Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №3 Линейная фильтрация

> Работу выполнил:

Шустенков О.А. Группа: 33501/1 **Преподаватель:**

Богач Н.В.

 $ext{Санкт-} \Pi ext{етербург} \\ 2018$

Содержание

1.	Цель работы	2
2.	Постановка задачи	2
3.	Теоретическая информация о линейной фильтрации	2
4.	Ход выполнения работы 4.1. Генерация гармонического сигнала с шумом	
5.	Выволы	7

1. Цель работы

Изучить воздействие ФНЧ на тестовый сигнал с шумом.

2. Постановка задачи

Сгенерировать гармонический сигнал с шумом и синтезировать ФНЧ. Получить сигнал во временной и частотной областях до и после фильтрации. Сделать выводы о воздействии ФНЧ на спектр сигнаа.

3. Теоретическая информация о линейной фильтрации

Для формирования гармонического сигнала используем формулу:

$$s = A * cos(2 * \pi * f * t) \tag{1}$$

Фильтр нижних частот (Φ HЧ) - фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза) и подавляющий частоты сигнала выше этой частоты.

Динамические свойства линейной цепи полностью определяются одной из двух характеристик: частотной характеристикой и импульсной. Одна из них может быть найдена из другой по формулам преобразования Фурье:

$$g(t) = \int_{-\infty}^{\infty} G(f) * e^{(j*2*\pi*f*t)} df$$
 (2)

$$G(f) = \int_0^\infty g(t) * e^{(-j*2*\pi * f * t)} dt$$
 (3)

Преобразование сигнала линейной цепью можно рассматривать как в частотной области:

$$Y(f) = X(f)G(f) \tag{4}$$

, так и во временной.

Амплитудно-частотная характеристика $G(\omega)$ фильтра Баттерворта n-ого порядка:

$$G^2(\omega) = \frac{G_0^2}{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}} \tag{5}$$

, где n - порядок фильтра, ω - частота среза, G_0 - коэффициент усиления на нулевой частоте.

4. Ход выполнения работы

4.1. Генерация гармонического сигнала с шумом

Созданная схема в Simulink (Рис.4.1.1) создает низкочастотный, высокочастотный сигнал, затем складывая их для получения зашумленного сигнала (Рис. 4.1.2; Рис. 4.1.3).

рис. 4.1.1. Схема в Simulink

рис. 4.1.2. Зашумленный сигнал

рис. 4.1.3. Объединенный зашумленный сигнал

На спектре зашумленного сигнала (Рис. 4.1.4) видно две гармоники.

рис. 4.1.4. Спектр зашумленного сигнала

4.2. Фильтрация сигнала

Использован фильтр Kaiser 129 порядка (Рис. 4.2.1).

рис. 4.2.1. Фильтр Kaiser 129 порядка

Отфильтруованный сигнал (Рис. 4.2.2).

рис. 4.2.2. Сигнал после фильтрации (исходный и отфильтрованный).

рис. 4.2.3. Спектр отфильтрованного сигнала

Поменяем порядок фильтра на 45ый, отфильтруем исходный сигнал (Рис. 4.2.4).

рис. 4.2.4. Сигнал после фильтрации (исходный и отфильтрованный).

Фильтр с данным порядком (рисунок выше) плохо отфильтровал зашумленный сигнал.

Поменяем порядок фильтра на 257 (Рис. 4.2.5).

рис. 4.2.5. Сигнал после фильтрации (исходный и отфильтрованный).

Фильтр более высокого порядка фильтрует со значительной задержкой (чем выше порядок, тем больше задержка).

5. Выводы

Было изучено воздействие фильтра нижних частот (ФНЧ) на сигнал с шумом (с разным порядком).

ФНЧ оставляет частоты, которые ниже заданной частоты среза. В спектре сигнала фильтр оставил гармонику, соответствующую нижней частоте, а более высокую гармонику шума убрал.

При прохождении сигнала через линейную цепь происходит свертка исходного сигнала с окном (получено путем аппроксимации желаемой АЧХ).

Неполное удаление шума линейным фильтром происходит из-за того, что аппроксимация AЧX не убирает полностью сигнал после частоты среза, только постепенно его ослабляет, соответственно часть шума остается.