UMC 202 PROBLEM SET 7

(1) Use Taylor's series method of order 2 to approximate the solution for each of the following initial value problems

of the following initial value problems (a)
$$y' = \frac{y}{x} - \frac{y^2}{x^2}$$
, $x \in [1, 2]$, $y(1) = 1$ with $h = 0.1$,

(b)
$$y' = \sin x + e^{-x}$$
, $x \in [0, 1]$, $y(0) = 0$ with $h = 0.5$,

(c)
$$y' = \frac{(y^2+y)}{x}$$
, $x \in [1,3]$, $y(1) = -2$, with $h = 0.5$,

(d)
$$y' = -xy + \frac{4x}{y}$$
, $x \in [0, 1]$, $y(0) = 1$, with $h = 0.25$.

- (2) Redo Problem 1 using the Runge Kutta method of order 2.
- (3) Redo Problem 1 using the Trapezoidal Method.
- (4) Using the Taylor's series method of order 2, Runge Kutta method of order 2 and the Trapezoidal Method to approximate the solutions of the following initial value problems and compare the results

(a)
$$y' = xe^{3x} - 2y$$
, $x \in [0,1]$, $y(0) = 0$ with $h = 0.5$; actual solution $y(x) = \frac{1}{5}xe^{3x} - \frac{1}{25}e^{3x} + \frac{1}{25}e^{-2x}$.

(b)
$$y' = 1 + (x - y)^2$$
, $x \in [2, 3]$, $y(2) = 1$, with $h = 0.5$; actual solution $y(x) = x + \frac{1}{(1-x)}$.

(c)
$$y' = 1 + \frac{y}{x}$$
, $x \in [1, 2]$, $y(1) = 2$ with $h = 0.25$; actual solution $y(x) = x \ln x + 2x$.