Suites et Séries – TD₇ ²⁴⁻²⁵ octobre 2022

Exercice 1. (séries de Bertrand)

Étudier la convergence des séries $\sum_{n} \frac{1}{n^{\alpha} \ln(n)^{\beta}}$ en fonction des paramètres $(\alpha, \beta) \in \mathbb{R}^{2}$.

Le terme général de la série est positif, et contient $\frac{1}{n^{\alpha}}$, on peut donc avoir l'idée de comparer avec les séries de Riemann en distinguant les cas $\alpha > 1$, $\alpha < 1$ et $\alpha = 1$.

Pour alléger les notations, on pose pour tout $n \in \mathbb{N}^*$:

$$u_n = \frac{1}{n^{\alpha} \ln(n)^{\beta}} \text{ et } v_n = \frac{1}{n^{\gamma}}, \ \gamma \in \mathbb{R}$$

- Premier cas : $\alpha > 1$

On a:

$$\frac{u_n}{v_n} = \frac{1}{n^{\alpha - \gamma} \ln(n)^{\beta}}$$

D'une part, si $\gamma < \alpha$ alors $\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$, cela veut dire que $u_n = \underset{n \to +\infty}{o}(v_n)$.

D'autre part, la série $\sum_n v_n$ converge si, et seulement si, $\gamma > 1$. Cela veut dire que si on choisit

 γ tel que $1 < \gamma < \alpha$, alors par comparaison de séries à termes positifs on conclut que $\sum_n u_n$

converge. Par exemple $\gamma = \frac{1+\alpha}{2}$ convient.

- Deuxième cas : $\alpha < 1$

On a:

$$\frac{v_n}{u_n} = n^{\alpha - \gamma} \ln(n)^{\beta}$$

D'une part, $\lim_{n\to+\infty}\frac{v_n}{u_n}=0$ si $\alpha<\gamma$, ceci veut dire que $v_n=\underset{n\to+\infty}{o}(u_n)$ (cela peut s'écrire comme $v_n\leqslant u_n$ à partir d'un certain rang).

D'autre part, $\sum_{n} v_n$ diverge si $\gamma \leq 1$. En choisissant $\gamma = 1$ on peut conclure alors que $\sum_{n} u_n$ diverge.

- Troisième cas : $\alpha = 1$

o Si
$$\beta < 0$$
:
On a $\frac{v_n}{u_n} = n^{1-\gamma} \ln(n)^{\beta}$. Pour $\gamma = 1$ on obtient $\lim_{n \to +\infty} \frac{v_n}{u_n} = 0$. Comme $\sum_n v_n$ diverge pour $\gamma = 1$ alors $\sum_n u_n$ diverge aussi.

 \circ Si $\beta > 0$:

Ici le théorème de comparaison des séries positives ne permet pas d'obtenir le résultat. Il faut donc changer de stratégie, en utilisant par exemple une comparaion série/intégrale.

La fonction $f: x \mapsto \frac{1}{x \ln(x)^{\beta}}$ est positive et décroissante sur $]e = \exp(1), +\infty[$. La série $\sum_{n} u_n$ et l'intégrale $\int_{e}^{+\infty} \frac{1}{x \ln(x)^{\beta}} dx$ sont donc de la même nature.

En utilisant le changement de variable généralisé $u = \ln(x) = \phi(x)$ (où la fonction ϕ est de classe \mathscr{C}^1 , strictement croissante et bijective), on déduit que les intégrales

$$\int_{e}^{+\infty} \frac{1}{x \ln(x)^{\beta}} dx \text{ et } \int_{1}^{+\infty} \frac{1}{u^{\beta}} du$$

sont de la même nature.

Le résultat sur les intégrales de Riemann permet de conclure, on a convergence si, et seulement si, $\beta > 1$.

$$\sum_{n} \frac{1}{n^{\alpha} \ln(n)^{\beta}} \text{ converge} \iff [\alpha > 1 \text{ ou } (\alpha = 1 \text{ et } \beta > 1)]$$

Exercice 2. (autour de la série géométrique)

1. Soit $x \in]-1,1[$. Montrer que la série $\sum_{k} kx^{k}$ converge et calculer sa somme.

Attention, on n'a pas le droit d'écrire $\sum_{k=0}^{+\infty} kx^k$ (somme de la série) avant d'avoir montré que la série est convergente!

