Lime Microsystems Limited

Surrey Technology Centre Occam Road The Surrey Research Park Guildford, Surrey GU2 7YG United Kingdom

Lime-GPSDO

- FPGA Gateware Description-

Version: 1.0 Last modified: 03/05/2019

REVISION HISTORY

The following table shows the revision history of this document:

Date	Version	Description of Revisions
03/05/2019	1.0	Initial version

Table of Contents

	REVISION HISTORY	2
1	INTRODUCTION	4
2	FPGA GATEWARE FEATURES	5
3	GATEWARE DESCRIPTION	6
3.1	L Main block diagram	6
3.2	2 Clock network	7
	3.3.1 Registers of gnsscfg module	10
3.4	Softcore processor – nios cou	12

1 Introduction

This document contains functional description of FPGA gateware project suited for Lime-GPSDO board.

FPGA project – Lime-GPSDO project can be downloaded from GitHub repository https://github.com/myriadrf/Lime-GPSDO_GW.

Required hardware – LimeGSPDO v1.0 board.

Development software – project is created with Altera Quartus prime, Version 18.0.0 Build 614 04/24/2018 SJ Lite Edition with MAX 10 device support. Mentioned software edition is free and can be downloaded from (https://www.altera.com). Although other Altera Quartus prime software versions supporting MAX10 family might work as well but it is recommended to use same version as project was created.

2 FPGA gateware features

Gateware contains following features:

- UART-USB interface for transmitting data
- High accuracy 30.72MHz GNSS disciplined clock.
- External I2C, UART and GPIO for user defined applications.
- GNSS message parsing.

3 Gateware description

This chapter describes main modules of Lime-GPSDO project.

3.1 Main block diagram

Lime-GPSDO gateware features a NIOS II softcore processor (nios_cpu in **Figure 1**) which provides various interfaces for communicating with on-board peripherals and other gateware modules, as well as external I2C and UART interfaces intended for user-defined use. The gateware also features a module for parsing GNSS data and performing parts of the clock tuning process (limegnss_gpio_top in **Figure 1**).

Note: EXT I2C and EXT UART logic, if required, is left to be implemented by the user.

Figure 1 Top block diagram

Table 1 Description of main instances

Instance	Description			
nios_cpu	NIOS II softcore processor. Provides periphery control, tunes the VCTCXO clock based on data from limegnss_gpio_top. See 3.4 Softcore			
	processor – nios_cpu.			
limegnss_gpio_top	Parses GNSS messages, controls LEDs and provides data to the NIOS II softcore processor for VCTCXO tuning. See 3.3 GNSS top module –			
	limegnss_gpio_top			

3.2 Clock network

Figure 2 shows dataflow between main modules and clocking scheme. More details can be found in **Table 2**.

Figure 2 Gateware clock network

Table 2 Clock network description

Clock name	Frequency, MHz	Description
CLK50_FPGA	50	Clock for driving the NIOS II softcore processor
CLK0_OUT	30.72	VCTCXO clock, tuned by the gateware

3.3 GNSS top module – limegnss_gpio_top

Parses incoming messages from the onboard GNSS chip. Parsed data is stored in the gnsscfg submodule. Also evaluates the frequency offset of the 30.72MHz clock source and provides the data to the NIOS II softcore processor via an Avalon MM interface; controls onboard LEDs to indicate tuning status.

Figure 3 is a block diagram for the limegnss_gpio_top module. Detailed descriptions of submodules can be found in **Table 3**.

Figure 3 limegnss_gpio_top block diagram

Table 3 Description of limegnss_gpio_top instances

Instance	Description
UART	UART receiver and transmitter. Used to receive data from the GNSS chip.
gnss_top	Parses GNSS messages.
vctcxo_tamer_top	Evaluates 30.72MHz clock's frequency offset.
gnss_led	Controls FPGA LEDs

Table 4 limegnss_gpio_top module parameters

Parameter	Туре	Default	Description
UART_BAUD_RATE	positive	9600	Baud rate of UART interface.
VCTCXO_CLOCK_FREQUENC Y	positive	30720000	VCTCXO clock frequency in Hz.
MM_CLOCK_FREQUENCY	positive	100000000	AvalonMM interface frequency in Hz.

