

Model Optimization and Tuning Phase

Date	15 July 2024
Team ID	SWTID1720085076
Project Title	Rice Type Classification using CNN
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters		
Model 1	MobileNET Hyperparam1: Two Conv2D Layers This model incorporates two additional Conv2D layers to deepen the network. The extra convolutional layers aim to capture more intricate features from the images, potentially improving accuracy		


```
# Build fifth CNN Model: by two Conv2D layer
model_5 = tf.keras.Sequential(
        tf.keras.layers.Rescaling(1./255, input_shape=(150, 150, 3)),
        tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu',
                              kernel_regularizer=tf.keras.regularizers.l2(0.001)),
        tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu',
                              kernel_regularizer=tf.keras.regularizers.l2(0.001)),
        tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(units=300, activation='relu',
                             kernel regularizer=tf.keras.regularizers.l2(0.001)),
        tf.keras.layers.Dense(units=100, activation='relu',
                             kernel_regularizer=tf.keras.regularizers.l2(0.001)),
        tf.keras.layers.Dropout(0.5),
        tf.keras.layers.Dense(units=5),
model_5.summary()
```

Hyperparam2: Regularization with L2

This model aims to reduce overfitting by adding L2 regularization to the convolutional and dense layers. L2 regularization penalizes large weights in the network, encouraging the model to keep the weights small and thus reducing overfitting.

	ALEXNET;				
	Hyperparam1:				
	Increase Epoch fron	n 3 to 5			
Model 2	conv2d (Conv2D) batch_normalization (Batch Normalization) max_pooling2d (MaxPooling2 D) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPoolin g2D) conv2d_2 (Conv2D) conv2d_3 (Conv2D) conv2d_4 (Conv2D) max_pooling2d_2 (MaxPoolin g2D) flatten (Flatten) dense (Dense) dropout_1 (Dropout) dense_1 (Dense) dropout_1 (Dropout) dense_2 (Dense) # Assuming 'Al training_acc_a val_acc_alex = best_training_ best_val_acc = # Converting t best_training_best_val_acc_p print("Best_training_best_val_acc_p print("Best_training_best_val_acc_p) ## Best_Training_best_val_acc_p Best_Training_best_val_acc_p ## Assuming 'Al training_acc_a val_acc_alex = ## Converting t best_training_best_val_acc_p ## Converting t Best_Training_best_val_acc_p ## Converting t Best_Training_best_val_acc_p ## Converting t Best_Training_best_val_acc_p	(None, 28, 28, 96) (None, 24, 24, 256) (None, 24, 24, 256) (None, 11, 11, 256) (None, 11, 11, 256) (None, 9, 9, 384) (None, 5, 5, 256) (None, 1924) (None, 1824) (None, 4896) (None, 4896) (None, 4896) (None, 4896) (None, 4896) (None, 5) ex_model' is the lex = Alex_model.his acc = max(train max(val_acc_al acc_percentage are acc_percentage ercentage = rotaling Accuracy lidation Accuracy lidation Accuracy according to the lex = Alex_model.his acc_al acc_percentage = rotaling Accuracy lidation Acc	el.history['accuracy story['val_accuracy ning_acc_alex) lex) nd rounding off to = round(best_train und(best_val_acc * y: ", best_training acy: ", best_val_ac	'] 2 decimal places ling_acc * 100, 2)	
Model 3	CGGNET; Hyperparam1:				

Increase Epoch 3 to 5

```
→ Model: "model_1"
     Layer (type)
                                    Output Shape
                                                                Param #
                                    [(None, 240, 240, 3)]
     input_2 (InputLayer)
     conv2d_5 (Conv2D)
     conv2d_6 (Conv2D)
     batch_normalization_2 (Bat (None, 236, 236, 64)
chNormalization)
                                                                256
     max_pooling2d_3 (MaxPoolin (None, 118, 118, 64)
g2D)
     conv2d_8 (Conv2D)
     batch_normalization_3 (Bat (None, 114, 114, 128)
chNormalization)
     max_pooling2d_4 (MaxPoolin (None, 57, 57, 128)
     conv2d_9 (Conv2D)
     conv2d_10 (Conv2D)
                                                                590080
```

```
# Assuming 'VGG_model' is the history object from your model training training_acc_alex = VGG_model.history['accuracy'] val_acc_alex = VGG_model.history['val_accuracy']

best_training_acc = max(training_acc_alex)

best_val_acc = max(val_acc_alex)

# Converting to percentage and rounding off to 2 decimal places best_training_acc_percentage = round(best_training_acc * 100, 2)

best_val_acc_percentage = round(best_val_acc * 100, 2)

print("Best Training Accuracy: ", best_training_acc_percentage, "%")

print("Best Validation Accuracy: ", best_val_acc_percentage, "%")

Best Training Accuracy: 98.39 %

Best Validation Accuracy: 98.66 %
```


Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Model 1	The MobileNet model has demonstrated higher accuracy compared to other models like VGG-Net and AlexNet, which is why I selected this
MobileNet CNN	project.