液体流量标准装置检定规程

JJG 164-2000

液体流量标准装置检定规程

Verification Regulation of Standard Facilities for Liquid Flowrate JJG 164—2000 代替 JJG 164—1986 JJG 217—1989 JJG 162—1985

本规程经国家质量技术监督局于 2000 年 02 月 14 日批准, 并自 2000 年 06 月 01 日起施行。

归口单位:中国计量科学研究院

· 主要起草单位: 中国计量科学研究院

参加起草单位: 国家水大流量计量站

北京市计量测试所

上海工业自动化仪表研究所

丹东市通博测控有限公司

本规程委托全国流量容量技术委员会负责解释

本规程主要起草人:

段慧明(中国计量科学研究院)

翟秀贞(中国计量科学研究院)

参加起草人:

王自和 (国家水大流量计量站)

谢纪绩(北京市计量测试所)

仇 梁 (上海工业自动化仪表研究所)

朱晓光 (丹东市通博测控有限公司)

目 录

1	Ý	也	围	1204
2	Ħ	既ì	述	1204
	2.	1	工作原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1204
	2.2	2	构成	1204
	2.:	3	用途	1204
3	ì	+	量性能要求	1204
	3.	1	流体条件	1204
	3.	2	流量工作标准 ······	1204
4	ì	Œ,	用技术要求	1205
	4.	1	管路条件	1205
	4.	2	密封性	1205
	4.	3	流量工作标准 ·····	1205
	4.	4	实验启停设备	1205
	4.:	5	数据采集和控制设备	1205
5	Ì	#	量器具控制	1205
	5.	1	检定条件	1205
	5.:	2	检定项目和检定方法 ·····	1206
	5.:	3	检定结果处理	1210
	5.4	4	检定周期	1210
ß	付录	Ł A	A t _P (ν)表(不确定度置信水准 P=95%)	1210
ß	付录	Ł P	3 装置使用时的注意事项	1211
M	景	Ł C	检定证书的内页格式	1211

液体流量标准装置检定规程

1 范围

本规程适用于新建立、使用中和改造后的静态质量法、静态容积法、动态质量法、动态 容积法、启停质量法和启停容积法液体流量标准装置(以下简称装置)的检定。

2 概述

2.1 工作原理

按要求将被检流量计安装到装置上,启动液体循环系统,使液体流经被检流量计和流量 工作标准,同步操作被检流量计和流量工作标准,比较两者的输出流量值,从而确定被检流 量计的计量准确度和重复性。按流量工作标准的取值方式,装置可分为四种类型。

静态质量法(含启停质量法):在静止状态下,称量一段时间内容器中的液体质量,从而计算出流量。

静态容积法(含启停容积法):在静止状态下,测量一段时间内工作量器中的液体体积量,从而计算出流量。

动态质量法:在液体流动过程中、称量一段时间内容器中的液体质量变量,从而计算出流量。

动态容积法:在液体流动过程中,测量一段时间内工作量器中的液体体积变量,从而计算出流量。

2.2 构成

装置主要由液体循环系统、试验管路、流量工作标准、实验启停设备和控制设备等 5 部分组成。

2.3 用涂

装置是封闭管道液体流量的量值传递标准,可用于各种类型的液体流量计的检定、校准和液体流量计量、测试方法的研究。

3 计量性能要求

3.1 流体条件

液体应是单相的清洁水或运动粘度不超过 35×10⁻⁶m²/s 的其他液体。

- 3.2 流量工作标准
- **3.2.1** 工作量器刻线应清晰,一般容积读数分辨力与总容积之比应不大于工作量器示值误差的 1/5。
- 3.2.2 对于水表检定装置,工作量器的主刻线应以容积值给出、并在主刻线上、下给出相应的允差线。
- 3.2.3 计时器(仅对瞬时流量装置)应有晶振信号输出口,计时器晶振8小时稳定度—般不低于装置不确定度的1/10。计时器的最小读数值为0.001s。
- 3.2.4 水表检定装置的流量指示仪,其示值误差应不超过测量值的2.5%。

