Jackychen Lung Ch: Lung Ch:

FCC PART 15 SUBPART C TEST REPORT

FCC Part 15.247

Report Reference No...... CTL1312121961-WB

Compiled by

(position+printed name+signature)..: File administrators Jacky Chen

Name of the organization performing

the tests

Test Engineer Tracy Qi

(position+printed name+signature)...

Approved by

(position+printed name+signature)..: Manager Tracy Qi

Date of issue...... Dec. 28, 2013

Representative Laboratory Name .: Shenzhen CTL Electromagnetic Technology Co., Ltd.

Address...... Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test Firm...... Bontek Compliance Testing Laboratory Ltd

Road, Nanshan, Shenzhen, China

Applicant's name...... DORRY ELECTRONICS INTERNATIONAL CO.,LTD

Address...... F/2, 3-4 Lane, Guangya Yuan, Bantian Town, Longgang District,

Shenzhen City, China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902–928 MHz, 2400–

2483.5 MHz, and 5725-5850 MHz.

Master TRF...... Dated 2011-01

Shenzhen CTL Electromagnetic Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Electromagnetic Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Electromagnetic Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: 2G Phone Tablet PC

FCC ID...... 275TB650

Trade Mark N/A

TB-720M, TB-A31G

GSM

Release Version R99

Type of modulation GMSK for GSM/GPRS

8PSK for EDGE

Report No.: CTL1312121961-WB

Bluetooth

V1.0

Work frequency 2402~2480MHz

Wi-Fi

Data Rate...... 802.11b: 1/2/5.5/11 Mbps

802.11g: 6/9/12/18/24/36/48/54 Mbps

802.11n: up to 65 Mbps

Antenna Gain 0 dBi for GSM850 and PCS1900

-2.0 dBi for Bluetooth and Wi-Fi

TEST REPORT

Test Report No. :	CTL1312121961-WB	Dec. 28, 2013
rest Report No	G1L1312121901-WD	Date of issue

Report No.: CTL1312121961-WB

Equipment under Test : 2G Phone Tablet PC

Model /Type : TB-650

Listed Models : TB-726G, TB-782G, TB-M77, TB-798M, TB-677M, TB-720M,

TB-A31G

Different Description : Only model's name and colour are different based on

marketing requirement.

Applicant : DORRY ELECTRONICS INTERNATIONAL CO.,LTD

Address : F/2, 3-4 Lane, Guangya Yuan, Bantian Town, Longgang

District, Shenzhen City, China

Manufacturer : DORRY ELECTRONICS INTERNATIONAL CO.,LTD

Address : F/2, 3-4 Lane, Guangya Yuan, Bantian Town, Longgang District, Shenzhen City, China

Test Result according to the standards on page 5:

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	General Remarks	e
	Equipment Under Test	6 6
	Short description of the Equipment under Test (EUT)	6
	EUT operation mode	6
	EUT configuration	7
	Configuration of Tested System	7
	Related Submittal(s) / Grant (s)	7
	Modifications	7
	NOTE	7
0.	Frequency Hopping System Requirements	8
1.	Mode of Operation	10
	TEST ENVIRONMENT	11
•	Address of the test laboratory	11
•	Test Facility Environmental conditions	11
	Statement of the measurement uncertainty	11
	Test Description	11 12
	Equipments Used during the Test	13
•	Equipments osed during the rest	13
	Z CZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
	TEST CONDITIONS AND RESULTS	14
	AC Power Conducted Emission	14
	Radiated Emission	17
	Maximum Peak Output Power	24
	20dB Bandwidth	31
	Band Edge	38
diat	ed Test:	43
	Frequency Separation	67
	Number of hopping frequency	74
	Time Of Occupancy(Dwell Time)	83
	Spurious RF Conducted Emissions	89
0.	Antenna Requirement	96
1.	RF Exposure	97
	TEST SETUP PHOTOS OF THE EUT	9 8

Report No.: CTL1312121961-WB

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices

<u>FCC Public Notice DA 00-705:</u> Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.4-2003

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The public notice DA 00-705 for frequency hopping spread spectrum systems shall be performed also.

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Dec. 18, 2013
Testing commenced on	:	Dec. 18, 2013
Testing concluded on	:	Dec. 27, 2013

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	 •	120V / 60 Hz	0	115V / 60Hz
	0	12 V DC	0	24 V DC
	•	Other (specified in blank bel	ow)	

DC 3.7V from battery

2.3. Short description of the Equipment under Test (EUT)

A **2G Phone Tablet PC**, with GSM850/1900MHz, Bluetooth and wifi function. For more details, refer to the user's manual of the EUT. Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Frequency Range:	2400-2483.5MHz
Channel number:	79 channels
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna:	internal

Test Channel	Test Frequency
Low Channel	2402 MHz
Middle Channel	2441 MHz
High Channel	2480 MHz

V1.0 Page 7 of 106 Report No.: CTL1312121961-WB

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- O supplied by the manufacturer
- supplied by the lab

•	Notebook PC	Manufacturer:	DELL
		Model No. :	PP18L

2.6. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	DELL	PP18L	37-31	E2KWM3945ABG

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: Z75TB650** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. NOTE

1. The EUT is a an Bluetooth Standard type device, The functions of the EUT listed as below:

	Test Standards	Reference Report
Radio	FCC Part 15 Subpart C (Section15.247)	CTL1312121961-WB
RF Exposure	FCC Per 47 CFR 2.1093	CTL1312121961-WB

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
Bluetooth	$\sqrt{}$	_	_	_

3. The EUT provides one completed transmitter and receiver.

Modulation Mode	TX Function
Bluetooth	1TX

Report No.: CTL1312121961-WB

2.10. Frequency Hopping System Requirements

Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9 Length of pseudo-random sequence: 29-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

The frequencies allocated for the Bluetooth Module is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments).

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops.

Hop selection scheme in CONNECTION state.

Channels list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

The pseudorandom frequency hoping sequence sample:

42,41,66,4,78,59,55,48,54,46,52,78,41,26,24,34,39,32,51,18,25,9,12,73,70,58,54,6,66,4,32,67,60,16,3,78,76,47,45,47,49,14,34, etc.

Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 channels (1 MHz separation; from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

2.11. Mode of Operation

CTL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode

V1.0

Mode 1: Transmitter-1Mbps(GFSK_DH5) DH5

Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5) 2DH5

Mode 3: Transmitter-3Mbps(8DPSK_DH5) 3DH5

V1.0 Page 11 of 106 Report No.: CTL1312121961-WB

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Bontek Compliance Testing Laboratory Ltd 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 7631A

The 3m alternate test site of Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on March, 2011.

FCC-Registration No.: 338263

Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 24, 2008.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Bontek Compliance Testing Laboratory Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

rech

Hereafter the best measurement capability for Bontek laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Test Description

FCC PART 15 Subpart C		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)	20dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.247(a)(1)	Frequency Separation	PASS
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency	PASS
FCC Part 15.247(a)(1)(iii)	Time of Occupancy	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

3.6. Equipments Used during the Test

Item	Test Equipment	Manufacturer	Model No.	Last Cal.	Due. Date
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	2013/04/14	2014/04/13
2	Radio Communication Tester	ROHDE & SCHWARZ	CMU200	2013/04/14	2014/04/13
3	Dual Directional Coupler	Agilent	778D	2013/04/14	2014/04/13
4	10dB attenuator	SCHWARZBECK	MTAIMP-136	2013/04/14	2014/04/13
5	Tunable Bandreject filter	K&L	3TNF-800	2013/04/14	2014/04/13
6	Tunable Bandreject filter	K&L	5TNF-1700	2013/04/14	2014/04/13
7	High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	2013/04/14	2014/04/13
8	High-Pass Filter	K&L	41H10- 1375/U12750- O/O	2013/04/14	2014/04/13
9	Coaxial Cable	Huber+Suhner	AC4-RF-H	2013/04/14	2014/04/13
10	AC Power Supply	IDRC	CF-500TP	2013/04/14	2014/04/13
11	DC Power Supply	IDRC	CD-035-020PR	2013/04/14	2014/04/13
12	RF Current Probe	FCC	F-33-4	2013/04/14	2014/04/13
13	Temperature /Humidity Meter	zhicheng	ZC1-2	2013/04/14	2014/04/13
14	MICROWAVE AMPLIFIER	HP	8349B	2013/04/14	2014/04/13
15	Amplifier	HP	8447D	2013/04/14	2014/04/13
16	SIGNAL GENERATOR	HP	8647A	2013/04/14	2014/04/13
17	Log Periodic Antenna	ELECTRO-METRICS	EM-6950	2013/04/14	2014/04/13
18	Horn Antenna	Schwarzbeck	BBHA9120A	2013/04/14	2014/04/13
19	EMI Test Receiver	R&S	ESPI	2013/04/14	2014/04/13
20	Loop Antenna	ZHINAN	ZN30900A	2013/04/14	2014/04/13
21	Horn Antenna	Schwarzbeck	BBHA9120D	2013/04/14	2014/04/13
22	Horn Antenna	Schwarzbeck	BBHA9170	2013/04/14	2014/04/13
23	Spectrum Analyzer	Agilent	E4446A	2013/04/14	2014/04/13
24	Wideband Peak Power Meter	Anritsu	ML2495A	2013/04/14	2014/04/13
25	Power Sensor	Anritsu	MA2411B	2013/04/14	2014/04/13

V1.0 Page 14 of 106 Report No.: CTL1312121961-WB

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

 Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguenev	Maximum RF Line Voltage (dBμV)					
Frequency (MHz)	CLASS A		C	CLASS B		
(11112)	Q.P.	Ave.	Q.P.	Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

The 1Mbps (GFSK Modulation) is the worst case as results in the report based on the Pre-test for all modulation models.

Mode 1:

MEASUREMENT RESULT: "CTL131227615 fin"

12/27/2013 5 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.420000	40.70	9.8	57	16.7	QP	N	GND
0.514500	48.00	9.8	56	8.0	QP	N	GND
1.239000	39.70	9.8	56	16.3	QP	N	GND
1.266000	40.00	9.8	56	16.0	QP	N	GND
1.297500	39.80	9.8	56	16.2	QP	N	GND

MEASUREMENT RESULT: "CTL131227615 fin2"

12/27/2013 5: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.420000	22 70	0.0	47	14.7	7.57		CNID
0.420000	32.70	9.8	47	14.7		N	GND
0.424500	32.70	9.8	47	14.7	AV	N	GND
0.514500	40.00	9.8	46	6.0	AV	N	GND
1.117500	29.00	9.8	46	17.0	AV	N	GND
1.266000	30.50	9.8	46	15.5	AV	N	GND
1.356000	30.10	9.8	46	15.9	AV	N	GND

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL131227616 fin"

