

캡스톤 디자인 I 종합설계 프로젝트

프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine Learning)	
팀 명	Do it!	
문서 제목	수행 계획서	

Version	1.5
Date	2019-3-13

	문 다민(팀장)	
	김 기환	
팀원	김 현석	
	정 혜리	
	방 유한(외국인)	

계획서			
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine	
	Learning)		
팀	Do it!		
Confidential Restricted	Version 1.5	2019-MAR-13	

CONFIDENTIALITY/SECURITY WARNING

이 문서에 포함되어 있는 정보는 국민대학교 소프트웨어융합대학 소프트웨어학부 개설 교과목 캡스톤 디자인 수강 학생 중 프로젝트 DREAM(Detecting in Real-timE mAlicious document using Machine Learning)를 수행하는 팀 Do it! 팀원들의 자산입니다. 국민대학교 소프트웨어학부 및 팀 Do it!의 팀원들의 서면 허락없이 사용되거나, 재가공 될 수 없습니다.

문서 정보 / 수정 내역

Filename	계획서
원안작성자	문다민 김현석 김기환 정혜리
수정작업자	문다민 김현석 김기환 정혜리 방유한

수정날짜	대표수정자	Revision	추가/수정 항목	내 용
2019-03-03	문다민	1.0	최초 작성	프로젝트 개요 작성 역할 분담 초안 작성 개발 목표 초안 작성
2019-03-03	정혜리	1.1	내용 추가	개발 배경 및 필요성 작성
2019-03-05	김현석	1.2	내용 추가	개발 목표 작성
2019-03-08	김기환	1.3	내용 추가	개발 결과 작성 시스템 구조도 작성
2019-03-09	문다민	1.4	내용 추가	연구/개발 방법 작성
2019-03-11	방유한	1.4.1	내용 수정	연구 방법 수정
2019-03-13	문다민	1.5	최종	최종 수정 및 작성

계획서			
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine		
0	Learning)		
팀 명	Do it!		
Confidential Restricted	Version 1.5	2019-MAR-13	

목 차

1	개요			5
	1.1	프로젝	트 개요	5
	1.2	추진 바	· 경 및 필요성	7
	1.3	2.1	추진 배경	7
	1	2.2	현재 기술 시장 현황	8
	1	2.3	현재 기술 시장의 문제점 및 개선 방향	. 11
	1	2.3.1.	기술 시장 문제 1	. 11
	1.3	2.3.2.	기술 시장 문제 2	. 12
	1.3	2.3.3.	기술 시장 문제 3	. 12
2	개발 되	목표 및	내용	. 13
	2.1	목표		. 13
	2.2	연구/기	H발 내용	. 13
	2	2.1	시연 시나리오	. 13
	2.:	2.2	연구/개발 방법	. 14
	2.:	2.2.1.	데이터 라벨링 (Data Labeling)	. 14
	2.:	2.2.2.	특징 추출	. 15
	2.:	2.2.3.	기계 학습	. 16
	2.:	2.2.4.	웹	. 18
	2.3	개발 결	⁵ 과	. 19
	2.:	3.1	시스템 기능 요구사항	. 19
	2.3	3.2	시스템 비기능(품질) 요구사항	. 19
	2.:	3.3	시스템 구조	. 20
	2.:	3.4	결과물 목록 및 상세 사양	. 21
	2.4	기대효	과 및 활용방안	. 21
	2.	4.1	기대효과	. 21
	2.	4.2	활용방안	. 21
3	배경기	기술		. 22
	3.1	기술적	요구사항	. 22
	3.2	현실적	제한 요소 및 그 해결 방안	. 23
	3.3	2.1	하드웨어	. 23
	3.3	2.2	소프트웨어	. 23
	3.3	2.3	기타	. 23
4	프로적	벡트 팀	구성 및 역할 분담	. 24
5	프로적	네트 비원	8	. 24
6	개발 일	일정 및	자원 관리	. 25
캡스	톤 디자인	<u> </u>	Page 3 of 29	

계획서

계획서			
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine	
0	Learning)		
팀 명	Do it!		
Confidential Restricted	Version 1.5	2019-MAR-13	

