Homework (hapter 1

Section 1-1, 4, 7, 10

Section 2-1, 4, 7, 10

Section 3-1, 4, 7, 10, 13, 16, 19

Brandon Smith

I. I Is there a real number whose square is -1?

a. Is there a real number x such that $x^2 = -1$?

b. Does there exist a real number x such that $x^2 = -1$?

- (1.4) Given any real number, there is a real number that is greater.
 - a. Given any real number r, there is a real number s such that s is greater than r.
 - b. For any real number r, there is a real number s
 Such that s>r.

- T. T Rewrite the following statements less formally, without using variables. Determine, as best you can, whether the statements are true or false.
 - a. There are real numbers u and v with the property that u+v < u-v.
 - *There are real numbers whose sum is less than their difference.

* True

- b. There is a real number x such that x2 < x.

 * There is a real number whose square
 is less than it.
 - * True.
- C. For all positive integers n, n²≥n.

 * All positive integers have a larger square.

 * True
- d. For all real numbers a and b, la+bl < la1+161

 * For all real numbers, the absolute value
 of their sum is less than or equal
 to the sum of their absolute values.

 * True

- 1.10) Every nonzero real number has a reciprocal.

 a. All nonzero real numbers have a reciprocal.

 b. For all nonzero real numbers r, there is

 a reciprocal for r.
 - C. For all nonzero real numbers r, there is a real number 5 such that a sis a reciprocal for r.

2.1) Which of the following sets are equal? $A=\{a,b,c,d\}$ $C=\{d,b,a,c\}$ $D=\{a,a,d,e,c,e\}$

* A = C, B = D

a. Is 2 e {2}?

* yes

b. How many elements are in the set {2,2,2,23?

* 1

C. How many elements are in the set {0, {0}}}?

* 2

d. Is {0} e {{0}, {1}}?

* yes

e. Is 0 = {{0}, {1}}?

* NO

(1.7)

Use the set-roster notation to indicate the elements in each of the following sets.

a. $S = \{n \in \mathbb{Z} \mid n = (-1)^k, \text{ for some integer } k\}$. $*\{1,-1\}$

b. T= {m \in Z | m = 1 + (-1)', for some integer K3. * {2,0}

C. U= {(67/26/6-23).

* no elements

d. V= { 5 & Z | 5>2 or 5633.

* Z

e. W= {+EZ|1<+<-33} * no elements

f. X= {u \in Z | u \in 4 or u \in 13}
* 2

- α . Is $((-2)^2, -2^2) = (-2^2, (-2)^2)^{\frac{1}{2}}$ * 10
- b. Is (5,-5)= (-5,5)? * no
- C. Is (8-9, 3)-1)=(-1,-1)? * yes
- d. Is (=, (-2)3)=(=, -8)? * yes

(X,Y) $\in \mathbb{R}$ means that $\frac{1}{x}$ is an integer.

- a. Is 4 R 67 IS 4 R 8? Is (3,8) ER? IS (2,10) ER? * NO, YES, NO, YES
- b. Write R as a set of ordered points. * R = {(2,6), (2,8), (2,10), (3,6), (4,8)}
- C. Write the domain and co-domain of R. * Domain R=A={2,3,43, co-domain R=B={6,8,103}}
 d. Draw an arrow diagram for R

3.4) Let $6=\{-2,0,2\}$ and $H=\{4,6,8\}$ and define a relation V from G to H as follows:

(xy) EV means that x-y is an integer

Q. Is 2V67. Is (-2) V(-6)? Is (0,6) EV7. IS (2,4) EV? ** YES, YES, NO, NO

b. Write V as a set of ordered poirs. *V= {(-2,6), (0,4), (0.8), (2,6)}

C. Write the domain and co-domain of V. * Domain V=6= {-2,0,2}, co-domain V=H={4,6,8} d. Draw an arrow diagram for V.

3.7) Let $A = \{4,5,6\}$ and $B = \{5,6,7\}$ and define relations R, S, T from A to B as follows: $(X,Y) \in R$ means that $X \ge Y$. $(X,Y) \in S$ means that $X \ge Y$ is an integer. $T = \{(4,7), (6,5), (6,7)\}$.

b. Indicate whether any of the relations R.S., T are functions.

* none are functions.

(3.10) Find four relations from {a,b} to {x,y} that are not functions from {a,b} to {x,y}.

 (3.13) Let A= {-1,0,13 and B= {+, u, v, w}. Define a function F: A>B by the following arrow diagram.

a. Write the domain and co-domain of F.

* domain $F = A = \{-1, 0, 13\}$, co-domain $F = B = \{+1, 0, 0, 0, 0\}$ b. Find F(-1), F(0), F(1).

* F(-1) = U, F(0) = W, F(1) = U

6.16 Let f be the squaring function defined in example 1.3.6 Find f(-1), f(0), and $f(\frac{1}{2})$.

 $\# f(-1) = (-1)^2 = 1$, $f(0) = (0)^2 = 0$, $f(\frac{1}{2}) = (\frac{1}{2})^2 = \frac{1}{4}$

(3.19) Define functions f and g from R to R by the following formulas: For all $x \in R$, $S(x) = 2x \quad \text{and} \quad g(x) = \frac{2x^3 + 2x}{x^2 + 1}$

Does f=9? Explain.

*
$$g(x) = \frac{2x^3 + 2x}{x^2 + 1} = \frac{2x(x^2 + 1)}{x^2 + 1} = 2x = f(x)$$
, therefore $f = g$.