

UNCERTAINTY AND THE MEDICAL INTERVIEW

TOWARDS SELF-ASSESSMENT IN MACHINE LEARNING MODELS

Jakob D. Havtorn

DTU Compute

Department of Applied Mathematics and Computer Science

Outline of Part

Introduction

Healthcare

Healthcare is the improvement of health via the prevention, diagnosis, treatment, amelioration or cure of disease, illness, injury, and other physical and mental impairments in people.

corti DTU

Medical dialogue

Medical dialogue

- Failure of communication is a leading cause of medical error contributing to two out of three adverse events [4].
- 2 Between 9% and 16.6% of all hospital admissions had preventable adverse outcomes (AU, UK, NZ, DK) [15].

corti DTU

Types of dialogue

- Context: Controlled / Chaotic
- Domain: Specialized / General
- Person: Nurse, doctor, midwife, caregiver, psychiatrist, insurance professional
- Purpose: Triaging, diagnosis, treatment, follow-up, documentation, coding, billing

Part I

Unsupervised Out-of-Distribution Detection

Outline of Part

- Out-of-distribution detection
- Latent variable models
- Identifying the issue
- The $\mathcal{L}^{>k}$ likelihood bound
- Likelihood ratio

Defining OOD detection

Out-of-distribution (OOD) detection is about enabling models to distinguish the training data distribution p(x) from any other distribution $\tilde{p}(x)$.

We are concerned with doing this on a per-observation basis, i.e. answering the question:

"Was x sampled from p(x) or not?"

Problem and Contributions

- Deep generative models often fail at OOD detection task when using their likelihood estimate as the score function [9] by, perhaps surprisingly, assigning **higher likelihoods** to the OOD data.
- Contributions:
 - We present a fast and fully unsupervised method for OOD detection competitive with the state-of-the-art
 - We provide evidence that out-of-distribution detection fails due to learned low-level features that generalize across datasets.

corti

In distribution?

corti DT

Out of distribution?

Hierarchical VAE

We choose the hierarchical VAE as our model [2, 3].

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int p_{\theta}(\mathbf{x} | \mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$$

Specifically we use

• a three-layered hierarchical VAE with bottom-up inference and deterministic skip-connections for both inference and generation.

Generative model: $p_{\theta}(\mathbf{x}|\mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z}_1)p_{\theta}(\mathbf{z}_1|\mathbf{z}_2)p(\mathbf{z}_3),$

 $\label{eq:energy_equation} \text{Inference model:} \quad q_{\varphi}(\mathbf{z}|\mathbf{x}) = q_{\varphi}(\mathbf{z}_1|\mathbf{x}) q_{\varphi}(\mathbf{z}_2|\mathbf{z}_1) q_{\varphi}(\mathbf{z}_3|\mathbf{z}_2).$

② a ten-layered layered Bidirectional-Inference Variational Autoencoder (BIVA) [8].

What is wrong with the ELBO for OOD detection?

We can split the ELBO into two terms

$$\mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})}{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \right] = \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} [\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})]}_{\text{reconstruction likelihood}} - \underbrace{D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}_{\text{regularization penalty}} . \quad (1)$$

The first term is high if the data is well-explained by z.

The second term we can rewrite as,

$$D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\sum_{i=1}^{L-1} \log \frac{p_{\theta}(\mathbf{z}_{i}|\mathbf{z}_{i+1})}{q_{\phi}(\mathbf{z}_{i}|\mathbf{z}_{i-1})} + \log \frac{p_{\theta}(\mathbf{z}_{L})}{q_{\phi}(\mathbf{z}_{L}|\mathbf{z}_{L-1})} \right]. \tag{2}$$

The absolute log-ratios grow with $dim(\mathbf{z}_i)$ since the log probability terms are computed by summing over the dimensionality of \mathbf{z}_i .

What do the lowest latent variables code for?

Absolute Pearson correlations between data representations in all layers of the inference network of a hierarchical VAE trained on FashionMNIST and of another trained on MNIST.

Correlation computed between the representations of the two different models given the same data, FashionMNIST (top) and MNIST (bottom).

An alternative likelihood bound, $\mathcal{L}^{>k}$

An alternative version of the ELBO that only partially uses the approximate posterior can be written as [8]

$$\mathcal{L}^{>k}(\mathbf{x}; \theta, \phi) = \mathbb{E}_{p_{\theta}(\mathbf{z}_{\leq k}|\mathbf{z} > k)q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z}_{>k})}{q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})} \right]$$
(3)

Here, we have replaced the approximate posterior $q_{\varphi}(\mathbf{z}|\mathbf{x})$ with a different proposal distribution that combines part of the approximate posterior with the conditional prior, namely

$$p_{\theta}(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})$$

This bound uses the conditional prior for the lowest latent variables in the hierarchy.

Likelihood ratios

We can use our new bound to compute the score used in a standard likelihood ratio test [1].

$$LLR^{>k}(x) \equiv \mathcal{L}(x) - \mathcal{L}^{>k}(x). \tag{4}$$

We can inspect what this likelihood-ratio measures by considering the exact form of our bounds.

$$\mathcal{L} = \log p_{\theta}(\mathbf{x}) - D_{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right),$$

$$\mathcal{L}^{>k} = \log p_{\theta}(\mathbf{x}) - D_{KL} \left(p_{\theta}(\mathbf{z}_{\leq}|\mathbf{z}_{>k}) q_{\phi}(\mathbf{z}_{>k}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right).$$
(5)

In the likelihood ratio the reconstruction terms cancel out and only the KL-divergences from the approximate to the true posterior remain.

$$LLR^{>k}(\mathbf{x}) = -D_{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right)$$

$$+ D_{KL} \left(p_{\theta}(\mathbf{z}_{\leq}|\mathbf{z}_{>k}) q_{\phi}(\mathbf{z}_{>k}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right) .$$
(6)

corti

Importance sampling the ELBO

The well-known importance weighted autoencoder (IWAE) bound is tight with the true likelihood in the limit of infinite samples, $S \rightarrow \infty$ [5],

$$\mathcal{L}_{S} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{1}{N} \sum_{s=1}^{S} \frac{p(\mathbf{x}, \mathbf{z}^{(s)})}{q(\mathbf{z}^{(s)}|\mathbf{x})} \right] \leq \log p_{\theta}(\mathbf{x}),$$
 (7)

Consequently, by importance sampling the ELBO, the associated KL-divergence associated vanishes and our likelihood ratio reduces to the KL-divergence associated with $\mathcal{L}^{>k}$.

$$LLR_S^{>k}(\mathbf{x}) \to D_{KL}(p(\mathbf{z}_{\leq}|\mathbf{z}_{>k})q(\mathbf{z}_{>k}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})). \tag{8}$$

We can now see that $LLR_S^{>k}(x)$ performs OOD detection based on the top-most latent variables.

Results with $\coprod R^{>k}$

(a) FashionMNIST HVAE evaluated on MNIST

(b) CIFAR10 BIVA evaluated on SVHN

Results with LLR^{>k}

The score has good performance across many datasets.

OOD dataset	Metric	AUROC↑	AUPRC↑	FPR80↓					
Trained on CIFAR10									
SVHN CIFAR10	LLR ^{>2} LLR ^{>1}	0.811	0.837 0.479	0.394 0.835					
CIFAR10 LLR ^{>1} 0.469 0.479 0.835 Trained on SVHN									
Hained on 5 v Hiv									
CIFAR10 SVHN	LLR ^{>1} LLR ^{>1}	0.939 0.489	0.950 0.484	0.052 0.799					

OOD dataset	Metric	AUROC↑	AUPRC↑	FPR80↓			
Trained on FashionMNIST							
MNIST	LLR>1	0.986	0.987	0.011			
notMNIST	LLR>1	0.998	0.998	0.000			
KMNIST	$LLR^{>1}$	0.974	0.977	0.017			
Omniglot28x28	LLR>2	1.000	1.000	0.000			
Omniglot28x28Inverted	$LLR^{>1}$	0.954	0.954	0.050			
SmallNORB28x28	LLR>2	0.999	0.999	0.002			
SmallNORB28x28Inverted	LLR>2	0.941	0.946	0.069			
FashionMNIST	LLR ^{>1}	0.488	0.496	0.811			
Trained on MNIST							
FashionMNIST	LLR>1	0.999	0.999	0.000			
notMNIST	$LLR^{>1}$	1.000	0.999	0.000			
KMNIST	LLR>1	0.999	0.999	0.000			
Omniglot28x28	$LLR^{>1}$	1.000	1.000	0.000			
Omniglot28x28Inverted	LLR>1	0.944	0.953	0.057			
SmallNORB28x28	$LLR^{>1}$	1.000	1.000	0.000			
SmallNORB28x28Inverted	LLR>1	0.985	0.987	0.000			
MNIST	LLR>2	0.515	0.507	0.792			

