Ejercicios con bucle while y for, nivel humano

1. Escribir un programa que dado un numero entero por el teclado calcule su factorial.

Ejemplo:

Entrada	Salida
5	(1)*(2)*(3)*(4)*(5) = 120
4	(1)*(2)*(3)*(4) = 24

2.Desarrolla un programa que genere los n primeros números de la sucesión de Fibonacci.

Entrada	Salida
6	1,1,2,3,5,8

3. Para cada una de las series siguientes elabora un programa para determinar su valor.

•
$$s = 1 + 2 + 3 + \dots + n$$

•
$$s2 = 1 + 2 - 3 + 4 - 5 + \dots \pm n$$

•
$$s3 = a + 2a + 3a + \cdots + na$$

•
$$s4 = xa + 2xa - 3xa + 4xa - \cdots \pm n(xa)$$

•
$$s5 = x + x^2 + x^3 + \dots + x^n$$

Ejercicios nivel sobrehumano

1. Elabora un programa tal que, dado un número binario n, lo convierta a decimal e imprima el resultado

Ejemplo:

Entrada	Salida(decimal)	Cómo?
100	4	$1 * 2^2 + 0 * 2^1 + 0 * 2^0$
11011	27	$1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$
10	2	$1*2^1+0*2^0$

2.Un número palíndromo se lee de izquierda a derecha y viceversa. Escribe un programa que se introduzca un numero e imprima si es palíndromo.

Ejemplo:

Entrada	Salida
11011	Es palíndromo
1239431	No es palíndromo

3. Calcular las series siguientes

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

$$S3 = \sum_{i=1}^{n} \frac{2(n!-n^2)}{(1+n)^{n-2}}$$

Ejercicios nivel Dios

En análisis numérico el método de la secante es un método para encontrar los ceros de una función de forma iterativa. El método se define por la relación de recurrencia:

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n).$$

Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz (x_0 y x_1) para poder inducir una pendiente inicial. El algoritmo deberá parar cuando | $(x_{n+1} - x_n)/x_n$ | sea menor que la precisión requerida.

En el caso del ejemplo se establece la siguiente relación::

 x_n Es el valor actual de X (x_1)

 x_{n-1} Es el valor anterior de X (x_0)

 x_{n+1} Es el valor siguiente de X (x₂)

Ejemplo:

Usar el método de la secante para calcular la raiz aproximada de la función $f(x)=x^2-4$. Comenzando con $x_0=4$, $x_1=3$ y hasta que $\left| \in_r \right| \le 1\%$.

Aplicando para la primera iteración con la fórmula $x_2 = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_1)$, se tendría un valor para $x_2 = 2.2857$. Si se calcula el error relativo con los valores x_2 como valor real y x_1 como valor aproximado se tendrá: $\epsilon_r = \left| \frac{3 - 2.2857}{2.2857} \right| *100\% = 31.25\%$,

Ahora si se calcula en una segunda iteración $x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_2)$, se tendría

un valor para $x_3 = 2.0541$, con un error relativo $\epsilon_r = \left| \frac{2.2857 - 2.0541}{2.0541} \right| *100\% = 11.28\%$.

Ahora si se continúa realizando los cálculos iterativamente, se tendrán valores como los mostrados en la siguiente tabla.

Tabla 1. Resultados al aplicar el método de la Secante

a la función
$$f(x) = x^2 - 4$$
. Con $x_0 = 4$ y $x_1 = 3$ i x_i x_{i+1} x_{i+2} \in_a \in_r 0 4 3 2.2857 0.7143 31.25% 1 3 2.2857 2.0541 0.2316 11.28% 2 2.2857 2.0541 2.0036 0.0505 2.52% 3 2.0541 2.0036 2.0000 0.0036 0.18%

Se termina el proceso iterativo cuando el error es menor o igual a 0.

NombreArchivo:Secante

2.Utilizando estructuras iterativas desarrolla un programa que dado un numero de filas imprima la siguiente figura. ejemplo de n=5:

3.dada una función $f(x) = x(\sqrt{x} - \cos 6x)$. Escribe un programa que dado un límite por el teclado determine los valores de.

$$f(1), f(2), f(3), \dots, f(n)$$