L'idée ici est de remarquer que le terme kx^k « fait penser » à la dérivée de $x\mapsto x^k$.

Soit $n \in \mathbb{N}$. On a

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}.$$

En dérivant cette égalité par rapport à x (les fonctions $x \mapsto \sum_{k=0}^{n} x^k$ et $x \mapsto \frac{1-x^{n+1}}{1-x}$ sont dérivables sur]-1,1[), on obtient

$$\sum_{k=1}^{n} kx^{k-1} = \frac{-(n+1)(1-x)x^n + (1-x^{n+1})}{(1-x)^2}.$$

En multipliant des deux côtés par x, on obtient en utilisant le fait que |x| < 1:

$$\sum_{k=1}^{n} kx^{k} = x \frac{-(n+1)(1-x)x^{n} + (1-x^{n+1})}{(1-x)^{2}} \xrightarrow[n \to +\infty]{} \frac{x}{(1-x)^{2}}$$

La série
$$\sum_{k} kx^{k}$$
 converge et $\sum_{k=1}^{+\infty} kx^{k} = \frac{x}{(1-x)^{2}}$.

Attention à ne pas dériver directement la somme de la série géométrique $\sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}$. Cela donne le bon résultat mais il n'est pas justifié (il faudrait montrer que $x \mapsto \sum_{k=0}^{+\infty} x^k$ est dérivable sur]-1,1[et que sa dérivée est $x \mapsto \sum_{k=1}^{+\infty} kx^{k-1})$. Vous

apprendrez avec Professeur François des théorèmes pour cela, mais pour l'instant vous ne pouvez pas.

2. Montrer que la série $\sum_{n} \frac{\cos(n)}{2^n}$ est convergente et calculer sa somme.

Pour les séries avec du " $\cos(kx)$ " ou du " $\sin(kx)$ ", il est souvent intéressant d'utiliser l'exponentielle complexe pour faire apparaître une série géométrique.

Soit
$$n \in \mathbb{N}$$
. $\sum_{k=0}^{n} \frac{\cos(k)}{2^k} = \operatorname{Re}\left(\sum_{k=0}^{n} \frac{e^{ik}}{2^k}\right) = \operatorname{Re}\left(\frac{1 - \frac{e^{in+1}}{2^{n+1}}}{1 - \frac{e^i}{2}}\right)$, donc
$$\sum_{k=0}^{n} \frac{\cos(k)}{2^k} \xrightarrow[n \to +\infty]{} \operatorname{Re}\left(\frac{1}{1 - \frac{e^i}{2}}\right) = \frac{4 - 2\cos(1)}{5 - 4\cos(1)}.$$

La série $\sum_{n} \frac{\cos(n)}{2^n}$ est convergente et sa somme vaut $\frac{4-2\cos(1)}{5-4\cos(1)}$.

Exercice 3. (séries télescopiques)

Étudier la nature des séries suivantes et calculer leur somme quand elles convergent :

(a)
$$\sum_{k} \frac{1}{k(k+1)}$$
; (b) $\sum_{k} \frac{1}{\sqrt{k} + \sqrt{k+1}}$; (c) $\sum_{k} \ln\left(1 + \frac{2}{n(n+3)}\right)$.

温馨提示

Attention! On n'écrit JAMAIS " $\sum_{n} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \sum_{n} \frac{1}{n} - \sum_{n} \frac{1}{n+1}$ "! La série de gauche est convergente, alors que les séries de droite sont divergentes : le membre de droite n'a aucun sens!

On n'écrit JAMAIS: " $\sum_{n} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$ ". Le n du membre de gauche correspond à l'indice de sommation (variable, qui vaut 1, 2, 3, ...); le n du membre de droite correspond au dernier indice, c'est-à-dire uniquement au dernier terme de la somme. Ce n'est donc pas le même n.

(a) Soit $n \in \mathbb{N}^*$. On a

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 1.$$

La série
$$\sum_{n} \frac{1}{k(k+1)}$$
 est convergente et sa somme vaut 1.

