

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

QUESTION BANK

Department	Computer Science and Engineering (AI and ML)				
Course Title	Image a	nd Speech P	rocessing		
Course Code	ACAC05				
Program	B.Tech	B.Tech			
Semester	V				
Course Type	Core				
Regulation	UG-20				
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
3 - 3					-
Course Coordinator	Dr. Shai	k Jakeer Hussa	in, Associate	Professor	

COURSE OBJECTIVES:

The students will try to learn:

I	The fundamental concepts of digital image processing methods and techniques
II	The algorithms to solve image processing problems and meet design specifications for industry, medicine and defense applications.
III	Methods and digital systems for efficient quantization and coding of speech signals.
IV	The concepts of linear predictive analysis (LPC) for speech synthesis

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of image transform techniques for analyzing images in	Understand
	transformation domain for image pre-processing.	
CO 2	List the lossy and lossless compression models for achieving image	Analyze
	compression.	
CO 3	Illustate the difference between acoustic phonetics and articulatory	Understand
	phonetics for speech processing	
CO 4	Utilize digital model designed by sampled speech signal for speech	Apply
	processing applications like speech recognition, speech synthesis and	
	verification.	

CO 5	Analyze methods to estimate pitch period to design	Analyze
	vocoders, aritificial intelligence voice-controlled assistants like Alexa	
CO 6	Apply linear predictive coding for speech synthesis, compression and	Apply
	spectrographic displays	

QUESTION BANK:

Q.No	QUESTION	Taxonomy	How does this subsume the level	CO's
		MODULE	I	
			ansformation Techniques	
			TICAL THINKING QUES	
1A	QUESTION	Blooms	How Does This Subsume	Course
		Taxonomy Level	The Level	Out-
11	Derive the Haar transforma-		The learner to Recall the	CO1
1 1	tion matrix for $N = 8$ and ex-	Apply	image transforms and Un-	001
	plain how it is constructed.		derstand basis function and	
	•		apply haar transformation	
			for N=8.	
2	Determine the convolu-	Apply	The learner to Recall the	CO 1
	tion and correlation be- tween the following images.		representation of digital image and Understand the	
	tween the following images.		properties of 2D FT and ap-	
			ply the convolution and cor-	
			relation property on image.	
	0 0 0 0 0			
	0 0 1 0 0 0 0 0 0			
	0 0 0 0 0			
	0 0 0 0 0			
	1 2 3			
	4 5 6			
	7 8 9			
	L' ° 'J			

3	A common measure of transmission for digital data is baud rate defined by number of bits transmitted per second. Find how many minutes it would take to transmit a 2048*2048 images with 256 intensity levels using a 33.6k baud modem.	Apply	The learner to Recall the size of the image, and Understand grey levels, baud rate and apply for the calculation of time taken for the image.	CO 1
4	Compute the Haar transform of the N=2,and N=4 image	Apply	The learner to Recall the image transforms and Understand basis function and apply haar transformation for $N=2$ and 4 .	CO1
5	Obtain the slant transforms matrix For N=8.	Apply	The learner to Recall the representation of digital image and Understand basis function apply slant transforms matrix For N=8.	CO1
6	Compute the 2D DFT of the 4 × 4 grayscale image $f(x, y)$ shown below. $ f(x, y) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} $	Apply	The learner to Recall the representation of digital image and Understand the properties of 2D DFT and apply it on image coefficients $f(x,y)$.	CO1
7	What is the Inverse 2D DFT of the transform coefficients $F(k, 1)$ given below. $f(k, l) = \begin{bmatrix} 16 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	Apply	The learner to Recall the representation of digital image and Understand the properties of 2D DFT and apply it on transform coefficients F (k,l).	CO1

8	Obtain the KL transform basis for the following matrix of samples $f(m, n) = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$	Apply	The learner to Recall the representation of digital image and Understand the properties of 2D DFT and apply KL transform of the 2 x 2 image	CO1
9	$u = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 2 & 1 \\ 4 & 1 & 2 & 3 \end{bmatrix}$	Apply	The learner to Recall the representation of digital image and Understand the properties of 2D DFT and apply hadamard forward and reverse transformation	CO1
10	Derive the DCT matrix for N = 4 and verify that it obeys the orthogonality property.	Analyze	The learner to Recall the representation of digital image and Understand the properties of 2D FT and apply DCT transformation and analyze the matrix for N=4.	CO1
	PART B-LO	NG ANSWE	R QUESTIONS	
1	Explain any four basic relationships between pixels.	Understand	The learner to Recall the relationship between pixels and Understand the Neighbor of a pixels	CO 1
2	Demonstrate the components of digital image processing system and explain each block.	Understand	The learner to Recall the image coordinates and Understand elements of image processing system.	CO 1
3	Define digital image. Discuss how digital images are represented with neat diagrams.	Understand	The learner to Recall the representation of digital image and Understand the processing of digital image.	CO 1
4	Discuss sampling and quantization With necessary diagrams.	Understand	The learner to Recall the sampling and quantization techniques and Understand the conversion of analog image in to digital image.	CO 1

5	Illustrate the effect of increasing sampling frequency and quantization levels on image with an example	Understand	The learner to Recall the sampling and quantization and Understand effect of increasing the sampling frequency and greylevels	CO 1
6	List and explain applications of image processing	Remember		CO 1
7	What is spatial resolutions? Discuss the effect on the image by reducing it.	Understand	The learner to Recall the sampling and quantization Understand effect of increasing the sampling frequency.	CO 1
8	Explain the concept of non-uniform sampling and quantization with examples.	Understand	The learner to Recall quantization and Understand the non uniform quantization.	CO 1
9	Discuss the most commonly used distance measures in image processing	Understand	The learner to Recall digital image, neighbours and Understand various distance measures.	CO 1
10	The image refers to a two dimensional light intensity function. Discuss in detail.	Understand	The learner to Recall the Gray levels and Understand the Gray level to binary conversion.	CO 1
11	Discuss the image acquisition using a single sensor, sensor strips and sensor arrays.	Understand	The learner to Recall image acquisition and Understand various sensors	CO 1
12	What is Hadamard transform? Explain in detail and Write its properties.	Understand	The learner to Recall nthe image transforms and Understand basis function of transform.	CO1
13	Explain about KL Transform and Write its properties .	Understand	The learner to Recall the image transforms and Understand basis function of KL transform	CO1
14	Define the following two properties of 2D-DFT: i) Convolution ii) Correlation	Understand	The learner to Recall the discrete fourier transform and Understand the properties of 2D DFT	CO1

15	Illustrate the following mathematical operations on digital images i) Array versus Matrix operations ii) Linear versus Nonlinear Operations	Understand	The learner to Recall the fundamental concept of images and Understand various mathematical operations on digital image.	CO 1
16	Describe the need of image transform? List out various transform used in image processing.	Understand	The learner to Recall the image transforms and Understand different transforms.	CO1
17	Explain the following terms: (i) Adjacency (ii) Connectivity (iii) Regions (iv) Boundaries	Understand	The learner to Recall the concept of pixels and Understand the relationship between pixels	CO 1
18	State the following two properties of 2D-DFT i) Translation ii) Rotation	Understand	The learner to Recall the discrete fourier transform and Understand the properties of 2D DFT	CO1
19	Derive the basis function for walsh transform	Understand	The learner to Recall the image transform and Understand the basis function of walsh.	CO1
20	Define 4,8-,m- adjacancy.Explain the lengths of shortest 4,8,m- paths between pixels with examples.	Understand	The learner to Recall the concept of pixels and Understand the relationship between pixels	CO 1
	PART C-SHO	RT ANSWE	R QUESTIONS	
1	Define digital image processing	Remember		CO 1
2	Write any two origins of image processing?	Remember		CO 1
3	Mention different types of digital images.	Remember		CO 1
4	Mention different bands in electromagnetic spectrum.	Remember		CO 1
5	Which step is the objective of digital image processing?	Remember		CO 1
6	Explain the hardware components of an image processing.	Understand	The learner to Recall the digital image and Understand the components of an image processing	CO 1
7	What is meant by Pixel?	Remember	— -	CO 1

