Summergimurne? UFMG

Theoretical Guide

Bruno Monteiro, Emanuel Silva & Bernardo Amorim

1 Identities

1.1 Series

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{i=1}^{n} i\right)^2$$

$$\sum_{i=0}^{n} ic^i = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^2}, \quad c \neq 1$$

$$\sum_{i=0}^{\infty} ic^i = \frac{c}{(1-c)^2}, \quad |c| < 1$$

1.2 Binomial Identities

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1} \qquad \qquad \binom{n-1}{k} - \binom{n-1}{k-1} = \frac{n-2k}{k} \binom{n}{k}$$

$$\binom{n}{k} \binom{n-h}{k} = \binom{n}{k} \binom{n-k}{h} \qquad \qquad \binom{n}{k} = \frac{n+1-k}{k} \binom{n}{k-1}$$

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1} \qquad \qquad \sum_{k=0}^{n} k^{2} \binom{n}{k} = (n+n^{2})2^{n-2}$$

$$\sum_{j=0}^{k} \binom{m}{j} \binom{n-m}{k-j} = \binom{n}{k} \qquad \qquad \sum_{j=0}^{m} \binom{m}{j}^{2} = \binom{2m}{m}$$

$$\sum_{m=0}^{n} \binom{m}{j} \binom{n-m}{k-j} = \binom{n+1}{k+1} \qquad \qquad \sum_{m=k}^{n} \binom{m}{k} = \binom{n+1}{k+1}$$

$$\sum_{r=0}^{m} \binom{n+r}{r} = \binom{n+m+1}{m} \qquad \qquad \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n-k}{n} = \operatorname{Fib}(n+1)$$

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} \qquad \qquad (1+x)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k}$$

$$2\sum_{i=1}^{R} \binom{n}{i} - \binom{n}{k} - \binom{n}{k} = \sum_{i=1}^{R} \binom{n+1}{i}$$

1.3 Bits Manipulation

- **x & (x 1):** Turn off the rightmost 1-bit in a word, producing 0 if none (e.g., $01011000 \rightarrow 01010000$). This can be used to determine if an unsigned integer is a power of 2 or is 0: apply the formula followed by a 0-test on the result.
- $\mathbf{x} \mid (\mathbf{x} + \mathbf{1}) :$ Turn on the rightmost 0-bit in a word, producing all 1's if none (e.g., $10100111 \rightarrow 10101111$)
- **x** & (**x** + **1**): Turn off the trailing 1's in a word, producing **x** if none (e.g., $10100111 \rightarrow 10100000$)
- $\mathbf{x} \mid (\mathbf{x} \mathbf{1}) :$ Turn on the trailing 0's in a word, producing x if none (e.g., $10101000 \rightarrow 10101111$)
- $\sim x \& (x + 1)$: Create a word with a single 1-bit at the position of the rightmost 0-bit in x, producing 0 if none (e.g., $10100111 \rightarrow 00001000$)
- \sim **x** | (**x 1**): Create a word with a single 0-bit at the position of the rightmost 1-bit in **x**, producing all 1's if none (e.g., 10101000 \rightarrow 11110111)
- \sim **x** & (**x 1**) or \sim (**x** | -**x**): Create a word with 1's at the positions of the trailing 0's in **x**, and 0's elsewhere, producing 0 if none (e.g., 01011000 \rightarrow 00000111)
- \sim **x** | (**x** + **1**) : Create a word with 0's at the positions of the trailing 1's in **x**, and 1's elsewhere, producing all 1's if none (e.g., 10100111 \rightarrow 11111000)
- **x & (-x) :** Isolate the rightmost 1-bit, producing 0 if none (e.g., 01011000 \rightarrow 00001000)
- $\mathbf{x} \oplus (\mathbf{x} \mathbf{1})$: Create a word with 1's at the positions of the rightmost 1-bit and the trailing 0's in \mathbf{x} , producing all 1's if no 1-bit, and integer 1 if no trailing 0's (e.g., $01011000 \rightarrow 00001111$)
- $\mathbf{x} \oplus (\mathbf{x} + \mathbf{1})$: Create a word with 1's at the positions of the rightmost 0-bit and the traling 1's in \mathbf{x} , producing all 1's if no 0-bit, and the integer 1 if no trailing 1's (e.g., 01010111 \rightarrow 00001111)

((x & (-x)) + x) & x : Turn off the rightmost contiguous string of 1's (e.g., 01011100 \rightarrow 01000000)

Index of MSB(x): __builtin_clz(1) - __builtin_clz(x)

Index of LSB(x): __builtin_ctz(x)

2 Number Theory

2.1 Maximal Prime Gaps:

For numbers until 10^9 the maximal gap is 400. For numbers until 10^{18} the maximal gap is 1500.

2.2 Prime counting function - $\pi(x)$

The prime counting function is asymptotic to $\frac{x}{\log x}$, by the prime number theorem.

X	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\pi(x)$	4	25	168	1229	9592	78498	664579	5761455

2.3 Some Primes

999999937 1000000007 1000000009 1000000021 1000000033 $10^{18} - 11$ $10^{18} + 3$ $2305843009213693951 = 2^{61} - 1$

2.4 Number of Divisors

n	6	60	360	5040	55440	720720	4324320	21621600
d(n)	4	12	24	60	120	240	384	576

n	367567200	6983776800	13967553600	321253732800
d(n)	1152	2304	2688	5376

 $18401055938125660800 \approx 2e18$ is highly composite with 184320 divisors. For numbers up to 10^{88} , $d(n) < 3.6\sqrt[3]{n}$.

2.5 Lucas's Theorem

$$\binom{n}{m} \equiv \prod_{i=0}^{k} \binom{n_i}{m_i} \pmod{p}$$

For p prime. n_i and m_i are the coefficients of the representations of n and m in base p.

2.6 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

2.7 Taking modulo at the exponent

If a and m are coprime, then

$$a^n \equiv a^{n \mod \phi(m)} \pmod{m}$$

Generally, if $n \ge \log_2 m$, then

$$a^n \equiv a^{\phi(m) + [n \mod \phi(m)]} \pmod{m}$$

3 Geometry

3.1 Pythagorean Triples

For all natural a, b, c satisfying $a^2 + b^2 = c^2$ there exist $m, n \in \mathbb{N}$ and m > n such that (reverse is also true):

$$a = m^2 - n^2$$
 $b = 2mn$ $c = m^2 + n^2$

Heron's Formula

The area of a triangle can be written as $A = \sqrt{s(s-a)(s-b)(s-c)}$, where a, b, c are the lengths of its sides and $s = \frac{a+b+c}{2}$.

This can be generalized to compute the area A of a quadrilateral with sides a, b, c, d, with $s = \frac{a+b+c+d}{2}$ and α, γ any two opposite angles:

$$A = \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd\left(\cos^2\left(\frac{\alpha+\gamma}{2}\right)\right)}$$

Colinear Points 3.3

Three points are colinear on \mathbb{R}^2 iff:

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0$$

The absolute value of this determinant is twice the area of the triangle ABC.

Coplanar Points

Four points are coplanar in \mathbb{R}^3 iff:

$$\begin{vmatrix} x_A & y_A & z_A & 1 \\ x_B & y_B & z_B & 1 \\ x_C & y_C & z_C & 1 \\ x_D & y_D & z_D & 1 \end{vmatrix} = 0$$

3.5Trigonometry

3.5.1 Angle Sum

$$\sin(a \pm b) = \sin a \cos b \pm \cos \sin b$$

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$$

3.5.2 Sum-to-Product Transformation

$$\sin a \pm \sin b = 2\sin \frac{a \pm b}{2}\cos \frac{a \mp b}{2}$$

$$\cos a + \cos b = 2\cos \frac{a + b}{2}\cos \frac{a - b}{2}$$

$$\cos a - \cos b = -2\sin \frac{a + b}{2}\sin \frac{a - b}{2}$$

$$\tan a \pm \tan b = \frac{\sin(a \pm b)}{\cos a \cos b}$$

Centroid of a polygon

The coordites of the centroid of a non-self-intersecting closed polygon is:

$$\frac{1}{3A} \left(\sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i), \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i) \right),$$

where A is twice the signed area of the polygon.

