Рекомендательные системы

Сергей Николенко

Центр Речевых Технологий, 2012

Outline

- 1 Коллаборативная фильтрация
 - Ближайшие соседи, SVD, машины Больцмана
 - Расширения
- Онлайн-модели
 - Постановка задачи и бандиты
 - DGP

Рекомендательные системы

- Рекомендательные системы анализируют интересы пользователей и пытаются предсказать, что именно будет наиболее интересно для конкретного пользователя в данный момент времени.
- Компании–лидеры в рекомендательных системах в основном делятся на две категории:
 - мы «продаём» какие-то товары или услуги онлайн; у нас есть пользователи, которые либо явно оценивают товары, либо просто что-то покупают, а что-то нет; интересно порекомендовать товар, который данному покупателю максимально понравится; Netflix, Amazon;
 - мы портал, делаем деньги тем, что размещаем рекламу, надо разместить ссылки, по которым пользователи захотят переходить (и видеть ещё больше вкусной рекламы); Yahoo!, Google, Яндекс, большинство новостных сайтов.

Онлайн vs. оффлайн

- У рекомендательной системы есть два разных «уровня», на которых она должна работать:
 - глобальные оценки, медленно меняющиеся особенности и предпочтения, интересные страницы, зависимость от user features (география, пол etc.) и т.д.;
 - кратковременные тренды, hotness, быстрые изменения интереса во времени.

Онлайн vs. оффлайн

- Это очень разные задачи с разными методами, поэтому различают два класса моделей.
 - Оффлайн-модели выявляют глобальные закономерности (обычно это и называется коллаборативной фильтрацией). Цель зачастую в том, чтобы найти и рекомендовать человеку то, что ему понравится, из достаточно редких вещей, работать с «длинными хвостами» распределений интересов людей и веб-страниц.
 - Онлайн-модели должны реагировать очень быстро (поэтому там обычно подходы попроще, как правило, не индивидуализированные), они выявляют кратковременные тренды, позволяют рекомендовать то, что hot прямо сейчас.

- Начнём краткий обзор разных рекомендательных систем с коллаборативной фильтрации.
- Обозначения:
 - индекс i всегда будет обозначать пользователей (всего пользователей будет $N,\ i=1..N$);
 - индекс a предметы (сайты, товары, фильмы...), которые мы рекомендуем (всего M, a=1..M);
 - x_i набор (вектор) признаков (features) пользователя, x_a набор признаков предмета;
 - когда пользователь i оценивает предмет a, он производит отклик (response, rating) $r_{i,a}$; этот отклик случайная величина, конечно.
- Наша задача предсказывать оценки $r_{i,a}$, зная признаки x_i и x_a для всех элементов базы и зная некоторые уже расставленные в базе $r_{i',a'}$. Предсказание будем обозначать через $\hat{r}_{i,a}$.

- Начнём с небайесовских методов. Метод ближайших соседей: давайте введём расстояние между пользователями и будем рекомендовать то, что нравится вашим соседям.
- Расстояние:
 - коэффициент корреляции (коэффициент Пирсона)

$$w_{i,j} = rac{\sum_{a} \left(r_{i,a} - ar{r}_{a}
ight) \left(r_{j,a} - ar{r}_{a}
ight)}{\sqrt{\sum_{a} \left(r_{i,a} - ar{r}_{a}
ight)^{2}} \sqrt{\sum_{a} \left(r_{j,a} - ar{r}_{a}
ight)^{2}}},$$

где \bar{r}_a — средний рейтинг продукта a среди всех пользователей;

• косинус угла между векторами рейтингов, выставленных i и j, т.е.

$$w_{i,j} = rac{\sum_{a} r_{i,a} r_{j,a}}{\sqrt{\sum_{a} r_{i,a}^2} \sqrt{\sum_{a} r_{j,a}^2}}.$$

• Простейший способ построить предсказание нового рейтинга $\hat{r}_{i,a}$ – сумма рейтингов других пользователей, взвешенная их похожестью на пользователя i:

$$\hat{r}_{i,a} = ar{r}_a + rac{\sum_j \left(r_{j,a} - ar{r}_j
ight)w_{i,j}}{\sum_j |w_{i,j}|}.$$

- Это называется GroupLens algorithm так работал дедушка рекомендательных систем GroupLens.
- Чтобы не суммировать по всем пользователям, можно ограничиться ближайшими соседями:

$$\hat{r}_{i,a} = ar{r}_a + rac{\sum_{j \in ext{kNN}(i)} \left(r_{j,a} - ar{r}_j
ight) w_{i,j}}{\sum_{j \in ext{kNN}(i)} |w_{i,j}|}.$$

- Естественно предположить, что продукты, которые любят или не любят практически все пользователи, не слишком полезны в определении ближайшего соседа.
- Поэтому естественно взвесить продукты по тому, как часто их уже оценивали пользователи; такая метрика называется iuf inverse user frequency, обратная частота пользователей: $f_a = \log \frac{N}{N_a}$, где N общее число пользователей, N_a число оценивших продукт a. Получается

$$w_{i,j}^{ ext{idf}} = rac{\sum_{a} f_{a} \sum_{a} f_{a} r_{i,a} r_{j,a} - \left(\sum_{a} f_{a} r_{i,a}\right) \left(\sum_{a} f_{a} r_{j,a}\right)}{\sqrt{\sum_{a} f_{a} \left(\sum_{a} f_{a} r_{i,a}^{2} - \left(\sum_{a} f_{a} r_{i,a}\right)^{2}
ight)}} \sqrt{\sum_{a} f_{a} \left(\sum_{a} f_{a} r_{j,a}^{2} - \left(\sum_{a} f_{a} r_{j,a}\right)^{2}
ight)}$$

а для косинуса

$$w_{i,j}^{ ext{idf}} = rac{\sum_a f_a^2 r_{i,a} r_{j,a}}{\sqrt{\sum_a (f_a r_{i,a})^2} \sqrt{\sum_a (f_a r_{j,a})^2}}.$$

Item-item CF

- Симметричный подход item-based collaborative filtering. Считаем похожесть между продуктами, выбираем похожие продукты.
- Amazon: customers who bought this item also bought...
- Преимущество может быть эффективнее за счёт того,
 что похожесть продуктов всегда можно считать оффлайн,
 пара новых оценок не повлияет на неё совсем радикально.
- Считаем похожесть между парами продуктов, у которых есть общий оценивший пользователь.

- Из чего складывается рейтинг пользователя i, который он выдал продукту a?
- Вполне может быть, что пользователь добрый и всем подряд выдаёт хорошие рейтинги; или, наоборот, злой и рейтинг зажимает.
- С другой стороны, некоторые продукты попросту лучше других.
- Поэтому мы вводим так называемые базовые предикторы (baseline predictors) $b_{i,a}$, которые складываются из базовых предикторов отдельных пользователей b_i и базовых предикторов отдельных продуктов b_a , а также просто общего среднего рейтинга по базе μ :

$$b_{i,a} = \mu + b_i + b_a$$
.

Чтобы найти предикторы, уже нужен байесовский подход:
 надо добавить нормально распределённый шум и получить модель линейной регрессии

$$r_{i,a} \sim \mathcal{N}\left(\mu + b_i + b_a, \sigma^2\right)$$
.

 Можно ввести априорные распределения и оптимизировать; или просто найти среднеквадратическое отклонение с регуляризатором:

$$b_* = rg \min_b \sum_{(i,a)} (r_{i,a} - \mu - b_i - b_a)^2 + \lambda_1 \left(\sum_i b_i^2 + \sum_a b_a^2
ight).$$

- С тем, чтобы напрямую обучать оставшуюся матрицу предпочтений вероятностными методами, есть одна очень серьёзная проблема матрица X, выражающая рейтинги, содержит $N \times M$ параметров, гигантское число, которое, конечно, никак толком не обучить.
- Более того, обучать их и не надо как мы уже говорили, данные очень разреженные, и «на самом деле» свободных параметров гораздо меньше, проблема только с тем, как их выделить.
- Поэтому обычно число независимых параметров модели необходимо уменьшать.

