Projekt obliczeniowy

"Analiza wartości napromieniowania zawartych w danych klimatycznych do obliczeń energetycznych budynków a wynikających z modelu izotropowego promieniowania"

Wioletta Stopińska 259592

1. Wstęp

W dzisiejszych czasach, kiedy głównym trendem w architekturze stały się budynki przeszklone, zyski od promieniowania słonecznego, stanowią nieodzowną część w bilansie cieplnym budynku. Powoduje to ogromny problem, szczególnie w okresie letnim, gdy temperatura w pomieszczeniach osiąga dużo wyższe wartości niż temperatura komfortu cieplnego. W celu jego zapewnienia projektowane są odpowiednie systemy, które potrafią utrzymać pożądane warunki przez cały rok. Głównym źródłem do obliczeń energetycznych budynków są dane meteorologiczne pochodzące z Ministerstwa Infrastruktury. Zamieszczone na stronie pliki zawierają typowe lata meteorologiczne oraz opracowane na ich podstawie statystyczne dane klimatyczne dla obszaru Polski. Z bazy danych Instytutu Meteorologii i Gospodarki Wodnej wygenerowane zostały zbiory danych niezbędne do wyznaczenia typowych lat meteorologicznych i zagregowanych danych klimatycznych dla potrzeb analiz i symulacji energetycznych budynków. Wygenerowane zbiory zawierały dane źródłowe z okresu trzydziestu lat począwszy od roku 1971, a skończywszy na roku 2000.

Dane typowego roku meteorologicznego zawierają:

- temperatury termometru suchego (DBT), [°C],
- wilgotności względne (RH), [%],
- zawartości wilgoci w powietrzu (HR), [g/kg],
- prędkości i kierunki wiatru (WS),(WD), [m/s],
- temperatury promieniowania nieboskłonu (TSKY), [°C],
- wartości natężenia promieniowania słonecznego na powierzchnię poziomą (ITH) $[W/m^2]$, dane pomiarowe dotyczące promieniowania bezpośredniego (IDH) i rozproszonego (ISH) na powierzchnie poziomą $[W/m^2]$, oraz dane dla poszczególnych kierunków geograficznych w tym dla powierzchni pionowych i kątów 30, 45 i 60 stopni. Te ostatnie dane nie są danymi pomiarowymi, są one jedynie ich oszacowaniem.

W związku z wieloma wątpliwościami, co do oszacowanych wartości natężenia promieniowania zawartych w danych do obliczeń energetycznych budynków. Postanowiono porównać je z wartościami uzyskanymi dzięki izotropowemu modelowi promieniowania Liu-Jordana. Porównanie tych obu oszacowań wykonane zostało dla miasta stołecznego Warszawa o współrzędnych geograficznych 52º 10′ N 20º 58′ E.

2. Model izotropowy promieniowania [1], [2]

Pierwsze modele promieniowania słonecznego padającego na dowolnie usytuowaną powierzchnię zakładały, że kluczowym promieniowaniem w promieniowaniu półsferycznym jest promieniowanie bezpośrednie. Według tych założeń promieniowanie dyfuzyjne koncentruje się w obszarze kierunku padania promieniowania bezpośredniego. Podczas przeprowadzania obliczeń nie rozróżniano poszczególnych składowych promieniowania, a w celu określenia promieniowania półsferycznego liczono promieniowanie całkowite na powierzchnię poziomą korygowane współczynnikiem odnoszącym się jedynie do promieniowania bezpośredniego. Model promieniowania półsferycznego docierającego do powierzchni pochylonej Hottela i Woertza, opracowany w 1942, zakłada że promieniowanie rozproszone ma charakter izotropowy, jednak nie uwzględnia on żadnego współczynnika korekcji. W modelu tym dla dowolnie pochylonej powierzchni rozpatrywali oni jedynie promieniowanie rozproszone docierające na powierzchnię poziomą, a korekcję promieniowania stosowali tylko dla promieniowania bezpośredniego.

Pierwszym modelem, który uwzględniał korekcję promieniowania półsferycznego na powierzchnię nachyloną był izotropowy model Liu – Jordana. Model ten zakłada, że wartość promieniowania rozproszonego niezależna jest od kierunku, z którego ono pochodzi. Zgodnie z założeniem godzinowe napromieniowanie słoneczne docierające na powierzchnię pochyloną zawiera trzy składowe: promieniowanie bezpośrednie, rozproszone i odbite od otoczenia. Przybliżenie to daje wyniki podobne do rzeczywistych, co pozwala w zadowalający sposób obliczyć napromieniowanie, w dla dowolne nachylonej powierzchni napromieniowanej względem poziomu, oznaczane jako kąt β , dowolnej szerokość geograficznej, określonej przez kąt ϕ , dowolnej pory roku, porę roku uwzględnia kąt deklinacji słonecznej δ , zawierający się pomiędzy prostą łączącą Ziemie i Słońce, a płaszczyzną równika, dowolnej pory dnia, kąt godzinowy ω . Do obliczeń potrzebne są dane dotyczące uśrednionego promieniowania bezpośredniego i rozproszonego w miejscu, w którym znajduje się obiekt analizy.

Obliczenia w modelu Liu-Jordana dla wybranej powierzchni prowadzi się w sposób następujący:

- 1) Określenie stałych wartości kątów:
 - a) kat nachylenia względem powierzchni poziomu, kat β,
 - b) kąt szerokości geograficznej, kąt φ,
 - c) kąt azymutalny γ przyjmuje się: 0°dla południa, 180° dla północy, 90° dla zachodu i -90° dla wschodu,
- 2) Określenie dnia oraz jego pory
- 3) Określenie kąta deklinacji słonecznej oraz kąta godzinowego wynikające z obecnego położenia rozważanej powierzchni względem słońca:
 - a) kat deklinacji słonecznej

$$\delta = 23,45^{\circ} * \sin\left(360 + \frac{284 + n}{365}\right) (2)$$

gdzie:

n - liczba przyporządkowana każdemu dniu roku,

b) kąt godzinowy

$$\omega = 15^{\circ} * (12 - h) (3)$$

gdzie: h - pora dnia określona w godzinach,

- 4) Obliczenie współczynnika korekcyjnego promieniowania:
 - a) R_b współczynnik korekcyjny dla promieniowania bezpośredniego

5)
$$R_b = \begin{cases} \frac{\sin(\delta(t))[\sin(\Phi)\cos(\beta) - \cos(\Phi)\sin(\beta)\cos(\gamma)]}{\sin(\delta(t))\sin(\Phi) + \cos(\delta(t))\cos(\Phi)\cos(\omega(t))} \\ + \frac{\cos(\delta(t))[\cos(\Phi)\cos(\beta)\cos(\omega(t)) + \sin(\Phi)\sin(\beta)\cos(\gamma)\cos(\omega(t)) + \sin(\beta)\sin(\gamma)\sin(\omega(t))]}{\sin(\delta(t))\sin(\Phi) + \cos(\delta(t))\cos(\Phi)\cos(\omega(t))} \end{cases}$$

W celu uniknięcia dużych błędów obliczeniowych i błędów wynikających z symetrii funkcji trygonometrycznych, takich jak niezerowe lub nawet ujemne wartości natężenia promieniowania nocą, przyjmuje się pewne ograniczenia tzn.

Jeżeli R_b > 3 to przyjmuje się R_b w obliczeniach równe 3 Jeżeli R_b < 0 to przyjmuje się R_b w obliczeniach równe 0

b) R_d - współczynnik korekcyjny dla promieniowania rozproszonego

$$R_d = \frac{1 + \cos \beta}{2} \tag{5}$$

c) R_0 - współczynnik korekcyjny dla promieniowania całkowitego

$$R_0 = \frac{1 - \cos \beta}{2} \tag{6}$$

6) Wyznaczenie całkowitego napromieniowania rozważanej powierzchni:

$$I(t) = R_b(t) * G_b(t) + R_d * G_d(t) + R_0(t) * G_0 * \rho$$
 (7)

gdzie:

I(t)- napromieniowanie całkowite na pionowej powierzchni w jednostce czasu

 $G_h(t)$ - napromieniowanie bezpośrednie na poziomej powierzchni w jednostce czasu

 $G_d(t)$ - napromieniowanie rozproszone na poziomej powierzchni w jednostce czasu

 $G_0(t)$ - suma napromieniowania rozproszonego i bezpośredniego w jednostce czasu ho - refleksyjność podłoża

7) Kod programu do obliczeń natężenia promieniowania, został napisany w języku Python, jego zaletą jest możliwość wyznaczenia natężenia promieniowania na dowolnie usytuowaną powierzchnię. Po wgraniu dodatkowych plików z danymi zawierający napromieniowanie bezpośrednie i rozporoszone na poziome powierzchnie, dla konkretnych współrzędnych geograficznych jest w stanie wygenerować takie wartości dla każdego miejsca na Ziemi.

3. Porównanie wyników

Do porównania wyników uwzględniono kąty azymutalne odpowiadające głównym kierunkom geograficznym (N, NE, E, SE, S, SW, W, NW oraz pochyleniu do poziomu 30°, 45°, 60°, 90° (N_30, NE_30, ...). Wszystkie wyniki porównania zawarte są w dołączonym arkuszu obliczeniowym. Dodatkowo wyznaczono, także różnice pomiędzy wartościami napromieniowania dla danych miesięcy. W celu łatwiejszej identyfikacji porównywanych wartości przyjęto konwencję kolorów, mianowicie dane pochodzące ze strony Ministerstwa Infrastruktury oznaczane będą kolorem zielonym, a wartości uzyskane dzięki modelowi Liu-Jordana, kolorem żółtym.

