

In Air

Challenges in Neural Networks

Problems with Large Neural Networks

- Vanishing and Exploding Gradients
- Overfitting

Challenges in Neural Networks

Problems with Large Neural Networks

Overfitting

Challenges in Neural Networks

How does too small or too large weight affect neural network learning?

Vanishing Gradients

Update to the weights is small

$$w_{new} = w_{old} - eeta * dL/dw$$

Becomes closer to 0

$$w_{new} = w_{old}$$

Small Learning Rate

Why do deep neural networks face vanishing gradient problem?

Chain Rule of Differentiation

$$\frac{dL}{dw_{11}^1} = \frac{dL}{dO_1} * \frac{dO_1}{dw_{11}^1}$$

$$\frac{dL}{dw_{21}^1} = \frac{dL}{dO_1} * \frac{dO_1}{dw_{21}^1}$$

$$\frac{dL}{db_{11}} = \frac{dL}{dO_1} * \frac{dO_1}{db_{11}}$$

Chain Rule of Differentiation

Could be represented as multiplication of all previous Gradients

$$\left(\frac{dL}{dw_n}\right)^{10}$$

Vanishing Gradient

Could be represented as multiplication of all previous Gradients

$$\left(\frac{dL}{dw_n}\right)^{10}$$

Exploding Gradient

How to identify which gradient the model is suffering from?

Exploding Gradient	Vanishing Gradient
There is an exponential growth in the model parameters of the lower or initial layers.	The parameters of the higher layers change significantly whereas the parameters of lower or initial layers would not change much or not at all.
The model weights may become NaN during training	The model weights may become close to 0 during training.
During training the model may abruptly increase loss values by a large amount.	During training the model learns very slowly and the training stagnates at a very early stage.