- 13) Riprendiamo il concetto di DERIVATA, il suo Significato geometrico e le regole di CALCOLO
 - La DERIVATA di una funcione f in un punto Xo Edoruf

 <u>e un mumero finito</u> che geometricamente trappresenta

 il coefficiente angolare della retta tanpente al grafico

 di f (equatione y=f(x)) nel punto (xo,f(xo))

 y=mx+q

 y=g(x)
- · La derivata di fin xo si indica con f(xo), quindi il coefficiente angolare della retta tangente è m=f(xo).
- Dal punto di viota analitico la derivata si può calcolare come limite del RAPPORTO INCREMENTALE di fiu xo $f'(x_0) = \lim_{x \to \infty} \frac{f(x) f(x_0)}{x x_0} = \lim_{x \to \infty} \frac{f(x_0 + h) f(x_0)}{h}$
- · Se in un punto X · Edouf tale limite ESISTE ed E FINITO, allora f si dice DERIVABILE iu X a, altrimenti la funzione mon e derivabile in quel punto.
- · Si può costruire la FUNZIONE DERIVATA, cioè la funzione che ad ogni punto (in cui è possibile) fa corrispondere il valore della derivata in quel punto; tale funzione si indica con f'(x)

· FUNZIONI DERIVATE FONDAMENTALI

	•	
₽(×)	₽¹(×)	
K	0	
X	1	ES.
ײ	2×	$f(x) = 3x^2 - 5x + 2 + e^x$
X ³	3 x 2	$f(x) = 6x - 5 + e^{x}$
\times^{\prec}	∠ X ^{α-1}	
ex	e [×]	(La derivata della somma
lop x	1 1×	è la somma delle derivate
Senx	Cox	e lo stesso per la differenza)
(⇔×	-senx	
V×	2√×	
a^{x}	ax.lopa	

· DERIVATA DEL PRODOTTO D[f(x).g(x)] = f'(x).g(x)+f(x).g'(x)

Es.
$$f(x)=(\log x).(\sec nx)$$
 $f'(x)=\frac{1}{x}.\sec x+\log x.\cos x$

· DERNATE DI FUNZIONI COMPOSTE D[f(g(x))] =

f(x)	f'(x)	= g'(x).f'(g(x))
(g(x))2	d. (g(x)) -1 g'(x)	
eg(x)	g'(x). eg(x)	Es. f(x)= e senx
lop g(x)	$g'(x) \cdot \frac{1}{g(x)}$	
Seng(x)	$g'(x) \cdot cos(q(x))$	$f'(x) = \cos x \cdot e^{x + x}$ $f(x) = \log(1 + x^2)$
cong(x)	-g'(x). Sen $(g(x))$	$f'(x) = \frac{2x}{1+x^2}$
		1+×2

· DERIVATA DEL QUOZIENTE

$$D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

Es.
$$f(x) = \frac{x^2 - 3x + 5}{x^3 - 4}$$
 $f'(x) = \frac{(2x - 3)(x^3 - 4) - (x^2 - 3x + 5) \cdot 3x^2}{(x^3 - 4)^2}$

· RETTA TANGENTE

La retta tangente al grafico di una funzione f in un punto (xo, f(xo)) è la retta per tale punto avente come coefficiente anpolare f(xo)- Peztanto l'equatione è

$$y - f(x_0) = f'(x_0)(x - x_0) \rightarrow y = f(x_0) + f'(x_0)(x - x_0)$$

ES. $f(x) = 2x^3 - 7x^2 + 8x - 3$ eq. "della retta tangente nel punto di ascissa -1

douf=R eq. medel grafico y=2x3-7x2+8x-3 $x_0=-1$ $f(x_0)=f(-1)=-20$ $P_0=(-1,-20)$ $f'(x) = 6x^2 - 14x + 8$ f'(-1) = 28retta tangente y=-20+28(x+1) -> y=28x+8

· DERIVABILITA

Una funcione NON è DERIVABILE Viver sepuenti casi:

Se è DISCONTINUA INXO

se presenta in Xo un PUNTO ANGOLOSO in cui la derivata destra è diversa dalla derivata sinistra

se presenta in Xo ma CUSPIDE

in un punto a TANGENTE VERTICALE

14) Delle sequenti funzioni calcoliamo il dominio e la derivata

ANALISI2

-50-

a)
$$f(x) = 4x^4 + 3x - 3$$
 b) $y(t) = 3t^6 - 2t^2$ c) $g(r) = r^{4000}$

d)
$$f(x) = 7x^5 - 8x^9$$

d)
$$f(x) = 7x^{5} - 8x^{9}$$
 e) $f(x) = 3m^{2}x^{m-1}$ f) $f(x) = \pi^{3}$

$$f) P(x) = \pi^3$$

g)
$$f(x) = -\frac{1}{x}$$

$$h) f(x) = \frac{3}{x^2}$$

g)
$$f(x) = -\frac{1}{x}$$
 h) $f(x) = \frac{3}{x^2}$ i) $g(t) = -\frac{5}{t^4}$

$$(x) + (x) = 5 x^{\frac{1}{5}}$$

$$j)$$
 $g(k) = e^4$ $k)$ $f(x) = 5x^{\frac{1}{5}}$ $e)$ $f(x) = 6\sqrt[4]{x} + x^2 - \frac{3}{x^3}$

$$m) f(x) = \frac{1}{x^2/5}$$

m)
$$f(x) = \frac{1}{x^{2/5}}$$
 m) $f(x) = 5e^{x} + 3$ o) $g(t) = \sqrt{t} - 2e^{t}$

$$\rho) \sqrt{(r)} = \frac{4}{3} \pi r^3$$

$$P) V(r) = \frac{4\pi r^3}{3\pi r^3}$$
 $q) P(x) = \frac{x^2 + 4x + 3}{\sqrt{x}}$ $re) y(t) = \frac{t^2 2\sqrt{E}}{t^3}$

$$re) y(t) = \frac{t^2 2 \sqrt{E}}{t^3}$$

$$f(x) = \log(1+x^4)$$

s)
$$f(x) = \log(1+x^4)$$
 t) $g(x) = e^{-x} + x \cdot e^{-x}$

14 bis) Calcolate f'(x), f"(x), f"(x) per le seguenti funzioni

a)
$$f(x) = x^3 - x$$
 b) $f(x) = \frac{4}{x}$ c) $f(x) = \sqrt[3]{x}$ d) $f(x) = e^{-x^2}$

b)
$$f(x) = \frac{4}{x}$$

c)
$$\xi(x) = \sqrt[3]{x}$$

e)
$$f(x) = x^{4} - 2x^{2}$$

e)
$$f(x) = x^{4} - 2x^{2}$$
 f) $f(x) = \sqrt{3-5x}$ g) $f(x) = \frac{4-x}{3+x}$ (solo fine a f")

$$h) f(x) = 2xe^{x}$$

h)
$$f(x) = 2xe^x$$
 i) $f(x) = \frac{\sqrt{x}}{x+4}$ (solof") \dot{j}) $f(x) = e^x \cos x$

K)
$$f(x) = \frac{\text{Sen}(Sx)}{x}$$
 (solo f'') $f(x) = \pi \text{ Sen } \frac{1}{x}$ (solo f'')

$$l$$
) $f(x) = \pi \operatorname{sen} \frac{1}{x} (\operatorname{solo} f^*)$

SOL. 14) a) R & P'(x)=16x3+3 b) R y'(t)=18t5-4t c) R g'(r) = 4000 r 399 d) IR f(x) = 35x4-72x8

e)
$$\mathbb{R} \ f'(x) = 3 \text{ m}^2 (m-1) \times m^{-2} \ f) \mathbb{R} \ f'(x) = 0 \ g) \ f'(x) = \frac{1}{x^2}$$

e)
$$R + (x) = 0$$

 $R + (x) = 0$
 $R + (x) = 0$

K) IR fè denuabile su Riqui e
$$f'(x) = \frac{1}{\sqrt{x^4}}$$
 f'(0)= $+\infty$ quindi K) IR fè denuabile su Riqui e $f'(x) = \frac{1}{\sqrt{x^4}}$ f non è der. in $x = 0$

xii)
$$x>0$$
 federivabile su $\sqrt{3} + \infty$ [e $\sqrt{4}(x) = \frac{3}{2\sqrt{4}x^3} + 2x + \frac{9}{x^4}$
xiii) $x \neq 0$ $\sqrt{4}(x) = -\frac{2}{5x^{7/5}}$ xiv) $\sqrt{1}$ $\sqrt{1}$

14 bis)

a)
$$f'(x) = 3x^2 - 1$$
 $f''(x) = 6x$ $f'''(x) = 6$

b)
$$f(x) = -\frac{4}{x^2} f''(x) = \frac{8}{x^3} f'''(x) = -\frac{24}{x^4}$$

c)
$$f'(x) = \frac{1}{3} \times \frac{-2/3}{3} = \frac{1}{3\sqrt[3]{x^2}} + f''(x) = -\frac{2}{9} \times \frac{-5/3}{3} = -\frac{2}{9 \times 5/3} + f''(x) = \frac{10}{27} \times \frac{-8/3}{3}$$

d)
$$f'(x) = (-2x)e^{-x^2} f''(x) = -2e^{-x^2} + (-2x)^2e^{-x^2} = (4x^2-2)e^{-x^2}$$

 $f'''(x) = 8xe^{-x^2} + (-2x)(4x^2-2)e^{-x^2} = e^{-x^2}(-8x^3 + 12x) \left[-4x(3-2x^2)e^{-x^2} \right]$

e)
$$f'(x) = 4x^3 - 4x$$
 $f''(x) = 12x^2 - 4$ $f'''(x) = 24x$

$$f'(x) = -\frac{5}{2\sqrt{3-5x}} = -\frac{5}{2}(3-5x)^{\frac{1}{2}} f''(x) = -\frac{25}{4}(3-5x)^{\frac{3}{2}} = \frac{25}{4\sqrt{(3-5x)^3}}$$

$$g = \frac{f'(x)}{(3+x)^2} = \frac{-4}{(3+x)^2} = \frac{-4}{(3+x)^2} = \frac{4 \cdot 2(3+x)}{(3+x)^4} = \frac{44}{(3+x)^3}$$

h)
$$f'(x) = 2e^{x} + 2xe^{x} = 2(1+x)e^{x}$$
 $f''(x) = 2e^{x} + 2(1+x)e^{x} = 2(2+x)e^{x}$
 $f''(x) = 2(x+3)e^{x}$

i)
$$f'(x) = \frac{1}{2\sqrt{x}} \cdot (x+1) - \sqrt{x} = \frac{x+1-2x}{2\sqrt{x}(x+1)^2} = \frac{1-x}{2\sqrt{x}(x+1)^2}$$

$$f''(x) = \frac{-2\sqrt{x}(x+1)^2 - (1-x)\sqrt{1-x}(x+1)^2 + 4\sqrt{x}(x+1)}{4 \times (x+1)^4} = \frac{3x^2 - 6x - 1}{4 \times \sqrt{x}(x+1)^3}$$
i) $f'(x) = \frac{1}{2\sqrt{x}} \cdot (x+1)^2 - (1-x)\sqrt{1-x}(x+1)^2 + 4\sqrt{x}(x+1) = \frac{3x^2 - 6x - 1}{4 \times \sqrt{x}(x+1)^3}$

j)
$$f'(x) = e^{x}(\cos x - \sec x)$$
 $f''(x) = e^{x}(\cos x - \sec x) + e^{x}(-\sec x - \cos x) = -2e^{x} \sec x$
 $f'''(x) = -2e^{x} \sec x - 2e^{x} \cot x = -2(\sec x + \cos x)e^{x}$

$$K) \quad f'(x) = \frac{5\cos(5x) - 5\cos(5x)}{x^2} \qquad f''(x) = \left[-25\sin(5x) - 5\cos(5x)\right] \cdot x^2 - \frac{1}{x^2} \left[-25\sin(5x) - 5\cos(5x)\right] \cdot x^2 - \frac{1}{x$$

$$f''(x) = \frac{2\pi}{x^3} \cos \frac{1}{x} - \frac{\pi}{x^2} \left(-\sin \frac{1}{x}\right) \left(-\frac{1}{x^2}\right) = \frac{2\pi}{x^3} \cos \frac{1}{x} - \frac{\pi}{x^4} \operatorname{sen} \frac{1}{x}$$

a)
$$f(x) = e^{\frac{x}{2}} \cdot \sqrt{27 - 2x^2 + 3x} + \log(3x^2 - 4x + \frac{4}{3}) + \frac{\text{Sen} x}{x_+^2 + 1}$$

b)
$$f(x) = e^{4x} \cdot \sqrt{5 - \frac{1}{5}x^2} + \log(8x^2 + 2) - \frac{\sin(3x)}{3x^2 - 5x - 12} + \log(9 - 2x)$$

c)
$$f(x) = -\frac{1}{x^2-1} \cdot \sqrt{5-\frac{2}{5}x^2-x^2} + \log(8-\frac{1}{2}x^2) + \frac{\cos(4x)}{e^{6x}} - \log(3-2x)$$

d)
$$f(x) = \sqrt{3x - \frac{1}{3}x^2} - \frac{1}{3}x^5 + \frac{\pi - 2}{x}$$

e)
$$f(x) = \log (6x + 1 + 9x^2)$$
 (calcolate anche l'equazione obella retta tangente nel punto di ascisso $x_0 = \frac{1}{3}$)

$$f) f(x) = x \cdot \cos\left(\frac{x^2}{3}\right) + e^{\frac{x}{2}}$$

g)
$$f(x) = 3 \operatorname{Sen} x + 3 x \cdot \operatorname{log}(1 + \frac{x}{2})$$
 (calcolate anche $f''(x)$)

