EC 0416- Module 6 ENGINEERING MANAGEMENT

Remya Jayachandran Assistant Professor ECED NIE Mysore

Unit – 6: Project management:

basic concepts of project management such as scope, time, cost and quality, network diagrams and critical path, 7 QC tools.8 Hrs.

SLE: Subcontract management.

PROJECT

- Project is a unique process
- consist of a set of coordinated and controlled activities with start and finish dates
- undertaken to achieve an objective confirming to specific requirements,
- including the constraints of time, cost and resource.

Project Characteristics

- Unique in nature
- Have definite objectives (goals) to achieve
- Requires set of resources
- Have a specific time frame for completion with a definite start and finish
- Involves risk and uncertainty
- Requires cross-functional teams and interdisciplinary approach

Project dimensions: Quality triangle

- Three major dimensions that define the project performance are:
- scope, time, and cost.
- These parameters are interrelated and interactive

Project dimensions

- It is evident that any change in any one of dimensions would affect the other.
- For example, if the scope is enlarged, project would require more time for completion and the cost would also go up.
- If time is reduced the scope and cost would also be required to be reduced.
- Similarly any change in cost would be reflected in scope and time.

Project dimensions

- Successful completion of the project would require accomplishment of specified goals within scheduled time and budget.
- Mathematically Performance = f(Scope, Cost, Time)

Project management

- Project management is a distinct area of management that helps in handling projects
- It has three key features: a project manager, the project team and the project management system
- The project management system comprises organization structure, information processing and decision making
- The project management system focuses on integrated planning and control

Benefits of Project Management Approach

The rationale for following project management approach is as follows.

- Project management approach will help in handling complex, costly and risky assignments by providing interdisciplinary approach in handling the assignments. Example: R&D organizations.
- Project management approaches help in handling assignments in a specified time frame with definite start and completion points. Example handling customer orders by Industries involved in production of capital goods.
- Project management approaches provide task orientation to personnel in an Organization in handling assignments. Example: Organizations in IT sector handling software development assignments for clients.

Basic Quality tools

- Cause and Effect Diagrams
- Flow Charts/ Stratification
- Check sheets
- Histograms
- Pareto Charts
- Control Charts
- Scatter Diagrams

Cause and Effect Diagrams

- **Purpose:** Graphical representation of the trail leading to the root cause of a problem
- How is it done?
 - Decide which quality characteristic, outcome or effect you want to examine
 - Backbone –draw straight line
 - Ribs categories
 - Medium size bones –secondary causes
 - Small bones root causes

Cause & Effect Diagram: Sample

Flow Charts

Purpose:

Visual illustration of the sequence of operations required to complete a task

- ✓ Schematic drawing of the process to measure or improve.
- ✓ Starting point for process improvement
- ✓ Potential weakness in the process are made visual.
- ✓ Picture of process as it *should* be.

Flow Charts

Top Down

Flow charts

Linear

Toolbox

Flow Chart- Example

Checksheets

Purpose:

- -Tool for collecting and organizing measured or counted data
- -Data collected can be used as input data for other quality tools

Benefits:

- -Collect data in a systematic and organized manner
- -To determine source of problem
- -To facilitate classification of data (stratification)

Checksheets

#

		Machine 1	Machine 2
Operator A	Morning	X	X
	Afternoon	XX	XXXXXX
Operator B	Morning	X	XX
	Afternoon	XX	XXXXXXXX

X= Number of times the supervisor is called per day.

Histograms

Purpose:

To determine the spread or variation of a set of data points in a graphical form

How is it done?:

- Collect data, 50-100 data point
- Determine the range of the data
- Calculate the size of the class interval
- Divide data points into classes Determine the class boundary
- Count # of data points in each class
- Draw the histogram

Stable process, exhibiting bell shape

Histogram

- A **histogram** is a bar graph of raw data that creates a picture of the data distribution.
- The bars represent the frequency of occurrence by classes of data.
- A histogram shows basic information about the data set, such as central location, width of spread, and shape.

