Name, group no:	

1. (10 points) Ded Moroz considers the function $f(x,y)=(1+2x+3y)^{2022}$. Please, help him to find the second order Taylor approximation of this function at a point x=0, y=0.

Name, group no:	

2. (10 points) Consider the function

$$f(x,y) = \int_0^x 3e^{u^2} du + \int_0^y 2\cos(u^2) du.$$

Find the gradient grad f at the point (0,0).

Name, gro	oup no:					
		 	 	 	 	• • • • • • •

3. (10 points) Consider the system

$$\begin{cases} x + y + z = 2 \\ 2x^2 + 2y^2 = z^2 \end{cases}.$$

- (a) Are the functions x(z) and y(z) defined in a neighborhood of the point A(x=1,y=-1,z=2)?
- (b) Find dx/dz at the point A if possible.

Name, group no:	

4. (10 points) The set S is defined by $S=\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 2-x^2\}$. Two rectangles one on the top of the other are inscribed in S, thus they have the common side and the upper vertices lie on this parabola. Let A_1+A_2 be the sum of their areas, where $A_1>0$, $A_2>0$.

Consider the maximization problem $A_1 + A_2 \rightarrow \max$.

- (a) Solve the maximization problem or show that the maximum does not exist.
- (b) Check whether the Weierstrass theorem is applicable.

Name, group no:	

- 5. (10 points) An implicit function is defined by equation $x^2 + y^2 + xy + 2x + 4y = 0$. Find all the point(s) (x^*, y^*) on the curve represented by this equation, where
 - (a) the tangent line to the curve is horizontal with the equation y=c;
 - (b) conditions of the implicit function theorem are satisfied.

Name, group no:	

- 6. (10 points) Consider the function $g(x) = \sqrt{x 1 + \sqrt{x 1 + \sqrt{x 1 + \sqrt{\cdots}}}}$ defined for x > 1.
 - (a) Express $g^2(x)$ through the linear combination of g(x) and x-1.
 - (b) Find g'(2).

Name, group no:	

7. (20 points) The Mean Value Theorem in Calculus claims that given a continuously differentiable function f(x) on the closed segment $[x_0; x_0 + \Delta x]$, there exists $0 < \theta < 1$ such that $f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \Delta x$.

Prove the version of this theorem for a function of the two variables $z=f(x,y)\in C^1$ in the following form: there exists $0<\theta<1$ such that

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + \frac{\partial f}{\partial y}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y.$$

Hint. Join the 2 points (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$ with the segment of a straight line passing through these points and apply the chain rule to the composite function $f(x_0 + t\Delta x, y_0 + t\Delta y)$ where $t \in [0; 1]$.

Name, group no:		

- 8. An economist solves a problem of the minimization of expenses of an individual whose utility function is $u(x,y) = \sqrt{x} + \sqrt{y}$. Expenses are calculated by the formula E = 3x + 4y and the consumer would prefer to fix the value of the utility at 7 utiles.
 - (a) (5 points) Formulate the problem of the expenses minimization and form a Lagrangian of this problem.
 - (b) (5 points) Using first-order conditions find the minimizing bundle (x^*, y^*) .
 - (c) (5 points) Using bordered Hessian or otherwise check the sufficiency condition.
 - (d) (5 points) A consumer decided to improve her welfare by adding additional 0,1 to 7 utiles. How this decision will affect the expenditure value $E^* = 3x^* + 4y^*$, where the bundle (x^*, y^*) corresponds to a greater utility value? Use appropriate Envelope Theorem to estimate E^* .

Name, group no:	

1. (10 points) Ded Moroz considers the function $f(x,y)=(1+2x+4y)^{2022}$. Please, help him to find the second order Taylor approximation of this function at a point x=0, y=0.

Name, group no:	

2. (10 points) Consider the function

$$f(x,y) = \int_0^x 3e^{u^2} du + \int_0^y 5\cos(u^2) du.$$

Find the gradient grad f at the point (0,0).

Name, group no:	

3. (10 points) Consider the system

$$\begin{cases} x + y + z = 2 \\ 2x^2 + 2y^2 = z^2 \end{cases}.$$

- (a) Are the functions x(z) and y(z) defined in a neighborhood of the point A(x=-1,y=1,z=2)?
- (b) Find dx/dz at the point A if possible.

Name, group no:	
	• • • • •

4. (10 points) The set S is defined by $S=\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 3-x^2\}$. Two rectangles one on the top of the other are inscribed in S, thus they have the common side and the upper vertices lie on this parabola. Let A_1+A_2 be the sum of their areas, where $A_1>0$, $A_2>0$.

Consider the maximization problem $A_1 + A_2 \rightarrow \max$.

- (a) Solve the maximization problem or show that the maximum does not exist.
- (b) Check whether the Weierstrass theorem is applicable.

