Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (currently amended): A compound represented by Formula I:

wherein R¹ and R² are independently chosen from hydrogen or an alkyl group;

R³ and R⁴ are independently hydrogen or an alkyl group or;

R³ and R⁴ and the carbon atom to which they are attached form a cycloalkyl ring, or;

R² and R³ together form a saturated (CH₂)_m heterocycle;

R⁵ is hydrogen, halogen, or a substituted or unsubstituted alkyl group;

R⁶ and R⁷ are independently hydrogen, halogen, cyano, an alkylthio, or a substituted or unsubstituted alkyl group;

 R^8 and R^9 are independently hydrogen, hydroxyl, a substituted or unsubstituted alkyl group, an alkoxy, =0, $NR^{10}R^{11}$, $OC(=0)NR^{1}R^{2}$, $OC(=0)C_{1-4}$ alkyl, or an alkylthiol;

R¹⁰ and R¹¹ are independently hydrogen, a substituted or unsubstituted alkyl group, C(=O)C₁₋₄ alkyl, C(=O)OC₁₋₄ alkyl, or C(=O)NR¹R² or R¹⁰ and R¹¹ together complete a saturated 5 or 6-membered heterocyclic ring, which optionally or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S when a 6-membered ring;

5404281721

A is $(CH_2)_n$, C=O, or CHC₁₋₄alkyl;

B is either a single or a double bond, wherein when B is a double bond, R⁸ and R⁹ are selected from hydrogen, or a substituted or unsubstituted alkyl group;

m = 2-4:

n = 0-2;

X and Y are either N or C, wherein X and Y are different; and the dashed bonds denote a suitably appointed single and double bond, and

wherein when X = C and $A = (CH_2)n$ where n = 0, then at least one of R^8 or R^9 is a substituted alkyl, OC(=0)NR¹R², OC(=0)C₁₋₄alkyl, an alkylthiol, or NR¹⁰R¹¹ wherein at least one of R¹⁰ or R¹¹ is a substituted alkyl group, C(=0)OC₁₋₄ alkyl, or C(=0)NR¹R² or wherein R¹⁰ and R¹¹ together complete a saturated 5 or 6-membered heterocyclic ring, or wherein R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S.

The compound of claim 1, wherein R² and R³ form a saturated Claim 2 (original): (CH₂)_m heterocycle.

The compound of claim 1, wherein said R³ and R⁴ together form a Claim 3 (original): cyclopropyl ring.

Claim 4 (currently amended): The compound of claim 1, wherein R^1 and R^2 are independently chosen from hydrogen or C₁₋₄alkyl;

R³ and R⁴ are independently chosen from hydrogen or C₁₋₄alkyl, or R² and R³ together form a saturated (CH₂)_m heterocycle;

R⁵ is chosen from hydrogen, halogen, or C₁₋₆alkyl;

09/07/2004

U.S. Patent Application No. 10/722,042 Amendment dated September 7, 2004 Reply to Office Action of June 30, 2004

R⁶ and R⁷ are independently chosen from hydrogen, halogen, cyano, C₁₋₄alkylthio, C₁₋₄alkyl, or C₁₋₄alkyl substituted by halogen;

R⁸ and R⁹ are chosen from hydrogen, hydroxyl, C₁₋₆alkyl, C₁₋₆alkoxy, NR¹⁰R¹¹, or C₁₋₆alkyl substituted with halogen, hydroxyl, or NR¹⁰R¹¹;

R¹⁰ and R¹¹ are independently chosen from hydrogen or C₁₋₄alkyl or C(=O)C₁₋₄alkyl or R¹⁰ and R¹¹ together complete a saturated 5 or 6-membered heterocyclic ring, which optionally or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S when a 6-membered ring;

A is (CH₂)_n or CHC₁₋₄alkyl;

B is either a single or double bond, wherein when B is a double bond, R⁸ and R⁹ are selected from hydrogen, C₁₋₄alkyl, or C₁₋₄alkyl substituted by halogen, hydroxy, or NR¹⁰R¹¹;

m = 3-4;

n = 1-2; and

X and Y are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

Claim 5 (currently amended): The compound of claim 1, wherein R^1 and R^2 are independently chosen from hydrogen or C_{1-4} alkyl;

R³ is C₁₋₂alkyl, or R² and R³ together are (CH₂)₃ to form pyrrolidine;

R⁴ is hydrogen;

R⁵ is chosen from hydrogen or C₁₋₆alkyl;

R⁶ and R⁷ are independently chosen from hydrogen, halogen, or C₁₋₄alkyl;

R⁸ and R⁹ are independently chosen from hydrogen, hydroxyl, C₁₋₆alkoxy, NR¹⁰R¹¹, or C₁₋₆alkyl substituted with hydroxyl or NR¹⁰R¹¹;

R¹⁰ and R¹¹ are independently chosen from hydrogen, C₁₋₄alkyl or C(=O)C₁₋₄alkyl or R¹⁰ and R¹¹ together complete a saturated 5 or 6-membered heterocyclic ring, which optionally or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S when a 6-membered ring;

KILYK BOWERSOX PLLC

A is $(CH_2)_n$;

B is a single bond;

n = 1;

X is C and Y is N; and

the dashed bonds denote a suitably appointed single and double bond.

