Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 2, zadanie nr 3

Wojciech Rokicki, Radosław Pietkun, Jakub Gruszecki

Spis treści

1.	Spraw	dzenie poprawności punktu pracy	
	1.2. W	oprawność wartości sygnałów w punkcie pracy	
2.		riedzi skokowe i charakterystyka statyczna	
	2.2. W 2.3. C 2.4. W	Vyznaczenie odpowiedzi skokowych toru wejście-wyjście procesu 3 Vyznaczenie odpowiedzi skokowych toru zakłócenie-wyjście procesu 3 harakterystyka statyczna 4 zmocnienie statyczne procesu 4 nplementacja 5	
3.	Odpow	riedzi skokowe dla algorytmu DMC	
	3.2. O	dpowiedź skokowa toru wejście-wyjście procesu	
4.	Impler	Implementacja algorytmu DMC w najprostszej wersji analitycznej	
	4.2. D	egulator DMC z uwzględnieniem zakłóceń	
5.	Regula	ncja za pomocą DMC z uwzględnieniem zakłóceń	

1. Sprawdzenie poprawności punktu pracy

1.1. Poprawność wartości sygnałów w punkcie pracy

W celu sprawdzenia poprawności wartości sygnałów $U_{\rm pp},\,Z_{\rm pp}$ oraz $Y_{\rm pp}$ obiekt został pobudzony sygnałami o wartościach: $U_{\rm pp}=0$ i $Z_{\rm pp}=0$. Wartości sygnałów w punkcie pracy będą poprawne, jeśli sygnał wyjściowy przyjmie wartość stałą $Y_{\rm pp}=0$.

Rys. 1.1. Przebiegi sygnałów u(k), z(k), y(k) w punkcie pracy

1.2. Wnioski

Na podstawie rysunku 1.1 widać, że dla stałej wartości sygnału sterującego $U_{\rm pp}=0$ oraz stałej wartości sygnału zakłócenia $Z_{\rm pp}=0$ wyjście obiektu przyjmuje stałą wartość, równą $Y_{\rm pp}=0$. Jest to dowód na to, że podane wartości sygnałów wejsciowego, zakłócenia oraz wyjściowego w punkcie pracy są poprawne.

1.3. Implementacja

Do przeprowadzenia eksperymentu wykorzystany został skrypt zad1.m.

2. Odpowiedzi skokowe i charakterystyka statyczna

2.1. Wyznaczenie odpowiedzi skokowych toru wejście-wyjście procesu

W celu wyznaczenia odpowiedzi skokowych obiekt był pobudzany, w punkcie pracy, różnymi skokami sygnału sterującego w chwili k=50. Przeprowadzono osiem testów dla różnych wartości skoków. Uzyskane odpowiedzi skokowe wraz z odpowiadającymi im przebiegami sygnału sterowania przedstawiono na rys. 2.1.

Rys. 2.1. Odpowiedzi skokowe toru wejście-wyjście procesu

2.2. Wyznaczenie odpowiedzi skokowych toru zakłócenie-wyjście procesu

W celu wyznaczenia odpowiedzi skokowych obiekt był pobudzany, w punkcie pracy, różnymi skokami sygnału zakłócenia w chwili k=50. Przeprowadzono osiem testów dla różnych wartości skoków. Uzyskane odpowiedzi skokowe wraz z odpowiadającymi im przebiegami sygnału zakłócenia przedstawiono na rys. 2.2.

Rys. 2.2. Odpowiedzi skokowe toru zakłócenie-wyjście procesu

2.3. Charakterystyka statyczna

W celu wyznaczenia charakterystyki statycznej procesu wyznaczono odpowiedź układu w stanie ustalonym dla pobudzeń różnymi wartościami sygnału sterującego i zakłócenia. Zebrane wyniki przedstawiono na rys. 2.3.

