VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Dokumentace k projektu do předmětu ISA KLIENT SIP

21.listopadu 2015

Autor: Lukáš Pelánek

xpelan03@stud.fit.vutbr.cz

Obsah

Úvod	3
Uvedení do problematiky SIP	
Požadavky	
Odpověďi	
Registrace	4
Zásílání zpráv	5
Návrh a implementace	6
Návod na použití	6
Závěr	7

Úvod

Tento dokument obsahuje uvedení do problematiky komunikace pomocí protokolu SIP, návrhu aplikace, popis implementace, základní informace o programu a návod na použití.

Uvedení do problematiky SIP

Protokol SIP je textový internetový protokol pro přenos signalizace v internetové telefonii. Defaultně používá port 5060. Vlastní přenos hovoru je uskutečněn pomocí protokolu RTP. Protokol vychází z protokolu HTTP.

Požadavky

Jednotlivé požadavky jsou odeslány na server (v rámci projektu server Asterisk).

Základní požadavky protokolu SIP:

- 1. INVITE
- 2. ACK
- 3. BYE
- 4. CANCEL
- 5. OPTIONS
- 6. REGISTER
- 7. NOTIFY
- 8. PUBLISH
- 9. MESSAGE

V rámci projektu jsou implementovány tyto požadavky:

- 1. REGISTER registrace uživatele na serveru SIP
- 2. MESSAGE zaslání soukromé zprávy uživateli

Odpověďi

Na každý odeslaný požadavek server odpoví příslušným kódem, který uživatele informuje o průběhu zpracování jeho požadavku.

Typy odpovědí:

- 1. 1xx dočasná odpověď
- 2. 2xx kladné vyřízení požadavku
- 3. 3xx přesměrování
- 4. 4xx chyba na straně klienta
- 5. 5xx chyba na straně serveru
- 6. 6xx globální chyba

Registrace

Klient zahajuje registraci odesláním požadavku REGISTER.

Příklad registrace z ukázkového .pcap soboru:

REGISTER sip:10.0.0.1 SIP/2.0

CSeq: 53 REGISTER

Via: SIP/2.0/UDP 10.0.0.3:5060;branch=z9hG4bK5e6a98a7-286f-e511-81c6-080027426d5a;rport

User-Agent: Ekiga/4.0.1

From: <sip:bob@10.0.0.1>;tag=8a4d98a7-286f-e511-81c6-080027426d5a

Call-ID: 344998a7-286f-e511-81c6-080027426d5a@test2-VB

To: <sip:bob@10.0.0.1>

Contact: <sip:bob@10.0.0.3:5060>;q=1

Allow: INVITE, ACK, OPTIONS, BYE, CANCEL, SUBSCRIBE, NOTIFY, REFER, MESSAGE, INFO, PING, PRACK

Expires: 3600 Content-Length: 0 Max-Forwards: 70

Na to server zareaguje odpovědí s kódem 401 a žádá po klientovi ověření. Rovněž zasílá potřebné údaje jako je realm a nonce.

SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP 10.0.0.3:5060;branch=z9hG4bK5e6a98a7-286f-e511-81c6-080027426d5a;re-

ceived=10.0.0.3;rport=5060

From: <sip:bob@10.0.0.1>;tag=8a4d98a7-286f-e511-81c6-080027426d5a

To: <sip:bob@10.0.0.1>;tag=as4db23355

Call-ID: 344998a7-286f-e511-81c6-080027426d5a@test2-VB

CSeq: 53 REGISTER

Server: Asterisk PBX 11.7.0~dfsg-1ubuntu1

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, INFO, PUBLISH

Supported: replaces, timer

WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="149b7c26"

Content-Length: 0

V tuto chvíli klient musí spočítat hash a odeslat serveru potvrzení s přiloženým kódem hash.

Vzorec pro výpočet hash hodnoty je následující:

HA1 = MD5("myusername:realm:password")
HA2 = MD5("REGISTER:sip:sip.example.com")
response = MD5(HA1+:+nonce+:+HA2);

Následně klient odešle potvrzující požadavek obsahující hash hodnotu v poli response.

REGISTER sip:10.0.0.1 SIP/2.0

CSeq: 54 REGISTER

Via: SIP/2.0/UDP 10.0.0.3:5060;branch=z9hG4bKb02199a7-286f-e511-81c6- 080027426d5a;rport

User-Agent: Ekiga/4.0.1

Authorization: Digest username="bob", realm="asterisk", nonce="149b7c26", uri="sip:10.0.0.1", algorithm=MD5, res-

ponse="593f84f5e2294740e8602c8a79065bb8"

From: <sip:bob@10.0.0.1>;tag=8a4d98a7-286f-e511-81c6-080027426d5a

Call-ID: 344998a7-286f-e511-81c6-080027426d5a@test2-VB

To: <sip:bob@10.0.0.1>

Contact: <sip:bob@10.0.0.3:5060>;q=1

Allow: INVITE, ACK, OPTIONS, BYE, CANCEL, SUBSCRIBE, NOTIFY, REFER, MESSAGE, INFO, PING, PRACK, ALLOW, AL

Expires: 3600 Content-Length: 0 Max-Forwards: 70

V případě správného výpočtu hodnoty hash server zašle potvrzující zprávu s kódem 200 a uživatel je přihlášen na serveru po dobu, která je uvedena v položce Expires.

