# **Advanced Algorithms** (IEE5659)

Lab #1

Due: June 14, 2019 (to New E3)

## **Problem Formulation**

Given a directed graph G(V, E) and  $w_e$  denotes the weight of edge e. For each cycle  $c_i \in G$ ,

$$w_{c_i} = \sum_{e \in c_i} \frac{w_e}{|c_i|} ,$$

where  $|c_i|$  is the number of edges of  $c_i$ . The minimum mean cycle problem is to find the minimum  $w_c^*$  so that  $\forall c_i \in G, \ w_{c_i} \ge w_c^*$ .

# **Input/Output Format**

Input Format:

- Each case is a directed graph.
- The first line defines the number of nodes and the number of edges.
- In the following each line, an edge is defined by a from node, a to node and a weight.
- Figure 1 gives an example.



Figure 1: Input format (a) Text Format. (b) Graph Illustration

#### **Output Format:**

- If there is a cycle in the graph (example of Figure 2 (a)),
  - -Write the value of minimum mean cycle in the first line.
  - -Write nodes traversing along the cycle in the second line. (2 1 2 is also a correct answer in Figure 2 (a))
- If there is no cycle, (example of Figure 2(b))
  - -Write "No cycle" on the first line.



Figure 2: Output format (a) A cycle exists in graph. (b) No cycle in graph

# Naming Rule and Executing Procedure

- Name of binary: Lab1
- Name of output file: solution.txt
- Execute command: "\$> ./Lab1 input.in"
   (We will demo your lab on Linux environment. Please make sure your source codes can be compiled by Linux compiler(GCC).)

# **Grading Criteria**

- Correctness of the program (no compile error, correct answer, correct output format)
- Running time (at most 30 secs)
- If all the cases are correct, you can get at least 80 points in this lab. Rest of 20 points are given by the ranking of runtime.

#### **Submission**

Please submit the following materials in a .zip file to New E3 by the deadline, specifying your student ID in the subject field (e.g., studentID\_lab1.zip)

- Source codes (.cpp, .h ...)
- Executable binaries (Lab1)
- A text readme file (readme.txt), stating how to build and use your programs. If you have updated version, please name your newer version by v2, v3, ..., etc.

## **Reference Solution**

An executable "ref" file is provided for your reference. Follow the usage, it will generate the reference solution.

- \$> ./ref
- \$> # of node
- \$> # of edge
- \$> from node, to node, weight of edge

The following example is shown in Figure 3.

```
$ ./ref
2
2
[case info] #node:2, #edge:2
1 2 2
2 1 3
[ref solution] MMC: 2.50
[ref solution] Cycle: 1 2 1
```

Figure 3: Example of executing ref