2.1 관계 데이터 모델의 개념(계속)

- □ 관계 데이터베이스(relational database) 스키마
 - ✓ 하나 이상의 릴레이션 스키마들로 이루어짐
- □ 관계 데이터베이스 인스턴스
 - ✓ 릴레이션 인스턴스들의 모임으로 구성됨

2.1 관계 데이터 모델의 개념(계속)

DEPARTMENT (<u>DEPTNO</u>, DEPTNAME, FLOOR)
EMPLOYEE (<u>EMPNO</u>, EMPNAME, TITLE, DNO, SALARY)

[그림 2.4] 관계 데이터베이스 스키마

DEPARTMENT

DEPTNO	DEPTNAME	FLOOR
1	영업	8
2	기획	10
3	개발	9

EMPLOYEE

EMPNO	EMPNAME	TITLE	DNO	SALARY
2106	김창섭	대리	2	2000000
3426	박영권	과장	3	2500000
3011	이수민	부장	1	3000000
1003	조민희	대리	1	2000000
3427	최종철	사원	3	1500000

[그림 2.5] 관계 데이터베이스 인스턴스

2.2 릴레이션의 특성(계속)

- □ 릴레이션의 특성(계속)
 - ✓ 동일한 투플이 두 개 이상 존재하지 않음
 - ➡ 키가 존재함
 - ✓ 한 투플의 각 애트리뷰트는 원자값을 가짐

DEPARTMENT

DEPTNO	DEPTNAME	FLOOR
1	영업	{8, 9}
2	기획	10
3	개발	{7, 9}

[그림 2.7] 투플의 각 애트리뷰트는 원자값만 가져야 함

2.3 릴레이션의 키

- □ 릴레이션의 키
 - ✓ 각 투플을 고유하게 식별할 수 있는 하나 이상의 애트리뷰트들의 모임
 - ✓ 수퍼 키(superkey), 후보 키(candidate key), 기본 키(primary key), 대체 키(alternate key), 외래 키(foreign key)

□ 수퍼 키

- ✓ 한 릴레이션 내의 특정 투플을 고유하게 식별하는 하나의 애트리뷰트 또는 애트리뷰트들의 집합
- ✓ 예: 신용카드 회사의 고객 릴레이션에서 (신용카드번호, 주소) 또는 (주민등록번호, 이름) 또는 (주민등록번호)
- ✓ 투플들을 고유하게 식별하는데 꼭 필요하지 않은 애트리뷰트들을 포함할 수 있음

□ 후보 키

✓ 각 투플을 고유하게 식별하는 최소한의 애트리뷰트들의 모임

예: (신용카드번호, 주소)는 신용카드 회사의 고객 릴레이션의 후보 키가 아니지만 (신용카드번호)는 후보 키

- ✓ 모든 릴레이션에는 최소한 한 개 이상의 후보 키가 있음
- ✓ 후보 키도 두 개 이상의 애트리뷰트로 이루어질 수 있으며 이런 경우에

복합 키(composite key)라고 부름

예: (학번, 과목번호)가 후보 키

수강

<u>학번</u>	<u>과목번호</u>	학점
11002	CS310	A0
11002	CS313	B+
24036	CS345	В0
24036	CS310	A+

[그림 2.9] 수강 릴레이션

그림 2.10의 학생 릴레이션에서 이름이 후보 키가 될 수 있는가?

그림 2.10의 학생 릴레이션에서 이메일이 후보 키가 될 수 있는가?

학생

학번	이름	이메일
11002	이홍근	sea@hanmail.net
24036	김순미	smkim@venus.uos.ac.kr
13427	박상웅	blue@hanmir.com