- Метод SVD (singular value decomposition) разложим матрицу X в произведение матриц маленького ранга.
- Зафиксируем некоторое число f скрытых факторов, которые так или иначе описывают каждый продукт и предпочтения каждого пользователя относительно этих факторов.
- Пользователь вектор $p_i \in \mathbb{R}^f$, который показывает, насколько пользователь предпочитает те или иные факторы; продукт вектор $q_a \in \mathbb{R}^f$, который показывает, насколько выражены те или иные факторы в этом продукте.

- Предпочтение в итоге будем подсчитывать просто как скалярное произведение $q_a^{ op} p_i = \sum_{j=1}^f q_{a,j} p_{i,j}$.
- Таким образом, добавляя теперь сюда baseline-предикторы, получаем следующую модель предсказаний рейтингов:

$$\hat{r}_{i,a} \sim \mu + b_i + b_a + q_a^{\top} p_i$$
.

- Можно добавлять и дополнительную информацию в эту модель. Например, введём дополнительный набор факторов для продуктов y_a , которые будут характеризовать пользователя на основе того, что он просматривал, но не оценивал.
- Модель после этого принимает вид

$$\widehat{r}_{i,a} = \mu + b_i + b_a + q_a^ op \left(p_i + rac{1}{\sqrt{|V(i)|}} \sum_{b \in V(i)} y_b
ight),$$

где V(i) – множество продуктов, которые просматривал этот пользователь $(\frac{1}{\sqrt{|V(i)|}}$ контролирует дисперсию).

• Это называется SVD++.

Вероятностное разложение матриц

• Пусть мы хотим построить разложение матрицы рейтингов на матрицы меньшего ранга:

$$\hat{R} = U^{\top} V$$
.

• Вероятностно мы имеем правдоподобие

$$p(R \mid U, V, \sigma^2) = \prod_i \prod_a \left(\mathcal{N}(r_{i,a} \mid u_i^ op v_j, \sigma^2)
ight)^{[i ext{ оценил } a]}.$$

ullet Добавим гауссовские априорные распределения на U и V :

$$p(\left.U\mid\sigma_{U}^{2}
ight)=\prod_{i}\mathcal{N}(\left.U_{i}\mid\mathbf{0},\sigma_{U}^{2}I
ight),\quad p(\left.V\mid\sigma_{V}^{2}
ight)=\prod_{a}\mathcal{N}(\left.V_{a}\mid\mathbf{0},\sigma_{V}^{2}I
ight)$$

Вероятностное разложение матриц

- Если просто зафиксировать σ^2 , σ_V^2 и σ_U^2 , то они будут играть роль регуляризаторов, и нет никакого отличия от «обычного» SVD.
- Разница здесь в том, что теперь мы можем автоматически найти оптимальные $\sigma=(\sigma^2,\sigma_V^2,\sigma_U^2)$, максимизируя общее правдоподобие модели:

$$\mathbf{\sigma}^* = \operatorname{arg\,max}_{\mathbf{\sigma}} p(R \mid \mathbf{\sigma}) = \operatorname{arg\,max}_{\mathbf{\sigma}} \int p(R, U, V \mid \mathbf{\sigma}) dU dV$$

ЕМ-алгоритмом:

ullet сначала зафиксируем σ и найдём

$$f(\mathbf{\sigma}) = \mathbb{E}_{U, V \mid R, \mathbf{\sigma}} [\log p(R, U, V \mid \mathbf{\sigma})];$$

• потом максимизируем

$$\sigma := \arg \max_{\sigma} f(\sigma)$$
.

