

AI1/AI&ML - Naïve Bayes

Dr Leonardo Stella

Aims of the Session

This session aims to help you:

Describe the fundamental concepts in probability theory

Explain Bayes' Theorem and its application in ML

Apply Naïve Bayes to classification for categorical and numerical independent variables

Overview

- Fundamental concepts in Probability Theory
- Bayes' Theorem
- Naïve Bayes for Categorical Independent Variables
- Naïve Bayes for Numerical Independent Variables

Fundamental Concepts in Probability Theory

- Probabilistic model: a mathematical description of an uncertain situation. The two main elements of a probabilistic model are:
 - The **sample space** Ω , which is the set of all possible outcomes
 - The **probability law**, which assigns to a set A of possible outcomes (called an **event**) a nonnegative number P(A) (called the **probability** of A)
- Every probabilistic model involves an underlying process, called the experiment, that produces exactly one of several possible outcomes
- A subset of the sample space Ω is called an **event**

Example: Toss of a Coin

- Consider the following experiment a single toss of a fair coin
 - The sample space Ω : head (H) or tail (T)
 - The probability law: P(H) = 0.5 (called the probability of H), P(T) = 0.5

Example: Toss of a Coin

- Consider the following experiment a single toss of a fair coin
 - The sample space Ω : head (H) or tail (T)
 - The probability law: P(H) = 0.5 (called the probability of H), P(T) = 0.5

Let us now consider the experiment consisting of 3 coin tosses. What is the probability of having exactly 2 heads? What about exactly 1 head?

Example: Toss of a Coin

- Consider the following experiment a single toss of a fair coin
 - The sample space Ω : head (H) or tail (T)
 - The probability law: P(H) = 0.5 (called the probability of H), P(T) = 0.5

- Let us now consider the experiment consisting of 3 coin tosses. What is the probability of having exactly 2 heads? What about exactly 1 head?
- Repeat with the biased coin: P(H) = 0.8

Probability Axioms

■ Nonnegativity: $P(A) \ge 0$, for every event A

■ Additivity: If A and B are two disjoint events, then the probability of their union satisfies: $P(A \cup B) = P(A) + P(B)$

■ Normalisation: The probability of the entire sample space is equal to 1, namely $P(\Omega)=1$

(Discrete) Random Variables

 Given an experiment and the corresponding sample space, a random variable maps a particular number with each outcome

 Mathematically, a random variable X is a real-valued function of the experimental outcome

Probability Mass Function (PMF)

- The probability mass function (PMF) captures the probabilities of the values that a (discrete) random variable can take
- Let us consider the previous example:

$$P(X = 1) = 1/16$$

Image: taken from Introduction to Probability (Fig. 2.1 (b))

Probability Mass Function (PMF)

- The probability mass function (PMF) captures the probabilities of the values that a (discrete) random variable can take
- Let us consider the previous example:

$$P(X = 1) = 1/16$$

$$P(X = 2) = 3/16$$

$$P(X = 3) = 5/16$$

$$P(X = 4) = 7/16$$

Notation

- Random variables are usually indicated with uppercase letters, e.g., X or Temperature or Infection
- The values are indicated with lowercase letters, e.g., $X \in \{true, false\}$ or $Infection \in \{low, moderate, high\}$
- Vectors are usually indicated with bold letters or a small arrow above the letter, e.g., X or \vec{X}
- PMF is usually indicated by the symbol $p_X(x)$

Unconditional/Conditional Probability Distributions

- An unconditional (or prior) probability distribution gives us the probabilities of all possible events without knowing anything else about the problem, e.g., the maximum value of two rolls of a 4-sided die
- $P(X) = \{\frac{1}{15}, \frac{3}{15}, \frac{5}{15}, \frac{7}{15}\}$
- A conditional (or posterior) probability distribution gives us the probability of all possible events with some additional knowledge, e.g., the maximum value of two rolls of a 4-sided die knowing that the first roll is 3
- $P(X \mid X_1 = 3) = \{0, 0, \frac{3}{4}, \frac{1}{4}\}$

Joint Probability Distributions

 A joint probability distribution is the probability distribution associated to all combinations of the values of two or more random variables

■ This is indicated by commas, e.g., P(X,Y) or P(Toothache, Cavity)

We can calculate the joint probability distribution by using the **product** rule as in the following:

$$P(X,Y) = P(X \mid Y) P(Y) = P(Y \mid X) P(X)$$

Mean, Variance and Standard Deviation

The mean (or expected value or expectation), also indicated by μ , of a random variable X with PMF $p_X(x)$ represents the centre of gravity of the PMF:

$$\mathbf{E}(X) = \sum_{X} x p_X(X)$$

- E.g., let us consider the random variable X, i.e., the roll of a 4-sided die. The mean is calculated as: $\mathbf{E}(X) = 1 * \frac{1}{4} + 2 * \frac{1}{4} + 3 * \frac{1}{4} + 4 * \frac{1}{4} = 2.5$
- The variance of a random variable X provides a measure of the dispersion around the mean:

$$var(X) = \sum_{x} (x - E(X))^{2} p_{X}(x)$$

The standard deviation is another measure of dispersion: $\sigma_X = \sqrt{var(x)}$

Continuous Random Variables

• A random variable X is called continuous if its probability law can be described in terms of a nonnegative function f_X . This function is called **probability density** function (PDF) and is the equivalent of the PMF for discrete random variables

$$P(X \in B) = \int_{B} f_{X}(x) dx$$

• Since we are dealing with continuous variables, there are an infinite number of values that X can take

 As for the discrete case, also for continuous random variables we can have unconditional, conditional and joint probability distributions

Example: Random Number Generator

- As an example, let us consider a random number generator that returns a random value between 0 and 1: $X \in [0,1]$
- And let us model it with a Gaussian (or normal) distribution

$$P(X = a \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{(2\pi)}} e^{\frac{-(a-\mu)^2}{2\sigma^2}},$$

where μ is the mean and σ^2 is the variance Also, recall that $\pi=3.14159$ and e=2.71828

Overview

- Fundamental concepts in Probability Theory
- Bayes' Theorem
- Naïve Bayes for Categorical Independent Variables
- Naïve Bayes for Numerical Independent Variables

Bayes' Theorem

Recall the product rule for a joint probability distribution of independent variable(s)
 X and dependent variable Y:

$$P(X,Y) = P(X \mid Y) P(Y) = P(Y \mid X) P(X)$$

By taking the second and last term from the above equation and rearranging, we get:

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

The above equation is known as Bayes' Theorem (also Bayes' rule or Bayes' law)

ML: Probabilistic Inference

 Our ML task consists in computing the posterior probabilities for query propositions given some observed evidence: this method is probabilistic inference

 We use Bayes' Theorem to make predictions about an underlying process given a knowledge base consisting of the data produced by this process

Equivalent Terminology

- Input attribute, independent variable, input variable
- Output attribute, dependent variable, output variable, label (classification)
- Predictive model, classifier (classification), or hypothesis (statistical learning)
- Learning a model, training a model, building a model
- Training examples, training data
- Example, observation, data point, instance (more frequently used for test examples)
- $P(a,b) = P(a \text{ and } b) = P(a \land b)$

Consider the training set

Days	Sunny (X_1)	Windy (X_2)	Tennis (Y)
Day 1	yes	no	yes
Day 2	yes	no	yes
Day 3	yes	yes	yes
Day 4	no	yes	no
Day 5	no	no	no
Day 6	no	yes	no

Consider the training set

Days	Sunny (X_1)	Windy (X_2)	Tennis (Y)
Day 1	yes	no	yes
Day 2	yes	no	yes
Day 3	yes	yes	yes
Day 4	no	yes	no
Day 5	no	no	no
Day 6	no	yes	no

■ Let us build the **model** for <u>one</u> independent variable, e.g., Windy (X_2)

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes			
Windy = no			
Total			

Consider the training set

Days	Sunny (X_1)	Windy (X_2)	Tennis (Y)
Day 1	yes	no	yes
Day 2	yes	no	yes
Day 3	yes	yes	yes
Day 4	no	yes	no
Day 5	no	no	no
Day 6	no	yes	no

• Let us build the **model** for <u>one</u> independent variable, e.g., Windy (X_2)

