Лабораторная работа № 3 Моделирование случайных событий.

Задания.

Задание **1** (7 баллов).

Система состоит из трех блоков: **A**, **B** и **C**, работающих независимо. Варианты структурной схемы системы показаны на рисунке.

Вероятности безотказной работы блоков P(A), P(B) и P(C) указаны в таблице 3.1.

- 1. Определить надежность P (вероятность безотказной работы) системы аналитическим методом (используя теоремы сложения и умножения вероятностей).
- 2. Найти оценку P^* надежности системы методом статистического моделирования. Для смоделировать 100 испытаний ЭТОГО найти относительную частоту события – безотказной работы системы. Реализацию моделей выполнить на С#.
- 3. Сопоставить результаты аналитического и статистического моделирования. Найти абсолютную $|P P^*|$ и относительную $\frac{|P P^*|}{P}$ погрешности.
- 4. Оформить отчет.

Задание 2 дополнительное (7 баллов).

Пусть дискретная стохастическая система управления описывается автономным Y-детерминированным вероятностным автоматом с таблицей переходов

_	z_k				
z_k	z_1	z_2	<i>Z</i> 3	Z 4	Z 5
z_1	q	p	0	0	0
z_2	q	0	p	0	0
<i>Z</i> ₃	q	0	0	р	0
Z 4	\overline{q}	0	0	0	p
Z 5	1	0	0	0	0

где p+q=1, и таблицей выходов

Z	z_1	z_2	<i>Z</i> ₃	Z 4	Z 5
Y	a	b	a	b	b

Начальное распределение вероятностей имеет вид

Z	z_1	z_2	<i>Z</i> 3	Z 4	Z 5
D	0,2	0,2	0,2	0,2	0,2

Выполнить анализ функционирования системы методом статистического моделирования. В ходе работы выполнить следующие действия.

- 1. Написать программу, реализующую выбор начального состояния системы, переход системы из одного состояния в другое и выдачу соответствующего выходного сигнала. Предусмотреть возможность ввода пользователем заданного количества переходов, а также вывод последовательности состояний и соответствующей выходной строки. Предположив, что после n_0 переходов система входит в установившийся режим, организовать вычисление относительных частот следующих событий:
 - а) перехода системы в каждое из возможных состояний;
 - б) появлений в выходной строке сигналов a и b в установившемся режиме работы.

Для выбора состояния, в которое переходит система из текущего состояния, использовать процедуру определения исхода испытания по жребию.

- 2. Используя разработанную программу, смоделировать функционирование системы в течение n=50 переходов, выбрав значения p и q в соответствии с номером своего варианта (таблица 3.2); n_0 принять равным 10. Получить значения относительных частот, указанных в п. 1 а) и б).
- 3. Оформить отчет.

Задание 3 дополнительное (8 баллов)

Рассматривается простейшая система управления запасами. Предполагается, что объем запасов z в течение каждого дня удовлетворяет условию $z \ge 0$ (это означает, что задержка в удовлетворении спроса не допускается: если товар отсутствует в наличии, то потенциальный покупатель получает отказ, а фирма несет потери — недополученную прибыль и/или штрафные санкции). Ежедневный спрос на товар d и величина поставок x являются случайными величинами с равномерным на [0, 1] распределением. Минимальный уровень запасов, при котором оформляется заказ на поставку, составляет 0,7 ед.

Величина запаса в начале (i+1)-го дня определяется следующим образом:

$$z_{i+1} = \begin{cases} z_i - d_i \,, & \text{если } (z_i > 0.7) \& (d_i \le z_i), \\ z_i + x_i - d_i \,, & \text{если } (z_i \le 0.7) \& (d_i \le z_i + x_i), \\ 0, & \text{если } d_i > z_i > 0.7 \text{ или } (z_i \le 0.7) \& (z_i < d_i - x_i). \end{cases}$$

Затраты на хранение запасов в количестве z ед. в течение одного дня составляют 2z+1. Потери, связанные с нехваткой товара в количестве q ед., составляют 7q. Выполнить анализ функционирования системы методом статистического моделирования. В ходе работы выполнить следующие действия.

- 1. Написать программу, реализующую формирование ежедневного уровня спроса и величины поставок. Предусмотреть возможность определения для указанного пользователем периода (заданного количества дней) и начального уровня запасов z_0 следующих величин
 - а) средних запасов на складе;
 - б) средних затрат на хранение;
 - в) средних потерь, вызванных нехваткой товара;
 - г) средней величины поставок.

- 2. Используя разработанную программу, смоделировать функционирование системы в течение n = 50 дней; начальный уровень запасов z_0 принять равным 2 ед. Получить значения средних величин, указанных в п. 1 а) г).
- 3. Проанализировать полученные результаты и сделать выводы относительно используемой стратегии управления запасами.
- 4. Оформить отчет.

Таблица 3.1

№ варианта	Схема	P(A)	P(B)	P(C)
1	1)	0,9	0,75	0,6
2	2)	0,8	0,85	0,7
3	1)	0,85	0,8	0,7
4	2)	0,9	0,8	0,75

Таблица 3.2

№ варианта	p	\overline{q}
1	0,2	0,8
2	0,4	0,6
3	0,7	0,3
4	0,9	0,1

Содержание отчета.

- 1. Название работы.
- 2. По заданию 1.
 - 2.1. Надежность системы, найденная аналитически (привести все необходимые расчеты).
 - 2.2. Блок-схема процедуры моделирования функционирования системы и получения статистической оценки надежности.
 - 2.3. Оценка надежности системы, найденная методом статистического моделирования.
 - 2.4. Значения абсолютной и относительной погрешности оценки надежности системы.
 - 2.5. Выводы по результатам проведенного исследования.
- 3. По заданию 2.
 - 3.1. Блок-схема процедуры моделирования функционирования системы и получения относительных частот, указанных в п. 1 а) и б) задания.
 - 3.2. Полученные в результате моделирования значения относительных частот.
- 4. По заданию 3.
 - 4.1. Блок-схема процедуры моделирования функционирования системы и получения средних значений, указанных в п. 1 а) г) задания.
 - 4.2. Полученные в результате моделирования оценки функциональных характеристик системы управления запасами.

