⑩ 公 開 特 許 公 報 (A) 平2-44660

②特 願 昭63-195416

②出 顯 昭63(1988)8月4日

⑫発 明 者 中 長 偉 文 徳島県徳島市川内町加賀須野463番地 大塚化学株式会社

徳島研究所内

⑩発 明 者 多 田 祐 二 徳島県徳島市川内町加賀須野463番地 大塚化学株式会社

徳島研究所内

①出 願 人 大塚化学株式会社 大阪府大阪市東区豊後町10番地

%代 理 人 弁理士 三枝 英二 外2名

明 細 書

発明の名称 充電機構を有するリチウム電池 特許請求の範囲

- ① リチウム電池の一方の極板の外面へ放電防止 方向にダイオードを積層したリチウム電池。
- ② ダイオードの解放端とリチウム電池の他方の 極板とをツェナーダイオードで接続した請求項 ①記載のリチウム電池。
- ③ ダイオード上に、光照射により電池と逆の起電力を発生する光電変換素子を複数個、積層するか、直列するか又は積層したものを直列に接続してなる光電源部が積層され、且つリチウム電池の両極がツェナーダイオードで接続された光充電機構を有する請求項①記載のリチウム電池。
- ④ 光電源部の出力電圧が2.3 V以上となるように光電変換素子を複数個、積層又は直列接続した請求項③記載のリチウム電池。

- ⑤ リチウム電池部が層状の V2 O5 正極、リチウム金属又はリチウム・アルミニウム合金負極及びポリホスファゼン電解質で構成された二次電池である請求項①乃至③のいずれかに記載のリチウム電池。
- ③ ポリホスファゼン電解質が下記式(I),
 (Ⅱ), (Ⅲ), (Ⅳ) 又は(V) で示されるセグメントの任意に配列したオリゴエチレンオキシポリホスファゼン、或はこれらにリチウム塩を複合化させたものである請求項⑤記載のリチウム電池。

$$-(N = P)_{m} - (II)$$

$$0(CH_{2} CH_{2} O)_{k} R'$$

 $\{ \text{上記式} (I) \sim (V) \text{ において、R及びR}'$ はそれぞれ低級アルキル基を示す。 h及び k はエチレンオキシ単位の平均の繰り返し数を 意味し、 $0 \le h \le 15$ の範囲の実数である。また ℓ ,m及び n はそれぞれ 整数であり、 $3 \le \ell + m + n \le 20000$ を満足するものとする。 $\}$

発明の詳細な説明

産業上の利用分野

である。

一方、太陽電池の欠点を補うため、太陽電池を 充電可能な蓄電池やキャパシタと組合せる方式が 種々提案、採用されているものの、照光時しか充 電できないことから、安全率を大きく採らねばな らず、最適な機器設計の制約となっている。

問題点を解決するための手段

前記諸要求を満すためには、単位重量、単位容 積中にできるだけ多くの電気エネルギーを安定に 保持し得るものであって、何時でも何処でも安全 にエネルギーを取り出して使用でき、且つできる だけ多くの電源から簡単にエネルギーを補充でき るものでなければならない。

本発明は、斯かる条件を満たす電池を提供するものである。

本発明の電池は、その片方の極板の外面へ放電 防止方向(充電方向)に電流が流れるようにダイ オードを積層し、安定な直流電源はもとより、不 本発明は各種電源による直接充電が可能な充電 用端子を有するリチウム二次電池に関するもので あり、更に詳しくは可搬性に優れた光充電機構を 有するリチウム二次電池に関するものである。

従来の技術とその問題点

安定な直流電源や、各種交流電源でも直接充電できるようにしたものである。而してエネルギーを蓄積する材料として理論的にも最も高エネルギー密度のリチウムを使用し、固態で難燃性の高分子電解質を使用することで安全性を確保し、かつリチウムイオンを吸放出できる正極材料を用いることにより、充電可能な二次電池としたもののである。

リチウム二次電池部の正極材としては、例えばTiS2、MnO2、MnS2、アモルファスV2O5、層状V2O5、アモルファスCr2O5、LiO.5 Mn2O(3.5~4)等のリチウムイオンを吸蔵し得る物質を挙げることができ、この中でも層状V2O5が好適である。負極材としては、例えば金属リチウム,リチウムアルミニウム合金等のリチウムイオンを生成し得る物質を挙げることができる。また高分子電解質としては、リチウムイオン伝導性のポリホスファゼン電解質