Benefits:

- Pareto analysis helps graphically display results so the significant few problems emerge from the general background
- It tells you what to work on first

Type of De	fect		•	Tally	1	Total
Crack	Ж	Ж				10
Scratch	ÌЖ	М	Ж	M	וו נאל	42
Stain	Жí	I				6
Dent	Ж	М	Ж	M	W IIII	104
Gap	IIII					4
Hole	Ж	М	Ж	M		20
Others	Жĺ	Ж	1111			14
Total						200

Example of a data tally sheet

Weighted Pareto charts use the quantity of defects multiplied by their cost to determine the order.

			Weighted
Defect	Total	Cost	cost
Gap	4	200	800
Dent	104	2	208
Hole	20	5	100
Crack	10	8	80
Scratch	42	1	42
Others	14	1	14
Stain	6	1	6

Pareto Charts

Purpose:

The primary purpose of a control chart is to predict expected product outcome.

Benefits:

- Predict process out of control and out of specification limits
- Distinguish between specific, identifiable causes of variation
- Can be used for statistical process control

Control Chart Decision Tree

- Determine Sample size (n)
- Variable or Attribute Data
 - Variable is measured on a continuous scale
 - Attribute is occurrences in n observations
- Determine if sample size is constant or changing

Control Chart Decision Tree

What does it look like?

- Adding the element of time will help clarify your understanding of the causes of variation in the processes.
- A run chart is a line graph of data points organized in time sequence and centered on the median data value.

Unusual variation can hide in a frequency plot

Scatter Diagrams

Purpose:

- To identify the correlations that might exist between a quality characteristic and a factor that might be driving it
- A scatter diagram shows the correlation between two variables in a process.
 - Dots representing data points are *scattered* on the diagram.
 - The extent to which the dots cluster together in a line across the diagram shows the strength with which the two factors are related.

Scatter Diagrams

Network Diagram

- Creating relationship between activities
- arrow shows the relationship

Activity A must be finished before B can start

Network Diagram

Network diagram: Problem

Activity	Immediate Predecessor Activity
A	-
В	A
C, D	В
Е	С
F	D
G	E, F

Network diagram

Construct the network diagram

	Immediate
Activity	Predecessor
	Activity
A	-
В	-
С	A
D	В
Е	A
F	C, D
G	E
Н	E
I	F, G
J	H, I

Critical Path

- The critical path method (CPM) aims at the determination of the time to complete a project and the important activities on which a manager shall focus attention.
- it is assumed that precise time estimate is available for each activity

Critical Path

- From the start event to the end event, the time required to complete all the activities of the project in the specified sequence is known as the project completion time.
- A continuous sequence, consisting of nodes and activities alternatively, beginning with the start event and stopping at the end event of a network is called a path in the network.

- Consider all the paths in a project, beginning with the start event and stopping at the end event.
- For each path, calculate the time of execution, by adding the time for the individual activities in that path.
- The path with the largest time is called the critical path and the activities along this path are called the critical activities or bottleneck activities.
- The activities are called critical because they cannot be delayed.

Problem 1

Activity	Predecessor Activity	Duration (Weeks)
A	-	3
В	A	5
С	A	7
D	В	10
Е	С	5
F	D,E	4

Critical path = max(3+5+10+4, 3+7+5+4) = 22

Problem 2. Find out the completion time and critical activity

Problem 3. Draw the network diagram and estimate the critical path delay

Activity	Time estimate (Weeks)
1- 2	5
1- 3	6
1- 4	3
2 -5	5
3 -6	7
3 -7	10
4 -7	4
5 -8	2
6 -8	5
7 -9	6
8 -9	4

Problem 4. Draw the network diagram and find out the completion time and critical activity

Activity	IMMEDIATE Predecessor Activity	time estimate (weeks)
A	-	4
В	-	7
С	-	3
D	A	6
Е	В	4
F	В	7
G	С	6
Н	Е	10
I	D	3
J	F, G	4
K	H, I	2