Студент	
Группа	
Дата	

Лабораторная работа № 7

РАСТВОРЫ ЭЛЕКТРОЛИТОВ, часть 1

Цель работы:

Опыт 1. Зависимость электропроводности растворов от степени диссоциации электролитов

<u>Основные понятия</u>: электролитическая диссоциация, сильный электролит, слабый электролит, степень диссоциации, электропроводность растворов электролитов

Таблица 1. Результаты измерений электропроводности

Электролит	Уравнение диссоциации	Концентрация раствора C , моль/л	Показания амперметра	Сила тока <i>I</i> , мА	Сила электролита
HCl		0,1			
CH ₃ COOH		0,1			
NaOH		0,1			
NH ₄ OH		0,1			

Выводы: (отмечают связь величины электропроводности растворов электролитов со степенью диссоциации электролита)

Опыт 2. Зависимость электропроводности раствора от концентрации сильного электролита

Электролит: H_2SO_4

Уравнение диссоциации:

Таблица 2. Результаты измерений электропроводности растворов H₂SO₄

Концентрация	Показания	Сила тока	Концентрация	Показания	Сила тока
раствора ω, %	амперметра	<i>I</i> , мА	раствора ω, %	амперметра	<i>I</i> , мА
10			60		
20			70		
30			80		
40			90		
50					

Выводы: (объясняют вид зависимости $I = f(\omega)$, учитывая, что H_2SO_4 – сильный электролит)

Опыт 3. *Определение и сравнение* pH *растворов сильных и слабых электролитов*. Подавление диссоциации уксусной кислоты

<u>Основные понятия</u>: водородный показатель pH, гидроксидный показатель pOH, связь между ними, степень диссоциации.

Основные законы: закон разбавления Оствальда для бинарного слабого электролита

Расчетные формулы: для кислот:
$$\alpha = \frac{[{\rm H}^+]}{C} = \frac{10^{-{\rm pH}}}{C}$$
; для оснований $\alpha = \frac{[{\rm OH}^-]}{C} = \frac{10^{{\rm pH}\cdot 14}}{C}$

Таблица 3. Цвет универсального индикатора (раствора или бумаги)

рН	Цвет	рН	Цвет
13	Красный	8	Бирюзовый
4,5	Оранжевый	9,10	Голубой
6	Желтый	1113	Фиолетовый
7	Зеленый		

Таблица 4. Результаты измерения рН и расчета степени диссоциации электролита

Электролит	Уравнение диссоциации	Концентрация раствора C , моль/л	рН	Степень диссоциации α
HCl		0,1		
CH ₃ COOH		0,1		

Расчеты:

Таблица 5. Подавление диссоциации уксусной кислоты

Реагенты	Сила электролита	Уравнения диссоциации	рН нач	рН итог	ΔрН
CH₃COOH	Слабый электролит				
CH ₃ COONa	Сильный электролит				

Выводы: (сравнивают pH и степень диссоциации соответствующих кислот и оснований; записывают выражения констант кислотности или основности для слабых электролитов; объясняют причину изменения pH кислоты при добавлении к ней сильного электролита)