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1		
Windy = no			
Total			

Consider the training set

Days	Sunny (X_1)	Windy (X_2)	Tennis (Y)
Day 1	yes	no	yes
Day 2	yes	no	yes
Day 3	yes	yes	yes
Day 4	no	yes	no
Day 5	no	no	no
Day 6	no	yes	no

• Let us build the **model** for <u>one</u> independent variable, e.g., Windy (X_2)

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1		
Windy = no	2		
Total	3		

Consider the training set

Days	Sunny (X_1)	Windy (X_2)	Tennis (Y)
Day 1	yes	no	yes
Day 2	yes	no	yes
Day 3	yes	yes	yes
Day 4	no	yes	no
Day 5	no	no	no
Day 6	no	yes	no

• Let us build the **model** for <u>one</u> independent variable, e.g., Windy (X_2)

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

Learning Probabilities (continued)

```
P(Windy=yes|Tennis=yes) =
```

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

Learning Probabilities (continued)

P(Windy=yes|Tennis=yes) = 1/3 P(Windy=no|Tennis=yes) = 2/3 P(Windy=yes|Tennis=no) = 2/3 P(Windy=no|Tennis=no) = 1/3

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

Learning Probabilities (continued)

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

P(Windy=yes) = 3/6 = 1/2
P(Windy=no) = 3/6 = 1/2
P(Tennis=yes) = 3/6 = 1/2
P(Tennis=no) = 3/6 = 1/2

Applying Bayes' Theorem

 Let us consider output class c and input value(s) a. Bayes' Theorem can be rewritten as

$$P(c \mid a) = \frac{P(a \mid c)P(c)}{P(a)}$$

Now, given input value(s) a, we calculate the above for every class c: our prediction is the one with: $\max_{c} P(c \mid a)$

$$P(Tennis = yes \mid Windy = yes) = \frac{P(Windy = yes \mid Tennis = yes)P(Tennis = yes)}{P(Windy = yes)}$$

Applying Bayes' Theorem (continued)

$$P(Tennis = yes \mid Windy = yes) = \frac{P(Windy = yes \mid Tennis = yes)P(Tennis = yes)}{P(Windy = yes)}$$
$$= \frac{\frac{1}{3} * \frac{3}{6}}{\frac{3}{6}} = 0.33$$

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

Applying Bayes' Theorem (continued)

$$P(Tennis = yes \mid Windy = yes) = \frac{P(Windy = yes \mid Tennis = yes)P(Tennis = yes)}{P(Windy = yes)}$$
$$= \frac{\frac{1}{3} * \frac{3}{6}}{\frac{3}{6}} = 0.33$$

$$P(Tennis = no \mid Windy = yes) = \frac{P(Windy = yes \mid Tennis = no)P(Tennis = no)}{P(Windy = yes)}$$

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

$$=\frac{2/3*3/6}{3/6}=0.67$$

Applying Bayes' Theorem (continued)

$$P(Tennis = yes | Windy = yes) = 0.33$$

$$P(Tennis = no \mid Windy = yes) = 0.67$$

$$\max_{c} P(c \mid a) = \max\{0.33, 0.67\} = 0.67$$

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

Normalising Factor

$$P(Tennis = yes \mid Windy = yes) = \frac{P(Windy = yes \mid Tennis = yes)P(Tennis = yes)}{P(Windy = yes)}$$

$$= \frac{\frac{1}{3} * \frac{3}{6}}{\frac{3}{6}} = 0.33$$

$$P(Tennis = no \mid Windy = yes) = \frac{P(Windy = yes \mid Tennis = no)P(Tennis = no)}{P(Windy = yes)}$$

$$= \frac{\frac{2}{3} * \frac{3}{6}}{\frac{3}{6}} = 0.67$$

- 1/P(Windy = yes) can be seen as a normalisation constant for the distribution: we can replace it with the constant parameter $\alpha = 1/\beta$

More than 1 Independent Variable

$$P(c|a_1,...,a_n) = \frac{P(a_1,...,a_n|c)P(c)}{\sum_{c \in V}(P(c) \prod_{i=1}^n P(a_i|c))} = \alpha P(a_1,...,a_n|c)P(c)$$

