



INTELLIGENT FINANCIAL TOOL

【金融科技服务】企业数据无监督分类

让小微企业不再是小危企业



# 中小微企业寿命对比



其中,成立3年后的小微企业还正常营业的约占三分之一

有相当一部分的小微企业只有熬过"死亡期"之后,才能获得贷款 以

# STP分析: 市场细分 Segmentation

细分变量: 供应链环节需求

上游

中下游

联结上下游

源头信贷市场

P2P中介市场

第三方金融辅助市场

上游市场明晰

但进入门槛高

中下游需求可观

但存在体系短板

联结中下游 多方协作, 大势所趋

17家民营银行总资产达到8000亿元

新进入者对原先市场份额

的威胁较小

大量逐利投资者涌入P2P 模式

P2P平台良莠不齐



结合生命周期理论: 已经历十年的导入

期,处于迅速需求上升爬坡的成长期

竞争积聚程度低而市场容量大

# STP分析: 目标市场 Targeting

# 市场定位 Positioning

### [ 劣势分析 ]

01

- 1) 起步晚——只抓最痛点——尽量放弃源头 信贷型市场
- 2) 资源相对匮乏——集中精力——定位第三 方金融辅助市场,放弃P2P中介型市场

02

1) 没有"巨大家" 垄断市场——人人都可以是主 角——建立核心优势

- 2) 聚焦"高精度" 簇分类——新功能的突破—— 国家级重点实验室,集聚学术与应用人才
- 公益向左,商业向右——商业功能再突破——社会责任与企业利益同步的可持续发展。



低费率: 费率在0.8%~1.2% 浮动 让利用户

小投情况下3.5%

费率成本

费用较高:

费率高:

费率

按项目收费



依托于国家级重点实验室的第三方金融辅助产品 "低费率"、"高精度"、"人性化"

# 问题分析

### 用户类型

### 直接用户

金融机构 正规信贷公司

### 间接用户

中小微企业

### 用户特点

放贷实力强、潜力大但惧贷、恐贷

人工审阅,时间、工作量成本高

数据源有限,缺少全局的数据分析

资产规模小、资金实力较弱

数量庞大, 但需求满足率只有两成

资质审查困难、借贷困难

### 用户问题

问题一: 资金流通效率不高, 大量机会成本浪费

问题二: 识客难、获客难、活客难

问题三: 人工审阅导致资质审查、风险识别难

问题四: 劣币驱逐良币导致市场信息混乱, 信息跟进难

问题五: 难以承担显著上浮的信贷成本

问题六: 由于自身实力弱大多局限于单一渠道

问题七: 疫情期间, 短期偿债能力下降, 增加了不良贷

款的潜在风险

# 解决思路

关键问题 目标对象 方式与途径 寻求一种无监督聚类方法,并训练模型,对 金融机构、公司 问题一:资金流通效率低 K-Means++ 中小微企业有效簇划分,并实现毫秒级响应, 中小微企业 问题六: 融资渠道单一, 可得性差 以此实现机构企业之间的双向配对 选择合适的特征工程进行特征提取,利 问题二: 识客难、获客难、活客难 离散型变量处理、分箱、 金融机构、公司 问题三: 人为审阅导致风险评估困难 用PCA降维提高训练模型的效率和模型 交叉特征、特征选择、Z-问题七: 疫情使不良贷款潜在风险上升 准确率,降低出错率,助力精准获客 Score标准化、PCA降维 原始数据的集中整合,支持批量 金融机构、公司 Echarts可视化展 问题四: 劣币驱逐良币导致市场信息 搜索、模糊搜索,使用可视化界 混乱,数据源有限,缺少全局分析 中小微企业 示,Redis缓存 面echarts全局展示 金融机构、公司 使用springboot框架、阿里云ECS 问题五: 难以承担显著上浮的 Springboot, 信贷成本 中小微企业 低成本搭建并运营平台,让利消费者

云服务

# 算法需求分析



# 系统设计



### 时间性需求



平均响 应时间 达到毫 秒级

### 故障处理需求



当抛出异常时,则进行 降级,信息条目的内容 替换为本地静态页面, 进行的服务保持原样并 进行缓存数据,在重连 后进行恢复

### 并发性需求



估计用户规模为 50万,峰值在线 人数25万,峰值 并发用户数10万

### 容量需求



CPU占用率<=50% 内存占用率<=50% 服务器5G带宽

# 技术路线

### 技术框架



### 系统架构图



# 算法实现



- 离散型变量处理
- 将变量数值化,方便模型训练
- 分箱
  - 根据字段特性进行分箱操作,使得模型鲁棒性提高
- 交叉特征及特征选取 根据字段的对应关系进行选取和特征组合,利用优序图 使得模型更加符合实际
  - Z-Score标准化
  - 去除量纲,防止不同单位造成模型失真
  - 主成分分析法
    - 滤去噪声,使得模型更容易收敛

### Kmeans++

实时接收新企业信息,并根据训练好的模型进行特征提取和 聚类分析,然后自动录入数据库中,方便之后的多次查询

# 特征工程

行模型训练



# 主成分分析法降维



### 结果示意图



由分布在源空间的数据经过降维后到分布在新的合成空间的数据,使得数据的特征更加明显,有利于去除数据的噪声,使得模型训练更容易收敛,提高效率

# 核心算法分析——K-Means++算法



1.随机选取一个样本作为第一个聚类中心 c1, 然后计算每个样本与当前已有类聚中心最短距离(即与最近一个聚类中心的距离),距离计算公式如下:

$$dist(X,C) = \sqrt{\sum_{i=1}^{n} (x_i - c_i)^2}$$

$$D(x_i) = \min_{0 \le j \le k} dist(x_i, c_j)$$

其中C、 $c_j$ 代表聚类中心点,k表示当前聚类中心的数量,X、 $x_i$ 表示样本点。

2.接着计算每个样本被选为下一个聚类中心的概率,概率公式如下:

$$P(x_i) = \frac{\mathbf{D}(x_i)^2}{\sum_{x_i \in X} \mathbf{D}(x_i)^2}$$

这个值越大,表示被选取作为聚类中心的概率较大。

- 3.最后,用轮盘法选出下一个聚类中心;
- 4.然后重复这个步骤,直到选出 k 个聚类中心。这个优化在一定程度上提高了时间效率,并且使得最后聚类结果的合理程度也得到一定提升。

# 实验评估:与贝叶斯高斯混合、高斯混合、自组织映射算法比较

### 企业背景评估

| Method                  | CP   | DB   | SP    | SS   | СН        | TIME       |
|-------------------------|------|------|-------|------|-----------|------------|
| BayesianGaussianMixture | 1.78 | 1.17 | 4.34  | 0.60 | 65062.58  | 0:02:56.96 |
| GaussianMixture         | 1.78 | 1.17 | 4.34  | 0.60 | 65062.58  | 0:02:40.60 |
| Som                     | 0.68 | 0.63 | 2.15  | 0.24 | 0.67      | 1:01:20.87 |
| K-means++               | 5.36 | 0.48 | 36.22 | 0.67 | 264946.03 | 0:01:50.77 |

### 企业经营风险评估

| Method                  | СР    | DB    | SP    | SS   | CH        | TIME       |
|-------------------------|-------|-------|-------|------|-----------|------------|
| BayesianGaussianMixture | 12.18 | 1.52  | 27.77 | 0.88 | 76013.14  | 0:04:38.60 |
| GaussianMixture         | 3.08  | 1.68  | 4.84  | 0.88 | 22401.35  | 0:04:37.44 |
| Som                     | 12.12 | 27.66 | 21.48 | 0.55 | 5228.77   | 1:09:57.18 |
| K-means++               | 6.95  | 0.39  | 52.30 | 0.90 | 401711.72 | 0:04:55.00 |

### 企业司法风险评估

| Method                  | СР    | DB   | SP     | S8   | CH        | TIME       |
|-------------------------|-------|------|--------|------|-----------|------------|
| BayesianGaussianMixture | 8.57  | 0.51 | 158.27 | 1.00 | 237136.96 | 0:01:17.02 |
| GaussianMixture         | 9.09  | 0.47 | 160.09 | 1.00 | 288956.69 | 0:00:44.86 |
| Som                     | 16.29 | 2.08 | 15.65  | 0.99 | 3807.80   | 0:59:37.28 |
| K-means++               | 10.92 | 0.42 | 167.64 | 0.99 | 379310.38 | 0:02:51.55 |

