VOLUME TABLES FOR 11 IMPORTANT TREE SPECIES GROWN IN THE HOME GARDENS OF BANGLADESH

M. A. LATIF S.M. ZAHIRUL ISLAM

FOREST INVENTORY DIVISION

BANGLADESH FOREST RESEARCH INSTITUTE CHITTAGONG

P. O. Box-273, Chittagong 4000, Bangladesh. 2000

Volume Tables For 11 Important Tree Species Grown In The Home Gardens Of Bangladesh

M. A. Latif and S.M. Zahirul Islam
Divisional Officer, Bangladesh Forest Research Institute
Post Box-273, Chittagong 4000, Bangladesh

Introduction

The climatic conditions of Bangladesh are not uniform through out the whole country. Therefore, the species composition and growth rates of different species growing in the home gardens at different parts of Bangladesh are not the same. At the same time volume tables and growth rates for these species growing in the different areas are not known. A village forest inventory was carried out in 1980-81 by FAO/UNDP (Hamermaster 1981) and re-measurement was taken in 1984 (Renes *et.al* 1984). Volume tables (Latif *et. al.* 1999) and growth and yield tables (Latif 1999) of 5 important species planted on croplands in the western parts of Bangladesh have been prepared. Volume tables and estimation of growth rates for the important species are essential to know the stocking and its management. Therefore, the present study has been under taken with the financial assistance of the World Bank under Agricultural Research Management Project organised by the Bangladesh Agricultural Research Council.

Materials And Methods

Hamermaster (1981) divided Bangladesh into 6 echo-geographical regions. He excluded Chittagong district from his classification. Chittagong has been included in the present study. Thus there were 7 echo-geographical regions. A multistage random sampling method was applied to locate representative villages for the study. Sampling was done at four levels: district, Thana, village and individual fAmmmily. Districts were selected followed by selection of Thana, villages and individual family at random from each zone. Then representative trees of the selected family were chosen at random.

We selected representative trees for each species and girth at breast height (gbh) classes at random for preparation of volume tables. First, we measured the gbh and total heights of the standing trees. Then we measured the girths of the tree at one meter intervals from at about 30 cm above ground level. We removed a small sample of bark from each point of girth measurements and measured the bark thickness to estimate the under bark girth. We measured the girths at one meter

intervals and bark thickness by climbing on the trees with ladders. We collected data of 1227 trees for preparation of volume tables for the 11 important species. The dbh class distributions of the sample trees are given in table 1.

Compilation of data: We computed volumes of all the sections except top portions by using the mean cross-sectional areas of the two ends of each section (Smallian formula). We assumed the top section cone and computed volume as one third of the cylindrical volume of the portion. We considered the top end girth measurement for each tree as the base girth of the cone. We ignored the volume of the cone for estimation of under bark tree volume. We estimated the individual tree volume by summing up the volume of each section of a tree. We used regression equations to relate these individual tree volumes (V) to gbh (G) and total height (H) using various functions and transformations as required in the models.

Computation of volume function: We did multiple regression analyses to select the best suited equations. We tried the following 15 models to select the equation of best fit with different variables as follows.

1.
$$V = a + bG$$

2.
$$V = a + bG + cG^2$$

3.
$$V = a + bG^2$$

4.
$$V = a + bG^2H$$

5.
$$V = a + bG^2 + cH + dG^2H$$

6.
$$V = a + bG^2 + cGH + dG^2H$$

7.
$$ln(V) = a + b ln(G)$$

8.
$$ln(V) = a + b ln(G) + c ln(H)$$

9.
$$V/G^2 = a + b/G^2 + c/G$$

10.
$$V/G^2 = a + b/G$$

11.
$$V/G^2H = a + b/G^2H$$

12.
$$V/G^2H = a + b/G^2 + cH/G^2 + GH$$

13.
$$V/G^2h = a + b/G^2H + c/H + d/G^2$$

14.
$$V/G^2 = a + b/G^2 + cH/G + dH$$

15. $V/G^2H = a + b/G^2H + c/H + d/G$

Where: V= total volume over bark in cubic meters,

G= girth at breast height in cm,

H = total height in meters

 b_0 is the regression constant and b, c and d are regression coefficients.

The logarithmic functions are to the base e.

We have chosen the equations of the best fit based on the highest multiple coefficient of determination, F-ratio and lowest residual mean square. We have selected models for estimation of the total volume over bark and conversion factors to estimate under bark volume and under bark volumes to top end diameters of approximately 5, 10, 15 and 20 cm over bark.

Results And Discussions

We have selected volume equations for estimation of total volume over bark for 11 important species. The species are: Ama, Badi, Jam, Kanthal, Koroi, Mahogany, Neem, Pitraj, Rain tree, shimul and KadAm. We have selected conversion factors to estimate under bark volume and under bark volumes to top end diameter of approximately 5,10,15 an 20 cm over bark. The selected volume equations and conversion factors are given in Table 2.

We have estimated volumes and conversion factors for ready use and are presented in Table 3-23. The volume equations and tables are applicable for the 11 species growing in the home gardens of seven echo-geographical regions of Bangladesh.

Confidence limit: These volume tables should not be used to estimate volumes of individual trees in a stand. These tables may be used for the mean tree of a stand which may be multiplied by the number of stem to get the total volume of the stand. Estimation of volumes for the trees much out side the height and gbh ranges shown in the stand table should only be done with caution.

How To Use Volume Tables And Conversion Factors

Take the measurements of girth(s) at breast height and total height(s) of the desired tree(s) first to have an estimate of the volume. Then, choose the corresponding total volume over bark from the

3

volume tables or estimate the total over bark volume by using the volume equation of the selected species and convert this total over bark volume to under bark volume for desired top end diameter limit. For example, let the girth and height of the selected **Amm** tree are 66 cm and 14 m respectively. Then, the total volume for this mahogany tree is:

```
log (V) = -11.25377 + 1.96697 \times log(G) + 0.52237 \times log (H)
= -11.25377 + 1.96697 \times log(66) + 0.52237 \times log (14)
= -1.63428
V = Exp.(log(V)) = 0.19509
```

Multiply this total volume over bark with the corresponding conversion factor to estimate the under bark volume to different top end diameter limits. For examples, under bark volume (V_{ub}) will be estimated as given below:

```
V_{ub} = V \times F_{ub} = 0.19509 \times 0.909 = 0.177 cum.
```

Similarly, under bark volume up to top end diameters of 5 cm (girth=15.7 cm) and 10 cm (girth= 31.4 cm) may be estimated as given below:

$$V_5 = V \times F_5 = 0.19509 \times 0.804 = 0.157 \text{ cu m}.$$

$$V_{10} = V \times F_{10} = 0.19509 \times 0.712 = 0.139 \text{ cu. m.}$$

If the measured gbh and total height coincide with the tabular gbh and total height then the tabular values may only be used directly. Other wise, the volumes and conversion factors should be estimated first by using the respective equations followed by estimation of desired volume as given above. The one way volume tables (GBH-volume tables and equations) may similarly be used.

Table 1. Girth at breast height (gbh) class distribution of sample trees measured for volume estimation for the important tree species grown in the home gardens of the seven Echo-agrogeographical zones of Bangladesh

						G	BH Cla	iss						
Species	<15.0	15.1-	30.1-	45.1-	60.1-	75.1-	90.1-	105.1-	120.1	135.1-	150.1-	165.1-	180.0	Total
Species	\13.0	30.0	45.0	60.0	75.0	90.0	105.0	120.0	135.0	150.0	165.0	180.0	+	Total
Amm	7	49	54	65	57	35	29	20	15	8	3	2	4	348
Kanthal	4	19	23	20	21	14	4	7	2	1	1	3	1	120
Rain tree	5	14	15	14	18	14	16	18	17	5	5	3	10	154
Korai	3	20	25	19	20	16	20	6	7	3	2			141
Mahogany	8	25	25	16	11	6	6	4	2	1	1			105
Jam	2	10	21	18	20	11	8	2	4	2				98
Pitraj	5	29	24	12	13	12	4	2	4			1		106
Badi		15	15	24	15	8	10							87
Kadam		3	4	2	1	3	1							14
Neem		5	8	9	7	5	2							36
Shimul	4		2	5	3	2	2							18
Total	38	189	216	204	186	126	102	79	51	20	12	9	15	1227

Table 2. Volume and conversion factor equations selected to estimate total volume and under bark volumes to different top end diameters for 11 important species of home gardens of Bangladesh

Species	Selected Model	N	R ²
	$log(V_t) = -11.27269 + 2.24506 \times log(G)$	343	0.975
	$log(V_t) = -11.25377 + 1.96697 \times log(G) + 0.52237 \times log(H)$	343	0.981
	$F_{ub} = G/(5.17418 + 0.00747 \times G)$	342	0.991
Amm	F ₅ = 0.93459 - 8.61513/ G	339	0.635
	F ₁₀ = 0.98017 - 17.68901/ G	312	0.781
	F_{15} = - 0.38336 + 0.01709×G - 0.00005×G ²	262	0.858
	$F_{20} = -0.21340 + 0.00747 \times G$	208	0.789
Badi	$log(V_t) = -11.519102 + 2.01724 \times log(G) + 0.56356 \times log(H)$	87	0.971
	$F_{ub} = G/(5.42321 - 0.00020 \times G + 1.06073 \times G^2)$	87	0.984
	$F_5 = G/(11.61961 + 1.17583 \times G + 0.00015 \times G^2)$	87	0.943

Species	Selected Model	N	R ²
	$F_{10} = -0.5897 + 0.03195G - 0.00018G^2$	80	0.856
	0.709 is constant from gbh 63 cm		
	$F_{15} = -0.26776 + 0.01039 \times G$	63	0.820
	0.667 is constant from gbh 90 cm		
	$F_{20} = -0.01928 - 0.00269*G + 0.00009 \times G^2$	42	0.835
	0.643 is constant from gbh 102 cm		
	$log(V_t) = -11.24854 + 2.24804 \times log(G)$	99	0.966
	$log(V_t) = -11.10705 + 2.32592 \times log(G) + 0.8952 \times log(H)$	99	0.966
	F _{ub} = G/ (4.68356 + 1.02669×G)	97	0.994
	$F_5 = G/(14.01780 + 1.05539 \times G)$	97	0.937
Jam	$F_{10} = 0.02585 + 0.01522 \times G - 0.00007 \times G^2$	90	0.650
Jaili	0.774 is constant from gbh 75 cm		
	$F_{15} = -0.58716 + 0.02363 \times G - 0.00010 \times G^2$	79	0.754
	0.712 is constant from gbh 87 cm		
	$F_{20} = -1.07185 + 0.02794 \times G - 0.00010 \times G^2$	61	0.798
	0.633 is constant from gbh 90 cm		
	log(V _t) = -11.63629 + 232592×log (H)	14	0.983
	$log(V_t) = -11.12693 + 1.83260 \times log(G) + 0.68015 \times log(H)$	14	0.993
	F _{ub} = G/ (6.16218 + 0.99459×G)	14	0.991
	F ₅ = G/(3.19902 + 1.02381×G	14	0.981
Kadam	$F_{10} = -0.72032 + 0.03824 \times G - 0.00023 \times G^2$	14	0.949
Kadam	0.771 is constant from gbh 60 cm		
	F ₁₅ = -0.36310 + 0.01252×G	14	0.933
	0.697 is constant from gbh 78 cm		
	F ₂₀ = 1.34008 - 69.21674 / G	14	0.864
	0.661 is constant from gbh 102 cm		
Kanthal	$log(V_t) = -11.06320 + 2.18203 \times log(G)$	119	0.970
	$log(V_t) = -10.99533 + 1.80823 \times log(G) + 0.68951 \times log(H)$	119	0.983
	F _{ub} = G/(3.4178 + 1.02183×G)	118	0.997
	$F_5 = G/(11.53636 + 1.00570 \times G + 0.00024 \times G^2)$	118	0.968

Species	Selected Model	N	R ²
	F ₁₀ = 1.11123 -22.96773/ G	118	0.968
	0.828 is constant from gbh 81 cm		
	$F_{15} = -0.37865 + 0.01738 \times G + 0.00006 \times G^2$	119	0.850
	0.770 is constant from gbh 102 cm		
	$F_{20} = -0.1894 + 0.0072 \times G$	119	0.800
	0.718 is constant from gbh 126 cm		
	$log(V_t) = -11.50692 + 2.31757 \times log(G)$	140	0.968
	$log(V_t) = -11.19651 + 1.85690 \times log(G) + 0.67878 \times log(H)$	140	0.979
	$F_{ub} = G/(4.71339 + 1.02449 \times G)$	140	0.994
	$F_5 = G/(12.65919 + 1.05281vG)$	138	0.977
Korai	$F_{10} = 1.11036 - 25.51349 \times G$, 0.770 is constant from gbh 81 cm	124	0.843
	$F_{15} = -052064 + 0.0197 \times G - 0.00007 \times G^2$	104	0.840
	0.725 is constant from gbh 96 cm		
	$F_{20} = -0.93939 + 0.02327 \times G - 0.00007 \times G^2$	83	0.865
	0.649 is constant from gbh 96 cm		
	$log(V_t) = -11.46122 + 2.29592 \times log(G)$	105	0.981
	$log(V_t) = -11.27102 + 1.88064 \times log(G) + 0.64629 \times log(H)$	105	0.990
	$F_{ub} = G/(4.52235 + 1.01229 \times G)$	105	0.993
Mahogany	$F_5 = G/(19.22348 + 0.774085 \times G + 0.00208 \times G^2)$	103	0.789
ivianogany	$F_{10} = 1.15448 - 26.78537/G$, 0.857 is constant from gbh 75 cm	84	0.892
	$F_{15} = -0.84673 + 0.02915 \times G - 0.00012 \times G^2$	63	0.908
	0.805 is constant from gbh 90 cm		
	$F_{20} = -0.26397 + 0.0082*G$, 0.720 is constant from gbh 120 cm	42	0.926
	$log(V_t) = -11.33340 + 2.25814 \times log(G)$	36	0.974
	$log(V_t) = -11.42823 + 1.89235 \times log(G) + 0.71493 \times log(H)$	36	0.985
	F _{ub} = G/ (4.52235+ 1.01229×G)	105	0.993
Naam	F ₅ = 1.00005 - 9.02065/ G	103	0.789
Neem	F ₁₀ = 1.15448 - 26.78537/ G , 0.797 is constant from gbh 75 cm	84	0.892
	$F_{15} = -0.84673 + 0.02915 \times G - 0.00012 \times G^2$	63	0.908
	0.729 is constant from gbh 81 cm		
	$F_{20} = -0.26397 + 0.00820 \times G$	42	0.770