- P represents the probability calculated based on the frequency tables
- c represents a class
- a_i represents the value of independent variable $x_i \in \{1, ..., n\}$
- lacktriangleright n is the number of independent variables
- α is the normalisation factor

Problems: Scaling and Missing Values

	toothache		-toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- In this example (from the book), we have 3 Boolean variables
- For a domain described by n Boolean variables, we would need an input table of size $O(2^n)$ and it would take $O(2^n)$ to process the table
- Also, it is reasonable to think that we will never see values for all possible combinations of the variables
- Naïve Bayes can be used to deal with these issues

Overview

- Fundamental concepts in Probability Theory
- Bayes' Theorem
- Naïve Bayes for Categorical Independent Variables
- Naïve Bayes for Numerical Independent Variables

Recall: Issues with Bayes' Theorem

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

For increasing numbers of independent variables, all possible combinations must be considered:

$$P(c|a_1,...,a_n) = \alpha P(c) P(a_1,...,a_n|c)$$

For a domain described by n Boolean variables, we would need an input table of size $O(2^n)$ and it would take $O(2^n)$ to process the table

Naïve Bayes: Conditional Independence

 Assumption: each input variable is conditionally independent of any other input variables given the output

■ Independence: A is independent of B when the following equality holds (i.e., B does not alter the probability that A has occurred): P(A|B) = P(A)

• Conditional independence: x_1 is conditionally independent of x_2 given y when the following equality holds:

$$P(x_1|x_2, y) = P(x_1, y)$$

Naïve Bayes

• Conditional independence: x_1 is conditionally independent of x_2 given y when the following equality holds:

$$P(x_1|x_2, y) = P(x_1, y)$$

$$P(c|a_1,...,a_n) = \alpha P(c) P(a_1,...,a_n|c)$$

Naïve Bayes

• Conditional independence: x_1 is conditionally independent of x_2 given y when the following equality holds:

$$P(x_1|x_2, y) = P(x_1, y)$$

$$P(c|a_1,...,a_n) = \alpha P(c) P(a_1,...,a_n|c)$$

$$P(c|a_1,...,a_n) = \alpha P(c) P(a_1|c) P(a_2|c) ... P(a_n|c)$$

Naïve Bayes

$$P(c|a_1, ..., a_n) = \alpha P(c) P(a_1|c) P(a_2|c) ... P(a_n|c)$$

$$P(c|a_1, ..., a_n) = \alpha P(c) \prod_{i=1}^{n} P(a_i|c)$$

where
$$\alpha = 1/\beta$$
 and $\beta = \sum_{c \in \mathcal{V}} (P(c) \prod_{i=1}^{n} P(a_i | c))$

Example: Naïve Bayes

Consider again the training set

Days	Sunny (X_1)	Windy (X_2)	Tennis (Y)
Day 1	yes	no	yes
Day 2	yes	no	yes
Day 3	yes	yes	yes
Day 4	no	yes	no
Day 5	no	no	no
Day 6	no	yes	no

Because of conditional independence, we have a table for each variable:

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3	0	3
Sunny = no	0	3	3
Total	3	3	6

Example: Naïve Bayes (continued)

Let us determine the predicted class for the following instance:

(Windy = no, Sunny = no, Y = ?)

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1	2	3
Windy = no	2	1	3
Total	3	3	6

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3	0	3
Sunny = no	0	3	3
Total	3	3	6

- $P(c|a_1,...,a_n) = \alpha P(c) \prod_{i=1}^n P(a_i|c)$
- $P(\neg T | \neg W, \neg S) = \alpha P(\neg T) P(\neg W | \neg T) P(\neg S | \neg T) = \alpha \frac{3}{6} * \frac{1}{3} * \frac{3}{3} = \frac{1}{6} \alpha$
- $P(T|\neg W, \neg S) = \alpha P(T)P(\neg W|T)P(\neg S|T) = \alpha \frac{3}{6} * \frac{2}{3} * \frac{0}{3} = 0$

Example: Naïve Bayes (continued)

