|                                                                                                                                                                                               |                                                                                                                                     | _                                           |                                                            |                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REPORT DOCUMENTATION PAGE                                                                                                                                                                     |                                                                                                                                     | Form Approved OMB NO. 0704-0188             |                                                            |                                                                                                                                                                                                                                                                      |
| searching existing data sources, gathering and ma<br>regarding this burden estimate or any other as<br>Headquarters Services, Directorate for Information                                     | intaining the data needed,<br>pect of this collection of<br>n Operations and Reporn<br>ny other provision of law, no<br>rol number. | and comple<br>information,<br>ts, 1215 Jeff | ting and revie<br>including sug<br>erson Davis             | sponse, including the time for reviewing instructions, swing the collection of information. Send comments ggesstions for reducing this burden, to Washington Highway, Suite 1204, Arlington VA, 22202-4302. o any oenalty for failing to comply with a collection of |
| 1. REPORT DATE (DD-MM-YYYY)                                                                                                                                                                   | 2. REPORT TYPE                                                                                                                      |                                             |                                                            | 3. DATES COVERED (From - To)                                                                                                                                                                                                                                         |
| 27-02-2012                                                                                                                                                                                    | Final Report                                                                                                                        |                                             |                                                            | 1-Aug-2010 - 30-Apr-2011                                                                                                                                                                                                                                             |
| 4. TITLE AND SUBTITLE                                                                                                                                                                         |                                                                                                                                     |                                             | 5a. CONTRA                                                 | ACT NUMBER                                                                                                                                                                                                                                                           |
| Final Report for "STIR: Novel Interactive Visibility Techniques"                                                                                                                              |                                                                                                                                     | W911NF-10-1-0338                            |                                                            |                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                               |                                                                                                                                     | 5b. GRANT NUMBER                            |                                                            |                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                               |                                                                                                                                     | 5c. PROGRAM ELEMENT NUMBER 611102           |                                                            |                                                                                                                                                                                                                                                                      |
| 6. AUTHORS                                                                                                                                                                                    |                                                                                                                                     |                                             | 5d. PROJECT NUMBER                                         |                                                                                                                                                                                                                                                                      |
| Chris Wyman                                                                                                                                                                                   |                                                                                                                                     |                                             |                                                            |                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                               |                                                                                                                                     |                                             | 5e. TASK N                                                 | UMBER                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                               |                                                                                                                                     |                                             | 5f. WORK U                                                 | INIT NUMBER                                                                                                                                                                                                                                                          |
| 7. PERFORMING ORGANIZATION NAMES A University of Iowa @ Iowa City Office of Sponsored Programs The University of Iowa Iowa City, IA 522                                                       | AND ADDRESSES  42 -                                                                                                                 |                                             | I                                                          | PERFORMING ORGANIZATION REPORT<br>IMBER                                                                                                                                                                                                                              |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                                                                                                                       |                                                                                                                                     |                                             | 10. SPONSOR/MONITOR'S ACRONYM(S) ARO                       |                                                                                                                                                                                                                                                                      |
| U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211                                                                                                                |                                                                                                                                     |                                             | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)<br>58353-CS-II.4 |                                                                                                                                                                                                                                                                      |
| 12. DISTRIBUTION AVAILIBILITY STATEME                                                                                                                                                         | ENT                                                                                                                                 |                                             | •                                                          |                                                                                                                                                                                                                                                                      |
| Approved for Public Release; Distribution Unlimi                                                                                                                                              | ted                                                                                                                                 |                                             |                                                            |                                                                                                                                                                                                                                                                      |
| 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in to of the Army position, policy or decision, unless so                                                               |                                                                                                                                     |                                             | should not co                                              | ontrued as an official Department                                                                                                                                                                                                                                    |
| 14. ABSTRACT We investigated a variety of computation to sampling techniques, traditionally used in as well. We assert that a key challenge in query it for possible occlusions. Our research | 2D graphics computate efficiently computing                                                                                         | ions, may r<br>visibility is                | now allow e<br>s efficiently                               | efficient computations in 3D accessing geometric data to                                                                                                                                                                                                             |

be queried simultaneously, using voxel sampling techniques, adaptive image-space multiresolution sampling, and

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

Computer Science; Computer Graphics; Rendering; Visibility; Participating Media

c. THIS PAGE

UU

15. SUBJECT TERMS

a. REPORT

UU

16. SECURITY CLASSIFICATION OF:

UU

b. ABSTRACT

# 19b. TELEPHONE NUMBER 319-353-2549 Standard Form 298 (Rev. 8/98)

19a. NAME OF RESPONSIBLE PERSON

Christopher Wyman

#### Report Title

Final Report for "STIR: Novel Interactive Visibility Techniques"

#### **ABSTRACT**

We investigated a variety of computation techniques to help speed up visibility, based on the premise that recent sampling techniques, traditionally used in 2D graphics computations, may now allow efficient computations in 3D as well. We assert that a key challenge in efficiently computing visibility is efficiently accessing geometric data to query it for possible occlusions. Our research aims to speed computation by optimizing access to geometry that will be queried simultaneously, using voxel sampling techniques, adaptive image-space multiresolution sampling, and sampling in novel spaces that group queries more efficiently.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none) Received Paper TOTAL: Number of Papers published in peer-reviewed journals: (b) Papers published in non-peer-reviewed journals (N/A for none) Received Paper TOTAL: Number of Papers published in non peer-reviewed journals: (c) Presentations **Number of Presentations:** 0.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received

Chris Wyman. Voxelized shadow volumes, the ACM SIGGRAPH Symposium. 2011/08/04 01:00:00, 2012/02/27 1 1

Vancouver, British Columbia, Canada.:,

Chris Wyman. Interactive voxelized epipolar shadow volumes, ACM SIGGRAPH ASIA 2010 Sketches. 2012/02/27 1 2

2010/12/14 01:00:00, Seoul, Republic of Korea.:,

TOTAL:

|                                                                                        | (d) Manuscri                                                                                                              | pts                                    |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                        |                                                                                                                           |                                        |
| <u>Received</u> <u>Paper</u>                                                           |                                                                                                                           |                                        |
| TOTAL:                                                                                 |                                                                                                                           |                                        |
| umber of Manuscripts:                                                                  |                                                                                                                           |                                        |
|                                                                                        | Books                                                                                                                     |                                        |
| eceived Paper                                                                          |                                                                                                                           |                                        |
| TOTAL:                                                                                 |                                                                                                                           |                                        |
|                                                                                        | Patents Submi                                                                                                             | tted                                   |
|                                                                                        |                                                                                                                           |                                        |
|                                                                                        |                                                                                                                           |                                        |
|                                                                                        | Patents Awar                                                                                                              | ded                                    |
|                                                                                        |                                                                                                                           |                                        |
|                                                                                        |                                                                                                                           |                                        |
|                                                                                        | Awards                                                                                                                    |                                        |
|                                                                                        | Awards hadow Volumes" from High Performance Graphic                                                                       | s 2011 was one of the best 3 papers at |
| The supported work "Voxelized Some conference.                                         |                                                                                                                           | s 2011 was one of the best 3 papers at |
|                                                                                        | hadow Volumes" from High Performance Graphic                                                                              |                                        |
| ne conference.                                                                         | hadow Volumes" from High Performance Graphic  Graduate Stud                                                               | ents                                   |
| ne conference.  NAME                                                                   | hadow Volumes" from High Performance Graphic  Graduate Stud  PERCENT SUPPORTED                                            |                                        |
| ne conference.                                                                         | hadow Volumes" from High Performance Graphic  Graduate Stud                                                               | ents                                   |
| ne conference.  NAME Rajeev Penmatsa                                                   | hadow Volumes" from High Performance Graphic  Graduate Stud  PERCENT_SUPPORTED  0.50                                      | ents                                   |
| NAME Rajeev Penmatsa FTE Equivalent:                                                   | Graduate Stud  PERCENT_SUPPORTED  0.50  0.50                                                                              | ents Discipline                        |
| NAME Rajeev Penmatsa FTE Equivalent:                                                   | Graduate Stud  PERCENT SUPPORTED 0.50 0.50                                                                                | ents Discipline                        |
| NAME Rajeev Penmatsa FTE Equivalent: Total Number:                                     | Graduate Stud  PERCENT SUPPORTED 0.50 0.50 1  Names of Post Doc                                                           | ents Discipline                        |
| NAME<br>Rajeev Penmatsa<br>FTE Equivalent:<br>Total Number:                            | Graduate Stud  PERCENT SUPPORTED 0.50 0.50 1  Names of Post Doc                                                           | ents Discipline                        |
| NAME Rajeev Penmatsa FTE Equivalent: Total Number:  NAME  NAME FTE Equivalent:         | Graduate Stud  PERCENT SUPPORTED 0.50 0.50 1  Names of Post Doc                                                           | ents Discipline etorates               |
| NAME Rajeev Penmatsa FTE Equivalent: Total Number:  NAME FTE Equivalent: Total Number: | Graduate Stud  PERCENT SUPPORTED 0.50 0.50 1  Names of Post Doc  PERCENT_SUPPORTED  Names of Faculty S  PERCENT_SUPPORTED | ents Discipline etorates               |
| NAME Rajeev Penmatsa FTE Equivalent: Total Number:  NAME FTE Equivalent: Total Number: | Graduate Stud  PERCENT SUPPORTED 0.50 0.50 1  Names of Post Doc  PERCENT_SUPPORTED  Names of Faculty S                    | ents Discipline etorates upported      |

