

# Designnotat

Tittel: Anti-alias-filter

Forfattere: Peter Pham

Versjon: 2.0 Dato: 18/12/2022

## Innhold

| 1 | Problembeskrivelse                    | 2                |
|---|---------------------------------------|------------------|
| 2 | prinsipiell løsning 2.1 Spesifikasjon | 3<br>3<br>5<br>7 |
| 3 | Realisering og test                   | 8                |
| 4 | Konklusjon                            | 10               |
| 5 | Referanser                            | 11               |
|   |                                       |                  |

#### 1 Problembeskrivelse

Signalbehandling i elektroniske system foregår som regel digitalt. Inngangssignalene til systemet er oftest analoge, og en digitalisering av disse før signalbehandlingen er derfor nødvendig. For å unngå alvorlige aliasing-feil, er det nødvendig å begrense båndbredden til signalene som skal digitaliseres. Dersom punktprøvingsfrekvensen er  $f_s$ , må, ifølge punktprøvingsteoremet, signalet være båndbegrenset til  $B = \frac{f_s}{2}$ . I praksis er en fullstendig båndbegrensing (der alle frekenskomponenter over  $\frac{f_s}{2}$  er satt til null) ikke mulig. Det er heller ikke nødvendig. Det er tilstrekkelig at frekvenskomponenter over  $\frac{f_s}{2}$  blir dempet med en viss faktor avhengig av applikasjonen. Slik demping kan oppnåes ved å sette et anti-alias-filter umiddelbart foran A/D-omformeren som vist i figur 1. Videre er det ønskelig at anti-alias-filteret påvirker frekvenskomponentene under  $\frac{f_s}{2}$  minstmulig. Det kan sikres ved å kreve at knekkfrekvensen til filteret ligger over en viss verdi.



Figur 1: 01Anti-alias-filter.

Dermed skal designes et anti-alias-filter til bruk ved en gitt punktprøvingsfrekvens  $f_s$ . Filteret skal ha en demping på minst 10 dB ved frekvensen  $\frac{f_s}{2}$ , og knekkfrekvensen  $f_c$  til filteret skal oppfylle  $f_c \geq 0.75 \frac{f_s}{2}$ . Knekkfrekvensen definerer vi som frekvensen hvor amplituderesponsen har sunket med 3 dB fra sitt høyeste nivå.

#### 2 prinsipiell løsning

Ved filterdesign kan det være lurt å ha en fornuftig arbeidsgang:

- 1. Start med spesifikasjon
- 2. Velg type filter
- 3. Finn nødvendig orden N
- 4. Finn systemfunksjonen H(s)
- 5. Realisert H(s) med tilgjengelig teknologi

#### 2.1 Spesifikasjon

Fra problembeskrivelsen i seksjon 1 blir det opplyst at dersom punktprøvingsfrekvensen er  $f_s$ , må båndbegrensingen være  $B=\frac{f_s}{2}$  og knekkfrekvensen være  $f_c\geq \frac{3}{8}f_s$ . Amplituderesponsen vil da ha en form tilsvarende figur 2.



Figur 2: Ønsket amplituderespons på system.[8]

#### 2.2 Type filter

For å få en amplituderespons som likner mest på figur 2 kan et Butterworth filter benyttes da den ifølge siden [9] er et analog filter som produserer den flateste amplituderesponsen, men da på bekostning av en relativt lang overgangsbånd mellom båndpass og båndstop som illustrert i figur 3.



Figur 3: Plot av frekvensresponsen til en Butterworth lavpassfilter.[8]

Fra vevsiden [3] oppgis det at et 2. ordens Sallen-Key topologi som illustrert i figur 5 kan brukes til å implementere forskjellige frekvens resposer som i dette tilfellet; Butterworth. Videre blir det forklart i vevsiden [2] at et Butterworth filter har maksimal flat båndpass respons når Q-faktoren er lik  $\frac{1}{\sqrt{2}}$ , dette kan man også se på figuren 4 tatt fra Electonics-Tutorials [3]. Q-faktoren er gitt ved formelen 1 der  $\omega_0$  er knekkfrekvensen, mens  $\zeta$  er dempningsfaktoren.



Figur 4: Sallen key frekvens respons ved forskjellige Q-faktorer.[3]



Figur 5: Lavpassfilter med Sallen-Key topologi.[8]

#### 2.3 Nødvendig orden

Fra siden [1] blir det oppgitt at formelen for demping  $A(\omega)$  for en nte-ordens Butterworth lavpassfilter er gitt ved systemfunksjonen H(s) som

$$A(\omega) = |H(j2\pi f)| = \frac{1}{\sqrt{1 + (\frac{f}{f_c})^{2n}}}$$
 (2)

Formel 2 kan videre skrives om til

$$n = \frac{1}{2} \frac{\ln(A^{-2} - 1)}{\ln(\frac{f}{f_c})} \tag{3}$$

Der dempingen A er amplitudeforholdet, dette får man ved å bruke formelen

$$A = 10^{\frac{A[aB]}{20}} \tag{4}$$

Som man kan se på figur 6 tatt fra Wikipedia [1] kan man se at man får et mye brattere jo høyere orden det er i filteret, men ettervert som man kommer i en høyere orden så vil også graden den blir brattere minkes.



