Advanced Artificial Intelligence CM4107 (Week 3)

Searching and Planning, Computational Game Theory

Dr. Yann Savoye
School of Computing Science and Digital Media
Robert Gordon University

Module Information

Assessment:

- Coursework (2 components)
 - Component 1: literature review
 - Component 2: paper implementation
- No mid-term or final written exam.

All deadlines are strong:

- It will not be possible to upload material after the deadline.
- No deadline extension will be granted. No excuse.
- Only the content submitted via the Moodle will be mark.

Coursework

Submission of the Coursework Part 1:

Deadline - Monday, October 30th, 2017 23:00:

Activity 1 and Activity 2

- 2-pages written reports (in PDF format)
- 7 slides presentation (in PDF format)
- You should have selected two papers! And started to read them ...

Coursework

How to read a paper? "Three Passes Technique"

- First Pass: problem, key ideas

- **Second Pass**: high-level pipeline

- Third Pass : low-level details

Overview

- Part I Computational Game Theory
- Part II Game Formalization and Solving Process
- Part III Motion Planning and Behaviours
- Part IV Searching
- Part V Optimizing
- Part VI Conclusions

Part I – Computational Game Theory

Theory of Games

Game Theory was developed by John Von Neumann in 1944

Nash Equilibrium

One of the fundamental principle of **game theory**, the idea of **equilibrium** was developed by **John Nash**

Games

Beyond what we call 'games', such as chess, poker, soccer, it includes the modelling of conflict

What is a Game?

- A game : an abstract model for interacting self-interested players.
- Abstract = model relevant to the decisions that players make
- Focus on **decision-making** influencing the **outcomes**
- Self-interest: Players assumed to act in their own interests
- Self-interested agents: the game models an optimization process.
- A game consist of a set of players, strategies, payoff.
- **Players:** everyone who has an effect on your earnings
- Strategies: actions available to each player
- Payoffs: Reflect the interests/outcome of the players
- Cooperative Game: players form binding commitments
- Non-cooperative Game: player make decision independently.
- Bayesian games, repeated and stochastic games

What is game theory?

Game Theory provides some interesting lessons in **strategic thinking**.

What is game theory?

- Game Theory = the theory of rational decision in conflicts.
- Mathematics of determining strategies for optimal play.
- Strategies for dealing with competitive situations.
- Anticipation of the adversary's play and respond accordingly.
- Al community = dominant formalism for studying strategic.
- Game theory in various research discipline.
- Game-theoretic mechanisms in Economics.
- Computational Game Theory: address algorithmic issues.
- Optimize an objective function.
- Military battles, business interactions, managerial economics

Brief introduction to Game theory

- Game theory is the mathematical modelling of strategy
- Decision making
- Popularized by movies such as "A Beautiful Mind".
- Interaction between agents to achieve good outcomes
- Strategic interaction among rational (and irrational) agents.
- Social choice theory (i.e., collective decision making)
- Representing game and strategy
- The optimal strategy is based on the minimax concept
- Each player maximizes the minimum values obtainable.
- Designing mechanisms to maximize aggregate happiness.

Key Concepts

Cooperative outcome	An equilibrium in a game where the players agree to cooperate
Dominant strategy	A dominant strategy is one where a single strategy is best for a player regardless of what strategy other players in the game decide to use
Nash equilibrium	Any situation where all participants in a game are pursuing their best possible strategy given the strategies of <u>all</u> of the other participants
Tacit collusion	Where firms undertake actions that are likely to minimize a competitive response, e.g. avoiding price-cutting or not attacking each other's market
Whistle blowing	When one or more agents in a collusive agreement report it to the authorities
Zero sum game	An economic transaction in which whatever is gained by one party must be lost by the other.

Applications of Game Theory

- Economy
- Politics (vote, coalitions)
- Biology (Darwin's principle, evolutionary)
- Anthropology
- War
- Management-labor arbitration
- Philosophy (morality and free-will)
- National Football league
- Trading

Gamification is the process of using **game-based mechanism** to solve problem

Strategies in Game

- Kakutani's fixed point / Minimax / Arrow theorem
- **Dominance** solvability
- Rationalizability
- **Social choice** theory
- **Evolutionary** stable states and sets
- Nash equilibrium
- Strategies are evaluated along the following dimensions

Completeness: always find a solution if exists?

