DGI

Deep Graph Infomax

이수연 2022.02.03

Contents

- 1. Backgrounds
- 2. DGI Methodology
- 3. Classification Performance
- 4. Conclusion

the dominant algorithms for unsupervised representation learning with graph-structured data rely on **random walk**-based objectives

nodes that are "close" in the input graph are also "close" in the representation space

Limitation

- 1. over-emphasizing **proximity** information at the expense of **structural** information
- 2. highly dependent on hyperparameter
- 3. with stronger encoder, unclear whether it actually provide any useful signal
- → Alternative objective based on **mutual information**

Mutual Information(MI)

measures how much one random variables tells us about another (dependence)

$$I(X;Y) = \sum_{x,y} P_{XY}(x,y) \log rac{P_{XY}(x,y)}{P_{X}(x)P_{Y}(y)} = E_{P_{XY}} \log rac{P_{XY}}{P_{X}P_{Y}}$$

distribution을 알기 어려워서 MI 직접 계산 힘듦

→ lower-bound를 maximize, $I(X,Z) \ge I_{\Theta}(X,Z)$

Deep InfoMax (DIM)

unsupervised learning of representations by maximizing mutual information between an input and the output of a deep neural network encoder

$$\textbf{objective} \quad \underset{\omega_1,\omega_2,\psi}{\operatorname{arg\,max}} \left(\alpha \widehat{\mathcal{I}}_{\omega_1,\psi}(X;E_{\psi}(X)) + \frac{\beta}{M^2} \sum_{i=1}^{M^2} \widehat{\mathcal{I}}_{\omega_2,\psi}(X^{(i)};E_{\psi}(X))\right) + \underset{\psi}{\operatorname{arg\,min}} \underset{\phi}{\operatorname{arg\,max}} \gamma \widehat{\mathcal{D}}_{\phi}(\mathbb{V}||\mathbb{U}_{\psi,\mathbb{P}})$$

Contrastive Learning

an important approach for **self-supervised** learning of representations

Basic intuition behind contrastive learning paradigm from: A Survey on Contrastive Self-Supervised Learning

"push original and augmented images closer and push original and negative images away"

real(i.e. positive)과 fake(i.e. negative) example 을 **대조(contrast)**하여 representation 학습

DIM을 그래프에 적용!

- local features to capture information shared across the entire graph
- MI maximization
- Contrastive learning

Negative Sampling

multi-graph setting

corruption function simply samples a different graph from the training set

single-graph setting

original graph (X, A)

corruption function ${\cal C}$

 $\widetilde{\mathbf{X}}$: row-wise shuffling of \mathbf{X}

alternative graph $(\widetilde{X}, \widetilde{A})$

Local & Global features

 \vec{h}_i summarize a patch of the graph centered around node i

 \rightarrow patch representation

Theoretical Motivation

Theorem 1. minimizing the classification error in the discriminator ≡ maximizing the mutual information between the input and output

$$\vec{s}^* = \operatorname{argmin}_{\vec{s}} \operatorname{Err}^* \qquad \vec{s}^* = \operatorname{argmax}_{\vec{s}} \operatorname{MI}(\mathbf{X}; \vec{s})$$

Theorem 2. the \vec{h}_i that minimizes the classification error between $p(\vec{h}_i, \vec{s})$ and $p(\vec{h}_i)p(\vec{s})$ also maximizes $MI(\mathbf{X}_i^{(k)}; \vec{h}_i)$

→ a classifier between samples from the joint(positive examples) and the product of marginals (negative examples), and using the binary cross-entropy (BCE) loss to optimize this classifier

Mutual Information Maximization

discriminator $\mathcal{D}(\vec{h}_i, \vec{s}) = \sigma(\vec{h}_i^T \mathbf{W} \vec{s})$ positive example과 negative example을 구별하도록 training

Glorot initialization Adam SGD optimizer

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_{i}, \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\tilde{h}}_{j}, \vec{s} \right) \right) \right] \right)$$

noise-contrastive type objective with a standard binary cross-entropy (BCE) loss

→ mutual information with the global graph summary, patch-level의 similarity

Overview of DGI

input graph/negative example

patch representations learned in a fully unsupervised manner → evaluating the node-level classification utility

Datasets

- (1) Cora, Citeseer, Pubmed citation networks: classifying research papers into topics (transductive)
- (2) Reddit social network: predicting the community structure (inductive)
- (3) PPI network: classifying protein roles (inductive, multiple graphs)

