'22年度 冬季打ち上げ CDR

H-57 新型共通計器

担当

岩井 祐樹 (2CEU1107)

目次

- 概要
 - ・ 共通計器の目的
 - 新型共通計器の特徴
- 成功基準
- 仕様
 - ハードウェア構成
 - データ処理
 - フライトモード
 - 分離ロジック
 - 通信システム

- 地上ソフトウェア
- 検討事項
- 進捗状況
- ガントチャート

概要 / 共通計器の目的

・分離機構に分離信号を送る

• 飛行データの取得と記録を行う

概要 / 新型共通計器の特徴

- マイコンにArduinoを採用
 - → 拡張性・運用性・保守性が向上
- フライトモードによる指定高度分離
 - → 落下分散の縮小が期待できる
- ・双方向無線通信システム
 - → 地上ソフトウェアを使用してコンフィグ設定・状態監視が可能

成功基準

• MIN: タイマーによる強制分離

• FULL: 指定高度での分離

• ADV: 双方向無線通信の正常動作

仕様 / ハードウェア構成

メイン基板

- Arduino MKR WAN 1310 商品ページ (秋月)
 メインコンピュータ LoRaで無線通信が可能
- BME280 商品ページ (秋月) データシート
 気圧・気温・湿度センサ 高度算出に使用
- MPU6050
 加速度・角速度センサ 速度・姿勢角算出に使用
- **OpenLog** _{商品ページ(スイッチサイエンス) ドキュメント} microSDカードモジュール 飛行データの保存に使用
- AQW214EH <u>商品ページ(Digi-Key) データシート</u> PhotoMOSリレー Arduinoの3.3Vで12Vを制御

仕様 / ハードウェア構成

メモリ基板

• 24FC1025 商品ページ (秋月) EEPROM 容量128KB

仕様 / ハードウェア構成

回路図

ボード図

80x80 mm

電源供給 5V, 12V

仕様 / データ処理

• 高度算出

気圧, 気温から以下の式で算出

• 速度算出

ハイパスフィルタを用いて加速度から重力加速度を除去 これを飛行時間で積分して算出

• 姿勢角算出

加速度、角速度からMadgwickフィルタで算出

仕様/フライトモード

動作レート: 100Hz

強制分離は最優先

仕様 / 分離ロジック

想定されるシナリオ

- 1. 正常動作 頂点で降下モード遷移 指定高度分離
- 2. 降下検知の感度が高すぎる 分離保護時間直後に降下モード遷移 指定高度分離
- 3. 降下検知の感度が低すぎる/センサ不具合 強制分離

仕様 / 通信システム

LoRaで双方向無線通信 周波数は920MHz帯

・コンフィグ

指定分離高度, 基準気圧, 想定燃焼時間, 分離保護時間, 強制分離時間, 想定着地時 間を打ち上げ直前まで設定可能

- フライトデータ
 飛行時間,高度,速度,加速度,姿勢角
 をダウンリンク
- ステータス フライトモード、フライトピンの状態、不知 火の状態、ブザーの状態、電圧をダウンリ ンク
- GPS / バルブ位置, バルブの角度をテレメータからダウンリンク

地上ソフトウェア

検討事項

• フライトピン (機体)

• 各種試験の日程

進捗状況

ガントチャート

詳細はこちら

