Unsolvable Problems Part Two

Outline for Today

- Recap from Last Time
 - Where are we, again?
- A Different Perspective on RE
 - What exactly does "recognizability" mean?
- Verifiers
 - A new approach to problem-solving.
- Beyond RE
 - Monstrously hard problems!

Verifiers

- A *verifier* for a language L is a TM V with the following properties:
 - *V* halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:

```
w \in L \leftrightarrow \exists c \in \Sigma^*. \ V \text{ accepts } \langle w, c \rangle
```

- A string c where V accepts $\langle w, c \rangle$ is called a *certificate* for w.
- Intuitively, what does this mean?

Verification

Is there a simple path that goes through every node exactly once?

Verification

Is there a simple path that goes through every node exactly once?

Some Verifiers

• Let *L* be the following language:

 $L = \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian path } \}$

```
bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (size_t i = 0; i < c.size() - 1; i++) {
      if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}</pre>
```

- Do you see why $\langle G \rangle \in L$ iff there is a c where checkHamiltonian(G, c) returns true?
- Do you see why checkHamiltonian always halts?

Some Verifiers

• Consider A_{TM} :

```
A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.
```

- This is a canonical example of an undecidable language. There's no way, in general, to tell whether a TM M will accept a string w.
- Although this language is undecidable, it's an RE language, and it's possible to build a verifier for it!

Some Verifiers

• Consider A_{TM} :

```
A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}
```

```
bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}</pre>
```

- Do you see why M accepts w iff there is some c such that checkWillAccept(M, w, c) returns true?
- Do you see why checkWillAccept always halts?

What languages are verifiable?

Let V be a verifier for a language L. Consider the following function given in pseudocode:

```
bool mysteryFunction(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
          if (V accepts \langle w, c \rangle) return true;
      }
      i++;
   }
}
```

What set of strings does mysteryFunction return true on?

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **your answer**.

Theorem: If L is a language, then there is a verifier for L if and only if $L \in \mathbf{RE}$.

Where We've Been

Where We're Going

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

3

aa

ab

ba

bb

aaa

aab

aba

abb

baa

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

ε a b aa ab ba ba bb aaa aab aba abb baa ...

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

3

a

b

aa

ab

ba

bb

aaa

ć

aab

aba

abb

baa

a ...

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

3

a

b

aa

ab

ba

bb

aaa

aab

aba

abb

<mark>baa</mark>

- **Theorem:** If V is a verifier for L, then $L \in \mathbf{RE}$.
- **Proof sketch:** Consider the following program:

```
bool isInL(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
         if (V accepts (w, c)) return true;
      }
      i++;
   }
}
```

If $w \in L$, there is some $c \in \Sigma^*$ where V accepts $\langle w, c \rangle$. The function isInL tries all possible strings as certificate, so it will eventually find c (or some other certificate), see V accept $\langle w, c \rangle$, then return true. Conversely, if isInL(w) returns true, then there was some string c such that V accepted $\langle w, c \rangle$, so $w \in L$.

- *Theorem:* If $L \in \mathbf{RE}$, then there is a verifier for L.
- **Proof goal:** Beginning with a recognizer M for the language L, show how to construct a verifier V for L.
- The challenges:
 - A recognizer M is not required to halt on all inputs. A verifier V must always halt.
 - A recognizer M takes in one single input. A verifier V takes in two inputs.
- We'll need to find a way of reconciling these requirements.

Recall: If M is a recognizer for a language L, then M accepts w iff $w \in L$.

Key insight: If *M* accepts a string *w*, it always does so in a finite number of steps.

Idea: Adapt the verifier for A_{TM} into a more general construction that turns any recognizer into a verifier by running it for a fixed number of steps.

- **Theorem:** If $L \in \mathbf{RE}$, then there is a verifier for L.
- **Proof sketch:** Consider the following program:

```
bool checkIsInL(string w, int c) {
   set up a simulation of M running on w;
   for (int i = 0; i < c; i++) {
      simulate the next step of M running on W;
   }
   return whether M is in an accepting state;
}</pre>
```

Notice that checkIsInL always halts, since each step takes only finite time to complete. Next, notice that if there is a c where checkIsInL(w, c) returns true, then M accepted w after running for c steps, so $w \in L$. Conversely, if $w \in L$, then M accepts w after some number of steps (call that number c). Then checkIsInL(w, c) will run M on w for c steps, watch M accept w, then return true.

RE and Proofs

- Verifiers and recognizers give two different perspectives on the "proof" intuition for **RE**.
- Verifiers are explicitly built to check proofs that strings are in the language.
 - If you know that some string w belongs to the language and you have the proof of it, you can convince someone else that $w \in L$.
- You can think of a recognizer as a device that "searches" for a proof that $w \in L$.
 - If it finds it, great!
 - If not, it might loop forever.

RE and Proofs

- If the **RE** languages represent languages where membership can be proven, what does a non-**RE** language look like?
- Intuitively, a language is *not* in **RE** if there is no general way to prove that a given string $w \in L$ actually belongs to L.
- In other words, even if you knew that a string was in the language, you may never be able to convince anyone of it!

Finding Non-**RE** Languages

Finding Non-RE Languages

- Right now, we know that non-**RE** languages exist, but we have no idea what they look like.
- How might we find one?

Languages, TMs, and TM Encodings

• Recall: The language of a TM M is the set

```
\mathscr{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}
```

- Some of the strings in this set might be descriptions of TMs.
- What happens if we list off all Turing machines, looking at how those TMs behave given other TMs as input?

