

Cursos: Bacharelado em Ciência da Computação e

Bacharelado em Sistemas de Informação

**<u>Disciplinas:</u>** (1493A) Teoria da Computação e Linguagens Formais,

(4623A) Teoria da Computação e Linguagens Formais e

(1601A) Teoria da Computação

**Professora:** Simone das Graças Domingues Prado

**e-mail:** simonedp@fc.unesp.br

**home-page:** wwwp.fc.unesp.br/~simonedp/discipl.htm

# Apostila 04

# **Assunto:** Máquina de Turing

## **Objetivo:**

⇒ Estudar a Máquina de Turing

### Conteúdo:

- 1. Introdução
- 2. Máquina de Turing como Reconhecedora
- 3. Máquina de Turing como Transdutores
- 4. Tese de Turing
- 5. Outros Modelos de Máquina de Turing

## 1. Introdução

Em 1936, Alan Turing introduziu um modelo matemático do processo de computação conhecido atualmente como Máquina de Turing. Sua estrutura é simples e é o principal modelo usado para o estudo do que é ou não computável.

Ainda em 1936, Alonzo Church apresentou a sua Hipótese que afirma que qualquer função computável pode ser processada por uma Máquina de Turing.

Existem vários modelos de Máquinas de Turing. Nessa apostila veremos alguns destes modelos.

Um dos Objetivos da Disciplina é estudar as Linguagens (Figura 1). Anteriormente foram estudadas as Linguagens Regulares e as Linguagens Livres de Contexto. Para cada tipo de Linguagem foram estudados formalismos para a seu reconhecimento e geração.



Figura 1. Hierarquia de Chomsky

Para as Linguagens Regulares (tipo 03) foram estudados os formalismos:

- Operacional ou reconhecedor Autômato Finito (determinístico, não determinístico, mínimo)
- Axiomático ou gerador Gramática Regular
- Denotacional Expressão Regular

Para as Linguagens Livres de Contexto (tipo 02) foram estudados dois formalismos:

- Operacional ou reconhecedor Autômato com Pilha (determinístico, não determinístico)
- Axiomático ou gerador Gramática Livre de Contexto

Para as Linguagens Sensíveis ao Contexto (tipo 01) e Linguagens Enumeráveis Recursivamente (tipo 0) também serão usados formalismos: reconhecedor e gerador das mesmas.

Para as Linguagens Sensíveis ao Contexto (tipo 01) serão usados os formalismos:

- Operacional ou Reconhecedor Máquina de Turing com Fita Limitada
- Axiomático ou gerador Gramática Sensível ao Contexto

Para as Linguagens Enumeráveis Recursivamente (tipo 0) serão estudados os formalismos:

- Operacional ou Reconhecedor Máquina de Turing
- Axiomático ou gerador Gramática Irrestrita

Como a Máquina de Turing será usada como um formalismo reconhecedor das Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente, nessa apostila serão estudadas as Máquinas de Turing de uma forma geral.

A Máquina de Turing consiste de basicamente três partes (veja Figura 2): Uma <u>fita</u>, uma <u>unidade de controle</u> e uma <u>função de transição</u>. A <u>fita</u> é usada como um dispositivo de entrada, saída e memória. Ela é dividida em células que armazenam um símbolo de cada vez. A <u>unidade de controle</u> reflete o estado controle da máquina. Possui uma unidade de leitura e gravação que pode deslocar-se para a esquerda (L) ou para a direita (R) da fita, podendo ler e/ou gravar um único símbolo em cada movimento. A <u>função de transição</u> comanda as leituras e gravações, o sentido de movimento da cabeça e define o estado da máquina.



Figura 2. Uma Máquina de Turing

#### Definição 1.

Uma Máquina de Turing é definida como uma sétupla

$$M = (Q, \Sigma, \Gamma, \delta, q0, F)$$

#### Onde:

Q – conjunto de estados internos

 $\Sigma$  – conjunto do alfabeto de entrada

 $\Gamma$  – conjunto finito de símbolos, chamado de alfabeto da fita

 $\delta$  – função de transição, definida por δ: Q x Γ → Q x Γ x {L, R}

 $q_0$  – estado inicial ( $q_0 \in Q$ )

F – conjunto de estados finais ( $F \in Q$ )

#### Observação:

 $\square$  é um símbolo especial chamado de branco ( $\square \in \Gamma$ )

**Exemplo 01:** Seja a função de transição  $\delta(q_0,a) = (q_1,d,R)$ . Veja o que acontece na Figura 3.



Ou seja, estando em q<sub>0</sub>, lendo o símbolo a da fita, então troca a por d, vai uma casa para a direita e vai para o estado q<sub>1</sub>.

#### Exemplo 02:

Considere a Máquina de Turing  $M = (\{q_0,q_1\}, \{a,b\}, \{a,b,\square\}, \delta, q_0, \{q_1\})$  com

$$\delta(q_0,a) = (q_0,b,R),$$

$$\delta(q_0,b) = (q_0,b,R),$$

$$\delta(q_0, \square) = (q_1, \square, L).$$

#### Assim,

 $\delta(q_0,a) = (q_0,b,R)$ : ao ler o símbolo a, a Máquina de Turing escreve o símbolo b, anda uma célula para a direita e permanece no mesmo estado.



 $\delta(q_0,b) = (q_0,b,R)$ : ao ler o símbolo b, mantém-se o símbolo b, anda uma célula para a direita e permanece no mesmo estado.



