1)
$$2x + y - (x+6y) \frac{dy}{dx} = 0$$

Step 0: $2x + y + (-x-6y) \frac{dy}{dx} = 0$
 $M = 2x + y$ $N = -x-6y$
Step 1; Test

$$\frac{\partial M}{\partial y} = 1$$
 $\frac{\partial N}{\partial x} = -1$ - [Not exact] \otimes

2)
$$2x-1+(3y+7)\frac{dy}{dx}=0$$

Step1: Test:
$$\frac{\partial M}{\partial y} = 0$$
 $\frac{\partial N}{\partial x} = 0$

"Exact"
$$\rightarrow$$
 so $\exists f(x,y)$ s.t. $M = \frac{\partial f}{\partial x}$ and $N = \frac{\partial f}{\partial y}$

Step2:
$$\frac{2f(x)}{2x} = 2x - 1$$
 (=M)

so
$$f(x,y) = \int (2x-1) dx = \frac{x^2 - x + g(y)}{x^2 + g(y)}$$

Step3:
$$N = \frac{\partial f}{\partial y}$$
, so $3y+7 = \frac{\partial}{\partial y}(x^2 + y(y))$

$$3y+7=g(y)$$

Step 4: (find
$$g(y)$$
): $g(y) = \int (3y+7)dy = \frac{3}{2}y^2 + \frac{7}{2}y$

Step 5: (from
$$45$$
) $f(x,y) = x^2 + \frac{3}{2}y^2 + 7y$

Step6:
$$[x^2 - x + \frac{3}{2}y^2 + 7y = C] \in Sol'n$$

3)
$$5 \pm 44y + (4t - 8y^3) \frac{dy}{dt} = 0$$

so
$$\exists f(t,y)$$
 s.t. $M = \frac{\partial f}{\partial t}$ and $N = \frac{\partial f}{\partial y}$

(2)
$$\frac{\partial f(t,y)}{\partial f} = M$$
, so $f(t,y) = \int M dt = \int (5t + 4y) dt = \frac{5}{2}t^2 + 4ty + g(y)$

(3)
$$N = \frac{\partial f(t,y)}{\partial y}$$
, so $N = \frac{\partial}{\partial y} \left(\frac{5}{2} t^2 + 4 t y + g(y) \right)$

(4)
$$g'(y) = -8y^3 + 4t - 8y^3 = 4t + g'(y)$$

 $g(y) = (-8y^3) dy = -2y'$

$$f(t,y) = \frac{5}{2}t^2 + 4ty - 2y''$$

$$\int \frac{5}{2} t^2 + 4 t y - 2 y' = C$$

4)
$$x^{2}-y^{2}+(x^{2}-2xy)\frac{dy}{dx}=0$$

 $M=x^{2}-y^{2}$
 $N=x^{2}-2xy$

$$\frac{\partial M}{\partial y} = -2y \qquad \frac{\partial N}{\partial x} = 2x - 2y$$

①
$$2te^{t}-y+6t^{2}+(-t)\frac{dy}{dt}=0$$

 $M=2te^{t}-y+6t^{2}$ $N=-t$

Test:
$$0 \frac{\partial M}{\partial y} = -1$$
 $\frac{\partial N}{\partial t} = -1$ $v.exact''$
 $so \exists f(t,y) s.t. M = \frac{\partial f}{\partial y}$ and $N = \frac{\partial f}{\partial y}$

3
$$M = \frac{\partial f(t,y)}{\partial t}$$
, so $M = \frac{\partial}{\partial t} (-ty + g(t))$
 $2te^{t} - y + 6t^{2} = -y + g(t)$

G
$$g'(t) = 2te^{t} + 6t^{2}$$

$$g(t) = \int (2te^{t} + 6t^{2})dt = 2te^{t} - 2e^{t} + 2t^{3}$$

$$5f(t,y) = -ty + 2te^{t} - 2e^{t} + 2t^{3}$$

6 -
$$ty + 2te^{t} - 2e^{t} + 2t^{3} = C_{1}$$

$$y = 2te^{t} - 2e^{t} + 2t^{3} + C_{1}$$

$$t = 2te^{t} - 2e^{t} + 2t^{3} + C_{2}$$

6)
$$(x + y)^{2} + (2xy + x^{2} + 1) \frac{dx}{dx} = 0$$
 $x^{2} + 2xy + y^{2} + (2xy + x^{2} - 1) \frac{dy}{dx} = 0$
 $M = x^{2} + 2xy + y^{2}$
 $N = 2xy + x^{2} - 1$
 $\frac{\partial M}{\partial y} = 2x + 2y$
 $\frac{\partial M}{\partial x} = 2y + 2x$
 $V = \frac{2xy}{2}$
 $V = \frac{2xy}{2}$

g'(y) = -y $g(y) = S - y dy = -\frac{y^2}{2}$ $f(x,y) = x \sin y + y \cos x - \frac{y^2}{2}$ X siny + y cosx- 22 = C

cosx + x cosy - y = x cosy + cosx + g(y)