### 企业稳定性评估

| Method                  | СР   | DB   | SP    | SS    | СН        | TIME       |
|-------------------------|------|------|-------|-------|-----------|------------|
| BayesianGaussianMixture | 0.64 | 0.67 | 2.07  | 0.60  | 72245.37  | 0:00:47.22 |
| GaussianMixture         | 0.69 | 0.65 | 2.31  | 0.59  | 82740.20  | 0:00:17.52 |
| Som                     | 0.18 | 3.80 | 0.09  | -0.01 | 0.01      | 0:58:15.83 |
| K-means++               | 2.04 | 0.51 | 11.31 | 0.89  | 362918.39 | 0:00:04.77 |

### 企业经营能力评估

| Method                  | CP   | DB   | SP    | SS    | CH        | TIME       |
|-------------------------|------|------|-------|-------|-----------|------------|
| BayesianGaussianMixture | 1.60 | 0.95 | 5.04  | 0.83  | 111806.43 | 0:04:32.65 |
| GaussianMixture         | 2.09 | 0.96 | 6.01  | 0.86  | 115385.38 | 0:03:56.32 |
| Som                     | 0.77 | 1.88 | 0.82  | -0.61 | 0.08      | 1:02:03.32 |
| K-means++               | 2.03 | 0.40 | 13.72 | 0.87  | 310039.84 | 0:03:55.37 |

### 企业信用风险评估

| Method                  | CP   | DB   | SP    | SS    | CH         | TIME       |
|-------------------------|------|------|-------|-------|------------|------------|
| BayesianGaussianMixture | 1.65 | 0.66 | 40.68 | 0.99  | 220209.35  | 0:01:43.61 |
| GaussianMixture         | 2.88 | 0.96 | 37.20 | 0.99  | 147948.82  | 0:01:39.94 |
| Som                     | 0.41 | 1.89 | 0.43  | -0.82 | 0.05       | 0:58:48.22 |
| K-means++               | 0.51 | 0.10 | 42.72 | 1.00  | 1851197.54 | 0:00:45.68 |

# 系统展示





1 2 3 4 5 ... 21 >



# 项目目标

### 定性目标

每一个企业簇群体形成明显的划分界限, 响应速度到毫秒级

线性降低金融机构的人工、时间成本,整合多渠道数据

解决金融机构"寻客难、审核难、资金流通效率低"的痛点

缓解中小微企业"融资难、融资慢、融资贵"的烦恼

### 定量目标

新企业标签预测所需时间控制在1秒以内,预测精准性达96.8%以上,

六个维度的模型训练所需总时间节省到14分钟以内

模型轮廓系数接近1.00,实现4~6类合理有效的簇划分

数据的安全性保证达98.2%以上,系统使用过程的稳定性到99%以上

### 目标检测

指标评估:紧密性方法、间隔性

方法、戴维森堡丁指数、轮廓系

数、Calinski-Harabasz指数

测试人: 小沈、小余、小宋

测试结果: 均达到优秀水平

白盒测试: 小方

黑盒测试: 林老师

测试结果:均达到良好水平

### 获取使用体验

测试人: 学校合作银行

的25位员工、2名专家评估

测试结果:好评率为82.5%

# 实施计划



# 全周期项目制管理

## 闭环管控评估模式

### 搭配"矩阵式组织架构"



# 4名来自国家级重点实验室



python数据科学分析

# 成本模型

### 构造性成本

### 采用COCOMO模型估算研发成本

L——源指令条数1KDSI=1000DSI

E——开发工作量(以人月计)1MM=1/12人年=19人日=152人时

D——开发进度。(以月计)

开发工作量: MM=a\*(KDSI) 人

开发进度: TDKV=c\*(MM)^d

经验常数a=2.4, b=1.05, c=2.5, d=0.38

预计源指令条数为6KDSI

开发工作量: MM=a\*(KDSI)^b=2.4\*(5K)^1.05=13人月

开发进度: TDKV=c\*(MM)^d=2.5(13)^0.38=6月

### 盈利可行性分析

投资净现值 $NPV = \sum_{k=0}^{n} \frac{NCF_k}{(1+i)^k} - \Sigma C = 51.135万元$ 

远大于零,项目方案盈利能力很好

**內涵报酬率**  $\sum_{t=1}^{n} \frac{NCF_{t}}{(1+r)^{t}} - C$  =48.67%

大于15%的资金成本率,收益能力好

动态回收期  $\sum_{k=0}^{n} I_k = \sum_{k=0}^{n} O_k$  , 回收期为2.56年

回收期为2.56年,方案可行