INFORMACIÓN BÁSICA									
Nombre del Curso		Fecha de diligenciamiento(dd/mm/aaaa)		Sección(es)			Periodo académico		
Computación Científica en IEE		28/03/2016	1-2			201610			
Nombre de la práctica:		Integración Numérico)			ráctica No.:	7	
Profesor(es): Nestor F				stente(es) duado(s):	Daniel Felipe Duarte Sánchez				
Semana de la ¡ (1-16)	práctica	Versión de la guía		Nomenclatura del espacio a utilizar					
9		2.0		ML-107					
CONTENIDO DE LA GUÍA									
Objetivos									

 Presentar y reconocer el funcionamiento de algunos algoritmos de Integración Numérica en Matlab.

Procedimiento de la práctica de laboratorio

1. A continuación, se presentan expresiones de integrales frecuentemente encontradas en el estudio de la difracción de ondas electromagnéticas. Una de las aplicaciones de esta temática está en el diseño de antenas.

$$C(x) = \int_0^x \cos\left(\frac{\pi}{2}\tau^2\right) d\tau$$

$$S(x) = \int_0^x \sin\left(\frac{\pi}{2}\tau^2\right) d\tau$$

$$C_1(x) = \int_x^\infty \cos(\tau^2) d\tau$$

$$S_1(x) = \int_x^\infty \sin(\tau^2) d\tau$$

Utilizando las funciones de MATLAB para integración numérica por los métodos Trapezoidal y Simpson, calcule los valores de las integrales mostradas en el intervalo $0 \le x \le 15$ con pasos de 0.1. Explique los diferentes parámetros utilizados y justifique su elección.

Muestre una tabla con los resultados obtenidos para cada integral en cada valor (0.0, 0.1,..., 14.9, 15.0) por cada uno de los métodos solicitados (utilice 5 decimales en sus cálculos). Adicionalmente grafique los resultados de forma apropiada. Analice, compare y concluya sobre el ejercicio.

2. Calcule de forma numérica las integrales mostradas utilizando las funciones de MATLAB *quad2d()* y *triplequad()*.

$$f_{1} = \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dy dx$$

$$f_{2} = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 64xy(1 - x)^{2} dz dy dx$$

$$f_{3} = \int_{1}^{2} \int_{x^{2}}^{x^{4}} x^{2} y dy dx$$

¿A que hace referencia los parámetros AbsTol y RelTol de las funcione ¿Qué métodos usan estos procedimientos? ¿Qué sucede cuando la función se encuentra indeterminada en algún integración? ¿Cómo maneja Matlab esta situación?						
Bibliografía recomendada						
[1] Rosłoniec, S. Fundamental Numerical Methods For Electrical Engineering. Springer, 2008.						