Appunti di Algebra

Quel ragazzo con la maglia blu

Contents

1	Div	isione nei numeri naturali e nei numeri interi	2
	1.1	Divisione in \mathbb{N}	2
	1.2	Divisione in \mathbb{Z}	2
	1.3	Divisibilità in \mathbb{N} e \mathbb{Z}	3
	1.4	Massimo Comun Divisore in \mathbb{N} ed in \mathbb{Z}	3
	1.5	Calcolo MCD in N: Algoritmo di Euclide	5
		1.5.1 In \mathbb{N}	5
		1.5.2 In \mathbb{Z}	6
2	Pol	inomi	7
	2.1	Somma di polinomi	7
	2.2	Prodotto di polinomi	7
	2.3	Divisioni di polinomi	8
	2.4	Radici di un polinomio	8
		2.4.1 Teorema di Ruffini	8
		2.4.2 Radici di polinomi di 2º grado a coefficienti reali	8
	2.5	Teorema fondamentale dell'algebra	9
	2.6	Identità di Bezout (teorema)	10
3	Cla	ssi di Congruenza	12
	3.1	Invertibili in \mathbb{Z}_n e il loro calcolo	15
	3.2	La funzione di Eulero	15
	3.3	Sistema di congruenze	16
	3.4	Il teorema cinese dei resti	17
		3.4.1 Metodo di Newton	17
	3.5	Ridurre un generico sistema di congruenze	20
	3.6	Esercizio tipo	22
4	Ma	trici e loro operazioni	24
	4.1	Operazioni	24
		4 1 1 Prodotto di una matrice per uno scalare	24

1 Divisione nei numeri naturali e nei numeri interi

Insieme dei numeri naturali:

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

Insieme dei numeri interi:

$$\mathbb{Z} = \{\dots -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$

1.1 Divisione in \mathbb{N}

 $\forall a, b \in \mathbb{N}, b \neq 0$

$$\exists ! \mathbf{q}, r \in \mathbb{N} \qquad | \qquad \begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

q = quoziente

r = resto

| = tale che

Esempio 1
$$a = 137 \ b = 55$$
 $137 = 55 \cdot 2 + 27 \ r$

Esempio 2
$$a = 137 \ b = 142$$
 $137 = 142 \cdot 0 + 137 \atop a = 142 \cdot 0 + 137 \atop r$

 $\mathbf{NB1}$ per provare che q ed r esistono si usa il principio di induzione

 $\mathbf{NB2}$ q ed r sono unici significa:

$$\begin{cases} a = bq_1 + r_1 \\ a = bq_2 + r_2 \end{cases} \qquad 0 \le r_1 < b \\ 0 \le r_2 < b \end{cases} \Longrightarrow \begin{cases} q_2 = q_1 \\ r_2 = r_1 \end{cases}$$

1.2 Divisione in \mathbb{Z}

La definizione è uguale per i numeri interi $\forall a,\,b\in\mathbb{Z},\,b\neq0\,\,\exists!q,\,r\in\mathbb{Z}\,\,\text{tali che}\,\,a=bq+r$ con unica differenza $0\leq r<|b|$

$$|r| = \begin{cases} r \text{ se } r \ge 0\\ -r \text{ se } r < 0 \end{cases}$$

NB Se non si impone la condizione $\begin{cases} r \geq 0 \\ r < |b| \end{cases}$ non si ha l'unicità di q e r

Ad esempio

$$a = 137 \ b = -55$$
 $137 = (55) \ -2 \ +27$ ma anche $137 = (-55) \ -3 \ +-28$

NB1 la dimostrazione dell'esistenza di q ed r è simile a quella che si fa in \mathbb{N} , ottenuta sempre col principio di induzione.

2

NB2 q, r sono unici perché si richiede $0 \le r < |b|$

NB3
$$a, b \in \mathbb{Z}, b \neq 0 \text{ in } \mathbb{Z} : a = bq_1 + r_1, 0 \leq r - 1 < |b|$$

 $|a|, |b| \in \mathbb{N}, |b| \neq 0 \text{ in } \mathbb{N} : |a| = |b| \cdot q_2 + r_2 \cdot 0 \leq r_2 < |b|$

ATTENZIONE Non c'è un nesso tra il quoziente ed il resto della divizione di a e b in \mathbb{Z} ed il quoziente ed il resto della divizione di |a| e |b| in \mathbb{N}

Ad esempio

1.3 Divisibilità in \mathbb{N} e \mathbb{Z}

Divisibilità in \mathbb{N} $a, b \in \mathbb{N}, b \neq 0$

$$\begin{array}{cccc} b|a \text{ se } a = bq \; \exists q \in \mathbb{N} \ ^1 & b \not | a \\ & \text{divide} & \text{non divide} \\ & \text{Es. } 6|18 & \text{Es. } 4|18 \end{array}$$

Per esempio 6|18

Divisibilità in \mathbb{Z} $a, b \in \mathbb{Z}, b \neq 0$

$$b|a$$
 se $\exists q \in \mathbb{Z}|a = bq$ altrimenti $b \not|a$

NB
$$a, b \in \mathbb{N}, b \neq 0, a \neq 0$$

$$\begin{cases} b|a \\ a|b \end{cases} \implies a \in \{b, -b\}$$

1.4 Massimo Comun Divisore in \mathbb{N} ed in \mathbb{Z}

MCD In
$$\mathbb{N}$$
 $\forall a, b \in \mathbb{N}, (a, b) \neq (0, 0)$

(almeno uno dei due deve essere diverso da 0)

Un $d \in \mathbb{N}$ è un MCD(a, b) se

- 1. $d|a \in d|b$ (è un divisore comune di $a \in b$)
- 2. se $z|a \in z|b \Longrightarrow z|d$

Ossia, se d è un divisore comune di $a\to B$ CHE

NB 1 MCD(a, b) è! in \mathbb{N} è il MCD(a, b)

$$60 = 2^{2} \cdot 3 \cdot 5$$

$$60|2$$

$$30|2$$

$$15|3$$

$$5|5$$

$$d = 2 \cdot 3 = 6$$

$$18 = 2 \cdot 3^{2}$$

$$9|3$$

$$3|3$$

NB 2 MCD(a,b) = MCD(b,a)

NB 3

$$\begin{cases} b|a \\ b \neq 0 \end{cases} \implies MCD(a,b) = b \tag{1}$$

$$\begin{array}{ll} \mathbf{NB} \ \mathbf{4} & a, \ b \in \mathbb{N} \ b \neq 0 \\ a = bq + r^2 & 0 \leq r < b \end{array}$$

Perciò

$$MCD(a, b) = MCD(b, r)$$

Per provarlo, proviamo che i due insiemi $A \in B$ sono uguali: $A = \{z \mid z | a \in z | b\} = \text{insieme dei divisori comuni di } a \in b$ $B = \{w \mid w | b \in w | r\} = \text{insieme dei divisori comuni di } b \in r$

$$z \in A \Longrightarrow \begin{cases} z|a & \begin{cases} z|a-bq=r \\ z|b \end{cases} \Longrightarrow z \in B \Longrightarrow A \subseteq B$$

$$w \in B \Longrightarrow \begin{cases} w|b & \begin{cases} w|b \\ w|r & \end{cases} w|bq+r=a \Longrightarrow w \in A \Longrightarrow B \subseteq A$$

In \mathbb{Z} $\forall a, b \in \mathbb{Z}$ con $(a, b) \neq (0, 0)$ $d \in \mathbb{Z}$ è un MCD(a, b) se

- 1. $d|a \in d|b$ dè un divisore comune di $a \in b$
- 2. $\begin{cases} z|a\\ z|b \end{cases} \implies z|d \qquad d \text{ è un multiplo di ogni divisore comune di } a \text{ e } b$

Abbiamo già visto che d = MCD(a, b) è unico in \mathbb{N} Anche in \mathbb{Z} scrivo d = MCD(a, b) anche se la nozione è "impropria".

NB In \mathbb{Z} d è individuale e non ha segno.

Se d è un massimo comun divisore di a e b allora anche -d è un massimo comun divisore di a e b.

