6.1. Static Error Model

$$\varepsilon(t) = \tilde{\Theta}^T(t)\omega(t), \tag{6.1}$$

where $\varepsilon(t)$ is the output, $\tilde{\theta}(t) = \theta - \hat{\theta}(t) \in \mathbb{R}^m$ is the vector of parametric errors, $\omega(t) \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

6.1. Static Error Model

$$\varepsilon(t) = \tilde{\Theta}^T(t)\omega(t), \tag{6.1}$$

where $\varepsilon(t)$ is the output, $\tilde{\theta}(t) = \theta - \hat{\theta}(t) \in \mathbb{R}^m$ is the vector of parametric errors, $\omega(t) \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.1. The model is widely used in the problems of identification (see example below).

6.1. Static Error Model

$$\varepsilon(t) = \tilde{\Theta}^{T}(t)\omega(t), \tag{6.1}$$

where $\varepsilon(t)$ is the output, $\tilde{\theta}(t) = \theta - \hat{\theta}(t) \in \mathbb{R}^m$ is the vector of parametric errors, $\omega(t) \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.1. The model is widely used in the problems of identification (see example below).

The problem is to design an adaptation algorithm based on (6.1)

6.1. Static Error Model

$$\varepsilon(t) = \tilde{\Theta}^T(t)\omega(t), \tag{6.1}$$

where $\varepsilon(t)$ is the output, $\tilde{\theta}(t) = \theta - \hat{\theta}(t) \in \mathbb{R}^m$ is the vector of parametric errors, $\omega(t) \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.1. The model is widely used in the problems of identification (see example below).

Lyapunov function?

6.1. Static Error Model

$$\varepsilon(t) = \tilde{\Theta}^T(t)\omega(t), \tag{6.1}$$

where $\varepsilon(t)$ is the output, $\tilde{\theta}(t) = \theta - \hat{\theta}(t) \in \mathbb{R}^m$ is the vector of parametric errors, $\omega(t) \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.1. The model is widely used in the problems of identification (see example below).

$$V = \frac{1}{2\gamma} \tilde{\Theta}^T \tilde{\Theta} \tag{6.2}$$

with a positive gain γ .

6.1. Static Error Model

$$\varepsilon(t) = \tilde{\Theta}^T(t)\omega(t), \tag{6.1}$$

where $\varepsilon(t)$ is the output, $\tilde{\theta}(t) = \theta - \hat{\theta}(t) \in \mathbb{R}^m$ is the vector of parametric errors, $\omega(t) \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.1. The model is widely used in the problems of identification (see example below).

$$V = \frac{1}{2\gamma} \tilde{\theta}^T \tilde{\theta}$$
with a positive gain γ .
$$\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$$
Time derivative:
$$\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{V} = \frac{1}{\gamma} \tilde{\theta}^T \dot{\tilde{\theta}} = -\frac{1}{\gamma} \tilde{\theta}^T \dot{\tilde{\theta}} = -\frac{1}{\gamma} \tilde{\theta}^T \gamma \omega \varepsilon = -\varepsilon^2 < 0$$

$$\varepsilon = \tilde{\theta}^T \omega$$

$$\dot{V} = \frac{1}{\gamma} \tilde{\theta}^T \dot{\tilde{\theta}} = -\frac{1}{\gamma} \tilde{\theta}^T \dot{\hat{\theta}} = -\frac{1}{\gamma} \tilde{\theta}^T \gamma \omega \varepsilon = -\varepsilon^2 < 0$$

Summary and Discussion

Error Model

Adaptation Algorithm

Lyapunov function

Its time derivative

$$\begin{aligned}
&\varepsilon = \tilde{\theta}^T \omega, \\
\dot{\hat{\theta}} &= \gamma \omega \varepsilon \\
V &= \frac{1}{2\gamma} \tilde{\theta}^T \tilde{\theta} > 0 \\
\dot{V} &= -\varepsilon^2 < 0
\end{aligned}$$

What it means?

6.1. Static Error Model

2.

Does $\tilde{\theta}(t)$ always tend to zero or does the system has identification properties?

2. Example 6.1

For a given error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2$ there are the following scenarios:

a)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 2$, $\tilde{\theta}_2 \rightarrow -1$

1. $V(t) = \tilde{\theta}^{T}(t)\tilde{\theta}(t)/2\gamma$ $\xi(t) \to 0 \text{ asymptotically}$ $\|\tilde{\theta}(t)\|^{2} \text{ is a monotonically}$ decreasing function

2. Example 6.1

For a given error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2$ there are the following scenarios:

a)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 2$, $\tilde{\theta}_2 \rightarrow -1$ How many options for

b)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 4$, $\tilde{\theta}_2 \rightarrow -2$

How many options for convergence?

1. $V(t) = \tilde{\theta}^{T}(t)\tilde{\theta}(t)/2\gamma$ $\xi(t) \to 0 \text{ asymptotically}$ $\|\tilde{\theta}(t)\|^{2} \text{ is a monotonically}$ decreasing function

2. Example 6.1

For a given error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2$ there are the following scenarios:

a)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 2$, $\tilde{\theta}_2 \rightarrow -1$ How many options for

How many options for

b)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 4$, $\tilde{\theta}_2 \rightarrow -2$

convergence?

c)
$$\omega_1 = \sin t$$
, $\omega_2 = 2\sin t$ and $\tilde{\theta}_1 \rightarrow 2$, $\tilde{\theta}_2 \rightarrow -1$

 $V(t) = \tilde{\Theta}^T(t)\tilde{\Theta}(t)/2\gamma$ $\varepsilon(t) \to 0$ asymptotically $\|\tilde{\theta}(t)\|^2$ is a monotonically decreasing function 2 6 8

Example 6.1

For a given error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2$ there are the following scenarios:

a)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 2$, $\tilde{\theta}_2 \rightarrow -1$ How many options for

b)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 4$, $\tilde{\theta}_2 \rightarrow -2$

convergence?

c)
$$\omega_1 = \sin t$$
, $\omega_2 = 2\sin t$ and $\tilde{\theta}_1 \to 2$, $\tilde{\theta}_2 \to -1$

d)
$$\omega_1 = \sin t$$
, $\omega_2 = 2\sin 2t$ and $\tilde{\theta}_1 \rightarrow ?$, $\tilde{\theta}_2 \rightarrow ?$

Example 6.2

For the error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2 + \tilde{\theta}_3 \omega_3$ there are the following scenarios:

- a) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin t$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- b) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- c) $\omega_1 = \sin t$, $\omega_2 = 2\sin 3t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- d) $\omega_1 = \sin(t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- e) $\omega_1 = \sin(2t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$

Example 6.2

For the error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2 + \tilde{\theta}_3 \omega_3$ there are the following scenarios:

- a) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin t$ and $\tilde{\theta}_{1,2,3} \to not$ ness. to zero
- b) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \to not$ ness. to zero
- c) $\omega_1 = \sin t$, $\omega_2 = 2\sin 3t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \rightarrow 0$
- d) $\omega_1 = \sin(t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \to not \ n. \ to \ zero$
- e) $\omega_1 = \sin(2t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \to 0$

Vector $\omega \in \mathbb{R}^m$ has to contain at least m/2 different harmonics to provide identification properties

Summary

Properties of the closed-loop system:

- 1. If ω , $\dot{\omega}$ are bounded, all the signals in the system are bounded;
- 2. If ω , $\dot{\omega}$ are bounded, then $\varepsilon(t)$ tends to zero asymptotically as $t \to 0$;
- 3. $\|\tilde{\theta}(t)\|^2$ approaches zero exponentially fast if ω satisfies the **persistent** excitation ($\omega \in PE$) condition

$$\int_{t}^{t+T} \omega(\tau)\omega^{T}(\tau)d\tau \ge \alpha I \tag{6.3}$$

for some positive α , T;

4. If $\omega \in PE$, then there exists an optimal gain γ , for which the rate of parametric convergence is maximum.

Example 6.3. The problem of identification reduced to Static Error Model

Problem statement

Let a plant be described by

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u \tag{6.4}$$

with unknown parameters a_0 , a_1 , b_0 and measurable input u and output y.

The objective is to design such estimates \hat{a}_0 , \hat{a}_1 , \hat{b}_0 that

$$\lim_{t \to \infty} \left(a_0 - \hat{a}_0(t) \right) = \lim_{t \to \infty} \left(a_1 - \hat{a}_1(t) \right) = \lim_{t \to \infty} \left(b_0 - \hat{b}_0(t) \right) = 0. \tag{6.5}$$

Solution

Main idea of solution is to reduce the problem to the error model.

Then to get the adaptation algorithm generating the estimates.

Solution

1. Apply transfer function

$$H(s) = \frac{1}{K(s)} = \frac{1}{s^2 + k_1 s + k_0}$$

with Hurwitz polynomial $K(s) = s^2 + k_1 s + k_0$ to the plant (6.4) assuming initial conditions y(0), $\dot{y}(0)$ equaled to zero:

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u$$

$$\downarrow H(s)[\bullet]$$

$$\frac{s^2}{K(s)} [y] + a_1 \frac{s}{K(s)} [y] + a_0 \frac{1}{K(s)} [y] = b_0 \frac{1}{K(s)} [u]$$

Solution

$$\frac{s}{K(s)} [y] + a_1 \frac{s}{K(s)} [y] + a_0 \frac{1}{K(s)} [y] = b_0 \frac{1}{K(s)} [u]$$

Solution

$$\frac{s}{K(s)}[y] + a_1 \frac{s}{K(s)}[y] + a_0 \frac{1}{K(s)}[y] = b_0 \frac{1}{K(s)}[u]$$

$$y + (a_1 - k_1) \frac{s}{K(s)}[y] + (a_0 - k_0) \frac{1}{K(s)}[y] = b_0 \frac{1}{K(s)}[u]$$

Solution

$$\frac{s}{K(s)}[y] + a_1 \frac{s}{K(s)}[y] + a_0 \frac{1}{K(s)}[y] = b_0 \frac{1}{K(s)}[u]$$

$$y + (a_1 - k_1) \frac{s}{K(s)}[y] + (a_0 - k_0) \frac{1}{K(s)}[y] = b_0 \frac{1}{K(s)}[u]$$

$$y = (k_1 - a_1) \frac{s}{K(s)}[y] + (k_0 - a_0) \frac{1}{K(s)}[y] + b_0 \frac{1}{K(s)}[u]$$

$$\theta_1 \qquad \theta_2 \qquad \theta_2 \qquad \theta_3 \qquad \theta_3$$

Solution $\frac{s}{K(s)} [y] + a_1 \frac{s}{K(s)} [y] + a_0 \frac{1}{K(s)} [y] = b_0 \frac{1}{K(s)} [u]$ $y + (a_1 - k_1) \frac{S}{K(s)} [y] + (a_0 - k_0) \frac{1}{K(s)} [y] = b_0 \frac{1}{K(s)} [u]$ $y = (k_1 - a_1) \frac{s}{K(s)} [y] + (k_0 - a_0) \frac{1}{K(s)} [y] + b_0 \frac{1}{K(s)} [u]$ ω_1 θ_2 ω_2 θ_3

Parameterized plant
$$y = \theta^T \omega$$
 (6.6) $\theta = col(\theta_1, \theta_2, \theta_3), \quad \omega = col(\omega_1, \omega_2, \omega_3)$

Solution

2. Design of error

$$\varepsilon = y - \hat{\theta}^T \omega$$
 Why this? (6.7)

where $\hat{\theta}$ is the estimate of θ .

Solution

2. Design of error

$$\varepsilon = y - \hat{\theta}^T \omega$$

$$\theta \cdot \qquad \qquad y = \theta^T \omega$$

$$\varepsilon = \tilde{\theta}^T \omega,$$
(6.7)

where $\hat{\theta}$ is the estimate of θ .

$$\tilde{\theta} = \theta - \hat{\theta}$$
 is parametric error vector.

Solution

2. Design of error

$$\varepsilon = y - \hat{\theta}^T \omega$$

(6.7)

where $\hat{\theta}$ is the estimate of θ .

 $y = \theta^T \omega$

Error model

$$\varepsilon = \tilde{\theta}^T \omega$$
,

$$\tilde{\theta} = \theta - \hat{\theta}$$
 is parametric error vector.

