

Auto-Encoding Variational Bayes (Auto-Encodeur Variationnel)

A l'attention de Bertrand MICHEL & Matthieu RIBATET

24 mars 2025

DOBELI Pierre
DAVOINE Camille
FAESSEL Mathieu

Sommaire

01	Autoencodeurs classiques: concept et limites		
02	Introductions aux Auto-encodeurs Variationnels (VAE)	05	Applications pratiques, limite et perceptives
		06	Conclusion
03	Formulation variationnelle et ELBO		
04	Entrainement pratique d'un VAE		
	Endancinent pratique a un VAL		

01

Autoencodeurs classiques: concept et limites

Architecture typique:

 Entrée: x (ex: image, signal audio, texte encodé...)

Architecture typique:

- Entrée: x (ex: image, signal audio, texte encodé...)
- Couche d'encodeur : Transforme x en une représentation latente z.

Architecture typique:

- Entrée: x (ex: image, signal audio, texte encodé...)
- Couche d'encodeur : Transforme x en une représentation latente z.
- Latent Space : Contient les données compressées de x..

Architecture typique:

- Entrée: x (ex: image, signal audio, texte encodé...)
- Couche d'encodeur : Transforme x en une représentation latente z.
- Latent Space : Contient les données compressées de x...
- Couche de décodeur : Essaie de reconstruire x' à partir de z.
- Sortie : x', qui doit être aussi proche que possible de x

Et sa représentation mathématique?

 χ

$$z = f_{\phi}(x)$$
: encodeur

$$x' = g_{\theta}(z)$$
: décodeur

$$\mathcal{L}_{rec} = \arg\min_{\theta, \phi} ||x - x'||^2$$

Objectif: Minimiser l'erreur de reconstruction

Comprendre l'Espace Latent

Génération: Un point latent permet de créer une nouvelle image

z->x'

Espace latent : Représentation compacte des données initiale

Classification: Une nouvelle image est positionnée dans l'espace latent. *x->z*

Limitations de l'autoencodeur

Espace latent non structuré

 Données similaires possiblement éloignées dans l'espace latent

Difficulté de générer des données réalistes

• Prise aléatoire dans l'espace latent -> bruit incohérent

Risque de sur-apprentissage

02

Introductions aux Auto-encodeurs Variationnels (VAE)

Introduction des VAE : une approche probabiliste

Au lieu d'apprendre un point z, on veut que l'**encodeur** apprenne une distribution:

$$z \sim p_{\theta}(z|x)$$

- ⇒ Impose une structure à l'espace latent
- \Longrightarrow Régularisation: on force $p_{\theta}(z|x)$ à être proche d'une distribution prior $p(z)=\mathcal{N}(0,I)$

Inférence des variables latentes (Bayes)

Distribution a posteriori $p_{\theta}(z|x) = \frac{p_{\theta}(x|z)p(z)}{p(x)}$

où:

- $p_{\theta}(x|z)$ correspond au modèle génératif.
- p(z) est le prior imposé sur l'espace latent.
- p(x) est la **vraisemblance marginale**, obtenue en intégrant sur toutes les valeurs possibles de z:

$$p_{\theta}(x) = \int p_{\theta}(x|z)p(z)dz$$

Problème d'inférance exacte

$$p_{\theta}(x) = \int p_{\theta}(x|z)p(z)dz$$

Problème: Impossible à calculer:

- Dimensionnalité élevée de $z \rightarrow$ numériquement intractable
- Forme complexe des distributions
- Absence de solution analytique

Solution: Approximation Variationnelle

Pas de calcul direct de $p_{\theta}(x)$

Approximation: $p_{\theta}(z|x) \rightsquigarrow q_{\phi}(z|x)$ plus manipulable

03

Formulation Variationnelle et ELBO

Approche variationnelle

$$\log p_{\theta}(x) = D_{\mathrm{KL}}(q_{\phi}(z|x)||p_{\theta}(z|x)) + \mathcal{L}(x)$$

où:

- $D_{\text{KL}}(q_{\phi}(z|x)||p_{\theta}(z|x))$ est la **divergence de Kullback-Leibler**, qui mesure l'écart entre notre approximation $q_{\phi}(z|x)$ et la vraie postérieure $p_{\theta}(z|x)$. Cette quantité est toujours positive.
- $\mathcal{L}(x)$ est l'**ELBO**, une borne inférieure de $\log p_{\theta}(x)$.