12/27/2013 5: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.510000 1.203000 1.293000 1.320000 1.356000	43.20 34.40 34.80 32.60 34.30	9.8 9.8 9.8 9.8	56 56 56 56	12.8 21.6 21.2 23.4 21.7	QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND
2.175000	32.20	9.9	56	23.8	QP	L1	GND

MEASUREMENT RESULT: "CTL131227616 fin2"

12/27/2013 5:	13PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.393000	27.30	9.8	48	20.7	AV	L1	GND
0.420000	27.60	9.8	47	19.8	AV	L1	GND
0.510000	33.80	9.8	46	12.2	AV	L1	GND
1.266000	24.70	9.8	46	21.3	AV	L1	GND
1.324500	24.60	9.8	46	21.4	ΔV	L1	GND

4.2. Radiated Emission

TEST CONFIGURATION

Radiated Emission Test Set-Up Frequency range 9KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. the fundamental frequency is 2400-2483.5MHz, So the radiation emissions frequency range were tested from 9KHz to 25GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

On - - bic.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Mode 1: Transmitter-1Mbps(GFSK DH5)

		Frequency	Reading	Factor		Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
			(dBuV/m)		(dBuV/m)			
	Н	2401.8	56.5	35.7	92.2	Fundamental	/	PK
	V	354.0	6.6	16.4	23.0	46	-23.0	QP
	V	539.3	4.4	20.9	25.3	46	-20.7	QP
0	Н	3122.5	43.5	-1.7	41.8	54(Note)	-12.2	PK
0	V	4804.0	41.9	2.3	44.2	54(Note)	-9.8	PK
	V	7213.5	55.2	8.8	64.0	72.2	-8.2	PK
	V	7209.1	47.1	8.7	55.8	62.2	-6.4	AV
	Н	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK
	Н	2440.9	59.3	36.1	95.4	Fundamental	/	PK
	V	365.1	1.8	16.7	18.5	46	-27.5	QP
	V	539.3	4.7	21.0	25.7	46	-20.3	QP
39	Н	3122.5	44.1	-1.7	42.4	54(Note)	-11.6	PK
33	Н	4882.0	41.8	2.5	44.3	54(Note)	-9.7	PK
	V	7324.0	54.1	8.7	62.8	74	-11.2	PK
	V	7326.0	44.2	8.7	52.9	54	-1.1	AV
	Н	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK
	Н	2480.0	62.6	37.1	99.7	Fundamental	/	PK
	V	439.8	3.0	18.5	21.5	46	-24.5	QP
	V	539.3	3.8	20.9	24.7	46	-21.3	QP
78	Н	3122.5	43.5	-1.7	41.8	54(Note)	-12.2	PK
10	Н	4944.0	44.8	2.9	47.7	54(Note)	-6.3	PK
	V	7434.5	52.1	8.7	60.8	74	-13.2	PK
	V	7437.0	44.3	8.6	52.9	54	-1.1	AV
	I	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK

Note: 1. Measure Level = Reading Level + Factor.

2. The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

ectromagnetic Tech

Mode 2: Transmitter-2Mbps(Pi/4 DQPSK _DH5)

		Frequency	Reading	Factor		Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
			(dBuV/m)		(dBuV/m)			
	Η	2401.8	58.2	35.7	93.9	Fundamental	/	PK
	V	439.8	2.4	18.5	20.9	46	-25.1	QP
	V	539.3	4.8	21.0	25.8	46	-20.2	QP
0	Η	3122.5	43.6	-1.7	41.9	54(Note)	-12.1	PK
0	Τ	4804.0	41.5	2.4	43.9	54(Note)	-10.1	PK
	V	7205.0	53.5	8.7	62.2	74	-10.0	PK
	V	7209.0	43.0	8.8	51.8	54	-10.4	AV
	Η	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK
	Ι	2441.1	60.1	35.7	95.8	Fundamental	/	PK
	V	397.1	1.5	17.5	19.0	46	-27.0	QP
	V	539.3	4.2	20.9	25.1	46	-20.9	QP
39	Ι	3122.5	43.1	-1.7	41.4	54(Note)	-12.6	PK
39	Ι	4882.0	41.5	2.5	44.0	54(Note)	-10.0	PK
	V	7324.0	51.8	8.7	60.5	74	-13.5	PK
	V	7326.0	41.9	8.8	50.7	54	-3.3	AV
	I	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK
	Η	2479.9	62.0	36.1	98.1	Fundamental	/	PK
	V	346.2	0.9	16.2	17.1	46	-28.9	QP
	V	539.3	4.6	20.9	25.5	46	-20.5	QP
78	Н	3122.5	43.6	-1.7	41.9	54(Note)	-12.1	PK
10	V	7434.5	50.5	8.6	59.1	54(Note)	5.1	PK
	Н	7437.0	39.4	8.7	48.1	74	-25.9	PK
	Н	4944.0	44.5	2.8	47.3	54	-6.7	AV
	Н	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK

Note: 1. Measure Level = Reading Level + Factor.

