110A HW4

Warren Kim

Winter 2024

Question 1

Let F be a field, and consider the polynomial ring F[x,y] with two variables. Show that I=(x,y) is not a principal ideal (i.e., it cannot be generated by a single element).

Let R be a ring, and let I_1, \cdots, I_k be ideals. Show that the following sets are ideals:

- 1. $I_1 + \dots + I_k = \{i_1 + \dots + i_k | i_j \in I_j\}$
- 2. $I_1 \cap I_2 \cap \cdots \cap I_k$

Let R be a ring, $a \in R$, and $I \subseteq R$ be an ideal. Show that the set $a + I = \{a + x | x \in I\}$ is precisely the congruence class modulo I that contains a. That is, show that $b \equiv a \mod I$ if and only if $b \in a + I$.

Let $f:R\to S$ be a ring homomorphism, and suppose $I\subseteq R$ is an ideal such that $I\subseteq \ker(f)$. Show that there is a unique homomorphism $\overline{f}:R/I\to S$ such that $f=\overline{f}\circ\pi$.

Let $a \in \mathbb{R}$ be any real number. Show that the quotient ring $\mathbb{R}[x]/(x-a)$ is isomorphic to \mathbb{R} . [hint: you can use, without proof, that a polynomial p(x) has a root a if and only if it can be written p(x) = (x-a)q(x), where q(x) is another polynomial.]

Let R be a commutative ring, and let $I,J\subseteq R$ be ideals. Consider

$$IJ = \{i_1j_1 + \dots + i_nj_n | i_r \in I, j_s \in J, n > 0\}.$$

- 1. Show that IJ is an ideal.
- 2. Show that $IJ \subseteq I \cap J$.
- 3. Show that if I + J = R, then $IJ = I \cap J$.

Let R be a commutative ring. Recall that $r \in R$ is nilpotent if there is some n > 0 such that $r^n = 0$.

- 1. Let Nil(R) be the set of nilpotent elements of R. Show that Nil(R) forms an ideal.
- 2. Show that R/Nil(R) has no nonzero nilpotent elements.

Response

Proof: Let R be a commutative ring. First, we will show that Nil(R) is a nonunital subring of R. Define S := Nil(R).

1. Closure under addition: Let $a, b \in S$. Then, there exist some n, m > 0 such that $a^n = b^m = 0$. Then $(a+b)^{n+m} = (a+b)^n (a+b)^m = 0 \cdot 0 = 0$, so $a+b \in Nil(R)$.

$$(a+b)^{n+m} = \sum_{k=0}^{n+m} {n+m \choose k} a^{n+m-k} b^k$$
$$= \sum_{k=0}^{n+m} {n+m \choose k} a^{n+m-k} b^k$$

- 2. Closure under multiplication: Let $a, b \in S$. Then, there exist some n, m > 0 such that $a^n = b^m = 0$.
- 3. Existence of Inverses: