I.I.S. 25 APRILE - FACCIO MATEMATICA

Francesco Giuseppe Gillio 7 Novembre, 2024

Classe:	
Studente:	

La prova si svolge in 100 minuti, per un massimo di 100 punti.

Sistema di Valutazione

Question:	1	2	3	4	5	6	7	Total
Points:	10	10	10	20	20	15	15	100
Score:								

- 1. Data la funzione $f(x) = \sqrt{x+4} + 2$, calcola:
 - (a) (5 points) l'immagine di 0;

Solution: Sostituiamo x = 0 nella funzione f(x):

$$f(0) = \sqrt{0+4} + 2 = \sqrt{4} + 2 = 2 + 2 = 4$$

Conclusione: l'immagine di 0 è 4.

(b) (5 points) la controimmagine di 4.

Solution: Ricerchiamo x tale che f(x) = 4:

$$\sqrt{x+4} + 2 = 4$$

$$\sqrt{x+4}=2$$

Eleviamo entrambi i membri al quadrato per eliminare la radice quadrata:

$$(\sqrt{x+4})^2 = 2^2$$

$$x + 4 = 4$$

$$x = 0$$

Conclusione: la controimmagine di 4

è 0.

- 2. Data la funzione $f(x) = \frac{x^2-1}{x-2}$, calcola:
 - (a) (5 points) l'immagine di 2;

Solution: Sostituiamo x = 2 nella funzione f(x):

$$f(2) = \frac{2^2 - 1}{2 - 2} = \frac{4 - 1}{0} = \frac{3}{0}$$

La divisione per zero non è definita; quindi la funzione non esiste per x=2.

Conclusione: l'immagine di 2 non esiste.

(b) (5 points) la controimmagine di 3.

Solution: Ricerchiamo x tale che f(x) = 3:

$$\frac{x^2 - 1}{x - 2} = 3$$

Moltiplichiamo entrambi i membri per x-2, con $x\neq 2$, per eliminare il denominatore:

$$(x-2)\frac{x^2-1}{(x-2)} = 3(x-2)$$

$$x^2 - 1 = 3(x - 2)$$

$$x^2 - 3x + 5 = 0$$

Ricerchiamo le soluzioni dell'equazione $x^2 - 3x + 5 = 0$:

$$\Delta = (-3)^2 - 4 \cdot 1 \cdot 5 = 9 - 20 = -11$$

$$\Delta < 0 \implies \text{impossibile}$$

Conclusione: la controimmagine di 3 non esiste.

- 3. Data la funzione $f(x) = \frac{x^2 1}{\sqrt{x}}$,
 - (a) (5 points) determina il dominio;

Solution: La funzione è definita se:

1. il denominatore è diverso da zero:

$$\sqrt{x} \neq 0 \quad \Rightarrow \quad x \neq 0$$

2. l'argomento della radice è maggiore o uguale a zero:

$$x \ge 0$$

Conclusione: il dominio è $x \in (0, +\infty)$.

(b) (5 points) calcola, se possibile, i seguenti valori: $f(0), f(-1), f(4), f(\frac{1}{2})$

Solution:

- f(0): divisione per zero (non definito)
- \bullet f(-1): radice di numero negativo (non definito)
- $f(4) = \frac{4^2 1}{\sqrt{4}} = \frac{15}{2}$
- $f(\frac{1}{2}) = \frac{(\frac{1}{2})^2 1}{\sqrt{\frac{1}{2}}} = -\frac{3\sqrt{2}}{4}$

4. Determina il dominio delle seguenti funzioni:

(a) (10 points)
$$y = 3^{x-1} - 2$$

Solution: La funzione 3^{x-1} è esponenziale con base positiva, quindi è definita per qualsiasi numero reale.

Conclusione: il dominio è \mathbb{R} .

(b) (10 points)
$$y = \sqrt{\frac{x-1}{x+5}}$$

Solution: La funzione è definita se:

1. il denominatore è diverso da zero:

$$x + 5 \neq 0 \quad \Rightarrow \quad x \neq -5$$

2. l'argomento della radice è maggiore o uguale a zero:

$$\frac{x-1}{x+5} \ge 0$$

Per risolvere la disequazione ricerchiamo gli intervalli in cui il rapporto tra i segni di numeratore e denominatore è maggiore o uguale a zero:

• numeratore: $x - 1 \ge 0 \implies x \ge 1$

• denominatore: $x + 5 > 0 \implies x > -5$

	x < -5	-5 < x < 1	1 < x	
x-1	_	_	+	
x + 5	_	+	+	
	+	_	+	

$$\Rightarrow x \in (-\infty, -5) \cup [1, +\infty)$$

Conclusione: il dominio è $x \in (-\infty, -5) \cup [1, +\infty)$.

