기초미분과 최적화

들어가며

● 대표적인 분류기 SVM에서는 여백이라는 개념을 정의하고 여백을 <u>최대</u>화하는 결정 직선을 찾는 것이 목적이다.

● 신경망에서는 모델을 추정하기 위하여, 목적함수 또는 손실함수를 <u>최소</u>로 하는 모수를 찾는 것이 목적이다.

● 베이시언 분류기에서는 분류 오류를 <u>최소</u>화 하는 분류기를 찾는 것이 목적이다.

 $y = (x - 2)^2 + 2$ 이 주어졌다. 이 함수가 최소값을 가지도록 하는 x의 값을 찾고 싶다.

예측 값 실제 값

최소값을 만들어주는 x 는 왜 찾을까?

두 가지 경우를 비교해보자.

오른쪽의 경우가, 예측 모델의 성능이 더 좋다.

성능이 좋다는 근거는 무엇인가?

예측 값과 실제 값의 거리가 가깝고, 차이가 적기 때문이다.

한마디로 차이가 작으면 작을수록 더 좋은 모델이라고 할 수 있다.

예측 값 실제 값 ••••• •••• •••• •••• ••••

두 집단 간 거리가 가깝다.

- 좋은 예측 모델을 만드는 방법 (직관적으로 생각해 볼 때)
 - 실제 값과, 실제 값을 예측한 값의 차이를 측정할 수 있는(measure) 수치를 만든다.
 - 두 값의 거리 (dissimilarity)
 - 예측 값이 실제 값과 일치 하지 않는 경우 (error rate)
 - 이 수치를 가장 작게 만드는 모델이 좋은 모델이다.

이 수치를 목표로 삼고, 수치의 값을 가장 작게 만들도록 노력한다. → 머신러닝의 목표

- ✓ $J(\theta)$: 목적 함수(target function) 또는 비용 함수(cost function)이며, 우리가 최대화 하거나 최소화 하려는 함수이다.
- ✓ θ : 매개 변수

• 최대화 문제

 $J(\theta)$ 를 최대로 하는 $\hat{\theta}$ 를 찾아라. 즉 $\hat{\theta} = \arg \max_{\theta} J(\theta)$

• 최소화 문제

 $J(\theta)$ 를 최소로 하는 $\hat{\theta}$ 를 찾아라. 즉 $\hat{\theta} = \arg\min_{\theta} J(\theta)$

분석적 방법 vs 수치해석적 방법

- 분석적 방법
 - 입력 : 목적 함수 *J*(θ)
 - 출력 : θ̂ (최고 점 또는 최저 점)
 - 알고리즘
 - ① $J(\theta)$ 를 θ 로 <u>미분</u>한다.
 - ② 방정식 $\frac{\partial J(\theta)}{\partial \theta} = 0$ 을 만족하는 $\hat{\theta}$ 를 구한다.
 - ③ $\hat{\theta}$ 를 리턴한다.

분석적 방법 vs 수치해석적 방법

- 수치해석적 방법
 - 선형회귀모형, 로지스틱회귀모형에서 모수의 값을 추정하기 위하여, 정규방정식을 풀어야 한다. 정규방정식을 푸는 방법 중의 하나는 <u>방정식의 초기해를 설정</u>한 후, 초기해를 <u>지속적으로 업데이트</u> 하여, 우리가 구하고자 하는 해 즉 <u>최대값 또는 최소값에 가장 근접</u>하도록 하는 방법이다. 이러한 방법을 수치해석적으로 해를 구하는 방법이라고 한다.
 - 대표적인 이론이 <u>경사하강법(Gradient Descent)</u>이다. 이 이론을 정확하게 이해하기 위해서는 기본적인 미분, 편미분에 대한 개념을 정확하게 이해해야 한다.

증분

- x의 증분(Δx) : x의 증가량

- *y*의 증분(Δ*y*) : *y*의 증가량

기울기(slope)

- 기울기 :
$$\frac{y \circ j}{x \circ j} = \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

도함수(Derivatives)

도함수는 그래프 f(x)의 접선의 기울기이다. 그러면 접선은 무엇인가?

