

Modern Optimization Techniques

2. Unconstrained Optimization / 2.1. Gradient Descent

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 07.11.	(1)	0. Overview
Mon. 14.11.	(2)	 Theory Convex Sets and Functions
Mon. 21.11. Mon. 28.11. Mon. 05.12. Mon. 12.12. Mon. 19.12.	(3) (4) (5) (6) (7)	 Unconstrained Optimization Gradient Descent Stochastic Gradient Descent Newton's Method Quasi-Newton Methods Subgradient Methods Christmas Break
Mon. 09.01.	(8)	2.6 Coordinate Descent 3. Equality Constrained Optimization
Mon. 16.01.	(9)	3.1 Duality
Mon. 23.01.	(10)	3.2 Methods
Mon. 30.01. Mon. 06.01. Mon. 13.02.	(11) (12) (13)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods

Outline

1. Unconstrained Optimization

2. Iterative and Descent Methods

3. Gradient Descent

4. Line search

5. Convergence of Gradient Descent

Outline

1. Unconstrained Optimization

2. Iterative and Descent Methods

3. Gradient Descent

4. Line search

5. Convergence of Gradient Descent

Unconstrained Convex Optimization Problem

$$\underset{x \in X}{\operatorname{arg min}} f(\mathbf{x})$$

where

- $ightharpoonup f: X o \mathbb{R}, X \subseteq \mathbb{R}^N$ is
 - ► convex
 - ► twice continuously differentiable
 - esp. dom $f = X = \mathbb{R}^N$ or convex and open.
- ▶ An optimal \mathbf{x}^* exists and $p^* := f(\mathbf{x}^*)$ is finite

Reminder: 1st-order condition

1st-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

(the function is above any of its tangents.)

Minimality Condition x is minimal iff

$$\nabla f(\mathbf{x}) = 0$$

Note: Often also called optimality condition.

Outline

1. Unconstrained Optimization

2. Iterative and Descent Methods

3. Gradient Descent

4. Line search

5. Convergence of Gradient Descent

Iteative Methods

- ► Start with an initial (random) point: $\mathbf{x}^{(0)}$
- ▶ Generate a sequence of points: $\mathbf{x}^{(k)}$ with

$$f(\mathbf{x}^{(k)}) \to f(\mathbf{x}^*)$$

```
1 min-unconstrained(f, \mathbf{x}^{(0)}):

2 k := 0

3 repeat

4 \mathbf{x}^{(k+1)} := \mathbf{next-point}(f, \mathbf{x}^{(k)})

5 k := k+1

6 until converged(\mathbf{x}^{(k)}, \mathbf{x}^{(k-1)}, f)

7 return \mathbf{x}^{(k)}, f(\mathbf{x}^{(k)})
```

Iteative Methods

- ► Start with an initial (random) point: $\mathbf{x}^{(0)}$
- ► Generate a sequence of points: $\mathbf{x}^{(k)}$ with

$$f(\mathbf{x}^{(k)}) o f(\mathbf{x}^*)$$

```
1 min-unconstrained(f, \mathbf{x}^{(0)}, K):

2 for k := 0 : K - 1:

3 \mathbf{x}^{(k+1)} := \mathbf{next-point}(f, \mathbf{x}^{(k)})

4 if \mathbf{converged}(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f):

5 return \mathbf{x}^{(k+1)}, f(\mathbf{x}^{(k+1)})

6 raise exception "not converged in K iterations"
```

Convergence Criterion

$$converged(\mathbf{x}^{(k+1)},\mathbf{x}^{(k)},f)$$

- Different criteria in use
 - different optimization methods may use different criteria.
- ► One would like to use the **optimality gap**:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|_2^2 < \epsilon$$

- ▶ not possible as x* is unknown
- ▶ Minimum progress/change ϵ in x in last iteration:

$$\mathbf{converged}(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f) := \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_2^2 < \epsilon$$

- cheap to compute.
- can be used with any method.
- requires parameter $\epsilon \in \mathbb{R}^+$.
- may stop too early when the loss surface is too flat.

