Диагностические данные

В главе	Вы найдете	на стр.
A.1	Обзор структуры диагностических данных	A-2
A.2	Диагностические данные	A-3
A.3	Структура диагностических данных, специфических для канала	A-5

А.1. Обзор структуры диагностических данных

Записи данных 0 и 1 области системных данных

Диагностические данные модуля находятся в записях данных 0 и 1 области системных данных (смотрите главу 7.1):

- Запись данных 0 содержит 4 байта данных диагностики, которые описывают текущее состояние сигнального модуля.
- Запись данных 1 содержит
 - 4 байта диагностических данных, которые находятся также в записи данных 0, и
 - диагностические данные, специфические для модуля.

Структура и содержание диагностических данных

Ниже описаны структура и содержание отдельных байтов диагностических данных.

В общем случае имеет силу: Если появляется ошибка, то соответствующий бит устанавливается в "1".

А.2 Диагностические данные

Таблица А-1. Структура и содержание диагностических данных

Байт	Бит	Значение		Примечание
0	0	Неисправность модуля		
	1	Внутренняя ошибка		
	2	Внешняя ошибка		
	3	Имеется ошибка канала		
	4	Отсутствует внешнее вспомогательное напряжение		
	5	Отсутствует передний штепсельный разъем		
	6	Отсутствует параметризация		
	7	Неправильный параметр в модуле		
1	от 0 до 3	Класс модуля	0101 0000 1000 1100 1111	Аналоговый модуль CPU Функциональный модуль CP Цифровой модуль
	4	Имеется информация канала		
	5	Имеется информация пользователя		
	6	Диагностический сигнал прерывания от заместителя		
	7	0		
2	0	Модуль памяти неисправен или отсутствует		
	1	Нарушение связи		
	2	Рабочий режим	0	RUN STOP
	3	Сработал контроль времени цикла		
	4	Отказ внутреннего напряжения питания модуля		
	5	Разрядилась батарея		
	6	Отказ всей буферизации		
	7	0		
3	0	Отказ носителя модулей		
	1	Отказ процессора		
	2	Ошибка EPROM		
	3	Ошибка RAM		
	4	Ошибка АЦП/ЦАП		
	5	Отказ защиты		
	6	Потеря сигнала прерывания от процесса		
-	7	0		

Таблица А-1. Структура и содержание диагностических данных (продолжение)

Байт	Бит	Значение	Примечание
------	-----	----------	------------

4	OT	Тип канала	B#16#70	Цифровой ввод
	0		B#16#72	Цифровой вывод
	до		B#16#71	Аналоговый ввод
	6		B#16#73	Аналоговый вывод
			B#16#74	FM-POS (позиционир.)
			B#16#75	FM-REG (регулиров.)
			B#16#76	FM-ZAEHL (счетчик)
			B#16#77	FM-ТЕСНОО (технол.)
			B#16#78	FM-NCU (ЧПУ)
			OT	Dec en
			B#16#79	Резервные
			до В#16#7D	
			B#16#7E	US300
			B#16#7E	Резервный
			Dπ10π/1	1 сэсрвный
	7	Есть дополнительный канал?	0	нет
			1	да
5	ОТ	Количество битов диагностики, которое модуль	Количество битов диагностики на	
	0	выводит на один канал	один канал	округляется до границ
	до		байта.	
	7			
6	ОТ	Количество однородных каналов модуля	Если в модуле существуют разные	
	0		типы каналов, то структура для	
	до			па канала повторяется,
	7		начиная с б	айта 4 в записи данных 1.
7	0	Ошибка канала - канал 0/ группа каналов 0		іт вектора ошибок канала
				ора ошибок канала
				ся числом каналов и
	1	05	округляется	до границ байта).
	1	Ошибка канала - канал 1/ группа каналов 1		
	2	Ошибка канала - канал 2/ группа каналов 2		
	3	Ошибка канала - канал 3/ группа каналов 3		
	4	Ошибка канала - канал 4/ группа каналов 4		
	5	Ошибка канала - канал 5/ группа каналов 5		
	6	Ошибка канала - канал 6/ группа каналов 6		
	7	Ошибка канала - канал 7/ группа каналов 7		
•••	-	Специфические для канала ошибки (см. гл. А.3)		

А.3 Структура диагностических данных, специфических для канала

Ошибки, специфические для канала Начиная с байта, который находится непосредственно за вектором ошибок канала, для каждого канала модуля отображаются специфические по каналу ошибки. В дальнейшем мы показываем Вам структуру специфической по каналу диагностики для разных типов каналов. Для значений битов действительно:

- 1 = ошибка
- 0 = нет ошибки

Канал ввода аналоговых сигналов

Таблица А-2. Байт диагностики канала ввода аналоговых сигналов

0	Ошибка проектирования/ параметризации	сигнал от SFC 52 и EVENTN = W#16#8x50
1	Синфазная ошибка (ошибка общего типа)	сигнал от SFC 52 и EVENTN = W#16#8x51
2	Короткое замыкание Р	сигнал от SFC 52 и EVENTN = W#16#8x52
3	Короткое замыкание М	сигнал от SFC 52 и EVENTN = W#16#8x53
4	Обрыв провода/ Контроль тока питания - Измерительный преобразователь / Pt 100	сигнал от SFC 52 и EVENTN = W#16#8x54
5	Ошибка опорного канала	сигнал от SFC 52 и EVENTN = W#16#8x55
6	Выход за нижний предел диапазона измерений (< 3 мА)	сигнал от SFC 52 и EVENTN = W#16#8x56
7	Превышение верхней границы диапазона измерений (> 22 мA)	сигнал от SFC 52 и EVENTN = W#16#8x57

Канал вывода аналоговых сигналов

Таблица А-3. Байт диагностики канала вывода аналоговых сигналов

0	Ошибка проектирования/ параметризации	сигнал от SFC 52 и EVENTN = W#16#8x60
1	Синфазная ошибка (ошибка общего типа)	сигнал от SFC 52 и EVENTN = W#16#8x61
2	Короткое замыкание Р	сигнал от SFC 52 и EVENTN = W#16#8x62
3	Короткое замыкание М	сигнал от SFC 52 и EVENTN = W#16#8x63
4	Обрыв провода/ Контроль тока питания - Измерительный преобразователь / Pt 100	сигнал от SFC 52 и EVENTN = W#16#8x64
5	0	резервный
6	Отсутствует напряжение нагрузки	сигнал от SFC 52 и EVENTN = W#16#8x66
7	0	резервный

Канал ввода цифровых сигналов

Таблица А-4. Байт диагностики канала ввода цифровых сигналов

0	Ошибка проектирования/ параметризации	сигнал от SFC 52 и EVENTN = W#16#8x70
1	Ошибка заземления на корпус	сигнал от SFC 52 и EVENTN = W#16#8x71
2	Короткое замыкание Р (датчик)	сигнал от SFC 52 и EVENTN = W#16#8x72
3	Короткое замыкание М	сигнал от SFC 52 и EVENTN = W#16#8x73
4	Обрыв провода	сигнал от SFC 52 и EVENTN = W#16#8x74
5	Отсутствует питание датчика	сигнал от SFC 52 и EVENTN = W#16#8x75
6	0	резервный
7	0	резервный

Канал вывода цифровых сигналов

Таблица А-5. Байт диагностики канала вывода цифровых сигналов

0	Ошибка проектирования/ параметризации	сигнал от SFC 52 и EVENTN = W#16#8x80
1	Ошибка заземления на корпус	сигнал от SFC 52 и EVENTN = W#16#8x81
2	Короткое замыкание Р	сигнал от SFC 52 и EVENTN = W#16#8x82
3	Короткое замыкание М	сигнал от SFC 52 и EVENTN = W#16#8x83
4	Обрыв провода	сигнал от SFC 52 и EVENTN = W#16#8x84
5	0	резервный
6	Отсутствует напряжение нагрузки	сигнал от SFC 52 и EVENTN = W#16#8x86
7	Перегрев	сигнал от SFC 52 и EVENTN = W#16#8x87

Список состояний системы SZL

B

В главе	Вы найдете	на стр.
B.1	Обзор списка состояний системы (SZL)	B-2
B.2	Структура подсписка SZL	B-3
B.3	SZL-ID	B-4
B.4	Возможные подсписки SZL	B-5
B.5	SZL-ID W#16#xy00 - Список доступных SZL-ID модуля	B-6
B.6	SZL-ID W#16#xy11 - Идентификация модулей	B-7
B.7	SZL-ID W#16#xy12 - Признаки СРU	B-8
B.8	SZL-ID W#16#xy13 - Области памяти пользователя	B-10
B.9	SZL-ID W#16#xy14 - Системные области	B-12
B.10	SZL-ID W#16#xy15 - Типы блоков	B-13
B.11	SZL-ID W#16#xy16 - Имеющиеся классы приоритета	B-14
B.12	SZL-ID W#16#xy17 - Список допустимых SDB	B-15
B.13	SZL-ID W#16#xy18 - Максимальное расширение периферии в случае S7-300	B-16
B.14	SZL-ID W#16#xy19 - Состояние светодиодов (LED) блоков	B-17
B.15	SZL-ID W#16#xy21 - Сопоставление прерываний/ ошибок	B-18
B.16	SZL-ID W#16#xy22 - Состояние прерываний	B-20
B.17	SZL-ID W#16#xy23 - Состояние классов приоритета	
B.18	SZL-ID W#16#xy24 - Рабочий режим и изменение рабочего режима	B-24
B.19	SZL-ID W#16#xy31 - Параметры производительности для связи	B-27
	Разделы с В.20 по В.30 являются наборами данных всех фрагментов подсписка W#16#0131	
B.31	SZL-ID W#16#xy32 - Данные по режиму связи	B-41
	Разделы с В.32 по В.43 являются наборами данных всех фрагментов подсписка W#16#0132	
B.44	SZL-ID W#16#xy33 - Абоненты S7-сообщений и диагностических событий	B-54
B.45	SZL-ID W#16#xy81 - Локальные данные ОВ	B-55
B.46	SZL-ID W#16#xy82 - Стартовые события	B-56
B.47	SZL-ID W#16#xy91 - Информация о состоянии модулей	B-57
B.48	SZL-ID W#16#xy92 - Информация о состоянии носителя модулей/станции	В-60
B.49	SZL-ID W#16#xyA0 - Диагностический буфер	B-62
B.50	SZL-ID W#16#00B1 - Диагностическая информация модулей	B-63
B.51	SZL-ID W#16#00B2 - Диагностические данные модулей по географическому адресу	B-64
B.52	SZL-ID W#16#00B3 - Диагностические данные модулей по логическому адресу	B-65
B.53	SZI_ID W#16#00B4 - Лиагностические ланные DP_Slave	B-66

В.1. Обзор списка состояний системы (SZL)

В данном приложении

В данном приложении описаны все подсписки списка состояний системы, справки которых

- относятся к СРU или
- к таким модулям, подсписки которых не являются специфическими для модулей (например, SZL-ID W#16#00B1, W#16#00B2, W#16#00B3).

Специфические для модулей подсписки, в частности, для CP и FM возьмите, пожалуйста. из соответствующего описания модуля.

Определение: Список состояний системы

Список состояний системы описывает действительное состояние контроллера. Содержание SZL посредством справочных функций можно только читать, но не изменять. Подсписки являются виртуальными

списками, то есть они составляются операционной системой центральных модулей только по запросу.

С помощью SFC 51 "RDSYSST" Вы всегда можете считывать только один подсписок.

Содержание

Список состояний системы содержит информацию о:

- системных данных
- данных режима диагностики в СРU
- диагностических данных на модулях
- диагностическом буфере

Системные данные

Системные данные представляют собой фиксированные или параметризованные характеристики CPU. Они описывают следующие рабочие параметры:

- расширение CPU
- состояние классов приоритета
- связь.

Данные режима диагностики

Данные режима диагностики описывают текущее состояние компонент, которые контролируются посредством диагностики системы.

Диагностические данные в модулях

Сопоставленные CPU модули, способные к диагностике, обладают диагностическими данными, которые отложены в памяти самих модулей.

Диагностический **буфер**

Диагностический буфер содержит диагностические записи в последовательности их появления.

В.2. Структура подсписка SZL

Основы Вы можете прочитать подсписок или фрагмент подсписка

• посредством справочной функции через РС или

• посредством SFC 51 "RDSYSST".

Если Вы используете SFC 51 "RDSYSST", то установите через параметры SZL_ID и INDEX, что Вы хотите прочитать.

Структура П

Подсписок состоит из

заголовка и

• наборов данных.

Заголовок

Заголовок подсписка состоит из:

• SZL-ID

индекса

• длины набора данных этого подсписка в байтах

• количества наборов данных, которые содержит этот подсписок.

Индекс Для определенных подсписков или фрагментов подсписков необходимо задание

кода типа объекта или номера объекта. Для этого используется индекс [Index]. Если

в справке он не нужен, то его содержание является несущественным.

Наборы данных набор данных подсписка имеет определенную длину. Она зависит от того, какая

информация отложена в списке. От подсписка также зависит то, как заполнены

слова данных в наборе данных.

Системное программное обеспечение для S7-300/400 - Системные и стандартные функции C79000-G7000-C503-01

B.3. SZL-ID

SZL-ID

Каждый подсписок внутри SZL имеет номер. Вывод подсписка может запрашиваться в полном виде или частично. Возможные фрагменты подсписков жестко определены и, в свою очередь, отмечаются номером. SZL–ID (идентификатор SZL) составляется из номера подсписка, номера фрагмента подсписка и класса модуля.

Структура

SZL-ID имеет длину в одно слово. Он составлен следующим образом:

Рис. В-1. Структура SZL-ID

Класс модуля

Примеры классов модулей:

Класс модуля	Соответствующий код (двоичный)
CPU	0000
СР	1100
FM	1000

Номер фрагмента

Номера фрагментов подсписка и их значение зависят от

подсписка

соответствующего подсписка. Через номер фрагмента подсписка Вы

задаете,

какое подмножество подсписка Вы хотите прочитать.

Номер подсписка

Через номер подсписка Вы задаете, какой подсписок SZL Вы хотите прочитать.

В.4. Возможные подсписки SZL

Подмножество

В модуле доступным является всегда только подмножество любого возможного подсписка. От модуля зависит то, какие подсписки имеются в распоряжении.

Возможные подсписки SZL

В следующей таблице представлены все возможные подсписки с соответствующими номерами в SZL–ID.

Подеписок	SZL-ID
Список всех SZL-ID модуля	W#16#xy00
Идентификация модулей	W#16#xy11
Признаки CPU	W#16#xy12
Области памяти пользователя	W#16#xy13
Системные области	W#16#xy14
Типы блоков	W#16#xy15
Классы приоритета	W#16#xy16
Список допустимых SDB с Nr. < 1000	W#16#xy17
Максимальное расширение периферии при S7-300	W#16#xy18
Состояние светодиодов (LED) блоков	W#16#xy19
Сопоставление прерываний/ошибок	W#16#xy21
Состояние прерываний	W#16#xy22
Классы приоритета	W#16#xy23
Рабочие режимы	W#16#xy24
Связь: Рабочие параметры	W#16#xy31
Связь: Данные режима	W#16#xy32
Диагностика-Список абонентов	W#16#xy33
Список стартовой информации	W#16#xy81
Список стартовых событий	W#16#xy82
Информация о состоянии модулей	W#16#xy91
Информация о состоянии носителя модулей/ станции	W#16#xy92
Диагностический буфер в CPU	W#16#xyA0
Диагностическая информация модулей (DS 0)	W#16#00B1
Диагностическая информация модулей (DS 1), географический адрес	W#16#00B2
Диагностическая информация модулей (DS 1), логический адрес	W#16#00B3
Диагностические данные DP-Slave	W#16#00B4

В.5. SZL-ID W#16#xy00 - Список доступных SZL-ID модуля

Цель Через подсписки с SZL–ID W#16#xy00 Вы получаете SZL–ID, которые

поддерживаются модулем.

Заголовок SZL с SZL-ID W#16#xy00 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка: W#16# 0000Н: все подсписки SZL модуля W#16# 0100Н: подсписок со всеми фрагментами подсписка W#16#0200Н: фрагмент подсписка
	W#16#0300H: возможные индексы фрагмента подсписка W#16#0F00H: только информация заголовка подсписка
INDEX	Смотрите ниже
LENGTHDR	W#16#0002: набор данных имеет длину 1 слово (2 байта)
N_DR	Количество наборов данных

INDEX

Параметр INDEX имеет, в зависимости от фрагмента подсписка, следующие значения:

SZL-ID	INDEX	Значение
0000	0000	Все SZL-ID модуля
0100	Z0YY	Подсписок со всеми фрагментами подсписка Z: класс типа модуля YY: номер подсписка SZL
0200	ZXYY	Фрагмент подсписка Z: класс типа модуля X: номер фрагмента подсписка YY: номер подсписка SZL
0300	ZXYY	Возможные индексы подсписка SZL Z: класс типа модуля X: номер фрагмента подсписка YY: номер подсписка SZL
0F00	0000	Информация заголовка подсписка (количество всех SZL-ID модуля)

Набор данных

Набор данных подсписка с SZL-ID W#16#xy00 имеет следующую структуру:

Имя	Длина	Значение
SZL-ID	1 слово	SZL-ID/индекс, который имеется в наличии Если Вы выбрали SZL_ID = W#16#0300, то
		• 0 означает, что нет допустимого индекса или индекс является несущественным
		• W#16#FFFF означает, что индексы этого подсписка не определяются.

В.6. SZL-ID W#16#xy11 - Идентификация модулей

Цель Через подсписок с SZL–ID W#16#xy11 Вы получаете для модуля идентификацию

модуля.

Заголовок SZL с SZL-ID W#16#xy11 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0011: все наборы данных идентификации модуля
	W#16#0111: отдельный набор данных идентификации модуля
	W#16#0F11: только информация заголовка подсписка SZL
INDEX	Только при SZL-ID W#16#0111:
	номер определенного набора данных
	W#16#0001: идентификация модуля
LENGTHDR	W#16#001C: набор данных имеет длину 14 слов (28 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных SZL с SZL-ID W#16#xy11 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	Номер набора данных идентификации
MlfB	10 слов	MLFB модуля; строка из 19 символов и пробела (20H); например, для CPU 314: "6ES7 314–0AE01–0AB0"
BGTyp	1 слово	Код типа блока (код типа блока используется только для внутренних целей)
Ausbg	1 слово	Данные о выпуске модуля или операционной системы
Ausbe	1 слово	Данные о версии файла описания PG

B.7. SZL-ID W#16#xy12 - Признаки CPU

Цель Модули типа СРU обладают рядом признаков с сильной ориентацией на

аппаратные средства. Каждому из этих признаков сопоставлен код. Через подсписок

с SZL-ID W#16#xy12 Вы получаете признаки модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy12 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0012: все признаки
	W#16#0112: признаки группы
	Группу Вы задаете в параметре INDEX.
	W#16#0F12: только информация заголовка подсписка SZL
INDEX	Группа
	W#16#0000: блок обработки MC7
	W#16#0100: система времени
	W#16#0200: поведение системы
	W#16#0300: описание MC7-языка CPU
LENGTHDR	W#16#0002: набор данных имеет длину 1 слово (2 байта)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL–ID W#16#xy12 имеет длину в одно слово. Для каждого имеющегося признака записан код признака. Код признака имеет длину 1 слово.

Код признака

В следующей таблице приведены все коды признаков.

Код	Значение
W#16#0000 - 00FF	Блок обработки МС7 (группа с индексом 0000)
W#16#0001	Обработка МС7, генерирующая код [программы]
W#16#0002	Интерпретатор МС7
W#16#0100 - 01FF	Система времени (группа с индексом 0100)
W#16#0101	Разрешающая способность по времени 1 мс
W#16#0102	Разрешающая способность по времени 10 мс

Код	Значение
W#16#0103	Нет часов реального времени
W#16#0104	ВСО-формат времени суток
W#16#0200 - 02FF	Поведение системы (группа с индексом 0200)
W#16#0201	Способность к многопроцессорной обработке
W#16#0300 - 03FF	Описание МС7–языка СРU (группа с индексом 0300)
W#16#0301	Резервный
W#16#0302	Все 32-битные команды вычислений с фиксированной точкой
W#16#0303	Все команды вычислений с плавающей точкой
W#16#0304	sin, asin, cos, acos, tan, atan, sqr, sqrt, ln, exp
W#16#0305	Akku3/Akku4 с относящимися к ним командами (ENT,PUSH,POP,LEAVE)
W#16#0306	Команды Master Control Relay
W#16#0307	Имеется адресный регистр 1 с относящимися к нему командами
W#16#0308	Имеется адресный регистр 2 с относящимися к нему командами
W#16#0309	Команды для адресации, выходящей за пределы области
W#16#030A	Команды для адресации внутри области
W#16#030B	Все команды над М с косвенной адресацией памяти
W#16#030C	Все команды над DB с косвенной адресацией памяти
W#16#030D	Все команды над DI с косвенной адресацией памяти
W#16#030E	Все команды над LD с косвенной адресацией памяти
W#16#030F	Все команды передачи параметров в FC
W#16#0310	Команды меркера фронта над Е
W#16#0311	Команды меркера фронта над А
W#16#0312	Команды меркера фронта над М
W#16#0313	Команды меркера фронта над DB
W#16#0314	Команды меркера фронта над DI
W#16#0315	Команды меркера фронта над LD
W#16#0316	Динамическая оценка ERAB-битов
W#16#0317	Динамическая область локальных данных с соответствующими командами
W#16#0318	Резервный
W#16#0319	Резервный

В.8. SZL-ID W#16#xy13 - Области памяти пользователя

Цель Через подсписок с SZL–ID W#16#xy13 Вы получаете информацию об областях

памяти модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy13 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка: W#16#0013: наборы данных всех областей памяти W#16#0113: набор данных одной области памяти Вы задаете область памяти через параметр INDEX. W#16#0F13: только информация заголовка подсписка SZL
INDEX	Задание области памяти (только при SZL-ID W#16#0113) W#16#0001: рабочая память W#16#0002: загрузочная память встроенная W#16#0003: загрузочная память вставленная W#16#0004: максимальная вставляемая загрузочная память W#16#0005: размер резервной памяти W#16#0006: размер памяти, резервируемой системой для CFB
LENGTHDR	W#16#0024: блок данных имеет длину 18 слов (36 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy13 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	Индекс области памяти: W#16#0001: рабочая память W#16#0002: загрузочная память встроенная W#16#0003: загрузочная память вставленная W#16#0004: максимальная вставляемая загрузочная память W#16#0005: размер резервной памяти W#16#0006: размер памяти, резервируемой системой для CFB
Code	1 слово	Тип памяти: W#16#0001: несохраняемая [при выключении электропитания] память (RAM) W#16#0002: сохраняемая [при выключении электропитания] память (FEPROM) W#16#0003: смешанная память (RAM и FEPROM)
Größe	2 слова	Общий размер выбранной памяти (сумма Ber 1 и Ber 2)

Имя	Длина	Значение
Modus	1 слово	Логический тип памяти
		Бит 0: несохраняемая область памяти
		Бит 1: сохраняемая область памяти
		Бит 2: смешанная область памяти
		Для рабочей памяти:
		Бит 3: код и данные раздельно
Granu	1 слово	Всегда занят 0
Ber1	2 слова	Размер несохраняемой области памяти в байтах.
		При INDEX W#16#0006: рабочая память, занятая CFB
Belegt1	2 слова	Размер занятой несохраняемой области памяти
Block1	2 слова	Размер свободного блока в несохраняемой области
		памяти.
		Если 0: информация не существует или информацию невозможно найти
Ber2	2 слова	Размер сохраняемой области памяти в байтах.
		При INDEX W#16#0006: системная память, занятая CFB
Belegt2	2 слова	Размер занятой сохраняемой области памяти
Block2	2 слова	Размер свободного блока в сохраняемой области памяти.
		Если 0: информация не существует или информацию
		невозможно найти

В.9. SZL-ID W#16#xy14 - Системные области

Цель Через подсписок с SZL–ID W#16#xy14 Вы получаете информацию о системных

областях модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy14 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка: W#16#0014: все системные области модуля W#16#0114: системная область, задание через параметр INDEX W#16#0F14: только информация заголовка подсписка SZL
INDEX	Только для SZL—ID W#16#0114: W#16#0001: PAE (количество в байтах) W#16#0002: PAA (количество в байтах) W#16#0003: меркеры (количество) W#16#0004: таймеры (количество) W#16#0005: счетчики (количество) W#16#0006: количество байтов в логическом адресном пространстве (количество) W#16#0007: размер всей области локальных данных СРU в байтах
LENGTHDR	W#16#0008: набор данных имеет длину 4 слова (8 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy14 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	Индекс системной области: W#16#0001: PAE (количество в байтах) W#16#0002: PAA (количество в байтах) W#16#0003: меркеры (количество) W#16#0004: таймеры (количество) W#16#0005: счетчики (количество) W#16#0006: количество байтов в логическом адресном пространстве W#16#0007: локальные данные (вся область локальных данных модуля в байтах)
code	1 слово	Тип памяти: W#16#0001: несохраняемая память (RAM) W#16#0002: сохраняемая память (FEPROM) W#16#0003: смешанная (RAM и FEPROM)
anzahl	1 слово	Количество элементов системной области
reman	1 слово	Количество реманентных элементов

B.10. SZL-ID W#16#xy15 - Типы блоков

Цель Через подсписок с SZL–ID W#16#xy15 Вы получаете типы блоков, которые

имеются в модуле.