を好ましく例示できる。ポリホスファゼン電解質 としては、オリゴオチレンオキシ基を側鎖に有す るポリマーにLiC0〇』、LiBF』、

LiAsF6, LiPF6、CF3 SO3 Li等のリチウム塩を複合化させた物質を用いることができ、特に、側鎖にオリゴエチレンオキシ基を有する下記式(I), (II), (III), (IV) 又は(V) で示されるセグメントが任意に配列したオリゴエチレンオキシポリホスファゼン、或はこれらに前記リチウム塩を複合化させた高分子電解質は、充電電圧を5V(短時間ならば35V)まで即加できることから、好適に用いることができる。

接続するのが望ましい。ツェナーダイオードを有する並列回路を組み込むことにより、より広範囲の電源電圧にも適用し得るマルチ充電用端子を有するものとすることができる。

また、本発明の好ましいリチウム電池は、ダイオード上に、光照射により電池と逆の起電力を発生する光電変換素子を複数個、積層するか、直列するか又は積層したものを直列に接続してなる光電源部が積層され、且つリチウム電池の両極がヴェナーダイオードで接続された光充電機構を有するものである。この機構により、商用、風力、はで光充電のみならず、付帯装置なしである。また、可能となり得たものである。また、随時、任意の電源で光充電と並列的に充電し得るものである。

ここで光電変換案子としては、従来公知のもの を広く使用でき、例えばアモルファスシリコン、 多結品シリコン、単結品シリコン、アモルファス

【上記式(I)~(V)において、R及びR′は それぞれ低級アルキル基を示す。h及びkはエ チレンオキシ単位の平均の繰り返し数を意味し、 $0 \le h \le 15$, $0 \le k \le 15$ の範囲の実数であ る。また ℓ , m及びnはそれぞれ整数であり、 $3 \le \ell + m + n \le 20000$ 0を満足するもの とする。】

本発明においては、ダイオードの解放端とリチ ウム電池の他方の極板とをツェナーダイオードで

シリコンゲルマニウム、ヒ化ガリウム等が挙げられ、これらはプラズマCVD法等の慣用の方法にて作製され得る。

更に本発明では、本系のリチウム電池が3V級であり、通常2V以上の電圧で使用されることや、ダイオードによる電圧低下を考慮して、光電源部の出力電圧が2.3V以上となるように光電変換素子を複数個、積層又は直列接続するのが望ましい。

発明の効果

本発明のリチウム電池は、各種電源による直接 充電が可能であり、また可擬性に優れたものであ る。

実 施 例

以下に実施例を掲げて本発明をより一層明らかにする。

実施例1

35mm×35mmのステンレス板(8)上に、V₂

○5 水溶液を塗布、乾燥して正極層(7)を形成し、この上に前記式(I),(II),(II),(IV)又は(V)で示されるセグメントの任意に配列したオリゴエチレンオキシボリホスファ施例3に記すのボリマー)に、10%のLiC004を添加した電解質(6)を塗布し、リチウム高端子(1)を有する逆流防止ダイオード(3)を箱(5)の上に圧着し、封止材(2)にて、絶縁対止を行い、本発明のリチウム電池を得る。第1図は、リチウム電池の縦断面図である。

第2図は、上記リチウム電池の一使用例を示す 回路図である。この第2図に示すように、5.5 V以下に変圧された、交流もしくは変動電源 (10)と、直流機器(11)の間に入れて、安 定化整流補助電源(12)として使用できる。

実施例1と同様に行ったテストの結果を第6図に示した。

実施例3

直流機器(11)の代りに10kΩの抵抗を接続した時の電圧と電流の状況を示したものが第3図であり、OFFは電源(10)を切った時、ON-1は電源の安定した状態、ON-2は電源の不安定な状態である。

実施例2

実施例1と同様にして準備した電池部(5)、 (6)、(7)及び(8)とダイオードを積層した負極端子部(1)、(3)及び(4)並びに別途準備した直列抵抗を有するカットオフ電圧4Vのツェナーダイオードを第4図のように絶縁封止材(2)を用いて組立てた。第4図は、斯くして得られるリチウム電池の縦断面図である。

第5図は、該リチウム電池の一使用例を示す回路図である。該リチウム電池を変動のある電源(10′)と直流機器(11′)の間で安定化整流補助電源(12′)として第5図のように用いることができる。

