

Varied Antibody Response to COVID-19: A Review

Shalini Nair MPH Candidate | Department of Epidemiology

Our Agenda for Today

List of key concepts

- Background
- Grounds for Study
- Methods
- Results
- Conclusions
- Discussion and Future Study

Timeline of COVID-19:

1 million deaths

Pfizer submits for EUA

Moderna submits for EUA

Epidemiology of COVID-19:

As of December 8, 2020:

- 67,916,341 cases worldwide
 - 1. United States
 - 2. India
 - 3. Brazil
 - 4. Russia
 - 5. France
- 1,551,120 deaths worldwide
 - 1. United States
 - 2. Brazil
 - 3. India
 - 4. Mexico
 - 5. United Kingdom

What Do We Know Now?

- Genetic similarities to past CoV
- Differential manifestations of illness
 - Unique shedding characteristics
 - Implications on immune response?
- Transmission
- Pathogenesis
 - S glycoprotein -> ACE2 receptor

Genetic characteristics of SARS-CoV-2

Pathogenesis of SARS-CoV-2

Pathogenesis of SARS-CoV-2

Grounds for Review

Little known on humoral response

- Observed variations
- Prognostic implications
- Immunity implications

METHODS

- Systematic search of PubMed
- Timeline: post-December 31,

2019

- Additional relevant references
 - Pre-prints excluded

Findings

10 peer-reviewed studies were identified.

Author	Year	Title	N=
Yu et al.	May 2020	Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients	37
Zhao et al.	May 2020	Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019	173
Wang et al.	April 2020	Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients	26
Long et al.	June 2020	Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections	37
Lou et al.	May 2020	Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset	80
Wang et al.	June 2020	Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and	70
Ibarrondo et al.	September 2020	Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19	34
Long et al.	April 2020	Antibody responses to SARS-CoV-2 in patients with COVID-19	285
Suthar et al.	June 2020	Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients	44
Guo et al.	March 2020	Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19)	140

Topic 1: Seroconversion Time

Is it robust?

When does it happen?

Differential by clinical manifestation?

Antibody Isotypes

- IgM: 1st response
- IgD: unknown
- IgG: most abundant, highest neutralization activities
- IgA: in mucosal tissues
- IgE: allergy response

- Early seroconversion of IgA
- Total antibody assays detected prior to specific estimates
- Peak 1-2 weeks post-onset
- 90% seroconversion seen within ~1 month
 - Greatest median time: IgG
 day 20

Interpret Cautiously...

- Antibody titers ≠ viral clearance
 - Detectable while convalescing OR
 - Achieve clearance prior to convalescent stage
- Implications re: innate immune response?

Topic 2: Clinical Presentation

Can Ab response predict severity?

Which Ab may be responsible?

Mechanisms?

Dissecting the Differences

- Severe vs non-severe cases
 - Relative levels of total Ab,

IgA, IgG↑

- 2 weeks post-onset
- Why?
 - Hypothesis: IgA and ADE

SARS-CoV-2 infection IgG antibodies to envelope glycoproteins Low avidity of antigen binding Adequate neutralizing activity and other protective antibody to antibody functions Altered glycosylation profile of antibody Fc region

Control of virus replication

(French & Moodley, 2020)

Antibody-dependent

uptake by macrophages

Increased inflammation

enhancement (ADE) of virus

Topic 3: Lasting Immunity

Does IgM/IgG = neutralizing response?

Length of immunity?

Differentials by clinical presentation?

Evidence on Lasting Immunity

Neutralizing response

Correlation with IgG titers

Length of Immunity

~ 3 months

< SARS/MERS

By Clinical Severity

Faster Ab
deterioration
in
asymptomatic

Topic 4: Diagnostic Relevance

Shortfalls of RNA testing?

Capitalizing on timeline...

Implications on isolation protocol?

Issues + Proposed Modifications

Time tradeoff of qPCR to ELISA

Ab results and de-isolation timeline

RNA testing complemented by Ab assays

Immune response

Relatively typical

Pathogenesis

IgA + the inflammatory response role

Prognostic potential

Analysis of Ab titers as indicator of severity

Moving forward

Antibody assays as crucial supplementary element

Discussion + Future Study

- More work on neutralizing response needed
- More work on IgA mediation
- Expanded testing protocol = more
 data = better understanding
- Far from over
 - Mitigate excess damage

Each day shows new cases reported since the previous day · Updated less than 19 hours ago Source: The New York Times · About this data

Questions?

Sources

AJMC Staff. (n.d.). *A Timeline of COVID-19 Developments in 2020.* AJMC. Retrieved December 8, 2020, from https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-

CoV-2. *Nature Medicine*, 26(4), 450-452. https://doi.org/10.1038/s41591-020-0820-9

Cevik, M., Kuppalli, K., Kindrachuk, J., & Peiris, M. (2020). Virology, transmission, and pathogenesis of SARS-

CoV-2. *BMJ*, *371*, m3862. https://doi.org/10.1136/bmj.m3862

French, M. A., & Moodley, Y. (2020). The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times. *Respirology*, 25(7), 680–682. https://doi.org/10.1111/resp.13852

Johhs Hopkins University. (n.d.). *COVID-19 Map*. Johns Hopkins Coronavirus Resource Center. Retrieved

December 8, 2020, from https://coronavirus.jhu.edu/map.html