Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчет по лабораторной работе №3
«Переходные процессы в системе. Устойчивость системы» по дисциплине «Теория автоматического управления»

Выполнил: студент гр. R3238,

Кирбаба Д.Д.

Преподаватель: Перегудин А.А.,

ассистент фак. СУиР

Цель работы

Исследование переходных процессов в линейных системах второго порядка и ознакомление с аналитическим методом построения областей устойчивости линейных динамических систем.

Начальные данные

10 вариант

Вид линейной системы:

$$\ddot{y} + a_1 \dot{y} + a_0 y = bg$$

Начальные условия и корни характеристического уравнения:

Номер эксперимента	y_0	\dot{y}_0	λ_1	λ_2
1	1	0	-3	-3
2	1	0	-1.4+12i	-1.4-12i
3	1	0	12i	-12i
4	0.05	0	1.4+12i	1.4-12i
5	0.05	0	3	3
6	0	0.1	-1	1

Параметры системы и входного воздействия:

$$a_0 = 4, a_1 = 4, b = 3, g_1(t) = 2.5, g_2(t) = 0.6t, g_3(t) = \cos(t)$$

Начальные условия
$$y_0 = -1; 0; 1$$
 и $\dot{y}_0 = 0$

Выполнение работы

1. Свободная и вынужденная составляющая

1.1.

Рассматриваемое дифференциальное уравнение:

$$\ddot{y} + a_1 \dot{y} + a_0 y = 0$$

Характеристическое уравнение:

$$\lambda^2 + a_1\lambda + a_0 = 0$$

$$(\lambda-\lambda_1)(\lambda-\lambda_2)=0$$
, где λ_1 , λ_2 — корни характеристического уравнения

Найдем a_0 , a_1 :

$$(\lambda + 3)(\lambda + 3) = 0 \Leftrightarrow \lambda^2 + 6\lambda + 9 = 0 \Leftrightarrow a_0 = 9, a_1 = 6$$

Найдем выражение для свободной составляющей $y_{cb}(t)$:

$$y_{cB} = (C_1 + C_2 t)e^{-3t}, \qquad \dot{y}_{cB} = -3C_1 e^{-3t} + C_2 e^{-3t} - 3C_2 t e^{-3t}$$

Зная начальные условия ($y_0=y_{\rm cB}(0)=1$, $\dot{y}_0=\dot{y}_{\rm cB}(0)=0$), найдем \mathcal{C}_1 , \mathcal{C}_2 :

$$\begin{cases} C_1 = 1 \\ -3C_1 + C_2 = 0 \end{cases} \Leftrightarrow \begin{cases} C_1 = 1 \\ C_2 = 3 \end{cases}$$

$$y_{\rm CB} = (1+3t)e^{-3t}$$

2 эксперимент:

Найдем a_0 , a_1 :

$$(\lambda + 1.4 - 12i)(\lambda + 1.4 + 12i) = 0 \Longleftrightarrow \lambda^2 + 2.8\lambda + 145.96 = 0 \Longleftrightarrow a_0 = 145.96, a_1 = 2.8$$

Найдем выражение для свободной составляющей $y_{cb}(t)$:

$$y_{cB} = C_1 e^{-1.4t} \sin(12t) + C_2 e^{-1.4t} \cos(12t)$$

$$\dot{y}_{\text{\tiny CB}} = -1.4C_1e^{-1.4t}\sin(12t) + 12C_1e^{-1.4t}\cos(12t) - 1.4C_2e^{-1.4t}\cos(12t) - 12C_2e^{-1.4t}\sin(12t)$$

Зная начальные условия ($y_0=y_{\rm cB}(0)=1$, $\dot{y}_0=\dot{y}_{\rm cB}(0)=0$), найдем \mathcal{C}_1 , \mathcal{C}_2 :

$$\begin{cases} C_2 = 1 \\ 12C_1 - 1.4C_2 = 0 \end{cases} \iff \begin{cases} C_2 = 1 \\ C_1 = \frac{7}{60} \end{cases}$$

$$y_{\text{CB}} = \frac{7}{60} e^{-1.4t} \sin(12t) + e^{-1.4t} \cos(12t)$$

3 эксперимент:

