I nalen

א. מהגדרת B_n , כל סדרה השייכת ל- B_n מתחילה ב-0 (ברור) ומסתיימת ב-n (אילו היתה מסתיימת ב-n, אז התת-סדרה הפותחת באורך n באורך n היתה מכילה יותר הופעות של n מאשר של n).

- . l מספר ההופעות של 0 ברישא-ממש של t גדול-ממש ממספר ההופעות של (*) בנוסף מובן כי:
 - n בסדרה n כולה יש n הופעות של n ו- n הופעות של (**)

 A_n שתי טענות אלו יחד אומרות כי הסדרה A_n שייכת ל- B_n וכי

נראה כעת כי כל סדרה $t\in B_n$ המקיימת $\rho(t)=n$ היא מהצורה $t\in B_n$ כאשר , t כאשר ב- t ומסתיימים ב- t (מתחילים ב- t ומסתיימים ב- t (מומר ראשית, כפי שאמרנו בפתח התשובה, כל אברי t (מתחילים ב- t (מוסתיימים ב- t (מניח בשלילה כי t (ניח בשלילה כי t (מום בי t (מום בי

 $ho \left(s
ight)$ = n המקיימות ב-h המקיימות על קבוצת הסדרות אונה חחייע של החחייע ועלי?). לפיכך שתי הקבוצות בעלות אותה עוצמה.

ב. לצורך ההסבר, נסמן ב- D_m את קבוצת אברי B_m שהם בעלי B_m . נשים לב כי אם סדרה D_m , נשימת D_m , אז הרישא באורך של D_m של הוא איבר ב- D_m , והחלק של D_m איבר של D_m . ולהיפך בהינתן איבר של D_m ואיבר D_m של D_m , שרשורם (כתיבתם זה אחר זה) נותן סדרה השייכת ל- D_m , שאף היא בעלת D_m

. מובן שכל בחירה של איבר של D_m ואיבר של ואיבר של פיכך. פותנת סדרה שונה ב- B_n לפיכך. אם ממיין את כל אברי של לפי ערכי θ לפי ערכי B_n לפי אברי אם מיין את כל אברי אם לפי ערכי

. נציב, וקיבלנו את המבוקש. ו $|D_m|$ = C_{m-1} אך בסעיף א הראינו $|B_n|$ = $\sum\limits_{m=1}^n (|D_m||B_{n-m}|)$

2 nalen

א. מהגדרת פונקציה יוצרת:

$$f(x) = 1 + x + x^{2} + 3x^{3} + x^{4} + x^{5} + \dots$$
$$= 2x^{3} + \sum_{i=0}^{\infty} x^{i} = 2x^{3} + \frac{1}{1-x}$$

$$(1+x)^n = \sum_{h=0}^n \binom{n}{h} x^h$$
 ב. מנוסחת הבינום,

אך בעזרת התאפסות המקדמים הבינומיים במקרים חריגים ניתן להמשיך את הסכום כך:

. מהגדרת פונקציה יוצרת, זהו בדיוק מהגדרת בשאלה. (1+
$$x$$
) מהגדרת בשאלה. $(1+x)^n = \sum_{h=0}^{\infty} \binom{n}{h} x^h$

ג. נתבונן כללית בפעולה של כפל פונקציות יוצרות, נושא שמן הראוי להכירו: תהיינה

פונקציות בראש עמוד 122 בספר הלימוד מופיע $g(x)=\sum\limits_{j=0}^{\infty}b_{j}x^{j}$, $f(x)=\sum\limits_{i=0}^{\infty}a_{i}x^{i}$

. $\sum\limits_{i=0}^k a_i b_{k-i}$ המקדם של בפיתוח המכפלה המקצה על המיש הואים שם, כפי שרואים המכפלה המכפלה המכפלה המקדם שם, המקדם אינו המקדם שם, כפי שרואים המ

כעת לתרגיל: נשווה בין המקדמים של x^n המופיעים בפיתוח כל אחד מאגפי הזהות $: (1+x)^{2n} = (1+x)^n (1+x)^n$

 $\binom{2n}{n}$ אוא שמאל שמאל באגף באגף של הוא לפי סעיף ב, המקדם של

 $\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}$ באגף ימין הוא באגף ימין ב), המקדם של אוי באגף ימין הוא

 x^n מכיוון ש- x^n קיבלנו את המבוקש. שימו לב שבחרנו לחשב את המקדם של x^k קיבלנו את מידה לחשב את המקדם של x^k כלשהו, ולקבל אבורו קיבלנו זהות פשוטה, אך יכולנו באותה מידה לחשב את המקדם של x^k כלשהו, ולקבל זהות בינומית כללית יותר.

