

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №15 по курсу "Функциональное и логическое программирование"

Тема Формирование эффективных программ на Prolog
Студент Варин Д.В.
Группа ИУ7-66Б
Оценка (баллы)
Преподаватели Строганов Ю.В., Толпинская Н.Б.

Условие

В одной программе написать правила, позволяющие найти:

- 1. Максимум из двух чисел;
- 2. Максимум из трех чисел.

Для каждой программы реализовать два варианта: с использованием отсечения и без использования отсечения.

Убедиться в правильности результатов.

Для каждого случая пункта 2 обосновать необходимость всех условий тела.

Для одного из вариантов **ВОПРОСА** и каждого варианта задания 2 **составить таблицу**, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: (вершина – сверху). Новый шаг надо начинать с нового состояния резольвенты.

No	Состояние	Для каких термов	Дальнейшие действия:
шага	резольвенты, и	запускается алгоритм	прямой ход или откат
	вывод: дальнейшие	унификации: T1=T2 и	(почему и к чему
	действия (почему?)	каков результат (и	приводит?)
		подстановка)	

Решение

Листинг 1 – Задание 1

```
domains
  number = integer

predicates
  maxFromTwo(number, number, number).
  maxFromTwoCut(number, number, number).

maxFromThree(number, number, number, number).
  maxFromThreeCut(number, number, number, number).

clauses
  maxFromTwo(A, B, A) :- A >= B.
```

```
maxFromTwo(A, B, B) :- A < B.
13
14
    maxFromTwoCut(A, B, A) :- A >= B, !.
15
    maxFromTwoCut( , B, B).
16
17
    maxFromThree(A, B, C, A) :- A >= B, A >= C.
18
    maxFromThree(_, B, C, Result) := maxFromTwo(B, C, Result).
19
20
    maxFromThreeCut(A, B, C, A) :- A >= B, A >= C, !.
21
    maxFromThreeCut(\_, B, C, Result) := maxFromTwoCut(B, C, Result).
23
24 goal
   %maxFromThree(22, 7, 11, R). %(1)
25
    maxFromThreeCut(22, 7, 11, R). \%(2)
```

В Таблицах 1-2 представлен порядок поиска ответа на вопросы 1 и 2.

Таблица 1 — Порядок формирования результата для 1-го вопроса

Шаг	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
	maxFromThree(22, 7, 11, R)	Прямой ход	maxFromThree (22,7,11,R)	
 \vdash	и maxFromTwo(A, B, A)	Переход к		
	Главные функторы не равны	след. предл.		
 :	÷	:	:	:
5	maxFromThree(22, 7, 11, R) и maxFromThree(A, B, C, A)	Прямой ход	22>=7,22>=11	A = 22, B = 7, C = 11, R = 22
9	22>=7	Прямой ход	22>=11	A = 22, B = 7, C = 11, R = 22
2	22>=11	Нашли ответ		A = 22, B = 7, C = 11, R = 22
∞	maxFromThree(22, 7, 11, R)	Прямой ход	maxFromTwo(7, 11, Result)	B=7
	и maxFromThree(_, B, C, Result)			C = 11
6	maxFromTwo(7, 11, Result)	Прямой ход	$\mathrm{A} >= \mathrm{B}$	$\mathrm{A}=7,\mathrm{B}=11$
	и $\max FromTwo(A, B, A)$			m R=11
10	$\mathrm{A} >= \mathrm{B}$	Неудача, откат		
 •				
30	maxFromThree(22, 7, 11, R)	Завершение	maxFromThree (22, 7, 11, R)	
	и maxFromThreeCut(_, B, C, Result)	работы		
	Line, Sex)	2 подст.		
	Главные функторы не равны	в рез-те		

Таблица 2 — Порядок формирования результата для 2-го вопроса

IIIar	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	pesymetatei	действия		
	maxFromThreeCut(22, 7, 11, R)	Прямой ход	maxFromThreeCut(22,7,11,R)	
\vdash	и maxFromTwoCut(A, B, A)	Переход к		
	Главные функторы не равны	след. предл.		
:	:	:	:	:
7	maxFromThreeCut(22, 7, 11, R)	Прямой ход	22>=7,22>=11,!	A=22, B=7
	и maxFromThreeCut(A, B, C, A)			$\mathrm{C}=11,\mathrm{R}=22$
∞	22>=7	Прямой ход	22>=7,!	A = 22, B = 7, C = 11, R = 22
6	22>=11	Нашли ответ		A = 22, B = 7, C = 11, R = 22
10		Завершение		A = 22, B = 7, C = 11, R = 22
		работы		
		1 подст.		
		в рез-те		

Контрольные вопросы

Какое первое состояние резольвенты?

Заданный вопрос (goal в коде программы).

В каком случае система запускает алгоритм унификации?

Система запускает алгоритм унификации автоматически при необходимости доказать что-то.

Каково назначение и результат использования алгоритма унификации?

Унификация – логический вывод. Результат – подстановка.

В каких пределах программы переменные уникальны?

Именованная переменная уникальна в предложении, в котором она используется. Анонимные переменные всегда уникальны.

Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм.

Как изменяется резольвента?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.