第二章 物理层(一)

袁华: <u>hyuan@scut.edu.cn</u> 计算机科学与工程学院 广东省计算机网络重点实验室

前情回顾

- □ OSI参考模型分几层,每层的名字是什么?
- □ 每层的主要功能是什么?
- □ 每层的PDU具体是什么名字?
- □ 什么是虚拟通信(对等通信)?
- □ 封装和解封装的过程是怎样的?
- □ 互联网标准: RFC文档

物理层的地位

Comparing TCP/IP with OSI 本书参考模型 TCP/IP Model OSI Model Application 5 Application layer Application Presentation Application Transport layer 4 Layers Session Protocols Transport Transport Network layer Network Internet Data link layer Data Flow **Data Link** Network Lavers Networks Access Physical layer Physical

物理层的主要功能

- □ 物理层的功能
 - 在两个网络设备之间提供透明的比特流传输。
- □ 物理层的四个重要特性
 - 机械特性 (mechanical characteristics)
 - 电气特性 (electrical characteristics)
 - 功能特性 (functional characteristics)
 - 规程特性 (procedural characteristics)

第二章的主要内容

- □ 物理层的主要功能
- □ 关于通信的基本理论(2.1)
 - 奈奎斯特定理(Nyquist's Theorem)
 - 香农定理(Shannon's Theorem)
- □ 有线传输介质(Guided transmission media, 2.2)
- □ 数字调制与多路复用技术(2.5)
- □ 公共交換电话网(Public switched telephone network, 2.6)
 - 调制 (Modulation)
 - 复用(Multiplexing)

本节的主要内容

- 数据通信的主要理论
 - 傅里叶分析(Fourier analysis)
 - 有限带宽的信号
 - 信道的最大数据率
- □ 有限传输介质
 - 磁介质Magnetic media
 - 双绞线Twisted pair
 - 铜缆Coaxial cable
 - 光纤Fiber optics
- □ 数字调制和多路复用
- □ 无线传输(Wireless Transmission)

傅立叶分析 (1/2) P70

- □ 预备概念
 - 当一个信号的所有频率成分是某一个频率的整数倍时,该频率被称为**基本频率**。
 - 信号的<mark>周期</mark>等于基本频率信号的周期。
- □ 傅立叶级数:任何正常周期为T的函数g(t),都可由 (无限个)正弦和余弦函数合成:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

其中,f=1/T是基频, a_n 和 b_n 称为正弦和余弦函数的n 次谐波的振幅。

傅立叶分析(2/2)

- □ 任何信号的传输都可理解为以傅立叶级数的形式 传递。
- □ 对任何的已知数据信号g(t),可求得:

$$a_{n} = \frac{2}{T} \int_{0}^{T} g(t) \sin(2\pi n f t) dt$$

$$b_{n} = \frac{2}{T} \int_{0}^{T} g(t) \cos(2\pi n f t) dt$$

$$c = \frac{2}{T} \int_{0}^{T} g(t) dt$$

有限带宽信号

□ 谐波数越高,传输质量越好!

The 1st harmonic

 $\begin{bmatrix} a_2 \\ 0 \\ -a_2 \end{bmatrix}$

The 2nd harmonic

a₃
0
-a₃
T

Communication & Computer Network Lab of GD

The 3rd harmonic

问题P70

- □ 是不是可以这样说?
 - 只要具有足够的适当的振幅、频率和相位的正 弦波,就可以构造任何一个信号。

注意P71

- □ 如每个傅立叶级数的信号分量被等量衰减,则合成后,振幅有所衰减,基本形状不变。
- □ 但是,所有的传输设施对不同富立叶分量的衰减并不相同, 因此会导致信号**变形(失真)**
- □ 一般来说,从0°f。这一段频段,振幅在传输过程不会明显衰减,f。称为截止频率。(**单位: 赫兹**)
- □ 带宽: 传输过程中振幅不会明显衰减的频率范围
 - 是一种**物理**特性,通常取决于介质材料的构成、厚度、长度等

举个例子: 传输率/数据率和谐波(频率)

□ 如果比特率是 *b* bps, 传输8bit需要的时间 *T*是8/*b*秒,则第一次谐波的频率(基本频 率)是 *b*/8 Hz。

传输率和谐波 (续)

N	Frequency (Hz)	
1	<i>b</i> /8	
2	2b/8	
:	•	
n	nb/8	

$$nb/8 \le f_c$$

 $\Rightarrow n \le f_c/(b/8)$
 $\Rightarrow n \le 8 \text{ fc/ b}$

□ 能够通过的最高谐波次数是f_c/(b/8) 或 8f_/b, 即第1、2。。。。。。(8f_/b)次谐 波可以无衰减地通过。

发现了什么?

