Allgemeines

Binomische Formeln

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a+b) \cdot (a-b)$$

1.2 Potenzgesetze

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$a^{n} \cdot b^{n} = (ab)^{n}$$

$$\frac{a^{n}}{a^{m}} = a^{n-m}$$

$$a^{n} \cdot b^{n} = (ab)^{n}$$

$$a^{n} = a^{m}$$

$$a^{n} = a^{m}$$

$$a^{n} = a^{m}$$

$$\log_{b}(1) = 0$$

1.3 Logarithmus-Gesetze

$$\begin{aligned} x &= log_a(y) \Leftrightarrow y = a^x \\ log(x) + log(y) &= log(xy) \\ log(x) - log(y) &= log(\frac{x}{y}) \\ log_a(x) &= \frac{log_b(x)}{log_b(a)} \\ log(u^r) &= r \cdot ln(u) \end{aligned}$$

$$ln(1) = 0$$
 $ln(e^x) = x$
 $ln(e) = 1$ $e^{ln(x)} = x$

1.4 Komplexe Zahlen

$$(a+bi)\pm(c+di) = (a\pm c)+(c\pm d)i$$

$$(a+bi)\cdot(c+di) = (ac-bd)+(ad+bc)i$$

$$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{cb-ad}{c^2+d^2}i$$

Integralrechnung

eFoo u.ä. muss vorher substituiert wer-

$$\begin{array}{ll} \text{Funktion} & \text{Aufleitung} \\ c & c \cdot x \\ x^a, a \neq -1 & \frac{x^{a+1}}{a+1} \\ x^{-1}, x \neq 0 & \textit{In}(|x|) \\ e^x & e^x \\ a^x & \frac{a^x}{ln(a)} \\ sin(x) & -cos(x) \end{array}$$

cos(x)

sin(x)2.1 Partielle Integration

Wenn u und v zwei differenzierbare Funktionen sind, dann gilt: $\int u' \cdot v = (u \cdot v) - \int u \cdot v'$

2.2 Substitutionsregel

$$\int f(g(x)) \cdot g'(x) dx = \int f(y) dy$$
$$\int \frac{1}{5x - 7} dx = ?$$

$$5x-7$$

$$z = 5x-7$$

$$\frac{dz}{dx} = 5$$

$$\frac{dz}{5} = dx$$

$$\int \frac{1 \cdot dz}{z \cdot 5} = \frac{1}{5} \int \frac{1}{z} dz$$

$$= \frac{1}{5} \ln(z)$$

$$= \frac{1}{5} \ln(5x-7)$$

Ableitung

typische Ableitungen

$$\begin{array}{lll} (x)' = 1 & (e^{x})' = e^{x} \\ (ax)' = a & (a^{x})' = a^{x} * log(a) \\ (ax^{2})' = 2ax & ln(x)' = \frac{1}{x} \\ (\frac{1}{x})' = -\frac{1}{x^{2}} & (\sin x) = \cos x \\ (\sqrt{x})' = \frac{1}{2\sqrt{x}} & (\cos x) = -\sin x \\ (ax^{b})' = abx(b - 1) & (\tan x) = \frac{1}{(\cos x)^{2}} \end{array}$$

3.2 Verknüpfungsfunktionen egative Funktion.

Summenregel: (f(x)+g(x))' = f(x)'+g(x)'Produktregel: (f(x)g(x))' = f(x)'g(x) + g(x)'f(x)Quotientenregel: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f(x)'g(x) - g(x)'f(x)}{g(x)^2}$ Kettenregel: (f(g(x)))' = f(g(x))'g(x)'

Stochastik

 $\Omega = \{...\}$ beschreibt den Ereignisraum und somit die Menge aller möglichen Ausgänge des Zufallsexperiments.

 $A, B, C, ... \subseteq \Omega$ beschrieben ein Ereignisse des Zufallsexperimentes.

 $P:\Omega\to\mathbb{R}$ ist eine Abbildung, welche jedem Ereignis eine Wahrscheinlichkeit zuordnet.

Eine Wahrscheinlichkeitsverteilung listet

alle möglichen Ausgänge des Zufallsexperiments und ihre Wahrscheinlichkeiten auf.