Заголовок Заголовок подсписка с SZL-ID W#16#xy15 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0015: наборы данных всех типов блоков модуля
	W#16#0115: набор данных одного типа блока
	Вы задаете тип блока через параметр INDEX.
	W#16#0F15: только информация заголовка подсписка SZL
INDEX	Только для SZL-ID W#16#0115:
	W#16#0800: OB
	W#16#0A00: DB
	W#16#0B00: SDB
	W#16#0C00: FC
	W#16#0E00: FB
LENGTHDR	W#16#000A: Набор данных имеет длину 5 слов (10 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy15 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	Номер типа блока: W#16#0800: OB W#16#0A00: DB W#16#0B00: SDB W#16#0C00: FC W#16#0E00: FB
MaxAnz	1 слово	Максимальное количество блоков типа в случае OB: максим. возможное количество OB в CPU в случае DB: максим. возможное количество DB, включая DB0 в случае SDB: максим. возможное количество SDB, включая SDB2 в случае FC и FB: максим. возможное количество загружаемых блоков
MaxLng	1 слово	Максимальный общий размер загружаемых объектов в Кбайт
Maxabl	2 слова	Максимальная длина компоненты рабочей памяти блока в байтах

В.11. SZL-ID W#16#xy16 - Имеющиеся классы приоритета

Цель Через подсписок с SZL–ID W#16#xy16 Вы получаете информацию о том, какие

классы приоритета содержатся в модуле.

Заголовок Заголовок подсписка с SZL-ID W#16#xy16 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0016: наборы данных всех классов приоритета
	W#16#0116: набор данных заданного класса приоритета
	Вы задаете класс приоритета через INDEX.
	W#16#0F16: только информация заголовка подсписка SZL
INDEX	Индекс класса приоритета
	W#16#0000: свободный цикл
	W#16#000A: прерывание по времени
	W#16#0014: прерывание с задержкой
	W#16#001E: циклическое прерывание
	W#16#0028: прерывание от процесса
	W#16#0050: прерывание по асинхронной ошибке
	W#16#0064: пуск
	W#16#0078: прерывание по синхронной ошибке
LENGTHDR	W#16#0006: набор данных имеет длину 3 слова (6 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL–ID W#16#xy16 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	Смотрите вышеупомянутую таблицу
maxanz	1 слово	Максимальное количество ОВ в классе приоритета
anzakt	1 слово	Количество связанных в цепочку ОВ данного класса приоритета

B.12. SZL-ID W#16#xy17 - Список допустимых SDB

Цель

Через подсписок с SZL–ID W#16#xy17 Вы получаете список допустимых SDB модуля. Вы можете перечислять только такие SDB, номера которых меньше 1000.

Заголовок

Заголовок подсписка с SZL-ID W#16#xy17 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0017: все SDB модуля
	W#16#0117: отдельный SDB
	Вы задаете номер SDB через параметр INDEX.
	W#16#0F17: только информация заголовка подсписка SZL
INDEX	Только в случае SZL-ID W#16#0117: номер SDB
LENGTHDR	W#16#0004: набор данных имеет длину 2 слова (4 байта)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy17 имеет следующую структуру:

Имя	Длина	Значение
SDBNr	1 слово	Номер SDB
state	1 слово	Свойства SDB
		Бит 0:
		0: SDB некопируемый / не связываемый в цепь
		1: SDB копируемый / связываемый в цепь
		Бит 1:
		0: SDB не создается по умолчанию
		1: SDB создается по умолчанию
		Биты с 2 по 15: резервные

Homep SDB

Если Вы выбрали SZL–ID W#16#0117 и в качестве номера SDB задаете SDB, который является недопустимым, то Вы получаете в параметре RET_VAL в SFC 51 код ошибки W#16#8083 (неправильный индекс).

B.13. SZL—ID W#16#xy18 - Максимальное расширение периферии в случае S7— 300

Цель

Через подсписок с SZL–ID W#16#xy18 Вы получаете в случае S7–300 справку о максимальном расширении периферии. Вы получаете возможные номера носителей модулей и количество слотов.

Дополнительно можно запрашивать максимально возможное количество носителей модулей и общее количество всех возможных слотов.

Заголовок

Заголовок подсписка с SZL-ID W#16#xy18 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0018:все наборы данных
	W#16#0118: набор данных
	Вы задаете номер носителя модулей через параметр INDEX.
	W#16#0F18: только информация заголовка подсписка SZL
INDEX	Только при SZL-ID = W#16#0118:
	0, 1, 2, 3: номер носителя модулей
	W#16#00FF: максимальное количество носителей модулей (в
	случае racknr) и общее количество всех возможных слотов (в случае anzst)
LENGTHDR	W#16#0004: набор данных имеет длину 2 слова (4 байта)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy18 имеет следующую структуру:

Имя	Длина	Значение
racknr	1 слово	Номер носителя модулей:
		0: носитель модулей 0
		1: носитель модулей 1
		2: носитель модулей 2
		3: носитель модулей 3
		Если Вы при SZL-ID 0118Н задали INDEX W#16#00FF:
		максимальное количество носителей модулей
anzst	1 слово	максимальное количество слотов на носителе
		Если Вы при SZL-ID 0118Н задали INDEX W#16#00FF:
		общее число всех возможных слотов

В.14. SZL-ID W#16#xy19 - Состояние светодиодов (LED) блоков

Цель Через подсписок с SZL-ID W#16#xy19 Вы получаете состояние светодиодов (LED)

блоков.

Заголовок Заголовок подсписка с SZL-ID W#16#xy19 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0019: состояние всех LED
	W#16#0119: состояние одного LED
	Вы выбираете LED через параметр INDEX.
	W#16#0F19: только информация заголовка подсписка SZL
INDEX	Код LED (важен только при SZL-ID W#16#0119)
	1: SF (общая ошибка)
	2: INTF (внутренняя ошибка)
	3: EXTF (внешняя ошибка)
	4: RUN
	5: STOP
	6: FRCE (принудительная установка)
	7: CRST (новый пуск)
	8: ВАГ (неисправность батареи/перегрузка, короткое замыкание напряжения батареи на шину)
	9: USR (по определению пользователя)
LENGTHDR	W#16#0004: набор данных имеет длину 2 слова (4 байта)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy19 имеет следующую структуру:

Имя	Длина	Значение
index	1 слово	Код LED
led_on	1 байт	Состояние LED: 0: выключено 1: включено
led_blink	1 байт	Состояние мигания LED:
		0: не мигает
		1: мигает нормально (2 Гц)
		2: мигает медленно (0,5 Гц)

В.15. SZL-ID W#16#xy21 - Сопоставление прерываний/ошибок

Цель Через подсписок с SZL–ID W#16#xy21 Вы получаете информацию о том, как

прерывания и ошибки сопоставлены ОВ.

Заголовок Заголовок подсписка с SZL-ID W#16#xy21 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка: W#16#0021: наборы данных всех возможных прерываний модуля W#16#0121: наборы данных всех возможных прерываний одного класса прерываний в параметре INDEX. W#16#0221: набор данных для заданного прерывания Вы задаете прерывание (OB-Nr.) в параметре INDEX. W#16#0921: наборы данных всех прерываний одного класса прерываний, для которого загружен соответствующий ОВ прерывания. Вы задаете класс прерываний в параметре INDEX. W#16#0A21: наборы данных всех прерываний, для которых загружен соответствующий ОВ прерываний, для которых загружен соответствующий ОВ прерывания. W#16#0F21: только информация заголовка подсписка SZL
INDEX	Класс прерывания/класс ошибки или OB–Nr. (при SZL–ID W#16#0221) W#16#0000: свободный цикл W#16#000A: прерывание по времени W#16#0014: прерывание с задержкой W#16#001E: циклическое прерывание W#16#0028: прерывание от процесса W#16#0050: прерывание по асинхронной ошибке W#16#0064
LENGTHDR	W#16#0004: набор данных имеет длину 2 слова (4 байта)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL–ID W#16#xy21 имеет следующую структуру:

Имя	Длина	Значение
ereig	1 слово	ID события для стартового события. Если ОВ имеет несколько стартовых событий, то событие с наименьшим определенным Nr. отображается в форме W#16#x0zz; х: класс события, zz: номер события. ID события объяснен в /70/ и /101/.
ae	1 байт	Номер сопоставленного класса приоритета. Если класс приоритета не может быть задан, то ае имеет следующее значение: В#16#00 ОВ был отключен посредством STEP 7 В#16#FE ОВ не загружен, заблокирован или отклонен SFC В#16#7F ОВ синхронной ошибки. Маскирование ОВ синхронной ошибки не отображается. Если одновременно появилось несколько причин, то отображается причина с наименьшим Nr.
ob	1 байт	Номер ОВ

В.16. SZL-ID W#16#xy22 - Состояние прерываний

Цель Через подсписок с SZL–ID W#16#xy22 Вы получаете информацию о текущем

состоянии обработки прерываний и генерировании прерываний модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy22 построен следующим образом:

Содержание	Значение
SZL–ID	SZL-ID фрагмента подсписка:
	W#16#0022: наборы данных всех возможных прерываний
	модуля
	W#16#0122: наборы данных всех возможных прерываний
	одного класса прерываний
	Вы задаете класс прерываний в параметре INDEX.
	W#16#0222: набор данных для заданного прерывания
	Вы задаете прерывание (OB–Nr.) в параметре INDEX.
	W#16#0822: наборы данных всех прерываний одного класса
	прерываний, для которого загружен соответствующий ОВ
	прерывания.
	Вы задаете класс прерываний в параметре INDEX. W#16#0922: наборы данных всех прерываний, для которых
	загружен соответствующий ОВ прерывания.
	W#16#0F22:только информация заголовка подсписка SZL
INDEX	Класс прерывания или OB-Nr. (при SZL-ID W#16#0222)
	W#16#0000: свободный цикл
	W#16#000A: прерывание по времени
	W#16#0014: прерывание с задержкой
	W#16#001E: циклическое прерывание
	W#16#0028: прерывание от процесса
	W#16#0050: прерывание по асинхронной ошибке
	W#16#0064 пуск
	W#16#0078: прерывание по синхронной ошибки
LENGTHDR	W#16#001C: набор данных имеет длину 14 слов (28 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL–ID W#16#xy22 имеет следующую структуру:

Имя	Длина	Значение
info	10 слов	 Стартовая информация соответствующего ОВ со следующими исключениями: В случае ОВ 1 нужно брать текущее минимальное и максимальное время цикла. В случае ОВ 80 можно считывать спроектированное минимальное и максимальное время цикла. В случае прерываний ошибок без текущей информации. В случае прерываний в информации о состоянии содержится действующая параметризация источника прерывания. В случае синхронных ошибок в качестве класса приоритета записывается В#16#7F, когда ОВ еще не обработаны, а в противном случае - класс приоритета последнего вызова. Если ОВ имеет несколько стартовых событий и они на момент времени вывода справки еще не поступили, то в качестве номера события обратно поставляется W#16#xyzz, где х: класс события, у: не определено. В противном случае используется номер последнего появившегося стартового события.
al I	1 слово	Признаки обработки: Бит 0: событие прерывания посредством параметризации = 0: разблокировано = 1: блокировано Бит 1: событие прерывания было через SFC 39 "DIS_IRT" = 0: не блокировано = 1: блокировано Бит 2 = 1: источник прерывания активен (в случае прерываний по времени имеется задание на генерирование, запущен ОВ прерывания по времени, запущен ОВ прерывания с задержкой, ОВ циклического прерывания: будильник "заведен"). Бит 4: ОВ прерывания = 0: не загружен = 1: загружен Бит 5: ОВ прерывания через TIS = 1: блокирован
al 2	1 слово	Реакция при незагруженном/блокированном ОВ Бит 0 = 1: блокировать источник прерывания Бит 1 = 1: генерировать ошибку прерывания Бит 2 = 1: СРU переходит в состояние STOP Бит 3 = 1: лишь отклонить прерывание
al 3	2 слова	Отбрасывание посредством TIS-функции: Установленный бит Nr. х означает: Номер события, который на х больше, чем наименьший номер события соответствующего OB, отбрасывается посредством TIS-функции.

В.17. SZL-ID W#16#xy23 - Состояние классов приоритета

Цель Через подсписок с SZL-ID W#16#xy23 Вы получаете информацию о классах

приоритета модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy23 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента списка:
	W#16#0023: наборы данных всех классов приоритета модуля
	W#16#0123: наборы данных одного класса приоритета
	Вы задаете класс приоритета через параметр INDEX
	W#16#0223: наборы данных классов приоритета, которые
	находятся в обработке.
	W#16#0F23: только информация заголовка подсписка SZL
INDEX	Класс приоритета
	Возможными являются значения
	от W#16#0000 до W#16#001С
LENGTHDR	W#16#0012: набор данных имеет длину 9 слов (18 байт)
N_DR	Количество наборов данных

Имя	Длина	Значение
ae	1 байт	Класс приоритета
aestat	1 байт	В#16#00: ОВ на обработке нет В#16#FE: класс приоритета блокирован через SDB0 посредством STEP 7 (проектирование) В#16#xx: номер 1-го ОВ на обработке
aefstat	1 слово	Состояние ошибки класса приоритета Бит 0: - Бит 1: ОВ 1-ой ошибки есть ОВ 121 Бит 2: ОВ 1-ой ошибки есть ОВ 122 Бит 3: - Бит 4: - Бит 5: ОВ 2-ой ошибки есть ОВ 121 Бит 6: ОВ 2-ой ошибки есть ОВ 122 Бит 7: - Бит 8: - Бит 9: - Бит 10: - Бит 11 - Бит 12: двойная ошибка Бит 13: ошибка кода Бит 14: ошибка стека Бит 15: -
maxbst	1 байт	Максимальная глубина вложения блоков
maxsti	1 байт	Максимальное количество запоминаемых стартовых сообщений
aktsiv	1 байт	Текущее количество стартовых сообщений перед обработкой
aktsib	1 байт	Текущее количество стартовых сообщений на стадии обработки
grld	1 слово	Размер стека локальных данных заданного класса приоритета
progfm	2 слова	Маска ошибок программирования (смотрите описание для SFC 36 "MSK_FLT")
syncfm	2 слова	Маска синхронных ошибок (смотрите описание для SFC 36 "MSK_FLT")

В.18. SZL-ID W#16#xy24 - Рабочий режим и изменение рабочего режима

Цель Через подсписок с SZL-ID W#16#xy24 Вы получаете информацию о рабочих

режимах модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy24 построен следующим образом:

Содержание	Значение
SZL–ID	SZL-ID фрагмента подсписка: W#16#0024: все рабочие режимы, которые могут встретиться
	в модуле
	W#16#0124: информация о последнем выполненном
	изменении рабочего режима
	W#16#0224: обрабатываемое изменение рабочего режима
	W#16#0424: текущий рабочий режим
	W#16#0524: заданный рабочий режим
	Вы задаете рабочий режим через параметр INDEX.
	W#16#0F24:только информация заголовка подсписка SZL
INDEX	только для SZL-ID W#16#0524: рабочий режим
	W#16#5000: рабочий режим STOP
	W#16#5010: рабочий режим ANLAUF
	W#16#5020: рабочий режим RUN
	W#16#5030: рабочий режим HALT
	W#16#4520: рабочий режим DEFEKT
LENGTHDR	W#16#0014: Набор данных имеет длину 10 слов (20 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy24 имеет следующую структуру:

Имя	Длина	Значение
Info	10 слов	BZ-сообщение или BZUe-сообщение

BZÜ-Info

Информация об изменении рабочего режима (BZÜ–Info) имеет длину 20 байт и построено следующим образом:

Имя	Длина	Значение
ereig	1слово	ID события (см. главу С.1) W#16#4xy? возможен
ae	1 байт	B#16#FF
bzü–id	1 байт	ПD изменения рабочего состояния (BZUe-ID) разбивается на группы по 4 бита Биты с 0 по 3: запрашиваемый рабочий режим (BZ) Биты с 4 по 7: прежний рабочий режим (BZ) BZ-ID запрашиваемого или прежнего рабочего режима: 1H: STOP (коррекция) 2H: STOP (общее стирание) 3H: STOP (собственная инициализация) 4H: STOP (внутренний) 6H. пуск (новый пуск) 7H: повторный пуск 8H: RUN AH: HALT DH: DEFEKT
res	2 слова	Резервные
anlinfo 1	1 байт	Бит 0: дополнительный код пуска = 0: пуск без изменения расширения системы = 1: пуск с измененным расширением системы Биты 5 и 4: многопроцессорный режим = 00B: однопроцессорная обработка = 01B: многопроцессорная обработка
anlinfo 2	1 байт	В#16#01: автоматический новый пуск при многопроцессорной обработке В#16#03: ручной новый пуск через переключатель режимов работы В#16#04: новый пуск через коммуникационную функцию В#16#0A: автоматический повторный пуск при многопроцессорной обработке В#16#0B: ручной повторный пуск через переключатель режимов работы В#16#0C: повторный пуск через коммуникационную функцию В#16#10: буферизованный автоматический новый пуск в#16#20: небуферизованный автоматический новый пуск В#16#A0: буферизованный автоматический повторный пуск

Имя	Длина	Значение
anlinfo 3	1 байт	Недопустимость определенных видов пуска В#16#?0: ручной пуск недопустим (требуется общее стирание) В#16#?1 ручной пуск недопустим, требуется изменение параметров и т.д. В#16#?7: ручной новый пуск допустим В#16#?F: ручной новый пуск и ручной повторный пуск допустимы В#16#0?: автоматический пуск недопустим, требуется изменение параметров и т.д. В#16#3?: небуферизованный автоматический новый пуск недопустим В#16#7?: автоматический новый пуск допустим
		B#16#F?: автоматический новый пуск и автоматический повторный пуск допустимы
anlinfo 4	1 байт	Последнее действующее условие или установка В#16#?0: нет условия В#16#?1: новый пуск при многопроцессорной обработке В#16#?3: ручной новый пуск через переключатель режимов работы В#16#?4: новый пуск через коммуникационную функцию В#16#?B: ручной повторный пуск через переключатель режимов работы В#16#?C: повторный пуск через переключатель режимов работы В#16#?C: повторный пуск через коммуникационную функцию нет условия В#16#0? нет условия В#16#1?: буферизованный автоматический новый пуск небуферизованный автоматический новый пуск
time	4 слова	В#16#А?: автоматический повторный пуск, параметризованный Отметка времени

BZ-Info

Информация о рабочем режиме (BZ–Info) имеет длину 20 байт и построено следующим образом:

Имя	Длина	Значение
ereig	1 слово	ID события (см. главу С.1) W#16#5xy? возможен
ae	1 байт	B#16#FF
bz-id	1 байт	BZ-ID: B#16#01: STOP (коррекция) B#16#02: STOP (общее стирание) B#16#03: STOP (собственная инициализация) B#16#04: STOP (внутренний) B#16#06: Anlauf (новый пуск) B#16#07: Anlauf (повторный пуск) B#16#08: RUN B#16#0A: HALT B#16#0D: DEFEKT
res	4 слова	Резервные
time	4 слова	Отметка времени

В.19. SZL-ID W#16#xy31 - Параметры производительности для связи

Цель Через подсписок с SZL-ID W#16#xy31 Вы получаете информацию о

производительности модуля с точки зрения возможностей связи.

Заголовок Заголовок подсписка с SZL-ID W#16#xy31 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0031 не определен
	W#16#0131 информация по компоненте связи
	Вы задаете компоненту связи в параметре INDEX.
	W#16#0F31 только информация заголовка подсписка SZL
INDEX	W#16#0001 общие данные по связи
	W#16#0002 TIS-константы
	W#16#0003 BuB (управление и наблюдение)
	W#16#0004 OVS
	W#16#0005 диагностика
	W#16#0006 обмен данными через CFB
	W#16#0007 GD
	W#16#0008 TIS-уставки времени
	W#16#0009 параметры часового времени
	W#16#0010 параметры сообщений
	W#16#0011 параметры производительности SCAN
LENGTHDR	W#16#0028: набор данных имеет длину 20 слов (40 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL–ID W#16#xy31 всегда имеет длину 20 слов. Наборы данных загружены по разному. Загрузка зависит от параметра INDEX, т.е. от того, какой компоненте связи принадлежит набор данных.

B.20. Набор данных фрагмента подсписка с SZL-ID W#16#0131 и индексом W#16#0001

Содержание Подсписок с SZL-ID W#16#0131 и индексом W#16#0001 содержит общие данные

по связи и компоненте связи.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0131 и индексом W#16#0001

имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	W#16#0001: индекс для общих данных по связи
pdu	1 слово	Максимальный размер PDU в байтах
anz	1 слово	Максимальное количество коммуникационных соединений
mpi_bps	2 слова	Максимальная скорость передачи в бодах для МРІ в шестнадцатиричном представлении Пример: 2DC6CH соответствует 187500 бод
kbus_bps	2 слова	Максимальная скорость передачи в бодах для К-шины
res	13 слов	Резервные

B.21. Набор данных фрагмента подсписка с SZL—ID W#16#0131 и индексом W#16#0002

Содержание

Фрагмент подсписка с SZL–ID W#16#0131 и индексом W#16#0002 содержит информацию о TIS–константах модуля.

Набор данных

Набор данных фрагмента подсписка с SZL–ID W#16#0131 и индексом W#16#0002 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	W#16#0002: TIS
от funkt_0 до funkt_5	6 байтов	Допустимые TIS-функции (бит = 1: функция существует)
funkt_0	1 байт	Бит 0: резервный, бит 1: статус блока, бит 2: статус переменной, бит 3: вывод USTACK, бит 4: вывод BSTACK, бит 5: вывод LSTACK, бит 6: измерение времени от до, бит 7: управление выбором
funkt_1	1 байт	Бит 0: управление переменной, бит 1: принудительная установка, бит 2: точка останова, бит 3: выход из HALT, бит 4: общее стирание, бит 5: блокировка задания, бит 6: разблокировка задания, бит 7: стирание задания
funkt_2	1 байт	Бит 0: чтение списка заданий, бит 1: чтение задания, бит 2: замена задания, биты с 3 по 7: резервные
funkt_3	1 байт	Резервный
funkt_4	1 байт	
funkt_5	1 байт	
aseg	6 байт	Несущественные системные данные
eseg	6 байт	
trg ereig	3 байта	Битовая строка допустимых событий запуска: Bit 1: запуск системы, Bit 4: изменение рабочего режима RUN–STOP
trgbed	1 байт	Несущественные системные данные
pfad	1 байт	
tiefe	1 байт	
systrig	1 байт	
erg par	1 байт	
erg pat 1	1 слово	
erg pat 2	1 слово	
force	1 слово	Количество принудительно устанавливаемых переменных
time	1 слово	Верхняя граница времени для измерения времени прогона (формат: биты с 0 по 11 содержат значение времени (от 0 до 4K-1); биты с 12 по 15 содержат базу времени: 0H= 10^{-10} c, 1 H = 10^{-9} c,, AH = 10^{0} c, FH = 10^{5} c)
res	2 слова	Резервные

B.22. Набор данных фрагмента подсписка с SZL—ID W#16#0131 и индексом W#16#0003

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#0003 содержит

информацию о коммуникационных параметрах модуля для подключения устройства

управления и контроля.

