Contents

1	Bas	sic .																		1
-	1.1																			1
	1.2	Increase Stack Size					٠		٠	٠		٠	٠	٠	٠	٠	٠	٠		1
2	Ma	th																		1
	2.1	Euclidean's Algorith	m																	1
	2.2	Big Integer																		1
	$^{2.3}$	FFT																		3
	2.4	$\operatorname{NTT}......$																		3
	2.5	Miller Rabin																		4
	2.6	Chinese Remainder																		4
	2.7	Pollard's rho																		5
	2.8	Roots of Polynomial																		5
	2.9																			5
	2.9	Simplex				•	٠	٠.	•			٠	•	٠	•	٠	٠		٠.	5
	_	_																		
3	Da	a Structure																		6
	3.1	Disjoint Set																		6
	3.2	Segement Tree with																		6
	3.3	Copy on Write Seger																		6
	3.4	Persistent Segement	Tree																	7
	3.5	Rope																		7
	3.6	pb_ds																		8
	3.7	Link-Cut Tree																		8
	3.8	Treap																		9
					- '	•	•		•	•	•	•		•	•	-	-	•	•	-
4	C-	nh																		9
4	Gra																			
	4.1	Dijkstra's Algorithm																		9
	4.2	Tarjan's Algorithm					_			_						_	_	_		10
	4.3	Jump Pointer Algori																		10
	4.4	Maximum Clique .																		10
	4.5	Heavy-Light Decomp	ositic	n.																10
	4.6	Dominator Tree																		11
	4.7	Number of Maximal																		11
	4.8	Strongly Connected	Comp	onei	nt.															12
	4.9	Dynamic MST																		12
		General Matching																		12
	4.11	Minimum General W	/eighte	ed M	late	chi	ng													13
	4.12	Maximum General V	Veight	ed N	/Iat	chi	ine	٤.												13
		Minimum Steiner Tr																		14
	4.14	BCC based on Verte	х				٠		•			٠	•	٠	•	•	•			15
																				15
5	\mathbf{Flo}	w																		15
5													•							
5	5.1	Bipartite Matching																		
5	$5.1 \\ 5.2$	Bipartite Matching MaxFlow (ISAP) .																		16
5	5.1	Bipartite Matching																		
5	$5.1 \\ 5.2 \\ 5.3$	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow .	 				:													16 16
5	5.1 5.2 5.3 5.4	$\begin{array}{c} {\rm Bipartite~Matching}\\ {\rm MaxFlow~(ISAP)}\ .\\ {\rm MinCostMaxFlow}\ .\\ {\rm BoundedMaxFlow} \end{array}$	 	 							 								 	16 16 17
5	5.1 5.2 5.3 5.4 5.5	$\begin{array}{ll} Bipartite \ Matching \\ MaxFlow \ (ISAP) \ . \\ MinCostMaxFlow \ . \\ BoundedMaxFlow \\ Dinic \ . \ . \ . \ . \end{array}$	 					 			 								 	16 16 17 17
5	5.1 5.2 5.3 5.4 5.5 5.6	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic									 									16 16 17 17
5	5.1 5.2 5.3 5.4 5.5	$\begin{array}{ll} Bipartite \ Matching \\ MaxFlow \ (ISAP) \ . \\ MinCostMaxFlow \ . \\ BoundedMaxFlow \\ Dinic \ . \ . \ . \ . \end{array}$									 									16 16 17 17
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic									 									16 16 17 17 17 18
5	5.1 5.2 5.3 5.4 5.5 5.6	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic									 									16 16 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic									 									16 16 17 17 17 18 18
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Dmetry																		16 16 17 17 17 18 18
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic																		16 16 17 17 17 18 18
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Theorem Half Plane Intersection	on																	16 16 17 17 17 18 18 18
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Theorem Half Plane Intersection of 2 Lin	on																	16 16 17 17 17 18 18 18
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Half Plane Intersection of 2 Lin Intersection of 2 Seg	on es ments																	16 16 17 17 17 18 18 18 18
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3 6.4	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Half Plane Intersecti Intersection of 2 Lin Intersection of Circle	on es ments	Segr	mer															16 16 17 17 17 18 18 18 18 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Half Plane Intersecti Intersection of 2 Lin Intersection of Circle	on es ments	Segr	mer															16 16 17 17 17 18 18 18 18
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3 6.4 6.5	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	on es ments	Segr	ner	it ee.														16 16 17 17 17 18 18 18 18 19 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3 6.4 6.5 6.6	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	on es ments	Segr	mer	it e.														16 16 17 17 18 18 18 18 19 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Dmetry Half Plane Intersection Intersection of 2 Lin Intersection of Circle Intersection of Polyg Intersection of Polyg Intersection of 2 Circle Circle Cover	on es ments e and gon an cles	Segr	ner	it														16 16 17 17 18 18 18 18 19 19 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3 6.4 6.5 6.6	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	on es ments e and gon an cles	Segr	ner	it														16 16 17 17 18 18 18 18 19 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Dmetry Half Plane Intersection Intersection of 2 Lin Intersection of Circle Intersection of Polyg Intersection of Polyg Intersection of 2 Circle Circle Cover	onesments e and con an cles	Segr	mer	it e.														16 16 17 17 18 18 18 18 19 19 19
	5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Half Plane Intersecti Intersection of 2 Lin Intersection of Circle Intersection of 2 Circle Cover Circle Cover Tangent Line of 2 Circle KD Tree	on	Segr	mer	it e.														166 167 177 177 188 188 189 199 199 200 200
	5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	on es	Segr	ner	it e.														166 167 177 177 188 188 189 199 199 200 201
	5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Theorem Dinic Theorem Th	on es ments e and con an cles ircles	Segr	mer	it e.														166 167 177 177 188 188 189 199 199 200 200
	5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	on es ments e and con an cles ircles	Segr	mer	it e.														166 167 177 177 188 188 189 199 199 200 201
	5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.8 6.6 6.7 6.8 6.10 6.11 6.12	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Dmetry Half Plane Intersection Intersection of 2 Lin Intersection of 2 Circle	on	Segrad Ci	mer	it ee.														16 16 17 17 18 18 18 18 19 19 19 20 20 21 21 22
	5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	on	SSegr	mer	e.														166 167 177 177 188 188 188 189 199 199 199 200 201 211 222 222
	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Theorem Theorem	on	Segrad Ci	ner	it e.														166 167 177 177 188 188 188 189 199 199 200 201 211 222 223 23
	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	on	Segrad Ci	ner	it e.														166 167 177 177 188 188 188 189 199 199 199 200 201 211 222 222
	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Theorem Theorem	on	Segrad Ci	ner	it e.														166 167 177 177 188 188 188 189 199 199 200 201 211 222 223 23
6	5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow Dinic DMST SW min-cut Theorem DMST SW min-cut Theorem DMST SU Half Plane Intersection Of 2 Lin Intersection of 2 Lin Intersection of 2 Circle Intersection of 2 Circle Intersection of 2 Circle Intersection of 2 Circle Cover Tangent Line of 2 Circle Lower Concave Hull Delaunay Triangulat Min Enclosing Circle Heart of Triangle Min/Max Enclosing Union of Polynomial	on	Segrad Ci	ner	it e.														16 16 17 17 18 18 18 18 19 19 19 20 21 21 22 22 22 23 24
	5.1 5.2 5.3 5.4 5.5 5.6 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 6.13 6.14 6.15 8.15 8.15 8.15 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . Dinic	oon	Segr	mer	it e														16 16 17 17 17 18 18 18 18 19 19 19 20 20 21 21 22 22 23 24
6	5.1 5.2 5.3 5.4 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 6.13 6.14 6.15 6.14 6.15 6.14 6.15 6.14 6.15 6.14 6.15 6.14 6.15 6.16 6.16 6.16 6.16 6.16 6.16 6.16	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . BoundedMaxFlow Dinic	ones	Segrad Ci	mercl	it e														16 16 17 17 17 18 18 18 18 19 19 19 20 21 21 22 22 23 24 24
6	5.1 5.2 5.3 5.4 5.5 5.6 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 6.13 6.14 6.15 8.15 8.15 8.15 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16	Bipartite Matching MaxFlow (ISAP) . MinCostMaxFlow . Dinic	ones	Segrad Ci	mercl	it e														16 16 17 17 17 18 18 18 18 19 19 19 20 20 21 21 22 22 23 24
6	5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.8 6.6 6.7 6.8 6.1 6.1 6.1 6.1 6.1 6.1 6.1 7.1 7.1	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Theorem Ometry Half Plane Intersecti Intersection of 2 Lin Intersection of 2 Cir Circle Cover Tangent Line of 2 C KD Tree Lower Concave Hull Delaunay Triangulat Min Enclosing Circle Min/Max Enclosing Union of Polynomial Ling Knuth-Morris-Pratt Palindrome Tree	onesments e and con an clesirclesion	Segrad Ci	mercl	it e														16 16 17 17 17 18 18 18 18 19 19 19 20 20 21 21 22 23 24 24 24
6	5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.8 6.6 6.7 6.8 6.10 6.11 6.12 6.13 6.14 6.15 6.17 7.17 7.17	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow (ISAP) BoundedMaxFlow Dinic	on	Segrad Ci	mer	it e														166 167 177 177 177 178 188 188 189 199 199 199 200 211 222 223 244 244 245
6	5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Geo 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.1 6.1 6.1 6.1 6.1 6.1 7.1 7.1 7.2 7.1 7.1 7.2 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Theorem Ometry Half Plane Intersecti Intersection of 2 Lin Intersection of 2 Cir Circle Cover Tangent Line of 2 C KD Tree Lower Concave Hull Delaunay Triangulat Min Enclosing Circle Min/Max Enclosing Union of Polynomial Ling Knuth-Morris-Pratt Palindrome Tree	oon	Segrad Ci	mer	it e														166 167 177 177 177 178 188 188 189 199 199 199 200 211 222 223 244 244 245

1 Basic

1.1 .vimrc

1.2 Increase Stack Size

```
//stack resize (linux)
#include <sys/resource.h>
void increase_stack_size() {
  const rlim_t ks = 64*1024*1024;
    struct rlimit rl;
    int res=getrlimit(RLIMIT_STACK, &rl);
    if(res==0){
        if(rl.rlim_cur<ks){
            rl.rlim_cur=ks;
            res=setrlimit(RLIMIT_STACK, &rl);
        }
    }
}</pre>
```

2 Math

2.1 Euclidean's Algorithm

```
// a must be greater than b
pair< int, int > gcd( int a, int b ) {
   if ( b == 0 ) return { 1, 0 };
   pair< int, int > q = gcd( b, b % a );
   return { q.second, q.first - q.second * ( a / b ) };
}
```

