SEMINAR NOTES: COMMUTATIVE ALGEBRAS

ZOU HAITAO

Contents

1

1. Rings and Ideals

1. Rings and Ideals

Definition 1.1. A ring R is a set with two maps (addition) $+: R \times R \to R$, (multiplication) $\times:$ $R \times R \to R$ denote +(x,y) by x+y and $\times (x,y)$ by $x \times y$ that satisfy following properties

- (1) R is a abelian group with respect to addition, its identity is denoted by 0;
- (2) R is a monoid with identity $1 \in R$ with respect to multiplication;
- (3) $z \times (x+y) = z \times x + z \times y$ and $(x+y) \times z = x \times z + y \times z$ for any given x, y, z.

We typically write xy for $x \times y$.

In a ring R, if 1=0, then R has only one elements, it is trivial and called **zero ring**. Denoted zero ring by 0.

Suppose R be a ring. R is commutative if for any $x, y \in R$, xy = yx. Rings mentioned in this notes will always be commutative other assumption.

Definition 1.2. Let A and B be two rings. 1_A and 1_B are their identities. A ring homomorphism from A to B is a map $f: A \to B$, which preserves both addition and multiplication structure, that means, for any $x, y \in A$

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$
$$f(1_A) = 1_B$$

Suppose $f: A \to B$ be a ring homomorphism. We have $f(0_A) = f(1_A - 1_A) = f(1_A) - f(1_A) - f(1_A) = f(1_A) - f(1_A) - f(1_A) = f(1_A) - f(1_A)$ $1_B - 1_B = 0_B.$

- (1) If f is surjective as map, then f is called surjective homomorphism.
- (2) If f is injective as map, then f is called injective homomorphism.

Definition 1.3. An **isomorphism** between two rings A and B is a ring homomorphism $f: A \to B$ such that there is another ring homomorphism $g: B \to A$ satisfying

$$f \circ g = \mathrm{id}_B \quad g \circ f = \mathrm{id}_A$$

Remark 1.1. f is isomorphism if and only if f is both surjective and injective as ring homomorphism.

Proof. If f is isomorphism, then f(x) = f(y) implies g(f(x)) = g(f(y)). But $g \circ f = \mathrm{id}_A$, so x = y. Hence f is injective. For any $b \in B$, $b = f \circ g(b)$ since $f \circ g = \mathrm{id}_B$. Let a = g(b), b = f(a). That means f is surjective.

If f is both injective and surjective homomorphism, then we only need to check if f^{-1} is ring homomorphism. $f(f^{-1}(b_1 + b_2)) = b_1 + b_2 = f \circ f^{-1}(b_1) + f \circ f^{-1}(b_2) = f(f^{-1}(b_1) + f^{-1}(b_2)).$ Since f is surjective, $f^{-1}(b_1 + b_2) = f^{-1}(b_1) + f^{-1}(b_2).$ Similarly, $f^{-1}(b_1b_2) = f^{-1}(b_1)f^{-1}(b_2).$

Similarly,
$$f^{-1}(b_1b_2) = f^{-1}(b_1)f^{-1}(b_2)$$
.

It is not always true in arbitrary category (**Top**, **Sch**/k, **Mod**_k, etc).

If two rings are isomorphic, then we view them as same object in ring category.

Definition 1.4. Let R be a ring. We call $i: \tilde{R} \to R$ is a subring if i is injective ring homomorphism, written as $R \subset R$

Remark 1.2. The definition of subring in "Atiyah& MacDonald" is not exact since it doesn't require \hat{R} to be even a ring.

Remark 1.3. $i(\tilde{R}) \simeq \tilde{R}$, so \tilde{R} can be viewed as $i(\tilde{R})$ whose elements are in R.

Definition 1.5. Let R be a ring, I be an additive subgroup of R. I is called an **ideal** of R if for any $r \in R$

$$rI := \{ra|a \in I\} \subset I$$

 $Ir := \{ar|a \in I\} \subset I$

Since R is commutative, Ir = rI. We only need to check one of them. If I is ideal of R, then we denote the fact by $I \triangleleft R$.

An ideal $\mathfrak{p} \triangleleft R$ is called **prime ideal** if $xy \in \mathfrak{p}$ implies either $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$.

