Lab 13 19-10-2022

October 19, 2022

1 Decision Tree

```
[1]: import numpy as np import matplotlib.pyplot as plt import pandas as pd
```

1.1 Load Dataset

```
[2]: df = pd.read_csv('iris.csv')
print(df)
```

	sepal_length	${\tt sepal_width}$	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
	•••	•••	•••		
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

[3]: df.species.value_counts()

[3]: setosa 50 versicolor 50 virginica 50

Name: species, dtype: int64

1.2 Preprocessing

```
[4]: y=df['species']
     print(y)
     df=df.drop(['species'],axis=1)
     x= df
     print(x)
    0
               setosa
    1
               setosa
    2
               setosa
    3
               setosa
    4
               setosa
            virginica
    145
    146
            virginica
    147
            virginica
    148
            virginica
    149
            virginica
    Name: species, Length: 150, dtype: object
         sepal_length sepal_width petal_length petal_width
                   5.1
    0
                                                1.4
                                                              0.2
                                 3.5
                   4.9
                                                              0.2
    1
                                 3.0
                                                1.4
                   4.7
    2
                                 3.2
                                                1.3
                                                              0.2
    3
                   4.6
                                 3.1
                                                1.5
                                                              0.2
                                 3.6
    4
                   5.0
                                                              0.2
                                                1.4
    145
                   6.7
                                 3.0
                                                5.2
                                                              2.3
    146
                   6.3
                                 2.5
                                                5.0
                                                              1.9
                   6.5
                                                5.2
                                                              2.0
    147
                                 3.0
    148
                   6.2
                                 3.4
                                                5.4
                                                              2.3
    149
                   5.9
                                 3.0
                                                5.1
                                                              1.8
    [150 rows x 4 columns]
[5]: x.describe()
            sepal_length
                           sepal_width petal_length petal_width
              150.000000
                             150.000000
                                            150.000000
                                                          150.000000
     count
```

```
[5]:
                 5.843333
                               3.054000
                                              3.758667
                                                            1.198667
     mean
     std
                 0.828066
                               0.433594
                                              1.764420
                                                            0.763161
     min
                 4.300000
                               2.000000
                                              1.000000
                                                            0.100000
     25%
                 5.100000
                               2.800000
                                              1.600000
                                                            0.300000
     50%
                 5.800000
                               3.000000
                                              4.350000
                                                            1.300000
     75%
                 6.400000
                               3.300000
                                              5.100000
                                                            1.800000
```

