RSVP Semantic Framework: Formal Proofs and Structural Foundations

A. Well-Posedness of RSVP Field Equations

Theorem A.1 (Well-Posedness of RSVP SPDE System) Let Φ_t , v - t, S_t evolve on a Minkowski manifold $M = \times \mathbb{Z}^3$ via the SPDE system: $d\Phi_t = [\nabla \cdot (D\nabla \Phi_t) - v - t - \nabla \Phi_t + \lambda S_t]dt + \sigma_\Phi dW_t$, $dv - t = [\nabla \cdot V - t + \gamma \Phi_t + \gamma \Phi_t]dt + \sigma_v dW_t$, $dS_t = [\delta \nabla \cdot v - t - \eta S_t^2]dt + \sigma_s dW_t$, with compact support and smooth initial conditions. Then under standard Lipschitz and linear growth assumptions, the system admits a unique global strong solution in $L^2([0,T]; H - (M))$, and the energy functional $E(t) = \int_{-\infty}^{\infty} M(\frac{1}{2}|\nabla \Phi_t|^2 + \frac{1}{2}|v - t|^2 + \frac{1}{2}S_t^2) dx$ is conserved in expectation.

B. Sheaf Gluing and Semantic Coherence

Theorem B.1 (Semantic Coherence via Sheaf Gluing) Let F be the RSVP sheaf assigning field triples $(\Phi, v \blacksquare, S)$ to open sets $U \subset X$. Suppose for an open cover $\{U_i\}$, the local fields agree on overlaps: $\Phi_i = \{U_i \cap U_j\} = \{U_i \cap U_j\}$, etc. Then there exists a unique global field triple $\{\Phi, v \blacksquare, S\}$ over X such that: $F(X) \cong \lim F(U_i)$.

C. Merge Obstruction and Homotopy Colimit Coherence

Theorem C.1 (Merge Validity Criterion) Let $M\blacksquare$, $M\blacksquare$ be modules with overlapping semantic fields. Let L_M be the cotangent complex and T_M the tangent complex. Then the merge: $\mu(M\blacksquare, M\blacksquare) = M$ if $Ext^1(L_M, T_M) = 0$, $\mu(M\blacksquare, M\blacksquare) = Fail(\omega)$ if $\omega \in Ext^1(L_M, T_M) \neq 0$.

D. Associativity via Symmetric Monoidal Structure

Proposition D.1 (Tensorial Merge Associativity) Let \otimes be the monoidal product on semantic modules, and μ the merge operator. Then: $\mu(M\blacksquare\otimes M\blacksquare, M\blacksquare)\cong \mu(M\blacksquare, M\blacksquare\otimes M\blacksquare)$ This follows from Mac Lane's coherence theorem.

E. Tiling Consistency via RSVP Entropy Gradients

Theorem E.1 (Topological Tiling) Let modules $\{M_i\}$ be RSVP tiles over patches U_i. Suppose ∇S_i defines adjacency relations, and $\Phi_i = \{U_i \cap U_j\} \sim \Phi_j = \{U_i \cap U_j\}$. Then the entire space $X = I_i \cup \{U_i \cap U_j\}$ admits a globally coherent entropy map $S: X \to I$ minimizing $\sum_{i=1}^{n} ||\nabla(S_i - S_j)||^2$.