Table 5 limegnss_gpio_top module ports

Table 5 limegnss_gpio_top module ports			Description		
Port	Туре	Width	Description		
areset_n	in	1	Active low reset.		
tamercfg_maddress	in	10	vctcxo_tamercfg spi register start address.		
gnsscfg_maddress	in	10	gnsscfg spi register start address.		
lreset	in	1	Logic reset signal.		
mreset	in	1	Memory reset signal.		
vctcxo_clk	in	1	Clock from VCTCXO.		
fpga_led_g	out	1	Green LED control signal (active high).		
fpga_leg_r	out	1	Red LED control signal (active high).		
en	out	1	VCTCXO tuning status signal.		
fan_ctrl_in	in	1	Testing signal.		
uart_tx	out	1	Testing signal.		
			SPI		
sdin	in	1	SPI data in signal.		
sclk	in	1	SPI clock signal.		
sen	in	1	SPI enable signal (active low).		
sdout	out	1	SPI data out signal.		
GNSS					
gnss_tx	out	1	GNSS chip <- FPGA UART signal (unused).		
gnss_rx	in	1	GNSS chip -> FPGA UART signal.		
gnss_tpulse	in	1	GNSS chip time pulse signal.		
gnss_fix	in	1	GNSS location fix status (unused).		
		AVA	ALON MM		
mm_clock	in	1	Avalon MM clock signal.		
mm_reset	in	1	Avalon MM reset signal.		
mm_rd_req	in	1	Avalon MM read request.		
mm_wr_req	in	1	Avalon MM write request.		
mm_addr	in	8	Avalon MM address bus.		
mm_wr_data	in	8	Avalon MM write data bus.		
mm_rd_data	out	8	Avalon MM read data bus.		
mm_rd_datav	out	1	Avalon MM read data valid signal.		
mm_wait_req	out	1	Avalon MM wait request signal.		
mm_irq	out	1	Avalon MM interrupt signal.		

3.3.1 Registers of gnsscfg module

Address	Def. value	Bits	Type	Name	Description	
					Control	
0.0100	0000	15-1		Reserved		
0x0100	0000	0	R/W	EN	1 - Enabled, 0 – Disabled	
					Status	
		15-12		Reserved		
0x0101	0000	11-0	R	GPRMC UTC SSS0		
0.0102	0000	15-8	R	GPRMC_UTC_MM	UTC of position fix (BCD format). HH-MM-	
0x0102	0000	7-0	R	GPRMC_UTC_SS1	SS1.SSS0	
0.0100	0000	15-8		Reserved		
0x0103	0000	7-0	R	GPRMC_UTC_HH		
		15-1		Reserved		
0x0104	0000	0	R	GPRMC_STATUS	Status 1 = Data valid, 0 = Navigation receiver warning	
0.0107	0000	15-8	R	GPRMC_LAT_LL1		
0x0105	0000	7-0	R	GPRMC_LAT_LL0	1 2 1 11211211411	
0.0106	0000	15-8	R	GPRMC_LAT_LL3	Latitude,LL3-LL2.LL1-LL0	
0x0106	0000	7-0	R	GPRMC_LAT_LL2		
0-0107	0000	15-1		Reserved		
0x0107	0000	0	R	GPRMC_LAT_N_S	Latitude $0 - N$, $1 - S$	
00100	0000	15-8	R	GPRMC_LONG_YY1		
0x0108		7-0	R	GPRMC_LONG_YY0		
0x0109	0000	15-8	R	GPRMC_LONG_YY3	Longitude,Y4-YY3-YY2.YY1-YY0	
0x0109		7-0	R	GPRMC_LONG_YY2	Longnude, 14-115-112.111-110	
0x010A	0000	15-4		Reserved		
UXUIUA	0000	3-0	R	GPRMC_LONG_Y4		
0x010B	0000	15-1		Reserved		
OXOTOD	0000	0	R	GPRMC_LONG_E_W	Longitude, $0 - E$, $1 - W$	
0x010C	0000	15-8	R	GPRMC_SPEED_XX1		
OXOTOC	0000	7-0	R	GPRMC_SPEED_XX0	Speed over ground, knots, XX2-XX1.XX0	
0x010D	0000	15-8		Reserved	Speed over ground, knots, AA2-AA1.AA0	
OXOTOD	0000	7-0	R	GPRMC_SPEED_XX2		
0x010E	0000	15-8	R	GPRMC_COURSE_XX1		
OAUTUL		7-0	R	GPRMC_COURSE_XX0	Course Over Ground, degrees True, X2-	
0x010F		15-4		Reserved	XX1.XX0	
0.10101		3-0	R	GPRMC_COURSE_X2		
0x0110	0000	15-8	R	GPRMC_DATE_MM		
OXOTIO	0000	7-0	R	GPRMC_DATE_YY	Date: DD-MM-YY	
0x0111	0000	15-8		Reserved	Dutc.DD-WHYI-11	
		7-0	R	GPRMC_DATE_DD		
0x0112	0000	15-0		Reserved		
0x0113	0000	15-0		Reserved		
		15-12	R	GAGSA_FIX	1 = Fix not available, 2 = 2D, 3 = 3D ; Galileo	
0.0111	0000	11-8	R	GBGSA_FIX	1 = Fix not available, 2 = 2D, 3 = 3D; BeiDu	
0x0114	0000	7-4	R	GPGSA_FIX	1 = Fix not available, 2 = 2D, 3 = 3D ; GPS	
		3-0	R	GLGSA_FIX	1 = Fix not available, 2 = 2D, 3 = 3D; GLONASS	

3.3.2 Registers of vctcxo_tamercfg module

Address	Def. value	Bits	Type	Name	Description				
					Control				
0x00E0	0000	15-1		Reserved					
		0	R/W	EN	1 - Enabled, 0 - Disabled				
					Status				
		15-8		Reserved					
0x00E1	0000	7-4 R		ACCURACY	"0000" - tune disabled or lowest accuracy, $0001-1s$ tune , $0010-2s$ tune , $0011-3s$ tune (highest accuracy).				
		3-0	R	STATE	"0000" - Coarse Tune, "0001" - Fine tune				
0x00E2	0000	15-0	R	DAC_TUNED_VAL	DAC tuned value to get frequency with best accuracy				
				Tune settings					
0x00E3	-	15-0	R/W	PPS_1S_ERR_TOL_L	Error tolerance value in 1s period (32 bit value, L –				
0x00E4	-	15-0	R/W	PPS_1S_ERR_TOL_H	lower 16 b, H – upper 16b). Default values are board dependant.				
0x00E5	-	15-0	R/W	PPS_10S_ERR_TOL_L	Error tolerance value in 10s period (32 bit value, L –				
0x00E6	-	15-0	R/W	PPS_10S_ERR_TOL_H	lower 16 b, H – upper 16b). Default values are board dependant.				
0x00E7	-	15-0	R/W	PPS_100S_ERR_TOL_L	Error tolerance value in 100s period (32 bit value, L				
0x00E8	-	15-0	R/W	PPS_100S_ERR_TOL_H	 lower 16 b, H – upper 16b). Default values are board dependant. 				
			Error values						
0x00E9	0000	15-0	R	PPS_1S_ERR_L	Error count in 1s period (32 bit signed value, L –				
0x00EA	0000	15-0	R	PPS_1S_ERR_H	lower 16 b, H – upper 16b)				
0x00EB	0000	15-0	R	PPS_10S_ERR_L	Error count in 10s period (32 bit signed value, L –				
0x00EC	0000	15-0	R	PPS_10S_ERR_H	lower 16 b, H – upper 16b)				
0x00ED	0000	15-0	R	PPS_100S_ERR_L	Error count in 100s period (32 bit signed value, L –				
0x00EE	0000	15-0	R	PPS_100S_ERR_H	lower 16 b, H – upper 16b)				

