REŠAVANJE SISTEMA JEDNAČINA (METODA DETERMINANTI)

U prethodnim fajlovima smo govorili kako se rešavaju sistemi upotrebom matrica. U ovom fajlu ćemo pokušati da vam objasnimo kako se primenjuju **determinante** na rešavanje sistema linearnih jednačina.

Važno je napomenuti da ćemo ovde posmatrati samo kvadratne sisteme $S_{n\times n}$, to jest sisteme koji imaju jednak broj nepoznatih i jednačina. Profesori najčešće zadaju sisteme $S_{3\times 3}$ ili $S_{4\times 4}$, pa ćemo njima posvetiti pažnju.

Govorili smo već da sistem može biti homogen i nehomogen.

Pogledajmo najpre nehomogen sistem $S_{3\times3}$ (tri jednačine, tri nepoznate):

$$a_1x + b_1y + c_1z = t_1$$

 $a_2x + b_2y + c_2z = t_2$
 $a_3x + b_3y + c_3z = t_3$

Odavde najpre formiramo **determinantu sistema** uzimajući brojeve ispred nepoznatih: $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ Zatim članove **uz** x zamenimo slobodnim članovima (sa desne strane jednakosti): $D_x = \begin{vmatrix} t_1 & b_1 & c_1 \\ t_2 & b_2 & c_2 \\ \vdots & \vdots & \vdots \\ t_n & t_n & t_n \end{vmatrix}$

Članove **uz** y zamenimo slobodnim članovima: $D_y = \begin{vmatrix} a_1 & t_1 & c_1 \\ a_2 & t_2 & c_2 \\ a_3 & t_3 & c_3 \end{vmatrix}$

Članove **uz** z zamenimo slobodnim članovima: $D_z = \begin{vmatrix} a_1 & b_1 & t_1 \\ a_2 & b_2 & t_2 \\ a_3 & b_3 & t_3 \end{vmatrix}$

Na ovaj način smo dobili četiri determinante:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \quad D_x = \begin{vmatrix} t_1 & b_1 & c_1 \\ t_2 & b_2 & c_2 \\ t_3 & b_3 & c_3 \end{vmatrix} \quad D_y = \begin{vmatrix} a_1 & t_1 & c_1 \\ a_2 & t_2 & c_2 \\ a_3 & t_3 & c_3 \end{vmatrix} \quad D_z = \begin{vmatrix} a_1 & b_1 & t_1 \\ a_2 & b_2 & t_2 \\ a_3 & b_3 & t_3 \end{vmatrix}$$

U svakom zadatku nam je prvi posao da nadjemo vrednosti za ove determinante.

Dalje rešenja tražimo koristeći Kramerovu teoremu:

- Ako je determinanta sistema $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ različita od nule , onda sistem ima jedinstveno rešenje koje i) tražimo preko: $x = \frac{D_x}{D}$; $y = \frac{D_y}{D}$; $z = \frac{D_z}{D}$
- Ako je determinanta sistema D=0 i $D_x=D_y=D_z=0$ sistem ima beskonačno mnogo rešenja ii) (neodredjen je)
- Ako je determinanta sistema D=0 i $D_x \neq 0 \lor D_y \neq 0 \lor D_z \neq 0$ (znači, bar jedna od ove tri determinante iii) da je različita od nule) sistem je nemoguć, to jest nema rešenja.

Pazite, sve ovo važi za nehomogen sistem.

Šta ako imamo homogen sistem?

$$a_1x + b_1y + c_1z = 0$$

 $a_2x + b_2y + c_2z = 0$ Ako posmatramo homogen sistem:

$$a_3x + b_3y + c_3z = 0$$

Jasno je da on uvek ima **trivijalna** rešenja (x, y, z) = (0, 0, 0)

Kvadratni homogen sistem ima netrivijalna rešenja ako i samo ako je D=0

Znači, da bi naš homogen sistem imao netrivijalna rešenja, mora biti $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

