CALCUL DIFFÉRENTIEL

Dans tout ce chapitre,

- E, F, G, H désignent des R-espaces vectoriels de dimensions finies;
- \mathcal{U} et \mathcal{V} désignent des **ouverts** respectifs de E et F.

1 Différentiabilité

1.1 Dérivabilité selon un vecteur

Définition 1.1 Dérivée selon un vecteur

Soient $f: \mathcal{U} \to F$, $a \in \mathcal{U}$ et $v \in E$. On dit que f est **dérivable en** a **selon le vecteur** v si l'application $\varphi_{a,v}: t \mapsto f(a+tv)$ est dérivable en 0. Dans ce cas, on appelle **dérivée de** f **en** a **selon le vecteur** v le vecteur $\varphi'_{a,v}(0)$, que l'on note $D_v f(a)$.

Remarque. Si on note $(f_1, ..., f_n)$ les coordonnées de $f: \mathcal{U} \to F$ dans une base $(\mathbf{f}_1, ..., \mathbf{f}_n)$ de F (i.e. $f_i = \mathbf{f}_i^* \circ g$), alors f est dérivable en a selon le vecteur v si et seulement si les f_i le sont. De plus,

$$D_{v}f(a) = \sum_{i=1}^{n} D_{v}f_{i}(a)\mathbf{f}_{i}$$

Exemple 1.1

L'application $f:(x,y)\in\mathbb{R}^2\mapsto(x^2+y^2,2xy)$ est dérivable en tout point $(a,b)\in\mathbb{R}^2$ selon tout vecteur $(u,v)\in\mathbb{R}^2$ et

$$D_{(u,v)}f(a,b) = 2(au + bv, av + bu)$$

Définition 1.2 Dérivées partielles dans une base

Soient $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de $\mathbf{E}, f \colon \mathcal{U} \to \mathbf{F}$ et $a \in \mathcal{U}$. On appelle **dérivées partielles** de f dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ les applications $\mathbf{D}_{\mathbf{e}_j} f$ si elles sont définies. On les note $\frac{\partial f}{\partial x_j}$ ou $\partial_j f$.

Remarque. Si $E = \mathbb{R}^p$ et qu'on ne précise pas la base dans laquelle on considère les dérivées partielles, c'est qu'on considère implicitement la base canonique de \mathbb{R}^p .

Remarque. Si on note $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de E et (f_1, \dots, f_n) les coordonnées de $f: \mathcal{U} \to F$ dans une base $(\mathbf{f}_1, \dots, \mathbf{f}_n)$ de F (i.e. $f_i = \mathbf{f}_i^* \circ g$), alors g admet des dérivées partielles en a dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ si et seulement si c'est également le cas pour les f_i . De plus,

$$\forall j \in [1, p], \ \partial_j f(a) = \sum_{i=1}^n \partial_j f_i(a) \mathbf{f}_i$$

Remarque. Si $E = \mathbb{R}^2$, les variables d'une application $f : \mathbb{R}^2 \to F$ sont notées plus volontiers x et y que x_1 et x_2 . Les dérivées partielles dans la base canonique de \mathbb{R}^2 seront alors notées $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ plutôt que $\frac{\partial f}{\partial x_1}$ et $\frac{\partial f}{\partial x_2}$ ou $\partial_1 f$ et $\partial_2 f$.

1

De même, si $E = \mathbb{R}^3$, les dérivées partielles dans la base canonique seront plutôt notées $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ et $\frac{\partial f}{\partial z}$.

Méthode Calculer des dérivées partielles

Lorsque $E = \mathbb{R}^p$ et $F = \mathbb{R}^n$, il est très aisé de calculer des dérivées partielles dans la base canonique. Il suffit de dériver chaque composante de la fonction par rapport à une variable les autres étant fixées.

Autrement dit, $\frac{\partial f}{\partial x_j}$ est la dérivée de l'application $x_j \mapsto f(x_1, \dots, x_n)$.

Exemple 1.2

L'application $f:(x,y)\in\mathbb{R}^2\mapsto(x^2+y^2,2xy)$ admet des dérivées partielles dans la base canonique de \mathbb{R}^2 en tout point $(a,b)\in\mathbb{R}^2$ et

$$\frac{\partial f}{\partial x}(a, b) = 2(a, b)$$
 et $\frac{\partial f}{\partial y}(a, b) = 2(b, a)$

Exemple 1.3

On pose $\mathcal{U} = \{(x, y, z) \in \mathbb{R}^3, \ x + y^2 > 0\}$. L'application $f: (x, y, z) \in \mathcal{U} \mapsto (\ln(x + y^2), e^{xz})$ admet des dérivées partielles sur \mathcal{U} et

$$\frac{\partial f}{\partial x}(x,y,z) = \left(\frac{1}{x+y^2},ze^{xz}\right) \qquad \qquad \frac{\partial f}{\partial y}(x,y,z) = \left(\frac{2y}{x+y^2},0\right) \qquad \qquad \frac{\partial f}{\partial z}(x,y,z) = (0,xe^{xz})$$

Exemple 1.4

Les applications π_i : $(x_1,\dots,x_p)\in\mathbb{R}^p\mapsto x_i$ admettent des dérivées partielles en tout point de \mathbb{R}^p et

$$\frac{\partial \pi_i}{\partial x_j}(x_1, \dots, x_p) = \delta_{i,j}$$

ATTENTION! Une fonction peut admettre des dérivées partielles sans être continue.

Exemple 1.5

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f admet des dérivées partielles en tout point de \mathbb{R}^2 mais n'est pas continue en (0,0).

• Par opérations, f admet clairement des dérivées partielles en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. De plus,

$$\forall x \in \mathbb{R}^*, \ \frac{f(x,0) - f(0,0)}{x - 0} = 0$$
 et $\forall y \in \mathbb{R}^*, \ \frac{f(0,y) - f(0,0)}{y - 0} = 0$

donc $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$ existent et $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$.

• Par contre, f n'est pas continue en (0,0) puisque, par exemple,

$$\forall t \in \mathbb{R}^*, \ f(t,t) = \frac{1}{2}$$

Ainsi $(t,t) \xrightarrow[t\to 0]{} (0,0)$ mais $f(t,t) \xrightarrow[t\to 0]{} \frac{1}{2} \neq f(0,0)$.

ATTENTION! Une fonction peut même admettre des dérivées directionnelles selon tout vecteur sans être continue.

Exemple 1.6

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f admet des dérivées directionnelles selon tout vecteur en tout point de \mathbb{R}^2 mais n'est pas continue en (0,0).

• Par opérations, f admet clairement des dérivées directionnelles selon tout vecteur en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. Soit u = (h,k) un vecteur non nul de \mathbb{R}^2 . Alors

$$\forall t \in \mathbb{R}^*, \ \frac{f(tu) - f(0,0)}{t} = \frac{hk^2}{h^2 + t^2k^4} \xrightarrow[t \to 0]{} \begin{cases} \frac{k^2}{h} & \text{si } k \neq 0\\ 0 & \text{si } k = 0 \end{cases}$$

Donc f admet bien une dérivée directionnelle selon le vecteur u en (0,0).

• Par contre, f n'est pas continue en (0,0) puisque, par exemple,

$$\forall t \in \mathbb{R}^*, \ f(t^2, t) = \frac{1}{2}$$

Ainsi $(t^2, t) \xrightarrow[t \to 0]{} (0, 0)$ mais $f(t^2, t) \xrightarrow[t \to 0]{} \frac{1}{2} \neq f(0, 0)$.

1.2 Différentiabilité

Notation 1.1 Négligeabilité

Soit $f: \mathcal{U} \to F$. On suppose que $0_E \in \mathcal{U}$. Ecrire que f(h) = o(h) signifie que $\lim_{h \to 0_E} \frac{f(h)}{\|h\|} = 0_F$.

Remarque. Les normes que l'on choisit sur E et F n'importent pas car toutes les normes sur un espace de dimension finie sont équivalentes.

Définition 1.3 Développement limité à l'ordre 1

Soit $f: \mathcal{U} \to F$. Une écriture du type

$$f(a+h) = c + L(h) + o(h)$$

avec $c \in F$ et $L \in \mathcal{L}(E, F)$ s'appelle un **développement limité** de f à l'ordre 1 en a. Si un tel développement limité existe, il est unique i.e. le vecteur c et l'application linéaire L sont uniques.

REMARQUE. Ceci signifie que

$$\lim_{h\to 0_{\mathrm{E}}}\frac{f(a+h)-c-\mathrm{L}(h)}{\|h\|}=0_{\mathrm{F}}$$

Définition 1.4 Différentiabilité en un point

Soit $f: \mathcal{U} \to F$. On dit que f est **différentiable** en $a \in \mathcal{U}$ si f admet un développement limité à l'ordre 1 en a. Dans ce cas, il existe une unique application linéaire $L \in \mathcal{L}(E, F)$ telle que

$$f(a+h) \underset{h \to 0_{\mathrm{F}}}{=} f(a) + L(h) + o(h)$$

Cette application linéaire s'appelle la **différentielle** de f en a et se note df(a).

Remarque. La différentielle de f en a est également appelée l'application linéaire tangente à f en a.

Remarque. Par souci de lisibilité, l'image d'un vecteur v par la différentielle de f en a se notera $df(a) \cdot v$ plutôt que df(a)(v).

Remarque. Si on note $(f_1, ..., f_n)$ les coordonnées de $f: \mathcal{U} \to F$ dans une base $(\mathbf{f}_1, ..., \mathbf{f}_n)$ de F (i.e. $f_i = \mathbf{f}_i^* \circ g$), alors f différentiable en a si et seulement si les f_i le sont. De plus,

$$\forall v \in E, \ \mathrm{d}f(a) \cdot v = \sum_{i=1}^{n} (\mathrm{d}f_i(a) \cdot v) \mathbf{f}_i$$

Exemple 1.7

Soit $f:(x,y) \in \mathbb{R}^2 \mapsto (x^2 + y^2, 2xy)$ Soit $(a,b) \in \mathbb{R}^2$.

$$\forall (h,k) \in \mathbb{R}^2, \ f((a,b)+(h,k)) = f(a,b) + 2(ah+bk,bh+ak) + (h^2+k^2,2hk)$$

L'application

L:
$$\begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\ (h,k) & \longmapsto 2(ah+bk,bh+ak) \end{cases}$$

est bien linéaire et

$$(h^2 + k^2, 2hk) = o((h, k))$$

En effet, si l'on munit \mathbb{R}^2 de la norme définie par ||(u, v)|| = |u| + |v|

$$||(h^2 + k^2, 2hk)|| = (|h| + |k|)^2 = ||(h, k)||^2$$

de sorte que

$$\frac{\|(h^2 + k^2, 2hk)\|}{\|(h, k)\|} = \|(h, k)\| \underset{(h, k) \to (0, 0)}{\longrightarrow} 0$$

On en déduit que f est différentiable en (a, b) et que df(a, b) est l'endomorphisme $(h, k) \in \mathbb{R}^2 \mapsto 2(ah + bk, bh + ak)$.

Exemple 1.8 Différentielle de l'inversion matricielle

On considère l'application $f: M \in GL_n(\mathbb{R}) \mapsto M^{-1}$. On va montrer que f est différentiable sur $GL_n(\mathbb{R})$ et calculer sa différentielle.

Soit $M \in GL_n(\mathbb{R})$. Comme $GL_n(\mathbb{R})$ est ouvert, il existe un voisinage \mathcal{V} de 0 tel que M+H est inversible pour tout $H \in \mathcal{V}$. Remarquons maintenant que

$$(M + H)^{-1} = (M(I_n + M^{-1}H))^{-1} = (I_n + M^{-1}H)^{-1}M^{-1}$$

Posons pour simplifier $K = M^{-1}H$. On sait que

$$(I_n + K)(I_n - K) = I_n - K^2$$

On en déduit que

$$(I_n + K)^{-1} - (I_n - K) = (I_n + K)^{-1}K^2$$

puis

$$(I_n + K)^{-1}M^{-1} - (I_n - K)M^{-1} = (I_n + K)^{-1}K^2M^{-1}$$

ou encore

$$(M + H)^{-1} - M^{-1} + M^{-1}HM^{-1} = (I_n + M^{-1}H)^{-1}(M^{-1}H)^2M^{-1}$$

On munit $\mathcal{M}_n(\mathbb{R})$ d'une norme d'algèbre $\|\cdot\|$ de sorte que

$$\|(M + H)^{-1} - M^{-1} + M^{-1}HM^{-1}\| \le \|(I_n + M^{-1}H)^{-1}\| \|M^{-1}\|^3 \|H\|^2$$

ou encore

$$\|f({\mathsf M}+{\mathsf H})-f({\mathsf M})+{\mathsf M}^{-1}{\mathsf H}{\mathsf M}^{-1}\| \leq \|f({\mathsf I}_n+{\mathsf M}^{-1}{\mathsf H})\|\,\|{\mathsf M}^{-1}\|\,\|{\mathsf H}\|^2$$

f est continue a et l'application $H \mapsto M^{-1}H$ est également continue en tant qu'endomorphisme d'un espace de dimension finie. Par composition, $H \mapsto f(I_n + M^{-1}H)$ est continue sur \mathcal{V} . Quitte à supposer \mathcal{V} borné b , on peut alors affirmer que $H \mapsto f(I_n + M^{-1}H)$ est bornée sur \mathcal{V} . Il existe donc une constante positive C telle que

$$\forall H \in \mathcal{V}, \|f(M + H) - f(M) - M^{-1}HM^{-1}\| < C\|H\|^2$$

On en déduit que

$$f(M + H) = f(M) - M^{-1}HM^{-1} + o(H)$$

L'application $H \mapsto M^{-1}HM$ est clairement linéaire : f est donc différentiable en M et df(M) est l'application $H \mapsto M^{-1}HM$.

Proposition 1.1

Si $f: \mathcal{U} \to F$ est **différentiable** en $a \in \mathcal{U}$, alors

- f est continue en a;
- f admet des dérivées en a selon tout vecteur $v \in E$;
- $\forall v \in E$, $df(a) \cdot v = D_v f(a)$.

^aClassique : utiliser la formule de la comatrice.

 $[^]b$ Si on y réfléchit bien, \mathcal{V} est nécessairement borné...

Définition 1.5 Différentiabilité sur un ouvert

Soit $f: \mathcal{U} \to F$. On dit que f est **différentiable** sur \mathcal{U} si f est différentiable en tout point de \mathcal{U} . L'application

$$\mathrm{d}f: \left\{ \begin{array}{ccc} \mathcal{U} & \longrightarrow & \mathcal{L}(\mathrm{E},\mathrm{F}) \\ a & \longmapsto & \mathrm{d}f(a) \end{array} \right.$$

s'appelle la **différentielle** de f sur \mathcal{U} .

Proposition 1.2 Cas particuliers

Soit $f: \mathcal{U} \to F$.

- Si f est constante sur \mathcal{U} , alors f est différentiable sur \mathcal{U} et df est nulle sur \mathcal{U} .
- Si f est la restriction à \mathcal{U} d'une application linéaire de E dans F, alors f est différentiable sur \mathcal{U} et df = f.
- Si \mathcal{U} est un intervalle ouvert de $E = \mathbb{R}$, alors f est différentiable en $a \in \mathcal{U}$ si et seulement si f est dérivable en a et, dans ce cas, $f'(a) = \mathrm{d}f(a) \cdot 1$.

Exemple 1.9

Les applications π_i : $(x_1, \dots, x_p) \in \mathbb{R}^p \mapsto x_i$ sont différentiables sur \mathbb{R}^p et $d\pi_i = \pi_i$.

