Алгебра. Глава 10. Поля

Д.В.Карпов

2024

Пусть K — поле, L — надполе K. Тогда L — расширение поля K.

• Если L — расширение поля K, то L — линейное пространство над K, через [L:K] будем обозначать его размерность.

Определение

L — конечное расширение поля K, если степень расширения [L:K] конечна и бесконечное расширение в противном случае.

Теорема 1

Пусть L — расширение поля K, а F — расширение L. Тогда [F:K] конечно, если и только если [F:L] и [L:K] конечны. Более того, $[F : K] = [F : L] \cdot [L : K]$.

Доказательство. \leftarrow . • Пусть [F:L] и [L:K] конечны.

• Пусть f_1, \ldots, f_n — базис F над L, а e_1, \ldots, e_m — базис Lнад *K*.

 $\{f_i e_i\}_{i \in \{1,...,n\},\ i \in \{1,...,m\}}$ — порождающая система векторов Fнад К.

Доказательство. \bullet Пусть $x \in F$. Тогда $x = \sum_{i=1}^{n} y_i f_i$, где $y_i \in L$.

ullet Для каждого i элемент $y_i \in L$ раскладывается по базису над K: $y_i = \sum_{i=1}^n \alpha_{i,j} e_j$, где $\alpha_{i,j} \in K$.

• Тогда $x = \sum_{i=1}^{n} \sum_{i=1}^{m} \alpha_{i,j} (e_j \cdot f_i)$, где $\alpha_{i,j} \in K$. Утверждение 2

 $\{f_ie_j\}_{i\in\{1,...,n\},\ i\in\{1,...,m\}}$ ЛНЗ над K.

Доказательство. ullet Пусть $lpha_{i,j} \in K$ таковы, что

 $0 = \sum_{i=1}^{n} \sum_{i=1}^{m} \alpha_{i,j} (e_j \cdot f_i) = \sum_{i=1}^{n} (\sum_{i=1}^{m} \alpha_{i,j} e_j) f_i.$

ullet Так как f_1,\ldots,f_n — базис F над L, для всех $i\in\{1,\ldots,n\}$ имеем $\sum_{i=1}^{m} \alpha_{i,j} e_j = 0$.

ullet Так как e_1, \dots, e_m — базис L над K, для всех $i \in \{1, \dots, n\}$ и $j \in \{1, ..., m\}$ имеем $\alpha_{i,j} = 0$.

- По Утверждениям 1 и 2, базис F над K содержит mn элементов, значит, $[F:K]=mn=[F:L]\cdot [L:K]$. Доказательство. \Rightarrow . Пусть [F:K] конечно.
- ullet Так как L подпространство F над K, $[L:K] \leq [F:K]$ конечна.
- ullet Так как порождающая система F над K будет порождающей и над L, тогда и $[F:L] \leq [F:K]$ конечна.

- 1) Факторкольцо L := K[x]/fK[x] поле. Более того, L содержит подкольцо, изоморфное K и f имеет в L корень.
- 2) Существует расширение поля K, в котором f имеет корень.

Доказательство. • НУО
$$f$$
 унитарный. Пусть $f(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_0$.

- ullet Очевидно, отображение arphi: K o L, заданное формулой $arphi(lpha) := \overline{lpha}$ является гомоморфизмом колец.
- Очевидно, $\operatorname{Im}(K) \neq \{\overline{0}\}.$
- ullet Тогда ${
 m Ker}(arphi)$ идеал в K и ${
 m Ker}(arphi)
 eq K$. Значит, ${
 m Ker}(arphi) = \{0\}$, то есть, arphi инъекция.
- ullet Следовательно, $K':=\mathrm{Im}(arphi)\simeq K$ поле.
- В дальнейшем мы будем отождествлять K' с K и считать, что L расширение поля K.

Утверждение

L — поле.

Доказательство. \bullet Пусть $g \in K[x]$, $\overline{g} \neq 0$ в L (что означает $g \not \mid f$ в K[x]).

- ullet Нам нужно доказать, что \overline{g} обратим в L.
- ullet Так как f неприводим, $(f,g)\sim 1$.
- ullet Тогда существуют такие $p,q\in K[x]$, что fp+gq=1 (линейное представление НОД).
- ullet Это означает, что $\overline{g}\cdot\overline{q}=1$ в L, что нам и нужно. (Напомним, что мы отождествляем $1\in K$ с $\overline{1}\in L$.)
- ullet В L многочлен f имеет корень: $f(\overline{x}) = \overline{f(x)} = 0$. Пункт 1 теоремы доказан.
- Так как L расширение поля K, в котором f имеет корень, пункт 2 также доказан.

Определение

Пусть L — расширение поля K.

- Элемент $a \in L$ называется алгебраическим над K, если существует такой многочлен $f \in K[x]$, что f(a) = 0. Если такого многочлена нет, то a называется трансцендентным над K.
- Если $a \in L$ алгебраический над K, обозначим через I_a множество всех многочленов из K[x], корнем которых является a.
- ullet Очевидно, все элементы поля K алгебраические над K.

Лемма 1

$$I_a$$
 — идеал в $K[x]$.

Доказательство.
$$\bullet$$
 Если $f,g\in I_a$, то $(f+g)(a)=f(a)+g(a)=0\Rightarrow f+g\in I_a.$

- ullet Если $f\in I_a,\ h\in K[x],\ ext{то}$ $(hf)(a)=h(a)f(a)=h(a)\cdot 0=0\Rightarrow hf\in I_a.$
- Значит, I_a идеал в K[x].

ullet I_a — идеал в K[x], а значит, существует такой унитарный (т. е со страшим коэффициентом 1) многочлен $f_a\in K[x]$, что $I_a=f_a\cdot K[x]$.

Определение

Многочлен f_a называется минимальным многочленом элемента a.

ullet По построению, если $g\in K[x]$ и g(a)=0, то $g\stackrel{.}{\cdot} f_a$.

Лемма 2

Минимальный многочлен f_{α} неприводим.

Доказательство. ullet Предположим противное, пусть $f_{lpha}=g\cdot h$, где $g,h\in K[x]$ и $\deg(g),\deg(h)<\deg(f_{lpha}).$

- ullet Тогда $0=f_{lpha}(lpha)=g(lpha)\cdot h(lpha)$, откуда следует, что g(lpha)=0 или h(lpha)=0.
- ullet НУО g(lpha)=0. Тогда по определению $g \ \dot{f}_lpha$, что не так.

Определение

Расширение L поля K — алгебраическое, если все элементы L — алгебраические над K.

Лемма 3

Если L — конечное расширение поля K, то это расширение — алгебраическое.

Доказательство. \bullet Пусть $a \in L$, n = [L : K].

• Тогда $1,a,\dots,a^n$ — ЛЗ над K, значит, $\exists \ c_0,\dots,c_n\in K$ такие, что $c_na^n+\dots+c_0=0$, то есть a — алгебраический элемент над K.

Определение

Пусть L — расширение поля K, $\alpha_1,\ldots,\alpha_n\in L$. Обозначим через $K(\alpha_1,\ldots,\alpha_n)$ минимальное расширение K — подполе L, содержащее α_1,\ldots,α_n .

Будем говорить, что $K(\alpha_1, \ldots, \alpha_n)$ получено из K присоединением $\alpha_1, \ldots, \alpha_n$.

Лемма 4

 $K(\alpha_1,\ldots,\alpha_n)$ — пересечение всех расширений K, являющихся подполями L и содержащих α_1,\ldots,α_n .

Доказательство. ullet Пусть $\{F_i\}_{i\in I}$ — все такие расширения K, $F=\bigcap_{i\in I}F_i$.

- Тогда F замкнуто по взятию суммы, призведения, обратных элементов по сложению и умножению (для любых двух $x, y \in F$ все это есть в каждом F_i , а значит и в F).
- Следовательно, F поле. Так как F содержит $\alpha_1, \ldots, \alpha_n$, мы имеем $F = K(\alpha_1, \ldots, \alpha_n)$.

Лемма 5

Пусть L — расширение поля K, $\alpha_1, \ldots, \alpha_n \in L$. Тогда $K(\alpha_1, \ldots, \alpha_n) = K(\alpha_1)(\alpha_2) \ldots (\alpha_n)$ (то есть, $K(\alpha_1, \ldots, \alpha_n)$ получается последовательным присоединением элементов $\alpha_1, \ldots, \alpha_n$).

Доказательство. \bullet Индукция по n.

- Достаточно доказать, что $K(\alpha_1, \dots, \alpha_n) = K(\alpha_1, \dots, \alpha_{n-1})(\alpha_n).$
- Пусть $F = K(\alpha_1, \dots, \alpha_{n-1}).$
- \supset Очевидно, $K(\alpha_1, \ldots, \alpha_n) \supset F$. То есть, это расширение поля F, содержащее α_n .
- Следовательно, $K(\alpha_1, \ldots, \alpha_n) \supset F(\alpha_n)$.
- $\subset \bullet$ $F(\alpha_n)$ расширение поля K, содержащее $\alpha_1, \ldots, \alpha_n$.
- Значит, $F(\alpha_n) \supset K(\alpha_1, \dots, \alpha_n)$.

Теорема 3

Пусть L — расширение поля K, $\alpha \in L$ — алгебраический элемент. Тогда $K(\alpha) \simeq K[x]/f_{\alpha} \cdot K[x]$. В частности, $[K(\alpha) : K] = \deg(f_{\alpha})$.

- $F = \text{Lin}(1, \alpha, ..., \alpha^{n-1})$ (множество линейных комбинаций с коэффициентами из K). Очевидно, $F \subset K(\alpha)$.
- Так как $\deg(f_a)=n$, нет многочлена меньшей степени, корнем которого является α . Значит, $1,\alpha,\ldots,\alpha^{n-1}$ ЛНЗ над K.
- $\alpha^m \in F$ при $m \ge n$ является линейной комбинацией $1,\alpha,\ldots,\alpha^{n-1}$ с коэффициентами из K.
- ullet Таким образом, F содержит g(lpha) для любого многочлена $g\in \mathcal{K}[x].$
- ullet Значит, F замкнуто по умножению, то есть, это кольцо.
- ullet Пусть $\varphi: K[x] o F$ задано формулой $\varphi(f):=f(\alpha)$. Нетрудно проверить, что f гомоморфизм колец.
- ullet Так как $f(lpha)=0\iff f\ \dot{f}_lpha$, мы имеем $\ker(arphi)=f_lpha\cdot K[x].$
- ullet По теореме о гомоморфизме колец (Глава 0) $F\simeq K[x]/f_{lpha}\cdot K[x].$
- ullet По Лемме 1 мы знаем, что f_a неприводимый в K[x]. По Теореме 2 тогда $K[x]/f_{lpha}\cdot K[x]$ поле, а значит, и F поле.
- ullet Так как $lpha \in F$, по определению K(lpha), тогда $K(lpha) \simeq F$.

Пусть L — расширение поля K, а A — множество всех элементов L, алгебраических над K. Тогда A — поле.

Доказательство. • Пусть $u,v\in A$. Тогда можно считать, что $[K(u):K]=n\in N$ и $[K(v):K]=m\in N$.

- По Лемме 5, K(u, v) = K(u)(v).
- ullet Пусть $f_v \in K[x]$ минимальный многочлен v над K.
- Так как $f_v \in (K(u))[x]$ и $f_v(v) = 0$, минимальный многочлен v над K(u) по Лемме 1 является делителем f_v , а значит, имеет степень не более чем $\deg(f_v) = m$.
- ullet По Теореме 3 тогда $[K(u,v):K(u)] \leq [K(v):K] = m.$
- По Теореме 1 имеем $[K(u, v) : K] = [K(u, v) : K(u)] \cdot [K(u, v) : K$

$$[K(u,v):K] = [K(u,v):K(u)]\cdot [K(u):K] \leq mn.$$

- ullet По Лемме 3 тогда все элементы K(u,v) алгебраические над K, то есть, $K(u,v)\subset A$.
- Таким образом, A замкнуто по сложению, умножению, вычитанию и делению (так как K(u,v) замкнуто), то есть, A поле.

Расширение L поля K называется полем разложения унитарного многочлена $f \in K[x]$, если f раскладывается в L на линейные множители: $f = (x - \alpha_1) \dots (x - \alpha_n)$ и $L = K(\alpha_1, \dots, \alpha_n)$.

Теорема 5

Пусть K — поле. Тогда для любого унитарного многочлена $f \in K[x]$ существует поле разложения L, причем $[L:K] \le n!$, где $\deg(f) = n$.

Доказательство. • Индукция по $\deg(f)$. База для случая $\deg(f) = 1$ очевидна.

- Переход. Пусть для многочленов меньших чем $\deg(f)$ степеней теорема доказана.
- \bullet Пусть $f \ : \ f_1$, где многочлен f_1 неприводимый.
- По Теореме 2 существует расширение K' поля K, в котором f_1 (а значит, и f) имеет корень α_1 , то есть, $f(x) \vdots x \alpha_1$.
- ullet В K' элемент lpha алгебраический и можно рассмотреть расширение $K(lpha_1)$ поля K.

Д.В.Карпов

- Выделим все линейные множители в разложении f в $K(\alpha_1)$: $f(x) = (x \alpha_1) \dots (x \alpha_k) g(x)$.
- ullet Корни $lpha_2,\dots,lpha_k$ и так есть в $K(lpha_1)$ можно считать, что мы их присоединяем без изменения поля.
- По индукционному предположению, существует поле разложение L многочлена g над $K(\alpha_1)$, причем L получено присоединением корней g и $[L:K(\alpha_1)]<(\deg(g))!=(n-k)!<(n-1)!$.
- ullet В поле L многочлен f раскладывается на линейные множители.
- По Теореме 1,

$$[L:K] \leq [L:K(\alpha_1)] \cdot [K(\alpha_1):K] \leq n \cdot (n-1)! = n!.$$

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \in K[x]$$
 положим $\varphi(f(x)) := \varphi(a_n) x^n + \dots + \varphi(a_1) x + \varphi(a_0).$

Теорема 6

Пусть $\varphi: K \to K'$ — изоморфизм полей, $f \in K[x]$ — унитарный многочлен, $f':=\varphi(f)$. Пусть F и F' — поля разложения многочленов f и f' над K и K' соответственно. Тогда существует изоморфизм полей F и F'.

Доказательство. • Индукция по m := [F : K].

База m=1. Тогда F=K, то есть, f раскладывается на линейные множители в K: пусть $f(x)=(x-lpha_1)\dots(x-lpha_m)$.

- Тогда $f'(x) = (\varphi(f))(x) = \varphi(x \alpha_1) \dots \varphi(x \alpha_m) = (x \varphi(\alpha_1)) \dots (x \varphi(\alpha_m)).$
- ullet Следовательно, F'=K'.

Переход. Пусть для многочленов меньшей степени утверждение доказано.

ullet Пусть lpha — корень f в F, а $g=f_lpha$ — минимальный многочлен lpha в K[x].

