

SAIRAM DIGITAL RESOURCES

EC8394

ANALOG AND DIGITAL COMMUNICATION

UNIT NO 4

SOURCE AND ERROR CONTROL CODING

Shannon-Fano coding Huffman Coding

ELECTRONICS & COMMUNICATION ENGINEERING

ANALOG AND DIGITAL COMMUNICATION

Shannon-Fano Coding

<u>Step 1:</u> The message symbols are listed in descending order of their probabilities.

<u>Step 2:</u> The list is divided into two groups of as nearly equal probabilities as possible.

<u>Step 3:</u> First group assigned with symbol 0 as first bit – prefix code. Second group assigned with symbol 1 as first bit.

<u>Step 4:</u> Each of these groups is then further divided and assigned second bit in the same manner.

Step 5: The process is repeated until 1 symbol is left in each subgroup.

ANALOG AND DIGITAL COMMUNICATION

Method:

Example

Symbol	Probability	Stage I	Stage II	Stage III	Code
S ₀	0.3	0	00		00
S ₁	0.2	0	01		01
S ₂	0.2	1	10		10
S ₃	0.15	1	11	110	110
S ₄	0.15	1	11	111	111

ANALOG AND DIGITAL COMMUNICATION

Example

a	p(a,)	1	2	3	4	Code	
a,	0.36	_	00			00	
a ₂	0.18	0		01			
a ₃	0.18			10			
a ₄	0.12	,		1	.10	110	
a,	0.09	1	11	111	1110	1110	
a,	0.07			111	1111	1111	

ANALOG AND DIGITAL COMMUNICATION

Parameters to be calculated:

- •Find Length of each code l_k
- •Find entropy of the source H(S)
- •Find average length of the code
- Find Coding efficiency
- Find Redundancy

ANALOG AND DIGITAL COMMUNICATION

Huffman Coding

<u>Step 1:</u> The message symbols are listed in descending order of their probabilities.

<u>Step 2:</u> The least two groups probabilities are added and <u>step 1</u> is repeated including the sum probability.

Step 3: Step 2 and Step 3 are repeated until two values are left.

Step 4: Prefix codes are now formed with 0 and 1

<u>Step 5:</u> The process is completed when each symbol takes an unique code.

ANALOG AND DIGITAL COMMUNICATION

Example – Source Reduction

Origina	al source	Source reduction						
Symbol	Probability	1	2	3	4			
a_2	0.4	0.4	0.4	0.4	→ 0.6			
a_6	0.3	0.3	0.3	0.3-	0.4			
a_1	0.1	0.1	→ 0.2 ⊤	► 0.3 –				
a_4	0.1	0.1 -	0.1					
a_3	0.06	→ 0.1 –						
a_5	0.04							

ANALOG AND DIGITAL COMMUNICATION

Code Assignment:

Original source				Source reduction							
Sym.	Prob.	Code		l	2	2	:	3	4	4	
a_2	0.4	1	0.4	1	0.4	1	0.4	1 _	-0.6	0	
a_6	0.3	00	0.3	00	0.3	00	0.3	00 -	0.4	1	
a_1	0.1	011	0.1	011 r	-0.2	010 ◄	-0.3	01			
a_4	0.1	0100	0.1	0100-	0.1	011					
a_3	0.06	01010 - ◀-	-0.1	0101							
a_5	0.04	01011									

