Cálculo Infinitesimal

Hoja 6

1. Calcular las derivadas n-ésimas y la fórmula de Taylor en el punto c, de las siguientes funciones:

a)
$$f(x) = \frac{1}{a - bx}$$
, $c = 1$

e)
$$f(x) = \sin^2(2x), \quad c = 0$$

$$(b) f(x) = \sin \frac{3x}{2}, \quad c = \pi$$

$$f) f(x) = \frac{1}{x^2 - a^2}, \quad c = -1$$

c)
$$f(x) = \log(1 - 2x)$$
, $c = 0$

g)
$$f(x) = \sqrt{1+x}, \quad c = 3$$

$$d) \ f(x) = \cos^2 x, \quad c = 0$$

h)
$$f(x) = \frac{x}{a^2 - b^2 x^2}$$
, $c = 0$

2. Mediante la regla de Leibniz, hallar la derivada n-ésima de las funciones:

a)
$$y(x) = (x^2 + 1)e^{2x}$$

c)
$$y(x) = x^2(1+x)^n$$

$$b) \ y(x) = \sin x - x \cos x$$

d)
$$y(x) = \frac{1}{x-1} + x^2 \sin x$$

3. Calcular los órdenes de los siguientes infinitésimos cuando $x \longrightarrow 0$:

$$a) x - \sin x$$

d)
$$\sqrt{x} - \sqrt{\sin x}$$

9
$$\log(x + \sqrt{1 - x^2})$$

$$b) 1 - \cos x$$

$$e) \cosh x - 1$$

$$h$$
) $\tan x - x$

- (c) $\tan x \sin x$ f) $\arcsin x x$
- 4. Demostrar, sin aplicar la regla de L'Hôpital, las siguientes igualdades de límites:

a)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 - x + 2}{x^3 - 7x + 6} = \frac{1}{2}$$

b)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = 1$$

c)
$$\lim_{x \to a} \frac{\sqrt[n]{x} - \sqrt[n]{a}}{x - a} = \frac{1}{n\sqrt[n]{a^{n-1}}}$$

d)
$$\lim_{x \to 1} \frac{x - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^2} = \frac{n(n+1)}{2}$$

e)
$$\lim_{x \to 0} \frac{a^x - b^x}{c^x - d^x} = \frac{\log a - \log b}{\log c - \log d}, \quad a, b, c, d > 0$$

$$f) \lim_{x \to 0} \frac{e^x + \sin x - 1}{\log(1+x)} = 2$$

$$g) \lim_{x \to 0} \frac{\pi}{x \cot \frac{\pi x}{2}} = \frac{\pi^2}{2}$$

h)
$$\lim_{x \to +\infty} \left(\frac{a^{1/x} + b^{1/x} + c^{1/x}}{3} \right)^x = \sqrt[3]{abc}$$

5. Calcular los límites siguientes:

a)
$$\lim_{x \to 1} (2-x)^{\tan(\pi x/2)}$$

b)
$$\lim_{x \to 0^+} (\log \cot x)^{\tan x}$$

c)
$$\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$$

$$d \lim_{x \to 0} \left(\frac{1}{\log(x + \sqrt{1 + x^2})} - \frac{1}{\log(1 + x)} \right) k) \lim_{x \to 0^+} x^n \log x \quad (n > 0)$$

$$e) \lim_{x \to 1} x^{1/(1-x)}$$

$$f) \lim_{x \to 0} e^{1/(1-\cos x)} \sin x$$
$$\sec(3x^2)$$

$$g) \lim_{x \to 0} \frac{\operatorname{sen}(3x^2)}{\log \cos(2x^2 - x)}.$$

$$h) \lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$

$$i) \lim_{x \to 0^+} x^{\sin x} \left(\frac{1}{x^2} - \frac{\cosh x}{x \sinh x} \right)$$

$$j$$
) $\lim_{x\to 0^+} x^{1/\log(e^x-1)}$

$$k) \lim_{x \to 0^+} x^n \log x \quad (n > 0)$$

$$l) \lim_{x \to 1} \left(\frac{1}{\log x} - \frac{1}{x - 1} \right)$$

$$m$$
) $\lim_{x \to \pi/2} \frac{\tan x}{\sec x}$

6. Calcular los límites siguientes utilizando desarrollos limitados de Taylor:

a)
$$\lim_{x\to 0} \frac{3\sin(ax) - 3ax - a^3x^3}{6bx - 6\sin(bx) + b^3x^3}$$

(b)
$$\lim_{x \to 1} \frac{1 - x + \log x}{1 - \sqrt{2x - x^2}}$$

$$\text{d) } \lim_{x \to 0} \frac{\sinh x - \tan x}{\sin x - \arcsin x}$$

$$e \lim_{x \to 0} \frac{\cos x - \sqrt{1 - x}}{\sin x}$$

$$\oint \lim_{x \to 0} \frac{(\sin(3x) - 3\sin x)^2}{(\cos(2x) - \cos x)^3}$$

? @
$$\lim_{x\to 0} \frac{(\log(1+x)-(e^x-1))^3}{(\sin x - \tan x)^2}$$

h)
$$\lim_{x\to 0} (1+x^2)^{\frac{1}{\sin^2 x}}$$

$$\int \int \lim_{x \to \infty} \log(x^2 + 1) - \log(x^2 + x + 1)$$

k
$$\lim_{x \to 0} \frac{(\operatorname{sen}(2x) - 2\operatorname{sh}(x))^2}{(\sqrt[3]{1+x^2}-1)^3}$$

