Haplotype assembly from long reads

Roland Faure^{1,2}

¹Université Libre de Bruxelles (ULB) - Belgium ²Université de Rennes, IRISA - France

Public Ph.D. defence - November the 27th, 2024

Microbiota

Microbiota are mixes of bacteria, virus, archea and eukaryota

Microbiota are important

The gut microbiome and mental health: advances in research and emerging priorities - Shoubridge et al.

Microbiota are important

The gut microbiome and mental health: advances in research and emerging priorities - Shoubridge et al.

The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions - Jacoby et al.

Microbiota are important

The gut microbiome and mental health: advances in research and emerging priorities - Shoubridge et al.

The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions - Jacoby et al.

Core microbiota drive functional stability of soil microbiome in reforestation ecosystems - Jiao et al.

Anthonie van Leeuwenhoek 1673

 But many microorganisms are undistiguishable under a microscope

Julius Petri 1887

1887

▶ But most microorganisms are not cultivable

DNA sequencing

DNA sequencing: difficulties

DNA sequencing: difficulties

Genome sequencing

Genome assembly

Genome assembly

```
CGATGCTGGCTAGCATAGTCGATTTATCT

CTGGCTAGC\mathbf{T}TAGTCGATTTATCTGACAGT

AGCATAGTCGATTTATCTGACAGTCATAT

AGTCGATTTAT\mathbf{A}TGACAGTCATATTGCT

TTTATCTGACAGTCA\mathbf{G}ATTGCTACACAC
```

genome assembly: stitching reads correcting errors

CGATGCTGGCTAGCATAGTCGATTTATCTGACAGTCATATTGCTACACAC

► Many software: Flye, wtdbg2, metaMDBG, hifiasm...

Imagine you are an assembler

Haplotype assembly

Dupont & Dupond exist in microbiota!

Problem: assembling several haplotypes

```
CGATGCTGGCTAGCATAGTCGATTTATCT
CTGGCTAGCTTAGTCGATTTATCTGACAGT
AGCATAGTCGATTTATCTGACAGTCATAT
AGTCGATTTATATGACAGTCATATTGCT
TTTATATGACAGTCAGATTGCTACACAC
```

genome assembly: stitching reads correcting errors

CGATGCTGGCTAGCATAGTCGATTTATCTGACAGTCATATTGCTACACAC
CGATGCTGGCTAGCATAGTCGATTTATATGACAGTCATATTGCTACACAC

Problem: assembling several haplotypes

```
CGATGCTGGCTAGCATAGTCGATTTATCT
CTGGCTAGC\mathbf{T}TAGTCGATTTATCTGACAGT
AGCATAGTCGATTTATCTGACAGTCATAT
AGTCGATTTAT\mathbf{T}ATGACAGTCATATTGCT
TTTAT\mathbf{T}ATGACAGTCAGATTGCTACACAC
```

genome assembly: stitching reads correcting errors

CGATGCTGGCTAGCATAGTCGATTTATCTGACAGTCATATTGCTACACAC CGATGCTGGCTAGCATAGTCGATTTATATGACAGTCATATTGCTACACAC

► Not so many software!

Roland Faure 1,2

²Université Libre de Bruxelles (ULD) - Belgium

²Université de Rannes, IRISA - France

Public Ph.D. defence - November the 27th, 2024

Overview of (meta)genome assembly

Overview of the Ph.D.

Overview of the Ph.D.

Distiguishing haplotypes with noisy reads - HairSplitter

Assembling noisy reads: correcting errors by consensus

CAGCGCTGTGGCAGCAGTGCCA

Assembling noisy reads: correcting errors by consensus

Consensus loses the variants

Consensus loses the variants

Consensus loses the variants

- r1 aacaagatagacaagatagacacagattggcgtttaggaacagatga<mark>t</mark>agatagca
- r2 aataagatagac<mark>g</mark>agatagacacag<mark>c</mark>ttggcgtttaggaacagatgatagca
- r3 AACAAGATAGACAAGATAGACACACCTTGGCGTTTAGTAACAGATGACAGATAGCA
- r4 AACAAGATCCACGAGATAGACACATCTTGGCGTTTAGGAACATTTGACAGATAGCA
- r5 AACAAGATCCACAAGATAG<mark>G</mark>CACATATTGGCGTTTAGGAACAGTTGA**T**AGATAGCA
- r6 aacaagatcgacgatagacacatattggcgtttaggatcacttgacagatagca