- 그래프의 한 지점(point)에서 만나는 선이 절대 아니다.
- 접선은 두 지점 사이의 할선이며, 두 지점 사이의 거리가 0으로 갈 때의 할선의 극값이다.

도함수(Derivatives)

- 도함수 : $P \rightarrow Q$ 일 때, 할선 PQ 기울기의 극한 값

$$-\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) = \frac{df(x_0)}{dx} = \frac{dy}{dx}$$

여러가지 함수의 도함수 Advanced

•
$$y = \{f(x)\}^n \Longrightarrow \frac{dy}{dx} = n \cdot f'(x) \cdot \{f(x)\}^{n-1}$$

•
$$y = \log_a f(x) \Longrightarrow \frac{dy}{dx} = \ln a \frac{f'(x)}{f(x)}$$

•
$$y = e^{f(x)} \Longrightarrow \frac{dy}{dx} = f'(x) \cdot e^{f(x)}$$

•
$$y = f(x) \cdot g(x) \Rightarrow \frac{dy}{dx} = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

•
$$y = \frac{f(x)}{g(x)} = \frac{f'(x) \cdot g(x) - f(x)g'(x)}{\{g(x)\}^2}$$

도함수의 예제 Advanced

•
$$y = \log_e x \implies y' = ?$$

•
$$y = \log_e(x^3) \implies y' = ?$$

•
$$y = e^{4x} \implies y' = ?$$

•
$$y = xe^{3x} \implies y' = ?$$

•
$$y = \frac{e^x}{1 + e^x} \Longrightarrow y' = ?$$

Chain Rule

- 합성함수 y = f(g(t))의 도함수 $\frac{dy}{dt}$
- 합성함수 $y = (f \circ g)(x)$ 의 도함수 $\frac{d}{dx}f(g(x))$
 - $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$
- 예를 들어, $y = \sin x$ 이고 $x = t^2$ 일 때, $\frac{dy}{dt}$ 를 구해보자.
 - $\frac{dx}{dt} = 2t$, $\frac{dy}{dx} = \cos x$
 - $\frac{d}{dt}(\sin(t^2)) = \left(\frac{dy}{dx}\right)\left(\frac{dx}{dt}\right) = (\cos x)(2t) = 2t \cdot \cos(t^2)$

고차원의 도함수

• 고차원의 도함수는, 도함수의 도함수들을 의미한다.

•
$$f'(x) = \frac{df}{dx} = Df$$

$$\bullet f''(x) = \frac{d^2f}{dx^2} = D^2f$$

•
$$f'''(x) = \frac{d^3f}{dx^3} = D^3f$$

•
$$f^{(n)}(x) = \frac{d^n f}{dx^n} = D^n f$$

다변수함수의 미분

이전까지는 독립변수가 하나인 함수를 대상으로 도함수를 구하였다. 하지만 다양한 분야에서 사용되는 많은 이론은 여러 변수들에 의해 함수값이 결정되는 다변수함수의 형태를 띠고 있다.

• 예를 들면 경제학에서 사용하는 수요함수는 자신의 가격(P_1)뿐만 아니라 타 재화의 가격 $(P_2,...,P_n)$, 소득(M), 기호(T)에 의해서 결정된다. 따라서 수요함수는 $D=f(P_1,P_2,...,P_n,M,T)$ 로 나타낼 수 있다. 이 때 <u>이들 독립변수가 변하면 수요의 변화는 어떻게 될까?</u>

다변수함수의 미분의 종류

• 편도함수

• 전미분

1차편도함수

2변수함수 z = f(x,y)에서 y변수가 특정한 값에 고정되어 변하지 않는다고 가정하면(y변수를 상수로 가정하면) 2변수함수는 실질적으로 독립변수가 하나인 1변수함수가 된다. 이 함수를 x로 미분하면 도함수가 구해지는데 이것을 x의 편도함수(partial derivative)라 한다. 마찬가지로 x변수가 특정한 값에 고정되어 변하지 않는다고 가정하면 y의 편도함수를 구할 수 있다.