An ideal $\mathfrak{m} \triangleleft R$ is called **maximal ideal** if $\mathfrak{m} \neq (1)$ and if there is no ideal I such that $m \subsetneq I \subsetneq (1)$.

$$Ideal(R) := \{ ideals \text{ of } R \}$$

Let $\varphi: A \to B$ be a ring homomorphism. Then there is induced map

$$\varphi^{\#}: \operatorname{Ideal}(B) \to \operatorname{Ideal}(A)$$

$$\mathfrak{b} \mapsto \varphi^{-1}(\mathfrak{b})$$

For any $x, y \in \varphi^{-1}(\mathfrak{b}), \varphi(x+y) = \varphi(x) + \varphi(y) \in \mathfrak{b}, \varphi(ax) = \varphi(a)\varphi(x) \in \mathfrak{b}$ implies that $ax \in \varphi^{-1}(b)$. Hence $\varphi^{-1}(\mathfrak{b}) \in \text{Ideal}(A)$. Furthermore, it can be checked that $\varphi^{\#}$ is map from Spec B to Spec A.

$$\ker \varphi := \left\{ a \in A | \varphi(a) = 0 \right\} = \varphi^{-1}((0))$$

If $a_0 \in \ker \varphi$, then for any $a \in A$, $\varphi(aa_0) = \varphi(a)\varphi(a_0) = 0$, so $aa_0 \in \ker \varphi$. Hence $\ker \varphi \in \operatorname{Ideal}(A)$. Since 0 is contained in any ideals, $\varphi^{\#}(\mathfrak{b}) = \varphi^{-1}(\mathfrak{b}) \supset \ker \varphi$

Lemma 1.1. Let $I \triangleleft R$. Relation such that \sim_I on R defined as $x \sim_I y$ if and only if $x - y \in I$ is a equivalence relation.

Proof. (1)
$$x - x = 0 \in I \Rightarrow x \sim_I x$$

- (2) $x y \in I \Rightarrow y x = -(x y) \in I \Rightarrow y \sim_I x$
- (3) $x \sim_I y, y \sim_I z \Rightarrow x y \in I, y z \in I \Rightarrow x z = (x y) + (y z) \in I \Rightarrow x \sim_I z$.

Definition 1.6. Let I be a ring

$$R/I := (R/\sim_I, \times, +)$$

$$\bar{x} + \bar{y} = \overline{x+y}$$

$$\bar{x} \times \bar{y} = \overline{xy}$$

is called quotient ring of R by ideal I.

Remark 1.4. It is easy to check R/I is well defined

$$\varphi:R\to R/I$$

$$r\mapsto \bar{r}$$

 $\varphi(r_1 + r_2) = \overline{r_1 + r_2} = \bar{r_1} + \bar{r_2} = \varphi(r_1) + \varphi(r_2), \ \varphi(r_1 r_2) = \overline{r_1 r_2} = \bar{r_1} \bar{r_2} = \varphi(r_1) \varphi(r_2) \text{ and } \overline{1_R} \bar{r} = \overline{r_1} \bar{r_2} = \overline{r_1} \bar{r$ $\overline{1_R r} = \overline{r}$, so $\varphi(1_R) = \overline{1_R}$ is identity of R/I. Hence φ is ring homomorphism.

FACT:

- (1) $\ker \varphi = I$;
- (2) φ is surjective;
- (3) $\varphi^{\#}$ is injective. If $\varphi^{\#}(\bar{\alpha}) = \varphi^{\#}(\bar{\beta})$, then $\varphi^{-1}(\bar{\alpha}) = \varphi^{-1}(\bar{\beta})$. φ is surjective so $\bar{\alpha} = \bar{\beta}$.

- (4) If $\ker \varphi \subset I \lhd R$, then for any $\bar{i} \in \varphi(I)$, $\bar{r}\bar{i} = \overline{ri} = \varphi(ri)$ and $\varphi(I)$ is additive subgroup of R/I, $\varphi(I) \in \operatorname{Ideal}(R/I)$. φ is surjective, so $I = \varphi^{-1}(\varphi(I)) = \varphi^{\#}(\varphi(I))$.
- (3) and (4) implies following proposition.

Proposition 1.2. $\varphi^{\#}$ is one-to-one correspondence between Ideal(B/I) and set of ideals contain I in R.

Definition 1.7. Let R be a ring.

