Physics for Computer Science Sample Problems # 1

Date Given: April 6, 2022

P1. Compute $a \cdot b$ for

(a)
$$\mathbf{a} = (3, 2, -5)$$
 and $\mathbf{b} = (10, 1, 2)$

(b)
$$\mathbf{a} = (1, 0, 3)$$
 and $\mathbf{b} = (-4, 15, 1)$

(c)
$$\mathbf{a} = (2, 1, 5)$$
 and $\mathbf{b} = (7, -9, -1)$

Solution:

(a)
$$\mathbf{a} \cdot \mathbf{b} = (3 \times 10 + 2 \times 1 - 5 \times 2) = 20$$

(b)
$$\mathbf{a} \cdot \mathbf{b} = (-1 \times 4 + 0 \times 15 + 3 \times 1) = -1$$

(c)
$$\mathbf{a} \cdot \mathbf{b} = (2 \times 7 - 1 \times 9 - 5 \times 1) = 0$$

P2. If v + w = (5, 1) and v - w = (1, 5), compute and draw v and w.

Solution: Let $\mathbf{v} = (v_1, v_2)$ and $\mathbf{w} = (w_1, w_2)$. Then, we have: $v_1 + w_1 = 5, v_2 + w_2 = 1$, and $v_1 - w_1 = 1, v_2 - w_2 = 5$. By solving these equations one finds $v_1 = 3, v_2 = 3$, and $w_1 = 2, w_2 = -2$. The vectors \mathbf{v} and \mathbf{w} are drawn in Figure 1.

Figure 1: Illustration to Problem P2.

P3. The parallelogram in Figure 2 has diagonal v + w. What is the other diagonal? What is the sum of the two diagonals? Draw that vector sum.

Solution: The other diagonal is v - w and therefore (v + w) + (v - w) = 2v. Note that in vector notation the other diagonal can also be shown as w - v. In this case (v + w) + (w - v) = 2w.

P4. Find two vectors v and w that are perpendicular to (1,0,1) and to each other.

Solution: There are many ways to go about this. One way would be to write $\mathbf{v} = (v_1, v_2, v_3)$ and $\mathbf{w} = (w_1, w_2, w_3)$ and then to write down the equations that \mathbf{v} and \mathbf{w} must satisfy. These are: $\mathbf{v} \cdot (1, 0, 1) = 0$, $\mathbf{w} \cdot (1, 0, 1) = 0$, and $\mathbf{v} \cdot \mathbf{w} = 0$. This gives a system of three equations with six unknowns (the v_i and w_i), that you could then try to solve to find the set of all possible \mathbf{v} and \mathbf{w} satisfying these requirements.

Figure 2: Illustration to Problem P3.

On the other hand, the problem just asks you to find one specific choice of \boldsymbol{v} and \boldsymbol{w} , not all possible choices. It is easiest first to fix appropriately the components of \boldsymbol{v} and proceed then by inspection: $\boldsymbol{v}=(1,1,-1)$ is clearly perpendicular to (1,0,1) since their dot product is $\boldsymbol{v}\cdot(1,0,1)=1\times1+1\times0-1\times1=0$. So, we just have to find a $\boldsymbol{w}=(w_1,w_2,w_3)$ that is perpendicular to both of these vectors. This \boldsymbol{w} must satisfy $\boldsymbol{w}\cdot(1,0,1)=w_1+w_3=0$ and $\boldsymbol{v}\cdot\boldsymbol{w}=(1,1,-1)\cdot\boldsymbol{w}=w_1+w_2-w_3=0$. There are infinitely many solutions to this system of equations; one particular solution is $\boldsymbol{w}=(-1,2,1)$. There are many others.

P5. Find a distance from a line through vector \boldsymbol{a} to the point M given by vector \boldsymbol{b} as shown in Figure 3.

Figure 3: Illustration to Problem P5.

Solution: The area of the parallelogram built on the vectors \boldsymbol{a} and \boldsymbol{b} is $S = |\boldsymbol{a} \times \boldsymbol{b}|$. On the other hand, the same area $S = |\boldsymbol{a}|h$ where h is the distance from point M to the line through the vector \boldsymbol{a} . Therefore $h = |\boldsymbol{a} \times \boldsymbol{b}|/|\boldsymbol{a}|$.

P6. Find the angle between the line through vector c and the plane spanned by vectors a and b as shown in Figure 4.

Figure 4: Illustration to Problem P6.

Solution: The normal vector to the plane spanned by vectors \boldsymbol{a} and \boldsymbol{b} is $\boldsymbol{n} = \boldsymbol{a} \times \boldsymbol{b}$. The angle between \boldsymbol{n} and \boldsymbol{c} is defined as $\cos(\frac{\pi}{2} - \varphi) = \frac{\boldsymbol{n} \cdot \boldsymbol{c}}{|\boldsymbol{n}||\boldsymbol{c}|}$. Therefore $\sin \varphi = \frac{\boldsymbol{c} \cdot (\boldsymbol{a} \times \boldsymbol{b})}{|\boldsymbol{c}||\boldsymbol{a} \times \boldsymbol{b}|}$.

P7. The plane π_1 is formed by the vectors \mathbf{a}_1 and \mathbf{b}_1 , and the plane π_2 is formed by the vectors \mathbf{a}_2 and \mathbf{b}_2 (see Figure 5). Find the vector along the line of intersection of π_1 and π_2 .

Figure 5: Illustration to Problem P7.

Solution: The normal vectors to the planes are $n_1 = a_1 \times b_1$ and $n_2 = a_2 \times b_2$. Therefore, the vector along the intersection line is defined as

$$m = n_1 \times n_2 = (a_1 \times b_1) \times (a_2 \times b_2).$$

P8. Find the volume of a tetrahedron built on the vectors a, b, and c as shown in Figure 6.

Figure 6: Illustration to Problem P8.

Solution: The volume of an arbitrary tetrahedron is one sixth the volume of the parallelepiped built on the vectors a, b, and c. Therefore

$$V_{ ext{tetrahedron}} = rac{1}{6} \left| oldsymbol{a} \cdot (oldsymbol{b} imes oldsymbol{c})
ight|$$

Figure 7: Illustration to Problem P8.