Designing complex molecular qubits by using QC simulator and relativistic quantum chemistry

kuchemQCL

S. Nishio, K. Hino, K. Ueda,

K. Miyokawa, M. Tsumura, T. Yoshida

From Theoretical Chemistry Lab.,

Graduate School of Science, Kyoto University

Introduction – Single-Molecule Magnets

Metal complex as molecular qubit candidate

Single-molecule magnets (SMMs) consist of metal-complex molecules that exhibit magnetic hysteresis below a blocking temperature (~80 K).

candidates for information storage, spintronics, and molecular qubits

Introduction – Zero-field splitting

SMMs result from relativistic effects

In open-shell systems with total spin of $S \ge 1$,

Degeneracy of ground spin multiplet is broken by zero-field splitting (ZFS),

which results from spin-orbit / spin-spin coupling (relativistic effect)

ZFS parameter, D, determines the energy barrier for reversal of spin (high barrier is better)

A key to design SMMs, efficiently calculated with relativistic quantum chemistry methods e.g. a system with S=2

Our demonstration and its target molecule

Target [Co(II)(OPh)₄]²⁻ complex

Formula : $C_{24}H_{20}CoO_4$, **225** electrons

total spin is S=3/2 (quartet)

experimental D value : $-11.1 \text{ cm}^{-1} = 0.16 \text{ kcal/mol}$

ref. https://linkinghub.elsevier.com/retrieve/pii/S0277538713002842

Our demonstration plan

Dirac-CASCI for [Co(II)(OPh)₄]²⁻ on VQE / SSVQE

Relativistic electronic Hamiltonian Complex-valued!

Diagonalize
Dirac-CASCI Hamiltonian

Obtain energies and D value

Method 1. Classical-bit calculation

Relativistic quantum chemistry calculations

We performed Dirac-HF and subsequently Dirac-CASSCF calculation to **obtain exact energies** and **coefficients of the second-quantized H**

CAS wavefunction and FCIDUMP

1e- and 2e-integrals of active orbitals are obtained as FCIDUMP format

→ Hamiltonian coefficient files for next steps

$$\hat{H}_{\text{rel}} = \sum_{pq} h_{pq} \hat{E}_{pq} + \frac{1}{2} \sum_{pqrs} v_{pq,rs} \hat{E}_{pq,rs}$$

$$\hat{h}(1) = c^2(\beta - I_4) + c(\boldsymbol{\alpha}_1 \cdot \hat{\mathbf{p}}_1) - \sum_{A}^{\text{atoms}} \frac{Z_A}{r_{1A}} \operatorname{erf}(\sqrt{\zeta_A} r_{1A})$$

$$\hat{v}(1,2) = \frac{1}{r_{12}} - \left(\frac{\boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_2}{r_{12}} + \frac{(\boldsymbol{\alpha}_1 \cdot \boldsymbol{\nabla}_1)(\boldsymbol{\alpha}_2 \cdot \boldsymbol{\nabla}_2)r_{12}}{2}\right)$$

Omitted in our calculations

CAS consists of 7 electrons in 5 3d-orbitals

| Packages and reference

We used **BAGEL** (developed by Shiozaki group @ Northwestern Univ., https://nubakery.org)

to perform Dirac-HF and Dirac-CASSCF

ref. https://doi.org/10.1016/j.poly.2013.04.008

Method 2. Quantum algorithm

Quantum algorithm

We utilized Dirac-CAS Hamiltonian obtained with BAGEL for VQE / SSVQE algorithms

followed Quantum Native Dojo article 6.2 and 6.3

ref. https://dojo.qulacs.org/ja/latest/notebooks/6_quantum_chemistry_calculation.html

Ansatz: hardware-efficient like

Noise free

Depth is equal to the number of qubits, that is, 2 x the number of active orbitals

Cost function for SSVQE

It is reported that VQE / SSVQE are not efficient for degenerate systems

ref. http://arxiv.org/abs/2111.02448

→We tried to avoid this problem by tuning weights in the cost function

Packages

We used OpenFermion, Qulacs, SciPy, and some self-made python scripts

Implementation efforts 1

Symmetry for 2e-integrals of Dirac-HF/CASSCF

Integrals terms in FCIDUMP that can be restored from symmetry are omitted in the files

→ We implemented scripts that fills missing terms (fill_fcidump.py)

Orbital swap

$$(pq|rs) = (qp|sr)^*$$

Electron swap

$$(pq|rs) = (rs|pq)$$

Kramers permutation

$$(pq|rs) = (pq|\bar{s}\bar{r}) = (\bar{q}\bar{p}|rs) = (\bar{q}\bar{p}|\bar{s}\bar{r})$$

$$(\bar{p}q|rs) = (\bar{p}q|\bar{s}\bar{r}) = -(\bar{q}p|rs) = -(\bar{q}p|\bar{s}\bar{r})$$

$$(\bar{p}q|\bar{r}s) = -(\bar{p}q|\bar{s}r) = (\bar{q}p|\bar{r}s) = (\bar{q}p|\bar{s}r)$$

$$(\bar{p}q|r\bar{s}) = -(\bar{p}q|s\bar{r}) = -(\bar{q}p|r\bar{s}) = (\bar{q}p|s\bar{r})$$

(We implemented, but not necessary for BAGEL)

Sparse FCIDUMP

fill_fcidump.py

ref. https://doi.org/10.1063/1.3592148

Implementation efforts 2

| Adaptation of complex-valued Hamiltonian

Coefficients of relativistic Hamiltonian are complex-valued

However,

and (experimentally) supported only real-valued FCIDUMP and (a) Qulacs only accepts Pauli products with real-valued coefficients

→ We defined cost function as

$$\langle \Psi(\theta) | \mathrm{Re}(H_{\mathrm{rel}}^{\mathrm{Pauli}}) | \Psi(\theta) \rangle - \langle \Psi(\theta) | \underbrace{\frac{1}{i} \mathrm{Im}(H_{\mathrm{rel}}^{\mathrm{Pauli}}) | \Psi(\theta) \rangle}_{\text{Hermite!}}$$

to adjust for Qulacs

Workflow of our demo

Libraries	Processes	Returns
BAGEL	Dirac Hartree-Fock and Dirac CASSCF Classical-bit calculation	Complex-valued FCIDUMP $E_{ m core}$, part of terms $(p q)$ and $(pq rs)$ Exact values for comparison
our script	Fill missing integral terms by using symmetry rules	Complete $(p q)$ and $(pq rs)$ Get second quantized \hat{H}
OpenFermion	JW transformation	JW Hamiltonian (Sum of Pauli operator products)
Qulacs	Set quantum circuit VQE / SSVQE	Cost function (No sampling)
SciPy	Minimize cost function (BFGS method)	CASCI Energy, CI coefficients

Result 1. H₂ (benchmark)

Demonstrations for small molecules, relativistic VQE-CASCI

Exact values are obtained with BAGEL

| Ground state of H_2 , CAS(2e, 2o)

Well converged! Implementation validated

Result 2. O₂ (benchmark)

Demonstrations for small molecules, relativistic VQE-CASCI

Exact values are obtained with BAGEL

Ground triplet of O_2 , CAS(4e, 4o)

Degenerate triplets (Exact)

0:-149.52905903 1:-149.52353159

2:-149.52353157

Not well converged due to degeneracy? Ansatz error?

Result 3. $[Co(OPh)_4]^{2-}$

Ground Quartets of [Co(OPh)₄]²⁻, CAS(7e, 5o)

Cost function for SSVQE is tuned as

$$L(\theta) = 2\langle GQ(0)|\hat{H}|GQ(0)\rangle$$
$$+ 1\langle GQ(1)|\hat{H}|GQ(1)\rangle$$

→ weights should be tuned further?

largely dependent on $\, heta_{
m init}$,

ansatz error?

Conclusions

We present Dirac-CASCI simulation of [Co(II)(OPh)₄]²⁻ on VQE / SSVQE

Our efforts: implementation of Dirac-CASCI on VQE / SSVQE
cost function for relativistic Hamiltonian
excited state calculation
weight tuning for cost function of SSVQE

→ see README.md for more detail!!!

Energy is well-converged for H_2 molecule \rightarrow our implementation is validated

Single state VQE for [Co(II)(OPh)₄]²⁻ converged well

Energies are not well-converged for degenerate systems (O_2 and $[Co(II)(OPh)_4]^{2-}$) due to weights of SSVQE cost function, degeneracy, or ansatz...?

Improvement plans

Ansatz

In this challenge, we used hardware-efficient like ansatz in Dojo 6.2 and 6.3

→ UCCD / UCCSD ansatz or fermionic-adaptive ansatz should be better?

If ansatz that includes Kramers symmetry is developed, it should be very efficient

Cost function for SSVQE

Adding a penalty term for reversal of two degenerate states?

$$L(\theta) = c_0 \langle GS(0) | \hat{H} | GS(0) \rangle$$
$$+ c_1 \langle GS(1) | \hat{H} | GS(1) \rangle$$
$$+ penalty(GS(0) \leftrightarrow GS(1))$$

→We could not develop this term in this challenge

Prospects

Members and Acknowledgements

Members of team kuchemQCL

NISHIO, Soichiro – team management, research, classical calculation, coding, and presentation

HINO, Kentaro – coding, research, team management, and presentation

UEDA, **Koki** - coding

MIYOKAWA, Katsuki – classical calculations

TSUMURA, Masaya - coding

YOSHIDA, **Takumi** – classical calculations

We are graduate students at theoretical chemistry lab. of Graduate School of Science, Kyoto University

Acknowledgements

We thank theoretical chemistry lab. of Graduate School of Science, Kyoto University, and GOTO Gaku (alumnus) for calculation data of [Co(II)(OPh)₄]²⁻ in his master thesis (2022)

Thank you for listening!