Name, group no:	

- 5. (10 points) An implicit function is defined by equation $x^2 + y^2 + xy 2x 4y = 0$. Find all the point(s) (x^*, y^*) on the curve represented by this equation, where
 - (a) the tangent line to the curve is horizontal with the equation y=c;
 - (b) conditions of the implicit function theorem are satisfied.

Name, group no:	

- 6. (10 points) Consider the function $g(x) = \sqrt{x 2 + \sqrt{x 2 + \sqrt{x 2 + \sqrt{\cdots}}}}$ defined for x > 2.
 - (a) Express $g^2(x)$ through the linear combination of g(x) and x-2.
 - (b) Find g'(3).

Name, group no:	

7. (20 points) The Mean Value Theorem in Calculus claims that given a continuously differentiable function f(x) on the closed segment $[x_0; x_0 + \Delta x]$, there exists $0 < \theta < 1$ such that $f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \Delta x$.

Prove the version of this theorem for a function of the two variables $z=f(x,y)\in C^1$ in the following form: there exists $0<\theta<1$ such that

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + \frac{\partial f}{\partial y}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y.$$

Hint. Join the 2 points (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$ with the segment of a straight line passing through these points and apply the chain rule to the composite function $f(x_0 + t\Delta x, y_0 + t\Delta y)$ where $t \in [0; 1]$.

Name, group no:	

- 8. An economist solves a problem of the minimization of expenses of an individual whose utility function is $u(x,y) = \sqrt{x} + \sqrt{y}$. Expenses are calculated by the formula E = 4x + 3y and the consumer would prefer to fix the value of the utility at 7 utiles.
 - (a) (5 points) Formulate the problem of the expenses minimization and form a Lagrangian of this problem.
 - (b) (5 points) Using first-order conditions find the minimizing bundle (x^*, y^*) .
 - (c) (5 points) Using bordered Hessian or otherwise check the sufficiency condition.
 - (d) (5 points) A consumer decided to improve her welfare by adding additional 0,1 to 7 utiles. How this decision will affect the expenditure value $E^* = 4x^* + 3y^*$, where the bundle (x^*, y^*) corresponds to a greater utility value? Use appropriate Envelope Theorem to estimate E^* .

Name, group no:	

1. (10 points) Ded Moroz considers the function $f(x,y)=(1+4x+2y)^{2022}$. Please, help him to find the second order Taylor approximation of this function at a point x=0, y=0.

Name, grou	up no:		
		• • • • • • • • • • • • • • • • • • • •	

2. (10 points) Consider the function

$$f(x,y) = \int_0^x 3e^{u^2} du + \int_0^y 7\cos(u^2) du.$$

Find the gradient grad f at the point (0,0).

Name, group no:	
	• • • • • • • • • • • • • • • • • • • •

3. (10 points) Consider the system

$$\begin{cases} x + y + z = 2 \\ 2x^2 + 2y^2 = z^2 \end{cases}.$$

- (a) Are the functions x(z) and y(z) defined in a neighborhood of the point A(x=1,y=-1,z=2)?
- (b) Find dy/dz at the point A if possible.

Name, group no:	

4. (10 points) The set S is defined by $S = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 4 - x^2\}$. Two rectangles one on the top of the other are inscribed in S, thus they have the common side and the upper vertices lie on this parabola. Let $A_1 + A_2$ be the sum of their areas, where $A_1 > 0$, $A_2 > 0$.

Consider the maximization problem $A_1 + A_2 \rightarrow \max$.

- (a) Solve the maximization problem or show that the maximum does not exist.
- (b) Check whether the Weierstrass theorem is applicable.

Name, group no:		

- 5. (10 points) An implicit function is defined by equation $x^2 + y^2 xy 2x + 4y = 0$. Find all the point(s) (x^*, y^*) on the curve represented by this equation, where
 - (a) the tangent line to the curve is horizontal with the equation y=c;
 - (b) conditions of the implicit function theorem are satisfied.

Name, group no:	

- 6. (10 points) Consider the function $g(x) = \sqrt{x 3 + \sqrt{x 3 + \sqrt{x 3 + \sqrt{\cdots}}}}$ defined for x > 3.
 - (a) Express $g^2(x)$ through the linear combination of g(x) and x-3.
 - (b) Find g'(4).

Name, group no:	

7. (20 points) The Mean Value Theorem in Calculus claims that given a continuously differentiable function f(x) on the closed segment $[x_0; x_0 + \Delta x]$, there exists $0 < \theta < 1$ such that $f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \Delta x$.

