ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра Прочности Летательных Аппара	тов
--------------------------------------	-----

Дипломная работа на степень бакалавра на тему:

Исследование прочности конструкции центроплана для крыльев большого удлинения.

Студент	Дынников Ю.А.
Научный руководитель степень?	Шаныгин А.Н.
Зав. кафедрой	Замула ГН

Оглавление

1	Про	облема компоновки самолета по схеме "летающее крыло" и её решение	2
	1.1	Оценка возможных потерь, вносимых изогнутой формой кессона	•
2	Pen	пение задачи	4
	2.1	Создание параметрической модели центроплана	2
	2.2	Программный комплекс "Conver"	ļ
		2.2.1 Описание комплекса	ļ
		2.2.2 Внесенные изменения	(
		2.2.3 Сравнение работы с типовыми операциями в старой и новой версии	
		интерфейса	,
	2.3	Расчет параметрической модели	
3	Вал	пидация решения	13

Глава 1

Проблема компоновки самолета по схеме "летающее крыло" и её решение

В настоящее время всё большее внимание уделяется принципиальной схеме самолета "летающее крыло". Данная схема применяется в том числе и для разработки беспилотных летательных аппаратов, предназначенных для разведки. В конструктировании таких самолетов особое внимание уделяется требованиям малозаметности и увеличения аэродинамического качества, и как следствие, возможности барражировать в течение длительного времени.

Для удовлетворения данным требованиям конструкцию самолета создают максимально "плоской" – так, в подобных конструкциях строительная высота фюзеляжа сравнима с высотой двигателя. Один из способов создания подобной конструкции – использование изогнутого кессона. (Рис.1.1). Примером такого самолета служит концепт американского беспилотного летательного аппарата RQ-180 (Рис.1.2).

Рис. 1.1: Вид сечения центроплана в месте стыка передней кромки крыла и фюзеляжа с изображением двигателя

Так как вес конструкции является одним из важнейших критериев при выборе конструкции самолета, (что-то дописать), при проектировании самолета необходимо знать, какой вклад в вес конструкции совершает выбор такой формы кессона. С целью получения таких сведений в данной работе проводится анализ влияния различных форм кессона на вес самолета.

Стоит заметить, что для того, чтобы в полной мере понимать целесообразность выбора той или иной формы центроплана, необходимо проводить комплексный анализ с учетом того, как меняются аэродинамических характеристик самолета при выборе той или иной

Рис. 1.2: Концепт американского БПЛА RQ-180 [1]

формы кессона, и выбирать оптимальный вариант, исходя из критериев как прочности, так и аэродинамики. В данной работе проводится анализ лишь с точки зрения прочности конструкции, аэродинамические характеристики и нагрузки приняты постоянными.

Полученные в работе данные возможно использовать при дальнейшем проектировании самолетов схемы "летающее крыло".

1.1 Оценка возможных потерь, вносимых изогнутой формой кессона

Глава 2

Решение задачи

2.1 Создание параметрической модели центроплана

Для анализа влияния формы кессона на вес самолета и его аэродинамические характеристики была создана параметрическая модель, представляющая из себя упрощенную модель центроплана. В упрощенной модели кессон заменен коробом переменного прямоугольного сечения с перегородками. На него передаются нагрузки путем приложения аэродинамических нагрузок на упрощенную модель крыла — короб постоянного прямоугольного сечения (Рис.2.1). Материал всех панелей - алюминий, толщина каждой панели постоянна, панели без вырезов. Все остальные части самолёта опущены для простоты.

Рис. 2.1: Упрощенная модель центроплана

Для модели центроплана имеются два параметра: относительная координата нижней точки сечения и строительная высота в плоскости симметрии самолета. Кривые, описывающие нижнюю и верхнюю поверхность кессона выбраны кубическим сплайном через заданные исходя из параметров точки с условием равенства нулю производных в точках стыка фюзеляжа с крылом и в плоскости симметрии самолета (Рис.2.2).

