

Función cuadrática – Ejercicio práctico

RESPUESTAS

Ejercicio 1

- a) V=(2,4); c=0; $I\uparrow=(-\infty,2)$; $I\downarrow=(2;+\infty)$; $C^0=\{0,4\}$; $C^+=(0,4)$; $C^-=(-\infty,0)$ U $(4,+\infty)$; a<0
- b) $V=(0,-4); c=-4; I\uparrow=(0,+\infty); I\downarrow=(-\infty,0); C^0=\{-2,2\}; C^{+-}=(-\infty,-2) \ U\ (2,+-\infty); C^-=(-2,2); a>0$
- c) V=(-2,2); c=6; $I\uparrow=(-2,+\infty)$; $I\downarrow=(-\infty,-2)$; $C^0=$ no tiene; C^{+-} R; $C^-=F$; a>0

Ejercicio 2

a) Forma canónica: y=-1/2 x²

b) Forma canónica: $y = x^2 + 3$

c) Forma canónica: $y = (x-3/2)^2 - 9/4$

d) Forma canónica: $y = (x-1/2)^2 + 1/4$

e) Forma canónica: $y=(x-1)^2$

f) Forma canónica: $y=(x+1)^2-4$

Ejercicio 3

a)
$$x=5 y x=-8$$

b)
$$x=5/3$$
 y $x=-5/3$

c)
$$x=5/2$$
 y $x=0$

d)
$$x=5 y x= 2$$

Ejercicio 4

a)
$$S=(-\infty, -1] U [1, +\infty)$$

b)
$$S=(-\infty, -3/2] \cup [2/3, +\infty)$$

c)
$$S=(-\infty, -3)U(5/2, +\infty)$$

a)
$$\leq$$
; S=(- ∞ ,-4] U [0,+ ∞)

b)
$$>$$
; $S=(-1,2)$

c)
$$\geq$$
; S=(- ∞ ,-1] U [2,+ ∞)

d) =;
$$S=\{-2;1\}$$

Ejercicio 6

a)

- b) A los 7 meses; \$50.000
- c) Entre los meses 4 y 11
- d) House incrementa sus ganancias entre el mes 2 y el 7, su competencia disminuye la ganancia.
- e) Igual ganancia en el mes 4 y en el mes 11.
- f) A partir del mes 11 House empieza a tener menos ganancias que su competencia, debería plantear alguna campaña para incrementar la misma.

- a) V=(1,3); cóncava
- b) Corta al eje x en: x= -4 y x=1; corta al eje y en : y=4
- c) S=(x1;x2)
- d) Corta al eje x en dos puntos.
- e) V=(4,1)
- f) Positivo

Ejercicio 8

$$a = -1$$
 $S = [3,5]$

Ejercicio 9

$$y=2 (x-1)^2 - 8$$

Ejercicio 10

a)
$$f(x) = -\frac{1}{2}x^2 + x + \frac{15}{2}$$

b)
$$g(x) = \frac{1}{4}(x+2)^2 - \frac{1}{4}$$

c) y d)
$$S=(-\infty, -3) U (3, +\infty)$$

$$b = -12$$
 $c = 4$

- a) Verdadero, pues si la imagen llega hasta 3, entonces debe ser convexa.
- b) Falso; Im [5,+∞)
- c) Falso; 2 unidades hacia la izquierda en el eje de las abscisas y 4 unidades hacia arriba en el eje de las ordenadas.