14. April 2022

Einführung in die angewandte Stochastik

1. Globalübung - Lösungen

Aufgabe 1

Tabellarische Darstellung der betrachteten Merkmale, zugeordneten Merkmalstypen und möglichen Ausprägungen

Merkmal	Merkmalstyp	Mögliche Ausprägungen
Preis pro Stück	quantitativ/diskret (verhältnisskaliert)	2 Euro, 400 Cent, etc.
Backtemperatur	quantitativ/stetig	250° Celsius, 392° Grad Fahrenheit, etc.
Zuckerzusatz	qualitativ/nominal (dichotom)	ja, nein 1,0 (bei entspr. Codierung)
Haltbarkeit	quantitativ/diskret (verhältnisskaliert)	2 Tage, 3 Monate, etc.
Produktionszahl pro Tag	quantitativ/diskret (verhältnisskaliert)	30 Stück, 100 Stück, etc.
Name	qualitativ/nominal	Vollkornbrot, Sonnenblumenkernbrot, etc.
Interne Produktnummer	qualitativ/nominal	126, 56, etc.

Begründungen/Bemerkungen zu obigen Zuordnungen:

- Geldbeträge jeweils quantitativ/diskret, da jede Währung eine kleinste Einheit besitzt.
- Backtemperatur (wie jede physikalisch messbare Größe) quantitativ/stetig; nicht verhältnisskaliert, da kein gemeinsamer natürlicher Nullpunkt existiert.
- Zuckerzusatz dichotom nach Aufgabenstellung (ja/nein); abhängig von Zielsetzung aber auch auffassbar als qualitativ/ordinales Merkmal (Zuckerzusatz schlechter als kein Zuckerzusatz).
- Haltbarkeit quantitativ/diskretes Merkmal bei Erfassung in diskreten zeitlichen Abständen wie Tagen, Monaten, etc.
 - Auch auffassbar als quantitativ/stetiges Merkmal bei beliebig genauer zeitlicher Messbarkeit. (Zuordnung von Merkmalstypen nicht immer eindeutig; abhängig von verwendeter Mess-Skala!)

- Anzahlen jeweils quantitativ/diskrete Merkmale
- Produktionsnummer (analog zu Telefonnummern) lediglich Bezeichnung für die Brotsorte (keine quantiative Kenngröße); deshalb qualitativ/nominales Merkmal

(a) Auszählen der Umfrageergebnisse ergibt die folgenden absoluten bzw. relativen Häufigkeiten:

Ausprägung	Strichliste	Absolute Häufigkeit	Relative Häufigkeit
ledig (l)	WIII	8	$\frac{8}{50} = 0.16$
verheiratet (vh)	шшшш	20	$\frac{20}{50} = 0.40$
geschieden (g)	ШШ	14	$\frac{14}{50} = 0.28$
verwitwet (vw)	ШШ	8	$\frac{8}{50} = 0.16$
Summe		n = 50	1

(b)

Stabdiagramm der absoluten Häufigkeiten zu den Familienständen von 50 Vereinsmitgliedern

Familienstand

(c) Es bezeichnen n_1, \ldots, n_4 die absoluten Häufigkeiten, f_1, \ldots, f_4 die relativen Häufigkeiten sowie $\varphi_1, \ldots, \varphi_4$ die Winkel der vier Sektoren zu den Familienständen l, vh, g, vw. Dann gilt gemäß Vorlesung mit n = 50:

$$\varphi_j \,=\, f_j \cdot 360^\circ \,=\, \frac{n_j}{n} \cdot 360^\circ \;\; \text{für} \;\; j \in \{1, \dots, 4\} \;.$$

Hiermit ergibt sich die folgende – gegenüber (a) erweiterte – Tabelle:

Ausprägung	Absolute Häufigkeit	Relative Häufigkeit	Sektor-Winkel im Kreisdiagramm
ledig (l)	8	$\frac{8}{50} = 0.16$	$\varphi_1 = 57.6^{\circ}$
verheiratet (vh)	20	$\frac{20}{50} = 0.40$	$\varphi_2 = 144.0^{\circ}$
geschieden (g)	14	$\frac{14}{50} = 0.28$	$\varphi_3 = 100.8^{\circ}$
verwitwet (vw)	8	$\frac{8}{50} = 0.16$	$\varphi_4 = 57.6^{\circ}$
Summe	n = 50	1	360°