	6.1	개발 일정	25
	6.2	일정별 주요 산출물	26
	6.3	인력자원 투입 계획	27
	6.4	비 인력자원 투입 계획	27
7	참고 -	무허	28

계획서			
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine	
	Learnir	ng)	
팀	Do it!		
Confidential Restricted	Version 1.5	2019-MAR-13	

1 개요

1.1 프로젝트 개요

정보화 시대에 들어서며 전 세계적으로 악성코드의 수는 급격히 늘어나고 있다. 최근에는 악성 코드 중 문서형 악성코드의 수가 증가하고 있고, 특히 이 문서형 악성코드의 유포 방법이 화두가 되고 있다. 대표적으로 2018년 1월부터 등장한 갠드크랩(GandCrab) 랜섬웨어는 사람들의 이목을 끌 수 있는 문서 파일로 위장하여 유포된다. 그리고 2018년 3월에 전 세계적으로 등장한 시그마(Sigma) 랜섬웨어는 이력서로 위장하여 유포된다. 이처럼 문서형 악성코드는 점점 지능적이고 정교하게 발전하고 있다.

<그림 1> 일주일 동안 바이러스토탈에 유입되는 파일의 종류와 수 (출처 = https://www.virustotal.com/en/statistics/)

바이러스토탈(VirusTotal)은 의심스러운 파일 및 URL을 분석하고 모든 종류의 악성 코드를 탐지하는 서비스이다. <그림 1> 은 일주일 동안 유입된 파일의 유형별 수에 대한 바이러스토탈의 그래 프이다. 그래프에 따르면 PDF는 55만 개로 3번째를 차지하고 있으며 이 외에도 MS Word, MS Excel 등 우리가 자주 사용하는 문서형 파일이 속해있다.

계획서			
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine	
	Learning)		
미	Do it!		
Confidential Restricted	Version 1.5	2019-MAR-13	

한 기사에 따르면 작년 10월, '국가 핵심 인력 등록 관리제 등 검토 요청.hwp'라는 파일명으로 문서형 악성코드가 유포되어 국내에서 실제 감염 피해가 발생한 바 있다. 바이러스토탈에 이 문 서형 악성코드가 처음 업로드 된 날짜는 10월 23일이었지만 10월 24일에 57개의 안티바이러스 중 3개 안티바이러스만이 탐지하였으며 이어 25일에는 6개 안티바이러스, 26일에는 13~16개 안 티바이러스, 11월 2일에는 56개의 안티바이러스 중 절반가량인 25개 안티바이러스에서만 탐지되 었다. 즉 상당수의 안티바이러스들이 이 문서형 악성코드를 탐지하지 못하였다.

<그림 2> 상당수의 안티바이러스가 문서형 악성코드를 탐지 못하는 사례 (출처= https://www.boannews.com/media/view.asp?idx=75093)

문서형 악성코드로 인한 사회적 피해가 지속적으로 발생하고 있지만, 문서형 악성코드를 전문적으로 탐지하는 안티바이러스는 많지 않다. 이는 문서형 악성코드가 쉽게 유포될 수 있어 사용자들의 PC 에 감염될 수 있다. 따라서 사회적 문제가 발생할 수 있다.

본 프로젝트에서는 문서형 악성코드를 탐지할 수 있는 엔진을 제작하여 문서형 악성코드의 유포와 그로 인한 피해가 생기는 것을 막고자 한다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine
c	Learnir	ng)
미	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

1.2 추진 배경 및 필요성

1.2.1 추진 배경

최근 해커들의 주요 공격 중 하나는 사회 공학(Social Engineering)적 공격이다. 사회 공학적 공격은 시스템이 아닌 사람의 취약점을 공략하는 공격이다. 대상자의 성향, 동향, 추세 등을 파악하여 정보를 수집하고 그 정보를 바탕으로 정부 기관이나 회사 또는 지인으로 속여 대상자의 흥미를 유발할 수 있는 키워드로 내용을 작성한다. 해커들은 메일, SMS, 웹 게시물 등에 이러한 내용에 악성코드가 삽입된 문서형 악성코드를 첨부하여 대상자 또는 불특정 다수가 의심 없이 첨부파일을 실행하게 유도하는 것이 특징이다.

