CORRECTION: EPREUVE MATHEMATIQUES / Session de JUIN 2019 / BAC MATHS

Exercice N°1:

- 1°) a) $(AB) \perp (AC)$, ζ' de diamètre [CM] et $H \in \zeta'$ donc $(HC) \perp (MH)$ or $H \in (HC)$ donc $(AC) \perp (MH)$ ainsi $(AB) \parallel (MH)$
 - b) AMA'B est un losange donc $(AB)\parallel(A'M)$ et $(AB)\parallel(MH)$ d'où $(A'M)\parallel(MH)$ ce qui prouve que H, M et A' sont alignés
 - c) dans le triangle ABC on a $(AB)\parallel(MH)$, $H\in[AC]$ et $M\in[BC]$ donc d'après te théorème de Thalès : $\frac{CM}{CB}=\frac{HM}{AB}=\frac{CH}{AC}$ et on a $\frac{CM}{CB}=\frac{1}{3}$ donc $\frac{HM}{AB}=\frac{1}{3}$ par suite $HM=\frac{1}{3}AB$
 - Le triangle AMH est rectangle en H donc d'après le théorème du Pythagore : Et puisque AB = AM on aura $AB^2 = AH^2 + HM^2 \Rightarrow AH^2 = AB^2 - HM^2$
- 2°) a) Angle de S: $\left(\overrightarrow{HA}, \overrightarrow{HM}\right) = -\frac{\pi}{2} [2\pi]$
 - Rapport de S: $k = \frac{HM}{HA}$. On a: $HM = \frac{1}{3}AB$ et $AH^2 = AB^2 HM^2$ Donc $AH^2 = AB^2 - \frac{1}{9}AB^2 = \frac{8}{9}AB^2 \implies \frac{AB^2}{AH^2} = \frac{9}{8} \implies \frac{AB}{AH} = \frac{3}{2\sqrt{2}}$ il en résulte : $k = \frac{HM}{HA} = \frac{AB}{3HA} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$
 - b) Angle de S est $\left(-\frac{\pi}{2}\right)$ d'où $S\left(\left(AI\right)\right) \perp \left(AI\right)$ et $S\left(A\right) = M \in S\left(\left(AI\right)\right)$ d'où $S\left(\left(AI\right)\right) = \left(BC\right)$
 - De même $S((MH)) \perp (MH)$ et $S(H) = H \in S((MH))$ d'où S((MH)) = (AC)
 - $A' \in (MH) \cap (AI)$ d'où $S(A') \in S((MH)) \cap S((AI)) \Rightarrow S(A') \in (AC) \cap (BC) \Rightarrow S(A') = C$
- 3°) une similitude conserve les milieux
 - I est le milieu de [AA'] donc S(I) est le milieu de S([AA']) = [CM] d'où S(I) = I'
 - $S(I) = I' \Rightarrow \left(\overrightarrow{HI}, \overrightarrow{HI'}\right) \equiv -\frac{\pi}{2}[2\pi]$, $H \in \mathcal{G}'$ de rayon [I'H] donc (HI) est tangente à \mathcal{G}' en H
- 4°) a) $S_{\text{\tiny (AH)}}$: antidéplacement $\ \Rightarrow S_{\text{\tiny (AH)}}$ est une similitude indirecte de rapport 1
 - S' est la composée de trois similitudes dont <u>deux indirectes</u> de rapport 1 et <u>une directe</u> de rapport $\frac{\sqrt{2}}{4}$ ce qui prouve que S' est une similitude directe de rapport $\frac{\sqrt{2}}{4}$
 - $\bullet \ S'(H) = S_{(AH)} \circ S \circ S_{(AH)} (H) = S_{(AH)} \circ S(H) = S_{(AH)} (H) = H \Longrightarrow H \ \text{ est le centre de } S'(H) = S_{(AH)} (H) = S_{(AH)} (H$
 - b) $\left(\overline{A'B}, \overline{A'A}\right) = \left(\overline{A'A}, \overline{A'M}\right) \left[2\pi\right] \quad (\left[A'A\right] \text{ bissectrice de l'angle } \left(\overline{A'B}, \overline{A'M}\right))$
 - $\begin{cases} \left(\overrightarrow{A'B}, \overrightarrow{A'A}\right) = \left(\overrightarrow{CB}, \overrightarrow{CA}\right)[2\pi] \\ \left(\overrightarrow{A'A}, \overrightarrow{A'M}\right) = \left(\overrightarrow{CA}, \overrightarrow{CN}\right)[2\pi] \end{cases}$ (Deux angles qui interceptent le même arc dans le cercle)
 - $\Rightarrow \left(\overrightarrow{CB}\,\hat{,}\,\overrightarrow{CA}\,\right) \equiv \left(\overrightarrow{CA}\,\hat{,}\,\overrightarrow{CN}\right) \! \left[2\pi\right] \text{ ainsi dans le triangle } MNC \text{ , } \left(\overrightarrow{CM}\,\hat{,}\,\overrightarrow{CH}\right) \equiv \left(\overrightarrow{CH}\,\hat{,}\,\overrightarrow{CN}\right) \! \left[2\pi\right]$