Kreisdiagramm der (relativen) Häufigkeiten zu den Familienständen von 50 Vereinsmitgliedern

Es bezeichnen $\varphi_1, \ldots, \varphi_6$ die Sektorenwinkel zu CDU/CSU, ..., Sonstige (in dieser Reihenfolge). Dann sollten diese Winkel zunächst möglichst genau gemessen werden. (Hierzu Strahlen, die die Sektoren begrenzen, geeignet verlängern.) Man erhält (näherungsweise) folgende Winkel:

Partei	Sektorwinkel
CDU/CSU	$\varphi_1 \approx 126.5^{\circ}$
SPD	$\varphi_2 \approx 123.5^\circ$
FDP	$\varphi_3 \approx 35.0^\circ$
Die Linke	$\varphi_4 \approx 31.5^{\circ}$
GRÜNE	$\varphi_5 \approx 29.4^{\circ}$
Sonstige	$\varphi_6 \approx 14.1^\circ$
Summe	360.0°

Es bezeichnen f_1, \ldots, f_6 die zugehörigen relativen Häufigkeiten. Dann gilt gemäß Vorlesung (vgl. Aufgabe 2, (c)):

$$\varphi_j = f_j \cdot 360^\circ \iff f_j = \frac{\varphi_j}{360^\circ} \text{ für } j \in \{1, \dots, 6\} .$$

Einsetzen der gemessenen Winkel ergibt die folgende erweiterte Tabelle. Zum Vergleich sind zusätzlich in der letzten Spalte die wirklichen prozentualen Stimmenanteile angegeben.

Partei	Sektorwinkel	Relative Häufigkeit	Berechneter prozentualer Stimmenanteil	Wirklicher prozentualer Stimmenanteil
CDU/CSU	$\varphi_1 \approx 126.5^{\circ}$	$f_1 \approx 0.3514$	35.14 %	35.17 %
SPD	$\varphi_2 \approx 123.5^{\circ}$	$f_2 \approx 0.3431$	34.31~%	34.25 %
FDP	$\varphi_3 \approx 35.0^{\circ}$	$f_3 \approx 0.0972$	9.72~%	9.83 %
Die Linke	$\varphi_4 \approx 31.5^{\circ}$	$f_4 \approx 0.0875$	8.75~%	8.71 %
GRÜNE	$\varphi_5 \approx 29.4^{\circ}$	$f_5 \approx 0.0817$	8.17~%	8.12 %
Sonstige	$\varphi_6 \approx 14.1^\circ$	$f_6 \approx 0.0392$	3.92~%	3.93 %
Summe	360.0°	1.0001	100.01 %	100.01 %

(a) Die zugehörige Rangwertreihe $x_{(1)} \leq \cdots \leq x_{(15)}$ ergibt sich durch aufsteigende Anordnung der gegebenen Beobachtungen x_1, \ldots, x_{15} :

$x_{(1)}$	$x_{(2)}$	$x_{(3)}$	$x_{(4)}$	$x_{(5)}$	$x_{(6)}$	$x_{(7)}$	$x_{(8)}$	$x_{(9)}$	$x_{(10)}$	$x_{(11)}$	$x_{(12)}$	$x_{(13)}$	$x_{(14)}$	$x_{(15)}$
2	2	3	4	4	4	4	5	5	6	6	6	7	7	8

Die Rangwertreihe zeigt:

- Nur 3 und 8 kommen jeweils einmal vor.
- Die übrigen Beobachtungswerte kommen jedoch jeweils mehrfach vor.

Für diese $i \in \{1, ..., 15\}$ wird der Rang $R(x_i)$ gemäß Vorlesung als das arithmetische Mittel der betreffenden Positionen berechnet.

