Audio Coding Quantization and Coding Methods

Prof. Dr.-Ing. Karlheinz Brandenburg karlheinz.brandenburg@tu-ilmenau.de

Quantization and Coding Methods (1)

TECHNISCHE UNIVERSITÄT

ILMENAU

Quantization and Coding Methods (2)

Objective:

- "Good" representation of spectral data
 - Compactness (low bit rate)
 - Smallest possible perceptible distortion (high subjective quality)

Overview:

- Quantization
- Noiseless Coding
- Joint Quantization/ Coding Techniques

Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de

Encoding Strategies

Quality and Rate Measures

- Signal-to-Noise Ratio (SNR)

 - Quadratic distortion metric
 Does not allow prediction about quality !
- Noise-to-mask Ratio (NMR)
 - Ratio of distortion with respect to masking threshold Determines audibility of distortions

 - Should be as small as possible(≤ 0 dB)
- Signal-to-Mask Ratio (SMR)
 - Relation between signal and masking threshold
 - Gives indication of bit demand

Quantization (1)

Basics:

- Data reduction by removing irrelevance
- Explicit control of quantization distortion according to time/frequency-dependent masking threshold (perceptual coder)
- High variability in local SNR
 - (e.g. 0db ... >30db)
- Most popular case: Scalar quantization

Quantization (2)

Simpler:

- Uniform Quantization
 - MPEG-1/2 Layer I and II, ATRAC, AC-3
 - Average distortion independent on size of coefficients
 - Quantization stepsize is constant

- more precise control of quantization noise:
- Stepsize determines the quantization noise:

$$E(e^2) = \frac{\Delta^2}{12}$$

Quantization (3)

More sophisticated:

- Non-uniform quantization
- MPEG-1/2 Layer 3, MPEG-2/4 AAC:

$$S_i = round \begin{bmatrix} \frac{x_i^{0.75}}{\Delta_q} \end{bmatrix}$$

- More distortion for larger coefficients (subband signal x)
- In comparison: For uniform quantization, the exponent is 1

Quantization (4)

Non-uniform quantization:

Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de

Decoder

Quantization (5)

Approach #1:

- Group of spectral coefficients (subband signal x) is normalized by means of a common multiplier ("scalefactor")
- Side information: Scalefactor and quantizer resolution (bits/sample)
- "Block companding" / "Block floating point"
- MPEG-1/2 Layers I and II, ATRAC, AC-3

Quantization (6)

Approach #2:

- Group of spectral coefficients is scaled ("scalefactor") and subsequently quantized by a fixed quantizer
- Scalefactor can be seen as a quantization stepsize
- Side information: Scalefactor
- Used with entropy coding
- Quant. Precision controlled by scalefactor
- MPEG-1/2 Layer 3, MPEG-2/4 AAC

Scalefactor Bands and Masking Threshold

Shaping of the noise according to psycho-acoustic model. Several subbands in each scalefactor band, with same step size.

Signal
Masking Threshold
Each step: scalefactor band with
minimum value of
masking threshold

Approximation of Masking
Threshold by a step function

→ fewer bits for parameterization

Effect of non-uniform Quantization

in each scalefactor band with

Signal
Masking Threshold
Each step: scalefactor band with
minimum value of
masking threshold

Additional noise shaping with non-uniform quantizer (x^{0.75}): quantization noise follows signal x

Approximation of Masking
Threshold by a step function

→ fewer bits for parameterization

Polynomial Approximation of Masking Threshold

Different way to approximate the Masking Threshold, use polynomial approximation instead of step-function of scale factor bands.

Goal: Approximation of Masking Threshold as close as possible to reduce bit demand

Signal

Masking Threshold

Polynomial Approximation (example: 12 coefficients)

Used in Ultra Low Delay Coder, predictive coder, no subbands. Is frequency response of linear filter.

Scalefactor bands

- MDCT subbands which fall into one scalefactor band → their power sums up
- Conversion of DFT/MDCT frequency bands into 1/2 or one Bark, at low frequencies broader
- After quantization more efficient representation of the codewords is needed → noiseless coding

Noiseless Coding (1)

Even more efficient:

Higher gain by using entropy coding

- Efficient representation of the symbols after quantization
 - Huffman coding (MPEG-1/2 Layer III, MPEG-2/4 AAC)
 - Arithmetic coding (MPEG-4 version 2 BSAC, USAC)

Noiseless Coding (2)

- Huffman coding uses the probability of the symbol to determine the codeword
- typical probability distribution of audio samples: Laplace distribution

