Professor: Alexander Schmidt Tutor: Arne Kuhrs

Aufgabe 1

Ist α eine Nullstelle von f, so auch $-\alpha$, da nur gerade Potenzen vorkommen. Daher gilt

$$X^4 - 4X^2 + 9 = (X^2 - \alpha^2)(X^2 - \beta^2) = X^4 - (\alpha^2 + \beta^2)X^2 + \alpha^2\beta^2$$

für zwei Nullstellen α und β . Durch Koeffizientenvergleich folgt $\beta = \frac{3}{\alpha}$. Durch Einsetzen verifiziert man, dass $\alpha = \sqrt{2 + \sqrt{-5}}$ eine Nullstelle von f ist. Wegen $\alpha \notin \mathbb{R}$ besitzt das Polynom keine Nullstelle in \mathbb{Q} . Um zu zeigen, dass f irreduzibel ist, wählen wir den Ansatz

$$X^{4} - 4X^{2} + 9 = (X^{2} + aX + bX^{2})(X^{2} + cX + d) = X^{4} + (a + c)X^{3} + (b + d + ac)X^{2} + (ad + bc)X + bd$$

Daraus folgt c=-a und a(d-b)=0. a=0 führt auf b+d=-4, bd=9; hat keine Lösung in \mathbb{Z} . $a\neq 0$ führt auf $d=b \implies b^2=9 \implies b=\pm 3$ und $2b-a^2=-4 \implies a^2=2b+4=10$ oder 2, das sind aber keine Quadrate in \mathbb{Z} , Widerspruch. Daher ist f irreduzibel. Die Menge der Nullstellen ist dann gegeben durch $\{\pm\alpha,\pm\frac{3}{\alpha}\}$. Insbesondere ist ein Zerfällungskörper gegeben durch $L:=\mathbb{Q}(\alpha)$. Daf irreduzibel ist, ist f das Minimalpolynom zu α und die Erweiterung hat somit Grad 4. Daher ist $\sigma_i\in \mathrm{Gal}(L/Q)$ eindeutig bestimmt durch $\sigma(\alpha)$. Daher gilt

$$G := \operatorname{Gal}(L/\mathbb{Q}) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$$

mit $\sigma_1: \alpha \mapsto \alpha$, $\sigma_2: \alpha \mapsto -\alpha$, $\sigma_3: \alpha \mapsto \frac{3}{\alpha}$, $\sigma_4: \alpha \mapsto -\frac{3}{\alpha}$. Es gilt $\sigma_1 = id$ und $\sigma_2 \circ \sigma_3 = \sigma_4 = \sigma_3 \circ \sigma_2$, $\sigma_2 \circ \sigma_4 = \sigma_3 = \sigma_4 \circ \sigma_2$ und $\sigma_3 \circ \sigma_4 = \sigma_2 = \sigma_4 \circ \sigma_3$. G ist also abelsch. Außerdem gilt $\sigma_2^2 = \sigma_3^2 = \sigma_4^2 = id$. Daher ist die Abbildung

$$G \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},$$

$$\sigma_1 \mapsto (0,0)$$

$$\sigma_2 \mapsto (1,0)$$

$$\sigma_3 \mapsto (0,1)$$

$$\sigma_4 \mapsto (1,1)$$

ein Gruppenisomorphismus. Alle echten Untergruppen von $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ haben Ordnung 2. Die echten Untergruppen von G sind daher

$$U_1 := {\sigma_1, \sigma_2}, U_2 := {\sigma_1, \sigma_3}, U_3 := {\sigma_1, \sigma_4}$$

- . Daher erhalten wir drei Zwischenkörper.
 - 1. Der erste Zwischenkörper ist gegeben durch

$$K_1 = L^{U_1} = \{x \in L : \sigma_2(x) = x\}$$

Es gilt $\sigma_2(\alpha^2) = \sigma_2(\alpha)\sigma_2(\alpha) = \alpha^2$. Damit ist $\mathbb{Q}(\alpha^2) \subset K_1$. Das Minimalpolynom von α^2 geht aus dem von α durch $X^2 \mapsto X$ hervor und ist folglich gegeben durch $X^2 - 4X + 9$. Damit gilt $[\mathbb{Q}(\alpha^2):\mathbb{Q}] = 2$ und daher $K_1 = \mathbb{Q}(\alpha^2)$.

