第7章 存储管理

- 7.1内存管理功能
- 7.2物理内存管理
- 7.3虚拟内存管理
- **■** 7.4 Intel CPU与Linux内存管理

7.4 Intel CPU与Linux内存管理

7.4.1 Intel CPU物理结构

7.4.2 Intel CPU段机制

■ 7.4.3 Linux<u>页面机制</u>

_____ 7.4.4 Linux对段的支持

《操作系统原理》

7.4.3 Linux页面机制

教师: 苏曙光

华中科技大学软件学院

- ◆分页
 - Intel CPU的页: 4KB
 - 通过设置CRO的PG位开启分页功能
 - 分页:线性地址→物理地址
 - 在MMU中进行分页

线性地址

普通页表实现时的问题

- ◆ 32位OS(4G空间),每页4K,页表每个记录占4字节
 - 进程的页数: 4G /4K = 1M个页
 - □ 页表的记录数应有:1M条记录
 - 页表所占内存: 1M * 4字节 = 4M-
 - 页表占页框数: 4M / 4K = 1K页框(连续)

二级页表

◆把超大的页表(4M)以页为单位分成若干个小页表,存入离散的若干个页框中。

页号

页框号

(含1M个记录) 超大的页表

页号	页框号	中断位	外存地址	访问位	修改位
0	8	0	4000	1	0
1	24	0	8000	1	1
1M-1	5003	1	A3C4	0	1

小页表

分解成1024个小页表

1K 个小页表 (=1M / 1K)

小页表含有1K个记录

小页表大小4K(=1Kx4),

小页表刚好占用1个页框。

二级页表

- ◆ 为了对小页表进行管理和查找,另设置一个叫页目录的表,记录每个小页表的存放位置(即页框号)。
 - 页目录实际是一个特殊页表:每个记录存放的是小页表的编号和其所在的页框号之间的对应关系。

WINDOWS NT 二级页表的结构

- 访问数据需要 三 次访问内存。
- 页目录调入内存
- 页表按需要调入主存
- 页面、页表,页目录的大小都刚好4K(占1个页框)。