- (1) $x \in R$ is called **zero divisor** if there is $r \in R, r \neq 0$ such that rx = 0.
- (2) $x \in R$ is called **nilpotent element** if $x^n = 0$ for some n > 0.
- (3) $x \in R$ is an **unit** of R if x has inverse under multiplication.
- (4) If R has no zero divisors except 0, then R is called **integral domain**.

Remark 1.5. A nilpotent element in a ring is always zero divisor since $xx^{n-1} = 0$. If x is a unit in R, then x is not a zero divisor. Conversely, it is not always true.

Definition 1.8. A **principal ideal** of R is an ideal that can be generated by one element, written as (x), where x is the generator.

For simple example, $(3,6) \triangleleft \mathbb{Z}$ is principal ideal generated by 6. R itself is also a principal ideal since it can be generated by 1, written as (1).

Let $I_1 \triangleleft R, I_2 \triangleleft R$. We give following serveral constructions of ideals

$$\begin{split} I_1 \cdot I_2 &= \{xy \in R | x \in I_1, y \in I_2\} &\quad \prod_{i=1}^n I_i = \{x_1x_2 \cdots x_n \in R | x_i \in I_i\} \\ I_1 + I_2 &= \{x + y | x \in I_1, y \in I_2\} &\quad \sum_{\alpha} I_{\alpha} = \{\sum_{\alpha} x_{\alpha} | x_{\alpha} \in I_{\alpha} \text{ and only finite } x_{\alpha} \text{ are not zero}\} \end{split}$$

 $I_1 \cap I_2$ is obviously an ideal since $\forall x, y \in I_1 \cap I_2, r \in R, xr \in I_1 \cap I_2$ and $x + y \in I_1 \cap I_2$.

Examples 1.6. Let $A = \mathbb{Z}$, (m), (n) two principal ideal generated by m and n.

- (m) + (n) = ((m, n)) is generated by (m, n), the g.c.d of m and n
- $(m) \cdot (n) = (m \cdot n)$
- $(m) \cap (n) = ([m, n])$ is generated by [m, n], the l.c.d of m and n.
- If (m, n) = 1, then (m) + (n) = (1), $(m)(n) = (m) \cap (n)$.

Let $I \triangleleft R, x \in R$. (x, I) is ideal generated by x and elements of I. Since (x) + I is minimal ideal contains both x and elements of I, (x) + I = (x, I).

Definition 1.9. If $I_1 \triangleleft R$, $I_2 \triangleleft R$. I_1 and I_2 are called coprime if $I_1 + I_2 = (1)$.

Proposition 1.3. If $I_1 \triangleleft R$, $I_2 \triangleleft R$ are coprime, then $I_1 \cdot I_2 = I_1 \cap I_2$.

Proof. By definition, $I_1 \cdot I_2 \subseteq I_1 \cap I_2$. Let $x \in I_1 \cap I_2$, x can be represented by $x = ar_1 + br_2$, where $a \in I_1, b \in I_2$. Hence $x \in I_1 \cdot I_2 = I_1 \cap I_2$.

Definition 1.10. Let A_{α} be a family of rings. Their **direct product** is defined as object $\prod_{\alpha} A_{\alpha}$ in **Rings** satisfying following universal property

If α is finite, then elements of $\prod_{\alpha} A_{\alpha}$ can be written as $(x_1, \dots, x_n), x_i \in A_i$ for some n.

$$(x_1, \dots, x_n) \cdot (x'_1, \dots, x'_n) = (x_1 x'_1, \dots, x_n x'_n)$$
$$(x_1, \dots, x_n) + (x'_1, \dots, x'_n) = (x_1 + x'_1, \dots, x_n + x'_n)$$
$$1 = (1_{A_1}, \dots, 1_{A_n})$$

Let A be a ring and $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ ideals of A. Define a homomorphism

$$\phi:A\to\prod_{i=1}^n(A/\mathfrak{a}_i)$$

by rules $\phi(x) = (x + \mathfrak{a}_1, \cdots, x + \mathfrak{a}_n)$.