Donc [CH) est la bissectrice de l'angle \hat{NCM} et (CH) \pm (MN) d'où (CH) est la médiatrice de [MN]

⇒ CM = CN ce qui prouve que MNC est isocèle en C

c) •
$$S'(A) = S_{(AH)} \circ S \circ S_{(AH)}(A) = S_{(AH)} \circ S(A) = S_{(AH)}(M) = N$$

•
$$S'(A) = N \Rightarrow \text{ angle de } S' : \left(\overrightarrow{HA}, \overrightarrow{HN}\right) = \frac{\pi}{2} [2\pi]$$

Exercice N°2:

1°) a)
$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 0 \\ 0 \end{pmatrix}$$
, $\overrightarrow{AC} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ et $\frac{-4}{-1} \neq \frac{0}{1} \Rightarrow A$, B et C ne sont pas alignés

b)
$$z_A = 1 \implies A \in P$$
, $z_B = 1 \implies B \in P$, $z_C = 1 \implies C \in P$

et A, B et C déterminent un seul plan P donc il a pour équation z = 1

$$\Rightarrow$$
 $-4z+d=0$, $A \in P \Rightarrow -4+d=0 \Rightarrow d=4$ d'où $P:-4z+4=0 \Rightarrow P:z=1$

2°) a)
$$x^2 + y^2 + z^2 - 4z - 1 = x^2 + y^2 + (z - 2)^2 - 4 - 1 = x^2 + y^2 + (z - 2)^2 = 5 = \sqrt{5}^2$$

 \Rightarrow S est une sphère de rayon $R = \sqrt{5}$ et de centre $\Omega(0,0,2)$

b)
$$d(\Omega, P) = \frac{|z_{\Omega} - 1|}{\sqrt{0^2 + 0^2 + 1^2}} = \frac{1}{1} = 1 < \sqrt{5} \implies S \text{ et } P \text{ sont sécants suivant le cercle } \zeta \text{ de rayon}$$

$$\sqrt{\sqrt{5}^2 - 1} = 2$$

Comme $\overrightarrow{\Omega I} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = -\overrightarrow{n} \implies (\Omega I) \perp P$ et $I \in P$ donc I est le projeté orthogonale de Ω sur P

Ce qui prouve que $\,\mathrm{I}\,$ est le centre de $\,\zeta\,$

3°) a)
$$d(\Omega_{\lambda}, P) = \frac{|z_{\Omega_{\lambda}} - 1|}{\sqrt{0^2 + 0^2 + 1^2}} = \frac{|\lambda - 1|}{\sqrt{0^2 + 0^2 + 1^2}} = |\lambda - 1|$$

On sait que pour tout $\lambda \in \mathbb{R} \setminus \left\{2\right\}$ on a : $\left(\lambda - 1\right)^2 < \left(\lambda - 1\right)^2 + 4$ d'où $\sqrt{\left(\lambda - 1\right)^2} < \sqrt{\left(\lambda - 1\right)^2 + 4}$

C'est-à-dire $|\lambda - 1| < \sqrt{(\lambda - 1)^2 + 4}$ $\Rightarrow |\lambda - 1| < R_{\lambda}$ \Rightarrow S_{\(\lambda\)} et P sont sécants suivant un cercle ϕ

• de rayon
$$r = \sqrt{R_{\lambda}^2 - |\lambda - 1|^2} = \sqrt{(\lambda - 1)^2 + 4 - (\lambda - 1)^2} = \sqrt{4} = 2$$

• de centre le projeté orthogonale de
$$\Omega_{\lambda}$$
 sur P ; $\overrightarrow{\Omega_{\lambda}I}\begin{pmatrix} 0 \\ 0 \\ 1-\lambda \end{pmatrix} = (1-\lambda)\overrightarrow{n} \Rightarrow (\Omega_{\lambda}I) \perp P$ et $I \in P$

 \Rightarrow I est le centre de ϕ . Finalement $\phi = \zeta$ et par suite $S_{\lambda} \cap P = \zeta$

b)
$$D \in S_{\lambda_0} \Rightarrow \Omega_{\lambda_0} D = R_{\lambda_0} \Rightarrow \sqrt{(-4)^2 + 0^2 + (-1 - \lambda_0)^2} = \sqrt{(\lambda_0 - 1)^2 + 4}$$

 $\Rightarrow \lambda_0^2 + 2\lambda_0 + 17 = \lambda_0^2 - 2\lambda_0 + 5 \Rightarrow 4\lambda_0 = -12 \Rightarrow \lambda_0 = -3$

c)
$$S_{\lambda_0}$$
 à pour centre $\Omega_{\lambda_0}\left(0,0,-3\right)$ et de rayon $R_{\lambda_0}=\sqrt{20}=2\sqrt{5}$

Soit h l'homothétie de centre M et de rapport k qui envoie S en S_{λ_0}

On a:
$$h(S) = S_{\lambda_0}$$
 donne $\overline{M\Omega_{\lambda_0}} = k \ \overline{M\Omega}$ et $R_{\lambda_0} = |k|R$
 $2\sqrt{5} = |k|\sqrt{5} \implies |k| = 2$ donc $k = 2$ ou $k = -2$

$$\bullet \ \, \text{Pour} \,\, k = 2 \ \, \text{on a} : \, \overrightarrow{\text{M}\Omega_{\lambda_0}} = k \ \, \overrightarrow{\text{M}\Omega} \quad \Rightarrow \begin{cases} -x_{\text{M}} = -2x_{\text{M}} \\ -y_{\text{M}} = -2y_{\text{M}} \\ -3 - z_{\text{M}} = -2\left(2 - z_{\text{M}}\right) \end{cases} \\ \Rightarrow \begin{cases} x_{\text{M}} = 0 \\ y_{\text{M}} = 0 \\ -3z_{\text{M}} = -1 \end{cases} \\ \Rightarrow \text{M} \left(0, 0, \frac{1}{3}\right)$$

$$\bullet \text{ Pour } k = -2 \text{ on a}: \overrightarrow{M\Omega_{\lambda_0}} = k \overrightarrow{M\Omega} \implies \begin{cases} -x_{\mathrm{M}} = 2x_{\mathrm{M}} \\ -y_{\mathrm{M}} = 2y_{\mathrm{M}} \\ -3 - z_{\mathrm{M}} = 2\left(2 - z_{\mathrm{M}}\right) \end{cases} \Rightarrow \begin{cases} x_{\mathrm{M}} = 0 \\ y_{\mathrm{M}} = 0 \Rightarrow \mathrm{M}\left(0, 0, 7\right) \\ z_{\mathrm{M}} = 7 \end{cases}$$

 $\underline{\text{Conclusion:}} \text{ il existe deux homothéties } h_{\scriptscriptstyle 1} \text{ de centre } \mathbf{M}\bigg(0,0,\frac{1}{3}\bigg) \text{ et de rapport 2 , } h_{\scriptscriptstyle 2} \text{ de centre } \mathbf{M}\bigg(0,0,\frac{1}{3}\bigg)$

M(0,0,7) et de rapport $\left(-2\right)$ qui transforment S en S_{λ_0}

Exercice N°3:

1°) a)
$$29 \times 2 - 13 \times 4 = 58 - 52 = 6$$

b) •
$$29x - 13y = 29 \times 2 - 13 \times 4 \Leftrightarrow 29(x - 2) = 13(y - 4)$$

 \Leftrightarrow 13 divise 29(x-2) et $29 \land 13 = 1$ divise 6 donc d'après lemme de Gauss

13 divise (x-2) ainsi x-2=13k; $k \in \mathbb{Z}$ par suite x=2+13k; $k \in \mathbb{Z}$

•
$$29(13k) = 13(y-4) \iff 29k = y-4 \iff y = 4+29k \; ; \; k \in \mathbb{Z}$$

Conclusion:
$$S_{\mathbb{Z}\times\mathbb{Z}} = \{(2+13k, 4+29k) ; k \in \mathbb{Z}\}$$

2°) • 29 est un nombre premier et 29 ne divise pas 2

D'où d'après le petit théorème de Fermat on a : $2^{29-1} \equiv 1 [\mod 29] \Rightarrow 2^{28} \equiv 1 [\mod 29]$

