Cours

C. LACOUTURE

Année scolaire 2024-2025, MPSI2, Lycée Carnot

Première partie Géométrie

Chapitre 1 Produit scalaire

Chapitre 2

(Sous) espaces affines

2.1	Présentation	théoriq	ue

- 2.1.1 Définition
- 2.1.2 Notations
- 2.1.3 Propriétés simples
- 2.1.4 Translations
- 2.2 Sous-espaces affines
- 2.2.1 Définition
- 2.2.2 Remarque
- 2.2.3 Dimension
- 2.2.4 Exemples usuels

Ensembles des solutions d'un système d'équations linéaires

Qui s'écrit (lorsqu'il est $\neq \emptyset$)

$$S = X_0 + \ker(A)$$

Solution particulière (origine) + noyau de la matrice associée (direction)

L'ensemble des solutions d'une équation différentielle linéaire

Qui s'écrit :

— Pour une équation d'ordre 1

$$y_0 + \{\lambda Y_0(x) \text{ où } \lambda \in \mathbb{R}\}$$

Solution particulière de l'équation complète (origine) + $Vect(Y_0)$

— Pour une équation d'ordre 2

2.2.5 Parallélisme

Définition

Soient $\mathcal{E}_1 = A_1 + F_1$, $\mathcal{E}_2 = A_2 + F_2$ deux sous-espaces affines de ϵ .

- \mathcal{E}_1 est parallèle à \mathcal{E}_2 ($\mathcal{E}_1 \parallel$ à \mathcal{E}_2) ssi $F_1 \subset F_2$
- \mathcal{E}_1 et \mathcal{E}_2 sont parallèles $(\mathcal{E}_1 \parallel \mathcal{E}_2)$ ssi $F_1 = F_2$

Propriétés

— Théorème d'Euclide

Soit \mathcal{V} un sous-espace affine (d'origine A), de direction F. Soit Ω un point de \mathcal{E} . Il existe un unique sous-espace affine de \mathcal{E} passant par Ω , parallèle à \mathcal{V} .

C'est : $\mathcal{V}' = \Omega + F$ ($\Omega \in \mathcal{V}'$ donc Ω sert d'origine à $\mathcal{V}' \cdot \mathcal{V}' \parallel \mathcal{V}$ donc \mathcal{V}' a pour directie et : un point origine et la direction définissent entièrement et de manière unique \mathcal{V}')

— Soient V_1, V_2 2 sous-espaces affines de \mathcal{E}

$$\mathcal{V}_1 \parallel \ \text{à} \ \mathcal{V}_2 \Rightarrow \mathcal{V}_1 = \emptyset \text{ ou } \mathcal{V}_1 \subset \mathcal{V}_2$$

Démonstration:

On a : $\mathcal{V}_1, \mathcal{V}_2$ de directions F_1, F_2 tel que $F_1 \subset F_2$

Dès lors : montrons que si $\mathcal{V}_1 \cap \mathcal{V}_2 \neq \emptyset$ alors $\mathcal{V}_1 \subset \mathcal{V}_2$ en effet : soit $\Omega \in \mathcal{V}_1 \cap \mathcal{V}_2$. On a donc $\mathcal{V}_1 = \Omega + F_1, \mathcal{V}_1 = \Omega + F_2$. Puis : $M \in \mathcal{V}_1 \Leftrightarrow OM \in F_1 \Rightarrow OM \in F_2 \Leftrightarrow M \in \mathcal{V}_2$ d'où $\mathcal{V}_1 \subset \mathcal{V}_2$.

— Ainsi:

$$\mathcal{V}_1 \parallel \mathcal{V}_2 \Rightarrow \mathcal{V}_1 \cap \mathcal{V}_2 \neq \emptyset$$
 ou $\mathcal{V}_1 = \mathcal{V}_2$

2.2.6 Intersection

On a 2 sous-espaces affines : $V_1 = A_1 + F_1, V_1 = A_2 + F_2$

CNS d'existence

$$\mathcal{V}_1 \cap \mathcal{V}_2 \neq \emptyset \Leftrightarrow \overrightarrow{A_1 A_2} \in F_1 + F_2$$

Démonstration :

Conséquence

Si
$$E = F_1 + F_2$$
 alors $\mathcal{V}_1 \cap \mathcal{V}_2 \neq \emptyset$

Structure de $V_1 \cap V_2$ quand $\neq \emptyset$

 $\mathcal{V}_1 \cap \mathcal{V}_2$ est un sous-espace affine de \mathcal{E} , de direction $F_1 \cap F_2$.

On a : $\Omega \in \mathcal{V}_1 \cap \mathcal{V}_2$ donc $\mathcal{V}_1 = \Omega + F1, \mathcal{V}_2 = \Omega + F2$

Dès lors : $M \in \mathcal{V}_1 \cap \mathcal{V}_2 \Leftrightarrow M \in \mathcal{V}_1 \text{ et } M \in \mathcal{V}_2 \Leftrightarrow \overrightarrow{\Omega M} \in F_1 \text{ et } \overrightarrow{\Omega M} \in F_2 \Leftrightarrow \overrightarrow{\Omega M} \in F_1 \cup F_2 \Leftrightarrow M \in \Omega + F_1 \cup F_2$

Donc $V_1 \cap V_2 = \Omega + F_1 \cup F_2$ est un sous-espace affine de \mathcal{E} de direction $F_1 \cup F_2$.

Conséquence immédiate

Si
$$E = F_1 \oplus F_2$$
 alors $\mathcal{V}_1 \cap \mathcal{V}_2 = \{\text{un point}\}$
Car: on a $E = F_1 + F_2$ donc $\mathcal{V}_1 \cap \mathcal{V}_2 \neq \emptyset$
Soit $\Omega \in \mathcal{V}_1 \cap \mathcal{V}_2$
On a alors $\mathcal{V}_1 \cap \mathcal{V}_2 = \Omega + F_1 \cup F_2 = \Omega + \{O_E\} = \{\Omega\}$

2.2.7 Pratique : positions relatives de droites et plans

En dimension 2 (dans un plan affine)

Deux droites sont parallèles ou sécantes en un point.

En dimension 3 (dans un "véritable" espace affine)

— Pour deux plans affines Deux plans $\mathcal{P}_1, \mathcal{P}_2$ sont parallèles ou sécants selon une droite Démonstration : $\mathcal{P}_1 = A_1 + P_1, \mathcal{P}_2 = A_2 + P_2$ où P_2, P_2 plans vectoriels de $E = E_3$

- Soit $P_1 = P_2$ c-à-d $\mathcal{P}_2 \parallel \mathcal{P}_2$
- Soit $P_1 \neq P_2$

 $\exists \overrightarrow{u_2} \in P_2$ tel que $\overrightarrow{u_2} \notin P_1$ On sait alors que $P_1 \oplus \operatorname{Vect}(\overrightarrow{u_2}) = E_3$ (cf cours sur les hyperplans, P_1 en étant un) avec $\operatorname{Vect}(\overrightarrow{u_2}) \subset P_2$ puis $E_3 = P_1 + \operatorname{Vect}(\overrightarrow{u_2}) \subset P_1 + P_2$ donc $P_1 + P_2 = E_3$ donc $\mathcal{P}_1 \cap \mathcal{P}_2 \neq \emptyset$ donc $\mathcal{P}_1 \cap \mathcal{P}_2$ est un espace affine de direction $P_1 \cap P_2$ avec dim $P_1 \cap P_2 = \dim P_1 + \dim P_2 - \dim P_1 + P_2 = 2 + 2 - 3 = 1$ donc $P_1 \cap P_2$ est une droite vectorielle bref \mathcal{P}_1 et \mathcal{P}_2 sont sécants selon une droite affine.

- Pour une droite et un plan
 - \mathcal{D} et \mathcal{P} sont tels que $\mathcal{P} \parallel \grave{a} \mathcal{P}$ ou $\mathcal{D} \cap \mathcal{P} = \{1 \text{ point}\}$ Démonstration : $\mathcal{D} = A + D$, $\mathcal{P} = B + P$
 - Soit $D \subset P$ c-à-d $\mathcal{D} \parallel$ à \mathcal{P}
 - Soit $D \not\subset P$

Alors $P \oplus D = E_3$ (cf cours sur les hyperplans) donc $\mathcal{P} \cap \mathcal{D} = 1$ point

- Pour deux droites : $\mathcal{D}_1 = A_1 + D_1$, $\mathcal{D}_2 = A_2 + D_2$
 - Définition de la coplanarité \mathcal{D}_1 et \mathcal{D}_2 sont coplanaires ssi $\mathcal{D}_1 parr \mathcal{D}_2 ou \mathcal{D}_1 inter \mathcal{D}_2$ {un point}
 - En notant $\mathcal{D}_1 = A_1 + \operatorname{Vect}(\overrightarrow{u_1}), \mathcal{D}_2 = A_2 + \operatorname{Vect}(\overrightarrow{u_2})$ On a : \mathcal{D}_1 et \mathcal{D}_2 coplanaires $\Leftrightarrow (\overrightarrow{A_1 A_2}, \overrightarrow{u_1}, \overrightarrow{u_2})$ lié. Démonstration : (A1A2,u1,u2) lié signifie :
 - $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires, c-à-d $D_1 = \text{Vect}(\overrightarrow{u_1}) = D_2 = \text{Vect}(\overrightarrow{u_2})$ c-à-d $\mathcal{D}_1 \parallel \mathcal{D}_2$
 - $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ non colinéaires, avec $\overrightarrow{A_1A_2} \in \text{Vect}(\overrightarrow{u_1}, \overrightarrow{u_2})$ c-à-d $\overrightarrow{A_1A_2} \in D_1 + D_2$ c-à-d $\mathcal{D}_1 \cap \mathcal{D}_2 \neq \emptyset$ c-à-d $\mathcal{D}_1 \cap \mathcal{D}_2 = \{\text{un point}\} \text{ car } D_1 \cap D_2 = \text{Vect}(\overrightarrow{u_1}) \cap \text{Vect}(\overrightarrow{u_2}) = \{O_E\}$

2.3 Étude analytique

2.3.1 Définitions générales

Repère cartésien (ou affine)

Un repère cartésien d'un espace affine \mathcal{E} (de direction E) est : $\mathcal{R} = (O, e_1, e_2, ..., e_n)$ où :

- $O \in \mathcal{E}$ (origine du repère)
- (e1,...,en) base de E

11

Coordonnées cartésiennes

$$\forall M \in \mathcal{E}, \exists ! (x_1, ..., x_n) \in \mathbb{R}^n \text{ tel que}$$

$$\overrightarrow{OM} = x_1 \overrightarrow{e_1} + ... + x_n \overrightarrow{e_n}$$

 $(x_1,...,x_n)$ ou $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ sont les coordonnées cartésiennes du point M, dans

Équation cartésienne

Soit $\mathcal{F} \subset \mathcal{E}$ (\mathcal{F} : partie de \mathcal{E}). On appelle équation cartésienne de \mathcal{F} , toute relation entre les coordonnées cartésiennes $x_1, ..., x_n$ d'un point M de \mathcal{E} . Cette relation exprime une CNS pour que $M \in \mathcal{F}$.

Repère orthonormé

Dans le cas où E est un \mathbb{R} ev euclidien et $(e_1, ..., e_n)$ est une BON de E $(O, e_1, ..., e_n)$ est un RON (repère orthonormé) de \mathcal{E}

2.3.2Exemples en dimension 2

 \mathcal{E}_2 a pour repère cartésien (O, i, j). Les droites \mathcal{D} de \mathcal{E}_2 sont les parties de \mathcal{E}_2 d'équation cartésienne ax + by + c = 0 où $(a, b) \neq (0, 0)$

Démonstration :