$$f(x) = 4e^{-x^2}$$
 i) $f(x) = \frac{x}{x^2 - 1}$

$$f(x) = e^{-3x} - 3x$$
 $k(x) = cos(3x) - \frac{2}{x^3}$

$$\ell$$
) $f(x) = (e^4 - e^x) \cdot \log(x+1) + \sqrt{5-3x}$

m)
$$f(x) = \frac{4x-1}{2x+1} + \sqrt{5x-4x^2+6}$$

m)
$$f(x) = -\frac{1}{2} \operatorname{Sen}(3x)$$
 (calcolate anche $f'(\frac{\pi}{4}), f'(\frac{\pi}{3}), f'(\frac{\pi}{3}), f'(\frac{\pi}{3})$)

o)
$$f(x) = x^3 e^{6x-2x^2}$$

P)
$$f(x) = \frac{\cos(3x)}{3enx}$$
 (con anche $f'(\frac{\pi}{3}), f'(\frac{\pi}{4}), f'(\frac{\pi}{4})$)

$$f)$$
 R $f'(x) = -3e^{3x} - 3$

K)
$$x \neq 0$$
 (dowf=R({o})) $f'(x) = -3 \text{ Sen}(3x) + \frac{6}{x^4}$

$$f'(x) = -e^{x} \log(x+1) + \frac{e^{4} - e^{x}}{x+1} + \frac{-3}{2\sqrt{5-3x}}$$

m) dourt
$$\begin{cases} 2x+1 \neq 0 \times \neq -\frac{1}{2} \\ 5x-4x^2+6 \approx 0 \end{cases}$$
 $\begin{cases} x \neq -\frac{1}{2} \\ 4x^2-5x-6 \leq 0 \end{cases}$ $\begin{cases} -\frac{3}{4}-\frac{1}{2}[0] \\ 0 & = -\frac{3}{4}-\frac{1}{2}[0] \end{cases}$

$$f'(x) = \frac{6}{(2x+1)^2} + \frac{5-8x}{2\sqrt{5x-4x^2+6}}$$

m) dount= R
$$f'(x) = -\frac{3}{2}\cos(3x)$$
 $f'(\frac{\pi}{4}) = -\frac{3}{2}\cos(\frac{3}{4}\pi) = \frac{3\sqrt{2}}{4}$

$$\frac{1}{7}(\frac{\pi}{2}) = -\frac{3}{2}\cos(\frac{3\pi}{2}\pi) = 0 + \frac{1}{7}(\frac{\pi}{3}) = -\frac{3}{2}\cos(\pi - \frac{3\pi}{2}) + \frac{3}{2}\cos(\pi - \frac{3\pi}{2}) = -\frac{3}{2}\cos(\pi - \frac{3\pi}{2})$$

$$f'(x) = \frac{-3 \sin(3x) \cdot \sin x - \cos(3x) \cdot \cos x}{\left(\text{Seu}(x)^{2}\right)}$$

$$P(\frac{\pi}{3}) = \frac{-3 \text{ sext} \cdot \text{ sext} \cdot \frac{\pi}{3} - \text{ cost} \cdot \text{ cos} \frac{\pi}{3}}{\left(\frac{3\pi}{3}\right)^2} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\left(\frac{3\pi}{3}\right)^2} = \frac{1}{2} \cdot \frac{1}{3} = \frac{2}{3}$$

$$f'(\frac{\pi}{4}) = \frac{-3\sqrt{2}}{2}, \sqrt{2} + \sqrt{2}\sqrt{2} = \frac{-1}{4} = -2 \quad f'(\frac{\pi}{2}) = \frac{-3\cdot(-4)\cdot 1}{4^2} = 3$$

Sol. NE

a) douf =
$$\begin{cases} 27 - 2x^2 + 3x > 0 \\ 3x^2 - 4x + 4/3 > 0 \end{cases}$$
 $\begin{cases} -3 \le x \le \frac{9}{2} \\ x + \frac{2}{7} \end{cases}$

$$x + \frac{2}{7} \end{cases}$$

$$x^2 + 1 \neq 0$$

$$douf = \begin{bmatrix} -3, \frac{3}{3} \begin{bmatrix} 0 \end{bmatrix} \frac{2}{3}, \frac{5}{2} \end{bmatrix}$$

$$f'(x) = \frac{1}{2} e^{\frac{x}{2}} \cdot \sqrt{27 - 2x^2 + 3x} + e^{\frac{x}{2}} \cdot \frac{(-4x + 3)}{2\sqrt{27 - 2x^2 + 3x}} + \frac{6x - 4}{3x^2 - 4x + \frac{4}{3}} + \frac{6x - 4}{3x^2$$

douf =]-4,-1[U]-1,1[U] 1,3[

$$f'(x) = \frac{2x}{(x^2-1)^2} \cdot \sqrt{5-\frac{2}{5}x^2-x} - \frac{1}{x^2-1} \cdot \frac{(-\frac{4}{5}x-4)}{2\sqrt{5-\frac{2}{5}x^2-x}} + \frac{2x}{8-\frac{1}{2}x^2} + \frac{-4 \sec (4x) \cdot e^{6x} - \csc (4x) \cdot 6e^{6x}}{8-\frac{1}{2}x^2} + \frac{-4 \sec (4x) \cdot e^{6x} - \csc (4x) \cdot 6e^{6x}}{(e^{6x})^2} - \frac{2}{3-2x}$$

$$d) \ \ dour f \left\{ \frac{3x-\frac{4}{3}x^2}{2x+0} \right\} = \left\{ \frac{4}{3x^2-3}x \right\} = \left\{ \frac{x^2-9}{2x+0} \right\} \times \left\{ \frac{(-\frac{4}{5}x-4)}{2x+0} \right\} = \frac{3-2}{2x}$$

$$e) \ \ dour f = \frac{3-\frac{2}{3}x}{2\sqrt{3x-\frac{4}{3}x^2}} - \frac{5}{3}x^4 - \frac{\pi-2}{x^2}$$

$$e) \ \ dour f = R + 1+9x^2 + \frac{\pi-2}{2x}$$

$$f'(x) = \frac{6+18x}{6x+1+9x^2}$$

$$retta + g : f(\frac{1}{3}) = \log (2+1+1) = \log 4 + f'(\frac{1}{3}) = \frac{12}{4} = 3$$

$$e_1 = \log 4 + 3(x-\frac{1}{3}) \rightarrow y = 3x + (\log 4) - 1$$

$$f) \ \ dour f = R + f'(x) = \cos(\frac{x^2}{3}) - \frac{2}{3}x^2 \cdot \sec(\frac{x^2}{3}) + \frac{1}{2}e^{\frac{x}{2}}$$

$$f''(x) = 3\cos x + 3 \cdot \log(1+\frac{x}{2}) + \frac{3}{2}x + \frac{3}$$

i) obout: $x^2-1 \neq 0$ $x^2 \neq 1$ downf= $\mathbb{R} \cdot (x^2-1)^2$ $f'(x) = \frac{x^2-1-x(2x)}{(x^2-1)^2} = \frac{-1-x^2}{(x^2-1)^2}$

Calcolate la retta tangente al grafico delle reguenti funzioni nei punti a fianco indicati

a)
$$f(x) = 3x^2 - 5x$$

a)
$$f(x) = 3x^2 - 5x$$
 (2,2) b) $f(x) = 1 - x^3$ (0,1)

c)
$$f(x) = \frac{x}{1+2x}$$

$$\left(-\frac{1}{4},-\frac{1}{2}\right)$$

c)
$$f(x) = \frac{x}{1+2x}$$
 $\left(-\frac{1}{4}, -\frac{1}{2}\right)$ d) $f(x) = \frac{1}{\sqrt{x+4}}$ $(5, \frac{1}{3})$

e)
$$f(x) = x + \frac{4}{x}$$
 (2,4)

$$f) f(x) = x^{5/2} (4,32)$$

$$h)f(x) = x^{2} + 2e^{x} (0,2)$$

i)
$$f(x) = tonx$$
 ($\frac{\pi}{4}$)

l) $f(x) = e^{x} \cdot cosx$ (0,1)

$$m) f(x) = e^{1-\frac{x^2}{4}}$$
 (2,1)

$$n) f(x) = log(x^2-2x) (-1, log 3)$$

0)
$$f(x) = \frac{x^3}{3} + x^2 - 3x$$
 $(-4, \frac{20}{3})$

c)
$$y = 4x + \frac{1}{2}$$

$$\frac{\text{Sol.}}{\text{a)}} \frac{\text{y}}{\text{y}} = 7 \times -12$$
 b) $y = 4$ c) $y = 4 \times +\frac{1}{2}$ d) $y = -\frac{1}{54} \times +\frac{23}{54}$

e)
$$y=4$$
 f) $y=20x-48$ g) $y=\frac{3}{2}x+\frac{1}{2}$

$$h)$$
 $y=2x+2$

h)
$$y=2x+2$$
 i) $y=2x+1-\frac{\pi}{2}$ ℓ) $y=x+1$

$$m) y = -x + 3$$

m)
$$y = -x + 3$$
 m) $y = -\frac{4}{3}x - \frac{4}{3} + \log^3 0$) $y = 5x + \frac{80}{3}$

0)
$$y = 5x + \frac{80}{3}$$

a)
$$f(x) = \frac{1}{(x+3)^2} \cdot \log(\frac{1}{2} - x) + \sqrt{8 - 10x - 3x^2} + x \cdot e^{-3x} - \frac{\cos x}{x^2}$$

b)
$$f(x) = \frac{1}{x} \cdot \sqrt{(x+2)^2 + x} + 3e^4 + \log(1-2x) - e^{2x} \cdot \sqrt{x}$$

c)
$$f(x) = e^{3x} \cdot \sqrt{7 - \frac{1}{7}x^2 + \log(4x^2 + 1)} - \frac{5en(4x)}{3x^2 + 5x - 12} - \log(4x - 2x)$$

d)
$$f(x) = (x^4 - \pi)$$
. $log(2x^2 - 3x + \frac{17}{8})$

e)
$$f(x) = e^{x-x^2} + \frac{5}{x^3}$$

$$f(x) = x \cdot sen(\frac{4}{5}x^2) + x^3 \cdot log(-\frac{1}{5}x + 1)$$

g)
$$f(x) = \log(2x+7) + e^{x^2-1} - \frac{1}{x^3}$$

h)
$$f(x) = \text{Sen}(2x) \cdot \cos(4x)$$
 (conanche $f'(\frac{5}{8}\pi)_1 f'(\frac{\pi}{3})$)

Solue 2) douf
$$\begin{cases} (x+3)^{2} \neq 0 \\ \frac{1}{2} - x \neq 0 \end{cases}$$

$$\begin{cases} x \neq -3 \\ x < \frac{1}{2} \\ -4 \leq x \leq \frac{2}{3} \\ x \neq 0 \end{cases}$$

$$f'(x) = -\frac{2}{(x+3)^2} \cdot lop(\frac{1}{2}-x) + \frac{2}{(x+3)^2} \cdot \frac{1}{\frac{1}{2}-x} + \frac{(-40-6x)}{2\sqrt{8-40x-3x^2}} +$$

$$+6x^{5}e^{-3x}+x^{6}\cdot(-3e^{-3x})-\frac{(-\text{Senx})\cdot x^{2}-\cos x\cdot(2x)}{x^{4}}$$

b)
$$douf$$
 $\begin{cases} x \neq 0 \\ (x+2)^2 + x \geqslant 0 \end{cases}$ $\begin{cases} x \neq 0 \\ x \leq -4 \ 0 \times \geqslant -1 \end{cases}$ $(x^2 + 5x + 4 \geqslant 0)$ $\begin{cases} x \neq 0 \\ 1 - 2x > 0 \end{cases}$ $\begin{cases} x \neq 0 \\ x \leq -4 \ 0 \times \geqslant -1 \end{cases}$ $\begin{cases} x \neq 0 \\ x \neq 0 \end{cases}$ $\begin{cases} x \neq 0 \end{cases}$ $\begin{cases} x \neq 0 \\ x \neq 0 \end{cases}$ $\begin{cases} x \neq 0 \end{cases}$ $\begin{cases} x \neq 0 \\ x \neq 0 \end{cases}$ $\begin{cases} x \neq 0 \end{cases}$ \begin{cases}

$$f'(x) = -\frac{1}{X^{2}} \cdot \sqrt{x^{2} + 5x + 4} + \frac{1}{X} \cdot \frac{2x + 5}{2\sqrt{x^{2} + 5x + 4}} + \frac{1}{X^{2}} \cdot \frac{2x + 5}{2\sqrt{x^{2} + 5x + 4}} + \frac{1}{X^{2}} \cdot \frac{2x + 5}{2\sqrt{x^{2} + 5x + 4}} + \frac{1}{X^{2}} \cdot \frac{2x + 5}{2\sqrt{x^{2} + 5x + 4}} + \frac{1}{X^{2}} \cdot \frac{2x + 5}{2\sqrt{x^{2} + 5x + 4}} + \frac{1}{X^{2}} \cdot \frac{2x + 5}{2\sqrt{x^{2} + 5x + 4}} + \frac{1}{X^{2}} \cdot \frac{1}{X^$$

$$f'(\frac{5}{8}\pi) = 2\cos(\frac{5}{4}\pi) \cdot \cos(\frac{5}{2}\pi) - 4 \operatorname{sen}(\frac{5}{4}\pi) \cdot \operatorname{Sen}(\frac{5}{2}\pi) = 2 \cdot \left(-\frac{\sqrt{2}}{2}\right) \cdot 0 - 4 \cdot \left(-\frac{\sqrt{2}}{2}\right) \cdot 1 = 2\sqrt{2}$$

$$f'(\frac{\pi}{3}) = 2\cos(\frac{2\pi}{3\pi})\cdot\cos(\frac{4\pi}{3\pi}) - 4 \sec(\frac{2\pi}{3\pi})\cdot \sec(\frac{4\pi}{3\pi}) =$$

$$= 2(-\frac{1}{2})\cdot(-\frac{1}{2}) - 4\cdot\frac{\sqrt{3}}{2}(-\frac{\sqrt{3}}{2}) = \frac{1}{2} + 3 = \boxed{\frac{7}{2}}$$

18) Riprendiamo i concetti di PRIMITIVA di una funzione assegnata e di integrale indefinito

Il concetto di primitiva è l'opposto del concetto di derivata: data una funzione f(x) si cerca di risalire ad un'altra funzione F(x) la cui derivata coincida con f(x).

Quindi data una funzione f(x) su un intervallo, si dice PRIMITIVA di f(x) ogni funzione F(x) tale che F'(x) = f(x).

Si dimostra che se esiste una primitiva F(x) di una funzione f(x), allora esistono INFINITE PRIMITIVE perche tutte le funzioni F(x)+c lo sono (in quanto la derivata di una costante è nulla).

Si dimostra anche che, per determinare tutte le primitive di una funzione assepnata su un intervallo, è sufficiente trovarne una e poi aggiungere una costante CER

F(x) PRIMITIVA -> F(x)+c tutte le PRIMITIVE

Data una funzione f(x) nella variabile x per indicare l'insieme di tutte le PRIMITIVE dif(x) si usa il SIMBOLO di INTEGRALE INDEFINITO () e si scrive

integrale indefinito di f(x) Sf(x)dx

intendendo Sf(x) dx = insieme di tutte le primitive di f(x).

Quindi, individuata una PRIMITIVA F(x) di f(x), si avra

Sf(x)dx = F(x)+C infinite primitive alvariarediceR

INTEGRAZIONE FORMULE DI

FORMULE DI	INTEGRAZIO	<i>PC</i>
₹(×)	Sf(x)dx	
0	С	ES.
1	X+C	$\int 2x^{5} dx = \frac{1}{3}x^{6} + c$
×	$\frac{x^2}{2} + c$	$\int_{4}^{4} e^{x} dx = \frac{1}{4} e^{x} + c$
X×	× + C d+1	$\int 3 \sin x dx = -3 \cos x + C$
e [×]	e×+c	Joseph
1 ×	log IXI + C	
·	-cox+c	
SenX		
Con×	senx + C	
1	2√x + c	
<u>√</u> √×		

INTEGRAZIONE DI UNA FUNZIONE COMPOSTA

1)
$$\int f'(x) \cdot (f(x))^{d} dx = \frac{(f(x))^{d+1}}{d+1} + c$$

2)
$$\int \frac{f'(x)}{f(x)} dx = \log |f(x)| + c$$

3)
$$\int f'(x) \cdot e^{f(x)} dx = e^{f(x)} + c$$

4)
$$\int f'(x) \cdot \cos f(x) dx = \operatorname{sen} f(x) + c$$

4)
$$\int f'(x) \cdot cosf(x) dx$$

5) $\int f'(x) \cdot senf(x) dx = -cosf(x) + c$

ESEMPI

ESEMPI
1)
$$\int x \cdot \sqrt{2x^2+1} \, dx = \int x \cdot (2x^2+1)^{\frac{1}{2}} dx = \frac{1}{4} \int 4x (2x^2+$$

(in alternativa cambiate variabile t=2x+1 > dt=4xdx)

3)
$$\int e^{3x+1} dx = \frac{1}{3} \int 3 \cdot e^{3x+1} dx = \frac{1}{3} e^{3x+1} + c$$

 $f(x)=3x+1$ (in alternative $t=3x+1$
 $f'(x)=3$ (the alternative $t=3x+1$

4)
$$\int sen(\frac{x}{4}) dx = 4 \int \frac{1}{4} sen(\frac{x}{4}) dx = -4 con(\frac{x}{4}) + c$$

 $f(x) = \frac{x}{4} f(x) = \frac{1}{4}$
(oppure $t = \frac{x}{4}$, $dt = \frac{1}{4} dx$)

2)
$$\int \frac{3}{3x+2} dx = \log |3x+2| + c \qquad \text{(oppure } t=3x+2 \\ dt=3dx \text{)}$$

$$f(x)=3x+2 \quad f'(x)=3$$

sequenti funzioni costituiscono una primitiva di

$$f(x) = \frac{1}{2}e^{2x} - \frac{1}{3}\cos\left(\frac{x}{3}\right)$$

$$2g(x) = \frac{1}{4}e^{2x} - sen(\frac{x}{3}) - 4$$

$$\Im g(x) = \frac{1}{2}e^{2x} - \operatorname{sen}(\frac{x}{3}) + 1$$

$$f(x) = -\frac{1}{1-x}$$

$$IIg(x) = -log(1-x) + 3$$

$$\exists g(x) = log(1-x) + 4$$

SOL. Per esser una primitiva dev'esser g'(x)=f(x)

$$f(x) = Sen(5x)$$
 1,4) Si 3) $g(x) = f'(x)$ No 2) $g'(x) = -Sen(5x)$ No $g'(x) = -\frac{1}{5} \cdot (-Sen(5x) \cdot 5) = Sen(5x)$

$$f(x) = \frac{1}{2}e^{2x} - \frac{1}{3}cos(\frac{x}{3})$$

$$f(x) = \frac{1}{2}e^{2x} - \frac{1}{3}\cos(\frac{x}{3})$$
 1) $g(x) = f(x)$ No 2) $s\bar{s}$ $g(x) = \frac{1}{4} \cdot 2e^{2x} - \frac{1}{3}\cos(\frac{x}{3})$

3)g'(x)=
$$e^{2x} - \frac{1}{3} cos(\frac{x}{3})$$
 No

$$=\frac{1}{2}e^{2\times}\frac{1}{3}\cos\left(\frac{x}{3}\right)$$

$$f(x) = -\frac{\lambda}{\lambda - x}$$

$$f(x) = -\frac{1}{1-x}$$
 1) No $g'(x) = \frac{1}{1-x}$ 2) No $g(x) = f'(x)$

3)
$$5i g'(x) = \frac{1}{1-x} (-1) = -\frac{1}{1-x}$$

-64-20) Calcoliamo i sequenti integrali indefiniti:

$$3) \int (2e^{x} + x^{3} - x) dx$$

b)
$$\int (e^{x} - \frac{2}{\sqrt{x}}) dx$$

c)
$$\int (1+2 \operatorname{sen} x - \cos x) dx$$
 d) $\int \frac{1}{x^2} dx$

e) $\int (2x^4 - \frac{\sqrt{x}}{x} - 4 \operatorname{sen} x) dx$

$$f) \int (1-x^{3}+15x^{4}) dx$$

i)
$$\int (\frac{3}{x^2} - \frac{5}{x^4}) dx$$
 j) $\int cos(4x) dx$

K)
$$\int 3e^{3x} dx$$
 l) $\int e^{5x} dx$ m) $\int \sqrt{2x+1} dx$

m)
$$\int 3 \times \sqrt{1+x^2} dx$$
 0) $\int \frac{2}{3-4x} dx$

$$f) \int \left(x^{\frac{2}{3}} + \frac{x^2}{\sqrt{x}}\right) dx \qquad q) \int \left(\frac{1}{\sqrt[3]{x}} + 3\right) dx$$

r)
$$\int 2(2x+1)^2 dx$$
 S) $\int \frac{1}{(x+1)^2} dx$ t) $\int \frac{2x}{\sqrt{1+x^2}} dx$

$$u) \int (2-x)^6 dx \qquad v) \int \frac{4}{(1+2x)^3} dx \qquad w) \int e^{x+1} dx$$

x)
$$\int \left(\frac{8}{5}x^5 + \frac{4}{x^{5/2}}\right) dx$$
 y) $\int \frac{3}{2} \operatorname{sen}\left(\frac{x}{6}\right) dx$ $(\frac{x}{6}) dx$ $(\frac{x}{5}) \int \frac{2}{5} e^{-4x} dx$

SOL. ue

OSS. La radice $\sqrt{x} = x^{\frac{1}{2}}$ e via nelle derivate, via nel calcolo depli sutegrali considera considerate la radice come una potenza.

$$= 2e^{x} + \frac{x^{4}}{4} - \frac{x^{2}}{2} + c$$

c) =
$$x - 2\cos x - \sin x + c$$
 d) = $-\frac{1}{x} + c$

e) =
$$\int 2x^4 - \frac{1}{\sqrt{x}} - 4 \sin x \, dx = \frac{2}{5}x^5 - 2\sqrt{x} + 4 \cos x + c$$

$$f) = X - \frac{x^4}{4} + 3x^5 + c$$

$$f) = x - \frac{x^4}{4} + 3x^5 + c$$
 $g) = \int_{0.5}^{1/4} (5x^{\frac{1}{4}} - 7x^{\frac{3}{4}}) dx = 5 \frac{x^{\frac{5}{4}}}{\frac{5}{4}} - 7x^{\frac{3}{4}} + c = 6$

$$h = \int 10x^{-9} dx = -\frac{5}{4x^8} + c$$
 $= 4x^{-5/4} + c$

$$= 4 \times \frac{5}{4} - 4 \times \frac{7}{4} + c$$

i) =
$$\int (3x^{-2} - 5x^{-4}) dx = -\frac{3}{x} + \frac{5}{3x^3} + c$$
 j) = $\frac{1}{4} sen(4x) + c$

$$K) = e^{3X} + c$$

$$\ell) = \frac{1}{5}e^{5} \times + c$$

$$m) = \int (2x+1)^{\frac{1}{2}} dx = \frac{1}{2} \int 2(2x+1)^{\frac{1}{2}} dx = \frac{1}{2} \frac{(2x+1)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{1}{3} (2x+1) + c$$

$$f'(x)(f(x))^{\frac{1}{2}} dx = \frac{1}{2} \int 2(2x+1)^{\frac{1}{2}} dx = \frac{1}{2} \frac{(2x+1)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{1}{3} (2x+1) + c$$

oppure combiate variabile t=2x+1 dt=2dx....

$$m) = \frac{3}{2} \frac{(1+x^2)}{3/2} + c = (1+x^2)^{3/2} + c$$

0) =
$$-\frac{1}{2}\int \frac{-4}{3-1 \times} dx = -\frac{1}{2}\log|3-4x| + C$$
 (oppure cambiamento di variabile t=3-4x)

$$b) = \int (x + x^{2/3}) dx = \int (x^{2/3} + x^{3/2}) dx = \frac{3}{5}x^{5/3} + \frac{2}{5}x^{5/2} + c$$

$$q = \int x^{-\frac{1}{3}} + 3 dx = \frac{3}{2} x^{\frac{2}{3}} + 3x + c$$
 $k = \frac{1}{3} (2x + 1)^{\frac{3}{3}} + c$

S) =
$$-\frac{1}{(x+1)}$$
 +c t)= $2\sqrt{1+x^2}$ +c μ) = $-\frac{1}{7}(2-x)^{7}$ +c

$$(x+1)$$

$$(x+1$$

ANALISI 2 -68-Ser (dx). (bs (3x))
ser (dx); ser (3x) prevaire coure Plo coure proudineuro 2 volte en porta al 1º memoro. La 2ª volta van invertire nulationité fie que us es Seuzx dx = Sseux-seux dx = f'(x) = sucx f(x) = -cos x. g(x) = seux - g'(x) = cosx $= -\cos x \cdot \sin x - \int -\cos x \cdot \cos x \cdot dx = 1$ = + cosx + sux + Scos2x ax = $= -\cos x + \sin x + \sqrt{1 - \sin^2 x} \cdot \alpha x = 0$ = = sux cosx + Sdx - Sseu? x dx -b S seu 2 x ax = = seux cosx +x + 5 seup x ax => = $2\int su^2 \times dx = -su \times cos \times + \times + c$ $\int su^2 x \, dx = -sux \cos x + x + c$ Verifica. $\frac{1}{3}\left[1+\left(-\cos x \cdot \cos x + \sin^2 x\right)\right] =$ $= \frac{1}{2} \left(J + \cos^2 x + \sin^3 x \right) =$

$$\int \cos x \cdot e^{x} dx = g(x) = \cos x \cdot g(x) = -\sin x$$

$$g(x) = e^{x} \cdot \cos x \cdot - \int e^{x} \cdot (-\sin x) dx = \int e^{x} \cdot \cos x \cdot + \int e^{x} \cdot (-\sin x) dx = g(x) = -\sin x$$

$$= e^{x} \cdot \cos x \cdot + \int \cos x \cdot e^{x} dx \cdot dx = g(x) = -\cos x$$

$$= e^{x} \cdot \cos x \cdot + \sin x \cdot e^{x} - \int \cos x \cdot e^{x} dx \cdot dx = g(x) = -\cos x$$

$$= e^{x} \cdot \cos x \cdot + \sin x \cdot e^{x} - \int \cos x \cdot e^{x} dx \cdot dx = g(x) = -\cos x$$

$$= e^{x} \cdot \cos x \cdot + \sin x \cdot e^{x} + \cos x \cdot e^{x} dx = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} (\sin x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= \frac{1}{2} \cdot e^{x} (\sin x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} \cdot e^{x} (\sin x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} \cdot e^{x} (\sin x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} \cdot e^{x} (\sin x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} \cdot e^{x} (\sin x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} \cdot e^{x} (\sin x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} \cdot e^{x} (\sin x + \cos x + \cos x + \cos x + \sin x) = e^{x} \cdot 2\cos x = e^{x} \cdot \cos x$$

$$= e^{x} \cdot \cos x \cdot e^{x} = \frac{1}{2} \cdot e^{x} \cdot \cos x \cdot e^{x} + \cos x \cdot e^$$

