGC	ATC	GAT	TCT	TGT	TGT	TGG	110	710	GIV	CVS	Val	Cys	Val	Thr	
Ser	CVS	Ilc	A.ED	Ser	CYS	Cys				_						
										2 76	~	GCG	AGC	TTC	CCT	259
TGG	TGG	TTT	CTT	CTC	TTC	CTT	TAC	AAL	N 3 =	Mer	Pro	Ala	Ser	Phe	Pro	
Tro	Tro	Pine	Leu	Leu	Pne	Ten									Pro	
•	_				_			>1	TCC Ser	Line	GCC	TTA		: G		402
CAC	TAT	GTA	LACG	GAG	CCG	; AAT	CAC	3 080	Sex	ם לם	Ala	Lev	PTC	•		
~ 1 -	. T. P.	- 3/-1	4 T T	Glu	Pro	A.S.	Has	5 :: (367							

<211<212<213<220<221)> .> CD !> (1	3 NA a ma														
CGG Ars	Glu Glu	NNA Lys	ATA Ile	GCT Ala 5	GCT Ala	TTG Leu	AAG Lys	GGG Gly	GGT Gly 10	GTT Val	TAC Tyr	TTA Leu	GCC Ala	GAT Asp 15	GGT	48
GAT Asp	GAA Glu	ACT Thr	GTT Val 20	CCA Pro	GTT Val	CII	agt Set	GCG Ala 25	GJY GGC	TAC Tyr	ATG Mei	TGT Cys	GCG Ala 30	AAA Lys	GGA.	96
TGG Trp	yrg CGT	GGC Gly .35	AAA Lys	ACT Thr	CGT Arg	TTC	AGC Ser 40	CCT Pro	GCC	Gly	AGC Ser	AAG Lys 45	ACT Thr	TAC Tyr	GTG Val	144
AGA	GAA Glu 50	IÀZ	NGC Ser	CAT His	TCG Ser	CCA Pro 55	Dx0 CCC	TCT	ACT Thr	CTC Leu	CTG Leu 60	GAA Glu	GGC	AGG Arg	Gly	192
ACC Thy 65	CAG	NGC NGC	GGT	GCA Ala	CAT His 70	Val	GAT Asp	ATA	ATG Mec	GGG Gly 75	Asn	TTT	GCT Ala	CTA	ATT Ile 60	240
GAG Glu	GAC Asp	GTC Val	: ATC	AGA Arg 85	Ile	GCT Ala	GCT Ala	GGG	GCA 90	Thr	GGT	GAG	GAA Glu	ATT Ile 95	Gly	256
GG(Gly	GAI Aso	CAC Gln	GTI Val 100	Ty	TCA Set	GAT Asp	ATA Ile	TTC Phe 105	гУз	TGG Trp	TCA Ser	. GAG : Glu	Lys 110	-1-	Lys	336
		Lev	1		TATO	aadd	. GTI	AAAG	DAA	TGCC	GACC	ica T	TTAT	TGCG	TTCC	391
نمم	AGTG:	rcct	GCC:	rgagi	GC 2	TOE	TGG:	LT T	TGCI	TAAT	, TAT	TGT	\ATT	TŢT	ACGC	445
TT	CATT	CGTC	CCT	TTGT	CAA 2	L TTI	LCAT?	rt Gi	ACAGO	SACGO	נגס ב	TGC	GATA	CGAT	CTTG	507
TP.	ccec.	INTT	TTC	AGCA?	FTG. 1	TATA:	CTAA	AC I	STAC	aggt(י דא	AGTT	GCAT	TTG	CAGC	563
TG	aaat	TGTG	TAG	TCGT	TTT (CTTT	ACGA:	er t	LATAI	NCAA(s TG	SCGG	AGCN	GTG	CCCA	52:
20	מ מניים:	2222	225	2222	AAA.											643

<210> 7 \(\begin{align*} & 7 \(\begin{align*} & 4211 > 115 \\ & 211 > PRT \\ & 211 > Zer mays \\ & 400 > 7 \end{align*}

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 10 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 30

Trp Arg Cly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Pho Ala Leu Ile 65 70 75 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85

Gly Asp Gln Val Tyr Ser Asp Ile Dhe Lys Trp Ser Glu Lys Ile Lys 100 105

Led Lys Led 115 <210> 8 / (211> 616 (211> 616) (212> CDNA (213> Neurospora Crassa (400> 8

GGTGGCGAAG A	ACGANGGCGG	DDADDTTDAA	CTARCGAGAA	TGACNCTCGG	.50
AGATGGATCT	ACCCTCTAGA	GACACGACTA	CCNTTGCACC	CAGCCTCAAG	ioo
GTW1ACNGTT	TNTATGGGTA	GGAAGCCGAC	GGAGCGAGCC	TACATCTATC	150
TGGCGCCCGA.	TCCCGGGACG	ACARCGCATC	TTTAGATGAC	GATCGATACG	200
ACTTIGACTN	AGGGGCACAT	TGACCACGGT	GTGATTTTGG	GCGAAGGCGA	250
TGGCACAGTG	AACCTTATGA	GTTTGGGGTA	CCTGTGCAAT	ANGGGGTGGA	300
DADAGREAG	ATACAATCCT	GCGGGCTCAA	AAATAACCGT	GGTCGAGATG	350
CCGCATGAAC	CAGAACGGTT	CAATCCGAGA	GGAGGGCCGA	ATACGGCGGA	500
CTTALATATG	TAGAAAAGGT	TGAAATTTAT	GAAGAGTAAT	TAAATACGGC	SSO
ACATAGGTTA	CTCAATAGTA	TGACTAATTA	TTAAAAAAG	TITTTTCTAA	600
4444444	AAAAA	•			616

	AAAAAAABTA	TAICTTCACA	TATTCGGTA	GTCATAGCGA	TACTCGTTGT,	50
	GGTGACGNTG	ACCTCGATGT (TCAAGCTGT	GGGTAGCAAC	GTGTACCCTT	100
	TGATTCTGGT	TCCAGGAAAC (GGAGGTAACC	agctagaggt	ACGGCTGGAC	150
	AGAGAATACA	AGCCAAGTAG '	TGTCTGGTGT	AGCAGCTGGT	TATATCCGAT	200
•	TCATAAGAAG	AGTGGTGGAT	GGTTTAGGCT	ATGGTTCGAT	GCAGCAGTGT	250
	TATTGTCTCC	CTTCACCAGG	TGCTTCAGCG	ATCGAATGAT	GTTGTACTAT	00E
	GACCCTGATT	TGGATGATTA	CCANAATGCT	CCTGGTGTCC	AAACCCGGGT	350
		GGTTCGACCA				100
	GGTTAGTACT	TTCCAAGATA	TATCATITIG	GGACATTTGC	ATAATGAACA	450
	AAATAGACAT	AAATTTGGGG	GATTATTGTT	ATATCAATAT	CCATTTATAT	500
	GCTAGTCGGT	AATGTGAGTG	TTATGTTAGT	ATAGTTAATG	TGAGTGTTAT	550
	GTGATITTCC	ATITTAAATG	AAGCTAGAAA	GITGTCGITT	AATAATGTTG	600
	CTATGTCATG	agnattataa	GGACACTATG	TAAATGTAGC	AATAATAA	650
	GGTTTGATTT	GCAGAGATGC	CACATCTTAC	ATGGAACATT	TGGTGLARGC	700
	TCTAGAGAAA	AAATGCGGGT	ATGTTAACGA	CCAAACCATC	CTAGGAGCTC	750
	CATATGATTT	CAGGTACGGC	CIGGCIGCII	CGGGCCACCC	GTCCCGTGTA	800
	GCCTCACAGT	TCCTACAAGA	CCTCAAACAA	TTGGTGGAAA	AAACTAGCAG	850
	CGAGAACGA	. GGAAAGCCAG	TGATACTCCT	CTCCCATAGO	CTAGGAGGAC	900
	TTTTCGTCCT	CCATTTCCTC	AACCGTACC	CCCCTTCATO	GCGCCGCAAG	950
	TACATCAAA	ACTTTGTTGC	ACTOGOTOCO	CCATGGGGT	GGACGATCTC	1000
					C CCTTTAGTTA	1050
					TAACCAATGG	.1100
					C CGCTIGICGT	1150
					G TTTTTTGCAG	
					g agtgttgcct	1250

SUBSTITUTE SHEET (RULE 26)

