三、解答题: (共5个小题,满分70分)

- 17. (12分) $\triangle ABC$ 中,D 是 BC上的点,AD平分 $\angle BAC$, $\triangle ABD$ 面积是 $\triangle ADC$ 面积的 2 倍.
 - $(I) \stackrel{\Rightarrow}{\times} \frac{\sin \angle B}{\sin \angle C};$
 - (II) 若 AD = 1, $DC = \frac{\sqrt{2}}{2}$, 求 BD和 AC 的长.
- 18. (12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A地区: 62 73 81 92 95 85 74 64 53 76

78 86 95 66 97 78 88 82 76 89

B地区: 73 83 62 51 91 46 53 73 64 82

93 48 65 81 74 56 54 76 65 79

(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);

A地区		B地区
	4	
	5	
	6	
	7	
	8	
	9	

(II) 根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分	低于70分	70 分到 89 分	不低于 90 分
满意度等级	不满意	满意	非常满意

记事件 C: "A地区用户的满意度等级高于B地区用户的满意度等级". 假设两地区用户的评价结果相互独立. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求 C 的概率.

19. (12分) 如图,长方体 $ABCD-A_1B_1C_1D_1$ 中,AB=16,BC=10, $AA_1=8$,点 E,F 分别 在 A_1B_1 , D_1C_1 上, $A_1E=D_1F=4$. 过点 E,F 的平面 α 与此长方体的面相交,交线围成一个正方形.

- (I) 在图中画出这个正方形 (不必说明画法和理由);
- (II) 求直线 AF 与平面 α 所成角的正弦值.

20. (12分)

已知是椭圆 C: $9x^2 + y^2 = m^2 (m > 0)$,直线 l 不过原点 O 且不平行于坐标轴,l 与 C 有两个交点 A, B, 线段 AB 的中点为 M.

- (I) 证明: 直线 OM 的斜率与 l 的斜率的乘积为定值;
- (II) 若 过点 $(\frac{m}{3}, m)$, 延长线段 OM 与 C交于点 P, 四边形 OAPB能否为平行四边形? 若能,求此时 l 的斜率; 若不能,说明理由.

21. (12分)

设函数 $f(x) = e^{mx} + x^2 - mx$.

- (I)证明 f(x) 在 $(-\infty, 0)$ 单调递减,在 $(0, +\infty)$ 单调递增;
- (II) 若对于任意 $x_1, x_2 \in [-1, 1]$, 都有 $|f(x_1) f(x_2)| \le e 1$, 求 m 的取值范围.

请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

22. (10 分) 选修 4-1: 几何证明选讲

如图,O 为等腰三角形 ABC 内一点, $\odot O$ 与 $\triangle ABC$ 的底边 BC 交于 M, N 两点,与底边上的高 AD 交于点 G,且与 AB,AC 分别相切于 E,F 两点.

- (I)证明: *EF*//*BC*;
- (II) 若 AG 等于 $\odot O$ 的半径,且 $AE = MN = 2\sqrt{3}$,求四边形 EBCF 的面积.

23. (10 分) 选修 4-4: 坐标系与参数方程

在直角坐标系
$$xOy$$
 中,曲线 $C_1: \begin{cases} x = t\cos\alpha \\ y = t\sin\alpha \end{cases}$, $(t \ \text{是参数}, \ t \neq 0)$

其中 $0 \le \alpha < \pi$, 在以 O 为极点, x 轴正半轴为极轴的极坐标系中, 曲线 $C_2: \rho = 2\sin\theta$, $C_3: \rho = 2\sqrt{3}\cos\theta$.

- (I) 求 C_2 与 C_3 的交点的直角坐标;
- (II) 若 C_1 与 C_2 相交于点 A, C_1 与 C_3 相交于点 B, 求 |AB| 的最大值.
- 24. (10 分) 选修 4-5: 不等式选讲

设 a,b,c,d均为正数,且 a+b=c+d,证明:

- (I) 若 ab > cd, 则 $\sqrt{a} + \sqrt{b} > \sqrt{c} + \sqrt{d}$;
- (II) $\sqrt{a} + \sqrt{b} > \sqrt{c} + \sqrt{d}$ 是 |a-b| < |c-d| 的充要条件.