```
In [17]:
          import pandas as pd
          import numpy as np
In [18]: | diamonds=pd.read_csv('diamonds.csv')
          print(diamonds)
                               cut color clarity
                 carat
                                                    depth table
                                                                  price
          0
                  0.23
                             Ideal
                                        Ε
                                              SI2
                                                     61.5
                                                            55.0
                                                                     326
                                                                     326
                           Premium
                                        Ε
                                                     59.8
                                                            61.0
          1
                  0.21
                                              SI1
          2
                                        Ε
                                              VS1
                                                     56.9
                                                            65.0
                  0.23
                              Good
                                                                     327
                  0.29
                                        Ι
                                              VS2
                                                            58.0
          3
                           Premium
                                                     62.4
                                                                     334
          4
                  0.31
                              Good
                                        J
                                              SI2
                                                     63.3
                                                            58.0
                                                                     335
                               . . .
                                              . . .
                                                      . . .
                   . . .
                                                             . . .
                                                                     . . .
          53935
                  0.72
                             Ideal
                                              SI1
                                                     60.8
                                                            57.0
                                                                    2757
                                        D
          53936
                  0.72
                              Good
                                        D
                                              SI1
                                                     63.1
                                                            55.0
                                                                    2757
                         Very Good
                                                                    2757
          53937
                  0.70
                                        D
                                              SI1
                                                     62.8
                                                            60.0
          53938
                  0.86
                           Premium
                                        Н
                                              SI2
                                                     61.0
                                                            58.0
                                                                    2757
          53939
                  0.75
                             Ideal
                                        D
                                              SI2
                                                     62.2
                                                            55.0
                                                                    2757
          [53940 rows x 7 columns]
In [19]: # displaying the unique values of a column
          cut list=diamonds['cut'].unique()
          print(cut list)
          print()
          # Number of unique values
          n=diamonds['cut'].nunique()
          print(f'the number of unique values is {n}')
          print()
          ['Ideal' 'Premium' 'Good' 'Very Good' 'Fair']
          the number of unique values is 5
```

Aggregation functions

```
Aggregation Description

count() Total number of items

first(), last() First and last item

mean(), median() Mean and median

min(), max() Minimum and maximum

std(), var() Standard deviation and variance
```

```
mad() Mean absolute deviation
```

prod() Product of all items

sum() Sum of all items

These are all methods of DataFrame and Series objects.

```
In [25]:
         # examples
          print(diamonds.mean())
          print()
          print(diamonds.agg('mean'))
          print()
          print(diamonds[['carat','price']].agg(['mean','sum']))
                       0.797940
          carat
          depth
                      61.749405
          table
                      57.457184
          price
                   3932.799722
          dtype: float64
          carat
                       0.797940
          depth
                      61.749405
          table
                      57.457184
          price
                   3932.799722
          dtype: float64
                                      price
                       carat
                     0.79794 3.932800e+03
          mean
                43040.87000 2.121352e+08
          sum
In [27]: diamonds.aggregate({"carat":['max', 'min'],
                         "price":['max', 'sum', 'mean'],
"depth":['min', 'max']})
```

Out[27]:

depth	price	carat	
79.0	1.882300e+04	5.01	max
43.0	NaN	0.20	min
NaN	2.121352e+08	NaN	sum
NaN	3.932800e+03	NaN	mean

Groupby

The 3 Steps of a Groupby Process

Any groupby process involves some combination of the following 3 steps:

- 1 Splitting the original object into groups based on the defined criteria.
- 2 Applying a function to each group.

3 - Combining the results.

Splitting the Original DataFrame into Groups

In [39]: grpcut=diamonds.groupby('cut') # we are splitting the diamonds dataframe per
print(grpcut)

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000017942593BE0>

grpcut is a GroupBy object

In [40]: #groups and indices attributes of the groupby object

```
print(grpcut.indices)
print()
print(grpcut.groups) # numbers in the list are the row number.
print()
```

97, ..., 53863, 53879, 53882], dtype=int64), {'Fair': array([8, 91, 'Good': array([10, ..., 53916, 53927, 53936], dtype=int64), 2, 4, 13, ..., 53929, 53935, 53939], dtype=int64), 'Ideal': array([11, 'Premium': array([3, 12, ..., 53931, 53934, 53938], dtype=int6 5, 7, ..., 53932, 53933, 53937], dtype 4), 'Very Good': array([6, =int64)}

