ADVANCED ECONOMETRICS I

Theory (2/3)

Instructor: Joaquim J. S. Ramalho

E.mail: jjsro@iscte-iul.pt

Personal Website: http://home.iscte-iul.pt/~jjsro

Office: D5.10

Course Website: https://jjsramalho.wixsite.com/advecoi

Fénix: https://fenix.iscte-iul.pt/disciplinas/03089

- 2.1. Model Estimation
- 2.1.1. Maximum Likelihood
- 2.1.2. Quasi-Maximum Likelihood Estimation
- 2.1.3. Generalized Method of Moments
- 2.2. Model Inference and Evaluation
- 2.3. Panel Data Models

Motivation:

- Often, the dependent variable is discrete and/or bounded, in which case linear regression models cannot describe it appropriately
- Some continuous, bounded dependent variables may be transformed in such a way that linear regression models can still be used for their analysis; but in some cases such transformations are not available

Quantities of interest:

- Linear models:
 - \bullet E(Y|X)
- Nonlinear models:
 - \bullet E(Y|X)
 - If using a probabilistic model: Pr(Y|X)
 - In some models, there may be also interest on variants of the previous quantities:
 - Example: when modelling a nonnegative outcome, $Y \ge 0$, with lots of zeros, it may be interesting to estimate also:

```
Pr(Y=0|X)
```

E(Y|X,Y > 0)

Partial Effects:

- Linear models:
 - Model: $E(Y|X) = X\beta$
 - Effects: $\Delta X_j = 1 \Longrightarrow \Delta E(Y|X) = \beta_j$
- Nonlinear models:
 - Model:
 - $-E(Y|X) = G(X\beta)$
 - $Pr(Y|X) = F(X\beta)$
 - Effects: $\Delta X_i = 1 \Longrightarrow$

$$-\Delta E(Y|X) = \frac{\partial E(Y|X)}{\partial X_j} = \frac{\partial G(X\beta)}{\partial X_j} = \beta_j \frac{\partial G(X\beta)}{\partial X\beta} = \beta_j g(x_i'\beta)$$

$$-\Delta Pr(Y|X) = \frac{\partial Pr(Y|X)}{\partial X_i} = \frac{\partial F(X\beta)}{\partial X_i} = \beta_j \frac{\partial F(X\beta)}{\partial X\beta} = \beta_j f(x_i'\beta)$$

- Partial effects may be compared across different models, but the values of β cannot
- However, because $\frac{\partial G(X\beta)}{\partial X\beta} > 0$ and $\frac{\partial F(X\beta)}{\partial X\beta} > 0$:
 - The sign of the partial effect is given by the sign of β_i
 - Testing the statistical significance of the partial effect is equivalent to test for H_0 : $\beta_i = 0$
- To calculate the magnitude of the partial effects, there are three main alternatives:
 - Calculate the partial effects for each individual in the sample and then obtain the mean of those effects
 - Replace x by its sample means
 - Replace x by specific values

(after estimating the model)
margins, dydx(varlist) at(...)
margins, dydx(varlist) atmeans
margins, dydx(varlist)

2.1. Model Estimation

Estimation:

- Most common estimation methods:
 - Maximum Likelihood (ML): more efficient
 - Quasi-Maximum Likelihood (QML): more robust
- In both cases it is necessary to specify:
 - The *G* function in $E(Y|X) = G(X\beta)$
 - The *F* function in $Pr(Y|X) = F(X\beta)$
- Main assumptions:
 - ML:
 - Correct specification of both G and F
 - QML:
 - Correct specification of G
 - F does not need to be correctly specified but needs to belong to the linear exponential family (e.g. Normal, Bernoulli, Poisson, Exponencial, Gama, etc.)