Рис. 2.2: Пример модельного сечения центроплана

Использование такой упрощенной модели в МКЭ-расчете позволяет ускорить процесс при тех же вычислительных мощностях. Так, в упрощенной модели используется ≈ 10000

конечных элементов, в то время как в полной модели самолета ≈ 270000 конечных элементов.

Так же, выбор такой параметрической модели позволит в дальнейшем включить в процесс оптимизации сечения так же расчет аэродинамических нагрузок, что позволит полностью автоматизировать процесс оптимизации формы сечения кессона для схемы "летающее крыло".

2.2 Программный комплекс "Conver"

Для построения описанных выше моделей использовался разработанный в ЦАГИ программный комплекс "Conver". Его использование позволило многократно сократить время построения каждой модели.

2.2.1 Описание комплекса

Комплекс представляет собой многоуровневую среду для автоматизированного проектирования и оптимизации ЛА. Комплекс делится на 4 уровня по степени детализации:

Рис. 2.3: Принципиальная схема четырехуровневого проектирования

- Уровень 1: расчёт аэродинамических нагрузок и аэродинамических характеристик;
- Уровень 2: расчёт инерционных нагрузок, формирование случаев нагружения, решение задач статической и динамической аэроупругости, анализ веса конструкции планера;
- Уровень 3: расчёт местной и общей устойчивости, анализ закритического состояния отдельных элементов конструкции, расчёт нелинейного НДС панелей гермокабины, расчет несущей способности элементов конструкции;
- Уровень 4: расчёт общего НДС конструкции ЛА, определение запасов прочности, определение остаточной прочности, расчет длительной прочности.

Основные особенности программного комплекса:

- 1. Эффективное проведение параметрических исследований для различных конструкций планера, что позволяет минимизировать временные затраты и снизить трудоёмкость всего процесса;
- 2. Обеспечение более высокого качественного уровня параметрических исследований на начальной стадии проектирования за счёт автоматизированного создания полноразмерных моделей конструкции ЛА и автоматизации процесса анализа результатов исследований;
- 3. Оперативная оценка веса конструкций летательных аппаратов с учётом технологических ограничений при автоматическом использовании специализированных баз данных поправочных технологических коэффициентов.

2.2.2 Внесенные изменения

В ходе работы, для повышения степени автоматизации процесса был создан новый интерфейс для первого уровня комплекса.

Рис. 2.4: Новый интерфейс программного комплекса "Conver"

В новом интерфейсе были реализованы следующие изменения:

- Полностью переработана система визуализации
 - Добавлены инструменты масштаба и перемещения
 - Добавлена двусторонняя связь между схемой и областями ввода данных
 - Добавлена возможность отображения каждого этажа в схеме по отдельности
 - Добавлено отображение ошибок во введенных данных
- Переработана система ввода параметров отсеков
 - Добавлены визуальные подсказки, предупреждающие ошибки в данных
 - Добавлена возможность ввода параметров сразу для нескольких отсеков
- Добавлена возможность ввода нагрузок непосредственно через задание сил, действующих на отсек

- Добавлена возможность просмотра данных, получаемых из других уровней комплекca:
 - Оценочный расчет веса конструкции или выбранных отсеков
 - Расчет объема выбранных отсеков
 - Просмотр площадей стенок отсеков

Рассмотрим, как изменилась работа с типовыми операциями, с которыми приходится сталкиваться пользователю.

2.2.3 Сравнение работы с типовыми операциями в старой и новой версии интерфейса

Изменение толщин в отсеке

Задача: изменить толщину отсека в центроплане.

Прежний подход:

- Найти номер отсека по схеме (Рис.2.5) ($\sim 1-3$ мин.)
- Найти соответствующую ячейку в таблице толщин. (~ 15 сек.)
- Изменить значение в ячейке. ($\sim 5~{\rm cek.}$)

Итого: ~ 3 мин.