Haplotype separation: state of the art ¹

- r3 AACAAGATAGACAAGATAGACACAGCTTGGCGTTTAGTAACAGATGACAGATAGCA
 r4 AACAAGATCGACGAGATAGACACATCTTGGCGTTTAGGAACATTTGACAGATAGCA
- r6 AACAAGATCGACGAGATAGACACATATTGGCGTTTAGGATCAGTTGACAGATAGCA

Reads from the same haplotype are more similar than reads from different haplotypes

5 diffs

¹WhatsHap, HapCut, Strainberry, stRainy...

Haplotype separation: state of the art ¹

- r2 AATAAGATAGAC<mark>G</mark>AGATAGACACAG<mark>C</mark>TTGGCGTTTAGGAACAGATGATAGATAGCA
- r3 AACAAGATAGACAAGATAGACACAGCTTGGCGTTTAGTAACAGATGACAGATAGCA
 r4 AACAAGATCGACGAGATAGACACATCTTGGCGTTTAGGAACATTTGACAGATAGCA
- r6 AACAAGATCGACGAGATAGACACATATTGGCGTTTAGGATCAGTTGACAGATAGCA

Reads from the same haplotype are more similar than reads from different haplotypes

on average

4 diffs

5 diffs

¹WhatsHap, HapCut, Strainberry, stRainy...

How to distinguish errors and SNPs?

My solution: looking at several positions simultaneously

```
r1 AACAAGATA GACAAGATAGACAC, GATTGGCGTTTAGGAACAGA GATAGATAGCA
r2 AATAAGATA GACGAGATAGACAC, GCTTGGCGTTTAGGAACAGA GATAGATAGCA
r3 AACAAGATAGAACATAGACACA GCTTGGCGTTTAGTAACAGA GACAGATAGCA
r4 AACAAGAT GACGAGATAGACACA TCTTGGCGTTTAGGAACAT TTGACAGATAGCA
r5 AACAAGAT GACAACATAGGCACA TATTGGCGTTTAGGAACAT TGATAGATAGCA
r6 AACAAGAT GACAGATAGACACA TATTGGCGTTTAGGAACAT TGATAGATAGCA
r6 AACAAGAT GACGAGATAGACACA TATTGGCGTTTAGGATCAGT GACAGATAGCA
f6 AACAAGAT GACGAGATAGACACA TATTGGCGTTTAGGATCAGT GACAGATAGCA
f7,r2,r3,{r4,r5,r6}
```

My solution: looking at several positions simultaneously

Algorithm: 1) looking for variant patterns

variant pattern: subset of reads and positions containing minority bases size: 3x3

Algorithm: 1) looking for variant patterns

r6 AACAAGATCGACGAGATAGACACATATTGGCGTTTAGGATCAGTTGACAGATAGCA

variant pattern: subset of reads and positions containing minority bases size: 2x2

Is this pattern too big to be due to errors?

Is this pattern too big to be due to errors?

P(errors produce pattern of size ab)
$$\leq {n \choose a} {m \choose b} * \frac{a^{an}}{n^{ab}} = 0.30$$

P(errors produce pattern of size ab)
$$\leq \binom{n}{a} \binom{m}{b} * \frac{a^{ab}}{n^{ab}} = 0.07$$

Statistical test: main result

$$\binom{n}{a}\binom{m}{b}*\frac{a^{ab}}{n^{ab}}$$

- No assumption on the number of haplotypes
- No assumption on balanced coverage
- No assumption on the error pattern of the reads
- Assumption: errors are independent

Algorithm: 3) Group reads by haplotype

Passed the test

group reads by haplotypes

{r1,r2,r3} {r4,r5,r6}

The HairSplitter program

The HairSplitter program

► Hairsplitter: A person who makes extremely, possibly excessively, fine distinctions (who would separate something as fine as a hair into two pieces and distinguish them) - Wiktionary

Let's evaluate HairSplitter - k-mer completeness

Assembly

Solution

ACGCAGCTAGTACGCAT

ACGCAGCTAG

CGCAGCTAGT

GCAGCTAGTA

CAGCTAGTAC

AGCTAGTACG

GCTAGTACGC

CTAGTACGCA

TAGTACGCAT

GCAGCTAGTACGCATAA

GCAGCTAGTA
CAGCTAGTAC
AGCTAGTACG
GCTAGTACGC
CTAGTACGCA
TAGTACGCAT
AGTACGCATA
GTACGCATAA

10-mer completeness: 6 out of 8 (75%)

Evaluating HairSplitter - results

Zymobiomics gut microbiome standard: contains a mix of 5 E. coli strains

	metaFlye	metaFlye+Strainberry	metaFlye+HairSplitter
Nanopore Q9	0.586	0.749	0.957
Nanopore Q20	0.7524	0.9527	0.961
PacBio HiFi	0.9589	0.9793	0.9895

Table: 31-mer completeness of assemblies compared to the solution

▶ Improves over the state of the art on complex assemblies

The HairSplitter project

- Presented in JOBIM, SeqBIM, ISMB/ECCB
- Published in Peer Community Journal

Distinguishing haplotypes with high-fidelity reads - Alice

New technology: high-fidelity long reads

pacb.com

- Emerged recently and are still emerging
- ► << 1% sequencing errors

Assembly with high-fidelity long reads: easy!

```
r1 AACAAGATAGACAAGATAGACACAGATTGGCGTTTAGGAACAGATGACAGATAGCA
r2 AACAAGATAGACAAGATAGACACAGATTGGCGTTTAGGAACAGATAACAGATAGCA
r3 AACAAGATAGACAAGATAGACACAGATTGGCGTTTAGGAACAGATGACAGATAGCA
r4 AACAAGATCGACAAGATAGACACATCTTGGCGTTTAGGAACAGATTGACAGATAGCA
r5 AACAAGATCGACAAGATAGGCACATATTGGCGTTTAGGAACAGTTGACAGATAGCA
r6 AACAAGATCGACAAGATAGACACATATTGGCGTTTAGGAACAGTTGACAGATAGCA
variable base (SNP) sequencing error
```

Assembly with high-fidelity long reads: easy!

27-mer completeness of the assemblies of the Zymobiomics Gut Microbiome Standard

Assembly with high-fidelity long reads: slow!

Table: CPU time

	hifiasm	metaFlye+HairSplitter
Zymobiomics Gut Microbiome Standard	20 days	4 days

Assembly with high-fidelity long reads: slow!

Table: CPU time

	hifiasm	metaFlye+HairSplitter
Zymobiomics Gut Microbiome Standard	20 days	4 days
human genome	34 days	25 days

Assembly with high-fidelity long reads: slow!

Table: CPU time

hifiasm	metaFlye+HairSplitter
20 days	4 days
34 days	25 days
\geq 60 days	≥ 60 days
	20 days 34 days

¹Highly accurate metagenome-assembled genomes from human gut microbiota using long-read assembly, binning, and consolidation methods - BiorXiv

How to perform fast assembly?

Credits: Alice in Wonderland, Lewis, Disney

Solution for fast assembly: sketching the reads

Drink-me potion

sketched dataset

Sketching: reducing the size of the data

Sketching: reducing the size of the data

Sketching: reducing the size of the data

My contribution: MSR sketching

sequence

CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG

$$f: \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\emptyset\}$$

sequence

 ${\tt CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ f : & \{0-mer\} \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ f : & \{0-mer\} \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ f : & \{0-mer\} \rightarrow T \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ f : & \{0-mer\} \rightarrow \varnothing \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

sequence

 ${\tt CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \rightarrow A \quad if \quad hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \quad if \quad hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \quad if \quad hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \quad if \quad hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \varnothing \quad if \quad hash(10-mer) > 0.2 \end{split}$$

sequence

 ${\color{red} \underline{\textbf{CAGTATGGAT}}} \textbf{ACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

```
hash(CAGTATGGAT)= 0.0023
f(CAGTATGGAT)= A
```

