

Noive Bayes (NB)

- Naive bayes aims to simplify the estimation problem by assuming that the diff input features (the diff elements of the input vector) are conditionally independent.

I.e. P(XIC) = d TTP(XIC)

With this assumption, rather than estimating I d-dimension density, we estimate d I-dimension densities. This is important be each ID Gaussian only how 2 parameters (mean and variance) both of which are scalars. Hence, the model has 2d unknowns. In the Gaussian case, the NB model replaces the dxd covariance matrix by a diagonal matrix. The ith entry is the variance of X:1c.

Discrete Input Features

- In discrete NB, the inputs are a discrete set of features.

- Right now, Well assume that each input either has or does not have each feature.
- Fach data vector is described by a list of discrete features (I.e. $F_{1:d} = CF_{1}, ..., F_{d}J$) and for simplicity, we'll assume that each feature is binary (I.e. $f_{1} = \{0,13\}$).

	- Consider this: We want to solve P(F, Fz, F3/C=1).
	Without using naive bayes, we would get
Note: -	> P(F1, F2, F3/C=1) = P(F1/F2, F3, C=1) - P(F2/F3, C=1) - P(F3/C=1)
This formula	
iomes from	For P(F3/C=1), Since we know F3 = 20,13,
the chain	we can model it with I number.
rule.	
	For P(Fz1F3, C=1), F2 depends on F3 and we
	know that F3 has 2 possible values, we need to
	model 2 diff distributions.
	For PCF, IF2, F3, C=D, we need to model 4
	diff distributions.
	For d-dimensional binary inputs, there are $d(2^d-1)$ parameters one needs to learn.
	d (2d-1) parameters one needs to learn.
	With Naive Bayes, only a parameters have
	to be learned.
	This is because P(Fi.d 1 C=j) = TTP(F;1C=j)
	- Continuing with NB's way: - Let $a_{ij} = P(F_{i=1} C_{=j})$
	$- \text{ Let } Q_{ij} = P(F_i = I C = j)$
	- Let by = P(c=j) — Prior
	$-P(C=j F_{1:d}) = P(F_{1:d} C=j)P(C=j)$
	$P(F_1; b)$
	$= \frac{\left(\pi_i P(F_i C=i) \right) \left(P(C=i) \right)}{\sum_{i=1}^{n} P(F_i C=i)}$
	$\sum_{k=1}^{\infty} P(F_{1:d}, C=k)$ $(TT = 0.00 TC (1-0.00) = 1.00$
	= (Ti:Fi=1 air Ti:Fi=0 (1-air)) bi = \(\tau_{i:Fi=1} \air \tau_{i:Fi=0} \tau_{i:Fi=0} \tau_{i-air} \tau_{i} \) be
	Clair (11: Fia) and 11: Fiao Ci are) be

- If we wish to find the class with max posterior prob, we only need to compute the numerator.
 - The computation shown on the prev page can lead to underflow.

 To avoid these issues, it's safer to perform the computations in the log-domain:

$$d_{j} = \left(\sum_{i \in F_{i}=1}^{n} \ln \alpha_{ij} + \sum_{i \in F_{i}=0}^{n} \ln \alpha_{ij} \right) + \ln b_{i}$$

Y = min d;

- Now, consider we have N training vectors Fk, each, associated class label ck.

with an

Suppose there are N; training examples of class; and N examples total. Then

bj = Nj bj = Ni + B, where B is some constant

N + KB and K is the num of classes

regularization

Suppose that class j has Nij examples for which the ith feature is 1. Then

aij - Nij - Dij - Nij + 2d, for some small value d

Nij + 2d,

Regularization

- E.g. Suppose we observe N examples of class o and M examples of class 1, what is the probability of observing class o?

Soln: $TT \ P(C_i = j) = \left(TT \ P(C_i = 0)\right) \left(TT \ P(C_i = 1)\right)$ $= b_0^N \cdot b_1^M$ $= b_0^N \cdot (1 - b_0)^M$

L(60) = NIn(60) + MIn(1-60)

2L = N M =0 2b0 b0 1-b0

O = N(1-bo) - Mbo = N - Nbo - Mbo -N = -Nbo - Mbo N = Nbo + Mbo bo = N

N+M

6	
Pros and Cons:	
1. Pros	
- Works fast due to the conditional independence assumptions.	
- Works well with high-dimensional data	
2. Cons	
- The assumptions may not be easy to satisfy.	