Investigation of Non-Equilibrium Radiation for Earth Entry

Aaron Brandis*, Chris Johnston^ and Brett Cruden*

*AMA Inc at NASA Ames, Moffett Field, California

^NASA Langley, Hampton, Virginia

Overview

- Provide motivation and introduce EAST and Computational Tools
 - EAST shock tube facility
 - LAURA and DPLR for flowfield calculations
 - HARA and NEQAIR for radiation calculations
- Methodology

This presentation should convey 3 main points:

- Non-equilibrium radiance compared between EAST and NASA's CFD & radiation simulations tools
- Significant relative discrepancies are observed and there are compensating errors
- 3) The absolute level of error due to non-equilibrium is often small
 - Depending on shock speed, simulations under-predict EAST by up to 50% or over-predict up to 20%
 - At 0.2 Torr, below 9 km/s error in radiative heat flux due to non-equilibrium < 1 W/cm², and < 20 W/cm² at 11 km/s

Introduction

 Re-entry missions involving larger vehicles and higher entry velocities motivate improved simulation of radiative heating and associated uncertainties, e.g. EM-1

Brief Overview of Missions

EFT-1: First Orion flight test; entered Earth's atmosphere from a highly elliptical orbit in December of 2014

EM-1: the next Orion flight will undertake a lunar return trajectory (radiation will be significant)

- Using shock tube data to validate non-equilibrium should only be attempted if equilibrium is well understood
- Previous analyses have conducted extensive comparisons between EAST and radiation calculations at equilibrium

Equilibrium Summary

- Uncertainty for model predictions of EAST was shown as a function of velocity for Earth entry up to 15.5 km/s.
- 1 Standard deviation in scatter of EAST: 17%.
- Disagreement of models w.r.t. to mean EAST result from 11 – 15.5 km/s on average [9.0%, -6.3%].

Methodology

EAST Facility

- EAST: Electric Arc Shock Tube, located at NASA Ames Research Center
- Shock is driven by an electric arc discharge.
- 10.16 cm in diameter at the test section.

4 spectrometers analyzing different spectral ranges in each

shot. These ranges are typically:

Simulation Tools

- Two sets of simulation tools are used in the analysis:
 - NEQAIR radiation calculations based on DPLR flowfields.
 - HARA radiation calculations based on LAURA flowfields.
 - Additional calculations also performed with NEQAIR and LAURA.
- Different combinations of simulations used to determine if discrepancies are due to modeling issues of the flowfield, physics or radiation.
- The latest release of DPLR has fixed the ability to run $T_e = T_v$
- NEQAIR v15.0 is used (what will become the next release)
 - The non-Boltzmann model needed to be modified for some transitions of N₂ and IR atomic lines
 - Previous versions of NEQAIR would have set the populations to Boltzmann
- An updated NO non-Boltzmann model has been implemented in HARA, but is not included in this presentation
- The electron impact excitation rates of Park and Huo have been also compared using NEQAIR

Computational Methodology

- DPLR used a 3m sphere with 803 grid points along the stag-line, while LAURA used a 2.5m sphere with 256 points.
- 11 species gas model, with ionization species. No ablation products.
- Two temperature model used for thermo non-equilibrium:

-
$$T_{trans} = T_{rot}$$

-
$$T_{\text{vib}} = T_{\text{electronic}} = T_{\text{electron}}$$

Spectral Range	EAST Camera	Dominant Radiators
$117 - 153 \text{ nm for V} \ge 9 \text{ km/s}$	VUV	N, O
123 - 153 nm for V < 9 km/s	VUV	N, O
$170-178 \mathrm{nm}$	VUV	N
$178-210~\mathrm{nm}$	VUV/UV	NO
$210-328 \mathrm{nm}$	UV	N_2, N_2^+, N
$328-496 \mathrm{nm}$	UV	$\mathrm{N_2^+},\mathrm{N},\mathrm{N_2}$
$496-888~\mathrm{nm}$	Vis/NIR	N, O, N_2
$888-1445~\mathrm{nm}$	IR	N, O

