

DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT

ANNUAL REPORT 1990

TD 434 .T451 1992 MOE

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact Service Ontario Publications at copyright@ontario.ca

1992

TILBURY WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1990

HAZARDOUS CONTAMINANTS
COORDINATION BRANCH
135 ST. CLAIR AVENUE WEST
TORONTO, ONTARIO M4V 1P6

JULY 1992

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1992
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 2022 Log 92-2302-248

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT 1990 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 supplies were being monitored.

The Tilbury water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification, (upflow clarifier), filtration (using pressure filters), taste and odour control, fluoridation and disinfection. Polyphosphate is added for corrosion control. This plant has a rated capacity of 6.519 x 1000 m³/day. The Tilbury water treatment plant serves a population of approximately 2,000.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Tilbury water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

The persistent finding of atrazine, its metabolites, and traces of other pesticides, indicated a raw water source impacted by agricultural activity.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A '.' INDICATES THAT NO SAMPLE WAS TAKEN SITE

		UESE ASES		RAW		TRE	ATED		S	TE 1	
	SCAN	TESTS	POSITIVE	%POSITIVE	TESTS	POSITIVE	%POSITIVE	TESTS	POSITIVE	%POSITIVE	
	BACTERIOLOGICAL	24	20	83	8	0	0	6	5	83	
	CHEMISTRY (FLD)	24	24	100	42	42	100	75	73	97	
	CHEMISTRY (LAB)	176	165	93	176	144	81	285	253	88	
	METALS	192	99	51	192	70	36	299	151	50	
36	CHLOROAROMATICS	112	0	0	98	0	0	112	0	0	
	CHLOROPHENOLS	12	0	0	12	0	0	3 €((5 **	3•4	
	PAH	117	0	0	118	0	0	17	0	0	
	PESTICIDES & PCB	273	5	1	251	2	0	171	1	0	
	PHENOLICS	8	. 0	0	8	. 4	50			·	
	SPECIFIC PESTICIDES	60	1	1	59	1	a 1	8	0	0	
	VOLATILES	232	0	0	232	32	13	232	32	13	
TOTAL		1230	314		1196	295		1205	515		

DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT 1990 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Tilbury water treatment plant in the spring of 1990. This is the first published annual report.

PLANT DESCRIPTION

The Tilbury water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification, (upflow clarifier), filtration using pressure filters, taste and odour control, fluoridation and disinfection. Polyphosphate is added for corrosion control. This plant has a rated capacity of 6.519 x 1000 m³/day. The Tilbury water treatment plant serves a population of approximately 2,000.

The sample day flows ranged from 3.480 x 1000 m^3/day to 5.790 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

At all distribution system locations two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals, due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing

samples therefore, were General Chemistry and Metals. The free flow sample represented fresh water from the distribution main, since the sample tap was flushed for five minutes prior to sampling.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

Stringent DWSP sampling protocols were followed to ensure that all samples were taken in a uniform manner (see Appendix B).

Plant operating personnel routinely analyze parameters for process control (Table 2).

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall. Laboratory analyses were conducted at the Ministry of the Environment facilities in Rexdale, Ontario.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary break-down of the number of water samples analyzed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- THE TREATED AND DISTRIBUTED WATER;
- ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples.

Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were reported above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of the delivered water may increase in the distribution system due to the warming effect of

the soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Maximum Desirable Concentration of 15°C in 8 of 15 treated and distributed water samples with a maximum reported value of 23.0°C.

CHEMISTRY (LAB)

Calcium exceeded the European Economic Community (EEC) Aesthetic Guideline Level of 100 mg/L in 1 of 16 treated and distribution water samples with a maximum reported value of 113.0 mg/L.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and would possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Aesthetic or Recommended Operational Guideline of 80-100 mg/L in 16 of 16 treated and distributed water samples with a maximum reported value of 371.0 mg/L.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the EEC Aesthetic Guideline Level of 400 umho/cm in 13 of 16 treated and distributed water samples with a maximum reported value of 753 umho/cm.

Total ammonium exceeded the EEC Aesthetic Guideline Level of $0.05\,$ mg/L in 1 distribution water sample with a maximum reported value of $0.054\,$ mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to indicate the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant, to avoid problems in the distribution system.

Aluminum exceeded the ODWO Aesthetic or Recommended Operational Guideline of 100 ug/L in 3 of 15 treated and distribution water samples with a maximum reported value of 120.0 ug/L.

ORGANIC

CHLOROAROMATICS

Hexachlorocyclopentadiene was found at positive levels in 2 of 5 treated and distribution water samples with a maximum reported value of 100.0 ng/L. The United States Environmental Protection Agency Ambient Water Quality Criteria for hexachlorocyclopentadiene is 206,000 ng/L.

The results of the other parameters in the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

POLYAROMATIC HYDROCARBONS (PAH)

The results of the PAH scan showed that none were detected in the treated and distributed water.

PESTICIDES & PCB

The results of the PCB scan showed that none were detected.

Atrazine was found at a positive level in 1 of the 8 treated water samples. The maximum observed level was 530.0 ng/L. This was below the ODWO Interim Maximum Acceptable Concentration of 60,000 ng/L.

A comparison between the raw and treated atrazine results indicated that the treatment process reduced the levels of atrazine in the treated water.

The trace level occurrence of several pesticide scan parameters indicated a raw water source impacted by agricultural use.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs recommend, as an operational guideline, that phenolic substances in drinking water not exceed 2.0 ug/L. This limit has been set primarily to prevent undesirable taste and odours, particularly in chlorinated water. No results exceeded the guideline.

SPECIFIC PESTICIDES

Carbaryl was the only specific pesticide found at a positive level. It was detected in 1 of the 2 treated water samples with a reported value of 2,200.0 ng/L. This was below the ODWO Maximum Acceptable Concentration of 90,000 ng/L.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane; bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THMs results are discussed.

Total THMs were found at positive levels in the 16 treated and distributed water samples analyzed with a maximum level of 130.7 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

CONCLUSIONS

The Tilbury water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

No known health related guidelines were exceeded.

The persistent finding of atrazine, its metabolites, and traces of other pesticides indicated a raw water source impacted by agricultural activity.

Specific pesticides testing should be increased from twice per year, in order to monitor occurrence in source water.

FIGURE 1
TILBURY WATER TREATMENT PLANT

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

WORKS #:

220003350

PLANT NAME:

TILBURY WATER TREATMENT PLANT

DISTRICT:

WINDSOR

REGION:

SOUTH WEST

DISTRICT OFFICER: MR. J. DRUMMOND

UTM #:

PLANT SUPERINTENDENT: MR. GUS BOUILLION

ADDRESS:

P.O. BOX 179

STONEY POINT, ONTARIO

NOR 1NO

(Telephone)

MUNICIPALITY:

TILBURY

AUTHORITY:

PROVINCIAL

PLANT INFORMATION:

PLANT VOLUME: 0.000 (x 1000 m3)

DESIGN CAPACITY: 0.000 (x 1000 m3/day)

RATED CAPACITY: 6.519 (x 1000 m3/day)

MUNICIPALITY:

POPULATION:

TILBURY EAST TOWNSHIP

800

TILBURY NORTH TOWNSHIP 1,200

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
COMBINED CHLORINE RESIDUAL	TREATED WATER	
FREE CHLORINE RESIDUAL	TREATED WATER	
TOTAL CHLORINE RESIDUAL	TREATED WATER	
РН	RAW WATER TREATED WATER	EVERY 4 HOURS
TEMPERATURE	RAW WATER	
TURBIDITY	RAW WATER TREATED WATER	CONTINUOUS CONTINUOUS

TABLE 3
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP SAMPLE DAY CONDITIONS FOR 1990

	10			TREATMENT CHEMIC	AL DOSAGE (MG/L)		(f)	
				COAGULATION	POST CHLORINATION	FLUORIDATION	TASTE & ODOUR	CORROSION CONTROL
DATE		DELAY * TIME(HRS)	FLOW (1000M3)	POLY ALUMINUM CHLORIDE	CHLORINE	SODIUM FLUORIDE	ACTIVATED CARBON POMDER	SODIUM POLYPHOSPHATE
MAY	22	.00	.000	22.00	5.49	1.30	5.00	1.00
JUN	19	.50	4.390	13.50	3.87	.90	5.00	1.09
JUL	17	7.15	3.970	18.40	6.05	1.00	5.00	.89
AUG	22	8.20	3.480	14.60	5.60	1.25	5.00	1.03
SEP	18	5.00	5.790	38.40	6.77	1.40	5.00	1.00
OCT	16	5.31	3.510	28.83	6.55	1.10	5.06	.84
NOV	14	8.00	3.630	42.21	4.63	1.30	6.40	1.50
DEC	18	6.20	4.570	20.03	3.96	1.10	4.10	.94

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP SUMMARY TABLE OF RESULTS (1990)

SCAN			RAW			REATED			TE 1
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL P	OSITIVE T	RACE
BACTERIOLOGICAL									
FECAL COLIFORM MF	8	8	0						
STANDED PLATE CHT MF			7.00	8	0	Ó	6	5	C
TOTAL COLIFORM MF	8	4	0		1144	144	-228		
COLIFORM BCKGRD MF	8		Ō	•			•		
TOTAL SCAN BACTERIOL	.OGICAL								
	24	20	0	8	0	0	6	5	(
CHEMISTRY (FLD)									
FLD CHLORINE (COMB)				7	7	0	15	. 15	(
FLD CHLORINE FREE				7	7		15	13	
FLD CHLORINE (TOTAL)				7	7		15	15	1
FLD PH	8	8	0	7	7		15	15	
FLD TEMPERATURE	8	8	0	7	7	0	15	15	
FLD TURBIDITY	8		Ō	7	7				
TOTAL SCAN CHEMISTRY	(FLD)								
	24	24	0	42	42	0	<i>7</i> 5	73	1
CHEMISTRY (LAB)									
ALKALINITY	8		0	8	8	0	15	15	9
CALCIUM	8	8	0	8	8	0	15	15	(
CYANIDE	8	0	0	8	0	0			
CHLORIDE	8	8	0	. 8	8	0	15	15	(
COLOUR	8	8	0	8	1	7	15	6	7
CONDUCTIVITY	8	8	0	8	8	0	15	15	0
DISS ORG CARBON	8	8	0	8	8	0	15	15	(
FLUORIDE	8	8	0	8	8	0	15	15	(
HARDNESS	8	8	0	8	8	0	15	15	(
IONCAL	8	8	0	8	8	0	15	15	- (
Contract the same and the same	8	8	0	. 8	8	0	15	15	(
LANGELIERS INDEX							15	15	(
LANGELIERS INDEX MAGNESIUM	8	8	0	8	8	0	13		- 2
LANGELIERS INDEX MAGNESIUM SODIUM	8		0	8	8 8			15	- (
MAGNESIUM SODIUM	8 8	8	. 0	8 8	8	0	15	15 3	
MAGNESIUM SODIUM AMMONIUM TOTAL	8 8 8	8 6	. 0 0 0	8 8 8	8 0	0	15 15	3	
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE	8 8 8	8 6 8	. 0 0 0 0	8 8 8	8 0 0	0 1 5	15 15 15	3 4	2
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE FOTAL NITRATES	8 8 8 8	8 6 8 8	0 0 0 0 0	8 8 8 8	8 0 0 8	0 1 5 0	15 15 15 15	3 4 15	8
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE FOTAL NITRATES NITROGEN TOT KJELD	8 8 8 8 8	8 6 8 8 8	0 0 0 0 0	8 8 8 8 8	8 0 0 8 8	0 1 5 0	15 15 15 15 15	3 4 15 15	8
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE FOTAL NITRATES NITROGEN TOT KJELD PH	8 8 8 8 8	8 6 8 8 8	0 0 0 0 0	8 8 8 8 8	8 0 0 8 8	0 1 5 0 0	15 15 15 15 15 15	3 4 15	8
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE FOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT	8 8 8 8 8 8	8 6 8 8 8 8	0 0 0 0 0 0	8 8 8 8 8 8	8 0 8 8 8	0 1 5 0 0 0	15 15 15 15 15	3 4 15 15	8
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PHOSPHORUS FIL REACT PHOSPHORUS TOTAL	8 8 8 8 8 8 8	8 6 8 8 8 8 7 8	0 0 0 0 0 0 0	8 8 8 8 8 8 8	8 0 8 8 8 8	0 1 5 0 0 0	15 15 15 15 15 15	3 4 15 15 15	((
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE FOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL SULPHATE	8 8 8 8 8 8 8 8	8 6 8 8 8 7 8 8	0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8	8 0 0 8 8 8 8 8	0 1 5 0 0 0 0	15 15 15 15 15 15 15	3 4 15 15 15 15	000000000000000000000000000000000000000
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PHOSPHORUS FIL REACT PHOSPHORUS TOTAL	8 8 8 8 8 8 8	8 6 8 8 8 8 7 8	0 0 0 0 0 0 0	8 8 8 8 8 8 8	8 0 8 8 8 8	0 1 5 0 0 0	15 15 15 15 15 15	3 4 15 15 15	8 0
MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE FOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL SULPHATE	8 8 8 8 8 8 8 8 8	8 6 8 8 8 7 8 8	0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8	8 0 0 8 8 8 8 8	0 1 5 0 0 0 0	15 15 15 15 15 15 15	3 4 15 15 15 15	000000000000000000000000000000000000000

