2015/16 MPhil ACS / CST Part III Category Theory and Logic (L108) Exercise Sheet 5 – Solution Notes

Question 1 For each function $f \in \mathbf{Set}(\Sigma, \Sigma')$ there is a function Pow $f \in \mathbf{Set}(\operatorname{Pow}\Sigma, \operatorname{Pow}\Sigma')$ defined by

$$(\operatorname{Pow} f) S \triangleq \{ f x \mid x \in S \} \tag{2}$$

Note that this is a monoid homomorphism $(\text{Pow }\Sigma, \cup, \emptyset) \to (\text{Pow }\Sigma', \cup, \emptyset)$, because

- Pow $f \emptyset = \{ f x \mid x \in \emptyset \} = \emptyset$
- Pow $f(S \cup S') = \{fx \mid x \in S \cup S'\} = \{fx \mid x \in S \lor x \in S'\} = \{fx \mid x \in S\} \cup \{fx \mid x \in S'\} = (\text{Pow } fS) \cup (\text{Pow } fS').$

So we get $P f \in \mathbf{Mon}((\operatorname{Pow}\Sigma, \cup, \emptyset), (\operatorname{Pow}\Sigma', \cup, \emptyset))$. Furthermore

- (Pow id_{Σ}) $S = \{ id_{\Sigma}x \mid x \in S \} = S \text{ for all } S \in Pow \Sigma; \text{ and hence } P id_{\Sigma} = id_{P\Sigma}.$
- Pow $g(\operatorname{Pow} f S) = \{g \ y \mid y \in \operatorname{Pow} f S\} = \{g(f \ x) \mid x \in S\} = \{(g \circ f)x \mid x \in S\} = \operatorname{Pow}(g \circ f) S \text{ for all } S \in \operatorname{Pow} \Sigma; \text{ and hence } P(g \circ f) = (P \ g) \circ (P \ f).$

So *P* is a functor **Set** \rightarrow **Mon**.

Question 2 For each set Σ , define $\theta_{\Sigma} \in \mathbf{Set}(\mathrm{List}\,\Sigma, \mathrm{Pow}\,\Sigma)$ by recursion on the length of lists:

$$\theta_{\Sigma}(\text{nil}) = \emptyset$$

$$\theta_{\Sigma}(a :: \ell) = \{a\} \cup \theta_{\Sigma}(\ell)$$

Then one can prove $(\forall \ell, \ell' \in \text{List}\,\Sigma)$ $\theta_{\Sigma}(\ell @ \ell') = \theta_{\Sigma}(\ell) \cup \theta_{\Sigma}(\ell')$ by induction on the length of ℓ . So we get that θ_{Σ} is in $\mathbf{Mon}(F\Sigma, P\Sigma)$. To show that these morphisms form a natural transformation $\theta: F \to P$, we have to show for each $f \in \mathbf{Set}(\Sigma, \Sigma')$ that $Pf \circ \theta_{\Sigma} = \theta_{\Sigma'} \circ Ff$; and by definition of F and F, this means proving $(\forall \ell \in \text{List}\,\Sigma)$ Pow $f(\theta_{\Sigma}(\ell)) = \theta_{\Sigma'}(\text{List}\,f(\ell))$, which follows easily from the definitions of Pow f, List f and g, by induction on the length of f.

Here is another proof, which uses the universal property of the free monoid $F\Sigma$ instead of recursion/induction on lists.

For each set Σ , let $s_{\Sigma} \in \mathbf{Set}(\Sigma, \operatorname{Pow}\Sigma)$ be the function mapping each $x \in \Sigma$ to $s_{\Sigma}(x) \triangleq \{x\} \in \operatorname{Pow}\Sigma$. Using the universal property of the free monoid $i_{\Sigma} : \Sigma \to \operatorname{List}\Sigma$, there is a unique monoid homomorphism $\widehat{s_{\Sigma}} \in \mathbf{Mon}(F\Sigma, P\Sigma)$ with $\widehat{s_{\Sigma}} \circ i_{\Sigma} = s_{\Sigma}$. We take θ_{Σ} to be $\widehat{s_{\Sigma}}$ and show that these functions together give a natural transformation $\theta : F \to P$.

So we have to show for each $f \in \mathbf{Set}(\Sigma, \Sigma')$ that $\theta_{\Sigma'} \circ F f = P f \circ \theta_{\Sigma} \in \mathbf{Mon}(F\Sigma, P\Sigma')$. By the uniqueness part of the universal property of the free monoid $i_{\Sigma} : \Sigma' \to \mathrm{List}\,\Sigma$, for this it suffices to show that the two monoid homomorphisms $\theta_{\Sigma'} \circ F f$ and $P f \circ \theta_{\Sigma}$, when composed with the function i_{Σ} , give equal functions in $\mathbf{Set}(\Sigma, \mathrm{Pow}\,\Sigma')$. But

$$(P f \circ \theta_{\Sigma}) \circ i_{\Sigma} \triangleq ((\operatorname{Pow} f) \circ \widehat{s_{\Sigma}}) \circ i_{\Sigma} = (\operatorname{Pow} f) \circ (\widehat{s_{\Sigma}} \circ i_{\Sigma})$$