2

Razmišljanje za sisteme $S_{4\times4}$ (4 jednačine, 4 nepoznate) je potpuno analogno sa ovim, s tim da nas ovde čeka mnogo veći posao kod nalaženja vrednosti determinanata:

$$a_1 x + b_1 y + c_1 z + d_1 t = u_1$$

 $a_2x + b_2y + c_2z + d_2t = u_2$ Ovde tražimo sledeće determinante: Posmatrajmo sistem:

$$a_3 x + b_3 y + c_3 z + d_3 t = u_3$$

$$a_4x + b_4y + c_4z + d_4t = u_4$$

$$D = \begin{vmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ a_4 & b_4 & c_4 & d_4 \end{vmatrix} \quad D_x = \begin{vmatrix} u_1 & b_1 & c_1 & d_1 \\ u_2 & b_2 & c_2 & d_2 \\ u_3 & b_3 & c_3 & d_3 \\ u_4 & b_4 & c_4 & d_4 \end{vmatrix} \quad D_y = \begin{vmatrix} a_1 & u_1 & c_1 & d_1 \\ a_2 & u_2 & c_2 & d_2 \\ a_3 & u_3 & c_3 & d_3 \\ a_4 & u_4 & c_4 & d_4 \end{vmatrix} \quad D_z = \begin{vmatrix} a_1 & b_1 & u_1 & d_1 \\ a_2 & b_2 & u_2 & d_2 \\ a_3 & b_3 & u_3 & d_3 \\ a_4 & b_4 & b_4 & b_4 & b_4 \end{vmatrix} \quad D_t = \begin{vmatrix} a_1 & b_1 & c_1 & u_1 \\ a_2 & b_2 & c_2 & u_2 \\ a_3 & b_3 & c_3 & u_3 \\ a_4 & b_4 & b_4 & b_4 & b_4 \end{vmatrix}$$

Rešenja tražimo:

$$x = \frac{D_x}{D}$$
; $y = \frac{D_y}{D}$; $z = \frac{D_z}{D}$; $t = \frac{D_t}{D}$, naravno sve po Kramerovoj teoremi...

Ako je homogen sistem:

$$a_1x + b_1y + c_1z + d_1t = 0$$

$$a_2 x + b_2 y + c_2 z + d_2 t = 0$$

$$a_3 x + b_3 y + c_3 z + d_3 t = 0$$

$$a_4 x + b_4 y + c_4 z + d_4 t = 0$$

za njega isto važi da ima netrivijalna rešenja ako je D = 0.

ZADACI

1. Rešiti sistem jednačina:

$$x + 2y - 5z = 6$$

$$2x + v + 2z = 5$$

$$-3x + 3y - 4z = 8$$

Rešenje:

Naravno, ovaj sistem je mnogo lakše rešiti Gausovom metodom ili nekom drugom, ali pošto proučavamo determinante, ovom prilikom ćemo ići težim putem:

Izračunavamo vrednosti sledećih determinanti(mi ćemo koristiti **Sarusovo pravilo** sa dopisivanjem prve dve kolone a vi možete i razvijati determinantu...kako vam je lakše...)

$$D = \begin{vmatrix} 1 & 2 & -5 \\ 2 & 1 & 2 \\ -3 & 3 & -4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & -5 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 3 & -4 \end{vmatrix} = -4 - 12 - 30 + 16 - 6 - 15 = -51 \rightarrow \boxed{D = -51}$$

$$\begin{vmatrix} -3 & 3 & -4 \\ -3 & 3 & -4 \end{vmatrix} = -3 3$$

Pošto je determinanta sistema različita od nule, odmah znamo da će sistem imati jedinstveno rešenje.

Idemo dalje:

$$D_{x} = \begin{vmatrix} 6 & 2 & -5 \\ 5 & 1 & 2 \\ 8 & 3 & -4 \end{vmatrix}$$

$$\begin{vmatrix} 6 & 2 & -5 \\ 5 & 1 & 2 \\ 8 & 3 & -4 \end{vmatrix} = 6 \cdot 2$$

$$\begin{vmatrix} 6 & 2 & -5 \\ 5 & 1 & 2 \\ 8 & 3 & -4 \end{vmatrix} = 6 \cdot 2$$