 M_0

M₁

 M_2

 M_3

 M_4

 M_5

. . .

 M_0

 M_1

 M_2

 M_3

 M_4

 M_5

. . .

	$\langle M_{o} \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1							
M_2							
M_3							
M_4							
M_5							

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2							
M_3							
M_4							
M_5							

. . .

	$\langle M_{o} \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_{5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	

 M_3 M_4 M_5

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_{5} \rangle$	•••
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	

M₄
M₅

	$\langle M_{o} \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	

 M_5

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	• • •
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

What are we going to do next?

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **your answer**.

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_{5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\left\langle M_{2}\right\rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
		• • •	• • •	• • •			

Acc Acc Acc No Acc No ...

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

Flip all "accept" to "no" and viceversa

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\left\langle M_{2}\right\rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
		• • •	• • •	• • •			

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

What TM has this behavior?

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\left\langle M_{2}\right\rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••	• • •	• • •				

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\left\langle M_{2}\right\rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
		• • •	• • •	• • •			

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	•••
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\left\langle M_{2}\right\rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••						

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	•••
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\left\langle M_{0}\right\rangle$	$\left \left\langle \mathbf{M_{1}}\right\rangle \right $	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\left\langle M_{5}\right\rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

No TM has this behavior!

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\left\langle M_{0}\right\rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

"The language of all TMs that do not accept their own description."

	$\langle M_0 \rangle$	$ \langle M_1 \rangle $	$\langle M_2 \rangle$	$\left \left\langle M_{3}\right\rangle \right $	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{ \langle M \rangle \mid M \text{ is a TM that does not accept } \langle M \rangle \}$

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{ \langle M \rangle \mid M \text{ is a TM}$ and $\langle M \rangle \notin \mathcal{L}(M) \}$

Diagonalization Revisited

• The **diagonalization language**, which we denote L_n , is defined as

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$$

• That is, $L_{\rm D}$ is the set of descriptions of Turing machines that do not accept themselves.

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$

Theorem: $L_{D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$.

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$

Theorem: $L_{D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Theorem: $L_{D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that $\langle M \rangle \in L_D$ iff $\langle M \rangle \in \mathscr{L}(R)$. (1)

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Theorem: L_D ∉ **RE**.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$$
 (1)

Because $\mathcal{L}(R) = L_D$, we know that a string belongs to one set if and only if it belongs to the other.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Theorem: $L_{D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Theorem: $L_{D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$$
 (2)

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Theorem: L_D ∉ **RE**.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of $L_{\rm D}$, we see that $\langle M \rangle \in L_{\rm D}$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$$
 (2)

We've replaced the left-hand side of this biconditional with an equivalent statement.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathcal{L}(M) \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathcal{L}(M) \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.

A nice consequence of a universallyquantified statement is that it should work in all cases.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathcal{L}(M) \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$\langle R \rangle \notin \mathcal{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathcal{L}(R).$$
 (3)

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathcal{L}(M) \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$\langle R \rangle \notin \mathcal{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathcal{L}(R).$$
 (3)

This is clearly impossible.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathcal{L}(M) \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$\langle R \rangle \notin \mathcal{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathcal{L}(R).$$
 (3)

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$$
 (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$\langle R \rangle \notin \mathcal{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathcal{L}(R).$$
 (3)

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_D \notin \mathbf{RE}$.

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathcal{L}(R) = L_{\rm D}$.

Let M be an arbitrary TM. Since $\mathcal{L}(R) = L_D$, we know that

$$\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$$
 (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Combining this with statement (1) tells us that

$$\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$$
 (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$\langle R \rangle \notin \mathcal{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathcal{L}(R).$$
 (3)

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_{\rm D} \notin \mathbf{RE}$.

All Languages

What This Means

• On a deeper philosophical level, the fact that non-**RE** languages exist supports the following claim:

There are statements that are true but not provable.

- Intuitively, given any non-**RE** language, there will be some string in the language that *cannot* be proven to be in the language.
- This result can be formalized as a result called Gödel's incompleteness theorem, one of the most important mathematical results of all time.
- Want to learn more? Take Phil 152 or CS154!

What This Means

• On a more philosophical note, you could interpret the previous result in the following way:

There are inherent limits about what mathematics can teach us.

- There's no automatic way to do math. There are true statements that we can't prove.
- That doesn't mean that mathematics is worthless.
 It just means that we need to temper our expectations about it.

Where We Stand

- We've just done a crazy, whirlwind tour of computability theory:
 - *The Church-Turing thesis* tells us that TMs give us a mechanism for studying computation in the abstract.
 - *Universal computers* computers as we know them are not just a stroke of luck. The existence of the universal TM ensures that such computers must exist.
 - *Self-reference* is an inherent consequence of computational power.
 - *Undecidable problems* exist partially as a consequence of the above and indicate that there are statements whose truth can't be determined by computational processes.
 - *Unrecognizable problems* are out there and can be discovered via diagonalization. They imply there are limits to mathematical proof.

The Big Picture

Where We've Been

- The class **R** represents problems that can be solved by a computer.
- The class **RE** represents problems where "yes" answers can be verified by a computer.

Where We're Going

- The class **P** represents problems that can be solved *efficiently* by a computer.
- The class **NP** represents problems where "yes" answers can be verified *efficiently* by a computer.

Next Time

- Introduction to Complexity Theory
 - Not all decidable problems are created equal!
- The Classes P and NP
 - Two fundamental and important complexity classes.
- The P = NP Question
 - A literal million-dollar question!