Species	Selected Model	N	R ²
	log(V _t) = -11.25645 + 2.25821×log (G)	105	0.973
	$log(V_t) = -11.25528 + 1.98544 \times log(G) + 0.47163 \times log(H)$	105	0.987
	$F_{ub} = G/(4.52235 + 1.01229 \times G)$	105	0.973
Pitraj	$F_5 = G/(21.37330 + 0.77370 \times G + 0.00172 \text{ vG}^2)$	104	0.935
Ficial	0.864 is constant from gbh 117 cm		
	$F_{10} = 1.15448 - 26.7855 / G$, 0.811 is constant from gbh 78 cm	86	0.861
	$F_{15} = 1.21272 - 45.21082/G$, 0.782 is constant from gbh 105 cm	59	0.836
	$F_{20} = 1.34008 - 69.21674/G$, 0.717 is constant from gbh 111 cm	41	0.864
	log(V _t) = -11.37623 + 2.26924×log (G)	153	0.981
	log(V _t) = -11.31983 + 1.91118×log (G) + 0.63606×log (H)	153	0.990
	$F_{ub} = G/(4.79468 + 1.02087 \times G - 0.00001 \times G^2)$	153	0.996
Rain Tree	F ₅ = G/(11.83487 + 1.05773×G)	149	0.941
	$F_{10} = 1.5448 - 6.78537/G$, 0.766 is constant from gbh 69 cm		
	$F_{15} = 1.21272 - 45.21082/G$, 0.710 is constant from gbh 93 cm		
	F20 = 1.34008 - 69.21674/G, 0.661 is constant from gbh 102 cm		
	log(V _t) = -12.14029 + 2.48771×log (G)	19	0.988
	log(V _t) = -11.54528 + 1.93559×log (G) + 0.70716×log (H)	19	0.992
	F _{ub} = G/ (4.71088 + 1.02902×G)	19	0.996
	$F_5 = G/(39.30153 + 0.42284 \times G + 0.00411 \times G^2)$	19	0.887
	0.780 is constant from gbh 36 cm		
Shimul	$F_{10} = -0.41831 + 0.0204 \times G - 0.00011 \times G^2$	19	0.904
	0.717 is constant from gbh 69 cm		
	$F_{15} = -0.41250 + 0.01649 \times G - 0.00005 \times G^2$	19	0.879
	0.667 is constant from gbh 90 cm		
	$F_{20} = -0.16713 + 0.00406 \times G + 0.00003 \times G^2$	19	0.815
	0.592 is constant from gbh 90 cm		

Table 3. One way volume tables for 11 important tree species of the home gardens of Bangladesh

