CS458: Introduction to Information Security

Notes 4: Symmetric Cryptography - More About Block Ciphers

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

September 20, 2018

Slides: Modified from Christof Paar and Jan Pelzl

Outline

- Encryption with Block Ciphers: Modes of Operation
- Exhaustive Key Search Revisited
- Increasing the Security of Block Ciphers

modes of operation

- There are several ways of encrypting long plaintexts, e.g., an e-mail or a computer file, with a block cipher ("modes of operation")
- Many modes we discuss 3 most popular.
- Electronic Codebook (ECB) mode
 - Encrypt each block independently.
 - Most obvious approach, but a bad idea.
- Cipher Block Chaining (CBC) mode
 - Chain the blocks together.
 - More secure than ECB, virtually no extra work.
- Counter (CTR) mode
 - Block ciphers acts like a stream cipher.
 - Popular for random access.

Electronic Codebook (ECB) mode

- Most obvious way to use a block cipher.
 - Encrypt all plaintext blocks.
 - Concatenate all resulting ciphertext blocks.
 - Output ciphertext

ECB Mode¹

Electronic Codebook (ECB) mode encryption

¹Image Source Wikipedia:Block cipher mode of operation

ECB Cut and Paste

- Suppose plaintext is:
 - Alice digs Bob. Trudy digs Tom.
- Assuming 64-bit blocks and 8-bit ASCII:
 - x_0 = "Alice di", x_1 = "gs Bob."
 - x_2 = "Trudy di", x_3 = "gs Tom."
- Attack:
 - Ciphertext: y_0 , y_1 , y_2 , y_3
 - Eve (here Trudy) cuts and pastes: y_0, y_3, y_2, y_1
 - Decrypts as

Alice digs Tom. Trudy digs Bob.

ECB Weakness

- Suppose $x_i = x_j$
 - Then $y_i = y_j$ and Eve knows $x_i = x_j$
 - ullet This gives Eve some information, even if she does not know x_i or x_j
 - ullet Eve might know x_i
- Q: Is this a serious issue?
 - The disadvantage of this method is a lack of diffusion.
 - Because ECB encrypts identical plaintext blocks into identical ciphertext blocks, it does not hide data patterns well.
 - In some senses, it doesn't provide serious message confidentiality, and it is not recommended for use in cryptographic protocols at all.

Alice hates ECB mode²

Original image

Encrypted using ECB mode

• Q: Why does it happen?

 $^{^{2}\}mbox{Image Source Wikipedia:Block cipher mode of operation}$

ECB: advantages/disadvantages

Advantages

- bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks
- Block cipher operating can be parallelized
 - advantage for high-speed implementations

Disadvantages

- ECB encrypts highly deterministically
 - identical plaintexts result in identical ciphertexts
 - an attacker recognizes if the same message has been sent twice
 - plaintext blocks are encrypted independently of previous blocks
 - an attacker may reorder ciphertext blocks which results in valid plaintext

Cipher Block Chaining (CBC) mode

- We want to solve two problems
 - 1. Make encryption probabilistic
 - 2. Combine encryption of all blocks
- An encryption scheme is "deterministic" if a particular plaintext is mapped to a fixed ciphertext if the key is unchanged
- ullet A "probabilistic" encryption scheme uses randomness to achieve a non-deterministic generation of y_i

Cipher Block Chaining (CBC) mode

- Blocks are "chained" together in a special way that introduces dependance between them.
- A random initialization vector, or IV, is required to initialize CBC mode.
 - Nothing to chain the first block with.
 - IV is random, but not secret

CBC Mode³

Cipher Block Chaining (CBC) mode encryption

 $^{{\}rm ^3Image}$ Source Wikipedia:Block cipher mode of operation

CBC Mode: Encryption and decryption

- ullet For the first plaintext block x_1 there is no previous ciphertext
 - an IV is added to the first plaintext to make each CBC encryption nondeterministic
 - ullet the first ciphertext y_1 depends on plaintext x_1 and the IV
- ullet The second ciphertext y_2 depends on the IV, x_1 and x_2
- The third ciphertext y_3 depends on the IV and x_1 , x_2 and x_3 , and so on

