	1a	2a	2b	3a	6a	6b	6c	2c	4a	3b	6d	6e	6f	3c	6g	6h	6i	3d	6j	6k	6 <i>l</i>
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ3	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_4	1	1	1	1	1	1	1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1
χ_5	2	-2	2	2	-2	2	-2	0	0	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
χ_6	2	2	2	2	2	2	2	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_7	2	0	-2	2	0	-2	0	0	0	2	0	-2	0	2	0	-2	0	2	0	-2	0
χ_8	2	-2	2	-1	1	-1	1	0	0	2	-2	2	-2	-1	1	-1	1	-1	1	-1	1
χ_9	2	2	2	-1	-1	-1	-1	0	0	2	2	2	2	-1	-1	-1	-1	-1	-1	-1	-1
χ_{10}	2	-2	2	-1	1	-1	1	0	0	-1	1	-1	1	-1	1	-1	1	2	-2	2	-2
χ_{11}	2	-2	2	-1	1	-1	1	0	0	-1	1	-1	1	2	-2	2	-2	-1	1	-1	1
χ_{12}	2	2	2	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	2	2	2	2
χ_{13}	2	2	2	-1	-1	-1	-1	0	0	-1	-1	-1	-1	2	2	2	2	-1	-1	-1	-1
χ_{14}	2	0			$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	0	0	2	0	-2	0	-1	$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	-1		1	$-E(3) + E(3)^2$
χ_{15}	2	0	-2	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$	0	0	2	0	-2	0	-1	$E(3) - E(3)^2$	1			$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$
χ_{16}	2	0	-2	2	0	-2	0	0	0	-1	$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	-1	() . ()	1	$E(3) - E(3)^2$		$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$
χ_{17}	2	0	-2	2	0	-2	0	0	0	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$
χ_{18}	2	0	-2	-1	$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	0	0	-1	$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$	2	0	-2	0
χ_{19}	2	0	-2	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$	0	0	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$		$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	2	0	-2	0
χ_{20}	2	0	-2	-1	$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	0	0	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$		0	-2	0	-1	$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$
χ_{21}	2	0	-2	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$	0	0	-1	$-E(3) + E(3)^2$	1	$E(3) - E(3)^2$	2	0	-2	0	-1	$E(3) - E(3)^2$	1	$-E(3) + E(3)^2$