Prove the version of this theorem for a function of the two variables $z=f(x,y)\in C^1$ in the following form: there exists $0<\theta<1$ such that

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0 + \theta \Delta x, y_0 + \theta \Delta y)\Delta x + \frac{\partial f}{\partial y}(x_0 + \theta \Delta x, y_0 + \theta \Delta y)\Delta y.$$

Hint. Join the 2 points (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$ with the segment of a straight line passing through these points and apply the chain rule to the composite function $f(x_0 + t\Delta x, y_0 + t\Delta y)$ where $t \in [0; 1]$.

Name, group no:	
	• • • • • • • • • • • • • • • • • • • •

- 8. An economist solves a problem of the minimization of expenses of an individual whose utility function is $u(x,y) = \sqrt{x} + \sqrt{y}$. Expenses are calculated by the formula E = 2x + 5y and the consumer would prefer to fix the value of the utility at 7 utiles.
 - (a) (5 points) Formulate the problem of the expenses minimization and form a Lagrangian of this problem.
 - (b) (5 points) Using first-order conditions find the minimizing bundle (x^*, y^*) .
 - (c) (5 points) Using bordered Hessian or otherwise check the sufficiency condition.
 - (d) (5 points) A consumer decided to improve her welfare by adding additional 0,1 to 7 utiles. How this decision will affect the expenditure value $E^* = 2x^* + 5y^*$, where the bundle (x^*, y^*) corresponds to a greater utility value? Use appropriate Envelope Theorem to estimate E^* .

Name, group no:	

1. (10 points) Ded Moroz considers the function $f(x,y)=(1+3x+2y)^{2022}$. Please, help him to find the second order Taylor approximation of this function at a point x=0, y=0.

Name, group no:	

2. (10 points) Consider the function

$$f(x,y) = \int_0^x 6e^{u^2} du + \int_0^y 2\cos(u^2) du.$$

Find the gradient grad f at the point (0,0).

Name, group no:		

3. (10 points) Consider the system

$$\begin{cases} x + y + z = 2 \\ 2x^2 + 2y^2 = z^2 \end{cases}.$$

- (a) Are the functions x(z) and y(z) defined in a neighborhood of the point A(x=-1,y=1,z=2)?
- (b) Find dy/dz at the point A if possible.

Vame, group no:	

4. (10 points) The set S is defined by $S=\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 5-x^2\}$. Two rectangles one on the top of the other are inscribed in S, thus they have the common side and the upper vertices lie on this parabola. Let A_1+A_2 be the sum of their areas, where $A_1>0$, $A_2>0$.

Consider the maximization problem $A_1 + A_2 \rightarrow \max$.

- (a) Solve the maximization problem or show that the maximum does not exist.
- (b) Check whether the Weierstrass theorem is applicable.

Name, group no:	

- 5. (10 points) An implicit function is defined by equation $x^2 + y^2 xy + 2x 4y = 0$. Find all the point(s) (x^*, y^*) on the curve represented by this equation, where
 - (a) the tangent line to the curve is horizontal with the equation y=c;
 - (b) conditions of the implicit function theorem are satisfied.

Name, group no:	

- 6. (10 points) Consider the function $g(x) = \sqrt{x 4 + \sqrt{x 4 + \sqrt{x 4 + \sqrt{\cdots}}}}$ defined for x > 4.
 - (a) Express $g^2(x)$ through the linear combination of g(x) and x-4.
 - (b) Find g'(5).

Name, group no:	

7. (20 points) The Mean Value Theorem in Calculus claims that given a continuously differentiable function f(x) on the closed segment $[x_0; x_0 + \Delta x]$, there exists $0 < \theta < 1$ such that $f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \Delta x$.

Prove the version of this theorem for a function of the two variables $z=f(x,y)\in C^1$ in the following form: there exists $0<\theta<1$ such that

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + \frac{\partial f}{\partial y}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y.$$

Hint. Join the 2 points (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$ with the segment of a straight line passing through these points and apply the chain rule to the composite function $f(x_0 + t\Delta x, y_0 + t\Delta y)$ where $t \in [0; 1]$.

Name, group no:	

- 8. An economist solves a problem of the minimization of expenses of an individual whose utility function is $u(x,y) = \sqrt{x} + \sqrt{y}$. Expenses are calculated by the formula E = 5x + 2y and the consumer would prefer to fix the value of the utility at 7 utiles.
 - (a) (5 points) Formulate the problem of the expenses minimization and form a Lagrangian of this problem.
 - (b) (5 points) Using first-order conditions find the minimizing bundle (x^*, y^*) .
 - (c) (5 points) Using bordered Hessian or otherwise check the sufficiency condition.
 - (d) (5 points) A consumer decided to improve her welfare by adding additional 0,1 to 7 utiles. How this decision will affect the expenditure value $E^* = 5x^* + 2y^*$, where the bundle (x^*, y^*) corresponds to a greater utility value? Use appropriate Envelope Theorem to estimate E^* .