↓ Restrições principais das funções trigonométricas e suas inversas

✓ Funções trigonométricas

 $y = \operatorname{arcsec} x$

Restrições principais das funções trigonométricas e suas inversas \

Funções hiperbólicas e suas inversas **₹**

Tabela de Primitivas Imediatas

Função	Primitiva
a	ax + C
$\frac{f'}{f}$	$\ln f + C$
$f^m \cdot f'$	$\frac{f^{m+1}}{m+1} + C,$ onde $m \in \mathbb{R} \setminus \{-1\}$
$f' \cdot a^f$	$\frac{a^f}{\ln a} + C,$ onde $a \in \mathbb{R}^+ \setminus \{1\}$
$f' \cdot \sin f$	$-\cos f + C$
$f' \cdot \cos f$	$\sin f + C$
$f' \cdot \tan f$	$-\ln \cos f + C$
$f' \cdot \cot f$	$\ln \sin f + C$

Função	Primitiva
$f' \cdot \sec f$	$ \ln \sec f + \tan f + C $
$f' \cdot \csc f$	$\ln \csc f - \cot f + C$
$f' \cdot \sec^2 f$	$\tan f + C$
$f' \cdot \csc^2 f$	$-\cot f + C$
$f' \cdot \sec f \cdot \tan f$	$\sec f + C$
$f' \cdot \csc f \cdot \cot f$	$-\csc f + C$
$\frac{f'}{\sqrt{1-f^2}}$	$\arcsin f + C$ ou $-\arccos f + C$
$\frac{f'}{1+f^2}$	$\arctan f + C$ ou $-\operatorname{arccot} f + C$
$\frac{f'}{ f \sqrt{f^2-1}}$	$\operatorname{arcsec} f + C$ ou $-\operatorname{arccsc} f + C$
$f' \cdot \sinh f$	$\cosh f + C$
$f' \cdot \cosh f$	$\sinh f + C$

Função	Primitiva
$f' \cdot \tanh f$	$\ln \cosh f + C$
$f' \cdot \coth f$	$\ln \sinh f + C$
$f' \cdot \operatorname{sech}^2 f$	$\tanh f + C$
$f' \cdot \operatorname{csch}^2 f$	$-\coth f + C$
$f' \cdot \operatorname{sech} f \cdot \tanh f$	$-\operatorname{sech} f + C$
$f' \cdot \operatorname{csch} f \cdot \operatorname{coth} f$	$-\operatorname{csch} f + C$
$\frac{f'}{\sqrt{1+f^2}}$	$\operatorname{argsinh} f + C$
$\frac{f'}{\sqrt{f^2-1}}$	$\operatorname{argcosh} f + C$
$\frac{f'}{1-f^2}$	$\operatorname{argtanh} f + C$, se $ f(x) < 1$
	$\operatorname{argcoth} f + C$, se $ f(x) > 1$
$\frac{f'}{ f \sqrt{1-f^2}}$	$-\operatorname{argsech} f + C$
$\frac{f'}{ f \sqrt{1+f^2}}$	$\operatorname{argcsch} f + C$

$^{9.0}$ COIMBRA Análise Matemática I \sim Licenciatura em Engenharia Informática \sim Departamento de Matemática da Universidade de Coimbra Regras de Primitivação de funções trigonométricas e hiperbólicas

1. Potências ímpares de $\sin x$, $\cos x$, $\sinh x$ e $\cosh x$.

I - Potências de funções trigonométricas e hiperbólicas

Destaca-se uma unidade à potência ímpar e passa-se o fator resultante para a co-função através das fórmulas fundamentais:

$$\cos^2 x + \sin^2 x = 1 \qquad \cosh^2 x - \sinh^2 x = 1$$

2. Potências pares de $\sin x$, $\cos x$, $\sinh x$ e $\cosh x$.

Passam-se para o arco duplo através das fórmulas:

$$\sin^2 x = \frac{1}{2}(1 - \cos(2x)) \qquad \cos^2 x = \frac{1}{2}(1 + \cos(2x))$$
$$\sinh^2 x = \frac{1}{2}(\cosh(2x) - 1) \qquad \cosh^2 x = \frac{1}{2}(\cosh(2x) + 1)$$

