

Morphologie Mathématique Ouvertures, fermetures, Niveaux de Gris

Hugues Talbot (CVN, CentraleSupelec)
Mars 2019

Centrale Supéleo

CS 202

Plan de la séance

1 Filtres : ouverture et fermeture

2 Ouvertures et fermetures par adjonction

Filtre

- Un filtre (sur E) est un opérateur ψ croissant et idempotent
 - \blacksquare $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \psi(X) \subseteq \psi(Y)$
 - $\forall X \in \mathcal{P}(E), \ \psi(\psi(X)) = \psi(X)$

Fermeture et ouverture

- Une fermeture (sur E) est un filtre ψ extensif
 - $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \psi(X) \subseteq \psi(Y)$
 - $\forall X \in \mathcal{P}(E), \ \psi(\psi(X)) = \psi(X)$

Fermeture et ouverture

- Une fermeture (sur E) est un filtre ψ extensif
 - \blacksquare $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \psi(X) \subseteq \psi(Y)$
 - $\forall X \in \mathcal{P}(E), \ \psi(\psi(X)) = \psi(X)$
 - $\forall X \in \mathcal{P}(E), X \subseteq \psi(X)$
- Une fermeture (sur E) est un filtre ψ anti-extensif

 - $\forall X \in \mathcal{P}(E), \ \psi(\psi(X)) = \psi(X)$
 - $\forall X \in \mathcal{P}(E), \ \psi(X) \subseteq X$

Fermeture et ouverture

Définition

- Une fermeture (sur E) est un filtre ψ extensif
 - $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \psi(X) \subseteq \psi(Y)$
 - $\forall X \in \mathcal{P}(E), \ \psi(\psi(X)) = \psi(X)$
 - $\forall X \in \mathcal{P}(E), X \subseteq \psi(X)$
- Une fermeture (sur E) est un filtre ψ anti-extensif
 - $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \psi(X) \subseteq \psi(Y)$
 - $\forall X \in \mathcal{P}(E), \ \psi(\psi(X)) = \psi(X)$
 - $\forall X \in \mathcal{P}(E), \ \psi(X) \subseteq X$

Propriété

• ψ est une fermeture si et seulement ψ^* est une ouverture

Propriété

■ L'opérateur ec d'enveloppe convexe sur \mathbb{R}^2 est une fermeture

Propriété

L'opérateur ec d'enveloppe convexe sur \mathbb{R}^2 est une fermeture

Exercice.

- Pouvez cette propriété en démontrant les trois relations suivantes
 - $\forall X, Y \in \mathcal{P}(\mathbb{R}^2), X \subseteq Y \implies ec(X) \subseteq ec(Y) \text{ (croissance de } ec)$
 - $\forall X \in \mathcal{P}(\mathbb{R}^2)$, ec(X) = ec(ec(X)) (idempotence de ec)
 - $\blacksquare \ \forall X \in \mathcal{P}(\mathbb{R}^2), \ X \subseteq ec(X)$ (extensivité de ec)

Propriété

- L'opérateur ec d'enveloppe convexe sur \mathbb{R}^2 est une fermeture
- L'opérateur ec* est donc une ouverture

Exercice.

- Pouvez cette propriété en démontrant les trois relations suivantes
 - $\forall X, Y \in \mathcal{P}(\mathbb{R}^2), X \subseteq Y \implies ec(X) \subseteq ec(Y)$ (croissance de ec)
 - $\forall X \in \mathcal{P}(\mathbb{R}^2), ec(X) = ec(ec(X))$ (idempotence de *ec*)
 - $\forall X \in \mathcal{P}(\mathbb{R}^2), X \subseteq ec(X)$ (extensivité de ec)

Problématique de l'adjonction

- La notion d'adjonction est centrale en morphologie
- Elle permet de bâtir une ouverture et une fermeture à partir de toute dilatation (*i.e.*, un opérateur qui commute avec l'union)

