The roots of the general septic equation

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the roots of the general septic equation. The paper ends with "The End"

Introduction

In a previous paper, I've described how to solve the general quintic equation. In a previous paper, I've described how to solve the general sextic equation. In a previous paper, I've described my monic septic identity. In a previous paper, I've described how the roots of my monic septic equation are expressible in radicals. In this paper, I describe the roots of the general septic equation.

Preliminaries

The general septic equation is

$$ax^7 + bx^6 + cx^5 + dx^4 + ex^3 + fx^2 + gx + h = 0$$

where a, b, c, d, e, f, g, h are constants. If h = 0 then the equation reduces to

$$x(ax^{6} + bx^{5}5 + cx^{4} + dx^{3} + ex^{2} + fx + g) = 0$$

which has the root x = 0 and the sextic

$$ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g = 0$$

which can be solved.

Similarly, if a = 0 then the equation reduces to sextic equation

$$bx^6 + cx^5 + dx^4 + ex^3 + fx^2 + gx + h = 0$$

which can be solved.

If a = h = 0 then the equation reduces to

$$x(bx^5 + cx^4 + dx^3 + ex^2 + fx + g) = 0$$

which has the root x = 0 and the quintic

$$bx^5 + cx^4 + dx^3 + ex^2 + fx + g = 0$$

whose roots are known.

Therefore, $a \neq 0$ and $g \neq 0$ henceforth. Moreover, we divide the general septic equation by the leading coefficient a to transform the general septic equation to the monic septic equation

$$x^7 + ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g = 0$$

where $g \neq 0$ henceforth.

Comparing coefficients with my monic septic

Recall that my monic septic is

Comparing coefficients we get

- $(1) \ a = a$

(2)
$$b = 0$$

(3) $c = (a - P) (b - aP + P^2 - Q) + \frac{f - g}{Q} + Q + PQ$
(4) $d = \frac{g}{Q} + \frac{(f - g)(a - P)}{Q} + PQ + Q (b - aP + P^2 - Q)$
(5) $e = f + \frac{g(a - P - Q)}{Q} + (b - aP + P^2 - Q) Q$

- (6) f = f

Thus, if suitable P and Q are obtained, then, by my monic septic identity, we can reduce the monic septic equation to the product of a quartic equation and a quadratic equation, whose roots are known.

Choosing P and Q

Eliminating d between equations (4) and (5) gives us the eliminant

(8)
$$-ag + aPQ^2 - bQ^2 + eQ - fQ + gP + gQ - P^2Q^2 + Q^3 = 0$$

Eliminating c between equations (3) and (8) gives us the same eliminant

As long as $Q \neq 0$ and we obtain corresponding P and Q, we may choose any value for either P or Q to solve the eliminant. For most septics, P = a is a valid and convenient choice. When P=a is not a valid choice, other valid and convenient choices may be P=0, Q=P etc.

Solving the monic septic

Once we have at least one valid value of P and one valid value of Q, by the right side of my monic septic identity, we obtain 7 roots of the monic septic equation.

Notes

- 1. Note that by following this procedure, we obtain 7 roots of the general septic equation expressible in radicals.
- 2. Note that this procedure doesn't invalidate Galois' theory since our procedure is based on expressing the general septic equation as factored forms but not on solving the septic equation algebraically.

Exercises for the reader

Find the roots of the following septic equations expressible in radicals:

1.
$$3x^7 + 56x^6 - 504x^5 + 39x^4 - 3317x^3 + 9340x^2 - 534x + 600 = 0$$

$$x^7 - 16x^3 - 25 = 0$$

The End