[그림 2.10] 학생 릴레이션

□ 기본 키

✓ 한 릴레이션에 후보 키가 두 개 이상 있으면 설계자 또는 데이터베이스 관리자가 이들 중에서 하나를 기본 키로 선정함

예: 신용카드 회사의 고객 릴레이션에서 신용카드번호와 주민등록번호가 후보 키가 될 수 있음. 이 중에서 신용카드 번호를 기본 키로 선정

✓ 자연스러운 기본 키를 찾을 수 없는 경우에는 레코드 번호와 같이 종종 인위적인 키 애트리뷰트를 릴레이션에 추가할 수 있음

- □ 대체 키
 - ✓ 기본 키가 아닌 후보 키

예: 신용카드 회사의 고객 릴레이션에서 신용카드번호를 기본 키로 선정하면 주민등록번호는 대체 키

- □ 외래 키
 - ✓ 어떤 릴레이션의 기본 키를 참조하는 애트리뷰트
 - ✓ 관계 데이터베이스에서 릴레이션들 간의 관계를 나타내기 위해서 사용됨
 - ✓ 외래 키 애트리뷰트는 참조되는 릴레이션의 기본 키와 동일한 도메인을 가져야 함
 - ✓ 자신이 속한 릴레이션의 기본 키의 구성요소가 되거나 되지 않을 수 있음

[그림 2.11] 키들의 포함 관계

□ 외래 키의 유형

✓ 다른 릴레이션의 기본 키를 참조하는 외래 키

[그림 2.12] 다른 릴레이션을 참조하는 외래 키

- □ 외래 키의 유형(계속)
 - ✓ 자체 릴레이션의 기본 키를 참조하는 외래 키

참조

EMPNO	EMPNAME	MANA	AGER	DNO
2106	김창섭	34	26	2
3426	박영권	30	11	3
3011	이수민	/	\	1
1003	조민희	30	11	1
3427	최종철	21	06	3

[그림 2.13] 자체 릴레이션을 참조하는 외래 키

- □ 외래 키의 유형(계속)
 - ✓ 기본 키의 구성요소가 되는 외래 키

[그림 2.14] 기본 키의 구성요소가 되는 외래 키

• 아래 네 릴레이션 스키마를 보고 물음에 답하라. 한 사원이 여러 프로젝트에서 일할 수 있고 한 프로젝트에서 여러 사원들이 일할 수 있고, HOURS-WORKED 애트리 뷰트는 각 사원이 각 프로젝트에서 일한 시간 수를 나타낸다.

EMPLOYEE (EMPNO, NAME, PHONENO, ADDRESS)
CUSTOMER (CUSTNO, NAME, ADDRESS, BALANCE)
PROJECT (PROJNO, DATE, CUSTNO, BILLING-AMMOUNT)
WORKS (EMPNO, PROJNO, HOURS-WORKED)

- 1. 각 릴레이션의 기본키는 무엇인가?
- 2. 각 릴레이션에 외래키가 있는 경우를 보여라

7.1 정규화 개요(계속)

- □ 관계 데이터베이스 설계의 비공식적인 지침
 - ✓ 지침 1: 이해하기 쉽고 명확한 스키마를 만들라
 - 여러 엔티티 타입이나 관계 타입에 속한 애트리뷰트들을 하나의 릴레이션에 포함시키지 않음

학생_학과 학생번호 학과이름 학과전화번호 과목번호 성적

- ✓ 지침 2: 갱신 이상이 없도록 하라
- ✓ 지침 3: 널값을 피하라

7.2 함수적 종속성

- □ 함수적 종속성의 개요
 - ✓ 정규화 이론의 핵심
 - ✓ 릴레이션의 애트리뷰트들의 의미로부터 결정됨
 - ✓ 릴레이션 스키마에 대한 주장이지, 릴레이션의 특정 인스턴스에 대한 주장이 아님
 - ✓ 릴레이션의 가능한 모든 인스턴스들이 만족해야 함
 - ✓ 실세계에 대한 지식과 응용의 의미를 기반으로 어떤 함수적 종속성들이존재하는가를 파악해야 함
 - ✓ 함수적 종속성은 제2정규형부터 BCNF까지 적용됨

- □ 결정자(determinant)
 - ✓ 어떤 애트리뷰트의 값은 다른 애트리뷰트의 값을 고유하게 결정할 수 있음
 - ✓ 그림 7.4의 사원 릴레이션에서 사원번호는 사원이름을 고유하게 결정함
 - ✓ 주소는 사원이름을 고유하게 결정하지 못함
 - ✓ 결정자는 주어진 릴레이션에서 다른 애트리뷰트(또는 애트리뷰트들의 집합)를 고유하게 결정하는 하나 이상의 애트리뷰트를 의미
 - ✓ 결정자를 아래와 같이 표기하고, 이를 "A가 B를 결정한다"(또는 "A는 B의 결정자이다")라고 말함

