Introduction to genetics and biological variation

Introduction to Evolution and Scientific Inquiry Dr. Spielman, Spring 2020

A systems view of biological organization

What is evolution?

Biological evolution is heritable change in populations over time (generations)

- Heritable: evolving trait requires a genetic* basis
- Populations: individuals do not evolve
- <u>Time</u>: evolution occurs over multiple generations, not within a generation

AKA: Biological evolution is change in *allele frequencies* in *populations* over *generations*

The genetic basis of variation: A brief overview

Typical eukaryote cell

DNADeoxyribonucleic acid

Humans have 23 pairs of chromosomes

One copy from mom, one copy from dad = 23*2 = 46 total

We are **diploid** (most *animals* are)

There are roughly 3 billion nucleotides in the human genome

Across the chromosomes, there are roughly 20,000 genes

autosomes

sex chromosomes

U.S. National Library of Medicine

Chromosomes are VERY variable ("karyotype")

Indian muntjac smallest # in mammals

Siberian Roe deer
has weird transient "B"
chromosomes

Viscacha rat

largest # in mammals

Transcaucasian mole vole

female ("X" is not universal!)

Images during metaphase (DNA replication)

Some fun facts about chromosomes

One more view...

Fig. 4.5 Metaphase chromosome can be classified by centromere position

Structure of DNA

What is a gene?

- A gene is a stretch of nucleotides in the genome that CODES for something
 - A "blueprint" to make other types of molecules
 - Can code for a protein end-product, or an RNA end-product (which also has a function!)

There is a **lot** of variation across the tree of life

Don't memorize these values - understand the CONCEPT

Genes are not magic formulas

THERE IS NO SUCH THING AS "the X gene"

What headlines have you seen for "scientists find the GENE that does THING?"

Instead, an individual's genetics ("genotype") **interact** with the environment to produce an individual's **phenotype**.

The location of a gene on a chromosome is called the **locus**

BUT THERE IS NO REAL SUCH THING AS GENE FOR "FLOWER COLOR"

Genotype → Phenotype is HARD!!!

- 1. Mendelian traits: One allele for one phenotype. *Extremely rare exceptions!*
- Quantitative traits**: Dozens, hundreds, thousands of genes interact to produce a phenotype
- 3. Most *variation in traits* is affected by environment nonetheless

Genetic terminology

Homozyote: An individual with the *same* version (allele) of the gene on both chromosomes

Heterozygote: An individual with a *different* allele on each chromosome

Genetic terminology

Phenotype = physical appearance

Genotype = underlying genetics

Trait itself: The flower has color

Trait variation: What color is it?

Types of phenotypic variation

Discrete variation is usually caused by a single gene (Mendelian)

"Big A, little a" combinations.

AA: black

Aa: black (with "A" dominant)

aa: white

Continuous variation is usually a complex result of hundreds or thousands of interacting genes. The exact genotype is often unknown.

Height in inches

How many alleles does each gene has? Is it always "big A, little a"?

Some genes have **one** allele in a species

Some genes have dozens or hundreds of alleles in a species

Brainstorm: Why are there different numbers of alleles across genes? Are more alleles "good", "bad", "neutral"?

What does it really mean to be a different allele?

We can think of genes as their **DNA sequence:**

AGGATCGATAGGACACTCGCGGTA	"wild type" (most in species have this sequence)
AGGAT <mark>T</mark> GATAGGACACTCGCGGTA	a single nucleotide difference
AGGAT <mark>A</mark> GATAGGACACTCGCGGT <mark>G</mark>	2 nucleotide differences
AGGATAGATAGGACACTCGCGGTA	some nucleotides are "deleted"
AGGATAGATAGGACACTCGCGGTGATAACA	some nucleotides are "inserted"

So what are mutations?

- When DNA copies itself (cells divide to make more cells), errors sometimes occur. These errors are MUTATIONS!
 - Imagine copying a 3 billion page book by hand. You're going to mess up. Add letters, remove letters
- Sometimes environmental factors (i.e. radiation) cause DNA to change. These changes are MUTATIONS!
- Mutations are random mistakes.

- Mutation is the raw source of ALL variation (aka source of all new alleles)
 - Without mutation, there is NO EVOLUTION (keep coming to class for more information!)

How many **brand new** mutations do YOU have?

DNM = de novo mutation = not in Mom or Dad. Yours!

Somatic vs germline mutations

These "somatic mutations" can result in cancer/tumors

What are the potential consequences of a mutation?

- This is a very active area of research!
- There are two competing views of "mutational effects", but it is generally agreed that most random changes are BAD

Nature Reviews | Genetics