통일부 기자단에 악성코드 메일 배포돼…"北 소행 의심"

입력: 2019-01-07 11:30 | 수정: 2019-01-07 15:12

통일부 "관계기관에 상황 전파...새해 정부 사칭 해킹 많아"

▲ 통일부 [연합뉴스TV 제공] 연합뉴스

통일부 기자단에 북한의 소행으로 의심되는 악성코드가 담긴 메일이 7일 배포돼 정부가 사실관계 확인에 나섰다.

<그림 3> 이메일을 활용한 문서형 악성코드 유포 사례

(출처= http://www.seoul.co.kr/news/newsView.php?id=20190107800022)

한 가지 사례로 2019 년 1 월, 통일부를 출입했던 언론사 취재기자들에게 통일부로 사칭하여 일괄적으로 'TF 참고.zip'라는 제목의 메일이 배포됐다. 메일의 내용은 'TF 참고되시길 ~, 언론사별 브랜드 관련해서 관리 잘해주시고~. 비번은 "tf"'라며 첨부된 문서형 악성코드의 실행을 유도하는 문구가 포함되어 있었다. 압축파일 안에는 pdf 파일과 hwp 파일이 있었으며 개인정보를 수집하고 해킹을 시도하려는 문서형 악성코드가 발견됐다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine
c	Learnir	ng)
미	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

1.2.2 현재 기술 시장 현황

1) 안랩(AhnLab) MDS

<그림 4> 안랩 MDS 장비

(출처 = https://www.ahnlab.com/kr/site/product/productView.do?prodSeq=68)

안랩(AhnLab)은 한국 정보 보안 업체 중 하나로, 안티바이러스인 V3로 잘 알려져 있다. 안랩은 V3 외에도 다른 소프트웨어 및 하드웨어 보안 솔루션, 모바일 보안, 정보보안 컨설팅, 기타산업용 제품 보안 등 다양한 분야에서 보안 사업을 하고 있다.

안랩의 보안 솔루션 MDS 는 네트워크 샌드박스 및 전용 에이전트를 통해 다양한 경로를 통해 유입되는 위협을 신속하게 수집하며, 시그니처 기반, 평판 기반, 비 시그니처(signature-less) 기반, 동적 행위 분석 등 멀티 엔진을 기반으로 기존 방식의 위협(Known), 알려지지 않은(Unknown) 신·변종 위협까지 정확하고 효율적으로 탐지 및 대응한다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine	
	Learnir	ng)
팀	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

2) 시만텍(Symantec)

시만텍은 미국의 보안 소프트웨어 회사이다. 시만텍이 개발하고 배포하는 제품인 노턴 안티바이러스는 악성 코드 방지 및 제거 기능을 제공한다. 또한 스팸 메일 필터링과 피싱 보호 기능이 있으며 2007 년에 바이러스 검사 소프트웨어 시장에서 61%를 차지했다.

또한 시만텍은 시그니처의 한계를 제시하며 Symantec Endpoint Protection 14 를 개발하고 있다. Symantec Endpoint Protection 14 는 시그니처에 의존하지 않고 기계 학습(Machine Learning) 및 행위 분석을 통해 보안 효과를 극대화하고 오탐을 최소화한다.

<그림 5> 시만텍 로고

(출처 = https://www.symantec.com/)

3) EdgeSpot

<그림 6> EdgeSpot 화면

(출처 = https://edgespot.io/)

Edge Spot은 알려지거나 알려지지 않은 (Zero Day) 공격에 대해 탐지 기능을 제공하는 무료 온라인 웹 서비스이다. PDF, Microsoft Office 파일 등 문서형 파일을 업로드하면 탐지 결과를 총 4가지(Malicious, Suspicious, Information, No threat found)로 분류하여 사용자에게 보여준다. Edge Spot은 정적 분석 및 동적 분석, 기계 학습과 같은 기술을 사용하여 분석한다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine	
	Learnir	ng)
팀	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

4) 지란지교시큐리티 SaniTOX

<그림 7> 지란지교시큐리티 SaniTOX

(출처 = https://www.jiransecurity.com/products/sanitox)

지란지교시큐리티는 문서보안, 암호화폐 보안과 모바일보안 등 소프트웨어 보안 전문 기업이다. 최근에 지란지교시큐리티가 자체 개발한 CDR (Content Disarm & Reconstruction) 기술을 이용하여 콘텐츠 악성코드를 무해화하는 새니톡스(SaniTox) 솔루션을 공개하였다. CDR 은파일 내 잠재적 보안 위협 요소를 탐지하여 제거한 뒤에 안전한 파일로 재조합하여 악성코드감염 위험을 사전에 방지할 수 있는 기술이다.

