CORSO DI LAUREA IN INFORMATICA

FOGLIO DI ESERCIZI 6- GEOMETRIA E ALGEBRA LINEARE 2024/25

Esercizio 6.1 (7.42). Sia $V = \langle v_1, v_2, v_3 \rangle$ il sottospazio di \mathbb{R}^4 generato dai vettori

$$v_1 = (k, 0, 0, 1), v_2 = (2, 0, 0, 0), v_3 = (2, 0, k, 0)$$
 (k parametro reale).

- a) Trovare una base di V al variare del parametro k.
- b) Posto k = 0, completare la base trovata al punto precedente ad una base di \mathbb{R}^4 .
- c) Stabilire per quali valori di k il vettore w = (-3, 0, -1, 1) appartiene a V.

SOLUZIONE:

a) Per rispondere anche alla domanda c) riduciamo a gradini la matrice A|b in cui A ha per colonne i vettori v_1, v_2, v_3 e b è la colonna corrispondente al vettore w.

$$\begin{bmatrix} k & 2 & 2 & | & -3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & k & | & -1 \\ 1 & 0 & 0 & | & 1 \end{bmatrix} \Rightarrow \begin{matrix} IV \\ I \\ k \\ 2 \\ 2 \\ | & -3 \\ 0 & 0 & k & | & -1 \\ 0 & 0 & 0 & | & 0 \end{matrix} \Rightarrow \begin{matrix} II - kI \\ 0 & 2 & 2 & | & -3 - k \\ 0 & 0 & k & | & -1 \\ 0 & 0 & 0 & | & 0 \end{matrix}$$

Consideriamo solo la matrice A:

- Se $k \neq 0$, allora $\operatorname{rg}(A) = 3$, quindi i tre vettori sono linearmente indipendenti e una base di V è data da $\mathcal{B}(V) = \{v_1, v_2, v_3\}$.
- Se k = 0, $\operatorname{rg}(A) = 2$ e una base di V è data da $\mathcal{B}(V) = \{v_1, v_2\}$.
- c) Dalla matrice ridotta notiamo che
 - Se $k \neq 0$, allora $\operatorname{rg}(A) = \operatorname{rg}(A|b) = 3$, quindi $w \in V$.
 - Se k = 0, $\operatorname{rg}(A) = 2 < \operatorname{rg}(A|b) = 3$, quindi $w \notin V$
- b) Per k=0 abbiamo preso come base di V l'insieme $\mathcal{B}=\{v_1,v_2\}$. Si tratta quindi di aggiungere a questi due vettori altri due vettori in modo da ottenere una base di \mathbb{R}^4 . A tale scopo possiamo ridurre a gradini la matrice ottenuta affiancando a v_1 e v_2 i vettori della base canonica, in modo da individuare tra questi i vettori da aggiungere. Notiamo però che per k=0, $v_1=(0,0,0,1)$ e $v_2=(2,0,0,0)$, quindi evidentemente i vettori della base canonica da aggiungere per ottenere una base di \mathbb{R}^4 sono $e_2=(0,1,0,0)$ e $e_3=(0,0,1,0)$. Infine la base cercata può essere

$$\mathcal{B}(\mathbb{R}^4) = \{v_1, v_2, e_2, e_3\}$$

Esercizio 6.2 (7.45). Si considerino i vettori di \mathbb{R}^3 : $v_1 = (1, 2, 1), \ v_2 = (1, 1, -1), \ v_3 = (1, 1, 3), \ w_1 = (2, 3, -1), \ w_2 = (1, 2, 2), \ w_3 = (1, 1, -3).$

- a) Si calcoli la dimensione dei sottospazi $V = \langle v_1, v_2, v_3 \rangle$, $W = \langle w_1, w_2, w_3 \rangle$.
- b) Si trovi una base del sottospazio intersezione $V \cap W$.