Tabela 1. Wartości miesięcznych różnic wartości napromieniowania obliczonych przy pomocy modelu Liu-Jordana, a wartości zawartych w danych typowego roku meteorologicznego dla kąta nachylenia równego 30°.

Ministerstwo	I	II	III	IV	V	VI	VII	VIII	IX	Х	ΧI	XII
N	21215,10	25555,90	51928,90	80940,90	124369,30	137116,70	138064,60	113178,40	68814,70	37195,70	18022,80	15548,50
Е	27233,90	34327,60	67936,60	94805,60	140449,20	148030,70	152250,00	129306,00	78951,20	44949,70	20878,90	17333,50
W	26096,10	33117,60	63077,70	91857,90	132928,80	147436,30	145168,70	125939,20	80983,70	46865,50	21576,30	17320,30
S	37241,00	42707,30	78311,20	103888,70	146723,20	156354,60	156978,40	139620,10	90143,10	55348,60	25960,90	21191,60
Liu-Jordan	1	=	III	IV	٧	VI	VII	VIII	IX	Х	ΧI	XII
N	19978,18	24096,08	49034,67	70850,27	101197,43	107709,88	112411,68	104830,72	61406,33	35350,93	17247,20	14624,86
Е	25074,52	30964,32	57864,80	77941,88	111010,03	119007,16	119967,23	117782,61	68524,96	41440,30	19318,56	15795,49
W	21748,77	27840,90	55332,39	81546,86	118769,29	128182,71	130070,87	125253,73	70997,60	39729,79	18573,08	15078,87
S	26697,19	34338,08	64407,14	90324,65	131245,56	141066,11	140791,44	138642,76	78635,09	45861,19	20893,16	16844,08

Tabela 2. Zestawienie miesięcznych różnic wartości napromieniowania obliczonych przy pomocy modelu Liu-Jordana, a wartości zawartych w danych typowego roku meteorologicznego dla kąta nachylenia równego 30°.

	1	П	III	IV	V	VI	VII	VIII	IX	Х	ΧI	XII
N	21215,10	25555,90	51928,90	80940,90	124369,30	137116,70	138064,60	113178,40	68814,70	37195,70	18022,80	15548,50
N	19978,18	24096,08	49034,67	70850,27	101197,43	107709,88	112411,68	104830,72	61406,33	35350,93	17247,20	14624,86
różnica	1236,92	1459,82	2894,23	10090,63	23171,87	29406,82	25652,92	8347,68	7408,37	1844,77	775,60	923,64
różnica %	6%	6%	6%	14%	23%	27%	23%	8%	12%	5%	4%	6%
E	27233,90	34327,60	67936,60	94805,60	140449,20	148030,70	152250,00	129306,00	78951,20	44949,70	20878,90	17333,50
Е	25074,52	30964,32	57864,80	77941,88	111010,03	119007,16	119967,23	117782,61	68524,96	41440,30	19318,56	15795,49
różnica	2159,38	3363,28	10071,80	16863,72	29439,17	29023,54	32282,77	11523,39	10426,24	3509,40	1560,34	1538,01
różnica %	9%	11%	17%	22%	27%	24%	27%	10%	15%	8%	8%	10%
W	26096,10	33117,60	63077,70	91857,90	132928,80	147436,30	145168,70	125939,20	80983,70	46865,50	21576,30	17320,30
W	21748,77	27840,90	55332,39	81546,86	118769,29	128182,71	130070,87	125253,73	70997,60	39729,79	18573,08	15078,87
różnica	4347,33	5276,70	7745,31	10311,04	14159,51	19253,59	15097,83	685,47	9986,10	7135,71	3003,22	2241,43
różnica %	20%	19%	14%	13%	12%	15%	12%	1%	14%	18%	16%	15%
S	37241,00	42707,30	78311,20	103888,70	146723,20	156354,60	156978,40	139620,10	90143,10	55348,60	25960,90	21191,60
S	26697,19	34338,08	64407,14	90324,65	131245,56	141066,11	140791,44	138642,76	78635,09	45861,19	20893,16	16844,08
różnica	10543,81	8369,22	13904,06	13564,05	15477,64	15288,49	16186,96	977,34	11508,01	9487,41	5067,74	4347,52
różnica %	39%	24%	22%	15%	12%	11%	11%	1%	15%	21%	24%	26%

Rys. 1 Porównanie miesięcznych wartości napromieniowania na N_30

Rys. 2 Porównanie miesięcznych wartości napromieniowania na E_30

Rys. 3 Porównanie miesięcznych wartości napromieniowania na W_30

Rys. 4 Porównanie miesięcznych wartości napromieniowania na S_30

Tabela 3. Wartości miesięcznych różnic wartości napromieniowania obliczonych przy pomocy modelu Liu-Jordana, a wartości zawartych w danych typowego roku meteorologicznego dla kąta nachylenia równego 45°.