2.2 Big Integer

```
const int base = 1000000000;
const int base_digits = 9;
class Bigint {
public:
  vector< int > a;
  int sign;
 Bigint() : sign( 1 ) {}
Bigint( long long v ) { *this = v; }
Bigint( const string &s ) { read( s ); }
  void operator=( const Bigint &v ) {
    sign = v.sign;
    a = v.a;
  void operator=( long long v ) {
    sign = 1;
    if (v < 0) sign = -1, v = -v;
    for (; v > 0; v = v / base ) a.push_back( v % base
  Bigint operator+( const Bigint &v ) const {
    if ( sign == v.sign ) {
      Bigint res = v;
      0);
res.a[i] += carry + (i < (int)a.size() ? a[
        i ] : 0 );
carry = res.a[ i ] >= base;
        if ( carry ) res.a[ i ] -= base;
      return res;
    }
    return *this - ( -v );
  Bigint operator-( const Bigint &v ) const {
    if ( sign == v.sign ) {
      if ( abs() >= v.abs() ) {
  Bigint res = *this;
```

```
for ( int i = 0, carry = 0; i < (int)v.a.size()
            | carry; ++i ) {
         res.a[ i ] -= carry + ( i < (int)v.a.size() ?
        v.a[i]:0);
carry = res.a[i] < 0;
        if ( carry ) res.a[ i ] += base;
      res.trim();
      return res;
    return -( v - *this );
  return *this + ( -v );
void operator*=( int v ) {
  if ( i == (int)a.size() ) a.push_back( 0 );
long long cur = a[ i ] * (long long)v + carry;
carry = (int)( cur / base );
    a[ i ] = (int)( cur % base );
  trim();
Bigint operator*( int v ) const {
  Bigint res = *this;
  res *= v;
  return res;
friend pair< Bigint, Bigint > divmod( const Bigint &
    a1, const Bigint &b1 ) {
  int norm = base / ( b1.a.back() + 1 );
  Bigint a = a1.abs() * norm;
  Bigint b = b1.abs() * norm;
  Bigint q, r;
  q.a.resize( a.a.size() );
  for ( int i = a.a.size() - 1; i >= 0; i-- ) {
  r *= base;
  r += a.a[i];
    int s1 = r.a.size() \leftarrow b.a.size() ? 0 : r.a[b.a.
         size() ];
    int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[
         b.a.size() - 1];
    int d = ((long long)base * s1 + s2) / b.a.back
    ();
r -= b * d;
    while (r < 0) r += b, --d;
    q.a[ i ] = d;
  q.sign = a1.sign * b1.sign;
  r.sign = a1.sign;
  q.trim();
  r.trim();
  return make_pair( q, r / norm );
Bigint operator/( const Bigint &v ) const { return
    divmod( *this, v ).first; }
Bigint operator%( const Bigint &v ) const { return
    divmod( *this, v ).second; }
void operator/=( int v ) {
  if (v < 0) sign = -sign, v = -v;
  for ( int i = (int)a.size() - 1, rem = 0; i >= 0;
    long long cur = a[ i ] + rem * (long long)base;
a[ i ] = (int)( cur / v );
    rem = (int)(cur % v);
  trim();
Bigint operator/( int v ) const {
  Bigint res = *this;
  res \neq v;
  return res;
int operator%( int v ) const {
```

```
if ( v < 0 ) v = -v;
  int m = 0;
  for ( int i = a.size() - 1; i >= 0; --i ) m = (a[
       i ] + m * (long long)base ) % v;
  return m * sign;
void operator+=( const Bigint &v ) { *this = *this +
void operator-=( const Bigint &v ) { *this = *this -
    v; }
void operator*=( const Bigint &v ) { *this = *this *
void operator/=( const Bigint &v ) { *this = *this /
bool operator<( const Bigint &v ) const {</pre>
  if ( sign != v.sign ) return sign < v.sign;</pre>
  if ( a.size() != v.a.size() ) return a.size() *
  sign < v.a.size() * v.sign;
for ( int i = a.size() - 1; i >= 0; i-- )
    if ( a[ i ] != v.a[ i ] ) return a[ i ] * sign <
   v.a[ i ] * sign;</pre>
  return false;
}
bool operator>( const Bigint &v ) const { return v <
     *this; }
bool operator<=( const Bigint &v ) const { return !(</pre>
    v < *this ); }</pre>
bool operator>=( const Bigint &v ) const { return !(
*this < v ); }
bool operator==( const Bigint &v ) const { return !(
    *this < v ) && !( v < *this ); }
bool operator!=( const Bigint &v ) const { return *
    this < v || v < *this; }
void trim() {
  while ( !a.empty() && !a.back() ) a.pop_back();
  if (a.empty()) sign = 1;
Bigint operator-() const {
  Bigint res = *this;
  res.sign = -sign;
  return res;
Bigint abs() const {
  Bigint res = *this;
  res.sign *= res.sign;
  return res;
long longValue() const {
  long long res = 0;
  for ( int i = a.size() - 1; i >= 0; i-- ) res = res
    * base + a[ i ];
return res * sign;
friend Bigint lcm( const Bigint &a, const Bigint &b )
      { return a / gcd( a, b ) * b; }
void read( const string &s ) {
  sign = 1
  a.clear();
  int pos = 0;
while ( pos < (int)s.size() && ( s[ pos ] == '-' ||</pre>
    s[ pos ] == '+' ) ) {
if (s[ pos ] == '-' ) sign = -sign;
    ++pos;
  for ( int i = s.size() - 1; i >= pos; i -=
       base_digits ) {
     int x = 0;
    for ( int j = max( pos, i - base_digits + 1 ); j
     <= i; j++ ) x = x * 10 + s[ j ] - '0';</pre>
    a.push_back( x );
  trim();
```

```
friend istream &operator>>( istream &stream, Bigint &
     v ) {
  string s;
  stream >> s;
  v.read( s );
  return stream;
friend ostream &operator<<( ostream &stream, const</pre>
                                                                     Bigint res;
    Bigint &v ) {
  if ( v.sign == -1 ) stream << '-'</pre>
  stream << ( v.a.empty() ? 0 : v.a.back() );</pre>
  for ( int i = (int)v.a.size() - 2; i >= 0; --i )
    stream << setw( base_digits ) << setfill( '0'</pre>
         << v.a[ i ];
  return stream;
}
static vector< int > convert_base( const vector< int</pre>
                                                                     res.trim();
    > &a, int old_digits, int new_digits ) {
                                                                     return res;
  vector< long long > p( max( old_digits, new_digits
  ) + 1 );
p[ 0 ] = 1;
  for ( int i = 1; i < (int)p.size(); i++ ) p[ i ] =
   p[ i - 1 ] * 10;</pre>
                                                                2.3 FFT
  vector< int > res;
  long long cur = 0;
  int cur_digits = 0;
  for ( int i = 0; i < (int)a.size(); i++ ) {
  cur += a[ i ] * p[ cur_digits ];</pre>
                                                                // (must be 2^k)
    cur_digits += old_digits;
                                                                //
    while ( cur_digits >= new_digits ) {
       res.push_back( int( cur % p[ new_digits ] ) );
                                                                //
       cur /= p[ new_digits ];
       cur_digits -= new_digits;
    }
  }
  res.push_back( (int)cur );
  while ( !res.empty() && !res.back() ) res.pop_back
                                                                //
       ();
  return res;
typedef vector< long long > vll;
static vll karatsubaMultiply( const vll &a, const vll
                                                                const cplx I(0, 1);
     &b ) {
                                                                cplx omega[MAXN+1];
  int n = a.size();
                                                                void pre_fft(){
  vll res(n + n);
  if ( n <= 32 ) {
    for ( int i = 0; i < n; i++ )
       for ( int j = 0; j < n; j++ ) res[ i + j ] += a
   [ i ] * b[ j ];</pre>
                                                                // n must be 2^k
    return res;
                                                                  int theta = basic;
  int k = n \gg 1;
  vll a1( a.begin(), a.begin() + k );
  vll a2( a.begin() + k, a.end() );
vll b1( b.begin(), b.begin() + k );
  vll b2( b.begin() + k, b.end() );
  vll a1b1 = karatsubaMultiply( a1, b1 );
  vll a2b2 = karatsubaMultiply( a2, b2 );
  for ( int i = 0; i < k; i++ ) a2[ i ] += a1[ i ];
for ( int i = 0; i < k; i++ ) b2[ i ] += b1[ i ];
                                                                       }
  vll r = karatsubaMultiply(a2, b2)
  for ( int i = 0; i < (int)a1b1.size(); i++ ) r[ i ]
         -= a1b1[ i ];
  for ( int i = 0; i < (int)a2b2.size(); i++ ) r[ i ]
        -= a2b2[ i ];
  for ( int i = 0; i < (int)r.size(); i++ ) res[ i +
    k ] += r[ i ];</pre>
                                                                  if (inv)
  for ( int i = 0; i < (int)a1b1.size(); i++ ) res[ i
  ] += a1b1[ i ];
for ( int i = 0; i < (int
+ n ] += a2b2[ i ];
                                                                       a[i] /= n;
                        < (int)a2b2.size(); i++ ) res[ i
  return res;
                                                                2.4 NTT
Bigint operator*( const Bigint &v ) const {
  vector< int > a6 = convert_base( this->a,
       base_digits, 6 );
  vector< int > b6 = convert_base( v.a, base_digits,
       6);
```

```
vll a( a6.begin(), a6.end() );
vll b( b6.begin(), b6.end() );
while ( a.size() < b.size() ) a.push_back( 0 );
while ( b.size() < a.size() ) b.push_back( 0 );</pre>
while ( a.size() & ( a.size() - 1 ) ) a.push_back(
     0 ), b.push_back( 0 )
vll c = karatsubaMultiply( a, b );
res.sign = sign * v.sign;
for ( int i = 0, carry = 0; i < (int)c.size(); i++
  long long cur = c[ i ] + carry;
res.a.push_back( (int)( cur % 1000000 ) );
  carry = (int)(cur / 1000000);
res.a = convert_base( res.a, 6, base_digits );
```

```
// const int MAXN = 262144;
// before any usage, run pre_fft() first
// To implement poly. multiply:
// fft( n , a );
// fft( n , b );
// for( int i = 0 ; i < n ; i++ )
// c[ i ] = a[ i ] * b[ i ];
// fft( n , c , 1 );
// then you have the result in c :: [cplx]
typedef long double ld;
typedef complex<ld> cplx;
const ld PI = acosl(-1);
  for(int i=0; i<=MAXN; i++)
  omega[i] = exp(i * 2 * PI / MAXN * I);</pre>
void fft(int n, cplx a[], bool inv=false){
   int basic = MAXN / n;
   for (int m = n; m >= 2; m >>= 1) {
      int mh = m \gg 1;
      for (int i = 0; i < mh; i++) {</pre>
        cplx w = omega[inv ? MAXN-(i*theta%MAXN)]
                                  : i*theta%MAXN];
         for (int j = i; j < n; j += m) {</pre>
           int k = j + mh;
           cplx x = a[j] - a[k];
           a[j] += a[k];
           a[\bar{k}] = w * \bar{x};
      theta = (theta * 2) % MAXN;
   for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);
  if (ci = i) = === (-5i] = -5i] > === (-5i);
      if (j < i) swap(a[i], a[j]);</pre>
     for (i = 0; i < n; i++)
```

```
typedef long long LL;
// Remember coefficient are mod P
/* p=a*2^n+1
```

```
reverse( a+1 , a+n );
for (i = 0; i < n; i++)
         2^n
                                         root
         32
                      97
                                         5
                                                                          a[i] = (a[i] * ni) % P;
   6
         64
                      193
                                   3
   7
         128
                      257
                                         3
   8
                      257
                                                                   }
         256
   9
         512
                      7681
                                   15
                                         17
                                                                    void operator()(int n, LL a[], bool inv_ntt=false) {
   10
         1024
                      12289
                                   12
                                        11
                                                                      tran(n, a, inv_ntt);
   11
         2048
                      12289
                                   6
                                        11
         4096
   12
                      12289
                                   3
                                         11
   13
         8192
                      40961
                                         3
                                                                 const LL P=2013265921, root=31;
   14
         16384
                      65537
                                                                 const int MAXN=4194304;
   15
         32768
                      65537
                                         3
                                                                 NTT<P, root, MAXN> ntt;
         65536
                                   1
   16
                      65537
   17
                      786433
         131072
                                   6
                                         10
   18
         262144
                      786433
                                        10 (605028353,
                                                                 2.5 Miller Rabin
        2308, 3)
         524288
                      5767169
                                   11
                                                                                                 3 : 2, 7, 61
   20
         1048576
                      7340033
                                                                 // n < 4,759,123,141
   21
         2097152
                      23068673
                                   11
                                         3
                                                                 // n < 1,122,004,669,633
// n < 3,474,749,660,383
// n < 2^64
                                                                                                 4:
                                                                                                      2, 13, 23, 1662803
6: pirmes <= 13
   22
         4194304
                      104857601
                                   25
                                         3
         8388608
                      167772161
                                   20
                      167772161
   24
         16777216
                                   10
                                                                 // 2, 325, 9375, 28178, 450775, 9780504, 1795265022
   25
         33554432
                      167772161
                                         3 (1107296257, 33,
                                                                 // Make sure testing integer is in range [2, n-2] if
        10)
                                                                 // you want to use magic.
   26
         67108864
                      469762049
                                                                 bool witness(LL a,LL n,LL u,int t){
         134217728
   27
                      2013265921 15
                                         31 */
                                                                    LL x=mypow(a,u,n);
// (must be 2^k)
                                                                    for(int i=0;i<t;i++) {</pre>
// To implement poly. multiply:
                                                                      LL nx=mul(x,x,n);
// NTT<P, root, MAXN> ntt;
// ntt( n , a ); // or ntt.tran( n , a );
                                                                      if(nx==1&&x!=1&&x!=n-1) return 1;
// ntt( n , b );
                                                                   }
// for( int i = 0 ; i < n ; i++ )
// c[ i ] = a[ i ] * b[ i ];
// ntt( n , c , 1 );
                                                                    return x!=1;
                                                                 bool miller_rabin(LL n,int s=100) {
//
                                                                    // iterate s times of witness on n
// then you have the result in c :: [LL]
                                                                    // return 1 if prime, 0 otherwise
template<LL P, LL root, int MAXN>
                                                                    if(n<2) return 0;
struct NTT{
                                                                    if(!(n\&1)) return n == 2;
  static LL bigmod(LL a, LL b) {
                                                                    LL u=n-1; int t=0;
    LL res = 1;
                                                                    // n-1 = u*2^t
    for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P) {
                                                                    while(!(u&1)) u>>=1, t++;
      if(b&1) res=(res*bs)%P;
                                                                    while(s--)
                                                                      LL a=randll()\%(n-1)+1;
    return res;
                                                                      if(witness(a,n,u,t)) return 0;
  static LL inv(LL a, LL b) {
                                                                    return 1;
    if(a==1)return 1;
                                                                 }
    return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
  LL omega[MAXN+1];
                                                                        Chinese Remainder
  NTT() {
    omega[0] = 1;
    LL r = bigmod(root, (P-1)/MAXN);
                                                                 int pfn;
    for (int i=1; i<=MÁXN; i++)
                                                                 // number of distinct prime factors
      omega[i] = (omega[i-1]*r)%P;
                                                                 int pf[MAXN]; // prime factor powers
                                                                 int rem[MAXN]; // corresponding remainder
  // n must be 2^k
                                                                 int pm[MAXN];
  void tran(int n, LL a[], bool inv_ntt=false){
                                                                 inline void generate_primes() {
    int basic = MAXN / n;
                                                                   int i,j;
    int theta = basic;
                                                                    pnum=1
    for (int m = n; m >= 2; m >>= 1) {
                                                                    prime[0]=2;
       int mh = m >> 1;
                                                                    for(i=3;i<MAXVAL;i+=2) {</pre>
       for (int i = 0; i < mh; i++) {
                                                                      if(nprime[i]) continue;
         LL w = omega[i*theta%MAXN];
                                                                      prime[pnum++]=i;
         for (int j = i; j < n; j += m) {
  int k = j + mh;</pre>
                                                                      for(j=i*i;j<MAXVAL;j+=i) nprime[j]=1;</pre>
           LL x = a[j] - a[k];
           if (x < 0) x += P;
                                                                 inline int inverse(int x,int p) {
           a[j] += a[k];
                                                                    int q, tmp, a=x, b=p;
           if (a[j] > P) a[j] -= P;
a[k] = (w * x) % P;
                                                                    int a0=1,a1=0,b0=0,b1=1;
                                                                    while(b) {
                                                                      q=a/b; tmp=b; b=a-b*q; a=tmp;
                                                                      tmp=b0; b0=a0-b0*q; a0=tmp;
       theta = (theta * 2) % MAXN;
                                                                      tmp=b1; b1=a1-b1*q; a1=tmp;
    int i = 0;
                                                                    return a0;
    for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);

                                                                 inline void decompose_mod() {
       if (j < i) swap(a[i], a[j]);</pre>
                                                                    int i,p,t=mod;
                                                                    pfn=0;
    if (inv_ntt) {
                                                                    for(i=0;i<pnum&&prime[i]<=t;i++) {</pre>
      LL ni = inv(n,P);
                                                                      p=prime[i];
```

```
if(t%p==0) {
    pf[pfn]=1;
    while(t%p==0) {
        t/=p;
        pf[pfn]*=p;
    }
    pfn++;
}
if(t>1) pf[pfn++]=t;
}
inline int chinese_remainder() {
    int i,m,s=0;
    for(i=0;i<pfn;i++) {
        m=mod/pf[i];
        pm[i]=(LL)m*inverse(m,pf[i])%mod;
        s=(s+(LL)pm[i]*rem[i])%mod;
}
return s;
}</pre>
```

2.7 Pollard's rho

```
// does not work when n is prime
LL f(LL x, LL mod){
   return add(mul(x,x,mod),1,mod);
}
LL pollard_rho(LL n) {
   if(!(n&1)) return 2;
   while(true){
      LL y=2, x=rand()%(n-1)+1, res=1;
      for(int sz=2; res==1; sz*=2) {
        for(int i=0; i<sz && res<=1; i++) {
            x = f(x, n);
            res = __gcd(abs(x-y), n);
        }
        y = x;
    }
   if (res!=0 && res!=n) return res;
}</pre>
```

2.8 Roots of Polynomial

```
const double eps = 1e-12;
const double inf = 1e+12;
double a[ 10 ], x[ 10 ];
int n;
int sign( double x ){
 return (x < -eps)?(-1):(x>eps);
double f(double a[], int n, double x){
  double tmp=1,sum=0;
  for(int i=0;i<=n;i++){</pre>
    sum=sum+a[i]*tmp;
    tmp=tmp*x;
  return sum;
double binary(double l,double r,double a[],int n){
  int sl=sign(f(a,n,l)),sr=sign(f(a,n,r));
  if(sl==0) return l;
  if(sr==0) return r;
  if(sl*sr>0) return inf;
 while(r-l>eps){
    double mid=(l+r)/2;
    int ss=sign(f(a,n,mid));
    if(ss==0) return mid;
    if(ss*sl>0) l=mid; else r=mid;
  return 1;
void solve(int n,double a[],double x[],int &nx){
  if(n==1){
    x[1]=-a[0]/a[1];
    nx=1:
    return;
```

```
double da[10], dx[10];
  int ndx;
  for(int i=n;i>=1;i--) da[i-1]=a[i]*i;
  solve(n-1,da,dx,ndx);
  nx=0;
  if(ndx==0){
     double tmp=binary(-inf,inf,a,n);
     if (tmp<inf) x[++nx]=tmp;</pre>
  double tmp;
  tmp=binary(-inf,dx[1],a,n);
  if(tmp<inf) x[++nx]=tmp;
for(int i=1;i<=ndx-1;i++){</pre>
     tmp=binary(dx[i],dx[i+1],a,n);
     if(tmp<inf) x[++nx]=tmp;</pre>
  tmp=binary(dx[ndx],inf,a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
int main() {
  scanf("%d",&n);
  for(int i=n;i>=0;i--) scanf("%lf",&a[i]);
  int nx:
  solve(n,a,x,nx);
  for(int i=1;i<=nx;i++) printf("%.6f\n",x[i]);</pre>
}
```

2.9 Simplex

```
const int MAXN = 111;
const int MAXM = 111:
const double eps = 1E-10;
double a[MAXN] [MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];
double x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// \max\{cx\}  subject to \{Ax <= b, x >= 0\}
// n: constraints, m: vars !!!
\//\ x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex(double a[MAXN][MAXM], double b[MAXN],
                   double c[MAXM], int n, int m){
  ++m;
  int r = n, s = m - 1;
  memset(d, 0, sizeof(d));
  for (int i = 0; i < n + m; ++i) ix[i] = i;
for (int i = 0; i < n; ++i) {
  for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];
     d[i][m - 1] = 1;

d[i][m] = b[i];
     if(d[r][m] > d[i][m]) r = i;
  for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];
d[n + 1][m - 1] = -1;
  for (double dd;; ) {
     if (r < n) {
  int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
       for (int j = 0; j <= m; ++j)
  if (j != s) d[r][j] *= -d[r][s];
        for (int i = 0; i <= n + 1; ++i) if (i != r) {
          for (int j = 0; j <= m; ++j) if (j != s)
d[i][j] += d[r][j] * d[i][s];
d[i][s] *= d[r][s];
       }
     }
     r = -1; s = -1;
     for (int j = 0; j < m; ++j)
if (s < 0 || ix[s] > ix[j]) {
          if (d[n + 1][j] > eps | |
               (d[n + 1][j] > -eps && d[n][j] > eps))
     if (s < 0) break;
     for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {
       if (r < 0 ||
             (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s])
                  < -eps ||
             (dd < eps && ix[r + m] > ix[i + m]))
```

```
r = i;
}
if (r < 0) return -1; // not bounded
}
if (d[n + 1][m] < -eps) return -1; // not executable
double ans = 0;
for(int i = 0; i < m; i++) x[i] = 0;
for (int i = m; i < n + m; ++i) { // the missing
    enumerated x[i] = 0
    if (ix[i] < m - 1){
        ans += d[i - m][m] * c[ix[i]];
        x[ix[i]] = d[i-m][m];
    }
}
return ans;
}</pre>
```

3 Data Structure

3.1 Disjoint Set

```
class DisjointSet {
  public:
    static const int N = 1e5 + 10;
    int p[ N ];
    void Init( int x ) {
       for ( int i = 1; i <= x; ++i ) p[ i ] = i;
    }
    int Find( int x ) { return x == p[ x ] ? x : p[ x ] =
            Find( p[ x ] ); }
    void Union( int x, int y ) { p[ Find( x ) ] = Find( y
            ); }
};</pre>
```

3.2 Segement Tree with Lazy Tag

```
#define L( X ) ( X << 1 )
#define R( X ) ( ( X << 1 ) + 1 )
#define mid ( ( l + r ) >> 1 )
class SegmentTree {
 public:
  static const int N = 1e5 + 10;
  int arr[ N ], st[ N << 2 ], lazy[ N << 2 ];</pre>
  if ( l != r ) {
           st[ L( now ) ] += lazy[ now ];
st[ R( now ) ] += lazy[ now ];
lazy[ L( now ) ] += lazy[ now ];
lazy[ R( now ) ] += lazy[ now ];
        lazy[now] = 0;
     }
   void Build( int now, int 1, int r ) {
     if (_l == r ) {
        st[ now ] = arr[ l ];
        return:
     Build( L( now ), l, mid );
Build( R( now ), mid + 1, r );
     Pull( now );
   void Update( int ql, int qr, int value, int now, int
     l, int r ) {
if ( ql > qr || l > qr || r < ql ) return;</pre>
     Push( now, 1, r );
     if ( l == ql && qr == r ) {
   st[ now ] += value;
   lazy[ now ] += value;
        return;
     if ( qr <= mid )
```

```
Update( ql, qr, value, L( now ), l, mid );
      else if ( mid < ql )
        Update( ql, qr, value, R( now ), mid + 1, r );
        Update( ql, mid, value, L( now ), l, mid );
        Update( mid + 1, qr, value, R(now), mid + 1, r
      Pull( now );
   int Query( int ql, int qr, int now, int l, int r ) {
   if ( ql > qr || l > qr || r < ql ) return 0;
   Push( now, l, r );
   if ( l == ql && qr == r ) return st[ now ];</pre>
      if ( qr <= mid )
      return Query( ql, qr, L( now ), l, mid );
else if ( mid < ql )</pre>
        return Query( ql, qr, R( now ), mid + 1, r );
      else {
        int left = Query( ql, mid, L( now ), l, mid );
        int right = Query( mid + 1, qr, R( now ), mid +
              1, r);
        int ans = max( left, right );
        return ans;
   }
};
```

3.3 Copy on Write Segement Tree

```
// tested with ASC 29 B
#define mid ( (l + r) \gg 1 )
class Node {
 public:
  int value, l, r, who;
  Node() {}
  Node( int _v ) : value( _v ) { l = r = who = 0; }
class SegmentTree {
 public:
  static const int N = 1e9;
  vector< Node > st;
  inline void Pull( int now ) {
  int lchild = st[ now ].l;
  int rchild = st[ now ].r;
     if ( lchild != 0 ) {
   st[ now ].value = st[ lchild ].value;
       st[ now ].who = st[ lchild ].who;
     if ( rchild != 0 && st[ rchild ].value > st[ now ].
          value ) {
       st[ now ].value = st[ rchild ].value;
       st[ now ].who = st[ rchild ].who;
     }
  void Build() {
     st.push_back( Node() ); // Null Node
     st.push_back( Node( 0 ) );
  void Update( int ql, int qr, int value, int who, int
       now = 1, int l = 1, int r = N) {
     if ( ql > qr or qr < l or ql > r ) return;
if ( l == ql && qr == r ) {
   st[ now ].value = value;
       st[ now ].who = who;
       return;
     if ( qr <= mid ) {
   if ( st[ now ].l == 0 ) {</pre>
         st[ now ].l = st.size();
          st.push_back( Node( 0 ) );
       Update( ql, qr, value, who, st[ now ].l, l, mid )
     else if ( mid < ql ) {
       if ( st[ now ].r == 0 ) {
         st[ now ].r = st.size();
st.push_back( Node( 0 ) );
```

```
Update( ql, qr, value, who, st[ now ].r, mid + 1,
    else {
      if (_st[ now ].l == 0 ) {
        st[ now ].l = st.size();
        st.push_back( Node( 0 ) );
      if ( st[ now ].r == 0 ) {
        st[now].r = st.size();
        st.push_back( Node( 0 ) );
      Update( ql, mid, value, who, st[ now ].l, l, mid
      Update( mid + 1, qr, value, who, st[ now ].r, mid
            + 1, r);
    Pull( now );
  pair< int, int > Query( int ql, int qr, int now = 1,
      int l = 1, int r = N) {
    if ( ql > qr or qr < l or ql > r ) return { 0, 0 };
    if ( l == ql && qr == r ) {
      return { st[ now ].value, st[ now ].who };
    if ( qr <= mid ) {</pre>
      if ( st[ now ].l == 0 ) return { 0, 0 };
      return Query( ql, qr, st[ now ].l, l, mid );
    else if ( mid < ql ) {</pre>
      if (st[now].r == 0) return { 0, 0 };
      return Query( ql, qr, st[ now ].r, mid + 1, r );
    else {
      pair< int, int > lchild = { 0, 0 };
      if ( st[ now ].l != 0 ) lchild = Query( ql, mid,
           st[ now ].1, 1, mid );
      pair< int, int > rchild = { 0, 0 };
if ( st[ now ].r != 0 ) rchild = Query( mid + 1,
           qr, st[ now ].r, mid + 1, r );
      pair< int, int > ans = \{0, 0\}
      if ( lchild.first > ans.first ) {
        ans.first = lchild.first;
        ans.second = lchild.second;
      if ( rchild.first > ans.first ) {
        ans.first = rchild.first;
        ans.second = rchild.second;
      return ans;
  }
};
```

3.4 Persistent Segement Tree

```
// tested with spoj MKTHNUM - K-th Number
#define mid ( (l + r) \gg 1 )
class Node {
public:
  int value, l, r;
 Node() { value = l = r = 0; }
class SegmentTree {
public:
  static const int N = 1e5 + 10;
  int ver_size, st_size;
 vector< int > ver;
 vector< Node > st;
  SegmentTree() {
    ver_size = st_size = 0;
    ver.resize( N );
st.resize( 70 * N );
    ver[ ver_size++ ] = 1;
st[ 0 ] = st[ 1 ] = Node();
    st_size = 2;
  void AddVersion() {
```

```
ver[ ver_size++ ] = st_size++;
     st[ver[ver_size - 1]] = st[ver[ver_size - 2]
           ];
   inline void Pull( int now ) {
  int lchild = st[ now ].l, rchild = st[ now ].r;
  st[ now ].value = st[ lchild ].value + st[ rchild
          ].value;
   void Build( int now = 1, int l = 1, int r = N ) {
     if ( l == r ) return;
     st[now].l = st_size_{++};
     st[ now ].r = st_size++;
Build( st[ now ].l, l, mid );
     Build(st[now].r, mid + 1, r);
     Pull( now );
   void Update( int prv_now, int now, int pos, int l =
     1, int r = N ) {
if ( l == r ) {
       st[ now ].value += 1;
       return;
     if ( pos <= mid ) {</pre>
       st[ now ].l = st_size++;
st[ st[ now ].l ] = st[ st[ prv_now ].l ];
Update( st[ prv_now ].l, st[ now ].l, pos, l, mid
     else {
       st[ now ].r = st_size++;
        st[st[now].r] = st[st[prv_now].r];
       Update( st[ prv_now ].r, st[ now ].r, pos, mid +
            1. r ):
     Pull( now );
   }
   pair< int, bool > Query( int prv_now, int now, int k,
         int l = 1, int r = N) {
     int prv_value = st[ prv_now ].value, now_value = st
          [ now ].value;
     if ( l == r && now_value - prv_value == k )
       return make_pair( 1, true );
     else if ( now_value - prv_value < k )</pre>
       return make_pair( now_value - prv_value, false );
     pair< int, bool > child = Query( st[ prv_now ].l,
          st[ now ].l, k, l, mid );
     if ( child.second == false ) {
       k \rightarrow st[st[now].l].value - st[st[prv_now].
            l ].value;
       child = Query( st[ prv_now ].r, st[ now ].r, k,
            mid + 1, r);
     return child;
};
```

3.5 Rope

```
#include<ext/rope>
using namespace __gnu_cxx;
// inserts c before p.
iterator insert(const iterator& p, charT c) :
// inserts n copies of c before p.
iterator insert(const iterator& p, size_t n, charT c) :
// inserts the character c before the ith element.
void insert(size_t i, charT c) :
// erases the element pointed to by p.
void erase(const iterator& p) :
// erases the range [f, 1)
void erase(const iterator& f, const iterator& l) :
// Appends a C string.
void append(const charT* s) :
void replace(const iterator& f, const iterator& l,
    const rope& x)
void replace(const iterator& f, const iterator& l,
    const charT* s)
void replace(const iterator& f1, const iterator& l1,
    const charT* f2, const charT* 12)
```

$3.6 ext{ pb_ds}$

```
*************PB_DS priority_queue************/
#include <ext/pb_ds/priority_queue.hpp>
using namespace __gnu_pbds;
typedef priority_queue<T,less<T>,pairing_heap_tag> PQ;
typedef PQ::point_iterator PQit;
point_iterator push(const_reference key)
void modify(point_iterator it, const_reference key)
void erase(point_iterator it)
T top()
void pop()
point_iterator begin()
point_iterator end()
void join(priority_queue &other)
template<class Pred> void split(Pred prd,
    priority_queue &other) //Other will contain only
    values v for which prd(v) is true. When calling
    this method, other's policies must be equivalent to this object's policies.
template<class Pred> size_type erase_if(Pred prd) //
    Erases any value satisfying prd; returns the number
     of value erased.
//1. push will return a point_iterator, which can be
    saved in a vector and modify or erase afterward.
//2. using begin() and end() can traverse all elements
    in the priority_queue.
//3. after join, other will be cleared.
//4. for optimizing Dijkstra, use pairing_heap
//5. binary_heap_tag is better that std::priority_queue
//6. pairing_heap_tag is better than binomial_heap_tag
    and rc_binomial_heap_tag
//7. when using only push, pop and join, use
    binary_heap_tag
//8. when using modify, use pairing_heap_tag or
thin_heap_tag
/******************************/
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
typedef tree<K, T, less<K>, rb_tree_tag, Node_Update>
    TREE;
//similar to std::map
//when T = __gnu_pbds::null_type, become std::set
//when Node_Update = tree_order_statistics_node_update,
     TREE become a ordered TREE with two new functions:
//1. iterator find_by_order(size_type order) return the
     smallest order-th element(e.x. when order = 0
    return the smallest element), when order > TREE.
    size(), return end()
//2. size_type order_of_key(const_reference key) return
number of elements smaller than key
void join(tree &other) //other和*this的值域不能相交
void split(const_reference key, tree &other) // 清空
    other, 然後把*this當中所有大於key的元素移到other
//自定義Node_Update:查詢子段和的map<int, int>,需要紀
    F子樹的mapped_value的和。
template<class Node_CItr, class Node_Itr, class Cmp_Fn,</pre>
     class _Alloc>
struct my_nd_upd {
  virtual Node_CItr node_begin () const = 0;
  virtual Node_CItr node_end () const = 0;
  typedef int metadata_type; //額外信息, 這邊用int inline void operator()(Node_Itr it,Node_CItr end_it){
   Node_Itr l=it.get_l_child(), r=it.get_r_child();
    int left = 0, right = 0;
    if(l != end_it) left = l.get_metadata()
    if(r != end_it) right = r.get_metadata();
```

```
const_cast<metadata_type&>(it.get_metadata())=
      left+right+(*it)->second;
  //operator()功能是將節點it的信息更新, end_it表空節點
//it是Node_Itr, *之後變成iterator, 再取->second變節點
       的 mapped_value
  inline int prefix_sum (int x) {
    int ans = 0;
    Node_CItr it = node_begin();
    while(it!=node_end()){
      Node_CItr l = it.get_l_child() , r = it.
           get_r_child();
      if(Cmp_Fn()(x , (*it)->first)) it = 1;
        ans += (*it)->second;
        if(l != node_end ()) ans += l.get_metadata();
        it = r;
      }
    }
    return ans;
  inline int interval_sum(int l ,int r)
  {return prefix_sum(r)-prefix_sum(l-1);}
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
__gnu_pbds::cc_hash_table<Key, Mapped>
__gnu_pbds::gp_hash_table<Key, Mapped>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>
typedef trie<string, null_type,</pre>
    trie_string_access_traits<>, pat_trie_tag,
              trie_prefix_search_node_update> pref_trie;
pref_trie.insert(const string &str);
auto range = pref_trie.prefix_range(const string &str);
for(auto it = range.first; it != range.second; ++it)
  cout << *it << '\n';</pre>
                      push
                                    modify
                                                      join
                      \lg(n)
   std::priority\_queue
                             \lg(n)
                                    n \lg(n)
                                             n \lg(n)
                                                     n \lg(n)
  pairing_heap_tag
binary_heap_tag
binomial_heap_tag
                             \lg(n)
                                    \lg(n)
                                             \lg(n)
                      \lg(n)
                            \lg(n)
                                      n
                                               n
                                                       n
                                     \lg(n)
                                             \lg(n)
                                                     \lg(n)
                            \lg(n)
 rc\_binomial\_heap\_tag
                                                     \lg(n)
                             \lg(n)
                                     \lg(n)
                                             \lg(n)
    thin\_heap\_tag
                       1
                            \lg(n)
                                   \lg(n)[ps]
                                             \lg(n)
ps: 1 if increased_key only else \lg(n)
```

3.7 Link-Cut Tree

```
const int MXN = 100005;
const int MEM = 100005;
struct Splay {
  static Splay nil, mem[MEM], *pmem;
Splay *ch[2], *f;
int val, rev, size;
  Splay (): val(-1), rev(0), size(0)
  \{ f = ch[0] = ch[1] = &nil; \}
  Splay (int _val) : val(_val), rev(0), size(1)
  \{ f = ch[0] = ch[1] = &nil; \}
  bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
  int dir()
  { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d){
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push(){
  if( !rev ) return
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev=0;
  void pull(){
    size = ch[0] -> size + ch[1] -> size + 1;
```

```
if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::
    mem:
Splay *nil = &Splay::nil;
void rotate(Splay *x){
  Splay *p = x -> f;
  int d = x -> dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f
  p->setCh(x->ch[!d], d);
  x - setCh(p, !d);
  p->pull(); x->pull();
vector<Splay*> splayVec;
void splay(Splay *x){
  splayVec.clear();
  for (Splay *q=x;; q=q->f){
     splayVec.push_back(q);
     if (q->isr()) break;
  reverse(begin(splayVec), end(splayVec));
  for (auto it : splayVec) it->push();
  while (!x->isr()) {
     if (x->f->isr()) rotate(x);
    else if (x->dir()==x->f->dir())
       rotate(x->f),rotate(x);
     else rotate(x),rotate(x);
  }
Splay* access(Splay *x){
  Splay *q = nil;
for (;x!=nil;x=x->f){
    splay(x)
    x - setCh(q, 1);
    q = x;
  }
  return q;
void evert(Splay *x){
  access(x);
  splay(x);
  x \rightarrow rev \land = 1;
  x->push(); x->pull();
void link(Splay *x, Splay *y){
// evert(x);
  access(x);
  splay(x);
  evert(v)
  x - setCh(y, 1);
void cut(Splay *x, Splay *y){
// evert(x);
  access(y);
  splay(y)
  y->push();
  y->ch[0] = y->ch[0]->f = nil;
int N, Q;
Splay *vt[MXN];
int ask(Splay *x, Splay *y){
  access(x);
  access(y);
  splay(x);
  int res = x->f->val;
  if (res == -1) res=x->val;
  return res;
int main(int argc, char** argv){
  scanf("%d%d", &N, &Q);
for (int i=1; i<=N; i++)
     vt[i] = new (Splay::pmem++) Splay(i);
  while (Q--) {
     char cmd[105];
    int u, v;
scanf("%s", cmd);
if (cmd[1] == 'i') {
    scanf("%d%d", &u, &v);
    link(vt[v], vt[u]);
} else if (cmd[0] == 'c') {
```

```
scanf("%d", &v);
    cut(vt[1], vt[v]);
} else {
    scanf("%d%d", &u, &v);
    int res=ask(vt[u], vt[v]);
    printf("%d\n", res);
}
}
```

3.8 Treap

```
struct Treap{
   int sz , val , pri , tag;
Treap *l , *r;
   Treap( int _val ){
     val = _val; sz = 1;
pri = rand(); l = r = NULL; tag = 0;
};
void push( Treap * a ){
  if( a->tag ){
     Treap *swp = a -> 1; a -> 1 = a -> r; a -> r = swp;
     int swp2;
if( a->l ) a->l->tag ^= 1;
     if( a \rightarrow r ) a \rightarrow r \rightarrow tag ^= 1;
     a \rightarrow taq = 0;
  }
int Size( Treap * a ){ return a ? a->sz : 0; }
void pull( Treap * a ){
    a->sz = Size( a->l ) + Size( a->r ) + 1;
Treap* merge( Treap *a , Treap *b ){
   if( !a | | !b ) return a ? a : b;
   if( a->pri > b->pri ){
     push( a );
     a->r = merge(a->r, b);
     pull( a );
     return a;
   }else{
     push( b );
     b->l = merge(a, b->l);
     pull( b );
     return b;
  }
}
void split( Treap *t , int k , Treap*&a , Treap*&b ){
  if( !t ){ a = b = NÚLL; return; }
   push( t );
   if( Size( t->l ) + 1 <= k ){
     split( t->r , k - Size( t->l ) - 1 , a->r , b );
     pull( a );
   }else{
     split( t->l , k , a , b->l );
     pull( b );
}
```

4 Graph

4.1 Dijkstra's Algorithm

```
pq.push( make_pair( d[ s ], s ) );
while ( 1 ) {
   int now = -1;
   while ( !pq.empty() and visit[ now = pq.top().
        second ] ) pq.pop();
   if ( now == -1 or visit[ now ] ) break;
   visit[ now ] = true;
   for ( int i = 0; i < v[ now ].size(); ++i ) {
      int child = v[ now ][ i ].first;
      int w = v[ now ][ i ].second;
      if ( !visit[ child ] and ( d[ now ] + w ) < d[
            child ] ) {
        d[ child ] = d[ now ] + w;
        pq.push( make_pair( d[ child ], child ) );
    }
   }
}
return d;
}</pre>
```

4.2 Tarjan's Algorithm

4.3 Jump Pointer Algorithm

4.4 Maximum Clique

```
// max N = 64
typedef unsigned long long 11;
struct MaxClique{
   static const int N = 64;
  ll nb[ N ] , n , ans;
  void init( il _n ){
     for( int i = 0 ; i < n ; i ++ ) nb[ i ] = 0LLU;</pre>
  void add_edge( ll _u , ll _v ){
    nb[ _u ] != ( 1LLU << _v );
    rb[ _u ] ...</pre>
     nb[ _v ] |= ( 1LLU << _u );
  void B( ll r , ll p , ll x , ll cnt , ll res ){
     if( cnt + res < ans ) return;</pre>
     if( p == 0LLU && x == 0LLU ){
       if( cnt > ans ) ans = cnt;
       return;
     ll y = p | x; y &= -y;
ll q = p & ( ~nb[ int( log2( y ) ) ] );
     while( q ){
       11 i = int( log2( q & (-q) ) );
       B(r \mid (1LLU \ll i), p \& nb[i], x \& nb[i]
           , cnt + 1LLU , __builtin_popcountll( p & nb[
                  ]));
       q &= ~( 1LLU << i );
       p &= ~( 1LLU << i );
       x |= ( 1LLU << i );
    }
  }
  int solve(){
     ans = 0;
     ll _set = 0;
     if( n < 64 ) _set = ( 1LLU << n ) - 1;
       for( ll i = 0 ; i < n ; i ++ ) _set |= ( 1LLU <<</pre>
     B( OLLU , _set , OLLU , OLLU , n );
     return ans;
} maxClique;
```

4.5 Heavy-Light Decomposition

```
#define SZ(c) (int)(c).size()
#define ALL(c) (c).begin(), (c).end()
#define REP(i, s, e) for(int i = (s); i <= (e); i++)</pre>
#define REPD(i, s, e) for(int i = (s); i \ge (e); i - -)
typedef tuple< int
                        , int > tii;
const int MAXN = 100010;
const int LOG = 19;
struct HLD{
  int n;
  vector<int> g[MAXN];
int sz[MAXN], dep[MAXN];
int ts, tid[MAXN], tdi[MAXN], tl[MAXN], tr[MAXN];
  // ts : timestamp , useless after yutruli
// tid[ u ] : pos. of node u in the seq.
// tdi[ i ] : node at pos i of the seq.
       tl , tr[ u ] : subtree interval in the seq. of
        node u
  int mom[MAXN][LOG], head[MAXN];
  // head[ u ] : head of the chain contains u
  void dfssz(int u, int p){
     dep[u] = dep[p] + 1;
     mom[u][0] = p;
     sz[u] = 1;
     head[u] = u;
     for(int& v:g[u]) if(v != p){
       dep[v] = dep[u] + 1;
       dfssz(v, u)
       sz[u] += sz[v];
     }
  void dfshl(int u){
     //printf("dfshl %d\n", u);
     tid[u] = tl[u] = tr[u] = ts;
```

```
tdi[tid[u]] = u;
    sort(ALL(g[u]),
          [&](int a, int b){return sz[a] > sz[b];});
    bool flag = 1;
    for(int& v:q[u]) if(v != mom[u][0]){
       if(flag) head[v] = head[u], flag = 0;
      tr[u] = tr[v];
    }
  inline int lca(int a, int b){
    b = mom[b][k];
    if(a == b) return a;
    REPD(k, LOG-1, 0) if(mom[a][k] != mom[b][k]){
      a = mom \lceil a \rceil \lceil k \rceil;
      b = mom[b][k];
    return mom[a][0];
  void init( int _n ){
    n = _n;
    REP( i , 1 , n ) g[ i ].clear();
  void addEdge( int u , int v ){
    g[ u ].push_back( v );
    g[ v ].push_back( u );
  void yutruli(){
    dfssz(1, 0);
    ts = 0:
    dfshl(1);
    REP(k, 1, LOG-1) REP(i, 1, n)
      mom[i][k] = mom[mom[i][k-1]][k-1];
  vector< tii > getPath( int u , int v ){
  vector< tii > res;
  while( tid[ u ] < tid[ head[ v ] ] ){</pre>
      res.push_back( tii(tid[ head[ v ] ] , tid[ v ]) )
      v = mom[head[v]][0];
    res.push_back( tii( tid[ u ] , tid[ v ] ) );
reverse( ALL( res ) );
    return res;
     \boldsymbol{*} res : list of intervals from \boldsymbol{u} to \boldsymbol{v}
     st u must be ancestor of v
       usage :
       vector< tii >& path = tree.getPath( u , v )
       for( tii tp : path ) {
         int l , r;tie( l , r ) = tp;
upd( l , r );
          uu = tree.tdi[ l ] , vv = tree.tdi[ r ];
          uu ~> vv is a heavy path on tree
} tree;
```

4.6 Dominator Tree

```
const int MAXN = 100010;
struct DominatorTree{
#define REP(i,s,e) for(int i=(s);i<=(e);i++)
#define REPD(i,s,e) for(int i=(s);i>=(e);i--)
   int n , m , s;
   vector< int > g[ MAXN ] , pred[ MAXN ];
   vector< int > cov[ MAXN ];
   int dfn[ MAXN ] , nfd[ MAXN ] , ts;
   int par[ MAXN ];
   int sdom[ MAXN ] , idom[ MAXN ];
   int mom[ MAXN ] , mn[ MAXN ];
   int mom[ MAXN ] , ant w )
   { return dfn[ u ] < dfn[ v ]; }</pre>
```

```
int eval( int u ){
      if( mom[ u ] == u ) return u;
      int res = eval( mom[ u ] );
if(cmp( sdom[ mn[ mom[ u ] ] ] , sdom[ mn[ u ] ] ))
    mn[ u ] = mn[ mom[ u ] ];
      return mom[ u ] = res;
   void init( int _n , int _m , int _s ){
      ts = 0; n = _n; m = _m; s = _s;
REP( i, 1, n ) g[ i ].clear(), pred[ i ].clear();
   void addEdge( int u , int v ){
  g[ u ].push_back( v );
  pred[ v ].push_back( u );
   void dfs( int u ){
      ts++;
      dfn[u] = ts;
     nfd[ ts ] = u;
for( int v : g[ u ] ) if( dfn[ v ] == 0 ){
  par[ v ] = u;
         dfs(v);
     }
   }
   void build(){
     REP( i , 1 , n ) {
    dfn[ i ] = nfd[ i ] = 0;
        cov[ i ].clear();
mom[ i ] = mn[ i ] = sdom[ i ] = i;
      dfs( s );
     REPD( i , n , 2 ){
  int u = nfd[ i ];
         if( u == 0 ) continue ;
for( int v : pred[ u ] ) if( dfn[ v ] ){
            eval( v );
            if( cmp( sdom[ mn[_v ]_] , sdom[ u ] ) )
              sdom[ u ] = sdom[ mn[ v ] ];
         cov[ sdom[ u ] ].push_back( u );
         mom[u] = par[u];
         for( int w : cov[ par[ u ] ] ){
           eval( w );
           if( cmp( sdom[ mn[ w ] ] , par[ u ] ) )
  idom[ w ] = mn[ w ];
else idom[ w ] = par[ u ];
         cov[ par[ u ] ].clear();
      REP( i , 2 , n ){
int u = nfd[ i ];
         if( u == 0 ) continue ;
if( idom[ u ] != sdom[ u ] )
           idom[u] = idom[idom[u]];
} domT;
```

4.7 Number of Maximal Clique

```
// bool g[][] : adjacent array indexed from 1 to n
void dfs(int sz){
   int i, j, k, t, cnt, best = 0;
   if(ne[sz]==ce[sz]){   if (ce[sz]==0) ++ans; return; }
   for(t=0, i=1; i<=ne[sz]; ++i){
      for (cnt=0, j=ne[sz]+1; j<=ce[sz]; ++j)
      if (!g[lst[sz][i]][lst[sz][j]]) ++cnt;
      if (t==0 || cnt<best) t=i, best=cnt;
} if (t && best<=0) return;
for (k=ne[sz]+1; k<=ce[sz]; ++k) {
      if (t>0){      for (i=k; i<=ce[sz]; ++i)
            if (!g[lst[sz][t]][lst[sz][i]) break;
            swap(lst[sz][k], lst[sz][i]);
      } i=lst[sz][k]; ne[sz+1]=ce[sz+1]=0;
      for (j=1; j<k; ++j)if (g[i][lst[sz][j]])
            lst[sz+1][++ne[sz+1]]=lst[sz][j];
      for (ce[sz+1]=ne[sz+1], j=k+1; j<=ce[sz+1]=lst[sz][j];
      if (g[i][lst[sz][j]]) lst[sz+1][++ce[sz+1]]=lst[sz][j];
      dfs(sz+1); ++ne[sz]; --best;</pre>
```

4.8 Strongly Connected Component

```
struct Scc{
  int n, nScc, vst[MXN], bln[MXN];
vector<int> E[MXN], rE[MXN], vec;
   void init(int _n){
    n = _n;
for (int i=0; i<MXN; i++){</pre>
       E[i].clear();
       rE[i].clear();
    }
  void add_edge(int u, int v){
    E[u].PB(v);
    rE[v].PB(u);
   void DFS(int u){
    vst[u]=1;
     for (auto v : E[u])
       if (!vst[v]) DFS(v);
     vec.PB(u);
  void rDFS(int u){
    vst[u] = 1;
    bln[u] = nScc;
     for (auto v : rE[u])
       if (!vst[v]) rDFS(v);
  void solve(){
    nScc = 0;
    vec.clear();
     FZ(vst);
     for (int i=0; i<n; i++)
       if (!vst[i]) DFS(i);
     reverse(vec.begin(),vec.end());
     FZ(vst);
     for (auto v : vec){
       if (!vst[v]){
         rDFS(v);
         nScc++;
       }
    }
  }
};
```

4.9 Dynamic MST

```
/* Dynamic MST 0( Q lg^2 Q )
 (qx[i], qy[i])->chg weight of edge No.qx[i] to qy[i]
 delete an edge: (i, \infty)
 add an edge: change from \infty to specific value
const int SZ=M+3*MXQ;
int a[N],*tz;
int find(int xx){
  int root=xx; while(a[root]) root=a[root];
  int next; while((next=a[xx])){a[xx]=root; xx=next; }
  return root;
bool cmp(int aa,int bb){ return tz[aa]<tz[bb]; }
int kx[N],ky[N],kt, vd[N],id[M], app[M];</pre>
bool extra[M];
void solve(int *qx,int *qy,int Q,int n,int *x,int *y,
    int *z,int m1,long long ans){
  if(Q==1){
    for(int_i=1;i<=n;i++) a[i]=0;</pre>
    z[qx[0]]=qy[0]; tz = z;
```

```
for(int i=0;i<m1;i++) id[i]=i;</pre>
    sort(id,id+m1,cmp); int ri,rj;
    for(int i=0;i<m1;i++){</pre>
      ri=find(x[id[i]]); rj=find(y[id[i]]);
if(ri!=rj){ ans+=z[id[i]]; a[ri]=rj; }
    printf("%lld\n",ans);
    return;
  int ri,rj;
  //contract
  kt=0;
  for(int i=1;i<=n;i++) a[i]=0;
for(int i=0;i<Q;i++){</pre>
    ri=find(x[qx[i]]); rj=find(y[qx[i]]); if(ri!=rj) a[
  int tm=0;
  for(int i=0;i<m1;i++) extra[i]=true;</pre>
  for(int i=0;i<Q;i++) extra[ qx[i] ]=false;</pre>
  for(int i=0;i<m1;i++) if(extra[i]) id[tm++]=i;</pre>
  tz=z; sort(id,id+tm,cmp);
  for(int i=0;i<tm;i++){</pre>
    ri=find(x[id[i]]); rj=find(y[id[i]]);
    if(ri!=rj){
      a[ri]=rj; ans += z[id[i]];
      kx[kt]=x[id[i]]; ky[kt]=y[id[i]]; kt++;
  for(int i=1;i<=n;i++) a[i]=0;</pre>
  for(int i=0;i<kt;i++) a[ find(kx[i]) ]=find(ky[i]);</pre>
  int n2=0;
  for(int i=1;i<=n;i++) if(a[i]==0)</pre>
  vd[i]=++n2;
  for(int i=1;i<=n;i++) if(a[i])</pre>
  vd[i]=vd[find(i)];
  int m2=0, *Nx=x+m1, *Ny=y+m1, *Nz=z+m1;
  for(int i=0;i<m1;i++) app[i]=-1;</pre>
  for(int i=0;i<0;i++) if(app[qx[i]]==-1){</pre>
    app[qx[i]]=m2; m2++;
  for(int i=0;i<Q;i++){ z[ qx[i] ]=qy[i]; qx[i]=app[qx[</pre>
  i]]; }
for(int i=1;i<=n2;i++) a[i]=0;
  for(int i=0;i<tm;i++){</pre>
    ri=find(vd[ x[id[i]] ]); rj=find(vd[ y[id[i]] ]);
    if(ri!=rj){
      a[ri]=rj; Nx[m2]=vd[ x[id[i]] ];
      Ny[m2]=vd[y[id[i]]]; Nz[m2]=z[id[i]]; m2++;
  }
  int mid=Q/2;
  solve(qx,qy,mid,n2,Nx,Ny,Nz,m2,ans);
  solve(qx+mid,qy+mid,Q-mid,n2,Nx,Ny,Nz,m2,ans);
int x[SZ],y[SZ],z[SZ],qx[MXQ],qy[MXQ],n,m,Q;
void init(){
  scanf("%d%d",&n,&m);
  for(int i=0;i<m;i++) scanf("%d%d%d",x+i,y+i,z+i);</pre>
  scanf("%d",&Q);
  for(int i=0;i<Q;i++){ scanf("%d%d",qx+i,qy+i); qx[i</pre>
void work(){ if(Q) solve(qx,qy,Q,n,x,y,z,m,0); }
int main(){init(); work(); }
```

4.10 General Matching

```
const int N = 514, E = (2e5) * 2;
struct Graph{
  int to[E],bro[E],head[N],e;
  int lnk[N],vis[N],stp,n;
  void init( int _n ){
    stp = 0; e = 1; n = _n;
    for( int i = 1; i <= n; i ++ )
        lnk[i] = vis[i] = 0;
  }
  void add_edge(int u,int v){</pre>
```

```
to[e]=v,bro[e]=head[u],head[u]=e++;
    to[e]=u,bro[e]=head[v],head[v]=e++;
  bool dfs(int x){
    vis[x]=stp;
    for(int i=head[x];i;i=bro[i]){
      int v=to[i];
      if(!lnk[v]){
        lnk[x]=v, lnk[v]=x;
         return true;
      }else if(vis[lnk[v]]<stp){</pre>
         int w=lnk[v]
         lnk[x]=v, lnk[v]=x, lnk[w]=0;
        if(dfs(w)){
          return true;
        lnk[w]=v, lnk[v]=w, lnk[x]=0;
    return false;
  int solve(){
    int ans = 0;
    for(int i=1;i<=n;i++)</pre>
      if(!lnk[i]){
        stp++; ans += dfs(i);
    return ans;
} graph;
```

4.11 Minimum General Weighted Matching

```
struct Graph {
  // Minimum General Weighted Matching (Perfect Match)
  static const int MXN = 105;
  int n, edge[MXN][MXN]
  int match[MXN],dis[MXN],onstk[MXN];
 vector<int> stk;
  void init(int _n) {
   n = _n;
for( int i = 0 ; i < n ; i ++ )</pre>
      for( int j = 0 ; j < n ; j ++ )
  edge[ i ][ j ] = 0;</pre>
  void add_edge(int u, int v, int w)
  \{ edge[u][v] = edge[v][u] = w; \}
  bool SPFA(int u){
    if (onstk[u]) return true;
    stk.PB(u);
    onstk[u] = 1;
    for (int v=0; v<n; v++){
      if (u != v && match[u] != v && !onstk[v]){
        int m = match[v];
        if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
          dis[m] = dis[u] - edge[v][m] + edge[u][v];
          onstk[v] = 1;
          stk.PB(v):
           if (SPFA(m)) return true;
          stk.pop_back();
          onstk[v] = 0;
        }
      }
    onstk[u] = 0;
    stk.pop_back();
    return false;
  int solve() {
    // find a match
    for (int i=0; i<n; i+=2){</pre>
      match[i] = i+1;
      match[i+1] = i;
    while (true){
      int found = 0;
      for( int i = 0 ; i < n_; i ++ )</pre>
        onstk[ i ] = dis[ i ] = 0;
      for (int i=0; i<n; i++){
        stk.clear();
```

```
if (!onstk[i] && SPFA(i)){
    found = 1;
    while (SZ(stk)>=2){
        int u = stk.back(); stk.pop_back();
        int v = stk.back(); stk.pop_back();
        match[u] = v;
        match[v] = u;
    }
}
if (!found) break;
}
int ret = 0;
for (int i=0; i<n; i++)
    ret += edge[i][match[i]];
ret /= 2;
    return ret;
}
}graph;</pre>
```