SOLUZIONE:

a) Riduciamo a gradini le matrici $A \in B$ associate ai vettori $v_i \in w_i$ rispettivamente:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix} \Rightarrow II - 2I \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & -2 & 2 \end{bmatrix} \Rightarrow III - 2II \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ -3 & 2 & -1 \end{bmatrix} \Rightarrow III - I \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 5 & 5 \end{bmatrix} \Rightarrow III - 5II \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Quindi

$$\dim(V) = \operatorname{rg}(A) = 3$$
$$\dim(W) = \operatorname{rg}(B) = 2$$

b) Dai risultati del punto precedente osserviamo che V e W sono sottospazi di \mathbb{R}^3 e che in particolare V ha dimensione 3, quindi $V = \mathbb{R}^3$. Di conseguenza:

$$V \cap W = \mathbb{R}^3 \cap W = W$$

Dai calcoli eseguiti nel punto precedente, tenendo conto che nello scrivere B abbiamo scambiato la naturale posizione di w_1 e w_3 , otteniamo che:

$$\mathcal{B}(V \cap W) = \mathcal{B}(W) = \{w_3, \ w_2\}.$$

Esercizio 6.3 (7.75). Si considerino i polinomi a coefficienti reali

$$p_1 = x^2 + x$$
, $p_2 = kx^2 - 1$, $p_3 = x^2 + 2x + k$.

- a) Stabilire per quali valori di k i tre polinomi formano una base dello spazio $\mathbb{R}_2[x]$
- b) Per i valori di k per cui i polinomi sono dipendenti, trovare uno o più polinomi che completano l'insieme $\{p_1, p_2, p_3\}$ ad una base di $\mathbb{R}_2[x]$.

SOLUZIONE:

Ricordiamo che

$$\mathbb{R}_2[x] = \{a_0x^2 + a_1x + a_2 : a_0, a_1, a_2 \in \mathbb{R}\}\$$

A ogni polinomio possiamo quindi associare le sue componenti (a_0, a_1, a_2) rispetto alla base canonica $\mathcal{B} = \{x^2, x, 1\}$. In particolare ai polinomi p_1, p_2, p_3 possiamo associare i vettori:

$$p_1 = (1, 1, 0)$$

 $p_2 = (k, 0, -1)$
 $p_3 = (1, 2, k)$

Di conseguenza i polinomi p_1, p_2 e p_3 formano una base di $\mathbb{R}_2[x]$ sse i tre vettori p_1, p_2 e p_3 formano una base di \mathbb{R}^3 . In particolare $\mathbb{R}_2[x]$ ha dimensione 3.

Per rispondere a entrambe le domande dell'esercizio riduciamo a gradini la matrice associata ai tre vettori a cui affianchiamo la matrice identica 3×3 .

$$\begin{bmatrix} 1 & k & 1 & | & 1 & 0 & 0 \\ 1 & 0 & 2 & | & 0 & 1 & 0 \\ 0 & -1 & k & | & 0 & 0 & 1 \end{bmatrix} \Rightarrow II - I \begin{bmatrix} 1 & k & 1 & | & 1 & 0 & 0 \\ 0 & -k & 1 & | & -1 & 1 & 0 \\ 0 & -1 & k & | & 0 & 0 & 1 \end{bmatrix} \Rightarrow III - I \begin{bmatrix} 1 & k & 1 & | & 1 & 0 & 0 \\ 0 & -1 & k & | & 0 & 0 & 1 \\ 0 & -1 & k & | & 0 & 0 & 1 \\ 0 & -k & 1 & | & -1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & k & 1 & | & 1 & 0 & 0 \\ 0 & -1 & k & | & 0 & 0 & 1 \\ 0 & 0 & 1 - k^2 & | & -1 & 1 & -k \end{bmatrix}$$

- a) Consideriamo solo la prima parte della matrice: se $k \neq \pm 1$ la matrice associata ai vettori p_1, p_2, p_3 ha rango 3, quindi i tre vettor isono linearmente indipendenti. Analogamente i tre polinomi sono linearmente indipendenti e formano una base di $\mathbb{R}_2[x]$.
- b) Se $k = \pm 1$ la matrice dei coefficienti ha rango 2 e dalla matrice ridotta ricaviamo che p_2 e p_3 sono linearmente indipendenti. Inoltre considerando tutta la matrice possiamo notare che la prima, la seconda e la quarta colonna (per esempio) sono linearmente indipendenti. Ricordiamo che la quarta colonna corrisponde al vettore (1,0,0) ovvero al polinomio $q = x^2$. Quindi:
 - Se k=1 una possibile base di $\mathbb{R}_2[x]$ è:

$$\mathcal{B} = \{ p_1 = x^2 + x, \quad p_2 = x^2 - 1, \quad q = x^2 \}$$

– Se k=-1 una possibile base di $\mathbb{R}_2[x]$ è:

$$\mathcal{B} = \{ p_1 = x^2 + x, \quad p_2 = -x^2 - 1, \quad q = x^2 \}$$

Esercizio 6.4 (7.75). Si considerino i polinomi a coefficienti reali

$$p_1 = x^2 + x$$
, $p_2 = kx^2 - 1$, $p_3 = x^2 + 2x + k$.

- a) Stabilire per quali valori di k i tre polinomi sono linearmente dipendenti.
- b) Per i valori di k per cui i polinomi sono dipendenti esprimere un polinomio come combinazione lineare degli altri.

SOLUZIONE:

Ricordiamo che

$$\mathbb{R}_2[x] = \{a_0x^2 + a_1x + a_2 : a_0, a_1, a_2 \in \mathbb{R}\}\$$

A ogni polinomio possiamo quindi associare le sue componenti (a_0, a_1, a_2) rispetto alla base canonica $\mathcal{B} = \{x^2, x, 1\}$. Di conseguenza p_1, p_2 e p_3 sono linearmente indipendenti sse lo sono i tre vettori

$$p_1 = (1, 1, 0), p_2 = (k, 0, -1), p_3 = (1, 2, k)$$

a) Riduciamo a gradini la matrice associata ai tre vettori

$$\begin{bmatrix} 1 & k & 1 \\ 1 & 0 & 2 \\ 0 & -1 & k \end{bmatrix} \Rightarrow II - I \begin{bmatrix} 1 & k & 1 \\ 0 & -k & 1 \\ 0 & -1 & k \end{bmatrix} \Rightarrow III \begin{bmatrix} 1 & k & 1 \\ 0 & -1 & k \\ 0 & 0 & 1 - k^2 \end{bmatrix}$$

Dobbiamo distinguere tre casi

- Se $k^2-1\neq 0$, ovvero $k\neq \pm 1$ la matrice ha rango 3, quindi $p_1,\ p_2$ e p_3 sono linearmente indipendenti.
- Se k = 1 o k = -1 la matrice ha rango 2, quindi p_1, p_2 e p_3 sono linearmente dipendenti.
- b) Risolviamo l'equazione $xp_1 + yp_2 + zp_3 = 0$. Abbiamo già ridotto a gradini la matrice associata a tale sistema (senza la colonna nulla dei termini noti). Dobbiamo distinguere due casi:
 - Se k=1 otteniamo il sistema

$$\begin{cases} x + y + z = 0 \\ -y + z = 0 \end{cases} \Rightarrow \begin{cases} x = -2t \\ y = t \\ z = t \end{cases} \forall t \in \mathbb{R}$$

Quindi

$$-2t \cdot p_1 + t \cdot p_2 + t \cdot p_3 = 0 \qquad \forall t \in \mathbb{R}$$

e, per esempio $p_3 = 2p_1 - p_2$.

- Se k = -1 otteniamo il sistema

$$\begin{cases} x - y + z = 0 \\ -y - z = 0 \end{cases} \Rightarrow \begin{cases} x = -2t \\ y = -t \\ z = t \end{cases} \forall t \in \mathbb{R}$$

Quindi

$$-2t \cdot p_1 - t \cdot p_2 + t \cdot p_3 = 0 \qquad \forall t \in \mathbb{R}$$

e, per esempio $p_3 = 2p_1 + p_2$.

Esercizio 6.5 (7.78). Nello spazio vettoriale $V = \mathbb{R}_2[x]$ dei polinomi reali di grado non superiore a due, si considerino gli elementi

$$p_1 = x - 1$$
, $p_2 = x + 1$, $p_3 = x^2 - x$.

- a) Si mostri che l'insieme $\mathcal{B} = \{p_1, p_2, p_3\}$ è una base di V.
- b) Si trovino le coordinate del polinomio costante 1 nella base \mathcal{B} .

SOLUZIONE:

Ricordiamo che a ogni polinomio $a_0x^2 + a_1x + a_2 \in \mathbb{R}_2[x]$ possiamo associare le sue componenti (a_0, a_1, a_2) rispetto alla base canonica $\mathcal{B} = \{x^2, x, 1\}$. Di conseguenza ai polinomi p_1, p_2 e p_3 associamo i tre vettori

$$p_1 = (0, 1, -1), \quad p_2 = (0, 1, 1), \quad p_3 = (1, -1, 0)$$

Quindi i polinomi p_1, p_2 e p_3 formano una base di $\mathbb{R}_2[x]$ sse i tre vettori p_1, p_2 e p_3 formano una base di \mathbb{R}^3 . In particolare $\mathbb{R}_2[x]$ ha dimensione 3, ed è sufficiente verificare che i tre vettori siano linearmente indipendenti.

Inoltre al polinomio costante 1 associamo il vettore f = (0, 0, 1), e le sue coordinate rispetto a \mathcal{B} si trovano risolvendo il sistema $x_1p_1 + x_2p_2 + x_3p_3 = f$.

Per rispondere ad entrambe le domande riduciamo quindi a gradini la matrice associata ai quattro vettori.

$$\begin{bmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 1 & -1 & | & 0 \\ -1 & 1 & 0 & | & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} III \\ -1 & 1 & 0 & | & 1 \\ 1 & 1 & -1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \Rightarrow II + I \begin{bmatrix} -1 & 1 & 0 & | & 1 \\ 0 & 2 & -1 & | & 1 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

a) La matrice dei coefficienti, associata a p_1, p_2 e p_3 , ha rango 3, quindi i tre polinomi sono linearmente indipendenti e formano una base di $\mathbb{R}_2[x]$.

b) Torniamo al sistema associato ai quattro vettori:

$$\Rightarrow \begin{cases} -x_1 + x_2 = 1 \\ 2x_2 - x_3 = 1 \\ x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -\frac{1}{2} \\ x_2 = \frac{1}{2} \\ x_3 = 0 \end{cases} \Rightarrow 1 = -\frac{1}{2} \cdot p_1(x) + \frac{1}{2} \cdot p_2(x)$$

Esercizio 6.6 (7.79). Sia V lo spazio vettoriale dei polinomi a coefficienti reali nella variabile x, di grado minore o uquale a 3.

- a) Si mostri che $U = \{f(x) \in V \mid f(1) = f(2) = 0\}$ è un sottospazio vettoriale di V e se ne trovi una base.
- b) Si completi la base trovata al punto precedente ad una base di V.

SOLUZIONE:

Sia $f(x) = ax^3 + bx^2 + cx + d$ il generico elemento di V. Le due condizioni f(1) = f(2) = 0 si esplicitano in

$$a+b+c+d=0$$
, $8a+4b+2c+d=0$

Inoltre a ogni polinomio possiamo associare il vettore formato dalle sue componenti rispetto alla base canonica $\{x^3, x^2, x, 1\}$ di $\mathbb{R}_3[x]$. In particolare al generico polinomio $f(x) = ax^3 + bx^2 + cx + d$ associamo il vettore (a, b, c, d) di \mathbb{R}^4 , e all'insieme U possiamo associare l'insieme

$$U' = \{(a, b, c, d) \in \mathbb{R}^4 \mid a+b+c+d=0, \quad 8a+4b+2c+d=0\}$$

a) L'insieme U' è uno spazio vettoriale in quanto si tratta dell'insieme delle soluzione di un sistema omogeneo. Analogamente l'insieme U è uno spazio vettoriale.

Per determinare una base di U', e quindi di U, risolviamo il sistema omogeneo:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 8 & 4 & 2 & 1 & | & 0 \end{bmatrix} \Rightarrow II - 8I \begin{bmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 0 & -4 & -6 & -7 & | & 0 \end{bmatrix} \Rightarrow \begin{cases} a = \frac{1}{2}s + \frac{3}{4}t \\ b = -\frac{3}{2}s - \frac{7}{4}t \\ c = s \\ d = t \end{cases}$$

Quindi una base di U' è

$$\mathcal{B}(U') = \left\{ \left(\frac{1}{2}, -\frac{3}{2}, 1, 0\right), \left(\frac{3}{4}, -\frac{7}{4}, 0, 1\right) \right\} \text{ ovvero } \mathcal{B}(U') = \left\{ (1, -3, 2, 0), (3, -7, 0, 2) \right\}$$

e la corrisponedente base di U è

$$\mathcal{B}(U) = \left\{ x^3 - 3x^2 + 2x, \quad 3x^3 - 7x^2 + 2 \right\}$$

b) Basta notare che la matrice

$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & -3 & -7 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

ha rango 4, quindi

$$\mathcal{B} = \{(1,0,0,0), (0,1,0,0), (1,-3,2,0), (3,-7,0,2)\}$$

è una base di \mathbb{R}^4 , e la corrisponedente base di V, completamento della base di U, è

$$\mathcal{B}(V) = \{x^3, x^2, x^3 - 3x^2 + 2x, 3x^3 - 7x^2 + 2\}$$

Esercizio 6.7 (7.83). Sia W il sottoinsieme dello spazio di polinomi $\mathbb{R}_3[x]$ definito da

$$W = \{p(x) \in \mathbb{R}_3[x] \mid p''' = 0, \ p(1) = 0\}$$

(p''' è la derivata terza di p)

- a) Mostrare che W è un sottospazio vettoriale di $\mathbb{R}_2[x]$.
- b) Trovare una base e la dimensione di W.

c) Determinare le coordinate del polinomio $p(x) = 2x^2 - x - 1 \in W$ rispetto alla base trovata al punto b).

SOLUZIONE:

a) Sia $p(x) = ax^3 + bx^2 + cx + d$ il generico elemento di $\mathbb{R}_3[x]$. Per dimostrare che W è un sottospazio vettoriale di $\mathbb{R}_2[x]$ dobbiamo innanzitutto verificare che W è un sottoinsieme di $\mathbb{R}_2[x]$. In effetti la condizione p''' = 0 applicata al generico elemento di $\mathbb{R}_3[x]$ diventa 6a = 0. Quindi se $p(x) \in W$ deve essere del tipo $p(x) = bx^2 + cx + d$ cioè un elemento di $\mathbb{R}_2[x]$. Inoltre W può essere riscritto come

$$W = \{ p(x) \in \mathbb{R}_2[x] \mid p(1) = 0 \}$$

Per dimostrare ora che si tratta di un sottospazio di $\mathbb{R}_2[x]$ dobbiamo verificare che è chiuso rispetto alla somma e al prodotto per scalari.

- W è chiuso rispetto alla somma, infatti presi due elementi di W anche la loro somma sta in $W\colon$

$$(p_1 + p_2)(1) = p_1(1) + p_2(1) = 0 + 0 = 0$$

- W è chiuso rispetto al prodotto per scalari, infatti preso un elemento di W e uno scalare $\lambda \in \mathbb{R}$, anche il loro prodotto sta in W:

$$(\lambda p)(1) = \lambda \cdot p(1) = \lambda \cdot 0 = 0$$

b) Traducendo la condizione p(1) = 0 sui coefficienti del generico elemento $bx^2 + cx + d$ di $\mathbb{R}_2[x]$ otteniamo b + c + d = 0, ovvero d = -b - c. Quindi ogni elemento di W è del tipo

$$p(x) = bx^{2} + cx - b - c = b(x^{2} - 1) + c(x - 1)$$

I due polinomi, linearmente indipendenti, $p_1(x) = x^2 - 1$ e $p_2(x) = x - 1$ costituiscono una base di W, quindi

