Theory of Inference - Notes

Dom Hutchinson

February 3, 2020

Contents

1	Motivation 1.1 Examples	2
2	Basic Approaches to Inference 2.1 Inference by Resampling	3 5
3	Inference for Linear Models 3.1 Linear Model Estimation & Checking	6 7
0	Reference 0.1 Definitions 0.2 Probability	
	0.2.1 Probability Distributions	12

1 Motivation

Remark 1.1 - General Idea

Learn something about the world using data & statistical models.

Definition 1.1 - Statistical Models

Statistical Models describe the way in which data is generate. They depend upon unknown constant parameters, θ , and subsidiary information (known data & parameters).

Definition 1.2 - Parameteric Statistical Inference

Parameteric Statistical Inference is the process of taking some data & learning the unknown parameters of the model which generated it.

Definition 1.3 - Parameteric Models

A Parameteric Model is a statistical model whose pdf depends on some unknown parameter.

A Semi-Parameteric Models is a statistical models which contains unknown functions, as well as unknown parameters.

A Non-Parameteric Model has no parameters and thus makes minimal assumptions about how the data was generated.

Proposition 1.1 - Inferential Questions

When performing Statistical Inference we wish to answer the following questions

- i) Confidence Intervals & Credible Intervals What range of parameter valeus are consistent with the data?
- ii) *Hypothesis Testing* Are some pre-specified valeus (or restrictions) for the parameters consistent with the data?
- iii) Model Checking Could our model have generated the data at all?
- iv) *Model Selection* Which of several alternative odels could most plausibly have generated the data?
- v) Statistical Design How could we better arrange teh data gathering process to improve the answers to the preceding questions?

1.1 Examples

Example 1.1 - Mean Annual Temperatures

Consider a dataset of the mean annual temperature in New Haven, Conneticut.

Suppose we plot it in a histogram & notice that it fits a bell curve, then we may assume the data fits a simple model where each data point is observed independently from a $\mathcal{N}(\mu, \sigma^2)$ distribution with μ, σ^2 unknown.

Then the pdf for each data point, y_i , is

$$f(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$$

The pdf for the whole data set, y, is the joint pdf of each data point since we assume iid

$$f(\mathbf{y}) = \prod_{i=1}^{N} f(y_i)$$

Now suppose we notice that the histogram is *heavy tailed* relative to a normal distribution. A better model might be

$$\frac{y_i - \mu}{\sigma} \sim t_{\alpha}$$

where μ, σ^2, α are unknown.

This means the pdf of the whole data set is

$$f(\mathbf{y}) = \prod_{i=1}^{N} \frac{1}{\sigma} f_{t_{\alpha}} \left(\frac{y_i - \mu}{\sigma} \right)$$

by standard transformation theory.

Example 1.2 - Hourly Air Temperature

Consider a dataset of the air temperature, a_i , measured at hourly intervals, t_i , over the course of a week.

The temperature is believed to follow a daily cycle, with a long-term dift over the course of the week and to be subject to random autocorrelated depatures from this overall pattern.

A suitable model might be

$$a_i = \underbrace{\theta_0 + \theta_1 t_i}_{\text{Long-Term Drift}} + \underbrace{\theta_2 \sin(2\pi t_i/24) + \theta_3 \cos(2\pi t_i/24)}_{\text{Daily Cycle}} + \underbrace{e_i}_{\text{Auto Correlation}}$$

where $e_{i+1} := \rho r_i + \varepsilon_i$ with $|\rho| < 1 \& \varepsilon \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

This means $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ & $\mathbf{a} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ with $\Sigma_{i,j} = \frac{\rho^{|1-j|}\sigma^2}{1-\rho}$.

Thus, the pdf of the data set, a, is

$$f(\mathbf{a}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\mathbf{a} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{a} - \boldsymbol{\mu})}$$

Example 1.3 - Bone Marrow

Consider a dataset produced 23 patients suffering from non-Hodgkin's Lymphoma are split into two groups, each recieving a different treatment. We wish to test whether one of these treatments is more efficitive than the other.

For each patient the days between treatment & relapse was recorded. We have some *censored* data as the patient had not relapsed by the time of their last appointment.

Consider using an exponential distribution to model the times to relapse with parameters θ_a & θ_b respectively. We want to test if $\theta_a = \theta_b$.

