שעור 1 מרחבי מכפלת פנימית

${\mathbb R}$ הגדרה של מכפלה פנימית מעל 1.1

${\mathbb R}$ הגדרה 1.1 מכפלה פנימית מעל

יהי על המתאימה לכל המתאימה $V \times V \to \mathbb{R}$ היא פונקציה על מכפלה פנימית מעל ... מכפלה מנימית מעל היא פונקציה וקטורי מעל $u, v, w \in V$ סקלר ממשי המסומן ב- $\langle u, v \rangle$ כך שמתקיימות התכונות הבאות. לכל על משי המסומן ב- $\langle u, v \rangle$

:סימטריות (1

$$\langle u, \mathbf{v} \rangle = \langle \mathbf{v}, u \rangle$$
.

2) לינאריות ברכיב הראשון:

(N

$$\langle u + \mathbf{v}, w \rangle = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$
.

(1

$$\langle \lambda u, \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

:חיוביות (3

$$\langle u, u \rangle \ge 0$$

.u=0 אם ורק אם $\langle u,u \rangle = 0$ וגם

הגדרה 1.2 מרחב אווקלידי

. מרחב אוקלידי מסויימת נקרא מרחב אוקלידי עם מכפלה פנימית מסויימת על על V מעל על מרחב מרחב מרחב אוקלידי

משפט 1.1 לינאריות ברכיב השני

יהי V מרחב וקטורי מעל $\mathbb R$ ו $\langle ,
angle$ מכפלה פנימית. אז

 $u, \mathbf{v}, w \in V$ לכל (1

$$\langle u, \mathbf{v} + w \rangle = \langle u, \mathbf{v} \rangle + \langle u, w \rangle$$

 $\lambda \in \mathbb{R}$ לכל $u, \mathrm{v} \in V$ ולכל סקלר (2

$$\langle u, \lambda \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

הוכחה:

$$\langle u, \lambda \mathbf{v} \rangle = \langle \lambda \mathbf{v}, u \rangle = \lambda \langle \mathbf{v}, u \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

(2

${\mathbb R}$ דוגמאות של מכפלה פנימית מעל 1.2

דוגמה 1.1

ענגדיר, v =
$$egin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 , $u = egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ נגדיר , $V = \mathbb{R}^n$

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} x_i y_i .$$

 \mathbb{R}^n אז זה מכפלה פנימית מעל

דוגמה 1.2

ענדיר ,v =
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 , $u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, \mathbb{R}^n -ב יהיו לכל שני וקטורים לכל שני אינים. לכל שני וקטורים לכל

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i x_i y_i$$
.

הוכיחו כי המכפלה הזאת היא מכפלה פנימית.

פתרון:

(1

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i x_i y_i = \sum_{i=1}^{n} \lambda_i y_i x_i = \langle \mathbf{v}, u \rangle$$

נגדיר
$$w=egin{pmatrix} z_1 \ dots \ z_n \end{pmatrix}$$
 נגדיר (2

$$\langle u + \mathbf{v}, w \rangle = \sum_{i=1}^{n} \lambda_i (x_i + y_i) \cdot z_i = \sum_{i=1}^{n} \lambda_i (x_i \cdot z_i + y_i \cdot z_i) = \sum_{i=1}^{n} \lambda_i x_i \cdot z_i + \sum_{i=1}^{n} \lambda_i y_i \cdot z_i = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$

(3

$$\langle ku, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i(kx_i)y_i = \sum_{i=1}^{n} k \cdot \lambda_i x_i y_i = k \sum_{i=1}^{n} \lambda_i x_i y_i = k \langle u, \mathbf{v} \rangle$$

(4

$$\langle u, u \rangle = \sum_{i=1}^{n} \lambda_i x_i^2 \ge 0$$

 $0.1 \leq i \leq n$ כי $\lambda_i > 0$ כי

$$\langle u,u
angle = \sum\limits_{i=1}^n \lambda_i x_i^2 = 0$$
 אם"ם $x_i = 0$, $\forall i$

${\mathbb R}$ המכפלות הפנימיות העיקריות מעל 1.3

הגדרה 1.3 מכפלה פנימית לפי בסיס

 $:\!V$ מרחב וקטורי נוצר סופית מעל $\mathbb R$. נבחר בסיס של

$$B = \{b_1, \dots, b_n\} .$$

 $u,\mathbf{v}\in V$ לכל

$$u = \sum_{i=1}^{n} x_i b_i$$
, $v = \sum_{i=1}^{n} y_i b_i$.

מכפלה פנימית לפי בסיס B מסומנת ($,)_B$ מסומנת

$$(u, \mathbf{v})_B = \sum_{i=1}^n x_i y_i \ .$$

קל להוכיח שזה מכפלה פנימית.