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP
SUMMARY TABLE OF RESULTS (1990)

			RAW		T	REATED		3	SITE 1
SCAN PARAMETER	TOTAL PO	SITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
••••••••									
METALS									
SILVER	8	0	0	8	0	1	13	0	0
ALUMINUM	8	8	0	8	8	0	13	13	0
ARSENIC	. 8	3	5	8	0	6	13	0 13	
BARIUM	8	8	0	8	8 8	0	13 13	13	0
BORON BERYLLIUM	8 8	8	0 5	8	0	Ö	13	0	(2)
CADMIUM	8	0	5	8	0	2	13	ő	- 5
COBALT	8	2	6	8	ő	7	13	ő	13
CHROMIUM	8	Ō	8	8	ő	6	13	ŏ	
COPPER	8	1	7	8	ŏ	8	13	10	3
IRON	8	8	ò	8	ŏ	3	13	Ö	11
MERCURY	8	ō	ő	8	1	ō			
MANGANESE	8	8	Ô	8	5	3	13	13	ō
HOLYBDENUM	8	. 6	2	8	8	Ō	13	: ST	0
NICKEL	8	2	5	8	ī	4	13		6
LEAD	8	6	2	8	0	3	13	12	1
ANTIMONY	8	0	8	8	5	3	13	7	6
SELENIUM	8	0	4	8	0	7	13	0	9
STRONTIUM	8	8	0	8	8	0	13	13	
TITANIUM	8	8	0	8	6	2	13	11	2
THALLIUM	8	0	0	8	0	0	13	0	0
URANIUM	8	7	1	8	4	4	13	7	6
VANADIUM	8	8	0	8	6	2	13		
ZINC	8	8	0	8	2	6	13	12	1
TOTAL SCAN METALS	BEARA	22							•
	192	99	58	192	70	67	299	151	89
*TOTAL GROUP INORGANI			FO	/40	254	81	659	477	111
	392	288	59	410	256	01	039	411	1134.1
CHLOROAROMATICS									
				7		0	8	0	0
HEXACHLOROBUTADIENE 123 TRICHLOROBENZENE	8 8	0	0	7			8	0	
1234 T-CHLOROBENZENE	8	0	ő	7	Ö		8	ő	
1235 T-CHLOROBENZENE	8	ő	ő	7		100	8		
124 TRICHLOROBENZENE	8	ő	ŏ	7			8		ā
	8	ŏ	Ŏ	7		9.50	8		- 27
1245 T-CHLOROBENZENE	-	Ō	ō	7			8	0	
1245 T-CHLOROBENZENE	8	U				_	8		Ċ
1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE	8 8	0	0	7					
		-	0	7	0		8	U	
1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE HCB	8	0		7	0	0	8 8		0
1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE HCB HEXACHLOROETHANE	8 8	0	0	7 7 7	0	0 0 0	8 8	0	0
1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE HCB HEXACHLOROETHANE DCTACHLOROSTYRENE	8 8 8	0 0 0	0	7 7 7	0 0 0	0 0 0	8 8 8	0 0 0	0
1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE HCB HEXACHLOROETHANE DCTACHLOROSTYRENE PENTACHLOROBENZENE 236 TRICHLOROTOLUENE 245 TRICHLOROTOLUENE	8 8 8 8 8	0 0 0 0	0 0 0 0	7 7 7 7	0 0 0 0	0 0 0 0	8 8 8	0 0 0	0
1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE HCB HEXACHLOROETHANE DCTACHLOROSTYRENE PENTACHLOROBENZENE 236 TRICHLOROTOLUENE	8 8 8 8	0 0 0	0 0 0	7 7 7	0 0 0 0	0 0 0 0	8 8 8	0 0 0	0
1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE HCB HEXACHLOROETHANE DCTACHLOROSTYRENE PENTACHLOROBENZENE 236 TRICHLOROTOLUENE 245 TRICHLOROTOLUENE	8 8 8 8 8	0 0 0 0	0 0 0 0	7 7 7 7	0 0 0 0 0	0 0 0 0	8 8 8	0 0 0 0	0

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP
SUMMARY TABLE OF RESULTS (1990)

SCAN			RAW		Ti	REATED		SI	TE 1
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL PO	SITIVE T	RACE
CHLOROPHENOLS		SQ.							
234 TRICHLOROPHENOL	2	0	0	2	0	0	2		
2345 T-CHLOROPHENOL	2	0	0	2	0	0			
2356 T-CHLOROPHENOL	2	0	0	2	0	- 0		0.000	/(E)
245-TRICHLOROPHENOL	2	Ō		2	O	Ö	0	(AE-1)	1000
246-TRICHLOROPHENOL	2	0	0	2	0	0		4	
PENTACHLOROPHENOL	2		0	2		0	₩.	(*)	1000
*TOTAL SCAN CHLOROPHE	NOLS								
	12	0	0	12	0	0	0	0	0
PAH									
PHENANTHRENE	7	0	0	7	0	0	1	0	0
ANTHRACENE	7	0	0	7	0	0	1	0	0
FLUORANTHENE	7	0	0	7	0	0	1	0	0
PYRENE	7	0	0	7	0	0	1	0	0
BENZO(A)ANTHRACENE	7	0	0	7	0	0	1	0	0
CHRYSENE	7	0	0	7	ō	Ō	1	Ŏ	Õ
DIMETH. BENZ(A)ANTHR	7	Ō	ō	7	ŏ	Ö	i	Ö	ō
BENZO(E) PYRENE	7	ő	ő	7	Ö	Ö	4	ŏ	ŏ
BENZO(B) FLUORANTHEN	7	0	1	7	Ö	ő	1	Ö	ő
PERYLENE	6	0	ò	7	0	ő	3C 34	0	o
BENZO(K) FLUORANTHEN	7	0	2	7	67	- 55			57.0
	6			,	0	0	1	0	0
BENZO(A) PYRENE		0	1	6	0	0	1	0	0
BENZO(G,H,I) PERYLEN	7	0	0	7	0	0	1	0	0
DIBENZO(A,H) ANTHRAC	7	0	0	7	0	0	1	0	0
INDENO(1,2,3-C,D) PY	. 7	0	0	7	0	0	1	0	0
BENZO(B) CHRYSENE	7	. 0	0	7	. 0	0	1	0	0
CORONENE	7	0	1	7	0	0	1	0	0
TOTAL SCAN PAH						2		0.04601	Name
	117	0	5	118	0	0	17	0	0
PESTICIDES & PCB								T _i	
	:5								
ALDRIN	8	0	0	7	0	0	8	0	0
ALPHA BHC	8	0	2	7	0	0	8	0	0
BETA BHC	8	0	0	7	0	0	8	0	0
INDANE	8	0	4	7	0	0	8	0	1
ALPHA CHLORDANE	8	0	0	7	0	0	8	0	0
SAMMA CHLORDANE	8	0	0	7	0	0	8	0	0
DIELDRIN	8	0	0	7 7	0	ō	8	Ŏ	Ŏ
METHOXYCHLOR	8	0	ŏ	7	ŏ	ŏ	8	ŏ	ŏ
NDOSULFAN 1	8	ŏ	ŏ.	7	ŏ	ŏ	8	ŏ	ŏ
NDOSULFAN II	8	ő	ő	7	ő	ŏ	8	Ö	ő
ENDRIN	8	ő	ő	7	. 0	0	8	Ö	ő
NDOSULFAN SULPHATE	8	0	0	7	. 0				
				- (0	8	0	0
EPTACHLOR EPOXIDE	8	0	0	7	0	0	8	0	0

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP
SUMMARY TABLE OF RESULTS (1990)

			RAW		T	REATED		9	SITE 1
SCAN PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
HEPTACHLOR	8	0	0	7	0	0	8	0	0
MIREX	8		Ŏ	7		Ō	8	0	0
OXYCHLORDANE	8		ŏ	7		ő	8	Ŏ	Ŏ
OPDDT	8		ő	7	Ŏ	Õ	8	0	0
PCB	8		ŏ	7	ŏ	ŏ	8	Ö	0
DDD	8		ő	7	Ö	Ŏ	8	0	0
PPDDE	8		Ö	7	ŏ	ō	8	0	0
PPDDT	8		ő	7	. 972	0	8	0	0
AMETRINE	8		ŏ	8		Ö			1.00
ATRAZINE	8		2	8		6	-	1	
ATRATONE	8		ō	8		0		500	7.60
CYANAZINE (BLADEX)	8		ī	8		1		\\\	
DESETHYLATRAZINE	8		2	8		0	2		12
D-ETHYL SIMAZINE	6			6		0			
PROMETONE	8		100	8	1. 351	0			1.00
PROPAZINE	8			8		0			(m)
PROMETRYNE	8		1	8		0			7(•)
METRIBUZIN (SENCOR)	8		0	8		0		5	
SIMAZINE	8		- 0	8	0	0		74	
ALACHLOR (LASSO)	8	0	. 0	8	0	0		•	76
METOLACHLOR	8	0	3	8	0	2	4	•	
HEXACLCYCLOPENTADIEN	3	0	0	2	1	0	3	1	0
*TOTAL SCAN PESTICIDE	S & PC	R							
	273		14	251	2	9	171	1	1
99									

PHENOLICS									
PHENOLICS	8	0	3	8	. 4	2		1)•[(*)
*TOTAL SCAN PHENOLICS									
	8	0	3	8	4	2	0	0	0
SPECIFIC PESTICIDES									
TOXAPHENE	8	0	0	7	. 0	0	8	0	0
2,4,5-T	2			2				•	
2,4-D	2	Ö		2		870	: :		3 g
2,4-DB	2	Ō		2			5 3 /		
2,4 D PROPIONIC ACID	2	Ō	(A)	2			15.15		-
DICAMBA	2	Ō	-	2		1170	1	_	
PICHLORAM	ō	-		ō		0	120		
SILVEX	2	0					10 10		ě.
DIAZINON	. 2	0		2	. 0		A 2	7 .	
DICHLOROVOS	2 2 2 2 2	0		2 2 2 2	0				*
CHLORPYRIFOS	2	0		2	. 0		•		
ETHION				2	. 0	0			
AZINPHOS-METHYL				0	0	0			*
MALATHION	2	0		2	. 0				
MEVINPHOS	2	0	0	2	. 0				*
METHYL PARATHION	2	0		2	: 0				
METHYLTRITHION	2 2 2 2 2	0		2	. 0				•
PARATHION	2	0	0	2	. 0	0			

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP
SUMMARY TABLE OF RESULTS (1990)

		ı	RAW		TRE	ATED		SI	TE 1
SCAN PARAMETER	TOTAL POSI	TIVE TR	ACE	TOTAL	POSITIVE T	RACE	TOTAL POS	SITIVE T	RACE
PHORATE	2	0	0	2	0	0			
RELDAN	2	ŏ	ŏ	2	ŏ	ŏ		-	-
RONNEL	2	ŏ	ŏ	2	ŏ	ŏ	1-11	-	
AMINOCARB	ō	ŏ	ŏ	ō	ŏ	ŏ			-
BENONYL	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ		2	
BUX	ŏ	ő	Õ	ŏ	ŏ	Ö	1. T. (1.		
CARBOFURAN	2	ŏ	ŏ	2	ŏ	ŏ	1.5	8	
CICP	2	Õ	ŏ	2	ŏ	ŏ	3 . 1		
DIALLATE	2	ŏ	ŏ	2	ŏ	Ö	8.0		•
EPTAM	2	ő	Õ	2	ŏ	Õ	4.0		•
IPC	2	ŏ	ŏ	2	ŏ	ŏ	₹ • 1	•	•
PROPOXUR	2	ŏ	ŏ	2	ŏ	ő	= (5)		•
CARBARYL	2	1	ŏ.	2	1	ŏ	1.00 (ac)	- 16	
BUTYLATE	2	ò	Ö	2	ò	Õ			8.8 123
BOTTLATE	2	U	U	۷	U	U			
*TOTAL SCAN SPECIFIC	PESTICIDES 60	1	0	59	1	0	8	0	0
***************************************				•••••					
VOLATILES						8			
BENZENE	8	0	0	8	0	0	8	0	0
TOLUENE	8	0	1	8	0	2	8	0	3
ETHYLBENZENE	8	0	1	8	0	6	- 8	0	7
P-XYLENE	8	0	0	8	0	0	8	0	0
M-XYLENE	8	0	0	8	0	0	8	0	2
O-XYLENE	8	0	0	8	0	0	8	0	2
STYRENE	8	0	1	8	0	0	8	0	0
1,1 DICHLOROETHYLENE	8	0	0	8	0	0	8	0	0
METHYLENE CHLORIDE	8	0	0	8	0	0	8	0	0
T1,2DICHLOROETHYLENE	8	0	0	8	0	0	8	0	0
1,1 DICHLOROETHANE	8	0	0	8	0	0	8	0	0
CHLOROFORM	8	0	0	8	- 8	0	8	8	0
111, TRICHLOROETHANE	8	0	0	8	0	0	8	0	0
1,2 DICHLOROETHANE	8	0	0	8	0	0	8	0	0
CARBON TETRACHLORIDE	8	0	0	8	0	0	8	0	0
1,2 DICHLOROPROPANE	8	0	0	8	0	0	8	0	0
TRICHLOROETHYLENE	8	0	0	8	0	0	8	0	0
DICHLOROBROMOMETHANE	8	0	0	8	8	0	8	8	0
112 TRICHLOROETHANE	8	Ö	ō	8	ō	Ö	8	Ō	0
CHLOROD I BROMOMETHANE	8	ŏ	ŏ	8	8	Ö	8	8	Ō
T-CHLOROETHYLENE	8	ŏ	ŏ	8	ŏ	2	8	Ō	2
BROMOFORM	8	ő	ŏ	8	ŏ	2	8	Ŏ	3
1122 T-CHLOROETHANE	8	Ö	Õ	8	Ô	ō	8	ő	ő
CHLOROBENZENE	8	Ö	Ö	8	ŏ	Ö	8	ő	Ö
1,4 DICHLOROBENZENE	8	ŏ	ő	8	Ö	Ö	8	ő	ŏ
1,3 DICHLOROBENZENE	8	Ö	ő	8	Ö	ő	8	ő	ő
- 1.1. Table 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	8	Ö	o	8	0	ő	8	ő	Ö
1,2 DICHLOROBENZENE ETHLYENE DIBROMIDE	8	0	Ö	8	0	Ö	8	ő	Ö
TOTL TRIHALOMETHANES	8	0	0	8	8	Ö	8	8	Ö
*TOTAL SCAN VOLATILES	S								
	232	0	3	232	32	12	232	32	19
*TOTAL GROUP ORGANIC	814	6	25	778	39	23	540	33	21

KEY TO TABLE 5 and 6

- ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
- HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 2. Tentative GV
 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)

 - Maximum Contaminant Level (MCL)
 Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
 - 4T. EPA Ambient Water Quality Criteria for Total PAH
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - Health Related Guideline Level
 Aesthetic Guideline Level

 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- NEW YORK STATE AMBIENT WATER GUIDELINE
- NONE AVAILABLE N/A

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<1	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
ICS	No Data: Contamination Suspected
! IL	No Data: Sample Incorrectly Labelled
! IS	No Data: Insufficient Sample
! IV	No Data: Inverted Septum
ILA	No Data: Laboratory Accident
ILD	No Data: Test Queued After Sample Discarded
INA	No Data: No Authorization To Perform Reanalysis
INP	No Data: No Procedure
INR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
! QU	No Data: Quality Control Unacceptable
!PE	No Data: Procedural Error - Sample Discarded
!PH	No Data: Sample pH Outside Valid Range
IRE	No Data: Received Empty
! RO	No Data: See Attached Report (no numeric results)
! SM	No Data: Sample Missing
ISS	No Data: Send Separate Sample Properly Preserved
IUI	No Data: Indeterminant Interference
!TX	No Data: Time Expired
A3C	Approximate, Total Count Exceeded 300 Colonies
APL	Additional Peak, Large, Not Priority Pollutant
APS	Additional Peak, Less Than, Not Priority Pollutant
CIC	Possible Contamination, Improper Cap
CRO	Calculated Result Only
PPS	Test Performed On Preserved Sample
RMP	P and M-Xylene Not Separated
RRV	Rerun Verification
RVU	Reported Value Unusual
	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Several Peaks, Small, Not Priority Pollutant

SPS

UCS Unreliable: Could Not Confirm By Reanalysis
UCS Unreliable: Contamination Suspected
UIN Unreliable: Indeterminate Interference
XP Positive After X Number Of Hours
T# (T06) Result Taken After # Hours

WATER TREATMENT PLANT

	RAW	TRE	ATED	SITE 1	
			STANDING	FREE FLOW	
FECAL COLIFO	BACTERIOLOGICAL RM MF (CT/100ML)		DET'N LIMIT =	0 G U	IDELINE = 0 (A1)
MAY	4		•		
JUN	4				
JUL	2	3 - 01			● (
AUG	4				% ● 1
SEP	550				0.00
OCT	440	(A)	*		Viet
NOV	130		**************************************		
DEC	12		•		
STANDED PLAT	E CNT MF (COUNT/ML)		DET'N LIMIT =	0 GU	IDELINE = 500/ML (A3)
MAY		3 <=>	w.		0.47
JUN	180	0 <=>			
JUL	(E)	1 <=>			13
AUG	370 320	4 <=>	· · · · · · · · · · · · · · · · · · ·		48
SEP		1 <=>	<u> </u>		52
OCT	-	9 <=>			74
NOV	-	2 <=>			29
DEC	3 = 3	6 <=>	:	1	1 <=>
TOTAL COLIFO	RM MF (CT/100ML)		DET'N LIMIT =	0 GU	IDELINE = 5/100ML(A1)
MAY	30 <=>	120	- 5		70
JUN	40 <=>	G.			(A) (E)
JUL	100 <=>	· · ·	•		5#1 U
AUG	200 <=>	2 3 11			2. - 1
SEP	10300	5 - 0			11=1 11=1
OCT	10000	200			
NOV	2600	150			220
DEC	1300				
T COLIFORM B	CKGRD MF (CT/100ML)		DET'N LIMIT =	0 GU	IDELINE = N/A
MAY	9100				
JUN	48000 >	D●7	•		
JUL	54000	5 - 7	v		
AUG	36000	3.50			(E)
SEP	30000	.			<u>₹</u>
OCT	40000	1.90 120			
NOV	80000	### (Fig. 1)			(.
DEC	8700	3 - 12			3.●
DEC	0100	5.€() Jetynyssieta karstekarinasi tiras 1855.			N∎:

WATER TREATMENT PLANT

	RA	W	TREATED	SITE 1	
			STANDING	FREE FLOW	
	CHEMISTRY	((ELD)			
FLD CHLORINE	(COMB) (MG/L		DET'N LIMIT = 0	GUIDELIN	E = N/A
MAY		**	a <u>.</u>	.400	
JUN	(2) (2)	.360	.010	.400	
JUL	i	.740	1.100	.300	
AUG	(8)	1.080	.400	.300	
SEP	3##	.810	.400	.200	
	(*)				
OCT	(66)	.380	.200	.400	
NOV	X#II	.420	.400	.400	
DEC		.300	.200	.200	
FLD CHLORINE	FREE (MG/L)	DET'N LIMIT = 0	GUIDELIN	E = N/A
MAY	3 .	Seli		.700	
JUN	E∎V	1.240	.000	.700	
JUL	146	1.660	.000	1.000	
AUG		2.180	.700	.900	
SEP	F21	2.830	.500	.300	
OCT	(-))	2.500	.500	.500	
NOV	5.87)	2.600	1.300	1.300	
DEC		2.380	.900	1.100	
FLD CHLORINE	(TOTAL) (MG/L		DET'N LIMIT = 0	GUIDELIN	E = N/A
MAY	•			1.100	
JUN		1.600	.010	1.100	
JUL	•	2.400	1.100	1.300	
AUG	180	3.260	1.100	1.200	
SEP		3.640	.900	.500	
OCT		2.880	.700	.900	
NOV	()	3.020		1.700	
DEC	*	2.680	1.100	1.300	
FLD PH (DMNS	LESS)			/A GUIDELII	 NE = 6.5-8.5(A
шач	7 000			7 400	
MAY	7.000	7 700	-	7.600	
JUN	7.100	7.300	7.400	7.400	
JUL	7.100	7.000	7.600	7.600	
AUG	7.000	6.800	7.600	7.700	
SEP	7.000	6.500	7.300	7.200	
OCT	7.600	7.200	7.400	7.400	
NOV	7.500	7.100	7.500	7.400	
DEC	7.100	7.000	7.600	7.600	
FLD TEMPERAT	URE (DEG.C)		DET'N LIMIT = N	/A GUIDELII	NE = 15 (A3)
MAY	14.500	27	60	13.000	
JUN	22.000	22.000	20.000	18.000	
JUL	23.000	23.000	19.000	19.000	
4110		21.000	20.100	20.100	
AUG	21.000				
SEP	16.000	17.000	19.000	17.500	
SEP OCT	16.000 12.000	17.000 12.000	17.000	14.500	
SEP	16.000	17.000			

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP 1990

WATER TREATMENT PLANT

		RAW	TREATED SI	TE 1	
			STANDING	FREE FLOW	
FLD TURB	IDITY (FTU)	DET'N LIMIT = N/A	GUIDELINE = 1	(A1)
MAY	21.000		*	**	
JUN	10.000	.200	·	101	
JUL	50.000	.150			
AUG	20.000	.200	₩	•	
SEP	110.000	.500	· · · · · · · · · · · · · · · · · · ·	•	
OCT	100.000	.400	•		
NOV	90.000	.340		•	
DEC	26.000	.140		•	

WATER TREATMENT PLANT

		RAW	TREATED		SITE 1		
				STANDING	FREE FLOW		
		IISTRY (LAB)					
ALKALINIT	Y (MG/L)		DET	'N LIMIT = 0).2 GUIDELINE	= 30-	500 (A3
MAY	141.600	123.000		9 €5	125.500		
JUN	146.400	128.600		106.800	105.100		
JUL	121.900	107.600		89.400	90.700		
AUG	101.200	93.400		100.600	102.700		
SEP	138.000	113.700		114.400	114.300		
OCT	221.700	187.000		165.700	162.000		
NOV	144.400	148.700		159.500	158.300		
DEC	271.600	259.700		220.200	231.300		
	MG/L)			'N LIMIT = 0		= 100	(F2)
MAY	64.000	61.800			70.800		
JUN	62.000	60.600		47.200			
JUL	51.400	50.700		40.200	42.500		
AUG	35.800	39.200		44.400	47.000		
SEP	55.000	53.800		58.200	57.200		
OCT	95.300	86.700		78.600	80.100		
NOV	54.600	69.000		70.000	68.400		
DEC	114.000	113.000		94.600	98.000		
CHLORIDE	(MG/L)	1	DET	'N LIMIT = O).2 GUIDELINE	= 250	(A3)
MAY	26.500	35.300		4	41.500		
JUN	35.100	42.500		29.600			
JUL	26.800	36.200		27.400	26.800		
AUG	21.800	32.000		38.000			
SEP	24.200	40.700		41.100	40.800		
OCT	28.100	41.200		45.800	44.400		
NOV	16.700	36.500		35.700	40.300		
DEC	38.200	46.700		44.200	44.800		
	IZU)		DET	'N LIMIT = 0		= 5	(A3)
MAY	8.500	1.000	<t< td=""><td></td><td>3.500</td><td></td><td></td></t<>		3.500		
JUN	8.500	1.500	<t< td=""><td>BDL</td><td>BDL</td><td></td><td></td></t<>	BDL	BDL		
JUL	10.000	.500	<t< td=""><td>1.000 <</td><td><t 1.000="" <t<="" td=""><td></td><td></td></t></td></t<>	1.000 <	<t 1.000="" <t<="" td=""><td></td><td></td></t>		
AUG	5.500	.500	<t< td=""><td>1.000 <</td><td>cT 1.000 <t< td=""><td></td><td></td></t<></td></t<>	1.000 <	cT 1.000 <t< td=""><td></td><td></td></t<>		
SEP	16.000	2.000	<t< td=""><td>4.500</td><td>4.000</td><td></td><td></td></t<>	4.500	4.000		
OCT	21.500	3.500		3.000	3.000		
NOV	9.000	1.000		9.000	2.000 <t< td=""><td></td><td></td></t<>		
DEC	9.000	2.000		1.500 <			
CONDUCTIV	ITY (UMHO/CM)	DET	'N LIMIT = 1	I. GUIDELINE	= 400	(F2)
MAY	483	485			525		
JUN	504	497		390	375		
JUL	417	430		367	369		
AUG	327	366		412	422		
SEP	415	438		451	451		
OCT	606	613		589	585		
NOV	403	514		536	531		
		0 T 10 T					

