République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2024 Session Normale

Epreuve: MATHEMATIQUES

Séries : Sciences Naturelles &TSGE Coefficient : 6&4

Durée : 4h

Exercice 1 (3 points)

Une étude statistique a montré que, parmi les personnes consultées dans un centre médical, 8% sont atteintes de la grippe, 10% présentes les symptômes de la grippe et que parmi les personnes atteintes de la grippe 80 % en présentent les symptômes.

On choisit, au hasard, une personne consultée et on considère les événements :

G : « La personne est atteinte de la grippe » ; S : « La personne présente les symptômes de la grippe».

Pour chacune des questions suivantes, une et une seule des réponses proposées est correcte.

٧°	Questions	Réponse A	Réponse B	Réponse C 0,2
1	La probabilité P(G) est	0,08	0,1	
2	La probabilité P _G (S) est	0,1	0,8	0,9
3	La probabilité P(G∩S) est	0,64	0,08	0,064
4	La probabilité P(G∩S) est	0,012	0,016	0,018
5	La probabilité P(G∪S) est	0,112	0,116	0,118
6	La probabilité $P_G(\overline{S})$ est	0,2	0,4	0,6

Recopier sur la feuille de réponse et compléter le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée.

Question n•	1	2	3	4	5	6
Réponse						

Exercice 2 (2 points)

A l'instant t=0, on injecte à un patient, par voie intraveineuse, une dose d'un médicament. La concentration du médicament dans le sang Q(t) est mesurée en mg/l et le temps t est en heures. On suppose que Q(t) vérifie l'équation différentielle (E): y'(t)+0,4y(t)=0 avec Q(0)=2. Le médicament devient inefficace si $Q(t)\leq 0,1$

- 1. Montrer que la solution générale de l'équation (E) est de la forme $y(t) = Ae^{-0.4t}$, $A \in \mathbb{R}$ 0.5pt
- 2. En déduire que l'expression de la concentration du médicament est $Q(t) = 2e^{-0.4t}$. 0.5pt
- 3. Déterminer la concentration du médicament, en mg/l, au bout de 5 heures. 0.5pt
- 4. Déterminer le temps nécessaire t pour que le médicament devienne inefficace. 0.5pt

Exercice 3 (5 points)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x - 3 + \frac{1}{2}e^x$.

On note Γ sa courbe représentative dans un repère orthonormé $(O;\vec{i}\,,\vec{j}\,)$.

1.a) Justifier que $\lim_{x\to -\infty} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$.

1 pt

b) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.

0,75pt

c) Calculer $\lim_{x\to\infty} (f(x)-(x-3))$ et en déduire que la droite D d'équation y=x-3 est une asymptote oblique à Γ . Déterminer la position relative de D et Γ .

1 pt

2) Calculer f'(x), $\forall x \in \mathbb{R}$, et dresser le tableau de variations de f.

1 pt

3.a) Montrer que l'équation f(x) = 0 admet une unique solution α dans $\mathbb R$ et que $1,2 < \alpha < 1,3$

0,5pt

b) Construire D et Γ dans le repère précédent.

0,75pt

Séries: SN&TSGE

Exercice 4: (5 points)

1. On considère le polynôme P défini pour tout nombre complexe z par :

$$P(z) = z^3 - (5+4i)z^2 + (1+16i)z + 3-12i$$

- a) Calculer P(1) et déterminer les nombres a et b tels que $\forall z \in \mathbb{C}$, P(z) = $(z-1)(z^2 + az + b)$. 1 pt
- b) Ecrire le nombre complexe $(4-2i)^2$ sous forme algébrique. 0,5pt
- c) Résoudre, dans \mathbb{C} , l'équation P(z) = 0. 0,5pt
- 2. Le plan complexe est rapporté à un repère orthonormé (O; u, v).
- a) Placer les points A, B et C d'affixes respectives : $z_A = 3i$, $z_B = 1$ et $z_C = 4 + i$. 0,75pt
- b) Soit I le milieu du segment [AC]. Placer I et donner son affixe z_1 sous forme 0,75pt algébrique et trigonométrique.
- c) Déterminer le plus petit entier naturel n tel que $|z_1^n| \ge 2024$. 0,25pt
- 3. Pour tout nombre complexe $z \neq 4+i$, on pose: $f(z) = \frac{z-3i}{z-4-i}$.
- a) Vérifier que $f(z_R)=i$ et en déduire la nature du triangle ABC. 0,75pt
- b) Déterminer et construire l'ensemble Γ des points M, d'affixe z, tels que |f(z)| = 1. 0,5pt

Exercice 5: (5 points)

- I. Soit u la fonction définie sur $]0;+\infty[$ par $u(x)=2x-1-\ln x$.
- 1. Etudier les variations de u. 0,75pt 0, 25pt
- 2. En déduire que u(x) est positive sur $]0;+\infty[$.
- II. On considère la fonction g définie sur $[0;+\infty[$ par : $g(x) = \begin{cases} x^2 2 x \ln x, & \text{si } x > 0 \\ g(0) = -2 \end{cases}$
- et soit (C) sa courbe représentative dans un repère orthonormé (O;i,j).
- 1.a) Calculer $\lim g(x)$. En déduire que g est continue à droite de $x_0 = 0$. 0,75pt
- b) Montrer que $\lim_{x\to 0^+} \frac{g(x)-g(0)}{x} = +\infty$ et interpréter graphiquement. 0,5pt
- c) Calculer $\lim_{x \to +\infty} g(x) = +\infty$ et $\lim_{x \to +\infty} \frac{g(x)}{x} = +\infty$ et interpréter graphiquement. 0,75pt
- 2.a) Montrer que g'(x) = u(x), $\forall x \in]0; +\infty[$. où u est la fonction définie dans la partie I. 0, 5pt Dresser le tableau de variation de g.
- b) Déterminer une équation de la tangente (T) à (C) au point d'abscisse $x_0 = 1$. 0,25pt
- c) Montrer que la courbe (C) coupe l'axe (Ox) en un seul point A dont l'abscisse α est telle que $1,7 < \alpha < 1,8$.
- d) Vérifier que la courbe (C) admet un point d'inflexion B et déterminer ses coordonnées.
- 3. Construire la courbe (C) et la tangente (T) dans le repère (O; i, j). 0,5pt

Fin.

Séries: SN&TSGE

0,5pt

0,25pt