南开大学电子信息与光学工程学院 电路基础实验 四

实验名称 运算放大器与受控源

一. 实验目的

- 1. 熟悉和加深对受控电源的理解。
- **2**. 学习运算放大器的使用方法和含有运算放大器线性电路的分析方法,形成有源器件的概念。
 - 3. 测量电压控制型电流源和电压源,电流控制型电流源和电压源的特性。

二. 实验原理

1.运算放大器

运算放大器(简称"运放")是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。由于早期应用于模拟计算机中,用以实现数学运算,故得名"运算放大器"。

运算放大器是一个有源三端器件,它有两个输入端和一个输出端。其中,"十"端称为同相输入端,"一"端称为反相输入端。若信号从"十"端输入,而将"一"端接参考地时,则输出信号与输入信号相位相同,若信号从"一"端输入,而将"十"端接参考地时,输出信号与输入信号相位相反。

运算放大器的电路符号及其等效电路如图 1 所示:

如果运算放大器工作在线性区,"+"端和"-"端分别接输入电压 Up 和 Un 则运算放大器的输出电压 Uo=AO(Up-Un), 其中 AO 是运放的开环电压放大倍数,在理想情况下,AO 与运放的输入电阻 Ri("+"端的输入电阻记为 Rip、"-"端的输入电阻记为 Rin)均为无穷大,输出电压 Uo 是一个有限的数值,因此有:

$$i_p = \frac{U_p}{R_{ip}} = 0 \qquad \qquad i_n = \frac{U_n}{R_{in}} = 0 \label{eq:ip}$$
 Up = Un

这说明理想运放具有下列三大特征:

- ①运放的"+"端与"-"端电位相等,通常称为"虚短路"。
- ②运放输入端电流为零,通常称为"虚断路"。
- ③运放的输出电阻为零。

运放除了两个输入端、一个输出端和一个参考地接线端以外,要使运放工作, 还须接有正、负直流工作电源(称双电源),有的运放可用单电源工作。运放 的工作特性是在接有电源的工作状态下才具有的。

理想运放的电路模型是一个受控源——电压控制电压源(即 VCVS),如图 1(b) 所示,在它的外部接入不同的电路元件,可构成四种基本受控源电路,以实现对输入信号的各种模拟运算或模拟变换。

2. 受控源

与受控源相对的是独立源。独立源的电压和电流是固定的数值或某一时间函数,不随电路其余部分的状态改变而改变。受控电源又与无源元件不同,无源元件的电压和它自身的电流有一定的函数关系,而受控电源的电压和电流与另一支路的电流或电压有某种函数关系。

受控源是由电子器件抽象而来的一种模型。如,晶体管、真空管等。受控源是一种双口元件,它含有两条支路,其一为控制支路,这条支路或为开路或为短路,另一为受控制支路,这条支路或用一个受控"电压源"表明该支路的电压受控制的性质,或用一个受控"电流源"表明该支路的电流受控制的性质。这两种"电源"本非严格意义上的电源。受控源只是表明电路内部电子器件中所发生物理现象的一种模型,用以表明电子器件的"互参数"或电压、电流"转移"关系得一种方式而已。

受控源分为受控电压源和受控电流源两类,而每一类按控制量的不同又分为电压控制与电流控制两种。因此,受控电源一共有四种,即电压控制电压源、电流控制电压源、电压控制电流源和电流控制电流源,如图 2 所示。

(a) 电压控制电压源(VCVS)

(c) 电流控制电压源(CCVS)

(b) 电压控制电流源 (VCCS)

(d) 电流控制电流源(CCCS)

图 2 受控源的四种类型

受控源的控制端与受控端的关系称为转移函数。

四种受控源转移函数参量的定义如下:

①电压控制电压源(VCVS)

如图 2(a)所示, 其转移特性为: U2=f(U1)

其中, $\mu=U2/U1$, 称为转移电压比, 或电压增益、电压放大倍数。

②电压控制电流源(VCCS)

如图 2(b)所示, 其转移特性为: I2=f(U1)

其中,gm=I2/U1 称为转移电导。

③电流控制电压源(CCVS)

如图 2(c)所示, 其转移特性为: U2=f(I1)

其中,rm=U2/I1 称为转移电阻。

④电流控制电流源(CCCS)

如图 2(d)所示, 其转移特性为: I2=f(I1)

其中, $\alpha=12/11$ 称为转移电流比,或电流增益、电流放大倍数。

3.受控源的线路原理分析

①电压控制电压源(VCVS)

典型的由运放构成的电压控制电压源的电路如下图 3 所示。

图 3 用运放构成的电压控制电压源实验电路

由于运放的虚短路特性,有:

$$U_p = U_n = U_1$$

$$i_2 = \frac{U_n}{R_2} = \frac{U_1}{R_2}$$

又因运放内阻视为无穷大,则有 $i_1 = i_2$ 。

因此,可以推导出:

$$U_2 = i_1 R_1 + i_2 R_2 = i_2 (R_1 + R_2) = \frac{U_1}{R_2} (R_1 + R_2) = \left(1 + \frac{R_1}{R_2}\right) U_1$$

即运放的输出电压 U_2 只受输入电压 U_1 的控制,与负载 RL 大小无关。

转移电压比为:

$$\mu = \frac{U_2}{U_1} = 1 + \frac{R_1}{R_2}$$

上式中, *μ*无量纲。

这里的输入、输出有公共接地点,这种联接方式称为共地联接。

②电压控制电流源(VCCS)

将图 3 的 R1 看成一个负载电阻 RL,如图 4 所示,即成为电压控制电流源 VCCS。

图 4 用运放构成的电压控制电流源实验电路

此时,运放的输出电流为:

$$i_L = i_R = \frac{U_n}{R} = \frac{U_1}{R}$$

即运放的输出电流 i_L 只受输入电压 U_1 的控制,与负载 RL 大小无关。

转移电导为:

$$g_{\rm m} = \frac{i_L}{U_1} = \frac{1}{R}$$

上式中, gm的单位为 S。

这里的输入、输出无公共接地点,这种连接方式称为浮地连接。

③电流控制电压源(CCVS)

典型的由运放构成的电流控制电压源的电路如下图 5 所示。

由于运放的"+"端接地,所以Up=0,"一"端电压Un也为零,此时运放的"一"端称为虚地点。显然,流过电阻R的电流i1就等于网络的输入电流is。

图 5 用运放构成的电流控制电压源实验电路

此时,运放的输出电压 U2 = -i1R=-isR,即输出电压 U2 只受输入电流 is 的控制,与负载 i_L 大小无关。

转移电阻为

$$r_m = \frac{U_2}{i_s} = -R$$

上式中, r_m 的单位为 Ω 。此电路为共地连接。

④电流控制电流源(CCCS)

典型的由运放构成的电流控制电压源的电路如下图 6 所示。

图 6 用运放构成的电流控制电流源实验电路

可以推导:

$$i_1R_1 = i_2R_2$$

$$i_L = i_1 + i_2 = i_1 + \frac{R_1}{R_2}i_1 = \left(1 + \frac{R_1}{R_2}\right)i_1 = \left(1 + \frac{R_1}{R_2}\right)i_S$$

即输出电流 i_L 只受输入电流 i_S 的控制,与负载 R_L 大小无关。

转移电流比: $\alpha = \frac{i_L}{i_S} = \left(1 + \frac{R_1}{R_2}\right)$

上式中, α无量纲。此电路为浮地连接。

三、实验设备

名称	规格	数量
直流可调稳压电源	0~30V	1
直流稳压电源	±12V	1
直流电压表		1
直流电流表		1
元件箱		2
连接线		若干

四、实验内容及步骤

- 1. 测定电压控制电压源 VCVS 的特性
- ①按下图7连接电路。
- ②给定 R_{1} = R_{2} =2K Ω , 对应表 1 测量 VCVS 实验电路的性能。

给定值		U1(V)	0.5	1.0	1.5	2.0	2.5
	测试值	U1(V)	0.5	1.0	1.5	2.0	2.5
VCVS	测试值	U2(V)	1.0	2.0	3.0	4.0	5.0
	计算值	μ	1.0	2.0	3.0	4.0	5.0

③在输出端接入可调 R_L 电阻箱,改变阻值, $U_{1=1.0V}$,测量 VCVS 的输出 电 压 , 并 填 入 下 表 2 中 。

🗶 取消

? 帮助

D

给定值		$R_L (\Omega)$	1K	2K	4K	8K	
VCVS	测试值	<i>U</i> ₂ (γ)	2	2	2	2	

2. 测定电压控制电流源 VCCS 的特性

①按下图8连接电路。

图 8 VCCS 实验电路

②给定 $U_{1=2V}$, $R_{=2k}\Omega$, R_{L} 接可调电阻箱, 按照表 3 测定 VCCS 性能, 并计算 g_{mo}

gm=1/R=0.0005;

③ 给 定 R_L =5K Ω , R =2K Ω , 改 变 U_1 的 电 压 值 , 按 照 表 4 测 量 并 记录

							_
给定值		U_1 (V)	1.0	2.0	3.0	4.0	5.0
	测试值	<i>U</i> ₁ (V)	1	2	3	4	5
VCCS	测试值	<i>i</i> ₂(mA)	0.5	1	1.5	2	2.5
	计算值	I2(mA)	0.5	1.0	1.5	2.0	2.5

3. 测定电流控制电压源 CCVS 的特性

①按下图9连接电路。

图 9 CCVS 实验电路

②给定 $U_{1=3.0V}$ 、 R=3K Ω ,按照表 5 测定 CCVS 性能,并计算 r_m 。 rm=-R=-3000;

给定值	$R_1 (\Omega)$	1K	2K	3K	4K	5K
加沙仿	$i_1 \; (mA)$	3	1.5	1	0.75	0.6
测试值	<i>U</i> ₂ (V)	-9	-4.5	-3	-2.25	-1.8
计算值	-3000 * i1(A)	-9	-4.5	-3	-2.25	-1.8

4. 测定电流控制电流源 CCCS 的特性

 $U_2(V)$

-4.5

-4.5

-4.5

-4.5

①按下图 10 连接电路。

图 10 CCCS 实验电路

②给定 $U_{1=2.0V}$, $R_{1=}$ $R_{2=2k}\Omega$, 按照表 7 测定 R_{L} 由 0 \sim 3k Ω 变化时, i_1 、 U_2 的值,并由此计算得到 i_2

值,并计算 α。

 $\alpha = 1 + R1 / R2 = 2;$

表 7 CCCS 特性测量

给定值	R_L (Ω)	1K	2K	3K
测试值	$i_1\ (extsf{mA})$	1	1	1

	<i>U</i> ₂ (V)	2	4	6	
计算值	<i>i</i> ₂ (mA)	2	2	2	
N 开 但	α	2	2	2	

五、实验分析和数据

六: 思考题

1. 掌握四种受控源的符号、电路模型、控制量与被控制量之间的关系,以及四种受控源中的 μ 、 g_m 、 r_m 和 α 的意义。

受 控 源 符号	电路模型	控制量与被控制之间的关系
VCVS	u_1 u_2 R_2	$\mu = U2/U1$ 称为转移电压比,或电压增益、电压放大倍数; $U_2 = i_1 R_1 + i_2 R_2 = i_2 (R_1 + R_2) = \frac{U_1}{R_2} (R_1 + R_2) = \left(1 + \frac{R_1}{R_2}\right) U_1$
vccs	+	Gm = I / U = 1 / R 称为转移电导

2.对于初学电路基础的同学们来说,运放的概念可能有些抽象,理解上可能会遇到困难。同学们应详细阅读有关运放和受控源的章节,结合实验内容,争取尽早消化理解。在完成本节的实验内容之后,需要同学们结合测量数据,总结出四类受控源的特性和带负载时的特性,加深对于受控源的认识。

受控源类型	受控源特性	带负载时特性
VCVS	转移特性为: U2=f(U1)	运放的输出电压 U_2 只 受输入电压 U_1 的控制,与负载 RL 大小无关
VCCS	转移特性为: I2=f(U1)	运放的输出电流 i_L 只 受输入电压 U_1 的控制,与负载 RL 大小无关
CVVS	转移特性为: U2=f(I1)	输出电压 U2 只受输入电流 is 的控制,与负载 $i_{\rm L}$ 大小无关

CVCS

转移特性为: I2=f(I1)

输出电流 i_L 只受输入 电流 i_S 的控制,与负载 R_L 大小无关

3: 四类受控源由运放和相关电路组成,每一类的受控源的电路都不是唯一的,本节实验列举的只是其中的一个典型电路。同学们可以根据实验原理中的电路自行推导,求出每一类受控源电路的转移函数,加深对于运放和受控源的理解。

①电压控制电压源(VCVS)

其转移特性为: U2=f(U1)

其中, μ=U2/U1, 称为转移电压比,或电压增益、电压放大倍数。

②电压控制电流源(VCCS)

其转移特性为: I2=f(U1)

其中,gm=I2/U1 称为转移电导。

③电流控制电压源(CCVS)

转移特性为: U2=f(I1)

其中,rm=U2/I1 称为转移电阻。

④电流控制电流源(CCCS)

转移特性为: I2=f(I1)

其中, $\alpha=12/11$ 称为转移电流比,或电流增益、电流放大倍数。

4.将测量结果与理论值进行比较,分析误差产生的原因。

1:VCVS,由仿真与理论, U2 = μ恒成立,

2:VCCS, 由仿真与理论, i2 = U1 / R 恒成立,

3:CCVS, 由仿真与理论, U2 = -R* I1 恒成立,

4:CCCS, 由仿真与理论, I2 = (1 + R1 / R2) * I1 恒成立,

在实际操作中,读取电流表、电压表读数时系统或偶然误差等使得实验与理论值有出入。
5.试分析受控源的输出特性是否适用于交流信号。
受控源的输出特性适用于交流信号。受控源与信号种类无关。受控源对外提供的能量,既非取自控制量又非受控源内部产生的,而是由电子器件所需的电源供给。所以受控源实际上是一种能量转换装置。受控源的电流或电压由控制支路的电流或电压控制,当对受控源输入交流信号时,则受控源的电压、电流受交流信号控制,此时受控源的输出特性同样适用于交流信号。