ELEC-313

Lab 8: Bipolar Junction Transistor Characterization

November 20, 2013

Date Performed: November 13, 2013 Partners: Charles Pittman

Stephen Wilson

Contents

1	Objective	3
2	Equipment	3
3	Schematics	3
4	Procedure	3
5	Results	4
6	Conclusion	8
7	Equations	8
${f L}$	ist of Figures	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 7 8
\mathbf{L}	ist of Tables	
	1 $I_B = 20 \mu\text{A}$	4
	2 $I_B = 50 \mu\text{A}$	5 5
	$I_B = 80 \mu\text{A}$	6
	5 Average values of β per I_B	6
	$V_{CE} = 5 \text{V} \dots \dots$	6
	$7 V_{CE} = 10 \mathrm{V} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	6
	$8 V_{CE} = 15 \mathrm{V} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	9 Average values of β per V_{CE}	7
	10 h_{co} vs. r_{c}	7

1 Objective

The objective is to plot the output characteristic of a common-emitter transistor circuit, and use it to determine the current gain and output conductance.

2 Equipment

Transistor: 2N7000 Power supply: HP E3631A Function generator: HP 33120 Multimeter: HP 34401A Oscilloscope: Agilent 54622D Capacitors: $0.1\,\mu\text{F}$ Resistors: $100\,\Omega$, $300\,\Omega$, $470\,\Omega$, $1\,\mathrm{k}\Omega$ (x2) $33\,\mathrm{k}\Omega$, $100\,\mathrm{k}\Omega$ (x2)

3 Schematics

Figure 1: Common-emitter transistor circuit

4 Procedure

The following steps were observed to plot the output characteristic of a common emitter transistor circuit:

- 1. Construct the circuit of Figure 1. Use the $+6\,\mathrm{V}$ power supply for V_{BB} and the $+25\,\mathrm{V}$ supply for V_{CC} . Be sure to keep the connection distance between the capacitor and the transistor short. Use the HP multimeter to measure the base current (I_B) on the source side of the capacitor and Fluke multimeters to measure the collector voltage and current (V_{CE}) and I_C .
- 2. Adjust V_{BB} so that base current (I_B) is $20 \,\mu\text{A}$.
- 3. Adjust V_{CC} from 0.5 1.5 V in 0.25 V steps, then from 2 20 V in 2 V steps.

- 4. At each step measure the collector current, I_C , and the collector-to-emitter voltage, V_{CE} . If I_B has drifted, readjust V_{BB} before recording the values of I_C and V_{CE} .
- 5. Adjust V_{BB} for a base current of 50 μ A, 80 μ A, and 100 μ A. Repeat steps 3 and 4 at each I_B value.

5 Results

V_{CC}	I_C	V_{CE}	β
(V)	(mA)	(V)	
0.50	0.232	0.454	11.60
0.75	0.233	0.705	11.65
1.00	0.234	0.954	11.70
1.25	0.237	1.204	11.85
1.50	0.237	1.454	11.85
2	0.242	1.954	12.10
4	0.25	3.95	12.30
6	0.25	5.95	12.60
8	0.26	7.95	12.75
10	0.26	9.96	12.85
12	0.26	11.95	13.10
14	0.27	13.94	13.30
16	0.27	15.95	13.40
18	0.27	17.95	13.50
20	0.27	19.95	13.70

Table 1: $I_B=20\,\mu\mathrm{A}$

V_{CC}	I_C	V_{CE}	β
(V)	(mA)	(V)	
0.50	2.73	0.178	54.60
0.75	4.34	0.236	86.80
1.00	4.96	0.41	99.20
1.25	4.95	0.662	99.00
1.50	4.97	0.91	99.40
2	4.98	1.41	99.60
4	5.15	3.39	103.00
6	5.25	5.38	105.00
8	5.39	7.36	107.80
10	5.58	9.34	111.60
12	5.77	11.31	115.40
14	5.97	13.28	119.40
16	6.21	15.26	124.20
18	6.45	17.23	129.00
20	6.69	19.20	133.80

Table 2: $I_B=50\,\mu\mathrm{A}$

V_{CC}	I_C	V_{CE}	β
(V)	(mA)	(V)	
0.50	3.08	0.135	38.50
0.75	4.95	0.163	61.88
1.00	6.8	0.191	85.00
1.25	8.58	0.229	107.25
1.50	9.1	0.421	113.75
2	9.4	0.881	117.50
4	10.79	2.71	134.88
6	11.03	4.68	137.88
8	11.45	6.63	143.13
10	11.99	8.56	149.88
12	12.72	10.47	159.00
14	13.41	12.39	167.63
16	14.20	14.29	177.50
18	15.05	16.20	188.13
20	15.85	18.10	198.13

Table 3: $I_B=80\,\mu\mathrm{A}$

V_{CC}	I_C	V_{CE}	β
(V)	(mA)	(V)	
0.50	3.21	0.12	32.10
0.75	5.11	0.143	51.10
1.00	7.02	0.164	70.20
1.25	8.93	0.186	89.30
1.5	10.79	0.214	107.90
2	10.33	0.77	103.30
4	11.33	2.67	113.30
6	13.95	4.34	139.50
8	15.63	6.14	156.30
10	16.60	8.02	166.00
12	17.98	9.95	179.80
14	19.20	11.70	192.00
16	20.70	13.69	207.00
18	22.40	15.53	224.00
20	23.80	17.37	238.00

Table 4: $I_B=100\,\mu\mathrm{A}$

I_B (μ A)	β_{avg}
20	12.55
50	105.85
80	132.00
100	137.99

Table 5: Average values of β per I_B

I_B	I_C	β
(μA)	(mA)	
20	0.25	12.26
50	5.20	104.00
80	11.10	138.75
100	14.67	146.68

Table 6: $V_{CE}=5\,\mathrm{V}$

I_B	I_C	β
(μA)	(mA)	
20	0.26	12.97
50	5.64	112.84
80	12.47	155.88
100	18.00	180.00

Table 7: $V_{CE} = 10 \,\mathrm{V}$

Figure 2: V_{CE} vs. I_C

I_B	I_C	β
(μA)	(mA)	
20	0.27	13.32
50	6.18	123.61
80	14.50	181.25
100	22.93	229 30

Table 8: $V_{CE}=15\,\mathrm{V}$

V_{CE} (V)	β_{avg}
5	100.42
10	115.42
15	136.87

Table 9: Average values of β per V_{CE}

I_B	h_{oe}	r_o
(μA)		$(k\Omega)$
20	1.700E-6	58.82
50	9.950E-5	10.10
80	3.669E-4	2.726
100	7.412E-4	1.349

Table 10: h_{oe} vs. r_o

Figure 3: V_{CE} vs. I_C , $V_{CE} > 0$

6 Conclusion

As shown in Figure 2, the family of curves associated with the four I_B currents loosely follow the typical plots of Bipolar Junction Transistors (BJTs). The mode of operation of the transistor transitions to the forward-active mode when V_{CE} is greater than approximately 0.2 V. Also, as I_B increases, the slope of the I_C to V_{CE} increases.

Tables 1, 2, 3, and 4 show that as I_B increases, the ratio of I_C to I_B (current gain, β) also increases. This change in β seems to "taper off" as I_B increases such that if one were to plot mean β vs. I_B , it would resemble logarithmic growth.

Figure 3 shows the slope of each of the family of curves for V_{CE} values greater than 3 V. The output conductance (h_{oe}) was conducted with the slope of each of the four the trend line equations and Equation 2. As I_B increased, h_{oe} increased.

7 Equations

$$\beta = \frac{I_C}{I_B} \tag{1}$$

$$h_{oe} \approx \frac{1}{r_o} = \frac{\Delta I_C}{\Delta V_{CE}} \tag{2}$$