Programação Linear

Solução gráfica

Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

Método Gráfico

Etapas

- 1. Determinação da região de soluções viáveis;
 - em um plano cartesiano, expresse cada restrição;
 - cada restrição divide o plano em uma região viável e uma região inviável;
 - a região viável do modelo é a intersecção das regiões viáveis dadas por cada restrição.
- 2. Determinação da solução ótima entre os pontos viáveis.
 - a solução ótima estará em algum ponto nos extremos da região viável;
 - liste os pontos extremos da região viável e calcule seus valores; ou
 - identifique a direção da reta definida pela função objetivo e o último ponto extremo da região viável atingido por ela.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Represente as variáveis x_1 e x_2 como eixos de um plano cartesiano onde o modelo será expresso graficamente.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Note que os eixos são limitados a $x_1, x_2 \ge 0$, respeitando as restrições de não-negatividade.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Agora represente a primeira restrição, transformando a inequação em uma equação e calculando dois pontos para definir a reta correspondente. Para $x_1=0$, $6\cdot 0+4x_2=24$ e $x_2=6$, enquanto para $x_2=0$, $6x_1+4\cdot 0=24$ e $x_1=4$.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Determine qual dos lados contém as soluções viáveis, identificando-o com uma seta. O ponto (0,0) satisfaz a restrição, pois $6 \cdot 0 + 4 \cdot 0 = 0 \le 24$. Logo, o lado que contém o ponto (0,0) também contém as soluções que satisfazem a primeira restrição.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Para a segunda restrição, $0+2x_2=6$ então $x_2=3$, enquanto $x_1+2\cdot 0=6$ então $x_1=6$. Para o ponto (0,0), a restrição é satisfeita, pois $0+2\cdot 0=0\le 6$. Portanto, a região de soluções viáveis em função da segunda restrição está abaixo da reta correspondente.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Para a terceira restrição, $-0+x_2=1$ então $x_2=1$, enquanto $-x_1+0=1$ então $x_1=-1$. O segmento de reta entre os pontos usados possui valores negativos para x_1 , o que não impede a determinação da reta. Para facilitar, pode-se usar um novo ponto com $x_2=6$, obtendo $-x_1+6=1$ e $x_1=5$.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

$$\begin{array}{ccccc} & x_1, & x_2 \ge 0 \\ -\times & 6x_1 + 4x_2 \le 24 \\ -\times & x_1 + 2x_2 \le 6 \\ -\times & -x_1 + x_2 \le 1 \end{array}$$

O ponto (0,0) satisfaz a terceira restrição, pois $-0+0 \le 1$. Logo, a região que contém o ponto (0,0) apresenta as soluções viáveis em relação à terceira restrição.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

maximiza
$$z = 5x_1 + 4x_2$$

sujeito a $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

Como a quarta restrição é constante em x_2 , basta representar a reta horizontal em x_2 = 2 e verificar que a região abaixo da reta contém as soluções viáveis, pois o ponto (0,0) ali contido satisfaz a restrição, uma vez que x_2 = 0 e 0 ≤ 2.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Representadas todas as restrições, definimos a região de soluções viáveis do modelo como a região onde todas as restrições são satisfeitas, i.e. a intersecção das regiões viáveis de cada restrição.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Definimos o conjunto de pontos extremos da região viável como aqueles contidos na região viável e onde as restrições se encontram. Os pontos são: $\{(0,0), (4,0), (3,1,5), (2,2), (1,2), (0,1)\}$.

Revisitando o modelo Reddy Mikks – solução pelo método gráfico

Ao calcular o valor da solução em cada ponto, temos que $(0,0) \to 0$; $(4,0) \to 20$; $(3,1,5) \to 21$; $(2,2) \to 18$, $(1,2) \to 13$; $(0,1) \to 4$. Logo, a solução ótima é $x_1 = 3$ e $x_2 = 1,5$, com valor $z = 5 \cdot 3 + 4 \cdot 1,5 = 21$.

Determinar os valores de x_1 e x_2 de pontos extremos

Quando não é possível identificar os valores das variáveis de um ponto extremo visualmente, identifique as restrições r_1 e r_2 que definem esse ponto e calcule os valores das variáveis no ponto de intersecção em que r_1 = r_2 .

Determinar os valores de x_1 e x_2 de pontos extremos

Quando não é possível identificar os valores das variáveis de um ponto extremo visualmente, identifique as restrições r_1 e r_2 que definem esse ponto e calcule os valores das variáveis no ponto de intersecção em que $r_1 = r_2$.