8	What are the different fields in which Digital Image Processing is used?	Remember		CO 1
9	What is the need of image processing?	Remember		CO 1
10	Explain connectivity and path in relationship between pixels.	Understand	The learner to Recall the digital image and Understand the relationship between pixels	CO 1
11	Discuss about 4,8,diagonal neighbours.	Understand	The learner to Recall the relationship between pixels and Understand the image connectivity	CO 1
12	Explain region and boundary in the image.	Understand	The learner to Recall the image connectivity and Understand the region and boundary of an image	CO 1
13	Write the changes in sizes of different resolution images?	Remember		CO 1
14	What is meant by illumination and reflectance in image function?	Remember		CO 1
15	Define histogram.	Remember		CO 1
16	List the different components in a simple Image formation model.	Remember		CO 1
17	Explain about sampling role in digitization process.	Understand	The learner to Recall the sampling theorem and Understand the digitization process	CO 1
18	Explain about quantization in digitization process.	Understand	The learner to Recall the sampling and quantization techniques and Understand the digitizing amplitude values	CO 1

19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analyze	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization and apply image segment of size 5 X 5 and analyze the result with original image	CO 1
20	Apply the steps involved in histogram equalization on the image. [4	Apply	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization and apply image segment of size 5 X 5 and analyze the result with original image	CO 1
		MODULE	II	
		nage Compre		
			FICAL THINKING QUES	
1	Determine the Huff- man code procedure for the following data. SYMBOL PROBABILITY a1 0.1 a2 0.4 a3 0.06 a4 0.1 a5 0.04 a6 0.3	Analyze	The learner to Recall compression technique Understand the encoding process then apply Huffman code procedure and analyze fallowing symbol and probability values.	CO 2
2	A source emits letters from an alphabet A={a1,a2,a3,a4,a5} with probabilities P(a1)=0.2, P(a2) = 0.4, P(a3) = 0.2, P(a4) = 0.1 and P(a5) = 0.1. Find Huffman code for this source? Find the average length of the code and its redundancy	Analyze	The learner to Recall compression technique Understand the encoding process then apply Huffman code for given source and analyze average length of the code and its redundancy	CO 2

3	For the image shown below compute the compression ratio that can be achieved using Huffman coding. $\begin{bmatrix} 3 & 3 & 3 & 2 \\ 2 & 3 & 3 & 3 \\ 3 & 2 & 2 & 2 \\ 2 & 1 & 1 & 0 \end{bmatrix}$	Apply	The learner to Recall compression technique Understand the encoding process then apply uffman code for given image.	CO 2
4	A source emits three symbols A,B,C with a probability {0.5,0.25,0.25} respectively. Construct an arithmetic code to encode the word 'C A B'	Apply	The learner to Recall compression technique Understand s the encoding process then apply arithmetic coding for given image.	CO 2
5	Encode the word a1,a2,a3,a4 using arithmetic coding and find tag for the given probabilities.a1=0.2, a2=0.2,a3=0.4, a4=0.2	Apply	The learner to Recall the codeword and Understand the procedure for arithmetic coding and apply it to find the word length and code length	CO 2
6	Perform Huffman algorithm for the following intensity distribution, for a 64 x 64 image. Obtain the coding efficiency and compare with that of uniform length code. R0 = 1008, r1 = 320, r2 = 456, r3 = 686, r4 = 803.r5 = 105, r6 = 417, r7 = 301	Analyze	The learner to Recall the code efficiency and Understand the intensity distribution and apply Huffman algorithm and compare with that of uniform length code.	CO 2
7	Explain in detail about histogram processing.	Understand	The learner to Recall the probability of occurrence of gray levels and Understand the histogram processing.	CO 2

8	Obtain Huffman coding for the source symbols S={S0, S1, S2, S3,S4} and the cor- responding probabilities P= {0.4,0.2,0.2,0.1,0.1}.	Understand	The learner to Recall the encoding techniques and Understand the uffman coding for source symbols and probabilities.	CO 2
9	Explain the steps in histogram equalization.	Understand	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization .	CO 2
10	Why JPEG is better than a Raw free? Summarize the merits and de-merits.	Understand	The learner to Recall the compression technique and Understand the JPEG is better than a Raw free.	CO 2
	PART B-LO	NG ANSWE	R QUESTIONS	
1	Differentiate Lossless and Lossy compression.	Understand	The learner to Recall the techniques and Understand the redundancies in a digital image	CO 2
2	Demonstrate run length encoding with example.	Understand	The learner to Recall the techniques and Understand the compression models in digital image	CO 2
3	Explain the need for image compression. How run length encoding approach is used for compression? Is it lossy? Justify.	Understand	The learner to Recall the need for image compression and Understand the run length encoding	CO 2
4	Demonstrate arithmetic coding with example.	Understand	The learner to Recall the need for image compression and Understand the arithmetic Coding.	CO 2
5	Explain the average length of the code. Is Huffman code uniquely decodable? If so , Justify your answer.	Understand	The learner to Recall average length of the code and Understand uffman code.	CO 2
6	How an image is compressed using JPEG image compression standard?	Understand	the learner to Recall the compression standard and Understand the JPEG image.	CO 2
7	Explain in detail about the arithmetic coding	Understand	the learner to Recall the compression techniques and Understand the arithmetic coding in a digital image	CO 2

8	Describe run length encoding with examples	Understand	the learner to Recall the compression techniques and Understand the run length encoding in a digital image	CO 2
9	What is mean by bit plane slicing and write the applications of it	Understand	the learner to Recall the image to take number of bits and Understand bit plane slicing	CO 2
10	List out and explain in detail about the image compression	Understand		CO 2
11	Relate the JPEG compression standard and the steps involved in JPEG compression	Understand		CO 2
12	Which type of method to generating variable length codes with an example.	Understand	the learner to Recall the compression techniques and Understand the variable length encoding in a digital image	CO 2
13	Show arithmetic encoding process with an example.	Understand	the learner to Recall the FT and prepare algorithms and Understand the arithmetic encoding	CO 2
14	Why LZW coding and what is the need for image relate with an example.	Understand	The learner to Recall the compression techniques and Understand the LZW coding compression in a digital image	CO 2
15	Relate the JPEG compression standard and the steps involved in JPEG compression.	Understand	The learner to Recall the compression techniques and Understand the JPEG compression in a digital image	CO 2
16	Select and match the Redundancies and their removal methods with examples	Understand	The learner to Recall the compression techniques and Understand the removal methods in a digital image	CO 2
17	Demonstrate with example source encoder and decoder	Understand	The learner to Recall the FT and prepare algorithms and Understand the coding for binary arithmetic process for source encoder and decoder.	CO 2

