ਅਧਿਆਇ – 4 ਦੋ ਘਾਤੀ ਸਮੀਕਰਨਾਂ

ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਦੋ ਚਲਾਂ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨਾਂ ਬਾਰੇ ਵਿਸਥਾਰਪਰਵਕ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇੱਕ ਚਲ ਵਾਲੇ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਭਾਵ ੳਹ ਇੱਕ ਚਲ ਦੀ ਸਮੀਕਰਨ ਜਿਸਦੀ ਵੱਡੀ ਤੋਂ ਵੱਡੀ ਘਾਤ 2 ਹੋਵੇ। ਇੱਕ ਚਲ ਵਿੱਚ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ $ax^2 + bx + c = 0$; $a \neq 0$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਜਿੱਥੇ a,b ਅਤੇ c ਵਾਸਤਵਿਕ ਸੰਖਿਆਵਾਂ ਹਨ ਅਤੇ $a \neq 0$ ਜਿਵੇਂ $2x^2 + x - 3 = 0, 4x^2 - 2x = 0$, $3x^2 - 1 = 0$ ਆਦਿ।

1. ਜਾਂਚ ਕਰੋ ਕਿ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਸਮੀਕਰਨਾਂ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨਾਂ ਹਨ ਜਾਂ ਨਹੀਂ।

i)
$$4x^2 - 2x + 3 = 0$$

ii)
$$4x^2 + 6 = 0$$

$$\mathbf{iii})3x^2 - \sqrt{2x} + 1 = \mathbf{0}$$

$$iv) \ 2x - \frac{5}{x^2} + 3 = 0$$

i)
$$4x^2 - 2x + 3 = 0$$

ii) $4x^2 + 6 = 0$
iii) $3x^2 - \sqrt{2x}$
iv) $2x - \frac{5}{x^2} + 3 = 0$
v) $x^2 + 4x - 3\sqrt{x} + 4 = 0$
vi) $x + \frac{1}{x} = 4$
vii) $x(x+3) = x^2 - 4x + 3$
viii) $(x-2)^2 + 1 = 2x - 3$

$$x(x+3) = x^2 - 4x + 3$$
 viii)

ix)
$$(x-2)(x+1) = (x-1)(x+3)$$
 come-become-educated

ਹੱਲ: i)
$$4x^2 - 2x + 3 = 0$$

ਸਮੀਕਰਨ $ax^2 + bx + c = 0$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੈ।

∴ ਇਹ ਦੋ ਘਾਤੀ <mark>ਸਮੀਕਰਨ ਹੈ</mark>।

ii)
$$4x^2 + 6 = 0$$

 $4x^2 + 6 = 0$ ਸਮੀਕਰਨ $ax^2 + bx + c = 0$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੈ,ਇੱਥੇ b = 0

∴ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਹੈ।

iii)
$$3x^2 - \sqrt{2x} + 3 = 0$$

ਇੱਥੇ ਸਮੀਕਰਨ ਵਿੱਚ x ਦੀ ਘਾਤ $\frac{1}{2}$ ਹੈ।

∴ ਇਹ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨਹੀਂ ਹੈ।

iv)
$$2x - \frac{5}{x^2} + 3 = 0$$
 $\Rightarrow \frac{2x^3 - 5 + 3x^2}{x^2} = 0$ $\Rightarrow 2x^3 + 3x^2 - 5 = 0$

ਇੱਥੇ ਸਮੀਕਰਨ ਵਿੱਚ x ਦੀ ਘਾਤ 3 ਹੈ।

∴ ਇਹ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨਹੀਂ ਹੈ।

$$\mathbf{v}) \ x^2 + 4x - 3\sqrt{x} + 4 = 0$$

ਇੱਥੇ ਸਮੀਕਰਨ ਵਿੱਚ x ਦੀ ਘਾਤ $\frac{1}{2}$ ਹੈ।

∴ ਇਹ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨਹੀਂ ਹੈ।

$$\mathbf{vi}) \ x + \frac{1}{x} = 4 \qquad \Rightarrow \frac{x^2 + 1}{x} = 4$$
$$\Rightarrow x^2 + 1 = 4x \qquad \Rightarrow x^2 - 4x + 1 = 0$$

ਇੱਥੇ ਸਮੀਕਰਨ ਵਿੱਚ χ ਦੀ ਘਾਤ 2 ਹੈ। \therefore ਇਹ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਹੈ।

vii)
$$x(x+3) = x^2 - 4x + 3$$

$$\Rightarrow x^2 + 3x = x^2 - 4x + 3 \Rightarrow x^2 + 3x - x^2 + 4x - 3 = 0$$

$$\Rightarrow$$
 $7x - 3 = 0$

ਇੱਥੇ ਸਮੀਕਰਨ ਵਿੱਚ x ਦੀ ਘਾਤ 1 ਹੈ। \therefore ਇਹ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨਹੀਂ ਹੈ।

viii)
$$(x-2)^2 + 1 = 2x - 3$$

$$\Rightarrow x^2 + 4 - 4x = 2x - 3$$

$$\Rightarrow x^2 + 4 - 4x = 2x - 3 \Rightarrow x^2 - 4x + 4 - 2x + 3 = 0$$

$$\Rightarrow x^2 - 6x + 7 = 0$$

ਇੱਥੇ ਸਮੀਕਰਨ ਵਿੱਚ x ਦੀ ਘਾਤ 2 ਹੈ। \therefore ਇਹ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਹੈ।

ix)
$$(x-2)(x+1) = (x-1)(x+3)$$

$$\Rightarrow x^2 - 2x + x - 2 = x^2 + 3x - x - 3$$

$$\Rightarrow x^2 - x - 2 - x^2 - 2x + 3 = 0 \Rightarrow -3x + 1 = 0$$

ਇੱਥੇ ਸਮੀਕਰਨ ਵਿੱਚ x ਦੀ ਘਾਤ 1 ਹੈ। \therefore ਇਹ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨਹੀਂ ਹੈ।

ਅਭਿਆਸ

1. ਅਭਿ 4.1, ਪ੍ਰਸ਼ਨ 1

ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨਾ (ਮੂਲ ਪਤਾ ਕਰਨਾ)

ਦੋ ਘਾਤੀ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਵੱਖ–ਵੱਖ ਵਿਧੀਆਂ ਹਨ :

- ਗਣਨਖੰਡ ਰਾਹੀਂ ਹੱਲ ਕਰਨਾ i)
- ਪਰਨ ਵਰਗ ਦੀ ਵਿਧੀ ਰਾਹੀਂ ਹੱਲ ਕਰਨਾ
- ਦੋ ਘਾਤੀ ਫਾਰਮਲਾ iii)
- ਗੁਣਨਖੰਡ ਰਾਹੀਂ ਹੱਲ ਕਰਨਾ : 9ਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਇੱਕ ਦੋ ਘਾਤੀ ਬਹੁਪਦ ਦੇ ਵਿਚਕਾਰਲੇ ਪਦ ਨੂੰ ਤੋੜ ਕੇ i) ਗੁਣਨਖੰਡ ਬਣਾਉਣਾ ਸਿੱਖਿਆ ਸੀ। ਉਸੇ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਹੁਣ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਪਤਾ ਕਰਾਂਗੇ। ਇਹਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਜ਼ੀਚੋ ਗੁਣਾ ਨਿਯਮ ਬਾਰੇ ਪਤਾ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ।

ਜੀਰੋ–ਗਣਾ ਨਿਯਮ : ਜੇਕਰ ਦੋ ਸੰਖਿਆਵਾਂ a ਅਤੇ b (ਮੰਨ ਲਓ) ਦਾ ਗਣਨਫਲ ਸਿਫਰ ਹੋਵੇ ਤਾਂ ਉਹਨਾਂ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਇੱਕ ਸੰਖਿਆ ਸਿਫਰ ਜ਼ਰੂਰ ਹੋਵੇਗੀ। ਭਾਵ ਜੇਕਰ a.b=0 ਹੈ ਤਾਂ a=0 ਜਾਂ b=0 ਹੋਵੇਗੀ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇਕਰ (x-a)(x-b)=0 ਹੈ ਤਾਂ

$$x-a=0$$
 $\Rightarrow x=a$ ਜਾਂ $x-b=0$ $\Rightarrow x=b$ ਹੋਵੇਗਾ।

1. ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਦੋ ਘਾ<mark>ਤੀ ਸਮੀਕਰਨਾਂ ਦੇ ਗੁਣਨਖੰਡ ਦੁਆਰਾ ਮੂਲ ਪਤਾ ਕਰੋ</mark>:

i)
$$2x^2 + 4x = 0$$
 ii) $3x^2 - 9x = 0$

iii)
$$x^2 - 9 = 0$$

i)
$$2x^2 + 4x = 0$$
 ii) $3x^2 - 9x = 0$ iii) $x^2 - 9 = 0$ iv) $x^2 - 3 = 0$ v) $2x^2 - 5x + 3 = 0$ vi) $6x^2 - x - 2 = 0$

vi)
$$6x^2 - x - 2 = 0$$

vii)
$$4x^2 - 25 = 0$$
 viii) $3x^2 - 2\sqrt{6}x + 2 = 0$
ਹੱਲ: -

i)
$$2x^2 + 4x = 0$$

 $\Rightarrow 2x(x+2) = 0$
 $\Rightarrow 2x = 0$ ਜਾਂ $x+2=0$
 $\Rightarrow x = \frac{\mathbf{0}}{2} = \mathbf{0}$ ਜਾਂ $x = -\mathbf{2}$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।

ii)
$$3x^2 - 9x = 0$$

 $\Rightarrow 3x(x - 3) = 0$
 $\Rightarrow 3x = 0$ ਜਾਂ $x - 3 = 0$
 $\Rightarrow x = \frac{0}{3} = 0$ ਜਾਂ $x = 3$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।

iii)
$$x^2 - 9 = 0$$

 $\Rightarrow x^2 - 3^2 = 0$
 $\Rightarrow (x - 3)(x + 3) = 0$
 $\Rightarrow x - 3 = 0$ ਜਾਂ $x + 3 = 0$
 $\Rightarrow x = 3$ ਜਾਂ $x = -3$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।

iv)
$$x^2 - 3 = 0$$

$$\Rightarrow x^2 - (\sqrt{3})^2 = 0$$

$$\Rightarrow (x - \sqrt{3})(x + \sqrt{3}) = 0$$

$$\Rightarrow x - \sqrt{3} = 0$$
 ਜਾਂ $x + \sqrt{3} = 0$
 $\Rightarrow x = \sqrt{3}$ ਜਾਂ $x = -\sqrt{3}$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।
 \mathbf{v}) $2x^2 - 5x + 3 = 0$
 $\Rightarrow 2x^2 - 2x - 3x + 3 = 0$ $\Rightarrow 2x(x - 1) - 3(x - 1) = 0$
 $\Rightarrow (x - 1)(2x - 3) = 0$
 $\Rightarrow x - 1 = 0$ ਜਾਂ $2x - 3 = 0$
 $\Rightarrow x = 1$ ਜਾਂ $x = \frac{3}{2}$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।
 \mathbf{v} i) $6x^2 - x - 2 = 0$
 $\Rightarrow 6x^2 - 4x + 3x - 2 = 0$ $\Rightarrow 2x(3x - 2) + 1(3x - 2) = 0$
 $\Rightarrow (3x - 2)(2x + 1) = 0$
 $\Rightarrow 3x - 2 = 0$ ਜਾਂ $2x + 1 = 0$
 $\Rightarrow x = \frac{2}{3}$ ਜਾਂ $x = \frac{-1}{2}$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।
 \mathbf{v} ii) $4x^2 - 25 = 0$
 $\Rightarrow (2x)^2 - 5^2 = 0 \Rightarrow (2x - 5)(2x + 5) = 0$ $\{a^2 - b^2 = (a - b)(a + b)\}$
 $\Rightarrow 2x - 5 = 0$ ਜਾਂ $2x + 5 = 0$
 $\Rightarrow x = \frac{5}{2}$ ਜਾਂ $x = -\frac{5}{2}$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।
 \mathbf{v} iii) $3x^2 - 2\sqrt{6}x + 2 = 0$
 $\Rightarrow (\sqrt{3}x)^2 - \sqrt{3} \times \sqrt{2}x - \sqrt{3} \times \sqrt{2}x + (\sqrt{2})^2 = 0$
 $\Rightarrow (\sqrt{3}x) - \sqrt{2} - \sqrt{3} \times \sqrt{2}x - \sqrt{3} \times \sqrt{2}x + (\sqrt{2})^2 = 0$
 $\Rightarrow \sqrt{3}x(\sqrt{3}x - \sqrt{2}) - \sqrt{2}(\sqrt{3}x - \sqrt{2}) = 0$
 $\Rightarrow \sqrt{3}x - \sqrt{2} = 0$ ਜਾਂ $\sqrt{3}x - \sqrt{2} = 0$
 $\Rightarrow \sqrt{3}x - \sqrt{2} = 0$ ਜਾਂ $\sqrt{3}x - \sqrt{2} = 0$
 $\Rightarrow x = \frac{\sqrt{2}}{\sqrt{3}}$ ਜਾਂ $x = \frac{\sqrt{2}}{\sqrt{3}}$ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।

ਅਭਿਆਸ

ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨਾਂ ਨੂੰ ਗੁਣਨਖੰਡ ਵਿਧੀ ਰਾਹੀਂ ਹੱਲ ਕਰੋ :

1.
$$x^2 - 3x - 10 = 0$$

2.
$$2x^2 + x - 6 = 0$$

$$3. \ 2x^2 - x + \frac{1}{8} = 0$$

$$4. \ 100x^2 - 20x + 1 = 0$$

5.
$$2x^2 - 7x + 3 = 0$$

6.
$$4x^2 + 8x = 0$$

7.
$$7x^2 - 21x = 0$$

8.
$$16x^2 - 9 = 0$$

9.
$$x^2 - 4 = 0$$

$$\mathbf{10.}\,\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$$

ਪੂਰਨ ਵਰਗ ਦੀ ਵਿਧੀ ਦੁਆਰਾ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨਾ:

ਗੁਣਨਖੰਡ ਵਿਧੀ ਦੁਆਰਾ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨਾ ਸਿੱਖ ਲਿਆ ਹੈ ਪਰੰਤੂ ਕਈ ਵਾਰ ਅਜਿਹੀਆਂ ਸਥਿਤੀਆਂ ਆ ਜਾਂਦੀਆਂ ਹਨ ਕਿ ਗੁਣਨਖੰਡ ਬਣਾਉਣਾ ਆਸਾਨ ਨਹੀਂ ਹੁੰਦਾ ਜਾ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦਾ। ਅਜਿਹੀ ਹਾਲਤ ਵਿੱਚ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਇੱਕ ਹੋਰ ਵਿਧੀ ਬਾਰੇ ਚਰਚਾ ਕਰ ਰਹੇ ਹਾਂ।

- ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਲਿਖਣ ਤੋਂ ਬਾਅਦ ਸਥਿਰ ਪਦ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਲੈ ਜਾਓ।
- x^2 ਦਾ ਗੁਣਾਂਕ 1 ਬਣਾਉਣ ਲਈ ਸਮੀਕਰਨ ਨੂੰ x^2 ਦੇ ਗੁਣਾਂਕ ਨਾਲ ਭਾਗ ਦਿੱਤੀ ਜਾਵੇ।
- ਫਿਰ $\left(\frac{1}{2}x$ ਦਾ ਗੁਣਾਂਕ $\right)^2$ ਨੂੰ ਦੋਹਾਂ ਪਾਸੇ ਜੋੜੋ।
- ਇਸ ਤੌਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਖੱਬਾ ਪਾਸਾ ਇੱਕ ਪੂਰਨ ਵਰਗ ਹੋਵੇਗਾ ਅਤੇ ਸੱਜਾ ਪਾਸਾ ਕੋਈ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੋਵੇਗਾ।
- ਜੇਕਰ ਸੱਜਾ ਪਾਸਾ ਰਿਣਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ ਤਾਂ ਸਮੀਕਰਨ ਦਾ ਕੋਈ ਵਾਸਤਵਿਕ ਹੱਲ ਸੰਭਵ ਨਹੀਂ ਹੈ, ਪਰੰਤੂ ਜੇਕਰ ਸੱਜਾ ਪਾਸਾ ਅ–ਰਿਣਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ ਤਾਂ ਦੋਵੇਂ ਪਾਸੇ ਵਰਗਮੂਲ ਲੈਣ ਤੇ ਚਲ ਦਾ ਮੁੱਲ ਪਤਾ ਹੋ ਜਾਵੇਗਾ।

