Classification Supervised Learning (Part1)

講者:Isaac

Outline

- Logistic Regression
- K-Nearest Neighbor
- Decision Tree
 - CART
 - ID3

Model:
$$h_{\theta} = \frac{1}{1 + e^{-\theta^T X}}$$
 where $\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_n \end{bmatrix}$, $X = \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}$

Learned Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost Function: $C(\theta_0, \theta_1, ..., \theta_n)$

$$= \frac{1}{2m} \sum_{i=1}^{m} y^{(i)} \log(h^{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h^{\theta}(x^{(i)}))$$

- Sigmoid function
 - Output is [0, 1]

$$y = \frac{1}{1 + e^{-x}}$$

Sigmoid function

- Actually, cost function in logistic regression is cross-entropy
 - note that cross-entropy can be used when each of output is probability distribution

Information

 $\triangleright log\left(\frac{1}{p_i}\right)$ where p_i is probability of an event

Sun rises in the east tomorrow

It will rain tomorrow in Taiwan

Which is more informative?

Entropy V.S. Cross-entropy

Entropy

- Expected value(mean) of information contained in each message
- Entropy can be seen as index of uncertainty
 - Bigger mean more chaos
- Cross-entropy
 - Measurement on the difference between two probability distribution
 - Different distribution apply on entropy
 - Cross-entropy is greater than entropy

$$H(y) = \sum_{i} y_i \log\left(\frac{1}{y_i}\right) = -\sum_{i} y_i \log(y_i) \qquad H(y, \hat{y}) = -\sum_{i} y_i \log(\hat{y}_i)$$

Entropy

Cross-entropy

Example

Probability distribution I

Entropy on distribution 1 = $1/3 * \log(3) + 1/2 * \log(2) + 1/6 * \log(6)$

Probability distribution 2

Entropy on distribution 2 = $1/4 * \log(4) + 1/2 * \log(2) + 1/4 * \log(4)$

Cross-entropy on distribution 1 over distribution 2 $= 1/3 * \log(4) + 1/2 * \log(2) + 1/6 * \log(4)$

$$= 1/3 * \log(4) + 1/2 * \log(2) + 1/6 * \log(4)$$

Cross-entropy on distribution 2 over distribution 1 = $1/4 * \log(3) + 1/2 * \log(2) + 1/4 * \log(6)$

Example

```
Entropy on distribution 1 Entropy on distribution 2 = 1/3 * \log(3) + 1/2 * \log(2) + 1/6 * \log(6) = 1/4 * \log(4) + 1/2 * \log(2) + 1/4 * \log(4) = 0.452 Cross-entropy on distribution 1 over distribution 2 = 1/3 * \log(4) + 1/2 * \log(2) + 1/6 * \log(4) = 0.456 Cross-entropy on distribution 2 over distribution 1 = 1/4 * \log(3) + 1/2 * \log(2) + 1/4 * \log(6) = 0.464
```

- Cross-entropy is greater than entropy
 Cross-entropy on distribution 1 over 2 > Entropy on distribution 1
 Cross-entropy on distribution 2 over 1 > Entropy on distribution 2
- If two distribution become closer
 - Value of cross-entropy is closer to entropy

- Learning in logistic regression
 - Use gradient descent(same as linear regression)

Example and Practice

Example

- Logistic regression
 - example/regression

Practice

- Try to use linear regression to predict diabetes patient
 - dataset/pima-indians-diabetes.csv
 - practice/regression
- More information about the dataset
 - https://www.kaggle.com/uciml/pima-indians-diabetes-database/data

K-Nearest Neighbor

What's K-Nearest Neighbor

- ▶ A non-parametric method used for classification and regression
- Also called kNN
 - "k" mean how many neighbors should be considered to help classification/regression

- k=1:
 - Belongs to square class
- k=3
 - Belongs to triangle class
- k=7
 - Belongs to square class

K-Nearest Neighbor

x1

- 3. Find neighbors
 - 2.1
 - 2.4
 - 3.1

- 4. vote from labels
- 2

guess it is yellow class

How to Define Distance

- ▶ LI distance (Manhattan distance)
- ▶ L2 distance (Euclidean distance)

Euclidean distance =
$$\sqrt{(5-1)^2+(4-1)^2} = 5$$

Manhattan distance = $|5-1|+|4-1| = 7$

How to choose K?

