Отчет о выполнении лабораторной работы 3.2.1

Измерение удельного заряда электрона

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

1 Аннотация

Цель работы: изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

2 Теоретические сведения

2.1 Метод А

Основной частью установки является электронный осциллограф, трубка которого вынута и установлена в длинном соленоиде, создающим магнитное поле. Напряжение на отклоняющие пластины и питание подводятся к трубке многожильным кабелем.

Пучок электронов, вылетающих из катода с разными скоростями, ускоряется анодным напряжением. Пропустив пучок сквозь две узкие диафрагмы, можно выделить электроны с практически одинаковой продольной скоростью. Небольшое переменное напряжение, поступающее с клеммы "Контрольный сигнал" осциллографа на отклоняющие пластины, изменяет только поперечную составляющую скорости. При увеличении магнитного поля линия на экране стягивается в точку, а затем снова удлиняется.

Магнитное поле создается постоянным током, величина которого регулируется ручками источника питания и измеряется амперметром. Ключ служит для изменения направления поля в соленоиде.

Величина магнитного поля определяется с помощью милливеберметра.

На точность результатов может влиять внешнее магнитное поле, особенно продольное.

Рис. 1: Метод А. Экспериментальная установка

2.2 Метод Б

Два крайних цилиндра изолированы от среднего небольшими зазорами и используются для устранения краевых эффектов на торцах среднего цилиндра, ток с которого используется при измерениях. В качестве катода используется тонкая вольфрамовая проволока. Катод разогревается переменным током, отбираемым от стабилизированного источника питания.

С этого же источника на анод лампы подается напряжение, регулируемое с помощью потенциометра и измеряемое вольтметром.

Индукция магнитного поля в соленоиде рассчитывается по току I_m , протекающему через обмотку соленоида. Коэффициент пропорциональности между ними указан в установке.

Лампа закреплена в соленоиде. Магнитное поле в соленоиде создается постоянным током, сила которого регулируется ручками источника питания и измеряется амперметром.

Рис. 2: Метод Б. Экспериментальная установка

3 Ход работы

3.1 А. Метод магнитной фокусировки

Таблица 1: Зависимость потока от силы тока

I, A	0,47	0,14	0,07	0,21	0,28	0,37
Ф в прямом направлении,	0,8	0,2	0,2	0,3	0,3	0,6
дел.						
Ф в обратном направле-	0,8	1,2	0,1	0,2	0,4	0,5
нии, дел.						

Рис. 3: $\Phi(I)$ в прямом направлении

Рис. 4: $\Phi(I)$ в обратном направлении

$$\sigma_{\frac{\Phi}{I}} = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \Phi^2 \rangle - \langle \Phi \rangle^2}{\langle I^2 \rangle - \langle I \rangle^2}} = 0,01 \frac{\text{MB6}}{\text{A}}$$

$$\Phi = BSN, B = \frac{\Phi}{SN}$$
(1)

 $SN = 3000 \text{ cm}^2$

Построим зависимость магнитной индукции от номера фокуса.

Таблица 2: Зависимость силы тока от номера фокуса

n	1	2	3	4	5
I, A (прямое направление)	0,56	1,17	1.74	2.34	3.19
I, A (обратное направле-	0.57	1.15	1.76	2.88	3.27
ние)					

Поток Φ в зависимости от I можно рассчитать по полученным коэффициентам прямых. Тогда получим зависимость:

Рис. 5: B(I), прямое направление

Рис. 6: B(I), обратное направление

Вычислим удельный заряд электрона по формуле

$$\frac{e}{m} = \frac{8\pi^2 V}{l^2} \frac{n^2}{B_{\Phi}^2} \tag{2}$$

При прямом направлении тока

$$\frac{e}{m} = (1,68 \pm 0,12) \cdot 10^{11} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{\Gamma}}}$$

При обратном направлении тока

$$\frac{e}{m} = (2, 0 \pm 0, 13) \cdot 10^{11} \ \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{F}}}$$

Теоретическое значение

$$\frac{e}{m} = 1,76 \cdot 10^{11} \frac{\mathrm{K}}{\mathrm{K}}$$

3.2 Б. Метод магнетрона

Таблица 3: Зависимость силы тока на аноде от силы тока на соленоиде при разных напряжениях на аноде

70 B		80 B		100 B		120 B		110 B	
I_a ,	I_c ,	I_a	I_c ,						
дел.	дел.	дел.							
0	8	0	9	0	35	0	21	0	50
1	7,3	1	8	1	20	1	20,5	1	49
2	7	2	7,6	2	19,2	2	19	2	45
3	7	3	7,5	3	17	3	18,5	3	44
4	6,5	4	7,2	4	16,5	4	18	4	42,5
5	6,5	5	7,1	5	15,9	5	17,9	5	42
7	6,4	10	7	10	15,2	10	17,1	10	40,5
10	6	15	6,9	15	15	15	17	15	40,1
15	6	21	6,8	20	15	20	16	20	40
21	6,1	30	6,7	38	6,5	30	16,5	30	38,5
30	6,2	38	6,9	38	5	38	4	37	15
37	3	38	0	38	0	38	0	37	0

Рис. 7: Зависимость силы тока на аноде от величины магнитного поля

Найдем по графику значения $B_{\rm \kappa p}$ и построим график зависимости $B_{\rm \kappa p}^2$ от U_a

Рис. 8: Зависимость $B_{\text{кр}}^{2}(U_{a})$

По коэффициенту наклона прямой на графике вычислим удельный заряд электрона, используя формулу

$$\frac{e}{m} = \frac{8U_a}{B_{\rm \kappa p}^2 r_a^2},$$

где $r_a = 12 \text{ мм}$ Получим

$$\frac{e}{m} = (1,97 \pm 0,06) \cdot 10^{11} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{\Gamma}}}$$

4 Вывод

В ходе работы двумя разными способами было получено значение удельного заряда электрона, при этом одно из полученных значений более точно совпадает с теоретическим, а другое совпадает только по порядку. Отклонение от теорического значения может быть вызвано погрешность снятия результатов измерения силы тока в методе Б и не точным соответствием тока фокусу в методе А.