Amendments to the Claims:

This listing of claims will replace all prior versions and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound of the formula (I)

in which

n represents 2 or 3

Ar[:] represents the radical

$$R^2$$
 R^1

and

Ar² represents the radical

$$R^{5}_{m}$$

in which

- m represents 0, 1, 2, 3 or 4.
- R' represents halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, alkoxyalkyl, <u>S(O)</u>₂R°-or_NR²R³-
- R² and R³ independently of one another each represent hydrogen, halogen. cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, alkoxyalkyl, -S(O) R² or -NR²R⁴,
- R⁴ represents halogen, cyano, trialkylsilyl, -CO-NR¹⁰R¹¹, tetrahydropyranyl or one of the groupings below the grouping
 - (I) -X-A (m) -B-Z-D (n) -Y-E.
- R⁵ represents hydrogen, halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, alkoxyalkoxy or S(O)_cR⁶,
- o represents 0, 1 or 2,
- R^c represents alkyl or halogenealkyl.
- R² and R³ independently of one another each represent hydrogen or alkyl, or together represent alkylene.
- R¹² and R¹⁴ independently of one another each represent hydrogen, alkylhalogenoalkyl or represent phenyl or phenylalkyl, each of which is optionally mono- or polysubstituted by radicals from the list W¹.
- X represents a direct bond, exygen, sulphur, carbonyl, carbonyloxy, exycarbonyl, alkylene, alkenylene, alkinylene, alkyleneexy, exyalkylene, thioalkylene, alkylenedioxy or di-alkylsilylene.
- A represents phenyl, naphthyl or tetrahydronaphthyl, each of which is optionally mono- or polysubstituted by radicals from the list W. er

represents 5- to 10-membered heterocyclyl having one or more hetero atoms from the group consisting of nitrogen, oxygen and sulphur and containing 1 or 2 aromatic rings, which is optionally mone or polysubstituted by radicals from the list W²₁

- B represents p-phenylene which is optionally mono-or disubstituted by radicals from the list W¹.
- Z represents oxygen or sulphur.
- Depresents hydrogen, alkyl, alkenyl, alkinyl, halogenealkyl, halogenealkenyl, respectively optionally halogene, alkyl, alkenyl, halogenealkenyl, phenyl, styryl, halogenephenyl, or halogenestyryl-substituted cyclealkyl or cyclealkylalkyl, represents respectively optionally halogen, or alkyl-substituted cyclealkenyl or cyclealkenylalkyl, represents respectively optionally nitro, halogen, alkyl-, alkexy-, halogenealkyl- or halogenealkexy substituted phenylalkyl, naphthylalkyl, tetrahydronaphthylalkyl or 5- or 6-membered hetarylalkyl having 1 or 2 hetere atoms from the group consisting of nitrogen, exygen and sulphur, represents CO-R¹², CO-NR¹³R¹⁴, or represents the grouping

Z and D together represent optionally, nitro-, halogen-, alkyl, alkoxy-, halogenoalkyl- or halogenoalkoxy-substituted phenoxyalkyl.

Y represents a direct bond, oxygen, sulphur, carbonyl, carbonyloxy, oxycarbonyl, alkylene, alkenylene, alkinylene, alkyleneoxy, oxyalkylene, thioalkylene, alkylenedioxy or represents p-phenylene which is optionally mono- or disubstituted by radicals from the list W¹,

E represents hydrogen, alkyl, alkenyl, alkinyl, halogenealkyl, halogenealkenyl, respectively optionally halogen, alkyl, alkenyl, halogenealkenyl, phenyl, styryl, halogenephenyl, or halogenestyryl-substituted cycloalkyl, represents respectively optionally halogen, or alkyl substituted cycloalkenyl, represents phenyl which is optionally

mono- to tetrasubstituted by radicals from the list W² or represents 5or 6-membered hetaryl having 1 or 2 hetero atoms from the group consisting of nitrogen, oxygen and sulphur, which is optionally monoto tetrasubstituted by radicals from the list W², or represents the grouping

	—————————————————————————————————————
R ⁺²	represents alkyl, alkoxy, alkenyl, alkenyloxy, respectively optionally
	halogen-, alkyl-, alkenyl-, halogenoalkyl- or halogenoalkenyl-
	substituted cycloalkyl, cycloalkyloxy or cycloalkylalkyloxy or represents
	respectively optionally nitro-, halogen-, alkyl-, alkoxy-,
	halogenoalkyl- or halogenoalkoxy-substituted phenyl or naphthyl,
R ¹³	represents hydrogen or alkyl,
R ¹⁴	represents alkyl, halogenoalkyl, respectively optionally halogen-, alkyl-
	alkenyl-, halogenoalkyl- or halogenoalkenyl-substituted cycloalkyl,
	cycloalkylalkyl or represents respectively optionally halogen-, alkyl-,
	alkoxy-, halogenoalkyl- or halogenoalkoxy-substituted phenyl or
	phonylalkyl,
	p. q and r independently of one another each represent 0, 1, 2 or 3,
	their sum being smaller than 6.
	R ¹⁵ and R ¹⁶ independently of one another each represent hydrogen or
	alkyl.
G	represents cyano, represents a 5- or 6-membered heterocycle having
	1 to 3 identical or different hetero atoms from the group consisting of
	nitrogen, oxygen and sulphur, which is optionally substituted by
	halogen, alkyl or halogenoalkyl and, at the attachment point, optionally
	by the radical R ⁺⁷ , or represents one of the groupings below
	(a) CO R ¹²
	(b)COOR ¹⁸
Mo5158D2	-5-

(d) ___ CS__NR**R**

(e)
$$C N = R^{21}$$
 R^{17}

(f)
$$\frac{OR^{22}}{COR^{22}}$$

(g)
$$-C = \frac{SR^{22}}{R^{17} SR^{22}}$$

(h)
$$R^{23}$$
 $N R^{24}$ $C R^{17}$ R^{17}

(i)
$$\frac{N}{N} \frac{R^{23}}{R^{24}}$$

(j)
$$-C N R^{23}$$

 OR^{24}

 _R ⁺⁶	represents hydrogen, alkyl, alkenyl, halogenoalkyl, halogenoalkenyl,
	respectively optionally halogen-, alkyl- or halogenealkyl-substituted
 	cycloalkyl or cycloalkylalkyl or represents arylalkyl which is optionally
	mono- to pentasubstituted by radicals from the list W ³ ,
R [⊷] an	d R independently of one another each represent hydrogen, alkyl.
	alkenyl, halogenoalkyl, halogenoalkenyl, alkoxy, respectively optionally
	halogen-, alkyl- or halogenoalkyl substituted cycloalkyl or
	cycloalkylalkyl, represent aryl or arylalkyl, each of which is optionally
	mono- to pentasubstituted by radicals from the list Wi-represent_OR**
	or -NR ⁺⁷ R ⁺⁸ or together represent an alkylene chain having 2 to 6
	members in which one methylene group is optionally replaced by
	oxygen,
 _R ²¹	represents OR ¹⁸ , NR ¹⁷ R ¹⁸ or N(R ¹⁷)-COOR ¹⁸ ,
 _R ²² ,_R	²³ and R ²⁴ independently of one another each represent alkyl,
W ¹	represents hydrogen, halogen, cyano, formyl, nitro, alkyl, trialkylsilyl,
	alkoxy, halogenoalkyl, halogenoalkoxy, halogenoalkenyloxy,
	alkylcarbonyl, alkoxycarbonyl, pentafluorothio or -S(O), R°,
₩²	represents halogen, cyano, formyl, nitro, alkyl, trialkylsilyl, alkoxy,
	halogenoalkyl, halogenoalkoxy, alkylcarbonyl, alkoxycarbonyl,
	pentafluorothio or -S(O) _o R ^e -or -C(R ⁺⁷)=N-R ²⁴ ,
 _W³	represents halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl,
	halogenoalkoxy, dialkylamino -S(O) _o R ⁶ , -COOR ²⁶ or -CONR ²⁶ R ²⁷ ,
 R ²⁵	represents hydrogen, alkyl, halogenoalkyl, optionally halogen-, alkyl- er
	halogenoalkyl-substituted cycloalkyl or represents phenyl which is
	optionally mono- to pentasubstituted by radicals from the list W ⁴ ,
 – R ^{as} -ar	nd R ³⁷ independently of one another each represent hydrogen, alkyl,
	alkenyl, halogenoalkyl, halogenoalkenyl, alkoxy, respectively optionally
	halogen-, alkyl- or halogenoalkyl-substituted cycloalkyl or