4.12 Maximum General Weighted Matching

```
struct WeightGraph {
  static const int INF = INT_MAX;
  static const int N = 514;
  struct edge{
    int u,v,w; edge(){}
    edge(int ui,int vi,int wi)
      :u(ui),v(vi),w(wi){}
  int n,n_x;
  edge g[N*2][N*2];
  int lab[N*2];
  int match[N*2],slack[N*2],st[N*2],pa[N*2];
  int flo_from[N*2][N+1],S[N*2],vis[N*2];
  vector<int> flo[N*2];
  queue<int> q;
  int e_delta(const edge &e){
    return lab[e.u]+lab[e.v]-g[e.u][e.v].w*2;
  void update_slack(int u,int x){
    if(!slack[x]||e_delta(g[u][x])<e_delta(g[slack[x]][</pre>
        x]))slack[x]=u;
  void set_slack(int x){
    slack[x]=0;
    for(int u=1;u<=n;++u)</pre>
      if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)
        update_slack(u,x);
  void q_push(int x){
    if(x<=n)q.push(x);</pre>
    else for(size_t i=0;i<flo[x].size();i++)
  q_push(flo[x][i]);</pre>
  void set_st(int x,int b){
    st[x]=b:
    if(x>n)for(size_t i=0;i<flo[x].size();++i)</pre>
      set_st(flo[x][i],b);
  int get_pr(int b,int xr){
    int pr=find(flo[b].begin(),flo[b].end(),xr)-flo[b].
        begin();
    if(pr%2==1)
      reverse(flo[b].begin()+1,flo[b].end());
      return (int)flo[b].size()-pr;
    }else return pr;
  void set_match(int u,int v){
    match[u]=g[u][v].v;
    if(u<=n) return
    edge e=g[u][v];
    int xr=flo_from[u][e.u],pr=get_pr(u,xr)
    for(int i=0;i<pr;++i)set_match(flo[u][i],flo[u][i</pre>
        ^1]);
    set_match(xr,v);
    rotate(flo[u].begin(),flo[u].begin()+pr,flo[u].end
  void augment(int u,int v){
```

```
for(;;){
                                                                 memset(slack+1,0,sizeof(int)*n_x);
    int xnv=st[match[u]];
                                                                 q=queue<int>();
    set_match(u,v);
                                                                  for(int x=1;x<=n_x;++x)</pre>
    if(!xnv)return;
                                                                    if(st[x]==x\&\&!match[x])pa[x]=0,S[x]=0,q_push(x);
    set_match(xnv,st[pa[xnv]]);
                                                                  if(q.empty())return false;
    u=st[pa[xnv]],v=xnv;
                                                                 for(;;){
                                                                   while(q.size()){
                                                                      int u=q.front();q.pop();
int get_lca(int u,int v){
                                                                      if(S[st[u]]==1)continue;
  static int t=0;
                                                                      for(int v=1;v<=n;++v)
  if(g[u][v].w>0&&st[u]!=st[v]){
  for(++t;ullv;swap(u,v)){
    if(u==0)continue;
                                                                          if(e_delta(g[u][v])==0){
                                                                             if(on_found_edge(g[u][v]))return true;
    if(vis[u]==t)return u;
    vis[u]=t:
                                                                          }else update_slack(u,st[v]);
    u=st[match[u]];
    if(u)u=st[pa[u]];
                                                                   }
  }
                                                                    int d=INF;
                                                                    for(int b=n+1;b<=n_x;++b)</pre>
  return 0:
                                                                      if(st[b]==b&&S[b]==1)d=min(d,lab[b]/2);
void add_blossom(int u,int lca,int v){
                                                                    for(int x=1;x<=n_x;++x)</pre>
                                                                      if(st[x]==x\&\&slack[x])
  int b=n+1;
  while(b<=n_x&&st[b])++b;</pre>
                                                                        if(S[x]==-1)d=min(d,e_delta(g[slack[x]][x]))
  if(b>n_x)++n_x;
                                                                        else if(S[x]==0)d=min(d,e_delta(g[slack[x]][x
  lab[b]=0,S[b]=0;
                                                                            ])/2);
  match[b]=match[lca];
                                                                    for(int u=1;u<=n;++u){</pre>
  flo[b].clear();
  flo[b].push_back(lca);
                                                                      if(S[st[u]]==0){
  for(int x=u,y;x!=lca;x=st[pa[y]])
  flo[b].push_back(x),flo[b].push_back(y=st[match[x
                                                                        if(lab[u]<=d)return 0;</pre>
                                                                        lab[u]-=d;
                                                                     }else if(S[st[u]]==1)lab[u]+=d;
         ]]),q_push(y)
  reverse(flo[b].begin()+1,flo[b].end());
  for(int x=v,y;x!=lca;x=st[pa[y]])
                                                                    for(int b=n+1;b<=n_x;++b)</pre>
                                                                      if(st[b]==b){
    flo[b].push_back(x),flo[b].push_back(y=st[match[x
                                                                        if(S[st[b]]==0)lab[b]+=d*2;
         ]]),q_push(y);
  set_st(b,b);
                                                                        else if(S[st[b]]==\bar{1})\bar{1}ab[b]^-=d*2;
  for(int x=1;x<=n_x;++x)g[b][x].w=g[x][b].w=0;
  for(int x=1;x<=n;++x)flo_from[b][x]=0;</pre>
                                                                    q=queue<int>();
  for(size_t i=0;i<flo[b].size();++i){</pre>
                                                                    for(int x=1;x<=n_x;++x)
    int xs=flo[b][i];
                                                                      if(st[x]==x&&slack[x]&&st[slack[x]]!=x&&e_delta
    for(int x=1;x<=n_x;++x)</pre>
                                                                          (g[slack[x]][x])==0)
       if(g[b][x].w==0|e_delta(g[xs][x])<=_delta(g[b]
                                                                        if(on_found_edge(g[slack[x]][x]))return true;
           ][x]))
                                                                    for(int b=n+1;b<=n_x;++b)</pre>
                                                                      if(st[b]==b\&\&S[b]==1\&\&lab[b]==0)expand_blossom(
        g[b][x]=g[xs][x],g[x][b]=g[x][xs];
    for(int x=1;x<=n;++x)</pre>
                                                                          b);
       if(flo_from[xs][x])flo_from[b][x]=xs;
                                                                 return false;
  set_slack(b);
}
                                                               pair<long long,int> solve(){
void expand_blossom(int b){
                                                                 memset(match+1,0,sizeof(int)*n);
  for(size_t i=0;i<flo[b].size();++i)</pre>
                                                                 int n_matches=0;
    set_st(flo[b][i],flo[b][i])
  int xr=flo_from[b][g[b][pa[b]].u],pr=get_pr(b,xr);
                                                                 long long tot_weight=0;
  for(int i=0;i<pr;i+=2){</pre>
                                                                  for(int u=0;u<=n;++u)st[u]=u,flo[u].clear();</pre>
    int xs=flo[b][i],xns=flo[b][i+1];
                                                                  int w_max=0;
    pa[xs]=g[xns][xs].u;
                                                                  for(int u=1;u<=n;++u)</pre>
                                                                    for(int v=1;v<=n;++v){</pre>
    S[xs]=1,S[xns]=0;
                                                                      flo_from[u][v]=(u==v?u:0)
    slack[xs]=0, set_slack(xns);
    q_push(xns);
                                                                      w_max=max(w_max,g[u][v].w);
                                                                 for(int u=1;u<=n;++u)lab[u]=w_max;</pre>
  S[xr]=1,pa[xr]=pa[b];
  for(size_t i=pr+1;i<flo[b].size();++i){</pre>
                                                                 while(matching())++n_matches;
    int xs=flo[b][i];
                                                                  for(int u=1;u<=n;++u)</pre>
    S[xs]=-1, set\_slack(xs);
                                                                    if(match[u]&&match[u]<u)</pre>
                                                                      tot_weight+=g[u][match[u]].w;
  st[b]=0;
                                                                 return make_pair(tot_weight,n_matches);
bool on_found_edge(const edge &e){
                                                               void add_edge( int ui , int vi , int wi ){
  int u=st[e.u],v=st[e.v];
                                                                 g[ui][vi].w = g[vi][ui].w = wi;
  if(S[v]=-1){
                                                               void init( int _n ){
    pa[v]=e.u,S[v]=1;
    int nu=st[match[v]];
    slack[v]=slack[nu]=0;
                                                                  for(int u=1;u<=n;++u)</pre>
                                                                    for(int v=1;v<=n;++v)</pre>
    S[nu]=0,q_push(nu);
  }else if(S[v]==0){
                                                                      g[u][v]=edge(u,v,0);
    int lca=get_lca(u,v);
    if(!lca)return augment(u,v),augment(v,u),true;
                                                            } graph;
    else add_blossom(u,lca,v);
  return false;
                                                                     Minimum Steiner Tree
                                                             4.13
bool matching(){
  memset(S+1,-1,sizeof(int)*n_x);
                                                            // Minimum Steiner Tree
```

```
// 0(V 3^T + V^2 2^T)
struct SteinerTree{
#define V 33
#define T 8
#define INF 1023456789
  int n , dst[V][V] , dp[1 << T][V] , tdst[V];
void init( int _n ){</pre>
     n = _n;
for( int i = 0 ; i < n ; i ++ ){</pre>
        for( int j = 0; j < n; j ++ )
  dst[i][j] = INF;
dst[i][i] = 0;
     }
  void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
   void shortest_path(){
      for( int k = 0 ; k < n ; k ++ )
  for( int i = 0 ; i < n ; i ++ )</pre>
           int solve( const vector<int>& ter ){
      int t = (int)ter.size();
      for( int i = 0 ; i < ( 1 << t ) ; i ++ )
      for(int j = 0; j < n; j ++)

dp[i][j] = INF;

for(int i = 0; i < n; i ++)
        dp[0][i] = 0;
      for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){
  if( msk == ( msk & (-msk) ) ){</pre>
           int who = __lg( msk );
for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];</pre>
           continue;
        dp[ submsk ][ i ] +
dp[ msk ^ submsk ][ i ] );
        for( int i = 0; i < n; i ++){
           tdst[ i ] = INF;
           for( int j = 0;
              or( int j = 0 ; j < n ; j ++ )
tdst[ i ] = min( tdst[ i ],
                              dp[ msk ][ j ] + dst[ j ][ i ] );
        for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = tdst[ i ];</pre>
      int ans = INF;
      for( int i = 0 ; i < n ; i ++ )
ans = min( ans , dp[ ( 1 << t ) - 1 ][ i ] );
} solver;
```

4.14 BCC based on Vertex

```
struct BccVertex {
   int n,nScc,step,dfn[MXN],low[MXN];
   vector<int> E[MXN],sccv[MXN];
   int top,stk[MXN];
   void init(int _n) {
      n = _n;
      nScc = step = 0;
      for (int i=0; i<n; i++) E[i].clear();
   }
   void add_edge(int u, int v) {
      E[u].PB(v);
      E[v].PB(u);
   }
   void DFS(int u, int f) {
      dfn[u] = low[u] = step++;
      stk[top++] = u;
      for (auto v:E[u]) {</pre>
```

```
if (v == f) continue;
      if (dfn[v] == -1) {
        DFS(v,u);
        low[u] = min(low[u], low[v]);
        if (low[v] >= dfn[u]) {
          int z
          sccv[nScc].clear();
          do {
            z = stk[--top];
            sccv[nScc].PB(z);
          } while (z != v);
          sccv[nScc].PB(u);
          nScc++;
      } else {
        low[u] = min(low[u],dfn[v]);
   }
  vector<vector<int>> solve() {
    vector<vector<int>> res;
    for (int i=0; i<n; i++) {</pre>
      dfn[i] = low[i] = -1;
    for (int i=0; i<n; i++) {
      if (dfn[i] == -1) {
        top = 0;
        DFS(i,i);
      }
    REP(i,nScc) res.PB(sccv[i]);
    return res;
}graph;
```

5 Flow

5.1 Bipartite Matching

```
struct BipartiteMatching { // O( ( V + E ) * sqrt( V )
                                   // N = total number of
  vector< int > G[ N ];
       nodes = n + m
  int n, m, match[ N ], dist[ N ];
  // n: number of nodes on left side, nodes are
       numbered 1 to n
      m: number of nodes on right side, nodes are
       numbered n+1 to n+m
  // G = NIL[0] \cup G1[G[1---n]] \cup G2[G[n+1---n+m]]
  bool BFS() {
    queue< int > Q;
for ( int i = 1; i <= n; i++ ) {
   if ( match[ i ] == 0 ) {</pre>
          dist[i] = \bar{0};
          Q.push( i );
       }
       else
          dist[ i ] = INF;
     dist[ 0 ] = INF;
     while ( !Q.empty() ) {
       int u = Q.front();
       Q.pop();
       if ( dist[ u ] < dist[ 0 ] )
  for ( int v : G[ u ] )</pre>
            if ( dist[ match[ v ] ] == INF ) {
  dist[ match[ v ] ] = dist[ u ] + 1;
               Q.push( match[ v ] );
     return ( dist[ 0 ] != INF );
  bool DFS( int u ) {
     if ( u != 0 ) {
       for ( int v : G[ u ] )
  if ( dist[ match[ v ] ] == dist[ u ] + 1 && DFS
               ( match[ v ] ) ) {
            match[ v ] = u;
match[ u ] = v;
```

```
return true;
        dist[ u ] = INF;
        return false;
     return true;
   int Max_Match() {
     int matching = 0;
     fill_n( match, n + m + 1, 0 );
while ( BFS() )
        for ( int i = 1; i <= n; i++ )
  if ( match[ i ] == 0 && DFS( i ) ) matching++;</pre>
     return matching;
   void AddEdge( int u, int v ) { G[ u ].push_back( n +
   void DFS2( int u ) {
     dist[ u ] = 1;
for ( int v : G[ u ] )
   if ( v != match[ u ] ) {
          dist[ v ] = 1;
if ( match[ v ] != 0 ) DFS2( match[ v ] );
   void Min_Vertex_Cover( vector< int > &lrtn, vector<</pre>
        int > &rrtn ) {
     // after calling Max_Match
     fill_n( dist + 1, n + m, 0 );
for ( int i = 1; i <= n; i++
        if ( match[ i ] == 0 ) DFS2( i );
     for ( int i = 1; i <= n; i++ )
  if ( dist[ i ] == 0 ) lrtn.push_back( i );</pre>
     for ( int i = n + 1; i \le n + m; i++ )
        if ( dist[ i ] == 1 ) rrtn.push_back( i - n );
} ob;
```

5.2 MaxFlow (ISAP)

```
// O( V^2 * E ) V up to 2w #define SZ( c ) ( (int)( c ).size() )
class MaxFlow {
 public:
  static const int MAXV = 5e3 + 10;
  static const int INF = 1e18;
  struct Edge {
     int s, t;
  vector< Edge > G[ MAXV * 2 ];
  int iter[MAXV * 2], d[MAXV * 2], gap[MAXV * 2],
         tot:
  void Init( int x ) {
     tot = x + 2;
     s = x + 1, t = x + 2;
     for ( int i = 0; i <= tot; i++ ) {
       G[ i ].clear();
       iter[ i ] = d[ i ] = gap[ i ] = 0;
  void AddEdge( int u, int v, int c ) {
   G[ u ].push_back( Edge( v, c, SZ( G[ v ] ) ) );
   G[ v ].push_back( Edge( u, 0, SZ( G[ u ] ) - 1 ) );
  int DFS( int p, int flow ) {
     if ( p == t ) return flow;
for ( int &i = iter[ p ]; i < SZ( G[ p ] ); i++ ) {
   Edge &e = G[ p ][ i ];
   if ( e.c > 0 && d[ p ] == d[ e.v ] + 1 ) {
        int f
          int f = DFS( e.v, min( flow, e.c ) );
          if (f) {
            e.c -= f
            G[e.v][e.r].c += f;
            return f;
       }
     }
```

```
if ( ( --gap[ d[ p ] ] ) == 0 )
    d[ s ] = tot;
else {
    d[ p ]++;
    iter[ p ] = 0;
    ++gap[ d[ p ] ];
}
    return 0;
}
int Solve() {
    int res = 0;
    gap[ 0 ] = tot;
    for ( res = 0; d[ s ] < tot; res += DFS( s, INF ) )
    ;
    return res;
}
};</pre>
```

