Projektbezeichnung: Evaluation von Proxmox als Ersatz oder Ergänzung von Hyper-V

Prüfungsbewerber:

Thorsten Krause
Neben dem Brand 10
44135 Dortmund

Angestrebter Abschluss:

Fachinformatiker für Systemintegration

Abschlussprüfung Winter 2024 an der IHK Dortmund

Betriebliche-Lernphase durchgeführt bei:

New Horizons Computer Learning
Centers Dortmund GmbH & Co.KG
Stockholmer Allee 30c, 44269 Dortmund

Ausbildungsbetrieb:

QualifizierungsAkademie RheinRuhr GmbH & Co. KG Stockholmer Allee 30c, 44269 Dortmund

Inhaltsverzeichnis

l	Ein	ileitu		. 1
2	Pro	ojekt	einführung	. 1
	2.1		ijektumfeld	
	2.2			
			jektbeschreibung	
	2.3		jektbegründung	
	2.4		ijektziel	
	2.5	Pro	jektschnittstellen	3
	2.6	Pro	jektabgrenzung	3
3	An	alys	e	3
	3.1	Kur	ndengespräch	3
	3.2	Der	- Ist-Zustand	3
	3.3	Das	s Soll-Konzept	4
4	Pla	anun	g	6
	4.1		· ijektablaufplan	
	4.2		jektstrukturplan	
	4.3		ssourcenplanung	
	4.3		Hardware:	
	4.3	.2	Software:	
	4.3	.3	Personell:	8
	4.4	Kos	stenplanung	8
	4.4	.1	Sachmittelkosten	8
	4.4	.2	Personalkosten	8
	4.4	.3	Gesamtkosten	9
	45	Wir	tschaftlichkeit	g

5	En	twur	urf der Testumgebung9		
	5.1	Die	Hardware	9	
	5.2	Das	s Netzwerk	10	
	5.2	2.1	IP-Adressen	10	
	5.2	2.2	Namensgebung	10	
	5.3	Phy	sischer Aufbau der Testumgebung	11	
	5.3	3.1	Proxmox Einstellungen	12	
	5.3	3.2	Hyper-V Einstellungen	12	
	5.4	Die	Domäne	12	
	5.4	1.1	Virtuelle Maschine erstellen	13	
	5.4	1.2	Windows 19 Server Installation	13	
	5.4	1.3	Windows Server 2019 Konfiguration	13	
	5.4	.4	Die Clients	13	
	5.4	.5	Testszenarien:	14	
6	Au	sfüh	rung	15	
	6.1	Auf	bau/Installation der Testumgebung	15	
	6.2	Unt	ersuchung der Hardwareanforderungen für Proxmox	15	
	6.3	Ver	gleich der Funktionen und Eigenschaften von Hyper-V und Proxmox	16	
	6.3	3.1	Anmeldung	16	
	6.3	3.2	Verwaltungsbildschirm	16	
	6.3	3.3	Analyse der Benutzerverwaltungsoptionen von Proxmox	17	
	6.4	Eini	richtung der lokalen Benutzerverwaltung in Proxmox	17	
	6.5	Act	ive Directory-Anbindung	18	
	6.6	Ers	tellung von virtuellen Maschinen und Containern für Testzwecke	19	
_				21	

	6.7	Leistungstests, einschließlich Boot- und Installationszeiten		
	6.8	Bewertung der Performance von VMs unter Bios Generation 1 (EFI)	21	
	6.9	Überprüfen der Lauffähigkeit unter älterer/schwächerer Hardware	22	
	6.10	Verwaltungsoberfläche	23	
7	Ab	schluss	24	
	7.1	Soll - Ist Vergleich	24	
	7.2	Fazit	25	
	7.3	Dokumentation	25	
Α	nhan]	I	
	Abbi	ldungsverzeichnis	I	
	Tabe	llenverzeichnis	II	
8	Κι	ındendokumentation	IV	
	8.1	Proxmox Update einstellen	IV	
	8.2	Mehr Speicherplatz für VMs und Container	VI	
	8.3	Benutzerverwaltung und Active Directory	VII	
	8.3	3.1 Lösung 1: Benutzerverwaltung	VIII	
	8.3	3.2 Lösung 2: Active Directory	IX	
9	Gl	ossar	XIII	
10) Ab	schluss	XV	
	10.1	Abnahmeprotokoll	XV	
	10.2	Persönliche Erklärung	XVI	

1 Einleitung

Diese Dokumentation wurde im Rahmen des Abschlußprojekt während der betrieblichen Lernphase im Rahmen meiner Umschulung zum Fachinformatiker/ Systemintegration erstellt. Das Thema meiner Projektarbeit war der Typ 1 Hypervisor Proxmox. Die Lernphase absolvierte ich bei dem IT-Schulungsunternehmen New Horizons. Als Schulungsanbieter bietet die NH verschiedene Formen des Unterrichts an, darunter den Präsenzunterricht. Währen des Präsenzunterricht haben die Teilnehmer die Möglichkeit für Aufgaben oder Übungen auf eine Virtuelle Umgebung zuzugreifen. Diese Umgebung wird derzeit mit dem Hyper-V-Server von Microsoft erzeugt.

Jedoch ist der Administrator von New Horizons war mit der derzeitigen Lösung unzufrieden, da die Benutzerverwaltung des Hyper-V alle Teilnehmer in einer administrativen Gruppe organisiert. Das führt dazu, das die Teilnehmer umfangreiche Rechte auf dem Hyper-V-Server haben und dies führt zu Problemen.

Als mögliche Lösung für das Problem wurde Proxmox in einer Testumgebung getestet. Diese Dokumentation beschreibt die Vorgänge und das Ergebnis der Tests.

2 Projekteinführung

2.1 Projektumfeld

New Horizons (NH) wurde 1982 gegründet und ist ein weltweit tätiges Franchiseunternehmen im Bereich IT Schulungen. Ich war am Standort Dortmund und habe dort mit dem Administrator D. Faughn zusammengearbeitet.

Als Schulungsbetrieb bietet NH verschiedene Formen des Unterrichts an. Im Präsenzunterricht kann dort auch eine virtuelle Umgebung genutzt werden.

Meine Aufgabe war es, die Räume für den Unterricht vorzubereiten, in dem ich die PCs und deren Software installiert und virtuelle Umgebungen erstellt habe.

2.2 Projektbeschreibung

Die virtuellen Umgebungen für den Unterricht werden bisher mit dem Hypervisor Hyper-V-Server von Microsoft erstellt. Der Hyper-V-Server bereitet Probleme in der Benutzerverwaltung, denn alle Benutzer sind in der Benutzergruppe Hyper-V-Administratoren und diese verleiht den Benutzern umfangreiche Rechte auf dem Seite I 1

Hyper-V-Server. Dadurch ergeben sich Risiken, die bisher durch die verschachtelte Virtualisierung von Hyper-V umgangen werden. Jedoch geht diese Lösung auf Kosten der Leistung und der Ressourcen der Serverhardware. Der Administrator ist nicht glücklich mit dieser Situation und sucht eine Alternative.

Im Rahmen dieses IHK-Projekts soll der Hypervisor Proxmox als mögliche Alternative getestet werden. Hauptpunkte hierbei sind u. a. die Verwaltung der Benutzerrechte, eine AD-Anbindung, Zugriff der Teilnehmer zur Verwaltung (Hyper-V-Manager Alternative), Kompatibilität zur aktuellen Hardware und den Aufwand einer Umstellung ermitteln (Einarbeitungsaufwand für Trainer, Teilnehmer).

