Discrete Math Homework 3

Krikun Georgy

February 6, 2016

1 Question

Write negations for each of the following statements:

a) John is 6 feet tall and he weights at least 200 pounds.

Negotiation:

This is not the case that John is 6 feet tall and he weights at least 200 pounds.

b) The bus was late or Toms watch was slow.

Negotiation:

This is not the case that the bus was late or Toms watch was slow.

2 Question

Construct truth tables for the statement forms:

a)
$$(\neg p \lor q) \to \neg q$$

p	q	$\neg p$	$\neg p \vee q$	$\neg q$	$(\neg p \lor q) \to \neg q$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	1	0	1	0	1

b)
$$(p \land \neg q) \to r$$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \to r$
0	0	0	1	0	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	0

3 Question

Let \mathbf{p} , \mathbf{q} , and \mathbf{r} be the propositions:

p: Grizzly bears have been seen in the area.

q: Hiking is safe on the trail.

r: Berries are ripe along the trail.

Write these propositions using \mathbf{p} , \mathbf{q} , and \mathbf{r} and logical connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have not been seen in the area.

$$r \wedge \neg p$$

b) Grizzly bears have not been seen in the area and hiking on the trail is safe, but berries are ripe along the trail.

$$\neg p \wedge q \wedge r$$

c) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.

$$r \to (q \leftrightarrow \neg p)$$

4 Question

Find the bitwise OR, bitwise AND, and bitwise XOR of each of these pairs of bit strings.

a) 101 1110, 010 0001

a b	1	0	1	1	1	1	0
b	0	1	0	0	0	0	1
	1				1	1	1
&	0	0	0		0	0	0
\land	1	1	1	1	1	1	1

b) 1111 0000, 1010 1010

	a b	1	1	1	1	0	0	0	0
ĺ		1	1	1	1	1	0	1	0
	 & ^	1	0	1	0	0	0	0	0
	\land	0	1	0	1	1	0	1	0

5 Question

Given any statement form, is it possible to find a logically equivalent form that uses only \neg and \land ?

I think the answer is YES. Because disjuction we can represent as conjuction. With this three function we also can represent all another, for any statement form.

$$p \lor q \equiv \neg(\neg p \land \neg q)$$

6 Question

Prove the following:

a) Disjunctions is Commutative?

 $(p \lor q)$, is equivalent to $(q \lor p)$?

р	q	$p \lor q$	$q\vee p$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

This statements are logically equivalent, because their truth tables are same.

b) Disjunction is Associative?

 $(p \lor q) \lor r$, is equivalent to $p \lor (q \lor r)$?

p	q	r	$p \lor q$	$q \vee r$	$(p \lor q) \lor r$	$p \lor (q \lor r)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

This statements are logically equivalent, because their truth tables are same.

7 Question

Prove that the statements given bellow are logically equivalent (or not). Justify your answers.

a) $\neg (p \land q)$ and $\neg p \land \neg q$?

p	q	$\neg(p \land q)$	$\neg p \wedge \neg q$
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

This statements are not logically equivalent, because their truth tables are different.

b) $\neg (p \land q)$ and $\neg p \lor \neg q$?

p	q	$\neg(p \land q)$	$\neg p \vee \neg q$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

This statements are logically equivalent, because their truth tables are same.

8 Question

Prove the statements:

a) Is implication logically equivalent to its contrapositive? $(p \to q)$ and $(\neg p \to \neg q)$?

p	q	$(p \to q)$	$(\neg p \to \neg q)$
0	0	1	1
0	1	0	1
1	0	1	0
1	1	1	1

This statements are not logically equivalent, because their truth tables are different.

b) Is converse logically equivalent to the inverse?

$$(q \to p)$$
 and $(\neg p \to \neg q)$?

p	q	$(q \to p)$	$(\neg p \to \neg q)$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

 $This \ statements \ are \ logically \ equivalent, \ because \ their \ truth \ tables \ are \\ same.$

9 Question

Symbolically prove the following with explanation on each step on used law.

1. $(p \leftrightarrow q)$ equivalent to $(p \to q) \to (q \to p)$?

Consider right side of statement:

$$(p \to q) \to (q \to p) \equiv (\neg p \lor q) \to (\neg q \lor p)$$

$$(\neg p \lor q) \to (\neg q \lor p) \equiv \neg(\neg p \lor q) \lor (\neg q \lor p)$$

$$\neg(\neg p \lor q) \lor (\neg q \lor p) \equiv (p \land \neg q) \lor (\neg q \lor p)$$

2.
$$(p \wedge q)$$
 equivalent to $(p \vee \neg q) \wedge q$?
 $(p \wedge q) \equiv (p \vee \neg q) \wedge q$
 $(p \wedge q) \equiv q \wedge (p \vee \neg q)$
 $(p \wedge q) \equiv (q \wedge p) \vee (q \wedge \neg q)$
 $(p \wedge q) \equiv (q \wedge p) \vee C$
 $(p \wedge q) \equiv (q \wedge p)$

Initial statement Commutative law Distributive law Identity law As desired