Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського» Інститут прикладного системного аналізу

Курсова робота

з дисципліни «Теорія керування»

Виконав: студент 4 курсу

групи КА-81

Галганов Олексій

Прийняв: професор

Романенко Віктор Демидович

3MICT

РОЗДІЛ 1 Вступ	2
1.1. Теоретичні дані	2
1.2. Завдання курсової роботи	3
1.3. Значення коефіцієнтів та сталих	4
РОЗДІЛ 2 Розрахунок дискретних передаточних функцій	5
2.1. Теоретичні дані	5
2.2. Випадок $W_O(s) = \frac{k}{T_{o+1}}$	5
2.3. Випадок $W_O(s) = \frac{r_1 s + 1}{(T_O + 1)(T_O + 1)}$	6
2.2. Випадок $W_O(s) = \frac{k}{T_1 s + 1}$. 2.3. Випадок $W_O(s) = \frac{k}{(T_1 s + 1)(T_2 s + 1)}$. 2.4. Випадок $W_O(s) = \frac{k e^{-\tau s}}{T_1 s + 1}$. 2.5. Випадок $W_O(s) = \frac{k e^{-\tau s}}{(T_1 s + 1)(T_2 s + 1)}$.	7
2.5. Випадок $W_O(s) = \frac{r_1 s + \frac{1}{k} e^{-\tau s}}{(T_{col} + 1)(T_{col} + 1)}$	8
РОЗДІЛ 3 Розрахунок періодів квантування	10
3.1. Розрахунок на умові забезпечення необхідної точності керування	10
$3.1.1$ Випадок $W_{O_1}(s) = \frac{ke^{-\tau s}}{T_{cs+1}}$	10
3.1.2 Випадок $W_{O_2}(s) = \frac{r_1 s + \frac{1}{k} e^{-\tau s}}{(T_1 s + 1)(T_2 s + 1)} \dots$	11
	11
$3.2.1$ Випадок $W_{O_1}(s)=rac{ke^{- au s}}{T_1s+1}$	12
3.2.2 Випадок $W_{O_2}(s) = \frac{r_1 s + \frac{1}{k} e^{-\tau s}}{(T_1 s + 1)(T_2 s + 1)} \dots$	13
3.3. Розрахунок для об'єкта з динамікою в чисельнику	13
РОЗДІЛ 4 Визначення структури та оптимальних настройок регуляторів ме-	
тодом «прямого» синтезу	15
РОЗДІЛ 5 Розрахунок оптимальних параметрів ПІ-регулятора і періоду кван-	
тування резонансним метолом	17
5.1. Випадок $W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$. 5.2. Випадок $W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$.	17
5.2. Випалок $W_{O_s}(s) = \frac{(T_1s+1)(T_2s+1)(T_3s+1)}{ke^{-T_2s}}$	20
РОЗДІЛ 6 Синтез лінійно-квадратичного регулятора стану	23
РОЗДІЛ 7 Дослідження стійкості	
	26
	27
	29
8.1. Позиційний алгоритм	
	29
РОЗПІП О Молепирання заминених систем	30
9.1. Випадок $W_O(s) = \frac{ke^{-\tau s}}{\sqrt{T_0 + 1}\sqrt{T_0 + 1}}$.	30
9.1. Випадок $W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$	30
9.3. Випадок $W_O(s) = \frac{ke^{-\tau s}}{k}$	31
	-

ВСТУП

1.1. Теоретичні дані

Розглядається одноконтурна система автоматичного цифрового керування (ЦК) з наступною структурною схемою:

Тут $W_O(s)$ – передаточна функція об'єкта керування по керуючому діянню, G(s) і u(s) – відповідно задаюче і керуюче діяння в формі перетворення Лапласа, $W_p^*(s)$ – передаточна функція цифрового регулятора (ЦАП) у формі дискретного перетворення Лапласа, $W_E(s)$ – передаточна функція цифро-аналогового регулятора, $E^*(s)$, $u^*(s)$, $y^*(s)$ – відповідно помилка керування, керуюче діяння та вихідна керована координата у формі дискретного перетворення Лапласа. Передаточні функції об'єкта для окремих задач мають вигляд

$$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$$
(1.1)

$$W_O(s) = \frac{k(T_1s+1)}{(T_2s+1)(T_3s+1)} \tag{1.2}$$

де k – коефіцієнт передачі об'єкта керування, T_1, T_2, T_3 – сталі часу в секундах, τ – час запізнення в секундах.

Регулятор ЦК, представлений в різницевій формі на основі позиційного алгоритма пропорційно-інтегрально-диференціального (ПІД) закону керування записується таким чином:

$$u[nT_0] = K_p \left(e[nT_0] + \frac{T_0}{T_I} \sum_{i=1}^n e[iT_0] + \frac{T_D}{T_0} \left[e[nT_0] - e[(n-1)T_0] \right] \right)$$
(1.3)

Тут $u[nT_0]$ та $e[nT_0]$ – відповідно керуюче діяння і помилка керування в n-тий період квантування, K_p – коефіцієнт передачі регулятора, T_I та T_D – відповідно сталі часу інтегрування та диференціювання в секундах, T_0 – період квантування в секундах.

Відповідно до (1.3), дискретна передаточна функція ПІД-регулятора має вигляд

$$W_p(z) = K_p \left(1 + \frac{T_0}{T_I (1 - z^{-1})} + \frac{T_D (1 - z^{-1})}{T_0} \right)$$
 (1.4)

Якщо час диференціювання $T_D=0$, то для цифрового ПІ-регулятора матимемо дискретну передаточну функцію

$$W_p(z) = K_p \left(1 + \frac{T_0}{T_I (1 - z^{-1})} \right)$$
 (1.5)

де $z=e^{sT_0}$ — оператор z-перетворення.

1.2. Завдання курсової роботи

1. Розрахувати дискретну передаточну функцію замкненого контура цифрового керування, попередньо розрахувавши дискретну передаточну функцію приведеної неперервної частини (ПНЧ) об'єкта

$$W_{\Pi}(z) = z \{ W_E(s) \cdot W_O(s) \}$$
 (1.6)

для наступних варіантів передаточної функції об'єкта:

$$W_O(S) = \frac{k}{T_1 s + 1}, W_O(S) = \frac{k}{(T_1 s + 1)(T_2 s + 1)}, W_O(S) = \frac{k e^{-\tau s}}{T_1 s + 1}, W_O(S) = \frac{k e^{-\tau s}}{(T_1 s + 1)(T_2 s + 1)}.$$

2. Розрахувати періоди квантування в системі цифрового керування для об'єктів

$$W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1 s + 1} \tag{1.7}$$

$$W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$$
(1.8)

і для об'єкта (1.2), передаточна функція якого має динаміку в чисельнику.

3. На основі методу «прямого» синтезу визначити структуру і оптимальні настройки регуляторів цифрового керування і неперервного регулятора для управління об'єктами, передаточна функція яких має вигляд (1.7). При цьому приймається період квантування T_0 , розрахований у пункті 2 на основі умови забезпечення необхідної точності керування. Значення коефіцієнта підсилення регулятора $K_{P_{\text{опт}}}$ необхідно визначити при таких параметрах настройки λ :

а)
$$\lambda = \frac{1}{T_1}$$
; б) $\lambda = \frac{1}{1.5T_1}$; в) $\lambda = \frac{1}{2T_1}$; г) $\lambda = \frac{1}{3T_1}$.

Для вказаного набору параметрів настройки λ шляхом цифрового моделювання побудувати перехідні процеси в замкненому контурі цифрового керування.

- 4. Розрахувати оптимальні параметри ПІ-регулятора цифрового керування і періоду квантування резонансним методом для об'єкта керування (1.1), (1.8). На основі цифрового моделювання побудувати перехідні процеси вихідної координати y в замкненому контурі при подачі імпульсних тестів на задаюче діяння цифрового регулятора.
- 5. Виконати синтез лінійно-квадратичного регулятора стану і виконати цифрове моделювання замкненої системи з регулятором стану.
- 6. Дослідити стійкість контура цифрового керування, розрахованої за пунктом 3. При цьому використовувати відомі критерії стійкості.
- 7. Сформувати позиційний і швидкісний алгоритм цифрового керування в формі, зручній для програмування для регуляторів цифрового керування відповідно до пунктів 3, 4.
- 8. Виконати цифрове моделювання замкнених систем керування при синтезованих цифрових регуляторах.

