

Project Mid-BDM 1024 - Data Technology Solutions

GROUP B

Adriana Marcela Penaranda Baron
Carlos Rey Pinto
Eduardo Roberto Williams Cascante
Haldo Jose Somoza Solis
Ishika Sukhija
Luis Alejandro Gutierrez Hayek
Marzieh Mohammadi Kokaneh
Nilesh Khurana

YELP Overview

- Yelp is a community-driven platform that connects people with great local businesses.
- Yelp facilitates effortless discovery, connection, and transactions between consumers and businesses in a wide array of categories, including requesting service quotes and booking restaurant tables.

\$312M

Q1 2023 Net Revenue

\$1M

Q1 2023 Net Loss

YELP main sources of income

 Advertising for restaurants, can be featured or sponsored.

Advertising

Reservations

 Charge restaurants for effective reservations from the platform. Programs to help manage the presence of companies on the platform.

Services for companies

Marketing for companies

 Offers businesses contact information for their customers and other services.

Opportunity the project is addressing

Distribution of Review Star Ratings

(Yeld 2023). Distribution of Review star ratings. https://www.yelp-press.com/company/fast-facts/default.aspx 32% of businesses on the Yelp platform have a review start rating under 3, which affects their online reputation.

YELP should be concerned with improving the business rating in order to demonstrate the success of its platform and attract additional customers looking for reputation management solutions. Increasing customer ratings benefits Yelp and businesses, resulting in better revenues.

Pilot

Restaurants

Restaurants represent 35% of the dataset, which is a significant percentage of the categories Yelp manages on its Platform

This data analytics project will offer Yelp the opportunity to focus on helping struggling businesses improve their online reputation by analysing customer feedback, identifying recurring issues, and recommending actionable strategies for enhancement.

Why Yelp should consider us as the best solution?

Cloud implementation

Our analytical products could offer the opportunity to be executed in the cloud, which gives Yelp analytics in a short time!

04

Competitive pricing

Our solution implemented in the CLOUD offers "Pay-as-you-go," which means you pay only for what you use, so they won't need to invest in infrastructure, which makes us competitive!

02

Integrates with Yelp's platform

We have the capacity to extract the data from their platform and add it to different analytical tools for faster and better results 03

Uses the latest technology tools

We use great technology for this Pilot such as Python, PostgreSQL, Cloud from Azure Services, and for the next step we will use Apache Hadoop technologies.

Main Steps

Data Model Diagram

Entities (11) \rightarrow Relationships \rightarrow Decision Tree Analysis \rightarrow **ER Diagram** (6 entities)

Queries and Insights

N°	Query	Output	Conclusions
			Identify these restaurants' best practises and encourage
	Find the restaurants with the	1553 restaurants with a rating of 5	businesses with low ratings to replicate them and
1	highest stars	stars	enhance their reputation.
			This output facilities our product to focus on this 765
			restaurants to identify patterns and specific areas
	Identify businesses with the	56,079 restaurant reviews were	where businesses can improve. This may include
	worst ratings (<=2) and	found with a star rating equal to or	aspects such as the quality of the products or services,
	analyze reviews to identify	less than a score of 2 for 765	customer service, cleanliness, waiting time, among
2	recurring issues	restaurants.	others.
	Identify the number of reviews		
	related to the issues		This result support us in identifying the major issues
3	"customer service", "clean" or	19,667 of 56,079 restaurant	that users are concerned about, resulting in a negative
	"waiting time"	reviews that represents 35%	review and rating, and Yelp needs to work on them.

Queries and Insights

N°	Query	Output	Conclusions
	Identify the restaurants where		
	comment issues "customer		
	service" and has more than 10		These restaurants are part of the priority of this analysis
4	reviews	58 restaurants	to identify what is making users give them a bad rating,
	Identify the restaurants where		and the recommendation is that Yelp prioritise
	comment issues "cleanliness"		executing the improvement strategies on them.
	and has more than 10 reviews		
5		45 restaurants	The solution may include setting quality guidelines for
	Identify the restaurants where		Yelp-listed restaurants, providing additional training for
	comment issues "waits" and		customer service staff, and encouraging improved
6	has more than 10 reviews		cleaning and customer service standards at partner
		296 restaurants	establishments.
			After implementing the improvements in its services,
	Find the most active users and		YELP will be able to recommend the most active users
	reward them with special		visit these restaurants and rate them in order to
	promotions to build their	The query shows the first 100 most	improve their score and start a loyalty programme
7	loyalty	active users	where these same people attract more people.

Data Model Diagram

Entities (11) \rightarrow Relationships \rightarrow Decision Tree Analysis \rightarrow **ER Diagram** (6 entities)

Spark jobs

N°	Spark job	Output	
1	Identify what categories are over and under the general average rate	1.qty_categories.c 2.avg_categories.c sv sv	
2	Standard variances among other the categories	3.standard_deviati on.csv	
3	Relation between cities and categories in terms of high and low ratings or extremes	5.cities_categories .csv	

```
eduwil Term1 folder ==
Code
         Blame 124 lines (104 loc) · 5.15 KB
         # import libraries
           import sys
           import pyspark as ps
                                     import SparkSession
           from pyspark.sql
           from pyspark.sql.functions import *
           print ("Importing pyspark libraries...OK")
           print ()
           # retrieve command line arguments and store them as variables
           datadir = sys.argv[1] # gs://dataproc-staging-us-central1-321442252608-e66zqwhf/yelp/data/
           outputfile = sys.argv[2] # gs://dataproc-staging-us-central1-321442252608-e66zqwhf/yelp/results
           print ("Retrieving command line arguments and store them as variables...OK")
           print ()
    14
    15
           # Defining spark/sql context
           sqlContext = SparkSession.builder.getOrCreate()
           print ("Defining spark/sql context...OK")
    19
           print ()
    20
    21
          # loading csv files
           df_reviews = sqlContext.read.format('com.databricks.spark.csv').options(header = 'true', inferschema = 'true').load(datadir + 'reviews.csv')
           df_categ_rest = sqlContext.read.format('com.databricks.spark.csv').options(header = 'true', inferschema = 'true').load(datadir + 'rest_categories.csv')
           df_categ = sqlContext.read.format('com.databricks.spark.csv').options(header = 'true', inferschema = 'true').load(datadir + 'categories.csv')
           print ("Loading csv files...OK")
    25
    26
           print ()
    27
           # Getting restaurant categories
           lst_rest_cat = df_categ_rest.select("category").rdd.flatMap(lambda x: x).collect()
           print ("Getting restaurant categories...OK")
           print ()
    31
           # Filtering by restaurant categories
           df_categ = df_categ.where(df_categ.cat_category.isin(lst_rest_cat))
           print ("Filtering by restaurant categories...OK")
           print ()
    36
```


Map reduce jobs

Input: Spark Jobs **results** to identify what categories are over and under the general average rate.

01

Identify the keywords from reviews of the highest-rated restaurants

Identify the keywords from reviews of the lowest-rated restaurants

```
clipse-Workspace-for-Hadoop - WorldCount/src/WordCount.java - Eclipse IDE
    <u>E</u>dit <u>S</u>ource Refac<u>t</u>or <u>N</u>avigate Se<u>a</u>rch <u>P</u>roject <u>R</u>un <u>W</u>indow <u>H</u>elp
🖺 Project Explorer 💢 📙 ≒ 🍸 📒 🗀 🔲 *WordCount.java 🗶
                                       10 import java.io.IOException;
> J WordCount.java
  > 🛋 JRE System Library [jre]
  > 🛋 Referenced Libraries
                                                 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
      🚅 hadoop-client-api-3.3.0.jar
                                    △219
                                                 public void map (Object key, Text value, Context context) throws IOException, InterruptedException {
                                                     String stringNormalized = value.toString().toUpperCase()
                                                                                     .replaceAll("[^A-Z0-9]", " ")
                                                                                     .replace(" "," ").replace(" "," ");
                                                     StringTokenizer itr = new StringTokenizer(stringNormalized);
                                                     while (itr.hasMoreTokens()) {
                                                         word.set(itr.nextToken());
                                                         context.write(word, one);
                                                private IntWritable result = new IntWritable();
                                                 public void reduce(Text key, Iterable<IntWritable> values, Context context)
                                                     int sum = 0;
                                                     for (IntWritable value: values) { sum += value.get(); }
                                                     result.set(sum);
                                                     context.write(key, result);
                                             public static void main(String[] args) throws Exception {
                                                 Configuration conf = new Configuration();
                                                 Job job = Job.getInstance(conf, "word count");
                                                 job.setJarByClass(WordCount.class);
                                                 job.setMapperClass(TokenizerMapper.class);
                                                 job.setCombinerClass(IntSumReducer.class);
                                                 job.setReducerClass(IntSumReducer.class);
                                                 job.setOutputKeyClass(Text.class);
                                                 job.setOutputValueClass(IntWritable.class);
                                                 FileInputFormat.addInputPath(job, new Path(args[0]));
                                                 FileOutputFormat.setOutputPath(job, new Path(args[1]));
                                                 System.exit(job.waitForCompletion(true) ? 0 : 1);
```


Map reduce jobs

Map reduce jobs

4	Α	В	С	D	
1	Column1	Column2 🚚			
14	FOOD	3429798			
20	THEY	2685517			
21	GREAT	2552985			
22	GOOD	2484223			
27	PLACE	2372759			
35	SERVICE	1758807			
50	DELICIOUS	1087390			
56	BEST	943263			
61	AMAZING	857580			
69	LOVE	793568			
70	GOT	779726			
71	VE	768092			
72	NICE	767495			
73	BEEN	762117			
74	DEFINITELY	751551			
75	STAFF	751292			
76	FRIENDLY	751161			
77	CHICKEN	741094			
78	UP	736032			

Visualizations

Input: Spark Jobs results

Input: Map Reduce Jobs results

To conclude **our solution focus** on customer rating enhancement that creates a mutually beneficial environment, **improving Yelp's reputation and generating greater** revenue opportunities for businesses and for Yelp as well!

