МГТУ им. Н.Э. Баумана

Дисциплина «Архитектура ЭВМ» Лабораторный практикум №1

по теме: «Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью »

Работу выполнил: студент группы ИУ7-41 Сушина Анастасия Работу проверил: **Цель работы** - изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Ход работы

Задание 1. Исследовать работу асинхронного RS-триггера с инверсными входами в статическом режиме.

- Соберем схему RS-триггера на ЛЭ И-НЕ, к выходам триггера подключим световые индикаторы, задавая через переключатели необходимые сигналы на входах, составим таблицу переходов.

R	S	Q(n)	Q(n+1)		
0	0	0	0	Хранение	
0	0	1	1		
0	1	0	0	Установка 0	
0	1	1	0		
1	0	0	1	Установка 1	
1	0	1	1		
1	1	0	X	Запрещенное состояние	
1	1	1	X		

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка.

При S=0 и R=1 триггер устанавливается в состояние "0", а при S=1 и R=0 - в состояние "1". Если S=0 и R=0, то в триггере сохраняется предыдущее внутреннее состояние. При S=R=1 состояние триггера является неопределенным.

Задание 2. Исследовать работу синхронного RS-триггера в статическом режиме.

- Соберем схему RS-триггера на ЛЭ И-НЕ; к выходам триггера подключим световые

индикаторы; задавая через переключатели необходимые сигналы на входах S, R и C, протестируем и составим таблицу переходов триггера.

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C. Π 1 и 2 образуют схему управления, Π 3 и 4 – асинхронный RS - триггер (запоминающую ячейку).

Как и все синхронные триггеры, синхронный RS - триггер при C=0 сохраняет предыдущее внутреннее состояние. Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный. Одновременная подача сигналов C=S=R=1 запрещена. При S=R=0 триггер не изменяет своего состояния.

Задание 3. Исследовать работу синхронного D-триггера (см. рис. 5) в статическом режиме. - Собрать схему D-триггера на ЛЭ И-НЕ; к выходам триггера подключим световые индикаторы; задавая через переключатели необходимые сигналы на входах D и C, протестируем и составим таблицу переходов триггера. В таблице теста каждому набору D и Q будет 10 соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 происходит переход в режим хранения.

С	D	Qn	Q(n+1)		
0	0	0	0	Хранение	
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	0	Установка 0	
1	0	1	0		
1	1	0	1	Установка 1	
1	1	1	1		

Задание 4. Исследовать схему синхронного D-триггера с динамическим управлением записью в статическом режиме.

- К выходам триггера подключим световые индикаторы; задавая через переключатели необходимые сигналы на входах D и C, протестируем и составим таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

Таблица переходов синхронных D- и Т-триггеров

Таблица 4

Время t_n			Время t_{n+1}		
C_n	D_n, T_n	Q_n	Q_{n+1}		
			D-триггер	Т-триггер	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	0	1	
1	1	0	1	1	
1	1	1	1	0	

Задание 5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме.

- Построим схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 входом V синхронного DV-триггера), вход C D-триггера входом C DV триггера;
- подадим сигнал генератора на вход счетчика и на С-вход DV-триггера; подадим на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика; снимем временные диаграммы синхронного DV-триггера;

Заданиt 6. Исследовать работу DV-триггера, включенного по схеме TV-триггера D V TT Q Q 1 C Синхронный D-триггер а) C D D V TT Q Q V C Синхронный T-триггер б) T Снимем временные диаграммы T-триггера.