4 通用技术要求

- 4.1 管路条件
- 4.1.1 管路中的阀门、弯头等阻力件应尽量少。
- 4.1.2 试验管路应满足被检流量计对直管段的要求。
- 4.1.3 流量调节阀一般应安装在试验管路的下游,其性能应稳定。
- 4.1.4 温度测量位置一般应在试验管路下游。
- 4.1.5 压力测量位置一般应在试验管路上游。
- 4.1.6 液体应充满管路,必要时应在上游安装消气器。
- 4.2 密封性

在工作压力下,装置各个部件的连接处不应有泄漏现象。

- 4.3 流量工作标准
- 4.3.1 衡器
- 4.3.1.1 衡器一般采用机械衡器或电子衡器,电子衡器应用自校功能。
- 4.3.1.2 衡器的电缆、容器的连接管路和电缆不应在衡器上产生附加力。
- 4.3.1.3 容器应不渗漏
- 4.3.1.4 在动态质量法中, 应从容器上部注入液体。
- 4.3.2 工作量器
- 4.3.2.1 工作量器应不泄漏,并应有减小液体波动及防止液体溢出的措施。
- 4.3.2.2 工作量器内表面应光滑,应有良好的保护层。
- 4.3.2.3 工作量器底阀的操作应灵活。
- 4.3.2.4 在动态容积法中, 应从工作量器底部注入液体。
- **4.3.2.5** 对于水表检定装置,工作量器的主刻线应以容积值给出,并在主刻线上、下给出相应的介差线。
- 4.4 实验启停设备
- **4.4.1** 换向器(含换向阀)工作时应不溅水和分流,在最大流量下换向时所产生的压力波动对流量的影响应是定值。
- **4.4.2** 换向器检定结束后,换向器启停计时器的发讯位置、喷嘴位置和换向器位置应不变并标记。
- 4.5 数据采集和控制设备
- 4.5.1 数据采集应不影响装置不确定度。
- 4.5.2 控制设备应有良好的可操作性。
- **4.5.3** 计时器的计时、换向器的换向、开关阀的开关、工作量器的液位以及衡器的自动检测信号、应准确、可靠。

5 计量器具控制

- 5.1 检定条件
- 5.1.1 标准设备和仪器
- 5.1.1.1 检定衡器用标准砝码,其不确定度应优于衡器不确定度。
- 5.1.1.2 检定工作量器用标准量器,其不确定度应优于工作量器不确定度。

- 5.1.1.3 检定计时器用标准计时器,其不确定度应优于计时器不确定度。
- 5.1.2 辅助设备和仪器
- 5.1.2.1 温度计: 量程为 0℃~50℃, 分度值为 0.1℃。
- 5.1.2.2 秒表: 分度值为 0.01s。
- 5.1.2.3 换向器检定、测量时间内的流量稳定度检定和启停效应检定用的流量计,应稳定性好、响应速度快,并应有脉冲信号输出。
- 5.1.3 检定介质

检定介质应是单相清洁水或实际使用的液体。

5.2 检定项目和检定方法

5.2.1 外观检查

用目测方法检查装置外观,其结果应符合第 3.1、3.2.1、3.2.2、3.2.4、3.3、3.4、4.1、4.3、4.4 的要求。

5.2.2 密封性试验

启动控制设备,使液体流经装置循环运行,用目测方法检查装置各连接处,其结果应符合 4.2 的要求。

- 5.2.3 晶振 8 小时稳定度检定
- 5.2.3.1 将计时器的晶振输出信号接到标准计时器的外晶振输入口、接通电源。
- **5.2.3.2** 预热 1 小时后,每隔 1 小时读 1 次频率值 f_i (Hz) (i=1, 2, ...8)。
- 5.2.3.3 晶振稳定度

$$E_f = \frac{f_{i \max} - f_{i \min}}{f_0} \times 100\% \tag{1}$$

式中: f_{imax} —— f_i 的最大值, Hz;

fimin—fi 的最小值, Hz:

fo---标准频率值、Hz。

E_f 应符合 3.2.3 要求。

5.2.4 计时器检定

5.2.4.1 按使用情况连接计时器和标准计时器,并使二者计时的启、停信号同步。以装置使用的最短测量时间 t_{min} (s) 为时间间隔,启、停计时器,读取计时器值 t_i (s) 和标准计时器值 t_0 (s),完成 1 次检定。重复进行 n ($n \ge 10$) 次检定。

5.2.4.2 计时器不确定度

第i次差值

$$\Delta t_i = t_i - t_{0t} \tag{2}$$

平均值

$$\Delta t = \frac{1}{n} \sum_{i=1}^{n} \Delta t_i \tag{3}$$

A 类相对标准不确定度
$$s_1 = \frac{1}{t_{\min}} \left[\frac{\sum_{i=1}^{n} (\Delta t_i - \Delta t)^2}{n-1} \right]^{1/2} \times 100\%$$
 (4)

B 类相对标准不确定度 $u_1 = \frac{\Delta t}{2t_{min}} \times 100\%$ (5)

5.2.5 衡器检定

5.2.5.1 在使用量限范围内至少取 10 个均匀分布点 $(j=1, 2, \cdots, m, m \ge 10)$ 。用标准 砝码从 j=1 逐步加载到 j=m,完成第一次检定;再从 j=m 逐步卸载到 j=1,完成第二次检定。分别记录各点的加载质量、卸载质量和衡器读数。重复进行 n $(n \ge 10)$ 次检定。

5.2.5.2 衡器不确定度

负载 $(m_i + R_0)$ 时第 j 点第 i 次测量差值

$$\Delta m_i = R_{mi} - (m_i + R_0) \tag{6}$$

式中: m, 一第i点标准砝码的质量, kg;

 R_{mi} ——质量为 m_i 的标准砝码第i 次测量时衡器的读数, kg;

 R_0 ——空容器 n 次测量衡器的读数平均值, kg。

第
$$j$$
 点的平均值
$$\Delta m = \frac{1}{n} \sum_{i=1}^{n} \Delta m_i$$
 (7)

第 j 点单次测量 A 类相对标准不确定度

$$s_{2j} = \frac{1}{m_j + R_0} \left[\sum_{i=1}^n (\Delta m_i - \Delta m)^2 \right]^{1/2} \times 100\%$$
 (8)

第i点B类相对标准不确定度

$$u_{2j} = \frac{\Delta m}{2(m_j + R_0)} \times 100\% \tag{9}$$

$$s_2 = \left(s_{2j}\right)_{\text{max}} \tag{10}$$

B类相对标准不确定度

$$u_2 = (u_{2j})_{\text{max}} \tag{11}$$

- 5.2.6 工作量器检定
- **5.2.6.1** 规定工作量器放空时间。工作量器读数部分的检定点数一般应不少于 3。工作量器非读数部分容积与标准量器容积之比一般应不大于 5:1。
- 5.2.6.2 测量标准量器中液温 θ_3 ($\mathbb T$),按标准量器使用方法,将标准量器内的液体注入工作量器、直到液位升至工作量器选定的第一个检定点,读取液位值,同时测量室温 θ_1 ($\mathbb T$)、工作量器中液温 θ_2 ($\mathbb T$)。再选适当量限的标准量器继续检第 j ($j=1,2,\cdots,m$, $m \geqslant 3$) 个检定点,直到液位升到工作量器上限,记录各检定点液位值,完成一次检定。重复进行 n ($n \geqslant 6$) 次检定。
- **5.2.6.3** 工作量器检定时,如液温超出(20±5) \mathbb{C} ,第j点 20 \mathbb{C} 下的容积值 V_{20} 按下式计算。

$$V_{20j} = V_j \left[1 - \alpha_1 \left(\theta_1 - 20 \right) - 2\alpha_2 \left(\theta_2 - 20 \right) + 3\alpha_3 \left(\theta_3 - 20 \right) + \beta \left(\theta_2 - \theta_3 \right) \right]$$
 (12) 式中: V_j —— j 点检定时,标准量器注入工作量器中的水的容积值, \mathbf{m}^3 ;