Proposition 1.4 (??). (1) If $\mathfrak{a}_i, \mathfrak{a}_j$ are coprime whenever $i \neq j$, then $\prod_i \mathfrak{a}_i = \bigcap_i \mathfrak{a}_i$;

- (2) ϕ is surjective $\Leftrightarrow \mathfrak{a}_i, \mathfrak{a}_j$ are coprime whenever $i \neq j$;
- (3) ϕ is injective $\Leftrightarrow \bigcap_i \mathfrak{a}_i = (0)$.

Proof. (1) By 1.3 the case n=2 is proved. Assume it is true when n=k. When n=k+1, since \mathfrak{a}_i and \mathfrak{a}_{k+1} are coprime for $1 \leq i \leq k$, $\mathfrak{a}_i + \mathfrak{a}_{k+1} = (1)$. It implies that $x_i + y_i = 1$ for some $x_i \in \mathfrak{a}_i, y_i \in \mathfrak{a}_{k+1}, 1 \leq i \leq k$

$$\prod_{i=1}^{k} x_i = 1 \text{ in } A/\mathfrak{a}_{k+1}$$

that means $\prod_{i=1}^k x_i + x_{k+1} = 1$ for some $x_n \in \mathfrak{a}_{k+1}$ in R. Hence $\prod_{i=1}^k \mathfrak{a}_i$ and \mathfrak{a}_{k+1} are coprime. Then

$$\prod_{i=1}^{k+1}\mathfrak{a}_i=(\prod_{i=1}^k\mathfrak{a}_i)\cdot\mathfrak{a}_k=(\bigcap_{i=1}^k\mathfrak{a}_i)\cap\mathfrak{a}_{k+1}=\bigcap_{i=1}^{k+1}\mathfrak{a}_i$$

by induction.

(2) If ϕ is surjective, then there exists $x \in A$ such that $\phi(x) = (\delta_1^i, \dots, \delta_n^i)$. Hence $x \equiv 1$ $\operatorname{mod} \mathfrak{a}_i, x \equiv 0 \operatorname{mod} \mathfrak{a}_j$ whenever $i \neq j$. So

$$(1-x) + x = 1$$

where $1 - x \in \mathfrak{a}_i, x \in \mathfrak{a}_j$. Hence \mathfrak{a}_i and \mathfrak{a}_j are coprime.

Since $\prod_{i=1}^n (A/\mathfrak{a}_i)$ can be linear represented by $(\delta_j^i)_{j=1}^n, 1 \leq i \leq n$, it is enough to show for any $(\delta_j^i)_{j=1}^n$, there is $x_i \in R$ such that $\phi(x_i) = (\delta_j^i)_{j=1}^n$.

Since \mathfrak{a}_i and \mathfrak{a}_j are coprime for all $j \neq i$, there are equations $x_j + x_i = 1, x_j \in \mathfrak{a}_j, y_j \in \mathfrak{a}_i$

$$\prod_{j \neq i} x_j \equiv 0 \mod \mathfrak{a}_i$$

$$\prod_{j \neq i} x_j \equiv 0 \mod \mathfrak{a}_i$$

$$\prod_{j \neq i} x_j = \prod_{j \neq i} (1 - y_j) \equiv 1 \mod \mathfrak{a}_j$$

whenever $i \neq j$. Hence $\phi(\prod_{j \neq i} x_j) = (\delta_j^i)_{j=1}^n$.

(3) $\phi(x) = 0$ means that $x \in \mathfrak{a}_i$ for all $1 \le i \le n$. Hence it is equivalent to $x \in \bigcap_{i=1}^n \mathfrak{a}_i$. Hence ϕ is injective $\Leftrightarrow \ker \phi = (0) \Leftrightarrow \bigcap_{i=1}^n \mathfrak{a}_i = 0.$

Following are equivalent criteria for primes ideals and maximal ideals

Proposition 1.5. Let R be a ring.

- (1) $\mathfrak{p} \triangleleft R$ is prime ideal if and only if R/\mathfrak{p} is integral domain.
- (2) $\mathfrak{m} \triangleleft R$ is maximal ideal if and only if R/m is a field.

(1) Let $\mathfrak{p} \triangleleft R$ be a prime ideal. For any $x, y \in R$, $\bar{x}, \bar{y} = \bar{0}$ is equivalent to $xy \in \mathfrak{p}$. But $xy \in \mathfrak{p}$ implies that either $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$, equivalently, $\bar{x} = 0$ or $\bar{y} = 0$. This shows that R/\mathfrak{p} is integral domain.