	GBH	Amm	B adi	Jam	Kodam	Kanthal	Korai	Mahogany	Neem	Pitraj	Rain	Shimul
1	(cm)										Tree	
24									0.008	0.009	0.008	0.007
27	21	0.012			0.011	0.012	0.012	0.011	0.012	0.013	0.011	
30	24	0.016	0.015	0.017	0.014	0.016	0.016	0.016	0.016	0.017	0.016	0.014
33	27	0.021	0.020	0.022	0.019	0.021	0.021	0.020	0.020	0.022	0.020	0.019
36	30	0.026	0.026	0.027	0.024	0.026	0.027	0.026	0.026	0.028	0.026	0.025
39	33	0.033	0.032	0.034	0.030	0.032	0.033	0.032	0.032	0.035	0.032	0.032
42	36	0.040	0.039	0.041	0.037		0.041	0.039	0.039	0.042	0.039	0.040
45	39	0.047	0.047	0.049	0.044	0.046	0.049	0.047	0.047	0.051	0.047	0.048
48 0.076 0.076 0.078 0.072 0.073 0.079 0.076 0.075 0.081 0.075 0.081 51 0.087 0.088 0.090 0.083 0.093 0.098 0.093 0.086 0.093 0.086 0.098 0.090 0.000 0.098 0.106 0.098 0.109 0.098 0.109 0.098 0.109 0.098 0.090 0.095 0.091 0.010 0.014 0.013 0.110 0.121 0.016 0.017 0.018 0.150 0.177 0.016 0.151 0.161 0.184 0.176 0.018 0.176 0.018 0.179 0.018 0.187 0.020 <td>42</td> <td>0.056</td> <td>0.056</td> <td>0.058</td> <td>0.053</td> <td>0.055</td> <td>0.058</td> <td>0.056</td> <td>0.055</td> <td>0.060</td> <td>0.055</td> <td>0.058</td>	42	0.056	0.056	0.058	0.053	0.055	0.058	0.056	0.055	0.060	0.055	0.058
51 0.087 0.088 0.090 0.083 0.083 0.091 0.088 0.096 0.093 0.086 0.095 54 0.099 0.100 0.102 0.095 0.095 0.104 0.100 0.098 0.106 0.098 0.105 57 0.111 0.113 0.110 0.105 0.118 0.113 0.110 0.119 0.113 0.110 0.119 0.113 0.110 0.119 0.111 0.119 0.133 0.124 0.134 0.144 0.135 0.132 0.149 0.142 0.138 0.150 0.160 0.151 0.146 0.166 0.155 0.160 0.151 0.146 0.166 0.158 0.157 0.171 0.177 0.177 0.171 0.177 0.171	45	0.065	0.066	0.068	0.062	0.063	0.068	0.066	0.065	0.070	0.065	0.069
54 0.099 0.100 0.102 0.095 0.095 0.104 0.100 0.098 0.106 0.098 0.101 0.119 0.110 0.119 0.111 0.115 0.107 0.106 0.118 0.113 0.110 0.119 0.111 0.119 0.121 0.119 0.131 0.110 0.113 0.124 0.134 0.124 0.134 0.124 0.135 0.132 0.149 0.142 0.138 0.150 0.160 66 0.155 0.159 0.160 0.151 0.166 0.158 0.156 0.151 0.166 0.158 0.166 0.158 0.166 0.158 0.166 0.158 0.166 0.154 0.170 0.166 0.158 0.166 0.154 0.170 0.166 0.160 0.174 0.200 0.140 0.172 0.201 0.176 0.161 0.184 0.176 0.184 0.179 0.202 0.261 0.242 0.222 0.206 0.224 0.224 0.224 <td>48</td> <td>0.076</td> <td>0.076</td> <td>0.078</td> <td>0.072</td> <td>0.073</td> <td>0.079</td> <td>0.076</td> <td>0.075</td> <td>0.081</td> <td>0.075</td> <td>0.081</td>	48	0.076	0.076	0.078	0.072	0.073	0.079	0.076	0.075	0.081	0.075	0.081
57 0.111 0.113 0.115 0.107 0.106 0.118 0.113 0.110 0.119 0.111 0.125 60 0.125 0.128 0.129 0.121 0.119 0.133 0.124 0.134 0.124 0.132 0.149 0.142 0.138 0.150 0.139 0.160 66 0.155 0.159 0.160 0.151 0.146 0.166 0.158 0.154 0.160 0.160 66 0.155 0.159 0.160 0.151 0.146 0.166 0.158 0.154 0.160 0.171 0.177 0.177 0.177 0.188 0.177 0.203 0.194 0.184 0.171 0.203 0.194 0.188 0.202 0.218 0.220 0.218 0.220 0.218 0.220 0.288 0.220 0.261 0.244 0.244 0.242 0.225 0.272 0.211 0.244 0.224 0.224 0.225 0.272 0.265 0.254	51	0.087	0.088	0.090	0.083	0.083	0.091	0.088	0.086	0.093	0.086	0.095
60 0.125 0.128 0.129 0.121 0.119 0.133 0.127 0.124 0.134 0.144 0.135 0.132 0.149 0.124 0.138 0.150 0.139 0.160 66 0.155 0.159 0.160 0.151 0.146 0.166 0.158 0.154 0.166 0.154 0.166 0.157 0.166 0.158 0.154 0.166 0.157 0.166 0.158 0.157 0.166 0.158 0.177 0.170 0.184 0.171 0.170 0.184 0.171 0.202 0.188 0.171 0.203 0.194 0.223 0.213 0.202 0.218 0.227 0.211 0.244 0.233 0.222 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.222 0.221 0.222 0.222 0.221 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.221 0.223 0.233 0.244 0.264 0.242 <td>54</td> <td>0.099</td> <td>0.100</td> <td>0.102</td> <td>0.095</td> <td>0.095</td> <td>0.104</td> <td>0.100</td> <td>0.098</td> <td>0.106</td> <td>0.098</td> <td>0.109</td>	54	0.099	0.100	0.102	0.095	0.095	0.104	0.100	0.098	0.106	0.098	0.109
63 0.139 0.143 0.144 0.135 0.139 0.149 0.142 0.138 0.150 0.139 0.160 66 0.155 0.159 0.160 0.151 0.146 0.166 0.158 0.150 0.164 0.179 69 0.171 0.177 0.177 0.161 0.184 0.176 0.170 0.184 0.171 0.170 0.184 0.171 0.202 0.188 0.177 0.203 0.194 0.187 0.202 0.188 0.223 75 0.206 0.214 0.214 0.203 0.194 0.223 0.213 0.224 0.225 0.226 0.247 78 0.225 0.255 0.224 0.224 0.226 0.254 0.244 0.223 0.210 0.288 0.302 0.288 0.327 0.226 0.254 0.242 0.225 0.276 0.265 0.286 0.254 0.242 0.225 0.327 0.327 0.322 0.30 0.283 <td>57</td> <td></td> <td>0.113</td> <td>0.115</td> <td>0.107</td> <td>0.106</td> <td>0.118</td> <td>0.113</td> <td>0.110</td> <td>0.119</td> <td>0.111</td> <td>0.125</td>	57		0.113	0.115	0.107	0.106	0.118	0.113	0.110	0.119	0.111	0.125
66 0.155 0.159 0.160 0.151 0.166 0.158 0.154 0.166 0.154 0.179 69 0.171 0.177 0.177 0.167 0.161 0.184 0.176 0.184 0.171 0.202 72 0.188 0.195 0.185 0.177 0.203 0.194 0.187 0.202 0.188 0.223 75 0.206 0.214 0.214 0.203 0.194 0.223 0.213 0.205 0.222 0.206 0.247 78 0.225 0.235 0.234 0.222 0.211 0.244 0.233 0.224 0.242 0.225 0.272 81 0.246 0.256 0.254 0.248 0.290 0.276 0.264 0.248 0.290 0.276 0.268 0.314 0.299 0.287 0.268 0.314 0.299 0.287 0.310 0.383 0.331 0.332 0.331 0.333 0.310 0.383 0.310	60		0.128	0.129	0.121	0.119	0.133	0.127	0.124	0.134	0.124	0.142
69 0.171 0.177 0.177 0.167 0.161 0.184 0.176 0.170 0.184 0.171 0.200 72 0.188 0.195 0.195 0.185 0.177 0.203 0.194 0.223 0.202 0.188 0.222 0.214 0.203 0.194 0.223 0.213 0.205 0.222 0.206 0.247 78 0.225 0.235 0.234 0.222 0.211 0.244 0.233 0.224 0.224 0.225 0.272 81 0.245 0.256 0.254 0.243 0.229 0.266 0.254 0.244 0.264 0.246 0.298 84 0.266 0.279 0.276 0.268 0.314 0.299 0.286 0.267 0.327 87 0.288 0.302 0.298 0.287 0.268 0.314 0.299 0.286 0.327 0.310 0.333 0.310 0.333 0.312 0.333 0.330 0.379	63	0.139	0.143	0.144	0.135	0.132	0.149	0.142	0.138	0.150	0.139	0.160
72 0.188 0.195 0.185 0.177 0.203 0.194 0.187 0.202 0.188 0.223 75 0.206 0.214 0.214 0.203 0.194 0.223 0.213 0.205 0.222 0.220 0.272 78 0.225 0.234 0.222 0.211 0.244 0.233 0.224 0.246 0.248 0.290 0.265 0.286 0.267 0.268 0.314 0.299 0.287 0.310 0.288 0.301 0.327 0.322 0.310 0.288 0.301 0.335 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.331 0.335 0.332 0.335 0.337 0.335 0.335 0.335 0.337 0.335	66		0.159	0.160	0.151	0.146	0.166	0.158	0.154	0.166	0.154	0.179
75 0.206 0.214 0.214 0.203 0.194 0.223 0.213 0.205 0.222 0.206 0.247 78 0.225 0.235 0.234 0.222 0.211 0.244 0.233 0.224 0.242 0.225 0.272 81 0.246 0.254 0.243 0.229 0.266 0.254 0.244 0.246 0.229 84 0.266 0.279 0.276 0.264 0.248 0.290 0.276 0.265 0.287 0.310 0.287 0.310 0.287 0.310 0.287 0.310 0.287 0.310 0.287 0.310 0.287 0.310 0.288 0.340 0.323 0.310 0.335 0.330 0.335 0.330 0.335 0.330 0.335 0.330 0.335 0.330 0.335 0.330 0.336 0.421 96 0.359 0.379 0.372 0.351 0.332 0.375 0.358 0.384 0.411 0.437 </td <td>69</td> <td>0.171</td> <td>0.177</td> <td>0.177</td> <td>0.167</td> <td>0.161</td> <td>0.184</td> <td>0.176</td> <td>0.170</td> <td>0.184</td> <td>0.171</td> <td>0.200</td>	69	0.171	0.177	0.177	0.167	0.161	0.184	0.176	0.170	0.184	0.171	0.200
78 0.225 0.235 0.234 0.222 0.211 0.244 0.233 0.224 0.242 0.245 0.246 0.299 81 0.266 0.256 0.256 0.254 0.243 0.229 0.266 0.254 0.244 0.266 0.269 0.266 0.265 0.268 0.267 0.276 0.268 0.276 0.268 0.276 0.268 0.276 0.268 0.276 0.268 0.276 0.268 0.314 0.299 0.287 0.310 0.289 0.357 90 0.310 0.327 0.322 0.310 0.288 0.340 0.323 0.310 0.339 0.331 0.335 0.341 0.332 0.310 0.335 0.331 0.335 0.341 0.299 0.384 0.303 0.361 0.332 0.395 0.375 0.358 0.387 0.351 0.421 0.481 0.483 0.461 0.437 0.421 0.435 0.343 0.411 0.444 0.403	72	0.188	0.195	0.195	0.185	0.177	0.203	0.194	0.187	0.202	0.188	0.223
81 0.245 0.256 0.254 0.243 0.229 0.266 0.254 0.244 0.264 0.264 0.299 84 0.266 0.279 0.276 0.264 0.248 0.290 0.265 0.265 0.286 0.267 0.327 87 0.288 0.302 0.298 0.287 0.268 0.314 0.299 0.237 0.310 0.289 0.335 90 0.310 0.327 0.322 0.310 0.328 0.330 0.335 0.331 0.335 0.347 0.335 0.309 0.367 0.348 0.333 0.361 0.456 99 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.415 0.387 0.456 99 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.411 0.446 0.441 0.439 0.441 0.441 0.537 0.550 0.451 0.455	75	0.206	0.214	0.214	0.203	0.194	0.223	0.213	0.205	0.222	0.206	0.247
84 0.266 0.279 0.276 0.264 0.248 0.290 0.276 0.265 0.286 0.267 0.327 87 0.288 0.302 0.298 0.287 0.268 0.314 0.299 0.287 0.310 0.289 0.357 90 0.310 0.327 0.322 0.310 0.288 0.340 0.323 0.310 0.335 0.312 0.388 93 0.334 0.359 0.347 0.335 0.309 0.367 0.348 0.333 0.360 0.336 0.421 96 0.359 0.379 0.372 0.361 0.355 0.325 0.355 0.358 0.387 0.361 0.456 99 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.415 0.361 0.492 102 0.411 0.437 0.427 0.415 0.379 0.455 0.431 0.411 0.444 0.433 0.474 <	78	0.225	0.235	0.234	0.222	0.211	0.244	0.233	0.224	0.242	0.225	0.272
87 0.288 0.302 0.288 0.287 0.268 0.314 0.299 0.287 0.310 0.289 0.357 90 0.310 0.327 0.322 0.310 0.288 0.340 0.323 0.310 0.335 0.312 0.388 93 0.359 0.379 0.372 0.361 0.332 0.395 0.375 0.358 0.387 0.358 0.387 0.361 0.492 99 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.415 0.387 0.455 102 0.411 0.437 0.427 0.415 0.379 0.455 0.431 0.411 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.571 111 0.497 0.516 0.455 0.553 0.523	81	0.245	0.256	0.254	0.243	0.229	0.266	0.254	0.244	0.264	0.246	0.299
90 0.310 0.327 0.322 0.310 0.288 0.340 0.323 0.310 0.335 0.312 0.388 93 0.334 0.353 0.347 0.335 0.309 0.367 0.348 0.333 0.360 0.336 0.421 96 0.359 0.379 0.372 0.361 0.332 0.395 0.375 0.358 0.387 0.361 0.456 99 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.415 0.387 0.456 105 0.431 0.411 0.447 0.441 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.483 0.588 0.553 0.537 0.537 0.537 111 0.497 0.516 0	84	0.266	0.279	0.276	0.264	0.248	0.290	0.276	0.265	0.286	0.267	0.327
93 0.334 0.353 0.347 0.335 0.309 0.367 0.348 0.333 0.360 0.336 0.421 96 0.359 0.379 0.372 0.361 0.332 0.395 0.375 0.358 0.387 0.361 0.456 99 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.415 0.387 0.492 102 0.411 0.437 0.427 0.415 0.379 0.455 0.431 0.411 0.444 0.414 0.530 108 0.467 0.456 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.429 0.519 0.491 0.505 0.472 111 0.497 0.516 0.455 0.553 0.523 0.537 0.502 114 0.527 0.548 0.483 0.588 0.556 0.571 0.533	87	0.288	0.302	0.298	0.287	0.268	0.314	0.299	0.287	0.310	0.289	0.357
96 0.359 0.379 0.372 0.361 0.332 0.395 0.375 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.415 0.387 0.492 102 0.411 0.437 0.427 0.415 0.379 0.455 0.431 0.411 0.444 0.413 0.501 105 0.439 0.467 0.456 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.429 0.519 0.491 0.505 0.472 111 0.497 0.516 0.455 0.553 0.523 0.537 0.502 114 0.527 0.548 0.483 0.588 0.556 0.571 0.533 117 0.559 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634	90	0.310	0.327	0.322	0.310	0.288	0.340	0.323	0.310	0.335	0.312	0.388
99 0.384 0.408 0.399 0.387 0.355 0.424 0.402 0.384 0.415 0.387 0.492 102 0.411 0.437 0.427 0.415 0.379 0.455 0.431 0.411 0.444 0.414 0.530 105 0.439 0.467 0.456 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.429 0.519 0.491 0.505 0.472 111 0.497 0.516 0.455 0.553 0.523 0.537 0.502 114 0.527 0.548 0.483 0.588 0.556 0.571 0.533 117 0.559 0.581 0.511 0.625 0.590 0.605 0.566 120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.67	93	0.334	0.353	0.347	0.335	0.309	0.367	0.348	0.333	0.360	0.336	0.421
102 0.411 0.437 0.427 0.415 0.379 0.455 0.431 0.411 0.444 0.439 105 0.439 0.467 0.456 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.429 0.519 0.491 0.505 0.472 111 0.497 0.516 0.455 0.553 0.523 0.537 0.502 114 0.527 0.548 0.483 0.588 0.556 0.571 0.533 117 0.559 0.581 0.511 0.625 0.590 0.605 0.566 120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 <td>96</td> <td>0.359</td> <td>0.379</td> <td>0.372</td> <td>0.361</td> <td>0.332</td> <td>0.395</td> <td>0.375</td> <td>0.358</td> <td>0.387</td> <td>0.361</td> <td>0.456</td>	96	0.359	0.379	0.372	0.361	0.332	0.395	0.375	0.358	0.387	0.361	0.456
105 0.439 0.467 0.456 0.444 0.403 0.486 0.460 0.439 0.474 0.443 0.570 108 0.467 0.485 0.429 0.519 0.491 0.505 0.472 111 0.497 0.516 0.455 0.553 0.523 0.537 0.502 114 0.527 0.548 0.483 0.588 0.556 0.571 0.533 117 0.559 0.581 0.511 0.625 0.590 0.605 0.566 120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 <td>99</td> <td>0.384</td> <td>0.408</td> <td>0.399</td> <td>0.387</td> <td>0.355</td> <td>0.424</td> <td>0.402</td> <td>0.384</td> <td>0.415</td> <td>0.387</td> <td>0.492</td>	99	0.384	0.408	0.399	0.387	0.355	0.424	0.402	0.384	0.415	0.387	0.492
108 0.467 0.485 0.429 0.519 0.491 0.505 0.472 111 0.497 0.516 0.455 0.553 0.523 0.537 0.502 114 0.527 0.548 0.483 0.588 0.556 0.571 0.533 117 0.559 0.581 0.511 0.625 0.590 0.605 0.566 120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138	102	0.411	0.437	0.427	0.415	0.379	0.455	0.431	0.411	0.444	0.414	0.530
111 0.497 0.516 0.455 0.553 0.523 0.537 0.502 114 0.527 0.548 0.483 0.588 0.556 0.571 0.533 117 0.559 0.581 0.511 0.625 0.590 0.605 0.566 120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850	105	0.439	0.467	0.456	0.444	0.403	0.486	0.460	0.439	0.474	0.443	0.570
114 0.527 0.548 0.483 0.588 0.556 0.571 0.533 117 0.559 0.581 0.511 0.625 0.590 0.605 0.566 120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927	108	0.467		0.485		0.429	0.519	0.491		0.505	0.472	
117 0.559 0.581 0.511 0.625 0.590 0.605 0.566 120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.950 150 0.977 1.016 0.878	111	0.497		0.516		0.455	0.553	0.523		0.537	0.502	
120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092	114	0.527		0.548		0.483	0.588	0.556		0.571	0.533	
120 0.592 0.615 0.540 0.663 0.625 0.641 0.599 123 0.626 0.650 0.570 0.702 0.662 0.677 0.634 126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092	117	0.559		0.581		0.511	0.625	0.590		0.605	0.566	
126 0.660 0.686 0.600 0.742 0.699 0.715 0.669 129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 <t< td=""><td>120</td><td>0.592</td><td></td><td>0.615</td><td></td><td>0.540</td><td>0.663</td><td>0.625</td><td></td><td>0.641</td><td></td><td></td></t<>	120	0.592		0.615		0.540	0.663	0.625		0.641		
129 0.696 0.724 0.632 0.784 0.738 0.754 0.706 132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.081 <t< td=""><td>123</td><td>0.626</td><td></td><td>0.650</td><td></td><td>0.570</td><td>0.702</td><td>0.662</td><td></td><td>0.677</td><td>0.634</td><td></td></t<>	123	0.626		0.650		0.570	0.702	0.662		0.677	0.634	
132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 <t< td=""><td>126</td><td>0.660</td><td></td><td>0.686</td><td></td><td>0.600</td><td>0.742</td><td>0.699</td><td></td><td>0.715</td><td>0.669</td><td></td></t<>	126	0.660		0.686		0.600	0.742	0.699		0.715	0.669	
132 0.733 0.762 0.664 0.826 0.778 0.794 0.744 135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 <t< td=""><td>129</td><td>0.696</td><td></td><td>0.724</td><td></td><td>0.632</td><td>0.784</td><td>0.738</td><td></td><td>0.754</td><td>0.706</td><td></td></t<>	129	0.696		0.724		0.632	0.784	0.738		0.754	0.706	
135 0.771 0.801 0.698 0.871 0.819 0.836 0.783 138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	_							0.778			0.744	
138 0.810 0.842 0.732 0.916 0.862 0.823 141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	_	0.771				0.698						
141 0.850 0.884 0.767 0.963 0.906 0.864 144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	-	0.810		0.842				0.862			0.823	
144 0.891 0.927 0.803 1.011 0.950 0.906 147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	141	0.850		0.884		0.767		0.906				
147 0.933 0.971 0.840 1.061 0.996 0.950 150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	_											
150 0.977 1.016 0.878 1.111 1.044 0.994 153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	147							0.996				
153 1.021 0.917 1.164 1.092 1.040 156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	-	0.977										
156 1.067 0.957 1.217 1.142 1.087 159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286								1				
159 1.113 0.997 1.272 1.193 1.135 162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	_											
162 1.161 1.039 1.328 1.245 1.184 165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286	_											
165 1.210 1.081 1.386 1.299 1.234 168 1.260 1.125 1.445 1.354 1.286												
168 1.260 1.125 1.445 1.354 1.286												
								1				
	171	1.311				1.169	1.506	1.410			1.338	

Table 4. Two way volume table (Gbh-height-volume) for **Am** growing in the home gardens of Bangladesh

