Light Transport Techniques for Tensor Field Visualization Master's Thesis Presentation

Sebastian Bek

Heidelberg University Visual Computing Group (VCG) Supervisors: Prof. Filip Sadlo, Dr. Susanne Krömker

July 24th 2019

Transmission Profiles

To interpret singular value systems of tensors as conductivity property for light transport, we will need transfer functions (transmission profiles) for the propagation scheme:

Ellipse Equation

$$T(\omega) = \frac{ab}{\sqrt{a^2 \sin^2(\omega - \varphi) + b^2 \cos^2(\omega - \varphi)}} = \frac{\sigma_1 \sigma_2}{\sqrt{\sigma_1^2 \sin^2(\omega - \varphi) + \sigma_2^2 \cos^2(\omega - \varphi)}}$$

with $\varphi = atan2(\sigma_{1,v}, \sigma_{1,x})$ and σ : singular value, a: x-radius ellipse, b: y-radius ellipse

 \Rightarrow transmission profiles $r(\omega)$ are defined as polar functions by the mapping of singular values to half-axes radii and the shift angle of the major singular vector φ

Related Work - Asymmetric Tensor Field Visualization

- dual eigenvectors¹: use complex conjugate eigenvectors as co-visualization for the complex domain along with ordinary eigenvectors to represent the real domain
- pseudo eigenvectors²: extension for dual eigenvectors to a full set or graph
- scalar measures: tensor magnitude³, tensor mode⁴, isotropy index⁵

¹Zheng and Pang "2d asymmetric tensor analysis", 2005

²Laramee et al. "2d asymmetric tensor field topology", 2012

³Lin et al. "Asymmetric tensor field visualization for surfaces". 2011

⁴Palacios et al. "Feature surfaces in symmetric tensor fields based on eigenvalue manifold", 2015

⁵see footnote 12