29.4 Ablauf einer Fourier-Analyse

- 1 Skizze
- 2 Untersuchung auf Symmetrie ("ohne Nahtstellen"): gerade/ungerade Funktion?

gerade
$$\Rightarrow$$
alle b_k =0, k =1,2,...
ungerade \Rightarrow **alle** a_k =0, k =0,1,2,...

- (3) Untersuchung auf Mittelwerteigenschaft
- (4) Integrationsbereich festlegen $(0..2\pi, -\pi.. \pi,...)$
- (5) Berechnung der Fourier-Koeffizienten

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Beispiel 1

Die Werte der 2π -periodischen Funktion f sind im Periodenintervall $(-\pi, \pi]$ gegeben durch

$$f(x) = x$$
 , $-\pi < x \le \pi$

(1) Skizze

zeitlicher Verlauf einer Kippspannung

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

2 Untersuchung auf Symmetrie

 $f(X) = X, -\pi < X \le \pi$

f ungerade (schiefsymmetrisch) $\Rightarrow a_k = 0$ (alle!)

(3) Untersuchung auf Mittelwerteigenschaft

Die Funktion f erfüllt nicht die Mittelwerteigenschaft, d.h. in den Punkten $\pm \pi$, $\pm 3\pi$, $\pm 5\pi$, $\pm 7\pi$,... (dort ist die MWE verletzt) konvergiert die Fourier-Reihe von f gegen 0 und nicht gegen $f(x) = \pi$.

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

(4) Integrationsbereich festlegen $(0..2\pi, -\pi.. \pi,...)$

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzi

$$= -\frac{1}{\pi} \left[x \left(\frac{1}{k} \cos(kx) \right) \right]_{-\pi}^{\pi} + \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{k} \cos(kx) dx$$

$$= -\frac{1}{\pi} \left[x \left(\frac{1}{k} \cos(kx) \right) \right]_{-\pi}^{\pi} + \left[\frac{1}{\pi} \frac{\sin(kx)}{k^2} \right]_{-\pi}^{\pi}$$

$$= -\frac{1}{\pi} \left[x \left(\frac{1}{k} \cos(kx) \right) - \left(-\frac{\pi}{k} \right) \frac{1}{k} \frac{\cos(k(-\pi))}{\cos(k\pi)} \right] \cos(x)$$

$$= -\frac{2}{k} \cos(k\pi) = \frac{2}{k} (-1)^{k+1}$$
Fourier-Reihe von f :
$$\sum_{k=1}^{\infty} \frac{2}{k} (-1)^{k+1} \sin(kx)$$