

OMAIS Lab Seminar <Graph Attention Networks>

2024-07-09

presenter: Moon Soo Ho

Data Mining And Intelligence Systems (DMAIS) Lab
School of Computer Science and Engineering
Chung-Ang University

INDEX

- Main interest
- □ Why attention?
- ☐ Architecture
- Performance
- □ Conclusion

Main interest

Grid sturcutre

• Feeding grid like structure to DNN was highly successful(CNN, RNN etc.).

Graph sturcutre

- Graph structures doesn't have self-explanatory relations with other nodes compared to grid structures.
- How are we going to feed graph to DNN?

Main interest

What we usually want to achieve with (graph + DNN)

Node embedding(Most valuable interest)

Representing a high dimensional node to low dimension node.

Transforming to low dimension benefits comparing nodes and visualization.

Link prediction

When a newly observed node is detected, the model can predict which node it's most likley to have edges with.

Classification

Classifies nodes to given labels.

Why attention?

What we inherit from previous models

• Previous works such as **GNN**, **GCN**, **GraphSAGE** collected information for embedding via neighborhood nodes.

- By GCN, it's prooven that observing neighbors from 1-hop distance(first order neighbors) is most accurate.
- Also all the nodes that are qulified for aggregation has equal contribution to the central node embedding.

Why attention?

Different importance in neighborhood nodes.

- There is no evidence that all the 1-hop distance neighborhood nodes have equal impact to central node.
- Some messages are relatively stronger or weaker!

If the importance of neighbors to the red central node is higher in a clock-wise order...

Our objective

Embedd nodes in the graph(h) to other dimension(F -> F'). The new embedded node is denoted with '.

$$\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F \qquad \qquad \mathbf{h}' = \{\vec{h}'_1, \vec{h}'_2, \dots, \vec{h}'_N\}, \vec{h}'_i \in \mathbb{R}^{F'}$$

• We embed a single node by multiplying it with a parameterized weight matrix(**W**).

$$\mathbf{W} \in \mathbb{R}^{F' \times F}$$

Connection of two nodes create attention coefficient

• Note that e_{ij} means node j's attention to node i($e_{ij} \neq e_{ji}$), a is the attention function

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

• We then normalize all the neighborhood coefficients via softmax. $k \in \mathcal{N}_i$ denotes every neighbor of node i and including node i. (self loop is added to all the nodes since a node with no connection will be impossible to embed without it)

$$\alpha_{ij} = \operatorname{softmax}_{j}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}$$

Inside of attention function(a)

• Get's two embedded nodes as input and outputs a single real number(this is the attention coefficient).

$$a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$$

• The way it works, concatenates(||) two nodes and feeds it to a single layer forward propagation with $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$.

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_i]\right)\right)}$$

final operation of determining attention coefficient α_{ij}

The result

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

- However we can still make good use of "multi-head attention", a technique that allows the model to catch diverse meanings of a single graph and at the same time normalizing it.
- Multi-head attention is simply using K machanisms and learn parameters in different environments

Two approaches to multi-head

• Concatenate all the neighborhood nodes to a single KF' size vector.

$$\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

 α_{ij}^k , \mathbf{W}^k : attention coefficient and weight matrix at k th head environment

This approach is not desirable since the embedding dimension might get too big than we wanted to.

• Averageing all the neighborhood embedding vectors

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

By averaging and then applying the activation function, we can obtain F' sized ebmedding vector.

Thus we select the averaging technique.

Performance

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$	_	$78.8\pm0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	$83.0 \pm 0.7\%$	72.5 \pm 0.7%	79.0 \pm 0.3%

• Transductive learning on 3 benchmark graphs

used metric: mean classification accuracy (with standard deviation)

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	0.973 ± 0.002

Inductive learning with Protein-Protein interaction dataset

used metric: F1 score

Conclusion

GAT is...

- Computationaly efficient : O(|V|FF' + |E|F')Time complexity linearly increases by the number of nodes and deges. No heavy operations are required(such as eigendecomposion).
- Capable of both transductive and inductive learning:

 Some previous models(GCN) were only capable to transductive learning which is costly when an unseen node appears in the process.
- Gives different attention to nodes:
 Has promising accuracy on datasets.

Networks Are Ubiquitous:

Building a Better World through Network Knowledge!

Contact: Sooho Moon (Email: moonwalk725@cau.ac.kr)