Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Введение в численные методы

Отчёт по практическому заданию

Студент Кибизов Кирилл, группа 207

2024

Оглавление

Оглавление		1
1	Постановка задачи	2
2	Описание используемых числовых методов	3
3	Анализ применимости используемых числовых методов	4
4	Реализация используемых числовых методов	6
Заключение		8
Приложения		9
Литература		10

Постановка задачи

Дано:

1. Уравнение в частных производных с граничными условиями:

$$\begin{cases} k_x \frac{\partial^2 u}{\partial x^2} + k_y \frac{\partial^2 u}{\partial y^2} = 0, & (x, y) \in [0, 1] \times [0, 1], \\ u(x, 0) = 0, & x \in [0, 1] \\ u(0, y) = 0, & y \in [0, 1] \\ u(x, 1) = \sin(\pi x), & x \in [0, 1] \\ u(1, y) = 0, & y \in [0, 1] \end{cases}$$

2. Разностная схема:

остная схема:
$$\begin{cases} k_x \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{h^2} + k_y \frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{h^2} = 0, & i=\overline{1,N-1}, \ j=\overline{1,N-1}, \\ u_{i,0}=0, & i=\overline{0,N}, \\ u_{0,j}=0, & j=\overline{0,N}, \\ u_{i,N}=0, & i=\overline{0,N}, \\ u_{N,j}=0, & j=\overline{0,N}. \end{cases}$$

где

$$u_{i,j} \approx u(x_i, y_j), \quad x_i = \frac{i}{N}, \quad y_j = \frac{j}{N}, \quad h = \frac{1}{N}.$$

3. Аналитическое решение данной задачи:

$$u(x,y) = \frac{\sinh(\pi y / \sqrt{k_y})}{\sinh(\pi / \sqrt{k_y})} \sin(\pi x)$$

Задача:

Требуется решить данную СЛАУ с помощью итерационного метода Якоби (где он применим) для N=100, рассматривая следующие случаи:

1.
$$k_x = k_y = 1$$
,

2.
$$k_x = 1, k_y = 10^6$$
.

В случае неприменимости итерационного метода якоби предложить рабочий альтернативный метод.

Описание используемых числовых методов

Итерационные алгоритмы

При применении итерационных методов решения СЛАУ Ax=f ответ получается в процессе построения последовательных приближений (итераций) $x_k=\{x_1^k,x_2^k,\ldots,x_n^k\}$, сходящихся к решению исходной системы в пространстве E_n с евклидовой нормой $\|x\|$: $\lim_{k\to\infty} x_k=x$, где i - номер компоненты, а k - номер итерации.

Сходимость обеспечивает принципиальную возможность получить в процессе итераций ответ с любой наперед заданной степенью точности.

Если очередной член последовательности x_{k+1} может выражаться только через предыдущий $x_{k+1} = F(x_k)$. Такие итерационные алгоритмы называют одношаговыми. Обычно линейно одношаговые алгоритмы записывают в стандартной канонической форме: $B_{k+1} \frac{x_{k+1} - x_k}{\tau_{k+1}} + Ax_k = f$ и $\det B_{k+1} \neq$ и $\tau_{k+1} > 0$. В такой записи процесс характеризуется последовательностью матриц B_{k+1} и числовых параметров τ_{k+1} , которые называют итерационными параметрами. Если матрицы B_{k+1} и параметры τ_{k+1} не меняются в процессе итераций, т.е. не зависят от индекса k, то итерационный процесс называется стационарным.

Анализ применимости используемых числовых методов

Перед тем как применять итерационные методы для решения системы линейных алгебраических уравнений (СЛАУ), необходимо убедиться, что они сходятся в рассматриваемом случае. Это включает в себя проверку структуры и свойств матрицы системы, а также оценку выполнения достаточных условий сходимости итерационных методов.

Достаточные условия сходимости итерационного процесса

Самосопряжённость матрицы

В одномерном случае в направлении x вторая производная $\frac{\partial^2 u}{\partial x^2}$ аппроксимируется по формуле:

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h_x^2}.$$

Важно, что коэффициенты при $u_{i+1,j}$ и $u_{i-1,j}$ одинаковы (оба равны $\frac{1}{h_x^2}$). Аналогично производится аппроксимация второй производной по оси y. Благодаря симметрии разностной схемы все связи между узлами в матрице A получаются парными и зеркальными. Если уравнение для узла (i,j) ссылается на узел (i+1,j) с некоторым коэффициентом, то и уравнение для узла (i+1,j) будет иметь аналогичный коэффициент при $u_{i,j}$. Это обеспечивает симметричность матрицы. Известные значения на границах области не делают матрицу несимметричной, так как они просто выносятся в вектор правой части f. Таким образом, можно сделать вывод, что матрица A — самосопряжённая. В случае вещественной матрицы (все элементы матрицы A — вещественные) понятия самосопряжённости и симметричности совпадают.

