<u>Цель работы:</u> привести вывод выражений спектра гармонического сигнала. Привести выражения для преобразования Фурье для сигналов из сигнального множества. Вычислить амплитудные спектры всех сигналов. построить графики, определить ширину полосы частот, занимаемой каждым сигналом и множеством всех сигналов. Привести вывод выражения спектра последовательности сигналов. Вычислить спектр последовательности сигналов (для нескольких различных последовательностей различной длины), построить графики.

1. Вывод спектра гармонического сигнала

Пусть сигнала задан как

$$s(t) = \begin{cases} Acos(2\pi f_0 t, 0 < t < T) \\ 0, \quad \text{иначе} \end{cases}$$

Рассмотрим исходный сигнал s(t) как произведение s(t) = g(t)c(t), где g(t) – некоторая произвольная функция (огибающая), а $c(t) = \cos(2\pi f_0 t)$. Тогда, согласно теореме о свертке, спектр исходного сигнала определяется как S(f) = G(f) * C(f).

Согласно формуле Эйлера

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}.$$

Отсюда, $c(t) = \frac{1}{2} (e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}).$

Спектр δ — функции $\delta(f)=1$. Отсюда, можно соотнести $1\leftrightarrow\delta(f)$. Согласно свойству сдвига по частоте, $f(t)e^{j2\pi f_0t}\leftrightarrow F(f-f_0)$, иначе говоря, при сдвиге спектра, оригинал сдвигается на $e^{j2\pi f_0t}$. Таким образом, с учетом свойства сдвига:

$$C(f) = \frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))$$

Тогда спектр исходного сигнала S(f) будет равен:

$$S(f) = \frac{1}{2}G(f)(\delta(f - f_0) + \delta(f + f_0))$$

В качестве g(t) рассмотрим:

$$g(t) = \begin{cases} A, & 0 < t < T \\ 0, & \text{иначе} \end{cases}$$

Найдем спектр G(f):

$$G(f) = \int_0^T Ae^{-j2\pi ft} dt = A \int_0^T e^{-j2\pi ft} dt = -\frac{A}{j2\pi f} e^{-j2\pi ft} \Big|_0^T =$$

$$= -\frac{A}{j2\pi f} \Big(e^{-j2\pi fT} - 1 \Big) = -\frac{A}{j2\pi f} \Big(e^{-j\pi fT} e^{-j\pi fT} - e^{-j\pi fT} e^{j\pi fT} \Big) =$$

$$= \frac{AT}{T\pi f} \sin(\pi fT) e^{-j\pi fT} = AT sinc(\pi fT) e^{-j\pi fT}$$

Тогда спектр S(f) будет равен:

$$S(f) = \frac{1}{2}AT(sinc((f-f_0)T) + sinc((f+f_0)T)e^{-j\pi fT}$$
 ч.т.д

Схожим образом найдем спектр сигнала

$$s(t) = \begin{cases} Asin(2\pi f_0 t, 0 < t < T) \\ 0, \quad \text{иначе} \end{cases}$$

Представим сигнал как произведение s(t) = g(t)c(t), где g(t) – огибающая, а $c(t) = \sin(2\pi f_0 t)$. В таком случае по теореме о свертке спектр S(f) = G(f)C(f).

Найдем спектр C(f). Согласно формуле Эйлера, $sin x = \frac{e^{jx} - e^{-jx}}{2j}$. Тогда

$$c(t) = \frac{e^{j2\pi f_0 t} - e^{-j2\pi f_0 t}}{2i}$$

По свойству сдвига по частоте, $f(t)e^{j2\pi f_0t} \leftrightarrow F(f-f_0)$, иначе говоря, при сдвиге спектра, оригинал сдвигается на $e^{j2\pi f_0t}$. Спектр δ — функции $\delta(f)=1$. Отсюда, можно соотнести $1 \leftrightarrow \delta(f)$. Таким образом, с учетом свойства сдвига:

$$C(f) = \frac{1}{2i}\delta(f - f_0) - \delta(f + f_0)$$

Тогда спектр S(f) будет равен:

$$S(f) = \frac{1}{2j}G(f)(\delta(f - f_0) - \delta(f + f_0))$$

В качестве g(t) рассмотрим:

$$g(t) = \begin{cases} A, & 0 < t < T \\ 0, & \text{иначе} \end{cases}$$

Спектр G(f) равен

$$G(f) = AT sinc(\pi f T) e^{-j\pi f T}$$

Тогда спектр S(f) будет равен:

$$S(f) = \frac{1}{2j} AT(sinc((f - f_0)T) + sinc((f + f_0)T)e^{-j\pi fT}$$
 ч.т.д.

2. Исходные данные для 8 варианта КАМ.

$$f_0 = 1800 \ \Gamma$$
ц $V_{mod} = 1200 \ ext{Бод}$ $V_{inf} = 7200 \ ext{б/c}$

3. Преобразование Фурье для сигналов из сигнального множества

Для квадратурной амплитудной модуляции спектр сигнала из сигнального множества задается как:

$$\begin{split} S_i(f) &= s_{i1} \sqrt{\frac{T}{2}} (sinc \left((f-f_0)T \right) + sinc \left((f+f_0)T \right)) e^{-j\pi fT} \\ &+ \frac{s_{i2}}{j} \sqrt{\frac{T}{2}} \left(sinc \left((f-f_0)T \right) - sinc \left((f+f_0)T \right) \right) e^{-j\pi fT} \end{split}$$

где
$$i = 0, 1 ... q - 1$$
.

Амплитудные спектры сигналов КАМ вычисляются как модули этих комплекснозначных функций $S_i(f)$, i=0...q-1.

4. Амплитудный спектр одиночных сигналов.

Амплитудный спектр каждого сигнала выглядит следующим образом:

График 1 - Амплитудный спектр сигнала 1-8 (нумерация с верхнего левого угла)

График 2 - Амплитудный спектр сигнала 9 -16 (нумерация с левого верхнего угла)

График 3 - Амплитудный спектр сигнала 17-24 (нумерация с верхнего левого угла)

График 4 - Амплитудный спектр сигнала 25-32 (нумерация с верхнего левого угла)

График 5 - Амплитудный спектр сигнала 33-40 (нумерация с верхнего левого угла)

График 6 - Амплитудный спектр сигнала 41-48 (нумерация с верхнего левого угла)

График 7 - Амплитудный спектр сигнала 49-56 (нумерация с верхнего левого угла)

График 8 - Амплитудный спектр сигнала 57-64 (нумерация с верхнего левого угла)

Ширина полосы частот определяется как $W = \frac{2}{T} = 2 * V_{mod} = 2400$ Гц

5. Спектр последовательности сигналов.

Пусть $\{s_i(t)\}$ – сигнальное множество, i=0,1...q-1. Тогда

$$s_i(t) = \sum_{l=0}^{N-1} s_{il}(t - lT)$$

Или

$$s_i(t) = s_{i0}(t) + s_{i1}(t-1T) + \dots + s_{i(N-1)}(t-(N-1)T)$$

По свойству линейности, если $g(t) \leftrightarrow G(f)$, $h(t) \leftrightarrow H(f)$, то $ag(t) + bh(t) \leftrightarrow aG(f) + bH(f)$.

По свойству сдвига во временное области, если $g(t) \leftrightarrow G(f)$, тогда $g(t-t_0) \leftrightarrow e^{-j2\pi f t_0} G(f)$, иначе говоря, при сдвиге оригинала, спектр сдвинется на $e^{-j2\pi f t_0}$.

Используя эти два свойства, получим:

$$S_i(t) = S_{i0}(f)e^{-j2\pi 0f} + S_{i1}(f)e^{-j2\pi f1T} + \dots + S_{i(N-1)}(f)e^{-j2\pi f(N-1)T}$$

Таким образом,

$$S_i(f) = \sum_{l=0}^{N-1} S_{il}(f) e^{-j2\pi f l T}$$
 ч.т.д

6. Спектр последовательности сигналов.

Графики спектра последовательности сигналов различной длины приведены ниже:

График 9 - Последовательность из 5 сигналов

График 10 - Последовательность из 10 сигналов

График 11 - Последовательность из 40 сигналов

Из полученных графиков можно заметить, что амплитуда спектра, полученного последовательностью сигналов, возрастает с увеличением числа сигналов, образующего последовательность.

Ширина полосы частот $W = \frac{2}{TN} = \frac{2V_{mod}}{N}$.

Вывод

В ходе выполнения лабораторной работы привела вывод выражений спектра гармонического сигнала. Вычислила амплитудные спектры всех сигналов и построила графики.

Привела вывод выражения спектра последовательности сигналов. Вычислила спектр последовательности сигналов для последовательностей длины 4, 10 и 40. Проанализировала полученные спектры и вычислила ширину полосы частот $W=\frac{2}{TN}=\frac{2V_{mod}}{N}$ для последовательности сигналов и $W=\frac{2}{T}$ для одиночного сигнала.

Листинг программы:

```
Vmod = 1200;
Vinf = 7200;
f0 = 1800;
T = 1/V mod;
m = Vinf/Vmod;
q = pow2(m);
A = 7;
s = [7 \ 5 \ 3 \ 1 \ -1 \ -3 \ -5 \ -7];
step = 100;
fmax = 10000;
f = 0:step:fmax;
S = Q(n) s(fix(n/8)+1) * sqrt(T/2) * (sinc((f-f0)*T) +
sinc((f+f0)*T)).*exp(-1i*pi*f*T) +
(s (mod (n, 8) + 1) / 1i) * sqrt (T/2) * (sinc ((f-f0) * T) -
sinc((f+f0)*T)).*exp(-li*pi*f*T);
signals = zeros(q, (fmax/step) + 1);
% вычисление амплитудного спектра
for k = 0:63
  signals(k+1,:) = abs(S(k));
% графики амплитудного спектра
for k = 0:q-1
   figure (fix (k/8) + 1);
   subplot(2,4,mod(k,8) + 1);
   plot(f, signals(k+1,:));
   grid on;
end
D = 5;
%генерация мультииндексов
L = randi([1,q],1,D);
Si = zeros(1, (fmax/step) + 1);
for k = 1:D
    Si = Si + signals(L(k),:).*exp(-1i*2*pi*f*(k-1)*T);
end
figure (9);
plot(f,abs(Si));
hold on;
plot(f,abs(signals(1,:)));
hold off;
B = 10;
%генерация мультииндексов
L = randi([1,q],1,B);
Si = zeros(1, (fmax/step) + 1);
for k = 1:B
    Si = Si + signals(L(k),:).*exp(-1i*2*pi*f*(k-1)*T);
```

```
end
figure(10);
plot(f,abs(Si));
hold on;
plot(f, abs(signals(1,:)));
hold off;
C = 40;
%генерация мультииндексов
L = randi([1,q],1,C);
Si = zeros(1, (fmax/step) + 1);
for k = 1:C
    Si = Si + signals(L(k),:).*exp(-1i*2*pi*f*(k-1)*T);
end
figure(11);
plot(f,abs(Si));
hold on;
plot(f,abs(signals(1,:)));
hold off;
```