1.3. Значення коефіцієнтів та сталих

k	T_1	T_2	T_3	τ
9.32	35	19	11	14

k – коефіцієнт передачі об'єкта керування, T_1, T_2, T_3 – сталі часу в секундах, τ – час запізнення в секундах.

РОЗРАХУНОК ДИСКРЕТНИХ ПЕРЕДАТОЧНИХ ФУНКЦІЙ

2.1. Теоретичні дані

Дискретну передаточну функцію приведеної неперервної частини (ПНЧ) об'єкта має вигляд

$$W_{\Pi}(z) = z \left\{ W_{E}(s) \cdot W_{O}(s) \right\} = z \left\{ \frac{1 - e^{-sT_{0}}}{s} \cdot W_{O}(S) \right\} =$$

$$= z \left\{ \left(1 - e^{-sT_{0}} \right) \cdot \frac{W_{O}(s)}{s} \right\} = \left(1 - z^{-1} \right) \cdot z \left\{ \frac{W_{O}(s)}{s} \right\}$$
(2.1)

Дискретна передаточна функція замкненого контуру цифрового керування має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)}$$
(2.2)

де $W_p(z)$ – дискретна передаточна функція регулятора, що для ПІД-регулятора має вигляд (1.3), а для ПІ-регулятора – вигляд (1.5). Далі за текстом термін «дискретна передаточна функція» буде скорочено до ДПФ.

2.2. Випадок $W_O(s) = \frac{k}{T_1 s + 1}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{k}{s(T_1s+1)}=\frac{k}{s}-\frac{kT_1}{T_1s+1}.$ За таблицею z-перетворення отримаємо

$$z\left\{\frac{W_O(s)}{s}\right\} = \frac{kz}{z-1} - \frac{kz}{z - e^{T_0/T_1}} = \frac{k\left(1 - e^{-T_0/T_1}\right)z}{(z-1)\left(z - e^{-T_0/T_1}\right)}$$
(2.3)

Тому ДПФ ПНЧ має вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} = \frac{z - 1}{z} \cdot \frac{k \left(1 - e^{-T_0/T_1} \right) z}{(z - 1) \left(z - e^{-T_0/T_1} \right)} = \frac{k \left(1 - e^{-T_0/T_1} \right)}{z - e^{-T_0/T_1}}$$
(2.4)

Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} = \frac{\frac{k(1 - e^{-T_{0}/T_{1}})}{z - e^{-T_{0}/T_{1}}} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k(1 - e^{-T_{0}/T_{1}})}{z - e^{-T_{0}/T_{1}}} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)} = \frac{k\left(1 - e^{-T_{0}/T_{1}}\right) \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{\left(z - e^{-T_{0}/T_{1}}\right) + k\left(1 - e^{-T_{0}/T_{1}}\right) \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)} = \frac{kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)}{\left(z - e^{-T_{0}/T_{1}}\right)T_{0}T_{I}(1 - z^{-1}) + kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)z^{-1}} = \frac{kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)z^{-1}}{\left(1 - e^{-T_{0}/T_{1}}\right)T_{0}T_{I}(1 - z^{-1}) + kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)z^{-1}}}$$

$$(2.5)$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}(1-e^{-T_{0}/T_{1}})(T_{0}T_{1}(1-z^{-1})+T_{0}^{2})z^{-1}}{(1-e^{-T_{0}/T_{1}}z^{-1})T_{0}T_{1}(1-z^{-1})+kK_{p}(1-e^{-T_{0}/T_{1}})(T_{0}T_{1}(1-z^{-1})+T_{0}^{2})z^{-1}} = \frac{kK_{p}(z-e^{-T_{0}/T_{1}})(T_{1}(1-z^{-1})+T_{0})z^{-1}}{(1-e^{-T_{0}/T_{1}z^{-1}})T_{1}(1-z^{-1})+kK_{p}(z-e^{-T_{0}/T_{1}})(T_{1}(1-z^{-1})+T_{0})z^{-1}}$$
(2.6)

2.3. Випадок $W_O(s) = \frac{k}{(T_1s+1)(T_2s+1)}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{k}{s(T_1s+1)(T_2s+1)}=\frac{k}{s}-\frac{kT_1^2}{(T_1-T_2)(T_1s+1)}+\frac{kT_2^2}{(T_1-T_2)(T_2s+1)}.$ За таблицею z-перетворення отримаємо

$$z\left\{\frac{W_O(s)}{s}\right\} = k\left(\frac{z}{z-1} - \frac{az}{T_1(z-d_1)} + \frac{bz}{T_2(z-d_2)}\right)$$
(2.7)

де $a=\frac{T_1^2}{T_1-T_2},\,b=\frac{T_2^2}{T_1-T_2},\,d_1=e^{-T_0/T_1},\,d_2=e^{-T_0/T_2}.$ Тому ДПФ ПНЧ має вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} =$$

$$= \frac{z - 1}{z} \cdot k \left(\frac{z}{z - 1} - \frac{az}{T_1(z - d_1)} + \frac{bz}{T_2(z - d_2)} \right) =$$

$$= k \left(1 - \frac{a(z - 1)}{T_1(z - d_1)} + \frac{b(z - 1)}{T_2(z - d_2)} \right)$$
(2.8)

Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} =$$

$$= \frac{k\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) K_{p}\left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)}{1 + k\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) K_{p}\left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)} =$$

$$= \frac{kK_{p}\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}(1-z^{-1}) + kK_{p}\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)} =$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{1}T_{1}T_{2}(1-z^{-1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + tT_{0}^{2}}{T_{0}T_{1}T_{1}T_{2}(1-z^{-1}) + tT_{0}^{2}}$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{0}T_{I}\left(1-z^{-1}\right)+T_{0}^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2})+kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{0}T_{I}(1-z^{-1})+T_{0}^{2}\right)} = \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{I}\left(1-z^{-1}\right)+T_{0}\right)}{T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2})+kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))(T_{I}(1-z^{-1})+T_{0})}$$
 (2.10)

2.4. Випадок $W_O(s) = \frac{ke^{-\tau s}}{T_1 s + 1}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{ke^{-\tau s}}{s(T_1s+1)}=\frac{ke^{-\tau s}}{s}-\frac{kT_1e^{-\tau s}}{T_1s+1}$. За таблицею z-перетворення отримаємо для $dT_0<\tau\le (d+1)T_0$

$$z\left\{\frac{W_O(s)}{s}\right\} = \frac{kz^{-d}}{z-1} - \frac{kz^{-d-1}}{1 - e^{-T_0/T_1}z^{-1}} e^{\left[\frac{\tau}{T_1} - (d+1)\frac{T_0}{T_1}\right]}$$
(2.11)

Тоді після перетворень ДПФ ПНЧ матиме вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} = \frac{k \left(C_1 + C_2 z^{-1} \right) z^{-d-1}}{1 - e^{-T_0/T_1} z^{-1}}$$
(2.12)

