VE 492 Homework8

Due: 23:59, July 28

Q1. Naive Bayes

Your friend claims that he can write an effective Naive Bayes spam detector with only three features: the hour of the day that the email was received $(H \in \{1,2,...,24\})$, whether it contains the word 'viagra' ($W \in \{yes, no\}$), and whether the email address of the sender is Known in his address book, Seen before in his inbox, or Unseen before $(E \in \{K,S,U\})$.

(a) Flesh out the following information about this Bayes net:

Graph structure:

Parameters:

P(HIY), P(WIY), P(EIY).

Size of the set of parameters:

spam or ham?

	spam	3	yes	S	
	ham	14	no	K	
b) $P(Y = SPan) = \frac{1}{3}$, $P(Y = ham) = \frac{1}{3}$, (b) Use the three instances to $\frac{1}{3}$	ham	15) = (um lik	no (H celihoo	K = y d para	Y=ham)= t, P(H=U/Y=ham)=t, ameters.
(c) Using the maximum likelihood parameters, find the predicted class of a new datapoint with					
$H = 3, W = no, E = U$ $P(Y = pan) = \frac{3}{3}, Now use the three to esting the parameters of the pa$	Y= SPAM) = 3 mate the parameter	P()	d / Yz	Som ace s	moothing and $k = 2$. Do not $\frac{2}{7}$
datapoint with $H'=3$, W'	= no , $E' = U'$	<i>y</i> ,	はり	1 154	Shun V

(f) You observe that you tend to receive spam emails in batches. In particular, if you receive one spam message, the next message is more likely to be a spam message as well. Explain a new graphical model which most naturally captures this phenomena.

Graph structure:

Parameters:

P(Yo)., P(Ye | You), P(14) Ye), P(We | Ye), P(Ee | Ye), t >1

Size of the set of parameters:

Q2. Perceptron

- (a) Suppose you have a binary perceptron in 2D with weight vector $\mathbf{w} = r [w_1, w_2]^T$. You are given w_1 and w_2 , and are given that r > 0, but otherwise not told what r is. Assume that ties are broken as positive. Can you determine the perceptron's classifification of a new example x with known feature vector f(x)?
 - A.) Always
 - В. Sometimes
 - C. Never
- (b) Now you are learning a multi-class perceptron between 4 classes. The weight vectors are currently $[1,0]^T$, $[0,1]^T$, $[-1,0]^T$, $[0,-1]^T$ for the classes A, B, C, and D. The next training example x has a **label of A** and feature vector f(x).

For the following questions, do not make any assumptions about tie-breaking. (Do not write down a solution that creates a tie.)

If the answer does not exist, write down **Not possible**

$$f(x) =$$
 O Not possible

(i) Write down a feature vector in which no weight vectors will be updated. $\{(x) = [1, 0]^T$

(ii) Write down a feature vector in which only \mathbf{w}_A will be updated by the perceptron. Not posible (iii) Write down a feature vector in which only \mathbf{w}_A and \mathbf{w}_B will be updated by the perceptron. $f(X) = \overline{l} \circ l$

(iv) Write down a feature vector in which only \mathbf{w}_A and \mathbf{w}_C will be updated by the perceptron.

The weight vectors are the same as before, but now there is a bias feature with value of 1 for all x and the weight of this bias feature is 0, -2, 1, -1 for classes A, B, C, and D respectively. As before, the next training example x has a **label of A** and a feature vector f(x). The always "1" bias feature is the first entry in f(x).

If the answer does not exist, write down Not possible

$$f(x) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 O Not possible

(v) Write down a feature vector in which only wB and wC will be updated by the perceptron. Not Possible -

(vi) Write down a feature vector in which only wA and wC will be updated by the perceptron.