$$= (\operatorname{Pow} f) \circ s_{\Sigma}$$
 by definition of $\widehat{s_{\Sigma}}$

whereas

$$\begin{split} (\theta_{\Sigma'} \circ F \, f) \circ i_{\Sigma} &\triangleq (\widehat{s_{\Sigma'}} \circ F \, f) \circ i_{\Sigma} = \widehat{s_{\Sigma'}} \circ (F \, f \circ i_{\Sigma}) \\ &= \widehat{s_{\Sigma'}} \circ (i_{\Sigma'} \circ f) \qquad \text{since i is a natural transformation} \\ &= (\widehat{s_{\Sigma'}} \circ i_{\Sigma'}) \circ f \\ &= s_{\Sigma'} \circ f \qquad \text{by definition of $\widehat{s_{\Sigma'}}$} \end{split}$$

So it suffices to prove that $(\operatorname{Pow} f) \circ s_{\Sigma} = s_{\Sigma'} \circ f \in \operatorname{\mathbf{Set}}(\Sigma, \operatorname{Pow} \Sigma')$. But for all $x \in \Sigma$, we have $((\operatorname{Pow} f) \circ s_{\Sigma}) x = \operatorname{Pow} f (s_{\Sigma} x) = \operatorname{Pow} f \{x\} = \{f y \mid y \in \{x\}\} = \{f x\} = s_{\Sigma'}(f x) = (s_{\Sigma'} \circ f) x$.

Question 3 If $\theta \in \mathbf{D}^{\mathbf{C}}(F,G)$ is an isomorphism, then there is a natural transformation $\theta^{-1} \in \mathbf{D}^{\mathbf{C}}(G,F)$ with $\theta^{-1} \circ \theta = \mathrm{id}_F$ and $\theta \circ \theta^{-1} = \mathrm{id}_G$. By definition of identity and composition for natural transformations, that means that for all $X \in \mathrm{obj}\,\mathbf{C}$ we have $(\theta^{-1})_X \circ \theta_X = \mathrm{id}_{F\,X}$ and $\theta_X \circ (\theta^{-1})_X = \mathrm{id}_{G\,X}$. Therefore each $\theta_X \in \mathbf{D}(F\,X,G\,X)$ is an isomorphism in \mathbf{D} with inverse $(\theta^{-1})_X$.

Conversely, if each $\theta_X \in \mathbf{D}(FX, GX)$ is an isomorphism in \mathbf{D} , then the inverse morphisms $(\theta_X)^{-1}$ are natural in X because for any $f \in \mathbf{C}(X,Y)$ we have

$$F f \circ (\theta_X)^{-1} = (\theta_Y)^{-1} \circ \theta_Y \circ F f \circ (\theta_X)^{-1} \qquad \text{because } (\theta_Y)^{-1} \circ \theta_Y = \mathrm{id}_{FY}$$

$$= (\theta_Y)^{-1} \circ G f \circ \theta_X \circ (\theta_X)^{-1} \qquad \text{because } \theta_X \text{ is natural in } X$$

$$= (\theta_Y)^{-1} \circ G f \qquad \text{because } \theta_X \circ (\theta_X)^{-1} = \mathrm{id}_{GX}$$

and so determine a natural transformation $\theta \in \mathbf{D}^{\mathbf{C}}(G, F)$ with $(\theta^{-1})_X \triangleq (\theta_X)^{-1}$ for each $X \in \text{obj } \mathbf{C}$. This gives an inverse for θ . For $(\theta^{-1} \circ \theta)_X = (\theta^{-1})_X \circ \theta_X = (\theta_X)^{-1} \circ \theta_X = \mathrm{id}_{FX} = (\mathrm{id}_F)_X$, so that $\theta^{-1} \circ \theta = \mathrm{id}_F$; and similarly, $\theta \circ \theta^{-1} = \mathrm{id}_G$.

Question 4 If ch_X were natural in X, then taking $X = 2 = \{0,1\}$ and letting τ be as in the hint, there would be a commutative square in **Set**:

$$P^{+}2 \xrightarrow{ch_{2}} 2$$

$$P^{+}\tau \downarrow \qquad \qquad \downarrow \tau$$

$$P^{+}2 \xrightarrow{ch_{2}} 2$$

$$(3)$$

Consider $\{0,1\} \in P^+2$. We have

$$P^{+}\tau\{0,1\} = \{\tau 0, \tau 1\} = \{1,0\} = \{0,1\} \tag{4}$$

Since $ch_2(\{0,1\}) \in \{0,1\}$, either $ch_2(\{0,1\}) = 0$, or $ch_2(\{0,1\}) = 1$. In the first case we get

$$1 = \tau 0 = \tau(ch_2\{0,1\}) = ch_2(P^+\tau\{0,1\})$$
 by (3)
= $ch_2\{0,1\}$ by (4)
= 0 by assumption

which is a contradiction; and in the second case we get a similar contradiction. So (3) cannot commute and in particular ch_X cannot be natural in X.