\mathbb{R}^n הגדרה 1.4 מכפלה פנימית הסטנדרטית של

לכל $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$ לכל עניח כי בבסיס הסטנדרטי,

$$u = \sum_{i=1}^{n} x_i e_i$$
, $v = \sum_{i=1}^{n} y_i e_i$.

המכפלה פנימית הסטנדרטית מסומנת (,) ומוגדרת

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i y_i .$$

הגדרה 1.5 העקבה של מטריצה ריבועית

מסומנת .A איברי האלכסון איברי סכום של העקבה של העקבה העקבה איברי לכל העקבה איברי העקבה אל

 $\operatorname{tr} A$.

משפט 1.2 תכונות של העקבה

 $:A,B\in\mathbb{F}^{n imes n}$ לכל

$$tr(A+B) = tr(A) + tr(B)$$
 (1

$$\lambda \in \mathbb{F}$$
 לכל $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$ (2

$$\operatorname{tr}(A^t) = \operatorname{tr}(A)$$
 (3

הגדרה 1.6 המכפלה הפנימית הסטנדרטית של מטריצות

תהיינה מטריצות היא פונקציה הפנימית המכפלה המכפלה . $A,B\in\mathbb{R}^{n\times m}$ תהיינה $A,B\in\mathbb{R}^{m\times m}$ שמוגדרת ע"י שמוגדרת ע"י

$$\langle A, B \rangle = \operatorname{tr} \left(B^t \cdot A \right) .$$

. גם. $\mathbb{R}^{n imes m}$ גם. המכפלה הזאת נקראת המכפלה הפנימית הסטנדרטית

דוגמה 1.3

הוכיחו כי המכפלה הפנימית הסטנדרטית של מטריצות בהגדרה הקודמת מקיינת את התכונות של מכפלה פנימית.

פתרון:

$$\langle A,B\rangle = \operatorname{tr}(B^t \cdot A) = \operatorname{tr}\left((A^t \cdot B)^t\right) = \operatorname{tr}\left(A^t \cdot B\right) = \langle B,A\rangle \ .$$

(N (2

$$\langle A+B,C\rangle = \operatorname{tr}(C^t \cdot (A+B)) = \operatorname{tr}\left(C^t \cdot A + C^t \cdot B\right) = \operatorname{tr}\left(C^t \cdot A\right) + \operatorname{tr}\left(C^t \cdot B\right) = \langle A,C\rangle + \langle B,C\rangle \ .$$

(2

$$\langle \lambda A, C \rangle = \operatorname{tr}(B^t \lambda A) = \operatorname{tr}(\lambda(B^t A)) = \lambda \operatorname{tr}(B^t A) = \lambda \langle A, B \rangle$$
.

(3

$$\langle A, A \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ji}^2 \ge 0$$

$$A=0$$
 אם"ם אם"ם, א i,j $a_{ji}=0$ אם"ם $\langle A,A \rangle=0$

הגדרה 1.7 המכפלה הפנימית הסטנדרטית של פונקציות

תהיינה הפטנדרטית המכפלה הפנימית פונקציות שמוגדרות שמוגדרות $g:\mathbb{R} \to \mathbb{R}$ ו המכפלה הפנימית הסטנדרטית פונקציות מוגדרת של פונקציות מוגדרת

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
.

${\Bbb C}$ מרחב מכפלה פנימית מעל 1.4

הגדרה 1.8 מכפלה פנימית מעל

: הרמיטיות (1

- $\langle u, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, u \rangle} \ .$
- :) לינאריות ברכיב הראשון:

(N

$$\langle u + \mathbf{v}, w \rangle = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$

(1

$$\langle \lambda u, \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$

u=0 אם ורק אם $\langle u,u \rangle = 0$ אם אי-שללי. (3 הוא מספר ממשי אי-שללי. הוא מספר ממשי אי-שללי.

הגדרה 1.9 מרחב אוניטרי

. מרחב אוניטרי עם מעל $\mathbb C$ מעל אוניטרי מסויימת מסויימת עם יחד עם מכפלה מרחב אוניטרי

${\Bbb C}$ משפט 1.3 לינאריות חלקית של מ"פ מעל

יהי V מרחב מכפלה פנימית. אזי

 $u, \mathbf{v}, w \in V$ א) לכל

$$\langle u, \mathbf{v} + w \rangle = \langle u, \mathbf{v} \rangle + \langle u, w \rangle$$
.

 $:\lambda$ לכל $u,\mathbf{v}\in V$ ולכל סקלר

$$\langle u, \mathbf{v} \rangle = \bar{\lambda} \langle u, \mathbf{v} \rangle$$
.

