Numerical Linear Alsebra Homeworld 3

> Alexander Hurnisch hurnisch (g) msu. odu

See my submirain of Hongwork Z.

6.1. If P is an orthogonal projector, then I-2P is unitary. Prove this algebraically, and give a geometric interpretation.

Theorem 6.1. A projector P is orthogonal if and only if $P = P^*$.

Alsebraic Proof:

$$(I-2P)(I-2P)^* = (I-2P)(I^*-2P^*) = (I-2P)(I-2P)$$

$$= \left(\frac{T - P - P}{I - P} \right)^{2} = \left(\frac{I - P}{I} \right)^{2} - \left(\frac{I - P}{I} \right)^{2} - \frac{P(I - P)}{I} + \frac{P^{2}}{I}$$
Companied projector

$$=I-P+P=I$$

Scometax Into pretution:

IP is the operation of projecting a voctor onto the Gabapace range (P) and then stretching it by a factor of 2 in all directions of that rasspace.

Therfore I-IP mirrors any vector around the subspace P projects on Eo.

Which simply means subtracting the range (1) components from the vector twice, flipping the singus in the orthogonal subspace of range (P) which is runge (I-1) Doing this again to the same vector that one restores the original vector, hence (I-2P) is unitary.

6.2. Let E be the $m \times m$ matrix that extracts the "even part" of an m-vector: Ex = (x + Fx)/2, where F is the $m \times m$ matrix that flips $(x_1, \ldots, x_m)^*$ to $(x_m, \ldots, x_1)^*$. Is E an orthogonal projector, an oblique projector, or not a projector at all? What are its entries?

Ein an ortogenal projector

Proof:

First: E is a projector: Since flipping $(x_{m_1, \dots, 1} \times 1)^{k}$ restores $(x_1, \dots, x_m)^{k}$ => $F^2 = I = F$ is Involutory. => $F^2 = \frac{1}{4}(I + 2F + F^2) = \frac{2I+2F}{4} = \frac{I+F}{2} = E$

Socond: É is an orthogonal projector.

(=> É is hornitian (Tream 6.1)

14e matrix represantation of F Cooks (ite Gis:

 $=> E^* = \left(\frac{1+F}{2}\right)^* = \frac{1+F^*}{2} = \frac{1+F^*}{2} = E$

$$E = \frac{1}{2} \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & 1 & \cdots & 1 & 6 \\ 0 & 1 & \cdots & 1 & 6 \\ 0 & 1 & \cdots & 1 & 6 \\ 1 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

6.3. Given $A \in \mathbb{C}^{m \times n}$ with $m \ge n$, show that A^*A is nonsingular if and only if A has full rank.
Let be SUP of A be f= UEUK
Theorem 5.1. The rank of A is r, the number of nonzero singular values. Proof. The rank of a diagonal matrix is equal to the number of its nonzero entries, and in the decomposition $A = U\Sigma V^*$, U and V are of full rank. Therefore $\operatorname{rank}(A) = \operatorname{rank}(\Sigma) = r$.
it follows that A is of full rank if and only if E is of full rank.
1x A= VEXEVX (Fisandup de composition)
A* A non singular (=) 4" 1 has p distinct not (ruin) for proof 4: Sen values.
if \(\xi\) is of full rank.
) => 1 th A is non-singular if and ody it A is of full rank.
A(50: 1x 11 a squae matrix

=> Ax A non-ringular (=> AxA is of full real()

$$A = \left[egin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}
ight], \qquad B = \left[egin{array}{ccc} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{array}
ight].$$

Answer the following questions by hand calculation.

(a) What is the orthogonal projector P onto range(A), and what is the image under P of the vector $(1,2,3)^*$?

(b) Same questions for B.

(a) It's easy for A considering that:

$$p. \ \forall \overline{n}, \ \forall x \forall b o o \land \land v \mapsto \sum_{i=1}^{n} (q_i q_i^*) v \tag{6.7}$$

is an orthogonal projector onto range(\hat{Q}), and in matrix form, it may be written $y = \hat{Q}\hat{Q}^*v$:

Thus any product $\hat{Q}\hat{Q}^*$ is always a projector onto the column space of \hat{Q} , regardless of how \hat{Q} was obtained, as long as its columns are orthonormal. Perhaps \hat{Q} was obtained by dropping some columns and rows from a full factorization $v = QQ^*v$ of the identity,

The column of 1 are othogonal already, we just head to normalize:

$$\alpha_1 = (1, 0, 1)^* = 7 \frac{\alpha_1}{||q_1||_2} = \frac{1}{||q_2||_2} \alpha_1$$

an is already normalized:

$$= \rangle P = \left(\frac{u_1}{\cancel{R}}, \alpha_2\right) \cdot \left(\frac{\alpha_1^*/\cancel{R}}{\alpha_2^*}\right) = \frac{1}{2} \left(\frac{1}{0}, \frac{3}{1}\right)$$

$$P.(1,2,3)^{\times} = (2,2,2)^{\times}$$