CS306: Introduction to IT Security Assignment Project Exam Help

https://powcoder.com Lecture 3: Perfect Secrecy

Add We Chat powcoder instructor: Nikos Triandopoulos

September 15, 2020

Assignment Project Exam Help

https://powcoder.com
3.0 Announcements
Add WeChat powcoder

CS306: Lab sections schedule

labs

CS306-Lx Thursdays

ZOOM ID: LAB SPECIFIC!

Assignment Project Exam Help

Х	В	С	D	Е	F
time	9:30 - 10:20	https://spo	owender200	111 4:00 - 14:50	15:30 - 16:20
Zoom ID	91573945614	93061161569 Add We	94976630644 Chat powco	92834271191 oder	94520991826
TAs	Dean, Joseph, Joshua, Uday	Dean, Devharsh, Joseph, Joshua	Dean/Devharsh, Joshua, Mohammad, Uday	Devharsh, Joseph, Mohammad, Uday	Dean, Joseph, Mohammad, Uday

CS306: Other announcements

- Lab #2 this Thursday
- Homework #1 this Friday
 Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

CS306: Tentative Syllabus

Week	Date	Topics	Reading	Assignment
1	Sep 1	Introduction Project Exercises	Lecture 1	-
2	ASSIGII Sep 8	ment Project Exam	Lecture 2	Lab 1
3	Sep 15 htt	ps://powcoder.com	1	
4	Sep 22	Public-key crypto I		
5	Sep 29 A (dd Welchatrpowcoc	ler	
6	Oct 6	Access control & authentication		
_	Oct 13	No class (Monday schedule)		
7	Oct 20	Midterm	All materials covered	

CS306: Tentative Syllabus

(continued)

Week	Date	Topics	Reading	Assignment
8	Oct 27	Software & Web security	Holm	
9	ASSIGII Nov 3	ment Project Exam	петр	
10	Nov 10 htt	ps://patabase security	1	
11	Nov 17	Cloud security		
12	Nov 24 A (dd WeChatvpowcod	ler	
13	Dec 1	Economics		
14	Dec 8	Legal & ethical issues		
15	Dec 10 (or later)	Final (closed "books")	All materials covered*	

Last week

- Introduction to the field of IT security
 - Basic concepts and terms
 - Symmetric encryptionment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Today

- Symmetric-key Cryptography
 - Perfect secrecy
 - The One-Time Pasignment Project Exam Help
- Demo https://powcoder.com
 - Why encryption matters?
 - Using the Wireshark Andrew Webat powcoder

Assignment Project Exam Help

https://powcoder.com
3.1 Perfect secrecy
Add WeChat powcoder

Security tool: Symmetric-key encryption scheme

Abstract cryptographic primitive, a.k.a. cipher, defined by

- a message space \mathcal{M} ; and
- a triplet of algorithms: Genn Feen Project Exam Help

 ◆ Gen, Enc are probabilistic algorithms, whereas Dec is deterministic

 - Gen outputs a uniformly rand and key & from some key space K)

Perfect correctness

For any $k \in \mathcal{K}$, $m \in \mathcal{M}$ and any ciphertext c output of $Enc_k(m)$,

it holds that

Assignment Project Exam Help
Pr[Deck (c) = m] = 1
https://powcoder.com

Add WeChat powcoder

Towards defining perfect security

- defining security for an encryption scheme is not trivial
 - e.g., what we mean by << Eve "cannot learn" m (from c) >> ?
- our setting so far is a random experiment Exam Help
 - a message m is chose hat powcoder.com
 - ullet a key k is chosen according to $\mathcal{D}_{\mathcal{K}}$
 - $Enc_k(m) \rightarrow c$ is given to the adversary

how to define security?

Attempt 1: Protect the key k!

Security means that

the Assignmenta Reviesta Example the key k

- Intuition
 https://powcoder.com
 - it'd better be the case that the key is protected!...
- Problem
 Add WeChat powcoder but not sufficient condition!
 - this definition fails to exclude clearly insecure schemes
 - e.g., the key is never used, such as when Enc_k(m) := m

Attempt 2: Don't learn m!

Security means that

the adversaries and the Prejact Example the message m

- Intuition https://powcoder.com
 - it'd better be the case that the message m is not learned...
- Problem Add WeChat powcoder
 - this definition fails to exclude clearly undesirable schemes
 - e.g., those that protect m partially, i.e., they reveal the least significant bit of m

Attempt 3: Learn nothing!

Security means that

the adversary signment earlier tearn any information about m

- Intuition https://powcoder.com
 - it seems close to what we should aim for perfect secrecy...
- Problem Add WeChat powcoder
 - ullet this definition ignores the adversary's prior knowledge on ${\mathcal M}$
 - ullet e.g., distribution $\mathcal{D}_{\mathcal{M}}$ may be known or estimated
 - ◆ m is a valid text message, or one of "attack", "no attack" is to be sent

Attempt 4: Learn nothing more!

