

We will continue to learn about "Chemical Kinetics"

		Suggested book: Physical Chemistry by Ira Levine								

Reversible first order reaction: (Also called Opposing reaction)

Let us assume the reversible reaction: $A \rightleftharpoons B$

(with stoichiometric coefficients as 1 for both) be of first order in both forward and backward directions.

$$\begin{split} r_f &= k_f \left[A \right] \quad , \qquad r_b = k_b \left[B \right] \\ r_f &= \left(- \right) \frac{d[A]}{dt} = k_f \left[A \right] \quad , \qquad r_b = \left(+ \right) \frac{d[A]}{dt} = k_b \left[B \right] \\ \frac{d[A]}{dt} &= \left(\frac{d[A]}{dt} \right)_f + \left(\frac{d[A]}{dt} \right)_b = \left(- \right) k_f \left[A \right] + k_b \left[B \right] \qquad (i) \end{split}$$

We know, $\Delta[B] = (-) \Delta[A]$, so $[B] - [B]_0 = -([A] - [A]_0)$

Substituting $[B] = [B]_0 - [A] + [A]_0$ in equation (i) we get,

$$\frac{d[A]}{dt} = k_b [B]_0 + k_b [A]_0 - (k_f + k_b) [A] \qquad (ii)$$

To simplify the equation let us make some intuitive assumption. In the limit of $t = \infty$, the system reaches equilibrium which means rate of both forward and backward reactions becomes equal. At equilibrium concentration of both species remains constant i.e. $\frac{d[A]}{dt} = 0$

If concentration of A in equilibrium condition be $[A]_{\rm eqm}$, then, equation (ii) becomes,

As
$$\frac{d[A]}{dt} = 0$$
, $k_b [B]_0 + k_b [A]_0 = (k_f + k_b) [A]_{eqm}$ phani phani phani phani phani

Using equation (iii), equation (ii) becomes,

$$\frac{d[A]}{dt} = (k_f + k_b) ([A]_{eqm} - [A]) \qquad (iv$$

Using the identity $\int \frac{dx}{x+s} = \ln(x+s)$ to integrate the equation (iv) we get,

ρματ
$$\ln \left(\frac{[A] - [A]_{eqm}}{[A]_0 - [A]_{eqm}}\right) = -(k_f + k_b) t$$
 από ρματί (v) ματί ρματί ρματί

$$\Rightarrow | [A] - [A]_{eqm} = ([A]_0 - [A]_{eqm}) \times e^{-(k_f + k_b) t} | (vi)$$

 $[A]_{\rm eqm}$ can be obtained from equation (iii). Equation (vi) is similar to $1^{\rm st}$ order rate equation.

For $k_b = 0$, $[A]_{eqm} = 0$, equation (vi) gets the form for 1^{st} order reaction

$$[A] = [A]_0 \times e^{-k_f \times t}$$
 (vii)

Consecutive first order reaction:

Let us consider a consecutive, irreversible, first order reaction: $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ We also assume that the stoichiometry for both reaction is 1.

we also assume that the stolemometry for both reaction is

Rate of first reaction $r_1 = k_1$ [A]

Rate of second reaction $r_2 = k_2 [B]$

We consider here the ratio of change of [B] due to first and second reactions

At t = 0, only A is present, i.e. [B] = [C] = 0, [A] $\neq 0$

For A, $[A] = [A]_0 \times e^{-k_1 \times t}$ (From 1st order rate equation) (ii)

Substituting [A] in equation (i) we get,

Integrating equation (iii) we get,

$$[B] = \frac{k_1 \times [A]_0}{k_2 - k_1} (e^{-k_1} \times t - e^{-k_2} \times t)$$
 puani puani puani (iv)

To find [C] we simply use conservation of matter principle

i.e.
$$[A]_0 = [A] + [B] + [C]$$
(v)

Using equation (ii) and (iv) we get,

Rearranging equation (vi) we get,

$$[C] = [A]_0 - [A]_0 \times e^{-k_1 \times t} - \frac{k_1 \times [A]_0}{k_2 - k_1} \times (e^{-k_1 \times t} - e^{-k_2 \times t})$$

$$= [A]_0 (1 - (1 + \frac{k_1}{k_2 - k_1}) \times e^{-k_1 \times t} + \frac{k_1}{k_2 - k_1} \times e^{-k_2 \times t}) \qquad \dots \dots (vii)$$

Considering equation (vi), there can be two cases:

When $k_2 \gg k_1$

Equation (vi) becomes

$$[C] = [A]_0 (1 - e^{-k_1 \times t})$$

At any point of time $[A]+[B]+[C] = [A]_0$

When $k_2 \ll k_1$ Equation (vi) becomes

$$[C] = [A]_0 (1 - e^{-k_2 \times t})$$

Parallel/Competing first order reaction:

Let us assume a parallel, irreversible, first order reaction

We assume the stoichiometries are 1 in both cases.

The rate law is

Integrating, [A] =
$$[A]_0 \times e^{-(k_1 + k_2) \times t}$$
 (ii)

(Same as first order reaction with total rate constant, $k = k_1 + k_2$

At time t = 0, [C] = 0, at time t = t, concentration of C = [C]

Integrating equation (iii) we get,

$$[C] = \frac{k_1 \times [A]_0}{k_1 + k_2} (1 - e^{-(k_1 + k_2) \times t})$$
 (iv)

Similarly for D, ρμασί ρμασί

$$\frac{d[D]}{dt} = k_2 \times [A] = k_2 \times [A]_0 \times e^{-(k_1 + k_2) \times t} \qquad (v)$$
 At time $t = 0$, $[D] = 0$

Integrating we get,

$$[D] = \frac{k_2 \times [A]_0}{k_1 + k_2} (1 - e^{-(k_1 + k_2) \times t})$$

$$\rho \mu a n i \qquad \rho \mu$$

Note that the sum of both k_1 and k_2 appears in exponential for both [C] and [D] Dividing equation (iv) with equation (vi) we get,

ρμ
$$a\frac{[C]}{[D]}=\frac{k_1}{k_2}$$
η ρμαπί ρμαπί ρμαπί ρμαπί ρμαπί ρμαπί ρμαπί ρμαπί ρμαπί ρμαπί

Thus, amount of [C] and [D] depends on the relative values of k_1 and k_2 .

Thus, the relative values of k_1 and k_2 will determine kinetically controlled product.

However, thermodynamically the product with most negative G⁰ will be favoured. The favoured product is called thermodynamically controlled product. The phane phane phane phane phane phane phane