Weightage: 50%,

CS 348: Computer Networks Spring 2022-23, IIT Dharwad

April 16, 2023 10 AM to 1 PM

Total Marks: 54

Q1. [1 mark] Which of	f the following is/are NOT pa	art of the DNS	nameserver hierarchy?	
a. Authoritative	DNS Server	א.	Leaf DNS Server	
b. Top-level don	nain DNS Server	6	None of the above	
c. Root DNS Ser	ver	C.		
Q2. [1 mark] The netv	vork layer offers guarantees	on:		
a. Bandwidth			Latency	
b. Packet Loss		e.	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	
c. In-order deliv	ery			
OSPF implements. b. OSPF uses Dijl	l used in the Internet? ents Bellman-Ford algorithn kstra's shortest path algorit	n to find short hm to implem	RECT about the OSPF (Open Shortest F test paths.~ nent least-cost path routing.	'ath
C. USPF is used a	as an inter-domain routing p on link-state advertisemen	protocol		
Q4. [1 mark] DHCP ser	ver can return			
و IP address for	the client device			
Address of the عطر	e first-hop router for client	device		
c. IP address of t	the DNS server *	actice		
	of the client device's pare	nt subnet		
Q5. [1 mark] In BGP's	route selection algorithm, t	the priority or	rder of different aspects is as follows:	
a. 72-LY111 IGHE	A Z DOL DOLATO POLITING S AS	Santician	act of different aspects is as follows:	
b. AS-PAŤĤ lengt	h > AS policies > Hot potate	o routine		
AS policies > A	S-PATH length > Hot potate	o routing		
d. AS policies > H	ot potato routing > AS-PAT	TH langth		
e. Hot potato rou	iting > AS policies > AS-PAT	TU kanath		
f. Hot potato rou	iting > AS-PATH length > A	c paliniae iii iziigii		
1-7-100	All length > A.	o hancies		

Q6. [1 mark] Can a two-dimensional parity scheme detect all 3-bit errors?

Q7. [1 mark] Match the following. State your answer as 1-a, 2-b, ...

1. ICMP packet ¢		a.	Application-layer message
2. ARP packet c	Is the marriage I. S. J.		Transport-layer segment
3. DHCP packet &	Is the payload of a/an		Network-layer datagram
			Link-layer frame

Q8. [2 marks] Is there any redundancy between the checksum computed at the network and transport layers? Explain. 1 fayers? Explain.

Q9. [2 marks] Explain the role of ICMP messages as part of the traceroute command execution.

Q10. [2 marks] What is the NEXT-HOP attribute in BGP?

Q11. [2 marks] In CSMA/CD, after the fifth collision, what is the probability that a node chooses K = 4? The result K = 4 corresponds to a distribution of the collision of the result K = 4 corresponds to a delay of how many seconds on a 10 Mbps Ethernet?

Q12. [2 marks] If all the links in the Internet were to provide reliable delivery service, would the TCP reliable delivery service be redundant? Why or why not?

Q13. [2 marks] The forwarding table of a router is shown below.

arding table of a router is shown below. Submet Mask Interface ID					
Subnet Number	Subnet Mask	Interface is			
200.150.0.0	255.255.0.0	1			
200.150.64.0	255.255.224.0	2			
200.150.68.0	255.255.255.255	3			
200.150.68.64	255.255.255.224	4			
		0			
Default		dod to the inter			

A packet addressed to destination 200.150.68.118 will be forwarded to the interface with ID

914, [2 marks] State the improvements in IPv6 over IPv4.

025. [2 marks] Considering the frame format, what's missing in IPv6 compared to IPv4, and why?

¹⁵ **Q16**. Distinguish between:

- 11 mark] Unicast vs. Multicast vs. Anycast vs. Broadcast

[2 marks] Forwarding vs. Routing

[4 marks] IP Address vs. MAC Address

[4 marks] Hub vs. Switch vs. Router

[4 marks] Link-state routing algorithms vs. Distance-vector routing algorithms

346 Q17. [4 marks] Derive the efficiency of slotted ALOHA. Consider N nodes, and each node transmits in a slot with probability p.

Hint: (1 - 1/N) approaches 1/e as N approaches infinity.

Q18. [6 marks] Describe the evolution of switching fabric. Highlight the improvements in each generation with respect to its predecessor. Illustrate using supporting figures.

Q19. [6 marks] Elaborate on the motivation and advantages of NAT. Illustrate its working principles with the help of an example.