- K is small
 - sensitive to noise points
- K is large
 - neighborhood may include points from other classes
 - smoother boundary
 - If too large, machine always predict majority class

http://vision.stanford.edu/teaching/cs23 I n-demos/knn/

- ▶ I-NN
 - Voronoi Diagram

Problem in L2 Distance

distance = 1.41

distance = 1.41

counter-intuitive results

- Curse of dimensionality

Dimensions = 1 Points = 4

Dimensions = 2 Points = 4²

Dimensions = 3Points = 4^3

Curse of dimensionality

Curse of dimensionality

Linear separable in high dimensionality

Curse of dimensionality

- Increase dimensionality may obtain perfect classfication
- However, extend too many dimensionality(features) lead to overfitting

Example and Practice

- Example
 - KNN
 - example/supervised learning
- Practice
 - Try to use knn to predict different varieties of wheat
 - dataset/seeds_dataset.csv
 - practice/supervised learning
 - More information about the dataset
 - https://archive.ics.uci.edu/ml/datasets/seeds#

Decision Tree

What's Decision Tree

- A decision support tool that uses a tree-like graph of decisions and their possible consequences
- Common method in decision tree
 - ID3
 - ▶ CART

What's Decision Tree

Terminology in Decision Tree

A is parent of B, C B, C are children of A

How to split on each node?

How to define a good split?

How to split on each node?

- Information/Gini gain
 - Index to decide how to split each node
 - Usually, we choose max information/gini gain as candidate to split

CART

 $Gini\ Gain = Gini(before\ splitting) - E[Gini(after\ splitting)]$

ID3

 $Information \ Gain = Entropy(before \ splitting) - E[Entropy(after \ splitting)]$

Decision Tree - CART

- Classification and Regression Trees(CART) model is a binary tree
- Split Based on One Variable
- Use Gini impurity to define attribute complexity under each feature
- Use Gini gain to split tree

Gini Impurity

J classes and each pi is probability of class i

$$\sum_{i=1}^J p_i (1-p_i) = \sum_{i=1}^J (p_i-p_i{}^2) = \sum_{i=1}^J p_i - \sum_{i=1}^J p_i{}^2 = 1 - \sum_{i=1}^J p_i{}^2$$

Class I	0
Class 2	6

Class I	I
Class 2	5

Class I	2
Class 2	4

$$\sum_{i=1}^{n} p_i - \sum_{i=1}^{n} p_i^2 = 1 - \sum_{i=1}^{n} p_i^2$$

$$p(class 1) = \frac{0}{6}, \quad p(class 2) = \frac{6}{6}$$

$$Gini = 1 - (\frac{0}{6})^2 - (\frac{6}{6})^2 = 0$$

$$p(class 1) = \frac{1}{6}, \quad p(class 2) = \frac{5}{6}$$

$$Gini = 1 - (\frac{1}{6})^2 - (\frac{5}{6})^2 = 0.278$$

$$p(class 1) = \frac{2}{6}, \quad p(class 2) = \frac{4}{6}$$

$$Gini = 1 - (\frac{2}{6})^2 - (\frac{4}{6})^2 = 0.444$$

Example

Gini Large Less Purity

Gini Small More Purity

CART use Gini Gain to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

suppose there are two ways (A or B) to split the data

Gini = 0.489E[Gini(after splitting)]

$$Gini = 0.48$$

 $=\frac{7}{12}*0.489 + \frac{5}{12}*0.48 = 0.4852$

$$Gini = 0.32$$

$$Gini = 0.408$$

E[Gini(after splitting)]

$$=\frac{5}{12}*0.32+\frac{7}{12}*0.408=0.37$$

CART use Gini Gain to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

Gini Gain on A way

=Gini(before splitting) -E[Gini(after splitting)]

=0.015

Gini Gain on B way

= Gini(before splitting) -E[Gini(after splitting)]

=0.13

Split on B way is better

CART use Gini Gain to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

suppose there are two ways (A or B) to split the data

Split on B way is better

Decision Tree - CART Example

How to deal with continuous attributes

- There are many different way to deal with continuous attributes when building decision tree
 - The most simple way is to split by average of continuous attributes

Decision Tree - CART Example

Decision Tree - ID3

- Iterative Dichotomiser 3(ID3) is a famous algorithm to generate decision tree
- Use information gain as index to split each node
- ▶ Note that ID3 can split multiple branch at each node

Decision Tree – ID3

Entropy
$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Class I	0
Class 2	6

Class I	I
Class 2	5

Class I	2
Class 2	4

$$p(class 1) = \frac{0}{6}, p(class 2) = \frac{6}{6}$$

$$Entropy = -0 * \log(0) - 1 * \log(1) = 0$$

$$p(class 1) = \frac{1}{6}, p(class 2) = \frac{5}{6}$$

$$Entropy = -\frac{1}{6} * \log\left(\frac{1}{6}\right) - \frac{5}{6} * \log\left(\frac{5}{6}\right) = 0.65$$

$$p(class 1) = \frac{2}{6}, p(class 2) = \frac{4}{6}$$

$$Entropy = -\frac{2}{6} * \log\left(\frac{2}{6}\right) - \frac{4}{6} * \log\left(\frac{4}{6}\right) = 0.91$$

Decision Tree - ID3

$$Entropy = -x * \log(x) - (1 - x) * \log(1 - x)$$

ID3 use Entropy to Split node

before splitting

Class I	6
Class 2	6

Entropy(before splitting) = 0.301

after splitting suppose there are two ways (A or B) to split the data

Entropy = 0.297 Entropy = 0.292 E[Entropy(after splitting)] = $\frac{7}{12} * 0.297 + \frac{5}{12} * 0.292 = 0.294$

Entropy = 0.217 Entropy = 0.259 E[Entropy(after splitting)]

$$= \frac{5}{12} * 0.217 + \frac{7}{12} * 0.259 = 0.242$$

ID3 use Entropy to Split node

before splitting

Class I	6
Class 2	6

Entropy(before splitting) = 0.5

after splitting

```
Information Gain on A way
=Entropy(before splitting) -E[Entropy(after splitting)]
=0.007
```

Information Gain on B way

- = Entropy (before splitting) -E[Entropy(after splitting)]
- =0.069

Split on B way is better

ID3 use Entropy to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

suppose there are two ways (A or B) to split the data

Split on B way is better

Predict if playing golf or not

1 000				
Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Entropy(before split) =
$$-\frac{5}{14} * \log\left(\frac{5}{14}\right) - \frac{9}{14} * \log\left(\frac{9}{14}\right) = 0.94$$

calculate entropy if splitting on **outlook** column

		Play Golf		
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

$$E[Entropy(after splitting)]$$
= $P(sunny) * E(3,2) + P(overcast) * E(4,0) + P(rainy) * E(2,3)$
= $\left(\frac{5}{14}\right) * 0.971 + \left(\frac{4}{14}\right) * 0 + \left(\frac{5}{14}\right) * 0.971 = 0.693$

		Play Golf	
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Information Gain = 0.247			

		Play Golf	
		Yes	No
Тетр	Hot	2	2
	Mild	4	2
	Cool	3	I
Information Gain = 0.029			

Max Gain

		Play Golf	
		Yes	No
11	High	3	4
Humidity	Normal	6	1
Information Gain = 0.152			

		Play Golf				
		Yes	No			
\ \ \ / : 	False	6	2			
Windy	True	3	3			
Information Gain = 0.048						

After first splitting, decision tree look like the following

	Outlook	Temp.	Humidity	Windy	Play Golf
<u>></u>	Sunny	Mild	High	FALSE	Yes
	Sunny	Cool	Normal	FALSE	Yes
Sunny	Sunny	Cool	Normal	TRUE	No
N.	Sunny	Mild	Normal	FALSE	Yes
	Sunny	Mild	High	TRUE	No
- 등	Overcast	Hot	High	FALSE	Yes
<u>8</u> 2	Overcast	Cool	Normal	TRUE	Yes
Outlook	Overcast	Mild	High	TRUE	Yes
O O	Overcast	Hot	Normal	FALSE	Yes
	Rainy	Hot	High	FALSE	No
	Rainy	Hot	High	TRUE	No
Rainy	Rainy	Mild	High	FALSE	No
	Rainy	Cool	Normal	FALSE	Yes
7	Rainy	Mild	Normal	TRUE	Yes

No need to further split overcast because all of target are "Yes"

Temp.	Humidity	Windy	Play Golf
Hot	High	FALSE	Yes
Cool	Normal	TRUE	Yes
Mild	High	TRUE	Yes
Hot	Normal	FALSE	Yes

Continue split nodes on same method

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

http://www.saedsayad.com/decision_tree.htm

Decision Tree – ID3

- Calculate target Entropy
- Find the information gain on each attribute
- ▶ Split tree on an attribute which information gain is max
- Repeat

Pruning

- Pruning is a technique that reduces the size of decision trees
 - Reduce model complexity and overfitting

Stopping Condition

Pre-pruning

- Stop the algorithm before it becomes a fully-grown tree
 - Stop if all instances belong to the same class
 - Stop if number of instances is less than some user-specified threshold
 - Stop if expanding the current node does not improve impurity measures
 - **.....**

Post-pruning

- Grow decision tree to its entirety and trim the nodes of the decision tree in a bottom-up
- If generalization error improves after trimming, replace sub-tree by a leaf node

Example and Practice

Example

- Decision Tree (CART)
 - example/supervised learning

Practice

- Try to use decision tree to predict if abalone is old or young
 - dataset/abalone.csv
 - practice/supervised learning
 - we assume age > 8 is old and other is young
- More information about the dataset
 - https://archive.ics.uci.edu/ml/datasets/abalone

