# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

## Лабораторная работа 3.3.5 Эффект Холла в металлах

Цель работы: измерение подвижности и концентрации носителей заряда в металлах.

**Оборудование**: электромагнит с источником питания, источник постоянного тока, микровольтметр, амперметры, милливеберметр или цифровой магнитометр, образцы из меди, серебра и цинка.

#### Теоретические сведения:

В работе изучаются особенности проводимости металлов в геометрии мостика Холла. Ток пропускается по плоской прямоугольной металлической пластинке, помещённой в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости и вычисляется концентрация основных носителей заряда.

Во внешнем магнитном поле В на заряды действует сила Лоренца:

$$\mathbf{F} = q\mathbf{E} + q\mathbf{u} \times \mathbf{B}.$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с Е. Траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Связь между электрическим полем  ${\bf E}$  и плотностью тока  ${\bf j}$  в условиях эффекта Холла уже не может быть описана скалярным коэффициентом проводимости  $\sigma$ . Тем не менее закон Ома можно по-прежнему записать в форме

$$\mathbf{j} = \hat{\sigma} \mathbf{E},$$

если под  $\hat{\sigma}$  понимать тензор проводимости. В заданном базисе он представляется матрицей  $3 \times 3$ :

$$\mathbf{j} = \hat{\sigma} \mathbf{E} = egin{pmatrix} \sigma_{xx} & \sigma_{xx} & \sigma_{xz} \ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} \mathbf{E}.$$

или

$$j_i = \sum_k \sigma_{ik} E_k$$
, где  $i, k = \{x, y, z\}$ .

Тензорная связь между полем и током имеет место в общем случае, когда проводящая среда не является изотропной. В условиях эффекта Холла тензор проводимости становится недиагональным.

Пусть система содержит носители только одного типа (например, электроны, как в большинстве металлов). Рассмотрим сначала простейший случай плоской геометрии: пусть ток течёт вдоль оси x, а магнитное поле направлено вдоль оси z. Магнитное поле действует на движущиеся заряды с силой  $F_y = -qu_xB_z$ . Ток сможет течь строго вдоль оси x, если заряды в среде перераспределятся таким образом, чтобы полностью скомпенсировать магнитную силу, создав в направлении y электрическое поле

$$E_y = u_x B_z = \frac{j_x}{nq} B_z$$

называемое холловским (здесь n – концентрация носителей). По оси x носители будут двигаться так, как если бы магнитного поля не было:  $j_x = \sigma_0 E_x$  ( $j_y = j_z = 0$ ), где  $\sigma_0 = qn\mu$  – удельная проводимость среды в отсутствие **B**.



Рис. 1: Силы, действующие на положительный носитель заряда в проводящей среде при наличии магнитного поля

Выразим общую связь между  $\mathbf{j}$  и  $\mathbf{E}$  для случая носителей одного типа. Магнитное поле попрежнему направим вдоль оси z, а о направлении  $\mathbf{j}$  и  $\mathbf{E}$  никаких предположений делать не будем. При движении носителей с постоянной средней скоростью сила Лоренца будет уравновешена трением со стороны среды:

$$q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) - \frac{q\mathbf{u}}{\mu} = 0$$

С учётом введённых выше обозначений этот баланс сил можно переписать как

$$\mathbf{E} = \frac{\mathbf{j}}{\sigma_0} - \frac{1}{nq}\mathbf{j} \times \mathbf{B}.$$

Полученное соотношение можно назвать обобщённым законом Ома при наличии внешнего магнитного поля. Второе слагаемое в правой части как раз отвечает эффекту Холла – возникновению поперечного направлению тока электрического поля.