$$\begin{vmatrix} 6 & 2 & -5 \\ 5 & 1 & 2 \\ 8 & 3 & -4 \end{vmatrix} = 6 \cdot 2$$

$$\begin{vmatrix} 6 & 2 & -5 \\ 5 & 1 & 2 \\ 8 & 3 & -4 \end{vmatrix} = 6 \cdot 2$$

$$\begin{vmatrix} 6 & 2 & -5 \\ 5 & 1 & 2 \\ 8 & 3 & -4 \end{vmatrix} = -24 + 32 - 75 + 40 - 36 + 40 = -23 \rightarrow \boxed{D_{x} = -23}$$

$$D_{y} = \begin{vmatrix} 1 & 6 & -5 \\ 2 & 5 & 2 \\ -3 & 8 & -4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 6 & -5 \\ 2 & 5 & 2 \\ -3 & 8 & -4 \end{vmatrix} = 1 \cdot 6$$

$$\begin{vmatrix} 1 & 6 & -5 \\ 2 & 5 & 2 \\ -3 & 8 & -4 \end{vmatrix} = 1 \cdot 6$$

$$\begin{vmatrix} 1 & 6 & -5 \\ 2 & 5 & 2 \\ -3 & 8 & -4 \end{vmatrix} = 3 \cdot 8$$

$$D_{z} = \begin{vmatrix} 1 & 2 & 6 \\ 2 & 1 & 5 \\ -3 & 3 & 8 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 6 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ -3 & 3 & 8 \end{vmatrix} = 1 = 8 - 30 + 36 - 32 - 15 + 18 = -15 \rightarrow \boxed{D_{z} = -15}$$

$$\begin{vmatrix} -3 & 3 & 8 \\ -3 & 3 \end{vmatrix}$$

Kramerova teorema nam daje sledeće rešenje:

$$x = \frac{D_x}{D} = \frac{-23}{-51} = \frac{23}{51}$$
$$y = \frac{D_y}{D} = \frac{-179}{-51} = \frac{179}{51}$$
$$z = \frac{D_z}{D} = \frac{-15}{-51} = \frac{5}{17}$$

2. U zavisnosti od parametra a, diskutovati i rešiti sistem:

$$ax + y + z = 1$$
$$x + ay + z = a$$
$$x + y + az = a^{2}$$

Rešenje:

$$D = \begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix}$$

$$\begin{vmatrix} a & 1 & 1 & a & 1 \\ 1 & a & 1 & 1 & a & a^3 + 1 + 1 - a - a - a & a^3 - 3a + 2 \\ 1 & 1 & a & 1 & 1 & 1 \end{vmatrix}$$

$$a^3 - 3a + 2 = a^3 - a - 2a + 2 = a(a^2 - 1) - 2(a - 1) = a(a - 1)(a + 1) - 2(a - 1) = (a - 1)(a^2 + a - 2) =$$

= $(a - 1)(a - 1)(a + 2) = (a - 1)^2(a + 2)$

$$D = (a-1)^2(a+2)$$

Ovde nije dovoljno samo naći vrednost determinante, već to rešenje moramo spakovati u proizvod.

$$D_{x} = \begin{vmatrix} 1 & 1 & 1 \\ a & a & 1 \\ a^{2} & 1 & a \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ a & a & 1 \\ a^{2} & 1 & a \end{vmatrix} = a \begin{vmatrix} 1 & 1 & 1 \\ a & a & 1 \\ a^{2} & 1 & a \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ a & a & 1 \\ a^{2} & 1 & a \end{vmatrix} = a \begin{vmatrix} 1 & 1 & 1 \\ a & a & 1 \\ a^{2} & 1 & a \end{vmatrix}$$

$$(a-1)(-a^2+1) = (a-1)(1-a)(1+a) = -(a-1)(a-1)(1+a) = -(a-1)^2(a+1)$$

$$\boxed{D_x = -(a-1)^2(a+1)}$$

$$D_{y} = \begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & a^{2} & a \end{vmatrix}$$

$$\begin{vmatrix} a & 1 & 1 & a & 1 \\ 1 & a & 1 & 1 & a & 1 \\ 1 & a^{2} & a & 1 & a^{2} \end{vmatrix}$$