3. Adaptation algorithm design.

Adaptation algorithm

$$\dot{\hat{\theta}} = \gamma \omega \epsilon$$

(6.8)

Solution Summary

Error

$$\varepsilon = y - \hat{\theta}^T \omega = y - (k_1 - \hat{a}_1) \frac{s}{K(s)} [y] - (k_0 - \hat{a}_0) \frac{1}{K(s)} [y] - \hat{b}_0 \frac{1}{K(s)} [u]$$

Adaptation Algorithms

$$\dot{\hat{a}}_{0} = -\gamma \frac{1}{K(s)} [y] \varepsilon$$

$$\dot{\hat{a}}_{1} = -\gamma \frac{s}{K(s)} [y] \varepsilon$$

$$\dot{\hat{b}}_{0} = \gamma \frac{1}{K(s)} [u] \varepsilon$$

General Scheme

Simulation results

Plant

$$\ddot{y} + 2\dot{y} + y = 3u$$

Filters polynomial
$$K(s) = s^2 + 5s + 6$$

 $\theta = col(3, 5, 3)$

Adaptation gain $\gamma = 1$

$$\gamma = 1$$

$$u(t) = 10\sin t$$

Simulation results

Plant

$$\ddot{y} + 2\dot{y} + y = 3u$$

Filters polynomial
$$K(s) = s^2 + 5s + 6$$

 $\theta = col(3, 5, 3)$

Adaptation gain $\gamma = 1$

$$\gamma = 1$$

$$u(t) = 10\sin t + 20\cos 2t$$

M.I.T. rule as an alternative methodology to Lyapunov functions

Error model

$$\varepsilon(t) = \tilde{\theta}^T(t)\omega(t),$$

Lyapunov function

Function

$$V = \frac{1}{2\gamma} \tilde{\Theta}^T \tilde{\Theta}$$

$$\dot{V} = -\varepsilon^2$$

M.I.T. rule

Performance index

$$J(\varepsilon) = \frac{1}{2}\varepsilon^2$$

$$\dot{\hat{\theta}} = \gamma \ grad_{\tilde{\theta}} \ J(\epsilon)$$

Adaptation algorithm

$$\dot{\hat{\theta}} = \gamma \omega \epsilon$$

6.2. Dynamic error model with measurable state

$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = Ce(t)$$
(6.9)

where $e \in \mathbb{R}^n$ is the state ε is the output, $\tilde{\theta} \in \mathbb{R}^m$ is the vector of parametric errors, $\omega \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

6.2. Dynamic error model with measurable state

$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = Ce(t)$$
(6.9)

where $e \in \mathbb{R}^n$ is the state ε is the output, $\tilde{\theta} \in \mathbb{R}^m$ is the vector of parametric errors, $\omega \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.2. The model is widely used in the problems of state adaptive control (see example below).

6.2. Dynamic error model with measurable state

$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = Ce(t)$$
(6.9)

where $e \in \mathbb{R}^n$ is the state ε is the output, $\tilde{\theta} \in \mathbb{R}^m$ is the vector of parametric errors, $\omega \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.2. The model is widely used in the problems of state adaptive control (see example below).

The problem is to design an adaptation algorithm based on (6.9)

$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = Ce(t)$$
(6.9)

where $e \in \mathbb{R}^n$ is the state ε is the output, $\tilde{\theta} \in \mathbb{R}^m$ is the vector of parametric errors, $\omega \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.2. The model is widely used in the problems of state adaptive control (see example below).

Lyapunov function?

$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = Ce(t)$$
(6.9)

where $e \in \mathbb{R}^n$ is the state ε is the output, $\tilde{\theta} \in \mathbb{R}^m$ is the vector of parametric errors, $\omega \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.2. The model is widely used in the problems of state adaptive control (see example below).

$$V = \frac{1}{2}e^{T}Pe + \frac{1}{2\gamma}\tilde{\theta}^{T}\tilde{\theta}$$
 (6.10)

with a positive gain γ and positively defined symmetric matrix $P = P^T > 0$ defined later.

Time derivative:

$$\dot{\dot{e}} = Ae + b\tilde{\theta}^{T}\omega$$

$$\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{V} = \frac{1}{2}\dot{e}^{T}Pe + \frac{1}{2}e^{T}P\dot{e} + \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\tilde{\theta}}$$

Time derivative:

$$\dot{\hat{\theta}} = Ae + b\tilde{\theta}^{T}\omega$$

$$\dot{\hat{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{V} = \frac{1}{2}\dot{e}^{T}Pe + \frac{1}{2}e^{T}P\dot{e} + \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}P(Ae + b\tilde{\theta}^{T}\omega) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}(Ae + b\tilde{\theta}^{T}\omega)^{T}Pe + \frac{1}{2}e^{T}Pe +$$

Time derivative:

$$\dot{\hat{\theta}} = Ae + b\tilde{\theta}^{T}\omega$$

$$\dot{\hat{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{V} = \frac{1}{2}\dot{e}^{T}Pe + \frac{1}{2}e^{T}P\dot{e} + \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}\left(Ae + b\tilde{\theta}^{T}\omega\right)^{T}Pe + \frac{1}{2}e^{T}P\left(Ae + b\tilde{\theta}^{T}\omega\right) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}e^{T}A^{T}Pe + \frac{1}{2}e^{T}PAe + b^{T}\tilde{\theta}^{T}\omega Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$

Time derivative:

$$\dot{\tilde{\theta}} = Ae + b\tilde{\theta}^{T}\omega$$

$$\dot{\tilde{\theta}} = -\dot{\tilde{\theta}}$$

Since matrix A is Hurwitz, it is related to the matrix P via Lyapunov equation $A^TP + PA = -Q$ with $Q = Q^T > 0$

$$\dot{V} = -\frac{1}{2}e^{T}Qe + \tilde{\theta}^{T}\omega b^{T}Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$

Time derivative:

$$\dot{\hat{\theta}} = Ae + b\tilde{\theta}^{T}\omega$$

$$\dot{\hat{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{V} = \frac{1}{2}\dot{e}^{T}Pe + \frac{1}{2}e^{T}P\dot{e} + \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}\left(Ae + b\tilde{\theta}^{T}\omega\right)^{T}Pe + \frac{1}{2}e^{T}P\left(Ae + b\tilde{\theta}^{T}\omega\right) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}e^{T}A^{T}Pe + \frac{1}{2}e^{T}PAe + b^{T}\tilde{\theta}^{T}\omega Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}e^{T}\left(A^{T}P + PA\right)e + \tilde{\theta}^{T}\omega b^{T}Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$

Since matrix A is Hurwitz, it is related to the matrix P via Lyapunov equation $A^TP + PA = -Q$ with $Q = Q^T > 0$

$$\dot{V} = -\frac{1}{2}e^{T}Qe + \tilde{\theta}^{T}\omega b^{T}Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$
Adaptation algorithm?

$$\dot{V} = -\frac{1}{2}e^{T}Qe + \tilde{\theta}^{T}\omega b^{T}Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$

If
$$\dot{\hat{\theta}} = \gamma \omega b^T P e$$
,

$$\dot{V} = -\frac{1}{2}e^T Qe < 0 \tag{6.11}$$

Summary and Discussion

Error Model

Adaptation Algorithm

Lyapunov function

Its time derivative

$$\dot{e} = Ae + b\tilde{\theta}^T \omega$$

$$\dot{\hat{\theta}} = \gamma \omega b^T P e$$

$$V = \frac{1}{2} e^T P e + \frac{1}{2\gamma} \tilde{\theta}^T \tilde{\theta}$$

$$\dot{V} = -\frac{1}{2} e^T Q e < 0$$

What it means?

