Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

${\bf Mathematik~1} \\ {\bf Aufgaben~zur~Vorbereitung~der~Fachpr\"ufung~Mathematik~1} \\$

- Ergebnisse -

Aufgabe 1:

- (a) Es gibt einen Studenten der Informatik, der weder C++, noch C# kann.
- (b) $\exists x \ \forall N \ \exists n : (n > N) \land (|a_n g| > x)$
- (c) $\forall N \ \exists n : \ (n > N) \land (a_n > b_n)$

Aufgabe 2:

- (a) $x \in [-1, 5]$,
- (b) $x \in (-\infty, -\frac{1}{2} \sqrt{\frac{33}{4}}] \cup [-\frac{1}{2} + \sqrt{\frac{33}{4}}, \infty),$
- (c) $x \in (-\infty, 7)$.

Aufgabe 3:

Aufgabe 4:

- $\bullet\,$ genau eine Lösung für $\alpha \neq \frac{5}{2}$ und $\beta \in \mathbb{R}$
- $\bullet\,$ unendlich viele Lösungen für $\alpha=\frac{5}{2}$ und $\beta=-11$
- keine Lösung für $\alpha = \frac{5}{2}$ und $\beta \neq -11$

Im Fall $\alpha = \frac{5}{2}$ und $\beta = -11$ lautet die Lösungsmenge $\left\{ \begin{pmatrix} \frac{5}{2} - \frac{5}{4} \cdot s \\ -\frac{3}{2} + \frac{s}{4} \\ s \end{pmatrix} | s \in \mathbb{R} \right\}.$

Aufgabe 5:

Lösung individuell

Aufgabe 6:

Induktions schritt:

$$\sum_{k=0}^{n+1} 2 \cdot 3^k = \sum_{k=0}^{n} (2 \cdot 3^k) + 2 \cdot 3^{n+1} = 3^{n+1} - 1 + 3^{n+1} \cdot 2 = 3^{n+2} - 1$$

Aufgabe 7:

Die Formel lautet $f^{(n)}(x) = (-3)^n \cdot e^{-3x}$. Für den Induktionsschritt ist der Zusammenhang $f^{(n+1)}(x) = (f^{(n)})'(x)$ nützlich.

Aufgabe 8:

(a) $\frac{1}{2}$,

(b) 0,

(c) 3,

(d) 3,

(e) $\frac{8}{9}$,

(f) $e^{-\frac{2}{7}}$.

(g) 0,

 $(h) -\infty,$

(i) Grenzwert existiert nicht.

Aufgabe 9:

Quotientenkriterium: $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = 0 < 1$, somit konvergiert die Reihe.

Aufgabe 10:

Die Potenzreihen konvergieren für

(a) $x \in [-1, 5)$

(b) $x \in (-4, 0]$

(c) $x \in [-1, 3)$

Hinweis: Durch Anwendung des Quotientenkriteriums erhalten Sie ein offenes Intervall, dessen Randpunkte zusätzlich gesondert untersucht werden müssen.

Aufgabe 11:

(a) 0.

(b) $\frac{1}{2}$,

(c) -2,

(d) ∞ ,

(e) $-\infty$,

(f) Grenzwert existiert nicht.

Aufgabe 12:

(a) Stetig, falls $\alpha = 1$, differenzierbar, falls zusätzlich $\beta = 0$.

(b) Stetig, falls $\alpha = 1$, differenzierbar, falls zusätzlich $\beta = 1$.

(c) Stetig, falls $\alpha \sin \beta = 1$ (unendlich viele Kombinationen möglich), differenzierbar, falls zusätzlich $\alpha \cos \beta = 1$. Dies führt zu $\tan(\beta) = 1$, also $\beta = \frac{\pi}{4} \pm k\pi$, $k \in \mathbb{N}_0$, und somit $\alpha = \mp \sqrt{2}$.

Aufgabe 13:

Verwenden Sie den Zwischenwertsatz an den Randpunkten/geeigneten inneren Punkten.