2.3 Projektbegründung

Es gibt aktuell keine praktikable Lösung die Benutzerverwaltung gezielt einzustellen.

Das Problem ist, dass die Benutzer durch die Mitgliedschaft in der Gruppe

Hyper-V-Administratoren zu viele Rechte haben.

Die dadurch entstehenden Risiken wurden bisher durch die Verwendung der verschachtelten Virtualisierung von Hyper-V umgangen (siehe 3.2). Diese Lösung wirkt sich aber nachteilig auf die Leistung und den Ressourcenverbrauch der Serverhardware aus.

Bei seiner Suche nach einer Alternative fand der Administrator (D. Faughn) mit Proxmox ein interessantes Produkt. Es soll nun herausgefunden werden, ob Proxmox als Alternative in Frage kommt.

2.4 Projektziel

Es soll herausgefunden werden, ob Proxmox für alle Einsatzbereiche Hyper-V-Server ersetzt oder in einzelnen Fällen als zusätzliche Lösung eingesetzt werden kann.

2.5 Projektschnittstellen

Projektschnittstellen	Hardware
Personell	Auftraggeber: Herr Faughn. Trainer
Technische	Internetzugang, Ausreichende Hardware.

Tabelle 1 - Projektschnittstellen

2.6 Projektabgrenzung

Projektabgrenzung	Hardware
Einstieg	Das Projekt beginnt mit meiner Planung und Entwickelung der Testumgebung für die Erprobung von Proxmox als alternative Lösung für Hyper-V
Ausstieg	Das Projekt endet nach Abnahme der in der Testumgebung anforderungsgemäß lauffähiger Proxmox-Installation

Tabelle 2 - Projektabgrenzung

3 Analyse

3.1 Kundengespräch

Während des Vorgesprächs, das ich mit dem Auftraggeber Herrn Faughn führte, wurde der aktuelle Situation beschrieben und die angestrebten Ziele festgehalten.

3.2 Der Ist-Zustand

Während des Vorgesprächs hat Herr Faughn erklärt, dass das Netzwerk bei New Horizons in VLANs unterteilt ist, u.a. das Verwaltungsnetz und das für dieses Projekt wichtige Schulnetz. Im Schulnetzwerk werden Hypervisoren für Schulungszwecke verwendet, da während des Unterrichts Rechner mit verschiedenen Konfigurationen benötigt werden. Eine physische Umsetzung wäre zu kostspielig und zeitaufwendig. Der verwendete Hypervisor ist der Microsoft Hyper-V, von dem es zwei Instanzen im Netzwerk gibt. Die Verwaltung dieser Hypervisoren erfolgt über den Hyper-V Manager. Mit diesem Manager können virtuelle Maschinen erstellt, konfiguriert und gelöscht werden. Da der Hyper-V-Manager eine Windowsanwendung ist, ist eine Verwaltung des Hyper-V unter Linux und Android damit nicht möglich.

Bei der Erstellung von virtuellen Maschinen (VMs) muss eine BIOS—Generation gewählt werden, entweder Generation 1 für das EFI-BIOS oder Generation 2 für das UEFI-BIOS. Die Einstellung kann später nicht mehr zurückgesetzt werden. Generation 1 wird genutzt,

wenn 32-Bit-Betriebssysteme oder Linux-Versionen, die Generation 2 nicht unterstützen, installiert werden sollen.

Die Benutzerverwaltung beim Hyper-V ist nicht ausreichend, da alle Benutzer Mitglied der Gruppe "Hyper-V-Administratoren" sind und somit vollen Zugriff auf den Hyper-V haben.

Dies ermöglicht Ihnen z.B.:

- die Nutzung von externen Switchen und somit unerwünschten Zugriff auf andere Netze
- Konfiguration der Anzahl CPU-Kerne
- Konfiguration des RAM-Menge
- Konfiguration der HDD-Größe
- Zugriff auf alle virtuellen Maschinen, auch von anderen Teilnehmern

Sollte z.B. kein ausreichender Speicher auf dem Datenträger vorhanden sein, so werden automatisch alle virtuellen Maschinen angehalten.

Diese Risiken wurden bisher durch die Verwendung der verschachtelten Virtualisierung von Hyper-V umgangen. Jeder Teilnehmer erhält RDP-Zugriff in eine VM mit einem Hyper-V-Server. Darin kann der Teilnehmer dann seine Umgebung einrichten. Der Trainer regelt über die Konfiguration der Teilnehmer-VM, welche Ressourcen diese nutzen kann. Diese Lösung wirkt sich aber nachteilig auf die Leistung und den Ressourcenverbrauch der Serverhardware aus.

Die Hardware selbst ist evtl. nicht mehr kompatibel neueren Versionen von Windows, wie Windows 11 oder Windows Server 2022.

3.3 Das Soll-Konzept

Ziel ist es, eine alternative Lösung für den Hypervisor für alle Szenarien oder nur für einzelne Fälle zu finden.

Es soll herausgefunden werden, ob sich der Typ 1 Hypervisor Proxmox, der auf Linux basiert und die Kernel-Based Virtual Machine (KVM) Virtualisierungstechnologie nutzt, sich als eine alternative zum Hyper-V anbietet. Dazu wird eine Testumgebung geschaffen, Seite I 4

die der derzeitigen Umgebung ähnelt. In dieser Testumgebung sollen folgende Punkte geklärt werden:

Performancevergleich: In einem Test beider Systeme sollen Performanceunterschiede hinsichtlich Boot- und Installationszeiten aufzeigen. Es soll untersucht werden, ob VMs die unter Generation 1 (EFI) installiert sind, unter Proxmox besser laufen. Lässt sich auf Grund der unterschiedlichen Technologie die Anzahl der lauffähigen VMs erhöhen.

Kompatibilität mit der verwendeten (älteren) Hardware: es soll ermittelt werden, ob Proxmox auf älterer Hardware läuft und für den Einsatz auf Notebooks oder Desktop PC der Teilnehmer für Übungszwecke geeignet ist.

Benutzerverwaltung: Die derzeitige Benutzerverwaltung ist nicht ausreichend und stellt eine Sicherheitslücke dar. Deswegen soll überprüft werden, ob Proxmox eine Benutzerverwaltung bietet. Dabei soll es möglich sein, Benutzer in Gruppen zu organisieren und den Zugriff auf eigene VMs zu beschränken. Dazu wird eine Anbindung an das Active Directory gewünscht.

Nested Virtualisation: Der Hyper-V wird auch für eine verschaltete Virtualisierung genutzt. Daher soll geprüft werden, ob Proxmox Nested Virtualisation ebenfalls unterstützt.