Записывая равенство по компонентам

$$E_x = \frac{j_x}{\sigma_0} - \frac{j_y B}{nq}, \quad E_y = \frac{j_y}{\sigma_0} + \frac{j_x B}{nq}, \quad E_z = \frac{j_z}{\sigma_0}$$

получим, вводя mензор yдельного conpomuвления  $\hat{
ho}$ 

$$\mathbf{E} = \hat{\rho}\mathbf{j} = \begin{pmatrix} 1 & -\mu B & 0\\ \mu B & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \frac{\mathbf{j}}{\sigma_0}$$

Обращением матрицы получим тензор проводимости в условиях эффекта Холла:

$$\hat{\sigma} = \hat{\rho}^{-1} = \frac{\sigma_0}{1 + (\mu B)^2} \begin{pmatrix} 1 & \mu B & 0 \\ -\mu B & 1 & 0 \\ 0 & 0 & 1 + (\mu B)^2 \end{pmatrix}$$

Безразмерному параметру  $\mu B$  можно приписать простой физический смысл — это отношение эффективной длины пробега частиц  $l=\mu mu/q$  к ларморовскому радиусу кривизны их траектории  $r_B=mu/qB$ . Эту величину иногда называют *параметром замагниченности*.

Мостик Холла.



Рис. 2: Схема для исследования влияния магнитного поля на проводящие свойства: мостик Xолла

В данной схеме ток вынуждают течь по оси x вдоль плоской пластинки (ширина пластинки a, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, «прибивает» носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно  $U_{\perp} = E_y a$ , где

$$E_y = \rho_{yx} \cdot j_x = \frac{j_x B}{nq}.$$

Плотность тока, текущего через образец, равна  $j_x = I/ah$  где I – полный ток, ah – поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{nah} \cdot I = R_H \cdot \frac{B}{h} \cdot I$$

где константу

$$R_H = \frac{1}{nq}$$

называют *постоянной Холла*. Знак постоянной Холла определяется знаком заряда носителей. Продольная напряжённость электрического поля равна

$$E_x = \rho_{xx} \cdot j_x = j_x/\sigma_0$$

и падение напряжения  $U_{\parallel}=E_{x}l$  вдоль пластинки определяется омическим сопротивлением образца  $R_{0}=l/(\sigma_{0}ah)$ :

$$U_{\parallel} = IR_0$$

Интересно отметить, что несмотря на то, что тензор проводимости явно зависит от B, продольное сопротивление образца в данной геометрии от магнитного поля не зависит.

### Экспериментальная установка:



Рис. 3: Схема установки для исследования эффекта Холла в металлах

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 3. В зазоре электромагнита (рис. 3а) создаётся постоянное магнитное поле, величину которого можно менять с помощью источника питания электромагнита. Разъём  $K_1$  позволяет менять направление тока в обмотках электромагнита. Ток питания электромагнита измеряется амперметром  $A_1$ 

Градуировка электромагнита проводится при помощи миллитесламетра на основе датчика Холла.

Металлические образцы в форме тонких пластинок, смонтированные в специальных держателях, подключаются к блоку питания через разъём (рис. 36). Ток через образец регулируется ручками источника и измеряется амперметром  $A_2$ .

Для измерений ЭДС Холла используется микровольтметр, в котором высокая чувствительность по напряжению сочетается с малой величиной тока, потребляемого измерительной схемой.

В образце с током, помещённом в зазор электромагнита, между контактами 2 и 4 возникает холловская разность потенциалов  $U_{\perp}$ , которая измеряется с помощью микровольтметра, если переключатель  $K_3$  подключён к точке 2 образца. При подключении  $K_3$  к точке 3 микровольтметр измеряет омическое падение напряжения  $U_{34}$ , вызванное током через образец. При нейтральном положении ключа входная цепь микровольтметра разомкнута.

Ключ  $K_2$  позволяет менять полярность напряжения, поступающего на вход микровольтметра.

