Knowledge Graph Embeddings

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Lecture 18 readings:
 - Node2Vec
 - Graph Representation Learning survey
- Lecture 19 readings:
 - TransE: Translating Embeddings for Modeling Multi-relational Data
 - RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space
 - TuckER: Tensor Factorization for Knowledge Graph Completion

Recap: Distributed Node Embeddings (1)

- Shallow Encoding
 - Simplest encoding approach: encoder is just an embedding-lookup

Recap: Distributed Node Embeddings (2)

An **unsupervised** setting for learning node embeddings

- 1. Encoder ENC maps from nodes to embeddings
- 2. Define a node similarity function (i.e., a measure of similarity in the original network)
- 3. Decoder DEC maps from embeddings to the similarity score
- 4. Optimize the parameters of the encoder so that:

$$\mathbf{similarity}(u, v) \approx \mathbf{z}_v^{\mathrm{T}} \mathbf{z}_u$$

Today: we define other objectives to learn node embeddings

Content

Introduction: Knowledge Graph

- Knowledge Graph Embedding Models
 - TransE
 - DistMult & ComplEx
 - RotatE
 - TuckER

Content

• Introduction: Knowledge Graph

- Knowledge Graph Embedding Models
 - TransE
 - DistMult & ComplEx
 - RotatE
 - TuckER

Knowledge Graphs (KG)

Knowledge as a graph:

- A set of triplets <head entity, relationship, tail entity>
- Capture entities, types, and relationships
- Nodes are entities
- Nodes are labeled with their types
- Edges between two nodes capture relationships between entities
- KG is an example of a heterogeneous graph
 - Recap: Heterogenous graph is a graph with multiple node types and edge types

E: entity R: relation

Example: Bibliographic Networks

- Node types: paper, title, author, conference, year
- Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite

Example: Biomedical Knowledge Graphs

- Node types: drug, disease, adverse event, protein, pathways
- Relation types: has_func, causes, assoc, treats, is_a

Knowledge Graphs in Practice

Examples of knowledge graphs

- Google Knowledge Graph (Knowledge Vault)
- Amazon Product Graph
- Facebook Graph API
- Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer
- NELL (<u>Never Ending Language Learning</u>)

Applications of Knowledge Graphs

Serving information

Image credit: Bing

Applications of Knowledge Graphs

Question answering and conversation agents

Knowledge Graph Datasets

- Publicly available KGs:
 - FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.
- Common characteristics:
 - Massive: millions of nodes and edges
 - Incomplete: many true edges are missing

Example: Freebase

- Freebase
 - ~50 million entities
 - ~38K relation types
 - ~3 billion facts/triples

93.8% of persons from Freebase have no place of birth and 78.5% have no nationality!

- Datasets: FB15k/FB15k-237
 - A complete subset of Freebase, used by researchers to learn KG models

Dataset	Entities	Relations	Total Edges
FB15k	14,951	1,345	592,213
FB15k-237	14,505	237	310,079

^[1] Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.
[2] Min, Bonan, et al. "Distant supervision for relation extraction with an incomplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2013.

KG Completion Task

Knowledge graphs are usually incomplete. Many facts are missing!

Given an enormous KG, how can we complete the KG?

- For a given (head, relation), we predict missing tails.
- Note this is slightly different from link prediction task

Recap: In link prediction task, we predict the edge e=(u,v) based on the embeddings of head node u and tail node v

Example task: predict the

KG Representation

- Edges in KG are represented as **triples** (h, r, t)
 - head (h) has relation (r) with tail (t)
- Key Idea:
 - Model entities and relations in the embedding/vector space \mathbb{R}^d .
 - Associate entities and relations with shallow embeddings
 - Deep encoder (GNN) is also possible here, using the same loss
 - Given a true triple (h, r, t), the goal is that the embedding of (h, r) should be close to the embedding of t.
 - How to embed (h, r)?
 - How to define closeness?

Content

Introduction: Knowledge Graph

- Knowledge Graph Embedding Models
 - TransE
 - DistMult & ComplEx
 - RotatE
 - TuckER

Translating Embeddings: TransE

Translation Intuition:

For a triple (h,r,t), \mathbf{h} , \mathbf{r} , $\mathbf{t} \in \mathbb{R}^k$ are the embedding vectors $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$ if the given fact is true else $\mathbf{h} + \mathbf{r} \neq \mathbf{t}$ else $\mathbf{h} + \mathbf{r} \neq \mathbf{t}$

- Scoring function: $f_r(h, t) = -||\mathbf{h} + \mathbf{r} \mathbf{t}||$
- Scoring function is maximized if the fact is true!

Bordes, et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013.

Embedding Initialization

- Entities and relations are initialized uniformly and then normalized
- Given Training set $S = \{(h, r, t)\}$, where $h, t \in E, r \in R$. (entity set E, relation set R, embedding dimension k)
- For each r in the relation set R,
 - initialize $r \sim \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$
 - r = r/||r||
- For each *e* in the entity set *E*,
 - initialize $e \sim \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$
 - $e = e/\|e\|$

- Xavier Initialization (see more details in original paper)
- Normailization

Negative Sampling

- Negative sampling with triplet that does not appear in the KG
- Set of corrupted triplets:

$$S'_{(h,l,t)} = \{(h',r,t)|h' \in E\} \cup \{(h,r,t')|t' \in E\}$$

replace either the head or tail entity by a random entity in entity set E (but not both at the same time) in training triplets

What will happen if no negative examples are provided?

TransE Training

• Translation Intuition: for a triple (h, r, t), $\mathbf{h} + \mathbf{r} = \mathbf{t}$

$$\mathcal{L} = \sum_{(h,r,t) \in G} \sum_{(h',r,t') \in S'_{(h,r,t)}} [\gamma - f_r(h,t) + f_r(h',t')]_+$$
Valid triple
(negative example)

corrupted set of (h,r,t)

0 if the term is negative

where γ is the margin, i.e., the smallest distance tolerated by the model between a valid triple and a corrupted one.

Connectivity Patterns in KG

- Relations in a heterogeneous KG have different properties
 - Example:
 - **Symmetry:** If the edge (h, "Roommate", t) exists in KG, then the edge (t, "Roommate", h) should also exist.
 - **Inverse relation:** If the edge (h, "Advisor", t) exists in KG, then the edge (t, "Advisee", h) should also exist.
- Can we categorize these relation patterns?
- Are KG embedding methods (e.g., TransE) expressive enough to model these patterns?

Relation Patterns

Symmetric (Antisymmetric) Relations:

Symmetric:
$$r(h, t) \Rightarrow r(t, h)$$
 (Antisymmetric: $r(h, t) \Rightarrow \neg r(t, h)$) $\forall h, t$

- Example:
 - Symmetric: Family, Roommate
- Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example: (Advisor, Advisee)
- Composition (Transitive) Relations:

$$r_1(x,y) \land r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x,y,z$$

- Example: My mother's husband is my father.
- 1-to-N relations:

$$r(h, t_1), r(h, t_2), \dots, r(h, t_n)$$
 are all True.

• Example: r is "StudentsOf"

Antisymmetric Relations in TransE

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \ \forall h,t$$

- TransE can model antisymmetric relations ✓
 - $\mathbf{h} + \mathbf{r} = \mathbf{t}$, but $\mathbf{t} + \mathbf{r} \neq \mathbf{h}$

Inverse Relations in TransE

• Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example: (Advisor, Advisee)
- TransE can model inverse relations ✓
 - $\mathbf{h} + \mathbf{r}_2 = \mathbf{t}$, we can set $\mathbf{r}_1 = -\mathbf{r}_2$

Composition in TransE

Composition Relations:

$$r_1(x,y) \land r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x,y,z$$

- Example: My mother's husband is my father.
- TransE can model composition relations

$$\mathbf{r}_3 = \mathbf{r}_1 + \mathbf{r}_2$$

Limitation: Symmetric Relations

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \ \forall h,t$$

- Example: Family, Roommate
- TransE cannot model symmetric relations \times only if $\mathbf{r} = 0$, $\mathbf{h} = \mathbf{t}$

For all h, t that satisfy r(h,t), r(t,h) is also True, which means $\|\mathbf{h} + \mathbf{r} - \mathbf{t}\| = 0$ and $\|\mathbf{t} + \mathbf{r} - \mathbf{h}\| = 0$. Then $\mathbf{r} = 0$ and $\mathbf{h} = \mathbf{t}$, however h and t are two different entities and should be mapped to different locations.

