

Exercises -Availability

17/6/2014

1. Exercise: failure probability of a disk

Compute the probability that a disk with MTTF = 100000 hours fails at least once every 3 years. If instead we have 2 disks, which is the probability that at least one of them fails?

Solution:

For one disk:

$$P(X \le t) = 1 - e^{-\frac{26280}{100000}} \approx 23\%$$

(also valid the approximate solution: $26280/100000 \approx 26\%$, since 0.26 << 1)

For two disks:

$$P(X \le t) = 1 - e^{-\frac{26280}{100000} \times 2} \approx 41\%$$

2. Exercise: computation of Reliability

A load balancer(A) is connected in series with a group(B) of three parallel web servers. The load balancer have MTTF of 1000 days and MTTR of 2 days. Each web server have MTTF of 350 days and MTTR of 1 day. Compute the probability of no failures in a t=7 days period for both (A) and (B) as well as for the whole system (A+B).

Solution:

$$R_A(7) = 1-7/1000 = 0.993$$

$$R_B(7) = 1 - (7/350)^3 = 0.999992$$
 (parallel)

$$R_{A+B}(7) = R_A(7) \times R_B(7) = 0.992992$$
 (serial)

3. Exercise: Availability

A load balancer(A) is connected in series with a group(B) of three parallel web servers. The load balancer have MTTF of 1000 days and MTTR of 2 days. Each web server (WS) have MTTF of 800 days and MTTR of 1 day.

Compute the availability of the whole system.

Solution:

We can compute the availability through availability block formulas:

$$A_{Serial} = A_1 A_2 ... A_n$$
 $A_{Parallel} = 1 - \prod (1 - A_i)^n$

MTTF_A = 1000; MTTF_A= 2
$$A_A$$
=1000/(1000+2)=0.998
MTTF_{ws} = 800; MTTR_{ws}= 1; A_{WS} = 800/(800+1)=0.99875
 A_B = 1-(1- A_{WS})³ = 0.99999
 A_{A+B} = A_A A_B = 0.998 0.999999 = 0.99799

4. Exercise: availability

Consider the following structure where MTTF and MTTR of the components are shown. Compute the availability of each component and of the whole infrastructure.

Solution:

We can compute the availability through availability block formulas:

$$A_{Serial} = A_1 A_2 ... A_n$$
 $A_{Parallel} = 1 - \prod (1 - A_i)^n$

Therefore:

$$A_A = 1 - (1 - A_{A1})^3 = 1 - (1 - 500/(500 + 1))^3 = 0.9999999$$
 $A_B = 1 - (1 - A_{B2})^2 = 1 - (1 - 400/(400 + 2))^2 = 0.9999975$

$$A_C = A_{C3} = 1000/(1000+1) = 0.999$$

$$A_{A+B+C} = A_A A_B A_C = 0.998974$$

5. **Exercise**: Availability

Consider a communication system, with three trunk in parallel, each one composed by three components in series: two modem and a cable. The system is represented in the following figure:

Let us consider that for the modem: $MTTF_M = 999$ days; $MTTR_M = 1$ days

And for the cable: $MTTF_C = 90 \text{ days}$; $MTTR_C = 10 \text{ days}$

1) Compute the availability of the modem, of the cable, of the trunk and of the entire system.

- 2) How many trunks should be used to have an availability of the entire system of 99,98%?
- 3) If we have a single trunk, with the same modems and a repair time for the cable $MTTR_c = 1$, which should be the $MTTF_c$ to obtain an availability of the entire system of 99,5?
- 4) In the context of exercise 3), would it be possible to have an availability of the trunk of 99,9?

Solution

- 1) $A_M = 999/(999+1) = 0.999$; $A_C = 90/(90+10) = 0.9$; $A_T = 0.999*0.9*0.999 = 0.898201$ $A_S = 1-(1-A_T)^3 = 0.998945$
- 2) $A_S = 1 (1 A_T)^n$ $(1 A_T)^n = 1 A$ $n = \ln(1 A) / \ln(1 A_T) = \ln(0.002) / \ln(0.101799) = 3.72 -> n = 4$
- 3) $A_T = A_M A_C A_M A_C = 0.995 / A_M^2 = 0.996993$ $A_C = MTTF_C / (MTTF_{C+} MTTR_C) MTTR_C = 1 sec therefore MTTF_C = A_C / (1-A_C) = 331.56 days$
- 4) It will not be possible, because even if MTTF_c = ∞ (thus A_c = 1), we will have at most A_T = 0.999*1*0.999 = 0.998001 < 0.999