DEVOIR MAISON Nº 7

À rendre le lundi 13 janvier

Vous attacherez la plus grande importance à la clarté, à la précision et à la concision de la rédaction. L'usage d'une calculatrice est interdit.

Analyse

Liminaire : Polynômes

1. Pour tout entier $n \in \mathbb{N}$, on définit

 \mathcal{H}_n : « Soit $a_0, \ldots, a_n \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R} \quad a_0 + a_1 x + \dots + a_n x^n = 0$$

Alors $a_0 = a_1 = \dots = a_n = 0.$

— \mathcal{H}_0 est vraie. En effet, soit $a_0 \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R} \quad a_0 = 0$$

Alors $a_0 = 0$.

 $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$. En effet, soit $n \in \mathbb{N}$. On suppose que \mathcal{H}_n est vraie. Montrons que \mathcal{H}_{n+1} est vraie. Soit $a_0, \ldots, a_{n+1} \in \mathbb{R}$ tels que :

$$\forall x \in \mathbb{R} \quad a_0 + a_1 x + \dots + a_{n+1} x^{n+1} = 0$$

Alors, en divisant par x^{n+1} , on en déduit que pour tout x > 0:

$$\sum_{k=0}^{n} \frac{a_k}{x^{n+1-k}} + a_{n+1} = 0$$

Or, pour tout $k \in [0, n]$, a_k/x^{n+1-k} tend vers 0 lorsque x tend vers $+\infty$. On en déduit donc, par passage à la limite, que $a_{n+1} = 0$. Donc :

$$\forall x \in \mathbb{R} \quad a_0 + a_1 x + \dots + a_n x^n = 0$$

Puisque \mathcal{H}_n est vraie, on en déduit que $a_0 = \cdots = a_n = 0$. Donc \mathcal{H}_{n+1} est vraie. Par récurence sur n, on en déduit que \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}$.

2. Commençons par prouver l'existence. Soit P un polyôme non nul. Alors il existe $(a_0, \ldots, a_m) \in \mathbb{R}^{m+1}$ tel que :

$$\forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^{m} a_k x^k$$

On pose $X = \{k \in [0, m] : a_k \neq 0\}$. Puisque P est non nul, X est non vide. En tant que partie non vide majorée de \mathbb{N} , X admet un plus grand élément que l'on note n. On a alors $a_n \neq 0$ et :

$$\forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^{n} a_k x^k$$

Montrons maintenant l'unicité. Soit $(a_0, \ldots, a_n) \in \mathbb{R}^{n+1}$ et $(b_0, \ldots, b_m) \in \mathbb{R}^{m+1}$ tels que $a_n \neq 0$, $a_m \neq 0$ et :

$$\forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^{n} a_k x^k \quad \text{et} \quad P(x) = \sum_{k=0}^{m} b_k x^k$$

Montrons que n = m et que $a_k = b_k$ pour tout $k \in [0, n]$.

Commençons par montrer que n = m. On raisonne par l'absurde et on suppose que $n \neq m$. Quitte à les échanger, on peut supposer que n < m. Alors :

$$\forall x \in \mathbb{R} \quad \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{m} a_k x^k$$

Donc:

$$\forall x \in \mathbb{R} \quad \sum_{k=0}^{n} (b_k - a_k) x^k + \sum_{k=n+1}^{m} b_k x^k = 0$$

D'après la première question, on en déduit que $b_m=0$, ce qui est absurde. Donc n=m. On en déduit que :

$$\forall x \in \mathbb{R} \quad \sum_{k=0}^{n} (b_k - a_k) \, x^k = 0$$

Toujours d'après la première question, on en déduit que $a_k - b_k = 0$ et donc $a_k = b_k$ pour tout $k \in [0, n]$.

3. Pour tout entier $n \in \mathbb{N}$, on pose

 \mathcal{H}_n : « Tout polynôme de degré n admet au plus n racines distinctes »

— \mathcal{H}_0 est vraie. En effet, soit P un polynôme de degré 0. Il existe donc $a_0 \in \mathbb{R}^*$ tel que

$$\forall x \in \mathbb{R} \quad P(x) = a_0$$

Donc P ne s'annule pas

 $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$. En effet, soit $n \in \mathbb{N}$. On suppose que \mathcal{H}_n est vraie. Montrons que \mathcal{H}_{n+1} est vraie. Soit $a_0, \ldots, a_{n+1} \in \mathbb{R}$ tels que $a_{n+1} \neq 0$ et :

$$\forall x \in \mathbb{R} \quad a_0 + a_1 x + \dots + a_{n+1} x^{n+1} = 0$$

Montrons que P admet au plus n+1 racine distinctes. On raisonne par l'absurde et on suppose que P admet au moins n+2 racines distinctes. Il existe donc n+2 racines de $P: x_0 < x_1 < \cdots < x_{n+1}$. Pour tout $k \in [0, n]$, P est continue sur $[x_k, x_{k+1}]$ et dérivable sur $]x_k, x_{k+1}[$. De plus, $P(x_k) = P(x_{k+1}) = 0$. Il existe donc

 $y_k \in]x_k, x_{k+1}[$ tel que $P'(y_k) = 0$. Comme $x_0 < y_1 < x_1 < \cdots < x_n < y_n < x_{n+1},$ on en déduit que les y_k sont deux à deux distincts. Donc P' admet (au moins) n+1 racines. Or

$$\forall x \in \mathbb{R} \quad P'(x) = \sum_{k=1}^{n+1} k a_k x^{k-1}$$

et $(n+1)a_{n+1} \neq 0$, donc P' est de degré n. Puisque \mathcal{H}_n est vraie, P' admet au plus n racines. C'est absurde. Donc \mathcal{H}_{n+1} et vraie.

Par récurrence sur n, on en déduit que \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}$.

Partie I

1. (a) Pour j entier naturel inférieur ou égal à n, notons (\mathcal{P}_i) la propriété suivante :

Il existe un polynôme Q_j tel que $Q_j(1)$ et $Q_j(-1)$ soient non nuls, et tel que, pour tout nombre réel x, on ait $P_n^{(j)}(x) = (x^2 - 1)^{n-j}Q_j(x)$.

Pour j=0, il s'agit de prouver l'existence d'un polynôme Q_0 tel que $P_n(x)=(x^2-1)^nQ_0(x)$ pour tout nombre réel x, avec $Q_0(-1)$ et $Q_0(1)$ non nuls. Le polynôme scalaire $Q_0=1$ convient.

Supposons que la propriété soit vraie au rang j avec $0 \le j \le n-1$. Alors, pour tout nombre réel x, nous avons :

$$\begin{split} P_n^{(j+1)}(x) &= 2x(n-j)(x^2-1)^{n-[j+1]}Q_j(x) + (x^2-1)^{n-j}Q_j'(x) , \\ &= (x^2-1)^{n-[j+1]} \times \left[2x(n-j)Q_j(x) + (x^2-1)Q_j'(x)\right] . \end{split}$$

Nous posons alors

$$\forall x \in \mathbb{R}, \quad Q_{j+1}(x) = 2x(n-j)Q_j(x) + (x^2 - 1)Q'_j(x).$$

D'une part, l'expression ci-dessus définit bien un polynôme, qui vérifie la relation $P_n^{(j+1)}(x) = (x^2-1)^{n-[j+1]}Q_{j+1}(x)$ pour tout nombre réel x. D'autre part, comme $Q_j(-1)$ et $Q_j(1)$ sont non nuls, nous avons

$$Q_{j+1}(-1) = -2(n-j)Q_j(-1) \neq 0,$$

 $Q_{j+1}(1) = 2(n-j)Q_j(-1) \neq 0,$

ce qui achève la preuve de la propriété au rang j + 1.

REMARQUE.— En demandant l'expression (article défini) de Q_{j+1} en fonction de Q_j , l'énoncé sous-entend qu'il y a unicité de Q_j satisfaisant la propriété (\mathcal{P}_j) . Cela est vrai, car si Q_j^* est un polynôme satisfaisant la dite propriété, alors $Q_j(x) = Q_j^*(x)$ pour tout $x \in \mathbb{R} \setminus \{-1,1\}$, en simplifiant par $x^2 - 1$. Le polynôme $Q_j - Q_j^*$ ayant une infinité de racines, il est nul.

Si j < n, l'exposant n - j est strictement positif donc $(x^2 - 1)^{n-j}$ est nul pour $x \in \{-1, 1\}$, donc

$$\forall j \in [0, n-1], \quad P_n^{(j)}(-1) = P_n^{(j)}(1) = 0.$$

(b) Théorème de Rolle.— Soient a et b deux nombres réels tels que a < b. Soit f une fonction de [a,b] dans \mathbb{R} , qui est continue sur le segment [a,b], dérivable sur l'intervalle ouvert]a,b[, et telle que f(a)=f(b). Alors il existe $c \in]a,b[$ tel que f'(c)=0. Appliqué à la fonction $f=P_n$ sur le segment [-1,1], qui est de

classe C^{∞} donc satisfait toutes les conditions de régularité requises, et qui vérifie $P_n(1) = P_n(1)$ (qui vaut zéro par ailleurs), le théorème de Rolle assure que P'_n possède une racine dans l'intervalle ouvert]-1,1[.

Pour j entier entre 1 et n, notons (\mathcal{H}_i) l'énoncé suivant :

Le polynôme $P_n^{(j)}$ possède au moins j racines distinctes dans]-1,1[.

Nous avons démontré que (\mathcal{H}_1) est vraie ci-dessus. Supposons que (\mathcal{H}_j) soit vraie pour un nombre entier j, avec $1 \leq j \leq n-1$, et notons y_k les racines de $P_n^{(j)}$, avec $-1 < y_1 < \cdots < y_j < 1$. Puisque $f = P_n^{(j)}$ est continue sur tout segment et dérivable sur tout intervalle ouvert, et puisque $P_n^{(j)}(-1) = P_n^{(j)}(y_k) = P_n^{(j)}(1)$ pour tout $k \in [1, j]$, nous pouvons appliquer le théorème de Rolle à f de trois façons.

- Sur le segment $[-1, y_1]$: nous en déduisons l'existence d'une racine $z_1 \in]-1, y_1[$ de $P_n^{(j+1)}$.
- Sur les segments $[y_k, y_{k+1}]$ avec $1 \le k \le j-1$: nous en déduisons l'existence d'une racine $z_{k+1} \in]y_k, y_{k+1}[$ de $P_n^{(j+1)}$.
- Sur le segment $[y_j,1]$: nous en déduisons l'existence d'une racine $z_{j+1} \in]y_j,1[$ de $P_n^{(j+1)}$.

Par construction, nous avons $-1 < z_1 < \cdots < z_{j+1} < 1$, donc nous venons bien de prouver (\mathcal{H}_{j+1}) .

- (c) D'après la propriété (\mathcal{H}_n) , le polynôme $P_n^{(n)}$ admet au moins n racines distinctes dans l'intervalle]-1,1[. Or P_n est de degré 2n, donc $P_n^{(n)}$ est de degré n. Il possède donc au plus n racines complexes distinctes. Finalement, $P_n^{(n)}$ possède exactement n racines complexes distinctes, toutes simples et appartenant à]-1,1[.
- 2. (a) Dans l'intégrale W(p+1,q-1), nous posons $u(t)=(t-1)^{p+1}$ et $v'(t)=(t+1)^{q-1}$. Nous en déduisons que $u'(t)=(p+1)(t-1)^p$ et nous choisissons $v(t)=\frac{1}{q}(t+1)^q$. Voici alors l'intégration par parties :

$$\begin{split} W(p+1,q-1) \\ &= \left[\frac{1}{q}(t-1)^{p+1}(t+1)^q\right]_{-1}^1 - \frac{p+1}{q} \int_{-1}^1 (t-1)^p (t+1)^q \mathrm{d}t \,, \\ &= -\frac{p+1}{q} W(p,q) \,. \end{split}$$

(b) Voici deux rédactions possibles. Une rédaction très formelle. Par récurrence finie sur $k \in [0, n]$, nous allons montrer l'énoncé (\mathcal{Q}_k) suivant :

$$(Q_k)$$
 $W(n,n) = \frac{(-1)^k (n!)^2}{(n-k)!(n+k)!} W(n+k,n-k).$

L'énoncé (Q_0) dit que $W(n,n) = \frac{-1)^0 (n!)^2}{(n-0)!(n+0)!} W(n+0,n-0)$: c'est vrai. Supposons que Q_k soit vrai pour $k \le n-1$. Alors, d'après la relation de la question I.2.a appliquée pour p=n-k et q=n+k, nous avons

$$\begin{split} W(n,n) &= \frac{(-1)^k (n!)^2}{(n-k)!(n+k)!} W(n+k,n-k) \,, \\ &= \frac{(-1)^k (n!)^2}{(n-k)!(n+k)!} \times \left(-\frac{n-k}{n+k+1} \right) W(n+k+1,n-k-1), \\ &= \frac{(-1)^{k+1} (n!)^2}{(n-[k-1])!(n+[k+1])!} W(n+k+1,n-k-1). \end{split}$$

Une rédaction moins formelle. En itérant la relation de la question I.2.a, nous obtenons

$$W(n,n) = -\frac{n}{n+1}W(n+1,n-1),$$

$$= \left(-\frac{n}{n+1}\right)\left(-\frac{n-1}{n+2}\right)W(n+2,n-2),$$

$$\vdots$$

$$= (-1)^n \frac{n(n-1)\dots(n-[n-1])}{(n+1)(n+2)\dots(n+n)}W(2n,0),$$

$$= (-1)^n \frac{(n!)^2}{(2n)!}W(2n,0).$$

Or
$$W(2n,0) = \int_{-1}^{1} (t-1)^{2n} dt$$
 vaut $\frac{1}{2n+1} [(t-1)^{2n+1}]_{-1}^{1} = \frac{2^{2n+1}}{2n+1}$, et finalement,

$$W(n,n) = (-1)^{n} \frac{2^{2n+1}(n!)^{2}}{(2n+1)!}.$$

3. (a) Nous allons démontrer par récurrence finie sur $k \in \llbracket 0, n \rrbracket$ que

$$(\mathcal{I}_k) \quad \int_{-1}^1 Q(t) P_n^{(n)}(t) \, \mathrm{d}t = (-1)^k \int_{-1}^1 Q^{(k)}(t) P_n^{(n-k)} \, \mathrm{d}t.$$

L'énoncé (Q_0) est une tautologie.

Supposons que (Q_k) soit vrai pour un nombre $k \leq n-1$. Alors

$$\int_{-1}^{1} Q(t) P_n^{(n)}(t) dt$$

$$= (-1)^k \int_{-1}^{1} Q^{(k)}(t) P_n^{(n-k)} dt,$$

$$= (-1)^k \left(\left[Q^{(k)}(t) P_n^{(n-k-1)}(t) \right]_{-1}^{1} - \int_{-1}^{1} Q^{(k+1)}(t) P_n^{(n-k-1)}(t) dt \right),$$

$$= (-1)^{k+1} \int_{-1}^{1} Q^{(k+1)}(t) P_n^{(n-k-1)}(t) dt.$$

En effet le crochet ci-dessus vaut zéro d'après le calcul des valeurs de $P_n^{(j)}(-1)$ et de $P_n^{(j)}(1)$ mené à la question I.1.a.

REMARQUE. — On peut aussi utiliser (sous réserve de la démontrer par récurrence sur n) la formule d'intégration par parties généralisée, dont voici l'énoncé :

Si u et v sont deux fonctions de clase C^n de [a, b] dans \mathbb{R} , alors

$$\int_{a}^{b} u(t)v^{(n)}(t) dt = \left[\sum_{i=1}^{n} (-1)^{i-1} u^{(i-1)}(t)v^{(n-i)}(t) \right]_{a}^{b}$$
$$+ (-1)^{n} \int_{a}^{b} u^{(n)}(t)v(t) dt.$$

- (b) Si Q est de degré strictement plus petit que n, alors sa dérivée $n^{\text{ième}}$ est la fonction nulle, et la question précédente montre que l'intégrale $\int_{-1}^{1} Q(t) P_n^{(n)}(t) dt$ est nulle.
- (c) Si P est un polynôme de degré d et de coefficient dominant a_d , alors $P^{(d)}$ est la fonction constante égale à $d!a_d$. Ici, d=2n et P_n est unitaire, donc

$$P_n^{(2n)} = (2n)!$$

Appliquons ensuite la relation I.3.a avec $Q = P_n^{(n)}$. Il vient

$$\int_{-1}^{1} \left(P_n^{(n)}(t) \right)^2 dt = (-1)^n \int_{-1}^{1} P_n^{(2n)}(t) P_n(t) dt,$$

$$= (-1)^n (2n)! \int_{-1}^{1} P_n(t) dt,$$

$$= (-1)^n (2n)! \int_{-1}^{1} (t-1)^n (t+1)^n dt,$$

$$= (-1)^n (2n)! W(n,n),$$

$$= \frac{2^{2n+1} (n!)^2}{2n+1}.$$

Partie II

1. (a) Il est clair que

$$L_j(r_k) = \begin{cases} 1 & \text{si } k = j, \\ 0 & \text{sinon.} \end{cases}$$

(b) Commençons par prouver l'unicité de A_n . Soit A_n et B_n deux polynômes de degrés strictement inférieur à n tels que :

$$\forall j \in [1, n] \quad A_n(r_j) = f(r_j) \quad \text{et} \quad B_n(r_j) = f(r_j)$$

On pose $C = A_n - B_n$. Alors C est un polynôme de degré strictement inférieur à n admettant n racines (les r_j). On en déduit qu'il est nul, car si il était nul, il admettrait au plus n-1 racines d'après la dernière question de la partie liminaire.

Donc $A_n = B_n$.

Pour l'existence de A_n , il suffit de poser :

$$\forall x \in \mathbb{R} \quad A_n(x) = \sum_{j=1}^n f(r_j) L_j(x)$$

et de vérifier que A_n est de degré strictement inférieur à n comme combinaison linéaire de polynômes de degrés n-1. De plus on vérifie facilement que $A_n(r_i) = f(r_i)$ pour tout $j \in [1, n]$.

(c) L'intégrale étant linéaire par rapport à la fonction, nous avons

$$\int_{-1}^{1} A_n(t) dt = \sum_{j=1}^{n} f(r_j) \int_{-1}^{1} L_j(t) dt = \sum_{j=1}^{n} \lambda_j f(r_j).$$

2. (a) Les fonctions d'expression $\mathcal{I}: P \mapsto \mathcal{I}(P)$ et $\mathcal{I}_n: P \mapsto \mathcal{I}_n(P)$ sont manifestement deux formes linéaires sur $\mathbb{R}_{n-1}[X]$. Nous allons montrer qu'elles sont égales, en montrant qu'elles coïncident sur une base, et nous choisissons pour cela la base des L_j :

$$\mathcal{I}(L_j) = \lambda_j$$
, par définition des λ_j ,
$$\mathcal{I}_n(L_j) = \sum_{k=1}^n \lambda_k L_k(r_j)$$
, par définition de \mathcal{I}_n
$$= \lambda_j$$
, d'après la question II.1.

Nous concluons que

$$\forall P \in \mathbb{R}_{n-1}[X], \quad \mathcal{I}(P) = \mathcal{I}_n(P). \tag{1}$$

(b) Comme $P_n^{(n)}$ est de degré n, le théorème de la division euclidienne affirme l'existence et l'unicité d'un couple (Q,R) de polynômes tels que

$$\begin{split} P &=& Q P_n^{(n)} + R \;, \\ \deg(R) &<& \deg\left(P_n^{(n)}\right) = n \;. \end{split}$$

Puisque $QP_n^{(n)} = P - R$, nous avons d'une part

$$\deg(QP_n^{(n)}) = \deg(Q) + \deg(P_n^{(n)}) = \deg(Q) + n,$$

et d'autre part

$$\deg \left(QP_n^{(n)}\right) \leq \max(\deg(P), \deg(R)),$$

$$\leq \max(2n-1, n-1),$$

$$= 2n-1.$$

Nous en déduisons que

$$deg(Q) < n$$
.

Alors la question I.3.b. s'applique à Q: nous avons $\mathcal{I}(QP_n^{(n)})=\int_{-1}^1 Q(t)P_n^{(n)}(t)\,\mathrm{d}t=0$, et nous en déduisons par linéarité de \mathcal{I} que

$$\mathcal{I}(P) = \mathcal{I}(R) .$$

Par ailleurs $\mathcal{I}_n(QP_n^{(n)}) = \sum_{j=1}^n \lambda_j Q(r_j) P_n^{(n)}(r_j) = 0$, puisque les r_j sont précisément les racines de $P_n^{(n)}$. Nous avons donc aussi $\mathcal{I}_n(P) = \mathcal{I}_n(R)$. Enfin, comme R est de degré strictement inférieur à n, la question II.2.a affirme que $\mathcal{I}(R) = \mathcal{I}_n(R)$, d'où l'égalité

$$\forall P \in \mathbb{R}_{2n-1}[X], \quad \mathcal{I}(P) = \mathcal{I}_n(P). \tag{2}$$

La lectrice (le lecteur) comparera les résultats (1) et (2) : dans l'optique du problème, qui est d'approcher l'intégrale de f sur [-1,1] par la valeur $\mathcal{I}_n(f)$, nous venons d'établir que cette méthode est exacte pour les fonctions f polynomiales de degré < n, puis nous avons étendu ce résultat aux fonctions polynomiales de degré < 2n.

3. (a) On montre facilement que

$$H_j(r_k) = \begin{cases} 1 & \text{si } k = j, \\ 0 & \text{sinon.} \end{cases} \quad \text{et} \quad H'_j(r_k) = \begin{cases} \sum_{\substack{i=1 \\ i \neq j}}^n \frac{2}{x_j - x_i} & \text{si } k = j, \\ 0 & \text{sinon.} \end{cases}$$

- (b) Soit P un polynôme de degré strictement inférieur à 2n. On suppose que P admet n racines distinctes $x_1 < \cdots < x_n$ en lesquelles P' est nul. En appliquant Rolle sur chaque segment $[x_k, x_{k+1}]$, on montre qu'il existe $y_k \in]x_k, x_{k+1}[$ tel que $P'(y_k) = 0$. On obtient ainsi 2n-1 zéros de $P': x_1 < y_1 < x_2 < \cdots < x_{n-1} < y_n < x_n$. Or P' est de degré strictement inférieur à 2n-1. D'après la dernière question de la partie liminaire, on en déduit que P' = 0. On en déduit que P est constant. Or P admet au moins une racine, donc P est nul.
- (c) L'unicité est une conséquence de la question précédente. Pour l'existence, il suffit de poser

$$\forall x \in \mathbb{R} \quad B_n(x) = \sum_{k=1}^n H_j(x) \left[f(x_j) + (x - x_j)(f'(x_j) - H'_j(x_j)f(x_j)) \right]$$

4. L'existence de $M_{2n}(f)$ est assurée par l'hypothèse «f est de classe C^{2n} » : d'après le cours, la fonction continue $f^{(2n)}$ est bornée sur le segment [-1,1] et atteint ses bornes. L'équation $g_x(x) = 0$, d'inconnue α , équivaut à

$$\alpha \left(P_n^{(n)}(x) \right)^2 = B_n(x) - f(x) .$$

Elle admet une solution puisque $P_n^{(n)}(x) \neq 0$: l'énoncé suppose en effet que x n'est pas une des racines r_i de $P_n^{(n)}$. Notons qu'il n'est pas nécessaire, dans les calculs qui vont suivre, d'expliciter α , qui n'interviendra que par la condition $g_x(x) = 0$.

(a) Nous constatons pour commencer que

$$\forall j \in [1, n], \quad g_x(r_j) = f(r_j) - B_n(r_j) - \alpha \left(P_n^{(n)}(r_j)\right)^2 = 0$$

vu le choix de B_n et la définition des nombres r_j . Nous avons aussi

$$g_x(x) = 0$$

vu le choix de α . Par ailleurs, g_x est de classe C^{2n} , donc vérifie les propriétés de régularité requises par le théorème de Rolle : nous pouvons appliquer ce dernier à g_x sur tout segment non réduit à un point dont les extrémités appartiennent à l'ensemble $\{r_1, \ldots, r_n, x\}$.

Supposons ensuite dans un premier temps que x est entre deux racines de $P_n^{(n)}$, disons $x \in]r_p, r_{p+1}[$. Appliquons alors le théorème de Rolle à g_x sur les intervalles suivants :

- Sur $[r_j, r_{j+1}]$ avec $j \neq p$ et j < n nécessairement, ce qui donne l'existence de n-2 nombres distincts, dans]-1,1[, et différents des r_j , où g'_x s'annule.
- Sur $]r_p, x[$ et sur $]x, r_{p+1}[$, ce qui donne l'existence de deux racines supplémentaires de g'_x dans]-1,1[, distinctes là encore des r_i .

Nous disposons dans ce cas de n nombres (au moins) tels que le demande l'énoncé.

Dans un deuxième temps, supposons que x soit inférieur à tous les nombres r_j . En appliquant le théorème de Rolle sur les intervalles $[x, r_1]$ et $[r_j, r_{j+1}]$ pour $1 \le j \le n-1$, nous prouvons l'existence de 1+(n-1)=n racines de g'_x dans]-1,1[et distinctes des r_j .

Nous procéderions de manière analogue dans le dernier cas, où $r_n < x$.

(b) Nous avons

$$\forall t \in [-1, 1], \quad g'_x(t) = f'(t) - B'_n(t) - 2\alpha P_n^{(n)}(t) P_n^{(n+1)}(t)$$

et en particulier

$$\forall j \in [1, n], \quad g'_x(r_i) = 0,$$

vu le choix de B_n et vu que les nombres r_j sont les racines de $P_n^{(n)}$.

Cette constatation ainsi que la question précédente montrent que la fonction dérivée g_x' possède au moins 2n racines distinctes dans]-1,1[. Une récurrence finie immédiate, utilisant de façon répétée le théorème de Rolle, sur $p \in \llbracket 1,2n \rrbracket$, prouve l'énoncé (\mathcal{K}_p) suivant :

La fonction $g_x^{(p)}$ possède au moins 2n+1-p racines distinctes dans]-1,1[.

En particulier, $g_x^{(2n)}$ possède au moins une racine c dans]-1,1[, ce que nous voulions démontrer.

(c) Le polynôme B_n appartient à $\mathbb{R}_{2n-1}[X]$ donc sa dérivée $B_n^{(2n)}$ est le polynôme nul. Le polynôme $P_n^{(n)}$ est de degré n et de coefficient dominant

$$(2n-0)(2n-1)\dots(2n-[n-1])=\frac{(2n)!}{n!}$$
,

puisque P_n lui-même est de degré 2n et de coefficient dominant 1. Nous en déduisons que $\left(P_n^{(n)}\right)^2$ est de degré 2n et de coefficient dominant

$$a_n = \left(\frac{(2n)!}{n!}\right)^2.$$

Par suite, la dérivée $(2n)^{\text{ième}}$ de $\left(P_n^{(n)}\right)^2$ est un polynôme scalaire qui vaut

$$(2n)! \times a_n = \frac{((2n)!)^3}{(n!)^2}$$
.

Enfin,

$$\forall t \in [-1, 1], \quad g_x^{(2n)}(t) = f^{(2n)}(t) - \alpha \frac{((2n)!)^3}{(n!)^2} \cdot$$

Comme $g_x^{(2n)}(c) = 0$, nous en déduisons que

$$\alpha = \frac{(n!)^2}{((2n)!)^3} f^{(2n)}(c) .$$

(d) Il suffit d'écrire la définition de g_x et de substituer α par la valeur que nous venons de trouver pour établir que

$$f(x) - B_n(x) = \frac{(n!)^2}{((2n)!)^3} f^{(2n)}(c) \left(P_n^{(n)}(x)\right)^2.$$

(e) Si x est l'un des nombres r_j , alors l'inégalité proposée s'écrit $|0| \le a$, où a est un nombre positif : c'est vrai.

Sinon, l'égalité de la question II.4.d est vraie (elle a nécessité de supposer que x n'est pas l'un des r_i), et la définition de $M_{2n}(f)$ rend immédiate l'inégalité

$$|f(x) - B_n(x)| \le \frac{(n!)^2}{((2n)!)^3} M_{2n}(f) \left(P_n^{(n)}(x)\right)^2.$$

Voici le coup de grâce :

$$\begin{split} & \left| \mathcal{I}(f) - \mathcal{I}_{n}(f) \right| \\ & = \left| \mathcal{I}(f) - \mathcal{I}(B_{n}) \right| \quad \text{d'après la question II.3.c,} \\ & = \left| \int_{-1}^{1} \left(f(x) - B_{n}(x) \right) \mathrm{d}x \right|, \quad \text{par définition de } \mathcal{I}, \\ & \leq \int_{-1}^{1} \left| f(x) - B_{n}(x) \right| \mathrm{d}x, \quad \text{d'après l'inégalité triangulaire,} \\ & \leq \int_{-1}^{1} \frac{(n!)^{2}}{((2n)!)^{3}} \, M_{2n}(f) \left(P_{n}^{(n)}(x) \right)^{2} \mathrm{d}x, \quad \text{d'après la question II.4.e,} \\ & = \frac{(n!)^{2}}{((2n)!)^{3}} \, M_{2n}(f) \int_{-1}^{1} \left(P_{n}^{(n)}(x) \right)^{2} \mathrm{d}x, \quad \text{par linéarité,} \\ & = \frac{(n!)^{2}}{((2n)!)^{3}} \, M_{2n}(f) \frac{2^{2n+1}(n!)^{2}}{2n+1}, \quad \text{d'après la question I.3.c,} \\ & = M_{2n}(f) \frac{(n!)^{4}}{((2n)!)^{2}} \times \frac{2^{2n+1}}{(2n+1)!}, \\ & = \frac{M_{2n}(f)}{\binom{2n}{2}^{2n}} \times \frac{2^{2n+1}}{(2n+1)!}. \end{split}$$

(f) Commençons par établir un lien entre $M_{2n}(g)$ et $M_{2n}(f)$. La fonction d'expression $t \mapsto \frac{a+b}{2} + t \frac{b-a}{2}$ étant affine (c'est la seule bijection affine croissante qui envoie le segment [-1,1] sur le segment [a,b]), nous avons facilement

$$f^{(k)}(t) = \left(\frac{b-a}{2}\right)^k g^{(k)} \left(\frac{a+b}{2} + t\frac{b-a}{2}\right)$$

pour tout $t \in [-1, 1]$ et tout $k \in [0, 2n]$. Par suite,

$$M_{2n}(f) = \left(\frac{b-a}{2}\right)^{2n} M_{2n}(g).$$

Effectuons ensuite le changement de variable affine $u=\frac{a+b}{2}+t\frac{b-a}{2}$ dans l'intégrale ci-dessous :

$$\int_a^b g(u)\,\mathrm{d}u = \frac{b-a}{2}\int_{-1}^1 f(t)\,\mathrm{d}t\;.$$

Nous en déduisons que

$$\left| \int_{a}^{b} g(u) \, du - \frac{b-a}{2} \sum_{j=1}^{n} \lambda_{j} g\left(\frac{a+b}{2} + r_{j} \frac{b-a}{2}\right) \right|$$

$$= \frac{b-a}{2} \left| \int_{-1}^{1} f(t) \, dt - \sum_{j=1}^{n} \lambda_{j} f(r_{j}) \right|,$$

$$= \frac{b-a}{2} \left| \mathcal{I}(f) - \mathcal{I}_{n}(f) \right|,$$

$$\leq \frac{b-a}{2} \times \frac{M_{2n}(f)}{\binom{2n}{n}^{2}} \times \frac{2^{2n+1}}{(2n+1)!},$$

$$= \left(\frac{b-a}{2}\right)^{2n+1} \times \frac{M_{2n}(g)}{\binom{2n}{n}^{2}} \times \frac{2^{2n+1}}{(2n+1)!},$$

$$= \frac{(b-a)^{2n+1} M_{2n}(g)}{\binom{2n}{n}^{2} (2n+1)!}.$$

5. (a) Nous avons $P_2(t) = (t^2 - 1)^2$, donc

$$P'_2(t) = 4t(t^2 - 1),$$

 $P''_2(t) = 12t^2 - 4 = 4(3t^2 - 1),$

pour tout $t \in [-1, 1]$. Les racines de P_2'' sont

$$r_1 = -\frac{1}{\sqrt{3}}$$
 et $r_2 = \frac{1}{\sqrt{3}}$.

Par définition

$$L_1(t) = -\frac{\sqrt{3}}{2} \left(t - \frac{1}{\sqrt{3}} \right),$$

$$L_2(t) = \frac{\sqrt{3}}{2} \left(t + \frac{1}{\sqrt{3}} \right),$$

$$\lambda_1 = -\frac{\sqrt{3}}{2} \left[\frac{1}{2} \left(t - \frac{1}{\sqrt{3}} \right)^2 \right]_{-1}^1,$$

$$= 1 \text{ tous calculs faits,}$$

$$\lambda_2 = \frac{\sqrt{3}}{2} \left[\frac{1}{2} \left(t + \frac{1}{\sqrt{3}} \right)^2 \right]_{-1}^1,$$

$$= 1 \text{ aussi.}$$

(b) Le calcul $\binom{4}{2}^2 \times 5! = 6^2 \times 5! = 36 \times 120 = 4320$ montre que

$$\left| \int_{a}^{b} g(u) \, du - \frac{b-a}{2} \sum_{j=1}^{2} \lambda_{j} g\left(\frac{a+b}{2} + r_{j} \frac{b-a}{2}\right) \right|$$

$$= \left| \int_{a}^{b} g(u) \, du - \frac{b-a}{2} \left(g\left(\frac{a+b}{2} - \frac{b-a}{2\sqrt{3}}\right) + g\left(\frac{a+b}{2} + \frac{b-a}{2\sqrt{3}}\right)\right) \right|,$$

$$\leq \frac{(b-a)^{5} M_{4}(g)}{\binom{4}{2}^{2} \times 5!},$$

$$\leq \frac{(b-a)^{5} M_{4}(g)}{4320}.$$

(c) Pour $k \in [0, p]$, posons $a_k = a + k \frac{b-a}{p}$ de sorte que les p sous-segments de même longueur dont parle l'énoncé soient les $[a_{k-1}, a_k]$ pour k variant de 1 à p. De plus,

 $c_k = \frac{a_{k-1} + a_k}{2}$ pour k entre 1 et p. Alors

$$\left| \int_{a}^{b} g(u) \, \mathrm{d}u - \frac{b-a}{2p} \sum_{k=1}^{p} \left(g\left(c_{k} - \frac{b-a}{2p\sqrt{3}} \right) + g\left(c_{k} + \frac{b-a}{2p\sqrt{3}} \right) \right) \right|$$

$$= \left| \sum_{k=1}^{p} \int_{a_{k-1}}^{a_{k}} g(u) \, \mathrm{d}u - \frac{b-a}{2p} \sum_{k=1}^{p} \left(g\left(c_{k} - \frac{b-a}{2p\sqrt{3}} \right) + g\left(c_{k} + \frac{b-a}{2p\sqrt{3}} \right) \right) \right|,$$

$$= \left| \sum_{k=1}^{p} \left(\int_{a_{k-1}}^{a_{k}} g(u) \, \mathrm{d}u - \frac{a_{k}-a_{k-1}}{2} \left(g\left(c_{k} - \frac{a_{k}-a_{k-1}}{2\sqrt{3}} \right) + g\left(c_{k} + \frac{a_{k}-a_{k-1}}{2\sqrt{3}} \right) \right) \right|,$$

$$\leq \sum_{k=1}^{p} \left| \int_{a_{k-1}}^{a_{k}} g(u) \, \mathrm{d}u - \frac{a_{k}-a_{k-1}}{2} \left(g\left(c_{k} - \frac{a_{k}-a_{k-1}}{2\sqrt{3}} \right) + g\left(c_{k} + \frac{a_{k}-a_{k-1}}{2\sqrt{3}} \right) \right) \right|,$$

$$\leq \sum_{k=1}^{p} \frac{\left(a_{k} - a_{k-1} \right)^{5} M_{2n}(g)}{4320} \quad \text{d'après la question II.5.b,}$$

$$= \frac{(b-a)^{5} M_{4}(g)}{4320p^{4}}.$$

(d) La fonction suivante répond à la question :

```
import numpy as np

def integration(g, a, b, p):
    res = 0
    for k in range(p):
        c = a + (k + 1/2) * (b - a) / p
        x0 = c - (b - a) / (2 * p * np.sqrt(3))
        x1 = c + (b - a) / (2 * p * np.sqrt(3))
        res = res + g(x0) + g(x1)
    res = res * (b - a) / (2 * p)
    return res
```