Klasteryzacja danych EMNIST MNIST metodą k-średnich

1. Opis zadania

Celem było przeprowadzenie klasteryzacji danych EMNIST MNIST metodą k-średnich, z wykorzystaniem poprawionej inicjalizacji centroidów. Dla różnych wartości liczby klastrów (10, 15, 20, 30) wybrano najlepszy wynik na podstawie minimalnej inercji (suma kwadratów odległości punktów od ich centroidów).

2. Klasteryzacja (k = 10)

Dla każdej ilości klastrów wykonano 10 prób inicjalizacji, wybierając wynik z najmniejszą inercją. Uzyskana macierz procentowego przydziału cyfr do klastrów pozwoliła ocenić jakość dopasowania.

Wizualizacja centroidów pokazała, że większość z nich chociażby przypomina odpowiednie cyfry, choć niektóre klastry zawierały dane niejednoznaczne (np. zniekształcone cyfry).

3. Klasteryzacja dla k = 15, 20, 30

Dla większych wartości k analogicznie przeprowadzono klasteryzację i wizualizację wyników:

- Przy k = 15 i k = 20 zauważono, że niektóre klastry reprezentują warianty tej samej cyfry (np. pionowe i ukośne "1").
- Przy k = 30 klastry stawały się bardziej szczegółowe można było rozróżnić różne style zapisu tej samej cyfry.

W niektórych przypadkach (szczególnie przy k=20 i 30) możliwe byłoby połączenie kilku klastrów w jedną klasę cyfry — co może być użyteczne w konstrukcji klasyfikatora z klasteryzacją jako etapem wstępnego grupowania.

4. Wnioski

- Centroidy dla k=10 są zbliżone do średnich obrazów cyfr, co świadczy o poprawnym działaniu algorytmu.
- Zwiększanie liczby klastrów poprawia rozróżnialność wariantów cyfr, ale utrudnia bezpośrednią interpretację.

• Dla klasyfikatora cyfr najtrafniejsze wydaje się użycie 10 lub 15 klastrów, z ewentualnym scalaniem podobnych w wyższych wartościach k.

Klasteryzacja zbioru EMNIST MNIST za pomocą algorytmu DBSCAN

1. Opis zadania

Celem było zastosowanie algorytmu DBSCAN do klasteryzacji danych obrazowych ze zbioru EMNIST (cyfry), tak aby uzyskać możliwie najniższą liczbę punktów szumu.

2. Metodologia

Dane wejściowe: zbiór EMNIST z cyframi 0–9 (zredukowany do 2D przy użyciu PCA). Algorytm: DBSCAN z różnymi parametrami eps (promień sąsiedztwa) oraz min_samples (min. liczba sąsiadów).

Dobór parametrów był przeprowadzony eksperymentalnie, w celu maksymalizacji dokładności klasyfikacji przy minimalnym szumie i sensownej liczbie klastrów(w zakresie od 10 do 30).

3. Najlepsze uzyskane wyniki

Wyniki uzyskane dla:

Epsylon = 11.5

 $Min_samples = 4$

Metryka	Wartość
Liczba wyznaczonych klastrów	19
Dokładność klasyfikacji (bez	0,1176
szumu)	0,1170
Odsetek błędów w klastrach	0.8824
Procent punktów uznanych za	0,0360
szum	0,0300