새니톡스 솔루션은 2 가지의 형태로 제공이 된다. 첫 번째, 새니톡스 어플라이언스는 별도의 소프트웨어 설치나 설정이 필요 없는 일체형 장비로 쉽게 도입이 가능하다. 그리고 Contnet Prevention Engine(Anti-Virus + CDR) 기반의 알려진 위협에 대한 1 차 필터링과 문서 기반의 표적형 악성코드에 대한 2 차 예방적 보안을 통해 전방위 위협에 대응한다. 두 번째, 새니톡스 SDK는 소프트웨어 개발사 및 서비스 제공 기업이 새니톡스 CDR 엔진을 자체 소프트웨어, 하드웨어 혹은 서비스에 통합할 수 있도록 API를 제공한다. 다양한 콘텐츠 유입 채널이 있는 제품을 통해 콘텐츠 악성코드 무해화 기능을 제공 할 수 있다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine
!_ 0	Learnin	ng)
팀	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

1.2.3 현재 기술 시장의 문제점 및 개선 방향

1.2.3.1. 기술 시장 문제 1

<그림 9> 바이러스토탈의 문서형 악성코드 결과 예시

<그림 9>는 2018년 12월에 등장했던 문서형 악성코드를 바이러스토탈에 업로드한 화면이다. 바이러스토탈 결과 59곳의 안티바이러스 중 오직 10곳의 안티바이러스가 악성이라고 탐지했다. 최신 문서형 악성코드를 탐지하는 안티바이러스가 적다는 것을 확인 할 수 있다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine	
	Learnir	ng)
팀	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

1.2.3.2. 기술 시장 문제 2

A 사의 솔루션은 문서 파일 내 실행 가능한 액티브 콘텐츠(매크로, 자바스크립트 등)을 원천 제거하여 문서 파일이 어떠한 동적 행위를 할 수 없는 파일로 만들기 때문에 악성 행위를 일절 차단할 수 있는 장점이 있다. 하지만 문서가 정상 파일 일지라도 문서 내에 존재하는 액티브 콘텐츠를 일절 제거하기 때문에 사용자들은 정상적으로 문서를 사용할 수 없게 된다.

본 프로젝트에서는 파일의 구조를 확인 후 정적 분석 과정으로 특징을 추출 후 기계 학습 기법으로 학습한 모델로 악성 코드를 탐지하기 때문에 위 솔루션에서의 정상 파일까지 변환되는 문제가 해결된다.

1.2.3.3. 기술 시장 문제 3

B사는 파일 탐지 주요 기술로 동적 행위 분석을 사용하는데 이때 많은 시간과 비용이 발생한다. 하루에 분석 할 수 있는 데이터의 양의 한계가 있으며 대용량의 데이터를 처리하는데 어려움이 있다. 또한 많은 시간과 비용이 발생하기 때문에 일반 사용자나 가정에서는 사용하기 어려운 단점이 있다. 본 프로젝트는 정적 분석 기반의 기계 학습 기법을 사용하여 데이터를 탐지하기 때문에 많은 양의 데이터를 대응 하는데 유리하다.

따라서 본 프로젝트는 PDF나 MS Office 등 의 문서형 파일이 악성인지 아닌지 탐지하여 문서형 악성코드가 유포되는 것을 방지하고자 한다. 그리고 프로젝트를 오픈소스화하여 사용자들이 필요로 하는 방향으로 코드를 자유롭게 수정 할 수 있도록 한다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine
	Learnir	ng)
팀 명	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

2 개발 목표 및 내용

2.1 목표

본 프로젝트는 문서형 악성코드를 탐지하는 엔진을 개발하여 문서형 악성코드가 유포되는 것을 방지하는 것을 목표로 한다. 또한 오픈소스 소프트웨어로 개발하여 여러 사용자가 수정 및 보완할 수 있도록 하는 것을 목표로 한다.