sketch

Α

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ f : & \{0-mer\} \rightarrow A \quad if \quad hash(10-mer) \in [0,0.05] \\ f : & \{0-mer\} \rightarrow C \quad if \quad hash(10-mer) \in [0.05,0.1] \\ f : & \{0-mer\} \rightarrow G \quad if \quad hash(10-mer) \in [0.1,0.15] \\ f : & \{0-mer\} \rightarrow T \quad if \quad hash(10-mer) \in [0.15,0.2] \\ f : & \{0-mer\} \rightarrow \varnothing \quad if \quad hash(10-mer) > 0.2 \end{split}$$

sequence

 $\texttt{C} \underline{\textbf{AGTATGGATA}} \texttt{CAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

```
hash(AGTATGGATA)= 0.624
f(AGTATGGATA)= M
```

sketch

Α

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ f : & \{0-mer\} \rightarrow A \text{ if } hash(10-mer) \in [0,0.05] \\ f : & \{0-mer\} \rightarrow C \text{ if } hash(10-mer) \in [0.05,0.1] \\ f : & \{0-mer\} \rightarrow G \text{ if } hash(10-mer) \in [0.1,0.15] \\ f : & \{0-mer\} \rightarrow T \text{ if } hash(10-mer) \in [0.15,0.2] \\ f : & \{0-mer\} \rightarrow \varnothing \text{ if } hash(10-mer) > 0.2 \end{split}$$

sequence

 ${\tt CA} \underline{{\tt GTATGGATAC}} {\tt AGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

```
hash(GTATGGATAC)= 0.124
f(GTATGGATAC)= G
```

sketch

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \rightarrow A \ if \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ if \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ if \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ if \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \varnothing \ if \ hash(10-mer) > 0.2 \end{split}$$

sequence

 ${\tt CAG} {\color{red} {\bf TATGGATACA}} {\tt GATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

```
hash(TATGGATACA)= 0.88
f(TATGGATACA)= M
```

sketch

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \rightarrow A \ if \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ if \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ if \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ if \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \varnothing \ if \ hash(10-mer) > 0.2 \end{split}$$

sequence

 ${\tt CAGT} {\color{red} {\bf ATGGATACAG}} {\color{blue} {\bf ATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}}$

```
hash(\mathbf{ATGGATACAG})= 0.32 f(\mathbf{ATGGATACAG})= \mathbf{H}
```

sketch

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ f : & \{0-mer\} \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ f : & \{0-mer\} \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ f : & \{0-mer\} \rightarrow T \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ f : & \{0-mer\} \rightarrow \varnothing \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

sequence

CAGTA<u>TGGATACAGA</u>TGGAGATATCATCGAGTAGGGGCACTGTACCAGAG

hash(TGGATACAGA)= 0.19 f(TGGATACAGA)= T

sketch

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ f : & \{0-mer\} \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ f : & \{0-mer\} \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ f : & \{0-mer\} \rightarrow T \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ f : & \{0-mer\} \rightarrow \varnothing \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

sequence

 ${\tt CAGTAT} \underline{{\tt GGATACAGAT}} {\tt GGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

hash(**GGATACAGAT**)= 0.214 f(**GGATACAGAT**)= **F**

sketch

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \rightarrow A \ if \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ if \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ if \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ if \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \varnothing \ if \ hash(10-mer) > 0.2 \end{split}$$

sequence

CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG

```
hash(GATACAGATG)= 0.678 f(GATACAGATG)= \vec{H}
```

sketch

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \rightarrow A \ if \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ if \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ if \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ if \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \varnothing \ if \ hash(10-mer) > 0.2 \end{split}$$

sequence

CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG

hash(ATACAGATGG)= 0.669 f(ATACAGATGG)= FI

sketch

sequence

 ${\tt CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCAC} {\color{red} {\tt TGTACCAGAG} }$

```
hash(TGTACCAGAG)= 0.06
f(TGTACCAGAG)= C
```

sketch

A G T

ΤС

С

1

sketch

MSR=Mapping-friendly Sequence Reductions

▶ If two reads align, their sketchs align too

MSR=Mapping-friendly Sequence Reductions

▶ If two reads align, their sketchs align too

Assembling using MSR sketches

Very fast assembly: the Alice assembler

AGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG
GAGATATCATCGAGTAGGGGCACTGTACCAGAGCCGG
GATATCATCGAGTAGGGGCACTGTACCAGAGCCGGTTATAC

