Assignment # 6 Thomas Boyko

Exercise 1

Assume that μ is a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, which satisfies that

$$\mu((-\infty, x]) = \mu([x, \infty)) < \infty$$
 for all $x \in \mathbb{R}$.

Show then that $\mu(B) = \mu(-B)$ for any Borel set B.

Solution: Suppose μ is a measure as above. Define a new measure ν by $\nu(B) = \mu(-B)$. We wish to apply Theorem 2.2.2 on the system \mathcal{S}

$$\mathcal{S} = \{(-\infty, x] : x \in \mathbb{R}\}.$$

It's discussed in the textbook that the system is \cap -stable, and that the system generates $\mathcal{B}(\mathbb{R})$.

From the assumption we have:

$$\mu((-\infty,x])=\mu([x,\infty))=\mu(-(-\infty,x])=\nu((-\infty,x]).$$

So μ, ν agree on \mathcal{S} (and are finite), as well as the sequence $A_n = (-\infty, n]$ in \mathcal{S} , which has $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{R}$.

Since all the conditions in 2.2.2 are satisfied, we have:

$$\mu(B) = \nu(B) = \mu(-B).$$