Exemplo: dadas as restrições $6x_1 + 4x_2 = 24$ e $x_1 + 2x_2 = 6$, o ponto de intersecção é

$$\begin{cases} 6x_1 + 4x_2 = 24 \\ x_1 + 2x_2 = 6 \end{cases} \iff \begin{cases} 6x_1 + 4x_2 = 24 \\ -2x_1 - 4x_2 = -12 \end{cases}$$

Com isso, $4x_1 = 12$ e $x_1 = 3$. Substituindo x_1 em alguma das equações temos que $x_2 = 1,5$. Logo, o ponto onde as referidas restrições se encontram é (3,1,5).

Identificar a solução ótima sem avaliar todos os pontos extremos

Uma alternativa para identificar a solução ótima a partir da região viável é:

- 1. traçar a reta da função objetivo para diferentes valores de *z* (*conjuntos de nível*);
- 2. identificar a direção de crescimento (max.) ou decrescimento (min.) da função objetivo;
- 3. determinar o último ponto da região viável que a função "toca" → solução ótima.

Identificar a solução ótima sem avaliar todos os pontos extremos

Uma alternativa para identificar a solução ótima a partir da região viável é:

- 1. traçar a reta da função objetivo para diferentes valores de *z* (*conjuntos de nível*);
- 2. identificar a direção de crescimento (max.) ou decrescimento (min.) da função objetivo;
- 3. determinar o último ponto da região viável que a função "toca" → solução ótima.

A inclinação da reta definida pela função objetivo $(z = 5x_1 + 4x_2)$ é perpendicular ao vetor $\overline{C} = (5,4)$, cujas coordenadas são os coeficientes da função.

Identificar a solução ótima sem avaliar todos os pontos extremos

Uma alternativa para identificar a solução ótima a partir da região viável é:

- 1. traçar a reta da função objetivo para diferentes valores de *z* (*conjuntos de nível*);
- 2. identificar a direção de crescimento (max.) ou decrescimento (min.) da função objetivo;
- 3. determinar o último ponto da região viável que a função "toca" → solução ótima.

A inclinação da reta definida pela função objetivo $(z = 5x_1 + 4x_2)$ é perpendicular ao vetor $\overline{C} = (5,4)$, cujas coordenadas são os coeficientes da função.

Identificar a solução ótima sem avaliar todos os pontos extremos

Uma alternativa para identificar a solução ótima a partir da região viável é:

- 1. traçar a reta da função objetivo para diferentes valores de *z* (*conjuntos de nível*);
- 2. identificar a direção de crescimento (max.) ou decrescimento (min.) da função objetivo;
- 3. determinar o último ponto da região viável que a função "toca" → solução ótima.

A inclinação da reta definida pela função objetivo $(z = 5x_1 + 4x_2)$ é perpendicular ao vetor $\overline{C} = (5,4)$, cujas coordenadas são os coeficientes da função.

Identificar a solução ótima sem avaliar todos os pontos extremos

Uma alternativa para identificar a solução ótima a partir da região viável é:

- 1. traçar a reta da função objetivo para diferentes valores de *z* (*conjuntos de nível*);
- identificar a direção de crescimento (max.) ou decrescimento (min.) da função objetivo;
- determinar o último ponto da região viável que a função "toca" → solução ótima.

A inclinação da reta definida pela função objetivo $(z = 5x_1 + 4x_2)$ é perpendicular ao vetor $\overline{C} = (5,4)$, cujas coordenadas são os coeficientes da função.

Identificar a solução ótima sem avaliar todos os pontos extremos

Uma alternativa para identificar a solução ótima a partir da região viável é:

- 1. traçar a reta da função objetivo para diferentes valores de *z* (*conjuntos de nível*);
- 2. identificar a direção de crescimento (max.) ou decrescimento (min.) da função objetivo;
- 3. determinar o último ponto da região viável que a função "toca" → solução ótima.

A inclinação da reta definida pela função objetivo $(z = 5x_1 + 4x_2)$ é perpendicular ao vetor $\overline{C} = (5,4)$, cujas coordenadas são os coeficientes da função.

Ferramentas para solução via método gráfico

Programas lineares simples podem ser resolvidos via método gráfico usando a ferramenta *Linear Programming Graphic Method Calculator* da *Reshmat.ru*.

Acesse em http://reshmat.ru/graphical_method_lpp.html.

