

FCC - TEST REPORT

Report Number	:	68.950.15.171.01	Date of Is	ssue:	November 5, 2015
Model	<u>:</u>	JioPay 3850			
Product Type	<u>:</u>	POS			
Applicant	<u>:</u>	KanhaTech Solutions F	vt Ltd		
Address	<u>:</u>	No 74, Prestige Feroze	Building, 4th	r Floor,	Cunningham road,
		Bangalore			_
Production Facility	<u>:</u>	KanhaTech Solutions F	vt Ltd		
Address	<u>:</u>	No 74, Prestige Feroze	Building, 4th	r Floor,	Cunningham road,
		Bangalore			_
Test Result	:	■ Positive □ Neg	ative		
Total pages	:	19			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Ta	ble of Contents	2
2	De	etails about the Test Laboratory	3
3	De	scription of the Equipment Under Test	4
4	Su	mmary of Test Standards	5
5	Su	mmary of Test Results	6
6	Ge	eneral Remarks	7
7	Te	st Setups	8
8	Te	st Methodology	9
8	3.1	Conducted Emission on AC power port	9
;	3.2	Radiated Unwanted Emission	12
;	3.3	Field strength of fundamental emissions & outside the allocated band emissions	13
;	3.4	Frequency tolerance	15
;	3.5	20dB Bandwidth	16
9	Sy	stems test configuration	17
10	Te	st Equipment List	18
11	Sv	stem Measurement Uncertainty	19

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

502708

Number:

IC Registration

10320A-1

No:

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Product: POS

Model no.: JioPay 3850

Brand Name: JioPay

FCC ID: 2AFXJ-JIOPAY3850

Rating: DC 3.7V by Li-ion Battery or

5VDC,2.0A (Charged by an external power adapter

Adapter input:100-240VAC, 50/60Hz, 0.5A

Adapter output:5.0V, 2.0A)

RF Transmission

Frequency:

13.56MHz

Modulation: ASK

Antenna Type: Integral Antenna

Antenna Gain: 0dBi

Description of the EUT: The Equipment Under Test (EUT) is a POS with NFC function which

operated at 13.56MHz.

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2014 Edition	Subpart C - Intentional Radiators

5 Summary of Test Results

	Technical Requirements						
FCC Part 15 Subpart	С						
Test Condition		Pages	Test Site	Test Result			
§15.207	Conducted emission AC power port	9	Site 1	Pass			
§15.209 §15.225(d)	Radiated unwanted emissions	12	Site 1	Pass			
§15.225(a) §15.225 (b)	Field strength of fundamental emissions	13	Site 1	Pass			
§15.225 (b) §15.225 (c)	Field strength outside the allocated band emissions	13	Site 1	Pass			
§15.225(e)	Frequency tolerance	15	Site 21	Pass			
§15.215(c)	20dB Bandwidth	16	Site 1	Pass			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an integral antenna, which gain is 0dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AFXJ-JIOPAY3850 complies with Section 15.207, 15.209, 15.215, 15.225 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- ☐ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

Sample Received Date: August 11, 2015

Testing Start Date: August 12, 2015

Testing End Date: August 25, 2015

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by:

Prepared by:

John Zhi EMC Project Manager

Johnshi

Alan Xiong EMC Project Engineer

Alem Xion

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8 Test Methodology

8.1 Conducted Emission on AC power port

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207, conducted emissions limit as below:

Frequency	QP Limit	AV Limit	
MHz	dΒμV	dΒμV	
 0.150-0.500	66-56*	56-46*	
0.500-5	56	46	
5-30	60	50	

Decreasing linearly with logarithm of the frequency

Conducted Emission

Product Type : POS

M/N : JioPay3850

Operating Condition : Charging and Transmitting

Test Specification : Line

Comment : AC 120V/60Hz

Frequency (MHz)	MaxPeak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.174000	40.19	64.77	24.58	L1	9.6
0.554000	38.29	56.00	17.71	L1	10.1
2.106000	29.23	56.00	26.77	L1	9.8

Conducted Emission

Product Type : POS

M/N : JioPay3850

Operating Condition : Charging and Transmitting

Test Specification : Neutral Comment : AC 120V/60Hz

Frequency (MHz)	MaxPeak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.202000	36.05	63.53	27.48	N	9.8
0.294000	31.97	60.41	28.44	N	10.1
0.554000	38.21	56.00	17.79	N	10.0
1.034000	30.23	56.00	25.77	N	9.8
1.546000	30.16	56.00	25.84	N	9.8
16.558000	27.81	60.00	32.19	N	10.0

8.2 Radiated Unwanted Emission

Test Method

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations for frequency above 30MHz. And for frequency below 30MHz, a loop antenna is used to measure the field strength. The emissions worst-case are shown in Test Results of the following pages.