Limitation: 1-to-N Relations

- 1-to-N Relations:
 - (h, r, t_1) and (h, r, t_2) both exist in the knowledge graph
 - Example: r is "StudentsOf"
- TransE cannot model 1-to-N relations
 - t₁ and t₂ will map to the same vector, although they are different entities

•
$$\mathbf{t}_1 = \mathbf{h} + \mathbf{r} = \mathbf{t}_2$$

• $\mathbf{t}_1 \neq \mathbf{t}_2$

contradictory!

Content

Introduction: Knowledge Graph

- Knowledge Graph Embedding Models
 - TransE
 - DistMult & ComplEx
 - RotatE
 - TuckER

New Idea: Bilinear Modeling

- So far: The scoring function $f_r(h, t)$ is the negative L2 distance
- DistMult considers bilinear modeling
- Entities are embedded as vectors in \mathbb{R}^k
- Score function: $f_r(h, t) = \mathbf{h^T} M_r \mathbf{t}$
 - $M_{\mathbf{r}}$ is a learnable matrix parameter for relation \mathbf{r}
- A simpler version: $f_r(h,t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i$
 - Let $M_{\mathbf{r}}$ be a diagonal matrix
 - $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$ and i denotes the i-th dimension in the vector

 $f_r(h,t)$

Yang et al, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, ICLR 2015

DistMult

- **DistMult**: Entities and relations using vectors in \mathbb{R}^k
- Score function: $f_r(h,t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i$; $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$
- Intuition of the score function: Can be viewed as a cosine similarity between $\mathbf{h} \cdot \mathbf{r}$ and \mathbf{t}
- Example:

$$f_r(h, t_1) < 0, \qquad f_r(h, t_2) > 0$$

1-to-N Relations in DistMult

- 1-to-N Relations:
 - Example: If (h, r, t_1) and (h, r, t_2) exist in the knowledge graph
- Distmult can model 1-to-N relations ✓

$$<$$
 h, r, $t_1 > = <$ h, r, $t_2 >$

The projection of $\mathbf{t_1}$ and $\mathbf{t_2}$ along the vector $\mathbf{h} \cdot \mathbf{r}$ is the same

Symmetric Relations in DistMult

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \ \forall h,t$$

- Example: Family, Roommate
- DistMult can naturally model symmetric relations

$$f_r(h, t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i = \langle \mathbf{t}, \mathbf{r}, \mathbf{h} \rangle = f_r(t, h) \checkmark$$

Limitation: Antisymmetric Relations

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \ \forall h,t$$

- Example: Hypernym
- DistMult cannot model antisymmetric relations

$$f_r(h,t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \langle \mathbf{t}, \mathbf{r}, \mathbf{h} \rangle = f_r(t,h) \times$$

• r(h, t) and r(t, h) always have same score in DistMult

Limitation: Composition Relations

Composition Relations:

$$r_1(x,y) \land r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x,y,z$$

- Example: My mother's husband is my father.
- DistMult can model composition relations ✓
 - DistMult uses matrix multiplication / inner product
 - Composition can correspond to chain matrix multiplication

ComplEx

- Based on Distmult, Complex embeds entities and relations in Complex vector space
- Complex: model entities and relations using vectors in \mathbb{C}^k
- *k* is the embedding dimension

 $\overline{\mathbf{u}}$ is called a conjugate

 $\mathbf{u} \in \mathbb{C}$

ComplEx

- Complex: model entities and relations using vectors in \mathbb{C}^k
- For each triple (h, r, t), \mathbf{h} , \mathbf{r} , $\mathbf{t} \in \mathbb{C}^k$ are the embedding vectors
- Score function $f_r(h, t) = \text{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \bar{\mathbf{t}}_i)$

Symmetric Relations in ComplEx

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \ \forall h,t$$

- Example: Family, Roommate
- Complex can model symmetric relations ✓
 - When Im(r) = 0, we have

•
$$f_r(h, t) = \text{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \bar{\mathbf{t}}_i) = \sum_i \text{Re}(\mathbf{r}_i \cdot \mathbf{h}_i \cdot \bar{\mathbf{t}}_i)$$

 $= \sum_i \mathbf{r}_i \cdot \text{Re}(\mathbf{h}_i \cdot \bar{\mathbf{t}}_i) = \sum_i \mathbf{r}_i \cdot \text{Re}(\bar{\mathbf{h}}_i \cdot \mathbf{t}_i)$
 $= \sum_i \text{Re}(\mathbf{r}_i \cdot \bar{\mathbf{h}}_i \cdot \mathbf{t}_i) = f_r(t, h)$

Antisymmetric Relations in ComplEx

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \ \forall h,t$$

- Example: Hypernym
- Complex can model antisymmetric relations ✓
 - The model is expressive enough to learn
 - $f_r(h, t) = \text{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \bar{\mathbf{t}}_i)$
 - $f_r(t,h) = \text{Re}(\sum_i t_i \cdot \mathbf{r}_i \cdot \overline{\mathbf{h}}_i)$
 - r(h,t) and r(t,h) can have different scores in ComplEx, due to the asymmetric modeling using complex conjugate.

Inverse Relations in ComplEx

• **Inverse** Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Father, Son)
- Complex can model inverse relations ✓
 - $\mathbf{r_1} = \bar{\mathbf{r_2}}$
 - Complex conjugate of $\mathbf{r}_2 = \underset{\mathbf{r}}{\operatorname{argmax}} \operatorname{Re}(\langle \mathbf{h}, \mathbf{r}, \overline{\mathbf{t}} \rangle)$: $\overline{\mathbf{r}}_2 \text{ is exactly } \mathbf{r}_1 = \underset{\mathbf{r}}{\operatorname{argmax}} \operatorname{Re}(\langle \mathbf{t}, \mathbf{r}, \overline{\mathbf{h}} \rangle).$
 - Note: $\operatorname{Re}(\langle \mathbf{h}, \mathbf{r}, \overline{\mathbf{t}} \rangle) = \operatorname{Re}(\langle \mathbf{t}, \overline{\mathbf{r}}, \overline{\mathbf{h}} \rangle)$

Composition and 1-to-N

Composition Relations:

$$r_1(x,y) \land r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x,y,z$$

- Example: My mother's husband is my father.
- 1-to-N Relations:
 - Example: If (h, r, t_1) and (h, r, t_2) exist in the knowledge graph
- Complex shares the same property with DistMult

Content

Introduction: Knowledge Graph

- Knowledge Graph Embedding Models
 - TransE
 - DistMult & ComplEx
 - RotatE
 - TuckER

RotatE

- RotatE: represent triple (h, r, t) in complex vector space, i.e., \mathbf{h} , \mathbf{r} , $\mathbf{t} \in \mathbb{C}^k$
- *k* is the embedding dimension
- $oldsymbol{\cdot}$ Define each relation $oldsymbol{r}$ as an element-wise rotation from the head $oldsymbol{h}$ to the tail $oldsymbol{t}$

$$\mathbf{t} = \mathbf{h} \circ \mathbf{r}$$
, where $|r_i| = 1$

- • is the **Hadmard** (element-wise) product (i.e., $t_i = h_i \cdot r_j$ for each j).
- j denotes the j-th dimension, t_j , h_j , $r_j \in \mathbb{C}$.