Ministerstwo	İ	Ш	III	IV	V	VI	VII	VIII	IX	Х	ΧI	XII
N	21215,10	25555,90	49314,80	72209,30	111946,30	124152,40	125662,70	100700,90	62325,30	36646,70	18022,80	15548,50
Е	26556,00	33647,60	66968,50	93089,60	137197,70	142658,90	148359,00	125858,50	76809,60	43660,30	20461,60	17009,90
W	25087,00	32161,90	60921,00	89267,80	127807,00	141782,00	139710,80	121505,20	79327,60	46051,30	21312,70	16991,40
S	40624,90	45025,50	80899,60	104332,00	143554,20	151498,20	152526,90	138093,80	91265,90	57657,60	27370,90	22466,70
Liu-Jordan	1	Ш	III	IV	V	VI	VII	VIII	IX	Χ	ΧI	XII
N	18510,96	22349,51	45897,87	66608,81	95452,47	101969,05	106290,57	99168,35	57667,99	32963,13	16021,36	13529,25
Е	25074,52	30964,32	57864,80	77941,88	111010,03	119007,16	119967,23	117782,61	68524,96	41440,30	19318,56	15795,49
W	19329,71	25278,01	51201,01	76563,09	112130,77	120962,01	122875,05	117645,80	66257,82	36346,68	16895,83	13592,53
S	25687,39	33640,20	63276,56	88214,15	127516,04	137146,70	136873,85	135621,62	77068,45	44956,90	20174,44	15902,96

Tabela 4. Zestawienie miesięcznych różnic wartości napromieniowania obliczonych przy pomocy modelu Liu-Jordana, a wartości zawartych w danych typowego roku meteorologicznego dla kąta nachylenia równego 45°.

	I	П	III	IV	V	VI	VII	VIII	IX	Χ	XI	XII
N	21215,10	25555,90	49314,80	72209,30	111946,30	124152,40	125662,70	100700,90	62325,30	36646,70	18022,80	15548,50
N	18510,96	22349,51	45897,87	66608,81	95452,47	101969,05	106290,57	99168,35	57667,99	32963,13	16021,36	13529,25
różnica	2704,14	3206,39	3416,93	5600,49	16493,83	22183,35	19372,13	1532,55	4657,31	3683,57	2001,44	2019,25
różnica %	15%	14%	7%	8%	17%	22%	18%	2%	8%	11%	12%	15%
Е	26556,00	33647,60	66968,50	93089,60	137197,70	142658,90	148359,00	125858,50	76809,60	43660,30	20461,60	17009,90
Е	25074,52	30964,32	57864,80	77941,88	111010,03	119007,16	119967,23	117782,61	68524,96	41440,30	19318,56	15795,49
różnica	1481,48	2683,28	9103,70	15147,72	26187,67	23651,74	28391,77	8075,89	8284,64	2220,00	1143,04	1214,41
różnica %	6%	9%	16%	19%	24%	20%	24%	7%	12%	5%	6%	8%
W	25087,00	32161,90	60921,00	89267,80	127807,00	141782,00	139710,80	121505,20	79327,60	46051,30	21312,70	16991,40
W	19329,71	25278,01	51201,01	76563,09	112130,77	120962,01	122875,05	117645,80	66257,82	36346,68	16895,83	13592,53
różnica	5757,29	6883,89	9719,99	12704,71	15676,23	20819,99	16835,75	3859,40	13069,78	9704,62	4416,87	3398,87
różnica %	30%	27%	19%	17%	14%	17%	14%	3%	20%	27%	26%	25%
S	40624,90	45025,50	80899,60	104332,00	143554,20	151498,20	152526,90	138093,80	91265,90	57657,60	27370,90	22466,70
S	25687,39	33640,20	63276,56	88214,15	127516,04	137146,70	136873,85	135621,62	77068,45	44956,90	20174,44	15902,96

różnica	14937,51	11385,30	17623,04	16117,85	16038,16	14351,50	15653,05	2472,18	14197,45	12700,70	7196,46	6563,74
różnica %	58%	34%	28%	18%	13%	10%	11%	2%	18%	28%	36%	41%

Rys. 5 Porównanie miesięcznych wartości napromieniowania na N_45

Rys. 6 Porównanie miesięcznych wartości napromieniowania na E_45

Rys. 7 Porównanie miesięcznych wartości napromieniowania na W_45

Rys. 8 Porównanie miesięcznych wartości napromieniowania na S_45

Tabela 5. Wartości miesięcznych różnic wartości napromieniowania obliczonych przy pomocy modelu Liu-Jordana, a wartości zawartych w danych typowego roku meteorologicznego dla kąta nachylenia równego 90°.

