

Université catholique de Louvain Louvain School of Statistics

LSTAT2130 - Bayesian Statistics

Project - Group Q

LIONEL LAMY - 1294-1700 ADRIEN KINART SIMON LENGENDRE

Contents

1	Introduction	2
2	Question 12.1 (a) Theoretical probability	
3	Question 2 : Priors	4
\mathbf{A}	Appendix	5
	A.1 Figures	5
	A.2 Code	5

1 Introduction

shape ## 3089.944

Histogram of FI

shape ## 2914.882

Histogram of Wall

[1] 0.05892352

[1] 0.0001358382

2 Question 1

Let $\theta_k := (\mu_k, \phi_k)$ be the set of parameters for a HNI with respect to region k.

2.1 (a) Theoretical probability

Let X be the monthly net income of 1123 Belgian households net income (HNI) older than 30 years. Regardless the 2 regions ($k = \{1, 2\}$ wrt Flanders and Wallonnia, respectively), is assumed it follows a Gamma distribution. It can be reparametrised in terms of its mean μ and dispersion parameter ϕ with the following trick:

shape:
$$\kappa = \frac{1}{\phi}$$
rate: $\lambda = \frac{1}{\phi \mu}$

For both regions $k = \{1, 2\}$: This gives

$$f(x_k) = \frac{1}{\Gamma(\phi_k^{-1})} (\phi_k \mu)^{\phi_k} x_k^{\frac{1}{\phi_k} - 1} \exp\left(\frac{-x_k}{\phi_k \mu}\right)$$

Then, the probability to fall into a certain HNI interval is:

$$P(x_{k,j} < x_k < x_{k,j+1}) = \int_{x_i}^{x_{j+1}} \frac{1}{\Gamma(\phi_k^{-1})} (\phi_k \mu)^{\phi_k} x_k^{\frac{1}{\phi_k} - 1} \exp\left(\frac{-x_k}{\phi_k \mu}\right)$$

2.2 (b) Theoretical expression for the likelihood

On behalf of writing simplicity, the region index is removed. Since the frequency distribution in a given region is multinomial, i.e.

We have, writing $P := (p_1, ..., p_{10})$ and $X := (X_1, ... X_{10})$:

$$X|P \sim \text{Mul}(N, P) = \frac{x!}{x_1! \dots x_{10}!} p_1^{x_1} \times \dots \times p_{10}^{x_{10}} \text{ when } \sum_{j=1}^{10} p_j = 1$$

= 0 otherwise

Up to a multiplicative constant, the likelihood can be written as follow:

$$L(\theta, D) = P(D|\mu, \phi) \propto \prod_{j=1}^{10} p_j$$

 p_j corresponds to the area in the $j^{\rm th}$ interval. One can take the approximation mean the mean,e.g. $x_{Flanders,3}=(1500+1800)/2=1650$? On can approximate that with $f(x_i)\Delta$ where Δ is the unit of measurement.

$$p_j = P(x_j - \frac{\Delta_j}{2} < x_j < x_j + \frac{\Delta_j}{2}) \approx f(x_j) \Delta_j$$
$$\approx \frac{1}{\Gamma(\phi_k^{-1})} (\phi_k \mu)^{\phi_k} x_j^{\frac{1}{\phi_k} - 1} \exp\left(\frac{-x_j}{\phi_k \mu}\right) \Delta_j$$

This gives for the likelihood:

$$P(D|\mu,\phi) \propto \prod_{j=1}^{10} x_j^{\frac{1}{\phi_k}-1} \exp\left(\frac{-x_j}{\phi_k \mu}\right) \Delta_j$$
$$\propto \exp\left(\frac{-\sum x_j}{\phi_k \mu}\right) \prod_{j=1}^{10} x_j^{\frac{1}{\phi_k}-1} \Delta_j$$

3 Question 2 : Priors

• Statement 1: we are at 95% convinced that the mean net monthly household income in a given region is in the interval (2400, 3600). If one assumes a normal distribution for the mean μ_k (à justifier), then it is possible to get a prior of the distribution for both regions:

For both regions $\bar{x} = 3000$. Then, to get the standard deviation:

$$3000 - t_{(n_k - 1, 1 - \alpha/2)} \frac{s_k}{\sqrt{n_k}} = 2400$$

$$\rightarrow \hat{\sigma} = \frac{s_k}{\sqrt{n_k}} = \frac{600}{t_{(n_k - 1, 1 - \alpha/2)}}$$

 $\hat{\sigma}_{Fl} = 306$

So we have

$$\bar{x}_k \sim N(\mu = 3000, \sigma = 306) \propto \sigma^{-1/2} \exp\left(-\frac{1}{2\sigma}(x_k - \mu)^2\right)$$

• dispersion parameter:

If one considers that the parameter can be in any point within the interval (0.0, 10.0) with the same probability, then one could say that it follows a uniform distribution between those to interval

$$\phi_k \sim U(a=0, b=10) \propto 1_{0.10}$$

Using the entropy theorem, the conjugate prior would be the product of the two last quantity:

prior:
$$P(\mu_k, \phi_k) = P(\mu_k)(\phi_k) \propto$$

A Appendix

A.1 Figures

A.2 Code

Note

For reproducibility purposes, the complete R project containing the source code and the results is available on github.com.