Beispiele:

$$R(x_2) = R(5) = \frac{8+9}{2} = \frac{17}{2} = 8.5$$

$$\left(= r + \frac{s-1}{2} \text{ mit } r = 8, s = 2 \right)$$

$$R(x_5) = R(4) = \frac{4+5+6+7}{4} = \frac{22}{4} = 5.5$$

$$\left(= r + \frac{s-1}{2} \text{ mit } r = 4, s = 4 \right)$$

Auf diese Weise erhält man die folgenden Ränge zu x_1, \ldots, x_{15} :

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x_i	3	5	5	7	4	8	2	4	4	6	2	7	6	4	6
$R(x_i)$	3	8.5	8.5	13.5	5.5	15	1.5	5.5	5.5	11	1.5	13.5	11	5.5	11

(b) Der Rangwertreihe aus (a) entnimmt man, dass unter x_1, \ldots, x_{15} die sieben verschiedenen Werte $2, \ldots, 8$ vorkommen. Diese – aufsteigend angeordneten – Werte seien (analog zur Vorlesung) mit $u_{(1)}, \ldots, u_{(7)}$ bezeichnet.

Die absoluten Häufigkeiten $n_{(1)}, \ldots, n_{(7)}$ von $u_{(1)}, \ldots, u_{(7)}$ kann man ebenfalls unmittelbar aus der Rangwertreihe ablesen und hieraus die relativen Häufigkeiten gemäß

$$f_{(j)} = \frac{n_{(j)}}{n}, j \in \{1, \dots, 7\},$$

mit n = 15 berechnen.

Tabelle der *aufsteigend angeordneten* verschiedenen Beobachtungswerte mit den zugehörigen Häufigkeiten

	j	1	2	3	4	5	6	7	Summe
Beobachtungswert	$u_{(j)}$	2	3	4	5	6	7	8	
Absolute Häufigkeit	$n_{(j)}$	2	1	4	2	3	2	1	15
Relative Häufigkeit	$f_{(j)}$	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{4}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{2}{15}$	$\frac{1}{15}$	1

Der Häufigkeitstabelle entnimmt man:

$$\max \left\{ f_{(j)} \, \middle| \, j \in \{1, \dots, 7\} \right\} \, = \, \frac{4}{15} \, = \, f_{(3)} \, > \, f_{(j)} \ \, \text{für alle} \ \, j \neq 3 \; .$$

Damit ist $u_{(3)} = 4$ der einzige Modalwert.

Aufgabe 5

(a) Zur Bestimmung der empirischen Verteilungsfunktion F_{15} Erweiterung der Häufigkeitstabelle aus Aufgabe 4, (b) um die zugehörigen kumulierten relativen Häufigkeiten:

Tabelle der aufsteigend angeordneten verschiedenen Beobachtungswerte mit den zugehörigen Häufigkeiten und den zugehörigen kumulierten relativen Häufigkeiten

	j	1	2	3	4	5	6	7
Beobachtungswert	$u_{(j)}$	2	3	4	5	6	7	8
Absolute Häufigkeit	$n_{(j)}$	2	1	4	2	3	2	1
Relative Häufigkeit	$f_{(j)}$	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{4}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{2}{15}$	$\frac{1}{15}$
Kumulierte relative Häufigkeit	$f_{(1)} + \cdots + f_{(j)}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{7}{15}$	$\frac{9}{15}$	$\frac{12}{15}$	$\frac{14}{15}$	$\frac{15}{15}$

Dann kann man die Funktionswerte von F_{15} in der letzten Zeile dieser Tabelle ablesen (gem. Def. der Vorlesung). Mittels Kürzen erhält man:

$$F_{15}(x) = \begin{cases} 0 & , & x < 2 , \\ \frac{2}{15} & , & 2 \le x < 3 , \\ \frac{1}{5} & , & 3 \le x < 4 , \\ \frac{7}{15} & , & 4 \le x < 5 , \\ \frac{3}{5} & , & 5 \le x < 6 , \\ \frac{4}{5} & , & 6 \le x < 7 , \\ \frac{14}{15} & , & 7 \le x < 8 , \\ 1 & , & 8 \le x . \end{cases}$$

$$(*)$$

Graphische Darstellung der empirischen Verteilungsfunktion zu den richtigen Antworten der Quiz-Teilnehmer(innen)

(b) Man kann Modalwerte direkt aus dem Graphen einer empirischen Verteilungsfunktion ablesen, denn gemäß Vorlesung gilt:

Hier erhält man (vgl. Aufgabe 4, (b)):

$$\max \left\{ f_{(1)}, f_{(2)}, \dots, f_{(7)} \right\}$$

$$\stackrel{\text{Def.}}{=} \max \left\{ F_{15}(u_{(1)}), F_{15}(u_{(2)}) - F_{15}(u_{(1)}), \dots, F_{15}(u_{(7)}) - F_{15}(u_{(6)}) \right\}$$

$$\stackrel{\text{Vgl.}}{=} \underbrace{F_{15}(u_{(3)}) - F_{15}(u_{(2)}) = f_{(3)}}_{=F_{15}(u_{(2)}) = f_{(3)}} \stackrel{(*)}{=} \frac{7}{15} - \frac{3}{15} = \frac{4}{15}$$

7

Damit ist hier $x_{\text{mod}} = u_{(3)} = 4$ der einzige Modalwert (wie bereits in Aufgabe 4, (b) festgestellt).

(c) Gemäß Definition gibt $F_{(15)}(x)$ für $x \in \mathbb{R}$ den Anteil der Quiz-Teilnehmer(innen) an, die höchstens x Fragen (genauer $\lfloor x \rfloor$ Fragen) richtig beantwortet haben.

Damit beträgt der Anteil der Quiz-Teilnehmer(innen), die

(i) höchstens 4 Fragen richtig beantwortet haben:

$$F_{15}(4) \stackrel{(*)}{=} \frac{7}{15}$$

(ii) mehr als 2 Fragen richtig beantwortet haben:

$$1 - F_{15}(2) \stackrel{(*)}{=} 1 - \frac{2}{15} = \frac{13}{15}$$

(iii) mindestens 3, aber höchstens 5 Fragen richtig beantwortet haben:

$$F_{15}(5) - F_{15}(2) \stackrel{(*)}{=} \frac{9}{15} - \frac{2}{15} = \frac{7}{15}$$

(da "mindestens 3" hier gleichbedeutend mit "mehr als 2" ist).

Zur Bestimmung des Medians in (d) und der Quantile in (e) wird (nochmals) die Rangwertreihe zu $x_1, \ldots, x_{(15)}$ benötigt (die bereits in Aufgabe 4, (a) erstellt wurde).

Rangwertreihe zu den gegebenen Beobachtungswerten

$x_{(1)}$	$x_{(2)}$	$x_{(3)}$	$x_{(4)}$	$x_{(5)}$	$x_{(6)}$	$x_{(7)}$	$x_{(8)}$	$x_{(9)}$	$x_{(10)}$	$x_{(11)}$	$x_{(12)}$	$x_{(13)}$	$x_{(14)}$	$x_{(15)}$
2	2	3	4	4	4	4	5	5	6	6	6	7	7	8

(d) Median: n = 15 ungerade

$$\implies \tilde{x} = \tilde{x}_{0.5} \stackrel{\text{Def.}}{=} x_{(\frac{n+1}{2})} = x_{(8)} \stackrel{\text{Tab.}}{=} 5 > 4 = x_{\text{mod}}$$

(e) Unteres Quartil: $\frac{n}{4}=\frac{15}{4}=3.75\notin\mathbb{N}\,,\frac{n}{4}=3.75\,<\,4\,<\,\frac{n}{4}+1$

$$\implies \quad \tilde{x}_{0.25} \stackrel{\text{Def.}}{=} x_{(4)} \stackrel{\text{Tab.}}{=} 4$$

Oberes Quartil: $\frac{3n}{4} = \frac{45}{4} = 11.25 \notin \mathbb{N}, \frac{3n}{4} = 11.25 < 12 < \frac{3n}{4} + 1$

$$\implies \tilde{x}_{0.75} \stackrel{\text{Def.}}{=} x_{(12)} \stackrel{\text{Tab.}}{=} 6$$

2-tes Dezentil: $n \cdot 0.2 = \frac{15}{5} = 3 \in \mathbb{N}$

$$\implies \tilde{x}_{0.2} \stackrel{\text{Def.}}{=} \frac{1}{2} \left(x_{(0.2n)} + x_{(0.2n+1)} \right) = \frac{1}{2} \left(x_{(3)} + x_{(4)} \right) \stackrel{\text{Tab.}}{=} \frac{1}{2} \left(3 + 4 \right) = 3.5$$

