

Applying a Multiverse to Population Habitat Analyses

Benjamin Michael Marshall*1 and Alexander Bradley Duthie**1

¹Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK

Abstract			
abc			

Keywords

Movement ecology, simulation, compana, resource selection functions, step selection function, habitat preference, habitat selection, animal movement, multiverse, research choice, researcher degrees for freedom,

 $[\]verb|^*benjaminmichaelmarshall@gmail.com|\\$

^{**}alexander.duthie@stir.ac.uk

1 Introduction

abc

2 Methods

2.1 Simulating the Scenarios

NLMR v.1.1.1 package (Sciaini et al., 2018), and the animal movement using abmAnimalMovement v.0.1.3.0 (Marshall & Duthie, 2022).

- Landscape simulation.
- · abmAnimalMovement settings

2.2 Sampling and Analysis Options

targets construction targets v.0.14.2 and tarchetypes v.0.7.4 R packages (Landau, 2021a,b)

2.2.1 Sampling

- tracking regime
- · sample size

2.2.2 Analysis

- area based: compana, area method, contour, available points, space sampling, type II/III, compana test adehabitatHS v.0.3.16 (Calenge & Mathieu Basille, 2023), ctmm package v.0.6.1 (Fleming & Calabrese, 2023)
- ssf: Model Formula (SSF or iSSF), Available Points per Step, Distribution of Step Lengths, Distribution of Turn Angles, Model Averaging Method

amt v.0.1.7 (Signer, Fieberg & Avgar, 2019)

• poisson: Model Formula (SSF or iSSF), Available Points per Step, Distribution of Step Lengths, Distribution of Turn Angles

INLA v.23.4.24 (Rue, Martino & Chopin, 2009; Lindgren, Rue & Lindström, 2011; Martins et al., 2013; Rue et al., 2017; Kourounis, Fuchs & Schenk, 2018)

Muff, Signer & Fieberg (2020)

2.3 Assessing the multiverse

- spec curves
- brm models: one per each analysis method

3 Results

3.1 Specification Curves

(Fig. 1).

(Fig. 2).

(Fig. 3).

Figure 1. Spec curve

Figure 2. Spec curve

Figure 3. Spec curve

3.2 Model Results

The conditional R^2 values differed for the three models. The Compana results model had a conditional R^2 of 0.33; whereas the SSF model returned 0.59, and the Poisson model returned 0.94.

The marginal R^2 represents the bulk of the conditional R^2 suggesting an important role for the fixed/population effects. The Compana results model had a conditional R^2 of 0.48; whereas the SSF model returned 0.51, and the Poisson model returned 0.83.

The sample size was negatively correlated with deviation from the median estimate (β -0.03; 95% HDCI -1.15 - 1.8).

- (Fig. 4).
- (Fig. 5).
- (Fig. 6).

4 Discussion

4.1 Limitations

4.2 Conclusions

5 Acknowledgements

BMM was funded by the Natural Environment Research Council (NERC) via the IAPETUS2 Doctoral Training Partnership.

Figure 4. Beta coefs

Figure 5. Beta coefs

Figure 6. Beta coefs

6 Software availablity

In addition to packages already mentioned in the methods we also used the following.

We used *R* v.4.2.2 (R Core Team, 2023) via *RStudio* v.2023.6.2.561 (RStudio Team, 2022). We used *here* v.1.0.1 (Müller, 2020) and *qs* v.0.25.5 (Ching, 2023) to manage directory addresses and saved objects.

We used *raster* v.3.6.14 (Hijmans, 2023) and *RandomFields* v.3.3.14 (Schlather et al., 2015) to aid landscape raster creation alongside NLMR v.1.1.1 (Sciaini et al., 2018).

We used *ggplot2* v.3.4.2 for creating figures (Wickham, 2016), with the expansions: *patchwork* v.1.1.2 (Pedersen, 2022), *ggridges* v.0.5.4 (Wilke, 2022), and *ggdist* v.3.2.0 (Kay, 2023a).

We used *brms* v.2.19.0 (Bürkner, 2021) to run Bayesian models, with dianogistics generated used *bayesplot* v.1.10.0 (Gabry et al., 2019), *tidybayes* v.3.0.2 (Kay, 2023b), and *performance* v.0.10.2 (Lüdecke et al., 2021).

We used the *dplyr* v.1.0.10 (Wickham et al., 2023), *tibble* v.3.1.8 (Müller & Wickham, 2023), and *stringr* v.1.5.0 (Wickham, 2022) packages for data manipulation.

We used *sp* v.1.5.1 (Bivand, Pebesma & Gomez-Rubio, 2013), *adehabitatHR* v.0.4.20 (Calenge & Scott Fortmann-Roe, 2023), *move* v.4.1.12 (Kranstauber, Smolla & Scharf, 2023) for manipulation of spatial data and estimation of space use not otherwise mentioned in the methods.

We used rmarkdown v.2.19 (Xie, Allaire & Grolemund, 2018; Xie, Dervieux & Riederer, 2020; Allaire et al., 2023), bookdown v.0.33 (Xie, 2016, 2022), tinytex v.0.44 (Xie, 2019, 2023a), and knitr v.1.41 (Xie, 2014, 2015, 2023b) packages to generate type-set outputs.

We generated R package citations with the aid of *grateful* v.0.1.13 (Francisco Rodríguez-Sánchez, Connor P. Jackson & Shaurita D. Hutchins, 2023).