1차편도함수

• 편도함수는 다음과 같이 정의된다.

함수 f(x,y)가 모든 점에서 미분 가능할 때 x와 y에 대한 각각의 편도함수는 다음과 같이 정의된다.

$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$\frac{\partial f}{\partial y} = \lim_{\Delta x \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

1차편도함수

- 편도함수의 정의는 한 변수의 평균변화율을 나타내는 차원에서 실질적으로 동일한 의미를 갖는다. 편도함수를 나타내기 위해 f_x , $\frac{\partial f}{\partial x}$, $D_x f$ 등의 기호로 표시한다.
- 어떤 특정한 점 (a,b)에서 x의 편미분계수는 $\frac{\partial f}{\partial x}|_{(a,b)}$ 또는 $f_x(a,b)$ 로, y의 편미분계수는 $\frac{\partial f}{\partial y}|_{(a,b)}$ 또는 $f_y(a,b)$ 로 표시한다. 점 (a,b)에서 편미분계수 $f_x(a,b)$ 는 y=b로 고정되어 있는 상태에서 x=a에서 x단위 변화에 대한 z의 변화율을 나타낸다. 다변수함수의 경우에도 관심대상의 변수 외의 모든 변수는 상수 취급하므로 실질적으로 1변수함수가 된다. 이와 같이 편도함수를 구하는 것을 "편미분한다" 라고 한다.

1차편도함수 예제1

• $f(x,y) = xy^2 + x^2y$ 의 x와 y의 편도함수를 구해보자.

x의 편도함수는 y를 상수로 하고 x에 대해서만 미분하므로 $f_x(x,y) = y^2 + 2xy$ 가 구해진다.

y의 편도함수는 x를 상수로 하고 y에 대해서만 미분하므로 $f_{y}(x,y) = 2xy + x^{2}$ 이 구해진다.

점 (1,2)에서,

x의 편미분계수를 구하면, $f_x(1,2) = 2^2 + 2 \times 1 \times 2 = 8$ 이고

y의 편미분계수를 구하면, $f_y(1,2) = 2 \times 1 \times 2 + 1^2 = 5$ 이다.

1차편도함수 예제2

• $f(x,y) = \ln(x^2 + 2xy - y^2)$ 에서 f_x , f_y 를 구하고 점 (1,1)에서 각 변수의 편미분계수를 구하라.

$$x^{2} + 2xy - y^{2} = u$$
라고 놓으면, $f(x,y) = \ln u$ 가 된다. 연쇄법칙에 의하여

$$x$$
의 편도함수는 $f_x(x,y) = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} = \frac{1}{u} \cdot \frac{\partial}{\partial x} (x^2 + 2xy - y^2) = \frac{2x + 2y}{x^2 + 2xy - y^2}$,

$$y$$
의 편도함수는 $f_y(x,y) = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} = \frac{1}{u} \cdot \frac{\partial}{\partial y} (x^2 + 2xy - y^2) = \frac{2x - 2y}{x^2 + 2xy - y^2}$ 가 성립한다.

$$x$$
의 편미분계수 $f_x(1,1) = \frac{4}{2} = 2$ 이고,

$$x$$
의 편미분계수 $f_x(1,1) = \frac{0}{2} = 0$ 이다.

1차편도함수의 기하학적 의미

z = f(x, y)의 그래프

y = b는 기하학적으로

xz평면에 평행하고 y = b선을 지나는 평면이다.

이 평면으로 z = f(x, y)의 곡면을 절단하면

단면에 나타나는 함수는 z = f(x, b)이다.

1차편도함수의 기하학적 의미

x의 편미분계수 : $f_x(x,y)$

 $f_{\chi}(a,b)$ 는 함수

z = f(x,b)의 x = a에서 그은 접선의 기울기와 일치한다.