Trivial source character table of $G \cong (C6 \times C6)$: C2 at $p = 3$:										
Normalisers N_i	N_1		N_2	N_3	N_4	N_5	N_6			
p-subgroups of G up to conjugacy in G	P_1		P_2	P_3	P_4	P_5	P_6			
Representatives $n_j \in N_i$	a $2a$ $2b$	2c $4a$ $1a$	2a $2b$ $2c$ $4a$	$\begin{vmatrix} 1a & 2a & 2b & 2c & 4a \end{vmatrix}$	1a $2a$ $2b$ $2c$ $4a$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1a 2a 2b 2c 4a			
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \right] \cdot \left[\left[\left(\frac{1}{2} \right)^2 \right] \cdot \left(\frac{1}{2} \right)^2 \right] \cdot \left[\left(\frac{1}{2} \right$	9 - 9 9	1 -1 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 - 9 9	-1 1 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} $	9 9 9	$-1 -1 \mid 0$	0 0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$\left 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \right \leq 2 \left \frac{1}{2} \left(\frac{1}{$	9 9 9	1 1 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 0 -18	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0			
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \text{(6)} \text{(6)} \text{(7)} (7)$	6 0 -6	0 0 6	0 -6 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + \chi_{12} + \chi_{13} + \chi_{14} + \chi_{15} + \chi_{16} + \chi_{17} + \chi_{18} + \chi_{19} $	3 - 3 3	-1 1 3	-3 3 -1 1	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_$	3 - 3 3	1 -1 3	-3 3 1 -1	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 $	3 3 3	1 1 3	3 3 1 1	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{bmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{bmatrix} = \begin{bmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{bmatrix} = \begin{bmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_{19} + 0 \cdot \chi_{19} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11$	3 3 3	-1 -1 3	3 3 -1 -1	0 0 0 0 0	0 0 0 0 0		0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} $	6 0 -6	0 0 0	0 0 0 0	6 0 -6 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + \chi_{12} + \chi_{13} + \chi_{14} + \chi_{15} + \chi_{15} + \chi_{16} + \chi_{17} + \chi_{18} + \chi_{19} $	3 -3 3	-1 1 0	0 0 0 0	$\begin{vmatrix} 3 & -3 & 3 & -1 & 1 \end{vmatrix}$	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{2$	3 - 3 3	$1 -1 \mid 0$	0 0 0 0	$\begin{vmatrix} 3 & -3 & 3 & 1 & -1 \end{vmatrix}$	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 $	3 3 3	1 1 0	0 0 0 0	3 3 3 1 1	0 0 0 0 0		0 0 0 0 0			
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \mid 3 \cdot \chi_{18} \mid 3 \cdot \chi_{19} \mid 3 $	3 3 3	-1 -1 0	0 0 0 0	3 3 3 -1 -1	0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} $	6 0 -6	0 0 0	0 0 0 0	0 0 0 0 0	6 0 -6 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 - 3 3	-1 1 0	0 0 0 0	0 0 0 0 0	3 -3 3 -1 1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 - 3 3	$1 -1 \mid 0$	0 0 0 0	0 0 0 0 0	3 -3 3 1 -1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 $	3 3 3	1 1 0	0 0 0 0	0 0 0 0 0	3 3 3 1 1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} = 3 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} = 3 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	3 3 3	-1 -1 0	0 0 0 0	0 0 0 0 0	3 3 3 -1 -1	0 0 0 0	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} \end{vmatrix} $	6 0 -6	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	$\begin{bmatrix} 6 & 0 & -6 & 0 & 0 \end{bmatrix}$	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{10} + \chi_{10} $	3 -3 3	-1 1 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 \cdot \chi_{10} + \chi_{10} $	3 - 3 3	$1 -1 \mid 0$	0 0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 3 & -3 & 3 & 1 & -1 \end{bmatrix}$	0 0 0 0			
$ \begin{vmatrix} 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0 $	3 3 3	1 1 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0			
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \right] = 0 $	3 3 3	-1 -1 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 3 & 3 & 3 & -1 & -1 \end{bmatrix}$	0 0 0 0			
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} = 0$	1 1 1	1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} $	1 1 1	-1 -1 1	1 1 -1 -1	1 1 1 -1 -1	1 1 1 -1 -1	$\begin{bmatrix} 1 & 1 & 1 & -1 & -1 \end{bmatrix}$	1 1 1 -1 -1			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -1 1	-1 1 1	-1 1 -1 1	1 -1 1 -1 1	1 -1 1 -1 1	1 -1 1 -1 1	1 -1 1 -1 1			
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} $	1 -1 1	1 -1 1	-1 1 1 -1	1 -1 1 1 -1	1 -1 1 1 -1	1 -1 1 1 -1	1 -1 1 1 -1			
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 -2	0 0 2	0 -2 0 0	2 0 -2 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(4, 6, 5)]) \cong C3$

 $P_3 = Group([(1,2,3)]) \cong C3$

 $P_4 = Group([(1,2,3)(4,6,5)]) \cong C3$ $P_5 = Group([(1,3,2)(4,6,5)]) \cong C3$

 $P_6 = Group([(4,6,5),(1,2,3)]) \cong C3 \times C3$

$$\begin{split} N_1 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_2 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_3 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_4 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_4 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_4 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_4 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_5 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_6 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_6 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_7 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(7,8)(9,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3)(5,6)(8,10),(1,2,2),(1,2,2),(1,2,3)(4,5,6)]) \cong (\text{C6} \times \text{C6}) : \text{C2} \\ N_8 &= Group([(2,3$$

 $N_5 = Group([(2,3)(5,6)(8,10),(7,8)(9,10),(7,9)(8,10),(1,3,2),(1,2,3)(4,5,6)]) \cong (C6 \times C6) : C2$

 $N_6 = Group([(2,3)(5,6)(8,10), (7,8)(9,10), (7,9)(8,10), (1,3,2), (1,2,3)(4,5,6)]) \cong (C6 \times C6) : C2$