

Projektpräsentation: Bildentrauschung

Gruppe 128: Ashkan Hassani, Aosimanjiang Aihaiti, Konrad Schlüter

Grundlagenpraktikum: Rechnerarchitektur

Technische Universität München

Lehrstuhl für Rechnerarchitektur und Parallele Systeme

Garching, 11. März 2024

Einführung

Das Problem: Bildentrauschung

PPM Bilder mit RGB Farbkanälen

- 24bpp ppm Files
- 3 Farben pro Pixel, 8 Bits für jede Farbe (Rot, Grün, Blau)

PGM Bilder mit Graustufenpixeln

- 8bpp pgm Files
- Gewichteten Durchschnitt der drei Farben

Inhaltsübersicht

- Einführung
- Lösungsansatz
- Implementierung
- Genauigkeit
- Performanz
- Ausblick

Lösungsansatz

Graustufenkonvertierung

• Mittels Luminanzmethode durch gewichteten Durchschnitt

$$D = \frac{a \cdot R + b \cdot G + c \cdot B}{a + b + c}$$
, $a = 0.2126$ $b = 0.7152$ $c = 0.0722$

Faltung

Formel für diskrete 2D Faltung:

$$I^*(x,y) = \sum_{i=1}^n \sum_{j=1}^n I(x-i+a, j-y+a)K(i, j)$$

K := Filter I := Bild

Kantendetektion

Diskrete Laplace Filter:

$$K = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- Identifiziert Stellen mit schnellen Änderungen in der Intensität eines Bildes
- Betont Kanten durch Hervorhebung von Intensitätssprüngen
- Eine Gewichtung, um Kanten von Hintergrund zu trennen

Weichzeichnung

2D Gauß'scher Filter:

$$K = \frac{1}{16} \times \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- Berechnet den Durchschnitt von Pixelwerten in der Umgebung
- Reduziert Rauschen im Bild

Zusammensetzung

• Zusammensetzen des Graustufebildes I mit Ergebnissen von Kantenerkennung I^L und Weichzeichnung I^W :

$$I' = \frac{|I^L|}{1020} \cdot I + (1 - \frac{|I^L|}{1020}) \cdot I^W$$

- An Kanten: stärkere Gewichtung des schärferen Ursprungsbildes
- In glatten Bereichen: Weichzeichung stärker gewichtet
- Resultat: Ausgewogene Rauschreduzierung, Erhaltung wichtiger Details wie Kanten

Implementierung

"Accurate"

- Naive Implementierung
- Höchste Genauigkeit
- SISD

"Accurate"

- Naive Implementierung
- Höchste Genauigkeit
- SISD

"Integer"

- Erste Optimierungen, vor allem durch Ganzzahlarithmetik
- Verringerte Genauigkeit
- Zwei Faltungen in einem Durchlauf
- SISD

..Accurate" "Integer" "SIMD" Naive Implementierung Erste Optimierungen, vor allem Stärkste Optimierung durch **Ganzzahlarithmetik** Höchste Genauigkeit Verringerte Genauigkeit Verringerte Genauigkeit SISD Zwei Faltungen in einem SIMD Durchlauf SISD

Graustufenkonvertierung in SIMD

Laden und Replizieren der Koeffizienten a, b und c auf jeweils eigene 128 bit Registers

- Laden 128Bits Pixel
- Umordnung der geladenen Pixel

- Konvertierung jeder Farbe von 8Bits zu 32Bits und Laden Werte einer Farbe in ein eigenes Register
- Multiplikation jedes Pixelregisters mit zugehörigem Koeffizienten-Register
- Speichern des Ergebnisses

Faltung in SIMD

- Problem:
 - Pixel in 1D Array => Pixel am Anfang der n\u00e4chsten Zeile k\u00f6nnten mitgeladen werden
 - Zugriffe außerhalb des Bildes müssen korrekt behandelt werden
- Lösung: Padding

10	20	30	40	50
50	100	200	250	255
0	30	60	90	120
150	180	210	240	255

		_				
0	0	0	0	0	0	0
0	10	20	30	40	50	0
0	50	100	200	250	255	0
0	0	30	60	90	120	0
0	0 150	30 180	60	90 240	120 255	0

x0y0	0	0	0	0	0	0	0	0
x0y1	0	10	20	30	40	50	0	0
x0y2	0	50	100	200	250	255	0	0
x1y0	0	0	0	0	0	0	0	10
x1y1	10	20	30	40	50	0	0	50
x1y2	50	100	200	250	255	0	0	0
x2y0	0	0	0	0	0	0	10	20
x2y1	20	30	40	50	0	0	50	100
x2y2	100	200	250	255	0	0	0	30

x0y0	0	0	0	0	0	0	0	0
x0y1	0	20	40	60	80	100	0	0
x0y2	0	50	100	200	250	255	0	0

x1y0	0	0	0	0	0	0	0	20
x1y1	40	80	120	160	200	0	0	200
x1y2	100	200	400	500	510	0	0	0

x2y0	0	0	0	0	0	0	10	20
x2y1	40	60	80	100	0	0	100	200
x2y2	100	200	250	255	0	0	0	30
Sum	280	610	990	1275	1040	355	110	470

	12/5	1040	355	110	470
17 38 61	79	65	22	6	29

0	0	0	0	0	0	0
0	17	38	61	79	65	22
6	29	68	116	151	124	:
	46	88	129	163	135	
	61	97	120	140	114	0
0	0	0	0	0	0	0

17	38	61	79	65
29	68	116	151	124
46	88	129	163	135
61	97	120	140	114

Genauigkeit

ТШП

ПШ

Auswirkungen der Ungenauigkeiten in Integer und SIMD

Accurate Integer SIMD

Ergebnis

Ergebnis

Performanz

Gruppe 128 | Ashkan Hassani, Aosimanjiang Aihaiti, Konrad Schlüter

Gruppe 128 | Ashkan Hassani, Aosimanjiang Aihaiti, Konrad Schlüter

convolution

SIMD

Ausblick

Wie sinnvoll ist die Optimierung?

Wie sinnvoll ist die Optimierung?

Der Pinguin dankt für ihre Aufmerksamkeit