On peut penser à la quantité conjuguée ici.

(b) Soit $n \in \mathbb{N}$. On a

$$\sum_{k=0}^n \frac{1}{\sqrt{k}+\sqrt{k+1}} = \sum_{k=0}^n \frac{\sqrt{k}-\sqrt{k+1}}{(\sqrt{k}+\sqrt{k+1})(\sqrt{k}-\sqrt{k+1})} = \sum_{k=0}^n \frac{\sqrt{k}-\sqrt{k+1}}{-1} = \sqrt{n+1} \underset{n \to +\infty}{\longrightarrow} +\infty.$$

La série
$$\sum_{k} \frac{1}{\sqrt{k} + \sqrt{k+1}}$$
 est divergente.

Pour faire apparaître des séries téléscopiques (ou des produits téléscopiques) avec le logarithme, on essaye de factoriser le terme à l'intérieur du logarithme.

(c) Soit $n \geqslant 3$.

$$\sum_{k=1}^{n} \ln\left(1 + \frac{2}{k(k+3)}\right) = \sum_{k=1}^{n} \ln\left(\frac{k^2 + 3k + 2}{k(k+3)}\right)$$

$$= \sum_{k=1}^{n} \ln\left(\frac{(k+1)(k+2)}{k(k+3)}\right)$$

$$= \sum_{k=1}^{n} \ln\left(\frac{k+1}{k}\right) - \ln\left(\frac{k+3}{k+2}\right)$$

$$= \ln(2) + \ln\left(\frac{3}{2}\right) - \ln\left(\frac{n+3}{n+2}\right) - \ln\left(\frac{n+2}{n+1}\right)$$

$$\xrightarrow{n \to +\infty} \ln(3).$$

La série
$$\sum_{n} \ln \left(1 + \frac{2}{n(n+3)} \right)$$
 est convergente et sa somme vaut $\ln(3)$.

Exercice 4. (critères de comparaison pour les séries positives)

Dans chacun des cas, étudier la convergence de la série $\sum_{n} u_n$ avec :

(a)
$$u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$$
; (b) $u_n = \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right)$; (c) $u_n = 1 - \cos \left(\frac{\pi}{n} \right)$
(d) $u_n = e^{-n^2}$; (e) $u_n = \left(\frac{1}{2} \right)^{\sqrt{n}}$.

On cherche souvent à comparer avec des séries connues (séries géométriques, séries de Riemann, etc.)

Attention, les critères de comparaison ne sont valables que pour des séries à termes

positifs, il faut donc vérifier que c'est le cas et l'indiquer sur votre copie! Les techniques sont assez similaires à celles du chapitre sur les intégrales généralisées.

(a) Puisque $n^2 + \sqrt{n} \sim n^2$ quand $n \to +\infty$ (factoriser par n^2 pour le montrer), on a

$$\frac{\sqrt{n}}{n^2 + \sqrt{n}} \underset{n \to +\infty}{\sim} \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}}$$

donc par critère de comparaison de séries à termes positifs, les séries $\sum_n \frac{\sqrt{n}}{n^2 + \sqrt{n}}$ et $\sum_n \frac{1}{n^{3/2}}$ ont même nature. Comme $\sum_n \frac{1}{n^{3/2}}$ est convergente (série de Riemann) :

La série
$$\sum_{n} \frac{\sqrt{n}}{n^2 + \sqrt{n}}$$
 converge.

(b) En utilisant le fait que $\ln(1+x) \sim x$ quand $x \to 0^+$, on obtient

$$\frac{1}{\sqrt{n}}\ln\left(1+\frac{1}{\sqrt{n}}\right) \underset{n\to+\infty}{\sim} \frac{1}{\sqrt{n}}\frac{1}{\sqrt{n}} = \frac{1}{n}$$

donc par critère de comparaison de séries à termes positifs, les séries $\sum_{n} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right)$ et $\sum_{n} \frac{1}{n}$ ont même nature. Comme $\sum_{n} \frac{1}{n}$ est divergente (série de Riemann) :

La série
$$\sum_{n} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right)$$
 diverge.

(c) On a $\cos x = 1 - \frac{x^2}{2} + o(x^2)$ donc $1 - \cos x \sim \frac{x^2}{2}$ quand $x \to 0$. On a donc

$$1 - \cos\left(\frac{\pi}{n}\right) \underset{n \to +\infty}{\sim} \frac{\pi^2}{2n^2}$$

donc par critère de comparaison de séries à termes positifs, les séries $\sum_{n} \left(1 - \cos\left(\frac{\pi}{n}\right)\right)$ et $\sum_{n} \frac{\pi^2}{2n^2}$ ont même nature. Comme $\sum_{n} \frac{\pi^2}{2n^2}$ est convergente (série de Riemann) :

La série
$$\sum_{n} \left(1 - \cos\left(\frac{\pi}{n}\right)\right)$$
 converge.

(d) On a $n^2e^{-n^2}\to 0$ quand $n\to +\infty,$ c'est-à-dire que

$$e^{-n^2} = \mathop{o}_{n \to \infty} \left(\frac{1}{n^2} \right).$$

La série $\sum_{n} \frac{1}{n^2}$ converge (série de Riemann) donc par critère de comparaison de séries à termes positifs :

La série
$$\sum_{n} e^{-n^2}$$
 converge.

(e) On a

$$n^2 \left(\frac{1}{2}\right)^{\sqrt{n}} = e^{2\ln n} e^{\sqrt{n}\ln(1/2)} = \exp\left(-\sqrt{n}\left(\ln 2 - 2\frac{\ln n}{\sqrt{n}}\right)\right) \underset{n \to +\infty}{\longrightarrow} 0$$

c'est-à-dire que

$$\left(\frac{1}{2}\right)^{\sqrt{n}} = \mathop{o}_{n \to \infty} \left(\frac{1}{n^2}\right).$$

La série $\sum_{n} \frac{1}{n^2}$ converge (série de Riemann) donc par critère de comparaison de séries à termes positifs :

La série
$$\sum_{n} \left(\frac{1}{2}\right)^{\sqrt{n}}$$
 converge.

Exercice 5. (avec des paramètres)

Dans chacun des cas, étudier la convergence de la série $\sum_{n} u_n$ en fonction des paramètres, avec :

1.
$$u_n = e^{\frac{1}{n}} - a - \frac{b}{n}$$
 avec $(a, b) \in \mathbb{R}^2$;

2.
$$u_n = \sqrt[3]{n^3 + an} - \sqrt{n^2 + 3}$$
 avec $a \in \mathbb{R}$;

3.
$$u_n = \left(n\sin\left(\frac{1}{n}\right)\right)^{n^{\alpha}}$$
 avec $\alpha \geqslant 0$.

(a) On fait un développement limité :

$$e^{\frac{1}{n}}-a-\frac{b}{n}=1+\frac{1}{n}+\mathscr{O}\left(\frac{1}{n^2}\right)-a-\frac{b}{n}=(1-a)+\frac{1-b}{n}+\mathscr{O}_{n\to+\infty}\left(\frac{1}{n^2}\right).$$

• Si $a \neq 1$, alors

$$e^{\frac{1}{n}} - a - \frac{b}{n} \xrightarrow[n \to +\infty]{} 1 - a \neq 0$$

donc la série $\sum_{n} e^{\frac{1}{n}} - a - \frac{b}{n}$ diverge grossièrement.

• Si a = 1 et $b \neq 1$ alors

$$e^{\frac{1}{n}} - a - \frac{b}{n} \underset{n \to +\infty}{\sim} \frac{1-b}{n}$$

donc par critère de comparaison de séries à termes positifs, les séries $\sum_n e^{\frac{1}{n}} - a - \frac{b}{n}$ et $\sum_n \frac{1}{n}$ ont même nature. Comme $\sum_n \frac{1}{n}$ est divergente (série de Riemann), la série $\sum_n e^{\frac{1}{n}} - a - \frac{b}{n}$ diverge aussi.

• Si a = 1 et b = 1 alors

$$e^{\frac{1}{n}} - a - \frac{b}{n} = \mathcal{O}_{n \to +\infty} \left(\frac{1}{n^2} \right)$$

et comme $\sum_{n} \frac{1}{n^2}$ converge (série de Riemann), on en déduit par critère de comparaison de séries à termes positifs que la série $\sum_{n} e^{\frac{1}{n}} - a - \frac{b}{n}$ converge.

