Robótica Móvil un enfoque probabilístico

Modelos Probabilísticos de Movimiento

Ignacio Mas

Movimiento de un Robot

- El movimiento de un robot es inherentemente incierto.
- ¿Cómo podemos modelar esta incerteza?

Red Bayesiana dinámica de controles, estados y percepciones

Modelos de movimiento Probabilísticos

- Para implementar el Filtro de Bayes, necesitamos un modelo de transición $p(x_t \mid x_{t-1}, u_t)$.
- El término $p(x_t \mid x_{t-1}, u_t)$ especifica una probabilidad a posteriori: que la acción u_t lleve al robot desde x_{t-1} hasta x_t .
- Discutiremos cómo $p(x_t \mid x_{t-1}, u_t)$ puede ser modelado según las ecuaciones de movimiento y de su incerteza.

Sistemas de coordenadas

- La configuración de un robot en 3D se puede describir con 6 parámetros.
- Estos son las 3 dimensiones de las coordenadas Cartesianas más los 3 ángulos de Euler para roll, pitch y yaw.
- Por simplicidad consideraremos robots que operan en una superficie plana.
- El espacio de estados de este sistema tiene 3 dimensiones (x,y,θ).

Modelos más comunes de movimiento

- En la práctica, hay dos tipos de modelos de movimiento:
 - Basados en odometría
 - Basados en velocidad (dead reckoning)
- Los basados en odometría se usan en sistemas equipados con encoders en las ruedas.
- Los basados en velocidad deben ser usados cuando no hay encoders.
- Calculan una nueva pose basándose en velocidades y tiempo transcurrido.

Ejemplo de encoders

Estos módulos proveen +5V cuando "ven" blanco, y 0V cuando "ven" negro.

Estos discos están hechos de un laminado color con transiciones de blanco a negro muy nítidas.

Esto permite que el sensor vea fácilmente las transiciones.

fuente: http://www.active-robots.com/

Dead Reckoning

- Viene de "deduced reckoning" o de "dead in the water".
- Cálculo de la posición integrando las velocidades
- Históricamente usado para calcular la posición de los barcos.

[Fuente de imagen: Wikipedia, LoKiLeCh]

Fuentes de error de robots con ruedas

distintos diámetros de ruedas

Y muchos más ...

Modelo de odometría

- El robot se mueve de $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ a $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$.
- Información de odometría $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$

trans

$$\delta_{trans} = \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$

$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

$$\langle \bar{x}, \bar{y}, \bar{\theta} \rangle$$
 δ_{rot1}

La función atan2

 Extiende la arco tangente para tener en cuenta los signos de x e y.

[imagen: Wikipedia]

12

Modelo de ruido para odometría

 El movimiento medido está dado por el movimiento verdadero más ruido.

$$\begin{split} \hat{\delta}_{rot1} &= \delta_{rot1} + \varepsilon_{\alpha_{1}|\delta_{rot1}|+\alpha_{2}|\delta_{trans}|} \\ \hat{\delta}_{trans} &= \delta_{trans} + \varepsilon_{\alpha_{3}|\delta_{trans}|+\alpha_{4}(|\delta_{rot1}|+|\delta_{rot2}|)} \\ \hat{\delta}_{rot2} &= \delta_{rot2} + \varepsilon_{\alpha_{1}|\delta_{rot2}|+\alpha_{2}|\delta_{trans}|} \end{split}$$

 δ_{rot2} δ_{rot1} δ_{trans}

Distribuciones típicas para modelos probabilísticos de movimiento

Distribución normal

Distribución triangular

$$\varepsilon_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}$$

$$\varepsilon_{\sigma^2}(x) = \begin{cases} 0 \text{ if } |x| > \sqrt{6\sigma^2} \\ \frac{\sqrt{6\sigma^2 - |x|}}{6\sigma^2} \end{cases}$$

Cálculo de densidad de probabilidad (media cero)

Distribución normal

- punto a consultar
- 1. Algoritmo **prob_normal_distribution**(a,b):
- 2. return $\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$

↑ Desvío estándar

- Distribución triangular
 - 1. Algoritmo **prob_triangular_distribution**(*a*,*b*):
 - 2. **return** $\max \left\{ 0, \frac{1}{\sqrt{6} \ b} \frac{|a|}{6 \ b^2} \right\}$

