6.3 习题

2024年6月30日

说在开头的话:文中的**上确界与最小上界不是一回事**,最小上界是一个集合 E 有上界为前提的,此时的最小上界与上确界一致。而如果集合没有最小上界,那么集合的上确界被指定为 $+\infty$ 【空集时被指定为 $-\infty$ 】。由此可知,最小上界定义是包含在上确界中的定义中,反之则不然。

6.3.1

证明 $\sup(a_n)_{n=1}^{\infty}=1$, 首先 1 是上界, 因为 a_n 是递减的, 且 n=1 时, $a_1=1$ 。假设存在上界 M<1,由 $a_1=1$ 可知, M 不存在。

证明 $\inf(a_n)_{n=1}^{\infty}=0$,首先,因为 n 是正整数,所以 1/n>0,于是 0 是下界。假设存在下界 m>0,由推论 5.4.13(阿基米德性质)可知,存在正整数 M 使得 Mm>1,所以 m>1/M,取 n=M,此时 $a_n=1/M< m$,与 m 是下界矛盾。

6.3.2

设 $E := \{a_n : n \ge m\}$, E 是非空的实数集合, x := sup(E)。

- (1) 由定义 6.2.6 可知, x 要么是实数, 要么是 $+\infty$ 。
- 如果 x 是实数,由最小上界定义可知, $a_n \le x$ 对所有的 $n \ge m$ 均成立。 如果 x 是 $+\infty$,定义 6.2.3 可知 $a_n \le x$ 。
- (2) M 是 E 的上界。反证法 x>M。如果 x 是实数,那么此时与 x 是 E 的最小上界定义矛盾。如果 $x=+\infty$,那么由定义 6.2.3 可知,这样的 $x\geq M$,按照定义 5.5.10 此时 E 是没有上界的,于是 $M=+\infty$,所以不存在 x>M。

综上, $x \leq M$ 。

(3) 反证法。假设不存在 $n \ge m$ 使得 $y < a_n \le x$ 。

由假设可知 $a_n \leq y$ 或 $a_n > x$ 。

如果 x 是实数,那么,x 是 E 的最小上界,如果存在 $y < x, a_n \le y$,那么 y 才是 E 的最小上界,所以该情况不可能发生。如果存在 $a_n > x$,那么与 x 是最小上界矛盾,所以该情况不可能发生。

如果 $x = +\infty$,表明 E 没有上界。所以 $a_n > x$ 是不可能的。如果存在 $y < x, a_n \le y$,那么,y 是实数,即 E 是有上界的,这与 E 没有上界矛盾。 综上,假设不成立。

6.3.3

由于序列 $(a_n)_{n=m}^{\infty}$ 是有界的实数序列,所以集合 $E := \{a_n : n \geq m\}$ 按定理 5.5.9 可知集合 E 有一个最小上界,即存在 sup(E)。

有命题 6.3.6 可知, M 是 E 的上界, 那么 $sup(E) \leq M$ 。

现在要证明序列 $(a_n)_{n=m}^{\infty}$ 是收敛的,并且收敛与 sup(E),设 x:=sup(E)。

对于任意实数 $\epsilon > 0$, $x - \epsilon < x$,由命题 6.3.6 可知,存在一个 $n \ge m$ 使得 $x - \epsilon < a_n \le x$,不妨设这里的 n 为 N,由于序列是递增的,所以存在 $n \ge N$ 使得 $x - \epsilon < a_n \le x$ 均成立,所以 $|x - a_n| \le \epsilon$,即序列是最终 $\epsilon -$ 接近与 x,由于 ϵ 是任意的,所以序列收敛于 x,即: $\lim_{n \to \infty} a_n = x = \sup(a_n)_{n=m}^\infty$