3. Potências pares e ímpares de $\tan x$, $\cot x$, $\tanh x$ e $\coth x$.

Destaca-se $\tan^2 x$ $(\tanh^2 x)$ ou $\cot^2 x$ $(\coth^2 x)$ e aplica-se uma das fórmulas:

$$\tan^2 x = \sec^2 x - 1$$

$$\cot^2 x = \csc^2 x - 1$$

$$\tanh^2 x = 1 - \operatorname{sech}^2 x$$

$$\coth^2 x = 1 + \operatorname{csch}^2 x$$

4. Potências pares de $\sec x$, $\csc x$, $\operatorname{sech} x$ e $\operatorname{csch} x$.

Destaca-se $\sec^2 x$ ($\operatorname{sech}^2 x$) ou $\csc^2 x$ ($\operatorname{csch}^2 x$) e ao fator resultante aplica-se uma das fórmulas:

$$\sec^2 x = 1 + \tan^2 x$$

$$\csc^2 x = 1 + \cot^2 x$$

$$\operatorname{sech}^2 x = 1 - \tanh^2 x$$

$$\operatorname{csch}^2 x = \coth^2 x - 1$$

5. Potências ímpares de $\sec x$, $\csc x$, $\operatorname{sech} x$ e $\operatorname{csch} x$.

Destaca-se $\sec^2 x$ ($\operatorname{sech}^2 x$) ou $\csc^2 x$ ($\operatorname{csc}^2 x$) e primitiva-se por partes começando por esse fator.

II - Produtos de potências das funções $\sin x$ e $\cos x$ ($\sinh x$ e $\cosh x$)

1. Potência ímpar de $\sin x$ ($\sinh x$) por qualquer potência de $\cos x$ ($\cosh x$). Destaca-se $\sin x \ (\sinh x)$ e passa-se o fator resultante para a co-função, através

das fórmulas fundamentais:

$$\sin^2 x = 1 - \cos^2 x \qquad \qquad \sinh^2 x = \cosh^2 x - 1$$

2. Potência ímpar de $\cos x (\cosh x)$ por qualquer potência de $\sin x (\sinh x)$.

Destaca-se $\cos x (\cosh x)$ e passa-se o fator resultante para a co-função, através da fórmula fundamental:

$$\cos^2 x = 1 - \sin^2 x \qquad \qquad \cosh^2 x = 1 + \sinh^2 x$$

3. Potência par de $\sin x$ ($\sinh x$) por potência par de $\cos x$ ($\cosh x$).

Aplicam-se as fórmulas:

$$\sin(2x) = 2\sin x \cos x,$$
 $\sin^2 x = \frac{1 - \cos(2x)}{2},$ $\cos^2 x = \frac{1 + \cos(2x)}{2},$ $\sinh(2x) = 2\sinh x \cosh x,$ $\sinh^2 x = \frac{\cosh(2x) - 1}{2},$ $\cosh^2 x = \frac{\cosh(2x) + 1}{2}.$

III - Produtos em que aparecem fatores do tipo $\sin(mx)$ ou $\cos(nx)$ ou produtos em que aparecem fatores do tipo sinh(mx) ou cosh(nx)

Aplicam-se as fórmulas:

$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y)) \quad \sinh x \cosh y = \frac{1}{2}(\cosh(x+y) - \cosh(x-y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y)) \quad \cosh x \cosh y = \frac{1}{2}(\cosh(x+y) + \cosh(x-y))$$

$$\sin x \cos y = \frac{1}{2}(\sin(x+y) + \sin(x-y)) \quad \sinh x \cosh y = \frac{1}{2}(\sinh(x+y) + \sinh(x-y))$$

Primitivação de frações racionais

Consideremos a fração $\frac{f(x)}{g(x)}$, em que f(x) e g(x) são polinómios.

1. Se o grau do numerador for maior ou igual ao grau do denominador, efetua-se a divisão de f(x) por g(x); obtendo-se

$$\frac{f(x)}{g(x)} = Q(x) + \frac{R(x)}{g(x)},$$

sendo agora $\frac{R(x)}{g(x)}$ uma fração própria.

2. Decompõe-se o denominador da fração própria em fatores, que são da forma $(x-a)^m$.

quando correspondem a uma raiz real a de multiplicidade m, ou da forma

$$[(x-p)^2 + q^2]^n,$$

quando correspondem a raízes complexas $p\pm qi$ de multiplicidade n.

- 3. Decompõe-se então a fração própria numa soma de elementos simples, de acordo com os fatores obtidos:
 - (a) cada fator do tipo $(x-a)^m$ dá origem a

$$\frac{A_1}{(x-a)^m} + \frac{A_2}{(x-a)^{m-1}} + \dots + \frac{A_m}{x-a},$$

com A_1, A_2, \ldots, A_m constantes a determinar;

(b) cada fator do tipo $[(x-p)^2+q^2]^n$ dá origem a

$$\frac{P_1x + Q_1}{[(x-p)^2 + q^2]^n} + \frac{P_2x + Q_2}{[(x-p)^2 + q^2]^{n-1}} + \dots + \frac{P_nx + Q_n}{(x-p)^2 + q^2},$$

com $P_1, Q_1, P_2, Q_2, \dots, P_n, Q_n$ constantes a determinar.