Question 5

- (a) Define $(I \alpha)_X \triangleq I(\alpha_X) : I(FX) \to I(GX)$. Since α_X is natural in $X \in \text{obj } \mathbb{C}$, we have $G f \circ \alpha_X = \alpha_Y \circ F f$; and then since I is a functor, we get $I(Gf) \circ I(\alpha_X) = I(\alpha_Y) \circ I(Ff)$. So $(I \alpha)_X$ is natural in X.
- (b) Define $(\gamma_F)_X \triangleq \gamma_{(FX)} : I(FX) \to J(FX)$. Since γ_Y is natural in $Y \in \text{obj } \mathbf{D}$, $(\gamma_F)_X$ is natural in $X \in \text{obj } \mathbf{C}$.
- (c) Define $(\beta \circ \alpha)_X \triangleq \beta_X \circ \alpha_X : FX \to HX$. Since α_X and β_X are natural in $X \in \text{obj } \mathbb{C}$, so is $(\beta \circ \alpha)_X$.
- (d) Define $(\gamma * \alpha)_X \triangleq \gamma_{GX} \circ I(\alpha_X) : I(FX) \to J(GX)$. This is natural in X, because for any $f \in \mathbf{C}(X,Y)$

$$J(Gf) \circ (\gamma * \alpha)_X \triangleq J(Gf) \circ \gamma_{GX} \circ I(\alpha_X)$$

$$= J(Gf) \circ J(\alpha_X) \circ \gamma_{FX} \qquad \text{by natuality for } \gamma$$

$$= J(Gf \circ \alpha_X) \circ \gamma_{FX} \qquad \text{by functoriality for } J$$

$$= J(\alpha_Y \circ Ff) \circ \gamma_{FX} \qquad \text{by natuality for } \alpha$$

$$= J(\alpha_Y) \circ J(Ff) \circ \gamma_{FX} \qquad \text{by functoriality for } J$$

$$= J(\alpha_Y) \circ \gamma_{FY} \circ I(Ff) \qquad \text{by natuality for } \gamma$$

$$= \gamma_{GY} \circ I(\alpha_Y) \circ I(Ff) \qquad \text{by natuality for } \gamma$$

$$\triangleq (\gamma * \alpha)_Y \circ I(Ff) \qquad \text{by natuality for } \gamma$$

(e)
$$((\delta * \beta) \circ (\gamma * \alpha))_X \triangleq (\delta * \beta)_X \circ (\gamma * \alpha)_X$$

$$\triangleq \delta_{HX} \circ J(\beta_X) \circ \gamma_{GX} \circ I(\alpha_X)$$

$$= \delta_{HX} \circ \gamma_{HX} \circ I(\beta_X) \circ I(\alpha_X) \text{ by naturality for } \gamma$$

$$\triangleq (\delta \circ \gamma)_{HX} \circ I(\beta_X) \circ I(\alpha_X)$$

$$= (\delta \circ \gamma)_{HX} \circ I(\beta_X \circ \alpha_X) \text{ by functoriality for } I$$

$$\triangleq (\delta \circ \gamma)_{HX} \circ I((\beta \circ \alpha)_X)$$

$$\triangleq ((\delta \circ \gamma) * (\beta \circ \alpha))_X$$

Question 6

(a) We use the notation $\overline{g} \triangleq \theta_{X,Y}(g)$ and $\overline{f} \triangleq \theta_{X,Y}^{-1}(f)$ from Lecture 14.

Define $\eta_X \triangleq \overline{\mathrm{id}_{FX}} \in \mathbf{C}(X, G(FX))$. This is natural in $X \in \mathrm{obj}\,\mathbf{C}$, because using naturality for θ (twice) we have

$$G(Ff) \circ \eta_X \triangleq G(Ff) \circ \overline{\mathrm{id}_{FX}} = \overline{Ff \circ \mathrm{id}_{FX}} = \overline{\mathrm{id}_{FY} \circ Ff} = \overline{\mathrm{id}_{FY}} \circ f \triangleq \eta_Y \circ f$$

Dually, define $\varepsilon_Y \triangleq \overline{\mathrm{id}_{GY}} \in \mathbf{D}(F(GY), Y)$ and prove it is natural in $Y \in \mathrm{obj}\,\mathbf{D}$ by a similar calculation.

(b)
$$(\varepsilon_F \circ F \eta)_X \triangleq (\varepsilon_F)_X \circ (F \eta)_X$$

 $\triangleq \varepsilon_{FX} \circ F(\eta_X)$
 $\triangleq \overline{\operatorname{id}_{G(FX)}} \circ F(\eta_X)$
 $= \overline{\operatorname{id}_{G(FX)}} \circ \eta_X$ by naturality of θ
 $= \overline{\eta_X}$
 $\triangleq \overline{id_{FX}}$
 $= \operatorname{id}_{FX}$ since θ is an isomorphism
 $\triangleq (\operatorname{id}_F)_X$

The proof that $(G \varepsilon \circ \eta_G)_Y = (\mathrm{id}_G)_Y$ is dual to the one above.

Question 7 This is a standard result; see for example Proposition 10.1 on page 254 of Awodey's *Category Theory* book.