PART II

MEDICAL APPLICATIONS

Outline of Part

• A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Hells

Stroke

- Stroke is a leading cause of disability and death worldwide [12, 7, 6].
- Effective treatment is time-sensitive, and an optimal outcome is more likely when treatment is administered within the first four and a half hours from stroke onset [11, 10].
- The gateway to ambulance transport and hospital admittance is through prehospital telehealth services, including emergency medical call centers, nurse advice call lines, and out-of-hours health services.
- In the pre-hospital setting, the use of mobile stroke units has made it possible to deliver advanced treatment faster [13, 14].
- As the mobile stroke unit is only dispatched to patients with a suspected stroke, the impact of mobile stroke unit is directly influenced by accurate call-taker recognition of stroke [13, 14].
- Call-takers who can rapidly and accurately recognize stroke are therefore crucial in facilitating prompt care in both pre-hospital and in-hospital settings.

Thank you for your attention

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Hell Calls

Bibliography I

- [1] Adolf Buse. "The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note". In: *The American Statistician* 36 (3a 1982), pp. 153–157.
- [2] Diederik P Kingma and Max Welling. "Auto-Encoding Variational Bayes". In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). International Conference on Learning Representations. Banff, AB, Canada, 2014. arXiv: 1312.6114. URL: http://arxiv.org/abs/1312.6114.
- [3] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". In: *Proceedings of the 31st International Conference on Machine Learning (ICML)*. International Conference on Machine Learning. Vol. 32. Beijing, China: PMLR, Jan. 16, 2014, pp. 1278–1286. URL: http://proceedings.mlr.press/v32/rezende14.pdf (visited on 08/12/2018).

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Hell

Bibliography II

- [4] Amy J Starmer et al. "Changes in Medical Errors after Implementation of a Handoff Program". In: *New England Journal of Medicine* 371.19 (2014), pp. 1803–1812.
- [5] Yuri Burda, Roger Grosse, and Ruslan R. Salakhutdinov. "Importance Weighted Autoencoders". In: *Proceedings of the 4th International Conference on Learning Representations (ICLR)*. International Conference on Learning Representations. San Juan, Puerto Rico, 2016, p. 8. URL: https://arxiv.org/abs/1509.00519 (visited on 10/04/2017).
- [6] Mira Katan and Andreas Luft. "Global Burden of Stroke". In: *Seminars in Neurology*. Vol. 38. 02. Thieme Medical Publishers, 2018, pp. 208–211.

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical He Calls

Bibliography III

- [7] Hmwe Hmwe Kyu et al. "Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 359 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017". In: *The Lancet* 392.10159 (2018), pp. 1859–1922.
- [8] Lars Maaløe et al. "BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling". In: *Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS)*. Conference on Neural Information Processing Systems. Vancouver, Canada, Feb. 6, 2019, pp. 6548–6558. URL: http://arxiv.org/abs/1902.02102 (visited on 03/19/2019).

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical He

Bibliography IV

- [9] Eric Nalisnick et al. "Do Deep Generative Models Know What They Don't Know?" In: Proceedings of the 7th International Conference on Learning Representations (ICLR). International Conference on Learning Representations. New Orleans, LA, USA, 2019. arXiv: 1810.09136. URL: http://arxiv.org/abs/1810.09136 (visited on 10/02/2019).
- [10] Guillaume Turc et al. "European Stroke Organisation (ESO)-European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke". In: Journal of Neurointerventional Surgery 11.8 (2019), pp. 535–538.
- [11] Eivind Berge et al. "European Stroke Organisation (ESO) Guidelines on Intravenous Thrombolysis for Acute Ischaemic Stroke". In: European Stroke Journal 6.1 (2021), pp. I–LXII.

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Hell Calls

Bibliography V

- [12] GBD 2019 Stroke Collaborators et al. "Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019". In: *The Lancet Neurology* 20.10 (2021), pp. 795–820. ISSN: 1474-4422. DOI: 10.1016/S1474-4422(21)00252-0.
- [13] Praveen Hariharan et al. "Mobile Stroke Units: Current Evidence and Impact". In: *Current Neurology and Neuroscience Reports* 22.1 (2022), pp. 71–81.
- [14] Babak B Navi et al. "Mobile Stroke Units: Evidence, Gaps, and next Steps". In: *Stroke* 53.6 (2022), pp. 2103–2113.
- [15] Niki Carver, Vikas Gupta, and John E. Hipskind. "Medical Errors". In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2024. pmid: 28613514. URL: http://www.ncbi.nlm.nih.gov/books/NBK430763/ (visited on 02/13/2024).