Gbh			Hei	ght in me	ters		
(cm)	6	8	10	12	14	16	18
18	0.010	0.011	0.013	0.014	0.015	0.016	0.017
21	0.013	0.015	0.017	0.019	0.021	0.022	0.023
24	0.017	0.020	0.022	0.025	0.027	0.029	0.030
27	0.022	0.025	0.028	0.031	0.034	0.036	0.038
30	0.027	0.031	0.035	0.038	0.041	0.044	0.047
33	0.032	0.037	0.042	0.046	0.050	0.054	0.057
36	0.038	0.044	0.050	0.055	0.059	0.063	0.068
39	0.045	0.052	0.058	0.064	0.069	0.074	0.079
42	0.052	0.060	0.067	0.074	0.080	0.086	0.091
45	0.059	0.069	0.077	0.085	0.092	0.098	0.105
48	0.067	0.078	0.087	0.096	0.104	0.112	0.119
51	0.075	0.088	0.099	0.108	0.117	0.126	0.134
54	0.084	0.098	0.110	0.121	0.131	0.141	0.150
57	0.094	0.109	0.123	0.135	0.146	0.157	0.167
60	0.104	0.121	0.136	0.149	0.162	0.173	0.184
63	0.114	0.133	0.149	0.164	0.178	0.191	0.203
66	0.125	0.146	0.164	0.180	0.195	0.209	0.222
69	0.137	0.159	0.179	0.196	0.213	0.228	0.243
72	0.149	0.173	0.194	0.214	0.232	0.248	0.264
75	0.161	0.187	0.210	0.231	0.251	0.269	0.286
78	0.174	0.202	0.227	0.250	0.271	0.291	0.309
81	0.187	0.218	0.245	0.269	0.292	0.313	0.333
84	0.201	0.234	0.263	0.289	0.314	0.336	0.357
87	0.216	0.251	0.282	0.310	0.336	0.360	0.383
90	0.231	0.268	0.301	0.331	0.359	0.385	0.409
93	0.246	0.286	0.321	0.353	0.383	0.411	0.437
96	0.262	0.304	0.342	0.376	0.408	0.437	0.465
99	0.278	0.323	0.363	0.400	0.433	0.464	0.494
102	0.295	0.343	0.385	0.424	0.459	0.492	0.524
105	0.312	0.363	0.408	0.449	0.486	0.521	0.554
108	0.330	0.384	0.431	0.474	0.514	0.551	0.586
111	0.348	0.405	0.455	0.500	0.542	0.582	0.619
114	0.367	0.427	0.480	0.527	0.572	0.613	0.652
117	0.386	0.449	0.505	0.555	0.602	0.645	0.686
120	0.406	0.472	0.530	0.583	0.632	0.678	0.721
123	0.426	0.496	0.557	0.612	0.664	0.712	0.757
126	0.447	0.520	0.584	0.642	0.696	0.746	0.794
129	0.468	0.544	0.611	0.673	0.729	0.782	0.831
132	0.490	0.569	0.640	0.704	0.763	0.818	0.870
135	0.512	0.595	0.669	0.736	0.797	0.855	0.909
138	0.535	0.621	0.698	0.768	0.832	0.893	0.949
141	0.558	0.648	0.728	0.801	0.868	0.931	0.990
144	0.581	0.676	0.759	0.835	0.905	0.970	1.032
147	0.605	0.704	0.791	0.870	0.943	1.011	1.075
150	0.630	0.732	0.823	0.905	0.981	1.052	1.118
153	0.655	0.761	0.855	0.941	1.020	1.093	1.163
156	0.681	0.791	0.889	0.977	1.059	1.136	1.208
159	0.707	0.821	0.923	1.015	1.100	1.179	1.254
162	0.733	0.852	0.957	1.053	1.141	1.223	1.301
165	0.760	0.883	0.992	1.091	1.183	1.268	1.349
168	0.787	0.915	1.028	1.131	1.226	1.314	1.398
171	0.815	0.947	1.065	1.171	1.269	1.361	1.447

Table 5 Conversion factors to estimate the under bark volumes to different top end diameters for **Amm** growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.764	0.456			
21	0.788	0.524			
24	0.808	0.576	0.243		
27	0.824	0.616	0.325		
30	0.837	0.647	0.391	0.075	
33	0.848	0.674	0.444	0.115	0.033
36	0.858	0.695	0.489	0.154	0.056
39	0.866	0.714	0.527	0.192	0.078
42	0.873	0.729	0.559	0.229	0.100
45	0.879	0.743	0.587	0.264	0.123
48	0.885	0.755	0.612	0.299	0.145
51	0.890	0.766	0.633	0.332	0.168
54	0.894	0.775	0.653	0.365	0.190
57	0.899	0.783	0.670	0.396	0.212
60	0.902	0.791	0.685	0.426	0.235
63	0.906	0.798	0.699	0.455	0.257
66	0.909	0.804	0.712	0.483	0.280
69	0.911	0.810	0.724	0.510	0.302
72	0.914	0.815	0.734	0.536	0.324
75	0.916	0.820	0.744	0.561	0.347
78	0.919	0.824	0.753	0.585	0.369
81	0.921	0.828	0.762	0.607	0.392
84	0.923	0.832	0.770	0.629	0.414
87	0.925	0.836	0.777	0.649	0.436
90	0.926	0.839	0.784	0.669	0.459
93	0.928	0.842	0.790	0.687	0.481
96	0.929	0.845	0.796	0.704	0.504
99	0.931	0.848	0.801	0.720	0.526
102	0.932	0.850	0.807	0.736	0.549
105	0.933	0.853	0.812	0.750	0.571
108	0.935	0.855	0.816	0.763	0.593
111	0.936	0.857	0.821	0.774	0.616
114	0.937	0.859	0.825	0.785	0.638
117	0.938	0.861	0.829	0.795	0.661
120	0.939	0.863	0.833	0.803	0.683
123	0.940	0.865	0.836	0.811	0.705
126	0.941	0.866	0.840	0.817	0.728
129	0.941	0.868	0.843	0.823	0.750
132	0.942	0.869	0.846	0.827	0.773
135	0.943	0.871	0.849	0.830	0.773
138	0.944	0.872	0.852	0.832	0.773
141	0.944	0.873	0.855	0.833	0.773
144	0.945	0.875	0.857	0.833	0.773
147	0.946	0.876	0.860	0.832	0.773
150	0.946	0.877	0.862	0.830	0.773
153	0.947	0.878	0.865	0.827	0.773
156	0.948	0.879	0.867	0.823	0.773
159	0.948	0.880	0.869	0.817	0.773
162	0.949	0.881	0.871	0.811	0.773
165	0.949	0.882	0.873	0.803	0.773

Table 6. Two way volume table (Gbh-height-volume) for B**adi** growing in the home gardens of Bangladesh

Gbh		H	leight i	n meter	S	
(cm)	6	8	10	12	14	16
18	0.009	0.011	0.012	0.014	0.015	0.016
21	0.013	0.015	0.017	0.019	0.020	0.022
24	0.017	0.020	0.022	0.025	0.027	0.029
27	0.021	0.025	0.028	0.031	0.034	0.037
30	0.026	0.031	0.035	0.038	0.042	0.045
33	0.032	0.037	0.042	0.047	0.051	0.055
36	0.038	0.044	0.050	0.056	0.061	0.065
39	0.044	0.052	0.059	0.065	0.071	0.077
42	0.051	0.060	0.068	0.076	0.083	0.089
45	0.059	0.069	0.079	0.087	0.095	0.103
48	0.067	0.079	0.090	0.099	0.108	0.117
51	0.076	0.089	0.101	0.112	0.122	0.132
54	0.085	0.100	0.114	0.126	0.137	0.148
57	0.095	0.112	0.127	0.140	0.153	0.165
60	0.105	0.124	0.141	0.156	0.170	0.183
63	0.116	0.137	0.155	0.172	0.187	0.202
66	0.128	0.150	0.170	0.189	0.206	0.222
69	0.140	0.164	0.186	0.206	0.225	0.243
72	0.152	0.179	0.203	0.225	0.245	0.265
75	0.165	0.194	0.220	0.244	0.266	0.287
78	0.179	0.210	0.239	0.264	0.288	0.311
81	0.193	0.227	0.257	0.285	0.311	0.336
84	0.208	0.244	0.277	0.307	0.335	0.361
87	0.223	0.262	0.297	0.330	0.360	0.388
90	0.239	0.281	0.318	0.353	0.385	0.415
93	0.255	0.300	0.340	0.377	0.411	0.443
96	0.272	0.320	0.363	0.402	0.438	0.473
99	0.289	0.340	0.386	0.428	0.467	0.503
102	0.307	0.361	0.410	0.454	0.496	0.534
105	0.326	0.383	0.435	0.482	0.525	0.566

Table 7. Conversion factors to estimate the under bark volumes to different top end diameters for **Badi** growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.736	0.548			
21	0.761	0.577	0.002		
24	0.780	0.601	0.073		
27	0.796	0.621	0.142	0.013	
30	0.809	0.638	0.207	0.044	
33	0.821	0.652	0.269	0.075	
36	0.830	0.665	0.327	0.106	0.001
39	0.839	0.676	0.383	0.137	0.013
42	0.846	0.686	0.435	0.169	0.027
45	0.853	0.694	0.484	0.200	0.042
48	0.859	0.702	0.529	0.231	0.059
51	0.864	0.709	0.572	0.262	0.078
54	0.869	0.715	0.611	0.293	0.098
57	0.874	0.720	0.647	0.324	0.120
60	0.878	0.725	0.679	0.356	0.143
63	0.882	0.730	0.709	0.387	0.168
66	0.885	0.734	0.709	0.418	0.195
69	0.888	0.738	0.709	0.449	0.224
72	0.892	0.742	0.709	0.480	0.254
75	0.894	0.745	0.709	0.511	0.285
78	0.897	0.748	0.709	0.543	0.318
81	0.900	0.751	0.709	0.574	0.353
84	0.902	0.754	0.709	0.605	0.390
87	0.904	0.756	0.709	0.636	0.428
90	0.907	0.758	0.709	0.667	0.468
93	0.909	0.761	0.709	0.667	0.509
96	0.911	0.763	0.709	0.667	0.552
99	0.913	0.764	0.709	0.667	0.597
102	0.914	0.766	0.709	0.667	0.597
105	0.916	0.768	0.709	0.667	0.597

Table 8. Two way volume table (Gbh-height-volume) for **Jam** growing in the home gardens of Bangladesh

Gbh				Heig	ht in me	eters			
(cm)	4	6	8	10	12	14	16	18	20
18	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.015	0.016
21	0.012	0.014	0.015	0.017	0.018	0.019	0.020	0.021	0.022
24	0.015	0.018	0.020	0.022	0.023	0.025	0.026	0.028	0.029
27	0.019	0.023	0.025	0.028	0.030	0.032	0.033	0.035	0.036
30	0.024	0.028	0.031	0.034	0.037	0.039	0.041	0.043	0.045
33	0.029	0.034	0.038	0.041	0.044	0.047	0.050	0.052	0.054
36	0.034	0.040	0.045	0.049	0.053	0.056	0.059	0.062	0.065
39	0.040	0.047	0.053	0.058	0.062	0.066	0.070	0.073	0.076
42	0.047	0.055	0.061	0.067	0.072	0.077	0.081	0.085	0.088
45	0.054	0.063	0.070	0.077	0.083	0.088	0.093	0.097	0.101
48 51	0.061	0.072	0.080	0.088	0.094	0.100	0.106		0.115
54	0.069	0.081	0.091	0.099	0.106 0.119	0.113	0.119	0.125 0.140	0.130 0.146
57	0.086	0.101	0.102	0.111	0.113	0.127	0.134	0.156	0.140
60	0.080	0.101	0.115	0.124	0.133	0.141	0.145	0.173	0.180
63	0.105	0.123	0.138	0.151	0.162	0.173	0.182	0.191	0.199
66	0.115	0.135	0.152	0.166	0.178	0.190	0.200	0.209	0.218
69	0.126	0.148	0.166	0.181	0.195	0.207	0.219	0.229	0.239
72	0.137	0.161	0.181	0.198	0.212	0.226	0.238	0.249	0.260
75	0.149	0.175	0.196	0.214	0.230	0.245	0.258	0.271	0.282
78	0.161	0.189	0.212	0.232	0.249	0.265	0.279	0.293	0.305
81	0.174	0.204	0.229	0.250	0.269	0.286	0.301	0.316	0.329
84	0.187	0.220	0.246	0.269	0.289	0.307	0.324	0.340	0.354
87	0.201	0.236	0.264	0.289	0.310	0.330	0.348	0.364	0.380
90	0.215	0.252	0.283	0.309	0.332	0.353	0.372	0.390	0.407
93	0.229	0.269	0.302	0.330	0.355	0.377	0.397	0.416	0.434
96	0.245	0.287	0.322	0.352	0.378	0.402	0.424	0.444	0.463
99	0.260	0.305	0.342	0.374	0.402	0.427	0.451	0.472	0.492
102	0.276	0.324	0.363	0.397	0.427	0.454	0.478	0.501	0.523
105	0.293	0.344	0.385	0.421	0.452	0.481	0.507	0.531	0.554
108 111	0.310	0.364	0.408	0.445 0.470	0.479	0.509 0.537	0.536 0.567	0.562 0.594	0.586 0.619
114	0.345	0.384	0.451			0.567	0.598	0.594	0.653
117	0.343	0.405	0.434	0.496	0.533 0.562	0.597	0.630	0.660	0.688
120	0.382	0.449	0.503	0.550	0.591	0.628	0.663	0.694	0.724
123	0.402	0.472	0.529	0.578	0.621	0.660	0.696	0.729	0.761
126	0.422	0.495	0.555	0.606	0.652	0.693	0.731	0.766	0.798
129	0.442	0.519	0.582	0.636	0.683	0.726	0.766	0.802	0.837
132	0.463	0.544	0.609	0.666	0.716	0.761	0.802	0.840	0.876
135	0.484	0.569	0.637	0.696	0.749	0.796	0.839	0.879	0.917
138	0.506	0.594	0.666	0.728	0.782	0.832	0.877	0.919	0.958
141	0.528	0.620	0.695	0.760	0.817	0.868	0.915	0.959	1.000
144	0.551	0.647	0.725	0.792	0.852	0.906	0.955	1.000	1.043
147	0.574	0.675	0.756	0.826	0.888	0.944	0.995	1.043	1.087
150	0.598	0.702	0.787	0.860	0.925	0.983	1.036	1.086	1.132

