Fundamentos de Algoritmos y Computabilidad

- * Lema del bombeo para LIC's
- * Problemas de decisión
- * Algoritmo CYK

Lema del bombeo para lenguajes regulares

- Les regular infinito
- Debe tener cadenas de longitud mayor a n, la cantidad de estados
- Ya que cada transición consume un símbolo y se tienen cadenas de longitud mayor a n, debe existir un ciclo en el autómata
- Si una cadena $\sigma\rho\omega\tau$ pertenece a L, se puede bombear una parte de la cadena y el resultado, $\sigma\rho\omega^{i}\tau$, también pertenece a L, para $i\geq 0$

Lema del bombeo para lenguajes regulares

• Sea L un lenguaje regular infinito. Hay una constante n de forma que, si w es una cadena de L cuya longitud es mayor o igual a n, se tiene que w=uvx, siendo uv i x \in L para todo $i\geq0$, con $|v|\geq1$ y $|uv|\leq n$

w=abc

Lema del bombeo para lenguajes regulares

• Sea L un lenguaje regular infinito. Hay una constante n de forma que, si w es una cadena de L cuya longitud es mayor o igual a n, se tiene que w=uvx, siendo uv i x \in L para todo $i\ge0$, con $|v|\ge1$ y $|uv|\le n$

Lema del bombeo para LIC

Lema del bombeo para LIC

Cómo puede un autómata con 3 estados aceptar cadenas de longitud 200 como w=a¹⁰⁰b¹⁰⁰

Lema del bombeo para LIC

Sea L un LIC, entonces existe una constante n tal que si z es cualquier cadena de L, |z|>n, se puede descomponer la cadena z=uvwxy tal que:

- 1. $|vwx| \le n$
- 2. $vx \neq \varepsilon$, $v \circ x$ es distinto de ε
- 3. Para todo i≥0, la cadena uviwxiy son todas cadenas de L

Lema del bombeo para LIC

Sea L un LIC, entonces existe una constante n tal que si z es cualquier cadena de L, |z|>n, se puede descomponer la cadena z=uvwxy tal que:

- 1. $|vwx| \le n$
- 2. $vx \neq \varepsilon$, $v \circ x$ es distinto de ε
- 3. Para todo i≥0, la cadena uviwxiy son todas cadenas de L

 $w = a^{100}b^{100}$

Probar que L={anbn} es LIC

Probar que L={anbn} es LIC

- Sea n la constante de bombeo
- $z=a^nb^n$, como |z|>n, se puede escribir z=uvwxy, donde:

· Se cumple que la cadena uviwxiy, o lo que es lo mismo

$$a^{n-1} (a^1)^i \epsilon (b^1)^i b^{n-1}$$

pertenece a L

Probar que L={anbn} es LIC

- Sea n la constante de bombeo
- $z=a^nb^n$, como |z|>n, se puede escribir z=uvwxy, donde:

$$a^{n-2}a^1$$
 ab b^1 b^{n-2}
 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
 U V W X Y

• Se cumple que la cadena uviwxiy, o lo que es lo mismo

$$a^{n-2}$$
 (a^1)ⁱ ab (b^1)ⁱ b^{n-2}

pertenece a L

Probar que $L=\{a^nb^nc^n\}$ no es LIC

Probar que L={anbncn} no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- Si v y x están compuestas por solo a's, entonces uviwxiy∉L porque tendría más a's que b's y c's

Probar que $L=\{a^nb^nc^n\}$ no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- Si v y x están compuestas por solo b's, entonces las cadenas uviwxiy∉L ya que tienen más b's que a's y c's

Probar que $L=\{a^nb^nc^n\}$ no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- Si v y x están compuestas por solo c's, entonces las cadenas uviwxiy∉L ya que tienen más c's que a's y b's

Probar que L={anbncn} no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- Si v está compuesta por a's y x por b's, entonces las cadenas uviwxiy∉L ya que tienen más a's y b's que c's

Probar que L={anbncn} no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- Si v está compuesta por b's y x por c's, entonces las cadenas uviwxiy∉L ya que tienen más b's y c's que a's

Probar que $L=\{a^nb^nc^n\}$ no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- No se puede dar el caso de que v esté compuesta por a's y x por c's porque se debe cumplir que |vwx|≤n y hay n b's