Контакты 2 и 4 вследствие неточности подпайки могут лежать не на одной эквипотенциали. Тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения вдоль пластинки. Исключить этот эффект можно если при каждом значении тока через образец измерять напряжение между точками 2 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение  $U_0$  остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$U_{\perp} = U_{24} - U_0$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку  $U_{\perp}$  можно определить характер проводимости – электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение  $U_{34}$  между контактами 3 и 4 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать удельное сопротивление  $\rho_0$  и проводимость  $\sigma_0$  материала образца по формуле

$$\rho_0 = \frac{U_{34}ah}{Il},$$

где l – расстояние между контактами 3 и 4, a – ширина образца, h – его толщина.

#### Обработка данных:

Сначала определим максимальный ток через образец при напряжении  $V=0.8~\mathrm{B},~I_{maxS}=0.92~\mathrm{A}.$  Затем определим максимальный ток через катушку электромагнита при максимальном напряжении  $U_{max}=106.3~\mathrm{B},~I_{maxM}=1.35~\mathrm{A}.$ 

Теперь проградуируем электромагнит, для этого, с помощью миллитесламетра, снимем зависимость магнитной индукции от силы тока в катушке увеличивая ток до максимального значения  $I_{maxM}$ . Результаты измерений приведены в таблице ниже. Абсолютная погрешность измерения силы тока в катушке равна 0.5% + 2 ед. младшего разряда, абсолютная погрешность измерения индукции магнитного поля равна 5% + 10 ед. младшего разряда.

Таблица 1: Зависимость магнитной индукции от силы тока

| ,          |       |       |       |       |       | ,     | · '    | 1,28   |
|------------|-------|-------|-------|-------|-------|-------|--------|--------|
| B, м $T$ л | 147,7 | 309,5 | 458,0 | 606,6 | 758,6 | 930,4 | 1056,1 | 1132,9 |

По данным из таблицы построим график зависимости B(I), определим коэффициент угла наклона.

$$k = (931,29 \pm 11,51) \text{ MT} \pi/A, \quad \varepsilon_k = 1,24\%$$

Теперь приступим к измерению ЭДС Холла для образца из меди. Параметры образца:  $L_{3,4}=10$  мм, h=0.05 мм, l=9 мм. При одном значении тока в образце, изменяя ток в электромагните, будем менять величину магнитного поля и снимать зависимость ЭДС Холла от магнитной индукции, затем тоже самое проделаем для других значений тока в образце. Предел измерений микровольтметра – 3 мкВ, цена деления – 0,04 мкВ, погрешность измерений – половина цены деления (0,02 мкВ). По данным из таблицы ниже для каждого из значений тока в образце построим графики зависимости ЭДС Холла  $U_{\perp}$  от величины магнитного поля B. Каждую зависимость аппроксимируем прямой y=kx, для каждой прямой найдём угол её наклона. Результаты представлены в таблице ниже.

Таблица 2: Данные измерений для образца меди

| $I_{\text{обр}}, A$ | 0,2  | 0,3     | 0,4  | 0,5  | 0,6  | 0,7  | 0,8  | 0,9  | 0,9  |  |  |
|---------------------|------|---------|------|------|------|------|------|------|------|--|--|
| $U_0$ , дел.        | 2,5  | 6,0     | 6,0  | 5,5  | 5,5  | 6,0  | 6,0  | 6,0  | 6,0  |  |  |
| $I_{\text{кат}}, A$ |      | U, дел. |      |      |      |      |      |      |      |  |  |
| 0,15                | 7,0  | 8,0     | 8,0  | 8,0  | 9,0  | 10,0 | 11,0 | 12,0 | 11,0 |  |  |
| 0,30                | 8,0  | 9,5     | 10,5 | 11,5 | 13,0 | 15,0 | 16,5 | 18,5 | 17,5 |  |  |
| 0,45                | 9,0  | 11,5    | 12,5 | 15,0 | 17,0 | 19,0 | 21,5 | 25,0 | 23,5 |  |  |
| 0,60                | 10,5 | 13,5    | 15,5 | 18,0 | 21,5 | 24,0 | 27,0 | 31,0 | 29,5 |  |  |
| 0,75                | 12,0 | 15,0    | 18,0 | 21,0 | 25,0 | 28,0 | 32,0 | 36,5 | 36,5 |  |  |
| 0,90                | 13,0 | 16,5    | 19,0 | 23,5 | 28,0 | 31,5 | 36,0 | 40,0 | 40,5 |  |  |
| 1,05                | 14,0 | 18,0    | 21,5 | 26,0 | 30,5 | 34,0 | 39,0 | 44,5 | 44,5 |  |  |
| 1,20                | 15,0 | 19,0    | 23,0 | 27,5 | 32,0 | 36,0 | 42,0 | 47,5 | 47,5 |  |  |