Verwaltungsoberfläche: Welcher Manager oder welche Oberfläche wird genutzt

4 Planung

4.1 Projektablaufplan

Vorgang	organg Zeit Vorgangs Name		Vorgänger
-	6 Stunden	Analysephase	-
Α	1	Vorbereitung Kundengespräch	
В	1	Kundengespräch	Α
С	1	Nachbearbeitung Kundengespräch	В
D	1	Ist-Zustand	С
E	2	Soll-Konzept	D
-	9 Stunden	Projektplanung	-
F	2	Erfassen Arbeitspakete	Е
G	2	Definition des Projektumfangs	F
Н	1	Projektstrukturplan	G
I	1	Projektablaufplan	Н
J	1	Ressourcenplanung	I
K	1	Kostenplanung	J
L	1	Planen der Testumgebung	K
-	11 Stunden	Projektdurchführung	-
M	2	Aufbau, Installation der Testumgebung	L
N	1	Untersuchung der Hardwareanforderungen	M
0	1	Analyse der Benutzerverwaltungsoptionen	N
Р	1	Vergleich der Funktionen und Eigenschaften	0
Q	3	Erstellen von virtuellen Maschinen und Container	Р
R	3	Einrichtung der Benutzerverwaltungund AD Anbindung	Q
-	4 Stunden	Test	-
S	1	Erstellen von Testszenarien	R
Т	1	Leistungstests, Einschließlich Boot und Installationszeiten	S
U	1	Bewertung der Performance von VMs unter Gen1 (EFI)	Т
V	1	Überprüfender Lauffähigkeit auf älterer Hardware	U
-	10 Stunden	Abschluss	-
W	1	Soll-Ist Vergleich	V
X	1	Fazit	W
Υ	8	Dokumentation	Х

Tabelle 3 - Vorgangsliste

4.2 Projektstrukturplan

Abbildung 1 - Strukturplan

4.3 Ressourcenplanung

4.3.1 Hardware:

Umgebung	Hardware
Server	Zwei Office PCs für Serverrolle 8GB RAM und 4 Kern-CPU 500 GB SSD
Client	Zwei Office-PCs für Testumgebung
Zusätzlich benötigt	2 Monitore 2 Sets von Maus und Tastatur 1 Switch 5 Netzwerkkabel

Tabelle 4 - Hardware

4.3.2 Software:

Umgebung	Software
Server-Software	Windows Server 2019 Proxmox
Client-Software	Windows 10 Professional Ubuntu

Tabelle 5 - Software

4.3.3 Personell:

Umgebung	Software
Projekt Ausführender	T. Krause
Auftraggeber und Ansprechpartner	Herr Faughn

Tabelle 6 - Personell

4.4 Kostenplanung

4.4.1 Sachmittelkosten

Die angegebenen Kosten sind fiktive Kosten.

Bezeichnung	Anmerkungen	Gesamtkosten (€)	Kosten anteilig für das Projekt (40h)
2xServer	Nutzung 3 Jahre	2400,00	50
2xOffice PCs	Nutzung 3 Jahre	1000,00	20,83
2xMonitore	Nutzung 3 Jahre	300,00	6,25
2x Maus	Nutzung 3 Jahre	20,00	0,41
2x Tastatur	Nutzung 3 Jahre	20,00	0,41
Switch	Nutzung 3 Jahre	50,00	1,04
5xKabel Klie	Nutzung 3 Jahre	30,00	0,62
Windows Server 2019	Testversion	0,00	0,00
Windows 10 Enterprise	Testversion	0,00	0,00
Ubuntu-Linux	Free Version	0,00	0,00
Proxmox	Free Version	0,00	0,00
Microsoft 365		30,00/Monat	7,50
Dia	Freeware-	0,00	0,00
Hyper-V Manger	Free Version	0,00	0,00
Gemeinkosten	Pauschal	500,00/Monat	125,00
Summe			212,06

Tabelle 7 – Sachmittelkosten

4.4.2 Personalkosten

Bezeichnung	Kosten/h	Einsatzdauer/h	Kosten Anteilig (€)
Projektausführer T. Krause	30	40	1200,00
Projektgeber D. Faughn	150	5	750,00
Summe	1950,00		

Tabelle 8 – Personalkosten

4.4.3 Gesamtkosten

Bezeichnung	Kosten
Sachmittelkosten	212,06
Personalkosten	1950,00
Summe	2162,06

Tabelle 9 - Gesamtkosten

4.5 Wirtschaftlichkeit

Obwohl dieses Projekt keine direkten wirtschaftlichen Vorteile bietet, liegt der Fokus auf langfristigem Nutzen. Es ist vorstellbar, das Proxmox als alternative Lösung für den Hypervisor potenziell zu verbesserter Performance, besserer Kompatibilität mit älterer Hardware, optimierter Benutzerverwaltung und einer plattformübergreifenden Verwaltungsebene führen kann. Dadurch kann es zu effizienteren Schulungsprozessen und möglichen Kosteneinsparungen kommen.

5 Entwurf der Testumgebung

5.1 Die Hardware

Abbildung 2 - Testumgebung

In der Testumgebung werden aufgerüstete Office-PCs als Server fungieren. Diese Office PCs sollten über eine CPU mit mindestens 4 Kernen verfügen und der Arbeitsspeicher sollte mindestens 8 GB betragen. Als Speichermedium sollte mindestens eine 500GB SSD eingebaut werden.

5.2 Das Netzwerk

5.2.1 IP-Adressen

Für das Netzwerk wird ein privates Klasse C Netz im Bereich 192.168.2.1 – 192.168.2.50 gewählt. Die ersten 19 Adressen werden für Rechner reserviert, die Serverdienste anbieten werden und eine feste IP benötigen.

Bereich	Beschreibung
192.168.2.2 - 192.168.2.6	Hypervisoren
192.168.2.7 - 192.168.2.10	Domänen Kontroller
192.168.2.11 - 192.168.2.20	Andere Server
192.168.2.1	Router
192.168.2.50	Switch
192.168.2.21 - 192.168.2.45	werden über den DHCP-Dienst an die Clients verteilt
192.168.2.46 - 192.168.2.49	Können statisch vergeben werden

Tabelle 10 - IP Bereich

5.2.2 Namensgebung

Bei der Namensgebung gibt es keine Vorgabe. Deswegen nutze ich mein eigenes Schema, wie ich meine Rechner benenne.

Rechner mit	Namen
Hypervisor	Hiryu, Soryu, Kaga, Akagi
Domain Controller	Musashi, Yamato
Andere Serverdienste	Fuso, Yamashiro, Hiei, Haruna, Kirishima
Windows Client	Mogami, Takao, Ashigara, Haguno.
Linux Client	Kuma, Natori, Sendai, Nagara
Container	Fubuki, Kagero, Shimakaze, Akizuki
Domäne	Sotoba.de

Tabelle 11 - Namensschema

5.3 Physischer Aufbau der Testumgebung

Die Testumgebung wird wie folgt aufgebaut.

Abbildung 3 - Physischer Aufbau

Da bisher kein DHCP konfiguriert ist, werden die IPs 192.168.2.46 und 192.168.2.47 als statische IP-Adressen vergeben.

Rechner	Betriebssystem	IP-Adresse	Name
Proxmox-Server	Proxmox	192.168.2.2	Hiryu
Hyper-V-Server	Windows Server 19	192.168.2.3	Kaga
Client 1	Windows 10	192.168.2.46	Mogami
Client 2	Linux (Ubuntu)	192.168.2.47	Sendai

Tabelle 12 - IP und Namen

5.3.1 Proxmox Einstellungen

Als nächstes wird der Proxmox-Rechner konfiguriert.

Vorgang	Beschreibung
Repository	Das Repository¹ wird geändert, um Updates herunterladen zu können
Festplattengröße	Die Festplattengröße wird angepasst.
Benutzerverwaltung	Um die Benutzerverwaltung zu testen, werden lokale Benutzer und Gruppen erstellt

Tabelle 13 - Proxmox Konfiguration

5.3.2 Hyper-V Einstellungen

Auch bei der Hyper-V Maschine werden Einstellungen vorgenommen.

Vorgang	Beschreibung
Speicherort	Speicherort der virtuellen Festplatten und Maschinen wird festgelegt
Switch	Ein Switch wird erstellt.

Tabelle 14 - Hyper-V Konfiguration

5.4 Die Domäne

Es soll untersucht werden, ob Proxmox auf den Verzeichnisdienst einer Active Directory Domäne zugreifen kann, um so an Informationen wie Benutzer und Gruppen zu gelangen. Dazu wird auf dem Hyper-V ein Domänen Kontroller installiert und eine Testdomäne mit entsprechenden Benutzern, Gruppen und Organisationseinheiten erstellt.

-

¹ Repository – Siehe glossar

5.4.1 Virtuelle Maschine erstellen

Die DCs sollen in einer virtuellen Maschine auf dem Hyper-V und Proxmox betrieben werden. Die VMs werden wie folgt konfiguriert:

Rechner	Virtuelle Kerne	Arbeitsspeicher	Datenträger
1-Domänen Controller	2 Kerne	4 GB	50 GB
2-Domänen Controller	2 Kerne	4 GB	50 GB

Tabelle 15 - VMs für DC

5.4.2 Windows 19 Server Installation

Als erstes werden die beiden Windows Server 2019 installiert und dann wie folgt konfiguriert. Die beiden Server sollen später als Domänen Controller dienen.

Rechner	Betriebssystem	IP-Adresse	Name
1-Domänen Controller	Windows Server 2019	192.168.2.7	Yamato
2-Domänen Controller	Windows Server 2019	192.168.2.8	Musashi

Tabelle 16 - Domänenkontroller

5.4.3 Windows Server 2019 Konfiguration

Danach werden die benötigten Serverdienste installiert und konfiguriert. Dazu gehören DHCP, DNS und Active Directory.

Rechner	Betriebssystem
Active Directory	AD installieren. DC hochstufen. Domäne: Sotoba.de. Benutzer Gruppen und OUs erstellen
DNS	Reverse-Lookup Zone erstellen
DHCP	DHCP installieren. Bereich Sotoba mit Adressbereich 192.168.2.21-192.168.2.45 erstellen

Tabelle 17 - Konfiguration Windows Server

5.4.4 Die Clients

In der Testumgebung wird ein Windows 10 Client installiert. Zum Testen der Plattformunabhängigkeit, wird zusätzlich eine Linux-Distribution Ubuntu installiert.

5.4.5 Testszenarien:

Zum Test der Performance von Proxmox, werden folgende Schritte durchgeführt:

Test	Beschreibung		
Performance Test Windows 10 EFI/UEFI	Die Installations- und Bootzeiten von Windows 10 und Ubuntu in EFI(SeaBIOS²) und UEFI(OVMF³) messen		
Performancetest Nested Virtualisation	Danach werden diese Installationstests in einer Nested-Umgebung noch einmal durchgeführt, um die Performance bei der verschalteten Virtualisierung zu testen		
Performancetest Windows 10 und Linux in BIOS Gen1	Um die Performance von VMs unter einer Generation-1-ähnlichen Umgebung zu testen, werden VMs mit Ubuntu und Windows 10 installiert. Anschließend wird durch Ändern des Maschinentyps ⁴ getestet, ob es Performanceunterschiede bei dem Start von Firefox und beim Aufruf einer Website gibt		
Kompatibilität mit älterer Hardware	Um herauszufinden ob Proxmox auch auf älterer Hardware lauffähig ist, wird in der Testumgebung auf richtige Serverhardware, die in einem Server-Rack verbaut wird, verzichtet und mit aufgerüsteten Office PCs getestet.		
Plattformunabhängigkeit testen	Die Plattformunabhängigkeit wird getestet, in dem über Ubuntu auf die Verwaltungsoberfläche zugegriffen wird.		

Tabelle 18 - Testszenarien

² SeaBIOS – Siehe Glossar

³ OVMF – Siehe Glossar

⁴ Maschinentyp – Siehe Glossar Seite | 14

6 Ausführung

6.1 Aufbau/Installation der Testumgebung

Die Testumgebung wird wie geplant aufgebaut.

Abbildung 4 - Aufbau Testumgebung

Zuerst werden die Hypervisoren aufgebaut, Installiert, und konfiguriert. Danach werden die Clients aufgebaut und installiert. Die Rechner werden danach über einen Switch miteinander verbunden.

6.2 Untersuchung der Hardwareanforderungen für Proxmox

Proxmox hat laut deren Website folgende Hardwareanforderungen:

Ein Intel oder AMD CPU mit Intel VT oder AMD-V Fähigkeiten.

2 GB Speicherplatz für Proxmox. Als Datenträger werden SSDs empfohlen.

6.3 Vergleich der Funktionen und Eigenschaften von Hyper-V und Proxmox

Die Verwaltungsoberfläche ist webbasiert. Der verwendete Port ist 8006 und das verwendete Protokoll ist HTTPS (https://192.168.2.2:8006 oder https://hiryu:8006)

6.3.1 Anmeldung

Im Anmeldefeld wird neben Benutzername und Password auch noch eine Domäne ausgewählt, an der man sich anmelden möchte. In der Auswahl sind zwei vorinstallierte Anmeldemöglichkeiten und es kann zusätzlich noch die Active Directory Domäne gewählt werden.

6.3.2 Verwaltungsbildschirm

Nach dem Einloggen gelangt man auf den Verwaltungsbildschirm. Der ist in vier Bereiche aufgeteilt.

Abbildung 5 - Verwaltungsoberfläche

Bereich	Beschreibung
Oben	In der Kopfzeile werden VMs und Container erstellt
Rechts	Zeigt die VMs und Container auf dem Server
Links	Zeigt Details einer VM, Hardwareeinstellungen können geändert werden
Unten	Hier wird der Status oder Fehler der VMs angezeigt

Tabelle 19 – Verwaltungsoberfläche

6.3.3 Analyse der Benutzerverwaltungsoptionen von Proxmox

Die Benutzerverwaltung von Proxmox wird über Rechenzentrum -> Rechte erreicht. In diesem Bereich können folgende Einstellen vorgenommen werden:

Bereich	Beschreibung
Benutzer	Hier werden Benutzer angelegt
Gruppen	Hier werden Gruppen angelegt
Pools	Hier werden Pools⁵ angelegt
Rechte	Hier werden Privilegien für einzelne Rollen vergeben (z.B Admin-Rolle)
Domäne	Hier kann eine Verbindung zu Active Directory Domäne erstellt werden

Tabelle 20 - Benutzerverwaltung

6.4 Einrichtung der lokalen Benutzerverwaltung in Proxmox

"Dabei soll es möglich sein, Benutzer in Gruppen zu organisieren und den Zugriff auf eigene VMs zu beschränken"

Das untere Screenshot zeigt die Lösung.

Der Testbenutzer hat sich an seiner Sandbox angemeldet und sieht nun nur seine eigenen VMs. Er kann jetzt auch nur in dieser Sandbox VMs und Container⁶ erstellen.

