Matrix theory Assignment 10

K R Sai Pranav

Abstract—This document explains the conversion of a matrix into both row and column reduced echelon form.

Download all python codes from

https://github.com/saipranavkr/EE5609/codes

and latex-tikz codes from

https://github.com/saipranavkr/EE5609

1 Problem

Let A be a $m \times n$ matrix. Show that by a finite number of elementary row and/or column operations one can pass from A to a matrix R which is both row-reduced echelon and column-reduced echelon, i.e., $R_{ij} = 0$ if $i \neq j$, $R_{ii} = 1$, $1 \leq i \leq r$, $R_{ii} = 0$, if i > r. Show that R = PAQ, where P is an invertible $m \times m$ matrix and Q is an invertible $n \times n$ matrix.

2 Lemma

Every elementary matrix is invertible and the inverse is again an elementary matrix. If an elementary matrix E is obtained from I by using a certain row or column operation q, then E^{-1} is obtained from I by the "inverse" operation q^{-1} .

3 Solution

Given **A** is a $m \times n$ matrix. First converting **A** into row reduced echelon form by performing a series of elementary row operations. The elementary matrix that performs sequence of elementary operations is **P**. Let **R**' be the row reduced echelon matrix. So, **P** is a $m \times m$ matrix. Also, by using the lemma we can tell that **P** is invertible.

$$\mathbf{R}' = \mathbf{P}\mathbf{A} \tag{3.0.1}$$

A row of \mathbf{R}' can be all zeroes, or can start with zeroes from the left then has a one, and can have non-zero entries after one. \mathbf{R}' is in row-reduced echelon form. To perform column operations, elementary matrices should be multiplied on the right

side in order to convert the \mathbf{R}' into column-echelon form

$$\mathbf{R} = \mathbf{R}'\mathbf{Q} \tag{3.0.2}$$

But performing column operations on a matrix is equivalent to performing row operations on the transposed matrix.

$$\mathbf{R}^{T} = (\mathbf{R}'\mathbf{Q})^{T}$$

$$\implies \mathbf{R}^{T} = \mathbf{Q}^{T}\mathbf{R}'^{T}$$
 (3.0.3)

Hence, by using lemma it can be observed that \mathbf{Q}^T is invertible and of the order $n \times n$. So, \mathbf{Q} is also invertible. Converting \mathbf{R}^T to row-reduced echelon is equivalent to converting \mathbf{R} to column-reduced echelon.

$$\mathbf{R} = \mathbf{PAQ} \tag{3.0.4}$$

R in (3.0.4) is in both row and column reduced echelon form. Hence proved.