Optimization with Single Variable

Ichiro Obara

UCLA

September 10, 2019

Optimization with Single Variable

Many problems in Economics can be expressed as some type of optimization problem. Here we study the most elementary optimization problem: maximizing a single variable function. In this slide, we assume that every function is a \mathcal{C}^1 function defined on some interval.

Maximum and Minimum

We usually look for x^* that maximizes or minimizes f. Such $(x^*, f(x^*))$ is called **maximum** or **minimum** of f respectively.

Definition: Maximum and Minimum

For function $f: X \to \Re$,

- $(x^*, f(x^*))$ is a **maximum** of f if $f(x^*) \ge f(x)$ for all $x \in X$.
- $(x^*, f(x^*))$ is a **local maximum** of f if $f(x^*) \ge f(x)$ for all $x \in X$ such that $|x x^*| < \epsilon$ for some $\epsilon > 0$.
- $(x^*, f(x^*))$ is a **minimum** of f if $f(x^*) \le f(x)$ for all $x \in X$.
- $(x^*, f(x^*))$ is a **local minimum** of f if $f(x^*) \le f(x)$ for all $x \in X$ such that $|x x^*| < \epsilon$ for some $\epsilon > 0$.

First Order Condition

We first consider the case where the domain X of f is an open interval (a, b).

Remember the following fact: f is strictly increasing (resp. decreasing) at x if f'(x) > 0 (resp. f'(x) < 0). This means that the derivative of f must be 0 at any maximum (or minimum) point.

Theorem: First Order Condition

If f has a maximum (or a minimum) at $x^* \in (a, b)$, then $f'(x^*) = 0$.

 $f'(x^*) = 0$ is called the **first order condition (FOC)**.

Second Order Condition

FOC is a <u>necessary condition</u> for any maximum, but not a <u>sufficient condition</u>. A point satisfying FOC can correspond to a (local) maximum, a (local) minimum, or neither.

If f is twice differentiable, then we can say a bit more about f's behavior around the point satisfying FOC.

Second Order Condition

Theorem: Second Order Condition

Suppose that $f:(a,b)\to\Re$ is twice differentiable and $f'(x^*)=0$ at $x^*\in(a,b)$.

- If f has a local maximum at x^* , then $f''(x^*) \le 0$.
- If $f''(x^*) < 0$, then f has a local maximum at x^* .
- If f has a local minimum at x^* , then $f''(x^*) \ge 0$.
- If $f''(x^*) > 0$, then f has a local minimum at x^* .

Proof

- The 2nd statement: If $f''(x^*) < 0$, then f' is strictly decreasing in $(x^* \epsilon, x^* + \epsilon)$ for some $\epsilon > 0$. So f' < 0 below x^* and f' > 0 above x^* . Now suppose that, say, there exists $x' \in (x^*, a + \epsilon)$ such that $f(x^*) \leq f(x')$. Then there must be $\hat{x} \in (x^*, x')$ such that $f(x') = f(x^*) + f'(\hat{x})(x' x^*)$ by the mean value theorem. But this contradicts $f'(\hat{x}) < 0$. Hence x^* is in fact the unique local maximum around x^* .
- Then the 3rd statement follows from x^* being the unique local maximum.
- The proof of the 4th statement, then the 1st statement is exactly the same.

Optimization on Closed Interval

Next we consider an optimization over closed intervals: X = [a, b].

One important difference between this case and the previous case is that the existence of a maximum is guaranteed. To show this, we take for granted the following not-so-obvious fact about sequences.

Weierstrass Theorem

A bounded sequence in \Re has a convergent subsequence.

Extreme Value Theorem

We can apply WT to prove the existence of maximum and minimum.

Extreme Value Theorem

A continuous function $f:[a,b] o \Re$ has a maximum and a minimum in [a,b]

We use the following property of real number. For any $X \subset \in \Re$, there exists $\sup X$ (least upper bound) and $\inf X$ (largest lower bound). $\sup X$ is a number such that $x \leq \sup X$ for any $x \in X$ and for any ϵ , there exists $x \in X$ such that $x > \sup X - \epsilon$ (similar definition for $\inf X$). For example, for $X = \left\{1 - \frac{1}{n}\right\}_{n=1,2,\ldots}$, $\sup X = 1$ and $\inf X = 0$.

Proof (for maximum only)

- Let $M = \sup_{[a,b]} f(x)$. Then there exists a sequence $\{x_n\}_n$ in [a,b] such that $f(x_n) \to M$.
- There is a convergent subsequence by Weierstrass theorem, which we still denote by $\{x_n\}_n$, that converges to some x^* . Note that $x^* \in [a, b]$.
- Since f is continuous, $M = \lim_{n \to \infty} f(x_n) = f(x^*)$. Clearly f has a maximum at x^* .

Necessary Condition for Maximum

When f is maximized over [a,b], $f'(x^*)=0$ does not necessarily hold if f achieves a maximum at $x^*=a$ or $x^*=b$. It is possible that $f(x^*)\leq 0$ if $x^*=a$ and $f(x^*)\geq 0$ if $x^*=b$. The next theorem summarizes this observation and describes how FOC needs to be modified in this case.

Theorem: Necessary Condition on Closed Interval

Suppose that $f:[a,b]\to\Re$ has a maximum at $x^*\in[a,b]$. Then one of the following conditions must hold:

- $x^* \in (a, b)$ and $f'(x^*) = 0$
- $x^* = a$ and $f(x^*) < 0$
- $x^* = b$ and $f(x^*) \ge 0$

Average Cost and Marginal Cost

Consider a firm with cost function F + C(q), where F is the fixed cost to start production. Let $AC(q) = \frac{F + C(q)}{q}$ be the **average cost** and MC(q) = C'(q) be the **marginal cost**. Assume C'' > 0, so the marginal cost is increasing.

What is the production level \underline{q} that minimizes the average cost? Solve $\min_{q \in (0,\infty)} AC(q)$. The first order condition is

$$AC'(q) = \frac{MC(q)q - F - C(q)}{q^2} = \frac{MC(q) - AC(q)}{q}$$

Hence MC(q) = AC(q) at \underline{q} . It is easy to see that AC'(q) < 0 for q below \underline{q} and AC'(q) > 0 for q above q.

Monopoly Price

A monopoly firm of some product sets price p to maximize its profit pD(p)-cD(p), where $D(\cdot)$ is the demand function and c>0 is the marginal cost.

The firm solves $\max_{p \in [0,\infty)}$. The first order condition is given by

$$D(p) + pD'(p) - cD'(p) = 0$$

Hence $-\mathcal{E}(q,p)|_{p=p^*}=\frac{p^*-c}{p^*}$ holds at profit-maximizing p^* (assuming that it exists), which means that the demand elasticity at the optimal price is equal to the profit margin adjusting its sign.

Exercises

- **①** Find an example of $f:\Re_+\to\Re$ such that f does not have any maximum in \Re_+ .
- Solve the following optimization problems.
 - $\max_{x \in \Re_{++}} f(x) = \ln x 3x$
 - $\max_{x \in \Re_+} f(x) = -x^3 + 4x^2 5x 2$
- **3** A consumer can use a part of her wealth w=10 to buy some product at price p>0. Suppose that her **utility** when purchasing $x\in\left[0,\frac{10}{p}\right]$ units of the product is given by $\frac{2x}{x+1}+10-px$. Find her utility-maximizing consumption x(p) as a function of price.

Concave and Convex Function

Let $f: X \to \Re$ be a function on some interval X.

Concave and Convex Function

- f is **concave** if $f((1-a)x + ay) \ge (1-a)f(x) + af(y)$ for every $x, y \in X$ and $a \in [0,1]$.
- f is **strictly concave** if f((1-a)x + ay) > (1-a)f(x) + af(y) for every $x \neq y \in X$ and $a \in (0,1)$.
- f is **convex** $f((1-a)x + ay) \le (1-a)f(x) + af(y)$ for every $x, y \in X$ and $a \in [0,1]$.
- f is **strictly convex** if f((1-a)x + ay) < (1-a)f(x) + af(y) for every $x \neq y \in X$ and $a \in (0,1)$.

A few useful facts: (we postpone the proof to the part on multivariate calculus).

- If f is twice differentiable and $f''(x) \le 0$ for all $x \in X$, then f is concave.
- f is a concave function if and only if $f(y) \le f(x) + f'(x)(y-x)$ for any $x,y \in X$

They are intuitive. $f''(x) \le 0$ means that the slope is always decreasing. The condition in the second statement means that the linear approximation of a concave function always lies above the function.

Note: Of course similar results hold for convex functions. Note that f is convex if and only if -f is concave.

Sufficiency

We've learned the first order condition (and its modified version for the case with the closed interval) is <u>necessary</u> for a maximum. So we may not be sure which of the points satisfying these conditions is a maximum.

They turn out to be <u>sufficient</u> if the objective function f is concave. So if we find a solution for the first order condition, then we know that it is a maximum.

FOC is Sufficient with Concavity

Theorem: Sufficiency

Suppose that f is a concave function.

- If $f'(x^*) = 0$ at $x^* \in (a, b)$, then f takes a maximum at x^* on (a, b).
- If (a) $f'(x^*) \le 0$ and $x^* = a$ or (b) $f'(x^*) \ge 0$ and $x^* = b$, then f takes a maximum at x^* on [a, b]

Proof

Just for the first one. Since f is concave, $f(x) \le f(x^*) + f'(x^*)(x - x^*) = f(x^*)$ for every $x \in (a, b)$. Hence f takes a maximum at x^* on (a, b).

Another Sufficiency Condition

Here is another condition that guarantees the sufficiency of FOC.

Theorem 2: Sufficiency

Suppose that $f:(a,b)\to\Re$ satisfies the FOC f'(x)=0 only at $x=x^*$ and $f''(x^*)<0$. Then f has a maximum at x^* .

Proof

- Suppose that f does not take a maximum at x^* . Then there exists a point such as, say, $x' \in (x^*, b)$ with $f(x') > f(x^*)$.
- Since $f''(x^*) \le 0$, f'(x) < 0 for nearby x above x^* . Then f must take a minimum on $[x^*, x']$ at some point $\hat{x} \ne x^*, x'$.
- Then $f'(\hat{x}) = 0$ must hold, which is a contradiction.

Exercises

- Prove the following statements:
 - ▶ If f is a concave function, then -f is a convex function.
 - ▶ If f and g are concave, then f + g is a concave.
 - ▶ If *f* is concave and convex, then *f* must be a linear function.
- ② Solve $\max_{x \in \Re} 2xe^{-x}$.