Convex and Non-Convex Optimisation

Aayush Bajaj

Version 0.1

2025-05-08

Table of Contents

1.	Mathematical Background	3
	Convexity	
	Unconstrained Optimisation	
	Equality Constraints	
	Inequality Constraints	
	General Constrained Optimisation	
7.	Numerical Methods (unconstrained)	. 15
8.	Penalty Methods	. 16
9.	Optimal Control Theory	. 17

1. Mathematical Background

Definition 1.1 Mathspeak

1. Axiom: A foundational statement accepted without proof. All other results are built ontop.

- 2. Proposition: A proved statement that is less central than a theorem, but still of interest.
- 3. Lemma: A helper' proposition proved to assist in establishing a more important result.
- 4. Corollary: A statement following from a theorem or proposition, requiring little to no extra proof.
- 5. Definition: A precise specification of an object, concept or notation.
- 6. Theorem: A non-trivial mathematical statement proved on the basis of axioms, definitions and earlier results.
- 7. Remark: An explanatory or clarifying note that is not part of the formal logical chain but gives insight / context.
- 8. Claim / Conjecture: A statement asserted that requires a proof.

Definition 1.2 Vector Norm

A vector norm on \mathbb{R}^n is a function $\|\cdot\|$ from \mathbb{R}^n to \mathbb{R} such that:

- a) $\|\mathbf{x}\| \geq 0, \forall \mathbf{x} \in \mathbb{R}^n$ and $\|\mathbf{x}\| = 0 \Longleftrightarrow \mathbf{x} = \mathbf{0}$
- b) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (Triangle Inequality) c) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \ \forall \alpha \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^n$

Definition 1.3

Continuous Derivatives

The notation

$$f \in C^k(\mathbb{R}^n) \tag{1}$$

means that the function $f: \mathbb{R}^n \to \mathbb{R}$ possesses continuous derivatives up to order k on \mathbb{R}^n .

Example

- a) $f\in C^1(\mathbb{R}^n)$ implies each $\frac{\partial f}{\partial x_i}$ exists, and $\nabla f(x)$ is continuous on \mathbb{R}^n
- b) $f \in C^2(\mathbb{R}^n)$ implies each $rac{\partial f^2}{\partial x_i y_i}$ exists, and $abla^2 f(x)$ forms a continuous Hessian matrix.

Theorem 1.4

Cauchy Shwarz-Inequality

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2 \tag{2}$$

Definition 1.5

Closed and Bounded Sets

A set $\Omega \subset \mathbb{R}^n$ is *closed* if it contains all the limits of convergent sequences of points in Ω .

A set $\Omega \subset \mathbb{R}^n$ is bounded if $\exists K \in \mathbb{R}^+$ for which $\Omega \subset B[0,K]$, where $B[0,K] = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \le K\}$ is the ball with centre 0.

Definition 1.6

Standard Vector Function Forms

- $$\begin{split} &\text{If } f_0 \in \mathbb{R}, \mathbf{g} \in \mathbb{R}^n, G \in R^{\{n \times n\}}: \\ &\text{a) Linear: } f(\mathbf{x}) = \mathbf{g}^T \, \mathbf{x} \\ &\text{b) Affine: } f(\mathbf{x}) = \mathbf{g}^T \, \mathbf{x} + f_0 \\ &\text{c) Quadratic: } f(\mathbf{x}) = \frac{1}{2} \, \mathbf{x}^T \, G \, \mathbf{x} + \mathbf{g}^T \, \mathbf{x} + f_0 \end{split}$$

Definition 1.7 Symmetric

Let $A \in \mathbb{R}^{\{n \times n\}}$ be a symmetric matrix. Then:

- a) A has n real eigenvalues.
 - a) There exists an orthogonal matrix Q ($Q^{\top}Q = I$) such that $A = QDQ^{\top}$ where $D = \mathrm{diag}(\lambda_1,...,\lambda_n)$ and $Q = [v_1 \dots v_n]$ with v_i an eigenvector of A corresponding to eigenvalue λ_i .
 - b) $\det(A) = \prod \{i = 1\}^n \lambda_i$ and $\operatorname{tr}(A) = \sum_{\{i = 1\}}^n \lambda_i = \sum_{\{i = 1\}}^n A_{\{ii\}}$.
 - c) A is positive definite $\iff \lambda_i > 0$ for all i = 1, ..., n.
 - d) A is positive semi-definite $\iff \lambda_i \geq 0$ for all i = 1, ..., n.
 - e) A is indefinite \iff there exist i, j with $\lambda_i > 0$ and $\lambda_j < 0$.

Definition 1.8 Leading Principal Minors / Sylvester's Criterion

A symmetric matrix A is **positive definite** if and only if all leading principal minors of A are positive. The ith principal minor δ_i of A is the determinant of the leading $i \times i$ submatrix of A.

If δ_i , i=1,2,...,n has the sign of $(-1)^i$, i=1,2,...,n, that is, the values of δ_i are alternatively negative and positive, then A is **negative definite**.