20/2) Calcoliams i sequenti integrali indefiniti:

$$i) \int \frac{x^2 + x + 1}{x} dx$$

$$(i)$$
 $\int (x^3-1)^2 dx$

ii)
$$\int (x^3-1)^2 dx$$
 iii)
$$\int \frac{x^5+x^4+1}{x^2} dx$$

$$(V)$$
 $\int \frac{\operatorname{Sen}\sqrt{x}}{\sqrt{x}} dx$

$$v) \int x^2 \cdot \sqrt{x^3 + x} dx$$
 $vi) \int x \cdot \cos x dx$

$$\sqrt{11}$$
) $\int \frac{X}{\sqrt{X^2+1}} dx$

$$viii) \int x e^{2x} dx$$
 $ix) \int x \cdot sen(4x) dx$

$$x)$$
 $\int e^{2x+4} dx$

Solve i)
$$\int (X+1+\frac{1}{x}) dx = \frac{x^2}{2} + x + \log|x| + c$$

$$\left(\log|x| = \left(\log x \times x > 0\right)\right)$$

vale Vintervallo IC]-0,0[, IC]0,+0[

ii)
$$\int (x^6 - 2x^3 + 1) dx = \frac{x^7}{7} - \frac{1}{2}x^4 + x + c$$
 $\forall T \subset \mathbb{R}$

iii)
$$\int (x^3 + x^2 + \frac{1}{X^2}) dx = \frac{1}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{X} + c$$
 $\forall I \in [-\infty, \infty[$ $I \in [-\infty, \infty[$

iv)
$$\int \frac{\operatorname{sen} \sqrt{x}}{\sqrt{x}} dx = \int \frac{\operatorname{sent}}{t} 2t dt = \int 2 \operatorname{sent} dt = -2 \operatorname{cost} + c$$

$$\int \frac{dt}{dx} = \frac{1}{2\sqrt{x}} dx$$

$$= -2 \operatorname{cost} / x + c \quad \forall I \in J_0, +\infty [$$

$$\int \frac{dt}{dx} = 2 \operatorname{t} dt$$

oppur = $2\int \frac{1}{2\sqrt{x}} \cdot \frac{1$

oppuse
$$1 = 2 \int \frac{1}{2\sqrt{x}} \cdot \frac{\sin(x)}{dx} dx$$
 = $\frac{1}{2} \int \frac{1}{2\sqrt{x}} \cdot \frac{\sin(x)}{3} dx$ = $\frac{1}{2} \int \frac{(x^3 + 1)^3}{(x^3 + 1)^3} dx = \frac{1}{2} \int \frac{(x^3 + 1)^3}{3} dx = \frac{1}{2} \int \frac{(x^3 + 1)^3}{(x^3 + 1)^3} dx = \frac{1}{2} \int \frac{(x^3 + 1)^3}{(x^3$

oppuse
$$t=x^3+1$$

Vi) PERPARTI $\int x \cdot \cos x \, dx = x \cdot \sin x - \int \sin x \, dx = x \cdot \sin x + \cos x + c$
 $f(x)=x \cdot f'(x)=1$
 $g'(x)=\cos x \cdot g(x)=\sin x$

Vii)
$$\frac{1}{2}\int_{2x}^{2x} \frac{(x^2+1)^{\frac{1}{2}}}{(x^2+1)^{\frac{1}{2}}} + c = \sqrt{x^2+1} + c$$
 $\forall I \subset \mathbb{R}$
 $f=2x$ $f(x)=x^2+1$ $f=2x$ $f=2x$

oppure t=x2+1

Viii) PERPARTI Jx. e2xdx = 1xe2x - J1e2xdx = 1xe-1e2x+c $g(x) = e^{2x} g(x) = \frac{1}{2}e^{2x}$ = $\frac{1}{2}(x - \frac{1}{2})e^{2x} + c$ $\forall I \subset \mathbb{R}$

ix) PER PARTI $\int x \cdot \text{Sen}(4x) dx = -\frac{1}{4}x\cos(4x) + \frac{1}{4}\int \cos(4x) dx = -\frac{1}{4}x\cos(4x) + \frac{1}{4}x\cos(4x) + \frac{1}{4}x\cos$ 6 16 S4cos (4x) dx oppure t=4x f(x)=x p'=1 $g' = Sen(4x) g(x) = -\frac{1}{4}cos(4x)$

X) $\int e^{2x+1} dx = \frac{1}{2}e^{2x+1} + c$ $\forall I \subset \mathbb{R}$ $(\frac{1}{2}\int 2e^{2x+1})$ oppuse t = 2x+1

Xi) $\int \cos x (\sin x)^2 dx = \frac{1}{3} (\sin x)^3 + c$ oppuse $t = \sin x$ P=cox P(x)=senx

20/3) Calcoliamo i seguenti integrali indefiniti:

i)
$$\int (\cos x)^4 \sec x \, dx$$
 ii) $\int \frac{x}{(1+x^2)^2} \, dx$

iii)
$$\int \frac{100 \times dx}{100 \times dx}$$
 iv)
$$\int (1+x+x^2)^3 (1+2x) dx$$

$$\sqrt{1}$$
 $\int x \sqrt[3]{1+x^2} dx$ $\sqrt{1}$ $\int x e^{x^2} dx$

ix)
$$\int \frac{e^{x}+1}{e^{x}} dx$$
 x) $\int x^{2} \cdot sen(3x) dx$

$$(x^3 + \log x)^3 (3x^2 + \frac{1}{x}) dx$$
 $(3enx + 1) conx dx$

Solue i) I cir
$$\int (\cos x)^4 \cdot \sec x \, dx = -\int (-\sec x) \cdot (\cos x)^4 \, dx = \frac{\cot x}{5} + c = -\frac{1}{5} (\cos x)^5 + c \quad \text{oppure}$$

$$\int (\cos x)^4 \cdot \sec x \, dx = \int t^4 \cdot \sec x \cdot \frac{dt}{-\sec x} = -\int t^4 \, dt = \frac{1}{5} + c = -\frac{(\cos x)^5}{5} + c = \frac{1}{5} + c = -\frac{(\cos x)^5}{5} + c = \frac{1}{5} + c = -\frac{(\cos x)^5}{5} + c = -\frac{1}{5} + c = -\frac$$

iii) Ic Jo+
$$\infty$$
[$\int \frac{\log x}{x} dx = \int \frac{1}{x} \cdot \log x dx = \frac{(\log x)^2}{2} + c$
oppure $\int \frac{\log x}{x} dx = \int \frac{1}{x} \cdot x dt = \int \frac{1}{x} + c = \int \frac{1}{x} \cdot x dt = \int \frac{1}{x} + c = \int \frac{1}{x} \cdot x dt = \int \frac{1}{x} \cdot x$

iv) I circ
$$\int (1+x+x^2)^3 (1+2x) dx = \frac{(1+x+x^2)^4}{4} + c$$

oppure $\int (1+x+x^2)^3 (1+2x) dx = \int t^3 (1+2x) \cdot \frac{dt}{1+2x} = 1$
 $= \int t^3 dt = \frac{1}{4}t^4 + c$ $dt = (1+2x) dx$
 $= \frac{1}{4}(1+x+x^2)^4 + c$

V) I CIR
$$\int x \sqrt[3]{1+x^2} dx = \frac{1}{2} \int 2x (1+x^2)^{1/3} dx = \frac{1}{2} \frac{(1+x^2)^{4/3}}{4/3} + c = \frac{3}{8} \sqrt{(1+x^2)^4} + c$$

(Numma Gandizhoue)

$$= \frac{3}{8} \sqrt[3]{(1+x^2)^4} + c$$

oppure $\int x \sqrt[3]{1+x^2} dx = \int x \sqrt[3]{t} \frac{dt}{2x} = \frac{1}{2} \int \sqrt[3]{t} dt = \frac{1}{2} \frac{t^{4/3}}{4/3} + c$

$$t = \frac{1+x^2}{2x} dx = \frac{3}{8} (1+x^2)^{4/3} + c$$

$$dx = \frac{dt}{2x}$$

Vi) I CIR $\int x e^{x^2} dx = \frac{1}{2} \int 2x e^{x^2} dx = \frac{1}{2} e^{x^2} + c$

oppure $\int x e^{x^2} dx = \int x e^{t} \frac{dt}{2x} = \frac{1}{2} \int e^{t} dt = \frac{1}{2} e^{t} + c = \frac{1}{2} e^{x^2} + c$

$$dt = 2x dx$$

$$dx = \frac{dt}{2x}$$

$$dt = 2x dx$$

$$dx = \frac{dt}{2x}$$

Vi) $\int (2-x)^6 dx = -\int -1 \cdot (2-x)^6 dx = -\frac{(2-x)^3}{4} + c = \frac{1}{2} e^{x^2} + c$

$$e^{t}(x) \cdot (f(x))^{x} = -\frac{1}{4} (2-x)^{\frac{3}{4}} + c = \frac{1}{4} (2-x)^$$

ICIR

oppure
$$\int (2-x)^6 dx = -\int (2-x)^7 + c$$
 $t=2-x$
 $t=2-x$
 $t=2-x$
 $t=2-x$
 $t=2-x$

dx = -dt

Viii) I cIR
$$\int e^{\text{Sen} x} \cdot \cos x \, dx = e^{\text{Sen} x} + c$$

 $e^{\text{f}(x)} \cdot f(x)$

ix) ICIR
$$\int \frac{e^{x}+1}{e^{x}} dx = \int 1 + \frac{1}{e^{x}} dx = \int 1 + e^{-x} dx =$$

 $e^{x} \neq 0 \forall x$
 $= x - e^{-x} + c$

X) I CIR
$$\int x^2 \cdot \text{sen}(3x) \, dx = -\frac{1}{3}x^2 \cos(3x) + \int \frac{1}{3} \cos(3x) \cdot 2x \, dx =$$

$$g(x) = x^2 \quad f'(x) = \text{sen}(3x) \, PARTI$$

$$g'(x) = 2x \quad f(x) = -\frac{1}{3} \cos(3x)$$

$$= -\frac{1}{3}x^{2} \cdot \cos(3x) + \frac{2}{3} \int x \cdot \cos(3x) dx = -\frac{1}{3}x^{2} \cdot \cos(3x)$$

$$g(x) = x \qquad f'(x) = \cos(3x) PARTI$$

$$g'(x) = 1 \qquad f(x) = \frac{1}{3} seu(3x)$$

$$+\frac{2}{3}\left[\frac{1}{3}\times \text{seu}(3x) - \int \frac{1}{3}\text{seu}(3x) dx\right] = -\frac{1}{3}x^{2}\cos(3x)$$

$$+\frac{2}{9}\times seu(3x) + \frac{2}{9}\cdot \frac{1}{3}(-3seu(3x)dx =$$

$$=-\frac{1}{3}x^2$$
, $cos(3x) + \frac{2}{9}x seu(3x) + \frac{2}{27}cos(3x) + c$

$$= \left(\frac{2}{27} - \frac{1}{3}x^2\right) \cos(3x) + \frac{2}{9} \times \sin(3x) + C.$$

Xi) Ic Jo, +00 [
$$(x^{3} + \log x)^{3} (3x^{2} + \frac{1}{x}) dx = \frac{1}{4} (x^{3} + \log x)^{4} + c$$

 $(\xi(x))^{3} \cdot \xi'(x)$

oppure

oppure
$$\int (x^{3} + \log x)^{3} (3x^{2} + \frac{1}{x}) dx = \int t^{3} dt = \frac{1}{4} t^{4} + c = \frac{1}{4} (x^{3} + \log x)^{4} + c$$

$$t = x^{3} + \log x$$

$$dt = (3x^{2} + \frac{1}{x}) dx$$

46 Xii) I CR ((Seux +1) conx dx = 1/2 (Seux +1)2+ C oppure $\int (\text{Seux+1}) \cos x \, dx = \int t \, dt = \frac{t^2}{2} + c = \frac{1}{2} (\text{Seux+1})^2 + c$ t=seux+1 dt=conx dx Tiutenallo c RIL = + Kay XIII) Ic domtaux $=-\int \frac{f'(x)}{f(x)} dx = -e_0 f'(x) + c$ il segno di cosx dipende poi dall'intervallo oppuse $\int \frac{\text{Seux}}{\text{Conx}} dx = \int \frac{1}{E} (-dE) = -\int \frac{1}{E} dE = -\frac{\text{Cop}|E| + C}{|E|}$ = - log (conx)+C $-dt = seux a \times$ $-2xe^{x} - (2xe^{x} - (2xe^{$ dt=-seuxdx $= x^{2} \cdot e^{x} - 2x \cdot e^{x} + \int 2e^{x} dx = (x^{2} - 2x + 2)e^{x} + c$ $XV) I C J - \infty, -\frac{1}{2} [o I C J - \frac{1}{2}, +\infty [] \frac{4}{(1+2x)^3} dx =$ $=2\int_{\{f(x)\}}^{2} (1+2x)^{-3} dx = 2\frac{(1+2x)^{-2}}{-2} = \frac{1}{(1+2x)^{2}} + C$ oppure $\int \frac{4}{(1+2x)^3} dx = \int \frac{4}{t^3} \frac{1}{2} dt = 2 \int \frac{1}{t^3} dt = -\frac{1}{t^2} + C =$ $=-\frac{1}{(1+2x)^2}+c$ t=1+2× $dt = 2d \times$ $(x) = 2e^{2x}$ $(x) = 2e^{2x$ dx=fdt

=
$$-\cos x \cdot e^{2x} + 2\left[\sec x \cdot e^{2x} - \int 2 \sec x e^{2x} dx \right] =$$

