

Análise e Síntese de Algoritmos

SSSPs: Bellman-Ford, DAGs. APSPs: Floyd-Warshall.

CLRS Cap. 24 e 25

Instituto Superior Técnico 2022/2023

Resumo

Algoritmo Bellman-Ford

Caminhos mais curtos em DAGs

Caminhos mais curtos entre todos os pares de vértices

Solução recursiva

Algoritmo Floyd-Warshall

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos
 - Fluxos máximos
 - Árvores abrangentes
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Análise e Síntese de Algoritmos - 2022/2023

1/33

Algoritmo de Bellman-Ford

Intuição

- Permite pesos negativos
- Identifica existência de ciclos negativos
- Baseado em sequência de passos de relaxação
- Requer manutenção da estimativa associada a cada vértice

Algoritmo de Bellman-Ford

Algoritmo de Bellman-Ford: Exemplo

Análise e Síntese de Algoritmos - 2022/2023

4/33

Análise e Síntese de Algoritmos - 2022/2023

5/33

Algoritmo de Bellman-Ford: Exemplo

d[u]=8d[v]=112ª iteração $\pi[u]=x$ $\pi[v]=u$ ordem de и relaxação 4 9 1 2* 3 2 10 5 d[s]=0 $\pi[s]=NIL$ 2 2* d[y] = 7d[x]=5 $\pi[x]=s$ $\pi[y]=x$

Algoritmo de Bellman-Ford: Exemplo

Algoritmo de Bellman-Ford: Outro Exemplo

Análise e Síntese de Algoritmos - 2022/2023

Algoritmo de Bellman-Ford

Complexidade

- Inicialização: ⊖(V)
- A complexidade dos ciclos é O(VE)
 - Dois ciclos aninhados em V e E
 - Em cada iteração todos os arcos são relaxados
- Complexidade do algoritmo de Bellman-Ford: O(VE)

Algoritmo de Bellman-Ford

Análise e Síntese de Algoritmos - 2022/2023

0/22

Algoritmo de Bellman-Ford

Correção do Algoritmo

Se G=(V,E) não contém ciclos negativos, então após a aplicação do algoritmo de Bellman-Ford, $d[v]=\delta(s,v)$ para todos os vértices atingíveis a partir de s

- Seja v atingível a partir de s, e seja $p = \langle v_0, v_1, \dots, v_k \rangle$ um caminho mais curto entre s e v, com $v_0 = s$ e $v_k = v$
- p é simples, pelo que k < |V| 1

Prova por Indução

Provar que $d[v_i] = \delta(s, v_i)$ para i = 1, ..., k, após iteração i sobre os arcos de G, e que valor não é alterado posteriormente

- Base: $d[v_0] = \delta(s, v_0) = 0$ após inicialização (e não se altera)
- Passo indutivo: assumir $d[v_{i-1}] = \delta(s, v_{i-1})$ após iteração (i-1)
- Arco (v_{i-1}, v_i) relaxado na iteração i, pelo que $d[v_i] = \delta(s, v_i)$ após iteração i (e não se altera)

Algoritmo de Bellman-Ford

Correção do Algoritmo (cont.)

Se G = (V, E) não contém ciclos negativos (atingíveis a partir de s), o algoritmo de Bellman-Ford retorna TRUE, caso contrário FALSE

- Se não existem ciclos negativos, o resultado anterior assegura que para qualquer arco $(u,v) \in E$, $d[v] \le d[u] + w(u,v)$, dado que $d[u] = \delta(s,u)$ e $d[v] = \delta(s,v)$, pelo que o teste do algoritmo falha para todo o (u,v) e o valor retornado é TRUE
- Caso contrário, na presença de pelo menos um ciclo negativo atingível a partir de s, $c = \langle v_0, v_1, \dots, v_k \rangle$, onde $v_0 = v_k$, temos que $\sum_{i=1}^k w(v_{i-1}, v_i) < 0$

Análise e Síntese de Algoritmos - 2022/2023

12/33

Caminhos mais curtos em DAGs

Intuição

- Um DAG não tem ciclos
- Mesmo com pesos negativos, o caminho mais curto é bem definido
- Ordenar os vértices por ordem topológica
- Passagem única pelos vértices ordenados

Algoritmo de Bellman-Ford

Correção do Algoritmo(cont.)