Figur 6: Plot med demping for et Butterworth lavpassfilter fra 1. til 5. orden med knekkfrekvens  $\omega=1.[1]$ 

#### 2.4 Systemfunksjonen

Når man ved hjelp av formelen 3 har kommet fram til n-antall orden kan man ta i bruk formel 5 oppgitt i videoen [5] for å finne den relative dempningsfaktoren  $\zeta$ . Her er i gitt for polpar. På figur 7 kan man også se at polene ligger jevnt fordelt på halvsirkelen med en radius lik  $\omega_0$  der vinkelen mellom polene er  $\theta = \frac{\pi}{n}$ . Dette gir et filter som er maskimalt flatt ifølge videoen [4].



Figur 7: Polplott for et 4. ordens filter.[8]

$$\zeta_i = \begin{cases} \cos\frac{\pi}{n}i & \text{for } n \text{ odde} \\ \cos\left[\frac{\pi}{2n} + (i-1)\frac{\pi}{n}\right] & \text{for } n \text{ like} \end{cases}$$
 (5)

Fra videoene [6] [7] blir det oppgitt at at tidskontstantene  $\tau_{nm} = C_{nm} \cdot R$  må oppfylle kravene:

$$\tau_{n1} = \frac{1}{\omega_0 \zeta_n}$$
(6)  $\tau_{n2} = \frac{1}{\omega_0^2 \tau_{n1}}$ 

Kondensatorverdiene blir da gitt ved

$$C_{n1} = \frac{\tau_{n1}}{R}$$
 (8)  $C_{n2} = \frac{\tau_{n2}}{R}$ 

### 3 Realisering og test

Punktprøvingsfrekvensen  $f_s$  er satt til 6,4 kHz. Dermed blir spesifikasjonene som plottet i tabell 1.

Tabell 1: Filterspesifikasjoner

| Spesifikasjon | Formel                | Verdi              |
|---------------|-----------------------|--------------------|
| $f_s$         |                       | 6400Hz             |
| В             | $\frac{f_s}{2}$       | $3200 \mathrm{Hz}$ |
| $f_c$         | $\geq \frac{3}{8}f_s$ | $\geq$ 2400Hz      |

Ved å ta i bruk formlene gitt i seksjon 2 blir beregninene som vist i tabell 2.

Tabell 2: Beregninger.

| Størrelse  | Formel                                                                                                  | Måltall og enhet             | Realiserte verdier  | Avvik |
|------------|---------------------------------------------------------------------------------------------------------|------------------------------|---------------------|-------|
| A          | $10^{\frac{A[dB]}{20}}$                                                                                 | $\approx 0.3162$             |                     |       |
| n          | $\frac{1}{2} \frac{\ln(A^{-2}-1)}{\ln(\frac{f}{f_2})}$                                                  | $\approx 3.81 \rightarrow 4$ |                     |       |
| R          | i Je                                                                                                    | $1k\Omega$                   | $1k\Omega$          |       |
| $\zeta_1$  | $\cos\left[\frac{\pi}{2n} + (i-1)\frac{\pi}{n}\right]$                                                  | 0.92388                      |                     |       |
| $\zeta_2$  | $\cos\left[\frac{\pi}{2n} + (i-1)\frac{\pi}{n}\right]$                                                  | 0.38268                      |                     |       |
| $\omega_0$ | $2\pi f_c$                                                                                              | $15079.64 \frac{rad}{s}$     |                     |       |
| $	au_{11}$ | $\frac{1}{\omega_0 \zeta_1}$                                                                            | $71.77 \mu \mathrm{s}$       |                     |       |
| $	au_{12}$ | $\frac{\frac{1}{\omega_0\zeta_1}}{\frac{1}{\omega_0^2\tau_{11}}}$ $\frac{1}{\frac{1}{\omega_0\zeta_2}}$ | $61.27 \mu s$                |                     |       |
| $	au_{21}$ | $\frac{1}{\omega_0\zeta_2}$                                                                             | $173.29 \mu s$               |                     |       |
| $	au_{22}$ | $\frac{1}{\omega_0^2 	au_{21}}$                                                                         | $25.38\mu\mathrm{s}$         |                     |       |
| $C_{11}$   | $\frac{\tau_{11}}{R}$                                                                                   | $71.77 \mathrm{nF}$          | 71.32nF             | 0.62% |
| $C_{12}$   | $\frac{	au_{12}}{R}$                                                                                    | $61.27 \mathrm{nF}$          | $61.65\mathrm{nF}$  | 0.62% |
| $C_{21}$   | $\frac{\overline{\tau_{21}}}{R}$                                                                        | $173.29 \mathrm{nF}$         | $173.12\mathrm{nF}$ | 0.10% |
| $C_{22}$   | $\frac{\tau_{21}}{R}$ $\frac{\tau_{22}}{R}$                                                             | $25.38\mathrm{nF}$           | $25.83\mathrm{nF}$  | 1.74% |

Den realiserte kretsen er illustrert i figur 8 og fysisk oppkoblet i figur 11.



Figur 8: Realisert krets med verdier.[8]

Med denne kretsen ble frekvensresponsen lik figur 9.



Figur 9: Frekvensrespons for realisert Anti-alias-filter.

Det observeres at med disse komponentene så blir kravet om at knekkfrekvensen skal være  $f_c \geq 2400 Hz$  oppfyllt, men ikke kravet om at dempingen ved B = 3200 Hz er lavere enn 10dB. Ved å legge til 2,13 nF slik at  $C_{22} = 27.96$  blir frekvensresponsen lik figur 10. Dette er kan forklares med at ved å øke  $C_{22}$ , så får man en høyere  $\tau_{22}$  som igjen fører til en lavere dempningsfaktor  $\zeta_2$  ifølge formlene oppgitt i seksjon 2.4. Ved bruk av formel 1 får man at Q blir lavere der man kan se på figur 4 at en får en mer dempet frekvensrespons på bekostning av båndbredden.



Figur 10: Frekvensrespons for realisert Anti-alias-filter med  $C_{22} = 27.96$ .

Grunnen til at kravet om en doemping på minst 10 dB ved frekvensen  $\frac{f_s}{2}$ , og en knekkfrekvens på  $f_c \geq 0.75 \frac{f_s}{2}$  ikke blir realisert kan skyldes avvik i komponentene.

Det kan vurderes å øke ordenen på systemet i et forsøk om å få oppfylt kravene, som beskrevet i seksjon 2.3 og vist i figur 6 ser man at mengden filteret får en økt dempning ved en høyere orden avtar med flere orden. Men siden det mangler kun -0.64471 dB for å oppnå kravet for B, så antas det at det ville holdt med en orden til da man ved bruk av formlene 2 og 4 får ville gått en dempning på -12.73 dB ved en 5. ordens Butterworth lavpassfilter.

$$\Sigma$$
 (10)



 ${\bf Figur~11:~Fysisk~realisert~krets.}$ 

### 4 Konklusjon

Til tross for at ikke alle spesifikasjonene ble oppfylt, så ble det designet et Butterworthfilter med en demping på -9.356 ved B og en kvekkfrekvens  $f_c \geq 0.75 \frac{f_s}{2}$ . Det kunne ha vært vurdert å designe et filter av høyere orden i den hensikt å oppnå en tilstrekkelig demping ved B.

#### 5 Referanser

#### Referanser

- [1] Wikipedia Contributors. *Butterworth filter*. Wikipedia, aug. 2022. URL: https://en.wikipedia.org/wiki/Butterworth\_filter (sjekket 09.2022).
- [2] Wikipedia Contributors. Sallen–Key topology. Wikipedia, nov. 2022. URL: https://en.wikipedia.org/wiki/Sallen%E2%80%93Key\_topology (sjekket 16.12.2022).
- [3] Electronics-tutorials. Sallen and Key Filter Design for Second Order RC Filters. Basic Electronics Tutorials, okt. 2021. URL: https://www.electronics-tutorials.ws/filter/sallen-key-filter.html (sjekket 16.12.2022).
- [4] Lars Lundheim. Blackboard.com. URL: https://ntnu.blackboard.com/ultra/courses/\_38144\_1/cl/outline (sjekket 16.12.2022).
- [5] Lars Lundheim. Butterworth. Panopto. URL: https://ntnu.cloud.panopto.eu/Panopto/ Pages/Viewer.aspx?id=de00eda3-10d5-4e54-bfbd-adb701685785 & query=butterworth (sjekket 16.12.2022).
- [6] Lars Lundheim. Et konkret filterdesigneksempel. https://ntnu.cloud.panopto.eu/, 2022. URL: https://ntnu.blackboard.com/ultra/courses/\_38144\_1/cl/outline (sjekket 10.2022).
- [7] Lars Lundheim. *Peter2*. YouTube, okt. 2022. URL: https://www.youtube.com/watch?v= CT1EvFAHK\_0&ab\_channel=LarsLundheim (sjekket 16.12.2022).
- [8] Peter Pham. Selvlaget figur. Des. 2022.
- [9] Wayne Storr. Butterworth filter design and low pass butterworth filters. Basic Electronics Tutorials, aug. 2013. URL: https://www.electronics-tutorials.ws/filter/filter\_8.html (sjekket 09.2022).