Aufgabe 14:

(a)
$$f^{(3)}(x) = ((x^2 + 4x + 5)^{-1})'' = (\frac{-2(x+2)}{(x^2+4x+5)^2})' = \frac{6x^2+24x+22}{(x^2+4x+5)^3}$$

(b)
$$f^{(3)}(x) = (-2x\sin(x^2) + \sin x + x\cos x)'' = (-2\sin(x^2) - 4x^2\cos(x^2) - x\sin x + 2\cos x)'$$

= $-12x\cos(x^2) + 8x^3\sin(x^2) - 3\sin x - x\cos x$

(c)
$$f^{(3)}(x) = (e^x(\sin x + \cos x))'' = (e^x(2\cos x))' = 2e^x(\cos x - \sin x)$$

(d)
$$f^{(3)}(x) = (2x + \sinh x)'' = (2 + \cosh x)' = \sinh x$$

(d)
$$f^{(3)}(x) = (2x + \sinh x)'' = (2 + \cosh x)' = \sinh x$$

(e) $f^{(3)}(x) = (3x^{3x}(\ln x + 1))'' = (3x^{3x} \cdot \frac{3(\ln^2 x)x + 6x \ln x + 3x + 1}{x})'$

$$=3x^{3x}\cdot\frac{9(\ln^3 x)x^2+27(\ln^2 x)x^2+27(\ln x)x^2+9x\ln x+9x^2+9x-1}{x^2}$$

(f)
$$f^{(3)}(x) = (e^x((x+1)\sin x + x\cos x))'' = (2e^x(\sin x + (x+1)\cos x))'$$

$$= 2e^x((x+3)\cos x - x\sin x)$$

(g)
$$f^{(3)}(x) = \left(\frac{-2}{(2x+1)^2}\right)'' = \left(\frac{8}{(2x+1)^3}\right)' = -\frac{48}{(2x+1)^4}$$

(h)
$$[(g2)]$$
 $f^{(3)}(x) = (e^x \cos(e^x))'' = (e^x (\cos(e^x) - e^x \sin(e^x)))'$

$$= e^{x}(-3e^{x}\sin(e^{x}) - (e^{2x} - 1)\cos(e^{x}))$$

(i)
$$f^{(3)}(x) = (e^x(1+x))'' = (e^x(x+2))' = e^x(3+x)$$

Aufgabe 15:

(a) f'(x) > 0, darum ist f streng monoton wachsend und somit injektiv

f(0)=0, $\lim_{x\to\infty}f(x)=\infty$ und f ist stetig, damit wird nach Zwischenwertsatz auch jedes Ergebnis zwischen 0 und ∞ erreicht und wegen der Monotonie wird der Bereich $[0,\infty)$ auch nicht verlassen, also ist f surjektiv

(b)
$$f(1) = 2$$
, also $f^{-1}(2) = 1$ und es gilt $(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{4}{13}$

Aufgabe 16:

Für $x \neq y$ gilt $\frac{\arctan(x) - \arctan(y)}{x - y} = \frac{1}{1 + \xi^2}$ mit einem ξ zwischen x und y. Jetzt noch auf beiden Seiten zum Betrag übergehen, die rechte Seite geeignet nach oben abschätzen und die resultierende Ungleichung umstellen. Und natürlich noch über den Fall x = y nachdenken.

Aufgabe 17:

(a) $D_f = \mathbb{R}$, Nullstellen: $x_1 = 2, x_2 = 4$, Polstellen: keine, Verhalten im Unendlichen: $\lim_{x \to \pm \infty} f(x) = \infty$, (Lokale) Extrema: (2,0) und (4,0) lokale Minima, (3,1) lokales Maximum.

(b) $D_f = \mathbb{R} \setminus \{0\}$ Nullstellen: x = 2, Polstellen: x = 0, Verhalten im Unendlichen: $\lim_{x \to \pm \infty} f(x) = 1$ Verhalten an den Polstellen: $\lim_{x \to 0-0} f(x) = \infty$, $\lim_{x \to 0+0} f(x) = -\infty$, (Lokale) Extrema: keine Extremalstellen

(c) $D_f = \mathbb{R} \setminus \{-1\}$ Nullstellen: x = 0, Polstellen: x = -1, Verhalten im Unendlichen: $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = -\infty$, Verhalten an den Polstellen: $\lim_{x \to -1-0} f(x) = -\infty$, $\lim_{x \to -1+0} f(x) = \infty$, (Lokale) Extrema: (0,0) lokales Minimum, (-2, -4) lokales Maximum.