де d — ціла частина від ділення часу запізнення τ на період квантування $T_0, a=1-\frac{\tau-dT_0}{T_0}, C_1=1-e^{-\frac{aT_0}{T_1}}, C_2=e^{-\frac{aT_0}{T_1}}-e^{-\frac{T_0}{T_1}}.$ Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{\mathbf{3}}(z) = \frac{W_{\mathbf{\Pi}}(z) \cdot W_{p}(z)}{1 + W_{\mathbf{\Pi}}(z) \cdot W_{p}(z)} = \frac{\frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}\left(1 - z^{-1}\right)}{T_{0}}\right)}{1 + \frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{T_{0}} = \frac{1}{2} \left(1 + \frac{1}{2}\left(1 - z^{-1}\right) + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right) + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{1}{2}\left(1 - z^{-1}\right)T_{1}z^{-1}\right)} = \frac{1}{2} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{T_{D}(1 - z^{-1})}{T_{0}}} = \frac{1}{2} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{T_{D}(1 - z^{-1})}{T_{0}}} = \frac{1}{2} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{T_{D}(1 - z^{-1})}{T_{0}}} = \frac{1}{2} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{T_{D}(1 - z^{-1})}{T_{0}}} = \frac{1}{2} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{T_{D}(1 - z^{-1})}{T_{0}}} = \frac{1}{2} \left(1 + \frac{T_{0}}{T_{0}}\right)$$

$$= \frac{k \left(C_{1} + C_{2} z^{-1}\right) z^{-d-1} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)}{\left(1 - e^{-T_{0}/T_{1}} z^{-1}\right) + k \left(C_{1} + C_{2} z^{-1}\right) z^{-d-1} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)} = \frac{kK_{p} z^{-d-1} \left(C_{1} + C_{2} z^{-1}\right) \left(T_{0} T_{I} \left(1-z^{-1}\right) + T_{0}^{2} + T_{I} T_{D} \left(1-z^{-1}\right)^{2}\right)}{T_{0} T_{I} \left(1 - e^{-T_{0}/T_{1}} z^{-1}\right) \left(1 - z^{-1}\right) + kK_{p} z^{-d-1} \left(C_{1} + C_{2} z^{-1}\right) \left(T_{0} T_{I} \left(1-z^{-1}\right) + T_{0}^{2} + T_{I} T_{D} \left(1-z^{-1}\right)^{2}\right)}$$

$$(2.13)$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}z^{-d-1}(C_{1}+C_{2}z^{-1})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})}{T_{0}T_{I}(1-e^{-T_{0}/T_{1}}z^{-1})(1-z^{-1})+kK_{p}z^{-d-1}(C_{1}+C_{2}z^{-1})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})} = \frac{kK_{p}z^{-d-1}(C_{1}+C_{2}z^{-1})(T_{I}(1-z^{-1})+T_{0})}{T_{I}(1-e^{-T_{0}/T_{1}}z^{-1})(1-z^{-1})+kK_{p}z^{-d-1}(C_{1}+C_{2}z^{-1})(T_{I}(1-z^{-1})+T_{0})}$$

$$(2.14)$$

2.5. Випадок $W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{ke^{-\tau s}}{s(T_1s+1)(T_2s+1)}=\frac{ke^{-\tau s}}{s}-\frac{kT_1^2e^{-\tau s}}{(T_1-T_2)(T_1s+1)}+\frac{kT_2^2e^{-\tau s}}{(T_1-T_2)(T_2s+1)}.$ За таблицею z-перетворення отримаємо для $dT_0<\tau\le (d+1)T_0$

$$z\left\{\frac{W_O(s)}{s}\right\} = \frac{kz^{-d}}{z-1} - \frac{kT_1e^{\left[\frac{\tau}{T_1}-(d+1)\frac{T_0}{T_1}\right]}z^{-d-1}}{(T_1-T_2)\left(1-e^{-T_0/T_1}z^{-1}\right)} + \frac{kT_2e^{\left[\frac{\tau}{T_2}-(d+1)\frac{T_0}{T_2}\right]}z^{-d-1}}{(T_1-T_2)\left(1-e^{-T_0/T_2}z^{-1}\right)}$$
(2.15)

Тоді після перетворень ДПФ ПНЧ матиме вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} = \frac{k \left(\tilde{C}_0 + \tilde{C}_1 z^{-1} + \tilde{C}_2 z^{-2} \right) z^{-d-1}}{\left(1 - e^{-T_0/T_1} z^{-1} \right) \left(1 - e^{-T_0/T_2} z^{-1} \right)}$$
(2.16)

де $a=(d+1)-rac{ au}{T_0}$ і сталі $ilde{C}_0, ilde{C}_1, ilde{C}_2$ визначаються з

$$\tilde{C}_0 = 1 - \frac{T_1 e^{-aT_0/T_1} - T_2 e^{-aT_0/T_2}}{T_1 - T_2}$$

$$\tilde{C}_1 = \frac{T_1 e^{-aT_0/T_1} \left(1 + e^{-T_0/T_2}\right) - T_2 e^{-aT_0/T_2} \left(1 + e^{-T_0/T_1}\right)}{T_1 - T_2} - e^{-T_0/T_1} - e^{-T_0/T_2}$$

$$\tilde{C}_2 = e^{-T_0/T_1} e^{-T_0/T_2} - \frac{T_1 e^{-aT_0/T_1} e^{-T_0/T_2} - T_2 e^{-T_0/T_1} e^{-aT_0/T_2}}{T_1 - T_2}$$

як і раніше, d — ціла частина від ділення часу запізнення τ на період квантування T_0 . Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} = \frac{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1}}{(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{2}z^{-1}})} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1}}{(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{2}z^{-1}})} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}\right)} = \frac{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{2}z^{-1}}) + k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}\right)} = \frac{kK_{p}z^{-d-1}(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2})}{T_{0}T_{I}(1 - z^{-1})(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{1}z^{-1}}) + kK_{p}z^{-d-1}(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2})}}$$

$$(2.17)$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{\Pi}(z) = \frac{kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})}{T_{0}T_{I}(1-z^{-1})(1-e^{-T_{0}/T_{1}}z^{-1})(1-e^{-T_{0}/T_{2}}z^{-1})+kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})} = \frac{kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{I}(1-z^{-1})+T_{0})}{T_{I}(1-z^{-1})(1-e^{-T_{0}/T_{1}}z^{-1})(1-e^{-T_{0}/T_{2}}z^{-1})+kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{I}(1-z^{-1})+T_{0})}$$
 (2.18)

РОЗРАХУНОК ПЕРІОДІВ КВАНТУВАННЯ

3.1. Розрахунок на умові забезпечення необхідної точності керування

За цим критерієм період квантування обчислюється з умови $T_0 \leq \frac{\varepsilon}{B_{\max}}$, де B_{\max} — максимальне значення функції $B(\omega) = \omega A(\omega)$, а $A(\omega)$ — амплітудно-частотна характеристика (АЧХ) об'єкта. $B(\omega)$ описує верхню границю можливих швидкостей зміни сигналу на виході об'єкта.

3.1.1. Випадок
$$W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1s+1}$$

Знайдемо $B(\omega)$:

$$B(\omega) = \omega A(\omega) = \omega \cdot |W_{O_1}(j\omega)| = \omega \cdot \frac{k |e^{-\tau j\omega}|}{|T_1 j\omega + 1|} = \frac{k\omega}{\sqrt{1 + T_1^2 \omega^2}}$$
(3.1)

Оскільки $\frac{k\omega}{\sqrt{1+T_1^2\omega^2}}=\frac{k}{\sqrt{\frac{1}{\omega^2}+T_1^2}},$ то $B(\omega)$ – монотонно зростаюча за ω функція, тому

$$B_{\text{max}} = \lim_{\omega \to +\infty} B(\omega) = \frac{k}{T_1} \Rightarrow T_0 = \frac{\varepsilon T_1}{k}$$
 (3.2)

Отже, отримуємо наступні періоди квантування для різних ε :

ε	0.01	0.02	0.03	0.04	0.05
T_0	0.0376	0.0751	0.1127	0.1502	0.1878

Залежність T_0 від ε :

3.1.2. Випадок
$$W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$$

Знайдемо $B(\omega)$:

$$B(\omega) = \omega A(\omega) = \omega \cdot |W_{O_2}(j\omega)| = \omega \cdot \frac{k \left| e^{-\tau j\omega} \right|}{|T_1 j\omega + 1| |T_2 j\omega + 1|} = \frac{k\omega}{\sqrt{(1 + T_1^2 \omega^2)(1 + T_2^2 \omega^2)}}$$
(3.3)

 B_{\max} можна знайти за допомогою відповідної таблиці:

$$B_{\text{max}} = \frac{k}{T_1 + T_2} \Rightarrow T_0 = \frac{\varepsilon (T_1 + T_2)}{k}$$
(3.4)

Отже, отримуємо наступні періоди квантування для різних ε :

ε	0.01	0.02	0.03	0.04	0.05
T_0	0.0579	0.1159	0.1738	0.2318	0.2897

Залежність T_0 від ε :

3.2. Розрахунок за критерієм Джурі

За цим критерієм період квантування обчислюється як $T_0=\frac{\pi}{\omega_k}$, де ω_k – розв'язок рівняння

$$|W_3(j\omega_k)| = \left| \frac{W_O(j\omega_k)W_p(j\omega_k)}{1 + W_O(j\omega_k)W_p(j\omega_k)} \right| = \varepsilon$$
(3.5)

3.2.1. Випадок $W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1s+1}$

Згідно з розділом 4, оптимальним регулятором в цьому випадку є ПІ-регулятор з передаточною функцією $W_p(s)=K_p\left(1+\frac{1}{T_Is}\right)=K_p\cdot\frac{T_1s+1}{T_1s}$, де $K_p=\frac{\lambda T_1}{k(1+\lambda\tau)}$, $\lambda=\frac{1}{T_1}$, $T_I=T_1$. Знайдемо $|W_3(j\omega)|$:

$$|W_{3}(j\omega)| = \frac{|W_{O_{1}}(j\omega)W_{p}(j\omega)|}{|1 + W_{O_{1}}(j\omega)W_{p}(j\omega)|} = \frac{\left|\frac{ke^{-\tau j\omega}}{T_{1}j\omega + 1} \cdot K_{p} \cdot \frac{T_{1}j\omega + 1}{T_{1}j\omega}\right|}{\left|1 + \frac{ke^{-\tau j\omega}}{T_{1}j\omega + 1} \cdot K_{p} \cdot \frac{T_{1}j\omega + 1}{T_{1}j\omega}\right|} = \frac{\left|\frac{kK_{p}e^{-\tau j\omega}}{T_{1}j\omega + kK_{p}e^{-\tau j\omega}}\right|}{\left|1 + \frac{T_{1}}{kK_{p}}j\omega e^{\tau j\omega}\right|} = \frac{1}{\left|1 + \frac{T_{1}}{kK_{p}}j\omega\left(\cos\tau\omega + j\sin\tau\omega\right)\right|} = \frac{1}{\left|1 + \frac{T_{1}}{kK_{p}}j\omega\left(\cos\tau\omega + j\sin\tau\omega\right)\right|} = \frac{1}{\left|1 - \frac{T_{1}}{kK_{p}}\omega\sin\tau\omega + j\frac{T_{1}}{kK_{p}}\omega\cos\tau\omega\right|} = \frac{1}{\sqrt{\left(\frac{T_{1}}{kK_{p}}\omega\sin\tau\omega\right)^{2} + \left(\frac{T_{1}}{kK_{p}}\omega\cos\tau\omega\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{T_{1}}{kK_{p}}\right)^{2}\omega^{2} - 2\frac{T_{1}}{kK_{p}}\omega\sin\tau\omega + 1}}$$

Отже, $|W_3(j\omega)|=\varepsilon\Leftrightarrow \left(\frac{T_1}{kK_p}\right)^2\omega^2-2\frac{T_1}{kK_p}\omega\sin\tau\omega+1=\frac{1}{\varepsilon^2}$. Отримуємо наступні періоди квантування для різних ε :

ε	0.01	0.02	0.03	0.04	0.05
ω_k	2.0361	1.0391	0.6785	0.5285	0.3937
T_0	1.5430	3.0234	4.6304	5.9449	7.9803

Залежність T_0 від ε :

3.2.2. Випадок
$$W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$$

Згідно з розділом 5, оптимальним регулятором в цьому випадку є ПІ-регулятор з передаточною функцією $W_p(s)=K_p\left(1+\frac{1}{T_Is}\right)=K_p\cdot\frac{T_1s+1}{T_1s}$, де $K_p=0.23703$, $T_I=105.72649$. Аналітичний запис $|W_3(j\omega)|$ досить складний, тому одразу наведемо чисельно знайдені розв'язки рівняння $|W_3(j\omega)|=\varepsilon$ для різних ε :

ε	0.01	0.02	0.03	0.04	0.05
ω_k	0.5746	0.4084	0.3284	0.2800	0.2478
T_0	5.4670	7.6924	9.5656	11.2188	12.6804

Залежність T_0 від ε :

3.3. Розрахунок для об'єкта з динамікою в чисельнику

Розглядається об'єкт з передаточною функцією $W_O(s)=\frac{k(T_1s+1)}{(T_2s+1)(T_3s+1)}$. Через те, що передаточна функція має динаміку в чисельнику, критерій забезпечення необхідної точності керування та критерій Джурі непридатні для застосування. Приведемо передаточну функцію до вигляду $W_O(s)=\frac{K(bTs+1)}{T^2s^2+2\nu Ts+1}$:

$$\frac{k(T_1s+1)}{(T_2s+1)(T_3s+1)} = \frac{k(T_1s+1)}{T_2T_3s^2 + (T_2+T_3)s+1}$$

тому $T=\sqrt{T_2T_3}\approx 14.4568,$ $b=\frac{T_1}{T}\approx 2.421,$ $\nu=\frac{T_2+T_3}{2\sqrt{T_2T_3}}=\frac{T_2+T_3}{2T}\approx 1.0376.$ Знайдемо $|W_O(j\omega)|$:

$$|W_O(j\omega)| = \frac{k |bT \cdot j\omega + 1|}{|-T^2\omega^2 + 2\nu T \cdot j\omega + 1|} = \frac{k\sqrt{1 + b^2 T^2 \omega^2}}{\sqrt{(1 - T^2\omega^2)^2 + 4\nu^2 T^2 \omega^2}}$$

Введемо $\omega_{\rm 3p}=\frac{q}{T}$ — найвищу частоту сигналу, який необхідно відновити на виході системи:

$$|W_O(j\omega_{3p})| = \frac{k\sqrt{1+b^2q^2}}{\sqrt{(1-q^2)^2+4\nu^2q^2}}$$

Розв'яжемо рівняння $|W_O(j\omega_{3p})| = \frac{1}{\theta}$, де $\theta = 31$, відносно q:

Розв'яжемо це рівняння спочатку відносно q^2 . Приблизні значення коренів:

Оскільки комплексні та від'ємні q не розглядаються, то отримуємо $q\approx 699.474$. Отже, період квантування $T_0=\frac{\pi}{\omega_{\text{3p}}}=\frac{\pi T}{q}=0.0649$.

ВИЗНАЧЕННЯ СТРУКТУРИ ТА ОПТИМАЛЬНИХ НАСТРОЙОК РЕГУЛЯТОРІВ МЕТОДОМ «ПРЯМОГО» СИНТЕЗУ

Розглядається об'єкт з передаточною функцією $W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1s+1}$. При перехідному режимі є бажаним аперіодичний перехідний процес в контурі цифрового керування, тобто при подачі на задаюче діяння регулятора одиничного ступінчатого збурення замкнений контур має вести себе як неперервна модель першого порядку з запізненням:

$$W_3(s) = \frac{y(s)}{G(s)} = \frac{\lambda e^{-\tau s}}{s + \lambda} \tag{4.1}$$

Згідно з методичними рекомендаціями, оптимальні параметри ПІ-регулятора з ДПФ $K_p\left(1+\frac{T_0}{T_I(1-z^{-1})}\right)$ визначаються за формулами

$$K_{p_{\text{orr}}} = \frac{1 - e^{-\lambda T_0}}{k \left(e^{T_0/T_1} - 1\right) \left(1 + d\left(1 - e^{-\lambda T_0}\right)\right)}$$
(4.2)

$$T_{I_{\text{ont}}} = \frac{T_0}{e^{T_0/T_1} - 1} \tag{4.3}$$

де d – ціла частина від ділення часу запізнення τ на період квантування T_0 , який беремо на основі умови забезпечення необхідної точності керування. Візьмемо $T_0=0.1127$. Тоді d=124, $T_{I_{\rm out}}=34.9437$, а для різних варіантів λ отримаємо такі значення $K_{p_{\rm out}}$:

λ	$K_{p_{ont}}$
$\frac{1}{T_1} \approx 0.0286$	0.0765
$\frac{1}{1.5T_1} \approx 0.0190$	0.0564
$\frac{1}{2T_1} \approx 0.0143$	0.0446
$\frac{1}{3T_1} \approx 0.0095$	0.0315

Для цифрового моделювання перехідних процесів в замкненому контурі цифрового керування зауважимо, що можна записати рівняння

$$y(z) = W_p(z)W_{\Pi}(z) (G(z) - y(z)) \Rightarrow y(z) = \frac{W_p(z)W_{\Pi}(z)}{1 + W_p(z)W_{\Pi}(z)}G(z) = W_3(z)G(z)$$

де y(z), G(z)-z-перетворення від керованої координати і задаючого діяння відповідно, а передаточну функцію $W_{\rm 3}(z)$ було обчислено в (2.4). Можна записати реку-

рентне рівняння, за яким буде відбуватися моделювання:

$$y_{n} = \left(1 + e^{-T_{0}/T_{1}}\right)y_{n-1} - e^{-T_{0}/T_{1}}y_{n-2} - \frac{kK_{p_{\text{OHT}}}}{T_{I}}\left(\left(C_{1}T_{I_{\text{OHT}}} + C_{1}T_{0}\right)y_{n-d-1} + \left(-C_{1}T_{I_{\text{OHT}}} + C_{2}T_{I_{\text{OHT}}} + C_{2}T_{0}\right)y_{n-d-2} - C_{2}T_{I_{\text{OHT}}}y_{n-d-3}\right) + \frac{kK_{p_{\text{OHT}}}}{T_{I}}\left(\left(C_{1}T_{I_{\text{OHT}}} + C_{1}T_{0}\right)y_{n-d-1} + \left(-C_{1}T_{I_{\text{OHT}}} + C_{2}T_{I_{\text{OHT}}} + C_{2}T_{0}\right)y_{n-d-2} - C_{2}T_{I_{\text{OHT}}}y_{n-d-3}\right)$$

$$(4.4)$$

де $a=1-\frac{\tau-dT_0}{T_0},$ $C_1=1-e^{-\frac{aT_0}{T_1}},$ $C_2=e^{-\frac{aT_0}{T_1}}-e^{-\frac{T_0}{T_1}},$ початкові умови для y нульові, а $g_n=1.$ Отже, маємо наступні перехідні процеси для різних значень λ :

Видно, що процес зміни вихідної координати дійсно має бажаний монотонний характер.

На основі формул (4.2) та (4.3) можна визначити оптимальні настройки для неперервного регулятора, взявши границі при $T_0 \to 0$. Отримаємо $K_p^H = \frac{\lambda T_1}{k(1+\lambda \tau)}$, $T_I^H = T_1$.

РОЗРАХУНОК ОПТИМАЛЬНИХ ПАРАМЕТРІВ ПІ-РЕГУЛЯТОРА І ПЕРІОДУ КВАНТУВАННЯ РЕЗОНАНСНИМ МЕТОДОМ

За завданням, розрахунки треба провести для об'єктів з передаточними функціями $W_O(s)=\frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$ (1.1) та $W_{O_2}(s)=\frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$ (1.8).

Регулятор цифрового керування реалізує пропорційно-інтегральний закон керування, який представлений позиційним алгоритмом:

$$u(nT_0) = K_p \left(e(nT_0) + \frac{T_0}{T_I} \sum_{i=1}^n e(iT_0) \right)$$

Для визначення оптимальних параметрів настройки $K_{p_{\text{опт}}}$, $T_{I_{\text{опт}}}$ та періоду квантування $T_{0_{\text{опт}}}$ скористаємося алгоритмом, наведеним у методичних рекомендаціях до курсової роботи.

5.1. Випадок
$$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$$

а) Шляхом розв'язання відносно частоти ω нелінійного рівняння

$$arctg \omega T_1 + arctg \omega T_2 + arctg \omega T_3 + \omega \tau = 2.62$$
 (5.1)

знаходимо резонансну частоту $\omega_{\varphi_H} = 0.04096$ для неперервного контура керування.

- б) Визначаємо верхню та нижню частоту відносно резонансної частоти неперервної системи: $\omega_{\varphi_H}^H = \frac{\omega_{\varphi_H}}{\sqrt{2}} = 0.02897, \, \omega_{\varphi_H}^B = \sqrt{2}\omega_{\varphi_H} = 0.05793.$
 - в) Використовуючи знайдену частоту ω_{φ_H} , за формулою

$$A(\omega) = \frac{k}{\sqrt{(1+\omega^2 T_1^2)(1+\omega^2 T_2^2)(1+\omega^2 T_3^2)}}$$
 (5.2)

знаходимо другий основний динамічний параметр неперервного контура в частотній області: $A_H\left(\omega_{\varphi_H}\right)=3.83604.$ Також, знайдемо третій основний параметр $\Phi_H(A)=\frac{A\left(\omega_{\varphi_H}^B\right)}{A\left(\omega_{\varphi_H}^B\right)}=0.42790.$

г) Використовуючи вираз

$$\varphi(\omega) = \operatorname{arctg} \omega T_1 + \operatorname{arctg} \omega T_2 + \operatorname{arctg} \omega T_3 + \omega \tau \tag{5.3}$$

визначаємо четвертий основний параметр в частотній області для неперервного контуру: $\Phi_H(\varphi) = \varphi\left(\omega_{\varphi_H}^H\right) - \varphi\left(\omega_{\varphi_H}^B\right) = 1.31497.$

д) За емпіричними формулами визначаємо оптимальні коефіцієнти настройки

неперервного ПІ-регулятора та оптимальний період квантування:

$$T_{I_{\text{our}}}^{\text{HeII}} = \frac{4.061 \cdot \Phi_H(A)^{-0.3387} \cdot \Phi_H(\varphi)^{0.2075}}{\omega_{\varphi_H}}$$
 (5.4)

$$K_{p_{\text{ourr}}}^{\text{Heff}} = \frac{1}{2A_H(\omega_{\varphi_H})} \cdot \left(1 + 1.189 \cdot \Phi_H(A)^{0.7139} \cdot (1.852 - \Phi_H(\varphi))^{0.8643}\right) \tag{5.5}$$

$$T_{0_{\text{ont}}} = \frac{0.5742 \cdot \Phi_H(A)^{0.5742} \Phi_H(\varphi)^{0.9394}}{\omega_{\varphi_H}}$$
 (5.6)

Отримуємо значення $T_{I_{\mathrm{out}}}^{\mathrm{Heff}}=139.88408,\,K_{p_{\mathrm{out}}}^{\mathrm{Heff}}=0.17974,\,T_{0_{\mathrm{out}}}=11.13496.$

е) При оптимальному періоду квантування визначаємо чотири основні параметри ω_{φ} , $A(\omega_{\varphi})$, $\Phi(A)$, $\Phi(\varphi)$ в частотній області при врахуванні ПНЧ об'єкта. Для цього використаємо рівняння

$$A(\omega) = A_H(\omega) \cdot \frac{\sin \frac{\omega T_{0_{\text{OHT}}}}{2}}{\frac{\omega T_{0_{\text{OHT}}}}{2}}$$
(5.7)

$$\varphi(\omega) = \operatorname{arctg} \omega T_1 + \operatorname{arctg} \omega T_2 + \operatorname{arctg} \omega T_3 + \omega \tau + \frac{\omega T_{0_{\text{our}}}}{2}$$
 (5.8)

Шляхом розв'язання $\varphi(\omega)=2.62$ знаходимо частоту $\omega_{\varphi}=0.03670$, а потім за рівняннями (5.7), (5.8) знаходимо $A\left(\omega_{\varphi}\right)=4.32464$, $\Phi(A)=\frac{A\left(\omega_{\varphi_{H}}^{B}\right)}{A\left(\omega_{\varphi_{H}}^{H}\right)}=0.46223$, $\Phi(\varphi)=\varphi\left(\omega_{\varphi_{H}}^{H}\right)-\varphi\left(\omega_{\varphi_{H}}^{B}\right)=1.39902$.

ж) При оптимальному періоді квантування $T_{0_{
m ont}}$ знаходимо оптимальні значення $T_{I_{
m ont}}$ та $K_{p_{
m ont}}$ за формулами

$$T_{I_{\text{orr}}} = \frac{4.061 \cdot \Phi(A)^{-0.3387} \cdot \Phi(\varphi)^{0.2075}}{\omega_{\varphi}}$$
 (5.9)

$$K_{p_{\text{onr}}} = \frac{1}{2A(\omega_{\varphi_H})} \cdot \left(1 + 1.189 \cdot \Phi(A)^{0.7139} \cdot (1.852 - \Phi(\varphi))^{0.8843}\right)$$
 (5.10)

Отримуємо значення $T_{I_{\mathrm{our}}}=154.07932,\,K_{p_{\mathrm{our}}}=0.15558.$

Зберемо результати обчислень до таблиці:

параметр	значення
ω_{arphi_H}	0.04096
$\omega_{arphi_H}^H$	0.02897
$\omega_{arphi_H}^B H$	0.05793
$A_{H}\left(\omega_{arphi_{H}} ight)$	3.83604
$\Phi_H(A)$	0.42790
$\Phi_H(\varphi)$	1.31497
$T_{I_{ m ont}}^{ m He II}$	139.88408
$K_{p_{\mathrm{ont}}}^{\mathrm{Hen}}$	0.17974
$T_{0_{ m ont}}$	11.13496
ω_{arphi}	0.03670
$A\left(\omega_{arphi} ight)$	4.32464
$\Phi(A)$	0.46223
$\Phi(\varphi)$	1.39902
$T_{I_{ m ont}}$	154.07932
$K_{p_{\mathrm{ont}}}$	0.15558

Для цифрового моделювання перехідного процесу вихідної координати y скористаємося передаточною функцією $W_{\rm 3}(s)$:

$$y(s) = W_3(s)G(s) = \frac{W_p(s)W_O(s)}{1 + W_p(s)W_O(s)}G(s)$$

$$W_p(s) = K_{p_{\text{OHT}}}\left(1 + \frac{1}{T_{I_{\text{OHT}}}s}\right), \ G(s) = \frac{1}{s}\left(1 - e^{-sT_{0_{\text{OHT}}}}\right)$$

Чисельно знайшовши обернене перетворення Лапласа від y(s) в моменти $nT_{0_{\rm our}}$, отримаємо значення вихідної координати при подачі на задаюче діяння одиничного імпульсу довжиною $T_{0_{\rm our}}$. Відношення затухання дорівнює $\frac{B}{A}=\frac{0.29424}{0.04990}=0.16958$.

- **5.2.** Випадок $W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$
- а) Шляхом розв'язання відносно частоти ω нелінійного рівняння

$$arctg \,\omega T_1 + arctg \,\omega T_2 + \omega \tau = 2.62 \tag{5.11}$$

знаходимо резонансну частоту $\omega_{\varphi_H} = 0.05341$ для неперервного контура керування.

- б) Визначаємо верхню та нижню частоту відносно резонансної частоти неперервної системи: $\omega_{\varphi_H}^H = \frac{\omega_{\varphi_H}}{\sqrt{2}} = 0.03777, \, \omega_{\varphi_H}^B = \sqrt{2}\omega_{\varphi_H} = 0.07553.$
 - в) Використовуючи знайдену частоту ω_{φ_H} , за формулою

$$A(\omega) = \frac{k}{\sqrt{(1+\omega^2 T_1^2)(1+\omega^2 T_2^2)(1+\omega^2 T_3^2)}}$$
 (5.12)

знаходимо другий основний динамічний параметр неперервного контура в частотній області: $A_H\left(\omega_{\varphi_H}\right)=3.08583.$ Також, знайдемо третій основний параметр $\Phi_H(A)=\frac{A\left(\omega_{\varphi_H}^B\right)}{A\left(\omega_{\varphi_H}^B\right)}=0.41264.$

г) Використовуючи вираз

$$\varphi(\omega) = \operatorname{arctg} \omega T_1 + \operatorname{arctg} \omega T_2 + \operatorname{arctg} \omega T_3 + \omega \tau \tag{5.13}$$

визначаємо четвертий основний параметр в частотній області для неперервного контуру: $\Phi_H(\varphi) = \varphi\left(\omega_{\varphi_H}^H\right) - \varphi\left(\omega_{\varphi_H}^B\right) = 1.15456.$

д) За емпіричними формулами визначаємо оптимальні коефіцієнти настройки неперервного ПІ-регулятора та оптимальний період квантування:

$$T_{I_{\text{ont}}}^{\text{HeII}} = \frac{4.061 \cdot \Phi_H(A)^{-0.3387} \cdot \Phi_H(\varphi)^{0.2075}}{\omega_{\varphi_H}}$$
(5.14)

$$K_{p_{\text{ourr}}}^{\text{Heff}} = \frac{1}{2A_H(\omega_{\varphi_H})} \cdot \left(1 + 1.189 \cdot \Phi_H(A)^{0.7139} \cdot (1.852 - \Phi_H(\varphi))^{0.8643}\right)$$
(5.15)

$$T_{0_{\text{onr}}} = \frac{0.5742 \cdot \Phi_H(A)^{0.5742} \Phi_H(\varphi)^{0.9394}}{\omega_{\varphi_H}}$$
 (5.16)

Отримуємо значення $T_{I_{\mathrm{out}}}^{\mathrm{Heff}}=105.72649,\, K_{p_{\mathrm{out}}}^{\mathrm{Heff}}=0.23703,\, T_{0_{\mathrm{out}}}=7.40205.$

е) При оптимальному періоду квантування визначаємо чотири основні параметри $\omega_{\varphi}, \, A\,(\omega_{\varphi}), \, \Phi(A), \, \Phi(\varphi)$ в частотній області при врахуванні ПНЧ об'єкта. Для

цього використаємо рівняння

$$A(\omega) = A_H(\omega) \cdot \frac{\sin \frac{\omega T_{0_{\text{OIIT}}}}{2}}{\frac{\omega T_{0_{\text{OIIT}}}}{2}}$$
 (5.17)

$$\varphi(\omega) = \operatorname{arctg} \omega T_1 + \operatorname{arctg} \omega T_2 + \operatorname{arctg} \omega T_3 + \omega \tau + \frac{\omega T_{0_{\text{our}}}}{2}$$
 (5.18)

Шляхом розв'язання $\varphi(\omega) = 2.62$ знаходимо частоту $\omega_{\varphi} = 0.04792$, а потім за рівняннями (5.7), (5.8) знаходимо $A(\omega_{\varphi})=3.51065, \ \Phi(A)=\frac{A(\omega_{\varphi_H}^B)}{A(\omega_{\varphi_H}^H)}=0.43618,$ $\Phi(\varphi) = \varphi\left(\omega_{\varphi_H}^H\right) - \varphi\left(\omega_{\varphi_H}^B\right) = 1.23981.$

ж) При оптимальному періоді квантування $T_{0_{\rm out}}$ знаходимо оптимальні значення $T_{I_{\mathrm{ont}}}$ та $K_{p_{\mathrm{ont}}}$ за формулами

$$T_{I_{\text{our}}} = \frac{4.061 \cdot \Phi(A)^{-0.3387} \cdot \Phi(\varphi)^{0.2075}}{\omega_{\varphi}}$$
 (5.19)

$$T_{I_{\text{onr}}} = \frac{4.061 \cdot \Phi(A)^{-0.3387} \cdot \Phi(\varphi)^{0.2075}}{\omega_{\varphi}}$$

$$K_{p_{\text{onr}}} = \frac{1}{2A(\omega_{\varphi_H})} \cdot \left(1 + 1.189 \cdot \Phi(A)^{0.7139} \cdot (1.852 - \Phi(\varphi))^{0.8843}\right)$$
(5.19)

Отримуємо значення $T_{I_{\text{ont}}}=117.36092,\,K_{p_{\text{ont}}}=0.20311.$

Зберемо результати обчислень до таблиці:

значення
0.05341
0.03777
0.07553
3.08583
0.41264
1.15456
105.72649
0.23703
7.40205
0.04792
3.51065
0.43618
1.23981
117.36092
0.20311

Цифрове моделювання перехідного процесу вихідної координати y проведемо аналогічно попередньому пункту. Відношення затухання дорівнює $\frac{B}{A}=\frac{0.28438}{0.04621}=0.16249.$

СИНТЕЗ ЛІНІЙНО-КВАДРАТИЧНОГО РЕГУЛЯТОРА СТАНУ

Розглянемо математичну модель об'єкта у вигляді передаточної функції

$$W_O(s) = \frac{y(s)}{u(s)} = \frac{k}{(T_1 s + 1)(T_2 s + 1)(T_3 s + 1)} = \frac{k}{T_1 T_2 T_3 s^3 + (T_1 T_2 + T_1 T_3 + T_2 T_3) s^2 + (T_1 + T_2 + T_3) s + 1}$$

Введемо нові коефіцієнти

$$a_1 = \frac{T_1 T_2 + T_1 T_3 + T_2 T_3}{T_1 T_2 T_3} = 0.17211, a_2 = \frac{T_1 + T_2 + T_3}{T_1 T_2 T_3} = 0.00889$$

$$a_3 = \frac{1}{T_1 T_2 T_3} = 0.00014, b = \frac{k}{T_1 T_2 T_3} = 0.00127$$

після чого цю передаточну функцію можна записати наступним чином:

$$W_O(s) = \frac{b}{s^3 + a_1 s^2 + a_2 s + a_3} = \frac{y(s)}{u(s)}$$

Введемо нову змінну $X(s)=\frac{u(s)}{s^3+a_1s^2+a_2s+a_3}=\frac{y(s)}{b}$, звідки

$$u(s) = (s^3 + a_1s^2 + a_2s + a_3) X(s)$$

Виконавши зворотнє перетворення Лапласа, отримаємо

$$\frac{d^3x(t)}{dt^3} = u(t) - a_1 \frac{d^2x(t)}{dt^2} - a_2 \frac{dx(t)}{dt} - a_3x(t)$$

Введемо фазові змінні $x_1(t)=x(t),\,x_2(t)=\frac{dx(t)}{dt},\,x_3(t)=\frac{d^2x(t)}{dt^2},$ причому $\frac{dx_1(t)}{dt}=x_2(t),\,\frac{dx_2(t)}{dt}=x_3(t),\,\frac{dx_3(t)}{dt}=-a_3x_1(t)-a_2x_2(t)-a_1x_3(t)+u(t).$ Запишемо ці рівності у векторно-матричній формі:

$$\begin{bmatrix} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \\ \frac{dx_3(t)}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_3 & -a_2 & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) \Leftrightarrow \frac{d\vec{x}(t)}{dt} = A\vec{x}(t) + \vec{b}u(t)$$
 (6.1)

Виконаємо дискретизацію рівняння (6.1), використавши період квантування, який було визначено в резонансному методі ($T_0 = 11.13496$):

$$\vec{x}([k+1]T_0) = F\vec{x}(kT_0) + \vec{g}u(kT_0)$$
 (6.2)

де $F=e^{AT_0},\, \vec{g}=\int_0^{T_0}e^{At}\vec{b}dt=A^{-1}\left(e^{AT_0}-I\right)\vec{b}.$ Обчислимо значення F та \vec{g} :

$$F = \begin{pmatrix} 0.98025 & 9.79083 & 33.05948 \\ -0.00452 & 0.68649 & 4.1009 \\ -0.00056 & -0.04096 & -0.01933 \end{pmatrix}, \ \vec{g} = \begin{pmatrix} 144.46778 \\ 33.05948 \\ 4.1009 \end{pmatrix}$$

Синтез лінійно-квадратичного регулятора стану

$$u(kT_0) = -\vec{K}_p \vec{x}(kT_0) = -\begin{bmatrix} K_1 & K_2 & K_3 \end{bmatrix} \begin{bmatrix} x_1(kT_0) \\ x_2(kT_0) \\ x_3(kT_0) \end{bmatrix}$$
(6.3)

виконаємо за рекурентною процедурою

$$\vec{K}_p(k) = (q_3 + \vec{g}^T L([k+1]T_0) \vec{g})^{-1} \vec{g}^T L((k+1)T_0) F$$

$$L(kT_0) = F^T L([k+1]T_0) F + Q_2 - F^T L([k+1]T_0) \vec{g} \cdot \vec{K}_p(k)$$

при початковому значенні матриці $L\left(nT_{0}\right)=Q_{1}$, де вагові матриці Q_{1},Q_{2} та коефіцієнт q_{3} обираються для забезпечення швидкості мінімізації квадратичного критерію оптимальності

$$I = \vec{x}^{T}(nT_0) Q_1 \vec{x}(nT_0) + \sum_{k=0}^{n-1} (\vec{x}^{T}(kT_0) Q_2 \vec{x}(kT_0) + q_3 u^2(kT_0))$$

За наведеною рекурентною процедурою отримаємо

$$\vec{K}_p = \begin{bmatrix} 0.00278 & 0.03643 & 0.15089 \end{bmatrix}$$

На основі рівнянь (6.1) та (6.3) маємо рівняння стану замкненої системи:

$$\vec{x}\left([k+1]T_0\right) = \left(F - \vec{g} \cdot \vec{K}_p\right) \vec{x}\left(kT_0\right)$$

Користуючись цим рівнянням, змоделюємо поведінку системи при різних ненульових початкових умовах:

дослідження стійкості

Дослідимо стійкість контура цифрового керування з передаточною функцією об'єкта $W_O(s)=\frac{ke^{-\tau s}}{T_1s+1}$ та ПІ-регулятором, що має дискретну передаточну функцію $W_p(z)=K_p\left(1+\frac{T_0}{T_I(1-z^{-1})}\right)$. Взявши період квантування $T_0=1.5430$, отриманий методом Джурі у пункті 3.2.1, за формулами (4.2) та (4.3) при $\lambda=\frac{1}{T_1}$ визначимо оптимальні настройки ПІ-регулятора :

$$K_{p_{\text{out}}} = 34.2342, T_{I_{\text{out}}} = 0.0740$$

7.1. Критерій Гурвіца

Розрахунок стійкості замкненої системи цифрового керування проведемо за послідовністю, наведеною у методичних рекомендаціях.

- а) d ціле число від ділення часу запізнення на період квантування T_0 , воно дорівнює 9.
- б) За формулою (2.12) обчислимо дискретну передаточну функцію приведеної неперервної частини:

$$W_{\pi}(z) = \frac{0.37311z^{-10} + 0.02884z^{-11}}{1 - e^{-0.04409}z^{-1}}$$

в) Визначимо характеристичне рівняння замкненого контуру:

$$1 + W_p(z)W_{\pi}(z) = 0 \Leftrightarrow$$

$$\Leftrightarrow z^{12} - 1.95687z^{11} + 0.95687z^{10} + 0.02881z^2 - 0.02537z - 0.00213 = 0$$
 (7.1)

г) Застосуємо w-перетворення до (7.1), підставивши $z = \frac{1+w}{1-w}$:

$$3.96579w^{12} + 38.76510w^{11} + 178.70561w^{10} + 470.05698w^{9} + 835.79917w^{8} +$$

$$+1004.10086w^{7} + 839.23167w^{6} + 494.18403w^{5} + 181.65973w^{4} + 45.12629w^{3} +$$

$$+4.26842w^{2} + 0.13504w + 0.00131 = 0$$
(7.2)

д) Складемо для полінома з (7.2) матрицю Гурвіца та перевіримо додатність усіх діагональних мінорів. Матриця Гурвіца має вигляд

38.7651	470.057	1004.1009	494.184	45.1263	0.135	0.0	0.0	0.0	0.0	0.0	0.0
3.9658	178.7056	835.7992	839.2317	181.6597	4.2684	0.0013	0.0	0.0	0.0	0.0	0.0
0.0	38.7651	470.057	1004.1009	494.184	45.1263	0.135	0.0	0.0	0.0	0.0	0.0
0.0	3.9658	178.7056	835.7992	839.2317	181.6597	4.2684	0.0013	0.0	0.0	0.0	0.0
0.0	0.0	38.7651	470.057	1004.1009	494.184	45.1263	0.135	0.0	0.0	0.0	0.0
0.0	0.0	3.9658	178.7056	835.7992	839.2317	181.6597	4.2684	0.0013	0.0	0.0	0.0
0.0	0.0	0.0	38.7651	470.057	1004.1009	494.184	45.1263	0.135	0.0	0.0	0.0
0.0	0.0	0.0	3.9658	178.7056	835.7992	839.2317	181.6597	4.2684	0.0013	0.0	0.0
0.0	0.0	0.0	0.0	38.7651	470.057	1004.1009	494.184	45.1263	0.135	0.0	0.0
0.0	0.0	0.0	0.0	3.9658	178.7056	835.7992	839.2317	181.6597	4.2684	0.0013	0.0
0.0	0.0	0.0	0.0	0.0	38.7651	470.057	1004.1009	494.184	45.1263	0.135	0.0
0.0	0.0	0.0	0.0	0.0	3.9658	178.7056	835.7992	839.2317	181.6597	4.2684	0.0013

Комп'ютерне обчислення показує, що усі діагональні мінори є додатними. Це означає, що усі корені рівняння (7.2) мають від'ємні дійсні частини, а отже, усі корені рівняння (7.1) за модулем менше одиниці, що свідчить про стійкість контуру, що розглядається.

7.2. Аналог критерію Михайлова

Для застосування аналогу критерію Михайлова розглянемо поліном з рівняння (7.1) (який одразу записано з коефіцієнтом 1 перед старшим степенем). Підставимо $z=e^{j\omega T_0}=\cos{(\omega T_0)}+j\sin{(\omega T_0)}$:

$$F(z) = z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0} \Rightarrow$$

$$\Rightarrow F\left(e^{j\omega T_{0}}\right) = e^{j\omega nT_{0}} + a_{n-1}e^{j\omega(n-1)T_{0}} + \dots + a_{1}e^{j\omega T_{0}} + a_{0} =$$

$$= \left[\cos\left(\omega nT_{0}\right) + a_{n-1}\cos\left(\omega(n-1)T_{0}\right) + \dots + a_{1}\cos\left(\omega T_{0}\right) + a_{0}\right] +$$

$$+ j\left[\sin\left(\omega nT_{0}\right) + a_{n-1}\sin\left(\omega(n-1)T_{0}\right) + \dots + a_{1}\sin\left(\omega T_{0}\right)\right] = u(\omega) + jv(\omega)$$

Побудуємо годограф $F\left(e^{j\omega T_0}\right)$ при зміні частоти в межах $0\leq\omega\leq\frac{\pi}{T_0}$:

Можна порахувати, що годограф пройшов $2 \cdot 12 = 24$ квадранти, тому контур ϵ стійким.

АЛГОРИТМИ ЦИФРОВОГО КЕРУВАННЯ

8.1. Позиційний алгоритм

У даному алгоритмі регулятор цифрового керування виконує розрахунок повної величини керуючого діяння у формі (1.3). Віднявши з обох частин $u\left([n-1]T_0\right)$, отримаємо рівняння

$$u[nT_0] - u[(n-1)T_0] = K_p(e[nT_0] - e[(n-1)T_0]) + \frac{K_pT_0}{T_I}e[nT_0] + \frac{K_pT_0}{T_0}(e[nT_0] - 2e[(n-1)T_0] + e[(n-2)T_0])$$

яке можна записати як

$$u[nT_0] = u[(n-1)T_0] + A_0 \cdot e[nT_0] + A_1 \cdot e[(n-1)T_0] + A_2 \cdot e[(n-2)T_0]$$
 (8.1)

де $A_0 = K_p \left(1 + \frac{T_0}{T_I} + \frac{T_D}{T_0}\right)$, $A_1 = -K_p \left(1 + 2\frac{T_D}{T_0}\right)$, $A_3 = \frac{K_p T_D}{T_0}$, а похибка визначається як $e\left[nT_0\right] = G\left[nT_0\right] - y\left[nT_0\right]$. Отримане рівняння (8.1) є зручною для програмування на комп'ютері формою рівняння (1.3). Обчислимо значення коефіцієнтів A_0, A_1, A_2 для систем з розрахованими настройками ПІ-регулятора. Оскільки $T_D = 0$, то вирази спрощуються до $A_0 = K_p \left(1 + \frac{T_0}{T_I}\right)$, $A_1 = -K_p$, $A_2 = 0$.

об'єкт, метод	A_0	A_1
$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$, резонансний метод	0.16682	-0.15558
$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$, резонансний метод	0.21592	-0.20311
$W_O(s)=rac{ke^{- au s}}{T_1s+1}$, метод прямого синтезу, $\lambda=rac{1}{T_1}$	0.07675	-0.07650
$W_O(s)=rac{ke^{- au s}}{T_1s+1}$, метод прямого синтезу, $\lambda=rac{1}{1.5T_1}$	0.05658	-0.05640
$W_O(s)=rac{ke^{- au s}}{T_1s+1}$, метод прямого синтезу, $\lambda=rac{1}{2T_1}$	0.04474	-0.04460
$W_O(s)=rac{ke^{- au s}}{T_1s+1},$ метод прямого синтезу, $\lambda=rac{1}{3T_1}$	0.03160	-0.03150

8.2. Швидкісний алгоритм

У швидкісному алгоритмі вихідний сигнал цифрового регулятора формується як швидкість зміни керуючого діяння. На кожному періоді квантування визначається приріст керуючого діяння $\Delta u \ [nT_0] = u \ [nT_0] - u \ [(n-1)T_0]$, тому з (8.1)

$$\Delta u [nT_0] = A_0 \cdot e [nT_0] + A_1 \cdot e [(n-1)T_0] + A_2 \cdot e [(n-2)T_0]$$
(8.2)

МОДЕЛЮВАННЯ ЗАМКНЕНИХ СИСТЕМ

Користуючись рівнянням (8.1), проведемо моделювання замкнених систем з різними передаточними функціями об'єкта.

9.1. Випадок
$$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$$

Оптимальні настройки регулятора було обчислено в пункті 5.1. Зв'язок між вихідною координатою та керуючим діянням задається диференціальним рівнянням

$$T_1 T_2 T_3 \frac{d^3 y(t)}{dt^3} + (T_1 T_2 + T_1 T_3 + T_2 T_3) \frac{d^2 y(t)}{dt^2} + (T_1 + T_2 + T_3) \frac{dy(t)}{dt} + y(t) = ku(t - \tau)$$

Перехідний процес при подачі на задаюче діяння одиничного імпульсу:

9.2. Випадок
$$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$$

Оптимальні настройки регулятора було обчислено в пункті 5.2. Зв'язок між вихідною координатою та керуючим діянням задається диференціальним рівнянням

$$T_1 T_2 \frac{d^2 y(t)}{dt^2} + (T_1 + T_2) \frac{dy(t)}{dt} + y(t) = ku(t - \tau)$$

Перехідний процес при подачі на задаюче діяння одиничного імпульсу:

9.3. Випадок $W_O(s) = \frac{ke^{-\tau s}}{T_1 s + 1}$

Оптимальні настройки регулятора для різних значень параметра λ було обчислено в розділі 4. Зв'язок між вихідною координатою та керуючим діянням задається диференціальним рівнянням

$$T_1 \frac{dy(t)}{dt} + y(t) = ku(t - \tau)$$

Перехідні процеси при подачі на задаюче діяння одиничного ступінчатого збурення:

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. Конспект лекцій з теорії керування, Романенко В.Д.
- 2. Теорія керування: методичні рекомендації для курсового проектування для студентів напряму підготовки 6.040303 системний аналіз / Укладач: В. Д. Романенко. К.: ННК «ІПСА» НТУУ «КПІ», 2012. 43 с.