4.1 Gesetze/Axiome/...

P(A) > 0 für alle $A \subset \Omega$

$$P(\Omega) = 1$$

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(A_1 \cup A_2) = P(A_1) + P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(\Omega \setminus A) = 1 - P(A)$$

$$P(\emptyset) = 0$$

$$A \subseteq B \iff P(A) \le P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(A \cap B) = P(B) \cdot P(A|B)$$

$$= P(A) \cdot P(B|A)$$

$$P_B(A) = P(A|B)$$

4.2 Dichtefunktion

 $w: \mathbb{R} \to \mathbb{R}$ ist eine integrierbare, nicht

Es gilt:
$$\int_{-\infty}^{x} w(t)dt = F(x) = P(X \le x)$$

4.3 Verteilungsfunktion

 $F: \mathbb{R} \to [0,1]$ heißt Verteilungsfunktion. Verteilungsfunktion ist Aufleitung der Dichtefunktion.

F ist rechtsseitig stetig und es gilt:

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

$$P(X \ge x) = 1 - P(X \le x)$$

$$= \int_{x}^{\infty} w(t)dt$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

$$= F(b) - F(a)$$

$$= \int_{a}^{b} w(t)dt$$

4.4 Formeln

E = Erwartungswert, V = Varianz

4.1 Gesetze/Axiome/...
$$E(X) = \sum_{x \in X(\Omega)} x \cdot P(X = x) \qquad P(X = k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

$$E(X) = \int_{-\infty}^{\infty} x \cdot w(x) dx \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$V(X) = \sum_{x \in X(\Omega)} (x - E(X))^2 \cdot P(X = x) \qquad \text{4.5.3 Hypergeometrische Verteilung}$$

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2), A_1 \cap A_2 = \emptyset \qquad = \left(\sum_{x \in X(\Omega)} x^2 \cdot P(X = x)\right) - E(X)^2 \text{ N} = \text{Grundmenge, n} = \text{Stichprobe, k}$$

$$P(A_1 \cap A_2) = P(A_1) + P(A_2), A_1 \cap A_2 = \emptyset \qquad V(X) = \int_{-\infty}^{\infty} (x - E(X))^2 \cdot w(x) dx$$

$$P(\Omega \setminus A) = 1 - P(A) \qquad = \left(\int_{-\infty}^{\infty} x^2 w(x) dx\right) - E(X)^2 \qquad P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{M-M}{n-k}}$$

p-Quantile:

Sortieren, $n \cdot p$, Einsetzen & Index suchen. Formel anwenden:

$$\widetilde{X}_p = \begin{cases} \frac{1}{2}(x_{np} + x_{np+1}) & \text{falls } n \text{ ganzz.} \\ x_{\lceil np \rceil} & \text{falls } n \text{ nicht ga} \end{cases}$$

Verschiedene Verteilungen

4.5.1 Gleichverteilung

Die Gleichverteilung ist die einfachste Verteilung. Jede Möglichkeit hat die gleiche Wahrscheinlichkeit. Ein Würfel ist gleichverteilt mit $P(x_i) = \frac{1}{6}$.

$$P(X=x_i)=\frac{1}{N}$$

Dabei ist $N = |\Omega|$ und X eine Zufallsvariable, welche gleichverteilt ist.

4.5.2 Binominialverteilung

Ein Bernoulli-Experiment ist ein Experiment, welches nur zwei mögliche Ausgänge A und B hat. Eine Binominialverteilung ist eine Aneinanderreihung von Bernoulli-Experimenten. Dabei muss der Ereignisraum unabhängig sein. Ein Experiment kann beliebig oft, n-Mal. wiederholt werden.

$$X = B(n, p)$$

$$\Omega = \{A, B\}^n$$

$$P(A) = p$$

$$P(B) = 1 - p = q$$

Es ist ein LaPlace-Experiment, wenn p = q gilt.

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$
$$\binom{n}{k} = \frac{n!}{k!(n - k)!}$$

4.5.3 Hypergeometrische Verteilung

= gewünscht, M = gewünschte Eigen-

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N - M}{n - k}}{\binom{N}{n}}$$

4.5.4 Poisson-Verteilung

Die Poisson-Verteilung eignet sich für seltene Ereignisse in einem fest definierten Zeitraum.

$$X = P(\lambda)$$

$$\Omega = \{x \in \mathbb{R} | x \ge 0\}$$

$$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Die Poisson-Verteilung kann, wenn $n \ge$ 50 und p < 0.1 eine Binominialverteilung annähren.

$$X = B(n, p)$$
$$\lambda = n \cdot p$$

$$P(X = k) \sim \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

4.6 Normalverteilung

 $N(\mu, \sigma^2)$ ist eine Normalverteilung. Für $\mu = 1$ und $\sigma = 1$ ist es eine Standardnormalverteilung.

$$w(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
$$P(a \le x \le b) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

Für Φ siehe Standardnormalverteilungstabelle.

