Review and supplement for Lecture 2

Picture of A Computer System

Hai	rdw	/are

- Central Processing Unit (CPU, or simply called processor)
- Memory
 - Internal memory (volatile)
 - CPU registers
 - CACHE
 - RAM (Random Access Memory): computer's main memory (or primary memory)
 - External memory (permanent), also called secondary memory
 - Hard drive
 - Floppy
 - □ Diskette
- ☐ Input / Output devices: keyboard, mouse, monitor, printer, etc.

Software

- Program
- Operating system
 - Manage the CPU and RAM allocation
 - File system: manage the secondary memory, directory, file
 - I/O devices management
 - Human-machine interface: GUI (Graphical User Interface)
- Application program: A computer program run on a computer directly targeting a task that the user wishes to perform

Instructions:

CPU fetches data and instructions from memory

C ← A + B D ← A * C A > B?, A=B? A ← MEM MEM ← C

CPU receives data and instructions from keyboard, mouse, ...

CPU performs computations, stores results and instructions in memory

CPU performs computations, sends results to screen, speakers, printer, ...

CPU and Main memory

Load R0, 3

Load R2, 4

R1 ← R0 - R2

 $R0 \leftarrow R0 + R2$ '(Overwrite R0)

Store R1, 2

Store R0, R1

Simulation 1(registers, ALU)

Simulation 2(registers, ALU, Memory)

Simulation 3(registers, ALU, Memory, Program)

- Organize the instructions Programs
- Organize the memory (instruction memory, directories, files)
- Organize the I/O devices (not the concern of this course)
- Organize the computers in Internet (networks, sub-networks)
- Organization requires identifying
 - Identify memory cells Memory addresses
 - ☐ Identify I/O devices Device addresses
 - □ Identify computers IP addresses, Mac addresses
 - etc.
- Organizations are hierarchical
 - □ A folder may contain sub-folders; a sub-folder may contain further sub-folders, and so on.
 - □ A program may call sub-program; a sub-program may further call another sub-program, and so on.
 - A network may contain sub-network; a sub-network may further contain another sub-network.

Angle 2: Computer approaches are about mapping

- Memory address maps to memory cell
- IP address maps to computer
- MAC (Ethernet LAN) address maps to computer
- Chain of mapping: IP address ↔ MAC address ↔ Network card ↔ Computer (A long way to map IP address to computer)
- Binary number maps to register: 01

 R1 (use binary number to "name" a register)
- CPU Instruction maps to CPU operations
 - □ Instruction: R1 ← R2 + R3
 - Operations:
 - Put R2 into bus A
 - Put R3 into bus B
 - Wait for x nanosecond(10^-9) until the result is available in bus C
 - Put content in bus C to R1
- Binary number maps to instruction: 1010000100 01 10 11 ↔ (R1 ← R2 + R3)
 - □ 1010000100

 and and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, then put the result in bus C

 and bus B, the bus B
 - □ 01 ↔ Connect bus C to register R1
 - □ 10 ↔ Connect bus A to register R2
 - □ 11

 Connect bus B to register R3

- Each sub-network has a specified computer called router
- If the destination is within the same sub-network, packets are sent to the destination directly
- If the destination resides in some other sub-network
 - □ Packets are passed to router
 - The router looks up the routing table, and decide where to relay the packets
 - ☐ Then the packets are passing around different routers until they reach the destination

Layers in the Internet protocols

Network connections

Stack connections

- Application: <u>DNS</u>, <u>TLS/SSL</u>, <u>FTP</u>, <u>HTTP</u>, <u>SMTP</u>, ...
- Transportation: <u>TCP</u>, <u>UDP</u>, ...
- Network: <u>IP</u> (<u>IPv4</u>, <u>IPv6</u>)
- ARP and RARP operate underneath IP but above the link layer so they belong somewhere in between.
- Link: Ethernet, Wi-Fi, PPP, FDDI, ATM, Frame Relay, ...

Internet and Networking

- IP address
- Packet switches
- Communication Protocols
- Routing
- History: ARPANET (1960s, military originated)
- DNS, domain name
- URLs
- Email address: tom@gc.cuny.edu
 - □ tom: the usename of the recipient
 - gc.cuny.edu: domain name to lookup the <u>Mail transfer agent</u> (MTA); the DNS system maps the domain name to the MTA's IP; the MTA is a computer who accept mails for its users.

Using a computer

- You should be familiar with followings
 - □ Desktop, window, icon, title bar, menu bar
 - Minimize, maximize, restore, scroll bar
 - Mouse: point, click, double click, drag
 - □ Dialogue box
 - Cut and paste
 - □ Directories (folders) and files
 - Web browsing, Email