See the HiHW grading rubric posted on Carmen

Name: Gage Farmer Recitation Instructor: Christopher Thompson

A metal ball (m=1.9 kg) hangs by a light string from the ceiling of a wooden crate (M=5.2 kg). The crate is then pushed with a constant horizontal force F along some friction-less ice. This causes the ball hang inside the crate at an angle of $\theta=40^{\circ}$ with respect to the vertical. What is the value of F?(Hint: if the ceiling of the crate is pulling on the ball, then the ball is pulling back on the ceiling of the crate.) For the limit check, investigate what happens to F as the angle θ drops to zero.

Representation:	0	1	2
Physics Concept(s):	0	1	2
Initial Equation(s):	0	0.5	1
Symbolic Answer:	0		1
Units Check:	0	0.5	1
Limits Check:	0	0.5	1
Neatness:	-2	-1	0
Total:			
Correct Answer:	Y	N	

Due Date: 9/18/2022

Representation

m= 1.9 kg M=5.2 kg 0=40°

Physics Concept(s) (Refer to the list posted on Carmen)

Initial Equations

(1) Newton's Laws of Motion

F: ma lan0=<u>0</u>

$$F = mg$$

$$\begin{cases}
E = mg \\
E = may
\end{cases}$$

$$\begin{cases}
F = may
\end{cases}$$

$$\begin{cases}
F = mg = 0 \\
F = mg
\end{cases}$$

$$\begin{cases}
F = mg = mg
\end{cases}$$

Ball

Str=Max

Tsin0+f=Ma[Eq2]

Sty=may

Eq.1+Eq.2

Tos0-mg=0

$$a=\frac{f}{H_c+m}$$

Tos0=mg

 $f=gtan0(M_c+m)$
 $T=\frac{mg}{cos0}[Eq.3]$

Symbolic Answer: F= Fatan 0;

Units Check

Limits Check

a) As $\theta \to 0^{\circ}$, what limit does F approach?

b) Why does the result make physical sense?

The angle approaching 0° means that the force is increasing

Numerical Answer:

(Obtain this by plugging numbers into your symbolic answer.)