cycloalkylalkyl or represent aryl or arylalkyl, each of which is optionally mono- to pentasubstituted by radicals from the list W⁴, represent -OR²² or -NR²³R²⁴-or together represent an alkylene chain having 2 to 6 members in which one methylene group is optionally replaced by oxygen, and

- W⁴—represents halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, dialkylamino, alkoxycarbonyl, dialkylaminocarbonyl or _S(O), R⁶.
- 2. (Currently Amended) The compound of Claim 1

in which

n represents 2-or-3,

Ar¹ represents the radical

 R^2

 R^1

 R^3

Ar² represents the radical

 R^4

 R_{m}^{5}

- m represents 0, 1, 2 or 3,
- R' represents halogen, cyano, nitro. C_1-C_6 -alkyl. C_1-C_6 -alkoxy, C_1-C_6 -halogenoalkyl or C_1-C_6 -halogenoalkoxy, represents C_1-C_6 -alkoxy- C_1-C_6 -alkyl. $-S(O)_0R^6$ -or $-NR^2R^8$.

- R² and R³ independently of one another each represent hydrogen, halogen, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-halogenoalkyl or C₁-C₆-halogenoalkoxy, represent C₁-C₁-alkoxy-C₂-C₆-alkyl, -S(O)₂R²-or -NR²R³.
- R⁴ represents a substituent in meta- or paraposition from the group consisting of halogen, cyano, tri-(C₁-C₆-alkyl)-silyl, -CO-NR¹⁰R¹¹, tetrahydropyranyl or one of the groupings below the grouping
 - (I) -X-A (m) -B-Z-D (n) -Y-E,
- R⁵ represents hydrogen, halogen, cyano, nitro, C_1 - C_{16} -alkyl, C_1 - C_{16} -alkoxy, C_1 - C_6 -halogenoalkyl, C_1 - C_6 -halogenoalkoxy, C_1 - C_8 -alkoxy or $-S(O)_0$ R⁶,
- o represents 0, 1 or 2,
- R²—represents optionally fluorine- or chlorine-substituted C₃-C₆-alkyl,
- R² and R³ independently of one another each represent hydrogen or C₁-C₆-alkyl, [such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl] or together represent C₂-C₅-alkylene.

 [such as, for example, (CH₂)-or (CH₂)₅-1]
- R¹⁰ and R¹¹ independently of one another each represent hydrogen. C₁-C₆alkyl, C₁-C₆-halogenoalkyl or represent phenyl or phenyl-C₁-C₄-alkyl.
 each of which is optionally mone- to trisubstituted by radicals from the
 - x represents a direct bond, exygen, sulphur, carbonyl, carbonyloxy, exycarbonyl, C₁-C₂-alkylene, C₂-C₂-alkenylene, C₂-C₂-alkinylene, C₁-C₂-alkylene, C₂-C₂-alkylene, C₂-C₂-alkylene, C₃-C₄-alkylene, C₄-C₄-alkylene, C₅-C₄-alkylene, C₅-C₆-alkylene, C₆-alkylene, C₇-C₈-alkylene, C₈-alkylene, C

	alkylenedioxy or represents p-phenylene which is optionally mono- or
	disubstituted by radicals from the list W ⁺ -
E	represents hydrogen, C ₁ -C ₁₆ -alkyl, C ₂ -C ₁₀ -alkenyl, C ₂ -C ₆ -alkinyl, C ₁ -C ₁₀ -
	halogenoalkyl, C ₂ -C ₁₆ -halogenoalkenyl, optionally halogen-, C ₄ -C ₄ -
	alkyl-, C ₂ -C ₄ -alkenyl-, C ₂ -C ₄ -halogenoalkenyl-, phenyl-, styryl-,
	halogenophenyl- or halogenostyryl-substituted C ₃ -C ₈ -cycloalkyl,
	represents optionally halogen or C ₁ -C ₂ -alkyl-substituted C ₅ -C ₈ -
	cycloalkenyl, represents phenyl which is optionally mono- to
	tetrasubstituted by radicals from the list W ² -or represents 5- or
	6-membered hetaryl having 1 or 2 hetero atoms from the group
	consisting of nitrogen, oxygen and sulphur, which is optionally mono-
	to tetrasubstituted by radicals from the list W ² , or represents the
	grouping
	$-(CH_2)_p - (CR^{15}R^{16})_q - (CH_2)_c - G_{\tau}$
R ¹² _	represents C ₁ -C ₁₂ -alkyl, C ₁ -C ₁₂ -alkoxy, C ₂ -C ₁₂ -alkenyl, C ₂ -C ₁₂ -
	alkenyloxy, respectively optionally halogen-, C ₁ -C ₄ -alkyl-, C ₂ -C ₄ -
	alkenyl-, C ₁ -C ₄ -halogenoalkyl- or C ₂ -C ₄ -halogenoalkenyl-substituted
	C ₃ -C ₈ -cycloalkyl, C ₃ -C ₈ -cycloalkyloxy or C ₃ -C ₈ -cycloalkyl-C ₁ -C ₆ -alkyloxy
	or represents phenyl or naphthyl, each of which is optionally mono- to
	tetrasubstituted by nitro, halogen, C ₁ -C ₁₂ -alkyl, C ₁ -C ₁₂ -alkoxy, C ₁ -C ₁₂ -
	halogenoalkyl or C ₁ -C ₁₂ -halogenoalkoxy.
R ¹³ _	represents hydrogen or C ₁ -C ₁₂ -alkyl.
	represents C ₁ -C ₁₂ -alkyl, C ₁ -C ₁₂ -halogenoalkyl, respectively optionally
	halogen-, C_1 - C_4 -alkyl-, C_2 - C_4 -alkenyl-, C_1 - C_4 -halogenealkyl- or C_2 - C_4 -
	halogenoalkenyl-substituted C_3 - C_6 -cycloalkyl or C_3 - C_8 -cycloalkyl- C_1 - C_6 -
	alkyl, or represents phenyl or phenyl-C ₁ -C ₆ -alkyl which is in each case
-	optionally mono- to tetrasubstituted by halogen, C ₁ -C ₁₂ -alkyl, C ₁ -C ₁₂ -
	alkoxy, C ₁ -C ₁₂ -halogenealkyl or C ₂ -C ₁₂ -halogenealkoxy,

p. g and r independently of one another each represent 0, 1, 2 or 3, their sum being smaller than 6. R⁴⁵ and R⁴⁵ independently of one another each represent hydrogen or C₂-C₂alkyl. represents cyano, represents a 5- or 6-membered heterocycle having 1 to 3 identical or different hetero atoms from the group consisting of nitrogen, exygen and sulphur, which is optionally mono- to trisubstituted by halogen, C1-C2-alkyl or C1-C4-halogenoalkyl and, at the attachment point, optionally by the radical R¹⁷, or represents one of the groupings below: (a) ___CO__R¹⁷ __CO_NR¹⁹R²⁰ (d) ____CS__NR¹⁶R²⁰ R^{21} (e) CN R¹⁷ OR^{22} ···C_{~~OR}²² (f) R¹⁷ c SR²² (g) R¹⁷ SR²² R^{23} $N R^{24}$ C OR²² (h)