Найдем a_0 , a_1 :

$$(\lambda - 12i)(\lambda + 12i) = 0 \iff \lambda^2 + 144 = 0 \iff a_0 = 144, a_1 = 0$$

Найдем выражение для свободной составляющей $y_{cB}(t)$:

$$y_{CB} = C_1 \sin(12t) + C_2 \cos(12t)$$

$$\dot{y}_{CB} = 12C_1\cos(12t) - 12C_2\sin(12t)$$

Зная начальные условия ($y_0=y_{_{\mathrm{CB}}}(0)=1$, $\dot{y}_0=\dot{y}_{_{\mathrm{CB}}}(0)=0$), найдем \mathcal{C}_1 , \mathcal{C}_2 :

$$\begin{cases} C_2 = 1 \\ 12C_1 = 0 \end{cases} \Leftrightarrow \begin{cases} C_2 = 1 \\ C_1 = 0 \end{cases}$$

$$y_{CB} = \cos(12t)$$

4 эксперимент:

Найдем a_0 , a_1 :

$$(\lambda - 1.4 - 12i)(\lambda - 1.4 + 12i) = 0 \Longleftrightarrow \lambda^2 - 2.8\lambda + 145.96 = 0 \Longleftrightarrow a_0 = 145.96, a_1 = -2.8\lambda + 145.96 = 0 \Longleftrightarrow a_0 = 145.96$$

Найдем выражение для свободной составляющей $y_{cs}(t)$:

$$y_{cB} = C_1 e^{1.4t} \sin(12t) + C_2 e^{1.4t} \cos(12t)$$

$$\dot{y}_{\text{\tiny CB}} = 1.4C_1e^{1.4t}\sin(12t) + 12C_1e^{1.4t}\cos(12t) + 1.4C_2e^{1.4t}\cos(12t) - 12C_2e^{1.4t}\sin(12t)$$

Зная начальные условия ($y_0=y_{\rm cB}(0)=0.05$, $\dot{y}_0=\dot{y}_{\rm cB}(0)=0$), найдем C_1 , C_2 :

$$\begin{cases} C_2 = 0.05 \\ 12C_1 + 1.4C_2 = 0 \end{cases} \Leftrightarrow \begin{cases} C_2 = 0.05 \\ C_1 = -\frac{7}{1200} \end{cases}$$

$$y_{\text{CB}} = -\frac{7}{1200}e^{1.4t}\sin(12t) + e^{1.4t}\cos(12t)$$

5 эксперимент:

Найдем a_0 , a_1 :

$$(\lambda - 3)(\lambda - 3) = 0 \Leftrightarrow \lambda^2 - 6\lambda + 9 = 0 \Leftrightarrow a_0 = 9, a_1 = -6$$

Найдем выражение для свободной составляющей $y_{cB}(t)$:

$$y_{cB} = (C_1 + C_2 t)e^{3t}, \qquad \dot{y}_{cB} = 3C_1 e^{3t} + C_2 e^{3t} + 3C_2 t e^{3t}$$

Зная начальные условия ($y_0=y_{\rm cB}(0)=0.05$, $\dot{y}_0=\dot{y}_{\rm cB}(0)=0$), найдем C_1 , C_2 :

$$\begin{cases} C_1 = 0.05 \\ 3C_1 + C_2 = 0 \end{cases} \Leftrightarrow \begin{cases} C_1 = 0.05 \\ C_2 = -0.15 \end{cases}$$

$$y_{\rm CB} = (0.05 - 0.15t)e^{3t}$$

Найдем a_0 , a_1 :

$$(\lambda - 1)(\lambda + 1) = 0 \Leftrightarrow \lambda^2 - 1 = 0 \Leftrightarrow a_0 = -1, a_1 = 0$$

Найдем выражение для свободной составляющей $y_{cb}(t)$:

$$y_{cB} = C_1 e^t + C_2 e^{-t}, \qquad \dot{y}_{cB} = C_1 e^t - C_2 e^{-t}$$

Зная начальные условия ($y_0=y_{_{\mathrm{CB}}}(0)=0$, $\dot{y}_0=\dot{y}_{_{\mathrm{CB}}}(0)=0$.1), найдем \mathcal{C}_1 , \mathcal{C}_2 :

$$\begin{cases} C_1 + C_2 = 0 \\ C_1 - C_2 = 0.1 \end{cases} \Longleftrightarrow \begin{cases} C_1 = -C_2 \\ -2C_2 = 0.1 \end{cases} \Longleftrightarrow \begin{cases} C_1 = 0.05 \\ C_2 = -0.05 \end{cases}$$

$$y_{\text{CB}} = 0.05e^t - 0.05e^{-t}$$

Результаты вычислений:

№	Корни		Параметры системы		Начальные условия		Свободная составляющая $y_{_{\mathrm{CB}}}(t)$
	λ_1	λ_2	a_0	a_1	<i>y</i> (0)	<i>y</i> (0)	
1	-3	-3	9	6	1	0	$e^{-3t} + 3te^{-3t}$
2	-1.4+12i	-1.4-12i	145.96	2.8	1	0	$\frac{7}{60}e^{-1.4t}\sin(12t) + e^{-1.4t}\cos(12t)$
3	12i	-12i	144	0	1	0	cos(12t)
4	1.4+12i	1.4-12i	145.96	-2.8	0.05	0	$-\frac{7}{1200}e^{1.4t}\sin(12t) + e^{1.4t}\cos(12t)$
5	3	3	9	-6	0.05	0	$0.05e^{3t} - 0.15te^{3t}$
6	1	-1	-1	0	0	0.1	$0.05e^t - 0.05e^{-t}$

Моделирование свободного движения систем

$$y = \frac{1}{s}(-a_1y + \frac{1}{s}(-a_0y))$$

Начальные условия интеграторов: $\dot{y}(0) + a_1 y(0)$ и y(0)

Рисунок 1: схема моделирования свободного движения систем

Рисунок 2: графики у(t) и у'(t) моделирования свободного движения системы

Так как все корни характеристического полинома данной системы имеют отрицательную вещественную часть ($\lambda_1=-3$, $\lambda_2=-3$), то по корневому критерию устойчивости она является асимптотически устойчивой, что мы и наблюдаем на графике.

Рисунок 3: графики у(t) и у'(t) моделирования свободного движения системы

Так как все корни характеристического полинома данной системы имеют отрицательную вещественную часть ($\lambda_1 = -1.4 + 12i$, $\lambda_2 = -1.4 - 12i$), то по корневому критерию устойчивости она является асимптотически устойчивой, что мы и наблюдаем на графике.

3 эксперимент:

Рисунок 4: графики y(t) и y'(t) моделирования свободного движения системы

Так как все корни характеристического полинома данной системы имеют нулевую вещественную часть и не имеет кратных корней с нулевой вещественной частью ($\lambda_1=12i,\lambda_2=-12i$), то по корневому критерию устойчивости она имеет колебательную границу устойчивости, что мы и наблюдаем на графике.

Рисунок 5: графики y(t) и y'(t) моделирования свободного движения системы

Так как все корни характеристического полинома данной системы имеют положительную вещественную часть ($\lambda_1=1.4+12i$, $\lambda_2=1.4-12i$), то по корневому критерию устойчивости она не устойчива, что мы и наблюдаем на графике.

Рисунок 6: графики y(t) и y'(t) моделирования свободного движения системы

Так как все корни характеристического полинома данной системы имеют положительную вещественную часть ($\lambda_1=3,\lambda_2=3$), то по корневому критерию устойчивости она не устойчива, что мы и наблюдаем на графике.

6 эксперимент:

Рисунок 7: графики y(t) и y'(t) моделирования свободного движения системы

Так как данная система имеет один корень характеристического полинома с положительной вещественной частью ($\lambda_1=1,\lambda_2=-1$), то по корневому критерию устойчивости она не устойчива, что мы и наблюдаем на графике.

1.2.