Claim 6 (original): The compound of claim 1, wherein said compound is:

1-(2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(R)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(S)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-((S)-2-Aminopropyl)-3-methyl-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-(S)-1-Pyrrolidin-2-ylmethyl-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-((S)-2-Aminopropyl)-5-fluoro-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(R)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ylamine;

[1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-yl]-dimethylamine;

[1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-yl]-methanol;

1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazole-8,9-diol;

1-((S)-2-Aminopropyl)-9-methoxy-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-(2-Aminopropyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-(Pyrrolidin-2-ylmethyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-((S)-2-Aminopropyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-((S)-2-Aminopropyl)-3-methyl-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol; or combinations thereof.

Claim 7 (original): The compound of claim 1, wherein said X is N.

Claim 8 (original): The compound of claim 1, wherein said X is C.

Claim 9 (currently amended): A method of controlling normal or elevated intraocular pressure comprising administering a pharmaceutically effective amount of a composition comprising at least one compound of claim 1 represented by the following formula:

wherein R¹ and R² are independently chosen from hydrogen or an alkyl group;

R³ and R⁴ are independently hydrogen or an alkyl group or;

R³ and R⁴ and the carbon atom to which they are attached form a cycloalkyl ring, or;

R² and R³ together form a saturated (CH₂)_m heterocycle;

R⁵ is hydrogen, halogen, or a substituted or unsubstituted alkyl group;

R⁶ and R⁷ are independently hydrogen, halogen, cyano, an alkylthio, or a substituted or unsubstituted alkyl group;

5404281721

R⁸ and R⁹ are independently hydrogen, hydroxyl, a substituted or unsubstituted alkyl group, an alkoxy. =O, NR¹⁰R¹¹, OC(=O)NR¹R², OC(=O)C₁₋₄alkyl, or an alkylthiol;

R¹⁰ and R¹¹ are independently hydrogen, a substituted or unsubstituted alkyl group, C(=O)C₁₋₄ alkyl, C(=0)OC₁₋₄ alkyl, or C(=0)NR¹R² or R¹⁰ and R¹¹ together complete a saturated 5 or 6membered heterocyclic ring or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S;

A is $(CH_2)_n$, C=0, or CHC_1 -alkyl;

B is either a single or a double bond, wherein when B is a double bond, R⁸ and R⁹ are selected from hydrogen, or a substituted or unsubstituted alkyl group;

m = 2-4;

n = 0-2;

X and Y are either N or C, wherein X and Y are different; and the dashed bonds denote a suitably appointed single and double bond.

Claim 10 (original): The method of claim 9, wherein R² and R³ form a saturated (CH₂)_m heterocycle.

Claim 11 (original): The method of claim 9, wherein said R³ and R⁴ together form a cyclopropyl ring.

The method of claim 9, wherein R1 and R2 are Claim 12 (currently amended): independently chosen from hydrogen or C1-4alkyl;

R³ and R⁴ are independently chosen from hydrogen or C₁₋₄alkyl, or R² and R³ together form a saturated (CH₂)_m heterocycle;

R⁵ is chosen from hydrogen, halogen, or C₁₋₆alkyl;

5404281721

R⁶ and R⁷ are independently chosen from hydrogen, halogen, cyano, C₁₋₄alkylthio, C₁₋₄alkyl, or C₁₋₄alkyl substituted by halogen;

 R^8 and R^9 are chosen from hydrogen, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, $NR^{10}R^{11}$, or $C_{1\text{-}6}$ alkyl substituted with halogen, hydroxyl, or $NR^{10}R^{11}$;

R¹⁰ and R¹¹ are independently chosen from hydrogen or C₁₋₄alkyl or C(=0)C_{1.4}alkyl or R¹⁰ and R¹¹ together ean complete a saturated 5 or 6-membered heterocyclic ring, which ean include or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S when a 6-membered ring;

A is (CH₂)_n or CHC₁₋₄alkyl;