Probar que L={anbncn} no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- No se pueden mezclar símbolos en v ó x porque al bombear no serían aceptados por el lenguaje, por ejemplo, (ab)²=abab

Probar que $L=\{a^nb^nc^n\}$ no es LIC

- Sea n la constante de bombeo
- $z=a^nb^nc^n$, como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- No se pueden mezclar símbolos en v ó x porque al bombear no serían aceptados por el lenguaje, por ejemplo, $(ab)^2$ =abab
- Como no existe una división z=uvwxy tal que uviwxiy∈L, se concluye que L no es LIC

Probar que L={wcw | w∈{a,b}*} no es LIC

Probar que L={wcw | $w \in \{a,b\}^*$ } no es LIC

- $z=a^nb^mca^nb^m$. como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- -Si vwx tiene solo símbolos a, uviwxiy∉L porque tendrá mayor cantidad de a's antes de la c que después

Probar que L={wcw | $w \in \{a,b\}^*$ } no es LIC

- $z=a^nb^mca^nb^m$. como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- -Si vwx tiene solo símbolos b, uviwxiy∉L porque tendrá mayor cantidad de b's antes de la c que después

Probar que L={wcw | $w \in \{a,b\}^*$ } no es LIC

- $z=a^nb^mca^nb^m$. como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- -Si vwx tiene símbolos a y b, uviwxiy∉L porque no tendrá la misma cantidad de esos símbolos después de la c

Probar que L={wcw | $w \in \{a,b\}^*$ } no es LIC

- $z=a^nb^mca^nb^m$. como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- -No se puede dar el caso de que u tenga b's antes de la c y x tenga b's después porque hay n a's y |vwx|≤n

Probar que L={wcw | $w \in \{a,b\}^*$ } no es LIC

- $z=a^nb^mca^nb^m$. como |z|>n, se puede escribir z=uvwxy para los siguientes casos:
- -No se puede dar el caso de que u tenga a's antes de la c y x tenga a's después porque dependería de la cantidad de b's y la demostración debe ser general

Probar que L={ancan} es LIC

Probar que L={ancan} es LIC

- Sea n la constante de bombeo
- $z=a^nca^n$, como |z|>n, se puede escribir z=uvwxy, donde:

$$a^{n-1}acaa^{n-1}$$
 $\uparrow \uparrow \uparrow \uparrow$
 $u v w x y$

Se cumple que la cadena uviwxiy, o lo que es lo mismo

$$a^{n-1}$$
 (a)i c (a)i a^{n-1}

pertenece a L

Probar que L={ambncm+n} es LIC

Probar que L={ambncm+n} es LIC

- Sea n la constante de bombeo
- $z=a^mb^nc^{m+n}$, como |z|>n, se puede escribir z=uvwxy, donde:

• Se cumple que la cadena uv^2wx^2y , o lo que es lo mismo

$$a^{m} b^{n-1} b^{2} \epsilon c^{2} c^{m+n-1} a^{m} b^{n-1+2} c^{m+n-1+2} = a^{m} b^{n+1} c^{m+n+1}$$

pertenece a L

Problemas de decisión para GIC

• Problema de infinitud. Dada una gramática G, resolver la pregunta ces L(G) infinito?

Problemas de decisión para GIC

• Problema de infinitud. Dada una gramática G, resolver la pregunta des L(G) infinito?

$$S \rightarrow AB$$
 $A \rightarrow BC \mid a$
 $Es L(G) infinito?$
 $B \rightarrow CC \mid b$
 $C \rightarrow a$

Problemas de decisión para GIC

• Problema de infinitud. Dada una gramática G, resolver la pregunta ces L(G) infinito?

$$S \rightarrow AB$$
 $A \rightarrow BC \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow a$

El lenguaje generado por la gramática es {ab,aaa,bab,baaa, aaab,aaaaa} que es finito

Problemas de decisión para GIC

• Problema de infinitud. Dada una gramática G, resolver la pregunta ces L(G) infinito?

$$S \rightarrow BA \mid BC$$

$$A \rightarrow SC$$

$$B \rightarrow a$$

$$C \rightarrow b$$

El lenguaje generado por la gramática es infinito

Problemas de decisión para GIC

• Problema de infinitud. Dada una gramática G, resolver la pregunta ces L(G) infinito?

