

Causal Diffusion Autoencoders: Toward Representation-Enabled Counterfactual Generation via Diffusion Probabilistic Models

Aneesh Komanduri¹, Chen Zhao², Feng Chen³, and Xintao Wu¹

¹University of Arkansas, ²Baylor University, ³University of Texas at Dallas

Motivation

- > Diffusion models have become state-of-the art in image generation, but do not model complex causal dependencies in latent space
- > Representation-enabled counterfactual generation [1] is an underexplored area in diffusion models
- > Applications: Healthcare, medicine, biology, etc.

Contributions

- > We propose CausalDiffAE, a causal representation learning diffusionbased framework to achieve counterfactual generation. We
 - learn a causal representation via stochastic encoder and model causal mechanisms via neural networks in the latent space
 - Formulate a variational objective with an alignment prior to ensure disentangled representations
- > propose DDIM for counterfactual generation subject to interventions
- > explore a weak supervision scenario with limited label supervision to enable granular control over generated counterfactuals

Acknowledgements

This work is supported in part by NSF 1910284, 1946391, 2147375, and NIH P20GM139768

References

[1] A. Komanduri et al. From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling. TMLR. 2024.

Causal Diffusion Autoencoder

Loss	$\sum_{t=1}^{T} \mathbb{E}_{\mathbf{x}_{0}, \epsilon_{t}} \left[\ \epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{z}_{\text{causal}}) - \epsilon_{t} \ _{2}^{2} \right]$
	+ $\gamma \Big\{ \mathcal{D}_{KL}(q_{\phi}(\mathbf{z}_{\text{causal}} \mathbf{x}_{0},\mathbf{y}) \ p(\mathbf{z}_{\text{causal}} \mathbf{y}) \Big)$
	$+ \mathcal{D}_{KL}(q_{\phi}(\mathbf{u} \mathbf{x}_0) \ \mathcal{N}(0, \mathbf{I})) \Big\}$

Counterfactual DDIM $z_i = f_i(z_{\mathbf{pa}_i}, u_i)$ $\mathbf{x}_{t-1}^{CF} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{x}_{t}^{CF} - \sqrt{1 - \alpha_{t}} \epsilon_{\theta}(\mathbf{x}_{t}^{CF}, t, \bar{\mathbf{z}}_{\text{causal}})}{\sqrt{\alpha_{t}}} \right)$ $\mathbf{z} = (\mathbf{I} - \mathbf{A}^T)^{-1}\mathbf{u}$ $z_i = f_i(\mathbf{A}_i \odot \mathbf{z}; \nu_i) + u_i$

Counterfactual Generation Algorithm

Input: Factual sample x_0 , intervention target set \mathcal{I} with intervention values c, noise predictor ϵ_{θ} , encoder ϕ

Output: Counterfactual sample \mathbf{x}_0^{CF}

- Noise encoding 1: $\mathbf{u} \sim q_{\phi}(\mathbf{u}|\mathbf{x}_0)$ in topological order 2: **for** i = 1 to n **do** if $i \in \mathcal{I}$ then
- $z_i = c_i$
- $z_i = f_i(u_i, z_{\mathbf{pa}_i})$ end if
- 8: end for 9: $\bar{\mathbf{z}}_{\text{causal}} = \{z_1, \dots, z_n\}$
- ▶ Intervened representation 10: $\mathbf{x}_T \sim \mathcal{N}(\sqrt{\alpha_T}\mathbf{x}_0, (1-\alpha_T)\mathbf{I})$
- 11: $\mathbf{x}_T^{CF} = \mathbf{x}_T$

Causal Model

- 12: **for** t = T, ..., 1 **do** DDIM sampling $\mathbf{x}_{t-1}^{CF} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{x}_t^{CF} - \sqrt{1 - \alpha_t} \epsilon_{\theta}(\mathbf{x}_t^{CF}, t, \mathbf{z}_{\text{causal}})}{\sqrt{\alpha_t}} \right)$
- $+\sqrt{1-\alpha_{t-1}}\epsilon_{\theta}(\mathbf{x}_{t}^{CF},t,\mathbf{z}_{\text{causal}})$ **15: end for**
- 16: **return** \mathbf{x}_0^{CF}

Prior
$p(\mathbf{z}_{\text{causal}} \mathbf{y}) = \prod_{i=1}^{n} p(z_i y_i) = \prod_{i=1}^{n} \mathcal{N}(z_i; \mu_{\nu}(y_i), \sigma_{\nu}^2(y_i)\mathbf{I})$

$+\sqrt{1-\alpha_{t-1}}\epsilon_{\theta}(\mathbf{x}_{t}^{CF},t,\bar{\mathbf{z}}_{\text{causal}})$

General Procedure:

- Noise abduction from factual
- Intervene on causal latents
- 3. Propagate effects
- . Decode using DDIM

Experimental Evaluation

- Datasets: MorphoMNIST and Pendulum, Metrics: DCI, Effectiveness, Visual Inspection
- **Generated Counterfactuals**

Weaker Supervision Training

 $0.3525_{0.01}$

 $0.9995_{0.01}$

- → Jointly train conditional & unconditional model
- $\bar{\epsilon}_{\theta}(\mathbf{x}_{t}, t, \bar{\mathbf{z}}_{\text{causal}}) = \omega \epsilon_{\theta}(\mathbf{x}_{t}, t, \bar{\mathbf{z}}_{\text{causal}}) + (1 \omega)\epsilon_{\theta}(\mathbf{x}_{t}, t)$

Quantitative Metrics **High Disentanglement**

DCI ↑ Model $0.7838_{0.01}$ MorphoMNIS7 CausalVAE **DiffAE** $0.3578_{0.01}$ CausalDiffAE (Ours) $0.9934_{0.01}$ Pendulum CausalVAE $0.8850_{0.01}$

CausalDiffAE (Ours)

DiffAE

High Effectiveness

MorphoMNIST	Thickness MAE ↓		Intensity	MAE ↓
Model	$\mathbf{do}(t)$	do(i)	$\mathbf{do}(t)$	$\mathbf{do}(i)$
CausalVAE	$3.763_{0.01}$	$4.645_{0.01}$	13.233 _{0.01}	$15.087_{0.01}$
DisDiffAE	$0.377_{0.02}$	$0.326_{0.02}$	$0.794_{0.02}$	$0.262_{0.02}$
CausalDiffAE	$0.392_{0.02}$	$0.309_{0.02}$	$0.503_{0.01}$	$0.256_{0.01}$

Pendulum	Angle MAE ↓			
Model	$\mathbf{do}(a)$	do(l)	do(sl)	do(sp)
CausalVAE	24.860	23.030	20.470	11.580
DisDiffAE	0.668	0.648	0.647	0.647
CausalDiffAE	0.297	0.132	0.031	0.034

*for more results, see full paper

do(t = 4.84)