Differential privacy From Bayesian inference to differential privacy and back

Christos Dimitrakakis

September 13, 2022

Introduction

Setting
Differential privacy

Bayesian inference for privacy

Robustness and privacy of the posterior distribution Posterior sampling query model

Optimal inference

Overview

Example (Health insurance)

- ▶ We collect data *x* about treatments and patients.
- We disclose conclusions about treatment effectiveness.
- ▶ We want to hide individual patient information.
- Encryption does not help

The general problem

- ▶ We wish to estimate something from a dataset $x \in S$.
- We wish to communicate what we learn to a third party.
- How much can they learn about x?

Bayesian inference and differential privacy

Bayesian estimation

- What are its robustness and privacy properties?
- How important is the selection of the prior?

Limiting the communication channel

- How should we communicate information about our posterior?
- How much can an adversary learn from our posterior?

Setting

Dramatis personae

- ➤ x data.
- ▶ ℬ a (Bayesian) statistician.
- \blacktriangleright ξ the statistician's prior belief.
- \triangleright θ a parameter
- \blacktriangleright \mathscr{A} an adversary. He knows ξ , should not learn x.

Setting

Dramatis personae

- ➤ x data.
- ▶ ℬ a (Bayesian) statistician.
- \triangleright ξ the statistician's prior belief.
- θ a parameter
- \blacktriangleright \mathscr{A} an adversary. He knows ξ , should not learn x.

The game

- 1. \mathscr{B} selects a model family (\mathcal{F}) and a prior (ξ) .
- 2. \mathscr{B} observes data x and calculates the posterior $\xi(\theta|x)$.
- 3. \mathscr{A} queries \mathscr{B} .
- 4. \mathscr{B} responds with a function of the posterior $\xi(\theta|x)$.
- 5. Goto 3.

Two related problem viewpoints

Differential privacy

A randomised mechanism π taking data x as input is basically a distribution condition on x. So we write:

Definition (ϵ -differential privacy)

$$\pi(\cdot \mid x)$$
 is ϵ -differentially private if, $\forall x \in \mathcal{S} = \mathcal{X}^n$, $B \subset \Theta$

$$\pi(B \mid x) \le e^{\epsilon} \pi(B \mid y)$$
 ,

for all y in the hamming-1 neighbourhood of x.

Differential privacy

A randomised mechanism π taking data x as input is basically a distribution condition on x. So we write:

Definition $((\epsilon, \delta)$ -differential privacy)

$$\pi(\cdot \mid x)$$
 is (ϵ, δ) -differentially private if, $\forall x \in \mathcal{S} = \mathcal{X}^n$, $B \subset \Theta$

$$\pi(B \mid x) \leq e^{\epsilon} \pi(B \mid y) + \delta$$
,

for all y in the hamming-1 neighbourhood of x.

Differential privacy

A randomised mechanism π taking data x as input is basically a distribution condition on x. So we write:

Definition $((\epsilon, \delta)$ -differential privacy)

$$\pi(\cdot \mid x)$$
 is (ϵ, δ) -differentially private if, $\forall x \in \mathcal{S} = \mathcal{X}^n$, $B \subset \Theta$

$$\pi(B \mid x) \le e^{\epsilon} \pi(B \mid y) + \delta,$$

for all y in the hamming-1 neighbourhood of x.

i.e. neighbouring datasets are statistically indistinguishable wrt the distribution induced by the mechanism.

Remark

A similar definition can be given for computationally indistinguishable distributions.

Differential privacy as hypothesis testing

- Assume an adversary wants to distinguish datasets x, y.
- We play a game where we emit a either from $\pi(a|x)$ or $\pi(a|y)$.
- ► The type I/II errors are bound by DP.

Bayesian properties of Differential privacy

If an adversary has a prior $\beta(x)$ on the data then, by Bayes:

$$\frac{\beta(x|a)}{\beta(x'|a)} = \frac{\pi(a|x)\beta(x)}{\pi(a|x')\beta(x')} \le e^{\epsilon} \frac{\beta(x)}{\beta(x')}$$

so that, for the case where $\beta(x) = \beta(x')$,

$$\beta(x|a) \le e^{\epsilon}\beta(x'|a)$$

The necessity of randomness

▶ Consider a deterministic mechanism $f: S \rightarrow \{0, 1\}$.