| FTE Equivalent: Total Number:     |                                                                                                                                                                                                                                                      |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| This section only app             | Student Metrics  blies to graduating undergraduates supported by this agreement in this reporting period                                                                                                                                             |  |
|                                   | The number of undergraduates funded by this agreement who graduated during this period: 0.00 indergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields: 0.00 |  |
|                                   | ergraduates funded by your agreement who graduated during this period and will continue rsue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: 0.00                                                             |  |
|                                   | mber of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): 0.00 graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering: 0.00                                      |  |
|                                   | undergraduates funded by your agreement who graduated during this period and intend to  work for the Department of Defense 0.00  dergraduates funded by your agreement who graduated during this period and will receive                             |  |
|                                   | or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00                                                                                                                                                   |  |
|                                   | Names of Personnel receiving masters degrees                                                                                                                                                                                                         |  |
| <u>NAME</u>                       |                                                                                                                                                                                                                                                      |  |
| Total Number:                     |                                                                                                                                                                                                                                                      |  |
| Names of personnel receiving PHDs |                                                                                                                                                                                                                                                      |  |
| NAME                              |                                                                                                                                                                                                                                                      |  |
| Total Number:                     |                                                                                                                                                                                                                                                      |  |
| Names of other research staff     |                                                                                                                                                                                                                                                      |  |
| NAME                              | PERCENT SUPPORTED                                                                                                                                                                                                                                    |  |
| FTE Equivalent: Total Number:     |                                                                                                                                                                                                                                                      |  |

PERCENT SUPPORTED

<u>NAME</u>

**Sub Contractors (DD882)** 

|                 | Scientific Progress |
|-----------------|---------------------|
| See attachment. | Technology Transfer |
|                 |                     |
|                 |                     |
|                 |                     |

**Inventions (DD882)** 

## Final Report for ARO Grant #W911NF-10-1-0338

Covering August 1, 2010 through April 31, 2011
Title: STIR: Novel Interactive Visibility Techniques
Principle Investigator: Professor Chris Wyman, University of Iowa

## **Table of Contents:**

| Table of Contents               | ( Page 1 )  |
|---------------------------------|-------------|
| List of Appendices              | ( Page 1 )  |
| Problem Statement               | ( Page 2 )  |
| Summary of Important Results    | ( Page 3 )  |
| List of Supported Publications  | ( Page 5 )  |
| List of Participating Personnel | ( Page 5 )  |
| Report of Inventions            | ( Page 5 )  |
| Bibliography                    | ( Page 5 )  |
| Appendix A                      | ( Page 6 )  |
| Appendix B                      | ( Page 14 ) |
|                                 |             |

## **List of Appendices:**

Appendix A: ( 8 pages ) Preprint of supported publication "Voxelized Shadow Volumes" Appendix B: ( 2 pages ) Reprint of supported publication "Interactive Voxelized Epipolar

Shadow Volumes"

#### **Problem Statement:**

Visibility algorithms play an important role in all simulation environments, from training simulations to ballistics simulations to entertainment applications. For defense applications, visibility plays vital roles in radio frequency propagation computations to determine the quality of wireless communications, when evaluating ballistic penetrations [BS07], and targeting computations. Unfortunately, naïve visibility has order  $O(n^4)$  complexity [DDP02] scaling poorly with complex geometry required in many defense applications.

We investigated a variety of computation techniques to help speed up visibility, based on the premise that recent sampling techniques, traditionally used in 2D graphics computations, may now allow efficient computations in 3D as well. We assert that a key challenge in efficiently computing visibility is efficiently accessing geometric data to query it for possible occlusions. Our research aims to speed computation by optimizing access to geometry that will be queried simultaneously, using voxel sampling techniques, adaptive image-space multiresolution sampling, and sampling in novel spaces that group queries more efficiently.

#### **Summary of Important Results:**

In traditional ray tracing, visibility computations are accelerated by using ray acceleration structures such as kD-trees, bounding volume hierarchies, grids, and multiresolution grids. These eliminated brute-force comparisons between every ray and each scene triangle. However, typically, these structures are designed for single rays and are optimized for certain ray types (e.g., shadow rays [HM08]). This is fine when performing single point sampling of the visibility. However for more complex situations, such as rendering in participating media (including smoke, fog, snow, etc.), visibility must be queried continuously throughout the volume. Similarly complex visibility queries arise in ballistic penetration and RF propagation contexts.