TTANCAGAGG	AGCTGATGAC	TCCGGGAGTG	CCAGTCACTT	GCATATATGG	1300
GAGAGGAGTT	GATACACCGG	AGGTTTTGAT	GTATGGAAAA	GGAGGATTCG	1350
ATAAGCAACC	AGAGATTAAG	TATGGAGATG	GAGATGGGAC	GGTTAATTTG	1400
GCGAGCTTAG	CAGCTTTGAA	AGTCGATAGC	TTGAACACCG	TAGAGATTGA	1450
TGGAGTTTCG	CATACATCTA	TACTTAAAGA	CGAGATCGCA	CTTAAAGAGA	1500
TTATGAAGCA	GATITCAATT	ATTAATTATG	AATTAGCCAA	TGTTAATGCC .	1550
GTCAATGAAT	GA				1562

ATGGGAGCGA ATTCGAAATC AGTAACGGCT TCCTTCACCG TCATCGCCGT TTTTTTTTTT ATTTGCGGTG GCCGAACTGC GGTGGAGGAT GAGACCGAGT TICACGGCGA CTACICGAAG CTATCGGSIA TAATCATECS CCCAFTECGS TCGACGCAGC TACGAGCGTG GTCGATCCTT GACTGTCCAT ACACTCCGTT GGACTTCAAT CCGCTCGACC TCGTATGGCT AGACACCACT AAGGTCCGTG ATCTTCATTT CCTTCGCTCC TTATTCTGTC GGTCGAGTCA CTTGTTGATG AATTCCAAGC GAARTATAGC AATGAAGCAT GTCTCGTCTC TCTTATTGAT TCGTTCATTA GTCARCAGTG ACGCTTCTGA ATCTGAGTTT AGAGTCATAT AAAACAGCIG ACTCGGCGAG TCTTTCCCAT CGCTTTTGGT TCGCTAAATG 450 TAGCGCANTG AATGTGTAAT TAGTCTGCGC TTTTTATTCA ACTAGATCTG CAAGTTTTTC AGAGTGCTCA ATAGTAGTTA GAAAATGTTA GGTCATTTTA 550 CTTGTGCATT GTGATTCTTT TGGTTGTTGC TTACTGATCG ACGTGATGGA 600 TGGTTTACAG CTTCTTTCTG CTGTCAACTG CTGGTTTAAG TGTATGGTGC TAGATOCTTA TAATCAARCA GACCATOCOG AGTGTAAGIC ACGGCCTGAC 700 AGTGGTCITT CAGCCATCAC AGAATTGGAT CCAGGTTACA TAACAGGTAG 750 TTTCGGATTT TTCTTTCTTT TGAGTTTTCT TCAATTTGAT ATCATCTTGT TGTGATATAR TATGGCTAAG TTCATTAATT TGGTCAATTT TCAGGTCCTC 850 TTTCTACTGT CTGGAAAGAG TGGCTTAAGT GGTGTGTTGA GTTTGGTATA 900 GAACCANATG CAATTGTCGC TGTTCCATAC GATTGGAGAT TGTCACCAAC CARATTGGAR GAGCGTGRCC TTTACTTTCR CRAGCTCRAG TTAGTCCTTR 1000 YCAGGCTART GTCTTTTATC TTCTCTTTTT ATGTAAGATA AGCTAAGAGC 1050 TOTGGTCGTC TICCTTTTTG CAGGTTGACC TTTGAAACTG CTTTAAAACT 1100 CCGIGGCGGC CCTTCTATAG TATTTGCCCA TTCAATGGGT AATAATGTCT 1150 TCAGATACTT TCTGGAATGG CTGAGGCTAG AAATTGCACC AAAACATTAT 1200 TTGAAGTGGC TTGATCAGCA TATCCATGCT TATTTCGCTG TTGGTACCGG CCTACTATCC TTAAGTTACC ATTTTATTTT TTCTCTAATT GGGGGAGTTA TGTTGTGACT TACTGGATTG AGCTCGATAC CTGATTTGTT GTTGATTTAG GAGCTCCTCT TCTTGGTTCT GTTGAGGCAA. TCAAATCTAC TCTCTCTGGT GTAACGITIG GCCTTCCTGT TTCTGAGGIG ACCTCTGACT TCTCTTTAGT TITAAGTAGT TGATATCAAC CAGGTCTTAT AACTCACTGG ATTTTCCTTT TGANAGTATT ACTITIGITA ATTGANCIGC IGIACGCGAT AIGGIATCIG 1550 TAGATCTTGA AGTGCTAGTT ATCAAAGAAC ATATTGTGGG TAGTATACCT GTCAGCGGCC TTAGCTARTA CARCCARACC ACATGTACAC TGATTTAGTT 1650 TTCAGATTAT TATGGTAGAC TTTAAGTTGA CAAGAAACTT TGACTGAAAT 1700 CTTTTTATTT TAXTAGGCTA TGATTTGTTT ATTGAAATCA TGTGACATAT 1750 TGACATGCGC TTCTCATGTT TTTTGTTGGC AAGGCTTCAG GGAACTGCTC 1800 1250 GGTIGTTGTC CAATTCTTTT GCGTCGTCAT TGIGGCTTAT GCCATTTTCA AAGAATTGCA AGGGTGATAA CACATTCTGG ACGCATTTTT CTGGGGGTGC TGCNAAGAAA GATAAGCGCG TATACCACTG TGATGAAGAG GAATATCAAT 1950 CARACTATIC TEGCTEGCCE ACARATATTA TTARCATTER ARTICCTTCC 200 ACTAGOGGTT AGACTOTGTA TATGOAACTG TAACACTAAC AAAAGTTTCA 2050 CCAAGAATGT TCACTCTCAT ATTTCGTTCC TTTGATGTGT ATCCATCAGT TACAGAAACA GCTCTAGTCA ACATGACCAG CATGGAATGT GGCCTTCCCA 2150 CCCTTTTGTC TTTCACAGCC CGTGAACTAG CAGATGGGAC TCTTTTCAAA 2200 2250 GCNATAGANG ACTATGACCC AGATAGCANG AGGNTGTTAC ACCAGTTANA GAAGTACGTA CCTTTCTTTG TGATAAGAAA TATTGCTCAT CGATCATCAC TTGCTGGCTT CTIGTACGTC ARATTGTTTT GTTTARATCT CTATATCART TGTTCATATG CTTTGTCTTT CTTACTATAA GAAACAAGTA TAATCAGAAA CCTTATTATT GATTATCAGT TCTCTCCTTA TATTATGGAA TGTCTTTTTC 2450 GITTACAGTT ATGARTGCAR ARGGGGGTAT TTTAGTTGAT TGATTCTCTC 2500 ATTCTCTAGT TTGTTTTGAC TAATAGCGTC AATTTTGTTT TTCTAGCAAA 2550 TCTTTGTGAA TTATATATA CATGCTAACT ATACTTTTCA GGTTGTATCA TGATGACCCT GTTTTTAATC CTCTGACTCC TTGGGAGAGA CCACCTATAA AAAATGTATT TTGCATATAT GGTGCTCATC TAAAGACAGA GGTATGATGC 2700 ATTOTCARTA TCACATTATG CGTTGACTTT GTTATTATAT TCCCCATTTG

