Bio-Data Science Task 1 Report

Summary: In this week's task, I carried out two tasks to strengthen my skills inR-programming for data science.

First, I performed simple visualization on the data set "astrocyte_data". I created barplots, histograms, boxplots, added legends and labels. Next, I installed all the packages that would enable me perform ggplots on the data set "aflatoxin_data". I continued to melt data, stack barplots, create pie-chart, histogram and scatter plot while applying colors. I then created heatmaps which I manipulated severally to create what suits my taste.

In conclusion, this task has strengthened my skills in R-programming for statistical analysis/visualization.

Explanations of codes and visualizations are provided below:

Mitochondria-endoplasmic reticulum contacts in reactive astrocytes promote vascular remodelling. Goebel et al.

I want to perform the comparison of FACS-enriched astrocytes from uninjured and injured wild-type mice at different time points

I have already downloaded my data as .csv, next I will import my file in R astrocyte_data <- read.csv(file.choose()) astrocyte_data

I want to perform Data Visualization in R

Let me construct a histogram for the distribution of MFN1_1 Gene hist(astrocyte_data\$MFN1_1, col = "Sea green", main = "Distribution of MFN1_1 Gene", xlab = "Index")

Distribution of MFN1_1 Gene

I want to plot lineplots for the distribution of MFN1_1 Gene plot(astrocyte_data $MFN1_1$, type = "h", xlim = c(0,1300), ylim = c(0, 40))

I want to create black and with boxplots for my genes boxplot(astrocyte_data\$MFN1_1, astrocyte_data\$MFN1_2, astrocyte_data\$MFN1_4, astrocyte_data\$WT_1, astrocyte_data\$WT_3, astrocyte_data\$WT_4, astrocyte_data\$WT)

Let me add red color and title to my boxplot boxplot(astrocyte_data\$MFN1_1, astrocyte_data\$MFN1_2, astrocyte_data\$MFN1_4, astrocyte_data\$WT_1, astrocyte_data\$WT_3, astrocyte_data\$WT_4, astrocyte_data\$MFN1, astrocyte_data\$WT, col = 'red', outline = F, main = 'BOXPLOT')

BOXPLOT

I want to color by gene types boxplot(astrocyte_data\$MFN1_1, astrocyte_data\$MFN1_2, astrocyte_data\$MFN1_4, astrocyte_data\$WT_1, astrocyte_data\$WT_3, astrocyte_data\$WT_4, astrocyte_data\$MFN1, astrocyte_data\$WT, col = 3:10, notch = T, outline = F, main = 'BOXPLOT', xaxt = 'n', xlab = 'Wild-type mice at different time points', ylab = 'FACS-enriched astrocytes', ylim = c(10,50), xlim = c(0,12))

BOXPLOT

Wild-type mice at different time points

I want to add axis axis(side = 1, at = c(1,2,3,4,5,6,7,8), labels = c('MFN1_1', 'MFN1_2', 'MFN1_4', 'WT_1', 'WT_3', 'WT_4', 'MFN1', 'WT'))

BOXPLOT

Wild-type mice at different time points

Finally I will add legend legend('topright', legend = c('MFN1_1', 'MFN1_2', 'MFN1_4', 'WT_1', 'WT_3', 'WT_4', 'MFN1', 'WT'), col = 3:10, pch = 19)

Wild-type mice at different time points

I want to create a scatterplot of MFN1_1 vs WT_1. I will color it black with a background of blue.

 $plot(x = astrocyte_data\$MFN1_1[1:50], y = astrocyte_data\$WT_1[1:50], col = 'black', pch = 21, bg = 'blue', main = 'MFN1_1 vs WT_1', xlab = 'MFN1_1', ylab = 'WT_1', xlim = c(20,30), ylim = c(20,30))$

MFN1_1 vs WT_1

I want to color by gene type.
plot(astrocyte_data\$MFN1_1[1:50], astrocyte_data\$WT_1[1:50], col = 1:50, pch = 19, main
= 'MFN1_1 vs WT_1', xlab = 'MFN1_1', ylab = 'WT_1', xlim = c(20,30), ylim = c(20,30))

MFN1_1 vs WT_1

Let me add legend to my plot legend('topright', legend = c(astrocyte data\$T..Gene.names[1:50]), pch = 19, col = 1:50)

MFN1_1 vs WT_1

I plot the heatmap next.

heatmap(as.matrix(astrocyte_data[2:9]), Colv = NA, scale = 'col', margins = c(10,10), main =

'Heat map plot of astrocyte')

Let me now plot Pie Charts
table(astrocyte_data\$T..Gene.names[1:10])
item <- unique(astrocyte_data\$T..Gene.names[1:10])
itemCount <- as.vector(table(astrocyte_data\$T..Gene.names[1:10]))

I will start by plotting a simple pie chart for astrocyte species pie (x = itemCount, labels = item, radius = 0.5, col = 11:20, main = 'Pie chart for astrocyte species')

Pie chart for astrocyte species

Next, let me add edges and color my borders pie (x = itemCount, labels = item, radius = 1.0, edge = T, border = 'red', col = 11:20, main = 'Pie chart for astrocyte species')

Pie chart for astrocyte species

Let's arrange some of these plots as we usually see in publications par(mfrow = c(2,2))

LET US NOW GO FULLY INTO GGPLOTS

We are going to work with a new dataset

About data set: Growth and Toxigenicity of A. flavus on Resistant and Susceptible Peanut Genotypes. This study seeks to determine the reaction of peanut genotypes to Aflatoxigenic and non-aflatoxigenic A. flavus inoculation and also determine the mechanisms of their resistance. It was established that non-aflatoxigenic A. flavus grows faster than aflatoxigenic A. flavus. There was no significant difference in the incidence and severity of the A. flavus resistant genotypes (L027B and ICGV-03401) however, there were significant differences between resistant genotypes and the susceptible check Manipinta. This study also confirmed that non-aflatoxigenic A. flavus inoculation did not lead to aflatoxin production. Non-aflatoxigenic A. flavus identified could serve as a good biocontrol against aflatoxin contamination under field conditions. Additionally, peanut genotypes with resistance to post-harvest aflatoxin accumulation will resist the growth of A. flavus and subsequent aflatoxin accumulation.

```
# Install ggplot2
install.packages("ggplot2")
library(ggplot2)

# Import .csv file in R
aflatoxin_data <- read.csv(file.choose())
aflatoxin_data

# Start with defining the base data for ggplot
pl <- ggplot(data = aflatoxin_data)

# To the base, I will add what I want to plot and color
pl + geom_bar(aes(x=GENOTYPES))
```


I will plot frequency of the data from a single column pl + geom bar(aes(y=Isolate))

Let me flip the coordinates
pl + geom_bar(aes(y=Isolate))+coord_flip()

- # See the frequency of each variable within the species.
- # Install.package(reshape2)
- # Melt the data to have something understandable by ggplot better install.packages("reshape2")

install.packages("Rcpp")

library(reshape2)

melted_aflatoxin_data <- melt(aflatoxin_data)

I want to produce a ttacked/continuous bar plot for genotypes.
ggplot(data = aflatoxin_data) + geom_bar(aes(x=GENOTYPES, y=Isolate, fill = GENOTYPES), stat = "identity")

Let me produce a multiple bar plot ggplot(data = aflatoxin_data) + geom_bar(aes(x=GENOTYPES, y=Isolate, fill = GENOTYPES), stat = "identity", position = 'dodge')

Let me plot a simple pie chart and label by genotypes ggplot(data = aflatoxin_data) + geom_bar(aes(x=factor(1), fill = GENOTYPES), width = 1) + coord_polar(theta = 'y')

I will add a theme of my choice ggplot(data = aflatoxin_data) + geom_bar(aes(x=factor(1), fill = GENOTYPES), width = 1) + coord_polar(theta = 'y') + theme_classic()

Let me plot a simple histogram for aflatoxin_data
pl <- ggplot(data = aflatoxin_data)
pl + geom_histogram(aes(x=S_Day2, fill = GENOTYPES)) + facet_grid(. ~GENOTYPES)

I will add a color parameter pl + geom_histogram(aes(x=S_Day2, fill = GENOTYPES), color = "black") + facet_grid(. ~GENOTYPES)

Let me construct a Scatter plot of S_Day8 against S_Day2 with red color pl + geom point(aes(x = S Day2, y = S Day8, color = 'red'))

I will Color by Genotype (quite automated)
pl + geom_point(aes(x = S_Day2, y = S_Day8, color = GENOTYPES)) + theme_bw() +
ggtitle(label = 'Scatterplot', subtitle = 'Days')

Scatterplot Days GENOTYPES 27B IGCV03401 Manipinta

I will construct a boxplot plus a theme pl + geom_boxplot(notch = F, aes(x= GENOTYPES, y = S_Day8, fill = GENOTYPES)) + theme_classic()

Heat map plotting
I will use melting methods to create heat map with ggtiles
meltCorData <- melt(cor(aflatoxin_data[3:8]))

I start by setting my new ggplot hm <- ggplot(data = meltCorData) hm + geom tile(aes(x = Var1, y = Var2, fill = value))

Let me start changing colors in heatmaps hm + geom_tile(aes(x = Var1, y = Var2, fill = value)) + scale_fill_gradient2(low = 'red', high = 'blue')

I will also use hex code hm + geom_tile(aes(x = Var1, y = Var2, fill = value)) + scale_fill_gradient2(low = '#1687ee', high = '#d27C1e')

Let me change my x and y labels hm + geom_tile(aes(x = Var1, y = Var2, fill = value)) + scale_fill_gradient2() + xlab('First Variable') + ylab('Second Variable')