Набор данных Набор данных фрагмента подсписка с SZL–ID W#16#0131 и индексом W#16#0003

Имя	Длина	Значение
Index	1 слово	W#16#0003: индекс для управления и контроля
от funkt_0 до funkt_3	4 байта	Функции, имеющиеся в распоряжении
funkt_0	1 байт	Бит 0: однократное чтение, бит 1: однократная запись, бит 2: установка циклического чтения (неявный запуск), бит 3: установка циклического чтения (явный запуск), бит 4: запуск циклического чтения, бит 5: останов циклического чтения, бит 6: стирание циклического чтения, бит 7: резервный.
funkt_1	1 байт	
funkt_2	1 байт	
funkt_3	1 байт	
data	1 слово	Максимальный размер консистентно читаемых данных
anz	1 слово	Максимальное количество циклических заданий на чтение
per min	1 слово	Минимальный период циклических заданий на чтение
per max	1 слово	Максимальный период циклических заданий на чтение
res	13 слов	Резервные

B.23. Набор данных фрагмента подсписка с SZL—ID W#16#0131 и индексом W#16#0004

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#0004 содержит

информацию о системе управления объектом (OVS) модуля.

Набор данных Набор данных фрагмента подсписка с SZL–ID W#16#0131 и индексом W#16#0004

Имя	Длина	Значение
Index	1 слово	W#16#0004: индекс для OVS
от funkt_0 до funkt_7	8 байтов	Функции системы управления объектом, имеющиеся в распоряжении (бит = 1: функция имеется в распоряжении в CPU)
funkt_0	1 байт	Бит 0: резервный, бит 1: справочник (иерархия 1), бит 2: справочник (иерархия 2), бит 3: справочник (иерархия 3), бит 4: копирование, бит 5: сцепление (список), бит 6: сцепление (все скопированные), бит 7: стирание (список)
funkt_1	1 байт	Бит 0: загрузка в PG, бит 1: параметризация при сцеплении, бит 2: LOAD—функция при обмене данными через CFB, биты с 3 по 6: резервные, бит 7: стирание *.*
funkt_2	1 байт	Бит 0: загрузка прикладной программы (RAM), бит 1: загрузка прикладной программы (EPROM), бит 2: сохранение прикладной программы (RAM), бит 3: сохранение прикладной программы (EPROM), бит 4: сохранение прикладной программы (все), бит 5: сжатие (внешнее), бит 6: FW–коррекция (через связь), бит 7: установка режима памяти RAM
funkt_3	1 байт	Бит 0: установка режима памяти EPROM Биты с 1 по 5: резервные Бит 6: параметризация вновь вставленных модулей Бит 7: параметризация при использовании платы памяти [Memory Card]

Имя	Длина	Значение
funkt_4	1 байт	Бит 0: параметризация при загрузке прикладной программы, бит 1: параметризация в процессе нового пуска, бит 2: параметризация в процессе повторного пуска, бит 3: сжатие (SFC 25 "COMPRESS"), бит 4: использование платы памяти [Memory Card] после обслуживания переключателя, бит 5: FW–коррекция по плате памяти [Memory Card], биты с 6 по 7: резервные
funkt_5	1 байт	Резервный
funkt_6	1 байт	
funkt_7	1 байт	
kop	1 байт	Максимальное количество копируемых блоков
del	1 байт	Максимальное количество непрерывно стираемых блоков
kett	1 байт	Максимальное количество блоков, сцепляемых в одном задании
hoch	1 байт	Максимальное количество одновременных процессов с высокой загрузкой
ver	1 слово	Максимальный размер в байтах блоков, перемещаемых в режиме RUN. Эта длина в случае S7–300 относится ко всему блоку, а в случае S7–400 к части, важной для исполнения.
res	24 байта	Резервные

B.24. Набор данных фрагмента подсписка с SZL—ID W#16#0131 и индексом W#16#0005

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#0005 содержит

информацию о способности модуля к диагностике.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0131 и индексом Index

W#16#0005 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	W#16#0005: диагностика
от funkt_0 до funkt_7	8 байтов	Функции, имеющиеся в распоряжении (бит = 1: функция существует)
funkt_0	1 байт	Бит 0: резервный, бит 1: диагностический буфер существует, бит 2: передача системных диагностических сообщений возможна, бит 3: передача определенных пользователем диагностических сообщений возможна, бит 4: передача VMD—состояния возможна, бит 5: использование диагностических прерываний, бит 6: диагностические прерывания в модуле существуют, бит 7: резервный
funkt_1	1 байт	Резервный
funkt_2	1 байт	
funkt_3	1 байт	
funkt_4	1 байт	
funkt_5	1 байт	
funkt_6	1 байт	
funkt_7	1 байт	
anz_sen	1 слово	Максимальное количество потребителей диагностических данных
anz_ein	1 слово	Максимальное количество записей в диагностическом буфере
anz_mel	1 слово	Максимальное количество общих сообщений управляющей техники
res	12 слов	Резервные

B.25. Набор данных фрагмента подсписка с SZL—ID W#16#0131 и индексом W#16#0006

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#0006 содержит

информацию о функциях модуля, которые имеются в распоряжении для обмена

данными через CFB.

Набор данных

Набор данных фрагмента подсписка с SZL–ID W#16#0131 и индексом W#16#0006 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	W#16#0006: обмен данными через CFB
от funkt_0 до funkt_7	8 байтов	Типы блоков, имеющиеся в распоряжении при обмене данными через CFB
funkt_0	1 байт	Бит 0: USEND бит 1: URCV бит 2: SEND бит 3: RCV бит 4: BSEND бит 5: BRCV бит 6: GET бит 7: PUT
funkt_1	1 байт	Бит 0: PRINT бит 1: ABORT бит 2: INITIATE бит 3: START бит 4: STOP бит 5: RESUME бит 6: STATUS бит 7: USTATUS
funkt_2	1 байт	Бит 0: PI бит 1: READ бит 2: WRITE бит 3: LOAD бит 4: LOAD_ME бит 5: ALARM бит 6: ALARM_8 бит 7: ALARM_8P
funkt_3	1 байт	Бит 0: NOTIFY бит 1: AR_SEND биты с 2 по 7: резервные
funkt_4	1 байт	Резервный
funkt_5	1 байт	
funkt_6	1 байт	
funkt_7	1 байт	Бит 0: SCAN_SND бит 1: ALARM_SQ бит 2: ALARM_S бит 3: ALARM_SC бит 4: EN_MSG бит 5: DIS_MSG бит 6: CONTROL бит 7: резервный

Имя	Длина	Значение
schnell	1 байт	Быстрая реакция да/нет
zug_typ	4 слова	Допустимые типы блоков для быстрой реакции
res1	1 байт	Резервный
max_sd_emp f	1 слово	Максимальное количество параметров передачи и приема на блок
max_sd_al8p	1 слово	Максимальное количество параметров передачи для ALARM_8P
max_inst	1 слово	Максимальное количество экземпляров CFB
res2	1 слово	Резервное
verb_proj	1 байт	Соединение возможно спроектировано (да=1)
verb_prog	1 байт	Соединение возможно запрограммировано (да=1)
res3	10 байт	Резервные

B.26.Набор данных фрагмента подсписка с SZL–ID W#16#0131 и индексом W#16#0007

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#0007 содержит

информацию о функциях модуля, которые имеются в распоряжении для связи через

глобальные данные.

Набор данных

Набор данных фрагмента подсписка с SZL–ID W#16#0131 и индексом W#16#0007 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	W#16#0007: связь через глобальные данные
ОТ	2 байта	GD-функции, имеющиеся в распоряжении
funkt_0		
до		
funkt_1		
funkt_0	1 байт	Бит 0: циклический,
		бит 1: GD_SND,
		бит 2: GD_RCV,
		биты с 3 по 7: резервные
funkt_1	1 байт	Резервный
от obj_0 до obj_1	2 байта	Адресуемые объекты (указание: не Р-область)
obj 0	1 байт	Бит 0: М,
3		бит 1: РАЕ,
		бит 2: РАА,
		бит 3: Т,
		бит 4: Z,
		бит 5: DB,
		биты с 6 по 7: резервные
obj 1	1 байт	Резервный
kons	1 байт	Консистентная длина в байтах
sen	1 байт	Минимальный фактор понижения для передачи
rec	1 байт	Минимальный фактор понижения для приема
time	1 байт	Контроль времени при приеме да/нет
proj	1 байт	Перепроектирование в режиме RUN возможно да/нет
alarm	1 байт	Коммуникационное прерывание да/нет
mode	1 байт	Partyline/MPI, K–BUS
		Бит 0: Partyline/MPI
		Бит 1: K–BUS
kreis	1 байт	Максимальное количество GD-контуров CPU
sk 1	1 байт	Максимальное количество передаваемых GD-пакетов на GD-контур CPU
sk 2	1 байт	Максимальное количество передаваемых GD-пакетов по
		всем GD-контурам СРU
ek 1	1 байт	Максимальное количество принимаемых GD-пакетов на
		GD-контур CPU
ek 2	1 байт	Максимальное количество принимаемых GD-пакетов по
		всем GD-контурам СРU
len 1	1 байт	Максимальная длина GD-пакета
len 2	1 байт	Длина заголовка GD-пакета
len 3	1 байт	Длина заголовка описания объекта
res	19	Резервные
	байтов	

B.27. Набор данных фрагмента подсписка с SZL—ID W#16#0131 и индексом W#16#0008

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#0008 содержит

информацию о потребности во времени TIS-функций.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0131 и индексом W#16#0008

Имя	Длина	Значение
Index	1 слово	W#16#0008: TIS-уставки времени
last 1	1 слово	Основная нагрузка для статуса блока*
last 2	1 слово	Основная нагрузка для статуса переменной*
last 3	1 слово	Основная нагрузка для управления переменной*
merker	1 слово	Время на адрес переменной "меркер"*
ea	1 слово	Время на адрес переменной "вход" или "выход"
tz	1 слово	Время на адрес переменной "таймер" или "счетчик"
db	1 слово	Время на адрес переменной "блок данных DB"
ld	1 слово	Время на адрес переменной "ADB" или "локальные данные"
reg	1 слово	Время на адрес переменной "регистр"
ba_stali1	1 слово	Базовое время на опознавание Status-списка группы 1
ba_stali2	1 слово	Базовое время на опознавание Status-списка группы 2
ba_stali3	1 слово	Базовое время на опознавание Status-списка группы 3
akku	1 слово	Аккумуляторы аддитивно к базовому времени, когда адресуются АККU 1, 2
adress	1 слово	Адресный регистр аддитивно к базовому времени, когда адресуется AR 1 или AR 2
dbreg	1 слово	DB-регистр аддитивно к базовому времени, когда адресуется DB-регистр
res	4 слова	Резервные

^{*} Формат: биты с 0 по 11 содержат значение времени (от 0 до 4K–1); биты с 12 по 15 содержат базу времени: 0H = 10^{-10} c, 1H = 10^{-9} c, AH = 10^0 c, FH = 10^5 c

B.28. Набор данных фрагмента подсписка с SZL-ID W#16#0131 и индексом W#16#0009

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#009 содержит

информацию о параметрах часового времени.

Набор данных Набор данных фрагмента подсписка с SLZ-ID W#16#0131 и индексом W#16#0009

Имя	Длина	Значение
index	1 слово	W#16#0009: время
snyc_k	1 байт	Битовая строка для синхронизации времени на К—шине Бит 0: нейтральная роль в синхронизации времени Бит 1: подчиненная роль в синхронизации времени Бит 2: ведущая роль в синхронизации времени
sync_mpi	1 байт	Битовая строка для синхронизации времени через MPI, назначение битов такое же, как в sync_k
sync_mfi	1 байт	Битовая строка для синхронизации времени через MFI, назначение битов такое же, как в sync_k
res1	1 байт	Резервный
abw_puf	1 слово	Отклонение часов в мс/день при буферном режиме
abw_5V	1 слово	Отклонение часов в мс/день при 5V-режиме
anz_bsz	1 слово	Количество счетчиков рабочих часов
res2	28 байтов	Резервные

B.29. Набор данных фрагмента подсписка с SZL—ID W#16#0131 и индексом W#16#0010

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#010 содержит

параметры сообщений.

Набор данных Набор данных фрагмента подсписка с SLZ-ID W#16#0131 и индексом W#16#0010 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	W#16#0010: параметры сообщений
funk_1	1 байт	Битовая строка S7-функций сигнализации, имеющихся в распоряжении Бит 0: общие сообщения управляющей техники существуют Бит 1: SCAN-режим возможен Бит 2: NOTIFY, ALARM, ALARM_8P, ALARM_8 (Multicast) возможны Бит 3: передача архивных данных возможна Биты 4-7: резерв
funk_2	1 байт	Резервный
ber_meld_1	1 байт	Допустимые области операндов для сигналов сообщений Бит 0=1: PAE Бит 1=1: PAA Бит 2=1: M Бит 3=1: DB Биты 4–7: резерв
ber_meld_2	1 байт	Резервный
ber_zus_1	1 байт	Допустимые области операндов для дополнительных значений Бит 0=1: PAE Бит 1=1: PAA Бит 2=1: М Бит 3=1: DB Бит 4=1: Т Бит 5=1: Z Биты 6-7: резерв
ber_zus_2	1 байт	Резервный
typ_zus_1	1 байт	Допустимые типы данных для дополнительных значений Бит 0=1: бит Бит 1=1: байт Бит 2=1: слово Бит 3=1: двойное слово Бит 4=1: таймер Бит 5=1: счетчик Бит 6=1: ARRAY OF CHAR[16] Бит 7: резерв
typ_zus_2	1 байт	Резервный
maxanz_arch	1 слово	Максимальное количество архивов для "Передачи архива"
res	14 слов	Резервные

B.30. Набор данных фрагмента подсписка с SZL-ID W#16#0131 и индексом W#16#0011

Содержание Фрагмент подсписка с SZL-ID W#16#0131 и индексом W#16#0011 содержит

информацию о SCAN-функциях.

Набор данных Набор данных фрагмента подсписка с SZL–ID W#16#0131 и индексом W#16#0011

Имя	Длина	Значение
Index	1 слово	W#16#0011: "SCAN"
от funkt_0 до funkt_1	2 байта	SCAN, имеющиеся в распоряжении (бит = 1: имеется в распоряжении)
funkt_0	1 байт	Бит 0: SCAN1,
		бит 1: SCAN2,
		бит 2: SCAN3,
		бит 3: SCAN4,
		бит 4: SCAN5,
		биты с 5 по 7: резервные
funkt_1	1 байт	Резервный
max_mel	1 слово	Максимальное количество проектируемых сообщений
max_mel_1	1 слово	Максимальное количество сообщений в SCAN1
zykl_1	1 слово	Время цикла в SACN1 в мс
max_zus_1	1 слово	Максимальное количество дополнительных значений на сообщение в SCAN1
max_mel_2	1 слово	Максимальное количество сообщений в SCAN2
zykl_2	1 слово	Время цикла в SCAN2 в мс
max_zus_2	1 слово	Максимальное количество дополнительных значений на сообщение в SCAN2
max_mel_3	1 слово	Максимальное количество сообщений в SCAN3
zykl_3	1 слово	Время цикла в SCAN3 в мс
max_zus_3	1 слово	Максимальное количество дополнительных значений на сообщение в SCAN3
max_mel_4	1 слово	Максимальное количество сообщений в SCAN4
zykl_4	1 слово	Время цикла в SCAN4 в мс
max_zus_4	1 слово	Максимальное количество дополнительных значений на сообщение в SCAN4
max_mel_5	1 слово	Максимальное количество сообщений в SCAN5
zykl_5	1 слово	Время цикла в SCAN5 в мс (0: ациклический SCAN)
max_zus_5	1 слово	Максимальное количество дополнительных значений на сообщение в SCAN5
res	2 слова	Резервные

В.31. SZL-ID W#16#xy32 - Данные по режиму связи

Цель Через подсписок с SZL–ID W#16#xy32 Вы получаете данные по режиму связи

модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy32 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0132 данные по режиму связи для компоненты связи
	Вы задаете компоненту связи в параметре INDEX.
	W#16#0F32 только информация заголовка подсписка SZL
INDEX	Только для SZL-ID W#16#0132: компонент связи
	W#16#0001 общие данные связи
	W#16#0002 состояние TIS
	W#16#0003 состояние BuB (управление и наблюдение)
	W#16#0004 состояние OVS
	W#16#0005 диагностика
	W#16#0006 обмен данными через CFB
	W#16#0007 GD (глобальные данные)
	W#16#0008 система времени
	W#16#0009 состояние MPI
	W#16#000A состояние K-шины
	W#16#0010 S7-SCAN часть 1
	W#16#0011 S7-SCAN часть 2
LENGTHDR	W#16#00028: набор данных имеет длину 20 слов (40 байт)
N_DR	Количество наборов данных

Набор данных

Набор данных фрагмента подсписка с SZL–ID W#16#0132 всегда имеет длину 20 слов. Наборы данных загружены по разному. Загрузка зависит от параметра INDEX, т.е. от того, какой компоненте связи принадлежит набор данных.

B.32. Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0001

Содержание Фрагмент подсписка с SZL–ID W#16#0132 и индексом W#16#0001 содержит общие

данные по режиму связи.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0001

Имя	Длина	Значение
Index	1 слово	W#16#0001: общие данные по режиму связи
res pg	1 слово	Гарантированное количество PG-соединений
res os	1 слово	Гарантированное количество OS-соединений
u pg	1 слово	Действительное количество PG-соединений
u os	1 слово	Действительное количество OS-соединений
proj	1 слово	Действительное количество жестко спроектированных соединений
auf	1 слово	Действительное количество соединений, построенных по proj
free	1 слово	Количество свободных соединений
used	1 слово	Количество использованных свободных соединений
last	1 слово	Максимально установленная коммуникационная нагрузка CPU в %
res	10 слов	Резервные

B.33. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0002

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0002 содержит

информацию о состоянии TIS модуля.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0002

Имя	Длина	Значение
Index	1 слово	W#16#0002: состояние TIS
anz	1 слово	Количество организованных TIS-заданий
res	18 слов	Резервные

В.34. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0003

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0003 содержит

информацию о режиме соединения с устройством управления и контроля.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0003

Имя	Длина	Значение
Index	1 слово	W#16#0003: состояние BuB (Управление и наблюдение)
anz	1 слово	Количество циклических заданий на чтение, которые выполняются в текущий момент времени
res	18 слов	Резервные

B.35. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0004

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0004 содержит

информацию о ступени защиты модуля.

Набор данных Набор данных фрагмента подсписка с SZL–ID W#16#0132 и индексом W#16#0004

Имя	Длина	Значение
Index	1 слово	W#16#0004: данные по режиму защиты
key	1 слово	Ступень защиты на ключевом переключателе (возможные значения: 1, 2 или 3)
param	1 слово	Параметризованная ступень защиты (возможные значения: 0, 1, 2 или 3; 0 означает: пароль не назначен, параметризованная ступень защиты не действует)
real	1 слово	Действующая ступень защиты (возможные значения: 1, 2 или 3)
bart_sch	1 слово	Положение переключателя режимов работы 0: неопределенное или необнаруживаемое 1: RUN 2: RUN_P 3: STOP 4: MRES
crst_wrst	1 слово	Положение переключателя CRST/WRST: 0: неопределенное, несуществующее или необнаруживаемое 1: CRST 2: WRST
res	14 слов	Резервные

B.36. Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0005

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0005 содержит

информацию по режиму диагностики модуля.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0005

Имя	Длина	Значение
Index	1 слово	W#16#0005: диагностика
erw	1 слово	Расширенный набор функций
		0: нет
		1: да
send	1 слово	Автоматическая передача
		0: нет
		1: да
moeg	1 слово	Передача пользовательских диагностических сообщений в
		настоящее время возможна
		0: нет
		1: да
ltmerz	1 слово	Создание сообщений техники управления активно
		0: нет
		1: да
res	15 слов	Резервные

В.37. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0006

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0006 содержит

данные по режиму обмена данными через CFB.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0006

Имя	Длина	Значение
Index	1 слово	W#16#0006: обмен данными через CFB
used	8 байтов	Используемые блоки, структуру смотрите в разделе B.25
anz_schnell	1 байт	Резервный
anz_inst	1 слово	Количество загруженных экземпляров CFB
anz_multicast	1 слово	Количество multicast-используемых блоков
res	25 байтов	Резервные

B.38. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0007

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0007 содержит

информацию по GD-режиму.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0007

Имя	Длина	Значение
Index	1 слово	W#16#0007: данные по GD-режиму
anz	1 слово	Количество имеющихся GD-пакетов
list	4 слова	Список используемых GD-контуров
res	14 слов	Резервные

B.39. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0008

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0008 содержит

информацию о режиме системы времени модуля.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0008

Имя	Длина	Значение
Index	1 слово	W#16#0008: режим системы времени
zykl	1 слово	Время цикла кодовой посылки синхронизации
korr	1 слово	Фактор коррекции времени суток
clock 0	1 слово	Счетчик рабочего времени 0: время в часах
clock 1	1 слово	Счетчик рабочего времени 1: время в часах
clock 2	1 слово	Счетчик рабочего времени 2: время в часах
clock 3	1 слово	Счетчик рабочего времени 3: время в часах
clock 4	1 слово	Счетчик рабочего времени 4: время в часах
clock 5	1 слово	Счетчик рабочего времени 5: время в часах
clock 6	1 слово	Счетчик рабочего времени 6: время в часах
clock 7	1 слово	Счетчик рабочего времени 7: время в часах
time	4 слова	Действительная дата и время (формат: date_and_time)
от bszl_0 до bszl_1	2 байта	Запущенные в работу счетчики рабочего времени(бит = 1: счетчик рабочего времени запущен в работу)
bszl_0	1 байт	Бит x: счетчик рабочего времени x, $0 \le x \le 7$
bszl_1	1 байт	Резервный
bszь_0 bis bszь_1	2 байта	Переполнение счетчика рабочего времени(бит = 1: переполнение)
bszb_0	1 байт	Бит x: счетчик рабочего времени x, $0 \le x \le 7$
bszь_1	1 байт	Резервный
res	3 слова	Резервные

B.40. Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0009

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0009 содержит

информацию о МРІ.

Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0009

Имя	Длина	Значение
Index	1 слов	W#16#0009: MPI-режим
bps	2 слова	Используемая скорость передачи в бодах (в шестнадцатиричном коде)
res	17 слов	Резервные

В.41. Набор данных фрагмента подсписка с SZL–ID W#16#0132 и индексом W#16#000A

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и W#16#000A индексом содержит

информацию о К-шине, используемой модулем.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#000A

Имя	Длина	Значение
Index	1 слово	W#16#000A: индекс для К-шины
mpi_Bps	2 слова	Используемая скорость передачи в бодах (в шестнадцатиричном коде)
res	17 слов	Резервные

В.42. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0010

Содержание

Фрагмент подсписка с SZL–ID W#16#0132 и индексом W#16#0010 содержит информацию о первых четырех SCAN–циклах. Если для одного из этих циклов не все спроектированные для этого SDB имеются в CPU, то имеет силу: Действующее количество спроектированных сообщений этого SCAN–цикла равно нулю, и отметка времени несущественна.

Набор данных

Набор данных фрагмента подсписка с SZL–ID W#16#0132 и индексом W#16#0010 имеет следующую структуру:

Имя	Длина	Значение
Index	1 слово	W#16#0010: SCAN часть 1
anz_scan1	1 слово	Количество спроектированных SCAN1-сообщений
zeit_1	3 слова	Отметка времени SDB для SCAN1
anz_scan2	1 слово	Количество спроектированных SCAN2-сообщений
zeit_2	3 слова	Отметка времени SDB для SCAN2
anz_scan3	1 слово	Количество спроектированных SCAN3-сообщений
zeit_3	3 слова	Отметка времени SDB для SCAN3
anz_scan4	1 слово	Количество спроектированных SCAN4-сообщений
zeit_4	3 слова	Отметка времени SDB для SCAN4
res	3 слова	Резервные

В.43. Набор данных фрагмента подсписка с SZL—ID W#16#0132 и индексом W#16#0011

Содержание Фрагмент подсписка с SZL-ID W#16#0132 и индексом W#16#0011 содержит

информацию о пятом SCAN-цикле.

Набор данных Набор данных фрагмента подсписка с SZL-ID W#16#0132 и индексом W#16#0011

Имя	Длина	Значение
Index	1 слово	W#16#0011: SCAN часть 2
anz_scan	1 слово	Количество спроектированных SCAN5-сообщений
zeit	3 слова	Отметка времени SDB для SCAN5
res	15 слов	Резервные

В.44. SZL-ID W#16#xy33 - Абоненты S7-сообщений и диагностических событий

Цель Через подсписок с SZL-ID W#16#xy33 Вы получаете информацию об абоненте,

зарегистрированном в модуле.

