

Optimization of an energy harvester via the cross-entropy method

Americo Cunha Jr

Rio de Janeiro State University – UERJ

NUMERICO – Nucleus of Modeling and Experimentation with Computers

ICoEV 2020

Virtual Congress, December 14-16, 2020

UERJ

What these devices have in common?

What these devices have in common?

Both demand an autonomous power source to operate!

Energy Harvesting concept

- Capture wasted energy from external sources
- Store this wasted energy for future use
- Use the stored energy to supply other devices

Classical Technologies in Energy Harvesting

*Pictures obtained from Google Images, several sources. If you are the owner of any one of these images, consider its use a compliment.

Emergent Technologies in Energy Harvesting

*Pictures obtained from Google Images, several sources. If you are the owner of any one of these images, consider its use a compliment.

Research objectives

- Propose a strategy of design to enhance the recovered energy
 - Formulate a nonlinear non-convex optimization problem
 - Use the cross-entropy method to obtain an efficient solution

UERJ

Bistable harvester driven by regular signal

$$\ddot{x} + 2\xi \dot{x} - \frac{1}{2}x(1 - x^2) - \chi \upsilon = t \cos(\Omega t)$$

$$\dot{v} + \lambda v + \kappa \dot{x} = 0$$

+ initial conditions

Mean output power:

$$P = \frac{1}{T} \int_{t}^{t+T} \lambda \, v^{2}(\tau) \, d\tau$$

For practical use of the electrical energy ...

For practical use of the electrical energy ...

... irregular voltage is undesirable!

The 0-1 test for chaos

Characterization of chaos

Characterization of chaos

There is a large number of high-energy periodic orbits embedded into the chaotic region

Optimization framework

- x design variables vector
- $\triangleright S(x)$ mean power
- $\triangleright \mathcal{G}(\mathbf{x})$ 0-1 test for chaos classifier

Constrained formulation:

$$\max \mathcal{S}(\mathbf{x})$$
 s.t. $\mathcal{G}(\mathbf{x}) = 0$ and $\mathbf{x}_{min} \leq \mathbf{x} \leq \mathbf{x}_{max}$

Penalized formulation:

$$\mathbf{x}^{\star} = \operatorname{arg\,max} \left\{ \left. \mathcal{S}(\mathbf{x}) \right. + \left. H \right. \operatorname{max} \left(0, \mathcal{G}(\mathbf{x}) \right) \right\}$$

Peculiarities:

- Test 0-1 for chaos constraint is a discontinuous function of x
- Gradient-based methods are not applicable
- Evolutionary algorithms can be used (but we prefer not!)

Cross-entropy method

Transform the optimization problem into a rare-event estimation problem

$$\mathcal{P}\left\{\mathcal{S}(\mathbf{X}) \geq \gamma\right\} pprox \mathbf{0} \ \ \text{for} \ \ \gamma pprox \gamma^{\star}$$

Cross-entropy method

Transform the optimization problem into a rare-event estimation problem

$$\mathcal{P}\left\{\mathcal{S}(\mathbf{X}) \geq \gamma\right\} \approx \mathbf{0} \text{ for } \gamma \approx \gamma^{\star}$$

$$\mathcal{S}(\mathbf{X}) \geq \gamma$$
 is a rare-event

Cross-entropy method

- 1. **Sampling:** Generate an iid sample of objects in the search space according to a specified probability distribution $g(\cdot; \mathbf{v})$
- 2. **Learning:** Update the distribution parameters, based on the best performing samples (elite samples), using cross-entropy minimization

CE method generates an "optimal sequence" of estimators
$$(\widehat{\gamma}_t, \widehat{\mathbf{v}}_t)$$
 such that $\widehat{\gamma}_t \to \gamma^*$ and $g(\mathbf{x}, \widehat{\mathbf{v}}_t) \to \delta(\mathbf{x} - \mathbf{x}^*)$

- $\widehat{\mathbf{v}}_t = \arg \max_{\mathbf{v}} \sum_{\mathbf{X}_k \in \mathcal{E}_t} \ln g(\mathbf{X}_k; \mathbf{v})$ (maximum likelihood estimator)
- lacktriangle minimize KL divergence between $\mathbb{1}_{\{\mathcal{S}(\mathbf{\emph{X}})\geq\gamma\}}$ and $g(\cdot\,,\,\,\mathbf{\emph{v}})$

Cross-entropy algorithm

Reference solution: direct search on a numerical grid

- ightharpoonup Design variables: f and Ω
- Feasible domain: $\mathcal{D} = \{0.08 \le f \le 0.1 \text{ and } 0.75 \le \Omega \le 0.85\}$
- ► Grid resolution: 256 × 256 points
- Function evaluations: 65 536
- ► CPU time: 1 ≈ 4 hours

¹Dell Inspiron Core i7-3632QM 2.20 GHz RAM 12GB

Reference solution: mean power

Reference solution: mean power

Cross-entropy solution

- ightharpoonup Design variables: f and Ω
- Feasible domain: $\mathcal{D} = \{0.08 \le f \le 0.1 \text{ and } 0.75 \le \Omega \le 0.85\}$
- Number of CE samples: 50
- ► Percentage of elite samples: 10%
- ► CE samples distribution: Truncated Gaussian
- ightharpoonup Convergence criterium: $||\sigma||_{\infty} < 1 \times 10^{-3}$
- Function evaluations: 1 300
- ► CPU time: $^2 \approx 5$ minutes

²Dell Inspiron Core i7-3632QM 2.20 GHz RAM 12GB

Cross-entropy animation (50 samples)

Cross-entropy performance

samples	levels	CPU time ³	speed-up	function evaluation
reference	_	\sim 3.6h	_	65 536
25	19	\sim 2 min	\sim 120	475
50	26	\sim 5 min	\sim 45	1 300
75	30	\sim 8 min	\sim 25	2 250
100	28	\sim 10 min	\sim 20	2 800

³Dell Inspiron Core i7-3632QM 2.20 GHz RAM 12GB

Noisily and high-dimensional cases

Noisily external forcing: $\mathbf{x} = (t, \Omega)$

Direct search:

$$P_{max} = 0.0173$$

$$\mathbf{x}^* = (0.0998, 0.7763)$$

 \approx 4 hours

robustness to noise

Cross-entropy:

$$P_{max} = 0.0170$$

$$\mathbf{x}^* = (0.0991, 0.7675)$$

pprox 4 minutes

Moderate high-dimensional case: $\mathbf{x} = (\xi, \chi, \lambda, \kappa)$

Direct search:

$$P_{max} = 0.1761$$

$$\mathbf{x}^* =$$

 \approx 4 hours

good performance

Cross-entropy:

$$P_{max} = 0.1612$$

$$\mathbf{x}^* =$$

 \approx 35 minutes

Concluding remarks

Contributions:

- Formulation of a nonlinear non-convex optimization problem to enhance power recovered by a bistable energy harvesting system
- ► Efficient solution of this optimization problem by means of cross-entropy method

Conclusions:

- The CE method is a power technique to deal with non-convex optimization problems in dynamical systems, in particular, for energy harvesting systems
- lt is simple, robust, efficient, generalizable and extensible.

Future direction:

Parallelization of the CE optimization algorithm

Acknowledgments

Invitation for the scientific committee:

- Profa. Ekatherina Pavlovskaia
- Prof. Marian Wiercigroch
- ► ICoEV 2020 Organizing Committee

Financial support:

Thank you for your attention!

americo.cunha@uerj.br

www.americocunha.org

A. Cunha Jr, Enhancing the performance of a bistable energy harvesting device via the cross-entropy method. **Nonlinear Dynamics**, (in press) 2020.