Note that *PSD* only applies if you check **all** principal minors, of which there are $2^n - 1$, as opposed to checking n submatrices here.

2. Convexity

Definition 2.1 Convex

A set $\Omega \subseteq \mathbb{R}^n$ is convex $\Longleftrightarrow \theta ve(x) + (1-\theta) \mathbf{y} \in \Omega$ for all $\theta \in [0,1]$ and for all $\mathbf{x}, \mathbf{y} \in \Omega$. **Note:** there is no such thing as a *concave* set.

Proposition 2.2

Intersection of Convex Sets

Let $\Omega_1,...,\Omega_n\subseteq\mathbb{R}^n$ be convex, then their intersections $\Omega=\Omega_1\cap...\cap\Omega_n$ is convex.

Definition 2.3 Extreme Points

Let $\Omega \subseteq \mathbb{R}^n$ be a convex set $\bar{\mathbf{x}} \in \Omega$ is an extreme point of $\Omega \Longleftrightarrow \mathbf{x}, \mathbf{y} \in \Omega$, $\theta \in [0,1]$ and $\bar{\mathbf{x}} = \theta \mathbf{x} + (1-\theta)y \Longrightarrow \mathbf{x}, \mathbf{y} \in \mathbb{R}$, or x = y.

In other words, a point is in an extreme point if it cannot be on a line segment in Ω .

Definition 2.4

Convex Combination

The convex combination of $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)} \in \mathbb{R}^m$ is

$$\mathbf{x} = \sum_{i=1}^m \alpha_i \, \mathbf{x}^{(i)}, \text{ where } \sum_{i=0}^m \alpha_i = 1 \text{ and } \alpha_i \geq 0, i = 1, ..., m \quad (3)$$

Definition 2.5 Convex Hull

The convex hull $\operatorname{conv}(\Omega)$ of a set Ω is the set of all convex combinations of points in Ω .

Theorem 2.6

Separating Hyperplane

Let $\Omega \subseteq \mathbb{R}^n$ be a non-empty closed convex set and let $z \notin \Omega$. There exists a hyperplane $H = \{\mathbf{u} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{u} = \beta\}$ such that $\mathbf{a}^T \mathbf{z} < \beta$ and $\mathbf{a}^T \mathbf{x} \ge \beta$ for all $x \in \Omega$.

Definition 2.7

Convex / Concave Functions

- A function $f:\Omega\to\mathbb{R}$ (with Ω convex) is convex if $f(\theta\,\mathbf{x}+(1-\theta)\,\mathbf{y})\leq\theta f(\mathbf{x})+(1-\theta)f(\mathbf{y});$ strictly convex if strict inequality holds whenever $\mathbf{x}\neq\mathbf{y};$ concave if -f is convex.

3. Unconstrained Optimisation

Definition 3.1 Standard Form

$$\underset{\mathbf{x} \in \Omega}{\text{minimise}} f(\mathbf{x}) \tag{4}$$

Remark: $\max f(\mathbf{x}) = -\min\{-f(\mathbf{x})\}$

Definition 3.2 Hessian

 $f:\mathbb{R}^n o\mathbb{R}$ be twice continuously differentiable. The Hessian $\nabla^2 f:\mathbb{R}^n o\mathbb{R}^{\{n imes n\}}$ of f at x is

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}} \end{bmatrix}$$

$$(5)$$

Theorem 3.3

First order necessary conditions

If x^* is a local minimizer and $f \in C^1(\mathbb{R}^n)$ then $\nabla f(x^*) = 0$.

Definition 3.4

(Unconstrained) Stationary point

 x^* is an unconstrained stationary point $\Longleftrightarrow \nabla f(x^*) = 0$

Example

local min, local max, saddle point.

Definition 3.5

Saddle point

A stationary point $\mathbf{x}^* \in \mathbb{R}^n$ is a saddle point of f if for any $\delta > 0$ there exist \mathbf{x}, \mathbf{y} with $\|\mathbf{x} - \mathbf{x}^*\| < \delta$, $\|\mathbf{y} - \mathbf{x}^*\| < \delta$ such that:

$$f(\mathbf{x}) < f(\mathbf{x}^*) \text{ and } f(\mathbf{y}) > f(\mathbf{x}^*)$$
 (6)

Proposition 3.6

Second order necessary conditions

If $finC^2(\mathbb{R}^n)$ then

- a) Local minimiser $\Longrightarrow \nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ positive semi-definite.
- b) Local maximiser $\Longrightarrow \nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ negative semi-definite.

Corollary 3.7

Local maximiser

 $ar{\mathbf{x}}$ is a local maximiser $\Longrightarrow \nabla f(ar{\mathbf{x}}) = \mathbf{0}$ and $\nabla^2 f(ar{\mathbf{x}})$ negative semi-definite.

