PROGRAMMATION LINEAIRE

1. Confection de deux modèles de robes

Tableau des contraintes :

	1 ^{er} modèle	2 ^e modèle	Contraintes
Tissu	3 m	3.5 m	200 m
Travail	30 h	15 h	1200 h
Bénéfice	Fr. 50.—	Fr. 35.—	Maximum

Système d'inéquation :
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 6x + 7y \le 400 \\ 30x + 15y \le 1200 \end{cases}$$
 avec $50x + 35y = maximum$

Étude des droites limites :

pente
$$a_1 = -\frac{6}{7}$$

ord. or. : $x = 0 \Rightarrow y = \frac{400}{7} \cong 57.14$
zéro fct : $y = 0 \Rightarrow x = \frac{400}{6} = 66.\overline{6}$

$$d_2: 30x + 15y = 1200 \begin{vmatrix} pente \ a_2 = -2 \\ ord. \ or. : x = 0 \Rightarrow y = 80 \\ zéro \ fct : y = 0 \Rightarrow x = 40 \end{vmatrix}$$

$$d_M: 50x + 35y = M: pente \ a_M = -\frac{10}{7}$$

Résolution algébrique :
$$\begin{cases} 6x + 7y = 400 \\ 30x + 15y = 1200 \end{cases} \Rightarrow \begin{cases} x = 20 \\ y = 40 \end{cases}$$

Bénéfice maximum : $50 \cdot 20 + 35 \cdot 40 = 2'400$

2. Fabrication de pièces P₁ et P₂

	Pièces P ₁	Pièces P ₂	Contraintes
Machine M ₁	10 h	20 h	4'000 h
Machine M ₂	8 h	4 h	1'520 h
Bénéfice	Fr. 1'500.—	Fr. 1'000.—	Maximum

Système d'inéquation :
$$\begin{cases} x \geq 0 \\ y \geq 0 \\ 10x + 20y \leq 4000 \\ 8x + 4y \leq 1520 \end{cases}$$
 avec $1500x + 1000y = maximum$

$$\begin{aligned} d_1 : 10x + 20y &= 4000 \\ d_1 : 10x + 20y &= 4000 \end{aligned} \text{ pente } a_1 &= -\frac{1}{2} \\ \text{ ord. or. } : x &= 0 \Rightarrow y = 200 \\ \text{ zéro fct } : y &= 0 \Rightarrow x = 400 \end{aligned}$$

$$\begin{aligned} d_2 : 8x + 4y &= 1520 \\ \text{ ord. or. } : x &= 0 \Rightarrow y = 380 \\ \text{ zéro fct } : y &= 0 \Rightarrow x = 190 \end{aligned}$$

$$d_M : 1500x + 1000y &= M : \text{ pente } a_M = -\frac{3}{2}$$

$$R\'{e}solution \ alg\'{e}brique: \begin{cases} 10x + 20y = 4'000 \\ 8x + 4y = 1'520 \end{cases} \Longrightarrow \begin{cases} x = 120 \\ y = 140 \end{cases}$$

Bénéfice maximum: 1'500·120+1'000·140=320'000

Coupes créoles, coupes tropicales

Tableau des contraintes :

	Coupes	Coupes	Contraintes
	créoles	tropicales	
Cocktail exotique	8 cl	5 cl	1600 cl
Glace	2 dl	2 dl	800 dl
Fruits confits	15 g	25 g	5000 g
Prix de vente	Fr. 12.—	Fr. 10.—	Maximum

$$Syst\`eme \ d'in\'equation: \begin{cases} x \geq 0 \\ y \geq 0 \\ 8x + 5y \leq 1600 \\ 2x + 2y \leq 800 \\ 15x + 25y \leq 5000 \end{cases} \quad avec \ 12x + 10y = maximum$$

Étude des droites limites :

Etude des droites limites :
$$\begin{vmatrix} pente & a_1 = -\frac{8}{5} \\ ord. & ord. & or. : x = 0 \Rightarrow y = 320 \\ zéro & fct : y = 0 \Rightarrow x = 200 \end{vmatrix}$$

$$\begin{vmatrix} pente & a_2 = -1 \\ ord. & or. : x = 0 \Rightarrow y = 400 \\ zéro & fct : y = 0 \Rightarrow x = 400 \end{vmatrix}$$

$$\begin{vmatrix} pente & a_2 = -1 \\ ord. & or. : x = 0 \Rightarrow y = 400 \\ zéro & fct : y = 0 \Rightarrow x = 400 \end{vmatrix}$$

$$\begin{vmatrix} pente & a_3 = -\frac{3}{5} \\ ord. & or. : x = 0 \Rightarrow y = 200 \\ zéro & fct : y = 0 \Rightarrow x = 333, \overline{3} \end{vmatrix}$$

$$d_M : 12x + 10y = M : pente & a_M = -\frac{6}{5}$$

Résolution algébrique :
$$\begin{cases} 8x + 5y = 1600 \\ 15x + 25y = 5000 \end{cases} \Rightarrow \begin{cases} x = 120 \\ y = 128 \end{cases}$$

