### Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Кафедра компьютерных технологий

# Применение графических процессоров для генерации управляющих автоматов на основе моделирования и сценариев работы с помощью эволюционных алгоритмов

Автор доклада: Бочкарев А.И.

Научный руководитель: Шалыто А.А.

#### Обзор предметной области

- Генетические алгоритмы
- Генетическое программирование
- Автоматное программирование
- Автоматическое построение управляющих автоматов

#### Актуальность

- Скорость построения недостаточно высока
- Долгое вычисление функции приспособленности
- Оптимизации алгоритмов, параллельность
- Ускорение при помощи использования GPU

#### Цель работы

- Разработать:
  - 1.Модернизированные структуры данных
  - 2. Модернизированные генетические операторы
  - 3. Модернизированные генетические алгоритмы
- Сравнить со старыми реализациями

#### Сравнение быстродействия

- Оценки эффективности генетических алгоритмов:
  - 1.Время получения результата
  - 2. Число вычислений функции приспособленности
- Оценки быстродействия модернизации:
  - 1. Число поколений, построенных за определенное время
  - 2.Скорость выполнения конкретных операций

#### Представление автоматов

Полные таблицы переходов



#### Представление автоматов

#### Деревья решений

```
... N left onext on the next of action of action of the next of th
```

```
position := 0;
for depth := 1 to MAX DEPTH
    currentParam := tree[position].parameter;
    position := currentParam && input[currentParam - 1] ?
tree[position].left : position;
    position := currentParam && !input[currentParam - 1] ?
tree[position].right : position;
nextState := tree[position].left;
nextAction := tree[position].right;
```

#### Виртуальная лаборатория



Главное окно лаборатории

### Результаты измерений для модификации задачи об умном муравье

• CPU: AMD Phenom II X4 955 3.20 GHz

GPU: AMD Radeon HD 6850Ti

| Размер<br>поколения | Обертка<br>OpenCL | OpenCL на<br>GPU | OpenCL на<br>CPU | C++  |
|---------------------|-------------------|------------------|------------------|------|
| 1024                | 7657              | 12620            | 7020             | 1032 |
| 3072                | 2611              | 5100             | 2320             | 337  |
| 4098                | 1960              | 3400             | 1760             | 268  |
| 16384               | 500               | 560              | 440              | 74   |

Число поколений, построенных за 30 секунд выполнения алгоритма

## Результаты измерений для задачи об Умном муравье 3 (сокращенные таблицы)

• CPU: AMD Phenom II X4 955 3.20 GHz

• GPU: AMD Radeon HD 6850Ti

| Размер<br>поколения | OpenCL на<br>GPU | OpenCL на<br>CPU | C++ |
|---------------------|------------------|------------------|-----|
| 3072                | 264.149          | 101.7            | -   |
| 16384               | 46.890           | 18.894           | -   |

Скорость вычисления функций приспособленности (число обработанных поколений в секунду)

### Результаты измерений для задачи об Умном муравье 3 (деревья решений)

• CPU: AMD Phenom II X4 955 3.20 GHz

• GPU: AMD Radeon HD 6850Ti

| Размер<br>поколения | OpenCL на<br>GPU | OpenCL на<br>CPU | C++ |
|---------------------|------------------|------------------|-----|
| 3072                | 87.625           | 57.686           | -   |
| 16384               | 20.194           | 10.346           | -   |

Скорость вычисления функций приспособленности (число обработанных поколений в секунду)

## Результаты измерений для задачи об Умном муравье 3 (деревья решений)

• CPU: AMD Phenom II X4 955 3.20 GHz

• GPU: AMD Radeon R9 270

| Размер<br>поколения | OpenCL на<br>GPU | OpenCL на<br>CPU | C++ | CPU+GPU |
|---------------------|------------------|------------------|-----|---------|
| 5120                | 22.4             | 12.8             | 3.1 | 25.2    |
| 16384               | 5.3              | 3.8              | 0.9 | 7.5     |

Скорость вычисления функций приспособленности (число обработанных поколений в секунду)

#### Заключение

- Решения, примененные в данной работе, могут быть использованы для решения других задач
- Возможно использовать мощности графического процессора в дополнение к центральному
- Платформа *OpenCL* является мощным инструментом, позволяющим производить эффективные вычисления на различных устройствах

Спасибо за внимание!

Вопросы?