- $P(\neg T | \neg W, \neg S) = \alpha P(\neg T) P(\neg W | \neg T) P(\neg S | \neg T) = \alpha \frac{3}{6} * \frac{1}{3} * \frac{3}{3} = \frac{1}{6} \alpha$ $P(T | \neg W, \neg S) = \alpha P(T) P(\neg W | T) P(\neg S | T) = \alpha \frac{3}{6} * \frac{2}{3} * \frac{0}{3} = 0$

$$\alpha = \frac{1}{\beta} = \frac{1}{\frac{3}{6} \cdot \frac{2}{3} \cdot \frac{0}{3} + \frac{3}{6} \cdot \frac{1}{3} \cdot \frac{3}{3}} = 6$$

- $P(\neg T | \neg W, \neg S) = \frac{1}{6} * 6 = 1$
- $P(T|\neg W, \neg S) = 0$
- Problem: in this example, there is no data where Tennis = yes with Sunny = no, so regardless of the value of Windy, we will get inaccuracies in doing predictions

Laplace Smoothing

 To avoid this problem, we can use Laplace smoothing by adding 1 to the frequency of all elements of our training data

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1+1	2+1	3+2
Windy = no	2+1	1+1	3+2
Total	3+2	3+2	6+4

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3+1	0+1	3+2
Sunny = no	0+1	3+1	3+2
Total	3+2	3+2	6+4

- Then we use the updated tables when calculating $P(a_i|c)$, so we do not get values with 0
- When we calculate P(c), we use the original tables

Summary

Naïve Bayes Learning Algorithm

- Create frequency tables for each independent variable and the corresponding values for the frequency of an event
- Count the number of training examples of each class with each independent variable
- Apply Laplace smoothing

Naïve Bayes Model

 Consists of the frequency tables obtained from Bayes' Theorem under the conditional independence assumption (with or without Laplace smoothing)

Naïve Bayes prediction for an instance (**X=a**, Y=?)

We use Bayes' Theorem under the conditional independence assumption

Overview

- Fundamental concepts in Probability Theory
- Bayes' Theorem
- Naïve Bayes for Categorical Independent Variables
- Naïve Bayes for Numerical Independent Variables

$$P(c|a_{1},...,a_{n}) = \alpha P(c) P(a_{1}|c) P(a_{2}|c) ... P(a_{n}|c)$$

$$P(c|a_{1},...,a_{n}) = \alpha P(c) \prod_{i=1}^{n} P(a_{i}|c)$$

where
$$\alpha = 1/\beta$$
 and $\beta = \sum_{c \in \mathcal{V}} (P(c) \prod_{i=1}^{n} P(a_i|c))$

• We predict the class with $\max_{c} [P(c|a_1, ..., a_n)]$

 For categorical independent variables, we can compute the probability of an event through the probability mass function associated with the

training data

Frequency Table	Tennis = yes	Tennis = no	Total
Windy = yes	1+1	2+1	3+2
Windy = no	2+1	1+1	3+2
Total	3+2	3+2	6+4

 Instead, we assume that examples are drawn from a probability distribution. We can use a Gaussian distribution as we did before

• Gaussian distribution with mean $\mu=15$ and variance $\sigma^2=49$

$$P(X = a \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{(2\pi)}} e^{\frac{-(a-\mu)^2}{2\sigma^2}},$$

Also, recall that $\pi = 3.14159$ and e = 2.71828

 Let us consider the training data below. We create the PDF for Tennis = yes and for Tennis = no

So, for Tennis = yes, we calculate mean and variance

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{15 + 25 + 35}{3} = 25$$

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$= \frac{1}{2} [(15 - 25)^2 + (25 - 25)^2 + (35 - 25)^2] = 100$$

Days	Sunny (X_1)	Temp. (<i>X</i> ₂)	Tennis (Y)
Day 1	yes	15	yes
Day 2	yes	25	yes
Day 3	yes	35	yes
Day 4	no	10	no
Day 5	no	20	no
Day 6	no	5	no

• Gaussian distribution with mean $\mu=25$ and variance $\sigma^2=100$

$$P(X = a \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{(2\pi)}} e^{\frac{-(a-\mu)^2}{2\sigma^2}}$$

• Gaussian distribution with mean $\mu=25$ and variance $\sigma^2=100$

$$P(X = a \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{(2\pi)}} e^{\frac{-(a-\mu)^2}{2\sigma^2}}$$