{'Fair': [8, 91, 97, 123, 124, 128, 129, 204, 227, 241, 255, 296, 298, 314, 3 52, 356, 359, 369, 376, 384, 385, 423, 439, 440, 443, 472, 514, 526, 581, 59 5, 635, 663, 676, 703, 704, 706, 712, 713, 714, 719, 750, 770, 771, 777, 788, 801, 839, 879, 880, 883, 884, 895, 897, 898, 899, 919, 929, 933, 934, 938, 93 9, 967, 1019, 1096, 1097, 1098, 1140, 1183, 1199, 1227, 1235, 1238, 1267, 127 0, 1275, 1319, 1324, 1355, 1357, 1359, 1361, 1362, 1364, 1412, 1423, 1438, 14 69, 1498, 1506, 1515, 1523, 1524, 1527, 1552, 1554, 1597, 1598, 1599, 1608, 1 664, ...], 'Good': [2, 4, 10, 17, 18, 20, 35, 36, 37, 42, 43, 44, 47, 59, 74, 84, 95, 96, 145, 169, 175, 184, 189, 190, 203, 221, 238, 239, 243, 244, 251, 272, 279, 285, 305, 320, 321, 333, 360, 380, 381, 388, 400, 403, 428, 447, 46 1, 475, 476, 482, 499, 504, 511, 518, 528, 537, 544, 567, 590, 654, 658, 664, 667, 677, 694, 705, 710, 723, 724, 725, 726, 729, 748, 753, 769, 803, 859, 86 3, 868, 874, 882, 905, 906, 932, 948, 958, 965, 974, 997, 1002, 1009, 1037, 1 041, 1054, 1075, 1091, 1092, 1093, 1094, 1128, ...], 'Ideal': [0, 11, 13, 16, 39, 40, 41, 51, 52, 55, 60, 62, 63, 65, 66, 82, 83, 90, 92, 102, 104, 105, 10 7, 108, 109, 110, 111, 114, 115, 117, 118, 119, 120, 121, 130, 132, 138, 139, 144, 149, 151, 155, 156, 159, 163, 164, 167, 168, 170, 173, 174, 179, 180, 18 1, 182, 183, 185, 191, 198, 207, 209, 212, 213, 214, 216, 217, 220, 224, 229, 233, 234, 237, 240, 248, 249, 250, 256, 258, 262, 265, 269, 273, 274, 278, 29 1, 292, 293, 294, 295, 300, 302, 303, 308, 309, 312, 313, 315, 316, 318, 326, ...], 'Premium': [1, 3, 12, 14, 15, 26, 45, 53, 54, 56, 61, 64, 68, 69, 72, 7 3, 85, 86, 87, 88, 89, 99, 101, 103, 106, 112, 116, 125, 126, 135, 137, 140, 141, 150, 152, 153, 157, 158, 160, 171, 178, 187, 192, 193, 194, 195, 196, 19 7, 199, 201, 202, 205, 211, 215, 222, 225, 226, 228, 242, 245, 246, 252, 253, 254, 257, 259, 260, 263, 264, 266, 267, 268, 277, 280, 281, 282, 283, 284, 28 8, 289, 290, 297, 306, 311, 317, 319, 322, 323, 324, 327, 328, 334, 335, 336, 337, 338, 339, 353, 354, 357, ...], 'Very Good': [5, 6, 7, 9, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 38, 46, 48, 49, 50, 57, 58, 67, 70, 7 1, 75, 76, 77, 78, 79, 80, 81, 93, 94, 98, 100, 113, 122, 127, 131, 133, 134, 136, 142, 143, 146, 147, 148, 154, 161, 162, 165, 166, 172, 176, 177, 186, 18 8, 200, 206, 208, 210, 218, 219, 223, 230, 231, 232, 235, 236, 247, 261, 270, 271, 275, 276, 286, 287, 299, 301, 304, 307, 310, 325, 329, 330, 340, 342, 34 3, 344, 345, 347, 361, 362, 364, 365, 367, ...]

```
In [41]: # groupby object methods

print(grpcut.size())  # method to display group sizes (how many rows).
print()
print(grpcut.first())  # preview the result with the first or last entry f
print()
print(grpcut.last())
print()
```