Quindi in $\mathbb{Z}\ MCD(a,b)$ non indica un solo numero, ma 2: d e -d. Es. -6=MCD(-12,18)=+6

Perché per parlare di MCD(a, b) è **necessario** supporre $(a, b) \neq (0, 0)$

 $^{^2}r = a - bq$

$$\begin{array}{lll} \mathbf{NB} & 2|0 & 0 & 0 = 2 \cdot 0 \\ 3|0 & 142|0 & \forall b \neq 0 & b|0 \end{array}$$

Ecco perché è importante quando si parla di MCD(a,b) se fosse (a,b)=(0,0) allora $\forall z\neq 0$ z|0

L'insieme dei divisori comini di (a, b) = (0, 0) è

$$\{z|z\in\mathbb{Z},z\neq0\}$$

Dunque non c'è un MCD(a, b) nel casi in cui (a, b) = (0, 0)

$$\begin{array}{ll} \mathbf{NB} & a,b \in \mathbb{Z}, \ b \neq 0 \\ a = bq + r & 0 \leq r < |b| \end{array}$$

$$\Longrightarrow MCD(a,b) = MCD(b,r)$$

è la stessa osservazione che abbiamo fatto per MCD(a,b) nel caso $a,b\in\mathbb{N},\,b\neq0$

NB
$$a, b \in \mathbb{Z}$$
, non entrambi nulli allora $MCD(a, b) = MCD(-a, b) = MCD(a, -b) = MCD(-a, -b)$

1.5 Calcolo MCD in N: Algoritmo di Euclide

1.5.1 In \mathbb{N}

$$a, b \in \mathbb{N}, b \neq 0 \neq a$$

1º **passaggio**
$$a = bq_1 + r_1$$
 $0 \le r_1 < b$

SE
$$r_1 = 0$$
 $MCD(a, b) = MCD(b, r_1) = MCD(b, 0) = b$
STOP

Esempio 1
$$MCD(36, 12) =$$
P1 $36 = 12 \cdot 3 + 0 \Longrightarrow MCD(36, 12) = MCD(12, 0) = 12$
1°P $a = bq_1 + r_1 \Longrightarrow 0 \le r_1 < b$

SE $r_1 \neq 0$ continua.

 $\mathbf{2}^o$ passaggio SI DIVIDE b per r_1

$$b = r_1 q_2 + r_2 = \le r_2 < r_1$$

SE
$$R_2 = 0$$
 STOP

$$\begin{split} \mathrm{MCD}(a,b) &= \mathrm{MCD}(b,r_1) = \mathrm{MCD}(r_1,r_2) = \mathrm{MCD}(r_1,0) = r_1 \\ b &= r_1q_2 + r_2 \qquad \text{se } r_2 = 0 \end{split}$$

Potevo vederlo così: se $r_2 = 0$ allora $b = r_1q_2 + r_2 = r_1q_2$ per cui $MCD(b, r_1) = r_1$ quindi $MCD(a, b) = MCD(b, r_1) = r_1$

$$\underline{\text{Esempio 2}} \quad \text{MCD}(\underset{a}{42},\underset{b}{12}=6)$$

MCD(A, B) è l'ultimo resto non nullo della sequenza di divisioni successive

Es 1
$$MCD(36, 28) = 4$$

$$1^{\circ}p$$
 $36 = 28 \cdot 1 + 8$

$$2^{\circ} p \quad 28 = 8 \cdot 3 + 4$$

$$3^{\circ}p$$
 $8 = 4 \cdot 2 + 0$ $r_3 = 0 \Longrightarrow r_2 = MCD$

Es 2 MCD(2420, 1386) = 22

$$1^{\circ}p$$
 $2420 = 1386 \cdot 1 + 1034$

$$2^{o}p$$
 $1386 = 1034 \cdot 1 + 352$

$$3^{\circ}p \qquad 1034 = 352 \cdot 2 + 330$$

$$\frac{1}{4^{o}p} \qquad \begin{array}{c} r_{1} & r_{2} & q_{3} & r_{3} \\ 352 & = 330 \cdot 1 + 22 \end{array}$$

$$\begin{array}{ll} \frac{1^{o}p}{2^{o}p} & 2420 = 1386 \cdot \frac{1}{q_{1}} + 1034 \\ \frac{2^{o}p}{3^{o}p} & 1386 = 1034 \cdot \frac{1}{q_{2}} + 352 \\ \frac{3^{o}p}{3^{o}p} & 1034 = 352 \cdot 2 + 330 \\ \frac{4^{o}p}{r_{1}} & \frac{352}{r_{2}} = 330 \cdot \frac{1}{r_{3}} + 22 \\ \frac{7}{r_{2}} & \frac{7}{r_{3}} & \frac{q_{3}}{q_{3}} & \frac{r_{4}}{r_{4}} \\ \frac{5^{o}p}{r_{3}} & \frac{330}{r_{3}} = 22 \cdot \frac{15}{r_{5}} + 0 \\ \frac{7}{r_{3}} & \frac{7}{r_{4}} & \frac{7}{r_{5}} \end{array}$$

1.5.2 In \mathbb{Z}

1º modo consigliato

•
$$|a|, |b| \in \mathbb{N}$$

•
$$MCD(|a|, |b|) = d \in \mathbb{N}$$

•
$$d-d$$
 boh illeggibile

MCD(a,b) in \mathbb{Z}

 $\mathbf{2}^o$ modo Algoritmo di Euclide in $\mathbb Z$

Esempio MCD(-274, 110)

$$|a| = |-274| = 274$$

 $|b| = |110| = 110$

1º Modo svolgimento

$$2^{o}p$$
 $110 = 54 \cdot 2 + 2$

$$rac{-F}{b}$$
 r_1 q_2 r_2

$$3 p 54 = 2 \cdot 27 + 0$$

$$\frac{GP}{mCD(|a|,|b|)} = \frac{r_1}{r_2} = \frac{r_3}{q_3} + \frac{r_3}{r_3}$$

 $MCD(|a|,|b|) = d = 2 \Longrightarrow 2 \text{ e } -2 \text{ sono i } MCD(-274,110)$

$\mathbf{2}^o$ **Modo** Algoritmo di Euclide in \mathbb{Z}

$$\underline{1^{o}p}$$
 $\underline{274} = 110 \cdot (-3) + 56$

$$|b| > r_1 \ge 0$$

$$2^{o}p$$
 $110 = 56 \cdot 1 + 54$

$$3^{o}p \qquad 56 = 54 \cdot 1 + 2$$

2e-2sono i due massimi comuni divisori di-274e110

$$\begin{array}{lll} \frac{1^o p}{2^o p} & 274 = 110 \cdot (-3) + 56 \\ \frac{2^o p}{a} & 110 = 56 \cdot 1 + 54 \\ \frac{3^o p}{2^o p} & 56 = 54 \cdot 1 + 2 \\ \frac{4^o p}{2^o p} & 54 = 2 \cdot 27 + 0 \\ \frac{4^o p}{2^o p} & \frac{110}{2^o p} &$$

Polinomi 2

$$S \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$$

S[x] =Insieme dei polinomi a coefficienti in S nella indeterminata x

 $f(x) \in S[x]$ se $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ Robette che non ho capito bene

Se $a_n \neq 0$ IL GRADO DI f(x) è

 $\overline{n = \deg f}(x)$; a_n si chiama **coefficiente direttore** di f(x), a_0 si chiama **termine noto** di f(x)

$$\mathbf{NB} \ \mathbf{1} \quad \begin{cases} c \in S \\ c \neq 0 \end{cases} \longrightarrow \deg c = 0$$

NB 2 $c = 0 \in S$

per convenzione di pone deg $0=-\infty$

2.1Somma di polinomi

 $\forall f(x), g(x) \in S[x] \text{ definisco } f(x) + g(x) \in S[x]$

Es
$$f(x) = 2 - x^3 + 3x^2$$
 $g(x) = 7x + x^3 + 12$

$$2 + 0x + 3x^2 - x^3 + \deg f(x) = 3$$

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{i=0}^n a_i x^i \qquad a_n = 0, \deg f(x) = n$$

$$g(x) = b_0 + b_1 x + \dots + b_m x^m = \sum_{i=0}^m b_i x^i \qquad b_n = 0, \deg g(x) = m$$

