Introduction to Machine Learning

Alessandro Rudi, Umut Simsekli Notes by Antoine Groudiev

13th February 2024

Contents

1	An	n overview of Machine Learning			
	1.1	What	is ML?	1	
	1.2	Topics	in Machine Learning	1	
		1.2.1	Supervised Learning	1	
		1.2.2	Probabilistic approach	2	
		1.2.3	Unsupervised Learning	2	

Introduction

1 An overview of Machine Learning

1.1 What is ML?

Considering a problem, such as image classification: given an input image of a dog or a cat, the program is asked to determine whether the image is a dog or a cat. Conventional programming would hardcode the solution to this problem. But this process takes time and is not easily generalisable. Instead, an ML model is trained on a dataset to produce a program to solve the problem.

Many successful applications of Machine Learning are:

- Face recognition
- Spam filtering
- Speech recognition
- Self-driving systems; pedestrian detection

1.2 Topics in Machine Learning

1.2.1 Supervised Learning

Example (Classification). Features $x \in \mathbb{R}^d$, labels $y \in \{1, \dots, k\}$

Definition (Regression). Features $x \in \mathbb{R}^d$, labels $y \in \mathbb{R}$. To tackle such problem, we look for a parametrized function $f_{\theta}(x_i) \simeq y_i$ for some f_{θ} in a function space

$$\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \}$$

Our goal is therefore to find the best function in \mathcal{F} such that f "fits" the training data. For example, we can say that f "fits" the training data when

$$\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

is "small". Such a function is not interesting in general, like for classification.

Definition (Loss function). Assums that the features are in \mathcal{X} and the labels are in \mathcal{Y} . We introduce the more general loss function notion:

$$l: \mathcal{Y}^2 \to \mathbb{R}_+$$

For a regression task, we can use $l(\hat{y}, y) = (\hat{y} - y)^2$. For a classification task, $l(\hat{y}, y) = \mathbb{1}_{\hat{y}=y}$.

Therefore, for a regression problem, we might choose:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n l(f(x_i), y_i)$$

In the parametric case, when $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$, we might minimize with respect to θ :

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n l(f(x_i), y_i)$$

1.2.2 Probabilistic approach

Let $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ be the feature space. Let D be a distribution on \mathcal{Z} ; we make the assumption that the training data is iid from D:

$$(x_i, y_i) \sim D$$

and the same thing hold for the test data:

$$(\tilde{x_i}, \tilde{y_i}) \sim D$$

According to the Strong Law of Large Numbers, the test loss converges almost surely:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} l(f_{\theta}(\tilde{x}_i), \tilde{y}_i) = \mathbb{E}_{(x,y) \sim D}[l(f_{\theta}(x), y)] =: R(\theta) = R(f_{\theta})$$

where $R(\theta)$ is the population risk.

Definition (Risk minimization).

1.2.3 Unsupervised Learning

Example (Clustering).

Example (Dimensionnality reduction). We are given features $x \in \mathbb{R}^d$ and labels $y \in \{0,1\}$ which form a "training" dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$. We assume that d >> 1; our goal is to find d' << d such that (x_1, y_1, \dots, y_n)