$$\begin{vmatrix} a & 1 & 1 & a & 1 \\ 1 & a^{2} & a & 1 & a^{2} \end{vmatrix}$$

$$D_y = (a-1)^2$$

$$D_{z} = \begin{vmatrix} a & 1 & 1 \\ 1 & a & a \\ 1 & 1 & a^{2} \end{vmatrix}$$

$$\begin{vmatrix} a & 1 & 1 & a & 1 \\ 1 & a & a & 1 & 1 & a & 1 \\ 1 & 1 & a^{2} & 1 & 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} a & 1 & 1 & a & 1 & a & 1 \\ 1 & 1 & a^{2} & 1 & 1 & 1 & 1 & 1 \end{vmatrix}$$

$$D_z = (a-1)^2 (a+1)^2$$

Završili smo tehnički deo posla, našli rešenja i spakovali ih. Naš savet je da ih sada prepišete, jer sledi diskusija:

$$D = (a-1)^{2}(a+2)$$

$$D_{x} = -(a-1)^{2}(a+1)$$

$$D_{y} = (a-1)^{2}$$

$$D_{z} = (a-1)^{2}(a+1)^{2}$$

Kramer kaže da sistem ima jedinstveno rešenje ako je $D \neq 0$.

U ovom slučaju mora biti:

$$D\neq 0 \rightarrow (a-1)^2(a+2)\neq 0 \rightarrow a\neq 1 \land a\neq -2$$

Ako je $a \ne 1 \land a \ne -2$ sistem ima jedinstveno rešenje:

$$x = \frac{D_x}{D} = \frac{-(a-1)^2 (a+1)}{(a-1)^2 (a+2)} = -\frac{a+1}{a+2} \to \boxed{x = -\frac{a+1}{a+2}}$$

$$y = \frac{D_y}{D} = \frac{(a-1)^2}{(a-1)^2(a+2)} = \frac{1}{a+2} \to y = \frac{1}{a+2}$$

$$z = \frac{D_z}{D} = \frac{(a-1)^2 (a+1)^2}{(a-1)^2 (a+2)} = \frac{(a+1)^2}{a+2} \rightarrow \boxed{z = \frac{(a+1)^2}{a+2}}$$

Ali ovde posao nije gotov, jer moramo ispitati šta se dešava ako je a = 1, pa ako je a = -2.

$$za$$
 $a = 1$

$$D = (a-1)^{2}(a+2) = (1-1)^{2}(1+2) = 0$$

$$D_{\rm r} = -(a-1)^2(a+1) = -(1-1)^2(1+1) = 0$$

$$D_v = (a-1)^2 = (1-1)^2 = 0$$

$$D_z = (a-1)^2 (a+1)^2 = (1-1)^2 (1+1)^2 = 0$$

Po Krameru ovde sistem ima beskonačno mnogo rešenja, vraćamo se u početni sistem i zamenjujemo a = 1.

$$\begin{vmatrix} ax + y + z &= 1 \\ x + ay + z &= a \\ x + y + az &= a^2 \end{vmatrix} \rightarrow \begin{vmatrix} 1x + y + z &= 1 \\ x + 1y + z &= 1 \\ x + y + 1z &= 1^2 \end{vmatrix} \rightarrow \begin{vmatrix} x + y + z &= 1 \\ x + y + z &= 1 \\ x + y + z &= 1 \end{vmatrix}$$

$$x + y + z = 1$$

$$x + y + z = 1$$

Sistem je neodredjen a rešenja opisujemo sa (x, y, z) = (x, y, 1 - x - y) $x \in R, y \in R$

Napomena: Neki profesori zahtevaju da se uvede neko novo slovo(slova) kod opisivanja rešenja, recimo:

$$(p,q,1-p-q)$$
 $p \in R,q \in R$

Naš savet je kao i uvek isti: radite kako zahteva vaš profesor...ne talasajte...

$$\frac{za \quad a = -2}{D = (a-1)^2 (a+2) = (-2-1)^2 (-2+2) = 0}$$

$$D_x = -(a-1)^2 (a+1) = -(-2-1)^2 (-2+1) = -9 \cdot (-1) = 9 \to \boxed{D_x \neq 0}$$

Ne moramo menjati dalje, po Krameru, ovde je sistem **nemoguć**.