(d) $D_f = \mathbb{R} \setminus \{-1\}$ Nullstellen: keine, Polstellen: keine, Verhalten im Unendlichen: $\lim_{x \to \pm \infty} f(x) = \infty$, (Lokale) Extrema: (0, 1) lokales Minimum.

Aufgabe 18:

(a) Globales Minimum an den Stellen x = -2, x = 1 mit dem Funktionswert f(x) = -7; globales Maximum an den Stellen x = -1, x = 2 mit dem Funktionswert f(x) = 9.

(b) Globales Minimum an der Stelle x=0 mit dem Funktionswert f(x)=1; globales Maximum an der Stelle x=2 mit dem Funktionswert $f(x)=\cosh 2\approx 3.7622$

Aufgabe 19:

(a) 0, (b) Grenzwert ex. nicht, (c)
$$\frac{1}{2}$$
,

(d)
$$-\frac{1}{3}$$
, (e) $\frac{1}{2}$, (f) $e^0 = 1$.

Aufgabe 20:

(a)
$$T_{f,3,x_0}(x) = 2x + 2x^2 - \frac{4}{3}x^3$$
, $|R_{f,3,x_0}(x)| \le \frac{32}{3}$,

(b)
$$T_{f,3,x_0}(x) = 1 + 2(x+1) + 2(x+1)^2 + \frac{4}{3}(x+1)^3, |R_{f,n,x_0}(x)| \le \frac{32}{3}e^4 \approx 582, 4.$$

Aufgabe 21:

Mit $f(x) = \ln(x)$ und $x_0 = 1$ ergibt sich $|R_{f,n,x_0}(1,5)| \le \frac{1}{(n+1)2^{n+1}} < \frac{1}{100}$ für $n \ge 4$. Es folgt

$$T_{f,4,x_0}(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4,$$

sowie $ln(1,5) \approx T_{f,4,x_0}(1,5) \approx 0,40104.$

Aufgabe 22:

(a)
$$-\frac{1}{2}\cos(x^2+2) + C$$
, (b) 0,

(c)
$$\frac{1}{2}x\sqrt{1-x^2} - \frac{1}{2}\arccos x + C$$
 oder alternativ $\frac{1}{2}x\sqrt{1-x^2} + \frac{1}{2}\arcsin x + D$,

(d)
$$\ln|x^2 + 3x + 2|\Big|_1^2 = \ln 2$$
, (e) $\frac{1}{2}e^{x^2+4} + e^x(x-1) + C$, (f) $\frac{1}{4}\ln|1 + x^4| + C$.

Aufgabe 23:

(a)
$$\|\vec{r'}(t)\| = \sqrt{5} \cdot e^{-2t}, L = \frac{\sqrt{5}}{2} (1 - e^{-8\pi})$$

(b)
$$\|\vec{r'}(t)\| = \sqrt{1+t^2}$$
, $L = \frac{1}{\sqrt{2}} + \frac{\operatorname{arsinh}(1)}{2}$

(c)
$$\|\vec{r'}(t)\| = \sqrt{53} = L$$

(a)
$$\|\vec{r'}(t)\| = \sqrt{5} \cdot e^{-2t}$$
, $L = \frac{\sqrt{5}}{2}(1 - e^{-8\pi})$
(b) $\|\vec{r'}(t)\| = \sqrt{1 + t^2}$, $L = \frac{1}{\sqrt{2}} + \frac{\operatorname{arsinh}(1)}{2}$
(c) $\|\vec{r'}(t)\| = \sqrt{53} = L$
(d) $\|\vec{r'}(t)\| = \sqrt{1 + \frac{1}{t}}$, $L = 2\sqrt{5} - \sqrt{2} + \frac{1}{2} \cdot (\operatorname{arcosh}(9) - \operatorname{arcosh}(3))$

Aufgabe 24:

$$\|\vec{r'}(t)\| = 1$$
, $\int_{\vec{r}} f \ d\vec{s} = 4\pi$

Aufgabe 25:

Beide Integrale haben das Ergebnis 3.