18	Compare error free compression and lossy compression	Understand	The learner to Recall the FT and prepare algorithms and Understand to image intensity levels for error free compression	CO 2
19	Relate JPEG 2000 standard with merits and demerits	Understand	The learner to Recall the compression techniques and Understand the JPEG compression in a digital image	CO 2
20	Draw a transform coding system and relate with image compression.	Understand	The learner to Recall the compression techniques and Understand the transform coding compression in a digital image	CO 2
	PART C-SHO	RT ANSWE	R QUESTIONS	
1	What is image compression?	Remember		CO 2
2	What is the need for Compression?	Remember		CO 2
3	What are the types of redundancy?	Remember		CO 2
4	Define coding redundancy.	Remember		CO 2
5	Define interpixel redundancy.	Remember	<u>-</u>	CO 2
6	Define Psychovisual redundancy.	Remember		CO 2
7	What is run length coding?	Remember		CO 2
8	Define compression ratio.	Remember		CO 2
9	Define source encoder.	Remember		CO 2
10	Define channel encoder.	Remember		CO 2
11	What are the operations performed by error free compression?	Remember		CO 2
12	What is Variable Length Coding?	Remember		CO 2
13	What is JPEG?	Remember		CO 2
14	What are the coding systems in JPEG?	Remember		CO 2
15	What are the basic steps in JPEG?	Remember		CO 2

16	State whether the following huffman code 0,01, 10,011 for the given symbols a1,a2,a3,a4 is uniquely decodable or not.	Remember		CO 2
17	Match the Lossless compression—coding with example.	Remember		CO 2
18	Explain the Data Compression and Data Redundancy.	Understand	The learner to Recall the FT and prepare algorithms and Understand to image intensity levels for data compression.	CO 2
19	Draw and relate block diagram of Lossy Compression.	Remember		CO 2
		MODULE I	II	
	Fundamentals	of Human S	peech Production	
PAI	RT A-PROBLEM SOLVING	G AND CRI	TICAL THINKING QUES	TIONS
1	The waveform plot shows a 500 msec section(100msec/line) of speech waveform. (a) Indicate the regions of voiced speech, unvoiced speech and silence (b)For the voiced regions estimate the pitch period on a period by period basis and plot the pitch period vs time for this section of speech.	Apply	The leaners will try to recall the speech signal representation and understand voiced, unvoiced, silence, stop parts in speech signal waveform.	CO 3

2	Segment the waveform in Figure below into regions of voiced speech (V), regions of unvoiced speech (U), and regions of silence (or background signal) (S). The waveform corresponds to the sentence "Good friends are hard to find."	Apply	The leaners will try to recall the speech signal representation and and understand voiced, unvoiced, silence, stop parts in speech signal waveform.	CO 3
	8000 = 1000 10			
3	Identify the sounds (from the ARPAbet alphabet) of all the words in the following pair of sentences: 1. She eats some Mexican nuts. 2. Where roads stop providing good driving. What can you say about the sound sequence at word boundaries for these two sentences	Analyze	The learner will recall the concept of phonetics in english language and understand the difference in vowels, semivowels, diphthongs and apply it to the given sentences to analyze how the speech signal waveform is generated	CO 3
4	Identify the place of articulation and the manner of articulation for all the sounds in the sentence: "I enjoy the simple life." Show your results as a sequential table of place and manner features, over time (i.e., versus the sounds in the utterance).	Understand	The learner will recall the concept of phonetics in english language and apply it forthe given sentences	CO 4

5	Note that the reflection coefficients for the junction of two lossless acoustic tubes of areas A_k and A_{k+1} can be written as either	Analyze	The learners will try to recal the lossless tube boundary conditions and analyze the conditions	CO 4
	$r_k = \frac{\frac{A_{k+1}}{A_k} - 1}{\frac{A_{k+1}}{A_k} + 1},$			
	$r_k = \frac{1 - \frac{A_k}{A_{k+1}}}{1 + \frac{A_k}{A_{k+1}}}.$			
	(a) Show that since both			
	A_k and A_{k+1} are positive,			
	$-1 \ll r_k \ll 1$. (b) Show			
	that if $0 < A_k < \infty$ and $0 < A_{k+1} < \infty$, then			
	$-1 < r_k < 1$			
6	Draw the digital network diagram for the parallel form implementation of discrete time vocal tract model trans-	Understand	The leaner will recall the concept of vocal tract model transfer function and draw the signal flow graph	CO 4
	fer function, $V(z)$ for $M=3$		one orginal now graph	

7	The waveform plot of Fig-	Apply	The leaners will try to re-	CO 3
'	ure below is for the word	Арріу	call the pitch frequecy and	
	"cattle." Note that each			
			speech signal concepts and	
	line of the plot corresponds		apply the same for the given	
	to 100 msec of the signal.		example	
	(a) Indicate the boundaries			
	between the phonemes; i.e.,			
	give the times corresponding			
	to the boundaries $/K/$ $/AE/$			
	/T//AX//L/. (b) Indicate			
	the point where the funda-			
	mental frequency of voiced			
	speech is (i) the highest			
	and (ii) the lowest. What			
	are the approximate pitch			
	frequencies at these points?			
	0 V ₁₀₀			
	- Mandandhundhundhundhundhundhundhundhundh			
	100 Jan 140 Male Male Male Male Male Male Male Male			
	1 hand Many Many Many Many Many Many Many Many			
	500 HA MA 300			
	Edm ' ' ' ' ' ' ' ' '			
	Barrer Massach Constitution Massach Constitution			
	300 144. 144. 144. 144. 144. 144. 144. 14			
	Falar			
	nanonphanallaghanangalanananhananan			
	400 Time (mac)			

8	Figure below shows the most common 105 words in the Brown corpus of American English words from a corpus of more than a million words. What general statement(s) can you make about the most commonly occurring words in this list? What percentage of these top 105 words have more than one syllable What percentage of these top 105 words have more than one syllable What percentage of these top 105 words have more than one syllable What percentage of these top 105 words have more than one syllable What percentage of these top 105 words have more than one syllable Whord Whord Whord Whord Whord Whord Whord	Apply	The learners will recal the concept of phonetics and apply it to the given example	CO 3
	22 cm c			
9	How many consonant pairs can occur within a single word? Name them. What rule do they obey in terms of place and manner of articulation. How many consonant triplets can occur within a single word? Name them. What rule do they obey in terms of place and manner of articulation. How many consonant triplets can occur within a single word? Name them. What rule do they obey in terms of place and manner of articulation.	Undertand	The leaners will try to recall the concept of consonants and non consonants in english language	CO 3

many assumptions to simplify the solutions. These include the following: • The tube is lossless; • The tube is rigid; i.e., its cross-sectional area does not change with time; • The tube is constructed as a concatenation of a number of uniform sections, each with a different length and cross-sectional area; • The tube's total length is fixed. State the effects of each of these assumptions on the properties of the resulting system (volume velocity) transfer function of the vocal tract; i.e., had any of the assumptions been eliminated, how would the vocal tract transfer function have changed. PART B-LONG ANSWI		00.2
1 Demostrate and explain the Understand		CO 3
human speech production	speech production and un-	
system with a schematic	derstand the mechanism of	
view of human vocal tract.	speech production	
2 Classify the sound produced Analyze	The leaners will recall the	CO 3
by human speech and illus-	different sound produced by	
trate the continuant sounds	human speech and under-	
using waveforms	stand the continuant sound	
	produced with waveforms	

3	Compare (1) Diphothongs (2) Semivowels (3) Stops (4) Affricates with the help of waveforms and explain it	Analyze	The leaners will try to recall the sound waves produced and analyze the diphothongs, semivowels, sops, affricatives with waveforms	CO 3
4	Describe nasal consonants and fricatives using examples and waveforms	Understand	The learners wil try to recall the sound waves produced and describe the nasal con- sonants and fricatives with waveforms	CO 3
5	Examine the various methods for speech production and explain in detail the acoustic theory of speech production	Apply	The learners will understand the speech production in hu- man and apply the acoustic theory of speech production for sound production	CO 3
6	Identify and explain with a schematic the speech production mechanism	Understand	The learners will try to recall the mechanism for speech production	CO 3
7	What is a phoneme? Differentiate between vowels, semivowels, diphtongs and consonants using waveforms	Understand	The learners will try to recall phonemes of english language and then try to differentiate between vowels, semivowels, diphthong and consonants	CO 3
8	Distinguish between voice and unvoiced speech signal based on its significance in speech processing	Analyze	The learners will try to recall the speech waveforms and understand the difference be- tween voiced and unvoiced signals to apply for speech processing and analyze its performance	CO 3
9	What are the speech properties and illustrate the properties of speech in waveform?	Understand	The learners will try to recall the speech signal waveforms and illustrate the properties in speech waveform.	CO 3
10	Show the formant frequencies and vocal tract configuration schematic for vowel and diphthongs and explain the sound production	Understand	The leaners will try to recall the formant frequencies of speech signal and try to understand vocal tract configuration to produce vowels and diphthongs	CO 3

11	Draw and explain the discrete time model and radiation model of vocal tract for speech production in detail	Understand	The leaners will try to understand the discrete time model and radiation model of vocal trct for producing speech signals in human	CO 4
12	List out the different losses existing in vocal tract and discuss their effects of them in speech production.	Analyze	The leaners will try to und- derstand the discrete time model of vocal tract and re- call the losses existing in it to analyze the effects on speech production	CO 4
13	Demostrate the sound production in vocal tract using schematic of vocal system and vocal cord model	Understand	The leaners will try to recall the schematic of vocal cord and vocal cord model for sound production	CO 4
14	Give an account of wave propagation in lossless tube with equations and schematic	Analyze	The learners will try to recall the lossless tube schematics and apply the wave propa- gations equations to analyze the sound propagation	CO 4
15	Comment upon the boundary conditions at lips and glottis for lossless tube vocal tract model	Analyze	The learners will try to recall and understand the schematic of lossless tube of vocal tract and analyze the boundary conditions	CO 4
16	Derive the transfer function of lossless tube model using z-transforms	Apply	The learners will try to recall the lossless tube model and understand the z-transforms to derive the transfer func- tion for lossless tube model	CO 4
17	What are the distinctive features of sounds and draw the chart depicting breakdown of consonants of english language.	Apply	The learners will try to recall the distinctive features of sound and consonants of english language to understand the breakdown process of consonants based on articulation.	CO 3
18	Draw the schematic vocal tract configurations for production of vowels /a/,/i/ and /u/. How it affects the formants frequencies?	Understand	The learners will try to recall the schematic of vocal tract for producing vowels and un- derstand the effects of vocal tract shape on formant fre- quencies	CO 3

20	Depict the second vs first formant frequencies for vowels of english language and explain the vowel triangle. Examine the effect of nasal coupling on acoustic theory of speech production using nasal tube mathmatical model	Understand Analyze	The learners will try to recall the articulation for vowels and depict the formant frequencies using vowel triangle The learners will try to recall the acoustic theory to understand speech production and apply on nasal tube mathmatical model and analyze	CO 3
	DADE CICIO	DO ANGLE	the effect of nasal coupling	
	PART C-SHC	RT ANSWE	R QUESTIONS	
1	Write a short note on semivowels and nasal with artriculation diagrams	Understand	The learners will try to re- cal the phonetics of en- glish language and under- stand semivowels and nasal phonetics	CO 3
2	Explain the differnce between uniform and non uniform quantization. Also illustrate which is more advantageous in speech processing with example.	Apply	The learners will try re- call the quantization and try to differentiate between uniform and non uniform quantization and apply it to speech signal	CO 3
3	How do you divide the speech produced by human and state their differences.	Analyze	The leaners recall vocal tract system of human to o un- derstand how speech is pro- duced and apply the phonet- ics theory to analyze speech waveforms to differentiate between phonetics of the lan- guage	CO 3
4	What are the Affricates in english language	Understand	The learners will try to re- cal the phoetics in language and understand affricates in speech waveform	CO 3
5	Describe the phoneme classes of english language using examples and waveforms	Apply	The learners recall the english language and understand the different classes of phonetics and apply it on english sentences and analze the speech waveform	CO 3

6	Briefly explain the effects existing in realistic acoustic models for speech produc- tion	Understand	The learners recall the acoustic models and understand the effects or losses existing in the real acoustic models.	CO 3
7	Explain in detail the human hearing hearing mechanism with suitable diagrams	Understand	The learners will try to recall the organs in ear involved in hearing and understand the role of each part in recogniz- ing sound	CO 3
8	Draw a labelled signal flow graph for lossless tube model of order 3 using delays corressponding to half of sampling period.	Apply	The learners will recal the lossless tube model and understand the signal flow graph and apply it on lossless tube model to determine transfer function	CO 4
9	Illustrate the vocal tract and nasal tract using diagram and explain it for speech production.	Apply	The learners will try to recall the vocal and nasal tract models and understand how speech is produced using these models	CO 4
10	Explain the discrete-time model for speech production	Understand	The learners recall the discrete time model and understand how speech is produced by the model	CO 4
11	Demostrate the boundary condition at glottis in loss-less tube with digital delay blocks and equations	Analyze	The learners recal the loss- less tube model to under- stand the boundary condi- tions at glottis and apply the digital signal process- ing techniques to analyze the boundary conditions	CO 4
12	Discuss with example how sampling and quantization process is applied to speech signals	Apply	The learners recall the sam- pling theorem to understand qunatization steps involved to apply on speech signal	CO 4
13	Discuss the relation between various speech parameters.	Understand	The learners recall the speech waveform and understand the parameters involved in speech production to find the realtion between them	CO 3

14	Distinguish between the vo- cal tract models, radiation model and excitation models List the organs involved in	Analyze	The learners recall the z-transforms to understand the transfer function derivation and apply on the digital models of sampled speech sounds to analyze the speech waveform produced The leaners will recall the or-	CO 4
10	speech production. Specify the role each of these or- gans in the speech produc- tion process	Allaryze	gans in human vocal tract and understand the role of each organ in speech produc- tion to analyze the speech signals	
16	Give examples for the following speech sounds (a) Fricatives (b) Stops (c) Nasals and explain how these sounds can be differentiates	Apply	The learners recall the phonetics to understand their difference using waveforms and apply to the examples	CO 3
17	Comment on the relation between the transfer function of vocal tract and digital filters	Apply	The learners recall the digital filter to understand digital filter frequency response and comment on the relation between them	CO 4
18	Derive the transfer function of uniform lossless tube using z-transforms	Apply	The learners recall the uniform lossless tube to understand the system interpretation of uniform vocal tract and apply z-transforms to derive the transfer function	CO 4
19	Illustrate the boundary condition at lips in lossless tube with digital delay blocks and equations	Analyze	The learners recal the loss- less tube model to under- stand the boundary con- ditions at lips and apply the digital signal process- ing techniques to analyze the boundary conditions	CO 4
20	Demostrate the waveprogation of sound in concatenated lossless tube using signal flow graph and derive the reflection coefficient	Analyze	The learners recall the loss- less tube to understand the wave propagation and ap- ply digital signal processing techniques to analyze signal flow graph to derive relection coefficiet	CO 4

	MODULE IV			
	Time domain	models for s	peech processing	
PAI	RT A-PROBLEM SOLVING	G AND CRI	FICAL THINKING QUES	
1	The rectangular window is defined as $w_R[n] = \begin{cases} 1 & 0 \le n \le L - 1 \\ 0 & \text{otherwise.} \end{cases}$	Apply	The learners recall fourier transform of signals and un- derstand the window trans- fer function to apply on fourier transform coefficients	CO 5
	The Hamming window is defined as $w_H[n] = \begin{cases} 0.54 - 0.46\cos\left[2\pi n/(L-1)\right] & 0 \le n \le L-1 \\ 0 & \text{otherwise.} \end{cases}$ (a) Show that the Fourier transform of the rectangular window is $W_R(e^{j\omega}) = \frac{\sin\left(\omega L/2\right)}{\sin\left(\omega/2\right)} e^{-j\omega(L-1)/2}.$ (b) Express $w_H[n]$ in terms of $w_R[n]$ and thereby obtain an expression for $W_H[e^{j\omega}]$ in			
2	terms of $W_R[e^{j\omega}]$. The short-time zero-crossing rate was defined $Z_{\hat{n}} = \frac{1}{2L} \sum_{m=\hat{n}-L+1}^{\hat{n}} \operatorname{sgn}(x[m]) - \operatorname{sgn}(x[m-1]) .$ Show that Zn can be expressed as $Z_{\hat{n}} = Z_{\hat{n}-1} + \frac{1}{2L} \left\{ \operatorname{sgn}(x[\hat{n}]) - \operatorname{sgn}(x[\hat{n}-L]) - \operatorname{sgn}(x[\hat{n}-L-1]) \right\}.$	Apply	The learner recal the z-transforms to understand autocorrelation and apply to short time zero crossing schematic to calculate the transfer function	CO 5

3	The short-time average magnitude difference function (AMDF) of the signal x (n) is defined as $ \gamma_n(k) = \frac{1}{N} \sum_{m=0}^{N-1} x(n+m)-x(n+m-k) $ (a) Using the inequality $ \frac{1}{N} \sum_{m=0}^{N-1} x(m) \le \left[\frac{1}{N} \sum_{m=0}^{N-1} x(m) ^2 \right]^{1/2} $ show that $ \gamma_n(k) \le \left[2(\hat{R}_n(0) - \hat{R}_n(k)) \right]^{1/2} $	Apply	The learners recall z-transforms and understand the AMDF for speech signal and apply it to calculate short-time average autocorrelation of a speech signa;	CO 5
4	Consider the signal $x(n) = \cos \omega_0 n - \infty < n < \infty$ (a) Find the long-time autocorrelation function, $\phi(k)$, for $x(n)$ (b) Sketch $\phi(k)$ as a function of k (c) Find and sketch the long-time autocorrelation function of the signal $y(n) = 1$ if $x(n) \ge 0$ $y(n) = 1$ if $x(n) \ge 0$ $y(n) = 0$ if $x(n) < 0$	Apply	The learners recall the auto- correllation function to un- derstand long time and short time autocorrelation defini- tions and apply it to sketch the frequency response	CO 5
5	Give the equation for average short-time average zero-crossing rate and show that $Z_{n}=Z_{n-1}+\frac{1}{2N}\left g_{n}[\chi(n)]-g_{n}[\chi(n-1)] - g_{n}[\chi(n-N)]-g_{n}[\chi(n-N-1)] \right $	Analyze	The learners recall the concept of z-tranforms to understand autocorrelation to apply on speech signal to analyze the short time autocorrelation frequency response	CO 5
6	Consider the periodic impulse train calculate the autocorrelation function, $R_n(k)$ using rectangular window. (a) How would the result change if the window is Hamming window (b) Find and sketch the modified short time autocorrelation function.	Analyze	The learners recall z-transform to undestand windowing function and autocorellationm to apply on impulse train function to analyze the effect of window length on frequency response of autocorrellation.	CO 5

—	Α	A 1	TD1 1 11 11 11 11 11	00.5
7	Assume there are seven in-	Analyze	The learners recall the pitch	CO 5
	dependent pitch detectors,		period and understand the	
	each having a probability p		autocorrelation method for	
	of correctly estimating pitch		period estimation to apply	
	period, and probability 1 –		windowing function on sam-	
	p of incorrectly estimating		pled speech signal and ana-	
	pitch period. The decision		lyze the filtered output	
	logic is to combine the seven			
	pitch estimates in such a			
	way that an overall error is			
	made only if four or more			
	of the individual pitch de-			
	tectors make an error. De-			
	rive an explicit expression for			
	the probability of error of the			
	parallel processing pitch de-			
	tector in terms of p . [Hint:			
	Consider the result of each			
	pitch detector a Bernoulli			
	trial with probability $(1-p)$			
	of making an error and prob-			
	ability p of no error.			
8	A proposed pitch detector	Apply	The learners recall filter	CO 5
	consists of a bank of digital	11991	banks to understand the	
	bandpass filters with lower		windowing of sampled	
	cutoff frequencies given as		speech signal and apply	
	$F_k = 2^{k-1}F_1$, k = 1, 2, ,		short time autocorrelation	
	M, and upper cutoff frequen-		to identify the fundamental	
	cies given as $F_{k+1} = 2^k F_1$, k		frequencies in the filtered	
			-	
	= 1, 2, , M. Show that		output	
	if input is periodic with fun-			
	damental frequency F_0 such			
	that $F_k < F_0 < F_{k+1}$, then			
	the filter outputs of bands			
	1 to k-1 will have little en-			
	ergy, the output of band k			
	will contain the fundamental			
	frequency, and bands $k + 1$			
	to M will contain one or more			
	harmonics			

9	Assume there are three independent pitch detectors, each having a probability p of correctly estimating pitch period, and probability $1-p$ of incorrectly estimating pitch period. The decision logic is to combine the seven pitch estimates in such a way that an overall error is made only if four or more of the individual pitch detectors make an error. Derive an explicit expression for the probability of error of the parallel processing pitch detector in terms of p . [Hint: Consider the result of each pitch detector a Bernoulli trial with probability $(1-p)$ of making an error and probability p of no error.] (b) For what value of p is the overall error probability less than 0.05 ?	Analyze	The learners recall the pitch period and understand the autocorrelation method for period estimation to apply windowing function on sampled speech signal and analyze the filtered output probability of error	CO 5
10	A proposed pitch detector consists of a bank of digital bandpass filters with lower cutoff frequencies given as $F_k = 2^{k-1}F_1$, $k = 1, 2,3M$ and upper cutoff frequencies given as $F_{k+1} = 2^kF_1$, $k = 1, 2,M$. If input is periodic with fundamental frequency F_0 such that $F_k < F_0 < F_{k+1}$, then (a) Determine F1 and M such that this method would work for pitch frequencies from 50 to 800 Hz	Analyze	The learners recall filter banks to understand the windowing of sampled speech signal and apply short time autocorrelation to analyze the possible fundamental pitch frequencies detected using the pitch detector	CO 5

