		Generating	Function	
		ating Function.(
(1)		· As Cantbn J. Xn.	开始加,多出来的	单独力.
22	$e.g.$ $n=1$ $amx^n + n=1$	$\frac{b_{n}x^{n}}{\sum_{k=0}^{\infty} (\frac{b_{k}}{\sum_{k=0}^{\infty} a_{k} \cdot b_{N-k}) \cdot x^{n}}$	Ez Cantbn) x n.	
		t-b K=b K UN K J N		
32-	Common $G.7$. $D. 1-x = \sum_{n=0}^{\infty} x$	8 n. 3 1-8k =	<u>∞</u> (χ ^k) n.	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$ \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n) $	√1)· χ ⁿ .		
	$\frac{1}{(1-x)^{k}} = \sum_{n=0}^{\infty} \left(\frac{1}{(1-ax)^{k}} \right)^{n}$	$\binom{n+k-1}{n} \cdot \binom{n}{n}$		
Sn= aci-rn) Sn= i-r.	$\frac{1}{(17000)^{1/2}} = \frac{80}{2}$ $\sqrt{1} = \frac{1}{100}$ $\sqrt{1} = \frac{1}{100}$	$\binom{n+k-1}{n}, \binom{-\alpha\alpha}{n}$	1-× ^{h→1}	
	03名不是从年	5一项开始加.		∞
	→ 能提出:		$y \cdot x^2 + x^3 + \dots = x^2 \cdot x^3$	Σ <u>ο</u> λ ⁿ ·
2. Zup	oneubial Genera	ating Function ($(P(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n).$	
15.	PALX) · PALX) =	No hi (keo (k). a	e-bn-k) x "	
2)	Common G.7			
	$0 e^{x} = \sum_{n=0}^{80} \frac{1}{n}$ $0 e^{-x} = \sum_{n=0}^{80} \frac{1}{n}$	1 <u>)</u>		
	3.ex+e-x =	2 1 × × 2M.	- 1+ 21 + 41 +	··· = exte-x.