Differences Between Reaction Sets

- The main difference between Park 90 and Park 93 chemistry is that Park 90 does not contain the nitrogen electron exchange reaction:
 - $N^+ + N_2 \leftrightarrow N_2^+ + N$ Reason for increased level of ionization with Park
- LAURA chemistry uses a combination of newer rates from various sources, rates tuned to match EAST and some of the heritage rates from Park 90 and Park 93

Rate	Comment	Reference
$NO + M \longleftrightarrow N + O + M$	Adjusted by Johnston to match EAST CO_2/N_2 data	Johnston el al.
$N_2 + e \longleftrightarrow N + N + e$	Updated rate for electron dissociated impact	Bourdon et al.
$O_2 + e \longleftrightarrow O_2^+ + e + e$	Updated rate	Teulet et al.
$N_2 + O \longleftrightarrow NO + N$	Updated rate	Fujita et al.
$O_2 + N \longleftrightarrow NO + O$	Updated rate	Bose and Candler

Influence of Reaction Rates at 9km/s & 0.2Torr

Development of Non-equilibrium Metric

- Many insights gained by comparing equilibrium radiance vs velocity trends between simulations and experiments.
- For non-equilibrium, it is not clear that 1 metric can represent all aspects of the flow. Ideally, the metric would be:
 - Independent of experimental parameters (such as gate width and spatial resolution).
 - Applicable to a wide range of conditions.
 - Easily comparable to simulation results.
 - Consistent with limitations of test time in the facility.
 - Accommodate a shot dominated by equilibrium.

Non-equilibrium Metric

Absolute Non-Equilibrium Radiance

Integrated +/- 2cm either side of shock front. Normalized by shock tube diameter

Radiation Emitted From Different Wavelengths

Results

Simulations vs EAST

Simulations vs EAST

- Simulations vs EAST are shown for 4 spectral regions:
 - VUV, UV, Vis/NIR and IR
 - Constant free-stream pressure: 0.2 Torr
- Each slide will show 4 plots:
 - Comparison between EAST and simulations on a linear and log scale
 - The scatter of the EAST data around the line of best fit
 - The weighted difference between the simulations and EAST
- A prominent conclusion (or 2) will be highlighted for each spectral region.

Simulations vs EAST: VUV

Simulations vs EAST: UV

Simulations vs EAST: Vis/NIR

Simulations vs EAST: IR

Overall Summation

 The summation of the weighted discrepancies (overall difference) is shown below.

- Lower speeds, where non-equilibrium is more significant, there are large differences.
- Improving agreement between the codes as shock speed is increased.

Overall Summation

- Even though the differences between 2 simulations and EAST might be similar, it can be due to compensating errors.
- Both plots below sum to similar values, but show different characteristics.

Overall Summation

 Even though the relative differences can be high, the absolute differences tend to be small

radiative head flux of a 2cm optically thin shock layer

 < 9 km/s, the difference is less than 1 W/cm², ~ 11 km/s, less than 20 W/cm²

Summary

- A metric has been used to compare non-equilibrium radiation measurements and NASA's simulation tools.
- The scatter of the EAST experiments was calculated to have a 1 standard deviation of 31%.
- Depending on the shock speed, simulations were shown to under-predict by up to 50% or over-predict by up to 20%.
- The level of ionization calculated using Park 90 chemistry is very high, and should not be used in simulations to predict radiative heating.
- LAURA/HARA and DPLR/NEQAIR (using excitation rates from Park) agree well

Summary

- Using the excitation rates from Huo in NEQAIR results in an under-prediction
 - For a back shell case, this would become an over-prediction (as its expanding flow)
- Future work should focus on N₂, N₂+, NO and under-prediction of VUV
- Even with significant relative differences, the absolute magnitude of the error for non-equilibrium is fairly small
 - N.B. At much lower pressures, non-equilibrium will become more significant and the uncertainty will likely be much higher
- Framework for running radiation calculations for flight cases should be re-visited.

Questions?

National Aeronautics and Space Administration

Ames Research Center
Entry Systems and Technology Division