Przestrzeń wektorowa - definicja, kombinacja liniowa, własności i twierdzenia

2024-11-10

Poprzednia: Algebra - 5

Następna: Algebra - 7

Zadania: [[]]

#przestrzen_wektorowa #algebra #kombinacja_liniowa #zaleznosc_i_niezaleznosc #podprzestrzen

Definicja przestrzeni wektorowej:

Def. $V \neq \emptyset$ - *zbiór*, (K, \oplus, \odot) - <u>ciało przemienne</u> Ciało nie jest trywialne, $|K| \geq 2$!!!

+: V imes V o V (<u>Działanie wewnętrzne</u> w zb. V)

 $\cdot: K imes V o V$ (<u>Działanie zewnętrzne</u> w zb. V)

Strukturę $(V,K,+,\cdot)$ nazywamy przestrzenią wektorową (liniową) nad ciałem K, jeżeli:

- 1. struktura (V, +) jest grupą abelową
- 2. $\forall u,v \in V \ orall \alpha \in K: \ lpha \cdot (u+v) = (lpha \cdot u) + (lpha \cdot v)$
- 3. $\forall v \in V \ \forall lpha, eta \in K: \ (lpha \odot eta) \cdot v = lpha \cdot (eta \cdot v) \wedge (lpha \oplus eta) \cdot v = (lpha \cdot v) + (eta \cdot v)$
- 4. $\forall v \in V: 1 \cdot v = v$ (gdzie 1 rozumiemy jako el. neutralny \odot)
 Tutaj V może być np. wektorami R^3 a K liczbami, skalarami, to wyjaśnia różnice między działaniami "w kółku" i bez kółka.

Elementy zbioru V nazywamy wektorami.

Elementy ciała K nazywamy skalarami.

Element neutralny dodawania wektorów nazywamy $wekorem\ zerowym$ i oznaczamy zazwyczaj $\overline{0}$.

 $\emph{Uw.}$ Często zamiast przestrzeń wektorowa $(V,K,+,\cdot)$ piszemy w skrócie przestrzeń V lub oznaczamy V(K).

Klasyczny przykład przestrzeni wektorowej:

$$(\mathbb{R}^3,\mathbb{R},+,\cdot)$$
, gdzie

$$(x_1,y_1,z_2)+(x_2,y_2,z_2):=(x_1+x_2,y_1+y_2,z_1+z_2)\ lpha(x,y,z):=(lpha x,lpha y,lpha z)$$

 $(\mathbb{R}^3$ - wektory, \mathbb{R} - skalary, \oplus,\odot - zwykłe działania dodawania i mnożenia w \mathbb{R} , a $\overline{0}=(0,0,0)$)

Inne przykłady (oznaczenia):

 $\mathbb{R}[x]_n$ - będzie oznaczało w przykładach z wielomianami wielomian stopnia *co najwyżej* n.

 $\mathbb{R}[x]$ - oznacza zbiór wszystkich wielomianów rzeczywistych

Mogą być też przykłady z odwzorowaniami (funkcjami):

 $(F(X,\mathbb{R}),\mathbb{R},+,\cdot)$ - gdzie $F(X,\mathbb{R})$ będzie oznaczało odwzorowanie prowadzące z X do \mathbb{R}

Własności działań w przestrzeni wektorowej

Uw. Przez "u-v" rozumiemy "u+(-v)"

Tw.

Z: $(V, K, +, \cdot)$ - prz. wekt.

T:

(1) $\forall v \in V: 0 \cdot v = \overline{0}$, gdzie 0 rozumiem jako element neutralny d. add. w ciele (skalarów).

(2)
$$\forall \alpha \in K : \alpha \cdot \overline{0} = \overline{0}$$

(3)
$$orall lpha \in K \ orall v \in V: (-lpha) \cdot v = -(lpha \cdot v)$$

(4)
$$\forall \alpha \in K \ \forall v \in V : \alpha \cdot (-v) = -(\alpha \cdot v)$$

(5)
$$\forall \alpha \in K \ \forall v \in V : \alpha \cdot v = \overline{0} \Leftrightarrow (\alpha = 0 \lor v = \overline{0})$$

(6)
$$\forall \alpha \in K \setminus \{0\} \ \forall u,v \in V : \alpha \cdot u = \alpha \cdot v \Rightarrow u = v$$

$$(7) \ \forall \alpha,\beta \in K \ \forall v \in V \setminus \{\overline{0}\} : \alpha \cdot v = \beta \cdot v \Rightarrow \alpha = \beta$$

Podprzestrzenie wektorowe

Def. $(V,K,+,\cdot)$ - przestrzeń wektorowa

Zbiór $U\subset V, U\neq\emptyset$, nazywamy *podprzestrzenią wektorową (liniową)* przestrzeni V, jeżeli:

- (1) $orall u,v\in U:(u+v)\in U$, suma wektorów podprzestrzeni zostaje w tej podprzestrzeni
- (2) $\forall \alpha \in K \ \forall u \in U : (\alpha \cdot u) \in U$, iloczyn wektora ze skalarem podprzestrzeni zostaje w tej podprzestrzeni

Uw. Każda podprzestrzeń danej przestrzeni wektorowej jest też przestrzenią wektorową.