	PART B-LONG ANSWER QUESTIONS				
1	State and explain (i) Short-time energy (ii) Short-time average magnitude and (iii) short-time zero crossing rate. How do you distinguish voiced and unvoiced segments in speech waveform using these parameters	Analyze	The learners recall the fourier transforms to understand the autocorellation function and apply it on sampled speech signal to analyze the frequency response and calculate speech parameters	CO 5	
2	Give an overview of pitch estimation by FFT analysis of speech signal	Apply	The learners recall the FFT analysis to understand the sampled speech signal to identify the pitch period	CO 5	
3	With the help of neat block diagram, explain the working of clipping auto correlator. What are the advantages of using 3 level clipper.	Apply	The learners recall the autocorellation and understand the working of clipping autocorrelator to identify the effect of order of clipper and state its advantages	CO 5	
4	Explain how short-time energy and short-time magnitude can be used to distinguish voice, unvoiced and silence regions in speech signal	Understand	The learners recall speech signal waveforma and understand short time energy and short time magnitude methods to differentiate between voiced, unvoiced and silenced parts of speech	CO 5	
5	Examine how speech vs silence discrimination using short time energy and zero crossing with neat schematic of signal flow	Analyze	The learners recall the sampling to understand sampling of speech signal and apply short time energy and zero crossing to analyze the speech and silence	CO 5	
6	Demostrate the pitch period estimation using parallel processing approach	Understand	The learners recall the pitch period and understand par- allel processing approach to calculate pitch period	CO 5	
7	Outline linear filtering interpretation of short-time spectrum analysis with suitable block diagram	Understand	The learners recall the linear filtering and understand the interpretation of linear filtering of short-time spectrum.	CO 5	

8	With a neat diagram, explain non-linear smoother for estimation of parameters in speech processing. Justify the need for delays in non-linear smoother.	Understand	The learners recal the non- linear smoother and under- stand the role of delay block in non-linear smoother for estimating the speech pro- cessing parameters	CO 5
9	Define (1) short time energy (2) zero-crossing rate (3) average magnitude function (4) average magnitude difference function in the speech processing and list out their metrits and demerits	Analyze	The learners recall sampling of speech waveforms to understand pitch period and apply short time energy, zero crossing rate, average magnitude function to analyze the merits and demerits in speech processing	CO 5
10	Explain how to distinguish voiced and silence, using energy and zero crossings.	Understand	The learners recal voiced and silence parts and understand the energy and zero crossing analysing methods to distinguish between them	CO 5
11	Explain the linear filter operation of a short-time spectrum analysis with related equations and block diagram. Also discuss about magnitude of the short time spectrum using both low pass filters and band pass filter	Understand	The learners recal the short time spectrum and under- stand the linear filter opera- tion on speech waveform us- ing low pass and band pass filters	CO 5
12	From the basic equation for auto-correlation function of a discrete-time deterministic signal $\phi(\mathbf{k})$, derive the equation for short-time auto-correlation function $R_n(\mathbf{K})$. Draw the related block diagram so as to obtain $R_n(\mathbf{K})$ from the sequence $\mathbf{X}(\mathbf{n})$.	Analyze	The learners recall the sampling and understand sampling of speech signal and apply autocorrelation to analyze the coefficients of short time autocorrelation for speech waveform	CO 5
13	What is AMDF? How will you use AMDF for pitch measurement? What is the difference in the computation of pitch using AMDF and autocorrelation method? Which is computationally efficient and why?	Analyze	The learners recall the pitch period and understand average magnitude difference function working (AMDF) to apply for calculating pitch period and analyze the computation efficiency of AMDF and autocorrelation methods	CO 5

14	Explain the different functions used in time domain analysis of speech signals.	Understand	The learners recall FFT and DFT and understand the time domain analysis of speech signal	CO 5
15	Illustrate the different techniques of pitch estimation	Understand	The learners recal pitch estimation and understand the different techniques for deriving the pitch period from speech waveform	CO 5
16	What is the role of window function in speech signal processing? Why a window size of 20-30 is normally preferred for short-time speech signal processing	Apply	The learners recall sam- pling of speech to under- stand short time speech sig- nal and apply windowing function on speech signal to identify the speech segment	CO 5
17	Give the equation for estimation of short-time autocorrelation function of speech. How pitch can be estimated from ACF?	Apply	The learners recal the pitch period to understand the short time autocorrelation function and apply it for cal- culating pitch period	CO 5
18	What is the minimum sample rate needed for speech signal? How bit rate can be reduced using DPCM	Apply	The learners recall the sam- pling to understand quna- tization and apply digital modulation on the quantized speech signal	CO 5
19	Why pitch tracking is needed? What happens to pitch during unvoiced speech segments?	Apply	The learners recall the pitch period to understand the need for pitch period calcula- tion in speech processing and apply it on speech waveform to identify unvoiced speech segments	CO 5
20	Illustrate the short time average zero crossing rate with neat diagram	Understand	The learners recall the short time autocorrelation and un- derstand the average zero crossing rate for calculating pitch perid	CO 5

	PART C-SHORT ANSWERS QUESTIONS				
1	Why do we consider short time representation of speech signals? What do you mean by windowing? Explain the concept of short-time speech processing with suitable gen- eral block diagram	Apply	The learners recal the sampling of speech signal and understand short-time autocorrelation and apply windowing function to calculated pitch period	CO 5	
2	Explain pitch period estimation using short-time correlation	Understand	The learners recal the short- time correlation and under- stand this method for cal- culating pitch period estima- tion	CO 5	
3	Discuss with related equations (a) Short time energy (b) Short time zero crossing rate	Analyze	The learners recal the DFT to understand the autocorrelation and apply on speech signal to identify the pitch period to analyze speech signal waveform	CO 5	
4	Examine short time autocorrelation functions with necessary waveforms	Analyze	The learners recal the DFT to understand autocorrelation and apply on sampled speech signal and analyze the short time autocorrelation function waveforms	CO 5	
5	Illustrate the short time average zero crossing rate with neat diagram	Understand	The learners recall the short time autocorrelation and un- derstand the average zero crossing rate for calculating pitch perid	CO 5	
6	Explain DPCM for speech signal	Apply	The learners recal the sampling and understand the speech sampling and apply the DPCM for quantizing the sampled speech signal	CO 5	
7	How will you get narrow band spectrogram? What are its merits and demerits	Understand	The learners recall the spectrogram and narrow band spectrogram to understand the merits and demerits of narrow band spectrogram	CO 5	
8	Explain a speech analyisis- synthesis system	Understand	The learners recall the DFT and understand the speech analysis and synthesis sytem by block diagram	CO 5	

9	What are formants? What is the reason for using a long window in time domain for accurate formant estimation	Apply	The learners recal the formants for speech waveforms and understand the windowing operation and apply it on speech waveform for formant estimation	CO 5
10	What is sampling? What is quantization? How signal to quantization noise vary with number of bits? How bit rate can be reduced using AD-PCM	Analyze	The learners recall sampling and understand quantization to apply on the sampled speech signal to analyze the effect of digital modulation schemes like ADPCM on number of bits and bit rate	CO 5
11	Explain the method to esti- mating pitch and formants from the short-time magni- tude spectrum of vowel seg- ment	Understand	The learners recal pitch and formants and understand the short time magnitude spectrum of vowel segment	CO 5
12	How to suggest a suitable window length in time domain for accurate time localization of events in a speech signal	Analyze	The learners recall the autocorrelation to understand short time autocorrelation and apply windowing function to analyze the time localization of speech waveforms	CO 5
13	Explain the changes in short- time spectral envelope for a vowel consonant, vowel syl- lable/apa/	Apply	The learners recall consonants of english language to understand the vowels waveforms and apply short time spectrum for vowels	CO 5
14	How can you estimate pitch from short time magnitude spectrum of a voiced speech segment	Apply	The learners recal the pitch period and understand short time magnitude function and apply on speech waveform to identify the pitch period of speech	CO 5
15	Analyze the design of filter banks in SpeechCoding?	Analyze	The learners recal the autocorrelation to understand the short time autocorrelation and apply the overlap addition method to analyze the filter bank	CO 5