β——温度为 θ₃ 时液体的体胀系数, $1/\mathbb{C}$;

 α_1 ——工作量器标尺材料的线胀系数, 1/C;

 α_2 ——工作量器材料的线胀系数, $1/\mathbb{C}$;

α。——标准量器材料的线胀系数、1/C。

5.2.6.4 工作量器的不确定度

第
$$j$$
 检定点液位平均值
$$L_{r} = \frac{\sum\limits_{i=1}^{n} L_{i}}{n}$$
 (13)

式中: L; --- 第 ; 检定点第 ; 次检定液位值, mm。

检定点单次测量 A 类相对标准不确定度

$$s_{3j} = \frac{K}{V_{20}} \left[\frac{\sum_{i=1}^{n} (L_i - L)^2}{n-1} \right]^{1/2} \times 100\%$$
 (14)

式中: $K = \frac{V_{j+1} - V_j}{L_{j+1} - L_j}$ 或 $K = \frac{V_j - V_{j-1}}{L_j - L_{j-1}}$ 。

单次测量 A 类相对标准不确定度 $s_3 = (s_3,)_{max}$ (15)

- 5.2.7 换向器检定
- **5.2.7.1** 换向器应按台位,在最大流量、常用流量和最小流量下进行检定,取各流量点中 不确定度的最大值作为该台位换向器的不确定度。
- 5.2.7.2 根据装置要求选择下述方法之一进行换向器检定。

流量计检定法:

按检定流量计的方法测量 1 次,记录衡器或工作量器读数值 B_{11} 、测量时间 t_{11} 和流量 计脉冲数 N_{11} ; 在与 t_{11} 大致相同时间内操作换向器,使换向器换向 m ($m \ge 10$) 次,记录 衡器或累积读数值 B_{21} 、累积测量时间 t_{21} 和流量计累积脉冲数 N_{21} 。完成 1 次检定。重复进行 n ($n \ge 10$) 次检定,记录 B_{1i} 、 B_{2i} 、 t_{1i} 、 t_{2i} 、 N_{1i} a N_{2i} ($i = 1, 2, \cdots, n$)。

时间差
$$\Delta t_{i} = \frac{t_{1i} \left(N_{1i} / N_{2i} - B_{1i} / B_{2i} \right)}{\left[\left(m B_{1i} / B_{2i} \right) \left(t_{1i} / t_{2i} \right) - N_{1i} / N_{2i} \right]}$$
(16)

平均值 Δt 、A 类相对标准不确定度 s_4 和 B 类相对标准不确定度 u_3 分别按 (3)、(4) 和 (5) 式计算。

行程差法:

将流量调至换向器检定流量,稳定 $10 \min$ 。操作换向器,使换向器换向 $n (n \ge 10)$ 次,分别将换入和换出时间记作 t_1 ,和 t_2 ;。

平均值

$$t_1 = \frac{\sum_{t=1}^{n} t_{1t}}{n} \tag{17}$$

$$t_2 = \frac{\sum_{i=1}^{n} t_{2i}}{n} \tag{18}$$

A 类相对标准不确定度
$$s_5 = \frac{1}{t_{\min}} \left[\sum_{i=1}^{n} (t_{1i} - t_1)^2 \right]^{1/2} \times 100\%$$
 (19)

$$s_6 = \frac{1}{t_{\min}} \left[\sum_{i=1}^{n} \frac{(t_{2i} - t_2)^2}{n-1} \right]^{1/2} \times 100\%$$
 (20)

B类相对标准不确定度

$$u_4 = \frac{t_1 - t_2}{4t_{\text{min}}} \times 100\% \tag{21}$$

- 5.2.8 启停效应检定
- **5.2.8.1** 启停效应按台位,分别在最大流量、常用流量、最小流量下进行检定、取各流量 点中启停效应不确定度的最大值作为该台位的启停效应不确定度。
- 5.2.8.2 启停效应检定按 5.2.7.2 给出的流量计检定法进行。

