The group G is isomorphic to the group labelled by [30, 2] in the Small Groups library. Ordinary character table of $G \cong C3 \times D10$:

	1a	3a	3b	5a	15a	15b	5b	15c	15d	2a	6a	6b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_3	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_4	1	1	1	1	1	1	1	1	1	-1	-1	-1
χ_5	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$
χ_6	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	-1	$-E(3)^2$	-E(3)
χ_7	2	$\overline{2}$	$\hat{2}$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	0	0	0
χ_8	2	2 * E(3)	$2 * E(3)^2$	$E(5) + E(5)^4$	$E(15)^2 + E(15)^8$	$E(15)^7 + E(15)^{13}$	$E(5)^2 + E(5)^3$	$E(15)^{11} + E(15)^{14}$	$E(15) + E(15)^4$	0	0	0
χ_9	2	$2*E(3)^{2}$	2 * E(3)	$E(5) + E(5)^4$	$E(15)^7 + E(15)^{13}$	$E(15)^2 + E(15)^8$	$E(5)^2 + E(5)^3$	$E(15) + E(15)^4$	$E(15)^{11} + E(15)^{14}$	0	0	0
χ_{10}	2	2	2	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	0	0	0
χ_{11}	2	2 * E(3)	$2*E(3)^2$	$E(5)^{2} + E(5)^{3}$	$E(15)^{11} + E(15)^{14}$	$E(15) + E(15)^4$	$E(5) + E(5)^4$	$E(15)^2 + E(15)^8$	$E(15)^{7} + E(15)^{13}$	0	0	0
χ_{12}	2	$2*E(3)^2$	2 * E(3)	$E(5)^{2} + E(5)^{3}$	$E(15) + E(15)^4$	$E(15)^{11} + E(15)^{14}$	$E(5) + E(5)^4$	$E(15)^7 + E(15)^{13}$	$E(15)^2 + E(15)^8$	0	0	0

Trivial source character table of $G \cong C3 \times D10$ at p = 5:

Trivial source character table of $G = CS \times D10$ at $p = S$:												
Normalisers N_i	N_1					N_2						
p-subgroups of G up to conjugacy in G	P_1					P_2						
Representatives $n_j \in N_i$	1a	2a	3a	6a	3b	6b	1a	3a	2a	3b	6a	6b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		1	5	1	5	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$		1	5 * E(3)	E(3)	$5 * E(3)^2$	$E(3)^{2}$	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	$_{2}\mid 5$	1	$5 * E(3)^2$	$E(3)^{2}$	5 * E(3)	E(3)	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	$_{2}\mid 5$	-1	5	-1	5	-1	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} $	$_{2}\mid 5$	-1	5 * E(3)	-E(3)	$5 * E(3)^2$	$-E(3)^2$	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	5	-1	$5 * E(3)^2$	$-E(3)^2$	5 * E(3)	-E(3)	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	1	-1	1	-1	1	-1	1	1	-1	1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	1	E(3)	-1	$E(3)^{2}$	-E(3)	$-E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	1	$E(3)^{2}$	-1	E(3)	$-E(3)^2$	-E(3)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 15, 4, 21, 9)(2, 18, 6, 24, 12)(3, 20, 8, 26, 14)(5, 23, 11, 28, 17)(7, 25, 13, 29, 19)(10, 27, 16, 30, 22)]) \cong C5$

 $N_1 = Group([(1,2)(3,5)(4,24)(6,21)(7,10)(8,28)(9,18)(11,26)(12,15)(13,30)(14,23)(16,29)(17,20)(19,27)(22,25), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,22)(15,20,25)(18,23,27)(21,26,29)(24,28,30), (1,4,9,15,21)(2,6,12,18,24)(3,8,14,20,26)(5,11,17,23,28)(7,13,19,25,29)(10,16,22,27,30)]) \cong C3 \times D10 \\ N_2 = Group([(1,15,4,21,9)(2,18,6,24,12)(3,20,8,26,14)(5,23,11,28,17)(7,25,13,29,19)(10,27,16,30,22), (1,2)(3,5)(4,24)(6,21)(7,10)(8,28)(9,18)(11,26)(12,15)(13,30)(14,23)(16,29)(17,20)(19,27)(22,25), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,22)(15,20,25)(18,23,27)(21,26,29)(24,28,30)]) \cong C3 \times D10 \\ N_2 = Group([(1,15,4,21,9)(2,18,6,24,12)(3,20,8,26,14)(5,23,11,28,17)(7,25,13,29,19)(10,27,16,30,22), (1,2)(3,20,18,24,24)(6,21)(7,10)(8,28)(9,18)(11,26)(12,15)(13,30)(14,23)(16,29)(17,20)(19,27)(22,25), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,22)(15,20,25)(18,23,27)(21,26,29)(24,28,30)]) \cong C3 \times D10 \\ N_3 = Group([(1,15,4,21,9)(2,18,6,24,12)(3,20,8,26,14)(5,23,11,28,17)(7,25,13,29,19)(10,27,16,30,22), (1,2)(3,20,18,24)(6,21)(7,20)(19,27)(22,25), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,22)(15,20,25)(18,23,27)(21,26,29)(24,28,30)]) \cong C3 \times D10 \\ N_4 = Group([(1,15,4,21,9)(2,18,6,24,12)(3,20,18,24)(3,20,18,$