The necessity of randomness

- ▶ Consider a deterministic mechanism $f: S \rightarrow \{0, 1\}$.
- ▶ If there is at least one pair $x, y \in S$ such that

$$f(x) = 0, f(y) = 1.$$

then:

The necessity of randomness

- ▶ Consider a deterministic mechanism $f: S \rightarrow \{0, 1\}$.
- ▶ If there is at least one pair $x, y \in S$ such that

$$f(x) = 0, \qquad f(y) = 1.$$

then:

An adversary $\mathscr A$ wants to guess the real data x^* and knows that $x^* \in \{x, y\}$ can immediately discover the truth.

Responding to queries

- \triangleright \mathscr{B} normally responds to queries from \mathscr{A} .
- Queries can be defined equivalently as
 - 1. Additional inputs to the mechanism.
 - 2. A utility function submitted by $\mathscr A$ that $\mathscr B$ maximises.
 - 3. An function submitted by $\mathscr A$ that $\mathscr B$ evaluates.

Current differentially private mechanisms

Laplace mechanism

Add noise to responses to queries.

$$r = \underbrace{q(x)}_{\text{ideal response}} + \underbrace{\omega}_{\text{noise}}, \qquad \omega \sim \text{Laplace}(\lambda)$$

Exponential mechanism

Define a utility function u(x, r) maximised for u(x, q(x))

$$\underbrace{p(r)}_{\text{response probability}} \propto e^{\epsilon u(x,r)} \underbrace{\mu(r)}_{\text{base measure}}$$

Other methods

- ► Subsample + aggregate
- Compressed sensing

Estimating a coin's bias

A fair coin comes heads 50% of the time. We want to test an unknown coin, which we think may not be completely fair.

Figure: Prior belief ξ about the coin bias θ .

Figure: Prior belief ξ about the coin bias θ .

For a sequence of throws $x_t \in \{0, 1\}$,

$$P_{\theta}(x) \propto \prod_{t} \theta^{x_t} (1 - \theta)^{1 - x_t} = \theta^{\text{#Heads}} (1 - \theta)^{\text{#Tails}}$$

Figure: Prior belief ξ about the coin bias θ and likelihood of θ for the data.

Say we throw the coin 100 times and obtain 70 heads. Then we plot the likelihood $P_{\theta}(x)$ of different models.

Figure: Prior belief $\xi(\theta)$ about the coin bias θ , likelihood of θ for the data, and posterior belief $\xi(\theta \mid x)$

From these, we calculate a posterior distribution over the correct models. This represents our conclusion given our prior and the data.

Setting

- ightharpoonup Dataset space S.
- ▶ Distribution family $\mathcal{F} \triangleq \{ P_{\theta} \mid \theta \in \Theta \}$.
- ightharpoonup Each P_{θ} is a distribution on S.
- We wish to identify which θ generated the observed data x.
- Prior distribution ξ on Θ (i.e. initial belief)
- ▶ Posterior given data $x \in S$ (i.e. conclusion)

$$\xi(\theta \mid x) = \frac{P_{\theta}(x)\xi(\theta)}{\phi(x)}$$
 (posterior)
$$\phi(x) \triangleq \sum_{\theta \in \Theta} P_{\theta}(x)\xi(\theta).$$
 (marginal)

Standard calculation that can be done exactly or approximately.

Introduction

Bayesian inference for privacy

Robustness and privacy of the posterior distribution Posterior sampling query model

Optimal inference

What we want to show

- ightharpoonup If we assume the family ${\cal F}$ is well-behaved . . .
- lackboxlim . . . or that the prior ξ is focused on the "nice" parts of ${\mathcal F}$

What we want to show

- ightharpoonup If we assume the family ${\cal F}$ is well-behaved . . .
- lacksquare . . . or that the prior ξ is focused on the "nice" parts of ${\mathcal F}$
- Inference is robust.
- Our knowledge is private.
- lacktriangle There are also well-known ${\mathcal F}$ satisfying our assumptions.

Differential privacy of conditional distribution $\xi(\cdot \mid x)$

Definition $((\epsilon, \delta)$ -differential privacy)

$$\xi(\cdot \mid x)$$
 is (ϵ, δ) -differentially private if, $\forall x \in \mathcal{S} = \mathcal{X}^n$, $B \subset \Theta$

$$\xi(B \mid x) \le e^{\epsilon} \xi(B \mid y) + \delta,$$

for all y in the hamming-1 neighbourhood of x.

