

Algorithms: Design and Analysis, Part II

Greedy Algorithms

A Scheduling Application: Correctness Proof Part I

Correctness Claim

Claim: Algorithm #2 (order jobs according to decreasing ratios w_j/l_j) is always correct.

Proof: By an Exchange Argument.

Plan: Fix arbitrary input of n jobs. Will proceed by contradiction. Let $\sigma =$ greedy schedule, $\sigma^* =$ optimal schedule. (With σ^* better than σ .)

Will produce schedule even better than σ^* , contradicting purported optimality of σ^* .

Correctness Proof

Assume: All w_i/I_i 's distinct.

Assume: [Just by renaming jobs] $w_1/l_1 > w_2/l_2 > ... > w_n/l_n$.

Thus: Greedy schedule σ is just $1, 2, 3, \ldots, n$.

Thus: If optimal schedule $\sigma^* \neq \sigma$, then there are consecutive jobs i, j with i > j.

[Only schedule where indices always go up is $1, 2, 3, \ldots, n$]

Correctness Proof (con'd)

So far:

- 1. $w_1/I_1 > w_2/I_2 > \ldots > w_n/I_n$
- 2. In optimal σ^* , \exists consecutive jobs i, j with i > j.

Thought experiment: Suppose we exchange order of i&j in σ^* (leaving other jobs unchanged):

