```
Solution 1
a) Second order accurate finite difference approximation
To find: Second order accusate finte difference approximation for second order decidates.
dr using one eided stuniel to the left of ion a non uniform grid
                           Let us por represent u ast.
Using method of undetermined coefficients
 to, (x!) = a t(x!-1) +pt(x!-5) + c t(x!-5) + at(x!)
Expanding each terms in RHS using Mayer series expansion des:
t, (N!) = a [t(x!)-p! b, (x') + p's b, (x') - p's b, (x!) + ...
         +0[((x1) - (4)+4)+ ) ((x1) + (+1)+1) (x1) - (4) - (4)+4)-3 (x1) + ... (x1) + ... )
    +c [ (cxi) - (hi+hi-1+hi-2) (cxi) + (hi+hi-1+hi-2) (cxi) - (hi+hi-1+hi-2) (cxi) + ...]
  = (a+b+c+d) f(x;) - [ahi +bchi+hi-)+c(hi+hi-+hi-2)] f'(x;)
       - 0 hi3 + 6 Chi+hi-1)3 + c Chi+hi-1+hi-2)3 } p" (x; )
 Comparing coefficients of ECXI), EXXI) IE, (XI) 86,, (XI) OUTH28BH2;
      a+b+c+d = 0 ... (1)
  ahi + b (ni + ni-1) + c (ni + ni+ + hi-2) = 0
                                                     ... (5)
  ahi2 + b (hi+hi-1)2 + c(hi+hi-1+hi-2)2 = 2
                                                       (0) ...
                                                       ...(4)
  a hi3 + 6 (hi+hi-1)3 + c (hi+hi-1+hi-2)3 = 0
 writing in matrix form .
```

After social matrix equation;

$$a = -\frac{2(h_{1-2} + 2h_1 + 2h_{1-1})}{h_1(h_{1-1} + h_{1-2})} \frac{h_1(h_{1-1} + h_{1-2})}{h_1(h_{1-1} + h_{1-2})} \frac{h_1(h_{1-1} + h_{1-2})}{h_1(h_{1-1} + h_{1-2})} \frac{h_1(h_{1-1} + h_{1-1})}{h_1(h_{1-1} + h_{1-1})} \frac{h_1(h_1)}{h_1(h_1 + h_1)} \frac{$$

Therefore the continuous continuous collections are the continuous to the continuou

$$+ a \left[\frac{9^{2}n}{4^{2}n^{2}} + ev_{x}v_{x}^{2} \frac{9^{2}n^{2}}{9^{2}n^{2}} + 4uv_{x}^{2} \frac{9^{2}n^{2}}{9^{2}n^{2}} + 4v_{x}v_{y}^{2} \frac{9^{2}n^{2}}{9^{2}n$$

$$= \frac{e}{\mu_s} \left[n^{sash} + n^{aAAA} \right]$$
$$= \frac{e}{\mu_b} \left[\frac{9r_39A}{3nb} + \frac{9s9A_3}{3nb} \right]$$

SOLUTION 2

Solution 2:

Solution 2:

Solution 2:

$$\frac{dy}{dt} = (t^2 - 1.1)y , y(0) = 1$$

Shapparing both the sides:

$$\int \frac{dy}{dt} = \int (t^2 - 1.1) dt$$

or long = $\frac{t^3}{3} - 1.1t + c$

At $t = 0$, $y = 1$: Putting values $\Rightarrow c = 0$

$$\begin{cases} long = \frac{t^3}{3} - 1.12 \end{cases}$$


```
Solution 2:
(1) Slope of errorgraphs:
Runge Kitha's slope = ln (0.00207148) - ln (5.154 62×10-6)
                                                                (Mean line)
                          lu (0.5) - lu (0.125)
                     ~ 4.32
Runge Kutta's slope
                      = en (0.0102198) - en (6.97582×10-5)
    (former line)
                          en (0.5) - en (0.125)
                         3.69
Cules Method's slope
                       = em (1.20751) - em (0.51745)
                          en (0.5) - en (0.125)
    (mean line)
                          en (0.382113) - en (0.102322)
Cule Method's slope
                          en (0.5) - en(0.125)
    (max line)
```

It is shown that Runge Kutta is the fourth-order accurate scheme, and Euler's Explicit Method is first-order accurate. Similarly, it can be found in Adam Bashforth's method. Error is minimum in the case of the Fourth-order RK Method. Finer, the step size results will be close to the Analytical plot.

Solution 3:

Critical Damping (c=40)

The condition in which the damping of an oscillator causes it to return as quickly as possible to its equilibrium position without oscillating back and forth about this position.

Overdamping (c=200)

The condition in which the damping of an oscillator causes it to return to equilibrium without oscillating. Oscillator moves more slowly toward equilibrium than in the critically damped system.

Under Damping (c=5)

The condition in which the damping of an oscillator causes it to return to equilibrium with the amplitude gradually decreasing to zero; the system returns to equilibrium faster but overshoots and crosses the equilibrium position one or more times.

Solution 4:

Solution 4:
$$\frac{dy}{dx} = -2.00,000 y + 2.00,000 e^{-x} - e^{-x}$$

a) Explicit Culu Method: $y_{1+1} = y_1 + h \frac{dy}{dx} |_{x_1, y_1}$)

 $y_{1+1} = y_1 + h \left[-200000 y_1 + 200000 e^{-x_1} - e^{-x_1} \right]$

as $y_{1+1} = y_1 \left[1 - 200000 h \right] + 1999999 e^{-x_1}$

At long value of $x : e^{-x} \to 0$

So, $x_1 \to \infty$, $e^{-x_1} \to 0$
 $\Rightarrow y_{1+1} = 1 - 200000 h$

Appleying Stability condition: $\left| \frac{y_{1+1}}{y_1} \right| < 1$
 $\Rightarrow -1 < \frac{y_{1+1}}{y_1} \Rightarrow 1 - 200000 h > -1$
 $\Rightarrow h < \frac{2}{200000}$
 $\Rightarrow h < 10^{-5}$

b. Maximum temperature is at r=0 where insulation is provided. The largest source has the largest temperature at r=0.

By interpolation and checking values, at source value=396 the peak temperature in the domain does not exceed 100K. (Can be checked by changing values in the input file)