Lenguajes y Compiladores Lenguaje Imperativo: ejemplo y teoremas

Miguel Pagano 12 de abril de 2023

Repaso

Funciones

Extensión estrictas

Si $f\colon A\to B$, entonces definimos su *extensión estricta*, $f_\perp\colon A_\perp\to B_\perp$

$$f_{\perp} x = \begin{cases} \bot & \text{si } x = \bot \\ f a & \text{si } x = a \end{cases}$$

Funciones

Extensión estrictas

Si $f:A\to B$, entonces definimos su *extensión estricta*, $f_\perp\colon A_\perp\to B_\perp$

$$f_{\perp} x = \begin{cases} \bot & \text{si } x = \bot \\ f a & \text{si } x = a \end{cases}$$

Extensiones estrictas

Si $f: P \to D$, entonces definimos su *extensión estricta*, $f_{\perp}: P_{\perp} \to D$

$$f_{\perp \! \! \perp} x = \begin{cases} \bot & \text{si } x = \bot \\ f \, a & \text{si } x = a \end{cases}$$

Lenguaje de Programación

Un Lenguaje Imperativo Simple

Comandos

```
\( \langle comm \rangle ::= \skip \\ \langle var \rangle := \langle intexp \rangle \\ \langle comm \rangle ; \langle comm \rangle \\ \quad if \langle boolexp \rangle \text{then \langle comm \rangle else \langle comm \rangle \\ \quad \text{newvar \langle := \langle intexp \rangle in \langle comm \rangle \\ \quad \text{while \langle boolexp \rangle do \langle comm \rangle \\}\)
```

Un Lenguaje Imperativo Simple

Expresiones

$$\langle natconst \rangle ::= \mathbf{0} \mid \mathbf{1} \mid \mathbf{2} \mid \dots$$

$$\langle boolconst \rangle ::= \mathbf{true} \mid \mathbf{false}$$

$$\langle intexp \rangle ::= \langle natconst \rangle$$

$$\langle boolexp \rangle ::= \langle boolconst \rangle$$

$$\mid \neg \langle boolexp \rangle$$

$$\mid \neg \langle intexp \rangle \oplus \langle intexp \rangle$$

$$\mid \langle intexp \rangle \oplus \langle intexp \rangle$$

$$\mid \langle boolexp \rangle \oplus \langle boolexp \rangle$$

$$\oplus \{+, -, *, /, \%, \mathbf{rem} \}$$

$$\otimes \in \{<, \leqslant, =, \neq, \geqslant, >\}$$

$$\otimes \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$$

• Hay sólo dos tipos de expresiones: enteras y booleanas

- Hay sólo dos tipos de expresiones: enteras y booleanas
- Todas las funciones primitivas (incluida la división) son funciones totales.

- Hay sólo dos tipos de expresiones: enteras y booleanas
- Todas las funciones primitivas (incluida la división) son funciones totales.
- Como en la lógica de predicados, sólo hay variables enteras:

$$\Sigma = \langle var \rangle \to \mathbb{Z}$$

- Hay sólo dos tipos de expresiones: enteras y booleanas
- Todas las funciones primitivas (incluida la división) son funciones totales.
- Como en la lógica de predicados, sólo hay variables enteras:

$$\Sigma = \langle var \rangle \rightarrow \mathbb{Z}$$

• El significado de una expresión entera (booleana), fijado un estado, es un entero (booleano).

- Hay sólo dos tipos de expresiones: enteras y booleanas
- Todas las funciones primitivas (incluida la división) son funciones totales.
- Como en la lógica de predicados, sólo hay variables enteras:

$$\Sigma = \langle var \rangle \rightarrow \mathbb{Z}$$

- El significado de una expresión entera (booleana), fijado un estado, es un entero (booleano).
- El significado de un comando que termina, fijado un estado, es un estado.

- Hay sólo dos tipos de expresiones: enteras y booleanas
- Todas las funciones primitivas (incluida la división) son funciones totales.
- Como en la lógica de predicados, sólo hay variables enteras:

$$\Sigma = \langle var \rangle \rightarrow \mathbb{Z}$$

- El significado de una expresión entera (booleana), fijado un estado, es un entero (booleano).
- El significado de un comando *que termina*, fijado un estado, es un estado.
- ¿Y el signifcado de un comando que **NO** termina?

Funciones semánticas

$$\llbracket _ \rrbracket^{intexp} \in \langle intexp \rangle \to (\Sigma \to \mathbb{Z})$$

Funciones semánticas

$$\llbracket _ \rrbracket^{intexp} \in \langle intexp \rangle \to (\Sigma \to \mathbb{Z})$$
$$\llbracket _ \rrbracket^{boolexp} \in \langle boolexp \rangle \to (\Sigma \to \{V, F\})$$

Funciones semánticas

$$\begin{bmatrix} _ \end{bmatrix}^{intexp} \in \langle intexp \rangle \to (\Sigma \to \mathbb{Z})$$

$$\begin{bmatrix} _ \end{bmatrix}^{boolexp} \in \langle boolexp \rangle \to (\Sigma \to \{V, F\})$$

$$\begin{bmatrix} _ \end{bmatrix}^{comm} \in \langle comm \rangle \to (\Sigma \to \Sigma_{\perp})$$

Funciones semánticas

$$\begin{bmatrix} _ \end{bmatrix}^{intexp} \in \langle intexp \rangle \to (\Sigma \to \mathbb{Z})$$

$$\begin{bmatrix} _ \end{bmatrix}^{boolexp} \in \langle boolexp \rangle \to (\Sigma \to \{V, F\})$$

$$\begin{bmatrix} _ \end{bmatrix}^{comm} \in \langle comm \rangle \to (\Sigma \to \Sigma_{\perp})$$

Observación: en el codominio de $\llbracket _ \rrbracket^{comm}$ aparece Σ_\perp para dar cuenta de la no terminación.

Equivalencia de términos

Dādos e,e' en la misma categoría sintáctica, se dice que e es equivalente a e', que escribimos como $e\equiv e'$, si y solo si

$$\llbracket e \rrbracket = \llbracket e' \rrbracket$$

Equivalencia de términos

Dados e, e' en la misma categoría sintáctica, se dice que e es equivalente a e', que escribimos como $e \equiv e'$, si y solo si

$$\llbracket e \rrbracket = \llbracket e' \rrbracket$$

En nuestro caso, es equivalente a decir que para todo $\sigma \in \Sigma$,

$$\llbracket e \rrbracket \sigma = \llbracket e' \rrbracket \sigma$$

Equivalencia de términos

Dados e, e' en la misma categoría sintáctica, se dice que e es equivalente a e', que escribimos como $e \equiv e'$, si y solo si

$$\llbracket e \rrbracket = \llbracket e' \rrbracket$$

En nuestro caso, es equivalente a decir que para todo $\sigma \in \Sigma$,

$$[\![e]\!]\sigma=[\![e']\!]\sigma$$

Equivalencia de términos

Dados e, e' en la misma categoría sintáctica, se dice que e es equivalente a e', que escribimos como $e \equiv e'$, si y solo si

$$\llbracket e \rrbracket = \llbracket e' \rrbracket$$

En nuestro caso, es equivalente a decir que para todo $\sigma \in \Sigma$,

$$[\![e]\!]\sigma=[\![e']\!]\sigma$$

true
$$\equiv x = x$$

Equivalencia de términos

Dados e, e' en la misma categoría sintáctica, se dice que e es equivalente a e', que escribimos como $e \equiv e'$, si y solo si

$$\llbracket e \rrbracket = \llbracket e' \rrbracket$$

En nuestro caso, es equivalente a decir que para todo $\sigma \in \Sigma$,

$$[\![e]\!]\sigma=[\![e']\!]\sigma$$

true
$$\equiv x = x$$

$$2 * x \equiv x + x$$

Equivalencia de términos

Dados e, e' en la misma categoría sintáctica, se dice que e es equivalente a e', que escribimos como $e \equiv e'$, si y solo si

$$\llbracket e \rrbracket = \llbracket e' \rrbracket$$

En nuestro caso, es equivalente a decir que para todo $\sigma \in \Sigma$,

$$[\![e]\!]\sigma=[\![e']\!]\sigma$$

true
$$\equiv x = x$$

 $2 * x \equiv x + x$
 $x := 0; y := 1 \equiv y := 1; x := 0$

Comandos sencillos

$$[\![\mathbf{skip}]\!]\ \sigma = \sigma$$

Comandos sencillos

$$\llbracket \mathbf{skip} \rrbracket \, \sigma = \sigma$$

$$\llbracket v := e \rrbracket \, \sigma = \llbracket \sigma \, | \, v : \llbracket e \rrbracket \, \sigma \rrbracket$$

Comandos sencillos

Comandos sencillos

$$[\![\mathbf{skip}]\!] \sigma = \sigma$$

$$[\![v := e]\!] \sigma = [\![\sigma | v : [\![e]\!] \sigma]\!]$$

$$[\![\mathbf{if} \, b \, \mathbf{then} \, c \, \mathbf{else} \, c']\!] \sigma = \begin{cases} [\![c]\!] \sigma & \text{si } [\![b]\!] \sigma \\ [\![c']\!] \sigma & \text{si } \neg [\![b]\!] \sigma \end{cases}$$

Claramente if ... es un caso recursivo, pero no problemático.

Composición

La ecuación obvia

$$\llbracket c_0; c_1 \rrbracket \sigma = \llbracket c_1 \rrbracket \left(\llbracket c_0 \rrbracket \sigma \right)$$

no tiene en cuenta que c_0 se puede colgar.

Composición

La ecuación obvia

$$\llbracket c_0; c_1 \rrbracket \sigma = \llbracket c_1 \rrbracket (\llbracket c_0 \rrbracket \sigma)$$

no tiene en cuenta que c_0 se puede colgar.

De hecho, nuestro dominio semántico está bien pensado porque hay un error de tipos.

Composición

La ecuación obvia

$$\llbracket c_0; c_1 \rrbracket \sigma = \llbracket c_1 \rrbracket \left(\llbracket c_0 \rrbracket \sigma \right)$$

no tiene en cuenta que c_0 se puede colgar.

De hecho, nuestro dominio semántico está bien pensado porque hay un error de tipos.

$$\llbracket c_0; c_1 \rrbracket \sigma = \llbracket c_1 \rrbracket \perp (\llbracket c_0 \rrbracket \sigma)$$

Bloque local

Después de ejecutar el cuerpo hay que restaurar el valor de la variable.

$$\begin{array}{rcl} \mathit{rest}_{v,\sigma} & : & \Sigma \to \Sigma \\ \mathit{rest}_{v,\sigma}(\sigma') & = & [\sigma' \,|\, v : \sigma v] \end{array}$$

Acá σ y v son parámetros fijos; el argumento es σ' .

Bloque local

Después de ejecutar el cuerpo hay que restaurar el valor de la variable.

$$rest_{v,\sigma} : \Sigma \to \Sigma$$

$$rest_{v,\sigma}(\sigma') = [\sigma' | v : \sigma v]$$

Acá σ y v son parámetros fijos; el argumento es σ' .

$$[\![\mathbf{newvar}\,v\,:=\,e\,\,\mathbf{in}\,c]\!]\,\sigma=(\mathit{rest}_{v,\sigma})_{\perp\!\!\perp}([\![c]\!]\,[\sigma|v\,:\,[\![e]\!]\,\sigma])$$

Bloque local

Después de ejecutar el cuerpo hay que restaurar el valor de la variable.

$$rest_{v,\sigma} : \Sigma \to \Sigma$$

$$rest_{v,\sigma}(\sigma') = [\sigma' | v : \sigma v]$$

Acá σ y v son parámetros fijos; el argumento es σ' .

$$\llbracket \mathbf{newvar} \, v \, := \, e \, \, \mathbf{in} \, c \rrbracket \, \sigma = (rest_{v,\sigma})_{\bot\!\!\bot} (\llbracket c \rrbracket \, \llbracket \sigma \rvert v : \llbracket e \rrbracket \, \sigma \rrbracket)$$

Con notación lambda:

$$\llbracket \mathbf{newvar} \, v \, := \, e \, \, \mathbf{in} \, c \rrbracket \, \sigma = (\lambda \sigma' \in \Sigma. \, \llbracket \sigma' \, | \, v : \sigma v \rrbracket)_{\bot\!\!\bot} \, (\llbracket c \rrbracket \, \llbracket \sigma | v : \llbracket e \rrbracket \, \sigma \rrbracket)$$

Ciclo

Evaluamos la guarda. Si es falsa, se terminó el programa. Si es verdadera, ejecutamos el cuerpo y luego el ciclo entero.

Ciclo

Evaluamos la guarda. Si es falsa, se terminó el programa. Si es verdadera, ejecutamos el cuerpo y luego el ciclo entero.

$$[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]\ \sigma = \begin{cases} \sigma & \mathrm{si}\ \neg [\![b]\!]\sigma \\ [\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]\ _{\perp\!\!\!\perp} ([\![c]\!]\ \sigma) & \mathrm{si}\ [\![b]\!]\sigma \end{cases}$$

Ciclo

Evaluamos la guarda. Si es falsa, se terminó el programa. Si es verdadera, ejecutamos el cuerpo y luego el ciclo entero.

$$[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]\ \sigma = \begin{cases} \sigma & \mathrm{si}\ \neg [\![b]\!]\sigma \\ [\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]\ _{\!\!\perp\!\!\perp}([\![c]\!]\ \sigma) & \mathrm{si}\ [\![b]\!]\sigma \end{cases}$$

Problema: no es dirigida por sintaxis. Solución: definir

$$F_{b,c} \colon (\Sigma \to \Sigma_{\perp}) \to (\Sigma \to \Sigma_{\perp})$$

y encontrar su menor punto fijo.

Ecuaciones Semánticas de Comandos

Ciclo

Evaluamos la guarda. Si es falsa, se terminó el programa. Si es verdadera, ejecutamos el cuerpo y luego el ciclo entero.

$$[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]\ \sigma = \begin{cases} \sigma & \mathrm{si}\ \neg [\![b]\!]\sigma \\ [\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]\ _{\!\!\!\perp\!\!\!\perp} ([\![c]\!]\ \sigma) & \mathrm{si}\ [\![b]\!]\sigma \end{cases}$$

Problema: no es dirigida por sintaxis. Solución: definir

$$F_{b,c} \colon (\Sigma \to \Sigma_{\perp}) \to (\Sigma \to \Sigma_{\perp})$$

y encontrar su menor punto fijo.

$$F_{b,c} f \sigma = \begin{cases} \sigma & \text{si } \neg \llbracket b \rrbracket \sigma \\ f_{\perp \!\! \perp}(\llbracket c \rrbracket \sigma) & \text{si } \llbracket b \rrbracket \sigma \end{cases}$$

6

Ejemplo: Exponenciación

Exponenciación: Enunciado

Especificación Quiero un programa c que calcule x^y , asumiendo que $y \ge 0$.

Exponenciación: Enunciado

Especificación

Quiero un programa c que calcule x^y , asumiendo que $y \ge 0$. Volviendo a primer año:

$$\{Y \ge 0\}$$

$$c$$

$$\{e = X^Y\}$$

Exponenciación: Enunciado

Especificación

Quiero un programa c que calcule x^y , asumiendo que $y \ge 0$.

Volviendo a primer año:

$$\{Y \ge 0\}$$

$$c$$

$$\{e = X^Y\}$$

Volviendo a quinto $[\![c]\!]\sigma e = \sigma x^{\sigma y} \text{ si } \sigma y \geqslant 0.$

Solución obvia

$$e := 1$$
; while $\underbrace{y > 0}_{b}$ do $\underbrace{e := e * x; y := y - 1}_{body}$

Solución obvia

$$e := 1$$
; while $y > 0$ do $e := e * x$; $y := y - 1$

•
$$\llbracket \mathbf{e} := 1 \rrbracket \sigma$$
.

Solución obvia

$$e := 1$$
; while $y > 0$ do $e := e * x$; $y := y - 1$

- $[e := 1]\sigma$.
- [body]σ.

Solución obvia

$$e := 1$$
; while $y > 0$ do $e := e * x$; $y := y - 1$

- $[e := 1]\sigma$.
- $\llbracket body \rrbracket \sigma$.
- $F_{b,body}^i \perp \sigma$.

Solución obvia

$$e := 1$$
; while $y > 0$ do $e := e * x$; $y := y - 1$

- $[e := 1]\sigma$.
- $\llbracket body \rrbracket \sigma$.
- $F_{b,body}^i \perp \sigma$.
- [while b do body] σ .

Cálculo de semántica de ciclos

1. Hallar la expresión más sencilla posible para body.

Cálculo de semántica de ciclos

- 1. Hallar la expresión más sencilla posible para body.
- 2. Hallar la expresión más sencilla posible para $F_{b,body} f \sigma$.

Cálculo de semántica de ciclos

- 1. Hallar la expresión más sencilla posible para *body*.
- 2. Hallar la expresión más sencilla posible para $F_{b,body} f \sigma$.
- 3. Calcular los primeros elementos de la cadena $F^i \perp \sigma$.

Cálculo de semántica de ciclos

- 1. Hallar la expresión más sencilla posible para *body*.
- 2. Hallar la expresión más sencilla posible para $F_{b,body} f \sigma$.
- 3. Calcular los primeros elementos de la cadena $F^i \perp \sigma$.
- 4. Hallar una expresión general para el supremo.

Teorema de Coincidencia

Expresiones y comandos

Para expresiones

Si $\sigma w = \sigma' w$ para toda $w \in FV(e)$, entonces $[e] \sigma = [e] \sigma'$.

Para comandos

¿Si $\sigma w = \sigma' w$ para toda $w \in FV(c)$, entonces $[\![c]\!]\sigma = [\![c]\!]\sigma'$?

Expresiones y comandos

Para expresiones

Si $\sigma w = \sigma' w$ para toda $w \in FV(e)$, entonces $[e] \sigma = [e] \sigma'$.

Para comandos

¿Si
$$\sigma w = \sigma' w$$
 para toda $w \in FV(c)$, entonces $[\![c]\!]\sigma = [\![c]\!]\sigma'$?

Sea
$$c \doteq x := 5 + w$$
.

Sea $\sigma_0 u = 0$. Ahora consideremos

$$\sigma = [\sigma_0 \mid x:3 \mid w:4 \mid z:3] y$$

$$\sigma' = [\sigma_0 \mid x : 3 \mid w : 4].$$

$$FV(\mathbf{skip}) = \emptyset$$

$$FV(\mathbf{skip})$$
 = \emptyset
 $FV(v := e)$ = $\{v\} \cup FV(e)$

$$FV(\mathbf{skip})$$
 = \emptyset
 $FV(v := e)$ = $\{v\} \cup FV(e)$
 $FV(c_0; c_1)$ = $FV(c_0) \cup FV(c_1)$

$$FV(\mathbf{skip}) = \emptyset$$

$$FV(v := e) = \{v\} \cup FV(e)$$

$$FV(c_0; c_1) = FV(c_0) \cup FV(c_1)$$

$$FV(\mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1) = FV(b) \cup FV(c_0) \cup FV(c_1)$$

$$FV(\mathbf{skip}) = \emptyset$$

$$FV(v := e) = \{v\} \cup FV(e)$$

$$FV(c_0; c_1) = FV(c_0) \cup FV(c_1)$$

$$FV(\mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1) = FV(b) \cup FV(c_0) \cup FV(c_1)$$

$$FV(\mathbf{while} b \mathbf{do} c) = FV(b) \cup FV(c)$$

```
FV(\mathbf{skip}) = \emptyset
FV(v := e) = \{v\} \cup FV(e)
FV(c_0; c_1) = FV(c_0) \cup FV(c_1)
FV(\mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1) = FV(b) \cup FV(c_0) \cup FV(c_1)
FV(\mathbf{while} b \mathbf{do} c) = FV(b) \cup FV(c)
FV(\mathbf{newvar} v := e \mathbf{in} c) = FV(e) \cup (FV(c) - \{v\})
```

$$FA(\mathbf{skip}) = \emptyset$$

$$FA(\mathbf{skip}) = \emptyset$$

 $FA(v := e) = \{v\}$

$$FA(\mathbf{skip})$$
 = \emptyset
 $FA(v := e)$ = $\{v\}$
 $FA(c_0; c_1)$ = $FA(c_0) \cup FA(c_1)$

$$FA(\mathbf{skip}) = \emptyset$$

$$FA(v := e) = \{v\}$$

$$FA(c_0; c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{skip}) = \emptyset$$

$$FA(v := e) = \{v\}$$

$$FA(c_0; c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{while} b \mathbf{do} c) = FA(c)$$

$$FA(\mathbf{skip}) = \emptyset$$

$$FA(v := e) = \{v\}$$

$$FA(c_0; c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{while} b \mathbf{do} c) = FA(c)$$

$$FA(\mathbf{newvar} v := e \mathbf{in} c) = FA(c) - \{v\}$$

$$FA(\mathbf{skip}) = \emptyset$$

$$FA(v := e) = \{v\}$$

$$FA(c_0; c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1) = FA(c_0) \cup FA(c_1)$$

$$FA(\mathbf{while} b \mathbf{do} c) = FA(c)$$

$$FA(\mathbf{newvar} v := e \mathbf{in} c) = FA(c) - \{v\}$$

Enunciado correcto

Lema de intangibilidad Si
$$[\![c]\!]\sigma = \sigma_1 \neq \bot$$
, entonces $\sigma_1 v = \sigma v$ para toda $v \notin FA(c)$.

Enunciado correcto

Lema de intangibilidad

Si
$$[\![c]\!]\sigma = \sigma_1 \neq \bot$$
, entonces $\sigma_1 v = \sigma v$ para toda $v \notin FA(c)$.

Teorema de coincidencia

Si $\sigma w = \sigma' w$ para toda $w \in FV(c)$, entonces:

- 1. o bien $\llbracket c \rrbracket \sigma = \bot = \llbracket c \rrbracket \sigma'$,
- 2. o bien $\llbracket c \rrbracket \sigma = \sigma_1 \neq \bot y \llbracket c \rrbracket \sigma' = \sigma_2 \neq \bot, y$ para toda $w \in FV(c)$, $\sigma_1 w = \sigma_2 w$.

1. Inducción estructural en c.

- 1. Inducción estructural en *c*.
- 2. Los casos que no son ciclos son fáciles.

- 1. Inducción estructural en *c*.
- 2. Los casos que no son ciclos son fáciles.
- 3. Para el ciclo **while** b **do** cw enunciamos un lema auxiliar para $F^i_{b,cw} \perp$ que probamos por inducción en i.

- 1. Inducción estructural en c.
- 2. Los casos que no son ciclos son fáciles.
- 3. Para el ciclo **while** b **do** cw enunciamos un lema auxiliar para $F_{b,cw}^i \perp$ que probamos por inducción en i.
- 4. Como es una inducción en los naturales dentro de la inducción de comandos podemos usar la hipótesis inductiva para *cw* y también tenemos la hipótesis inductiva para el natural.

Expresiones y comandos

Para expresiones

Si $\sigma w = [\![\delta w]\!] \sigma'$ para toda $w \in FV(e)$, entonces $[\![e]\!] \sigma = [\![e/\delta]\!] \sigma'$.

Para comandos

$$\xi \operatorname{Si} \sigma w = [\![\delta w]\!] \sigma' \operatorname{para toda} w \in FV(c), \operatorname{entonces} [\![c]\!] \sigma = [\![c/\delta]\!] \sigma'$$
?

Expresiones y comandos

Para expresiones

Si $\sigma w = [\![\delta w]\!] \sigma'$ para toda $w \in FV(e)$, entonces $[\![e]\!] \sigma = [\![e/\delta]\!] \sigma'$.

Para comandos

$$\xi \operatorname{Si} \sigma w = [\![\delta w]\!] \sigma' \operatorname{para} \operatorname{toda} w \in FV(c), \operatorname{entonces} [\![c]\!] \sigma = [\![c / \delta]\!] \sigma' ?$$

Sea
$$c \doteq x := 5 + w$$
.

Consideremos la siguiente sustitución:
$$\delta w = \begin{cases} y + 1 & \text{si } w = x \\ w & \text{si } w \neq x \end{cases}$$

14

Expresiones y comandos

Para expresiones

Si $\sigma w = [\![\delta w]\!] \sigma'$ para toda $w \in FV(e)$, entonces $[\![e]\!] \sigma = [\![e/\delta]\!] \sigma'$.

Para comandos

 $\xi \operatorname{Si} \sigma w = [\![\delta w]\!] \sigma' \operatorname{para} \operatorname{toda} w \in FV(c), \operatorname{entonces} [\![c]\!] \sigma = [\![c / \delta]\!] \sigma' ?$

Sea $c \doteq x := 5 + w$.

Consideremos la siguiente sustitución: $\delta w = \begin{cases} y + 1 & \text{si } w = x \\ w & \text{si } w \neq x \end{cases}$

Entonces $c/\delta = y + 1 := 5 + w$!

Sustituciones más razonables

Renombres

Una sustitución δ : $\langle var \rangle \rightarrow \langle intexp \rangle$ es un **renombre** si para toda $v \in \langle var \rangle$, $\delta v = w$ para alguna $w \in \langle var \rangle$.

Es decir, un renombre es una función δ : $\langle var \rangle \rightarrow \langle var \rangle$.

Enunciado del teorema

Sean δ : $\langle var \rangle \rightarrow \langle var \rangle$ y σ , σ' : Σ . Si para todo $w \in FV(c)$, $\sigma'(\delta w) = \sigma w$, entonces

- 1. o bien $\llbracket c \rrbracket \sigma = \bot = \llbracket c / \delta \rrbracket \sigma'$.
- 2. o bien $[\![c]\!]\sigma = \sigma_1$, $[\![c/\delta]\!]\sigma' = \sigma_2 y$ para toda $w \in FV(c)$, $\sigma_1 w = \sigma_2 \square$.

¿Qué debe ir en el espacio en blanco?

Sustituciones más razonables

Renombres

Una sustitución δ : $\langle var \rangle \rightarrow \langle intexp \rangle$ es un **renombre** si para toda $v \in \langle var \rangle$, $\delta v = w$ para alguna $w \in \langle var \rangle$.

Es decir, un renombre es una función δ : $\langle var \rangle \rightarrow \langle var \rangle$.

Enunciado del teorema

Sean δ : $\langle var \rangle \rightarrow \langle var \rangle$ y σ , σ' : Σ . Si para todo $w \in FV(c)$, $\sigma'(\delta w) = \sigma w$, entonces

- 1. o bien $\llbracket c \rrbracket \sigma = \bot = \llbracket c / \delta \rrbracket \sigma'$.
- 2. o bien $[\![c]\!]\sigma = \sigma_1$, $[\![c/\delta]\!]\sigma' = \sigma_2$ y para toda $w \in FV(c)$, $\sigma_1 w = \sigma_2$ (δw) .

$$\mathbf{skip} / \delta = \mathbf{skip}$$

$$\begin{array}{lll} \mathbf{skip} / \delta & = & \mathbf{skip} \\ v := e / \delta & = & \delta v := e / \delta \end{array}$$

$$\begin{array}{lll}
\mathbf{skip} / \delta & = & \mathbf{skip} \\
v := e / \delta & = & \delta v := e / \delta \\
(c_0; c_1) / \delta & = & c_0 / \delta; c_1 / \delta
\end{array}$$

```
\begin{array}{lll} \mathbf{skip} / \delta & = & \mathbf{skip} \\ v := e / \delta & = & \delta v := e / \delta \\ (c_0; c_1) / \delta & = & c_0 / \delta; c_1 / \delta \\ (\mathbf{if} b \, \mathbf{then} \, c_0 \, \mathbf{else} \, c_1) / \delta & = & \mathbf{if} \, b / \delta \, \mathbf{then} \, c_0 / \delta \, \mathbf{else} \, c_1 / \delta \end{array}
```

```
\begin{array}{lll} \mathbf{skip} / \delta & = & \mathbf{skip} \\ v := e / \delta & = & \delta v := e / \delta \\ (c_0; c_1) / \delta & = & c_0 / \delta; c_1 / \delta \\ (\mathbf{if} \, b \, \mathbf{then} \, c_0 \, \mathbf{else} \, c_1) / \delta & = & \mathbf{if} \, b / \delta \, \mathbf{then} \, c_0 / \delta \, \mathbf{else} \, c_1 / \delta \\ (\mathbf{while} \, b \, \mathbf{do} \, c) / \delta & = & \mathbf{while} \, (b / \delta) \, \mathbf{do} \, (c_0 / \delta) \end{array}
```

```
\begin{array}{lll} \mathbf{skip} / \delta & = & \mathbf{skip} \\ v := e / \delta & = & \delta v := e / \delta \\ (c_0; c_1) / \delta & = & c_0 / \delta; c_1 / \delta \\ (\mathbf{if} \, b \, \mathbf{then} \, c_0 \, \mathbf{else} \, c_1) / \delta & = & \mathbf{if} \, b / \delta \, \mathbf{then} \, c_0 / \delta \, \mathbf{else} \, c_1 / \delta \\ (\mathbf{while} \, b \, \mathbf{do} \, c) / \delta & = & \mathbf{while} \, (b / \delta) \, \mathbf{do} \, (c_0 / \delta) \\ (\mathbf{newvar} \, v := e \, \mathbf{in} \, c) / \delta & = & \mathbf{newvar} \, v_{new} := e / \delta \, \mathbf{in} \, c / \, [\delta \, | \, v : v_{new}] \\ & \text{donde} \, v_{new} \notin \{\delta \, w \, | \, w \in FV(c) - \{v\}\} \end{array}
```

Problema de alias

Consideremos el programa

$$c \doteq x := x + 1; y := y * 2$$

Y el renombre $\delta x = \delta y = z$. Entonces

$$c / \delta = z := z + 1; z := z * 2$$

Problema de alias

Consideremos el programa

$$c \doteq x := x + 1; y := y * 2$$

Y el renombre $\delta x = \delta y = z$. Entonces

$$c / \delta = z := z + 1; z := z * 2$$

Sea σ' un estado tal que σ' z=2 y sea σ $x=\sigma$ y=2.

Problema de alias

Consideremos el programa

$$c \doteq x := x + 1; y := y * 2$$

Y el renombre $\delta x = \delta y = z$. Entonces

$$c / \delta = z := z + 1; z := z * 2$$

Sea σ' un estado tal que σ' z=2 y sea σ $x=\sigma$ y=2.

Pero ni siquiera vale lo que esperamos que valga.

Teorema de Sustitución

Sean δ : $\langle var \rangle \rightarrow \langle var \rangle$ y σ , σ' : Σ . Si δ es *inyectiva* y para todo $w \in FV(c)$, $\sigma'(\delta w) = \sigma w$,

- 1. o bien $[\![c]\!]\sigma = \bot = [\![c/\delta]\!]\sigma'$.
- 2. o bien $\llbracket c \rrbracket \sigma = \sigma_1$, $\llbracket c / \delta \rrbracket \sigma' = \sigma_2$ y para toda $w \in FV(c)$, $\sigma_1 w = \sigma_2$ (δw) .

Teorema de Sustitución. Demostración.

La misma receta que el teorema de coincidencia.

Agregando cosas al lenguaje

Repetición acotada

¿Cómo añadir un comando que nos permita ejecutar un cuerpo una cierta cantidad de veces?

```
Python
V, W = 10, 5
for i in range(v+5, w*4):
    c = c + i
Javascript
var w, v, i;
[v,w] = [10,5];
for (i = v+5; i < w*4; i++) {
  c = c + i;
```

Repetición acotada

- 1. Construcción sintáctica: nuevo comando real o syntactic-sugar?
- 2. Qué versión queremos?
- 3. Ecuación semántica