Si el diagrama de transición tiene un ciclo, el lenguaje es infinito

Problemas de decisión para GIC

• Problema de la pertenencia. Dada una gramática G y una cadena $w \in \Sigma^*$, $\dot{c}w \in L(G)$?

Problemas de decisión para GIC

• Problema de la pertenencia. Dada una gramática G y una cadena $w \in \Sigma^*$, $\dot{c}w \in L(G)$?

$$S \rightarrow AB$$

$$A \rightarrow BC \mid a$$

 $B \rightarrow CC \mid b$

$$C \rightarrow a$$

¿La cadena baaa se genera por la gramática?

Problemas de decisión para GIC

- Problema de la pertenencia. Dada una gramática G y una cadena $w \in \Sigma^*$, $\dot{c}w \in L(G)$?
 - Buscar en todas las derivaciones posibles de
- G. Ineficiente
 - Algoritmo CYK

Algoritmo CYK (Cocke, Younger, Kasami)

 Resuelve el problema de la pertenencia utilizando un algoritmo de programación dinámica

- Suponga que $w=a_1a_2...a_n$ es la cadena a probar
- Se construye una matriz triangular inferior de nxn
- · La gramática debe estar en FNC

Algoritmo CYK (Cocke, Younger, Kasami)

La matriz es del tamaño de la cadena sobre la cual se quiere probar pertenencia

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

X ₁₅							
X ₁₄	X ₂₅						
X ₁₃	X ₂₄	X ₃₅					
X ₁₂	X ₂₃	X ₃₄	X ₄₅				
X ₁₁	X ₁₁ X ₂₂ X ₃₃ X ₄₄ X ₅₅						
b a a b a Cada X _{ij} resuelve un subproblema particular							

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X 4	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	ò.	α	b	а

Resuelve el problema de saber si la subcadena a₂..a₄ es generada por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	(B)	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b		а	b	a

Partiendo de B se puede generar aab $B \rightarrow CC \rightarrow CAB \rightarrow CAb \rightarrow aAb \rightarrow aab$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	а	α	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	a	8	b	α

Resuelve el problema de saber si la subcadena a₃..a₄ es generada por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	(se)	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	α	&	b	а

Partiendo de S o C se puede generar **ab** $S \rightarrow \underline{A}B \rightarrow \underline{a}B \rightarrow \underline{a}b$ $C \rightarrow \underline{A}B \rightarrow \underline{a}B \rightarrow \underline{a}b$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

baaba

 a_3a_4

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	а	α	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X 13	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
	a	а	Ь	a

Resuelve el problema de saber si la subcadena a₁..a₃ es generada por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

baaba
$$a_1..a_3$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	X ₂₄	X ₃₅		
X _{I2}	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
	a	a	b	a

No hay forma de generar la subcadena baa

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

baaba
$$a_1..a_3$$

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	а	α	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	α	8/	b	α

Resuelve el problema de saber si la subcadena a_3a_3 , es decir, el símbolo en la posición 3 se puede generar por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

X ₁₅					$S \rightarrow AB \mid BC$	
X ₁₄	X ₂₅				A→BA a	
X ₁₃	X ₂₄	X ₃₅			$B \rightarrow CC \mid b$	
X ₁₂	X ₂₃	X ₃₄	X ₄₅		C→AB a	
X ₁₁	X ₂₂	{A C}	X ₄₄	X ₅₅	w=baaba	
Ь	а	0/	b	a	W-Daaba	
Partiendo de A o C se puede generar a						

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

¿Qué casilla tiene la solución al problema de saber si w es generada por la gramática?

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

{S,A,C					$S \rightarrow AB \mid BC$
× ₁₄	X ₂₅				A→BA a
× ₁₃	X ₂₄	X ₃₅			B → CC b
X ₁₂	X ₂₃	X ₃₄	X ₄₅		C→AB a
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅	w=baaba
D	α	a	b	a	w-Duudu

Partiendo de S,A o C se puede generar baaba

Algoritmo CYK (Cocke, Younger, Kasami)

{S,A,C}					$S \rightarrow AB \mid BC$
X ₁₄	X ₂₅				A→BA a
X ₁₃	X ₂₄	X ₃₅			B→ <i>CC</i> b
X ₁₂	X ₂₃	X ₃₄	X ₄₅		C→AB a
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅	w=baaba
Ь	а	α	b	a	w-Daaba

