

Departamento de Informática de Sistemas y Computadores (DISCA)

fS₀

EEE2: Ejercicio de Evaluación 13 de Enero de 2017

APELLIDOS	NOMBRE	Grupo
DNI	Firma	

- No desgrape las hojas.
- Conteste exclusivamente en el espacio reservado para ello.
- Utilice letra clara y legible. Responda de forma breve y precisa.
- El examen consta de 7 cuestiones, cuya valoración se indica en cada una de ellas.
- 1. Las bibliotecas o librerías son archivos que contienen código de funciones y puede ser enlazadas de forma estática o dinámica. Indique, poniendo una X, cuáles de las siguientes características corresponden a un tipo u otro de enlace o a ambos: (Nota: Un error penaliza un respuesta correcta)

(1,0 punto)

1	Características	Estático	Dinámico
	Genera archivos ejecutables de menor volumen (tamaño)		
	Genera archivos ejecutables que contiene el código propio del proceso		
	junto con el de las librerías		
	En el mapa de memoria del proceso aparecen regiones propias cuyo		
	soporte es el archivo de código de cada librería enlazada		
	Varios procesos pueden compartir el código de la biblioteca una vez		
	ubicado este código en memoria principal		
	Siempre que el SO actualiza la librería, es necesario volver a enlazar la		
	librería		
	El enlace se resuelve en tiempo de ejecución, pudiendo ocasionar		
	retrasos en la ejecución		
	Puede generar múltiples copias en memoria principal de una misma librería		
	En el mapa de memoria el código de las librerías tiene como soporte el		
	archivo de código del propio proceso		

eje	ejecución en la asignación contigua y qué información necesita para	llevarla a cabo:	(0,5 puntos)
2	2		

2. Indique cómo resuelve la MMU (Memory Management Unit) la reubicación de procesos en tiempo de

3. Un sistema con paginación pura (sin memoria virtual), direcciones lógicas de 32 bits, dotado de una memoria principal de 64GBytes, utiliza 20 bits para el número de página y 6 Bytes para cada descriptor de página. Responda de forma justificada a los siguientes apartados:

(1.5 puntos =0.5+0.25+0.25+0.5)

3 a) Formato de la dirección lógica y física con nombre y número de bits de cada campo o elemento

Dirección lógica (nombre y número de bits de cada elemento)

Dirección física (nombre y número de bits de cada elementos)

b) Tamaño de tabla de páginas de un proceso

c) Grado máximo de multiprogramación del sistema considerando procesos de 4GBytes

d) Para una paginación a dos niveles con 256 descriptores de segundo nivel, indique el formato de la dirección lógica y física

Dirección lógica (nombre y número de bits de cada elemento)

Dirección física (nombre y número de bits de cada elementos)

4. En un sistema con paginación por demanda (memoria virtual) y reemplazo local, el tamaño lógico máximo de un proceso es de 4K páginas, mientras que el tamaño de página es de 64KBytes. La siguiente tabla contiene toda la información relativa a los procesos P y Q en el instante (t) t=170:

	Información de los proceso P y Q en t=170										
Proceso	Marco	Página	Instante de	t de última	Bit R	Bit M	Bits				
			carga	referencia	(referencia)	(modificado)	RWX				
P	0x4A	0xC72	160	161	1	0	101				
P	0x4B	0xC71	120	140	1	1	101				
P	0x4C	0xA70	36	152	0	1	110				
P	0x4D	0xA73	30	163	1	1	110				
Q	0x4E	0xA70	40	167	1	0	101				
Q	0x4F	0xA73	42	142	0	1	110				

ŀ	Partiendo siem	pre de	e la	informa	ción de	la tabla,	conteste	cada apa	artado:	(2	2 punt	os=0.	25+0	.5+0.75	5+0.5 _.

	*				\ <u>k</u>		
4	a) Indique qué páginas de P y Q	tienen el bit de	validez a 0 y	escriba el	contenido de	los descriptores	de
•	páginas con bit de validez (v) a	1.					

b) Calcule la dirección lógica que corresponde a la dirección física 0x4D4AB1

Dirección de lógica P -> Dirección Física	Dirección lógica Q -> Dirección Física
0x4D4AB1>	0x4D4AB1>

c) En el instante t=171 la CPU emite la dirección lógica 0xB95603A del proceso P y en el instante t=172 la CPU emite la dirección lógica 0xB95603A del proceso Q. Calcule las direcciones físicas correspondientes si se utiliza un reemplazo con **segunda oportunidad**:

Dirección de lógica P -> Dirección FísicaDirección lógica Q -> Dirección Física0xB95603A --->0xB95603A --->

d) Evolución del contenido de los marcos implicados si se utiliza **reemplazo LRU (least recently used)** y a partir de t=171 la CPU emite direcciones de P cuya serie de referencias es: 0xA71, 0xB40, 0xC72, 0xB51

Marco	t=170 (Inicio)			

5. Al ejecutar el siguiente fragmento de código en C se crean tres procesos:

```
{int fd_pipe[2], fd; /*descriptor tubo, archivo regular*/
int pid;
/*** Tabla Inicial ****************/
 close(1);
 fd=open("result",O WRONLY |O CREAT|O TRUNC,0666);
 dup2(2,3);
 fd=open("datos",O_RDONLY);
                                                                Tabla Inicial
 close(0);close(2);
                                                                 STDIN
                                                             0
 pipe(fd pipe);
                                                                 STDOUT
 pid=fork();
                                                                 STDERR
                                                             2
 if (pid==0)
                                                             3
     { close(fd);
                                                             4
       dup2(3,2);
       /***Tabla de P2 *************/
       execlp("/usr/bin/wc", "wc", "-1",NULL);
 pid=fork();
 if (pid==0)
     { dup2(2,1); dup2(fd,0); dup2(3,2);
       /***Tabla de P3 ***
       execlp("/bin/cat", "cat", NULL);
     }
  close(0); close(2);
      /***Tabla de P1 ***********/
 while(pid != wait(&status));
```

(1.6 puntos=0.4+1.2)

a) Indique el parentesco entre los procesos P1, P2 y P3, y el esquema de comunicación que establecen

b) Indique el contenido de la tabla de descriptores para cada uno de los procesos involucrados en los puntos marcados en el código con /***Tabla ...***/

	Tabla de P1
0	
1	
2	
3	
4	
5	

	Tabla de P2
0	
1	
2	
3	
4	
5	

	Tabla de P3
0	
1	
2	
3	
4	
5	

6. Dado el siguiente listado de un directorio en un sistema POSIX:

permisos	enlaces	usuario	grupo	tamaño	fecha		nombre
drwxr-xr-x	2	sterr	fso	4096	dec	9 2016	•
drwxrwxr-x	8	sterr	fso	4096	sep 1	0 2016	
-r-xr-sr-x	1	sterr	fso	1139706	dec	9 2016	cp1
-r-sr-xr-x	1	sterr	fso	1139706	dec	9 2016	cp2
-r-xr-xr-x	1	sterr	fso	1139706	dec	9 2016	ср3
-rr	1	sterr	fso	9706	dec	9 2016	f1
-rrw-rw-	1	sterr	fso	4157	dec	9 2016	f2
-rw-rr	1	sterr	fso	222	dec	9 2016	f4

(1.4 puntos)

Teniendo en cuenta que los programas cp1, cp2 y cp3 son tres copias idénticas del programa del sistema cp que copia el contenido del archivo que recibe como primer argumento en otro cuyo nombre se indica como segundo argumento. Es decir, "cp1 a b" copia el contenido del archivo a al archivo b, si b no existe lo debe crear y después realizar la copia. Rellene la tabla indicando, si la orden funciona, el EUID y EGID (UID y GID efectivos del proceso al ejecutar la orden) y en caso de error, cuál es el permiso que falla.

(UID,GID)	ORDEN	¿FUNCIO NA?	(EUID,EGID)	Si falla: permiso que hace que falle
(pepe, fso)	cp2 f1 f2			
(sterr, etc)	cp1 f1 f4			
(ana, etc)	cp1 f1 f2			
(ana, etc)	cp1 f1 f5			
(ana, etc)	cp2 f1 f5			
(ana, etc)	cp3 f1 f2			
(ana, etc)	cp3 f4 f2			

7.	Las	siguientes	figuras	hacen	referencia	a	los	tamaños y est	ructuras de los	
	elementos utilizados para formatear una partición MINIX, cuyos bloques son de									
	1KByte y con 1 zona= 1 bloque. Obsérvese que todos los campos del nodo-i son									
	de 16 bits salvo "Nº de enlaces" y GID que son de 8 bits.									
La entrada de directorio tiene el siguiente formato:										

a) Calcule el tamaño de partición teniendo en cuenta que ha sido formateada para obtener el número máximo de zonas y disponer del número máximo de nodos-i.

b) Número máximo de nodos-i

Considerando un sistema de archivos Minix con los parámetros descritos anteriormente que tiene un tamaño de partición 32MBytes (Megabytes) y 32 K nodos-i, responda:

- c) Número de bloques que ocupa el Mapa de bits nodos-i, el Mapa de bits Zonas y los Nodos-i
- d) Espacio libre en disco después de formatear (incluye la creación del directorio raíz)
- e) Número máximo de enlaces físicos que puede tener un archivo
- f) Número máximo de enlaces simbólicos que puede tener un archivo
- g) Número máximo de directorios que puede contener un directorio
- h) Número de zonas que ocupan 10 archivos de 100 Bytes
- i) Número de zonas que ocupan 10 archivos de 100 KBytes