Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT

1º Teste (VA) - 12 de Novembro de 2016 - 12:00 às 13:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4,5 val.) Calcule, se existirem (finitos ou infinitos), os seguintes limites:

(a)
$$\lim_{x \to 0^+} \frac{\text{sen}(\ln(\cos x))}{2^{x^2} - 1}$$
 (b) $\lim_{x \to 0} \frac{(\arctan x)^2}{1 - \cosh 2x}$ (c) $\lim_{x \to +\infty} \left(1 - e^{-1/x^2}\right)^{x^2}$

(b)
$$\lim_{x\to 0} \frac{(\arctan x)^2}{1-\cosh 2x}$$

(c)
$$\lim_{x \to +\infty} \left(1 - e^{-1/x^2}\right)^{x^2}$$

Problema 2 (4 val.) A função f está definida para $x \neq 0$ por

$$f(x) = |x|^{3/2} \ln(|x|)$$

- (a) Diga se f pode ser prolongada por continuidade ao ponto 0 e, em caso afirmativo, sendo q esse prolongamento por continuidade, determine q'(0), se esta derivada existir.
- (b) Determine os intervalos de monotonia e concavidade de f e, caso existam, os extremos, inflexões e assímptotas de f.
- (c) Esboce o gráfico de f e determine o conjunto $f(\mathbb{R}^+)$.

Problema 3 (4,5 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = \operatorname{sen}^2\left(\frac{2^x}{x^2 + 1}\right)$$
 (b) $g(x) = \ln\left(\operatorname{arcsen}(\sqrt{x})\right)$ (c) $h(x) = (\cos x)^{\sin x}$

Problema 4 (3 val.) Seja $f(x) = \operatorname{senh} x$.

- (a) Calcule o polinómio p(x) de grau ≤ 4 tal que $f^{(k)}(0) = p^{(k)}(0)$ para $k \leq 4$.
- (b) Conclua que se x > 0 então existe $c \in]0, x[$ tal que

$$0 < \frac{f(x) - p(x)}{x^5} < \frac{\cosh(c)}{120}$$

(c) Mostre que senh $(1/2) = \frac{25}{48} + R$, onde 0 < R < 0,001 (recorde que e < 3).

Problema 5 (4 val.) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável em \mathbb{R} . Demonstre as seguintes afirmações:

- (a) Se f tem limites no infinito então f é limitada em \mathbb{R} .
- (b) Se f'' existe numa vizinhança de 0, f'(0) = f''(0) = 0, f'''(0) existe e $f'''(0) \neq 0$, então f não tem um extremo em x=0.
- (c) Se f(0) = 0 então $f(x^2)/x \to 0$ quando $x \to 0$.
- (d) Se f' é crescente em \mathbb{R} então a recta tangente ao gráfico de f num qualquer ponto x = a está sob o referido gráfico.