즉, y방향으로 전혀 움직이지 않고

x = a에서 x축 방향으로 단위 변화할 때 z의 변화율을 나타낸다.

y의 편도함수 $f_y(a,b)$ 의 경우는,

x = a 평면으로 z = f(x, y) 공간을 자르고 나타난

함수 z = f(a, y)의 y = b에서 그은 접선의 기울기가 된다.

다변수함수의 편미분

• 다변수함수 $z = f(x_1, x_2 ..., x_n)$ 에서 x_i 를 제외한 모든 변수가 고정되었다고 하면 (x_i) 를 제외한 모든 변수가 상수라 하면 (x_i) 의 편도함수는 다음과 같이 나타낸다.

$$\frac{\partial f}{\partial x_i} = f_i(x_1, x_2, \dots, x_n) , (i = 1, \dots, n)$$

ex) f(x,y,z) = xy + yz + xz의 1차 편도함수를 구하라.

x의 1차편도함수는 y, z를 상수로 하고 x에 대해서만 미분하면

$$f_x = y + z$$

$$f_{v} = x + z$$

$$f_z = x + y$$

가 된다.

벡터의 편미분

• 다변수함수 $z = f(x_1, x_2 ..., x_n)$ 라고 하고, 벡터 $\mathbb{X} = (x_1, x_2, ..., x_n)$ 이라고 하자. 즉, $z = f(\mathbb{X})$ 이다. 이 때, 벡터 \mathbb{X} 의 편미분 $\frac{\partial z}{\partial \mathbb{X}}$ 는 다음과 같이 나타낸다.

$$\frac{\partial z}{\partial \mathbf{x}} = \left(\frac{\partial z}{\partial x_1}, \frac{\partial z}{\partial x_2}, \dots, \frac{\partial z}{\partial x_n}\right)$$

ex)
$$x = (x_1, x_2, x_3)$$
에 대하여, $f(x) = f(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_3x_1$ 의 편미분 $\frac{\partial z}{\partial x}$ 을 구하라.

$$\frac{\partial f}{\partial x_1} = x_2 + x_3$$

$$\frac{\partial f}{\partial x_2} = x_1 + x_3$$

$$\frac{\partial f}{\partial x_3} = x_2 + x_1$$
이므로 $\frac{\partial z}{\partial x} = (x_2 + x_3, x_1 + x_3, x_2 + x_1)$ 이다.

2차편도함수 Advanced

• 함수 z = f(x,y)의 1차편도함수 $f_x(x,y)$, $f_y(x,y)$ 는 x,y의 형태를 띤다. 따라서 1차편도함수가 미분 가능하면 편도함수 정의에 의해서 1차편도함수를 가지고 2차편도함수를 구할 수 있다.

•
$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

•
$$f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

•
$$f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

•
$$f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$

2차편도함수 예제 Advanced

• 함수 $f(x,y) = x^3 + 2xy^3$ 의 2차편도함수를 구하라.

x,y에 대한 편미분하면 1차편도함수는

$$-f_x = 3x^2 + 2y^3$$

$$-f_y = 6xy^2$$

2차편도함수는

$$-f_{xx}=6x$$

$$-f_{xy} = 6y^2 = f_{yx}$$

$$-f_{yy} = 12xy$$

1차/2차 편도함수 예제

• 1차 편도함수를 구하여라.

•
$$f(x,y) = (x - 6y)(2x + 3y^2)$$

$$g(t_1, t_2) = \frac{2t_2 + 4t_1}{t_2^2 - 3t_1}$$

•
$$f(x, y, z) = (3x^2 + z^2)(z - y)$$

• 2차 편도함수를 구하여라.

•
$$f(x_1, x_2, x_3) = 2x_1^3x_2 + 5x_3^4x_2$$

•
$$f(x, y, z) = x - \sqrt{y^2 + z^2}$$

$$f(x,y) = x \ln y$$

경사하강법 들어가기

• machine learning에서는 매개 변수(parameter, 선형회귀에서는 θ_0, θ_1)가 수십~수백 차원의 벡터인 경우가 대부분이다. 또한 목적 함수(선형회귀에서는 $\Sigma \epsilon_i^2$)가모든 구간에서 미분 가능하다는 보장이 항상 있는 것도 아니다.

• 따라서 한 번의 수식 전개로 해를 구할 수 없는 상황이 적지 않게 있다.

이런 경우에는 초기 해에서 시작하여 해를 반복적으로 개선해 나가는 수치적 방법을 사용한다. (미분이 사용됨)

경사하강법의 개념

경사하강법의 정의

Gradient Descent

현재 위치에서 경사가 가장 급하게 하강하는 방향을 찾고, 그 방향으로 약간 이동하여 새로운 위치를 잡는다. 이러한 과정을 반복함으로써 가장 낮은 지점(즉 최저 점)을 찾아 간다.

Gradient Ascent

• 현재 위치에서 경사가 가장 급하게 상승하는 방향을 찾고, 그 방향으로 약간 이동하여 새로운 위치를 잡는다. 이러한 과정을 반복함으로써 가장 높은 지점(즉 최대 점)을 찾아 간다.

경사하강법 알고리즘

$$\alpha_{t+1} = \alpha_t - \rho \frac{\partial J}{\partial \alpha} \bigg|_{\alpha_t}$$

J= 목적함수 $\left. \frac{\partial J}{\partial \alpha} \right|_{\alpha_t} : \alpha_t \text{에서의 도함수 } \frac{\partial J}{\partial \alpha} \text{의 값}$

 α_t 에서의 미분값은 음수이다.

그래서 $\frac{\partial J}{\partial \alpha}\Big|_{\alpha_t}$ 를 더하게 되면

왼쪽으로 이동하게 된다.

그러면 목적함수의 값이 증가하는 방향으로 이동하게 된다.

따라서 $\frac{\partial J}{\partial \alpha} \Big|_{\alpha_t}$ 를 빼준다.

그리고 적당한 ρ (스텝크기, 학습률)를 곱해주어서 조금만 이동하게 한다.

경사하강법 알고리즘

Gradient Descent

$$J =$$
 목적함수 $\left. \frac{\partial J}{\partial \alpha} \right|_{\alpha_t}$: α_t 에서의 도함수 $\left. \frac{\partial J}{\partial \alpha} \right|$ 값

$$\alpha_{t+1} = \alpha_t - \rho \frac{\partial J}{\partial \alpha} \bigg|_{\alpha_t}$$

Gradient Ascent

$$\alpha_{t+1} = \alpha_t + \rho \frac{\partial J}{\partial \alpha} \bigg|_{\alpha_t}$$

Gradient Descent, Gradient Ascent는 전형적인 Greedy algorithm이다. <u>과거 또는 미래를 고려하지 않고 현재 상황에서 가장 유리한 다음 위치를 찾아</u> <u>Local optimal point로 끝날 가능성</u>을 가진 알고리즘이다.

• 낙타 등 함수(six-hump camelback function)

• 낙타 등 함수(six-hump camelback function)

$$\checkmark J(\Theta) = \left(4 - 2.1\theta_1^2 + \frac{\theta_1^4}{3}\right)\theta_1^2 + \theta_1\theta_2 + (-4 + 4\theta_2^2)\theta_2^2$$

 \checkmark 초기값을 $\Theta_0 = (-0.5, 0.5)^T$ 로 하고 학습률을 $\rho = 0.01$ 로 하자.

$$\checkmark J'(\Theta) = \frac{\partial J}{\partial \Theta} = \left(\frac{\partial J}{\partial \theta_1}, \frac{\partial J}{\partial \theta_2}\right)^T = \left(2\theta_1^5 - 8.4\theta_1^3 + 8\theta_1 + \theta_2, 16\theta_2^3 - 8\theta_2 + \theta_1\right)^T$$

⊕ 0₁을 구해보자

①
$$\frac{\partial J}{\partial \Theta}|_{\Theta_0} = (-2.5125, -2.5)^T$$

②
$$\Theta_1 = \Theta_0 - 0.01 \times \frac{\partial J}{\partial \Theta}|_{\Theta_0} = (-0.5, 0.5)^T - 0.01 \times (-2.5125, -2.5)^T = (-0.4748, 0.525)^T$$

• 낙타 등 함수(six-hump camelback function)

$$\checkmark J(\Theta) = \left(4 - 2.1\theta_1^2 + \frac{\theta_1^4}{3}\right)\theta_1^2 + \theta_1\theta_2 + (-4 + 4\theta_2^2)\theta_2^2$$

 \checkmark 초기값을 $\Theta_0 = (-0.5, 0.5)^T$ 로 하고 학습률을 $\rho = 0.01$ 로 하자.

$$\checkmark J'(\Theta) = \frac{\partial J}{\partial \Theta} = \left(\frac{\partial J}{\partial \theta_1}, \frac{\partial J}{\partial \theta_2}\right)^T = \left(2\theta_1^5 - 8.4\theta_1^3 + 8\theta_1 + \theta_2, 16\theta_2^3 - 8\theta_2 + \theta_1\right)^T$$

Θ₂을 구해보자!

①
$$\frac{\partial J}{\partial \Theta}|_{\Theta_1} = (-2.4228, -2.3596)^T$$

②
$$\Theta_2 = \Theta_1 - 0.01 \times \frac{\partial J}{\partial \Theta}|_{\Theta_1} = (-0.4748, 0.525)^T - 0.01 \times (-2.4228, -2.3596)^T = (-0.4506, 0.5486)^T$$

$$\Theta_0 = (-0.5, 0.5)^T$$

$$\Theta_1 = (-0.4748, 0.525)^T$$

$$\Theta_2 = (-0.4506, 0.5486)^T$$

위의 값을 대입하여 $J(\Theta)$ 를 계산하면 아래와 같다.

$$J(\Theta_0) = -0.12604$$

$$J(\Theta_1) = -0.24906$$

$$J(\Theta_2) = -0.36036$$

학습률의 영향

• Gradient에서 알 수 있는 것은 함수값이 가장 빠르게 증가하는 방향이다. 그 방향으로 얼만큼을 가야하는지는 알려주지 않는다. 얼만큼 가야하는지를 의미하는 학습률(learning rate ρ)는 Gradient를 사용하는 모델을 학습시킬 때 있어 가장 중요한 hyperparameter이다.

학습률을 너무 크게 하면 :
 최저 점을 중심으로 좌우를 왔다갔다하는 진자 현상이 발생한다.

학습률을 너무 작게 하면 :수렴 속도가 느려진다.

학습 데이터 수에 따른 경사하강법 종류

- Mini-batch gradient descent MGD
 - 우리가 구하고자 하는 모델의 파라미터를 한 번 업데이트하려고 학습데이터 전체를 계산에 사용하는 것은 낭비가 될 수 있다. 학습데이터의 전체가 아닌 배치(batches)만 이용해서 gradient를 계산하는 것이다.
 - 예를들어 120만개 중에 256개짜리 배치만을 이용하여 gradient를 구하고 파라미터를 업데이트한다.
 - 학습데이터가 서로 상관관계가 있기 때문에 전체 데이터를 보지 않고 배치만 이용하여도 이 방법이 효과적임

학습 데이터 수에 따른 경사하강법 종류

- Stochastic gradient descent SGD
 - 온라인 그라디언트 하강이라고도 한다.
 - Mini-batch gradient descent의 배치 크기가 데이터 한 개 일때 이다. 즉 모델의 파라미터를 계산할 때, 데이터 하나에 대하여 모수를 업데이트한다.
 - 모델의 파라미터를 계산할 때, 행렬 및 벡터의 연산이기 때문에, 한 예제에서 100번 계산하는 것보다, 100 개의 예제에서 1번 계산하는게 더 빠르다.
 - 엄밀하게는 데이터 한 개에 대하여, 계산한 후 파라미터를 업데이트 하는 것이 SGD이나, 많은 사람들이 MGD를 의미하면서 SGD라고 부르기도 한다.