- ullet Пусть g'=arphi(g). Тогда многочлен g' неприводим в K'[x].
- ullet $f \ : g \Rightarrow f' \ : g'$ (если f = gq в K[x], то f' = g'q' в K'[x], где $q' := \varphi(q)$).
- ullet Так как f' раскладывается на линейные множители в F', g' тоже раскладывается на линейные множители в F'.
- ullet В частности, $\exists lpha' \in F'$ такой, что g'(lpha') = 0.
- ullet Пусть $f_{lpha'}$ минимальный многочлен lpha' в K'[x].
- ullet Тогда $g' \ \vdots \ f_{lpha'}$. Так как g неприводимый, $g' \sim f_{lpha'}$.
- ullet Старший коэффициент g равен 1, а g'=arphi(g). Следовательно, старший коэффициент g' также равен 1. Значит, $g'=f_{lpha'}$.
- По Теореме 3, $K(\alpha) \simeq K[x]/gK[x]$ и $K'(\alpha') \simeq K'[x]/g'K'[x]$ поля.

- ullet Для каждого многочлена $h\in K[x]$ будем использовать обозначение $h':=arphi(h)\in K'[x].$
- ullet Зададим отображение $\overline{arphi}: K[x]/gK[x] o K'[x]/g'K'[x]$ формулой $\overline{arphi}(\overline{h}):=\widetilde{h}'.$

(здесь
$$\overline{h}=h+gK[x]\in K[x]/gK[x]$$
 и $\widetilde{h'}=h'+g'K'[x]\in K'[x]/g'K'[x]$).

- Проверим корректность определения φ : если $\overline{h}=\overline{h_1}$, то $h_1=h+q(x)g(x)$, откуда $h_1'=h'+q'(x)g'(x)$, то есть $\widetilde{h_1'}=\widetilde{h'}$.
- ullet Нетрудно заметить, что \overline{arphi} гомоморфизм и сюръекция.
- ullet Так как K[x]/gK[x] поле, а $\mathrm{Ker}(\overline{arphi})$ идеал, в этом случае $\mathrm{Ker}(\overline{arphi})=\{0\}$ и \overline{arphi} биекция, а значит, изоморфизм полей.
- Пусть $P:=K(\alpha)$ и $P':=K'(\alpha')$. Так как композиция изоморфизмов изоморфизм, существует изофоморфизм полей $\psi:P\to P'.$
- \bullet Изоморфизм ψ продолжается на кольца многочленов P[x] и P'[x].

ullet В P[x] многочлен f имеет корень (так как $f \in g$ и g имеет корень), а значит, $k \geq 1$ линейных множителей:

$$f(x) = (x - \alpha_1) \dots (x - \alpha_k)h(x).$$

ullet Положим $\psi(lpha_i)=lpha_i'$ для всех $i\in\{1,\ldots,k\}$. Тогда в P'[x] имеем

$$f'(x)=(x-lpha_1')\dots(x-lpha_k')h'(x),$$
 где $h'=\psi(h).$

- По Лемме 4, при построении поля разложения порядок присоединения корней не имеет значения. Значит, при построении F можно было начать с присоединения $\alpha_1,...,\alpha_k$, а при построении F' с присоединения $\alpha'_1,...,\alpha'_k$.
- Тогда, по построению поля разложения, F поле разложения h над P, а F' поле разложения h' над P'.
- ullet Значит, по индукционному предположению, $F\simeq F'.$

Следствие 1

Пусть K — поле, а $f \in K[x]$. Тогда поле разложения многочлена f над K единственно c точностью до изоморфизма.

• Далее будем считать, что любое поле характеристики p содержит подполе \mathbb{F}_p .

Лемма 6

Пусть $q\in\mathbb{N}$, K — поле, |K|=q. Тогда $q=p^n$, где $p=\operatorname{char}(K)\in\mathbb{P}$, а $n=[K:\mathbb{F}_p]$.

Доказательство. • Так как $\mathbb Q$ бесконечно, по Теореме 0.4 имеем $\operatorname{char}(K) \neq 0$.

- ullet Значит, $\mathrm{char}(K) = p \in \mathbb{P}$ и \mathbb{F}_p подполе K.
- ullet Тогда K линейное пространство над своим подполем \mathbb{F}_p размерности $n:=[K:\mathbb{F}_p].$ Следовательно, $n\in\mathbb{N}.$
- Каждый элемент поля K имеет разложение по n-элементному базису K над \mathbb{F}_p , а значит, записывается как столбец из n координат из \mathbb{F}_p .
- Каждая координата из \mathbb{F}_p может принимать ровно p значений, поэтому, существует ровно p^n различных столбцов из n координат.

• Разные разложения по базису соответствуют разным векторам, поэтому, разным столбцам из n элементов \mathbb{F}_p соответствуют разные элементы поля K. Значит, $q=p^n$.

Лемма 7

Пусть $p \in \mathbb{P}$, $k,n \in \mathbb{N}$, причем $0 < k < p^n$. Тогда $\mathrm{C}^k_{p^n}$ \vdots p.

