MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 15, 2024 Lecture 18 D3

Rekha Santhanam Lecture 18 D3

Summary: Eigenvalues and Characteristic Polynomial

Let A be $n \times n$.

- The characteristic polynomial of A is $det(A-\lambda I)$ (of degree n) and its roots are the eigenvalues of A.
- ② For each eigenvalue λ , the associated eigenspace is $N(A-\lambda I)$. To find it, solve $(A-\lambda I)v=0$. Any non-zero vector in $N(A-\lambda I)$ is an eigenvector associated to λ .
- **3** If A is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then its eigenvalues are $\lambda_1, \dots, \lambda_n$ with associated eigenvectors e_1, \dots, e_n respectively.
- Write $det(A \lambda I) = (\lambda_1 \lambda) \cdots (\lambda_n \lambda)$ and expand.

Trace of
$$A = a_{11} + \cdots + a_{nn}$$
 (sum of diagonal entries)
= $\lambda_1 + \cdots + \lambda_n$

$$\det(A) = \lambda_1 \cdots \lambda_n$$

Thus: If $\lambda_1, \ldots, \lambda_n$ are real numbers, then Tr(A) = sum of eigenvalues, and <math>det(A) = product of eigenvalues.

Similarity and Eigenvalues

```
Defn. The n \times n matrices A and B are similar.
if there exists an invertible matrix P such that P^{-1}AP = B.
Observe: If B = P^{-1}AP, then (i) det(A) = det(B), and
(ii) B^n = P^{-1}A^nP for each n.
 Theorem: (If A and B are similar, then they have the same
characteristic polynomial. In particular, they have the same
eigenvalues, det(A) = det(B) and Trace(A) = Trace(B).
Proof. Given: B = P^{-1}AP. prove: det(A - \lambda I) = det(B - \lambda I).
Note: It is enough to prove that A - \lambda I and B - \lambda I are similar! Indeed, B - \lambda I = P^{-1}AP - \lambda P^{-1}P constant coefficient is the = P^{-1}(A - \lambda I)P.
Write \det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda). Compare constant
coeff.: det(A) = \lambda_1 \cdots \lambda_n = det(B); Compare coeff. of \lambda^{n-1}:
Sum of diagonal entries = a_{11} + \cdots + a_{nn} = Trace of A =
\lambda_1 + \ldots + \lambda_n = \text{Trace of } B.
Ques: How are eigenvalues of A and B related?
```

Rekha Santhanam Lecture 18 D3

Diagonizability: Introduction

Note: Finding roots of characteristic polynomials (and hence eigenvalues) is difficult in general.

For $n \ge 5$, no formula exists for roots. (Abel, Galois)

For n = 3, 4, formulae for root exist, but not easy to use.

Defn. An $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix Λ , i.e., there is an invertible matrix P and a diagonal matrix Λ such that $P^{-1}AP = \Lambda$.

Importance of Diagonalizability:

Let the $n \times n$ matrix A be diagonalizable, i.e., $P^{-1}AP = \Lambda$, where P is invertible and Λ is diagonal. If this happens,

- The eigenvalues of A are the diagonal entries of Λ ,
- det(A) is the product of the diagonal entries of Λ , and
- Trace(A) = sum of the diagonal entries of Λ .
- Other Information: e.g., what is $Trace(A^n)$?

Diagonalization: Example

Example:
$$A = \begin{pmatrix} 1 & 5 & 6 \\ 0 & 2 & -4 \\ 0 & 0 & 3 \end{pmatrix}$$
 is triangular.

$$\det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda).$$

Eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

Note: If A is triangular, its eigenvalues are on the diagonal

Eigenvectors:
$$v_1 = e_1$$
, $v_2 = \begin{pmatrix} 5 & 1 & 0 \end{pmatrix}^T$, $v_3 = \begin{pmatrix} -7 & -4 & 1 \end{pmatrix}^T$. (How?) Further, $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 . Hence $P = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ is invertible, and $AP = \begin{pmatrix} Av_1 & Av_2 & Av_3 \end{pmatrix} = \begin{pmatrix} v_1 & 2v_2 & 3v_3 \end{pmatrix} = P\Lambda$, where $\Lambda = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$. Thus $P^{-1}AP = \Lambda$, i.e., A is diagonalizable. Example: If $\mathscr{B} = \{v_1, v_2, v_3\}$, and $T(v) = Av$, then $[T]_{\mathscr{B}}^{\mathscr{B}} = \{v_1, v_2, v_3\}$, and $T(v) = Av$, then

Eigenvalue Decomposition (EVD)

Question: What is the advantage of a basis of \mathbb{R}^n consisting of eigenvectors?

Let A be an $n \times n$ matrix with n eigenvectors v_1, \ldots, v_n , associated to eigenvalues $\lambda_1, \ldots, \lambda_n$. If $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis of \mathbb{R}^n , then the matrix $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is invertible.

Moreover,
$$AP = A(v_1 \cdots v_n) = (Av_1 \cdots Av_n)$$

$$= (\lambda_1 v_1 \cdots \lambda_n v_n) = P\Lambda, \text{ where } \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.$$

Therefore $P^{-1}AP = \Lambda$, i.e., A is similar to a diagonal matrix.

Thus: Eigenvectors diagonalize a matrix

Eigenvalue Decomposition (EVD): Let A be diagonalizable. With notation as above, we have $A = P\Lambda P^{-1}$. This is called as the eigenvalue decomposition (EVD) of A.

Rekha Santhanam Lecture 18 D3

Diagonizability and Eigenvectors

Theorem A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors. In particular, \mathbb{R}^n has a basis consisting of eigenvectors of A.

Proof. (\Leftarrow): Done! To prove (\Rightarrow), assume $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is

an invertible matrix such that $P^{-1}AP = \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$.

Then $AP = P\Lambda$, i.e. $(Av_1 \ldots Av_n) = (\lambda_1 v_1 \ldots \lambda_n v_n)$.

Therefore v_1, \ldots, v_n are eigenvectors of A. They are linearly

independent since *P* is invertible.

Question: Is every matrix is diagonalizable? A: No.

Examples: $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ no eigenvalues (over \mathbb{R})!

$$P = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 not enough eigenvectors!

Rekha Santhanam

П

When is A Diagonalizable?

Ques: When does A have n linearly independent eigenvectors?

- If $v_1, ..., v_r$ are eigenvectors of A associated to <u>distinct</u> eigenvalues $\lambda_1, ..., \lambda_r$, then $v_1, ..., v_r$ are linearly independent. Proof. Suppose $v_1, ..., v_r$ are linearly dependent. Choose a linear relation involving minimum number of v_i 's, say

 (1) $a_1v_1 + \cdots + a_tv_t = 0$. $(1 < t \le r, t \text{ is minimal, } a_i \ne 0)$
- Apply A to get $a_1 \lambda_1 v_1 + \dots + a_t \lambda_t v_t = 0$ (2)
- $\lambda_1(1) (2)$ gives $a_2(\lambda_1 \lambda_2)v_2 + \cdots + a_t(\lambda_1 \lambda_t)v_t = 0$, which contradicts the minimality of t.
- If A has n distinct eigenvalues, then A is diagonalizable. Proof. If v_1, \ldots, v_n are eigenvectors associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\{v_1, \ldots, v_n\}$ is linearly independent. Then $P = \begin{pmatrix} v_1 & \ldots & v_n \end{pmatrix}$ is invertible, and $P^{-1}AP = \Lambda$ as seen earlier. Hence A is diagonalizable.

Reading Slide - Eigenvalues of AB and A + B

• If λ is an eigenvalue of A, μ is an eigenvalue of B, is $\lambda\mu$ an eigenvalue of AB?

False Proof.
$$ABx = A(\mu x) = \mu(Ax) = \lambda \mu x$$
.

This is false since A and B may not have same eigenvector x.

• Example:
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

The eigenvalues of A and B are 0,0 and that of AB are 1,0.

• Eigenvalues of A + B are NOT $\lambda + \mu$.

In above example,
$$A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 has eigenvalues 1, -1.

• If A and B have same eigenvectors associated to λ and μ , then $\lambda\mu$ and $\lambda+\mu$ are eigenvalues of AB and A+B respectively. Question: When do A and B have the same eigenvectors?