Таблица 3: Коэффициенты наклона при различных токах

| $I_{\text{обр}}$ , А | k, нВ / Тл        | $\varepsilon_k$ , % |
|----------------------|-------------------|---------------------|
| 0,2                  | $376,9 \pm 22,2$  | 5,90                |
| 0,3                  | $370,0 \pm 6,2$   | 1,67                |
| 0,4                  | $474.8 \pm 7.4$   | 1,56                |
| 0,5                  | $629,5 \pm 11,0$  | 1,75                |
| 0,6                  | $775,3 \pm 18,0$  | 2,33                |
| 0,7                  | $875,9 \pm 20,6$  | 2,35                |
| 0,8                  | $1037,5 \pm 21,7$ | 2,09                |
| 0,9                  | $1200,9 \pm 26,2$ | 2,18                |

По данным из таблицы выше построим график зависимости  $k=f(I_{\text{обр}}),$  из него найдём константу Холла  $R_H$  для образца из меди.

$$rac{R_{HCu}}{h} = (1.29 \pm 0.03) \; {
m MKB}/(A \cdot {
m T}{
m J}), \quad arepsilon = 2.21\%$$

$$R_{HCu} = -(6.45 \pm 0.14) \cdot 10^{-11} \text{ м}^3/\text{Kл}, \quad \varepsilon = 2.21\%$$

Теперь, таким же образом, рассчитаем постоянную Холла для образца из цинка. Параметры образца:  $L_{3,4} = 4$  мм, l = 10 мм, h = 0.08 мм. Данные представлены в таблице ниже.

Таблица 4: Данные измерений для образца из цинка

| $I_{ m o 6p} = 0.99 \; { m A}$               |                                                                             |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| $U_0 = 27,5$ дел.                            |                                                                             |  |  |  |  |  |  |  |  |  |
| $I_{\text{Mar}}, A$                          | $I_{\text{Mar}}, A = 0.15 = 0.30 = 0.45 = 0.60 = 0.75 = 0.90 = 1.05 = 1.20$ |  |  |  |  |  |  |  |  |  |
| U, дел. 24,5 21,0 17,5 14,5 11,5 8,5 6,5 5,0 |                                                                             |  |  |  |  |  |  |  |  |  |

$$k = \frac{R_{HZn}I_{\text{o6p}}}{h} = -(651.6 \pm 13.3) \text{ нB/Тл}, \quad \varepsilon = 2.04\%$$
  $R_{HZn} = (5.27 \pm 0.11) \cdot 10^{-11} \text{ м}^3/\text{Кл}, \quad \varepsilon = 2.04\%$ 

Теперь, зная константу Холла для цинка и меди, вычислим концентрацией носителей тока для каждого из материалов.  $n = 1/(R_H \cdot q)$ , где q – элементарный заряд.

$$n_{Cu} = (9,69 \pm 0,21) \cdot 10^{22} \text{ cm}^{-3}, \quad \varepsilon = 2,21\%$$
  
 $n_{Zn} = (11,86 \pm 0,24) \cdot 10^{22} \text{ cm}^{-3}, \quad \varepsilon = 2,04\%$ 

Далее рассчитаем удельную проводимость цинка и меди. Для этого измерим падение напряжения на участке вдоль тока  $U_{3,4}$  при силе тока в образце I, а также запишем геометрические параметры образцов. Предел измерений микровольтметра – 750 мкВ, цена деления – 10 мкВ.

