Modelagem de Sistemas Dinâmicos Trabalho 2

Erica da Cunha Ferreira Novembro 2020

Sumário

1	Inti	rodução	1				
2	Modelagem Teórica						
	2.1	Representações	2				
		2.1.1 Diagrama de Blocos					
		<u> </u>	3				
		2.1.3 Sistema de Espaço de Estados	3				
	2.2	Momento de Inércia	3				
	2.3	Constantes	3				
	2.4		4				
		2.4.1 Velocidade Máxima	4				
		2.4.2 Corrente e Torque Máximos	5				
3	Identificação Experimental 5						
	3.1		5				
	3.2	Motor Sem Carga	7				
4	Val	idação dos Modelos	8				
	4.1		8				
	4.2	Comparação	9				
		4.2.1 Diferença entre real e teórico	9				
		4.2.2 Diferença entre real e experimental	9				
5	Cor	nclusão	10				

1 Introdução

Neste trabalho é analisado o motor de corrente contínua (DC) controlado por corrente de armadura com a entrada de tensão $V_a(t)(V)$ e com saídas de posição angular $\theta_m(t)$ e velocidade angular $\omega_m(t)(rad/s)$ representado pela Figura 1.

Figura 1: Modelo esquemático do motor de corrente continua (DC)

Tendo este sistema as seguintes características fornecidas pelo fabricante:

- Resistência da armadura, $R_a=10.6~\Omega$
- $\bullet\,$ Indutância da armadura, $L_a=0.82~mH$
- Momento de Inércia do Rotor do Motor, $J_m=1,1610^{-6}$
- Constantes do Motor, $K_m = K_e = 0.0502 \ Nm/A$
- Tensão Máxima, 15 volts
- Massa do disco de inércia, 0,068 kg
- Raio do disco de inércia, 0,0248 m

2 Modelagem Teórica

2.1 Representações

2.1.1 Diagrama de Blocos

A partir da análise do circuito e do uso do softwares Matlab e Simulink, pode ser construído o diagrama de blocos da Figura 2, que representa o circuito no domínio da frequência complexa, é importante salientar que o atrito do sistema foi desconsiderado.

Figura 2: Diagrama de Blocos do sistema

Pelo circuito representado pelo diagrama de blocos, as seguintes equações são deduzidas. Considerando que K_e é a constante Eletromotriz, I_a a corrente do motor, T_m torque do motor e E_m a força eletromotriz gerada pelo motor.

Equações:

$$V_a(s) = I_a(s) \cdot R_a + s \cdot L_a(s) \cdot I_a(s) + K_e \cdot \omega_m(s)$$
 (1)

$$J_s \cdot s \cdot \omega_m(s) = K_m \cdot I_a(s) \tag{2}$$

$$T_m = K_m \cdot I_a(s) \tag{3}$$

$$E_m = K_e \cdot \omega_m(s) \tag{4}$$

2.1.2 Função de Transferência

A partir das informações fornecidas pelo fabricante e do diagrama de blocos, é calculada a função de transferência G(s).

$$G(s) = \frac{\omega_m(s)}{V_a(s)} = \frac{K_m}{J_s \cdot s \cdot (s \cdot L_a + R_a) + K_m \cdot K_e}$$
 (5)

2.1.3 Sistema de Espaço de Estados

O circuito também pode ser representado pelo Sistema de Espaço de Estados, como pode ser visto na equação (6) com I_a representando a corrente.

$$\dot{x} = \begin{bmatrix} \frac{-R_a}{L_a} & \frac{-K_e}{L_a} \\ \frac{K_m}{J_s} & 0 \end{bmatrix} \begin{bmatrix} I_a \\ \omega_m \end{bmatrix} + \begin{bmatrix} \frac{1}{L_a} \\ 0 \end{bmatrix} V_a \tag{6}$$

