Logic Design Process

ENCE260: Computer Architecture Topic 6

Recap

- We can combine logic variables together using AND, OR and NOT gates to create new devices.
- But how do we know the logic circuits we design are *correct* and *optimal*?

Challenge

 Design, optimise and verify (combinational) logic circuits to perform arbitrary functions.

unsplash.com

Combinational Logic

Combinational Logic Design Process

- 1. Define the function using a truth table
- 2. Convert the truth table to a **Boolean expression**
- 3. Simplify the expression
- 4. Verify the expression using a Karnaugh map
- 5. Map Boolean operators to logic gates

Combinational Logic Design Process

- 1. Define the function using a truth table
- 2. Convert the truth table to a Boolean expression
- 3. Simplify the expression
- 4. Verify the expression using a Karnaugh map
- 5. Map Boolean operators to logic gates

Truth Table

	In	puts	Output
	a b		AND(a,b)
•	0	0	0
	0	1	0
	1	0	0
	1	1	1

Every possible

combination

of input values

Truth Table

Truth Table

- We can think of the truth table as a
 dictionary or lookup table for finding an
 output value based on the input values.
- In fact, we can implement the AND(a,b)
 Boolean function in Python using a dict data structure.

Fundamental Functions

AND
$$f(a,b) = a \cdot b$$
 $\begin{bmatrix} a & b & a \cdot b \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

OR
$$f(a,b) = a + b$$
 $\begin{bmatrix} a & b & a+b \\ 0 & 0 & 0 \\ 0 & I & I \\ I & 0 & I \\ I & I & I \end{bmatrix}$

Combinational Logic Design Process

- 1. Define the function using a truth table
- 2. Convert the truth table to a **Boolean expression**
- 3. Simplify the expression
- 4. Verify the expression using a Karnaugh map
- 5. Map Boolean operators to logic gates

Truth Table to Expression

				-	
	a	b	С	f(a,b,c)	
,	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
	0	1	1	0	
	1	0	0	0	
	1	0	1	1	$f(a,b,c) = a\overline{b}c$
	1	1	0	0	
	1	1	1	0	
				1	

A More Complex Example

a	b	С	z	
0	0	0	0	z =
0	0	1	1	$\overline{a}\overline{b}c$
0	1	0	0	+
0	1	1	0	<u>.</u>
1	0	0	1	$a \overline{b} \overline{c}$
1	0	1	1	+ 1
1	1	0	0	$a\overline{b}c$
1	1	1	1	a b c

Truth Table to Expression

- We look for rows in the truth table where the output is 1.
- We then write down the specific combination of inputs for each row where the output is 1.
- For functions with multiple rows giving a 1 output, we OR the input combinations together to create a *Sum-of-Products* expression.
- Finally, we simplify the SoP expression to allow an efficient logic gate implementation.

Aside: Minterms

• A *minterm* is an AND of all inputs (or their inverses).

term	minterm?
abc	
$\overline{a}bc$	
$\overline{a}b$	
b	
a(b+c)	

Aside: Minterms

• A *minterm* is an AND of all inputs (or their inverses).

term	minterm?
abc	
$\overline{a}bc$	
$\overline{a}b$	X
b	X
a(b+c)	×

Aside: Minterms

- A *minterm* is an AND of all inputs (or their inverses).
- Combining minterms gives us a *sum-of-products* (or-of-ands) form of the function.
- Also called *sum-of-minterms* or *minterm canonical form*.

Combinational Logic Design Process

- 1. Define the function using a truth table
- 2. Convert the truth table to a **Boolean expression**
- 3. Simplify the expression
- 4. Verify the expression using a Karnaugh map
- 5. Map Boolean operators to logic gates

Truth Table Simplification

	a	b	С	$a \overline{b}$	a c	$\overline{b} c$	$a\overline{b} + ac + \overline{b}c$	z
_	0	0	0	0	0	0	0	0
	0	0	1	0	0	1	1	1
	0	1	0	0	0	0	0	0
	0	1	1	0	0	0	0	0
	1	0	0	1	0	0	1	1
	1	0	1	1	1	1	1	1
	1	1	0	0	0	0	0	0
	1	1	1	0	1	0	1	1

Truth Table Simplification

$$\overline{a}\,\overline{b}\,c + a\,\overline{b}\,\overline{c} + a\,\overline{b}\,c + a\,b\,c$$

$$a\overline{b} + ac + \overline{b}c$$

Truth Table Simplification

- Our first definition for *z* had groups of three terms AND'd together.
- Looking at products (i.e. ANDs) of two variables reveals a way to simplify the expression for *z*.
- Can we do this simplification in a systematic way?

Algebraic Simplification

 We can pair minterms together and apply the Distributive, Or-Complement, and Identity rules:

$$a \, \overline{b} \, \overline{c} + a \, \overline{b} \, c = a \, \overline{b} (\overline{c} + c) = a \, \overline{b}$$

$$a \, \overline{b} \, c + a \, b \, c = a (\overline{b} + b) c = a \, c$$

$$\overline{a} \, \overline{b} \, c + a \, \overline{b} \, c = (\overline{a} + a) \overline{b} \, c = \overline{b} \, c$$

• Note that we can use the same minterms multiple times, thanks to idempotence (a + a = a).