Conversely, if R/\mathfrak{p} is integral domain, then for any $x,y\in R$ such that $xy\in \mathfrak{p}, \ \bar{x}\bar{y}=\bar{0}$ in R/\mathfrak{p} , we have $\bar{x}=\bar{0}$ or $\bar{y}=\bar{0}$. That means $x\in \mathfrak{p}$ or $y\in \mathfrak{p}$. Hence we can conclude the equivalence.

(2) Let $\mathfrak{m} \triangleleft R$ be a maximal ideal. If $\bar{x} \in R/\mathfrak{m}, \bar{x} \neq \bar{0}$, then $x \notin \mathfrak{m}$. Since \mathfrak{m} is maximal, $m \subsetneq (\mathfrak{m}, x) \subset (1)$ implies that $(\mathfrak{m}, x) = (1)$. That means, there exists $y \in R$ such that xy + m = 1 for some $m \in \mathfrak{m}$. Obviously, $y \notin m$, so $\bar{x}\bar{y} = \bar{1}$ in R/\mathfrak{m} . Hence each non-zero element in R/\mathfrak{m} is unit. Hence R/\mathfrak{m} is a field.

Conversely, if R/\mathfrak{m} is a field, then $\bar{x} \in R/\mathfrak{m}, \bar{x} \neq 0$ is unit. But $\bar{x} \neq \bar{0}$ is equivalent to $x \notin \mathfrak{m}$ and \bar{x} is unit R/\mathfrak{m} if and only if x is unit in R. So $(\mathfrak{m}, x) = (1)$ if $x \notin \mathfrak{m}$. Hence \mathfrak{m} is maximal. The proof is complete.

Theorem 1.6 (Krull's theorem). If R is a ring and $R \neq 0$, then R has at least one maximal ideal.

Proof. Since $R \neq 0$, $(0) \in \text{Ideal}(R)$ and $(0) \neq (1)$. We can order $\sum = \text{Ideal}(R) - \{(1)\}$ by inclusion $(I_1 \leq I_2)$ iff $I_1 \subseteq I_2$. Suppose $\{I_\alpha\}$ be a chain in \sum , i.e. $\forall I_\alpha, I_\beta \in \{I_\alpha\}$, $I_\alpha \leq I_\beta$ or $I_\beta \leq I_\alpha$. Denote $\bigcup_\alpha I_\alpha$ by I. I is obviously an ideal and $1 \notin I$ since for each $\alpha, 1 \notin I_\alpha$. Hence $I \in \sum$ and I is upper bound of $\{I_\alpha\}$. By Zorn's lemma, \sum has at least one maximal element, it is an maximal ideal in R by definition.

Corollary 1.7. Let R be ring. If $I \triangleleft R$ and $I \neq (1)$, then I is contained in one maximal ideal.

Proof. $R/I \neq 0$. By Krull's theorem, R/I has at least one maximal ideal $\bar{\mathfrak{m}}$. Then $\varphi^{\#}(\bar{\mathfrak{m}})$ is maximal ideal which contain I since $\varphi^{\#}$ induce one-to-one correspondence between $\sum_{R/I}$ and set of non-trivial ideals which contain I and $\varphi^{\#}$ preserves order.

Corollary 1.8. Any non-unit in R is contained in a maximal ideal.

Definition 1.11. A ring with only one maximal ideal \mathfrak{m} is called a local ring with maximal ideal \mathfrak{m} . Suppose (R,\mathfrak{m}) be a local ring with maximal ideal \mathfrak{m} . R/\mathfrak{m} is called residue field of R.

Proposition 1.9 (??). (i) Let A be a ring and $\mathfrak{m} \neq (1)$ and ideal of A such that every $x \in A - \mathfrak{m}$ is a unit in A. Then A is local ring and \mathfrak{m} its maximal ideal.

- (ii) Let A be a ring and \mathfrak{m} a maximal ideal of A, such that every element of $1 + \mathfrak{m}$ is a unit. Then A is a local ring.
- *Proof.* (i) Since elements in $A \mathfrak{m}$ are all units and every ideal not equal to (1) contains non-unit, all maximal ideals are contained in \mathfrak{m} . Hence \mathfrak{m} is maximal ideal and the only one.
- (ii) Let $x \in A \mathfrak{m}$. Since \mathfrak{m} is maximal, $(\mathfrak{m}, x) = (1)$. That means there exist $y \in A$ and $m \in \mathfrak{m}$ such that xy + m = 1. Hence xy = 1 m is unit by hypothesis so is x. Hence A is local ring by (i).

