Confidence Intervals For Multiclass F1 Scores

Adam Vinestock Idan Cohen

Based on the paper

link

Before we start....

Introduction

Time plan

Q&A

Table of Contents

Motivation
Why F1
Comparing point estimates

CI for F1
How it's done

Key Components
F1 performance measures
MLE
Central limit theorem
Confidence intervals

Conclusion
Summary
Q & A

01

Motivation

Why F1 is useful

• Given data $\mathfrak D$ - we want to measure the performance of different classification models $f_1, f_2, f_3 \dots$

We want a single metric - comparing apples to apples

We want to account for both precision and recall

We want to account for imbalanced classes

F1 elegantly sums up the predictive performance of a model by combining two otherwise competing metrics — precision and recall

Comparing point estimates

- Neglect sampling variability overlook the uncertainty of model performance, this can result in unreliable assessments
- Incomplete picture of the true performance without considering confidence intervals, point estimates offer limited practical utility
- Example consider the results of an analysis reported by <u>Dong et al</u>

We need to calculate variance!

Confidence Intervals for F1

 Binary case - some statistical methods have been proposed to compute variance estimates for F1 scores (Bootstrapping, binomial distribution assumption)

 Multiclass case - this paper addresses the knowledge gap, providing the methods for computing variances of these multiclass F1 scores

02

The Key Components

Performance measures

Precision - positive predictive value

We want high precision for SPAM detection, predicting bank E-mails as spam is bad

Recall - sensitivity

We want high recall for cancer detection, better to over predict positives then miss a few cases

F1 - the harmonic mean of precision & recall

$$F_1 = 2 \times \frac{P * R}{P + R}$$

Performance measures

- How do we evaluate multi-class classification models?
- ullet Calculate F1 score for each class $\,F_{1i}$
- Then use average F1, micro F1 or macro F1

Notations

- Given a multiclass classification task, with $\,r>2\,\,$ classes
- We can compute the confusion matrix using the observed data
- We denote cell probabilities p_{ij} and marginal probabilities $p_{i\cdot}, p_{\cdot i}$

			True Classification						
				Class1	Class 2	Class 3			
Frequencies	uoneios		Class 1	2	2	2			
rieq	uericies	Prediction	Class 2	5	70	2			
		-	Class 3	0	2	15			
								$p_{11} = 0.02$	
		-	Class 1	0.02	0.02	0.02	$p_{1.} = 0.06$	$p_{12} = 0.02$	$\sum_{i,j} p_{ij} = 1$
Prop	ortions	Prediction	Class 2	0.05	0.7	0.02	0.77	$p_{13} = 0.02$	$\sum_{i} p_{ij} = 1$
		_	Class 3	0	0.02	0.15	0.17		\imath,\jmath
				$p_{\cdot 1} = 0.07$	0.74	0.19		$p_{33} = 0.15$	

Performance measures

ullet Micro-averaged F1 - harmonic mean of $\ m_i P$, $\ m_i R$

$$m_{i}P = \frac{\sum_{i=1}^{r}TP_{i}}{\sum_{i=1}^{r}(TP_{i}+FP_{i})} = \frac{\sum_{i=1}^{r}p_{ii}}{\sum_{i=1}^{r}p\cdot i} = \sum_{i=1}^{r}p_{ii} \quad m_{i}R = \frac{\sum_{i=1}^{r}TP_{i}}{\sum_{i=1}^{r}(TP_{i}+FP_{i})} = \frac{\sum_{i=1}^{r}p_{ii}}{\sum_{i=1}^{r}p\cdot i} = \sum_{i=1}^{r}p_{ii}$$

$$m_{i}F_{1} = 2 \times \frac{m_{i}P \times m_{i}R}{m_{i}P + m_{i}R} = \sum_{i=1}^{r}p_{ii}$$

Performance measures

Macro-averaged F1

First calculate F1 per class

$$F_{1i} = 2 \times \frac{P_i \times R_i}{P_i + R_i} = 2 \times \frac{p_{ii}}{p_{i.} + p_{.i}}$$