Per fissare le idee si ponga che $m \leq n$

$$f(x) + g(x) = \sum_{i=0}^{m} (a_i + b_i)x^i + \sum_{i=m+1}^{n} a_i x^i$$

 $\deg (f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}\$

2.2Prodotto di polinomi

 $\forall f(x), g(x) \in S[x] \text{ definisco } f(x), g(x) \in S[x]$ nel seguente modo:

se $f(x) = \sum_{i=0}^{n} a_i x^i$ e $g(x) = \sum_{i=0}^{m} b_i x^i$ allora

$$f(x)g(x) = \left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{i=0}^{m} b_i x^i\right) =$$

$$= (a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + b_mx^m) =$$

$$= a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_a + a_2b_0)x^2 + \dots = \sum_{i=0}^{i} a_kb_{i-k} \left(\sum_{k=0}^{i} a_kb_{i-k}\right)x^i$$

NB
$$\deg (f(x) \cdot g(x)) = \deg f(x) + \deg g(x)$$

Esempio
$$f(x) = 2 - x + 6x^2$$
 $g(x) = 1 + 4x$ $(2 - x + 6x^2)(1 + 4x) = \dots = 2 + 7x - 4x^2 + 6x^4 + 24x^5$

DA QUESTO MOMENTO $S \neq \mathbb{Z}$: $S \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$

2.3 Divisioni di polinomi

$$\forall f(x), g(x) \in S[x], g(x) \neq 0 \ \exists ! q(x), r(x) \in S[x] \ \text{tale che} \begin{cases} f(x) = g(x)q(x) + r(x) \\ \deg r(x) < \deg g(x) \end{cases}$$

Esempio Divido $f(x) = 7x^4 + 3x - 2 \in \mathbb{Q}[x]$ per $g(x) = x^2 + x + 1 \in \mathbb{Q}[x]$

$$\begin{array}{c|c}
7x^4 & x^2 + x + 1 \\
-7x^4 - 7x^3 - 7x^2 & 7x^2 - 7x \\
-7x^3 - 7x^2 & 7x \\
\hline
-7x^3 + 7x^2 + 7x & 7x
\end{array}$$

2.4 Radici di un polinomio

Sia $f(x) \in S[x]$.

Un numero $x_0 \in S$ si dice una **radice** 3 di f(x) se $f(x_0) = 0$ 4 Quindi x_0 è una radice di f(x) se e solo se x_0 è una soluzione dell'equazione f(x) = 0

Esempio
$$f(x) = x^2 + 2x + 1 = (x+1)^2$$

 $x_0 = -1$ è una radice di $f(x)$: $f(-1) = (-1+1)^2 = 0$
 $x_0 = 1$ è soluzione dell'equazione $x^2 + 2x + 1 = 0$

2.4.1 Teorema di Ruffini

Se
$$f(x) \in S[x]$$
 ed $x_0 \in S$ $(x_0 \text{ è una radice di } f(x)) \iff (x - x_0) \mid_{(divide)} f(x) \iff f(x) = (x - x_0)q(x)$ dividendo $f(x)$ per $x - x_0$ si ha $r(x) = 0$

2.4.2 Radici di polinomi di 2º grado a coefficienti reali

$$ax^2+bx+c=0$$

$$a,b,c\in\mathbb{R} \qquad a\neq 0$$
 $\Delta=b^2-4ac$ è il discriminante dell'equazione

• SE $\Delta > 0$ ci sono due soluzioni REALI distinte

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \qquad \qquad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

• SE $\Delta = 0$ l'equazione ha UNA soluzione REALE "contata due volte"

$$(x^{2} + 2x + 1) = (x + 1)(x + 1)$$
 $x_{1} = x_{2} = \frac{-b}{2a}$

• SE $\Delta < 0$ l'equazione non ha soluzioni reali, ma ha 2 soluzioni complesse

$$x_1 = \frac{-b + i\sqrt{-\Delta}}{2a} \qquad \qquad x_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$$

Poiché $\sqrt{-\Delta} \neq 0 \Longrightarrow x_1 \neq x_2$

L'equazione ha 2 soluzioni complesse **coniugate** (l'una coniugata dell'altra)

$$x_1 = \overline{x_2}$$

³oppure uno zero

⁴ "f valutato in $x_0 = 0$ "

⁵ovvero f(x)

$$x_2 = \overline{x_1}$$

Equivalentemente dato
$$f(x) = ax^2 + bx + c$$
, $a, b, c \in \mathbb{R}$, $a \neq 0$ $f(x) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$ e $x^2 + \frac{b}{a}x + \frac{c}{a}$ ha due radici complesse x_1, x_2

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = (x - x_{1})(x - x_{2})$$

e quindi

$$f(x) = ax^2 + bx + c = a(x - x_1)(x - x_2)$$

 $\exists x_1, x_2 \in \mathbb{C}$ $a, b, c \in \mathbb{R}, a \neq 0$

2.5 Teorema fondamentale dell'algebra

$$\forall f(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$$

$$a_0,a_1,a_2,\ldots,a_n\in\mathbb{C}$$
 polinomio di grano $n>0$
$$(a_n\neq 0)$$

 $\exists z_1, z_2, ..., z_n \in \mathbb{C}$ tale che

$$f(x) = a_n(x - z_1)(x - z_2)...(x - z_n)$$

potrebbero esserci ripetizioni

Ad esempio se $f(x) = (x-1)^n = (x-1)(x-1)...(x-1)$ allora $z_1 = z_2 = ... = z_n = 1$ Ogni polinomio di grado n > 0 e coefficienti complessi è prodotto di n polinomi di grado 1

Se $z_0, z_1, ..., z_x$ 6 sono quegli z_i DISTINTI, allora

$$f(x) = a_n(x - z_1)^{m_2}(x - z_2)^{m_2}...(x - z_k)^{m_k}$$

$m_i =$ la molteplicità algebrica di z_i

È equivalente a: $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

L'equazione $f(x) = 0^{7}$ ha n soluzioni:

 z_1 contata m_1 volte

 z_2 contata m_2 volte

 z_3 contata m_3 volte

 $m_1 + m_2 + \dots + m_k = n$

..

 z_k contata m_k volte

Esempio
$$f(k) = (x^2 + 2x + 1)(x - 3) = (x - 1)^2(x - 3)$$

 $z_1 = -1$ $m_1 = 2$
 $z_2 = 3$ $m_2 = 1$

Ogni equazione a coefficienti complessi di grado n ha n soluzioni complesse contate con le loro molteplicità

⁶sono le radici di f(x)

⁷cioè $a(x-z_n)^{m_1}(x-z_2)^{m_2}...(x-z_k)^{m_k}=0$

Ritorniamo alle divisioni in \mathbb{Z}

Se
$$a, b \in \mathbb{Z}$$
,

$$(a,b) \neq (0,0),$$

d = MCD(a, b) Vogliamo trovare

 $m, n \in \mathbb{Z}$ tali che

$$d = ma + nb$$

Esempio
$$a = 10$$

$$b = 4$$
 $d = 2$

cerco $m, n \in \mathbb{Z}$ tali che

$$d = am + bn$$

Calcolo d usando l'algoritmo di Euclide:

$$\begin{array}{l}
 10 = 4 \cdot 2 + 2 \\
 a \quad b \quad q_1 \quad r_1 \\
 4 = 2 \cdot 2 + 0
 \end{array}$$

$$\begin{array}{ll} 10 = 4 \cdot 2 + 2 \\ a = b \cdot q_1 & r_1 \\ 4 = 2 \cdot 2 + 0 \\ a = b \cdot q_1 & r_1 \end{array} \quad d = 2 = \begin{array}{ll} 10 \\ a \uparrow \end{array} + \begin{array}{ll} 4 \cdot (-2) \\ n \end{array}$$

NB m, n non sono univocamente individuati da $a \in b$

Esempio
$$2 = m10 + n4$$
 ma anche $2 = 10 \cdot 3 + 4 \cdot (-7)$

$$m = 1, n = -2$$

Identità di Bezout (teorema)

$$\forall a, b \in \mathbb{Z}, (a, b) \neq (0, 0),$$
 posto $d = (a, b) \exists m, n \in \mathbb{Z}$ tali che

$$d = ma + nb$$

NB m, n non sono unici

Per trovarli posso:

- 1. Applico l'algoritmo di Euclide in \mathbb{Z} e lo "ripercorro" all'indietro" **OPPURE**
- 2. (a) calcolo $|a|, |b| \in \mathbb{N}$
 - (b) osservo MCD(a, b) = MCD(|a|, |b|)
 - (c) prendo d il MCD(|a|, |b|)**positivo** calcolato con l'algoritmo di Euclide in $\mathbb N$ Lo ripercorro all'indietro e ottengo $m^*, n^* \in \mathbb{Z}$

$$d = m^*|a| + n^*|b|$$

(d) se
$$a \ge 0 \Rightarrow |a| = a$$
 e $m = m^*$, se $a \le 0 \Rightarrow |a| = -a$ e $m = -m^*$ se $b \ge 0 \Rightarrow |b| = b$ e $n = n^*$, se $b \le 0 \Rightarrow |b| = -b$ e $n = -n^*$

a=-36 b=28 se d=MCD(a,b), cerco $m,n\in\mathbb{Z}$ tale che d=ma+nbEsempio

$\mathbf{1}^o$ Modo Algoritmo di Euclide in $\mathbb Z$ e calcolo d

$$-36 = 28 \cdot (-2) + 20 \Rightarrow 20 = -36 + 2 \cdot 28$$

a b
$$q_1$$
 r_1 N.B. $0 \le r_1 < |b| = 28$

$$28 = 20 \cdot q_2 1 + r_2 8 \Longrightarrow 8 = 28 + 20 \cdot (-1)$$

$$28 = 20 \cdot \underline{q_2} 1 + \underline{r_2} 8 \Longrightarrow 8 = 28 + 20 \cdot (-1)$$

$$20 = 8 \cdot \underline{q_3} 2 + 4 \Longrightarrow d = 4 = 20 + 8 \cdot (-2) = 20 + (-2)[28 + 20 \cdot (-1)] = 20 + (-2)[2$$

```
= 20 + (-2) \cdot 28 + 20 \cdot 2 =
= 3 \cdot 20 + (-2) \cdot 28 =
3 \cdot [-36 + 2 \cdot 28] + (-2) \cdot 28
= 3 \cdot (-36) + 6 \cdot 28 + (-2) \cdot 28 == 3 \cdot (-36) + 4 \cdot 28
```

 $\mathbf{2}^o$ Modo Cerco $m,n\in\mathbb{Z}$ tali che d=am+bndove $d=MCD(a,b)\ |a|=|-36|=36$ NB MCD(|a|,|b|)=MCD(a,b)=d $|b|=|28|=28 \text{ Intanto (PAOLO) l'algoritmo di Euclide a } |a| \text{ e } |b| \text{ e trovo } m*,n*\in\mathbb{Z}$ tali che $d=|a|\cdot m*+|b|\cdot n*$

PAOLO

3 Classi di Congruenza

Siano $a, b \in \mathbb{Z}, n \in \mathbb{N}, n > 0$ Si dice che a è **congruo** (o congruente) a b modulo n se

$$n|(a-b)$$

Si scrive $a \equiv b \mod n$; oppure $a \equiv b \pmod n$ oppure $a \equiv_n b$

 $\mathbf{NB} \quad a \equiv b \mod n \iff \quad \mbox{il resto della divisione} \quad = \quad \mbox{il$ di a per ndi b per n

Dimostrazione ipotesi: $a \equiv b \mod n$ tesi: i due resti sono uguali divido a per n: $a = nq_1 + r_1$, $0 \le r_1 < n$

divido b per $n: b = nq_2 + r_2, 0 \le r_2 < n$

So che $a \equiv b \mod n \Longrightarrow n | (a - b)$

Da $a - b = nq_1 + r_1 - (nq_2 + r_2) = n(q_1 - q_2) + (r_1 - r_2)$

 $a = nq_1 + r_1$

 $b = nq_2 + r_2$

Si ottiene: $r_1 - r_2 = (a - b) - n(q_1 - q_2)$

$$\begin{cases} n|n(q_1-q_2) \\ \frac{n|a-b} \end{cases} \implies n|(a-b)-n(q_1-q_2) \Longrightarrow n|r_1-r_2$$

Perché per ipotesi $a \equiv b \mod n$

se
$$r_1 \ge r_2 \Longrightarrow \begin{cases} 0 \le r_1 - r_2 < n \\ n|r_1 - r_2 \end{cases} \Longrightarrow r_1 - r_2 = 0 \Longrightarrow r_1 = r_2$$

se
$$r_2 \ge r_1 \Longrightarrow \begin{cases} 0 \le r_2 - r_1 < n \\ n|(r_1 - r_2) \Rightarrow n|(r_2 - r_1) \end{cases} \Longrightarrow r_2 - r_1 = 0 \Longrightarrow r_2 = r_1$$

Viceversa

Ipotesi Considero

$$a = nq_1 + r_1$$
 $0 \le r_1 < n$
 $b = nq_2 + r_2$ $0 \le r_2 < n$
 $r_2 = r_1$

Tesi $a \equiv b \mod n$

Dimostrazione Voglio arrivare a dire che n|(a-b)

$$\begin{cases} a = nq_1 + r_1 \\ r_1 = r_2 \end{cases} \implies a = nq_1 + r_2 \implies a - b = (nq_1 + r_2) - (nq_2 + r_2) = nq_1 + \gamma / 2 - nq_2 - \gamma / 2 = nq_1 - nq_2 = n(q_1 - q_2) \implies n|(a - b)$$

NB 2 Fisso $n \in \mathbb{N}$

La relazione di congruenza gode delle seguenti proprietà:

- 1. è riflessiva: $a \equiv a \mod n \forall a$ (infatti n|(a-a)=0)
- 2. è simmetrica: $a \equiv b \mod n \Longrightarrow b \equiv a \mod n$ (infatti $n|(a-b) \Longrightarrow n|(b-a)$)
- 3. È transitiva: $\begin{cases} a \equiv b \mod n \\ b \equiv c \mod n \end{cases} \implies a \equiv c \mod n$ Infatti $\begin{cases} a \equiv b \mod n \implies n | (a b) \\ b \equiv c \mod n \implies n | (b c) \end{cases} \implies n | [(a b) + (b c)] = (a c) \implies n | [(a b) +$

Ogni relazione che dove delle proprietà 1., 2., 3. si dice una relazione di equivalenza.

Fissato $n \in \mathbb{N}$, n > 0, $a_1, a_2, b_1, b_2 \in \mathbb{Z}$

- 4. $\begin{cases} a_1 \equiv b_1 \mod n \\ a_2 \equiv b_2 \mod n \end{cases} \implies (a_1 + a_2) \equiv (b_1 + b_2) \mod n$ le congruenze modulo n si possono "sommare"
- 5. $\begin{cases} a_1 \equiv b_1 \mod n \\ a_2 \equiv b_2 \mod n \end{cases} \implies a_1 \cdot a_2 \equiv b_1 \cdot b_2 \mod n$ le congruenze modulo n si possono "moltiplicare" PAOLO qui però ho copiato

parecchio dalle slide vecchie

In generale

1. $\forall n \in \mathbb{N}, \forall a, k \in \mathbb{Z}$

$$[a]_n = [a + kn]_n$$

- $2. \ c \in [a]_n \Longrightarrow [a]_n = [c]_n$
- 3. In particolare (dividevo) a per: $a = qn + r \text{ con } 0 \le r < n$ Si ha $[a]_n = [r]_n$ Perché, essendo $r = a + n \cdot (-q)$, si ha che $r \in [a]_n$, quindi si può usare [z]??? con c = r

Def. $a \in \mathbb{Z}, n \in \mathbb{Z}, n > 0$, si chiama classe di congruenza a modulo n e si indica $[a]_n$ oppure [a] mod n

$$[a]_n=$$
 insieme di tutti i numeri interi che sono congrui ad a modulo n = $\{b\in\mathbb{Z}|b\equiv a\mod n\}$