Uma boa alternativa é a ferramenta de programação linear da *PM Calculators*.

► Acesse em https://www.pmcalculators.com/graphical-method-calculator.

A ferramenta Desmos também pode ser usada para visualizar o programa linear e testar modificações nas restrições e função objetivo.

- Acesse em https://www.desmos.com/calculator;
- Exemplo "Reddy Mikks": https://www.desmos.com/calculator/no8uqdkm9g.

Casos especiais

Considere o modelo Reddy Mikks e use as ferramentas sugeridas para responder:

- 1. O que acontece ao adicionar a restrição $x_1 + x_2 \ge 5$?
- 2. O que acontece ao remover as restrições $6x_1 + 4x_2 \le 24$ e $x_1 + 2x_2 \le 6$?
- 3. O que acontece se a função objetivo for $z = 3x_1 + 2x_2$?

Casos especiais

Considere o modelo Reddy Mikks e use as ferramentas sugeridas para responder:

- 1. O que acontece ao adicionar a restrição $x_1 + x_2 \ge 5$?
 - Não existe solução viável.
- 2. O que acontece ao remover as restrições $6x_1 + 4x_2 \le 24$ e $x_1 + 2x_2 \le 6$?
 - O sistema é ilimitado.
- 3. O que acontece se a função objetivo for $z = 3x_1 + 2x_2$?
 - Existem infinitas soluções ótimas.

Casos especiais

Considere o modelo Reddy Mikks e use as ferramentas sugeridas para responder:

- 1. O que acontece ao adicionar a restrição $x_1 + x_2 \ge 5$?
 - Não existe solução viável.
- 2. O que acontece ao remover as restrições $6x_1 + 4x_2 \le 24$ e $x_1 + 2x_2 \le 6$?
 - O sistema é ilimitado.
- 3. O que acontece se a função objetivo for $z = 3x_1 + 2x_2$?
 - Existem infinitas soluções ótimas.

Em resumo, o programa linear pode

- a) ter uma única solução ótima;
- b) ter infinitas soluções ótimas;
- c) não ter solução ótima;
- d) ter solução ótima indefinida.

Revisitando o modelo Ozark Farms – solução pelo método gráfico

 $\begin{array}{ccc} & & x_1, x_2 \ge 0 \\ - \times & & x_1 + x_2 \ge 800 \end{array}$

- Pontos: (800,0) e (0,800)
- ▶ Área viável: direita; $(0,0) \rightarrow 0 < 800$

Revisitando o modelo Ozark Farms – solução pelo método gráfico

 $\begin{array}{c|c} & x_1, x_2 \ge 0 \\ \hline - \times & x_1 + x_2 \ge 800 \\ \hline - \times & 0.21x_1 - 0.3x_2 \le 0 \end{array}$

minimiza $z = 0.3x_1 + 0.9x_2$ sujeito a $x_1 + x_2 \ge 800$ $0.21x_1 - 0.3x_2 \le 0$ $0.03x_1 - 0.01x_2 \ge 0$ $x_1, x_2 \ge 0$

- Pontos: (0,0) e (800,560)
- \blacktriangleright Área viável: esquerda; (100, 100) → $-9 \le 0$
 - veja que o ponto (0,0) não pode ser usado!

minimiza
$$z = 0.3x_1 + 0.9x_2$$

sujeito a $x_1 + x_2 \ge 800$
 $0.21x_1 - 0.3x_2 \le 0$
 $0.03x_1 - 0.01x_2 \ge 0$
 $x_1, x_2 \ge 0$

- Pontos: (0,0) e (266,67,800)
- Área viável: direita; (100, 100) → 2 > 0
 - veja que o ponto (0,0) não pode ser usado!

minimiza
$$z = 0.3x_1 + 0.9x_2$$

sujeito a $x_1 + x_2 \ge 800$
 $0.21x_1 - 0.3x_2 \le 0$
 $0.03x_1 - 0.01x_2 \ge 0$
 $x_1, x_2 \ge 0$

minimiza
$$z = 0.3x_1 + 0.9x_2$$

sujeito a $x_1 + x_2 \ge 800$
 $0.21x_1 - 0.3x_2 \le 0$
 $0.03x_1 - 0.01x_2 \ge 0$
 $x_1, x_2 \ge 0$

- Ao decrescer a função objetivo, o último ponto visitado é o (470,59, 329,41).
- Valores:
 - (470,59, 329,41) → 437,65 (solução ótima)
 - **►** (200, 600) → 600