The measuring bandwidth is:

Frequency of Emission(MHz)	RBW/VBW
0.009-0.15	100/300Hz
0.15-30	10/30KHz
30-1000	100/300KHz

Limit:

Frequency Range(MHz)	Field	Field Strength(dBµV/m)
	Strength(Microvolts/meter)	@3m
0.009-0.49	2400/F(KHz) @300m	129-94
0.49-1.705	24000/F(KHz) @30m	74-63
1.705-30	30 @30m	70
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:

Extrapolation(dB)=40*log10(Measuring Distance/Specified Distance) below 30MHz Extrapolation(dB)=20*log10(Measuring Distance/Specified Distance) above 30MHz

Measuring Result:

Investigate frequency range	Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	MHz	dBuV/m	(H/V)	dBμV/m		
0.009-30		-		-	-	
0.009-30		-		1	-	
30-1000	37.775	31.1	Horizontal	40	QP	Pass
30-1000	154.408	30.1	Horizontal	43.5	QP	Pass
30-1000	74.109	22.1	Vertical	40	QP	Pass
30-1000	290.48	25.4	Vertical	46	QP	Pass

^{*}On a standard emission test site with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules.

8.3 Field strength of fundamental emissions & outside the allocated band emissions

Test Method

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, a loop antenna is used to measure the field strength. The emissions worst-case are shown in test results of the following pages.

The measuiring bandwidth is:

Frequency of Emission(MHz)	RBW/VBW
13.11-14.01	10/30KHz

Limit:

Frequency Range(MHz)	Field	Field Strength(dBµV/m)
	Strength(Microvolts/meter)	@3m
13.56 ± 0.007	+15,848	124
13.410 to 13.553	+334	90
13.567 to 13.710		
13.110 to 13.410	+106	81
13.710 to 14.010		

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:

Extrapolation(dB)=40*log10(Measuring Distance/Specified Distance) below 30MHz

Measuring Result:

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB)
13.55988	59.41			Н	34.0	20.0

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB)
13.559886	49.44			V	343.0	20.0

8.4 Frequency tolerance

Test Method

The transmitter output signal was picked up by receiver antenna connected to the test receiver, while the receiver antenna was placed within a thermostat to keep in temperature rang from -20 to 50 Celsius degrees.

Limit:

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test result:

Test conditions	Carrier frequency	Carrier frequency tolerance
NVLT	13.561071	+0.0079%
NVHT	13.561138	+0.0084%
NTLV	13.560261	+0.0019%
NTHV	13.559169	-0.0061%

8.5 20dB Bandwidth

Test method:

The Transmitter output signal was picked up by coil antenna to the spectrum analyzer.

Limit:

The 20dB bandwidth shall be less than 80% of the permitted frequency band. For equipment operated at 13.56MHz of clause 15.225, the permitted frequency range is 13.553-13.567MHz, so the limit is 11.2 KHz

Measuring result:

9 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
RFID IC card			

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTUR ER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
CE	EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2016-7-24
	LISN	Rohde & Schwarz	ENV4200	100249	2016-7-24
	LISN	Rohde & Schwarz	ENV216	100326	2016-7-24
	ISN	Rohde & Schwarz	ENY81	100177	2016-7-24
	ISN	Rohde & Schwarz	ENY81-CA6	101664	2016-7-24
	High Voltage Probe	Rohde & Schwarz	TK9420(VT9 420)	9420-58	2016-7-24
	RF Current Probe	Rohde & Schwarz	EZ-17	100816	2016-7-24
RE	Signal Analyzer	Rohde & Schwarz	FSV40	101031	2016-7-24
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	708	2016-7-31
	Horn Antenna	Rohde & Schwarz	HF907	102295	2016-7-24
	Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2017-10-21
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2016-7-24
	Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2016-7-24
	Fully Anechoic Chamber	TDK	8X4X4		2019-5-29
Conducted	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2016-7-24

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Conducted Emission 150kHz- 30MHz (for test using AMN ENV216 or ENV4200)	3.50dB			
Uncertainty for Radiated Emission in 3m	Horizontal: 4.83dB;			
chamber 30MHz-1000MHz	Vertical: 4.91dB;			
Uncertainty for Radiated Emission in 3m	Horizontal: 4.89dB;			
chamber 1000MHz-18000MHz	Vertical: 4.88dB;			
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 2.04dB Frequency test involved: 1.1×10 ⁻⁷			