Time complexity: time a solution

Space Complexity: enough memory?

Optimality: is the solution improvable?

Decision Making

Importance of Game Theory in Al

- Game theory and AI is a way to think and model systems.
- Games = the most areas of progress in the Al space
- Lot of games mastered by AI systems using break through algos.
- The success of AI is really tied to the progress on game theory.
- Games are a materialization of game theory.
- Collaborating or competing to accomplish a task can be gamified
- Several aspects of game theory that could help to understand AI
- Helps agents select strategies
- Guarantees about artificially designed mechanisms
- Automated analysis of strategic models

Dominance and Payoff Matrix

- Dominance = when one strategy is better than another strategy
- A strategy is dominant if a player earn a larger payoff than any other.
- A payoff matrix describes the outcome for each player and for each set of strategic choices.

The 3-doors Monty Hall Problem

You're given the choice of three doors: Behind one door is a car; behind the others, goats.

Is it to your advantage to switch your choice?

	DOOR 1	DOOR 2	DOOR 3	RESULT
GAME 1	Auto	Goat	Goat	$Switch \to \textcolor{red}{LOSE}$
GAME 2	Goat	Auto	Goat	Switch $\rightarrow WIN$
GAME 3	Goat	Goat	Auto	Switch $\rightarrow WIN$
GAME 4	Auto	Goat	Goat	Stay → WIN
GAME 5	Goat	Auto	Goat	$Stay \to \textcolor{red}{LOSE}$
GAME 6	Goat	Goat	Auto	Stay → LOSE

the dominance implies that a strategy maximizing the probability of winning the car.

always-switching strategies

Gains of Player 1

I chooses...

0, 0	1, -1	1, -1
-1, 1	0, 0	-1, 1
-1, 1	1, -1	0, 0

Prisoners' Dilemma

The **prisoner's dilemma** is a paradox in which two individuals acting in their own **self-interest pursue** a course of action that does not result in the **ideal outcome**

Nash Equilibrium

EQUILIBRIUM POINTS IN N-PERSON GAMES

By John F. Nash, Jr.*

PRINCETON UNIVERSITY

Communicated by S. Lefschetz, November 16, 1949

One may define a concept of an *n*-person game in which each player has a finite set of pure strategies and in which a definite set of payments to the *n* players corresponds to each *n*-tuple of pure strategies, one strategy being taken for each player. For mixed strategies, which are probability

Nash Theorem: every game with a finite number of players and strategies. has at least one equilibrium (in pure or mixed strategy).

- John Nash = proved the existence of an equilibrium point in noncooperative games
- The defense adjust its pressure until the efficiencies of the offensive are equal

Part II – Game Formalization and Solving Process

Formulating the 8-Puzzle Problem

- **8-puzzle** is a **sliding puzzle** that consists of a frame of **numbered square tiles in random order** with one tile missing.
- **States:** each represented by a 3x3 array of numbers In [0...8], where value 0 is for the empty cell.

$$412$$
 $A = 087$
 635

Problem Space Model

A problem is defined by 5 items:

- Space of states
- Initial state (given)
- Goal State (given)
- Transition model
- Path

A **solution** is a **sequence of actions** leading from the initial state to a goal state.

Representation of States

Adversarial Games

- Exploit the possible strategies of an adversary
- Controllers for characters in competitive games.
- Results goals are in conflict, giving rise to adversarial search problem
- Finds the move that minimizes the maximum utility of an opponent.

Alpha-Beta Pruning

- Minimax: to minimize the maximum loss (defensive)
- **Maximin**: to **maximize** the minimum **gain** (offensive)
- Minimax = Maximin
- Minimax search = **exponential in depth** of the tree.
- **Pruning**: **Eliminate some part** of the tree.

Complexity of Solving Games

Optimal solution of n-Puzzle family is **NP-hard.**

Complexity of Solving Games

- Computational complexity of solving games
- Determine if game theory can be used to model real-world settings
- **Solving** requires the use of **computational power**
- Solution concept is realistic
- Complexity of solving gives a lower bound on complexity

Solution Concepts

Goal Satisfaction

reach the goal node Constraint satisfaction Optimization

optimize(objective fn)
Constraint Optimization

- Existence: Does a solution guarantee that the game is rational?
- Uniqueness: Does the solution is unique?
- Tractability: Is it computationally easy to verify?
- Comprehensibility: Is it easy to understand?
- Invariance: Do a small change in the setup lead to different solution?
- Search and Optimization

Part III – Motion Planning and Behaviors

Motion Planning

- **Motion planning** = breaking down a desired movement task
- Satisfy movement constraints and optimize the movement.
- Motion planning = algorithm about the movement.
- Development of motion planning algorithms for physical robots

Collision and Wall Avoidance

In robotics, **obstacle avoidance** is the task of satisfying some control objective subject to non-intersection or non-collision position constraints.

Flocking/ Steering Behaviors

- Drives the flock in the direction of a target/goal.
- Rules of Flocking Behaviors: Alignment, Cohesion, and Separation
- Steering behaviours control goal-directed motions.

A* Path Finding Algorithm

```
Algorithm 24 A* Algorithm
    Input: A graph
    Output: A path between start and goal nodes
 1: repeat
      Pick n_{best} from O such that f(n_{best}) \leq f(n), \forall n \in O.
      Remove n_{best} from O and add to C.
      If n_{best} = q_{goal}, EXIT.
      Expand n_{best}: for all x \in Star(n_{best}) that are not in C.
      if x \notin O then
6:
         add x to O.
      else if g(n_{best}) + c(n_{best}, x) < g(x) then
         update x's backpointer to point to nbest
      end if
10:
11: until O is empty
```

- Finding The Shortest Path
- Problem of finding a path between two vertices (or nodes) in a graph
- **Cost function:** the sum of edges' weights is minimized.

Part IV – Searching

Binary Search Tree

root

right child of root

a left link

null links

```
a subtree
BinarySearch(list[], min, max, key)
if max <min then
  return false
else
  mid = (max + min) / 2
  if list[mid] >key then
    return BinarySearch(list∏, min, mid-1, key)
  else if list[mid] <key then
    return BinarySearch(list[], mid+1, max, key)
  else
    return mid
  end if
end if
```

Backtracking Search Algorithm

Backtracking search is used for a **depth-first search** that chooses values for one variable at a time and **backtracks** when a variable has no legal values left to assign.

Line Search Methods

Line search method seeks the minimum of a defined nonlinear function by selecting a **reasonable direction vector**

Local vs Global Maxima/Minima

Greedy Search

```
Algorithm Greedy (a,n)
//a[1:n] contains the n inputs.
  solution:=0;//initialize the solution.
  for i:=1 to n do
       x := Select(a);
       if Feasible( solution, x) then
               solution:=Union(solution,x);
  return solution;
```

A *greedy* search follows a heuristic by making the locally optimal choice at each stage with the hope of finding a global optimum

Iterated Local Search

```
 \begin{aligned} \textbf{procedure } \textit{Iterated Local Search} \\ s_0 &\leftarrow \text{GenerateInitialSolution} \\ s^* &\leftarrow \text{LocalSearch}(s_0) \\ \textbf{repeat} \\ s' &\leftarrow \text{Perturbation}(s^*, \textit{history}) \\ s^{*\prime} &\leftarrow \text{LocalSearch}(s') \\ s^* &\leftarrow \text{AcceptanceCriterion}(s^*, s^{*\prime}, \textit{history}) \\ \textbf{until termination condition met} \\ \textbf{end} \end{aligned}
```


- Iterated Local Search = a sequence of locally optimal solutions
- The **modified solution** = **Perturbing** the current local minimum
- The perturbation strength has to be sufficient to lead the trajectory

Hill Climbing

```
function HILL-CLIMBING(problem) returns a solution state
  inputs: problem, a problem
  static: current, a node
          next, a node
  current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
  loop do
      next \leftarrow a highest-valued successor of current
      if Value[next] < Value[current] then return current
      current \leftarrow next
  end
```


- Hill climbing is a local search technique.
- Hill Climbing gets stuck in local minima
- When local minima exist, Hill Climbing is suboptimal.