Encoder

Transductive learning

one-layer GCN

$$\mathcal{E}(\mathbf{X}, \mathbf{A}) = \sigma \left(\hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \mathbf{\Theta} \right)$$

the learned filters rely on a fixed and known adjacency matrix: not appropriate to Inductive learning

Inductive learning on large graphs

three-layer mean-pooling model with skip connections

$$MP(X, A) = \hat{D}^{-1}\hat{A}X\Theta$$

$$\mathcal{E}(\mathbf{X}, \mathbf{A}) = \widetilde{MP}_3(\widetilde{MP}_2(\widetilde{MP}_1(\mathbf{X}, \mathbf{A}), \mathbf{A}), \mathbf{A})$$

X, A are not needed sampling node neighborhoods with replacement

Inductive learning on multiple graphs

three-layer mean-pooling model with dense skip connections

$$\begin{split} \mathbf{H}_1 &= \sigma\left(MP_1(\mathbf{X}, \mathbf{A})\right) \\ \mathbf{H}_2 &= \sigma\left(MP_2(\mathbf{H}_1 + \mathbf{X}\mathbf{W}_{skip}, \mathbf{A})\right) \\ \mathcal{E}(\mathbf{X}, \mathbf{A}) &= \sigma\left(MP_3(\mathbf{H}_2 + \mathbf{H}_1 + \mathbf{X}\mathbf{W}_{skip}, \mathbf{A})\right) \end{split}$$

Result

the DGI approach is competitive with the results reported for the GCN model with the supervised loss

	Transduc	<i>tive</i> mea	mean classification accuracy		
Available data	Method	Cora	Citeseer	Pubmed	
X A, Y A X, A	Raw features LP (Zhu et al., 2003) DeepWalk (Perozzi et al., 2014) DeepWalk + features	$47.9 \pm 0.4\%$ 68.0% 67.2% $70.7 \pm 0.6\%$	$49.3 \pm 0.2\%$ 45.3% 43.2% $51.4 \pm 0.5\%$	69.1 ± 0.3% 63.0% 65.3% 74.3 ± 0.9%	
X, A X, A	Random-Init (ours) DGI (ours)	$69.3 \pm 1.4\%$ $82.3 \pm 0.6\%$	$61.9 \pm 1.6\%$ $71.8 \pm 0.7\%$	$69.6 \pm 1.9\%$ $76.8 \pm 0.6\%$	
$egin{array}{c} \mathbf{X}, \mathbf{A}, \mathbf{Y} \\ \mathbf{X}, \mathbf{A}, \mathbf{Y} \end{array}$	GCN (Kipf & Welling, 2016a) Planetoid (Yang et al., 2016)	81.5% 75.7%	70.3% 64.7%	79.0% 77.2%	

note that... supervised transductive SOTA(GraphSGAN)는 못 넘음

	Inductive		micro-averaged F ₁ score			
Available data	Method		Reddit	PPI		
X	Raw features		0.585	0.422		
\mathbf{A}	DeepWalk (Perozzi et al., 2014)		0.324	-		
\mathbf{X}, \mathbf{A}	DeepWalk + features		0.691			
\mathbf{X}, \mathbf{A}	GraphSAGE-GCN (Hamilton et al., 2017a)		0.908	0.465		
\mathbf{X}, \mathbf{A}	GraphSAGE-mean (Hamilton et al., 201	0.897	0.486			
\mathbf{X}, \mathbf{A}	GraphSAGE-LSTM (Hamilton et al., 2017a)		0.907	0.482		
\mathbf{X}, \mathbf{A}	GraphSAGE-pool (Hamilton et al., 2017a)		0.892	0.502		
\mathbf{X}, \mathbf{A}	Random-Init (ours)		0.933 ± 0.001	0.626 ± 0.002		
\mathbf{X}, \mathbf{A}	DGI (ours)		-0.940 ± 0.001	0.638 ± 0.002		
X, A, Y	FastGCN (Chen et al., 2018)		0.937	_		
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	Avg. pooling (Zhang et al., 2018)		0.958 ± 0.001	0.969 ± 0.002		
potential in the inductive node classification						
large gap attributed to the extreme sparsity of available node features						

t-SNE embeddings of the nodes in the Cora dataset

raw features

learned DGI model
Silhouette score of 0.234

Conclusions

Deep InfoMax → Deep Graph Infomax

local mutual information maximization across the graph's patch representations

→ node embeddings that are mindful of the global structural properties of the graph

competitive performance across a variety of both transductive and inductive classification tasks

감사합니다