2.2 연구/개발 내용

2.2.1 시연 시나리오

<그림 10> 프로젝트 예상 시연 시나리오

사용자가 문서 파일을 업로드하면 파일의 유형(pdf, docx 등)에 따라 피처를 추출한다. 업로드한 파일에서 추출한 특징은 학습된 모델의 입력으로 하여 그 결과에 따라 사용자에게 메시지를 띄워준다. 만약 업로드한 문서 파일이 악성으로 판단되면 "바이러스에 감염된 파일로 의심되어 업로드할 수 없습니다."라는 메시지를 띄워준다. 반대로 정상 파일로 판단되면 "정상적으로 업로드 되었습니다."라는 메시지를 띄운다.

캡스톤 디자인 I Page 13 of 29 계획서

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine
	Learnir	ng)
팀	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

2.2.2 연구/개발 방법

2.2.2.1. 데이터 라벨링 (Data Labeling)

기계 학습에 있어서 중요한 것 중 하나는 데이터 라벨링이다. 본 프로젝트에서는 지도 학습을 사용하는데, 지도학습에서 학습 데이터에 대한 라벨링을 올바르지 않는다면 그에 대한 결과는 전혀 다른 결과를 초래한다. 그러므로 올바른 라벨링을 하는 것이 중요하다.

<그림 11> AV-TEST에서 각각의 안티바이러스에 대한 평가 지표 점수

(출처 = https://www.av-test.org/en/antivirus/home-windows/)

본 프로젝트는 파일에 대한 바이러스토탈 결과에서, 글로벌 안티바이러스 테스트 기관인 'AV-TEST' 와 'Virus Bulletin'의 성능 지표를 종합하여, 상위 5개의 안티바이러스가 악성이라고 판단하면 악성으로, 바이러스토탈에 등록된 안티바이러스 모두가 정상이라고 판단하면 정상으로 라벨링 하고자 한다.

계획서		
프로젝트 명 DREAM(Detecting in Real-timE mAlicious document using Machine		icious document using Machine
•	Learnii	ng)
팀 명	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

2.2.2.2. 특징 추출

문서의 유형별로 악성과 정상을 구분할 수 있는 특징을 추출한다. PDF나 MS Office 문서 등 문서의 유형별로 구조가 다르기 때문에 유형에 따라 특징을 추출하여 분석한다. 예를 들어 PDF는 문서의 구조적 특징을 분석할 수 있는 PDF파서(Parser)를 사용한다.

<그림 12> PDF파서 실행 화면 예시

<그림 12>는 PDF 파서(Parser)를 사용하여 "test.pdf" 파일을 분석한 결과이다. 왼쪽 열은 문서의 구성요소를 나타내며 오른쪽 열은 구성요소의 개수를 의미한다. 파서 코드를 수정하거나 추가하 여 문서에서 추출되는 특징을 추가할 것이다. 구한 특징은 벡터화하여 기계 학습에 사용할 예정이 다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine	
	Learnir	ng)
미	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

2.2.2.3. 기계 학습

<그림 13> 학습 및 테스트 과정

기계 학습을 사용하여 문서 파일이 악성인지 정상인지 판별하고자 한다. 기계 학습의 학습 방법은 지도 학습, 비지도 학습, 반지도 학습으로 나뉘는데, 본 프로젝트에서는 지도 학습을 사용한다. 탐지 모델의 학습 및 테스트 과정은 <그림 13>의 과정으로 이루어진다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine	
	Learnir	ng)
팀	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

<그림 14> 지도 학습의 개요

(출처 = http://blog.naver.com/PostView.nhn?blogId=jn-

solution&logNo=221278915519&parentCategoryNo=&categoryNo=7&viewDate=&isShowPopularPosts=true&f rom=search)

라벨링 된 정상 파일과 악성 파일의 특징을 추출하여 벡터화를 한 뒤, 기계 학습 모델의 입력 값으로 활용한다. 기계 학습 모델의 종류는 SVM, Random Forest, GBDT, DNN 등 다양한 모델을 사용하여 실험을 진행할 예정이다.