Summary

Properties of the closed-loop system:

- 1. If ω is bounded, all the signals in the system are bounded;
- 2. Error ||e(t)|| approaches zero asymptotically;
- 3. The function V(t) is nonincreasing;
- 4. $\|\tilde{\theta}(t)\|^2$ approaches zero asymptotically if ω contains at least m/2 harmonics and consists of linearly independent elements;

This property can be reformulated in terms of **Persistent Excitation**

Condition:

$$\int_{t}^{t+T} \omega(\tau) \omega^{T}(\tau) d\tau \geq \alpha I$$

for some positive α , T.

Example 6.4. The problem of state adaptive control

Problem statement

Let a plant be described by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ b_0 \end{bmatrix} u$$

$$(6.12)$$

with **unknown** parameters a_0 , a_1 , known b_0 and measurable state input u and output y.

The objective is to design a control u such that

$$\lim_{t \to \infty} ||x_M(t) - x(t)|| = 0 \tag{6.13}$$

 x_M is the state of reference model

$$\begin{bmatrix} \dot{x}_{M1} \\ \dot{x}_{M2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} x_{M1} \\ x_{M2} \end{bmatrix} + \begin{bmatrix} 0 \\ b_{M0} \end{bmatrix} g$$

$$\dot{x}_{M} \qquad A_{M} \qquad x_{M} \qquad b_{M}$$

$$(6.14)$$

with parameters a_{M0} , a_{M1} , b_{M0} responsible for transient performance of the closed-loop system and reference signal g.

 x_M is the state of reference model

$$\begin{bmatrix} \dot{x}_{M1} \\ \dot{x}_{M2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} x_{M1} \\ x_{M2} \end{bmatrix} + \begin{bmatrix} 0 \\ b_{M0} \end{bmatrix} g$$

$$\dot{x}_{M} \qquad A_{M} \qquad x_{M} \qquad b_{M}$$

$$(6.14)$$

with parameters a_{M0} , a_{M1} , b_{M0} responsible for transient performance of the closed-loop system and reference signal g.

Main idea of solution is to reduce the problem to the error model.

Then to get the adaptation algorithm. insight (m)

Solution

1. Let the parameters a_0 , a_1 be known.

Form the error signal $e = x_M - x$ and take its derivative in view of the plant and reference model equations:

$$\dot{e} = \dot{x}_M - \dot{x} = A_M x_M + b_M g - Ax - bu$$

Solution

1. Let the parameters a_0 , a_1 be known.

Form the error signal $e = x_M - x$ and take its derivative in view of the plant and reference model equations:

$$\dot{e} = \dot{x}_M - \dot{x} = A_M x_M + b_M g - Ax - bu$$

Let
$$\dot{e} \triangleq A_M e$$
 $(e(t) = \exp(A_M t)e(0) \rightarrow 0$ exponentially fast).

Then

$$A_{M}x_{M} + b_{M}g - Ax - bu \triangleq A_{M}e$$

$$A_{M}x_{M} + b_{M}g - Ax - bu \triangleq A_{M}x_{M} - A_{M}x$$

Solution

1. Let the parameters a_0 , a_1 be known.

Form the error signal $e = x_M - x$ and take its derivative view of the plant and reference model equations:

$$\dot{e} = \dot{x}_M - \dot{x} = A_M x_M + b_M g - Ax - bu$$

Let
$$\dot{e} \triangleq A_M e$$
 $(e(t) = \exp(A_M t)e(0) \rightarrow 0$ exponentially fast).

Then

$$A_{M}x_{M} + b_{M}g - Ax - bu \triangleq A_{M}e$$

$$A_{M}x_{M} + b_{M}g - Ax - bu \triangleq A_{M}x_{M} - A_{M}x$$

$$bu = (A_{M} - A)x + b_{M}g$$

Solution
$$bu = (A_M - A)x + b_M g$$

$$\downarrow \downarrow$$

$$\begin{bmatrix} 0 \\ b_0 \end{bmatrix} u = \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \end{pmatrix} x + \begin{bmatrix} 0 \\ b_{M0} \end{bmatrix} g$$

$$bu = (A_{M} - A)x + b_{M}g$$

$$\begin{bmatrix} 0 \\ b_{0} \end{bmatrix} u = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -a_{0} & -a_{1} \end{bmatrix} x + \begin{bmatrix} 0 \\ b_{M0} \end{bmatrix} g$$

$$U = \begin{bmatrix} 1 \\ b_{0} \end{bmatrix} (a_{0} - a_{M0})x_{1} + (a_{1} - a_{M1})x_{2} + b_{M0}g$$

(6.15)

$$bu = (A_{M} - A)x + b_{M}g$$

$$\begin{bmatrix} 0 \\ b_{0} \end{bmatrix} u = \begin{pmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -a_{0} & -a_{1} \end{pmatrix} x + \begin{pmatrix} 0 \\ b_{M0} \end{pmatrix} g$$

$$U = \frac{1}{b_{0}} \left[(a_{0} - a_{M0})x_{1} + (a_{1} - a_{M1})x_{2} + b_{M0}g \right]$$

$$u = \frac{1}{b_{0}} \left[\theta^{T}x + b_{M0}g \right]$$
Nonadaptive control
$$u = \frac{1}{b_{0}} \left[\theta^{T}x + b_{M0}g \right]$$

Solution

2. Let the parameters a_0 , a_1 be unknown. Control

$$u = \frac{1}{b_0} \left[\theta^T x + b_{M0} g \right]$$

is not implementable. Substitute estimate $\hat{\theta}$ for θ and obtain the implementable adjustable control:

Adjustable control
$$u = \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$
 (6.16)

Solution

2. Let the parameters a_0 , a_1 be unknown. Control

$$u = \frac{1}{b_0} \left[\theta^T x + b_{M0} g \right]$$

is not implementable. Substitute estimate $\hat{\theta}$ for θ and obtain the implementable adjustable control:

Adjustable control
$$u = \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$
 (6.16)

Replace (6.16) in the plant equation $\dot{x} = Ax + bu$:

$$\dot{x} = A x + b \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$

Solution

Evaluate time derivative of error:

$$\dot{e} = \dot{x}_M - \dot{x} = A_M x_M + b_M g - Ax - b \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$

Solution

Evaluate time derivative of error:

$$\dot{e} = \dot{x}_{M} - \dot{x} = A_{M} x_{M} + b_{M} g - A x - b \frac{1}{b_{0}} \left[\hat{\theta}^{T} x + b_{M0} g \right] \pm A_{M} x$$

$$\downarrow \downarrow \qquad \qquad \dot{e} = A_{M} e + b_{M} g + (A_{M} - A) x - b \frac{1}{b_{0}} \left[\hat{\theta}^{T} x + b_{M0} g \right]$$

Solution

Evaluate time derivative of error:

Solution

$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \begin{bmatrix} 0 \\ (a_0 - a_{M0}) + (a_1 - a_{M1}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \hat{\theta}^T x$$

Solution

$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \begin{bmatrix} 0 \\ (a_0 - a_{M0}) + (a_1 - a_{M1}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \hat{\theta}^T x$$

$$\dot{e} = A_M \ e + k\theta^T x - k\hat{\theta}^T x$$

with parametric error $\tilde{\theta} = \theta - \hat{\theta}$.

6.2. Dynamic error model with measurable state

Solution

$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \begin{bmatrix} 0 \\ (a_0 - a_{M0}) + (a_1 - a_{M1}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \hat{\theta}^T x$$

$$\dot{e} = A_M \ e + k \theta^T x - k \hat{\theta}^T x$$

$$\dot{e} = A_M \ e + k \tilde{\theta}^T x$$

$$(6.17)$$

Solution

Error model

$$\dot{e} = A_M e + k\tilde{\Theta}^T x$$

Adaptation Algorithm

$$\dot{\hat{\boldsymbol{\theta}}} = \gamma \, x \, k^T P e \tag{6.18}$$

where γ is a positive gain, $P = P^T \succ 0$ is the solution of the Lyapunov equation

$$A_M^T P + P A_M = -Q (6.19)$$

with preliminary selected $Q = Q^T \succ 0$.

Solution Summary

Adjustable control

$$u = \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$

(6.16)

Adaptation Algorithm

$$\dot{\hat{\theta}} = \gamma x k^T P e$$

(6.18)

Error

$$e = x_M - x$$

Lyapunov equation

$$A_M^T P + P A_M = -Q$$

(6.19)

General Scheme

Simulation results

Unknown parameters

$$a_0 = 1$$
, $a_1 = -2$

Reference model

$$\begin{bmatrix} \dot{x}_{M1} \\ \dot{x}_{M2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} x_{M1} \\ x_{M2} \end{bmatrix} + \begin{bmatrix} 0 \\ 6 \end{bmatrix} g$$

Adaptation gain

$$\gamma = 100$$

Matrix P

$$P = \begin{bmatrix} 1.1167 & 0.0833 \\ 0.0833 & 0.1167 \end{bmatrix}$$

Reference
$$g(t) = \sin 4t + 2$$

Simulation results

Simulation results

Robust modifications of adaptation algorithm

Robust modifications of adaptation algorithm

Robust modifications of adaptation algorithm

Robust modifications of adaptation algorithm

$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = c^{T}e(t)$$
(6.20a)

where $e \in \mathbb{R}^n$ is the unmeasurable state ε is the output, $\tilde{\theta} \in \mathbb{R}^m$ is the vector of parametric errors, $\omega \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.3. Since vector is not measurable, the model (6.20a) can be presented in the "Input-Output" form

$$\varepsilon(t) = W(s) \left[\tilde{\theta}^{T}(t)\omega(t) \right]$$
 (6.20b)

with transfer function $W(s) = c^{T} (Is - A)^{-1} b$.

Remark 6.4. The model is widely used in the problems of output adaptive control (see example below).

The problem is to design an adaptation algorithm/algorithms based on (6.20)

6.3. Dynamic error model with measurable output Solution #1

Can we just apply adaptation algorithm

$$\hat{\theta} = \gamma \omega \epsilon$$

used for static error model?

6.3. Dynamic error model with measurable output Solution #1

Can we just apply adaptation algorithm

$$\hat{\theta} = \gamma \omega \epsilon$$

used for static error model?

IF YES, WHEN???

Solution #1

Solution #1

If $b^T P = c^T$, adaptation algorithm becomes implementable since

$$\dot{\hat{\boldsymbol{\theta}}} = \boldsymbol{\gamma} \boldsymbol{\omega} \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{e} = \boldsymbol{\gamma} \boldsymbol{\omega} \boldsymbol{\varepsilon} \tag{6.21}$$

Solution #1

Lemma (Yakubovich-Kalman-Popov):

Matrix $P = P^T > 0$ satisfies both Lyapunov equation

$$A^T P + PA = -Q$$

and equation

$$b^T P = c^T$$

simultaniously iff transfer function

$$W(s) = c^{T} (Is - A)^{-1}b.$$

is Strictly Positive Real (SPR).

Solution #1

Definition 6.1. Transfer function $W(s) = c^{T} (Is - A)^{-1}b$ is **SPR** if

- 1. tt is stable, i.e. polynomial of its denominator is Hurwitz (has all the roots in the left half plane of root locus);
- 2. Nyiqust plot is placed in the right half plane of the diagram.

$$\operatorname{Re}\{W(jw)\} > 0, \ \forall w \in [0, \infty).$$

3. the limit equality hold

$$\lim_{w\to\infty} w^2 \operatorname{Re}\left\{W(jw)\right\} > 0$$

Example 6.5. SPR transfer function of first order block

$$W(s) = \frac{K}{Ts + 1}$$

with some positive constant parameters K and T.

Example 6.5. SPR transfer function of first order block

$$W(s) = \frac{K}{Ts + 1}$$

with some positive constant parameters K and T.

Verification

Frequency transfer function

$$W(jw) = \frac{K}{Tjw+1} = \frac{K(-Tjw+1)}{(Tjw+1)(-Tjw+1)} = \frac{K}{T^2w^2+1} - j\frac{KTw}{T^2w^2+1}$$

$$\text{Re}\{W(jw)\} - \text{Im}\{W(jw)\}$$

Example 6.5. SPR transfer function of first order block

$$W(s) = \frac{K}{Ts + 1}$$

with some positive constant parameters K and T.