2.4. Wzmocnienie statyczne procesu

Na podstawie rys. 2.3 można powiedzieć, że obiekt jest w przybliżeniu liniowy. Można zatem wyznaczyć wzmocnienie statyczne obu torów procesu. Wzmocnienie statyczne toru U-Y dla danego zakłócenia Z można obliczyć na podstawie wzoru:

$$K_{\text{stat_uy}} = \frac{Y(Z, U_{\text{max}}) - Y(Z, U_{\text{min}})}{U_{\text{max}} - U_{\text{min}}}$$
(2.1)

Natomiast wzmocnienie statyczne toru Z-Y dla danego sterowania U można obliczyć ze wzoru:

$$K_{\text{stat_zy}} = \frac{Y(Z_{\text{max}}, U) - Y(Z_{\text{min}}, U)}{Z_{\text{max}} - Z_{\text{min}}}$$
(2.2)

Dla danego procesu wzmocnienie statyczne toru U-Y wynosi $K_{\rm stat_uy}=1,8857,$ a wzmocnienie statyczne toru Z-Y wynosi $K_{\rm stat_zy}=1,0906.$

Rys. 2.3. Charakterystyka statyczna procesu

2.5. Implementacja

Implementacje fukcji wykorzystanych do wykonania zadania zawarte są w skryptach ${\tt zad2.m}$ oraz ${\tt zad2_char_stat.m}$.

3. Odpowiedzi skokowe dla algorytmu DMC

3.1. Odpowiedź skokowa toru wejście-wyjście procesu

Do wyznaczania odpowiedzi skokowej toru U-Y dla algorytmu DMC wybrana została odpowiedź procesu dla jednostkowej zmiany sygnału sterującego:

$$u(k) = \begin{cases} 0 & \text{dla } k < 0 \\ 1 & \text{dla } k \geqslant 0 \end{cases}$$

W trakcie symulacji sygnał zakłócenia miał caly czas wartość zerową, odpowiadającą wartości z punktu pracy. Otrzymaną odpowiedź skokową przedstawiono na rys. 3.1.

Odpowiedz skokowa toru wejście-wyjście procesu

Rys. 3.1. Odpowiedź skokowa toru wejście-wyjście procesu dla algorytmu DMC

3.2. Odpowiedź skokowa toru zakłócenie-wyjście procesu

Do wyznaczania odpowiedzi skokowej toru Z-Y dla algorytmu DMC wybrana została odpowiedź procesu dla jednostkowej zmiany sygnału zakłócenia:

$$z(k) = \begin{cases} 0 & \text{dla } k < 0 \\ 1 & \text{dla } k \geqslant 0 \end{cases}$$

W trakcie symulacji sygnał sterujący miał caly czas wartość zerową, odpowiadającą wartości z punktu pracy. Otrzymaną odpowiedź skokową przedstawiono na rys. 3.2.

Rys. 3.2. Odpowiedź skokowa toru zakłócenie-wyjście procesu dla algorytmu DMC

3.3. Implementacja

 $Implementacje fukcji wykorzystanych do wykonania zadania są zawarte w skryptach \verb|zad_skokU.m|| oraz | \verb|zad_skokZ.m||.$

4. Implementacja algorytmu DMC w najprostszej wersji analitycznej

4.1. Regulator DMC z uwzględnieniem zakłóceń

Regulator DMC jest to regulator predykcyjny - działa on z wyprzedzeniem, zanim nastąpią zmiany wartości sygnału wyjściowego. Wektor przyrostów sterowań dany jest wzorem:

$$\Delta U(k) = \mathbf{K}[Y^{\text{zad}}(k) - Y^{0}(k)] \tag{4.1}$$

$$= K[Y^{\text{zad}}(k) - Y(k) - M^{P} \triangle U^{P}(k) - M^{zP} \triangle Z^{P}(k)]$$
(4.2)

gdzie:

$$K = (M^{\mathrm{T}}M + \lambda I)^{-1}M^{\mathrm{T}}$$

$$(4.3)$$

$$\mathbf{M} = \begin{bmatrix} s_1 & 0 & \dots & 0 \\ s_2 & s_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_N & s_{N-1} & \dots & s_{N-N_{\mathrm{u}}+1} \end{bmatrix}_{N \times N_{\mathrm{u}}}$$
(4.4)

$$\boldsymbol{M}^{P} = \begin{bmatrix} s_{2} - s_{1} & s_{3} - s_{2} & \dots & s_{D} - s_{D-1} \\ s_{3} - s_{1} & s_{4} - s_{2} & \dots & s_{D+1} - s_{D-1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{N+1} - s_{1} & s_{N+2} - s_{2} & \dots & s_{N+D-1} - S_{D-1} \end{bmatrix}_{N \times (D-1)}$$

