

- **¢** T-T/R-R
- TR-TR

nom temps algo 1 temps algo 2 temps algo 3 temps algo 2_2 temps algo_4_2

	149.5488888889	75.388888889	92.203333333		
C. Deschênes	241	134	134		
D. Lebel	327	114	89		
Babin P.	110.33	78.5	85.83	15.4	130.2
G. Boucher	84.61	42	66	11.9	81.5
M-A Dion	115	55	88	15	28
G. Mainguy	118	48	65	15	41
A Lessard	158	96	142	35	61
JF lessard	105	45	53	12	99
F Marquis	87	66	107	13	22
e cote	137	78	104	15	60
f cote	141	57	67	14	19
Gre	188	95	148	32	224
tom	183	95	55	35	44
14	4 89	57	100	23	18
jass	82	48	54	13	28
	241	134			
	327	89			
	110.33	85.83			
	84.61	66			
	115	88			
	118	65			
	158	142			
	105	53			
	87	107			
	137	104			
	141	67			
	188	148			
	183	55			

impression

Page 6

Algorithme 3 meilleure, peut être parce que pratiqué (a été utilisé en deuxieme). Ago 1 c'est compliqué Algorithme 3 s'ajuste plus rapidement que le 2. Ils sont très similaires. Algorithme 1 pas efficace du tout. Algo 2-3 simlaire, algo 1 moyen, #unreal

2 meilleur, 3 repousse trop au singularité, 1 bien mais peut etre influencer par experience controle robot.

Α

В С

A B

B C

A C

ordre des algos:

Page 9

	T-T/R-R	TR-TR		
231	0.798507463	0	0.925	1.05
123	2.674157303	0.280898876	0.95	1.05
213	0.285447979	-0.08540137	0.925	1.05
3 2 1	0.281969697	-0.36363636	0.95	1.025
213	0.306818182	-0.375	0.975	1.05
132	0.815384615	-0.26153846	0.975	1.025
123	0.112676056	-0.32394366	0.95	1.025
321	0.981132075	-0.1509434	0.95	1.05
	-0.18691589	-0.38317757	0.95	1.075
3 2 1	0.317307692	-0.25	0.95	1.075
	1.104477612	-0.14925373	0.95	1.05
	0.27027027	-0.35810811	0.975	1.075
	2.327272727	0.727272727	0.95	1.05
	-0.11	-0.43	0.95	1.05
	0.518518519	-0.11111111	0.95	1.05

ANOVA - Single Factor

Alpha 0.05

Groups	Count	Sum		Mean	Variance
Column 1		15	2165.94	144.396	4601.677769
Column 2		15	1108.5	73.9	773.0071429
Column 3		15	1357.83	90.522	1016.235831
Source of Variation	SS	df		MS	F
Between Groups	40741.92	388	2	20370.96194	9.562454031
Within Groups	89472.8	904	42	2130.306914	
Total	Err:508		44		

t-test Alpha Hypothesized Mean Difference Mean Variance Observations Pearson Correlation Observed Mean Difference Variance of the Differences df t Stat P (T<=t) one-tail t Critical one-tail P (T<=t) two-tail t Critical two-tail	0.05 0 Variable 1 Variable 2 144.396 73.9 4601.677769 773.0071429 15 15 0.845483229 70.496 2185.462197 14 5.840344371 2.14522E-05 1.761310136 4.29044E-05 2.144786688
t-test Alpha Hypothesized Mean Difference Mean Variance Observations Pearson Correlation Observed Mean Difference Variance of the Differences df t Stat P (T<=t) one-tail t Critical one-tail P (T<=t) two-tail t Critical two-tail	0.05 0 Variable 1 Variable 2 73.9 90.522 773.0071429 1016.235831 15 15 0.629814916 -16.622 672.8118314 14 -2.48188753 0.013186447 1.761310136 0.026372895 2.144786688
t-test Alpha Hypothesized Mean Difference Mean Variance Observations Pearson Correlation	0.05 0 Variable 1 Variable 2 144.396 90.522 4601.677769 1016.235831 15 15 0.343441172

Observed Mean Difference

53.874

Variance of the Differences	4132.53314
df	14
t Stat	3.245762057
P (T<=t) one-tail	0.002930958
t Critical one-tail	1.761310136
P (T<=t) two-tail	0.005861917
t Critical two-tail	2.144786688

P-value F critical 0.00037814 3.219942293