Problem R-06B/C ($C_{31}H_{30}OS_2$). The ¹³C NMR spectra (Normal and DEPT-135) of two isomers (**1** and **2**) are shown below. Make a reasonable chemical shift argument for which isomer is which. Clearly indicate which carbon signal(s) you are using to make the assignment.

R-06B is isomer___ R-06C is isomer__

Problem R-06B/C ($\rm C_{31}H_{30}OS_2$). 75.46 MHz $^{13}\rm C$ NMR spectrum in $\rm C_6D_6$. Source: Reich/Sikorski g

Problem R-06B/C (C₁₆H₁₈OS₂). The ¹³C NMR spectra (Normal and DEPT-135) of two isomers (**1** and **2**) are shown below. Make a reasonable chemical shift argument for which isomer is which. Clearly indicate which carbon signal(s) you are using to make the assignment.

5 R-06B is isomer______ R-06C is isomer_______1

C-5 has two γ -interactions with C-3 in isomer **2**, thus expect C-5 to be upfield. C-5 is at 72.8 in R-06C and at 76.4 in isomer R-06B. Thus R-06B = 2 and R-06C = 1

OH SPh SPh SPh OHPh 1 Ph 2

C-3 has a γ -gauche interaction in both isomers, and indeed the shift difference is only 1.1 ppm (41.0, 39.9). Not surprisingly, the γ -OH upfield effect is larger for C-3 in **1** than the γ -C effect for C-3 in **2**

Problem R-06B/C $(C_{31}H_{30}OS_2)$.

5

75.46 MHz ¹³C NMR spectrum in C₆D₆. Source: Reich/Sikorski g