である。

当該電池の出力端子に10kΩの抵抗を接続した時の明時及び暗時の電圧と電流は、第8図のような状況であり、光充電機構がうまく作動していることが確認された。

以上の如く、本電池は多様な電源で任意に充電でき、何時でも何処でも使用可能であることが実証された。

図面の簡単な説明

第1図は、実施例1で得られるリチウム電池の 縦断面図である。第2図は、実施例1で得られる リチウム電池の一使用例を示す回路図である。第 3図は、実施例1で得られるリチウム電池につい て電圧及び電流の時間的変化を示すグラフである。 第図は、実施例2で得られるリチウム電池の縦 断面図である。第5図は、実施例2で得られるリ チウム電池の一使用例を示す回路図である。第6 図は、実施例2で得られるリチウム電池について 電圧及び電流の時間的変化を示すグラフである。 788図は、実施例3で得られるリチウム電池の縦 断面図である。第8図は、実施例3で得られるリチウム電池について電圧及び電流の時間的変化を示すグラフである。

- (1) …金属端子、(2) …封止材
- (3)…逆流防止ダイオード
- (4) …ステンレス板、(5) リチウム箔
- (6) …電解質、(7) …正極層
- (8) …ステンレス板
- (10), (10')…電源、(11), (11')…直流機器、
- (12), (12), 安定化整流補助電源、
- (21) …透明保護膜、(22) …透明電極
- (23) … p型アモルファスシリコン層
- (24) … i 型アモルファスシリコン層
- (25) … n型アモルファスシリコン層
- (26) …金属電極、(27) …絶縁層
- (28) …ステンレス板、(29) …リチウム層

- (30) …電解質層、(31) …正極層
- (32) … ステンレス板
- (33) … 逆流防止ダイオード
- (34) …ツェナーダイオード
- (35) … 絶縁封止材

(以 上)

代理人 弁理士 三 枝 英 二

6

第 8 図

補正の内容

- 1 明細書中特許請求の範囲の項の記載を別紙の通り訂正する。
- 2 明細書第7頁第9~10行に「これらに前記」 とあるを「これらの混合物、に前記」と訂正す る。

(以 上)

手統補正書(自発)

平成1年10月18日

特許庁長官 吉田文毅殿

1 事件の表示

昭和63年特許願第195416号

2 発明の名称

充電機構を有するリチウム電池

3 補正をする者

事件との関係 特許出願人

大塚化学株式会社

4 代 理 人

大阪市中央区平野町2-1-2沢の鶴ビル

23 0 6 - 2 0 3 - 0 9 4 1

(6521) 弁理士 三 枝 英 二 平成1年2月8日住所変更済(一括)

5 補正命令の日付

自 発

6 補正の対象

明細書中「特許請求の範囲」の項及び 「発明の詳細な説明」の項

7 補正の内容

別紙添付の通り

特許請求の範囲

- ① リチウム電池の一方の極板の外面へ放電防止 方向にダイオードを積層したリチウム電池。
- ② ダイオードの解放端とリチウム電池の他方の 極板とをツェナーダイオードで接続した請求項 ①記載のリチウム電池。
- ③ ダイオード上に、光照射により電池と逆の起電力を発生する光電変換素子を複数個、積層するか、直列するか又は積層したものを直列に接続してなる光電源部が積層され、且つリチウム電池の両極がツェナーダイオードで接続された光充電機構を有する請求項①記載のリチウム電池。
- ④ 光電源部の出力電圧が2.3 V以上となるように光電変換素子を複数個、積層又は直列接続した請求項③記載のリチウム電池。
- ⑤ リチウム電池部が層状の V₂ O₅ 正極、リチウム金属又はリチウム・アルミニウム合金負極

及びポリホスファゼン電解質で構成された二次 電池である請求項①乃至③のいずれかに記載の リチウム電池。

⑥ ポリホスファゼン電解質が下記式(I),
 (Ⅱ), (Ⅲ), (Ⅳ) 又は(V) で示されるセグメントの任意に配列したオリゴエチレンオキシポリホスファゼン、或はこれらの混合物、にリチウム塩を複合化させたものである請求項
 ⑤記載のリチウム電池。

[上記式(I)~(V)において、R及びR′はそれぞれ低級アルキル基を示す。 h 及び k はエチレンオキシ単位の平均の繰り返し数を意味し、 $0 \le h \le 1.5$ の範囲の実数である。また ℓ , m及び n はそれぞれ整数であり、 $3 \le \ell + m + n \le 2.0000$ 0を満足するものとする。]