 $\delta(q_0, \square) = (q_1, \square, L)$ : ao ler o símbolo branco ( $\square$ ), mantém-se o símbolo  $\square$ , anda uma célula para a esquerda e muda para o estado q<sub>1</sub>, que é o estado final. Então o processo pára.



#### Exemplo 03:

Considere a Máquina de Turing  $M = (\{q_0,q_1\}, \{a,b\}, \{a,b,\square\}, \delta, q_0, \{\})$  com

$$\delta(q_0,a) = (q_1,a,R),$$

$$\delta(q_0,b) = (q_1,b,R),$$

$$\delta(q_0,\square)=(q_1,\square,R),$$

$$\delta(q_1,a) = (q_0,a,L),$$

$$\delta(q_1,b) = (q_0,b,L),$$

$$\delta(q_1,\square)=(q_0,\square,L).$$

Percebe-se que essa Máquina de Turing entrará em "loop" infinito, já que não tem estado final definido.

A <u>aceitação de uma cadeia</u> pela Máquina de Turing acontece quando o estado final é atingido independente de onde a cabeça está na fita. Se a Máquina de Turing pára em algum estado não final ou simplesmente entrar em "loop" infinito, então a cadeia não é aceita.

### 1.2. Descrição instantânea

Qualquer configuração de uma Máquina de Turing é completamente determinada pelo estado corrente da unidade de controle, o conteúdo da fita e a posição da cabeça de leitura-escrita. A configuração pode ser dada pela notação: xqy onde x e y é o conteúdo da fita e q é o estado da unidade de controle.

A mudança de configuração é dada pelo símbolo ⊦, então:

```
Movimento para a direita \Rightarrow se \delta(q,a) = (p,b,R), então x\mathbf{qay} + x\mathbf{bpy}
Movimento para a esquerda \Rightarrow se \delta(q,a) = (p,b,L), então x\mathbf{cqay} + x\mathbf{pcby}
Movimento para a direita, lendo um branco \Rightarrow se \delta(q,\Box) = (p,b,R), então x\mathbf{q} + x\mathbf{bp}
```

Movimento para a direita, lendo um branco  $\Rightarrow$  se  $\delta(q,\Box) = (p,b,L)$ , então x**cq**  $\vdash$  x**pcb** 

#### Exemplo 04:

A ação da Máquina de Turing do exemplo 02 aplicada na cadeia aa pode ser representada por:

```
q_0aa \vdash bq_0a \vdash bbq_0 \Box \vdash bq_1b, ou seja, q_0aa \vdash^* bq_1b
```

#### Definição 2.

Seja uma Máquina de Turing  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ . Então qualquer cadeia  $a_1...a_{k-1}q_1a_ka_{k+1}...a_n$ , com  $a_i \in \Gamma$  e  $q_i \in Q$  é uma descrição instantânea de M.

```
Um movimento a_1...a_{k-1}\mathbf{q_1}\mathbf{a_k}a_{k+1}...a_n \vdash a_1...a_{k-1}\mathbf{bq_2}a_{k+1}...a_n é possível se e somente se \delta(q_1,a_k) = (q_2,b,R).
```

```
Um movimento a_1...a_{k-1}\mathbf{q_1}a_ka_{k+1}...a_n \vdash a_1...\mathbf{q_2}a_{k-1}ba_{k+1}...a_n é possível se e somente se \delta(q_1,a_k) = (q_2,b,L).
```

M é dito estar no estado de interrupção para alguma configuração inicial  $x_1q_ix_2$  se

$$x_1 \bm{q}_i x_2 \vdash^* y_1 q_j a y_2$$
 para quaisquer  $q_j$  e a, para os quais  $\delta(q_j,\!a)$  é indefinida.

O caso especial onde a Máquina de Turing entra em loop infinito (veja Exemplo 03) pode ser representada por:  $x_1 \mathbf{q} x_2 \vdash^* \infty$ 

## 2. Máquinas de Turing como reconhecedores

Uma linguagem aceita ou reconhecida por uma Máquina de Turing é dada pela definição abaixo:

#### Definição 03

Seja uma Máquina de Turing  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ , então a linguagem reconhecida por M é:

$$L(M) = \{ w \in \Sigma^+: q_0w \vdash^* x_1q_fx_2 \text{ para algum } q_f \in F \text{ e } x_1, x_2 \in \Gamma^* \}$$

#### Exemplo 05:

Para  $\Sigma = \{0,1\}$ , a Máquina de Turing que aceita a linguagem denotada pela Expressão Regular ER = 0\* pode ser definida como:

$$\begin{split} M &= (\{q_0,q_1\},\ \{0\},\ \{0,\square\},\ \delta,\ q_0,\ \{q_1\})\ com\\ \delta(q_0,0) &= (q_0,0,R)\ e\\ \delta(q_0,\ \square) &= (q_1,\square,R). \end{split}$$

### Exemplo 06:

Para  $\Sigma = \{a,b\}$ , a Máquina de Turing que aceita  $L = \{a^nb^n | n \ge 1\}$  pode ser definida como:

 $M = (\{q_0,q_1,q_2,q_3,q_4\}, \{a,b\}, \{a,b,x,y,\Box\}, \delta, q_0, \{q_4\}) \text{ com:}$ 

 $\delta(q_0,a) = (q_1,x,R),$ 

 $\delta(q_1,a) = (q_1,a,R),$ 

 $\delta(q_1,y) = (q_1,y,R),$ 

 $\delta(q_1,b) = (q_2,y,L),$ 

 $\delta(q_2,y) = (q_2,y,L),$ 

 $\delta(q_2,a) = (q_2,a,L),$ 

 $\delta(q_2,x) = (q_0,x,R)$ 

 $\delta(q_0,y) = (q_3,y,R),$ 

 $\delta(q_3,y)=(q_3,y,R),$ 

 $\delta(q_3,\square) = (q_4,\square,R)$ 



Figura 7. Simulando com o JFLAP



Figura 8. Simulador Turing

#### Note que:

- O estado  $q_0$  ao encontrar "a", escreve "x" (ou seja, marca "a") e muda de estado  $(q_1)$ .
- O estado q<sub>1</sub> é responsável por encontrar um "b" e marcá-lo com "y"
- A partir daí, outro estado (q<sub>2</sub>) entra em ação. Ele volta na fita até encontrar "x" (o último "a" marcado)
- Quando  $q_2$  encontra o "x", devolve o controle para o estado  $q_0$  que recomeça o processamento.
- Quando q<sub>0</sub> encontra o "y" significa que já terminou de marcar os símbolos "a". Então, se não houver mais "b" para serem marcados, a cadeia está correta.
- Para isso, é usado o estado q₃ para percorrer o restante da cadeia. Se encontrar só "y" e encontrar o branco (□), então a cadeia está correta.
- Se encontrar algum "b", a Máquina de Turing pára (já que não existe uma transição δ(q<sub>3</sub>,b) = ... ) e a cadeia não é aceita.

Assim, na Máquina de Turing, os estados têm funções bem definidas a serem executadas.

- $q_0$  é responsável em marcar o símbolo "a" e acionar  $q_1$  ou se encontrar "y", acionar  $q_3$
- $q_1$  é responsável por encontrar um "b", marcá-lo ("y") e acionar o  $q_2$ . Se ele encontrar um branco( $\square$ ), significa que falta "b" nesta cadeia. A cadeia não será aceita.
- $q_2$  é responsável por voltar na fita até encontrar o último "a" marcado, ou seja, um "x". Ao encontrar, aciona o  $q_0$
- q₃ é responsável pela verificação final da cadeia. Se encontrar só "y" e branco (□), então a cadeia está correta e aciona o q₄. Caso contrário, a cadeia não é aceita.
- q<sub>4</sub> é o estado final, indicando que a cadeia está correta.

#### Seja w = aabb, então:

 $\underline{q_0a}$ abb +  $\underline{xq_1a}$ bb +  $\underline{xq_2a}$ yb +  $\underline{q_2x}$ ayb +  $\underline{xq_0a}$ yb +  $\underline{xxq_1y}$ b +  $\underline{xxq_1y}$ b +  $\underline{xxq_2y}$ y +  $\underline{xq_2x}$ yy +  $\underline{xxq_0y}$ y +  $\underline{xxyq_3y}$  +  $\underline{xxyyq_3}$  +  $\underline{xxyyq_4}$ . Como  $q_4 \in F$ , então  $w = aabb \in L(M)$ .

#### Seja w = aab, então:

 $\underline{q_0}\underline{a}ab \vdash x\underline{q_1}\underline{a}b \vdash x\underline{aq_1}\underline{b} \vdash x\underline{q_2}\underline{a}y \vdash \underline{q_2}\underline{x}ay \vdash x\underline{q_0}\underline{a}y \vdash xx\underline{q_1}\underline{y} \vdash xxyq_1$ Como não existe  $\delta(q_1, \square)$ , então w = aab não pertence à L(M).

#### Seja w = aabbb, então:

 $\underline{q_0a}$ abbb  $\vdash x\underline{q_1a}$ bbb  $\vdash x\underline{q_2a}$ ybb  $\vdash \underline{q_2x}$ aybb  $\vdash x\underline{q_0a}$ ybb  $\vdash xx\underline{q_1y}$ bb  $\vdash xxy\underline{q_1b}$ b  $\vdash xx\underline{q_2y}$ yb  $\vdash x\underline{q_2x}$ yyb  $\vdash xx\underline{q_0y}$ yb  $\vdash xxy\underline{q_3y}$ b  $\vdash xxyy\underline{q_3b}$  Como não existe  $\delta(q_3,b)$ , então w = aabbb não pertence à L(M).

z;z,R

x;x,R

□: □. R

#### Exemplo 07:

Para  $\Sigma = \{a,b\}$ , a Máquina de Turing que aceita  $L = \{a^nb^nc^n| n \ge 1\}$  pode ser definida como:

y;y,R

z;z,R

 $M = (\{q_0,q_1,q_2,q_3,q_4,q_5\}, \{a,b,c\}, \{a,b,c,x,y,z,\Box\}, \delta, q_0, \{q_5\}) \text{ com:}$ 

 $\delta(q_0,a) = (q_1,x,R),$ 

 $\delta(q_1,a) = (q_1,a,R),$ 

 $\delta(q_1,b) = (q_2,y,R),$ 

 $\delta(q_2,b) = (q_2,b,R),$ 

 $\delta(q_2,c)=(q_3,z,L),$ 

 $\delta(q_3,b) = (q_3,b,L),$ 

 $\delta(q_3,y) = (q_3,y,L),$ 

2(43,7) (43,7,2),

 $\delta(q_3,a)=(q_3,a,L),$ 

 $\delta(q_3,x)=(q_0,x,R),$ 

 $\delta(q_1,y) = (q_1,y,R),$  $\delta(q_2,z) = (q_2,z,R),$ 

 $\delta(q_3,z) = (q_3,z,L),$ 

S(-, --) - (-, -- **D**)

 $\delta(q_0,y) = (q_4,y,R),$  $\delta(q_4,y) = (q_4,y,R),$ 

 $\delta(q_4,z) = (q_4,z,R),$ 

 $\delta(q_4,\square) = (q_5,\square,R).$ 

## Seja w = aabbcc, então:

 $\begin{array}{l} \underline{q_0\underline{a}}abbcc \vdash x\underline{q_1\underline{a}}bbcc \vdash xa\underline{q_1}\underline{b}bcc \vdash xa\underline{y}\underline{q_2}\underline{b}cc \vdash xa\underline{y}\underline{q_2}\underline{c}c \vdash xa\underline{y}\underline{q_3}\underline{b}zc \vdash xa\underline{q_3}\underline{y}bzc \vdash x\underline{q_3}\underline{a}\underline{y}bzc \vdash x\underline{q_3}\underline{a}\underline{y}bzc \vdash x\underline{x}\underline{y}\underline{q_2}\underline{c}c \vdash xx\underline{y}\underline{y}\underline{q_2}\underline{c}c \vdash xx\underline{y}\underline{q_2}\underline{c}c \vdash xx\underline{q_2}\underline{q_2}\underline{c}c \vdash xx\underline{q_2}\underline{q_2}\underline{q_2}\underline{c}c \vdash xx\underline{q_2}\underline{q_2}\underline{c}c \vdash xx\underline{q_2}\underline{q_2}\underline{c}c \vdash xx\underline{q_2}\underline{q_2}\underline{q_2}\underline{c}c \vdash$ 

Como  $q_5 \in F$ , então  $w = aabbcc \in L(M)$ .

#### Exemplo 08:

Para  $\Sigma = \{a,b\}$ , a Máquina de Turing que aceita  $L = \{wcw^R | w \in \{a,b\}^*\}$  pode ser definida como:  $M = (\{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7\}, \{a,b,c\}, \{a,b,c,x,y,\Box\}, \delta, q_0, \{q_7\})$  com:

 $\delta(q_0,a) = (q_1,x,R),$ 

 $\delta(q_1,a) = (q_1,a,R),$ 

 $\delta(q_1,b) = (q_1,b,R),$ 

 $\delta(q_1,c) = (q_1,c,R),$ 

 $\delta(q_1,\square) = (q_3,\square,L),$ 

 $\delta(q_1,x) = (q_3,x,L),$ 

 $\delta(q_1,y)=(q_3,y,L),$ 

 $\delta(q_3,a)=(q_5,x,L),$ 

 $\delta(q_0,b) = (q_2,y,R),$ 

 $\delta(q_2,a) = (q_2,a,R),$ 

 $\delta(q_2,b) = (q_2,b,R),$ 

 $\delta(q_2,c) = (q_2,c,R),$ 

 $\delta(q_2,\square)=(q_4,\square,L),$ 

 $\delta(q_2,x) = (q_4,x,L),$ 

 $\delta(q_2,y) = (q_4,y,L),$ 

 $\delta(q_4,b) = (q_5,y,L),$ 

 $\delta(q_0,c) = (q_6,c,R),$ 

 $\delta(q_6,x) = (q_6,x,R),$ 

 $\delta(q_6,y) = (q_6,y,R),$ 

 $\delta(\mathsf{q}_6,\square)=(\mathsf{q}_7,\square,\mathsf{L}).$ 

 $\delta(q_5,a) = (q_5,a,L),$ 

 $\delta(q_5,b) = (q_5,b,L),$ 

 $\delta(q_5,c) = (q_5,c,L),$ 

 $\delta(q_5,x) = (q_0,x,R),$ 

 $\delta(q_5,y) = (q_0,y,R)$ 



## 3. Máquinas de Turing como transdutores

#### Definição 04

Uma função f, com domínio D, é dita ser Turing-Computável ou simplesmente computável se existe alguma Máquina de Turing  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$  tal que

 $q_0 w \vdash *_M q_f f(w), q_f \in F$ para toda cadeia  $w \in D$ .

#### Exemplo 09:

Dados dois números positivos x e y. Construa uma Máquina de Turing que calcule x + y.

Seja x = |z(x)| com  $z(x) \in \{1\}^*$ , ou seja, o número será representado pela quantidade de dígitos 1 (por exemplo, 3 = 111).

 $\Box$ ;  $\Box$ ,  $\Box$ 

A Máquina de Turing deverá calcular:  $q_0 w = q_0 z(x) 0 z(y) + q_f z(x + y) 0$ 

Seja M =  $(\{q_0,q_1,q_2,q_3,q_4\}, \{1\}, \{1,0,\square\}, \delta, q_0, \{q_4\})$  com:

 $\delta(q_0,1) = (q_0,1,R),$ 

 $\delta(q_0,0) = (q_1,1,R),$ 

 $\delta(q_1,1) = (q_1,1,R),$ 

 $\delta(q_1,\square) = (q_2,\square,L),$ 

 $\delta(q_2,1) = (q_3,0,L),$ 

 $\delta(q_3,1) = (q_3,1,L),$ 

 $\delta(q_3,\square) = (q_4,\square,R).$ 



#### Exemplo 10:

Dados dois números positivos x e y. Construa uma Máguina de Turing que verifique se  $x \ge y$  ou x < y. Seja  $x = |z(x)| \cos z(x) \in \{1\}^*$ , como no exemplo anterior.

A Máquina de Turing deverá chegar

ao estado 
$$q_{maior-igual}$$
 se  $x \ge y$ , ou seja,  $q_0 w = q_0 z(x) \ 0 \ z(y) + q_{maior-igual} \ z(x) \ 0 \ z(y)$  ao estado  $q_{menor}$  se  $x < y$ , ou seja,  $q_0 w = q_0 z(x) \ 0 \ z(y) + q_{menor} \ z(x) \ 0 \ z(y)$ 

 $\square$ ;  $\square$ , R

```
M = (\{q_0,q_1,q_2,q_3,q_4,q_f,q_v,\,q_{>=},\,q_{<}\},\,\{1,0\},\,\{1,0,x,y,\square\},\,\delta,\,q_0,\,\{\,q_{>=},\,q_{<}\,\}) \text{ com: }
\delta(q_0,1) = (q_1,x,R),
\delta(q_0,0) = (q_4,0,R),
                                                                                                                                                                                                                                                                                                                                           1;1,R
\delta(q_1,1) = (q_1,1,R),
\delta(q_1,0) = (q_2,0,R),
                                                                                                                                                                                                                                                                                                                                                                                                    0;0,R
\delta(q_2,1) = (q_3,y,L),
\delta(q_2,y) = (q_2,y,R),
                                                                                                                                                                                                                                                                                                                                           0;0,L
\delta(q_2,\square)=(q_v,\square,L),
\delta(q_3,y) = (q_3,y,L),
\delta(q_3,0) = (q_3,0,L),
\delta(q_3,1) = (q_3,1,L),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \square; \square, R
\delta(q_3,x) = (q_0,x,R),
\delta(q_4,y) = (q_4,y,R),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  y;1,L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   x;1,L
\delta(q_4,1) = (q_f,1,L),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0;0,L
\delta(q_4,\square)=(q_v,\square,L),
\delta(q_f,0) = (q_f,0,L),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            □; □, R.
\delta(q_f,y) = (q_f,1,L),
\delta(q_f,x) = (q_f,1,L),
\delta(q_f,\square) = (q_{<},\square,R),
\delta(q_v,y) = (q_v,1,L),
\delta(q_v, x) = (q_v, 1, L),
\delta(q_v,0) = (q_v,0,L),
\delta(q_{v},1) = (q_{v},1,L),
\delta(q_{v},\square) = (q_{>=},\square,R).
Seja x = 5 e y = 3, então w = 111110111
\underline{q_01}11110111 + \underline{xq_11}1110111 + \underline{*x1111q_10}111 + \underline{x111110q_21}11 + \underline{x11111q_30} + \underline{x1111q_30} + \underline{x1111q_310} + \underline{x1111q_30} + \underline{x111q_30} + \underline{x111q_30} + \underline{x111q_30} + \underline{x111q_30} + \underline{x111q_30} + \underline{x111q_30} + \underline{x11q_30} + \underline{x1q_30} + \underline
```

```
Seja x = 5 e y = 3, então w = 111110111 

q_0111110111 + xq_111110111 + x11111q_10111 + x111110q_2111 + x11111q_30y11+ x111q_310y11 

+ xq_3x11110y11 + xq_011110y11 + xxq_11110y11 + xx1111q_10y11+ xx1110q_2y11 

+ xx1110yq_211 + xx1110q_3yy1 + xx111q_30yy1+ xx11q_310yy1+* xq_3x1110yy1 

+ xxq_01110yy1 + xxxq_1110yy1 + xxx11q_10yy1 + xxx110q_2yy1 + xxx110yq_21 

+ xxx110yq_3yy + xxx11q_30yyy+ xxx1q_310yyy+ xxq_3x110yyy+ xxxq_0110yyy 

+ xxxxq_110yyy + xxxx1q_10yyy + xxxx10q_2yyy + xxxx10yyyq_2 + xxxx10yyq_{v1}y 

+ xxxx1q_{v1}0111 + xxxxq_{v1}10111 + xxxq_{v1}x10111 + q_{v1}111110111 

+ \Box q_{>=}111110111
```

 $\begin{aligned} \text{Seja x} &= 2 \ \text{ e y} = \ 3, \, \text{então w} = 110111 \\ &+ x \underline{q_1} \underline{1} 0111 + x 1 \underline{q_1} \underline{0} 111 + x 1 0 \underline{q_2} \underline{1} 11 + x 1 \underline{q_3} \underline{0} y 11 + x \underline{q_3} \underline{1} 0 y 11 + \underline{q_3} \underline{x} 10 y 11 \\ &+ x \underline{q_0} \underline{1} 0 y 11 + x x \underline{q_1} \underline{0} y 11 + x x 0 \underline{q_2} y 11 + x x 0 \underline{y} \underline{q_2} \underline{1} 1 + x x 0 \underline{q_3} \underline{y} y 1 + x x \underline{q_3} \underline{0} y y 1 + x \underline{x} \underline{q_3} \underline{0} y y 1 + x x \underline{q_6} \underline{0} y y 1 + x x 0 \underline{q_4} \underline{y} y 1 + x x x 0 \underline{y} \underline{q_4} \underline{1} + x x 0 \underline{y} \underline{q_6} \underline{y} 1 + x x \underline{q_6} \underline{0} 111 + x \underline{q_6} \underline{x} 0 111 \\ &+ x \underline{q_6} \underline{1} \underline{1} 10111 + \underline{q_6} \underline{1} 10111 \end{aligned}$ 

Então 2 < 3, já que se chegou a  $\mathbf{q} <$ 

Então  $5 \ge 3$ , já que se chegou a  $\mathbf{q}_{>=}$ 

## Exemplo 11:

Dados dois números positivos x e y. Construa uma Máquina de Turing que verifique calcule a função:

$$f(x,y) = \begin{cases} x+y, & se & x \ge y \\ 0, & se & x < y \end{cases}$$

Seja  $x = |z(x)| \cos z(x) \in \{1\}^*$ , como nos exemplos anteriores.

