Goal: Describe substitutions over time τ . Say V_t is a random variable that models the state of a system over a discrete alphabet Σ with

$$|\Sigma| = d$$
.

Find
$$P^{ au}_{a,b}=P(V_t+ au=b|V_t=a).$$

Let $\pi_a = P(V_t = a)$ a background or equilibrium distribution.

Typical assumptions:

- Continuous-time Markov chain, i.e. at each point in time the probability of the next state only depends on the current state but not on the past states
- Stationary: $P_{a,b}$ does not depend on t
- Time reversibility: $\pi_a P_{a,b}^{ au} = \pi_b P_{b,a}^{ au}$ for any au > 0

A model with such assumptions is called general time-reversible substitution model (GTRM).

Parameters

Rate matrix $Q \in \mathbb{R}^{d imes d}$ and equilibrium $\pi \in [0,1]^d$ with $Q_{i,i} = -\sum_{j \neq i} Q_{i,j}$, $\pi_i Q_{i,j} = \pi_j Q_{j,i}$ and $\sum_i \pi_i = 1$.

Then
$$P^{\tau} = expm(\tau Q)$$
.

Jukes-Cantor

$$egin{aligned} \pi_a &= rac{1}{d} \ Q_{i,i} &= -rac{d-1}{d} \mu \ Q_{i,j} &= rac{\mu}{d} \end{aligned}$$

Then

$$egin{aligned} P_{i,i}^{ au} &= rac{1}{d} + rac{d-1}{d} \exp(-\mu au) \ P_{i,j}^{ au} &= rac{1}{d} - rac{1}{d} \exp(-\mu au) \end{aligned}$$

Normalized (1 expected change per unit time) for $\mu=rac{d}{d-1}$.