SW4

Convex and Concave functions:

Der rote Punkt wird in einer konvexen Funktion immer höher sein als der blaume.

Définitionen:

Convex Function: $f: S \rightarrow R$, $f(3x^{1}+(1-\lambda)x^{2}) = \lambda f(x^{1})+(1-\lambda)f(x^{2})$ Concav Function: $f: S \rightarrow R$, $f(3x^{1}+(1-\lambda)x^{2}) = \lambda f(x^{2})+(1-\lambda)f(x^{2})$

Convex optimization problem: for 0= 1=1, x1, x Es

Theorem: In convex optimization, local optimum is global optimum. Convex functions need to be minimized, Concav functions need to be maximized.

Linear Programming:

inearty: f(ax+by) = af(x) + bf(y)

Linear Function: $f(x) = a_1x_1 + a_2x_2 + ... \cdot a_nx_n = \sum_{j=1}^n a_jx_j = a^Tx$ Linear inequality: $\sum_{j=1}^n a_jx_j \le b$ resp. $a^Tx \le b$

Linear Program (LP):

We have to minimize linear objective function subject to linear constraints.

We have three types of constraints (\geq , =, \leq) and three types of variables (\geq 0, \leq 0, free)

And we have three different forms of LP:

Canonical form: Max cTx > a'x = 6, min CTx > a'x = 6

Standard Form: Only equality constraints

Inequality Form: Same with canonical, but no constraint!