What is an AVL Tree?

An AVL Tree is a self-balancing binary search tree (BST) where:

- 1. The difference in height between the **left** and **right** subtrees of any node is at most 1.
- 2. If the height balance is ever violated after inserting or deleting a node, the tree performs **rotations** to restore balance.

This ensures that operations like **insertion**, **deletion**, **and search** all run in **O(log n)** time complexity.

AVL Tree Rules

1. Binary Search Tree (BST) Property

- Each node has a value.
- The left subtree of a node contains **only nodes with values smaller** than the node's value.
- The right subtree contains **only nodes with values greater** than the node's value.
- This rule must always hold after inserting or deleting a node.

2. Balance Factor

- The balance factor (BF) of a node is calculated as: BF=height of left subtree-height of right subtreeBF = {height of left subtree} - {height of right subtree}
- The balance factor can be -1, 0, or 1 for a tree to remain balanced.
- If the balance factor is **less than -1 or greater than 1**, the tree is unbalanced and must be **rotated**.

3. Rotations (Rebalancing)

When inserting or deleting nodes causes an imbalance, we perform **rotations** to restore balance. There are **four types**:

Single Rotations

- 1. **Right Rotation (LL Rotation)**: When a node is inserted into the **left subtree of the left child** (LL Case).
 - Fix: Rotate **right** on the unbalanced node.
- 2. **Left Rotation (RR Rotation)**: When a node is inserted into the **right subtree of the right child** (RR Case).
 - Fix: Rotate left on the unbalanced node.

Double Rotations

- 3. **Left-Right Rotation (LR Rotation)**: When a node is inserted into the **right subtree of the left child** (LR Case).
 - Fix: First, perform a **left rotation** on the left child, then a **right rotation** on the unbalanced node.
- 4. **Right-Left Rotation (RL Rotation)**: When a node is inserted into the **left subtree of the right child** (RL Case).
 - Fix: First, perform a **right rotation** on the right child, then a **left rotation** on the unbalanced node.

Insertion Process in an AVL Tree

- 1. **Insert** the node following **BST rules**.
- 2. **Update heights** of affected nodes.
- 3. Check balance factor for each node from the inserted node up to the root.
- 4. If the balance factor is **outside the range [-1,1]**, perform the necessary **rotation(s)**.

Deletion Process in an AVL Tree

- 1. **Delete** the node following **BST rules**.
- 2. Update heights of affected nodes.
- 3. Check balance factor from the deleted node up to the root.
- 4. If the balance factor is **outside the range [-1,1]**, perform the necessary **rotation(s)**.

Example Walkthrough

Example 1: Inserting 10, 20, 30 (RR Rotation)

```
1. Insert \mathbf{10} \rightarrow \text{Tree} is balanced. \mathbf{V}
```

Insert 20 → Still balanced.

```
Insert 30 \rightarrow Unbalanced at 10 (BF = -2) \rightarrow Perform Left Rotation (RR Case). 10 \ 20 \ 30 \rightarrow 10 / 20 \ 30
```

3.

Example 2: Inserting 30, 20, 10 (LL Rotation)

- 1. Insert $30 \rightarrow \text{Tree}$ is balanced. \checkmark
- 2. Insert **20** → Still balanced.

Insert 10 \rightarrow Unbalanced at 30 (BF = +2) \rightarrow Perform Right Rotation (LL Case).

 $10/20/30 \rightarrow 10/20 \ 30$

Final Notes

- **AVL trees ensure O(log n) operations** by maintaining balance.
- **Rotations help restore balance** when needed.
- **Insertion and deletion both require checking the balance factor** and fixing violations.