Prova por Contradição

Admitir que algoritmo retorna TRUE na presença de ciclo negativo

• Para que devolva *TRUE* é necessário que:

$$d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$$
, para $i = 1, ..., k$

• Somando as desigualdades ao longo do ciclo temos que:

$$\sum_{i=1}^k d[v_i] \leq \sum_{i=1}^k d[v_{i-1}] + \sum_{i=1}^k w(v_{i-1}, v_i)$$

- Note-se que $\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}]$ por ser um ciclo
- Temos então que $\sum_{i=1}^k w(v_{i-1}, v_i) \ge 0$, o que contradiz a existência de um ciclo negativo. Logo, o algoritmo retorna *FALSE*

Análise e Síntese de Algoritmos - 2022/2023

13/33

Algoritmo de Bellman-Ford

Caminhos mais curtos em DAGs

Caminhos mais curtos em DAGs


```
DAG-Shortest-Path(G, w, s)
Ordenação topológica dos vértices de G
Initialize-Single-Source(G, s)
for each u \in G.V (por ordem topológica) do
for each v \in Adj[u] do
Relax(u, v, w)
end for
```

Análise e Síntese de Algoritmos - 2022/2023

16/33

DAG-Shortest-Path(G, w, s)Ordenação topológica dos vértices de GInitialize-Single-Source(G, s)for each $u \in G.V$ (por ordem topológica) do for each $v \in Adj[u]$ do Relax(u, v, w)end for

Complexidade

• $\Theta(V+E)$

Análise e Síntese de Algoritmos - 2022/2023

16/33

Caminhos mais curtos em DAGs

Correção do Algoritmo

Dado G = (V, E), dirigido, acíclico, como resultado do algoritmo, temos que $d[v] = \delta(s, v)$ para todo o $v \in V$

- Seja v atingível a partir de s, e seja $p = \langle v_0, v_1, \dots, v_k \rangle$ um caminho mais curto entre s e v, com $v_0 = s$ e $v_k = v$
- Ordenação topológica implica que analisados por ordem (v_0, v_1) , (v_1, v_2) , ..., (v_{k-1}, v_k)

Caminhos mais curtos em DAGs

Correção do Algoritmo

Dado G = (V, E), dirigido, acíclico, como resultado do algoritmo, temos que $d[v] = \delta(s, v)$ para todo o $v \in V$

- Seja v atingível a partir de s, e seja $p = \langle v_0, v_1, \dots, v_k \rangle$ um caminho mais curto entre s e v, com $v_0 = s$ e $v_k = v$
- Ordenação topológica implica que analisados por ordem (v_0, v_1) , (v_1, v_2) , ..., (v_{k-1}, v_k)

Prova por Indução

 $d[v_i] = \delta(s, v_i)$ sempre que cada vértice v_i é terminado

- Base: Estimativa de s não alterada após inicialização; $d[s] = d[v_0] = \delta(s, v_0) = 0$
- Indução: $d[v_{i-1}] = \delta(s, v_{i-1})$ após terminar análise de v_{i-1}
- Relaxação do arco (v_{i-1}, v_i) causa $d[v_i] = \delta(s, v_i)$, pelo que $d[v_i] = \delta(s, v_i)$ após terminar análise de v_i

Resumo

Caminhos mais curtos entre todos os pares

mercadorias mundial de uma operadora

• O serviço recebe pedidos tais como:

Considere que está a gerir o serviço de reencaminhamento de

• Existem rotas pré-definidas e com custos associados

"enviar mercadoria X do local A para o local B"