Вероятностное разложение матриц

- Модификация: пользователи с малым числом оценок в PMF получат апостериорные распределения, очень похожие на «среднего пользователя».
- Чтобы на редких пользователей лучше обобщалось, добавим ещё факторы, которые меняют априорное распределение факторов у пользователя в зависимости от того, сколько и чего он оценил:

$$U_i = Y_i + rac{\sum_a [i ext{ оценил } a] \, W_a}{\sum_a [i ext{ оценил } a]}.$$

- ullet Матрица W показывает, как влияет на априорное распределение
- Тоже в качестве регуляризатора берём априорный гауссиан: $p(W \mid \sigma_W^2) = \prod_i \mathcal{N}(W_i \mid \mathbf{0}, \sigma_W^2 \mathbf{I}).$

Машины Больцмана

- Ещё один метод вероятностного моделирования машины Больцмана (restricted Boltzmann machine).
- Ненаправленная графическая модель, состоящая из двух уровней, видимого и скрытого.
- Машины Больцмана основа для deep learning, одного из наших текущих представлений о том, как устроен мозг.

Машины Больцмана

 В коллаборативной фильтрации мы строим машиной Больцмана модель предпочтений пользователя.

Машины Больцмана

- В результате на скрытых нейронах обучается модель пользователя.
- Метод обучения contrastive divergence (приближение к максимальному правдоподобию).
- RBM не то чтобы лучше SVD, но часто ошибается в других местах, поэтому комбинация этих двух моделей даёт значительное улучшение.

Комбинация моделей

- Кстати, что значит «комбинация моделей»?
 - Просто линейная комбинация (байесовское усреднение или регрессия).
 - Бустинг: метод комбинации простых классификаторов; в качестве простых классификаторов можно брать результаты сложных моделей (оценки вероятности успеха или ожидаемый рейтинг).
- Современные рекомендательные системы всегда большие ансамбли моделей. Два уровня: обучение отдельных моделей в ансамбле (bootstrapping и т.п.) и обучение комбинации.

Регрессия по признакам

- Проблема: холодный старт.
- Надо как-то инициализировать; если вообще ничего не знаем, сделать ничего нельзя, конечно.
- Но так не бывает; обычно есть набор признаков можно пытаться предсказывать значения факторов:
 - просто регрессией по признакам;
 - (обычно для продуктов) выделяя темы при помощи topic modeling.

Регрессия по признакам

• Получается, что для признаков пользователя x_i и продукта x_a мы рассматриваем модель

$$r_{i,a} \sim \mu + b_{ ext{user}}(x_i) + b_{ ext{item}}(x_a) + q_a^{ op} p_i(t),$$

где

$$egin{aligned} b_{ ext{user}}(x_i) &\sim \mathcal{N}(u(x_i), \sigma_u^2), \ b_{ ext{item}}(x_i) &\sim \mathcal{N}(v(x_i), \sigma_v^2), \end{aligned}$$

и в качестве u и v может выступать любая регрессия [Agarwal, Chen, 2009].

Регрессия по признакам

- Ещё один вариант, через контент:
 - выделить темы из продуктов (LDA), получится распределение $z_{a,k}$ для каждого a;
 - обучить факторы $s_{i,k}$ того, насколько пользователю "нравятся" эти темы;
 - затем для нового продукта оценить темы $\hat{z}_{a,k}$ по контенту, а потом добавлять в модель слагаемое

$$r_{i,\,a} \sim \ldots + \sum_k s_{i,k} \widehat{z}_{a,k},$$

что помогает для холодного старта по продуктам.

• Есть модели, связанные с тем, как обучить не абы какие темы, а хорошо выражающие предпочтения.