$$\dim(W) = 2$$
, $\mathcal{B}(W) = \{ p_1(x) = x^2 - 1, \ p_2(x) = x - 1 \}$

c) Per determinare le coordinate di p(x) rispetto alla base \mathcal{B} trovata la cosa più semplice è forse associare ad ogni polinomio le sue componenti rispetto alla base canonica $\{x^2, x, 1\}$ di $\mathbb{R}_2[x]$. In particolare ai polinomi $p_1(x), p_2(x), p(x)$ possiamo associare i vettori:

$$p_1 = (1, 0, -1), \quad p_2 = (0, 1, -1), \quad p = (2, -1, -1)$$

Risolviamo quindi l'equazione $xp_1 + yp_2 = p$:

$$\begin{cases} x = 2 \\ y = -1 \\ -x - y = -1 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = -1 \end{cases}$$

Infine $p(x) = 2p_1(x) - p_2(x)$, ovvero p(x) ha coordinate $(2, -1)_{\mathcal{B}}$ rispetto alla base \mathcal{B} trovata al punto precedente.

Esercizio 6.8 (7.99). Sia W il sequente sottoinsieme dello spazio delle matrici 3×3 :

$$W = \{ A \in M_{3,3}(\mathbb{R}) \mid A = A^T, \ tr(A) = 0 \}$$

- a) Mostrare che W è un sottospazio vettoriale di $M_{3.3}(\mathbb{R})$.
- b) Trovare una base di W.
- c) Calcolare le coordinate di $B=\begin{bmatrix}2&1&1\\1&-2&3\\1&3&0\end{bmatrix}\in W$ rispetto alla base trovata al punto b).

SOLUZIONE

Notiamo che la condizione $A^T=A$ implica che le matrici di W siano simmetriche. Inoltre la condizione tr(A)=0 implica che la somma degli elementi della diagonale principale sia 0. Di conseguenza le matrici di W sono del tipo

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & -a - d \end{bmatrix} \qquad \text{con } a, b, c, d, e \in \mathbb{R}$$

a) Per mostrare che W, che è un insieme non vuoto, è un sottospazio vettoriale di $M_{3,3}(\mathbb{R})$ dobbiamo verificare che è chiuso rispetto alla somma e al prodotto per scalari.

- SOMMA. Siano

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & -a - d \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} x & y & z \\ y & w & t \\ z & t & -x - w \end{bmatrix} \qquad \text{con } x, y, z, w, t, a, b, c, d, e \in \mathbb{R}$$

due qualsiasi matrici di W. Allora

$$A+B = \begin{bmatrix} a+x & b+y & c+z \\ b+y & d+w & e+t \\ c+z & e+t & -a-x-d-w \end{bmatrix} \in W$$

Quindi W è chiuso rispetto alla somma.

- PRODOTTO per SCALARI. Sia

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & -a - d \end{bmatrix}$$

un elemento di W e $\lambda \in \mathbb{R}$ uno scalare. Allora

$$\lambda A = \begin{bmatrix} \lambda a & \lambda b & \lambda c \\ \lambda b & \lambda d & \lambda e \\ \lambda c & \lambda e & -\lambda a - \lambda d \end{bmatrix} \in W$$

Quindi W è anche chiuso rispetto al prodotto per scalari.

b) Riscrivendo in maniera più opportuna il generico elemento di W otteniamo:

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & -a - d \end{bmatrix}$$

$$= a \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} + b \cdot \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + c \cdot \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + d \cdot \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} + e \cdot \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Di conseguenza le matrici

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad A_{3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$

$$A_{4} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad A_{5} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

generano tutto W. Essendo anche linearmente indipendenti, una base di W è data da $\mathcal{B}(W) = \{A_1, A_2, A_3, A_4, A_5\}.$

c) È immediato verificare che $B = 2A_1 + A_2 + A_3 - 2A_4 + 3A_5$, di conseguenza le coordinate di B rispetto alla base trovata al punto precedente sono $(2, 1, 1, -1, 3)_B$.