B is either a single or double bond, wherein when B is a double bond, R^8 and R^9 are selected from hydrogen, C_{1-4} alkyl, or C_{1-4} alkyl substituted by halogen, hydroxy, or $NR^{10}R^{11}$;

m = 3-4;

n = 1-2; and

X and Y are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

Claim 13 (currently amended): The method of claim 9, wherein R^1 and R^2 are independently chosen from hydrogen or C_{1-4} alkyl;

 R^3 is C_{1-2} alkyl, or R^2 and R^3 together are $(CH_2)_3$ to form pyrrolidine;

R⁴ is hydrogen;

 R^5 is chosen from hydrogen or $C_{1\text{-}6}$ alkyl;

R⁶ and R⁷ are independently chosen from hydrogen, halogen, or C₁₋₄alkyl;

 R^8 and R^9 are independently chosen from hydrogen, hydroxyl, C_{1-6} alkoxy, $NR^{10}R^{11}$, or C_{1-6} alkyl substituted with hydroxyl or $NR^{10}R^{11}$;

R¹⁰ and R¹¹ are independently chosen from hydrogen, C₁₋₄alkyl or C(=O)C₁₋₄alkyl or R¹⁰ and R¹¹ together complete a saturated 5 or 6-membered heterocyclic ring, which optionally or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S when a 6-membered ring;

A is $(CH_2)_n$;

B is a single bond;

n = 1;

X is C and Y is N; and

the dashed bonds denote a suitably appointed single and double bond.

Claim 14 (original): The method of claim 9, wherein said compound is:

1-(2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(R)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(S)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

 $1-((S)-2-Aminopropyl)-3-methyl-1, 7, 8, 9-tetra hydro-pyrano \cite{Constraints} and \cite$

 $1\hbox{-}(S)\hbox{-}1\hbox{-}Pyrrolidin\hbox{-}2\hbox{-}ylmethyl\hbox{-}1,7,8,9\hbox{-}tetrahydro\hbox{-}pyrano[2,3\hbox{-}g]indazol\hbox{-}8\hbox{-}ol;$

1-((S)-2-Aminopropyl)-5-fluoro-1,7,8,9-tetrahydro-pyrano[2,3-g] indazol-8-ol;

(R)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ylamine;

[1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-yl]-dimethylamine;

 $\hbox{$[1$-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano} \ [2,3$-g] indazol-8-yl]-methanol;$

1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazole-8,9-diol;

 $1\hbox{-}((S)\hbox{-}2\hbox{-}Aminopropyl)\hbox{-}9\hbox{-}methoxy\hbox{-}1,7,8,9\hbox{-}tetrahydro\hbox{-}pyrano[2,3\hbox{-}g]indazol\hbox{-}8\hbox{-}ol;$

1-(2-Aminopropyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-(Pyrrolidin-2-ylmethyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-((S)-2-Aminopropyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-((S)-2-Aminopropyl)-3-methyl-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol; or combinations thereof.

Claim 15 (original): The method of claim 9, wherein said X is N.

Claim 16 (original): The method of claim 9, wherein said X is C.

Claim 17 (original): A method for the treatment of glaucoma comprising administering a pharmaceutically effective amount of a composition comprising at least one compound of claim 1 represented by the following formula:

wherein R¹ and R² are independently chosen from hydrogen or an alkyl group;

R³ and R⁴ are independently hydrogen or an alkyl group or;

R³ and R⁴ and the carbon atom to which they are attached form a cycloalkyl ring, or;

R² and R³ together form a saturated (CH₂)_m heterocycle;

R⁵ is hydrogen, halogen, or a substituted or unsubstituted alkyl group;

R⁶ and R⁷ are independently hydrogen, halogen, cyano, an alkylthio, or a substituted or unsubstituted alkyl group;

R⁸ and R⁹ are independently hydrogen, hydroxyl, a substituted or unsubstituted alkyl group, an alkoxy, =O, NR¹⁰R¹¹, OC(=O)NR¹R², OC(=O)C₁-4alkyl, or an alkylthiol;

R¹⁰ and R¹¹ are independently hydrogen, a substituted or unsubstituted alkyl group, C(=O)C₁₋₄ alkyl, C(=O)OC₁₋₄ alkyl, or C(=O)NR¹R² or R¹⁰ and R¹¹ together complete a saturated 5 or 6-membered heterocyclic ring or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S;

A is $(CH_2)_n$, C=O, or CHC_1 _alkyl;

B is either a single or a double bond, wherein when B is a double bond, R⁸ and R⁹ are selected from hydrogen, or a substituted or unsubstituted alkyl group;

m = 2-4;

n = 0-2;

X and Y are either N or C, wherein X and Y are different; and the dashed bonds denote a suitably appointed single and double bond.