•
$$\begin{cases} 2^{28} \equiv 1 [\mod 29] \\ 2^{29} \equiv 2 [\mod 29] \end{cases} \Rightarrow 2^{28} \times 2^{29} \equiv 2 [\mod 29] \Rightarrow 2^{57} \equiv 2 [\mod 29] \Rightarrow -2^{57} \equiv -2 [\mod 29]$$
$$\Rightarrow (-2)^{57} \equiv -2 [\mod 29] \Rightarrow ((-2)^3)^{19} \equiv -2 [\mod 29] \Rightarrow (-8)^{19} \equiv -2 [\mod 29]$$

- Donc -8 est solution de (E')
- 3°) a) Si x_0 est un multiple de 29 alors $x_0^{19} \equiv 0 [\bmod{29}]$ donc x_0 n'est pas solution de (E') D'où si x_0 est solution de (E') alors x_0 n'est pas multiple de 29

•
$$x_0^{19} \equiv 1 [\bmod 29] \implies \begin{bmatrix} x_0^{28} \equiv 1 [\bmod 29] & (\text{Petit th\'eor\`eme de Fermat}) \\ 29 & \text{est un nombre premier} \end{bmatrix}$$

b) •
$$x_0$$
 est solution de (E') alors $x_0^{19} \equiv -2 [\bmod{29}] \Rightarrow (x_0^{19})^3 \equiv (-2)^3 [\bmod{29}]$

$$\Rightarrow (x_0^{19})^3 \equiv (-2)^3 [\bmod{29}] \Rightarrow x_0^{57} \equiv -8 [\bmod{29}]$$
•
$$\begin{cases} x_0^{57} \equiv -8 [\bmod{29}] \Leftrightarrow x_0 \times x_0^{56} \equiv -8 [\bmod{29}] \\ (x_0^{28})^2 \equiv 1 [\bmod{29}] \Leftrightarrow x_0^{56} \equiv 1 [\bmod{29}] \end{cases}$$

c)
$$x$$
 est solution de (E') $\Rightarrow x \equiv -8 [\mod 29]$ $\Rightarrow x = -8 + 29k$; $k \in \mathbb{Z}$
Réciproquement : $x = -8 + 29k$ $\Rightarrow x \equiv -8 [\mod 29]$ $\Rightarrow x^{19} \equiv (-8)^{19} [\mod 29]$
et -8 est solution de (E') c'est-à-dire $(-8)^{19} \equiv -2 [\mod 29]$

Donc
$$x^{19} \equiv -2 [\bmod{29}] \Rightarrow x \text{ est solution de } (E')$$

Conclusion:
$$S_{\mathbb{Z}} = \{-8 + 29k ; k \in \mathbb{Z}\}$$

d)
$$(x-3)^{19} \equiv -2 [\bmod{29}] \Leftrightarrow x-3 \text{ est solution de } (E') \Leftrightarrow x-3 = -8 + 29k ; k \in \mathbb{Z}$$

 $\Leftrightarrow x = -5 + 29k ; k \in \mathbb{Z} \Leftrightarrow S_{\mathbb{Z}} = \{-5 + 29k ; k \in \mathbb{Z}\}$

$$4^{\circ}$$
) • $(x-3)^{19} \equiv -2 [\mod 29] \iff x-3 \equiv -8 [\mod 29]$

• On a 13 ne divise pas
$$x-3$$
 donc $(x-3)^{12} \equiv 1 \pmod{13}$ $\Leftrightarrow x-3 \equiv -2 \pmod{13}$

D'où
$$\begin{cases} (x-3)^{19} \equiv -2 [\bmod 29] \\ (x-3)^{13} \equiv -2 [\bmod 13] \end{cases} \Leftrightarrow \begin{cases} x-3 \equiv -8 [\bmod 29] \\ x-3 \equiv -2 [\bmod 13] \end{cases}$$
$$\Leftrightarrow \begin{cases} x-3 \equiv -8+29p \\ x-3 \equiv -2+13q \end{cases}, (p,q) \in \mathbb{Z}^2 \Leftrightarrow \begin{cases} x=-5+29p \\ x=1+13q \end{cases}, (p,q) \in \mathbb{Z}^2$$

$$\Leftrightarrow x - x = -5 + 29p - 1 - 13q \Leftrightarrow 0 = -6 + 29p - 13q \Leftrightarrow 29p - 13q = 6 ; (p,q) \in \mathbb{Z}^2$$

