Lec-22. 估计量的评价准则, 区间估计

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主 页: wulisu.cn

本次课内容

估计量的评价准则

- 无偏性准则
- 有效性准则
- 相合性准则

区间估计

枢轴量(补充)

对总体的未知参数可用不同方法求得不同的估计量,比如矩估计和极大似然估计.如何评价不同估计量的好坏?

常用的评价准则有如下三条:

- (1) 无偏性准则
- (2) 有效性准则
- (3) 相合性准则

定义 (无偏性准则)

设参数 θ 的估计量 $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$, 若

$$E(\hat{\theta}) = \theta,$$

则称 $\hat{\theta}$ 是 θ 的一个无偏估计量.

定义 (无偏性准则)

设参数 θ 的估计量 $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$, 若

$$E(\hat{\theta}) = \theta,$$

则称 $\hat{\theta}$ 是 θ 的一个无偏估计量.

- $E(\hat{\theta}) \neq \theta$, 则 $E(\hat{\theta}) \theta$ 称为估计量 $\hat{\theta}$ 的系统误差.
- 若

$$\lim_{n \to \infty} E(\hat{\theta}) = \theta,$$

则称 $\hat{\theta}$ 是 θ 的渐近无偏估计量.

无偏性: $E(\hat{\theta}) = \theta$

• 无偏性的统计意义是指在大量重复试验下, 由 $\hat{\theta}(X_1,\dots,X_n)$ 给出的估计的平均恰是 θ , 从而无偏性保证了 $\hat{\theta}$ 没有系统误差.

例

工厂长期为商家提供某种商品,假设生产过程相对稳定,产品合格率为 θ ,虽然一批货的合格率可能会高于 θ ,或低于 θ ,但无偏性能够保证在较长一段时间内合格率接近 θ ,所以双方互不吃亏。

但作为顾客购买商品,只有二种可能,即买到的是合格品或不合格品,此时无偏性没有意义。

例

设总体 X 的一阶和二阶矩存在,

$$E(X) = \mu, D(X) = \sigma^2.$$

- (1) 证明: 样本均值 \overline{X} 和样本方差 S^2 分别是 μ 和 σ^2 的无偏估计;
- (2) 判断: B_2 是否为 σ^2 的无偏估计? 是否为 σ^2 的渐近无偏估计?

(1) 证: 因 X_1, X_2, \dots, X_n 与 X 同分布, 故有:

$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = \mu$$

故 X 是 μ 的无偏估计.

$$E(S^2) = \sigma^2$$

故 S^2 是 σ^2 的无偏估计.

(2)
$$B_2 = \frac{n-1}{n} S^2$$

$$E(B_2) = \frac{n-1}{n} E(S^2) = \frac{n-1}{n} \sigma^2 \neq \sigma^2$$

故 B_2 不是 σ^2 的无偏估计.

$$\lim_{n\to\infty} E(B_2) = \lim_{n\to\infty} \frac{n-1}{n} \sigma^2 = \sigma^2$$

故 B_2 是 σ^2 的渐近无偏估计.

例

设总体 X 服从均匀分布 $U(0,\theta),\theta$ 是未知参数,样本 X_1,\dots,X_n .

- (1) 求 θ 的矩估计,判断是否无偏;
- (2) 求 θ 的极大似然估计,判断是否无偏.

解 (1): 矩估计:

由

$$\mu_1 = E(X) = \int_0^\theta \frac{1}{\theta} x dx = \frac{\theta}{2}.$$

$$\Rightarrow \theta = 2\mu_1$$

 $\Rightarrow \theta$ 的矩估计 $\hat{\theta} = 2\overline{X}$.

因为

$$E(\hat{\theta}) = E(2\overline{X}) = 2E(\overline{X}) = 2E(X) = \theta,$$

所以 $\hat{\theta} = 2\overline{X}$ 是 θ 的无偏估计.

(2) X的概率密度

$$f_X(x;\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \sharp \mathcal{M} \end{cases}$$

极大似然估计:

$$L(\theta) = \begin{cases} \frac{1}{\theta^n}, & 0 \le x_1, \dots, x_n \le \theta, \\ 0, & \not\exists \dot{\mathcal{C}}. \end{cases}$$

 $L(\theta)$ 关于 $\theta > 0$ 递减,

而 θ 的范围为 $\theta \geq x_{(n)} = \max\{x_1, ..., x_n\}$, 所以, θ 的极大似然估计量

 $\hat{\theta} = X_{(n)} = \max\{X_1, X_2, \cdots, X_n\}.$ 10/35

$$X_{(n)} = \max \{X_1, X_2, \cdots, X_n\}$$
 的分布函数为

$$F_{X_{(n)}}(x) = [F(x)]^n = \begin{cases} 0, & x < 0, \\ \frac{x^n}{\theta^n}, & 0 \le x \le \theta, \\ 1, & x > \theta. \end{cases}$$

求导数得密度函数为

$$f_{X_{(n)}}(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 \le x \le \theta, \\ 0, & \sharp \dot{\Sigma}. \end{cases}$$

因此有

$$E(\hat{\theta}) = E(X_{(n)}) = \int_0^{\theta} \frac{x \cdot nx^{n-1}}{\theta^n} dx$$
$$= \frac{n}{n+1} \theta \neq \theta$$

所以
$$\hat{\theta} = X_{(n)}$$
作为参数 θ 的估计是有偏的.

纠偏方法

- 如果 $E(\hat{\theta}) = a\theta + b, \theta \in \Theta$, 其中 a,b 是常数, 且 $a \neq 0$, 则 $\frac{1}{a}(\hat{\theta} b)$ 是 θ 的无偏估计.
- 在上例中.

$$E(X_{(n)}) = \frac{n}{n+1}\theta,$$

取

$$X_{(n)}^* = \frac{n+1}{n} X_{(n)},$$

则 $X_{(n)}^*$ 是 θ 的无偏估计.

定义 (有效性准则)

设 $\hat{\theta}_1, \hat{\theta}_2$ 是 θ 的两个无偏估计,如果

$$D(\hat{\theta}_1) \le D(\hat{\theta}_2), \quad \forall \theta \in \Theta$$

不等号至少对某一个 $\theta \in \Theta$ 成立,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效.

定义 (有效性准则)

设 $\hat{\theta}_1, \hat{\theta}_2$ 是 θ 的两个无偏估计,如果

$$D(\hat{\theta}_1) \le D(\hat{\theta}_2), \quad \forall \theta \in \Theta$$

不等号至少对某一个 $\theta \in \Theta$ 成立,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效.

方差较小的无偏估计量是一个更有效的估计量。

例

设总体为 $X, E(X) = \mu, D(X) = \sigma^2 > 0$, X_1, \dots, X_n 是一样本. 对 $1 \le k \le n$, 令

$$\hat{\theta}_k = \frac{1}{k}(X_1 + \dots + X_k)$$

即 $\hat{\theta}_k$ 为前 k 个样本平均值. 显然, $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_n$ 均是参数 μ 的无偏估计.

问:在估计量 $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_n$ 中,哪个 $\hat{\theta}_k$ 作为参数 μ 的估计最有效?

解:

$$D(\hat{\theta}_k) = \frac{1}{k^2} \sum_{i=1}^k D(X_i) = \frac{\sigma^2}{k},$$

即估计量的方差随着 k 的增加而减少, $\therefore \hat{\theta}_n$ 最有效.

定义

设 $\hat{\theta}(X_1, \dots, X_n)$ 为参数 θ 的估计量, 若对于任意 $\theta \in \Theta$, 当 $n \to +\infty$ 时,

$$\hat{\theta}_n \xrightarrow{P} \theta$$

则称 $\hat{\theta}_n$ 为 θ 的相合估计量.

注

- 相合性是对一个估计量的基本要求. 不具备相合性的估计量不予考虑.
- 相合性只有在样本容量很大时,才显现其 优越性,实际应用中很难做到.在实际工程 中往往使用无偏性和有效性进行评价.
- 无偏性、有效性、相合性是评价估计量的 一些基本标准,还有其他侧重点的评价标准.

例

设总体 X 的 k 阶矩 $E(X^k) = \mu_k (k \ge 2)$ 存在, X_1, \dots, X_n 是一样本,证明:

- (1) $A_l = \frac{1}{n} \sum_{i=1}^n X_i^l \neq \mu_l$ 的相合估计;
- (2) B_2, S^2 是 $D(X) = \sigma^2$ 的相合估计;
- (3) S 是 σ 的相合估计.

证明: (1) 由辛钦大数定律知, 对 l=1,...,k,

$$A_l = \frac{1}{n} \sum_{i=1}^n X_i^l \xrightarrow{P} \mu_l = E(X^l),$$

因此 A_l 是 $E(X^l)$ 的相合估计. 特别地, \overline{X} 是 $\mu_1 = E(X)$ 的相合估计, A_2 是 $\mu_2 = E(X^2)$ 相合估计. (2) 因为 $D(X) = \sigma^2 = \mu_2 - \mu_1^2$.

$$B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = A_2 - \overline{X}^2,$$

根据依概率收敛性质, $B_2 = A_2 - \overline{X}^2$ 是 σ^2 的相合估计. 而 $S^2 = \frac{n}{n-1}B_2$ 也是 σ^2 的相合估计.

(3)
$$S = \sqrt{S^2}$$
 是 σ 的相合估计.

区间估计

- 根据具体样本观测值, 点估计提供一个明确的数值.
- 但这种判断的把握有多大,点估计本身并没有告诉人们.为弥补这种不足,提出区间估计的概念.

区间估计

设 X 是总体, $X_1, ..., X_n$ 是一样本. 区间估计的目的是找到两个统计量:

$$\hat{\theta}_1 = \hat{\theta}_1(X_1, \dots, X_n), \quad \hat{\theta}_2 = \hat{\theta}_2(X_1, \dots, X_n),$$

使随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 以一定可靠程度盖住 θ .

定义

设总体 X 的分布函数 $F(x;\theta)$, θ 未知. 对给定值 $\alpha(0 < \alpha < 1)$, 有两个统计量

$$\underline{\theta} = \underline{\theta}(X_1, \cdots, X_n), \quad \overline{\theta} = \overline{\theta}(X_1, \cdots, X_n),$$

使得

$$P\Big\{\underline{\theta}(X_1,\cdots,X_n)<\theta<\overline{\theta}(X_1,\cdots,X_n)\Big\}\geq 1-\alpha$$

则

- $(\underline{\theta}, \overline{\theta})$ 称为 θ 的置信水平为 $1-\alpha$ 的(双侧) 置信区间;
- $\theta \to \overline{\theta} \to 0$ 分别称为置信下限和置信上限.

注

- 参数 θ 虽然未知, 但是确定的值.
- $\theta, \overline{\theta}$ 是统计量, 随机的, 依赖于样本。
- 置信区间 $(\underline{\theta}, \overline{\theta})$ 不唯一, 依赖于样本.
- 对于有些样本观察值,区间覆盖 θ ,但对于 另一些样本观察值,区间则不能覆盖 θ .

设总体 $X \sim N(\mu, 4), \mu$ 未知, $X_1, ..., X_4$ 是一样本. 则 $\overline{X} \sim N(\mu, 1)$.

$$P(\overline{X} - 2 < \mu < \overline{X} + 2) = P(|\overline{X} - \mu| < 2)$$

= $2\Phi(2) - 1 = 0.9544$

 $\Rightarrow (\overline{X} - 2, \overline{X} + 2)$ 是 μ 的置信水平为 0.95 的置信区间.

若 $\mu = 0.5$, 当 \bar{x} 分别为 3, 2, 1 时, 对应置信区间为:

$$(-1,3)$$
 $(1,5)$ $(0,4)$

对于一个具体的区间而言,或者包含真值,或者不包含真值,无概率可言.

 $(\overline{X}-2,\overline{X}+2)$ 是 μ 的置信水平为 0.95 的置信区间中"置信水平为 0.95"的意义是什么?

一般地.

$$P\left\{\underline{\theta}(X_1,\ldots,X_n)<\theta<\overline{\theta}(X_1,\ldots,X_n)\right\}=1-\alpha,$$

则置信区间 $(\underline{\theta}, \overline{\theta})$ 的含义为:

• 反复抽样多次 (各次样本容量都为 n). 每个样本值确定一个区间 $(\underline{\theta}, \overline{\theta})$, 每个这样的区间或包含 θ 的真值, 或不包含 θ 的真值. 按伯努利大数定律, 在这些区间中, 包含 θ 真值的比例约为 $1-\alpha$.

27/35

如反复抽样 10000 次,

- 当 $\alpha = 0.05$, 即置信水平为 95% 时,10000 个区间中包含 θ 真值的约为 9500 个;
- 当 $\alpha = 0.01$, 即置信水平为 99% 时,10000 个区间中包含 θ 的真值的约为 9900 个.

求置信区间步骤

设 θ 是总体的未知参数, X_1, \dots, X_n 为样本, 给 定置信水平 $1-\alpha$,

1. 构造枢轴量(不依赖 θ 及未知参数的函数)

$$W = W(X_1, \cdots, X_n; \theta).$$

2. 确定常数 a, b 使得

$$P\{a < W(X_1, \dots, X_n; \theta) < b\} = 1 - \alpha$$

3. 解得 θ 的取值范围即为置信区间.

例

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1-\alpha$ 的置信区间.

枢轴量(补充)

枢轴量和统计量的区别:

- (1) 枢轴量是样本和待估参数的函数,其分布 不依赖于任何未知参数;
- (2) 统计量只是样本的函数,其分布常依赖于 未知参数.
 - 枢轴量通常可由未知参数的点估计得到。比如正态总体的区间估计。

单个正态总体 $N(\mu, \sigma^2)$ 的枢轴量

μ 的枢轴量:

$$\begin{cases} \frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1), & (\sigma^2 \, \, \text{已知}) \\ \frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1), & (\sigma^2 \, \, \text{未知}) \end{cases}$$

• σ^2 的枢轴量: $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, μ 未知.

两个正态总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的枢轴量

μ₁ – μ₂ 的枢轴量:

$$\begin{cases} \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1), & (\sigma_1^2, \sigma_2^2 \ \cancel{C} \cancel{\sharp} \mathbf{p}) \\ \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2), & (\sigma_1^2 = \sigma_2^2 \cancel{\star} \cancel{\sharp} \mathbf{p}) \end{cases}$$

其中 $S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}, S_w = \sqrt{S_w^2}.$ • $\frac{\sigma_1^2}{\sigma_2^2}$ 的枢轴量: $\frac{S_1^2}{S_2^2} / \frac{\sigma_1^2}{\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$

单侧置信区间

定义

若

$$P\{\theta > \underline{\theta}(X_1, ..., X_n)\} \ge 1 - \alpha,$$

则 $(\underline{\theta}, \infty)$ 称为参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\underline{\theta}$ 称为单侧置信下限.

若

$$P\left\{\theta < \overline{\theta}(X_1,\ldots,X_n)\right\} \ge 1 - \alpha,$$

则 $(-\infty, \overline{\theta})$ 称为参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\overline{\theta}$ 称为单侧置信上限.

34/35

单侧置信区间和双侧置信区间的关系

 $\underline{\theta}$ 是 θ 的置信水平为 $1-\alpha_1$ 的单侧置信下限, $\overline{\theta}$ 是 θ 的置信水平为 $1-\alpha_2$ 的单侧置信上限, $\Longrightarrow (\underline{\theta}, \overline{\theta})$ 是 θ 的置信度为 $1-\alpha_1-\alpha_2$ 的双侧置信区间.

证明:
$$P\{\underline{\theta} \ge \theta\} \le \alpha_1$$
, $P\{\theta \ge \overline{\theta}\} \le \alpha_2$
 $P\{\underline{\theta} < \theta < \overline{\theta}\} = 1 - P\{\underline{\theta} \ge \theta\} - P\{\overline{\theta} \le \theta\}$
 $\ge 1 - \alpha_1 - \alpha_2$.