1. ਸਮੀਕਰਨ $2x^2 - 7x + 3 = 0$ ਨੂੰ ਪੂਰਨ ਵਰਗ ਵਿਧੀ ਨਾਲ ਹੱਲ ਕਰੋ ।

ਹੱਲ:
$$2x^2 - 7x + 3 = 0$$

ਸਮੀਕਰਨ ਨੂੰ 2 ਨਾਲ ਵੰਡਿਆ ਗਿਆ,

$$\Rightarrow x^{2} - \frac{7}{2}x + \frac{3}{2} = 0$$

$$\Rightarrow x^{2} - \frac{7}{2}x = \frac{-3}{2}$$

$$\left(\frac{1}{2} \times x \text{ ਦਾ ਗੁਣਾਂਕ}\right)^{2} = \left(\frac{1}{2} \times \frac{-7}{2}\right)^{2} = \left(\frac{-7}{4}\right)^{2} \text{ ਨੂੰ ਦੋਹਾਂ ਪਾਸੇ ਜੋੜਿਆ ਜਾਵੇ}$$

$$\Rightarrow x^{2} - \frac{7}{2}x + \left(\frac{-7}{4}\right)^{2} = \frac{-3}{2} + \left(\frac{-7}{4}\right)^{2}$$

$$\Rightarrow \left(x - \frac{7}{4}\right)^{2} = \frac{-3}{2} + \frac{49}{16} = \frac{-24 + 49}{16} = \frac{25}{16}$$

$$\Rightarrow x - \frac{7}{4} = \pm \frac{5}{4} \qquad \Rightarrow x = \frac{7}{4} \pm \frac{5}{4}$$

$$\Rightarrow x = \frac{7 + 5}{4} \text{ fif } \frac{7 - 5}{4} = \frac{12}{4} \text{ fif } \frac{2}{4}$$

2. ਪੂਰਨ ਵਰਗ ਦੀ ਵਿਧੀ ਨਾਲ ਸਮੀਕਰਨ 5 $x^2-6x-2=0$ ਦੇ ਮੂਲ ਪਤਾ ਕਰੋ।

ਹੱਲ :
$$5x^2 - 6x - 2 = 0$$

ਸਮੀਕਰਨ ਨੂੰ 5 ਨਾਲ ਵੰਡਣ 'ਤੇ

x=3 ਜਾਂ $\frac{1}{2}$ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਹਨ।

$$\Rightarrow \left(x - \frac{3}{5}\right)^2 = \frac{2}{5} + \frac{9}{25} = \frac{10+9}{25} = \frac{19}{25}$$

$$\Rightarrow x - \frac{3}{5} = \pm \frac{\sqrt{19}}{5}$$

$$\Rightarrow x = \frac{3}{5} \pm \frac{\sqrt{19}}{5} = \frac{3 \pm \sqrt{19}}{5}$$

3. $4x^2 + 12x + 9 = 0$ ਨੂੰ ਪੂਰਨ ਵਰਗ ਵਿਧੀ ਨਾਲ ਹੱਲ ਕਰੋ :

ਹੱਲ :
$$4x^2 + 12x + 9 = 0$$
 4 ਨਾਲ ਵੰਡਣ 'ਤੇ
$$\Rightarrow x^2 + 3x = -\frac{9}{4}$$
ਦੋਨਾਂ ਪਾਸੇ= $\left(\frac{1}{2} \times 3\right)^2 = \left(\frac{3}{2}\right)^2$ ਜੋੜਨ 'ਤੇ
$$\Rightarrow x^2 + 3x + \left(\frac{3}{2}\right)^2 = -\frac{9}{4} + \left(\frac{-3}{5}\right)^2$$

$$\Rightarrow \left(x + \frac{3}{2}\right)^2 = -\frac{9}{4} + \frac{9}{4} = 0$$

$$\Rightarrow x + \frac{3}{2} = \pm 0$$

$$\Rightarrow x = -\frac{3}{2} \pm 0 = -\frac{3}{2}, -\frac{3}{2}$$

come-become-educated

4. $4x^2 + 3x + 5 = 0$ ਨੂੰ ਪੂਰਨ ਵਰਗ ਵਿਧੀ ਨਾਲ ਹੱਲ ਕਰੋ।

ਹੱਲ :
$$4x^2 + 3x + 5 = 0$$

4 ਨਾਲ ਵੰਡਣ 'ਤੇ

$$\Rightarrow x^2 + \frac{3x}{4} + \frac{5}{4} = 0$$

$$\Rightarrow x^2 + \frac{3}{4}x = -\frac{5}{4}$$

ਦੋਨਾਂ ਪਾਸੇ =
$$\left(\frac{1}{2} \times \frac{3}{4}\right)^2 = \left(\frac{3}{8}\right)^2$$
ਜੋੜਨ 'ਤੇ

$$\Rightarrow x^2 + \frac{3}{4}x + \left(\frac{3}{8}\right)^2 = -\frac{5}{4} + \left(\frac{3}{8}\right)^2$$

$$\Rightarrow \left(x + \frac{3}{4}\right)^2 = -\frac{5}{4} + \frac{9}{64} = \frac{-80 + 9}{4} = \frac{-71}{64}$$

$$\Rightarrow x + \frac{3}{4} = \pm \sqrt{\frac{-71}{64}}$$

ਇਸ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੇ ਮਲ ਵਾਸਤਵਿਕ ਨਹੀਂ ਹੈ।

ਅਭਿਆਸ

ਹੇਠ ਲਿਖੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਪੂਰਨ ਵਰਗ ਵਿਧੀ ਨਾਲ ਹੱਲ ਕਰੋ :

1.
$$2x^2 - 5x + 3 = 0$$

$$2. \ 3x^2 - 5x + 2 = 0$$

3.
$$2x^2 + 9x + 4 = 0$$

4.
$$3x^2 + 4x - 3 = 0$$

$$5. \ 25x^2 - 20x + 4 = 0$$

6.
$$2x^2 - 9x - 5 = 0$$

$$7. \ 4x^2 + 5x + 7 = 0$$

ਦੋਂ ਘਾਤੀ ਫਾਰਮੁਲਾ (ਸ੍ਰੀਧਰ ਅਚਾਰਿਆ ਫਾਰਮੁਲਾ) : ਪੂਰਨ ਵਰਗ ਬਣਾਉਣ ਦੀ ਵਿਧੀ ਥੋੜੀ ਲੰਬੀ ਅਤੇ ਮੁਸ਼ਕਿਲ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਇਸਨੂੰ ਇੱਕ ਸੂਤਰ ਜਾਂ ਫਾਰਮੂਲੇ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ ਅਤੇ ਕਿਸੇ ਵੀ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਇਸ ਸੂਤਰ ਦਾ ਸਿੱਧੇ ਰੂਪ ਵਿੱਚ ਹੀ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ।

ਹੁਣ, $ax^2 + bx + c = 0$; $a \neq 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ ਇਹ ਦੋ ਘਾਤੀ ਸੂਤਰ ਹੈ। ਇਸਨੂੰ ਮਸ਼ਹੂਰ ਭਾਰਤੀ ਵਿਗਿਆਨੀ ਸ੍ਰੀਧਰ ਅਚਾਰਿਆ ਨੇ ਬਣਾਇਆ ਹੈ। ਇਸਨੂੰ $x = \frac{-b \pm \sqrt{D}}{2a}$ ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਿੱਥੇ D(ਡਿਸਕ੍ਰਿਮੀਨੈਂਟ $) = b^2 - 4ac$ ਹੈ।