Verification

1. Frequency transfer function

$$W(jw) = \frac{K}{Tjw+1} = \frac{K(-Tjw+1)}{(Tjw+1)(-Tjw+1)} = \frac{K}{T^2w^2+1} - j\frac{KTw}{T^2w^2+1}$$

2. The first condition: $Ts + 1 = 0 \Rightarrow s_1 = -1/T \Rightarrow W(s)$ is Hurwitz

Example 6.5. SPR transfer function of first order block

$$W(s) = \frac{K}{Ts + 1}$$

with some positive constant parameters K and T.

Verification

1. Frequency transfer function

$$W(jw) = \frac{K}{Tjw+1} = \frac{K(-Tjw+1)}{(Tjw+1)(-Tjw+1)} = \frac{K}{T^2w^2+1} - j\frac{KTw}{T^2w^2+1}$$

- 2. The first condition: $T_S + 1 = 0 \Rightarrow s_1 = -1/T \Rightarrow W(s)$ is Hurwitz
- 3. The second condition:

$$\operatorname{Re}\left\{W(jw)\right\} = \frac{K}{T^{2}w^{2} + 1} > 0, \quad \forall w \in [0, \infty).$$

4. The third condition:

$$\lim_{w \to \infty} w^2 \operatorname{Re} \{ W(jw) \} = \lim_{w \to \infty} \frac{Kw^2}{T^2 w^2 + 1} = \frac{K}{T^2} > 0.$$

4. The third condition:

$$\lim_{w \to \infty} w^2 \operatorname{Re} \{ W(jw) \} = \lim_{w \to \infty} \frac{Kw^2}{T^2 w^2 + 1} = \frac{K}{T^2} > 0.$$

SPR transfer function is a function with property of the first order block, i.e. relative degree less than 2 (0 or 1)

Remark 6.5. One-syllable words about adaptation algorithm and SPR transfer functions

Error model

$$\varepsilon(t) = W(s) \left[\tilde{\theta}^{T}(t) \omega(t) \right]$$

Adaptation algorithm

$$\varepsilon(t) = W(s) \left[\tilde{\theta}^{T}(t) \omega(t) \right]$$
$$\dot{\tilde{\theta}}(t) = -\dot{\hat{\theta}}(t) = -\gamma \omega(t) \varepsilon(t)$$

Solution #1

Summary and Discussion

Error Model
$$\varepsilon = W(s) \begin{bmatrix} \tilde{\theta}^T \omega \end{bmatrix},$$
Adaptation Algorithm
$$\dot{\hat{\theta}} = \gamma \omega \varepsilon,$$

Adaptation Algorithm

where W(s) is an SPR transfer function.

Solution #1

Summary and Discussion

Error Model
$$\varepsilon = W(s) \begin{bmatrix} \tilde{\theta}^T \omega \end{bmatrix}$$
,Adaptation Algorithm $\dot{\hat{\theta}} = \gamma \omega \varepsilon$,

where W(s) is an SPR transfer function.

SPR condition is quite restrictive and can narrow practical meaning of the problem

Solution #2 Augmented error algorithm (Monopoli, TAC, 1974)

Consider error model

$$\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right]$$

and introduce augmentation signal

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) [\omega] + W(s) [\hat{\theta}^T \omega].$$

(6.22)

Solution #2 Augmented error algorithm (Monopoli, TAC, 1974)

Consider error model

$$\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right]$$

and introduce augmentation signal

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) \left[\omega \right] + W(s) \left[\hat{\theta}^T \omega \right]. \tag{6.22}$$

Substitution of error model into (6.22) gives static error model

$$\hat{\varepsilon} = \tilde{\Theta}^T W(s) [\omega]. \tag{6.23}$$

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Consider error model

$$\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right]$$

and introduce augmentation signal

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) \left[\omega \right] + W(s) \left[\hat{\theta}^T \omega \right]. \tag{6.22}$$

Substitution of error model into (6.22) gives static error model

$$\hat{\varepsilon} = \tilde{\Theta}^T W(s) [\omega]. \tag{6.23}$$

Adaptation algorithm (see section **6.1. Static error model**)

$$\dot{\hat{\theta}} = \gamma W(s) \left[\omega \right] \hat{\epsilon}. \tag{6.24}$$

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Summary and Discussion

Error Model

Augmented error

Adaptation Algorithm

$$\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right],$$

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) \left[\omega \right] + W(s) \left[\hat{\theta}^T \omega \right],$$

$$\dot{\hat{\theta}} = \gamma W(s) \left[\omega \right] \hat{\varepsilon}.$$

The solution relaxes restriction on the class of transfer functions

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Summary and Discussion

Error Model

Augmented error

Adaptation Algorithm

$$\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right],$$

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) \left[\omega \right] + W(s) \left[\hat{\theta}^T \omega \right],$$

$$\hat{\theta} = \gamma W(s) [\omega] \hat{\epsilon}.$$

Proved using the Swapping lemma:

$$W(s) \left[\hat{\theta}^T \omega \right] = \hat{\theta}^T W(s) \left[\omega \right] - W_C(s) \left[W_b(s) \left[\omega^T \right] \dot{\hat{\theta}} \right]$$

where $W_C(s) = c^T (Is - A)^{-1}$, $W_b(s) = (Is - A)^{-1}b$ are the transfer matrices.

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Summary and Discussion

Error Model

Augmented error

Adaptation Algorithm

$$\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right],$$

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) \left[\omega \right] + W(s) \left[\hat{\theta}^T \omega \right],$$

$$\dot{\hat{\theta}} = \gamma W(s) \left[\omega \right] \hat{\varepsilon}.$$

Augmented error simplified using the Swapping lemma:

$$\hat{\varepsilon} = \varepsilon - W_C(s) \left[W_b(s) \left[\omega^T \right] \dot{\hat{\theta}} \right],$$

where $W_C(s) = c^T (Is - A)^{-1}$, $W_b(s) = (Is - A)^{-1}b$ are the transfer matrices.

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Summary and Discussion

Error Model

Augmented error

Adaptation Algorithm

$$\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right],$$

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) \left[\omega \right] + W(s) \left[\hat{\theta}^T \omega \right],$$

$$\dot{\hat{\theta}} = \gamma W(s) \left[\omega \right] \hat{\varepsilon}.$$

Augmented error simplified using the Swapping lemma:

$$\hat{\varepsilon} = \varepsilon - \gamma W_C(s) \Big[W_b(s) \Big[\omega^T \Big] W(s) \Big[\omega \Big] \hat{\varepsilon} \Big],$$

where $W_C(s) = c^T (Is - A)^{-1}$, $W_b(s) = (Is - A)^{-1}b$ are the transfer matrices.