4. Cálculo das constantes

As constantes A_i , P_i , Q_i podem ser determinadas conjuntamente pelo método dos coeficientes indeterminados. Há, no entanto, uma forma alternativa de calcular essas constantes, que descrevemos de seguida.

- (a) Cálculo dos coeficientes relativos a fatores do tipo $(x-a)^m$ (seja $\psi(x)$ tal que $g(x) = \psi(x)(x-a)^m$):
 - (i) se m=1, apenas temos de determinar A_1 , que é dado por:

$$A_1 = \left[\frac{R(x)}{\psi(x)}\right]_{x=a}$$

- (ii) Se m > 1, as constantes calculam-se pelo método dos coeficientes indeterminados (mas A_1 ainda pode ser obtida como em (i)).
- (b) Cálculo dos coeficientes relativos a fatores do tipo $[(x-p)^2+q^2]^n$ (seja $\psi(x)$ tal que $g(x)=\psi(x)[(x-p)^2+q^2]^n$):
 - (i) se n=1, obtemos as constantes P_1 e Q_1 fazendo

$$\left[P_1x + Q_1 = \frac{R(x)}{\psi(x)}\right]_{x=p+qi}$$

(ii) se n>1, as constantes calculam-se pelo método dos coeficientes indeterminados (as constantes P_1 e Q_1 ainda podem ser obtidas como em (i)).

Nota: Caso apareçam elementos simples da forma

$$\frac{1}{[(x-p)^2+c]^n},\quad \text{com}\quad n>1,$$

estes podem ser primitivados usando a seguinte fórmula de recorrência:

$$P\left(\frac{1}{[(x-p)^2+c]^n}\right) = \frac{1}{c}\left[\frac{1}{2n-2}\cdot\frac{x-p}{[(x-p)^2+c]^{n-1}} + \frac{2n-3}{2n-2}\cdot P\left(\frac{1}{[(x-p)^2+c]^{n-1}}\right)\right]$$

Primitivação por substituição

Tipo de Função	Substiuição
$\frac{1}{(x^2+a^2)^k}, \ k \in \mathbb{N}, k > 1$	$x = a \tan t$
$\frac{P(x)}{(ax^2+bx+c)^k}, k \in \mathbb{N}, k > 1, b^2 - 4ac < 0, \\ \deg P(x) < 2k$	$ax + \frac{b}{2} = t$
$\frac{P(x)}{((x-p)^2+q^2)^k}, k \in \mathbb{N}, k > 1, \deg P(x) > 2k$	$ax + \frac{b}{2} = t$
$R(a^{rx}, a^{sx}, \dots)$	$a^{mx} = t$, onde $m = \mathrm{mdc}(r, s, \dots)$
$R(\log_a x)$	$t = \log_a x$
$R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{p}{q}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{r}{s}}, \ldots\right)$	$\frac{ax+b}{cx+d} = t^m$, onde $m = \mathrm{mmc}(q, s, \dots)$
$R(x, (ax+b)^{\frac{p}{q}}, (ax+b)^{\frac{r}{s}})$	$ax + b = t^m$, onde $m = \operatorname{mmc}(q, s, \dots)$
$R(x, x^{\frac{p}{q}}, x^{\frac{r}{s}}, \cdots)$	$x = t^m \text{ onde } m = \operatorname{mmc}(q, s, \dots)$
$R(x, \sqrt{a^2 - b^2 x^2})$	$x = \frac{a}{b}\sin t$ ou $x = \frac{a}{b}\cos t$ ou $x = \frac{a}{b}\tanh t$
$R(x, \sqrt{a^2 + b^2 x^2})$	$x = \frac{a}{b} \tan t \text{ ou } x = \frac{a}{b} \sinh t$
$R(x, \sqrt{b^2x^2 - a^2})$	$x = \frac{a}{b} \sec t \text{ ou } x = \frac{a}{b} \cosh t$
$R(x, \sqrt{x}, \sqrt{a - bx})$	$x = \frac{a}{b}\sin^2 t \text{ ou } x = \frac{a}{b}\cos^2 t$
$R(x, \sqrt{x}, \sqrt{a+bx})$	$x = \frac{a}{b} \tan^2 t$
$R(x, \sqrt{x}, \sqrt{bx - a})$	$x = \frac{a}{b}\sec^2 t$