• O serviço deve estar automatizado por forma a conseguir

• Existe um conjunto de armazens em locais específicos no mundo

satisfazer todos os possíveis pedidos de reencaminhamento de

Análise e Síntese de Algoritmos - 2022/2023

Algoritmo Dijkstra

- Apenas permite pesos não negativos
- Complexidade: $O((V + E) \log V)$

Algoritmo Bellman-Ford

- Permite pesos negativos e identifica ciclos negativos
- Complexidade: O(VE)

Caminhos mais curtos em DAGs

- Grafos acíclicos (ordenação topológica dos vértices)
- Complexidade: O(V + E)

Análise e Síntese de Algoritmos - 2022/2023

18/33

Caminhos mais curtos entre todos os pares

Caminhos mais curtos entre todos os pares

Motivação

Encontrar caminhos mais curtos entre todos os pares de vértices

- Se pesos não negativos, utilizar algoritmo de Dijkstra, assumindo cada vértice como fonte: O(V.(V+E) | g|V) (que é $O(V^3 | g|V)$ se o grafo for denso)
- Se existem pesos negativos, utilizar algoritmo de Bellman-Ford, assumindo cada vértice como fonte: O(V.VE) (que é $O(V^4)$ se o grafo é denso)

Objetivo: Encontrar algoritmos mais eficientes

Representação

mercadorias

Motivação

Dado um grafo G = (V, E), e n = |V|, podemos representar G através de uma matriz de adjacências

• Pesos dos arcos: matriz W $(n \times n)$

$$w_{ij} = \begin{cases} 0 & \text{se } i = j \\ \text{peso do arco } (i,j) & \text{se } i \neq j, (i,j) \in E \\ \infty & \text{se } i \neq j, (i,j) \notin E \end{cases}$$

- Representação dos caminhos mais curtos: matriz D $(n \times n)$
 - $-\ d_{ij}$ é o peso do caminho mais curto entre os vértices i e j
 - $-d_{ii} = \delta(v_i, v_i)$

Caminhos mais curtos entre todos os pares

Caminhos mais curtos entre todos os pares

Exemplo Representação

Matriz W						
	1	2	3	4		
1	0	6	∞	3		
2	∞	0	1	∞		
3	∞	∞	0	5		
4	∞	-2	∞	0		

Matriz D						
	1	2	3	4		
1	0	1	2	3		
2	∞	0	1	6		
3	∞	3	0	5		
4	∞	-2	-1	0		

Análise e Síntese de Algoritmos - 2022/2023

22/33

Representação

- Representação dos predecessores: matriz Π ($n \times n$)
- $\pi_{ij} = \text{NIL}$ se i = j ou não existe caminho de i para j
- Caso contrário: π_{ij} denota o predecessor de j num caminho mais curto de i para j
- Para cada vértice i, definimos um sub-grafo de predecessores de G para i, $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$:

$$V_{\pi,i} = \{j \in V : \pi_{ij} \neq \mathsf{NIL}\} \cup \{i\}$$

$$E_{\pi,i} = \{(\pi_{ij},j) \in E : j \in V_{\pi,i} \setminus \{i\}\}$$

• Sub-grafo de predecessores $G_{\pi,i}$ é induzido pela linha i da matriz Π

Análise e Síntese de Algoritmos - 2022/2023

23/33

Solução Recursiva

- Propriedade de sub-estrutura óptima dos caminhos mais curtos: sub-caminhos de caminhos mais curtos são também caminhos mais curtos
- d_{ij}^(m): denota o peso mínimo dos caminhos do vértice i para o vértice j não contendo mais do que m arcos
- Com m=0, existe caminho de i para j se e só se i=j

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{se } i = j \\ \infty & \text{se } i \neq j \end{cases}$$