We replace the neighbourhood with an apropriate pseudo-metric ρ :

x neighbours
$$y \Leftrightarrow \rho(x, y) \leq 1$$

Sufficient conditions

Assumption (\mathcal{F} is Lipschitz)

For a given ρ on S, $\exists L > 0$ s.t. $\forall \theta \in \Theta$:

$$\left| \ln \frac{P_{\theta}(x)}{P_{\theta}(y)} \right| \le L\rho(x, y), \quad \forall x, y \in \mathcal{S},$$
 (1)

Sufficient conditions

Assumption (\mathcal{F} is Lipschitz)

For a given ρ on S, $\exists L > 0$ s.t. $\forall \theta \in \Theta$:

$$\left| \ln \frac{P_{\theta}(x)}{P_{\theta}(y)} \right| \le L \rho(x, y), \quad \forall x, y \in \mathcal{S},$$
 (1)

Stochastic Lipschitz condition

Assumption (The prior is concentrated on nice parts of \mathcal{F}) Let the set of L-Lipschitz parameters be Θ_L . Then $\exists c > 0$ s.t.

$$\xi(\Theta_L) \ge 1 - \exp(-cL), \forall L$$
 (2)

Stochastic Lipschitz condition

Assumption (The prior is concentrated on nice parts of \mathcal{F}) Let the set of L-Lipschitz parameters be Θ_L . Then $\exists c > 0$ s.t.

$$\xi(\Theta_L) \ge 1 - \exp(-cL), \forall L$$
 (2)

Some properties of the posterior

Robustness of the posterior distribution

$$D\left(\xi(\cdot\mid x)\parallel \xi(\cdot\mid y)\right) \leq O(\rho(x,y)) \tag{3}$$

DP properties of the posterior

1. Assumption 1: the posterior is (2L, 0)-DP under ρ .

Some properties of the posterior

Robustness of the posterior distribution

$$D\left(\xi(\cdot\mid x)\parallel \xi(\cdot\mid y)\right) \leq O(\rho(x,y)) \tag{3}$$

DP properties of the posterior

- 1. Assumption 1: the posterior is (2L, 0)-DP under ρ .
- 2. Assumption 2: the posterior is $\left(0, \sqrt{\frac{\kappa C_{\xi}}{2c}}\right)$ -DP under $\sqrt{\rho}$.

- ightharpoonup We select a prior ξ .
- We observe data x.
- ▶ We calculate a posterior $\xi(\cdot \mid x)$.
- ▶ An adversary has sampling-based access to the posterior.

- We select a prior ξ .
- We observe data x.
- ▶ We calculate a posterior $\xi(\cdot \mid x)$.
- ▶ An adversary has sampling-based access to the posterior.

First idea

At time t, the adversary observes a sample from the posterior:

$$\theta_t \sim \xi(\theta \mid x)$$
,

- We select a prior ξ .
- We observe data x.
- ▶ We calculate a posterior $\xi(\cdot \mid x)$.
- ▶ An adversary has sampling-based access to the posterior.

First idea

At time t, the adversary observes a sample from the posterior:

$$\theta_t \sim \xi(\theta \mid x)$$
,

 \mathscr{A} may calculate any query $q:\Theta o\mathcal{R}$

$$r_t = q(\theta_t)$$

- We select a prior ξ .
- We observe data x.
- ▶ We calculate a posterior $\xi(\cdot \mid x)$.
- ▶ An adversary has sampling-based access to the posterior.

First idea

At time t, the adversary observes a sample from the posterior:

$$\theta_t \sim \xi(\theta \mid x)$$
,

 \mathscr{A} may calculate any query $q:\Theta o\mathcal{R}$

$$r_t = q(\theta_t)$$

Postprocessing: Because the sampling algorithm is DP, the query result is also DP.

Avoiding disclosure with multiple queries

First, release n samples from the posterior

$$\hat{\Theta} \sim \xi^n(\cdot \mid x).$$

For a query q_t and utility function $u_{\theta}: \mathcal{R} \times \mathcal{Q} \rightarrow [0,1]$, return:

$$r_t \in \arg\max_{r} \sum_{\theta \in \hat{\Theta}} u_{\theta}(r, q_t)$$

Other mechanisms

Exponential mechanism

$$p(r) \propto e^{\epsilon u(x,r)} \mu(r).$$

- ightharpoonup Responses are parameters θ .
- ▶ Take $u(\theta, x) = \log P_{\theta}(x)$.
- ► Take $\mu(\theta) = \xi(\theta)$.
- ▶ Then $p(\theta) = \xi(\theta \mid x)$.
- Rather than tuning ϵ , we can tune
 - ▶ The prior ξ .
 - The number of samples n.