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1		
	l e	я	STANDING	FREE FLOW		
DISS ORG	CARBON (MG/L)	DET'N LIMIT =	:.100 GUIDELIN	= 5.0	(A3)
MAY	3.600	2.700	-	3.400		
JUN	3.900	3.300	2.100	2.200	(%)	
JUL	3.800	2.700	3.000	2.400		
AUG	3.100	2.300	2.800	2.600		
SEP	4.900	3.100	3,500	3.500		
OCT	5.600	2.200	.800	.700		
NOV	3.100	2.300	2.800			
DEC	3.800	2.900	3.100			
LUORIDE	(MG/L)		DET'N LIMIT =	0.01 GUIDELIN	E = 2.4	(A1)
MAY	.160	1.140	2	1.020		
JUN	. 160	1.240	1.100			
JUL	.200	1.320	1.120			
AUG	. 140	1.100	1.060			
SEP	.160	1.100	.900	.900		
OCT	. 140	1.140	1.060	1.040		
NOV	.120	1.080	1.060			
DEC	.140	1.140	.1.180	1.220	<u>1</u> 25	
ARDNESS	(MG/L)		DET'N LIMIT =	0.5 GUIDELIN	E = 80-	100 (A4
MAY	160.000	217.000	2.5	234.000		
JUN	214.000	211.000	166.300	160.000		
JUL	178.900	174.900	146.800	152.500		
AUG	135.000	145.000	160.000	168.000		
SEP	196.000	190.000	193.000	190.000		
OCT	311.000	288.000	265.000	267.000		
NOV	185.000	226.000	234.000	232.000		
DEC	375.000	371.000	314.000	325.000		
ONCAL (D	MNSLESS)	0	DET'N LIMIT =	= N/A GUIDELIN	E = N/A	
MAY	.105	1.698		. 3.114		
JUN	2.928	.157	2.121			
JUL	1.904	1.529	2.333		×	
AUG	.334	1.027	.110	1.895		
SEP	1.136	1.379	.099			
OCT	3.581	3.131	1.824	4.757		
NOV	1.396	.965	.758	3 3.746		
DEC	3.097	2.179	1.782	1.969	41	
ANGELIER	S INDEX (DMNS	ESS)	DET'N LIMIT =	= N/A GUIDELIN	E = N/A	
MAY	.788	.611		. 415		
JUN	.877	.611	.472			
JUL	.584	.333	.328	3 .368		
AUG	.395	.316	.448	.470		
SEP	.678	.122	.477	.429		
OCT	1.224	1.008	.855			
NOV	.835	.989	.793			
MUV						

WATER TREATMENT PLANT

		RAW	T	REATED		SITE 1				
				STA	AND I NG		FREE FL	.ow		
MAGNESIUM	(MG/L)		DET'N	LIMIT =	0.1		GUIDELINE	= 30	(F2)
MAY	15.400	,	15.300		3.1		13	.800		
JUN	14.500		14.400		11.750		11	.300		
JUL	12.250		11.750		11.250			.300		
AUG	11.100		11.600		12.000			.400		
SEP	14.250		13.500		11.600			.500		
OCT	17.600		17.300		16.700			.300		
NOV	11.700		13.100		14.600			.800		
DEC	21.700	· · · · · · · · · · · · · · · · · · ·	21.800		18.900			2.500		
SODIUM (M	G/L)			DET'N	LIMIT =	0.2		GUIDELINE	= 200	(A4)
MAY	9.600		11.800					.600		
JUN	15.900		18.700		13.100			.500		
JUL	15.100		16.400		15.000			.400		
AUG	12.200		14.600		17.200			.800		
SEP	9.200		12.800		14.200			.200		
OCT	11.700		14.400		15.900			.500		
NOV	7.800		11.000	2	12.600			.800		
DEC	17.600		18.800		16.400			.600		
AMMON I UM	TOTAL (MG/	.)		DET'N	LIMIT =	0.002		GUIDELINE	= 0.0	5 (F2)
MAY	BDL		BDL					BDL		
JUN	.042		BDL		.048			.054		
JUL	.030		BDL		.078			.002 <t< td=""><td></td><td></td></t<>		
AUG SEP	.034		BDL BDL		.004 BDL	~1		BDL .006 <t< td=""><td></td><td></td></t<>		
OCT	BDL		.002 <t< td=""><td></td><td>BDL</td><td></td><td></td><td>.004 <t< td=""><td></td><td></td></t<></td></t<>		BDL			.004 <t< td=""><td></td><td></td></t<>		
NOV	.046		BDL		.006	<t< td=""><td></td><td>.002 <t< td=""><td></td><td></td></t<></td></t<>		.002 <t< td=""><td></td><td></td></t<>		
DEC	.076		BDL		.004			BDL		
NITRITE (MG/L)			DET'N	LIMIT =	0.001		GUIDELINE	= 1	(A1)
MAY	.098		.001 <t< td=""><td></td><td></td><td></td><td></td><td>.002 <t< td=""><td></td><td></td></t<></td></t<>					.002 <t< td=""><td></td><td></td></t<>		
JUN	.079		.001 <t< td=""><td></td><td>.008</td><td></td><td></td><td>.016</td><td></td><td></td></t<>		.008			.016		
JUL	.080		BDL		.002	<t< td=""><td></td><td>BDL</td><td></td><td></td></t<>		BDL		
AUG	.024		BOL		.001	<t< td=""><td></td><td>BDL</td><td></td><td></td></t<>		BDL		
SEP	.094		.002 <7		.006			.005		
OCT	.027		.002 <7		.001			.003 <t< td=""><td></td><td></td></t<>		
NOV	.042		.001 <t< td=""><td></td><td>.003</td><td></td><td></td><td>BDL</td><td></td><td></td></t<>		.003			BDL		
DEC	.043		BDL		.002	<t< td=""><td></td><td>.001 <t< td=""><td></td><td></td></t<></td></t<>		.001 <t< td=""><td></td><td></td></t<>		
TOTAL NIT	RATES (MG/	.)		DET'N	LIMIT =	0.005		GUIDELINE	= 10	(A1)
MAY	5.500		5.700					.700		
JUN	4.510		4.400		2.420			2.050		
JUL	3.830		3.810		2.150			.390		
AUG	.905		1.300		2.120			.370		
SEP	3.160		1.920		3.310			.250		
OCT	6.980		5.880		4.900			.780		
NOV	2.580		4.120		4.690			.590		
DEC	7.200		7.380		6.330			5.500		

WATER TREATMENT PLANT

		RAW	TREA	TED	SITE 1		
				STANDING	FREE	FLOW	
NITROGEN TO	T KJELD (MG/L)		DET'N LIMIT = 0	.02	GUIDELINE	= N/A
MAY	.760		330	•		.150	
JUN	.780		470	.310		.310	
JUL	.630		270	.700		.260	
AUG	.360		160	.300		.240	
SEP	1.400		350	.460		.470	
OCT	.470		470	.470		.480	
NOV	.775		280	.370		.300	
DEC	.630		390	.380		.360	
PH (DMNSLES	s)			DET'N LIMIT = N	I/A	GUIDELINE	= 6.5-8.5(A4
MAY	8.290	8.	190			7.930	
JUN	8.380	8.	180	8.220		8.200	
JUL	8.240	8.		8.220		8.230	
AUG	8.280	8.	200	8.250		8.240	
SEP	8.250	7.		8.110		8.070	
OCT	8.370		270	8.210		8.230	
NOV	8.390	8.		8.210		8.340	
DEC	8.330		230	8.170		8.210	
PHOSPHORUS	FIL REACT (MC	i/L)		DET'N LIMIT = 0	.0005	GUIDELINE	= N/A
MAY	.002		005			•	
JUN	.004		002	¥			
JUL	.020		013	~			
AUG	.001 <t< td=""><td></td><td>007</td><td>-</td><td></td><td>-</td><td></td></t<>		007	-		-	
SEP	.004		002	9		240	
OCT	.130		143			020	
NOV	.052		242			E51)	
DEC	.020		095				
PHOSPHORUS	TOTAL (MG/L)		DET'N LIMIT = 0	0.002	GUIDELINE	= .40 (F2)
MAY	.044		013			S(=))	
JUN	.054		015				
JUL	.053		021	- A		7.47	94
AUG	.025		013	a j		(G)	
SEP	.160		033	# 2		157) 120	
OCT	.217		325			1 (2)	
NOV	. 152		340	•		(#2)	9
DEC	.049		335	•		()	
SULPHATE (M	G/L)			DET'N LIMIT = .	.200	GUIDELINE	= 500 (A3)
MAY	43.800	43.	850	9		47.350	
JUN	42.630	44.		32.230		29.790	
JUL	32.940	33.		38.110		37.960	
AUG	25.940	31.		34.610		35.530	
SEP	33.610	35.		37.900		37.610	
	36.370	41.		44.490		45.570	
OCT		31.		36.120		36.140	
NOV	26.080						
DEC	46.910	49.	y 10	48.690		48.400	

WATER TREATMENT PLANT

		RAW	TREATE	si si	re 1	
				STANDING	FREE FLOW	
TURBIDITY	(FTU)		DET'N LIMIT = 0.05	GUIDELINE = 1	(A1)
MAY	22.000		.500		.610	
JUN	22.000		.560	1.220	.850	
JUL	20.000		.250 <t< td=""><td>.600</td><td>.350</td><td></td></t<>	.600	.350	
AUG	7.100		.450	.650	.550	
SEP	88.000		.560	1.100	.500	
OCT	200.000	>	.460	.410	.570	
NOV	84.000		.600	.770	.520	
DEC	19.500		.290	1.120	1.120	

WATER TREATMENT PLANT

		RAW	TREATED		SITE 1			
				STANDING		FREE FLOW		
	METAL	LS						
SILVER (U	JG/L)		D	ET'N LIMIT =	0.05	GUIDELINE	= 50	(A1)
MAY	BDL	BDL	180	2		BDL		
JUN	BDL	BDL		! SM		! SM		
JUL	BDL	BDL		BDL		BDL		
AUG	BDL	BDL		BDL		BDL		
SEP	BDL	BDL		BDL		BDL		
OCT	BDL	BDL		BDL		BDL		
NOV	BDL	.290	<t< td=""><td>BDL</td><td></td><td>BDL</td><td></td><td></td></t<>	BDL		BDL		
DEC	BDL	BDL		BDL		BDL	201	
LUMINUM	(UG/L)		D	ET'N LIMIT =	0.10	GUIDELINE	= 100	(A4)
MAY	180.000	75.000				89.000		
JUN	200.000	110.000		! SM		! SM		
JUL	230.000	82.000		60.000		56.000		
AUG	69.000	99.000		79.000		81.000		
SEP	550.000	75.000		85.000		59.000		
OCT	1100.000	78.000		53.000		75.000		
NOV	530.000	120.000		67.000		77,000		
DEC	180.000	56.000		51.000		120.000		
ARSENIC ((UG/L)			ET'N LIMIT =	0.10	GUIDELINE	- = 25	(A
MAY	.800 <t< td=""><td>.480</td><td><T</td><td></td><td></td><td>.250 <t< td=""><td></td><td></td></t<></td></t<>	.480	< T			.250 <t< td=""><td></td><td></td></t<>		
JUN	.510 <t< td=""><td></td><td></td><td>! SM</td><td></td><td>! SM</td><td></td><td></td></t<>			! SM		! SM		
JUL	1.200		<t< td=""><td>.320</td><td></td><td>.710 <t< td=""><td></td><td></td></t<></td></t<>	.320		.710 <t< td=""><td></td><td></td></t<>		
AUG	.880 <t< td=""><td></td><td><⊺</td><td>.410</td><td></td><td>.430 <t< td=""><td></td><td></td></t<></td></t<>		<⊺	.410		.430 <t< td=""><td></td><td></td></t<>		
SEP	1.400	.760		.590		.570 <t< td=""><td></td><td></td></t<>		
OCT	1.400	.620		.470		.610 <t< td=""><td></td><td></td></t<>		
NOV	.940 <t< td=""><td></td><td></td><td>.190</td><td></td><td>.130 <t< td=""><td>*</td><td></td></t<></td></t<>			.190		.130 <t< td=""><td>*</td><td></td></t<>	*	
DEC	.740 <t< td=""><td></td><td></td><td>.420</td><td></td><td>.200 <t< td=""><td></td><td></td></t<></td></t<>			.420		.200 <t< td=""><td></td><td></td></t<>		
ARIUM (U	JG/L)		D	ET'N LIMIT =	0.05	GUIDELINE	- = 100	00 (
MAY	28.000	26.000		-		31.000		
JUN	34.000	31.000		! SM		!SM		
JUL	32.000	31.000		23.000		24.000		
AUG	21.000	23.000		26.000		26.000		
SEP	40.000	30.000		34.000		34.000		
OCT	54.000	33.000		34.000		34.000		
NOV	29.000	21.000		26.000		26.000		
DEC	37.000	30.000		28.000		28.000		
ORON (UG	6/L)	• • • • • • • • • • • • • • • • • • • •	D	ET'N LIMIT =	2.0	GUIDELINE	- = 500	00 (
MAY	67.000	30.000		12		42.000		
JUN	49.000	50.000		! SM		! SM		
JUL	54.000	58.000		42.000		41.000		
AUG	38.000	43.000		43.000		50.000		
	53.000			62.000		62.000		
SEP		39.000		47.000		47.000		
OCT	43.000	44.000						
NOV	25.000	27.000		36.000		37.000		
DEC	37.000	36.000		36.000		36.000		