- 0: highest probability
- → reason for compression gain with entropy coding
- → shorter codewords for the more likely symbols (e.g.
- 0)
- → shortest codeword for 0

Noiseless Coding (3)

Example for state-of-the art coding kernel (MPEG-2/4 AAC)

- Multi-dimensional (2 or 4-dim.) entropy coding -> exploiting joint statistics of vector comp.
- Huffman coding, several codebooks

- Signal information part of codebook or separate escape mechanism for large quant. values
- Choice of Huffman codebook for arbitrary groups of scalefactor bands ("sections")
- can obtain less than 1 bit per sample with 2 or 4 dimensional vectors

MPEG Audio Layer-3: Huffman Code Tables, Example

Table B.7 -- Huffman codes for Layer III

Huffman code table for quadruples (A)

vwxy	hlen	hcod
0000	1	1
0001	4	0101
0010	4	0100
0011	5	00101
0100	4	0110
0101	6	000101
0110	5	00100
0111	6	000100
1000	4	0111
1001	5	00011
1010	5	00110
1011	6	000000
1100	5	00111
1101	6	000010
1110	6	000011
1111	6	000001

Huffman code table for quadruples (B)

vwxy	hlen	hcod
0000	4	1111
0001	4	1110
0010	4	1101
0011	4	1100
0100	4	1011
0101	4	1010
0110	4	1001
0111	4	1000
1000	4	0111
1001	4	0110
1010	4	0101
1011	4	0100
1100	4	0011
1101	4	0010
1110	4	0001
1111	4	0000

MPEG Audio Layer-3: Huffman Code Tables(2)

Huffman code table 0

Huffman code table 2

hlen hcod

Huffman code table 3

linbits=0

linbits=0

linbits=0

x	У	hlen	
0	0	0	

0 0 1 1 0 1 3 010 0 2 6 000001 1 0 3 011 1 1 3 001 1 2 5 00001 2 0 5 00011

00010

000000

x	У	hlen	hcod
0	0	2	11
0	1	2	10
0	2	6	000001
1	0	3	001
1	1	2	01
1	2	5	00001
2	0	5	00011
2	1	5	00010
2	2	6	000000

Huffman code table 1

linbits=0

x	У	hlen	hcod
0	0	1	1
0	1	3	001
1	0	2	01
1	1	3	000

Huffman code table 4

not used

MPEG Audio Layer-3: Huffman Code Tables(3)

Huffman code table 5

Huffman code table 6

Huffman code table 7

linbits=0

linbits=0

linbits=0

х	У	hlen	hcod
0	0	1	1
0	1	3	010
0	2	6	000110
0	3	7	0000101
1	0	3	011
1	1	3	001
1	2	6	000100
1	3	7	0000100
2	0	6	000111
2	1	6	000101
2	2	7	0000111
2	3	8	0000001
3	0	7	0000110
3	1	6	000001
3	2	7	0000001
3	3	8	0000000

х	У	hlen	hcod
0	0	3	111
0	1	3	011
0	2	5	00101
0	3	7	0000001
1	0	3	110
1	1	2	10
1	2	4	0011
1	3	5	00010
2	0	4	0101
2	1	4	0100
2	2	5	00100
2	3	6	000001
3	0	6	000011
3	1	5	00011
3	2	6	000010
3	3	7	000000

х	У	hlen	hcod
0	0	1	1
0	1	3	010
0	2	6	001010
0	3	8	00010011
0	4	8	00010000
0	5	9	000001010
1	0	3	011
1	1	4	0011
1	2	6	000111
1	3	7	0001010
1	4	7	0000101
1	5	8	00000011
2	0	6	001011
2	1	5	00100
2	2	7	0001101
2	3	8	00010001
2	4	8	00001000
2	5	9	00000100
3	0	7	0001100

÷

MPEG Audio Layer-3: Huffman Code Tables(4)