We have the follow pdf for patients in group a

$$f_a(t_i) = \begin{cases} \theta_a e^{-\theta_a t_i} & \text{uncensored} \\ \int_{t_i}^{\infty} \theta_a e^{-\theta_a t_i} = e^{-\theta_a t_i} & \text{censored} \end{cases}$$

An equivalent pdf exists for patients in group b, with θ_b swapped in.

Thus the model for the whole data set, \mathbf{t} , is

$$f(\mathbf{t}) = \prod_{i=1}^{11} f_a(t_i) \prod_{i=12}^{23} f_b(t_i)$$

when patients $\{1, \ldots, 11\}$ are in group a and the rest in group b.

2 Basic Approaches to Inference

Definition 2.1 - Frequentist Approach

In the Frequentist Approach to inference we assume the model parameters are fixed states, which we wish to estimate. The parameter estimator $\hat{\theta}$ is a random variable which inherits its randomnews from the data which it is constructed from.

Definition 2.2 - Bayesian Approach

In the Bayesian Approach to inference model parameters are treated as random variables and we use probability distributions to encode our uncertainty about the parameters. We set a prior distribution, $\mathbb{P}(\theta)$, and then use data to update it and learn a posterior distribution, $\mathbb{P}(\theta|\mathbf{x})$.

Remark 2.1 - Assumptions

Often we are required to make assumptions in order to analyse the results these approaches. For the *Frequentist Approach* we often assume we have a large data set, whilst for the *Bayesian Approach* we produce simulations from the posterior.

Example 2.1 - Comparing Frequentist & Bayesian Approach

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, 1)$ where μ is an unknown parameter we wish to learn. Let $\mathbf{x} := \{x_1, \ldots, x_n\}$ be a realisation of \mathbf{X} .

Frequentist Let's use $\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Consider the expectation and variance of $\hat{\mu}$

$$\mathbb{E}(\hat{\mu}) = \mathbb{E}(\bar{x}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) = \mu \text{ and } \operatorname{Var}(\hat{\mu}) = \operatorname{Var}(\bar{x}) = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{1}{n}$$

Since $\hat{\mu}$ is a linear transformation of normal random variables it has a normal random variable, thus

$$\hat{\mu} \sim \text{Normal}\left(\mu, \frac{1}{n}\right)$$

Thus $\hat{\mu}$ is an *unbiased* estimator of μ .

By noting that $\sqrt{n}(\hat{\mu} - \mu) \sim \text{Normal}(0, 1)$ we can construct Confidence Intervals for μ

$$0.95 = \mathbb{P}(-1.96 < \sqrt{n}(\hat{\mu} - \mu) < 1.96)$$

$$\implies 0.95 = \mathbb{P}\left(\hat{\mu} - \frac{1.96}{\sqrt{n}} < \mu < \hat{\mu} + \frac{1.96}{\sqrt{n}}\right)$$

Bayesian Here we treat μ as a random variable and thus must choose a distribution for it

$$\mu \sim \text{Normal}(0, \sigma_{\mu}^2)$$

where σ_{μ}^2 is a value we set. Generally we choose greater values for the variance when we are less certain.

We want to find $\mathbb{P}(\mu|\mathbf{x})$ and note that *Bayes' Rule* states

$$\mathbb{P}(\mu|\mathbf{x}) = \frac{\mathbb{P}(\mathbf{x}|\mu)\mathbb{P}(\mu)}{\mathbb{P}(\mathbf{x})}$$

In this setting $\mathbb{P}(\mathbf{x})$ is intractable so we use a trick that since $\mathbb{P}(\mathbf{x})$ is a normalising factor we have

$$\mathbb{P}(\mu|\mathbf{x}) \propto \mathbb{P}(\mathbf{x}|\mu)\mathbb{P}(\mu)$$

From this proportionality we aim to identity the distribution of $\mathbb{P}(\mu|\mathbf{x})$.

$$\mathbb{P}(\mu|\mathbf{x}) \propto \exp\left\{-\frac{1}{2\sigma_{\mu}^{2}} \sum_{i=1}^{n} [(x_{i} - \mu)^{2} + \mu^{2}]\right\}$$

$$\propto \exp\left\{-\frac{1}{2} \left(-2n\bar{x}\mu + \frac{\mu^{2}(n\sigma_{\mu}^{2} + 1)}{\sigma_{\mu}^{2}}\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2} \left(\frac{n\sigma_{\mu}^{2} + 1}{\sigma_{\mu}^{2}}\right) \left(\mu^{2} - 2\bar{x}\mu \frac{n\sigma_{\mu}^{2}}{n\sigma_{\mu}^{2} + 1}\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2} \underbrace{\left(\frac{n\sigma_{\mu}^{2} + 1}{\sigma_{\mu}^{2}}\right)}_{1/\sigma^{2}} \underbrace{\left(\mu - \bar{x}\frac{n\sigma_{\mu}^{2}}{n\sigma_{\mu}^{2} + 1}\right)^{2}}_{\mu}\right\} \text{ by completing the square}$$