Recette maximale: $12 \cdot 120 + 10 \cdot 128 = 2'720$

4. Un artisan fabrique des objets A et B

	Objets A	Objets B	Contraintes
Mat. première	Fr. 30.—	Fr. 70.—	Fr. 560.—
Main d'œuvre	Fr. 125.—	Fr. 75.—	Fr. 30.—
Profits	Fr. 90.—	Fr. 45.—	Maximum

Système d'inéquation :
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 30x + 70y \le 560 \\ 125x + 75y \le 1250 \end{cases}$$
 avec $90x + 45y = maximum$

pente
$$a_1 = -\frac{3}{7}$$

ord. or. : $x = 0 \Rightarrow y = 8$
zéro fct : $y = 0 \Rightarrow x = 18.\overline{6}$

$$\begin{vmatrix} pente & a_2 = -\frac{5}{2} & a_2 & a_3 \\ pente & a_2 = -\frac{5}{2} & a_3 & a_4 \\ pente & a_3 = -\frac{5}{2} & a_4 & a_4 \\ pente & a_4 = -\frac{5}{2} & a_4 & a_4 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_4 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 & a_5 \\ pente & a_5 = -\frac{5}{2} & a_5 \\ pente$$

pente
$$a_2 = -\frac{5}{3}$$

ord. or. : $x = 0 \Rightarrow y = 16.\overline{6}$
zéro fct : $y = 0 \Rightarrow x = 10$

$$d_{M}:90x+45y=M: pente \ a_{M}=-2$$

Résolution algébrique
$$\begin{cases} 125x + 75y = 1250 \\ y = 0 \end{cases} \Rightarrow \begin{cases} x = 10 \\ y = 0 \end{cases}$$

Recette maximale : $90 \cdot 10 + 45 \cdot 0 = 900$

Jacinthes, tulipes narcisses

Tableau des contraintes :

	Lot A	Lot B	Contraintes
Jacinthes	30	10	1'200
Tulipes	40	40	3'200
Narcisses	30	50	3'000
Prix d'achat	Fr. 75.—	Fr. 60.—	Minimum

Système d'inéquation :
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 30x + 10y \ge 1200 \quad \text{avec } 75x + 60y = \text{minimum} \\ 40x + 40y \ge 3200 \\ 30x + 50y \ge 3000 \end{cases}$$

Étude des droites limites :

Résolution algébrique :
$$\begin{cases} 30x + 10y = 1200 \\ 40x + 40y = 3200 \end{cases} \Rightarrow \begin{cases} x = 20 \\ y = 60 \end{cases}$$

Dépense minimale : $75 \cdot 20 + 60 \cdot 60 = 5'100$

6. Garnitures des sapins de Noël

Tableau des contraintes:

	1 ^{ère} offre	2 ^e offre	Contraintes
Lampes de couleurs	6	6	1'200
Lampes-bougies	18	6	2'400
Mini-guirlandes	15	30	3'600
Prix d'achat	Fr. 57.—	Fr. 75.—	Minimum

ECCG Martigny Corrigé de mathématiques

Système d'inéquation :
$$\begin{cases} x \ge 0 \\ y \ge 0 \end{cases}$$

$$6x + 6y \ge 1200 \qquad \text{avec } 57x + 75y = \text{minimum} \\ 18x + 6y \ge 2400 \\ 15x + 30y \ge 3600 \end{cases}$$

pente
$$a_1 = -1$$

ord. or. : $x = 0 \Rightarrow y = 200$
zéro fct : $y = 0 \Rightarrow x = 200$

$$d_2 : 18x + 6y = 2400$$
pente $a_2 = -3$
ord. or. : $x = 0 \Rightarrow y = 400$
zéro fct : $y = 0 \Rightarrow x = 133, \overline{3}$

$$d_3 : 15x + 30y = 3600$$
pente $a_3 = -\frac{1}{2}$
ord. or. : $x = 0 \Rightarrow y = 120$
zéro fct : $y = 0 \Rightarrow x = 240$

$$d_3 : 15x + 30y = 3600$$
pente $a_3 = -\frac{1}{2}$
ord. or. : $x = 0 \Rightarrow y = 120$
zéro fct : $y = 0 \Rightarrow x = 240$

Résolution algébrique :

$$\begin{cases} 6x + 6y = 1200 \\ 15x + 30y = 3600 \end{cases} \Rightarrow \begin{cases} x = 160 \\ y = 40 \end{cases}$$

