Table 1
 Microeconomic Model Calibration

Calibrated Parameters				
Description	Parameter	Value	Source	
Permanent Income Growth Factor	Γ	1.03	PSID: Carroll (1992)	
Interest Factor	R	1.04	Conventional	
Time Preference Factor	β	0.96	Conventional	
Coefficient of Relative Risk Aversion	ρ	2	Conventional	
Probability of Zero Income	\wp	0.005	PSID: Carroll (1992)	
Std Dev of Log Permanent Shock	σ_{ψ}	0.1	PSID: Carroll (1992)	
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)	

 Table 2
 Model Characteristics Calculated from Parameters

				Approximate
				Calculated
Description	Syr	nbol	and Formula	Value
Finite Human Wealth Factor	\mathcal{R}^{-1}	=	Γ/R	0.990
PF Finite Value of Autarky Factor	⊐	\equiv	$eta\Gamma^{1- ho}$	0.932
Growth Compensated Permanent Shock	$\underline{\psi}$	\equiv	$(\mathbb{E}[\psi^{-1}])^{-1}$	0.990
Uncertainty-Adjusted Growth	Γ	=	$\Gamma \underline{\psi}$	1.020
Utility Compensated Permanent Shock	$\underline{\underline{\psi}}$	≡	$(\mathbb{E}[\psi^{1-\rho}])^{1/(1-\rho)}$	0.990
Utility Compensated Growth	$\overline{\underline{\Gamma}}$	=	$\Gamma \underline{\psi}$	1.020
Absolute Patience Factor	Þ	\equiv	$(R\beta)^{1/ ho}$	0.999
Return Patience Factor	\mathbf{p}_{R}	\equiv	\mathbf{P}/R	0.961
Growth Patience Factor	\mathbf{b}_{Γ}	\equiv	\mathbf{p}/Γ	0.970
Normalized Growth Patience Factor	$\mathbf{b}_{\underline{\Gamma}}$	\equiv	$\mathbf{P}/\underline{\Gamma}$	0.980
Finite Value of Autarky Factor	I⊒	\equiv	$\beta\Gamma^{1-\rho}\underline{\psi}^{1-\rho}$	0.941
Weak Impatience Factor	$\wp^{1/ ho}\mathbf{p}$	=	$(\wp \beta R)^{\overline{1/\rho}}$	0.071

 ${\bf Table~3}~~{\bf Definitions~and~Comparisons~of~Conditions}$

Perfect Foresight Versions	Uncertainty Versions			
9	V			
Finite Human Wealth Condition (FHWC) $\Gamma/R < 1 \qquad \qquad \Gamma/R < 1$				
The growth factor for permanent income Γ must be smaller than the discounting factor R for human wealth to be finite.	The model's risks are mean-preserving spreads, so the PDV of future income is unchanged by their introduction.			
Absolute Impatien	ce Condition (AIC)			
D < 1	p < 1			
The unconstrained consumer is sufficiently impatient that the level of consumption will be declining over time: $\mathbf{c}_{t+1} < \mathbf{c}_t$	If wealth is large enough, the expectation of consumption next period will be smaller than this period's consumption: $\lim_{m_t \to \infty} \mathbb{E}_t[\mathbf{c}_{t+1}] < \mathbf{c}_t$			
Return Impatie	ence Conditions			
Return Impatience Condition (RIC)	Weak RIC (WRIC)			
$\mathbf{p}/R < 1$	$\wp^{1/\rho}\mathbf{P}/R < 1$			
The growth factor for consumption \mathbf{p} must be smaller than the discounting factor R, so that the PDV of current and future consumption will be finite: $\mathbf{c}'(m) = 1 - \mathbf{p}/R < 1$	If the probability of the zero-income event is $\wp=1$ then income is always zero and the condition becomes identical to the RIC. Otherwise, weaker. $c'(m)<1-\wp^{1/\rho}\mathbf{P}/R<1$			
,	,			
	ence Conditions			
PF-GICNrm	GIC-Nrm			
$\mathbf{p}/\Gamma < 1$	$\mathbf{p}\mathbb{E}[\psi^{-1}]/\Gamma < 1$			
For an unconstrained PF consumer, the ratio of \mathbf{c} to \mathbf{p} will fall over time. For constrained, guarantees the constraint eventually binds. Guarantees $\lim_{m_t \uparrow \infty} \mathbb{E}_t[\psi_{t+1} m_{t+1}/m_t] = \mathbf{P}_{\Gamma}$	By Jensen's inequality stronger than PF-GICNrm. Ensures consumers will not expect to accumulate m unboundedly. $\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{p}_{\underline{\Gamma}}$			
Finite Value of Autarky Conditions				
PF-FVAC	FVAC			
$eta \Gamma^{1- ho} < 1$ equivalently $\mathbf{P} < R^{1/ ho} \Gamma^{1-1/ ho}$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$			
The discounted utility of constrained consumers who spend their permanent income each period should be finite.	By Jensen's inequality, stronger than the PF-FVAC because for $\rho>1$ and nondegenerate $\psi, \mathbb{E}[\psi^{1-\rho}]>1$.			

