Tópicos de Matemática

folha 9 -

- 63. Prove, por indução, as seguintes propriedades dos números naturais:
 - (a) 2+4+6+...+2n = n(n+1), para todo $n \ge 1$.
 - (b) $1 + 2 + 3 + 4 + ... + n = \frac{n(n+1)}{2}$, para todo $n \ge 1$.
 - (c) $2^0 + 2^1 + \dots + 2^n = 2^{n+1} 1$, para todo $n \ge 1$.
 - (d) $1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$, para todo $n \ge 1$.
 - (e) $1+4+9+\ldots+n^2=\frac{n(n+1)(2n+1)}{6},$ para todo $n\geq 1.$
 - (f) $5^n 1$ é múltiplo de 4, para todo $n \ge 1$.
 - (g) $2^{3n} 3^n$ é múltiplo de 5, para todo $n \ge 1$.
 - (h) $n^2 > 2n + 1$, para todo $n \ge 3$.
 - (i) $7n < 2^n$, para todo $n \ge 6$.
 - (j) $2^n > n^3$, para todo $n \ge 10$.
- 64. Para cada $n \in \mathbb{N}$, seja P(n) a propriedade: $n^2 + 5n + 1$ é par.
 - (a) Mostre que, para cada $n \in \mathbb{N}$, se P(n) é verdadeira, então P(n+1) é verdadeira.
 - (b) Diga, justificando, para que naturais n a propriedade P(n) é verdadeira.
- 65. Para $n \in \mathbb{N}$, define-se n! por 1! = 1 e $(n+1)! = n! \cdot (n+1)$.
 - (a) Indique, justificando, quais os naturais n para os quais $2^n < n!$.
 - (b) Prove que, para todo o natural n tal que $n \ge 4$, $n! \ge n^2$.
- 66. Seja X um conjunto tal que $X \subseteq \mathbb{N}$, $3 \in X$ e, para cada $n \in \mathbb{N}$,

$$n \in X \Rightarrow n + 3 \in X$$
.

Prove que $\{3n : n \in \mathbb{N}\} \subseteq X$.

67. O seguinte exemplo é bem conhecido como uma alegada "prova" por indução que claramente não pode ser válida. Indique onde se encontra o erro.

Vamos provar que todos os gatos são da mesma cor. Mais precisamente, vamos provar que a afirmação "para qualquer colecção de n gatos, todos os gatos têm a mesma cor" é verdadeira para todo o $n \in \mathbb{N}$. Uma vez que só há um número finito de gatos no mundo inteiro, segue que todos os gatos do mundo têm a mesma cor. Suponhamos que n=1. É certamente verdade que para qualquer colecção com um gato, todos os gatos têm a mesma cor. Supondo o resultado válido para n, vamos agora mostrar o resultado para n+1. Consideremos a colecção $\{G_1,\ldots,G_{n+1}\}$ de n+1 gatos. As colecções $\{G_1,\ldots,G_n\}$ e $\{G_2,\ldots,G_{n+1}\}$ têm ambas n gatos. Então, todos os gatos das duas colecções têm a mesma cor e, portanto, os gatos de $\{G_1,\ldots,G_{n+1}\}$ têm a mesma cor. Fica assim provado por indução que todos os gatos do mundo têm a mesma cor.

- 68. Recorrendo ao Princípio de Indução Completa, mostre que:
 - (a) Todo o número natural n pode ser repesentado como a soma de potências distintas de 2, i.e., na forma $n=2^{i_1}+2^{i_2}+\ldots+2^{i_r}$ onde i_1,i_2,\ldots,i_r são inteiros tais que $0 \le i_1 < i_2 < \ldots < i_r$.
 - (b) A sequência de Fibonacci (definida por F_1 , $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$, para todo $n \ge 3$) satisfaz, para todo $n \in \mathbb{N}$, $F_n \ge (3/2)^{n-2}$.