Рис. 2.5: Окно отображения отсеков в предыдущей версии интерфейса

Новый подход:

- Кликнуть на нужный отсек на схеме (Рис.??~ 5 сек.)
- Изменить значение в ячейке толщины нужной стенки $(\sim 5~{\rm cek.})$

Итого: ~ 10 сек.

Рис. 2.6: Окно отображения отсеков в новой версии интерфейса

Нагружение отсека заданной силой

Задача: по визуальному нахождению стенки нагрузить её заданной силой.

Прежний подход:

- Найти по схеме (Рис.2.5) отсеки, в которых может быть определена нужная стенка (~ 5 мин.)
- Найти в таблице толщин, какой из выбранных отсеков имеет толщину этой стенки отличную от $\text{нуля}(\sim 3 \text{ мин.})$
- Из 4 уровня программы найти площадь этой стенки $(\sim 3 \text{ мин.})$
- По площади стенки найти давление, которое необходимо на неё приложить (~ 1 мин.)
- В таблице давлений найти нужную ячейку и ввести в неё полученную величину(\sim 5 мин.)

Итого: ~ 17 мин.

Новый подход:

- Кликнуть на один из отсеков, которому принадлежит эта стенка $(\sim 10 \text{ сек.})$
- Если ячейка давления на нужную стенку выделена красным, выбрать другой отсек, в котором эта ячейка не выделена красным, то есть в которой эта стенка имеет ненулевую толщину(~ 1 мин.)

- Нажать кнопку "Add load" (~ 10 сек.)
- В открывшемся окне (Рис.2.7) ввести величину прикладываемой силы и выбрать стенки отсека, на которые должна быть распределена данная нагрузка. (~ 30 сек.)
- Нажать "Add load" (~ 10 сек.)

Итого: ~ 2 мин.

Рис. 2.7: Окно добавления нагрузок в новой версии интерфейса

2.3 Расчет параметрической модели

Для проведения расчета были выбраны 42 пары значений параметров. Для каждой пары была проведена оптимизация толщин панелей кессона с целью удовлетворения требованиям прочности конструкции, а именно: среднее напряжение в каждой панели не должно превышать значения допускаемого напряжения, принятого равным 35кг/мм^2 . Оптимизация проводилась путем вычисления запаса прочности для каждой пластины с последующим делением толщины панели на полученное значение (так называемый алгоритм σ/σ). Итоговые результаты вычислений приведены в таблицах 2.1, 2.2 и на 2.1, 2.2 и на 2.1,

 Таблица 2.1: Зависимость площади панелей центроплана и веса кессона от параметров центроплана