2.1. Model Estimation

ML / QML estimation - Statistics:

• Distribution function - F(y): gives the probability of the random variable Y taking a value less than or equal to y:

$$F(y) = Pr(Y \le y)$$

- Density function f(y):
 - Derivative of the distribution function:

$$f(y) = \frac{\partial F(y)}{\partial y}$$
 $F(y) = \int_{-\infty}^{y} f(y) dY$

- In the continuous case, describes the *relative* likelihood for the random variable Y being equal to y (not the *absolute* likelihood)
- In the discrete case gives the probability of the random variable Y being equal to y

2.1. Model Estimation

Likelihood function:

- In individual terms, it is the same as the density function
- Usually, it is calculated for the full sample, giving the *likelihood* of observing that sample under the assumption that the density function f(y) describes appropriately the population behaviour
- Assuming independence across individuals and the same distribution for all of them, it is calculated as:

$$L(y) = \prod_{i=1}^{N} f(y_i), \qquad 0 \le L(y) \le 1$$

Usually:

- F(y), f(y) and L(y) depend also on 1 or 2 parameters
- One of the parameters represents E(y)

2.1. Model Estimation

Most popular density functions:

Y	Function	f(y)
] − ∞, +∞[Normal (μ, σ^2)	$\frac{1}{(2\pi\sigma^2)^{1/2}}\exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$
]0,+∞[Exponential (μ)	$\frac{1}{\mu}e^{-\frac{y}{\mu}}$
]0,1[Beta (μ, δ)	$\frac{\Gamma(\delta)}{\Gamma(\mu\delta)\Gamma[(1-\mu)\delta]}y^{\mu\delta-1}(1-y)^{(1-\mu)\delta-1}$
{0,1}	Bernoulli (μ)	$\mu^{y}(1-\mu)^{1-y}$
{0,1,2,}	Poisson (μ)	$\frac{\mu^{y}e^{-\mu}}{y!}$

In all cases: $E(y) = \mu$

2.1. Model Estimation

Econometrics:

- All the analysis is conditional on a set of explanatory variables
- The parameter μ (= E(y) in Statistics) is replaced by the function assumed for E(y|X), for example $X\beta$ (linear regression model)
- It is assumed that the likelihood function is known up to the set of parameters β (and, in case the original function has 2 parameters, the other parameter)
- Density function to be considered: $f(y_i|x_i;\beta)$

2.1. Model Estimation

Estimation:

- Given that:
 - The density function $f(\cdot)$ is known, except for β
 - The probability that the sample values were in fact generated by the chosen density $f(\cdot)$ is measured by the likelihood function
- Then:
 - We should choose for β the value that maximizes $L(y_i|x_i;\beta)$
 - Optimization problem:

$$\max_{\beta} L(y|X;\beta) = \prod_{i=1}^{N} f(y_i|x_i;\beta)$$

• Actually, it is more common to maximize $LL(X\beta) = \ln[L(y|X;\beta)]$:

$$\max_{\beta} LL(X\beta) = \sum_{i=1}^{N} \ln[f(y_i|x_i;\beta)]$$

- It is easier to maximize
- It produces the same estimates for β

2.1. Model Estimation

Properties of ML / QML Estimators:

- Asymptotic properties of ML estimators:
 - Consistency
 - Efficiency
 - Normality
- Asymptotic properties of QML estimators:
 - Consistency
 - Normality
 - Efficiency is lost; variance calculated in a robust way
 - Not possible to predict Pr(Y|X) and associated partial effects
- Finite sample properties for both estimators:
 - Unknown

2.2. Model Inference and Evaluation

Alternative forms for estimating parameter variances:

- Standard / Efficient → only available for ML
- Robust → only makes sense for QML
- Cluster-robust → panel data
- Bootstrap

Classical tests:

- Likelihood Ratio (LR) \rightarrow only available for ML
- Wald
- Score/LM

2.2. Model Inference and Evaluation

Test for the joint significance of a set of parameters:

- Competing models:
 - Restricted (smaller) model, based on $L_R(\beta_0 + \beta_1 x_1 + \dots + \beta_g x_g)$
 - Full (larger) model , based on $L_F(\beta_0+\beta_1x_1+\cdots+\beta_gx_g+\beta_{g+1}x_{g+1}+\cdots+\beta_kx_k)$

Hypotheses:

$$H_0$$
: $\beta_{g+1} = \cdots = \beta_k = 0$ (restricted model)

 H_1 : No H_0 (full model)

2.2. Model Inference and Evaluation

LR test:

$$LR = 2[LL_F(X\beta_F) - LL_R(X\beta_R)] \sim \chi_{k-g}^2$$

- Available in most econometric packages
- Easy calculation
- Both the competing models need to be estimated

