With a custom Scope implementation, you are not limited to programmatic registration of the scope. You can also do the Scope registration declaratively, using the CustomScopeConfigurer class:

```
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/sche")</pre>
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:aop="http://www.springframework.org/schema/aop"
   xsi:schemaLocation="http://www.springframework.org/schema/beans
       http://www.springframework.org/schema/beans/spring-beans.xsd
       http://www.springframework.org/schema/aop
       http://www.springframework.org/schema/aop/spring-aop.xsd">
    <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
       property name="scopes">
           <map>
               <entry key="thread">
                    <bean class="org.springframework.context.support.SimpleThreadScope"/>
               </entry>
       </property>
    <bean id="bar" class="x.y.Bar" scope="thread">
       property name="name" value="Rick"/>
       <aop:scoped-proxy/>
   </bean>
   <bean id="foo" class="x.v.Foo">
       property name="bar" ref="bar"/>
   </bean>
</beans>
```

Note

When you place <aop:scoped-proxy/> in a FactoryBean implementation, it is the factory bean itself that is scoped, not the object returned from getObject().

7.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement the Spring InitializingBean and DisposableBean interfaces. The container calls afterPropertiesSet() for the former and destroy() for the latter to allow the bean to perform certain actions upon initialization and destruction of your beans.

Tip

The JSR-250 @PostConstruct and @PreDestroy annotations are generally considered best practice for receiving lifecycle callbacks in a modern Spring application. Using these annotations means that your beans are not coupled to Spring specific interfaces. For details see the section called "@PostConstruct and @PreDestroy".

If you don't want to use the JSR-250 annotations but you are still looking to remove coupling consider the use of init-method and destroy-method object definition metadata.

Internally, the Spring Framework uses BeanPostProcessor implementations to process any callback interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle

behavior Spring does not offer out-of-the-box, you can implement a BeanPostProcessor yourself. For more information, see Section 7.8, "Container Extension Points".

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement the Lifecycle interface so that those objects can participate in the startup and shutdown process as driven by the container's own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization callbacks

The org.springframework.beans.factory.InitializingBean interface allows a bean to perform initialization work after all necessary properties on the bean have been set by the container. The InitializingBean interface specifies a single method:

```
void afterPropertiesSet() throws Exception;
```

It is recommended that you do not use the InitializingBean interface because it unnecessarily couples the code to Spring. Alternatively, use the <code>@PostConstruct</code> annotation or specify a POJO initialization method. In the case of XML-based configuration metadata, you use the <code>init-method</code> attribute to specify the name of the method that has a void no-argument signature. With Java config, you use the <code>initMethod</code> attribute of <code>@Bean</code>, see the section called "Receiving lifecycle callbacks". For example, the following:

```
<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>

public class ExampleBean {
    public void init() {
        // do some initialization work
    }
}
```

...is exactly the same as...

```
class anotherExampleBean implements InitializingBean {
   public void afterPropertiesSet() {
        // do some initialization work
   }
}
```

but does not couple the code to Spring.

Destruction callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface allows a bean to get a callback when the container containing it is destroyed. The DisposableBean interface specifies a single method:

```
void destroy() throws Exception;
```

It is recommended that you do not use the <code>DisposableBean</code> callback interface because it unnecessarily couples the code to Spring. Alternatively, use the <code>@PreDestroy</code> annotation or specify a generic method that is supported by bean definitions. With XML-based configuration metadata, you

use the destroy-method attribute on the <bean/>. With Java config, you use the destroyMethod attribute of @Bean, see the section called "Receiving lifecycle callbacks". For example, the following definition:

```
clean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>
public class ExampleBean {
    public void cleanup() {
        // do some destruction work (like releasing pooled connections)
    }
}
```

is exactly the same as:

```
chean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements DisposableBean {
    public void destroy() {
        // do some destruction work (like releasing pooled connections)
    }
}
```

but does not couple the code to Spring.

Tip

The destroy-method attribute of a <bean> element can be assigned a special (inferred) value which instructs Spring to automatically detect a public close or shutdown method on the specific bean class (any class that implements java.lang.AutoCloseable or java.io.Closeable would therefore match). This special (inferred) value can also be set on the default-destroy-method attribute of a <beans> element to apply this behavior to an entire set of beans (see the section called "Default initialization and destroy methods"). Note that this is the default behavior with Java config.

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific InitializingBean and DisposableBean callback interfaces, you typically write methods with names such as init(), initialize(), dispose(), and so on. Ideally, the names of such lifecycle callback methods are standardized across a project so that all developers use the same method names and ensure consistency.

You can configure the Spring container to look for named initialization and destroy callback method names on *every* bean. This means that you, as an application developer, can write your application classes and use an initialization callback called <code>init()</code>, without having to configure an <code>init-method="init"</code> attribute with each bean definition. The Spring IoC container calls that method when the bean is created (and in accordance with the standard lifecycle callback contract described previously). This feature also enforces a consistent naming convention for initialization and destroy method callbacks.

Suppose that your initialization callback methods are named init() and destroy callback methods are named destroy(). Your class will resemble the class in the following example.

```
public class DefaultBlogService implements BlogService {
    private BlogDao blogDao;

    public void setBlogDao(BlogDao blogDao) {
        this.blogDao = blogDao;
    }

    // this is (unsurprisingly) the initialization callback method
    public void init() {
        if (this.blogDao == null) {
            throw new IllegalStateException("The [blogDao] property must be set.");
        }
    }
}
```

The presence of the default-init-method attribute on the top-level <beans/> element attribute causes the Spring IoC container to recognize a method called init on beans as the initialization method callback. When a bean is created and assembled, if the bean class has such a method, it is invoked at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the default-destroy-method attribute on the top-level

beans/> element.

Where existing bean classes already have callback methods that are named at variance with the convention, you can override the default by specifying (in XML, that is) the method name using the init-method and destroy-method attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target bean is fully created *first*, *then* an AOP proxy (for example) with its interceptor chain is applied. If the target bean and the proxy are defined separately, your code can even interact with the raw target bean, bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the InitializingBean and DisposableBean callback interfaces; custom init(") and destroy(") methods; and the @PostConstruct and @PreDestroy annotations. You can combine these mechanisms to control a given bean.

Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is configured with a different method name, then each configured method is executed in the order listed below. However, if the same method name is configured - for example, init() for an initialization

method - for more than one of these lifecycle mechanisms, that method is executed once, as explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are called as follows:

- Methods annotated with @PostConstruct
- afterPropertiesSet() as defined by the InitializingBean callback interface
- A custom configured init() method

Destroy methods are called in the same order:

- Methods annotated with @PreDestroy
- destroy() as defined by the DisposableBean callback interface
- A custom configured destroy() method

Startup and shutdown callbacks

The Lifecycle interface defines the essential methods for any object that has its own lifecycle requirements (e.g. starts and stops some background process):

```
public interface Lifecycle {
    void start();
    void stop();
    boolean isRunning();
}
```

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself receives start and stop signals, e.g. for a stop/restart scenario at runtime, it will cascade those calls to all Lifecycle implementations defined within that context. It does this by delegating to a LifecycleProcessor:

```
public interface LifecycleProcessor extends Lifecycle {
    void onRefresh();
    void onClose();
}
```

Notice that the LifecycleProcessor is itself an extension of the Lifecycle interface. It also adds two other methods for reacting to the context being refreshed and closed.

Tip

Note that the regular org.springframework.context.Lifecycle interface is just a plain contract for explicit start/stop notifications and does NOT imply auto-startup at context refresh time. Consider implementing org.springframework.context.SmartLifecycle instead for fine-grained control over auto-startup of a specific bean (including startup phases). Also, please note that stop notifications are not guaranteed to come before destruction: On regular shutdown,

all Lifecycle beans will first receive a stop notification before the general destruction callbacks are being propagated; however, on hot refresh during a context's lifetime or on aborted refresh attempts, only destroy methods will be called.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists between any two objects, the dependent side will start *after* its dependency, and it will stop *before* its dependency. However, at times the direct dependencies are unknown. You may only know that objects of a certain type should start prior to objects of another type. In those cases, the SmartLifecycle interface defines another option, namely the getPhase() method as defined on its super-interface, Phased.

```
public interface Phased {
    int getPhase();
}

public interface SmartLifecycle extends Lifecycle, Phased {
    boolean isAutoStartup();
    void stop(Runnable callback);
}
```

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is followed. Therefore, an object that implements <code>SmartLifecycle</code> and whose <code>getPhase()</code> method returns <code>Integer.MIN_VALUE</code> would be among the first to start and the last to stop. At the other end of the spectrum, a phase value of <code>Integer.MAX_VALUE</code> would indicate that the object should be started last and stopped first (likely because it depends on other processes to be running). When considering the phase value, it's also important to know that the default phase for any "normal" <code>Lifecycle</code> object that does not implement <code>SmartLifecycle</code> would be 0. Therefore, any negative phase value would indicate that an object should start before those standard components (and stop after them), and vice versa for any positive phase value.

As you can see the stop method defined by ${\tt SmartLifecycle}$ accepts a callback. Any implementation must invoke that callback's ${\tt run}()$ method after that implementation's shutdown process is complete. That enables asynchronous shutdown where necessary since the default implementation of the ${\tt LifecycleProcessor}$ interface, ${\tt DefaultLifecycleProcessor}$, will wait up to its timeout value for the group of objects within each phase to invoke that callback. The default per-phase timeout is 30 seconds. You can override the default lifecycle processor instance by defining a bean named "lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the following would be sufficient:

As mentioned, the LifecycleProcessor interface defines callback methods for the refreshing and closing of the context as well. The latter will simply drive the shutdown process as if stop() had been called explicitly, but it will happen when the context is closing. The 'refresh' callback on the other hand enables another feature of SmartLifecycle beans. When the context is refreshed (after all objects have been instantiated and initialized), that callback will be invoked, and at that point the default lifecycle processor will check the boolean value returned by each SmartLifecycle object's

isAutoStartup() method. If "true", then that object will be started at that point rather than waiting for an explicit invocation of the context's or its own start() method (unlike the context refresh, the context start does not happen automatically for a standard context implementation). The "phase" value as well as any "depends-on" relationships will determine the startup order in the same way as described above.