Dépense minimale : $57 \cdot 160 + 75 \cdot 40 = 12'120$

Lampes de couleurs: 1200

Lampes-bougies: 3120

Mini-guirlandes: 3600

7. Bière avec et sans alcool

Tableau des contraintes : **Pour 1000 bouteilles**

	Bière sans alcool	Bière avec alcool	Contraintes
Matière première	Fr. 28.—	Fr. 20.—	Fr. 1'400.—
Brassage	Fr. 60.—	Fr. 20.—	Fr. 2'400.—
Embouteillage	Fr. 10.—	Fr. 10.—	Fr. 600.—
Publicité	Fr. 2.—	Fr. 6.—	Fr. 300.—
Prix de vente 1	Fr. 0.50	Fr. 0.40	Maximum
Prix de vente 2	Fr. 0.30	Fr. 0.50	Maximum

Système d'inéquation :
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 28x + 20y \le 1400 \\ 60x + 20y \le 2400 \end{cases} \text{ avec } \begin{vmatrix} 0.5x + 0.4y = \text{maximum 1} \\ 0.3x + 0.5y = \text{maximum 2} \\ 10x + 10y \le 600 \\ 2x + 6y \le 300 \end{cases}$$

pente
$$a_1 = -\frac{7}{5} = -1, 4$$

ord. or. : $x = 0 \Rightarrow y = 70$
zéro fct : $y = 0 \Rightarrow x = 50$

$$\begin{vmatrix}
pente a_1 = -\frac{7}{5} = -1, 4 \\
ord. or. : $x = 0 \Rightarrow y = 70 \\
zéro fct : y = 0 \Rightarrow x = 50
\end{vmatrix}$

$$\begin{vmatrix}
pente a_2 = -3 \\
ord. or. : $x = 0 \Rightarrow y = 120 \\
zéro fct : y = 0 \Rightarrow x = 40
\end{vmatrix}$

$$\begin{vmatrix}
pente a_3 = -1 \\
ord. or. : $x = 0 \Rightarrow y = 60 \\
zéro fct : y = 0 \Rightarrow x = 60
\end{vmatrix}$

$$\begin{vmatrix}
pente a_1 = -\frac{1}{3} = -0, \overline{3} \\
ord. or. : $x = 0 \Rightarrow y = 50 \\
zéro fct : y = 0 \Rightarrow x = 150
\end{vmatrix}$

$$\begin{vmatrix}
d_4 : 2x + 6y = 300 \\
d_{M_1} : 0.5x + 0.4y = M_1 : pente a_{M_1} = -\frac{5}{4} = -1, 25
\end{vmatrix}$$$$$$$$$$

$$d_{M_2}: 0.3x + 0.5y = M_2:$$
 pente $a_{M_2} = -\frac{3}{5} = -0,6$

Résolution algébrique :

$$1^{\text{er}} \cos \begin{cases} 28x + 20y = 1400 \\ 10x + 10y = 600 \end{cases} \Rightarrow \begin{cases} x = 25 \\ y = 35 \end{cases}$$

Calcul du bénéfice : Bénéfice = chiffre d'affaires – frais

 $CA_1: 0.5 \cdot 25 \cdot 1000 + 0.4 \cdot 35 \cdot 1000 = 26'500$

Frais₁: $25 \cdot (28+60+10+2)+35 \cdot (20+20+10+6)=4'460$

Bénéfice₁: 26'500-4'460=22'040

$$2^{e} \operatorname{cas} \begin{cases} 10x + 10y = 600 \\ 2x + 6y = 300 \end{cases} \Rightarrow \begin{cases} x = 15 \\ y = 45 \end{cases}$$

 $CA_2: 0.3 \cdot 15 \cdot 1000 + 0.5 \cdot 45 \cdot 1000 = 27'000$

Frais₂: $15 \cdot (28+60+10+2)+45 \cdot (20+20+10+6)=4'020$

Bénéfice₂: 27'000-4'020=22'980

8. Soupe aux légumes Prodige et Grand-Mère

	Prodige	Grand-Mère	Contraintes minimales	Contraintes maximales
			minimates	maximales
Choux-fleurs	0.1 kg	0.15 kg	5'000 kg	12'000 kg
Carottes	0.2 kg	0.15 kg	15'000 kg	18'000 kg
Poireaux	0.3 kg	0.4 kg	8'000 kg	40'000 kg
Bénéfice	Fr. 0.55	Fr. 0.75	Maxi	mum

$$Syst\`eme \ d\textmd{'in\'equation}: \begin{cases} x \geq 0 \\ y \geq 0 \\ 5\textmd{'}000 \leq 0.1x + 0.15y \leq 12\textmd{'}000 \\ 15\textmd{'}000 \leq 0.2x + 0.15y \leq 18\textmd{'}000 \\ 8\textmd{'}000 \leq 0.3x + 0.4y \leq 40\textmd{'}000 \end{cases}$$