הוכחה:

$$\langle u, \mathbf{v} + w \rangle = \overline{\langle \mathbf{v} + w, u \rangle} = \overline{\langle \mathbf{v}, u \rangle} + \overline{\langle w, u \rangle} = \overline{\langle \mathbf{v}, u \rangle} + \overline{\langle w, u \rangle} = \langle u, \mathbf{v} \rangle + \langle u, w \rangle .$$

(2

$$\langle u, \lambda \mathbf{v} \rangle = \overline{\lambda \langle \mathbf{v}, u \rangle} = \overline{\lambda} \overline{\langle \mathbf{v}, u \rangle} = \overline{\lambda} \langle u, \mathbf{v} \rangle$$
.

1.5 דוגמאות של מרחבים אוניטריים

$$.u=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix},\mathbf{v}=\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}\in\mathbb{C}^n$$
לכל
$$(u,\mathbf{v})=\sum_{i=1}^nx_i\bar{y}_i\;.$$

הוכיחו שזאת מרחב מכפלה פנימית.

פתרון:

(2

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i \overline{y}_i = \sum_{i=1}^{n} \overline{\overline{x}_i} \overline{y}_i = \sum_{i=1}^{n} \overline{\overline{x}_i} \overline{y}_i = \sum_{i=1}^{n} \overline{y_i} \overline{x}_i = \overline{\sum_{i=1}^{n} y_i} \overline{x}_i = \overline{(\mathbf{v}, u)} .$$

$$(u + \mathbf{v}, w) = \sum_{i=1}^{n} (x_i + y_i) \cdot \bar{z}_i = \sum_{i=1}^{n} x_i \cdot \bar{z}_i + \sum_{i=1}^{n} y_i \cdot \bar{z}_i = (u, w) + (\mathbf{v}, w).$$

$$(u,u) = \sum_{i=1}^{n} x_i \bar{x}_i = \sum_{i=1}^{n} |x_i|^2 \ge 0$$

$$.(u,u) = 0 \iff u = 0$$

. \mathbb{C}^n -ם פנימית או נקראת המכפלה הפנימית הסטנדרטית מכפלה

דוגמה 1.5

נתון

$$u = \begin{pmatrix} 1-i\\ 2+i \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 3+i\\ -i \end{pmatrix}$.

את חשבו $u, \mathbf{v} \in \mathbb{C}^2$

$$(u, v)$$
 (x

$$(\mathbf{v},u)$$
 (2

$$(u,u)$$
 (x

$$(u, (1+i)v)$$
 (7

פתרון:

$$(u, \mathbf{v}) = (1 - i)(3 - i) + (2 + i) \cdot i = 3 - 4i - 1 + 2i - 1 = 1 - 2i$$

$$(\mathbf{v}, u) = (3+i)(1+i) - i(2-i) = 3+4i-1-2i-1 = 1+2i$$

$$(u, u) = (1 - i)(1 + i) + (2 + i)(2 - i) = 2 + 5 = 7$$

$$(a_1(1+i)y) = \overline{(1+i)}(a_1y) = (1-i)(1-2i) = 1-2i-2 = 1-3i$$

$$(u, (1+i)v) = \overline{(1+i)}(u, v) = (1-i)(1-2i) = 1-3i-2 = -1-3i$$
.

1.6 הנורמה והמרחק

הגדרה 1.10 הנורמה

יהי $u \in V$ היא מספר ממשי אי-שללי הניתנת ע"י של וקטור והי $\|u\|$ של הנימית. הנורמה

$$||u|| = \sqrt{\langle u, u \rangle}$$

. במרחבים \mathbb{R}^2 ו- \mathbb{R}^3 הנורמה היא בעצם האורך של וקטור

דוגמה 1.6

יהי $\lambda \in \mathbb{F}$, $u \in V$, \mathbb{F} מרחב מכפלה פנימית מעל שדה $\lambda \in \mathbb{F}$, מרחב מכפלה פנימית

(N

$$\|\lambda u\| = |\lambda| \|u\|$$

(1

$$\left\| \frac{1}{\|u\|} u \right\| = 1$$

פתרון:

(N

$$\|\lambda u\| = \sqrt{(\lambda u, \lambda u)} = \sqrt{\lambda(u, \lambda u)} = \sqrt{\lambda \cdot \bar{\lambda}(u, u)} = \sqrt{|\lambda|^2(u, u)} = \lambda \|u\|$$
.

לכן לפי סעיף א' $rac{1}{\|u\|}>0$ (ב

$$\left\| \frac{1}{\|u\|} u \right\| = \frac{1}{\|u\|} \cdot \|u\| = 1$$

עבור כל וקטור יחידה אפשר למצוא סקלר $\lambda u \neq 0$ יהיה יחידה עבור כל וקטור אפשר עבור למצוא אפשר יחידה

u o u קוראים נרמול של וקטור $u o rac{u}{\|u\|}$ לפעולה,

. לוקטור היחידה $\frac{u}{\|u\|}$ קוראים הוקטור המנורמל

1.7 דוגמאות של הנורמה

במרחב $u=inom{i}{1+i}$ עם המכפלה הפנימית הסטנדרטית חשבו את הנורמה של הוקטור \mathbb{C}^2 וחשבו את הוקטור המנורמל.

פתרון:

$$||u|| = \sqrt{(u,u)} = \sqrt{i\overline{i} + (1+i)\overline{(1+i)}} = \sqrt{1+2} = \sqrt{3}.$$

ננרמל את הוקטור:

$$\frac{u}{\|u\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} i \\ 1+i \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}}i \\ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}i \end{pmatrix}$$

דוגמה 1.8

 $\left[0,1
ight]$ במרחב של הפונקציות הממשיות בקטע

$$||f(x)|| = \sqrt{\int_0^1 f^2(x) dx}$$

לדוגמה, עבור f(x)=1,

$$||f(x)|| = \sqrt{\int_0^1 1^2 dx} = 1$$

 $f(x) = x^3$ עבור

$$||f(x)|| = \sqrt{\int_0^1 x^6 dx} = \frac{1}{\sqrt{7}}.$$

ננרמל את הוקטור הזה:

$$\frac{f(x)}{\|f(x)\|} = \sqrt{7} \cdot x^3.$$

אז

$$\|\sqrt{7}x^3\| = \sqrt{7} \cdot \frac{1}{\sqrt{7}} = 1$$
.

דוגמה 1.9

 $A = egin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$ עם המכפלה הפנימית הסטנדרטית עם $\mathbb{R}^{2 imes 2}$

$$\|A\| = \sqrt{(A,A)} = \sqrt{\operatorname{tr}(A^t \cdot A)} = \sqrt{14}$$
 .

$$A^t \cdot A = \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 10 & 2 \\ 2 & 4 \end{pmatrix}$$
$$\operatorname{tr}(A^t \cdot A) = 10 + 4 = 14 \ .$$

ננרמל את הוקטור:

$$\frac{1}{\sqrt{14}} \cdot A = \begin{pmatrix} \frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} \\ \frac{3}{\sqrt{14}} & 0 \end{pmatrix}$$

1.8 משפט פיתגורס, משפט קושי שוורץ, אי-שוויון משולש

משפט 1.4 משפט פיתגורס המוכלל של ווקטורים במרחב מכפלה פנימית

לכל שני וקטורים במרחב מכפלה פנימית מתקיים: u, \mathbf{v}

(1

$$||u \pm \mathbf{v}||^2 = ||u||^2 \pm 2\text{Re}\langle u, \mathbf{v} \rangle + ||v||^2$$

(2

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

הוכחה:

(1

$$\|u+\mathbf{v}\|^2 = \langle u+\mathbf{v}, u+\mathbf{v} \rangle$$
 (הגדרה של המכפלה פנימית)
$$= \langle u, u+\mathbf{v} \rangle + \langle \mathbf{v}, u+\mathbf{v} \rangle$$
 (לינאריות)
$$= \langle u, u \rangle + \langle u, \mathbf{v} \rangle + \langle \mathbf{v}, u \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$$
 (לינאריות חלקית)
$$= \langle u, u \rangle + \langle u, \mathbf{v} \rangle + \overline{\langle u, \mathbf{v} \rangle} + \langle \mathbf{v}, \mathbf{v} \rangle$$
 (הרמיטיות)
$$= \|u\|^2 + \langle u, \mathbf{v} \rangle + \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2$$
 (הגדרה של הנורמה)
$$= \|u\|^2 + 2\operatorname{Re}\langle u, \mathbf{v} \rangle + \|\mathbf{v}\|^2$$
 (ראו הסבר למטה) .

z=a+bi מספר לכל האחרון: לכל שלב האחרון

$$z + \bar{z} = (a + bi) + (a - bi) = 2a = 2$$
Re z .

(2

$$\begin{split} \|u+\mathbf{v}\|^2 + \|u-\mathbf{v}\|^2 &= \|u\|^2 + 2\mathrm{Re}\,\langle u,\mathbf{v}\rangle + \|\mathbf{v}\|^2 + \|u\|^2 - 2\mathrm{Re}\,\langle u,\mathbf{v}\rangle + \|\mathbf{v}\|^2 \\ &= 2\left(\|u\|^2 + \|\mathbf{v}\|^2\right) \end{split}$$

השוויון האחרון במרחב \mathbb{R}^2 מבטא את משפט גאומרטי: במקבילית, סכום ריבועי האלכסונים שווה לסכום ריבועי הארכחב במרחב ריבועי הצלעות.