Algebraic Simplification

Identity	$a \cdot 1 = a \text{ and } a + 0 = a$
Annihilation	$a \cdot 0 = 0$ and $a + 1 = 1$
Or-Complement	$a + \overline{a} = 1$
And-Complement	$a \cdot \overline{a} = 0$
Associative	a + (b + c) = (a + b) + c, a(bc) = (ab)c
Commutative	a+b=b+a, $ab=ba$
Distributive	$a(b+c) = ab + ac, \qquad a + (bc) = (a+b) \cdot (a+c)$
Double Negation	$\overline{\overline{a}} = a$
Absorption	$a + (a \cdot b) = a$ and $a \cdot (a + b) = a$
Idempotence	$a + a = a$ and $a \cdot a = a$
De Morgan's Laws	$\overline{a+b} = \overline{a} \cdot \overline{b}$
	$\overline{a \cdot b} = \overline{a} + \overline{b}$

Example

```
y = \overline{a}\,\overline{b}\,c + a\,\overline{b}\,\overline{c} + a\,\overline{b}\,c + a\,b\,\overline{c}
= \overline{a}\,\overline{b}\,c + a\,\overline{b}\,c + a\,\overline{c}\,\overline{b} + a\,\overline{c}\,b \quad [Commutative]
= (\overline{a} + a)\overline{b}\,c + a\,\overline{c}(\overline{b} + b) \quad [Distributive]
= 1 \cdot \overline{b}\,c + a\,\overline{c} \cdot 1 \quad [OrComplement]
= \overline{b}\,c + a\,\overline{c} \quad [Identity]
```

"Don't Care" Inputs

b	С	y
0	0	1
0	1	0
1	0	0
1	1	1
0	0	1
0	1	1
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 1 1 1 0 0 0 1 1 1 0

a	b	С	y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	X	X	1

"Don't Care" Inputs

- In some truth tables we can see that the output is *the same* regardless of the value a particular input takes.
- In these situations we can simplify the truth table by marking the inputs as "don't care" (× instead of 0 or 1).
- This is the same as performing an algebraic simplification.

Combinational Logic Design Process

- 1. Define the function using a truth table
- 2. Convert the truth table to a **Boolean expression**
- 3. Simplify the expression
- 4. Verify the expression using a Karnaugh map
- 5. Map Boolean operators to logic gates

Karnaugh Maps

Karnaugh Maps

$$f(a,b,c,d) = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}\overline{b}c\overline{d} + \overline{a}b\overline{c}d + \overline{a}b\overline{c}d + \overline{a}bc\overline{d} + \overline{a}bc\overline{d} + a\overline{b}c\overline{d} + abc\overline{d}$$

f	$\overline{a}\overline{b}$	$\overline{a}b$	ab	$a\overline{b}$
$\bar{c}\bar{d}$	1	О	O	О
<u></u> c d	O	1	О	О
cd	О	1	О	О
cd	1	1	1	1

$$f(a,b,c,d)$$

$$= c\overline{d} + \overline{a}bd + \overline{a}\overline{b}\overline{d}$$

Karnaugh Maps

- K-maps help us to simplify logical expressions of up to four variables.
- (Horizontally and vertically, but not diagonally) neighbouring cells differ by only a single variable.
- Each cell in the K-map corresponds to a single minterm, which may or may not be part of the function.
- Groups of (Horizontal or Vertical, not Diagonal) neighbouring 1's in the K-map are combined to give expressions in the simplified function.
- NB: Group size is always a power of 2, e.g. 2, 4, 8, 16 etc.
- Groups can overlap and wrap around the boundaries of the K-map.

Combinational Logic Design Process

- 1. Define the function using a truth table
- 2. Convert the truth table to a **Boolean expression**
- 3. Simplify the expression
- 4. Verify the expression using a Karnaugh map
- 5. Map Boolean operators to logic gates

Logic Gates

Curved back \supset OR

Triangle -> Buffer

Double curved \Rightarrow XOR back

XOR Gate

8/08/21

Inp	outs	Output
а	b	XOR(a,b)
0	0	0
0	1	1
1	0	1
1	1	0

$$r(a,b) = \overline{ab} \cdot (a+b)$$
 $1 \quad 1$
 $= (\overline{a} + \overline{b}) \cdot (a+b)$ [De Morgan]
 $= \overline{aa} + \overline{ba} + \overline{ab} + \overline{bb}$ [Distributive]
 $= a\overline{b} + \overline{ab}$ [AndComplement]

Logic Gates

Gates can have more than two inputs:

Converting Expressions to Logic Circuits

- Boolean expressions can be thought of as a "tree" of operations, each combining values from lower down the "tree":
- The shape of this logic tree gives us the shape of our logic circuit:

Logic Gate Mapping

•
$$f = a\overline{b} + ac + bc$$

Design Process

We can speed up the design process by reusing common circuit blocks to create hierarchical designs.

 For example, we can use two half-adders and an OR gate to make a full adder.

Summary

- Follow the *design process* (truth table →
 boolean expression → digital logic circuit) to
 realise a wide range of *combinational* logic
 circuits.
- Use *Karnaugh maps* to simplify your designs and check their accuracy.
- Reuse logic blocks to build *hierarchical* combinational logic circuits.