Cuando $S \in X_{1n}$ se dice que w se puede generar por la gramática

Algoritmo CYK (Cocke, Younger, Kasami)

	X ₁₅					$S \rightarrow AB \mid BC$
	X ₁₄	X ₂₅				A→BA a
	X ₁₃	X ₂₄	X ₃₅			B→ <i>CC</i> b
<	X ₁₂	X ₂₃	X ₃₄	X ₄₅		C→AB a
	X_{11}	X ₂₂	X ₃₃	X ₄₄	X ₅₅	w=baaba
	b	a	↓ a	b	α	W Daaba

Para calcular estas casillas se inspecciona de forma directa sobre la gramática la ocurrencia de cada símbolo

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X 24	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	•	a	b	. a

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = b \mid aab \mid a$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X :4	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	8/	α	b	, α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4 a_2a_3 y a_4a_4$$

$$b$$
 a a b a a_2a_2 a_3a_4

b a a b a
$$a_2a_3$$
 a_4a_4

w=baaba

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

a₂..a₄ se puede generar por medio de:

$$\rightarrow$$
 $a_2a_2 y a_3a_4$
 $a_2a_3 y a_4a_4$

$$b$$
 a a b a
 a_2a_2 a_3a_4

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = b \mid aab \mid a$

En la tabla, ¿qué casillas representan las cadenas a₂a₂ y a₃a₄?

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = b \mid aab \mid a$

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$
 $a_2a_3 y a_4a_4$

En la tabla, ¿qué casillas representan las cadenas a₂a₃ y a₄a₄ ?

b a a b a
$$a_2a_3$$
 a_4a_4

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = b \mid aab \mid a$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X :4	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	8/	α	b	, α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4 a_2a_3 y a_4a_4$$

$$b$$
 a a b a a_2a_2 a_3a_4

b a a b a
$$a_2a_3$$
 a_4a_4

w=baaba

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = b \mid aab \mid a$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	× ₂₃	X ₃₄	X ₄₅	
X ₁₁			X ₄₄	Y
11	22	X ₃₃	1 1 4 4 4	X ₅₅

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Liste las posibles formas de generar a₂..a₅

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅					
X ₁₄	X ₂	5			
X ₁₃	X ₂	4	X ₃₅		
X ₁₂	X ₂	3	X ₃₄	X ₄₅	
X ₁₁	X ₂	2	X ₃₃	X ₄₄	X ₅₅
b	va	•	α	b	<u>,</u> α ,

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

a₂..a₅ se puede generar por medio de:

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

w=baaba

a₂..a₅ se puede generar por medio de:

$$\rightarrow$$
 $a_2a_2 y a_3a_5$
 $a_2a_3 y a_4a_5$
 $a_2a_4 y a_5a_5$

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
			<u></u>	

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$a_2a_2 y a_3a_5$$

 $a_2a_3 y a_4a_5$
 $a_2a_4 y a_5a_5$

b a a b a
$$a_2a_4$$
 a_5a_5

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X_24	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
<u></u>	0	0	h	

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$a_2a_2 y a_3a_5$$

 $a_2a_3 y a_4a_5$
 $a_2a_4 y a_5a_5$

b a a b a

$$a_2a_4$$
 a_5a_5

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	a	a	b	a

X ₁₅					
X ₁₄	X ₂₅				
X ₁₃	X ₂₄	X ₃₅			
X ₁₂	X ₂₃	X ₃₄	X ₄₅		
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅	
b	a	а	b	α	
X	X;;={A A→a; está en G}				

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	Ь	α

 $X_{ii} = \{A \mid A \rightarrow a_i \text{ está en } G\}$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
Ь	a	a	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Para calcular un valor X_{ij} se recorre sobre la columna hacia arriba al tiempo que baja en diagonal. Por ejemplo, para calcular X_{25} , se calcula: X_{22} , X_{35} , X_{23} , X_{45} , X_{24} , X_{55}

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
Ь	a	a	b	a

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

El recorrido de la matriz se debe hacer por filas, de abajo a arriba

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

 a_1a_2 se puede generar solo por medio de: a_1a_1 y a_2a_2

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}

 $X_{12}=X_{11}X_{22}=\{B\}\{A,C\}=\{BA,BC\}$. Se busca en G una producción que genera BA o BC

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
1	_			·

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

{5,A}, esto indica que la cadena ba se puede generar a través de:

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X_{14} X_{25} X_{13} X_{24} X_{35} $\{S,A\}$ $\{B\}$ X_{34} X_{45}	
{S,A} {B} X ₃₄ X ₄₅	
$\begin{array}{ c c c c c } \hline \{B\} & \{A,C\} & \{A,C\} & \{B\} & \{A,C\} &$,C}

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{23}=X_{22}X_{33}=\{A,C\}\{A,C\}=\{AA,AC,CA,CC\}$. Se busca en G una producción que genere AA,AC,CA o CC. {B}

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	α

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{34}=X_{33}X_{44}=\{A,C\}\{B\}=\{AB,CB\}$. Se busca en G una producción que genere AB o CB. $\{S,C\}$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{45}=X_{44}X_{55}=\{B\}\{A,C\}=\{BA,BC\}$. Se busca en G una producción que genere BA o BC. $\{S,A\}$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	α	b	α

 $X_{13} = X_{11}X_{23}$ ó $X_{12}X_{33}$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{13}=X_{11}X_{23}\cup X_{12}X_{33}=\{B\}\{B\}\cup\{S,A\}\{A,C\}=\{BB,SA,SC,AA,AC\}$ Se busca en G la producción

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{13}=X_{11}X_{23}\cup X_{12}X_{33}=\{B\}\{B\}\cup\{S,A\}\{A,C\}=\{BB,SA,SC,AA,AC\}$ Se busca en G la producción. \varnothing

X ₁₅				
X ₁₄	X ₂₅			
Ø	X_24	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	α

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	{B}	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	α

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{24}=X_{22}X_{34}\cup X_{23}X_{44}=\{A,C\}\{S,C\}\cup \{B\}\{B\}=\{AS,AC,CS,CC,BB\}$ Se busca en G la producción. $\{B\}$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	{B}	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$A \rightarrow BA \mid a$$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

 $S \rightarrow AB \mid BC$

Complete la matriz

{S,A,C}				
Ø	{5,A,C}			
Ø	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	Ь	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

{S,A,C}				
Ø	{S,A,C}			
Ø	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	Ь	α

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

w=baaba

Como $S \in X_{15}$ se dice que $w \in L$

Indique si w=abb∈L

X ₁₃		
X ₁₂	X ₂₃	
X ₁₁	X ₂₂	X ₃₃
a	Ь	b

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = abb$

Ø		
{S,C}	Ø	
{A,C}	{B}	{B}
a	Ь	Ь

Como S∉X₁₃ se dice que w∉L

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Indique si w=aaba∈L

X ₁₄			
X ₁₃	X ₂₄		
X ₁₂	X ₂₃	X ₃₄	
X ₁₁	X ₂₂	X ₃₃	X ₄₄
α	α	Ь	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = aaba$

{S,C,A}			
{B}	{B}		
{B}	{S,C}	{S,A}	
{A,C}	{A,C}	{B}	{A,C}
a	a	Ь	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = aaba$

{S,C,A}			
{B}	{B}		
{B}	{S,C}	{S,A}	
{A,C}	{A,C}	{B}	{A,C}
a	a	Ь	a

Como S∈X₁₄ se dice que w∈L

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = aaba$

Indique si w=baba∈L

X ₁₄			
X ₁₃	X ₂₄		
X ₁₂	X ₂₃	X ₃₄	
X ₁₁	X ₂₂	X ₃₃	X ₄₄
ь	a	Ь	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baba$

Indique si w=baba∈L

{B}			
{S,C}	{B}		
{S,A}	{S,C}	{S,A}	
{B}	{A,C}	{B}	{A,C}
Ь	a	Ь	a

Como S∉X₁₄ se dice que w∉L

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Indique si w=abaa∈L

•	h	<u> </u>	0
X ₁₁	X ₂₂	X ₃₃	X ₄₄
X ₁₂	X ₂₃	X ₃₄	
X ₁₃	X ₂₄		
X ₁₄			

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = abaa$

{S,A}			
{B}	Ø		
{S,C}	{S,A}	{B}	
{A,C}	{B}	{A,C}	{A,C}
a	b	α	a

Como $S \in X_{14}$ se dice que $w \in L$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

w=abaa