Architecture

PETROL PRICE FORECASTING

Written By	VIJAYA CHANDAN KUMAR
Document Version	1.0
Last Revised Date	

Document Version Control

Change Record:

Version	Date	Author	Comments
1.0	10-06-2022	VIJAYA CHANDAN KUMAR	Architecture

Reviews:

Version	Date	Reviewer	Comments

Approval Status:

Version	Review Date	Reviewed By	Approved By	Comments

Contents

Do	ocument Version control	2
	. Architecture	
2.	Architecture Description	5
	Data Description	5
	Data Splitting	
	Data Preprocessing	
	Model Training	
	Model Evaluation	
	Model saving	
	Pushing to app	
	Data processing and prediction	6

2. Architecture

3. Architecture Description

Data Description

We will be using the Petrol price prediction Data Set present in Kaggle Repository. This Data set is satisfying our data requirement. Total 813 rows and 2 columns.

Data Splitting

We split the data here for our train and test data for further uses.

Data Preprocessing

We will be exploring our data set here and perform data preprocessing depending on the data set. We first explore our data set in Jupyter Notebook and decide what pre-processing and validation we have to convert all those to numerical values by label encoding and then we have to write separate modules according to our analysis so that we can implement that for training as well as prediction data.

Model Training

We trained various models in our notebook and the Random Forest was good on it. We trained with our processed data.

Model Evaluation

Model evaluation was done by MAPE Score and the report was saved.

Model Saving

We will save our models so that we can use them for prediction purposes

Push to app

Here we will do cloud setup for model deployment. We also create our web app and user interface and integrate our model with the flask app and UI.

Data processing

Data will also go along the same process as Data pre-processing and according to that, we will predict those data.