Время в коллаборативной фильтрации

 Пример: давайте добавим время, т.е. будем рассматривать базовые предикторы и характеристики пользователя как функции от времени:

$$\hat{r}_{i,a} = \mu + b_i(t) + b_a(t) + q_a^{\top} p_i(t),$$

где

$$\begin{split} b_a(t) = &b_a + b_{a,\mathrm{Bin}(t)}, \\ b_i(t) = &b_i + \alpha_i \mathrm{dev}_i(t) + b_{i,t}, \\ p_{i,f}(t) = &p_{i,f} + \alpha_{i,f} \mathrm{dev}_i(t) + p_{i,f,t} + \frac{1}{\sqrt{|V(i)|}} \sum_{b \in V(i)} y_b, \\ \mathrm{dev}_i(t) = &\mathrm{sign}(t - t_i) |t - t_i|^{\beta}. \end{split}$$

• Это называется timeSVD++, и эта модель была одним из основных компонентов модели, взявшей Netflix Prize.

Социальные сети

- Предположим, что пользователи приходят из социальной сети.
- Т.е. есть друзья, есть социальный граф (его часть) и т.д. Это тоже можно добавить в рекомендательную модель:
 - фильтр/перевзвешивание в методе ближайших соседей;
 - дополнительные слагаемые в разложение типа SVD;
 - разложение матрицы доверия (из социального графа) вместе с матрицей рейтингов, меняем априорное распределение для РМF и т.д.

Метрики разнообразия

- Filter bubble: как вывести человека за его привычный круг.
- Можно до конца жизни рекомендовать одно и то же; метрики:
 - diversity разнообразие, мера похожести элементов списка;
 - novelty новизна для пользователя, распространённость продукта, доля его рейтингов;
 - serendipity неожиданность, сюрприз, похожесть на историю пользователя.
- Для всего этого нужно уметь распознавать похожесть контента рекомендованных товаров.

Контекстно-зависимые рекомендации

- CARS (context-aware recommender systems) мы рекомендуем в контексте:
 - временном;
 - ситуативном;
 - географическом;
 - предшествующего поведения пользователей и т.д.

Контекстно-зависимые рекомендации

- Формально контекст это новые измерения в матрице предпочтений.
- Получается "гиперкуб" данных, есть методы тензорного разложения, аналогичного SVD.
- Но часто не хуже работают простые решения отфильтровать контексты и обучить модели только по этим данным, добавить полученные модели и сам контекст как факторы в бленд.

Outline

- Коллаборативная фильтрация
 - Ближайшие соседи, SVD, машины Больцмана
 - Расширения
- Онлайн-модели
 - Постановка задачи и бандиты
 - DGP

Постановка задачи

- Онлайн-модели отличаются от оффлайн-моделей тем, что их главная цель – как можно быстрее «поймать» изменения популярности тех или иных продуктов.
- Данных тут недостаточно, чтобы такие изменения можно было поймать методами коллаборативной фильтрации.
- Поэтому онлайн-методы обычно меньше персонализированы, индивидуальных данных не набёрется просто.

Постановка задачи

- Казалось бы, что может быть проще есть набор продуктов/сайтов a_1, \ldots, a_M со средними рейтингами $\bar{r}_1, \ldots, \bar{r}_M$; давайте упорядочим их по среднему рейтингу и будем рекомендовать пользователю продукты с наивысшим средним рейтингом.
- Однако такая система не будет достаточно чувствительной к быстрым изменениям истинного среднего рейтинга: представьте, что \bar{r}_i внезапно резко уменьшился может понадобиться очень много новых показов, чтобы привести нашу его оценку в соответствие с новым значением.

Пример

- Если мы хотим быстро оценивать средний рейтинг, то мы попадём в ситуацию обучения с подкреплением: есть набор продуктов, их надо рекомендовать, исход заранее неизвестен, и мы хотим оптимизировать суммарный рейтинг.
- Это называется задача о *многоруких бандитах* (multiarmed bandits).