Definition 1.12. Let R be a ring.

$$\operatorname{Rad}(R) = \{ r \in R | r \text{ is nilpotent} \}$$

is called nilradical of R or simply radical of R.

$$\mathbf{JRad}(R) = \{r \in R | \forall y \in R, 1 - ry \text{ is unit} \}$$

is called Jacobson radical of R.

Proposition 1.10. Rad(R) is intersection of all prime ideals of R; JRad(R) is intersection of all maximal ideals of R.

Proof. If $\mathfrak{p} \triangleleft R$ is prime, then R/\mathfrak{p} is integral. Hence every $x \notin \mathfrak{p}$ is not nilpotent otherwise \bar{x} in R/\mathfrak{p} is also nilpotent. Hence

$$\mathbf{Rad}(R) \subseteq \bigcap_{\mathfrak{p} \lhd R \text{ is prime}} \mathfrak{p}$$

If x is not nilpotent, then we need to prove that there is prime ideal does not contian x. Let $S = \{1, x, x^2, \dots\}$ and \sum be the set of ideals that disjoint with S. Since $(0) \in \sum$ and \sum is ordered

by inclusion, by Zorn's lemma \sum has maximal element, denote it by \mathfrak{p} . We need to prove \mathfrak{p} is a prime ideal.

Let $a \notin \mathfrak{p}, b \notin \mathfrak{p}$. (a, \mathfrak{p}) and (b, \mathfrak{p}) are not elements in \sum since \mathfrak{p} is maximal. That means there exist $m, n \geq 0$ such that $x^m \in (a, \mathfrak{p}), x^n \in (b, \mathfrak{p})$. It implies

$$x^m = r_1 a + p_1, x^n = r_2 b + p_2 \quad r_1, r_2 \in R$$

Hence $x^{m+n} = r_1 r_2 ab + (r_2 b p_1 + r_1 a p_1 + p_1 p_2) \in (ab, \mathfrak{p})$. Hence $(ab, \mathfrak{p}) \in \sum$ and therefore $ab \in \mathfrak{p}$. Hence \mathfrak{p} is prime ideal and $x \in \mathfrak{p}$.

Let $x \in R$. If there is $y \in R$ such that 1 - xy is not unit, then there is a maximal \mathfrak{m} . Hence

$$x \notin \bigcap_{\mathfrak{m} \lhd R \text{ is maximal}} \mathfrak{m}$$

If $x \in \mathfrak{m}$ for some maximal ideal \mathfrak{m} , then $(x,\mathfrak{m}) = (1)$. That means 1 = rx + m for some $r \in R, m \in \mathfrak{m}$. Hence $1 - rx \in \mathfrak{m}$ is not unit. Hence $x \notin \mathbf{JRad}(R)$.

Here we will introduce some essential facts about prime ideals that used frequently in algebraic geometry.

Proposition 1.11 (??). (i) Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be prime ideals and α be ideals contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

- (ii) Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ be ideals and let \mathfrak{p} be a prime ideal which contains $\bigcap_{i=1}^n \alpha_i$. Then $\mathfrak{a}_i \subseteq \mathfrak{p}$ for some i. In particular, if $\mathfrak{p} = \bigcap_{i=1}^n \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i.
- *Proof.* (i) When n = 1, it is true obviously.

If it is true that $\mathfrak{a} \nsubseteq \mathfrak{p}_i (1 \le i \le n)$ for some n > 0 can implies $\mathfrak{a} \nsubseteq \bigcup_{i=1}^n \mathfrak{p}_i$, then for given $\mathfrak{p}_1, \mathfrak{p}_2, \cdots, \mathfrak{p}_{n+1}$, if $\mathfrak{a} \nsubseteq \mathfrak{p}_i (1 \le i \le n+1)$, then $\mathfrak{a} \nsubseteq \bigcup_{i \ne j} \mathfrak{p}_i$. So for each $1 \le j \le n$, there is $x_j \in \mathfrak{a}$ such that $x_j \notin \mathfrak{p}_i$ whenever $i \ne j$.

$$y = \sum_{j=1}^{n} x_1 x_2 \cdots \hat{x_j} \cdots x_n$$

Since \mathfrak{p}_j is prime, $x_1x_2\cdots \hat{x_j}\cdots x_n\notin \mathfrak{p}_j$. Hence $y\notin \mathfrak{p}_j$ for all $1\leq j\leq n$. But $y\in \mathfrak{a}$, hence $\mathfrak{a}\nsubseteq \bigcup_{j=1}^n\mathfrak{p}_j$. By induction, it is true for all n>0.

