

# Universidad Tecnológica de la Mixteca

Clave DGP: 200089

### Ingeniería Mecánica Automotriz

### PROGRAMA DE ESTUDIOS

| NOMBRE DE LA ASIGNATURA |                    |
|-------------------------|--------------------|
|                         | Microcontroladores |

| SEMESTRE | CLAVE DE LA ASIGNATURA | TOTAL DE HORAS |
|----------|------------------------|----------------|
| Séptimo  | 311075                 | 102            |

### OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Que el alumno conozca los microcontroladores, su organización y programación en un lenguaje de alto nivel, para que pueda entender los dispositivos que controlan diversos sistemas automotrices.

### TEMAS Y SUBTEMAS

#### 1.Fundamentos

- 1.1 Sistemas numéricos: Binario, octal y hexadecimal
- 1.2 Conversiones de bases
- 1.3 Compuertas lógicas y algebra de Boole
- 1.4 Circuitos lógicos combinatorios
- 1.5 Diseño con ecuaciones booleanas
- 1.6 Elementos de estado
- 1.7 Circuitos secuenciales
- 1.8 Circuitos integrados de mediana escala

### 2. El microcontrolador

- 2.1 ¿Qué es un microcontrolador?
- 2.2 Microcontrolador vs. microprocesador
- 2.3 Organización de un microcontrolador
- 2.4 Unidad central de procesamiento
- 2.5 Memoria
- 2.6 Puertos
- 2.7 Programación
- 2.8 Interrupciones

### 3. Programación en alto nivel

- 3.1 Tipos de datos
- 3.2 Operadores y expresiones
- 3.3 Estructuras de control
- 3.4 Organización de un programa
- 3.5 Gestión de interrupciones
- 3.6 Ciclo de diseño
- 3.7 Ejemplos de aplicación

### 4. Recursos de un microcontrolador

- 4.1 Interrupciones Externas
- 4.2 Temporizadores/Contadores
- 4.3 Modulador de ancho de pulso
- 4.4 Convertidor digital a analógico
- 4.5 Convertidor analógico a digital
- 4.6 Protocolos de comunicación

## 5. Interfaz y control de periféricos externos

- 5.1 Botones e Interruptores
- 5.2 Leds
- 5.3 Displays de 7 segmentos
- 5.4 Teclados



- 5.5 LCD
- 5.6 Manejo de motores
- 5.7 Manejo de dispositivos con interfaces SPI e I2C

#### 6. Desarrollo de sistemas

- 6.1 Metodología de diseño
- 6.2 Desarrollo de sistemas hardware y software
- 6.3 Proyecto final

#### ACTIVIDADES DE APRENDIZAJE

Exposición por parte del maestro; lecturas enfocadas y actualizadas a los temas del programa; prácticas de laboratorio y emulación de aplicaciones reales.

### CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Exámenes parciales y examen final; investigación de temas selectos, desarrollo de prácticas ejercicios y tareas, todo esto englobará la calificación final de 100%.

### BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

### Básica:

Gómez, González S. SolidWorks Simulation. Alfaomega. México. 2010 How to Design Cars Like a Pro. Lewin, Borroff. Motorbooks. 2010 El gran libro de Catia. Torrecilla, I. E., Marcombo. 2009

#### Consulta:

Ergonomía y diseño de productos. Sáenz, Z. M. Universidad Pontificia. 2011 Manual de ergonomía y seguridad. Rueda, O., Zambrano V.M., Alfaomega. 2013

### PERFIL PROFESIONAL DEL DOCENTE

Maestro en ciencias en el área de electrónica o mecatrónica con especialidad en Sistemas Digitales o Sistemas Computacionales. Experiencia mínima de 3 años en el área de docencia e investigación; habilidades y técnicas docentes dinámicas y actualizadas.

Vo. Bo.

M.C. VÍCTOR MANUEL CRUZ MARTÍNEZ JEFE DE CARRERA AUTORIZÓ

DR. AGUSTIN SANTINGO ALVARADO VICE-RECTOR ACADEMICO

JEFATURA DE CARRIERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