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Summary

Properties of the closed-loop system:

- 1. If ω is bounded, all the signals in the system are bounded;
- 2. Error $\hat{\varepsilon}(t)$ approaches zero asymptotically;
- 3. The norm $\|\tilde{\theta}(t)\|$ is nonincreasing;
- 4. The norm $\|\tilde{\theta}(t)\|$ approaches zero asymptotically, if ω satisfies the Persistent Excitation condition;
- 5.

$$\hat{\varepsilon} = \varepsilon - \gamma W_C(s) \left[W_b(s) \left[\omega^T \right] W(s) \left[\omega \right] \hat{\varepsilon} \right],$$

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Summary

Properties of the closed-loop system:

- 1. If ω is bounded, all the signals in the system are bounded;
- 2. Error $\hat{\varepsilon}(t)$ approaches zero asymptotically;
- 3. The norm $\|\tilde{\theta}(t)\|$ is nonincreasing;
- 4. The norm $\|\tilde{\theta}(t)\|$ approaches zero asymptotically, if ω satisfies

the Persistent Excitation condition;

5.

$$\hat{\varepsilon} = \varepsilon - \gamma W_C(s) \Big[W_b(s) \Big[\omega^T \Big] W(s) \Big[\omega \Big] \hat{\varepsilon} \Big],$$

Does & go to zero

Solution #2 Augmented error algorithm (R. Monopoli, TAC, 1974)

Summary

Properties of the closed-loop system:

- 1. If ω is bounded, all the signals in the system are bounded;
- 2. Error $\hat{\varepsilon}(t)$ approaches zero asymptotically;
- 3. The norm $\|\tilde{\theta}(t)\|$ is nonincreasing;
- 4. The norm $\|\tilde{\theta}(t)\|$ approaches zero asymptotically, if ω satisfies the Persistent Excitation condition;
- 5. If ω is bounded, error $\varepsilon(t)$ approaches zero asymptotically.

Example 6.6. The problem of output adaptive control

Problem statement

Let a plant be described by

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u \tag{6.25}$$

with **unknown** parameters a_0 , a_1 , known b_0 and unmeasurable state \dot{y} , known input u and output y.

The objective is to design a control u such that

$$\lim_{t \to \infty} \|y_M(t) - y(t)\| = 0, \tag{6.26}$$

where y_M is the output of reference model

$$\ddot{y}_M + a_{M1}\dot{y}_M + a_{M0}y_M = b_{M0}g \tag{6.27}$$

with the reference signal g.

Solution

Solution

1. Obstacle of unmeasurable state.

Apply first order (n-1)th filter

$$\frac{1}{s+k}$$
, $k>0$

to the plant equation:

$$\frac{1}{s+k} [\ddot{y} + a_1 \dot{y} + a_0 y] = b_0 \frac{1}{s+k} [u]$$

Solution

1. Obstacle of unmeasurable state.

Apply first order (n-1)th filter

$$\frac{1}{s+k}$$
, $k>0$

to the plant equation:

$$\frac{1}{s+k} [\ddot{y} + a_1 \dot{y} + a_0 y] = b_0 \frac{1}{s+k} [u]$$

$$\frac{s}{s+k} [\dot{y}] + a_1 \frac{s}{s+k} [y] + a_0 \frac{1}{s+k} [y] = b_0 \frac{1}{s+k} [u]$$

Solution

1. Obstacle of unmeasurable state.

Apply first order (n-1)th filter

$$\frac{1}{s+k}$$
, $k>0$

to the plant equation:

$$\frac{1}{s+k} [\ddot{y} + a_1 \dot{y} + a_0 y] = b_0 \frac{1}{s+k} [u]$$

$$\frac{s}{s+k} [\dot{y}] + a_1 \frac{s}{s+k} [y] + a_0 \frac{1}{s+k} [y] = b_0 \frac{1}{s+k} [u]$$

$$\dot{y} = (k-a_1) y + (a_1 k - k^2 - a_0) \frac{1}{s+k} [y] + b_0 \frac{1}{s+k} [u]$$

Solution

The derivative \dot{y} is still not accessible, however presentable in the useful form of linear regression

iNSiGH

6.3. Dynamic error model with measurable outputSolution

2. Obstacle of unknown parameters.

Main idea of solution is to reduce the problem to the error model.

Then to get the adaptation algorithm.

Solution

2. Obstacle of unknown parameters.

$$\ddot{\varepsilon} = \ddot{y}_{M} - \ddot{y} =$$

Solution

2. Obstacle of unknown parameters.

$$\ddot{\varepsilon} = \ddot{y}_M - \ddot{y} = -a_{M1}\dot{y}_M - a_{M0}y_M + b_{M0}g + a_1\dot{y} + a_0y - b_0u =$$

Solution

2. Obstacle of unknown parameters.

$$\ddot{\varepsilon} = \ddot{y}_{M} - \ddot{y} = -a_{M1}\dot{y}_{M} - a_{M0}y_{M} + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u$$

$$\ddot{\varepsilon} = -a_{M1}(\dot{y}_{M} \pm \dot{y}) - a_{M0}(y_{M} \pm y) + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u = 0$$

Solution

2. Obstacle of unknown parameters.

$$\ddot{\varepsilon} = \ddot{y}_{M} - \ddot{y} = -a_{M1}\dot{y}_{M} - a_{M0}y_{M} + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u$$

$$\ddot{\varepsilon} = -a_{M1}(\dot{y}_{M} \pm \dot{y}) - a_{M0}(y_{M} \pm y) + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u =$$

$$-a_{M1}\dot{\varepsilon} - a_{M1}\dot{y} - a_{M0}\varepsilon - a_{M0}y + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u$$

Solution

2. Obstacle of unknown parameters.

$$\ddot{\varepsilon} = \ddot{y}_{M} - \ddot{y} = -a_{M1}\dot{y}_{M} - a_{M0}y_{M} + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u$$

$$\ddot{\varepsilon} = -a_{M1}\dot{y}_{M} + \dot{y}_{M} - a_{M0}\dot{y}_{M} + \dot{y}_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u =$$

$$-a_{M1}\dot{\varepsilon} - a_{M1}\dot{y} - a_{M0}\varepsilon - a_{M0}y + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u$$

