Totally symmetric self-complementary plane partition matrices and polytopes

Jessica Striker

North Dakota State University

March 2025

Alternating sign matrices

Definition

Alternating sign matrices (ASM) are square matrices with the following properties:

- \bullet entries $\in \{0,1,-1\}$
- each row and each column sums to 1
- nonzero entries alternate in sign along a row/column

$$\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)$$

Alternating sign matrix enumeration

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Theorem (Zeilberger 1996; Kuperberg 1996)

 $n \times n$ alternating sign matrices are counted by: $\prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}$.

This was conjectured by Mills, Robbins, and Rumsey (1983) and proved in different ways by Zeilberger (1996), Kuperberg (1996), Fischer (2006), and Fischer-Konvalinka (2020/2022).

Plane partitions

Definition

A **plane partition** π is a set of positive integer lattice points (i, j, k) such that if $(i, j, k) \in \pi$, $i' \le i$, $j' \le j$, $k' \le k$ then $(i', j', k') \in \pi$.

Theorem (MacMahon 1896)

The number of plane partitions inside $a \times b \times c$ is $\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$

Symmetry classes of plane partitions

Definition

- π is **symmetric** if $(i, j, k) \in \pi$ implies $(j, i, k) \in \pi$.
- π is cyclically symmetric if $(i, j, k) \in \pi$ implies $(j, k, i) \in \pi$.
- π is **totally symmetric** if both of the above hold.
- π is **self-complementary** if it is equal to its complement.

Totally symmetric self-complementary plane partition (TSSCPP)

TSSCPP inside a $6 \times 6 \times 6$ box

Theorem (G. Andrews 1994)

Totally symmetric self-complementary plane partitions inside a

$$2n \times 2n \times 2n$$
 box are counted by: $\prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}$.

A missing bijection

Open problem: Find a beautiful bijection between $n \times n$ ASM and TSSCPP in a $2n \times 2n \times 2n$ box.

Sub-bijections known in the following cases:

- Permutation [S. 2018]
- Two-diagonal [Biane and Cheballah 2012, Bettinelli 2019]
- Gapless monotone triangle [ACGB 2011]
- 1432-key-avoiding [Huang and S. 2024]

A 1432-avoiding ASM-TSSCPP bijection

Theorem (Huang-S. 2024)

Let $\pi \in S_n$. There is an explicit weight-preserving injection φ from $TSSCPP^{red}(\pi)$ to $ASM^{red}(\pi)$. If π avoids 1432, then φ is a bijection.

Known alternating sign matrix bijections

$$\begin{pmatrix} \mathsf{ASM} \\ 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Height function
$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 2 & 3 \\ 2 & 1 & 2 & 3 & 2 \\ 3 & 2 & 3 & 2 & 1 \\ 4 & 3 & 2 & 1 & 0 \end{pmatrix}$$

Known TSSCPP bijections

Magog triangle 1

Non-intersecting lattice paths

New TSSCPP object: Magog matrices

$$\longrightarrow \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Characterizing magog matrices (Holmlund and S. 2024)

ASM vs magog matrices

Properties of both:

- entries $\in \{0, 1, -1\}$
- rows and columns sum to one
- row and column partial sums ≥ 0
- ullet column partial sums ≤ 1

Property of ASMs:

ullet row partial sums ≤ 1

Property of Magog matrices:

• For all
$$0 \le i \le n-2, 0 \le j \le n-2,$$

$$\sum_{i'=1}^{i} a_{i',j+1} + \sum_{j'=1}^{i} a_{i+1,j'} - \sum_{i'=1}^{i} a_{i'j} \ge 0$$

Magog but not ASM

$$egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 1 & 1 & -1 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

ASM but not Magog

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$ ASM and Magog

$$egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & -1 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ \end{pmatrix}$$

Permutation magog matrices

Magog triangle

Theorem (Holmlund and S. 2024)

The magog matrices of order n with no negative ones are the 132-avoiding permutation matrices.

Is there a pattern avoidance characterization of all magog matrices?

ightarrow New tool: Recent papers on key-avoidance and classical-avoidance in ASMs, joint with Bouvel and Smith as well as Egge and Troyka

ASMs / Magog matrices

Only ASM:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)$$

Both:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Only magog:

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)$$

Refined enumerations: Boundary 1s

For both ASMs and Magog matrices:

The first row (or first column or last row) has one 1 and the rest 0s.

ASM properties

- The last column has one 1 and the rest 0s.
- # with a 1 in a specified corner is the number of ASMs of size n - 1.
- Formula for # with a 1 in a specified entry of an outer row or column.

Magog matrix properties (Holmlund and S.)

- The last column can have −1s and more 1s.
- # with a 1 in the SW corner is the number of ASMs of size n-1.
- \bullet # with a 1 in the NW corner is 1.
- # with a 1 in the NE corner equals the number with a 1 in row 1 column n-1.
- # with a 1 in row 1 column 2 is $2^{n-1} 1$.
- # with a 1 in row 2 column 1 is $C_n 1$.