D'où p et q sont solutions de (E). Ainsi : p = 2 + 13k et q = 4 + 29k ; $k \in \mathbb{Z}$

Par suite
$$x = -5 + 29(2 + 13k) = 53 + 377k$$
; $k \in \mathbb{Z} \iff S_{\mathbb{Z}} = \{53 + 377k ; k \in \mathbb{Z}\}$

Exercice N°4:

1°) a)
$$f'(x) = \frac{\left(1 - e^{-x}\right)'}{2\sqrt{1 - e^{-x}}} = \frac{e^{-x}}{2\sqrt{1 - e^{-x}}} > 0$$
, f est continue et strictement croissante sur $\left[0, +\infty\right[$ et $f\left(\left[0, +\infty\right[\right) = \left\lceil f\left(0\right), \lim_{+\infty} f\right\rceil = \left[0, 1\right[\Rightarrow f \text{ possède une fonction réciproque } g \text{ définie sur } \left[0, 1\right]$

b)
$$y \in [0, +\infty[$$
, $x \in [0, 1[$, $g(x) = y \Leftrightarrow f(y) = x \Leftrightarrow \sqrt{1 - e^{-y}} = x \Leftrightarrow 1 - e^{-y} = x^2$
 $\Leftrightarrow e^{-y} = 1 - x^2 \Leftrightarrow -y = \ln(1 - x^2) \Leftrightarrow y = -\ln(1 - x^2) \Leftrightarrow g(x) = -\ln(1 - x^2)$

c)
$$g(x) = x \Leftrightarrow g(x) - x = 0$$
, on pose $h(x) = g(x) - x$, $x \in [0,1[$, h est continue sur $[0,1[$ et $h(0,7) \times h(0,8) = (-0,0267) \times 0,222 = -0,0059 < 0$

Donc
$$h(x) = 0$$
 ($g(x) = x$) admet une solution $\alpha \in [0.7; 0.8]$

- d) Voir figure annexe
- 2°) a) f est continue sur $[0,+\infty[$, g est dérivable sur [0,1[et $g([0,1[)=[0,+\infty[$ d'où φ est dérivable sur [0,1[et $\varphi'(x)=g'(x)f(g(x))$

$$\Rightarrow \varphi'(x) = \frac{2x}{1 - x^2} \times x = \frac{2x^2}{1 - x^2}$$

b)
$$a + \frac{b}{1+x} + \frac{c}{1-x} = \frac{a(1+x)(1-x)+b(1-x)+c(1+x)}{(1+x)(1-x)}$$
$$= \frac{-ax^2 + x(c-b)+a+b+c}{(1+x)(1-x)}$$

$$\frac{2x^2}{1-x^2} = a + \frac{b}{1+x} + \frac{c}{1-x} \iff \begin{cases} -a = 2\\ c - b = 0\\ a + b + c = 0 \end{cases} \Leftrightarrow \begin{cases} a = -2\\ c = b = 1 \end{cases}$$

c)
$$\varphi'(x) = -2 + \frac{1}{1+x} + \frac{1}{1-x} \iff \varphi(x) = -2x + \ln(1+x) - \ln(1-x) + cte$$

$$\varphi(0) = \int_0^{g(0)} f(x) dx = \int_0^0 f(x) dx \implies cte = 0 \text{ donc } \varphi(x) = -2x + \ln\left(\frac{1+x}{1-x}\right), x \in [0,1]$$

d)
$$\mathcal{A} = \int_0^{\alpha} |f(x) - g(x)| dx$$
 (unité d'aire)

• Par raison de symétrie

$$\int_0^{\alpha} |f(x) - g(x)| dx = 2 \int_0^{\alpha} (f(x) - x) dx = 2 \left[\int_0^{\alpha} f(x) dx - aire(OAB) \right]; B(\alpha, 0)$$

- $\int_0^{\alpha} f(x) dx \rightarrow$ l'aire de la partie du plan limitée par (C), l'axe des abscisses et les droites d'équations x = 0 et $x = \alpha$ et $aire(OAB) = \frac{OB \times AB}{2} = \frac{\alpha^2}{2}$
- On sait que $g(\alpha) = \alpha$ d'où $\int_0^{\alpha} f(x) dx = \int_0^{g(\alpha)} f(x) dx = \varphi(\alpha)$ il résulte $\mathcal{A} = 2\left(\varphi(\alpha) \frac{\alpha^2}{2}\right)$

