Pattern Recognition Lecture 04-2 Basic Deep Learning

Prof. Jongwon Choi Chung-Ang University Fall 2022

This Class

- Supervised Deep Learning
 - Definition
 - Architecture
 - Prediction
 - Training
- Unsupervised Deep Learning Auto-encoder
 - Definition
 - Architecture
 - Prediction
 - Training

- Cross-entropy Loss: $f_{CE}(\widetilde{\mathbf{y}}, \mathbf{y}, \mathbf{x}) = -\sum_{c=1}^{N_c} \widetilde{y_c} \log p(\widehat{y_c}|\mathbf{x}, \mathbf{y})$
 - \tilde{y} : One-hot vector of label (GT)
 - Good combination with softmax : $f_{CE}(\tilde{\mathbf{y}}, \mathbf{y}, \mathbf{x}) = -y_{(c=GT)}$

Let's start the training of last layer!

Gradient Descent for a Local Minimum

- We start with some initial guess, w^0
- Generate new guess by moving in the negative gradient direction:
 - - This decreases 'f' if the "step size" α^0 is small enough
 - Usually, we decrease α^0 if it increases 'f'
- Repeat to successively refine the guess:
 - $w^{t+1} = w^t \alpha^t \nabla f(w^t)$
- Stop if not making progress
 - $\|\nabla f(w^t)\| \le \epsilon$

Gradient descent on the last layer

- Weight initialization Gaussian random (Xavier's initialization)
- for the iterative update: $w^{t+1} = w^t \alpha^t \nabla f(w^t)$
 - \bullet α^t : Learning rate. Hyperparameter

$$ullet$$
 Thus, $\nabla_{w_L^t} f_{CE}(\tilde{\mathbf{y}}, \mathbf{y}, \mathbf{x}) = -\mathbf{x}_{L-1}$

Gradient Descent on the remaining layers – Chain Rule!!

- Weight initialization Gaussian random (Xavier's initialization)
- for the iterative update: $w_{L-1}^{t+1} = w_{L-1}^t \alpha^t \nabla f(w_{L-1}^t)$

$$\bullet \nabla_{\mathbf{w}_{L-1}^t} f_{CE}(\tilde{\mathbf{y}}, \mathbf{y}, \mathbf{x}) = \frac{\partial f_{CE}}{\partial \mathbf{w}_{L-1}^t} = \frac{\partial \mathbf{x}_{L-1}^t}{\partial \mathbf{w}_{L-1}^t} \times \frac{\partial f_{CE}}{\partial \mathbf{x}_{L-1}^t}$$

Gradient Descent on the remaining layers – Chain Rule!!

$$\bullet \frac{\partial f_{CE}}{\partial \mathbf{x}_{L-1}} = \frac{\partial}{\partial \mathbf{x}_{L-1}} \left(-\mathbf{w}_{c}^{tT} \mathbf{x}_{L-1} \right) = -\mathbf{w}_{c}^{t}$$

$$\bullet \frac{\partial \mathbf{x}_{L-1}}{\partial \mathbf{x}_{L-2}^t} = \frac{\partial}{\partial \mathbf{x}_{L-2}^t} \left(h(\mathbf{W} \mathbf{x}_{L-2}^t) \right) = \frac{\partial}{\partial \mathbf{x}_{L-2}^t} (\mathbf{W} \mathbf{x}_{L-2}^t) \times \frac{\partial h(\mathbf{W} \mathbf{x}_{L-2}^t)}{\partial (\mathbf{W} \mathbf{x}_{L-2}^t)} = \mathbf{W} \times \frac{\partial h(\mathbf{W} \mathbf{x}_{L-2}^t)}{\partial (\mathbf{W} \mathbf{x}_{L-2}^t)}$$

$$\bullet \frac{\partial \mathbf{x}_{L-2}^t}{\partial \mathbf{w}_{L-2}^t} = \frac{\partial}{\partial \mathbf{w}_{L-2}^t} \left(\mathbf{w}_{L-2}^t \mathbf{x}_{L-3}^t \right) = \mathbf{x}_{L-3}^t$$

Gradient Descent on the remaining layers – Chain Rule!!

$$\bullet \quad \frac{\partial h(\mathbf{W}\mathbf{x}_{L-2}^t)}{\partial (\mathbf{W}\mathbf{x}_{L-2}^t)}$$

- Why not LSE Loss?
 - $f_{LSE}(\widetilde{\mathbf{y}}, \mathbf{y}, \mathbf{x}) = \sum_{c=1}^{N_c} (\widetilde{y}_c p(\widehat{y}_c | \mathbf{x}, \mathbf{y}))^2$
 - Contrary to LSE, CE does not have the point of gradient=0

10000

This leads the model to be trained continuously!

Mini-batch Scheme Update

•
$$f^{t}(\widetilde{\mathbf{Y}}, \mathbf{Y}, \mathbf{X}) = \sum_{i=1}^{N_b} f_{CE}(\widetilde{\mathbf{y}}_i, \mathbf{y}_i, \mathbf{x}_i)$$

Mini-batch: Randomly sampled subset of input data

Drop-out

- Set randomly chosen response values to 0
- Avoid the overfitting problem and gradient vanishing

3 Key Points of Deep Learning

- Very very large model (Numerous weight parameters)
 - Parallel computation (especially matrix computation) by GPU
- Severe overfitting with the large model
 - **Big data** (ImageNet etc.)
- Gradient vanishing / exploding problem
 - Initialize the weight parameters by Xavier's initialization

Unsupervised Deep Learning – Auto-encoder

Definition of Auto-encoder

- A neural network that results in (Output = Input)
- Thus, the network can be trained in the unsupervised scheme

Objective of Auto-encoder

- At first, it is developed for initializing the layers of supervised deep network (Before Xavier's initialization)
- In these days, it is utilized for data analysis, data clustering, data generation, etc.

Auto-encoder - Architecture

Auto-encoder - Architecture

- When the encoded feature is smaller than the input data,
- the information of input data is compressed in the encoded feature
- because the input data should be reconstructed from that!

Reconstruction Loss

$$\bullet \ f_{MSE}(\mathbf{y}, \mathbf{x}) = -\sum (\mathbf{x}_i - \mathbf{y}_i)^2$$

$$\bullet f_{MAE}(\mathbf{y}, \mathbf{x}) = -\sum |\mathbf{x}_i - \mathbf{y}_i|$$

Auto-encoder - Training

- Initial Auto-encoder (Denoising auto-encoder)
 - Stacked auto-encoder

Auto-encoder - Training

Make noisy input

- 210414969
- Even with the noisy input, the auto-encoder should reconstruct the de-noised original input
- Special case TRACA

(a) Channel corrupting process

(b) Feature vector exchange process

Summary

- Supervised Deep Learning
 - Definition
 - Architecture
 - Prediction
 - Training
- Unsupervised Deep Learning Auto-encoder
 - Definition
 - Architecture
 - Prediction
 - Training