• Compare the Fama French three factor model to CAPM model :

AXP:

CAPM model	R^2: 0.4251	ı	Adj. R^2: 0.4	1202	F-statist	ic: 87.25	p-v	alue: 7.279e-16
	Coefficients:	esti	mate	Std. erro	or	t value		p-value
	intercept	-0.0	0009649	0.00792	.61	-0.122		0.903
	MKTRF	1.6	369379	0.17524	38	9.341		7.28e-16
3 factor model	R^2: 0.4649	1	Adj. R^2: 0.4	1 51	F-statist	ic: 33.59	p-v	alue: 1.06e-15
	Coefficients:	Esti	mate	Std. erro	or	t value		p-value
	Intercept	0.0	007908	0.00773	379	0.102		0.9188
	MKTRF	1.4	492480	0.18923	19	7.659		6.18e-12
	SMB	0.1	068824	0.35314	79	0.303		0.7627
	HML	0.8	324850	0.28947	'16	2.876		0.0048

GE:

CAPM model	R^2: 0.5483	Adj. R^2: 0.		5444	F-statist	ic: 143.2	p-value: <2.2e-16	
	Coefficients:	esti	mate	Std. erro	or	t value		p-value
	intercept	-0.0	10878	0.00535	3	-2.032		0.0444
	MKTRF	1.4	16312	0.11835	1	11.967	1	<2e-16
3 factor model	R^2: 0.6309		Adj. R^2: 0.0	5213	F-statist	ic: 66.09	p-v	alue: <2.2e-16
	Coefficients:	Esti	mate	Std. erro	or	t value		p-value
	Intercept	-0.0	08870	0.00489	6	-1.812		0.0726
	MKTRF	1.2	75790	0.11973	8	10.655		<2e-16
	SMB	-0.2	259626	0.22345	57	-1.162		0.2477
	HML	0.9	25398	0.18316	66	5.052		1.64e-06

UBS:

CAPM model	R^2: 0.3906	8906 Adj. R^2: 0.3		8854 F-statistic: 74		ic: 74.99	4.99 p-value: 3.038	
	Coefficients:	esti	mate	Std. erro	or	t value		p-value
	intercept	-0.0)11735	0.00822	1.1	-1.427		0.156
	MKTRF	1.5	69597	0.18125	4	8.660		3.04e-14
3 factor model	R^2: 0.4295	Adj. R^2: 0.4		. 4146 F-statist		ic: 28.86	p-v	alue: 5.525e-14
	Coefficients:	Esti	mate	Std. erro	or	t value		p-value
	Intercept	-0.0	10084	0.00805	6	-1.253		0.21259
	MKTRF	1.4	57335	0.19712	.3	7.393		2.51e-11
	SMB	-0.3	311344	0.36784	3	-0.846		0.39908
	HML	0.8	24620	0.30175	5	2.733		0.00727

We test at alpha=5%, critical t=1.96. If the absolute value of t value are larger than 1.96, then we reject the null hypothesis that coefficient=0.

<u>Conclusion: All three firms the coefficients of SMB not significant, HML significant.</u>

The R^2 and adjusted R^2:

All three firms the R^2 and adjusted R^2 of 3 factor model are larger than those of CAPM model.

Does 3 factor model have greater explanatory power than CAPM?

Generally we can see that the R^2 and adjusted R^2 of 3 factor model are all slightly better than CAPM model. Even though the difference aren't that big, but we do think that 3 factor model has greater explanatory power than CAPM.

Collinearity problem

Regression	R^2	Adjusted R^2
MKTRF~HML,SMB	0.1879	0.1741
HML~MKTRF,SMB	0.1135	0.09832
SMB~MKTRF,HML	0.1296	0.1148

All metrics are quite small, thus consider collinearity not a big problem in three factor model.

So is it necessary to use three factor model or CAPM is enough? Use F test to check whether SMB,
 HML variable have significant explanatory power. Set significance level = 5%.

	F-statistic	p-value
AXP	4.3105	0.01564
GE	12.982	8.171e-06
UBS	3.9184	0.02258

Null hypothesis is that coefficient of SMB and HML both =0. However all three firms the p-value are smaller than 2.5%, all are significant enough to reject the null hypothesis. We can say that at least one of these two explanatory variables have significant explanatory power.

See if firms behave differently in good or bad conditions:
 Null hypothesis is that coefficients of dummy variables all =0.

Results of running F test:

	F-statistic	p-value
AXP	1.8444	0.1253
GE	2.1776	0.07604
UBS	1.577	0.1854

All three firms are not significant enough to reject the null hypothesis that coefficients of dummy variables = 0. However the results of GE is actually quite significant, just not enough to reject the null hypothesis.

Heteroskedasticity

Use White test to examine if the residuals of CAPM model show significant heteroskedasticity.

R^2 of running regression{ error^2~MKTRF+MKTRF^2 }:

AXP: 0.1175 GE: 0.001425 UBS: 0.1225

Test statistic = $N*R^2 = 120*R^2$ above AXP: 14.100 GE: 0.171 UBS: 14.700

Critical value under alpha=5%, degree of freedom=2: 5.99

⇒ Test statistics of AXP, UBS are larger than critical value, GE is not.

Compare the original OLS results of CAPM with the results of robust regression (white standard error):

AXP:

CAPM	Coefficients:	Value	Std. error	t value
	Intercept	-0.0009649	0.0079261	-0.122
	MKTRF	1.6369379	0.1752438	9.341
Robust	Coefficients	Value	Std. error	t value
	Intercept	-0.0023	0.0047	-0.4853
	MKTRF	1.3111	0.1047	12.5270

GE:

CAPM	Coefficients:	Value	Std. error	t value
	Intercept	-0.010878	0.005353	-2.032
	MKTRF	1.416312	0.118351	11.967

Robust	Coefficients	Value	Std. error	t value
	Intercept	-0.0101	0.0047	-2.1495
	MKTRF	1.3720	0.1041	13.1814

UBS:

CAPM	Coefficients:	Value	Std. error	t value
	Intercept	-0.011735	0.008221	-1.427
	MKTRF	1.569597	0.181254	8.660
Robust	Coefficients	Value	Std. error	t value
	Intercept	-0.0156	0.0073	-2.1272
	MKTRF	1.5888	0.1621	9.7988

• Whether there exists serial correlation in CAPM model residuals.

Running regression of CAPM model residuals ~ MKTRF & lag residuals:

R^2: AXP: 0.008287GE: 0.0006347UBS: 0.004407

Adjusted R^2: AXP: -0.008666 GE: -0.01645 UBS: -0.01261

All R^2 are very small, not even larger than 2%. We conclude that serial correlation is not a big problem in these three firms' CAPM model.