Huffman code table 8

Huffman code table 9

Huffman code table 10

linbits=0

linbits=0

linbits=0

х	y ł	nlen	hcod	х	У	hlen	hcod] <u> </u>	y	hlen	hcod
0	0	2	11	0	0	3	111		0	1	1
0	1	3	100	0	1	3	101	0	1	3	010
0	2	6	000110	0	2	5	01001	0	2	6	001010
0	3	8	00010010	0	3	6	001110		3	8	
0	4	8	00001100	0	4	8	00001111	11		•	00010111
0	5	9	000000101	0	5	9	000000111		4	9	000100011
1	0	3	101	1	0	3	110		5	9	000011110
1	1	2	01	1	1	3	100	0	6	9	000001100
1	2	4	0010	1	2	4	0101	0	7	10	0000010001
1	3	8	00010000	1	3	5	00101	1	0	3	011
1	4	8	00001001	1	4	6	000110	1	1	4	0011
1 1	5	8	00000011	1	5	8	00000111	1	2	6	001000
2	0	6	000111	2	0	4	0111	1	3	7	0001100
2	1	4	0011	2	1	4	0110	1	4	8	00010010
2	2	6	000101	2	2	5	01000	1	5	9	000010101
2	3	8	00001110	2	3	6	001000	1	6	8	00001100
2	4	8	00000111	2	4	7	0001000	1	7	8	00000111
2	5	9	000000011	2	5	8	00000101	2	Ó	6	001011
3	0	8	00010011	3	0	6	001111	2	1	6	001001
			!				:				:

21

Joint Quantization / Coding Techniques (1)

Vector quantization

- Excellent coding efficiency at very low rates (<< 1 bit / sample), but
- Perceptual control of distortion difficult
- → control only total distortion for "group"

Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de

Application range:

- Used for intermediate quality / very low bit rate coding
 - e.g. MPEG-4 TwinVQ

Nice theoretical concept, today not in use in widely used standards!

The excitation codebook in CELP speech coding follows this paradigm.

Joint Quantization / Coding Techniques (2)

Encoding Strategies

- Today's coding schemes provide large degree of flexibility
 - Quantization noise profile over frequency
 - Trade-off audio bandwidth vs. overall distortion
 - Bit rate & coding mode

- Usage of optional tools (Temporal Noise Shaping, prediction)
- Encoding strategy "intelligent" part of encoding; determines quality
- Arena for specific know-how ("secrets of audio coding")

Constant Quality Coding

Goal:

- Coding with a pre-selected constant quality Procedure:
- Estimate time & frequency dependent masking threshold
- Adjust quantizer step size to meet target distortion

Constant quality -> Variable bit rate

Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de

Applications:

- Storage media / transmission channels supporting variable rate e.g.
 - Storage on digital media; music on internet
- Needs accurate perceptual model, often constant bit-rate coders sound better

Constant Rate Coding (1)

Paradigm 1 "Bit Allocation"

- Used typically in coding schemes with block companding
- Direct translation between bit rate and local SNR available

Constant Rate Coding (2)

Paradigm 2 "Noise Allocation"

Used in codecs with entropy encoding

Constrained Variable Bit Rate Coding (Bit Reservoir)

- Constant quality vs. Constant bit rate
 - Constant quality → variable bit rate (VBR)
 - Constant bit rate → variable quality
 - ? How to achieve both ?
- Compromise:
 - Bit reservoir = constrained VBR Coding
 - Limit accumulated deviation of bit consumption from average ("bit reservoir size")
 - Additional delay
 - Used in MPEG-1/2 Layer III, MPEG-2/4 AAC

Constant vs. Variable Bit Rate Example

Take our Python example:

python psycho-acoustic-modelDFT_gs.py

Constant Quality, variable bit-rate:

If we don't shift the masking threshold with the arrow key, we get a variable bit-rate, which depends on the audio signal.

Observe: The suitable adjustment of the masking threshold is critical for the audio quality.

Constant bit-rate, variable quality:

We constantly **adjust the masking threshold** such that we obtain a **constant bit-rate**. Here the adjustment of the masking theshold is taken over by the bit-rate requirement. But we obtain a variable audio quality.

Quantization / Coding: Codec Overview

	Filterbank channels	Quantization	Coding
MPEG-1/2 Layer I / II	32	uniform	block companding
MPEG-1/2 Layer	576 / 192	non-uniform	Huffman coding
MPEG-2 AAC	1024 / 128	non-uniform	Huffman coding
MPEG-4 TwinVQ	1024 / 128 (960/120)	VQ	VQ
AC-3	256 / 128	uniform	block companding
ATRAC	96 512	uniform	block companding

Layer-3 Iteration Loops

Layer-3: Outer Loop

- Distortion Loop (control of the distortion)
- Saves the unquantized spectral values
- Compares the reconstructed values with the original
- Builds the actual distortion in the frequency domain
- Scaling by frequency groups with the amount of distortion
- Convergence of the iteration is not guaranteed

Layer-3: Inner Loop

Rate Loop (Data rate controller)

- Entropy coding: Data rate depends on actual data set
- Buffer Control: Controls the necessary bits
- Convergence through iterations: is always possible
- Beginning level: Calculated from SFM (Spectral Flatness Measure)

