Brückenkurs – Tag 3 - ,3. Ausgabe"

1 Die natürlichen Zahlen und das Induktionsprinzip

1.1 Beispiel

Von Tag 2:

Satz

$$\Sigma_{k=1}^n k = \frac{1}{2} \cdot n \cdot (n+1)$$

Folgerung (Korollar)

$$\Sigma_{k=1}^n (2 \cdot k - 1) = n^2$$

Beweis

$$\sum_{k=1}^{n} (2k-1) = \sum_{k=1}^{2n} k - \sum_{k=1}^{n} 2k$$

Mit Formel aus Satz auf die Formel angewendet:

$$\frac{1}{2} \cdot 2 \cdot n \cdot (2n+1) - 2 \cdot \frac{1}{2}n(n+1) = 2n^2 + n - n^2 - n = n^2$$

Es wird zuerst die Summe aller Zahlen von 1 bis 2n addiert, danach die Summe aller geraden Zahlen abgezogen Hier auch implizite Verwendung der Assoziativität und Kommutivität der Addition.

1.2 Weiteres Beispiel

Satz Sei $x \neq 1$. Dann gilt: $\sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$ ("Geometrische Summe")

Beispiel

$$1 + 2 + 4 + \dots 2^{63} = \frac{1 - 2^{64}}{1 - 2} = 2^{64} - 1 = 18.446.744.073.709.551.615$$

Beweis 1 Ansatz der vollständigen Induktion:

$$n=0 \quad x^0=1; \frac{1-x^2}{1-x}=1$$
 Formel stimmt also für $n=0$

 $n \implies n+1$

$$\Sigma_{k=0}^{n+1}x^k = x^{n+1} + \Sigma_{k=0}^n x^k = (I.V)x^{n+1} + \frac{1-x^{n+1}}{1-x} = \frac{x^{n+1}(1-x) + 1 - x^{n+1}}{1-x} = \frac{1-x^{n+2}}{1-x}$$

Beweis 2

$$\Sigma_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \Leftrightarrow (1 - x) \Sigma_{k=0}^{n} x^{k} = 1 - x^{n+1} = \Sigma_{k=0}^{n} x^{k} - \Sigma_{k=0}^{n} x^{k+1} = \Sigma_{k=0}^{n} x^{k} - \Sigma_{k=1}^{n+1} x^{k} = x^{0} - x^{n+1} = 1 - x^{n$$

Für $x \neq 1$. q.e.d.

1.3 Äquivalenz- und Induktionsprinzip

Satz Jede nicht-leere Teilmenge von \mathbb{N}_0 besitzt ein kleinstes Element. (" \mathbb{N}_0 ist wohlgeordnet ")

Beweis Sei $M \subseteq \mathbb{N}_0$ ohne kleinstes Element. Wir wollen zeigen dass: $M = \emptyset$, d.h. $P = \{n \in \mathbb{N}_0 | 0, 1, \dots, n \notin M\} = \mathbb{N}_0$ Hierbei Anwendung des *Peano-Axioms*:

 $0 \in P$ Wäre $0 \notin P$, so wäre $0 \in M$, insbesondere kleinstes Element von M. Dies ist ein Widerspruch, also $0 \in P$.

 $n \in P \implies n+1 \in P$ Wäre $n+1 \notin P$. Dann wäre eine der Zahlen $0, \ldots, n+1 \in M$. Da aber nach Voraussetzung $n \in P$, ist $0, \ldots, n \notin M$. Also $n+1 \in M$. Insbesondere ist n+1 kleinstes Element. Widerspruch, also ist $n+1 \in P$.

2 Die ganzen und die rationalen Zahlen

2.1 Relation

Eine **Relation** auf einer Menge M ist eine Teilmenge $R \subseteq M \times M$ Wir schreiben $x \sim y :\Leftrightarrow .(x,y) \in R$ für $x,y \in M$.

Beispiel $x \leq y$ auf \mathbb{N}_0 :

[Skizze: Punkte auf Gitter, $x, y \leq 4 \in \mathbb{N}_0$. Oberhalb und auf der Diagonale blaue Menge.]

Definition Eine Relation auf M heißt Äquivalenzrelation, falls sie:

- 1. **reflexiv** ist, d.h. $x \sim x$ für alle $x \in M$.
- 2. symmetrisch ist, d.h. $x \sim y \implies y \sim x$ für alle $x, y \in M$.
- 3. **transitiv** ist, d.h. $x \sim y \wedge y \sim z \implies x \sim z$ für alle $x, y, z \in M$.

Beispiel Die Gleichheitsrelation auf einer Menge ist eine Äquivalenzrelation

Beispiel Sei M eine Menge von Menschen. Die Relation "ist verwand mit" (im Sinne von "gehört zur gleichen Familie") ist eine Äquivalenzrelation.

Beispiel Sei M eine Menge von Menschen. Die Relation "hat im gleichen Monat Geburtstag" ist eine Äquivalenzrelation. Dabei ist $M = M_1 \cup M_2 \cup ... \cup M_{12}$. Die M_1 heißen die Äquivalenzklassen der Relation und stehen hier für die Monate.

Beispiel Relation \sim auf Z mit $x \sim y :\Leftrightarrow x-y$ gerade. Ist reflexiv und symmetrisch. ist transitiv? $x \sim y, y \sim z \implies x-y$ gerade, y-z gerade. $\implies (x-y)+(y-z)=x-z$ gerade $\implies x\sim z$ Ist also Äquivalenzrelation.