본 프로젝트는 다양한 모델로 실험을 진행해서 가장 좋은 성능을 보이는 모델을 사용하거나 여러 모델을 앙상블 한 모델을 사용할 예정이다.

계획서		
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine	
	Learnir	ng)
팀	Do it!	
Confidential Restricted	Version 1.5	2019-MAR-13

2.2.2.4. 웹

시나리오를 위한 기본적인 웹 서비스를 구현한다.

본 프로젝트에서 개발한 엔진을 웹 서비스에 확장한 상황을 가정한다. 웹 서비스는 파일 업로 드가 가능한 게시판 형태로 구현한다. 파일이 업로드 되었을 때 정상 파일이라면 정상적으로 업로드가 되었음을 클라이언트에 전달하여야 한다. 또한 게시판에 업로드 된 파일을 저장하기 위해 DB 연동이 되어야 하며 Django를 사용하여 웹 서버와 DB를 연동할 계획이다.

<그림 15> 웹 서비스 구조

(출처 =

https://blog.heroku.com/in_deep_with_django_channels_the_future_of_real_time_apps_in_django)

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
	Learning)			
팀	Do it!			
Confidential Restricted	Version 1.5 2019-MAR-13			

2.3 개발 결과

2.3.1 시스템 기능 요구사항

<그림 16> 유즈 케이스(Use Case)

2.3.2 시스템 비기능(품질) 요구사항

1) 성능

사용자가 파일을 업로드 했을 때, 사용자에게 최대한 빠르게 업로드 결과를 보여줘야 한다. 따라서 업로드 된 파일의 특징을 추출해서 악성인지 판단하는데 걸리는 시간을 최대 2초로 제한한다. 그리고 사용자가 믿을 수 있는 결과를 도출해야 한다. 따라서 본 프로젝트의 엔진은 98% 이상의 정확도를 보장해야 한다.

2) 보안성

악의적으로 대용량의 파일을 업로드하여 서버에 부하를 가하는 경우를 대비하여 업로드 가능한 파일의 개수를 5개, 파일의 크기를 개당 5MB로 제한한다.

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
	Learning)			
팀	Do it!			
Confidential Restricted	Version 1.5 2019-MAR-13			

3) 유지보수성

사용자들은 보유한 데이터가 없어 모델을 학습하는데 어려울 수 있다. 따라서 주기적으로 모델을 업데이트하여 사용자들에게 배포한다.

사용자 오픈소스 커뮤니티를 운영하여 사용자들과 데이터를 공유한다. 만약 오탐 발생 시사용자 커뮤니티에서 데이터 정보를 즉시 수집 받고 모델을 재 학습 후 재배포한다.

2.3.3 시스템 구조

<그림 17> 시스템 구조도

사용자가 파일을 업로드한다. 업로드 된 파일은 서버로 전송된다. 서버에서는 파일의 특징을 추출하여 특징 벡터를 생성한다. 특징 벡터로 학습된 모델 기반으로 악성 여부를 검사하고 검사결과가 정상이라면 업로드 된 파일을 DB에 저장한다.

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
0	Learning)			
팀 명	Do it!			
Confidential Restricted	Version 1.5 2019-MAR-13			

2.3.4 결과물 목록 및 상세 사양

대분류	소분류	기능	형식	비고
탐지 엔진	특징 추출기	문서형 파일을 정적 분석하여 특징을 추출한다.	모듈	
	탐지기	문서형 파일이 악성인지 정상인지 검사한다.	모듈	

2.4 기대효과 및 활용방안

2.4.1 기대효과

본 프로젝트는 문서형 파일을 업로드 하기 전 파일이 악성인지 정상인지 판별하여 유포 및 감염을 막는다. 현재 문서형 악성코드는 사람들의 관심을 끌 만한 제목으로 유포되고 있으며 사용자들은 해당 파일들에 경계심을 갖지 않고 다운로드 하여 실행할 수 있다. 이로 인한 피해로 발생 할수 있는 사회적 문제를 예방할 수 있을 것이라 기대한다.

2.4.2 활용방안

■ 웹 서비스

웹 서비스 운영자는 웹 서버에 본 프로젝트의 엔진을 적용함으로써 문서형 악성코드가 무단으로 업로드 되는 것을 방지할 수 있다.