Stata

(estimate one model)
estimates store *Model1*(estimate the other model)
estimates store *Model2*lrtest *Model1 Model2*

Wald test:

$$W = \hat{\beta}_D' \left[Var(\hat{\beta}_D) \right]^{-1} \hat{\beta}_D \sim \chi_{k-g}^2$$

where $\hat{\beta}_D = (\hat{\beta}_{g+1}, ..., \hat{\beta}_k)$ is estimated based on $LL_F(X\beta_F)$

• When H_0 : $\beta_i = 0$, W simplifies to:

$$t = \frac{\hat{\beta}_j}{\hat{\sigma}_{\widehat{\beta}_j}} \sim \mathcal{N}(0,1)$$

- Available in most econometric packages
- Only the full model needs to be estimated

<u>Stata</u>

(after estimating the full model) test $X_{a+1} \cdots X_k$

2.2. Model Inference and Evaluation

Score/LM test:

Score =
$$\frac{\partial LL_F(X\hat{\beta}_M)}{\partial\beta} \big[Var_F(\hat{\beta}_M) \big]^{-1} \frac{\partial LL_F(X\hat{\beta}_M)}{\partial\beta} \sim \chi_{k-g}^2$$
 where $\hat{\beta}_M = (\hat{\beta}_0, ..., \hat{\beta}_g, 0, ... 0)$, with $(\hat{\beta}_0, ..., \hat{\beta}_g)$ estimated based on $LL_R(X\beta_R)$

- Only the restricted model needs to be estimated, which may be an advantage when the full model is complex and hard to estimate
- Rarely available in econometric packages, requiring programming

2.2. Model Inference and Evaluation

Specification tests:

- For E(Y|X):
 - RESET test
 - Chow test
- For Pr(Y|X):
 - Information Matrix text, usually very hard to implement
 - More common: tests designed specifically to particular models

2.2. Model Inference and Evaluation

RESET test:

- Implementation:
 - Estimate the original model:

$$Pr(Y|X) = F(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

- Generate the variables $(X\hat{\beta})^2$, $(X\hat{\beta})^3$, $(X\hat{\beta})^4$, ...
- Add the generated variables to the original model and estimate the following auxiliary model:

$$= F \left[\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \gamma_1 (X \hat{\beta})^2 + \gamma_2 (X \hat{\beta})^3 + \gamma_3 (X \hat{\beta})^4 + \dots \right]$$

Apply a LR / Wald test for the significance of the added variables:

$$H_0: \gamma_1 = \gamma_2 = \gamma_3 = \cdots = 0$$
 (suitable model functional form)

 H_1 : No H_0 (unsuitable model functional form)

2.2. Model Inference and Evaluation

Chow Test for Structural Breaks:

- Context:
 - Two groups of individuals / firms / ...: G_A , G_B
 - It is suspected that the behaviour of the two groups in which regards the dependent variable may have different determinants
- Implementation:
 - Generate the dummy variable $D = \begin{cases} 1 & \text{if the individual belongs to } G_A \\ 0 & \text{if the individual belongs to } G_B \end{cases}$
 - Estimate the original model 'duplicated':

$$Pr(Y|X) = F(\theta_0 + \theta_1 X_1 + \dots + \theta_k X_k + \gamma_0 D + \gamma_1 D X_1 + \dots + \gamma_k D X_k)$$

Apply a LR / Wald test for the significance of the variables where D is present:

```
H_0: \gamma_0 = \cdots = \gamma_k = 0 (no structural break)
H_1: Não H_0 (with a structural break)
```

2.3. Panel Data Models

Base nonlinear model for panel data:

Individual effects model:

$$E(Y_{it}|x_{it},\alpha_i) = G(\alpha_i + x'_{it}\beta)$$

$$Pr(Y_{it}|x_{it},\alpha_i) = F(\alpha_i + x'_{it}\beta)$$

- Unlike the linear case:
 - Assuming $E(\alpha_i|x_{it}) = 0$ is not enough to get consistent estimators
 - In general, methods based on subtracting time averages or firstdiferences do not eliminate fixed effects
 - Inconsistent estimation of α_i leads to inconsistent estimation of β (incidental parameters problem)

2.3. Panel Data Models

Main estimators:

- Pooled estimator:
 - Based on the estimation of the model $E(Y_{it}|x_{it}) = G(x'_{it}\beta)$ and $Pr(Y_{it}|x_{it}) = F(x'_{it}\beta)$, being consistent only under the assumption of no individual effects
 - Even with random effects this estimator will be, in general, inconsistent
- Pooled estimator with individual effects:
 - Adds dummies for each individual, allowing estimation of the $\alpha_i's$
 - Consistent only if $T \to \infty$

2.3. Panel Data Models

- Fixed effects estimator:
 - Assumes $E(\alpha_i|x_{it}) \neq 0$
 - Long panels
 - Use the pooled estimator with individual effects
 - Short panels:
 - In a few cases:
 - » It is possible to drop the α'_i s from the model to be estimated using methods defined on a case-by-case basis (may also be used with long panels)
 - » In general, prediction and quantification of partial effects are not possible
 - In most cases, no fixed effects estimator is available

2.3. Panel Data Models

- Random effects estimator:
 - Most popular panel data estimator for probabilistic models
 - It is necessary to:
 - Correctly specify $f(y_i|x_i,\alpha_i;\beta)$
 - Assume that α_i follows some distribution $f(\alpha_i; \eta)$
 - Density function for maximum likelihood estimation:

$$f(y_i|x_i;\beta,\eta) = \int f(y_i|x_i,\alpha_i;\beta)f(\alpha_i;\eta)d\alpha_i$$

- In general, this expression cannot be simplified
- Because of the integral, it requires numerical methods
- QML estimation not available
- In general, prediction and quantification of partial effects are not possible

- 3.1. Models for Binary Choices
- 3.2. Models for Ordered Choices
- 3.3. Models for Multinomial Choices

Models for:

- Binary choices:
 - $Y \in \{0,1\}$
 - Ex.: be (or not) successful in a mortgage application
- Multinomial choices
 - $Y \in \{0,1,...,M-1\}$
 - Ex.: choosing a brand
- Ordered choices
 - $Y \in \{0,1,...,M-1\}$
 - Ex.: firms getting a specific investment rating

Common structure:

- M choices
- Aim explaning the probability of observing $Y_i = y_i$ given $X_i = x_i$:

$$Pr(Y_i = y_i | X_i = x_i) = F(x_i'\beta)$$

- Since $\sum_{y} Pr(Y_i = y_i | x_i) = 1$:
 - Only M-1 choices are modelled, the probability of the other being obtained by difference
 - The sum of the partial effects has to be null, $\sum_{y} \Delta Pr(Y_i = y_i | x_i) = 0$, with one of them being obtained by difference

3.1. Models for Binary Choices

Binary choices:

- Dependent variable only takes on the values 0 and 1
- Bernoulli density function:

$$f(y_i|x_i) = \mu_i^{y_i}(1-\mu_i)^{1-y_i}$$

$$\mu_i = E(Y_i|x_i) = G(x_i'\beta),$$
 where $0 < G(\cdot) < 1$

• Note that $E(Y_i|x_i) = Pr(Y_i = 1|x_i)$, since:

$$E(Y_i|x_i) = 1 \times Pr(Y_i = 1|x_i) + 0 \times Pr(Y_i = 0|x_i)$$

= $Pr(Y_i = 1|x_i)$;

Therefore, one may choose for $G(\cdot)$ a distribution function, which, by definition, is bounded by 0 and 1

3.1. Models for Binary Choices

Estimation:

- QML not possible:
 - The correct specification of $E(Y_i|X_i)$ implies automatically the correct specification of $Pr(Y_i=1|X_i)$
- Estimation by ML based on:

$$LL = \sum_{i=1}^{N} \{ y_i \ln[G(x_i'\beta)] + (1 - y_i) \ln[1 - G(x_i'\beta)] \}$$

- According to the specification of G, different the resultant model examples:
 - Probit: $G(x_i'\beta) = \Phi(x_i'\beta) = \int_{-\infty}^{x\beta} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i'\beta)^2}{2}} dx\beta$
 - Logit: $G(x_i'\beta) = \Lambda(x_i'\beta) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$
 - Cloglog: $G(x_i'\beta) = 1 e^{-e^{x_i'\beta}}$