Table 9. Conversion factors to estimate the under bark volumes to different top end diameters for **Jam** growing in the home gardens of Bangladesh

Gbh (cm)	F _{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.777	0.545	0.277	13	20
21	0.800	0.580	0.315		
24	0.818	0.610	0.351		
27	0.833	0.635	0.386		
30	0.845	0.657	0.419	0.032	
33	0.856	0.676	0.452	0.084	
36	0.864	0.692	0.483	0.134	
39	0.872	0.707	0.513	0.182	
42	0.879	0.720	0.542	0.229	
45	0.884	0.732	0.569	0.274	
48	0.889	0.742	0.595	0.317	0.039
51	0.894	0.752	0.620	0.358	0.093
54	0.898	0.760	0.644	0.397	0.145
57	0.902	0.768	0.666	0.435	0.196
60	0.905	0.776	0.687	0.471	0.245
63	0.908	0.783	0.707	0.505	0.291
66	0.911	0.789	0.725	0.537	0.337
69	0.914	0.795	0.743	0.567	0.380
72	0.916	0.800	0.759	0.596	0.421
75	0.918	0.805	0.774	0.623	0.421
78	0.920	0.810	0.774	0.648	0.499
81	0.922	0.810	0.774	0.671	0.535
84	0.924	0.814	0.774	0.692	0.570
87	0.925	0.818	0.774	0.092	0.602
90	0.927	0.822	0.774	0.712	0.633
93	0.928	0.829	0.774	0.712	0.633
96	0.930	0.832	0.774	0.712	0.633
99	0.931	0.835	0.774	0.712	0.633
102	0.931	0.838	0.774	0.712	0.633
102	0.933	0.841	0.774	0.712	0.633
103	0.935	0.841	0.774	0.712	0.633
111	0.936	0.846	0.774	0.712	0.633
		0.849	0.774	0.712	
114	0.937	0.851			0.633
117	0.937		0.774	0.712	0.633
120	0.938	0.853	0.774	0.712	0.633
123	0.939	0.855	0.774	0.712	0.633
126	0.940	0.857	0.774	0.712	0.633
129	0.941	0.859	0.774	0.712	0.633
132	0.941	0.861	0.774	0.712	0.633
135	0.942	0.863	0.774	0.712	0.633
138	0.943	0.864	0.774	0.712	0.633
141	0.943	0.866	0.774	0.712	0.633
144	0.944	0.868	0.774	0.712	0.633
147	0.945	0.869	0.774	0.712	0.633
150	0.945	0.870	0.774	0.712	0.633

Table 10. Two way volume table (Gbh-height-volume) for **Kadam** growing in the home gardens of Bangladesh

Gbh			Heig	ht in me	eters		
(cm)	6	8	10	12	14	16	18
18	0.010	0.012	0.014	0.016	0.018	0.019	0.021
21	0.013	0.016	0.019	0.021	0.023	0.026	0.028
24	0.017	0.020	0.024	0.027	0.030	0.033	0.036
27	0.021	0.025	0.030	0.033	0.037	0.041	0.044
30	0.025	0.031	0.036	0.041	0.045	0.049	0.054
33	0.030	0.037	0.043	0.048	0.054	0.059	0.064
36	0.035	0.043	0.050	0.057	0.063	0.069	0.075
39	0.041	0.050	0.058	0.066	0.073	0.080	0.087
42	0.047	0.057	0.066	0.075	0.084	0.091	0.099
45	0.053	0.065	0.075	0.085	0.095	0.104	0.112
48	0.060	0.073	0.085	0.096	0.107	0.117	0.127
51	0.067	0.082	0.095	0.107	0.119	0.131	0.141
54	0.074	0.091	0.105	0.119	0.132	0.145	0.157
57	0.082	0.100	0.116	0.132	0.146	0.160	0.173
60	0.090	0.110	0.128	0.145	0.161	0.176	0.191
63	0.099	0.120	0.140	0.158	0.176	0.192	0.208
66	0.107	0.131	0.152	0.172	0.191	0.209	0.227
69	0.117	0.142	0.165	0.187	0.208	0.227	0.246
72	0.126	0.153	0.178	0.202	0.224	0.246	0.266
75	0.136	0.165	0.192	0.218	0.242	0.265	0.287
78	0.146	0.178	0.207	0.234	0.260	0.284	0.308
81	0.156	0.190	0.221	0.251	0.278	0.305	0.330
84	0.167	0.203	0.237	0.268	0.298	0.326	0.353
87	0.178	0.217	0.252	0.286	0.317	0.348	0.377
90	0.190	0.231	0.269	0.304	0.338	0.370	0.401
93	0.202	0.245	0.285	0.323	0.359	0.393	0.425
96	0.214	0.260	0.302	0.342	0.380	0.416	0.451
99	0.226	0.275	0.320	0.362	0.402	0.440	0.477
102	0.239	0.290	0.338	0.382	0.425	0.465	0.504
105	0.252	0.306	0.356	0.403	0.448	0.491	0.531

Table 11. Conversion factors to estimate the under bark volumes to different top end diameters for **Kadam** growing in the home gardens of Bangladesh

Gbh	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
(cm) 18	0.748	0.502			
21	0.776	0.547			
24	0.799	0.586	0.069		
27	0.818	0.620	0.150		
30	0.833	0.650	0.226		
33	0.847	0.677	0.299		
36	0.858	0.700	0.367	0.047	
39	0.868	0.720	0.432	0.108	
42	0.876	0.738	0.492	0.166	
45	0.884	0.754	0.549	0.222	
48	0.890	0.768	0.601	0.276	
51	0.897	0.781	0.650	0.328	
54	0.902	0.792	0.694	0.377	0.058
57	0.907	0.802	0.735	0.425	0.126
60	0.911	0.811	0.771	0.470	0.186
63	0.915	0.819	0.771	0.513	0.241
66	0.919	0.826	0.771	0.554	0.291
69	0.923	0.832	0.771	0.593	0.337
72	0.926	0.837	0.771	0.630	0.379
75	0.929	0.842	0.771	0.665	0.417
78	0.931	0.846	0.771	0.697	0.453
81	0.934	0.850	0.771	0.697	0.486
84	0.936	0.853	0.771	0.697	0.516
87	0.939	0.855	0.771	0.697	0.544
90	0.941	0.858	0.771	0.697	0.571
93	0.943	0.859	0.771	0.697	0.596
96	0.944	0.861	0.771	0.697	0.619
99	0.946	0.862	0.771	0.697	0.641
102	0.948	0.863	0.771	0.697	0.641
105	0.949	0.864	0.771	0.697	0.641

Table 12. Two way volume table (Gbh-height-volume) for **Kanthal** growing in the home gardens of Bangladesh

Gbh			Hei	ght in me	ters		
(cm)	6	8	10	12	14	16	18
18	0.011	0.013	0.015	0.017	0.019	0.021	0.023
21	0.014	0.017	0.020	0.023	0.025	0.028	0.030
24	0.018	0.022	0.026	0.029	0.032	0.036	0.039
27	0.022	0.027	0.032	0.036	0.040	0.044	0.048
30	0.027	0.033	0.038	0.044	0.049	0.053	0.058
33	0.032	0.039	0.046	0.052	0.058	0.063	0.069
36	0.038	0.046	0.054	0.061	0.067	0.074	0.080
39	0.043	0.053	0.062	0.070	0.078	0.086	0.093
42	0.050	0.061	0.071	0.080	0.089	0.098	0.106
45	0.056	0.069	0.080	0.091	0.101	0.111	0.120
48	0.063	0.077	0.090	0.102	0.114	0.124	0.135
51	0.071	0.086	0.100	0.114	0.127	0.139	0.151
54	0.078	0.096	0.111	0.126	0.140	0.154	0.167
57	0.086	0.105	0.123	0.139	0.155	0.170	0.184
60	0.095	0.116	0.135	0.153	0.170	0.186	0.202
63	0.104	0.126	0.147	0.167	0.186	0.204	0.221
66	0.113	0.137	0.160	0.182	0.202	0.221	0.240
69	0.122	0.149	0.174	0.197	0.219	0.240	0.260
72	0.132	0.161	0.187	0.213	0.236	0.259	0.281
75	0.142	0.173	0.202	0.229	0.254	0.279	0.303
78	0.152	0.186	0.217	0.246	0.273	0.299	0.325
81	0.163	0.199	0.232	0.263	0.292	0.321	0.348
84	0.174	0.212	0.248	0.281	0.312	0.342	0.371
87	0.186	0.226	0.264	0.299	0.333	0.365	0.396
90	0.197	0.241	0.281	0.318	0.354	0.388	0.421
93	0.209	0.255	0.298	0.338	0.375	0.412	0.446
96	0.222	0.270	0.315	0.358	0.398	0.436	0.473
99	0.234	0.286	0.333	0.378	0.420	0.461	0.500
102	0.247	0.302	0.352	0.399	0.444	0.486	0.528
105	0.261	0.318	0.371	0.420	0.468	0.513	0.556
108	0.274	0.334	0.390	0.442	0.492	0.539	0.585
111	0.288	0.351	0.410	0.465	0.517	0.567	0.615
114	0.302	0.369	0.430	0.488	0.543	0.595	0.645
117	0.317	0.387	0.451	0.511	0.569	0.623	0.676
120	0.332	0.405	0.472	0.535	0.595	0.653	0.708
123	0.347	0.423	0.494	0.560	0.622	0.682	0.740
126	0.362	0.442	0.516	0.585	0.650	0.713	0.773
129	0.378	0.461	0.538	0.610	0.678	0.744	0.807
132	0.394	0.481	0.561	0.636	0.707	0.775	0.841
135	0.411	0.501	0.584	0.662	0.737	0.808	0.876
138	0.427	0.521	0.608	0.689	0.766	0.840	0.911
141	0.444	0.542	0.632	0.716	0.797	0.874	0.948
144	0.461	0.563	0.656	0.744	0.828	0.908	0.984
147	0.479	0.584	0.681	0.773	0.859	0.942	1.022
150	0.497	0.606	0.707	0.801	0.891	0.977	1.060
153	0.515	0.628	0.732	0.830	0.924	1.013	1.098
156	0.533	0.650	0.759	0.860	0.957	1.049	1.138
159	0.552	0.673	0.785	0.890	0.990	1.086	1.177
162	0.571	0.696	0.812	0.921	1.024	1.123	1.218
165	0.590	0.720	0.839	0.952	1.059	1.161	1.259
168	0.610	0.744	0.867	0.983	1.094	1.199	1.301
171	0.630	0.768	0.896	1.015	1.129	1.238	1.343

Table 13. Conversion factors to estimate the under bark volumes to different top end diameters for **Kanthal** growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.825	0.606			
21	0.844	0.641	0.018		
24	0.859	0.670	0.154	0.004	
27	0.871	0.695	0.261	0.047	0.005
30	0.880	0.716	0.346	0.089	0.027
33	0.889	0.734	0.415	0.130	0.048
36	0.895	0.749	0.473	0.169	0.070
39	0.901	0.763	0.522	0.208	0.091
42	0.906	0.775	0.564	0.245	0.113
45	0.911	0.786	0.601	0.282	0.135
48	0.915	0.795	0.633	0.317	0.156
51	0.918	0.804	0.661	0.352	0.178
54	0.922	0.811	0.686	0.385	0.199
57	0.924	0.818	0.708	0.417	0.221
60	0.927	0.825	0.728	0.448	0.243
63	0.929	0.831	0.747	0.478	0.264
66	0.931	0.836	0.763	0.507	0.286
69	0.933	0.841	0.778	0.535	0.307
72	0.935	0.845	0.792	0.562	0.329
75	0.937	0.849	0.805	0.587	0.351
78	0.938	0.853	0.817	0.612	0.372
81	0.940	0.856	0.828	0.635	0.394
84	0.941	0.860	0.838	0.658	0.415
87	0.942	0.863	0.847	0.679	0.437
90	0.944	0.865	0.856	0.700	0.459
93	0.945	0.868	0.864	0.719	0.480
96	0.946	0.870	0.872	0.737	0.502
99	0.947	0.873	0.879	0.754	0.523
102	0.948	0.875	0.886	0.770	0.545
105	0.948	0.877	0.892	0.785	0.567
108	0.949	0.878	0.899	0.799	0.588
111	0.950	0.880	0.904	0.811	0.610
114	0.951	0.882	0.910	0.823	0.631
117	0.951	0.883	0.915	0.833	0.653
120	0.952	0.884	0.920	0.843	0.675
123	0.953	0.886	0.925	0.851	0.696
126	0.953	0.887	0.929	0.859	0.718
129	0.954	0.888	0.933	0.865	0.739
132	0.954	0.889	0.937	0.870	0.761
135	0.955	0.890	0.941	0.874	0.783
138	0.955	0.891	0.945	0.877	0.804
141	0.956	0.892	0.948	0.879	0.826
144	0.956	0.893	0.952	0.880	0.847
147	0.957	0.893	0.955	0.880	0.869
150	0.957	0.894	0.958	0.878	0.891
153	0.958	0.895	0.961	0.876	0.912
156	0.958	0.895	0.964	0.872	0.934
159	0.958	0.896	0.967	0.868	0.955
162	0.959	0.896	0.969	0.862	0.977