Table 4 Sufficient Conditions for Nondegenerate[‡] Solution

Consumption Model(s)	Conditions	Comments
$\bar{\mathbf{c}}(m)$: PF Unconstrained	RIC, FHWC°	$RIC \Rightarrow v(m) < \infty; FHWC \Rightarrow 0 < v(m) $
$\underline{\mathbf{c}}(m) = \underline{\kappa} m$		PF model with no human wealth $(h = 0)$
Section 2.5.3:		RIC prevents $\bar{\mathbf{c}}(m) = \underline{\mathbf{c}}(m) = 0$
Section 2.5.3:		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
Eq (26):		$PF-FVAC+FHWC \Rightarrow RIC$
Eq (27):		$GIC+FHWC \Rightarrow PF-FVAC$
$\grave{c}(m)$: PF Constrained	PE-GICNrm, RIC	FHWC holds $(\Gamma < \mathbf{P} < R \Rightarrow \Gamma < R)$
Section 2.5.6:		$\dot{c}(m) = \bar{c}(m) \text{ for } m > m_{\#} < 1$
		(RIC would yield $m_{\#} = 0$ so $\grave{\mathbf{c}}(m) = 0$)
Appendix 7:	PF-GICNrm,RIC	$\lim_{m\to\infty} \dot{c}(m) = \bar{c}(m), \lim_{m\to\infty} \dot{\boldsymbol{\kappa}}(m) = \underline{\kappa}$
		kinks where horizon to $b = 0$ changes*
Appendix 7:	PF-GICNrm,RIC	$\lim_{m\to\infty} \hat{\boldsymbol{\kappa}}(m) = 0$
		kinks where horizon to $b = 0$ changes*
c(m): Friedman/Muth	Section 3.1,	$\underline{\mathbf{c}}(m) < \mathbf{c}(m) < \overline{\mathbf{c}}(m)$
	Section 3.2	$ \underline{\mathbf{v}}(m) < \mathbf{v}(m) < \bar{\mathbf{v}}(m)$
Section 2.10:	FVAC, WRIC	Sufficient for Contraction
Section 2.12.1:		WRIC is weaker than RIC
Figure 3:		FVAC is stronger than PF-FVAC
Section 2.12.3:		EHWC+RIC \Rightarrow GIC, $\lim_{m\to\infty} \kappa(m) = \underline{\kappa}$
Section 2.12.2:		RFC \Rightarrow EHWC, $\lim_{m\to\infty} \kappa(m) = 0$
Section 3.3:		"Buffer Stock Saving" Conditions
Section 3.3.2:		$GIC \Rightarrow \exists 0 < \check{m} < \infty$
Section 3.3.1:		GIC-Nrm $\Rightarrow \exists 0 < \hat{m} < \infty$

[‡]For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines a unique optimal value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$. °RIC, FHWC are necessary as well as sufficient for the perfect foresight case. *That is, the first kink point in c(m) is $m_{\#}$ s.t. for $m < m_{\#}$ the constraint will bind now, while for $m > m_{\#}$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc. **In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy

Table 5 Taxonomy of Perfect Foresight Liquidity Constrained Model Outcomes For constrained \grave{c} and unconstrained \bar{c} consumption functions

Main Condition				
Subcondition		Math		Outcome, Comments or Results
PE-GICNrm		1 <	\mathbf{P}/Γ	Constraint never binds for $m \geq 1$
and RIC	\mathbf{P}/R	< 1		FHWC holds $(R > \Gamma)$; $\dot{c}(m) = \bar{c}(m)$ for $m \ge 1$
and RHC		1 <	\mathbf{P}/R	$\grave{\mathbf{c}}(m)$ is degenerate: $\grave{\mathbf{c}}(m) = 0$
PF-GICNrm	\mathbf{P}/Γ	< 1		Constraint binds in finite time for any m
and RIC	\mathbf{P}/R	< 1		FHWC may or may not hold
				$\lim_{m\uparrow\infty} \bar{\mathbf{c}}(m) - \grave{\mathbf{c}}(m) = 0$
				$\lim_{m\uparrow\infty} \hat{\boldsymbol{k}}(m) = \underline{\kappa}$
and AtC		1 <	Þ /R	EHWC
			•	$\lim_{m\uparrow\infty} \dot{\boldsymbol{k}}(m) = 0$

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where PF-GICNrm and RIC both hold, while the third row indicates that when the PF-GICNrm and the RIC both fail, the consumption function is degenerate; the next row indicates that whenever the PF-GICNrmholds, the constraint will bind in finite time.