Descent Methods

- ► a class/template of methods
- ► the next point is generated as:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \mu \Delta \mathbf{x}^{(k)}$$

with

- ightharpoonup a search direction $\Delta x^{(k)}$ and
- ightharpoonup a **step size** $\mu > 0$ such that

$$f(\mathbf{x}^{(k)} + \mu \Delta \mathbf{x}^{(k)}) < f(\mathbf{x}^{(k)})$$

▶ always exists if the step size μ is sufficient small if the search direction $\Delta \mathbf{x}^{(k)}$ is a **descent direction**:

$$\nabla f(\mathbf{x}^{(k)})^T \Delta \mathbf{x}^{(k)} < 0$$

- \blacktriangleright search directions $\Delta \mathbf{x}^{(k)}$ can be computed different ways
 - ► Gradient Descent
 - Steepest Descent
 - ► Newton's Method

Descent Methods

```
1 min-descent(f, \mathbf{x}^{(0)}, K):

2 for k := 0 : K - 1:

3 \Delta \mathbf{x}^{(k)} := \text{search-direction}(f, \mathbf{x}^{(k)})

4 \mu^{(k)} := \text{step-size}(f, \mathbf{x}^{(k)}, \Delta \mathbf{x}^{(k)})

5 \mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \mu^{(k)} \Delta \mathbf{x}^{(k)}

6 if \mathbf{converged}(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f):

7 return \mathbf{x}^{(k+1)}, f(\mathbf{x}^{(k+1)})

8 raise exception "not converged in K iterations"
```

Outline

1. Unconstrained Optimization

2. Iterative and Descent Methods

3. Gradient Descent

4. Line search

5. Convergence of Gradient Descent

Gradient Descent

- ▶ The gradient of a function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ at **x** yields the direction in which the function is maximally growing locally.
- ► Gradient Descent is a descent method that searches in the opposite direction of the gradient:

$$\Delta \mathbf{x} := -\nabla f(\mathbf{x})$$

► Gradient:

$$\nabla f(\mathbf{x}) := \nabla_{\mathbf{x}} f(\mathbf{x}) := (\frac{\partial f}{\partial x_n}(\mathbf{x}))_{n=1:N}$$

Gradient Descent

```
1 min-GD(f, \mathbf{x}^{(0)}, K):

2 for k := 0 : K - 1:

3 \Delta \mathbf{x}^{(k)} := -\nabla f(\mathbf{x}^{(k)})

4 \mu^{(k)} := \text{step-size}(f, \mathbf{x}^{(k)}, \Delta \mathbf{x}^{(k)})

5 \mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \mu^{(k)} \Delta \mathbf{x}^{(k)}

6 if \mathbf{converged}(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f):

7 return \mathbf{x}^{(k+1)}, f(\mathbf{x}^{(k+1)})
```


raise exception "not converged in K iterations

Gradient Descent / Implementations

► for analysis usually all updated variables are indexed

$$\mathbf{x}^{(k)}, \Delta \mathbf{x}^{(k)}, \mu^{(k)}$$

in implementations, one usually does only need one copy
 or two, to compare against the last one

```
1 min-GD(f, \mathbf{x}, K):

2 for k := 0 : K - 1:

3 \Delta \mathbf{x} := -\nabla f(\mathbf{x})

4 \mu := \text{step-size}(f, \mathbf{x}, \Delta \mathbf{x})

5 \mathbf{x}^{\text{old}} := \mathbf{x}

6 \mathbf{x} := \mathbf{x}^{\text{old}} + \mu \Delta \mathbf{x}

7 if \mathbf{converged}(\mathbf{x}, \mathbf{x}^{\text{old}}, f):

8 return \mathbf{x}, f(\mathbf{x})

9 raise exception "not converged in K iterations"
```

Gradient Descent / Considerations

▶ Stopping criterion: $||\nabla f(\mathbf{x})||_2 \le \epsilon$

$$\begin{aligned} & \mathbf{converged}(\mathbf{x}, \mathbf{x}^{\mathsf{old}}, f) := \\ & \mathbf{converged}(\nabla f(\mathbf{x})) := ||\nabla f(\mathbf{x})||_2 \leq \epsilon \end{aligned}$$

- cheap to use as GD has to compute the gradient anyway.
- ► GD is simple and straightforward.
- ► GD has slow convergence.
 - esp. compared to Newton's method (see next chapter)
- ► Out-of-the-box, GD works only well for convex problems, otherwise will get stuck in local minima.

Task: minimize $f(x) := x^2$

$$\mu = 0.3$$

$$ightharpoonup -\nabla f(x) = -2x$$

Initial point: $x^{(0)} = -1.5$

$$\mu = 0.3$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

$$x^{(0)} = -1.5$$

 $x^{(1)} = -1.5 - 0.3 \cdot (2 \cdot (-1.5))$
 $= -0.6$

▶
$$\mu = 0.3$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

$$x^{(1)} = -0.6$$

 $x^{(2)} = -0.6 - 0.3 \cdot (2 \cdot (-0.6))$
 $= -0.24$

$$\mu = 0.3$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

$$x^{(2)} = -0.24$$

 $x^{(3)} = -0.24 - 0.3 \cdot (2 \cdot (-0.24))$
 $= -0.096$

$$\mu = 0.3$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

$$x^{(3)} = -0.096$$

$$x^{(4)} = -0.096 - 0.3 \cdot (2 \cdot (-0.096))$$

$$= -0.0384$$

Task: minimize $f(x) := x^2$

$$\mu = 1.5$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

Initial point: $x^{(0)} = -1.5$

$$\mu = 1.5$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

$$x^{(0)} = -1.5$$

 $x^{(1)} = -1.5 - 1.5 \cdot (2 \cdot (-1.5))$
= 3

$$\mu = 1.5$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

$$x^{(1)} = 3$$

 $x^{(2)} = 3 - 1.5 \cdot (2 \cdot 3)$
 $= -6$

Task: minimize $f(x) := x^2$

$$\mu = 1.5$$

$$ightharpoonup$$
 $-\nabla f(x) = -2x$

$$x^{(1)} = 3$$

 $x^{(2)} = 3 - 1.5 \cdot (2 \cdot 3)$
 $= -6$

→ the algorithm diverges!

Gradient Descent Example — Optimal Step Size

Task: minimize $f(x) := x^2$

$$\mu = 0.5$$

$$ightharpoonup -\nabla f(x) = -2x$$

Initial point: $x^0 = -1.5$

Gradient Descent Example — Optimal Step Size

$$\mu = 0.5$$

$$ightharpoonup -\nabla f(x) = -2x$$

$$x^{(0)} = -1.5$$

 $x^{(1)} = -1.5 - 0.5 \cdot (2 \cdot (-1.5))$
 $= 0$

Gradient Descent Example — Optimal Step Size

Task: minimize $f(x) := x^2$

$$\mu = 0.5$$

$$ightharpoonup -\nabla f(x) = -2x$$

$$x^{(0)} = -1.5$$

 $x^{(1)} = -1.5 - 0.5 \cdot (2 \cdot (-1.5))$
 $= 0$

→ the algorithm converges in 1 step!

How to Choose the Step Size μ ?

- ightharpoonup Step size μ is crucial for the convergence of the algorithm.
 - ► Step size too small. → slow convergence.
 - ► Step size too large. ~> divergence!
- ► How to choose a good step size?
 - → line search (aka step size control).

Outline

1. Unconstrained Optimization

2. Iterative and Descent Methods

3. Gradient Descent

4. Line search

5. Convergence of Gradient Descent

Computing the Step Size

The step size can be computed in various ways:

- constant value
 - ► e.g., 1
- ▶ decreasing sequence, e.g., γ^k for $\gamma \in (0,1)$
 - e.g., for $\gamma = \frac{1}{2}$: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$
- ▶ line search
- various heuristics depending on the specific algorithm

Line Search

- ▶ line search is the task to compute the step size in a descent algorithm.
- ightharpoonup itself a one-dimensional optimization problem in μ :

$$\operatorname*{arg\;min}_{\mu\in\mathbb{R}^{+}}f(\mathbf{x}+\mu\Delta\mathbf{x})$$

Line Search Methods

- exact line search:
 - ▶ Used if the problem can be solved analytically or with low cost.
 - e.g., for unconstrained quadratic optimization:

$$\mathop{\arg\min}_{x \in \mathbb{R}^N} f(x) := \frac{1}{2} x^T A x + b^T x, \quad A \in \mathbb{R}^{N \times N} \text{ pos. def., } b \in \mathbb{R}^N$$

Line Search Methods

- exact line search:
 - ▶ Used if the problem can be solved analytically or with low cost.
 - e.g., for unconstrained quadratic optimization:

$$\underset{x \in \mathbb{R}^N}{\arg\min} f(x) := \frac{1}{2} x^T A x + b^T x, \quad A \in \mathbb{R}^{N \times N} \text{ pos. def., } b \in \mathbb{R}^N$$

- backtracking line search:
 - only approximative
 - ▶ guarantees that the new function value is lower than a specific bound.

Backtracking Line Search

```
1 stepsize-backtracking(f, \mathbf{x}, \Delta \mathbf{x}, \alpha \in (0, 0.5), \beta \in (0, 1)):
2 \mu := 1
3 while f(\mathbf{x} + \mu \Delta \mathbf{x}) > f(\mathbf{x}) + \alpha \mu \nabla f(\mathbf{x})^T \Delta \mathbf{x}:
4 \mu := \beta \mu
5 return \mu
```

Q: Why does the backtracking condition guarantee $f(\mathbf{x}^{\text{next}}) < f(\mathbf{x})$?

Backtracking Line Search

```
1 stepsize-backtracking(f, \mathbf{x}, \Delta \mathbf{x}, \alpha \in (0, 0.5), \beta \in (0, 1)):
2 \mu := 1
3 while f(\mathbf{x} + \mu \Delta \mathbf{x}) > f(\mathbf{x}) + \alpha \mu \nabla f(\mathbf{x})^T \Delta \mathbf{x}:
4 \mu := \beta \mu
5 return \mu
```

Loop eventually terminates: for sufficient small μ :

$$f(x + \mu \Delta x) \approx f(x) + \mu \nabla f(x)^{\mathsf{T}} \Delta x < f(x) + \alpha \mu \nabla f(x)^{\mathsf{T}} \Delta x$$

as for a descent direction: $\nabla f(x)^T \Delta x < 0$

Backtracking Line Search

source: Boyd and Vandenberghe, 2004, p. 465

Outline

1. Unconstrained Optimization

2. Iterative and Descent Methods

4. Line search

5. Convergence of Gradient Descent

Sublevel Sets

sublevel set of $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ at level $\alpha \in \mathbb{R}$:

$$S_{\alpha}(f) := \{ x \in \text{dom } f \mid f(x) \le \alpha \}$$

Sublevel Sets

sublevel set of $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ at level $\alpha \in \mathbb{R}$:

$$S_{\alpha}(f) := \{x \in \text{dom } f \mid f(x) \le \alpha\}$$

basic facts:

- \blacktriangleright if f is convex, then all its sublevel sets S_{α} are convex sets.
 - ▶ useful to show that a set is convex:
 - show that it can be represented as a sublevel set of a convex function.

Sublevel Sets / Examples

$$S_{\alpha}(x^2) =$$

$$S_{\alpha}(-\log x; \mathbb{R}^+) =$$

$$S_{lpha}(rac{1}{x};\mathbb{R}^{+})=$$

$$S_{\alpha}(x;\mathbb{R}^+) =$$

$$S_{\alpha}(f) := \{ x \in \text{dom } f \mid f(x) \le \alpha \}$$

Sublevel Sets / Examples

$$S_{lpha}(x^2) = egin{cases} [-\sqrt{lpha},\sqrt{lpha}], & lpha \geq 0 \ \emptyset, & ext{else} \end{cases}$$

$$S_{\alpha}(-\log x; \mathbb{R}^+) = [e^{-\alpha}, \infty)$$

$$S_{lpha}(rac{1}{x};\mathbb{R}^{+}) = egin{cases} [rac{1}{lpha},\infty), & lpha \geq 0 \ \emptyset, & ext{else} \end{cases}$$

$$S_{lpha}(x;\mathbb{R}^+) = egin{cases} (0,lpha], & lpha>0 \ \emptyset, & ext{else} \end{cases}$$

Closed Functions

 $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ **closed** : \iff all its sublevel sets are closed.

Closed Functions

 $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ **closed** : \iff all its sublevel sets are closed.

examples:

- $ightharpoonup f(x) = x^2$ is closed.
- ▶ f(x) = 1/x on \mathbb{R}^+ is closed.
- ▶ f(x) = x on \mathbb{R}^+ is not closed.
 - \blacktriangleright but f on \mathbb{R}_0^+ is closed.
- ▶ $f(x) = x \log x$ on \mathbb{R}^+ is not closed.
 - \blacktriangleright but f on \mathbb{R}_0^+ is closed, defined by

$$f(x) := \begin{cases} x \log x, & \text{if } x > 0 \\ 0, & \text{else} \end{cases}$$

Closed Functions

 $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ **closed** : \iff all its sublevel sets are closed.

examples:

- $ightharpoonup f(x) = x^2$ is closed.
- ▶ f(x) = 1/x on \mathbb{R}^+ is closed.
- ▶ f(x) = x on \mathbb{R}^+ is not closed.
 - but f on \mathbb{R}_0^+ is closed.
- ▶ $f(x) = x \log x$ on \mathbb{R}^+ is not closed.
 - \blacktriangleright but f on \mathbb{R}_0^+ is closed, defined by

$$f(x) := \begin{cases} x \log x, & \text{if } x > 0 \\ 0, & \text{else} \end{cases}$$

Classes of closed functions:

- ightharpoonup continuous functions on all of \mathbb{R}^N
- continuous functions on an open set that go to infinity everywhere towards the border

Semidefinite Matrices II

Let $A, B \in \mathbb{R}^{N \times N}$ symmetric matrices:

$$A \succeq B : \iff A - B \succeq 0$$

- $ightharpoonup A \succeq mI, m \in \mathbb{R}^+$:
 - ▶ all eigenvalues of A are $\geq m$
- $ightharpoonup A \leq MI, M \in \mathbb{R}^+$:
 - ▶ all eigenvalues of A are $\leq M$

Strongly Convex Functions

Let $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ be twice continuously differentiable.

f is strongly convex : \iff

- ightharpoonup dom f = X is convex and
- ▶ the eigenvalues of the Hessian are uniformly bounded from below:

$$\nabla^2 f(x) \succeq mI$$
, $\exists m \in \mathbb{R}^+ \ \forall x \in \text{dom } f$

Strongly Convex Functions

Let $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ be twice continuously differentiable.

f is strongly convex : \iff

- ightharpoonup dom f = X is convex and
- ▶ the eigenvalues of the Hessian are uniformly bounded from below:

$$\nabla^2 f(x) \succeq mI$$
, $\exists m \in \mathbb{R}^+ \ \forall x \in \text{dom } f$

Every strongly convex function f is also strictly convex.

- ▶ but not the other way around
 - $f(x) = x^4$ (on \mathbb{R}) is strictly, but not strongly convex
- ▶ do not confuse strongly and strictly convex!

Strongly Convex Functions / Examples

Q: Is *f* convex, strictly or strongly convex?

(convex: $\forall x : \nabla^2 f(x) \succeq 0$, strictly convex: $\forall x : \nabla^2 f(x) \succ 0$, strongly convex: $\exists m > 0 \ \forall x : \nabla^2 f(x) \succeq m I$)

Strongly Convex Functions / Basic Facts

(i) f is above a parabola:

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} ||y - x||_{2}^{2}$$
$$p^{*} \ge f(x) - \frac{1}{2m} ||\nabla f(x)||_{2}^{2}$$

- (ii) if f is closed and S one of its sublevel sets, then
 - a) the eigenvalues of the Hessian are also uniformly bounded from above on S:

$$\nabla^2 f(x) \leq MI, \quad \exists M \in \mathbb{R}^+ \ \forall x \in S$$

b) f is below a parabola ("sandwiched between two parabolas"):

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{M}{2} ||y - x||_{2}^{2}, \quad x, y \in S$$

$$p^{*} \le f(x) - \frac{1}{2M} ||\nabla f(x)||_{2}^{2}$$

Strongly Convex Functions / Basic Facts / Proofs

(i) for $x, y \in \text{dom } f \exists z \in [x, y]$ (Taylor expansion with Lagrange mean value remainder):

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} \underbrace{(y - x)^{T} \nabla^{2} f(z)(y - x)}_{\geq m||y - x||_{2}^{2}}$$

$$f(y) \geq f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} ||y - x||_{2}^{2}$$

$$\geq \min_{y} f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} ||y - x||_{2}^{2}$$

$$\text{considered as function in } y \text{ has}$$

$$\text{minimum at } \tilde{y} := x - \frac{1}{m} \nabla f(x)$$

$$= f(x) + \nabla f(x)^{T} (\tilde{y} - x) + \frac{m}{2} ||\tilde{y} - x||_{2}^{2}$$

$$= f(x) - \frac{1}{2m} ||\nabla f(x)||_{2}^{2}$$

$$\Rightarrow p^{*} = f(y = x^{*}) \geq f(x) - \frac{1}{2m} ||\nabla f(x)||_{2}^{2}$$

Strongly Convex Functions / Basic Facts / Proofs (2/2)

- (ii.a) ▶ due to (i) all sublevel sets are bounded
 - ▶ the maximal eigenvalue of $\nabla^2 f(x)$ is a continuous function on a closed bounded set and thus itself bounded.
 - ▶ i.e., it exists $M \in \mathbb{R}^+$: $\nabla^2 f(x) \leq MI$
- (ii.b) as for (i), using (ii.a)

Theorem (Convergence of Gradient Descent — exact line search)

If (i) f is strongly convex,

(ii) the initial sublevel set $S:=\{x\in \text{dom } f\mid f(x)\leq f(x^{(0)})\}$ is closed, (iii) an exact line search is used,

then

$$f(x^{(k)}) - p^* \le (1 - \frac{m}{M})^k (f(x^{(0)}) - p^*)$$

Equivalently, to guarantee $f(x^{(k)}) - p^* \le \epsilon$, GD requires

$$k := \frac{\log \frac{f(x^0) - p^*}{\epsilon}}{\log \frac{1}{1 - \frac{m}{m}}} \quad \text{iterations.}$$

Especially,

- ▶ GD converges, i.e., $f(x^{(k)})$ approaches p^*
- ▶ the convergence is exponential in k (with basis $c := 1 \frac{m}{M}$)
 - ► called **linear convergence** in the optimization literature

Convergence of Gradient Descent / Proof

$$\begin{split} \tilde{f}(t) &:= f(x - t \nabla f(x)), \quad t \in \{t \in \mathbb{R}_0^+ \mid x - t \nabla f(x) \in S\} \\ f(x^{\mathsf{next}}) &= \tilde{f}(t_{\mathsf{exact}}) = \tilde{p}^*, \qquad \tilde{p}^* := \min_t \tilde{f}(t) \\ &\leq \tilde{f}(0) - \frac{1}{2M} (\tilde{f}'(0))^2, \qquad \tilde{f} \; \mathsf{strongly} \; \mathsf{convex} \; (\mathsf{ii.b}) \\ &= f(x) - \frac{1}{2M} \underbrace{||\nabla f(x)||_2^2}_{\geq 2m(f(x) - p^*)}, \qquad f \; \mathsf{strongly} \; \mathsf{convex} \; (\mathsf{i}) \\ &\leq f(x) - \frac{m}{M} (f(x) - p^*) \end{split}$$

$$f(x^{\mathsf{next}}) - p^* \leq f(x) - p^* - \frac{m}{M} (f(x) - p^*) = (1 - \frac{m}{M}) (f(x) - p^*) \\ f(x^{(k)}) - p^* \leq (1 - \frac{m}{M})^k (f(x^{(0)}) - p^*) \end{split}$$

Convergence of Gradient Descent / in x

GD's convergence can also be described in x (instead of in f):

$$||x^{(k)} - x^*||^2 \leq \frac{2}{\text{s.c.(i)}} \frac{2}{m} (f(x^{(k)}) - p^*)$$

$$\leq \frac{2}{m} (1 - \frac{m}{M})^k (f(x^{(0)}) - p^*)$$

$$\leq \frac{1}{\text{s.c.(i)}} (1 - \frac{m}{M})^k \frac{2}{m} \frac{1}{2m} ||(\nabla f(x))||^2$$

$$= (1 - \frac{m}{M})^k \frac{||(\nabla f(x^{(0)}))||^2}{m^2}$$

Theorem (Convergence of Gradient Descent — Backtracking)

If (i) f is strongly convex,

(ii) the initial sublevel set $S := \{x \in \text{dom } f \mid f(x) \le f(x^{(0)})\}$ is closed, (iii) a backtracking line search is used,

then

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*), \quad c := 1 - \min\{2\alpha m, 2\beta \alpha m/M\}$$

Equivalently, to guarantee $f(x^{(k)}) - p^* \le \epsilon$, GD requires

$$k := \frac{\log \frac{f(x^0) - p^*}{\epsilon}}{\log \frac{1}{\epsilon}}$$
 iterations.

Especially,

- ► GD converges, i.e., $f(x^{(k)})$ approaches p^*
- \blacktriangleright the convergence is exponential in k (with basis c; linear convergence)

Summary (1/2)

- ▶ Unconstrained optimization is the minimization of a function over all of \mathbb{R}^N or an open subset $X \subseteq \mathbb{R}^N$.
 - ► In **Unconstrained convex optimization** *X* also has to be convex (and *f* , too).
- ▶ **Descent methods** iteratively find a next iterate $x^{(k+1)}$ with lower function value than the last iterate and require:
 - **search direction**: in which direction to search.
 - ► **Gradient Descent** (GD): negative gradient of the target function
 - ▶ step size: how far to go.
 - **convergence criterion**: when to stop.
 - ► small last step
 - small gradient

Summary (2/2)

- step size (aka line search) in rare cases can be computed exactly.
 - one-dimensional optimization problem (exact line search)

▶ backtracking line search:

- ► Choose the largest stepsize that guarantees a decrease in function value.
- ► guaranteed to terminate
- ► GD has linear convergence
 - exponential in the number of steps
 - ▶ with basis 1 m/M for smallest/largest eigenvalues m, M of the Hessian
 - if f is strongly convex, its initial sublevel set closed and exact line search is used.

Further Readings

- ► Unconstrained minimization problems:
 - ▶ Boyd and Vandenberghe, 2004, chapter 9.1
- ► Descent methods:
 - ▶ Boyd and Vandenberghe, 2004, chapter 9.2
- ► Gradient descent:
 - ▶ Boyd and Vandenberghe, 2004, chapter 9.3
- ▶ also accessible from here:
 - ▶ steepest descent Boyd and Vandenberghe, 2004, chapter 9.4

References

Boyd, Stephen and Lieven Vandenberghe (2004). *Convex Optimization*. Cambridge University Press.