$$(4.5)$$

$$\Delta U^{P}(k) = \begin{bmatrix} \Delta u(k-1) \\ \vdots \\ \Delta u(k-(D-1)) \end{bmatrix}_{(D-1)\times 1}$$
(4.6)

$$\boldsymbol{M}^{\mathrm{zP}} = \begin{bmatrix} s_{1}^{\mathrm{z}} & s_{2}^{\mathrm{z}} - s_{1}^{\mathrm{z}} & s_{3}^{\mathrm{z}} - s_{2}^{\mathrm{z}} & \dots & s_{D^{\mathrm{z}}}^{\mathrm{z}} - s_{D^{\mathrm{z}} - 1}^{\mathrm{z}} \\ s_{2}^{\mathrm{z}} & s_{3}^{\mathrm{z}} - s_{1}^{\mathrm{z}} & s_{4}^{\mathrm{z}} - s_{2}^{\mathrm{z}} & \dots & s_{D^{\mathrm{z}} + 1}^{\mathrm{z}} - s_{D^{\mathrm{z}} - 1}^{\mathrm{z}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ s_{N}^{\mathrm{z}} & s_{N+1}^{\mathrm{z}} - s_{1}^{\mathrm{z}} & s_{N+2}^{\mathrm{z}} - s_{2}^{\mathrm{z}} & \dots & s_{N+D^{\mathrm{z}} - 1}^{\mathrm{z}} - s_{D^{\mathrm{z}} - 1}^{\mathrm{z}} \end{bmatrix}_{N \times (D^{\mathrm{z}} - 1)}$$

$$(4.7)$$

$$\Delta Z^{P}(k) = \begin{bmatrix} \Delta z(k-1) \\ \vdots \\ \Delta z(k-(D^{z}-1)) \end{bmatrix}_{(D^{z}-1)\times 1}$$

$$(4.8)$$

gdzie N - horyzont predykcji, $N_{\rm u}$ - horyzont sterowania, D - horyzont dynamiki, $D^{\rm z}$ - horyzont dynamiki zakłóceń, λ - kara za zmianę sterowania

W tym przypadku należy wyznaczyć tylko pierwszy element macierzy $\Delta U(k)$ czyli $\Delta u(k|k)$. Aktualne sterowanie uzyskuje się poprzez zsumowanie $\Delta u(k|k)$ z poprzednim sterowaniem.

$$\triangle u(k|k) = k_{e}e(k) - \sum_{j=1}^{D-1} \mathbf{k}_{j}^{u} \triangle u(k-j) - \sum_{j=1}^{D^{z}} \mathbf{k}_{j}^{z} \triangle u(k-j-1)$$

$$(4.9)$$

$$k_{\rm e} = \sum_{i=1}^{N} k_{1,i} \tag{4.10}$$

$$\mathbf{k}_{j}^{\mathrm{u}} = \overline{\mathbf{K}}_{1} \mathbf{M}_{j}^{\mathrm{P}}, \quad j = 1, \dots, D - 1$$
 (4.11)

$$\mathbf{k}_{j}^{\mathbf{z}} = \overline{\mathbf{K}}_{1} \mathbf{M}_{j}^{\mathbf{zP}}, \quad j = 1, \dots, D^{\mathbf{z}}$$
 (4.12)

4.2. Dobieranie parametrów $D,\,N,\,N_{\rm u}$ i λ algorytmu DMC

Parametry D, N, $N_{\rm u}$, λ algorytmu DMC będą dobierane przy skokowej zmianie sygnału wartości zadanej z 0 do 1 i zerowym zakłóceniu. Dla danego zestawu parametrów algorytm regulacji będzie oceniany jakościowo (na podstawie rysunków przebiegów sygnałów) jak i ilościowo za pomocą poniższej miary:

$$E = \sum_{k=1}^{k_{\text{konc}}} (y^{\text{zad}}(k) - y(k))^2$$
 (4.13)

Dobieranie rozpoczynam od największego możliwego horyzontu predykcji, czyli: D=175, N=175, $N_{\rm u}=175$ i dla $\lambda=1$

Sygnał wejściowy sterowania

Rys. 4.1. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC

Wskaźnik ilościowy: 7.6816

Widzimy, że algorytm sprawnie radzi sobie z regulacją, jednak kosztem dużych nakładów obliczeniowych (duże wymiary macierzy). Zmniejszamy horyzont predykcji.