传输率、周期、谐波之间的关系P73

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

$$T = \frac{8}{B}(s), f = \frac{B}{8}(hz), n = \frac{24000}{B}(\uparrow)$$

设定话音信道的截止频率为3000HZ

信道的最大数据传输速率P73

- □ 采用技术手段,是否可以无限制地提高介质的传输能力呢?
- □ 两个关于介质最大传输数据速率的经典定律
 - 乃奎斯特定理: 理想信道, 无噪声信道
 - 香农定理:有噪声信道

乃奎斯特(Nyquist)定理 P73

□ 在无噪声信道中,当带宽为B hz,信号电平为V 级,则:

最大传输速率 = $2B \log_2 V(bps)$

其中: V为信号的电平级数,在二进制中,仅为O、

1两级。即:以每秒高于2B次的速率对线路采样 是无意义的,因为高频分量已被滤掉,无法再恢 复。

香农(Shannon)定理 P74

在噪声信道中,带宽为B Hz,信噪比为S/N,则:

最大传输速率 =
$$B\log_2(1+\frac{S}{N})(bps)$$

分贝值 =
$$10\log_{10}\frac{S}{N}(db)$$

例子

- □ 设某条信道的带宽为3000hz, 信噪比为 30db, 求其最大数据传输速率
 - 解:由信噪比30db知: S/N=1000 再根据香农定理:最大传输速率=3000*log₂

(1+1000) = 30000bps

课堂练习1

- □ 有一条4-kHz的无噪声信道,每秒采样 8000次,如果每个采样是16比特,则信道的最大传输速率是 _____kbps
- □ 如果一个二进制信号通过一条4-kHz的噪声信道,噪声是30分贝,则最大传输速率是

kpbs

128kbps, about 40kbps

课堂练习2

- □ 如果一条信道的带宽在 3MHz和4MHz之间, 且信噪比是24分贝,问:
 - (1) 信道的传输能力(最大传输速度)如何?
 - (2) 为了达到这个传输能力,信号级别需要多少级?

 $24dB=10 \times log_{10}S/N$ $S/N\approx 251$

- (1) 信道的传输能力(最大传输速度
 -) 如何?
 - A. 约8Mbps
 - B. 约24Mbps
 - C. 约32Mbps
 - D. 约5Mbps

参考解答

- □ (1) 最大传输速度是多少?
 - \blacksquare B = 4M-3M=1MHz
 - \blacksquare S/N = 251
 - $C = 10^6 \text{xlog}_2(1+251) \approx 8 \text{Mbps}$
- □ (2)信号级别
 - \blacksquare C=2B log₂ V
 - V=16

传输介质

- □ 磁介质, 如磁带
- □ 双绞线
 - □ 非屏蔽双绞线
 - □ 屏蔽双绞线
- □同轴电缆
- □ 电力线
- □ 光纤

磁介质 (2.2.1 P74)

- □ 千万别低估一辆满载磁带的高速飞驰的货车!
 - 如果一个标准磁带携带200G的数据
 - 一个60 x 60 x 60 cm的盒子可以携带1000个这样的磁带,数据量达200TB,或 1600Tb.
 - 联邦快递可在24小时内,将盒子送达全美各地,传输速率可达19Gbps;如果送达到1小时的目标,速率可达400Gbps
 - 运送成本:海运需 \$5000,约3美分1GB。
- □ 所以,为什么我们不选择磁带呢?