Sens direct Soit \mathcal{D} une droite de \mathcal{E}_2 , passant par $\Omega\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ dans (O, i, j),

dirigée par $\overrightarrow{v} \mid \begin{matrix} \alpha \\ \beta \end{matrix}$ dans(i,j) où $(\alpha,\beta) \neq (0,0)$. On a alors :

$$M \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{D} \Leftrightarrow \overrightarrow{\Omega M} \in \mathcal{D} = \text{Vect}(\overrightarrow{v})$$

$$\Leftrightarrow \overrightarrow{\Omega M} e t \overrightarrow{v} \text{ sont liés}$$

$$\Leftrightarrow \det(\overrightarrow{\Omega M}, \overrightarrow{v}) = 0$$

$$\Leftrightarrow \beta(x - x_0) - \alpha(y - y_0) = 0$$

$$\Leftrightarrow \beta x - \alpha y + \alpha y_0 - \beta x_0 = 0$$

$$(2.1)$$

On a bien une équation de la forme : ax + by + c = 0 où $(a, b) = (\beta, -\alpha) \neq$ (0,0)

sens réciproque Soit $\mathcal{D} \subset \mathcal{E}_2$ d'équation cartésienne : ax + by + c = 0 (où $(a,b) \neq (0,0)$) vu que $(a,b) \neq (0,0)$: l'équation ci-dessus a des solutions (par exemple : si $a \neq 0$, $(\frac{-c}{a},0)$ est solution). Notons (x_0,y_0) une de ces solutions. On a alors

$$M \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{D} \Leftrightarrow ax + by + c = ax_0 + by_0 + c$$

$$\Leftrightarrow a(x - x_0) + b(y - y_0) = 0$$

$$\Leftrightarrow \begin{vmatrix} x - x_0 & -b \\ y - y_0 & a \end{vmatrix} = 0$$

$$\Leftrightarrow \overrightarrow{\Omega M} \text{ et } \overrightarrow{u} \text{ sont liés (où } \Omega \text{ est le point de coordonnées } \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

$$\text{dans } (O, i, j) \text{ et } \overrightarrow{u} \text{ est le vecteur de coordonnées } \begin{vmatrix} -b \\ a \end{vmatrix}$$

$$\text{dans } (i, j) \text{ donc } \overrightarrow{u} \neq \overrightarrow{0})$$

$$\Leftrightarrow \overrightarrow{\Omega M} \subset D = \text{Vect}(\overrightarrow{u})$$

$$\Leftrightarrow M \in \Omega + D$$

$$(2.2)$$

donc \mathcal{D} est bien une droite affine, de direction D = Vect(-ba)Remarques :

Pour \mathcal{D} d'équation cartésienne ax + by + c = 0 dans (O, i, j).

Un vecteur de base de
$$D$$
 est $\overrightarrow{u} \mid \begin{matrix} -b \\ a \end{matrix}$ dans (i,j) .

Une équation de D est : ax + by = 0

Vérifiée par
$$\begin{vmatrix} -b \\ a \end{vmatrix}$$
 et passant par O_{E_2} de coordonnées (00) dans (i,j) .

Dans le cas d'un espace euclidien et d'un RON (O, i, j)

$$D^\perp=\mathrm{Vect}(\left|\begin{array}{c}a\\b\end{array}\right)$$
 car D^\perp est de dimension 1 et $\left|\begin{array}{c}a\\b\end{array}\right.\cdot\left|\begin{array}{c}-b\\a\end{array}\right.=0$ donc $\left|\begin{array}{c}a\\b\end{array}\right.\in D^\perp$

13

2.3.3 Exemples en dimension 3

Les plans affines de \mathcal{E}_3

Sont les parties de \mathcal{E}_3 d'équation cartésienne : ax+by+cz+d=0 où $(a,b,c)\neq (0,0,0)$

Remarques:

- L'équation de la direction P dans (i, j, k) est alors ax + by + cz = 0
- Dans le cas d'un RON : $P^{\perp} = \text{Vect}(\begin{vmatrix} a \\ b \\ c \end{vmatrix})$

Les droites affines de \mathcal{E}_3

Sont les intersections de deux plans de \mathcal{E}_3 non parallèles c-à-d les parties de \mathcal{E}_3 définies par deux équations cartésiennes de la forme $\begin{cases} ax+by+cz+d &= 0\\ a'x+b'y+c'z+d' &= 0 \end{cases}$ où $(a,b,c),(a',b',c')\neq (0,0,0)$ et sont non colinéaires (pour ne pas donner la même équation directionnelle)