3.4 Softcore processor – nios_cpu

Figure 4 shows the block diagram of nios_cpu module. This module contains softcore ALTERA NIOS II CPU. The processor is programmed to read data from limegnss_gpio_top via an Avalon MM interface and tune the VCTCXO via the dac_spi interface. Ports are described in Table 6.

Note: EXT I2C and EXT UART logic, if required, is left to be implemented by the user.

Figure 4 nios_cpu block diagram

Table 6 nios_cpu module ports	Tal	ble	6	nios_	_cpu	mod	ule	ports
-------------------------------	-----	-----	---	-------	------	-----	-----	-------

Port Type Width Description							
clk100 in 1		1	Free running clock.				
reset_n	Asynchronous, active low reset						
Control data FIFO (unused)							
exfifo_if_d	in	32	External control input FIFO data				
exfifo_if_rd	f_rd out 1 External control input FIFO read request						
exfifo_if_rdempty	in	1	External control input FIFO read empty				
exfifo_of_d out 3		32	External control output FIFO data				
exfifo of wr out		1	External control output FIFO write request				
exfifo_of_wrfull	in	1	External control output FIFO write full				
External control output FIFO reset request, ac		External control output FIFO reset request, active					
exfifo_of_rst out 1 high							
SPI1 (dac_spi and fpga_spi)							

Port	Туре	Width	Description	
		dac spi slave select, active low. Also acts as a		
			control signal for SPI1 mux (refer to Figure 4	
dac_spi_ext_SS_n	out	1	nios_cpu block diagram.	
fpga_spi_ext_SCLK	out	1	fpga spi clock.	
fpga_spi_ext_MOSI	out	1	fpga spi master output.	
fpga_spi_ext_MISO	in	1	fpga spi master input.	
fpga_spi_ext_SS_n	out	2	fpga spi slave select, active low.	
			(flash_SPI)	
flash_spi_MISO	In	1	SPI2 master input.	
flash_spi_MOSI	out	1	SPI2 master output.	
flash_spi_SCLK	out	1	SPI2 clock.	
			SPI2 slave select, active low.	
flash spi SS n	out	1	of 12 slave select, active low.	
	T Gut		I2C	
			I2C bus clock, connected to temperature sensor	
i2c scl	inout	1	and EEPROM memory.	
	mout		I2C bus data, connected to temperature sensor and	
i2c sda	inout	1	EEPROM memory.	
	mout		UART	
uart rxd	in	1	UART RX signal, not used.	
_			Uart TX signal, connected to UART to USB	
uart txd	out	1	interface.	
		AVA	ALON MM	
avm m0 address	out	8	Avalon MM address bus	
avm m0 read	out	1	Avalon MM read signal	
avm_m0_waitrequest	in	1	Avalon MM waitrequest signal	
avm_m0_readdata	in	8	Avalon MM read data bus	
avm_m0_readdatavalid	in	1	Avalon MM read data valid bus	
avm_m0_write	out	1	Avalon MM write signal	
avm_m0_writedata	out	8	Avalon MM write data bus	
avm_m0_clk_clk	out	1	Avalon MM clock	
avm_m0_reset_reset	out	1	Avalon MM reset signal	
vctcxo_tune_en	in	1	vctcxo tamer status	
vctcxo_irq	in	1	vctcxo tamer interrupt signal	
_			MISC	
switch	in	8	Not used.	
leds	out	8	Not used.	
lms ctr gpio	out	4	Not used.	
	Jui			