(b) On fait un développement limité :

$$u_n = n\left(1 + \frac{a}{n^2}\right)^{1/3} - n\left(1 + \frac{3}{n^2}\right)^{1/2}$$

$$= n\left(1 + \frac{a}{3n^2} + \mathcal{O}\left(\frac{1}{n^4}\right)\right) - n\left(1 + \frac{3}{2n^2} + \mathcal{O}\left(\frac{1}{n^4}\right)\right)$$

$$= \frac{1}{n}\left(\frac{a}{3} - \frac{3}{2}\right) + \mathcal{O}\left(\frac{1}{n^3}\right).$$

• Si $a \neq \frac{9}{2}$, alors

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{n} \left(\frac{a}{3} - \frac{3}{2} \right)$$

donc par critère de comparaison de séries à termes positifs, les séries $\sum_{n} u_n$ et $\sum_{n} \frac{1}{n} \left(\frac{a}{3} - \frac{3}{2} \right)$ ont même nature. Comme $\sum_{n} \frac{1}{n} \left(\frac{a}{3} - \frac{3}{2} \right)$ est divergente (série de Riemann), la série $\sum_{n} u_n$ diverge aussi.

• Si $a = \frac{9}{2}$, alors

$$u_n = \mathcal{O}_{n \to +\infty} \left(\frac{1}{n^3} \right)$$

et comme $\sum_{n} \frac{1}{n^3}$ converge (série de Riemann), on en déduit par critère de comparaison de séries à termes positifs que la série $\sum_{n} u_n$ converge.

(c) En faisant un développement limité, on obtient après les calculs que

$$u_n = \exp\left(-\frac{1}{6n^{2-\alpha}} + \underset{n \to +\infty}{o}\left(\frac{1}{n^{2-\alpha}}\right)\right).$$

- Si a < 2, alors $\lim_{n \to \infty} \frac{1}{6n^{2-\alpha}} = 0$ donc $\lim_{n \to \infty} u_n = 1 \neq 0$ ce qui montre que la série $\sum_n u_n$ diverge grossièrement.
- Si a=2, alors $\lim_{n\to\infty}u_n=e^{-1/6}\neq 0$ ce qui montre que la série \sum_nu_n diverge grossièrement.
- Si a > 2, on a

$$n^{2}u_{n} = \exp\left(-\frac{1}{6n^{2-\alpha}}\left(1 - 12\frac{\ln n}{n^{\alpha-2}} + \underset{n \to +\infty}{o}(1)\right)\right) \xrightarrow[n \to +\infty]{} 0$$

c'est-à-dire que

$$u_n = \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right).$$

et comme $\sum_{n} \frac{1}{n^2}$ converge (série de Riemann), on en déduit par critère de comparaison de séries à termes positifs que la série $\sum_{n} u_n$ converge.

1. Montrer que la série $\sum_{n} \ln(n)$ diverge.

Le terme général $\ln(n)$ ne tend pas vers 0 quand $n \to +\infty$, donc

la série
$$\sum_{n} \ln(n)$$
 diverge grossièrement.

2. À l'aide d'une comparaison série-intégrale, déterminer un équivalent quand $n \to \infty$ de :

$$S_n = \sum_{k=1}^n \ln(k)$$

Attention, la fonction $x \mapsto \ln x$ n'est pas décroissante, on ne peut pas utiliser la proposition 1.2 mais on peut s'inspirer de la démonstration.

 \triangleright Comme la fonction $x \mapsto \ln(x)$ est croissante, on a, pour tout $k \geqslant 2$,

$$\int_{k-1}^{k} \ln(x) dx \leqslant \ln(k) \leqslant \int_{k}^{k+1} \ln(x) dx.$$

Comme ln(1) = 0, on obtient pour $n \ge 2$:

$$\int_{1}^{n} \ln(x) dx \leqslant \sum_{k=1}^{n} \ln(k) \leqslant \int_{2}^{n+1} \ln(x) dx$$