2. Der zweite Zwischenkörper ist gegeben durch

$$K_2 = L^{U_2} = \{x \in L : \sigma_3(x) = x\}$$

Es gilt $\sigma_3(\alpha + 3/\alpha) = \sigma_4(\alpha) + \sigma_4(3/\alpha) = 3/\alpha + \alpha$. Damit ist $\mathbb{Q}(\alpha + 3/\alpha) \subset K_2$. $X^2 - 10$ ist offensichtlich irreduzibel über \mathbb{Q} . Wegen

$$(\alpha + 3/\alpha)^2 = \alpha^2 + 6 + 9/\alpha^2$$

$$= 2 + \sqrt{-5} + 6 + \frac{9}{2 + \sqrt{-5}}$$

$$= 8 + \sqrt{-5} + \frac{9(2 - \sqrt{-5})}{(2 + \sqrt{-5})(2 - \sqrt{-5})}$$

$$= 8 + \sqrt{-5} + \frac{9(2 - \sqrt{-5})}{2^2 + 5} = 10$$

gilt $[\mathbb{Q}(\alpha+3/\alpha):\mathbb{Q}]=2$ und daher $K_2=\mathbb{Q}(\alpha+3/\alpha)$.

3. Der dritte Zwischenkörper ist gegeben durch

$$K_3 = L^{U_2} = \{x \in L : \sigma_4(x) = x\}$$

Es gilt $\sigma_4(\alpha - 3/\alpha) = \sigma_4(\alpha) + \sigma_4(-3/\alpha) = -3/\alpha + \alpha$. Damit ist $\mathbb{Q}(\alpha - 3/\alpha) \subset K_3$. $X^2 + 2$ ist offensichtlich irreduzibel über \mathbb{Q} . Wegen

$$(\alpha - 3/\alpha)^2 = \alpha^2 - 6 + 9/\alpha^2$$

$$= 2 + \sqrt{-5} - 6 + \frac{9}{2 + \sqrt{-5}}$$

$$= -4 + \sqrt{-5} + \frac{9(2 - \sqrt{-5})}{(2 + \sqrt{-5})(2 - \sqrt{-5})}$$

$$= -4 + \sqrt{-5} + \frac{9(2 - \sqrt{-5})}{2^2 + 5} = -2$$

gilt $[\mathbb{Q}(\alpha - 3/\alpha): \mathbb{Q}] = 2$ und daher $K_3 = \mathbb{Q}(\alpha - 3/\alpha)$.

Aufgabe 2

- (a) Das Polynom $f = X^4 7$ (irreduzibel nach Eisenstein) hat über $\overline{Q} \subset \mathbb{C}$ die vier Nullstellen $\pm \sqrt[4]{7}$, $\pm i\sqrt[4]{7}$. Insbesondere besitzt es eine Nullstelle in $\mathbb{Q}(\sqrt[4]{7})$. Wegen $\mathbb{Q}(\sqrt[4]{7}) \subset \mathbb{R}$ zerfällt f aber nicht in Linearfaktoren. Daher ist die Erweiterung nicht normal und insbesondere nicht galoissch.
- (b) f ist irreduzibel nach Eisenstein. Daher ist f als Polynom über $\mathbb Q$ separabel. Also ist $L/\mathbb Q$ eine endliche Galoiserweiterung und nach Korollar 4.20 kann $\operatorname{Gal}(L/\mathbb Q)$ als Untergruppe von $\mathfrak S(\{\alpha_1,\ldots,\alpha_i\})$ aufgefasst werden, wenn $\{\alpha_1,\ldots,\alpha_i\}$ die Menge der Nullstellen von f bezeichnet. Da f ein Polynom 4. Grades ist gilt $i \leq 4$. Die Untergruppenordnung teilt die Ordnung der Gruppe, wegen $\#\mathfrak S(\{\alpha_1,\ldots,\alpha_4\}) = 24|24,\#\mathfrak S(\{\alpha_1,\ldots,\alpha_3\}) = 6|24$ und $\#\mathfrak S(\{\alpha_1,\alpha_2\}) = 2|24$ gilt auch $[L\colon\mathbb Q] = \#\operatorname{Gal}(L/\mathbb Q)|24$.
- (c) Die Diskriminante von X^3-2 ist gegeben durch $-27\cdot b^2=-108\neq x^2\forall x\in\mathbb{Q}$. Daher ist $\mathrm{Gal}(L/K)\cong\mathfrak{S}_3$ und damit nicht zyklisch.