Заголовок Заголовок подсписка с SZL-ID W#16#xy33 построен следующим образом:

Содержание	Значение
SZL-ID	SZL–ID фрагмента подсписка: W#16#0033: все абоненты, которые зарегистрировались на сообщения и диагностические события
INDEX	всегда W#16#0000
LENGTHDR	W#16#000A: набор данных имеет длину 5 слов (10 байтов)
N_DR	Количество наборов данных

Набор данных

Набор данных подсписка с SZL-ID W#16#xy33 имеет следующую структуру:

Имя	Длина	Значение			
name	4 слова	пользовательское имя зарегистрированного абонента			
code	1 слово	Код функции (бит = 0: нет регистрации на данный класс сообщений, бит = 1: регистрация на данный класс сообщений существует). Биты с 0 по 2: 0, бит 3: передача архивных данных (бит = 0: нет регистрации, бит = 1: регистрация существует), бит 4: зависимые от блоков сообщения (ALARM_SQ, ALARM_S), биты с 5 по 7: 0, бит 8: сообщения о рабочих режимах (VMD–Status), бит 9: события системной диагностики, бит 10: определенные пользователем диагностические события, бит 11: общие сообщения управляющей техники, бит 12: зависимые от блоков сообщения (NOTIFY, ALARM, ALARM_8P, ALARM_8), бит 13: связанные с символами сообщения (SCAN), биты с 14 по 15: 0			

B.45. SZL-ID W#16#xy81 - Локальные данные ОВ

Цель Через подсписок с SZL-ID W#16#xy81 Вы получаете информацию об

обработанных на данный момент времени или еще обрабатываемых OB модуля. Стартовая информация отложена в первых 20 байтах локальных данных OB.

Заголовок Заголовок подсписка с SZL-ID W#16#xy81 построен следующим образом:

Содержание	Значение	
SZL-ID	SZL-ID фрагмента подсписка:	
	W#16#0081 стартовая информация всех ОВ	
	W#16#0181 стартовая информация всех ОВ синхронных	
	ошибок	
	W#16#0281 стартовая информация всех ОВ синхронных	
	ошибок одного класса приоритета	
	W#16#0381 стартовая информация всех ОВ одного класса	
	приоритета	
	W#16#0581 стартовая информация всех ОВ синхронных	
	ошибок перед обработкой	
	W#16#0681 стартовая информация всех ОВ синхронных	
	ошибок одного класса приоритета	
	перед обработкой	
	W#16#0781 стартовая информация всех ОВ одного класса	
	приоритета перед обработкой	
	W#16#0881 стартовая информация всех OB перед обработкой	
	W#16#0981 стартовая информация всех ОВ синхронных	
	ошибок на стадии обработки	
	W#16#0A81 стартовая информация всех ОВ синхронных ошибок одного класса приоритета	
	на стадии обработки	
	W#16#0B81 стартовая информация всех ОВ одного класса	
	приоритета на стадии обработки	
	W#16#0C81 стартовая информация всех ОВ на стадии	
	обработки	
	W#16#0F81 только информация заголовка подсписка SZL	
INDEX	1 1	
	Класс приоритета	
LENGTHDR	W#16#0014: набор данных имеет длину 10 слов (20 байтов)	
N_DR	Количество наборов данных	

Набор данных

Набор данных фрагмента подсписка с SZL–ID W#16#0081 всегда имеет длину 10 слов (20 байт). Загрузка локальных данных описана в главе 1.

В.46. SZL-ID W#16#xy82 - Стартовые события

Цель Через подсписок с SZL-ID W#16#xy82 Вы получаете информацию об

обработанных на данный момент времени или еще обрабатываемых ОВ модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xy82 построен следующим образом:

Содержание	Значение
SZL-ID	SZL-ID фрагмента подсписка:
	W#16#0082 все стартовые события
	W#16#0182 стартовые события всех действующих в данный момент времени ОВ синхронных ошибок
	W#16#0282 стартовые события всех действующих в данный момент времени ОВ синхронных ошибок одного класса приоритета
	W#16#0382 стартовые события всех ОВ одного класса приоритета
	W#16#0582 стартовые события всех ОВ синхронных ошибок перед обработкой
	W#16#0682 стартовые события всех ОВ синхронных ошибок
	одного класса приоритета перед обработкой
	W#16#0782 стартовые события всех ОВ одного класса
	приоритета перед обработкой
	W#16#0882 стартовые события всех ОВ перед обработкой
	W#16#0982 стартовые события всех ОВ синхронных ошибок на стадии обработки
	W#16#0A82 стартовые события всех ОВ синхронных ошибок
	одного класса приоритета на стадии обработки
	W#16#0B82 стартовые события всех ОВ одного класса
	приоритета на стадии обработки
	W#16#0C82 стартовые события всех ОВ на стадии обработки
	W#16#0F82 только информация заголовка подсписка SZL
INDEX	Класс приоритета
LENGTHDR	W#16#0004: набор данных имеет длину 2 слова (4 байта)
N_DR	Количество наборов данных

Набор данных

Набор данных фрагмента подсписка с SZL-ID W#16#xy82 следующую структуру:

Имя	Длина	Значение
ereig	1 слово	ID события
ae	1 байт	Класс приоритета
ob	1 байт	Номер ОВ

В.47. SZL-ID W#16#xy91 - Информация о состоянии модулей

Цель Через подсписок с SZL–ID W#16#xy91 Вы получаете информацию о состоянии

модулей.

Заголовок Заголовок подсписка с SZL-ID W#16#xy91 построен следующим образом:

Содержание	Значение		
SZL-ID	SZL-ID фрагмента подсписка: W#16#0091 информация о состоянии модуля по всем вставленным модулям/субмодулям. W#16#0191 информация о состоянии всех модулей/ носителей модулей с неправильными кодом типа W#16#0291 информация о состоянии модуля по всем неисправным модулям W#16#0391 информация о состоянии модуля по всем модулям, недоступным для распоряжения W#16#0991 информация о состоянии модуля по всем субмодулям хостмодуля на заданном носителе модулей W#16#0C91 информация о состоянии модуля для модуля из централизованной структуры или встроенного DP-подключения по логическому базовому адресу W#16#4C91 информация о состоянии модуля для модуля из внешнего DP-подключения по логическому базовому адресу W#16#0D91 информация о состоянии модуля по всем модулям на заданном носителе модулей/ в заданной станции (DP) W#16#0E91 информация о состоянии модуля по всем спроектированным модулям W#16#0F91 только информация заголовка подсписка SZL		
INDEX	Для фрагмента подсписка с SZL-ID W#16#0C91: S7-400: биты с 0 по 14: логический базовый адрес модуля бит 15: 0 = вход, 1 = выход S7-300: начальный адрес модуля Для фрагмента подсписка с SZL-ID W#16#4C91 (только S7-400): биты с 0 по 14: логический базовый адрес модуля, бит 15: 0 = вход, 1 = выход Для фрагмента подсписка с SZL-ID W#16#0091, W#16#0191, W#16#0291, W#16#0391, W#16#0491, W#16#0E91, W#16#0F91: INDEX является несущественным, все модули (на носителе модулей или в децентрализованной периферии) Для фрагмента подсписка с SZL-ID W#16#0991 и W#16#0D91: W#16#00xx все модули и субмодули одного носителя модулей (хх содержит номер носителя модулей) W#16#xx00 все модули одной главной DP-системы [DP-Маstersystem] (хх содержит DP-Мastersystem-ID) W#16#xxyy все модули одной DP-станции [DP-Station] (хх содержит DP-Mastersystem-ID, уу - номер станции)		
LENGTHDR	W#16#0010: набор данных имеет длину 8 слов (16 байтов)		
N_DR	Количество наборов данных		

Набор данных

Набор данных подсписка с ID W#16#xy91 имеет следующую структуру:

Имя	Длина	Значение		
adr1	1 слово	Номер носителя модулей (DP–Mastersystem–ID и номер станции в случае DP) географического адреса		
adr2	1 слово	Код слота модуля и код слота субмодуля		
logadr	1 слово	Первый сопоставленный логический Е/А-адрес (базовый адрес)		
solltyp	1 слово	Заданный тип модуля		
isttyp	1 слово	Фактический тип модуля		
alarm	1 слово	Резервное		
eastat	1 слово	Е/А-состояние Бит 0 = 1: модуль неисправен (обнаружено через диагностическое прерывание) Бит 1 = 1: модуль имеется в наличии Бит 2 = 1: модуля нет в распоряжении (распознано по ошибке доступа) Бит 5 = 1: модуль может быть хост-модулем для субмодулей Бит 6 = 1: резервный для S7–400 Бит 7 = 1: модуль в локальном сегменте шины Биты с 8 по 15: код данных для логического адреса (вход: В#16#В4, выход: В#16#В5)		
ber_bgbr	1 слово	Код области/Ширина модуля Bit 0 bis 2 : Ширина модуля Bit 4 bis 6 : Код области 0 = S7-400 1 = S7-300 2 = ЕТ-область 3 = Р-область 4 = Q-область 5 = IM3-область 6 = IM4-область		

adr1

Параметр adr1

• в случае централизованной структуры содержит номер носителя модулей

Рис. В-2. Распределение битов параметра adr1 в центральной структуре

- в случае децентрализованной структуры содержит
 - DP-Mastersystem-ID (идентификатор мастер-системы DP)
 - номер станции.

Рис. В-3. Распределение битов параметра adr1 в децентрализованной структуре

adr2

Параметр adr2 содержит код слота модуля и код слота субмодуля.

Рис. В-4. Распределение битов параметра adr2

В.48. SZL-ID W#16#xy92 - Информация о состоянии носителя модулей/станции

Цель

Через подсписок с SZL-ID W#16#xy92 Вы получаете справки о заданном и фактическом расширении носителя модулей в централизованной структуре и станциях главной DP-системы [DP-Mastersystem].

Заголовок

Заголовок подсписка с SZL-ID W#16#xy92 построен следующим образом:

Содержание	Значение	
SZL–ID	SZL-ID фрагмента подсписка: W#16#0092: заданное состояние носителя модулей в централизованной структуре/ станций главной DP-системы [DP-Mastersystems]	
	W#16#0292: фактическое состояние носителя модулей в централизованной структуре/ станций главной DP–системы [DP–Mastersystems]	
	W#16#0F92: только информация заголовка подсписка SZL	
INDEX	0/ DP–Mastersystem–ID	
LENGTHDR	W#16#0010: набор данных имеет длину 8 слов (16 байтов)	
N_DR	Количество наборов данных	

Содержание	Длина	Значение
status	8 слов	Состояние носителя/ состояние станции или
		состояние буферной батареи.
		Существует следующее соответствие между
		битами и носителями модулей:
		Бит 0: центральное устройство
		Бит 1–21: с 1-го по 21-ое
		дополнительное устройство
		Бит 22–29: всегда 0
		Бит 30: выход из строя
		дополнительного устройства в области SIMATIC-S5
		Биты с 31 по 127: всегда 0
		Если Вы выбрали INDEX не равным 0, то имеет
		силу следующее соответствие между битами и
		станциями:
		Бит 0: станция 1
		Бит 1: станция 2
		:
		:
		Бит 127: станция 128
		W#16#0092: бит=0: носитель модулей/
		станция не спроектирована
		бит=1: носитель модулей/
		станция спроектирована W#16#0292: бит=0: носитель молулей/
		W#16#0292: бит=0: носитель модулей/ станция отказал(а) или не спроектирован(а)
		бит=1: носитель модулей/
		станция существует и не отказал(а)
		W#16#0392: бит=0: ни одна батарея на
		носителе модулей/ в станции не отказала
		бит=1: по крайней мере одна
		батарея на носителе модулей/ в станции
		должны быть заменена
		W#16#0492: бит=0: буферное напряжение
		имеется
		бит=1: буферное напряжение
		отсутствует
		W#16#0592: бит=0: питающее напряжение
		24 В имеется
		бит=1: питающее напряжение
		24 В отсутствует

В.49. SZL-ID W#16#xyA0 - Диагностический буфер

Цель Через подсписок с SZL-ID W#16#xyA0 Вы получаете записи диагностического

буфера модуля.

Заголовок Заголовок подсписка с SZL-ID W#16#xyA0 построен следующим образом:

Содержание	Значение	
SZL-ID	SZL-ID фрагмента подсписка:	
	W#16#00A0: все записи, возможные для поставки в текущем	
	рабочем режиме	
	W#16#01A0: самые новые записи; количество самых новых	
	записей Вы задаете через параметр INDEX	
	W#16#04A0: стартовая информация всех стандартных ОВ	
	W#16#05A0: все записи коммуникационных модулей	
	W#16#06A0: все записи OVS	
	W#16#07A0: все записи TIS	
	W#16#08A0: все записи от процессов рабочих режимов	
	W#16#09A0: все записи, вызванные асинхронными ошибками	
	W#16#0AA0: все записи, вызванные синхронными ошибками	
	W#16#0BA0: все записи, вызванные STOP, прерыванием,	
	изменениями рабочих режимов	
	W#16#0CA0: все записи, вызванные Н-/F-событиями	
	W#16#0DA0: все диагностические записи	
	W#16#0EA0: все записи пользователя	
	W#16#0FA0: только информация заголовка подсписка SZL	
INDEX	Только для SZL-ID W#16#01A0:	
	количество самых новых записей	
LENGTHDR	W#16#0014: набор данных имеет длину 10 слов (20 байтов)	
N_DR	Количество наборов данных	

Набор данных

Набор данных подсписка с SZL-ID W#16#xyA0 имеет следующую структуру:

Имя	Длина	Значение
ID	1 слово	ID события
info	5 слов	Информация по событию или по его воздействию
time	4 слова	Отметка времени события

Диагностический **буфер**

Дополнительную информацию к событиям из диагностического буфера Вы получите через STEP 7.

В.50. SZL-ID W#16#00В1 - Диагностическая информация модулей

Цель Через подсписок с SZL–ID W#16#00B1 Вы получаете первые 4 байта диагностики

модуля, способного к диагностике.

Заголовок Заголовок подсписка с SZL-ID W#16#00B1 построен следующим образом:

Содержание	Значение	
SZL-ID	W#16#00B1	
INDEX	Биты с 0 по 14: логический базовый адрес Бит 15: 0 для входа, 1 для выхода	
LENGTHDR	W#16#0004: набор данных имеет длину 2 слова (4 байта)	
N_DR	1	

Набор данных

Набор данных подсписка с SZL-ID W#16#00B1 имеет следующую структуру:

Имя	Длина		Значение
byte1	1 байт	Бит 0:	неисправность модуля/ОК (код общей ошибки)
		Бит 1:	внутренняя ошибка
		Бит 2:	внешняя ошибка
		Бит 3:	имеется ошибка канала
		Бит 4:	отсутствует внешнее вспомогательное напряжение
		Бит 5:	отсутствует передний штепсельный разъем
		Бит 6:	модуль не параметризован
		Бит 7:	неправильный параметр в модуле
byte2 1 байт		Биты с 0 по 3: класс модуля (CPU, FM, CP, IM, SM,)	
		Бит 4:	имеется информация канала
		Бит 5:	имеется информация пользователя
		Бит 6:	диагностическое прерывание от заместителя
		Бит 7:	резервный (инициализирован 0)
byte3	1 байт	Бит 0:	модуль пользователя неправильный/ отсутствует
		Бит 1:	нарушение связи
		Бит 2:	рабочий режим RUN/STOP
			(0 = RUN, 1 = STOP)
		Бит 3:	сработал контроль времени (watch dog)
		Бит 4:	отказало внутреннее питающее напряжение BG
		Бит 5:	разрядилась батарея (BFS)
		Бит 6:	отказ всей буферизации
		Бит 7:	резервный (инициализирован 0)
byte4	1 байт	Бит 0:	отказ носителя модулей (обнаружен IM)
		Бит 1:	отказ процессора
		Бит 2:	ошибка СППЗУ
		Бит 3:	ошибка ОЗУ
		Бит 4:	ошибка АЦП/ЦПУ
		Бит 5:	отказ защиты
		Бит 6:	потеря прерывания процесса
		Бит 7:	резервный (инициализирован 0)

B.51. SZL—ID W#16#00B2 - Диагностические данные модулей по географическому адресу

Цель Через подсписок с SZL-ID W#16#00B2 Вы получаете все диагностические данные

централизованно вставленного модуля (следовательно, не для DP и субмодулей).

Вы задаете модуль номером носителя и номером слота.

Заголовок Заголовок подсписка с SZL-ID W#16#00B2 построен следующим образом:

Содержание	Значение
SZL-ID	W#16#00B2
INDEX	W#16#xxyy: xx содержит номер носителя модулей
	уу содержит номер слота
LENGTHDR	Длина набора данных зависит от модуля
N_DR	1

Набор данных

От соответствующего модуля зависит то, каков размер набора данных подсписка с SZL—ID W#16#00B2 и как загружен этот набор данных. Более подробную информацию об этом Вы найдете в /70/, /101/ или в соответствующем руководстве к модулю.

B.52. SZL–ID W#16#00B3 - Диагностические данные модулей по логическому адресу

Цель Через подсписок с SZL–ID W#16#00B3 Вы получаете все диагностические данные

модуля. Такая справка возможна также для DP и субмодулей. Вы выбираете модуль

по его логическому базовому адресу.

Заголовок Заголовок подсписка с SZL-ID W#16#00B3 построен следующим образом:

Содержание	Значение
SZL-ID	W#16#00B3
INDEX	Биты с 0 по 14: логический базовый адрес Бит 15: 0 для входа, 1 для выхода
LENGTHDR	Длина набора данных (зависит от модуля)
N_DR	1

Набор данных

От соответствующего модуля зависит то, каков размер набора данных подсписка с SZL–ID W#16#00B3 и как он загружен. Более подробную информацию об этом Вы найдете в /70/, /101/ или в соответствующем руководстве к модулю.

В.53. W#16#00В4 SZL-ID - Диагностические данные DP-Slave

Цель Через подсписок с SZL–ID W#16#00B4 Вы получаете диагностические данные DP–

Slave. Эти диагностические данные построены согласно EN50 170 Volume 2, PROFIBUS. Вы выбираете модуль через его спроектированный диагностический

адрес.

Заголовок Заголовок подсписка с SZL-ID W#16#00B4 построен следующим образом:

Содержание	Значение
SZL–ID	W#16#00B4
INDEX	Спроектированный диагностический адрес DP-Slave
LENGTHDR	Длина набора данных. Максимальная длина составляет 240 байтов; в случае Normslave, в которых количество данных Norm-диагностики больше, чем 240 байтов, и составляет максимум 244 байта, считываются первые 240 байтов и устанавливается соответствующий бит переполнения данных [Overflow-бит].
N_DR	1

Набор данных

Набор данных подсписка с SZL-ID W#16#00B4 имеет следующую структуру:

Имя	Длина	Значение
status1	1 байт	Состояние станции 1
status2	1 байт	Состояние станции 2
status3	1 байт	Состояние станции 3
stat_nr	1 байт	Номер Master-станции
ken_hi	1 байт	Код изготовителя (старший байт)
ken_lo	1 байт	Код изготовителя (младший байт)
		Дополнительная диагностика, специфическая для slave

События

Обзор главы

В раз-деле	Вы найдете	на стр.
C.1	События и ID событий	C-2
C.2	Класс событий 1 - Стандартные события, связанные с OB	C-3
C.3	Класс событий 2 - События, связанные с синхронными ошибками	C-5
C.4	Класс событий 3 - События, связанные с асинхронными ошибками	C-6
C.5	Класс событий 4 - События, связанные с режимом STOP и прерыванием работы	C-8
C.6	Класс событий 5 - События, связанные с рабочими режимами и исполнением программ	C-11
C.7	Класс событий 6 - Коммуникационные события	C-13
C.8	Класс событий 8 - Диагностические события для модулей	C-15
C.9	Класс событий 9 - Стандартные пользовательские события	C-17
C.10	Класс событий A и B - Свободные пользовательские события	C-19
C.11	Зарезервированный класс событий	C-20

С.1. События и ID событий

Событие

Все события в SIMATIC S7 нумеруются. Поэтому Вы можете любому событию

поставить в соответствие текст сообщения.

ID события

Каждому событию соответствует идентификатор (ID) события. ID события построен следующим образом:

Рис. С-1. Структура ID события

Класс события

События разделены на классы следующим образом:

Номер	Класс события
1	Стандартные события, связанные с ОВ
2	События, связанные с синхронными ошибками
3	События, связанные с асинхронными ошибками
4	Переходы из одного рабочего режима в другой
5	События, связанные с рабочими режимами и исполнением программ
6	Коммуникационные события
7	События в помехозащищенных системах и системах с высокой рабочей готовностью
8	Нормированные диагностические данные для блоков
9	События, определяемые пользователем
A, B	Свободно определяемые события
от C до F	Зарезервировано

Признак

Признак служит для того, чтобы отличать события по их виду.

События возникают по причине:

- внешних ошибок и
- внутренних ошибок

Кроме того, различают:

- наступающее событие и
- текущее событие

Наконец, событие может вызвать запись в диагностический буфер.