3. U zavisnosti od parametra a, diskutovati i rešiti sistem:

$$x+y+z=0$$

$$ax+4y+z=0$$

$$6x+(a+2)y+2z=0$$

Rešenje:

Najpre uočimo da je sistem homogen, to jest da uvek ima trivijalno rešenje (0,0,0).

Da bi ovaj sistem imao i netrivijalna rešenja determinanta sistema mora biti baš jednaka nula.

$$D = \begin{vmatrix} 1 & 1 & 1 \\ a & 4 & 1 \\ 6 & a+2 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ a & 4 & 1 \\ 6 & a+2 & 2 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ a & 4 = 8+6+a(a+2)-2a-(a+2)-24 = 14+a^2+2a-2a-a-2-24 = a^2-a-12 \end{vmatrix}$$

$$a^{2} - a - 12 = 0 \rightarrow a_{1,2} = \frac{1 \pm \sqrt{49}}{2} = \frac{1 \pm 7}{2} \rightarrow a_{1} = 4; a_{2} = -3$$

Sad moramo ispitati za oba rešenja šta se dešava. Vraćamo ove vrednosti u početni sistem :

$$za \quad a = 4$$

$$x + y + z = 0$$

$$4x + 4y + z = 0$$

$$6x + (4 + 2)y + 2z = 0$$

$$x + y + z = 0$$

$$4x + 4y + z = 0$$

$$6x + 6y + 2z = 0 \dots / : 2$$

$$x + y + z = 0$$

$$4x + 4y + z = 0$$

$$4x + 4y + z = 0$$

$$3x + 3y + z = 0$$

$$II - III \rightarrow x + y = 0 \rightarrow y = -x \rightarrow x + y + z = 0 \rightarrow z = 0$$
Rešenja su: $(x, y, z) = (x, -x, 0)$ $x \in R$

$$x + y + z = 0$$

za a = -3

$$-3x + 4y + z = 0$$

$$6x + (-3+2)y + 2z = 0$$

$$x + y + z = 0$$

$$-3x + 4y + z = 0$$

$$6x - y + 2z = 0$$

$$III + I \rightarrow 7x + 3z = 0 \rightarrow \boxed{x = \frac{-3z}{7}}$$

$$x + y + z = 0 \rightarrow \frac{-3z}{7} + y + z = 0 \rightarrow y = -z + \frac{3z}{7} \rightarrow \boxed{y = \frac{-4z}{7}}$$

Rešenja su:
$$(x, y, z) = (\frac{-3z}{7}, \frac{-4z}{7}, z)$$
 $z \in \mathbb{R}$

4. U zavisnosti od parametra m, diskutovati i rešiti sistem:

$$x + y + mz + t = 0$$

$$x - y - z - t = 0$$

$$mx + y + 5z + 3t = 0$$

$$x + 5y + 11z + 8t = 0$$

Rešenje:

$$D = \begin{vmatrix} 1 & 1 & m & 1 \\ 1 & -1 & -1 & -1 \\ m & 1 & 5 & 3 \\ 1 & 5 & 11 & 8 \end{vmatrix}$$

Osobine determinante (pogledaj istoimeni fajl iz III godine) će nam pomoći da ovu determinantu lakše rešimo.

Nemojte juriti i odmah pokušati da pravite nule radeći sa vrstama, nekad je lakše raditi sa kolonama...

$$D = \begin{vmatrix} 1 & 1 & m & 1 \\ 1 & -1 & -1 & -1 \\ m & 1 & 5 & 3 \\ 1 & 5 & 11 & 8 \end{vmatrix}$$
 | IIkolona + Ikolona \rightarrow IIIkolona \rightarrow IIIkolona \rightarrow \begin{pmatrix} 1 & 2 & m+1 & 2 \\ 1 & 0 & 0 & 0 \\ IVkolona + Ikolona \rightarrow IVkolona \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ m & m+1 & m+5 & m+3 \\ 1 & 6 & 12 & 9 \\ \end{bmatrix}