2°sem

=
$$(2Seux - conx)e^{2x} - 4 \int Seux e^{2x} dx = 0$$

$$\int Seux e^{2x} dx = \frac{1}{5} (2 Seux - conx) e^{2x} + c$$

Xvii) I c Jo, +
$$\infty$$
[$\int \frac{(\log x)^2}{x} dx = \int \frac{1}{x} (\exp x)^2 dx = \frac{1}{3} (\log x)^3 + c$
(oppuse $t = \log x$)

$$xviii)$$
 ICR
$$\int \frac{1+4x}{\sqrt{1+x+2x^2}} dx = \int (1+4x)(1+x+2x^2)^{-\frac{1}{2}} dx = \frac{1+4x}{\sqrt{1+x+2x^2}} dx = \frac{1+4x}{\sqrt{1+x+2x^$$

$$2x^{2}+x+170 \forall x$$

 $0=1-8<0$ = $2\sqrt{1+x+2x^{2}}+C$

(oppure
$$t = 1 + x + 2x^2$$
)
XIX) I C] 0, +00 [$\int x^4 \cdot \log x \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \int \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot \frac{1}{x} \, dx = \frac{1}{5}x^5 \cdot \log x - \frac{1}{5}x^5 \cdot$

$$f(x) = \frac{1}{5} \times 5 \cdot \log x - \frac{1}{5} \cdot \int x^4 dx = \frac{1}{5} \times 5 \left(\log x - \frac{1}{5}\right) + c$$

$$= \frac{1}{5} \times 5 \cdot \log x - \frac{1}{5} \cdot \int x^4 dx = \frac{1}{5} \times 5 \left(\log x - \frac{1}{5}\right) + c$$

$$= \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times 5. \log \times -\frac{1}{5} \int \times dx = \frac{1}{5} \times \frac{$$

$$1+e^{\times} > 0 \ \forall \times$$

$$= \frac{(1+e^{\times})^{3/2}}{3/2} + c = \frac{2}{3} (1+e^{\times})^{3/2} + c$$

(oppur
$$t=1+e^{x}$$
)
 $(x^{2}\cos(3x)) dx = \frac{1}{3}x^{2} \sec(3x) - \int \frac{2}{3}x \sec(3x) dx = \frac{1}{3}x^{2} \sec(3x) - \int \frac{2}{3}x \sec(3x) dx = \frac{1}{3}x^{2} \sec(3x) - \frac{2}{3}\int x \sec(3x) dx = \frac{1}{3}x^{2} \sec(3x) dx = \frac{1}{$

(oppure $t = e^{2}+1$) $(x) = x^{2}$ $(x) = x^{2}$ $(x) = x^{3}$ $(x) = x^{3}$ (x)

```
XXVI) Svolto a pag. 68 (PER PARTI)
```

XXVII) I CIR
$$\int x \cdot \sec x \, dx = -x\cos x + \int \cos x \, dx =$$

$$g(x) = x \quad f^{1}(x) = \sec x \quad PER$$

$$PARTI = -x\cos x + Sen x + C$$

$$g'(x) = 1 \quad f(x) = -\cos x$$

XXVIII) I CIR
$$\int e^{3x}$$
. Sen(2x) $dx = \frac{1}{3}$ sen(2x) $e^{3x} - \int \frac{1}{3}e^{3x} \cdot 2\cos(2x) dx = \frac{1}{3}e^{3x} \cdot \frac{1}{3}e^{3x} \cdot 2\cos(2x) dx = \frac{1}{3}e^{3x} \cdot \frac{1}{3}e^{3x} \cdot$

$$= \frac{1}{3} \operatorname{Sen}(2x) e^{3x} - \frac{2}{3} \int e^{3x} \cos(2x) dx = \frac{1}{3} \operatorname{Sen}(2x) e^{3x} - \frac{1}{3} \operatorname{Sen}(2x) e^{3x}$$

$$-\frac{2}{3} \left[\frac{1}{3} e^{3x} \cos(2x) + \int \frac{1}{3} e^{3x} z \sin(2x) dx \right] = \frac{1}{3} \sin(2x) e^{3x}$$

$$-\frac{2}{9} \cos(2x) e^{3x} - \frac{4}{9} \int e^{3x} \cdot \sin(2x) dx = 0$$

XXIX) ICIR
$$\int (3e\pi x)^3 dx = \int sen x (seu x)^2 dx = \int seu x (1-cos^2 x) dx =$$

=
$$\int \operatorname{Sen} x \, dx + \int (-\operatorname{Sen} x) \cos^2 x \, dx = -\cos x + \frac{\cos^3 x}{3} + c$$

XXX) I CIR
$$\int e^{-x} \cos(2x) dx = -e^{-x} \cos(2x) - \int e^{-x} a \sin(2x) dx =$$

$$P(x) = e^{-x} \qquad g(x) = \cos(2x) \quad PARTI$$

$$P(x) = -e^{-x} \qquad g'(x) = -2 \sin(2x)$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) dx = -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\sin(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\cos(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\cos(2x) e^{-x} dx$$

$$= -e^{-x} \cos(2x) - 2 \int -\cos(2x) e^{-x} dx$$

$$f(x) = -e^{-x} g'(x) = 2 \cos(2x)$$
+ $\int e^{-x} \cdot 2 \cdot \cos(2x) dx = -e^{-x} \cos(2x) + 2 e^{-x} \sin(2x) - 4 \int e^{-x} \cos(2x) dx$
= $\int \int e^{-x} \cos(2x) dx = e^{-x} (2 \sin(2x) - \cos(2x)) + c$

$$\int e^{-x} \cos(2x) dx = \frac{1}{5} e^{-x} (2 \cos(2x) - \cos(2x)) + c$$

XXXI) I C 30, that
$$\int (2x-1) \cdot \log x = (x^2-x) \cdot \log x - \int \frac{x^2}{x} dx = \int (x) = \frac{x^2}{x} - \frac{1}{x} dx = \int (x) = \int (x)$$

21) Riprendiamo il concetto di integrale definito, -81il suo significato geometrico e il Teorema Fondamentale del calcolo integrale che consente di calcolarlo. Applichiamo i risultati al calcolo dell'area.

L'integrale definito di una funzione f(x) su un intervallo [a,b] è un numero reale positivo, nullo o regativo che si indica con $\int_{a}^{b} f(x) dx$.

Tale valore viene matematicamente costruito, utilizzando l'area di rettangolini che stanno al di sotto e al di sopra del grafico della funzione, in modo tale che

se fro su [a,b] => $\int f(x) dx = anea A$ dove

A e la regione di piano compresa

tra il grafico di f e l'arre x.

Se invece $f \le 0$ su [a,b], allora

 $\int_{a}^{b} f(x) dx = -area A$ A y = b A y = f(x)

Si dimostra la formula dell'AREA

area
$$E = \int_{a}^{b} (g(x) - f(x)) dx$$

intégrale della différenta tra la functione che delimita sopra l'insieme e quella che la delimita da sotto.

Nel caso

area
$$E = \int_{a}^{b} (f(x) - 0)) dx = \int_{a}^{b} f(x) dx$$

anea
$$E = \int_{a}^{b} (0 - f(x)) dx = -\int_{a}^{b} f(x) dx$$

come già detto prima. Jufine se fosse

il calcolo va speztato

area
$$E = \int_{a}^{c} (g(x) - f(x)) dx + \int_{a}^{b} (g(x) - f(x)) dx$$

Per calcolare un integrale definito (f(x) dx si usa il Teorema Fondamentale del Calcolo Integrale che afferma $\int f(x)dx = F(b) - F(a)$

dove F(x) è una qualunque primitiva di f(x)-Trovata dunque una qualunque primitiva di f(x) basta calcolore la differenza tra il valore nell'estremo superiore dell'integrale e quello hell'estremo inferiore-

ES.
$$\int_{1}^{4} 3x^{2} dx = \left[x^{3} \right]_{x=1}^{x=4} = 4^{3} - 4^{3} = 63$$
 $\left(f(x) = 3x^{2} \right)$

a)
$$\int_{0}^{3} (x-1) dx$$
 b) $\int_{0}^{1} (4x^{5}+3x^{2}+1) dx$ c) $\int_{0}^{3} (2t^{2}+t^{2}VE-1) dt$

d)
$$\int_{0}^{4} \sqrt{x} dx$$
 e) $\int_{1}^{2} \frac{3}{t^{4}} dt$ f) $\int_{-1}^{0} (2x - e^{x}) dx$ g₁) $\int_{1}^{3} \frac{1}{\sqrt{x}} dx$

$$g_{2}$$
) $\int_{1}^{4} \frac{1}{x^{3/2}} dx$ h) $\int_{1}^{4} 2 \operatorname{sent} dt$ i) $\int_{1}^{3} (2x^{3} - \frac{1}{9}x + \frac{1}{6}) dx$

$$j$$
) $\int_{0}^{0} 8e^{x} dx$ k) $\int_{2\pi}^{8\pi} \frac{3}{2} cos(\frac{x}{6}) dx$ ℓ) $\int_{(x-x^{2})}^{0} dx$

m)
$$\int_{2}^{2} \frac{1}{(1+x)^{2}} dx$$
 m) $\int_{1}^{2} \frac{1}{(2-3x)^{2}} dx$ o) $\int_{0}^{4} 5 x^{3/2} dx$

$$p = \int_{0}^{2} (x-4)^{25} dx$$
 $q = \int_{0}^{7} \sqrt{4+3x} dx$ $r^{2} = \int_{0}^{4} x^{2} (4+2x^{3})^{5} dx$

s)
$$\int_{0}^{\pi/2} g sen(\frac{x}{3}) dx$$
 t) $\int_{0}^{1} cos(\pi t) dt$

$$\mu \int_{0}^{1} \frac{1}{12} e^{6x} dx \qquad \sigma \int_{1}^{2} \frac{2}{x^{6}} dx \qquad \omega \int_{0}^{2} 2x \sqrt{1+x^{2}} dx$$

$$\times \int_{0}^{43} \frac{1}{\sqrt[3]{(1+2x)^2}} dx \qquad y) \int_{0}^{\pi/4} (\text{Sen}(2x)) dx$$

22 bis) a)
$$\int_{0}^{3} 6x \sqrt{3x^{2}-2} dx$$
 b) $\int_{0}^{6} \frac{1}{\sqrt{3x-2}} dx$ c) $\int_{0}^{1} \frac{4}{(1+4x)^{2}} dx$

d)
$$\int_{-1}^{\frac{\pi}{24^{\pi}}} \cos(4x) dx$$
 e) $\int_{-1}^{3} (2x - x^{3} + \frac{1}{3}) dx$ f) $\int_{-2}^{1} (2x - x^{3} + \frac{4}{3}x^{2}) dx$

g)
$$\int_{0}^{\frac{\pi}{4} + \cos^{2}x} dx$$
 h) $\int_{1}^{2} x - x^{2} 1 dx$ i) $\int_{1}^{e} \frac{\log x}{x} dx$ ANALISIZ

j) $\int_{0}^{\frac{\pi}{2}} e^{\cos x} \sin x dx$ k) $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ l) $\int_{1}^{2} \frac{1}{3x+1} dx$

m) $\int_{-2}^{1} \frac{1}{3x+1} dx$ m) $\int_{0}^{\frac{\pi}{2}} x \cdot \cos(2x) dx$ o) $\int_{0}^{1} (x^{2} + 1) e^{-x} dx$

p) $\int_{1}^{4} \log \sqrt{x} dx$ q) $\int_{0}^{\frac{\pi^{2}}{4}} x \sin(x) dx$ r) $\int_{0}^{1} x^{3} e^{x} dx$

5) $\int_{0}^{\frac{\pi}{2}} (\cos x)^{2} dx$ t) $\int_{0}^{\frac{\pi}{2}} (\cos x)^{3} dx$

Sol, we

(22) a)
$$\left[\frac{x^2}{2} - x\right]_{x=0}^{x=3} = \frac{3}{2}$$
 b) $\left[\frac{2}{3}x^6 + x^3 + x\right]_{x=0}^{x=1} = \frac{8}{3}$

c)
$$\left[2t + \frac{2}{3}t^{3/2} + \frac{1}{t}\right]_{t=1}^{t=9} = 33 - \frac{5}{9} = \frac{292}{9}$$

d)
$$\left[\frac{2}{3}x^{3/2}\right]_{X=0}^{X=4} = \frac{16}{3}$$
 e) $\left[-\frac{1}{t^3}\right]_{t=4}^{t=2} = \frac{4}{8}$ f) $\left[x^2 - e^{x}\right]_{X=-2}^{X=0}$

$$g_1$$
) $\left[2\sqrt{x} \right]_{x=1}^{x=9} = 6-2=4$

$$g_2$$
) $[-\frac{2}{\sqrt{x}}]_1^4 = 1$ h) $[-2 \cos t]_{t=w_4}^{t=w_3} = \sqrt{2}-1$

i)
$$\left[\frac{1}{2}x^4 - \frac{1}{18}x^2 + \frac{1}{6}x\right]_{-1}^3 = \frac{81}{2} - \frac{1}{2} + \frac{1}{2} - \left(\frac{1}{2} - \frac{1}{18} - \frac{1}{6}\right) = \frac{362}{9}$$

j)
$$[8e^{\times}]_{x=\log 3}^{x=\log 6} = 8(6-3) = 24$$
 K) $[9 sen \frac{\times}{6}]_{x=3\pi}^{x=8\pi}$ $[9 (sen \frac{4}{3}\pi - sen \frac{\pi}{3})]_{x=3\pi}^{x=3\pi}$

$$\ell) = \left[\begin{array}{c} x^{2} - \frac{x^{3}}{3} \right]_{-2}^{\circ} = 0 - \left(2 + \frac{8}{3} \right) = -\frac{14}{3} \quad \text{m} \right) \left[-\frac{1}{(1+x)} \right]_{2}^{2} = \frac{1}{3}$$

$$m) \left[\frac{1}{3(2-3x)} \right]_{x=1}^{x=2} = \frac{1}{4} \quad 0) \left[2 \times \frac{5}{2} \right]_{x=0}^{x=4} = 2 \cdot \frac{5}{2} = 2.$$

$$p) \left[\frac{(x-1)^{26}}{26} \right]_{x=0}^{x=2} = 0 \qquad q) \left[\frac{2}{9} (4+3x)^{3/2} \right]_{x=0}^{x=7} = \frac{234}{9}$$

7)
$$\left[\frac{(1+2x^3)^6}{36} \right]_{x=0}^{x=1} = \frac{728}{36} = \frac{182}{9}$$

$$3) \left[-27\cos(\frac{X}{3}) \right]_{X=0}^{X=\pi/2} 27(1-\frac{\sqrt{3}}{2}) \qquad t) \left[\frac{1}{\pi} sen(\pi t) \right]_{t=0}^{t=1} = 0$$

$$(1+2x)^{\frac{1}{3}} \Big]_{x=0}^{x=13} = \frac{3}{2} \left[(1+2x)^{\frac{1}{3}} \Big]_{x=0}^{x=13} = \frac{3}{2} \left(\sqrt[3]{27} - \sqrt[3]{1} \right) = 3$$

y)
$$\left[-\frac{\cos(2x)}{2}\right]_{x=0}^{x=\sqrt{4}} = \frac{1}{2}$$

22bis) a)
$$\left[\frac{2}{3}(3x^2-2)^{3/2}\right]_{X=1}^{X=3} = \frac{2}{3}(25-1)^{3/2} = \frac{2}{3}(5-1) = \frac{248}{3}$$

b)
$$\left[\frac{2}{3} \sqrt{3 \times -2} \right]_{X=2}^{X=6} = \frac{4}{3}$$

c)
$$\left[-\frac{1}{(1+4x)} \right]_{x=0}^{x=1} = -\frac{1}{5} + 1 = \frac{4}{5}$$

d)
$$\left[\frac{1}{4}\operatorname{Sen}(4x)\right]_{x=\frac{\pi}{6}}^{x=\frac{\pi}{24}} = \frac{1}{4}\left(\operatorname{sen}(\frac{7}{6}\pi) - \operatorname{Sen}(\frac{2}{3}\pi)\right) = \frac{1}{4}\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}\right) = -\frac{1+\sqrt{3}}{8}$$

e)
$$\left[x^2 - \frac{x^4}{4} + \frac{1}{3}x \right]^3 = 9 - \frac{81}{4} + 1 - \left(1 - \frac{1}{4} - \frac{1}{3} \right) = -\frac{32}{3}$$

$$f) \left[x^{2} + \frac{x^{4}}{4} + \frac{4}{9} x^{3} \right]_{-2}^{1} = 1 - \frac{1}{4} + \frac{4}{9} - (4 - 4 - \frac{32}{9}) = \frac{19}{4}$$

h)
$$\int_{-1}^{2} |x-x^{2}| dx = \int_{-1}^{0} (x^{2}-x) dx + \int_{0}^{1} (x-x^{2}) dx + \int_{0}^{2} (x^{2}-x) dx =$$

$$x-x^{2} \ge 0 \text{ ded } 0 \le x \le 1 \implies |x-x^{2}| = \begin{cases} x-x^{2} & 0 \le x \le 1 \\ x^{2}-x & x < 0 \ \cup x > 1 \end{cases}$$

$$\times (4-x) \geqslant 0$$
 $\times (4-x) \geqslant 0$ $\times (4-x) \geqslant 0$ $\times (4-x) \geqslant 0$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} \right]_{-1}^{0} + \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_{0}^{1} + \left[\frac{x^3}{3} - \frac{x^2}{2} \right]_{1}^{2} = -\left(-\frac{1}{3} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left[\frac{8}{3} - 2 - \left(\frac{1}{3} - \frac{1}{2} \right) \right]$$

$$= \frac{1}{3} + \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - 2 + \frac{1}{2} = \frac{1}{3} - \frac{1}{2} = \frac{11}{6}$$

i)
$$\left[\frac{1}{2}(\log x)^{2}\right]_{1}^{e} = \frac{1}{2}$$
 (lope=1, log1=0)

ANALISI 2

$$\vec{J}$$
) $\left[-e^{\cos x} \right]^{\frac{\pi}{2}} = -e^{\cos \frac{\pi}{2}} + e^{\cos 0} = -e^{0} + e^{1} = e - 1$

K)
$$[2e^{\sqrt{x}}]^4 = 2e^{\sqrt{4}} - 2e = 2e^{-2}e$$

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2\int \frac{1}{2\sqrt{x}} e^{\sqrt{x}} dx = 2e^{\sqrt{x}} + c \quad \text{oppure } t = \sqrt{x}$$

$$f'(x)e^{f(x)}$$

m)
$$\left[\frac{1}{3}\log|3x+1|\right]^{-1} = \left[\frac{1}{3}\log(-3x-1)\right]^{-1} = \frac{1}{3}(\log 2 - \log 5) = \frac{1}{3}\log^{\frac{2}{3}}$$
 (che e <0)

m)
$$\int x \cos(2x) dx = \frac{1}{2} x \sin(2x) - \int \frac{1}{2} \sin(2x) dx =$$

 $f(x) = x \rightarrow f' = 1$ PARTI $= \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) + C$
 $g'(x) = \cos(2x)$
 $g(x) = \frac{1}{2} \sin(2x)$ $\left[\frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x)\right]^{\frac{1}{2}} = \frac{1}{2} \frac{\pi}{2} \sin \pi + \frac{1}{4} \cos \pi + C$
 $-0 - \frac{1}{4} \cos 0 = -\frac{1}{2}$

0)
$$\int (x^{2}+1) \cdot e^{-x} dx = -(x^{2}+1) e^{-x} + \int 2x e^{-x} dx = -(x^{2}+1) e^{-x} - 2x e^{-x} + \int 2x e^{-x} dx = -(x^{2}+1) e^{-x} - 2x e^{-x} + \int 2x e^{-x} + \int 2x e^{-x} dx = -(x^{2}+1) e^{-x} - 2x e^{-x} + \int 2x e^{-x} dx = -(x^{2}+1) e^{-x} - 2x e^{-x} + c = -(x^{2}+2x+3) e^{-x} + \int 2e^{-x} dx = -(x^{2}+1) e^{-x} - 2x e^{-x} - 2e^{-x} + c = -(x^{2}+2x+3) e^{-x} + c$$

$$\left[-(x^{2}+2x+3)e^{-x}\right]_{0}^{1} = -6e^{1} - (-3e^{0}) = 3 - \frac{6}{e}$$

$$\begin{bmatrix}
-(x^{2}+2x+3)e^{-x} \end{bmatrix}_{0}^{3} = -6e^{-(-3e)} = 0$$

$$= -6e^{-(-$$

9)
$$\int \operatorname{sen} \sqrt{x} \, dx = \int 2t \operatorname{sent} \, dt = -2t \operatorname{cost} + \int 2 \operatorname{cost} = ANALISI 2$$

$$\begin{aligned}
& t = \sqrt{x} & f(t) = 2t & PER \\
& f' = 2 & PARTI \\
& f' = 2 & -2t \operatorname{cost} + 2 \operatorname{sent} + c \\
& g(t) = - \operatorname{cost} & 0 & 1 \\
& g(t) = - \operatorname{cost} & 0 & 1 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 1 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} + 2 \operatorname{sen} \sqrt{x} & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & \cos \sqrt{x} & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 & 0 & 0 \\
& -2\sqrt{x} & 0 & 0 &$$

7)
$$\int x^{3}e^{x^{2}}dx = \frac{1}{2} \int x^{2} \cdot (2xe^{x^{2}}) dx = \frac{1}{2}(x^{2}e^{x^{2}} - \int 2xe^{x^{2}}dx) = f(x) = x^{2}f^{1} = 2x \quad PARTI$$

$$g'(x) = 2x \cdot e^{x^{2}} = \frac{1}{2}(x^{2} - 1)e^{x^{2}} + c$$

$$g(x) = e^{x^{2}}$$

oppure t=x2 e toi PERPARTI $\left[\frac{1}{2}(x^2-1)e^{x^2}\right]_0^1 = 0 - \left(-\frac{1}{2}\right)e^2 = \frac{1}{2}$

5)
$$\int (\cos x)^2 dx = \int \cos x \cdot \cos x dx = \int \cos x \cdot \cos x + \int \sin^2 x dx = \int \cos x \cdot \cos x dx = \int \cos x \cdot \cos x + \int (\cos x) dx = \int \cos x \cdot \cos x + \int (\cos x) dx = \int \cos x \cdot \cos x + \int (\cos x) dx = \int \cos x \cdot \cos x + \int (\cos x) dx = \int \cos x \cdot \cos x + \int (\cos x) dx = \int (\cos x) dx$$

-) 2 \((cosx)^2 dx = x + seux cosx -> \) \((cosx)^2 dx = \frac{1}{2} \((x + seu x cos x) + C \) $\left[\frac{1}{2}(x+seuxcosx)\right]_{0}^{\pi}=\frac{1}{2}(\pi+o-0-o)=\frac{\pi}{2}$

$$\frac{1}{2}(x + \text{Seux}(\cos x)) = \frac{1}{2}$$

$$t) \int (\cos x)^3 dx = \int \cos x \cdot \cos^2 x \, dx = \int \cos x \cdot (1 - \text{Seu}^2 x) \, dx = \int (\cos x - \cos x) \, dx = \int ($$

$$\left[\text{Senx} - \frac{\left(\text{SeuX} \right)^3}{3} \right]_0^{\frac{\pi}{2}} = 1 - \frac{1}{3} - 0 + 0 = \frac{2}{3}$$

23) Calcoliano l'area degli iuniemi Edise, grati in figura

- 89 -

ANALISI 2 - 90-

SOL. 23) a) area
$$E = \int_{0}^{2} (2x - x^{2}) dx = \left[x^{2} - \frac{x^{3}}{3}\right]_{0}^{2} = 4 - \frac{8}{3} = \left[\frac{4}{3}\right]_{m^{2}}^{m^{2}}$$

b) area
$$E = \int_{0}^{4} \sqrt{2x+4} \, dx = \left[\frac{1}{2} \frac{(2x+4)^{3/2}}{3/2} \right]_{0}^{4} = \left[\frac{1}{3} (2x+4)^{3/2} \right]_{0}^{4} = \frac{1}{3} 3^{3} - \frac{1}{3} = 3^{2} - \frac{1}{3} = 9 - \frac{1}{3} = \left[\frac{26}{3} \right]_{0}^{4} = \frac{1}{3} 3^{4} = \frac{$$

$$= \frac{3^{2} - \frac{1}{3}}{3} = 9 - \frac{1}{3} = \frac{26}{3} m^{2} \approx 8,66 m^{2}$$

$$c) \int (\text{Sen} \times -\cos \times) dx = \left[-\cos \times -\text{Sen} \times\right]_{\pi/4}^{5/4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) = 2\sqrt{2}$$

$$\approx 2,83 \text{ m}^{2}$$

d) area
$$E = \int (5x - x^2 - x) dx = \int (-x^2 + 4x) dx = \left[-\frac{x^3}{3} + 2x^2 \right]_0^4 = -\frac{64}{3} + 32$$

$$= \left[\frac{32}{3} \right] \approx 10.66 \text{ m}^2$$

$$f) \text{ area } E = \int_{-1}^{1} (x^{2} + 3 - 4x^{2}) dx = \int_{-1}^{1} (-3x^{2} + 3) dx = \left[-x^{3} + 3x \right]_{-1}^{1} = 4m^{2}$$

g) area
$$E = \int_{-1}^{2} [(2-x^{2})-(-x)]dx = \int_{-1}^{2} (-x^{2}+x+2)dx = [-\frac{x^{3}}{3}+\frac{x^{2}}{2}+2x]^{2} = \frac{9}{2} = 4.5 \text{ m}^{2}$$

h) area
$$E = \int_{0}^{3} (-x^{2} + 3x) dx + \int_{0}^{4} (0 - (-x^{2} + 3x)) dx =$$

$$= \int_{0}^{3} (-x^{2} + 3x) dx - \int_{3}^{4} (-x^{2} + 3x) dx =$$

$$= \left[-\frac{x^{3}}{3} + 3\frac{x^{2}}{2} \right]_{0}^{3} - \left[-\frac{x^{3}}{3} + 3\frac{x^{2}}{2} \right]_{3}^{4} = \frac{19}{3} m^{2} \approx 6,3 m^{2}$$

i) area
$$E = \int_{-3}^{-1} (g - x^2) dx + \int_{-8}^{0} -8x dx = \left[gx - \frac{x^3 - 1}{3} \right]_{-3}^{-1} + \left[-4x^2 \right]_{-3}^{0} =$$

$$= \left(-9 + \frac{1}{3} - (-27 + 9) \right) + (0 - (-4)) = \frac{40}{3} \text{ m}^2 \approx 13,3 \text{ m}^2$$