משפט 1.5 אי-שוויון קושי-שוורץ

לכל וקטורים u ו- v במרחב מכפלה פנימית מתקיים

$$|\langle u, \mathbf{v} \rangle| \le ||u|| \cdot ||\mathbf{v}||$$
.

 $0 \leq 0$ אז מקבלים $0 \leq 0$ הוכחה: אם

נניח ש- $\bar{0} \neq \bar{0}$ לכל סקלר .
 $u \neq \bar{0}$ מתקיים

$$\langle \lambda u + \mathbf{v}, \lambda u + \mathbf{v} \rangle \ge 0$$
, (#)

לפי משפט הקיטוב האגף השמאל הוא

$$\begin{split} \langle \lambda u + \mathbf{v}, \lambda u + \mathbf{v} \rangle &= & \|\lambda u\|^2 + 2 \mathrm{Re} \, \langle \lambda u, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \\ &= & \|\lambda u\|^2 + \langle \lambda u, \mathbf{v} \rangle + \overline{\langle \lambda u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \\ &= & \lambda \overline{\lambda} \|u\|^2 + \lambda \, \langle u, \mathbf{v} \rangle + \overline{\lambda} \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \end{split}$$

נציב זה באגף השמאל של (#) ונקבל

$$\lambda \bar{\lambda} \|u\|^2 + \lambda \langle u, \mathbf{v} \rangle + \bar{\lambda} \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \ge 0$$

נציב
$$ar{\lambda}=rac{-\langle u, {
m v}
angle}{\|u\|^2}$$
 , $\lambda=rac{-\overline{\langle u, {
m v}
angle}}{\|u\|^2}$ ונקבל

$$\frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} - \frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} - \frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} + \|\mathbf{v}\|^2 \ge 0$$

 $||u||^2$ -נכפיל ב

$$-\langle u, \mathbf{v} \rangle \, \overline{\langle u, \mathbf{v} \rangle} + \|u\|^2 \|\mathbf{v}\|^2 \ge 0$$

נציב
$$\langle u, {
m v}
angle \overline{\langle u, {
m v}
angle} = |\langle u, {
m v}
angle\,|^2$$
 נציב

$$|\langle u, \mathbf{v} \rangle|^2 \le ||u||^2 ||\mathbf{v}||^2$$

מש"ל.

.v -טו u- המתאימה המישור במישור הערחק בין המרחק הוא המרחק ווו $\|u-\mathbf{v}\|$ הביטוי במרחב אפשר השבר אפשר אפשר המרחק הביטוי

ישנה הכללה של מושג המרחק בכל מרחב מכפלה פנימית.

הגדרה 1.11 המרחק

יהיו ע"י מספר ממשי אי-שלילי המוגדר ע"י יהיו ע ו- יחוא מספר ממשי אי-שלילי המוגדר ע"י יהיו u ו- יהיו

$$d(u, \mathbf{v}) = \|u - \mathbf{v}\|$$

משפט 1.6 תכונות של המרחק ואי-שוויון המשולש

נראה כי מושג המרחק החדש מקיים תכונת בסיסית של המרחק המוכר במישור.

(1

$$d(u, \mathbf{v}) = d(\mathbf{v}, u)$$

הוכחה:

$$d(u, \mathbf{v}) = ||u - \mathbf{v}|| = ||(-1)(\mathbf{v} - u)|| = 1 \cdot ||\mathbf{v} - u|| = d(\mathbf{v}, u)$$

$$.u={
m v}$$
 אם ורק אם $d(u,{
m v})=0$. $d(u,{
m v})\geq 0$ (2

(3

$$d(u, \mathbf{v}) \le d(u, w) + d(w, \mathbf{v})$$

זאת תכונה הנקראת אי-שוויון המשולש.

