

AoPS Community

USAMO 1998

www.artofproblemsolving.com/community/c4496

by MithsApprentice, paul_mathematics, rrusczyk

Day 1 April 28th

Suppose that the set $\{1, 2, \cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i, b_i\}$ ($1 \le i \le 999$) so that for all i, $|a_i - b_i|$ equals 1 or 6. Prove that the sum

$$|a_1 - b_1| + |a_2 - b_2| + \dots + |a_{999} - b_{999}|$$

ends in the digit 9.

- Let C_1 and C_2 be concentric circles, with C_2 in the interior of C_1 . From a point A on C_1 one draws the tangent AB to C_2 ($B \in C_2$). Let C be the second point of intersection of AB and C_1 , and let D be the midpoint of AB. A line passing through A intersects C_2 at E and E in such a way that the perpendicular bisectors of DE and CF intersect at a point E on E on E ind, with proof, the ratio E intersect at a point E on E intersect at a point E on E independent E intersect at a point E on E independent E intersect at a point E on E intersect at a point E on E independent E intersect at a point E on E independent E intersect at a point E intersect at a p
- **3** Let a_0, a_1, \dots, a_n be numbers from the interval $(0, \pi/2)$ such that

$$\tan(a_0 - \frac{\pi}{4}) + \tan(a_1 - \frac{\pi}{4}) + \dots + \tan(a_n - \frac{\pi}{4}) \ge n - 1.$$

Prove that

$$\tan a_0 \tan a_1 \cdots \tan a_n \ge n^{n+1}.$$

Day 2 April 28th

- A computer screen shows a 98×98 chessboard, colored in the usual way. One can select with a mouse any rectangle with sides on the lines of the chessboard and click the mouse button: as a result, the colors in the selected rectangle switch (black becomes white, white becomes black). Find, with proof, the minimum number of mouse clicks needed to make the chessboard all one color.
- Prove that for each $n \ge 2$, there is a set S of n integers such that $(a-b)^2$ divides ab for every distinct $a,b \in S$.
- Let $n \geq 5$ be an integer. Find the largest integer k (as a function of n) such that there exists a convex n-gon $A_1A_2 \ldots A_n$ for which exactly k of the quadrilaterals $A_iA_{i+1}A_{i+2}A_{i+3}$ have an inscribed circle. (Here $A_{n+j} = A_j$.)

AoPS Community 1998 USAMO

These problems are copyright © Mathematical Association of America (http://maa.org).