

ming.du101@gmail.com | http://mdw771.github.io/ https://www.linkedin.com/in/ming-du-a0b51b6b

PROFILE

- Developed production-level image processing, deep learning, and optimization algorithms for semiconductor process control equipment.
- Created large-scale x-ray 3D computational imaging algorithms on HPC platforms with MPI-based parallel computing.
- Image reconstruction/restoration using both deep learning and model-based optimization methods.
- Intensive experience in using automatic differentiation for inverse problem solving with PyTorch and TensorFlow.
- Leadership experience as **project PI** for an ALCC large-scale computing grant.
- Knowledge in cloud computing for ML proven by the AWS Certified Machine Learning Specialty certification.

EXPERIENCE

10/2023 - now

Assistant Computational Scientist

Argonne National Laboratory, Lemont, IL, USA

• Developed AI algorithms for x-ray science.

03/2023 - 09/2023 04/2021 - 03/2023

Senior Algorithm Engineer

Algorithm Engineer

KLA Corporation, Ann Arbor, USA

- Developed image processing algorithms for modeling the image formation process in KLA's high-precision photomask inspection systems used for sub-3-nm processes. Implemented algorithm solutions in the C++ codebase.
- Led the development and productization a deep learning algorithm for defect detection, achieving 60% reduction of false positives. Optimized inference throughput using techniques and tools including OpenVINO.
- Using computer vision and numerical optimization techniques, developed image correction and artifact removal algorithms that reduced the false positive rate of the photomask inspection system by over 70%.
- Directed an internship project on modeling the artifacts generated in the image formation process using deep learning.

08/2019 - 03/2021

Postdoctoral Scholar

Argonne National Laboratory, Lemont, USA

Project title: Learning and differentiating: using artificial intelligence to image beyond the x-ray depth of focus limit

- Developed Adorym, a reconstruction framework capable of performing large-scale 2D/3D phase retrieval, image
 reconstruction, and parameter refinement for multiple x-ray imaging techniques, built on automatic differentiation
 of PyTorch.
- Developed a generative neural network-based method using "deep image prior" to reconstruct clean images from artifact-corrupted images in x-ray multislice ptychography.
- Developed a distributed algorithm for large 2D wavefield propagation on high performance computers (HPCs).
- Led the proposal and research of an ASCR Leadership Computing Challenge (ALCC) project, which is a highly selective HPC resource award, on large-scale 3D reconstruction.

09/2015 - 06/2019

Ph.D. Candidate (Research Assistant)

Northwestern University, Evanston, USA

- Developed *Tomosaic*, a Python software package for beyond-field-of-view x-ray micro-CT. Achieved 3D reconstruction of a whole mouse brain with 10¹³ voxels from 5.8 TB of raw data, using supercomputers at Argonne Leadership Computing Facility.
- Developed an innovative algorithm for 3D phase retrieval under complicated imaging scenarios, utilizing the automatic differentiation capability of deep learning tools.
- Conducted x-ray tomography and ptychography experiments at the Advanced Photon Source.
- Involved in the commissioning of an automated tomography processing pipeline *Automo/Ripple* at beamline 32-ID of the Advanced Photon Source.
- Built an improved theoretical model for dose estimation in the x-ray imaging of thick hydrated specimens.

01/2014 - 06/2014

Research Intern

Singapore Institute of Manufacturing Technology, Singapore

- Experimentally studied the pore size dependence of anodic aluminum oxide on voltage and electrolyte temperature.
- Developed a tool for unsupervised data analysis.

EDUCATION

2015 - 2019

Doctor of Philosophy, Northwestern University, Evanston, USA

Department of Materials Science and Engineering

Advised by Prof. Chris Jacobsen

Thesis title: To the Breadth, and to the Depth: Scalable 3D Imaging of Extended Objects with High Resolution Using X-ray Microscopy

- [1] M. Du, X. Huang, C. Jacobsen, Using a modified double deep image prior for crosstalk mitigation in multislice ptychography. *Journal of Synchrotron Radiation*. 8 (2021).
- [2] M. Du, S. Kandel, J. Deng, X. Huang, A. Demortiere, T. T. Nguyen, R. Tucoulou, V. D. Andrade, Q. Jin, C. Jacobsen, Adorym: a multiplatform generic X-ray image reconstruction framework based on automatic differentiation. *Opt Express.* 29, 10000 (2021).
- [3] M. Du, D. Gürsoy, C. Jacobsen, Near, far, wherever you are: simulations on the dose efficiency of holographic and ptychographic coherent imaging 1. *J Appl Crystallogr.* **53**, 748–759 (2020).
- [4] M. Du, Y. S. G. Nashed, S. Kandel, D. Gürsoy, C. Jacobsen, Three dimensions, two microscopes, one code: Automatic differentiation for x-ray nanotomography beyond the depth of focus limit. *Sci Adv.* 6, eaay3700 (2020).
- [5] R. Vescovi¹, M. Du¹, et al., Tomosaic: efficient acquisition and reconstruction of teravoxel tomography data using limited-size synchrotron X-ray beams. Journal of Synchrotron Radiation. 25 1478–1489 (2018).
- [6] M. Du, R. Vescovi, K. Fezzaa, C. Jacobsen, D. Gürsoy, X-ray tomography of extended objects: a comparison of data acquisition approaches. *J Opt Soc Am.* **35**, 1871 (2018).
- ¹ Co-first authors with equal contributions.

SELECTED SPEECHES & TALKS

- [1] "Applications of automatic differentiation in image reconstruction and experimental parameter refinement for 3D microscopy," 23rd Euro AD Workshop, Virtual. (2020).
- [2] "An automated pipeline for the collection, transfer, and processing of large-scale tomography data, "Biophotonics Congress: Biomedical Optics Congress 2018, Hollywood, U.S.A. (2018).

CERTIFICATES

2023	AWS Certified Machine Learning – Specialty	
	Amazon Web Services Training and Certification	
2022	Completed class EECS 598-008 Deep Learning for Computer Vision with grade A	aws certified
	As part-time student at <i>University of Michigan, Ann Arbor</i>	Machine
2022	Certificates of courses in the Bayesian Statistics specialization	Learning
	Coursera	SPECIALTY
2020	Course certificates: Statistical Thinking in Python, Unsupervised Learning in Python	
	Datacamp	

MEDIA COVERAGE

- [1] Andre Salles, Filling in the blanks: How supercomputing can aid high-resolution X-ray imaging. ALCF News Center (2020). [Link]
- [2] ALCF, ALCF supercomputers power scientific breakthroughs in 2020. ALCF News Center (2020). [Link]

AWARDS AND ACCOMPLISHMENTS

2020	Most active reviewers of 2019 awarded by the Optical Society of America.
2020	Team leader of an ASCR Leadership Computing Challenge (ALCC) proposal granted by Advanced Scientific Computing
	Research of the U.S. Department of Energy (24 projects awarded in total).
2019	Contributed to an LDRD-funded proposal (2019-0441, \$80K/year over 2 years).
2019	Contributed to a proposal of the ALCF Data Science Program (awarded 0.25 M nodes hours over 2 years).
2015	Materials Research Society (Singapore) Medal.

PROFESSIONAL ACTIVITIES

2020 - 2021	Principal Investigator of an ASCR Leadership Computing Challenge (ALCC) grant tilted "Distributed large wavefield
	propagation and 3D reconstruction beyond the depth of focus limit".
2020	Selected attendee of the Argonne Training Program on Extreme-Scale Computing (~76 candidates selected internation-
	ally).
2020	Co-organizer of workshop titled "Advances in Phase Retrieval Methods for High-resolution X-ray Imaging" in 2020
	APS/CNM User Meeting.
2018 – present	Reviewer of more than 17 manuscripts submitted to <i>Optics Express</i> , <i>Applied Optics</i> , and <i>Biomedical Optics Express</i> .
1	(Verified peer review records available on Publons with WoS ResearcherID V-4905-2019)
2018 – present	Member, The Optical Society of America
1	

SKILLS

Programming: Python, MATLAB, Mathematica, C, C++, R, SQL, Linux, LaTeX, Git

Technical skills: Deep learning, image processing, computer vision, inverse problem solving, non-linear optimization, computational imaging, parallel computing, cloud computing (AWS)

Other skills: 3D computer graphics (Adobe After Effects, Blender; made a 3D animation showcasing the research outcome of our group, which was displayed at the Department of Energy's Booth during the SC'19 conference); computer aided design (Autodesk Fusion 360)