Comme $x \mapsto x \ln(x) - x$ est une primitive de ln , cela fournit

$$n\ln(n) - n + 1 \le S_n \le (n+1)\ln(n+1) - n + 1 - 2\ln(2)$$
. (*)

 \triangleright On a $n \ln(n) - n + 1 \underset{n \to +\infty}{\sim} n \ln(n)$ (factoriser par $n \ln n$ pour le voir). De plus,

$$(n+1)\ln(n+1) - n + 1 - 2\ln(2) = n\ln(n+1) + \ln(n+1) - n + 1 - 2\ln(2)$$

$$= n\ln(n) + n\ln(1 + \frac{1}{n}) + \ln(n+1) - n + 1 - 2\ln(2)$$

$$= n\ln(n) + o \ln(n\ln(n))$$

$$\sim n \ln(n).$$

ightharpoonup Ainsi, en divisant par $n\ln(n)$ dans (*) et en faisant tendre n vers $+\infty$, on obtient $\frac{S_n}{n\ln(n)} \underset{n \to +\infty}{\longrightarrow} 1$, donc

$$S_n \underset{n \to +\infty}{\sim} n \ln(n)$$
.

3. Soit $(a,b) \in \mathbb{R}^2$. Pour $n \in \mathbb{N}^*$, on définit :

$$u_n = \ln(n) + a \ln(n+1) + b \ln(n+2)$$

Exprimer $\sum_{k=1}^{n} u_k$ en fonction de S_n , a, b et n; la seule somme à intervenir dans l'expression doit être S_n .

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} \ln(k) + a \sum_{k=2}^{n+1} \ln(k) + b \sum_{k=3}^{n+2} \ln(k)$$
$$= (1+a+b)S_n + a \ln(n+1) + b \ln(n+2) + b \ln(n+1) - b \ln(2)$$

4. En déduire les valeurs de a et b pour lesquelles la série $\sum_{n} u_n$ est convergente, et déterminer la valeur de sa somme dans ces cas-là.

 \triangleright On a $a \ln(n+1) + b \ln(n+2) + b \ln(n+1) - b \ln(2) = o(n \ln(n))$. Par conséquent, si $1 + a + b \neq 0$, alors $\sum_{k=1}^{n} u_k \underset{n \to +\infty}{\sim} (1 + a + b) n \ln(n)$ et la série ne converge pas.

 \triangleright Supposons maintenant 1 + a + b = 0. On a

$$\sum_{k=1}^{n} u_k = a \ln(n+1) + b \ln(n+2) + b \ln(n+1) - b \ln(2)$$
$$= (a+2b) \ln(n+1) + b \ln\left(\frac{n+2}{n+1}\right) - b \ln(2).$$

Dans ce cas, si $a+2b \neq 0$, alors $\sum_{k=1}^{n} u_k \underset{n \to +\infty}{\sim} (a+2b) \ln(n+1)$ et la série ne converge pas. \triangleright Supposons enfin 1+a+b=0 et a+2b=0, ce qui équivaut à b=1 et a=-2. Alors $\sum_{k=1}^{n} u_k = b \ln\left(\frac{n+2}{n+1}\right) - b \ln(2)$ et odnc la série converge vers $-\ln(2)$.

La série $\sum_{n} u_n$ est convergente si et seulement si a=-2 et b=1, et dans ce cas sa somme vaut $-\ln(2)$.

Exercice 7. (DS de 2020)

1. Montrer que la série $\sum_{n} \exp\left(-n^2 \sqrt{\ln n}\right)$ converge.

Soit $n \geqslant 2$ un entier. Par croissance comparée, on a

$$n^2 \exp\left(-n^2\sqrt{\ln n}\right) \underset{n \to +\infty}{\longrightarrow} 0$$

donc

$$\exp\left(-n^2\sqrt{\ln n}\right) = \mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)$$

Comme la série $\sum_{n} \frac{1}{n^2}$ converge (série de Riemann), on en déduit par le critère de domination des séries à termes positifs que :

la série
$$\sum_{n} \exp\left(-n^2 \sqrt{\ln n}\right)$$
 converge.