2.2 Momento de Inércia

A partir dos dados do motor, calcula-se o momento de inércia do disco I_d pela equação (7). Com esse valor, é calculado o momento de inércia do sistema J_s , que é dado pela soma do momento de inércia do rotor J_m e do disco J_d .

$$I_d = \frac{mR^2}{2} = 2,091.10^{-5}kg \cdot m^2 \tag{7}$$

$$J_s = J_m + I_d = 22,07.10^{-6} kg \cdot m^2 \tag{8}$$

2.3 Constantes

Ao rearranjar a equação (5) e substituir os valores dados pelo fabricante, chegamos à equação:

$$G(s) = \frac{19,92}{s^2 \cdot (7,1815.10^{-6}) + s \cdot (0,088) + 1}$$
(9)

Reajustando os termos, temos:

$$G(s) = \frac{19,92}{(0,0879 \cdot s + 1)(0,0001 \cdot s + 1)}$$
(10)

Comparando com a equação dada, podemos definir os valores de K, a constante de tempo elétrica τ_e , que é determinada considerando que o motor está em estado estacionário e τ .

$$G(s) = \frac{K}{(\tau s + 1)(\tau_e s + 1)}$$

$$K = 19,92$$

$$\tau = 0,0879$$

$$\tau_e = 0,0001$$
(11)

Como pode ser visto, devido à ordem do τ_e quando comparamos com τ , podemos considerar esse valor desprezível.

2.4 Valores Máximos

2.4.1 Velocidade Máxima

Ao desconsiderar a pertubação e atrito e ao analisar a equação (1), podemos calcular a velocidade angular máxima $\omega_m(s)$.

$$V_a(s) = I_a(s)(R_a + L_a(s) \cdot s) + K_e \cdot \omega_m(s)$$
(12)

Substituindo a equação (3) em função de $I_a(s)$ na equação (12).

$$V_a(s) = \frac{J_s(s) \cdot s \cdot \omega_m(s)}{K_m} \cdot R_a(s) + K_e \cdot \omega_m \tag{13}$$

Utilizando o Teorema do Valor Final (14), o s tende a 0, resultando na equação (15).

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) \tag{14}$$

$$\omega_{max}(s) = \frac{V_a(s)}{K_e} = \frac{15}{0,0502} = 298,804 \frac{v.A}{Nm}$$
 (15)

2.4.2 Corrente e Torque Máximos

Ao analisar o sistema em regime estacionário e nas condições citadas anteriormente, podemos dizer que a Força eletromotriz E_m gerada pelo motor é igual a 0, uma vez que não há movimento. Por causa disso, a equação (1) pode ser reescrita. Além disso, é possível afirmar $I_as = 0$, uma vez que no regime estacionário, não há variação de corrente. Logo temos a expressão (16).

$$R_a I_{max}(s) = V_a(s) \tag{16}$$

Substituindo na equação (16) os valores dados pelo fabricante, temos:

$$I_{max} = \frac{V_a(s)}{R_a} = \frac{15}{10.6} = 1.415A \tag{17}$$

Ao analisar a equação (3) e colocar os os valores do fabricante, temos:

$$T_{max} = K_m \cdot I_{max}(s) = 0.0502 \cdot 1.415 = 0.071Nm$$
 (18)

3 Identificação Experimental

3.1 Motor Parado Forçadamente

Os dados das Tabelas (1) e (2) foram obtidos experimentalmente pelo kit QET da Quanser.

