Avem sistemul:

$$19A - 22B + 5C = 0$$
$$5B - 5A - 5D = 0$$
$$A + 2B + 5C = 0$$

cu soluțiile:

$$A = -4D, B = -3D, C = 2D$$

deci ec.planului căutat este:

$$-4Dx - 3Dy + 2Dz + D = 0$$
$$-4x - 3y + 2z + 1 = 0.$$

## 3.5 Sfera

**Definitia 3.5.1** Se numește sferă mulțimea tuturor punctelor din spațiu pentru care distanța la un punct fix numit centrul sferei este egală cu un număr numit raza sferei.

Aria sferei:

$$S = 4\pi R^2$$

Volumul "bilei":

$$V = \frac{4\pi R^3}{3}.$$

Fie centrul sferei C(a, b, c) și raza sferei R.

**Teorema 3.5.1** Punctul M(x, y, z) aparține sferei dacă și numai dacă (ddacă) coordonatele sale verifică ecuația:

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = R^{2}$$
(3.5.1)

**Demonstrație**: distanța de la M la C este egală cu  $\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}$  care egalată cu R este echivalentă cu (3.5.1).

Dacă în ecuația de mai sus se fac calculele și se reduc termenii asemenea obținem:

$$x^{2} + y^{2} + z^{2} + mx + ny + pz + q = 0$$
 (EGS)

ecuație care poartă denumirea de **ecuația generală a sferei**. (EGS) reprezintă o sferă cu centrul în punctul  $C\left(-\frac{m}{2},-\frac{n}{2},-\frac{p}{2}\right)$  și de rază  $R=\sqrt{\left(\frac{m}{2}\right)^2+\left(\frac{p}{2}\right)^2-q}$  dacă expresia de sub radical este pozitivă.

**Remarca 3.5.1** Sfera se mai poate da și folosind ecuațiile parametrice:

$$\begin{cases} x = R\cos\varphi\sin\vartheta + a \\ y = R\sin\varphi\sin\vartheta + b \\ z = R\cos\vartheta + c \end{cases}, \qquad \varphi \in [0, 2\pi], \vartheta \in [0, \pi]$$
 (EPS)

$$\operatorname{sau} \varphi \in [-180, 180], \vartheta \in [0, 180]$$
 (3.5.2)

unde parametrii sunt unghiurile  $\varphi$ ,  $\vartheta$  din figura de mai jos:



pentru  $\varphi$  constant se obțin pe sferă jumătăți de cecuri mari ("meridiane"), iar pentru  $\vartheta$  constant se obțin pe sferă cercuri ("paralele").



Legat de sferă ne propunem să determinăm ecuația unui plan tangent la sferă într-un punct de pe sferă. Fie  $M_0(x_0, y_0, z_0)$  un punct pe sferă.

**Teorema 3.5.2** Ecuația planului tangent la sferă în punctul  $M_0$  este:

$$(x-a)(x_0-a) + (y-b)(y_0-b) + (z-c)(z_0-c) = R^2$$
 (EPTS)

**Demonstrație\*\*\***: Planul tangent la sferă în  $M_0$  este determinat de  $M_0$  și normala  $\overrightarrow{CM_0} = (x_0 - a)\overline{i} +$ ... (planul este perpendicular pe rază), deci ecuația sa este (unde (x, y, z) sunt coordonatele unui punct din planul tangent):

$$(x-x_0)(x_0-a) + (y-y_0)(y_0-b) + (z-z_0)(z_0-c) = 0$$
 Dar  $x-x_0=(x-a)-(x_0-a)$ ,... care înlocuite în ecuația de mai sus dau:

$$(x-a)\left(x_0-a\right)+(y-b)\left(y_0-b\right)+(z-c)\left(z_0-c\right)-\left(\left(x_0-a\right)^2+\left(y_0-b\right)^2+\left(z_0-c\right)^2\right)=0$$
 Ţinând cont de faptul că coordonatele lui  $M_0$  verifică ecuația sferei, rezultă (EPTS). $\square$ 

Remarca 3.5.2 Ecuația planului tangent la sferă se obține din (EGS) prin dedublare :

$$(x-a)^2 = (x-a)(x-a) \to (x-a)(x_0-a),...$$

**Remarca 3.5.3** Dacă sfera este dată sub formă generală atunci ecuatia planului tangent în punctul  $M_0$  de -50pe sferă este:

$$xx_0 + yy_0 + zz_0 + m\frac{x+x_0}{2} + n\frac{y+y_0}{2} + p\frac{z+z_0}{2} + q = 0$$
 dedublarea fiind:  $x^2 = xx \to xx_0, \, x = \frac{x+x}{2} \to \frac{x+x_0}{2}$ .



**Remarca 3.5.4** In general un plan este tangent la sferă dacă distanța de la centrul sferei la plan este egală cu raza.

## 3.6 Cuadrice pe ecuații reduse

## 3.6.1 Elipsoid

**Definitia 3.6.1** Se numește elipsoid mulțimea punctelor din spațiu  $M\left(x,y,z\right)$  care într-un sistem de coordonate bine ales verifică ecuația:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$
 (Elips)