2. Pour tout t > 1, on pose : $f(t) = \exp\left(-t^2\sqrt{\ln t}\right)$ et $g(t) = \frac{f(t)}{-2t\sqrt{\ln t}}$ Montrer que : $g'(t) \underset{t \to +\infty}{\sim} f(t)$

Les fonctions f et g sont dérivables sur $]1, +\infty[$ par composition de fonctions dérivables. Soit t > 1. On a :

$$f'(t) = f(t) \left(-2t\sqrt{\ln(t)} - \frac{t}{2\sqrt{\ln(t)}} \right) \underset{t \to +\infty}{\sim} -2t\sqrt{\ln(t)} f(t)$$

donc

$$g'(t) = \underbrace{-\frac{f'(t)}{2t\sqrt{\ln(t)}}}_{\sim t \to +\infty} + \underbrace{\frac{f(t)(2\ln t + 1)}{4t^2\ln(t)^{\frac{3}{2}}}}_{= t \to +\infty} = \underbrace{o}_{t \to +\infty}(f(t))$$

donc

$$g'(t) \underset{t \to +\infty}{\sim} f(t)$$

3. En déduire un équivalent du reste de la série $\sum_{n} \exp\left(-n^2\sqrt{\ln n}\right)$.

48 Soit $n \ge 2$ un entier. La fonction $t \mapsto \exp\left(-t^2\sqrt{\ln t}\right)$ est strictement décroissante et positive donc par une comparaison-série intégrale et en notant R_n le reste de la série :

$$R_n \leq \int_n^{+\infty} f(t) dt$$

On a, par intégration des équivalents (les fonctions considérées sont positives) :

$$\int_{n}^{+\infty} f(t) dx \underset{t \to +\infty}{\sim} \int_{n}^{+\infty} g'(t) dt = \frac{f(n)}{2 n \sqrt{\ln(n)}} = \underset{n \to +\infty}{o} (f(n))$$

Puisque $R_n \leq \int_n^{+\infty} f(t) dt$, on a

$$R_n = o_{n \to +\infty} (f(n))$$

On en déduit que

$$R_n = R_{n+1} + f(n+1) = f(n+1) + o_{n \to +\infty} (f(n+1)) \sim f(n+1)$$

Conclusion:

$$R_n \underset{n \to +\infty}{\sim} \exp\left(-(n+1)^2 \sqrt{\ln(n+1)}\right)$$

Exercice 8. (2020年期末考试)

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction continue qui admet un développement asymptotique en 0 de la forme :

$$f(x) = x - a x^p + o_{x \to 0^+}(x^p), \quad a > 0, \ p > 1$$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $u_0>0$ et telle que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$$

1. Montrer qu'il existe $\eta > 0$ tel que : si $u_0 \in [0, \eta]$, alors la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0.

Puisque f est continue en 0 on a f(0) = 0. Le développement asymptotique montre qu'il existe $\eta > 0$ tel que f(x) < x pour tout $x \in]0, \eta]$. En particulier, $[0, \eta]$ est stable par f et si $u_0 \in]0, \eta]$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante. Comme elle est positive (car f est à valeurs dans \mathbb{R}_+), on en déduit qu'elle converge. Puisque que f est continue sur $[0, \eta]$, $(u_n)_{n \in \mathbb{N}}$ converge vers 0 car c'est l'unique point fixe de f sur $[0, \eta]$.

Conclusion:

Il existe $\eta > 0$ tel que si $u_0 \in [0, \eta]$ alors la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0.

2. On suppose dans la suite que $(u_n)_{n\in\mathbb{N}}$ converge vers 0. Déterminer un équivalent simple de

$$(u_{n+1})^{1-p} - (u_n)^{1-p}$$

quand n tend vers $+\infty$.

Puisque $(u_n)_{n\in\mathbb{N}}$ converge vers 0 on a

$$f(u_n) = u_n - a (u_n)^p + \underset{n \to +\infty}{o} ((u_n)^p)$$

On a donc

$$(u_{n+1})^{1-p} - (u_n)^{1-p} = f(u_n)^{1-p} - (u_n)^{1-p}$$

$$= \left(u_n - a(u_n)^p + o(u_n)^p\right)^{1-p} - (u_n)^{1-p}$$

$$= (u_n)^{1-p} \left(1 - o(u_n)^{p-1} + o(u_n)^{p-1}\right)^{1-p} - (u_n)^{1-p}$$

$$= (u_n)^{1-p} \left(1 - o(u_n)^{p-1} + o(u_n)^{p-1}\right)^{1-p} - (u_n)^{1-p}$$

$$= (u_n)^{1-p} \left(1 - o(1-p)(u_n)^{p-1} + o(u_n)^{p-1}\right) - (u_n)^{1-p}$$

$$= -a(1-p) + o(1)$$

Conclusion:

$$(u_{n+1})^{1-p} - (u_n)^{1-p} \underset{n \to +\infty}{\sim} a(p-1)$$

3. En déduire que

$$u_n \underset{n \to +\infty}{\sim} (n a (p-1))^{\frac{1}{1-p}}$$

On a a(p-1) > 0 donc la série $\sum_{n} a(p-1)$ est grossièrement divergente. On en déduit par sommation d'équivalent de séries à termes positifs que

$$\underbrace{\sum_{k=0}^{n-1} \left((u_{k+1})^{1-p} - (u_k)^{1-p} \right)}_{= (u_n)^{1-p} - (u_0)^{1-p}} \underset{n \to +\infty}{\sim} n \, a \, (p-1)$$

Comme $(u_0)^{1-p} = \underset{n \to +\infty}{o}(n)$, on a $(u_n)^{1-p} \underset{n \to +\infty}{\sim} n \, a \, (p-1)$ donc

$$u_n \underset{n \to +\infty}{\sim} (n a (p-1))^{\frac{1}{1-p}}$$

4. On suppose que $f(x) = \ln(1+x)$ pour tout $x \ge 0$. Déterminer un développement asymptotique à deux termes de $(u_n)_{n \in \mathbb{N}}$ avec un reste en $\underset{n \to +\infty}{o} \left(\frac{\ln n}{n^2}\right)$.

On a $\ln(1+x) = x - \frac{x^2}{2} + \underset{x\to 0}{o}(x^2)$ donc on est dans le cas p=2 et $a=\frac{1}{2}$. Posons pour tout $n\in\mathbb{N}^*$,

$$v_n = \frac{1}{u_n} - \frac{n}{2}$$

donc

$$\begin{aligned} v_{n+1} - v_n &= \frac{1}{u_{n+1}} - \frac{n+1}{2} - \frac{1}{u_n} + \frac{n}{2} \\ &= \frac{1}{\ln(1+u_n)} - \frac{1}{u_n} - \frac{1}{2} \\ &= \frac{1}{u_n - \frac{(u_n)^2}{2} + \frac{(u_n)^3}{3} + o((u_n)^3)} - \frac{1}{u_n} - \frac{1}{2} \\ &= \frac{1}{u_n} \frac{1}{1 - \frac{u_n}{2} + \frac{(u_n)^2}{3} + o((u_n)^2)} - \frac{1}{u_n} - \frac{1}{2} \\ &= \frac{1}{u_n} \left(1 + \frac{u_n}{2} - \frac{(u_n)^2}{12} + o((u_n)^2) - \frac{1}{u_n} - \frac{1}{2} \right) \\ &= -\frac{u_n}{12} + o(u_n) \end{aligned}$$

donc

$$v_{n+1} - v_n \underset{n \to +\infty}{\sim} -\frac{u_n}{12} \underset{n \to +\infty}{\sim} \frac{-1}{6n}$$

Par sommation des équivalents de séries à termes constants divergentes (série harmonique à droite) et par téléscopage, on a

$$v_n \underset{n \to +\infty}{\sim} \frac{-1}{6} \sum_{k=1}^n \frac{1}{k} \underset{n \to +\infty}{\sim} \frac{-\ln n}{6}$$

On a donc

$$u_n = \frac{1}{\frac{n}{2} + v_n} = \frac{1}{\frac{n}{2} - \frac{\ln n}{6} + o(\ln n)} = \frac{2}{n} \frac{1}{1 - \frac{\ln n}{3n} + o(\frac{\ln n}{n})}$$

d'où

$$u_n = \frac{2}{n} + \frac{2\ln n}{3n^2} + \underset{n \to +\infty}{o} \left(\frac{\ln n}{n^2}\right)$$