Структура признака события:

Бит 11 = 1: внешняя ошибка Бит 10 = 1: внутренняя ошибка

Бит 9 = 1: запись в диагностический буфер

Бит 8 = 1: наступающее событие = 0: текущее событие

С.2. Класс события 1 - Стандартные события, связанные с ОВ

ID события	Событие
W#16#1101	Стартовое событие OB 1, инициируется окончанием нового пуска
W#16#1102	Стартовое событие OB 1, инициируется окончанием повторного пуска
W#16#1103	Текущее стартовое событие ОВ 1 (окончание свободного цикла)
W#16#1111	Событие, связанное с прерыванием по времени Сравнивающее устройство 1
W#16#1112	Событие, связанное с прерыванием по времени Сравнивающее устройство 2
W#16#1113	Событие, связанное с прерыванием по времени Сравнивающее устройство 3
W#16#1114	Событие, связанное с прерыванием по времени Сравнивающее устройство 4
W#16#1115	Событие, связанное с прерыванием по времени Сравнивающее устройство 5
W#16#1116	Событие, связанное с прерыванием по времени Сравнивающее устройство 6
W#16#1117	Событие, связанное с прерыванием по времени Сравнивающее устройство 7
W#16#1118	Событие, связанное с прерыванием по времени Сравнивающее устройство 8
W#16#1121	Событие, связанное с прерыванием с задержкой Счетчик 1
W#16#1122	Событие, связанное с прерыванием с задержкой Счетчик 2
W#16#1123	Событие, связанное с прерыванием с задержкой Счетчик 3
W#16#1124	Событие, связанное с прерыванием с задержкой Счетчик 4
W#16#1131	Событие, связанное с циклическим прерыванием Тактовый генератор 1
W#16#1132	Событие, связанное с циклическим прерыванием Тактовый генератор 2
W#16#1133	Событие, связанное с циклическим прерыванием Тактовый генератор 3
W#16#1134	Событие, связанное с циклическим прерыванием Тактовый генератор 4
W#16#1135	Событие, связанное с циклическим прерыванием Тактовый генератор 5
W#16#1136	Событие, связанное с циклическим прерыванием Тактовый генератор 6
W#16#1137	Событие, связанное с циклическим прерыванием Тактовый генератор 7

ID события	Событие
W#16#1138	Событие, связанное с циклическим прерыванием Тактовый генератор 8
W#16#1139	Событие, связанное с циклическим прерыванием Тактовый генератор 9
W#16#1141	Прерывание от процесса Канал прерывания 1
W#16#1142	Прерывание от процесса Канал прерывания 2
W#16#1143	Прерывание от процесса Канал прерывания 3
W#16#1144	Прерывание от процесса Канал прерывания 4
W#16#1161	Самостоятельно вызванное мультипроцессорное прерывание
W#16#1162	Извне вызванное мультипроцессорное прерывание
W#16#1381	Запрос на ручной новый пуск
W#16#1382	Запрос на автоматический новый пуск
W#16#1383	Запрос на ручной повторный пуск
W#16#1384	Запрос на автоматический повторный пуск
W#16#1191	Стартовое событие ОВ 90, инициировано новым пуском
W#16#1192	Стартовое событие ОВ 90, инициировано стиранием блока
W#16#1193	Стартовое событие OB 90, инициировано загрузкой OB 90 в CPU при состоянии RUN
W#16#1195	Стартовое событие ОВ 90 (окончание фонового цикла)

С.3. Класс событий 2 - События, связанные с синхронными ошибками

ID события	Событие	OB
W#16#2521	Ошибка BCD - преобразования	OB 121
W#16#2522	Ошибка длины области при чтении	
W#16#2523	Ошибка длины области при записи	
W#16#2524	Ошибка области при чтении	
W#16#2525	Ошибка области при записи	
W#16#2526	Ошибка номера таймера	
W#16#2527	Ошибка номера счетчика	
W#16#2528	Ошибка выравнивания при чтении	
W#16#2529	Ошибка выравнивания при записи	
W#16#2530	Ошибка записи при обращении DB	
W#16#2531	Ошибка записи при обращении к DI	
W#16#2532	Ошибка номера блока при открытии DB	
W#16#2533	Ошибка номера блока при открытии DI	
W#16#2534	Ошибка номера блока при вызове FC	
W#16#2535	Ошибка номера блока при вызове FB	
W#16#253A	DB не загружен	
W#16#253C	FC не загружен	
W#16#253D	SFC не загружен	
W#16#253E	FB не загружен	
W#16#253F	SFB не загружен	
W#16#2942	Ошибка доступа к периферии, чтение	OB 122
W#16#2943	Ошибка доступа к периферии, запись	
W#16#2944	Ошибка доступа к периферии, при n-ном обращении для чтения (n>1)	
W#16#2945	Ошибка доступа к периферии, при n-ном обращении для записи (n>1)	

С.4 Класс события 3 - Асинхронные события сбоев

ID события	Событие	OB
W#16#3501	Превышение длительности цикла	OB 80
W#16#3502	Интерфейс с пользователем (ОВ или FRB) – ошибка запроса	
W#16#3505	Прерывание(я) по времени истекшее(ие) вследствие скачка времени	
W#16#3506	Прерывание(я) по времени истекшее(ие) при новом переходе в RUN после HALT	
W#16#3507	Многократная ошибка обращения к ОВ, вызвавшая переполнение буфера стартовой информации	
W#16#3921/3821	BATTF: хотя бы одна буферная батарея в центральном устройстве разряжена/устранено	OB 81
W#16#3922/3822	BAF: буферное напряжение в центральном устройстве отсутствует/устранено	
W#16#3923/3823	Выход из строя блока питания 24В в центральном устройстве/ устранено	
W#16#3931/3831	ВАТТF: хотя бы одна буферная батарея устройства расширения разряжена/ устранено	
W#16#3932/3832	BAF: отсутствует буферное напряжение хотя бы в одном устройстве расширения/ устранено	
W#16#3933/3833	Выход из строя блока питания 24В хотя бы в одном устройстве расширения/ устранено	
W#16#3942	Модуль неисправен	OB 82
W#16#3842	Модуль исправен	
W#16#3861	Модуль установлен, тип модуля верен, модуль доступен	OB 83
W#16#3961	Модуль снят или недоступен	
W#16#3863	Модуль установлен, но неверен тип модуля	
W#16#3864	Модуль установлен, но поврежден (не читается идентификатор типа)	
W#16#3865	Модуль установлен, но ошибка при параметрировании модуля	
W#16#3981	Ошибка интерфейса, наступающее	OB 84
W#16#3881	Ошибка интерфейса, текущее	
W#16#35A1	Отсутствует интерфейс пользователя(ОВ или FRB)	OB 85
W#16#35A2	ОВ не загружен (запущен посредством SFC или операционной системы на основе проектирования)	
W#16#35A3	Ошибка при обращении к блоку через операционную систему	

ID события	Событие	OB
W#16#39B1	Ошибка доступа к периферии при актуализации отображения процесса на входах	
W#16#39B2	Ошибка доступа к периферии при переносе отображения процесса на выходные блоки	
W#16#38C1	Выход из строя устройства расширения (1 - 21), текущий	OB 86
W#16#39C1	Выход из строя устройства расширения (1 - 21), наступающий	
W#16#38C2	Восстановление блока расширения с отклонением фактической конфигурации от заданной	
W#16#39C3	Децентрализованная периферия: отказ ведущей системы, наступающий	
W#16#39C4	Децентрализованная периферия: отказ станции, наступающий	
W#16#38C4	Децентрализованная периферия: отказ станции, продолжающийся	
W#16#39C5	Децентрализованная периферия: станция неисправна, наступающий	
W#16#38C5	Децентрализованная периферия: станция неисправна, продолжающийся	
W#16#38C6	Восстановление носителя модулей, но ошибка при параметрировании модулей	
W#16#38C7	DP: восстановление станции, но ошибка при параметрировании модулей	
W#16#35D2	Передача диагностических записей в данное время невозможна	OB 87
W#16#35D3	Кодовые посылки синхронизации не могут быть посланы	
W#16#35D4	Недопустимый скачок значения времени при синхронизации времени	
W#16#35D5	Ошибка при приеме времени синхронизации	
W#16#35E1	Неверный идентификатор кодовой посылки в GD	
W#16#35E2	Статус пакета GD не может быть занесен в DB	
W#16#35E3	Ошибка длины кодовой посылки в GD	
W#16#35E4	Принят недопустимый номер пакета GD	
W#16#35E5	Ошибка при обращении к DB в CFB	
W#16#35E6	Общий статус GD не может быть занесен в DB	

С.5. Класс события 4 - События, связанные с режимом STOP и прерыванием работы

ID события	Событие
W#16#4300	NETZ-EIN (включение питания) буферизовано
W#16#4301	Переход из рабочего режима STOP в режим ANLAUF (запуск)
W#16#4302	Переход из рабочего режима ANLAUF (запуск) в RUN
W#16#4303	STOP в результате перевода в STOP переключателя режимов работы
W#16#4304	STOP в результате команды STOP от PG или через SFB 20 "STOP"
W#16#4305	НАСТ: достигнута точка останова
W#16#4306	HALT: точка останова покинута
W#16#4307	Запуск общего стирания командой из PG
W#16#4308	Запуск общего стирания от переключателя режимов работы
W#16#4309	Запуск общего стирания автоматический (небуферизованное включение питания от сети)
W#16#430A	HALT покинут, переход в STOP
W#16#410B	Переход из STOP (инициир.) в STOP (внутр.)
W#16#410C	Переход из STOP (внутр.) к STOP (инициир.)
W#16#430D	STOP от других CPU в мультипроцессорном режиме
W#16#430E	Общее стирание выполнено
W#16#4520	DEFEKT: STOP недостижим
W#16#4521	DEFEKT: отказ процессора обработки команд
W#16#4522	DEFEKT: отказ блока часов
W#16#4523	DEFEKT: отказ датчика тактов времени
W#16#4524	DEFEKT: отказ обновления ячеек времени
W#16#4525	DEFEKT: отказ многопроцессорной синхронизации
W#16#4926	DEFEKT: отказ контроля времени при обращениях к периферии
W#16#4527	DEFEKT: отказ контроля обращения к периферии
W#16#4528	DEFEKT: отказ контроля длительности цикла
W#16#4530	DEFEKT: ошибка тестирования внутренней памяти
W#16#4931	DEFEKT: ошибка тестирования модульной памяти
W#16#4532	DEFEKT: отказ ресурсов ядра
W#16#4933	DEFEKT: ошибка контрольной суммы
W#16#4934	DEFEKT: отсутствует память
W#16#4935	DEFEKT: прерывание от схемы обеспечения безопасности (Watchdog)/ ненормальные состояния процессора
W#16#4536	DEFEKT: неисправен переключатель режимов работы

ID события	Событие	
W#16#4541	STOP из-за исполняющей системы классов приоритетов	
W#16#4542	STOP из-за системы управления объектом	
W#16#4543	STOP при тестировании и пуске в эксплуатацию	
W#16#4544	STOP из-за системы диагностики	
W#16#4545	STOP из-за системы коммуникации	
W#16#4546	STOP из-за управления памятью CPU	
W#16#4547	STOP из-за управления отображением процесса	
W#16#4548	STOР из-за управления периферией	
W#16#4949	STOP из-за прерывания по длительности процесса	
W#16#454A	STOP из-за проектирования (отмененный OB был загружен при новом пуске)	
W#16#494D	STOP из-за ошибок периферии	
W#16#494E	STOР из-за отключения питающей сети	
W#16#494F	STOP из-за ошибок конфигурации	
W#16#4550	DEFEKT: внутренняя системная ошибка	
W#16#4555	Повторный запуск невозможен, т.к. пройдена граница контроля времени	
W#16#4556	STOP: требование общего стирания через коммуникации	
W#16#4357	Запущено время контроля модуля	
W#16#4358	Все модули готовы к работе	
W#16#4959	STOP: не все модули готовы к работе	
W#16#4562	STOP из-за ошибок программирования (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#4563	STOP из-за ошибок доступа к периферии (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#4568	STOP из-за ошибок времени (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#456A	STOP из-за диагностического прерывания (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#456B	STOP из-за снятия/ установки (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#456C	STOP из-за аппаратных ошибок CPU (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#456D	STOP из-за ошибок исполнения программы (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#456E	STOP из-за коммуникационных ошибок (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#456F	STOP из-за выхода из строя носителя блоков (ОВ не загружен или его запуск невозможен или отсутствует FRB)	
W#16#4571	STOР из-за ошибок скобочного стека	
W#16#4572	STOP из-за ошибок стека Master Control Relais	

ID события	Событие	
W#16#4573	STOP из-за превышения глубины вложения при синхронных ошибках	
W#16#4574	STOP из-за слишком большой глубины вложения U-стека в стеке классов приоритетов	
W#16#4575	STOP из-за слишком большой глубины вложения В-стека в стеке классов приоритетов	
W#16#4576	STOP из-за ошибок размещения локальных данных	
W#16#4578	STOР из-за неизвестного кода операции	
W#16#457A	STOP из-за ошибок длины кодов	
W#16#457B	STOР из-за незагруженного DB у встроенной периферии	
W#16#457F	STOP из-за команды STOP	
W#16#4580	STOP: содержимое резервного буфера неконсистентно (нет перехода в RUN)	
W#16#4590	STOP по причине перегрузки внутренних функций	
W#16#49A0	STOP по причине ошибок параметрирования: запуск блокирован (информацию о параметрировании загрузить вновь)	
W#16#49A1	STOP по причине ошибок параметрирования: требование общего стирания	
W#16#49A2	STOP по причине ошибок дополнительного параметрирования: запуск блокирован	
W#16#49A3	STOP по причине ошибок дополнительного параметрирования: требование общего стирания	
W#16#49A4	STOP: децентрализованная периферия: неконсистентность данных проектирования	
W#16#49A5	STOP: децентрализованная периферия: противоречия в загруженной проектной информации	
W#16#49A6	STOP: децентрализованная периферия: недействительная проектная информация	
W#16#49A7	STOP: децентрализованная периферия: отсутствует проектная информация	
W#16#49A8	STOP: индикация ошибки подключения для децентрализованной периферии	
W#16#43B0	Успешно проведена замена программы ПЗУ	
W#16#49B1	Ошибочные данные при замене программы ПЗУ	
W#16#49B2	Замена программы ПЗУ: версия аппаратуры не соответствует программе ПЗУ	
W#16#49B3	Замена программы ПЗУ: тип блока не соответствует программе ПЗУ	

С.6 Класс события 5 - События, связанные с рабочими режимами и исполнением программ

ID события	Событие
W#16#5101	Инициализация коммуникации (анализ карточки модуля o.k.)
W#16#5102	Начало инициализации без общего стирания (включение сети буферизовано)
W#16#5105	Инициализация: тестирование аппаратуры CPU
W#16#5107	Проверка консистентности данных
W#16#5109	Проверка контрольной суммы
W#16#510B	Начало инициализации после общего стирания
W#16#510C	Начало стоп-цикла (CPU коммуникационно доступен)
W#16#530D	Новая информация о запуске в рабочем состоянии STOP
W#16#510E/500E	Точка ожидания 1 "Покинуть рабочее состояние STOP" достигнута/ пройдена
W#16#5310	Время ожидания ІМ истекло
W#16#5111	Запуск несмотря на отсутствие сообщения о готовности модулей
W#16#5122	Начало системных операций нового пуска
W#16#5123	Окончание параметрирования К-шины при запуске
W#16#5124	Начало системных операций повторного пуска
W#16#5132/5032	Точка ожидания 2 "Начало обработки ОВ запуска " достигнута/ пройдена
W#16#5134	"Повторный вход в режим запуска (ANLAUF) после HALT" достигнут
W#16#513E/503E	Точка ожидания 3 "Смена рабочего состояния ANLAUF-RUN" достигнута/ пройдена
W#16#5140	Начало цикла
W#16#5142	Начало актуализации отображения процесса
W#16#5144	Начало обработки программы пользователя
W#16#5146	RUN достигнут после смены режимов HALT-RUN
W#16#5148	Старт ОВ
W#16#5150	Начало цикла НАСТ
W#16#515E/505E	Точка ожидания 4/5 "Покинуть рабочий режим HALT" достигнута/ пройдена
W#16#515F	Конец остаточного цикла после повторного пуска
W#16#5961	Ошибка параметрирования
W#16#5962	Ошибка параметрирования с задержкой запуска
W#16#5963	Ошибка параметрирования с требованием общего стирания

ID события	Событие
W#16#5164	Деблокировка анализа SDB1
W#16#5965/5865	Децентрализованная периферия: ошибка консистентности с задержкой запуска, наступающая/ текущая
W#16#516E	Затребовано частичное параметрирование
W#16#516F	Затребовано полное параметрирование
W#16#5170	Децентрализованная периферия: инициализирован анализ проектной информации
W#16#5171	Децентрализованная периферия: сообщение о SYNC1 от CPU к подключению DP
W#16#5172	Децентрализованная периферия: деактивирование
W#16#5175	Децентрализованная периферия: восстановление станции
W#16#5176	Децентрализованная периферия: дополнительное параметрирование станции
W#16#5177	Децентрализованная периферия: полное параметрировании при запуске
W#16#5178	Децентрализованная периферия: установка модуля
W#16#5191	Децентрализованная периферия: начало синхронизации от DP- мастера
W#16#5192	Децентрализованная периферия: ошибка при синхронизации от DP-мастера
W#16#5193	Децентрализованная периферия: блокировка пуска при синхронизации от DP-мастера
W#16#5394	Децентрализованная периферия: конец синхронизации от DP- мастера
W#16#5996/5896	Децентрализованная периферия: системная связь с DP-мастером нарушена/ исправна

С.7. Класс события 6 - Коммуникационные события

ID события	Событие
W#16#6500	Обращение к связи (ID) содержится в модуле дважды
W#16#6501	Ресурсов связи недостаточно
W#16#6502	Ошибка в описании связи
W#16#6503	Неверное параметрирование подключения МРІ
W#16#6510	Структурная ошибка CFB в экземпляре DB, обнаруженная при анализе СППЗУ
W#16#6514	Номер пакета GD содержится в модуле дважды
W#16#6515	Некорректное задание длины в проектной информации GD
W#16#6316	Ошибка интерфейса при запуске AS
W#16#6521	Нет ни модуля памяти, ни внутренней памяти
W#16#6522	Недопустимый модуль памяти: требуется смена модуля и общее стирание
W#16#6523	Требование общего стирания из-за ошибки при обращении к модулю памяти: требуется замена модуля
W#16#6524	Требование общего стирания из-за ошибки в заголовке блока
W#16#6526	Требование общего стирания из-за замены памяти
W#16#6527	Замена памяти, поэтому невозможен повторный пуск
W#16#6528	Функция обработки объекта в режиме STOP/HALT, повторный пуск невозможен
W#16#6529	Во время выполнения команды " Загрузить прикладную программу " невозможен никакой старт
W#16#652A	Нет запуска, т.к. блок содержится дважды в памяти пользователя
W#16#652B	Нет запуска, т.к. длина блока слишком велика для модуля: требуется замена модуля
W#16#652C	Нет запуска, т.к. в модуле недопустимый ОВ
W#16#6031/6131	Сжатие, начало/ конец
W#16#6532	Нет запуска из-за недопустимого SDB в модуле
W#16#6533	Требование общего стирания из-за неверного содержимого модуля
W#16#6534	Нет запуска: блок имеется в модуле многократно
W#16#6535	Нет запуска: недостаточен объем памяти, чтобы принять блок из модуля
W#16#6536	Нет запуска: модуль содержит недопустимый номер блока
W#16#6537	Нет запуска: модуль содержит блок недопустимой длины

ID события	Событие
W#16#6538	Локальные данные или идентификатор защиты от записи (в DB) блока недопустимы для CPU
W#16#6539	В блоке недопустимая команда (выявлена компилятором)
W#16#653A	Требование общего стирания, т.к. локальные данные ОВ в модуле слишком кратки
W#16#6340	Передача прикладной программы из загрузочной в рабочую память/Проверка прикладной программы, начало
W#16#6240	Передача прикладной программы из загрузочной в рабочую память/Проверка прикладной программы, конец
W#16#6141/6041	Блокировка запуска из-за подключения DP, начало/конец
W#16#6142/6042	Блокировка запуска из-за загрузки прикладной программы, начало/конец
W#16#6543	Нет запуска: недопустимый тип блока
W#16#6544	Heт запуска: атрибут "ablaufrelevant" ("исполнимый блок") недопустим
W#16#6545	Язык разработки недопустим
W#16#6546	Достигнуто максимальное количество запроектированных блоков
W#16#6547	Ошибка параметрирования при параметрировании модулей (не через Р-шину, а из-за прерывания загрузки)
W#16#6548	Ошибка достоверности при проверке блока
W#16#6560	Переполнение SCAN

С.8. Класс события 8 - Диагностические события для модулей

ID события	Событие	Тип блока
W#16#8x00	Блок неисправен/ исправен	Bce
W#16#8x01	Внутренняя ошибка	
W#16#8x02	Внешняя ошибка	
W#16#8x03	Ошибка канала	
W#16#8x04	Отсутствует внешнее вспомогательное напряжение	
W#16#8x05	Отсутствует штекер на лицевой панели	
W#16#8x06	Отсутствует параметрирование	
W#16#8x07	Неверный параметр в модуле	
W#16#8x30	Модуль пользователя неисправен/ отсутствует	
W#16#8x31	Неисправность связи	
W#16#8x32	Рабочее состояние RUN/STOP (STOP: наступающий, RUN: текущий)	
W#16#8x33	Сработал контроль времени (watch dog)	
W#16#8x34	Вышло из строя внутреннее питающее напряжение модуля	
W#16#8x35	ВАТТГ: батарея разряжена	
W#16#8x36	Вышла из строя общая буферизация	
W#16#8x37	Резерв	
W#16#8x40	Выход из строя носителя модулей	
W#16#8x41	Выход из строя процессора	
W#16#8x42	Ошибка СППЗУ	
W#16#8x43	Ошибка ОЗУ	
W#16#8x44	Ошибка АЦП/ЦАП	
W#16#8x45	Выход из строя защиты	
W#16#8x46	Потеряно прерывание по процессу	
W#16#8x47	Резерв	
W#16#8x50	Ошибка проектирования/ параметрирования	аналоговый ввод
W#16#8x51	Ошибка синхронизации (Common–Mode–ошибка)	
W#16#8x52	Р-короткое замыкание	
W#16#8x53	М-короткое замыкание	
W#16#8x54	Обрыв провода/ контроль питающего тока MU/PT100	

ID события	Событие	Тип блока
W#16#8x55	Ошибка контрольного канала	
W#16#8x56	Переход нижней границы измерения (< 3 mA)	
W#16#8x57	Переход верхней границы измерения (> 22 mA)	
W#16#8x60	Ошибка проектирования/ параметрирования	Аналоговый выход
W#16#8x61	Ошибка синхронизации (Common-Mode-ошибка)	
W#16#8x62	Р-короткое замыкание	
W#16#8x63	М-короткое замыкание	
W#16#8x64	Обрыв провода/ контроль питающего тока MU/PT100	
W#16#8x65	Резерв	
W#16#8x66	Отсутствует силовое напряжение	
W#16#8x70	Ошибка проектирования/ параметрирования	Дискретный ввод
W#16#8x71	Неисправность заземления	
W#16#8x72	Р-короткое замыкание (датчик)	
W#16#8x73	М-короткое замыкание	
W#16#8x74	Обрыв провода	
W#16#8x75	Отсутствует питание датчика	
W#16#8x80	Ошибка проектирования/ параметрирования	Дискретный ввод
W#16#8x81	Неисправность заземления	
W#16#8x82	Р-короткое замыкание	
W#16#8x83	М-короткое замыкание	
W#16#8x84	Обрыв провода	
W#16#8x85	Резерв	
W#16#8x86	Отсутствует силовое напряжение	
W#16#8x87	Превышение температуры	
W#16#8xB0	FM-счетчик: ошибка в сигнале A	FM
W#16#8xB1	FM- счетчик: ошибка в сигнале В	
W#16#8xB2	FM- счетчик: ошибка в сигнале N	
W#16#8xB3	FM- счетчик: между каналами передано ошибочное значение	
W#16#8xB4	FM- счетчик: неисправно питание датчика 5,2 В	
W#16#8xB5	FM- счетчик: неисправно питание датчика 24B	

С.9. Класс события 9 - Стандартные пользовательские события

ID события	Событие
W#16#9001	Автоматический режим работы
W#16#9101	Ручной режим работы
W#16#9x02	AUF/ZU (откр/закр), EIN/AUS (вкл/выкл)
W#16#9x03	Разрешение ручного управления
W#16#9x04	Команда защиты агрегата (AUF/ZU - откр/закр)
W#16#9x05	Деблокировка процесса
W#16#9x06	Команда защиты системы
W#16#9x07	Сработал контроль фактического значения
W#16#9x08	Сработал контроль заданного значения
W#16#9x09	Ошибка регулирования больше допустимой
W#16#9x0A	Ошибка конечного состояния
W#16#9x0B	Ошибка времени задержки
W#16#9x0C	Ошибка исполнения команды (исполняющая система)
W#16#9x0D	Рабочий режим выполняется > AUF
W#16#9x0E	Рабочий режим выполняется > ZU
W#16#9x0F	Блокирование команды
W#16#9x11	Состояние процесса AUF/EIN (откр/вкл)
W#16#9x12	Состояние процесса ZU/AUS (закр/выкл)
W#16#9x13	Состояние процесса промежуточное
W#16#9x14	Состояние процесса включено через AUTO
W#16#9x15	Состояние процесса включено вручную
W#16#9x16	Состояние процесса включено командой защиты
W#16#9x17	Состояние процесса выключено через AUTO
W#16#9x18	Состояние процесса выключено вручную
W#16#9x19	Состояние процесса выключено командой защиты
W#16#9x21	Ошибка функционирования при включении
W#16#9x22	Ошибка функционирования при выключении
W#16#9x31	Исполнительный орган (DE/WE) конечное положение AUF (откр)
W#16#9x32	Исполнительный орган (DE/WE) конечное положение не AUF (не откр)
W#16#9x33	Исполнительный орган (DE/WE) конечное положение ZU (закр)
W#16#9x34	Исполнительный орган (DE/WE) конечное положение не ZU (не закр)
W#16#9x41	Неразрешенное состояние, допустимое время истекло
W#16#9x42	Неразрешенное состояние, допустимое время не истекло
W#16#9x43	Ошибка блокировки, допустимое время = 0
W#16#9x44	Ошибка блокировки, допустимое время > 0
ID события	Событие
W#16#9x45	Реакция отсутствует

(Неразрешенный выход из конечного состояния, допустимое время > 0
	D 0.000
W#16#9x50	Верхняя граница диапазона сигнала OSF
W#16#9x51	Верхняя граница диапазона измерения ОМБ
W#16#9x52	Нижняя граница диапазона сигнала USF
W#16#9x53	Нижняя граница диапазона измерения UMF
W#16#9x54	Верхняя граница прерываний ООС
W#16#9x55	Верхняя граница предупреждения ОG
W#16#9x56	Верхняя допустимая граница ОТ
W#16#9x57	Нижняя допустимая граница UT
W#16#9x58	Нижняя граница предупреждения UG
W#16#9x59	Нижняя граница прерывания UUG
W#16#9x60	GRAPH 7 шаг наступает/ идет
W#16#9x61	GRAPH 7 ошибка блокировки
W#16#9x62	GRAPH 7 ошибка исполнения
W#16#9x63	GRAPH 7 ошибка принята к сведению
W#16#9x64	GRAPH 7 ошибка квитирована
W#16#9x70	Среднее значение перейдено в положительном направлении
W#16#9x71	Среднее значение перейдено в отрицательном направлении
W#16#9x72	Реакция отсутствует
W#16#9x73	Недопустимый выход из конечного состояния
W#16#9x80	Выход за верхнюю границу, допустимое время = 0
W#16#9x81	Выход за верхнюю границу, допустимое время > 0
W#16#9x82	Выход за нижнюю границу, допустимое время = 0
W#16#9x83	Выход за нижнюю границу, допустимое время > 0
W#16#9x84	Выход за верхнюю границу градиента, допустимое время = 0
W#16#9x85	Выход за верхнюю границу градиента, допустимое время > 0
W#16#9x86	Выход за нижнюю границу градиента, допустимое время = 0
W#16#9x87	Выход за нижнюю границу градиента, допустимое время > 0
W#16#9190/9090	Ошибка параметрирования пользователя наступающая/ текущая
W#16#91F0 I	Переполнение
W#16#91F1 I	Потеря значимости
W#16#91F2	Деление на ноль
W#16#91F3	Недопустимая математическая операция