(ii) If $\mathfrak{a}_i \not\subseteq \mathfrak{p}$ for all i, then there are $x_i \in \mathfrak{a}_i$ such that $x_i \notin \mathfrak{p}$ for all i. Since \mathfrak{p} is prime, $x_1, x_2, \dots, x_n \notin \mathfrak{p}$. But $x_1 x_2 \dots x_n \in \prod_{i=1}^n \mathfrak{a}_i \subseteq \bigcap_{i=1}^n \mathfrak{a}_i$. Hence $\bigcap_{i=1}^n \mathfrak{a}_i \not\subseteq \mathfrak{p}$. Hence $\bigcap_{i=1}^n \mathfrak{a}_i \subseteq \mathfrak{p}$ for some i.

If $\bigcap_{i=1}^n \mathfrak{a}_i = \mathfrak{p}$, then $\mathfrak{p} \subseteq \mathfrak{a}_j$ for all j. But $\mathfrak{a}_j \subseteq \mathfrak{p}$, so $\mathfrak{a}_i = \mathfrak{p}$.

Let $I_1 \triangleleft R, I_2 \triangleleft R$.

$$(I_1:I_2):=\big\{r\in R|rI_2\subseteq I_1\big\}$$

Examples 1.7. 1) Let $I \triangleleft R$. $(0:I) = ((0):I) = \operatorname{ann}(I)$ is called **annihilator** of I.

If I = (x) is principal ideal, then $\operatorname{ann}((x))$ is shortly denoted by $\operatorname{ann}(x)$, called **annihilator** of x. If x is non-zerodivisor, then $\operatorname{ann}(x) = 0$.

2) Let $R = \mathbb{Z}$, $I_1 = (m)$, $I_2 = (n)$. $m = \prod_{i=1}^n p_i^{\alpha_i}$, $n = \prod_{i=1}^n p_i^{\beta_i}$ are prime decomposition by p_1, \dots, p_n . Let $\gamma_i = \max\{\alpha_i - \beta_i, 0\}$, then $(I_1 : I_2) = (\prod_{i=1}^n p_i^{\gamma_i})$ and $\prod_{i=1}^n p_i^{\gamma_i} = \frac{m}{(m,n)}$.

Definition 1.13. Let $I \triangleleft R$.

$$\sqrt{I} = \left\{ x \in R | x^n \in I \text{ for some } n \right\}$$

is called radical ideal of I.

Remark 1.8. $\operatorname{Rad}(R) = \sqrt{(0)}$

Proposition 1.12. \sqrt{I} is the intersection of all primes ideals which contains I.

Proof.

$$x \in \sqrt{I}$$

 $\Leftrightarrow \exists n > 0, x^n \in I$
 $\Leftrightarrow \exists n > 0, (\bar{x})^n$ in R/I
 $\Leftrightarrow \bar{x} \in \mathbf{Rad}(R/I)$ is intersection of prime ideals in R/I
 $\Leftrightarrow x = \varphi^{-1}(\bar{x}) \in \varphi^{\#}(\mathbf{Rad}(R/I))$ is intersection of prime ideals which contain I in R

Proposition 1.13. $D = set \ of \ zero-divisors \ of \ A = \bigcup_{x \neq 0} \sqrt{(ann(x))}$

Proof. First,
$$\sqrt{D} = D$$
 since D is prime.
Next, $\sqrt{\cup_{\alpha} E_{\alpha}} = \cup_{\alpha} \sqrt{E_{\alpha}}$ for any family of subset of R Hence $D = \sqrt{D} = \sqrt{\bigcup_{x \neq 0} \operatorname{ann}(x)} = \bigcup_{x \neq 0} \sqrt{\operatorname{ann}(x)}$.