Laplace mechanism

- Add noise to the sufficient statistics of Bayesian inference
- Release complete, noisy, posterior.

➤ x: Private data

x: Private data

 \triangleright θ : Latent variable of interest

- x: Private data
- \triangleright θ : Latent variable of interest
- ▶ $\{P_{\theta}(x)\}$: Family.

- x: Private data
- \triangleright θ : Latent variable of interest
- ▶ $\{P_{\theta}(x)\}$: Family.
- $ightharpoonup \beta(\theta)$: Prior.

- x: Private data
- \triangleright θ : Latent variable of interest
- $ightharpoonup \{P_{\theta}(x)\}$: Family.
- $\triangleright \beta(\theta)$: Prior.
- ▶ $a \sim \pi(a|x)$: Mechanism output.

- x: Private data
- \triangleright θ : Latent variable of interest
- $ightharpoonup \{P_{\theta}(x)\}$: Family.
- $\triangleright \beta(\theta)$: Prior.
- ▶ $a \sim \pi(a|x)$: Mechanism output.

- x: Private data
- \triangleright θ : Latent variable of interest
- $ightharpoonup \{P_{\theta}(x)\}$: Family.
- \triangleright $\beta(\theta)$: Prior.
- ▶ $a \sim \pi(a|x)$: Mechanism output.

Inferring θ in general: hard

Using knowledge of the mechanism:

$$\beta(\theta|a,\pi) \propto \beta(a|\theta,\pi)\beta(\theta) = \int_{\mathcal{X}} \pi(a|x) \, dP_{\theta}(x) \underbrace{\beta(\theta)}_{MonteCarlo} \tag{4}$$

- x: Private data
- \triangleright θ : Latent variable of interest
- $ightharpoonup \{P_{\theta}(x)\}$: Family.
- \triangleright $\beta(\theta)$: Prior.
- ightharpoonup $a \sim \pi(a|x)$: Mechanism output.

Inferring θ in general: hard

Using knowledge of the mechanism:

$$\beta(\theta|a,\pi) \propto \beta(a|\theta,\pi)\beta(\theta) = \int_{\mathcal{X}} \pi(a|x) \, \mathrm{d}P_{\theta}(x) \underbrace{\beta(\theta)}_{MonteCarlo} \tag{4}$$

When $\pi(a|x)$ is posterior sampling: easy

For any one sample $a \in \Theta$, as long as $\beta = \pi$,

$$\beta(\theta|a,\pi) = \int_{\mathcal{X}} \beta(\theta|x) \underbrace{dP_{a}(x)}_{\text{MontoCarlo}}.$$
 (5)

Conclusion

- Bayesian inference is inherently robust and private [hooray].
- Privacy is achieved by posterior sampling [Dimitrakakis et al].
- In certain cases by parameter noise [Zhang et al].
- ► Inference under DP generally an open problem.
- DP also applicable to bandits [Thakurta and Smith; Tossou and Dimitrakakis]

References

- C Dwork, F McSherry, K Nissim, A Smith, Calibrating noise to sensitivity in private data analysis, TCC 2006.
- C. Dimitrakakis, B. Nelson, A. Mitrokotsa, B. Rubinstein, Differential privacy for Bayesian inference through posterior sampling, ALT 2014, JMLR 2017.
- A. Tossou, C. Dimitrakakis, Algorithms for differentially private multi-armed bandits, AAAI 2016.
- Z. Zhang, B. Rubinstein, C. Dimitrakakis, On the Differential Privacy of Bayesian Inference, AAAI 2016.
- D. Mir, Information-theoretic foundations of differential privacy, EDBT/ICDT, 2012.
- A. Thakurta, A. Smith (nearly) optimal algorithms for private online learning in full-information and bandit settings. NIPS 2013.
- YX. Wang, SE. Fienberg, A. Smola, Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo, ICML 2015.
- Z. Zhang, B. Rubinstein, C. Dimitrakakis, On the Differential Privacy of Bayesian Inference, AAAI 2016.