Abbildung 6 - Lösung, sichtbare VMs

Seite | 17

⁵ Pools – Siehe Glossar

⁶ Container – siehe Glossar

Diese Lösung wurde durch folgende Schritte erreicht. Eine ausführliche Erklärung folgt in der Kundendokumentation

Abbildung 7 – Lösungsweg

6.5 Active Directory-Anbindung

Bearbeiten: Active Directory Server Allgemein Sync Optionen			
Domäne: Domäne: Standardeinstellung:	sotoba.de	Server: Fallback-Server: Port: SSL:	yamato.sotoba.de Standardeinstellung 🗘
Kommentar:		Zertifikat verifizieren: 2FA erforderlich:	keine V

Abbildung 8 - Active Directory

Zum Test der Active Direcory Anbindung, muss eine Verbindung zu einem DC einer Domäne hergestellt werden. Das geht über den Bereich Rechenzentrum->Rechte>Domänen->Hinzufügen Active Directory Server.

Dort werden dann die Domäneninformationen eingegeben. Um zu testen, ob die Anbindung zum AD erfolgreich war, wird eine Testsynchronisation durchgeführt

Abbildung 9 - Testsynchronisation

6.6 Erstellung von virtuellen Maschinen und Containern für Testzwecke

Eine VM in Proxmox wird in 8 Schritten erstellt. Dazu wird in im oberen Bereich auf "Erstelle VM" geklickt. Es erscheint ein Konfigurationsassistent für folgende Einstellungen.

Abbildung 10 - VM-Erstellen

Bezeichnung	Einstellung 1	Einstellung 2	Einstellung 3
Allgemein	VM ID: 1500	Name: Kuma	
0S	Iso-Image Ubuntu 20	Typ: Linux	Version: 6.x-2.6 Kernel
System	Maschinentyp: q35	BIOS: OVMF (UEFI)	
Disks	Bus/Device: SATA	Größe: 32 GB	SSD-Emulation: Yes
CPU	Sockets: 1	Kerne: 4	
Speicher	Speicher: 2048 MiB	Ballooning: Yes	
Netzwerk	Bridge ⁷ : vmbr0	VLan Tag: no VLan	Modell: Intel E1000

Tabelle 21 - Konfiguration VM

Proxmox ist auch in der Lage Container zu erstellen. Das Erstellen solcher Container ähnelt den von VMs.

Abbildung 11 - Container

Bezeichnung	Einstellung 1	Einstellung 2	Einstellung 3
Allgemein	CD ID: 101	Name: Akizuki	
Template	Template ⁸ : Ubuntu 22.04		
Disks	Disk-Größe: 8GiB		
CPU	Kerne: 1		
Speicher	Speicher in MiB: 512	Swap ⁹ in MiB: 512	
Netzwerk	Name: eth0	Bridge: vmbr0	IPv4: DHCP
DNS	DNS-Domain: Sotoba.de	DNS-Server: 192.168.2.4	

Tabelle 22 - Container Erstellung

Seite | 20

⁷ Bridge

⁸ Template

⁹ Swap

Testen

6.7 Leistungstests, einschließlich Boot- und Installationszeiten

Die Leistungstests wurden sowohl in einer verschachtelten Virtualisierung als auch "bare metal" auf beide Server durchgeführt. Dabei ist auffällig das Nested Virtualisierung zwar funktioniert, aber bei den Installations- und Bootzeiten gab es große Unterschiede zum "Bare-Metal". Dafür werden auf beiden Hypervisoren identische VMs mit 2 Kernen, 2048 MB-Ram und Festplattenspeicher 32 GB erstellt.

Bei der Installation von Ubuntu-Linux im UEFI-Modus, musste auf beiden Geräten der Secure-Boot konfiguriert werden.

Betriebssystem	EFI/UEFI	Hyper-V Proxmox	Boot-Installation/h Nested	Boot-Installation/h Bare-Metal
Installation Windows 10	EFI EFI UEFI UEFI	Hyper-V Proxmox Hyper-V Proxmox	I: 45 Min B: 1,30 Min. I: 45 Min B: 0,40 Min. I: 30 Min B: 1 Min. I: 30 Min B: 0,30 Min	I :13 Min B: 0,19 Min I: 15 Min B: 0,15 Min I: 14 Min B: 0,18 Min I: 10 Min B: 0,10 Min
Ubuntu 20.04	EFI EFI UEFI UEFI	Hyper-V Proxmox Hyper-V Proxmox	I: - B: - I: 25 Min B: 1,05Min. I: 45 Min B: 1,15 Min. I: 20 Min B: 1,00 Min.	I: 17 Min B: 0,39 Min I: 15 Min B: 0,15 Min. I: 16 Min B: 0,35 Min I: 10 Min B: 0,10 Min.

Tabelle 23 - EFI/UEFI Test

Eine Installation von Ubuntu war Nested mit EFI auf dem Hyper-V nicht möglich.

6.8 Bewertung der Performance von VMs unter Bios Generation 1 (EFI)

Bei der Performance von VMs in Proxmox unter EFI (seabios) sind bei Windows 10 oder Ubuntu keine Performanceprobleme aufgetreten.

Proxmox bietet bei der Installation einer VM unter EFI zusätzlich noch die Möglichkeit den Chipsatz einer VM zu virtualisieren.

Computer	Firefox Starten	Seitenaufruf Tagesschau.de	Youtube.de
Windows 10-i440fx	5 Sek	6 Sek	8 Sek
Windows 10-q35	5 Sek	6 Sek	9 Sek
Ubuntu-i440fx	7 Sek	7 Sek	10 Sek
Ubuntu-q35	5 Sek	5 Sek	10 Sek

Tabelle 24 - Performance

6.9 Überprüfen der Lauffähigkeit unter älterer/schwächerer Hardware

Auf diesem Office PC mit einer Intel I3 CPU, 8 GB Ram und einer 500 GB SSD wird eine Proxmox-Installation ausgeführt. Dort laufen zu dem Zeitpunkt mehrere Virtuelle Maschinen mit Ubuntu und Windows 10. Durch das Balloning¹⁰ des Arbeitsspeichers der VMs ist es möglich mehr VMs und Container gleichzeitig laufen zu lassen

VM	Betriebssystem	Rolle
VM 102	Ubuntu20.04 Container	Container Fubuki
VM 150	Windows Server 2019	DC Yamato für die Domäne Sotoba.de
VM 152	Windows Server 2019	Server Fuso
VM 200	Windows 10 Enterprise	Client Kako
VM 201	Windows 10 Enterprise	Client Ashigara
VM 300	Ubuntu 20.04	Client Kuma

Tabelle 25 - Laufende VMs

Abbildung 12 - Proxmox auf OfficePC

¹⁰ Ballooning - Siehe Glossar Seite | 22

6.10 Verwaltungsoberfläche

Im soll-Konzept steht, das eine plattformunabhängige Verwaltung gewünscht ist. Um das zu testen, wird über einem Linux versucht, den Proxmox-Server über den Webbrowser zu erreichen.

Abbildung 13 - Plattformunabhängigkeit

Dieser Screenshot zeigt die Verwaltungsoberfläche auf einem Ubuntu Linux. Die unsichere Verbindung kommt durch ein fehlendes Zertifikat zustande. Der ACME¹¹ von Proxmox wurde noch nicht konfiguriert und kann daher kein Zertifikat für das Netzwerk ausstellen.

