Homework 7

I. Suppose that $X = \sigma Z$ has a mixed normal distribution, where (1) σ is a random variable that takes values 1 and 4 with equal probabilities 0.5; (2) $Z \sim N(0,1)$; and (3) σ and Z are independent. Compute the mean, variance and kurtosis of X.

(Hint:
$$E(Z) = 0$$
, $E(Z^2) = 1$, $E(Z^4) = 3$.)

II. Suppose the monthly returns X_t (in percentages) of a portfolio follows a GARCH Model:

$$X_t = \sigma_t W_t$$
,

where W_t are i.i.d. standard normals, and

$$\sigma_t^2 = 0.2 + 0.09X_{t-1}^2 + 0.9\sigma_{t-1}^2.$$

Recall that the VaR at level α of a portfolio is the negative of the α -quantile of the return distribution.

- (1). If $X_t = 1.5$ and $\sigma_t^2 = 0.5$, find the (conditional) 2.5% VaR for the next month.
- (2). Suppose instead we model monthly returns as i.i.d. normals with mean zero and variance given by the unconditional variance implied by the GARCH model. Find the 2.5% VaR under the i.i.d. normal assumption (this approach is commonly used in practice).
- (3). Compare the two VaR's obtained in Parts (1) and (2). Comment.
- III. Download the dataset HSI_2021.csv from the course website, which contains the Hang Seng Index values in 2021. Conduct the following analysis parallel to what we did in class for SP500 Index in 2021.
 - 1. Draw the time series plots of the index values and the returns, comment;
 - 2. Draw the acf plots of returns and squared returns, comment;
 - 3. Determine the order of ARCH using both pacf and aic;
 - 4. Fit GARCH(1,1) to the returns (excluding the last 5 entries), check whether the mean μ is significant at 5% level;
 - 5. Refit GARCH(1,1) without mean to the returns, and conduct model diagnostics;
 - 6. Give the one-day-ahead volatility forecast;
 - 7. Under conditional normal assumption, estimate the one-day-ahead 1%-VaR and 1%-expected shortfall.