,u,v לפי משפט הקיטוב, לכל שני וקטורים ,u,v

$$\|u + \mathbf{v}\|^2 = \|u\|^2 + 2\text{Re}\langle u, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \le \|u\|^2 + 2|\langle u, \mathbf{v} \rangle| + \|\mathbf{v}\|^2$$
 (#1)

:הסבר

גסמן
$$z=\langle u, {
m v}
angle = a+ib$$
 נסמן

$$.\bar{z} = a - ib$$

,
$$|\langle u, \mathrm{v} \rangle|^2 = z \bar{z} = a^2 + b^2$$
 גרשום

$$\left| \left\langle u, \mathrm{v}
ight
angle
ight| = \sqrt{a^2 + b^2}$$
 לכך

,
$$2\mathrm{Re}\left\langle u,\mathrm{v}\right\rangle =2\mathrm{Re}z=2a$$
 מצד שני

.2Re
$$(u, \mathbf{v}) = 2a \le 2\sqrt{a^2 + b^2} = 2|\langle u, \mathbf{v} \rangle|$$
 לכן נקבל

נציב אי -שוויון קושי-שוורץ ב- (#1) ונקבל

$$||u + v||^2 \le ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2 = (||u|| + ||v||)^2$$

v במקום – ציב את

$$||u - v||^2 \le (||u|| + ||v||)^2$$
.

לכן

$$||u - v|| \le ||u|| + ||v||$$
.

 \mathbf{v} במקום $\mathbf{v}-w$ ו במקום u-w במקום

$$||(u-w)-(v-w)|| \le ||u-w|| + ||v-w||$$
.

ז"א

$$||u - v|| \le ||u - w|| + ||v - w||$$
.

קיבלנו את אי-שוויון המשולש:

$$d(u, \mathbf{v}) \le d(u, w) + d(\mathbf{v}, w)$$

1.9 אורתוגונליות

הגדרה 1.12 ווקטורים אורתוגונליים

וקטורים או מאונכים זה לזה (או מאונכים זה לזה) וקטורים $u, {
m v}$ במרחב מכפלה פנימית נקראים אורתוגונליים $u, {
m v}$

$$\langle u, \mathbf{v} \rangle = 0$$
.

:סימון

$$u \perp v$$
.

אט
$$\langle u, {
m v}
angle = 0$$
 אם (1

$$\langle \mathbf{v}, u \rangle = \overline{\langle u, \mathbf{v} \rangle} = \overline{0} = 0$$
,

כלומר יחס האורתוגונליות הוא סימטרי.

- .ע וקטור האפס אורתוגונל לכל וקטור ע
- במרחב \mathbb{R}^n עם המכפלה פנימית הסטנדרטית, מושג האורתוגונליות מתלכד עם מושג האורתוגונליות המוגדר על סמך המכפלה סלקרית.

[0,1] במרחב הפונקציות הרציפות בקטע

$$f(x) = 2x - 1 , \quad g(x) = 2x^2 - 2x + \frac{1}{3}$$

$$(f,g) = \int_0^1 (2x - 1) \left(2x^2 - 2x - \frac{1}{3}\right) dx$$

$$= \int_0^1 \left(4x^3 - 6x^2 + \frac{8}{3}x - \frac{1}{3}\right) dx$$

$$= \left[x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x\right]_0^1$$

$$= 0 .$$

 $.f(x)\perp g(x)$ לכן

דוגמה 1.11

במרחב \mathbb{C}^4 עם המכפלה הפנימית הסטנדרטית:

$$u = \begin{pmatrix} 1 \\ i \\ 1 \\ i \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} i \\ 1 \\ i \\ 1 \end{pmatrix}$$
$$(u, \mathbf{v}) = 1 \cdot \overline{i} + i \cdot \overline{1} + 1 \cdot \overline{i} + i \cdot \overline{1}$$
$$= -i + i - i + i$$
$$= 0$$

 $.u \perp v$ לכן

דוגמה 1.12

הוכיחו שאם ע \perp ע אז

$$||u + v||^2 = ||u||^2 + ||v||^2$$
 (x

$$\|u + \mathbf{v}\| = \|u - \mathbf{v}\|$$
 (2

פתרון:

(N

$$||u + v||^2 = ||u||^2 + 2\text{Re}\langle u, v \rangle + ||v||^2 = ||u||^2 + ||v||^2$$

.המשמעות הגאומטרית ב- \mathbb{R}^2 - משפט פיתגורס

(Þ

$$\|u-\mathbf{v}\|^2=\|u\|^2-2\mathrm{Re}\,\langle u,\mathbf{v}
angle+\|\mathbf{v}\|^2=\|u\|^2+\|\mathbf{v}\|^2=\|u\|^2+\|\mathbf{v}\|^2+2\mathrm{Re}\,\langle u,\mathbf{v}
angle$$
בגלל ש $\langle u,\mathbf{v}
angle=0$ בגלל ש $\langle u,\mathbf{v}
angle=0$ בגלל ש

ולכן

$$||u - \mathbf{v}|| = ||u + \mathbf{v}||$$

. האלכסונים של מלבן שווים אה לזה. \mathbb{R}^2 - האלכסונים של הגאומטרית ב-

הגדרה 1.13 ווקטור האורתוגונלי לתת-מרחב

נניח ש V מרחב מכפלה פנימית ו- ע $U \subset V$ תת-מרחב של V. נניח ש V אורתוגונלי ע אורתוגונלי ע אורתוגונלי לכל וקטור ווקטור $u \in U$. כלומר, אם

$$\langle \mathbf{v}|u\rangle = 0$$

.U בתחב אז לתת-מרחב אורתוגונלי הווקטור אז הווקטור, $u\in U$ לכל סימון:

$$\mathbf{v} \perp U$$
.