We can produce a Credible Interval for μ as

$$\bar{x}\frac{n\sigma_{\mu}^2}{n\sigma_{\mu}^2 + 1} \pm 1.96 \frac{\sigma_m u}{\sqrt{n\sigma_{\mu}^2 + 1}}$$

If we consider the final distribution from the Bayesian Approach as $n \to \infty$ we notice that

$$\mu | \mathbf{x} \to \bar{x} = \hat{\mu} \text{ and } \sigma^2 | \mathbf{x} \to \frac{1}{n}$$

2.1 Inference by Resampling

Remark 2.2 - Motivation

The uncertainty we have about a parameter is inherited from the uncertainty in the data sampling process. Often we have a data set & are unable to repeat the data gathering process, and even if we could we would just combine it into a larger sample rather than split it.

Definition 2.3 - Resampling

Let \mathbf{x} be a given data set.

We can Resample from \mathbf{x} be sampling values in \mathbf{x} uniformly, with repetition. Since we use repetition the Resample's size is independent of the size of \mathbf{x} (Although it makes little sense for it to be greater than $|\mathbf{x}|$).

Definition 2.4 - Bootstrapping

Bootstrapping is the process of generating multiple Resamples of a data set & then estimating a parameter value for each of these resamples. These estimated values can then be assessed.

Example 2.2 - Bootstrapping

The algorithm below describes how to perofrm a *Bootstrapping* operation for the mean of a given data set \mathbf{x} . It produces m resamples of size n from \mathbf{x} and returns a 95% Confidence Interval for the estimated means of these samples.

Algorithm 1: Estimating Mean using Bootstrapping

require: $x \{ data set \}$

- 1 $\mu s = \{\}$ {resample means}
- 2 μs append $mean(\mathbf{x})$
- 3 for $i=0\ldots m$ do
- 4 | $x_i \leftarrow sample(\mathbf{x}, n, replace = TRUE)$
- $\mathbf{5} \mid \mu s \text{ append } mean(x_i)$
- 6 return $quantile(\mu s, (0.025, 0.0975))$

3 Inference for Linear Models

Definition 3.1 - Linear Model

A Linear Model is a mathematical model where the response vector, \mathbf{y} , is linear wrt some parameters $\boldsymbol{\beta}$ and zero-mean random error $\boldsymbol{\varepsilon}$.

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where X is the *Model Matrix* (i.e. observed data).

Usually we assume $\varepsilon \sim \text{Normal}(0, \sigma^2 I)$ although the normality assumption is less important as the *Central Limit Theorem* typically takes care of any issues.

Definition 3.2 - Model Matrix

A *Model Matrix*, X, is the set of values observed in a system. Rows are read as a single observation & columns as a single *Predictor Varaible*.

The Predictor Variables fulfil one of the following roles

- Metric Quantifable measurement from the system.
- Factor A categorisation. Typically take the a binary value (0,1) to represent whether an observation fits a given category or not.

Remark 3.1 - Only the parameters of a Linear model need to be linear. The predictor variables can be composed in any way deemed fit.

 $y = \alpha x^2 + \varepsilon$ is valid but $y = \alpha^2 x + \varepsilon$ is not.

Example 3.1 - Formulating Linear Model

The following is a linear model for a system with Metrics $x_i \& z_i$ and Factor g_i .

$$y_i = \gamma_{g_i} + \alpha_1 x_i + \alpha_2 z_i + \alpha_4 z_i^2 + \alpha_4 z_i x_i + \varepsilon_i$$

where γ_{q_i} is the parameter for category represented by g_i .

We can describe the system about in terms of matrices

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & x_1 & z_1 & z_1^2 & z_1 x_1 \\ 0 & 0 & 1 & x_2 & z_2 & z_2^2 & z_2 x_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & x_n & z_n & z_n^2 & z_n x_n \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 + \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

In the above formulation y_1 fulfils category 1, y_2 fulfils 3 and y_n fulfils 2.

Example 3.2 - Linear Model

Consider a data set for the stopping distance of a car with Predictor Variable speed at the point at which the signal to stop is given.

