GÖRAN KIRCHNER

NOTES ON R

Packages

Data

head(movies)

Title	Year	Rating	Runtime	Critic.Score	Box.Office	Awards	International
The Whole Nine Yards	2000	R	98	45	57.3	FALSE	FALSE
Cirque du Soleil: Journey of Man	2000	G	39	45	13.4	TRUE	FALSE
Gladiator	2000	\mathbf{R}	155	76	187.3	TRUE	TRUE
Dinosaur	2000	PG	82	65	135.6	TRUE	FALSE
Big Momma's House	2000	PG-13	99	30	0.5	TRUE	TRUE
Gone in Sixty Seconds	2000	PG-13	118	24	101	TRUE	FALSE

$Simple\ Visualization$

3.1 One Categorical Variable

3.1.1 base

```
plot(
    x = movies$Rating,
    main = "Count of Movies by Rating",
    xlab = "Rating",
    ylab = "Count of Movies")
```



```
dotchart(
    x = table(movies$Rating),
    pch = 16,
    main = "Count of Movies by Rating",
    xlab = "Count of Movies",
    ylab = "Rating")
```

```
pie(
    x = table(movies$Awards),
    clockwise = TRUE,
    main = "Proportion of Movies that Won Awards")
```

Proportion of Movies that Won Awards

3.1.2 lattice

```
library(lattice)
# Create frequency table of ratings
movies <- read.csv("data/movies.csv")
table <- table(movies$Rating)
ratings <- as.data.frame(table)
names(ratings)[1] <- "Rating"
names(ratings)[2] <- "Count"
print(ratings)</pre>
```

Rating	Count
G	93
PG	497
PG-13	1225
R	1423

Count of Movies by Rating

Count of Movies by Rating


```
library(lattice)
# Create frequency table of ratings
movies <- read.csv("data/movies.csv")</pre>
table <- table(movies$Rating)</pre>
ratings <- as.data.frame(table)</pre>
names(ratings)[1] <- "Rating"
names(ratings)[2] <- "Count"</pre>
histogram(
          x = ~Rating,
          data = movies,
          main = "Percent of Movies by Rating")
```


3.1.3 ggplot2

```
library(ggplot2)
movies <- read.csv("data/movies.csv")</pre>
ggplot(
                 data = movies,
                 aes(x = Rating)) +
                 geom_bar() +
                 ggtitle("Count of Movies by Rating")
```


3.2 One Numeric Variable

3.2.1 base

Distribution of Movie Runtimes

3.2.2 lattice

Distribution of Movie Runtimes 40 40 40 10 100 150 Runtime (minutes)

3.2.3 ggplot2


```
library(ggplot2)
movies <- read.csv("data/movies.csv")</pre>
ggplot(
                data = movies,
                aes(x = Runtime)) +
                geom_histogram(binwidth = 10) +
                ggtitle("Distribution of Movie Runtimes") +
                xlab("Runtime (minutes)")
```



```
library(ggplot2)
movies <- read.csv("data/movies.csv")</pre>
ggplot(
                data = movies,
                aes(x = Runtime)) +
                geom_density() +
                ggtitle("Distribution of Movie Runtimes") +
                xlab("Runtime (minutes)")
```


18 GÖRAN KIRCHNER

- 3.3 Two Categorical Variables
- 3.4 Two Numeric Variables
- 3.5 Both a Categorical and a Numeric Variable

Radar Plot

Intermediate Visualization

Category Val2 Val3 Val1A 4 В 2 2 2 \mathbf{C} 2 D 3 1 3 \mathbf{E} 3 2 2

2

4

3

F

Table 4.1: Some Values

Advanced Visualization

6

Quellen

6.1 General

- http://www.cookbook-r.com/
- http://www.datendesign-r.de/beispiele/
- https://www.rstudio.com/resources/cheatsheets/

6.2 Special

• http://stackoverflow.com/questions/22064611/how-to-draw-rotated-axes-in-r