$11a_{183} \ (K11a_{183})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{57} + u^{56} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 57 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{57} + u^{56} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10} - 5u^{8} - 8u^{6} - 3u^{4} + 3u^{2} + 1 \\ -u^{10} - 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{15} + 6u^{13} + 14u^{11} + 14u^{9} + 2u^{7} - 6u^{5} - 2u^{3} + 2u \\ u^{17} + 7u^{15} + 19u^{13} + 22u^{11} + 3u^{9} - 14u^{7} - 6u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{42} + 17u^{40} + \dots + u^{2} + 1 \\ u^{44} + 18u^{42} + \dots - 5u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{27} - 12u^{25} + \dots + 2u^{5} + 5u^{3} \\ -u^{27} - 11u^{25} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{27} - 12u^{25} + \dots + 2u^{5} + 5u^{3} \\ -u^{27} - 11u^{25} + \dots + u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{56} + 4u^{55} + \cdots 4u^2 + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_6	$u^{57} + u^{56} + \dots - u - 1$
c_2	$u^{57} + 27u^{56} + \dots + u - 1$
c_3	$u^{57} + 7u^{56} + \dots + 49u + 5$
c_4,c_5,c_9	$u^{57} - u^{56} + \dots + u - 1$
c ₇	$u^{57} - u^{56} + \dots + 231u - 53$
c_8, c_{10}	$u^{57} + u^{56} + \dots - 29u - 17$
c_{11}	$u^{57} + 5u^{56} + \dots - 264u - 112$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{57} + 27y^{56} + \dots + y - 1$
c_2	$y^{57} + 7y^{56} + \dots - 3y - 1$
c_3	$y^{57} + 3y^{56} + \dots - 519y - 25$
c_4, c_5, c_9	$y^{57} + 47y^{56} + \dots + y - 1$
	$y^{57} - 13y^{56} + \dots + 82617y - 2809$
c_8, c_{10}	$y^{57} - 37y^{56} + \dots - 1267y - 289$
c_{11}	$y^{57} + 15y^{56} + \dots - 381664y - 12544$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.277649 + 1.138010I	-2.98923 - 1.15216I	0
u = -0.277649 - 1.138010I	-2.98923 + 1.15216I	0
u = -0.343977 + 1.120270I	-0.58525 + 6.08343I	0
u = -0.343977 - 1.120270I	-0.58525 - 6.08343I	0
u = -0.804549 + 0.125513I	2.43881 - 10.27360I	7.12723 + 7.98252I
u = -0.804549 - 0.125513I	2.43881 + 10.27360I	7.12723 - 7.98252I
u = 0.337618 + 1.140540I	1.53395 - 1.08977I	0
u = 0.337618 - 1.140540I	1.53395 + 1.08977I	0
u = 0.799720 + 0.113827I	4.65256 + 5.23405I	10.45155 - 4.02810I
u = 0.799720 - 0.113827I	4.65256 - 5.23405I	10.45155 + 4.02810I
u = 0.797777 + 0.076863I	5.78308 + 2.96634I	12.01643 - 3.84738I
u = 0.797777 - 0.076863I	5.78308 - 2.96634I	12.01643 + 3.84738I
u = -0.798784 + 0.053217I	4.63483 + 1.87363I	10.12440 - 2.27509I
u = -0.798784 - 0.053217I	4.63483 - 1.87363I	10.12440 + 2.27509I
u = -0.771308 + 0.122509I	0.04467 - 2.73028I	4.01382 + 2.71873I
u = -0.771308 - 0.122509I	0.04467 + 2.73028I	4.01382 - 2.71873I
u = 0.342759 + 1.189140I	2.38357 + 1.16168I	0
u = 0.342759 - 1.189140I	2.38357 - 1.16168I	0
u = -0.348811 + 1.212550I	1.07430 - 6.01691I	0
u = -0.348811 - 1.212550I	1.07430 + 6.01691I	0
u = -0.052037 + 1.291330I	-3.68835 - 1.96306I	0
u = -0.052037 - 1.291330I	-3.68835 + 1.96306I	0
u = -0.266975 + 1.304600I	-2.86692 - 3.28224I	0
u = -0.266975 - 1.304600I	-2.86692 + 3.28224I	0
u = 0.236806 + 1.324490I	-5.56866 - 0.84775I	0
u = 0.236806 - 1.324490I	-5.56866 + 0.84775I	0
u = -0.346838 + 1.301460I	0.40457 - 2.25231I	0
u = -0.346838 - 1.301460I	0.40457 + 2.25231I	0
u = 0.634619 + 0.140548I	-1.62790 + 3.37240I	3.27495 - 5.30685I
u = 0.634619 - 0.140548I	-1.62790 - 3.37240I	3.27495 + 5.30685I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.638377	1.27831	8.28660
u = 0.346920 + 1.317510I	1.41577 + 7.09232I	0
u = 0.346920 - 1.317510I	1.41577 - 7.09232I	0
u = 0.277893 + 1.335410I	-6.25104 + 6.75305I	0
u = 0.277893 - 1.335410I	-6.25104 - 6.75305I	0
u = 0.337361 + 0.533102I	-1.72047 + 6.62089I	2.54306 - 8.39817I
u = 0.337361 - 0.533102I	-1.72047 - 6.62089I	2.54306 + 8.39817I
u = -0.058345 + 1.369800I	-5.26507 - 3.02226I	0
u = -0.058345 - 1.369800I	-5.26507 + 3.02226I	0
u = -0.331323 + 1.341910I	-4.56299 - 6.72032I	0
u = -0.331323 - 1.341910I	-4.56299 + 6.72032I	0
u = 0.032432 + 1.383040I	-9.34182 + 0.07828I	0
u = 0.032432 - 1.383040I	-9.34182 - 0.07828I	0
u = 0.346087 + 1.339690I	0.08340 + 9.36804I	0
u = 0.346087 - 1.339690I	0.08340 - 9.36804I	0
u = 0.063733 + 1.386370I	-7.68595 + 7.77424I	0
u = 0.063733 - 1.386370I	-7.68595 - 7.77424I	0
u = -0.347692 + 1.346470I	-2.1926 - 14.4304I	0
u = -0.347692 - 1.346470I	-2.1926 + 14.4304I	0
u = 0.192189 + 0.576599I	-3.37572 - 0.51768I	-1.48190 - 0.98551I
u = 0.192189 - 0.576599I	-3.37572 + 0.51768I	-1.48190 + 0.98551I
u = -0.310416 + 0.472368I	0.42908 - 1.95168I	6.05217 + 4.83311I
u = -0.310416 - 0.472368I	0.42908 + 1.95168I	6.05217 - 4.83311I
u = 0.499130 + 0.251121I	-0.85109 - 3.57978I	5.03586 + 1.38706I
u = 0.499130 - 0.251121I	-0.85109 + 3.57978I	5.03586 - 1.38706I
u = -0.367153 + 0.287513I	0.979056 - 0.679070I	8.79507 + 4.86357I
u = -0.367153 - 0.287513I	0.979056 + 0.679070I	8.79507 - 4.86357I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{57} + u^{56} + \dots - u - 1$
c_2	$u^{57} + 27u^{56} + \dots + u - 1$
c_3	$u^{57} + 7u^{56} + \dots + 49u + 5$
c_4, c_5, c_9	$u^{57} - u^{56} + \dots + u - 1$
<i>C</i> ₇	$u^{57} - u^{56} + \dots + 231u - 53$
c_8, c_{10}	$u^{57} + u^{56} + \dots - 29u - 17$
c_{11}	$u^{57} + 5u^{56} + \dots - 264u - 112$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{57} + 27y^{56} + \dots + y - 1$
c_2	$y^{57} + 7y^{56} + \dots - 3y - 1$
c_3	$y^{57} + 3y^{56} + \dots - 519y - 25$
c_4,c_5,c_9	$y^{57} + 47y^{56} + \dots + y - 1$
C ₇	$y^{57} - 13y^{56} + \dots + 82617y - 2809$
c_8, c_{10}	$y^{57} - 37y^{56} + \dots - 1267y - 289$
c_{11}	$y^{57} + 15y^{56} + \dots - 381664y - 12544$