Tame valued fields reading group

Sylvy Anscombe

IMJ-PRG, UPCité

sylvy.anscombe@imj-prg.fr

We are following:

F.-V. Kuhlmann. The algebra and model theory of tame valued fields, *J. reine angew. Math.*, 719 (2016), 1–43.

Setting

(K, v) valued field of residue characteristic exponent $p \ge 1$, value group is vK and residue field if Kv.

We are following:

F.-V. Kuhlmann. The algebra and model theory of tame valued fields, *J. reine angew. Math.*, 719 (2016), 1–43.

Setting

(K, v) valued field of residue characteristic exponent $p \ge 1$, value group is vK and residue field if Kv.

Inequalities

- **1.** Fundamental inequality $[L:K] \leq \sum_{i \leq r} e_i f_i p^{d_i}$
- **2.** Abhyankar inequality $\operatorname{trdeg}(L/K) \leq \operatorname{trdeg}(Lw/Kv) + \operatorname{rrk}(wL/vK)$.

Inequality in 2. is called 'transcendence defect'

Background

AKE for

- 1. separably closed valued fields (Robinson, ...)
- 2. Henselian of equal characteristic 0 (Ax-Kochen/Ershov)
- 3. p-adically closed fields (Ax-Kochen/Ershov, Prestel-Roquette)
- finitely ramified henselian valued fields (Ershov, Ziegler, van den Dries, A.-Jahnke, A.-Dittmann-Jahnke)
- 5. separable algebraically maximal Kaplansky (Delon, Bélair)

Background

AKE for

- 1. separably closed valued fields (Robinson, ...)
- 2. Henselian of equal characteristic 0 (Ax-Kochen/Ershov)
- 3. p-adically closed fields (Ax-Kochen/Ershov, Prestel-Roquette)
- finitely ramified henselian valued fields (Ershov, Ziegler, van den Dries, A.-Jahnke, A.-Dittmann-Jahnke)
- 5. separable algebraically maximal Kaplansky (Delon, Bélair)

AKE principles

- 1. AKE^{\equiv} : $(K, v) \equiv (L, w) \Leftrightarrow (vK \equiv wL)\&(Kv \equiv Lw)$
- **2.** AKE^{\exists} : $(K, v) \leq_{\exists} (L, w) \Leftrightarrow (vK \leq_{\exists} wL) \& (Kv \leq_{\exists} Lw)$ for $(K, v) \subseteq (L, w)$
- 3. $AKE^{\leq}: (K, v) \leq (L, w) \Leftrightarrow (vK \leq wL) \& (Kv \leq Lw)$ for $(K, v) \subseteq (L, w)$

Tame valued fields

Definition (Tame valued fields)

(K, v) is tame if

- 1. (K, v) is algebraically maximal,
- 2. vK is p-divisible, and
- 3. Kv is perfect

In positive characteristic, (K, v) is tame if and only if it is henselian, defectless, and perfect.

Examples and non-examples

- **1.** $(F((\Delta)), v_t)$ iff F perfect and Δp -divisible
- **2.** $(F((t)), v_t)$ iff p = 1
- 3. $(F(t)^h, v_t)$ iff p = 1
- **4.** $(F(t), v_t)$ not tame
- **5.** (\mathbb{Q}, v_p) not tame.

Tame valued fields

Definition (Tame extensions)

Algebraic extension (L, w)/(K, v) is *tame* if

- **1.** (wL : vK) coprime to p,
- 2. Lw/Kv is separable, and
- 3. defectless.

Definition (Purely wild)

(L, w)/(K, v) is *purely wild* if it is linearly disjoint from every tame extension of (K, v).

Proposition (Thm 3.2)

TFAE

- 1. (K, v) is tame,
- **2.** K^r is algebraically closed,
- 3. no proper purely wild extensions.

Main theorems

Theorem (Theorem 1.4)

Class of tame fields satisfies AKE^{\exists} and AKE^{\preceq} . Class of tame fields of equal characteristic satisfies AKE^{\equiv} . Class of tame fields satisfies a certain relative version of AKE^{\equiv} .

Main theorems

Theorem (Theorem 1.4)

Class of tame fields satisfies AKE^{\exists} and AKE^{\preceq} . Class of tame fields of equal characteristic satisfies AKE^{\equiv} . Class of tame fields satisfies a certain relative version of AKE^{\equiv} .

Relative subcompleteness

Let (L, w), (K, v) be two tame extensions of defectless (F, u) with vK/uF torsion free and Kv/Fu separable. Then $(K, v) \equiv_{(F, u)} (L, w) \Leftrightarrow (vK \equiv_{uF} wL) \& (Kv \equiv_{uF} Lw)$

Tamification, KPR

There exists an algebraic extension $(K^t, v^t)/(K, v)$ such that

- 1. (K^t, v^t) is tame,
- 2. $v^t K^t$ is the p-divisible hull of vK, and
- **3.** $K^t v^t$ is the perfect hull of Kv.

The collection of such extensions is parameterized by the complements of the ramification subgroup of the absolute Galois group of K.

Tamification, KPR

There exists an algebraic extension $(K^t, v^t)/(K, v)$ such that

- 1. (K^t, v^t) is tame,
- 2. $v^t K^t$ is the p-divisible hull of vK, and
- 3. $K^t v^t$ is the perfect hull of Kv.

The collection of such extensions is parameterized by the complements of the ramification subgroup of the absolute Galois group of K.

Lemma 3.7

Let (K, v) be tame, and suppose that (F, u) is a relatively algebraically closed valued subfield with Kv/Fu algebraic. Then (F, u) is tame, uF is pure in vK, and Fu = Kv.