

Chapter 10: Other Public-Key Cryptosystems

Cryptography and Computer Security Spring, 2017

1

Diffie-Hellman Key Exchange

- First published public-key algorithm
- A number of commercial products employ this key exchange technique
- Purpose is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages
- The algorithm itself is limited to the exchange of secret values
- Its effectiveness depends on the difficulty of computing discrete logarithms

Cryptography and Computer Security Spring, 2017

Key Exchange Protocols

- Users could create random private/public Diffie-Hellman keys each time they communicate
- Users could create a known private/public Diffie-Hellman key and publish in a directory, then consulted and used to securely communicate with them
- Vulnerable to Man-in-the-Middle-Attack
- Authentication of the keys is needed

Cryptography and Computer Security Spring, 2017

Elliptic Curve Arithmetic

- Most of the products and standards that use public-key cryptography for encryption and digital signatures use RSA
 - The key length for secure RSA use has increased over recent years and this has put a heavier processing load on applications using RSA
- Elliptic curve cryptography (ECC) is showing up in standardization efforts including the IEEE P1363 Standard for Public-Key Cryptography
- Principal attraction of ECC is that it appears to offer equal security for a far smaller key size
- Confidence level in ECC is not yet as high as that in RSA

Cryptography and Computer Security Spring, 2017

Abelian Group

 A set of elements with a binary operation, denoted by •, that associates to each ordered pair (a, b) of elements in G an element (a • b) in G, such that the following axioms are obeyed:

(A1) Closure: If a and b belong to G, then $a \cdot b$ is also in G

(A2) Associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in G

(A3) Identity element: There is an element e in G such that $a \cdot e = e \cdot a = a$ for all a in G

(A4) Inverse element: For each a in G there is an element a' in G such that $a \cdot a' = a' \cdot a = e$

(A5) Commutative and Computa South to Spring 20 for all a, b in G

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3 4 5

-2 -1 0 1 2 3

Elliptic Curves Over Zp

- Elliptic curve cryptography uses curves whose variables and coefficients are finite
- Two families of elliptic curves are used in cryptographic applications:

- Variables and coefficients all take on values in GF(2^m) and in calculations are performed over GF(2^m)
- Best for hardware applications
- Use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through p-1 and in which calculations are performed modulo p
- Best for software applications

Table 10.1

Points (other than O) on the Elliptic Curve $E_{23}^{(1)}$

(0, 1)	(6, 4)	(12, 19)
(0, 22)	(6, 19)	(13, 7)
(1,7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9, 7)	(17, 20)
(3, 13)	(9, 16)	(18, 3)
(4, 0)	(11, 3)	(18, 20)
(5, 4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)
Cryptography a	nd Computer Security Spring	g 2017

Contractify has its and contraction for each of the contraction for existing -A Entitleir existence -A E

Cryptography and Computer Security Spring, 2017

Elliptic Curves Over GF(2m)

- Use a cubic equation in which the variables and coefficients all take on values in $GF(2^m)$ for some number m
- Calculations are performed using the rules of arithmetic in GF(2^m)
- The form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for GF(2^m) than for Z_p
 - It is understood that the variables x and y and the coefficients a and b are elements of $GF(2^m)$ and that calculations are performed in $GF(2^m)$

Cryptography and Computer Security Spring, 2017

Elliptic Curve Cryptography (ECC)

- Addition operation in ECC is the counterpart of modular multiplication in RSA
- Multiple addition is the counterpart of modular exponentiation

To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the product of two primes or taking the discrete logarithm

- Q=kP, where Q, P belong to a prime curve
- Is "easy" to compute Q given k and P
- But "hard" to find k given Q, and P
- Known as the elliptic curve logarithm problem
- Certicom example: E₂₃(9,17)

Cryptography and Computer Security Spring, 2017

Global Public Elements

elliptic curve with parameters a, b, and q, where q is a prime or an integer of the form 2^m

point on elliptic curve whose order is large value n

User A Key Generation

Select private n_A

 $n_A < n$

Calculate public P_A

 $P_A = n_A \times G$

User B Key Generation

Select private n_R

 $P_B = n_B \times G$ Calculate public P_R

Calculation of Secret Key by User A

 $K = n_A \times P_B$

Calculation of Secret Key by User B

Cryptography and Comput prific queity an Springe 2017 nge

ECC Encryption/Decryption

- Several approaches using elliptic curves have been analyzed
- Must first encode any message m as a point on the elliptic curve
- Select suitable curve and point G as in Diffie-Hellman
- Each user chooses a private key $n_{\!\scriptscriptstyle A}$ and generates a public key $P_{\!\scriptscriptstyle A}\!=\!n_{\!\scriptscriptstyle A}*G$
- To encrypt and send message P_m to B, A chooses a random positive integer k and produces the ciphertext \mathcal{C}_m consisting of the pair of points:

$$C_m = \{kG, P_m + kP_B\}$$

 $C_m = \{kG, P_m + kP_B\}$ To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key and subtracts the result from the second point:

 $P_m+kP_B-n_B(kG)=P_m+k(n_BG)-n_B(kG)=P_m$

Cryptography and Computer Security Spring, 2017

Security of Elliptic Curve Cryptography

- Depends on the difficulty of the elliptic curve logarithm problem
- Fastest known technique is "Pollard rho method"
- Compared to factoring, can use much smaller key sizes than with RSA
- For equivalent key lengths computations are roughly equivalent
- Hence, for similar security ECC offers significant computational advantages

Cryptography and Computer Security Spring, 2017

10

Table 10.3

Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis (NIST SP-800-57)

Symmetric key algorithms	Diffie-Hellman, Digital Signature Algorithm	RSA (size of n in bits)	ECC (modulus size in bits)
80	L = 1024 N = 160	1024	160-223
112	L = 2048 N = 224	2048	224–255
128	L = 3072 N = 256	3072	256–383
192	L = 7680 N = 384	7680	384–511
256	L = 15,360 N = 512	15,360	512+

 $C_{\text{ryptography}}$ and C_{omputer} Spring, 2017 Note: L = size of public key, N = size of private key

Pseudorandom Number Generation (PRNG) Based on Asymmetric Cipher

- An asymmetric encryption algorithm produces apparently ransom output and can be used to build a PRNG
- Much slower than symmetric algorithms so they're not used to generate open-ended PRNG bit streams
- Useful for creating a pseudorandom function (PRF) for generating a short pseudorandom bit sequence

Cryptography and Computer Security Spring, 2017

PRNG Based on Elliptic Curve Cryptography

- Developed by the U.S. National Security Agency (NSA)
- Known as dual elliptic curve PRNG (DEC PRNG)
- Recommended in NIST SP 800-90, the ANSI standard X9.82, and the ISO standard 18031
- Has been some controversy regarding both the security and efficiency of this algorithm compared to other alternatives
 - The only motivation for its use would be that it is used in a system that already implements ECC but does not implement any other symmetric, asymmetric, or hash cryptographic algorithm that could be used to build a PRNG

Cryptography and Computer Security Spring, 2017

23

Summary

- Diffie-Hellman Key Exchange
 - The algorithm
 - Key exchange protocols
 - Man-in-the-middle attack
- Elgamal cryptographic system
- Elliptic curve cryptography
 - Analog of Diffie-Hellman key exchange
 - Elliptic curve encryption/decryption
 - Security of elliptic curve cryptography

- Elliptic curve arithmetic
 - Abelian groups
 - Elliptic curves over real numbers
 - Elliptic curves over Z_p
 - Elliptic curves over GF(2^m)
- Pseudorandom number generation based on an asymmetric cipher
 - PRNG based on RSA
 - PRNG based on elliptic curve cryptography

Cryptography and Computer Security Spring, 2017