# **Hierarchical Clustering**

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits





© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

# **Strengths of Hierarchical Clustering**

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
  - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

### **Hierarchical Clustering**

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

2

# **Agglomerative Clustering Algorithm**

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
  - 1. Compute the proximity matrix
  - 2. Let each data point be a cluster
  - 3. Repeat
  - 4. Merge the two closest clusters
  - 5. Update the proximity matrix
  - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms

© Tan.Steinbach, Kumar

Introduction to Data Mining

4/18/2004









## **How to Define Inter-Cluster Similarity**





**Proximity Matrix** 

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

# **How to Define Inter-Cluster Similarity**





**Proximity Matrix** 

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

## **How to Define Inter-Cluster Similarity**





**Proximity Matrix** 

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

### **How to Define Inter-Cluster Similarity**





**Proximity Matrix** 

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

### **How to Define Inter-Cluster Similarity**





**Proximity Matrix** 

- MIN
- MAX
- **Group Average**
- **Distance Between Centroids**
- Other methods driven by an objective function
  - Ward's Method uses squared error

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

# **Cluster Similarity: MIN or Single Link**

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
  - Determined by one pair of points, i.e., by one link in the proximity graph.

|    | l1                                   | 12   | <b>I</b> 3 | 14   | <b>I</b> 5 |
|----|--------------------------------------|------|------------|------|------------|
| 11 | 1.00<br>0.90<br>0.10<br>0.65<br>0.20 | 0.90 | 0.10       | 0.65 | 0.20       |
| 12 | 0.90                                 | 1.00 | 0.70       | 0.60 | 0.50       |
| 13 | 0.10                                 | 0.70 | 1.00       | 0.40 | 0.30       |
| 14 | 0.65                                 | 0.60 | 0.40       | 1.00 | 0.80       |
| 15 | 0.20                                 | 0.50 | 0.30       | 0.80 | 1.00       |



© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004







### **Cluster Similarity: MAX or Complete Linkage**

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
  - Determined by all pairs of points in the two clusters

|    | <u> 11 </u> | 12   | 13   | 14                                   | 15   |
|----|-------------|------|------|--------------------------------------|------|
| 11 | 1.00        | 0.90 | 0.10 | 0.65<br>0.60<br>0.40<br>1.00<br>0.80 | 0.20 |
| 12 | 0.90        | 1.00 | 0.70 | 0.60                                 | 0.50 |
| 13 | 0.10        | 0.70 | 1.00 | 0.40                                 | 0.30 |
| 14 | 0.65        | 0.60 | 0.40 | 1.00                                 | 0.80 |
| 15 | 0.20        | 0.50 | 0.30 | 0.80                                 | 1.00 |



© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004







# **Cluster Similarity: Group Average**

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$\begin{aligned} & \sum_{\substack{p_i \in \text{Cluster}_i \\ p_j \in \text{Cluster}_j}} & proximity(\text{Cluster}_i, \text{Cluster}_j) = \frac{\sum_{\substack{p_i \in \text{Cluster}_i \\ p_j \in \text{Cluster}_i}}}{\left| \text{Cluster}_i \right| * \left| \text{Cluster}_j \right|} \end{aligned}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

|    | <u> 11 </u>                          | 12   | 13   | 14   | 15   |
|----|--------------------------------------|------|------|------|------|
| 11 | 1.00                                 | 0.90 | 0.10 | 0.65 | 0.20 |
| 12 | 0.90                                 | 1.00 | 0.70 | 0.60 | 0.50 |
| 13 | 0.10                                 | 0.70 | 1.00 | 0.40 | 0.30 |
| 14 | 0.65                                 | 0.60 | 0.40 | 1.00 | 0.80 |
| 15 | 1.00<br>0.90<br>0.10<br>0.65<br>0.20 | 0.50 | 0.30 | 0.80 | 1.00 |

1 2 3 4 5

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004



# Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
  - Less susceptible to noise and outliers
- Limitations
  - Biased towards globular clusters

# **Cluster Similarity: Ward's Method**

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
  - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
  - Can be used to initialize K-means

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 2

#### Hierarchical Clustering: Time and Space requirements

- O(N<sup>2</sup>) space since it uses the proximity matrix.
  - N is the number of points.
- O(N³) time in many cases
  - There are N steps and at each step the size, N<sup>2</sup>, proximity matrix must be updated and searched
  - Complexity can be reduced to O(N<sup>2</sup> log(N)) time for some approaches

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

27

#### **Hierarchical Clustering: Problems and Limitations**

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
  - Sensitivity to noise and outliers
  - Difficulty handling different sized clusters and convex shapes
  - Breaking large clusters

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

# **MST: Divisive Hierarchical Clustering**

- Build MST (Minimum Spanning Tree)
  - Start with a tree that consists of any point
  - In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
  - Add q to the tree and put an edge between p and q





© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

# **MST: Divisive Hierarchical Clustering**

Use MST for constructing hierarchy of clusters

#### Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

# More on hierarchical clustering methods

- Major weakness of agglomerative clustering methods
  - Do not scale well: time complexity of at least  $O(n^2)$ , where n is the number of total objects
  - Cannot undo what was done previously
- Integration of hierarchical with distance-based clustering
  - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
  - CURE (1998): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction
  - CHAMELEON (1999): hierarchical clustering using dynamic modeling

NC STATE UNIVERSITY

Based on Han & Kamber

CSC 422 / 522 Jon Doyle © 2013 \_\_\_

# **BIRCH (1996)**

- Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang, Ramakrishnan, Livny (SIGMOD'96)
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
  - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
  - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record.

NC STATE UNIVERSITY

Based on Han & Kamber

CSC 422 / 522 Jon Doyle © 2013

# **Clustering Feature Vector**

Clustering Feature:  $CF = (N, \overrightarrow{LS}, \overrightarrow{SS})$ 

N: Number of data points

$$\overrightarrow{LS}$$
:  $\sum_{i=1}^{N} = \overrightarrow{X_i}$ 

$$\overrightarrow{SS}$$
:  $\sum_{i=1}^{N} = \overrightarrow{X_i^2}$ 



(4,7) (3,8)

NC STATE UNIVERSITY

Based on Han & Kamber

CSC 422 / 522 Jon Doyle © 2013

