5.310 ordered_nvector

	DESCRIPTION	LINKS	GRAPH
--	-------------	-------	-------

Origin

Derived from nvector.

Constraint

ordered_nvector(NVEC, VECTORS)

Synonyms

ordered_nvectors, ordered_npoint, ordered_npoints.

Type

VECTOR : collection(var-dvar)

Arguments

NVEC : dvar

VECTORS : collection(vec - VECTOR)

Restrictions

```
\begin{split} |\text{VECTOR}| &\geq 1 \\ \text{NVEC} &\geq \min(1, |\text{VECTORS}|) \\ \text{NVEC} &\leq |\text{VECTORS}| \\ \text{required}(\text{VECTORS}, \text{vec}) \\ \text{same\_size}(\text{VECTORS}, \text{vec}) \end{split}
```

Enforces the following two conditions:

- 1. NVEC is the number of distinct tuples of values assigned to the vectors of the collection VECTORS. Two tuples of values $\langle A_1,A_2,\ldots,A_m\rangle$ and $\langle B_1,B_2,\ldots,B_m\rangle$ are distinct if and only if there exist an integer $i\in[1,m]$ such that $A_i\neq B_i$.
- 2. For each pair of consecutive vectors \mathtt{VECTOR}_i and \mathtt{VECTOR}_{i+1} of the $\mathtt{VECTORS}$ collection we have that \mathtt{VECTOR}_i is lexicographically less than or equal to \mathtt{VECTOR}_{i+1} . Given two vectors, \vec{X} and \vec{Y} of n components, $\langle X_0, \dots, X_{n-1} \rangle$ and $\langle Y_0, \dots, Y_{n-1} \rangle$, \vec{X} is lexicographically less than or equal to \vec{Y} if and only if n=0 or $X_0 < Y_0$ or $X_0 = Y_0$ and $\langle X_1, \dots, X_{n-1} \rangle$ is lexicographically less than or equal to $\langle Y_1, \dots, Y_{n-1} \rangle$.

Purpose

Example

```
\left(\begin{array}{c} \text{vec} - \langle 5, 6 \rangle \,, \\ \text{vec} - \langle 9, 3 \rangle \,, \\ \text{vec} - \langle 9, 3 \rangle \end{array}\right)
```

The ordered_nvector constraint holds since:

- 1. Its first argument NVEC = 2 is set to the number of distinct tuples of values (i.e., tuples $\langle 5,6 \rangle$ and $\langle 9,3 \rangle$) occurring within the collection VECTORS.
- 2. The vectors of the collection VECTORS are sorted in increasing lexicographical order.

20080919 1935

Typical

```
\begin{split} |\text{VECTOR}| &> 1 \\ \text{NVEC} &> 1 \\ \text{NVEC} &< |\text{VECTORS}| \\ |\text{VECTORS}| &> 1 \end{split}
```

Arg. properties

- Functional dependency: NVEC determined by VECTORS.
- ullet Contractible wrt. VECTORS when NVEC =1 and $|{\tt VECTORS}|>0$.
- Contractible wrt. VECTORS when NVEC = |VECTORS|.

Reformulation

The ordered_nvector constraint can be reformulated as a conjunction of a nvector and a lex_chain_lesseq constraints.

See also

 $\begin{array}{llll} \textbf{implies:} & \texttt{lex_chain_lesseq} (\texttt{NVEC} & of & constraint & \texttt{ordered_nvector} & removed), \\ \textbf{nvector,} & & \texttt{ordered_atleast_nvector} (= & \texttt{NVEC} & replaced & by & \geq & \texttt{NVEC}), \\ \textbf{ordered_atmost_nvector} (= & \texttt{NVEC} & replaced & by \leq \texttt{NVEC}). \\ \end{array}$

related: increasing_nvalue_chain.
root concept: increasing_nvalue.

used in graph description: lex_less, lex_lesseq.

Keywords

characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

modelling: functional dependency.

symmetry: symmetry.

Graph model

Parts (A) and (B) of Figure 5.649 respectively show the initial and final graph of the second graph constraint associated with the **Example** slot. Since we use the **NCC** graph property in this second graph constraint, we show the different connected components of the final graph. Each strongly connected component corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection. The 2 following tuple of values $\langle 5,6 \rangle$ and $\langle 9,3 \rangle$ are used by the vectors of the VECTORS collection.

Figure 5.649: Initial and final graph of the ordered_nvector constraint

20080919 1937