ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА КОМИТЕТ ПО НАУКЕ И ВЫСШЕЙ ШКОЛЕ

САНКТ-ПЕТЕРБУРГСКОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «АВТОТРАНСПОРТНЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ КОЛЛЕДЖ»

ЛАБОРАТОРНАЯ РАБОТА №4

Определение поперечных сил и изгибающих моментов для балки с жесткой заделкой

Специальность 190631 Техническое обслуживание и ремонт автомобильного транспорта

Дисциплина Техническая механика

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Санкт-Петербург

2013

Рассмотрено	Рекомендовано методическим советом Протокол №	
на заседании ЦК №7		
Инженерная графика и		
техническая механика	OT «»	2013 г.
Протокол №		
от «»2013 г.		
Председатель ЦК		
Григорьева Е.В.		
Исполнители		Н.Н. Силенок
Рецензент:		
Председатель ЦК «Электромеханичес	кие дисциплинь	ıI»
	, , ,	
		Т.А. Володькина
Редактор		_ Таланова Л.Д

Аннотация

Методические указания составлены с учётом требований ФГОС третьего поколения и предлагают подробное описание организации проведения лабораторной работы «Определение поперечных сил и изгибающих моментов для балки с жесткой заделкой». Указания предназначены студентам АТЭМК всех специальностей, изучающих дисциплину «Техническая механика».

В методических указаниях даны подробные указания, позволяющие определить поперечные силы и изгибающие моменты, возникающие в поперечных сечениях балки с жесткой заделкой.

Содержание

Введение		5
1 Цель и задачи лабораторной работы №4		6
1.1 Цель работы		6
1.2 Задачи работы		6
2. Содержание лабораторной работы		7
2.1 Теоретическая часть:		7
2.2 Практическая часть:		7
3 Нормативная и учебная литература		8
3.1 Учебная литература	8	
3.2 Нормативная литература	8	
4 Меры безопасности на рабочем месте		9
5 Рекомендации студентам по выполнению лабораторной работы		10
5.1 Условия и организация работы		10
5.2 Последовательность и технология выполнения работы		11
6 Вопросы для самоконтроля		12
Бланк отчёта о лабораторной работе №4		13
Приложение Схемы балок		17

Введение

Государственный образовательный стандарт, формирующий государственные требования подготовки специалистов, включает в обязательный минимум специальных дисциплин курс «Техническая механика», являющийся теоретической базой для подготовки инженерно-технических работников. Все знания и навыки, полученные при изучении технической механики, найдут применение в процессе изучения специальных предметов.

Чтобы овладеть своей специальностью, специалисту необходимо иметь не только хорошую общетехническую подготовку, но и практические навыки. Курс лабораторных работ способствует детальной проработке изучаемого материала и усвоению основных опорных элементов изучаемого материала.

1 Цель и задачи лабораторной работы №4

1.1 Цель работы

Определить поперечные силы и изгибающие моменты, возникающие в поперечных сечениях балки с жесткой заделкой .

1.2 Задачи работы

- 1.2.1 Закрепление знаний по теме «Плоская система произвольно расположенных сил» теоретической механики.
- 1.2.2 Закрепление навыков определения поперечных сил и изгибающих моментов в поперечных сечениях балки с жесткой заделкой.

2 Содержание лабораторной работы

- 2.1 Теоретическая часть
- 2.1.1 Ознакомление с представленной схемой балки с жесткой заделкой.
- 2.1.2 Составление расчетной схемы балки с жесткой заделкой.
- 2.2 Практическая часть
- 2.2.1 Определение реакций жесткой заделки балки с использованием уравнений равновесия теоретической механики.
- 2.2.2 Определение поперечных сил и изгибающих моментов с использованием метода сечений сопротивления материалов.
 - 2.2.3 Построение эпюр поперечных сил и изгибающих моментов.
- 2.2.4 Сравнение значений реакций жесткой заделки балки, полученных методами теоретической механики и сопротивления материалов.
 - 2.2.5 Заполнение бланка-отчета и защита работы.

3 Нормативная и учебная литература

3.1 Учебная литература

Олофинская В.П. Техническая механика: Курс лекций с вариантами практических и тестовых заданий: учебное пособие. – М.:ФОРУМ: ИНФРА-М, 2009. – 349 с.

Эрдеди А.А. Теоретическая механика. Сопротивление материалов: учебное пособие / А.А. Эрдеди, Н.А. Эрдеди. 11-е изд. стер.- М.: Высшая школа, 2010.-320 с.

3.2 Нормативная литература

- Инструкция по охране труда для студентов в кабинете технической механики;

4 Меры безопасности на рабочем месте

Перед проведением лабораторной работы студенту необходимо:

- проверить правильность установки стола, стула;
- подготовить к работе рабочее место, убрав все лишнее со стола, а портфель или сумку с прохода;
- учебники и используемые приспособления разместить таким образом, чтобы исключить их падение и опрокидывание;
- обо всех замеченных нарушениях, неисправностях и поломках немедленно доложить преподавателю.

Запрещается приступать к работе в случае обнаружения несоответствия рабочего места установленным в данном разделе требованиям, а также при невозможности выполнить указанные в данном разделе подготовительные к работе действия.

Во время проведения лабораторной работы студентам необходимо:

- изучить содержание настоящих Методических указаний;
- находиться на своем рабочем месте;
- неукоснительно выполнять все указания преподавателя;
- соблюдать правила эксплуатации оборудования;
- соблюдать осторожность при обращении с оборудованием;
- постоянно поддерживать порядок и чистоту на своем рабочем месте.

5 Рекомендации студентам по выполнению лабораторной работы

5.1 Условия и организация работы

Выполнение работы предусматривает теоретическую и практическую части. Выполнение практической части предполагает наличие у студентов знаний о методе сечений, правилах определения поперечных сил и изгибающих моментов балок с жесткой заделкой.

В теоретической части лабораторной работы под руководством преподавателя студенты:

- знакомятся с рабочим местом;
- усваивают меры безопасности;
- изучают Методические рекомендации по проведению лабораторной работы;
 - знакомятся с учебной и нормативной литературой;
 - знакомятся с представленной схемой балки с жесткой заделкой;
 - составляют расчетную схему балки с жесткой заделкой.

В практической части лабораторной работы под контролем преподавателя студенты:

- определяют реакции жесткой заделки, применяя уравнения равновесия теоретической механики;
- определяют значения поперечных сил и изгибающих моментов в контрольных точках;
 - строят эпюры поперечных сил и изгибающих моментов;
 - определяют реакции жесткой заделки балки по эпюрам;
- сравнивают значения реакций жесткой заделки, полученные методами теоретической механики и сопротивления материалов;
 - делают необходимые выводы;
 - заполняют бланк отчёта о лабораторной работе.

После заполнения бланка отчёта о лабораторной работе студенты:

- отвечают на контрольные вопросы;
- сдают отчет преподавателю.

5.2 Последовательность и технология выполнения работы

Определение поперечных сил и изгибающих моментов проводится для балок с жесткой заделкой в следующей последовательности:

- 1) Выбрать схему балки из Приложения данных Методических указаний в соответствии с порядковым номером студента в классном журнале.
 - 2) Составить расчетную схему балки.
 - 3) Составить уравнения равновесия для данной балки.
 - 4) Определить значения реакций жесткой заделки.
- 5) Определить контрольные точки балки, в которых будут вычислены значения поперечных сил и изгибающих моментов.
- 6) Определить значения поперечных сил и изгибающих моментов в контрольных точках.
 - 7) Построить эпюры поперечных сил и изгибающих моментов
 - 8) Проверить согласование построенных эпюр.
- 9) Определить значения реакций жесткой заделки по построенным эпюрам.
 - 10) Сравнить значения реакций, полученных разными методами.
 - 11) Сделать вывод, записать его в бланк отчёта.
 - 12) Ответить на вопросы для самоконтроля.
 - 13) Предъявить результаты работы преподавателю.

6 Вопросы для самоконтроля

- 1) Что такое реакция опоры?
- 2) Какие реакции возникают в идеальных опорах?
- 3) Напишите уравнения равновесия для плоской системы произвольно расположенных сил.
 - 4) В чем заключается метод сечений?
 - 5) Что такое прямой изгиб?
 - 6) Какие внутренние силовые факторы возникают при изгибе?

БЛАНК ОТЧЁТА О ЛАБОРАТОРНОЙ РАБОТЕ №4

Определение поперечных сил и изгибающих моментов для балки с жесткой заделкой

Ф.И.О. студента	
Группа	
Дата	
Преподаватель	
1) Расчетная схема балки	
2) Уравнения равновесия	
$\sum F_k = 0$	
$\sum_{A} M(F_{k}) = 0$	

3) Значения R_{Av} и M _A

$$R_{Ay} =$$
 = κH

4) Значения поперечных сил Q_y в контрольных точках

$$Q_{1v} = = \kappa H$$

$$Q_{2y}$$
= ____ = κH

$$Q_{3y}$$
= _____ = κH

$$Q_{4y}$$
= _____ = $_{KH}$

$$Q_{5y}$$
= ____ = κH

$$Q_{6y}$$
= ____ = κH

5) Значения изгибающих моментов M_x в контрольных точках

$$M_{1x} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \kappa H$$

$$M_{2x} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} KH$$

$M_{3x}=$	=	=	=	кН	
$M_{4 x}=$:	=	=	кН	
M _{5x} =	i	=		=	кН
$M_{6 x}$ =	·	=		_=	кН
	6) Значения R _{Ay} и M _A R _{Ay} =кН M _A =кНм	, по эпюрам			

Вывод	
Работу выполнил студент	Работу принял преподаватель
« 20	
	«»20
(номер по журналу и полпись)	

Приложение

(обязательное)

Схемы балок

Вариант 1

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 2

Исходные данные:

<i>F</i> , кН	M_{l} , к H	М₂, кН∙м	<i>l</i> , M
20	20	20	2,0

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 4

<i>F</i> , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 5

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 6

<i>F</i> , кН	M_{I} , к ${ m H}$	М₂, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 7

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 8

<i>F</i> , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 9

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 10

<i>F</i> , кН	M_{I} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 31

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 14

<i>F</i> , кН	M_I , к ${ m H}$	М₂, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 53

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 14

Исходные данные:

<i>F</i> , кН	M_{I} , к ${ m H}$	М₂, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 65

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 16

<i>F</i> , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 77

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 18

<i>F</i> ₁ , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 89

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 90

<i>F</i> , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 210

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 211

<i>F</i> , кН	M_{I} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 23

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 124

<i>F</i> , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 25

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 136

<i>F</i> , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 27

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 148

<i>F</i> , кН	M_{l} , к ${ m H}$	M_2 , к \mathbf{H} ·м	<i>l</i> , м
20	20	20	2,0

Вариант 29

Исходные данные:

<i>F</i> , кН	M_{l} , кН	М₂, кН∙м	<i>l</i> , м
20	20	20	2,0

Вариант 30

Исходные данные:

<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	М, кН∙м	<i>l</i> , м
20	20	20	2,0

БЛАНК ОТЧЁТА О ЛАБОРАТОРНОЙ РАБОТЕ №4

«Определение поперечных сил и изгибающих моментов для балки с жесткой заделкой»

Ф.И.О. студента
Группа
Дата
Преподаватель
1) Расчетная схема балки
2) Уравнения равновесия
$\sum F_k = 0$

$$\sum_{A} M(F_k) = 0$$

3) Значения R_{Ay} и M_{A}

$$R_{Ay} =$$
 $=$ κH

4) Значения поперечных сил Q_v в контрольных точках

$$Q_{1y} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} KH$$

$$Q_{2y}$$
= ____ = κH

$$Q_{3y}$$
= ____ = κH

$$Q_{4y}$$
= ____ = κH

$$Q_{5y}$$
= ____ = κH

$$Q_{6v} = = \kappa H$$

5) Значения изгибающих моментов M_x в контрольных точках

$$M_{1x} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} KH$$

$$M_{2x}$$
= ____ = κH

$M_{3x}=$	=	=	=	=	кН	
$M_{4 x}$ =	:	=		_=	кН	
M_{5x} =		=		=		кН
$M_{6 x}$ =	: 	=		=	=	кН
	6) Значения R _{Ay} и M _A R _{Ay} = кН	по эпюрам				

 $M_A = \underline{\qquad} \kappa H_M$

Вывод	
Работу выполнил	Работу принял преподаватель
Студент группы	
/	
«»201	