Preuve mathèmatique de la borne inf

$$\log p_{\theta}(x) = \log \int p_{\theta}(x|z)p(z)dz$$

$$= \log \int q_{\phi}(z|x) \frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)}dz$$

$$= \log E_{q_{\phi}(z|x)} \left[\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} \right]$$

$$\geq E_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} \right]$$

$$= E_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] - D_{\text{KL}}(q_{\phi}(z|x)||p(z))$$

$$= \mathcal{L}(x)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$= E_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] - D_{\text{KL}}(q_{\phi}(z|x)||p(z))$$

$$= \mathcal{L}(x)$$

$$(6)$$

Objectif d'apprentissage: Maximiser l'ELBO

Définition de l'**ELBO** (Evidence Lower Bound):

$$\log p_{\theta}(x) \ge \mathcal{L}(x)$$

Où:

$$\mathcal{L}(x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x)||p(z))$$

Objectif d'apprentissage: Maximiser $\mathcal{L}(x)$ au lieu d'un vraisemblance intractable

Interprétation intuitive de l'ELBO

$$\mathcal{L}(x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x)||p(z))$$

Terme de reconstruction (1):

- Mesure à quel point le décodeur peut reconstruire x à partir de z
- Encourage le décodeur à reconstruire des données réalistes

Terme de régularisation (2):

- Force la distribution latente à rester proche du prior
- Evite un espace chaotique

04

Entrainement pratique d'un VAE

Rendre l'apprentissage possible

$$z \sim q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}^{2}(x)I)$$

Solution: Trick de reparamétrisation

Trick de reparamétrisation

$$z = \mu_{\phi}(x) + \sigma_{\phi}(x) \cdot \epsilon$$

où $\epsilon \sim \mathcal{N}(0, I)$ est une variable aléatoire indépendante du réseau. Grâce à cette reformulation :

- $\mu_{\phi}(x)$ et $\sigma_{\phi}(x)$ restent entièrement différentiables.
- \bullet L'aléa est déplacé sur ϵ , qui ne dépend pas des paramètres du modèle.
- On peut maintenant **rétropropager le gradient** à travers $\mu_{\phi}(x)$ et $\sigma_{\phi}(x)$ sans problème.

Trick de reparamétrisation

$$z = \mu_{\phi}(x) + \sigma_{\phi}(x) \cdot \epsilon$$

Entraînement pratique d'un VAE

- ullet On choisit un mini-batch de données x.
- L'encodeur génère les paramètres $\mu_{\phi}(x)$ et $\sigma_{\phi}(x)$.
- \bullet On échantillonne z via le **trick de reparamétrisation** :

$$z = \mu_{\phi}(x) + \sigma_{\phi}(x) \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

- Le décodeur génère \hat{x} à partir de z, selon $p_{\theta}(x|z)$.
- On calcule la **perte du VAE**, qui est l'opposée de l'ELBO :

$$\mathcal{L}_{\text{VAE}} = -E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] + D_{\text{KL}}(q_{\phi}(z|x)||p(z))$$

• On met à jour les paramètres ϕ et θ via la descente de gradient.

Algorithm 1 Entraînement d'un Autoencodeur Variationnel (VAE)

- 1: **Entrée:** Données $\{x_i\}$, dimension latente d, taux d'apprentissage η , nombre d'époques T, taille de batch B
- 2: Initialisation: Paramètres des réseaux θ (encodeur) et ϕ (décodeur)
- 3: **for** t = 1 **to** T **do**
- for chaque mini-batch x_{batch} de taille B do 4:
- **Encodage:** $(\mu, \log \sigma^2) \leftarrow \text{Encoder}(x_{batch})$ 5:
- **Reparamétrisation:** $z \leftarrow \mu + \sigma \cdot \epsilon$, $\epsilon \sim \mathcal{N}(0, I)$ 6:
- **Décodage:** $\hat{x} \leftarrow \text{Decoder}(z)$ 7:
- 8:
 - Calcul de la perte:
 - $\mathcal{L}_{rec} \leftarrow \|x_{batch} \hat{x}\|^2$ (ou entropie croisée)
- $\mathcal{L}_{KL} \leftarrow 0.5 \sum (\sigma^2 + \mu^2 1 \log \sigma^2)$ 10:
- $\mathcal{L} \leftarrow \mathcal{L}_{rec} + \mathcal{L}_{KL}$ 11:
- Mise à jour des poids: $\theta, \phi \leftarrow \theta, \phi \eta \nabla_{\theta, \phi} \mathcal{L}$ 12:
- end for 13:

9:

- 14: end for
- 15: Génération de nouvelles données:
- 16: Echantillonner $z \sim \mathcal{N}(0, I)$
- 17: Générer $\hat{x} \leftarrow \text{Decoder}(z)$

05

Applications pratiques, limite et perceptives

Compression/Décompression et Génération d'Images

Will Smith

Tom Cruse

Tom Hanks

Jennifer Lawrence

Angelina Jolie

Structure de Réseaux de neurones : Réseaux CNN

- Elle réduit la dimension de l'image
- Elle augmente la profondeur de l'image en sorite (nombre de canaux)
- Elle préserve la structure spatiale des objets

Structure de Réseaux de neurones : Réseaux CNN

Pourquoi utiliser un réseaux CNN pour un VAE ?