Relation as Rotation

- Since $|r_j| = 1$, r_j can also be represented as $r_j = e^{i\theta_{r,j}}$, $\theta_{r,j}$ is the **phase angle**
- $r_j = e^{i\theta_{r,j}}$ and $t_j = h_j \cdot r_j$ means h_j is rotated $\theta_{r,j}$ clockwise in the complex space
- Define the score function of RotatE as

$$f_r(\mathbf{h}, \mathbf{t}) = -||\mathbf{h} \cdot \mathbf{r} - \mathbf{t}||$$

r: magnitude θ : phase angle

Symmetric and Antisymmetric in RotatE

- RotatE can model symmetric and antisymmetric Relations
- Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \ \forall h, t$$

- r is symmetric if and only if $r_j=\pm 1$, i.e., $\theta_{r,j}=0$ or π
- An example on the space of C

•
$$r_j = -1$$
 or $\theta_{r,j} = \pi$

- Antisymmetric Relations: $r(h, t) \Rightarrow \neg r(t, h) \ \forall h, t$
- r is antisymmetric if and only if $\mathbf{r} \circ \mathbf{r} \neq \mathbf{1}$, i.e., $\theta_{r,j} \neq 0$ and π

Other Relations in RotatE

- RotatE can model Inverse and Composition relations
- Inverse Relations: $r_2(h,t) \Rightarrow r_1(t,h)$
- Two relations r_1 and r_2 are inverse if and only if ${f r}_2={f ar r}_1$, i.e., ${f heta}_{2,j}=-{f heta}_{1,j}$
- Composition Relations: $r_1(x, y) \land r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$
- relation $r_3=e^{i\theta_3}$ is a composition of two relations $r_1=e^{i\theta_1}$ and $r_2=e^{i\theta_2}$ if only if $r_3=r_1\circ r_2$,
 - i.e., $\theta_{3,j} = \theta_{1,j} + \theta_{2,j}$.
 - $\theta_{k,j}$ is the k-th dimension of $\mathbf{\theta}_k$

Limitations of RotatE

- 1-to-N Relations:
 - Example: If (h, r, t_1) and (h, r, t_2) exist in the knowledge graph
- RotatE cannot model 1-to-N relations
- if $\mathbf{t_1} = \mathbf{h} \circ \mathbf{r}$ and $\mathbf{t_2} = \mathbf{h} \circ \mathbf{r}$, $\Rightarrow t_{1,j} = \mathbf{h_j} \cdot r_j; t_{2,j} = \mathbf{h_j} \cdot r_j \text{ for each } j$ $\Rightarrow \mathbf{t_1} = \mathbf{t_2}!$

Content

Introduction: Knowledge Graph

- Knowledge Graph Embedding Models
 - TransE
 - DistMult & ComplEx
 - RotatE
 - TuckER

TuckER

- An alternative view of a knowledge graph: sparse binary adjacency tensor representation of known fact.
- *E* is the entity set, *R* is the relation set
- If (h, r, t) exists in KG, then

$$tensor(h, r, t) = 1$$

Balazevic et al, <u>TuckER: Tensor Factorization for Knowledge Graph Completion</u>, EMNLP 2019

Backgournd: Tucker Decomposition

- Tucker decomposition decomposes a tensor into a set of matrices and a smaller core tensor.
- In three-mode case, given the original tensor $\mathcal{X} \in \mathbb{R}^{I \times J \times K}$, Tucker decomposition outputs a tensor $\mathcal{Z} \in \mathbb{R}^{P \times Q \times R}$ and three matrices $\mathbf{A} \in \mathbb{R}^{I \times P}$, $\mathbf{B} \in \mathbb{R}^{J \times Q}$, $\mathbf{C} \in \mathbb{R}^{K \times R}$:

$$\mathcal{X} \approx \mathcal{Z} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$$

- \times_n indicates the tensor product along the n-th mode
- Elements of the *core tensor* \mathcal{Z} , $\mathcal{Z}(p,q,r)$ show the interaction level between the component A[p], B[q] and C[r]. [i] denotes the i-th column
- the *core tensor* $\mathcal Z$ can be considered as a compressed version of $\mathcal X$