- (d) Für die Galoisgruppe G eines Polynoms dritten Grades gilt entweder $G \cong \mathfrak{S}_3$ oder $G \cong \mathfrak{A}_3$. Im zweiten Fall hat die Gruppe nur 3 Elemente und somit weniger als 4 echte Untergruppen. Echte Untergruppen von \mathfrak{S}_3 haben die Ordnung 2 oder 3, da sie die Gruppenordnung teilen müssen. Da jede Transposition selbstinvers sind, erhalten wir durch $\{e,(12)\},\{3,(23)\},\{e,(31)\}$ drei Untergruppen. Außerdem ist \mathfrak{A}_3 ebenfalls eine Untergruppe von \mathfrak{S}_3 . Es gilt nun $(123)^2 = (132)$ und $(132)^2 = (123)$. Zu jedem Element $\pi \in \mathfrak{A}_3$ existieren zwei Transpositionen τ_1, τ_2 mit $\tau_1 \circ \tau_2 = \pi$. Genauso gilt $\forall tau_1 \neq \tau_2 \in \mathfrak{S}_3 \setminus \mathfrak{A}_3 \colon \tau_1\tau_2 \in \mathfrak{A}_3 \setminus \{e\}$. Eine Transposition τ und ein Element $\pi \in \mathfrak{A}_3$ erzeugen daher stets eine weitere Transposition, da $\exists \tau' \colon \pi = \tau'\tau$ und daher $\pi\tau = \tau'\tau\tau = \tau'$. Folglich kann es keine weiteren Untergruppen der Ordnung zwei oder drei geben. Die Anzahl der echten Untergruppen ist also durch 4 nach oben beschränkt. Nach dem Hauptsatz der Galoistheorie ist damit die Anzahl der echten Zwischenkörper auch kleiner als 4.
- (e) Sei $K = \mathbb{F}_5$ und sei α eine Nullstelle von $X^4 a$. Dann ist wegen $(2^i \alpha)^4 = (2^4)^i \alpha^4 = a$ die Menge der Nullstellen gerade $\{2^i \alpha, i \in \{1, 2, 3, 4\}\}$, da diese Menge bereits vier verschiedene Nullstellen enthält. Der Zerfällungskörper von $X^4 a$ ist daher gegeben durch $:= \mathbb{F}_5(\alpha)$ und jedes $\sigma \in \text{Gal}(L/K)$ ist eindeutig bestimmt durch $\sigma(\alpha)$. Daher gilt

$$Gal(L/K) = {\sigma_1, \ldots, \sigma_4}$$

mit $\sigma_i : \alpha \mapsto 2^i \alpha$. Also ist Gal(L/K) zyklisch mit Erzeuger σ_1 :

$$\sigma_i(\alpha) = 2^i \alpha = (\sigma_1)^i(\alpha).$$

Also ist die Aussage falsch.

(f) Ist $[L\colon K]<\infty$, so ist die Menge aller Untergruppen von $\mathrm{Gal}(L/K)$ ist eine Teilmenge der Potenzmenge, deren Kardinalität durch $2^{\#\operatorname{Gal}(L/K)}=2^{[L\colon K]}$ gegeben ist. Nach dem Hauptsatz der Galoistheorie damit die Anzahl der Zwischenkörper auch höchstens $2^{[L\colon K]}$. Ist L/K eine unendliche Erweiterung, so stellt $2^{[L\colon K]}=\infty$ keine Schranke dar und die Aussage ist ebenfalls wahr.