 $\frac{\text{Stata}}{\log \text{it } YX_1 \dots X_k}$ probit $YX_1 \dots X_k$ cloglog $YX_1 \dots X_k$

3.1. Models for Binary Choices

3.1. Models for Binary Choices

Partial effects:

•
$$\Delta X_j = 1 \Rightarrow \Delta E(Y|X) = \Delta Pr(Y=1|X) = \frac{\partial G(X\beta)}{\partial X_j} = \beta_j \frac{\partial G(X\beta)}{\partial (X\beta)} = \beta_j g(x_i'\beta)$$
, with $g(x_i'\beta)$ given by:

• Logit: $g(x_i'\beta) = \lambda(x_i'\beta) = \Lambda(x_i'\beta)[1 - \Lambda(x_i'\beta)]$

Probit:
$$g(x_i'\beta) = \phi(x_i'\beta) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x_i'\beta)^2}{2}}$$

• Cloglog: $g(x_i'\beta) = [1 - G(x_i'\beta)]e^{x_i'\beta}$

3.1. Models for Binary Choices

3.1. Models for Binary Choices

Selection criteria:

 To select the most suitable model, in addition to the RESET test, it is common to calculate the percentage of correct predictions of each model:

	$Y_i = 1$	$Y_i = 0$	Total
$\widehat{Y}_i = 1$	n_{11}		
$\widehat{Y}_i = 0$		n_{00}	
Total	n_1	n_0	n

$$\hat{Y}_i = \begin{cases} 1 \text{ if } Pr(\widehat{Y_i = 1} | x_i) \ge 0.5\\ 0 \text{ if } Pr(\widehat{Y_i = 1} | x_i) < 0.5 \end{cases}$$

- % correct predictions: $(n_{11} + n_{00})/n$
- % 1's correctly predicted: n_{11}/n_1
- % 0's correctly predicted: n_{00}/n_0

Stata (after estimating the model) estat classification

3.1. Models for Binary Choices

Alternative motivation:

- In Economics, using the utility concept to explain the optimal choices of agents is very common
- The satisfaction experienced by the consumer of a good cannot be measured accurately; however, the decision to buy or not the good can be observed
- Strategy:
 - Linear regression model to explain the difference in utilities (Y_i^*) of the two goods, using as dependent variable a continuous latent variable $Y_i^* = x_i'\beta + u_i$
 - Binary regression model to explain the probability of choosing a good:
 - Instead of Y_i^* , one observes $Y_i = \begin{cases} 0 \text{ se } Y_i^* \le 0 \\ 1 \text{ se } Y_i^* > 0 \end{cases}$
 - Model: $Pr(Y_i = 1 | x_i) = Pr(Y_i^* > 0 | x_i) = Pr(x_i'\beta + u_i > 0 | x_i) = Pr(u_i > -x_i'\beta | x_i) = Pr(u_i < x_i'\beta | x_i) = G(x_i'\beta)$

3.1. Models for Binary Choices

Panel data:

Base model – individual effects model:

$$Pr(Y_{it} = 1 | x_{it}, \alpha_i) = E(Y_{it} | x_{it}) = G(\alpha_i + x'_{it}\beta)$$

- Estimators:
 - Pooled (omits α_i ; consistent only if $\alpha_i = \alpha$)
 - Pooled with individual effects (consistent only if $T \longrightarrow \infty$)
 - Random effects (assumes $\alpha_i \sim N(0, \sigma_\alpha^2)$)
 - Fixed effects logit

Stata

Pooled: same commands as for cross-sectional data Random effects: xtprobit, xtlogit, xtcloglog

3.1. Models for Binary Choices

Fixed effects logit model:

- It can be shown that the α_i 's may be eliminated from a logit model if the analysis is conditional on individuals for whom $\sum_{t=1}^{T} Y_{it} \neq 0$ and $\sum_{t=1}^{T} Y_{it} \neq T$:
 - All individuals whom display the value of 1 for the dependent variable in all time periods are dropped from the sample
 - The same occurs with individuals displaying always the value of 0 for the dependent variable
 - Only individuals that change their states at least once over time are relevant for estimation
- This method only works for the logit model

Stata xtlogit $YX_1 \dots X_k$, fe