8

(a) Für $a \in \mathbb{R}$ gilt:

$$s^{2} \stackrel{\text{Def.}}{=} \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a + a - \overline{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} ((x_{i} - a) + (a - \overline{x}))^{2}$$

$$\stackrel{\text{1. bin.}}{=} \frac{1}{n} \sum_{i=1}^{n} ((x_{i} - a)^{2} + 2 \cdot (x_{i} - a)(a - \overline{x}) + (a - \overline{x})^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a)^{2} + \frac{1}{n} \sum_{i=1}^{n} (2 \cdot (x_{i} - a)(a - \overline{x})) + \frac{1}{n} \sum_{i=1}^{n} (a - \overline{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a)^{2} + 2 \cdot (a - \overline{x}) \cdot \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a) + \frac{1}{n} \cdot n \cdot (a - \overline{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a)^{2} + 2 \cdot (a - \overline{x}) \cdot \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} - \frac{1}{n} \sum_{i=1}^{n} a\right) + (a - \overline{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a)^{2} + 2 \cdot (a - \overline{x})(\overline{x} - a) + (a - \overline{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a)^{2} - 2 \cdot (a - \overline{x})(a - \overline{x}) + (a - \overline{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a)^{2} - (a - \overline{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - a)^{2} - (\overline{x} - a)^{2}$$

Speziell für a=0 erhält man hieraus die folgende Formel zur (oftmals) einfacheren Berechnung der empirischen Varianz:

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2$$

(b) (i) Mit dem Hinweis folgt:

$$d_y \stackrel{\text{Def.}}{=} \frac{1}{n} \sum_{i=1}^n |y_i - \tilde{y}| \stackrel{\text{Vor.}}{=} \frac{1}{n} \sum_{i=1}^n |a + bx_i - (a + b\tilde{x})|$$
$$= \frac{1}{n} \sum_{i=1}^n |bx_i - b\tilde{x}| = |b| \frac{1}{n} \sum_{i=1}^n |x_i - \tilde{x}| \stackrel{\text{Def.}}{=} |b| d_x$$

(ii) Zunächst gilt:

$$\overline{y} \stackrel{\text{Def.}}{=} \frac{1}{n} \sum_{i=1}^{n} y_{i} \stackrel{\text{Vor.}}{=} \frac{1}{n} \sum_{i=1}^{n} (a + bx_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} a + b \underbrace{\frac{1}{n} \sum_{i=1}^{n} x_{i}}_{-\overline{x}} = a + b\overline{x}$$
(1)

Es folgt:

$$s_y^2 \stackrel{\text{Def.}}{=} \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 \stackrel{\text{Vor.}}{=} \frac{1}{n} \sum_{i=1}^n (a + bx_i - (a + b\overline{x}))^2$$

$$= \frac{1}{n} \sum_{i=1}^n (bx_i - b\overline{x})^2 = b^2 \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \stackrel{\text{Def.}}{=} b^2 s_x^2$$
(2)

Hieraus erhält man:

$$s_y \stackrel{\text{Def.}}{=} \sqrt{s_y^2} \stackrel{(2)}{=} \sqrt{b^2 s_x^2} = \sqrt{b^2} \sqrt{s_x^2} \stackrel{\text{Def.}}{=} |b| s_x$$
 (3)

(iii) Unter den angegebenen zusätzlichen Voraussetzungen gilt:

$$V_y \stackrel{\text{Def.}}{=} \frac{s_y}{\overline{y}} \stackrel{\text{(1),(3)}}{=} \frac{|b| s_x}{a + b\overline{x}} \stackrel{a=0}{=} \frac{|b| s_x}{b \overline{x}} \stackrel{b>0}{=} \frac{s_x}{\overline{x}} \stackrel{\text{Def.}}{=} V_x$$

Aufgabe 7

(a) Zunächst Erstellung der zugehörigen Rangwertreihe (benötigt zur Bestimmung von Minimum, Maximum und empirischen Quantilen):

Rangwertreihe der benötigten Zeiten

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$x_{(i)}$	2.8	2.9	3.0	3.9	4.1	4.1	4.6	4.7	4.8	4.8	5.0	5.1	5.2	5.2	5.3	5.4
i	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
$x_{(i)}$	5.6	5.9	6.1	6.6	6.7	6.7	6.8	7.0	7.2	7.7	8.0	8.1	8.8	8.9	8.9	9.1

Nun Berechnung der einzelnen Kenngrößen. Hierbei beachte man, dass die gemessenen Zeiten Ausprägungen eines stetigen Merkmals sind.

(i) Modalwerte:

An der Rangwertreihe liest man ab, dass folgende Werte jeweils doppelt vorkommen:

Dies sind die Modalwerte, da die übrigen gemessenen Zeiten jeweils nur einmal vorkommen. (Insbesondere Modalwert damit *nicht* eindeutig bestimmt.)

(ii) 5%-Quantil:

$$n \cdot 0.05 = \frac{32}{20} = 1.6 \notin \mathbb{N} , n \cdot 0.05 < 2 < n \cdot 0.05 + 1$$

$$\implies \tilde{x}_{0.05} \stackrel{\text{Def.}}{=} x_{(2)} \stackrel{\text{Tab.}}{=} 2.9$$

(iii) 90%-Quantil:

$$n \cdot 0.9 = \frac{32 \cdot 9}{10} = 28.8 \notin \mathbb{N} , n \cdot 0.9 < 29 < n \cdot 0.9 + 1$$

$$\implies \tilde{x}_{0.9} \stackrel{\text{Def.}}{=} x_{(29)} \stackrel{\text{Tab.}}{=} 8.8$$

(iv) Arithmetischer Mittelwert:

$$\overline{x} \stackrel{\text{Def.}}{\underset{n=32}{=}} \frac{1}{32} \sum_{i=1}^{32} x_i = \frac{1}{32} \sum_{i=1}^{32} x_{(i)} \stackrel{\text{Tab.}}{=} \frac{189}{32} \approx 5.906$$

Summenwert unabhängig von Summations-Reihenfolge

(v) Spannweite:

$$R \stackrel{\text{Def.}}{\underset{n=32}{=}} x_{(32)} - x_{(1)} \stackrel{\text{Tab.}}{=} 9.1 - 2.8 = 6.3$$

(vi) Quartilsabstand:

$$\frac{n}{4} = \frac{32}{4} = 8 \in \mathbb{N} , \quad \frac{3n}{4} = \frac{3 \cdot 32}{4} = 24 \in \mathbb{N} \implies$$

$$\tilde{x}_{0.25} \stackrel{\text{Def.}}{=} \frac{1}{2} \left(x_{(\frac{n}{4})} + x_{(\frac{n}{4}+1)} \right) = \frac{1}{2} \left(x_{(8)} + x_{(9)} \right) \stackrel{\text{Tab.}}{=} \frac{1}{2} \cdot (4.7 + 4.8) = 4.75$$

$$\tilde{x}_{0.75} \stackrel{\text{Def.}}{=} \frac{1}{2} \left(x_{(\frac{3n}{4})} + x_{(\frac{3n}{4}+1)} \right) = \frac{1}{2} \left(x_{(24)} + x_{(25)} \right) \stackrel{\text{Tab.}}{=} \frac{1}{2} \cdot (7.0 + 7.2) = 7.1$$

$$\implies Q \stackrel{\text{Def.}}{=} \tilde{x}_{0.75} - \tilde{x}_{0.25} = 7.1 - 4.75 = 2.35$$

(vii) Mittlere absolute Abweichung:

Hierzu zunächst Berechnung des Medians.

$$n = 32 \text{ gerade} \implies$$

$$\tilde{x} \stackrel{\text{Def.}}{=} \frac{1}{2} \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) = \frac{1}{2} \left(x_{(16)} + x_{(17)} \right) \stackrel{\text{Tab.}}{=} \frac{1}{2} \cdot (5.4 + 5.6) = 5.5$$

Nun Berechnung der absoluten Abweichungen

$$|x_{(i)} - \tilde{x}|, i \in \{1, \dots, 32\}$$
.

