Derivative shortcuts

October 11th, 2024

Here are some key ideas from sections 3.3.

a)
$$\frac{d}{dx}c =$$

b)
$$\frac{d}{dx}x^n = \underline{\hspace{1cm}}$$

c)
$$\frac{d}{dx}(f(x) + g(x)) = \underline{\hspace{1cm}}$$

$$d) \frac{d}{dx}(f(x) - g(x)) = \underline{\hspace{1cm}}$$

e)
$$\frac{d}{dx}e^x = \underline{\hspace{1cm}}$$

f)
$$\frac{d}{dx}\sin x = \underline{\hspace{1cm}}$$

g)
$$\frac{d}{dx}\cos x =$$

Midterm practice (Apostol): Suppose that the height of a projectile is given by f(t) at t seconds after being fired directly upward from the ground. If the initial velocity of the projectile is v_0 , then

.....

$$f(t) = v_0 t - 16t^2$$
 ft/sec.

- 1. Show that the average velocity of the projectile during a time interval from t to t + h is $v_0 32t 16h$ ft/sec. *Hint: the velocity is the instantaneous rate of change of the height function.*
- 2. What is the velocity at the moment the projectile returns to the ground?
- 3. What must the initial velocity of the projectile be for it to return to the ground after s seconds?
- 4. The acceleration is the rate of change of velocity. Show that the acceleration of this projectile is constant.
- 5. Find a formula for a height function g(t) which has a constant acceleration of -20 ft/sec.

My Attempt: | Solution:

		ince flours. 1/111, Evans 70
et $f(x) = 2 + x - x^2$. Comp	pute	
b) $f'(1/2)$;	c) f'(1);	d) $f'(-10)$.
My Attempt:	Solution:	
		Let $f(x) = 2 + x - x^2$. Compute b) $f'(1/2);$ c) $f'(1);$

Problem 2: (Apostol) Let $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x$, find all x for which

a)
$$f'(x) = 0$$
;

b)
$$f'(x) = -2;$$

c)
$$f'(x) = 10$$
.

My Attempt:

Solution:

Problem 3: (Apostol) Find the derivative of

$$f(x) = \frac{\sqrt{x}}{x^{7/2}}.$$

My Attempt:

Solution:

Problem 4: (Apostol) Suppose $P(x) = ax^3 + bx^2 + cx + d$. Moreover, P(0) = P(1) = -2, P'(0) = -1, and P''(0) = 10. Find a, b, c, and d.

My Attempt:

Solution:

Problem 5: (Apostol) Evaluate

$$\lim_{x \to 1} \frac{x^{1000} - 1}{x - 1}.$$

My Attempt:

Solution:

Problem 6: (Apostol) For each function below, find an equation of the tangent line to the curve at the given point.

- a) $y = 8\cos x, (\pi/3, 4);$
- b) $y = x^2 x^5, (1, 0).$

My Attempt:

Solution:

Problem 7: (Apostol) Find the first five derivatives of $\frac{1}{x}$. Then find a formula for the *n*th derivative of $\frac{1}{x}$.

My Attempt:

Solution:

Challenge problem: Prove that the derivative of $\cos x$ is $-\sin x$. To do this, first find a limit expression for the derivative in the form

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Then use the identity $\cos(a+b) = \cos a \cos b - \sin a \sin b$. Finally, simplify your expression using the following known limits:

$$\lim_{a\to 0}\frac{\sin a}{a}=1;\quad \lim_{a\to 0}\frac{\cos a-1}{a}=0.$$