# Introduction to Statistical Modeling Multicollinearity

Joris Vankerschaver

## Multicollinearity

- There is multicollinearity when 2 or more predictors are correlated
- Can possibly cause problems: if there is strong correlation between 2 predictors  $X_1$  and  $X_2$ , it becomes difficult to discern effect of  $X_1$  of effect of  $X_2$

Example: If  $X_1=X_2$ , then

$$E(Y|X_1,X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 = \beta_0 + (\beta_1 + \beta_2) X_1$$

## Consequences

- Numerically instable estimates
- Estimates with large standard errors
- Difficult interpretation of coefficients

## Diagnosing multicollinearity

#### Multicollinearity can be recognized through:

- Instability:
  - Large changes in coefficients after adding a predictor
  - Very wide confidence intervals
  - Unexpected results
- Strong correlation between predictors:
  - ullet Example: usually strong correlation between  $X_f$  and  $X_f X_s$
  - Can sometimes be eliminated by centering (subtracting the mean):

$$X \to X - \bar{X}$$
.

Impact of centering
Correlation = 0.99

Correlation = 0.12



4/15

## Scatterplot matrix - before centering



## Scatterplot matrix - after centering



# Diagnosing multicollinearity

#### Previous diagnostics are limited:

- $\bullet$  Even if pairwise correlations between predictors  $X_1,X_2,X_3$  low, there can be strong multicollinearity.
- $\bullet$  E.g., when strong correlation between  $X_1$  and a linear combination of  $X_2$  and  $X_3.$

#### **Variance inflation factor** for $k^{th}$ coefficient:

$$VIF_k = \left(1 - R_k^2\right)^{-1}$$

with  ${\cal R}^2_k$  the  ${\cal R}^2$  of linear regression of  $k^{th}$  predictor on other predictors.

## Interpretation VIF

- ${\rm VIF}_k \ge 1$ ;  ${\rm VIF}_k = 1$  if  $k^{th}$  predictor not linearly associated with other predictors.
- Expresses how much larger variance on  $k^{th}$  coefficient is than when all predictors were independent.
- Average quadratic distance between estimated and true coefficients is proportionate with average VIF.
- Critical multicollinearity: maximum VIF of at least 10.



5

3

5 6

3

## Simpler interpretation of coefficients

## Coefficients (without centering)

```
Estimate Std. Error
                                            t value
                                                       Pr(>|t|)
                   160.66283
                               175.61424 0.9148622 0.370649894
(Intercept)
nitrogen
                    -76.49677
                               92.34000 -0.8284250 0.416746264
                 -1120.70470
phosphor
                               711.42841 -1.5752881 0.130135986
                   138.06170
potassium
                                41.29966 3.3429260 0.003084272
nitrogen:phosphor
                   724.38231
                              353.05353 2.0517634 0.052870451
```

## Coefficients (with centering)

|                     | Estimate | Std. Error | t value   | Pr(> t )     |
|---------------------|----------|------------|-----------|--------------|
| (Intercept)         | 184.1200 | 9.244736   | 19.916194 | 4.079334e-15 |
| cnitrogen           | 105.0167 | 21.458692  | 4.893901  | 7.703187e-05 |
| cphosphor           | 252.5570 | 156.336392 | 1.615472  | 1.211339e-01 |
| cpotassium          | 138.0617 | 41.299658  | 3.342926  | 3.084272e-03 |
| cnitrogen:cphosphor | 724.3823 | 353.053531 | 2.051763  | 5.287045e-02 |

# Example: Prediction body fat

- Determining percentage body fat difficult and expensive
- Study investigates association between
  - Y: body fat
  - X<sub>1</sub>: triceps skinfold thickness
  - X<sub>2</sub>: thigh circumference
  - X<sub>3</sub>: midarm circumference
- 20 healthy women between 25 and 34 years old

## Analysis in R

#### Call:

lm(formula = bodyfat ~ triceps.skinfold.thickness + thigh.circumference
midarm.circumference)

#### Residuals:

Min 1Q Median 3Q Max -3.7263 -1.6111 0.3923 1.4656 4.1277

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 117.085 99.782 1.173 0.258
triceps.skinfold.thickness 4.334 3.016 1.437 0.170
thigh.circumference -2.857 2.582 -1.106 0.285
midarm.circumference -2.186 1.595 -1.370 0.190

Residual standard error: 2.48 on 16 degrees of freedom Multiple R-squared: 0.8014, Adjusted R-squared: 0.7641 F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06

## Scatterplot matrix



## Variance inflation factors

|                                     | vif_bodyfat |
|-------------------------------------|-------------|
| $\verb triceps.skinfold.thickness $ | 708.8429    |
| thigh.circumference                 | 564.3434    |
| midarm.circumference                | 104.6060    |

- VIF on average 460.
- Large VIF for midarm circumference, although weakly correlated with other predictors.
- How to correct for multicollinearity?
  - Centering variables only valid option when higher order terms are in play.
  - Combine predictors, e.g., through principal component regression.
  - Ridge regression: allow some bias in exchange for increased precision and lower risk of overfitting.

# Multicollinearity and confounding

- A lot of textbooks advise to remove predictors from model in case of multicollinearity
- However, multicollinearity can also indicate strong confounding!