Academia Sabatina de Jóvenes Talento

Polinomios Clase #10

Encuentro: 12 Nivel: 5
Curso: Polinomios Semestre: I

Fecha: 22 de junio de 2024

Instructor: Kenny Jordan Tinoco
Instructor Aux: Cristian Castilblanco

Contenido: Clase práctica #2

Aquí se exponen pista sobre cómo resolver los ejercicios y problemas de la clase #1.

1. Ejercicios y problemas

Ejercicios y problemas para el autoestudio.

Ejercicio 1.1. Sea P(x) un polinomio mónico de grado 3 tal que

$$P(x+1) = P(x) + nx + 2$$
.

Hallar la suma de coeficientes del término cuadrático y lineal, sabiendo que su término independiente igual a 5.

* **Pista.** Considerar un polinomio generico que cumpla las condiciones y utilzar las evaluaciones P(0) y P(1).

Ejercicio 1.2. Determine todos los posibles valores que puede tomar $\frac{x}{y}$ si se cumple la ecuación $6x^2 + xy = 15y^2 \operatorname{con} x, y \neq 0$.

* Pista. Formar una ecuación cuadrática y resolverla.

Ejercicio 1.3 (Con correciones). Hallar $K \in \mathbb{R}$ tal que $P(x) = K^2(x-1)(x-2)$ tiene raíces reales iguales.

* Pista. Considerar el discriminante de la ecuación.

Ejercicio 1.4. Encontrar todas las soluciones de la ecuación $m^2-3m+1=n^2+n-1$, con $m,n\in\mathbb{Z}^+$.

* **Pista.** Formar una ecuación cuadrática tomando una de las letras como variable. Factorizar o usar la fórmula general cuadrática.

Ejercicio 1.5. Sea el polinomio P(x) tal que

$$P(x^2 + 1) = x^4 + 4x^2,$$

encontrar $P(x^2 - 1)$.

* Pista.

- 1. Hallar una transformación para *x* de tal manera que se obtenga el resultado deseado. Apoyarse en una ecuación.
- 2. Encontrar P(x) por medio de un cambio de variable.

Ejercicio 1.6. Sea S(x) un polinomio cúbico tal que S(1) = 1, S(2) = 2, S(3) = 3 y S(4) = 5, encontrar S(6).

* **Pista.** Considerar un polinomio auxiliar que tenga a cierto valores cómo raíces. Expresar S(x) en función de ese polinomio auxiliar.

Ejercicio 1.7. Para que la división de $6x^4 - 11x^2 + ax + b$ entre $3x^2 - 3x - 1$ sea exacta, encuentre los valores de a y b apropiados.

* Pista. Realizar una división larga.

Ejercicio 1.8. Calcular la suma de coeficientes del resto que deja $x^{3333} - 9$ entre $x^2 - 729$.

* Pista. Utilizar el teorema de resto.

Ejercicio 1.9. Probar que para todo *n* entero positivo se cumple que

1.
$$1+3+5+\cdots+(2n-1)=n^2$$

2.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

* Pista. Utilizar inducción matemática.

Ejercicio 1.10. Con la ayuda del teorema de la raíz racional, encontrar todas las raíces de los siguientes polinomios

1.
$$2x^3 - 21x^2 + 52x - 21$$

2.
$$x^4 - 7x^3 - 19x^2 + 103x + 210$$

* Pista. Utilizar el teorema de la raíz racional.

Ejercicio 1.11 (Con correciones). Dado el polinomio $P(a, b, c) = a^2b + b^2c + c^2a$ expresarlo en términos de los polinomios simétricos elementales y en función de sí mismo.

* **Pista.** Probar con el producto de σ_1 y σ_2 . Considerar permutaciones de variables en la definción de P.

Problema 1.1. Sea r una raíz de $x^2 - x + 7$. Hallar el valor de $r^3 + 6r + \pi$.

* **Pista.** Apoyarse en las propiedades de *r* evaluado en el polinomio.

Problema 1.2. Si $a + b + c = \sqrt{2023}$ y $a^2 + b^2 + c^2 = 2021$, hallar el valor de

$$E = \frac{(a+b)^2(b+c)^2(c+a)^2}{(a^2+1)(b^2+1)(c^2+1)}.$$

* Pista. Utilizar Vieta e identidades algébraicas.

Problema 1.3. El cociente de la división $\frac{x^{n+1} + 2x + 5}{x-3}$ es Q(x), la suma de coeficientes de Q es $\frac{9^{10} + 3}{2}$. Hallar el valor de n.

* Pista. Utilizar el teorema del resto.

Problema 1.4. Sean a, b y c las raíces reales de la ecuación $x^3 + 3x^2 - 24x + 1 = 0$. Probar que

$$\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0.$$

* Pista. Utilizar Vieta e identidades algébraicas.

Problema 1.5. Si la división

$$\frac{x^{80} - 7x^{30} + 9x^5 - mx + 1}{x^3 + x - 2}$$

Deja como resto a $R(x) = x^2 + x - 1$, hallar el valor de m.

* **Pista.** Utilizar el teorema del resto (apoyarse en el teorema de la raíz racional para encontrar las raíces del divisor.)

Problema 1.6. Sean r_1 , r_2 y r_3 raíces distintas del polinomio $y^3 - 22y^2 + 80y - 67$. De tal manera que existen números reales α , β y θ tal que

$$\frac{1}{y^3 - 22y^2 + 80y - 67} = \frac{\alpha}{y - r_1} + \frac{\beta}{y - r_2} + \frac{\theta}{y - r_3}$$

para toda $y \notin \{r_1, r_2, r_3\}$. ¿Cuál es valor de $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\theta}$?

* **Pista.** Factorizar el polinomio y deshacer todas las fracciones tratando de encontrar $\frac{1}{\alpha}$, $\frac{1}{\beta}$ y $\frac{1}{\theta}$ de manera separada. Utilizar una idea parecida al teorema de la raíz racional.

Problema 1.7. La ecuación

$$2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$$

tiene tres raíces reales. Dado que su suma es $\frac{m}{n}$ con $m, n \in \mathbb{Z}^+$ y mcd(m, n) = 1. Calcular m + n.

* **Pista.** Cambio de variable con la ayuda de las propiedades de potencia. Reducirlo a una ecuación cúbica y encontrar sus raíces.

Problema 1.8. Si $P(x) = x^4 + ax^3 + bx^2 + cx + d$ es un polinomio tal que P(1) = 10, P(2) = 20 y P(3) = 30, determine el valor de

$$\frac{P(12)+P(-8)}{10}$$
.

* **Pista.** Considerar un polinomio auxiliar y factorizarlo. Operar sobre ese polinomio auxiliar para obtener el valor de la expresión.

Problema 1.9. Sea F(x) un polinomio mónico con coeficientes enteros. Probar que si existen cuatro enteros diferentes a, b, c y d tal que F(a) = F(b) = F(c) = F(d) = 5, entonces no existe un entero k tal que F(k) = 8.

* Pista. Suponer lo contrario y llegar a una contradicción. Utilizar las propiedades de raíces.

Problema 1.10. Sea el polinomio $P_0(x) = x^3 + 313x^2 - 77x - 8$. Para enteros $n \ge 0$, definimos $P_n(x) = P_{n-1}(x-n)$. ¿Cuál es el coeficiente de x en $P_{20}(x)$?

* **Pista.** Ver que pasa con casos pequeños de *n* y generalizar.

Problema 1.11. Determine un polinomio cúbico P(x) en los reales, con una raíz igual a cero y que satisface $P(x-1) = P(x) + 25x^2$.

* Pista. Considerar una suma telescópica e utilizar ciertas propiedades de sumas de cuadrados.

Problema 1.12. Suponga que x, y y z son números distintos de cero tal que $(x+y+z)(x^2+y^2+z^2) = x^3 + y^3 + z^3$. Hallar el valor de

$$(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).$$

* Pista. Utilizar polinomios simétricos elementales e identidades algebraicas.

Problema 1.13 (OMCC 2020, shortlist). Sean a, b y c números reales no nulos tales que a+b+c=0. Determine el valor de la expresión

$$\frac{(a^2+b^2)(b^2+c^2)+(b^2+c^2)(c^2+a^2)+(c^2+a^2)(a^2+b^2)}{a^4+b^4+c^4}.$$

* **Pista.** Considerar $(a + b + c)^2$ y desarrollar el numerador para lograr simplificar. Utilizar los polinomios simétricos elementales.

Problema 1.14. Si a, b, c y d son las raíces de la ecuación $x^4 - 3x^3 + 1 = 0$, calcular el valor de

$$\frac{1}{a^6} + \frac{1}{b^6} + \frac{1}{c^6} + \frac{1}{d^6}.$$

* **Pista.** Utilizar la ecuación para encontrar $\frac{1}{x^3}$ elevar al cuadrado para reducir la expresión en función de los polinomios simétricos elementales. Utilizar las fórmulas de vieta.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Instructor: Cristian Castilblanco **Teléfono:** +505 8581 1745 (*Tigo*)

Correo: cristian.castilblanco120@gmail.com