By considering basic physics we can theorise the following model

$$distance_i = \beta_1 speed_i + \beta_2 speed_i^2 + \varepsilon_i$$

= Thinking + Loss Kinetic Energy + Error

where $\varepsilon_i \stackrel{\text{iid}}{\sim} \text{Normal}(0, \sigma^2)$.

Suppose we want to test whether to make the model more flexible. We can theorise the following model & test whether $\beta_0 = 0 = \beta_3$ (as expected).

$$distance_i = \beta_0 + \beta_1 speed_i + \beta_2 speed_i^2 + \beta_3 speed_i^3 + \varepsilon_i$$

3.1 Linear Model Estimation & Checking

Proposition 3.1 - Frequentist Approach

In the Frequentist Approach to Linear Models we assume that $\boldsymbol{\beta}$ and σ^2 are fixed states of nature, although they are unknown to us, and all randomness is inherited from the random variability in the data. We want to find a point estimate for $\boldsymbol{\beta}$ which minimises the Residual Sum of Squares.

Definition 3.3 - Residual Sum of Squares

Let (X, \mathbf{y}) be a set of training data & $\boldsymbol{\beta}$ a Parameter Vector.

The Residual Sum of Squares is the square difference between our estimate for the Response Variable and its true value.

$$S := \sum_{i=1}^{n} (y_i - \mu_i)^2 = ||\mathbf{y} - \boldsymbol{\mu}||^2 \text{ where } \boldsymbol{\mu} = X\boldsymbol{\beta}$$

Proposition 3.2 - Least Squares for Linear Model

From the definition of Residual Sum of Squares as the Euclidian Distance between the response & estimated vectors we note that its value is unchanged if we reflect or rotate $(\mathbf{y} - \boldsymbol{\mu})$.

Next we note that any real matrix, $X \in \mathbb{R}(n \times p)$, can be decomposed into

$$X = \mathcal{Q} \begin{pmatrix} R \\ 0 \end{pmatrix} = QR$$
 note that $\mathcal{Q} \neq Q$

where $R \in \mathbb{R}(p \times p)$ is an *Upper Triangular Matrix* and $Q \in \mathbb{R}(n \times n)$ is an *Orthogonal Matrix*, the first p columns of which form Q.

Since Q is *Orthogonal* we have that $Q^TQ = I$.

We can now derive the result that

$$\|\mathbf{y} - X\boldsymbol{\beta}\|^{2} = \|\mathcal{Q}^{T}\mathbf{y} - \mathcal{Q}^{T}X\boldsymbol{\beta}\|^{2}$$

$$= \|\mathcal{Q}^{T}\mathbf{y} - {R \choose 0}\boldsymbol{\beta}\|^{2}$$

$$= \|{\mathbf{f} \choose \mathbf{r}} - {R \choose 0}\|^{2} \text{ where } {\mathbf{f} \choose \mathbf{r}} \equiv \mathcal{Q}^{T}\mathbf{y}$$

$$= \|\mathbf{f} - R\boldsymbol{\beta}\|^{2} + \|\mathbf{r}\|^{2}$$

Thus minimising the Residual Sum of Squares is reduced to choosing β st $R\beta = \mathbf{f}$. Hence, provided that X and R have full rank

$$\hat{\beta}_{\rm LS} = R^{-1} \mathbf{f}$$

N.B. After choosing β we have that the Residual Sum of Squares is just $\|\mathbf{r}\|^2$.

0 Reference

0.1 Definitions

Definition 0.1 - Heavy Tailed

Definition 0.2 - Censored Data

Definition 0.3 - Upper Triangular Matrix

Definition 0.4 - Orthogonal Matrix

0.2 Probability

Definition 0.5 - Random Variable

A Random Variable is a function from the sample space to the reals.

$$X:\Omega\to\mathbb{R}$$

 $Random\ Variables$ take a different value each time they are observed and thus we define distributions for the probability of them taking particular values.

Random Variables form the basis of models.

Definition 0.6 - Cummulative Distribution

The Cumulative Distribution function of a Random Variable, X, is the function $F_X(\cdot)$ st

$$F_X(\cdot)$$
 : $\mathbb{R} \to [0,1]$
 $F_X(x)$:= $\mathbb{P}(X \le x)$ = $\sum_{i=-\infty}^x \mathbb{P}(X = i)$
= $\int_{-\infty}^x f_X(x) dx$

The Cumulative Distribution is a monotonic function.