- Extraction efficace des motifs visuels : les convolutions détectent bords, textures et formes locales indispensables pour encoder une image de manière pertinente
- Compression hiérarchique avec moins de paramètres: elles réduisent progressivement la taille de l'image tout en conservant l'essentiel
- Préservent la structure spatiale :
 contrairement à un flatten direct, les Conv2D
 respectent l'organisation 2D de l'image, ce qui
 améliore la qualité du latent et des
 reconstructions

Structure Encodeur

Layer (type)	Output Shape	Param #	Connected to
input_layer_32 (InputLayer)	(None, 128, 128, 3)	0	-
conv2d_55 (Conv2D)	(None, 64, 64, 32)	896	input_layer_32[0
conv2d_56 (Conv2D)	(None, 32, 32, 64)	18,496	conv2d_55[0][0]
conv2d_57 (Conv2D)	(None, 16, 16, 128)	73,856	conv2d_56[0][0]
flatten_16 (Flatten)	(None, 32768)	0	conv2d_57[0][0]
dense_43 (Dense)	(None, 128)	4,194,432	flatten_16[0][0]
dense_44 (Dense)	(None, 64)	8,256	dense_43[0][0]
z_mean (Dense)	(None, 32)	2,080	dense_44[0][0]
z_log_var (Dense)	(None, 32)	2,080	dense_44[0][0]
sampling_16 (Sampling)	(None, 32)	0	z_mean[0][0], z_log_var[0][0]

Structure Décodeur

Layer (type)	Output Shape	Param #
input_layer_33 (InputLayer)	(None, 32)	0
dense_45 (Dense)	(None, 32768)	1,081,344
reshape_16 (Reshape)	(None, 16, 16, 128)	0
conv2d_transpose_49 (Conv2DTranspose)	(None, 32, 32, 64)	73,792
conv2d_58 (Conv2D)	(None, 32, 32, 64)	36,928
conv2d_transpose_50 (Conv2DTranspose)	(None, 64, 64, 32)	18,464
conv2d_59 (Conv2D)	(None, 64, 64, 32)	9,248
<pre>conv2d_transpose_51 (Conv2DTranspose)</pre>	(None, 128, 128, 3)	867

Structure de Réseaux de neurones (Extrait du code)

```
# Paramètres globaux
input shape = (128, 128, 3) # Dimensions des images
latent dim = 32 # Taille de l'espace latent
# Définition de la couche d'échantillonnage
class Sampling(layers.Layer):
    """Utilise (z_mean, z_log_var) pour échantillonner un vecteur latent `z`."""
    def call(self. inputs):
       z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
        dim = tf.shape(z mean)[1]
        epsilon = tf.random.normal(shape=(batch, dim)) # Bruit aléatoire
       return z mean + tf.exp(0.5 * z log var) * epsilon # Réparamétrisation
# Construction de l'encodeur
encoder inputs = keras.Input(shape=input shape)
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2D(128, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(128, activation="relu")(x)
x = lavers.Dense(64, activation="relu")(x)
z mean = layers.Dense(latent dim, name="z mean")(x)
z log var = layers.Dense(latent dim, name="z log var")(x)
z = Sampling()([z mean, z log var])
encoder = keras Model(encoder inputs, [z mean, z log var, z], name="encoder")
encoder.summary()
# Construction du décodeur
latent inputs = keras.Input(shape=(latent dim.))
x = layers.Dense(16 * 16 * 128, activation="relu")(latent inputs)
x = lavers.Reshape((16, 16, 128))(x)
x = layers.Conv2DTranspose(64, 3, strides=2, padding="same", activation="relu")(x)
x = layers.Conv2D(64. 3. padding="same", activation="relu")(x)
x = layers.Conv2DTranspose(32, 3, strides=2, padding="same", activation="relu")(x)
x = layers.Conv2D(32. 3. padding="same", activation="relu")(x)
x = layers.Conv2DTranspose(3, 3, strides=2, padding="same", activation="sigmoid")(x)
decoder = keras.Model(latent_inputs, x, name="decoder")
decoder.summarv()
```

```
class VAE(keras.Model): # VAE hérite donc de keras.Model (pemet d'utiliser des fonctionnalités commes .fit ou .compile)
   def init (self. encoder, decoder, **kwarqs):
       super().__init__(**kwargs) # Appelle le constructeur de keras.Model
       self.encoder = encoder # l'encodeur
       self.decoder = decoder # le décodeur
        self.total loss tracker = keras.metrics.Mean(name="total loss") #perte total
       self.reconstruction loss tracker = keras.metrics.Mean(
           name="reconstruction loss"
       ) # perte de reconstruction
       self.kl loss tracker = keras.metrics.Mean(name="kl loss") # Divergence LK
   @property # Permet d'accéder aux métriques commen une variable (vae.metrics)
   def metrics(self):
       return [
           self.total loss tracker,
           self.reconstruction loss tracker,
           self.kl loss tracker.
   def train step(self, data): # Remplace le .fit() de Keras
       with Tf.GradientTape() as tape:
           z mean, z log var, z = self.encoder(data) #encodeur transforme l'image en un espace latent (loi normale)
           reconstruction = self.decoder(z) #décoder l'image
           reconstruction loss = ops.mean(ops.sum(ops.abs(data - reconstruction).axis=(1, 2, 3)))
           #reconstruction loss = ops.mean(ops.sum(keras.losses.binary crossentropy(data, reconstruction).axis=(1, 2),))
            # compare les pixels entre l'image d'origine et reconstruite
           kl loss = -0.5 * (1 + z log var - ops.square(z mean) - ops.exp(z log var)) # Divergence KL
           kl loss = ops.mean(ops.sum(kl loss, axis=1))
           total loss = reconstruction loss + kl loss
        grads = tape.gradient(total loss, self.trainable weights) # calcul les gradients
        self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) # met à jour les poids
       self.total loss tracker.update state(total loss)
        self.reconstruction_loss_tracker.update_state(reconstruction loss)
       self.kl loss tracker.update state(kl loss)
       return {
           "loss": self.total loss tracker.result().
           "reconstruction loss": self.reconstruction loss tracker.result(),
           "kl loss": self.kl loss tracker.result().
```

