- 1. Assume x, y > 0. For  $\underline{F} = y + \frac{1}{x^2}j$ , decide if
  - (a) the vectors in the vector field are
    - $\bigcirc$  parallel to the x-axis  $\bigcirc$  parallel to the y-axis  $\bigcirc$  neither
  - (b) As x increases the length of the vectors
  - (c) As y increases the length of the vectors
    - $\bigcirc$  increases  $\bigcirc$  decreases  $\bigcirc$  neither
- 2. For  $\underline{v} = y\underline{i} + xj$ ,
  - (a) find the system of differential equations associated with the vector field.
  - (b) Does the flow  $x(t)=a(e^t+e^{-t}), y(t)=b(e^t-e^{-t})$  satisfy the system? Show your calculation steps

3. Do you expect the sign of the line integral for the pictured vector field and given curve to be positive, negative, or zero?



Provide justification.