Т - критерий Вилкоксона

Назначение критерия Критерий применяется для сопоставления показателей, измеренных в *двух* разных условиях на *одной* и той же выборке испытуемых. Он позволяет установить не только *направленность* изменений, но и их *выраженность*. С его помощью мы определяем, является ли сдвиг показателей в каком-то одном направлении более интенсивным, чем в другом.

Описание критерия Суть метода состоит в том, что мы сопоставляем выраженность сдвигов в том и ином направлениях по абсолютной величине.

Гипотезы

 H_0 : Интенсивность сдвигов в типичном направлении не отличается от интенсивности сдвигов в нетипичном направлении.

 H_1 : Интенсивность сдвигов в типичном направлении превышает интенсивность сдвигов в нетипичном направлении.

Пример

В выборке курсантов военного училища (юноши в возрасте от 18 до 20 лет) измерялась способность к удержанию физического волевого усилия на динамометре. Сначала у испытуемых измерялась максимальная мышечная сила каждой из рук, а на следующий день им предлагалось выдерживать на динамометре с подвижной стрелкой мышечное усилие, равное 1/2 максимальной мышечной силы данной руки. Почувствовав усталость, испытуемый должен был сообщить об этом экспериментатору, но не прекращать опыт, преодолевая усталость и неприятные ощущения - "бороться, пока воля не иссякнет". Опыт проводился дважды; вначале с обычной инструкцией, а затем, после того, как испытуемый заполнял опросник самооценки волевых качеств, ему предлагалось представить себе, что он уже добился идеала в развитии волевых качеств, и продемонстрировать соответствующее идеалу волевое усилие. Подтвердилась ли гипотеза экспериментатора о том, что обращение к идеалу способствует возрастанию волевого усилия?

МАТЕМАТИЧЕСКОЙ

в психологии

испытуемый 1 измерение 2 измерение

Данные представлены в таблице.

испытуемый	1 измерение	2 измерение	Разность
			(после-до)
1	64	64	0
2	77	50	-27
3	74	77	+3
4	95	76	-19
5	105	67	-38
6	83	75	-8
7	73	77	+4
8	75	71	-4
9	101	63	-38
10	97	122	+25
11	78	60	-18

испытуемый	1 измерение	2 измерение	Разность	Разность
			(после-до)	По модулю
1	64	64	0	
2	77	50	-27	27
3	74	77	+3	3
4	95	76	-19	19
5	105	67	-38	38
6	83	75	-8	8
7	73	77	+4	4
8	75	71	-4	4
9	101	63	-38	38
10	97	122	+25	25
11	78	60	-18	18

испытуемый	1 измерение	2 измерение	Разность	Разность	Ранг разности
			(после-до)	По модулю	
1	64	64	0		
2	77	50	-27	27	8
3	74	77	+3	3	1
4	95	76	-19	19	6
5	105	67	-38	38	9,5
6	83	75	-8	8	4
7	73	77	+4	4	2,5
8	75	71	-4	4	2,5
9	101	63	-38	38	9,5
10	97	122	+25	25	7
11	78	60	-18	18	5

$$\frac{2+3}{2} = 2,5$$

$$\frac{9+10}{2} = 9,5$$

$$\sum R_i = \frac{N(N+1)}{2} = \frac{10 \cdot (10+1)}{2} = 55$$

испытуемый	1 измерение	2 измерение	Разность	Разность	Ранг разности
		_	(после-до)	По модулю	
1	64	64	0		
2	77	50	-27	27	8
3	74	77	+3	3	1
4	95	76	-19	19	6
5	105	67	-38	38	9,5
6	83	75	-8	8	4
7	73	77	+4	4	2,5
8	75	71	-4	4	2,5
9	101	63	-38	38	9,5
10	97	122	(+25)	25	7
11	78	60	-18	18	5

$$\frac{2+3}{2} = 2,5$$

$$\frac{9+10}{2} = 9,5$$

Нетипичные сдвиги – те, которых меньше – положительные - 3

$$\sum R_i = \frac{N(N+1)}{2} = \frac{10 \cdot (10+1)}{2} = 55$$

Типичные сдвиги – те, которых больше – отрицательные - 7

H₀: Интенсивность сдвигов в сторону уменьшения длительности мышечного усилия не отличается от интенсивности сдвигов в сторону ее увеличения.

 H_1 : Интенсивность сдвигов в сторону уменьшения длительности мышечного усилия превышает интенсивность сдвигов в сторону ее увеличения.

$$T_{\text{\tiny 3MB}} = \sum R_{\text{\tiny Hemun}}$$

где $R_{\text{нетип}}$ - ранговые значения нетипичных сдвигов.

испытуемый	1 измерение	2 измерение	Разность	Разность	Ранг разности
	***		(после-до)	По модулю	
1	64	64	0		
2	77	50	-27	27	8
3	74	77	+3	3	
4	95	76	-19	19	6
5	105	67	-38	38	9,5
6	83	75	-8	8	4
7	73	77	+4	4	2,5
8	75	71	-4	4	2,5
9	101	63	-38	38	9,5
10	97	122	(+25)	25	7
11	78	60	-18	18	5

$$T_{\mathrm{amn}} = \sum R_{\mathrm{Hemun}}$$

$$T_{\text{ann}} = 1+2,5+7=10,5$$

Критические значения критерия Т Вилкоксона для уровней статистической значимости $\alpha=0,05$ и $\alpha=0,01$.

N	$\alpha = 0.05$	$\alpha = 0.01$
5	0	_
6	2	(5)
7	3	0
8	5	1
9	8	3
10	10	5
11	13	7
12	17	9
13	21	12
14	25	15
15	30	19

Ошибка первого рода $\alpha = 0.01$:

$$T_{\kappa p, 0,01} = 5$$

$$T_{340} = 1+2,5+7=10,5$$

 H_0 принимается. Интенсивность отрицательного сдвига показателя физического волевого усилия не отличается от интенсивности положительного сдвига.

Критические значения критерия Т Вилкоксона для уровней статистической значимости $\alpha=0,05$ и $\alpha=0,01$.

N	$\alpha = 0.05$	$\alpha = 0.01$
5	0	_
6	2	
7	3	0
8	5	1
9	8	3
10	(10)	5
11	13	7
12	17	9
13	21	12
14	25	15
15	30	19

Ошибка первого рода $\alpha = 0,05$:

$$T_{\kappa p, 0,05} = 10$$

$$T_{3Mn} = 1+2,5+7=10,5$$

 ${
m H_0}$ принимается. Интенсивность отрицательного сдвига показателя физического волевого усилия не отличается от интенсивности положительного сдвига.