$$\bigcap_{x \to 0} \lim_{x \to 0} \frac{(x+1)\log(1+x) - x}{e^x - x - 1}.$$

7. Obtener una cota del error que se comete con la siguiente aproximación, para x recorriendo el intervalo que se indica

$$sen x \simeq \frac{1}{\sqrt{2}} \left(1 + \left(x - \frac{\pi}{4} \right) - \frac{1}{2} \left(x - \frac{\pi}{4} \right)^2 \right), \quad \frac{4\pi}{18} < x < \frac{5\pi}{18}.$$

- 8. Prueba que, si $|x| \le 1/10$, el error cometido al sustituir $\cos^2(3x)$ por $1 9x^2 + 27x^4$ es menor que $4 \cdot 10^{-5}$.
- 9. Halla \sqrt{e} con un error menor que 10^{-6} .
- 10. Halla $\log(1'03)$ con un error menor que 10^{-6} .

11. Usar la identidad trigonométrica

$$4 \arctan \operatorname{tg} \frac{1}{5} - \operatorname{arc} \operatorname{tg} \frac{1}{239} = \frac{\pi}{4}$$

para aproximar el número π .

12. Determinar el radio de las series de potencias de término n-ésimo:

a)
$$\left(\frac{n!}{3 \cdot 5 \cdots (2n+1)}\right)^2 x^n$$
 e) $\binom{2n}{n} x^n$ i) $n! x^n$
b) $n! \left(\frac{x}{n}\right)^n$ f) $\frac{2^n}{n^2} x^n$ j) $\frac{2^n}{n!} x^n$
c) $\frac{3^n}{n4^n} x^n$ g) $\frac{(-1)^n}{n^2 4^n} x^n$ k) $\sqrt{n} x^n$
d) $\frac{\log n}{n} x^n$ h) $\frac{x^n}{\sqrt{n}}$ l) $\frac{x^n}{n2^n}$

13. Desarrollar en series de potencias de x las siguientes funciones, indicando los intervalos en los que son válidos los desarrollos:

14. Desarrollar en series de potencias de $(x - x_0)$ las siguientes funciones, indicando los intervalos en los que son válidos los desarrollos:

a)
$$(a+bx)^{-1}$$
, $x_0=1$

b
$$\sqrt{1+x}$$
, $x_0 = 3$

d)
$$\log 2x - \frac{1}{x-1}$$
, $x_0 = 2$

15) Probar utilizando derivación que

$$\sum_{n=1}^{\infty} \frac{x^{4n-1}}{4n-1} = \frac{1}{4} \log \frac{1+x}{1-x} - \frac{1}{2} \arctan x.$$

16. Desarrollar en serie de potencias de x las siguientes funciones indicando su radio de convergencia y calcular $f^{(1000)}(0)$ y $f^{(1001)}(0)$.

(a)
$$f(x) = -\frac{1}{2}x\sqrt{1-x^2} + \frac{\arcsin x}{2}$$
.

$$(b) f(x) = \frac{\arctan x}{2} + \frac{1}{4} \log \left(\frac{1+x}{1-x} \right).$$

c)
$$f(x) = -\frac{1}{3}\sqrt{1-x^2}(2+x^2)$$
.

Parcial 2-2017 (a) $f(x) = \arcsin \frac{x}{\sqrt{1+x^2}}$

Modelo B Parcial 2-2019 (e) $f(x) = \frac{1}{\sqrt{3}}\arctan\left(\frac{2x-1}{\sqrt{3}}\right) + \frac{1}{3}\log(1+x) - \frac{1}{6}\log(x^2-x+1).$

$$f(x) = \arctan\left(\frac{x+1}{1-x}\right).$$

17. Hallar la suma (si convergen) de las series de potencias $\sum_{n=0}^{\infty} a_n x^n$ donde a_n viene dado por:

a)
$$\frac{2n+2}{n!}$$

$$e) \frac{3n^2 + 2n + 1}{n!}$$

$$f) \frac{n^2 + 7n - 2}{n!}$$

$$d) \frac{3^n}{n^2 + n + 1}$$

$$g) \frac{n^2 + 2n + 3}{n!}$$