

本案例以北京市二手房为研究对象,通过统计分析探究学区房、地铁房、房屋面积等相关因素对二手房房价的影响作用,建立了考虑"城区×学区"交互效应的对数线性模型来刻画各因素与单位面积房价的关联。结论表明区位因素和房屋的内部因素对于二手房房价都有显著影响,各城区的"学区优势"对单位面积房价的影响略有区别。

背景介绍

- ▶ 北京市房地产市场是我国房地产市场中最为发达,也 是最具有代表性的房地产市场之一。
- 什么样的因素影响着北京市商品房的销售价格?
- ▶ 价格上的巨大差异又是怎样产生的?
- ▶ 本案例收集了北京城内六区16210套在售二手房相关 数据,试图揭开影响房价因素的神秘面纱!

,

目录

数据来源和说明

描述性分析

▶ 区位因素:城区、地铁、学区

内部因素:卧室数、是否有客厅、面积、楼层

数据建模

▶ 简单线性模型:解读→诊断→因变量取对数

▶ 对数线性模型:解读→关心位置因素→城区与学区交互

▶ 带有交叉项的模型:解读→关于学区的有趣现象

预测

结论和建议

数据来源和说明

- ▶ 数据来自某二手房中介网站
- ▶ 2016年5月,北京在售二手房的相关数据
- ▶ 样本量n=16210

3

数据来源和说明

变量类型		变量名	详细说明	取值范围	备注
因变量		单位面积 房价	单位:万元/ 平方米	1.83~14.98	
自变量	内部因素	房屋面积	单位:平方米	30.06~299.00	
		数室倒	单位:个	1~5	
		厅数	单位:个	0~3	建模处理成 是否有客厅
		所属楼层	定性变量 共3个水平	低楼层、中楼层、高楼层	相对楼层
	区位因素	所属城区	定性变量 共6个水平	朝阳、东城、丰台、 海淀、石景山、西城	
		是否邻近地铁	定性变量 共2个水平	1代表邻近地铁 0代表不邻近地铁	82.78% 邻近地铁
		是否学区房	定性变量 共2个水平	1代表学区房 0代表非学区房	30.31% 是学区房

因变量:单位面积房价

- 均值:6.12万元/平方米
- · 中位数:5.74万元/平方米
- · 最小值: 1.83万元/平方米
- 丰台区东山坡三里的一间两居室
- ▶ 总面积100.83平米
- ▶ 最大值:14.99万元/平方米
- 西城区金融街的一套三室一厅
- 总面积77.40平米

▶ 房屋面积与单位面积房价存在一定▶ 的负相关(相关系数=-0.07且显著)

▶ 同等面积房屋的单位面积房价波动较大,尤其是100平米以下的房屋

▶ 猜测:受到其他因素的影响(比如:是 否为学区房、是否为地铁房等)

9

可能影响单位面积房价的因素:

•区位因素:城区、地铁、学区

• 内部因素: 卧室数、是否有客厅、

面积、楼层

城区-丰台 0.131 0.001 城区-朝阳 0.875 <.0001 城区-东城 2.443 <.0001 基准组:石景山区 <.0001 城区-海淀 2.191 城区-西城 3,705 <.0001 学区房 1.183 <,0001 地铁房 0.001 楼层-中层 0.152 <.0001 基准组:高层 楼层-低层 0.198 <.0001 有效厅 0.163 < 0001 卧室数 0.111 <.0001 <.0001 房间面积 -0.002

线性回归模型 (因变量:单位面积房价)

小结

TI

线性回归模型:结果解读

控制其他因素不变时

- 城区:石景山区单位面积房价最低,西城区单位面积房价最高,比石景山区每平米平均高出3.70万元
- ▶ 学区房比非学区房单位面积房价平均高出1.18万元
- 地铁房比非地铁房单位面积房价平均高出6720元
- 高层房屋单位面积房价最低,其次是中层,低层房屋单位面积房价最高
- 有客厅的房子单位面积房价更高
- ▶ 卧室数每增加一间,单位面积房价平均增加1110元
- 房屋面积的增加会带来单位面积房价的降低

线性回归模型:模型诊断

随着预测值的增大, 残差的波动也随之增大

→ "异方差" 现象

解决方案: 对因变量(单位面积

房价)取对数

14

对数线性模型 (因变量:对数房价)

备注	₽Œ	回归系数(×10·1)	变量
	<.0001	12.360	截距项
	<.0001	0.441	城区-丰台
	<.0001	2.057	城区-朝阳
基准组:石景山区	<.0001	4.577	城区-东城
	<.0001	4.320	城区-海淀
	<.0001	6.270	城区-西城
	<.0001	1.719	学区房
	<.0001	1.282	地铁房
基准组:高层	<.0001	0.152	楼层-中层
都准组: 周辰	<.0001	0.198	楼层-低层
	0.001	0.275	有客厅
	<.0001	0.140	卧室数
	<.0001	-0.003	房间面积
0.6079	调整的R2	p值<.0001	F检验

13

对数线性模型:模型诊断

1

对数线性模型: 结果解读

- · 与线性模型不同,对数线性模型的系数估计解读为"增长率"
- 控制其他因素不变时
 - 城区:石景山区单位面积房价最低,西城区单位面积房价最高,比石景山区平均贵 62,70%
 - · 学区房比非学区房单位面积房价平均贵17.19%
 - 地铁房比非地铁房单位面积房价平均贵12.82%
 - 高层房屋单位面积房价最低,其次是中层,低层房屋单位面积房价最高
 - · 有客厅的房子单位面积房价更高,平均贵2.75%
 - 卧室数每增加一间,单位面积房价平均增加1.40%
 - 房屋面积的增加会带来单位面积房价的降低

交互模型 (对数线性模型)

- 根据描述分析结果发现,不同的城区、是否为学区房的房价有非常明显的差异
- 因此,在对数线性模型的基础上,考虑更为复杂的情况:城区和学区的交互作用
- ▶ 交互效应: 城区*学区

17

变量	回归系数(×10·1)	P值	备注	
截距项	12.410	<.0001		
城区-丰台	0.429	<.0001		
城区-朝阳	2.184	<.0001	基准组:石景山区	
城区-东城	4.467	<.0001		
城区-海淀	4.121	<.0001		
城区-西城	6.177	<.0001		
学区房	-1.800	<.0001		
地铁房	1.257	<.0001		
楼层-中层	0.263	<.0001	WHAT WERE	
楼层-低层	0.343	<.0001	墓准组:高层	
有客厅	0,270	0.001		
微室倒	0.140	<.0001		
房间面积	-0.003	<.0001		
丰台*学区	2.948	<.0001		
朝阳*学区	2.780	<.0001		
东城*学区	3.706	<.0001		
海淀*学区	3.876	<.0001		
西城*学区	3.638	<.0001		
F检验	p值<.0001	调整的R2	0.6108	

交互模型: 结果解读 2/1

▶ 学区系数估计变成负数 → 石景山区: 学区房比非学区房的单位面积房价低!

的年14回代方7/170

数据原因:来自石景山区的样本中,学区房比例极低

城区	样本量	学区房占比(%
石景山	1947	0.92
事台	2947	3.18
中月7日	2864	20.84
东城	2783	45.81
海淀	2919	47.48
西城	2750	56.10

分城区的学区房单位面积房价对比

> 客观原因:

石景山区的学区资源 在6个城区中相对较差

交互模型: 结果解读 2/2

整体而言(不考虑学区因素),西城区与海淀区的单位 面积房价之比

▶ 对数线性模型: e^{0.627-0.432} = e^{0.195} = 1.215

学区房房价哪家强?

学区房:西城区与海淀区的单位面积房价之比
□ 交互模型: e^{0.617+0.363-0.412-0.387} = e^{0.181} = 1.198

非学区房:西城区与海淀区的单位面积房价之比
 □ 交互模型: e^{0.617·0.412} = e^{0.205} = 1.228

结论:交互模型能发现更多信息!

22

预测

- ▶ 假想:一家三口,为了孩子在西城区上学,想买一套邻近 地铁的两居室,面积是85平方米,低层楼层
- 根据交互模型,预测的单位面积房价是9.29万元/平方米,总价789.78万元

结论和建议

- 影响北京市二手房单位面积房价的主要因素有:
 - ▶ 区位因素:城区、地铁、学区
 - ▶ 内部因素:卧室数、是否有客厅、面积、楼层
- 使用对数线性模型,可以克服数据中存在的异方差问题
- ▶ 使用交互模型,能带来更好的模型解读
 - ▶ "学区优势"对各城区单位面积房价的影响有所区别

23

未来研究方向

- ▶ 房价的影响因素诸多,应在模型中加入更多因素:
- 小区位置(如:地处几环?)
- ▶ 小区环境(如:绿化情况)
- ▶ 周边配套(如:商圈、医院,等等)
- >
- ▶ 若要推广到其他城市,还可进一步考虑城市特有因素 (如:是否为海景房等)

- 本案例对2016年5月北京市部分在售二手房的房价数据进行统计分析,得到如下结论:
- 影响北京市二手房单位面积房价的主要因素有: (1)区位因素: 城区、地铁、学区; (2)内部 因素: 卧室数、是否有客厅、面积、楼层。
- "学区优势"对各城区单位面积房价的影响有所 区别。海淀、西城、东城、丰台和朝阳区的学区 房房价明显高于非学区房的房价;但石景山区的 学区房房价比非学区房的房价低。

25

• 由于房价的影响因素有很多,因此再未来的研究中可以考虑在模型中加入更多因素,比如小区位置(地处几环)、小区环境(如绿化情况、容积率,等等)、周边配套设施(如商圈、医院,等等)等。另外,若要将模型推广到其他城市,还要进一步考虑城市特有因素(如:在旅游城市是否为海景房等)。