Principal Component Analysis (PCA)

Introduction

Principal component analysis (PCA) is a standard tool in modern data analysis - in diverse fields from neuroscience to computer graphics.

It is very useful method for extracting relevant information from confusing data sets.

Definition

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

The number of principal components is less than or equal to the number of original variables.

Goals

- The main goal of a PCA analysis is to identify patterns in data
- PCA aims to detect the correlation between variables.
- It attempts to reduce the dimensionality.

Dimensionality Reduction

It reduces the dimensions of a d-dimensional dataset by projecting it onto a (k)-dimensional subspace (where k<d) in order to increase the computational efficiency while retaining most of the information.

Transformation

This transformation is defined in such a way that the first principal component has the largest possible variance and each succeeding component in turn has the next highest possible variance.

PCA Approach

- Standardize the data.
- Perform Singular Vector Decomposition to get the Eigenvectors and Eigenvalues.
- Sort eigenvalues in descending order and choose the k- eigenvectors
- Construct the projection matrix from the selected k- eigenvectors.
- Transform the original dataset via projection matrix to obtain a k-dimensional feature subspace.

Limitation of PCA

The results of PCA depend on the scaling of the variables.

A scale-invariant form of PCA has been developed.

Applications of PCA:

- Interest Rate Derivatives Portfolios
- Neuroscience

Linear Discriminant Analysis (LDA)

Introduction

Linear Discriminant Analysis (LDA) is used to solve dimensionality reduction for data with higher attributes

- Pre-processing step for pattern-classification and machine learning applications.
- Used for feature extraction.
- Linear transformation that maximize the separation between multiple classes.
- "Supervised" Prediction agent

Feature Subspace:

To reduce the dimensions of a d-dimensional data set by projecting it onto a (k)-dimensional subspace (where k < d)

Feature space data is well represented?

- Compute eigen vectors from dataset
- Collect them in scatter matrix
- Generate *k*-dimensional data from d-dimensional dataset.

Scatter Matrix:

- Within class scatter matrix
- In between class scatter matrix

$$S_W = \sum_{i=1}^c S_i$$

$$S_B = \sum_{i=1}^c N_i (oldsymbol{m}_i - oldsymbol{m}) (oldsymbol{m}_i - oldsymbol{m})^T$$

Maximize the between class measure & minimize the within class measure.

LDA steps:

- 1. Compute the d-dimensional mean vectors.
- 2. Compute the scatter matrices
- 3. Compute the eigenvectors and corresponding eigenvalues for the scatter matrices.
- 4. Sort the eigenvalues and choose those with the largest eigenvalues to form a d×k dimensional matrix
- 5. Transform the samples onto the new subspace.

Dataset

Attributes:

- X
- O
- Blank

Class:

- Positive(Win for X)
- Negative(Win for O)

Dataset

	top-left-	nie-saua	top-righ t-square	ett-salla	middle- middle-s quare	middle-r ight-squ are	bottom-l eft-squa re	bottom- middle-s quare	bottom- right-sq uare	Class
	x	x	x	x	0	0	x	0	0	positive
,	X	Х	X	X	0	0	0	X	0	positive
	X	Х	X	X	0	0	0	0	Х	positive
	0	x	x	b	0	X	x	0	o	negative
	0	Х	X	b	0	Х	0	X	0	negative
	0	x	x	b	О	x	b	b	0	negative

References:

- [1]https://en.wikipedia.org/wiki/Principal_component_analysis#
- [2]http://sebastianraschka.com/Articles/2015_pca_in_3_steps.ht ml#a-summary-of-the-pca-approach
- [3]http://cs.fit.edu/~dmitra/ArtInt/ProjectPapers/PcaTutorial.pdf
- [4] Sebastian Raschka, Linear Discriminant Analysis Bit by Bit, http://sebastianraschka.com/Articles/414_python_lda.html, 414.
- [5] Zhihua Qiao, Lan Zhou and Jianhua Z. Huang, Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data
- [6] Tic Tac Toe Dataset https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame