IE643 Deep Learning: Theory and Practice

July-Dec 2025

Homework 1: For self-practice

1 Questions

- 1. Consider two vectors $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{R}^2$. Define the notation $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2$. Now consider the equation of a straight line given by $2x_1 + 3x_2 - 4 = 0$. Show that this equation can be written as $\langle \mathbf{w}, \mathbf{x} \rangle - \theta = 0$, where $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\theta \in \mathbb{R}$.
- 2. Write Python function plotline() which accepts a weight vector $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ and a real number θ as arguments. In the function, write code to plot the line $w_1x_1 + w_2x_2 \theta = 0$. Keep x_1 along the vertical axis and x_2 along the horizontal axis. Keep the range of x_1 and x_2 as [-5, 5]. Label the axes in the plot and use color green for the line.
- 3. Use plotline() to plot the straight line $2x_1 + 3x_2 4 = 0$.
- 4. Write Python function plotpoint() which accepts a point vector $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$, along with $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ and θ as arguments. In this plotpoint() function, use scatterplot to plot the point. Also check if $\langle \mathbf{w}, \mathbf{z} \rangle \theta \geq 0$ and color the point with a particular color red and if $\langle \mathbf{w}, \mathbf{z} \rangle \theta < 0$, color the point with a different color blue.
- 5. In the plot obtained in Question 3, plot the points (4,3) and (-3,-4) using plotpoint() function.
- 6. Generate a set S_1 of ten points from a normal distribution with mean $\mu^1 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ and covariance matrix $\Sigma^1 = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$. Generate another set S_2 of ten points from a normal distribution with mean $\mu^2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and covariance matrix $\Sigma^2 = \begin{bmatrix} 0.75 & 0 \\ 0 & 0.75 \end{bmatrix}$. In the plot obtained in Question 3, plot the points in sets S_1 and S_2 using plotpoint() function.
- 7. For the points in sets S_1 and S_2 in Question 6, find another line of the form $ax_1 + bx_2 c = 0$ which will separate the red points from blue points. Explain how you found this new line.