Ex No. 5	Naïve Bayesian Classifier
Date:	

Aim

To implement and compute the accuracy of Naïve Bayesian Classifier using training and test datasets.

Definition

Naïve Bayes Classifier

Naive Bayes classifiers are a collection of classification algorithms based on **Bayes' Theorem**. It is not a single algorithm but a family of algorithms where all of them share a common principle, i.e. every pair of features being classified is independent of each other.

Procedure

Open PyCharm Community Edition.

Go to File menu → New Project → Specify the project name → Press "Create" button.

Right Click on Project name \rightarrow New \rightarrow Python File \rightarrow Specify the file name \rightarrow Press Enter.

Type the following codes. Right click on file name or coding window → Select "Run" to view the result.

Naivebayes.py

```
# load the iris dataset
from sklearn.datasets import load_iris
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
from sklearn.model selection import train test split
iris = load_iris()
# store the feature matrix (X) and response vector (y)
X = iris.data
y = iris.target
# splitting X and y into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1)
# training the model on training set
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# making predictions on the testing set
y_pred = gnb.predict(X_test)
# comparing actual response values (y_test) with predicted response values (y_pred)
print("Gaussian Naive Bayes model accuracy(in %):", metrics.accuracy_score(y_test, y_pred)*100)
```

Output

Gaussian Naive Bayes model accuracy (in %): 95.0

