3D Surfaces

source: http://iparla.labri.fr/publications/2007/BS07b/sketch_teaser.jpg

Mesh Representations & Subdivision Surfaces

- Tom Funkhouser
- Princeton University
- •COS 426, Spring 2007

3D Object Representations

- Raw data
 - o Voxels
 - o Point cloud
 - o Range image
- o Polygons

- Surfaces
 - o Mesh
 - o Subdivision
 - o Parametric
 - o Implicit

- Solids
- o Octree
- o BSP tree
- o CSG
- o Sweep

- High-level structures
- o Scene graph
- o Application specific

Surfaces

- What makes a good surface representation?
 - o Accurate
 - o Concise
 - o Intuitive specification
 - o Local support
 - o Affine invariant
 - o Arbitrary topology
 - o Guaranteed continuity
 - o Natural parameterization
 - o Efficient display
 - o Efficient intersections

H&B Figure 10.46

2D Scalar Field

•
$$z = f(x,y)$$

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & \text{if } x^2 + y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$

How do you visualize this function?

Height Field

Visualizing an explicit function

$$z = f(x,y)$$

Adding contour curves

$$f(x,y) = c$$

Implicit → Explicit 2D (Marching Squares Algorithm)

Marching Squares

- Sample function f at every grid point x_i, y_i
- For every point $f_{ij} = f(x_i, y_j)$ either $f_{ij} \le c$ or $f_{ij} > c$

Cases for Vertex Labels

16 cases for vertex labels

4 unique mod. symmetries

Ambiguities of Labelings

Ambiguous labels

Different resulting contours

Resolution by subdivision (where possible)

Marching Squares Examples

Can you do better?

Interpolating Intersections

- Approximate intersection
 - Midpoint between x_i, x_{i+1} and y_i, y_{i+1}
 - Better: interpolate
- If f_{ij} = a is closer to c than b = f_{i+1 j} then intersection is closer to (x_i, y_i):

$$\frac{x - x_i}{x_{i+1} - x} = \frac{c - a}{b - c}$$

 Analogous calculation for y direction

Marching Squares Examples

Implicit → Explicit 3D (Marching Cubes Algorithm)

3D Scalar Fields

- Volumetric data sets
- Example: tissue density
- Assume again regularly sampled

$$x_i = x_0 + i\Delta x$$

$$y_j = y_0 + j\Delta y$$

$$z_k = z_0 + k\Delta z$$

- Represent as voxels
- Two rendering methods
 - Isosurface rendering
 - Direct volume rendering

Isosurfaces

Generalize contour curves to 3D

- Isosurface given by f(x,y,z) = c
 - f(x, y, z) < c inside
 - f(x, y, z) = c surface
 - f(x, y, z) > c outside

Marching Cubes

- Display technique for isosurfaces
- 3D version of marching squares
- How many possible cases?

 $2^8 = 256$

Marching Cubes

• 14 cube labelings (after elimination symmetries)

Marching Cube Tessellations

- Generalize marching squares, just more cases
- Interpolate as in 2D
- Ambiguities similar to 2D

Marching Squares Examples

3D Object Representations

- Raw data
 - o Voxels
 - o Point cloud
 - o Range image
 - o Polygons

- Surfaces
 - o Mesh
 - o Subdivision
 - o Parametric
 - o Implicit

- Solids
- o Octree
- o BSP tree
- o CSG
- o Sweep

- High-level structures
- o Scene graph
- o Application specific

Polygon Meshes

- How should we represent a mesh in a computer?
 - o Efficient traversal of topology
 - o Efficient use of memory
 - o Efficient updates
- Mesh Representations
 - o Independent faces
 - o Vertex and face tables
 - o Adjacency lists
 - o Winged-Edge
 - o Half-Edge
 - oetc.

