Clustering

Outline

- Introduction
- K-means clustering
- Hierarchical clustering

Classification vs. Clustering

Classification: Supervised learning:
Learns a method for predicting the instance class from pre-labeled (classified) instances

Clustering

Unsupervised learning: Finds "natural" grouping of instances given un-labeled data

Clustering Methods

- Many different method and algorithms:
 - For numeric and/or symbolic data
 - Deterministic vs. probabilistic
 - Exclusive vs. overlapping
 - Hierarchical vs. flat
 - Top-down vs. bottom-up

Clusters: exclusive vs. overlapping

Simple 2-D representation

Non-overlapping

Venn diagram

Overlapping

Clustering Evaluation

- Manual inspection
- Benchmarking on existing labels
- Cluster quality measures
 - distance measures
 - high similarity within a cluster, low across clusters

The distance function

- Simplest case: one numeric attribute A
 - Distance(X,Y) = A(X) A(Y)
- Several numeric attributes:
 - Distance(X,Y) = Euclidean distance between X,Y
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary

Simple Clustering: K-means

Works with numeric data only

- 1) Pick a number (K) of cluster centers (at random)
- Assign every item to its nearest cluster center (e.g. using Euclidean distance)
- 3) Move each cluster center to the mean of its assigned items
- 4) Repeat steps 2,3 until convergence (change in cluster assignments less than a threshold)

to the closest

Assign

cluster

center

each point

Y

Move
each cluster
center
to the mean
of each cluster

Reassign
points
closest to a
different new
cluster center

Q: Which points are reassigned?

K-means example, step 4

re-compute

cluster

means

move cluster centers to cluster means

Discussion, 1

What can be the problems with K-means clustering?

Discussion, 2

- Result can vary significantly depending on initial choice of seeds (number and position)
- Can get trapped in local minimum
 - Example:
 initial
 cluster
 centers

• Q: What can be done?

Discussion, 3

A: To increase chance of finding global optimum: restart with different random seeds.

K-means clustering summary

Advantages

- Simple, understandable
- items automatically assigned to clusters

Disadvantages

- Must pick number of clusters before hand
- All items forced into a cluster
- Too sensitive to outliers

K-means clustering - outliers ?

What can be done about outliers?

K-means variations

- K-medoids instead of mean, use medians of each cluster
 - Mean of 1, 3, 5, 7, 9 is
 - Mean of 1, 3, 5, 7, 1009 is
 - Median of 1, 3, 5, 7, 1009 is
 - Median advantage: not affected by extreme values
- For large databases, use sampling

*Hierarchical clustering

- Bottom up
 - Start with single-instance clusters
 - At each step, join the two closest clusters
 - Design decision: distance between clusters
 - E.g. two closest instances in clusters vs. distance between means
- Top down
 - Start with one universal cluster
 - Find two clusters
 - Proceed recursively on each subset
 - Can be very fast
- Both methods produce a dendrogram

Agglomerative Hierarchical Clustering

... you will find the description and an example here:

https://www.learndatasci.com/glossary/hierarchical-clustering/

Other Clustering Approaches

- EM probability based clustering
- Bayesian clustering
- SOM self-organizing maps

....

Discussion

- Can interpret clusters by using supervised learning
 - learn a classifier based on clusters
- Decrease dependence between attributes?
 - pre-processing step
 - E.g. use principal component analysis
- Can be used to fill in missing values
- Key advantage of probabilistic clustering:
 - Can estimate likelihood of data
 - Use it to compare different models objectively

Examples of Clustering Applications

- Marketing: discover customer groups and use them for targeted marketing and re-organization
- Astronomy: find groups of similar stars and galaxies
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Genomics: finding groups of gene with similar expressions

. . . .

Clustering Summary

- Unsupervised
- Many approaches
 - K-means simple, sometimes useful
 - K-medoids is less sensitive to outliers
 - Hierarchical clustering works for symbolic attributes
- Evaluation is a problem

Principal Component Analysis (PCA)

... you will find (detailed) description here:

http://setosa.io/ev/principal-component-analysis/

https://youtu.be/ UVHneBUBW0

http://www.cs.otago.ac.nz/cosc453/student tutorials/principal components.pdf