<210> 11b <211> 709 <212> CDNA <211> COMA <400> 11

CTGGGGCCAA AAGTGAACAT	AACAAGGACA	CCACAGTCAG	AGCATGATGT '	50
TCAGATGTAC AAGTGCATCT	aaatatagag	CATCRACATG	GTGAAGATAT	joo
CATTCCCAAT ATGACAAAGT	TACCTACAAT	GAAGTACATA	ACCTATTATG	150
AGGATTCTCA AAGTTTTCCA	GGGACAAGAA	CAGCAGTTTG	GGAGCTTGAT	200
ANAGCAANTC ACAGGAACAT	TGTCAGATCT	CCAGCTTTGA	TGCGGGAGCT	250
GTGGCTTGAG ATGTGGCATG	; ATATTCATCC	TGATAAAAG	TCCAAGTTTG	300
TTACARARG TGGTGTCTG	TCCTCACTAT	TTTCTTCTAT	AAATGTTTGA	350
GTTTGTATTG ACATTGTAAC	TATTGCAACA	AAAAGCAAAG	CGTGGGCCTC	400
TEAGGGATGA GGACTGCTA	TGGGATTACG	GGAAAGCTCG	ATGTGCATGG	450
GCTGAACATT GTGAATACA	GTTAGAATA1	TCARATTATA	TTTTGCAAAA	500
TATTCTCTTT TIGTGTATT	r aggccaccti	TCCCCGGTCA	CAACGATGCA	550
GATATGTATT CGGGGATGT	T CACCTGGGAC	: AGAGTTGCAG	ATTGAAGAGT	600
TOTACATOTO ACATOOTGT	C ACACTATGTO	GATATTTA	. GAAACTTTGT	650
TTGGCGGAAC AACAAGTTT	G CACAAACAT	TGAAGAAGA	AGCGAAATGA	700
TICAGAGAG				709

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

IMAGE CUI OFF AT TOP, BUTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.