 $A \rightarrow B$

사원

사원번호	사원이름	주소	전화번호	직책	<u>부서번호</u>	부서이름
4257	정미림	홍제동	731-3497	팀장	1	홍보
1324	이범수	양재동	653-7412	프로그래머	2	개발
1324	이범수	양재동	653-7412	웹 디자이너	1	홍보
3609	안명석	양재동	425-8520	팀장	3	홍보

[그림 7.4] 사원 릴레이션

사원번호 → 사원이름, 주소, 전화버호, 직책, 부서번호

(사원번호, 부서번호) -> 직책

부서번호 → 부서이름

□ 함수적 종속성

- ✓ 만일 애트리뷰트 A가 애트리뷰트 B의 결정자이면 B가 A에 함수적으로 종속한다고 말함
- ✓ 다른 말로 표현하면, 주어진 릴레이션 R에서 애트리뷰트 B가 애트리뷰트
 A에 함수적으로 종속하는 필요 충분 조건은 각 A 값에 대해 반드시 한 개의
 B 값이 대응된다는 것
- ✓ 예: 사원번호가 사원이름, 주소, 전화번호의 결정자이므로 사원이름, 주소, 전화번호는 사원번호에 함수적으로 종속
- ✓ 예: 직책은 (사원번호, 부서번호)에 함수적으로 종속하지, 사원번호에 함수적으로 종속하지는 않음

[그림 7.5] 사원 릴레이션의 함수적 종속성의 두 가지 다이어그램

- □ 완전 함수적 종속성(FFD: Full Functional Dependency)
 - ✓ 주어진 릴레이션 R에서 애트리뷰트 B가 애트리뷰트 A에 함수적으로 종속하면서 애트리뷰트 A의 어떠한 진부분 집합에도 함수적으로 종속하지 않으면 애트리뷰트 B가 애트리뷰트 A에 완전하게 함수적으로 종속한다고 말함
 - ✓ 여기서 애트리뷰트 A는 복합 애트리뷰트

예: 완전 함수적 종속성과 부분 함수적 종속성

그림 7.6에서 fd3은 완전 함수적 종속성을 나타내고, fd1과 fd2는 부분 함수적 종속성을 나타낸다.

[그림 7.6] 완전 함수적 종속성과 부분 함수적 종속성

- □ 이행적 함수적 종속성(transitive FD)
 - ✓ 한 릴레이션의 애트리뷰트 A, B, C가 주어졌을 때 애트리뷰트 C가 이행적으로 A에 종속한다(A→C)는 것의 필요 충분 조건은

 $A \rightarrow B \land B \rightarrow C$

가 성립하는 것

✓ A가 릴레이션의 기본 키라면 키의 정의에 따라 A→B와 A→C가 성립. 만일
 C가 A외에 B에도 함수적으로 종속한다면 C는 A에 직접 함수적으로
 종속하면서 B를 거쳐서 A에 이행적으로 종속

[그림 7.7] 이행적 함수적 종속성

7.3 릴레이션 분해

- □ 릴레이션 분해
 - ✓ 하나의 릴레이션을 두 개 이상의 릴레이션으로 나누는 것
 - ✓ 릴레이션을 분해하면 중복이 감소되고 갱신 이상이 줄어드는 장점이 있는 반면에, 바람직하지 않은 문제들을 포함하여 몇 가지 잠재적인 문제들을 야기할 수 있음
 - 릴레이션이 분해되기 전에는 조인이 필요 없는 질의가 분해 후에는 조인을 필요로 하는 질의로 바뀔 수 있음
 - 분해된 릴레이션들을 사용하여 원래 릴레이션을 재구성하지 못할 수 있음

- □ 무손실 분해(lossless decomposition)
 - ✓ 분해된 두 릴레이션을 조인하면 원래의 릴레이션에 들어 있는 정보를 완전하게 얻을 수 있음
 - ✓ 여기서 손실이란 정보의 손실을 뜻함
 - ✓ 정보의 손실은 원래의 릴레이션을 분해한 후에 생성된 릴레이션들을조인한 결과에 들어 있는 정보가 원래의 릴레이션에 들어 있는 정보보다적거나 많은 것을 모두 포함