Table 14. Two way volume table (Gbh-height-volume) for K**oroi** growing in the home gardens of Bangladesh

Gbh					Height i	n meters				
(cm)	6	8	10	12	14	16	18	20	22	24
18	0.010	0.012	0.014	0.016	0.018	0.019	0.021	0.022	0.024	0.025
21	0.013	0.016	0.019	0.021	0.023	0.026	0.028	0.030	0.032	0.034
24	0.017	0.021	0.024	0.027	0.030	0.033	0.036	0.038	0.041	0.043
27	0.021	0.026	0.030	0.034	0.037	0.041	0.044	0.048	0.051	0.054
30	0.026	0.031	0.036	0.041	0.046	0.050	0.054	0.058	0.062	0.066
33	0.031	0.037	0.043	0.049	0.054	0.059	0.064	0.069	0.074	0.078
36	0.036	0.044	0.051	0.058	0.064	0.070	0.076	0.081	0.087	0.092
39	0.042	0.051	0.059	0.067	0.074	0.081	0.088	0.094	0.101	0.107
42	0.048	0.058	0.068	0.077	0.085	0.093	0.101	0.108	0.116	0.123
45	0.054	0.066	0.077	0.087	0.097	0.106	0.115	0.123	0.131	0.139
48	0.061	0.075	0.087	0.098	0.109	0.119	0.129	0.139	0.148	0.157
51	0.069	0.083	0.097	0.110	0.122	0.134	0.145	0.155	0.166	0.176
54	0.076	0.093	0.108	0.122	0.136	0.148	0.161	0.173	0.184	0.196
57	0.084	0.103	0.119	0.135	0.150	0.164	0.178	0.191	0.204	0.216
60	0.093	0.113	0.131	0.149	0.165	0.181	0.196	0.210	0.224	0.238
63	0.102	0.123	0.144	0.163	0.181	0.198	0.214	0.230	0.245	0.260
66	0.111	0.135	0.157	0.177	0.197	0.216	0.233	0.251	0.268	0.284
69	0.120	0.146	0.170	0.193	0.214	0.234	0.254	0.272	0.291	0.308
72	0.130	0.158	0.184	0.208	0.231	0.253	0.274	0.295	0.314	0.334
75	0.140	0.171	0.199	0.225	0.250	0.273	0.296	0.318	0.339	0.360
78	0.151	0.184	0.214	0.242	0.268	0.294	0.318	0.342	0.365	0.387
81	0.162	0.197	0.229	0.259	0.288	0.315	0.341	0.367	0.391	0.415
84	0.173	0.211	0.245	0.277	0.308	0.337	0.365	0.392	0.419	0.444
87	0.185	0.225	0.262	0.296	0.329	0.360	0.390	0.419	0.447	0.474
90	0.197	0.239	0.279	0.315	0.350	0.383	0.415	0.446	0.476	0.505
93	0.209	0.255	0.296	0.335	0.372	0.407	0.441	0.474	0.506	0.536
96	0.222	0.270	0.314	0.355	0.395	0.432	0.468	0.503	0.536	0.569
99	0.235	0.286	0.333	0.376	0.418	0.458	0.496	0.532	0.568	0.603
102	0.249	0.302	0.352	0.398	0.442	0.484	0.524	0.563	0.600	0.637
105	0.262	0.319	0.371	0.420	0.466	0.510	0.553	0.594	0.634	0.672
108	0.276	0.336	0.391	0.442	0.491	0.538	0.583	0.626	0.668	0.708
111	0.291	0.353	0.411	0.465	0.517	0.566	0.613	0.658	0.702	0.745
114	0.306	0.371	0.432	0.489	0.543	0.595	0.644	0.692	0.738	0.783
117	0.321	0.390	0.454	0.513	0.570	0.624	0.676	0.726	0.775	0.822
120	0.336	0.409	0.475	0.538	0.597	0.654	0.708	0.761	0.812	0.861
123	0.352	0.428	0.498	0.563	0.625	0.685	0.742	0.797	0.850	0.902
126 129	0.368	0.447	0.520 0.544	0.589 0.615	0.654 0.683	0.716 0.748	0.776 0.810	0.833	0.889	0.943
132	0.384	0.488	0.567	0.642	0.083	0.748	0.810	0.908	0.969	1.028
135	0.401	0.488	0.592	0.642	0.713	0.781	0.882	0.908	1.010	1.028
138	0.418	0.530	0.592	0.670	0.743	0.814	0.882	0.947	1.010	1.116
141	0.453	0.551	0.641	0.726	0.774	0.882	0.918	1.027	1.052	1.116
141	0.433	0.573	0.667	0.755	0.838	0.882	0.994	1.068	1.139	1.102
147	0.471	0.596	0.693	0.784	0.838	0.953	1.033	1.109	1.183	1.255
150	0.490	0.530	0.093	0.784	0.871	0.990	1.033	1.152	1.229	1.303
153	0.528	0.641	0.746	0.845	0.938	1.027	1.112	1.195	1.275	1.352
156	0.547	0.665	0.774	0.876	0.972	1.065	1.153	1.239	1.321	1.402
159	0.567	0.689	0.802	0.907	1.007	1.103	1.195	1.283	1.369	1.452
162	0.587	0.713	0.830	0.939	1.043	1.142	1.237	1.329	1.417	1.504
165	0.607	0.738	0.859	0.972	1.079	1.181	1.280	1.375	1.466	1.556
168	0.628	0.763	0.888	1.005	1.116	1.222	1.323	1.421	1.516	1.609
171	0.649	0.789	0.918	1.038	1.153	1.262	1.367	1.469	1.567	1.662
174	0.670	0.815	0.948	1.073	1.191	1.304	1.412	1.517	1.618	1.717
4/7	0.070	0.013	0.540	1.073	1.171	1.50-	4.744	1.517	1.010	1.,1,

Table 15. Conversion factors to estimate the under bark volumes to different top end diameters for Koroi growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.777	0.569			
21	0.801	0.604			
24	0.819	0.633	0.047		
27	0.834	0.657	0.165		
30	0.846	0.678	0.260	0.007	
33	0.857	0.696	0.337	0.053	
36	0.865	0.712	0.402	0.098	
39	0.873	0.726	0.456	0.141	
42	0.880	0.738	0.503	0.183	
45	0.886	0.750	0.543	0.224	
48	0.891	0.760	0.579	0.264	0.016
51	0.895	0.769	0.610	0.302	0.065
54	0.899	0.777	0.638	0.339	0.113
57	0.903	0.784	0.663	0.375	0.160
60	0.907	0.791	0.685	0.409	0.205
63	0.910	0.798	0.705	0.443	0.249
66	0.912	0.803	0.724	0.475	0.292
69	0.915	0.809	0.741	0.505	0.333
72	0.917	0.814	0.756	0.535	0.373
75	0.920	0.819	0.770	0.563	0.412
78	0.922	0.823	0.770	0.590	0.450
81	0.924	0.827	0.770	0.616	0.486
84	0.925	0.831	0.770	0.640	0.521
87	0.927	0.835	0.770	0.663	0.555
90	0.929	0.838	0.770	0.685	0.588
93	0.930	0.841	0.770	0.706	0.619
96	0.931	0.844	0.770	0.725	0.649
99	0.933	0.847	0.770	0.725	0.649
102	0.934	0.850	0.770	0.725	0.649
105	0.935	0.852	0.770	0.725	0.649
108	0.936	0.855	0.770	0.725	0.649
111	0.937	0.857	0.770	0.725	0.649
114	0.938	0.859	0.770	0.725	0.649
117	0.939	0.861	0.770	0.725	0.649
120	0.940	0.863	0.770	0.725	0.649
123	0.941	0.865	0.770	0.725	0.649
126	0.942	0.867	0.770	0.725	0.649
129	0.942	0.869	0.770	0.725	0.649
132	0.943	0.871	0.770	0.725	0.649
135	0.944	0.872	0.770	0.725	0.649
138	0.945	0.874	0.770	0.725	0.649
141	0.945	0.875	0.770	0.725	0.649
144	0.946	0.877	0.770	0.725	0.649
147	0.946	0.878	0.770	0.725	0.649
150	0.947	0.879	0.770	0.725	0.649
153	0.948	0.881	0.770	0.725	0.649
156	0.948	0.882	0.770	0.725	0.649
159	0.949	0.883	0.770	0.725	0.649
162	0.949	0.884	0.770	0.725	0.649

Table 16. Two way volume table (Gbh-height-volume) for **Mahogany** growing in the home gardens of Bangladesh

Gbh				Height ir	n meters			
(cm)	6	8	10	12	14	16	18	20
18	0.009	0.011	0.013	0.015	0.016	0.018	0.019	0.020
21	0.012	0.015	0.017	0.019	0.021	0.023	0.025	0.027
24	0.016	0.019	0.022	0.025	0.028	0.030	0.033	0.035
27	0.020	0.024	0.028	0.031	0.034	0.038	0.041	0.043
30	0.024	0.029	0.034	0.038	0.042	0.046	0.049	0.053
33	0.029	0.035	0.040	0.046	0.050	0.055	0.059	0.063
36	0.034	0.041	0.048	0.054	0.059	0.065	0.070	0.075
39	0.040	0.048	0.055	0.062	0.069	0.075	0.081	0.087
42	0.046	0.055	0.064	0.072	0.079	0.086	0.093	0.100
45	0.052	0.063	0.073	0.082	0.090	0.098	0.106	0.114
48	0.059	0.071	0.082	0.092	0.102	0.111	0.120	0.128
51	0.066	0.079	0.092	0.103	0.114	0.124	0.134	0.144
54	0.073	0.088	0.102	0.115	0.127	0.138	0.149	0.160
57	0.081	0.098	0.113	0.127	0.141	0.153	0.165	0.177
60	0.090	0.108	0.125	0.140	0.155	0.169	0.182	0.195
63	0.098	0.118	0.137	0.154	0.170	0.185	0.200	0.214
66	0.107	0.129	0.149	0.168	0.185	0.202	0.218	0.233
69	0.116	0.140	0.162	0.182	0.201	0.220	0.237	0.254
72	0.126	0.152	0.176	0.197	0.218	0.238	0.257	0.275
75	0.136	0.164	0.190	0.213	0.236	0.257	0.277	0.297
78	0.147	0.177	0.204	0.230	0.254	0.276	0.298	0.319
81	0.157	0.190	0.219	0.246	0.272	0.297	0.320	0.343
84	0.169	0.203	0.235	0.264	0.292	0.318	0.343	0.367
87	0.180	0.217	0.251	0.282	0.311	0.339	0.366	0.392
90	0.192	0.231	0.267	0.300	0.332	0.362	0.390	0.418
93	0.204	0.246	0.284	0.320	0.353	0.385	0.415	0.445
96	0.217	0.261	0.301	0.339	0.375	0.409	0.441	0.472
99	0.230	0.277	0.319	0.359	0.397	0.433	0.467	0.500
102	0.243	0.293	0.338	0.380	0.420	0.458	0.494	0.529
105	0.257	0.309	0.357	0.401	0.444	0.484	0.522	0.559
108	0.270	0.326	0.376	0.423	0.468	0.510	0.550	0.589
111	0.285	0.343	0.396	0.446	0.492	0.537	0.579	0.620
114	0.299	0.361	0.417	0.469	0.518	0.564	0.609	0.652
117	0.314	0.379	0.437	0.492	0.544	0.593	0.640	0.685
120	0.330	0.397	0.459	0.516	0.570	0.622	0.671	0.718
123	0.345	0.416	0.481	0.541	0.597	0.651	0.703	0.752
126	0.361	0.435	0.503	0.566	0.625	0.681	0.735	0.787
129	0.378	0.455	0.526	0.591	0.653	0.712	0.768	0.823
132	0.394	0.475	0.549	0.617	0.682	0.744	0.802	0.859
135	0.411	0.496	0.572	0.644	0.712	0.776	0.837	0.896
138	0.429	0.516	0.597	0.671	0.742	0.808	0.872	0.934
141	0.447	0.538	0.621	0.699	0.772	0.842	0.908	0.972
144	0.465	0.560	0.646	0.727	0.803	0.876	0.945	1.012
147	0.483	0.582	0.672	0.756	0.835	0.910	0.982	1.052
150		0.604	0.698	0.785	0.867	0.946	1.020	1.092
153	0.521	0.627	0.724	0.815	0.900	0.981	1.059	1.134
156 159		0.650	0.751	0.845	0.934	1.018	1.099	1.176
	0.560	0.674	0.779	0.876	0.968	1.055	1.139	1.219
162	0.580	0.698	0.807	0.907	1.003	1.093	1.179	1.262
165	0.600	0.723	0.835	0.939	1.038	1.131	1.221	1.307

