Logic of Computer Science Lecture 3: Natural Deduction in Propositional Logic

Emmanuel Kwesi Tandoh

University of Mines and Technology (UMaT)

June 2025

Knowledge | Truth | Excellence

Real-World Reasoning Scenarios

- **Detective Work:** "If the window was broken and there are muddy footprints, then the intruder entered through the window." Use evidence to conclude facts.
- **Debugging Code:** "If error X occurs and condition Y holds, then function Z fails." Combine conditions to pinpoint bugs.
- Everyday Decisions: "If it's raining and I have no umbrella, then I'll get wet." Simple reasoning guides choices.

Motivation

- Natural deduction mirrors the clear steps you already use in everyday thinking.
- Learning these rules helps you write precise arguments in math, programming, and Al.
- Forms the foundation of:
 - Automated Theorem Proving (verifying software correctness)
 - Formal Verification (checking hardware designs)
 - Logical AI (making machines "reason").
- Empowers you to break complex problems into simple, provable steps.

Learning Objectives

By the end of this session, students should be able to:

By the end of this lesson you will be able to:

- Read and write clear natural deduction proofs.
- Use Introduction (I) and Elimination (E) rules for \rightarrow , \wedge , \vee , \neg .
- Build proofs for everyday-like scenarios.
- Identify and avoid common proof mistakes.

Proof Structure Notation

Definition

Each proof line has:

- A statement (formula).
- \bullet A rule name (e.g. " \rightarrow E").
- References to prior lines used.

Subproofs: Indented blocks for temporary assumptions, later discharged.

Introduction Rules (I)

```
Build new formulas from known facts: Connective Rule When to use A,B \landI Combine A and B to infer A \land B. A or B \lorI<sub>1/2</sub> From A infer A \lor B, or from B. A \to B \toI Assume A, derive B, conclude A \to B. \neg A \negI Assume A, derive contradiction \bot, infer \neg A.
```

Elimination Rules (E)

```
Break down complex formulas: A \wedge B \qquad A \otimes B \qquad
```

Quick-Check: Which rule extracts A from $A \wedge B$? $\wedge E_1$.

Worked Example: Modus Ponens

Scenario: You know "If you study, you'll pass" and "You studied."

Premises:

- $P \rightarrow (Q \rightarrow R)$ (If you study P, then if you understand Q, you pass R.)
- P (You studied.)
- Q (You understand.)

Proof:

- \bigcirc $Q \rightarrow R \rightarrow \mathsf{E} \text{ using (1) and (2)}$

Proof by Cases $(\lor E)$

Use when: You know "A or B" and want C.

Structure:

- \bullet $A \lor B$
- 2. Case 1: assume A
 - •• ... derive *C*
- 3. Case 2: assume B
 - ... derive C
- \odot C \vee E, using line 1 and results from both cases

Proof by Contradiction ($\neg I \& E$)

- Assume the opposite of A, derive a contradiction \perp , conclude $\neg A$.
- ullet From \bot , you can infer anything (explosion).

Example: Prove $\neg (P \land \neg P)$.

- \bigcirc Assume $P \land \neg P$.
- \bullet Extract P and $\neg P$, derive \bot .
- Conclude $\neg (P \land \neg P)$ by $\neg I$.

In-Class Practice

- From $P \wedge (Q \vee R)$ derive $(P \wedge Q) \vee (P \wedge R)$.
- ② Prove $(P \to Q) \to (\neg Q \to \neg P)$ using the rules.
- **3** Challenge: From $\neg P \rightarrow \neg Q$ and Q, derive P.

Summary & Next Steps

- Natural deduction formalizes clear, step-by-step reasoning.
- Core rules: Intro/Elim for \rightarrow , \wedge , \vee , \neg ; proof by cases; contradiction.
- Next: Soundness/completeness and predicate logic.

References I

- D. Gries and F. B. Schneider, *A Logical Approach to Discrete Math*, Springer-Verlag, 1993.
- K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed., McGraw-Hill, 2011.
- P. Halmos, Naive Set Theory, Van Nostrand, 1960.

Thank You!