Solution

2. Obstacle of unknown parameters.

$$\ddot{\varepsilon} = \ddot{y}_{M} - \ddot{y} = -a_{M1}\dot{y}_{M} - a_{M0}y_{M} + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u$$

$$\ddot{\varepsilon} = -a_{M1}\dot{y}_{M} + \ddot{y} - a_{M0}\dot{y}_{M} + \ddot{y}_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u =$$

$$-a_{M1}\dot{\varepsilon} - a_{M1}\dot{y} - a_{M0}\varepsilon - a_{M0}y + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$\varepsilon = \frac{1}{s^{2} + a_{M1}s + a_{M0}} \left[-a_{M1}\dot{y} - a_{M0}y + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u \right]$$

$$W_{M}(s)$$

$$\varepsilon = W_{M}(s) \left[(a_{1} - a_{M1})\dot{y} + (a_{0} - a_{M0})y + b_{M0}g - b_{0}u \right]$$

$$\varepsilon = \frac{1}{s^2 + a_{M1}s + a_{M0}} \left[-a_{M1}\dot{y} - a_{M0}y + b_{M0}g + a_1\dot{y} + a_0y - b_0u \right]$$

$$W_M(s)$$

$$\varepsilon = W_M(s) \left[(a_1 - a_{M1}) \dot{y} + (a_0 - a_{M0}) y + b_{M0} g - b_0 u \right]$$

$$\varepsilon = W_M(s) \Big[(a_1 - a_{M1}) \dot{y} + (a_0 - a_{M0}) y + b_{M0} g - b_0 u \Big]$$

$$\dot{y} = \theta^{*T} \omega$$

$$\varepsilon = W_M(s) \left[\theta^T \omega + b_{M0} g - b_0 u \right]$$

$$\varepsilon = W_M(s) \left[\theta^T \omega + b_{M0} g - b_0 u \right]$$
where $\omega = col\left(y, \frac{1}{s+k}[y], \frac{1}{s+k}[u]\right)$

$$\theta = col\left((a_1 - a_{M1})\theta_1^* + (a_0 - a_{M0}), (a_1 - a_{M1})\theta_2^*, (a_1 - a_{M1})\theta_3^*\right)$$

$$\epsilon = W_{M}(s) \left[\theta^{T} \omega + b_{M0} g - b_{0} u \right]$$
where $\omega = col\left(y, \frac{1}{s+k}[y], \frac{1}{s+k}[u]\right)$

$$\theta = col\left((a_{1} - a_{M1})(k - a_{1}) + a_{0} - a_{M0}, (a_{1} - a_{M1})(a_{1}k - k^{2} - a_{0}), a_{1}b_{0} - a_{M1}b_{0}\right)$$

$$\varepsilon = W_{M}(s) \left[\theta^{T} \omega + b_{M0} g - b_{0} u \right]$$
where $\omega = col\left(y, \frac{1}{s+k} [y], \frac{1}{s+k} [u]\right)$

$$\theta = col\left((a_{1} - a_{M1})(k - a_{1}) + a_{0} - a_{M0}, (a_{1} - a_{M1})(a_{1}k - k^{2} - a_{0}), a_{1}b_{0} - a_{M1}b_{0}\right)$$

$$Adjustable \ control \qquad u = \frac{1}{b_{0}} \left[\hat{\theta}^{T} \omega + b_{M0} g \right] \tag{6.28}$$

Solution

$$\varepsilon = W_M(s) \left[\theta^T \omega + b_{M0} g - b_0 u \right]$$

where
$$\omega = col\left(y, \frac{1}{s+k}[y], \frac{1}{s+k}[u]\right)$$

$$\theta = col((a_1 - a_{M1})(k - a_1) + a_0 - a_{M0},$$

$$(a_1 - a_{M1})(a_1k - k^2 - a_0), a_1b_0 - a_{M1}b_0)$$

Adjustable control
$$u = \frac{1}{b_0} \left[\hat{\theta}^T \omega + b_{M0} g \right]$$

Error model

$$\varepsilon = W_M(s) \left[\tilde{\theta}^T \omega \right]$$

$$(6.29)$$

with parametric errors $\tilde{\theta} = \theta - \hat{\theta}$.

Solution

$$\varepsilon = W_M(s) \left[\tilde{\Theta}^T \omega \right],$$

where

Augmented error

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W_M(s) [\omega] + W_M(s) [\hat{\theta}^T \omega]$$
(6.30)

Adaptation Algorithm
$$\dot{\hat{\theta}} = \gamma W_M(s) [\omega] \hat{\epsilon}$$
 (6.31)

Solution Summary

Adjustable control
$$u = \frac{1}{b_0} \left[\hat{\theta}^T \omega + b_{M0} g \right]$$
 (6.28)

Augmented error
$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W_M(s) [\omega] + W_M(s) [\hat{\theta}^T \omega]$$
 (6.30)

Adaptation Algorithm
$$\hat{\theta} = \gamma(t)W_M(s)[\omega]\hat{\epsilon}$$
 (6.31)

Error
$$\varepsilon = y_M - y$$

Regressor with filters
$$\omega = col\left(y, \frac{1}{s+k}[y], \frac{1}{s+k}[u]\right)$$

Normalization (
$$\omega$$
 is bounded?) $\gamma(t) = \frac{\gamma_0}{1 + W_M(s) \left[\omega^T\right] W_M(s) \left[\omega\right]}$ (6.32)

Simulation results

Plant

$$\ddot{y} + a_1 \dot{y} + a_0 y = u$$

Unknown parameters

$$a_0 = 1$$
, $a_1 = 2$

Reference model

$$\ddot{y}_M + 5\dot{y}_M + 6y_M = 6g$$

Adaptation gain

$$\gamma(t) = \frac{1000}{1 + W_M(s) \left[\omega^T\right] W_M(s) \left[\omega\right]}$$

Reference transfer function (with unity nominator)

$$W_M(s) = \frac{1}{s^2 + 5s + 6}$$

$$g(t) = \sin 4t$$

Simulation results

Regressor

$$\omega = col\left(y, \frac{1}{s+8}[y], \frac{1}{s+8}[u]\right)$$

Augmented error
$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T \frac{1}{s^2 + 5s + 6} \left[\omega \right] + \frac{1}{s^2 + 5s + 6} \left[\hat{\theta}^T \omega \right],$$

Error
$$\varepsilon = y_M - y$$

Simulation results

Simulation results

Does AA provide identification properties?