12.166

EE25BTECH11049-Sai Krishna Bakki

October 4, 2025

Question

Let $\bf R$ be an $n \times n$ nonsingular matrix. Let $\bf P$ and $\bf Q$ be two $n \times n$ matrices such that $\bf Q = \bf R^{-1} \bf P \bf R$. If $\bf x$ is an eigenvector of $\bf P$ corresponding to a nonzero eigenvalue λ of $\bf P$, then

- lacktriangle ${f Rx}$ is an eigenvector of ${f Q}$ corresponding to eigenvalue λ of ${f Q}$
- f Q f Rx is an eigenvector of f Q corresponding to eigenvalue $rac{1}{\lambda}$ of f Q
- f Q ${f R}^{-1}{f x}$ is an eigenvector of ${f Q}$ corresponding to eigenvalue λ of ${f Q}$
- **Q** $\mathbf{R}^{-1}\mathbf{x}$ is an eigenvector of \mathbf{Q} corresponding to eigenvalue $\frac{1}{\lambda}$ of \mathbf{Q}

Theoretical Solution

Start with the eigenvector equation for P:

$$\mathbf{P}\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

Pre-multiply both sides by \mathbf{R}^{-1} :

$$\mathbf{R}^{-1}(\mathbf{P}\mathbf{x}) = \mathbf{R}^{-1}(\lambda \mathbf{x}) \tag{2}$$

Now, we need to relate this to $\bf Q$. We know that $\bf Q=\bf R^{-1}\bf P\bf R$. Let's introduce the identity matrix $\bf I=\bf R\bf R^{-1}$ into our equation.

$$\mathbf{R}^{-1}\mathbf{P}(\mathbf{R}\mathbf{R}^{-1})\mathbf{x} = \lambda(\mathbf{R}^{-1}\mathbf{x}) \tag{3}$$

$$(\mathbf{R}^{-1}\mathbf{P}\mathbf{R})(\mathbf{R}^{-1}\mathbf{x}) = \lambda(\mathbf{R}^{-1}\mathbf{x}) \tag{4}$$

Substitute $\mathbf{Q} = \mathbf{R}^{-1}\mathbf{P}\mathbf{R}$ into the equation:

$$\mathbf{Q}(\mathbf{R}^{-1}\mathbf{x}) = \lambda(\mathbf{R}^{-1}\mathbf{x}) \tag{5}$$

 \therefore $\mathbf{R}^{-1}\mathbf{x}$ is an eigenvector of \mathbf{Q} corresponding to the eigenvalue λ of \mathbf{Q} .