Probability

Moment Generating Functions

Let X be a random variable. Define $M_X(t) = E[e^{tX}]$.

when X is Discrete

when X is Continuous

$$M_X(t) = \sum_{i=1}^{\infty} e^{tx_i} p_i$$

 $M_X(t) = \sum_{i=0}^{\infty} e^{tx_i} p_i$ $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

Then we have:

$$M_X(0) = 0$$
 $M'_X(0) = E[x]$ $\frac{d^k M_X(0)}{dt^k} = E[x^k]$

Distributions

4.2.1 Binomial

 \bullet X is the number of successes in a sequence of n independent experiments.

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $E[X] = np$ $Var(X) = np(1-p)$

4.2.2 Geometric

 X is the number of failures in a sequence of independent experiment of Bernoulli until the first success.

$$P(X = k) = (1 - p)^k p$$
 $E[X] = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$

5 Graphs

5.1 Planar Graphs

- 1. If G has k connected components, then n-m+f=k+1.
- 2. $m \leq 3n 6$. If G has no triangles, $m \leq 2n 4$.
- 3. The minimum degree is less or equal 5. And can be 6 colored in $\mathcal{O}(n+m)$.

5.2 Counting Minimum Spanning Trees - $\tau(G)$

- Cayley's Formula: $\tau(K_n) = n^{n-2}$.
- Complete Bipartite Graphs: $\tau(K_{p,q}) = p^{q-1}q^{p-1}$.
- Kirchhoff's Theorem: More generally, if we define the Laplacian matrix $\mathbf{L}(G) = \mathbf{D} \mathbf{A}$, where \mathbf{D} is the diagonal matrix with entries equal to the degree of vertices and \mathbf{A} is the adjacency matrix. For $\mathbf{L}(G)_{ab}$ equal to $\mathbf{L}(G)$ without row a and column b, we have $\tau(G) = \det \mathbf{L}(G)_{ab}$, for any row a and column b.

5.3 Prüfer's Sequence

The Prüfer sequence is a bijection between labeled trees with n vertices and sequences with n-2 numbers from 1 to n.

To get the sequence from the tree:

• While there are more than 2 vertices, remove the leaf with smallest label and append it's neighbour to the end of the sequence.

To get the tree from the sequence:

• The degree of each vertex is 1 more than the number of occurrences of that vertex in the sequence. Compute the degree d, then do the following: for every value x in the sequence (in order), find the vertex with smallest label y such that d(y) = 1 and add an edge between x and y, and also decrease their degrees by 1. At the end of this procedure, there will be two vertices left with degree 1; add an edge between them.

5.4 Erdős-Gallai Theorem

A sequence of non-negative integers $d_1 \geq ... \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + ... + d_n$ is even and

$$\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for every k in $1 \le k \le n$.

5.5 Maximum Matching in Complete Multipartite graphs

The size of the maximum matching in a complete multipartite graph with n vertices and k vertices in its largest partition is (reference):

$$|M| = \min\left(\left\lfloor \frac{n}{2} \right\rfloor, n - k\right)$$

5.6 Dilworth's Theorem

5.6.1 Node-disjoint Path Cover

The node disjoint path cover in a DAG is equal to |V| - |M|, where M is the maximum matching in the bipartite flow network.

5.6.2 General Path Cover

The general path cover in a DAG is equal to |V| - |M|, where M is the maximum matching in the bipartite flow network of the transitive closure graph.

5.6.3 Dilworth's Theorem

The size of the maximum **antichain** in a DAG, that is, the maximum size of a set S of vertices such that no vertex in S can reach another vertiex in S, is equal to size of the minimum **general** path cover.

5.7 Sum of Subtrees of a Tree

For a rooted tree T with n vertices, let sz(v) be the size of the subtree of v. Then the following holds:

$$\sum_{v \in V} \left[\operatorname{sz}(v) + \sum_{u \text{ child of } v} \operatorname{sz}(u)(\operatorname{sz}(v) - \operatorname{sz}(u)) \right] = n^2$$

6 Counting Problems

6.1 Stirling numbers of the first kind

These are the number of permutations of [n] with exactly k disjoint cycles. They obey the recurrence:

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix},$$
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0$$

- The sum products of the $\binom{n}{k}$ subsets of size k of $\{0, 1, \dots, n-1\}$ is $\binom{n}{n-k}$.
- $\bullet \ \sum_{k=0}^{n} {n \brack k} = n!$
- $\sum_{k=0}^{n} {n \brack k} x^k = x(x-1)(x-2)...(x-n+1)$

6.2 Stirling numbers of the second kind

These are the number of ways to partition [n] into exactly k non-empty sets. They obey the recurrence:

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}$$

A "closed" formula for it is:

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^{n}$$

6.3 How many functions $f: [n] \to [k]$ are there?

[n]	[k]	Any f	Injective	Surjective
dist	dist	k^n	$\frac{k!}{(n-k)!}$	$k!\binom{n}{k}$
indist	dist	$\binom{k+n-1}{n}$	$\binom{k}{n}$	$\binom{n-1}{n-k}$
dist	indist	$\sum_{i=1}^{k} {n \brace i}$	$[n \le k]$	$\binom{n}{k}$
indist	indist	$\sum_{i=1}^k p_i(n)$	$[n \le k]$	$p_k(n)$

Where $p_k(n)$ is the number of ways to partition n into k terms.

6.4 Derangement

A derangement is a permutation that has no fixed points. Let d_n be the number of ways of derangement of a sequence of the sequence $1 \dots n$. We have the recurrence $d_n = (n-1)(d_{n-1} + d_{n-2})$. Moreover, d_n is the closest integer to $\frac{n!}{e}$.

$$d_n = n! \sum_{i=0}^n \frac{(-1)^i}{i!}$$

6.5 Bell numbers

These count the number of ways to partition [n] into subsets. They obey the recurrence:

$$\mathcal{B}_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \mathcal{B}_k$$

Х	5	6	7	8	9	10	11	12
\mathcal{B}_x	52	203	877	4.140	21.147	115.975	678.570	4.213.597

6.6 Eulerian numbers

The Eulerian number T(n, k) is the number of permutations of the numbers from 1 to n in which exactly k elements are greater than the previous element (permutations with k "ascents").

$$T(n,k) = \sum_{j=0}^{k} (-1)^{j} (k-j)^{(n+1)} {n+1 \choose j}$$

6.7 Burside's Lemma

Let G be a group that acts on a set X. The Burnside Lemma states that the number of distinct orbits is equal to the average number of points fixed by an element of G.

$$T = \frac{1}{|G|} \sum_{g \in G} |\mathtt{fix}(g)|$$

Where a orbit orb(x) is defined as

$$orb(x) = \{ y \in X : \exists g \in G \ gx = y \}$$

and fix(q) is the set of elements in X fixed by q

$$\mathtt{fix}(g) = \{x \in X : gx = x\}$$

Example: With k distinct types of beads how many distinct necklaces of size n can be made? Considering that two necklaces are equal if the rotation of one gives the other.

