Homework 2

Part 1

PCA

- 1. PCA can be explained from two different perspectives. What are the two perspectives?
- 2. The first principal direction is the direction in which the projections of the data points have the largest variance in the input space. We use λ_1 to represent the first/largest eigenvalue of the covariance matrix, w_1 to denote the corresponding principal vector/direction (w_1 has unit length i.e., L2 norm is 1), μ to represent the sample mean, and x to represent a data point. The deviation of x from the mean μ is $x \mu$.

y = PCA(x) is implemented in sk-learn with "whiten=True", and the number of components/elements of y is usually less than the number of components/elements of x

- (1) what is the scalar-projection of x in the direction of w_1 ?
- (2) what is the scalar-projection of the deviation $x \mu$ in the direction of w_1 ?
- (3) what is the first component of y?

note: compute y using w_1 , x, μ , and λ_1

(4) assuming y only has one component, then we do inverse transform to recover the input

$$\tilde{x} = PCA^{-1}(y)$$

compute \tilde{x} using μ , y, λ_1 and w_1 : $\tilde{x} = ???$

(5) assuming x and y have the same number of elements, and we do inverse transform to recover the input

$$\tilde{x} = PCA^{-1}(y)$$

what is the value of $x - \tilde{x}$?

3. Show that PCA is a linear transform of $x - \mu$

Note: must use the definition on http://mathworld.wolfram.com/LinearTransformation.html

Maximum Likelihood Estimation and NLL loss (This is a general method to estimate parameters of a PDF using data samples)

4. Maximum Likelihood Estimation when the PDF is an exponential distribution. Suppose we have N i.i.d. (independently and identically distributed) data samples $\{x_1, x_2, x_3, ..., x_N\}$ generated from a PDF which is assumed to be an exponential distribution. $x_n \in \mathcal{R}^+$ for n = 1 to N, which means they are positive scalars. This is the PDF:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & for \ x \ge 0 \\ 0 & otherwise \end{cases}$$

Your task is to build an NLL (negative log likelihood) loss function to estimate the parameter λ of the PDF from the data samples.

- (1) write the NLL loss function: it is a function of the parameter λ
- (2) take the derivative of the loss with respect to λ , and set the result to 0. After some calculations, you will obtain an equation about $\lambda = ******$ Hint: read NLL in the lecture of GMM
- 5. Maximum Likelihood Estimation when the PDF is histogram-like.

A histogram-like PDF f(x) is defined on a 1-dimensional (1D) space that is divided into fixed regions/intervals. So, f(x) takes constant value h_i in the *i*-th region. There are K regions. Thus, $\{h_1, h_2, ..., h_K\}$ is the set of (unknown) parameters of the PDF. Also, $\sum_{i=1}^K h_i \Delta_i = 1$, where Δ_i is the width of the *i*-th region.

Now, we have a dataset of N samples $\{x_1, x_2, x_3, ..., x_N\}$, and N_i is the number of samples in the i-th region. The task is to find the best parameters of the PDF using the samples.

- (1) write the NLL loss function: it is a function of the parameters Note: it is a constrained optimization problem, we need to use Lagrange multiplier to convert constrained optimization to unconstrained optimization. Thus, add $\lambda(\sum_{i=1}^K h_i \Delta_i 1)$ to the loss function, where λ is the Lagrange multiplier.
- (2) take the derivative of the loss with respect to h_i , set it to 0, and obtain the best parameters along with the value of λ .

Part 2

Complete the task in H2P2T1.ipynb and H2P2T2.ipynb

Note: It is very time consuming to fit a GMM to high dimensional data, and therefore PCA + GMM is the "standard" approach.

Grading: the number of points

	Undergraduate Student	Graduate Student
1 (PCA)	2	2
2 (PCA)	15	10
3 (PCA)	3	3
4 (NLL)	5 bonus points	5
5 (NLL)	N.A.	5 bonus points
H1P2T1	15	15
H2P2T2	15	15
Total number of points	50 +5	50 + 5

Extra Reading

PCA is widely used in many applications. Do a google scholar search with PCA + some field, e.g., PCA +bioinformatics or PCA + finance, you will find relevant papers.

https://www.nature.com/articles/s41467-018-04608-8

There are many variants of PCA, such as sparse PCA and kernel PCA that are implemented in sk-learn.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.7798&rep=rep1&type=pdf

https://www.di.ens.fr/sierra/pdfs/icml09.pdf

https://www.di.ens.fr/~fbach/sspca AISTATS2010.pdf

Which one is good for your application? Test different algorithms and find the best. Remember that machine learning is more like an experimental science: you need to run lots of experiments.