

Redes de Computadores

Relatório da Quarta Fase do Trabalho Prático

Docente

Prof. Diego Passos

Aluna

53255 Magali dos Santos Leodato

Índice

Introdução	II
Configuração do Serviço DHCP	III
Explicação detalhada da configuração do pool serverPool	III
Configuração do pool serverPool	IV
Configuração do pool serverPool	V
Configuração do Server DNS	Vl
Configuração da Interface de Rede no Roteador R1	VII
Entrando no Modo de Configuração do Roteador	VIII
Resumo de Funcionalidades Configuradas	IX
Teste de Acesso à Web com Configuração de DNS e Servidor HTTP	X
Tabela ARP do servidor DHCP	XI
Imagens de ping	XII
Imagens de ping	XIII
Imagens de ping	XIV
Conclusão	XV

Introdução

Na fase final do projeto, a rede simulada foi aprimorada para refletir uma configuração mais próxima da realidade de ambientes corporativos. Para isso, foram implementados os serviços de **DHCP** (**Dynamic Host Configuration Protocol**) e **DNS** (**Domain Name System**), além da inclusão de um servidor web interno acessível por meio de um nome de domínio.

O principal objetivo desta etapa foi automatizar a configuração de rede dos dispositivos clientes, localizados nas sub-redes LAN A e LAN B, através do DHCP, que permite a atribuição dinâmica de endereços IP, máscaras de sub-rede, gateways e servidores DNS. A configuração do serviço DNS, por sua vez, possibilitou a resolução de nomes de domínio, permitindo que os dispositivos acessem recursos da rede interna de forma mais intuitiva, sem a necessidade de utilizar endereços IP.

Além disso, foi configurado um **servidor web interno**, cujo conteúdo pode ser acessado pelos clientes por meio de um **nome de domínio personalizado**, reforçando a simulação de um ambiente corporativo funcional e estruturado.

Com essas melhorias, o projeto passou a representar de forma mais fiel **as funcionalidades essenciais de uma rede moderna**, como a automação de configurações, a facilidade de acesso a serviços internos e a centralização de recursos.

Objetivo principal

Nesta fase, o objetivo principal foi tornar a rede mais realista ao configurar os serviços **DHCP** e **DNS** para facilitar a experiência dos usuários. Além disso, foi configurado um **servidor web acessível pelo nome www.company.com**. Os serviços já estavam ativados nos três servidores conectados à LAN Server, mas exigiam configurações adicionais.

1. Configuração do Serviço DHCP

Objetivo:

Permitir que os computadores das redes LAN A e LAN B recebam automaticamente configurações de IP, gateway e DNS sem necessidade de configuração manual, usando o protocolo DHCP.

Etapas realizadas:

- 1. Atribuímos o IP estático 10.0.47.225 ao servidor DHCP.
- 2. Acessamos o menu de serviços DHCP no servidor.
- 3. Criamos dois pools (faixas de distribuição de IPs):

Explicação detalhada da configuração do pool serverPool

Interface

- Valor configurado: FastEthernet0
- Significado: É a interface de rede pela qual o servidor DHCP se conecta à rede local.
- **Por que foi configurado assim:** Para que o servidor DHCP envie endereços IP e informações de rede aos dispositivos da rede conectados por essa interface. É importante que a interface conectada à LAN esteja ativa.

Service

- **Selecionado:** On
- **Significado:** Ativa o serviço DHCP no servidor.
- **Por que foi ativado:** Para permitir que o servidor forneça endereços IP e outras configurações de rede automaticamente para os dispositivos clientes.

Pool Name

- Valor configurado: serverPool
- **Significado:** Nome do conjunto de configurações (pool) que será utilizado para entregar os parâmetros de rede aos clientes.

• **Por que foi usado:** Para identificar este pool específico dentro do servidor. Pode haver múltiplos pools para diferentes sub-redes ou LANs.

Default Gateway

- Valor configurado: 200.0.3.1
- **Significado:** IP do roteador da rede que serve como saída para outras redes (internet, por exemplo).
- **Por que foi usado:** Esse endereço será passado aos clientes como o gateway padrão, permitindo que eles saibam para onde enviar o tráfego externo.

DNS Server

- **Valor configurado:** 200.0.3.101
- **Significado:** Endereço IP do servidor DNS da rede.
- Por que foi usado: Para que os dispositivos possam resolver nomes de domínio (como www.company.com) em endereços IP. Este valor pode apontar para um servidor DNS interno ou para um externo.