4.400000

7.900000

max

6.900000

2.500000

1.3 Test & Train

1.3.1 Split Dataset

```
[6]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25,__
arandom_state=0)
```

1.3.2 Feature Scaling

```
[7]: from sklearn.preprocessing import MinMaxScaler
st_x= MinMaxScaler()
x_train= st_x.fit_transform(x_train)
x_test=st_x.fit_transform(x_test)
print(x_train)
```

```
[[0.4444444 0.41666667 0.53448276 0.58333333]
Γ0.41666667 0.25
                        0.5
                                   0.458333331
[0.69444444 0.41666667 0.75862069 0.83333333]
Γ0.11111111 0.5
                        0.03448276 0.04166667]
[0.7222222 0.45833333 0.68965517 0.91666667]
 [0.19444444 0.625
                        0.0862069 0.20833333]
[0.30555556 0.70833333 0.06896552 0.04166667]
Γ0.19444444 0.
                        0.4137931 0.375
[0.61111111 0.41666667 0.75862069 0.70833333]
[0.66666667 0.54166667 0.79310345 1.
[0.4722222 0.08333333 0.67241379 0.58333333]
[0.66666667 0.20833333 0.81034483 0.70833333]
[0.36111111 0.20833333 0.48275862 0.41666667]
[0.94444444 0.41666667 0.86206897 0.91666667]
[0.55555556 0.54166667 0.62068966 0.625
[0.33333333 0.16666667 0.46551724 0.41666667]
[0.55555556 0.29166667 0.65517241 0.70833333]
[0.55555556 0.33333333 0.68965517 0.58333333]
[0.16666667 0.20833333 0.5862069 0.66666667]
[0.55555556 0.20833333 0.67241379 0.75
             0.5
                        0.62068966 0.54166667]
 [0.61111111 0.41666667 0.70689655 0.79166667]
[0.4722222 0.58333333 0.5862069 0.625
[0.13888889 0.45833333 0.0862069 0.04166667]
[0.41666667 0.29166667 0.68965517 0.75
[0.36111111 0.29166667 0.53448276 0.5
                                             ٦
[0.36111111 0.375
                        0.43103448 0.5
                                             ٦
[0.33333333 0.20833333 0.5
                                   0.5
                                             ٦
Γ0.5
             0.41666667 0.60344828 0.54166667]
                        0.84482759 0.708333331
[0.8055556 0.5
[0.27777778 0.70833333 0.06896552 0.04166667]
ГО.
            0.41666667 0.
                                   0.
                                             ٦
```

```
[0.58333333 0.29166667 0.72413793 0.75
[0.38888889 0.41666667 0.53448276 0.45833333]
[0.30555556 0.58333333 0.10344828 0.04166667]
Γ0.38888889 1.
                       0.06896552 0.125
[0.7222222 0.45833333 0.65517241 0.58333333]
[0.08333333 0.45833333 0.06896552 0.04166667]
[0.4444444 0.41666667 0.68965517 0.70833333]
[0.2222222 0.20833333 0.32758621 0.41666667]
[0.08333333 0.58333333 0.05172414 0.08333333]
[0.52777778 0.08333333 0.5862069 0.58333333]
[0.80555556 0.66666667 0.86206897 1.
[0.38888889 0.375
                       0.53448276 0.5
                                            ٦
[0.13888889 0.41666667 0.05172414 0.
[0.77777778 0.41666667 0.82758621 0.833333333]
[0.7222222 0.5
                       0.79310345 0.91666667]
[0.61111111 0.41666667 0.81034483 0.875
[0.58333333 0.33333333 0.77586207 0.83333333]
[0.2222222 0.75
                       0.0862069 0.04166667]
[0.13888889 0.58333333 0.0862069 0.04166667]
Γ0.61111111 0.5
                       0.68965517 0.791666671
[0.66666667 0.54166667 0.79310345 0.83333333]
[0.0555556 0.125
                       0.03448276 0.08333333]
[0.52777778 0.58333333 0.74137931 0.91666667]
[0.16666667 0.41666667 0.05172414 0.04166667]
[0.38888889 0.20833333 0.67241379 0.79166667]
[0.7222222  0.45833333  0.74137931  0.83333333]
[0.02777778 0.5
                       0.03448276 0.04166667]
[0.19444444 0.66666667 0.05172414 0.04166667]
[0.80555556 0.41666667 0.81034483 0.625
[0.2222222 0.625
                       0.05172414 0.08333333]
[0.02777778 0.41666667 0.03448276 0.04166667]
[0.30555556 0.79166667 0.10344828 0.125
[0.33333333 0.125
                       0.5
                                  0.5
                                             ٦
                       0.82758621 0.91666667]
Γ0.69444444 0.5
[0.91666667 0.41666667 0.94827586 0.83333333]
[0.2222222 0.625
                       0.05172414 0.04166667]
[0.16666667 0.45833333 0.06896552 0.
[0.25]
            0.58333333 0.05172414 0.04166667]
[0.38888889 0.33333333 0.5862069 0.5
[0.63888889 0.41666667 0.56896552 0.54166667]
[0.19444444 0.5
                       0.01724138 0.04166667]
[0.2222222 0.54166667 0.10344828 0.16666667]
[0.58333333 0.375
                       0.55172414 0.5
[0.30555556 0.58333333 0.06896552 0.125
[0.9444444 0.25
                                  0.91666667]
                       1.
[0.16666667 0.16666667 0.37931034 0.375
Г1.
            0.75
                       0.9137931 0.79166667]
[0.66666667 0.45833333 0.56896552 0.54166667]
```

```
[0.25]
            0.875
                       0.06896552 0.
[0.4722222  0.41666667  0.63793103  0.70833333]
[0.41666667 0.83333333 0.01724138 0.04166667]
[0.94444444 0.33333333 0.96551724 0.79166667]
[0.2222222 0.75
                       0.06896552 0.083333331
[0.11111111 0.5
                       0.0862069 0.041666671
[0.86111111 0.33333333 0.86206897 0.75
[0.19444444 0.54166667 0.05172414 0.04166667]
[0.5555556 0.58333333 0.77586207 0.95833333]
[0.38888889 0.33333333 0.51724138 0.5
[0.41666667 0.29166667 0.48275862 0.45833333]
[0.38888889 0.25
                       0.4137931 0.375
[0.58333333 0.5
                       0.72413793 0.91666667]
[0.66666667 0.41666667 0.70689655 0.91666667]
[0.55555556 0.20833333 0.65517241 0.58333333]
[0.66666667 0.41666667 0.67241379 0.66666667]
[0.19444444 0.41666667 0.0862069 0.04166667]
[0.33333333 0.16666667 0.44827586 0.375
[0.66666667 0.45833333 0.77586207 0.95833333]
[0.41666667 0.29166667 0.68965517 0.75
[0.2222222 0.58333333 0.06896552 0.04166667]
[0.63888889 0.375
                       0.60344828 0.5
[0.36111111 0.41666667 0.51724138 0.5
[0.4444444 0.5
                       0.63793103 0.708333331
[0.55555556 0.125
                       0.56896552 0.5
[0.3333333 0.625
                       0.03448276 0.04166667]
[0.2222222 0.70833333 0.06896552 0.125
[0.16666667 0.45833333 0.06896552 0.
                                            ]
[0.5555556 0.375
                       0.77586207 0.70833333]
[0.41666667 0.29166667 0.51724138 0.375
[0.9444444 0.75
                       0.96551724 0.875
[0.08333333 0.5
                       0.05172414 0.04166667]]
```

1.3.3 Fitting to Decision Tree

```
[8]: from sklearn import tree classifier = tree.DecisionTreeClassifier(criterion = 'entropy', random_state = 0) classifier.fit(x_train, y_train)
```

[8]: DecisionTreeClassifier(criterion='entropy', random_state=0)

1.4 Visualisation

```
[9]: plt.figure(figsize = (12,8))
tree.plot_tree(classifier)
```

```
[9]: [Text(267.8400000000003, 391.392, 'X[3] \le 0.292\nentropy = 1.581\nsamples =
                                            112\nvalue = [37, 34, 41]'),
                                                     Text(200.8800000000002, 304.416, 'entropy = 0.0\nsamples = 37\nvalue = [37, 0,
                                            0]'),
                                                     Text(334.8000000000007, 304.416, 'X[2] \le 0.664 \cdot nentropy = 0.994 \cdot nemples =
                                            75\nvalue = [0, 34, 41]'),
                                                     Text(133.92000000000002, 217.44, 'X[3] \le 0.646 \neq 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.414 = 0.4
                                            36\nvalue = [0, 33, 3]'),
                                                     Text(66.9600000000001, 130.464, 'entropy = 0.0\nsamples = 32\nvalue = [0, 32,
                                            0]'),
                                                     Text(200.88000000000002, 130.464, 'X[1] \le 0.458 \setminus entropy = 0.811 \setminus entropy = 0.81
                                            4\nvalue = [0, 1, 3]'),
                                                     Text(133.92000000000002, 43.488, 'entropy = 0.0 \nsamples = 3 \nvalue = [0, 0, 0]
                                                     Text(267.8400000000003, 43.488, 'entropy = 0.0 \nsamples = 1 \nvalue = [0, 1, 1]
                                            0]'),
                                                     Text(535.680000000001, 217.44, 'X[3] \le 0.688 \neq 0.172 \Rightarrow 0.172
                                            39\nvalue = [0, 1, 38]'),
                                                     Text(468.72, 130.464, 'X[3] \le 0.646 \cdot nentropy = 0.811 \cdot nsamples = 4 \cdot nvalue = [0, 1.81]
                                            1, 3]'),
                                                   Text(401.7600000000005, 43.488, 'entropy = 0.0 \nsamples = 3 \nvalue = [0, 0, 0]
                                            3]'),
                                                   Text(535.680000000001, 43.488, 'entropy = 0.0 \nsamples = 1 \nvalue = [0, 1, 1]
                                                     Text(602.640000000001, 130.464, 'entropy = 0.0 \nsamples = 35 \nvalue = [0, 0, 0]
                                            35]')]
```


1.4.1 Visualisation using Graphviz

```
[10]: !pip install graphviz
      import graphviz
     Defaulting to user installation because normal site-packages is not writeable
     Requirement already satisfied: graphviz in
     /home/student/.local/lib/python3.9/site-packages (0.20.1)
     WARNING: You are using pip version 20.3.3; however, version 22.2.2 is
     available.
     You should consider upgrading via the '/opt/anaconda3/bin/python -m pip install
     --upgrade pip' command.
[11]: g_tree = tree.export_graphviz(classifier, out_file=None,
                                    feature_names=df.columns,
                                    class_names=['setosa','versicolor','virginica'],
                                    filled=True, rounded=True,
                                    special_characters=True)
[12]: graph = graphviz.Source(g_tree)
      graph
```

[12]:


```
[13]: y_pred= classifier.predict(x_test)
print(y_pred)
```

```
['virginica' 'versicolor' 'setosa' 'virginica' 'setosa' 'virginica' 'setosa' 'virginica' 'versicolor' 'virginica' 'virginica' 'virginica' 'versicolor' 'virginica' 'virginica' 'setosa' 'versicolor' 'setosa' 'setosa' 'virginica' 'versicolor' 'setosa' 'setosa' 'virginica' 'setosa' 'virginica' 'versicolor' 'setosa' 'virginica' 'versicolor' 'setosa' 'virginica' 'virginica' 'virginica']
```

1.5 Confusion Matrix

```
[14]: from sklearn.metrics import confusion_matrix cm= confusion_matrix (y_test, y_pred,labels=classifier.classes_) print(cm)
```

```
[[13 0 0]
[ 0 10 6]
```

[0 0 9]]

1.5.1 CM Display

```
[15]: from sklearn.metrics import ConfusionMatrixDisplay
    disp = ConfusionMatrixDisplay(confusion_matrix=cm,
    display_labels=classifier.classes_)
    disp.plot()
```


1.6 Accuracy

1.6.1 Test

```
[16]: from sklearn.metrics import accuracy_score
print('Test accuracy score with criterion entropy: {0:0.4f}'.u

oformat(accuracy_score(y_test,y_pred)))
```

Test accuracy score with criterion entropy: 0.8421

1.6.2 Train

Training-set accuracy score: 1.0000