Доказательство. ullet Напомним, что $\mathbf{C}_{p^n}^k = \frac{p^n!}{k!(p^n-k)!}$.

- Посчитаем степени вхождения p в числитель и знаменатель это дроби.
- p входит в $(p^n)!$ с показателем $\alpha = \sum_{i=1}^n \frac{p^n}{p^i} = \sum_{j=0}^{n-1} p^j$.
- p входит в $k!(p^n k)!$ с показателем

$$\beta = \sum_{i=1}^{n-1} \left[\frac{k}{p^i} \right] + \sum_{i=1}^{n-1} \left[\frac{p^n - k}{p^i} \right] \le \sum_{i=1}^{n-1} \frac{k + p^n - k}{p^i} = \sum_{j=1}^{n-1} p^j < \alpha.$$

ullet Следовательно, $\mathbf{C}_{p^n}^k \ : p^{\alpha-\beta} \ : p.$

Пусть $p \in \mathbb{P}$, $n \in \mathbb{N}$. Тогда существует единственное с точностью до изоморфизма поле \mathbb{F}_{p^n} из p^n элементов, и это поле является полем разложения многочлена $x^{p^n}-x$ (все элементы \mathbb{F}_{p^n} — в точности корни $x^{p^n}-x$).

Доказательство. $! \bullet \mathsf{П}\mathsf{y}\mathsf{c}\mathsf{r}\mathsf{b} \mathsf{K} - \mathsf{п}\mathsf{o}\mathsf{n}\mathsf{e} \mathsf{u}\mathsf{s} \mathsf{p}^n$ элементов.

- Через K^* обозначается мультипликативная группа поля K (группа всех ненулевых элементов по умножению). Тогда $|K^*| = p^n 1$.
- Теперь ясно, что все p^n элементов поля K корни многочлена $x^{p^n}-x$ степени p^n , который по Теореме 3.7 имеет не более чем p^n корней.
- Значит, элементы K все различные корни $x^{p^n} x$. В частности, это означает, что K поле разложения многочлена $x^{p^n} x$ над \mathbb{F}_p .
- По Теореме 6 поле разложения $x^{p^n}-x$ над \mathbb{F}_p единственно с точностью до изоморфизма.

Д. В. Карпов

- \bullet Возьмем производную: $f'(x) = p^n \cdot x^{p^n-1} 1 = -1$.
- \bullet Значит, f не имеет кратных корней (если $f(x) \cdot (x-a)^2$, то f'(x) : (x - a), что не так).
- Таким образом, $|K| = p^n$. Докажем, что K поле. Пусть $x, y \in K \Rightarrow x^{p^n} = x$ и $y^{p^n} = y$ в K.

Замкнутость по +:
$$(x+y)^{p^n} = \sum_{k=0}^{p^n} C_{p^n}^k x^k y^{p^n-k} = x^{p^n} + y^{p^n}$$

= $x+y \Rightarrow f(x+y) = 0 \Rightarrow x+y \in K$.

(Мы использовали, что $C_{p^n}^k : p$ при $0 < k < p^n$ по Лемме 7.)

Замкнутость по $(xy)^{p^n} = x^{p^n}y^{p^n} = xy \Rightarrow f(xy) = 0 \Rightarrow xy \in K$. Обратный элемент по +: f(-x) = -f(x) = 0, так как p^n

нечетно, следовательно, $-x \in K$

Обратный элемент по ::

$$(x^{-1})^{p^n} = (x^{p^n})^{-1} = x^{-1} \Rightarrow f(x^{-1}) = 0 \Rightarrow x^{-1} \in K.$$

- \bullet Следовательно, K поле. По определению поля разложения, L = K.
- Таким образом, существует поле из p^n элементов. · (D) (B) (E) (E) (E)

Теорема 8

Пусть $p\in\mathbb{P}$ и $n\in\mathbb{N}$. Тогда подполя \mathbb{F}_{p^n} — это в точности все поля \mathbb{F}_{p^d} , где $d\in\mathbb{N}$ и $n\in d$.

Доказательство. ullet Пусть K — подполе \mathbb{F}_{p^n} .

- ullet Тогда K конечно, значит, $K=\mathbb{F}_q$, где q степень простого числа.
- ullet Кроме того, \mathbb{F}_{p^n} конечное расширение \mathbb{F}_q , пусть $\ell = [\mathbb{F}_{p^n}:K].$
- Аналогично рассуждению Леммы 6 получаем, что $p^n = q^\ell$, откуда следует, что $q = p^d$, где $d\ell = n$.
- ullet Осталось доказать, что при каждом $n \ \vdots \ d$ поле \mathbb{F}_{p^d} является подполем $\mathbb{F}_{p^n}.$
- По Теореме 7, \mathbb{F}_{p^d} поле разложение многочлена $x^{p^d}-x$, а \mathbb{F}_{p^n} поле разложение многочлена $x^{p^n}-x$.
- ullet При $n \ \dot{} \ d$ мы имеем $x^{p^n} x \ \dot{} \ x^{p^d} x$, поэтому, $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$.
- ullet Тогда понятно, что \mathbb{F}_{p^d} подполе \mathbb{F}_{p^n} .

