```
B-A-W: MergeSort: O(nlogn) HeapSort: O(nlogn) QuickSort: O(nlogn) - O(nlogn) - O(n^2) InsertionSort: O(nlogn) + O(nlogn
O(n) - O(n^2) - O(n^2)BubbleSort : O(n) - O(n^2) - O(n^2)
RemoveMin()-replace by last node. Bubble down-swap with smallest child.
RemoveMax() -repalce by last node. Bubble down-swap with largest child
Insert() - add at the end of array (rightmost last node)
Unsuccessfull search- O(1+\alpha). Successfull - \Theta(1+\alpha).
Division method: h(k) = k \mod d, d = 2^r, r prime, not close to power of 2 or 10.
Multiplication method: h(k) = Ak \mod 2^w \ll w - r, 2^{w-1} \ll A \ll 2^w.
Open addressing: Try hash function. If slot taken, take new function and retry.
```

Linear probing: h(k,i) = (h'(k) + i) mod m. **Quad:** $h(k,i) = (h'(k) + c_1 i + c_2 i^2) mod m$.

Double Hashing: $h(k,i) = (h_1(k) + ih_2(k)) mod m$.

Universal Hashing: #functions $h(k) = h(1) \le H/m, k \in m$ keys.

Max-heap: Max @ top Min-heap: Mean @ top.

Heap as array: Left[i]=A[2i], Right[i]=A[2i+1], Parent[i]=A[i/2] Operations: $O(\log n)$.

MaxHeapify: MaxHeapify(A, i, n)

- 1. $l \leftarrow leftNode(i)$
- 2. $r \leftarrow rightNode(i)$
- 3. if l heap-size A and A l. A i
- then largest $\leftarrow 1$
- 5. else largest \leftarrow i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. then largest \leftarrow r
- 8. if largest \neq i
- then exchange A[i] \leftrightarrow A[largest]
- MaxHeapify(A, largest) 10.

BuildMaxHeap: Maxheapify(A, i,length(A)) i from length(A)/2 to 1.

Heapsort(A):

- 1. Build-Max-Heap(A)
- 2. for i length Al down to 2
- exchange A[1] A[i]
- MaxHeapify(A, 1, i-1)

AVL Tree: BST, $h_{left} - h_{right} \le 1$

Insert at downmost leftmost child (as BST), O(logn).

Restore AVL property at x:

if x.rightchild is right unbalanced or balanced:

left rotate.

else right rotate then left rotate.

if x.leftchild is left unbalanced or balanced:

right rotate.

else left rotate then right rotate.

continue with x's ancestors.

In-Order on AVL /BST - > increasing keys (sorted)

AVL sort -worst:O(nlogn) if balanced. **BST sort**-best:O(nlogn), worst: $O(n^2)$.

R-B Tree: BST. Root is black. NIL is black. No consecutive red nodes. All black heights are same from node to descendants. If no child-put NIL. **Black-height(x)**: # black nodes from x to NIL (count NIL, dont count x).

R-B insert(x): BST insert x as red then restore R-B property.

Sets: In forest representation, root==representative.

Union: By size: smallest into biggest. By height: shortest into tallest.

Path compression: All nodes parent= representative.

Local optimal choice, delegate subproblem recursively. For interval, start from beginning and minimize Greedy: waste of space.

Huffman Trees: Highest frequency letters on top.

Graphs: |E| = |V| - 1 - > it is a tree. Store weights or booleans in adjacency matrix.

Color Code: White: undiscovered . Grey: neighbors unvisited . Black: done.

d[u]=smallest # of edges from s to any u.

 $\pi[u]=v$, v is the predecessor of u.

BFS: O(V+E). **DFS:** $\Theta(V+E)$.

Parenthesis Thm: ()((())). Cannot finish exploring parent before child.

DAG: Directed Acyclic Graph (tree is a DAG). Partial or-

der: $a > b, b > c \rightarrow a > c$ but maybe a=b. **Total order:** Always a > b or a < b.

Topological Sort: On DAG, no back edges. $\Theta(V + E)$. **Strongly Connectd Component** if we can reach u from v, for any u and v in a subset of G. G^T has edges flipped (forward=backward).

Compute SCC: DFS(G), then G^T , then DFS(G^T) (in order of deacreasing f[u], as computed by DFS(G)).

d[u]: start time.f[u]: finish time.

MST: Connect all edges. Cut respects A - no edge in A crosses it. Safe edge: smallest weight edge between A and V-A.

Kruskal:

- 1. Starts with each vertex in its own component (1 partition / vertex).
- 2. Repeatedly merges two components into one by choosing a light edge that connects them (i.e., a light edge crossing the cut between them).
- 3. Scans the set of edges in monotonically increasing order by weight.
- 4. Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

Union by rank + path compression : total runtime = $O(E \log V)$

Prim's Algorithm:

- 1. Builds one tree, so A is always a tree.
- 2. Starts from an arbitrary root r .
- 3. At each step, adds a light edge crossing cut $(V_A, V V_A)$ to A. Where V_A = vertices that A is incident on.

Find a light edge (for Prim):

- 1. Uses a priority queue Q to find a light edge quickly.
- 2. Each object in Q is a vertex in V VA.
- 3. Key of v is minimum weight of any edge (u, v), where u V_A .
- 4. Then the vertex returned by Extract-Min is v such that there exists u V and (u, v) is light edge crossing $(V_A, V V_A)$.
- 5. Key of v is if v is not adjacent to any vertex in VA.

Prim - add lightest edges to neighbors until all reachable. Kruskal - connect partitions with safe edges until partition= whole graph. Shortest paths: d[v]- shortest path estimate. (initially = ∞). $\pi[v]$ - predecessor of v (initially = NIL or if none).

Relax an edge (if exists shorter path):

if (d[v] > d[u] + w(edge between u and v)) then d[v] = d[u] + w(edge between u and v), $\pi[v] = u$.

Dijkstra:

```
DIJKSTRA( V, E,w, s)
INIT-SINGLE-SOURCE( V, s)
S = {}
Q = V
while Q non empty do
u = EXTRACT-MIN( Q)
S = S U {u}
for each vertex v Adj[ u] do
RELAX( u,v,w)
```

If we use binary heap, runtime = $O(E \log V)$ Gale-Shapley:

Residual graph:

Augmenting path: From source to sink via residual graph. Follow lines and add capacity as you go Final solution: add G + residual graph paths . (take difference of edges flow if backwards + forward) Ford-Fulkerson:

```
f =0
Residual=G
while (there is a source to sink path in Residual){
f.augment(Path)
update Residual based on new f
}
```

Flow through a cut: $|f| = \sum f(e)$ from A to B - $\sum f(e)$ from B to A. Minimum cut:

- 1. Run Ford-Fulkerson for max flow.
- 2. Run BFS /DFS from s on Residual.
- 3. All reachable vertices define the cut.

```
\sum_{k=0}^{n-1} ar^k = a \frac{1-r^n}{1-r}.
BST amount of nodes = 2^{h+1} - 1
RBT h \le 2 \log_2(n+1)
```