Encryption

- $\bullet \ y_1 = E_K(x_1 \oplus IV)$
- ullet y_i = $E_K(x_i \oplus y_{i-1})$, $i \geq 2$

Decryption

- $\bullet x_1 = D_K(y_1) \oplus IV$
- $\bullet \ x_i = D_K(y_i) \oplus y_{i-1}, \ i \geq 2$

CBC Mode

- Identical plaintext blocks yield different ciphertext blocks this is very good!
- But what about errors in transmission?
 - If y_j is garbled to, say, G then
 - $\begin{array}{ll} \bullet & x_j \neq \mathit{D}_\mathit{K}(\mathit{G}) \, \oplus \, y_{j-1} \\ \bullet & x_{j+1} \neq \mathit{D}_\mathit{K}(y_{j+1}) \, \oplus \, \mathit{G} \end{array}$
 - But
 - $\bullet \quad x_{j+2} = D_K(y_{j+2}) \oplus y_{j+1}$
 - $\bullet \ x_{j+3} = D_K(y_{j+3}) \oplus y_{j+2}$
 - ...
 - Automatically recovers from errors!
 - One damaged block propagates to two blocks.
- Cut and paste is still possible, but more complex (and will cause garbles)

Alice likes CBC mode4

• Q: Why does it happen?

⁴Image Source Wikipedia:Block cipher mode of operation

IV: Initial Vector

- Does not have to be secret
- Should be a non-secret nonce (value used only once)

Counter Mode (CTR) mode

- Use block cipher like a stream cipher.
 - i.e., use the block cipher as a key stream generator
- The key stream is computed in a block wise fashion
- The input to the block cipher is a counter which assumes a different value every time the block cipher computes a new key stream block

- CTR is popular for random access.
- Preprocessing can greatly improve efficiency.
- Never recovers from IV errors.
- Critical not to reuse IV.
- No error propagation in case of loss or damage.

Counter Mode (CTR) mode

- Encryption
 - $y_i = E_k(IV // CTR_i) \oplus x_i$, $i \geq 1$
- Decryption
 - $x_i = E_k(IV // CTR_i) \oplus y_i$, $i \geq 1$

CTR Mode⁵

Counter (CTR) mode encryption

 $^{^{5}}$ Image Source Wikipedia:Block cipher mode of operation

Outline

- Encryption with Block Ciphers: Modes of Operation
- Exhaustive Key Search Revisited
- Increasing the Security of Block Ciphers

Exhaustive Key Search Revisited

- A simple exhaustive search for a DES key knowing one pair (x_1, y_1) :
- $DES_{k(i)}(x_1) \stackrel{?}{=} y_1$, i = 0,1,...,2⁵⁶-1
- However, for most other block ciphers a key search is somewhat more complicated
- A brute-force attack can produce false positive results
 - ullet keys k^i that are found are not the one used for the encryption

- The likelihood of this is related to the relative size of the key space and the plaintext space
- A brute-force attack is still possible, but several pairs of plaintext—ciphertext are needed

Exhaustive Key Search Revisited

- Assume a cipher with a block width of 64 bit and a key size of 80 bit
- If we encrypt x_1 under all possible 2^{80} keys, we obtain 2^{80} ciphertexts
 - However, there exist only 264 different ones
- If we run through all keys for a given plaintext-ciphertext pair, we find on average $2^{80}/2^{64}=2^{16}$ keys that perform the mapping $e_k(x_1)=y_1$
 - Given a block cipher with a key length of k bits and block size of n bits, as well as t plaintext-ciphertext pairs $(x_1,\ y_1),\ldots,(x_t,y_t)$, the expected number of false keys which encrypt all plaintexts to the corresponding ciphertexts is: 2^{k-tn}
- In this example assuming two plaintext-ciphertext pairs, the likelihood is $2^{80-2\times 64}$ = 2^{-48}
 - for almost all practical purposes two plaintext-ciphertext pairs are sufficient

Outline

- Encryption with Block Ciphers: Modes of Operation
- Exhaustive Key Search Revisited
- Increasing the Security of Block Ciphers
 - Double Encryption and Meet-in-the-Middle Attack
 - Triple Encryption
 - Key Whitening

Increasing the Security of Block Ciphers

- In some situations we wish to increase the security of block ciphers
- Two approaches are possible
 - Multiple encryption
 - theoretically much more secure, but sometimes in practice increases the security very little
 - Key whitening

Double Encryption

• A plaintext x is first encrypted with a key k_L , and the resulting ciphertext is encrypted again using a second key k_R

• Assuming a key length of k bits, an exhaustive key search would require $2^k \times 2^k = 2^{2k}$ encryptions or decryptions

Complexity of brute-force attack?