■ PC

본 프로젝트의 엔진을 PC에서 실행하여 사용자의 컴퓨터에 문서형 악성코드가 침입하는 것을 방지 할 수 있다.

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
	Learning)			
팀	Do it!			
Confidential Restricted	Version 1.5 2019-MAR-13			

3 배경 기술

3.1 기술적 요구사항

- 개발 언어
 - Python 3.6.5
- 개발 환경
 - CPU: Intel Core i7-5500U @ 2.40GHz 2.39 GHz
 - Storage: 512GB HDD
 - RAM : Samsung DDR3 4GB
- 라이브러리
 - Django 2.1
 - numpy 1.14.5
 - Pandas 0.23.4
 - Scikit-Learn 0.20.0
 - LightGBM 2.2.4
 - Pytorch 1.0.1
 - Tensorflow 1.8.1
- 데이터
 - Virussign
 - VirusShare
 - Contagio Blog

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
c	Learning)			
미	Do it!			
Confidential Restricted	Version 1.5 2019-MAR-13			

3.2 현실적 제한 요소 및 그 해결 방안

3.2.1 하드웨어

웹 서버에 엔진이 정상적으로 확장될 수 있는 서버 사양이 되어야 한다.

기계 학습 모델을 학습할 때 많은 양의 데이터를 학습할 경우 오랜 시간이 소요된다. 이는 GPU를 사용함으로써 모델이 학습되는데 걸리는 시간을 단축할 수 있다.

3.2.2 소프트웨어

웹 서버와 엔진 간의 통신이 원활하게 되도록 해야 한다.

시간이 지남에 따라 악성 데이터의 특징이 변화하기 때문에 주기적으로 학습 모델을 재학습해야 한다. 모델을 학습할 때, 한 도메인의 데이터만 학습한다면 과적합(Overfitting)이 일어날 수 있다. 따라서 여러 도메인의 자료를 수집해서 학습하고, 데이터의 일반적인 특징을 추출해서 학습하도록 한다.

3.2.3 기타

파일을 ZIP, 7Z 등으로 압축하여 업로드할 수 있다. 따라서 업로드한 파일이 압축 파일 일때 압축 파일 내부의 파일들을 모두 검사하도록 한다.

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
0	Learning)			
팀 명	Do it!			
Confidential Restricted	Version 1.5 2019-MAR-13			

4 프로젝트 팀 구성 및 역할 분담

이름	역할
김기환	- 데이터 전처리 - 데이터 수집
김현석	- 데이터 라벨링 - 웹 서버 구축
문다민	- 기계 학습 모델 설계 및 구축 - 엔진 설계 및 개발
방유한	- 유저 인터페이스 구현 - 로고 디자인
정혜리	- 데이터 전처리 - 문서 작업

5 프로젝트 비용

항목	예상치 (MD)
아이디어 구상	10
AWS 서버	10
웹 디자인	20
엔진 설계	35
엔진과 웹 서비스 연동	20
탐지 모델 제작	20
프로젝트 테스트 및 유지보수	25
프로젝트 평가 및 보고서 작성	30
합	170

계획서			
프로젝트 명 DREAM(Detecting in Real-timE mAlicious document using Machine Learning)			
팀 명	Do it!		
Confidential Restricted	Version 1.5 2019-MAR-13		

6 개발 일정 및 자원 관리

6.1 개발 일정

항목	세부내용	1 월	2 월	3 월	4 월	5 월	6 월	비고
요구사항분석	요구 분석							
	SRS 작성							
과려 본 아. a. 그	주요 기술 연구							
관련분0:연구	관련 시스템 분석							
설계	시스템 설계							
구현	코딩 및 엔진 테스트							
테스트	시스템 테스트							_

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
•	Learning)			
팀 명	Do it!			
Confidential Restricted	Version 1.5	2019-MAR-13		