학생

학번	이름	이메일	<u>과목번호</u>	학점
11002	이홍근	sea@hanmail.net	CS310	A0
11002	이홍근	sea@hanmail.net	CS313	B+
24036	김순미	smkim@venus.uos.ac.kr	CS345	В0
24036	김순미	smkim@venus.uos.ac.kr	CS310	A+

[그림 7.8] 학생 릴레이션

학번 → 이름, 이메일 이메일 → 학번, 이름 (학번, 과목번호) → 학점

7장. 릴레이션 정규화

[그림 7.9] 학생 릴레이션을 두 릴레이션으로 분해

학생1

<u>학번</u>	이름	이메일
11002	이홍근	sea@hanmail.net
24036	김순미	smkim@venus.uos.ac.kr

학번->이름,이메일

학생2

학번	이름
11002	이홍근
24036	김순미

학생3

<u>학번</u>	이메일	
11002	sea@hanmail.net	
24036	smkim@venus.uos.ac.kr	

[그림 7.10] 불필요한 분해

수강

학번	과목번호	학점
11002	CS310	A0
11002	CS313	B+
24036	CS345	В0
24036	CS310	A+

학번,과목번호->학점

수강1

학번	과목번호
11002	CS310
11002	CS313
24036	CS345
24036	CS310

수강2

학번	학점	
11002	A0	
11002	B+	
24036	В0	
24036	A+	

[그림 7.11] 나쁜 분해

7.4 제1정규형, 제2정규형, 제3정규형, BCNF

□ 제1정규형

- ✓ 한 릴레이션 R이 제1정규형을 만족할 필요 충분 조건은 릴레이션 R의 모든 애트리뷰트가 원자값만을 갖는다는 것
- ✓ 즉 릴레이션의 모든 애트리뷰트에 반복 그룹(repeating group)이 나타나지 않으면 제1정규형을 만족함

학생

<u>학번</u>	이름	과목번호	주소
11002	이홍근	{CS310,CS313}	우이동
24036	김순미	{CS310,CS345}	양재동

[그림 7.13] 반복 그룹

7.4 제1정규형, 제2정규형, 제3정규형, BCNF(계속)

- □ 제1정규형을 만족하지 않는 그림 7.13을 제1정규형으로 변환하는 방법
 - ✓ 반복 그룹 애트리뷰트에 나타나는 집합에 속한 각 값마다 하나의 투플로 표현

학생

학번	이름	<u>과목번호</u>	주소
11002	이홍근	CS310	우이동
11002	이홍근	CS313	우이동
24036	김순미	CS345	양재동
24036	김순미	CS310	양재동

[그림 7.14] 애트리뷰트에 원자값만 있는 릴레이션

7.4 제1정규형, 제2정규형, 제3정규형, BCNF(계속)

- □ 제1정규형을 만족하지 않는 그림 7.13을 제1정규형으로 변환하는 방법(계속)
 - ✓ 모든 반복 그룹 애트리뷰트들을 분리해서 새로운 릴레이션에 넣음. 원래 릴레이션의 기본 키를 새로운 릴레이션에 애트리뷰트로 추가함

학생1

<u>학번</u>	이름	주소	
11002	이홍근	우이동	
24036	김순미	양재동	

수강

<u>학번</u>	<u>과목번호</u>
11002	CS310
11002	CS313
24036	CS345
24036	CS310

[그림 7.15] 두 릴레이션으로 분해

Figure 10.8 Normalization into 1NF

(a)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations	
1		†	A	

Figure 10.8

Normalization into 1NF.

(a) A relation schema that is not in 1NF. (b)

Example state of relation DEPARTMENT. (c) 1NF version of the same relation with redundancy.

(b)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	Research 5 3334455		{Bellaire, Sugarland, Houston}
Administration 4		987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation	
Research	5	333445555	Bellaire	
Research	5	333445555	Sugarland	
Research	5	333445555	Houston	
Administration	4	987654321	Stafford	
Headquarters	1	888665555	Houston	

7.4 제1정규형, 제2정규형, 제3정규형, BCNF(계속)

- □ 제1정규형에 존재하는 갱신 이상
 - ✓ 그림 7.16의 학생 릴레이션은 모든 애트리뷰트가 원자값을 가지므로 제1정규형을 만족함
 - ✓ 이 릴레이션의 기본 키는 (학번, 과목번호)