Table 17. Conversion factors to estimate the under bark volumes to different top end diameters for **Mahogany** growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.791	0.499			
21	0.815	0.570			
24	0.833	0.624	0.038		
27	0.848	0.666	0.162		
30	0.860	0.699	0.262		
33	0.870	0.727	0.343		
36	0.879	0.749	0.410	0.047	0.031
39	0.886	0.769	0.468	0.108	0.056
42	0.893	0.785	0.517	0.166	0.080
45	0.899	0.800	0.559	0.222	0.105
48	0.904	0.812	0.596	0.276	0.130
51	0.908	0.823	0.629	0.328	0.154
54	0.912	0.833	0.658	0.377	0.179
57	0.916	0.842	0.685	0.425	0.203
60	0.919	0.850	0.708	0.470	0.228
63	0.922	0.857	0.729	0.513	0.253
66	0.925	0.863	0.749	0.554	0.277
69	0.928	0.869	0.766	0.593	0.302
72	0.930	0.875	0.782	0.630	0.326
75	0.932	0.880	0.797	0.665	0.351
78	0.934	0.884	0.811	0.697	0.376
81	0.936	0.889	0.824	0.727	0.400
84	0.938	0.893	0.836	0.755	0.425
87	0.940	0.896	0.847	0.781	0.449
90	0.941	0.900	0.857	0.805	0.474
93	0.943	0.903	0.857	0.805	0.499
96	0.944	0.906	0.857	0.805	0.523
99	0.945	0.909	0.857	0.805	0.548
102	0.946	0.912	0.857	0.805	0.572
105	0.948	0.914	0.857	0.805	0.597
108	0.949	0.917	0.857	0.805	0.622
111	0.950	0.919	0.857	0.805	0.646
114	0.951	0.921	0.857	0.805	0.671
117	0.952	0.923	0.857	0.805	0.695
120	0.952	0.925	0.857	0.805	0.720
123	0.953	0.927	0.857	0.805	0.720
126	0.954	0.928	0.857	0.805	0.720
129	0.955	0.930	0.857	0.805	0.720
132	0.956	0.932	0.857	0.805	0.720
135	0.956	0.933	0.857	0.805	0.720
138	0.957	0.935	0.857	0.805	0.720
141	0.958	0.936	0.857	0.805	0.720
144	0.958	0.937	0.857	0.805	0.720
147	0.959	0.939	0.857	0.805	0.720
150	0.959	0.940	0.857	0.805	0.720
153	0.960	0.941	0.857	0.805	0.720
156	0.960	0.942	0.857	0.805	0.720
159	0.961	0.943	0.857	0.805	0.720
162	0.961	0.944	0.857	0.805	0.720

Table 18. Two way volume table (Gbh-height-volume) for **Neem** growing in the home gardens of Bangladesh

Gbh			Heig	ght in me	ters		
(cm)	6	8	10	12	14	16	18
18	0.009	0.011	0.013	0.015	0.017	0.019	0.020
21	0.012	0.015	0.018	0.020	0.023	0.025	0.027
24	0.016	0.020	0.023	0.026	0.029	0.032	0.035
27	0.020	0.025	0.029	0.033	0.037	0.040	0.044
30	0.024	0.030	0.035	0.040	0.045	0.049	0.054
33	0.029	0.036	0.042	0.048	0.054	0.059	0.064
36	0.035	0.042	0.050	0.057	0.063	0.070	0.076
39	0.040	0.049	0.058	0.066	0.074	0.081	0.088
42	0.046	0.057	0.067	0.076	0.085	0.093	0.101
45	0.053	0.065	0.076	0.086	0.097	0.106	0.116
48	0.060	0.073	0.086	0.098	0.109	0.120	0.131
51	0.067	0.082	0.096	0.110	0.122	0.135	0.146
54	0.074	0.091	0.107	0.122	0.136	0.150	0.163
57	0.082	0.101	0.119	0.135	0.151	0.166	0.181
60	0.091	0.112	0.131	0.149	0.166	0.183	0.199
63	0.100	0.122	0.143	0.163	0.182	0.201	0.218
66	0.109	0.134	0.157	0.178	0.199	0.219	0.238
69	0.118	0.145	0.170	0.194	0.217	0.238	0.259
72	0.128	0.157	0.185	0.210	0.235	0.258	0.281
75	0.138	0.170	0.200	0.227	0.254	0.279	0.304
78	0.149	0.183	0.215	0.245	0.273	0.301	0.327
81	0.160	0.197	0.231	0.263	0.294	0.323	0.351
84	0.172	0.211	0.247	0.282	0.314	0.346	0.376
87	0.183	0.225	0.264	0.301	0.336	0.370	0.402
90	0.196	0.240	0.282	0.321	0.358	0.394	0.429
93	0.208	0.256	0.300	0.341	0.381	0.419	0.456
96	0.221	0.271	0.318	0.363	0.405	0.445	0.485
99	0.234	0.288	0.337	0.384	0.429	0.472	0.514
102	0.248	0.304	0.357	0.407	0.454	0.500	0.543
105	0.262	0.322	0.377	0.430	0.480	0.528	0.574
108	0.276	0.339	0.398	0.453	0.506	0.557	0.606
111	0.291	0.357	0.419	0.477	0.533	0.586	0.638
114	0.306	0.376	0.441	0.502	0.560	0.617	0.671
117	0.321	0.395	0.463	0.527	0.589	0.648	0.705
120	0.337	0.414	0.486	0.553	0.618	0.679	0.739
123	0.353	0.434	0.509	0.580	0.647	0.712	0.775
126	0.370	0.454	0.533	0.607	0.677	0.745	0.811
129	0.386	0.475	0.557	0.634	0.708	0.779	0.848
132	0.404	0.496	0.582	0.663	0.740	0.814	0.885
135	0.421	0.517	0.607	0.691	0.772	0.849	0.924
138	0.439	0.539	0.633	0.721	0.805	0.885	0.963
141	0.457	0.562	0.659	0.751	0.838	0.922	1.003
144	0.476	0.585	0.686	0.781	0.872	0.959	1.044
147	0.495	0.608	0.713	0.812	0.907	0.998	1.085
150	0.514	0.631	0.741	0.844	0.942	1.037	1.128
153	0.534	0.656	0.769	0.876	0.978	1.076	1.171
156	0.554	0.680	0.798	0.909	1.015	1.116	1.214
159	0.574	0.705	0.827	0.942	1.052	1.157	1.259
162	0.595	0.730	0.857	0.976	1.090	1.199	1.304

Table 19. Conversion factors to estimate the under bark volumes to different top end diameters for **Neem** growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.791	0.532			
21	0.815	0.577			
24	0.833	0.615	0.038		
27	0.848	0.648	0.162		
30	0.860	0.677	0.262		
33	0.870	0.702	0.343		
36	0.879	0.723	0.410	0.047	0.031
39	0.886	0.742	0.468	0.108	0.056
42	0.893	0.758	0.517	0.166	0.080
45	0.899	0.772	0.559	0.222	0.105
48	0.904	0.785	0.596	0.276	0.130
51	0.908	0.795	0.629	0.328	0.154
54	0.912	0.805	0.658	0.377	0.179
57	0.916	0.813	0.685	0.425	0.203
60	0.919	0.820	0.708	0.470	0.228
63	0.922	0.826	0.729	0.513	0.253
66	0.925	0.831	0.749	0.554	0.277
69	0.928	0.836	0.766	0.593	0.302
72	0.930	0.840	0.782	0.630	0.326
75	0.932	0.843	0.797	0.665	0.351
78	0.934	0.845	0.797	0.697	0.376
81	0.936	0.847	0.797	0.727	0.400
84	0.938	0.849	0.797	0.727	0.425
87	0.940	0.850	0.797	0.727	0.449
90	0.941	0.851	0.797	0.727	0.474
93	0.943	0.851	0.797	0.727	0.499
96	0.944	0.852	0.797	0.727	0.523
99	0.945	0.851	0.797	0.727	0.548
102	0.946	0.851	0.797	0.727	0.572
105	0.948	0.850	0.797	0.727	0.597
108	0.949	0.850	0.797	0.727	0.622
111	0.950	0.849	0.797	0.727	0.646
114	0.951	0.847	0.797	0.727	0.671
117	0.952	0.846	0.797	0.727	0.695
120	0.952	0.844	0.797	0.727	0.720

Table 20. Two way volume table (Gbh-height-volume) for **Pitraj** growing in the home gardens of Bangladesh

Gbh		Height in meters							
(cm)	6	8	10	12	14	16	18		
18	0.009	0.011	0.012	0.013	0.014	0.015	0.016		
21	0.013	0.015	0.016	0.018	0.019	0.020	0.021		
24	0.017	0.019	0.021	0.023	0.025	0.026	0.028		
27	0.021	0.024	0.027	0.029	0.031	0.033	0.035		
30	0.026	0.030	0.033	0.036	0.038	0.041	0.043		
33	0.031	0.036	0.040	0.043	0.046	0.050	0.052		
36	0.037	0.042	0.047	0.051	0.055	0.059	0.062		
39	0.043	0.050	0.055	0.060	0.065	0.069	0.073		
42	0.050	0.058	0.064	0.070	0.075	0.080	0.084		
45	0.058	0.066	0.073	0.080	0.086	0.092	0.097		
48	0.066	0.075	0.083	0.091	0.098	0.104	0.110		
51	0.074	0.085	0.094	0.103	0.110	0.118	0.124		
54	0.083	0.095	0.105	0.115	0.124	0.132	0.139		
57	0.092	0.106	0.117	0.128	0.138	0.147	0.155		
60	0.102	0.117	0.130	0.142	0.152	0.162	0.172		
63	0.113	0.129	0.143	0.156	0.168	0.179	0.189		
66	0.123	0.141 0.154	0.157	0.171	0.184	0.196	0.207		
69 72	0.135	0.154	0.172	0.187		0.214	0.226		
75	0.147	0.182	0.187	0.203	0.219	0.253	0.246		
78	0.139	0.182	0.202	0.239	0.256	0.233	0.289		
81	0.172	0.137	0.213	0.257	0.276	0.273	0.283		
84	0.199	0.228	0.254	0.276	0.297	0.316	0.335		
87	0.214	0.245	0.272	0.296	0.319	0.339	0.359		
90	0.229	0.262	0.291	0.317	0.341	0.363	0.384		
93	0.244	0.279	0.310	0.338	0.364	0.387	0.409		
96	0.260	0.298	0.331	0.360	0.387	0.413	0.436		
99	0.276	0.316	0.351	0.383	0.412	0.439	0.464		
102	0.293	0.336	0.373	0.406	0.437	0.465	0.492		
105	0.310	0.355	0.395	0.430	0.463	0.493	0.521		
108	0.328	0.376	0.418	0.455	0.489	0.521	0.551		
111	0.347	0.397	0.441	0.481	0.517	0.550	0.582		
114	0.365	0.418	0.465	0.507	0.545	0.580	0.613		
117	0.385	0.441	0.490	0.533	0.574	0.611	0.646		
120	0.405	0.463	0.515	0.561	0.603	0.643	0.679		
123	0.425	0.487	0.541	0.589	0.634	0.675	0.713		
126	0.446	0.510	0.567	0.618	0.665	0.708	0.748		
129	0.467	0.535	0.594	0.648	0.696	0.742	0.784		
132	0.489	0.560	0.622	0.678	0.729	0.776	0.821		
135	0.511	0.585	0.650	0.709	0.762	0.812	0.858		
138	0.534	0.612	0.679	0.740	0.796	0.848	0.896		
141	0.557	0.638	0.709	0.773	0.831	0.885	0.936		
144	0.581	0.665	0.739	0.806	0.866	0.923	0.975		
147	0.605	0.693	0.770	0.839	0.903	0.961	1.016		
150	0.630	0.722	0.802	0.874	0.940	1.001	1.058		

Table 21. Conversion factors to estimate the under bark volumes to different top end diameters for **Pitraj** growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.791	0.502			
21	0.815	0.547			
24	0.833	0.586	0.038		
27	0.848	0.620	0.162		
30	0.860	0.650	0.262		
33	0.870	0.677	0.343		
36	0.879	0.700	0.410		
39	0.886	0.720	0.468	0.053	
42	0.893	0.738	0.517	0.136	
45	0.899	0.754	0.559	0.208	
48	0.904	0.768	0.596	0.271	
51	0.908	0.781	0.629	0.326	
54	0.912	0.792	0.658	0.375	0.058
57	0.916	0.802	0.685	0.420	0.126
60	0.919	0.811	0.708	0.459	0.186
63	0.922	0.819	0.729	0.495	0.241
66	0.925	0.826	0.749	0.528	0.291
69	0.928	0.832	0.766	0.557	0.337
72	0.930	0.837	0.782	0.585	0.379
75	0.932	0.842	0.797	0.610	0.417
78	0.934	0.846	0.811	0.633	0.453
81	0.936	0.850	0.811	0.655	0.486
84	0.938	0.853	0.811	0.674	0.516
87	0.940	0.855	0.811	0.693	0.544
90	0.941	0.858	0.811	0.710	0.571
93	0.943	0.859	0.811	0.727	0.596
96	0.944	0.861	0.811	0.742	0.619
99	0.945	0.862	0.811	0.756	0.641
102	0.946	0.863	0.811	0.769	0.661
105	0.948	0.864	0.811	0.782	0.681
108	0.949	0.864	0.811	0.782	0.699
111	0.950	0.864	0.811	0.782	0.717
114	0.951	0.864	0.811	0.782	0.717
117	0.952	0.864	0.811	0.782	0.717
120	0.952	0.864	0.811	0.782	0.717
123	0.953	0.864	0.811	0.782	0.717
126	0.954	0.864	0.811	0.782	0.717
129	0.955	0.864	0.811	0.782	0.717
132	0.956	0.864	0.811	0.782	0.717
135	0.956	0.864	0.811	0.782	0.717
138	0.957	0.864	0.811	0.782	0.717
141	0.958	0.864	0.811	0.782	0.717
144	0.958	0.864	0.811	0.782	0.717
147	0.959	0.864	0.811	0.782	0.717
150	0.959	0.864	0.811	0.782	0.717