NB 1 $\forall b \in \mathbb{N}, n > 0, a, b \in \mathbb{Z}$ Voglio vedere che $[a]_n = [b]_n$ oppure che $[a]_n \cap [b]_n = \emptyset$ Infatti o $[a]_n = [b]_n$ Oppure $[a]_n = [b]_n$ Oppure $[a]_n \neq [b]_n$. Suppongo $[a]_n \cap [b]_n \neq \emptyset$ $\Rightarrow \exists c \in [a]_n \cap [b]_n \Rightarrow \begin{cases} c \in [a]_n \Rightarrow [a]_n = [c]_n \\ c \in [b]_n \Rightarrow [b]_n = [c]_n \end{cases}$ $\Rightarrow [a]_n = [c]_n = [b]_n \Rightarrow [a]_n = b_n$ è una contraddizione

$$\Rightarrow \exists c \in [a]_n + + [b]_n \Rightarrow \begin{cases} c \in [b]_n \Rightarrow [b]_n = [c]_n \\ \Rightarrow [a]_n = [c]_n = [b]_n \Rightarrow [a]_n = b_n \text{ è una contraddizion} \end{cases}$$

 $^{^{8}[}a]_{n}$ e $[b]_{n}$, pensati come insiemi di numeri interi, sono **insiemi disgiunti**

NB 2 $\forall n, n > 0$

Considero le classi di congruenza $[a]_n$ con $0 \le a < n$ se $b \in \mathbb{Z}$, dividendo b su n si ha: b = nq + r con $0 \le r < n \Longrightarrow [b]_n = [r]_n \Longrightarrow b \in [r]_n$ Quindi

$$\mathbb{Z} = [0]_n \cup [1]_n \cup [2]_n \cup \ldots \cup [n-1]_n$$
$$\mathbb{Z} = \bigcup_{0 \le a < n} [a]_n$$

Queste classi sono a due a due **disgiunte**, l'insieme delle classi $[0]_n, [1]_n, ..., [n-1]_n$ sono una **partizione** di \mathbb{Z}

Def. L'insieme degli interi modulo n, indicato con il simbolo \mathbb{Z}_n è:

$$\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, ..., [n-1]_n\}$$

In \mathbb{Z}_n si definiscono + e · nel seguente modo:

DA QUI RIPRENDO LEZIONE LIVE 6

Teorema 1 (*) ha soluzione \iff d = MCD(a, n)|bse d|b una soluzione $x_0 = \alpha q$ dove $\begin{cases} d = \alpha a + bn \\ b = \alpha q \text{ per cui } q = \frac{b}{d} \end{cases}$

Teorema 2 se (*) ha soluzione e x_0 è una soluzione allora l'insieme di **tutte** le

 $\{x_k=x_0+k\cdot \frac{n}{d}|k\in\mathbb{Z}\}$ si ripartiscomno nelle classi: $[x_0]_n,[x_1]_n,...,[x_{d-1}]_n$ **ESERCIZI**

- 1. $2x \equiv 5 \mod 8$
 - (a) Calcolo d = MCD(a, n) = MCD(2, 8) = 2
 - (b) d|b| PAOLO
- 2. $3 \equiv 4 \mod 7$
 - (a) Calcolo d = MCD(a, n) = MCD(3, 7) = 1
 - (b) d|b

La congruenza ha ∞ numeri come soluzioni:

 $\{x_0 + 7k | x \in \mathbb{Z}\} = [x_0]_7$ dove x_0 è una particolare soluzione.

Soluzione:

$$d = \alpha a + \beta n$$

$$1 = \alpha \cdot 3 + \beta \cdot 7$$

Bezout:

$$7 = 3 \cdot 2 + 1 \Longrightarrow d = 1$$

bezont:

$$7 = \underbrace{3 \cdot 2}_{n} + \underbrace{1}_{r_{1}} \Longrightarrow d = 1$$

$$1 = \underbrace{7}_{d} + \underbrace{3 \cdot (-2)}_{\beta=1} \Longrightarrow \alpha = -2$$

$$\begin{array}{l}
 4 & \beta = 1 \\
 4 & = 7 \cdot 4 + 3 \cdot (-2) \cdot 4
 \end{array}$$

Le soluzioni sono tutte nella classe

Le soluzioni sono tutte nena ciasse
$$[(-2) \cdot 4]_7 \Longrightarrow [-8]_7 = [-8+7]_7 = [-1]_7 = [-1+7]_7 = [6]_7$$

 $3. \ 2x \equiv 10 \mod 12$

PAOLO La congruenza ha infiniti numeri interi come soluzioni, che si ripartiscono in d=2 classi di congruenza modulo n=12

```
(a) calcolo x_0 (poi prendero anche x_1 = x_0 + 6) 2x \equiv 10 \mod 12 \ d = \alpha \cdot 2 + \beta \cdot 122 = \alpha \cdot 2 + \beta \cdot 122 = 12 \cdot 0 + 2 \implies Continua2 = 2 \cdot \alpha 1 + 12 \cdot 0 \mod 12 Moltiplico per 5 = \frac{b}{d}5 \cdot 2 = 5 \cdot 2 \cdot 1 + 5 \cdot 12 \cdot 0 \mod 2L'insieme delle soluzioni della congruenza è: \{5 + 12k | k \in \mathbb{Z}\} \cup \{11 + 12k | k \in \mathbb{Z}\}
```

3.1 Invertibili in \mathbb{Z}_n e il loro calcolo

 $n \in \mathbb{Z}, n > 0, a \in \mathbb{Z}$ si dice **invertibile modulo** n se la congruenza $ax \equiv 1 \mod n$ ha soluzioni.

quindi $\iff MCD(a, n) = d|b = 1 \iff MCD(a, n) = 1$ Si dice PAOLO.

```
Def. n \in \mathbb{N}, n > 0 [a]_n \in \mathbb{Z}_n si dice invertibile in \mathbb{Z}_n se \exists [b]_n \in \mathbb{Z}_n tale che [a]_n[b] - n = [1]_n In questo case [b]_n si dice un inverso di [a]_n [a]_n = [1]_n ax \equiv 1 \mod n d = MCD(a, n) = 1 Essendo [b]_n unico (Perché d = 1) Allora [b]_n è l'inverso di [a]_n PAOLO
```

Esempio 1 6 non è iunvertibile modulo 9 perché $MCD(6,9) \neq 1$ $(6x \equiv 1 \mod 9 \text{ non ha soluzioni})$

Esempio 2 4 è invertibile modulo 9 perché MCD(4,9)=1 (4 e 9 sono coprimi) $underseta4x \equiv \underset{b}{1} \mod \underset{n}{1} \text{ ha soluzione}$ $\exists [4]_q^{-1}$ Calcolo l'inverso di $[4]_q$, cioè calcolo $[4]_q^{-1}$ $d = \underset{a}{\alpha} \underset{q_1}{a} + \underset{r_1}{\beta} \underset{q_1}{p}$ $9 = \underset{a}{4} \cdot \underset{q_1}{2} + \underset{r_1}{1}$ $1 = 9 + 4 \cdot (-2)$ colorred \mathbb{Z}_p (con p un numero primo) Sia p un numero primo e $[a]_p \in \mathbb{Z}_p$ Posso supporre $0 \leq a < p$ A

se
$$a = 0$$
 allora $[a]_p = [0]_p$
 $\not {\exists} [b]_p | [0]_p [b]_p = [1]_p$
 $\vec {\exists} [0]_p^{-1}$

se $a \neq 0$ Siccome p è un numero primo PAOLO

Di \mathbb{Z}_p tutti di elementi $\neq [0]_p$ sono invertibili. Quanti sono? Sono p-1Il numero degli elemtni invertibili in \mathbb{Z}_p è p-1Quanti sono gli invertibili in \mathbb{Z}_n ? PAOLO

3.2 La funzione di Eulero

La funzione di Eulero ϕ li "conta" $\phi: \mathbb{N} \longrightarrow \mathbb{N}$

è definita da $\phi(n)$ =il numero dei naturali k tali che $\begin{cases} 0 \le k < n \\ MCD(k,n) = 1 \end{cases}$ Se p è un numero primo (PAOLO) $\phi(p) = p-1$

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m} \Longrightarrow \phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2} \dots (1 - \frac{1}{p_m})$$

Finisci slide

3.3 Sistema di congruenze

UN sistema di congruenze è $\begin{aligned} a_1x &\equiv c_1 \mod m_1\\ a_2x &\equiv c_2 \mod m_2\\ \dots\\ a_kx &\equiv c_k \mod m_k\\ \text{Dove } a_i, c_i \in \mathbb{Z} \ i=1,...,k\\ \text{PAOLO} \end{aligned}$

"Risolvere" il sistema significa

- Dire se ha soluzioni oppure no
- nel caso le abbia, trovarle tutte

Un $x_0 \in \mathbb{Z}$ è UNA SOLUZIONE del sistema se è contemporaneamente soluzione di ogni congruenza del sistema.

 ${
m NB~1}$ Se una congruenza non ha soluzioni allora l'intero sistema non ne ha. 9

NB 2 Anche se tutte le congruenze del sistema hanno soluzione, non è detto che il sistema abbia soluzione.

Ad esempio

 $\begin{cases} x\equiv 1 \mod 2\\ x\equiv 0 \mod 6 \end{cases}$ non ha soluzioni anche se ogni sua configurazione ha soluzioni

 $^{^{9}\}mathrm{come}$ avviene in tutti i sistemi

3.4 Il teorema cinese dei resti

Il teorema cinese dei resti da una condizione **sufficiente** affinché **particolari** sistemi di congruenze abbiano soluzioni.

 $\begin{aligned} \text{Dati } n_1, n_2, ..., n_k \in \mathbb{N}, n_i > 0 & i = 1, ..., k \\ \text{a due a due coprimi}^{10} \end{aligned}$

 $\forall b_1, b_2, ..., b_k \in \mathbb{Z}$ si ha che \exists infinite soluzioni del sistema

$$\begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ \dots \end{cases}$$
 Esse si trovano tutte nella stessa classe di congruenze modulo $n = n_1 \cdot n_2 \cdot \dots \cdot n_k$ $x \equiv b_k \mod n_k$

 ${\bf NB}~$ La condizione che gli n_1 siano a due a due coprimi non è una condizione neccessaria affinché il sistema abbia soluzioni:

Esempio 1
$$\begin{cases} 5x \equiv 3 \mod 7 & n_1 = n_2 \Longrightarrow MCD(n_1, n_2) \neq 0 \\ 3x \equiv 6 \mod 7 & \text{Però il sistema ha soluzione } [2]_7 \end{cases}$$

Esempio 2
$$\begin{cases} x \equiv 0 \mod 2 & MCD(n_1, n_2) \neq 0 \\ x \equiv 2 \mod 4 & \text{Però il sistema ha soluzione in } [2]_4 \end{cases}$$

Cominciamo a studiare Il caso k=2

$$\begin{cases} A \to & \begin{cases} x \equiv b_1 \mod n_1 \\ B \to & \end{cases} & MCD(n_1, n_2) = 1$$

3.4.1 Metodo di Newton

- 1. $x_1 = b_1$
- 2. Cerco $t_2 \in \mathbb{Z}$ tale che $x_1 + t_2 n_1 \equiv x_2$ sia soluzione di B Così cerco $t_2 \in \mathbb{Z}$ tale che $b_1 = t_2 n_1 \equiv b_2 \mod n_2$ $t_2 n_1 \equiv (b_2 b_1) \mod n_2$ dove t_2 è il numero intero che cerco in modo tale che: $x_2 \equiv b_2 \mod 4$ (siccome cerco t_2) $x_2 = x_1 + t_2 n_1 \equiv x 1 = b_1 \mod n_1$
- 3. x_2 è una soluzione di $\begin{cases} A \\ B \end{cases}$
- 4. Per il teorema cinese dei resti, le soluzioni del sistema sono esattamente tutti i numeri interi nella classe $[x_2]_n = \{\}$ PAOLO

Esempio
$$\begin{cases} x \equiv 4 \mod 6 \\ b_1 & n_1 \\ x \equiv 3 \mod 5 \\ mCD(n_1, n_2) = MCD(6, 5) = 1 \end{cases}$$

Posso applicare il teorema dinese dei resti e concludere che il sistema ha infinite soluzioni: tutti i numeri in $[x_2]_30 = \{x_2 + 30k | k \in \mathbb{Z}\}$

¹⁰cioè se $i \neq j$ allora $MCD(n_i, n_j) = 1$

1.
$$x_1 = 4$$

2. cerco
$$t_2 \in \mathbb{Z}$$
 tale che $x_2 = x_1 + t_2 n_1 \equiv b_2 \mod n_2$, ovvero $4 + t_2 \cdot 6 \equiv 3 \mod 5$
Facendo i conti in \mathbb{Z}_5 : $[4]_5 + t_2[6]_5 = [3]_5$
 $t_2 \cdot 6 \equiv 3 - 4 \mod 5$
 $6t_2 \equiv -1 \mod 5 \Longrightarrow t_2 \equiv 4 \mod 5$

3. ad esempio prendo
$$t_2 = 4 \Longrightarrow$$

 $\Longrightarrow x_2 = x_1 + t_2 n_1 = 4 + 4 \cdot 6 = 28$

Per il teorema cinese dei resti tutte le soluzioni di $\begin{cases} A \\ B \end{cases}$ sono gli interi nell'insieme [28] $_{30}=\{28+30k|k\in\mathbb{Z}\}$

Il caso k = 3 Consideriamo

$$\begin{array}{ccc} A \longrightarrow & \begin{cases} x \equiv b_1 \mod n_1 \\ X \equiv b_2 \mod n_2 \\ C \longrightarrow & \\ x \equiv b_3 \mod n_3 \end{cases}$$

E lo risolviamo col teorema cinese dei resti con l'ipotesi:

$$MCD(n_1, n_2) = 1$$

 $MCD(n_1, n_3) = 1$
 $MCD(n_2, n_3) = 1$

Per trovare x_3 :

- 1. Scelgo una soluzione di $A: x_1 = b_1$
- 2. Cerco $t_2 \in \mathbb{Z}$ tale che $x_2 = x_1 + t_2 n_1 \equiv b_2 \mod n_2$

3.
$$x_2$$
 è soluzione di $\begin{cases} A \\ B \end{cases}$

4. Cerco
$$t_3 \in \mathbb{Z}$$
 tale che $x_2 + t_3(n_1 \cdot n_2) = x_3 \ x_3$ è soluzione di
$$\begin{cases} A \\ B \\ C \end{cases}$$

$$x_3 \equiv x_2$$
 è soluzione di A
 $x_3 \equiv x_2$ è soluzione di B
 a

$$n = n_1 \cdot n_2 \cdot n_3$$

5.
$$x_3$$
 è una soluzione del sistema
$$\begin{cases} A \\ B \\ B \end{cases}$$

Per il teorema cinese dei resti la soluzione del (*) sono i numeri interi nell'insieme $\{x_2 + nk | k \in \mathbb{Z}\}$

Esempio 2 considero

$$\begin{cases} x \equiv 10 \mod 11 \\ x \equiv 5 \mod 6 \\ x \equiv 10 \mod 7 \\ \end{cases} MCD(11,6) = 1 \\ MCD(11,7) = 1 \\ MCD(6,7) = 1$$

$$n = 11 \cdot 6 \cdot 7 = 462$$

- 1. $x_1 = 10$
- 2. Cerco $t_2 \in \mathbb{Z}$ tale che $x_2 = x_1 + t_2 n_1 \equiv b_2 \mod n_2$ $10 = t_2 \cdot 11 \equiv 5 \mod n$ $11t_2 \equiv 5 - 10 \mod 6$ $11t_2 \equiv -5 \mod 6$ [1]₆ = [5]₆ [-5]₆ = [1]₆ PAOLO, e anche bello grosso
- 3. Cerco $t_3 \in \mathbb{Z}$ tale che $x_3 = x_2 + t_3(n_1 \cdot n_2)$ sia soluzione di C: $x \equiv 5 \mod 7$ $x_2 + t_3(n_1 \cdot n_2) \equiv 5 \mod 7$ $65 + t_3(11 \cdot 6) \equiv 5 \mod 7$ $66t_3 \equiv -60 \mod 7$ $3t_3 \equiv 3 \mod 7$

$$x_3 = x_2 + t_3 \cdot n_1 \cdot n_2$$

= 65 + 1 \cdot 11 \cdot 6
= 65 + 66 = 131

FINISCI

In generale se $k \ge 4$ e $\begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ x \equiv b_k \mod n_k \end{cases}$ Con $MCD(n_i, n_j) = 1 \ \forall i \ne j$

Itero di procedimento

- $x_1 = b_1$ è una soluzione di 1
- $\bullet\,$ impongo che $x_1+n_1t_2=x_2$ Sia soluzione di 2 FINISCI Cerco $t_2...$
- Impongo che $x_2 + n_1 n_2 t_3 = x_3$ sia soluzione di 3 (Cerco $t_3 \in \mathbb{Z}$ tale che ...) allora x_3 è soluzione di $\begin{cases} 1 \\ 2 \\ 3 \end{cases}$
- Impongo che $x_3+n_1n_2n_3t_4=x_3$ sia soluzione di 4 (Cerco $t_4\in\mathbb{Z}$ tale che ...) allora x_4 è soluzione di $\begin{cases} 1\\2\\3\\4 \end{cases}$

PAOLO

Torniamo al caso
$$k=2$$
 $\begin{cases} x\equiv b_1 \mod n_1 \\ x\equiv b_2 \mod n_2 \end{cases}$ Metodo di Lagrange $MCD(n_1,n_2)=1$ Da $MCD(n_1,n_2)=1$, usando Bezout trovo: $\alpha_1,\alpha_2\in\mathbb{Z}$ tali che $\alpha_1n_1+\alpha_2n_2=1$ Allora $z=\alpha_1n_1b_2+\alpha_2n_2b_1$ è una PAOLO $z=\alpha_1n_1b_2+\alpha_2n_2b_1$ $z\equiv b_1 \mod n_1$ $a_1n_1+\alpha_2n_2\Longrightarrow \alpha_2n_2=1-\alpha_1n_1$ $z=\alpha_1n_1b_2+(1-\alpha_1n_1)b_1$ (2)

(3)

PAOLO, c'è da finire la slide

$$\begin{cases} x \equiv 4 \mod 6 \\ x \equiv 4 \mod 6 \\ x \equiv 4 \mod 6 \\ mcD(6, 5) = 1 \text{ cerco } \alpha_1, \alpha_2 \in \mathbb{Z}| \end{cases}$$

PAOLO

Ridurre un generico sistema di congruenze

Vediamo come "ridurre", se si può, un generico sistema di congruenze:

 $=\alpha_1 n_1 b_2$

liamo come "ridurre", se si può, un generico sistema di congruenze:
$$\begin{cases} a_1x \equiv c_1 \mod m_1 \\ a_2x \equiv c_2 \mod m_2 \\ \dots \\ a_kx \equiv c_k \mod m_k \\ a_i, c_i \in \mathbb{Z}, m_i \in \mathbb{N}, m_i > 0 \end{cases} \text{ ad un sistema nella forma} \begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ \dots \\ x \equiv b_k \mod n_k \\ b_i \in \mathbb{Z}, n_i \in \mathbb{Z}, n_i > 0 \end{cases}$$

Ridurre significa "sostituire con un sistema equivalente" Equivalente significa "con le stesse soluzioni"

Motivazione Abbiamo

$$A \to \begin{cases} 2x \equiv 4 \mod 8 \\ 3x \equiv 6 \mod 9 \end{cases}$$

$$A = MCD(2, 8) = d = 2|4\begin{cases} [2]_8 & 2 \cdot 2 = 4 \equiv 4 \mod 8 \\ [6]_8 & 2 \cdot 6 = 12 \equiv 4 \mod 8 \end{cases}$$

$$A\begin{cases} x \equiv 2 \mod 8 & C \\ x \equiv 6 \mod 8 & D \end{cases}$$

$$B: MCD(3, 9) = d = 3|6\begin{cases} [2]_9 & 3 \cdot 2 = 6 \equiv 6 \mod 9 \\ [5]_9 & 3 \cdot 5 = 15 \equiv 6 \mod 9 \\ [8]_9 & 3 \cdot 8 = 24 \equiv 6 \mod 9 \end{cases}$$

$$B \begin{cases} x \equiv 2 \mod 9 & E \\ x \equiv 5 \mod 9 & F \\ x \equiv 8 \mod 9 & G \end{cases}$$

sono l'unione delle soluzioni di 6 sistemi:

$$\begin{cases} C & \cup \begin{cases} C & \cup \begin{cases} C & \cup \begin{cases} D & \cup \begin{cases} D & \cup \\ F & 0 \end{cases} \end{cases} \end{cases}$$

E noi vorremmo non dover risolvere sei sistemi.

Passaggio 1 Calcolo $d_i = MCD(a_i, m_i) \ \forall i = 1, ..., k$

- $\exists d_i$ tale che $d_i \not| c_i$ allora $a_i x \equiv c_i \mod m_i$ Non ha soluzioni, allora (*) non ha
- se $d_i|c_i \ \forall i=1,...,k$ allora ogni congruenza di (*) ha soluzione e
 - se $d_i = 1$ mantengo la congruenza $a_i x \equiv c_i \mod m_i$
 - se $d_i \neq 1$ sostituisco la congruenza $a_i x \equiv c_i \mod m_i$ con la congruenza

$$\frac{a_i}{d_i} x \equiv \frac{c_i}{d_i} \mod \frac{m_i}{d_i}$$

NB 1 La congruenza $\frac{a_i}{d_i}x\equiv\frac{c_i}{d_i}\mod\frac{m_i}{d_i}$ è equivalente alla congruenza $a_ix\equiv c_i$ $\mod m_i$

NB 2 La congruenza $a_i x \equiv c_i \mod m_i$

Infatti

Sia $z \in \mathbb{Z}$

NB 3 Siccome $d_i = MCD(a_i, m_i)$ allora

$$MCD(\frac{a_i}{d_i}, \frac{m_i}{d_i}) = 1$$

Quindi le soluzioni della congruenza $\frac{a_i}{d_i}x\equiv\frac{c_i}{d_i}\mod\frac{m_i}{d_i}$ stanno tutte in un'unica classe di congruenza modulo $\frac{m_i}{d_i}$ Alla fine del **passaggio 1** ottengo che (*) non ha soluzioni, oppure che (*) è equiva-

$$(**) \begin{cases} \frac{a_1}{d_1} x \equiv \frac{c_1}{d_1} \mod \frac{m_1}{d_1} \\ \vdots \\ \vdots \\ \frac{a_k}{d_k} x \equiv \frac{c_k}{d_k} \mod \frac{m_k}{d_k} \end{cases}$$

Passaggio 2 Risolvo ciascuna congruenza di (**)

$$\frac{a_i}{d_i}x \equiv \frac{c_i}{d_i} \mod \frac{m_i}{d_i} \Longrightarrow x \equiv \frac{b_i}{d_i} \mod \frac{m_i}{d_i}$$

Dove $[b_i]_{\frac{m_i}{d_i}}=\{b_i+\frac{m_i}{d_i}t|t\in\mathbb{Z}\}$ è l'insieme delle soluzioni della congruenza

Posto $n_i = \frac{m_i}{d_i}$ ottengo un sistema

$$(***) \begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ \dots \\ \dots \\ x \equiv b_k \mod n_k \end{cases}$$

SE $MCD(n_i, n_j) = 1 \ \forall i \neq j$ posso applicare il Teorema cinese dei resti. In tal caso:

Passaggio 3 Con newton trovo x_k una particolare soluzione di (***) e per il teorema cinese dei resti l'insieme di tutte le soluzioni (***), e quindi anche di (*) è $[x_k]_n = \{x_k + nt | t \in \mathbb{Z}\}$

dove
$$n = n_1 \cdot n_2 \cdot \ldots \cdot n_k$$

3.6 Esercizio tipo

Risolvere il sistema

$$\begin{cases} 3x \equiv 4 \mod 5\\ a_1 & c_1 \mod 6\\ 2x \equiv 4 \mod 6\\ a_2 & c_2 \end{cases}$$

$$\begin{array}{ll} \textbf{Passaggio 1} & a_1 = MCD(a_1, m_1) = MCD(3, 5) = 1 | 4 = c_1 \\ a_2 = MCD(a_2, m_2) = MCD(2, 6) = 2 | 4 = c_2 \end{array}$$

 $a_1 = 1 \Longrightarrow \text{mantengo } 3x \equiv 4 \mod 5$ $a_2 = 2 \neq 1 \text{ sostituisco } 2x \equiv 4 \mod 6$ $\text{Con } \frac{2}{2}x \equiv \frac{4}{2} \mod \frac{6}{2} \colon x \equiv 2 \mod 3$

arrivo a (**)
$$\begin{cases} 3x \equiv 4 \mod 5 \\ x \equiv 2 \mod 3 \end{cases}$$

Passaggio 2 Risolvo ciascuna congruenza PAOLO

$$3x \equiv 4 \mod 5$$

$$d = MCD(a, n) = 1|4 = b$$

$$d = 1 = \alpha a + \beta n$$

$$1 = \alpha + \beta \cdot 5$$

$$\alpha = 2$$

$$x_0 = \alpha q = 2 \cdot 4 = 8$$

$$5 = 3 \cdot 1 + 2 \Longrightarrow 2 = 5 + 3 \cdot (-1)$$

$$3 = 2 \cdot 1 + 1$$

$$a \quad r_1 \quad q_2 \quad r_2$$

$$\Rightarrow 1 = 3 + 3 \cdot (-1) = 3 + (-1)[5 + 3 \cdot (-1)] = 3 + (-1) \cdot 5 + 3 = 3 \cdot 2 + 5 \cdot (-1)$$

$$\Rightarrow 3x \equiv 4 \mod 5$$

$$[8]_5 = [8-5]_5 = [3]_5$$

Sostituisco $3x \equiv 4 \mod 5$ con $x \equiv 3 \mod 5$

Per puro caso la congruenza $x = 2 \mod 3$ è già risolta.

$$(***) \begin{cases} x \equiv 3 \mod 5 \\ b_1 & n_1 \end{cases}$$
$$x \equiv 2 \mod 3 \\ b_2 & n_2 \end{cases}$$

Siccome $MCD(n_1, n_2) = MCD(5, 3) = 1$,

Allora posso applicare il teorema cinese dei resti e concludere che (***) e quindi anche il sistema da cui sono partito ha infinite soluzioni (numeri interi) tutte nella stessa classe di congruenza modulo

$$n = n_2 \cdot n_2 = 5 \cdot 3 = 15$$

Passaggio 3 Trovo x_2 una particolare soluzione di (***)

- 1° Modo per trovare $x_2 \begin{cases} x \equiv 3 \mod 5 \\ x \equiv 2 \mod 3 \\ n-2 \end{cases}$
 - 1. $x_1 = 3$
 - 2. cerco $t_2 \in \mathbb{Z}$ tale che $x_2 = x_1 + t_2 n_1 \equiv 2 \mod 3$ $x_2 \to 3 + t_2 \cdot 5 \equiv 2 \mod 3$

$$5t_2 \equiv (2-3) \mod 3$$

$$5t_2 \equiv -1 \mod 3 \equiv 2 \mod 3A$$

$$[5]_3 = [2]_3 \rightarrow 5t_2 = 2t_2$$

$$2t_2 \equiv 2 \mod 3$$

Ad esempio $t_2 = 1$ $x_2 = 3 + 1 \cdot 5 = 3 + 5 = 8$ tutte le soluzioni del (*) sono $[8]_5 = \{8 + 15k | k \in \mathbb{Z}\}$

2° Modo per trovare $x_2 = z \ MCD(n_1, n_2) = 1 \ \exists \alpha_1, \alpha_2 \in \mathbb{Z}$ tale che

$$\alpha_1 n_1 + \alpha_2 n_2 = 1$$

$$\begin{array}{ccc} \alpha_1 & \cdot 5 + \alpha_2 & \cdot 3 = 1 \\ -1 & & 2 \end{array}$$

$$z = \frac{\alpha_1 n_1}{-5} b_2 + \frac{\alpha_2 n_2}{6} b_1 = \\ = -5 \cdot 2 + 6 \cdot 3$$

$$= -5 \cdot 2 + 6 \cdot 3$$

$$=-10+18=8$$

$$[z]_n = [8]_{15} = \{8 + 15k | k \in \mathbb{Z}\}$$

4 Matrici e loro operazioni

Una matrice è una tabella di numeri (o di simboli) disposti in righe e colonne, detti coefficienti della matrice

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 4 & 1 \end{bmatrix} \qquad A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 1 \end{pmatrix}$$

Altri tipi di notazioni sono sbagliati, inoltre:

$$\begin{bmatrix} 2 \\ 1 & 4 \end{bmatrix}$$
non è una matrice

Il numero che si trova nella i-esima riga e nella j-esima colonna si chiama **coefficiente** di posto (i,j)

 $A \stackrel{.}{e} m \times n$ se ha m righe e n colonne (A ha "dimensioni $m \times n$ ")

$$\mathbf{A} = \begin{array}{c} \rightarrow \\ \rightarrow \\ - \rightarrow \\ 1 \quad 4 \quad 1 \end{array} \right] \stackrel{\triangleright}{\mathbf{e}} 2 \times 3 \qquad \qquad \begin{array}{c} \begin{bmatrix} 1 & \frac{1}{2} \\ i & 7 \\ 0 & 3 \\ \end{bmatrix} \stackrel{\triangleright}{\mathbf{e}} 3 \times 2$$

Le posizioni sono:

$$(2,2)$$
 $(1,3)$ $(3,2)$

Le matrici si indicano con lettere latine maiuscole in stampatello

I Coefficienti si indicano con le lettere latine minuscole in corsivo

$$a_{ij} = \text{il coefficiente di posti } (i, j) \text{ di A}$$

Per scrivere in modo compatto la matrice:

La indico:

$$\mathbf{A} = (a_{ij})$$
 oppure $\mathbf{A} = (a_{ij})_{i=1,\dots,m}$ PAOLO

4.1 Operazioni

4.1.1 Prodotto di una matrice per uno scalare

Dato $A = (aij), m \times n$ e dato uno scalare α , si definisce **Prodotto dello scalare** α per la matrice A la matrice B_{$m \times n$} = (bij) dove $b_{ij} = \alpha \cdot a_{ij}$

si indica
$$B = \alpha \cdot A$$

Esempio
$$\alpha = 1 - i$$
 $A = \begin{bmatrix} 7 & 0 & 3i \\ 1 + 2i & -i & -4 \end{bmatrix}$

$$\Longrightarrow \alpha {\bf A} = (1-j) \begin{bmatrix} 7 & 0 & 3i \\ 1+2i & -i & -4 \end{bmatrix} =$$

$$\begin{array}{c|c} (1-i)7 = 7 - 7i \\ (1-i) \cdot 3i = 3i - 3i^2 \\ = -3i - 3(-1) \\ = 3i + 3 \end{array} \right| \begin{array}{c} (1-i)(1+2i) = 1 - i + 2i + 2i^2 = 1 - i + 2i + 2 = 3 + i \\ (1-i)(-i) = -i + i^2 = -i - 1 \\ (1-i)(-4) = -4 + 4i \end{array}$$

NB 1 vale la legge di cancellazione

$$\alpha \cdot \mathbf{A} = || \Longrightarrow \alpha = 0$$
oppure $\mathbf{A} = ||$

Indico con || la matrice con tutti i coefficienti = 0

NB 2

- 1. $\alpha A = A\alpha$ $\forall \alpha \text{ scalare } \forall A$
- 2. $1 \cdot A = A$ $\forall A$
- 3. $0 \cdot A = ||$
- 4. $(\alpha \cdot \beta) \cdot A = \alpha(\beta A)$ $\forall \alpha, \beta$ scalari $\forall A$