Prz.
$$(\mathbb{R}^3, \mathbb{R}, +, \cdot)$$
 - przestrzeń wektorowej $U := \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$

Uw. Wektor zerowy przestrzeni liniowej jest elementem każdej jej podprzestrzeni.

Równoważna charakterystyka podprzestrzeni:

Z: $(V,K,+,\cdot)$ - przestrzeń wektorowa, $U\subset V, U\neq\emptyset$ T: U jest podprzestrzenią liniową przestrzeni V

$$\Leftrightarrow orall lpha, eta \in K \ orall u, v, \in U : lpha \cdot u + eta \cdot v \in U$$

Bo przecież dla dowolnego $\alpha, \beta \in K$, i dowolnego $u, v \in U$:

 $\alpha \cdot u \in U, \, \beta \cdot v \in U$ a suma dowolnych wektorów należących do U też musi należeć do U zatem:

$$\alpha \cdot u + \beta \cdot v \in U$$

Liniowa niezależność wektorów, kombinacja liniowa

Def. Niech V będzie przestrzenią wektorową nad ciałem K,

$$v_1, v_2, \ldots, v_n \in V, \alpha_1, \alpha_2, \ldots, \alpha_n \in K$$

Wektor postaci $a_1v_1+a_2v_2+\ldots+a_nv_n$ nazywamy *liniową kombinacją* wektorów v_1,v_2,\ldots,v_n a skalary $\alpha_1,\alpha_2,\ldots,\alpha_n$ nazywamy jej *współczynnikami*.

Def. Niech V bedzie przestrzenią wektorową nad ciałem K, $v_1, v_2, \ldots, v_n \in V$.

- 1. Wektory v_1,v_2,\ldots,v_n nazywamy *liniowo niezależnymi*, jeżeli $orall lpha_1,lpha_2,\ldots,lpha_n\in K$: $lpha_1v_1+lpha_2v_2+\ldots+lpha_nv_n=\overline{0}\Rightarrowlpha_1,lpha_2,\ldots,lpha_n=0$
- 2. Wektory v_1, v_2, \ldots, v_n nazywamy *liniowo zależnymi*, jeżeli nie są liniowo niezależne, tzn., gdy $\exists \alpha_1, \alpha_2, \ldots, \alpha_n \in K$: $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \overline{0} \wedge (\alpha_1 \neq 0 \vee \alpha_2 \neq 0 \vee \ldots \vee \alpha_n \neq 0)$ Gdzie 0 oznacza element neutralny działania addytywnego w ciele.

Przykład: $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$

a)

$$u = (0, 1, 1), v = (1, 0, 0), w = (1, 1, 1)$$

Czy $lpha \cdot u + eta \cdot v + \delta \cdot w = \overline{0}$ wtedy i tylko wtedy kiedy $lpha = eta = \delta = 0$?

0 - el. neutralny działania + w \mathbb{R} czyli po prostu 0

 $\overline{0}$ - wektor zerowy z \mathbb{R}^3 czyli (0,0,0)

$$Zapis$$
 $lpha \cdot u + eta \cdot v + \delta \cdot w = \overline{0}$ \Leftrightarrow $lpha \cdot (0,1,1) + eta \cdot (1,0,0) + \delta \cdot (1,1,1) = \overline{0}$ $Czyli:$ $(0,lpha,lpha) + (eta,0,0) + (\delta,\delta,\delta) = (0,0,0)$ $(eta+\delta,lpha+\delta=0) \Leftrightarrow egin{cases} eta = -\delta & \beta = -t \\ lpha + \delta = 0 & \beta = -\delta \\ lpha + \delta = 0 & \delta = R \end{cases} egin{cases} eta = -t \\ lpha = -t \\ \delta = t \end{cases}$ $Dla\ t = 3, lpha = -3, eta = -3, \delta = 3$ $oraz$ $lpha \cdot u + eta \cdot v + \delta \cdot w = \overline{0}$

 $Liniowo\ zalezne\ (3 \neq el.\ neutralny).$

b)

$$u = (3, 2, -1), v = (1, -2, 1), w = (1, 1, 1)$$

Czy $lpha \cdot u + eta \cdot v + \delta \cdot w = \overline{0}$ wtedy i tylko wtedy kiedy $lpha = eta = \delta = 0$?

0 - el. neutralny działania + w $\mathbb R$ czyli po prostu 0

 $\overline{0}$ - wektor zerowy z \mathbb{R}^3 czyli (0,0,0)

$$Zapis$$
 $lpha \cdot u + eta \cdot v + \delta \cdot w = \overline{0}$
 \Leftrightarrow
 $lpha \cdot (3, 2, -1) + eta \cdot (1, -2, 1) + \delta \cdot (1, 1, 1) = \overline{0}$
 $Czyli:$
 $(3lpha, 2lpha, -lpha) + (eta, -2eta, eta) + (\delta, \delta, \delta) = (0, 0, 0)$
 $(3lpha + eta + \delta, 2lpha - 2eta + \delta, -lpha + eta + \delta) = (0, 0, 0)$

$$\begin{cases} 3lpha + eta + \delta = 0 \\ 2lpha - 2eta + \delta = 0 \end{cases} \Leftrightarrow \begin{cases} 4lpha = 0 \\ eta + \delta = 0 \Rightarrow -3eta = 0 \Leftrightarrow \begin{cases} lpha = 0 \\ eta = 0 \\ \delta = 0 \end{cases}$$
 $\alpha \cdot u + eta \cdot v + \delta \cdot w = \overline{0} \Leftrightarrow (lpha = eta = \delta = 0)$

 $Liniowo\ niezalezne\ (0=el.\ neutralny).$

Twierdzenie

Niech V będzie przestrzenią wektorową nad ciałem $K, v_1, v_2, \ldots, v_n \in V$. Wówczas wektory v_1, v_2, \ldots, v_n są *liniowo zależne* wtedy i tylko wtedy, gdy przynajmniej *jeden* z nich jest *kombinacją liniową pozostałych* (lub $\{v_1, \ldots, v_n\} = \{\overline{0}\}$).

Dowód:

Dla $n \geq 2$

$$(\Rightarrow)v_1,\ldots,v_n \text{ - liniowo zależne} \stackrel{b.s.o}{\Rightarrow} \exists \beta_1,\ldots,\beta_n \in K: \beta_1v_1+\ldots\beta_nv_n = \overline{0} \land \beta_1 \neq 0$$

$$\beta_1v_1 = -(\beta_2v_2+\ldots+\beta_nv_n)$$

$$v_1 = -(\beta_1^{-1}\beta_2v_2+\ldots+\beta_1^{-1}\beta_nv_n) \to v_1 \text{ jest kombinacją liniową pozostałych wektorów}$$

$$(\Leftarrow)\exists \alpha_2,\ldots,\alpha_n \in K: v_1 = \alpha_2v_2+\ldots+\alpha_nv_n$$

$$\Rightarrow 1 \cdot v_1 + (-\alpha_2)v_2+\ldots+(-\alpha_n)v_n = \overline{0} \to v_1,\ldots v_n \text{ - liniowo zależne } (1 \neq 0 \text{ a z definicji żeby wektory były liniowo niezależne to mają dać wektor zerowy wtedy i tylko wtedy kiedy skalary są równe 0)}$$

Jedynke traktujemy jako jedynke działania multiplikatywnego (el. neutralny) zatem nie wiemy czy jest równy czy różny skalarowi równemu elementowi neutralnemu działania addytywnego)

Jeżeli jest różny to jak wyżej a jeżeli równy to:

$$1=0\ v\in K$$

$$v=1\cdot v=(1+0)\cdot v=(1+1)\cdot v=1\cdot v+1\cdot v=v+v/+(-v)$$
 $0=v\implies |K|=1$ - sprzeczne z założeniami przestrzeni wektorowej

Uwagi i wnioski:

Uwagi:

- 1. Zbiór $\{v\}$ jest liniowo niezależny wtedy i tylko wtedy, gdy $v
 eq \overline{0}$
- 2. Podzbiór zbioru wektorów liniowo niezależnych jest liniowo niezależny

Wnioski.

- 1. Jeżeli wektory są liniowo niezależne, to żaden z nich nie jest kombinacją liniową pozostałych.
- 2. Zespół wektorów: $v_1, v_2, \ldots, \overline{0}, \ldots, v_n$ jest liniowo zależny
- 3. Dla dwóch wektorów, u,v $u
 eq \overline{0}$: u,v są liniowo zależne $\Leftrightarrow \exists \alpha \in K : v = \alpha u$

Twierdzenie

Niech v_1,v_2,\ldots,v_n będą *liniowo niezależnymi* wektorami z przestrzeni wektorowej V. Wówczas, jeżeli wektor $v\in V$ jest *kombinacją liniową* wektorów v_1,v_2,\ldots,v_n to współczynniki tej kombinacji sa wyznaczone *jednoznacznie* (z dokładnością do kolejności).

tzn jeżeli:

$$egin{aligned} v &= lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n \ v &= eta_1 v_1 + eta_2 v_2 + \ldots + eta_n v_n \ to \ lpha_1 &= eta_1 \wedge \ldots \wedge lpha_n = eta_n \end{aligned}$$

Ciąg dalszy w Algebra - 7