5.3 MinCostMaxFlow

```
// 0( V^2 * F )
class MinCostMaxFlow {
 public:
  static const int MAXV = 2000;
static const int INF = 1e9;
  struct Edge {
    int v, cap, w, rev;
Edge() {}
    Edge( int t2, int t3, int t4, int t5 ) : v( t2 ),
         cap( t3 ), w( t4 ), rev( t5 ) {}
  };
int V, s, t;
  vector< Edge > g[ MAXV ];
  void Init( int n ) {
    V = n + 4;
                               // total number of nodes
    s = n + 1, t = n + 4; // s = source, t = sink
    for ( int i = 1; i <= V; i++ ) g[ i ].clear();
  // cap: capacity, w: cost
void AddEdge( int a, int b, int cap, int w ) {
  g[ a ].push_back( Edge( b, cap, w, (int)g[ b ].size
         ()));
    g[ b ].push_back( Edge( a, 0, -w, (int)g[ a ].size
         () - 1 ) );
  int d[ MAXV ], id[ MAXV ], mom[ MAXV ];
  bool inqu[ MAXV ];
  int qu[ 2000000 ], ql, qr;
  // the size of qu should be much large than MAXV
  int MncMxf()
    int INF = INF;
    int mxf = 0, mnc = 0;
    while (1) {
  fill(d+1,d+1+V,INF);
  fill(inqu+1,inqu+1+V,0);
}
       fill( mom + 1, mom + 1 + V, -1);
       mom[s] = s;
       d[s] = 0;
      ql = 1, qr = 0;
qu[ ++qr ] = s;
inqu[ s ] = 1;
       while ( ql <= qr )
         int u = qu[ql++];
         inqu[u] = 0;
         for ( int i = 0; i < (int)g[ u ].size(); i++ )</pre>
           Edge &e = g[u][i];
           int v = e.v;
           if (e.cap > 0 \& d[v] > d[u] + e.w) {
             d[v] = d[u] + e.w;
              mom[v] = u;
id[v] = i;
              if (!inqu[v]) qu[++qr] = v, inqu[v]
           }
         }
       if ( mom[ t ] == -1 ) break;
       int df = INF;
```

```
for ( int u = t; u != s; u = mom[ u ] ) df = min(
    df, g[ mom[ u ] ][ id[ u ] ].cap );
  for ( int u = t; u != s; u = mom[ u ] ) {
  Edge &e = g[ mom[ u ] ][ id[ u ] ];
      e.cap -= df;
      g[ e.v ][ e.rev ].cap += df;
  mxf += df;
mnc += df * d[ t ];
return mnc;
```

BoundedMaxFlow

```
// node from 0 \sim \text{size} - 1
class Graph {
public:
  Graph( const int &size )
      : size_( size + 2 ),
         source_( size ),
         sink_{size} + 1),
         edges_( size_ ),
         capacity_( size_, vector< int >( size_, 0 ) );
         lower_bound_( size_, vector< int >( size_, 0 )
  lower_bound_sum_( size_, 0 ) {}
void AddEdge( int from, int to, int lower_bound, int
       capacity ) {
    edges_[ from ].push_back( to );
edges_[ to ].push_back( from );
    capacity_[ from ][ to ] += capacity - lower_bound;
    lower_bound_[ from ][ to ] += lower_bound;
    lower_bound_sum_[ from ] += lower_bound;
    lower_bound_sum_[ to ] -= lower_bound;
  int MaxFlow() {
    int expected_source = 0, expected_sink = 0;
for ( int i = 0; i < source_; ++i )
  if ( lower_bound_sum_[ i ] > 0 ) {
         capacity_[ i ][ sink_ ] = lower_bound_sum_[ i
         edges_[ i ].push_back( sink_ );
         edges_[ sink_ ].push_back( i );
         expected_sink += lower_bound_sum_[ i ];
       else if ( lower_bound_sum_[ i ] < 0 ) {</pre>
         capacity_[ source_ ][ i ] = -lower_bound_sum_[
         edges_[ source_ ].push_back( i );
         expected_source -= lower_bound_sum_[ i ];
    int Flow = 0;
    while ( BFS( source_, sink_ ) )
  for ( auto &from : edges_[ sink_ ] ) {
         if ( from_[ from ] == -1 ) continue;
         from_[ sink_ ] = from;
int current_Flow = numeric_limits< int >::max()
         for ( int i = sink_; i != source_; i = from_[ i
               1)
            current_Flow = min( current_Flow, capacity_[
                from_[ i ] ][ i
                                   ]);
         if ( not current_Flow ) continue;
         for ( int i = sink_; i != source_; i = from_[ i
    ] ) {
            capacity_[ from_[ i ] ][ i ] -= current_Flow;
            capacity_[ i ][ from_[ i ] ] += current_Flow;
         Flow += current_Flow;
    if ( Flow != expected_source ) return -1;
    return Flow;
  int Flow( int from, int to ) { return lower_bound_[
   from ][ to ] + capacity_[ to ][ from ]; }
```

```
private:
 bool BFS( int source, int sink ) {
   queue< int > Q;
   Q.push( source );
   from_ = vector< int >( size_, -1 );
   from_[ source ] = source;
   while ( !Q.empty() )
     int node = Q.front();
     Q.pop();
     if ( node == sink ) continue;
     for ( auto &neighbour : edges_[ node ] )
  if ( from_[ neighbour ] == -1 && capacity_[
      node ][ neighbour ] > 0 ) {
          from_[ neighbour ] = node;
          Q.push( neighbour );
   return from_[ sink ] != -1;
 int size_, source_, sink_;
 vector< vector< int > > edges_
 vector< vector< int > > capacity_;
 vector< vector< int > > lower_bound_;
 vector< int > lower_bound_sum_;
 vector< int > from_;
```

Dinic 5.5

```
struct Dinic{
  static const int MXN = 10000;
  struct Edge{ int v,f,re; };
  int n,s,t,level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
    n = _n;    s = _s;    t = _t;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
    E[u].PB({v,f,SZ(E[v])});
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS(){
     for (int i=0; i<n; i++) level[i] = -1;</pre>
    queue<int> que;
    que.push(s);
     level[s] = 0;
    while (!que.empty()){
       int u = que.front(); que.pop();
       for (auto it : E[u]){
         if (it.f > 0 && level[it.v] == -1){
           level[it.v] = level[u]+1;
           que.push(it.v);
      }
    }
    return level[t] != -1;
  int DFS(int u, int nf){
    if (u == t) return nf;
    int res = 0;
     for (auto &it : E[u]){
       if (it.f > 0 && level[it.v] == level[u]+1){
  int tf = DFS(it.v, min(nf,it.f));
         res += tf; nf -= tf; it.f -= tf;
         E[it.v][it.re].f += tf;
         if (nf == 0) return res;
    if (!res) level[u] = -1;
    return res;
  int flow(int res=0){
    while ( BFS() )
      res += DFS(s,2147483647);
    return res;
}flow;
```

5.6 DMST

```
* Edmond's algoirthm for Directed MST
* runs in O(VE)
*/
const int MAXV = 10010;
const int MAXE = 10010
const int INF
               = 2147483647;
struct Edge{
  int u, v, c;
  Edge(){}
  Edge(int x, int y, int z) :
    u(x), v(y), c(z){}
int V, E, root;
Edge edges[MAXE]
inline int newV(){
 V++;
 return V;
inline void addEdge(int u, int v, int c){
  edges[E] = Edge(u, v, c);
bool con[MAXV];
int mnInW[MAXV], prv[MAXV], cyc[MAXV], vis[MAXV];
inline int DMST(){
 fill(con, con+V+1, 0);
int r1 = 0, r2 = 0;
 while(1){
    fill(mnInW, mnInW+V+1, INF);
    fill(prv, prv+V+1, -1);
REP(i, 1, E){
      int u=edges[i].u, v=edges[i].v, c=edges[i].c;
      if(u != v && v != root && c < mnInW[v])
        mnInW[v] = c, prv[v] = u;
    fill(vis, vis+V+1, -1);
fill(cyc, cyc+V+1, -1);
    r1 = 0;
    bool jf = 0;
    REP(i, 1, V){
   if(con[i]) continue;
      if(prv[i] == -1 && i != root) return -1;
      if(prv[i] > 0) r1 += mnInW[i];
      for(s = i; s != -1 && vis[s] == -1; s = prv[s])
        vis[s] = i;
      if(s > 0 \& vis[s] == i){
         // get a cycle
        jf = 1;
        int v = s;
        do{
          cyc[v] = s, con[v] = 1;
          r2 += mnInW[v];
          v = prv[v];
        }while(v != s);
        con[s] = 0;
    if(!jf) break ;
    REP(i, 1, E){
      int &u = edges[i].u;
      int &v = edges[i].v;
      if(cyc[v] > 0) edges[i].c -= mnInW[edges[i].v];
      if(cyc[u] > 0) edges[i].u = cyc[edges[i].u];
      if(cyc[v] > 0) edges[i].v = cyc[edges[i].v];
      if(u == v) edges[i--] = edges[E--];
  return r1+r2;
```

5.7 SW min-cut

```
// global min cut
struct SW{ // O(V^3)
   static const int MXN = 514;
```

```
int n,vst[MXN],del[MXN];
  int edge[MXN][MXN],wei[MXN];
  void init(int _n){
    n = n;
    FZ(edge);
    FZ(del);
  void add_edge(int u, int v, int w){
    edge[u][v] += w;
    edge[v][u] += w;
  void search(int &s, int &t){
    FZ(vst); FZ(wei);
s = t = -1;
    while (true){
       int mx=-1, cur=0;
       for (int i=0; i<n; i++)
         if (!del[i] && !vst[i] && mx<wei[i])</pre>
           cur = i, mx = wei[i];
       if (mx == -1) break;
      vst[cur] = 1;
      s = t;
       t = cur;
       for (int i=0; i<n; i++)</pre>
         if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
  int solve(){
    int res = 2147483647;
for (int i=0,x,y; i<n-1; i++){</pre>
       search(x,y);
       res = min(res,wei[y]);
       del[y] = 1;
       for (int j=0; j<n; j++)
         edge[x][j] = (edge[j][x] += edge[y][j]);
    return res;
}graph;
```

5.8 Theorem

```
Lucas' Theorem:
   For non-negative integer n,m and prime P,
   C(m,n) mod P = C(m/M,n/M) * C(m%M,n%M) mod P
   = mult_i ( C(m_i,n_i) )
   where m_i is the i-th digit of m in base P.

Pick' s Theorem
   A = i + b/2 - 1

Kirchhoff's theorem
   A_{ii} = deg(i), A_{ij} = (i,j) in E ? -1 : 0
   Deleting any one row, one column, and cal the det(A)
*/
```

6 Geometry

6.1 Half Plane Intersection

6.2 Intersection of 2 Lines

```
inline int dc( double x ){
  if ( x > EPS ) return 1;
  else if ( x < -EPS ) return -1;
   return 0;
inline PO operator-( PO a, PO b ){
  c.x = a.x - b.x; c.y = a.y - b.y;
   return c;
inline double cross( PO a , PO b , PO c ){
  return ( b.x - a.x ) * ( c.y - a.y ) - ( b.y - a.y )
     * ( c.x - a.x );
inline bool cmp( const LI &a , const LI &b ){
  if( dc( a.angle - b.angle ) == 0 ) return dc( cross(
        a.a , a.b , b.a ) ) < 0;
   return a.angle > b.angle;
inline PO getpoint( LI &a , LI &b ){
  double k1 = cross( a.a , b.b , b.a );
  double k2 = cross( a.b , b.b , b.a );
  double k2 = cross(a.b, b.a, b.b);
  P0 tmp = a.b - a.a, ans;
  ans.x = a.a.x + tmp.x * k1 / (k1 + k2);
  ans.y = a.a.y + tmp.y * k1 / (k1 + k2);
  return ans;
inline void getcut(){
  sort( li + 1 , li + 1 + n , cmp ); m = 1;
  for( int i = 2 ; i <= n ; i ++ )</pre>
     if( dc( li[ i ].angle - li[ m ].angle ) != 0 )
  li[ ++ m ] = li[ i ];

deq[ 1 ] = li[ 1 ]; deq[ 2 ] = li[ 2 ];
  <'0') top --
     while( bot < top && dc( cross( li[ i ].a , li[ i ].</pre>
          b , getpoint( deq[ bot ] , deq[ bot + 1 ] ) ) )
            <'0') bot ++
     deq[ ++ top ] = li[ i ] ;
  while( bot < top && dc( cross( deq[ bot ].a , deq[</pre>
        while( bot < top && dc( cross( deq[ top ].a , deq[</pre>
        cnt = 0;
  if( bot == top ) return;
for( int i = bot ; i < top ; i ++ ) p[ ++ cnt ] =
    getpoint( deq[ i ] , deq[ i + 1 ] );</pre>
  double px[ N ] , py[ N ];
void read( int rm ) {
  for( int i = 1 ; i <= n ; i ++ ) px[ i + n ] = px[ i</pre>
  ], py[i + n] = py[i];

for(int i = 1; i <= n; i ++ ){

// half-plane from li[i].a -> li[i].b
     li[i].a.x = px[i + rm + 1]; li[i].a.y = py[i]
            + rm + 1];
     li[ i ].b.x = px[ i ]; li[ i ].b.y = py[ i ];
li[ i ].angle = atan2( li[ i ].b.y - li[ i ].a.y ,
          li[i].b.x - li[i].a.x);
  }
inline double getarea( int rm ){
  read( rm ); getcut();
  double res = 0.0;
  p[ cnt + 1 ] = p[ 1 ];
for( int i = 1 ; i <= cnt ;
    p[ i ] , p[ i + 1 ] );
if( res < 0.0 ) res *= -1.0;
                        i <= cnt; i ++ ) res += cross( o ,
  return res;
```

6.3 Intersection of 2 Segments

6.4 Intersection of Circle and Segment

6.5 Intersection of Polygon and Circle

```
Pt ORI , info[ N ];
D r; int n;
// Divides into multiple triangle, and sum up
// oriented area
D area2(Pt pa, Pt pb){
  if( norm(pa) < norm(pb) ) swap(pa, pb);
if( norm(pb) < eps ) return 0;</pre>
  D S, h, theta;
  D a = norm( pb ), b = norm( pa ), c = norm(pb - pa);
D cosB = (pb * (pb - pa)) / a / c, B = acos(cosB);
  D \cos C = (pa * pb) / a / b, C = a\cos(\cos C);
  if(a > r){
     S = (C/2)*r*r
     h = a*b*sin(C)/c;
     if (h < r \&\& B < PI/2) S = (acos(h/r)*r*r - h*sqrt
          (r*r-h*h));
  }else if(b > r){
  theta = PI - B - asin(sin(B)/r*a);
     S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
  else S = .5*sin(C)*a*b;
  return S;
D area() {
  DS = 0;
  for(int i = 0; i < n; ++i)
     S += abs(area2(info[i], info[i + 1]) * sign(det(
         info[i], info[i + 1]));
  return fabs(S);
```

6.6 Intersection of 2 Circles

6.7 Circle Cover

```
#define N 1021
struct CircleCover{
  int C; Circle c[ N ];
  bool g[ N ][ N ], overlap[ N ][ N ];
  // Area[i] : area covered by at least i circles
  D Area[ N ];
  void init( int _C ){ C = _C; }
```

```
bool CCinter( Circle& a , Circle& b , Pt& p1 , Pt& p2
     Pt o1 = a.0 , o2 = b.0;
     D r1 = a.R, r2 = b.R;
D d2 = (o1 - o2) * (o1 - o2);
     D d = sqrt(d2);
     if( d > r1 + r2 ) return false;
     Pt u = (01+02)*0.5 + (01-02)*((r2*r2-r1*r1)/(2*d2))
      D A = sqrt((r1+r2+d)*(r1-r2+d)*(r1+r2-d)*(-r1+r2+d)
     Pt v = Pt( o1.Y-o2.Y , -o1.X + o2.X ) * A / (2*d2);
     p1 = u + v; p2 = u - v;
      return true;
   struct Tevent {
     Pt p; D ang; int add;
      Tevent() {}
     Tevent(Pt \_a, D \_b, int \_c): p(\_a), ang(\_b), add(\_c
      bool operator<(const Tevent &a)const
   {return ang < a.ang;}
}eve[ N * 2 ];
   \frac{1}{x} = 0, otherwise x = -1
   bool disjuct( Circle& a, Circle &b, int x ){
     return sign( norm( a.0 - b.0 ) - a.R - b.R ) > x;
   bool contain( Circle& a, Circle &b, int x ){
     return sign( a.R - b.R - norm(a.0 - b.0) ) > x;
   bool contain(int i, int j){ /* c[j] is non-strictly
        in c[i]. *.
      return (sign(c[i].R - c[j].R) > 0 | |
(sign(c[i].R - c[j].R) == 0 && i < j) ) &&
                    contain(c[i], c[j], -1);
   void solve(){
     for( int i = 0 ; i <= C + 1 ; i ++ )
Area[ i ] = 0;</pre>
      for( int i = 0 ; i < C ; i ++ )
  for( int j = 0 ; j < C ; j ++ )
    overlap[i][j] = contain(i, j);
for( int i = 0 ; i < C ; i ++ )</pre>
        for( int j = 0; j < C
          or( int j = 0 ; j < ( ; j ++ )
g[i][j] = !(overlap[i][j] || overlap[j][i] ||
                         disjuct(c[i], c[j], -1));
      for( int i = 0 ; i < C ; i ++ ){
        int E = 0, cnt = 1;
for( int j = 0 ; j < C ; j ++ )
  if( j != i && overlap[j][i] )</pre>
             cnt ++;
        for( int j = 0 ; j < C ;</pre>
          if( i != j && g[i][j] ){
             Pt aa, bb;
             CCinter(c[i], c[j], aa, bb);
             D A = atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X)
             D B = atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X)
             eve[E ++] = Tevent(bb, B, 1)
             eve[E ++] = Tevent(aa, A, -1);
             if(B > A) cnt ++;
        if( E == 0 ) Area[ cnt ] += pi * c[i].R * c[i].R;
        else{
          sort( eve , eve + E );
          eve[\tilde{E}] = eve[0];
          for( int j = 0; j < E; j ++){
             cnt += eve[j].add;
             Area[cnt] += (eve[j].p \wedge eve[j + 1].p) * .5;
             D theta = eve[j + 1].ang - eve[j].ang;
if (theta < 0) theta += 2. * pi;
             Area[cnt] += ( theta - sin(theta) ) * c[i].R
 * c[i].R * .5;
       }
     }
}
|};
```