Ministerstwo	İ	II	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII
N	21215,10	25555,90	49314,50	69000,60	94223,80	100296,80	103727,90	88776,50	61523,90	36646,70	18022,80	15548,50
Е	23782,20	30315,90	60329,20	83772,10	119229,60	121409,20	128871,50	110037,10	69620,10	40045,40	19297,10	16028,00
W	22654,90	29071,10	55255,40	80623,50	111365,70	121407,40	121713,60	106226,40	71775,60	42119,10	20055,80	16015,00
S	37241,00	42707,30	78311,20	103888,70	146723,20	156354,60	156978,40	139620,10	90143,10	55348,60	25960,90	21191,60
Liu Jordan	1	II	Ш	IV	٧	VI	VII	VIII	IX	Х	XI	XII
N	11982,60	14547,38	31634,32	46244,30	67110,42	73596,05	76178,35	71402,96	39916,19	22131,79	10487,87	8654,36
Е	18059,13	22427,45	42682,98	57211,70	83717,64	88815,09	90641,69	87984,80	49497,08	29454,85	13332,95	10859,50
W	12046,61	15928,36	35183,32	56318,68	85490,81	93169,23	94363,42	89130,18	47292,45	23764,05	10766,37	8654,36
S	20911,22	28745,98	55160,77	76099,19	112934,41	120556,75	120075,12	120940,27	67306,50	38001,10	15970,60	11564,53

Tabela 6. Zestawienie miesięcznych różnic wartości napromieniowania obliczonych przy pomocy modelu Liu-Jordana, a wartości zawartych w danych typowego roku meteorologicznego dla kąta nachylenia równego 90°.

	I	II	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII
N	21215,10	25555,90	49314,50	69000,60	94223,80	100296,80	103727,90	88776,50	61523,90	36646,70	18022,80	15548,50
N	11982,60	14547,38	31634,32	46244,30	67110,42	73596,05	76178,35	71402,96	39916,19	22131,79	10487,87	8654,36
różnica	9232,50	11008,52	17680,18	22756,30	27113,38	26700,75	27549,55	17373,54	21607,71	14514,91	7534,93	6894,14
różnica %	77%	76%	56%	49%	40%	36%	36%	24%	54%	66%	72%	80%
E	23782,20	30315,90	60329,20	83772,10	119229,60	121409,20	128871,50	110037,10	69620,10	40045,40	19297,10	16028,00
Е	18059,13	22427,45	42682,98	57211,70	83717,64	88815,09	90641,69	87984,80	49497,08	29454,85	13332,95	10859,50
różnica	5723,07	7888,45	17646,22	26560,40	35511,96	32594,11	38229,81	22052,30	20123,02	10590,55	5964,15	5168,50
różnica %	32%	35%	41%	46%	42%	37%	42%	25%	41%	36%	45%	48%
W	22654,90	29071,10	55255,40	80623,50	111365,70	121407,40	121713,60	106226,40	71775,60	42119,10	20055,80	16015,00
W	12046,61	15928,36	35183,32	56318,68	85490,81	93169,23	94363,42	89130,18	47292,45	23764,05	10766,37	8654,36
różnica	10608,29	13142,74	20072,08	24304,82	25874,89	28238,17	27350,18	17096,22	24483,15	18355,05	9289,43	7360,64
różnica %	88%	83%	57%	43%	30%	30%	29%	19%	52%	77%	86%	85%
S	37241,00	42707,30	78311,20	103888,70	146723,20	156354,60	156978,40	139620,10	90143,10	55348,60	25960,90	21191,60
S	20911,22	28745,98	55160,77	76099,19	112934,41	120556,75	120075,12	120940,27	67306,50	38001,10	15970,60	11564,53
różnica	16329,78	13961,32	23150,43	27789,51	33788,79	35797,85	36903,28	18679,83	22836,60	17347,50	9990,30	9627,07
różnica %	78%	49%	42%	37%	30%	30%	31%	15%	34%	46%	63%	83%

Rys. 9 Porównanie miesięcznych wartości napromieniowania na N_90

Rys. 10 Porównanie miesięcznych wartości napromieniowania na E_90

Rys. 11 Porównanie miesięcznych wartości napromieniowania na W_90

Rys. 12 Porównanie miesięcznych wartości napromieniowania na S 90

Na podstawie uzyskanych wartości można stwierdzić, że wraz ze wzrostem kąta nachylenia większa jest różnica pomiędzy wartością obliczoną przy użyciu modelu Liu-Jordana, a wartością zawartą w danych klimatycznych do obliczeń energetycznych. Dla kątów nachylenia 30° różnice pomiędzy modelem Liu-Jordana a wartościami zawartymi w danych dla typowego roku meteorologicznego są niewielkie i podczas obliczeń nie będą generować znaczących błędów. Niestety w przypadku napromieniowania na powierzchnie pionowe różnice te są znaczne nawet na poziomie 80%. Dlatego też stosowanie wartości umieszczonych na stronie Ministerstwa Infrastruktury, może generować błędy.