$$\begin{array}{l} \tilde{J}) \text{ area } E = \int\limits_{3}^{6} \left(-\frac{4}{9} \, x^{2} \! + \! \frac{16}{3} \! \times \! - \! 12 \right) - \left(-2x \! + \! 6 \right) \, \mathrm{d} \, x \, + \int\limits_{6}^{9} \left(-\frac{4}{9} \, x^{2} \! + \! \frac{16}{3} \! \times \! - \! 12 \right) - \\ - \left(\frac{1}{3} x^{2} \! - \! 4x \! + \! 6 \right) \, \mathrm{d} \, x \, = \int\limits_{3}^{6} \left(-\frac{4}{9} \, x^{2} \! + \! \frac{22}{3} x \! - \! 18 \right) \, \mathrm{d} \, x \, + \int\limits_{6}^{9} \left(-\frac{7}{9} x^{2} \! + \! \frac{28}{3} \! \times \! - \! 18 \right) \, \mathrm{d} \, x \, = \\ = \left[-\frac{4}{27} x^{3} \! + \! \frac{11}{3} x^{2} \! - \! 18 x \right]_{3}^{6} + \left[-\frac{7}{27} x^{3} \! + \! \frac{14}{3} x^{2} \! - \! 18 x \right]_{6}^{9} = 17 + 23 = 40 \\ \text{K) area } E = \int\limits_{-14}^{3} \left(-\frac{3}{4} x^{2} \! - \! 3x \right) - \left(\frac{1}{2} x \right) \, \mathrm{d} \, x \, + \int\limits_{3}^{9} \left(\frac{1}{4} x^{2} \! - \! \frac{1}{2} x \right) \, \mathrm{d} \, x \, = \\ = \left[-\frac{1}{4} x^{3} \! - \! \frac{7}{4} x^{2} \right]_{-3}^{-3} + \left[\! \frac{1}{12} x^{3} \! - \! \frac{1}{4} x^{2} \! \right]_{-3}^{9} = \frac{1}{24} + \frac{9}{2} = \frac{443}{54} \end{array}$$

l) area
$$E = \int_{-2}^{-2} (-x^2 - 4x - 1) - (x^2 + 2x - 1) dx$$

$$+ \int_{-2}^{0} (-2x-1) - (x^{2}+2x-1) dx = \int_{-3}^{-2} (-2x^{2}-6x) dx + \int_{-2}^{0} (-x^{2}-4x) dx =$$

$$= \left[-\frac{2}{3} \times^{3} - 3 \times^{2} \right]_{-3}^{-2} + \left[-\frac{\times^{3}}{3} - 2 \times^{2} \right]_{2}^{\circ} = \frac{7}{3} + \frac{16}{3} = \frac{23}{3}$$

m) frea =
$$\int_{-1}^{0} (x^{2}-2x) - x \, dx + \int_{0}^{3} x - (x^{2}-2x) \, dx = \left[\frac{x^{3}}{3} - 3\frac{x^{2}}{2} \right]_{-1}^{0} + \left[3\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{3} = \left[0 - \left(-\frac{1}{3} - \frac{3}{2} \right) \right] + \left[\frac{27}{2} - 9 \right] = \frac{11}{6} + \frac{9}{2} = \frac{19}{3}$$

OSSERVAZIONE (IMPORTANTE)-Tutte le formule per l'anea di una figura elementare (es. rettangolo, triangolo, trapezio ecc.) si possono ridimostrare mediante gli integrali e la formula dell'area. Integrali e aree sono strettamente connersi tra loro.

Con gli integrali:

$$A = \int_{0}^{b} h \, dx = h \int_{0}^{b} dx = h \cdot \left[\times J_{x=0}^{x=b} \right] = h \cdot h$$

$$= h \cdot \left[b - 0 \right] = \left[b \cdot h \right]$$

ES. Areadi untriangolo A=36.2 h=alte≥za

Con gli inteprali $A = \int_{-\infty}^{\infty} \left[-\frac{b-b_1}{R} x + b - \frac{b_1}{R} x \right] dx =$

24) BARICENTRO DI UNA FIGURA PIANA

Si consideri una lamina di densità uniforme che occupi una regione del piano _ II BARICENTRO olella lamina (o CENTRO DI MASSA) è il punto P su cui la lamina resta in equilibrio orizzontale.

Se la figura è simmetaica reispetto alla linea I, allora il baricentro si trova su I.

Ad esecutio è chiaro che il baricentro di un rettangolo è il suo centro perche si trova sulle due mediane (cioè sulle due rette congiunpenti il punto centrale di due lati opposti [G]).

In un triangolo si olimostra che il baricentro è il punto di incontro delle 3 mediane (una mediana è il sepmento Congiungente un vertice con il punto medio del lato opposto).

Il baricentro di una figura piana dipende dai MOMENTI e dall'AREA della figura. Entrambi si calcolano

utilizzando gli integrali, quindi non stupitevi se mella trattazione teorica degli argomenti continuerete ad incontrare INTEGRALI-

TABELLA con PERIMETRO, AREA e

BARICENTRO DELLE FIGURE PIANE ELEMENTARI

	PERIME	TRO ARE	A BARICENTRO
RETTANGOLO	2b+2h	A = b.h	CENTRO
QUADRATO	48	ℓ²	CENTRO
PARALLELO GRATITA	2b+2lobliquo	b.h	CENTRO
TRIANGOLO	l,+l2+b	A=1bh	ZTICI $A(x_{A},y_{A})B(x_{B},y_{B})C(x_{c},y_{c})$ $G\left(\frac{1}{3}(x_{A}+x_{B}+x_{c}),\frac{1}{3}(y_{A}+y_{B}+y_{c})\right)$
Rombo	4l D=dia	$A = \frac{D \cdot d}{2} \circ A = 1$ agonale maggione $d = d$	b.h CENTRO Jiagonale minore
TRAPEZIO	B+b+ lobli +loblique2 B=base maggiore	$A = \frac{(B+b) \cdot (B+b) \cdot (B+b)}{2}$	
CERCH10	2πR	A=TR ²	CENTRO
SEMICERCHIO	TR+2R	$A = \frac{\pi R^2}{2}$	(ENTRO $C(x_c, y_c)$) $G(x_c, y_c + \frac{L}{3} \frac{R}{T})$ (**)
CORONA CIRCOLARE	2πR+2πr r <r< td=""><td>A= TR-TE2</td><td>CENTRO</td></r<>	A= TR-TE2	CENTRO
SETTORE CIRCOLARE		$A = \frac{1}{2} \alpha \text{ rad} \cdot R^2$ $0 A = \frac{1}{2} L \cdot R$ $\text{dell'anyoloin vadiant}$	CENTRO (Xc, yc) R & G(Xc, yc+\frac{2}{3}\frac{R.sen(\frac{1}{2})}{(\frac{1}{2})}

La mediana delle due basi è il segmento congiungente i punti medi delle due basi Poi G si trova $0^{\frac{h}{3}}$. $\frac{(2b+B)}{(B+b)}$ al di sopra della base meggiore

(**) E'chiaro che se il semicarchio o il settore circolare sono posizionati in modo diverso, allora il banicanto G rimane nello stesso punto rispetto all'insieme, ma le sue coordinate cartesiane saranno diverse. Ad es. se si considera il semicarchio le coordinate di G saranno $G(x_c + \frac{4}{3}\frac{R}{\pi} | y_c)$

OSSERVAZIONI IMPORTANTI

· La collocazione del baricentro rispetto all'insieme NON DIPENDE dal SISTEMA DI PIFERIMENTO, ma le COORDINATE del baricentro SI, perchè in generale se collochismo una figura geometrica nel priano in un'altra posizione le coordinate dei suoi punti cambiano.

La formula assegnata per il bancantro del triaspolo funziona con qualunque sistema di riferimento perche dipende dalle coordinate. Non de nemun problema anche quando il baricentro coincide con il centro olella figura. Invece con trapezi, semicerchi e settori circolari le coordinate del baricentro dipendono da come e posizionata la figura.

· Per calcolare il baricentro di una figura COMPOSTA di forme geometriche semplici è possibile calcolare il baricentro di ogni figura e poi sommare i baricentri pesanololi con le aree: a figure E1, E2 baricentri G1,G2 E1UE2=E E1eE2 non sovrapposte => Baricentro di E:

ESEMPIO- Calcoliamo in due modi diversi il bariantro del

$$\frac{4^{\circ}\text{wodo}}{B=11}$$
:
La mediana congiunge i punti $(\frac{11}{2},0)e(4,5)$:

eque y=-\frac{10}{3}x+\frac{55}{3} daci x=\frac{11}{2}-\frac{3}{2}y

OSS. Nel calcolo di ya oi è tenuto conto che la base B è su y=0-2º Musdo

Scomponiamo il trapezio in due triangoli e 1 rettangolo

$$G_1 = (\frac{4}{3}, \frac{5}{3})$$
 Area $E_1 = 5$

$$G_2 = (4, \frac{5}{2})$$
 Area $E_2 = 20$

$$G_2 = (4, \frac{5}{2})$$
 Area $E_2 = 20$
 $G_3 = (\frac{23}{3}, \frac{5}{3})$ Area $E_3 = \frac{25}{2}$

$$X_{G} = \frac{1}{\frac{75}{2}} \cdot \left(5 \cdot \frac{4}{3} + 20 \cdot 4 + \frac{25}{2} \cdot \frac{23}{3}\right) = \frac{2}{75} \cdot \left(\frac{20}{3} + \frac{80}{5} + \frac{575}{6}\right) = \frac{2}{75} \cdot \frac{1095}{63} = \frac{249}{15} \cdot \frac{73}{15}$$

$$Y_{G} = \frac{1}{\frac{75}{2}} \cdot \left(5 \cdot \frac{5}{3} + 20 \cdot \frac{5}{2} + \frac{25}{2} \cdot \frac{5}{3}\right) = \frac{2}{75} \left(\frac{25}{3} + 50 + \frac{125}{6}\right) = \frac{2}{75} \cdot \frac{175}{6} \cdot \frac{19}{3} = \frac{19}{9} \quad \Rightarrow \quad G = \left(\frac{43}{15}, \frac{19}{9}\right)$$

ESERCIZI VARI (dai compiti deplianni precedenti)

1a) Se
$$f(x) = \frac{1}{(x+4)^2} \log(-x) + \sqrt{5-14x-3x^2} + x^5 \cdot e^{-2x} - \frac{\sin x}{x}$$
, allora

$$\frac{1}{f'(x) = \frac{2}{(x+4)^3}} \cdot \log(-x) + \frac{1}{(x+4)^2} \cdot \frac{1}{x} - \frac{7+3x}{\sqrt{5-14x-3x^2}} + 5x^{\frac{1}{2}} e^{-2x} - 2x^{\frac{5}{2}} e^{-2x} - \frac{x \cdot \cos x - \sin x}{x^2}$$

1b) Completate
$$\frac{3 \cdot (x+3)^{-4}}{\int \frac{3}{(x+3)^4} - 5x^7 - \frac{1}{4} \cos(\frac{x}{2}) - \frac{x^3}{\sqrt{x}} - 3 e^{x/3} dx = \frac{1}{(x+3)^3} - \frac{5}{8} \times \frac{8}{2} + \frac{1}{2} \operatorname{Sen}(\frac{x}{2}) - \frac{2}{7} \times \frac{7}{2} e^{x/3} + C$$

1c) Considerate l'insieme E del disegno.

Calcolate l'area dell'insieme E.

Risposta: ... 443
54

1a) Se
$$f(x) = \frac{1}{(x+3)^2} \log(\frac{1}{2} - x) + \sqrt{8 - 10x - 3x^2} + x^6 \cdot e^{-3x} - \frac{\cos x}{x^2}$$
, allora
$$domf = \frac{\left[-4, -3\left[0\right] - 3, o\left[0\right] \circ, \frac{4}{2}\left[-\frac{2}{(x+3)^3} \cdot \log(\frac{1}{2} - x) + \frac{4}{(x+3)^2} \cdot \frac{-4}{\frac{1}{2} - x} + \frac{-40 - 6x}{2\sqrt{8 - 40x - 3x^2}} + 6x^{\frac{5}{2}} e^{-\frac{3}{2}x}\right]}{2\sqrt{8 - 40x - 3x^2}}$$

1b) Completate
$$\frac{7 \cdot (x+4)^{-5}}{\int \frac{7}{(x+4)^5} - 3x^8 - \frac{1}{9} \cos(\frac{x}{3}) + \frac{x^5}{\sqrt{x}}} - 2e^{x/2} dx = \frac{(-\lambda e n \times) \times^2 - (\omega \times \cdot (2 \times))}{\times^4} = \frac{\sec n \times}{x^2} + \frac{2\cos \times}{x^3} + \frac{$$

1a) Se
$$f(x) = \frac{1}{x^4} \sqrt{-\frac{1}{2}x - \frac{1}{4}x^2 + \frac{3}{4} + \frac{\cos x}{2\pi^2} + \log(2x+5)}$$
, allora
$$f'(x) = -\frac{1}{x^5} \sqrt{-\frac{1}{2}x - \frac{1}{4}x^2 + \frac{3}{4} + \frac{1}{2}x - \frac{1}{4}x^2 + \frac{3}{4}x^2 + \frac{1}{2}x - \frac{1}{4}x^2 + \frac{3}{4}x^2 + \frac{1}{2}x - \frac{1}{4}x^2 + \frac{3}{4}x^2 + \frac{1}{2}x - \frac{1}{2}x -$$

$$\int \left[-\frac{3}{2} \times -\frac{1}{4} \times^{2} \right] dx + \frac{1}{4} \times^{2} \left[-\frac{3}{4} \times^{2} + 3 \times - \left(\frac{1}{4} \times^{2} \right) \right] dx + \frac{1}{4} \times^{2} \left[-\frac{3}{4} \times^{2} + 3 \times \right] dx$$

$$+ \int \left[\frac{1}{4} \times^{2} - \left(-\frac{3}{4} \times^{2} + 3 \times \right) \right] dx$$
Risposta: ... $\left[\frac{46}{3} \right]$