 $\ddot{\mathbf{A}}\mathbf{quivalenzklassen}\quad \text{In diesem Beispiel: } Z = \{GeradeZahlen\} \cup \{UngeradeZahlen\}$

Definition Sei \sim eine Relation auf einer Menge M. Für $x \in M$ heißt dann $[x]_{(\sim)} := \{y \in M | x \sim y\}$ die Äquivalenzklasse zu x.

Beispiel $[Peter]_{verwandt} = PetersFamilie$

Satz Es gilt für alle Äquivalenzrelationen auf eine Menge M mit $x, y \in M$:

- 1. $x \in [x]$
- $2. \ x \sim y \implies [x] = [y]$
- 3. $[x] \neq [y] \implies [x] \cap [y] = \emptyset$

Beweis

- 1. $x \in [x] \Leftrightarrow x \sim x \text{ ok}$
- 2. Sei $x \sim y$ Zu **zeigen**: [x] = [y]. $z \in [x] \Leftrightarrow x \sim z \implies \substack{x \sim y \\ y \sim x} y \sim z \Leftrightarrow z \in [y]$
- 3. Wir zeigen: $[x] \cap [y] \neq \emptyset \implies [x] = [y]$ Es existiert also $z \in [x] \cap [y]$, d.h. $z \in [x]$ und $z \in [y]$, d.h. $x \sim z$, $y \sim z \implies x \sim y \implies x] = [y]$.

q.e.d.

Definition x heißt **Repräsentant** seiner Äquivalenzklasse [x]: $M = \bigcup [x]$. $\{x \text{ Repräsentantensystem}\}$

Definition Sei R eine Äquivalenzrelation auf einer Menge M. Dann heißt $^M/_R := \{[x]_R | x \in R\}$ der **Quotioent von M nach R**.

2.2 Konstruktion der ganzen Zahlen

Erklärung ganzer Zahlen als Paar zweier natürlicher Zahlen. Dabei Subtraktion der Zahlen. Beispiel: Kontostand zusammengesetzt aus Einzahlungen und Abhebungen.

 $(Einzahlungen, Abhebungen) \sim (Einzahlungen', Abhebungen') \Leftrightarrow E + A' = E' + A$ Auf der Menge der Paare (n,m) natürlicher Zahlen definieren wir die Relation $(n,m) \sim (a,b) : \Leftrightarrow n+b=m+a$ Es ist \sim eine Äquivalenzrelation: Ist reflexiv und symmetrisch. Transitivität:

$$(n,m) \sim (a,b) \wedge (a,b) \sim (u,v) \implies n+b = m+a \wedge a + v = b+u \implies u+b+a+v = m+a+b+u \implies n+v = m+u \implies (n,m) \sim (a,b) \wedge (a,b) \wedge (a,b) \sim (a,b) \wedge (a$$

Die Äquivalenzklasse zum Paar (n,m) heißt [n,m]

Beispiel $[3, 2] \sim [5, 4]$

Definition

$$Z = {\mathbb{N}_0 \times \mathbb{N}_0}/_{\sim} = \{[n, m] \mid n, m \in \mathbb{N}_0\}$$

Jeder natürlichen Zahl n entspricht eine ganze Zahl $[n,0]. \to \mathbb{N}_0 \subseteq \mathbb{Z}$ $n \mapsto [n,0].$

Negative Zahlen -[n, m] = [m, n]

Beispiel $n \in \mathbb{N}_0$; -n = -[n, 0] = [0, n] Ist diese Relation wohldefiniert? -[7, 2] = [2, 7]

Zu zeigen $[n,m] \sim [a,b] \Longrightarrow [m,n] \sim [b,a]$ Begründung: Wenn $[n,m] \sim [a,b] \Leftrightarrow n+b=m+a \Leftrightarrow m+a=n+b \Leftrightarrow [m,n] \sim [b,a]$

Addition [n, m] + [a, b] := [n + a, m + b]

Multiplikation $[m, n] \cdot [a, b] := [ma + nb, na + mb]$

2.3 Rationale Zahlen

Auf der Menge $Z \times N_{>0}$ betrachten wir die Relation $(a,s) \sim (b,t) \Leftrightarrow a \cdot t = b \cdot s$

Rechnung \sim ist Äquivalenzrelation. Die Äquivalenzklasse zu (a, s) bezeichnen wir mit $\frac{a}{s}$. $\mathbb{Q} := \mathbb{Z} \times \mathbb{N}_0/N$

Addition

$$\frac{a}{s} + \frac{b}{t} := \frac{at + bs}{st}$$

$$\frac{b'}{t'} = \frac{b}{t} \Leftrightarrow tb' = t'b \implies \frac{at + bs}{st} = \frac{at' + b's}{st'} \Leftrightarrow t'b = tb'$$

${\bf 2.4}\quad {\bf Binomial koeffizient en}$

Sei x eine (reelle) Zahl, $k \ge 0$ natürliche Zahl. Dann heißt $\binom{x}{k} := \frac{x \cdot (x-1) \cdot \dots \cdot (x-k+1)}{k!}$ der **Binomialkoeffizient** "x über k".

Spezialfall Sei $0 \le k \le n$ eine natürliiche Zahl. Dann ist $\binom{n}{k} = \frac{n!}{k!(n-k)!}$