Stochastic Hill Climbing

```
Input: Iter_{max}, ProblemSize

Output: Current

Current \leftarrow RandomSolution(ProblemSize)

For (iter_i \in Iter_{max})

Candidate \leftarrow RandomNeighbor(Current)

If (Cost(Candidate) \geq Cost(Current))

Current \leftarrow Candidate

End

End

Return (Current)
```

- Random selection overcomes local minima
- The **selection probability** can vary with the steepness.
- Stochastic Hill Climbing is a Local Optimization algorithm
- Does **not require derivatives** of the search space.

Simulated Annealing

emperature

- Simulated Annealing = physics inspired twist on random walk
- Escape local maxima by allowing some bad moves
- Instead of picking the best move, pick one randomly

Genetic Algorithm

Algorithm 1 Pseudocode for a Genetic Algorithm

- 1: $t \leftarrow 0$;
- 2: InitPopulation[P(t)]; {Initializes the population}
- 3: EvalPopulation[P(t)]; {Evaluates the population}
- 4: while not termination do
- 5: $P'(t) \leftarrow \text{Variation}[P(t)]; \{\text{Creation of new solutions}\}$
- 6: EvalPopulation[P'(t)]; {Evaluates the new solutions}
- 7: $P(t+1) \leftarrow \text{ApplyGeneticOperators}[P'(t) \cup Q]; \{\text{Next generation pop.}\}$
- 8: $t \leftarrow t + 1$:
- 9: end while

- Twist on Local Search
- Successor is generated by combining parent states

Initial population

generation

Over!

- A state is represented as a string over an alphabet
- Randomly generated states (population)

Part V – Optimizing

Numerical Optimization

Optimization Approaches

- **Derivative free optimization** refers to problems for which derivative information is unavailable or impractical to obtain.
- **Gradient-based optimization**: method with the search directions defined by the *gradient* of the function at the current point.
- **Stochastic optimization** generate and use random variables or which involve random objective functions or random constraints.
- **Constrained optimization** optimize an objective function with respect to some variables in the presence of constraints.

Numerical Optimization

- Convex : any local minimum is a global minimum
- Non-Convex: bad local minima, stay stuck in a local minima that is not a global minima.

Derivatives and Gradient

- Central Finite Differencing

$$\frac{\partial f}{\partial x_i}(x) \approx \frac{f(x + \epsilon e_i) - f(x - \epsilon e_i)}{2\epsilon}.$$

- **Gradient** methods:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$

- Derivatives may not exist or too costly to compute.

Rosenbrock Function

The **Rosenbrock function** is a **non-convex function**, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for **optimization algorithms**.

Gradient Descent

Performing a line search along the direction of the gradient

Algorithm: Gradient Descent

Input: $Y, \Theta, \mathbf{X}, \alpha$, tolerance, max iterations

Output: Θ

for i = 0; i < max iterations; i + + do

current cost = $Cost(Y, \mathbf{X}, \mathbf{\Theta})$

if current cost < tolerance then

break

else

gradient = $Gradient(Y, \mathbf{X}, \mathbf{\Theta})$

 $\theta_j \leftarrow \theta_j - \alpha \cdot \text{gradient}$

Gradient Descent

Algorithm 3.2 Gradient Descent

- 1: **Input:** Initial point w_0 , gradient norm tolerance ϵ
- 2: Set t = 0
- 3: while $\|\nabla J(w_t)\| \ge \epsilon \ \mathbf{do}$
- 4: $w_{t+1} = w_t \eta_t \nabla J(w_t)$
- 5: t = t + 1
- 6: end while
- 7: Return: w_t

- Decaying **Stepsize**: $\eta_t = 1/\sqrt{t}$.
- Gradient Descent **Update**:

$$w_{t+1} = w_t - \eta_t \nabla J(w_t)$$

Stochastic Gradient Descent

Algorithm 3.8 Stochastic Gradient Descent

- 1: **Input:** Maximum iterations T, batch size k, and τ
- 2: Set t = 0 and $w_0 = 0$
- 3: while t < T do
- 4: Choose a subset of k data points (x_i^t, y_i^t) and compute $\nabla J_t(w_t)$
- 5: Compute stepsize $\eta_t = \sqrt{\frac{\tau}{\tau + t}}$
- 6: $w_{t+1} = w_t \eta_t \nabla J_t(w_t)$
- 7: t = t + 1
- 8: end while
- 9: Return: w_T

- Very noisy estimation of the gradient
- Decaying Stepsize:

$$\eta_t = \frac{\tau}{\tau + t} \qquad \tau > 0$$

Gradient Descent Updates:

$$w_{t+1} = w_t - \eta_t \nabla J(w_t)$$

Linear Least Squares

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\begin{bmatrix} 1 & 2 & -2 & -6 \\ -3 & -1 & -2 & \alpha \\ -4 & 3 & 9 & 16 \\ 5 & 7 & -6 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$$
$$\min_{x} ||Ax - b||_2$$

Data fitting **estimated parameters** to optimize the
fitting. The solution is obtained
by solving the **normal equation**.

$$\nabla f(x) = \mathbf{A}^T \mathbf{A} \mathbf{x} - \mathbf{A}^T \mathbf{b}$$

Constrained optimization is the process of optimizing an objective function in the presence of **constraints** on variables.

Part VI – Conclusions

Game vs Search

- Search:

- Solution is heuristic method for finding goal
- Find (near-)optimal solution
- Evaluation of a cost function

- Game:

- Solution is strategy.
- **Approximate** solution.
- Unpredictable opponent.
- Kind of uncertainty.

Limitation of Game Theory

- Some assumptions are not practical.
- Increasing complexity with the increase of the players.
- Infinite number of strategy.
- Outcome: the gain of on person is the loss of another person.
- Knowledge about strategy: players as the knowledge of strategies.
- Assumption of maximin and minimax
- Assumption that players are equally wise and behave rationally.
- Risk and Certainty of Pay Offs / Rules of game

Lab Activities

- Activity 1: Payoff Matrix and Equilibrium (30 min)
- Activity 2: Stochastic Hill Climbing (30 min)
- Break (no break)
- Activity 3: Backtracking and Search (30 min)
- Activity 4: Gradient Decent (30 min)

References

- [1] Problem Solving, search and Control strategy myreaders.info
- [2] Heuristic Search Andrea Torsello
- [3] Problem Solving and Search Russell and Norvig
- [4] Artificial Intelligence Nancy E. Reed
- [5] Artificial Intelligence Tabu Search Fred Glover
- [6] Numerical Optimization Techniques Leon Bottou
- [7] Search Techniques for Artificial Intelligence Ulle Endriss
- [8] Artificial Intelligence Programming in Prolog Tim Smith
- [9] Recursive Backtracking Marty Stepp and Helene Martin
- [10] Computational Game Theory University of Oxford
- [11] Introduction to Artificial Intelligence State Space Search Gregory Adam
- [12] AI Techniques for Game Programming Team LRN
- [13] Uninformed search methods Doina Precup
- [14] Algorithmic Game theory Noam Nisan
- [15] A tutorial on Tabu Search Hertz et al
- [16] Local search algorithms Peter Ljunglof
- [17] Problem Solving and Search in Artificial Intelligence Basic Concepts Nysret Musliu
- [18] Artificial Intelligence Game Theory
- [19] Solving Problems by Searching Marco Chiarandini Stuart Russell and Peter Norvig
- [20] Graduate AI Computational Game Theory Michael Benisch

References

- [21] Artifical Intelligence For Games Ian Millington and John Funge
- [22] Introduction to AI Techniques: Game Search, Minimax, and Alpha Beta Pruning
- [23] Game Theory University of Notre Dame
- [24] Introduction to informed search The A* search algorithm Penn University
- [25] Least Squares with Examples in Signal Processing Ivan Selesnick
- [26] Linear Least Squares Optimization Kurt Bryan
- [27] Nonlinear Optimization Least Squares Problems Nicolas Borlin
- [28] Adversarial Search and GamePlaying Oliver Schulte
- [29] Numerical Optimization Nocedal and Wright
- [30] Introduction to non-linear optimization Ross A. Lippert
- [31] State Space Representation and Search Prof. Hugh Murrell
- [32] Fundamentals of Artificial Intelligence Alan Smaill
- [33] Iterated Local Search Variable Neighborhood Search Thomas Stutzle
- [34] Backtracking Search Algorithms Peter van Beek
- [35] Tabu Search Fred Glover and Rafael Marti
- [36] Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld...