Лабораторная работа №4 (дедлайн 30 октября) **Программирование с использованием массивов.**

Везде, где по условию размер массива не статичен, должно быть использовано динамическое использование памяти. При работе с памятью в C++ необходимо помнить, что автоматической очистки мусора нет.

Задание 1. (Номер задания = номер по списку).

Ввести одномерный статический массив из k чисел. Выполнить в соответствии с номером варианта индивидуальное задание и вывести на экран исходные данные и полученный результат.

- 1. Преобразовать массив следующим образом: все отрицательные элементы массива перенести в начало, сохранив исходное взаимное расположение, как среди отрицательных, так и среди остальных элементов массива.
 - 2. Расположить элементы массива в обратном порядке.
- 3. Найти и поменять местами элементы, имеющие минимальное и максимальное значения в массиве.
 - 4. Определить, упорядочены ли элементы массива по убыванию.
 - Вывести все неповторяющиеся элементы массива.
 - **6**. Сдвинуть элементы массива циклически на *п* позиций *влево*.
 - 7. Сдвинуть элементы массива циклически на *п* позиций *вправо*.
 - 8. Удалить минимальный и максимальный элементы массива.
- 9. Сформировать два новых массива: в первый записать отрицательные элементы исходного массива, во второй все остальные.
- **10**. Определить, симметричен ли массив, т.е. читается ли он одинаково слева направо и справа налево.
- **11**. Найти количество элементов массива, отличающихся от среднего значения элементов массива не более чем на *3*.
- **12**. Определить количество инверсий в массиве (таких пар элементов, в которых большее значение находится слева от меньшего).
- **13**. Определить количество элементов, значение которых больше среднего значения всех элементов массива.
- **14**. Удалить элементы, значение которых меньше среднего значения всех элементов массива.
 - 15. Удалить из массива повторяющиеся элементы.

Задание 2. (Номер задания = номер по списку).

Инициализировать при объявлении статический двумерный массив целых чисел размером NxM. Выполнить в соответствии с номером варианта индивидуальное задание и вывести на экран исходные данные и полученный результат.

- **1**. Определить количество положительных элементов, расположенных ниже побочной диагонали матрицы.
- **2**. Определить количество отрицательных элементов, расположенных выше главной диагонали матрицы.
- **3**. Определить сумму отрицательных элементов, расположенных выше побочной диагонали матрицы.
- **4**. Определить произведение положительных элементов, расположенных ниже главной диагонали матрицы.
- **5**. Определить сумму элементов, расположенных на главной диагонали матрицы, и произведение элементов, расположенных на побочной диагонали матрицы.
- **6**. Определить количество четных элементов, расположенных на главной и побочной диагоналях.
 - 7. Найти максимальный среди элементов, лежащих ниже побочной диагонали.
 - 8. Найти минимальный среди элементов, лежащих выше главной диагонали.
- **9**. Найти максимальный среди элементов, лежащих выше побочной диагонали.
 - 10. Найти минимальный среди элементов, лежащих ниже главной диагонали.
 - 11. Найти в каждой строке матрицы максимальный элемент.
 - 12. Найти в каждом столбце матрицы минимальный элемент.
- **13**. Найти сумму элементов, расположенных в четных (по номеру) строках матрицы.
- **14**. Найти произведение элементов, расположенных в нечетных (по номеру) столбцах матрицы.
- **15**. Подсчитать сумму четных элементов и произведение нечетных элементов матрицы.

Задание 3. (Номер задания = номер по списку).

Память для массива выделить динамически. Выполнить в соответствии с номером варианта индивидуальное задание и вывести на экран исходные данные и полученный результат.

- 1. В вещественной матрице размером NxN найти максимальный и минимальный элементы. Переставить строки, в которых они находятся. Если они находятся в одной строке, выдать об этом сообщение.
- 2. Квадратную вещественную матрицу A размером N возвести в K-ю степень, т.е. вычислить: A₁=A, A₂=A·A, A₃=A₂·A и т.д.
- 3. Дана вещественная матрица размером NxM. Переставляя ее строки и столбцы, добиться того, чтобы наибольший элемент (один из них) оказался в верхнем левом углу.
- 4. Дана вещественная матрица размером NxM. Упорядочить ее строки по возрастанию наибольших элементов в строках матрицы.
- 5. Задан массив размером NxN, состоящий из 0 и 1. Повернуть элементы массива на 900 по часовой стрелке.
- 6. Элемент матрицы назовем седловой точкой, если он наименьший в своей строке и наибольший (одновременно) в своем столбце (или наоборот, наибольший в своей строке и наименьший в своем столбце). Для заданной целочисленной матрицы размером NxM напечатать индексы всех ее седловых точек.
- 7. Дана вещественная матрица размером N, все элементы которой различны. Найти скалярное произведение строки, в которой находится наибольший

элемент матрицы, на столбец с наименьшим элементом.