3°) a)
$$\int_0^{\frac{\sqrt{3}}{3}} S_n(t) dt = \int_0^{\frac{\sqrt{3}}{3}} 2 \left(\sum_{k=1}^n t^{2k-1} \right) dt = \sum_{k=1}^n \left(2 \int_0^{\frac{\sqrt{3}}{3}} t^{2k-1} dt \right)$$

et
$$2\int_0^{\frac{\sqrt{3}}{3}} t^{2k-1} dt = 2\left[\frac{t^{2k}}{2k}\right]_0^{\frac{\sqrt{3}}{3}} = \frac{\left(\frac{\sqrt{3}}{3}\right)^{2k}}{k} = \frac{\left(\frac{1}{\sqrt{3}^2}\right)^k}{k} = \frac{\left(\frac{1}{3}\right)^k}{k} = \frac{1}{k \cdot 3^k} \implies \int_0^{\frac{\sqrt{3}}{3}} S_n(t) dt = \sum_{k=1}^n \frac{1}{k \cdot 3^k} = u_n$$

b)
$$S_n(t) = 2\sum_{k=1}^n t^{2k-1} = \frac{2}{t}\sum_{k=1}^n (t^2)^k$$
 et $\sum_{k=1}^n (t^2)^k = t^2 \times \frac{1-(t^2)^n}{1-t^2}$ Somme de n termes d'une suite

géométrique de premier terme t^2 de raison t^2

Par suite
$$S_n(t) = \frac{2}{t} \times t^2 \times \frac{1 - t^{2n}}{1 - t^2} = (1 - t^{2n}) \frac{2t}{1 - t^2} = (1 - t^{2n}) g'(t)$$
, $n \ge 1$ et $t \in [0, 1]$

c)
$$0 \le t \le \frac{\sqrt{3}}{3} \iff 0 \le t^{2n} \le \frac{1}{3^n} \iff 1 - \frac{1}{3^n} \le 1 - t^{2n} \le 1 \iff \left(1 - \frac{1}{3^n}\right) g'(t) \le \left(1 - t^{2n}\right) g'(t) \le g'(t)$$

$$\text{car } g'(x) \ge 0$$

D'où pour
$$0 \le t \le \frac{\sqrt{3}}{3}$$
 on a : $\left(1 - \frac{1}{3^n}\right) g'(t) \le S_n(t) \le g'(t)$ (*)

d) On intégrant membre à membre l'inégalité (*) on aura :

$$\left(1 - \frac{1}{3^n}\right) \int_0^{\frac{\sqrt{3}}{3}} g'(t) dt \le \int_0^{\frac{\sqrt{3}}{3}} S_n(t) dt \le \int_0^{\frac{\sqrt{3}}{3}} g'(t) dt \iff \left(1 - \frac{1}{3^n}\right) \left[g(t)\right]_0^{\frac{\sqrt{3}}{3}} \le u_n \le \left[g(t)\right]_0^{\frac{\sqrt{3}}{3}}$$

$$\text{D'où } \left(1 - \frac{1}{3^n}\right) \left[g\left(\frac{\sqrt{3}}{3}\right) - \underline{g(0)}\right] \le u_n \le g\left(\frac{\sqrt{3}}{3}\right) - \underline{g(0)} \iff \left(1 - \frac{1}{3^n}\right) g\left(\frac{\sqrt{3}}{3}\right) \le u_n \le g\left(\frac{\sqrt{3}}{3}\right)$$

4°)
$$\left(1 - \frac{1}{3^n}\right)g\left(\frac{\sqrt{3}}{3}\right) \le u_n \le g\left(\frac{\sqrt{3}}{3}\right)$$
 et $\lim_{n \to +\infty} \left(1 - \frac{1}{\underbrace{3^n}_0}\right) = 1$

$$\Rightarrow \lim_{n \to +\infty} \left(1 - \frac{1}{3^n} \right) g\left(\frac{\sqrt{3}}{3} \right) = g\left(\frac{\sqrt{3}}{3} \right) = -\ln\left(1 - \left(\frac{\sqrt{3}}{3} \right)^2 \right) = -\ln\left(1 - \frac{1}{3} \right) = -\ln\frac{2}{3} = \ln\frac{3}{2}$$

Donc la suite (u_n) converge vers $\ln \frac{3}{2}$ et $\lim_{n \to +\infty} u_n = g\left(\frac{\sqrt{3}}{3}\right)$