WATER TREATMENT PLANT

		RAW		TREATED		SITE 1			
					STANDING		FREE FLOW		
BERYLLIUM	(UG/L)		D	ET'N LIMIT =	0.05	GUIDELINE	= 6800	(D4)
MAY	.110	<⊺	BDL				BDL		
JUN	BOL		BDL		! SM		I SM		
JUL	.080	<1	BDL		BDL		BDL		
AUG	BDL	3.00	BDL		BDL		BDL		
SEP	.090	eT.	BDL		BDL		BDL		
OCT	.110		BDL		BDL		BDL		
NOV									
DEC	.060 BDL		BDL BDL		BDL BDL		BDL BDL		
CADMIUM (UG/L)			D	ET'N LIMIT =	0.05	GUIDELINE	- = 5	(A1)
MAY	BDL		.070	~T			.110 <t< td=""><td></td><td></td></t<>		
JUN	.070				104				
		S 1	.090	< 1	!SM		! SM		
JUL	BDL		BOL		BDL		BDL		
AUG	.060		BDL		.060		BOL		
SEP	.080		BOL		BDL		BDL		
OCT	. 130		BDL		BDL		BOL		
NOV	. 100		BDL		BDL	55±01	BDL		
DEC	BDL		BOL		.060	<t< td=""><td>BDL</td><td></td><td></td></t<>	BDL		
COBALT (U	G/L)			D	ET'N LIMIT =	0.02	GUIDELINE	= N/A	
MAY	. 160	<⊺	.280	<1			.300 <t< td=""><td></td><td></td></t<>		
JUN	.270		.030	<1	! SM		! SM		
JUL	.240	<t< td=""><td>.050</td><td><t< td=""><td>.070</td><td><t< td=""><td>.110 <t< td=""><td></td><td></td></t<></td></t<></td></t<></td></t<>	.050	<t< td=""><td>.070</td><td><t< td=""><td>.110 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	.070	<t< td=""><td>.110 <t< td=""><td></td><td></td></t<></td></t<>	.110 <t< td=""><td></td><td></td></t<>		
AUG	.210		.140		.180		.110 <t< td=""><td></td><td></td></t<>		
SEP	1.100		.500			<t< td=""><td>.370 <t< td=""><td></td><td></td></t<></td></t<>	.370 <t< td=""><td></td><td></td></t<>		
OCT	1.800		.270		.260		.200 <t< td=""><td></td><td></td></t<>		
NOV	690	<1	.050		.100		.110 <t< td=""><td></td><td></td></t<>		
DEC	.690 .080	<t< td=""><td>BDL</td><td></td><td>.060</td><td></td><td>.040 <t< td=""><td></td><td></td></t<></td></t<>	BDL		.060		.040 <t< td=""><td></td><td></td></t<>		
CHROMIUM	(UG/L)		D	ET'N LIMIT =	0.50	GUIDELINE	= 50 (A1)
MAY	3.800	<⊺	BDL				BDL		
JUN	3.900		3.400	<t< td=""><td>! SM</td><td></td><td>! SM</td><td></td><td></td></t<>	! SM		! SM		
JUL	3.700		3.700	<t< td=""><td>2.400</td><td></td><td>2.700 <t< td=""><td></td><td></td></t<></td></t<>	2.400		2.700 <t< td=""><td></td><td></td></t<>		
AUG	1.300		1.100		BDL		1.100 <t< td=""><td></td><td></td></t<>		
SEP	4.300		BDL			<1	3.600 <t< td=""><td></td><td></td></t<>		
OCT	4.000		1.700		1.500		.690 <t< td=""><td></td><td></td></t<>		
NOV	2.700		1.000	eT.	2.100		2.100 <t< td=""><td></td><td></td></t<>		
DEC	3.500		2.600	<t< td=""><td>3.200</td><td><1</td><td>3.000 <t< td=""><td></td><td></td></t<></td></t<>	3.200	<1	3.000 <t< td=""><td></td><td></td></t<>		
COPPER (U	G/L)			D	ET'N LIMIT =		GUIDELINE	= 1000	(A3)
MAY	1.500	<t< td=""><td>1.400</td><td><t< td=""><td>500</td><td></td><td>6.200</td><td></td><td></td></t<></td></t<>	1.400	<t< td=""><td>500</td><td></td><td>6.200</td><td></td><td></td></t<>	500		6.200		
JUN	2.400		1.400		! SM		! SM		
JUL	2.500		1.000		44.000		6.700		
AUG	1.200		1.000		33.000		6.200		
SEP	2.900		1.300		41.000		6.300		
OCT							4.600 <t< td=""><td></td><td></td></t<>		
	5.700	(ST)	1.500		22.000				
NOV	3.200		1.100		17.000		3.500 <t< td=""><td></td><td></td></t<>		
DEC	1.600	<	1.200	SI .	130.000		3.100 <t< td=""><td>-</td><td></td></t<>	-	

TREATED SITE 1

WATER TREATMENT PLANT

RAW

		KAW	IKEATED		SILE		
2000	 M			STANDING	FREE	FLOW	a
RON (UG/L)			'N LIMIT = 6.0		GUIDELINE = 300	
MAY	210.000	BDL				36.000 <t< td=""><td></td></t<>	
JUN	300.000	BDL		! SM		! SM	
JUL	340.000	BOL		34.000 <t< td=""><td>ī</td><td>28.000 <t< td=""><td></td></t<></td></t<>	ī	28.000 <t< td=""><td></td></t<>	
AUG	130.000	BOL		20.000 <t< td=""><td>ľ</td><td>12.000 <t< td=""><td></td></t<></td></t<>	ľ	12.000 <t< td=""><td></td></t<>	
SEP	110.000	10.000	~T	551		BDL	
OCT	1800.000	13.000) ,	12 000 <1	r	19.000 <t< td=""><td></td></t<>	
NOV	950.000	11.000	2	17.000 <1		20.000 <t< td=""><td></td></t<>	
DEC	290.000	BDL		12.000 <t 13.000 <t 6.100 <t< td=""><td>Ī</td><td>27.000 <t< td=""><td></td></t<></td></t<></t </t 	Ī	27.000 <t< td=""><td></td></t<>	
MERCURY (L	JG/L)					GUIDELINE = 1	(A1
MAY	BDL	BDL				ragii	
JUN	BDL	BOL				Y⊕X DAD	
JUL	BDL	BDL					
AUG	BDL	BDL					
	1636233						
SEP	BDL	.400		*			
OCT	BDL	BDL		•		1 . 1	
NOV	BDL	BDL		•		X ● X	
DEC	BDL	BDL					
MANGANESE	(UG/L)		DE	T'N LIMIT = 0.	.05	GUIDELINE = 50	(A3)
MAY	14.000	.380	<⊺			3.500	
JUN	22.000	.660		! SM		! SM	
JUL	22.000 17.000	.370	<t< td=""><td>2.500</td><td></td><td>2.300</td><td></td></t<>	2.500		2.300	
AUG	11.000	.360	<t< td=""><td>1.800</td><td></td><td>2.200</td><td></td></t<>	1.800		2.200	
SEP	62.000	.650		3.700		2.800	
OCT	130.000	.780		1.700		2.300	
NOV	53.000	.710		1.300		1.900	
DEC	16.000	1.100		1.100		2.800	
MOLYBDENUM	(UG/L)	DE	T'N LIMIT = 0.	.05	GUIDELINE = N/A	Ĭ,
MAY	1.100	1.700				2.300	
JUN	1.500	2.200		! SM		! SM	
JUL	1.300	1.600		1.500		1.600	38
AUG	1.300	1.600		1.900		2.200	
SEP	.600	1.600		2.900		2.600	
OCT	.260 <	T 1.700		2.000		2.400	
NOV	.220 <	950		1.300		1.200	
DEC	.750	1.100		1.300		1.300	
VICKEL (UG	5/L)		DE	T'N LIMIT = 0.		GUIDELINE = 350	(D3)
MAY	1.900 <	T .890	<t< td=""><td>÷</td><td></td><td>2.100</td><td></td></t<>	÷		2.100	
JUN	BDL	BDL	14 24	! SM			
JUL	1.300 <	T BNI		1.800 <t< td=""><td>7</td><td>!SM .700 <t< td=""><td></td></t<></td></t<>	7	!SM .700 <t< td=""><td></td></t<>	
AUG	1.100 <		<t< td=""><td>3.300</td><td>•0</td><td>1.300 <t< td=""><td></td></t<></td></t<>	3.300	•0	1.300 <t< td=""><td></td></t<>	
SEP	4.000		a.i	2.700		3.000	
		2.100	>T	2.700	•		
OCT	4.300	.590	NI.	.790 <t< td=""><td>I/I</td><td>.850 <t< td=""><td></td></t<></td></t<>	I/I	.850 <t< td=""><td></td></t<>	
NOV	1.500 <			BDL		BDL 530 -7	
DEC	.400 <	r .590	<1	3.600		.520 <t< td=""><td></td></t<>	

WATER TREATMENT PLANT

		RAW	TREATE	Ď	SITE	1.	
			• • • • • • • •	STANDING		FREE FLOW	
LEAD (UG/L	j			DET'N LIMIT =	0.05	GUIDELINE = 10.	(A1
MAY	.530	BDL				.900	
JUN	1.000	.140	<1	! SM		! SM	
JUL	.700	BDL		2.000		.820	
AUG	.310 <t< td=""><td>BDL</td><td></td><td>3.700</td><td></td><td>1.100</td><td></td></t<>	BDL		3.700		1.100	
SEP	2.200	BDL		2.800		1.000	
OCT	4.200	.070		1.000		.620	
NOV	2.400	.260		.690		.260 <t< td=""><td></td></t<>	
DEC	.360 <t< td=""><td>BDL</td><td></td><td>89.000</td><td></td><td>1.600</td><td></td></t<>	BDL		89.000		1.600	
ANTIMONY (UG	/L)			DET'N LIMIT =		GUIDELINE = 146	(D4
MAY	.210 <t< td=""><td>.530</td><td></td><td><u> </u></td><td></td><td>.680</td><td></td></t<>	.530		<u> </u>		.680	
JUN	.410 <t< td=""><td>.520</td><td></td><td>! SM</td><td></td><td>! SM</td><td></td></t<>	.520		! SM		! SM	
JUL	.440 <t< td=""><td>.540</td><td></td><td>.750</td><td></td><td>.560</td><td></td></t<>	.540		.750		.560	
AUG	.370 <t< td=""><td>.520</td><td></td><td>.500</td><td><t< td=""><td>.450 <t< td=""><td></td></t<></td></t<></td></t<>	.520		.500	<t< td=""><td>.450 <t< td=""><td></td></t<></td></t<>	.450 <t< td=""><td></td></t<>	
SEP	.340 <t< td=""><td>.660</td><td></td><td>.610</td><td></td><td>.590</td><td></td></t<>	.660		.610		.590	
OCT	.220 <t< td=""><td>.470</td><td><t< td=""><td>.500</td><td><t< td=""><td>.440 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.470	<t< td=""><td>.500</td><td><t< td=""><td>.440 <t< td=""><td></td></t<></td></t<></td></t<>	.500	<t< td=""><td>.440 <t< td=""><td></td></t<></td></t<>	.440 <t< td=""><td></td></t<>	
NOV	.270 <t< td=""><td>.440</td><td><1</td><td>.540</td><td></td><td>.490 <t< td=""><td></td></t<></td></t<>	.440	<1	.540		.490 <t< td=""><td></td></t<>	
DEC	.370 <t< td=""><td>.460</td><td></td><td>.970</td><td></td><td>.470 <t< td=""><td></td></t<></td></t<>	.460		.970		.470 <t< td=""><td></td></t<>	
SELENIUM (UG	i/L)	(3		DET'N LIMIT =	1.00	GUIDELINE = 10	(A1
MAY	2.400 <t< td=""><td>1.400</td><td><t< td=""><td></td><td></td><td>BOL</td><td></td></t<></td></t<>	1.400	<t< td=""><td></td><td></td><td>BOL</td><td></td></t<>			BOL	
JUN	1.900 <t< td=""><td></td><td></td><td>! SM</td><td></td><td>! SM</td><td></td></t<>			! SM		! SM	
JUL	1.200 <t< td=""><td>1.100</td><td><1</td><td>1.300</td><td><t< td=""><td>2.100 <t< td=""><td></td></t<></td></t<></td></t<>	1.100	<1	1.300	<t< td=""><td>2.100 <t< td=""><td></td></t<></td></t<>	2.100 <t< td=""><td></td></t<>	
AUG	BDL	BDL		1.600		BDL	
SEP	2.200 <t< td=""><td>2.000</td><td><t< td=""><td>4.000</td><td><t< td=""><td>2.600 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	2.000	<t< td=""><td>4.000</td><td><t< td=""><td>2.600 <t< td=""><td></td></t<></td></t<></td></t<>	4.000	<t< td=""><td>2.600 <t< td=""><td></td></t<></td></t<>	2.600 <t< td=""><td></td></t<>	
OCT	BDL	1.100	<1	BDL		1.300 <t< td=""><td></td></t<>	
NOV	BDL	1.100	<t< td=""><td>1.200</td><td></td><td>BDL</td><td></td></t<>	1.200		BDL	
DEC	BDL	1.100	<₹	1.900	<t< td=""><td>1.300 <7</td><td></td></t<>	1.300 <7	
STRONTIUM (U	IG/L)			DET'N LIMIT =	0.10	GUIDELINE = N/A	
	220.000	220.000		•		290.000	
	330.000	320.000		!SM		! SM	
	410.000	380.000		290.000		300.000	
	240.000	270.000		310.000		320.000	
	260.000	260.000		280.000		280.000	
	350.000	330.000		350.000		350.000	
	180.000 450.000	190.000 440.000		240.000 350.000		250.000 370.000	
TITANIUM (UG				DET'N LIMIT =		GUIDELINE = N/A	
		44 000					
MAY	12.000	11.000				13.000	
JUN	12.000	7.400		!SM		! SM	
JUL	8.800	4.600		3.600		3.800 <t< td=""><td></td></t<>	
AUG	5.800	4.900		6.000		5.900	
SEP	15.000	9.200		11.000		12.000	
OCT	16.000	12.000		10.000		11.000	
NOV	10.000	25.000		17.000		18.000	
DEC	13.000	15.000		13.000		16.000	