1.3 Lien avec les dérivées partielles

Proposition 1.3 Lien entre différentielle et dérivées partielles

Soient $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de E et $f: \mathcal{U} \to F$. Si f est **différentiable** en a, alors f admet des **dérivées partielles** en a dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ et

$$\forall v \in E, \ df(a) \cdot v = \sum_{j=1}^{p} \partial_j f(a) \mathbf{e}_j^*(v)$$

ou plus simplement

$$\mathrm{d}f(a) = \sum_{j=1}^{p} \partial_{j} f(a) \mathbf{e}_{j}^{*}$$

Remarque. On en déduit un lien entre les dérivées directionnelles et les dérivées partielles si la fonction est **différentiable**. En effet

$$\forall v \in E, \ D_v f(a) = df(a) \cdot v = \sum_{j=1}^p \partial_j f(a) \mathbf{e}_j^*(v)$$

Exemple 1.10

Soit $f:(x,y) \in \mathbb{R}^2 \mapsto (x^2 + y^2, 2xy)$ Soit $(a,b) \in \mathbb{R}^2$. On a vu que

$$\frac{\partial f}{\partial x}(a,b) = 2(a,b)$$
 et $\frac{\partial f}{\partial y}(a,b) = 2(b,a)$

Comme f est différentiable sur \mathbb{R}^2 ,

$$df(a,b) \cdot (h,k) = 2h(a,b) + 2k(b,a) = 2(ah + bk, bh + ak)$$

ATTENTION! Une fonction peut-être continue et admettre des dérivées selon tout vecteur sans pour autant être différentiable.

Exemple 1.11

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f admet des dérivées partielles en tout point de \mathbb{R}^2 mais n'est pas différentiable en (0,0).

• Par opérations, f est clairement continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Par ailleurs, on a classiquement $|xy| \leq \frac{1}{2}(x^2 + y^2)$ donc

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \ |f(x,y)| \le \frac{1}{2}|y|$$

On en déduit que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$$

donc f est continue en (0,0).

• Par opérations, f admet clairement des dérivées directionnelles selon tout vecteur en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. Soit u = (h,k) un vecteur non nul de \mathbb{R}^2 . Alors

$$\forall t \in \mathbb{R}^*, \ \frac{f(tu) - f(0,0)}{t} = f(h,k) = f(u)$$

Ainsi f admet une dérivée en (0,0) selon le vecteur u et $D_u f(0,0) = f(u)$.

• Si f était différentiable en (0,0), alors on aurait

$$\forall u = (h,k) \in \mathbb{R}^2, \ \mathrm{D}_u f(0,0) = h \frac{\partial f}{\partial x}(0,0) + k \frac{\partial f}{\partial y}(0,0) = h \mathrm{D}_{(1,0)} f(0,0) + k \mathrm{D}_{(0,1)} f(0,0) = 0$$

Mais, par exemple, $D_{(1,1)}f(0,0) = \frac{1}{2} \neq (0,0)$.

Proposition 1.4 Matrice d'une différentielle dans un couple de bases

Soient $\mathcal{E} = (\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de $\mathbf{E}, \mathcal{F} = (\mathbf{f}_1, \dots, \mathbf{f}_n)$ une base de \mathbf{F} et $f : \mathcal{U} \to \mathbf{F}$. Notons (f_1, \dots, f_n) les coordonnées de f dans la base $(\mathbf{f}_1, \dots, \mathbf{f}_n)$ (i.e. $f_i = \mathbf{f}_i^* \circ g$).

Si f est différentiable en $a \in \mathcal{U}$, alors la matrice de $\mathrm{d} f(a)$ dans les bases \mathcal{E} et \mathcal{F} est $(\partial_j f_i(a))_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$.

Définition 1.6 Matrice jacobienne

Supposons $E = \mathbb{R}^n$ et $F = \mathbb{R}^p$. Si $f : \mathcal{U} \to \mathbb{R}^n$ est différentiable en a, la matrice de df(a) dans les bases canoniques de \mathbb{R}^p et \mathbb{R}^n s'appelle la **matrice jacobienne** de f en a.

Exemple 1.12

L'application $f:(x,y) \in \mathbb{R}^2 \mapsto (x^2 + y^2, xy)$ est différentiable sur \mathbb{R}^2 . Sa matrice jacobienne en un point $(a,b) \in \mathbb{R}^2$ est $\begin{pmatrix} 2a & 2b \\ 2b & 2a \end{pmatrix}$.

Exemple 1.13

On pose $\mathcal{U} = \{(x, y, z) \in \mathbb{R}^3, x + y^2 > 0\}$. L'application $f: (x, y, z) \in \mathcal{U} \mapsto (\ln(x + y^2), e^{xz})$ est différentiable sur \mathcal{U} .

Sa matrice jacobienne en un point $(x, y, z) \in \mathcal{U}$ est $\begin{pmatrix} \frac{1}{x + y^2} & \frac{2y}{x + y^2} & 0\\ ze^{xz} & 0 & xe^{xz} \end{pmatrix}$

2 Opérations sur les fonction différentiables

Proposition 2.1 Combinaison linéaire

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{U} \to F$. Si f et g sont différentiables en $a \in \mathcal{U}$, alors pour tout $(\lambda, \mu) \in \mathbb{R}^2$, $\lambda f + \mu g$ est différentiable en a et $d(\lambda f + \mu g)(a) = \lambda df(a) + \mu dg(a)$.

Proposition 2.2

Soient $f: \mathcal{U} \to F$, $g: \mathcal{U} \to G$ et $B: F \times G \to H$ une application **bilinéaire**. Si f et g sont différentiables en $a \in \mathcal{U}$, alors B(f,g) est différentiable en a et d(B(f,g))(a) = B(df(a),g) + B(f,dg(a)).

Proposition 2.3 Composition

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{V} \to G$ telles que $f(\mathcal{U}) \subset \mathcal{V}$. Si f est différentiable en $a \in \mathcal{U}$ et g est différentiable en f(a), alors $g \circ f$ est différentiable en a et $d(g \circ f)(a) = dg(f(a)) \circ df(a)$.

REMARQUE. Soient \mathcal{E} une base de E, \mathcal{F} une base de F et \mathcal{G} une base de G. Si A est la matrice de df(a) dans les bases de \mathcal{E} et \mathcal{F} et B est la matrice de dg(f(a)) dans les bases \mathcal{F} et \mathcal{G} , alors BA est la matrice de $d(g \circ f)(a)$ dans les bases \mathcal{E} et \mathcal{G} .

Corollaire 2.1 Dérivée le long d'un arc

Soient I un intervalle de \mathbb{R} , $\gamma: I \to E$ et $f: \mathcal{U} \to F$ telles que $\gamma(I) \subset \mathcal{U}$. Si γ est dérivable en $t \in I$ et f est différentiable en $\gamma(t)$, alors $f \circ \gamma$ est dérivable en t et $(f \circ \gamma)'(t) = \mathrm{d}f(\gamma(t)) \cdot \gamma'(t)$.

Exemple 2.1 Dérivée le long d'une droite

Si $\gamma(t) = x + th$, alors $(f \circ \gamma)'(t) = \mathrm{d}f(\gamma(t)) \cdot h = \mathrm{D}_h f(\gamma(t))$.

Exemple 2.2

Si $E = \mathbb{R}^p$ et $\gamma = (x_1, \dots, x_p)$, alors

$$(f \circ \gamma)'(t) = \sum_{j=1}^{p} x'_{j}(t) \frac{\partial f}{\partial x_{j}}(\gamma(t))$$

Corollaire 2.2 Dérivées partielles d'une composée

Soient $f: \mathcal{U} \to \mathrm{F}\,\mathrm{et}\,g: \mathcal{V} \to \mathrm{G}\,\mathrm{telles}\,\mathrm{que}\,f(\mathcal{U}) \subset \mathcal{V}.$ On note $\frac{\partial f}{\partial x_j}$ les dérivées partielles de f dans une base $(\mathbf{e}_1,\dots,\mathbf{e}_p)$ de

E et $\frac{\partial g}{\partial y_i}$ les dérivées partielles de g dans une base $(\mathbf{f}_1, \dots, \mathbf{f}_n)$ de F. Si f est différentiable en $a \in \mathcal{U}$ et si g est différentiable en f(a), alors $g \circ f$ admet des dérivées partielles en a dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ et

$$\forall j \in [1, p], \ \partial_j(g \circ f)(a) = \sum_{i=1}^n \partial_i g(f(a)) \partial_j f_i(a)$$

où (f_1,\ldots,f_n) désignent les coordonnées de f dans la base $(\mathbf{f}_1,\ldots,\mathbf{f}_n)$ (i.e. $f_i=\mathbf{f}_i^*\circ f$).