	carat	color	clarity	depth	table	price
cut						
Fair	0.22	Е	VS2	65.1	61.0	337
Good	0.23	Е	VS1	56.9	65.0	327
Ideal	0.23	Е	SI2	61.5	55.0	326
Premium	0.21	Е	SI1	59.8	61.0	326
Very Good	0.24	J	VVS2	62.8	57.0	336
	carat	color	clarity	depth	table	price
cut						
Fair	0.71	D	VS1	65.4	59.0	2747
Good	0.72	D	SI1	63.1	55.0	2757
Ideal	0.75	D	SI2	62.2	55.0	2757
Premium	0.86	Н	SI2	61.0	58.0	2757
Verv Good	0.70	D	SI1	62.8	60.0	2757

```
In [42]: print(grpcut.get group('Good') )# Get Specific Group
          print()
          print(grpcut.get_group('Good')[['carat','price']] )
                                                                        # Get Specific Columns
          print()
                           cut color clarity
                  carat
                                                depth
                                                        table
                                                               price
          2
                                   Ε
                                                         65.0
                   0.23
                         Good
                                          VS1
                                                 56.9
                                                                 327
          4
                                    J
                                                                 335
                   0.31
                         Good
                                          SI2
                                                 63.3
                                                         58.0
          10
                   0.30
                         Good
                                    J
                                          SI1
                                                 64.0
                                                         55.0
                                                                 339
          17
                   0.30
                         Good
                                   J
                                          SI1
                                                 63.4
                                                         54.0
                                                                 351
                   0.30
                                    J
                                          SI1
                                                 63.8
                                                                 351
          18
                         Good
                                                         56.0
                    . . .
                           . . .
                                          . . .
                                                  . . .
                                                          . . .
                                                                 . . .
                                  . . .
          53913
                   0.80
                                          VS2
                                                 64.2
                                                         58.0
                                                                2753
                         Good
                                   G
          53914
                   0.84
                         Good
                                   Ι
                                          VS1
                                                 63.7
                                                         59.0
                                                                2753
          53916
                   0.74
                         Good
                                   D
                                          SI1
                                                 63.1
                                                         59.0
                                                                2753
          53927
                   0.79
                         Good
                                   F
                                          SI1
                                                 58.1
                                                         59.0
                                                                2756
          53936
                   0.72
                         Good
                                   D
                                          SI1
                                                 63.1
                                                         55.0
                                                                2757
          [4906 rows x 7 columns]
                  carat
                         price
          2
                   0.23
                            327
                            335
          4
                   0.31
          10
                   0.30
                            339
          17
                   0.30
                            351
                   0.30
                            351
          18
                    . . .
                            . . .
          53913
                   0.80
                           2753
          53914
                   0.84
                          2753
          53916
                   0.74
                           2753
          53927
                   0.79
                           2756
          53936
                   0.72
                          2757
          [4906 rows x 2 columns]
```

Iterating over groups

```
In [43]: for name, group in grpcut:
    print(name)
    print(group)
    print()
```

Fair							
	carat	cut	color	clarity	depth	table	price
8	0.22	Fair	E	VS2	65.1	61.0	337
91	0.86	Fair	Е	SI2	55.1	69.0	2757
97	0.96	Fair	F	SI2	66.3	62.0	2759
123	0.70	Fair	F	VS2	64.5	57.0	2762
124	0.70	Fair	F	VS2	65.3	55.0	2762
• • •	• • •			• • •	• • •	• • •	
53757	0.72	Fair	F	VS2	55.4	64.0	2724
53800	0.90	Fair	I	VS1	68.7	62.0	2732
53863	1.00	Fair	I	SI2	66.8	56.0	2743
53879	1.04	Fair	G	SI2	65.2	57.0	2745
53882	0.71	Fair	D	VS1	65.4	59.0	2747

[1610 rows x 7 columns]

Good	ı
------	---

	carat	cut	color	clarity	depth	table	price
2	0.23	Good	Ε	VS1	56.9	65.0	327
4	0.31	Good	J	SI2	63.3	58.0	335
10	0.30	Good	J	SI1	64.0	55.0	339
17	0.30	Good	J	SI1	63.4	54.0	351
18	0.30	Good	J	SI1	63.8	56.0	351
53913	0.80	Good	G	VS2	64.2	58.0	2753
53914	0.84	Good	I	VS1	63.7	59.0	2753
53916	0.74	Good	D	SI1	63.1	59.0	2753
53927	0.79	Good	F	SI1	58.1	59.0	2756
53936	0.72	Good	D	SI1	63.1	55.0	2757

[4906 rows x 7 columns]

Ideal

TUCUI							
	carat	cut	color	clarity	depth	table	price
0	0.23	Ideal	Ε	SI2	61.5	55.0	326
11	0.23	Ideal	J	VS1	62.8	56.0	340
13	0.31	Ideal	J	SI2	62.2	54.0	344
16	0.30	Ideal	I	SI2	62.0	54.0	348
39	0.33	Ideal	I	SI2	61.8	55.0	403
53925	0.79	Ideal	I	SI1	61.6	56.0	2756
53926	0.71	Ideal	Ε	SI1	61.9	56.0	2756
53929	0.71	Ideal	G	VS1	61.4	56.0	2756
53935	0.72	Ideal	D	SI1	60.8	57.0	2757
53939	0.75	Ideal	D	SI2	62.2	55.0	2757

[21551 rows x 7 columns]

Premium

	carat	cut	color	clarity	depth	table	price
1	0.21	Premium	Е	SI1	59.8	61.0	326
3	0.29	Premium	I	VS2	62.4	58.0	334
12	0.22	Premium	F	SI1	60.4	61.0	342
14	0.20	Premium	Е	SI2	60.2	62.0	345
15	0.32	Premium	Е	I1	60.9	58.0	345
• • •	• • •	• • •		• • •	• • •	• • •	• • •
53928	0.79	Premium	Е	SI2	61.4	58.0	2756

53930	0.71	Premium	Е	SI1	60.5	55.0	2756
53931	0.71	Premium	F	SI1	59.8	62.0	2756
53934	0.72	Premium	D	SI1	62.7	59.0	2757
53938	0.86	Premium	Н	SI2	61.0	58.0	2757

[13791 rows x 7 columns]

Very Good

	carat	cut	color	clarity	depth	table	price
5	0.24	Very Good	J	VVS2	62.8	57.0	336
6	0.24	Very Good	I	VVS1	62.3	57.0	336
7	0.26	Very Good	Н	SI1	61.9	55.0	337
9	0.23	Very Good	Н	VS1	59.4	61.0	338
19	0.30	Very Good	J	SI1	62.7	59.0	351
• • •				• • •	• • •		
53921	0.70	Very Good	Е	VS2	62.8	60.0	2755
53922	0.70	Very Good	D	VS1	63.1	59.0	2755
53932	0.70	Very Good	Е	VS2	60.5	59.0	2757
53933	0.70	Very Good	Е	VS2	61.2	59.0	2757
53937	0.70	Very Good	D	SI1	62.8	60.0	2757

[12082 rows x 7 columns]

Pandas Groupby for Data Aggregation

Aggregate functions in the Pandas package:

count() - Number of non-null observations

sum() - Sum of values

mean() - Mean of values

median() - Arithmetic median of values

min() - Minimum

max() - Maximum

mode() - Mode

std() - Standard deviation

var() - Variance

In [44]: grpcut_mean=grpcut.mean() # mean values for each numeric column by group.
print(grpcut_mean)

```
carat
                        depth
                                  table
                                               price
cut
          1.046137 64.041677 59.053789 4358.757764
Fair
          0.849185 62.365879 58.694639 3928.864452
Good
Ideal
          0.702837 61.709401 55.951668 3457.541970
Premium
          0.891955
                   61.264673 58.746095
                                         4584.257704
Very Good
          0.806381 61.818275 57.956150 3981.759891
```

In [45]: grpcut_mean_price=grpcut['price'].mean() # calculate mean for the 'price' c
print(grpcut_mean_price)
print(type(grpcut_mean_price)) # cutgrp_mean_price is a Serie

cut
Fair 4358.757764
Good 3928.864452
Ideal 3457.541970
Premium 4584.257704
Very Good 3981.759891
Name: price, dtype: float64

<class 'pandas.core.series.Series'>

Groupby multiple columns - count diamonds per cut and color

In [46]: grp_cut_color=diamonds.groupby(['cut','color'])
 print(grp_cut_color.count())

	_	carat	clarity	depth	table	price
cut	color					
Fair	D	163	163	163	163	163
	E	224	224	224	224	224
	F	312	312	312	312	312
	G	314	314	314	314	314
	Н	303	303	303	303	303
	I	175	175	175	175	175
	J	119	119	119	119	119
Good	D	662	662	662	662	662
	E	933	933	933	933	933
	F	909	909	909	909	909
	G	871	871	871	871	871
	Н	702	702	702	702	702
	I	522	522	522	522	522
	J	307	307	307	307	307
Ideal	D	2834	2834	2834	2834	2834
	E	3903	3903	3903	3903	3903
	F	3826	3826	3826	3826	3826
	G	4884	4884	4884	4884	4884
	Н	3115	3115	3115	3115	3115
	I	2093	2093	2093	2093	2093
	J	896	896	896	896	896
Premium	D	1603	1603	1603	1603	1603
	E	2337	2337	2337	2337	2337
	F	2331	2331	2331	2331	2331
	G	2924	2924	2924	2924	2924
	Н	2360	2360	2360	2360	2360
	I	1428	1428	1428	1428	1428
	J	808	808	808	808	808
Very Good	D	1513	1513	1513	1513	1513
-	E	2400	2400	2400	2400	2400
	F	2164	2164	2164	2164	2164
	G	2299	2299	2299	2299	2299
	Н	1824	1824	1824	1824	1824
	I	1204	1204	1204	1204	1204
	J	678	678	678	678	678

```
In [47]: print(grp_cut_color['price'].sum())
```

cut	C	olor	
Fair	D		699443
	Ε		824838
	F		1194025
	G		1331126
	Н		1556112
	Ι		819953
	J		592103
Good	D		2254363
	Ε		3194260
	F		3177637
	G		3591553
	Н		3001931
	Ι		2650994
	J		1404271
Ideal	D		7450854
	Ε		10138238
	F		12912518
	G		18171930
	Н		12115278
	Ι		9317974
	J		4406695
Premium	D		5820962
	Ε		8270443
	F		10081319
	G		13160170
	Н		12311428
	Ι		8491146
	J		5086030
Very Good	D		5250817
	Ε		7715165
	F		8177367
	G		8903461
	Н		8272552
	Ι		6328079
	J		3460182
Name: pric	e.	dtvpe:	int64

Name: price, dtype: int64

Applying Multiple Aggregation Functions at Once using agg()

```
In [48]: grp_cut_color[['price']].agg([np.sum, np.mean, np.std])
```

Out[48]:

		price		
		sum	mean	std
cut	color			
Fair	D	699443	4291.061350	3286.114238
	E	824838	3682.312500	2976.651645
	F	1194025	3827.003205	3223.302685
	G	1331126	4239.254777	3609.644379
	Н	1556112	5135.683168	3886.481847
	I	819953	4685.445714	3730.271132
	J	592103	4975.655462	4050.458933
Good	D	2254363	3405.382175	3175.148710
	E	3194260	3423.644159	3330.702061
	F	3177637	3495.750275	3202.411187
	G	3591553	4123.482204	3702.504718
	Н	3001931	4276.254986	4020.660488
	I	2650994	5078.532567	4631.702141
	J	1404271	4574.172638	3707.790845
Ideal	D	7450854	2629.094566	3001.069919
	E	10138238	2597.550090	2956.007149
	F	12912518	3374.939362	3766.635328
	G	18171930	3720.706388	4006.262468
	Н	12115278	3889.334831	4013.375228
	I	9317974	4451.970377	4505.150405
	J	4406695	4918.186384	4476.206836
Premium	D	5820962	3631.292576	3711.634010
	E	8270443	3538.914420	3794.987184
	F	10081319	4324.890176	4012.022756
	G	13160170	4500.742134	4356.571034
	Н	12311428	5216.706780	4466.189717
	I	8491146	5946.180672	5053.746146
	J	5086030	6294.591584	4788.936691

price

		sum	mean	std
cut	color			
Very Good	D	5250817	3470.467284	3523.753268
	E	7715165	3214.652083	3408.023634
	F	8177367	3778.820240	3786.124033
	G	8903461	3872.753806	3861.375464
	Н	8272552	4535.390351	4185.798202
	1	6328079	5255.879568	4687.104775
	J	3460182	5103.513274	4135.652742

Applying custom function

```
In [49]: # The function return the number of diamonds with color 'D' for each group
         def get_D_color(df): # df is the DataFrame of each group
            return len(df[df["color"] == 'D'])
         # Set the custom function as the parameter of apply()
         print(grpcut.apply(get_D_color))
         cut
         Fair
                      163
         Good
                      662
         Ideal
                     2834
         Premium
                     1603
         Very Good
                     1513
         dtype: int64
```

Filtering: filter(), query()

```
In [50]: grpcut mean=grpcut.mean() # mean values for each numeric column by group.
         print(grpcut.size())
         print(grpcut_mean)
         print(grpcut['price'].filter(lambda x: x.mean() > 4400))
         cut
         Fair
                       1610
         Good
                       4906
         Ideal
                      21551
         Premium
                      13791
         Very Good
                      12082
         dtype: int64
                       carat
                                  depth
                                             table
                                                           price
         cut
         Fair
                    1.046137 64.041677
                                         59.053789 4358.757764
         Good
                    0.849185 62.365879 58.694639 3928.864452
         Ideal
                    0.702837 61.709401 55.951668 3457.541970
         Premium
                    0.891955 61.264673 58.746095
                                                    4584.257704
         Very Good 0.806381 61.818275 57.956150 3981.759891
                   326
         1
         3
                   334
                   342
         12
                   345
         14
         15
                   345
In [51]: |print(diamonds.query("color=='D'").groupby('cut').size())
         print()
         cut
         Fair
                       163
         Good
                       662
         Ideal
                      2834
         Premium
                      1603
         Very Good
                      1513
         dtype: int64
```

Groupby and NaN

```
In [52]: df = pd.DataFrame(
                  (1, 'B', 121, 10.1, True),
                  (2, 'C', 145, 5.5, False),
                  (3, 'A', 345, 4.5, False),
                  (4, 'A', 112, np.nan, True),
                  (5, 'C', 105, 2.1, False),
                  (6, np.nan, 435, 7.8, True),
                  (7, np.nan, 521, np.nan, True),
                  (8, 'B', 322, 8.7, True),
                  (9, 'C', 213, 5.8, True),
                  (10, 'B', 718, 9.1, False),
              ],
              columns=['colA', 'colB', 'colC', 'colD', 'colE'])
          print(df)
             colA colB
                        colC
                               colD
                                      colE
          0
                         121
                              10.1
                                      True
                1
                     В
          1
                2
                     C
                         145
                                5.5
                                     False
          2
                3
                     Α
                         345
                                4.5
                                     False
          3
                4
                     Α
                         112
                                NaN
                                      True
          4
                5
                     C
                         105
                                2.1
                                    False
          5
                6
                   NaN
                         435
                                7.8
                                      True
                7
          6
                   NaN
                         521
                                NaN
                                      True
          7
                8
                     В
                         322
                                8.7
                                      True
          8
                9
                     C
                         213
                                5.8
                                      True
               10
                     В
                         718
                                9.1 False
In [53]: |print(df.groupby('colB')['colD'].sum())
          print()
          print(df.groupby('colB', dropna=False)['colD'].sum())
         print()
          #df.fillna(-1).groupby('colB').sum()
          colB
                4.5
          Α
               27.9
          В
               13.4
          Name: colD, dtype: float64
          colB
                  4.5
          Α
          В
                 27.9
          C
                 13.4
          NaN
                  7.8
          Name: colD, dtype: float64
```

```
In [54]: print(df.groupby('colB').count())
print()
print(df.groupby('colB', dropna=False).count())
```

	colA	colC	colD	colE
colB				
Α	2	2	1	2
В	3	3	3	3
C	3	3	3	3
	colA	colC	colD	colE
colB				
Α	2	2	1	2
В	3	3	3	3
C	3	3	3	3
NaN	2	2	1	2