(i)
$$R^{23}$$
 R^{24} C_{SR}^{22}

(j)
$$-C-N R^{23}$$
 OR^{24}

R ²² ,	R ²³ and R ²⁴ independently of one another each represent C ₂ -C ₆ -alkyl.
W	represents hydrogen, halogen, cyano, formyl, nitro, C_±-C_e-alkyl, tri-
	C₁-C₄-alkylsilyl. C₁-C₁₅-alkoxy, C₁-C₅-halogenoalkyl, C₁-C₅-
	halogenoalkoxy, C ₂ -C ₆ -halogenoalkenyloxy, C₁-C₆-alkylcarbonyl,
	$C_{\underline{\cdot}}$ - $C_{\underline{\cdot}}$ -alkoxycarbonyl, pentafluorothio or $-S(O)_{\underline{\circ}}R^{\varepsilon}_{\tau_{\underline{\cdot}}}$
₩-	represents halogen, cyano, formyl, nitro. C ₁ -C ₆ -alkyl, tri-C ₁ -C ₄ -alkylsily
	C _z -C _{ze} -alkoxy, C _z -C _e -hałogenoalkyl, C _z -C _e -halogenoalkoxy, C _z -C _e -
	alkylcarbonyl, C ₊ -C _{+s} -alkoxycarbonyl, pentafluorothio, -S(O) _s R ^s -or
W³	represents halogen, cyano, nitro, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -
	halogenoalkyl, C ₁ -C ₄ -halogenoalkoxy, di-C ₁ -C ₄ -alkylamino, -S(O) ₀ R ⁶ ,
	-COOR ²⁵ -or-CONR ²⁶ R ²⁷ ,
R ²⁵ _	represents hydrogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -halogenoalkyl, optionally
	halogen-, C ₁ -C ₄ -alkyl- or C ₁ -C ₄ -halogenoalkyl-substituted C ₃ -C ₂ -
	cycloalkyl or represents phenyl which is optionally mono- to
	pentasubstituted by radicals from the list W4.
	and R ²⁷ -independently of one another each represent hydrogen, C ₁ -C ₄ -
	alkyl, C ₃ -C ₆ -alkenyl, C ₁ -C ₄ -halogenoalkyl, C ₃ -C ₆ -halogenoalkenyl,
	C ₁ -C ₄ -alkoxy, respectively optionally halogen-, C ₁ -C ₄ -alkyl- or C ₁ -C ₄ -
	halogenoalkyl-substituted C ₃ -C ₆ -cycloalkyl or C ₃ -C ₆ -cycloalkyl-C ₄ -C ₄ -
	alkyl or represent phenyl or phenyl-C ₁ -C ₄ -alkyl, each of which is
	optionally mono- to pentasubstituted by radicals from the list W4.
	represent OR ²² or NR ²³ R ²⁴ , or together represent an alkylene chain
	having 4 to 6 members in which one methylene group is optionally
	replaced by oxygen, and
\\\\\\^4_	represents halogen, cyano, nitro. C ₁ -C ₅ -alkyl, C ₁ -C ₅ -alkoxy, C ₁ -C ₅ -
	halogenoalkyl, C ₁ -C ₆ -halogenoalkoxy, di-C ₁ -C ₄ -alkylamino, C ₁ -C ₆ -
	alkoxycarbonyl, di-C _z -C _e -alkylamınocarbonyl or-S(O) ₂ R ^e -

3. (Currently Amended) The compound of Claim 1

in which

- n represents 2,
- Ar¹ represents the radical

Ar² represents the radical

R⁴

- m represents 0.1 0.2
- R¹ represents fluorine, chlorine, bromine, <u>cyano, nitro, </u>C₁-C₆-alkyl, C₁-C₆-alkoxy, respectively fluorine- or chlorine-substituted C₁-C₆-alkyl or C₂-C₆-alkoxy, represents C₁-C₆-alkoxy-C₂-C₆-alkyl-or-S(O)₂R⁶.
- R² and R³ independently of one another each represent hydrogen, fluorine, chlorine, bromine, iodine, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, respectively fluorine- or chlorine-substituted C₁-C₆-alkyl or C₁-C₆-alkoxy, represent C₁-C₆-alkoxy-C₁-C₆-alkyl-or-S(O)ⴰ-R⁶,
- R⁴ represents a substituent in meta- or paraposition from the group consisting of fluorine, chlorine, bromine, iodine, cyano, tri-(C₁-C₄-alkyl)-silyl. CO-NR¹²R¹¹, tetrahydropyranyl or one of the groupings belowthe grouping

- (I) -X-A (m) -B-Z-D
- (n) Y-E,
- represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, nitro, C.-C₁₆-alkyl, C.-C₁₆-alkoxy, respectively fluorine- or chlorine-substituted C₁-C₆-alkyl or C₁-C₆-alkoxy, represents C₁-C₆-alkoxy-C₁-C₆-alkoxy, or -S(O)₆R⁶₇

o represents 0, 1 or 2,

- Re represents C₄-C₄-alkyl or respectively fluorine- or chlorine-substituted methyl or ethyl.
- R¹⁶ and R¹¹ independently of one another each represent hydrogen, C₁-C₆-alkyl, fluorine- or chlorine-substituted C₁-C₆-alkyl or represent phenyl or benzyl, each of which is optionally mono- or disubstituted by radicals from the list W¹-
 - X represents a direct bond, exygen, sulphur, carbonyl, carbonylexy, exycarbonyl, C_1 - C_4 -alkylene, C_2 - C_4 -alkenylene, C_2 - C_4 -alkinylene, C_1 - C_4 -alkylene, C_1 - C_4 -alkylene, C_1 - C_4 -alkylene, C_1 - C_4 -alkyleilylene, C_1 - C_4 -alkyleilylene,
 - A represents phenyl, naphthyl or tetrahydronaphthyl, each of which is optionally mono-substituted to trisubstituted by radicals from the list W¹, or represents 5- to 10-membered heterocyclyl having 1 to 4 hetero atoms, which includes 0 to 4 nitrogen atoms, 0 to 2 oxygen atoms and 0 to 2 sulphur atoms, and containing 1 or 2 aromatic rings, which is in each case optionally mono- to trisubstituted by radicals from the list W².
 - B ... represents p-phenylene which is optionally mono- or disubstituted by radicals from the list W₁.
- ____Z represents oxygen or sulphur.