16	Show that STFT is invertible	Understand	The learners recall the short time fourier analysis and un- derstand its properties to show that STFT is invert- ible.	CO 5
17	Explain how short time en- rgy and short time magni- tude can be used to distin- guish voiced, unvoiced and si- lence regions of a speech sig- nal	Apply	The learners recall speech waveform to understand voiced, unvoiced and silence parts and apply short time energy and short time magnitude to differentiate between the speech waveforms parts	CO 5
18	Distinguish between wide- band spectrogram and nar- row band spectrogram	Analyze	The learners recal the speech waveform parameters to un- derstand spectrogram and apply short time autocorre- lation to analyze wide-band and narrow band spectro- grams	CO 5
19	Discuss the approximate signal processing model suggested for human auditory perception	Understand	The learner recall the signal processing concepts to un- derstand the signal process- ing model for human audi- tory perception	CO 5
20	Define spectrogram. How will you extract the formant structure from spectrogram	Apply	The learners recall the formant of english language to understand the spectrogram and apply short time autocorrelation to identify the formant from spectrogram	CO 5

	MODULE V				
	Short time fourier a	nalysis and L	inear predictive coding		
PAI	RT A-PROBLEM SOLVING	G AND CRI	FICAL THINKING QUES	TIONS	
1	A speech signal is sampled at a rate of 10,000 samples/sec (i.e., Fs = 10,000). A Hamming window of length L samples is used to compute the STFT of the speech signal. The STFT is sampled in time with period R, and in frequency at N = 1024 frequencies. (a) It can be shown that the main lobe of the Hamming window has a symmetric full width of approximately $8\pi/L$. How should L be chosen if we want the full width of the main lobe to correspond to approximately 200 Hz analog frequency? (b) What is the spacing (in Hz) between sample points in the frequency dimension?	Apply	The learners recall the windowing function to understand the filtered speech signal and apply short time fourier transforms to identify the length of filter order	CO 6	
2	A filter bank with N filters has the following specifications: 1. the center frequencies of the bands are ω_k ; 2. the bands are symmetric around $\omega = \pi$, i.e., $\omega_k = 2\pi - \omega_{N-k}$, $P_k = P_{N-K}^*$, $\omega_k[n] = \omega_{N-k}[n]$; 3. a channel exists for $\omega_k=0$. For both N even and N odd: (a) sketch the locations of the N filter bands; (b) derive an expression for the composite impulse response of the filter bank in terms of $\omega_k[n]$, ω_k , P_k , and N.	Apply	The learners recall the fourier transform to understand working of filter bank and apply short time fourier transforms to identify the frequency band of sampled speech signal	CO 6	

3	A speech signal, s[n], is predicted using the predictor: $\bar{s}[n] = \sum_{k=k_0}^{k_1} \alpha_k s[n-k], 1 \leq k_0 < k_1 \leq p,$ where p is the usual order of linear predictive analysis for speech. Determine the optimum predictor that minimizes the mean-squared prediction error.	Analyze	The learners recall linear predictive polynomial and understand the solution methods like Cholesky Decomposition, Levinson—Durbin Algorithm and apply short time fourier to analyze the prediction error	CO 6
4	A sampled speech signal is predicted using the predictor: $\tilde{s}[n] = \beta s[n-n_0], 2 \leq n_0 \leq p.$ where p is the normal predictor order for speech. Find the optimum values of β and E_n that minimize the mean-squared prediction error using both the autocorrelation and covariance formulations	Apply	The learners recall the prediction error to understand the linear predictive coding analysis and apply the short time autocorrelator and covariance function to minimize the mean squared prediction error	CO 6
5	Determine the second-order linear prediction inverse filter, A(z), for which the two LSF are 666.67 Hz and 2000 Hz, when Fs = 8000 samples/sec. (Note: You may want to use the relationship $cos(\pi/6) = \sqrt{3/2}$ in your solution.)	Apply	The learners recall the filters to understand the linear prediction inver filter and apply the linear predictive coding analysis to identify the second order linear filter frequency response	CO 6

6	A causal LTI system has system function: $H(z) = \frac{1 - 4z^{-1}}{1 - 0.25z^{-1} - 0.75z^{-2} - 0.875z^{-3}}.$ (a) Use the Levinson-Durbin recursion to determine whether or not the system is stable. (b) Is the system minimum phase?	Analyze	The learners recall the causal LTI system to understand the linear predictive coding analysis and apply Levison-Durbin solution method on predictive polynomial to calculate phase of the system	CO 6
7	A speech signal was sampled with a sampling rate of Fs = 8000 samples/sec. A 300-sample segment was selected from a vowel sound and multiplied by a Hamming window. From this signal a set of linear prediction error filters $A^{(i)}(z) = 1 - \sum_{k=1}^{\infty} \alpha_k^{(i)} z^{-k},$ with orders ranging from i = 1 to i = 11 was computed using the autocorrelation method (a) Determine the z-transform $A^{(4)}(z)$ of the 4th-order prediction error filter. Draw and label the flow graph of the direct form implementation of this system. (b) Determine the set of k-parameters k1, k2, k3, k4 for the 4th-order prediction error lattice filter. Draw and label the flow graph of the lattice implementation of this system.	Apply	The learners recall the prediction error signal to understand the prediction error filter design and apply z-transforms to identify the lattice impelementation of the filter	CO 6

8	A speech signal was sampled	Analyze	The learners recall the pre-	CO 6
	with a sampling rate of		diction error filter to under-	
	Fs = 8000 samples/sec.		stand the windowing func-	
	A 300-sample segment		tion and apply linear predic-	
	was selected from a vowel		tion error transfer function	
	sound and multiplied by a		to analyze the formant fre-	
	Hamming window. From		quencies	
	this signal a set of lin-		quonoico	
	ear prediction error filters			
	car prediction error inters			
	i (i) -k			
	$A^{(i)}(z) = 1 - \sum_{i} \alpha_k^{(i)} z^{-k},$			
	k=1			
	with orders ranging from i			
	= 1 to i = 11 was computed			
	using the autocorrelation			
	method			
	(a) Estimate the first three			
	formant frequencies (in Hz)			
	for this segment of speech.			
	Which of the first three			
	formant resonances has the			
	smallest bandwidth? How is			
	this determined?			
	ums determined:			

9	A speech signal was sampled with a sampling rate of Fs = 8000 samples/sec. A 300-sample segment	Apply	The learners recall short time fourier analysis to un- derstand the linear predic-	CO 6
	A 300-sample segment was selected from a vowel sound and multiplied by a Hamming window. From this signal a set of linear prediction error filters		tive polynomial and apply autocorrleaton function to determine the prediction er- ror	
	$A^{(i)}(z) = 1 - \sum_{k=1}^{i} \alpha_k^{(i)} z^{-k},$			
	with orders ranging from i = 1 to i = 11 was computed using the autocorrelation method			
	(a) The minimum mean- squared prediction error for the 2nd-order predictor is E(2) = 0.5803. What is			
	the minimum mean-squared prediction error E(4) for the 4th-order predictor? What			
	is the total energy R[0] of the windowed signal s[n]? What is the value of the autocorrelation function R[1]?			
10	Autocorrelation segement corresponding to a speech segment is equal to $R(0)=1,R(1)=0.9,$ $R(2)=0.84$ and $R(3)=0.78$. Compute the linear predictive coefficient segments for speech segments for filter orders $p=2$, and $p=3$ using recursic method.	Apply	The learners recall the fourier transforma to understand the short time autocorrelation function and apply it on linear predictor polynomial to calculate the LPC coefficients	CO 6
		NG ANSWE	R QUESTIONS	
1	Summarize the Linear predictive coding analysis and its uses in speech signal processing applications.	Understand	The learners recall the linear predictive coding and understand their application in speech production, systhesis and recognition	CO 6