Zásílání zpráv

Klienti si zprávy zasílají mezi sebou přímo. V tuto chvíli komunikace neprobíhá přes server.

MESSAGE sip:alice@10.0.0.2 SIP/2.0

CSeq: 57 MESSAGE

Via: SIP/2.0/UDP 10.0.0.3:5060;branch=z9hG4bKbe0007b6-286f-e511-81c6- 080027426d5a;rport

User-Agent: Ekiga/4.0.1 From: <sip:test2@10.0.0.3>

Call-ID: 1aeb06b6-286f-e511-81c6-080027426d5a@test2-VB

To: <sip:alice@10.0.0.2>

Expires: 5000 Content-Length: 9

Content-Type: text/plain;charset=UTF-8

Max-Forwards: 70

Hi there!

Pokud zprávu obdržel správný uživatel, informuje klienta o úspěšném doručení zprávy:

SIP/2.0 202 Accepted CSeq: 57 MESSAGE

Via: SIP/2.0/UDP 10.0.0.3:5060;branch=z9hG4bKbe0007b6-286f-e511-81c6- 080027426d5a;rport=5060;re-

ceived=10.0.0.3

User-Agent: Ekiga/4.0.1 From: <sip:test2@10.0.0.3>

Call-ID: 1aeb06b6-286f-e511-81c6-080027426d5a@test2-VB

To: <sip:alice@10.0.0.2> Contact: <sip:alice@10.0.0.2>

Content-Length: 0

Návrh a implementace

Celá aplikace je implementována v jazyce C++. Pro realizaci klienta byl použit návrhový vzor Singleton.

Jako první aplikace provede zpracování vstupních souborů a naplní datové struktury. Dále zjišťuje dostupný interface, na kterém bude klient vysílat.

Následně zavolá funkci *bind*() na port 5061. V případě, že port není volný, aplikace zkouší dostupné porty až po port 5080. Pokud žádný port v tomto rozmezí není volný, aplikace skončí s chybovým hlášením.

Klient odešle požadavek REGISTER a čeká na odpověď od serveru. Pokud server odpověděl kódem 5xx, klient každých 5 vteřin zkouší registraci znovu. V případě úspěšně registrace, klient si uloží hodnotu z pole Expires a těsně před vypršením odešle nový požadavek REGISTER, aby udržel klienta přihlášeného.

Klient naslouchá a zpracovává přijaté zprávy. Pokud klient obdrží jiný požadavek než MESSAGE, tak jej ignoruje. V případě požadavku MESSAGE klient ověří, zda je příjemcem zprávy. Pokud ano, odešle potvrzující zprávu 202 Accepted. V opačném případě odešle zprávu 403 Forbidden.

Po obdržení signálu SIGTERM, SIGQUIT nebo SIGINT klient odešle serveru požadavek na odhlášení ze serveru. Tato zpráva je stejná jako zpráva pro registraci, s tím rozdílem, že hodnota u pole Expires je 0. Klient čeká 1 vteřinu, pokud do této doby neproběhne potvrzení odhlášení ze serveru, klient se korektně ukončí.

Návod na použití

Jako první se program musí přeložit pomocí přiloženého souboru Makefile. Stačí do konzole napsat příkaz *make*. Následně se aplikace spouští pomocí následujícího příkazu:

./sipklient -p profile.txt [-m messages.txt]

Parametr –p je povinný. Obsahuje soubor, který obsahuje informace o uživateli a serveru. Formát souboru profile.txt je následující:

server=SERVER username=USERNAME password=PASSWORD expires=EXPIRES

Dále může obsahovat volitelný parametr –m se souborem obsahující zprávy k odeslání. Formát souboru messages.txt je následující:

jmeno_uzivatele@adresa_uzivatele zprava

Závěr

Aplikace byla otestována a vyvíjena na virtuálním stroji ISA2015. Testování probíhalo vytvořením 3 virtuálních strojů, které byly propojeny pomocí lokální sítě. Uživatelé si posílali zprávy v rámci sítě. Dále byla komunikace otestována pomocí klienta Ekiga. Program splňuje zadaná kritéria.

Literatura

[1] Ukázková komunikace SIP. [online]. 2015 [cit. 2015-11-21]. Dostupné z: http://www.stud.fit.vutbr.cz/~xfrank08/sip-message-example.pcap

[2] SIP: Session Initiation Protocol. [online]. 2002 [cit. 2015-11-21]. Dostupné z: http://tools.ietf.org/html/rfc3261

[3] Reversing SIP digest authentication in JavaScript. *kapejod.org.* [online]. 2013 [cit. 2015-11-21]. Dostupné z: http://www.kapejod.org/en/2013/02/reversing-sip-digest-authentication-in-javascript-node-js