הגדרה 1.14 המשלים האורתוגונלי

נניח ש V מרחב מכפלה פנימית ו- U ע U תת-מרחב של U. נניח ש V מרחב מכפלה פנימית ו- U ע תת-מרחב של U אורתגונלי לכל ווקטור ב- U ומוגדר לפי התנאי שכל ווקטור ב- U^\perp אורתגונלי לכל ווקטור ב U^\perp כלומר:

$$\langle a|b\rangle = 0$$

 $.b \in U^{\perp}$ ולכל $a \in U$

דוגמה 1.13

נניח ש- U^{\perp} , כאשר המכפלה הפנימית מצאו בסיס מצאו בסיס למשלים . $U=\mathrm{span}\{x\}$ ו- $V=\mathbb{R}_2[x]$ היא המכפלה הפנימית הסטנדרטית בקטע ו[0,1]

פתרון:

$$p(x)=a+bx+cx^2\in U^\perp$$
 וקטור וקטור

$$\langle x, p(x) \rangle = \langle x, a + bx + cx^2 \rangle = \int_0^1 dx \, x \cdot (a + bx + cx^2) = \left[\frac{ax^2}{2} + \frac{bx^3}{3} + \frac{cx^4}{4} \right]_0^1 = \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = 0.$$

לכן

$$U^{\perp} = \left\{ a + bx + cx^{2} \middle| 6a + 4b + 3c = 0 \right\}.$$

 $:\!\!U^\perp$ נמצא בסיס של

$$a = -\frac{2}{3}b - \frac{1}{2}c , \quad b, c \in \mathbb{R} .$$

לכן

$$a + bx + cx^2 = -\frac{2}{3}b - \frac{1}{2}c + bx + cx^2 = b\left(-\frac{2}{3} + x\right) + c\left(-\frac{1}{2} + x^2\right), \quad b, c \in \mathbb{R}.$$

לכן U^{\perp} נשים לב כי $\{1-2x^2,2-3x\}$ לכן

$$3=\dim(V)=\overbrace{\dim(U)}^{=1}+\overbrace{\dim(U^\perp)}^{=2}$$

$$V=U\oplus U^\perp$$
 לכן

:מצאו בסיס ל- U^{\perp} בכל אחד מהמקרים הבאים

. ביחס ביחס למכפלה פנימית הסטנדרטית
$$U=\operatorname{span}\left\{inom{1+i}{i}\right\}$$
 , $V=\mathbb{C}^2$ (1

$$U=\mathrm{span}\left\{(x,x^2
ight\}$$
 , $V=\mathbb{R}_2[x]$ ביחס למכפלה פנימית האינטגרלית בקטע , $U=\mathrm{span}\left\{(x,x^2
ight\}$

$$\mathbb{R}^{2 imes2}$$
 -ב הסטנדרטית ביחס למכפלה ביחס ביחס $U=\mathrm{span}\left\{egin{pmatrix}1&0\\0&0\end{pmatrix},egin{pmatrix}1&1\\0&0\end{pmatrix}
ight\}$, $V=\mathbb{R}^{2 imes2}$ (3

פתרון:

$$.\binom{z_1}{z_2} \perp \binom{1+i}{i} \Leftrightarrow \binom{z_1}{z_2} \in U^{\perp} \text{ (1)}$$

$$\left(\binom{z_1}{z_2}, \binom{1+i}{i}\right) = z_1\overline{(1+i)} + z_2\overline{i} = 0 \quad \Rightarrow \quad z_2 = \frac{i}{1-i}z_1 = \left(-\frac{1}{2} + \frac{1}{2}i\right)z_1$$

לכן

$$U^{\perp} = \left\{ \begin{pmatrix} 1 \\ -\frac{1}{2} + \frac{1}{2}i \end{pmatrix} z \middle| z \in \mathbb{C} \right\} .$$