학생

<u>학번</u>	학과이름	학과전화번호	<u>과목번호</u>	학점
11002	컴퓨터과학	210-2261	CS310	A0
11002	컴퓨터과학	210-2261	CS313	В0
24036	정보통신	210-2585	IC214	B+

[그림 7.16] 제1정규형을 만족하는 릴레이션

학번->학과이름,학과전화번호 <u>학번,과목번호->학점</u>

7.4 제1정규형, 제2정규형, 제3정규형, BCNF(계속)

- □ 갱신 이상이 생기는 이유
 - ✓ 기본 키에 대한 부분 함수적 종속성이 학생 릴레이션에 존재함

[그림 7.17] (a) 부분 함수적 종속성이 존재하는 릴레이션(제1정규형)

(b) 부분 함수적 종속성이 존재하지 않도록 분해된 두 릴레이션(제2정규형)

□ 제2정규형

- ✓ 한 릴레이션 R이 제2정규형을 만족할 필요 충분 조건은 릴레이션 R이 제1정규형을 만족하면서, 어떤 후보 키에도 속하지 않는 모든 애트리뷰트들이 R의 기본 키에 완전하게 함수적으로 종속하는 것
- ✓ 기본 키가 두 개 이상의 애트리뷰트로 구성되었을 경우에만 제1정규형이 제2정규형을 만족하는가를 고려할 필요가 있음

- □ 제2정규형에 존재하는 갱신 이상
 - ✓ 그림 7.18의 학생1 릴레이션의 기본 키는 한 애트리뷰트인 학번이므로 제2정규형을 만족함

학생1

<u>학번</u>	학과이름	학과전화번호
11002	컴퓨터과학	210-2261
24036	정보통신	210-2585
11048	컴퓨터과학	210-2261

[그림 7.18] 제2정규형을 만족하는 릴레이션

- □ 갱신 이상이 생기는 이유
 - ✓ 학생1 릴레이션에 이행적 종속성이 존재하기 때문

[그림 7.19] (a) 이행적 종속성이 존재하는 릴레이션(제2정규형) (b) 이행적 종속성이 존재하지 않도록 분해된 두 릴레이션(제3정규형)

Figure 10.10 Normalizing into 2NF and 3NF

□ 제3정규형

✓ 한 릴레이션 R이 제3정규형을 만족할 필요 충분 조건은 릴레이션 R이 제2정규형을 만족하면서, 키가 아닌 모든 애트리뷰트가 릴레이션 R의 기본 키에 이행적으로 종속하지 않는 것

- □ 제3정규형에 존재하는 갱신 이상
 - ✓ 그림 7.20의 수강 릴레이션에서 각 학생은 여러 과목을 수강할 수 있고, 각 강사는 한 과목만 가르침. 이 릴레이션의 기본 키는 (학번, 과목)
 - ✓ 키가 아닌 강사 애트리뷰트가 기본 키에 완전하게 함수적으로 종속하므로 제2정규형을 만족하고, 키가 아닌 강사 애트리뷰트가 기본 키에 직접 종속하므로 제3정규형도 만족함
 - ✓ 이 릴레이션에는 아래와 같은 함수적 종속성들이 존재함 (학번, 과목) → 강사 강사 → 과목

수강

<u>학번</u>	<u> 과목</u>	강사
11002	데이터베이스	이영준
11002	운영 체제	고성현
24036	자료 구조	엄영지
24036	데이터베이스	조민형
11048	데이터베이스	이영준

[그림 7.20] 제3정규형을 만족하는 릴레이션

[그림 7.21] 수강 릴레이션에 존재하는 함수적 종속성

- □ 갱신 이상이 생기는 이유
 - ✓ 수강 릴레이션에서 키가 아닌 애트리뷰트가 다른 애트리뷰트를 결정하기 때문
 - ✓ 이 릴레이션의 후보 키는 (학번, 과목)과 (학번, 강사)