A Máquina de Turing passará por duas etapas (veja a figura 04):

A primeira etapa verifica se  $x \ge y$  ou x < y (como no Exemplo 09)

A segunda etapa recebe um sinal da etapa anterior

Se sinal que  $x \ge y$ , então faz x + y (como no Exemplo 08)

Se sinal que x < y, então coloca na fita  $\Box 0 \Box$ 



Figura 9. Uma MT complexa

Se 
$$x = 3$$
 e  $y = 2$ ,  $w = \Box 111011\Box$ ,  $f(x,y) = \Box 111111\Box\Box$   
Se  $x = 2$  e  $y = 3$ ,  $w = \Box 110111\Box$ ,  $f(x,y) = \Box 0\Box$ 

Obs: Para enviar um sinal deve-se mudar de estado.

A Máquina de Turing deverá fazer:

1<sup>a</sup>. Etapa:

$$q_{C0} z(x) 0 z(y) \vdash^* q_{S0} z(x) 0 z(y) \text{ se } x \ge y$$
  
 $q_{C0} z(x) 0 z(y) \vdash^* q_{A0} z(x) 0 z(y) \text{ se } x < y$ 

#### 2<sup>a</sup>. Etapa:

$$q_{S0} z(x) 0 z(y) \vdash^* q_{Sf} z(x + y) 0$$
 ou  $q_{A0} z(x) 0 z(y) \vdash^* q_{Af} 0$ 

 $q_{C0}$  = estado inicial do comparador

 $q_{S0}$  = estado final do comparador quando  $x \ge y$ , e também o estado inicial do somador

 $q_{A0}$  = estado final do comparador quando x < y, e também o estado inicial do apagador

 $q_{Sf}$  = estado final do somador

q<sub>Af</sub> = estado final do apagador

Veja como fica a Máquina de Turing:

 $M = (\{q_0,q_1,q_2,q_3,q_4,q_f,q_v,q_{0s},q_{1s},q_{2s},q_{3s},q_{4s},q_{0a},q_{1a},q_{2a},q_{3a},q_{4a}\}, \{1,0\}, \{1,0,x,y,\Box\}, \delta, q_0, \{q_{4s},q_{4a}\}) com:$ 

#### Comparador:

 $\delta(q_0,1) = (q_1,x,R),$ 

 $\delta(q_0,0) = (q_4,0,R),$ 

 $\delta(q_1,1) = (q_1,1,R),$ 

 $\delta(q_1,0) = (q_2,0,R),$ 

 $\delta(q_2,1) = (q_3,y,L),$ 

 $\delta(q_2,y) = (q_2,y,R),$ 

 $\delta(q_2,\square) = (q_v,\square,L),$ 

 $\delta(q_3,y)=(q_3,y,L),$ 

 $\delta(q_3,0) = (q_3,0,L),$ 

 $\delta(q_3,1) = (q_3,1,L),$ 

 $\delta(q_3,x)=(q_0,x,R),$ 

 $\delta(q_4,y) = (q_4,y,R),$ 

 $\delta(q_4, 1) = (q_f, 1, L),$ 

 $\delta(q_4,\square) = (q_v,\square,L),$ 

 $\delta(q_f,0) = (q_f,0,L),$ 

 $\delta(q_f, y) = (q_f, 1, L),$ 

 $\delta(q_f,x) = (q_f,1,L),$ 

 $\delta(q_f,\square) = (q_{0a},\square,R),$ 

 $\delta(q_v,y) = (q_v,1,L),$ 

 $\delta(q_v,x) = (q_v,1,L),$ 

 $\delta(q_v,0) = (q_v,0,L),$ 

 $\delta(q_{v},1) = (q_{v},1,L),$ 

 $\delta(q_v,\Box) = (q_{0s},\Box,R).$ 

#### Somador:

$$\delta(q_{0s},1) = (q_{0s},1,R),$$

$$\delta(q_{0s},0) = (q_{1s},1,R),$$

$$\delta(q_{1s},1) = (q_{1s},1,R),$$

$$\delta(q_{1s},\square)=(q_{2s},\square,L),$$

$$\delta(q_{2s},1) = (q_{3s},0,L),$$

$$\delta(q_{3s},1) = (q_{3s},1,L),$$

$$\delta(q_{3s},\square) = (q_{4s},\square,R).$$

## Apagador:

```
\begin{split} \delta(q_{0a},1) &= (q_{1a},0,R), \\ \delta(q_{0a},0) &= (q_{1a},0,R), \\ \delta(q_{1a},1) &= (q_{1a},\square,R), \\ \delta(q_{1a},0) &= (q_{1a},\square,R), \\ \delta(q_{1a},\square) &= (q_{2a},\square,L), \\ \delta(q_{2a},\square) &= (q_{2a},\square,L), \\ \delta(q_{2a},0) &= (q_{3a},0,L), \\ \delta(q_{3a},\square) &= (q_{4a},\square,R), \end{split}
```