MSR sketching

AGTTCCGT TCCGTCAA

CGTCAATG

Assembly

AGTTCCGT
TCCGTCAA
CGTCAATG
AGTTCCGTCAATG

Inflating

AGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAGCCGGTTATAC

sequence1

 ${\tt CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG}$

sequence2

 ${\tt CAGTATGGATACAGATGGAGATAT} \underline{{\tt G}} {\tt ATCGAGTAGGGGCACTGTACCAGAG}$

sequence1 <u>CAGTATGGAT</u>ACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG

sketch1 A

sequence2 <u>CAGTATGGAT</u>ACAGATGGAGATAT<u>G</u>ATCGAGTAGGGGCACTGTACCAGAG

sketch2 A

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ f : & \{0-mer\} \rightarrow A \quad if \quad hash(10-mer) \in [0,0.05] \\ f : & \{0-mer\} \rightarrow C \quad if \quad hash(10-mer) \in [0.05,0.1] \\ f : & \{0-mer\} \rightarrow C \quad if \quad hash(10-mer) \in [0.1,0.15] \\ f : & \{0-mer\} \rightarrow T \quad if \quad hash(10-mer) \in [0.15,0.2] \\ f : & \{0-mer\} \rightarrow \varnothing \quad if \quad hash(10-mer) > 0.2 \end{split}$$

sequence1 CA

C**AGTATGGATA**CAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG

sketch1 A

sequence2 CAGTATGGATACAGATGGAGATATGATAGGGGGCACTGTACCAGAG

sketch2 A

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\emptyset\} \\ f : & \{0-mer\} \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ f : & \{0-mer\} \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ f : & \{0-mer\} \rightarrow T \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ f : & \{0-mer\} \rightarrow \emptyset \ \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

sketch2

sequence1 CAGTATGGATACAGATATCATCGAGTAGGGGCACTGTACCAGAG

sketch1 A G T

sequence2 CAGTATGGATACAGAGATATGATCGAGTAGGGGCACTGTACCAGAG

sketch2 A G T

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\emptyset\} \\ & f(10-mer) \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ \ if \ \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \emptyset \ \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

 sequence1
 CAGTATGGATACAGATGGAGATATCATCGAGTAGGGGCACTGTACCAGAG

 sketch1
 A G T T

 sequence2
 CAGTATGGATACAGATGGAGATATGATCGAGTAGGGGCACTGTACCAGAG

 sketch2
 A G T

$$\begin{split} f : & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\emptyset\} \\ f & (10-mer) \rightarrow A \text{ if } hash(10-mer) \in [0,0.05] \\ f & (10-mer) \rightarrow C \text{ if } hash(10-mer) \in [0.05,0.1] \\ f & (10-mer) \rightarrow G \text{ if } hash(10-mer) \in [0.1,0.15] \\ f & (10-mer) \rightarrow T \text{ if } hash(10-mer) \in [0.15,0.2] \\ f & (10-mer) \rightarrow \emptyset \text{ if } hash(10-mer) > 0.2 \end{split}$$

 sequence1
 CAGTATGGATACAGATGGAGATATCA
 TCGAGTAGGGGCACTGTACCAGAG

 sketch1
 A G T T
 T

 sequence2
 CAGTATGGATACAGATGGAGATATGA
 TCGAGTAGGGGCACTGTACCAGAG

 sketch2
 A G T G

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\emptyset\} \\ & f(10-mer) \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ \ if \ \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \emptyset \ \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

 sequence1
 CAGTATGGATACAGATGGAGATATCAT
 CGAGTATGGATACCAGAG

 sketch1
 A G T T C

 sequence2
 CAGTATGGATACAGATGGAGATATGAT
 CGAGTATGGATACAGATGGAGATATGAT

 sketch2
 A G T G

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ \ if \ \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \varnothing \ \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

 sequence1
 CAGTATGGATACAGATGGAGATATCATC

 sketch1
 A G T T C

 sequence2
 CAGTATGGATACAGATGGAGATATGATC

 sketch2
 A G T G

◆ロ > ← 部 > ← き > ← き → り へ ()