Now, if we repeat for Tennis = no

•
$$\mu = 11.67$$

•
$$\sigma^2 = 58.34$$

Let us build the tables for

Days	Sunny (X_1)	Temp. (<i>X</i> ₂)	Tennis (Y)
Day 1	yes	15	yes
Day 2	yes	25	yes
Day 3	yes	35	yes
Day 4	no	10	no
Day 5	no	20	no
Day 6	no	5	no

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3+1	0+1	3+2
Sunny = no	0+1	3+1	3+2
Total	3+2	3+2	6+4

nis = no
57
34

Now, let us use Naïve Bayes to make a prediction based on the tables:

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3+1	0+1	3+2
Sunny = no	0+1	3+1	3+2
Total	3+2	3+2	6+4

Parameter Table	Tennis = yes	Tennis = no
μ	25	11.67
σ^2	100	58.34

- $P(c|a_1,...,a_n) = \alpha P(c) \prod_{i=1}^n P(a_i|c)$
- We use the frequency table for the categorical independent variables
- We use the parameter table for the numerical independent variables

Calculate P(Tennis=yes|Sunny=no,Temperature=20):

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3+1	0+1	3+2
Sunny = no	0+1	3+1	3+2
Total	3+2	3+2	6+4

Parameter Table	Tennis = yes	Tennis = no
μ	25	11.67
σ^2	100	58.34

•
$$P(T|\neg S, Temp = 20) = \alpha P(T)P(\neg S|T)P(Temp = 20|T)$$

= $\alpha \frac{3}{6} * \frac{1}{5} * P(Temp = 20|T)$

Calculate P(Tennis=yes|Sunny=no,Temperature=20):

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3+1	0+1	3+2
Sunny = no	0+1	3+1	3+2
Total	3+2	3+2	6+4

Parame [*] Table	tei
μ	
σ^2	

Tennis = no

Tennis = yes

Calculate P(Tennis=no|Sunny=no,Temperature=20):

Frequency Table	Tennis = yes	Tennis = no	Total
Sunny = yes	3+1	0+1	3+2
Sunny = no	0+1	3+1	3+2
Total	3+2	3+2	6+4

Parameter Table	Tennis = yes	Tennis = no
μ	25	11.67
σ^2	100	58.34

$$P(\neg T | \neg S, Temp = 20) = \alpha P(\neg T)P(\neg S | \neg T)P(Temp = 20 | \neg T)$$

$$= \alpha \frac{3}{6} * \frac{4}{5} * 0.029 = 0.0116\alpha$$

- Calculate P(Tennis=no|Sunny=no,Temperature=20):
- $P(T|\neg S, Temp = 20) = \alpha P(T)P(\neg S|T)P(Temp = 20|T)$
- $= \alpha \frac{3}{6} * \frac{1}{5} * 0.035 = 0.0035\alpha$
- $P(\neg T | \neg S, Temp = 20) = \alpha P(\neg T)P(\neg S | \neg T)P(Temp = 20 | \neg T)$ $= \alpha \frac{3}{6} * \frac{4}{5} * 0.029 = 0.0116\alpha$
- Predicted class: Tennis = no

Summary

Naïve Bayes Learning Algorithm

- Create frequency tables for each categorical independent variable and the corresponding values for the frequency of an event
- Apply Laplace smoothing
- Calculate the parameters of the PDF corresponding to each numerical independent variable

Naïve Bayes Model

 Consists of the frequency tables obtained from Bayes' Theorem under the conditional independence assumption (with or without Laplace smoothing)

Naïve Bayes prediction for an instance (**X=a**, Y=?)

We use Bayes' Theorem under the conditional independence assumption

Pros and Cons of Naïve Bayes

Pros

- Easy to implement and fast to predict a class from training data (online learning)
- Performs well in multi-class prediction
- Good for categorical variables in general

Cons

- Data that are not observed require smoothing techniques to be applied
- For numerical variables, Gaussian distribution is assumed (strong assumption)
- Not good for regression problems

Aims of the Session

You should now be able to:

Describe the fundamental concepts in probability theory

Explain Bayes' Theorem and its application in ML

Apply Naïve Bayes to classification for categorical and numerical independent variables