Security means that

the adversary and grant bette jearh any additional information on m

• How can we formalize this? // powcodere one.

$$\mathsf{Enc}_{\mathsf{k}}(\mathsf{m}) \to \mathsf{c}$$

$$\mathbf{m} = \begin{cases} \text{attack} & \text{w/prob. 0.8} \\ \text{no attack} & \text{w/prob. 0.2} \end{cases}$$

Two equivalent views of perfect secrecy

a posteriori = a priori ~ C is independent of M

For every $\mathcal{D}_{\mathcal{M}}$, m \in \mathcal{M} and $c \in C$ for every m, m, $f \in \mathcal{M}$ and $c \in C$, which Pr[C = c] > 0, it holds that it holds that

 $Pr[M = m \mid C = c] = Pr[t] N = m O W COR Proposition = c] = Pr[Enc_K(m') = c]$

Perfect secrecy (or information-theoretic security)

Definition 1

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is **perfectly secret** if A considering the A considering A

- intuitively
 Add WeChat powcoder
 - the a posteriori probability that any given message m was actually sent is the same as the a priori probability that m would have been sent
 - observing the ciphertext reveals nothing (new) about the underlying plaintext

Alternative view of perfect secrecy

Definition 2

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is perfectly secret if for every message in the pit holds that

- intuitively
 - the probability distribution Wedge not people of the plaintext
 - i.e., M and C are **independent** random variables
 - the ciphertext contains "no information" about the plaintext
 - "impossible to distinguish" an encryption of m from an encryption of m'

Assignment Project Exam Help

https://powcoder.com
3.2 The one-time pad
Add WeChat powcoder

The one-time pad: A perfect cipher

A type of "substitution" cipher that is "absolutely unbreakable"

- invented in 1917 Gilbert Vernam and Joseph Mauborgne
- "substitution" cichesignment Project Exam Help
 - individually replace plaintext characters with shifted ciphertext characters https://powcoder.com
 independently shift each message character in a random manner
 - - to encrypt a plain the df level thuse puniformly and om keys k1, ..., kn
- "absolutely unbreakable"
 - perfectly secure (when used correctly)
 - based on message-symbol specific independently random shifts

The one-time pad (OTP) cipher

Fix n to be any positive integer; set $\mathcal{M} = C = \mathcal{K} = \{0,1\}^n$

- Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
 - Gen → {0,1}Assignment Project Exam Help
- Enc: given a key and a message of equal lengths, compute the bit-wise XOR https://powcoder.com
 Enc(k, m) = Enc_k(m) → k ⊕ m (i.e., mask the message with the key)
- Dec: compute the bit wife xore the ciphertext
 - $Dec(k, c) = Dec_k(c) := k \oplus c$
- Correctness
 - trivially, $k \oplus c = k \oplus k \oplus m = 0 \oplus m = m$

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m₁ and m₂ and ciphertexts c, it holds that

Proof

https://powcoder.com

- events "Enc_K(m₁) = c", "m₁ \oplus K = c" and "K = m₁ \oplus c" are equal-probable
- K is chosen at random, irrespectively BPM, and m₂, with probability 2⁻ⁿ
- thus, the ciphertext does not reveal anything about the plaintext

OTP characteristics

A "substitution" cipher

encrypt an n-symbol m using n uniformly random "shift keys" k₁, k₂, . . . , k_n

2 equivalent views Assignment Project Exam Help

•
$$\mathcal{K} = \mathcal{M} = C$$

"shift" method

Add WeChat powcoder

https://powcoder.com G, (G,+) is a group bit-wise XOR (m \oplus k) addition/subtraction (m +/- k)

Perfect secrecy

 since each shift is random, every ciphertext is equally likely for any plaintext **Limitations** (on efficiency)

"shift keys" (1) are as long as messages & (2) can be used only once

Perfect, but impractical

In spite of its perfect security, OTP has two notable weaknesses

- the key has to be as long as the plaintext
 - limited applicability gnment Project Exam Help
 - key-management problem
- the key cannot be reused thus, the one time read m
 - if reused, perfect security is not satisfied
 - e.g., reusing a key orce, leaks the xor power and messages
 - this type of leakage can be devastating against secrecy

These weakness are detrimental to secure communication

securely distributing fresh long keys is as hard as securely exchanging messages...

Importance of OTP weaknesses

Inherent trade-off between efficiency / practicality Vs. perfect secrecy

- historically, OTP has been used efficiently & insecurely
 - repeated use Assignment Brojocite Exam H
 communications during the cold war
 - NSA decrypted Stilphess power transmitted in the 1940s
 - that was possible belouse the sovets powcooreused the keys in the one-time pad scheme
- modern approaches resemble OTP encryption
 - efficiency via use of pseudorandom OTP keys
 - "almost perfect" secrecy