Remark 0.1 - Continuous Cummulative Distribution

If a Cumulative Distribution is continuous then $F_X(X) \sim \text{Uniform}[0,1]$.

Proof 0.1 - *Remark 2.1*

$$\begin{array}{rcl} F(X) & = & \mathbb{P}(X \leq x) \\ & = & \mathbb{P}(F(X) \leq F(x)) \\ \Longrightarrow & \mathbb{P}(F(X) \leq u) & = & u \text{ if } F \text{ is continuous} \end{array}$$

Definition 0.7 - Quantile Function

The Quantile Function of a Random Variable is the inverse function of the Cumulative Distribution.

$$\begin{array}{lcl} F_X^-(\cdot) & : & [0,1] \to \mathbb{R} \\ F_X^-(u) & := & \min\{x: F(x) \ge u\} \end{array}$$

If a distribution has a computable *Quantile Function* then we are able to generate random variable values by sampling from a uniform distribution & then passing that value into the *Quantile Function*.

Definition 0.8 - (Q-Q) Plot

Consider a data set $\{x_1,\ldots,x_n\}$.

A (Q-Q) Plot of this data set plots the ordered data set, $\{x_{(1)},\ldots,x_{(n)}\}$, against the theoretical quantiles $F^{-}\left(\frac{i-.5}{n}\right)$.

The close this line is to y = x the more likely it is the data was generated by this Cumulative Distribtion.

N.B. AKA Quantile-Quantile Plot

Definition 0.9 - Probabiltiy Mass Function

A Probability Mass Function returns the probability of a discrete random variable taking a particular value.

$$f_X(\cdot)$$
 : $\mathbb{R} \to [0,1]$
 $f_X(x)$:= $\mathbb{P}(X=x)$

Definition 0.10 - Probability Density Function

Since the probabiltiy of a Continuous Random Variable taking a specific value is zero we cannot use the Probability Mass Function.

$$f_X(\cdot)$$
 : $\mathbb{R} \to [0,1]$
 $\mathbb{P}(a \le X \le b) = \int_a^b f(x) dx$

N.B. $F'_X(x) = f(x)$ when $F'_X(\cdot)$ exists.

Definition 0.11 - Joint Probabilty Density Function

Let X & Y be Random Variables.

The Joint Probability Density Function of X and Y is the function $f_{X,Y}(x,y)$ st

$$\mathbb{P}((X,Y) \in \Omega) = \iint_{\Omega} f_{X,Y}(x,y) dx dy$$

N.B. This can be seen as evaluation Ω in the X-Y plane.

Definition 0.12 - Marginal Distribution

Let X & Y be Random Variables with Joint Probability Density $f_{X,Y}(\cdot,\cdot)$.

We can find the Marginal Distribution of X by evaluating the $f_{X,Y}$ at each value wrt Y.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$

Definition 0.13 - Expected Value, \mathbb{E}

The Expected Value of a Random Variable, X, is its mean value.

$$\mathbb{E}(X) := \int_{-\infty}^{\infty} x f(x) dx \qquad [Continuous]$$

$$\mathbb{E}(g(X)) := \int_{-\infty}^{\infty} g(x) f(x) dx$$

$$\mathbb{E}(X) := \sum_{-\infty}^{\infty} x f(x) \qquad [Discrete]$$

$$\mathbb{E}(g(X)) := \sum_{-\infty}^{\infty} g(x) f(x)$$

$$\mathbb{E}(g(X)) := \sum_{-\infty}^{\infty} g(x)f(x)$$

Remark 0.2 - Linear Transformations of Expected Value

$$\mathbb{E}(a+bX) = a+b\mathbb{E}(X)$$
 where $a,b \in \mathbb{R}$

Remark 0.3 - Expected Value of Composed Random Variables Let X & Y be Random Variables. Then

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

If X & Y are independent. Then

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

Proof 0.2 - *Remark 2.3*

$$\mathbb{E}(X+Y) = \int (x+y)f_{X,Y}(x,y)dxdy$$

$$= \int xf_{X,Y}(x,y)dxdy + \int yf_{X,Y}(x,y)dxdy$$

$$= \mathbb{E}(X) + \mathbb{E}(Y)$$

$$\mathbb{E}(XY) = \int xyf_{X,Y}(x,y)dxdy$$

$$= \int xf_X(x)yf_Y(y)dxdy \text{ by independence}$$

$$= \int xf_X(x)dx \int yf_Y(y)dy$$

$$= \mathbb{E}(X)\mathbb{E}(Y)$$

Definition 0.14 - Variance, σ^2

The Variance of a Random Variable, X, is a measure of its spread around its expected value.

$$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Remark 0.4 - Linear Transformations of Variance

$$Var(a + bX) = b^2 Var(X)$$
 where $a, b \in \mathbb{R}$

Proof 0.3 - Remark 2.4

$$Var(a + bX) = \mathbb{E}[((a + bX) - (a - b\mu))^2]$$

$$= \mathbb{E}[b^2(X - \mu)^2]$$

$$= b^2\mathbb{E}[(X - \mu)^2]$$

$$= b^2Var(X)$$

Definition 0.15 - Co-Variance

Co-Variance is a measure of the joint variability of two Random Variables.

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

N.B. If X & Y are independent then Cov(X,Y) = 0 since $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. N.B. Cov(X,Y) = Cov(Y,X).

Definition 0.16 - Co-Variance Matrix, Σ

Let $\mathbf{X} := \{X_1, \dots, X_n\}$ be a set of random variables.

A Co-Variance Matrix describes the Variance & Co-Variance of each combination of Random Variables in \mathbf{X} .

$$\Sigma := \mathbb{E}[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$$

N.B. $\Sigma_{ii} = \operatorname{Var}(X_i) \& \Sigma_{ij} = \operatorname{Cov}(X_i, X_j)$ for $i \neq j$. Σ is symmetric.

Remark 0.5 - Linear Transformation of Covariance

$$\Sigma_{AX+b} = A\Sigma A^T$$

Proof 0.4 - *Remark 2.5*

$$\Sigma_{AX+b} = \mathbb{E}[(AX + \mathbf{b} - A\boldsymbol{\mu} - \mathbf{b})(AX + \mathbf{b} - A\boldsymbol{\mu} - \mathbf{b})^{T}]$$

$$= \mathbb{E}[(AX - A\boldsymbol{\mu})(AX - A\boldsymbol{\mu})^{T}]$$

$$= A\mathbb{E}[(X - \boldsymbol{\mu})(X - \boldsymbol{\mu})^{T}]A^{T}$$

$$= A\Sigma A^{T}$$

Definition 0.17 - Conditional Distribution

Let X & Y be Random Variables with Joint Probability Density $f_{X,Y}(\cdot,\cdot)$.

Suppose we know that Y takes the value y_0 & we wish to establish the probability of X taking the value x.

$$f(X = x|Y = y_0) = \frac{f_{X,Y}(x, y_0)}{f_Y(y_0)}$$

assuming $f(y_0) > 0$.

Proof 0.5 - Conditional Distribution

We expect $f(X = x | Y = y_0) = k f_{X,Y}(x, y_0)$ for some constant k.

We know that for $kf_{X,Y}(x,y_0)$ to be a valid distribution it must integrate to one.

$$k \int_{-\infty}^{\infty} f_{X,Y}(x, y_0) dx = 1$$

$$\Rightarrow k f_Y(y_0) = 1$$

$$\Rightarrow k = \frac{1}{f_Y(y_0)}$$

$$\Rightarrow f(X = x | Y = y_0) = \frac{f_{X,Y}(x, y_0)}{f_Y(y_0)}$$

Proposition 0.1 - Conditional Distributions with Three Random Variables

$$\begin{array}{rcl} f(x,z|y) & = & f(x|z,y)f(z|y) \\ f(x,y,z) & = & f(x|y,z)f(z|y)f(y) \\ & = & f(x|y,z)f(y,z) \end{array}$$

Definition 0.18 - Independent Random Variables

Let X & Y be random variables.

X & Y are said to be Statistically Independent if the Conditional Distribution f(x|y) is independent of y.

Thus

$$f(x) = \int_{-\infty}^{\infty} f(x,y)dy$$

$$= \int_{-\infty}^{\infty} f(x|y)f(y)dy$$

$$= f(x|y) \int_{-\infty}^{\infty} f(y)dy$$

$$= f(x|y)$$

$$\implies f(x,y) = f(x|y)f_Y(y) = f_X(x)f_Y(y)$$

Theorem 0.1 - Bayes' Theorem

Let X & Y be Random Variables.

Bayes' Theorem states that

$$f(X|Y) = \frac{f(Y|X)x(X)}{f(Y)}$$

Definition 0.19 - First Order Markov Property

Let $\mathbf{X} := \{X_1, \dots, X_n\}$ be a set of Random Variables.

The set X is said to have the First Order Markov Property if

$$f(X_i|\mathbf{X}_{\neg i}) = f(X_i|X_{i-1})$$
 where $\mathbf{X}_{\neg i} := \mathbf{X}/\{X_i\}$

Thus we can infer the marginal distribution

$$f(\mathbf{X}) = f(X_1) \prod_{i=2}^{N} f(X_i | X_{i-1})$$

0.2.1 Probability Distributions

Definition 0.20 - β -Distribution

Let $X \sim \text{Beta}(\alpha, \beta)$.

A continuous random variable with shape parameters $\alpha, \beta > 0$. Then

$$f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}\mathbb{1}\{x \in [0,1]\}$$

$$\mathbb{E}(X) = \frac{\alpha}{\alpha+\beta}$$

$$\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

$$\mathcal{M}_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r}\right) \frac{t^k}{k!}$$

Definition 0.21 - Bernoulli Distribution

Let $X \sim \text{Bernoulli}(p)$.

A discrete random variable which takes 1 with probability p & 0 with probability (1-p). Then

$$p_X(k) = \begin{cases} 1-p & \text{if } k = 0 \\ p & \text{if } k = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$P_X(k) = \begin{cases} 0 & \text{if } k < 0 \\ 1-p & \text{if } k \in [0,1) \\ 1 & \text{otherwise} \end{cases}$$

$$\mathbb{E}(X) = p$$

$$\text{Var}(X) = p(1-p)$$

$$\mathcal{M}_X(t) = (1-p) + pe^t$$

N.B. Often we define q := 1 - p for simplicity.

Definition 0.22 - Binomial Distribution

Let $X \sim \text{Binomial}(n, p)$.

A discrete random variable modelled by a Binomial Distribution on n independent events and rate of success p.

N.B. If $Y := \sum_{i=1}^n X_i$ where $\mathbf{X} \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$ then $Y \sim \text{Binomial}(n, p)$.

Definition 0.23 - Categorical Distribution

Let $X \sim \text{Categorical}(\mathbf{p})$.

A discrete random variable where probability vector \mathbf{p} for a set of events $\{1, \dots, m\}$.

$$f_X(i) = p_i$$

Definition 0.24 - χ^2 Distribution

Let $X \sim \chi_r^2$.

A continuous random variable modelled by the χ^2 Distribution with r degrees of freedom. Then

$$f_X(x) = \frac{1}{2^{r/2}\Gamma(r/2)} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}$$

$$F_X(x) = \frac{1}{\Gamma(k/2)} \gamma\left(\frac{r}{2}, \frac{x}{2}\right)$$

$$\mathbb{E}(X) = r$$

$$Var(X) = 2r$$

$$\mathcal{M}_X(t) = \mathbb{1}\{t < \frac{1}{2}\}(1 - 2t)^{-\frac{r}{2}}$$

N.B. If $Y := \sum_{i=1}^k Z_i^2$ with $\mathbf{Z} \stackrel{\text{iid}}{\sim} \text{Normal}(0,1)$ then $Y \sim \chi_k^2$.

Definition 0.25 - Exponential Distribution

Let $X \sim \text{Exponential}(\lambda)$.

A continuous random variable modelled by a Exponential Distribution with rate-parameter λ . Then

$$f_X(x) = \mathbb{1}\{t \ge 0\}.\lambda e^{-\lambda x}$$

$$F_X(x) = \mathbb{1}\{t \ge 0\}. (1 - e^{-\lambda x})$$

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

$$\mathcal{M}_X(t) = \mathbb{1}\{t < \lambda\} \frac{\lambda}{\lambda - t}$$

N.B. Exponential Distribution is used to model the wait time between decays of a radioactive source.

Definition 0.26 - Gamma Distribution

Let $X \sim \Gamma(\alpha, \beta)$.

A continuous random variable modelled by a Gamma Distribution with shape parameter $\alpha > 0$ & rate parameter β . Then

$$f_X(x) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha - 1} e^{-\beta x}$$

$$F_X(x) = \frac{\Gamma(\alpha)}{\gamma} (\alpha, \beta x)$$

$$\mathbb{E}(X) = \frac{\alpha}{\beta}$$

$$Var(X) = \frac{\alpha}{\beta^2}$$

$$\mathcal{M}_X(t) = \mathbb{1}\{t < \beta\} \left(1 - \frac{t}{\beta}\right)^{-\alpha}$$

N.B. There is an equivalent definition of a $Gamma\ Distribution$ in terms of a shape & scale parameter. The scale parameter is 1 over the rate parameter in this definition.

