Лабораторная работа №8

Модель конкуренции двух фирм

Аникин Константин Сергеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	16
Список литературы		17

Список иллюстраций

4.1	Код первого случая на Julia	9
4.2	Код второго случая на Julia	10
4.3	График первого случая на Julia	11
4.4	График второго случая на Julia	12
4.5	Код первого случая на OpenModelica	13
4.6	Код второго случая на OpenModelica	14
4.7	График первого случая на OpenModelica	14
48	График второго случая на OpenModelica	15

Список таблиц

1 Цель работы

Построить модель конкуренции двух фирм в Julia и OpenModelica.

2 Задание

Вариант 6

- Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем.
- Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены.

3 Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом.)

Подробней о модели конкуренции фирм см. в [1]

4 Выполнение лабораторной работы

На рис. 4.1 и 4.2 представлен код программы для двух случаев на Julia. На рис. 4.3 и 4.4 представлены получившиеся графики.

```
3. 1.jl C:\...\8 X 	≡ Julia Plots (23/23) 3. 2.jl 3. 1.jl C:\...\5
C: > Users > kosty > Desktop > РУДН > Математическое моделирование2 > scripts > 8 > ♣ 1.jl >
      using Plots
      using DifferentialEquations
      M10 = 2.3
      M20 = 1.6
      pcr = 18.0
      N = 21.0
      q = 1.0
     t1 = 14.0
     t2 = 17.0
 10 ps1 = 11.0
 11
      ps2 = 9.0
      a1 = pcr/(t1^2*ps1^2*N*q)
 12
 13 a2 = pcr/(t2^2*ps2^2*N*q)
      b = pcr/(t1^2*ps1^2*t2^2*ps2^2*N*q)
 15 c1 = (pcr-ps1)/(t1*ps1)
      c2 = (pcr-ps2)/(t2*ps2)
      tspan = (0.0, 30.0)
 17
 18
      function f(du, u,w,t)
           M1, M2 = u
           du[1] = M1-b*M1*M2/c1-a1*M1^2/c1
 21
           du[2] = c2*M2/c1-b*M1*M2/c1-a2*M2^2/c1
       end
      prob = ODEProblem(f, [M10, M20], tspan)
     sol = solve(prob)
      plot(sol, label=["M1" "M2"])
 27
```

Рис. 4.1: Код первого случая на Julia

```
C: > Users > kosty > Desktop > РУДН > Математическое моделирование2 > scripts > 8 > ♣ 2.jl > ...
      using Plots
  2 using DifferentialEquations
  3 M10 = 2.3
    M20 = 1.6
  5 	 pcr = 18.0
     N = 21.0
  7 q = 1.0
  8 t1 = 14.0
  9 	 t2 = 17.0
 10 ps1 = 11.0
 11 ps2 = 9.0
 12 a1 = pcr/(t1^2*ps1^2*N*q)
 13 a2 = pcr/(t2^2*ps2^2*N*q)
 14 b = pcr/(t1^2*ps1^2*t2^2*ps2^2*N*q)
 15 c1 = (pcr-ps1)/(t1*ps1)
 16   c2 = (pcr-ps2)/(t2*ps2)
 17 tspan = (0.0, 50.0)
 19 function f(du,u,w,t)
          M1, M2 = u
          du[1] = M1-(0.0015+b/c1)*M1*M2-a1*M1^2/c1
          du[2] = c2*M2/c1-b*M1*M2/c1-a2*M2^2/c1
      end
      prob = ODEProblem(f, [M10, M20], tspan)
 26 sol = solve(prob)
      plot(sol, label=["M1" "M2"])
```

Рис. 4.2: Код второго случая на Julia

Рис. 4.3: График первого случая на Julia

Рис. 4.4: График второго случая на Julia

На рис. 4.5 и 4.6 представлен код программы для двух случаев на OpenModelica. На рис. 4.7 и 4.8 представлены получившиеся графики.

```
₩ 🚜 🧮 🕦 Writable Model Text View 081 C:/Users/kosty/OpenModelica/081.mo
       model o81
    2
         Real M1;
а
    3
         Real M2;
    4
         Integer pcr = 18;
         Integer N = 21;
    5
         Integer q = 1;
    6
    7
         Integer t1 = 14;
         Integer t2 = 17;
    9
         Integer p1 = 11;
         Integer p2 = 9;
   10
   11
         Real a1 = pcr/(t1*t1*p1*p1*N*q);
         Real a2 = pcr/(t2*t2*p2*p2*N*q);
   12
   13
         Real b = pcr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);
   14
         Real c1 = (pcr-p1)/(t1*p1);
         Real c2 = (pcr-p2)/(t2*p2);
   15
   16 initial equation
   17
         M1 = 2.3;
   18
        M2 = 1.6;
   19
      equation
  20
         der(M1) = M1-b/c1*M1*M2-a1*M1*M1/c1;
   21
         der(M2) = c2*M2/c1-b*M1*M2/c1-a2*M2*M2/c1;
   22
         annotation(experiment(StartTime = 0, StopTime = 30));
   23
       end 081;
```

Рис. 4.5: Код первого случая на OpenModelica

```
🖶 🚜 🧧 🕦 | Writable | Model | Text View | o82 | C:/Users/kosty/OpenModelica/o82.mo
  1
     model o82
        Real M1;
  3
        Real M2;
  4
        Integer pcr = 18;
  5
        Integer N = 21;
        Integer q = 1;
  6
  7
        Integer t1 = 14;
        Integer t2 = 17;
  9
        Integer p1 = 11;
 10
        Integer p2 = 9;
 11
        Real al = pcr/(t1*t1*p1*p1*N*q);
        Real a2 = pcr/(t2*t2*p2*p2*N*q);
 12
 13
       Real b = pcr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);
 14
        Real c1 = (pcr-p1)/(t1*p1);
        Real c2 = (pcr-p2)/(t2*p2);
 15
 16
     initial equation
 17
       M1 = 2.3;
 18
       M2 = 1.6;
 19
     equation
 20
        der(M1) = M1 - (0.0015 + b/c1) *M1 *M2 - a1 *M1 *M1/c1;
 21
        der(M2) = c2*M2/c1-b/c1*M1*M2-a2*M2*M2/c1;
 22
        annotation(experiment(StartTime = 0, StopTime = 50));
     end 082;
 23
```

Рис. 4.6: Код второго случая на OpenModelica

Рис. 4.7: График первого случая на OpenModelica

Рис. 4.8: График второго случая на OpenModelica

5 Выводы

В ходе работы была построена модель конкуренции двух фирм и построены необходимые графики.

Список литературы

1. Э. К.А.В.П.А. ДИНАМИЧЕСКАЯ МОДЕЛЬ КОНКУРЕНЦИИ ДВУХ ФИРМ НА ОДНОРОДНОМ РЫНКЕ. Успехи современного естествознания., 2003.