1)
$$f = (423)(45) = (\frac{12345}{23154})$$
 $8 = (4234) = (\frac{12345}{2345}) (\frac{12345}{23154}) = (\frac{12345}{2345})$
 $9) f \circ 9 = (\frac{12345}{2345}) (\frac{12345}{23154}) = (\frac{12345}{31524})$
 $8) g \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{34251})$
 $9) f \circ g = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{34251})$
 $9) \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{23254})$
 $9) \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{22354})$
 $9) \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{2355})$
 $9) \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{2355})$
 $9) \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{2355})$
 $9) \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{23154})$
 $9) \circ f = (\frac{12345}{23154}) (\frac{12345}{23154}) = (\frac{12345}{23154})$

Just realized now. For cases 'c' and 'd': there is no need to compute f^2 nor g^3 respectively. Instead, it can be directly calculated by shifting the clements within each cycle K-1 times, where K is the past value of the faction are one trying to compute (e.g. g^{H}). The the original function (e.g. g)

$$p = (abcd)$$
 $r_1 = (bd)$ $r_2 = (ac)$
 $r_3 = (ab)(cd)$
 $r_4 = (adcb)$

G= { p, p2, p3, p4, 17, 12, 13, 14}