AGT

A G T

sequence1

sequence2 sketch2

sketch1

Roland Faure

CAGTATGGATACAGATGGAGATATGATCGAGTAGGGGCACTGTACCAGAG

MSR sketching keeps and amplify SNPs

$$\begin{split} f: & \{A,C,G,T\}^{10} \rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \rightarrow A \ \ if \ \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \rightarrow C \ \ if \ \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \rightarrow G \ \ if \ \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \rightarrow T \ \ if \ \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \rightarrow \varnothing \ \ \ if \ \ hash(10-mer) > 0.2 \end{split}$$

47/57

Results: Alice assemblies are complete

Assembly of the Zymobiomic Gut Microbiome Standard containing 5 strains of *E. coli*

Genome traction (%)		
	alice	
Escherichia_coli_B1109	92.039	
Escherichia coli B3008	99.965	
Escherichia coli B766	95.641	
Escherichia_coli_3M109	96.334	
Escherichia coli b2207	95.495	

Results: Alice assemblies are fast

	hifiasm	metaFlye +HairSplitter	Alice-asm
Zymobiomics Gut Microbiome Standard	20 days	4 days	1h20
human genome	34 days	25 days	8h40
human gut microbiome ¹	\geq 60 days	\geq 60 days	5h00

N.B. only assemblers that distinguish strains are shown

¹Highly accurate metagenome-assembled genomes from human gut microbiota using long-read assembly, binning, and consolidation methods - BiorXiv

The dark side: MSR sketching keeps errors

$$\begin{split} f: & \{A,C,G,T\}^{10} \Rightarrow \{A,C,G,T,\varnothing\} \\ & f(10-mer) \Rightarrow A \ if \ hash(10-mer) \in [0,0.05] \\ & f(10-mer) \Rightarrow C \ if \ hash(10-mer) \in [0.05,0.1] \\ & f(10-mer) \Rightarrow G \ if \ hash(10-mer) \in [0.1,0.15] \\ & f(10-mer) \Rightarrow T \ if \ hash(10-mer) \in [0.15,0.2] \\ & f(10-mer) \Rightarrow \varnothing \ if \ hash(10-mer) > 0.2 \end{split}$$

MSR sketching: conclusion & perspectives

mapping-friendly and keeps SNPs: perfectly adapted to haplotype assembly with high-fidelity reads

MSR sketching: conclusion & perspectives

- mapping-friendly and keeps SNPs: perfectly adapted to haplotype assembly with high-fidelity reads
- ➤ Still a lot to explore on MSR sketching: changing the function, changing the use case...

MSR sketching: conclusion & perspectives

- mapping-friendly and keeps SNPs: perfectly adapted to haplotype assembly with high-fidelity reads
- Still a lot to explore on MSR sketching: changing the function, changing the use case...
- Tune to what extent we want to keep variation

Introduction
Distiguishing haplotypes with noisy reads - HairSplitter
Distinguishing haplotypes with high-fidelity reads - Alice
Conclusion

Conclusion

Conclusion: achievements

- Noisy reads: assemble a mix of haplotypes of unprecedented complexity
- High-fidelity reads: assemble very fast while keeping haplotypes with MSR sketching
- Hi-C data: improved the scaffolding of haploid and multiploid assemblies

Why is this thesis useful?

Why is this thesis useful?

Example of an application: metage2metabo¹

Arriand Delconi

Example of an application: metage2metabo¹

Arnaud Beicour

Predictions for human health, soil fertility, ecology...

¹Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species - Belcour et al., 2020

What is the future of assembly?

All DNA is not captured by sequencing

Example of the sequencing of the soil microbiote

Adapted from the work of Nicolas Maurice

- Low-coverage assembly
- Missing DNA

What is the future of assembly?