Problématique de l'adjonction

- La notion d'adjonction est centrale en morphologie
- Elle permet de bâtir une ouverture et une fermeture à partir de toute dilatation (*i.e.*, un opérateur qui commute avec l'union)

Question

- **E**xiste-t-il un opérateur inverse δ' pour toute dilatation δ ?
- lacksquare En d'autres termes, peut-on trouver δ' tel que
 - $\forall X \in \mathcal{P}(E), \delta'(\delta(X)) = X?$

Ensemble δ -inférieur

- Soient δ une dilatation et $X, X' \in \mathcal{P}(E)$
- $\blacksquare X'$ est δ -inférieur à X si
 - $\delta(X') \subseteq X$

Ensemble δ -inférieur

Définition

- Soient δ une dilatation et $X, X' \in \mathcal{P}(E)$
- $\blacksquare X'$ est δ -inférieur à X si
 - $\delta(X') \subseteq X$

Propriété

- Soient δ une dilatation et $X \in \mathcal{P}(E)$
- Parmi les ensembles δ -inférieurs à X, il existe un plus grand élément \dot{X}
 - $\dot{X} = \bigcup \{X' \in \mathcal{P}(E) \mid X' \text{ est } \delta \text{-inférieur } \lambda X\}$

Preuve

Par définition de l'union, \dot{X} est le plus petit ensemble qui contient tous les δ -inférieurs à X. Pour compléter la démonstration, il suffit donc de prouver que \dot{X} est aussi δ -inférieur à X, c'est-à-dire que $\delta(\dot{X})\subseteq X$. D'après la définition d'un ensemble δ -inférieur, on peut écrire $\dot{X}=\cup\{X'\in\mathcal{P}(E)\mid\delta(X')\subseteq X\}$. Donc, $\delta(\dot{X})=\delta(\cup\{X'\in\mathcal{P}(E)\mid\delta(X')\subseteq X\})$. Comme l'opérateur de dilatation commute avec l'union, on peut également écrire $\delta(\dot{X})=\cup\{\delta(X')\mid X'\in\mathcal{P}(E),\delta(X')\subseteq X\}$. Ainsi, par définition de l'union, on obtient la relation $\delta(\dot{X})\subseteq X$, ce qui complète la preuve de la propriété.

Preuve

Par définition de l'union, \dot{X} est le plus petit ensemble qui contient tous les δ -inférieurs à X. Pour compléter la démonstration, il suffit donc de prouver que \dot{X} est aussi δ -inférieur à X, c'est-à-dire que $\delta(\dot{X})\subseteq X$. D'après la définition d'un ensemble δ -inférieur, on peut écrire $\dot{X}=\cup\{X'\in\mathcal{P}(E)\mid\delta(X')\subseteq X\}$. Donc, $\delta(\dot{X})=\delta(\cup\{X'\in\mathcal{P}(E)\mid\delta(X')\subseteq X\})$. Comme l'opérateur de dilatation commute avec l'union, on peut également écrire $\delta(\dot{X})=\cup\{\delta(X')\mid X'\in\mathcal{P}(E),\delta(X')\subseteq X\}$. Ainsi, par définition de l'union, on obtient la relation $\delta(\dot{X})\subseteq X$, ce qui complète la preuve de la propriété.

<u>Exercice.</u> Montrer qu'en général il n'existe pas de plus petit élément parmi les ensembles δ -supérieurs à X.

Erosion adjointe

- Soit δ une dilatation
- L'érosion adjointe de δ est l'opérateur δ qui à tout $X \in \mathcal{P}(E)$ associe le plus grand ensemble qui est δ -inférieur à X:
 - $\bullet \dot{\delta}(X) = \cup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X\}$

Erosion adjointe

Définition

- Soit δ une dilatation
- L'érosion adjointe de δ est l'opérateur δ qui à tout $X \in \mathcal{P}(E)$ associe le plus grand ensemble qui est δ -inférieur à X:
 - $\bullet \dot{\delta}(X) = \cup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X\}$

Théorème

■ Si δ est une dilatation, alors $\hat{\delta}$ est une érosion (i.e., $\hat{\delta}$ commute avec l'intersection)

Preuve du théorème

```
Preuve. Soient A, B \in \mathcal{P}(E).

\dot{\delta}(A \cap B) = \bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq [A \cap B]\}
= \bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq A \text{ et } \delta(X') \subseteq B\}
= [\bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq A\}] \cap [\bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq B\}]
= \dot{\delta}(A) \cap \dot{\delta}(B)
```

 On peut faire le même raisonnement en partant de l'opérateur d'érosion au lieu de celui de dilatation

- On peut faire le même raisonnement en partant de l'opérateur d'érosion au lieu de celui de dilatation
- $lue{}$ On inverse alors la relation \subseteq et on intervertit \cup et \cap

- On peut faire le même raisonnement en partant de l'opérateur d'érosion au lieu de celui de dilatation
- lacksquare On inverse alors la relation \subseteq et on intervertit \cup et \cap
- Si ϵ est une érosion, sa *dilatation adjointe* $\dot{\epsilon}$ est définie par :
 - $\forall X \in \mathcal{P}(E), \ \dot{\epsilon}(X) = \cap \{X' \mid X \subseteq \epsilon(X')\}$

- On peut faire le même raisonnement en partant de l'opérateur d'érosion au lieu de celui de dilatation
- $lue{}$ On inverse alors la relation \subseteq et on intervertit \cup et \cap
- Si ϵ est une érosion, sa *dilatation adjointe* $\dot{\epsilon}$ est définie par :
 - $\forall X \in \mathcal{P}(E), \ \dot{\epsilon}(X) = \cap \{X' \mid X \subseteq \epsilon(X')\}$
- La relation d'adjonction est une bijection entre dilatations et érosions
 - $\bullet \epsilon = \dot{\delta} \Leftrightarrow \delta = \dot{\epsilon}$

- On peut faire le même raisonnement en partant de l'opérateur d'érosion au lieu de celui de dilatation
- $lue{}$ On inverse alors la relation \subseteq et on intervertit \cup et \cap
- Si ϵ est une érosion, sa *dilatation adjointe* $\dot{\epsilon}$ est définie par :

$$\forall X \in \mathcal{P}(E), \ \dot{\epsilon}(X) = \cap \{X' \mid X \subseteq \epsilon(X')\}$$

 La relation d'adjonction est une bijection entre dilatations et érosions

$$\bullet \epsilon = \dot{\delta} \Leftrightarrow \delta = \dot{\epsilon}$$

 \bullet $\dot{\delta} \circ \delta = Id \Leftrightarrow \delta = \dot{\delta} = Id$

Adjonction par élément structurant

Propriété

- Soit Γ un élément structurant
 - $\bullet \dot{\delta_{\Gamma}} = \delta_{\Gamma^{-1}}^{\star}$

Adjonction par élément structurant

Propriété

- Soit Γ un élément structurant
 - $\delta_{\Gamma} = \delta_{\Gamma^{-1}}^{\star}$

Notation importante

- Soit Γ un élément structurant
- On désigne par ϵ_{Γ} l'érosion adjointe de δ_{Γ}
 - $\bullet_{\Gamma} = \dot{\delta_{\Gamma}} = \delta_{\Gamma^{-1}}^{\star}$

Fermeture et ouverture par adjonction

Théorème

- Soit δ une dilatation et $\epsilon = \dot{\delta}$ l'érosion adjointe de δ
- Soient $\phi = \epsilon \circ \delta$ et $\gamma = \delta \circ \epsilon$

Fermeture et ouverture par adjonction

Théorème

- Soit δ une dilatation et $\epsilon = \dot{\delta}$ l'érosion adjointe de δ
- Soient $\phi = \epsilon \circ \delta$ et $\gamma = \delta \circ \epsilon$
- lacktriangledown ϕ est une fermeture
- \blacksquare γ est une ouverture

Ouverture et fermeture par un élément structurant

- Soit \(\Gamma\) un élément structurant
- La fermeture par Γ est l'opérateur ϕ_{Γ} tel que

- L'ouverture par Γ est l'opérateur γ_{Γ} tel que

Exercice 1

- lacksquare Soit l'objet noir $X\subseteq\mathbb{Z}^2$ et l'élément structurant Γ ci-dessous
- Représenter l'ensemble $\gamma_{\Gamma}(X)$

Exercice 2

■ Choisissez et appliquer un opérateur qui "rebouche" les trous de l'objet *X* en noir ci-dessous

Caractérisation d'ouverture/fermeture par élément structurant

Propriété

- Soit Γ un élément structurant
 - $\forall X \in \mathcal{P}(E)$, $\gamma_{\Gamma}(X) = \cup \{\Gamma(x) \mid x \in E, \Gamma(x) \subseteq X\}$

Caractérisation d'ouverture/fermeture par élément structurant

Propriété

- Soit Γ un élément structurant
 - $\forall X \in \mathcal{P}(E)$, $\gamma_{\Gamma}(X) = \cup \{\Gamma(x) \mid x \in E, \Gamma(x) \subseteq X\}$

Interprétation topographique

■ On dit que $X \in \mathcal{P}(E)$ est *plus mince* que l'élément structurant Γ si $\delta_{\Gamma}(X)^* = \emptyset$

Interprétation topographique

- On dit que $X \in \mathcal{P}(E)$ est *plus mince* que l'élément structurant Γ si $\delta_{\Gamma}(X)^* = \emptyset$
- L'ouverture de l'ensemble X par Γ a pour effet de supprimer les parties de X qui sont plus minces que Γ , c'est-à-dire
 - des îles (parties isolées)
 - des caps (convexités minces)
 - des isthmes (jonctions entre parties non minces)

Interprétation topographique

- On dit que $X \in \mathcal{P}(E)$ est *plus mince* que l'élément structurant Γ si $\delta_{\Gamma}(X)^* = \emptyset$
- L'ouverture de l'ensemble X par Γ a pour effet de supprimer les parties de X qui sont plus minces que Γ , c'est-à-dire
 - des îles (parties isolées)
 - des caps (convexités minces)
 - des isthmes (jonctions entre parties non minces)
- La fermeture supprime les parties non-minces de \overline{X} , c'est-à-dire
 - des lacs (trous)
 - des golfes (concavités minces)
 - des détroits (jonctions entre parties non minces de \overline{X})

Plan de la séance

1 Image en niveau de gris

2 Opérateur sur des images en niveaux de gris

Image

Définition

- Soit V un ensemble de valeurs
- Une image (sur E à valeurs dans V) est une application I de E dans V
- I(x) est la valeur du point (pixel) x pour I

Image

Définition

- Soit V un ensemble de valeurs
- Une image (sur E à valeurs dans V) est une application I de E dans V
- I(x) est la valeur du point (pixel) x pour I

Exemple

- Image à valeurs dans \mathbb{R}^+ : carte de distance D_X à un ensemble $X \in \mathcal{P}(E)$
- Image à valeurs dans \mathbb{Z}^+ : carte de distance D_X pour une distance géodésique dans un réseau à longueurs uniformes

Images en niveaux de gris

- lacksquare On désigne par $\mathcal I$ l'ensemble des images à valeurs entières sur E
- Une image dans *I* est aussi appelée une *image en niveau (ou teinte, ou échelle) de gris*

Images en niveaux de gris

- lacksquare On désigne par $\mathcal I$ l'ensemble des images à valeurs entières sur E
- Une image dans *I* est aussi appelée une *image en niveau (ou teinte, ou échelle) de gris*
- On désigne par / une image quelconque dans /
- La valeur I(x) d'un point $x \in E$ est aussi appelée *niveau* (de gris) de x, teinte (de gris) de x, luminosité de x

Interprétation topographique

- Une image / peut être vue comme un relief topographique
 - *I*(*x*) est appelée l'*altitude de x*

Interprétation topographique

- Une image / peut être vue comme un relief topographique
 - *I*(*x*) est appelée l'*altitude de x*
 - Régions claires : montagne, crêtes, colines
 - Régions sombres : bassins, vallées

Ensemble de niveaux

Définition

- Soit $k \in \mathbb{Z}$
- L'ensemble de niveau k de I, désigné par I_k , est le sous-ensemble de E défini par
 - $I_k = \{x \in E \mid I(x) \ge k\}$

Ensemble de niveaux

Définition

- Soit $k \in \mathbb{Z}$
- L'ensemble de niveau k de I, désigné par I_k , est le sous-ensemble de E défini par
 - $I_k = \{x \in E \mid I(x) \ge k\}$

 I_{80}

 I_{150}

 I_{220}

Reconstruction

Propriété

- $\blacksquare \ \forall k, k' \in \mathbb{Z}, \ k' > k \implies I_{k'} \subseteq I_k$
- $I(x) = \max\{k \in \mathbb{Z} \mid x \in I_k\}$

Opérateur à niveaux de gris

■ Un *opérateur* (sur \mathcal{I}) est une application de \mathcal{I} dans \mathcal{I}

Opérateur à niveaux de gris

■ Un *opérateur* (sur \mathcal{I}) est une application de \mathcal{I} dans \mathcal{I}

Définition (opérateur plan)

- lacksquare Soit ψ un opérateur croissant sur E
- L'extension de ψ à \mathcal{I} est l'opérateur sur \mathcal{I} , également désigné par ψ , qui est défini par
 - $\forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\psi(I)]_k = \psi(I_k)$

Opérateur à niveaux de gris

■ Un *opérateur (sur \mathcal{I})* est une application de \mathcal{I} dans \mathcal{I}

Définition (opérateur plan)

- lacksquare Soit ψ un opérateur croissant sur E
- L'extension de ψ à \mathcal{I} est l'opérateur sur \mathcal{I} , également désigné par ψ , qui est défini par
 - $\forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\psi(I)]_k = \psi(I_k)$

<u>Exercice.</u> Montrer que l'on ne peut pas utiliser la même construction pour étendre un opérateur non croissant

Caractérisation des opérateurs à niveau de gris

Propriété

- lacksquare Soit ψ un opérateur croissant sur E
- $[\psi(I)](x) = \max\{k \in \mathbb{Z} \mid x \in \psi(I_k)\}$

Caractérisation des opérateurs à niveau de gris

Propriété

- lacksquare Soit ψ un opérateur croissant sur E
- $\bullet [\psi(I)](x) = \max\{k \in \mathbb{Z} \mid x \in \psi(I_k)\}\$

Remarque. Tous les opérateurs vus jusque là dans le cours IN3M22 sont croissants

Illustration : dilat $\overline{\mathsf{a}}$ tion sur $\mathcal I$ par $\mathsf \Gamma$

Illustration : erosion sur $\mathcal I$ par Γ

Illustration : ouverture sur ${\mathcal I}$ par Γ

Illustration : fermeture sur ${\mathcal I}$ par Γ

Dilatation/Erosion par élément streuurant : caractérisation

Propriété (dualité)

- Soit Γ un élément structurant
- $\bullet \varepsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$

Dilatation/Erosion par élément streuurant : caractérisation

Propriété (dualité)

- Soit Γ un élément structurant
- $\bullet \varepsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$

Propriété

- Soit Γ un élément structurant
- $\bullet \left[\delta_{\Gamma}(I)\right](x) = \max\{I(y) \mid y \in \Gamma^{-1}(x)\}$
- $[\varepsilon_{\Gamma}(I)](x) = \min\{I(y) \mid y \in \Gamma(x)\}$

Exercice

■ Ecrire un algorithme dont l'entré est un graphe (E, Γ) et image I sur E et dont le résultat est l'image $I' = \delta_{\Gamma}(I')$