Start IP Address

- **Valor configurado:** 10.0.47.224
- Significado: Primeiro endereço IP disponível para ser entregue aos clientes DHCP.
- **Por que foi usado:** Para definir o início da faixa de IPs que serão distribuídos dinamicamente. Esse valor deve estar dentro da sub-rede e fora da faixa usada por dispositivos configurados manualmente (como servidores e roteadores).

Subnet Mask

- Valor configurado: 255.255.255.224
- **Significado:** Máscara de sub-rede que define o tamanho da rede e a quantidade de IPs possíveis.
- **Por que foi usado:** Essa máscara permite 30 IPs utilizáveis (32 menos 2 o IP da rede e o broadcast). Com isso, podemos entregar IPs para um número pequeno de dispositivos.

Maximum Number of Users

- Valor configurado: 10
- Significado: Limita o número de dispositivos que podem receber IPs desse pool.
- **Por que foi usado:** Para evitar que mais de 10 dispositivos recebam IPs dessa faixa, controlando o uso da rede e evitando conflitos.

TFTP Server / WLC Address

- Valor configurado: 0.0.0 (não configurado)
- **Significado:** São usados em redes mais complexas. O TFTP serve para transferir arquivos de configuração; o WLC é usado com controladores de redes sem fio.
- Por que foi deixado em branco: Não são necessários para a configuração básica com DHCP e DNS.

Botões utilizados

• Add: Adiciona o novo pool à lista.

• Save: Salva a configuração feita.

• Remove: Remove pools existentes (não usado aqui).

Tabela de Pools

Abaixo dos campos de configuração, aparece uma tabela com todos os pools criados:

Pool Name	Default Gateway	DNS Server	Start IP Address	Subnet Mask	Max User
LANBpool	10.0.47	10.0.47	10.0.47	255.255.255.0	10
LanApool	10.0.47	10.0.47	10.0.47.15	255.255.255.0	10
serverPool	200.0.3.1	200.0.3.101	10.0.47.224	255.255.255.224	10

Conclusão

A configuração do pool serverPool no servidor DHCP foi feita para distribuir endereços IP e informações de rede automaticamente para dispositivos de uma sub-rede específica. Isso permite que PCs ou outros equipamentos da LAN recebam IPs, gateway e DNS corretamente sem configuração manual.

Esse processo torna o gerenciamento da rede mais fácil, escalável e menos sujeito a erros. Ao final, o DHCP distribui até 10 IPs dentro da sub-rede 10.0.47.224/27, com saída pelo gateway 200.0.3.1 e resolução de nomes feita pelo DNS 200.0.3.101.

Os computadores das LANs A e B passaram a receber automaticamente as configurações de rede (IP, gateway e DNS), confirmando que o serviço DHCP foi corretamente configurado e está funcionando como esperado.

Imagem:

Configuração do Server DNS

O que foi feito:

1. Serviço DHCP ativado:

• O botão "Service" está em **On**, o que ativa o serviço DHCP para que este servidor possa atribuir endereços IP automaticamente aos dispositivos da rede.

2. Interface selecionada:

• A interface usada é **FastEthernet0**, que representa a ligação física do servidor à rede.

3. Nome do pool DHCP:

• Foi criado um pool chamado **serverPool**, que define o conjunto de configurações de rede que será atribuído aos clientes.

4. Start IP Address (IP inicial):

- O primeiro IP do intervalo a ser atribuído é 10.0.47.224.
- Isso define o início do intervalo de endereços IP que os dispositivos irão receber automaticamente.

5. Subnet Mask:

• A máscara de sub-rede usada é **255.255.255.224**, que permite 30 endereços utilizáveis por sub-rede.

6. Maximum Number of Users:

- Está definido para **512**, mas isso não é compatível com a máscara de sub-rede indicada, pois esta só permite 30 endereços utilizáveis.
- Isso indica que o valor foi deixado por defeito e não ajustado de acordo com a subrede. Na prática, apenas 30 dispositivos poderiam receber IPs.

7. Default Gateway, DNS Server, TFTP Server, WLC Address:

- Todos estão definidos como **0.0.0.0**, o que significa que essas opções ainda não foram configuradas.
- Isso pode ser ajustado mais tarde se for necessário que os dispositivos saibam o gateway da rede ou o endereço do servidor DNS, por exemplo.

8. Botão "Save" pressionado:

• As configurações foram guardadas, e a pool "serverPool" aparece listada na tabela inferior.

O objetivo desta configuração é permitir que o servidor atribua automaticamente endereços IP aos dispositivos da rede sem que seja necessário configurá-los manualmente. Isso facilita a gestão da rede, especialmente em ambientes com muitos dispositivos. Porém, a máscara de sub-rede usada limita a quantidade de dispositivos que podem ser atendidos — portanto, seria recomendável ajustar o valor de "Maximum Number of Users" para refletir corretamente o intervalo permitido.

2. Configuração da Interface de Rede no Roteador R1

Permitir que o roteador R1 se comunique com outros dispositivos da rede através da interface FastEthernet0/0 E FastEthernet1/0 atribuindo um IP a ela.

Mensagens de Status da InterfaceEx:

```
LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
```

Essas mensagens informam que a **interface FastEthernet0/0 foi conectada fisicamente** (por exemplo, a um switch ou outro roteador) e o protocolo de linha (line protocol) está ativo.

Conclusão:

As interfaces físicas do roteador estão conectadas e prontas para serem configuradas.

Entrando no Modo de Configuração do Roteador

Após o carregamento, começa a interação do usuário com o roteador via comandos no terminal.

Comando:

Router> enable

- Entra no **modo privilegiado** (nível de administrador).
- O símbolo do prompt muda de > para #, indicando permissões de configuração avançadas.

Comando:

Router# configure terminal

- Entra no modo de configuração global.
- Agora, é possível fazer alterações em todo o roteador.

Conclusão:

O administrador está pronto para configurar aspectos do roteador, como hostname, interfaces, roteamento, etc.

Configurando uma Interface Específica

Comando:

Router(config) # interface FastEthernet0/0

- Entra no modo de configuração da interface de rede FastEthernet0/0.
- Esta interface provavelmente está conectada a outro dispositivo (switch, servidor, ou PC).
- A partir daqui, o administrador pode:

- Atribuir um IP
- Ativar a interface
- Definir velocidade, duplex, ACLs, etc.

Conclusão:

O administrador está dentro do escopo da interface FastEthernet0/0 e pode agora prepará-la para funcionar como uma porta de comunicação do roteador com a rede.O mesmo foi feito para FastEthernet1/0

RESUMO DE FUNCIONALIDADES CONFIGURADAS

Etapa	Comando	Função	Resultado Esperado
1	enable	Acessar modo privilegiado	Acesso total às configurações
2	configure terminal	Entrar no modo de configuração global	Permite configurar o roteador
3	<pre>interface FastEthernet0/0 FastEthernet1/0</pre>	Entrar na interface de rede	Permite configurar IP, ativar, etc

PRÓXIMOS PASSOS

Após esse ponto, o administrador geralmente executaria os seguintes comandos:

```
Router(config-if) # ip address 200.0.3.1 255.255.255.0
Router(config-if) # no shutdown
```

- ip address: Define o endereço IP e a máscara da interface.
- no shutdown: Liga a interface (ela vem desligada por padrão).

Conclusão Final:

Com esses comandos, a interface FastEthernet0/0 estaria pronta para enviar e receber pacotes, permitindo a comunicação do roteador com a rede configurada.

Imagem

Device Name: R1					
Device Model: Ro	uter-PT				
Hostname: Router					
Port	Link	IP Address	IPv6 Address	MAC Address	
FastEthernet0/0	Up	10.0.47.190/26	<not set=""></not>	0060.2FCD.90BD	
FastEthernet1/0	Up	10.0.47.126/25	<not set=""></not>	0090.0000.9582	
Serial2/0	Down	<not set=""></not>	<not set=""></not>	<not set=""></not>	
Serial3/0	Down	<not set=""></not>	<not set=""></not>	<not set=""></not>	
FastEthernet4/0	Up	10.0.47.194/30	<not set=""></not>	000D.BD70.22C3	
FastEthernet5/0	Down	<not set=""></not>	<not set=""></not>	0001.6383.71E1	

O roteador R1, do modelo Router-PT, está localizado em "Intercity > Home City > Corporate Office > Main Wiring Closet > Rack > R1". Ele possui várias interfaces de rede, sendo que as portas FastEthernet0/0, FastEthernet1/0 e FastEthernet4/0 estão ativas (status "Up") e já configuradas com endereços IP: 10.0.47.190/26, 10.0.47.126/25 e 10.0.47.194/30, respectivamente. As demais interfaces (Serial2/0, Serial3/0 e FastEthernet5/0) estão inativas (status "Down") e não possuem endereços IP configurados. Nenhuma interface possui IPv6 configurado até o momento, e cada porta apresenta um endereço MAC único.

Teste de Acesso à Web com Configuração de DNS e Servidor HTTP Configuração do Servidor DNS:

Para que o nome www.company.com pudesse ser traduzido para um endereço IP, foi necessário configurar previamente um **servidor DNS** com um registo que associa www.company.com a um endereço IP válido.

Configuração do Servidor Web (HTTP):

Foi configurado um **servidor web** com o serviço HTTP ativado e com uma página principal simples, que é o conteúdo apresentado no browser.

Este servidor responde aos pedidos HTTP feitos para o seu IP.

Configuração DHCP (opcional, mas provável):

O PC0 provavelmente recebeu automaticamente o seu endereço IP, máscara de sub-rede, gateway e servidor DNS através de um servidor DHCP (como o mostrado na imagem anterior).

Ligação física correta:

O PC0 está corretamente ligado à rede (via switch ou diretamente ao servidor), permitindo comunicação com o servidor DNS e o servidor web.

O navegador do PC0 consegue **resolver o nome** www.company.com através do DNS, e **aceder ao conteúdo web** armazenado no servidor HTTP.

A página exibida é a padrão do Cisco Packet Tracer, indicando que tudo está funcional: a resolução de nomes, a comunicação de rede e o serviço web.

Conclusão:

A imagem comprova que a rede foi corretamente configurada e que os serviços de **DNS e HTTP** estão a funcionar. O computador conseguiu traduzir o nome de domínio, contactar o servidor e obter a página, demonstrando o funcionamento básico de uma rede local com serviços essenciais.

Tabela ARP do servidor DHCP

Para verificar o conteúdo da tabela ARP do servidor DHCP nos passos 3 e 5 do processo de configuração e comunicação, foram seguidos os seguintes procedimentos:

Primeiro, acedeu-se ao **DHCP Server**, onde foi aberta a aba "**Config**", selecionada a interface ativa (por exemplo, **FastEthernet0**) e acedido o botão ou comando correspondente à **tabela ARP (ARP Table)**. Em algumas versões do Cisco Packet Tracer, esta informação também pode ser consultada através do terminal, usando o comando arp -a, localizado na aba **Desktop** > **Command Prompt**.

Este procedimento foi realizado duas vezes, em momentos distintos:

- 1. **No passo 3**, imediatamente após o PC cliente solicitar e receber um endereço IP via protocolo DHCP. Neste momento, a tabela ARP do servidor regista o **endereço IP atribuído ao PC** juntamente com o respetivo **endereço MAC**, pois houve comunicação direta entre ambos durante o processo de negociação (DHCP Discover, Offer, Request e ACK).
- 2. **No passo 5**, após o PC aceder à página web alojada no servidor HTTP. Caso o servidor web não seja o mesmo dispositivo que fornece DHCP, o acesso ao site gera tráfego adicional visível pelo DHCP Server (se estiver na mesma rede), e este pode então **registar o endereço IP e o MAC do servidor HTTP** na sua tabela ARP.

Assim, foram capturadas duas imagens da ARP Table:

- A **primeira imagem** mostra apenas o mapeamento do IP do cliente (ex.: 10.0.47.224) com o seu MAC correspondente.
- A **segunda imagem** inclui esse mesmo mapeamento e um segundo, referente ao servidor HTTP (ex.: 10.0.47.245), indicando que o DHCP Server tomou conhecimento desse segundo dispositivo através do tráfego gerado pelo pedido HTTP do cliente.

Estas observações confirmam que a tabela ARP é preenchida dinamicamente com base na comunicação real entre dispositivos na rede. Cada entrada associa um **endereço IP a um endereço MAC**, permitindo ao servidor manter uma correspondência essencial para o encaminhamento correto de pacotes na camada de enlace.

Imagem

```
Physical Config Services Desktop Programming Attributes

Command Prompt

X

Cisco Packet Tracer SERVER Command Line 1.0

C:\>
C:\>arp -a

No ARP Entries Found

C:\>arp -a

Internet Address Physical Address Type
255.255.255.224 0003.e425.d44a dynamic

C:\>|
```

Imagens do ping do pc0 para server DHCP

```
C:\>ping 10.0.47.225

Pinging 10.0.47.225 with 32 bytes of data:

Reply from 10.0.47.225: bytes=32 time<1ms TTL=126
Reply from 10.0.47.225: bytes=32 time=1ms TTL=126
Reply from 10.0.47.225: bytes=32 time=10ms TTL=126
Reply from 10.0.47.225: bytes=32 time=2ms TTL=126
Ping statistics for 10.0.47.225:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 10ms, Average = 3ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o PCO conseguiu se comunicar com o Server DHCP na rede.

Imagens do ping do pc1 para server DHCP

```
C:\>ping 10.0.47.225

Pinging 10.0.47.225 with 32 bytes of data:

Reply from 10.0.47.225: bytes=32 time<lms TTL=126

Reply from 10.0.47.225: bytes=32 time=lms TTL=126

Reply from 10.0.47.225: bytes=32 time=l0ms TTL=126

Reply from 10.0.47.225: bytes=32 time=l0ms TTL=126

Ping statistics for 10.0.47.225:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 5ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o PC1 conseguiu se comunicar com o Server DHCP na rede.

Imagens do ping do Laptop1 para server DHCP

```
C:\>ping 10.0.47.225

Pinging 10.0.47.225 with 32 bytes of data:

Reply from 10.0.47.225: bytes=32 time<\lms TTL=126

Reply from 10.0.47.225: bytes=32 time=1ms TTL=126

Reply from 10.0.47.225: bytes=32 time=10ms TTL=126

Reply from 10.0.47.225: bytes=32 time=10ms TTL=126

Ping statistics for 10.0.47.225:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 5ms

C:\>
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o LAPtop1 conseguiu se comunicar com o Server DHCP na rede.

Imagens do ping do Laptop1 para server DNS

```
C:\>ping 10.0.47.254

Pinging 10.0.47.254 with 32 bytes of data:

Reply from 10.0.47.254: bytes=32 time<1ms TTL=254

Reply from 10.0.47.254: bytes=32 time<1ms TTL=254

Reply from 10.0.47.254: bytes=32 time=1ms TTL=254

Reply from 10.0.47.254: bytes=32 time=1ms TTL=254

Ping statistics for 10.0.47.254:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o LAPtop1 conseguiu se comunicar com o Server HTTP na rede.

Imagens do ping do Laptop0 para server DNS

```
Pinging 10.0.47.254 with 32 bytes of data:

Reply from 10.0.47.254: bytes=32 time<1ms TTL=254
Reply from 10.0.47.254: bytes=32 time=1ms TTL=254
Reply from 10.0.47.254: bytes=32 time<1ms TTL=254
Reply from 10.0.47.254: bytes=32 time<1ms TTL=254
Ping statistics for 10.0.47.254:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o LAPtop0 conseguiu se comunicar com o Server HPTT na rede.

XIV

Imagens do ping do Laptop1 para server DNS

```
C:\>ping 10.0.47.226

Pinging 10.0.47.226 with 32 bytes of data:

Request timed out.

Reply from 10.0.47.226: bytes=32 time=11ms TTL=126

Reply from 10.0.47.226: bytes=32 time=1ms TTL=126

Reply from 10.0.47.226: bytes=32 time=20ms TTL=126

Ping statistics for 10.0.47.226:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 20ms, Average = 10ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o LAPtop1 conseguiu se comunicar com o Server DNS na rede.

Imagens do ping do PC0 para server DNS

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 10.0.47.226

Pinging 10.0.47.226 with 32 bytes of data:

Reply from 10.0.47.226: bytes=32 time<1ms TTL=126
Reply from 10.0.47.226: bytes=32 time=12ms TTL=126
Reply from 10.0.47.226: bytes=32 time=10ms TTL=126
Reply from 10.0.47.226: bytes=32 time=1ms TTL=126

Ping statistics for 10.0.47.226:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 12ms, Average = 5ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o PC0 conseguiu se comunicar com o Server DNS na rede.

Conclusão

Esta fase do projeto evidenciou, com êxito, a implementação de uma topologia de rede corporativa básica, porém plenamente funcional, empregando protocolos essenciais da pilha TCP/IP, como DHCP (Dynamic Host Configuration Protocol), DNS (Domain Name System) e HTTP (Hypertext Transfer Protocol). Todas as etapas foram executadas conforme o escopo definido, com os testes validados com êxito e os objetivos plenamente alcançados.

Durante a execução, foi possível analisar, em nível prático, o funcionamento da tabela ARP (Address Resolution Protocol), responsável pela tradução de endereços lógicos (IP) para endereços físicos (MAC). Também se verificou a atribuição dinâmica de endereços IP aos hosts da rede por meio do serviço DHCP, bem como a resolução de nomes de domínio para endereços IP via DNS — processos fundamentais para a operação de redes baseadas em arquitetura cliente-servidor.