Pose Trainer: Correcting Exercise Posture using Pose Estimation

STEVEN CHEN AND RICHARD R. YANG
DEPARTMENT OF COMPUTER SCIENCE, STANFORD UNIVERSITY
2018

Introduction

Problem Statement: Incorrect exercise posture can lead to injuries and reduce the effectiveness of workouts

Objective: Develop a system that uses pose estimation to correct exercise posture

Methodology

Data Collection: Make a dataset of exercise videos labeled

Pose Estimation Model: Use a deep learning model (OpenPose) to detect keypoints of the human body.

Posture Correction Algorithm: Compare detected keypoints with reference keypoints of correct posture, with both geometric and KNN model. Provide feedback.

Pipeline overview

	Precision	Recall	F1 Score	Examples
Bicep Curl				
Correct	0.80	1.00	0.89	4
Incorrect	1.00	0.67	0.80	3
Avg/Total	0.89	0.86	0.85	7
Front Raise				
Correct	1.00	1.00	1.00	6
Incorrect	1.00	1.00	1.00	6
Avg/Total	1.00	1.00	1.00	12
Shoulder Shrug				
Correct	1.00	0.75	0.86	8
Incorrect	0.71	1.00	0.83	5
Avg/Total	0.89	0.85	0.85	13
Shoulder Press				
Correct	0.67	0.86	0.75	7
Incorrect	0.83	0.62	0.71	8
Avg/Total	0.76	0.73	0.73	15

Table 1. Confusion matrix for our DTW classification model

Results

Conclusion

Summary: The Pose Trainer system effectively uses pose estimation to correct exercise posture, reducing the risk of injury and improving workout effectiveness.

Future Work: Plans to enhance the system by incorporating more exercises, improving real-time performance, and integrating with wearable devices.

Our project

Project: Exercise detection and correction

Objective: Enhance exercise posture correction using MediaPipe, geometric evaluation and machine learning techniques

Team: Aiman Nadeem, Kaia Kolstad

Exercise detection

Objective: Automatically identify the type of exercise being performed.

Model: Swin3d base, pretrained Transformer on Kinetics-400 dataset. Finetuned on labeled exercise data.

Performance: Achieved 96.30% test accuracy

Exercise evaluation

Exercises Covered: Squat, Push Up, Pull Up, Plank, Russian Twist

Geometric Model: Defines angles and motion criteria for correct execution.

K-Nearest Neighbor Model: Used for verifying correctness of push up and squat exercises.

System workflow

- 1. Capture exercise video
- 2. Use MediaPipe to detect keypoints
- 3. Classify exercise type using the detection model
- 4. Verify exercise correctness using geometric and KNN models
- 5. Provide feedback to the user

Demo correct

Demo incorrect

Using device: cpu

No exercise type provided. Predicting exercise type...

Predicted action: pushup

Geometric evaluation: Incorrect form. Elbow angle too large. Go further down.

Minimum angle: 100.45°. Minimum angle should be between: 5° and 60°

KNN evaluation: Incorrect form.

Limitations

Small datasets

Small number of exercises

Exercise detection not robust

Conclusion

Summary:

Successfully developed a system using MediaPipe, geometric models and machine learning to correct exercise posture and classify exercises.

Future Work:

Expand to more exercises

Expand to repetition counter

Improve real-time performance

Develop program into an app/ better user interface

References

- Chen, S., & Yang, R. (2018). Pose Trainer: Correcting exercise posture using pose estimation [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2006.11718
- Mehta, D., Joo, H., Felsen, P., & Sheikh, Y. (2021). Modulated Graph Convolutional Network for 3D Human Pose Estimation [Preprint]. arXiv. https://arxiv.org/abs/2106.13230
- Deane, J. (n.d.). RU AI Team 3 Squat Frames [Dataset]. Kaggle. Retrieved from https://www.kaggle.com/datasets/jeremydea ne/ru-ai-team-3-squat-frames
- Salama, M. A. (n.d.). Pushup [Dataset]. Kaggle. Retrieved from https://www.kaggle.com/datasets/mohamad ashrafsalama/pushup
- Abdillah, H. (n.d.). Workout Fitness Video [Dataset]. Kaggle. Retrieved from https://www.kaggle.com/datasets/hasyimabdillah/workoutfitness-video