Wenn
$$\Phi(-x)$$
, dann $1-\Phi(x)$

Wenn gilt, dass $X = N(\mu, \sigma^2)$ und Z = 5.2N(0,1), dann folgt $\frac{X-\mu}{\sigma}$ X_B ist binominal verteilt. Wenn np(1 $p) \geq 9$, dann $F_B(x) \sim \Phi\left(\frac{x+0.5-np}{\sqrt{np(1-p)}}\right)$ X_P ist possionverteilt. Wenn $\lambda \geq 9$, dann $F_P(x) \sim \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)$.

4.7 Tabelle Erwartungswert/Varianz

		E(x)	V(x)	
	B(n,p)	n·p	$n \cdot p(1-p)$	y
	H(n, M, N)	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} (1 - \frac{M}{N}) \frac{N-n}{N-1}$	У
_	$P(\lambda)$	λ	λ	_ y
	N(x)	μ	σ^2	_
				-5

4.8 Konfidenzintervall

 $Vertrauensgrad = 1 - \alpha$

4.8.1 Normalverteilung

$$\left[\frac{k}{n}-z_{\left(1-\frac{\alpha}{2}\right)}\frac{\sigma}{\sqrt{n}};\frac{k}{n}+z_{\left(1-\frac{\alpha}{2}\right)}\frac{\sigma}{\sqrt{n}}\right]$$

z Werte in Normalverteilungstabelle nachschlagen.

4.8.2 T-Verteilung

Keine Varianz gegeben. Stichprobe muss vorhanden sein.

$$\bar{x} = \text{arithmetisches Mittel} = \frac{\sum x}{n}$$

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$$

$$[\bar{x} - t_{(1-\frac{\alpha}{2};n-1)} \frac{\sigma}{\sqrt{n}}; \bar{x} + t_{(1-\frac{\alpha}{2};n-1)} \frac{\sigma}{\sqrt{n}}]$$

T Werte in T-Verteilungstabelle nachschlagen.

Numerik

5.1 Lagrange'sches Interpolationspolynom

n = Anzahl der Stützstellen

$$p(x) = \sum_{i=0}^{n-1} y_i \cdot L_i(x)$$

$$L_i(x) = \prod_{j=0, j\neq i}^{n-1} \frac{x - x_j}{x_i - x_j}$$

Newton'sches Inter- 5.5 QR-Zerlegung polationspolynom

$$n=$$
 Anzahl der Stützstellen vektoren von A . $p(x)=a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+a_n(x-x_0)(x-x_1)\cdots(x-x_n)$ Die Vektoren $u_1,u_2,...,u_n\in\mathbb{R}^m$ sind die Gram-Schmidt orthogonalisierten Vektoren.

Auflösen nach a für die einzelnen Fak-

$$y_0 = a_0$$

$$\frac{\frac{n}{1}}{y_1} y_1 = a_0 + a_1(x_1 - x_0)$$

$$y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

5.2.1 Newton-Verfahren Nullstellen

Voraussetzung: Muss stetig sein (hinschreiben!)

stetig = an jeder Stelle definiert Allgemeine Formel: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Newton-Cotes-Formeln

a = untere Grenze b = obere Grenze $\alpha_{i,n}$ Tabelle:

$$h = \frac{b-a}{n}$$

$$x_i = a+i \cdot h$$

$$p_n(x) = h \cdot \sum_{i=0}^{n} \alpha_{i,n} \cdot f(x_i)$$

Sekanten-Verfahren

Nur bei stetigem Intervall bestimmen

1. Startwerte bestimmen:
$$x_0$$
 und x_1
2. $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \cdot f(x_n)$

Seien $A \in \mathbb{R}^{m \times n}$ mit m > n und rg(A) = Voraussetzungen: (Schwach)

Es seien $a_1, a_2, ..., a_n \in \mathbb{R}^m$ die Spaltenvektoren von A

Gram-Schmidt orthogonalisierten Vektoren

$$u_{1} = \frac{1}{|a_{1}|} a_{1}$$

$$u'_{i} = a_{i} - \sum_{j=1}^{i-1} \langle u_{j}, a_{i} \rangle \cdot u_{j}$$

$$u_{i} = \frac{u'_{i}}{|u'_{i}|}$$

$$Q = (u_1, u_2, ..., u_n)$$
$$Q^{-1} \cdot A = R$$

5.6 LU-Zerlegung

L Matrizen sind Einheitsmatrizen plus: Step 1: L1 Matrix aufbauen:

$$x \in \{1, 2\}$$
 $L_{x,1} = -\frac{A(x,1)}{A(1,1)}$

Step 2: $\tilde{A} = L1 \cdot A$

Step 3: L2 Matrix aufbauen:

$$L_{3,2} = -\frac{\tilde{A}(3,2)}{\tilde{A}(2,2)}$$

Step 4: $U = L2 \cdot \tilde{A}$

Step 5: $L = L_1^{-1} \cdot L_2^{-1}$ (=Vorzeichen außerhalb Diagonale ändern.)

5.6.1 Lösung von PLUx = b

Wir berechnen zunächst ein v. welches ein Zwischenergebnis ist. Die Schritte sind sehr einfach, da L und U Dreiecksmatrizen sind.

$$P = Einheitsmatrix$$

Lineares Gleichungssystem:

$$Ly = P^T b \text{ mit } P^T = P^{-1}$$

 $Ux = v$

5.7 Jacobi-Verfahren

und Diagonalelegonaldominant mente nicht null. Gegeben ein lineares Gleichungssystem n Variablen und n Gleichungen. $a_{11} \cdot x_1 + \cdots + a_{1n} \cdot x_n = b_1$

$$\begin{array}{rcl} a_{11} \cdot x_1 + \dots + a_{1n} \cdot x_n & = & b_1 \\ a_{21} \cdot x_1 + \dots + a_{2n} \cdot x_n & = & b_2 \end{array}$$

 $a_{n1} \cdot x_1 + \cdots + a_{nn} \cdot x_n = b_n$ Um dieses zu lösen, wird die i-te Gleichung nach der i-ten Variablen x_i auf-

$$x_i^{(m+1)} := \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} \cdot x_j^{(m)} \right), i = 1, \dots, n$$

und diese Ersetzung, ausgehend von einem Startvektor $x^{(0)}$, iterativ wiederholt.

5.8 Cholesky-Zerlegung

Voraussetzung: symmetrische Matrix & Determinante jeder Teilmatrix > 0

$$A = \begin{pmatrix} g_{11}^2 & g_{11}g_{21} & g_{11}g_{31} \\ g_{11}g_{21} & g_{21}g_{22} & g_{21}g_{31} + g_{22}g_{32} \\ g_{11}g_{31} & g_{21}g_{31} + g_{22}g_{32} & g_{31}^2 + g_{32}^2 + g_{33}^2 \end{pmatrix}$$

$$G = \begin{pmatrix} g_{11} & 0 & 0 \\ g_{21} & g_{22} & 0 \\ g_{31} & g_{32} & g_{33} \end{pmatrix} G^T = \begin{pmatrix} g_{11} & g_{21} & g_{31} \\ 0 & g_{22} & g_{22} \\ 0 & 0 & g_{33} \end{pmatrix}$$

5.9 Matrixnormen

$$\left| \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \right| = \sqrt{x_1^2 + \dots + x_n^2}$$

6.2 Anfangswertproblem

Wir haben unsere aufgelöste DGL: y = $C_1 \cdot ...$ Beim AWP haben wir eine Zusatzbedingung, die ähnlich zu y(0) = 2ist. AWP löst sich, indem wir einsetzen und zur Konstante umformen.

6.3 DGL 2. Ordnung

Eine DGL kann eine Störfunktion enthalten. Störfunktionen sind für den inhomogenen Teil der Lösung verantwortlich. Jeder Teil, welcher nicht abhängig von $v^{(n)}$ ist, ist eine Störfunktion. $y(t) = y_h(t) + y_p(t)$

6.3.1 Charakteristisches Poly-

Umformen der Ableitungen: $v^{(n)} = \lambda^n$ Anschließend werden die Lösungen für λ bestimmt.

Einfache Nullstelle:

 $e^{\lambda \cdot x}$

k-fache Nullstelle:

 $x^{k-1}e^{\lambda x}$

Komplexe Nullstelle:

$$(a \pm bi) \rightarrow e^{ax} \cdot sin(b), e^{ax} \cdot cos(b)$$

Bsp.:
$$y_h(t) = C_1 \cdot e^{2x} + C_2 \cdot e^{4x}$$

Bei inhomogenen DGL muss ein Ansatz gefunden werden, der zur Lösung führt, wenn man ihn samt Ableitungen in die ursprüngliche DGL einsetzt.

- des Ansatzes für
- 2. Ableiten und Einsetzen als homogenen Teil der DGL.
- 3. Parameter des Ansatzes ausrechnen

Differentialgleichungend als yp angeben.

DGL 1. Ordnung

6.1.1 Variation der Konstanten

- Alle Ableitungen y' umformen: $y' = \frac{dy}{dx}$
- Umstellen durch Integration und $e^{ln(x)}$ -Trick nach v

Sin-Cos-Tan Tabelle

x	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	δ π	π	$\frac{7}{6}\pi$
Grad	0	30	45	60	90	120	135	150	180	210
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$