3 nalen

א. עבור הצגה של r כסכום באופן המבוקש, נסמן ב- n_1 את מספר הפעמים בהם מופיע המחובר . ($n_{1,2,3} \geq 0$) את מספר ההופעות של n_2 (n_3) . n_3 את מספר הפעמים בהם מופיע n_3 , וב- n_3 את מספר האופעות של n_3 יחיד את ההצגה.

.($n_{1,2,3} \ge 0$) $n_1 + 2n_2 + 3n_3 = r$ מספר הפתרונות בטבעיים של הפונקציה היוצרת לבעיה זו תוארה במהלד פתרון שאלה 7.12 בעמוד לבעיה זו תוארה במהלד

$$f(x) = (1 + x + x^2 + ...)(1 + x^2 + x^4 + ...)(1 + x^3 + x^6 + ...)$$

ב. בעזרת הרמז נקבל כי סעיף זה דומה לגמרי לשאלה 7.12 , בהבדל היחיד כי המשתנה הקטן ביותר צריך אצלנו להיות גדול או שווה I, בעוד שבשאלה 7.12 הוא גדול או שווה 0. ביותר צריך אצלנו להיות גדול או שווה 1, בעוד שבשאלה 7.12 אנו רואים כי משתנה זה t_1 שם) , תורם לפונקציה היוצרת את הגורם t_1 (כלומר t_1) . כדי להביא בחשבון את התנאי t_1 (כלומר t_1) חייב להופיע בסכום, משמע החזקה המתאימה של t_1 חיובית), יש להשמיט את המחובר t_1 מהגורם המתאים בפונקציה היוצרת, כלומר התרומה אצלנו היא t_1 (t_1) . שני הגורמים האחרים בתשובה לשאלה t_2 אינם משתנים. נסמן פונקציה זו t_1

$$g(x) = (1 + x + x^2 + ...)(1 + x^2 + x^4 + ...)(x^3 + x^6 + x^9 + ...)$$

ג. נשים לב כי r בתנאי מספר המצגות מכאן מכאן מכאן מכאן הוצאת גורם, $g(x)=x^3f(x)$ בתנאי מעיף א בי נשים לב כי r+3 בתנאי מעיף בי כדאי לבדוק ערכים קטנים ולהשתכנע שזה נכון.

עוד כדאי לשים לב, שאם היינו דורשים בסעיף א שהמחובר הגדול ביותר שווה ל- 3 (במקום שווה f - מסלק מ- 3 להופיע מסלק מ- לכל היותר 3), היה מתקבל שוויון בין תוצאות שני הסעיפים: החיוב של 3 להופיע מסלק מ- 3 את המחובר 3 שבגורם 3 שבגורם 3 (3 - 3), ומתקבלת פונקציה זהה ל- 3 שבגורם 3 (3 - 4 -

4 nalen

א. ראשית ראוי לזכור כי טענה זו נובעת מיד מהגדרת אי-שוויון בין עוצמות בפרק 4 בכרך ייתורת הקבוצות", הגדרה התקַ פה כמובן גם לקבוצות סופיות. כאן אנו רוצים לחזור ולקבל את הטענה במקרה הסופי, מתוך עקרון שובך היונים.

. m - $k \ge 0$ הרי A, הרי ביותר ב- A, הרי מכיון ש- A הוא האבר הגדול ביותר ב- A, הרי A הנוסף, עבור ביותר ב- A היי מכיון ש- A הוא האבר הגדול ביותר ב- A הרי A הרי

. B = $\{i \in \mathbb{N} \,|\, 0 \leq i \leq m/2\}$ מכאן מוכלת מוכ

. נראה אפוא את f כפונקציה של A - $\{m\}$ לקבוצה f הנייל.

. |B| שר ש- |A - $\{m\}$ |= n+1 כעת, |A

 $.\,f(k_1)$ = $\,f(k_2)\,$, $\,k_1\neq\,k_2\,$, $\,k_1,k_2\in\,A$ - $\,\{m\}\,$ מכאן, קיימים מכאן, לפי שובך היונים, קיימים

. מכאן המבוקש. k_2 = m - k_1 מכאן המבוקש מובן כי ממקרה מהגדרת אבל

אָתַּי הראבן מאי *1999*

בעמודים הבאים - שאלות מ-3 מבחנים שנערכו בשנים האחרונות.