D	<u>-represents hydrogen, C₁-C₁₆-alkyl, C₂-C₁₆-alkenyl, C₂-C₆-alkinyl,</u>
	respectively fluorine- or chlorine-substituted C ₁ -C ₄ -alkyl or C ₂ -C ₄ -
	alkenyl, represents C ₃ -C ₆ -cycloalkyl or C ₃ -C ₆ -cycloalkyl-C ₄ -C ₄ -alkyl.
	each of which is optionally substituted by fluorine, chlorine, bromine,
	C ₁ -C ₄ -alkyl, C ₂ -C ₄ -alkenyl, fluorine- or chlorine-substituted C ₂ -C ₄ -
	alkenyl, phenyl, styryl, respectively fluorine-, chlorine- or bromine-
	substituted phenyl or styryl, represents respectively optionally fluorine.
	chlorine-, bromine- or C ₁ -C ₄ -alkyl-substituted C ₅ -C ₆ -cycloalkenyl or
	C ₂ -C ₆ -cycloalkenyl-C ₄ -C ₄ -alkyl, represents phenyl-C ₄ -C ₄ -alkyl, naphthyl-
	C ₁ -C ₄ -alkyl, tetrahydronaphthyl-C ₁ -C ₆ -alkyl or 5- or 6-membered
	hetaryl-C ₄ -C ₄ -alkyl having 1 or 2 hetero atoms from the group
	consisting of nitrogen, oxygen and sulphur, each of these radicals
	being optionally substituted by nitro, fluorine, chlorine, bromine, C,-C,-
	alkyl, C ₁ -C ₆ -alkoxy, respectively fluorine- or chlorine-substituted C ₁ -C ₄ -
	alkyl or C ₁ -C ₄ -alkoxy, represents -CO-R ¹² , -CO-NR ¹³ R ¹⁴ , or the grouping

- Z and D together represent phenoxy-C-C₃-alkyl which is optionally substituted
 by nitro, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, or
 respectively fluorine, or chlorine substituted C₁-C₄-alkyl or C₁-C₄alkoxy,
- E represents hydrogen, C_1 - C_{16} -alkyl, C_2 - C_{16} -alkenyl, C_2 - C_6 -alkinyl, respectively fluorine- or chlorine-substituted C_1 - C_4 -alkyl or C_2 - C_4 -alkenyl, represents C_3 - C_6 -cycloalkyl which is optionally substituted by fluorine, chlorine, bromine, C_4 - C_4 -alkyl, C_2 - C_4 -alkenyl, fluorine- or chlorine- substituted C_2 - C_4 -alkenyl, phenyl, styryl or respectively fluorine-, chlorine- or bromine-substituted phenyl or styryl, represents optionally fluorine-, chlorine-, bromine- or C_4 - C_4 -alkyl-substituted C_5 - C_6 -

chorine-substituted C_1 - C_2 -alkyl and, at the attachment-point, optionally by the radical \mathbb{R}^{17} , or represents one of the groupings below:

_____(a) ___CO__R¹⁷

_____(b) ___CO_OR¹⁸

_____(c) ___CO_NR¹⁹R²⁰

_____(d) ____CS_NR¹⁰R²⁰

(e)
$$-C-N-R^{21}$$

(f)
$$-C = OR^{22}$$
 R^{17}

(g)
$$-C = \frac{SR^{22}}{R^{17}} SR^{22}$$

(h)
$$R^{23}$$
 $N R^{24}$
 $C OR^{22}$
 R^{17}

(i)
$$\frac{N}{R^{23}}$$
 R^{24}

(j)
$$-C - N \cdot R^{23}$$

 OR^{24}

$$\begin{array}{c} \text{(k)} & \text{SR}^{24} \end{array}$$

R⁺² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, respectively fluorineor chlorine-substituted C₂-C₂-alkyl or C₂-C₃-alkenyl, represents C₃-C₅cycloalkyl which is optionally substituted by fluorine, chlorine, C₁-C₂alkyl or fluorine- or chlorine-substituted C,-C,-alkyl, or represents phonyl which is optionally mono- to trisubstituted by C1-C2alkylcarbonylamino, C,-C,-alkylcarbonyl-C,-C,-alkylamino and/or radicals from the list Wa-R^{+a} represents hydrogen, C₁-C₄-alkyl, C₃-C₆-alkenyl, respectively fluorineor chlorine-substituted C₁-C₄-alkyl or C₃-C₆-alkenyl, represents C₃-C₆cycloalkyl or C3-C6-cycloalkyl-C1-C4-alkyl, each of which is optionally substituted by fluorine, chlorine, C1-C1-alkyl or fluorine- or chlorinesubstituted C₁-C₄-alkyl, or represents phenyl-C₁-C₄-alkyl or naphthyl-C₁-C₄-alkyl, each of which is optionally mono- to trisubstituted by radicals from the list W3. R¹⁹ and R²⁰ independently of one another each represent hydrogen, C₁-C₄alkyl, C3-C6-alkenyl, respectively fluorine- or chlorine-substituted C1-C4alkyl or C₃-C₆-alkenyl, represent C₂-C₆-alkoxy, represent C₃-C₆cycloalkyl or Ca-Ca-cycloalkyl-Ca-Ca-alkyl, each of which is optionally substituted by fluorine, chlorine, C.-C,-alkyl or fluorine- or chlorinesubstituted C₁-C₄-alkyl, represent phenyl or phenyl-C₁-C₄-alkyl, each of which is optionally mono- to trisubstituted by radicals from the list W3, represent OR18 or NR12R18 or together represent (CH2)5-1-(CH2)5-0F -(CH₂)₂-O-(CH₂)₂-, R²⁺ represents OR⁴⁸, NR⁴²R⁴⁸ or N(R⁴²)-COOR⁴⁸, _R²², R²³ and R²⁴ independently of one another each represent C₂-C₂-alkyl, VV^1 represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, formyl, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, respectively fluorine- or chlorinesubstituted C.-C.-alkyl or C.-C.-alkoxy, represents C.-C.-alkylcarbonyl-

C.-C.-alkoxycarbonyl or -S(O) Ri-

- W- represents fluorine, chlorine, bromine, cyano, formyl, nitro, C. C. alkyl. C.-C.-alkoxy, respectively fluorine- or chlorine-substituted C.-C.-alkyl or C. -C. -alkoxy. represents C. -C. -alkylcarbonyl. C. -C. -alkoxycarbonyl or_S(O)_R6 or -C(R12)=N-R24, Wf ___represents fluorine, chlorine, bromine, cyano, nitro, C, C, alkyl, C, C, -C, alkoxy, respectively fluorine- or chlorine-substituted C.-C.-alkyl or C.-C.-alkoxy, represents di-C.-C.-alkylamino, -S(O), R°, -COOR or -CONR26R27-R²⁵ represents hydrogen, C, C, alkyl, fluorine- or chlorine-substituted C.-C. alkyl, represents C. C. cycloalkyl which is optionally substituted by fluoring, chioring, C,-C,-alkyl or fluoring- or chloring-substituted C.-C.-alkyl, or represents phenyl which is optionally mono-to trisubstituted by radicals from the list W4, R²⁶ and R²⁷ independently of one another each represent hydrogen, C₁-C₄alkyl, C3-C6-alkenyl, respectively fluorine- or chlorine-substituted C1-C4alkyl or C₂-C₅-alkenyl, represent C₂-C₆-alkoxy, represent C₂-C₆cycloalkyl or Ca-Ca-cycloalkyl-Ca-Ca-alkyl, each of which is optionally substituted by fluorine, chlorine, C:-C:-alkyl or fluorine-or chlorinesubstituted C1-C2-alkyl, or represent phenyl or phenyl-C1-C2-alkyl, each of which is optionally mono- to trisubstituted by radicals from the list W⁴, represent OR²² or NR²³R²⁴ or together represent (CH₂)₅-, (CH₂)₅or (CH₂)₂-O-(CH₂)₂-, and W⁴— represents fluorine, chlorine, bromine, cyano, nitro, C, C,-alkyl, C,-C,alkoxy, respectively fluorine- or chlorine-substituted C₂-C₂-alkyl or C.-C.-alkoxy, di-C.-C.-alkylamino, C.-C.-alkoxycarbonyl, di-C.-C.alkylaminocarbonyl or -S(O) R4-

4.

n

in which

(Currently Amended) The compound of Claim 1

Ar represents the radical

$$R^2$$
 R^1
 R^3

Ar² represents the radical

- R¹ represents fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy,
- R² and R³ independently of one another each represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy,
- R⁴ represents a substituent in meta- or paraposition from the group consisting of fluorine, chlorine, bromine, iodine, cyane, CO-NR¹⁰R¹¹, tetrahydropyranyl or one of the groupings belowthe grouping

