

1

Quand deux ondes se rencontrent : les interférences

A) Je sais identifier une situation dans laquelle on rencontre des interférences

- Lorsque deux ondes progressives périodiques de même nature se croisent, leurs élongations s'additionnent, ce qui donne une nouvelle onde.
 - On dit qu'elles interfèrent.
- Lorsque les deux ondes sont **en phase**, l'amplitude de la nouvelle onde prend une valeur maximale.
 - Les interférences sont constructives.
- Lorsque les deux ondes sont en opposition de phase, l'amplitude de la nouvelle onde est minimale, voire nulle si les deux ondes ont la même amplitude.
 - Les interférences sont destructives.

B) Je connais et je sais exploiter les conditions pour obtenir des interférences fixes dans l'espace, destructives et constructives

- Les deux ondes doivent être périodiques, de même nature et de même fréquence.
- Dans le cas de la lumière, les deux ondes doivent, en plus, provenir de la même source (elles sont cohérentes) mais parcourent un chemin différent.
- interférence constructive : la différence de distance parcourue entre les deux ondes interférant est un multiple entier de la longueur d'onde
- $\delta = k \times \lambda$ avec
 - δ la différence de distance parcourue (ou différence de marche) en m
 - *k* un nombre entier positif
 - λ la longueur d'onde du milieu en m
- interférence destructive : la différence de distance parcourue entre deux ondes interférant est un « multiple demi-entier
 » de la longueur d'onde
- $\delta = (k + \frac{1}{2}) \times \lambda$ avec
 - ullet δ la différence de distance parcourue (ou différence de marche) en m
 - k un nombre entier positif
 - λ la longueur d'onde du milieu en m

C) Je sais décrire les interférences avec du vocabulaire précis

• frange brillante : zone où l'amplitude de l'onde lumineuse résultante est maximale

- frange **sombre** : zone où l'amplitude de l'onde lumineuse résultante est **nulle**
- **couleurs interférentielles**: irisations sur certains objets (bulles de savon, flaques d'essence, ailes des colibris), dues à des interférences entre deux faisceaux de lumière blanche cohérents
 - Comme la distance entre les franges sombres dépend de la longueur d'onde, les radiations de différentes couleurs de la lumière blanche ne disparaissent pas toutes au même point de l'espace.
 - Ainsi, les zones où il manque des radiations sont colorées.

D) Je connais les grandeurs utiles pour caractériser les interférences lumineuses

- ullet la **différence de marche** δ
- l'interfrange i

E) Je sais exploiter le phénomène des interférences pour des applications pratiques

- mesurer la longueur d'onde d'un laser
- mesurer la **distance** entre deux ouvertures
- étudier les **irisations** sur une bulle de savon
- mesurer l'épaisseur du film d'une bulle de savon

2

Quand une onde rencontre un obstacle : la diffraction

A) Je sais identifier un phénomène de diffraction

- Lorsqu'une onde périodique rencontre une ouverture ou un obstacle, il peut y avoir un étalement des directions de propagation.
- L'onde atteint des zones de l'espace qu'elle n'aurait pas pu atteindre si elle avait gardé la même direction.
- Tous les autres paramètres (célérité, longueur d'onde, fréquence) de l'onde restent inchangés.

B) Je connais la grandeur permettant de caractériser la diffraction, je sais la calculer et la mesurer

- ullet relation entre l'écart angulaire, la longueur d'onde et la taille de l'obstacle ou l'ouverture : $heta=rac{\lambda}{a}$ avec
 - ullet heta l'écart angulaire en radian rad
 - λ la longueur d'onde en m
 - a la taille de l'obstacle en m

C) Je sais identifier les conditions pour rencontrer un phénomène de diffraction

- **diffraction** pour $a < \lambda$ ou $a \approx \lambda$:
 - ullet plus a est petit, plus l'étalement est grand
- pas de diffraction pour $a>>\lambda$, il n'y a quasiment pas d'étalement :
 - l'onde est diaphragmée

D) Je sais utiliser le phénomène de diffraction dans des situations pratiques

- déterminer la **taille** d'un objet ou d'une ouverture (la diffraction de la lumière sur un cheveu donne le diamètre du cheveu)
- mesurer la longueur d'onde d'un laser

3

Quand la source se déplace relativement au récepteur : l'effet Doppler

A) Je sais identifier une situation où l'effet Doppler se manifeste

- L'effet Doppler est le décalage entre la fréquence de l'onde reçue et la fréquence de l'onde émise lorsque l'émetteur est en mouvement par rapport au récepteur.
- ex.: lorsqu'une sirène de camion de pompiers s'approche, on perçoit un son aigu et lorsque la sirène s'éloigne, on perçoit un son grave. Comment imites-tu une moto qui te dépasse ? Niiiiii oooooon (son aigu, puis grave).

B) Je sais interpréter et utiliser la relation entre la fréquence reçue, la fréquence émise et la vitesse

- relation entre la vitesse et les fréquences pour l'effet Doppler si l'émetteur bouge :
 - lacksquare l'émetteur **s'approche** : $f_R = f_E imes rac{c}{c-v_E}$
 - lacksquare l'émetteur **s'éloigne** : $f_R = f_E imes rac{c}{c + v_E}$
 - f_E la fréquence de l'onde émise par l'émetteur mobile en Hz
 - v_E la vitesse de l'émetteur par rapport au récepteur en m.s $^{ extst{-}1}$
 - f_R la fréquence de l'onde reçue par le récepteur fixe en Hz
 - c la célérité de l'onde en m.s⁻¹
- interpréter la relation :
 - quand la source s'approche du récepteur fixe, alors la fréquence reçue est plus grande que la fréquence émise (son plus aigu, rayonnement décalé vers le bleu);
 - quand la source s'éloigne du récepteur fixe, la fréquence reçue est plus faible que la fréquence émise (son plus grave, rayonnement décalé vers le rouge).

C) Je sais utiliser l'effet Doppler dans des situations pratiques

- mesurer la vitesse d'un objet (le radar utilise l'effet Doppler pour mesurer la vitesse d'une voiture)
- mesurer la vitesse d'une **galaxie** ou d'une étoile en analysant les spectres en longueur d'onde de ces dernières