pente
$$a_1 = -\frac{2}{3}$$

 $d_1'': 0.1x + 0.15y = 12'000$ | ord. or. : $x = 0 \Rightarrow y = 80'000/33'333, \overline{3}$
 $d_1''': 0.1x + 0.15y = 5'000$ | zéro fct : $y = 0 \Rightarrow x = 120'000/50'000$

$$\begin{array}{l} d_2': 0.2x + 0.15y = 18\,'000 \\ d_2'': 0.2x + 0.15y = 15\,'000 \end{array} \ \, \begin{array}{l} \text{pente } a_2 = -\frac{4}{3} \\ \text{ord. or.}: x = 0 \Rightarrow y = 120\,'000\,/100\,'000 \\ \text{zéro fct}: y = 0 \Rightarrow x = 90\,'000\,/75\,'000 \end{array}$$

$$\begin{array}{l} d_3': 0.3x + 0.4y = 40\, '000 \\ d_3'': 0.3x + 0.4y = 8\, '000 \end{array} & \text{pente } a_3 = -\frac{3}{4} \\ \text{ord. or. } : x = 0 \Rightarrow y = 100\, '000\, / \, 20\, '000 \\ \text{zéro fct } : y = 0 \Rightarrow x = 133\, '333, \, \overline{3}\, / \, 26\, '666, \, \overline{6} \\ \\ d_M: 0.55x + 0.75y = M: \text{pente } a_M = -\frac{11}{15} \end{array}$$

Résolution algébrique

$$\begin{cases} 0.1x + 0.15y = 12'000 \\ 0.2x + 0.15y = 18'000 \end{cases} \Rightarrow \begin{cases} x = 60'000 \\ y = 40'000 \end{cases}$$

Bénéfice maximum : $0.55 \cdot 60'000 + 0.75 \cdot 40'000 = 63'000$

9.

	Assortiment A	Assortiment B	Contraintes
Beurre	200	100	4'000
Farine	250	250	7'500
Sucre	120	200	4'800
Amandes	30	100	1'500
Temps	20 min	40 min	Minimum

$$Syst\`eme \ d'in\'equation : \begin{cases} x \geq 5 \\ y \geq 5 \\ 200x + 100y \geq 4000 \\ 250x + 250y \geq 7500 \\ 120x + 200y \geq 4800 \\ 30x + 100y \geq 1500 \end{cases} \quad avec \ 20x + 40y = minimum$$

$$\begin{aligned} d_1 : 200x + 100y &= 4000 \\ d_1 : 200x + 100y &= 4000 \end{aligned} \quad \begin{aligned} &\text{pente } a_1 = -2 \\ &\text{ord. or. } : x = 0 \Rightarrow y = 40 \\ &\text{z\'ero fct } : y = 0 \Rightarrow x = 20 \end{aligned}$$

$$\begin{vmatrix} \text{pente } a_2 &= -1 \\ &\text{ord. or. } : x = 0 \Rightarrow y = 30 \\ &\text{z\'ero fct } : y = 0 \Rightarrow x = 30 \end{aligned}$$

$$\begin{vmatrix} \text{pente } a_3 &= -\frac{3}{5} \\ &\text{ord. or. } : x = 0 \Rightarrow y = 24 \\ &\text{z\'ero fct } : y = 0 \Rightarrow x = 40 \end{aligned}$$

$$\begin{vmatrix} \text{pente } a_1 &= -\frac{3}{10} = -0, 3 \\ &\text{ord. or. } : x = 0 \Rightarrow y = 15 \\ &\text{z\'ero fct } : y = 0 \Rightarrow x = 50 \end{aligned}$$

$$\begin{vmatrix} \text{pente } a_1 &= -\frac{3}{10} = -0, 3 \\ &\text{ord. or. } : x = 0 \Rightarrow y = 15 \\ &\text{z\'ero fct } : y = 0 \Rightarrow x = 50 \end{aligned}$$

$$d_{M}: 20x + 40y = M: pente \ a_{M} = -\frac{1}{2}$$

Résolution algébrique

$$\begin{cases} 120x + 200y = 4'800 \\ 30x + 100y = 1'500 \end{cases} \Rightarrow \begin{cases} x = 30 \\ y = 6 \end{cases}$$

Quantité de matière utilisée :

Beurre: 6'600 g Farine: 9'000 g Sucre: 4'800 g Amandes: 1'500 g

Temps utilisé pour la réalisation des biscuits de Noël : 840 mn = 14 heures

ECCG Martigny Corrigé de mathématiques