Aufgabe 3

(a) Wir betrachten O.B.d.A. den algebraischen Abschluss von $\mathbb Q$ in den komplexen Zahlen, $\overline{Q} \subset \mathbb C$. Nach Analysis 2 hat die Gleichung $\zeta^n=1$ genau die Lösungen $e^{\frac{2\pi ik}{n}}$ mit $1\leq k\leq n$. Wegen $e^{\frac{2\pi ik}{n}}=(e^{\frac{2\pi i}{n}})^k$ ist $e^{\frac{2\pi i}{n}}$ eine primitive Einheitswurzel. Setze daher $\zeta_n=e^{\frac{2\pi i}{n}}$. Dann erhalten wir einen Gruppenisomorphismus

$$\mathbb{Z}/n\mathbb{Z} \to \mu_n$$
$$k \mapsto \zeta_n^k = e^{\frac{2\pi i k}{n}}$$

Es gilt $\overline{e^{\frac{2\pi ik}{n}}} = e^{\frac{2\pi i(-k)}{n}} = e^{\frac{2\pi i(n-k)}{n}}$. Also induziert die komplexe Konjugation eine Permutation π_C von $\mathbb{Z}/N\mathbb{Z}$ via $\zeta_n^k \mapsto \zeta_n^{\pi_C(k)}$ mit $\pi_C(n) = n$ und $\pi_C(k) = \pi_C(n-k) \forall k \in \{1, \dots, n-1\}$.

(b) Da L gerade der Zerfällungskörper von X^n-1 über \mathbb{Q} ist, kann die Galoisgruppe $\operatorname{Gal}(L/L\cap\mathbb{R})$ mit einer Untergruppe der \mathfrak{S}_n identifiziert werden, wobei $\pi\in\mathfrak{S}_n$ auf μ_n via $\zeta_n^k\mapsto\zeta_n^{\pi(k)}$ operiert.

Außerdem gilt

$$\begin{split} \zeta_n^k + \zeta_n^{-k} &= e^{\frac{2\pi i k}{n}} + e^{\frac{2\pi i (n-k)}{n}} \\ &= \cos(\frac{2\pi k}{n}) + i\sin(\frac{2\pi k}{n}) + \cos(\frac{2\pi (-k)}{n}) + i\sin(\frac{2\pi (-k)}{n}) \\ &= 2\cos(\frac{2\pi k}{n}) \in \mathbb{R} \end{split}$$

Sei also $\sigma \in \operatorname{Gal}(L/L \cap \mathbb{R})$. Dann muss gelten

$$\sigma(\zeta_n + \zeta_n^{-1}) = \zeta_n + \zeta_n^{-1}$$
$$\sigma(\zeta_n) + \sigma(\zeta_n)^{-1} = \zeta_n + \zeta_n^{-1}$$

Sei π die zu σ gehörige Permutation

$$\zeta_n^{\pi(1)} + \zeta_n^{-\pi(1)} = \zeta_n + \zeta_n^{-1}$$
$$2\cos(\frac{2\pi\pi(1)}{n}) = 2\cos(\frac{2\pi}{n})$$

Für $\pi(1) \in \{1, \dots, n\}$ gibt es hier aufgrund der Symmetrie von $\cos(x)$ bezüglich x=1 zwei Möglichkeiten

$$\pi(1) \in \{1, n-1\}$$

Da es sich bei ζ_n um eine primitive Einheitswurzel handelt gilt $L = \mathbb{Q}(\zeta_n)$ und π ist durch $\pi(1)$ bereits eindeutig bestimmt, es gilt dann $\zeta_n^{\pi(k)} = \sigma(\zeta_n^k) = \sigma(\zeta_n^k)^k = \zeta_n^{k\pi(1)}$. Wegen $\pi_C(1) = n-1$ handelt es sich bei einem Automorphismus $\sigma \in \operatorname{Gal}(L/L \cap \mathbb{R})$ entweder um die Identität oder die komplexe Konjugation, es gilt also

