Criptografía con RNA

Trabajo Fin de Grado

Melisa Belmonte Jiménez

Facultad de Ciencias Matemáticas Universidad Complutense de Madrid

Índice

- Introducción
- 2 Criptografía
- Redes Neuronales

- 4 Criptografía con RNA no sincronizadas
- 5 Criptografía con RNA sincronizadas
- Conclusiones

Índice

- Introducción
- 2 Criptografía
- Redes Neuronales

- 4 Criptografía con RNA no sincronizadas
- Criptografía con RNA sincronizadas
- Conclusiones

Introducción

- **Polivalencia** de Redes Neuronales → Criptografía
- Métodos actuales: teoría de números.
- Seguridad: complejidad computacional alta de problemas → Computación cuántica.
- Imitación de redes → Redes Neuronales Caóticas

Índice

- Introducción
- Criptografía
 - Criptografía con caos
- Redes Neuronales

- 4 Criptografía con RNA no sincronizadas
- Criptografía con RNA sincronizadas
- **6** Conclusiones

Criptografía

Simétrica

Emisor y receptor usan la misma clave.

Seguridad basada en el secretismo de la clave.

Asimétrica

Distintas claves para el cifrado y descifrado.

Seguridad basada en la estructura.

Criptografía con caos

Comportamiento aparentemente aleatorio dado por funciones relativamente simples.

Usos principales han sido:

- Simular ruido en las comunicaciones
- Crear claves aleatorias
- Definir **funciones hash** más seguras.

Característica caótica	Propiedad criptográfica	Descripción
Ergodicidad Topológicamente transitivo	Confusión	Las salidas de distintas entradas no parecen tener relación
Sensibilidad a las condiciones iniciales	Difusión	Una pequeña diferencia en la entrada da una salida muy distinta.
Determinístico	Pseudo-aleatoriedad determinística	Resultados aparentemente aleatorios, que son determinísticos.
Complejidad	Complejidad algorítmica	Un algoritmo simple produce salidas complejas.

Definición

Ergodicidad: Propiedad de un sistema que sugiere que un punto del mismo visitará todas las partes del espacio en el que se mueve

Definición

Una función $f: X \mapsto Y$ es **topológicamente transitiva** si para todo par de conjuntos abiertos no vacíos $U, V \subset X$ existe un $n \in \mathbb{N}$ tal que $f^{-n}(U) \cap V \neq \emptyset$

Índice

- Introducción
- Criptografía
- Redes Neuronales
 - RNA Recurrentes

- Criptografía con RNA no sincronizadas
- Criptografía con RNA sincronizadas
- Conclusiones

Redes Neuronales

Propagación hacia delante

- Transmisión lineal
- Estructura de capas

$$F(x) = \sigma(W_N \cdot \sigma(...\sigma(W_1 \cdot x + b_1)...) + b_N)$$

Recurrentes

- Memoria
- . Transmisión no lineal

$$\frac{\partial x(t)}{\partial t} = -x(t) + W\sigma(x(t)) + I(t)$$

RNA Recurrentes

Hopfield

- Aprenden unos patrones.
- Salida: patrón más similar a la entrada.

Celulares

- Procesamiento paralelo.
- Localmente conectadas.

Q'tron

- Minimización de función energía.
- Neuronas fijas y libres.

Indice

- Introducción
- 2 Criptografía
- Redes Neuronales

- Criptografía con RNA no sincronizadas
 - Criptografía Visual
- Criptografía con RNA sincronizadas
- Conclusiones

Criptografía con RNA no sincronizadas

Usos:

- Red o conjunto de entrenamiento como clave privada
 - Sistemas robustos
 - Claves muy grandes
- Imitar funciones
 - + rápido que los métodos de aproximación
- Secuencias pseudoaleatorias
 - Con RN de Hopfield y RN Celulares

Criptografía Visual

• O: Imagen objetivo - 1 Neurona fija/pixel • T_i : Transparencia i - 1 Neurona libre/pixel • y_{ij}^{\times} la salida de la neurona correspondiente al pixel en posición ij en la imagen $x \in \{O, T_1, T_2\}$

$$\mathbb{E}(\Theta) = \frac{1}{2} \sum_{(o, t_1, t_2) \in \Theta} E(y_o, y_{t_1}, y_{t_2})$$

t_2	0	Ε
Λ	0	0
U	1	2, 25
1	1	0, 25
Т	0	1
Λ	1	0, 25
U	0	1
1	1	0, 25
1	0	4
	t_2 0 1 0 1	0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

$$E(o, t_1, t_2) = (1.5o - (t_1 + t_2))^2$$

Índice

- Introducción
- 2 Criptografía
- Redes Neuronales

- Criptografía con RNA no sincronizadas
- Criptografía con RNA sincronizadas
 - Árbol de Paridad (AP)
 - Criptoanálisis
 - Mejoras
- 6 Conclusiones

Criptografía con RNA sincronizadas

Árbol de Paridad

$$o_{i} = \begin{cases} sign(x_{i}^{T} \cdot w_{i}) & si \quad x_{i}^{T} \cdot w_{i} \neq 0 \\ a & si \quad x_{i}^{T} \cdot w_{i} = 0 \end{cases}$$

Con
$$a \in \{-1, 1\}$$
 fijo
Salida final: $o = \prod_{i=1}^{K} o_i$

RN Recurrentes

2 condiciones:

•
$$0 \le \frac{\sigma_i(x) - \sigma_i(y)}{x - y} \le h_i$$
 y $0 \le \frac{\tilde{\sigma}_i(x) - \tilde{\sigma}_i(y)}{x - y} \le k_i$ para $x \ne y$ y ciertos h_i y k_i .

ullet $au(t) \geq 0$ función derivable que cumple $0 \leq au(t) \leq \mu < 1 \ orall t$

$$\frac{\partial x(t)}{\partial t} = -Cx(t) + A\sigma(x(t)) + B\tilde{\sigma}(x(t-\tau(t)) + I$$

$$\frac{\partial y(t)}{\partial t} = -Cy(t) + A\sigma(y(t)) + B\tilde{\sigma}(y(t-\tau(t)) + \varepsilon \odot (y(t)-x(t))$$

Árbol de Paridad (AP)

Árbol de Paridad

$$o_{i} = \begin{cases} sign(x_{i}^{T} \cdot w_{i}) & si \quad x_{i}^{T} \cdot w_{i} \neq 0 \\ a & si \quad x_{i}^{T} \cdot w_{i} = 0 \end{cases}$$

Con $a \in \{-1,1\}$ fijo Salida final: $o = \prod_{i=1}^K o_i$

Funciones de Activación:

- Hebbian: $\sigma(o_i) = o_i$
- Anti-Hebbian: $\sigma(o_i) = -o_i$
- Paseo Aleatorio ($Random\ Walk$): $\sigma(o_i) = 1$

Cáculo del peso

$$w_i^+ = w_i + \frac{\eta}{N} \cdot \sigma(o_i) \cdot x \quad \forall i \in \{1...K\}$$

 η_i : la tasa de aprendizaje N: dimensión del peso

f: función de aprendizaje

o_i: salida obtenida en el perceptrón i

o': salida de la otra red

x: entrada.

Implementación

- 5 neuronas de entrada.
- Pesos de dimensión 10.
- Pesos acotados por 10.

Ataque por fuerza bruta

Ataque Probabilístico

• Probabilístico:

$$P(o_k = 1 | o) = \frac{\sum_{(\alpha_1, ..., \alpha_k), ... \prod_{i=1}^k \alpha_i = 0 \text{ y} \alpha_k = 1} \prod_{i=1}^k p_i(\alpha_i)}{\sum_{(\alpha_1, ..., \alpha_k), ... \prod_{i=1}^k \alpha_i = 0} \prod_{i=1}^k p_i(\alpha_i)}$$

- **Geométrico**: Hiperplanos $X_i : \sum_{j=1}^N x_{ij} z_j = 0$ en $U = \{-L, ..., L\}^N$, con los pesos como puntos. o_i el lado del hiperplano X_i en el que está W_i
- Genético: Usa una población de redes.

Ataque Geométrico

- **Probabilístico**: $P(o_k = 1 | o) = \frac{\sum_{(\alpha_1, ..., \alpha_k), , \prod_{i=1}^k \alpha_i = 0 \text{y} \alpha_k = 1}^{k} \prod_{i=1}^k p_i(\alpha_i)}{\sum_{(\alpha_1, ..., \alpha_k), , \prod_{i=1}^k \alpha_i = 0} \prod_{i=1}^k p_i(\alpha_i)}$
- Geométrico:

Hiperplanos
$$X_i$$
: $\sum_{j=1}^N x_{ij}z_j = 0$ en $U = \{-L, ..., L\}^N$ o_i el lado del hiperplano X_i en el que está W_i

- $oldsymbol{o} oldsymbol{o}^{oldsymbol{A}}
 eq oldsymbol{o}^{oldsymbol{B}}$: A y B no cambian, luego C tampoco.
- $\mathbf{o}^{\mathbf{A}} = \mathbf{o}^{\mathbf{B}} = \mathbf{o}^{\mathbf{C}}$: Se actualiza C de la foma habitual.
- $\mathbf{o^A} = \mathbf{o^B} \neq \mathbf{o^C}$: Se cambia $o_{i_0}^C = -o_{i_0}^C$ ($i_0 = indmin | \sum_{i=0}^N w_{ii}^C \cdot x_{ij} |$) y luego se actualiza con o^A .
- Genético: Usa una población de redes.

Ataque Geométrico

Ataque Genético

- **Probabilístico**: $P(o_k = 1 | o) = \frac{\sum_{(\alpha_1, ..., \alpha_k), \prod_{i=1}^k \alpha_i = 0 y \alpha_k = 1} \prod_{i=1}^k p_i(\alpha_i)}{\sum_{(\alpha_1, ..., \alpha_k), \prod_{i=1}^k \alpha_i = 0} \prod_{i=1}^k p_i(\alpha_i)}$
- **Geométrico**: Hiperplanos $X_i : \sum_{j=1}^N x_{ij}z_j = 0$ en $U = \{-L, ..., L\}^N$, con los pesos como puntos. o_i el lado del hiperplano X_i en el que está W_i
- **Genético**: Límite de M redes, inicia una población aleatoria reducida.
 - $oldsymbol{o}^{oldsymbol{A}}
 eq oldsymbol{o}^{oldsymbol{B}}$: A y B no cambian, luego la población tampoco.
 - $\mathbf{o^A} = \mathbf{o^B}$ y hay **menos de M redes**: Se eliminan las redes con salida distinta, se multiplican las iguales.
 - **o**^A = **o**^B y hay **M redes o más**: Se eliminan las redes con salidas distintas, se actualizan el resto de la forma habitual.

Ataque Genético

Mejoras

- Mapa caótico.
- Pesos discretos.
- Normalización de los pesos.
- Método para comprobar la sincronización.

Implementación

- 5 neuronas de entrada.
- Pesos de dimensión 10.
- Pesos acotados por 10.
- Mapa logístico.

Ataque por fuerza bruta

Ataque Geométrico

Ataque Genético

Indice

- Introducción
- Criptografía
- Redes Neuronales

- Criptografía con RNA no sincronizadas
- Criptografía con RNA sincronizadas
- **6** Conclusiones

Conclusiones

Alternativa a los métodos dependientes de la potencia de los ordenadores.

Destaca el Árbol de Paridad

Mejoras Árbol de Paridad:

Método para comprobar la sincronización.

Cambios en su estructura para reducir interacciones.