- Q 1.
 - (a)
 - (b)
 - (c)

- Q 2.
 - (a)
 - (b)
 - (c)

- Q 3.
 - (a)
 - (b)

Q 4.

Q 5.

Q 6.

(a) The model of tumour growth under radiotherapy from time t = 0 to $t = t_1 > 0$ is given as

$$\frac{\mathrm{d}C}{\mathrm{d}t} = -C \, \log \left(\frac{C}{C_{max}} \right) - \frac{DC}{1+D},\tag{6.1}$$

Due: 1 April 2020

where, at time t, C(t) is the size of the tumour, $C_{max} > 0$ is the maximum size of the tumour, a constant, so that $0 < C(t) \le C_{max}$, and $D(t) \ge 0$ is the rate at which the drug is administered.

Now, making a change of variable

$$x = \log\left(\frac{C}{C_{max}}\right),\,$$

then (6.1) becomes

$$\begin{split} \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{\mathrm{d}C}{\mathrm{d}t} \cdot \frac{\mathrm{d}x}{\mathrm{d}C}, \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{\mathrm{d}C}{\mathrm{d}t} \cdot \frac{1}{C}, \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= \left[\mathcal{C} \log \left(\frac{C}{C_{max}} \right) - \frac{D\mathcal{C}^{1}}{1+D} \right] \cdot \frac{1}{\mathcal{C}^{1}}, \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= -\log \left(\frac{C}{C_{max}} \right) - \frac{D}{1+D}, \\ \text{thus,} \quad \frac{\mathrm{d}x}{\mathrm{d}t} &= -x - \frac{D}{1+D}, \quad \text{where } -\infty < x \leq 0. \end{split}$$

(b) We are told that:

It is required to reduce the size of the tumour from C_0 at t = 0 to C_1 at $t = t_1$. Let $x_0 = \log(C_0/C_{max})$ and $x_1 = \log(C_1/C_{max})$. For the health of the patient, it is desired to minimise the total amount of drug administered, which is given by the functional

$$S[D] = \int_0^{t_1} \mathrm{d}t \ D(t).$$

So, by expressing D in terms of x and $\dot{x} = dx/dt$ it should be possible to show that S[D] may be written as

$$S[x] = -\int_0^{t_1} dt \, \frac{\dot{x} + x}{1 + \dot{x} + x}.$$

From part (a)

$$\dot{x} = -x - \frac{D}{1+D},$$

$$\dot{x} + x = -\frac{D}{1+D},$$

$$(\dot{x} + x)(1+D) = -D,$$

$$(\dot{x} + x) + D(\dot{x} + x) = -D,$$

$$D(\dot{x} + x) + D = -(\dot{x} + x),$$

$$D(\dot{x} + x + 1) = -\dot{x} - x,$$

$$D = \frac{-\dot{x} - x}{\dot{x} + x + 1}.$$

So

$$S[x] = -\int_0^{t_1} \mathrm{d}t \; \frac{\dot{x} + x}{\dot{x} + x + 1} \qquad \text{as required.}$$

(c) To show that the Euler-Lagrange equation for S[x] is given by

$$2\ddot{x} + 3\dot{x} + x = -1$$
, where $\ddot{x} = d^2x/dt^2$,

consider the following.

The Euler-Lagrange equation is given by

HB p17.

Due: 1 April 2020

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial \dot{x}} \right) - \frac{\partial F}{\partial x} = 0, \qquad y(a) = A, \quad y(b) = B.$$

$$\text{Let, } F = \frac{\dot{x} + x}{\dot{x} + x + 1},$$

then using the quotient rule to determine $\partial F/\partial \dot{x}$ and $\partial F/\partial x$

$$\frac{\partial}{\partial \dot{x}} \left(\frac{u}{v} \right) = \left[v \frac{\partial u}{\partial \dot{x}} - u \frac{\partial v}{\partial \dot{x}} \right] / v^2 \quad \text{where, } u = \dot{x} + x \text{ and } v = \dot{x} + x + 1.$$

$$\frac{\partial F}{\partial \dot{x}} = \frac{(\dot{x} + x + 1) \cdot 1 - (\dot{x} + x) \cdot 1}{(\dot{x} + x + 1)^2} = \frac{1}{(\dot{x} + x + 1)^2},$$
$$\frac{\partial F}{\partial x} = \frac{(\dot{x} + x + 1) \cdot 1 - (\dot{x} + x) \cdot 1}{(\dot{x} + x + 1)^2} = \frac{1}{(\dot{x} + x + 1)^2}.$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial \dot{x}} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{x} + x + 1 \right)^{-2},$$

$$= -2 \left(\dot{x} + x + 1 \right)^{-3} \left(\ddot{x} + \dot{x} \right),$$

$$= \frac{-2 \left(\ddot{x} + \dot{x} \right)}{\left(\dot{x} + x + 1 \right)^{3}}.$$

Due: 1 April 2020

Therefore, the Euler-Lagrange equation is

$$-\frac{2(\ddot{x}+\dot{x})}{(\dot{x}+x+1)^3} - \frac{1}{(\dot{x}+x+1)^2} = 0,$$

$$\frac{2(\ddot{x}+\dot{x})}{(\dot{x}+x+1)^3} = -\frac{1}{(\dot{x}+x+1)^2},$$

$$\frac{2(\ddot{x}+\dot{x})}{(\dot{x}+x+1)} = -1,$$

$$2(\ddot{x}+\dot{x}) = -(\dot{x}+x+1),$$

$$2(\ddot{x}+\dot{x}) + (\dot{x}+x) = -1,$$

$$2\ddot{x}+3\dot{x}+x=-1, \text{ as required.}$$

$$(6.2) \quad \ddot{x} = d^2x/dt^2.$$

(d)