Esercitazione sui metodi di risoluzione di ODE

Matteo Duranti

matteo.duranti@pg.infn.it

Metodo di Eulero

$$y'(x) = f(x, y(x))$$
 $y(x_0) = y_0$

Sostituendo la derivata con il rapporto incrementale

$$y'(x) \approx \frac{y(x+h) - y(x)}{h} \approx f(x, y(x))$$

$$\rightarrow y(x+h) = y(x) + h \cdot f(x,y(x))$$

scritto comunemente come

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$

cioè $y_n \approx y(x_n)$ è un'approssimazione valida per la soluzione dell'ODE a $x_n = x_0 + nh$

Metodo di Eulero

$$y'(x)=f\left(x,y(x)\right)=y(x)$$
 $y(x_0)=y_0=1$ e si vuole "risolvere" per $y(4)$: la soluzione "analitica", in questo caso, è banale, $y(x)=e^x$ $y_{n+1}=y_n+h\cdot f\left(x_n,y_n\right)$

che, con h=1

$$f(x_0, y_0) = f(0, 1) = 1 \qquad h \cdot f(y_0) = 1 \cdot 1 = 1$$

$$\Rightarrow y_1 = y_0 + hf(y_0) = 1 + 1 \cdot 1 = 2$$

$$y_2 = y_1 + hf(y_1) = 2 + 1 \cdot 2 = 4$$

$$y_3 = y_2 + hf(y_2) = 4 + 1 \cdot 4 = 8$$

$$y_4 = y_3 + hf(y_3) = 8 + 1 \cdot 8 = 16$$

Metodo di Eulero

$$y'(x) = f(x, y(x)) = y(x)$$
 $y(x_0) = y_0 = 1$

$$y(x_0) = y_0 = 1$$

n	e ⁿ	y _n	Δ
1	~2.718	2	~0.7
2	~7.389	4	~3
3	~20.085	8	~12
4	~54.598	16	~40

n	e ⁿ -e ⁿ⁻¹	y _n -y _{n-1}	Δ
1	~1.7	1	~0.7
2	~4.7	2	~2.7
3	~12.7	4	~8.7
4	~34.5	8	~26.5

Metodo del punto medio

$$y'(x) = f(x, y(x))$$
 $y(x_0) = y_0$

Possiamo fare due scelte:

 metodo <u>esplicito</u> del punto medio (o di Eulero modificato):

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right)$$

Metodo del punto medio

$$y'(x) = f(x, y(x)) = y(x)$$
 $y(x_0) = y_0 = 1$

- metodo <u>esplicito</u> del punto medio:

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right)$$
$$y_{n+1} = y_n + h\left(y_n + \frac{h}{2}f(x_n, y_n)\right) = y_n + hy_n + \frac{h^2}{2}y_n$$

Metodo del punto medio

$$y'(x) = f(x, y(x)) = y(x)$$
 $y(x_0) = y_0 = 1$

Esercitazione

- A. Implementare una classe, "wrapper" di diversi metodi, che permetta di risolvere un'ODE del primo ordine generica (testatene varie)
- B. Implementare i metodi:
 - Eulero
 - Punto medio esplicito
- C. Risolvere il caso "particolare":

$$y'(x)=f\left(x,y(x)\right)=y(x)$$
 $y(x_0)=y_0=1$ plottando (*) i vari risultati in funzione dello step (plot in slide precedente)

D. Fate il punto C per diversi valori di h

(*) come al solito: i grafici/istogrammi li potete fare con il metodo che volete: Excel, Calc, Numbers, Gnuplot, Scipy, Mathematica, Matlab, ROOT, etc...