Refined enumerations: Inversions

The inversion number of A is
$$\sum_{1 \le k < i \le n} \sum_{1 \le j < l \le n} A_{ij} A_{kl}$$
.

For both ASMs and Magog matrices:

- The identity matrix is the only one with no inversions.
- The anti-identity matrix is the only one with the maximum number of inversions: $\binom{n}{2}$.

ASM properties

- # with 1 inversion is n-1.
- # with 2 inversions is $\binom{n-1}{2} 2(n-1) = \frac{(n-2)(n+3)}{2}$.
- # with $\binom{n}{2} 1$ inversions is $\binom{n}{2}$

Magog matrix properties (HS 24)

- # with 1 inversion is 1.
- # with 2 inversions is n+1.
- Conj: # with $\binom{n}{2} 1$ inversions is $2^n n 1$.

More conjectures involving positive inversions.

ASM vs. TSSCPP polytope

Definition (S. / Behrend-Knight)

The *n*th alternating sign matrix polytope ASM(n) is the convex hull in \mathbb{R}^{n^2} of the $n \times n$ ASMs.

Definition (Holmlund and S.)

The *n*th *TSSCPP matrix polytope* TSSCPP(n) is the convex hull in \mathbb{R}^{n^2} of all $n \times n$ magog matrices.

Theorem (S. 2009 / *BK 2007)

ASM(n) satisfies:

- * Dimension $(n-1)^2$
- * Vertices are precisely the n × n ASMs
- * Inequality description
- $4[(n-2)^2+1]$ facets
- Nice face lattice description
- Projects to permutohedron

Theorem (Holmlund and S. 2024)

$\mathsf{TSSCPP}(n)$ satisfies:

- Dimension at most $(n-1)^2$
- Vertices are precisely the set of n × n magog matrices
- Partial inequality description

Known TSSCPP bijections

Magog triangle

 4 5
 3 4 5
 2 3 5 6
 1 2 3 4 6
 1 2 3 4 5

Non-intersecting lattice paths

TSSCPP boolean triangles

Definition (S. 2018)

A TSSCPP boolean triangle of order n is a triangular integer array $\{b_{i,j}\}$ for $1 \leq i \leq n-1$, $n-i \leq j \leq n-1$ with entries in $\{0,1\}$ such that the diagonal partial sums satisfy $1 + \sum_{i=j+1}^{i'} b_{i,n-j-1} \geq \sum_{i=j}^{i'} b_{i,n-j}$.

Not a TSSCPP boolean triangle

TSSCPP boolean triangles

Definition (S. 2018)

A TSSCPP boolean triangle of order n is a triangular integer array $\{b_{i,j}\}$ for $1 \leq i \leq n-1$, $n-i \leq j \leq n-1$ with entries in $\{0,1\}$ such that the diagonal partial sums satisfy $1 + \sum_{i=j+1}^{i'} b_{i,n-j-1} \geq \sum_{i=j}^{i'} b_{i,n-j}$.

A TSSCPP boolean triangle

Boolean triangle polytope

Definition (Holmlund and S. 2024)

The *n*th boolean triangle polytope BTP(n) is the convex hull in $\mathbb{R}^{\binom{n}{2}}$ of all TSSCPP boolean triangles of order n.

Theorem (Holmlund and S. 2024)

BTP(n) satisfies the following:

- Dimension $\binom{n}{2}$.
- Vertices are precisely the TSSCPP boolean triangles of order n.
- Inequality description

•
$$\frac{(n-1)(3n-2)}{2}$$
 facets

The many faces of alternating sign matrices

$$\begin{pmatrix}
 & ASM \\
 & 0 & 0 & 1 & 0 \\
 & 1 & 0 & -1 & 1 \\
 & 0 & 0 & 1 & 0 \\
 & 0 & 1 & 0 & 0
\end{pmatrix}$$

Corner sum matrix

The many faces of magog matrices (Bansal and S. 2025+)

Main papers for this talk:

- R. Bansal and J. Striker, The many faces of magog matrices, In Preparation.
- V. Holmlund and J. Striker, Totally symmetric self-complementary plane partition matrices and related polytopes, *Annals of Combinatorics* (2024), 38 pp.

Related papers:

- M. Bouvel, E. Egge, R. Smith, J. Striker, and J. Troyka, Classical pattern avoidance in alternating sign matrices, arXiv:2411.07662 (Submitted).
- M. Bouvel, R. Smith, and J. Striker, Key-avoidance for alternating sign matrices, Discrete Math Theoretical Computer Science 27 (2025), no. 1, 28 pp.
- D. Huang and J. Striker, A pipe dream perspective on totally symmetric self-complementary plane partitions, *Forum of Math, Sigma* 12 (2024), no. e17, 19 pp.
- J. Striker, Permutation totally symmetric self-complementary plane partitions, Ann. Comb. 22 (2018), no. 3, 641–671.
- J. Striker, The alternating sign matrix polytope. *Electronic Journal of Combinatorics*, **16** (2009), no. 1.