Podstawy logiki i teorii mnogości

7. Zbiory uporządkowane.

Relację dwuargumentową \leq w zbiorze X nazywamy relacją począdku częścio-wego (lub relacją porządku), gdy jest ona zwrotna, antysymetryczna i przechodnia. Parę złożoną ze zbioru X i relacji porządku \leq na nim określonej nazywamy zbiorem częściowo uporządkowanym i oznaczamy (X, \leq) .

Przykład 1 Zbiorem cześciowo uporządkowanym jest (\mathbb{R}, \leq) , gdzie \leq jest "zwykłą" relacją "mniejszy lub równy".

Częściowy porządek \leq w zbiorze X możemy przedstawić graficznie. Niech każdy element zbioru X będzie reprezentowany przez wierzchołek. Niech $x,y\in X$. Mówimy, że y nakrywa x, gdy $x\leq y$ oraz nie istnieje w X taki element z, że

$$z \neq x$$
 oraz $z \neq y$ oraz $x \leqslant z$ oraz $z \leqslant y$.

Jeśli element y nakrywa element x, to wierzchołki x i y łączymy krawędzią oraz umieszczamy y wyżej niż x. Otrzymujemy w ten sposób $diagram\ Hassego$.

Element x_0 nazywamy największym w zbiorze częściowo uporządkowanym (X, \leq) , gdy

$$\forall_{y \in X} \ y \leqslant x_0.$$

Element x_0 nazywamy najmniejszym w zbiorze częściowo uporządkowanym $(X,\leqslant),$ gdy

$$\forall_{y \in X} \ x_0 \leqslant y.$$

Element x_0 nazywamy maksymalnym w zbiorze częściowo uporządkowanym (X, \leq) , gdy nie istnieje $y \in X$ takie, że

$$x_0 \neq y \text{ oraz } x_0 \leqslant y.$$

Element x_0 nazywamy minimalnym w zbiorze częściowo uporządkowanym (X, \leq) , gdy nie istnieje $y \in X$ takie, że

$$x_0 \neq y \text{ oraz } y \leqslant x_0.$$

Zauważmy, że elementy największe, najmniejsze, maksymalne i minimalne mogą nie istnieć w zbiorze częściowo uporządkowanym (takim zbiorem jest na przykład (\mathbb{R}, \leq) z Przykładu 1).

Element największy i element najmniejszy jest zawsze dokładnie jeden (o ile istnieje). Natomiat elementów maksymalnych i minimalnych może być wiele.

Zadania.

Zadanie 1 Narysować diagram Hassego zbioru częściowo uporządkowanego $(\mathcal{P}(X), \subset)$ i podać jego elementy największe, najmniejsze, maksymalne i minimalne, gdy

- a) $X = \{1, 2, 3\},\$
- b) $Y = \{1, 2, 3, 4\}.$

Zadanie 2 Narysować diagram Hassego zbioru częściowo uporządkowanego $(\mathcal{P}(X)\backslash X,\subset)$ i podać jego elementy największe, najmniejsze, maksymalne i minimalne, gdy

- a) $X = \{1, 2, 3\},\$
- b) $Y = \{1, 2, 3, 4\}.$

Zadanie 3 Podać przykład zbioru częściowo uporządkowanego w którym istnieje element najmniejszy i nie ma elementów maksymalnych.

Zadanie 4 Wykazać, że relacja $m|n\ (m\ \text{dzieli}\ n)$ w zbiorze $\mathbb{N}\setminus\{0\}$ jest relacją częściowego porządku.

Zadanie 5 Narysować diagram Hassego podanego zbioru częściowo uporządkowanego i podać jego elementy największe, najmniejsze, maksymalne i minimalne.

a) $(\mathbb{N} \times \mathbb{N}, \leq)$, gdzie dla $(x, y), (x', y') \in \mathbb{N} \times \mathbb{N}$ mamy

$$(x,y) \leqslant (x',y') \Leftrightarrow x \leqslant x' \land y \leqslant y',$$

- b) $\{2, 3, \ldots, 16\}$ z relacją podzielności |,
- c) $\{2, 3, 4, 5, 6, 30, 60\}$ z relacją podzielności |
- d) $\{1, 2, 3, 5, 11, 13\}$ z relacją podzielności |,
- e) {1, 2, 3, 6, 12, 24} z relacją podzielności |,
- $f)~\{2,4,6,12,24,36\}$ z relacją podzielności |,
- g) $\{3, 5, 9, 15, 24, 45\}$ z relacją podzielności |,