R⁵ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethyl, difluoromethoxy, trifluoromethoxy or trifluoromethylthio,

		represents 0 or 2,
	_R*	represents methyl, ethyl, n-propyl, isopropyl, difluoromethyl or
		<u>trifluoromethyl.</u>
	-R ¹⁰ -∂	and R ⁱⁱ independently of one another each represent hydrogen, methyl,
		<u>ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl er</u>
		represent phenyl or benzyl, each of which is optionally
		monosubstituted by a radical from the list W ⁴ -
	V	represents a direct bond, exygen, sulphur, carbonyl, -CH ₂ -, -(CH ₂) ₂ -,
	Х	CH=CH_ (E-or Z), -ČC-, -CH ₂ O-, -(CH ₂) ₂ O-, -CH(CH ₃)O-, -OCH ₂ -,
		$\frac{CH=CH-(E-\mathsf{GH}_2), -SC-\mathsf{G}+-\mathsf{GH}_2-\mathsf{G}+(CH_2)_2-\mathsf{G}+-\mathsf{G}_4-\mathsf{GH}_2-\mathsf{G}}{$
		$ \frac{O(CH_2)_2 + -5CH_2}{Particular - OCH_2O_1 - O(CH_2)_2O_2 - O(CH_2)_2O_3 + O(CH_2)_2O_3}{O(CH_2)_2O_3 - O(CH_2)_2O_3 - O(CH_2)_2O_3$
	А	represents phenyl which is optionally mono-substituted or disubstituted
	, ,	by radicals from the list W ¹ or represents furyl, benzefuryl,
		thienyl, benzothienyl, oxazolyl, benzoxazolyl, thiazolyl,
		benzthiazolyl, pyrrolyl, pyridyl, pyrimidyl, 1,3,5-triazinyl,
		quinolinyl, isoquinolinyl, indolyl, purinyl, benzodioxelyl, indanyl,
		benzedioxanyl or chromanyl, each of which is optionally mono-
		or disubstituted by radicals from the list W ² .
	7	represents oxygen or sulphur.
	<u> </u>	- 1901969Hts Oxygen or ourprion
	D	represents hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl,
		isobutyl, sec-butyl, tert-butyl, the isomeric pentyls, the isomeric hexyls.
		n_haptyl, n_octyl, n_isooctyl, n_nonyl, n-decyl, n-undecyl, n-dodecyl,
		n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, 2-propenyl, butenyl
		nontenyl_hexenyl, propargyl, butinyl, pentinyl, -CF ₃ , -CHF ₂ , -CCIF ₂ ,
		CE2CHECH. CE2CH2E. CF2CHE2. CF2CCI3. CH2CE3. CF2CHECE3.
-		CH ₂ CE ₂ CHE ₂ , CH ₂ CE ₂ CE ₃ , represents cyclopropyl, cyclobutyl.
		-cyclopentyl-cyclohexyl, cyclopropylmethyl, cyclobutylmethyl,
		cyclopentylmethyl or cyclohexylmethyl, each of which is optionally
		mono- to trisubstituted by fluorine, chlorine, bromine, methyl, ethyl.

	1-propenyl, 2.2-dimethylethenyl, -CH=CCl ₂ , phenyl, styryl, respectively
	fluorine-, chlorine- or bromine-substituted phenyl or 4-chlorostyryl,
	represents respectively optionally fluorine-, chlorine-, methyl-, ethyl-,
	- n-propyl-, isopropyl-, n-butyl-, isobutyl-, sec-butyl- or tert-butyl-
	substituted cyclopentenyl, cyclohexenyl, cyclohexenylmethyl or
	cyclopentenylmethyl, represents benzyl, phenethyl, naphthylmethyl,
	tetrahydronaphthylmethyl, furylmethyl, thienylmethyl, pyrrolylmethyl,
	oxazolylmethyl, isoxazolylmethyl, thiazolylmethyl or pyridylmethyl, each
	of which is optionally mono- or disubstituted by nitro, fluorine, chlorine,
	bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl,
	tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy,
	isobutoxy, sec-butoxy, tert-butoxy, trifluoromethyl, trifluoromethoxy,
	— difluoromethoxy or chlorodifluoromethoxy, represents—CO-R ¹² ,
	—-CO-NR ¹³ R ¹⁴ -or the grouping
<u>Z ar</u>	nd D together represent phenoxymethyl which is optionally mono- or
	disubstituted by nitro, fluorine, chlorine, bromine, methyl, ethyl, n
	propyl, isopropyl, methoxy, ethoxy, n-propoxy, isopropoxy,
<u> </u>	trifluoromethyl, trifluoromethoxy, difluoromethoxy or chlorodifluoro-
	methoxy,
Y	represents a direct bond, oxygen, sulphur, carbonyl, -CH ₂ -, -(CH ₂) ₂ -,
	CH=CH=(E or Z),
	$O(CH_2)_2$ -, $-SCH_2$ -, $-S(CH_2)_2$ -, $-SCH(CH_3)$ -, C_1 - C_4 -alkylenedioxy, [in
	particular -OCH ₂ O- or -O(CH ₂) ₂ O-] or represents p-phenylene which is
	— optionally monosubstituted by a radical from the list W ¹ ,
	represents hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl,
	- isobutyl, sec-butyl, tert-butyl, the isomeric pentyls, the isomeric hexyls,
	n_heptyl, n_octyl, n_isooctyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl,
	n_tridecyl, n_tetradecyl, n-pentadecyl, n-hexadecyl, 2-propenyl, butenyl,
	pentenyl, hexenyl, propargyl, butinyl, pentinyl, -CF ₃ , -CHF ₂ , -CCIF ₂ ,
	CF ₂ CHFCI,_CF ₃ CH ₃ F,_CF ₃ CHE ₃ ,_CF ₃ CCI ₃ ,_CH ₃ CF ₃ ,_CF ₃ CHFCF ₃ ,
	CH_CE_CHECH_CE_CE_, represents cyclopropyl, cyclobutyl,

		<u>cyclopentyl or cyclohexyl, each of which is optionally mone- to</u>
		trisubstituted by fluorine, chlorine, bromine, methyl, ethyl, n-propyl,
		-isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, ethenyl, 1-propenyl,
		2.2-dimethylethenyl, -CH=CCl ₂ . phenyl, styryl, respectively fluorine .
		chlorine or bromine substituted phenyl or by 4-chlorostyryl, represents
		respectively optionally fluorine-, chlorine-, methyl-, ethyl-, n-propyl-,
		isopropyl-, n-butyl-, isobutyl-, sec-butyl- or tert-butyl-substituted
		cyclopentenyl or cyclohexenyl, represents phenyl which is optionally
		mono- or disubstituted by radicals from the list W ¹ , represents furyl.
		thienyl, pyrrolyl, exazolyl, isoxazolyl, thiazolyl or pyridyl, each of which
		is optionally mono- or disubstituted by radicals from the list W ² , or
		represents the grouping
		$-(CH_2)_{a}-(CR^{15}R^{16})_{a}-(CH_2)_{t}-G_{t}$
	R¹² _	<u>represents methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl,</u>
		sec-butyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy
		isobutoxy, sec-butoxy, tert-butoxy, cyclopropyl, cyclohexyl,
		cyclohexyloxy, cyclohexylmethyloxy, phenyl, 2-chlorophenyl,
		3-chlorophenyl, 2,6-difluorophenyl, 2,4-dichlorophenyl,
		3.4-dichlorophenyl, 2-trifluoromethoxyphenyl or
		4-trifluoromethoxyphenyl,
	R ¹³	represents hydrogen,
	R ⁺⁴	represents methyl, ethyl or represents phenyl which is optionally
		monosubstituted by chlorine,
	— р. q -	and r independently of one another each represent 0, 1, 2 or 3, their sum
		being smaller than 4.
	— R ⁺⁵ -€	and R ^{ist} independently of one another each represent hydrogen, methyl,
		ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl,
	<u> </u>	represents cyano, represents 5.6 dihydrodioxazin-2-yl. 3-pyridyl.
		3 furyl, 3 thionyl, 2 thiazolyl, 5 thiazolyl, 2 dioxolanyl, 1,3 dioxan-2-yl,
_		2-dithiolanyl, 1,3-dithian 2-yl or 1,3-thioxan-2-yl, each of which is

optionally mono- to trisubstituted by fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl or trifluoromethyl and, at the attachment point, optionally by the radical R¹⁷, or represents one of the groupings below:

(a) CO R¹⁷

(b) CO OR¹⁸

(c) CO NR¹⁵R²²

(d) CS NR¹⁶R²⁰

(e)
$$-C = N = -R^{21}$$
 R^{17}

(f)
$$OR^{22}$$
 $C OR^{22}$
 R^{17}

(g)
$$-\frac{SR^{22}}{C}$$

(h)
$$R^{23}$$
 N_R^{24} $C_{OR^{22}}$ R^{17}

(i)
$$\frac{N}{N} \frac{R^{23}}{R^{24}}$$
 R^{17}

	- represents hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl,
	isobutyl, sec-butyl, tert-butyl, the isomeric pentyls, the isomeric hexyls.
	CE ₃ ,CHE ₂ ,CCIE ₃ ,CE ₂ CHECI,CE ₂ CH ₂ E ₁ CE ₂ CHE ₂ ,CE ₂ CCI ₃ ,
	CH ₂ CF ₃ , C ₃ -C ₅ -alkenyl, C ₃ -C ₆ -alkenyl which is mono- to trisubstituted
	by fluorine or chlorine, represents cyclopropyl, cyclopentyl or
	cyclohexyl, each of which is optionally mono- or disubstituted by
	fluorine, chlorine, methyl, ethyl, n-propyl, isopropyl, -CF ₃ , -CHF ₂ ,
	 represents phenyl which is optionally mono- or disubstituted by
	methylcarbonylamino, ethylcarbonylamino, methylcarbonyl-
	methylamine and/or radicals from the list W³,
——————————————————————————————————————	represents hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl,
	isobutyl, sec-butyl, tert-butyl, -CH ₂ CF ₃ , allyl, represents cyclopropyl,
	<u>cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclopentylmethyl,</u>
	cyclohexylmethyl, cyclopropylethyl, cyclopentylethyl or cyclohexylethyl,
	each of which is optionally mone or disubstituted by fluorine, chlorine,
	methyl, ethyl, n-propyl, isopropyl, -CF ₃ , -CHF ₂ , -CCIF ₂ , -CF ₂ CHFCl,
	CE ₂ CH ₂ F,_CE ₂ CHE ₂ ,_CE ₂ CCl ₃ -or_CH ₂ CE ₃ , or represents benzyl or
	phenethyl, each of which is optionally mono- or disubstituted by
	radicals from the list W³,
—R ^{::} -€	and R ²² independently of one another each represent hydrogen, methyl.
	ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl,
	-CH ₂ CF ₃ , methoxy, ethoxy, allyl, represent cyclopropyl, cyclopentyl,
	cyclohexyl, cyclopropylmethyl, cyclopentylmethyl or cyclohexylmethyl,
	each of which is optionally mone or disubstituted by fluorine, chlorine.
	methyl, ethyl, n-propyl, isopropyl or trifluoromethyl, represent phenyl,
	benzyl or phenethyl, each of which is optionally mone- or disubstituted
	by radicals from the list W ² , represent OR ¹⁸ or NR ¹⁷ R ¹⁸ ,
R ²¹ _	- represents OR ¹⁸ , NR ¹⁷ R ¹⁸ or N(R ¹⁷) COOR ¹⁸ ,
— R ³² ,-	R ²³ and R ²⁴ independently of one another each represent methyl, ethyl,
	n-propyl or isopropyl.

₩ ;	represents hydrogen, fluorine, chlorine, bromine, cyano, formyl, nitro,
	methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl,
	methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-
	butoxy, tert-butoxy, -CF₃, -CHF₂, -CCIF₂, -CF₂CHFCI, -CF₂CH₂F,
	CF_CHFCF_CCI3CH2CF3CF_CHFCF3CH2CF_CHF2-
	CH₂CF₂CF₃, trifluoromethoxy, difluoromethoxy,
	chlorodifluoromethoxy _{_+}
	acetyl, propionyl, butyryl, isobutyryl, methoxycarbonyl, ethoxycarbonyl,
	n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl,
	isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl or S(O),R°,
₩²	represents fluorine, chlorine, bromine, cyano, methyl, ethyl, n-propyl,
	isopropyl, trifluoromethyl, trifluoromethexy, difluoromethoxy,
	_chlorodifluoromethoxy, acetyl or trifluoromethylthio, -CH=N-OCH ₃ ,
	-CH=N-OC ₂ H ₅ $-$ CH=N-OC ₃ H ₂ $-$ C(CH ₃)=N-OCH ₃ $-$ C(CH ₃)=N-OC ₂ H ₅ $+$
-	$-C(CH_3)=N-OC_3H_2$, $-C(C_2H_5)=N-OCH_3$, $-C(C_2H_5)=N-OC_2H_5$ -or
	$(C_2H_5)=N-OC_3H_{27}$
W ³	represents fluorine, chlorine, cyano, nitro, methyl, ethyl, methoxy,
	ethoxy, methylthio, trifluoromethyl, trifluoromethoxy, trifluoromethylthio,
	dimethylamino, diethylamino, _COOR ²⁵ -or -CONR ²⁶ R ²⁷ -,
R ²⁵	represents hydrogen, methyl, ethyl, n-propyl, isopropyl, tert-butyl,
	—CH ₂ CF ₃ , represents cyclopropyl, cyclopentyl or cyclohexyl, each of
	which is optionally mono- or disubstituted by fluorine, chlorine, methyl.
	ethyl, n-propyl, isopropyl or CF ₃ , or represents phenyl which is
	optionally mono- or disubstituted by radicals from the list W ⁴ ,
——— R ²⁶ -a	nd R ²⁷ independently of one another each represent hydrogen, methyl.
	ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl,
	CH ₂ CF ₃ , methoxy, ethoxy, allyl, represent cyclopropyl, cyclopentyl,
	cyclohexyl, cyclopropylmethyl, cyclopentylmethyl or cyclohexylmethyl.
	each of which is optionally mono- or disubstituted by fluorine or
	chlorine, represent phenyl, benzyl or phenethyl, each of which is
	$-$ optionally mono- or disubstituted by radicals from the list W^4 , represent
	– -OR³³ or -NR³³R³⁴, and

W ⁴	represents fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, tert-
	butyl, methoxy, ethoxy, methylthic, triflucromethyl, triflucromethoxy or
	trifluoromethylthio.
5.	(Currently Amended) A compound of the formula (I-a)
	R^2
	. R ¹ R ⁴
	. N (I-a).
	R^3 (I-a). $(CH_2)_n R^5$
in wh	ich
R ¹ R	² , R³, R⁵ and n are each as defined in Claim 1 ,
17,17	, IV, IV and It are each as demied in stain 1,
R ⁴	represents phenyl which is mono- or disubstituted by radicals from the list
	W ⁺ , or represents one of the following groupings
	(m-b) -B-O-D
	(I)-Y-E,
B	represents p-phenylene which is optionally monosubstituted by radicals
	from the list W ⁴ ,
	represents a direct bond or represents p phenylene which is optionally
	mono- or disubstituted by a radical from the list W ¹ , and
D	d E de bassa the same nerticularly professed magnings montioned in Claim
—— D and	d E each have the very particularly preferred meanings mentioned in Claim 4
	4
	- where
	G is cyano or one of the groupings below
	(a)
Mo5158D2	-29-

(e)
$$C = N - R^{21}$$

 R^{17}

-----where

R¹⁷ and R²¹ are each as defined in Claim 1 and

_____W⁴___is as defined in Claim 1.

6. (Withdrawn) A process for preparing a compound of formula (I)

$$Ar^{1} \xrightarrow{N} Ar^{2}$$

$$(CH_{2})_{n}$$
(I).

in which

n represents 1, 2 or 3

Ar¹ represents the radical

 R^3

and

Ar² represents the radical

 R^4

 R^5_{m}

in which

- m represents 0. 1, 2, 3 or 4.
- R' represents halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, alkoxyalkyl, -S(O)₂R⁶ or -NR⁷R⁸,
- R² and R³ independently of one another each represent hydrogen, halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, alkoxyalkyl, -S(O) R⁶ or -NR⁷R⁸.
- R⁴ represents halogen, cyano, trialkylsilyl, -CO-NR¹⁰R¹¹, tetrahydropyranyl or one of the groupings below
 - (I) -X-A
 - (m) -B-Z-D
 - (n) -Y-E,
- R° represents hydrogen, halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, alkoxyalkoxy or $-S(O)_{\circ}R^{\circ}$,
- o represents 0, 1 or 2,
- R⁶ represents alkyl or halogenoalkyl.
- R⁷ and R⁸ independently of one another each represent hydrogen or alkyl, or together represent alkylene,
- R¹⁰ and R¹¹ independently of one another each represent hydrogen, alkyl, halogenoalkyl or represent phenyl or phenylalkyl, each of which is optionally mono- or polysubstituted by radicals from the list W¹.

- x represents a direct bond, oxygen, sulphur, carbonyl, carbonyloxy, oxycarbonyl, alkylene, alkenylene, alkinylene, alkyleneoxy, oxyalkylene, thioalkylene, alkylenedioxy or di-alkylsilylene.
- A represents phenyl, naphthyl or tetrahydronaphthyl, each of which is optionally mono- or polysubstituted by radicals from the list W¹, or represents 5- to 10-membered heterocyclyl having one or more hetero atoms from the group consisting of nitrogen, oxygen and sulphur and containing 1 or 2 aromatic rings, which is optionally mono- or polysubstituted by radicals from the list W²,
- B represents p-phenylene which is optionally mono- or disubstituted by radicals from the list W¹,
- Z represents oxygen or sulphur,
- Possible of the properties of

$$-(CH_2)_p-(CR^{15}R^{16})_q-(CH_2)_--G_+$$
 or

- Z and D together represent optionally, nitro-, halogen-, alkyl, alkoxy-, halogenoalkyl- or halogenoalkoxy-substituted phenoxyalkyl.
- represents a direct bond, oxygen, sulphur, carbonyl, carbonyloxy, oxycarbonyl, alkylene, alkenylene, alkinylene, alkyleneoxy, oxyalkylene, thioalkylene, alkylenedioxy or represents p-phenylene which is optionally mono- or disubstituted by radicals from the list W.
- represents hydrogen, alkyl, alkenyl, alkinyl, halogenoalkyl. halogenoalkenyl, respectively optionally halogen-, alkyl-, alkenyl-, halogenoalkenyl-, phenyl-, styryl-, halogenophenyl- or halogenostyryl-substituted cycloalkyl, represents respectively optionally halogen- or alkyl-substituted cycloalkenyl, represents phenyl which is optionally mono- to tetrasubstituted by radicals from the list W¹ or represents 5- or 6-membered hetaryl having 1 or 2 hetero atoms from the group consisting of nitrogen, oxygen and sulphur, which is optionally mono-to tetrasubstituted by radicals from the list W², or represents the grouping

$$-(CH_2)_p-(CR^{15}R^{16})_q-(CH_2)_-G_+$$

- R¹² represents alkyl, alkoxy, alkenyl, alkenyloxy, respectively optionally halogen-, alkyl-, alkenyl-, halogenoalkyl- or halogenoalkenyl-substituted cycloalkyl, cycloalkyloxy or cycloalkylalkyloxy or represents respectively optionally nitro-, halogen-, alkyl-, alkoxy-, halogenoalkyl- or halogenoalkoxy-substituted phenyl or naphthyl,
- R¹³ represents hydrogen or alkyl,
- R^{*4} represents alkyl, halogenoalkyl, respectively optionally halogen, alkyl, alkenyl, halogenoalkyl or halogenoalkenyl-substituted cycloalkyl,

Mo5158D2

cycloalkylalkyl or represents respectively optionally halogen-, alkyl-, alkoxy-, halogenoalkyl- or halogenoalkoxy-substituted phenyl or phenylalkyl,

p, q and r independently of one another each represent 0, 1, 2 or 3, their sumbeing smaller than 6,

R¹⁵ and R¹⁵ independently of one another each represent hydrogen or alkyl,

G represents cyano, represents a 5- or 6-membered heterocycle having 1 to 3 identical or different hetero atoms from the group consisting of nitrogen, oxygen and sulphur, which is optionally substituted by halogen, alkyl or halogenoalkyl and, at the attachment point, optionally by the radical R¹⁷, or represents one of the groupings below

(c) ---CO
$$NR^{19}R^{20}$$

(d) --- CS
$$NR^{19}R^{20}$$

(e)
$$C: N = \mathbb{R}^{21}$$

(f)
$$-c^{OR^{22}}_{OR^{22}}$$

(g)
$$-c \frac{SR^{22}}{R^{17}} SR^{22}$$

(h)
$$R^{28}$$
 $N \sim R^{24}$
 $C \sim OR^{22}$
 R^{17}

(i)
$$-c \frac{N_{SR}^{23}}{R^{17}}$$

(j)
$$-C = N - R^{23}$$

 OR^{24}

(k)
$$-c = N - R^{23}$$
 SR^{24}

R¹⁷ represents hydrogen, alkyl, alkenyl, halogenoalkyl, halogenoalkenyl, optionally halogen-, alkyl- or halogenoalkyl-substituted cycloalkyl, or represents phenyl which is optionally mono- to pentasubstituted by alkylcarbonylamino, alkylcarbonylalkylamino and/or radicals from the list W³,

R¹⁸ represents hydrogen, alkyl, alkenyl, halogenoalkyl, halogenoalkenyl, respectively optionally halogen-, alkyl- or halogenoalkyl-substituted

cycloalkyl or cycloalkylalkyl or represents arylalkyl which is optionally mono- to pentasubstituted by radicals from the list W³,

R¹⁹ and R²⁰ independently of one another each represent hydrogen, alkyl, alkenyl, halogenoalkyl, halogenoalkenyl, alkoxy, respectively optionally halogen-, alkyl- or halogenoalkyl-substituted cycloalkyl or cycloalkylalkyl, represent aryl or arylalkyl, each of which is optionally mono- to pentasubstituted by radicals from the list W³, represent -OR¹® or -NR¹R¹® or together represent an alkylene chain having 2 to 6 members in which one methylene group is optionally replaced by oxygen.