Méthode Règle de la chaîne

Soient $x_1, ..., x_n$ sont des fonctions différentiables sur un ouvert \mathcal{U} de \mathbb{R}^m à valeurs dans \mathbb{R} et f est une fonction différentiable sur un ouvert \mathcal{V} de \mathbb{R}^n . On suppose de plus que $(x_1, ..., x_n)(\mathcal{U}) \subset \mathcal{V}$. Alors

$$\forall j \in [1, m], \ \frac{\partial f}{\partial u_j}(u_1, \dots, u_m) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_1(u_1, \dots, u_m), \dots, x_n(u_1, \dots, u_m)) \frac{\partial x_i}{\partial u_j}(u_1, \dots, u_m)$$

où on considère les dérivées partielles dans les bases canoniques de \mathbb{R}^m et \mathbb{R}^n .

Par abus de notation, on pourra tout simplement écrire

$$\forall j \in [1, m], \ \frac{\partial f}{\partial u_j} = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \frac{\partial x_i}{\partial u_j}$$

à condition de bien comprendre ce que l'on manipule.

Exemple 2.3 Coordonnées polaires

Soit f différentiable sur \mathbb{R}^2 . On pose

$$\forall (r, \theta) \in \mathbb{R}^2, \ g(r, \theta) = f(x(r, \theta), y(r, \theta))$$

avec

$$x(r, \theta) = r \cos \theta$$
 et $y(\theta) = r \sin \theta$

D'après la règle de la chaîne :

$$\begin{split} \frac{\partial g}{\partial r}(r,\theta) &= \frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta))\frac{\partial x}{\partial r}(r,\theta) + \frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta))\frac{\partial y}{\partial r}(r,\theta) \\ &= \cos\theta\frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta)) + \sin\theta\frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta)) \\ \frac{\partial g}{\partial \theta}(r,\theta) &= \frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta))\frac{\partial x}{\partial \theta}(r,\theta) + \frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta))\frac{\partial y}{\partial \theta}(r,\theta) \\ &= -r\sin\theta\frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta)) + r\cos\theta\frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta)) \end{split}$$

Inversement, pour $r \neq 0$,

$$\begin{split} \frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta)) &= \cos\theta \frac{\partial g}{\partial r}(r,\theta) - \frac{\sin\theta}{r} \frac{\partial g}{\partial \theta}(r,\theta) \\ \frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta)) &= \sin\theta \frac{\partial g}{\partial r}(r,\theta) + \frac{\cos\theta}{r} \frac{\partial g}{\partial \theta}(r,\theta) \end{split}$$

3 Cas des applications numériques

On suppose dans ce paragraphe que $F = \mathbb{R}$.

3.1 Gradient

Théorème 3.1 Théorème de représentation de Riesz

Soit E un espace euclidien. Pour toute forme linéaire φ sur E, il existe un unique vecteur $a \in E$ tel que

$$\forall x \in E, \ \varphi(x) = \langle a, x \rangle$$

De manière plus condensée, l'application

$$\begin{cases}
E & \longrightarrow E^* \\
a & \longmapsto (x \in E \mapsto \langle a, x \rangle)
\end{cases}$$

est un isomorphisme.

Définition 3.1 Gradient

On suppose que E est un espace euclidien. Soit $f: \mathcal{U} \to \mathbb{R}$. Si f est différentiable en $a \in \mathcal{U}$, on appelle **gradient** de f en a, l'unique vecteur $\nabla f(a)$ de E tel que

$$\forall v \in E, df(a) \cdot v = \langle \nabla f(a), v \rangle$$

Remarque. On peut toujours munir un ℝ-espace vectoriel de dimension finie d'une structure d'espace euclidien. En effet, si

 $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ est une base de E, l'application

$$(x, y) \in E^2 \mapsto \sum_{k=1}^p \mathbf{e}_k^*(x) \mathbf{e}_k^*(y)$$

est un produit scalaire. De plus, $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ est alors une base orthonormale pour ce produit scalaire.

Exemple 3.1 Gradient du carré de la norme

Soit E un espace euclidien. Posons $f: x \in E \mapsto ||x||^2$. Fixons $a \in E$.

$$\forall h \in E, \ f(a+h) = f(a) + 2\langle a, h \rangle + ||h||^2$$

donc

$$f(a+h) = f(a) + 2\langle a, h \rangle + o(h)$$

Ainsi f est différentiable en a et $\nabla f(a) = 2a$.

Proposition 3.1 Coordonnées du gradient dans une base orthonormale

On suppose que E est un espace euclidien. Soit $f: \mathcal{U} \to \mathbb{R}$ différentiable en $a \in \mathcal{U}$. Les coordonnées de $\nabla f(a)$ dans une base orthonormale $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ de E sont les dérivées partielles de f dans cette base :

$$\nabla f(a) = \sum_{j=1}^{p} \partial_j f(a) \mathbf{e}_j$$

Remarque. Si $E = \mathbb{R}^p$ est muni de son produit scalaire usuel, la base canonique est orthonormale. Par conséquent, si $f: \mathcal{U} \to \mathbb{R}$ est différentiable en $a \in \mathcal{U}$, alors

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_j}(a)\right)_{1 \le j \le n}$$

Interprétation géométrique du gradient

Si $\nabla f(a) \neq 0_E$, $\nabla f(a)$ est colinéaire et de même sens que le vecteur unitaire selon lequel la dérivée de f en a est maximale. Il suffit en effet de remarquer que pour tout vecteur v unitaire

$$D_{v}f(a) = \langle \nabla f(a), v \rangle \le ||\nabla f(a)|| ||v|| = ||\nabla f(a)||$$

avec égalité si et seulement si v et $\nabla f(a)$ sont colinéaires et de même sens (inégalité de Cauchy-Schwarz et cas d'égalité).

Exemple 3.2

Considérons l'application $f:(x,y) \in \mathbb{R}^2 \mapsto x^2 + y^2$. f est différentiable sur \mathbb{R}^2 car polynomiale. On munit \mathbb{R}^2 de son produit scalaire usuel de sorte que la base canonique de \mathbb{R}^2 est orthonormale. Alors

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right) = (2x,2y)$$

On peut retrouver la différentielle de f.

$$\forall (h,k) \in \mathbb{R}^2$$
, $df(x,y) \cdot (h,k) = \langle \nabla f(x,y), (h,k) \rangle = 2(xh + yk)$

Exemple 3.3 Gradient et différentielle du déterminant

On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire usuel $(A, B) \mapsto \operatorname{tr}(A^T B)$ et on considère l'application det : $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \operatorname{det}(M)$. Cette application est différentiable sur $\mathcal{M}_n(\mathbb{R})$ car polynomiale en les coefficients de la matrice. Fixons $M \in \mathcal{M}_n(\mathbb{R})$. En développant le $\operatorname{det}(M)$ par rapport à sa $j^{\text{ème}}$ colonne, on obtient

$$\det(\mathbf{M}) = \sum_{i=1}^{n} \mathbf{M}_{i,j} \operatorname{com}(\mathbf{M})_{i,j}$$

On en déduit notamment que

$$\forall (i, j) \in [1, n]^2, \ \partial_{(i, j)} \det(M) = com(M)_{i, j}$$

où les $\partial_{(i,j)}$ det désignent les dérivées partielles de det dans la base canonique $(E_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$. Comme cette base est orthonormée,

$$\nabla \det(\mathbf{M}) = \sum_{1 \leq i, j \leq n} \operatorname{com}(\mathbf{M})_{i, j} \mathbf{E}_{i, j} = \operatorname{com}(\mathbf{M})$$

On peut alors retrouver la différentielle du déterminant :

$$\forall \mathbf{H} \in \mathcal{M}_n(\mathbb{R}), \ \mathrm{d}(\mathrm{det})(\mathbf{M}) \cdot \mathbf{H} = \langle \nabla \mathrm{det}(\mathbf{M}), \mathbf{H} \rangle = \mathrm{tr}(\mathrm{com}(\mathbf{M})^\mathsf{T} \mathbf{H})$$

Exemple 3.4 Gradient en coordonnées polaires

Soit f différentiable sur \mathbb{R}^2 . On pose

$$\forall (r, \theta) \in \mathbb{R}^2, \ g(r, \theta) = f(x(r, \theta), y(r, \theta))$$

avec

$$x(r, \theta) = r \cos \theta$$
 et $y(\theta) = r \sin \theta$

On a montré précédemment que, pour $r \neq 0$,

$$\frac{\partial g}{\partial r}(r,\theta) = \cos\theta \frac{\partial f}{\partial x}(x(r,\theta), y(r,\theta)) + \sin\theta \frac{\partial f}{\partial y}(x(r,\theta), y(r,\theta))$$
$$\frac{1}{r} \frac{\partial g}{\partial \theta}(r,\theta) = -\sin\theta \frac{\partial f}{\partial x}(x(r,\theta), y(r,\theta)) + \cos\theta \frac{\partial f}{\partial y}(x(r,\theta), y(r,\theta))$$

En notant R la matrice de rotation d'angle θ , on a donc

$$\begin{pmatrix} \frac{\partial g}{\partial r}(r,\theta) \\ \frac{1}{r}\frac{\partial g}{\partial \theta}(r,\theta) \end{pmatrix} = \mathbf{R}^{-1} \nabla f(x(r,\theta), y(r,\theta))$$

Ainsi en posant

$$\mathbf{u}_{\theta} = (\cos \theta, \sin \theta)$$
 et $\mathbf{v}_{\theta} = (-\sin \theta, \cos \theta)$

les coordonnées de $\nabla f(x(r,\theta),y(r,\theta))$ dans la base orthonormé $(\mathbf{u}_{\theta},\mathbf{v}_{\theta})$ sont

$$\left(\frac{\partial g}{\partial r}(r,\theta), \frac{1}{r}\frac{\partial g}{\partial \theta}(r,\theta)\right)$$

Exercice 3.1

Soit f un endomorphisme symétrique d'un espace euclidien E. On pose φ : $x \in E \setminus \{0_E\} \mapsto \frac{\langle f(x), x \rangle}{\|x\|^2}$.

- 1. Justifier que φ admet un maximum sur la sphère unité de E et en déduire que φ admet un maximum sur l'ouvert $E \setminus \{0_E\}$.
- 2. On note u un vecteur où φ admet son maximum. En considérant le gradient de φ , montrer que u est un vecteur propre de f.

3.2 Point critique

Définition 3.2 Point critique

Soit $f: \mathcal{U} \to \mathbb{R}$. Si f est différentiable en $a \in \mathcal{U}$, on dit que a est un **point critique** de f si $df(a) = 0_{E^*}$.

Remarque. a est un point critique de f si et seulement si toutes les dérivées partielles de f en a sont nulles.

REMARQUE. Si E est un espace euclidien (on peut toujours le supposer), a est un point critique de f si et seulement si $\nabla f(a) = 0_E$.

Exemple 3.5

Soit $f:(x,y)\in\mathbb{R}^2\mapsto x^2+y^2$. Puisque $\nabla f(x,y)=2(x,y)$, l'unique point critique de f est (0,0).

Rappel Extremum local

On dit que $f: D \to \mathbb{R}$ admet un **maximum local** en $a \in D$ s'il existe $\varepsilon > 0$ tel que

• $B(a, \varepsilon) \subset D$;

• $\forall x \in B(a, \varepsilon), f(x) \le f(a).$

On dit que $f: D \to \mathbb{R}$ admet un **minimum local** en $a \in D$ s'il existe $\varepsilon > 0$ tel que

• $B(a, \varepsilon) \subset D$;

• $\forall x \in B(a, \varepsilon), f(x) \ge f(a).$

Si D est **ouvert**, il existe toujours $\varepsilon > 0$ tel que B $(a, \varepsilon) \subset D$. De manière générale, on ne parle d'extremum local en $a \in D$ que si *a* est un point **intérieur** à D.

Proposition 3.2 Condition nécessaire d'existence d'un extremum local

Soit $f: \mathcal{U} \to \mathbb{R}$ différentiable en $a \in \mathcal{U}$. Si f est différentiable en a et admet un **extremum local** en a, alors a est un point critique de f.

ATTENTION! La réciproque est fausse. Considérons $f:(x,y) \in \mathbb{R}^2 \mapsto x^2 - y^2$. Alors f est différentiable sur \mathbb{R}^2 et $\forall (x, y) \in \mathbb{R}^2, \ \nabla f(x, y) = 2(x, -y)$

Ainsi (0,0) est bien l'unique point critique de f. Cepdendant

$$\forall \varepsilon > 0, \ f(\varepsilon, 0) = \varepsilon^2 > 0 = f(0, 0)$$

donc f n'admet pas de maximum local en (0,0) et

$$\forall \varepsilon > 0, \ f(0, \varepsilon) = -\varepsilon^2 < 0 = f(0, 0)$$

donc f n'admet pas non plus de minimum local en (0,0).

La fonction f n'admet donc pas d'extrema locaux sur \mathbb{R}^2 (et donc pas non plus d'extrema globaux) comme la représentation graphique suivante permet de s'en convaincre.

Méthode Recherche d'extrema locaux

- 1. On recherche les points critiques.
- 2. Pour chaque point critique a, on étudie le signe de f(x) f(a) pour x au voisinage de a. Pour simplifier, on pose généralement u = x a et on étudie le signe de f(a + u) f(a) pour u au voisinage de 0_E .

Exemple 3.6

Soit $f:(x,y)\in\mathbb{R}^2\mapsto x^2+xy+y^2-3x-6y$. $(x,y)\in\mathbb{R}^2$ est un point critique de f si et seulement si

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = 0\\ \frac{\partial f}{\partial y}(x, y) = 0 \end{cases}$$

Ce système équivaut à

$$\begin{cases} 2x + y - 3 = 0 \\ x + 2y - 6 = 0 \end{cases}$$

L'unique solution de ce système i.e. l'unique point critique de f est (0,3). Pour $(u,v) \in \mathbb{R}^2$,

$$f(0+u,3+v)-f(0,3)=u^2+uv+v^2=\left(u+\frac{1}{2}v\right)^2+\frac{3}{4}v^2\geq 0$$

Ainsi f admet un minimum local (et même global) en (0, 3).

Méthode Recherche d'extrema globaux

Soit D une partie de E (non nécessairement ouverte). Les extrema globaux d'une fonction f à valeurs réelles sur un domaine D sont

- soit atteints sur D \ D;
- soit atteints sur Ď, auquel cas ce sont des extrema locaux et donc **nécessairement** atteints en des points critiques de f.

Exemple 3.7

On recherche les extrema globaux de $f \mapsto xy(1-x-y)$ sur

$$D = \{(x, y) \in \mathbb{R}^2, \ x \ge 0, \ y \ge 0, \ x + y \le 1\}$$

- Tout d'abord, D est compact et f est continue donc f admet bien un minimum global et un maximum global sur D.
- On remarque d'abord que f est nulle sur la frontière de D (puisqu'alors x = 0, y = 0 ou x + y = 1). De plus, f est clairement positive sur D donc min f = 0 et ce minimum est atteint en tout point de D.
- Recherchons les points critiques de f sur \mathring{D} . On résout le système

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = 0\\ \frac{\partial f}{\partial y}(x, y) = 0 \end{cases}$$

qui équivaut à

$$\begin{cases} y(1 - 2x - y) = 0\\ x(1 - x - 2y) = 0 \end{cases}$$

Puisque l'on se situe sur la frontière de D, x > 0 et y > 0 donc le système équivaut à

$$\begin{cases} 1 - 2x - y = 0 \\ 1 - x - 2y = 0 \end{cases}$$

dont l'unique solution est (1/3, 1/3) qui appartient bien à D. Comme f(1/3, 1/3) > 0, le maximum de f ne peut être atteint sur la frontière de D. Ce maximum global est donc un maximum local qui ne peut être atteint qu'en l'unique point critique (1/3, 1/3) de f sur \mathring{D} . On en déduit que $\max_{D} f = f(1/3, 1/3) = 1/27$.

4 Tangence et orthogonalité

4.1 Vecteurs tangents

Définition 4.1 Vecteur tangent à une partie

Soient X une partie de E et \in X. On dit que $v \in$ E est **tangent** à X en x s'il existe $\varepsilon > 0$ et un arc γ : $]-\varepsilon$, $\varepsilon[\to X$ dérivable en 0 tel que $\gamma(0) = x$ et $\gamma'(0) = v$.

Remarque. Si $x \in \mathring{X}$, alors tout vecteur est tangent à X en x. Soit $v \in E$. Comme $x \in X$, il existe r > 0 tel que $B(x, r) \subset X$. Posons $\varepsilon = \frac{r}{\|v\| + 1}$. Alors γ : $] - \varepsilon$, $\varepsilon[\mapsto x + tv$ est bien à valeurs dans $B(x, r) \subset X$, $\gamma(0) = x$ et $\gamma'(0) = v$.

Exemple 4.1 Vecteurs tangents à la sphère unité

On suppose que E est un espace euclidien. Soit $S = \{x \in E, ||x|| = 1\}$. Soit $x \in S$ et v un vecteur orthogonal à x.

• Posons $\varepsilon = \frac{\|x\|}{\|v\| + 1}$. Alors,

$$\forall t \in]-\varepsilon, \varepsilon[, \ \|x+tv\| \ge \|x\| - |t| \|v\| > |x| - \varepsilon \|v\| = \frac{\|x\|}{\|v\| + 1} \ge 0$$

donc γ : $t \mapsto \frac{x + tv}{\|x + tv\|}$ est bien défini sur] $-\varepsilon$, ε [à valeurs dans S.

- Comme ||x|| = 1, $\gamma(0) = x$.
- Comme ||x|| = 1 et $\langle x, v \rangle = 0$, $||x + tv|| = \sqrt{1 + t^2 ||v||^2}$. L'application φ : $t \mapsto x + tv$ est dérivable en 0 et $\varphi'(0) = v$ et l'application ψ : $t \mapsto \frac{1}{\sqrt{1 + t^2 ||v||^2}}$ est également dérivable en 0 et $\psi'(0) = 0$. Par opérations, γ est dérivable en 0 et

$$\gamma'(0) = \varphi(0)\psi'(0) + \varphi'(0)\psi(0) = v$$

Ainsi v est bien tangent à S en x.

Proposition 4.1 Cas du graphe d'une fonction de \mathbb{R}^2 dans \mathbb{R}

Soit Ω un ouvert de \mathbb{R}^2 et $f: \Omega \to \mathbb{R}$ différentiable sur Ω . Notons X le graphe de f, c'est-à-dire

$$X = \{(x, y, f(x, y)), (x, y) \in \Omega\} \subset \mathbb{R}^3$$

Alors pour tout $a \in \Omega$, les vecteurs tangents à X en a sont les vecteurs $(v, df(a) \cdot v) = (v, D_v f(a))$ où $v \in E$.

Remarque. Notamment, $\left(1,0,\frac{\partial f}{\partial x}(a)\right)$ et $\left(0,1,\frac{\partial f}{\partial y}(a)\right)$ sont des vecteurs tangents à X en a.

Plan tangent

Soit Ω un ouvert de \mathbb{R}^2 et $f: \Omega \to \mathbb{R}$ différentiable sur Ω . L'ensemble des vecteurs tangents en $(x_0, y_0, f(x_0, y_0))$ (avec $(x_0, y_0) \in \Omega$) au graphe de f est le plan vectoriel

$$P = \text{vect}\left(\left(1, 0, \frac{\partial f}{\partial x}(x_0, y_0)\right), \left(0, 1, \frac{\partial f}{\partial y}(x_0, y_0)\right)\right)$$

On appelle **plan affine tangent** en $(x_0, y_0, f(x_0, y_0))$ au graphe de f le plan affine $\mathcal{P} = (x_0, y_0, z_0) + P$. On obtient une équation cartésienne de \mathcal{P} de la manière suivante :

$$\begin{split} (x,y,z) &\in \mathcal{P} \iff (x,y,z) - (x_0,y_0,z_0) \in \operatorname{vect}\left(\left(1,0,\frac{\partial f}{\partial x}(x_0,y_0)\right),\left(0,1,\frac{\partial f}{\partial y}(x_0,y_0)\right)\right) \\ &\iff \begin{vmatrix} x-x_0 & 1 & 0 \\ y-y_0 & 0 & 1 \\ z-f(x_0,y_0) & \frac{\partial f}{\partial x}(x_0,y_0) & \frac{\partial f}{\partial y}(x_0,y_0) \end{vmatrix} = 0 \\ &\iff z = f(x_0,y_0) + (x-x_0)\frac{\partial f}{\partial x}(x_0,y_0) + (y-y_0)\frac{\partial f}{\partial y}(x_0,y_0) \end{split}$$

REMARQUE. On notera l'extrême similitude de cette équation avec l'équation de la tangente au graphe d'une fonction dérivable

 $f: \mathbb{R} \to \mathbb{R}$ en un point $(x_0, f(x_0))$, à savoir

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Exemple 4.2

Soit $f:(x,y)\in\mathbb{R}^2\to\mathbb{R}$. Le plan affine tangent au graphe de f en $(x_0,y_0,f(x_0,y_0))$ admet pour équation

$$z = x_0^2 + y_0^2 + 2x_0(x - x_0) + 2y_0(y - y_0)$$

4.2 Lignes de niveau

Définition 4.2 Ligne de niveau

Soit $f: \mathbb{U} \to \mathbb{R}$. On appelle ligne de niveau $k \in \mathbb{R}$ de f l'ensemble

$$E_k = \{x \in \mathcal{U}, \ f(x) = k\}$$

Proposition 4.2 Gradient et ligne de niveau

On suppose E euclidien. Soit $f: \mathcal{U} \to \mathbb{R}$. Si X est une ligne de niveau de f, alors les vecteurs tangents à X en $x \in X$ sont orthogonaux à $\nabla f(x)$.

5 Applications de classe C^k

5.1 Applications de classe C^1

Définition 5.1 Application de classe C^1

Soit $f: \mathcal{U} \to F$. On dit que f est de classe \mathcal{C}^1 sur \mathcal{U} si elle est différentiable sur \mathcal{U} et si df est continue sur \mathcal{U} .

Théorème 5.1 Classe C^1 et dérivées partielles

Soit $f: \mathcal{U} \to F$. Alors f est de classe \mathcal{C}^1 sur \mathcal{U} si et seulement si

- f admet des dérivées partielles (dans une certaine base de E) en tout point de \mathcal{U} ;
- ces dérivées partielles sont continues sur \mathcal{U} .

ATTENTION! Une fonction peut-être différentiable sans qu'elle soit de classe \mathcal{C}^1 . Notamment, les dérivées partielles d'une application différentiable ne sont pas nécessairement continues.

Exemple 5.1

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f est différentiable en (0,0) mais ses dérivées partielles n'y sont pas continues.

• Si l'on munit \mathbb{R}^2 de la norme euclidienne,

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \ f(x,y) = \|(x,y)\|^2 \sin\left(\frac{1}{\|(x,y)\|^2}\right)$$

Comme sin est bornée, il est clair que f(x, y) = o((x, y)). Ainsi f est bien différentiable en (0, 0) et df(0, 0) est nulle.

• Tout d'abord, pour tout $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\$

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin\left(\frac{1}{x^2 + y^2}\right) - \frac{2x}{x^2 + y^2} \cos\left(\frac{1}{x^2 + y^2}\right)$$
$$\frac{\partial f}{\partial y}(x,y) = 2y \sin\left(\frac{1}{x^2 + y^2}\right) - \frac{2y}{x^2 + y^2} \cos\left(\frac{1}{x^2 + y^2}\right)$$

De plus,

$$\frac{f(x,0) - f(0,0)}{x - 0} = x \sin\left(\frac{1}{x^2}\right) \xrightarrow[x \to 0]{} 0$$
$$\frac{f(0,y) - f(0,0)}{y - 0} = y \sin\left(\frac{1}{y^2}\right) \xrightarrow[y \to 0]{} 0$$

Donc $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Pourtant,

$$\forall x \in \mathbb{R}^*, \ \frac{\partial f}{\partial x}(x,0) = 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x} \cos\left(\frac{1}{x^2}\right)$$
$$\forall y \in \mathbb{R}^*, \ \frac{\partial f}{\partial x}(0,y) = 2y \sin\left(\frac{1}{v^2}\right) - \frac{2}{v} \cos\left(\frac{1}{v^2}\right)$$

donc $x \mapsto \frac{\partial f}{\partial x}(x,0)$ et $y \mapsto \frac{\partial f}{\partial y}(0,y)$ n'admettent pas de limite en 0 car la fonction $t \mapsto t \sin(1/t^2)$ admet une limite nulle en 0 mais la fonction $t \mapsto \frac{1}{t} \cos(1/t^2)$ n'admet pas de limite en 0. Ainsi $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ n'admettent pas de limite en (0,0). A fortiori, elles n'y sont pas continues.

Proposition 5.1 Intégrale curviligne

Soient $f: \mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^1 sur \mathcal{U} et $\gamma: [0,1] \to \mathcal{U}$ de classe \mathcal{C}^1 sur [0,1]. Alors

$$f(\gamma(1)) - f(\gamma(0)) = \int_0^1 df(\gamma(t)) \cdot \gamma'(t) dt$$

Corollaire 5.1 Applications constantes

On suppose \mathcal{U} connexe par arcs. Soit $f: \mathcal{U} \to F$ de classe \mathcal{C}^1 sur \mathcal{U} . Alors f est constante sur \mathcal{U} si et seulement si df est nulle sur \mathcal{U} .

5.2 Applications de classe C^k $(k \ge 1)$

On peut définir des dérivées partielles de dérivées partielles.

Définition 5.2 Dérivées partielles d'ordre k

Soit $f: \mathcal{U} \to F$. On appelle **dérivée partielle d'ordre** k dans une base de E une dérivée partielle de la forme

$$\frac{\partial}{\partial x_{j_k}} \left(\frac{\partial}{\partial x_{j_{k-1}}} \left(\cdots \left(\frac{\partial f}{\partial x_{j_1}} \right) \right) \right) = \partial_{j_k} \left(\partial_{j_{k-1}} \left(\cdots \left(\partial_{j_1} f \right) \right) \right)$$

que l'on notera plus simplement

$$\frac{\partial^k f}{\partial x_{j_k} \partial x_{j_{k-1}} \cdots \partial x_{j_1}} = \partial_{j_k} \partial_{j_{k-1}} \partial_{j_1} f$$

Remarque. A priori, l'ordre des indices compte. Dans la définition, on dérive d'abord par rapport à la $j_1^{\text{ème}}$ coordonnée, puis par rapport à la $j_2^{\text{ème}}$ coordonnée, ..., et enfin par rapport à la $j_k^{\text{ème}}$ coordonnée.

Remarque. $\partial_i(\partial_i f)$ se note plus simplement $\partial_i^2 f$. De manière générale, $\partial_i^k f = \partial_i(\partial_i(...(\partial_i f)))$ (k dérivées partielles).

Remarque. $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right)$ se note plus simplement $\frac{\partial^2 f}{\partial x_i^2}$. De manière générale, $\frac{\partial^k f}{\partial x_i^k} = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} \left(\dots \left(\frac{\partial f}{\partial x_i} \right) \right) \right) (k$ dérivées partielles).

Exemple 5.2

Soit $f:(x,y)\mapsto xy^3\ln(x^2+y)$ définie sur l'ouvert $\mathcal{U}=\{(x,y)\in\mathbb{R}^2,\ x^2+y>0\}$. Alors f admet des dérivées partielles dans la base canonique en tout point de \mathcal{U} et

$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial f}{\partial x}(x,y) = y^3 \ln(x^2 + y) + \frac{2x^2y^3}{x^2 + y}$$
$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial f}{\partial y}(x,y) = 3xy^2 \ln(x^2 + y) + \frac{xy^3}{x^2 + y}$$

Ces dérivées partielles admettent elles-mêmes des dérivées partielles en tout point de \mathcal{U} et pour tout $(x, y) \in \mathcal{U}$,

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{6xy^3}{x^2 + y} - \frac{4x^3y^3}{(x^2 + y)^2}$$

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{6x^2y^2}{x^2 + y} - \frac{2x^2y^3}{(x^2 + y)^2} + 3y^2 \ln(x^2 + y) + \frac{y^3}{x^2 + y}$$

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{6x^2y^2}{x^2 + y} - \frac{2x^2y^3}{(x^2 + y)^2} + 3y^2 \ln(x^2 + y) + \frac{y^3}{x^2 + y}$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = 6xy \ln(x^2 + y) + \frac{6xy^2}{x^2 + y} - \frac{xy^3}{(x^2 + y)^2}$$

On constate notamment que $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$, ce qui n'est pas évident a priori même si ce n'est pas le fruit du hasard...

Définition 5.3 Applications de classe \mathcal{C}^k

Soit $f:\mathcal{U}\to F$. On dit que f est de classe \mathcal{C}^k $(k\in\mathbb{N}^*)$ sur \mathcal{U} si toutes ses dérivées partielles d'ordre k existent et sont continues sur \mathcal{U} .

On dit que f est de classe \mathcal{C}^{∞} sur \mathcal{U} si elle est de classe \mathcal{C}^k pour tout $k \in \mathbb{N}^*$.

Exemple 5.3

Toute application polynomiale sur \mathbb{R}^n est de classe \mathcal{C}^∞ sur \mathbb{R}^n .

Théorème 5.2 Schwarz

Soit $f: \mathcal{U} \to F$ de classe \mathcal{C}^2 sur \mathcal{U} . Alors

$$\forall (i,j) \in [1,p]^2, \ \partial_i \partial_j f = \partial_j \partial_i f$$

ATTENTION! L'hypothèse que f est de classe \mathcal{C}^2 est primordiale.

Exemple 5.4

Soit en effet

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Tout d'abord, $\frac{\partial f}{\partial x}$ existe en $(x, y) \neq (0, 0)$ par opérations et en (0, 0) (taux d'accroissement). De plus

$$\frac{\partial f}{\partial x}(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \quad \text{si } (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = 0$$

Comme f(x,y) = -f(y,x), $\frac{\partial f}{\partial y}$ existe également en tout point $(x,y) \in \mathbb{R}^2$ et

$$\frac{\partial f}{\partial y}(x,y) = -\frac{\partial f}{\partial x}(y,x) = -\frac{x(y^4 + 4x^2y^2 - x^4)}{(x^2 + y^2)^2} \quad \text{si } (x,y) \neq (0,0)$$
$$\frac{\partial f}{\partial y}(0,0) = -\frac{\partial f}{\partial x}(0,0) = 0$$

A l'aide de taux d'acroissement, on montre que $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ et $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ existent et que

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y - 0} = -1$$
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = 1$$

Ainsi

$$\frac{\partial^2 f}{\partial v \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial v}(0,0)$$

Le théorème de Schwarz permet en particulier d'affirmer que f n'est pas de classe \mathcal{C}^2 sur \mathbb{R}^2 .

Opérateurs différentiels

Hormis le gradient, on peut définir d'autres opérateurs différentiels.

• Si $f = (f_1, ..., f_n)$ est un **champ de vecteurs** différentiable, autrement dit une application différentiable de \mathbb{R}^n dans \mathbb{R}^n , on peut définir sa **divergence** :

$$\mathbf{div}\,f=\sum_{i=1}^n\partial_if_i$$

Par exemple, si $\vec{E} = (E_x, E_y, E_z)$ est un champ électrique,

$$\mathbf{div}\,\vec{\mathbf{E}} = \frac{\partial \mathbf{E}_x}{\partial x} + \frac{\partial \mathbf{E}_y}{\partial y} + \frac{\partial \mathbf{E}_z}{\partial z}$$

• Si $f = (f_x, f_y, f_z)$ est un champ de vecteurs différentiable de \mathbb{R}^3 dans \mathbb{R}^3 , on peut définir son **rotationnel** :

$$\mathbf{rot}\,f = \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}, \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}, \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}\right)$$

• Si f une application de \mathbb{R}^n dans \mathbb{R} de classe \mathcal{C}^2 , on peut définir son laplacien :

$$\Delta f = \sum_{i=1}^{n} \partial_i^2 f$$

Par exemple, si $V = (V_x, V_y, V_z)$ est un potentiel,

$$\Delta V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial z^2}$$

Exercice 5.1

1. Soit f une application de classe \mathcal{C}^2 de \mathbb{R}^n dans \mathbb{R} . Montrer que

$$\mathbf{div}(\nabla f) = \Delta f$$

2. Soit f une application de classe \mathcal{C}^2 de \mathbb{R}^3 dans \mathbb{R} . Montrer que

$$\mathbf{rot}(\nabla f) = 0$$

3. Soit $f = (f_x, f_y, f_z)$ une application de classe \mathcal{C}^2 de \mathbb{R}^3 dans \mathbb{R}^3 . Montrer que

$$\mathbf{rot}(\mathbf{rot}\,f) = \nabla\!(\mathbf{div}\,f) - \Delta f_{x} - \Delta f_{y} - \Delta f_{z}$$

5.3 Opérations

Proposition 5.2 Combinaison linéaire

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{U} \to F$. Si f et g sont de classe \mathcal{C}^k sur \mathcal{U} , alors pour tout $(\lambda, \mu) \in \mathbb{R}^2$, $\lambda f + \mu g$ est de classe \mathcal{C}^k sur \mathcal{U} .

Proposition 5.3

Soient $f: \mathcal{U} \to F$, $g: \mathcal{U} \to G$ et $B: F \times G \to H$ une application **bilinéaire**. Si f et g sont de classe \mathcal{C}^k sur \mathcal{U} , alors B(f,g) est de classe \mathcal{C}^k sur \mathcal{U} .

Proposition 5.4 Composition

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{V} \to G$ telles que $f(\mathcal{U}) \subset \mathcal{V}$. Si f est de classe \mathcal{C}^k sur \mathcal{U} et g est différentiable sur \mathcal{V} , alors $g \circ f$ est de classe \mathcal{C}^k sur \mathcal{U} .

6 Equations aux dérivées partielles

Equations aux dérivées partielles

On appelle **équation aux dérivées partielles** ou, de manière abrégée, EDP une équation dont l'inconnue est une fonction et qui fait intervenir des dérivées partielles de cette fonction. Citons quelques exemples classiques en physique.

- $\frac{\partial^2 \mathbf{T}}{\partial t^2} = \alpha \frac{\partial \mathbf{T}}{\partial x}$ est une EDP d'inconnue $\mathbf{T}(x,t)$. On l'appelle l'**équation de la chaleur**. La fonction $\mathbf{T}(x,t)$ représente la température au point d'abscisse x à l'instant \mathbf{T} dans un milieu unidimensionnel dans lequel la chaleur se propage par conduction.

Résoudre une EDP sur un ouvert \mathcal{U} signifie rechercher toutes les fonctions de classe \mathcal{C}^k sur \mathcal{U} (si l'EDP fait intervenir que des dérivées partielles d'ordre au plus k) vérifiant l'équation.

Exemple 6.1

Les solutions sur \mathbb{R}^2 de $\frac{\partial f}{\partial x} = 0$ sont les fonctions $(x, y) \mapsto C(y)$ où C est une fonction de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} .

Exemple 6.2

Les solutions sur \mathbb{R}^2 de $\frac{\partial f}{\partial y} = xy$ sont les fonctions $(x,y) \mapsto \frac{1}{2}xy^2 + C(x)$ où C est une fonction de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} .

Exemple 6.3 Changement de variables affine

Résoudre sur ℝ² l'EDP

$$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$$

en procédant au changement de variables

$$\begin{cases} u = x + y \\ v = x + 2y \end{cases}$$

On introduit une fonction g telle que f(x, y) = g(u, v) = g(x + y, x + 2y). Dans ce qui suit, on s'autorise quelques abus de notations. Via la règle de la chaîne

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}$$

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial g}{\partial v}\frac{\partial v}{\partial x} = \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}$$

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial g}{\partial v}\frac{\partial v}{\partial y} = \frac{\partial g}{\partial u} + 2\frac{\partial g}{\partial v}$$

Ainsi l'EDP initiale équivaut à

$$\frac{\partial g}{\partial u} = 0$$

Les solutions de cette équations sont les fonctions

$$(u, v) \mapsto C(v)$$

avec C de classe \mathcal{C}^1 sur \mathbb{R} . On en déduit que les solutions de l'EDP initiale sont les fonctions

$$(x, y) \mapsto C(x + 2y)$$

avec C de classe \mathcal{C}^1 sur \mathbb{R} .

Exemple 6.4 Passage en coordonnées polaires

Résoudre sur $\mathbb{R}_+^* \times \mathbb{R}$ l'EDP

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = x^2 + y^2$$

en passant en coordonnées polaires.

On effectue le changement de variables

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

On introduit une fonction g telle que

$$\forall (r, \theta) \in \mathbb{R}_+^* \times \left| -\frac{\pi}{2}, \frac{\pi}{2} \right|, \ g(r, \theta) = f(r \cos \theta, r \sin \theta)$$

D'après la règle de la chaîne,

$$\frac{\partial g}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y}$$

Par conséquent

$$r\frac{\partial g}{\partial r} = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$$

L'EDP initiale équivaut donc à l'EDP

$$r\frac{\partial g}{\partial r} = r^2$$
 ou encore $\frac{\partial g}{\partial r} = r$

Les solutions de cette EDP sont les fonctions $(r, \theta) \mapsto \frac{1}{2}r^2 + C(\theta)$ avec C de classe \mathcal{C}^1 sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Puisque $(x, y) \in \mathbb{R}_+^* \times \mathbb{R}$, $\theta = \arctan(y/x)$. Ainsi les solutions de l'EDP initiale sur $\mathbb{R}_+^* \times \mathbb{R}$ sont les fonctions

$$(x,y) \mapsto \frac{1}{2}(x^2 + y^2) + C(\arctan(y/x))$$

avec C de classe \mathcal{C}^1 sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Exemple 6.5

Les solutions sur \mathbb{R}^2 de $\frac{\partial^2 f}{\partial x \partial y} = 0$ sont les fonctions $(x, y) \mapsto C(x) + D(y)$ où C et D sont des fonctions de classe \mathcal{C}^2 de \mathbb{R} dans \mathbb{R} .

Résolution de l'équation des ondes à une dimension

On cherche à résoudre sur \mathbb{R}^2 l'EDP $\boxed{\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}}$ (avec $c \neq 0$). Pour cela, on procède au changement de variable

 $\begin{cases} u = x - ct \\ v = x + ct \end{cases}$ i.e. on cherche donc y de classe \mathcal{C}^2 sous la forme y(x,t) = g(u,v) = g(x-ct,x+ct). Les expressions des dérivées partielles premières s'obtiennent par la règle de la chaîne :

$$\frac{\partial y}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial g}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial g}{\partial v} = \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}$$
$$\frac{\partial y}{\partial t} = \frac{\partial u}{\partial t} \frac{\partial g}{\partial u} + \frac{\partial v}{\partial t} \frac{\partial g}{\partial v} = -c \frac{\partial g}{\partial u} + c \frac{\partial g}{\partial v}$$

On en déduit les dérivées partielles secondes (on utilise le théorème de Schwarz) :

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial u}{\partial x} \frac{\partial^2 g}{\partial u^2} + \frac{\partial v}{\partial x} \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial u}{\partial x} \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial v}{\partial x} \frac{\partial^2 g}{\partial u \partial v} = \frac{\partial^2 g}{\partial u} + 2 \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial^2 g}{\partial v^2}$$

$$\frac{\partial^2 y}{\partial t^2} = -c \left(\frac{\partial u}{\partial t} \frac{\partial^2 g}{\partial u^2} + \frac{\partial v}{\partial t} \frac{\partial^2 g}{\partial u \partial v} \right) + c \left(\frac{\partial u}{\partial t} \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial v}{\partial t} \frac{\partial^2 g}{\partial u^2} \right) = c^2 \left(\frac{\partial^2 g}{\partial u^2} + 2 \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial^2 g}{\partial v^2} \right)$$

L'équation initiale équivaut donc à $\frac{\partial^2 g}{\partial u \partial v} = 0$. On a vu précédemment que les solutions de cette EDP étaient les fonctions $(u,v) \mapsto C(u) + D(v)$ avec C, D de classe \mathcal{C}^2 sur \mathbb{R} . Les solutions de l'EDP initiale sont donc les fonctions $(x,y) \mapsto C(x-ct) + D(x+ct)$ avec C, D de classe \mathcal{C}^2 . Les deux termes correspondent à des ondes se propageant avec la même célérité mais en sens inverse.