• Para $m \geq 1$:

$$d_{ij}^{(m)} = \min\{d_{ij}^{(m-1)}, \min_{1 \le k \le n} \{d_{ik}^{(m-1)} + w_{kj}\}\}$$

Solução Recursiva

return D'

Extend-Shortest-Paths(D, W)

```
n = rows[W]
D' = \text{new matrix}(n \times n)
for i = 1 to n do
for j = 1 to n do
d'_{ij} = \infty
for k = 1 to n do
d'_{ij} = \min(d'_{ij}, d_{ik} + w_{kj})
end for
end for
```

• Calcula $D^{(m)} = D'$ a partir de $D^{(m-1)} = D$

Solução Recursiva

Solução Recursiva

Observações

- Nota: $D^{(1)} = W$
- Calcular sequência de matrizes $D^{(1)}, \ldots, D^{(n-1)}$, onde $D^{(n-1)}$ contém os pesos dos caminhos mais curtos entre todos os pares de vértices
- Calculo de $D^{(m)}$ é feito utilizando apenas de $D^{(m-1)}$ (e W)

Análise e Síntese de Algoritmos - 2022/2023

26/33

Observações

- Nota: $D^{(1)} = W$
- Calcular sequência de matrizes $D^{(1)}, \ldots, D^{(n-1)}$, onde $D^{(n-1)}$ contém os pesos dos caminhos mais curtos entre todos os pares de vértices
- Calculo de $D^{(m)}$ é feito utilizando apenas de $D^{(m-1)}$ (e W)

Complexidade

- $\Theta(n^3)$ para cada matriz
- $\Theta(n^4)$ para cálculo de $D^{(n)}$

Análise e Síntese de Algoritmos - 2022/2023

26/20

Solução Recursiva

Observações

- Nota: $D^{(1)} = W$
- Calcular sequência de matrizes $D^{(1)}, \ldots, D^{(n-1)}$, onde $D^{(n-1)}$ contém os pesos dos caminhos mais curtos entre todos os pares de vértices
- Calculo de $D^{(m)}$ é feito utilizando apenas de $D^{(m-1)}$ (e W)

Complexidade

- $\Theta(n^3)$ para cada matriz
- $\Theta(n^4)$ para cálculo de $D^{(n)}$
 - É possível melhorar complexidade reduzindo número de matrizes calculadas: $O(n^3 \lg n)$
 - A cada iteração, calcular $D^{(2m)}$ em função de $D^{(m)}$ e de $D^{(m)}$ (em vez de W): $D^{(2m)} = \text{Extend-Shortest-Paths}(D^{(m)}, D^{(m)})$

Algoritmo Floyd-Warshall

Definições

- Caracterização de caminho mais curto $p = \langle v_1, v_2, \dots, v_{l-1}, v_l \rangle$
 - Vértices intermédios de caminho p são $\{v_2,\ldots,v_{l-1}\}$
- Considerar todos os caminhos entre i e j com vértices intermédios retirados de um conjunto $\{1,\ldots,k\}\subseteq V$ e seja p um caminho mais curto

Nota: p é simples

• Se k não é vértice intermédio de p, então todos os vértices intermédios de p estão em $\{1, \ldots, k-1\}$

todos os vértices em $\{1, \ldots, k-1\}$

Algoritmo Floyd-Warshall

Definições (cont.)

- Se k é vértice intermédio de p, então existem caminhos p₁ e p₂, respetivamente de i para k e de k para j com vértices intermédios em {1,...,k}
 - -k não é vértice intermédio de p_1 e de p_2
 - p_1 e p_2 com vértices intermédios em $\{1, \ldots, k-1\}$

Análise e Síntese de Algoritmos - 2022/2023

28/33

Algoritmo Floyd-Warshall

Floyd-Warshall(D, W)

```
\begin{split} n &= rows[W] \\ D^{(0)} &= W \\ \text{for } k = 1 \text{ to } n \text{ do} \\ \text{ for } i &= 1 \text{ to } n \text{ do} \\ \text{ for } j &= 1 \text{ to } n \text{ do} \\ d^{(k)}_{ij} &= \min\left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\right) \\ \text{ end for} \\ \text{ end for} \\ \text{ end for} \\ \text{return } D^{(n)} \end{split}
```

Algoritmo Floyd-Warshall

Definições (cont.)