Parametry: $D=175,\,N=30,\,N_{\mathrm{u}}=30$ i dla $\lambda=1$

Sygnał wejściowy sterowania

Sygnał wyjściowy k i wartość zadana

Rys. 4.2. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC

Wskaźnik ilościowy: 7.6817

Parametry: $D = 175, N = 20, N_{11} = 20 i dla \lambda = 1$

Wskaźnik ilościowy: 7.6908

Parametry: $D=175,\,N=10,\,N_{\rm u}=10$ i dla $\lambda=1$

Wskaźnik ilościowy: 7.5941

Możemy zauważyć zmniejszenie wartości wskaźnika ilościowego. Jeśli chodzi o jakość regulacji, to następuje ona wolniej, niż w poprzednich przypadkach co jest spowodowane krótszym horyzontem predykcji. Widzimy również lekkie przeregulowanie.

Parametry: D = 175, N = 10, $N_{\rm u} = 1$ i dla $\lambda = 1$

Wskaźnik ilościowy: 7.2156

Widzimy znaczną poprawę wskaźnika ilościowego oraz eliminację przeregulowania. Przyjmujemy w dalszym etapie doboru parametrów $N_{\rm u}=1$

Parametry: $D=175,\,N=5,\,N_{\rm u}=1$ i dla $\lambda=1$

Wskaźnik ilościowy: 16.3408

Widzimy że dalsze skracanie horyzontu predykcji skutkuje zwiększeniem wskaźnika ilościowego oraz zwiększeniem czasu regulacji, przeregulowaniem. Stwierdzamy że N=10 jest optymalnym doborem.

Parametry: $D=175, N=10, N_{\rm u}=1 \text{ i dla } \lambda=1.5$

Wskaźnik ilościowy: 7.6539

Widzimy pogorszenie wskaźnika ilościowego, występuje przeregulowanie. Stwierdzamy że $\lambda=1$ to optymalna wartość.

Rys. 4.3. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC

Ostateczne dobory: $D=175,\,N=10,\,N_{\rm u}=1$ i dla $\lambda=1$

4.3. Implementacja

Implementacja algorytmu DMC jest zawarta w skrypcie zad4_DMC_v1.m.

Rys. 4.4. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC

Rys. 4.5. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC

Rys. 4.6. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC

Rys. 4.7. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC

5. Regulacja za pomocą DMC z uwzględnieniem zakłóceń

 $D^z=50,$ ponieważ tyle wynosi horyzont dynamiki zakłóceń. Parametry: $D=175,\,D^z=50,\,N=10,\,N_u=10$ i dla $\lambda=1$

Sygnał wejściowy sterowania i zakłócenia

Sygnał wyjściowy k i wartość zadana

Rys. 5.1. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC bez uwzględnienia zakłóceń

Wskaźnik ilościowy: 11.2706 Wskaźnik ilościowy: 8.8851

5.1. Wnioski

Możemy zauważyć znaczną poprawę wskaźnika ilościowego. Następuje szybszy powrót do wartości zadanej co wskazuje na to, że pomiar zakłócenia i jego uwzględnienie prowadzi do lepszej regulacji niż gdy brak jest tego pomiaru.

Rys. 5.2. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC z uwzględnieniem zakłóceń

6. Regulacja za pomocą DMC z uwzględnieniem zakłóceń

Rys. 6.1. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC bez uwzględnienia zakłóceń sinusoidalnych

Wskaźnik ilościowy: 21.4699 Wskaźnik ilościowy: 10.3366

Możemy zauważyć znaczną poprawę wskaźnika ilościowego. Nie następuje szybszy powrót do wartości zadanej co wskazuje na to, że zakłóceń okresowych nie można w pełni kompensować. Jednakże w przypadku brania pod uwagę zakłóceń można ograniczyć zakres wywołanych oscylacji sygnału wyjściowego.

Rys. 6.2. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC z uwzględnieniem zakłóceń sinusoidalnych

Rys. 7.1. Przebiegi sygnałów dla regulacji przy pomocy algorytmu DMC z uwzględnieniem zakłóceń bez szumu