

Exam #2

Wednesday, April 4 2018

Duration: 1H 50min	
NAME:	
Please write clearly and properly.	
Explain your answers appropriately	γ.
Calculators not allowed	

Problem	Grade
1	
2	
3	
Total	

Problem 1 (~ 6 points.).
Consider the function f of two variables defined by:
$f(x,y) = x^2 - y^2 .$
(1) What is the domain of definition of f ?
(2) What kind of surface is the graph of f? Hint: Refer to the table on the last page of the exam.
(3) What is the level curve of f through the origin in the xy -plane?

(4) Does f adm	Does f admit a global minimum or a global maximum?			

Problem 2 (~ 10 points.). Consider the function f of two variables defined by: f(x,y) = 2x - y + 1.(1) Show that the graph of f is a plane in 3-dimensional space and give its equation. Does it go through the origin? What is a normal vector to this plane? (2) What kind of curve is the intersection of the graph of f with a horizontal plane? (3) Without doing any calculations, derive from your previous answer that the level curves of f are straight lines in the xy-plane.

(4)	What is the equation of the <i>c</i> -level curve of f ? Can you give a vector $\vec{w_1}$ and a vector $\vec{w_2}$ in the xy -plane such that $\vec{w_1}$ is parallel to all level curves and $\vec{w_2}$ is orthogonal to all level curves? Hint: In the xy -plane, the straight line with equation $ax + by + d = 0$ admits $(-b, a)$ as a parallel vector and (a, b) as an orthogonal vector.
(5)) Draw a sketch of the xy -plane with the c -level curves of f for a few different values of c of your choosing.

(3)	Compute the grad expected.	• . • .				
(7)	Check that the dir is expected.	ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	. Explain why th	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	Explain why the	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	. Explain why the	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	Explain why the	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	Explain why the	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	Explain why the	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	Explain why the	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	Explain why the	his
(7)		ectional derivat	tive $D_{\vec{w_1}}f(x,y)$	is equal to zero.	Explain why the	his

Consider the function f of two variables defined by:
$f(x, y) = 2x^3 + 6xy - 3y^2 + 2.$
(1) Find and analyze the critical points of f . Hint: You should find two critical points: $P_1(0,0)$ and $P_2(-1,-1)$.

Problem 3 (∼ 7 points.)**.**

You may continue writing your solution on the next page.

You may continue writing your solution here.

(2) Compute $f(-1, -1)$ and $f(1, 0)$.
(3) Does f admit a global minimum or a global maximum?
(3) Does f admit a global minimum or a global maximum?
(3) Does f admit a global minimum or a global maximum?
(3) Does f admit a global minimum or a global maximum?
(3) Does f admit a global minimum or a global maximum?
(3) Does f admit a global minimum or a global maximum?

Table 12.1			
Name	Standard Equation	Features	Graph
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	a b
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.	X Z
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.	y z
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z=z_0$ with $ z_0 > c $ are ellipses. Traces with $x=x_0$ and $y=y_0$ are hyperbolas.	z y
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z=z_0\neq 0$ are ellipses. Traces with $x=x_0$ or $y=y_0$ are hyperbolas or intersecting lines.	
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.	X Z