Theorem 3.8

Second order sufficient conditions

If $\nabla f(\mathbf{x}^*) = 0$ then

- a) $\nabla^2 f(\mathbf{x}^*)$ positive definite $\Longrightarrow \mathbf{x}^*$ is a *strict* local minimiser.
- b) $\nabla^2 f(\mathbf{x}^*)$ negative definite $\Longrightarrow \mathbf{x}^*$ is a *strict* local maximiser.
- c) $\nabla^2 f(\mathbf{x}^*)$ indefinite $\Longrightarrow \mathbf{x}^*$ is a saddle point.
- a) $\nabla^2 f(\mathbf{x}^*)$ positive semi-definite $\Longrightarrow \mathbf{x}^*$ is either a local minimiser or a saddle point!
- b) $\nabla^2 f(\mathbf{x}^*)$ negative semi-definite $\Longrightarrow \mathbf{x}^*$ is *either* a local maximiser or a saddle point! Be careful with these.

Corollary 3.9

Global Optimums

[From the sufficiency of stationarity as above, and under the convexity / concavity of $f \in C^2(\mathbb{R}^n)$:

- a) f convex \Longrightarrow any stationary point is a global minimiser.
- b) f strictly convex \Longrightarrow stationary point is the unique global minimiser.
- c) f concave \Longrightarrow any stationary point is a global maximiser.
- d) f strictly concave \Longrightarrow stationary point is the *unique* global maximiser.

]

4. Equality Constraints

Definition 4.1 Standard Form

$$\begin{array}{ll} \underset{\mathbf{x} \in \Omega}{\text{minimise}} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{c}_i(\mathbf{x}) = 0 \end{array} \tag{7}$$

Definition 4.2 Lagrangian

Definition 4.3 Regular Point

Definition 4.4 Matrix of Constraint Gradients

$$A(\mathbf{x}) = \left[\nabla \mathbf{c}_i(\mathbf{x}) \ \dots \ \mathbf{c}_m(\mathbf{x})\right] \tag{8}$$

Definition 4.5 Jacobian

$$\begin{split} J(\mathbf{x}) &= A(\mathbf{x})^T \\ &= \begin{bmatrix} \nabla \, \mathbf{c}_i \, (\mathbf{x})^T \\ \vdots \\ \mathbf{c}_m \, (\mathbf{x})^T \end{bmatrix} \end{split} \tag{9}$$

Proposition 4.6 First order necessary optimality conditions

Corollary 4.7 Constrained Stationary Point

Proposition 4.8 Second order sufficient conditions

5. Inequality Constraints

Definition 5.1

$$\begin{array}{ll} \underset{\mathbf{x} \in \Omega}{\text{minimise}} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{c}_i(\mathbf{x}) = 0, \qquad i = 1, ..., m_E \\ & \mathbf{c}_i(\mathbf{x}) \leq 0, \qquad i = m_E + 1, ..., m \end{array} \tag{10}$$

Standard Form

Definition 5.2 Convex Problem

The problem (NLP) is a standard form convex optimisation problem if the objective function f is convex on the feasible set, \mathbf{c}_i is affine for each $i \in E$, and \mathbf{c}_i is convex for each $i \in I$.

Definition 5.3 Active Set

The set of active constraints at a feasible point \mathbf{x} is $\mathcal{A}(\mathbf{x}) = \{i \in 1, ..., m : \mathbf{c}_i(\mathbf{x}) = 0\}$ Note that this concept only applies to inequality constraints.

Definition 5.4 Regular Point

Proposition 5.5 Constrained Stationary Point

Theorem 5.6 Karush Kuhn Tucker (KKT) necessary optimality conditions

kkt generalises lagrange multipliers

Theorem 5.7 Second-order sufficient conditions for strict local minimum

Theorem 5.8 KKT sufficient conditions for global minimum

Theorem 5.9

Wolfe Dual Problem

strong duality, weak duality?

Note Reduced Hessian

The reduced Hessian W_Z^{\ast} is the projection of the Lagrandian's Hessian onto the tangent space of the constraints at the point x^{\ast}

6. General Constrained Optimisation

why does the reduced hessian exist for both? is there any difference when solving?

7. Numerical Methods (unconstrained)

Rates of convergence of iterative methods	Definition 7.1
Line Search Algorithms	Algorithm 7.2
Steepest Descent Method	Algorithm 7.3
Newton's Method	Algorithm 7.4
Conjugate Gradient Method	Algorithm 7.5

8. Penalty Methods

Definition 8.1

Penalty function

Remark

a) $c:\mathbb{R}^n \to \mathbb{R}$ is a convex function $\Longrightarrow \max{\{\mathbf{c}(\mathbf{x}),0\}^2}$ is a convex function

b) $\frac{\partial}{\partial x_i} [\max\{\mathbf{c}(\mathbf{x}), 0\}]^2 = 2 \max\{\mathbf{c}(\mathbf{x}), 0\} \frac{\partial}{\partial x_i}$

Theorem 8.2

Convergence Theorem

9. Optimal Control Theory

Definition 9.1 Standard Form

Definition 9.2 Hamiltonian

break this up so it is understandable

Definition 9.3 Co-state Equations

Theorem 9.4 Pontryagin Maximum Principle

partially free target non-autonmous problem