Naïve Approach

- $x_1 \stackrel{?}{=} e^{-1}_{k_{L,i}} (e^{-1}_{k_{R,j}} (y_1))$ $2^{56} \times 2^{56} = 2^{112}$ key tests \Rightarrow lifetime of universe :)
- Can we find a better attack?

Meet-in-the-Middle Attack

• Can we search for K_L and K_R separately?

$$ullet$$
 search for K_L search for K_R =2×2⁵⁶=2⁵⁷

Meet-in-the-Middle Attack

Meet-in-the-Middle Attack

• A Meet-in-the-Middle attack requires $2^k + 2^k = 2^{k+1}$ operations!

- **Phase I: Table Computation**: for the given (x_1, y_1) the left encryption is brute-forced for all $k_{L,i}$, $i=1,2,\ldots,2^k$ and a lookup table with 2^k entry (each n+k bits wide) is computed
 - the lookup table should be ordered by the result of the encryption $(z_{L,\,i})$
- **Phase II:** Key Matching: the right encryption is brute-forced (using decryption) and for each $z_{R,i}$ it is checked whether $z_{R,i}$ is equal to any $z_{L,i}$ value in the table of the first phase
 - \Rightarrow $(K_{L,i}, K_{R,j})$ are possible keys (K_L, K_R)
 - Note: sometimes we have to use a second pair (x_2, y_2) :

$$x_2 \stackrel{?}{=} e^{-1}_{k_{L,i}} (e^{-1}_{k_{R,i}} (y_2))$$

Meet-in-the-Middle Attack

- Computational Complexity
 - number of encryptions and decryptions = $2^k + 2^k = 2^{k+1}$
 - number of storage locations = 2^k
- Double encryption is not much more secure then single encryption!

Triple Encryption

- The encryption of a block three times $y = e_{k_3}(e_{k_2}(e_{k_1}(x)))$
- In practice a variant scheme is often used EDE (encryption-decryption-encryption) $y = e_{k_3} (e^{-1}_{k_2} (e_{k_1}(x)))$
 - Advantage: choosing k_1 = k_2 = k_3 performs single DES encryption
- Still we can perform a meet-in-the middle attack, and it reduces the effective key length of triple encryption from 3K to 2K
 - The attacker must run 2¹¹² tests in the case of 3DES

Triple encryption effectively doubles the key length

Key Whitening

- Makes block ciphers such as DES much more resistant against brute-force attacks
- In addition to the regular cipher key k, two whitening keys k_1 and k_2 are used to XOR-mask the plaintext and ciphertext

- It does not strengthen block ciphers against most analytical attacks such as linear and differential cryptanalysis
- It is not a "cure" for inherently weak ciphers
- Its main application is ciphers that are relatively strong against analytical attacks but possess too short a key space especially DES
- Most modern block ciphers such as AES already apply key whitening internally by adding a subkey prior to the first round and after the last round.

Lessons Learned

- There are many different ways to encrypt with a block cipher. Each mode of operation has some advantages and disadvantages
- Several modes turn a block cipher into a stream cipher
- There are modes that perform encryption together with authentication, i.e., a cryptographic checksum protects against message manipulation
- The straightforward ECB mode has security weaknesses, independent of the underlying block cipher
- The counter mode allows parallelization of encryption and is thus suited for high speed implementations
- Double encryption with a given block cipher only marginally improves the resistance against brute-force attacks
- Triple encryption with a given block cipher roughly doubles the key length
- Triple DES (3DES) has an effective key length of 112 bits
- Key whitening enlarges the DES key length without much computational overhead.