С.10. Класс события А и В - Свободные пользовательские события

ID события	Событие
W#16#Axyz	Свободно используемое событие
W#16#Bxyz	

С.11. Зарезервированный класс

Зарезервировано

Следующие классы событий зарезервированы для последующих продолжений

- C
- D
- E
- F зарезервировано для не центральных модулей (например: CP, FM)

Список SFC, SFB и FC

D

В главе	Вы найдете	на стр.
D.1	Список SFC	D-2
D.2	Список SFB	D-6
D.3	Список FC	D-8

D.1. Список SFC

Системные функции в порядке возрастания номеров

Таблица D-1. Список всех SFC в порядке возрастания номеров

Nº	Краткое название	Функция	Глава		
SFC 0	SET_CLK	Установка времени	5.1		
SFC 1	READ_CLK	Чтение времени			
SFC 2	SET_RTM	Установка счетчиков рабочего времени	6.2		
SFC 3	CTRL_RTM	Запуск/остановка счетчиков рабочего времени	6.3		
SFC 4	READ_RTM	Чтение счетчиков рабочего времени	6.4		
SFC 5	GADR_LGC	Выяснение логического адреса канала	14.1		
SFC 6	RD_SINFO	Считывание стартовой информации текущего ОВ	12.1		
SFC 9	EN_MSG	Деблокирование сообщений, относящихся к блокам, сообщений, относящихся к символам, и общих сообщений управляющей техники	18.8		
SFC 10	DIS_MSG	Блокировка сообщений, относящихся к блокам, сообщений, относящихся к символам, и общих сообщений управляющей техники	18.7		
SFC 13	DPNRM_DG	Чтение диагностических данных (Slave-диагностика) ведомых DP (DP-Slaves)	15.1		
SFC 14	DPRD_DAT	Чтение консистентных данных стандартного ведомого DP (DP–Normslave)	15.2		
SFC 15	DPWR_DAT	Консистентная запись данных на стандартный ведомый DP (DP–Normslave)	15.3		
SFC 17	ALARM_SQ	Генерация квитируемых сообщений, относящихся к блокам	18.12		
SFC 18	ALARM_S	Генерация всегда квитируемых сообщений, относящихся к блокам	18.12		
SFC 19	ALARM_SC	Определение состояния квитирования последнего пришедшего сообщения ALARM_SQ	18.13		
SFC 20	BLKMOV	Копирование переменной	3.1		
SFC 21	FILL	Предварительное заполнение массива	3.2		
SFC 22	CREAT_DB	Генерирование блока данных	3.3		
SFC 23	DEL_DB	Стирание блока данных	3.4		
SFC 24	TEST_DB	Тестирование блока данных	3.5		
SFC 25	COMPRESS	Инициирование сжатия области пользователя	3.6		
SFC 26	UPDAT_PI	Актуализация отображения процесса на входах	13.1		
SFC 27	UPDAT_PO	Актуализация отображения процесса на выходах	13.2		
SFC 28	SET_TINT	Установка прерывания по времени	8.3		
SFC 29	CAN_TINT	Отмена прерывания по времени	8.4		
SFC 30	ACT_TINT	Активизация прерывания по времени	8.5		
SFC 31	QRY_TINT	Опрос прерывания по времени	8.6		

Таблица D-1. Список всех SFC в порядке возрастания номеров (продолжение)

№	Краткое	Функция	Глава	ì
	название			

SFC 32	SRT_DINT	Запуск прерывания с задержкой	9.2
SFC 33	CAN_DINT	Отмена прерывания с задержкой	9.4
SFC 34	QRY_DINT	Опрос состояния прерывания с задержкой	9.3
SFC 35	MP_ALM	Запуск мультипроцессорного прерывания	4.4
SFC 36	MSK_FLT	Маскирование события, вызывающего синхронную ошибку	10.2
SFC 37	DMSK_FLT	Демаскирование события, вызывающего синхронную ошибку	10.3
SFC 38	READ_ERR	Чтение регистра состояния события	10.4
SFC 39	DIS_IRT	Блокирование обработки новых событий, вызывающих прерывания и асинхронные ошибки	11.2
SFC 40	EN_IRT	Деблокирование обработки новых событий, вызывающих прерывания и асинхронные ошибки	11.3
SFC 41	DIS_AIRT	Задержка обработки более приоритетных событий, вызывающих прерывания и асинхронные ошибки	11.4
SFC 42	EN_AIRT	Деблокирование обработки более приоритетных событий, вызывающих прерывания и асинхронные ошибки	11.5
SFC 43	RE_TRIGR	Дополнительный запуск контроля времени цикла	4.1
SFC 44	REPL_VAL	Передача заменяющего значения в АККИ 1	3.7
SFC 46	STP	Перевод CPU в состояние STOP	4.2
SFC 47	WAIT	Задержка обработки	4.3
SFC 48	SNC_RTCB	Синхронизация ведомых часов	5.3
SFC 49	LGC_GADR	Выявление слота, соответствующего логическому адресу	14.2
SFC 50	RD_LGADR	Выявление всех логических адресов модуля	14.3
SFC 51	RDSYSST	Считывание списка состояний системы	12.2
SFC 52	WR_USMSG	Запись в диагностический буфер диагностического события, определенного пользователем	12.3
SFC 55	WR_PARM	Запись динамических параметров	7.2
SFC 56	WR_DPARM	Запись предопределенных параметров	7.3
SFC 57	PARM_MOD	Параметризация модуля	7.4
SFC 58	WR_REC	Запись набора данных в периферию	7.5
SFC 59	RD_REC	Чтение набора данных из периферии	7.6
SFC 60	GD_SND	Программируемая передача GD-пакета	16.1
SFC 61	GD_RCV	Программируемый прием GD-пакета	16.2
SFC 62	CONTROL	Опрос состояния экземпляра CFB	17.15
SFC 63	AB_CALL	Вызов ассемблерного блока	*
SFC 64	TIME_TCK	Time Tick (такт времени)	6.5
SFC 79	SET	Установка битового массива в периферийной области	13.3
SFC 80	RSET	Сброс битового массива в периферийной области	13.4
* SFC 63	"AB_CALL" и	меется только в СРИ 614. Ее описание имеется в соответствующем руков	одстве.

Системные функции в алфавитном порядке

Таблица D-2. Список всех SFC в алфавитном порядке

Краткое название	Nº	Функция	Глава
AB_CALL	SFC 63	Вызов ассемблерного блока	*
ACT_TINT	SFC 30	Активизация прерывания по времени	8.5
ALARM_S	SFC 18	Генерация всегда квитируемых сообщений, относящихся к блокам	18.12
ALARM_SC	SFC 19	Определение состояния квитирования последнего пришедшего сообщения ALARM_SQ	18.13
ALARM_SQ	SFC 17	Генерация квитируемых сообщений, относящихся к блокам	18.12
BLKMOV	SFC 20	Копирование переменной	3.1
CAN_DINT	SFC 33	Отмена прерывания с задержкой	9.4
CAN_TINT	SFC 29	Отмена прерывания по времени	8.4
COMPRESS	SFC 25	Инициализация сжатия области пользователя	3.6
CONTROL	SFC 62	Опрос состояния экземпляра CFB	17.15
CREAT_DB	SFC 22	Генерация блока данных	3.3
CTRL_RTM	SFC 3	Запуск/остановка счетчика рабочего времени	6.3
DEL_DB	SFC 23	Стирание блока данных	3.4
DIS_AIRT	SFC 41	Задержка обработки более приоритетных событий, вызывающих прерывания и асинхронные ошибки	11.4
DIS_IRT	SFC 39	Блокирование обработки новых событий, вызывающих прерывания и асинхронные ошибки	11.2
DIS_MSG	SFC 10	Блокировка сообщений, относящихся к блокам, сообщений, относящихся к символам, и общих сообщений управляющей техники	18.7
DMSK_FLT	SFC 37	Демаскирование события, вызывающего синхронную ошибку	10.3
DPNRM_DG	SFC 13	Чтение диагностических данных (Slave-диагностика) ведомых DP (DP-Slaves)	15.1
DPRD_DAT	SFC 14	Чтение консистентных данных стандартного ведомого DP (DP–Normslave)	15.2
DPWR_DAT	SFC 15	Консистентная запись данных на стандартный ведомый DP (DP–Normslave)	15.3
EN_AIRT	SFC 42	Деблокирование обработки более приоритетных событий, вызывающих прерывания и асинхронные ошибки	11.5
EN_IRT	SFC 40	Деблокирование обработки новых событий, вызывающих прерывания и асинхронные ошибки	11.3
EN_MSG	SFC 9	Деблокирование сообщений, относящихся к блокам, сообщений, относящихся к символам, и общих сообщений управляющей техники	18.8
FILL	SFC 21	Предварительное заполнение массива	3.2

Таблица D-2. Список всех SFC в алфавитном порядке (продолжение)

Краткое	№	Функция	Глава
название			

GADR LGC	SFC 5	Выяснение логического адреса канала	14.1
GD RCV	SFC 61	Программируемый прием GD-пакета	16.2
GD SND	SFC 60	Программируемая передача GD-пакета	16.1
LGC GADR	SFC 49	Выявление слота, соответствующего логическому адресу	14.2
MP_ALM	SFC 35	Запуск мультипроцессорного прерывания	4.4
MSK FLT	SFC 36	Маскирование события, вызывающего синхронную ошибку	10.2
PARM MOD	SFC 57	Параметризация модуля	7.4
QRY_DINT	SFC 34	Опрос состояния прерывания с задержкой	9.3
QRY TINT	SFC 31	Опрос прерывания по времени	8.6
RD LGADR	SFC 50	Выявление всех логических адресов модуля	14.3
RD REC	SFC 59	Чтение набора данных из периферии	7.6
RD SINFO	SFC 6	Считывание стартовой информации текущего ОВ	12.1
RDSYSST	SFC 51	Считывание списка состояний системы	12.2
READ_CLK	SFC 1	Чтение времени	5.2
READ_RTM	SFC 4	Чтение счетчика рабочего времени	6.4
READ_ERR	SFC 38	Чтение регистра состояния события	10.4
REPL_VAL	SFC 44	Передача заменяющего значения в АККИ 1	3.7
RE_TRIGR	SFC 43	Дополнительный запуск контроля времени цикла	4.1
RSET	SFC 80	Сброс битового массива в периферийной области	13.4
SET	SFC 79	Установка битового массива в периферийной области	13.3
SET_CLK	SFC 0	Установка времени	5.1
SET_RTM	SFC 2	Установка счетчика рабочего времени	6.2
SET_TINT	SFC 28	Установка прерывания по времени	8.3
SNC_RTCB	SFC 48	Синхронизация ведомых часов	5.3
SRT_DINT	SFC 32	Запуск прерывания с задержкой	9.2
STP	SFC 46	Перевод CPU в состояние STOP	4.2
TEST_DB	SFC 24	Тестирование блока данных	3.5
TIME_TCK	SFC 64	Time Tick (такт времени)	6.5
UPDAT_PI	SFC 26	Актуализация отображения процесса на входах	13.1
UPDAT_PO	SFC 27	Актуализация отображения процесса на выходах	13.2
WAIT	SFC 47	Задержка обработки	4.3
WR_DPARM	SFC 56	Запись предопределенных параметров	7.3
WR_PARM	SFC 55	Запись динамических параметров	7.2
WR_REC	SFC 58	Запись набора данных в периферию	7.5
WR_USMSG	SFC 52	Запись в диагностический буфер диагностического события, определенного пользователем	12.3
* SFC 63 "AB_	CALL" имеет	гся только в CPU 614. Ее описание имеется в соответствующем рук	оводстве.

D.2. Список SFB

SFB в порядке возрастания номеров

Таблица D-3. Список всех SFB в порядке возрастания номеров

№	Краткое название	Функция	Глава
SFB 0	CTU	Прямой счет	19.4
SFB 1	CTD	Обратный счет	19.5
SFB 2	CTUD	Прямой и обратный счет	19.6
SFB 3	TP	Генерирование импульса	19.1
SFB 4	TON	Генерирование задержки включения	19.2
SFB 5	TOF	Генерирование задержки выключения	19.3
SFB 8	USEND	Некоординированная передача данных	17.3
SFB 9	URCV	Некоординированный прием данных	17.4
SFB 12	BSEND	Блочная передача данных	17.5
SFB 13	BRCV	Блочный прием данных	17.6
SFB 14	GET	Чтение данных из удаленного CPU	17.7
SFB 15	PUT	Запись данных в удаленный СРИ	17.8
SFB 16	PRINT	Передача данных на принтер	17.9
SFB 19	START	Выполнение нового пуска в удаленном устройстве	17.10
SFB 20	STOP	Перевод удаленного устройства в состояние STOP	17.11
SFB 21	RESUME	Выполнение повторного пуска в удаленном устройстве	17.12
SFB 22	STATUS	Опрос состояния устройства у удаленного партнера	17.13
SFB 23	USTATUS	Некоординированный прием состояния удаленного устройства	17.14
SFB 29	HS_COUNT	Счетчик (высокоскоростной счетчик, встроенная функция)	*
SFB 30	FREQ_MES	Частотомер (frequency meter, встроенная функция)	*
SFB 32	DRUM	Реализация шагового искателя	13.5
SFB 33	ALARM	Генерирование сообщений, относящихся к блокам, с индикацией квитирования	18.3
SFB 34	ALARM_8	Генерирование сообщений, относящихся к блокам, без сопровождающих значений для восьми сигналов	18.5
SFB 35	ALARM_8P	Генерирование сообщений, относящихся к блокам, с сопровождающими значениями для восьми сигналов	18.4
SFB 36	NOTIFY	Генерирование сообщений, относящихся к блокам, без индикации квитирования	18.2
SFB 37	AR SEND	Передача архивных данных	18.6
SFB 41 ¹⁾	CONT_C	Непрерывное регулирование	21.1
SFB 42 ¹⁾	CONT_S	Шаговое регулирование	21.2
SFB 43 ¹⁾	PULSEGEN	Формы импульсов	21.3
* SFB 29 "HS_COUNT" и SFB 30 "FREQ_MES" имеются только в CPU 312 IFM и в CPU 314 IFM. Их описание Вы найдете в /73/.			

¹⁾ SFB 41 "CONT_C", 42 "CONT_S" и 43 "PULSEGEN" имеются только в CPU 314 IFM.

SFB в алфавитном порядке

Таблица D-4. Список всех SFB в алфавитном порядке

Краткое название	№	Функция	Глава
ALARM	SFB 33	Генерирование сообщений, относящихся к блокам, с индикацией квитирования	18.3
ALARM_8	SFB 34	Генерирование сообщений, относящихся к блокам, без сопровождающих значений для восьми сигналов	18.5
ALARM_8P	SFB 35	Генерирование сообщений, относящихся к блокам, с сопровождающими значениями для восьми сигналов	18.4
AR_SEND	SFB 37	Передача архивных данных	18.6
BRCV	SFB 13	Блочный прием данных	17.6
BSEND	SFB 12	Блочная передача данных	17.5
CONT_C 1)	SFB 41	Непрерывное регулирование	21.1
CONT_S 1)	SFB 42	Шаговое регулирование	21.2
CTD	SFB 1	Обратный счет	19.5
CTU	SFB 0	Прямой счет	19.4
CTUD	SFB 2	Прямой и обратный счет	19.6
DRUM	SFB 32	Реализация шагового искателя	13.5
FREQ_MES	SFB 30	Частотомер (frequency meter, встроенная функция)	*
GET	SFB 14	Чтение данных из удаленного CPU	17.7
HS_COUNT	SFB 29	Счетчик (высокоскоростной счетчик, встроенная функция)	*
NOTIFY	SFB 36	Генерирование сообщений, относящихся к блокам, без индикации квитирования	18.2
PRINT	SFB 16	Передача данных на принтер	17.9
PULSEGEN 1)	SFB 43	Формы импульсов	21.3
PUT	SFB 15	Запись данных в удаленный СРИ	17.8
RESUME	SFB 21	Выполнение повторного пуска в удаленном устройстве	17.12
START	SFB 19	Выполнение нового пуска в удаленном устройстве	17.10
STATUS	SFB 22	Опрос состояния устройства у удаленного партнера	17.13
STOP	SFB 20	Перевод удаленного устройства в состояние STOP	17.11
TOF	SFB 5	Генерирование задержки выключения	19.3
TON	SFB 4	Генерирование задержки включения	19.2
TP	SFB 3	Генерирование импульса	19.1
URCV	SFB 9	Некоординированный прием данных	17.4
USEND	SFB 8	Некоординированная передача данных	17.3
USTATUS	SFB 23	Некоординированный прием состояния удаленного устройства	17.14
* SFB 29 "HS_0 описание Вы		FB 30 "FREQ_MES" имеются только в CPU 312 IFM и в CPU 314 IFM 3/.	И. Их
45			
OID II COMI_C , 42 COMI_C II 43 TOLOLOLO III MILIOLO II COMI C II II IVI.			

D.3. Список FC

ІЕС-функции в порядке возрастания номеров

Таблица D-5. Список всех ІЕС-функций

№	Краткое название	Функция	Глава
FC 1	AD_DT_TM	Прибавление интервала к моменту времени	20.4
FC 2	CONCAT	Слияние двух переменных типа STRING	20.7
FC 3	D_TOD_DT	Объединение DATE и TIME_OF_DAY в DT	20.4
FC 4	DELETE	Стирание в переменной типа STRING	20.7
FC 5	DI_STRNG	Преобразование формата DINT в STRING	20.8
FC 6	DT_DATE	Извлечение DATE из DT	20.4
FC 7	DT_DAY	Извлечение дня недели из DT	20.4
FC 8	DT_TOD	Извлечение TIME_OF_DAY из DT	20.4
FC 9	EQ_DT	Сравнение DT на равенство	20.5
FC 10	EQ_STRNG	Сравнение STRING на равенство	20.6
FC 11	FIND	Поиск в переменной STRING	20.7
FC 12	GE_DT	Сравнение DT на больше или равно	20.5
FC 13	GE_STRNG	Сравнение STRING на больше или равно	20.6
FC 14	GT_DT	Сравнение DT на больше	20.5
FC 15	GT_STRNG	Сравнение STRING на больше	20.6
FC 16	I_STRNG	Преобразование формата INT в STRING	20.8
FC 17	INSERT	Вставка в переменную STRING	20.7
FC 18	LE_DT	Сравнение DT на меньше или равно	20.5
FC 19	LE_STRNG	Сравнение STRING на меньше или равно	20.6
FC 20	LEFT	Левая часть переменной STRING	20.7
FC 21	LEN	Длина переменной STRING	20.7
FC 22	LIMIT	Ограничитель	20.9
FC 23	LT_DT	Сравнение DT на меньше	20.5
FC 24	LT_STRNG	Сравнение STRING на меньше	20.6
FC 25	MAX	Выбор максимума	20.9
FC 26	MID	Средняя часть переменной STRING	20.7
FC 27	MIN	Выбор минимума	20.9
FC 28	NE_DT	Сравнение DT на не равно	20.5
FC 29	NE_STRNG	Сравнение STRING на не равно	20.6
FC 30	R_STRNG	Преобразование формата REAL в STRING	20.8
FC 31	REPLACE	Замена в переменной STRING	20.7
FC 32	RIGHT	Правая часть переменной STRING	20.7
FC 33	S5TI_TIM	Преобразование формата S5TIME в TIME	20.4
FC 34	SB_DT_DT	Вычитание двух моментов времени	20.4
FC 35	SB_DT_TM	Вычитание интервала из момента времени	20.4
FC 36	SEL	Двоичный выбор	20.10
FC 37	STRNG_DI	Преобразование формата STRING в DINT	20.8
FC 38	STRNG_I	Преобразование формата STRING в INT	20.8
FC 39	STRNG_R	Преобразование формата STRING в REAL	20.8
FC 40	TIM_S5TI	Преобразование формата TIME в S5TIME	20.4

Системные блоки данных (SDB)

Обзор главы

В главе	Вы найдете	на стр.
E.1	Системные блоки данных (SDB)	E-2

Е.1. Системные блоки данных (SDB)

Таблица E-1. Обзор SDB, применяемых в S7

№ SDB	Содержимое
0	Параметры операционной системы
1	Заданная структура AS, соответствие между логическими и географическими адресами
2	Предустановленные параметры операционной системы
3	Субмодули
5	Список абонентов линии связи
от 22 до 29	Списки для преобразования адресов у DP
от 100 до 121	Параметры для модулей S7, которые не находятся в области DP
от 122 до 129	Параметры для модулей S7 в области DP
от 150 до 179	Параметры для субмодулей
210	Глобальные данные
от 300 до 328	Запроектированные данные для отдельных SCAN-циклов
от 701 до 999	Описание запроектированных гомогенных соединений
от 1000 до 32767	Наборы данных параметров длямодулей К-шины, DP- Master и DP-Slave
от 33792 до 34815	Резерв для TD/OP

Список литературы

/**30**/ Fibel: Automatisierungssystem S7–300, Einfach aufbauen und programmieren Букварь: Система автоматизации S7-300, Простой

Букварь: *Система автоматизации S7-300*, монтаж и программирование

/70/ Handbuch: Automatisierungssystem S7–300, Aufbauen, CPU–Daten

Руководство: *Система автоматизации S7-300,* монтаж, данные *CPU*

/71/ Referenzhandbuch: *Automatisierungssystem S7–300, M7–300 Baugruppendaten*

Справочное руководство: *Система автоматизации S7-300, M7-300* Данные модулей

/72/ Operationsliste: Automatisierungssystem S7–300, CPU 312/314 Список команд: Система автоматизации S7-300, CPU 312/314

/73/ Handbuch: Automatisierungssystem S7–300, Integrierte Funktionen CPU 312 IFM/314 IFM

Руководство: Система автоматизации S7-300, Встроенные функции CPU 312 IFM/314 IFM

/100/ Installationshandbuch: *Automatisierungssystem S7*–400, *M7*–400, *Aufbauen*

Руководство по установке: *Система автоматизации S7-400, M7-400 Монтаж*

/101/ Referenzhandbuch: Automatisierungssystem S7–400, M7–400 Baugruppendaten

Справочное руководство: *Система автоматизации S7-400, M7-400* Данные модулей

/102/ Operationsliste: *Automatisierungssystem S7–400, CPU 412/414*

Список команд: Система автоматизации S7-400, CPU 412/414

/230/ Benutzerhandbuch: Basissoftware für S7, S5–Programme konvertieren

Руководство пользователя: *Базовое программное обеспечение для S7* Конвертирование программ S5

/231/ Benutzerhandbuch: Basissoftware für S7 und M7, STEP 7

Руководство пользователя: Базовое программное обеспечение для S7~u M7,~STEP~7

/232/ Handbuch: AWL für S7–300/400,

Bausteine programmieren

Руководство: *AWL для S7–300/400*, Программирование блоков

/233/ Handbuch: KOP für S7–300/400,

Bausteine programmieren

Руководство: КОР для S7–300/400, Программирование блоков

/234/ Programmierhandbuch: Systemsoftware für S7–300/400 Programmentwurf

Руководство по программированию: Системное программное обеспечение для S7-300/400, Разработка программ

/236/Handbuch: FUP für S7-300/400,

Bausteine programmieren

Руководство: *FUP для S7-300/400*, Программирование блоков

/**250**/ Handbuch: *SCL für S7–300/400, Bausteine programmieren* Руководство: *SCL для S7–300/400, Программирование блоков*

/251/Handbuch: GRAPH für S7–300/400, Ablaufsteuerungen programmieren Руководство: GRAPH для S7–300/400, Программирование систем управления последовательностью операций

/252/Handbuch: HiGraph für S7–300/400, Zustandsgraphen programmieren Руководство: HiGraph для S7–300/400, Программирование графов состояний

/**253**/ Handbuch: *C für S7–300/400, C–Programme erstellen* Руководство: *С для S7-300/400, Разработка программ на языке С*

/254/Handbuch: CFC für S7 und M7, Technologische Funktionen graphisch verschalten

Руководство: *CFC для S7 и M7, Графическая компоновка* технологических функций

/350/Benutzerhandbuch: SIMATIC 7,

Standardregelung

Руководство пользователя: SIMATIC 7,

Стандартное регулирование

Глоссарий

A

Адрес Адрес - это характеристика определенного операнда или области операндов,

примеры: вход Е 12.1; меркерное слово MW25; блок данных DB3.