- Se k é vértice intermédio de p, então existem caminhos p₁ e p₂, respetivamente de i para k e de k para j com vértices intermédios em {1,..., k}
 - k não é vértice intermédio de p_1 e de p_2
 - p_1 e p_2 com vértices intermédios em $\{1, \ldots, k-1\}$

Formulação

$$d_{ij}^{(k)} = \left\{ egin{array}{ll} w_{ij} & ext{se } k = 0 \ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & ext{se } k \geq 1 \end{array}
ight.$$

Análise e Síntese de Algoritmos - 2022/2023

28/33

Algoritmo Floyd-Warshall

Floyd-Warshall(D, W)

```
n = rows[W]
D^{(0)} = W
for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)
end for
end for
return D^{(n)}
```

Complexidade

- Tempo: $\Theta(n^3)$
- Espaco: $\Theta(n^3)$

Algoritmo Floyd-Warshall

Observação

Podemos evitar uma matriz por cada passo do algoritmo A linha e a coluna k não são alteradas na iteração k:

$$d_{ik}^{(k)} = \min(d_{ik}^{(k-1)}, d_{ik}^{(k-1)} + d_{kk}^{(k-1)})$$

$$d_{kj}^{(k)} = \min(d_{kj}^{(k-1)}, d_{kk}^{(k-1)} + d_{kj}^{(k-1)})$$

Seja $d_{kk}^{(k-1)}=0$, é fácil verificar que $d_{ik}^{(k)}=d_{ik}^{(k-1)}$ e $d_{kj}^{(k)}=d_{kj}^{(k-1)}$

(k não pode ser um vértice intermédio no caminho de i para k, nem no caminho de k para j)

Análise e Síntese de Algoritmos - 2022/2023

30/33

Algoritmo Floyd-Warshall

Floyd-Warshall(D,W)

```
n = rows[W]
D = W
for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
d_{ij} = \min(d_{ij}, d_{ik} + d_{kj})
end for
end for
end for
return D
```

Análise e Síntese de Algoritmos - 2022/2023

11/22

Algoritmo Floyd-Warshall

Floyd-Warshall(D,W)

```
n = rows[W]
D = W
for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
d_{ij} = \min(d_{ij}, d_{ik} + d_{kj})
end for
end for
return D
```

Complexidade

Tempo: Θ(n³)
 Espaço: Θ(n²)

Algoritmo Floyd-Warshall

Exemplo [CLRS, Fig 25.1]

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NII} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

Análise e Síntese de Algoritmos - 2022/2023

32/33

Algoritmo Floyd-Warshall

Fecho Transitivo de um Grafo Dirigido

Dado um grafo G = (V, E) dirigido, o fecho transitivo é definido por $G^* = (V, E^*)$ tal que:

$$E^* = \{(i,j) : \text{ existe caminho de } i \text{ para } j \text{ em } G\}$$

Análise e Síntese de Algoritmos - 2022/2023

33/3

Algoritmo Floyd-Warshall

Fecho Transitivo de um Grafo Dirigido

Dado um grafo G = (V, E) dirigido, o fecho transitivo é definido por $G^* = (V, E^*)$ tal que:

$$E^* = \{(i, j) : \text{ existe caminho de } i \text{ para } j \text{ em } G\}$$

Algoritmo

- Atribuir a cada arco peso 1 e utilizar algoritmo de Floyd-Warshall
- Se $d_{ij} \neq \infty$, então $(i,j) \in E^*$
- Complexidade: $\Theta(n^3)$

Análise e Síntese de Algoritmos - 2022/2023

33/3