2	Outline the short-time fourier analysis for speech processing	Understand	The learners recall the fourier transform and understand short time fourier concepts to apply on sampled speech signal	CO 6
3	Interpret short time fourier transform using DTFT for sampled speech waveforms	Analyze	The learners recall fourier transform to understand short time fourier transform for applying on sampled speech signal to analyze effect for windowing	CO 6
4	Distinguish the short time fourier transform interpretation using DFT and DTFT	Analyze	The learners recall the DFT and DTFT to understand short time fourier transform for applying on sampled speech signal to analyze the effect of windowing on speech signal	CO 6
5	Explain the effect of window on resolution of DTFT speech signal	Understand	The learners recall the DTFT to understand effect of windowing on sampled signal	CO 6
6	Demostrate the relation be- tween short time autocor- relation function and short time fourier transform	Understand	The learners recall the autocorrelation function and understand the relation between short time fourier transform and autocorrelation functions	CO 6
7	Inspect the linear filtering intepretation of short time fourier transform	Analyze	The learners recall fourier transforms to understand the short time fourier trans- form and apply linear filter- ing to analyze the linear fil- tering intepretation of short time fourier transform	CO 6
8	Interpret openlap addition method for short time fourier synthesis of speech	Understand	The learners recall the open- lap addition method and un- derstand the interpretation of short time fourier synthe- sis using openlap addition method	CO 6

9	Examine filter bank summation method for short time fourier synthesis	Analyze	The learners recal sampling of speech signal to un- derstand short time fourier analysis and apply filter bank summation for analyz- ing sampling of speech signal in frequency dimension	CO 6
10	Outline the basic principles of linear predictive analy- sis with equations and LPC model systems	Understand	The learners recal the LPC model and understand the principles involed in developing LPC model with equations	CO 6
11	Compare the autocorrelation and covaraince methods for linear predictive analysis	Analyze	The learners recal the LPC model to understand speech segment and apply autocorrelation and covaraince methods for analyzing the limits of speech segment	CO 6
12	Discuss the Cholesky Decomposition Solution for LPC Analysis	Understand	The learners recall the LPC analysis for speech processing and understand the cholesky decomposition method for obtaining predictor coefficients	CO 6
13	Express Levinson–Durbin algorithm for calculating LPC preditor coefficients	Apply	The learners recal linear predictive analysis to understand LPC predictor equation and apply Levisonn-Durbin algorithm to calculate the LPC predictor coefficients	CO 6
14	Summarize the properties of LPC polynomial	Understand	The learners recal the LPC polynomial and understand the polynomial properties	CO 6
15	With linear predictive analysis, explain the lossless tube model	Apply	The learners try to recall the LPC analysis and apply it the lossless tube to derive the transfer function	CO 6
16	List out the methods for linear predictive analysis and explain them with required equations	Apply	The leaners will try to re- call the methods for linear predictive analysis and try to implement them to calculate linear predictive coefficients	CO 6

17	Define prediction error signal. Calculate the normalized mean squared error	Apply	The learners recal the LPC polynomial to understand the prediction error and apply to calculate to the normalized mean squared error for autocorrelation method, covariance methods	CO 6
18	Express the mean squared prediction error in frequency domain using DTFT	Understand	The learners recal the DTFT and understand the mean squared prediction error interpretations in frequency domain	CO 6
19	Examine the effect of model order p on autocorrelation	Analyze	The learners recal the autocorrelation to understand the short time fourier analysis and apply linear predictive analysis for analyzing the windowing filter order p	CO 6
20	Differentiate between the LPC solution methods for calculating the predictor polynomial coefficients	Analyze	The leaners recall the methods for linear predictive analysis and try to implement them to calculate linear predictive coefficients and understand the predictor polynomial and analyze the sampled speech signal	CO 6
	PART C-SHO	ORT ANSWE	ER QUESTIONS	
1	Explain basic principles of linear predictive analysis.	Understand	The learners will try to recall the linear predictive analysis	CO 6
2	Explain an LPC based synthesizer using a block schematic. What is the assumption used in the synthesis?	Understand	The learners recall linera predictive analysis to understand working of frequency domain coder for speech and audio	CO 6
3	List out the difference between covariance LPC and autocorrelation LPC and state their their relative advantages	Apply	The learners recal LPC covariance and autocorrelation to understand linear predictive analysis and apply it illustrate their advantages and disadvantages	CO 6
4	Explain the covariance method for LPC analysis	Understand	The learners recall the LPC analysis and understand the covaraince method for predictor polynomial analysis	CO 6

5	State and explain applications of LPC to speech processing	Understand	The learners recal linear pre- dictive analysis and and un- derstand the predictor poly- nomial for speech processing	CO 6
6	Write short note on applications of LPC parameters	Apply	The learners will try to recall the linear predictive coding (LPC) and understand the LPC parameters to apply in speech processing	CO 6
7	Gie an overview on channel vocoders design using digi- tal filters and discrete fourier transforms	Undestand	The learners recall the DFT and understand digtal filters for designing channel vocoders	CO 6
8	Explain linear predictive vocoder	Understand	The learners will try to recal the vocoder and explain it by linear predictive analysis	CO 6
9	What is spectrogram? What are their types? Explain its significance and applications in speech processing	Understand	The learnes recall the speech waveforms and understand how speech waveform is rep- resented using spectrogram visually	CO 6
10	Derive the p^{th} order linear predictor system function	Apply	The learners recal z- transform to understand the linear predictor system and apply to derive the LPC polynomial and prediction error	CO 6
11	Develop the spectrogram by linear predictive analysis	Apply	The learners recall the short time fourier analysis to un- derstand the linear predic- tive analysis of speech signal and apply it to develop spec- trogram	CO 6
12	Differentiate spectrum obtained by short time fourier and linear predictive analysis	Analyze	The learners recall the spectrogram to understand the spectrum of speech signal by applying short time fourier analysis and linear predictive analysis and analyze their differences	CO 6

13	Give an overview on selective linear prediction	Understand	The learners recal the linear predictive spectrum and understand the method to obtain spectrum of selective band of frequencies	CO 6
14	Summarize the lattice methods for linear predictive analysis	Understand	The learners recall the linear predicitive analysis and understand the lattice method for calculating the predictor polynomial coefficients	CO 6
15	Differentiate between lattice method, covaraince method and autocorrelation method	Analyze	The learners recall the linear predictive polynomial to understand the linear predictive analysis for speech processing and apply LPC solution analysis methods to analyze the predictor polynomial coefficients	CO 6
16	Compare the computational requirements of the linear predictive analysis solution methods	Analyze	The learners recall the linear predictive analysis to understand the predictor polynomial and apply the solution methods to calculate predictor coefficients and analyze their computational requirements	CO 6
17	Give an overview of normalized mean squared error	Understand	The learners recall the linear predictive analysis and understand the prediction error and normalized mean squared error	CO 6
18	Elaborate the filter bank systhesis using FFT	Apply	The learners recall FFT to understand filter bank sys- thesis by applying FIR and IIR filters	CO 6
19	Explain the relation between overlap addition method of systhesis and filter bank syn- thesis	Understand	The learners recall overlap addition method and filter bank synthesis methods and understand the relation be- tween them	CO 6

20	Discuss the effects of fixed	Analyze	The learners recall the short	CO 6
	and time-varying modifica-		time fourier analysis to un-	
	tions of the short-time spec-		derstan the short time spec-	
	trum on the reconstructing		trum and analyze the re-	
	the original signal		sultant speech signal after	
			applying sampling both on	
			time and frequency	

Course Coordinator: Dr Shaik Jakeer Hussain HOD CSE(AI & ML)