Адресация Указание адреса в прикладной программе. Адреса могут быть назначены

определенным операндам или областям операндов (примеры: вход Е 12.1;

меркерное слово MW25).

Аккумулятор Аккумуляторы - это регистры в СРU, которые служат в качестве промежуточной

памяти при операциях загрузки, передачи, а также сравнения, преобразования и в

арифметических операциях.

Б

Блок данных (DB) Блоки данных - это области данных в прикладной программе, содержащие данные

пользователя. Имеются глобальные блоки данных, к которым можно обратиться из любого кодового блока, и экземпляры блоков данных, ставящиеся в соответствие

определенному вызову FB.

B

Встроенный

регулятор блок регулирования, содержащий важнейшие функции регулирования.

Пользователь с помощью "программного переключателя" включать или

Встроенный регулятор - это готовый, хранящийся в операционной системе

выключать эти функции.

Входные параметры Входные параметры имеются только у функций и функциональных блоков.

С помощью входных параметров данные передаются для обработки в

вызываемый блок.

Д

Двухпозиционный

Двухпозиционным регулятором называется регулятор, в котором регулятор

регулирующая величина может принимать только два состояния (напр., включено

выключено.

Диагностика

Диагностические функции охватывают всю системную диагностику и включают в

себя распознавание, анализ и сообщение об ошибках внутри системы

автоматизации.

Диагностика, определяемая пользователем Включает в себя распознавание и анализ определенного пользователем

диагностического события.

Диагностическая

запись

Диагностической записью называется диагностическое событие,

записанное в диагностическом буфере.

Диагностический

буфер

Диагностический буфер - это буферизованная область памяти в CPU, в

которой хранятся диагностические события в последовательности их

возникновения.

Диагностические

данные

Диагностические данные - это информация, содержащаяся в сообщении

об ошибке (диагностическое событие, метка времени).

Диагностическое прерывание

Самодиагностируемые модули сигнализируют центральному модулю о распознанных системных ошибках с помощью диагностических прерываний.

Диагностическое

событие, определенное пользователем Распознаваемое пользователем диагностическое событие, которое может

быть внесено в диагностический буфер (через SFC 52).

Диагностическое

сообщение

Диагностическое сообщение состоит из обработанного диагностического события и посылается центральным модулем на устройство отображения.

Диагностическое сообщение, определенное

пользователем

Сообщение о наступлении диагностического события, определенного

пользователем.

И

Интегрирующее

Интегрирующее звено регулятора.

звено

При скачкообразном изменении регулируемой величины (или ее отклонения)

выходная величина растет линейно с течением времени, а именно со скоростью, пропорциональной KI (=1/TI). Интегрирующее звено в замкнутом контуре действует так, что выходное значение регулируемой величины изменяется до тех пор, пока отклонение не станет равным нулю.

Информация Информация о стартовом событии - это составная часть организационного

о стартовом блока (OB). Она подробно сообщает пользователю S7 о событии,

событии вызвавшем запуск этого OB. Информация о стартовом событии содержит наряду с идентификатором события (состоящим из класса, характеристик и номера события) метку времени

события, а также дополнительные данные (напр., адрес модуля, вызвавшего прерывание).

Исполняющая Исполняющая система SIMATIC S7 управляет ходом выполнения

система прикладных программ STEP 7 в зависимости от событий и состояний. Она позволяет различать циклическую обработку программы, обработку

программы в функции времени и прерываний, обработку ошибок и запуск.

Всего имеется 10 различных классов исполнения программы, которым по мере

надобности ставится в соответствие некоторое количество организационных блоков.

К

Каскадное Каскадное регулирование - это включение регуляторов друг за другом, причем первый (главный) регулятор передает включенным за ним

(cascade control) регуляторам (следящим регуляторам) задающее воздействие или влияет на их

задающие воздействия в соответствии с текущим отклонением главной регулируемой величины.

Благодаря включению дополнительных переменных процесса результат

регулирования с помощью каскадного регулятора может быть улучшен. Для этого

на подходящем месте снимается значение вспомогательной регулируемой

величины PV2, которая регулируется в соответствии главным задающим значением (выход регулятора SP2). Главный регулятор стабилизирует фактическое значение PV1 в соответствии с жестко заданным значением SP1 и для этого устанавливает SP2 таким образом, чтобы эта цель могла быть достигнута возможно быстрее и без

перерегулирования.

Кодовый блок Кодовый блок в SIMATIC S7 - это блок, содержащий часть прикладной программы

STEP 7. В противоположность ему, блок данных содержит только данные. Имеются следующие кодовые блоки: организационные блоки (OB), функциональные блоки (FB), функции (FC), системные функциональные блоки (SFB), системные функции

(SFC).

Команда (STEP 5 или STEP 7) - это самая малая самостоятельная единица

прикладной программы, созданной на текстовом языке. Она представляет рабочее

предписание для процессора.

Коммуникационный функциональный

блок

Коммуникационные функциональные блоки (CFB) - это системные функциональные блоки (SFB) для обмена данными и управления программами. Примеры обмена данными: SEND, RECEIVE, GET.

Примеры управления программами: перевод центрального модуля

по связи в состояние STOP, опрос STATUS'а центральных модулей партнера по связи.

Константа

"Константы" - это метки-заполнители для постоянных величин в кодовых блоках. Константы применяются для повышения читаемости программы. Пример: вместо прямого указания значения (напр., 10) в функциональном блоке указывается метка-заполнитель "Max Schleifendurchläufe" ("Макс длительности циклов").

партнера

Системное программное обеспечение для S7–300/400 - Системные и стандартные функции С79000–G7000–C503–01 Глоссарий-3 **Контур регулирования**

Под контуром регулирования понимается соединение выхода объекта регулирования (регулируемой величины) с входом регулятора и выхода

регулятора (регулирующей величины) с входом управляемого процесса, так чт

регулятор и процесс образуют замкнутый функциональный контур.

M

Меркер Меркер - это один бит памяти. Основные операции STEP 7 имеют доступ к

меркерам на запись и чтение (побитно, побайтно, пословно и двойными словами).

Область меркеров может использоваться для сохранения промежугочных

результатов.

H

Непрерывный У непрерывного регулятора любое изменение отклонения регулируемой

регулятор величины вызывает изменение регулирующей величины. Последняя может

принимать любое значение внутри своей области изменения.

Новый пуск При запуске центрального модуля (например, при переводе переключателя режимов

работы из STOP в RUN или при включении напряжения сети) перед циклической обработкой программы (OB 1) сначала выполняется организационный блок OB 101 (повторный пуск; только у S7-400) или организационный блок OB 100 (новый пуск). При новом пуске считывается отображение процесса на входах и прикладная

программа STEP 7 обрабатывается начиная с первой команды в OB 1.

Номер сообщения Однозначный номер, который ставится в соответствие сообщению и позволяющий

его идентифицировать, например, для квитирования.

0

Обработка ошибок

через ОВ

Если системная программа распознает определенную ошибку (напр., ошибку доступа в S7), то она вызывает предусмотренный для этого случая организационный блок, в котором может быть определено с помощью прикладной программы дальнейшее поведение CPU в случае ошибки.

Обработка программы, управляемая событиями

При обработке программы, управляемой событиями, текущая прикладная программа прерывается стартовыми событиями (см. Классы приоритетов). Если такое стартовое событие наступает, то обрабатываемый в данный момент блок прерывается перед следующей командой и вызывается и

обрабатывается соответствующий организационный блок. Затем циклическая

обработка программы продолжается с места прерывания.

Общая Сообщение о неисправности (ошибке), выводимое через светодиоды на

неисправность передней панели модулей (только) в S7-300. Светодиод загорается при любой

ошибке в соответствующем модуле (внутренней или внешней).

Общее сообщение управляющей техники

Общее сообщение управляющей техники генерируется операционной системой при внесении стандартного диагностического события в

диагностический буфер.

Объект регулирования Объектом регулирования называется часть установки, в которой регулируемая величина находится под воздействием управляющего

воздействия (благодаря изменению энергии, необходимой для

исполнительного органа, или потока материала). Его можно разделить на исполнительное устройство и

управляемый процесс.

Операционная система CPU

Операционная система СРU организует все функции и процессы СРU, не

связанные со специальной задачей управления.

Описание переменной Описание переменной включает в себя указание символического имени, типа данных и, возможно, начальное значение, адрес и комментарий.

Организационный Организационные блоки образуют интерфейс между операционной

блок (ОВ)

системой СРU и прикладной программой. В организационных блоках определяется последовательность обработки прикладной программы.

Ошибка, асинхронная Асинхронные ошибки - это ошибки во время исполнения программы, не привязанные к определенному месту в прикладной программе (напр., неисправности блока питания, превышение времени цикла). При

возникновении такой ошибки операционная система вызывает соответствующий

организационный блок, в котором пользователь может запрограммировать реакцию на эту ошибку.

Ошибка, синхронная Синхронные ошибки - это ошибки во время выполнения программы, которые можно поставить в соответствие определенному месту в

прикладной программе (напр., ошибка доступа к периферийному модулю).

При возникновении такой ошибки операционная система

вызывает соответствующий организационный

блок, в котором

пользователь может запрограммировать реакцию на эту ошибку.

Ошибки

Ошибки, возникающие во время обработки прикладной программы в

исполнения

системе автоматизации (т.е. не в процессе).

Ошибки прикладной Ошибки, которые могут возникнуть при обработке прикладной программы в микроконтроллере SIMATIC S7 (в противоположность ошибкам **программы**

процесса).

Обработка ошибок операционной системой производится с помощью ОВ ошибок

(исполняющая система), слова состояния и выходных параметров системных функций.

П

Параллельная структура

Параллельная структура - это специальный вид обработки сигналов в регуляторе (вид математической обработки). Пропорциональная,

интегральная и дифференциальная части рассчитываются параллельно,

взаимодействуя друг с другом, а затем суммируются.

Параметр

1. Переменная кодового блока STEP 7

(см. Параметр блока, Фактический параметр, Формальный параметр).

2. Переменная для установки режима работы модуля (или нескольких на модуль)

Каждый модуль при поставке имеет некоторую рациональную основную установку, которая может быть изменена с помощью STEP 7.

Имеется два вида параметров: статические и динамические (см. Параметр, статический / Параметр, динамический).

Параметр, динамический

Динамические параметры модулей, в отличие от статических, могут быть изменены во время работы модуля с помощью вызова SFC, например, граничные значения модуля аналогового ввода.

Параметр регулятора parameter)

Параметры регулятора - это характеристики для согласования статических и динамических свойств регулятора с заданными свойствами объекта (control регулирования или процесса.

Параметр, статический

Статические параметры модулей, в отличие от динамических, не могут быть изменены прикладной программой, а только через STEP 7, например, задержка входа цифрового модуля ввода.

Параметры модуля

Параметры модуля - это величины, с помощью которых можно установить режим работы модуля. Часть этих параметров (специфичная для модуля) может быть использована в прикладной программе.

Переменная

Переменная - это элемент данных с переменным содержанием, который может быть применен в прикладной S7-программе. Переменная состоит их операнда (напр., М 3.1) и типа данных (напр., Bool) и обозначается символом (напр., BAND_EIN).

Повторный пуск

При запуске центрального модуля (например, при переводе переключателя режимов работы из STOP в RUN или при включении напряжения сети) перед циклической обработкой программы (OB 1) сначала выполняется организационный блок OB 100 (новый пуск) или организационный блок OB 101 (повторный пуск; только у S7-400). При повторном пуске считывается отображение процесса на входах, и обработка программы продолжается с того места, на котором она была закончена при последнем прерывании (STOP, отключение питания).

Прерывание

SIMATIC S7 знает 10 различных классов приоритета, управляющих обработкой прикладной программы. К этим классам приоритета относятся, в частности, прерывания, например, прерывания по сигналам от процесса. При возникновении прерывания операционная система вызывает соответствующий организационный блок, в котором пользователь может запрограммировать желаемую реакцию (напр., в FB).

Прерывание по времени

Прерывание по времени относится к одному из классов приоритета при обработке программы SIMATIC S7. Оно генерируется в зависимости от

определенной даты (или ежедневно) и времени суток (напр., 9:50 или

ежечасно,

ежеминутно). Затем обрабатывается соответствующий

организационный блок.

Прерывание по сигналам

Прерывание по сигналам процесса вызывается модулями, выполняющими прерывание на основе определенных событий в процессе. Это процесса

прерывание передается в СРИ. Затем, в соответствии с приоритетом этого

прерывания, обрабатывается соответствующий организационный

Прерывание с задержкой

блок.

Прерывание с задержкой относится к одному из классов приоритета при обработке программы SIMATIC S7. Оно генерируется при завершении работы запущенного в прикладной программе таймера. Затем обрабатывается соответствующий организационный

Прикладная

Прикладная программа содержит все команды и описания, а также программа данные для обработки сигналов, с помощью которых можно управлять у становкой или процессом. Она ставится в соответствие программируемому модулю

(напр., CPU, FM) и может быть структурирована делением на более мелкие единицы (блоки).

Приоритет

С помощью приоритета, который можно назначить организационному блоку, устанавливается возможность прерывания исполняемой в данный момент прикладной программы, так как события с более высоким приоритетом прерывают менее приоритетные события.

Приоритет ОВ

Операционная система СРU различает классы приоритета, например, циклическую обработку программы, обработку программы, управляемую прерываниями по сигналам процесса. Каждому классу выполнения программы ставится в соответствие организационный блок (ОВ), в котором пользователь S7 может запрограммировать реакцию на событие. В соответствии со стандартом ОВ имеют различные приоритеты, определяющие порядок их выполнения при одновременном вызове или возможность прерывания друг друга. Стандартные приоритеты могут изменяться пользователем.

Проектирование сообшений

Путем проектирования сообщений могут создаваться и обрабатываться сообщения и их типы вместе с их текстами и атрибутами: сюда относятся сообщения, относящиеся к блокам, к символам и диагностические сообщения, определяемые пользователем.

Пропорциональное исполнительное звено

см. Широтно-импульсная модуляция

P

Результат логической операции

Результат логической операции (VKE) - это текущее состояние сигнала в процессоре, применяемое для дальнейшей двоичной обработки сигнала. Определенные операции выполняются или не выполняются в зависимости от предшествующего VKE.

Регулирование отношения (ratio controller)

Одноконтурный регулятор отношения (single loop ratio controller). Одноконтурный регулятор отношения используется тогда, когда для процесса (напр., регулирования скорости) важнее отношение двух регулируемых величин, чем их абсолютные значения.

Многоконтурный регулятор отношения (multiple loop ratio controller).

В двухконтурном регуляторе отношения выдерживается постоянным отношение двух параметров процесса PV1 и PV2. Для этого задающее значение 2-го контура регулирования вычисляется из регулируемой величины 1-го контура. И при динамическом изменении параметра процесса гарантируется, что предписанное значение будет сохраняться.

Регулятор

Регулятор - это устройство, которое непрерывно получает информацию об отклонении регулируемой величины (устройство сравнения) и генерирует функцию при известных условиях зависящую от времени - для формирования управляющего сигнала (выходной величины) с целью быстро и без перерегулирования свести отклонение регулируемой величины к минимуму.

Реакция на ошибку

должна быть равна 1

Реакция на ошибку во время исполнения программы. Операционная система может реагировать на следующие виды событий: перевод системы автоматизации в состояние STOP, вызов организационного блока, в котором пользователь может запрограммировать реакцию на ошибку или отображение ошибки.

Регулирование Регулирование смешивания - это регулирующая структура, в которой смешивания задающее воздействие для общего количества процентно пересчитывается на желаемые доли для отдельных регулируемых компонентов. Сумма коэффициентов смешивания (=100%).

Связь, односторонняя

При обмене данными через CFB говорят об односторонней связи, если CFB имеется только на локальном модуле, например, CFB "GET".

Связь, двусторонняя и "URCV".

При обмене данными через CFB говорят о двусторонней связи, если CFB

имеется как на локальном, так и на удаленном модуле, например, при

"USEND"

Символическое программирование Язык программирования STEP 7 дает возможность применять символические обозначения вместо операндов STEP 7. Это значит, например, что операнд "A 1.1" может быть заменен на "Ventil 17".

Так называемый список символов в STEP 7 создает при этом связь между операндом и соответствующим символическим обозначением.

Сигнализировать

Сигнализировать - значит передавать подлежащую контролю двоичную величину для отображения в особо бросающейся в глаза форме.

Системная диагностика

Включает в себя распознавание и оценку системных диагностических событий.

Системная ошибка

Системные ошибки - это ошибки, которые могут возникать внутри системы автоматизации (т.е. не в процессе). Системными ошибками являются, например, программные ошибки в СРU и дефекты в модулях.

Системная функция

Системная функция (SFC) - это встроенная в операционную систему СРU функция, которая при необходимости может быть вызвана из прикладной S7-программы.

Системное диагностическое событие

Запись в диагностический буфер СРU, инициируемая операционной системой.

Системный функциональный

блок

Системный функциональный блок (SFB) - это встроенный в операционную систему СРU функциональный блок, который может быть при необходимости вызван из прикладной S7-программы.

Сообщение

Информация о наступлении некоторого события. Сообщение может выводиться на спроектированное для этого устройство отображения и содержит приоритет, место и время сообщаемого события и характеристику (приходящее/уходящее)

Сообщения, связанные с символами этот сигнал.

Сообщение, при проектировании которого используется символ (вход, выход, меркер, блок данных) из таблицы символов. При проектировании должен быть установлен временной растр для SCAN, в котором контролируется

Сопровождающее значение

Значение, которое может передаваться вместе с сообщением и дает справку о состоянии переменной или операнда на момент генерации сообщения.

Системное программное обеспечение для \$7-300/400 - Системные и стандартные функции C79000-G7000-C503-01 Глоссарий-3

Список команд (AWL)

Способ представления Список команд является языком ассемблера STEP 5 и STEP 7. Если программа пишется на AWL, то отдельные команды соответствуют рабочим шагам, выполняемым CPU при обработке программы.

Стандартная функция

Стандартные функции - это поставляемые фирмой SIEMENS функции для решения сложных задач.

Стандартный функциональный блок

Стандартные функциональные блоки - это поставляемые фирмой SIEMENS функциональные блоки для решения сложных задач.

Стартовая информация прикладной программе.

Когда операционная система запускает организационный блок, она передает стартовую информацию, которая может быть проанализирована в

Стартовое событие

Стартовые события - это определенные события, например, ошибки или прерывания, побуждающие операционную систему вызвать соответствующий организационный блок.

Субномер

Номер подлежащего контролю сигнала, если блок сигнализации может контролировать более одного сигнала.

T

Трехпозиционный регулятор

(three step controller)

Регулятор, в котором выходная величина может принимать только три дискретных значения: напр., "нагревать - выключено - охлаждать" или "направо - остановка - налево" (ступенчатый регулятор).

\mathbf{y}

Удаленное устройство

Удаленные устройства - это устройства, например, принтер или ЭВМ, доступ к которым осуществляется через сеть. Они отличаются от локальных устройств сетевым адресом, который должен быть введен при

инсталляции устройства.

Устройство отображения

Устройство, на котором отображаются результаты процесса.

Устройство регулирования (Control device)

Совокупность регулятора, исполнительного блока и устройства для измерения регулируемой величины (чувствительного элемента).

Φ

Фактические параметры заменяют формальные параметры при вызове

параметры функционального блока (FB) или функции (FC). Пример: формальный параметр

"REQ" заменяется фактическим параметром "E 3.6".

Формальные Формальный параметр - это метка-заполнитель для фактического параметры

параметра в параметрируемых кодовых блоках. В FB и FC формальные

параметры описываются пользователем, в SFB и SFC они уже имеются. При

вызове блока формальному параметру ставится в соответствие фактический параметр, так что вызванный блок работает с этим фактическим значением. Формальные параметры относятся к локальным данным

блока и делятся на входные, выходные и проходные параметры.

Ш

Шаговый регулятор Шаговый регулятор - это квазинепрерывный регулятор с дискретным выходом (и двигательным исполнительным устройством с интегрирующим действием. Управляющий сигнал имеет трехпозиционную характеристику, например, вперед—стоп—назад или закрывать— удерживать— открывать (см. Трехпозиционный регулятор).

Широтноимпульсная модуляция Широтно-импульсная модуляция - это способ влияния на управляющее воздействие при переключающемся выходе. Расчетное управляющее воздействие в процентах преобразуется в длительность включения (ED),

пропорциональную соответствующему выходу сигнала, например, 100 % ED = TA

или = СУСЬЕ.

Я

Язык программирования STEP 7 Язык программирования для систем управления SIMATIC S7. Программист может применять STEP 7 в различных формах представления: а) список команд, b) функциональный план, c) контактный план.

A

AWL см. Список команд

0

ОВ запуска

В зависимости от положения переключателя видов запуска (только в S7-400), предыстории (восстановление исчезнувшего напряжения питания; переключение между рабочими режимами STOP/RUN переключателем режимов работы или с устройства программирования) исполняющей системой вызывается организационный блок запуска (ОВ запуска) "Новый пуск" или "Повторный пуск" (имеется только в S7-400). В ОВ запуска пользователь SIMATIC S7 может запрограммировать, например, предварительную настройку для определенного запуска установки после исчезновения напряжения.

ОВ ошибок

ОВ ошибок - это организационные блоки, с помощью которых пользователь может запрограммировать реакцию на ошибку. Правда, запрограммированная реакция возможна только тогда, когда ошибка не приводит к остановке контроллера. Соответствующие ОВ ошибок имеются для различных типов ошибок (напр., ОВ ошибок адресации, ОВ ошибок доступа в S7).

OB 1

Организационный блок OB1 - это интерфейс пользователя с системной программой для циклической обработки программы.

 \mathbf{C}

CFB

Коммуникационные функциональные блоки (CFB) - это системные функциональные блоки (SFB) для обмена данными и управления программами. Примеры обмена данными: SEND, RECEIVE, GET. Примеры управления программами: перевод центрального модуля партнера по связи в состояние STOP, опрос STATUS'а центральных модулей партнера по связи.

P

PID-регулятор

Алгоритм расчета выходного сигнала, который образуется из отклонения регулируемой величины путем умножения, интегрирования и дифференцирования. PID-алгоритм выполняется в чистой параллельной структуре. Характеристика: достигается высокое качество регулирования, если транспортное запаздывание объекта регулирования не превышает суммы остальных постоянных времени.

РІ-регулятор

Алгоритм расчета выходного сигнала, в котором изменение регулирующей величины составляется из части, пропорциональной отклонению регулируемой величины и интегральной части, значение которой пропорционально отклонению регулируемой величины и времени. Характеристики: отсутствие остаточного отклонения регулируемой величины, более быстрое доведение ошибки до нуля, чем у І-регулятора, пригодность для любых объектов.

Р-регулятор

Алгоритм расчета выходного сигнала, в котором имеет место пропорциональная связь между отклонением регулируемой величины и изменением задающего воздействия. Характеристики: остаточное отклонение регулируемой величины, не следует применять на объектах с транспортным запаздыванием.

 \mathbf{S}

SCAN Функция операционной системы, встроенная в СРU, для считывания сигнала через

определенные интервалы времени и проверки, произошло ли изменение сигнала.

SFB SFB (системный функциональный блок) - это встроенный в операционную систему

СРU функциональный блок, который может быть при необходимости вызван из

прикладной S7-программы.

которая при необходимости может быть вызвана из прикладной S7-программы.

STEP 7 Программное обеспечение для разработки прикладных программ для систем

управления SIMATIC S7.

T

Tool Программный инструмент для проектирования и программирования.

V

VKE см. Результат логической операции.