		Вес кесс	сона [кг]		Площа	дь панелей	центропла	на [м ²]
N	Верхние	Нижние	Боковые	Σ	Верхние	Нижние	Боковые	Σ
	панели	панели	стенки		панели	панели	стенки	<i>\(\)</i>
1	297.182	294.551	12.561	604.294	2.730	2.730	4.000	9.520
2	225.261	237.378	27.672	490.313	2.730	2.740	5.210	10.720
3	190.080	222.327	49.159	461.564	2.730	2.760	5.820	11.340
4	161.544	211.467	65.963	438.972	2.730	2.760	6.450	11.950
5	146.581	199.989	66.844	413.415	2.730	2.780	7.090	12.590
6	134.746	191.293	70.912	396.952	2.730	2.800	7.640	13.200
7	350.816	374.021	47.679	772.515	2.910	2.910	4.000	9.850
8	253.752	259.311	53.180	566.245	2.910	2.850	5.210	10.990
9	213.881	226.655	57.618	498.154	2.910	2.830	5.840	11.570
10	188.442	205.603	62.047	456.092	2.910	2.810	6.450	12.150
11	174.466	196.192	66.506	437.164	2.910	2.780	7.090	12.770
12	154.328	195.919	70.963	421.210	2.910	2.770	7.680	13.350
13	363.681	391.414	48.862	803.953	3.010	3.000	4.000	10.000
14	258.118	275.555	53.209	586.883	3.010	2.930	5.230	11.160
15	225.322	238.220	57.604	521.145	3.010	2.890	5.820	11.720
16	201.612	214.755	62.046	478.413	3.010	2.860	6.440	12.310
17	171.877	203.370	66.418	441.665	3.010	2.840	7.050	12.900
18	163.553	201.207	70.912	435.673	3.010	2.820	7.660	13.480
19	380.079	398.521	49.032	827.631	3.050	3.050	4.000	10.110
20	267.143	279.590	53.134	599.866	3.050	2.980	5.210	11.240
21	231.158	238.954	57.667	527.779	3.050	2.930	5.820	11.820
22	197.327	218.001	62.040	477.368	3.050	2.910	6.410	12.390
23	191.553	205.935	66.481	463.971	3.050	2.870	7.070	12.980
24	158.352	203.948	70.897	433.199	3.050	2.850	7.660	13.560
25	383.525	410.374	50.351	844.249	3.110	3.110	4.000	10.210
26	279.228	288.331	53.186	620.745	3.110	3.030	5.210	11.350
27	233.614	249.500	57.583	540.696	3.110	2.990	5.820	11.910
28	213.922	221.683	62.125	497.728	3.110	2.950	6.450	12.500
29	180.457	210.067	66.523	457.046	3.110	2.920	7.070	13.070
30	167.492	205.426	71.001	443.918	3.110	2.880	7.640	13.660
31	401.418	424.040	50.413	875.868	3.160	3.160	4.000	10.330
32	285.115	297.451	53.649	636.214	3.160	3.070	5.230	11.470
33	251.131	255.015	57.656	563.801	3.160	3.040	5.860	12.030
34	212.049	229.543	62.067	503.658	3.160	3.000	6.450	12.610
35	191.030	215.968	66.550	473.548	3.160	2.970	7.070	13.170
36	170.765	209.184	70.962	450.912	3.160	2.920	7.660	13.740
37	431.880	451.562	51.974	935.418	3.230	3.230	4.000	10.440
38	291.199	306.178	54.263	651.640	3.230	3.130	5.210	11.560
39	253.054	265.073	57.593	575.719	3.230	3.090	5.820	12.140
40	222.782	233.403	61.948	518.132	3.230	3.050	6.400	12.700
41	197.192	218.301	66.423	481.917	3.230	3.020	7.030	13.270
42	175.591	210.828	70.877	457.295	3.230	2.970	7.660	13.840

 Таблица 2.2: Зависимость площади панелей центроплана и веса кессона от параметров центроплана относительно варианта с прямым кессоном