5. Determina il dominio delle seguenti funzioni:

(a) (10 points)
$$y = \sqrt{\frac{x-5}{3x^2-5x-2}}$$

Solution: La funzione è definita se:

1. il denominatore è diverso da zero:

$$3x^2 - 5x - 2 \neq 0$$

Ricerchiamo le soluzioni dell'equazione $3x^2 - 5x - 2 = 0$:

$$\Delta = (-5)^2 - 4 \cdot 3 \cdot (-2) = 25 + 24 = 49$$

$$x_1 = \frac{5 + \sqrt{49}}{2 \cdot 3} = 2, \quad x_2 = \frac{5 - \sqrt{49}}{2 \cdot 3} = -\frac{1}{3}$$

 $\Rightarrow \quad x \neq 2, \quad x \neq -\frac{1}{3}$

2. l'argomento della radice è maggiore o uguale a zero:

$$\frac{x-5}{3x^2-5x-2} \ge 0$$

Per risolvere la disequazione ricerchiamo gli intervalli in cui il rapporto tra i segni di numeratore e denominatore è maggiore o uguale a zero:

• numeratore: $x - 5 \ge 0 \implies x \ge 5$

• denominatore: $3x^2 - 5x - 2 > 0$

Per risolvere la disequazione ricerchiamo le radici dell'equazione $3x^2 - 5x - 2 = 0$:

$$x_1 = \frac{5 + \sqrt{49}}{2 \cdot 3} = 2, \quad x_2 = \frac{5 - \sqrt{49}}{2 \cdot 3} = -\frac{1}{3}$$

L'espressione $3x^2 - 5x - 2$ rappresenta una parabola con concavità verso l'alto (poichè il coefficiente di x^2 è positivo), quindi:

$$3x^2 - 5x - 2 > 0 \implies x \in (-\infty, -\frac{1}{3}) \cup (2, +\infty)$$

	$x < -\frac{1}{3}$	$-\frac{1}{3} < x < 2$	2 < x < 5	5 < x
x-5	_	_	_	+
$3x^2 - 5x - 2$	+	_	+	+
	_	+	_	+

$$\Rightarrow x \in (-\frac{1}{3}, 2) \cup [5, +\infty)$$

Conclusione: il dominio è $x \in (-\frac{1}{3}, 2) \cup [5, +\infty)$.

(b) (10 points)
$$y = \sqrt{\frac{x^2-4}{x}} + \sqrt{1-x}$$

Solution: La funzione è definita se:

1. il denominatore è diverso da zero:

$$x \neq 0$$

2. l'argomento della radice $\sqrt{\frac{x^2-4}{x}}$ è maggiore o uguale a zero:

$$\frac{x^2 - 4}{x} \ge 0$$

Per risolvere la disequazione ricerchiamo gli intervalli in cui il rapporto tra i segni di numeratore e denominatore è maggiore o uguale a zero:

• numeratore: $x^2 - 4 \ge 0$ \Rightarrow $x \in (-\infty, -2] \cup [2, +\infty)$

• denominatore: x > 0

	x < -2	-2 < x < 0	0 < x < 2	2 < x
$x^2 - 4$	+	_	_	+
x	_	_	+	+
	_	+	_	+

$$\Rightarrow x \in (-2,0) \cup [2,+\infty)$$

3. l'argomento della radice $\sqrt{1-x}$ è maggiore o uguale a zero:

$$1 - x \ge 0 \quad \Rightarrow \quad x \le 1$$

Conclusione: il dominio è $x \in (-2, 0)$.

6. (15 points) Determina il dominio della seguente funzione:

$$f(x) = \frac{\sqrt{3x - 5} + \ln(x^2 - 1)}{x^2 - 4x + 3}$$

7. (15 points) Determina il dominio della seguente funzione:

$$f(x) = \sqrt{\frac{x^2 - 9}{x + 2}} + \frac{\ln(x + 3)}{\sqrt{x^2 - 4}}$$