- Twist Pair Cable由两根具有绝缘层的铜 导线按一定密度,逆时针方向绞合而成。
- □ 近端串扰 Crosstalk
- □ 绞距 (扭距)

一般地. 绞距越紧 (小). 则抵销效果越 好. 传输性能越好

Unshielded Twisted Pair (UTP)

Speed and throughput: 10 - 100 Mbps

Average \$ per node: Least Expensive

Media and connector size: Small

Maximum cable length: 100m (short)

优点:成本低、

尺寸小、

易于安装

缺点:

易受干扰、

传输距离性能

受到绞距影响

一般地,绞距越紧(小),则抵销效果越好,传输性能越好

STP (Shielded Twisted Pair)

- Speed and throughput: 10 100 Mbps
- Average \$ per node: Moderately Expensive
- Media and connector size: Medium to Large
- Maximum cable length: 100m (short)

ScTP (Screened Twisted Pair)

- Speed and throughput: 10 100 Mbps
- Average \$ per node: Moderately Expensive
- Media and connector size: Medium to Large
- Maximum cable length: 100m (short)

Unshielded twisted-pair (UTP)

- EIA/TIA:电子/电信工业协会定义了5类(CAT1-5):
- **第一类:主要用于传输语音,不用于数据传输;**
- 第二类:主要用于传输语音和低于4Mbps的数据传输,常用于 Token Ring中;
- □ 第三类:主要用于传输语音和低于10Mbps的数据传输,常用于 10BaseT中;
- □ 第四类:主要用于传输语音和低于16Mbps的数据传输, 常用于 Token Ring、10/100BaseT中;
- 第五类;主要用于传输语音和低于100Mbps的数据传输,常用于 100BaseT中;
- 超五类50: 在近端串扰、串扰总和、衰减和信噪比四个指标有较大
- 第六类:非对称纽距

STP和 UTP的比较

- □ 采用UTP的重要原因
 - > 双绞线是国际上几乎所有标准均支持的标准传输介质
 - ▶ 目前的5类线能够满足当前及未来相当长时间的几乎所有应用,其中包括快速以太网、超高速以太网、非同类传送模式(ATM)等高速数据应用
 - ▶ 纵然人类对带宽的需求是没有止境的,但双绞线也同样 推陈出新,第3、4、5、5e、6类,及第7类
 - ▶ 在充分满足用户需求的前提下,采用双绞线可降低系统 成本

采用 STP的优势

- □ 耐克森(原阿尔卡特)综合布线系统 孙晟东 认为: 虽然基于 UTP的解决方案已经很流行,但随着时间和网络应用的改变, STP的优势会越来越明显:
 - ▶ 电子设备广泛使用产生的大量电磁干扰(EMI),单靠 UTP的双绞来平衡有点力不从心
 - > 采用UTP也许会给某些犯罪活动提供机会
 - ➤ 由于绞距长度不可能无限的减小,因此UTP的平衡过滤 功能有限
 - ➤ UTP的平衡特性并不只取决于本身的质量,还受到周围 环境的影响

使用UTP需注意

| Brown | Fix | Street | Stre

568B

直通线 VS. 交叉线

- □ 由中心导体、绝缘材料 层、网状导体、外部绝 缘料4层组成
- 基带同轴电缆: 50Ω,用于数字传输(屏蔽层 为铜);
- 宽带同轴电缆: 75Ω, 用于模拟传输 (屏蔽层 为铝)

- ⑩ 最大传输距离为500米
- 两端安装终结器, 以保证电 缆屏蔽层接地
- 细缆 (0.35cm):
 - 最大传输距离为185米
 - 两头安装BNC头,接在T型连 接器两端

10BASE5 Thicknet Cable

10BASE2 50 Ohm Coax Cable

电力线 P77

- □ 家居中,电源线无处不在
- □方便而恐怖

Multimode Connector

器 第(1/3)

- □ 光导纤维的简称;
- 由极细的玻璃纤维构成, 把光封闭在其中并沿轴 向进行传播;
- □ 优点:重量轻、损耗低、 不受电磁辐射干扰、传 输频带宽、通信容量大
- 🖳 缺点: 昂贵、易断裂

Fiber Optic Cable

Speed and throughput: 100+ Mbps
Average \$ per node: Most Expensive

Media and connector size: Small

Maximum cable length: up to 2 Km

Single mode: One stream of laser-generated light

Multimode: Multiple streams of LED-generated light

广东省计算机网络重点实验室 Communication & Computer Network Lab of GD

光纤原理 P78

□ 全反射

(a)

Father of fiber optic comm.