 $:U^{\perp}$ בסיס של

$$\left\{ \begin{pmatrix} 1\\ -\frac{1}{2} + \frac{1}{2}i \end{pmatrix} \right\}$$

$$p(x), x^2 = 0$$
 וגם $p(x), x = 0 \Leftrightarrow p(x) = a + bx + cx^2$ (2)

$$(p(x), x) = \int_0^1 (a + bx + cx^2)x \, dx = \left[\frac{ax^2}{2} + \frac{bx^3}{3} + \frac{cx^4}{4}\right]_0^1 1 = \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = 0$$

$$(p(x), x^2) = \int_0^1 (a + bx + cx^2)x^2 dx = \left[\frac{ax^3}{3} + \frac{bx^4}{4} + \frac{cx^5}{5}\right]_0^1 1 = \frac{a}{3} + \frac{b}{4} + \frac{c}{5} = 0$$

לכן

$$U^{\perp} = \left\{ a + bx + cx^2 \middle| \begin{array}{c} 6a + 4b + 3c & = 0 \\ 20a + 15b + 12c & = 0 \end{array} \right\}$$

$$\begin{pmatrix} 6 & 4 & 3 \\ 20 & 15 & 12 \end{pmatrix} \xrightarrow{R_2 \to 3R_2 - 10R_1} \begin{pmatrix} 6 & 4 & 3 \\ 0 & 5 & 6 \end{pmatrix} \xrightarrow{R_1 \to 5R_1 - 4R_2} \begin{pmatrix} 30 & 0 & -9 \\ 0 & 5 & 6 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -\frac{3}{10} \\ 0 & 1 & \frac{6}{5} \end{pmatrix}$$

 $.c \in \mathbb{R} \ b = -1.2c \ a = 0.3c$

$$a + bx + cx^2 = \frac{3}{10}c - \frac{12}{10}cx + cx^2 = c\left(\frac{3}{10} - \frac{12}{10}x + x^2\right), \quad c \in \mathbb{R}.$$

 $:\!\!U^\perp$ לכן נקבל בסיס של

$$B_{U^{\perp}} = \left\{ 3 - 12x + 10x^2 \right\}$$

$$.U = \mathrm{span}(A_1,A_2) \Leftarrow .A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ (3)}$$

$$U^\perp = \left\{B \in \mathbb{R}^{2 \times 2} \middle| (B,A_1) = 0 \right., (B,A_2) = 0\right\}$$

$$.B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$.B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow$$

$$(B,A_1) = \mathrm{tr}(A_1^t \cdot B) = \mathrm{tr}\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \mathrm{tr}\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = a = 0$$

$$(B,A_2) = \mathrm{tr}(A_2^t \cdot B) = \mathrm{tr}\left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \mathrm{tr}\begin{pmatrix} a & b \\ a & b \end{pmatrix} = a + b = 0$$

$$C = \left\{\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \middle| c, d \in \mathbb{R}\right\}$$

$$C = \left\{\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \middle| c, d \in \mathbb{R}\right\}$$

$$C = \left\{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}.$$

1.10 * העשרה: סכום ריבועי האלכסונים של במקבילית שווה לסכום ריבועי הצלעות של

הוכחה:

(פיתגורס).
$$AC^2 = AE^2 + CE^2$$
 לכן
$$AC^2 = (AB + BE)^2 + CE^2$$

$$AC^2 = AB^2 + BE^2 + 2 \cdot AB \cdot BE + CE^2$$
 (*1)

בגלל ש CDFE מלבן. CD=EF . AB=CD=EF לכן לכן CD=AB

גם CE=DF (מרחק בין שנ ישרים מקבילים). לכן $\Delta AFD\cong \Delta BEC$ (משולשים חופפים). AF=BE לכן

נסתכל אל המשולש ישר זוית ΔDFB . נסתכל אל המשולש ישר $BD^2=BF^2+DF^2$. $BD^2=CE$ בגלל ש $BD^2=(EF-BE)^2+CE^2$ לכן EF=AB בגלל ש $BD^2=(AB-BE)^2+CE^2$ לכן לכן

$$BD^{2} = AB^{2} + BE^{2} - 2 \cdot AB \cdot BE + CE^{2}$$
 (*2)

נחבר את הביטוים (1*)+(2*) ונקבל

$$AC^{2} + BD^{2} = AB^{2} + BE^{2} + 2 \cdot AB \cdot BE + CE^{2} + AB^{2} + BE^{2} - 2 \cdot AB \cdot BE + CE^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot BE^{2} + 2 \cdot CE^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot (BE^{2} + CE^{2})$$
 (*3)

 ΔBEC במשולש ישר זוית

(*3) פיתגורס). לכו נקבל ממשוואה א $BC^2 = BE^2 + CE^2$

$$AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot BC^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = AB^{2} + AB^{2} + BC^{2} + BC^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = AB^{2} + BC^{2} + CD^{2} + AD^{2}$$

לכן סכום ריבועי האלכסונים שווה לסכום ריבועי הצלעות.