EC701PC: MICROWAVE AND OPTICAL COMMUNICATIONS (PC)

B.Tech. IV Year I Semester

L T P C 3 0 0 3

Prerequisite: Antennas and Propagation

Course Objectives:

- To get familiarized with microwave frequency bands, their applications and to understand the limitations and losses of conventional tubes at these frequencies.
- To distinguish between different types of microwave tubes, their structures and principles of microwave power generation.
- To impart the knowledge of Scattering Matrix, its formulation and utility, and establish the S-Matrix for various types of microwave junctions.
- Understand the utility of Optical Fibres in Communications.

Course Outcomes: Upon completing this course, the student will be able to

- Known power generation at microwave frequencies and derive the performance characteristics.
- realize the need for solid state microwave sources and understand the principles of solid state devices.
- distinguish between the different types of waveguide and ferrite components, and select proper components for engineering applications
- understand the utility of S-parameters in microwave component design and learn the measurement procedure of various microwave parameters.
- Uunderstand the mechanism of light propagation through Optical Fibres.

UNIT - I

Microwave Tubes: Limitations and Losses of conventional Tubes at Microwave Frequencies, Microwave Tubes – O Type and M Type Classifications, O-type Tubes: 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for O/P Power and Efficiency. Reflex Klystrons – Structure, Velocity Modulation and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes and O/P Characteristics.

Helix TWTs: Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations.

UNIT - II

M-Type Tubes:

Introduction, Cross-field Effects, Magnetrons – Different Types, Cylindrical Traveling Wave-Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics.

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diodes – Principle, RWH Theory, Characteristics, Modes of Operation - Gunn Oscillation Modes, Principle of operation of IMPATT and TRAPATT Devices.

UNIT - III

Waveguide Components: Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide Windows, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Different Types, Resistive Card and Rotary Vane Attenuators; Waveguide Phase Shifters – Types, Dielectric and Rotary Vane Phase Shifters, Waveguide Multiport Junctions - E plane and H plane Tees. Ferrites— Composition and Characteristics, Faraday Rotation, Ferrite Components – Gyrator, Isolator,

UNIT - IV

Scattering matrix: Scattering Matrix Properties, Directional Couplers – 2 Hole, Bethe Hole, [s] matrix of Magic Tee and Circulator.

Microwave Measurements: Description of Microwave Bench – Different Blocks and their Features, Errors and Precautions, Measurement of Attenuation, Frequency. Standing Wave Measurements, measurement of Low and High VSWR, Cavity Q, Impedance Measurements.

UNIT - V

Optical Fiber Transmission Media: Optical Fiber types, Light Propagation, Optical fiber Configurations, Optical fiber classifications, Losses in Optical Fiber cables, Light Sources, Optical Sources, Light Detectors, LASERS, WDM Concepts, Optical Fiber System link budget.

TEXT BOOKS:

- 1. Microwave Devices and Circuits Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Electronic Communications Systems- Wayne Tomasi, Pearson, 5th Edition

REFERENCE BOOKS:

- 1. Optical Fiber Communication Gerd Keiser, TMH, 4th Ed., 2008.
- 2. Microwave Engineering David M. Pozar, John Wiley & Sons (Asia) Pvt Ltd., 1989, 3r ed., 2011 Reprint.
- 3. Microwave Engineering G.S. Raghuvanshi, Cengage Learning India Pvt. Ltd., 2012.
- 4. Electronic Communication System George Kennedy, 6th Ed., McGrawHill.

EC713PE/EI812PE: DIGITAL IMAGE PROCESSING (PE - III)

B. Tech. IV Year I Semester

1 P C 3 0 0 3

Prerequisite: Digital Signal Processing

Course Objectives:

- To provide a approach towards image processing and introduction about 2D transforms
- To expertise about enhancement methods in time and frequency domain
- To expertise about segmentation and compression techniques
- To understand the Morphological operations on an image

Course Outcomes: Upon completing this course, the student will be able to

- Explore the fundamental relations between pixels and utility of 2-D transforms in image processer.
- Understand the enhancement, segmentation and restoration processes on an image.
- Implement the various Morphological operations on an image
- Understand the need of compression and evaluation of basic compression algorithms.

UNIT-I:

Digital Image Fundamentals & Image Transforms: Digital Image Fundamentals, Sampling and Quantization, Relationship between Pixels.

Image Transforms: 2-D FFT, Properties, Walsh Transform, Hadamard Transform, Discrete Cosine Transform, Haar Transform, Slant Transform, Hotelling Transform.

UNIT-II:

Image Enhancement (Spatial Domain): Introduction, Image Enhancement in Spatial Domain, Enhancement through Point Processing, Types of Point Processing, Histogram Manipulation, Linear and Non – Linear Gray Level Transformation, Local or Neighborhood criterion, Median Filter, Spatial Domain High-Pass Filtering.

Image Enhancement (Frequency Domain): Filtering in Frequency Domain, Low Pass (Smoothing) and High Pass (Sharpening) Filters in Frequency Domain.

UNIT -III:

Image Restoration: Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT -IV:

Image Segmentation: Detection of Discontinuities, Edge Linking And Boundary Detection, thresholding, Region Oriented Segmentation.

Morphological Image Processing: Dilation and Erosion: Dilation, Structuring Element Decomposition, Erosion, Combining Dilation and Erosion, Opening and Closing, Hit or Miss Transformation.

UNIT -V:

Image Compression: Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Huffman and Arithmetic Coding, Error Free Compression, Lossy Compression, Lossy and Lossless Predictive Coding, Transform Based Compression, JPEG 2000 Standards.

TEXT BOOKS:

- 1. Digital Image Processing Rafael C. Gonzalez, Richard E. Woods, 3rd Edition, Pearson, 2008
- 2. Digital Image Processing- S Jayaraman, S Esakkirajan, T Veerakumar- TMH, 2010.

REFERENCE BOOKS:

- 1. Digital Image Processing and Analysis-Human and Computer Vision Application with using CVIP Tools Scotte Umbaugh, 2nd Ed, CRC Press, 2011
- 2. Digital Image Processing using MATLAB Rafael C. Gonzalez, Richard E Woods and Steven L. Eddings, 2nd Edition, TMH, 2010.
- 3. Digital Image Processing and Computer Vision Somka, Hlavac, Boyle- Cengage Learning (Indian edition) 2008.
- 4. Introductory Computer Vision Imaging Techniques and Solutions- Adrian low, 2nd Edition, BS Publication, 2008.

EC723PE: NETWORK SECURITY AND CRYPTOGRAPHY (PE - IV)

B.Tech. IV Year I Semester

L T P C 3 0 0 3

Prerequisite: Nil Course Objectives:

- Understand the basic concept of Cryptography and Network Security, their mathematical models
- To understand the necessity of network security, threats/vulnerabilities to networks and countermeasures
- To understand Authentication functions with Message Authentication Codes and Hash Functions.
- To provide familiarity in Intrusion detection and Firewall Design Principles

Course Outcomes: Upon completing this course, the student will be able to

- Describe network security fundamental concepts and principles
- Encrypt and decrypt messages using block ciphers and network security technology and protocols
- Analyze key agreement algorithms to identify their weaknesses
- Identify and assess different types of threats, malware, spyware, viruses, vulnerabilities

UNIT- I

Security Services, Mechanisms and Attacks, A Model for Internetwork security, Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

UNIT-II

Encryption: Triple DES, International Data Encryption algorithm, Blowfish, RC5, Characteristics of Advanced Symmetric block Ciphers. Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT - III

Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.

Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT-IV

Message Authentication and Hash Functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs.

Hash and Mac Algorithms: MD-5, Message digest Algorithm, Secure Hash Algorithm.

Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, SIME/MIME.

UNIT - V

IP Security: Overview, Architecture, Authentication, Encapsulating Security Payload, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms: Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

TEXT BOOKS:

- 1. Cryptography and Network Security: Principles and Practice William Stallings, Pearson Education.
- 2. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH,2004.

SM702MS: PROFESSIONAL PRACTICE, LAW AND ETHICS (PC)

B.Tech. IV Year I Semester

L T P C 2 0 0 2

Course Objectives:

- To make the students understand the types of roles they are expected to play in the society as practitioners of the civil engineering profession
- To develop some ideas of the legal and practical aspects of their profession.

Course Outcome: The students will understand the importance of professional practice, Law and Ethics in their personal lives and professional careers. The students will learn the rights and responsibilities as an employee, team member and a global citizen

UNIT - I

Professional Practice and Ethics: Definition of Ethics, Professional Ethics - Engineering Ethics, Personal Ethics; Code of Ethics - Profession, Professionalism, Professional Responsibility, Conflict of Interest, Gift Vs Bribery, Environmental breaches, Negligence, Deficiencies in state-of-the-art; Vigil Mechanism, Whistle blowing, protected disclosures. Introduction to GST- Various Roles of Various Stake holders

UNIT - II

Law of Contract: Nature of Contract and Essential elements of valid contract, Offer and Acceptance, Consideration, Capacity to contract and Free Consent, Legality of Object. Unlawful and illegal agreements, Contingent Contracts, Performance and discharge of Contracts, Remedies for breach of contract. Contracts-II: Indemnity and guarantee, Contract of Agency, Sale of goods Act -1930: General Principles, Conditions & Warranties, Performance of Contract of Sale.

IINIT - III

Arbitration, Conciliation and ADR (Alternative Dispute Resolution) system: Arbitration – meaning, scope and types – distinction between laws of 1940 and 1996; UNCITRAL model law – Arbitration and expert determination; Extent of judicial intervention; International commercial arbitration; Arbitration agreements – essential and kinds, validity, reference and interim measures by court; Arbitration tribunal – appointment, challenge, jurisdiction of arbitral tribunal, powers, grounds of challenge, procedure and court assistance; Distinction between conciliation, negotiation, mediation and arbitration, confidentiality, resort to judicial proceedings, costs; Dispute Resolution Boards; Lok Adalats.

UNIT - IV

Engagement of Labour and Labour & other construction-related Laws: Role of Labour in Civil Engineering; Methods of engaging labour- on rolls, labour sub-contract, piece rate work; Industrial Disputes Act, 1947; Collective bargaining; Industrial Employment (Standing Orders) Act, 1946; Workmen's Compensation Act, 1923; Building & Other - Construction Workers (regulation of employment and conditions of service) Act (1996) and Rules (1998); RERA Act 2017, NBC 2017.

UNIT - V

Law relating to Intellectual property: Introduction – meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and Designs, Secrets; Law relating to Copyright in India including Historical evolution of Copy Rights Act, 1957, Meaning of copyright – computer programs, Ownership of copyrights and assignment, Criteria of infringement, Piracy in Internet – Remedies and procedures in India; Law relating to Patents under Patents Act, 1970

TEXT BOOKS:

- 1. Professional Ethics: R. Subramanian, Oxford University Press, 2015.
- 2. Ravinder Kaur, Legal Aspects of Business, 4e, Cengage Learning, 2016.

REFERENCE BOOKS:

- 1. RERA Act, 2017.
- 2. Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co.
- 3. T. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House.
- 4. O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers.