What is machine learning?

Lecture 01

Wage data from workers in the mid-Atlantic region

How do you predict how much someone will make?

Data source: James et al., 2013

How can you tell these flowers apart?

Iris setosa

Iris virginica

Image Sources: Srishti Sawla (setosa) and Ivo Dinov, University of Michigan SOCR (versicolor and verginica)

setosa

versicolor

virginica

Challenges

What is this?

Image by artist Hikaru Cho

We generalize from past experiences

Image: "It's not what it seems" by artist Hikaru Cho

our data must be representative

How about this one?

Predict which class x_{new} belongs to...

$$f(\mathbf{x}_{new}) = ?$$

Example credit: Yaser Abu-Mostafa, 2012

Machine learning is an ill-posed problem

There are often many models that fit your training data similarly well

So how do we choose which to use?

the best models generalize well

Predict the next value in the sequence...

$$f(4) = 0.530$$

A model:

$$f(x) = 16.2x - 6.36x^2 - 11.9x^3 - 4.77x^4 + 7.03x^5 + 8.32x^6 - 9.01x^7 + 2.75x^8 - 0.275x^9$$

setosa

versicolor

virginica

Data Source: Fisher Iris Data

Complex models overfit to the data

overfit works against generalization

Learning representations of data enables learning

Machine learning suggests an alternative programming paradigm

François Chollet, Deep Learning with Python, 2017

What is machine learning?

A class of techniques where the **goal** is to **describe**, **predict**, and **strategize**...

...based on data and past experience...

...and do so automatically, with minimal human intervention.

What is machine learning?

Artificial Intelligence Machine Learning Deep Learning

The effort to automate intellectual tasks normally performed by humans

Techniques to automatically describe, predict, and strategize based on data, without being explicitly programmed

A type of machine learning that learns successive layers of data representations

François Chollet, Deep Learning with Python, 2017

Types of machine learning tools

Types of learning

Common use case

Unsupervised learning

Describe

Supervised learning

Predict

Reinforcement learning

Strategize

Types of machine learning

	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Goal	Predict from examples	Describe structure in data	Strategize learn by trial and error
Data	(x,y)	$\boldsymbol{\chi}$	delayed feedback
Types	ClassificationRegression	 Density estimation Clustering Dimensionality reduction Anomaly detection 	Model-free learningModel-based learning

Sale Price Prediction

\$414K

\$596K

\$315K

\$412K

\$403K

\$390K

\$380K

\$578K

\$610K

Input Data: Home characteristics

(Numerical & Categorical)

Target Data:

Price estimate (numerical)

Learning Category:

Supervised Learning Regression

\$714K

27708 Real Estate

Homes for You More Newest Cheapest

1 home for sal

* \$79,100 (Jun 17) HOUSE FOR SALE \$599,900 5 bds . 4 ba . 3,264 sqft

1640 Marion Ave, Durham, NC 27705

5 beds \cdot 4 baths \cdot 3,264 sqft

SPACIOUS RANCH W FINISHED LL WALKOUT! 5 BEDROOMS AND 4 BRAND NEW BATHS! RENOVATED WITH CUSTOM FEATURES THRUOUT! CONTEMPORARY HOME WITH MANY HANDICAP ACCESSIBLE REQUIREMENTS ALREADY IN PLACE! VAULTED CEILINGS! SECLUDED TREED LOT! GREAT HOME FOR LIVING AND ENTERTAINING WITH LARGE REAR DECK! WONDERFUL CONTEMPORARY FEEL THAT LIVES

LARGE WITH EASY ACCESS TO DUKE UNIVERSITY:

SHOPPING; HEALTH CARE; PARKS; R SHOPPING; AND EASY HIGHWAY AC FOR SALE \$599,900

Price cut: -\$79,100 (6/17) Zestimate*: \$619.585

EST. MORTGAGE

\$2,284/mo 🖩 -

Get pre-qualified

Zestimate[®]: \$619,585

Zillow

From: Internal Revenue Service [mailto:yourtaxrefund@InternalRevenueService.com]

Sent: Tuesday, July 22, 2008 9:47 AM

Subject: Get your tax refund now

Importance: High

After the last annual calculations of your account activity we have determined that you are eligible to receive a tax refund of \$479.30.

Please submit the tax refund request and allow us 2-6 days in order to process it.

A refund can be delayed for a variety of reasons. For example submitting invalid records or applying after the deadline.

To access the form for your tax refund, please click here (http://e-dlogs.rta.mi.th:84/www.irs.gov/)

Note: Deliberate wrong inputs will be prosecuted by law.

Regards,

Internal Revenue Service

Spam Filters

Input Data:

Email text (text)

Target Data:

Spam/not spam (category)

Learning Category:

Supervised Learning Classification (binary)

Spam example source: itservices.uchicago.edu

Where's Waldo = Computer Vision Problem

Object Recognition: Energy Systems

Kyle Bradbury

What is machine learning?

Duke University | Lecture 01

Credit Fraud

Input Data:

Account transactions, dates, locations, demographic information (Numerical and categorical)

Target Data:

Anomalous transactions

Learning Category:

Unsupervised Learning Clustering, Density Estimation

Anomalous Event Detection: NYC Taxis

Data source: Numenta Anomaly Benchmark (NAB), from kaggle.com

Sherlock

97% Match 2017 TV-14 4 Series

97% Match

edding reception, Sherloc ering a best man's speech

Season 3's episode "The Abominable Bride," which originally aired as a TV movie, won two Emmys.

MY LIST

Video Recommendations

Input Data:

User video ratings (numerical and categorical)

Target Data:

User rating of video (numerical)

Learning Category:

Recommender Systems

Learning a strategy to master games

Input Data:

Moves taken and occasional feedback on win/loss (Numerical and categorical)

Target Data:

Win/loss (Maximizing rewards)

Learning Category:

Reinforcement Learning

THE ULTIMATE GO CHALLENGE

GAME 3 OF 3

27 MAY 2017

AlphaGo Winner of Match 3

Ke Jie

RESULT B + Res

Kyle Bradbury What is machine learning? Duke University | Lecture 01

Manufacturing – learn to pick up iron cylinders

Types of machine learning

	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Goal	Predict from examples	Describe structure in data	Strategize learn by trial and error
Data	(x,y)	$\boldsymbol{\chi}$	delayed feedback
Types	ClassificationRegression	 Density estimation Clustering Dimensionality reduction Anomaly detection 	Model-free learningModel-based learning

Course logistics

Learning objectives

- Fundamentals of machine learning
- Structure a machine learning problem
- Automatically make decisions from data
- Understand the techniques/algorithms and when to use them
- Communicate and effectively interpret machine learning output
- Implement your own end-to-end machine learning project

Pedagogy

Good learning is active learning

Desirable difficulty leads to meaningful learning

- Also helps create mental models for independent learning
- Enhances abilities to interpret machine learning results

Reading, reflection, and recall is a pattern for effective learning

- You'll interact with each concept 4 times typically (lectures, readings, quizzes, and assignment)
- Helps avoid illusion of knowledge

Course website

kylebradbury.github.io/ids705

Graded Components

Assignments 50% (6 assignments, 8.3% each)

Quizzes 20% (One before each class, <1% each)

Final project 30%

Action items

- 1. Complete the first set of readings
- 2. Take Lecture 2 Quiz on Sakai (available immediately after class)
- 3. Log into each of the course sites (Sakai, Piazza, Gradescope)
- 4. Begin working on Assignment #1
- 5. [optional] Coding session with TA's: Friday, Jan 22, 3:15-4:15pm