NLP Algorithms

Dichotomous Search

Initialization Step Choose the distinguishability constant, $2 \varepsilon > 0$, and the allowable final length of uncertainty, l > 0. Let $[a_1, b_1]$ be the initial interval of uncertainty, let k = 1, and go to the Main Step.

Main step

If b_k -a_k < l, stop; the minimum point lies in the interval [a_k, b_k].
 Otherwise, consider λ_k and μ_k defined below, and go to step 2.

$$\lambda_k = \frac{a_k + b_k}{2} - \varepsilon, \qquad \mu_k = \frac{a_k + b_k}{2} + \varepsilon$$

2. If $\theta(\lambda_k) < \theta(\mu_k)$, let $a_{k+1} = a_k$ and $b_{k+1} = \mu_k$, otherwise, let $a_{k+1} = \lambda_k$ and $b_{k+1} = b_k$. Replace k by k+1 and go to step 1.

Note that the length of uncertainty at the beginning of iteration k + 1 is given by

$$b_{k+1} - a_{k+1} = \frac{1}{2}(b_1 - a_1) + 2\varepsilon \left(1 - \frac{1}{2^k}\right)$$

Golden Section Method

Initialization Step Choose an allowable final length of uncertainty, t > 0. Let $[a_1, b_1]$ be the initial interval of uncertainty, let $\lambda_1 = a_1 + (1 - \alpha)(b_1 - a_1)$ and $\mu_1 = a_1 + \alpha(b_1 - a_1)$, where $\alpha = 0.618$. Evaluate $\theta(\lambda_k)$ and $\theta(\mu_k)$, let k = 1, and go to the Main Step.

Main step

- If b_k a_k < l, stop; the minimum point lies in the interval [a_k, b_k].
 Otherwise, consider if θ(λ_k) > θ(μ_k), go to step 2; and if θ(λ_k) ≤ θ(μ_k), go to step 3.
- 2. Let $a_{k+1} = \lambda_k$ and $b_{k+1} = b_k$. furthermore, let $\lambda_{k+1} = \mu_k$ and let $\mu_{k+1} = a_{k+1} + \alpha(b_{k+1} a_{k+1})$. Evaluate $\theta(\mu_{k+1})$ and go to Step 4.
- 3. Let $a_{k+1}=a_k$ and $b_{k+1}=\mu_k$ furthermore, let $\mu_{k+1}=\lambda_k$ and let $\lambda_{k+1}=a_{k+1}+(1-\alpha)(b_{k+1}-a_{k+1}).$ Evaluate $\theta(\lambda_{k+1})$ and go to Step 4.
- 4. Replace k by k+1 and go to step 1.

The Fibonacci search

Initialization Step Choose an allowable final length of uncertainty, l > 0 and distinguishability constant, $\varepsilon > 0$. Let $[a_1, b_1]$ be the initial interval of uncertainty, and choose the number of

observation
$$n$$
 to be taken such that $F_n > \frac{(b_1-a_1)}{l}$. Let $\lambda_1 = a_1 + \left(\frac{F_{n-2}}{F_n}\right)(b_1-a_1)$ and

$$\mu_1 = a_1 + \left(\frac{F_{n-1}}{F_n}\right)(b_1 - a_1)$$
. Evaluate $\theta(\lambda_l)$ and $\theta(\mu_l)$, let $k = 1$, and go to the Main Step.

Main step

- 1. If $\theta(\lambda_k) > \theta(\mu_k)$, go to step 2; and if $\theta(\lambda_k) \le \theta(\mu_k)$, go to step 3.
- 2. Let $a_{k+1}=\lambda_k$ and $b_{k+1}=b_k$. Furthermore, let $\lambda_{k+1}=\mu_k$ and let $\mu_{k+1}=a_{k+1}+\left(\frac{F_{n-k-1}}{F_{n-k}}\right)(b_{k+1}-a_{k+1}).$ If k=n-2 go to step 5; otherwise evaluate $\theta(\mu_{k+1})$ and go to step 4.
- 3. Let $a_{k+1}=a_k$ and $b_{k+1}=\mu_k$. Furthermore, let $\mu_{k+1}=\lambda_k$ and let $\lambda_{k+1}=a_{k+1}+\left(\frac{F_{n-k-2}}{F_{n-k}}\right)(b_{k+1}-a_{k+1}). \text{ If } \mathbf{k}=\mathbf{n}-2 \text{ go to step 5; otherwise, evaluate } \theta(\lambda_{k+1})$

and go to Step 4.

- 4. Replace k by k+1 and go to step 1.
- 5. Let $\lambda_n = \lambda_{n-1}$ and $\mu_n = \lambda_{n-1} + \varepsilon$. If $\theta(\lambda_n) > \theta(\mu_n)$, let $a_n = \lambda_n$ and $b_n = b_{n-1}$. Otherwise, if $\theta(\lambda_n) \le \theta(\mu_n)$, $a_n = a_{n-1}$ and $b_n = \lambda_n$. Stop; the optimal solution lies in the interval [a_n, b_n].

Bisection search Method

Initialization Step Let $[a_1, b_1]$ be the initial interval of uncertainty, and let ℓ be the allowable final interval of uncertainty. Let n be the smallest positive integer such that $(1/2)^n \le \ell/(b_1 - a_1)$. Let k = 1 and go to the Main Step.

Main Step

- 1. Let $\lambda_k = (1/2)(a_k + b_k)$ and evaluate $\theta'(\lambda_k)$. If $\theta'(\lambda_k) = 0$, stop; λ_k is an optimal solution. Otherwise, go to Step 2 if $\theta'(\lambda_k) > 0$, and go to Step 3 if $\theta'(\lambda_k) < 0$.
- 2. Let $a_{k+1} = a_k$ and $b_{k+1} = \lambda_k$. Go to Step 4.
- 3. Let $a_{k+1} = \lambda_k$ and $b_{k+1} = b_k$. Go to Step 4.
- 4. If k = n, stop; the minimum lies in the interval $[a_{n+1}, b_{n+1}]$. Otherwise, replace k by k+1 and repeat Step 1.

Cyclic Coordinate Method

Initialization Step Choose a scalar $\varepsilon > 0$ to be used for terminating the algorithm, and let $\mathbf{d}_1, ..., \mathbf{d}_n$ be the coordinate directions. Choose an initial point \mathbf{x}_1 , let $\mathbf{y}_1 = \mathbf{x}_1$, let k = j = 1, and go to the Main Step.

Main Step

- 1. Let λ_j be an optimal solution to the problem to minimize $f(\mathbf{y}_j + \lambda \mathbf{d}_j)$ subject to $\lambda \in R$, and let $\mathbf{y}_{j+1} = \mathbf{y}_j + \lambda_j \mathbf{d}_j$. If j < n, replace j by j + 1, and repeat Step 1. Otherwise, if j = n, go to Step 2.
- 2. Let $\mathbf{x}_{k+1} = \mathbf{y}_{n+1}$. If $\|\mathbf{x}_{k+1} \mathbf{x}_k\| < \varepsilon$, then stop. Otherwise, let $\mathbf{y}_1 = \mathbf{x}_{k+1}$, let j = 1, replace k by k+1, and go to Step 1.

Hooke and Jeeves

Initialization Step Choose a scalar $\varepsilon > 0$ to be used in terminating the algorithm. Choose a starting point x_1 , let $y_1 = x_1$, let k = j = 1, and go to the Main Step.

Main Step

- 1. Let λ_j be an optimal solution to the problem to minimize $f(\mathbf{y}_j + \lambda \mathbf{d}_j)$ subject to $\lambda \in R$, and let $\mathbf{y}_{j+1} = \mathbf{y}_j + \lambda_j \mathbf{d}_j$. If j < n, replace j by j + 1, and repeat Step 1. Otherwise, if j = n, let $\mathbf{x}_{k+1} = \mathbf{y}_{n+1}$. If $\|\mathbf{x}_{k+1} \mathbf{x}_k\| < \varepsilon$, stop; otherwise, go to Step 2.
- 2. Let $\mathbf{d} = \mathbf{x}_{k+1} \mathbf{x}_k$, and let $\hat{\lambda}$ be an optimal solution to the problem to minimize $f(\mathbf{x}_{k+1} + \lambda \mathbf{d})$ subject to $\lambda \in R$. Let $\mathbf{y}_1 = \mathbf{x}_{k+1} + \hat{\lambda} \mathbf{d}$, let j = 1, replace k by k + 1, and go to Step 1.

Steepest Descent

Initialization Step Let $\varepsilon > 0$ be the termination scalar. Choose a starting point x_1 , let k = 1, and go to the Main Step.

Main Step

If $\|\nabla f(\mathbf{x}_k)\| < \varepsilon$, stop; otherwise, let $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$, and let λ_k be an optimal solution to the problem to minimize $f(\mathbf{x}_k + \lambda \mathbf{d}_k)$ subject to $\lambda \ge 0$. Let $\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda_k \mathbf{d}_k$, replace k by k+1, and repeat the Main Step.