- Кратко пройдёмся по основным стратегиям:
 - ϵ -жадная стратегия (вариант: ϵ -начальная стратегия);
 - ϵ -убывающая стратегия: сделать так, чтобы ϵ убывало со временем;
 - softmax-стратегии: выбираем ручки с вероятностями, связанными с уже успевшей накопиться информацией; вероятность p_k дёрнуть за ручку k равна

$$p_k = rac{e^{\hat{\mu}_k/ au}}{\sum_{i=1}^n e^{\hat{\mu}_k/ au}},$$

где $\hat{\mu}_k$ – наша текущая оценка среднего μ_k , а τ – параметр стратегии, называющийся *температурой* (это больцмановское распределение из статистической физики); температуру обычно постепенно понижают;

- Кратко пройдёмся по основным стратегиям:
 - стратегия Exp3: если мы получили неожиданный результат выбрали ручку с маленькой вероятностью, но получили при этом большой доход стоит попробовать исследовать эту ручку дальше; вероятность выбрать на шаге t ручку k равна

$$p_k(t) = (1-\gamma) rac{w_k(t)}{\sum_{i=1}^n w_i(t)} + rac{\gamma}{n},$$
 где

$$w_j(t+1) = w_j(t)e^{\gamma \frac{r_j(t)}{p_j(t)n}},$$

если ручку j дёргали на шаге t с наблюдаемой наградой $r_j(t).$

- Кратко пройдёмся по основным стратегиям:
 - *Стратегия* INTESTIM. Совершенно другой подход, более «честный» вероятностно - подсчитывать для каждого автомата доверительный интервал с верхней границей $(1-\alpha)$ (в некоторых предположениях, конечно), где α – параметр стратегии, а затем выбирать автомат, у которого максимальна верхняя граница доверительного интервала. Такой интервал легко подсчитать для (нашего) булевого случая испытаний Бернулли, когда награда фактически равна либо 0, либо 1 (понравилось или нет), он равен $\left[ar p-z_lpha\sqrt{rac{ar p(1-ar p)}{n}},ar p+z_lpha\sqrt{rac{ar p(1-ar p)}{n}}
 ight]$, где $ar p=rac{\sum r_i}{n}$ – текущее среднее, а z_{α} берётся из таблиц (специальных функций); например, для $\alpha = 0.05$ будет $z_{\alpha} = 1.96$.

- Кратко пройдёмся по основным стратегиям:
 - Стратегия UCB1. Учитывает неопределённость, «оставшуюся» в той или иной ручке, старается ограничить regret. Если мы из n экспериментов n_i раз дёрнули за i-ю ручку и получили среднюю награду $\hat{\mu}_i$, алгоритм UCB1 присваивает ей приоритет

$$ext{Priority}_i = \hat{\mu}_i + \sqrt{rac{2\log n}{n_i}}.$$

Дёргать дальше надо за ручку с наивысшим приоритетом.

- Но это просто оценка статической ситуации, а мы помним, что надо двигаться быстро.
- Модель Dynamic Gamma—Poisson (DGP): фиксируем период времени t (небольшой) и будем считать показы и клики (рейтинги, отметки «like» и т.д.) за время t.
- Пусть мы в течение периода t показали продукт n_t раз и получили суммарный рейтинг r_t (если это ссылки на странице, например, то будет суммарное число кликов $r_t \leq n_t$).
- Тогда нам в каждый момент t дана последовательность $n_1, r_1, n_2, r_2, \ldots, n_t, r_t$, и мы хотим предсказать p_{t+1} (доля успешных показов в момент t+1, CTR).

- Вероятностные предположения модели DGP:
 - $(r_t \mid n_t, p_t) \sim \operatorname{Poisson}(n_t, p_t)$ (для данного n_t и p_t , r_t распределено по пуассоновскому распределению).
 - ② $p_t = \epsilon_t p_{t-1}$, где $\epsilon_t \sim \operatorname{Gamma}(\mu = 1, \sigma = \eta)$ (средняя доля успешных показов p_t меняется не слишком быстро, а путём умножения на случайную величину ϵ_t , которая имеет гамма-распределение вокруг единицы).
 - ③ Параметрами модели являются параметры распределения $p_1 \sim \operatorname{Gamma}(\mu = \mu_0, \sigma = \sigma_0)$, а также параметр η , который показывает, насколько «гладко» может изменяться p_t .
 - Соответственно, задача заключается в том, чтобы оценить параметры апостериорного распределения

$$(p_{t+1} \mid n_1, r_1, n_2, r_2, \dots, n_t, r_t) \sim \text{Gamma}(\mu = ?, \sigma = ?).$$

- Можно пересчёт параметров в этой модели явно вычислить аналитически.
- Пусть на предыдущем шаге t-1 мы получили некоторую оценку μ_t, σ_t для параметров модели:

$$(p_t \mid n_1, r_1, n_2, r_2, \dots, n_{t-1}, r_{t-1}) \sim \mathrm{Gamma}(\mu = \mu_t, \sigma = \sigma_t),$$
а затем получили новую точку (n_t, r_t) .

• Тогда, обозначив $\gamma_t = \frac{\mu_t}{\sigma_t^2}$ (эффективный размер выборки), сначала уточним оценки μ_t, σ_t :

$$egin{aligned} \gamma_{t|t} &= \gamma_t + n_t, \ \mu_{t|t} &= rac{\mu_t \gamma_t + r_t}{\gamma_{t|t}}, \ \sigma_{t|t}^2 &= rac{\mu_{t|t}}{\gamma_{t|t}}. \end{aligned}$$

• А затем породим новое предсказание для $(p_{t+1} \mid n_1, r_1, \dots, n_t, r_t)$:

$$egin{aligned} \mu_{t+1} &= \mu_{t|t}, \ \sigma_{t+1}^2 &= \sigma_{t|t}^2 + \eta \left(\mu_{t|t}^2 + \sigma_{t|t}^2
ight). \end{aligned}$$

Пример

Априорное распределение

- Тут интересный вопрос чем инициализировать; поскольку надо всё делать быстро, хорошее априорное распределение очень важно.
- Пусть в тестовой выборке N записей, для которых известны показатели $r_1^{(i)}$ и $n_1^{(i)}$ (число показов и успешных показов за первый период времени); мы хотим получить оценку μ_0 и σ_0 для нового, неизвестного сайта, которая должна хорошо аппроксимировать ожидаемое r_1 и r_1 для нового сайта.
- Тогда ответ такой её нужно считать как

$$\begin{split} & \arg \max_{\mu_0,\sigma_0} \left[N \frac{\mu_0^2}{\sigma_0^2} \log \frac{\mu_0}{\sigma_0^2} - N \log \operatorname{Gamma} \left(\frac{\mu_0^2}{\sigma_0^2} \right) + \right. \\ & \left. + \sum_i \left(\log \operatorname{Gamma} \left[r_1^{(i)} + \frac{\mu_0^2}{\sigma_0^2} \right] - \left[r_1^{(i)} + \frac{\mu_0^2}{\sigma_0^2} \right] \log \left[n_1^{(i)} + \frac{\mu_0}{\sigma_0^2} \right] \right) \right]. \end{split}$$

Что дальше

- Здесь тоже масса активно развивающихся направлений.
 - Как совместно оптимизировать сразу много показываемых элементов? Представьте себе homepage большого портала.
 - Какова на самом деле целевая метрика? СТК это средство, а не цель. Для портала user retention? проведённое на портале время? доход рекламодателей?
 - Как именно персонализировать кластеризовать пользователей? как именно сглаживать? каковы признаки пользователей?

Summary

- Оффлайн-системы (персонализированные):
 - метод ближайших соседей: GroupLens;
 - SVD-разложение матриц градиентным спуском, его байесовская версия (РМF);
 - машины Больцмана модель пользователя;
 - 🐠 их расширения: время, контекст, холодный старт.
- Онлайн-системы (поиск трендов):
 - модель DGP для предсказания популярности;
 - многорукие бандиты для решения explore-exploit;
 - расширения: многокритериальная оптимизация, частичная персонализация.

Thank you!

Спасибо за внимание!