1a) Se
$$f(x) = \frac{1}{x^3} \sqrt{(\frac{7}{2}x - 1)^2 + 6x + \frac{\sin x}{4e^2} + \log(2 - x) + \log(4x + 1)}$$
, allora $x \neq 0$ $(\frac{7}{2}x - 1) + 6x > 0$
domf = ... $\int -\frac{1}{4} \sqrt{(\frac{7}{2}x - 1)^2 + 6x} + \frac{1}{4e^2} \sqrt{(\frac{7}{2}x - 1)^2 + 6x} + \frac$

1c) Completate
$$4 \cdot (x+1)^{-5}$$
 $\frac{-\frac{5}{2}}{\int \left[\frac{4}{(x+1)^5} - 3x^3 - e^{x/3} - \frac{\sqrt{x}}{x^3} - 2\cos(2x) + 3\right] dx} = \frac{1}{(x+1)^4} - \frac{3}{4}x^4 - \frac{3}{4}e^{x/3} + \frac{2}{3 \times 3/2}e^{x/3}$

$$- \Delta e \gamma(2 \times) + 3 \times + C$$

1c) Completate
$$\int \left[\frac{1}{6} \operatorname{sen}(6x) - 2e^{\frac{4}{4}X} + \frac{4}{(x+2)^4} - \frac{1}{5}x^3 + \frac{\sqrt{x}}{x^3} \right] dx = \dots - \frac{4}{20}X^4 - \frac{2}{3 \times 3/2} + C$$

1c) Completate
$$8 \cdot (x+4)^{-4} \times \frac{-3/2}{2}$$

$$\int \left[\frac{1}{5}\cos(5x) - 4e^{\frac{1}{2}X} + \frac{8}{(x+4)^4} - \frac{1}{6}x^3 + \frac{\sqrt{x}}{x^2}\right] dx = \frac{\frac{1}{25}\sin(5x) - 8e^{\frac{1}{2}X}}{-\frac{1}{24}x^4 - \frac{2}{\sqrt{x}} + c}$$

1a) Se
$$f(x) = e^{\frac{x}{2}} \sqrt{5 - x - \frac{2}{5}x^2 + \log(3x^2 - 4x + \frac{4}{3}) + \frac{\cos x}{x^4 - 1}}$$
, allora
$$domf = \begin{bmatrix} -5 & -1 & 0 \end{bmatrix} - 1 & \frac{2}{3} & 0 \end{bmatrix} \frac{2}{3} & 1 & 0 \end{bmatrix} 1 & \frac{5}{2} & 0$$

$$f'(x) = \dots \frac{1}{2} e^{\frac{x}{2}} & 5 - x - \frac{9}{5}x^2 + e^{\frac{x}{2}} & \frac{(-1 - \frac{1}{2}5x)}{2\sqrt{5 - x - \frac{3}{2}x^2}} + \frac{6x - 4}{3x^2 - 4x + \frac{1}{2}} & \frac{(x^4 - 1)^2}{(x^4 - 1)^2}$$

1b) Completate
$$\frac{x^{3/2}}{\sqrt{x}} = \frac{\frac{3}{8}x^{-5}}{\sqrt{x}} = \frac{2(x-3)^{4}}{\sqrt{x}} + e^{\frac{x}{5}} - \frac{1}{2} \sec(4x) + \frac{3}{8x^{5}} - \frac{2}{(x-3)^{4}} dx = \frac{\frac{1}{4}x^{5/2}}{\sqrt{x}} + 5e^{\frac{x}{5}} + \frac{1}{8}\cos(4x) + \frac{3}{8}\frac{x^{-4}}{\sqrt{x}} + \frac{3}{8}\cos(4x) + \frac{3}{$$

1a) Se
$$f(x) = \sqrt{4 - 7x - 2x^2} + x^4 \cdot \log(3x^2 - 2x + \frac{1}{3}) + \frac{e^{3x}}{x} - \cos x$$
, allora
$$domf = \begin{bmatrix} -4,0 \begin{bmatrix} 0 \end{bmatrix} 0, \frac{1}{3} \begin{bmatrix} 0 \end{bmatrix} \frac{1}{3}, \frac{1}{2} \end{bmatrix} \begin{cases} 1,-7x-2x^2 \ge 0 \\ 3x^2-2x+\sqrt{3}>0 \end{cases} \begin{cases} 2x^2+7x-4 \le 0 \begin{cases} -4 \le \frac{1}{2} \\ 3(x-\frac{1}{3})^2>0 \end{cases} \begin{cases} x \ne \sqrt{3} \\ x \ne 0 \end{cases}$$

$$f'(x) = \frac{-7-4x}{2\sqrt{4-7x-2x^2}} + 4x^{\frac{3}{2}} \log(3x^2-2x+\frac{1}{3}) + x^{\frac{4}{2}} \frac{6x-2}{3x^2-2x+1/3} + \frac{3xe^{3x}-e^{3x}}{x^2} + \sec x$$

1b) Completate
$$\frac{1}{4\sqrt{x}} = \frac{1}{3}x^{-5}$$

$$\int \frac{1}{4\sqrt{x}} - \frac{7}{3x^{5}} - e^{\frac{x}{4}} + \cos(5x) - \frac{3}{(x-3)^{2}} dx = \frac{1}{2}\sqrt{x} + \frac{7}{12x^{4}} - 4e^{\frac{x}{4}} + \frac{1}{5}\sin(5x) + \frac{3}{(x-3)^{4}} + \frac{3}{(x-3)^$$

1b) Completate
$$x > 0$$
 olom $\begin{cases} x > 0 \\ x \neq 0 \end{cases} \times \frac{1}{x + 0} = \frac{1}{x +$

$$\int_{0}^{3-8} \frac{1}{x^{2}} + 10x^{30} \int_{0}^{8x^{2}-10x-3 \le 0} \frac{1}{x^{2}} \int_{0}^{3} \frac{1}$$

1a) Se
$$f(x) = x^5 \sqrt{3 - 8x^2 + 10x} + \log(8x + 1 + 16x^2) + e^{\cos(x/2)}$$
, allora

$$domf = \int -\frac{1}{4}, \frac{3}{2} \int$$

$$f'(x) = .5x^{\frac{1}{4}}\sqrt{3-8x^{2}+40x} + x^{\frac{5}{2}} \cdot \frac{(-46x+40)}{2\sqrt{3-8x^{2}+40x}} + \frac{8+32x}{8x+4+46x^{2}} - \frac{4}{2} \cdot \frac{\cos \frac{x}{2}}{2} \cdot \frac{\cos \frac{x}{2}}{2}$$

$$\frac{32-2x^{2}>0}{x^{2}>0} \qquad \begin{cases}
x^{2} \leq 16 \rightarrow [-4,4] \\
x^{2}>0 \qquad x\neq 0 \\
2x^{2}+x-6\neq 0 \qquad x\neq -2,\frac{3}{2}
\end{cases}$$

1a) Se
$$f(x) = e^{2x} \sqrt{32 - 2x^2} + \log(x^2) + \frac{2x - 1}{2x^2 + x - 6}$$
, allora

$$domf = .[-4,-2[v]-2,0[v]0,\frac{3}{2}[v]\frac{3}{2},4] -4x^{2}+4x-44$$

$$f'(x) = .2e^{2x}\sqrt{32-2x^{2}} - \frac{e^{2x}(2x)}{\sqrt{32-2x^{2}}} + \frac{2}{x} + \frac{2(2x^{2}+x-6)-(2x-1)\cdot(4x+1)}{(2x^{2}+x-6)^{2}}$$

1b) Completate

$$\frac{1}{4}\sqrt{x} = \frac{1}{4}x^{\frac{3}{2}}$$

$$\int \frac{1}{3}\cos(\frac{x}{6}) - 10e^{5x} + \frac{3}{2x^{6}} + \frac{x}{4\sqrt{x}}dx = 2 \cdot \text{Apn}(\frac{x}{6}) - 2e^{5x} + \frac{3}{2}\frac{x^{-5}}{(-5)} + \frac{1}{4}\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$\text{domf} \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \\ \sqrt{x} \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \\ \sqrt{x} \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \\ \sqrt{x} \neq 0 \end{array} \right. = 2 \cdot \text{Apn}(\frac{x}{6}) - 2e^{5x} - \frac{3}{40 \times 5} + \frac{1}{6} \times \frac{3}{2} + c$$

$$\text{dowf} = \text{Jo}_{1} + \infty \left[\begin{array}{c} x \neq 0 \\ x \neq 0 \\ x \neq 0 \end{array} \right] \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array} \right. \left\{ \begin{array}{c} x \neq 0 \\ x \neq 0 \end{array}$$

1b) Completate

$$\int \left[2\cos(4x) - 3e^{\frac{x}{2}} + \frac{3}{(x+2)^5} - \frac{\sqrt{x}}{x}\right] dx = \frac{\frac{1}{2}}{\sin(4x)} - 6e^{\frac{x^2}{2}} + 3\frac{(x+2)^{-4}}{-4} - 2\sqrt{x} + C$$

$$= \frac{1}{2}\sin(4x) - 6e^{\frac{x^2}{2}} - \frac{3}{4(x+2)^4} - 2\sqrt{x} + C$$

$$= \frac{1}{2}\sin(4x) - 6e^{\frac{x^2}{2}} - \frac{3}{4(x+2)^4} - 2\sqrt{x} + C$$

$$-103 - \text{ANALISI} 2$$

$$1a) \text{ Se } f(x) = \frac{1}{x^2} \sqrt{(\frac{5}{2}x - 1)^2 + 8x + 3e^2 + \log(1 - x) + \log(3x + 1)}, \text{ allora}$$

$$domf = \int_{-\frac{1}{3}}^{-\frac{1}{3}} \sqrt{[\frac{5}{2}x - 1]^2 + 8x + 3x + 1} + \frac{1}{x^2}, \frac{\frac{25}{2}x + 3}{2\sqrt{\frac{25}{2}x + 3x + 4}} - \frac{1}{4 - x} + \frac{3}{3x + 4}$$

1c) Considerate l'insieme E del disegno.

area $E = \int_{-\frac{\pi}{3}}^{2} \left[-\frac{1}{3}x - (-4x)\right] dx +$ $+\int_{1}^{1}\left[-\frac{1}{3}x-\left(\frac{3}{4}x^{2}-\frac{3}{2}x-\frac{13}{4}\right)\right]dx$ Risposta: onea $E = \int_{0}^{1} \frac{11}{3} x dx + \int_{0}^{1} \left(-\frac{3}{4}x^{2} + \frac{7}{6}x + \frac{13}{4} \right) dx = \left[\frac{13}{2} \right]^{\frac{1}{3}}$ $\left| y = -4x \right|$

Calcolate l'area dell'insieme E.

1c) Considerate l'insieme E del disegno.

Calcolate l'area dell'insieme E. area $E = \int_{0}^{3} \left[-\frac{1}{5} \times - \left(-\frac{1}{3} \times \right) \right] dx + \int_{3}^{5} \left[-\frac{1}{5} \times - \left(\frac{3}{4} \times^{2} - \frac{9}{2} \times + \frac{11}{4} \right) \right] dx$ $= \int_{0}^{3} \frac{1}{45} \times dx + \int_{0}^{5} \left(-\frac{3}{4} \times^{2} + \frac{1}{40} \times - \frac{11}{4} \right) dx$ $= \int_{0}^{3} \frac{1}{45} \times dx + \int_{0}^{5} \left(-\frac{3}{4} \times^{2} + \frac{1}{40} \times - \frac{11}{4} \right) dx$ $= \int_{0}^{3} \frac{17}{15} \times dx + \int_{3}^{5} \left(-\frac{3}{4}x^{2} + \frac{43}{10}x - \frac{44}{4}\right) dx$

Calcolate l'area dell'insieme E. 1c) Considerate l'insieme E del disegno.

1c) Considerate l'insieme E del disegno.

area
$$E = \int_{0}^{2} \left[-\left(\frac{1}{2}x^{2}-2x-4\right)\right] dx + \int_{0}^{4} \left[(-2x+4) + \int_{0}^{4} \left[(-2x+4) - \left(\frac{1}{2}x^{2}-2x-4\right)\right] dx \right] dx$$

$$= \int_{0}^{4} \left[(-2x+4) - \left(\frac{1}{2}x^{2}-2x-4\right)\right] dx$$

$$= \int_{0}^{4} \left[(-2x+4) - \left(\frac{1}{2}x^{2}-2x-4\right)\right] dx$$

2
Risposta: ...
$$\int_{0}^{2} (-\frac{1}{2}x^{2} + 2x + 4) dx + \int_{2}^{4} (-\frac{1}{2}x^{2} + 8) dx = \boxed{\frac{52}{3}} -6$$

$$\int dom f = \begin{cases} 5-6x^{2}+13x > 0 & | 6x^{2}-13x-5 \le 0 \\ 6x+1+9x^{2}>0 & | (3x+1)^{2}>0 \end{cases}$$

$$\begin{cases} x \in [-\frac{1}{3}, \frac{\pi}{2}] \\ x \neq -\frac{1}{3} \end{cases}$$

1a) Se $f(x) = x^4 \sqrt{5 - 6x^2 + 13x} + \log(6x + 1 + 9x^2) + e^{\sin(x/2)}$, allors

$$domf = \frac{1 - \frac{1}{3} \frac{5}{2}}{1 \times \sqrt{5 - 6x^2 + 13x}} + \frac{x^4 \cdot (-12x + 13)}{2\sqrt{5 - 6x^2 + 13x}} + \frac{6 + 18x}{6x + 1 + 9x^2} + \frac{1}{2} \cos(\frac{x}{2}) \cdot e^{-\frac{x^2}{2}}$$

1b) Completate
$$\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^$$