BCNF

- ✓ 한 릴레이션 R이 BCNF를 만족할 필요 충분 조건은 릴레이션 R이 제3정규형을 만족하고, 모든 결정자가 후보 키이어야 함
- ✓ 위의 수강 릴레이션에서 강사 애트리뷰트는 후보 키가 아님에도 불구하고 과목 애트리뷰트를 결정하기 때문에 BCNF가 아님
- ✓ 제3정규형을 만족하는 대부분의 릴레이션들은 BCNF도 만족함
- ✓ 하나의 후보 키만을 가진 릴레이션이 제3정규형을 만족하면 동시에 BCNF도 만족함
- ✓ 제3정규형을 만족하는 릴레이션을 BCNF으로 정규화하려면 키가 아니면서 결정자 역할을 하는 애트리뷰트와 그 결정자에 함수적으로 종속하는 애트리뷰트를 하나의 테이블에 넣음. 이 릴레이션에서 결정자는 기본 키가 됨
- ✓ 그 다음에는 기존 릴레이션에 결정자를 남겨서 기본 키의 구성요소가 되도록 함.
 또한 이 결정자는 새로운 릴레이션에 대한 외래키 역할도 함

(a) 애트리뷰트가 세 개

(b) 애트리뷰트가 네 개

[그림 7.22] 제3정규형을 만족하지만 BCNF는 만족하지 않는 릴레이션

(a) 애트리뷰트가 세 개

(b) 애트리뷰트가 네 개

[그림 7.23] 제3정규형을 BCNF로 분해

수강

<u>학번</u>	<u> 과목</u>	강사
11002	데이터베이스	이영준
11002	운영 체제	고성현
24036	자료 구조	엄영지
24036	데이터베이스	조민형
11048	데이터베이스	이영준

수강1

<u>학번</u>	<u>강사</u>
11002	이영준
11002	고성현
24036	엄영지
24036	조민형
11048	이영준

수강2

<u>강사</u>	과목
이영준	데이터베이스
고성현	운영 체제
엄영지	자료 구조
조민형	데이터베이스

[그림 7.24] 제3정규형을 BCNF로 정규화

Figure 10.12 Boyce-Codd normal form

(a) LOTS1A

Figure 10.12

Boyce-Codd normal form. (a) BCNF normalization of LOTS1A with the functional dependency FD2 being lost in the decomposition. (b) A schematic relation with FDs; it is in 3NF, but not in BCNF.

<u>직원번호</u>	직원이름	봉급	과장	과이름
100	김일영	50만	송지영	인사과
200	김이영	100만	최원석	총무부
300	김삼영	150만	송지영	인사과
400	김사영	100만	박정숙	자재과

- 1. 이 릴레이션의 있는 함수 종속을 모두 찾으시오
- 2. 이 릴레이션은 어떤 정규형에 속하는지 기술하고 이유를 설명하시오
- 3. 존재하는 이상 현상을 모두 제거하기 위해 무손실 분해를 하시오.

<교수>

<u>교수번호</u>	교수명	직급	학과
100	김일영	부교수	소프트웨어
200	김이영	조교수	게임학과
300	김삼영	전임강사	글로컬IT
400	김사영	정교수	정보공학

<과목>

<u>과목번호</u>	과목명	학점	개설연도	학기	<u>교수번호</u>
S100	자료구조	3	2003	2학기	100
S200	자바	3	2003	1학기	400
S300	운영체제	4	2003	1학기	200
S400	알고리즘	2	2003	1학기	300

- 1. 교수, 과목 릴레이션의 있는 함수 종속을 모두 찾으시오
- 2. 교수, 과목 릴레이션은 어떤 정규형에 속하는지 기술하고 이유를 설명하시오
- 3. 과목 릴레이션을 제 3 정규형으로 무손실 분해를 하시오.

<u>공급자</u>	품명	금액
샤이니	시금치	1000
비스트	시금치	900
엠블랙	바나나	1000
레인보우	파인애플	2000

- 1. 이 릴레이션의 있는 함수 종속을 모두 찾으시오
- 2. 이 릴레이션은 어떤 정규형에 속하는지 기술하고 이유를 설명하시오

1. 존재하는 이상 현상을 모두 제거하기 위해 무손실 분해를 하시오.

Figure 10.3

Two relation schemas suffering from update anomalies.

- (a) EMP_DEPT and
- (b) EMP_PROJ.

EMP_DEPT

(b)

EMP_PROJ

- 1. EMP_PROJ 테이블은 2NF를 만족하는가?
- 2. EMP_DEPT 테이블은 2NF를 만족하는가?