CANS2D モデルパッケージ md_mhdsn

MHD 超新星爆発

2006. 1. 9.

1 はじめに

このモデルパッケージは、2 次元平面内(軸対称 rz 面内)での一様磁場中での超新星爆発を解くためのものである。

2 仮定と基礎方程式

流体は非粘性・圧縮性・磁気拡散なしの磁気流体とする。計算領域は 2 次元円柱座標 (rz 平面) で $\partial/\partial\phi=0$ 、 $V_\phi=0$ 、 $B_\phi=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_r 、 V_z 、磁場 B_r 、 B_z についての 2 次元 MHD 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial r}(\rho V_r) + \frac{\partial}{\partial z}(\rho V_z) = -\frac{1}{r}(\rho V_r) \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_r) + \frac{\partial}{\partial r}\left(\rho V_r^2 + p + \frac{B^2}{8\pi} - \frac{B_r^2}{4\pi}\right) + \frac{\partial}{\partial z}\left(\rho V_r V_z - \frac{B_r B_z}{4\pi}\right) = -\frac{1}{r}(\rho V_r^2 - \frac{B_r^2}{4\pi}) \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_z) + \frac{\partial}{\partial r}\left(\rho V_r V_z - \frac{B_r B_z}{4\pi}\right) + \frac{\partial}{\partial z}\left(\rho V_z^2 + p + \frac{B^2}{8\pi} - \frac{B_z^2}{4\pi}\right) = -\frac{1}{r}\left(\rho V_r V_z - \frac{B_r B_z}{4\pi}\right) \tag{3}$$

$$\frac{\partial}{\partial t}(B_r) - \frac{\partial}{\partial z}(E_\phi) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_z) + \frac{\partial}{\partial r}(E_\phi) = -\frac{1}{r}E_\phi \tag{5}$$

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 + \frac{B^2}{8\pi} \right)
+ \frac{\partial}{\partial r} \left((\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2) V_r + \frac{B_z E_\phi}{4\pi} \right)
+ \frac{\partial}{\partial z} \left((\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2) V_z + \frac{-B_r E_\phi}{4\pi} \right)
= -\frac{1}{r} \left((\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2) V_r + \frac{B_z E_\phi}{4\pi} \right)$$
(6)

$$E_{\phi} = -V_z B_r + V_r B_z \tag{7}$$

である。ここで、 $V^2=V_r^2+V_z^2$ 、 γ は比熱比。なお計算コード上では r は x 座標で、z は z 座標で表現されている。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は、計算領域のサイズ、 $C_{\rm S0}$ は初期爆発(原点)の音速。密度は初期一様状態の値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位		
r, z	L_0		
V_r,V_z	$C_{ m S0}$		
t	$L_0/C_{\rm S0}$		
ho	$ ho_0$		
p	$ ho_0 C_{\mathrm{S}0}^2$		
B_r, B_z	$\sqrt{ ho_0 C_{ m S0}^2}$		

表 1: 変数と規格化単位

4 パラメータ・初期条件・計算条件・境界条件

0 < r < 1、0 < z < 1 の領域を解く。初期状態は以下のようなもの。サブルーチン model で設定する。

$$\rho = 1$$

$$p = p_{\text{ism}} + (1/\gamma - p_{\text{ism}}) \exp[-(r/w)^2]$$

$$V_r = V_z = 0$$

$$B_r = 0$$

$$B_z = \sqrt{8\pi p_{\text{ism}} \alpha_0}$$

$$r = \sqrt{x^2 + y^2}$$

で、 α_0 は初期プラズマベータの逆数。

パラメータ	値	コード中での変数名	設定サブルーチン名
比熱比 γ	5/3	gm	model
初期プラズマベータの逆数 $lpha_0$	10^{5}	betai	model
擾乱の印加範囲 w	0.02	wexp	model
周囲星間物質の圧力 $p_{ m ism}$	10^{-8}	prism	model

表 2: おもなパラメータ

境界条件は、以下の通り。サブルーチン bnd で設定。z=0 は対称境界条件。すなわち V_z 、 B_r は「絶対値が等しく符号反転で鏡面配置」、 ρ 、p、 V_r 、 B_z は「絶対値・符号が等しく鏡面配置」。 $z=Z_{\rm bnd}$ で、自

由境界条件。すなわち、すべての物理量の z 方向微分がゼロ。r=0 で、 対称境界条件。すなわち V_r 、 B_r は「絶対値が等しく符号反転で鏡面配置」、 ρ 、p、 V_z 、 B_z は「絶対値・符号が等しく鏡面配置」。 $r=R_{\rm bnd}$ で、自由境界条件。すなわち、すべての物理量の r 方向微分がゼロ。

計算パラメータは以下の通り(表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 r 方向	203	ix	main
グリッド数 z 方向	202	jx	main
マージン	4	margin	main
終了時刻	5	tend	main
出力時間間隔	0.5	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。

5 参考文献