Independent Faces

Each face lists vertex coordinates

o Redundant vertices

o No adjacency information

FACE TABLE

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline F_1 & (x_1,\,y_1,\,z_1) & (x_2,\,y_2,\,z_2) & (x_3,\,y_3,\,z_3) \\ F_2 & (x_2,\,y_2,\,z_2) & (x_4,\,y_4,\,z_4) & (x_3,\,y_3,\,z_3) \\ F_3 & (x_2,\,y_2,\,z_2) & (x_5,\,y_5,\,z_5) & (x_4,\,y_4,\,z_4) \\ \hline \end{array}$$

Vertex and Face Tables

- Each face lists vertex references
 - o Shared vertices

o Still no adjacency information (x₃, y₃, z₃)

VERTEX TABLE

	X ₁		Z_1
V_2	X ₂	Y_2	Z_2
V_3	Х3	Y_3	Z_3
	X_4	Y_4	Z_4
V_5	X ₅	Y_5	Z_5

FACE TABLE

F ₁	٧1	V ₂ V ₄ V ₅	٧3
F_2	٧2	V_4	٧3
F ₃	٧2	V_5	V_4

Possible Queries

- •Which faces use this vertex?
- •Which edges use this vertex?
- •Which faces border this edge?
- •Which edges border this face?
- •Which faces are adjacent to this face?

Adjacency Lists

 Store all vertex, edge, and face adjacencies o Efficient adjacency traversal o Extra storage

Partial Adjacency Lists

 Can we store only some adjacency relationships and derive others?

Winged Edge

Adjacency encoded in edges
 o All adjacencies in O(1) time
 o Little extra storage (fixed records)
 o Arbitrary polygons

Winged Edge

• Example:

VERTEX TABLE							
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁			
V ₂	^2 X ₃	γ ₂	Z ₂	е ₆ ез			
٧4	X ₄	Υ ₄	Z_4	e ₅			
V ₅	X ₅	Υ ₅	Z ₅	e ₆			

EDGE TABLE						12	21	22
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	٧1	V_2	F ₁		e ₁	e ₁	ез	e ₆
ез	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	е7	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e_4	е7
e ₆	V ₂	V_5	F ₃		e ₅		e ₇	e ₇
e ₇	٧4	V_5		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE			
F ₁	e ₁		
F ₂	e ₃		
F ₃	e ₅		

Simple Triangle Mesh

- Do not store edges at all
 oAll faces have 3 vertices and 3 neighbors
- Store adjacency in vertices and faces
 o For each face: 3 vertices and 3 faces
 o For each vertex: N faces

3D Object Representations

- Raw data
 - o Voxels
 - o Point cloud
 - o Range image
 - o Polygons

- Surfaces
 - o Mesh
 - o Subdivision
 - o Parametric
 - o Implicit

- Solids
- o Octree
- o BSP tree
- o CSG
- o Sweep

- High-level structures
- o Scene graph
- o Application specific

Surfaces

- What makes a good surface representation?
 - o Accurate
 - o Concise
 - o Intuitive specification
 - o Local support
 - o Affine invariant
 - o Arbitrary topology
 - Guaranteed continuity
 - o Natural parameterization
 - o Efficient display
 - o Efficient intersections

H&B Figure 10.46

Subdivision

How do you make a smooth curve?

Subdivision Surfaces

 Coarse mesh & subdivision rule o Define smooth surface as limit of sequence of refinements

(d)

Key Questions

- How refine mesh?
 o Aim for properties like smoothness
- How store mesh?
 o Aim for efficiency for implementing subdivision rules

Subdivision Surfaces – A 3D example

Applications: Computer Graphics Animation

Subdivision Schemes

Visual Comparison

Different subdivision schemes produce similar results for smooth meshes.

Initial mesh

Loop

Catmull-Clark

Catmull-Clark, after triangulation

Subdivision Surfaces

Advantages:

o Simple method for describing complex surfaces

o Relatively easy to implement

- o Arbitrary topology
- o Local support
- o Guaranteed continuity
- o Multiresolution

• Difficulties:

- o Intuitive specification
- o Parameterization
- o Intersections

Summary

Feature	Polygonal Mesh	Subdivision Surface		
Accurate	No	Yes		
Concise	No	Yes		
Intuitive specification	No	No		
Local support	Yes	Yes		
Affine invariant	Yes	Yes		
Arbitrary topology	Yes	Yes		
Guaranteed continuity	No	Yes		
Natural parameterization	No	No		
Efficient display	Yes	Yes		
Efficient intersections	No	No		