Definition 0.27 - Multinomial Distribution

Let $\mathbf{X} \sim \text{Multinomial}(n, \mathbf{p})$.

A discrete random varible which models n events with probability vector \mathbf{p} for events $\{1, \dots, m\}$.

$$f_{\mathbf{X}}(\mathbf{x}) = \mathbb{1}\left\{\sum_{i=1}^{m} x_i \equiv m\right\} \frac{n!}{x_1! \cdots x_n!} \prod_{i=1}^{n} p_i^{x_i}$$

$$\mathbb{E}(X_i) = np_i$$

$$\operatorname{Var}(X_i) = np_i(1-p_i)$$

$$\operatorname{Cov}(X_i, x_j) = -np_i p_j \text{ for } i \neq j$$

$$\mathcal{M}_{X_i}(\theta_i) = \left(\sum_{i=1}^{m} p_i e^{\theta_i}\right)^n$$

N.B. In a realisation **x** of **X**, x_i is the number of times event i has occurred.

Definition 0.28 - Normal Distribution

Let $X \sim \text{Normal}(\mu, \sigma^2)$.

A continuous random variable with mean μ & variance σ^2 .

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

$$\mathbb{E}(X) = \mu$$

$$Var(X) = \sigma^2$$

$$\mathcal{M}_X(\theta) = e^{\mu\theta + \sigma^2\theta^2(1/2)}$$

Definition 0.29 - Pareto Distribution

Let $X \sim \text{Pareto}(x_0, \theta)$.

A continuous random variable modelled by a Pareto Distribution with minimum value x_0 & shape parameter $\alpha > 0$. Then

$$f_X(x) = \frac{\alpha x_0^{\alpha}}{x^{\alpha+1}}$$

$$F_X(x) = 1 - \left(\frac{x_0}{x}\right)^{\alpha}$$

$$\mathbb{E}(X) = \begin{cases} \infty & \alpha \le 1\\ \frac{\alpha x_0}{\alpha - 1} & \alpha > 1 \end{cases}$$

$$\text{Var}(X) = \begin{cases} \infty & \alpha \le 2\\ \frac{x_0^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)} & \alpha > 2 \end{cases}$$

$$\mathcal{M}_X(t) = 1\{t < 0\}\alpha (-x_0 t)^{\alpha} \Gamma(-\alpha, -x_0 t)$$

Definition 0.30 - Poisson Distribution

Let $X \sim \text{Poisson}(\lambda)$.

A discrete random variable modelled by a Poisson Distribution with rate parameter λ . Then

$$p_X(k) = \frac{e^{-\lambda}\lambda^k}{k!} \quad \text{for } k \in \mathbb{N}_0$$

$$P_X(k) = e^{-\lambda} \sum_{i=1}^k \frac{\lambda^i}{i!}$$

$$\mathbb{E}(X) = \lambda$$

$$\text{Var}(X) = \lambda$$

$$\mathcal{M}_X(t) = e^{\lambda(e^t - 1)}$$

N.B. Poisson Distribution is used to model the number of radioactive decays in a time period.

Definition 0.31 - *t-Distribution*

Let $X \sim t_r$.

A continuous random variable with r degrees of freedom. Then

$$f_X(k) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

$$\mathbb{E}(X) = \begin{cases} 0 & \text{if } \nu > 1\\ \text{undefined otherwise} \end{cases}$$

$$\text{Var}(X) = \begin{cases} \frac{\nu}{\nu-2} & \text{if } \nu > 2\\ \infty & 1 < \nu \le 2\\ \text{undefined otherwise} \end{cases}$$

$$\mathcal{M}_X(t) = \text{undefined}$$

N.B. Let $Y \sim \text{Normal}(0,1)$ & $Z \sim \chi_r^2$ be independent random variables then $X := \frac{Y}{\sqrt{Z/r}} \sim t_r$.

Definition 0.32 - Uniform Distribution - Uniform

Let $X \sim \text{Uniform}(a, b)$.

A continuous random variable with lower bound a & upper bound b. Then

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & \text{otherwise} \end{cases}$$

$$\mathbb{E}(X) = \frac{1}{2}(a+b)$$

$$Var(X) = \frac{1}{12}(b-a)^2$$

$$\mathcal{M}_X(t) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & t \neq 0 \\ 1 & t = 0 \end{cases}$$