Shutting down the Spring IoC container gracefully in non-web applications

Note

This section applies only to non-web applications. Spring's web-based ApplicationContext implementations already have code in place to shut down the Spring IoC container gracefully when the relevant web application is shut down.

If you are using Spring's IoC container in a non-web application environment; for example, in a rich client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful shutdown and calls the relevant destroy methods on your singleton beans so that all resources are released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the registerShutdownHook() method that is declared on the ConfigurableApplicationContext interface:

ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the org.springframework.context.ApplicationContextAware interface, the instance is provided with a reference to that ApplicationContext.

```
public interface ApplicationContextAware {
    void setApplicationContext(ApplicationContext applicationContext) throws BeansException;
}
```

Thus beans can manipulate programmatically the ApplicationContext that created them, through the ApplicationContext interface, or by casting the reference to a known subclass of this interface, such as ConfigurableApplicationContext, which exposes additional functionality. One use would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in general you should avoid it, because it couples the code to Spring and does not follow the Inversion of Control style, where collaborators are provided to beans as properties. Other methods of the

ApplicationContext provide access to file resources, publishing application events, and accessing a MessageSource. These additional features are described in Section 7.15, "Additional Capabilities of the ApplicationContext"

As of Spring 2.5, autowiring is another alternative to obtain reference to the ApplicationContext. The "traditional" constructor and byType autowiring modes (as described in the section called "Autowiring collaborators") can provide a dependency of type ApplicationContext for a constructor argument or setter method parameter, respectively. For more flexibility, including the ability to autowire fields and multiple parameter methods, use the new annotation-based autowiring features. If you do, the ApplicationContext is autowired into a field, constructor argument, or method parameter that is expecting the ApplicationContext type if the field, constructor, or method in question carries the @Autowired annotation. For more information, see the section called "@Autowired".

When an ApplicationContext creates a class that implements the org.springframework.beans.factory.BeanNameAware interface, the class is provided with a reference to the name defined in its associated object definition.

```
public interface BeanNameAware {
    void setBeanName(string name) throws BeansException;
}
```

The callback is invoked after population of normal bean properties but before an initialization callback such as InitializingBean afterPropertiesSet or a custom init-method.

Other Aware interfaces

Besides ApplicationContextAware and BeanNameAware discussed above, Spring offers a range of Aware interfaces that allow beans to indicate to the container that they require a certain *infrastructure* dependency. The most important Aware interfaces are summarized below - as a general rule, the name is a good indication of the dependency type:

Table 7.4. Aware interfaces

Name	Injected Dependency	Explained in
ApplicationContextAware	Declaring ApplicationContext	the section called "ApplicationContextAware and BeanNameAware"
ApplicationEventPublishe:	rEventepublisher of the enclosing ApplicationContext	Section 7.15, "Additional Capabilities of the ApplicationContext"
BeanClassLoaderAware	Class loader used to load the bean classes.	the section called "Instantiating beans"
BeanFactoryAware	Declaring BeanFactory	the section called "ApplicationContextAware and BeanNameAware"
BeanNameAware	Name of the declaring bean	the section called "ApplicationContextAware and BeanNameAware"

Name	Injected Dependency	Explained in
BootstrapContextAware	Resource adapter BootstrapContext the container runs in. Typically available only in JCA aware ApplicationContexts	Chapter 32, JCA CCI
LoadTimeWeaverAware	Defined weaver for processing class definition at load time	the section called "Load-time weaving with AspectJ in the Spring Framework"
MessageSourceAware	Configured strategy for resolving messages (with support for parametrization and internationalization)	Section 7.15, "Additional Capabilities of the ApplicationContext"
NotificationPublisherAwa	rSpring JMX notification publisher	Section 31.7, "Notifications"
PortletConfigAware	Current PortletConfig the container runs in. Valid only in a web-aware Spring ApplicationContext	Chapter 25, Portlet MVC Framework
PortletContextAware	Current PortletContext the container runs in. Valid only in a web-aware Spring ApplicationContext	Chapter 25, Portlet MVC Framework
ResourceLoaderAware	Configured loader for low-level access to resources	Chapter 8, Resources
ServletConfigAware	Current ServletConfig the container runs in. Valid only in a web-aware Spring ApplicationContext	Chapter 22, Web MVC framework
ServletContextAware	Current ServletContext the container runs in. Valid only in a web-aware Spring ApplicationContext	Chapter 22, Web MVC framework

Note again that usage of these interfaces ties your code to the Spring API and does not follow the Inversion of Control style. As such, they are recommended for infrastructure beans that require programmatic access to the container.

7.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments, property values, and container-specific information such as initialization method, static factory method name, and so on. A child bean definition inherits configuration data from a parent definition. The child definition can override some values, or add others, as needed. Using parent and child bean definitions can save a lot of typing. Effectively, this is a form of templating.