Пусть \mathbb{F}_a –

Пусть \mathbb{F}_q — конечное поле. Тогда его мультипликативная группа (то есть группа обратимых элементов по умножению) \mathbb{F}_q^* — это циклическая группа порядка q-1.

Доказательство. • Начнем с двух вспомогательных утверждений.

Утверждение 1

Пусть $a,b\in \mathbb{F}_q^*$, $(\operatorname{ord}(a),\operatorname{ord}(b))=1$. Тогда $\operatorname{ord}(ab)=\operatorname{ord}(a)\cdot\operatorname{ord}(b)$.

Доказательство. \bullet Пусть $m = \operatorname{ord}(a)$, $n = \operatorname{ord}(b)$, $\operatorname{ord}(ab) = k$.

- ullet Так как группа абелева, $1 = (ab)^k = a^k b^k$.
- ullet Тогда $a^k = (b^k)^{-1}$, откуда $rac{m}{(k,m)} = \operatorname{ord}(a^k) = \operatorname{ord}(b^k) = rac{n}{(k,n)}$.
- ullet Пусть $p\in \mathbb{P}$, $p^{lpha}\|n,\ lpha\geq 1.$ Тогда m
 ot p.
- ullet Пусть $p^\gamma \| k$. Если $\gamma < \alpha$, то $\frac{n}{(k,n)} \stackrel{:}{:} p$, а $\frac{m}{(k,m)} \not / p$, противоречие.
- \bullet Значит, если n : p, то p входит в k с неменьшим показателем, чем в n, а значит, k : n.
- \bullet Аналогично, $k \stackrel{:}{\cdot} m$, откуда ввиду (m,n)=1 имеем $k \stackrel{:}{\cdot} mn$.
- Аналогично, k : m, откуда ввиду (m, n) = 1 имеем k : mm.
 Остается заметить, что $(ab)^{mn} = a^{mn}b^{mn} = 1$.

Утверждение 2

 $B \mathbb{F}_a^*$ есть элемент порядка т.

Доказательство. \bullet Пусть $m=p_1^{k_1}\dots p_s^{k_s}$.

- Для каждого i в \mathbb{F}_q^* есть элемент с порядком, кратным $p_i^{k_i}$, а значит, и элемент a_i порядка $p_i^{k_i}$.
- ullet Докажем индукцией по $t \leq s$, что $\operatorname{ord}(a_1 \dots a_t) = p_1^{k_1} \dots p_t^{k_t}$. База t=1 очевидна.

Переход t-1 o t

- ullet Так как $(p_1^{k_1}\dots p_{t-1}^{k_{t-1}},p_t^{k_t})=1$, по Утверждению 1 имеем $\operatorname{ord}(a_1\dots a_{t-1}a_t)=\operatorname{ord}(a_1\dots a_{t-1})\operatorname{ord}(a_t)=p_1^{k_1}\dots p_t^{k_t}$
- ullet Однако, $orall a\in \mathbb{F}_q^*$ мы имеем $\operatorname{ord}(a)\,|\,m$, откуда $a^m-1=0$. Значит, все элементы \mathbb{F}_q^* корни многочлена x^m-1 .
- ullet Все элементы \mathbb{F}_q^* корни многочлена $x^{q-1}-1$. Значит, q-1 \vdots m. Если m< q-1, то, очевидно, в \mathbb{F}_q^* менее q-1 элементов, что не так.
- ullet Значит, m=q-1. Тогда по Утверждению 2 существует такой $a\in \mathbb{F}_q^*$, что $\mathrm{ord}(a)=q-1$. Очевидно, в этом случае $\mathbb{F}_q^*=\langle a \rangle$.

Д.В.Карпов

автоморфизм).

Лемма 9

Пусть $p \in \mathbb{P}$, $k, n \in \mathbb{N}$, $q = p^n$. Отображение $\varphi : \mathbb{F}_q \to \mathbb{F}_q$,

• Пусть $x, y \in \mathbb{F}_q$. Очевидно, $(xy)^p = x^p y^p$.

то есть, это автоморфизм поля \mathbb{F}_{p^n} .

 $F_{a^k}^*$. Очевидно, $c^q=c$ для любого $c\in \mathbb{F}_q$.

заданное формулой $x \to x^{p^k}$ — автоморфизм поля \mathbb{F}_a .

Доказательство. • Достаточно доказать, что $\varphi(x) := x^p$ —

автоморфизм \mathbb{F}_q (так как композиция автоморфизмов —

• По Лемме 7, $(x+y)^p = \sum_{k=0}^p C_p^k x^k y^{p-k} = x^p + y^p$.

• Таким образом, φ — гомоморфизм полей.

• Так как $\ker(\varphi)$ — идеал в \mathbb{F}_{p^n} и, очевидно, $\ker(\varphi) \neq \mathbb{F}_{p^n}$

(например, $\varphi(1) = 1 \neq 0$), то $\ker(\varphi) = \{0\}$.

ullet Значит, arphi — инъекция. Так как \mathbb{F}_{p^n} конечно, arphi — биекция,

Пусть $p \in \mathbb{P}$, $q = p^n$, $k \in \mathbb{N}$, $\beta \in \mathbb{F}_{q^k}$ — корень многочлена $f(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_0 \in \mathbb{F}_q[x]$. Тогда $f(\beta^q) = 0$.

Доказательство. • По Лемме 8, $\varphi(y) := y^q$ — автоморфизм

ullet Тогда $0=arphi(f(eta))=f(arphi(eta))=f(eta^q)$.

Алгебра, Глава 10. Поля

Д. В. Карпов

Пусть $a\in \mathbb{F}_q$ таков, что $\mathbb{F}_q^*=\langle a \rangle$. Тогда a — примитивный элемент поля \mathbb{F}_q .

Теорема 10

Пусть p — степень простого числа, $q=p^n$, α — примитивный элемент поля \mathbb{F}_q , а f_α — его минимальный многочлен над \mathbb{F}_p . Тогда \mathbb{F}_q — поле разложения f_α .

Доказательство. ullet Так как $F_q^*=\langle lpha
angle$, мы имеем $\mathbb{F}_q\subset \mathbb{F}_p(lpha)$. Значит, $\mathbb{F}_q=\mathbb{F}_p(lpha)$.

- Пусть $f_{\alpha}(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_0$.
- По Лемме 9, α , α^p , ..., $\alpha^{p^{n-1}}$ корни f_{α} .
- Пусть $\alpha^{p^k} = \alpha^{p^m}$ и $0 \le k < m \le n-1$. Тогда $0 = \alpha^{p^m} \alpha^{p^k} = \alpha^{p^k} \cdot (\alpha^{p^m-p^k} 1) \Rightarrow \alpha^{p^m-p^k} = 1$.
- ullet Так как $\operatorname{ord}(lpha)=q-1=p^n-1$ в \mathbb{F}_q^* , должно быть $p^m-p^k\stackrel{.}{:} p^n-1$, что, очевидно, не так.
- ullet Таким образом, в поле \mathbb{F}_q есть n различных корней многочлена f_lpha степени n. Значит, \mathbb{F}_q поле разложения f_lpha . \square

Пусть $p \in \mathbb{P}$, $q = p^n$, $m \in \mathbb{N}$. Тогда существует неприводимый унитарный многочлен $f \in \mathbb{F}_q[x]$ с $\deg(f) = m$.

Доказательство. • Из доказанного ранее понятно, что существует расширение \mathbb{F}_{q^m} степени m поля \mathbb{F}_q .

- ullet Пусть $lpha\in \mathbb{F}_{q^m}$ примитивный элемент, а f_lpha минимальный многочлен lpha над \mathbb{F}_q .
- ullet Тогда $\mathbb{F}_{q^m}=\mathbb{F}_q(lpha)$ по Теореме 10, откуда следует, что $\deg(f_lpha)=[\mathbb{F}_{q^m}:\mathbb{F}_q]=m.$
- ullet По Лемме 2 мы знаем, что f_lpha неприводим.
- Теорема 10 позволяет нам строить поле из q^n элементов, как факторкольцо $\mathbb{F}_q[x]$ по идеалу, порожденному любым неприводимым многочленом степени n над \mathbb{F}_q .
- ullet К сожалению, ни одного разумного критерия неприводимости даже над \mathbb{F}_p не известно. Это обстоятельство используется в теории кодирования.

Пусть $p\in\mathbb{P},\ q=p^n,\ f\in\mathbb{F}_q[x]$ — неприводимый унитарный многочлен, $\deg(f)=d$, а L — поле разложения f . Тогда $L\simeq\mathbb{F}_{q^d}$ и $x^{q^d}-x$ \vdots f .

Доказательство. \bullet Пусть α — корень f в L.

- ullet Так как f неприводим, f минимальный многочлен lpha над $\mathbb{F}_q[x].$
- ullet По Теореме 3, $[\mathbb{F}_q(lpha):\mathbb{F}_q]=d$. Значит, по Теореме 7, можно считать, что $\mathbb{F}_q(lpha)=\mathbb{F}_{q^d}$ (конечное поле единственно с точностью до изоморфизма).
- ullet По Лемме 9, элементы $lpha, lpha^q, \dots, lpha^{q^{d-1}} \in \mathbb{F}_{q^d}$ корни f .
- ullet Докажем, что все эти корни различны тогда \mathbb{F}_{q^d} окажется полем разложения f .
- Пусть $0 \le k < m \le d-1$ и $\alpha^{q^k} = \alpha^{q^m} \Rightarrow \alpha^{q^{d+k-m}} = (\alpha^{q^k})^{q^{d-m}} = (\alpha^{q^m})^{q^{d-m}} = \alpha^{q^d} = \alpha.$
- ullet Таким образом, lpha корень многочлена $x^{q^{d+k-m}}-x=0$, а значит, lpha принадлежит его полю разложения $\mathbb{F}_{q^{d+k-m}}\subsetneq \mathbb{F}_{q^d}$.
- Противоречие с $\mathbb{F}_q(\alpha) = \mathbb{F}_{\sigma^d}$.