5.2.8.3 启停时间差 Δt ,、平均值 Δt 、A 类相对标准不确定度 s_7 和 B 类相对标准不确定度 us 分别按式 (16)、(3)、(4) 和 (5) 计算。

- 5.2.9 动态效应检定
- 5.2.9.1 动态效应应按台位,在最大流量、常用流量、最小流量下进行检定,取各流量点 中动态效应不确定度的最大值作为该台位的动态效应不确定度。
- 5.2.9.2 机械衡器动态效应检定

测量衡器壁挂砣处由静止位置到与触发计时时对应位置所移动距离 L (mm), 记录衡 器的初始值 m (kg)、一次收集液体质量 Δm (kg)、测量时间 t (s)。

动态效应不确定度

$$u_6 = \left(\frac{6L}{g}\right)^{1/3} \left(\frac{\Delta m}{t}\right)^{2/3} \frac{(m + \Delta m)^{1/2} - m^{1/3}}{\Delta m} \times 100\%$$
 (22)

5.2.9.3 液位计(电子衡器)动态效应检定

将两个液位传感器固定在同一水平位置上, 使其由上升的液体同时触发。或使两个液位 传感器同时向下移动,碰到静止的液面,分别记录触发时间 t_1 (s)、 t_2 (s)。

动态效应不确定度
$$u_7 = \frac{t_1 - t_2}{t_{\min}} \times 100\%$$
 (23)

5.2.10 装置不确定度

5.2.10.1 装置合成不确定度

静态质量法装置

$$u = (s_1^2 + s_2^2 + s_4^2 + u_1^2 + u_2^2 + u_4^2 + u_F^2)^{1/2}$$
 (24)

或

$$u = (s_1^2 + s_2^2 + s_5^2 + s_6^2 + u_1^2 + u_2^2 + u_4^2 + u_F^2)^{1/2}$$
 (25)

式中: ur---标准砝码相对不确定度。

静态容积法装置

$$u = (s_1^2 + s_3^2 + s_4^2 + u_1^2 + u_4^2 + u_4^2)^{1/2}$$
 (26)

$$u = (s_1^2 + s_3^2 + s_5^2 + s_6^2 + u_1^2 + u_4^2 + u_{\nu}^2)^{1/2}$$
 (27)

式中: и -----标准量器相对不确定度。

动态质量法装置

$$u = (s_1^2 + s_2^2 + u_1^2 + u_2^2 + u_6^2 + u_F^2)^{1/2}$$

$$u = (s_1^2 + s_2^2 + u_1^2 + u_2^2 + u_2^2 + u_2^2)^{1/2}$$
(28)

並

动态容积法装置

$$u = (s_1^2 + s_3^2 + u_1^2 + u_7^2 + u_9^2)^{1/2}$$
(30)

启停质量法装置

$$u = (s_1^2 + s_2^2 + s_7^2 + u_1^2 + u_2^2 + u_5^2 + u_5^2)^{1/2}$$
(31)

启停容积法装置

$$u = (s_1^2 + s_3^2 + s_7^2 + u_1^2 + u_5^2 + u_4^2)^{1/2}$$
(32)

对累积流量装置,式(24)~(32)中的 s₁和 u₁为零。

5.2.10.2 装置的扩展不确定度

$$U = ku \tag{33}$$

式中: k——覆盖因子、 $k = t_B(\nu)$. 见附录 A。

5.2.11 流量稳定性检定

(29)

- 5.2.11.1 每台位分别在最大流量和最小流量下进行检定,取其中流量稳定性的最大值作为 该台位流量稳定性。
- 5.2.11.2 根据装置要求选择下述方法之一进行流量稳定性检定。
 - (1) 累积时间内流量稳定性检定:

连续记录反应流量大小的输出信号 q_{1} ($i=1,2,\dots,n$ $n \ge 60$)。

平均值
$$q_1 = \frac{\sum_{i=1}^{n} q_{1i}}{n}$$
 (34)

 $E_i = \frac{q_{1i} - q_1}{q_1} \times 100\%$ 相对误差 (35)

 $R_i = \frac{\sum_{i=1}^{n-j} E_i \cdot E_{i+j}}{2}$

相关函数

式中: $i=1, 2, \dots, n-1$

稳定性
$$E_{q1} = k \left[\frac{\sum_{j=1}^{n} + R_j + 1}{t} \right]^{1/2} \times 100\%$$
 (37)

(2) 各累积时间之间流量稳定性检定:

连续测量 n ($n \ge 10$) 次流量 q_2 , ($i = 1, 2, \dots, n$)。

平均值
$$q_2 = \frac{\sum_{i=1}^{n} q_{2i}}{n}$$
 (38)

稳定性

$$E_{q2} = \frac{k}{q_2} \left[\sum_{i=1}^{n} (q_{2i} - q_2)^2 \atop n-1} \right]^{1/2} \times 100\%$$
 (39)

(36)

5.3 检定结果处理

检定合格的装置发给检定证书;检定不合格的装置发给检定结果通知书,并注明不合格 项目。

5.4 检定周期

水表检定装置一般不超过2年,其他装置的检定周期一般不超过3年。

tp (v) 表 (不确定度置信水准 P=95%)

ν	tp (v)	ν	$t_P(\nu)$	ν	tp (v)
1	12.71	11	2.20	21	2.08
2	4.30	12	2.18	22	2.07
3	3.18	13	2.16	23	2.07
4	2.78	14	2.15	24	2.06
5	2.57	15	2.13	25	2.06
6	2.45	16	2.12	26	2.06
7	2.37	17	2.11	27	2.05
8	2.31	18	2.10	28	2.05
9	2.26	19	2.09	29	2.04
10	2.23	20	2.09	30	2.04

合成自由度 ν 按下式计算:

$$\nu = \frac{u^4}{\sum \frac{u_i^4}{v_i}}$$

式中, 4---装置合成不确定度,

u.——A 类或 B 类标准不确定度:

ν.——u. 的自由度。

附录 B 装置使用时的注意事项

- B.1 衡器或工作量器按检定证书给出的量限和放空时间使用。
- B.2 衡器读数值 R_m 按下式进行浮力修正:

$$m = R_m \frac{1 - \frac{\rho_a}{\rho_m}}{1 - \frac{\rho_a}{\rho}}$$

式中: m——修正后的质量, kg; ρ_a ——空气密度, kg/m^3 ;

ρ——使用时液体密度, kg/m³;

 ρ_m ——检定衡器时使用的标准砝码密度, kg/m³。

B.3 工作量器温度在 (20 ± 5) ℃以外时,工作量器读数值 V_{θ} 按下式进行温度修正:

$$V_{\theta} = V_{20}[1 + \beta(\theta - 20)]$$

式中: V_{20} —修正后的体积, m^3 ;

 β ——工作量器材料的体胀系数, 1/C;

· θ----工作量器内液体温度,℃。

附录C 检定证书的内页格式

台(位编号	
适用流量i	十口径 DN (mm)	
	型号	
计时器	晶振稳定度(%)	
1上6月49	A 类标准不确定度 (%)	
	B 类标准不确定度 (%)	
	型号	
	型式 (名称)	
	使用量限 (kg 或 m³)	
衡器或工作量器	K (1/mm)	
	放空时间 (s)	
	A 类标准不确定度(%)	
	B类标准不确定度(%)	

		->1
台位	编号	
	型号	
换向器	型式 (名称)	
(检定法 ;) (或 动态 效 应 或 启 停 效 应	A 类标准不确定度 (%)	
	B类标准不确定度 (%)	
流量稳定性 (%)(检定法:)	
流量范围 (m³/h)		
最短測量时间 (s)		
装置不确定度(%)		

覆盖因子: k=