6.8 Tangent Line of 2 Circles

6.9 KD Tree

```
const int MXN = 100005;
struct KDTree {
  struct Node {
     int x,y,x1,y1,x2,y2;
    int id,f;
Node *L, *R;
  }tree[MXN];
  int n;
  Node *root;
  LL dis2(int x1, int y1, int x2, int y2) {
    LL dx = x1-x2;
LL dy = y1-y2;
    return dx*dx+dy*dy;
  static bool cmpx(Node& a, Node& b){ return a.x<b.x; }</pre>
  static bool cmpy(Node& a, Node& b){ return a.y<b.y; }</pre>
  void init(vector<pair<int,int>> ip) {
    n = ip.size();
     for (int i=0; i<n; i++) {
       tree[i].id = i;
       tree[i].x = ip[i].first;
       tree[i].y = ip[i].second;
    root = build_tree(0, n-1, 0);
  Node* build_tree(int L, int R, int dep) {
    if (L>R) return nullptr;
int M = (L+R)/2;
     tree[M].f = dep%2;
     nth_element(tree+L, tree+M, tree+R+1, tree[M].f ?
          cmpy : cmpx);
     tree[M].x1 = tree[M].x2 = tree[M].x;
     tree[M].y1 = tree[M].y2 = tree[M].y;
     tree[M].L = build_tree(L, M-1, dep+1);
     if (tree[M].L) {
       tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
       tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
     tree[M].R = build_tree(M+1, R, dep+1);
     if (tree[M].R) {
       tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
       tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
    return tree+M;
```

```
int touch(Node* r, int x, int y, LL d2){
  LL dis = sqrt(d2)+1;
     if (x<r->x1-dis || x>r->x2+dis ||
         y<r-y1-dis || y>r-y2+dis)
       return 0;
     return 1;
  void nearest(Node* r, int x, int y,
                  int &mID, LL &md2){
     if (!r || !touch(r, x, y, md2)) return;
LL d2 = dis2(r->x, r->y, x, y);
     if (d2 < md2 | I (d2 == md2 && mID < r->id)) {
       mID = r -> id;
       md2 = d2;
     // search order depends on split dim
     if ((r->f == 0 \&\& x < r->x))
          (r->f == 1 \&\& y < r->y)) {
       nearest(r\rightarrow L, x, y, mID, md2);
       nearest(r->R, x, y, mID, md2);
     } else {
       nearest(r->R, x, y, mID, md2);
nearest(r->L, x, y, mID, md2);
  int query(int x, int y) {
  int id = 1029384756;
    LL d2 = 102938475612345678LL;
     nearest(root, x, y, id, d2);
     return id;
  }
}tree;
```

6.10 Lower Concave Hull

```
maintain a "concave hull" that support the following
  1. insertion of a line
  query of height(y) on specific x on the hull
/* set as needed *.
typedef long double LD;
const LD eps=1e-9;
const LD inf=1e19;
class Seg {
public:
 LD m, c, x1, x2; // y=mx+c
  bool flag;
 Sea(
    LD _m,LD _c,LD _x1=-inf,LD _x2=inf,bool _flag=0)
 :m(_m),c(_c),x1(_x1),x2(_x2),flag(_flag) {}
LD evaly(LD x) const {
    return m*x+c;
 const bool operator<(LD x) const {</pre>
   return x2-eps<x;</pre>
  const bool operator<(const Seg &b) const {</pre>
    if(flag||b.flag) return *this<b.x1;</pre>
    return m+eps<b.m;</pre>
class LowerConcaveHull { // maintain a hull like: \_
public:
 set<Seg> hull;
   * functions */
 LD xintersection(Seg a, Seg b) {
    return (a.c-b.c)/(b.m-a.m);
  inline set<Seg>::iterator replace(set<Seg> &
      hull,set<Seg>::iterator it,Seg s) {
    hull.erase(it);
    return hull.insert(s).first;
  void insert(Seg s) {
    // insert a line and update hull
    set<Seg>::iterator it=hull.find(s);
    // check for same slope
    if(it!=hull.end()) {
      if(it->c+eps>=s.c) return;
```

```
hull.erase(it);
     // check if below whole hull
     it=hull.lower_bound(s);
     if(it!=hull.end()&&
        s.evaly(it->x1)<=it->evaly(it->x1)+eps) return;
     // update right hull
    while(it!=hull.end()) {
      LD x=xintersection(s,*it);
       if(x>=it->x2-eps) hull.erase(it++);
      else {
         s.x2=x;
         it=replace(hull,it,Seg(it->m,it->c,x,it->x2));
        break;
      }
    }
     // update left hull
    while(it!=hull.begin()) {
      LD x=xintersection(s,*(--it));
       if(x<=it->x1+eps) hull.erase(it++);
      else {
         s.x1=x
         it=replace(hull,it,Seg(it->m,it->c,it->x1,x));
        break;
      }
     // insert s
    hull.insert(s);
  void insert(LD m,LD c) { insert(Seg(m,c)); }
  LD query(LD x) { // return y @ given x
     set<Seg>::iterator it =
      hull.lower_bound(Seg(0.0,0.0,x,x,1));
     return it->evaly(x);
};
```

6.11 Delaunay Triangulation

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
calculation involves O(IVI^6) */
const int N = 100000 + 5;
const type inf = 2e3;
type eps = 1e-6; // 0 when integer
type sqr(type x) { return x*x; }
   return p4 is in circumcircle of tri(p1,p2,p3)
bool in_cc(const Pt& p1, const Pt& p2, const Pt& p3,
     const Pt& p4){
   type u11 = p1.X - p4.X; type u12 = p1.Y - p4.Y;
type u21 = p2.X - p4.X; type u22 = p2.Y - p4.Y;
type u31 = p3.X - p4.X; type u32 = p3.Y - p4.Y;
   type u13 = sqr(p1.X)-sqr(p4.X)+sqr(p1.Y)-sqr(p4.Y);
   type u23 = sqr(p2.X)-sqr(p4.X)+sqr(p2.Y)-sqr(p4.Y);
   type u33 = sqr(p3.X)-sqr(p4.X)+sqr(p3.Y)-sqr(p4.Y)
   type det = -u13*u22*u31 + u12*u23*u31 + u13*u21*u32
               -u11*u23*u32 - u12*u21*u33 + u11*u22*u33;
   return det > eps;
type side(const Pt& a, const Pt& b, const Pt& p)
 { return (b - a) ^ (p - a); }
typedef int SdRef;
struct Tri;
typedef Tri* TriRef;
struct Edge {
   TriRef tri; SdRef side;
Edge():tri(0), side(0){}
   Edge(TriRef _tri, SdRef _side):tri(_tri), side(_side)
        {}
};
```

```
struct Tri {
                                                                      edge(Edge(trl,1), trj->edge[(pj+2)%3]);
  Pt p[3];
                                                                      edge(Edge(trl,2), tri->edge[(pi+1)%3]);
                                                                      tri->chd[0]=trk; tri->chd[1]=trl; tri->chd[2]=0;
trj->chd[0]=trk; trj->chd[1]=trl; trj->chd[2]=0;
  Edge edge[3];
  TriRef chd[3];
                                                                      flip(trk,1); flip(trk,2);
  Tri() {}
  Tri(const Pt& p0, const Pt& p1, const Pt& p2) {
  p[0] = p0; p[1] = p1; p[2] = p2;
                                                                      flip(trl,1); flip(trl,2);
    chd[0] = chd[1] = chd[2] = 0;
                                                                  };
                                                                  vector<TriRef> triang;
                                                                  set<TriRef> vst;
  bool has_chd() const { return chd[0] != 0; }
  int num_chd() const {
                                                                  void go( TriRef now ){
    return chd[0] == 0 ? 0
                                                                    if( vst.find( now ) != vst.end() )
          : chd[1] == 0 ? 1
                                                                      return:
          : chd[2] == 0 ? 2 : 3;
                                                                    vst.insert( now );
                                                                    if( !now->has_chd() ){
 bool contains(Pt const& q) const {
  for( int i = 0 ; i < 3 ; i ++ )</pre>
                                                                      triang.push_back( now );
                                                                      return;
      if( side(p[i], p[(i + 1) % 3] , q) < -eps )
                                                                    for( int i = 0 ; i < now->num_chd() ; i ++ )
  go( now->chd[ i ] );
         return false;
    return true;
} pool[ N * 10 ], *tris;
void edge( Edge a, Edge b ){
                                                                  void build( int n , Pt* ps ){
                                                                    tris = pool;
  if(a.tri) a.tri->edge[a.side] = b;
                                                                    random\_shuffle(ps, ps + n);
  if(b.tri) b.tri->edge[b.side] = a;
                                                                    Trig tri;
                                                                    for(int i = 0; i < n; ++ i)
struct Trig { // Triangulation
                                                                      tri.add_point(ps[i]);
  Trig(){
                                                                    go( tri.the_root );
    the_root = // Tri should at least contain all
         points
       new(tris++)Tri(Pt(-inf,-inf),Pt(+inf+inf,-inf),Pt
           (-inf,+inf+inf));
                                                                  6.12
                                                                          Min Enclosing Circle
  TriRef find(Pt p)const{ return find(the_root,p); }
  void add_point(const Pt& p){ add_point(find(the_root,
       p),p); }
                                                                  struct Mec{
  TriRef the_root;
                                                                    // return pair of center and r
                                                                    static const int N = 101010;
  static TriRef find(TriRef root, const Pt& p) {
    while( true ){
                                                                    int n;
                                                                    Pt p[N], cen;
      if( !root->has_chd() )
                                                                    double r2
         return root;
                                                                    void init( int _n , Pt _p[] ){
       for( int i = 0; i < 3 && root->chd[i] ; ++i )
         if (root->chd[i]->contains(p)) {
                                                                      n = _n;
                                                                      memcpy( p , _p , sizeof(Pt) * n );
           root = root->chd[i];
           break;
                                                                    double sqr(double a){ return a*a; }
         }
                                                                    Pt center(Pt p0, Pt p1, Pt p2) {
    assert( false ); // "point not found"
                                                                      Pt a = p1-p0;
                                                                      Pt b = p2-p0;
                                                                      double c1=norm2( a ) * 0.5;
  void add_point(TriRef root, Pt const& p) {
    TriRef tab, tbc, tca;
                                                                      double c2=norm2( b ) * 0.5;
                                                                      double d = a \wedge b;
     /* split it into three triangles */
    tab=new(tris++) Tri(root->p[0],root->p[1],p);
                                                                      double x = p0.X + (c1 * b.Y - c2 * a.Y) / d;
                                                                      double y = p0.Y + (a.X * c2 - b.X * c1) / d;
    tbc=new(tris++) Tri(root->p[1],root->p[2],p);
tca=new(tris++) Tri(root->p[2],root->p[0],p);
                                                                      return Pt(x,y);
    edge(Edge(tab,0), Edge(tbc,1));
    edge(Edge(tbc,0), Edge(tca,1))
edge(Edge(tca,0), Edge(tab,1))
                                                                    pair<Pt,double> solve(){
                                                                      random_shuffle(p,p+n);
    edge(Edge(tab,2), root->edge[2]);
                                                                       for (int i=0; i<n; i++){</pre>
    edge(Edge(tbc,2), root->edge[0]);
                                                                         if (norm2(cen-p[i]) <= r2) continue;</pre>
    edge(Edge(tca,2), root->edge[1]);
    root->chd[0] = tab;
                                                                         cen = p[i];
    root->chd[1] = tbc;
                                                                         r2 = 0;
                                                                         for (int j=0; j<i; j++){
  if (norm2(cen-p[j]) <= r2) continue;</pre>
    root->chd[2] = tca;
    flip(tab,2);
                                                                           cen=Pt((p[i].X+p[j].X)/2,(p[i].Y+p[j].Y)/2);
    flip(tbc,2);
                                                                           r2 = norm2(cen-p[j]);
    flip(tca,2);
                                                                           for (int k=0; k<j; k++){
  if (norm2(cen-p[k]) <= r2) continue;</pre>
  void flip(TriRef tri, SdRef pi) {
                                                                             cen = center(p[i],p[j],p[k]);
    TriRef trj = tri->edge[pi].tri;
    int pj = tri->edge[pi].side;
                                                                             r2 = norm2(cen-p[k]);
    if (!trj) return;
    if (!in_cc(tri->p[0],tri->p[1],tri->p[2],trj->p[p]
                                                                        }
         ])) return;
     /* flip edge between tri,trj */
                                                                      return {cen,sqrt(r2)};
    TriRef trk = new(tris++) Tri(tri->p[(pi+1)%3], trj
    ->p[pj], tri->p[pi]);
TriRef trl = new(tris++) Tri(trj->p[(pj+1)%3], tri
                                                                  } mec;
         ->p[pi], trj->p[pj])
    edge(Edge(trk,0), Edge(trl,0));
edge(Edge(trk,1), tri->edge[(pi+2)%3]);
                                                                  6.13 Heart of Triangle
    edge(Edge(trk,2), trj->edge[(pj+1)%3]);
```

```
Pt inCenter( Pt &A, Pt &B, Pt &C) { // 內心 double a = norm(B-C), b = norm(C-A), c = norm(A-B); return (A * a + B * b + C * c) / (a + b + c); }

Pt circumCenter( Pt &a, Pt &b, Pt &c) { // 外心 Pt bb = b - a, cc = c - a; double db=norm2(bb), dc=norm2(cc), d=2*(bb ^ cc); return a-Pt(bb.Y*dc-cc.Y*db, cc.X*db-bb.X*dc) / d; }

Pt othroCenter( Pt &a, Pt &b, Pt &c) { // 垂心 Pt ba = b - a, ca = c - a, bc = b - c; double Y = ba.Y * ca.Y * bc.Y, A = ca.X * ba.Y - ba.X * ca.Y, x0= (Y+ca.X*ba.Y*b.X-ba.X*ca.Y*c.X) / A, y0= -ba.X * (x0 - c.X) / ba.Y + ca.Y; return Pt(x0, y0); }
```

6.14 Min/Max Enclosing Rectangle.cpp

```
/***** NEED REVISION ******/
/* uva819 - gifts large and small */
#define MAXN 100005
const double eps=1e-8;
const double inf=1e15;
class Coor {
public:
 double x,y;
 Coor() {}
 Coor(double xi,double yi) { x=xi; y=yi; }
 Coor& operator+=(const Coor &b) { x+=b.x; y+=b.y;
      return *this; }
 const Coor operator+(const Coor &b) const { return (
      Coor)*this+=b; }
 Coor& operator==(const Coor &b) { x==b.x; y==b.y;
      return *this; }
  const Coor operator-(const Coor &b) const { return (
      Coor)*this-=b; }
 Coor& operator*=(const double b) { x*=b; y*=b; return
       *this; }
 const Coor operator*(const double b) const { return (
   Coor)*this*=b; }
  Coor& operator/=(const double b) { x/=b; y/=b; return
       *this; }
  const Coor operator/(const double b) const { return (
      Coor)*this/=b; }
  const bool operator<(const Coor& b) const { return y<</pre>
      b.y-eps||fabs(y-b.y)<eps&&x<b.x;
  const double len2() const { return x*x+y*y;
  const double len() const { return sqrt(len2()); }
  const Coor perp() const { return Coor(y,-x); }
 Coor& standardize() {
    if(y<0||y==0\&&x<0) {
      x=-x;
      y=-y;
    return *this;
 const Coor standardize() const { return ((Coor)*this)
      .standardize(); }
double dot(const Coor &a,const Coor &b) { return a.x*b.
    x+a.y*b.y; }
double dot(const Coor &o,const Coor &a,const Coor &b) {
     return dot(a-o,b-o); }
double cross(const Coor &a,const Coor &b) { return a.x*
    b.y-a.y*b.x; }
double cross(const Coor &o,const Coor &a,const Coor &b)
     { return cross(a-o,b-o); }
Coor cmpo;
const bool cmpf(const Coor &a,const Coor &b) {
  return cross(cmpo,a,b)>eps||fabs(cross(cmpo,a,b))<eps</pre>
    dot(a,cmpo,b)<-eps;</pre>
class Polygon {
public:
  int pn;
  Coor p[MAXN];
  void convex_hull() {
```

