

RNA-seq Bioinformatics: Read Mapping

functional genomics center zurich

Falko Noé

Checking in (Clicker)

Read Mapping

functional genomics center zurich

- General idea
- Different strategies
- File formats

- Quality control
- Visualization

Mapping: locate reads in the reference genome

- Essential step when a reference genome is used
- Many NGS applications:
 - Quantity: expression quantification, differential analysis (RNA-Seq)
 - Base mismatch: SNPs, SVs (DNA-Seq)
 - Patterns: protein binding sites, chromatin accessibility, methylation (ChIP-Seq, ATAC-Seq, BS-Seq)

• Mapping outcomes:

Result: read fully aligned and 100 % concordance

functional genomics

Result: read fully aligned with single bases mismatches

• Mapping outcomes:

Result: read fully aligned and gap reported

functional genomics

Result: read partially aligned and soft trimming reported

• Mapping outcomes: Spliced alignments

- Mapping outcomes: Uniquely mapped reads vs multi-reads
 - Repeats, paralogs
 - Shared exons in transcriptome

Read Mapping

functional genomics center zurich

- General idea
- Different strategies
- File formats

- Quality control
- Visualization

Mapping challenges

- Quantity
 - 20-30 M reads per sample
- Mapping uncertainties
 - Short reads
 - Sequencing errors, SNPs, Structural variations
 - No exact reference

- Span junctions
 - Exon-exon
 - Structural variations
- Algorithm
 - Fast
 - Able to handle SNPs, indels, sequencing errors
 - Able to allow introns for reference genome alignment

Smith-Waterman algorithm

- Exhaustive search to find the best local alignment
 - Alignment with the **highest score**
- Dependent on scoring paradigm

1	2	3	4	5	6	7	8	9	10	Ш	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	
G	Α	Т	Т	Α	С	Α									

Match Score: 1/7

1	2	3	4	5	6	7	8	9	10	Ш	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	
	G	Α	Т	Т	Α	С	Α								

Match Score: 7/7

1	2	3	4	5	6	7	8	9	10	П	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	
		G	Α	Т	Т	Α	С	Α							

Match Score: 1/7

Match Score: 6/7 <- We may be very interested in these imperfect matches Especially if there are no perfect end-to-end matches

Smith-Waterman algorithm: limitation

- Too slow: one CPU day per million reads
- High sensitivity not needed
 - Only exact and close to exact matches

How to map billions of short reads - index

- Index
 - an alphabetical list of names, subjects, etc, with references to the places where they occur
 - Sorted, structured, allow fast search
- NGS mapping software
 - Index reference file
 - Index lookup, not direct sequence comparison
 - Two main categories:
 - Hash table mappers
 - Burrow-Wheeler Transform (BWT) mappers

genome

Hash table (seed) mappers

- Cut reference into small "seeds" (k-mers)
- Store seeds and their positions in a lookup table (hash table)
- Take part of the read and look up the hash table
- Extend seeds to full alignments
 - Smith-Waterman
 - Sensitive but slow
- Shorter seeds -> higher sensitivity, but slower

Seed Positions

AAAA 0,8

ACCT 4,16,24

GTGA 12,20
... ...

Flicek P. and Birney E. 2009. Nature Method Supplement.

Li H. and Homer N. 2010. Briefs in Bioinformatics.

Garber M. et al. 2011. Nature Methods.

Hash table (seed) mappers: Features and tools

- Pros:
 - Allow more mis-matches
 - Better at indel detection
 - More tolerant to sequence differences (Cross species mapping), higher sensitivity
- Cons:
 - High RAM needed for large genomes (50 Gb for human)
 - Slower
- Tools:
 - Eland, SOAP, MAQ, SHRiMP, GSNAP, ...

