Section 3.1 : Limits © Justin Owen

Note: Some of these examples and figures come from the textbook *Single Variable Calculus: Concepts & Contexts*, 4th ed., by Stewart and the MATH 131 lecture notes of Aleksanda Sobieska.

Question: What does a function f(x) do as the x values get closer and closer to a point?

Example: The Heaviside function H is defined by $H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$. What happens as the values of x approach 0 from the left? From the right?

Definition (Left Limit): We call L the left limit of f(x) at a if as x approaches a from the left, f(x) approaches L, i.e. we can make f(x) arbitrarily close to L (as close to L as we want) for all x sufficiently close to a, from the left (without actually letting x be a). We write this as

$$\lim_{x \to \infty} f(x) = L$$

Definition (Right Limit): We call L the right limit of f(x) at a if as x approaches a from the right, f(x) approaches a, i.e. we can make a arbitrarily close to a (as close to a) as we want) for all a sufficiently close to a, from the right (without actually letting a be a). We write this as

$$\lim_{x \to a^+} f(x) = L.$$

Example: What are the left and right limits at *a* for the three functions below?

<u>Definition (Limit):</u> We call L the limit of f(x) at a if as x approaches a, f(x) approaches L, i.e. we can make f(x) arbitrarily close to L (as close to L as we want) for all x sufficiently close to a, from any direction (without actually letting x be a). We write this as

$$\lim_{x \to a} f(x) = L.$$

Intuitive Definition (Limit): f(x) gets closer to L as x gets closer to a (from either side of a) but $x \neq a$.

Existence of a Limit: If the function f(x) is defined near x = a but not necessarily at x = a, then

$$\lim_{x \to a} f(x) = L$$

if and only if both the limits

$$\lim_{x \to a^{-}} f(x)$$
 and $\lim_{x \to a^{+}} f(x)$

exist and are equal to the same number L.

Example: For the function f whose graph is given, state the value of each quantity, if it exists.

(b)
$$\lim_{x \to 3^-} f(x)$$

(c)
$$\lim_{x \to 3^+} f(x)$$

(d)
$$\lim_{x\to 3} f(x)$$

(e)
$$f(3)$$

Guessing a limit from numerical values

Example: Guess the value of $\lim_{x\to 2} \frac{x^2+x-6}{x-2}$.

Example: Guess the value of
$$\lim_{x\to 2} g(x)$$
, where $g(x) = \begin{cases} \frac{x^2 + 4x - 12}{x^2 - 2x} & \text{if } x \neq 2 \\ 6 & \text{if } x = 2 \end{cases}$.

Example: Estimate the value of the $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$.

Example: Does $\lim_{x\to 0^+} \frac{1}{x}$ exist?

<u>Definition (Vertical Asymptote):</u> If as $x \to a^-$ or $x \to a^+$ the function y = f(x) becomes large in magnitude without bound, then the line x = a is called a vertical asymptote.

The Limit of a Polynomial Function: If p(x) is any polynomial and a is any number, then $\lim_{x\to a} p(x) = p(a)$.

Example: Find A such that $\lim_{x\to 3} x^2 - Ax + 2 = 8$.

Rules for Limits: Assume that

$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = M$.

Then

Rule 1: $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x) = cL$

Rule 2: $\lim_{x\to a} (f(x)\pm g(x)) = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x) = L\pm M$

Rule 3: $\lim_{x\to a} (f(x) \cdot g(x)) = \left(\lim_{x\to a} f(x)\right) \cdot \left(\lim_{x\to a} g(x)\right) = L \cdot M$

Rule 4: $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} = \frac{L}{M}$ if $\lim_{x\to a} g(x) = M \neq 0$

Rule 5: $\lim_{x\to a} (f(x))^n = L^n$, *n* any real number, L^n defined, $L \neq 0$

Example: What is $\lim_{x\to 0} \frac{x^2 + 5x + 6}{x+1}$?

Example: What is $\lim_{x \to 1} (x^2 - 9)^{\frac{1}{3}}$?

Definition (The Limit of a Function Continuous at a Point): The function f(x) is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$.

Continuity of Polynomial and Rational Functions:

- A polynomial function is continuous everywhere.
- A rational function is continuous at every point at which the denominator is not zero.

Example: Determine the values where $\frac{2x^2 + 11x}{x^3 + 6x^2 - 27x}$ is discontinuous.

More Rational Function Practice:

Example: Find $\lim_{x\to 0} \frac{x^3 + x^2 - 6x}{x}$.

Example: Find
$$\lim_{x\to 0} \frac{x^2+x-6}{x-2}$$
.

Example: Find
$$\lim_{x \to 1} \frac{5x^2 - 4x - 1}{x - 1}$$
.