Résultats Compression/Décompression

Originales

Reconstructions

Résultats Générations d'images

10 images générées par le VAE

Limitations

- Reconstruction floues
- > Les VAE ont tendance à produire des images "moyennes" et peu nettes
- L'espace latent peu interprétable
- > Le vecteur latent n'est pas toujours structuré de manière claire ni exploitable directement
- Compris reconstruction / régularisation
- > La divergence KL peut nuire à la qualité des reconstructions si elle est trop forte
- Moins performants que les GAN pour la génération réaliste
- > Les GAN produisent souvent des images plus nettes et plus naturelles
- Hypothèse forte sur la distribution latente
- > Le VAE suppose que les variables latentes suivent une loi normale multivariée, ce qui peut être limitant

Conclusion

 Approche puissante pour apprendre des représentations latentes structurées et générer de nouvelles données

- Approche puissante pour apprendre des représentations latentes structurées et générer de nouvelles données
- Optimisation de l'ELBO et au trick de reparamétrisation: entraînement efficace et structuration utile de l'espace latent

- Approche puissante pour apprendre des représentations latentes structurées et générer de nouvelles données
- Optimisation de l'ELBO et au trick de reparamétrisation: entraînement efficace et structuration utile de l'espace latent
- **Mais**: production de résultats pas autant probants que d'autres modèles génératifs comme les GANs

- Approche puissante pour apprendre des représentations latentes structurées et générer de nouvelles données
- Optimisation de l'ELBO et au trick de reparamétrisation: entraînement efficace et structuration utile de l'espace latent
- Mais: production de résultats pas autant probants que d'autres modèles génératifs comme les GANs
- Outil fondamental en IA avec des applications variées en vision par ordinateur, biologie, médecine et traitement du signal

- Approche puissante pour apprendre des représentations latentes structurées et générer de nouvelles données
- Optimisation de l'ELBO et au trick de reparamétrisation: entraînement efficace et structuration utile de l'espace latent
- **Mais**: production de résultats pas autant probants que d'autres modèles génératifs comme les GANs
- Outil fondamental en IA avec des applications variées en vision par ordinateur, biologie, médecine et traitement du signal
- <u>Perspectives</u> amélioration de la qualité des générations en combinant les VAE avec d'autres architectures, comme les VAE- GANs ou les VQVAE

- Approche puissante pour apprendre des représentations latentes structurées et générer de nouvelles données
- Optimisation de l'ELBO et au trick de reparamétrisation: entraînement efficace et structuration utile de l'espace latent
- **Mais**: production de résultats pas autant probants que d'autres modèles génératifs comme les GANs
- Outil fondamental en IA avec des applications variées en vision par ordinateur, biologie, médecine et traitement du signal
- <u>Perspectives</u> amélioration de la qualité des générations en combinant les VAE avec d'autres architectures, comme les VAE- GANs ou les VQVAE
- <u>Finalement</u>: essentiel pour les modèles génératifs, et leur compréhension est un atout majeur pour quiconque s'intéresse au deep learning et à l'intelligence artificielle.

Nous vous remercions pour votre attention.

Pierre Dobeli, Camille Davoine, Mathieu Faessel