Burrow-Wheeler-Transformation

- Sort and index genome (BWT)
- Align read base by base to find positions in the genome
- Index generation and read alignment examples are provided in the supplementary slides

functional genomics center zurich

Reference	
BWT(Reference)	
Query:	
AATGATACGGCGACCACCGA	AGATOTA

Query:
AATGATACGGCGACCACCGAGATCTA

- Backward search exact matching
- Searched suffix appears consecutively in BWT

functional genomics

functional genomics center zurich

BWT mappers: Bowtie

At each step:

- Searching suffix grows by one character
- The size of the range in BWT shrinks/remains the same

functional genomics center zurich

functional genomics center zurich

functional genomics center zurich

BWT mappers: Bowtie

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

A mismatch in the search suffix -> empty BWT range/failed index lookup

- Sequencing error (Illumina 1/1000)
- True mutation (A. thaliana 7X10^-9 per site per generation)
- Mismatches are not rare event (at least 10% of >100 nt reads)

functional genomics center zurich

BWT mappers: Bowtie

Empty BWT range activates backtracking

- All different bases are tried at the mismatched position
- Chop reads in short segments (seeds), align those mismatch-free, stitch seed alignments together

BWT mappers: Features and tools

- Pros:
 - Uses BWT index based approach
 - Less RAM is needed (2-8 GB for human genome)
 - Fast for searching perfect or close matches
- Cons:
 - Performance decreases with distant matches
- Tools:
 - BWA, bowtie, bowtie2, STAR, SOAP2, ...

Un-spliced vs. spliced mappers

- Un-spliced mappers (DNA-Seq)
 - Align continuous reads (not containing gaps as a result of splicing)
 - When encountering an intron, the aligner stops and trims the rest of the read
 - BWA, BOWTIE2, BLAST
 - Splice junctions are **impossible** to detect

- Aware of the presence of introns
- When encountering an intron, the aligner **does not stop** to trim the rest of the read but continues to find the next exon
- TopHat, STAR, GMAP, BLAT

Spliced mappers: STAR

- Ultra fast (does BWT as much as possible)
- Start with BWT until a mismatch is encountered, then store the possible alignment candidates, and start a new BWT from scratch instead of doing Smith-Waterman search.

- Error tolerant (sensitive)
- Both short and long reads

Choosing an alignment tool...

• Default options may not be best

"... there is no tool that outperforms all of the others in all the tests. Therefore, the end user should clearly specify his needs in order to choose the tool that provides the best results." - Hatem et al *BMC Bioinformatics* 2013, **14**:184

Mapping Clicker Questions

Read Mapping

functional genomics center zurich

- General idea
- Different strategies
- File formats

- Quality control
- Visualization

Sequence / Alignment (SAM) files

SAM (Sequence Alignment/Map)

- Single unified format for storing read alignments to a reference genome
- Large plain text file
- RNA-Seq: >10Gb
- Exome: >50Gb, Whole Genome: 0.8-1Tb

BAM (Binary Alignment/Map)

- Binary equivalent of SAM
- Compressed data plus index (bai)
- Developed for fast processing/indexing
- RNA-Seq: >2Gb
- Exome: 2-10Gb, Whole Genome: 100-300Gb

SAM/BAM read information

Mapping quality score

- A score that indicates how well the read is aligned
- Probability that a read is mapped incorrectly
- Phred scaled
 - mapP = probability that a read is mapped incorrectly
 - $mapQ = -10log_{10}mP$
 - Q30: 1 in 1000 incorrect
 - Range from 1 to 254
 - The higher, the better
 - 255: mapping quality not available, but for unique alignments (STAR)
- Mapper dependent, difficult to compute, difficult to compare

Meaning of mapQ30

- The overall base quality of the read is good.
- The read has few or just one `good' hit on the reference -> **best alignment** can be easily identified
- The best alignment has **few mismatches** -> actual mutations or sequencing errors.
- mapQ30 is usually required for SNP calling algorithms and detection of structural variations

Cause of poor mapQ

- Poor quality reads (Low base quality -> low mapping quality)
- Paired end reads or not (Reads mapped in pairs -> more likely to be correct)
- Reference with poor quality
- High divergence between the sequenced population and reference
- Repeats (Reads in repetitive regions -> very low mapping quality)
- Poor choice of the mapping software (An algorithm with low sensitivity -> more mapping errors)
- Improper alignment parameters

Read Mapping

functional genomics center zurich

- General idea
- Different strategies
- File formats

- Quality control
- Visualization

Why QC on mapping results

- If the data pre-processing and mapping are done properly
 - Extremely low mapping rate for within species read mapping
- If the alignment results fit expected outcomes
 - abundance of genomic features
 - Expected coverage depth and distribution
- Capturing of technical issues
 - Sample degradation
 - Over-amplification issues (Duplication rate)

Mapping QC metrics: Summary stats

- How well did reads align to the reference?
- Summary statistics
 - % reads with **no alignment**
 - % reads with unique alignment
 - % reads with multiple alignments
- we aim for >70% unique alignments
- Samples with lower mapping rates should be investigated (contamination vs. quality issues)

functional genomics center zurich

Read position specific error rate

Hard trimming of first 2-3 bases

Mapping QC metrics: Abundance of genomic features

- Relative abundance of annotation features: intron, exon, up/down stream, unannotated
- Are there samples with different abundance of certain features?

Sample degradation check: Transcript Coverage Bias

Exclude degraded sample

Overamplification check: Duplication rate QC

Repeat library prep

RNA-seq mapping QC tools

- RNA-SeQC
 - https://confluence.broadinstitute.org/display/CGATools/RNA-SeQC

- EVER-seq (RSeQC)
 - http://code.google.com/p/rseqc/

- Qualimap
 - http://qualimap.bioinfo.cipf.es/

Read Mapping

functional genomics center zurich

- General idea
- Different strategies
- File formats

- Quality control
- Visualization

How to visualize mapping results

- Using a genome browser
 - Software enable users to browse multiple data types and annotations in the context of the genome
- UCSC and Ensembl browser
 - Reference genome should be hosted on the UCSC/Ensembl server
 - Upload customized data files or import via URL
- Integrative Genomics Viewer (IGV) (Broad institute)
 - Open source
 - Well maintained, actively developed
 - Platform independent, easy to use

SNPs

C > T homozygous substitution

G > A heterozygous substitution

Single base deletions

52

Single base insertions

1 base insertion

Sashimi plots

• Quantitatively visualize splice junctions Coverage

Interactive mapping QC using IGV

- Are my data behaving as expected?
 - No reads mapped to the knock-out site

Read mapping: Summary

- Different mapping tasks
 - No splicing: general mappers
 - Splicing: spliced mappers
- General mappers
 - Index lookup instead of direct sequence comparison
 - Hash table indexing seed methods
 - Burrow-Wheeler transform methods
 (Suffix/prefix trees)

- Spliced mappers
 - Build upon general mappers
- Explore the mapping results to spot unexpected trends early
 - Mapping QC tools
 - IGV

Supplementary slides

reference

acaaca\$

Т

\$acaaca

We give each character a rank, equal to the times the character appear

Transform produces a BWT matrix

BWT matrix 63

BWT matrix

BWT matrices have a property called the Last First (LF) Mapping: the ith occurrence of character c in the last column corresponds to the same text character as the ith occurrence of c in the first column.

BWT matrix

BWT matrix

Find T knowing BWT(T):

$$T = a $$$

 a_3

functional genomics

BWT matrix

$$T = ca$$
\$

functional genomics center zurich

BWT mappers: Find T knowing BWT(T)

BWT matrix

$$T = aca$$$

BWT matrix

BWT matrix

BWT matrix

BWT matrix

reference: a c a a c a

read: a ca

\$ acaaca₄ a₄ \$ a c a a c₂ a₂ a c a \$ a c₁ a₃ c a \$ a c a₂ a₁ caaca \$ c₂ a \$ a c a a₃ C₁ a a c a \$ a₁

reference: a c a a c a

read: a ca

\$ acaaca₄ a_4 \$ a c a a c_2 C₂ a \$ a c a a₃C₁ a a c a \$ a₁

reference: a c a a c a

F

L

read: a Ca

reference: a c a a c a

read: a Ca

\$ a c a a c a₄

| a₄ \$ a c a a c₂
| a₂ a c a \$ a c₁
| a₃ c a \$ a c a₂
| a₁ c a a c a \$

 c_1 a a c a \$ a_1

reference: a c a a c a

read: a Ca

F L
\$ a c a a c a₄
a₄ \$ a c a a c₂
a₂ a c a \$ a c₁

a₃ c a \$ a c a₂

a₁ caaca \$

functional genomics

reference: a c a a c a

read: a ca

F L

reference: a c a a c a

read: a ca

the read position is found

functional oenomics

reference: a c a a c a

read: C C a

F L

\$ acaaca₄ a₄ \$ a c a a c₂ a₂ a c a \$ a c₁ a₃ c a \$ a c a₂ a₁ caaca \$

reference: a c a a c a

read: C C a

\$ acaaca₄ a₄ \$ a c a a c₂ a, a c a \$ a c₁ a₃ c a \$ a c a₂ a₁ caaca \$ C₂ a \$ a c a a₃ ←
C₁ a a c a \$ a₁ ←

Choosing an Aligner

Compute resources vs sensitivity

Feature	Hash table index tools	BWT tools
Speed	Slower	Faster
Memory	Higher	Lower
Sensitivity	Higher	Lower

• For RNA-Seq Applications, BWT approach is mainly used

Exon-first approach

• Exonic reads are aligned first, the remaining reads are divided into smaller pieces and then mapped to the genome

Spliced mappers: Exon first

- Fast, require less computational resources
- Bias towards un-spliced alignments
- MapSplice, SpliceMap, TopHat

Mapping of RNA-seq reads

- Reference (fasta format)
 - Genome
 - Transcriptome
 - Junction library

- When mapped to the genome, RNA-Seq reads can span junctions
 - Spliced alignments
 - Example: Mouse retina 60 nt paired reads (41 of 91 Mio map to junctions)

Spliced mappers: Seed extend

- Each read is divided into k-mers which are mapped to the genome using table lookup. Mapped k-mers are extended into larger alignments which may include gaps flanked by splice sites.
- Little bias, best placement of each read
- More tolerant to sequence differences
- GSNAP, PALMA

Seed-extend approach

SAM/BAM Header

SAM Format Read information

Field	Description	Alignment
QNAME	Query template name	HWI- ST1359:47:H1178ADXX:2:22 01:20747:42719
FLAG	bitwise flag	99
RNAME	Reference name	chr13
POS	Reference position	28540518
MAPQ	Mapping quality	60
CIGAR	CIGAR string	101M
MRNM/RNEXT	Reference next read/mate	=
MPOS/PNEXT	Position next/read mate	28540656
ISIZE/TLEN	Template length	239

SAM Format Read Information

Field	Description	Alignment
SEQ	Sequence	CCTCAAACCCACTCCAGGCTGCCATT GGTACTCGCCCCTTTTTACAGATGAG GAAATGGAGAATCAGACCGGGTCACG CAGATAGTATCAGGCGGGGTTGG
QUAL	Base qualities	7783>446=;@6;B;@B56/>=7>;8 <;?@0>A>=;;7A==@@9BB<;497> 565179==2864:>C=083&&42;37 69<8==>=;=>>D=768==8:79
TAGs	Tags	X0:i:1 X1:i:0 AM:i:37 NM:i:0 SM:i:37 XM:i:0 X0:i:0 MQ:i:60 XT:A:U

SAM Format FLAG Values

Flags

Flag	Description
0x0001	the read is paired in sequencing, no matter whether it is mapped in a pair
0x0002	the read is mapped in a proper pair (depends on the protocol, normally inferred during alignment) 1
0x0004	the query sequence itself is unmapped
0x0008	the mate is unmapped ¹
0x0010	strand of the query (0 for forward; 1 for reverse strand)
0x0020	strand of the mate 1
0x0040	the read is the first read in a pair 1,2
0x0080	the read is the second read in a pair 1,2
0x0100	the alignment is not primary (a read having split hits may have multiple primary alignment records)
0x0200	the read fails platform/vendor quality checks
0x0400	the read is either a PCR duplicate or an optical duplicate

https://broadinstitute.github.io/picard/explain-flags.html

CIGAR string - compact representation of an alignment

- M match or mismatch
- I insertion
- D deletion
- S soft clip
 - Clipped sequences stored in SAM
- H hard clip
 - Clipped sequences not stored in SAM
- N skipped reference bases,
 splicing

Match/mismatch, indels

Ref: ACGCAGTG--GT

Read: ATGCA-TGCAGT

Cigar: 5M1D2M2I2M

Soft clipping

REF: ATCGTGTAACCTGACTAGTTAA

READ: gggGTGTAACC-GACTAGgggg Cigar: 3S8M1D5M4S

Hard clipping

Cigar: 3H8M1D5M4H

REF: ATCGTGTAACCTGACTAGTTAA READ: gggGTGTAACC-GACTAGgggg

90

Splice junction track

 Compute dynamically from alignment data (must be from spliced aligner)

- A splicing event is drawn when at least a single read splits across two exons
- The height and thickness of the arc are proportional to the coverage depth

Inversion, duplication, translocation

Color alignment by read orientation

