Exercise

Spatial representation of poses

Task 1. A point P is given, which is described by the position vector $\underline{p} = \begin{pmatrix} 4 \\ 0 \\ 10 \end{pmatrix}$.

- a) Determine the coordinates of the point P' that results from a rotation of P by 30° about the z axis.
- b) Determine the coordinates of P in a coordinate system that has been reoriented by 30° with respect to the base coordinate system.
- c) Determine the coordinates of $P^{''}$ that results from a rotation of $P^{'}$ by 60° about the x axis ($P^{'}$ was determined in a)).
- d) Determine the overall rotation matrix $\underline{R}_{X,Z}$ of the subsequent rotations form the tasks a) and c) and verify if $\underline{p}'' = \underline{R}_{X,Z} \cdot \underline{p}$.
- e) Swap the order of the rotations and determine $\underline{R}_{Z,X}$. What are the coordinates of $P^{''}$ after $\underline{R}_{Z,X}$ has been applied.
- **Task 2.** Two rotation matrices are given as $\underline{Rot}(\underline{z}, \Theta_1)$ and $\underline{Rot}(\underline{z}, \Theta_2)$, which define rotations by Θ_1 and Θ_2 about the z axis.
 - a) Determine the overall rotation matrix $\underline{R}_1 = \underline{Rot}(\underline{z}, \Theta_1) \cdot \underline{Rot}(\underline{z}, \Theta_2)$.
 - b) Determine the overall rotation matrix $\underline{R}_2 = \underline{Rot}(\underline{z}, \Theta_2) \cdot \underline{Rot}(\underline{z}, \Theta_1)$.
 - c) Can both rotations \underline{R}_1 and \underline{R}_2 be applied equivalently?
 - d) Check if the rotations \underline{R}_1 und \underline{R}_2 are equal to $\underline{Rot}(\underline{z},\Theta_1+\Theta_2)$
- **Task 3.** Two rotation matrices are given as $\underline{Rot}(\underline{z}, \Theta_1)$ and $\underline{Rot}(\underline{y}, \Theta_2)$, which describe rotations by Θ_1 about the z axis and by Θ_2 about the y axis.
 - a) Determine the overall rotation matrix $\underline{R}_1 = \underline{Rot}(\underline{z}, \Theta_1) \cdot \underline{Rot}(\underline{y}, \Theta_2)$.
 - b) Determine the overall rotation matrix $\underline{R}_2 = \underline{Rot}(y, \Theta_2) \cdot \underline{Rot}(\underline{z}, \Theta_1)$.
 - c) Can both rotations \underline{R}_1 and \underline{R}_2 be applied equivalently?