$$Gal(L/L \cap \mathbb{R}) = \{id, C\},\$$

wobei C die komplexe Konjugation bezeichne. Daher erhalten wir $[L:L\cap\mathbb{R}]=\#\operatorname{Gal}(L/L\cap\mathbb{R})=2$. Sei $\alpha:=\frac{\zeta_n+\zeta_n^{-1}}{2}=\cos(\frac{2\pi}{n})$. Dann gilt $\zeta_n=\cos(\frac{2\pi}{n})+i\sin(\frac{2\pi}{n})=\alpha+i\sin(\frac{2\pi}{n})$. Es gilt

$$(\zeta_n - \alpha)^2 = -\sin^2(\frac{2\pi}{n})$$
$$= -(1 - \cos^2(\frac{2\pi}{n}))$$
$$= \alpha^2 - 1$$

Daher gilt

$$(\zeta_n - \alpha)^2 - \alpha^2 + 1 = 0,$$

es folgt $[L: \mathbb{Q}(\zeta_n + \zeta_n^{-1})] = [\mathbb{Q}(\zeta_n): \mathbb{Q}(\alpha)] \leq 2$. Wegen $\alpha \in L \cap \mathbb{R}$ ist aber $\mathbb{Q}(\alpha) \subset L \cap \mathbb{R}$. Also gilt $[\mathbb{Q}(\zeta_n): \mathbb{Q}(\alpha)] \geq [L: L \cap \mathbb{R}] = 2$ und insgesamt $[L: \mathbb{Q}(\alpha)] = 2$. Daher ist auch $[L \cap \mathbb{R}: \mathbb{Q}] = [\mathbb{Q}(\alpha): \mathbb{Q}]$ und, weil es sich um endliche Erweiterungen handelt, ist $L \cap \mathbb{R}$ isomorph zu $\mathbb{Q}(\alpha)$ als \mathbb{Q} -VR. Wegen $\mathbb{Q}(\alpha) \subset L \cap \mathbb{R}$ ist bereits $L \cap \mathbb{R} = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$.

Aufgabe 4

(a) Nach der universellen Eigenschaft des Polynomrings existiert genau ein Ringhomomorphismus

$$\sigma_a' \colon K[Y] \to L$$

$$Y \mapsto Y + a$$

$$k \mapsto k \forall k \in K$$

Diese Abbildung ist als Isomorphismus auf den Unterring $K[Y] \subset K(Y) = L$ injektiv. Nach der universellen Eigenschaft des Quotientenkörpers existiert dann genau ein injektiver Körperhomomorphismus $\sigma_a \colon Q(K[Y]) = K(Y) \to L$ mit $\sigma_a|_{K[Y]} = \sigma'_a$.

- (b) Es gilt $\sigma_0 = \text{id}$. Wegen $\sigma_a \circ \sigma_b(Y) = \sigma_a(Y+b) = Y+b+a=Y+(a+b) = \sigma_{a+b}$ erhalten wir einen Isomorphismus $\Phi \colon (K,+) \to (\operatorname{Aut}_K(L),\circ), a \mapsto \sigma_a$. Angenommen, $L^G \neq 0$. Dann existiert ein $0 \neq f \in K(X)$ mit $f(Y+a) = \sigma_a(f(Y)) = f(Y) \forall a \in K$. Wir betrachten die rationale Funktion $h \in L(X)$ mit $h(X) \coloneqq f(Y+X) f(Y)$. Diese rationale Funktion besitzt wegen f(Y+a) = f(Y) unendlich Nullstellen in K. Eine rationale Funktion hat aber nur endlich viele Nullstellen, Widerspruch.
- (c) Angenommen, es gäbe ein Polynom $f \in K[Y]$ mit deg f < p und $f(Y + a) = f(Y) \forall a \in \mathbb{F}_p$. Betrachte dann $h \in L[X]$ mit h(X) := f(Y+X) - f(Y). Es gilt deg h < p wegen deg f < p, allerdings besitzt h p Nullstellen, nämlich alle Elemente von \mathbb{F}_p , Widerspruch. Das Polynom $f(Y) = Y^p - Y$ erfüllt $f(Y + a) = (Y + a)^p - (Y + a) = Y^p + a^p - a - Y = Y^p - Y = Y^p - Y$ f(Y) Angenommen, es gäbe noch ein weiteres normiertes Polynom f' vom Grad p mit dieser Eigenschaft, dann folgte (f-f')(Y+a) = f(Y+a) - f'(Y+a) = (f-f')(Y) mit $\deg(f-f') < p$, Widerspruch. Jedes Polynom vom Grad $\leq p$ mit der Eigenschaft $f(Y+a) = f(Y) \forall a \in \mathbb{F}_p$ ist also ein Polynom in Z. Diese Aussage beweisen wir per Induktion für Polynome vom Grad < npfür beliebiges $n \in \mathbb{N}$ (also für alle). Wir nehmen also an, jedes $f \in K[Y]$ mit deg f < kp lässt sich darstellen als Polynom in Z $f(Y) = \hat{f}(Y^p - Y)$. Sei also $g \in K[Y]$ mit deg $g \leq (k+1)p$ und g(Y+a)=g(Y). Da K[Y] ein euklidischer Ring ist, erhalten wir $g(Y)=f(Y)\cdot (Y^p-Y)+q(Y)$ mit $\deg f \leq kp$ und $\deg q < p$. Nach Induktionsvoraussetzung erhalten wir daraus g(Y) = $\tilde{f}(Y^p - Y) \cdot (Y^p - Y) + q(Y) = \tilde{g}(Y^p - Y) + q(Y)$. Es gilt allerdings $g(Y + a) = \tilde{g}((Y + a)^p - Y)$ $(Y+a)+q(Y+a)=\tilde{g}(Y^p-Y)+q(Y+a)\stackrel{!}{=}\tilde{g}(Y^p-Y)+q(Y)$. Daraus erhalten wir die Forderung q(Y) = q(Y + a) mit deg q < p, woraus wir sofort q(Y) = 0 folgern können. Es folgt $g(Y) = \tilde{g}(Y^p - Y) = \tilde{g}(Z)$. Nun betrachten wir ein Element $(f(Y), g(Y)) \in K(Y)$. Wir wählen einen Vertreter mit jeweils eindeutiger Zerlegung in irreduzible Polynome $f(Y) = \prod_{i=1}^r f_i(Y)$ und $g(Y) = \prod_{j=1}^r g_j(Y)$ derart, dass $\forall i, j \colon f_i \neq g_j$. Dann gilt $(f(Y+a), g(Y+a)) \sim (f(Y), g(Y))$ genau dann, wenn

$$f(Y+a)g(Y) = f(y)g(Y+a)$$

$$\prod_{i=1}^{r} f_i(Y+a) \prod_{j=1}^{r} g_j(Y) = \prod_{i=1}^{r} f_i(Y) \prod_{j=1}^{r} g_j(Y+a)$$

Durch $Y \mapsto Y + a$ bleibt die Irreduzibilität der Faktoren erhalten. Die Gleichheit gilt, wenn $\prod_{i=1}^r f_i(Y+a) = \prod_{i=1}^r f_i(Y)$ und $\prod_{j=1}^r g_j(Y+a) = \prod_{j=1}^r g_j(Y)$. Ist dies allerdings nicht erfüllt, so müssen i, j existieren mit $f_i(Y+a) = g_j(Y+a)$. Daraus folgt aber sofort $f_i(Y) = g_j(Y)$, was wir ausgeschlossen hatten. Daher erhalten wir f(Y+a) = f(Y) und g(Y+a) = g(Y), somit ist

aber $(f(Y), g(Y)) \sim (\tilde{f}(Z), \tilde{g}(Z))$ für geeignetes \tilde{f}, \tilde{g} . Es gilt also für jedes Element $x \in K(Y)$ mit $\sigma_a(x) = x \forall a \in \mathbb{F}_p$ die Eigenschaft $x \in K(Z)$, was zu zeigen war.