Cálculo de prob. *a posteriori* dados x, x', odometría

hipótesis odometría

- 1. Algoritmo motion_model_odometry $(m{x},m{x}')$ $[ar{m{x}},ar{m{x}}']$
- 2. $\delta_{trans} = \sqrt{(\overline{x}' \overline{x})^2 + (\overline{y}' \overline{y})^2}$
- 3. $\delta_{rot1} = \operatorname{atan2}(\bar{y}' \bar{y}, \bar{x}' \bar{x}) \bar{\theta}$
- 4. $\delta_{rot2} = \overline{\theta}' \overline{\theta} \delta_{rot1}$
- 5. $\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$
- 6. $\hat{\delta}_{rot1} = \operatorname{atan2}(y'-y, x'-x) \hat{\theta}$
- 7. $\hat{\delta}_{rot2} = \theta' \theta \hat{\delta}_{rot1}$
- 8. $p_1 = \text{prob}(\delta_{\text{rot1}} \hat{\delta}_{\text{rot1}}, \alpha_1 | \delta_{\text{rot1}} | + \alpha_2 \delta_{\text{trans}})$
- 9. $p_2 = \text{prob}(\delta_{\text{trans}} \hat{\delta}_{\text{trans}}, \alpha_3 \delta_{\text{trans}} + \alpha_4 (|\delta_{\text{rot1}}| + |\delta_{\text{rot2}}|))$
- 10. $p_3 = \operatorname{prob}(\delta_{\text{rot}2} \hat{\delta}_{\text{rot}2}, \alpha_1 | \delta_{\text{rot}2} | + \alpha_2 \delta_{\text{trans}})$
- 11. return $p_1 \cdot p_2 \cdot p_3$

valores de interés (x,x')

Aplicación

- Aplicación repetida del modelo de movimiento para pequeños desplazamientos.
- Típica distribución con forma de "banana" para la proyección en 2D de la distribución a posteriori en 3D.

Representación de densidad basada en muestras

Representación de densidad basada en muestras

Cómo muestrear una distribución Normal?

- Tomando muestras de una distribución normal
 - Algoritmo sample_normal_distribution(b):
 - 2. return $\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$

Muestras distribuidas normalmente

10⁶ samples

Cómo muestrear una distribución Normal o triangular?

Tomando muestras de una distribución normal

Algoritmo sample_normal_distribution(b):

2. return
$$\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$$

- Tomando muestras de una distribución triangular
 - 1. Algorithm **sample_triangular_distribution**(b):

2. return
$$\frac{\sqrt{6}}{2} [\text{rand}(-b, b) + \text{rand}(-b, b)]$$

Muestras de distrib. triangular

10³ samples

10⁵ samples

10⁴ samples

10⁶ samples

Cómo muestrear una función arbitraria?

Muestreo con rechazo

- Para muestrear de distribuciones arbitrarias:
- Muestrear x de una distribución uniforme entre [-b,b]
- Muestrear c entre [0, max f]
- Si f(x) > c sino

conservar muestra eliminar la muestra

Muestreo con rechazo

Para muestrear de distribuciones arbitrarias:

```
1. Algoritmo sample_distribution(f,b):
2. repeat
3. x = \operatorname{rand}(-b, b)
4. y = \operatorname{rand}(0, \max\{f(x) \mid x \in [-b, b]\})
5. until (y \leq f(x))
6. return x
```

Ejemplo

Muestrear de

$$f(x) = \begin{cases} abs(x) & x \in [-1; 1] \\ 0 & otherwise \end{cases}$$

Muestrear el modelo de Odometría

Algoritmo sample_motion_model(u, x):

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$

- 1. $\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$
- 2. $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_3 \delta_{trans} + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|))$
- 3. $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 | \delta_{trans})$
- 4. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$
- 5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$

sample_normal_distribution

- $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$
- 7. Return $\langle x', y', \theta' \rangle$

Ejemplos (basado en Odometría)

Muestreado del modelo de movimiento

Modelo basado en velocidad

Modelo de ruido para el modelo basado en velocidad

 El movimiento medido es el movimiento verdadero más ruido.

$$\hat{\wp} = \wp + \varepsilon_{\alpha_1 | \wp| + \alpha_2 | \omega|}$$

$$\hat{\omega} = \omega + \varepsilon_{\alpha_3 | \wp| + \alpha_4 | \omega|}$$

Cuál es la desventaja de este modelo de ruido?