```
int i,tn=pn;
    for(i=1;i<pn;++i) if(p[i]<p[0]) swap(p[0],p[i]);</pre>
    cmpo=p[0];
    std::sort(p+1,p+pn,cmpf);
    for(i=pn=1;i<tn;++i) {</pre>
      while(pn>2&&cross(p[pn-2],p[pn-1],p[i])<=eps) --</pre>
      p[pn++]=p[i];
    p[pn]=p[0];
  }
Polygon pol;
double minarea, maxarea;
int slpn;
Coor slope[MAXN*2];
Coor lrec[MAXN*2],rrec[MAXN*2],trec[MAXN*2],brec[MAXN
    *2];
inline double xproject(Coor p,Coor slp) { return dot(p,
    slp)/slp.len(); }
inline double yproject(Coor p,Coor slp) { return cross(
    p,slp)/slp.len(); }
inline double calcarea(Coor lp,Coor rp,Coor bp,Coor tp,
    Coor slp) {
  return (xproject(rp,slp)-xproject(lp,slp))*(yproject(
  tp,slp)-yproject(bp,slp)); }
inline void solve(){
    int i,lind,rind,tind,bind,tn;
    double pro, area1, area2, l, r, m1, m2;
    Coor s1,s2;
    pol.convex_hull();
    slpn=0; /* generate all critical slope */
    slope[slpn++]=Coor(1.0,0.0);
slope[slpn++]=Coor(0.0,1.0);
    for(i=0;i<pol.pn;i++) {</pre>
      slope[slpn]=(pol.p[i+1]-pol.p[i]).standardize();
      if(slope[slpn].x>0) slpn++;
      slope[slpn]=(pol.p[i+1]-pol.p[i]).perp().
         standardize();
      if(slope[slpn].x>0) slpn++;
    cmpo=Coor(0,0);
    std::sort(slope,slope+slpn,cmpf);
    tn=slpn;
    for(i=slpn=1;i<tn;i++)</pre>
      if(cross(cmpo,slope[i-1],slope[i])>0) slope[slpn
         ++]=slope[i];
    lind=rind=0; /* find critical touchpoints */
    for(i=0;i<pol.pn;i++)</pre>
      pro=xproject(pol.p[i],slope[0]);
       if(pro<xproject(pol.p[lind],slope[0])) lind=i;</pre>
      if(pro>xproject(pol.p[rind],slope[0])) rind=i;
    tind=bind=0;
    for(i=0;i<pol.pn;i++)</pre>
      pro=yproject(pol.p[i],slope[0]);
       if(pro<yproject(pol.p[bind],slope[0])) bind=i;</pre>
      if(pro>yproject(pol.p[tind],slope[0])) tind=i;
    for(i=0;i<slpn;i++) {</pre>
      while(xproject(pol.p[lind+1],slope[i])<=xproject(</pre>
             pol.p[lind],slope[i])+eps)
         lind=(lind==pol.pn-1?0:lind+1);
      while(xproject(pol.p[rind+1],slope[i])>=xproject(
             pol.p[rind],slope[i])-eps)
         rind=(rind==pol.pn-1?0:rind+1);
      while(yproject(pol.p[bind+1],slope[i])<=yproject(</pre>
             pol.p[bind],slope[i])+eps)
         bind=(bind==pol.pn-1?0:bind+1);
      while(yproject(pol.p[tind+1],slope[i])>=yproject(
             pol.p[tind],slope[i])-eps)
         tind=(tind==pol.pn-1?0:tind+1);
      lrec[i]=pol.p[lind];
      rrec[i]=pol.p[rind];
      brec[i]=pol.p[bind];
      trec[i]=pol.p[tind];
    minarea=inf; /* find minimum area */
    for(i=0;i<slpn;i++) {</pre>
      area1=calcarea(lrec[i],rrec[i],brec[i],trec[i],
           slope[i]):
      if(area1<minarea) minarea=area1;</pre>
```

```
maxarea=minarea; /* find maximum area */
    for(i=0;i<slpn-1;i++) {</pre>
       l=0.0; r=1.0;
while(l<r-eps) {</pre>
         m1=l+(r-l)/3
         m2=1+(r-1)*2/3;
         s1=slope[i]*(1.0-m1)+slope[i+1]*m1;
         area1=calcarea(lrec[i],rrec[i],brec[i],trec[i],
              s1):
         s2=slope[i]*(1.0-m2)+slope[i+1]*m2;
         area2=calcarea(lrec[i],rrec[i],brec[i],trec[i],
         if(area1<area2) l=m1;</pre>
         else r=m2;
       s1=slope[i]*(1.0-l)+slope[i+1]*l;
       area1=calcarea(lrec[i],rrec[i],brec[i],trec[i],s1
       if(area1>maxarea) maxarea=area1;
    }
int main(){
  int i,casenum=1;
  while(scanf("%d",&pol.pn)==1&&pol.pn) {
    for(i=0;i<ppol.pn;i++)
  scanf("%lf %lf",&pol.p[i].x,&pol.p[i].y);</pre>
     solve();
     //minarea, maxarea
}
```

6.15 Union of Polynomials

```
#define eps 1e-8
class PY{ public:
  int n;
  Pt pt[5];
 Pt& operator[](const int x){ return pt[x]; }
  void input(){
    int i: n=4:
    for(i=0;i<n;i++) scanf("%lf%lf",&pt[i].x,&pt[i].y);</pre>
  double getArea(){
    int i; double s=pt[n-1]^pt[0];
    for(i=0;i<n-1;i++) s+=pt[i]^pt[i+1];
    return s/2;
PY py[500];
pair<double,int> c[5000];
inline double segP(Pt &p,Pt &p1,Pt &p2){
  if(SG(p1.x-p2.x)==0) return (p.y-p1.y)/(p2.y-p1.y);
  return (p.x-p1.x)/(p2.x-p1.x);
double polyUnion(int n){
  int i,j,ii,jj,ta,tb,r,d;
  double z,w,s,sum,tc,td;
  for(i=0;i<n;i++) py[i][py[i].n]=py[i][0];</pre>
  sum=0;
  for(i=0;i<n;i++){
    for(ii=0;ii<py[i].n;ii++){</pre>
      c[r++]=make_pair(0.0,0);
      c[r++]=make_pair(1.0,0);
      for(j=0;j<n;j++){</pre>
        if(i==j) continue;
        for(jj=0;jj<py[j].n;jj++){
   ta=SG(tri(py[i][ii],py[i][ii+1],py[j][jj]))</pre>
          tb=SG(tri(py[i][ii],py[i][ii+1],py[j][jj+1]))
          c[r++]=make_pair(segP(py[j][jj],py[i][ii
                   ],py[i][ii+1]),1);
              c[r++]=make_pair(segP(py[j][jj+1],py[i][
                  ii],py[i][ii+1]),-1);
          }else if(ta>=0 && tb<0){
```

```
tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
td=tri(py[j][jj],py[j][jj+1],py[i][ii+1]);
              c[r++]=make_pair(tc/(tc-td),1);
            }else if(ta<0 && tb>=0){
              tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
td=tri(py[j][jj],py[j][jj+1],py[i][ii+1]);
              c[r++]=make_pair(tc/(tc-td),-1);
            }
         }
       sort(c,c+r);
       z=min(max(c[0].first,0.0),1.0);
       d=c[0].second; s=0;
       for(j=1;j<r;j++){</pre>
         w=min(max(c[j].first,0.0),1.0);
          if(!d) s+=w-z;
         d+=c[j].second; z=w;
       sum+=(py[i][ii]^py[i][ii+1])*s;
  return sum/2;
int main(){
  int n,i,j,k;
  double sum,ds;
scanf("%d",&n); sum=0;
  for(i=0;i<n;i++){</pre>
    py[i].input();
     ds=py[i].getArea();
     if(ds<0){
       for(j=0,k=py[i].n-1;j<k;j++,k--) swap(py[i][j],
            py[i][k]);
       ds=-ds:
    } sum+=ds;
  } printf("%.9f\n",sum/polyUnion(n));
```

7 String

7.1 Knuth-Morris-Pratt Algorithm

```
// test with CF 471 D
template< typename T >
vector< int > KMP( vector< T > target, vector< T >
    pattern ) {
  vector< int > match;
  if ( pattern.size() > target.size() ) return match;
  vector< int > failure_function( (int)target.size(),
      -1);
  for ( int i = 1, j = failure\_function[ 0 ] = -1; i <
      (int)pattern.size(); ++i ) {
    while (j \ge 0 and pattern[j + 1] != pattern[i]
      j = failure_function[ j ];
    if ( pattern[ j + 1 ] == pattern[ i ] ) j++;
failure_function[ i ] = j;
    int pos = i, prv = failure_function[ pos ];
    while ( pos + 1 < (int)pattern.size() and pattern[
        pos + 1 ] == pattern[ prv + 1 ] ) {
      if ( failure_function[ pos ] == -1 ) break;
      pos = prv;
      prv = failure_function[ prv ];
    failure_function[ i ] = prv;
  for ( int i = 0, j = -1; i < (int)target.size(); ++i
    while (j \ge 0 \text{ and pattern}[j+1] != target[i]
    j = failure_function[ j ];
if ( pattern[ j + 1 ] == target[ i ] ) j++;
    if (j == (int)pattern.size() - 1) {
      match.push_back( i - pattern.size() + 1 );
      j = failure_function[ j ];
  return match;
```

```
7.2 Palindrome Tree
```

|}

```
const int MAXN = 200010:
struct PalT{
  struct Node{
    int nxt[ 33 ] , len , fail;
  int tot , lst;
Node nd[ MAXN * 2 ];
  char* s
  int newNode( int l , int _fail ){
    int res = ++tot;
    memset( nd[ res ].nxt , 0 , sizeof nd[ res ].nxt );
    nd[res].len = 1;
    nd[ res ].cnt = 0;
nd[ res ].fail = _fail;
    return res;
  void push( int p ){
    int np = lst;
    int c = s[p] - 'a'
    while( p - nd[ np ].len - 1 < 0
| | s[ p ] != s[ p - nd[ np ].len - 1 ] )
      np = nd[ np ].fail;
    if( nd[ np ].nxt[ c ] ){
      nd[ nd[ np ].nxt[ c ] ].cnt++;
lst = nd[ np ].nxt[ c ];
      return;
    int nq = newNode( nd[ np ].len + 2 , 0 );
nd[ nq ].cnt++;
    nd[ np ].nxt[ c ] = nq;
    lst = nq;
    if( nd[nq].len == 1){
      nd[nq].fail = 2;
      return;
    int tf = nd[ np ].fail;
    tf = nd[ tf ].fail;
    nd[ nq ].fail = nd[ tf ].nxt[ c ];
    return ;
  void init( char* _s ){
    tot = 0;
    newNode( -1 , 1 );
newNode( 0 , 1 );
    lst = 2;
    for( int i = 0 ; s[ i ] ; i++ )
      push( i );
  void yutruli(){
#define REPD(i, s, e) for(int i = (s); i >= (e); i--)
    REPD( i , tot , 1 )
    nd[ nd[ i ].fail ].cnt += nd[ i ].cnt;
    nd[ 1 ].cnt = nd[ 2 ].cnt = 0ll;
} pA;
int main(){ pA.init( sa ); }
```

7.3 SAIS

```
const int N = 300010;
struct SA{
  #define REP(i,n) for ( int i=0; i<int(n); i++ )
  #define REP1(i,a,b) for ( int i=(a); i<=int(b); i++ )
  bool _t[N*2];
  int _s[N*2], _sa[N*2], _c[N*2], x[N], _p[N], _q[N*2],
    hei[N], r[N];
  int operator [] (int i){ return _sa[i]; }
  void build(int *s, int n, int m){
```

```
memcpy(_s, s, sizeof(int) * n);
          sais(_s, _sa, _p, _q, _t, _c, n, m);
         mkhei(n);
     void mkhei(int n){
          REP(i,n) r[\_sa[i]] = i;
          hei[0] = 0;
          REP(\bar{i},n) if(r[i]) {
               int ans = i>0 ? max(hei[r[i-1]] - 1, 0) : 0;
               while(_s[i+ans] == _s[_sa[r[i]-1]+ans]) ans++;
               hei[r[i]] = ans;
     void sais(int *s, int *sa, int *p, int *q, bool *t,
               int *c, int n, int z){
          bool uniq = t[n-1] = true, neq;
int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
                     lst = -1;
#define MS0(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MS0(sa, n); \
    memcpy(x, c, sizeof(int) * z); \
          memcpy(x + 1, c, sizeof(int) * (z - 1));
          REP(i,n) if(sa[i] \&\& !t[sa[i]-1]) sa[x[s[sa[i]-1]] sa[x[s]] sa[x[x[s]]] sa[x[x[x[s]]]] sa[x[x[x[s]]]] sa[x[x[x[x]]] sa[x[x[x[x]]]] sa[x[x[x[x[
                     ]-1]]++] = sa[i]-1;
          memcpy(x, c, sizeof(int) * z); \
for(int i = n - 1; i >= 0; i--) if(sa[i] && t[sa[i
                     ]-1]) sa[--x[s[sa[i]-1]]] = sa[i]-1;
          MS0(c, z);
          REP(i,n) uniq \&= ++c[s[i]] < 2;
          REP(i,z-1) c[i+1] += c[i];
          if (uniq) { REP(i,n) sa[--c[s[i]]] = i; return; }
          for(int i = n - 2; i >= 0; i--) t[i] = (s[i]==s[i
+1] ? t[i+1] : s[i]<s[i+1]);
          MAGIC(\vec{R}EP1(\bar{i},1,\bar{n}-1)\ \bar{i}f(t[i]\ \&\&\ !t[i-1])\ sa[--x[s[i]\ ]
          ]]]=p[q[i]=nn++]=i);
REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1]) {
               neq=lst<0|lmemcmp(s+sa[i],s+lst,(p[q[sa[i]]+1]-sa[i])|
                          [i])*sizeof(int));
               ns[q[lst=sa[i]]]=nmxz+=neq;
          sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz
                       + 1);
          MAGIC(for(int i = nn - 1; i \ge 0; i--) sa[--x[s[p[
                    nsa[i]]]] = p[nsa[i]]);
}sa;
int H[ N ], SA[ N ];
void suffix_array(int* ip, int len) {
     // should padding a zero in the back
     // ip is int array, len is array length
     // ip[0..n-1] != 0, and ip[len] = 0
     ip[len++] = 0;
     sa.build(ip, len, 128);
for (int i=0; i<len; i++) {</pre>
          H[i] = sa.hei[i + 1];
          SA[i] = sa.\_sa[i + 1];
     // resulting height, sa array \in [0,len)
```

7.4 Suffix Automata

```
const int MAXM = 1000010;
struct SAM{
  int tot, root, lst, mom[MAXM], mx[MAXM];
  int acc[MAXM], nxt[MAXM][33];
  int newNode(){
    int res = ++tot;
    fill(nxt[res], nxt[res]+33, 0);
    mom[res] = mx[res] = acc[res] = 0;
    return res;
}
void init(){
    tot = 0;
    root = newNode();
    mom[root] = 0, mx[root] = 0;
    lst = root;
}
void push(int c){
```

```
int p = lst;
      int np = newNode();
     mx[np] = mx[p]+1;
     for(; p && nxt[p][c] == 0; p = mom[p])
    nxt[p][c] = np;
if(p == 0) mom[np] = root;
         int q = nxt[p][c];
         if(mx[p]+1 == mx[q]) mom[np] = q;
         else{
           int nq = newNode();
           mx[nq] = mx[p]+1;
for(int i = 0; i < 33; i++)
  nxt[nq][i] = nxt[q][i];</pre>
            mom[nq] = mom[q];
           mom[rq] = mom[q];
mom[np] = nq;
for(; p && nxt[p][c] == q; p = mom[p])
              nxt[p][c] = nq;
        }
      lst = np;
   void push(char *str){
     for(int i = 0; str[i]; i++)
push(str[i]-'a'+1);
   }
} sam;
```

7.5 Smallest Rotation

```
string mcp(string s){
  int n = s.length();
  s += s;
  int i=0, j=1;
  while (i<n && j<n){
    int k = 0;
    while (k < n && s[i+k] == s[j+k]) k++;
    if (s[i+k] <= s[j+k]) j += k+1;
    else i += k+1;
    if (i == j) j++;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```