N	Верхние	Нижние	Б					
1		1111111111	Боковые	∇	Верхние	Нижние	Боковые	~
1	панели	панели	стенки	\sum	панели	панели	стенки	\sum
1	0.492	0.487	0.021	1.000	0.287	0.287	0.420	1.000
2	0.373	0.393	0.046	0.811	0.287	0.288	0.547	1.126
3	0.315	0.368	0.081	0.764	0.287	0.290	0.611	1.191
4	0.267	0.350	0.109	0.726	0.287	0.290	0.678	1.255
5	0.243	0.331	0.111	0.684	0.287	0.292	0.745	1.322
6	0.223	0.317	0.117	0.657	0.287	0.294	0.803	1.387
7	0.581	0.619	0.079	1.278	0.306	0.306	0.420	1.035
8	0.420	0.429	0.088	0.937	0.306	0.299	0.547	1.154
9	0.354	0.375	0.095	0.824	0.306	0.297	0.613	1.215
10	0.312	0.340	0.103	0.755	0.306	0.295	0.678	1.276
11	0.289	0.325	0.110	0.723	0.306	0.292	0.745	1.341
12	0.255	0.324	0.117	0.697	0.306	0.291	0.807	1.402
13	0.602	0.648	0.081	1.330	0.316	0.315	0.420	1.050
14	0.427	0.456	0.088	0.971	0.316	0.308	0.549	1.172
15	0.373	0.394	0.095	0.862	0.316	0.304	0.611	1.231
16	0.334	0.355	0.103	0.792	0.316	0.300	0.676	1.293
17	0.284	0.337	0.110	0.731	0.316	0.298	0.741	1.355
18	0.271	0.333	0.117	0.721	0.316	0.296	0.805	1.416
19	0.629	0.659	0.081	1.370	0.320	0.320	0.420	1.062
20	0.442	0.463	0.088	0.993	0.320	0.313	0.547	1.181
21	0.383	0.395	0.095	0.873	0.320	0.308	0.611	1.242
22	0.327	0.361	0.103	0.790	0.320	0.306	0.673	1.301
23	0.317	0.341	0.110	0.768	0.320	0.301	0.743	1.363
24	0.262	0.337	0.117	0.717	0.320	0.299	0.805	1.424
25	0.635	0.679	0.083	1.397	0.327	0.327	0.420	1.072
26	0.462	0.477	0.088	1.027	0.327	0.318	0.547	1.192
27	0.387	0.413	0.095	0.895	0.327	0.314	0.611	1.251
28	0.354	0.367	0.103	0.824	0.327	0.310	0.678	1.313
29	0.299	0.348	0.110	0.756	0.327	0.307	0.743	1.373
30	0.277	0.340	0.117	0.735	0.327	0.303	0.803	1.435
31	0.664	0.702	0.083	1.449	0.332	0.332	0.420	1.085
32	0.472	0.492	0.089	1.053	0.332	0.322	0.549	1.205
33	0.416	0.422	0.095	0.933	0.332	0.319	0.616	1.264
34	0.351	0.380	0.103	0.833	0.332	0.315	0.678	1.325
35	0.316	0.357	0.110	0.784	0.332	0.312	0.743	1.383
36	0.283	0.346	0.117	0.746	0.332	0.307	0.805	1.443
37	0.715	0.747	0.086	1.548	0.339	0.339	0.420	1.097
38	0.482	0.507	0.090	1.078	0.339	0.329	0.547	1.214
39	0.419	0.439	0.095	0.953	0.339	0.325	0.611	1.275
40	0.369	0.386	0.103	0.857	0.339	0.320	0.672	1.334
41	0.326	0.361	0.110	0.797	0.339	0.317	0.738	1.394
42	0.291	0.349	0.117	0.757	0.339	0.312	0.805	1.454

Рис. 2.8: Зависимость веса кессона от параметров центроплана

Глава 3

Валидация решения

В ходе работы была проведена валидация полученного решения. Валидация проводилась путем сравнения результатов расчета модельной задачи и расчета самолета в целом.

Таблица 3.1: Сравнение результатов расчета модельной задачи и самолета в целом

	Результат из расчета	Результат из расчета
	модельной задачи	самолета в целом
Вес обшивки кессона[кг]	180	47

Список таблиц

2.1	Зависимость площади панелей центроплана и веса кессона от параметров	
	центроплана	10
2.2	Зависимость площади панелей центроплана и веса кессона от параметров	
	центроплана относительно варианта с прямым кессоном	11
		4.0
3.1	Сравнение результатов расчета модельной задачи и самолета в целом	13

Список иллюстраций

1.1	Вид сечения центроплана в месте стыка передней кромки крыла и фюзеляжа
	с изображением двигателя
1.2	Концепт американского БПЛА RQ-180 [1]
2.1	Упрощенная модель центроплана
2.2	Пример модельного сечения центроплана
2.3	Принципиальная схема четырехуровневого проектирования
2.4	Новый интерфейс программного комплекса "Conver"
2.5	Окно отображения отсеков в предыдущей версии интерфейса
2.6	Окно отображения отсеков в новой версии интерфейса
2.7	Окно добавления нагрузок в новой версии интерфейса
2.8	Зависимость веса кессона от параметров центроплана

Литература

[1] Diaz Jesus. Usaf confirms new secret stealth plane. http://gizmodo.com/5419363/usaf-confirms-new-secret-stealth-plane, 2009.