AP Physics C: Mechanics Outline

June 2012

1 Motion in One Dimension

Name	Definition	Equations / Examples
Position	location of a particle with respect to a chosen reference point	
	(origin)	
Displacement	change in position over time interval	$\Delta x = x_f - x_i$
Distance	length of particle followed by a particle	
Vector quantity	requiring both direction and magnitude	5m north
Scalar quantity	requiring only magnitude	$5\mathrm{m}$
Average Velocity	displacement over time interval	$\overline{v}_x = \frac{\Delta x}{\Delta t}$
Average Speed	total distance over total time to travel	$\overline{speed} = \frac{totaldistance}{totaltime}$
Instantaneous Velocity	velocity at one time	$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$
Instantaneous Speed	speed at one time	
Average Acceleration	change in velocity over interval of time	$\overline{a}_x = \frac{\Delta v_x}{\Delta t} = \frac{V_f - V_i}{t_f - t_i}$ $\overline{a}_x = \lim_{\Delta t \to 0} \frac{\Delta V_s}{\Delta t} = \frac{dv_s}{dt}$
Instantaneous Acceleration	change in velocity at one time	$\overline{a}_x = \lim_{\Delta t \to 0} \frac{\Delta V_s}{\Delta t} = \frac{dv_s}{dt}$
Kinematics	1-dimensional motion with constant acceleration	$v = v_o + a \cdot t$
		$\Delta x = \frac{v + v_o}{2}t$
		$\Delta x = v_o t + .5at^2$
		$v^2 = v_x^2 + 2\Delta x \cdot a$
Freely Falling Object	any object moving under influence of gravity alone	
	a_x is always down (regardless of initial motion)	

2 Vectors

Name	Definition	Equations / Examples
Adding Vectors	draw from head \rightarrow tail	
Subtracting Vectors	same as adding negatives of vectors	$\vec{A} - \vec{B} = \vec{A} + -\vec{B}$
Components	projects of vectors along coordinate axis	$A_x + A_y = A$
Unit Vector	dimensions vectors of magnitude 1	$\hat{\mathbf{i}}(i-hat): x-axis$
		$\hat{\mathbf{j}}(j-hat): y-axis$
		$\hat{\mathbf{k}}(k-hat):z-axis$
Positional Vector (\hat{r})	vector lying in plane	

3 Motion in Two Dimensions

Name	Definition	Equations / Examples
Uniform Circular Motion	object moving in circular path with constant speed v	
Centripetal Acceleration	where the acceleration vector is always perpendicular to the path and always points towards the center	a_c or $a_r = \frac{v^2}{r}$
Period	time required for one complete revolution	$T = \frac{2\pi r}{v}$
Tangential Acceleration	causes change in speed of particle	$a_t = \frac{d v }{dt}$ $a_r = -a_c = \frac{-v^2}{r}$ $a = a_t + a_r$
		$a = a_t + a_r$
Relative Velocity	Velocity in reference to one perspective	
Relative Acceleration	Acceleration in reference to one perspective	

4 The Laws of Motion

Name	Definition	Equations / Examples
Net Force	Vector sum of all forces acting on an object	$\sum F$
Equlibrium		$\sum F = 0$
Netwon's Laws of Motion:		
First	When no force acts on an object, the acceleration is 0.	
Second	Acceleration of an object is directly proportional to the net force	$\sum F = ma$
	acting on it and inversely proportional to its mass.	
Third	Every force has an equal but opposite force (action/reaction)	F = -F
Inertia	tendency of an object to resist any attempt to change its velocity	
Gravitational Force	attractive force exterted by earth	$F_g = mg$
Normal Force	the reaction force of F_g ; perpendicular to F_g	$F_g = -F_N$
Free-Body Diagram	depicts an object with all of the forces acting on it	
Tension	a force of pull on an object (mainly found in strings and ropes)	\overline{T}
Friction	resistance to motion either on surface or in air/water	
Force of Static Friction	resistance to motion that keeps an object in place	$f_s \le \mu n$
Force of Kinetic Friction	friction force for an object in motion	$f_k = \mu n$
Coefficient of Static Friction	dimensionless constant	μ_s
Coefficient of Kinetic Friction	dimensionless constant (generally less than μ_s	μk

5 Circular Motion and Other Applications of Newton's Laws

Name	Definition	Equations / Examples
•		$\sum F = ma_c = m\frac{v^2}{r}$

6 Energy and Energy Transfer

Name	Definition	Equations / Examples
Work	done on a system by an agent exerting a constant force	$W \equiv F\Delta r cos(\theta)$
	an energy transfer between a system and agent	$W \equiv F \Delta x$
		Varying force: $W = \int_{x_i}^{x_f} F_x dx$
Power	time rate of energy transfer	$P \equiv \frac{W}{\Delta t} = \frac{dW}{dt} = F \cdot \frac{dr}{dt} = F \cdot v$

7 Potential Energy

Name	Definition	Equations / Examples
Potential Energy	energy possessed by virtue of position relative to others	U
Gravitational Potential Energy	potential to be pushed around by a force	$U_g \equiv mgy$
		$W = \Delta U_g$
Conservation of Mechanical Energy	no energy transfer occurs	$E_{mech} = K + U$
(in an isolated system)	sum of kinetic and potential energies remain constant	$E_f = E_i$
Elastic Potential Energy	potential energy of springs	$U_s \equiv \frac{1}{2}kx^2$
Conservative Forces	force where only initial and final states matter (energy is	$W_c = U_f - U_i = \Delta U$
	conserved)	