Положительно определённая матрица

Чтобы доказать, что матрица A положительно определённая, нужно показать, что для любого ненулевого вектора v выполняется неравенство: $v^T A v > 0$. Рассмотрим выражение $v^T A v$. Это скаляр, который можно записать как:

$$v^T A v = \sum_{i,j} v_{i,j} (A v)_{i,j}.$$

Для матрицы A, полученной из разностной аппроксимации второго порядка, можно записать, что A действует на вектор v следующим образом:

$$(Av)_{i,j} = \frac{k_x}{h^2}(v_{i+1,j} - 2v_{i,j} + v_{i-1,j}) + \frac{k_y}{h^2}(v_{i,j+1} - 2v_{i,j} + v_{i,j-1}).$$

Подставим это в $v^T A v$ и раскроем сумму:

$$v^{T}Av = \sum_{i,j} v_{i,j} \left(\frac{k_x}{h^2} (v_{i+1,j} - 2v_{i,j} + v_{i-1,j}) + \frac{k_y}{h^2} (v_{i,j+1} - 2v_{i,j} + v_{i,j-1}) \right).$$

При раскрытии суммы оказывается, что многие члены взаимно сокращаются. Итоговый результат можно выразить через квадраты разностей значений v в соседних узлах. После упрощений получим:

$$v^{T}Av = \sum_{i,j} \frac{k_x}{h^2} (v_{i+1,j} - v_{i,j})^2 + \frac{k_y}{h^2} (v_{i,j+1} - v_{i,j})^2.$$

В выражении v^TAv остались только суммы квадратов разностей значений v в соседних узлах. Так как $k_x>0,\ k_y>0$ и h>0, каждый член суммы неотрицателен. Более того, если вектор v ненулевой, то хотя бы одно из слагаемых будет строго больше нуля. Поскольку v^TAv является суммой строго неотрицательных слагаемых, и каждое из них положительно, если $v\neq 0$, то $v^TAv>0$. Это доказывает, что матрица A положительно определённая.

Теорема Самарского

Пусть A — самосопряжённая положительно определённая матрица: $A = A^T$, A>0, и $B=A-\frac{\tau}{2}A$ — положительно определённая матрица, τ — положительное число: $B=A-\frac{\tau}{2}A>0$. Можно утверждать, что для матрицы A, которая:

- симметрична $(A^T = A)$,
- положительно определённая ($v^T A v > 0$ для любого $v \neq 0$),

выполняются достаточные условия сходимости итерационных методов, таких как метод Якоби, метод Зейделя и метод релаксации (SOR).

Сходимость методов

В итоге методы Якоби, Зейделя, верхней релаксации (SOR) применимы, к данной задаче, однако важно также учитывать:

- Точность решения: Точность определяется выбранным критерием остановки (например, достижением малого значения невязки или изменения решения между итерациями).
- Быстрота сходимости: Для улучшения быстроты сходимости можно:
 - уменьшить шаг h,
 - использовать "ускоряющие" параметры, такие как ω в методе верхней релаксации,

Реализация используемых числовых методов

```
int solve_slae_via_jacobi(double u[N + 1][N + 1], double kx, double ky) {
2
         double u_new[N + 1][N + 1] = {{0.0}};
        for (int i = 0; i <= N; ++i) {
3
4
             double x = i * h;
5
             u_new[i][N] = u[i][N] = sin(M_PI * x);
6
7
8
        int iter = 0;
Q
        double max_dif;
10
11
             max_dif = 0.0;
             for (int i = 1; i < N; ++i) {
12
                 for (int j = 1; j < N; ++j) {</pre>
13
                       u_new[i][j] = (kx*(u[i+1][j] + u[i-1][j]) + ky*(u[i][j+1] + u[i][j-1])) / 
14
                            (2*(kx+ky));
15
                      double dif = fabs(u[i][j] - u_new[i][j]);
                      if (max_dif < dif) {</pre>
16
17
                           max_dif = dif;
18
19
                 }
20
             }
21
22
             for (int i = 1; i < N; ++i) {</pre>
                 for (int j = 1; j < N; ++j) {
    u[i][j] = u_new[i][j];</pre>
23
24
25
26
27
28
        } while ((++iter < MAX_ITERS) && (max_dif > EPS));
29
30
         if (iter == MAX_ITERS) {
31
             return -1;
32
33
34
        return iter:
    }
35
```