$$T = \frac{1}{n+1} \sum_{i=0}^{n} k^{\gcd(i,n)}$$

6.8 Catalan Numbers

 $1,\,1,\,2,\,5,\,14,\,42,\,132,\,429,\,1430,\,4862,\,16796,\,58786,\,208012,\,742900,\,2674440,\,9694845,\,35357670,\,129644790,\,477638700,\,1767263190,\,6564120420,\,24466267020,\,91482563640,\,343059613650,\,1289904147324,\,4861946401452,\,18367353072152,\,69533550916004,\,263747951750360,\,1002242216651368.$

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!} = \prod_{k=2}^n \frac{n+k}{k}, \quad n \ge 0$$

Applications:

• C_n counts the number of expressions containing n pairs of parentheses which are correctly matched.

$$((()))$$
 $()(())$ $()()$ $(())()$...

• Successive applications of a binary operator can be represented in terms of a full binary tree. (A rooted binary tree is full if every vertex has either two children or no children.) It follows that C_n is the number of full binary trees with n+1 leaves:

• C_n is the number of different ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines (a form of Polygon triangulation). The following hexagons illustrate the case n = 4:

6.9 Central Binomial Coefficient

To number of of subsets T of $S = \{\underbrace{1,1,\ldots,1}_n,\underbrace{-1,-1,\ldots,-1}_n\}$ that sum to 0 is

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} = \frac{2n!}{(n!)^2} \approx \frac{2^{2n}}{\sqrt{n \cdot \pi}}$$

- The number of factors of 2 in $\binom{2n}{n}$ is equal to the number of 1's in the binary representation if n.
- $\binom{2n}{n}$ is never squarefree for n > 4.

7 Dynamic Programming Optimizations

7.1 Divide and Conquer

DP to compute the minimum cost to divide an array into k subarrays; the cost of a solution is equal to the sum of the costs of each subarray. The cost of a subarray A[i..j] is c(i,j).

$$dp[i][k] = \min_{j \ge i} (dp[j+1][k-1] + c(i,j))$$

• Define A to be the functions satisfying

$$dp[i][k] = dp[A(i,k) + 1][k - 1] + c(i, A(i,k)).$$

If A also satisfy $A(i,k) \leq A(i+1,k)$, then the dp is optimizable.

• Another sufficient condition is, for every a < b < c < d:

$$c(a,d) + c(b,c) \ge c(a,c) + c(b,d)$$

8 Other

8.1 Branching factors

The recurrence T(n) = T(n-i) + T(n-j) is $\mathcal{O}(\tau(i,j)^n)$. Also, the recurrence T(n) = T(n-i) + T(n-j) + f(n) is $\mathcal{O}(\tau(i,j)^n \cdot f(n))$.

i j	1	2	3	4	5
1	2.0000	1.6181	1.4656	1.3803	1.3248
2	1.6181	1.4143	1.3248	1.2721	1.2366
3	1.4656	1.3248	1.2560	1.2208	1.1939
4	1.3803	1.2721	1.2208	1.1893	1.1674
5	1.3248	1.2366	1.1939	1.1674	1.1487

Branching factors of binary branching vectors $\tau(i,j)$, rounded up.

8.2 Lagrange

Given a set of k+1 points

$$(x_0, y_0), \ldots, (x_j, y_j), \ldots, (x_k, y_k)$$

where no two x_j are the same, the interpolation polynomial in the Lagrange form is a linear combination

$$L(x) := \sum_{j=0}^{k} y_j l_j(x)$$

of Lagrange basis polynomials

$$l_j(x) := \prod_{\substack{0 \le m \le k \\ m \ne j}} \frac{x - x_m}{x_j - x_m} = \frac{(x - x_0)}{(x_j - x_0)} \cdots \frac{(x - x_{j-1})}{(x_j - x_{j-1})} \frac{(x - x_{j+1})}{(x_j - x_{j+1})} \cdots \frac{(x - x_k)}{(x_j - x_k)}$$

8.3 String ciclica com todos substrings de tamanho k distintas

https://en.wikipedia.org/wiki/Lyndon_word#Connection_to_de_Bruijn_sequences