Tucker decomposition for KG

- TuckER uses Tucker decomposition for Knowledge Graph Completion
- entity embedding matrix $\pmb{E} \in \mathbb{R}^{n_e \times d_e}$ and relation embedding matrix $\pmb{R} \in \mathbb{R}^{n_r \times d_r}$
 - n_e , n_r represent the number of entities and relations
 - d_e , d_r represent the dimensionality of entity embedding and relation embedding
- Three matrices in Tucker: $A = C = E \in \mathbb{R}^{n_e \times d_e}$ and $B = R \in \mathbb{R}^{n_r \times d_r}$
- Scoring function for TuckER:

$$\phi(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{W} \times_1 \mathbf{h} \times_2 \mathbf{r} \times_3 \mathbf{t}$$

- **h**, $\mathbf{t} \in \mathbb{R}^{d_e}$ are the rows of $\mathbf{\mathit{E}}$, $\mathbf{r} \in \mathbb{R}^{d_r}$ is the row of $\mathbf{\mathit{R}}$
- $\mathcal{W} \in \mathbb{R}^{d_e \times d_r \times d_e}$ is the core tensor
- d_e , d_r can be different in TuckER

TuckER architecture

Scoring function:

$$\phi(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{W} \times_1 \mathbf{h} \times_2 \mathbf{r} \times_3 \mathbf{t}$$

- Apply logistic sigmoid to socre $\phi(\mathbf{h}, \mathbf{r}, \mathbf{t})$ to obtain the predicted probability of triple being true
- The core tensor W can be viewed as a shared pool of "prototype" relation matrices, which are linearly combined using the parameters in each relation embedding r.

Relation to Previous Models

• Recap: Score function of **DistMulti**:

$$f_r(h,t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i; \quad \mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$$

Score function of Complex:

$$f_r(h,t) = \text{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \bar{\mathbf{t}}_i); \quad \mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k$$

Core tensor $\mathbf{\mathcal{W}} \in \mathbb{R}^{d_e \times d_r \times d_e}$ for DistMult

Core tensor $\mathbf{W} \in \mathbb{R}^{2d_e \times 2d_r \times 2d_e}$ for ComplEx

Expressiveness of All Models

• Properties and expressive power of different KG completion methods:

Model	Score	Embedding	Sym	Antisym.	Inv.	Compos.	1-to-N
			•				
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	$\mathbf{h},\mathbf{t},\mathbf{r}\in\mathbb{R}^k$	×	✓	✓	✓	×
DistMult	< h, r, t $>$	$\mathbf{h},\mathbf{t},\mathbf{r}\in\mathbb{R}^k$	\checkmark	×	×	✓	✓
ComplEx	$Re(<\mathbf{h},\mathbf{r},\bar{\mathbf{t}}>)$	$\mathbf{h},\mathbf{t},\mathbf{r}\in\mathbb{C}^k$	✓	✓	✓	✓	✓
RotatE	$- \parallel \mathbf{h} \circ \mathbf{r} - \mathbf{t} \parallel$	$\mathbf{h},\mathbf{t},\mathbf{r}\in\mathbb{C}^k$	\checkmark	✓	✓	✓	×
TuckER	$W \times_1 \mathbf{h} \times_2 \mathbf{r} \times_3 \mathbf{t}$	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{d_e},\ \mathbf{r}\in\mathbb{R}^{d_r}$	✓	✓	✓	✓	√

- Complex extends DistMult by introducing complex embeddings
- RotatE can degenerate into TransE (See proof in <u>original paper, Appendix F</u>)
- TuckER uses tensor factorization to propose a fully expressive knowledge graph model

Today's Summary

- Different KGs may have drastically different relation patterns!
- Modeling relation patterns is critical for knowledge base completion
 - Symmetric/Antisymmetric, Inverse, composition, 1-to-N
- There is not a general embedding that works for all KGs, use the table to select models
- In practice: try TransE for a quick run if the target KG does not have much symmetric relations, then use more expressive models, e.g., DistMult, Complex, RotatE, TuckER