4. Przykład obliczeniowy [3]

W celu porównania jak oba oszacowania mają wpływ na charakterystykę budynku, wykonano bardzo uproszczony miesięczny bilans cieplny dla budynku znajdującej się na terenie Warszawy o wymiarach 51x40m i wysokości 9,5m. W budynku przeszklenia mają bardzo duży udział w związku z tym zyski od promieniowania słonecznego będą miały znaczący wpływ na bilans cieplny budynku. W budynku utrzymywana jest stała temperatura wewnętrzna 20°C.

Dane do obliczeń:

	N [m ²]	S [m ²]	E [m²]	W [m²]
Powierzchnia ścian	484,5	484,5	390,26	390,26
Powierzchnia okien	255	112,2	40,436	40,436
Powierzchnia dachu	2095,08	Powierzchnia _I	oodłogi	2095,08

Bilans cieplny dla budynku:

$$\dot{Q}_{c} = \dot{Q}_{ok} + \dot{Q}_{\acute{s}c} + \dot{Q}_{wew} + \dot{Q}_{g} + \dot{Q}_{wen} + \dot{Q}_{d}$$
, [W] (8)

gdzie:

 \dot{Q}_{ok} - zyski/straty ciepła przez przegrody przezroczyste,

 $\dot{Q}_{\acute{s}c}$ –zyski/straty ciepła przez przegrody nieprzezroczyste(ściany),

Qd- zyski/straty ciepła przez dach,

 \dot{Q}_{wew} - wewnętrzne zyski/straty ciepła,

Qwen- zyski/straty ciepła od wentylacji,

 \dot{Q}_g - zyski/straty ciepła do gruntu.

Wartości współczynników przenikania ciepła przez przegrody przyjęte na podstawie: Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.

U_okna	1,1	W/(m ² K)
U_ściany_zew	0,23	W/(m ² K)
U_dach	0,18	W/(m ² K)
U_podłoga	0,3	$W/(m^2K)$

Zyski ciepła od promieniowania słonecznego:

$$\dot{Q}_{ok} = F * \Phi_1 * \Phi_2 * \Phi_3 * (k_c * R_s * I_{smax} + k_r * R_c * I_{rmax}), [W]$$
(9)

Zyski ciepła przez przegrody:

$$\dot{Q}_{\text{przegrody}} = A * U * (t_z - t_p), [W]$$
(10)

Gdzie:

F- powierzchnia okna w świetle muru, [m²],

A- powierzchnia przegrody, [m²],

 Φ_1 - współczynnik uwzględniający udział powierzchni szkła w powierzchni okna,

 Φ_2 - współczynnik korygujący, uwzględniający wysokość nad poziomem morza,

 Φ_3 - współczynnik korygujący, uwzględniający rodzaj oszklenia i urządzenia przeciwsłoneczne,

k_c, k_r- współczynniki akumulacji,

 ${
m R}_{
m s}$ – stosunek powierzchni nasłonecznionej do powierzchni całkowitej okna,

R_c- stosunek powierzchni zacienionej do całkowitej,

 I_{cmax} - maksymalna wartość natężenia promieniowania słonecznego całkowitego, $\left[\frac{W}{m^2}\right]$,

 I_{rmax} - maksymalna wartość natężenia promieniowania słonecznego rozproszonego, $\left[\frac{W}{m^2}\right]$,

U- współczynnik przenikania ciepła, $\left[\frac{W}{m^2*K}\right]$,

t_z-temperatura powietrza zewnętrznego, [K],

t_p- temperatura powietrza wewnętrznego, [K],

Wewnętrzne zyski ciepła obliczono przyjmując średnią wartość 3,5 [W/m²]. Zyski/ straty ciepła przez wentylacje obliczono przyjmując krotność wymiany powietrza 0,5 [1/h].

Wyniki obliczeń:

Tabela 7. Miesięczne wartości zysków/strat ciepła przez przenikanie

Ściany												
zewnętrzne	I	II	Ш	IV	V	VI	VII	VIII	IX	Χ	XI	XII
N [kWh]	1757,64	1565,08	1293,36	1099,19	646,68	232,68	66,33	281,89	577,68	978,31	1371,99	1591,83
E [kWh]	1335,63	1206,37	1335,63	1292,54	1335,63	1292,54	1335,63	1335,63	1292,54	1335,63	1292,54	1335,63
W [kWh]	1335,63	1206,37	1335,63	1292,54	1335,63	1292,54	1335,63	1335,63	1292,54	1335,63	1292,54	1335,63
S [kWh]	1658,15	1497,69	1658,15	1604,66	1658,15	1604,66	1658,15	1658,15	1604,66	1658,15	1604,66	1658,15
Grunt							10334,9					
[kWh]	10334,98	9334,82	10334,98	10001,60	10334,98	10001,60	8	10334,98	10001,60	10334,98	10001,60	10334,98
Dach [kWh]	5948,15	5296,50	4376,94	3719,86	2188,47	787,41	224,46	953,95	1954,96	3310,76	4643,03	5387,00
Okna	7774,0850	6922,389	5720,553	4861,7604	2860,276	1029,131	293,361	1246,787	2555,085	4327,085	6068,328	7040,680
[kWh]	46	8	15	29	57	77	7	2	8	1	7	8

Tabela 8. Miesięczne wartości wewnętrznych zysków ciepła i zyski/straty przez wentylację.

