

Interrogación 3 Estática y Dinámica

Facultad de Física

Viernes 14 de noviembre de 2014

Nombre:	# Alumno	Sección:	
---------	----------	----------	--

Instrucciones:

- -Tiene 2 horas para resolver los siguientes problemas.
- -Marque con una CRUZ sólo la alternativa que considere correcta en esta hoja de respuesta.
- -Todos los problemas tienen el mismo peso en la nota final.
- -No está permitido utilizar calculadora ni teléfono celular.

•

TABLA DE RESPUESTAS

TADLA DE RESTUESTAS					
Pregunta	a)	b)	c)	d)	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					

Enunciado para problemas 1 a 2.

Usaremos el método de trabajos virtuales para analizar el equilibrio del mecanismo de la figura abajo, donde el resorte tiene un largo natural "l < L". Supondremos que las barras AB y CE no tienen masa. En la figura se muestran los ejes "z" (diferencia entre los puntos C y E) y "x" (distancia horizontal entre C y D).

Problema 1. El trabajo virtual total $\delta U(=\delta W)$ asociado a un pequeño desplazamiento de la variable θ

- a) $\delta U = mg \, \delta z + k(L \cos \theta l) \delta x$
- b) $\delta U = -mg \, \delta z + k(L \cos \theta l) \delta x$
- c) $\delta U = -mg \, \delta z k(L \cos \theta l) \delta x$
- d) $\delta U = mg \, \delta z k(L \cos \theta l) \delta x$

Problema 2. La condición para una posición de equilibrio θ_0 del sistema es

a)
$$\frac{mg}{k} = \frac{1}{2} \tan \theta_0 (L \cos \theta_0 - l)$$

a)
$$\frac{mg}{k} = \frac{1}{2} \tan \theta_0 (L \cos \theta_0 - l)$$

b) $\frac{mg}{k} = \frac{1}{2} \cot \theta_0 (L \cos \theta_0 - l)$
c) $\frac{mg}{k} = \tan \theta_0 (L \cos \theta_0 - l)$
d) $\frac{mg}{k} = \cot \theta_0 (L \cos \theta_0 - l)$

c)
$$\frac{mg}{k} = \tan \theta_0 (L \cos \theta_0 - l)$$

d)
$$\frac{mg}{k} = \cot \theta_0 (L \cos \theta_0 - l)$$

Enunciado para problemas 3 a 7.

En la figura abajo, se muestra una barra sin masa a la cual se aplican dos distribuciones de fuerza constantes w_0 . Medimos x desde A.

Problema 3. Respecto de la distribución de fuerza de la derecha (4L < x < 6L), su fuerza equivalente \bar{F} y su punto de aplicación equivalente \bar{x} son

- a) $\bar{F} = 2Lw_0, \ \bar{x} = 5L$ b) $\bar{F} = Lw_0, \ \bar{x} = 4L$
- c) $\bar{F} = Lw_0$, $\bar{x} = 6L$
- d) $\bar{F} = \frac{L}{4} w_0, \ \bar{x} = 4L$

Problema 4. Determine la reacción en el soporte A.

- a) $A_y = 2Lw_0$ b) $A_y = 3Lw_0$

- c) $A_y = Lw_0$ d) $A_y = \frac{2}{3}Lw_0$

Problema 5. Determine la reacción en el soporte B.

- a) $B_y = 3Lw_0$ b) $B_y = 2Lw_0$
- c) $B_y = Lw_0$
- $d) B_y = \frac{1}{3} L w_0$

Para las siguientes dos preguntas, asuma $L=1\,\mathrm{m},\,w_0=1\,\mathrm{N}\,\,\mathrm{m}^{-1}.$

Problema 6. El gráfico de la fuerza de corte V(x) es

Problema 7. El gráfico del momento (torque) de flexión M(x) es

Enunciado para problemas 8 a 12.

Una armadura Pratt para techo se carga como muestra la figura abajo.

Problema 8. Determine la magnitud de la reacción vertical en el punto A.

- a) $R_A = 8W$ b) $R_A = 7W$
- c) $R_A = \frac{15}{2} \text{W}$ d) $R_A = 6 \text{W}$

Problema 9. Determine la magnitud de la reacción en el punto L.

- a) $R_L = 8W$ b) $R_L = 7W$
- c) $R_L = \frac{15}{2} \text{W}$ d) $R_L = 6 \text{W}$

Problema 10. Considere los siguientes miembros de la armadura

- I) DE
- ÍI) IF
- III) FG

Es posible decir que los miembros de fuerza cero son

- a) Sólo I
- b) Sólo II y III
- c) Sólo II
- d) Sólo III

 ${f Problema~11.}$ Determine el módulo de la fuerza en las barras HJ, HK, IK.