Sabendo que z(1111111110) = 8, temos que: f(5,3) = 8

$$\begin{split} \text{Seja x = 2 } & \text{ e y = 3, então w = } 110111 \\ & + \text{ xq$_1$_1$_0$_1$_11 + $x$_1$_2$_1$_0$_111 + $x$_1$_2$_2$_111 + $x$_1$_2$_3$_0$_y11 + $x$_2$_3$_10y11 + $x$_2$_10y11 + $x$_2$_10y11 + $x$_2$_10y11 + $x$_2$_2$_2$_11 + $x$_2$_2$_2$_11 + $x$_2$_2$_3$_2$_y1 + $x$_2$_3$_2$_yy1 + $x$_2$_3$_2$_$$

### Exemplo 12:

Considere a macroinstrução:

 $\begin{array}{cc} if & a \\ then & q_j \\ else & q_k \end{array}$ 

ou seja, a Máquina de Turing ao ler o símbolo a, move-se para o estado  $q_j$  sem alterar o conteúdo da fita e sem alterar a posição da cabeça de leitura/escrita. Caso contrário, move-se para  $q_k$  sem causar nenhuma alteração.

Então podem ser escritas as seguintes funções de transição:

 $\delta(q_i, a) = (q_{i0}, a, R)$  para todo  $q_i \in Q$ 

 $\delta(q_i,\,b) = (q_{k0},\,b,\,R) \quad \text{para todo } q_i \in Q, \text{todo } b \in \Gamma \text{ -}\{a\}$ 

 $\delta(q_{i0}, c) = (q_i, c, L)$  para todo  $c \in \Gamma$ 

 $\delta(q_{k0}, c) = (q_k, c, L)$  para todo  $c \in \Gamma$ 

Ao ler o símbolo a, estando em qualquer estado, vai-se para o estado  $q_{j0}$  (estado auxiliar) que volta uma posição e passa para o estado  $q_{j}$ . Dessa forma, a cabeça da fita volta na célula que tem o símbolo a no estado  $q_{j}$ .



Ao ler qualquer outro símbolo (b, por exemplo), a cabeça da fita vai para a direita e muda o estado para  $q_{k0}$  (também um estado auxiliar). Estando no estado  $q_{k0}$ , a cabeça da fita move-se para a esquerda e fica no estado  $q_k$ .



Fazendo isso, a Máquina de Turing consegue resolver a macroinstrução if a then q<sub>i</sub> else q<sub>k</sub>

## **OBSERVAÇÃO**

É possível trabalhar com subprogramas nas Máquinas de Turing. A idéia é que uma Máquina de Turing (MT-A) possa invocar outra Máquina de Turing (MT-B) para executar um subprograma. Isso irá requerer uma nova característica: as duas trocarão informações. Para simular isso, basta que se reserve uma região da fita para fazer a troca de informação.

## 4. Tese de Turing

"Qualquer computação que pode ser executada por meios mecânicos pode ser executada por uma Máquina de Turing"

### Definição 05

Um algoritmo, para uma função  $f: D \to R$ , é uma Máquina de Turing M, M = (Q,  $\Sigma$ ,  $\Gamma$ ,  $\delta$ , q<sub>0</sub>, F), se para uma entrada qualquer w  $\in$  D, a máquina de Turing encontra a resposta correta f(d)  $\in$  R tal que

$$q_0w \vdash *q_ff(w), \ q_f \in F$$
 para toda cadeia  $w \in D$ .

## 5. Outros modelos de Máquinas de Turing

## 5.1. Máquina de Turing com opção de parada

Essa Máquina de Turing acrescenta, na sua função de transição, a possibilidade de não mover a cabeça da fita a cada movimento. Assim, a definição como Máquina de Turing (Definição 01) só altera a definição da função de transição para:

$$δ$$
: Q x Γ → Q x Γ x {L, R, S}

onde aparece, além dos símbolos L e R, o símbolo S (Stay-ficar)

Essas Máquinas de Turing são equivalentes às Máquinas de Turing vistas anteriormente.

## 5.2. Máquina de Turing com fita semi-infinita

Uma Máquina de Turing pode ter uma fita infinita à esquerda e/ou à direita. Se a fita é ilimitada à esquerda e à direita então temos uma Máquina de Turing padrão. Caso haja um limite na fita à direita ou à esquerda ela é chamada de Máquina de Turing com fita semi-infinita. Dessa forma, em uma direção da fita os movimentos são restritos. Não se pode mover para fora da fita.

Se nas duas direções há restrições de movimento então estaremos trabalhando com uma Máquina de Turing com fita limitada. Essa é também chamada de Autômato Limitado Linearmente ou Autômato de Fita limitada. Essa Máquina de Turing será vista posteriormente.

## 5.3. Máquina de Turing com múltiplas fitas

Essa Máquina de Turing possui mais que uma fita e para cada uma dessas fitas existe uma cabeça de leitura/escrita. A sua definição segue a Definição 01 com a modificação da função de transição para:

$$δ: Q x Γn → Q x Γn x {L, R}n$$

onde n é a quantidade de fitas na Máquina de Turing.

Suponha n = 2 e a função de transição:  $\delta(q_0, a, b) = (q_1, x, y, L, R)$ ,

Pode-se ler: estando no estado  $q_0$  - ao ler na Fita01 o símbolo a e na Fita02 o símbolo b então vai para o estado  $q_1$ , escreve x na Fita01, y na Fita02 e move-se para a esquerda na Fita01 e para a direita na Fita02.

## 5.4. Máquina de Turing com múltiplas cabeças

Essa Máquina de Turing possui uma única fita e k (k > 1) cabeças de leitura/gravação sobre a mesma fita. O processamento dependerá do estado corrente e do símbolo lido em cada uma das cabeças.

## 5.5. Máquina de Turing com múltiplas trilhas

Essa Máquina de Turing possui uma única fita e uma cabeça de leitura/gravação, só que possui múltiplas trilhas na fita. Isso implica em ter mais de um símbolo em cada posição de leitura/escrita da cabeça da fita. Por exemplo,  $\Gamma$  pode conter pares de elementos de  $\Sigma$ . Assim as triplas como símbolos  $(a_1,b_1,c_1)$ ,  $(a_2,b_2,c_2)$ , ...,  $(a_n,b_n,c_n)$  podem ser vistos como n símbolos ou como combinação de três cadeias, uma em cada trilha:  $a_1b_1c_1,\ a_2b_2c_2,\ ...,\ a_nb_nc_n$ 

## 5.6. Máquina de Turing Multidimensional

Nessa Máquina de Turing a fita é substituída por uma estrutura m-dimensional, infinita em todas as suas direções. Por exemplo, numa Máquina de Turing bidimensional a cabeça de leitura/gravação da fita pode ir para esquerda, direita, acima e abaixo e função de transição pode ser definida como:

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\}$$

onde U (up) é para cima e D (down) é para baixo

### 5.7. Máquina de Turing Não Determinístico

#### Definição 06

Uma Máquina de Turing Não Determinística,  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ , é aquela em que a função de transição é definida da forma:

$$δ$$
: Q x  $Γ → 2^{Q x Γ x \{L, R\}}$ 

Assim, a função de transição poderá gerar subconjuntos, ou seja, várias possibilidades a partir de um estado e um símbolo lido.

Suponha a função de transição:  $\delta(q_0,a) = \{(q_1, x, R), (q_2, y, L)\}$ 

Os movimentos q₀aaa ⊦ xq₁aa e q₀aaa ⊦ q₁□yaa são possíveis.

OBS: As Máquinas de Turing Não Determinísticas são equivalentes às Máquinas de Turing Determinísticas (Definição 01).

## 5.8. Máquina de Turing com fita limitada ou Autômato Limitado Linearmente

A Máquina de Turing tem uma fita ilimitada. Para fazer a restrição de limites nas duas direções, a fita irá possuir um número de células que conterá a entrada mais duas células. Essas duas células a mais armazenarão os símbolos especiais: '[' e ']' que simbolizam o início e o final da entrada.

#### Definição 07

Um Autômato Limitado Linearmente é uma Máquina de Turing Não Determinística,

 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ , onde:

- a)  $\Sigma$  deve conter os símbolos [ e ]
- b)  $\delta(q_i, [) = (q_i, [, R)$
- c)  $\delta(q_i, ]) = (q_j, ], R)$

#### Definição 08

Uma cadeia é aceita por um Autômato Limitado Linearmente se existe uma següência possível de movimentos

```
q_0[w] \vdash^* [x_1 q_f x_2]
para algum q_f \in F e x_1, x_2 \in \Gamma^*.
```

A linguagem aceita por um Autômato Limitado Linearmente é o conjunto de todas as cadeias aceitas.

```
Exemplo 12:
```

```
A linguagem L = \{ww \mid w \text{ é uma cadeia de } \{a,b\}^*\} tem o Autômato Limitado Linearmente M:
M = (\{q_0,q_1,...,q_{11},q_f\}, \{a,b,[,]\}, \{a,b,x,y\}, \delta, q_0, \{q_f\}) onde
\delta(q_0, [) = \{(q_1, [, R)\},
\delta(q_1, a) = \{(q_2, x, R)\},\
\delta(q_1, b) = \{(q_3, x, R)\},\
\delta(q_1, ]) = \{(q_f, ], L)\},
\delta(q_2, a) = \{(q_2, a, R), (q_4, y, L)\}
\delta(q_2, b) = \{(q_2, b, R)\},\
\delta(q_3, a) = \{(q_3, a, R), (q_4, y, L)\}
\delta(q_3, b) = \{(q_3, b, R)\},\
\delta(q_4, a) = \{(q_4, a, L)\},\
\delta(q_4, b) = \{(q_4, b, L)\},\
\delta(q_4, x) = \{(q_5, x, R)\},\
\delta(q_5, a) = \{(q_6, x, R)\},\
\delta(q_5, b) = \{(q_8, x, R)\},\
\delta(q_5, y) = \{(q_{11}, y, R)\},\
\delta(q_6, a) = \{(q_6, a, R)\},\
\delta(q_6, b) = \{(q_6, b, R)\},\
\delta(q_6, y) = \{(q_7, y, R)\},\
\delta(q_8, a) = \{(q_8, a, R)\},\
\delta(q_8, b) = \{(q_8, b, R)\},\
\delta(q_8, y) = \{(q_9, y, R)\},\
\delta(q_7, a) = \{(q_{10}, y, L)\},\
\delta(q_7, y) = \{(q_7, y, R)\},\
\delta(q_9, b) = \{(q_{10}, y, L)\},\
\delta(q_9, y) = \{(q_9, y, R)\},\
\delta(q_{10}, a) = \{(q_{10}, a, L)\},\
\delta(q_{10}, b) = \{(q_{10}, b, L)\},\
\delta(q_{10}, y) = \{(q_{10}, y, L)\},\
\delta(q_{10}, x) = \{(q_5, x, R)\},\
\delta(q_{11}, y) = \{(q_{11}, y, R)\},\
\delta(q_{11}, ]) = \{(q_f, ], L)\}.
```

