Theory of Schemes: Second Exercise Session

Michele Pernice

1 Decomposition in irreducible components

- (a) Let X be a topological space. Prove that the following are equivalent:
 - (i) *X* is a noetherian topological space;
 - (ii) every open subset of *X* is quasi-compact;
 - (iii) every non-empty family of closed subset of *X* has a minimal member.
- (b) Let Y be a noetherian topological space and $Z \subset X$ be a closed subset. Prove that there exists an irredundant decomposition $Z = \bigcup Z_i$ where Z_i are closed and irreducible subsets of X. The decomposition is unique (up to the order). Solved during the exercise session

2 Topological properties of schemes

Let *X* be a scheme.

- (a) Prove that any irreducible and closed subset $Z \subset X$ has a unique generic point. Such topological spaces are called sober.
- (b) Schemes are usually not Hausdoorf. Describe all Hausdoorf affine schemes.
- (c) Prove that X is T_0 , i.e. for every pair of distinct points x, y of X there exists an open U of X which contains exactly one of them. Solved during the exercise session
- (d) Prove that every quasi-compact sober topological space has a closed point. In particular, every quasi-compact scheme has a closed point. Solved during the exercise session

3 Local rings

Recall that we say that a commutative unitary ring A is local if it has only one maximal ideal m. We say that a morphism $\phi: A \to B$ of local rings is local is the preimage of the maximal ideal of B is equal to the maximal ideal of A.

- (a) A is a local ring if and only if Spec A has a unique closed point;
- (b) ϕ is local if and only if the image of the maximal ideal of A is cointained inside the maximal ideal of B;
- (c) ϕ is local if and only if Spec ϕ sends the closed point of Spec B to the closed point of Spec A;
- (d) find a morphism of local rings which is not local;
- (e) prove that Spec A is a point if and only if A is local and $\sqrt{0}$ is maximal. Notation: \sqrt{I} is the radical ideal associated to the ideal I

4 Noetherian rings and topological space

Let A be commutative unitary ring.

- prove that if A is a noetherian ring then Spec A is a noetherian topological space,
- find an example where Spec A is a noetherian topological space but A is not noetherian. Hint: try to find a non-noetherian ring whose topological space is a point...

5 Reduced subscheme

Let A be the quotient rings of the polynomial algebra k[x,y,z,w] by the ideal $I:=(x^2,xy,y^2,xw-yz)$. Prove that $X_{\rm red}\simeq \mathbb{A}^2_k$.

6 Sheaf of units

Let (X, \mathscr{O}_X) be a scheme. We say that a section $s \in \mathscr{O}_X(U)$ is a unit if there exists an element $t \in \mathscr{O}_X(U)$ such that st = 1 for some U open in X.

- (a) Prove that $s\in \mathscr{O}_X(U)$ is a unit if and only if $s_x\in \mathscr{O}_{X,x}$ is a unit for every $x\in U$.
- (b) Let $\mathscr{O}_X^{\times}(U) \subset \mathscr{O}_X(U)$ be the subgroup of units. Show that \mathscr{O}_X^{\times} is a subsheaf of \mathscr{O}_X .