6.2 일정별 주요 산출물

마일스톤	개요	시작일	종료일
계획서 발표	개발 환경 구축 산출물 : 1. 프로젝트 수행 계획서 2. 계획서 발표 자료	2019-03-03	2019-03-15
설계 완료	시스템 설계 완료(Django 와 엔진 연동) 산출물 : 1. 시스템 설계 사양서	2019-03-15	2019-03-23
중간 보고	프로그램 기본 기능 구현 완료 산출물 : 1. 프로젝트 1 차 중간 보고서 2. 프로젝트 진도 점검표 3. 1 차 구현 소스 코드	2019-03-23	2019-04-19
구현 완료	서버, 엔진 구현 완료 산출물 : 1. 문서형 악성코드 탐지 엔진	2019-04-01	2019-04-19
테스트	시스템 테스트 산출물 : 시연용 문서형 악성코드 탐지 시스템	2019-04-13	2019-05-31
최종 보고서	산출물 최종 보고서	2019-05-31	2019-06-07

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAli	cious document using Machine		
c	Learning)			
미	Do it!			
Confidential Restricted	Version 1.5	2019-MAR-13		

6.3 인력자원 투입 계획

이름	개발항목	시작일	종료일	총개발일(MD)
전원	아이디어 구상	2019-03-03	2019-03-08	10
문다민	머신 러닝 기반 학습 모델 개발 프로젝트 유닛테스트 및 유지보수	2019-04-04	2019-05-26	25
김기환	최신 기술 현황 분석 바이러스토탈 레포트 수집	2019-03-09	2019-05-26	15
김현석	데이터 라벨링 웹 서버 구축	2019-03-09	2019-05-26	20
정혜리	데이터 수집 데이터 전처리	2019-03-09	2019-05-26	25
방유한	유저 인터페이스 구현	2019-04-01	2019-05-26	20

6.4 비 인력자원 투입 계획

항목	Provider	시작일	종료일	Required Option
개발용 PC 4 대	ThinkPad	2019-03-03	2019-05-31	
AWS EC2	AWS	2019-03-03	2019-05-31	p2.xlarge

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAli	icious document using Machine		
0	Learning)			
팀 명	Do it!			
Confidential Restricted	Version 1.5	2019-MAR-13		

7 참고 문헌

번호	종류	제목	출처	발행 년도	저자	기타
1	웹 페이지	VirusTotal	https://www.virustotal.com/en/stat			
2	기사	이력서 위장 '시그마' 랜섬웨어 전 세계 유포	https://www.sedaily.com/NewsVie w/1RX4PK7LDU			
3	기사	MS 워드 매크로 악용 '갠드크랩' 랜 섬웨어 기승	http://it.chosun.com/site/data/htm _dir/2018/11/16/2018111601952. html			
4	기사	정부 사칭 이메일 공격 계속 발견	http://www.boan.com/news/article. html?id=20181130150004			
5	논문	문서 구조 및 스트림 오브젝트 분석 을 통한 문서형 악성코드 탐지	http://www.dbpia.co.kr/Journal/Arti cleDetail/NODE07565787			
6	논문	Malicious PDF Detection using Metadata and Structural Features	http://delivery.acm.org/10.1145/243 0000/2420987/p239- smutz.pdf?ip=203.246.112.134&id= 2420987&acc=ACTIVE%20SERVICE &key=0EC22F8658578FE1%2EB574 870CA11B57BF%2E4D4702B0C3E38 B35%2E4D4702B0C3E38B35&_acm _=1552357255_267897824fcefb11 3cb198d370cb5329			
7	기사	국내 유명 변호사 사칭한 악성코드, 상당수 백신 탐지 못해	https://www.boannews.com/media/ view.asp?idx=74302			
8	기사	요즘 해커들 사이에서 가장 인기 높 은 건, MS 오피스	https://www.boannews.com/media/ view.asp?idx=76967&page=1&mki nd=1&kind=1			
9	논문	ALDOCX: Detection of Unknown Malicious Microsoft Office Documents Using Designated Active Learning Methods Based on New	https://ieeexplore.ieee.org/stamp/st amp.jsp?tp=&arnumber=7762928			

계획서				
프로젝트 명	DREAM(Detecting in Real-timE mAlicious document using Machine			
!_ 0	Learning)			
팀	Do it!			
Confidential Restricted	Version 1.5	2019-MAR-13		

		Structural Feature Extraction			
		Methodology			
10	논문	A Research of Anomaly Detection	http://kiss.kstudy.com/thesis/thesis-		
10	근正	Method in MS Office Document	view.asp?key=3498648		