Gerência de Memória Segmentação

Qual a visão que o usuário tem da memória?

 Com a paginação ocorre a separação entre a visão da memória pelo usuário e a memória física

Memória Segmentada (1)

Address space

parse tree

Programas são normalmente separados em módulos: unidade lógica

Virtual address space Call stack Free Space currently being allocated to the Parse tree used by the parse tree Constant table Source text Symbol table has bumped into the Symbol table source text table

Memória Segmentada (2)

Permite que cada tabela cresça ou encolha, independentemente!

Memória virtual: Segmentação

- Divisão dos programas em segmentos lógicos que refletem a sua estrutura funcional
 - rotinas, módulos, código, dados, pilha, etc.
- O objetivo da segmentação é dividir programas em seções para que o S.O. possa relocá-los mais facilmente na memória
- Programa é dividido em segmentos, que são blocos de endereços
 - O espaço de endereçamento virtual é linear em cada segmento
 - Segmentos de um programa não precisam ser do mesmo tamanho
 - A dimensão dos segmentos é limitada pela arquitetura
 - O compilador constrói automaticamente os segmentos
- Usuário tem controle
 - O programador pode ter que se preocupar com a gestão de memória quando escreve um programa

Segmentação: Endereçamento (1)

- Endereço dividido em 2 partes
 - número do segmento (ou base)
 - deslocamento (ou offset)
- Segmento e deslocamento devem ser somados, e não concatenados
- Uma tabela de segmento para cada processo ativo
- Registrador especial contém endereço inicial da tabela de segmento (BTS – base da tabela de segmentos)

Segmentação: Endereçamento (2)

Segmentação: Endereçamento (3)

Segmentação: Endereçamento (4)

- Tabela de segmento contém
 - comprimento do segmento
 - armazenado na tabela de segmento para evitar que um programa acesse errôneamente posições fora do segmento
 - bits de proteção de memória
 - bits para o algoritmo de substituição
- Proteção de memória: segmento pode ser
 - read-only
 - execute-only
 - system-only

Segmentação: Vantagens

- Compartilhamento de memória entre processos:
 - Basta colocar nas tabelas de segmentos dos processos em questão o endereço real do segmento a compartilhar
 - Os endereços virtuais usados para acessar o segmento compartilhado podem ser diferentes nos vários processos
 - A proteção de um segmento compartilhado é definida para cada processo através da respectiva tabela de segmentos

Compartilhamento de Segmentos

Segmentação: Problemas

- Algoritmo de substituição: mais complexo do que em paginação devido ao tamanho variável dos segmentos (eg. First fit, best fit,..)
- Fragmentação externa
 - Segmentos de tamanhos variáveis

Pode-se usar compactação

Segmen (7K)	: 4	Segment 4 (7K)	Segment 5 (4K)	Segment 5 (4K)	(10K)	
Segmen (8K)	: 3	Segment 3 (8K)	Segment 3 (8K)	(4K) Segment 6 (4K)	Segment 5 (4K)	Compactação
Segment (5K)	: 2	Segment 2 (5K)	Segment 2 (5K)	Segment 2 (5K)	Segment 6 (4K) Segment 2	!
Segmen (8K)	:1	Segment 7 (5K)	Segment 7 (5K)	(3K) Segment 7 (5K)	(5K) Segment 7 (5K)	
Segmen (4K)	: 0	Segment 0 (4K)	Segment 0 (4K)	Segment 0 (4K)	Segment 0 (4K)	
(a)		(b)	(c)	(d)	(e)	Sistemas Operacionais

Paginação x Segmentação

Consideração	Paginação	Segmentação	
O programador precisa estar ciente de que essa técnica está sendo usada?	Não	Sim	
Quantos espaços de endereçamentos lineares existem?	Um	Muitos	
O espaço de endereçamento total pode exceder o tamanho da memória física?	Sim	Sim	
Os procedimentos e os dados podem ser diferenciados e protegidos separadamente?	Não	Sim	
As tabelas com tamanhos variáveis podem ser acomodadas facilmente?	Não	Sim	
O compartilhamento de procedimentos entre usuários é facilitado?	Não	Sim	
Por que essa técnica foi inventada?	Para fornecer um grande espaço de endereçamento linear sem a necessidade de comprar mais memória física	Para permitir que programas e dados sejam quebrados em espaços de endereçamento logicamente independentes e para auxiliar o compartilhamento e a proteção	

Segmentação com Paginação (1)

- A paginação é a solução natural para a fragmentação
- Recuperar as vantagens dos dois métodos em relação a fragmentação:
 - Fragmentação interna: paginação apresenta, segmentação não
 - Fragmentação externa: segmentação apresenta, paginação não
- Solução se traduz em paginar segmentos

Segmentação com Paginação (2)

Segmentação no S.O. MULTICS

(p/ processador Honeywell 6000)

256K segmentos independentes, cada um com até 64K palavras de 36 bits.

Sistemas Operacionais

Arquitetura de memória do i386

Arquitetura de Memória do Pentium (1)

Arquitetura de Memória do Pentium (2)

Formato do seletor

Entrada na Tabela de Segmentos (2 x 4 bytes)

Arquitetura de Memória do Pentium (3)

Step 1: Use the Selector to convert the 32 bit virtual offset address to a 32 bit linear address.

Transformação do par (segmento, desloc.) em um endereço linear

Arquitetura de Memória do Pentium (4)

Transformação do par (segmento, desloc.) em um endereço linear (cont.)

Step 2: Convert the 32 bit linear address to a physical address using a two-stage page table.