Реализация метода Якоби

```
./a.out
    Please, input amount of tests (max 10): 1
    Leave 3rd argument as 0 (for Jacobi) or as w (w = 1 for Gauss-Seidel; 1 < w < 2 for SOR)
 4
    Input kx and ky and w; for test #1: 1 1 0
5
    u(0.250000, 0.500000) | 0.139489 | 0.140904
    u\,(\,\text{0.250000}\,\,,\,\,\,\text{0.750000}\,\,)\,\,\,|\,\,\,\,\text{0.319105}\,\,|\,\,\,\text{0.320099}
 8
    u(0.250000, 1.000000) | 0.707107 | 0.707107
    u(0.500000, 0.000000) | 0.000000 | 0.000000
9
10
11
    u(0.500000, 0.750000) | 0.451283 | 0.452688
    u(0.500000, 1.000000) | 1.000000 | 1.000000
12
13
    u\,(\,\text{0.750000}\,\,,\,\,\,\text{0.000000})\,\,\mid\,\,\,\text{0.000000}\,\,\mid\,\,\,\text{0.000000}
    u(0.750000, 0.250000) | 0.052184 | 0.053187
14
15
16
17
    Test #1:
18
    Iterations = 10247
```

Вывод (для некоторых точек, покоординатно кратных 0.25)

```
int solve_slae_via_w(double u[N + 1][N + 1], double kx, double ky, double w) {
2
        for (int i = 0; i \leftarrow N; ++i) {
3
             double x = i * h;
4
             u[i][N] = sin(M_PI * x);
5
        7
6
        int iter = 0;
7
8
        double max_dif;
9
        do {
10
             max_dif = 0.0;
11
             for (int i = 1; i < N; ++i) {
                 for (int j = 1; j < N; ++j) {
    double old_val = u[i][j];</pre>
12
13
                      double tmp = (kx*(u[i+1][j] + u[i-1][j]) + ky*(u[i][j+1] + u[i][j-1])) /
14
                           (2*(kx+ky));
15
                      u[i][j] = (1 - w)*old_val + w*tmp;
16
17
                      double dif = fabs(u[i][j] - old_val);
18
                      if (max_dif < dif) {</pre>
19
                           max_dif = dif;
20
21
                 }
22
             }
23
^{24}
        } while ((++iter < MAX_ITERS) && (max_dif > EPS));
25
26
        if (iter == MAX_ITERS) {
27
             return -1;
28
29
30
        return iter;
    }
31
```

Реализация метода верхней релаксации

```
guest@host:/media/sf_Shared/jacobi$ ./a.out
   Please, input amount of tests (max 10): 1
3
    Leave 3rd argument as 0 (for Jacobi) or as w (w = 1 for Gauss-Seidel; 1 < w < 2 for SOR)
   Input kx and ky and w; for test #1: 1 1000000 1.0
4
6
   u(0.250000, 0.500000) | 0.140196 | 0.140904
   u(0.250000, 0.750000) | 0.319612 | 0.320099
   u\,(\,0\,.\,25\,0\,0\,0\,0\,\,,\,\,\,1\,.\,0\,0\,0\,0\,0\,0\,)\,\,\,|\,\,\,0\,.\,7\,0\,7\,1\,0\,7\,\,\,|\,\,\,0\,.\,7\,0\,7\,1\,0\,7
9
   u(0.500000, 0.000000) | 0.000000 | 0.000000
10
   \verb"u"(0.500000", 1.000000") | 1.000000 | 1.000000
11
   12
13
   u(0.750000, 0.500000) | 0.140214 | 0.140904
14
15
16
   Test #1:
17
   Iterations = 5851
18
```

Вывод (для некоторых точек, покоординатно кратных 0.25)

Заключение

В данном отчёте была рассмотрена задача решения уравнения в частных производных с помощью итерационных методов, таких как метод Якоби и метод верхней релаксации. Реализация методов была выполнена на языке программирования С. Были получены численные результаты, которые были сравнены с аналитическим решением, что продемонстрировало высокую точность использованных численных методов.

Приложения

https://github.com/kibizoffs/jacobi

Литература

- [1] Костомаров Д. П., Фаворский А. П. Вводные лекции по численным методам. М.: Логос, 2004. 184 с.
- [2] Самарский А. А. Введение в численные методы. М.: Наука, 1989. 416 с.