WATER TREATMENT PLANT

		RAW	TREATE		SITE 1		
				STANDING	FREE	FLOW	
URANIUM ((UG/L)		ĺ	DET'N LIMIT =	0.05	GUIDELINE = 100 (A1))
MAY	1.500	.930				1.200	
JUN	1.200	1.100		! SM		! SM	
JUL	.670	.490	<t< td=""><td>.480</td><td><t< td=""><td>.440 <t< td=""><td></td></t<></td></t<></td></t<>	.480	<t< td=""><td>.440 <t< td=""><td></td></t<></td></t<>	.440 <t< td=""><td></td></t<>	
AUG	.470 <t< td=""><td>.390</td><td><t< td=""><td>.470</td><td><t< td=""><td>.490 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.390	<t< td=""><td>.470</td><td><t< td=""><td>.490 <t< td=""><td></td></t<></td></t<></td></t<>	.470	<t< td=""><td>.490 <t< td=""><td></td></t<></td></t<>	.490 <t< td=""><td></td></t<>	
SEP	1.300	.270	<t .<="" td=""><td>.570</td><td></td><td>.650</td><td></td></t>	.570		.650	
OCT	1.600	.560		.510		.520	
NOV	.770	.190		.390	<t< td=""><td>.400 <t< td=""><td></td></t<></td></t<>	.400 <t< td=""><td></td></t<>	
DEC	1.500	1.300		1.100		1.100	
VANAD I UM	(UG/L)			DET'N LIMIT =	0.05	GUIDELINE = N/A	
MAY	.940	.510		100		.670	
JUN	1.100	.570		! SM		! SM	
JUL	1.500	1.200		1.100		1.200	
AUG	.680	.570		.730		.720	
SEP	2.500	.800		.980		.950	
OCT	3.000	.580		.660		.660	
NOV	1.700	.270	<t< td=""><td>.420</td><td><1</td><td>.400 <t< td=""><td></td></t<></td></t<>	.420	<1	.400 <t< td=""><td></td></t<>	
DEC	.780	.270	<t< td=""><td>.480</td><td><t< td=""><td>.350 <t< td=""><td></td></t<></td></t<></td></t<>	.480	<t< td=""><td>.350 <t< td=""><td></td></t<></td></t<>	.350 <t< td=""><td></td></t<>	
ZINC (UG,	/L)		1	ET'N LIMIT =	0.20	GUIDELINE = 5000 (/	(3)
MAY	3.000	1.500	<t< td=""><td></td><td></td><td>3.200</td><td></td></t<>			3.200	
JUN	5.500	2.800		! SM		! SM	
JUL	3.700	.980	<t< td=""><td>14.000</td><td></td><td>2.700</td><td></td></t<>	14.000		2.700	
AUG	2.400	1.700		23.000		6.000	
SEP	8.700	1.300		14.000		3.400	
OCT	17.000	1.800		11.000		7.000	
NOV	11.000	2.500		13.000		4.500	
DEC	3.400	.980		190.000	41	1.700 <t< td=""><td></td></t<>	

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1
			STANDING	FREE FLOW
	CHLORO	AROMATICS		
HEXACHLORO	ETHANE (NG/L)	DET'N LIMIT = 1	.000 GUIDELINE = 1900 (D4)
MAY	BDL	BDL	H = 0	BDL
JUN	BDL	BDL	18	BOL
JUL	BDL	BDL		BDL
AUG	BDL	BDL	1.00	BDL
SEP	BDL	BDL		BDL
OCT	BDL	BDL	(Fac	BDL
NOV	BDL	BDL	320	BDL
DEC	BDL	IPE		2.000 <t< td=""></t<>
HEXACLCYCLO	OPENTADIEN (NG.	/L)	DET'N LIMIT = 5	.0 GUIDELINE = 206000 (D4)
ост	BDL	BDL		BDL
NOV	BDL	60,000	S#8	100.000
DEC	BOL	!PE	0.70	BDL
				20.0

WATER TREATMENT PLANT

		RAW		TREATED	SII	TE 1	
					TANDING	FREE FLOW	
		• • • • • • • • • • • • • • • • • • • •					
BENJAKA	PAH	AND DO	2	-			
RENZO(R)	FLUORANTHENE	(NG/L)	DET	'N LIMIT = 10.	GUIDELI	NE = N/A
MAY	BDL		BDL				
JUN	BDL		BDL		8	WA-	
JUL	BDL		BDL				
AUG	1 QU		190))	
SEP	BDL		BDL		į.	10.00 10.20	
ОСТ	12.000 <	T	BDL			BDL	
NOV	BDL		BDL				
DEC	BDL		BDL			200	
							• ×
	FLUORANTHENE	(NG/L)	DET	'N LIMIT = 1.	GUIDELI	NE = N/A
MAY	BDL		BOL		•	7/#1	
JUN	BDL		BOL		•	•	
JUL	BDL		BOL			3.5	
AUG	! QU		! QU			22 # 3 = =	
SEP	1.000 <	r.	BDL			2(•)	
OCT	3.000 <	4	BDL		*	BDL	
NOV	BDL		BDL				
DEC	BDL		BDL		9		
BENZO(A)	PYRENE (NG/L)		DET	N LIMIT = 5.	GUIDELIN	- E = 10 (A1)
(200000)	1224000						
MAY	BDL		BDL			1.9%	
JUN	BDL		BDL		•	1(•5	
JUL	BDL		BDL		•	5 = 5	
AUG	! QU		! QU		•	₩ 1 ₩ 1	
SEP	!QU		! QU		•		
OCT	7.000 <1	f°	BDL		.	BDL	
NOV	BDL		BDL				
DEC	BDL		BDL		₹ 11		
CORONENE	(NG/L)			DETI	N LIMIT = 10.	GUIDELIN	- E - N/A
MAY	BDL		BDL	DET	H C.H.I - 10.	GOIDELIN	L - N/A
JUN	BDL		BDL			× × × × × × × × × × × × × × × × × × ×	
JUL	BDL		BDL				
AUG	190		!QU		BE AV	(III)	
SEP	BDL		BDL			₩ .	
OCT	22.000 <1	•	BDL			BDL	
NOV	BDL	L	BOL		AP .	DVL	
DEC	BDL		BDL			3.€ (

WATER TREATMENT PLANT

		RAW		TREATED		SITE	1	
					STANDING		FREE FLOW	
ALDUA DUC	PE (NG/L	STICIDES & PCB		Ŋ.		= 1.000	GUIDELINE	- 700 (6)
ALPHA DHL	(MO)L	2		DE	I'M LIMIT	- 1.000	GOIDELINE	- 700 (4)
MAY	BDL		BOL			•	BDL	
JUN	BDL		BOL			•	BDL	
JUL	BDL		BOL				BDL	
AUG	1.000	<t< td=""><td>BOL</td><td></td><td></td><td>9€0</td><td>BDL</td><td></td></t<>	BOL			9€0	BDL	
SEP	BDL		BOL			1,000	BDL	
OCT	BDL		BDL			•	BDL	
NOV	1.000	<t< td=""><td>BOL</td><td></td><td></td><td>•</td><td>BDL</td><td>*</td></t<>	BOL			•	BDL	*
DEC	BDL		!PE			•	BDL	
LINDANE (NG/L)			DE	T'N LIMIT	= 1.000	GUIDELINE	= 4000 (A1)
MAY	BOL		BOL			:::::::::::::::::::::::::::::::::::::::	BOL	
JUN	2.000	<1	BDL			20 (10 1)	BDL	
JUL	2.000	<t< td=""><td>BDL</td><td></td><td></td><td>•</td><td>BDL</td><td></td></t<>	BDL			•	BDL	
AUG	BOL		BOL				BDL	
SEP	BDL		BDL				BDL	
OCT	1.000	<t< td=""><td>BOL</td><td></td><td></td><td>•</td><td>BDL</td><td></td></t<>	BOL			•	BDL	
NOV	BDL		BDL				3.000 <t< td=""><td></td></t<>	
DEC	2.000	<t< td=""><td>! PE</td><td></td><td></td><td></td><td>BDL</td><td></td></t<>	! PE				BDL	
ATRAZINE	(NG/L)			DE	T'N LIMIT	= 50	GUIDELINE	= 60000 (A2)
MAY	400.000	<t 200<="" td=""><td>.000</td><td><t< td=""><td></td><td>761</td><td></td><td></td></t<></td></t>	.000	<t< td=""><td></td><td>761</td><td></td><td></td></t<>		761		
JUN	1250.000	530	0.000			•	•	
JUL	2550.000	190	0.000	<t< td=""><td></td><td>•</td><td>•</td><td></td></t<>		•	•	
AUG	390.000	<t< td=""><td>BOL</td><td></td><td></td><td></td><td></td><td></td></t<>	BOL					
SEP	530.000	270	.000	<t< td=""><td></td><td></td><td></td><td></td></t<>				
OCT	730.000		0.000			(*)	. ·	
NOV	BDL		0.000			100	*	
DEC	520.000	200	.000	<t< td=""><td></td><td>•</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></t<>		•	· · · · · · · · · · · · · · · · · · ·	
CYANAZINE	(BLADEX)	NG/L)		DE	T'N LIMIT	= 100	GUIDELINE	= 10000 (A2)
MAY	BOL		BDL			S P ()		
JUN	200.000	<t 100<="" td=""><td>.000</td><td><t< td=""><td></td><td></td><td></td><td></td></t<></td></t>	.000	<t< td=""><td></td><td></td><td></td><td></td></t<>				
JUL	BDL		BDL			100	*	
AUG	BDL		BDL			•	*	
SEP	BDL		BDL			•		
OCT	BDL		BDL				-	
NOV	BDL		BOL		*	8 .		
DEC	BOL		BDL			•		
DESETHYLAT	RAZINE (NG	/L)		DE	T'N LIMIȚ	= 200.0	GUIDELIN	E = 60000 (A
MAY	BOL		BDL			•		
JUN	BDL		BDL			ā.		
JUL	620.000	< T	BDL					
AUG	BDL		BDL			/ ■ 0		
SEP	BOL		BOL			380	•	
OCT	400.000	<⊺	BDL					12
NOV	BDL		BDL			. €6	<u></u>	
DEC	BDL		BDL					