Razvijamo po drugoj vrsti:
$$\begin{vmatrix} 1 & 2 & m+1 & 2 \\ \bar{1} & \bar{0} & \bar{0} & \bar{0} \\ m & m+1 & m+5 & m+3 \\ 1 & 6 & 12 & 9 \end{vmatrix} = -1 \begin{vmatrix} 2 & m+1 & 2 \\ m+1 & m+5 & m+3 \\ 6 & 12 & 9 \end{vmatrix} = 0$$

$$-1 \begin{vmatrix} 2 & m+1 & 2 \\ m+1 & m+5 & m+3 \\ 6 & 12 & 9 \end{vmatrix} = 0 \rightarrow \begin{vmatrix} 2 & m+1 & 2 \\ m+1 & m+5 & m+3 \\ 6 & 12 & 9 \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 & m+1 & 2 \\ m+1 & m+5 & m+3 \\ 6 & 12 & 9 \end{vmatrix} = 0 \rightarrow \begin{vmatrix} 2 & m+1 & 2 \\ m+1 & m+5 & m+3 \\ 6 & 12 & 9 \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 & m+1 & 2 \\ m+1 & m+5 & m+3 \\ 6 & 12 & 9 \end{vmatrix} = \begin{vmatrix} 2 & m+1 \\ m+1 & m+5 & m+3 \\ 6 & 12 & 9 \end{vmatrix} = \begin{vmatrix} 2 & m+1 \\ m+1 & m+5 = 18(m+5) + 6(m+1)(m+3) + 24(m+1) - 9(m+1)^2 - 24(m+3) - 12(m+5) \end{vmatrix}$$

$$= 18m + 90 + 6(m^{2} + 4m + 3) + 24m + 24 - 9(m^{2} + 2m + 1) = 24m - 72 - 12m - 60$$

$$= 18m + 90 + 6m^{2} + 24m + 18 + 24 - 9m^{2} = 18m - 9 - 72 - 12m - 60$$

$$= -3m^{2} + 12m - 9$$

$$D = 0 \rightarrow -3m^{2} + 12m - 9 = 0 \dots / : (-3)$$

$$m^{2} - 4m + 3 = 0 \rightarrow \boxed{m_{1} = 3; \quad m_{2} = 1}$$

I da ne bude nekih iznenadjenja, evo jednog primera i sa sistemom dve jednačine, dve nepoznate.

5. U zavisnosti od parametara n i m, diskutovati i rešiti sistem:

$$x - my = m$$
$$x + ny = n$$

Rešenje:

$$x - my = m$$

$$\frac{x + ny = n}{D} = \begin{vmatrix} 1 & -m \\ 1 & n \end{vmatrix} = n + m$$

$$D_x = \begin{vmatrix} m & -m \\ n & n \end{vmatrix} = mn + mn = 2mn$$

$$D_y = \begin{vmatrix} 1 & m \\ 1 & n \end{vmatrix} = n - m$$

$$D \neq 0 \rightarrow n + m \neq 0 \rightarrow n \neq -m$$

$$x = \frac{D_x}{D} = \frac{2mn}{n+m} \to \boxed{x = \frac{2mn}{n+m}}$$
$$y = \frac{D_y}{D} = \frac{n-m}{n+m} \to \boxed{y = \frac{n-m}{n+m}}$$

$$\frac{za \quad n = -m}{D = 0}$$

$$D_x = 2mn = -2m^2$$

$$D_y = n - m = -2m$$

Ako je vrednost za *m* baš nula, sistem će imati beskonačno mnogo rešenja, a ako je m različito od nule sistem je nemoguć.

10

$$za \quad m = 0 \rightarrow n = 0$$

Vratimo ove vrednosti u sistem:

$$x - my = m$$

$$x + ny = n$$

$$x - 0 \cdot y = 0$$

$$x + 0 \cdot y = 0$$

Odavde zaključujemo da x mora biti jednak nula, a y je proizvoljan broj.

Rešenja zapisujemo: (x, y) = (0, y) $y \in R$