Tipo de Função	Substiuição
$R(x, \sqrt{ax^2 + bx + c})$	$\begin{split} & \text{se } a>0 \text{ faz-se } \sqrt{ax^2+bx+c}=x\sqrt{a}+t \\ & \text{se } c>0 \text{ faz-se } \sqrt{ax^2+bx+c}=\sqrt{c}+tx \\ & \text{se } ax^2+bx+c=a(x-r_1)(x-r_2) \text{, faz-se} \\ & \sqrt{ax^2+bx+c} \text{ igual a } (x-r_1)t \text{ ou } (x-r_2)t \end{split}$
$x^m(a+bx^n)^{\frac{p}{q}}$	se $\frac{m+1}{n}\in\mathbb{Z}$ faz-se $a+bx^n=t^q$ se $\frac{m+1}{n}+\frac{p}{q}\in\mathbb{Z}$ faz-se $a+bx^n=x^nt^q$
$R(\sin x, \cos x)$	• se $R(-\sin x,\cos x)=-R(\sin x,\cos x)$ faz-se $\cos x=t$, • se $R(\sin x,-\cos x)=-R(\sin x,\cos x)$ faz-se $\sin x=t$, • se $R(-\sin x,-\cos x)=R(\sin x,\cos x)$ faz-se $\tan x=t$, (sendo então, se $x\in]0,\frac{\pi}{2}[,\sin x=\frac{t}{\sqrt{1+t^2}},\cos x=\frac{1}{\sqrt{1+t^2}})$, • nos restantes casos (e até nos anteriores) faz-se $\tan \frac{x}{2}=t$, (sendo então, $\sin x=\frac{2t}{1+t^2}$, $\cos x=\frac{1-t^2}{1+t^2}$)
$R(\sin(mx),\cos(mx))$	mx = t
$R(e^x, \sinh x, \cosh x)$	$x = \ln t$
$R(\sinh x, \cosh x)$	• se $R(-\sinh x,\cosh x) = -R(\sinh x,\cosh x)$ faz-se $\cosh x = t$, • se $R(\sinh x,-\cosh x) = -R(\sinh x,\cosh x)$ faz-se $\sinh x = t$, • se $R(-\sinh x,-\cosh x) = R(\sinh x,\cosh x)$ faz-se $\tanh x = t$, (sendo então, $\sinh x = \frac{t}{\sqrt{1-t^2}}$, $\cosh x = \frac{1}{\sqrt{1-t^2}}$), • nos restantes casos (e até nos anteriores) faz-se $\tanh \frac{x}{2} = t$, (sendo então, $\sinh x = \frac{2t}{1-t^2}$, $\cosh x = \frac{1+t^2}{1-t^2}$)
$R(\sinh(mx),\cosh(mx))$	mx = t

Aqui, a,b,c e d são constantes reais. A notação $R(\cdots)$ denota uma função racional (envolvendo apenas somas, diferenças, produtos e quocientes) do que está entre parêntesis.

Séries numéricas de termos não-negativos

Teorema (Critério do Integral). Seja f uma função contínua, positiva e decrescente em $[1, +\infty[$ e seja $a_n = f(n)$, $n \in \mathbb{N}$. Então a série $\sum_{n=1}^{+\infty} a_n$ é convergente se, e só se, o integral impróprio $\int_1^{+\infty} f(x) dx$ for convergente. Por outras palavras,

- (i) se o integral impróprio $\int_{1}^{+\infty} f(x) dx$ for convergente, então a série $\sum_{n=1}^{+\infty} a_n$ é convergente;
- (ii) se o integral impróprio $\int_{1}^{+\infty} f(x) dx$ for divergente, então a série $\sum_{n=1}^{+\infty} a_n$ é divergente;

Observação. No critério do integral não é necessário que f esteja definida em $[1, +\infty[$, assim como não é necessário que a série comece em n=1. Podemos considerar uma função f contínua, positiva e decrescente em $[p, +\infty[$, com $p \in \mathbb{N}$, $a_n=f(n)$, $n\geq p$. Então a série $\sum_{n=p}^{+\infty}a_n$ é convergente se, e só se, o integral impróprio $\int_{n}^{+\infty} f(x) dx$ for convergente.

Teorema (Primeiro Critério de Comparação). Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries de termos não-negativos. Suponhamos que existe M>0 tal que

$$0 \le a_n \le Mb_n$$
, para todo $n \in \mathbb{N}$. Então,

- (i) se a série $\sum_{n=1}^{+\infty} b_n$ for convergente, então a série $\sum_{n=1}^{+\infty} a_n$ também é convergente;
- (ii) se a série $\sum_{n=1}^{+\infty} a_n$ for divergente, então a série $\sum_{n=1}^{+\infty} b_n$ também é divergente.

