Fundamentos de Circuitos Eléctricos

Pontificia Universidad Javeriana

Examen Final 2021-3

- 1. Para el circuito de la figura:
 - a. Encuentre el valor de R_L que hace que la transferencia de potencia sea máxima.
 - **b.** Encuentre dicho valor de potencia.

Fuente de X voltios. Siendo X los dos últimos dígitos de su ID + 10. Ejemplo: si su ID es 00020426340. Esta fuente es de 50 V.

2. Para el circuito que se muestra a continuación:

 $R = 20 k\Omega$

C = 20 nF

 $T = \frac{n+1}{2} ms$, expresión en la cual n es el último digito de su ID

Los condensadores están descargados en t = 0

Considere el amplificador operacional ideal

- a. Encuentre la función que define v_o para 0 < t < 6 ms
- **b.** Grafique v_o para 0 < t < 6 ms
- **c.** Grafique v_o para 0 < t < 6 ms si $v_i(t) = u(t)$
- d. Grafique v_c para 0 < t < 6 ms si $v_i(t) = u(t)$

3. En el circuito mostrado en la figura se tiene que el voltaje en los condensadores en t < 0 es $V_{c1} = V_{c2} = 0$ V

a. Si
$$V_1 = V_o * u(t)$$
, obtener:

(0-)	$v_b(0^-)$	$v_a(0^+)$	172 (0+)	$i_{12}(0^{-})$	$i_{C2}(0^{-})$	$i_{L2}(0^{+})$	$i_{C2}(0^{+})$
$v_a(0^-)$	Vb(U)	$V_a(U')$	Vb(U)	$l_{L2}(U)$	$\iota_{C2}(U)$	1112(11)	LC2(U)

b. Si
$$V_1 = V_o * u(t)$$
, obtener, para para $t \ge 0$

$v_a(t)$	$v_b(t)$	$i_{L2}(t)$	$i_{C2}(t)$
\(\var{\cute{\cie\cute{\cute{\cute{\cute{\cute{\cute{\cute{\cute{\cute{\cute{\cie\cute{\cute{\cute\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	\ \(\bullet(\bullet)	(L2(t)	162(1)

Los valores de las resistencias, condensadores e inductancias dependen del último dígito de su ID, note que $C1 \neq C2$ y $L1 \neq L2$, igualmente el voltaje del escalón depende también del último dígito de su ID.

Último dígito	L1	L2	C1	C2	R1 = R2	R3 = R4	Vo
del ID	(mH)	(mH)	(µF)	(µF)	$(k\Omega)$	(Ω)	(V)
1	100	50	20	10	100	100	11
2	200	100	18	9	90	200	12
3	300	150	16	8	80	300	13
4	400	200	14	7	70	400	14
5	500	250	12	6	60	500	15
6	600	300	10	5	50	600	16
7	700	350	8	4	40	700	17
8	800	400	6	3	30	800	18
9	900	450	4	2	20	900	19
0	1000	500	2	1	10	1000	20