

VinMin = 4.5V VinMax = 5.5V Vout = -27.0V Iout = 0.6A Device = LM25088MH-1/NOPB Topology = Inverting_Buck_Boost Created = 2019-06-26 14:44:51.406 BOM Cost = \$5.30 BOM Count = 27 Total Pd = 2.6W

WEBENCH® Design Report

Design: 16 LM25088MH-1/NOPB LM25088MH-1/NOPB 4.5V-5.5V to -27.00V @ 0.6A

> Vout = -27.0V lout = 0.6A Ruv2 10.0 kOhm 125.0 mW Cdthr 22.0 nF 1.0 mOhm L1 2.2 µH 20.0 mOhn D1 VF@lo= 850.0 mV VRRM= 100.0 V LM25088 Rramp 41.2 kOhm 125.0 mW 3.4 kOhm 2 125.0 mW 35.7 kOhm 125.0 mW Ruv1 3.57 kOhm 125.0 mW - CVCC 100.0 nF 1.0 mOhm Cin 820.0 nF 1.0 mOh ΟU 15.0 µF 2.842 mOhm Rt 4.75 kOhm 125.0 mW - C88 47.0 nF 1.0 mOh Rfbb 1.65 kOhm 125.0 mW

Electrical BOM

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cboot	Yageo	CC0805KRX7R9BB104 Series= X7R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
Ccomp	Samsung Electro- Mechanics	CL21C151JBANNNC Series= C0G/NP0	Cap= 150.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Ccomp2	Samsung Electro- Mechanics	CL21C140JBANNNC Series= C0G/NP0	Cap= 14.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Ccomp3	Samsung Electro- Mechanics	CL21C131JBANNNC Series= C0G/NP0	Cap= 130.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.10	0805 7 mm ²
Cdthr	MuRata	GRM216R71H223KA01D Series= X7R	Cap= 22.0 nF ESR= 1.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
Cft	MuRata	GRM219R71E683KA01D Series= X7R	Cap= 68.0 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
Cin	MuRata	GRM155R61A824KE15D Series= X5R	Cap= 820.0 nF ESR= 1.0 mOhm VDC= 10.0 V IRMS= 6.0 A	1	\$0.03	0402 3 mm ²
Cinx	Kemet	C0805C104M5RACTU Series= X7R	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 50.0 V IRMS= 1.64 A	1	\$0.01	0805 7 mm ²
Cio	TDK	C1608X5R1H105K080AB Series= X5R	Cap= 1.0 uF ESR= 5.522 mOhm VDC= 50.0 V IRMS= 2.2162 A	1	\$0.03	0603 5 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cout	TDK	C5750X7S2A156M250KB Series= X7S	Cap= 15.0 uF ESR= 2.642 mOhm VDC= 100.0 V IRMS= 5.6162 A	1	\$1.34	2220_280 54 mm²
Coutx	TDK	C2012X5R1H684K125AB Series= X5R	Cap= 680.0 nF ESR= 11.711 mOhm VDC= 50.0 V IRMS= 1.911 A	1	\$0.09	0805 7 mm ²
Cramp	Samsung Electro- Mechanics	CL21C111JBANNNC Series= C0G/NP0	Cap= 110.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.10	■ 0805 7 mm ²
Css	MuRata	GRM21BR71H473KA01L Series= X7R	Cap= 47.0 nF ESR= 1.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
Cvcc	Yageo	CC0805KRX7R9BB104 Series= X7R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
D1	Micro Commercial Components	SK310A-TP	VF@Io= 850.0 mV VRRM= 100.0 V	1	\$0.11	SMA 37 mm ²
L1	Wurth Elektronik	74437346022	L= 2.2 μH 20.0 mOhm	1	\$1.30	WE-LHMI_7030 74 mm ²
M1	Texas Instruments	CSD18543Q3A	VdsMax= 60.0 V IdsMax= 35.0 Amps	1	\$0.28	DNH0008A 18 mm ²
Rcomp	Vishay-Dale	CRCW080536K5FKEA Series= CRCWe3	Res= 36.5 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rcomp2	Panasonic	ERJ-6ENF3401V Series= ERJ-6E	Res= 3.4 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rfbb	Vishay-Dale	CRCW08051K65FKEA Series= CRCWe3	Res= 1.65 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rfbt	Vishay-Dale	CRCW080535K7FKEA Series= CRCWe3	Res= 35.7 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rramp	Vishay-Dale	CRCW080541K2FKEA Series= CRCWe3	Res= 41.2 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rsense	Stackpole Electronics Inc	CSR1206FK10L0 Series= ?	Res= 10.0 mOhm Power= 500.0 mW Tolerance= 1.0%	1	\$0.12	1206 11 mm ²
Rt	Panasonic	ERJ-6ENF4751V Series= ERJ-6E	Res= 4.75 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Ruv1	Panasonic	ERJ-6ENF3571V Series= ERJ-6E	Res= 3.57 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Ruv2	Vishay-Dale	CRCW080510K0FKEA Series= CRCWe3	Res= 10.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
U1	Texas Instruments	LM25088MH-1/NOPB	Switcher	1	\$1.50	•

MXA16A 59 mm²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	1.113 A	Capacitor	Input capacitor RMS ripple current
2.	Cin Pd	1.238 mW	Capacitor	Input capacitor power dissipation
3.	Cio IRMS	1.288 A	Capacitor	Input to output capacitor RMS ripple current
4.	Cio Pd	9.156 mW	Capacitor	Input to output capacitor power dissipation
5.	Cout IRMS	1.543 A	Capacitor	Output capacitor RMS ripple current
6.	Cout Pd	6.29 mW	Capacitor	Output capacitor power dissipation
7.	D1 Irms	2.936 A	Current	D1 Irms
8.	D1 Pd	533.766 mW	Diode	Diode power dissipation
9.	D1 PdCond	510.0 mW	Diode	Diode conduction losses
10.	D1 PdSw	23.766 mW	Diode	Diode switching losses
11.	D1 Tj	83.377 degC	Diode	D1 junction temperature
12.	IC lpk	9.4 mA	IC	Peak switch current in IC
13.	IC Pd	532.98 mW	IC	IC power dissipation
	IC Ti	51.319 degC	IC	IC junction temperature
	IC Tolerance	18.0 mV	iC	IC Feedback Tolerance
16.	lin Avg	4.177 A	IC	Average input current
17.	•	1.672 A	Inductor	Peak-to-peak output inductor ripple current
	L Pd	490.434 mW	Inductor	Inductor power dissipation
	L1 lpk	5.452 A	Inductor	Inductor peak current
	L1 Irms	3.147 A	Inductor	Inductor ripple current
	M1 Irms	1.135 A	Mosfet	M1 MOSFET Irms
22.	M1 Pd	798.571 mW	Mosfet	M1 MOSFET total power dissipation
23.	M1 PdCond	339.898 mW	Mosfet	M1 MOSFET conduction losses
24.		458.673 mW	Mosfet	M1 MOSFET switching losses
2 4 . 25.	M1 TjOP	73.922 degC	Mosfet	M1 MOSFET junction temperature
	IOUT_OP	600.0 mA	Op Point	lout operating point
20. 27.	_	4.5 V	•	
28.	VIN_OP Total Pd	2.598 W	Op Point Power	Vin operating point
				Total Power Dissipation
29.	Rsense Pd	26.213 mW	Resistor	LED Current Rsns Power Dissipation
30.	BOM Count	27	System	Total Design BOM count
0.4	0	04.050 111-	Information	De de alet anno com forman an
31.	Cross Freq	24.658 kHz	System	Bode plot crossover frequency
00	Destru Occalia	07.00/	Information	Dutamala
32.	Duty Cycle	87.0 %	System	Duty cycle
	=		Information	
33.	Efficiency	86.179 %	System	Steady state efficiency
			Information	
34.	FootPrint	389.0 mm ²	System	Total Foot Print Area of BOM components
			Information	
35.	Frequency	1000.0 kHz	System	Switching frequency
			Information	
36.	Gain Marg	18.445 db	System	Bode Plot Gain Margin
			Information	
37.	Mode	DCM	System	Conduction Mode
			Information	
38.	Phase Marg	45.695 deg	System	Bode Plot Phase Margin
	Ţ.	•	Information	
39.	Phase Shift	23.673 deg	System	Bode Plot Phase Shift
	-		Information	
40.	Total BOM	\$5.3	System	Total BOM Cost

#	Name	Value	Category	Description
41.	Vin p-p	513.472 mV	System	Peak-to-peak input voltage
			Information	
42.	Vout p-p	62.738 mV	System Information	Peak-to-peak output ripple voltage

Design Inputs

Name	Value	Description	
lout	600.0 m	Maximum Output Current	
VinMax	5.5	Maximum input voltage	
VinMin	4.5	Minimum input voltage	
VinTyp	5.5	Typical input voltage	
Vout	-27.0	Output Voltage	
base_pn	LM25088	Base Product Number	
source	DC	Input Source Type	
Та	30.0	Ambient temperature	

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 4.5V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

- 1. Master key: E56AD4253327D321[v1]
- 2. LM25088 Product Folder: http://www.ti.com/product/LM25088: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.