Teorema (Segundo Critério de Comparação). Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries numéricas com $a_n \geq 0$ e $b_n > 0$, para todo o $n \in \mathbb{N}$. Seja $\lambda = \lim_{n \to +\infty} \frac{a_n}{b_n}$ (que supomos existir). Então

- (i) se $\lambda \in]0, +\infty[$, as séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são da mesma natureza (ambas convergentes ou ambas divergentes);
- (ii) se $\lambda = 0$ e
 - (a) se a série $\sum_{n=1}^{+\infty} b_n$ for convergente, então a série $\sum_{n=1}^{+\infty} a_n$ também é convergente:
 - (b) se a série $\sum_{n=1}^{+\infty} a_n$ for divergente, então a série $\sum_{n=1}^{+\infty} b_n$ também é divergente.
- (iii) se $\lambda = +\infty$ e
 - (a) se a série $\sum_{n=1}^{+\infty} a_n$ for convergente, então a série $\sum_{n=1}^{+\infty} b_n$ também é convergente:
 - (b) se a série $\sum_{n=1}^{+\infty} b_n$ for divergente, então a série $\sum_{n=1}^{+\infty} a_n$ também é divergente.

Séries absolutamente convergentes

Definição. Uma série $\sum_{n=1}^{+\infty} a_n$ é dita absolutamente convergente se a série $\sum_{n=1}^{+\infty} |a_n|$ de termos não-negativos (série dos módulos) for convergente.

Teorema. Se a série $\sum_{n=1}^{+\infty} a_n$ for absolutamente convergente, então a série $\sum_{n=1}^{+\infty} a_n$ também é convergente. Além disso,

$$\left| \sum_{n=1}^{+\infty} a_n \right| \le \sum_{n=1}^{+\infty} |a_n|.$$

Teorema (Critério de Cauchy ou Teste da Raiz). Seja $\sum_{n=1}^{+\infty} a_n$ uma série numérica e suponhamos que existe o limite

$$\lambda = \lim_{n \to +\infty} \sqrt[n]{|a_n|}.$$

- (i) Se $\lambda \in [0, 1[$, então série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
- (ii) Se $\lambda > 1$ ou $\lambda = +\infty$ ou $\lambda = 1^+$ (limite igual a 1, mas por valores superiores a 1), então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- (iii) Se $\lambda=1$, nada se pode concluir sobre a natureza da série (a não ser que $\lambda=1^+$ ver alínea anterior).

Teorema (Critério de D'Alembert ou Teste da Razão). Seja $\sum_{n=1}^{+\infty} a_n$ uma série numérica de termos não nulos $(a_n \neq 0$, para todo o $n \in \mathbb{N}$) e suponhamos que existe o limite

$$\lambda = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

- (i) Se $\lambda \in [0,1[$, então série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
- (ii) Se $\lambda > 1$ ou $\lambda = +\infty$ ou $\lambda = 1^+$ (limite igual a 1, mas por valores superiores a 1), então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- (iii) Se $\lambda=1$, nada se pode concluir sobre a natureza da série (a não ser que $\lambda=1^+$ ver alínea anterior).

Séries simplesmente convergentes

Definição. Uma série $\sum_{n=1}^{+\infty} a_n$ é dita condicionalmente convergente ou simplesmente convergente se $\sum_{n=1}^{+\infty} a_n$ for convergente e $\sum_{n=1}^{+\infty} |a_n|$ for divergente.

Definição. Uma série $\sum_{n=1}^{+\infty} a_n$ diz-se alternada se $a_n = (-1)^n b_n$, com $b_n \geq 0$, para todo o $n \in \mathbb{N}$ ou $a_n = (-1)^{n+1} b_n$, com $b_n \geq 0$, para todo o $n \in \mathbb{N}$. Ou seja, uma série é alternada se os seus termos tiverem sinal alternado (por exemplo: positivo, negativo, positivo, negativo,...)

Teorema (Critério de Leibniz ou Critério das Séries Alternadas). Consideremos a série $\sum_{n=1}^{+\infty} a_n$ com $a_n = (-1)^n b_n$ ou $a_n = (-1)^{n+1} b_n$, com $b_n \ge 0$, para todo o $n \in \mathbb{N}$. Se

(i) a sucessão b_n for decrescente (em sentido lato), isto é:

$$b_n \geq b_{n+1}$$
, para todo $n \in \mathbb{N}$,

(ii)
$$\lim_{n\to+\infty}b_n=0,$$

então a série alternada $\sum_{n=1}^{+\infty} a_n$ é convergente.