$V_a(V)$	$I_a(A)$
1.0	0.076
2.0	0.150
3.0	0.225
4.0	0.305
4.9	0.425
5.9	0.474
6.9	0.550
7.9	0.620
8.9	0.720
9.9	0.800

Tabela 1: Medição realizada com o eixo do motor forçadamente parado

Ao considerar o eixo motor parado, a equação (1) se transforma na equação abaixo:

$$R_a = \frac{V_a}{I_a} \tag{19}$$

Então podemos calcular a resistência da armadura R_a estatisticamente a partir do coeficiente angular do gráfico abaixo:

Gráfico de Tensão x Corrente com o Eixo do Motor Parado

Figura 3: Gráfico do eixo do motor parado forçadamente

$$R_a = \frac{V_a}{I_a} = 12,2\Omega \tag{20}$$

3.2 Motor Sem Carga

$V_a(V)$	$\omega_m(rad/s)$	$i_a(mA)$
1.0	12	1
2.0	29	1
3.0	49	1
4.0	70	1
4.9	89	1
5.9	105	1
6.9	127	2
7.9	148	2
8.9	168	2
9.9	185	3

Tabela 2: Medição realizada com o motor sem carga

A constante de torque do motor K_m também pode ser calculada estatisticamente a partir do coeficiente do gráfico abaixo, que por sua vez são os valores fornecidos pela a Tabela (2) plotados.

Figura 4: Gráfico do motor sem carga

$$K_m = \frac{V_a}{\omega_m} = 0,0506Nm/A$$
 (21)

Também podemos calcular a função de transferência $\hat{G}(s)$ e então achar o $\hat{\tau}$ e o \hat{K} , que são os valores achados experimentalmente.

$$\hat{G}(s) = \frac{19,76}{(0,1051s+1)(0,0001s+1)} \tag{22}$$

$$\hat{G}(s) = \frac{19,76}{(0,1051s+1)}$$

$$\hat{\tau} = 0,1051$$
(23)

$$\hat{K} = 19,76$$

4 Validação dos Modelos

4.1 Resposta ao Degrau

Para esta simulação, foi aplicado um gerador de pulsos constantes de amplitude de 5 volts no motor e a resposta ao degrau. Temos então o seguinte gráfico plotado pelo Simulink.

Figura 5: Gráfico

A partir da Figura (5) podemos quantificar o ganho real K_r , que é calculado pela razão entre a velocidade máxima ω_{max} e a tensão máxima V_{max} .

$$K_r = \frac{\omega_{max}}{V_{max}} = 19,828 \tag{24}$$

A constante de tempo real τ por sua vez, é calculado pela quantidade de tempo entre quando o sistema está com a velocidade 0 e quando ele atinge 63% da velocidade máxima.

$$\tau_r = 0,091$$

4.2 Comparação

Agora que temos os valores teóricos, experimentais e reais, podemos compará-los.

4.2.1 Diferença entre real e teórico

Calcule-se o erro percentual pela seguinte fórmula.

$$\epsilon(\%) = |Valor_{real} - Valor_{medido}| \cdot 100$$
 (25)

Ao substituir na equação (23) os valores encontrados pela simulação no Simulink e os encontrados teoricamente, temos os seguintes erros percentuais.

$$\epsilon_{\tau}(\%) = 3,4\%$$

$$\epsilon_K(\%) = 0,464\%$$

4.2.2 Diferença entre real e experimental

Ao substituir na equação (23) os valores encontrados pela simulação no Simulink e os encontrados estatisticamente pelos os valores experimentais dados pelas tabelas, temos os seguintes erros percentuais.

$$\epsilon_{\tau}(\%) = 15, 5\%$$

$$\epsilon_K(\%) = 0,343\%$$

5 Conclusão

Ambos os modelos obtiveram erros percentuais baixos, entretanto, ao compararmos os dois modelos, teórico e experimental, pode-se perceber que o teórico tem um erro menor. Isto se deve ao fato de que os valores experimentais serem retirados manualmente, o que abre a possibilidade para os mais variados erros acontecerem, como o erro da pessoa que os mediu e erros instrumentais, como o do software. Já que alguns valores tem uma ordem pequena, vide o τ , um erro de algumas casas decimais pode interferir significativamente.

Conclui-se, então, que o modelo teórico tem uma maior compatibilidade com o modelo real, uma vez que os erros instrumentais interferem na acurácia do modelo experimental.