Таблица 5: Данные для расчёта удельного сопротивления

| Материал | $U_{3,4}$ , дел. | I, A | $L_{3,4}, \text{ MM}$ | l, mm | h, mm |
|----------|------------------|------|-----------------------|-------|-------|
| Медь     | 49               | 0,89 | 10                    | 9     | 0,05  |
| Цинк     | 24               | 0,99 | 4                     | 10    | 0,08  |

Тогда удельную проводимость можно выразить как

$$\sigma = I \cdot L_{3,4} / (U_{3,4} \cdot l \cdot h), \quad \varepsilon_{\sigma} = \varepsilon_{U_{3,4}}$$

$$\sigma_{Cu} = (4.04 \pm 0.04) \cdot 10^{7} (\text{Om} \cdot \text{m})^{-1}, \quad \varepsilon = 1.02\%$$

$$\sigma_{Zn} = (2.06 \pm 0.02) \cdot 10^{7} (\text{Om} \cdot \text{m})^{-1}, \quad \varepsilon = 1.02\%$$

Последним пунктом рассчитаем подвижность носителей тока b для каждого из материалов, она связана с удельной проводимостью  $\sigma$  и концентрацией носителей тока n соотношением  $b = \sigma/(q \cdot n)$ , где q – элементарный заряд.

$$b_{Cu} = (26,06 \pm 0,38) \text{ cm}^2/(\text{B} \cdot \text{c}), \quad \varepsilon = 1,44\%$$
  
 $b_{Zn} = (10,86 \pm 0,16) \text{ cm}^2/(\text{B} \cdot \text{c}), \quad \varepsilon = 1,44\%$ 

Таблица 6: Результаты работы

| Мото и и | $D + \Lambda D$        | Табл. R                           | Знак      | $(n \pm \Delta n) \cdot 10^{-28},$ | $(\sigma \pm \Delta \sigma) \cdot 10^{-7}$    | b,                      |
|----------|------------------------|-----------------------------------|-----------|------------------------------------|-----------------------------------------------|-------------------------|
| Металл   | $R_H \pm \Delta R_H$ , | $10^{-11} \text{ м}^3/\text{K}$ л | носителей | $(M^3)^{-1}$                       | $(O_{\mathrm{M}} \cdot {}_{\mathrm{M}})^{-1}$ | ${ m cm^2/(B \cdot c)}$ |
| Медь     | $-6,45 \pm 0,14$       | -5,3                              | -         | $9,69 \pm 0,21$                    | $4,04 \pm 0,04$                               | 26,06                   |
| Цинк     | $5,27 \pm 0,11$        | 10,4                              | +         | $11,86 \pm 0,24$                   | $2,06 \pm 0,02$                               | 10,86                   |

Вывод: В данной работе было исследовано явление возникновения поперечного току электрического поля в проводнике, помещённом в магнитное поле, – эффект Холла. Для двух материалов, а именно меди и цинка, была вычислена константа Холла  $\{R_{HCu} = (-6,45 \pm 0,14) \cdot 10^{-11} \text{ m}^3/\text{Kn}\}$ ,  $\{R_{HZn} = (5,27 \pm 0,11) \cdot 10^{-11} \text{ m}^3/\text{Kn}\}$ , результат сравнён с табличным значением  $\{R_H = -5,3 \cdot 10^{-11} \text{ m}^3/\text{Kn}\}$  и  $\{R_H = 10,4 \cdot 10^{-11} \text{ m}^3/\text{Kn}\}$  соответственно. Для меди экспериментальное значение сошлось с табличным с неплохой точностью, для цинка результат сошёлся с точностью до порядка, значение отличается в два раза. Также был определён знак носителей заряда: в меди носителями тока являются электроны (знак «-»), в цинке же – дырки (знак «+»). Дополнительно, были получены значения концентрации носителей тока, их подвижности и удельной проводимости материалов. Все результаты представлены в таблице выше.