Table 22. Two way volume table (Gbh-height-volume) for **Rain tree** growing in the home gardens of Bangladesh

Gbh					Height in	n meters				1
(cm)	6	8	10	12	14	16	18	20	22	24
18	0.010	0.011	0.013	0.015	0.016	0.018	0.019	0.020	0.022	0.023
21	0.013	0.015	0.018	0.020	0.022	0.024	0.026	0.027	0.029	0.031
24	0.016	0.020	0.023	0.026	0.028	0.031	0.033	0.035	0.038	0.040
27	0.021	0.025	0.029	0.032	0.035	0.038	0.041	0.044	0.047	0.050
30	0.025	0.030	0.035	0.039	0.043	0.047	0.051	0.054	0.058	0.061
33	0.030	0.036	0.042	0.047	0.052	0.056	0.061	0.065	0.069	0.073
36	0.036	0.043	0.049	0.056	0.061	0.067	0.072	0.077	0.082	0.086
39	0.042	0.050	0.058	0.065	0.071	0.078	0.084	0.090	0.095	0.101
42	0.048	0.058	0.066	0.075	0.082	0.090	0.097	0.103	0.110	0.116
45	0.055	0.066	0.076	0.085	0.094	0.102	0.110	0.118	0.125	0.132
48	0.062	0.074	0.086	0.096	0.106	0.116	0.125	0.133	0.142	0.150
51	0.070	0.084	0.096	0.108	0.119	0.130	0.140	0.150	0.159	0.168
54	0.078	0.093	0.107	0.121	0.133	0.145	0.156	0.167	0.177	0.187
57	0.086	0.103	0.119	0.134	0.147	0.161	0.173	0.185	0.197	0.208
60	0.095	0.114	0.131	0.147	0.163	0.177	0.191	0.204	0.217	0.229
63	0.104	0.125	0.144	0.162	0.179	0.194	0.209	0.224	0.238	0.252
66	0.114	0.137	0.158	0.177	0.195	0.212	0.229	0.245	0.260	0.275
69	0.124	0.149	0.172	0.193	0.212	0.231	0.249	0.267	0.283	0.299
72	0.134	0.161	0.186	0.209	0.230	0.251	0.270	0.289	0.307	0.325
75	0.145	0.175	0.201	0.226	0.249	0.271	0.292	0.313	0.332	0.351
78	0.157	0.188	0.217	0.243	0.269	0.292	0.315	0.337	0.358	0.378
81	0.168	0.202	0.233	0.262	0.289	0.314	0.339	0.362	0.385	0.407
84	0.180	0.217	0.250	0.280	0.309	0.337	0.363	0.388	0.412	0.436
87	0.193	0.232	0.267	0.300	0.331	0.360	0.388	0.415	0.441	0.466
90	0.206	0.247	0.285	0.320	0.353	0.384	0.414	0.443	0.471	0.497
93	0.219	0.263	0.303	0.341	0.376	0.409	0.441	0.472	0.501	0.530
96	0.233	0.280	0.322	0.362	0.399	0.435	0.469	0.501	0.532	0.563
99	0.247	0.297	0.342	0.384	0.424	0.461	0.497	0.531	0.565	0.597
102	0.262	0.314	0.362	0.407	0.448	0.488	0.526	0.563	0.598	0.632
105	0.276	0.332	0.383	0.430	0.474	0.516	0.556	0.595	0.632	0.668
108	0.292	0.350	0.404	0.453	0.500	0.544	0.587	0.628	0.667	0.705
111	0.307	0.369	0.426	0.478	0.527	0.574	0.618	0.661	0.703	0.743
114	0.324	0.389	0.448	0.503	0.555	0.604	0.651	0.696	0.739	0.781
117	0.340	0.408	0.471	0.528	0.583	0.634	0.684	0.731	0.777	0.821
120	0.357	0.429	0.494	0.555	0.612	0.666	0.718	0.768	0.815	0.862
123	0.374	0.449	0.518	0.581	0.641	0.698	0.752	0.805	0.855	0.904
126	0.392	0.470	0.542	0.609	0.672	0.731	0.788	0.843	0.895	0.946
129	0.410	0.492	0.567	0.637	0.702	0.765	0.824	0.881	0.936	0.990
132	0.428	0.514	0.593	0.665	0.734	0.799	0.861	0.921	0.978	1.034
135	0.447	0.537	0.619	0.695	0.766	0.834	0.899	0.961	1.021	1.079
138	0.466	0.560	0.645	0.724	0.799	0.870	0.938	1.003	1.065	1.126
141	0.486	0.583	0.672	0.755	0.833	0.906	0.977	1.045	1.110	1.173
144	0.506 0.526	0.607	0.700	0.786	0.867	0.944	1.017	1.087	1.155	1.221
147	0.526	0.632	0.728	0.817	0.902	0.981	1.058	1.131 1.176	1.202	1.270
150		0.656	0.757	0.850		1.020	1.099		1.249	1.320
153 156	0.568	0.682	0.786	0.882	0.973	1.059	1.142	1.221	1.297	1.371
159	0.589	0.708 0.734	0.815 0.846	0.916	1.010 1.047	1.100 1.140	1.185 1.229	1.267 1.314	1.346 1.396	1.423 1.476
162	0.633	0.760	0.846	0.984	1.047	1.140	1.274	1.362	1.396	1.476
165	0.656	0.788	0.876	1.019	1.124	1.182	1.319	1.411	1.447	1.529
168	0.679	0.788	0.939	1.019	1.124	1.224	1.365	1.411	1.551	1.640
171	0.702	0.813	0.939	1.055	1.204	1.310	1.412	1.510	1.605	1.696
174	0.702	0.843	1.005	1.128	1.244	1.355	1.460	1.561	1.659	1.753
1/4	0.720	0.072	1.003	1.120	1.244	1.333	1.400	1.301	1.033	1./33

Table 23. Conversion factors to estimate the under bark volumes to different top end diameters for **Rain tree** growing in the home gardens of Bangladesh

Gbh (cm)	F _{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
18	0.777	0.583			
21	0.801	0.617			
24	0.819	0.645	0.038		
27	0.835	0.668	0.162		
30	0.847	0.689	0.262		
33	0.858	0.706	0.343		
36	0.867	0.721	0.410		
39	0.875	0.735	0.468	0.053	
42	0.881	0.747	0.517	0.136	
45	0.887	0.757	0.559	0.208	
48	0.893	0.767	0.596	0.271	
51	0.897	0.775	0.629	0.326	
54	0.902	0.783	0.658	0.375	0.058
57	0.905	0.790	0.685	0.420	0.126
60	0.909	0.797	0.708	0.459	0.186
63	0.912	0.803	0.729	0.495	0.241
66	0.915	0.808	0.749	0.528	0.291
69	0.918	0.814	0.766	0.557	0.337
72	0.920	0.818	0.766	0.585	0.379
75	0.922	0.823	0.766	0.610	0.417
78	0.925	0.827	0.766	0.633	0.453
81	0.927	0.831	0.766	0.655	0.486
84	0.928	0.834	0.766	0.674	0.516
87	0.930	0.838	0.766	0.693	0.544
90	0.932	0.841	0.766	0.710	0.571
93	0.933	0.844	0.766	0.727	0.596
96	0.935	0.847	0.766	0.727	0.619
99	0.936	0.849	0.766	0.727	0.641
102	0.937	0.852	0.766	0.727	0.661
105	0.939	0.854	0.766	0.727	0.661
108	0.940	0.857	0.766	0.727	0.661
111	0.941	0.859	0.766	0.727	0.661
114	0.942	0.861	0.766	0.727	0.661
117	0.943	0.863	0.766	0.727	0.661
120	0.944	0.865	0.766	0.727	0.661
123	0.945	0.867	0.766	0.727	0.661
126	0.945	0.868	0.766	0.727	0.661
129	0.946	0.870	0.766	0.727	0.661
132	0.947	0.872	0.766	0.727	0.661
135	0.948	0.873	0.766	0.727	0.661
138	0.949	0.875	0.766	0.727	0.661
141	0.949	0.876	0.766	0.727	0.661
144	0.950	0.877	0.766	0.727	0.661
147	0.951	0.879	0.766	0.727	0.661
150	0.951	0.880	0.766	0.727	0.661
153	0.952	0.881	0.766	0.727	0.661
156	0.952	0.882	0.766	0.727	0.661
159	0.953	0.883	0.766	0.727	0.661
162	0.953	0.884	0.766	0.727	0.661

Table 24. Two way volume table (Gbh-height-volume) for **Shimul** growing in the home gardens of Bangladesh

Gbh	Height in meters							
(cm)	6	8	10	12	14	16	18	20
24	0.016	0.020	0.023	0.026	0.029	0.032	0.035	0.038
27	0.020	0.025	0.029	0.033	0.037	0.041	0.044	0.047
30	0.025	0.030	0.036	0.041	0.045	0.050	0.054	0.058
33	0.030	0.037	0.043	0.049	0.054	0.060	0.065	0.070
36	0.035	0.043	0.051	0.058	0.064	0.071	0.077	0.083
39	0.041	0.051	0.059	0.067	0.075	0.083	0.090	0.097
42	0.048	0.058	0.068	0.078	0.087	0.095	0.104	0.112
45	0.054	0.067	0.078	0.089	0.099	0.109	0.118	0.128
48	0.062	0.076	0.089	0.101	0.112	0.123	0.134	0.145
51	0.069	0.085	0.100	0.113	0.126	0.139	0.151	0.163
54	0.078	0.095	0.111	0.127	0.141	0.155	0.169	0.182
57	0.086	0.105	0.124	0.141	0.157	0.172	0.187	0.202
60	0.095	0.117	0.136	0.155	0.173	0.190	0.207	0.223
63	0.104	0.128	0.150	0.171	0.190	0.209	0.227	0.245
66	0.114	0.140	0.164	0.187	0.208	0.229	0.249	0.268
69	0.125	0.153	0.179	0.203	0.227	0.249	0.271	0.292
72	0.135	0.166	0.194	0.221	0.246	0.271	0.294	0.317
75	0.146	0.179	0.210	0.239	0.267	0.293	0.318	0.343
78	0.158	0.194	0.227	0.258	0.288	0.316	0.344	0.370
81	0.170	0.208	0.244	0.277	0.309	0.340	0.370	0.398
84	0.182	0.223	0.262	0.298	0.332	0.365	0.396	0.427
87	0.195	0.239	0.280	0.319	0.355	0.390	0.424	0.457
90	0.208	0.255	0.299	0.340	0.379	0.417	0.453	0.488
93	0.222	0.272	0.319	0.362	0.404	0.444	0.483	0.520
96	0.236	0.289	0.339	0.385	0.430	0.472	0.513	0.553
99	0.251	0.307	0.360	0.409	0.456	0.501	0.545	0.587
102	0.265	0.325	0.381	0.433	0.483	0.531	0.577	0.622
105	0.281	0.344	0.403	0.458	0.511	0.562	0.611	0.658
108	0.297	0.363	0.426	0.484	0.540	0.593	0.645	0.695
111	0.313	0.383	0.449	0.511	0.569	0.626	0.680	0.733
114	0.329	0.404	0.473	0.538	0.599	0.659	0.716	0.771
117	0.346	0.424	0.497	0.565	0.630	0.693	0.753	0.811
120	0.364	0.446	0.522	0.594	0.662	0.728	0.791	0.852

Table 25. Conversion factors to estimate the under bark volumes to different top end diameters for **Shimul** growing in the home gardens of Bangladesh

Gbh (cm)	F_{ub}	F ₅	F ₁₀	F ₁₅	F ₂₀
24	0.816	0.562	0.095		
27	0.831	0.622	0.151		
30	0.843	0.678	0.204	0.037	0.132
33	0.853	0.731	0.255	0.077	0.150
36	0.862	0.780	0.305	0.116	0.168
39	0.870	0.780	0.352	0.155	0.187
42	0.876	0.780	0.397	0.192	0.207
45	0.882	0.780	0.441	0.228	0.227
48	0.887	0.780	0.482	0.264	0.247
51	0.892	0.780	0.522	0.298	0.268
54	0.896	0.780	0.559	0.332	0.290
57	0.900	0.780	0.595	0.365	0.312
60	0.903	0.780	0.628	0.397	0.335
63	0.906	0.780	0.660	0.428	0.358
66	0.909	0.780	0.689	0.458	0.382
69	0.911	0.780	0.717	0.487	0.406
72	0.914	0.780	0.717	0.516	0.431
75	0.916	0.780	0.717	0.543	0.457
78	0.918	0.780	0.717	0.570	0.482
81	0.920	0.780	0.717	0.595	0.509
84	0.922	0.780	0.717	0.620	0.536
87	0.923	0.780	0.717	0.644	0.564
90	0.925	0.780	0.717	0.667	0.592
93	0.926	0.780	0.717	0.667	0.592
96	0.928	0.780	0.717	0.667	0.592
99	0.929	0.780	0.717	0.667	0.592
102	0.930	0.780	0.717	0.667	0.592
105	0.931	0.780	0.717	0.667	0.592
108	0.932	0.780	0.717	0.667	0.592
111	0.933	0.780	0.717	0.667	0.592
114	0.934	0.780	0.717	0.667	0.592
117	0.935	0.780	0.717	0.667	0.592
120	0.936	0.780	0.717	0.667	0.592