Фазовые траектории автономных систем

$$\lambda_1 = -1.4 + 12i, \lambda_2 = -1.4 - 12i, y(0) = 1, \dot{y}(0) = 0$$

$$\lambda_1 = 12i, \lambda_2 = -12i, y(0) = 1, \dot{y}(0) = 0$$

Рисунок 9: фазовая траектория y'(y) для системы из 3 эксперимента при $y(0)=1,\ y'(0)=0$

$$\lambda_1 = 1.4 + 12i, \lambda_2 = 1.4 - 12i, y(0) = 0.05, \dot{y}(0) = 0$$

Рисунок 10: фазовая траектория y'(y) для системы из 4 эксперимента при $y(0)=1,\ y'(0)=0$

1.3.

$$\ddot{y} + 4\dot{y} + 4y = 3g(t) \iff y = \frac{1}{s}(-4y + \frac{1}{s}(3g(t) - 4y))$$

Рисунок 11: схема моделирования полного движения системы

 $\underline{1}$ случай: $g(t)=2.5, y_0=-1, \dot{y}_0=0$

Рисунок 12: графики у(t) и и(t) при полном движении системы

$$2$$
 случай: $g(t) = 0.6t$, $y_0 = 0$, $\dot{y}_0 = 0$

Рисунок 13: графики y(t) и u(t) при полном движении системы

$$3$$
 случай: $g(t) = \cos(t)$, $y_0 = 1$, $\dot{y}_0 = 0$

Рисунок 14: графики у(t) и и(t) при полном движении системы

2. Область устойчивости

2.1.

Рисунок 15: схема моделирования системы

Найдем математическую модель системы:

$$(g - y) K \frac{1}{T_1 s + 1} \frac{1}{T_2 s + 1} \frac{1}{s} = y$$

$$(T_1 s^2 + s + T_1 T_2 s^3 + T_2 s^2) y = Kg - Ky$$

$$T_1 T_2 \ddot{y} + (T_1 + T_2) \ddot{y} + \dot{y} + Ky = Kg$$

Найдем условия для асимптотической устойчивости по критерию Гурвица:

Матрица коэффициентов:

$$\begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & K \end{bmatrix}$$

Система асимптотически устойчива, если

$$\begin{cases} T_1T_2 > 0 \\ T_1 + T_2 > 0 \\ T_1 + T_2 - KT_1T_2 > 0 \\ KT_1 + T_2K - K^2T_1T_2 > 0 \end{cases} \iff \begin{cases} T_1 > 0 \\ T_2 > 0 \\ K < \frac{1}{T_1} + \frac{1}{T_2} \\ K > 0 \end{cases}$$

Найдем значения T_1 , T_2 :

$$\begin{cases} \frac{1}{T_1s+1} = \frac{1}{s-\lambda_1} \\ \frac{1}{T_2s+1} = \frac{1}{s-\lambda_2} \end{cases} \Leftrightarrow \begin{cases} T_1 = -\frac{1}{\lambda_1} \\ T_2 = -\frac{1}{\lambda_2} \end{cases} \Leftrightarrow \begin{cases} T_1 = \frac{1}{3} \\ T_2 = \frac{1}{3} \end{cases}$$

2.2.

Пространство параметров (T_1, K)

$$K = \frac{1}{T_1} + 3$$
 — граница устойчивости

Рисунок 16: график границы устойчивости системы на плоскости о T_1 К

2.3.

Пространство параметров (T_2, K)

$$K = \frac{1}{T_2} + 3$$
 — граница устойчивости

Рисунок 17: график границы устойчивости системы на плоскости о $T_2 K$

Выводы

В данной лабораторной работе были выполнены расчеты и моделирование свободной и вынужденной составляющих движения системы по значениям корней характеристического полинома и начальным условиям. Исходя из построенных графиков в п.1.1. был проверен корневой критерий устойчивости систем и в п.1.3. была определена установившаяся реакция системы 2 порядка на различные входные воздействия. Построены фазовые траектории для некоторых случаев систем. Также была построена схема моделирования линейной системы третьего порядка и аналитически определена граница устойчивости данной системы с помощью критерия Гурвица.