- ਜੇ $\mathbf{D} = 0$ ਹੋਵੇ ਤਾਂ x ਦੇ ਦੋਵੇ ਮਲ ਸਮਾਨ ਅਤੇ ਵਾਸਤਵਿਕ ਹੋਵੇਗਾ।
- ਜੇ D > 0 ਹੋਵੇ ਤਾਂ x ਦੇ ਦੋਵੇਂ ਮੂਲ ਅਲੱਗ-2 ਅਤੇ ਵਾਸਤਵਿਕ ਹੋਣਗੇ।
- 1. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸਮੀਕਰਨਾਂ ਦਾ ਡਿਸਕ੍ਰਿਮੀਨੈਂਟ ਪਤਾ ਕਰੋ :

i)
$$x^2 - 7x + 12 = 0$$

i)
$$x^2 - 7x + 12 = 0$$
 ii) $3x^2 - 5x + 2 = 0$

iii)
$$9x^2 + 6x + 1 = 0$$

iv)
$$5x^2 + 3x + 4 = 0$$

iv)
$$5x^2 + 3x + 4 = 0$$
 v) $16x^2 - 24x + 9 = 0$

ਹੱਲ :

i)
$$x^2 - 7x + 12 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ
$$ax^2 + bx + c = 0$$
 ਨਾਲ ਕਰਨ 'ਤੇ $a = 1, b = -7, c = 12$

$$D = b^2 - 4ac = (-7)^2 - 4 \times 1 \times 12 = 49 - 48 = 1$$

ii)
$$3x^2 - 5x + 2 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ

$$a = 3, b = -5, c = 2$$

 $D = b^2 - 4ac = (-5)^2 - 4 \times 3 \times 2 = 25 - 24 = 1$

iii)
$$9x^2 + 6x + 1 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ

$$a = 9$$
, $b = 6$, $c = 1$

$$D = b^2 - 4ac = (6)^2 - 4 \times 9 \times 1 = 36 - 36 = 0$$

iv)
$$5x^2 + 3x + 4 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ

$$a = 5, b = 3, c = 4$$

$$D = b^2 - 4ac = (3)^2 - 4 \times 5 \times 4 = 9 - 80 = -71$$

 $\mathbf{v}) \ 16x^2 - 24x + 9 = 0$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ

$$D = b^2 - 4ac = (-24)^2 - 4 \times 16 \times 9 = 576 - 576 = 0$$

2. ਪਤਾ ਕਰੋ ਹੇਠ ਲਿਖੀਆਂ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨਾਂ ਦੇ ਮੂਲ ਵਾਸਤਵਿਕ ਹਨੇ ਜੇ ਵਾਸਤਵਿਕ ਹਨ ਤਾਂ ਮੂਲ ਪਤਾ ਕਰੋ :

i)
$$5x^2 - 2x - 3 = 0$$

ii)
$$6x^2 - x - 2 = 0$$

iii)
$$2x^2 - 7x + 3 = 0$$

iv)
$$2x^2 - 2\sqrt{2}x + 1 = 0$$
 v) $x^2 + 4x + 5 = 0$

$$\mathbf{v}) \ x^2 + 4x + 5 = 0$$

ਹੱਲ :

i)
$$5x^2 - 2x - 3 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ $a = 5, b = -2, c = -3$
 $D = b^2 - 4ac = (-2)^2 - 4 \times 5 \times (-3) = 4 + 60 = 64 > 0$
∴ ਮੂਲ ਵਾਸਤਵਿਕ ਹਨ।
$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-2) \pm \sqrt{64}}{2 \times 5} = \frac{2 \pm 8}{10} = \frac{2 + 8}{10}, \frac{2 - 8}{10} = \frac{10}{10}, \frac{-6}{10}$$
 $x = 1, \frac{-3}{5}$

ii)
$$6x^2 - x - 2 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ $a = 6, b = -1, c = -2$
 $D = b^2 - 4ac = (-1)^2 - 4 \times 6 \times (-2) = 1 + 48 = 49$
 \therefore ਮੂਲ ਵਾਸਤਵਿਕ ਹਨ।
 $x = \frac{-b \pm \sqrt{D}}{2} = \frac{-(-1) \pm \sqrt{49}}{2 + 6} = \frac{1 \pm 7}{12} = \frac{1 + 7}{12}, \frac{1 - 7}{12} = \frac{8}{12}, \frac{-6}{12}$

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1)\pm\sqrt{49}}{2\times6} = \frac{1\pm7}{12} = \frac{1+7}{12}, \frac{1-7}{12} = \frac{8}{12}, \frac{-6}{12}$$
$$x = \frac{2}{3}, \frac{-1}{2}$$

iii)
$$2x^2 - 7x + 3 = 0$$
 come-become-educated ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ $a = 2, b = -7, c = 3$ $D = b^2 - 4ac = (-7)^2 - 4 \times 2 \times 3 = 49 - 48 = 1$ ੰ ਮੂਲ ਵਾਸਤਵਿਕ ਹਨ। $x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-7)\pm\sqrt{1}}{2\times2} = \frac{7\pm1}{4} = \frac{7+1}{4}, \frac{7-1}{4} = \frac{8}{4}, \frac{6}{4}$ $x = 2, \frac{3}{2}$

iv)
$$2x^2 - 2\sqrt{2}x + 1 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ $a = 2, b = -2\sqrt{2}, c = 1$
 $D = b^2 - 4ac = \left(-2\sqrt{2}\right)^2 - 4 \times 2 \times 1 = 8 - 8 = 0$
 \therefore ਮੂਲ ਵਾਸਤਵਿਕ ਹਨ।
$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-2\sqrt{2}) \pm \sqrt{0}}{2 \times 2} = \frac{2\sqrt{2} \pm 0}{4} = \frac{2\sqrt{2} + 0}{4}, \frac{2\sqrt{2} - 0}{4} = \frac{2\sqrt{2}}{4}, \frac{2\sqrt{2}}{4}$$

$$x = \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$$

v)
$$x^2 + 4x + 5 = 0$$

ਦਿੱਤੀ ਸਮੀਕਰਨ ਦੀ ਤੁਲਨਾ $ax^2 + bx + c = 0$ ਨਾਲ ਕਰਨ 'ਤੇ $a = 1, b = 4, c = 5$
 $D = b^2 - 4ac = (4)^2 - 4 \times 1 \times 5 = 16 - 20 = -4 < 0$
∴ ਮੂਲ ਵਾਸਤਵਿਕ ਨਹੀਂ ਹਨ।

ਅਭਿਆਸ

1. ਹੇਠ ਦਿੱਤੀਆਂ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨਾਂ ਦੇ ਡਿਸਕ੍ਰਿਮੀਨੈਂਟ ਪਤਾ ਕਰੋ :

i)
$$x^2 - 5x + 6 = 0$$

ii)
$$3x^2 + 4x + 7 = 0$$

iii)
$$5x^2 - x - 2 = 0$$

i)
$$x^2 - 5x + 6 = 0$$
 ii) $3x^2 + 4x + 7 = 0$ iv) $25x^2 - 30x + 9 = 0$ v) $x^2 - x + 1 = 0$

$$(x^2 - x + 1) = 0$$

vi)
$$2x^2 + x - 1 = 0$$

2. ਹੇਠੰ ਦਿੱਤੀਆਂ ਦੋ ਘਾਤੀ ਦੇ ਮੂਲ ਵਾਸਤਵਿਕ ਹਨ। ਜੇ ਵਾਸਤਵਿਕ ਹਣ ਤਾਂ ਮੂਲੰ ਪਤਾ ਕਰੋ।

i)
$$3x^2 - 5x - 2 = 0$$

ii)
$$x^2 + 2x + 3 = 0$$

iii)
$$2x^2 + x - 4 = 0$$

i)
$$3x^2 - 5x - 2 = 0$$

ii) $x^2 + 2x + 3 = 0$
iv) $4x^2 + 4\sqrt{3}x + 3 = 0$
v) $6x^2 - x - 7 = 0$

v)
$$6x^2 - x - 7 = 0$$

1. ਸਮੀਕਰਨ
$$x + \frac{1}{x} = 3, x \neq 0$$
 ਦੇ ਮੂਲ ਪਤਾ ਕਰੋ।

ਹੱਲ:
$$x + \frac{1}{x} = 3$$

ਲਘੁਤਮ ਦੀ ਥਾਂ ਤੇ ਸਮੀਕਰਨ ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ 'ਤੇ

$$\left\{x + \frac{1}{x} = 3\right\} \times x$$

$$\Rightarrow x \times x + \frac{1}{x} \times x = 3 \times x \qquad \Rightarrow x^2 + 1 = 3x$$

$$\Rightarrow x^2 - 3x + 1 = 0$$

ਇਸ ਸਮੀਕਰਨ ਦੀ $ax^2 + bx + c = 0$ ਨਾਲ ਤੁਲਨਾ ਕਰਨ 'ਤੇ

ਇੱਥੇ,
$$a = 1, b = -3, c = 1$$

$$D = b^{2} - 4ac = (-3)^{2} - 4 \times 1 \times 1 = 9 - 4 = 5$$

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-3) \pm \sqrt{5}}{2 \times 1} = \frac{3 \pm \sqrt{5}}{2}$$

$$\therefore x = \frac{3 \pm \sqrt{5}}{2}$$

2. ਸਮੀਕਰਨ
$$\frac{1}{r} - \frac{1}{r-2} = 3$$
 ਨੂੰ ਹੱਲ ਕਰੋ ।

come-become-educated

ਹੱਲ:
$$\frac{1}{x} - \frac{1}{x-2} = 3$$
 $\left\{ \frac{1}{x} - \frac{1}{x-2} = 3 \right\} \times x(x-2)$

$$\begin{cases} \frac{1}{x} - \frac{1}{x-2} = 3 \end{cases} \times x(x-2)$$

$$\Rightarrow \frac{1}{x} \times x(x-2) - \frac{1}{x-2} \times x(x-2) = 3 \times x(x-2)$$

$$\Rightarrow (x-2) - (x) = 3x^2 - 6x \qquad \Rightarrow 3x^2 - 6x + 2 = 0$$

ਇਸ ਸਮੀਕਰਨ ਦੀ $ax^2 + bx + c = 0$ ਨਾਲ ਤੁਲਨਾ ਕਰਨ 'ਤੇ

$$a = 3, b = -6, c = 2$$

$$D = b^{2} - 4ac = (-6)^{2} - 4 \times 3 \times 2 = 36 - 24 = 12$$

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-6) \pm \sqrt{12}}{2 \times 3} = \frac{6 \pm \sqrt{2 \times 2 \times 3}}{6} = \frac{6 \pm 2\sqrt{3}}{6} = \frac{3 \pm \sqrt{3}}{3}$$

$$\therefore x = \frac{3 \pm \sqrt{3}}{3}$$

3. ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ $3x^2 + kx + 4 = 0$ ਵਿੱਚ k ਦਾ ਅਜਿਹਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ਜੇ ਸਮੀਕਰਨ ਤੇ ਮੂਲ ਬਰਾਬਰ ਹੋਣਾ।

ਹੱਲ:
$$3x^2 + kx + 4 = 0$$

ਇਸ ਸਮੀਕਰਨ ਦੀ $ax^2 + bx + c = 0$ ਨਾਲ ਤੁਲਨਾ ਕਰਨ 'ਤੇ

$$a = 3, b = k, c = 4$$

$$D = b^2 - 4ac = (k)^2 - 4 \times 3 \times 4 = k^2 - 48$$

ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਬਰਾਬਰ ਲਈ

$$\therefore D = 0 \quad \Rightarrow \quad k^2 - 48 = 0 \quad \Rightarrow \quad k^2 = 48 \quad \Rightarrow \quad k = \pm \sqrt{48} = \pm 4\sqrt{3}$$

$$k=\pm 4\sqrt{3}$$

ਅਭਿਆਸ

- 1. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸਮੀਕਰਨਾਂ ਹੱਲ ਕਰੋ : $x \frac{1}{x} = 3$ ਅਤੇ $\frac{1}{x+4} \frac{1}{x-7} = \frac{11}{30}$ 2. k ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ਜੇ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਬਰਾਬਰ ਹੋਣ : $2x^2 + kx + 3 = 0$

ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਦੀਆਂ ਸ਼ਬਦ ਸਮੱਸਿਆਵਾਂ : ਹੁਣ ਤੱਕ ਅਸੀਂ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਅਨੇਕਾਂ ਵਿਧੀ ਨਾਲ ਹੱਲ ਕੀਤਾ ਹੈ। ਇਸ ਦੇ ਉਪਯੋਗ ਨੂੰ ਸਮਝਣ ਲਈ ਅਸੀਂ ਕੁੱਝ ਸ਼ਬਦ ਸਮੱਸਿਆਵਾਂ ਹੱਲ ਕਰਾਂਗੇ।

1. ਦੋ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ ਜਿਹਨਾਂ ਦਾ ਜੋੜ 27 ਅਤੇ ਗਣਨਫਲ 182 ਹੈ।

[ਅਭਿ 4.2, ਪੁ.3]

ਹੱਲ: ਪੁਸਨ ਅਨੁਸਾਰ :

(ਪਹਿਲੀ ਸੰਖਿਆ) + (ਦੂਸਰੀ ਸੰਖਿਆ) = 27

ਅਤੇ (ਪਹਿਲੀ ਸੰਖਿਆ) × (ਦੁਸਰੀ ਸੰਖਿਆ) = 182

ਮੰਨ ਲਓ, ਦੋ ਸੰਖਿਆਵਾਂ x ਅਤੇ y

ਪਹਿਲੀ ਸਮੀਕਰਨ : $x + y = 27 \dots \dots \dots i$)

ਅਤੇ ਦੂਜੀ ਸਮੀਕਰਨ : xy = 182

 $\Rightarrow x (27 - x) = 182$ {ਸਮੀਕਰਨ i) ਤੋਂ}

 $\Rightarrow 27x - x^2 - 182 = 0 \Rightarrow x^2 - 27x + 182 = 0$

 $\Rightarrow x^2 - 13x - 14x + 182 = 0$

 $\Rightarrow x(x-13) - 14(x-13) = 0$ $\Rightarrow x-13 = 0 \text{ or } x-14 = 0$ $\Rightarrow x = 13 \text{ or } 14$ ਸੰਖਿਆਵਾਂ 14 ਅਤੇ 13 ਹਨ।

2. ਦੋ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਨਫਲ 306 ਹੈ। ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ। [©] [ਅਭਿ 4.1, ਪ੍ਰ.1(ii)]

ਹੱਲ: ਮੰਨ ਲਓ, ਦੋ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਸੰਖਿਆਵਾਂ x ਅਤੇ x+1 ਹਨ ।

ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ : ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਨਫਲ = 306

 $\Rightarrow x(x+1) = 306 \Rightarrow x^2 + x - 306 = 0$

ਸਮੀਕਰਨ ਦੀ $ax^2 + bx + c = 0$ ਨਾਲ ਤੁਲਨਾ ਕਰਨ 'ਤੇ

ਇੱਥੇ a = 1, b = 1, c = -306

 $D = b^2 - 4ac = (1)^2 - 4 \times 1 \times (-306) = 1 + 1224 = 1225$

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{1225}}{2 \times 1} = \frac{-1 \pm 35}{2} = \frac{-1-35}{2}, \frac{-1+35}{2} = \frac{-36}{2}, \frac{34}{2} = -18,17$$

ਪਰ x ਧਨਾਤਮਕ ਸੰਖਿਆ ਹੈ। $x = 17$

∴ ਦੋ ਧਨਾਤਮਕ ਸੰਖਿਆਵਾਂ 17,18 ਹਨ।

3. ਦੋ ਲਗਾਤਾਰ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ ਜਿਹਨਾਂ ਦੇ ਵਰਗਾਂ ਦਾ ਜੋੜ 290 ਹੋਵੇ।

(ਉਦਾਹਰਨ 11)

ਹੱਲ: ਮੰਨ ਲਓ, ਦੋ ਲਗਾਤਾਰ ਟਾਂਕ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ x ਅਤੇ x+2ਪ੍ਰਸਨ ਅਨੁਸਾਰ:

$$(x)^2 + (x+2)^2 = 290$$

$$(x)^2 + (x+2)^2 = 290$$
 $\Rightarrow x^2 + x^2 + 4x + 4 = 290$

$$\Rightarrow 2x^2 + 4x - 286 = 0$$

$$\Rightarrow x^2 + 2x - 143 = 0 \quad (2 \text{ ਨਾਲ ਵੰਡਣ 'ਤੇ})$$

$$\Rightarrow x^2 + 13x - 11x - 143 = 0 \Rightarrow x(x+13) - 11(x+13) = 0$$

$$\Rightarrow x(x+13) - 11(x+13) = 0$$

$$\Rightarrow (x+13)(x-11)=0$$

$$\Rightarrow x + 13 = 0 \text{ or } x - 11 = 0$$

 $\Rightarrow x = 11, -13$

ਪੁੰਤ x ਧਨਾਤਮਕ ਸੰਖਿਆ ਹੈ।

$\Rightarrow x = 11$, ਦੋ ਧਨਾਤਮਕ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ 11 ਅਤੇ 13 ਹਨ।

ਅਭਿਆਸ

- **1.** ਦੋ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ ਜਿਹਨਾਂ ਦਾ ਜੋੜ 25 ਅਤੇ ਗੁਣਨਫਲ 126 ਹੈ।
- 2. ਦੋ ਸੰਖਿਆਵਾਂ ਦਾ ਅੰਤਰ 5 ਅਤੇ ਗੁਣਨਫਲ 204 ਹੈ। ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- 3. ਦੋ ਧਨਾਤਮਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ 21 ਅਤੇ ਗਣਨਫਲ 108 ਹੈ। ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- 4. ਦੋ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਸੰਖਿਆਵਾਂ ਦੀ ਗਣਾ 132 ਹੈ। ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- 5. ਦੋ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ ਜਿਹਨਾਂ ਦੇ ਵਰਗਾਂ ਦਾ ਜੋੜ 365 ਹੈ। [ਅਭਿ 4.2, ਪ੍ਰ.4]
- **6.** ਦੋ ਲਗਾਤਾਰ ਟਾਂਕ ਧਨਾਤਮਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ 394 ਹੈ। ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- 7. ਦੋ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਾਂ ਦਾ ਅੰਤਰ 180 ਹੈ। ਛੋਟੀ ਸੰਖਿਆ ਦਾ ਵਰਗ ਵੱਡੀ ਸੰਖਿਆ ਦਾ 8 ਗੁਣਾ ਹੈ। ਸੰਖਿਆ ਪਤਾ ਕਰੋ। [ਅਭਿ 4.2, ਪ੍.7]

come-become-educated

1. ਰੋਹਨ ਦੀ ਮਾਂ ਉਸ ਨਾਲੋਂ 26 ਸਾਲ ਵੱਡੀ ਹੈ। ਹੁਣ ਤੋਂ ਤਿੰਨ ਸਾਲ ਬਾਅਦ ਉਹਨਾਂ ਦੀਆਂ ਉਮਰਾਂ ਦਾ ਗੁਣਨਫਲ 360 [ਅਭਿ 4.2, ਪ੍ਰ. 2(iii)] ਹੋ ਜਾਵੇਗਾ। ਦੋਨਾਂ ਦੀ ਉਮਰ ਪਤਾ ਕਰੋ।

ਹੱਲ: ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ : ਰੋਹਨ ਦੀ ਮਾਂ ਦੀ ਉਮਰ = ਰੋਹਨ ਦੀ ਉਮਰ + 26

ਅਤੇ 3 ਸਾਲ ਬਾਅਦ : (ਰੋਹਨ ਦੀ ਮਾਂ ਦੀ ਉਮਰ) × (ਰੋਹਨ ਦੀ ਉਮਰ) = 360

ਮੰਨ ਲਓ ਰੋਹਨ ਦੀ ਉਮਰ x ਸਾਲ ਤਾਂ ਉਸਦੀ ਮਾਂ ਦੀ ਵਰਤਮਾਨ ਉਮਰ (x+26)

3 ਸਾਲ ਬਾਅਦ, ਰੋਹਨ ਦੀ ਉਮਰ (x+3) ਸਾਲ ਅਤੇ ਉਸਦੀ ਮਾਂ ਦੀ ਉਮਰ (x+29) ਸਾਲ ਹੋਵੇਗੀ।

ਹਣ ਸਮੀਕਰਨ, (x + 29)(x + 3) = 360 $\Rightarrow x^2 + 29x + 3x + 87 - 360 = 0$

$$\Rightarrow x^2 + 32x - 273 = 0$$

ਸਮੀਕਰਨ ਦੀ $ax^2 + bx + c = 0$ ਨਾਲ ਤਲਨਾ ਕਰਨ 'ਤੇ

$$a = 1, b = 32, c = -273$$

$$D = b^2 - 4ac = (32)^2 - 4 \times 1 \times (-273) = 1024 + 1092 = 2116$$

$$\therefore x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-32 \pm \sqrt{2116}}{2 \times 1} = \frac{-32 \pm 46}{2} = \frac{-32 - 46}{2}, \frac{-32 + 46}{2} = \frac{-78}{2}, \frac{14}{2} = -39,7$$

$$\therefore x = 7$$

$$\text{come-become-educated}$$

ਰੋਹਨ ਦੀ ਉਮ<mark>ਰ 7 ਸਾਲ ਅਤੇ ਉਸਦੀ ਮਾਂ ਦੀ ਉਮਰ 7 + 26 = 33 ਸਾਲ ਹੈ।</mark>

2. ਇੱਕ ਸਮਕੋਣ ਤ੍ਰਿਭੂਜ ਦੀ ਉ<mark>ਚਾ</mark>ਈ <mark>ਇ</mark>ਸ ਦੇ ਆਧਾਰ ਤੋਂ 7 ਸਮ ਘੱਟ ਹੈ। ਜੇਕਰ ਕਰਣ <mark>1</mark>3 ਸਮ ਹੈ ਤਾਂ ਬਾਕੀ ਦੋ ਭਜਾਵਾਂ ਪਤਾ ਕਰੋ।

ਹੱਲ: ਤਿਕੋਣ ਦੀ **ੳਚਾਈ = ਆਧਾਰ -** 7 ਅਤੇ **ਕਰਣ =** 13

ਮੰਨ ਲਓ, ਤ੍ਰਿਭਜ ਦਾ ਆਧਾਰ = x ਸਮ ਤਾਂ ਤ੍ਰਿਭਜ ਦੀ ੳਚਾਈ = (x - 7) ਸਮ ਹਣ, ਪਾਈਥਾਗੋਰਸ ਥਿੳਰਮ ਅਨਸਾਰ,

$$(ਕਰਣ)^2 = (ਲੰਬ)^2 + (ਆਧਾਰ)^2$$

$$\Rightarrow (13)^2 = (x - 7)^2 + x^2 \Rightarrow 169 = x^2 - 14x + 49 + x^2$$

\Rightarrow 2x^2 - 14x + 49 - 169 = 0 \Rightarrow 2x^2 - 14x - 120 = 0

$$\Rightarrow 2x^2 - 14x + 49 - 169 = 0 \Rightarrow 2x^2 - 14x - 120 = 0$$

or
$$x^2 - 7x - 60 = 0$$
 (2 ਨਾਲ ਵੰਡਣ 'ਤੇ)

$$\Rightarrow x^2 - 12x + 5x - 60 = 0$$
 $\Rightarrow x(x - 12) + 5(x - 12) = 0$

$$\Rightarrow (x+5)(x-12) = 0 \qquad \Rightarrow x = -5.12$$

 \therefore ਤ੍ਰਿਭਜ ਦਾ ਆਧਾਰ 12 ਸਮ ਅਤੇ ੳਚਾਈ 12-7=5 ਸਮ

3. ਇੱਕ ਘਰੇਲੂ ਉਦਯੋਗ ਇੱਕ ਦਿਨ ਕੁੱਝ ਬਰਤਨ ਬਣਾਉਂਦਾ ਹੈ। ਇੱਕ ਦਿਨ ਵਿੱਚ ਵੇਖਿਆ ਗਿਆ ਕਿ ਹਰੇਕ ਨਗ ਦੀ ਨਿਰਮਾਣ ਲਾਗਤ ਉਸ ਦਿਨ੍ਹਣਾਏ ਗਏ ਬਰਤਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਦੂਗਣੇ ਤੋਂ 3 ਵੱਧ ਸੀ। ਜੇਕਰ ਉਸ ਦਿਨ ਦੀ ਕੁੱਲ ਨਿਰਮਾਣ ਲਾਗਤ 90 ਰੂ: ਸੀ ਤਾਂ ਉਸ ਦਿਨ ਬਣਾਏ ਗਏ ਬਰਤਨਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਹਰੇਕ ਨਗ ਨੂੰ ਬਣਾਉਣ ਦੀ ਲਾਗਤ ਪਤਾ ਕਰੋ। {ਉਦਾਹਰਨ 1(i)}

ਹੱਲ: ਮੰਨ ਲਓ ਬਰਤਨਾਂ ਦੀ ਸੰਖਿਆ = x

ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ, ਹਰੇਕ ਬਰਤਨ ਦੀ ਨਿਰਮਾਣ ਲਾਗਤ = 2x + 3

ਅਤੇ ਕੁੱਲ ਨਿਰਮਾਣ ਲਾਗਤ = 90 $\Rightarrow (ਬਰਤਨਾਂ ਦੀ ਸੰਖਿਆ) \times (ਹਰੇਕ ਨਿਰਮਾਣ ਲਾਗਤ) = 90$ $x(2x+3) = 90 \Rightarrow 2x^2 + 3x - 90 = 0$ ਇੱਥੇ a = 2, b = 3, c = -90 $\therefore D = b^2 - 4ac = 3^2 - 4 \times 2 \times (-90) = 9 + 720 = 729$ $\therefore x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{729}}{2 \times 2} = \frac{-3 \pm 27}{4} = \frac{-3 + 27}{4} + \frac{-3 - 27}{4}$ $= \frac{24}{4} + \frac{-30}{4} = 6 + \frac{-15}{2}$ $\therefore \text{ ਬਰਤਨਾਂ ਦੀ ਸੰਖਿਆ = 6}$

ਅਤੇ ਹਰੇਕ ਦੀ ਨਿਰਮਾਣ ਲਾਗਤ = 2x + 3 = 2(6) + 3 = 15 ਰੁ:

ਅਭਿਆਸ

- 1. ਅਭਿ 4.1, ਪੁ 2(i)
- 2. ਅਭਿ 4.3, ਪ੍ 4,6,10,11

come-become-educated

1. ਇੱਕ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਸ਼ੈਫਾਲੀ ਦੇ ਗਣਿਤ ਅਤੇ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੇ ਅੰਕਾਂ ਦਾ ਜੋੜ 30 ਹੈ। ਜੇਕਰ ਉਸਨੂੰ ਗਣਿਤ ਵਿੱਚ 2 ਅੰਕ ਵੱਧ ਅਤੇ ਅੰਗਰੇਜੀ ਵਿੱਚ 3 ਅੰਕ ਘੱਟ ਮਿਲੇ ਹੁੰਦੇ ਤਾਂ ਉਸਦੇ ਅੰਕਾਂ ਦਾ ਗਣਨਫਲ 210 ਹੁੰਦਾ। ਉਸ ਦੁਆਰਾ ਦੋਵੇਂ ਵਿਸਿਆਂ ਵਿੱਚ ਪਾਪਤ ਅੰਕ ਪਤਾ ਕਰੋ। [ਅਭਿ 4.3. ਪ. 5]

ਹੱਲ: ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ : (ਗੁਣਿਤ ਦੇ ਅੰਕ) + (ਅੰਗਰੇਜ਼ੀ ਦੇ ਅੰਕ) = 30

ਅਤੇ (ਗਣਿਤ ਦੇ ਅੰਕ + 2) × (ਅੰਗਰੇਜ਼ੀ ਦੇ ਅੰਕ - 3) =
$$210$$

ਮੰਨ ਲਓ, ਗਣਿਤ ਅਤੇ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚੋਂ ਪ੍ਰਾਪਤ ਅੰਕ x ਅਤੇ y ਹਨ

ਹੁਣ, ਪਹਿਲੀ ਸਮੀਕਰਨ : $x + y = 30 \dots \dots i$

ਅਤੇ ਦੂਜੀ ਸਮੀਕਰਨ : (x + 2)(y - 3) = 210

$$\Rightarrow (x+2)(30-x-3)=210$$
 { i) ਵਿੱਚੋਂ y ਦਾ ਮੁੱਲ ਭਰਨ 'ਤੇ)}

$$\Rightarrow (x+2)(27-x) = 210$$

 $\Rightarrow 27x + 54 - 2x - x^2 = 210$

$$\Rightarrow x^2 - 25x + 156 = 0$$

$$\Rightarrow x^2 - 13x - 12x + 156 = 0$$

$$\Rightarrow x(x-13) - 12(x-13) = 0 \Rightarrow x-13 = 0 \text{ fri } x-12 = 0 \Rightarrow x = 13 \text{ fri } 12$$

$$\Rightarrow x-13=0 \text{ H}^{\dagger}x-12=0$$

$$\Rightarrow x = 13 \text{ H}^{\dagger} 12$$

ਜੇ ਗਣਿਤ ਵਿੱਚੋਂ ਪ੍ਰਾਪਤ ਅੰਕ 12 ਹਨ ਤਾਂ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚੋਂ ਪ੍ਰਾਪਤ ਅੰਕ 30 – 12 = 18 ਹਨ ਅਤੇ ਜੇ ਗਣਿਤ ਵਿੱਚੋਂ ਪ੍ਰਾਪਤ ਅੰਕ 13 ਹਨ ਤਾਂ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚੋਂ ਪ੍ਰਾਪਤ ਅੰਕ 30 ^ਕ 13 = 17 ਹਨ।

2. ਇੱਕ ਕਿਸ਼ਤੀ ਜਿਸਦੀ ਖੜ੍ਹੇ <mark>ਪਾਣੀ ਵਿੱਚ ਚਾਲ 18km/h</mark> ਹੈ। 24 km ਧਾਰਾ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਜਾਣ ਲਈ ਧਾਰਾ ਦਿਸ਼ਾ ਵਿੱਚ ਜਾਣ ਲ<mark>ਈ</mark> ਲੱ<mark>ਗੇ</mark> ਸਮਾਂ ਤੋਂ 1 ਘੰਟਾ ਵੱਧ ਸਮਾਂ ਲੈਂਦਾ ਹੈ। ਧਾਰਾ ਦੀ ਚਾਲ ਪਤਾ ਕਰੋ।

[ਉਦਾਹਰਨ 15]

ਹੱਲ: ਮੰਨ ਲਓ, ਧਾਰਾ ਦੀ ਚਾਲ = x km/h

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

ਧਾਰਾ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਕਿਸ਼ਤੀ ਦੀ ਚਾਲੀ = (ਖੜ੍ਹੇ ਪਾਣੀ ਵਿੱਚ ਕਿਸ਼ਤੀ ਦੀ ਚਾਲ) - (ਧਾਰਾ ਦੀ ਚਾਲ) = (18 - x) km/h

ਅਤੇ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਕਿਸ਼ਤੀ ਦੀ ਚਾਲ = (18 + x)km/h

ਹੁਣ, ਧਾਰਾ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਲਿਆ ਸਮਾਂ =
$$\frac{\frac{1}{2}}{\frac{1}{18-x}} = \frac{24}{18-x}$$

ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲਿਆ ਸਮਾਂ = $\frac{24}{18+x}$

ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲਿਆ ਸਮਾਂ =
$$\frac{24}{18+x}$$

ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ :

(ਧਾਰਾ ਦੀ ਉਲਟੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲਿਆ ਸਮਾਂ) = (ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲਿਆ ਸਮਾਂ) + 1

$$\frac{\frac{24}{18-x} = \frac{24}{18+x} + 1}{\frac{24(18+x)-24(18-x)}{(18-x)(18+x)}} \Rightarrow \frac{\frac{24}{18-x} - \frac{24}{18+x} = 1}{\frac{24(18+x)-24(18-x)}{(18-x)(18+x)}} = 1$$

$$\Rightarrow 432 + 24x - 432 + 24x = (18 - x)(18 + x)$$

$$\Rightarrow 48x = 324 - x^2$$

$$\Rightarrow x^2 + 48x - 324 = 0$$

$$\Rightarrow x^2 + 54x - 6x - 324$$

$$\Rightarrow 48x = 324 - x^{2} \Rightarrow x^{2} + 48x - 324 = 0$$

\Rightarrow x^{2} + 54x - 6x - 324 \Rightarrow x(x + 54) - 6(x + 54) = 0

$$\Rightarrow$$
 (x + 54)(x − 6) = 0
 \Rightarrow x = −54,6
ਪਰ ਚਾਲ ਹਮੇਸ਼ਾ ਧਨਾਤਮਕ ਹੁੰਦੀ ਹੈ।
∴ ਧਾਰਾ ਦੀ ਚਾਲ = 6 km/h

3. ਦੋ ਟੂਟੀਆਂ ਮਿਲ ਕੇ ਇੱਕ ਹੌਜ਼ ਨੂੰ $9\frac{3}{8}$ ਘੰਟਿਆਂ ਵਿੱਚ ਭਰ ਸਕਤੀ ਹੈ। ਵੱਡੇ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਘੱਟ ਵਿਆਸ ਟੂਟੀ ਤੋਂ 10 ਘੰਟੇ ਘੱਟ ਸਮਾਂ ਲੈਂਦੀ ਹੈ। ਹਰੇਕ ਟੂਟੀ ਦੁਆਰਾ ਹੌਜ਼ ਨੂੰ ਭਰਨ ਲਈ ਲਿਆ ਗਿਆ ਸਮਾਂ ਪਤਾ ਕਰੋ। [ਅਭਿ 4.3, ਪ੍ਰ. 9]

ਹੱਲ: ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ :

(ਵੱਡੇ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ) = (ਘੱਟ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ) – 10 ਮੰਨ ਲਓ, ਘੱਟ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ = x ਘੰਟੇ

ਤਾਂ ਵੱਡੇ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ = (x-10) ਘੰਟੇ

(ਇਹ ਸਮੱਸਿਆ ਉਲਟੇ ਅਨੁਪਾਤ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। ਭਾਵ ਦੋਨਾਂ ਟੂਟੀਆਂ ਨੂੰ ਇਕੱਠੇ ਖੋਲਿਆ ਜਾਵੇਗਾ ਤਾਂ ਟੈਂਕ ਨੂੰ ਭਰਨ ਲਈ ਘੱਟ ਸਮਾਂ ਲੱਗੇਗਾ। ਇਸ ਲਈ ਪਹਿਲਾਂ ਇਸਨੂੰ ਸਿੱਧੇ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਿਆ ਜਾਵੇ)

ਤਾਂ 1 ਘੰਟੇ ਵਿੱਚ, ਘੱਟ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਭਰਿਆ ਹੌਜ਼ = $\frac{1}{x}$ ਹਿੱਸਾ

ਵੱਧ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਭਰਿਆ ਹੌਜ = $\frac{1}{x-10}$ ਹਿੱਸਾ

ਹੁਣ, ਦੋਨਾਂ ਟੂਟੀਆਂ ਦੁਆਰਾ ਭਰਨ ਲਈ ਲਿਆ ਕੁੱਲ ਸਮਾਂ = $9\frac{3}{8} = \frac{75}{8}$ ਘੰਟੇ 1 ਘੰਟੇ ਵਿੱਚ,

$$\frac{1}{x} + \frac{1}{x - 10} = \frac{8}{75}$$

$$\Rightarrow \frac{2x - 10}{x^2 - 10x} = \frac{8}{75}$$

$$\Rightarrow 75(2x - 10) = 8(x^2 - 10x)$$

$$\Rightarrow 150x - 750 = 8x^2 - 80x \qquad \Rightarrow 8x^2 - 230x + 750 = 0$$

$$\Rightarrow 4x^2 - 115x + 375 = 0$$
 (ਦੋਨਾਂ ਪਾਸੇ 2 ਨਾਲ ਵੰਡਣ ਤੇ)

$$\Rightarrow 4x^2 - 100x - 15x + 375 = 0 \Rightarrow 4x(x - 25) - 15(x - 25) = 0$$

$$\Rightarrow (x-25)(4x-15) = 0$$
 $\Rightarrow x = 25, \frac{15}{4}$

ਜੇ ਘੱਟ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ = 25 ਘੰਟੇ

ਤਾਂ ਵੱਧ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ = 15 ਘੰਟੇ

ਜੇ ਘੱਟ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ = $\frac{15}{4}$ ਘੰਟੇ

ਤਾਂ ਵੱਧ ਵਿਆਸ ਵਾਲੀ ਟੂਟੀ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ = $\frac{15}{4} - 10 = \frac{15-40}{10} = \frac{-25}{4}$ (ਸੰਭਵ ਨਹੀਂ) ਦੋਹਾਂ ਟੂਟੀਆਂ ਦੁਆਰਾ ਲਿਆ ਸਮਾਂ = 25 ਘੰਟੇ, 15 ਘੰਟੇ

4. 13 ਮੀ ਵਿਆਸ ਵਾਲੇ ਇੱਕ ਚੱਕਰਾਕਾਰ ਪਾਰਕ ਦੇ ਘੇਰੇ ਤੇ ਇੱਕ ਬਿੰਦੂ 'ਤੇ ਇੱਕ ਖੰਭਾ ਇਸ ਤਰ੍ਹਾਂ ਲਗਾਇਆ ਹੈ। ਕਿ ਇਸ ਪਾਰਕ ਦੇ ਇੱਕ ਵਿਆਸ ਦੇ ਦੋਵੇਂ ਸਿਰਿਆਂ ਤੇ ਬਣੇ ਫਾਟਕ A ਅਤੇ B ਤੋਂ ਖੰਭਿਆਂ ਦੀਆਂ ਦੂਰੀਆਂ ਦਾ ਅੰਤਰ 7 ਮੀ ਹੋਵੇ। ਦੋਵੇਂ ਫਾਟਕਾਂ ਤੋਂ ਕਿੰਨੀ–2 ਦੂਰੀ ਤੇ ਖੰਭਾ ਲਗਾਉਣਾ ਹੋਵੇਗਾ?

ਹੱਲ: ਮੰਨ ਲਓ, ਚੱਕਰਾਕਾਰ ਪਾਰਕ ਵਿੱਚ ਖੰਭਾ P ਬਿੰਦੂ 'ਤੇ ਸਥਿਤ ਹੈ ਅਤੇ AB=13 ਮੀ ਵਿਆਸ ਹੈ।

ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ : AP ਅਤੇ BP ਦਾ ਅੰਤਰ 7 ਮੀ ਹੈ। ਭਾਵ AP – BP = 7 ਮੀ ਮੰਨ ਲਓ, BP = x ਮੀ ਤਾਂ AP = (7 + x) ਮੀ \therefore AB ਇੱਕ ਵਿਆਸ ਹੈ। ਇਸ ਲਈ \triangle ABP ਇੱਕ ਸਮਕੋਣੀ ਤਿਕੋਣ ਹੈ। ਸਮਕੋਣੀ \triangle ABP ਵਿੱਚ \triangle ABP = \triangle BP = \triangle ABP = \triangle BP = \triangle ABP =

come-become-educated