Предметный указатель

Выход за верхний предел области Абоненты диагностики, В-53 измерения, аналоговый модуль ввода, Актуализация выходов периферийных модулей, 13-3 Выход за нижний предел области Актуализация отображения процесса на измерения, аналоговый модуль ввода, входах, 13-2 Аппаратная ошибка СРU, 1-27, 11-3 Выход из строя носителя модулей, 1–31, 11 - 3Б Г Битовый массив в периферийной области сброс с помощью SFC 80, 13-5 Генерация задержки включения, 19-3 установка с помощью SFC 79, 13-4 Генерация задержки выключения, 19-4 Блок данных Генерация импульса, 19-2 стирание с помощью SFC 23, 3-8 тестирование с помощью SFC 24, 3-Д Данные B запись в удаленный СРU с помощью SFB 15, 17-23 Ведущие часы, 5-2 консистентная запись на стандартный Встроенное регулирование DP-slave, 15-7 анализ объекта, 21–2 чтение из удаленного СРU с помощью возможности использования, 21-2 SFB 14, 17-20 выбор регулятора, 21-2 Дата, 5–2 Внешняя ошибка, А-3 Двоичный выбор, 20-26 Внутренняя ошибка, А-3 Двухпозиционный регулятор, Глоссарий-Временные переменные (ТЕМР), требуемые для ОВ, 1-6, 1-45 День недели, извлечение из Время задержки, 9-3 DATE AND TIME, 20-6 Время суток, 5-2 Диагностическая информация модуля, Всчитывание с помощью SFC 1 63 READ CLK, 5–3 Диагностические данные, А-2 установка с помощью SFC 0 SET CLK, сигнальных модулей, 7-3, В-2 5-2содержимое, А-2 Возвращаемое значение структура, А-2 SFC 41 DIS AIRT, 11-8 CPU, B-2 SFC 42 EN AIRT, 11–9 Диагностические данные модулей, А-2, В-Выбор максимума, 20–25 64, B-65 Выбор минимума, 20-25

Диагностические события, С-15

Диагностический буфер, 10–2, В–2, В–62 Классы приоритета Диагностическое прерывание, 1–23, 11–3 имеющиеся, В-14 Демаскирование события, вызывающего состояние, В-22 ошибку, 10-2 Коммуникационная ошибка, 11–3 Коммуникационное прерывание, 11-2 Коммуникационные события, С-13 3 Коммуникационные функциональные блоки. См. CFB Задержка выполнения прикладной Контроль питающего тока программы, с помощью SFC 47 WAIT, аналоговый модуль ввода, А-5 аналоговый модуль вывода, А-6 Заменяющее значение, в АККИ 1 с Контур регулирования, Глоссарий–11 помощью SFC 44 REPL_VAL, 3-13 Класс события, С-2 Запись данных Классы прерываний, 11-2 запись, 7-2 Копирование содержимого блока данных, запись с помощью SFC 58 WR REC, 7-10 Копирование переменной с помощью SFC манипулирование, 2-6 20 BLKMOV, 3-2 чтение, 7-2 Короткое М-замыкание чтение с помощью SFC 59 RD REC. аналоговый модуль ввода, А-5 7 - 12аналоговый модуль вывода, А-6

И

Идентификатор события, 12–11, С–2 Идентификатор типа модуля, В–4 Идентификация модулей, В–7 Идентификация прерываний/ошибок, В–17, В–18 Изменение рабочего режима, В–24 Интегрирующее звено, Глоссарий–6 Информация об ошибках, 2–2 общая, 2–3, 2–4 специфическая, 2–3, 2–4 Информация о состоянии модуля, В–56

К

Каскадное регулирование, Глоссарий—6 Класс приоритета, 1–2, 1–3, 1–6, 1–10, 1–12, 1–13, 1–14, 1–15, 1–16, 1–18, 1–19, 1–20, 1–21, 1–23, 1–25, 1–27, 1–28, 1–31, 1–35, 1–38, 1–39, 1–42, 1–43, 1–45, 4–4, 8–3, 9–2, 10–2, 10–10, 10–11, 10–12, 11–2, 11–4, 12–3, 12–7, 12–8, B–1, B–2, B–5, B–14, B–19, B–21, B–22, B–23, B–54, B–55, C–8, C–10 Класс типа модуля, B–4

аналоговый модуль ввода, А-5 аналоговый модуль вывода, А-6 цифровой модуль вывода, А-7 Короткое Р-замыкание аналоговый модуль вывода, А-5 аналоговый модуль вывода, А-6 цифровой модуль ввода, А-6 цифровой модуль вывода, А-6 цифровой модуль вывода, А-7

Л

Логический адрес, выяснение для всего модуля, 14–6 для канала, 14–2 для соответствующего слота, 14–4 Локальные данные OB, B–54

M

Маска ошибки, 10–3 доступа, 10–5 программирования, 10–4 Маскирование событий, ведущих к ошибкам, 10–2 Момент времени, вычитание двух моментов времени, 20–9

H	ОВ прерываний по сигналам процесса
Неисправность блока питания, 11–3	(от ОВ40 до ОВ47), 1–15
Неисправность модуля, А-3	OB прерываний с задержкой (от OB20
Новый пуск, 1–39	до ОВ23), 1–11
выполнение в удаленном устройстве,	ОВ установки/снятия модулей (ОВ83),
17–34	1–25
1/ 54	ОВ циклических прерываний (от OB30
0	до ОВ38), 1–13
O	OB1, 1–5
	Отсутствует вспомогательное напряжение,
Области памяти, В-10	A-3
Область системных данных, 7–2, 7–3	Отрезок времени
Обработка ошибки, 10-2	вычитание из некоторого момента, 20-
Обрыв провода	8
аналоговый модуль ввода, А-5	добавление к некоторому моменту, 20-
аналоговый модуль вывода, А-6	8
цифровой модуль ввода, А-6	Отсутствует напряжение нагрузки
цифровой модуль вывода, А-7	аналоговый модуль вывода, А-6
Объект регулирования (процесс),	цифровой модуль вывода, А-7
Глоссарий–11	Отсутствует параметризация, А-3
Ограничитель, 20–24	Отсутствует питание датчиков, цифровой
Организационный блок (ОВ), 1–2	модуль ввода, А-6
обзор, 1–2, 1–3	Отсутствует фронтальный штекер, А-3
фоновый OB (OB90), 1–37	Ошибка времени, 1–19, 11–3
OB аппаратных ошибок CPU (OB84),	Ошибка выравнивания
1–27	при записи, 10–7
ОВ выхода из строя носителя модулей	при чтении, 10–7
(OB86), 1–31	Ошибка длины области
ОВ диагностических прерываний	при записи, 10–7
(OB82), 1–23	при чтении, 10–7
OB запуска (OB100, OB101), 1-39	Ошибка доступа, 10–2, 10–9
ОВ коммуникационных ошибок	Ошибка доступа к периферии
(OB87), 1–35	при записи, 10-9
ОВ многопроцессорной обработки	при чтении, 10–9
(OB60), 1–17	Ошибка записи
ОВ неисправностей источника питания	блок данных, 10–8
(OB81), 1–21	экземпляр блока данных, 10–8
OВ нового пуска (OВ100), 1–39	Ошибка зоны
ОВ ошибок времени (ОВ80), 1–19	при записи, 10-7
ОВ ошибок доступа к периферии	при чтении, 10–7
(OB122), 1–45	Ошибка исполнения программы, 1–28, 11–
ОВ ошибок исполнения программы	3
(OB85), 1–28	Ошибка канала, А-3
ОВ ошибок программирования	Ошибка контрольного канала,
(OB121), 1–42	аналоговый модуль ввода, А-5
ОВ повторного пуска (OB101), 1–39	Ошибка массы

цифровой модуль ввода, А-6

цифровой модуль вывода, А-7

OB прерываний по времени (от OB10

до ОВ17), 1-7

Ошибка номера блока, 10–8	
Ошибка номера счетчика, 10–7	Преобразование формата
Ошибка номера таймера, 10-7	DINT B STRING, 20–21
Эшибка параметризации	INT в STRING, 20–21
аналоговый модуль ввода, А–5	REAL B STRING, 20–22
аналоговый модуль вывода, А-6	STRING B DINT, 20–23
цифровой модуль ввода, А-6	STRING B INT, 20–22
цифровой модуль вывода, А–7	STRING B REAL, 20–23
Эшибка программирования, 1–42, 10–2,	Прерывание многопроцессорной
10–7	обработки, 11–2
Эшибка проектирования	Прерывание по времени, 8–2, 11–2
аналоговый модуль ввода, А–5	активизация с помощью SFC 30
аналоговый модуль вывода, А-6	ACT_TINT, 8–7
цифровой модуль ввода, А-6	выполнение и реакция, 8-4
цифровой модуль вывода, А–7	влияние на, 8–3
Ошибка синфазности	опрос с помощью SFC 31 QRY_TINT,
аналоговый модуль ввода, А–5	8–8
аналоговый модуль вывода, А-6	отмена с помощью SFC 29 CAN_TINT
Ошибка BCD-преобразования, 10–7	8–6
	поведение при новом пуске, 8-3
П	установка с помощью SFC 28
Ц	SET_TINT, 8–5
7	Прерывание по ошибке
Память пользователя, сжатие с помощью	асинхронное, 11-2
SFC 25, 3–11	синхронное, 11–2
Параллельная структура (PID), Глоссарий-	Прерывание с задержкой, 9-2, 11-2
9	воздействие на, 9-2
Параметры	опрос с помощью SFC 34 QRY_DINT,
динамическая запись, 7–4	9–5
неверные, в модуле, А-3	отмена с помощью SFC 33 CAN_DINT
предопределенная запись, 7–6	9–6
BUSY в SFC 51 и от 55 до 59, 2–7	предпосылки для вызова, 9–2
REQ в SFC 51 и от 55 до 59, 2–6	старт в ОВ запуска, 9-3
RET_VAL, 2-2	старт с помощью SFC 32 SRT_DINT,
RET_VAL в SFC 51 и от 55 до 59, 2–7	9–4
Параметры регулятора, Глоссарий–12	Прерывания
Передача данных	диагностическое, 1-23
блочная с помощью SFB 12, 17–14	по времени, 1–7
некоординируемая с помощью SFB 8,	по сигналу процесса, 1-15, 11-2
17–9	при снятии/установке модуля, 1-25
Повторный запуск контроля времени	с задержкой, 1–11
цикла с помощью SFC 43 RE_TRIGR,	циклическое, 1-13-1-15
4–2	Прерывания по асинхронной ошибке, 1-4
Повторный пуск, 1–39	Прерывания по синхронной ошибке, 1-4
выполнение в удаленном устройстве,	Прием данных
17–39	блочный с помощью SFB 13, 17–17
Превышение температуры, цифровой	некоординируемый с помощью SFB 9,
модуль вывода, А–7	17–11
Предварительное заполнение массива, с	Программа, циклическая, 1-5
помощью SFC 21 FILL, 3–4	Пуск, 1–39

	10–2
P	
1	Событие, вызывающее прерывание
Рабочий режим, В-24	блокировка с помощью SFC 39
Расширение периферии S7–300, B–16	DIS_IRT, 11–4
Реализация шагового переключателя, 13–	деблокировка с помощью SFC 40
6	EN_IRT, 11–6
	деблокировка с помощью SFC 42
Регулирование	EN_AIRT, 11–9
непрерывное с помощью SFB 41, 21–4	задержка с помощью SFC 41
шаговое с помощью SFB 42, 21–11	DIS_AIRT, 11–8
Регулирование отношения, Глоссарий–15	Событие, связанное с ошибкой
Регулирование смешивания, Глоссарий–8	программирования, 10–2
Регулятор, Глоссарий–12	События, вызывающие асинхронную
	ошибку, С–6
C	События, вызывающие синхронную
	ошибку, С–5
Свободные пользовательские события, С-	События, вызывающие остановку или
19	прерывание, С-8
Связь	События, связанные с реализацией
данные о состоянии, В-40	рабочего режима, С-11
параметры производительности, В–27	Создание блока данных, с помощью SFC
Синхронизация ведомых часов, 5–4	22 CREATE DB, 3–6
Синхронизация, часы, 5–2	Состояние устройства
Синхронная ошибка	опрос состояния устройства у
ОВ121, 1–42	удаленного партнера, 17–41
OB121, 1–42 OB122, 1–45	прием состояния удаленного
Системные данные, В-2	устройства, 17–44
Системные данные, Б-2 Системные области, В-12	Список состояний системы, В–2
	подсписки, В-5
Событие, С-2	Стандартное регулирование, Глоссарий–6,
Событие, ведущее к синхронной ошибке,	Глоссарий–7
10–2	Стандартные пользовательские события,
демаскирование, 10–2	С–17
демаскирование с помощью SFC 37	Стандартные ОВ-события, С-3
DMSK_FLT, 10–11	Стандартные ОБ-сообтия, С-3 Стартовые события, В-55
маскирование, 10-2	
маскирование с помощью SFC 36	Статус прерывания, В–20
MSK_FLT, 10–10	Статусный регистр события, 10–2
Событие, вызывающее асинхронную	чтение с помощью SFC 38 READ_ERR 10-12
ошибку, 11–2	
блокировка с помощью SFC 39	Счет вперед, 19–5
DIS_IRT, 11–4	Счет вперед и назад, 19–7
деблокировка с помощью SFC 40	Счет назад, 19–6
EN_IRT, 11–6	Счетчик рабочего времени, 6–2
деблокировка с помощью SFC 42	запуск с помощью SFC 3 CTRL_RTM,
EN AIRT 11_9	6–4

область значений, 6-2

Событие, вызывающее ошибку доступа,

задержка с помощью SFC 41 DIS_AIRT, 11–8

остановка с помощью SFC 3 CTRL_RTM, 6-4	Широтно-импульсная модуляция, Глоссарий-6
свойства, 6-2	
считывание с помощью SFC 4 READ_RTM, 6–5	A
установка с помощью SFC 2 SET_RTM, 6-3	ACT_TINT, 8–7
Считывание системного времени с	ALARM, 18–8
помощью SFC 64 TIME_TCK, 6-6	ALARM_8, 18–15
Считывание, с помощью SFC 51	ALARM_8P, 18–12
RDSYSST, 12–4	ALARM_S, 18–30
Считывание стартовой информации	ALARM_SC, 18–33
текущих ОВ, 12-2	ALARM_SQ, 18–30 AR_SEND, 18–18
T	n
	В
Гипы блоков, В–13	BLKMOV, 3–2
Грехпозиционный регулятор, Глоссарий-4	BRCV, 17–17
	BSEND, 17–14
Φ	
-	C
Формы импульсов, с помощью FB 43	C
PULSEGEN, 21–17	CAN DINE O C
TOESEGEN, 21 17	CAN_DINT, 9–6
	CAN_TINT, 8–6
\mathbf{X}	CFB
	классификация, 17–2
Характеристики СРU, В-8	классификация параметров, 17–4
T. I.	опрос состояния экземпляра CFB, 17-
TT	47
Ц	поведение при запуске, 17-50
	поведение при неисправностях, 17-52
Циклическое прерывание, 1–13, 11–2	COMPRESS, 3–11
	CONT_C, 21–4
Ч	CONT_S, 21–11
1	CONTROL, 17–47
П	CPU в STOP, с помощью SFC 46 STP, 4–3
Часы	CREATE_DB, 3–6
ведущие, 5–2	CTD, 19–6
синхронизация, 5–2	CTRL_RTM, 6–4
Чтение	CTU, 19–5
диагностических данных DP-Slave, 15- 2	CTUD, 19–7
консистентных данных стандартных	
DP-slave, 15-5	D
Ш	DATE, извлечение из DATE_AND_TIME,
ш	20–5
Шаговый регулятор, Глоссарий–12	DATE и TIME_OF_DAY, объединение в DATE_AND_TIME, 20-5

DATE_AND_TIME, 20–4	FC 3, 20–5 FC 30, 20–22 FC 31, 20–19 FC 32, 20–17 FC 33, 20–7 FC 34, 20–9 FC 35, 20–8 FC 36, 20–26 FC 37, 20–23 FC 38, 20–22 FC 39, 20–23 FC 4, 20–19 FC 40, 20–7 FC 5, 20–21 FC 6, 20–5 FC 7, 20–6 FC 8, 20–6 FC 9, 20–10 FILL, 3–4
EN_IRT, 11–6	G
EN_MSG, 18–24	GADR_LGC, 14–2
T.	GD-пакет
\mathbf{F}	программируемая передача с помощью SFC 60, 16–2
FC 1, 20-8	программируемый прием с помощью
FC 1, 20–8 FC 10, 20–13 FC 11, 20–20	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4
FC 10, 20–13	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2
FC 10, 20–13 FC 11, 20–20	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной памяти, 20–3
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16 FC 22, 20–24	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16 FC 22, 20–24 FC 23, 20–12	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной памяти, 20–3 L
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16 FC 22, 20–24 FC 23, 20–12 FC 24, 20–15	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной памяти, 20–3
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16 FC 21, 20–16 FC 22, 20–24 FC 23, 20–12 FC 24, 20–15 FC 25, 20–24	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной памяти, 20–3 L LGC_GADR, 14–4
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16 FC 22, 20–24 FC 23, 20–12 FC 24, 20–15 FC 25, 20–24 FC 26, 20–17	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной памяти, 20–3 L
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16 FC 22, 20–24 FC 23, 20–12 FC 24, 20–15 FC 25, 20–24 FC 26, 20–17 FC 27, 20–25	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной памяти, 20–3 L LGC_GADR, 14–4
FC 10, 20–13 FC 11, 20–20 FC 12, 20–10 FC 13, 20–13 FC 14, 20–11 FC 15, 20–14 FC 16, 20–21 FC 17, 20–18 FC 18, 20–11 FC 19, 20–14 FC 2, 20–18 FC 20, 20–16 FC 21, 20–16 FC 22, 20–24 FC 23, 20–12 FC 24, 20–15 FC 25, 20–24 FC 26, 20–17	программируемый прием с помощью SFC 61, 16–4 GD_RCV, 16–4 GD_SND, 16–2 GET, 17–20 I IEC-функции обзор, 20–2 требования к рабочей и загрузочной памяти, 20–3 L LGC_GADR, 14–4

N	SFB 1 CTD, 19–6 SFB 12 BSEND, 17–14	
	SFB 13 BRCV, 17–17	
NOTIFY, 18–5	SFB 14 GET, 17–20	
	SFB 15 PUT, 17–23	
\mathbf{O}	Si B 13 1 01, 17–23	
0	SFB 16 PRINT, 17–26	
0.0	SFB 19 START, 17–20	
OВ ошибок, 10–2	SFB 2 CTUD, 19–7	
ОВ прерываний по времени, 8–2	SFB 20 STOP, 17–37	
предпосылка для вызова, 8–2	SFB 21 RESUME, 17–39	
	SFB 21 RESUME, 17–39 SFB 22 STATUS, 17–41	
P	· · · · · · · · · · · · · · · · · · ·	
•	SFB 23 USTATUS, 17–44	
PARM_MOD, 7–7	SFB 3 TP, 19–2	
PRINT, 17–26	SFB 32 DRUM, 13–6	
PULSEGEN, 21–17	SFB 33 ALARM, 18–8	
PUT, 17–23	SFB 34 ALARM_8, 18–15	
	SFB 35 ALARM_8P, 18–12	
\mathbf{O}	SFB 36 NOTIFY, 18–5	
Q	SFB 37 AR_SEND, 18–18	
ODIV DRUT A 5	SFB 4 TON, 19–3	
QRY_DINT, 9–5	SFB 41 "CONT_C", блок-схема, 21-6	
QRY_TINT, 8–8	SFB 41 CONT_C, 21-4	,
	SFB 42 "CONT_S", блок-схема, 21–13	3
R	SFB 42 CONT_S, 21–11	
	SFB 43 "PULSEGEN"	
RD LGADR, 14–6	автоматическая синхронизация, 21	1–18
RD REC, 7–12	блок-схема, 21–18	•
RD SINFO, 12–2	двухпозиционное регулирование,	21
RDSYSST, 12–4, B–2	23	2.1
RE TRIGR, 4–2	трехпозиционное регулирование,	21
READ CLK, 5–3	21	
READ ERR, 10–12	трехпозиционное регулирование	
READ RTM, 6–5	несимметричное, 21–22	
REPL_VAL, 3–13	SFB 43 PULSEGEN, 21–17	
RESUME, 17–39	SFB 5 TOF, 19–4	
RSET, 13–5	SFB 8 USEND, 17–9	
RSL1, 13–3	SFB 9 URCV, 17–11	
~	SFC 0 SET_CLK, 5–2	
S	SFC 1 READ_CLK, 5–3	
	SFC 10 DIS_MSG, 18–21	
S5TIME, преобразование формата в ТІМЕ,	SFC 13 DPNRM_DG, 15–2	
20–7	SFC 14 DPRD_DAT, 15–5	
SBD, допустимые, B-15	SFC 15 DPWR_DAT, 15–7	
SET, 13–4	SFC 17 ALARM_SQ, 18–30	
SET CLK, 5–2	SFC 18 ALARM_S, 18–30	
SET RTM, 6–3	SFC 19 ALARM_SC, 18–33	
SET TINT, 8–5	SFC 2 SET_RTM, 6–3	
SFB 0 CTU, 19–5	SFC 20 BLKMOV, 3–2	
,	SFC 21 FILL, 3–4	

SFC 22 CREATE_DB, 3–6	START, 17–34
SFC 23 DEL DB, 3–8	STATUS, 17–41
SFC 24 TEST DB, 3–10	STOP, 17–37
SFC 25 COMPRESS, 3–11	перевод в STOP удаленного устройства,
SFC 26 UPDAT PI, 13–2	17–37
SFC 27 UPDAT PO, 13–3	STP, 4–3
SFC 28 SET TINT, 8–5	STRING
SFC 29 CAN TINT, 8–6	вставка в STRING, 20–18
SFC 3 CTRL RTM, 6–4	длина, 20–16
SFC 30 ACT TINT, 8–7	замена в STRING, 20–19
SFC 31 QRY_TINT, 8–8	левая часть, 20–16
SFC 32 SRT DINT, 9–4	поиск в STRING, 20–20
SFC 33 CAN DINT, 9–6	правая часть, 20–17
=	•
SFC 34 QRY_DINT, 9–5	соединение двух STRING, 20–18
SFC 35 MP_ALM, 4–5	сравнение на больше, 20–14
SFC 36 MSK_FLT, 10–10	сравнение на больше или равно, 20–13
SFC 37 DMSK_FLT, 10–11	сравнение на меньше, 20–15
SFC 38 READ_ERR, 10–12	сравнение на меньше или равно, 20-
SFC 39 DIS_IRT, 11–4	14
SFC 4 READ_RTM, 6–5	сравнение на неравно, 20–15
SFC 40 EN_IRT, 11–6	сравнение на равно, 20–13
SFC 41 DIS_AIRT, 11–8	средняя часть, 20–17
SFC 42 EN_AIRT, 11–9	стирание в STRING, 20–19
SFC 43 RE_TRIGR, 4–2	
SFC 44 REPL_VAL, 3–13	
SFC 46 STP, 4–3	\mathbf{T}
SFC 46 TIME_TCK, 6–6	
SFC 47 WAIT, 4–4	TEST_DB, 3–10
SFC 48 SNC_RTCB, 5–4	ТІМЕ, преобразование формата в
SFC 49 LGC_GADR, 14–4	S5TIME, 20–7
SFC 5 GADR_LGC, 14–2	TIME_OF_DAY, извлечение из
SFC 50 RD_LGADR, 14–6	DATE_AND_TIME, 20–6
SFC 51 RDSYSST, 12–4, B–2	TIME_TCK, 6–6
SFC 52 WR_USRMSG, 12–10, 12–12	TOF, 19–4
SFC 55 WR_PARM, 7–4	TON, 19–3
SFC 56 WR_DPARM, 7–6	TP, 19–2
SFC 57 PARM_MOD, 7–7	
SFC 58 WR_REC, 7–10	TT
SFC 59 RD_REC, 7–12	\mathbf{U}
SFC 6 RD_SINFO, 12–2	UPDAT PI, 13–2
SFC 60 GD_SND, 16–2	UPDAT PO, 13–3
SFC 61 GD_RCV, 16–4	URCV, 17–11
SFC 62 CONTROL, 17–47	USEND, 17–9
SFC 64 TIME_TICK, 6–6	USTATUS, 17–44
SFC 79 SET, 13–4	001/1100, 1/ 77
SFC 80 RSET, 13-5	
SFC 9 EN MSG, 18–24	\mathbf{W}
SNC_RTCB, 5–4	
SRT_DINT, 9–4	WAIT, 4–4

WR_DPARM, 7–6 WR_PARM, 7–4 WR_REC, 7–10 WR_USRMSG, 12–10