¹¹ ACME - Siehe Glossar Seite | 23

7 Abschluss

7.1 Soll – Ist Vergleich

Vergleich von	Soll	Ist	Erfüllt
Verwaltungsoberfläche	Welcher Manager oder welche Oberfläche wird genutzt	Die Verwaltungsoberfläche wird über einen Browser erreicht. Damit ist die Verwaltung und Nutzung eines Proxmox Knotens Plattformunabhängig	Ja
Benutzerverwaltung	Können Benutzer und Gruppen erstellt werden?	Benutzer Und Gruppen können über Rechenzentrum -> Rechte erreicht werden	Ja
	Es soll möglich sein, Benutzer in Gruppen zu organisieren und den Zugriff auf eigene VMs zu beschränken.	Dieses Ziel wurde durch eine Kombination von Pools und Benutzerrechten erreicht	Ja
	Dazu wird eine Anbindung an das Active Direcotry gewünscht	Proxmox kann eine Verbindung zu einem Domänenkontroller herstellen und die Daten aus der Verzeichnisdatenbank auslesen. Der Knoten kann auch einer Active Directory Domäne beitreten	Ja
Kompatibilität mit der verwendeten (älteren) Hardware	es soll ermittelt werden, ob Proxmox auf älterer Hardware läuft und für den Einsatz auf Notebooks oder Desktop PC der Teilnehmer für Übungszwecke geeignet ist	In der Testumgebung wurden extra Office PCs eingesetzt. Dabei ist aufgefallen das Proxmox auf solchen Office PCs eine bessere Performance bietet als Hyper-V. Ein Einsatz auf einem Notebook der Teilnehmer ist möglich, erfordert aber die zusätzliche Installation einer GUI.	Ja
Performancevergleich	In einem Test beider Systeme sollen Performanceunterschiede hinsichtlich Boot- und Installationszeiten aufzeigen	Die Tests haben gezeigt, das VMs mit einem Ubuntu-Linux unter Hyper-V eine längere Boot-Zeit haben. Bei den Installationszeiten gab es keine großen Unterschiede.	Ja
	Es soll untersucht werden, ob VMs die unter Generation 1 (EFI) installiert sind, unter Proxmox besser laufen	Linux VMs laufen im EFI-Modus besser.	
	Lässt sich auf Grund der unterschiedlichen Technologie die Anzahl der lauffähigen VMs erhöhen	Auf dem Proxmox-Server konnten bei gleicher Konfiguration mehr VMs gleichzeitig betrieben werden.	Ja
Nested Virtualisation	Hyper-V wird für verschaltete Virtualisierung genutzt. Daher soll geprüft werden, ob Nested Virtualisation ebenfalls unterstützt.	Proxmox unterstützt die verschachtelte Virtualisierung. Dazu muss als Prozessorty "Host" gewählt werden.	Ja

Tabelle 26 - Soll Ist Vergleich

7.2 Fazit

Dieses Projekt hat gezeigt das beide Hypervisoren eine solide Grundlage für die Virtualisierung eines Computers bieten. Beide eignen sich hervorragend zur Virtualisierung von Microsoft Produkte wie Windows 10 oder Server 2019, wenn die Benutzer diese VMs nur nutzen sollen. Proxmox bietet zusätzlich eine flüssigere Virtualisierung von Linux basierten VMs und eine plattformunabhängige Verwaltungsoberfläche mit einer umfangreichen Benutzerverwaltung.

Das Hauptargument für Proxmox ist die umfangreiche Benutzerverwaltung. Dadurch wurde das Problem mit den Benutzerechten gelöst, ohne auf eine verschachtelte Virtualisierung zurückgreifen zu müssen.

Bei der Frage ob Proxmox die Hyper-V Server ersetzen können, wäre die Antwort ein "Ja, aber". Es wäre eher darüber nachzudenken, ob Proxmox die bisherige Hyper-V Lösung ergänzen kann, um Erfahrung mit der Plattform zu sammeln.

7.3 Dokumentation

Diese Dokumentation beinhaltet den Verlauf dieses Projekts von der Analysephase bis zum Abschluss nach 40 Stunden.

Anhang

Abbildungsverzeichnis

Abbildung 1 - Strukturplan	7
Abbildung 2 - Testumgebung	9
Abbildung 3 - Physischer Aufbau	11
Abbildung 4 - Aufbau Testumgebung	15
Abbildung 5 – Verwaltungsoberfläche	16
Abbildung 6 - Lösung, sichtbare VMs	17
Abbildung 7 – Lösungsweg	18
Abbildung 8 - Active Directory	18
Abbildung 9 - Test Synchronisation	19
Abbildung 10 – VM Erstellen	19
Abbildung 11 – Container	20
Abbildung 12 - Proxmox auf OfficePC	22
Abbildung 13 – Plattformunabhängigkeit	23
Abbildung 14 - Proxmox Update geht nicht	IV
Abbildung 15 - Weil falsches Respository	IV
Abbildung 16 - Respository ändern	V
Abbildung 17 - Das alte deaktivieren	V
Abbildung 18 - Respository aktualisieren	V
Abbildung 19 – Zweite Partition löschen	VI
Abbildung 20 - Laufwerk löschen	VI
Abbildung 21 – Root vergrößern	VI
Abbildung 22 - Filesystem vergrößern	VI
Abbildung 23 - Rechte hinzufügen	VII
Abbildung 24 - Sandbox erstellen	VIII
Abbildung 25 - Neue Rolle erstellen	VIII
Abbildung 26 - VMs, Container und Storage hinzufügen	VIII
Abbildung 27 - Rechte zuweisen	VIII
Abbildung 28 - Das Ergebnis	IX

Abbildung 29 - Nur in einer Sandbox	l>
Abbildung 30 - Verbindung zur Domäne 1	l)
Abbildung 31 - Verbindung zur Domäne 2	>
Abbildung 32 - Synchronisation	
Abbildung 33 - Möglicher Fehler	X
Abbildung 34 - Erfolgreiche Synchronisation	X
Abbildung 35 - Ergebnis	X
Abbildung 36 - Domäne erreichbar	XI
Abbildung 37 - Erfolgreiche Einladung	XI
Tabellenverzeichnis	
Tabelle 1 - Projektschnittstellen	3
Tabelle 2 - Projektabgrenzung	3
Tabelle 3 - Vorgangsliste	6
Tabelle 4 - Hardware	
Tabelle 5 - Software	8
Tabelle 6 - Personell	8
Tabelle 7 – Sachmittelkosten	8
Tabelle 8 – Personalkosten	8
Tabelle 9 - Gesamtkosten	9
Tabelle 10 - IP Bereich	10
Tabelle 11 - Namensschema	10
Tabelle 12 - IP und Namen	12
Tabelle 13 - Proxmox Konfiguration	12
Tabelle 14 - Hyper-V Konfiguration	12
Tabelle 15 - VMs für DC	13
Tabelle 16 - Domänenkontroller	13
Tabelle 17 - Konfiguration Windows Server	13
Tabelle 18 – Testszenarien	14
Tabelle 19 – Verwaltungsoberfläche	16
Tabelle 20 - Benutzerverwaltung	17
Tabelle 21 - Konfiguration VM	20

Tabelle 22 - Container Erstellung	20
Tabelle 23 - EFI/UEFI Test	21
Tabelle 24 - Performance	21
Tabelle 25 - Laufende VMs	22
Tabelle 26 - Soll Ist Vergleich	24

Evaluation von Proxmox

Dokumentation

Thorsten Krause

Kundendokumentation

8.1 Proxmox Update einstellen

Nach der Installation von Proxmox sollte das System aktualisiert werden. Jedoch ist es nicht möglich da das Aktualisieren des Repository folgenden Fehler anzeigt.

Abbildung 14 - Proxmox Update geht nicht

Proxmox wird standardmäßig mit der Enterprise-Repository installiert. Damit ist kein Update des Systems möglich.

Abbildung 15 - Weil falsches Repository

Deswegen muss die Subskription geändert werden und dazu sind folgende Schritte notwendig.

Nach dem Klick auf Hinzufügen kommt folgendes Fenster

Abbildung 16 - Repository ändern

Dort wird das No-Subscription Repository ausgewählt und hinzugefügt. Als nächstes muss das Enterprise- Repository deaktiviert werden.

Abbildung 17 - Das alte deaktivieren

Danach ist es möglich das Repository zu aktualisieren

Task viewer	r: Paket-Datenbank aktualisieren
Ausgabe	Status
Stopp	
Hit:2 http://secu	de.debian.org/debian bullseye InRelease urity.debian.org bullseye-security InRelease unload.proxmox.com/debian/pve bullseye InRelease de.debian.org/debian bullseye-updates InRelease

Abbildung 18 - Repository aktualisieren

8.2 Mehr Speicherplatz für VMs und Container

Bei der Installation von Proxmox werden zwei Partitionen angelegt. Auf der Partition local-lvm werden die VMs und Container installiert. Local ist für die ISO-Images. Um den Platz der Partition local besser nutzen zu können, sollte local-lvm gelöscht werden. Mit folgenden Schritten wird die Partition verändert.

Zuerst wird im Bereich Rechenzentrum->Storage die Partition local-lvm gelöscht.

Hinzufügen V	ntfernen	Bearbeiten			
ID ↑	Тур	Inhalt	Pfad/Target	Verteilt	Aktiv
local	Verz	VZDump Backup-Datei, IS	/var/lib/vz	Nein	Ja
local-lvm	LVM	Disk-Image, Container		Nein	Ja

Abbildung 19 - Zweite Partition löschen

Dann wird die Shell geöffnet und das logische Laufwerk gelöscht.

Lvremove /dev/pve/data

```
root@soryu:~# lvremove /dev/pve/data
Do you really want to remove active logical volume pve/data? [y/n]: y
  Logical volume "data" successfully removed
root@soryu:~#
```

Abbildung 20 - Laufwerk löschen

Danach wird die Root platte vergrößert

Lvresize -l +100%FREE /dev/pve/root

```
root@soryu:~# lvresize -1 +100%FREE /dev/pve/root
Size of logical volume pve/root changed from <14.79 GiB (3786 extents) to 29.58 GiB (7573 extents).
Logical volume pve/root successfully resized.
root@soryu:~#
```

Abbildung 21 – Root vergrößern

Als nächstes wird das Filesystem vergrößert

Resize2fs /dev/mapper/pve-root

```
root@soryu:~# resize2fs /dev/mapper/pve-root
resize2fs 1.46.5 (30-Dec-2021)
Filesystem at /dev/mapper/pve-root is mounted on /; on-line resizing required
old_desc_blocks = 2, new_desc_blocks = 4
The filesystem on /dev/mapper/pve-root is now 7754752 (4k) blocks long.
root@soryu:~#
```

Abbildung 22 - Filesystem vergrößern

Zum Schluss muss dem Laufwerk noch die rechte vergeben werden, um ISO und Container-Templates zu speichern. Das geht wie folgt.

Datacenter -> Storage

Dort wird die Platte/das Verzeichnis Local ausgewählt und editiert. Hinzugefügt werden die fehlenden Optionen.

Abbildung 23 - Rechte hinzufügen

8.3 Benutzerverwaltung und Active Directory

Benutzer in Gruppen zu organisieren und den Zugriff auf eigene VMs zu beschränken Im Soll- Konzept wurden folgende Ziele genannt.

- Dabei soll es möglich sein, Benutzer in Gruppen zu organisieren und den Zugriff auf eigene VMs zu beschränken.
- 2. Dazu wird eine Anbindung an das Active Directory gewünscht.

Hier sind die Lösungswege:

8.3.1 Lösung 1: Benutzerverwaltung

Es wurden zwei Testnutzer erstellt

Danach wurden jeweils einen Pool für die beiden erstellt.

Sandbox-Hikari	62.0 %	29.9% of 4	01:39:12
Sandbox-Kaori			-

Abbildung 24 - Sandbox erstellen

Als nächstes musste eine spezielle Rolle erstellt, die es erlaubt das die Testbenutzer VMs erstellen und verwalten können. Diese wird Students genannt.

Nein	students	Datastore.Allocate Datastore.AllocateSpace Datastore.AllocateTemplate Pool.Allocate Pool.Audit VM.Allocate VM.Audit VM.Backup VM.Clone VM.Config.CDROM VM.Config.CPU VM.Config.Cloudinit VM.Config.Disk VM.Config.HWType VM.Config.Memory VM.Config.Network VM.Config.Options VM.Console VM.Migrate
		VM.Monitor VM.PowerMgmt VM.Snapshot VM.Snapshot.Rollback

Abbildung 25 - Neue Rolle erstellen

Nun werden die Sandboxen konfiguriert.

Abbildung 26 - VMs, Container und Storage hinzufügen

Abbildung 27 - Rechte zuweisen

In dem Fall bekommt die Sandkiste zwei VMs und ein Storage für ISOS als Mitglieder des Pools zugewiesen und der Benutzer bekommt die Rolle Students zu dieser Sandbox zugewiesen.

Abbildung 28 - Das Ergebnis

Das Ergebnis ist eine Sandbox, in der der Benutzer Eigene VMs und Container erstellen, bearbeiten und löschen kann. Das Erstellen von Sandboxen außerhalb seines Ressourcen-Pools führt zu einer Fehlermeldung

Abbildung 29 - Nur in einer Sandbox

8.3.2 Lösung 2: Active Directory

Um eine Active Directory Anbindung zu erstellen, wird über Datacenter->Permissions->Realms->Add Active Directory Server. Dort müssen dann die Informationen für die Domäne eingegeben

Bearbeiten: Active	Directory Server		\otimes
Allgemein Sync	Optionen		
Domäne:	sotoba.de	Server:	yamato.sotoba.de
Domäne:	Sotoba.de	Fallback-Server:	
Standardeinstellung:		Port:	Standardeinstellung 🗘
		SSL:	
		Zertifikat verifizieren:	
		2FA erforderlich:	keine
Kommentar:			
Hilfe			OK Reset

Abbildung 30 - Verbindung zur Domäne 1

Der Bind User wird in der Distinguished Name Form geschrieben und diese Form kann in der PowerShell mit folgendem Befehl herausgefunden werden. Dsquery user dc=sotoba, dc=de -name Administrator

Bearbeiten: Active	Directory Server		\otimes
Allgemein Sync (Optionen		
Bind-Benutzer:	CN=Administrator,CN=User	Benutzerklassen:	inetorgperson, posixaccoun
Bind-Kennwort:	Keine Änderung	Gruppenklassen:	groupOfNames, group, univ
E-Mail-Attribut:		Benutzerfilter:	
Gruppenname Attr.:		Gruppenfilter:	
Standard-Sync Option	nen		
Bereich:	Keine	Neue Benutzer aktivieren:	Ja (Standardeinstellung 🔻
Verschwundene Opti	onen löschen		
ACL:	ACLs verschwundener Be	nutzer und Gruppen lös	chen.
Eintrag:	☐ Verschwundene Benutzer	und Gruppeneinträge.	
Eigenschaften:	☐ Verschwundene Eigensch	aften gesyncter Benutze	er löschen.

Abbildung 31 - Verbindung zur Domäne 2

Das Ergebnis wäre und kann so als Name in den BindUser eingetragen werden, gefolgt von seinem Password

CN=Administrator, CN=Users, DC=Sotoba, DC=de

Danach wird über die Vorschau Synchronisiere Domäne die Verbindung zu dem DC getestet.

Abbildung 32 - Synchronisation

Sollte diese Fehlermeldung kommen, ist das Passwort falsch.

Abbildung 33 - Möglicher Fehler

Aber mit richtigen Passwort sieht der erfolgreiche Test dann wie folgt aus.

Abbildung 34 - Erfolgreiche Synchronisation

Bei einer erfolgreichen Synchronisation der Daten des AD erstellt Proxmox lokale Gruppen und Benutzer

myasumori	sotoba.de	Ja	niemals	Nein
nyasumori	sotoba.de	Ja	niemals	Nein

Abbildung 35 - Ergebnis

Dies Funktioniert auch ohne Mitgliedschaft in der Domäne

Aber Proxmox kann auch in die Domäne eingeladen werden. Dazu müssen folgende Vorbereitungen getroffen werden, indem mit den folgenden befehlen die benötigten Pakete über die Kommandozeile installiert werden.

apt update

Aktualisiert das Repository

apt dist-upgrade

Aktualisiert dann das System

apt install adcli packagekit samba-common-bin

Seite | XI

installiert Samba

apt install realmd

Das installiert Realmd, ein Befehlzeilenprogramm für Linux.

Das Programm wird genutzt, um Linux Systeme in eine Active Directory Domäne einzuladen. Dazu wird zuerst die Erreichbarkeit der Domäne geprüft. Dazu wird der Befehel "realm -v discover sotoba.de" ausgeführt und wird folgendes ausgeben.

```
root@soryu:~# realm -v discover sotoba.de
 * Resolving: _ldap._tcp.sotoba.de
* Performing LDAP DSE lookup on: 192.168.3.4
 * Performing LDAP DSE lookup on: 192.168.2.4
 * Successfully discovered: Sotoba.de
Sotoba.de
  type: kerberos
  realm-name: SOTOBA.DE
  domain-name: Sotoba.de
  configured: no
  server-software: active-directory
  client-software: sssd
  required-package: sssd-tools
  required-package: sssd
  required-package: libnss-sss
  required-package: libpam-sss
  required-package: adcli
  required-package: samba-common-bin
sotoba.de
  type: kerberos
  realm-name: SOTOBA.DE
  domain-name: sotoba.de
  configured: no
root@soryu:~#
```

Abbildung 36 - Domäne erreichbar

Da die Domäne erreichbar ist kann Proxmox die Domäne Sotoba.de mit dem Befehl "realm -v join sotoba.de" beitreten. Bei Erfolg sollte der Proxmox-Server Soryu im AD erscheinen

Abbildung 37 - Erfolgreiche Einladung

9 Glossar

Kernel. Ein Kernel ist wie eine Brücke zwischen der Hardware und Anwendungsprogramme, die ausgeführt werden und arbeitet dabei im Hintergrund.

6.x-2.6 Kernel Dieser Kernel ist die neuste Version des Linux Kernels bei Proxmox und ist auf Leistung und Sicherheit optimiert.

2.4 Kernel Das ist die ältere Version des Kernels. Der läuft oft stabiler und wird deswegen oft in Serverumgebungen, die denen Zuverlässigkeit und Stabilität wichtig ist.

Maschinentype I440fx und Q35 sind chipsets, die sozusagen den Chipsatz eines Computers virtualisieren. Dabei ist i440fx die ältere und stabilere

SeaBIOS ist bei Proxmox das traditionelle BIOS und ähnelt der Genration 1 bei Hyper-V. Dieses BIOS ist ältere Betriebssysteme ausgelegt.

OVMF (UEFI) ist bei Proxmox das moderne UEFI und steht für "Open Virtual Machine Firmware". Es ähnelt der Generation 2 bei Hyper-V. Dieses BIOS ist für modere Betriebssysteme ausgelegt.

Ballooning wird genutzt, wenn der Proxmox Server nicht genügend Speicher für alle laufenden VMs und Container hat. Das Ballooning "entleert" den Speicher von inaktiven VMs, um Platz für die wichtigen VMs zu schaffen, ohne diese herunterfahren zu müssen

SSD-Emulation führt dazu, dass eine VM auf dem Proxmox Server so arbeitet, als wäre sie auf einer schnellen SSD gespeichert, selbst wenn der Server nur HDDs verbaut hat.

Unprivilegierter Container sind Container mit weniger Rechte und haben nur Zugriff auf das, was Freigegeben wurde. Das führt zu einem sicheren Container

Nesting bei Container bedeutet das, Container in andere Container gesteckt werden können, wie bei einer Matroschka Puppe.

Swap Speicher bei Proxmox Container ist wie ein Reservespeicher, der verwendet werden kann, wenn der normale Speicher knapp wird.

Templates sind Vorlagen für VMs und Container, die verwendet werden, um schnell neue VMs oder Container zu erstellen.

Seite | XIII

ACME steht für "Automated Certificate Management Enviroment". ACME erstellt und verwaltet automatisch SSL-Zertifikate

Bridge. Eine Bridge verbindet verschiedene Netzwerke oder Server miteinander, sodass sie miteinander kommunizieren können

10 Abschluss

10.1 Abnahmeprotokoll

Abnahmeprotol	coll			
kt: Evaluation von Proxmox als Ersatz oder Ergä	inzung von Hyper-V			
Die Abnahme war erfolgreich				
Die Abnahme war nicht erfolgreich. Folgende Aauszuführen:	rbeiten sind noch			
Sonstiges:				
Durchgeführte Tätigkeiten	Abnah erfolgre			
Durchgeführte Tätigkeiten Aufbau einer Testumgebung	Abnah erfolgre			
		eich		
Aufbau einer Testumgebung Installieren & konfigurieren von		eich		
Aufbau einer Testumgebung Installieren & konfigurieren von Proxmox		eich A		
Aufbau einer Testumgebung Installieren & konfigurieren von Proxmox Erstellen Kundendokumentation Erstellen Testprotokoll		eich		

10.2 Persönliche Erklärung

Persönliche Erklärung

Erklärung des Prüfungsteilnehmers / der Prüfungsteilnehmerin:

Ich versichere durch meine Unterschrift, dass ich das betriebliche Projekt und die dazugehörige Dokumentation selbstständig und ohne fremde Hilfe angefertigt und alle Stellen, die ich wörtlich oder annähernd wörtlich aus Veröffentlichungen entnommen habe, als solche kenntlich gemacht habe. Die Arbeit hat in dieser Form keiner anderen Prüfungsinstitution vorgelegen.

Erklärung des Ausbildungsbetriebes / Praktikumsbetriebes:

Wir versichern, dass der betriebliche Auftrag wie in der Dokumentation dargestellt, in unserem Unternehmen realisiert worden ist.

023170049738 Telefon/Durchwahl

Unterschrift und Firmenstempel

NH Computer Learning Center Dortmund GmbH & Co. KG