 R^{21} represents $-OR^{18}$, $-NR^{17}R^{18}$ or $-N(R^{17})-COOR^{18}$,

 R^{22} , R^{23} and R^{24} independently of one another each represent alkyl,

- W¹ represents hydrogen, halogen, cyano, formyl, nitro, alkyl, trialkylsilyl, alkoxy, halogenoalkyl, halogenoalkoxy, halogenoalkenyloxy, alkylcarbonyl, alkoxycarbonyl, pentafluorothio or -S(O)_oR⁶,
- W^2 represents halogen, cyano, formyl, nitro, alkyl, trialkylsilyl, alkoxy, halogenoalkyl, halogenoalkoxy, alkylcarbonyl, alkoxycarbonyl, pentafluorothio or $-S(O)_{\circ}R^6$ or $-C(R^{17})=N-R^{21}$,
- W³ represents halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, dialkylamino -S(O)_oR⁶, -COOR²⁵ or -CONR²⁶R²⁷,
- R²⁵ represents hydrogen, alkyl, halogenoalkyl, optionally halogen-, alkyl- or halogenoalkyl-substituted cycloalkyl or represents phenyl which is optionally mono- to pentasubstituted by radicals from the list W⁴,

R²⁶ and R²⁷ independently of one another each represent hydrogen, alkyl, alkenyl, halogenoalkyl, halogenoalkenyl, alkoxy, respectively optionally halogen-, alkyl- or halogenoalkyl-substituted cycloalkyl or cycloalkylalkyl or represent aryl or arylalkyl, each of which is optionally mono- to pentasubstituted by radicals from the list W⁴, represent -OR²² or -NR²³R²⁴ or together represent an alkylene chain having 2 to 6 members in which one methylene group is optionally replaced by oxygen, and

W⁴ represents halogen, cyano, nitro, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, dialkylamino, alkoxycarbonyl, dialkylaminocarbonyl or -S(O)₀R⁶,

comprising a step selected from the group consisting of a Step A, a Step B, a Step C, a Step D and a Step E, wherein each of said Steps A-E respectively comprises the step of:

A) in said Step A cyclocondensing compounds of the formula (II)

$$Ar^1$$
 O NH_2 (II) $(CH_2)_n$ Ar^2

in which

 Ar^2 , and Ar^2 are each as defined above and n represents 2 or 3, or acidic salts thereof, optionally in the presence of an acid binder, or

B) in said Step B reacting compounds of the formula (III)

$$\begin{array}{cccc} & & & O & N & & Ar^2 \\ & & & & & & \\ H_3C & & & & & (CH_2)_n & & & \end{array} \tag{III)}$$

in which

Arr is as defined above and n represents 1, 2 or 3

with aryl Grignard compounds of the formula (IV)

in which

Ar is as defined above and

Hal represents chlorine, bromine or iodine,

in the presence of a diluent, or

C) in said Step C obtaining compounds of the formula (I-b)

$$R^{2}$$
 R^{1} R^{4-1} R^{4-1} R^{3} R^{5-1} R^{5-1}

in which

R¹, R², R³, and m are each as defined above and n represents 1, 2 or 3,

R^{4.1} represents A or one of the groupings below

where

A, B, D, E, W¹ and Z are each as defined above and

R⁶ represents hydrogen, fluorine, cyano, nitro, alkyl, alkoxy. halogenoalkyl, halogenoalkoxy, alkoxyalkoxy or -SR⁶ where

R⁶ is as defined above

by coupling compounds of the formula (V)

in which

 R^1 , R^2 , R^3 , R^{5-1} , and m are each as defined above and n represents 1, 2 or 3 and

X' represents bromine, iodine or -OSO₂CF₃

with boronic acids of the formula (VI)

$$R^{4-1}$$
-B(OH)₂ (VI)

in which

R^{4.1} is as defined above,

in the presence of a catalyst and in the presence of an acid binder and in the presence of a solvent, or

D) in said Step D obtaining compounds of the formula (I-c)

$$R^{2} = R^{1} = R^{4-2}$$

$$= \frac{N}{(CH_{2})_{n}} = R^{5}_{m}$$
 (I-c)

 R° , R^{2} , R^{3} , R^{5} and m are each as defined above and n represents 1, 2 or 3.

R⁴⁻² represents one of the groupings below

$$(m-b)$$
 $-B-Z-D^1$

$$(n-b) -Y^1-E^1$$

in which

B and Z are as defined above,

Y¹ represents oxygen or sulphur and

D¹ and E¹ each represent the grouping

$$-(CH_2)_p$$
- $(CR^{15}R^{16})_3$ - $(CH_2)_r$ - G

in which

 R^{16} , R^{16} , G, p, q and r are each as defined above

by condensing compounds of the formula (I-d)

$$R^2-R^1 = R^{4+3} = R^{4+3} = R^3 = R^5 = R^5$$

- R° , R° , R° , and m are each as defined above and n represents 1, 2 or 3 and
- R⁴⁻³ represents one of the groupings below

$$(m-c)$$
 -B-Z-H $(n-c)$ -Y¹-H

in which

B, Y¹ and Z are each as defined above

with compounds of the formula (VII)

$$Ab-(CH_2)_p-(CR^{15}R^{16})_q-(CH_2)_r-G$$
 (VII)

in which

 R^{15} , R^{16} , G, p, q and r are each as defined above and

Ab represents a leaving group.

or

E) in said Step E obtaining compounds of the formula (I-e)

- R° , R° , R° , and m are each as defined above and n represents 1, 2 or 3
- represents a grouping from the description of the compounds of the formula (I) according to the invention containing the radical G where G represents one of the above-mentioned groupings (e) to (k) by customary and known derivatization of the corresponding keto derivatives, carboxylic acid derivatives or nitriles, i.e. compounds of the formula (I) in which G represents cyano or one of the groupings (a) to (d).
- 7. (Withdrawn) A compound of the formula (VIII)

in which

Ar¹ and Ar² are each as defined in Claim 1 and n is 1, 2 or 3.

8. (Withdrawn) A compound of the formula (XVIII)

$$\begin{array}{ccc} & & NO_2 \\ & & & \\ Ar^1 & & & (CH_2)_n & Ar^2 \\ & & O & & \end{array} \tag{XVIII})$$

Ar' and Ar- are each as defined in Claim 1 and n is 1, 2 or 3.

- 9. (Previously Amended) A pesticide composition comprising at least one compound of the formula (I) according to Claim 1.
 - 10. (Cancelled)
- 11. (Withdrawn) A method for controlling pests, comprising the step of allowing an effective amount of a compound of the formula (I) according to Claim 1 to act on a member selected from the group consisting of said pests, a habitat of said pests and combinations thereof.
- 12. (Withdrawn) A process for preparing a pesticide, comprising the step of mixing a compound of the formula (I) according to Claim 1 with a member selected from the group consisting of an extender, a surface-active agent and combinations thereof.
 - 13. (Cancelled).
 - 14. (Withdrawn) A compound of the formula (I-f)

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$(I-f)$$

in which

R represents halogen,

R² represents halogen, and

R⁴ represents

a) phenyl which is mono- or disubstituted by radicals from the list of W² as defined in Claim 1, or

Mo5158D2

- b) heteryl which is mono or disubstituted by radicals from the list of W² as defined in Claim 1.
- 15. (Withdrawn) The compound of Claim 14 wherein

R¹ is chlorine or fluorine, and

R² is fluorine or chlorine.

16. (Withdrawn) The compound of Claim 14 wherein

R¹ is fluorine, and

R² is fluorine.

- 17. (Withdrawn) The compound of any of Claims 14 through 16 wherein said hetaryl is selected from the group consisting of furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl or pyridyl.
- 18. (Withdrawn) The compound of any of Claims 14 through 17 wherein said hetaryl is thienyl.