7 Data availabilty

8 Supplementary Material

References

Allaire J, Xie Y, Dervieux C, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang W, Iannone R. 2023. *rmarkdown: Dynamic documents for r*.

Bivand RS, Pebesma E, Gomez-Rubio V. 2013. Applied spatial data analysis with R, second edition. Springer, NY.

Bürkner P-C. 2021. Bayesian item response modeling in R with brms and Stan. *Journal of Statistical Software* 100:1–54. DOI: 10.18637/jss.v100.i05.

Calenge C, Mathieu Basille contributions from. 2023. adehabitatHS: Analysis of habitat selection by animals.

Calenge C, Scott Fortmann-Roe contributions from. 2023. adehabitatHR: Home range estimation.

Ching T. 2023. qs: Quick serialization of r objects.

Fleming CH, Calabrese JM. 2023. ctmm: Continuous-time movement modeling.

Francisco Rodríguez-Sánchez, Connor P. Jackson, Shaurita D. Hutchins. 2023. grateful: Facilitate citation of r packages.

Gabry J, Simpson D, Vehtari A, Betancourt M, Gelman A. 2019. Visualization in bayesian workflow. *J. R. Stat. Soc. A* 182:389–402. DOI: 10.1111/rssa.12378.

Hijmans RJ. 2023. raster: Geographic data analysis and modeling.

Kay M. 2023a. ggdist: Visualizations of distributions and uncertainty. DOI: 10.5281/zenodo.3879620.

Kay M. 2023b. tidybayes: Tidy data and geoms for Bayesian models. DOI: 10.5281/zenodo.1308151.

Kourounis D, Fuchs A, Schenk O. 2018. Towards the next generation of multiperiod optimal power flow solvers. *IEEE Transactions on Power Systems* PP:1–10.

Kranstauber B, Smolla M, Scharf AK. 2023. move: Visualizing and analyzing animal track data.

Landau WM. 2021b. Tarchetypes: Archetypes for targets.

Landau WM. 2021a. The targets r package: A dynamic make-like function-oriented pipeline toolkit for reproducibility and high-performance computing. *Journal of Open Source Software* 6:2959.

Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach (with discussion). *Journal of the Royal Statistical Society B* 73:423–498.

Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. 2021. performance: An R package for assessment, comparison and testing of statistical models. *Journal of Open Source Software* 6:3139. DOI: 10.21105/joss.03139.

Marshall BM, Duthie AB. 2022. abmAnimalMovement: An r package for simulating animal movement using an agent-based model. *F1000* 0:0.

Martins TG, Simpson D, Lindgren F, Rue H. 2013. Bayesian computing with INLA: New features. *Computational Statistics and Data Analysis* 67:68–83.

Muff S, Signer J, Fieberg J. 2020. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using bayesian or frequentist computation. *Journal of Animal Ecology* 89:80–92. DOI: 10.1111/1365-2656.13087.

Müller K. 2020. here: A simpler way to find your files.

Müller K, Wickham H. 2023. tibble: Simple data frames.

Pedersen TL. 2022. Patchwork: The composer of plots.

R Core Team. 2023. *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing.

RStudio Team. 2022. RStudio: Integrated development environment for r. Boston, MA: RStudio, PBC.

Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). *Journal of the Royal Statistical Society B* 71:319–392.

Rue H, Riebler AI, Sørbye SH, Illian JB, Simpson DP, Lindgren FK. 2017. Bayesian computing with INLA: A review. *Annual Reviews of Statistics and Its Applications* 4:395–421.

Schlather M, Malinowski A, Menck PJ, Oesting M, Strokorb K. 2015. Analysis, simulation and prediction of multivariate random fields with package RandomFields. *Journal of Statistical Software* 63:1–25.

Sciaini M, Fritsch M, Scherer C, Simpkins CE. 2018. NLMR and landscapetools: An integrated environment for simulating and modifying neutral landscape models in r. Methods in Ecology and Evolution 00:1–9.

Signer J, Fieberg J, Avgar T. 2019. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. *Ecology and Evolution* 9:880–890.

Wickham H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.

Wickham H. 2022. stringr: Simple, consistent wrappers for common string operations.

Wickham H, François R, Henry L, Müller K, Vaughan D. 2023. dplyr: A grammar of data manipulation.

Wilke CO. 2022. Ggridges: Ridgeline plots in 'ggplot2'.

Xie Y. 2014. knitr: A comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD eds. *Implementing reproducible computational research*. Chapman; Hall/CRC,.

Xie Y. 2015. *Dynamic documents with R and knitr*. Boca Raton, Florida: Chapman; Hall/CRC.

Xie Y. 2016. *bookdown: Authoring books and technical documents with R markdown*. Boca Raton, Florida: Chapman; Hall/CRC.

Xie Y. 2019. TinyTeX: A lightweight, cross-platform, and easy-to-maintain LaTeX distribution based on TeX live. TUGboat

40:30-32.

Xie Y. 2022. Bookdown: Authoring books and technical documents with r markdown.

Xie Y. 2023b. knitr: A general-purpose package for dynamic report generation in r.

Xie Y. 2023a. tinytex: Helper functions to install and maintain TeX live, and compile LaTeX documents.

Xie Y, Allaire JJ, Grolemund G. 2018. R markdown: The definitive guide. Boca Raton, Florida: Chapman; Hall/CRC.

Xie Y, Dervieux C, Riederer E. 2020. *R markdown cookbook*. Boca Raton, Florida: Chapman; Hall/CRC.