- □ 高锟,生于1933,江苏金山人
- □ 1957, 任职于ITT, 1960年, ITT的标准电 限公司,开始通信研究。
- □ 1964年,提出以光代电
- □ 1981年,第一个光纤系统问世
- □ 2003年初,高锟证实罹患早期老人痴呆症
- □ 2009年10月6日,瑞典皇家科学院向高锟颁受诺》 物理学奖,成为第八位获得诺贝尔科学奖的

器 第(2/3)

- □ P78单模:以单一模式传输,激光产生的单束光,纤心细、 高带宽、长距离,运行波长为850nm或1300nm;
- □ P78多模: 以多个模式同时传输, LED产生的多束光, 纤心粗、低带宽、短距离, 运行波长为1310nm或1550nm。

器 第(3/3) P80

□ 光缆: 双花、4花、12花、24花、144花

陆地: 地下一米

海底: 近海岸沟里; 深水底部

□ 常用光纤规格:

8.3/125μm单模、 62.5/125μm多模

□ 光纤接口:

SC: 方形

ST: 圆形

SC: 568A标准, 方形, 插入锁定

CCNL 广东省计算机网络重点实验室 Communication & Computer Network Lab of GD

光源的比较P81

□ 光传输系统组成: 光源、传输介质和探测器

P78

ltem	LED	Semiconductor laser
Data rate	Low	High
Fiber type	Multimode	Multimode or single mode
Distance	Short	Long
Lifetime	Long life	Short life
Temperature sensitivity	Minor	Substantial
Cost	Low cost	Expensive

光纤断了怎么办? P80

- □ 光纤连接
 - 光纤连接器(光损失10%~20%)
 - 机械拼接,特殊的套管夹紧(光损失10%)
 - 熔合(几乎无损失)

光纤相对铜线的特性 P81

- □ 带宽高,距离远,损耗低;
- 重量轻;
- □ 无电磁干扰和射频干扰(EMI和RFI),防 窃听;
- □ 端口设备价格高;

怎样选择传输介质?

- □传输速率
- □ 成本要求
- □周围环境
- □介质间的互操作性、相容性
- □最优的性价比

不要求的内容

- □ 2.3无线传输
 - P82-90
- □ 2.4通信卫星
 - P90-97

数字调制和复用 p97

- □ 调制机制使用信号来传输比特
 - Baseband Transmission (基带传输): 直接将数据比特转化为信号
 - Passband Transmission (通带传输): 通过调节信号的振幅、相位或频率来传输比特
 - □ 特点:信号占据了以载波信号频率为中心的一段频 带
- □ 复用技术是让多用户共享同一根信道

基带传输 P98

□ Line codes (线路编码)发送 symbols (样本、符号),一个样本可传送1个或多个比

特

(a) Bit stream

(b) Non-Return to Zero (NRZ)

(c) NRZ Invert (NRZI)

(d) Manchester

(Clock that is XORed with bits)

(e) Bipolar encoding (also Alternate Mark Inversion, AMI)

波特率和比特率P99

- □ 波特率: 每秒钟信号变化的次数
 - 符号率、采样率
- □ 比特率(位传输率、数据传输速率)与波特率的关系
 - $C = B \times log_2 n$
 - 其中: C: 比特率; B: 波特率; n: 调制电平数或线路的状态数,为2的整数倍(P99,有例外)。

时钟恢复 P99

□ 为了正确解码信号,需要足够的变换 (transitions)

1 0 0 0 0 0 0 0 0 0 um, 0? er, 0?

- □策略
 - 曼彻斯特编码,每个比特时间跳变一次,
 - 不归零逆转: 1为有跳变P99
 - 4B/5B: 4比特数据被映射为1个5比特模式P100

NRZ signal of bits

Amplitude shift keying

Frequency shift keying

Phase shift keying

信号星座 P103

□ 把上述调制模式综合起来使用,以便使每个 符号传输更多的比特。

Gray-coding (格雷码) P103

- □ 也叫 循环二进制码
- □ 相邻符号间只差一个比特,从一个状态变到 下一个状态不会引起逻辑混乱。

When 1101 is sent:

Point	Decodes as	Bit errors
Α	1101	0
В	110 <u>0</u>	1
С	1 <u>0</u> 01	1
D	11 <u>1</u> 1	1
Е	<u>0</u> 101	1

复用技术

频分多路复用FDM

☐ Frequency Division Multiplexing

正交FDM: Orthogonal FDM

□ OFDM is an efficient FDM technique used for 802.11, 4G cellular and other communications

波分多路复用WDM P124

□ WDM (Wavelength Division Multiplexing), 本质跟 FDM一样,在光纤上复用信号

时分多路复用TDMP105

- □ Time Division Multiplexing
- □ 在时间上共享信道
 - 用户轮流使用信道
 - 广泛用于 telephone / cellular系统

统计时分多路复用技术

- ☐ Statistic TDM (STDM)
- □ 动态分配信道,不使用信道的用户不分配, 分给有需要的用户使用
- □ 利用率可提高2~4倍
- □ 实现技术较复杂,通常只在高速远程通信中 使用,如ATM
- □ 用户平均使用信道的情况不适用

CDMA及来历

- □扩展频谱技术
- □ 1942年,明星海蒂拉玛和她的 作曲家丈夫拉塞尔 提出
- □ 二战后,被军方封存
- 口直到1985年,高通公司,以此为基础,开发了CDMA,广泛应用于3G

码分多路复用Code Division Multiple AccessP106

- 口 每个用户拥有一个唯一码片序列
 - 码片是正交的,能够同时传输
 - 广泛用于3G网通信

复用技术小结

- \Box FDM
 - OFDM
 - WDM
- \square TDM
 - STDM
- \Box CDMA

课堂案例

- □ 10 个用户使用 TDM 或 FDM 共享8 M bps 链路,使用 TDM的每个用户都要以一个固定的顺序轮流完全占据连接 1 ms (毫秒); 当用户传输一个3000 字节的消息时,哪个方法(TDM还是FDM)具有最低的可能延迟,该延迟时间是多少?
 - A. TDM, 21 ms
 - B. 两种方法有相同的延迟
 - C. FDM, 18 ms
 - D. TDM, 27 ms

解答分析

- □ FDM:每个用户分得带宽8M/10 =800kbps
 - 所以传输3000字节需要时间约: (3000*8) /800kbps=0.03s=30ms
- □ TDM: 每个用户轮发数据量为 8M*1ms=8000b; 发送3000B(24000bit)需 要轮3次,那么需要等待的时间为(3-1)*10=20ms,发送剩下的8000b需要时间1ms,共需21ms。

补充: 物理层部件和设备

被动部件/设备:接线板(patch panel)

插头(plug)

插座 (jack)

电缆(f.g. CAT-5)

主动部件/设备: 转发器(transceiver)

中继器 (repeater)

集线器 (hub)

RJ-45 Front

RJ-45 Jack Front View

RJ-45 Jack Top Down View

照照器 Transceiver

□ 它是Transmitter和Receiver的简称;

也叫Media Attachment Unit

- □ 将一种形式的信号转变成另一种形式;
- Transceivers are media converters:
 - RJ-45 AUI (Attachment Unit Interface)

 - RJ-45 Optical

中學語 Reapter

- 再生信号:
 - □ 让线缆可以延伸得更远
 - □ 增加连接到网络点的结点数
- 不能过滤流量
- 过滤(Filter):是指设备以一定的特征(如源地址、 目的地址、网络协议等)来屏蔽网络流量,并根据已 有的标准确定将流量转发或丢弃。

Hub

- □ 多端口的中继器
- □ 放大和再生信号
- □ 允许很多设备连接到一个集线器上
- □ 作为星型拓扑的中心
- □ 不能过滤交通流量

冲突

冲 突 (续)

冲突域

- 口冲突域:数据包产生和冲突的网络区域,即指共享媒质区。
- 口如何控制冲突域的扩大?

一层设备的使用?

Collision Domain: Extended by a Repeater = Collision Domain © Cisco Systems, Inc. 1999

这说明一个现象, 往往解决了一个问 题,同时引发了另 外一个问题,中继 器就是这样。

Collision Domain: Extended by Hub and Repeater

- - - - Collision Domain

Collision Domain

本节小结

- □ 了解信号的傅立叶分析
- □ 理解奈奎斯特定理和香农定理
- □ 掌握重要的传输介质,光纤、UTP
- □了解如何选择传输介质
- □ 了解物理层设备
- □ 掌握冲突的概念

有问题吗?