The macro-averaged F1 score is defined as the simple arithmetic mean of F_{1i}

$$maF_1 = \frac{1}{r} \sum_{i=1}^{r} F_{1i} = \frac{2}{r} \sum_{i=1}^{r} \frac{p_{ii}}{p_{i.} + p_{.i}}$$

Reminder - MLE, CLT & CI

Maximum Likelihood Estimation (MLE)

Finds the distribution parameter values that maximize the likelihood given observed data

Central Limit Theorem (CLT)

The average of many independent observations, regardless of the underlying distribution approximates to a normal distribution

Confidence Intervals (CI)

Defines a plausible range of values for the true parameter, considering the uncertainty from sampling, based on the observed sample

Confidence Intervals For F1

Variance Estimation

• One can observe the confusion matrix as a random variable with multinomial distribution with sample size $\,\eta$ and probabilities

$$p = (p_{11}, \dots, p_{1r}, p_{21}, \dots, p_{2r}, \dots, p_{r1}, \dots, p_{rr})^T$$

That is

$$(n_{11}, n_{12}, \dots, n_{rr}) \sim Multinomial(n; \mathbf{p})$$

• And using MLE $\hat{p}_{ij} = rac{n_{ij}}{n}$

	True Classification				
		Class1	Class 2	Class 3	
	Class 1	2	2	2	
Prediction	Class 2	5	70	2	
	Class 3	0	2	15	
		0.07	0.74	0.19	

Variance Estimation - Cont.

• Multivariate central limit theorem for multinomial:

$$\sqrt{n} \left(\hat{p} - p \right) \stackrel{\cdot}{\sim} Normal \left(0, diag(\mathbf{p}) - \mathbf{p} \mathbf{p}^T \right)$$

True class

Class 2

0.02

0.7

0.02

Class 3

0.02

0.02

0.15

F1

0.308

0.927

0.833

Class 1

0.02

0.05

0

• Using this, along with multivariate delta-method we will get that $\widehat{maF_1}$ and $\widehat{miF_1}$ are approximately normally distributed as:

$\widehat{maF_1} \stackrel{.}{\sim} \operatorname{Normal}(maF_1, Var(\widehat{maF1}))$	-		
	_	Class 1	
$\widehat{miF_1} \stackrel{.}{\sim} \operatorname{Normal}(miF_1, Var(\widehat{miF1}))$	Prediction	Class 2	
martin (martin, v ar (martin))		Class 3	

Multivariate Delta method

- ullet Given random variables $[X_n]$ satisfying $\sqrt{n}[X_n- heta] \overset{D}{\longrightarrow} \mathcal{N}(0,\sigma^2)$
- For any function g satisfying the property that g'(θ) exists and is non-zero valued we get $\sqrt{n}[q(X_n)-q(\theta)] \overset{D}{\longrightarrow} \mathcal{N}(0,\sigma^2\cdot [q'(\theta)]^2)$

$$\sqrt{n} (\hat{p} - p) \stackrel{\cdot}{\sim} Normal (0, diag(\mathbf{p}) - \mathbf{p}\mathbf{p}^{T})$$

$$\sqrt{n} (\widehat{miF_{1}} - miF_{1})$$

$$\stackrel{\cdot}{\sim} Normal \left(0, \left[\frac{\partial (miF_{1})}{\partial (\mathbf{p})}\right]^{T} (diag(\mathbf{p}) - \mathbf{p}\mathbf{p}^{T}) \left[\frac{\partial (miF_{1})}{\partial (\mathbf{p})}\right]\right)$$

$$\downarrow \mathbf{m} \widehat{aF_{1}} \stackrel{\cdot}{\sim} Normal (maF_{1}, Var(\widehat{maF_{1}}))$$

Variance Estimation - Cont.

While,

$$Var\left(\widehat{miF_1}\right) = \left(\sum_{i=1}^r p_{ii}\right) \left(1 - \sum_{i=1}^r p_{ii}\right) / n$$

$$Var\left(\widehat{maF_{1}}\right) = \frac{2}{r^{2}} \left\{ \sum_{i=1}^{r} \frac{F_{1i} \left(p_{i\cdot} + p_{\cdot i} - 2p_{ii}\right)}{\left(p_{i\cdot} + p_{\cdot i}\right)^{2}} \left(\frac{p_{i\cdot} + p_{\cdot i} - 2p_{ii}}{p_{i\cdot} + p_{\cdot i}} + \frac{F_{1i}}{2}\right) + \sum_{i=1}^{r} \sum_{j \neq i} \frac{p_{ij} F_{1i} F_{1j}}{\left(p_{i\cdot} + p_{\cdot i}\right) \left(p_{j\cdot} + p_{\cdot j}\right)} \right\} / n$$

- Now we have all the components Normally dist & we can calc variance
- ullet We can plug-in to compute confidence intervals for $\ miF_1$, $\ maF_1$

Confidence Interval Calculation - example

• Confidence Interval of miF_1 :

$$\widehat{miF_1} \pm Z_{1-\frac{\alpha}{2}} \times \sqrt{\operatorname{Var}(\widehat{miF_1})}$$

$$\widehat{miF_1} = 2\frac{m_i P \times m_i R}{m_i P + m_i R} = \sum_{i=1}^r p_{ii} = 0.87$$

$$Var(\widehat{miF1}) = \frac{(0.02 + 0.7 + 0.15)(1 - (0.02 + 0.7 + 0.15))}{100} = 0.00113$$

\Rightarrow 95% confidence interval of miF_1 :

$$0.87 \pm 1.960 \times \sqrt{0.00113} = (0.804, 0.936)$$

Prediction

	Truc class					
	Class 1	Class 2	Class 3			
Class 1	0.02	0.02	0.02			
Class 2	0.05	0.7	0.02			
Class 3	0	0.02	0.15			

True class

Confidence Interval Calculation - example

• Confidence Interval of maF_1 :

$$\widehat{maF_1} \pm Z_{1-\frac{\alpha}{2}} \times \sqrt{\operatorname{Var}(\widehat{maF_1})}$$

$$\widehat{maF_1} = \frac{1}{r} \sum_{i=1}^{r} F_{1i} = (0.308 + 0.927 + 0.833)/3 = 0.689$$

$$\widehat{Var}(\widehat{maF1}) = 0.0650^2$$

\Rightarrow 95% confidence interval of maF_1 :

$$0.69 \pm 1.960 \times 0.0650 = (0.562, 0.817)$$

True class

		Class 1	Class 2	Class 3	F1
	Class 1	0.02	0.02	0.02	0.308
Prediction	Class 2	0.05	0.7	0.02	0.927
	Class 3	0	0.02	0.15	0.833

04 Conclusion

Conclusion

Single Metric for comparison

A metric that takes into account both precision and recall, offering a more holistic measure of model effectiveness

More Robust & informed decision-making

This statistical approach enables a more accurate and objective assessment of model performance

Questions?

Thank you!

Appendix

Appendix A: Derivation of the distribution and variance of $\widehat{miF_1}$

Go to: >

Let p be the ordered elements of a confusion matrix. $p = (p_{11}, \dots, p_{1r}, p_{21}, \dots, p_{2r}, \dots, p_{r1}, \dots, p_{rr})^T$. Using the multivariate delta-method for \hat{p} , we get

$$\sqrt{n}\left(\widehat{miF_1} - miF_1\right)$$

$$\dot{\sim} Normal\left(0, \left[\frac{\partial \left(miF_1\right)}{\partial (\mathbf{p})}\right]^T \left(diag(\mathbf{p}) - \mathbf{p}\mathbf{p}^T\right) \left[\frac{\partial \left(miF_1\right)}{\partial (\mathbf{p})}\right]\right). \tag{5}$$