- 8. Определить, является ли заданная целочисленная квадратная матрица размером N ортонормированной, т.е. такой, в которой скалярное произведение каждой пары различных строк равно 0, а скалярное произведение каждой строки на себя равно 1.
- 9. Определить, является ли заданная матрица N-го порядка магическим квадратом, т.е. такой, в которой сумма элементов во всех строках и столбцах одинакова.
- 10. Дана целочисленная матрица размером N. Найти сумму наименьших элементов ее нечетных строк и наибольших элементов ее четных строк.
- 11. Дана действительная квадратная матрица порядка N. Рассмотрим те элементы, которые расположены в строках, начинающихся с отрицательного элемента. Найти сумму тех из них, которые расположены соответственно ниже, выше и на главной диагонали матрицы.
- 12. Дана вещественная квадратная матрица порядка N. Получить целочисленную квадратную матрицу, в которой элемент равен 1, если соответствующий ему элемент исходной матрицы больше элемента, расположенного на главной диагонали, и равен 0 в противном случае.
- 13. Дана действительная квадратная матрица порядка N. Найти сумму и произведение элементов, расположенных в заштрихованной части матрицы, см. рисунок «а».

- 14. Дана действительная квадратная матрица порядка N. Найти сумму и произведение элементов, расположенных в заштрихованной части матрицы, см. рисунок «б».
- 15. Дана действительная квадратная матрица порядка N. Найти наименьшее и наибольшее из значений элементов, расположенных в заштрихованной части матрицы, см. рисунок «в».

Задача 4.

Элемент матрицы называется локальным минимумом, если он строго меньше всех имеющихся у него соседей. Соседями элемента a_{ij} в матрице назовем элементы a_{kg} ,где $i-1 \le k \le i+1$, $j-1 \le g \le j+1$, $(k,g) \ne (i,j)$. Подсчитать количество локальных минимумов заданной матрицы.

Задача 5.

Соседями элемента ајј в матрице назовем элементы Соседями элемента а $_{jj}$ в матрице назовем элементы а $_{kg}$,где $i-1 \le k \le i+1$, $j-1 \le g \le j+1$,(k,g) \neq (i,j). Операция сглаживания матрицы дает новую матрицу того же размера, каждый элемент которой получается как среднее арифметическое имеющихся соседей соответствующего элемента исходной матрицы. Построить результат сглаживания заданной вещественной матрицы.

Залача 6.

Для заданной матрицы A размерности N*M построить матрицу В такого же размера, элементы которой обладают следующим свойством: элемент B[i,j] равен максимальному из элементов матрицы A, расположенных левее и выше позиции (i,j), включая позицию (i,j). При этом считается, что позиция(1,1) - верхняя левая позиция матрицы. Например:

5898 5899

6 7 10 7 => 6 8 10 10

3 9 1 5 6 9 10 10

Задача 7. Дано натуральное число n. Требуется подсчитать количество цифр числа и определить, какая цифра стоит в разряде с номером i (разряды нумеруются с конца, т.е. разряд единиц имеет номер 0).

Задача 8. Заменить нулями все элементы, которые находятся в ячейках между минимальным и максимальным элементами (не включая их). Изначально все элементы в массиве различные. Если после данного действия большая часть массива будет содержать нули, то удалить все нулевые элементы из массива (с сохранением порядка следования остальных элементов).

Задача 9. В качестве входных данных поступают две целочисленные матрицы A и B, которые имеют размер N и соответственно. Требуется найти произведение матриц A*B. Выделение памяти через функции языка C.

Задача 10. Построить магический квадрат любого порядка, используя любой алгоритм. Выделение памяти через функции языка С.

Задача 11. Дан трёхмерный динамический массив размером n³ целых неотрицательных чисел. Необходимо определить диагональ с наибольшей суммой чисел. Для обхода диагоналей нельзя использовать вложенные циклы.

Задача 12. Написать функцию которая будет удалять дубликаты элементов из массива. Входные параметры: массив, длинна массива. Выходные параметры: новый массив, новый размер.

Задача 13. У Миши в общежитии всего лишь 1 розетка. Дабы исправить это недоразумение, Миша купил N удлинителей таких, что i-й удлинитель имеет a[i] входов. Вычислите, сколько розеток получится у Миши, если он оптимально соединит удлинители?

Задача 14. На вход подаётся поле для игры в "сапёр" размером n*m символов, где символ '.' означает пустое место, а символ '*' - бомбу.

Требуется дополнить это поле числами, как в оригинальной игре. Выделение памяти через функции языка С.

Задача 15.

Таблица заполняется по следующему алгоритму:

В таблицу вносятся все натуральные числа по порядку. 1 становится в левую верхнюю ячейку, затем выбирается самая левая незаполненная ячейка в самой первой строке таблицы и заполняется. Затем, пока у последней заполненной ячейки сосед слева существует и заполнен, опускаемся вниз и заполняем очередную ячейку. Когда же не окажется соседа слева, то начинается заполнение клеток справа налево. После того как будет заполнена ячейка в первом столбце, После этого алгоритм заполнения повторятся. Необходимо вывести строку и столбец в котором будет находится число, введенное с клавиатуры.

1	2	5	10		
4	3	6			
9	8	7			
-				,	

Темы для подготовки к теоретическим вопросам: Массивы, динамическая память, очистка мусора в современных ЯП, heap (области памяти), stack (область памяти), указатели, ссылки, статика в С++, отличие работы с памятью в языке С и С++, методы защиты от утечек памяти, рекурсия, механизмы IDE для работы с памятью во время работы программы.