In these more complex scenarios, visibility needs to be densely sampled to identify shadowed regions. But while queries occur densely, the visibility complex generally changes quite slowly. In fact, queries along a single ray give the same result, except at surface discontinuities. This suggests visibility could be cached in some manner similar to light fields [LH96]. The question is how to efficiently store these cached visibility values.

We investigated two such caching schemes. **One approach** was initially explored in a SIGGRAPH Asia Sketch [Wym10] and will be published at High Performance Graphics 2011 [Wym11] using an *epipolar-space visibility voxelization*. In this space, grid axes emanate from the light and the eye.



One key advantage to storing visibility in this space is that data along a grid row may be stored in a single cache line, thus allowing quick retrieval from memory. This means the visibility of many points along any eye ray can be queried using a single cache-line lookup. On massively parallel GPUs, this means 512 visibility samples can be retrieved in the time it takes to lookup a single texel. By organizing another grid axis along rays emanating from the light, we enable applications of parallel scan operators in the direction of these rays. As depicted in the figure, above, this means geometry can be voxelized into epipolar space and then extruded using a parallel scan (with a bitwise OR operator) to give a voxelized shadow volume. This entire process can be compute in only a few seconds. Our prototype enables computing a dense visibility sampling at every pixel in a HD resolution image at over 200 fps, even for multi-million polygon scenes.

Below are example results of our epipolar-space voxelization for computing a dense visibility inside a volume. At left the final rendering. At center top is the voxelized geometry in epiploar space, the bottom contains the extruded shadow volume in epipolar space. At right is an explanatory visualization of the final scene color, computed in epipolar space.



Our second visibility approach explored computing ambient occlusion using a scene voxelization and an



image-space multiresolution sampling approach (similar to our prior work in [NSW09]). Prior screen-space ambient occlusion typically relies on single-layer depth peeling [Eve01] techniques, which introduce artifacts at discontinuities in image space. A voxel-based visibility representation (which can be computed in screen space [ED06] just like depth peeling) avoids this problem by maintaining sampled visibility information at all depths.

While querying voxels at every pixel to compute ambient occlusion works well, it is somewhat wasteful; as with most global illumination effects, ambient occlusion changes slowly in image space. We use a fast stencil-based multiresolution image space sampling scheme [NSW09] to accelerate

ambient occlusion computations. While ambient occlusion may have no apparent application for defense applications, it can provide a good visualization for depicting geometry. And ongoing work (to be funded on another project) is exploring applications of ambient occlusion to ballistic computations, allowing for more informative visualizations of data commonly depicted today using only cell plots.

#### **List of Supported Publications:**

- 1) Rajeev Penmatsa and Chris Wyman, "Voxel Space Ambient Occlusion." Submitted to the Journal of Graphics Tools. (Under review)
- 2) Chris Wyman, "Voxelized Shadow Volumes." Proceedings of the ACM / EG Conference on High Performance Graphics. August 2011. (To appear)
- 3) Chris Wyman, "Interactive Voxelized Epipolar Shadow Volumes." ACM SIGGRAPH Asia 2010 Sketches Program. December 2010. ( http://dx.doi.org/10.1145/1899950.1900003 )

### **List of Supported Personnel:**

Associate Professor, Chris Wyman (1.5% effort for academic year)
PhD Student, Rajeev Penmatsa (50% effort for academic year)

#### **Report of Inventions:**

None.

#### **Bibliography:**

- [BS07] L. Butler and A. Stephens. "Bullet ray vision." Proceedings of the 2007 Symposium on Interactive Ray Tracing. 167-170.
- [DDP02] F. Durand, G. Drettakis, and C. Puech. "The 3D Visibility Complex." ACM Transactions on Graphics 21(2), 347-368 (2002).
- [ED06] E. Eisemann and X. Decoret. "Fast scene voxelization and applications." Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, 71-78.
- [Eve01] C. Everitt. "Interactive order-independent transparency." Technical report. NVIDIA Corp.
- [HM08] W. Hunt and W. Mark. "Adaptive acceleration structures in perspective space." Proceedings of the 2008 Symposium on Interactive Ray Tracing. 11-17.
- [LH96] M. Levoy and P. Hanrahan. "Light Field Rendering." Proceedings of ACM SIGGRAPH '96, 31-42.
- [NSW09] G. Nichols, J. Shopf, and C. Wyman. "Hierarchical image-space radiosity for interactive global illumination." Computer Graphics Forum 28(4), 1141-1149. (2009)
- [Wym10] C. Wyman. "Interactive Voxelized Epipolar Shadow Volumes." ACM SIGGRAPH Asia 2010 Sketches Program.
- [Wym11] C. Wyman. "Voxelized Shadow Volumes." Proceedings of the 2011 ACM Conference on High Performance Graphics. (To appear)