Miesiąc	I	П	Ш	IV	V	VI	VII	VIII	IX	Х	ΧI	XII
n = liczba dni	31	28	31	30	31	30	31	31	30	31	30	31
Qwew [kWh]	5455,59	4927,63	5455,59	5279,60	5455,59	5279,60	5455,59	5455,59	5279,60	5455,59	5279,60	5455,59
Qwen [kWh]	7887,49	7023,37	5804,01	4932,68	2902,00	1044,14	297,64	1264,98	2592,36	4390,21	6156,85	7143,39

Tabela 9. Miesięczne wartości zysków ciepła od promieniowania słonecznego.

		I	П	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII
wo	N	4917,55	5923,73	11430,85	15993,99	21840,61	23248,30	24043,61	20577,95	14260,93	8494,52	4177,59	3604,06
Ministersto	Е	874,15	1114,30	2217,48	3079,15	4382,44	4462,56	4736,84	4044,56	2558,98	1471,92	709,29	589,13
niste	W	832,71	1068,55	2030,99	2963,42	4093,39	4462,49	4473,74	3904,49	2638,21	1548,14	737,18	588,65
Ē	S	3798,20	4355,71	7986,94	10595,59	14964,27	15946,57	16010,20	14239,83	9193,68	5644,99	2647,75	2161,33
	Suma	10422,61	12462,29	23666,26	32632,16	45280,71	48119,92	49264,39	42766,83	28651,80	17159,58	8271,81	6943,17
		1	II	Ш	IV	V	VI	VII	VIII	IX	Χ	XI	XII
	N	2777,51	3372,01	7332,68	10719,20	15555,86	17059,20	17657,76	16550,85	9252,37	5130,04	2431,03	2006,04
rdan	Е	663,79	824,35	1568,87	2102,89	3077,15	3264,52	3331,66	3234,00	1819,33	1082,65	490,07	399,16
우	W	442,79	585,47	1293,21	2070,07	3142,33	3424,56	3468,45	3276,10	1738,30	873,48	395,73	318,10
Li	S	2132,73	2931,80	5625,84	7761,34	11518,16	12295,56	12246,44	12334,67	6864,58	3875,72	1628,84	1179,46
	Suma	6016,81	7713,62	15820,59	22653,50	33293,50	36043,83	36704,30	35395,62	19674,58	10961,89	4945,68	3902,76

Rys. 13 Miesięczne zyski od promieniowania słonecznego

Tabela 10. Porównanie zysków/ strat ciepła z uwzględnieniem danych dla typowego roku meteorologicznego i modelu Liu-Jordana.

		II	Ш	IV	٧	VI	VII	VIII	IX	Χ	XI	XII
Ministerstwo	-22153,56	-16662,68	-2737,40	9106,92	27474,48	36114,81	39173,80	29810,43	12059,97	-5055,59	-18880,14	-23428,53
			-							-		
Liu-Jordan	-26559,36	-21411,34	10583,07	-871,74	15487,27	24038,72	26613,72	22439,22	3082,75	11253,27	-22206,27	-26468,94

Rys. 14 Całkowite miesięczne zyski i straty ciepła dla hali

Z przedstawionych wyników wynika, że zastosowanie oszacowania wartości napromieniowania na powierzchnię pionowe z danych zawartych na stronie Ministerstwa Infrastruktury, w porównaniu do wartości wyznaczonych za pomocą modelu Liu-Jordana są dużo większe. W przypadku obliczeń dotyczących instalacji klimatyzacji, błąd nie jest niebezpieczny, gdyż w tego typu instalacjach moc maksymalna bywa nawet kilkukrotnie większa od mocy średniej. Jednakże znaczne przewymiarowanie instalacji generuje wysokie koszty inwestycyjne. Znacznie bardziej niekorzystnym efektem jest zawyżanie wartości zysków ciepła pochodzących z promieniowania słonecznego w okresie zimowym. Gdy dominuje promieniowanie rozproszone wartości napromieniowania powierzchni pionowych zaproponowane w danych do obliczeń energetycznych budynków są znacznie większe niż wartości rzeczywiste. Powoduje to, wiele problemów, które mogą się pojawić w przypadku instalacji ogrzewania. Głównym problemem jest to, że jeżeli instalacja ogrzewania nie jest projektowana na warunki ekstremalne, a jest projektowana na warunki średnie może to spowodować, że zostanie niedoszacowana. Może zdarzyć się, że liczba dni, w których temperatura spadnie poniżej projektowej będzie znacznie większa niż planowana, gdyż rzeczywiste zapotrzebowanie na energię całkowitą na potrzeby ogrzewania może być dużo większe niż planowane.

6. Wnioski

Na podstawie przedstawionych obliczeń można stwierdzić, że stosowanie wartości napromieniowania zawartych w danych klimatycznych do obliczeń energetycznych budynków, generuje błędy. Głównie dlatego, że największe różnice w porównywanych modelach występowały dla powierzchni ustawionych względem ziemi pod kątem 90°. Dlatego też w celu prowadzenia dokładniejszych obliczeń najlepiej zastosować jeden z modeli promieniowania. Użycie wartości napromieniowania obliczonych przy użyciu modelu Liu-Jordana pozwala osiągnąć większą dokładność. Pomimo, iż użycie modelu Liu-Jordana również obarczone jest błędem wynikającym z nieuwzględnienia anizotropowego charakteru promieniowania słonecznego, to jednak model ten nie jest skomplikowany i pozwala na sprawne przeprowadzenie w miarę dokładnych obliczeń.

Zamieszczony w pracy przykład obliczeniowy zwrócił, także uwagę na kwestię dotyczącą doboru instalacji pozwalających zapewnić odpowiednie warunki w budynku. Stosowanie modelu Liu-Jordana powoduje, iż dobrana instalacja klimatyzacji lub ogrzewania będzie efektywna i pozwoli zapewnić odpowiedni jego komfort użytkowania. Natomiast stosowanie wartości zawartych w danych dla typowego roku meteorologicznego może doprowadzić do przeszacowania instalacji klimatyzacji, co generuje koszty, jak również doprowadzić do niedoszacowania instalacji ogrzewania, co może powodować problemy w zapewnieniu odpowiedniego komfortu cieplnego.

7. Kod programu Liu-Jordan

```
5.1 Kod pliku sun_model.py
import math
def liu_jordan(dzien, godzina, nachylenie, azymutalny, szerokosc,
        bezposrednie, rozproszone, refleksyjnosc):
  r = 3.14159 / 180
  n = dzien
  h = godzina
  beta = nachylenie
  gamma = azymutalny
  szer = szerokosc
  Gb = bezposrednie
  Gd = rozproszone
  ro = refleksyjnosc
  omega = 15 * (12-h)
  som = math.sin(omega * r)
  com = math.cos(omega * r)
  deklin = 23.45 * math.sin(360 * (284 + n) / 365 * r)
  sdek = math.sin(r * deklin)
  cdek = math.cos(r * deklin)
  sbeta = math.sin(r * beta)
  cbeta = math.cos(r * beta)
```

```
sgamma = math.sin(r * gamma)
 cgamma = math.cos(r * gamma)
 sszer = math.sin(r * szer)
 cszer = math.cos(r * szer)
 R0 = (1 - cbeta) / 2
 Rd = (1 + cbeta) / 2
 licznik1 = sdek * (sszer * cbeta - cszer * sbeta * cgamma)
 licznik2 = cdek * (cszer * cbeta * com + sszer * sbeta * cgamma * com + sbeta * sgamma * som)
 mianownik = sdek * sszer + cdek * cszer * com
 Rb = (licznik1 + licznik2) / mianownik
 if Rb > 3:
   Rb = 3
 elif Rb < 0:
   Rb = 0
" if (Rb * Gb + Rd * Gd + (Gb + Gd) * ro * R0) > (Gb + Gd + 1):
   return Gb + Gd
 return Rb * Gb + Rd * Gd + (Gb + Gd) * ro * R0\
```

```
5.2 Kod pliku main.py
import pandas as pd
import sun_model as sm
nachylenie=90 # manualny wybor nachylenia
dataset = pd.read_csv('LiuJordanData.csv')
wynik = []
azymut = 90 #manualny wybor azymutu
i = 0
while i < len(dataset["ID"]):
  wynik.append(sm.liu_jordan(dataset['Day'][i], dataset['Hour'][i], nachylenie, azymut, 52.1,
dataset['IDH'][i], dataset['ISH'][i], 0.1 ))
  i += 1
#zapisywanie danych
df = pd.DataFrame(wynik)
result_string = 'wynik' + str(azymut) +str(nachylenie) + '.csv'
df.to_csv(result_string, sep = '\t', index=False)
```

Bibliografia:

- [1] Chwieduk Dorota, " Energetyka słoneczna budynku", Warszawa 2011, Arkady, ISBN: 978-83-213-4711-0
- [2] Chwieduk Dorota, "Modelowanie i analiza pozyskiwania oraz konwersji termicznej energii promieniowania w budynku."
- [3] PN-EN 12831:2006 "Instalacje ogrzewcze w budynkach Metoda obliczania projektowego obciążenia cieplnego"