Теорема 12

Пусть $p\in\mathbb{P},\ q=p^n,\ m\in\mathbb{N}.$ Тогда $x^{q^m}-x$ равен в $\mathbb{F}_q[x]$ произведению всех неприводимых многочленов всех степеней $d\mid m$ в первых степенях.

Доказательство. • Пусть $f \in \mathbb{F}_q[x]$ — неприводимый многочлен степени d и $x^{q^m} - x \in f$. Тогда все корни f лежат в \mathbb{F}_{q^m} .

- ullet Значит, \mathbb{F}_{q^m} содержит поле разложения f , а это \mathbb{F}_{q^d} по Теореме 11. Тогда $d\mid m$ по Теореме 8.
- ullet Наоборот, пусть $d\mid m$ и $f\in \mathbb{F}_q[x]$ неприводимый многочлен степени d.
- По Теореме 11, $x^{q^d} x \ \dot{f} \Rightarrow x^{q^m} x \ \dot{x}^{q^d} x \ \dot{f}$.
- Так как разные неприводимые многочлены попарно взаимно просты, $x^{q^m}-x$ кратно произведению всех неприводимых многочленов из \mathbb{F}_q , степени которых делят m.
- ullet Очевидно, $x^{q^m} x$ взаимно прост с $(x^{q^m} x)' = -1$.
- Следовательно, $x^{q^m} x$ не имеет кратных корней, а значит, каждый из описанных выше неприводимых многочленов входит в разложение $x^{q^m} x$ в 1 степени.

Следствие 4

$$\psi_m(q) = \frac{1}{m} \cdot \sum_{d \mid m} \mu(\frac{m}{d}) \cdot q^d.$$

Доказательство. • Для каждого d пусть $f_{d,1},\ldots, f_{d,\psi_d(q)}$ — все неприводимые многочлены степени d в $\mathbb{F}_q[x]$.

- По Теореме 12, $x^{q^m} x = \prod_{d \mid m} (\prod_{i=1}^{\psi_d(q)} f_{d,i}(x)).$
- Просуммировав степени многочленов в правой части равенства, получим $q^m = \sum\limits_{d \mid m} d \cdot \psi_d(q).$
- По Формуле обращения Мёбиуса для функции $d \cdot \psi_d(q)$ получаем $\psi_m(q) = \frac{1}{m} \cdot \sum_{d \mid m} \mu(\frac{m}{d}) \cdot q^d$.

Пусть \mathbb{F}_q — конечное поле, $q=p^m$, $\beta\in\mathbb{F}_q$. f_β — минимальный многочлен β в \mathbb{F}_q . Пусть $d\in\mathbb{N}$ — минимальное такое, что $\beta^{p^d}=\beta$. Тогда выполнены следующие утверждения.

1) Пусть $f_eta \in \mathbb{F}_p[x]$ — минимальный многочлен eta над \mathbb{F}_p .

Тогда
$$f_{\beta}(x) = \prod_{i=0}^{d-1} (x - \beta^{p^i}).$$

2) $\deg(f_{\beta}) = d \leq m$.

Доказательство. 1) • По Лемме 9, β^{p^i} — корень f_{β} .

- ullet Пусть $eta^{p^i} = eta^{p^j}$ при $0 \leq i < j < d$.
- Тогда $\beta^{p^{d+i-j}} = (\beta^{p^i})^{p^{d-j}} = (\beta^{p^j})^{p^{d-j}} = \beta^{p^d} = \beta$
- ullet Но d+i-j < d, противоречие с выбором d.
- ullet Значит, все корни eta, eta^p , ..., $eta^{q^{p-1}}$ многочлена f_eta различны.
- ullet Следовательно, $f_{eta}(x) dash g(x) := \prod_{i=0}^{a-1} (x-eta^{p^i}).$
- ullet Остается доказать, что $g(x) = a_{d-1} x^{d-1} + \dots a_1 x + a_0 \in \mathbb{F}_p[x].$

- ullet Вспомним, что $arphi(a):=a^p$ автоморфизм поля \mathbb{F}_p .
- ullet Так как \mathbb{F}_p поле разложение многочлена x^p-x , имеющего в \mathbb{F}_q в точности p корней, $\varphi(a)=a\iff a\in\mathbb{F}_p$.
- ullet Автоморфизм arphi переставляет корни g по циклу:

$$\beta \to \beta^p \to \cdots \to \beta^{p^{d-1}} \to \beta^{p^d} = \beta.$$

- Так как по Теореме Виета коэффициенты g однозначно выражаются через корни, это означает, что многочлены $\varphi(g)$ и g имеют одинаковые коэффициенты, то есть $\varphi(a_i)=a_i$ для любого $i\in[0..d-1].$
- ullet Следовательно, $g\in \mathbb{F}_p[x]$, откуда $f_eta=g$.

2) Из
$$x^{p^m} = x$$
 следует $m \le d$