- 2. The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Mode 3: Transmitter-3Mbps(8DPSK_DH5)

		Frequency		Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
			(dBuV/m)		(dBuV/m)			
	V	2402.1	58.1	35.7	93.8	Fundamental	/	PK
	V	353.5	1.2	16.4	17.6	46	-28.4	QP
	V	539.3	4.3	20.9	25.2	46	-20.8	QP
0	Η	3122.5	43.5	-5.1	38.4	54(Note)	-15.6	PK
0	V	4804.0	41.9	-1.9	40.0	54(Note)	-14.0	PK
	V	7205.0	56.5	3.5	60.0	74	-12.2	PK
	V	7205.9	40.2	3.5	43.7	54	-18.5	AV
	I	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK
	I	2441.0	60.2	36.5	96.7	Fundamental	/	PK
	V	345.7	0.8	16.2	17.0	46	-29.0	QP
	V	539.3	4.3	20.9	25.2	46	-20.8	QP
39	V	3122.5	42.5	-5.1	37.4	54(Note)	-16.6	PK
39	V	4882.0	40.4	-1.6	38.8	54(Note)	-15.2	PK
	V	7324.0	55.9	3.6	59.5	74	-14.5	PK
	V	7322.9	40.0	3.7	43.7	54	-10.3	AV
	I	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK
	I	2480.1	63.2	36.0	99.2	Fundamental	/	PK
	I	374.4	1.6	16.9	18.5	46	-27.5	QP
	Η	539.3	4.5	20.9	25.4	46	-20.6	QP
78	Η	3122.5	43.0	-5.1	37.9	54(Note)	-16.1	PK
10	Η	4944.0	44.7	/-1.4	43.3	54(Note)	-10.7	PK
	V	7443.0	54.6	3.6	58.2	74	-15.8	PK
	V	7439.9	38.8	3.6	42.4	54	-11.6	AV
	Н	24000.0	59.1	-8.9	50.2	54(Note)	-3.8	PK

Note: 1. Measure Level = Reading Level + Factor.

- 2. The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

magnetic

The worst case of Radiated Emission below 1GHz:

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL131227014 red"

12/27/2013 5	:24PM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	37.10	21.1	40.0	2.9		0.0	0.00	VERTICAL
64.920000	34.20	8.4	40.0	5.8		0.0	0.00	VERTICAL
148.340000	39.00	14.2	43.5	4.5		0.0	0.00	VERTICAL
165.800000	36.00	13.8	43.5	7.5		0.0	0.00	VERTICAL
716.760000	37.70	23.7	46.0	8.3		0.0	0.00	VERTICAL
749.740000	36.20	24.3	46.0	9.8		0.0	0.00	VERTICAL

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Time Bandw. MaxPeak 300.0 ms 120 kHz

MEASUREMENT RESULT: "CTL131227013 red"

12/27/2013 5	:22PM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
198.780000	39.10	14.2	43.5	4.4		0.0	0.00	HORIZONTAL
383.080000	41.20	17.8	46.0	4.8		0.0	0.00	HORIZONTAL
532.460000	38.80	20.6	46.0	7.2		0.0	0.00	HORIZONTAL
866.140000	40.70	25.5	46.0	5.3		0.0	0.00	HORIZONTAL
883.600000	40.10	25.8	46.0	5.9		0.0	0.00	HORIZONTAL
934.040000	39.50	26.4	46.0	6.5		0.0	0.00	HORIZONTAL

V1.0 Page 24 of 106 Report No.: CTL1312121961-WB

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured.

VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power (don't forget added the external attenuation and cable loss).

LIMIT

The Maximum Peak Output Power Measurement limit is 30dBm.

TEST RESULTS

Product	2	2G Phone Tablet PC
Test Item	No.	Power Output
Test Mode	1	Mode 1: Transmitter-1Mbps(GFSK_DH5)

Channel No.	Frequency	Measurement Power	Limit	Result
	(MHz)	Output	(dBm)	
		(dBm)		
0	2402	6.20	30.00	Pass
39	2441	6.13	30.00	Pass
78	2480	7.36	30.00	Pass
	1	Ctra	100	
		"Ctromagnetic		

DH5 2402MHz

DH5 2480MHz

Report No.: CTL1312121961-WB

Product		2G Phone Tablet PC
Test Item		Power Output
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)

Channel No.	Frequency	equency Measurement Power		Result
	(MHz)	(MHz) Output		
		(dBm)		
0	2402	6.21	30.00	Pass
39	2441	6.13	30.00	Pass
78	2480	7.17	30.00	Pass

2DH5 2402MHz

2DH5 2441MHz

2DH5 2480MHz

Report No.: CTL1312121961-WB

Product	:	2G Phone Tablet PC
Test Item		Power Output
Test Mode	:	Mode 3: Transmitter-3Mbps(8DPSK_DH5)

Channel No.	Frequency	Measurement Power	Limit	Result
	(MHz)	Output	(dBm)	
		(dBm)		
0	2402	6.26	30.00	Pass
39	2441	6.16	30.00	Pass
78	2480	7.39	30.00	Pass

3DH5 2402MHz

3DH5 2441MHz

3DH5 2480MHz

V1.0 Page 31 of 106 Report No.: CTL1312121961-WB

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel

RBW \ge 1% of the 20dB bandwidth, VBW \ge RBW, Sweep = auto, Detector function = peak, Trace = max hold The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

Product	3h	2G Phone Tablet PC
Test Item	Dr	Occupied Bandwidth
Test Site	7	TR-3
Test Mode	D	Mode 1: Transmitter-1Mbps(GFSK_DH5)

Channel No.	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
00	2402	1241.0	885.9
39	2441	1189.0	871.1
78	2480	1190.0	872.1

Channel 00 (2402MHz)

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product	:	2G Phone Tablet PC	
Test Item	• •	Occupied Bandwidth	
Test Site	••	TR-3	
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)	

Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
00	2402	1353.0	1170.4
39	2441	1348.0	1159.3
78	2480	1349.0	1160.0

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product	:	2G Phone Tablet PC	
Test Item	:	Occupied Bandwidth	
Test Site	:	TR-3	
Test Mode	:	Mode 3: Transmitter-3Mbps(8DPSK_DH5)	

Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
00	2402	1342.0	1156.1
39	2441	1344.0	1158.0
78	2480	1337.0	1161.6

Channel 39 (2441MHz)

V1.0 Page 38 of 106 Report No.: CTL1312121961-WB

4.5. Band Edge

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

According to ANSI C63.10: 2009.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation.

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

TEST RESULTS

Conducted Test:

Product	:	2G Phone Tablet PC
Test Item	• •	Band-edge Compliance of RF Conducted Emissions
Test Mode	:	Mode 1: Transmitter-1Mbps(GFSK_DH5)

Channel 78 (2480MHz)

Product	:	2G Phone Tablet PC
Test Item	:	Band-edge Compliance of RF Conducted Emissions
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)

Channel 78 (2480MHz)

Product	:	2G Phone Tablet PC
Test Item		Band-edge Compliance of RF Conducted Emissions
Test Mode	:	Mode 3: Transmitter-3Mbps(8DPSK_DH5)

Channel 78 (2480MHz)

Product	:	2G Phone Tablet PC
Test Item	:	Band-edge Compliance of RF Conducted Emissions
Test Mode	:	Mode 1: Transmitter-1Mbps(GFSK_DH5)

Radiated Test:

Engineer: Roy	
Site: AC1	Time: 2013/12/24 - 13:25
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: 2G Phone Tablet PC	Power: By Battery
Note: Mode 1: Transmit at abannal 2402MHz by DHE	

Note: Mode 1: Transmit at channel 2402MHz by DH5 2 Level(dBuV/m) 70 60 50 40 30 2310 2325 2330 2335 2340 2345 2350 2355 2360 2370 2375 2380 2385 2390 2400 2403 Frequency(MHz)

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре	
1			2390.000	49.517	13.216	-24.483	74.000	36.302	PK	
2		*	2401.930	88.628	52.229	N/A	N/A	36.400	PK	
				CILLIG	Ctromag	33	echnolo			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 13:41	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 1: Transmit at channel 2402MHz by DH5 Level(dBuV/m) 20 90 90 90 2350 2355 2360 2400 2403 Frequency(MHz)

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
	9		(141112)	(dBuV/m)	(GBGT)	(GD)	(aBav/iii)		
1			2390.000	37.000	0.699	-17.000	54.000	36.302	AV
2		*	2401.930	79.837	43.438	N/A	N/A	36.400	AV
			1 2	2	76				
			1 6		4 C 1	LTIER	N/		
			1 2	7	10		8		
			7	0	A line	1200	1770		
				3	MA STIT				
				2			0		
				63		Or Justin	10		
						277	0		
				150	C. C.	The state of the s	echnic		
				1			C		
				.00	14	< (8		
					1/Omas	- otic '			
					- Ilag	Herr			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 13:44	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 1: Transmit at channel 2402MHz by DH5 Level(dBuV/m) 09 09 80 50 40 30 20 2335 2340 2345 2350 2355 2360 2380 2385 2395 2400 2403 2370

	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	49.771	14.130	-24.229	74.000	35.642	PK
2		*	2401.837	92.187	56.496	N/A	N/A	35.692	PK
			\	en CILL	ctromag	130	16000		

Frequency(MHz)

Engineer: Roy	
Site: AC1	Time: 2013/12/24 - 13:47
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: 2G Phone Tablet PC	Power: By Battery

Note: Mode 1: Transmit at channel 2402MHz by DH5

g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		2390.000	36.335	0.694	-17.665	54.000	35.642	AV
2	*	2402.070	79.603	43.911	N/A	N/A	35.692	AV
		1	en C		***	160		

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 13:52	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 1: Transmit at channel 2480MHz by DH5

120

2 3

50

40

30

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

Frequency(MHz)

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
		*	2.122.222	(dBuV/m)	1				514
1		*	2480.002	99.672	62.613	N/A	N/A	37.059	PK
2			2483.500	55.339	18.249	-18.661	74.000	37.089	PK
3			2484.325	55.989	18.892	-18.011	74.000	37.097	PK
					Charles de		14 100 100 100 100 100 100 100 100 100 1		

Engineer: Roy	
Site: AC1	Time: 2013/12/24 - 13:57
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: 2G Phone Tablet PC	Power: By Battery

Note: Mode 1: Transmit at channel 2480MHz by DH5

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Type
1		*	2480.002	86.632	49.573	N/A	N/A	37.059	AV
2			2483.500	38.634	1.544	-15.366	54.000	37.089	AV
			\	en CTITE	ctromag	33 /	160/00		
							V1 - 10		

Engineer: Roy	
Site: AC1	Time: 2013/12/24 - 13:49
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: 2G Phone Tablet PC	Power: By Battery
Note: Mode 1: Transmit at channel 2480MHz by DH5	

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2480.002	96.342	60.303	N/A	N/A	36.039	PK
2			2483.500	50.899	14.843	-23.101	74.000	36.055	PK
3			2483.929	52.848	16.790	-21.152	74.000	36.058	PK
				hen CILLEGO	etromag	netic	echnological and a second		

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 13:52	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 1: Transmit at channel 2480MHz by DH5

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре	
			. ,	(dBuV/m)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 100 1 100 1				
1		*	2480.002	83.554	47.515	N/A	N/A	36.039	AV	
2			2483.500	37.203	1.147	-16.797	54.000	36.055	AV	
				hencill	Ctromag	233	10000 C			
				16	0.1	-	O.C.			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:00	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 2: Transmit at channel 2402MHz by 2DH5 Level(dBuV/m) 09 09 80 50 40 30 20 2335 2340 2345 2350 2355 2360 2380 2385 2395 2400 2403 2370 Frequency(MHz)

	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1	,		2390.000	50.493	14.192	-23.507	74.000	36.302	PK
2		*	2401.698	91.333	54.936	N/A	N/A	36.398	PK
			\	ien CTI	ctromag	15	160/0		

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:03	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 2: Transmit at channel 2402MHz by 2DH5 Level(dBuV/m) 20 90 90 90 2350 2355 2360 2400 2403 Frequency(MHz)

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
	9	IIX	(1711 12)	(dBuV/m)	(dBdV)	(dB)	(dDd V/III)		
1			2390.000	37.028	0.727	-16.972	54.000	36.302	AV
2		*	2401.930	75.319	38.920	N/A	N/A	36.400	AV
			1 2	11/2	76				
			1 7			Link	Y/		
			1	7	10				
			1 7	0	All Sin	17	127 0		
				3	TO A STATE				
				2 6			0		
				63		ob land			
				/ V	-	22	0		
			No.	10		10.02	achino		
				1			-CI		
				00	156,	1	0		
					Tomas	notic '			
					Triag	Her			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:04	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 2: Transmit at channel 2402MHz by 2DH5

120
2
2
40
30
2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 24002403
Frequency(Mflz)

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
				(dBuV/m)	16 Sin	Land I State	7		
1			2390.000	49.279	13.638	-24.721	74.000	35.642	PK
2		*	2401.791	93.878	58.187	N/A	N/A	35.691	PK
				then CTILLIEC	tromag	netic T	SCHILDS COUNTY		

Report No.: CTL1312121961-WB

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:07	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 2: Transmit at channel 2402MHz by 2DH5

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	36.405	0.764	-17.595	54.000	35.642	AV
2		*	2401.930	79.243	43.551	N/A	N/A	35.692	AV
				Jen CILLIE	ctromag	netic	echilo o		

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:09	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
				(dBuV/m)	4 / SiA	Section 1			
1		*	2480.024	97.268	60.209	N/A	N/A	37.059	PK
2			2483.500	52.218	15.128	-21.782	74.000	37.089	PK
				zhen CTITELO	tromag	netic	ochros och		

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:14	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 2: Transmit at channel 2480MHz by 2DH5

120

120

120

2

40

30

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

Frequency(MHz)

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
				(dBuV/m)	16514	Land Land			
1		*	2479.969	81.540	44.481	N/A	N/A	37.058	AV
2			2483.500	38.224	1.134	-15.776	54.000	37.089	AV
			1	7 1	1 61		0		
				T TY	ALLE		10		
				3	CA CHE		1 3		
				0		16	7.00		
				7 X			0		
				1,40	tromag		The same		
				100	74.	1	60		
					Tomag	netic '			
					- Tug	110			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:14	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 2: Transmit at channel 2480MHz by 2DH5

	1										
V/m)	80										
Level(dBuV/m)	70 60		2								
	50	*	Mythelichellyderiseur.	dayara bayraya	- and all the planting	and the state of t		Herasa sek yekeke da.			logy-quiture and an approximation
	40										
	30										
	20 2478 2479 2480	0 2481 2482 2		485 2486	2487 2488	2489 2490) 2491 24	92 2493 2	494 2495 2	2496 2497 2	2498 2499

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
	9		()	(dBuV/m)	/5/4		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1		*	2479.925	98.057	62.019	N/A	N/A	36.038	PK
2			2483.500	51.326	15.270	-22.674	74.000	36.055	PK
				S	AL CT		177		
				7	10		8 2		
			1	0	Allein		167 9		
				2	100		2		
				0		100	.0		
						32	0		
				110	Etromag	75.03	NE 1		
				10			C.C.		
				1	tron	- Nic.			
					inag	neur			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:18	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 2: Transmit at channel 2480MHz by 2DH5

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2480.002	81.713	45.674	N/A	N/A	36.039	AV
2			2483.500	37.369	1.313	-16.631	54.000	36.055	AV
				hen CTL FIG	ctromag	25	ochrolo och		

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:18	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 3: Transmit at channel 2402MHz by 3DH5 Level(dBuV/m) 09 09 80 50 40 30 20 2340 2345 2350 2355 2360 2370 2375 2380 2385 2390 2400 2403 Frequency(MHz)

No	Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Туре
	g	rk	(MHz)	Level (dBuV/m)	(dBuV)	(dB)	(dBuV/m)		
1			2390.000	50.422	14.121	-23.578	74.000	36.302	PK
2		*	2401.930	92.256	55.857	N/A	N/A	36.400	PK
				D. C.					
				S CV	ALC: CT		177		
				7	1				
			- N	2 -1	The state of the s		1/7 0		
				The state of the s		#-2/A#3			
				-			0		
				C. P	21/10	NO PAGE	0		
						330	0		
				150	Etromag	Mail	0	3	
							C.		
				0	24	~	0		
				-	Tom	- dic			
					Villag	neu			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:22	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 3: Transmit at channel 2402MHz by 3DH5 Level(dBuV/m) 20 90 90 90 2350 2355 2360 2400 2403 Frequency(MHz)

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
	9		((dBuV/m)	15 th				
1			2390.000	36.988	0.687	-17.012	54.000	36.302	AV
2		*	2402.070	77.722	41.322	N/A	N/A	36.401	AV
				5	76.				
			1			LUIS	0		
			1 3	5	18		0		
				D		175//	60		
				3	100		2		
				0	130	16:5	200		
				7	1	330			
					60	The state of the s	2		
				1.0		Control of the Contro	10		
				100	12	< (30.		
					lon	- sic			
					unag	neu	achino		

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:23	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 3: Transmit at channel 2402MHz by 3DH5 Level(dBuV/m) 09 09 2350 2355 2360 2400 2403 Frequency(MHz)

1 2390.000 49.484 13.843 -24.516 74.000 35.642 PK 2402.070 93.778 58.086 N/A N/A N/A 35.692 PK	No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
2 2402.070 93.778 36.000 N/A N/A 35.092 FK	•							74.000		
9 5 6	2		*	2402.070	93.778	58.086	N/A	N/A	35.692	PK
100				\	hencT		130	0/08/0		

2400 2403

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 14:27	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 3: Transmit at channel 2402MHz by 3DH5

g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		2390.000	36.320	0.679	-17.680	54.000	35.642	AV
2	*	2401.977	79.167	43.475	N/A	N/A	35.692	AV
		\	Jen CITY	ctromag	130	160/02		

2350 2355 2360

Frequency(MHz)

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 11:26	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 3: Transmit at channel 2480MHz by 3DH5

120

120

2

2

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2480.002	96.046	58.987	N/A	N/A	37.059	PK
2			2483.500	50.451	13.361	-23.549	74.000	37.089	PK
				zhen CTILLIO	Ctromag	netic	Behrold Behrold		

Frequency(MHz)

Report No.: CTL1312121961-WB

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 11:41	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal	
EUT: 2G Phone Tablet PC	Power: By Battery	

Note: Mode 3: Transmit at channel 2480MHz by 3DH5

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
				(dBuV/m)	10011	1 500 1			
1		*	2480.046	80.848	43.789	N/A	N/A	37.059	AV
2			2483.500	37.707	0.617	-16.293	54.000	37.089	AV
				zhei			000		
	3								
				Flee	tromag	noticT	echnic		
					omag	TIE			

Engineer: Roy		
Site: AC1	Time: 2013/12/24 - 11:42	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: 2G Phone Tablet PC	Power: By Battery	

No	Fla g	Ma rk	Frequency (MHz)	Measure Level	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
				(dBuV/m)	15/4	The second			
1		*	2480.057	99.223	63.184	N/A	N/A	36.039	PK
2			2483.500	51.114	15.058	-22.886	74.000	36.055	PK
				5	7		7.5		
			1	1	AL GI		0/1/10		
			1	7	A STATE	117	()		
				D 11			1917		
				3	Series Contraction of the Contra	112	2		
				0.	3.30	16	0		
					1.0	330	0		
				150	60	That I			
				1			C.C.		
				.0	74.	1	0		
					Tomas	notic '			
					illay	1100	echnic		

Engineer: Roy	
Site: AC1	Time: 2013/12/24 - 11:48
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: 2G Phone Tablet PC	Power: By Battery

Note: Mode 3: Transmit at channel 2480MHz by 3DH5

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2480.046	82.824	46.785	N/A	N/A	36.039	AV
2			2483.500	37.211	1.155	-16.789	54.000	36.055	AV
				Jen CILLIE	Ctromag	33	echnology of the second		

V1.0 Page 67 of 106 Report No.: CTL1312121961-WB

4.6. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Product	: 2G Phone Tablet PC	
Test Item	: Carrier Frequency Separation	
Test Site	15 TR-3	
Test Mode	: Mode 1: Transmitter-1Mbps(GFSK_DH5)	

Channel No.	Frequency	Carrier Frequency Separation	Limit	Result
	(MHz)	(kHz)	(kHz)	
00	2402	1000	>25 kHz or	Pass
00	2402	1000	2/3 of 20 dB BW	
30	2444	1000	>25 kHz or	Pass
39	2441	1000	2/3 of 20 dB BW	
78	2480	1000	>25 kHz or	Pass
10	2400	1000	2/3 of 20 dB BW	Pass Pass

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product		2G Phone Tablet PC
Test Item	:	Carrier Frequency Separation
Test Site	:	TR-3
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)

Channel No.	Frequency	Carrier Frequency Separation	Limit	Result
	(MHz)	(kHz)	(kHz)	
00	2402	1000	>25 kHz or	Pass
00	2402	1000	2/3 of 20 dB BW	
30	2444	1000	>25 kHz or	Pass
39	2441	1000	2/3 of 20 dB BW	
70	2480	1000	>25 kHz or	Pass
78	2480	1000	2/3 of 20 dB BW	

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product		2G Phone Tablet PC
Test Item	:	Carrier Frequency Separation
Test Site	:	TR-3
Test Mode		Mode 3: Transmitter-3Mbps(8DPSK_DH5)

Channel No.	Frequency	Carrier Frequency Separation	Limit	Result
	(MHz)	(kHz)	(kHz)	
00	2402	1000	>25 kHz or	Pass
00	2402	1000	2/3 of 20 dB BW	
30	2444	1000	>25 kHz or	Pass
39	2441	1000	2/3 of 20 dB BW	
70	2480	1000	>25 kHz or	Pass
78	2480	1000	2/3 of 20 dB BW	

Channel 39 (2441MHz)

Channel 78 (2480MHz)

V1.0 Page 74 of 106 Report No.: CTL1312121961-WB

4.7. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. It may prove necessary to bread the span up to sections, in order to clearly show all of the hopping frequencies.

LIMIT

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

Product	: 2G Phone Tablet PC
Test Item	: Number of Hopping Frequencies
Test Site	: TR-3
Test Mode	: Mode 1: Transmitter-1Mbps(GFSK_DH5)

Frequency Band (MHz)	Number of Hopping Frequencies	Limit	Result
2400 - 2483.5	79	>15	Pass

2402 - 2421 MHz

2442 - 2461 MHz

Product		2G Phone Tablet PC	
Test Item	:	Number of Hopping Frequencies	
Test Site	:	TR-3	
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)	

Frequency Band	Number of Hopping Frequencies	Limit	Result
(MHz)			
2400 - 2483.5	79	>15	Pass

2402 - 2421 MHz

2422 - 2441 MHz

2442 - 2461 MHz

2462 - 2480 MHz

Frequency Band	Number of Hopping Frequencies	Limit	Result
(MHz)			
2400 - 2483.5	79	>15	Pass

2402 - 2421 MHz

2422 - 2441 MHz

2442 - 2461 MHz

2462 - 2480 MHz

V1.0 Page 83 of 106 Report No.: CTL1312121961-WB

4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

Product	: 2G Phone Tablet PC
Test Item	: Time of Occupancy (Dwell Time)
Test Site	: TR-3
Test Mode	: Transmitter-3Mbps(8DPSK_DH1)
	Tromagnetic

Channel No.	Frequency	Time of Occupancy	Limit	Result
	(MHz)	(ms)	(ms)	
39	2441	117.44	< 400	Pass

Test Time Period: 0.4*79=31.6sec, Hopping Times Within 1sec: 40/50msec=800 hops/sec.

2441MHz, The Maximum Occupancy Time Within 31.6sec: [(0.367ms*800)/79]*31.6 =117.44 msec

Channel 39 (2441MHz)-(3DH1)

Product	:	2G Phone Tablet PC	
Test Item	:	Time of Occupancy (Dwell Time)	
Test Site	:	TR-3	
Test Mode	:	Transmitter-3Mbps(8DPSK_DH3)	

Channel No.	Frequency	Time of Occupancy	Limit	Result
	(MHz)	(ms)	(ms)	
39	2441	258.72	< 400	Pass

Test Time Period: 0.4*79=31.6sec, Hopping Times Within 1sec: 20/50msec=400hops/sec.

2441MHz, The Maximum Occupancy Time Within 31.6sec: [(1.617 ms*400)/79]*31.6=258.72 msec

Product	:	2G Phone Tablet PC	
Test Item	:	Time of Occupancy (Dwell Time)	
Test Site	:	TR-3	
Test Mode	:	Transmitter-3Mbps(8DPSK_DH5)	

Channel No.	Frequency	Time of Occupancy	Limit	Result
	(MHz)	(ms)	(ms)	
39	2441	322.90	< 400	Pass

Test Time Period: 0.4*79=31.6sec, Hopping Times Within 1sec: 14/50msec=280 hops/sec.

2441MHz, The Maximum Occupancy Time Within 31.6sec: [(2.883 ms*280)/79]*31.6= 322.90 msec

V1.0 Page 89 of 106 Report No.: CTL1312121961-WB

4.9. Spurious RF Conducted Emissions

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100KHz, VBW ≧ RBW, Sweep =auto, Detector function = peak, Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) of FCC part 15 is not required.

TEST RESULT

Product		2G Phone Tablet PC
Test Item	:	Spurious RF Conducted Emissions
Test Mode	:	Mode 1: Transmitter-1Mbps(GFSK_DH5)

Channel 00 (2402MHz)

Channel 78 (2480MHz)

Product	:	2G Phone Tablet PC
Test Item	:	Spurious RF Conducted Emissions
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)

Channel 00 (2402MHz)

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product	:	2G Phone Tablet PC	
Test Item	:	Spurious RF Conducted Emissions	
Test Mode	:	Mode 3: Transmitter-3Mbps(8DPSK_DH5)	

Channel 00 (2402MHz)

The Ctromagnetic Technology

Channel 39 (2441MHz)

Channel 78 (2480MHz)

V1.0 Page 96 of 106 Report No.: CTL1312121961-WB

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a internal Antenna, The directional gains of antenna used for transmitting is -2.0dBi.

V1.0 Page 97 of 106 Report No.: CTL1312121961-WB

4.11. RF Exposure

STANDARD APPLICABLE

According to § 1.1307 (b)(1), system operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a device with Bluetooth function.

LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)
(A) Limits for Occ	cupational/ Contr	ol Exposures		
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for Ge	neral Population/	Uncontrolled Exp	osures	
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

MEASUREMENT RESULTS

Per KDB 447498 D01 V05

This is a bluetooth function and the Max peak output power is 7.39 dBm (5.48 mW) lower than low threshold 10 mW in general population category.

The SAR measurement is not necessary.

V1.0 Page 98 of 106 Report No.: CTL1312121961-WB

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

External Photos of EUT

Internal Photos of EUT

End of Report