Modelo de ruido para el modelo basado en velocidad

- El circulo $(\hat{v}, \hat{\omega})$ limita la orientación final (manifold 2D en un espacio 3D)
- Un mejor método:

$$\hat{v} = v + \mathcal{E}_{\alpha_1|v| + \alpha_2|\omega|}$$

$$\hat{\omega} = \omega + \mathcal{E}_{\alpha_3|v| + \alpha_4|\omega|}$$

$$\hat{\gamma} = \mathcal{E}_{\alpha_5|v| + \alpha_6|\omega|}$$

Término para contemplar la rotación final

Modelo incluyendo 3er parámetro

Término para contemplar la rotación final

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

Centro del círculo:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix}$$

constante (distancia al ICC, R) (centro del círculo es ortogonal a la orientación inicial)

Una constante (R)

Centro del círculo:

$$\left(\begin{array}{c} x^* \\ y^* \end{array} \right) = \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} -\lambda \sin \theta \\ \lambda \cos \theta \end{array} \right) = \left(\begin{array}{c} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{array} \right)$$

una constante (el centro del círculo está sobre una línea entre x y x', y es ortogonal a la línea que une x con x')

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

Centro del círculo:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix}$$

Podemos resolver para:

$$\mu = \frac{1}{2} \frac{(x-x')\cos\theta + (y-y')\sin\theta}{(y-y')\cos\theta - (x-x')\sin\theta}$$

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix} \mu = \frac{1}{2} \frac{(x-x')\cos\theta + (y-y')\sin\theta}{(y-y')\cos\theta - (x-x')\sin\theta}$$

entonces

$$r^* = \sqrt{(x' - x^*)^2 + (y' - y^*)^2}$$

$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

Los parámetros del círculo:

$$r^* = \sqrt{(x' - x^*)^2 + (y' - y^*)^2}$$

$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

 nos permiten expresar las velocidades como:

$$v = \frac{\Delta \theta}{\Delta t} r^*$$

$$\omega = \frac{\Delta \theta}{\Delta t}$$

Cálculo de prob. *a posteriori* del modelo de velocidad

1: Algorithm motion_model_velocity(
$$x_t, u_t, x_{t-1}$$
): $p(x_t \mid x_{t-1}, u_t)$

2: $\mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta}$

3: $x^* = \frac{x + x'}{2} + \mu(y - y')$

4: $y^* = \frac{y + y'}{2} + \mu(x' - x)$

5: $r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$

6: $\Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*)$

7: $\hat{v} = \frac{\Delta \theta}{\Delta t} r^*$

8: $\hat{\omega} = \frac{\Delta \theta}{\Delta t}$

9: $\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$

10: $return \operatorname{prob}(v - \hat{v}, \alpha_1 v^2 + \alpha_2 \omega^2) \cdot \operatorname{prob}(\omega - \hat{\omega}, \alpha_3 v^2 + \alpha_4 \omega^2) \cdot \operatorname{prob}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)$

Muestrear del modelo de velocidad

1: Algorithm sample_motion_model_velocity(u_t, x_{t-1}):

2:
$$\hat{v} = v + \mathbf{sample}(\alpha_1 v^2 + \alpha_2 \omega^2)$$

3: $\hat{\omega} = \omega + \mathbf{sample}(\alpha_3 v^2 + \alpha_4 \omega^2)$
4: $\hat{\gamma} = \mathbf{sample}(\alpha_5 v^2 + \alpha_6 \omega^2)$
5: $x' = x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega} \Delta t)$
6: $y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega} \Delta t)$
7: $\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t$
8: $\mathbf{return} \ x_t = (x', y', \theta')^T$

Ejemplos (basado en velocidad)

Modelo de movimiento consistente con mapas

Resumen

- Vimos modelos de movimiento basados en odometría y en velocidad
- Discutimos como calcular probabilidades a posteriori p(x'|x, u).
- Describimos como muestrear de p(x'/x, u).
- En general, se calcula basándose en intervalos de tiempo Δt fijos.
- En la práctica, los parámetros de los modelos deben ser aprendidos.
- Mencionamos como mejorar el modelo de movimiento teniendo en cuenta un mapa del entorno.