Tugas Mandiri Pertemuan 12_Andrean Yonathan_Institut Teknologi Sepuluh Nopember

Latihan (1)

In [1]: # import library pandas import pandas as pd

Melakukan import library yang dibutuhkan

Import library numpy import numpy as np # Import library matplotlib dan seaborn untuk visualisasi import matplotlib.pyplot as plt import seaborn as sns # me-non aktifkan peringatan pada python import warnings warnings.filterwarnings('ignore') **Load Dataset** In [2]: #Panggil file (load file bernama CarPrice Assignment.csv) dan simpan dalam dataframe dataset = 'Iris AfterClean.csv'

iris.head()

0

1

2

3

iris = pd.read csv(dataset)

In [3]: # tampilkan 5 baris data SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Out[3]: Species

0.2 Iris-setosa

0.2 Iris-setosa

0.4 Iris-setosa

0.1 Iris-setosa

0.2 Iris-setosa

Latihan (2)

4.6

5.0

5.4

4.9

5.4

definisi variabel X(feature kolom) dan y(species/label): In [4]: X=iris.iloc[:, 0:3].values y=iris.iloc[:, 4].values

3.1

3.6

3.9

3.1

3.7

from sklearn.preprocessing import LabelEncoder

1.5

1.4

1.7

1.5

1.5

Latihan (3) transform label data species dengan menggunakan library LabelEncoder

le = LabelEncoder() y = le.fit transform(y)

In [5]:

In [6]:

3. Building Machine Learning Models Latihan (4)

import library dalam kebutuhan membangun model

from sklearn.metrics import classification report

Import Library Random Forest Classifier

from sklearn import linear model from sklearn import linear model

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train test split

from sklearn.metrics import make_scorer, accuracy_score,precision_score

from sklearn.model selection import KFold, train test split, cross val score

Import Library Confussion Matrix from sklearn.metrics import confusion matrix from sklearn.metrics import accuracy_score ,precision_score,recall_score,f1_score

#Model Select

Training Set Test Set

Dataset

Splitting The Data into Training And Testing Dataset

Bangun model Random Forest dan akurasi nya In [8]: random forest = RandomForestClassifier(n estimators=100) random_forest.fit(X_train,y_train)

Latihan (6)

dan random_state=0

#Train and Test split

Y_prediction = random_forest.predict(X_test)

f1 = f1_score(y_test,Y_prediction,average='micro') print('Confusion matrix for Random Forest\n', cm) print('accuracy_random_Forest : %.3f' %accuracy) print('precision_random_Forest : %.3f' %precision) print('recall_random_Forest : %.3f' %recall) print('f1-score random Forest : %.3f' %f1) Confusion matrix for Random Forest [[12 0 0] [0 13 2] [0 0 15]] accuracy random Forest : 0.952 precision random Forest: 0.952 recall random Forest: 0.952 f1-score random Forest : 0.952 Latihan (7) Visualisasikan Nilai Confusion Matrix dari Model Random Forest In [9]: from sklearn import metrics

- 12

- 10

split data train dan test dengan function train_test_split() dengan train_size=0.7, test_size=0.3

X train, X test, y train, y test=train test split(X,y,test size=0.3,random state=0)

Actual labe

Latihan (8)

12

plt.show()

plt.xlabel('Predicted label') plt.ylabel('Actual label')

Confussion Matrix for Random Forest

13

0

Predicted label

from sklearn.tree import DecisionTreeClassifier

decision tree = DecisionTreeClassifier()

decision_tree.fit(X_train,y_train) Y pred = decision tree.predict(X test)

cm = confusion matrix(y_test, Y_pred) accuracy = accuracy_score(y_test,Y_pred)

f1 = f1_score(y_test,Y_pred,average='micro') print('Confusion matrix for DecisionTree\n', cm)

15

Bangun model DecisionTreeClassifier dan akurasi nya

accuracy_dt=round(accuracy_score(y_test,Y_pred)* 100, 2)

precision = precision_score(y_test, Y_pred,average='micro') recall = recall_score(y_test, Y_pred, average='micro')

acc_decision_tree = round(decision_tree.score(X_train, y_train) * 100, 2)

Visualisasikan Nilai Confusion Matrix dari Model Decision Tree

p = sns.heatmap(pd.DataFrame(cdt), annot=True, cmap="YlGnBu",fmt='g')

print('accuracy_random_Forest : %.3f' %accuracy) print('precision_random_Forest : %.3f' %precision) print('recall random Forest : %.3f' %recall) print('f1-score random Forest : %.3f' %f1)

plt.ylabel('Actual label') plt.show() Confussion matrix for Decision Tree 12 0 10 Actual labe 12 3 13 Predicted label

X[2] <= 2.5gini = 0.0gini = 0.528samples = 14samples = 28value = [0, 0, 14]value = [12, 15, 1]X[2] <= 4.85gini = 0.0gini = 0.117samples = 12samples = 16value = [12, 0, 0]value = [0, 15, 1]Z X[1] <= 2.95gini = 0.0gini = 0.5samples = 14samples = 2value = [0, 14, 0]value = [0, 1, 1]qini = 0.0gini = 0.0samples = 1samples = 1value = [0, 0, 1]value = [0, 1, 0]

X[2] <= 4.95

Latihan (5)

In [7]:

 $\verb|accuracy_rf=| round(accuracy_score(y_test, Y_prediction) * 100, 2)|$ acc_random_forest = round(random_forest.score(X_train, y_train) * 100, 2) cm = confusion_matrix(y_test, Y_prediction) accuracy = accuracy_score(y_test,Y_prediction) precision = precision_score(y_test, Y_prediction,average='micro') recall = recall_score(y_test, Y_prediction, average='micro')

cm = metrics.confusion matrix(y test, Y prediction) p = sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu", fmt='g') plt.title('Confussion Matrix for Random Forest', pad=30)

In [10]:

In [11]:

In [12]:

Confusion matrix for DecisionTree [[12 0 0] [0 12 3] [0 2 13]] accuracy_random_Forest : 0.881

Latihan (9)

Latihan (10)

plt.show()

from sklearn.tree import plot_tree plt.figure(figsize = (15,10))

precision_random_Forest : 0.881 recall_random_Forest : 0.881 f1-score_random_Forest : 0.881

from sklearn import metrics

plt.xlabel('Predicted label')

cdt = metrics.confusion_matrix(y_test, Y_pred)

plt.title('Confussion matrix for Decision Tree', pad=30)

gini = 0.663samples = 42

plot_tree(decision_tree.fit(X_test,y_test) ,filled=True)

Plot hasil model DecisionTreeClassifier dengan library plot_tree

value = [12, 15, 15]