Claim 18 (currently amended): The method of claim 17, wherein R^1 and R^2 are independently chosen from hydrogen or C_{1-4} alkyl;

R³ and R⁴ are independently chosen from hydrogen or C₁₋₄alkyl, or R² and R³ together form a saturated (CH₂)_m heterocycle;

R⁵ is chosen from hydrogen, halogen, or C₁₋₆alkyl;

R⁶ and R⁷ are independently chosen from hydrogen, halogen, cyano, C₁₋₄alkylthio, C₁₋₄alkyl, or C₁₋₄alkyl substituted by halogen;

R⁸ and R⁹ are chosen from hydrogen, hydroxyl, C₁₋₆alkyl, C₁₋₆alkoxy, NR¹⁰R¹¹, or C₁₋₆alkyl substituted with halogen, hydroxyl, or NR¹⁰R¹¹;

09/07/2004 17:16 5404281721 KILYK BOWERSOX PLLC PAGE 16

U.S. Patent Application No. 10/722,042 Amendment dated September 7, 2004 Reply to Office Action of June 30, 2004

R¹⁰ and R¹¹ are independently chosen from hydrogen or C₁₋₄alkyl or C(=O)C₁₋₄alkyl or R¹⁰ and R¹¹ together ean complete a saturated 5 or 6-membered heterocyclic ring, which can include or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S when a 6-membered ring;

A is $(CH_2)_n$ or CHC_{1-4} alkyl;

B is either a single or double bond, wherein when B is a double bond, R⁸ and R⁹ are selected from hydrogen, C₁₋₄alkyl, or C₁₋₄alkyl substituted by halogen, hydroxy, or NR¹⁰R¹¹;

m = 3-4;

n = 1-2; and

X and Y are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

Claim 19 (currently amended): The method of claim 17, wherein R^1 and R^2 are independently chosen from hydrogen or C_{1-4} alkyl;

R³ is C₁₋₂alkyl, or R² and R³ together are (CH₂)₃ to form pyrrolidine;

R⁴ is hydrogen;

R⁵ is chosen from hydrogen or C₁₋₆alkyl;

R⁶ and R⁷ are independently chosen from hydrogen, halogen, or C₁₋₄alkyl;

 R^8 and R^9 are independently chosen from hydrogen, hydroxyl, C_{1-6} alkoxy, $NR^{10}R^{11}$, or C_{1-6} alkyl substituted with hydroxyl or $NR^{10}R^{11}$;

R¹⁰ and R¹¹ are independently chosen from hydrogen, C₁₋₄alkyl or C(=O)C₁₋₄alkyl or R¹⁰ and R¹¹ together complete a saturated 5 or 6-membered heterocyclic ring, which optionally or R¹⁰ and R¹¹ together complete a saturated 6-membered heterocyclic ring that includes an additional heteroatom selected from N, O, or S when a 6-membered ring;

A is $(CH_2)_n$;

B is a single bond;

n = 1;

X is C and Y is N; and

the dashed bonds denote a suitably appointed single and double bond.

Claim 20 (original): The method of claim 17, wherein said compound is:

1-(2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(R)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(S)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-((S)-2-Aminopropyl)-3-methyl-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-(S)-1-Pyrrolidin-2-ylmethyl-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-((S)-2-Aminopropyl)-5-fluoro-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

(R)-1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ylamine;

[1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-yl]-dimethylamine;

[1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-yl]-methanol;

1-((S)-2-Aminopropyl)-1,7,8,9-tetrahydro-pyrano[2,3-g]indazole-8,9-diol;

1-((S)-2-Aminopropyl)-9-methoxy-1,7,8,9-tetrahydro-pyrano[2,3-g]indazol-8-ol;

1-(2-Aminopropyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-(Pyrrolidin-2-ylmethyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-((S)-2-Aminopropyl)-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol;

1-((S)-2-Aminopropyl)-3-methyl-3,7,8,9-tetrahydro-pyrano[3,2-e]indazol-8-ol; or combinations thereof.

Claim 21 (original): A pharmaceutical composition comprising the compound of claim 1 and at least one carrier.

Claim 22 (previously presented): A method to activate or bind to serotonin receptors comprising administering an effective amount of at least one compound of claim 1 to a patient.

Claim 23 (new): The compound of claim 1, wherein X = C and $A = (CH_2)_n$, wherein n is 1 or 2.

Claim 24 (new): The compound of claim 1, wherein X = C and $A = (CH_2)_n$ and n = 0 and R^8 or R^9 is a substituted alkyl group.

Claim 25 (new): The compound of claim 1, wherein X = C, $A = (CH_2)_n$ and n = 0 and B is a single bond.