WATER TREATMENT PLANT

		R/	\u	TREATED		SITE	1	
					STANDING		FREE FLOW	
METOLACHLOR	(NG/L)		D	ET'N LIMIT	= 500.	GUIDELINE = 50000	(A2)
MAY	800.000	<t< td=""><td>500.000</td><td><t< td=""><td></td><td></td><td></td><td></td></t<></td></t<>	500.000	<t< td=""><td></td><td></td><td></td><td></td></t<>				
JUN	1800.000	<t< td=""><td>700.000</td><td><t< td=""><td></td><td></td><td>2•</td><td></td></t<></td></t<>	700.000	<t< td=""><td></td><td></td><td>2•</td><td></td></t<>			2•	
JUL	600.000	<t< td=""><td>BDL</td><td></td><td></td><td></td><td>:•</td><td></td></t<>	BDL				:•	
AUG	BOL		BDL			•		
SEP	BOL		BDL			•		
OCT	BOL		BDL			•	•	
NOV	BDL		BDL				•	
DEC	BDL		BDL					

WATER TREATMENT PLANT

		RAW		TREATE	D SI	re 1		
					STANDING	FREE	FLOW	
	PI	IENOLICS			191		jui	
PHENOLICS	(UG/L)		94 59	DET'N LIMIT = .2		GUIDELINE = 2	(A4)
MAY	BDL		1.200					
JUN	BDL		.400	<t< td=""><td></td><td></td><td></td><td></td></t<>				
JUL	BDL		1.000				•	
AUG	.800	<1	1.400				(1. €)	
SEP	BDL		BDL				H e 3	
OCT	BDL		.400	<1			160	
NOV	.600	<1	BDL		8		•	
DEC	.600	<1	1.200		9			

WATER TREATMENT PLANT

			RAW	TREATED		SITE		
			=	ST	ANDING		FREE	FLOW
CARBARYL	(NG/I	SPEC	IFIC PESTICIDES	DETIN	LIMIT =	200.		GUIDELINE = 90000 (A1)
GAILDAIL I E	(114, 1	1183		0 .001.11	SEA. 10.10			CHARLES COLUMN
JUN	5400	.000	2200.000		33	ē		*
NOV		BDL	BDL		0.	6		. •.:

WATER TREATMENT PLANT

	RAW	TREA	TED SITE 1	
			STANDING	FREE FLOW
	VOLATILES			
TOLUENE (U	G/L)		DET'N LIMIT = 0.05	GUIDELINE = 24 (A3)
MAY	BDL	.050 <t< td=""><td></td><td>.050 <t< td=""></t<></td></t<>		.050 <t< td=""></t<>
JUN	BDL	BDL	.*	BDL
JUL	BDL	BDL	(●6	BDL
AUG	BDL	BOL	7.	.100 <t< td=""></t<>
SEP	BOL	.100 <t< td=""><td></td><td>.050 <t< td=""></t<></td></t<>		.050 <t< td=""></t<>
OCT	BDL	BDL		BDL
NOV	BDL	BDL		BDL
DEC	.100 <t< td=""><td>BDL</td><td></td><td>BDL</td></t<>	BDL		BDL
ETHYLBENZE	NE (UG/L)		DET'N LIMIT = 0.05	GUIDELINE = 2.4 (A3)
MAY	BDL	BDL	₹	BDL
JUN	BDL	.050 <t< td=""><td></td><td>.050 <t< td=""></t<></td></t<>		.050 <t< td=""></t<>
JUL	BDL	.100 <t< td=""><td>9</td><td>.050 <t< td=""></t<></td></t<>	9	.050 <t< td=""></t<>
AUG	BDL	.200 <t< td=""><td></td><td>.100 <t< td=""></t<></td></t<>		.100 <t< td=""></t<>
SEP	BDL	BDL		.100 <t< td=""></t<>
OCT	BDL	.100 <t< td=""><td></td><td>.050 <t< td=""></t<></td></t<>		.050 <t< td=""></t<>
NOV	BDL	.050 <t< td=""><td></td><td>.050 <t< td=""></t<></td></t<>		.050 <t< td=""></t<>
DEC	.100 <t< td=""><td>.050 <t< td=""><td></td><td>.050 <t< td=""></t<></td></t<></td></t<>	.050 <t< td=""><td></td><td>.050 <t< td=""></t<></td></t<>		.050 <t< td=""></t<>
M-XYLENE (UG/L)	>	DET'N LIMIT = 0.10	GUIDELINE = 300 (A3*)
MAY	BDL	BDL	# *	BDL
JUN	BDL	BDL	•	BDL
JUL	BDL	BDL	٠.	BDL
AUG	BDL	BDL		.300 <t< td=""></t<>
SEP	BDL	BDL	•	.200 <t< td=""></t<>
OCT	BDL	BDL		BDL
NOV	BDL	BDL	.	BDL
DEC	BDL	BDL		BDL
O-XYLENE (I	UG/L)		DET'N LIMIT = 0.05	GUIDELINE = 300 (A3*)
MAY	BDL	BDL		BDL
JUN	BDL	BDL	•	BDL
JUL	BDL	BDL	a	BDL
AUG	BOL	BDL		.150 <t< td=""></t<>
SEP	BDL	BDL	^ *	.150 <t< td=""></t<>
OCT	BDL	BOL		BOL
NOV	BDL	BDL		BOL
DEC	BDL	BDL	·	BDL
STYRENE (U	G/L)		DET'N LIMIT = 0.05	GUIDELINE = 100 (D1)
MAY	BDL	BDL	•	BDL
JUN	BDL	BDL		BDL
JUL	BDL	BDL	€	BDL
	BDL	BDL	•1	BDL
AUG				
SEP	BOL	BDL		BDL
SEP				BOL
	BDL	BDL BDL BDL	į.	

WATER TREATMENT PLANT

		RAW		TREATED	SITE	.1	
				STAN	DING	FREE FLOW	
CHLOROFORM	(UG/L)		DET'N L	IMIT = 0.10	GUIDELI	NE = 350 (A1+)
MAY	BDL		60.500		¥	77.200	
JUN	BDL		81.200		65 76	61.000	
JUL	BDL		74.900		= 5	77.400	
AUG	BDL		69.100		•	92.600	
SEP	BDL		80.600			100,900	
OCT	BDL		82.000			89.900	
NOV	BDL		50.200		-	70.600	
DEC	BDL		47.600			61.900	
DICHLOROBRO	DMOMETHANE	(UG/L)		DET'N L	IMIT = 0.05	GUIDELI	NE = 350 (A1+)
MAY	BDL		19.750			23.750	
JUN	BDL		27.000		•	19.800	
JUL	BDL		21.400			22.000	
AUG	BDL		24.850			30.000	
SEP	BDL		22.150		·	23.800	
OCT	BDL		20.600		·	22.950	
NOV	BDL		13.850		₩ ₩	16.300	
DEC	BDL		18.100		•	19.350	
CHLOROD I BRO	OMOMETHANE	(UG/L)		DET'N L	IMIT = 0.10	GUIDELI	NE = 350 (A1+)
MAY	BDL		4.500		. =	4.300	
JUN	BDL		6.400		*	5.500	
JUL	BDL		4.200			4.900	
AUG	BDL		7.000		±. ¥	7.700	
SEP	BDL		3.400		**************************************	3.200	
OCT	BDL		3.200		···	3.900	
NOV	BDL		2.300		•	2.400	
DEC	BDL		3.600		•	4.200	
T-CHLOROETH	YLENE (UG/	L)		DET'N L	IMIT = 0.05	GUIDEL	INE = 5 (D1)
MAY	BDL		BDL			BDL	
JUN	BDL		BDL		*	BDL	
JUL	BOL		.050	<t< td=""><td></td><td>BDL</td><td></td></t<>		BDL	
AUG	BDL		.100	<t< td=""><td></td><td>.100 <t< td=""><td></td></t<></td></t<>		.100 <t< td=""><td></td></t<>	
SEP	BDL		BDL		I 11 ₩	BDL	
OCT	BDL		BDL			.050 <t< td=""><td></td></t<>	
NOV	BDL		BDL		Net Control	BDL	
DEC	BOL		BDL		ě	BDL	
BROMOFORM ((UG/L)			DET'N L	IMIT = 0.20	GUIDELI	NE = 350 (A1+)
MAY	BDL		BDL		ו:	BDL	
JUN	BDL		.200	<t< td=""><td>116</td><td>.200 <t< td=""><td></td></t<></td></t<>	116	.200 <t< td=""><td></td></t<>	
JUL	BDL		BDL		19	.200 <t< td=""><td></td></t<>	
AUG	BDL		.400	<t< td=""><td>12</td><td>.400 <t< td=""><td></td></t<></td></t<>	12	.400 <t< td=""><td></td></t<>	
SEP	BDL		BDL	150	9 .0	BDL	
OCT	BDL		BDL		S ®	BDL	
NOV	BDL		BDL		m = /	BDL	
					0.00		
DEC	BDL		BDL		3 .	BDL	20

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM TILBURY WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		RAW	TREATED	SITE	1
			STANDI	NG	FREE FLOW
TOTL TRIHAL	OMETHANES (UG/L)	DET'N LIM	IIT = 0.50	GUIDELINE = 350 (A1)
MAY	BOL	74.95	0	(m)	105.200
JUN	BOL	114.90	0	980	86.600
JUL	BOL	100.50	0	•	104.550
AUG	BOL	101.30	0		130.700
SEP	BOL	106.05	0	•	127.900
OCT	BOL	105.80	0		116.750
NOV	BOL	66.40	0		89.300
DEC	BDL	69.30	9	7/40	85.400

TRACE LEVELS OF TOLUENE ARE LABORATORY ARTIFACTS DERIVED FROM THE ANALYTICAL METHODOLOGY.

TRACE LEVELS OF STYRENE ARE CONSIDERED TO BE LABORATORY ARTIFACTS RESULTING FROM THE LABORATORY SHIPPING CONTAINERS.

TABLE 6 DRINKING WATER SURVEILLANCE PROGRAM 1990

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE
BACTERIOLOGICAL			
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	. 0	0 (A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML (A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100HL (A1)
CHEMISTRY (FLD)			
3,25,			
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A
FIELD FREE CHLORINE RESIDUAL FIELD PH	MG/L DMNSLESS	N/A	N/A 6.5-8.5 (A3)
FIELD TEMPERATURE	DEG.C	N/A	15.0 (A3)
FIELD TURBIDITY	FTU	N/A	1.0 (A1)
CHEMISTRY (LAB)			

ALKALINITY	MG/L		30-500 (A3)
AMMONIUM TOTAL CALCIUM	MG/L	0.002	0.05 (F2) 100 (F2)
CHLORIDE	MG/L MG/L	0.2	250 (A3)
COLOUR	TCU	0.5	5.0 (A3)
CONDUCTIVITY	UMHO/CM	1.0	400 (F2)
CYANIDE	MG/L	0.001	0.2 (A1)
DISSOLVED ORGANIC CARBON	MG/L	0.1	5.0 (A3)
FLUORIDE	MG/L	0.01	2.4 (A1)
HARDNESS LANGELIERS INDEX	MG/L DMNSLESS	0.5 N/A	80-100 (A4) N/A
MAGNESIUM	MG/L	0.1	30.0 (F2)
NITRITE	MG/L	0.001	1.0 (A1)
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A
PH	DMNSLESS	N/A	6.5-8.5 (A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	117.000
PHOSPHORUS TOTAL SODIUM	MG/L MG/L	0.002 0.2	0.4 (F2) 200 (A4)
SULPHATE	MG/L	0.2	500 (A3)
TOTAL NITRATES	MG/L	0.005	10.0 (A1)
TURBIDITY	FTU	0.05	1.0 (A1)
CHLOROAROMATICS			
127 701011 0000012515	No.41		
123 TRICHLOROBENZENE 1234 TETRACHLOROBENZENE	NG/L NG/L	5.0 1.0	N/A N/A
1235 TETRACHLOROBENZENE	NG/L	1.0	N/A
124 TRICHLOROBENZENE	NG/L	5.0	10000 (1)
1245-TETRACHLOROBENZENE	NG/L	1.0	38000 (D4)
135 TRICHLOROBENZENE	NG/L	5.0	N/A
236 TRICHLOROTOLUENE	NG/L	5.0	N/A
245 TRICHLOROTOLUENE	NG/L	5.0	N/A
26A TRICHLOROTOLUENE HEXACHLOROBENZENE	NG/L NG/L	5.0 1.0	N/A 10 (C1)
HEXACHLOROBUTADIENE	NG/L	1.0	450 (D4)
HEXACHLOROCYCLOPENTADIENE	NG/L	5.0	206000 (D4)
HEXACHLOROETHANE	NG/L	1.0	1900 (D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A
PENTACHLOROBENZENE	NG/L	1.0	74000 (D4)
CHLOROPHENOLS			
234 TRICHLOROPHENOL	NG/L	100.0	N/A
2345 TETRACHLOROPHENOL	NG/L	20.0	N/A
2356 TETRACHLOROPHENOL	NG/L	10.0	N/A

TABLE 6
DRINKING WATER SURVEILLANCE PROGRAM 1990

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
		400.0	2600000 (D4)
245 TRICHLOROPHENOL	NG/L	100.0	
246 TRICHLOROPHENOL	NG/L	20.0	5000 (A1) 60000 (A1)
PENTACHLOROPHENOL	NG/L	10.0	80000 (A1)
METALS			
ALUMINUM	UG/L	0.10	100 (A4)
ANTIMONY	UG/L	0.05	146 (D4)
ARSENIC	UG/L	0.10	25 (A1)
BARIUM	UG/L	0.05	1000 (A2)
BERYLLIUM	UG/L	0.05	6800 (D4)
BORON	UG/L	2.00	5000 (A1)
CADHIUM	UG/L	0.05 0.50	5 (A1) 50 (A1)
CHROMIUM	UG/L UG/L	0.02	N/A
COBALT COPPER	UG/L	0.50	1000 (A3)
IRON	UG/L	6.00	300 (A3)
LEAD	UG/L	0.05	10 (A1)
MANGANESE	UG/L	0.05	50 (A3)
MERCURY	UG/L	0.02	1 (A1)
MOLYBDENUM	UG/L	0.05	N/A
NICKEL	UG/L	0.20	350 (D3)
SELENIUM	UG/L	1.00	10 (A1)
SILVER	UG/L	0.05	50 (A1)
STRONTIUM	UG/L	0.10	N/A
THALLIUM	UG/L	0.05	13 (D4)
TITANIUM	UG/L	0.50	N/A
URANIUM	UG/L	0.05	100 (A1)
VANADIUM	UG/L	0.05 0.20	N/A 5000 (47)
ZINC	UG/L	0.20	5000 (A3)
РАН			
ANTHRACENE	NG/L	1.0	N/A
BENZO(A) ANTHRACENE	NG/L	20.0	N/A
BENZO(A) PYRENE	NG/L	5.0	10.0 (A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A
BENZO(E) PYRENE	NG/L	50.0 20.0	N/A N/A
BENZO(G,H,I) PERYLENE BENZO(K) FLUORANTHENE	NG/L NG/L	1.0	N/A
CHRYSENE	NG/L	50.0	N/A
CORONENE	NG/L	10.0	N/A
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A
FLUORANTHENE	NG/L	20.0	42000.0 (D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A
PERYLENE	NG/L	10.0	N/A
PHENANTHRENE	NG/L	10.0	N/A
PYRENE	NG/L	20.0	N/A
PESTICIDES & PCB			
ALACHLOR (LASSO)	NG/L	500.0	5000 (A2)
ALDRIN	NG/L	1.0	700 (A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700 (G)
ALPHA CHLORDANE	NG/L	2.0	7000 (A1)
AMETRINE	NG/L	50.0	300000 (D3)
ATRATONE	NG/L	50.0	N/A
ATRAZINE	NG/L	50.0	60000 (A2)
DES ETHYL ATRAZINE	NG/L	200.0	60000 (A2) 300 (G)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0 100.0	300 (G) 10000 (A2)
CYANAZINE (BLADEX)	NG/L NG/L	5.0	10 (I)
O,P-DDD DIELDRIN	NG/L	2.0	700 (A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000 (D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000 (D4)
ENDOVERNIE (INTOVAN II)	100		

TABLE 6 DRINKING WATER SURVEILLANCE PROGRAM 1990

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A
ENDRIN	NG/L	5.0	1600 (D3)
GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1)
METHOXYCHLOR	NG/L	5.0	900000 (A1)
METOLACHLOR	NG/L	500.0	50000 (A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX	NG/L	5.0	N/A
P,P-DDD	NG/L	5.0	N/A
O,P-DDT	NG/L	5.0	30000 (A1)
OXYCHLORDANE	NG/L	2.0	N/A
PCB	NG/L	20.0	3000 (A2)
PPDDE	NG/L	1.0	30000 (A1)
PPDDT	NG/L	5.0	30000 (A1)
PROMETONE	NG/L	50.0	52500 (D3)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	50.0	700000 (D3)
SIMAZINE D-ETHYL SIMAZINE	NG/L	50.0	10000 (A2)
TOXAPHENE	NG/L	200.0	10000 (A2)
TOARFRENE	NG/L	500.0	5000 (A1)
PHENOLICS		3	
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	2 (A4)
SPECIFIC PESTICIDES			
2,4 D PROPIONIC ACID	NG/L	100.	N/A
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.	280000 (A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.	100000 (A1)
24-DICHLORORPHENOXYBUTYRIC ACID (24-DB)	NG/L	200.	18000 (B3)
BUTYLATE (SUTAN)	NG/L	2000.	245000 (D3)
CARBARYL (SEVIN)	NG/L	200.	90000 (A1)
CARBOFURAN	NG/L	2000.	90000 (A1)
CHLORPYRIFOS (DURSBAN)	NG/L	20.	N/A
CICP (CHLORPROPHAM)	NG/L	2000.	350000 (G)
DIALLATE	NG/L	2000.	N/A
DIAZINON	NG/L	20.	20000 (A1)
DICAMBA	NG/L	50.	120000 (A1)
DICHLOROVOS	NG/L	20.	N/A
EPTAM	NG/L	2000.	N/A
ETHION	NG/L	20.	35000 (G)
IPC	NG/L	2000.	N/A
MALATHION	NG/L	20.	190000 (A1)
METHYL PARATHION	NG/L	50.	7000 (B3)
METHYLTRITHION	NG/L	20.	N/A
MEVINPHOS	NG/L	20.	N/A
PARATHION	NG/L	20.	50000 (A1)
PHORATE (THIMET) PROPOXUR (BAYGON)	NG/L	20.	2000 (A2)
RELDAN	NG/L NG/L	2000.	140000 (D3)
RONNEL		20. 20.	N/A
SILVEX (2,4,5-TP)	NG/L NG/L	20.	N/A 10000 (A1)
VOLATILES	The second secon		
1 1 DICHIOPOETHANE	HC/I	0.10	N/A
1,1 DICHLOROETHANE 1,1 DICHLOROETHYLENE	UG/L UG/L	0.10 0.10	N/A 7 (D1)
1,2 DICHLOROBENZENE	UG/L	0.05	7 (D1) 200 (A1)
1,2 DICHLOROETHANE	UG/L	0.05	5 (A1)
	A-62-(60-75)	, ,,,,	- ,,,,,

TABLE 6
DRINKING WATER SURVEILLANCE PROGRAM 1990

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
************				••
1,2 DICHLOROPROPANE	UG/L	0.05	5	(D1)
1,3 DICHLOROBENZENE	UG/L	0.10	3750	(D3)
1,4 DICHLOROBENZENE	UG/L	0.10	5	(A1)
111, TRICHLOROETHANE	UG/L	0.02	200	(D1)
112 TRICHLOROETHANE	UG/L	0.05	0.6 (D4)	
1122 TETRACHLOROETHANE	UG/L	0.05	0.17(D4)	
BENZENE	UG/L	0.05	5	(A1)
BROMOFORM	UG/L	0.20	350	(A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5	(A1)
CHLOROBENZENE	UG/L	0.10	1510	(D3)
CHLOROD I BROMOMETHANE	UG/L	0.10	350	(A1+)
CHLOROFORM	UG/L	0.10	350	(A1+)
DICHLOROBROMOMETHANE	UG/L	0.05	350	(A1+)
ETHLYENE DIBROMIDE	UG/L	0.05	50	(D1)
ETHYLBENZENE	UG/L	0.05	2.	4 (A3)
M-XYLENE	UG/L	0.10	300	(A3*)
METHYLENE CHLORIDE	UG/L	0.50	50	(A1)
O-XYLENE	UG/L	0.05	300	
P-XYLENE	UG/L	0.10	300	(A3*)
STYRENE	UG/L	0.05	100	(D1)
TETRACHLOROETHYLENE	UG/L	0.05	5	(D1)
TRANS 1,2 DICHLOROETHYLENE	UG/L	0.10	70	(D1)
TOLUENE	UG/L	0.05	24	(A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)
TRICHLOROETHYLENE	UG/L	0.10	50	(A1)

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1990, 76 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment (MOE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably
 a lab area; and
 - iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake,

discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

<u>Program output - Query</u>

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.1

MOE - DRINKING WATER ASSESSMENT PROGRAM (DWSP)

PARAMETER REFERENCE INFORMATION

(B200	01P)			VOLATILES		
HEALTH	METHOD	: POCODO	UNIT: μg/L			
FROM	TO M	ETHOD	GUIDELINE	UNIT	NOTE	
85/01			0.700	$\mu { m g/L}$	AL	
87/01			5.000	μg/L	MAC	
87/07			5.000	μg/L	MCL	
80/11			6.600	μg/L	AMBIENT	**
84/05			1.000	$\mu g/L$	MCL	
84/01			10.000	μ g/L	GV	
	FROM 85/01 87/01 87/07 80/11 84/05	FROM TO M 85/01 87/01 87/07 80/11 84/05	HEALTH METHOD: POCODO FROM TO METHOD 85/01 87/01 87/07 80/11 84/05	HEALTH METHOD: POCODO UNIT: μg/L FROM TO METHOD GUIDELINE 85/01 0.700 87/01 5.000 87/07 5.000 80/11 6.600 84/05 1.000	HEALTH METHOD: POCODO UNIT: μg/L FROM TO METHOD GUIDELINE UNIT 85/01 0.700 μg/L 87/01 5.000 μg/L 87/07 5.000 μg/L 80/11 6.600 μg/L 84/05 1.000 μg/L	HEALTH METHOD: POCODO UNIT: μg/L FROM TO METHOD GUIDELINE UNIT NOTE 85/01 0.700 μg/L AL 87/01 5.000 μg/L MAC 87/07 5.000 μg/L MCL 80/11 6.600 μg/L AMBIENT 84/05 1.000 μg/L MCL

DESCRIPTION: NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27).

CYCLOHEXATRIENE (41).

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NON-POLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN WITH SMOKING FLAME (30).

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41).

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATERTHRESHOLD TASTE:

0.5 mg/L IN WATER (39).

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING

ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL

TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR

REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR

BRAIN; SMALL QUANTITIES EVAPORATE FROM SOILS OR ARE

DEGRADED RATHER QUICKLY (80).

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES; COMBUSTION OF CAR EXHAUST. ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR

OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY;

DEGREASING AND CLEANSING AGENT; GASOLINE.

TOXICITY: RATING: 4 (VERY TOXIC).

ACUTE: IRRITATING TO MUCOUS MEMBRANES; SYMPTOMS INCLUDE RESTLESSNESS, CONVULSIONS, EXCITEMENT, DEPRESSION; DEATH MAY FOLLOW RESPIRATORY FAILURE. CHRONIC: MAY CAUSE ANAEMIA AND LEUKAEMIA (45);

MUTAGENIC.

MODE OF ACTION: CHROMOABERRATION IN LYMPHOCYTE CULTURES.

CARCINOGENICITY: A KNOWN HUMAN CARCINOGEN.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT

EXTRACTION, OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27).

BOILING POINT: 80.1°C (27).

SPECIFIC GRAVITY: 0.8790 AT 20°C (27).

VAPOUR PRESSURE: 100 MM AT 26.1°C (27).

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41).

LOG OCT./WATER PARTITION COEFFICIENT: 1.95 TO 2.13

(39).

CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3

(41) SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

NOTES: EPA PRIORITY POLLUTANT.

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white

seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)

(Caution: HNO3 is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with

sample)

-do <u>not</u> rinse bottle

-fill bottle completely without

bubbles

Organics

(OWOC), (OWTRI), (OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-when 'special pesticides' are

requested three extra bottles

must be filled

Cyanide

-500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃) and potassium dichromate (K₂Cr₂O₇) (Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols

-250 mL glass bottle

-do not rinse bottle, preservative

has been added

-fill to top of label

Radionuclides (as scheduled)

-4 L plastic jug

-do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year)

Organic Characterization -1 Lamber glass bottle; instructions

as per organic

-250 mL glass bottle
-do not rinse bottle

-fill completely without bubbles

Steps:

- Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

5. Fill general chemistry and metals bottles.

Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with

white seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals

-500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) (OPOPUP)

-45 mL glass vial with septum (teflon side must be in contact

with sample)

-do not rinse bottle, preservative

has been added

-fill bottle completely without

bubbles

Organics (OWOC) (OAPAHX) -1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.