1a. The following diagram shows the graph of f' , the derivative of f.

The graph of f' has a local minimum at A, a local maximum at B and passes through $(4,\;-2)$.

The point P(4, 3) lies on the graph of the function, f.

Write down the gradient of the curve of f at P.

[1 mark]

1b. Find the equation of the normal to the curve of f at P.

[3 marks]

 ${f 1c.}$ Determine the concavity of the graph of f when 4 < x < 5 and justify your answer.

[2 marks]

2a. The diagram below shows part of the graph of the gradient function, $y=f^{\prime}(x)$.

On the grid below, sketch a graph of $y=f^{\prime\prime}(x)$, clearly indicating the x-intercept.

[2 marks]

У,				
	l 1	1	١.	
	D G	y r		х
	p (y r		х

2b. Complete the table, for the graph of y=f(x) .

[2 marks]

		x-coordinate
(i)	Maximum point on f	
(ii)	Inflexion point on f	

2c. Justify your answer to part (b) (ii).

[2 marks]

BECA / Huson / 12.1 IB Math SL 28 February 2018

Name:

3a. Let $g(x) = \frac{\ln x}{x^2}$, for x > 0 .

Use the quotient rule to show that
$$g'(x) = rac{1-2\ln x}{x^3}$$
 . [4 marks]

3b. The graph of *g* has a maximum point at A. Find the *x*-coordinate of A. [3 marks]

4a. Let
$$f'(x) = -24x^3 + 9x^2 + 3x + 1$$
. [3 marks]

There are two points of inflexion on the graph of f. Write down the x-coordinates of these points.

4b. Let g(x) = f''(x) . Explain why the graph of g has no points of inflexion. [2 marks]

5a. A function f is defined for $-4 \leq x \leq 3$. The graph of f is given below.

The graph has a local maximum when x=0 , and local minima when x=-3 , x=2 .

Write down the *x*-intercepts of the graph of the **derivative** function, f'. [2 marks]

5b. Write down all values of x for which f'(x) is positive. [2 marks]

5c. At point D on the graph of f, the x-coordinate is -0.5. Explain why f''(x) < 0 at D. [2 marks]

BECA / Huson / 12.1 IB Math SL

28 February 2018

Name:

6a. Let
$$f'(x) = \frac{6-2x}{6x-x^2}$$
, for $0 < x < 6$.

The graph of f has a maximum point at P.

Find the x-coordinate of P.

[3 marks]

6b. The y-coordinate of P is $\ln 27$.

Find f(x), expressing your answer as a single logarithm.

[8 marks]

6c. The graph of f is transformed by a vertical stretch with scale factor $\frac{1}{\ln 3}$. The image of P under this transformation has coordinates (a, b).

Find the value of a and of b, where $a, b \in \mathbb{N}$.

7a. Let
$$f(x)=rac{(\ln x)^2}{2}$$
 , for $x>0$.

Show that $f'(x) = \frac{\ln x}{x}$.

[2 marks]

7b. There is a minimum on the graph of f. Find the x-coordinate of this minimum.

[3 marks]

7c. Let $g(x) = \frac{1}{x}$. The following diagram shows parts of the graphs of f' and g.

[2 marks]

The graph of f' has an x-intercept at x=p.

Write down the value of p.

7d. The graph of g intersects the graph of f' when x=q.

Find the value of q. [3 marks]

7e. Let R be the region enclosed by the graph of f', the graph of g and the line x=p.

Show that the area of R is $\frac{1}{2}$.

[5 marks]