a)
$$F_{HJ} = 6\sqrt{2}W$$
, $F_{HK} = \frac{3\sqrt{5}}{2}W$, $F_{IK} = \frac{9}{2}W$
b) $F_{HJ} = 6\sqrt{2}W$, $F_{HK} = 0$, $F_{IK} = 6\sqrt{2}W$
c) $F_{HJ} = 0$, $F_{HK} = \frac{6\sqrt{5}}{2}W$, $F_{IK} = 6\sqrt{2}W$

b)
$$F_{HJ} = 6\sqrt{2}W$$
, $F_{HK} = 0$, $F_{IK} = 6\sqrt{2}W$

c)
$$F_{HJ} = 0$$
, $F_{HK} = \frac{6\sqrt{5}}{2}$ W, $F_{IK} = 6\sqrt{2}$ W

d)
$$F_{HJ} = 6\sqrt{2}W$$
, $F_{HK} = 9W$, $F_{IK} = \frac{7\sqrt{5}}{2}W$

Problema 12. El estado de los miembros BD, y CD es

- a) BD bajo tracción (tensión), CD bajo compresión
- b) BD bajo compresión, CD bajo tracción (tensión)
- c) BD bajo tracción (tensión), CD bajo tracción (tensión)
- d) BD bajo compresión, CD bajo compresión

Enunciado para problemas 13 a 17.

La estructura de la figura siguiente, que está en equilibrio estático, soporta una caja de masa M mediante una cuerda que pasa por una polea ideal sin roce en el extremo de la armadura.

Problema 13. El módulo de la fuerza en la barra FC es

a)
$$F_{FC} = Mg$$

b)
$$F_{FC} = \frac{1}{2} Mg$$

a)
$$F_{FC} = Mg$$

b) $F_{FC} = \frac{1}{2}Mg$
c) $F_{FC} = \frac{7}{36}Mg$
d) $F_{FC} = 0$

d)
$$F_{FC} = 0$$

Problema 14. El módulo de la fuerza en la barra DC es

a)
$$F_{DC} = \left(\frac{7}{\sqrt{85}} + \frac{1}{\sqrt{2}}\right) Mg$$

b) $F_{DC} = \frac{7}{\sqrt{85}} Mg$

b)
$$F_{DC} = \frac{7}{\sqrt{85}} Mg$$

c)
$$F_{DC} = \sqrt{2}Mg$$

d)
$$F_{DC} = 0$$

Problema 15. El módulo de la fuerza en las barras AB y GA es

a)
$$F_{AB} = 0$$
; $F_{GA} = Mg$

a)
$$F_{AB} = 0;$$
 $F_{GA} = Mg$
b) $F_{AB} = \frac{7}{36}Mg;$ $F_{GA} = \frac{1}{2}Mg$
c) $F_{AB} = \sqrt{2}Mg;$ $F_{GA} = Mg$

c)
$$F_{AB} = \sqrt{2}Mg$$
; $F_{GA} = Mg$

d)
$$F_{AB} = \frac{1}{2}Mg; F_{GA} = 0$$

Problema 16. El estado de las barras CD, AB y GA es:

- a) CD en compresión, AB en tracción (tensión) y GA en compresión.
- b) CD en tracción (tensión), AB en tracción (tensión) y GA en compresión.
- c) CD en compresión, AB en compresión y GA en tracción (tensión).
- d) CD en compresión, AB en tracción (tensión) y GA en tracción.

Problema 17. Si la fuerza de compresión máxima que resisten los elementos (barras) que conforman la estructura es de W y la de tracción (tensión) es 2W, el valor máximo de M que puede soportar la estructura

a)
$$M = \frac{1}{2} \frac{W}{g}$$

b)
$$M = \frac{1}{\sqrt{2}} \frac{W}{g}$$

c)
$$M = 2\frac{W}{q}$$

es
a)
$$M = \frac{1}{2} \frac{W}{g}$$

b) $M = \frac{1}{\sqrt{2}} \frac{W}{g}$
c) $M = 2 \frac{W}{g}$
d) $M = \frac{7}{36\sqrt{2}} \frac{W}{g}$

Enunciado para problemas 18 a 19.

En las dos preguntas siguientes, considere la barra ideal (sin masa) de largo 2a empotrada en la pared vertical en el punto O de la figura. Sobre la barra hay una carga distribuida w(x) dada por

$$w(x) = \frac{w_0}{4a^2}x(2a - x),$$

para $x \leq a$, y por

$$w(x) = \frac{w_0}{2} \left(1 - \frac{x}{2a} \right)$$

para $a \le x \le 2a$, en donde x mide la distancia a lo largo de la barra desde el punto O.

Problema 18. La fuerza resultante de esta carga distribuida está dada por

- a) $F = w_0 a$ b) $F = \frac{7}{24}w_0 a$ c) $F = \frac{5}{24}w_0 a$
- d) $F = \frac{1}{3} w_0 a$

Problema 19. El Momento M_O que debe hacer la pared sobre la barra en el punto O está dado por

a)
$$M_O = \frac{11}{48} w_0 a^2$$

b) $M_O = \frac{1}{4} w_0 a^2$

b)
$$M_O = \frac{1}{4} w_0 a^2$$

c)
$$M_O = \frac{13}{48} w_0 a^2$$

c)
$$M_O = \frac{13}{48} w_0 a^2$$

d) $M_O = \frac{1}{2} w_0 a^2$