(Für geordnete Beobachtungen möglich, da Summenwert unabhängig von der Summations-Reihenfolge)

11

Tabelle der absoluten Abweichungen der aufsteigend angeordneten Zeiten vom Median

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$ x_{(i)} - \tilde{x} $	2.7	2.6	2.5	1.6	1.4	1.4	0.9	0.8	0.7	0.7	0.5	0.4	0.3	0.3	0.2	0.1
i	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
$ x_{(i)} - \tilde{x} $	0.1	0.4	0.6	1.1	1.2	1.2	1.3	1.5	1.7	2.2	2.5	2.6	3.3	3.4	3.4	3.6

Damit erhält man:

$$d \stackrel{\text{Def.}}{\underset{n=32}{=}} \frac{1}{32} \sum_{i=1}^{32} |x_i - \tilde{x}| = \frac{1}{32} \sum_{i=1}^{32} |x_{(i)} - \tilde{x}| \stackrel{\text{Tab.}}{=} \frac{47.2}{32} = 1.475$$

Summenwert unabhängig von Summations-Reihenfolge

(viii) Empirische Varianz:

$$s^{2} \stackrel{\text{Def.}}{\underset{n=32}{=}} \frac{1}{32} \sum_{i=1}^{32} (x_{i} - \overline{x})^{2} \stackrel{\text{A 3.31}}{=} \frac{1}{32} \sum_{i=1}^{32} x_{i}^{2} - \overline{x}^{2}$$

$$= \frac{1}{32} \sum_{i=1}^{32} x_{(i)}^{2} - \overline{x}^{2} \stackrel{\text{Tab.}}{\underset{\text{(iv)}}{=}} \frac{1217.12}{32} - \left(\frac{189}{32}\right)^{2} \approx 3.151$$

Summenwert unabhängig von Summations-Reihenfolge

(ix) Empirische Standardabweichung:

$$s = \sqrt{s^2} \stackrel{\text{(ix)}}{\approx} \sqrt{3.151} \approx 1.775$$

(x) Variationskoeffizient (gemäß Definition in Aufgabe 6):

$$V \stackrel{\text{Def.}}{=} \frac{s}{\overline{x}} \stackrel{\text{(iv),(ix)}}{\approx} \frac{1.775 \cdot 32}{189} \approx 0.301$$

(b)

Box-Plot zu Aufgabe 7, (b)
Benötigte Zeiten von 32 Schülerinnen und Schülern
zum Lösen einer Rechenaufgabe

- (c) Einzelne Lösungsschritte:
 - (i) Bestimmen (Auszählen) der absoluten Klassenhäufigkeiten

$$n(K_i), j \in \{1, \dots, 9\}$$
.

(Hierzu Strichliste anfertigen)

(ii) Berechnung der zugehörigen relativen Klassenhäufigkeiten

$$f(K_j) = \frac{n(K_j)}{n}, j \in \{1, \dots, 9\}, \text{ mit } n = 32$$

(iii) Berechnung der Rechteckhöhen des Histogramms gemäß

$$\underbrace{h_j \cdot b_j}_{j} = f(K_j) \iff h_j = \frac{f(K_j)}{b_j} , \quad j \in \{1, \dots, 9\}$$

Flächeninhalt des Rechtecks über K_j

Vollständige Tabelle mit absoluten/relativen Klassenhäufigkeiten, Klassenbreiten und Rechteckhöhen

Klassen- Nr.	Klasse (Intervall)	Absolute Klassen- häufigkeit	Relative Klassen- häufigkeit	Klassen- breite	Rechteck- höhe
j	K_j	$n(K_j)$	$f(K_j)$	b_{j}	h_j
1	[1.5,2.5]	0	0	1	0
2	(2.5, 3.5]	3	$\frac{3}{32}$	1	$\frac{3}{32}$
3	(3.5,4.5]	3	$\frac{3}{32}$	1	$\frac{3}{32}$
4	(4.5, 5.5]	10	$\frac{10}{32}$	1	$\frac{10}{32}$
5	(5.5,6.5]	3	$\frac{3}{32}$	1	$\frac{3}{32}$
6	(6.5, 7.0]	5	$\frac{5}{32}$	0.5	$\frac{10}{32}$
7	(7.0, 7.5]	1	$\frac{1}{32}$	0.5	$\frac{2}{32}$
8	(7.5, 8.5]	3	$\frac{3}{32}$	1	$\frac{3}{32}$
9	(8.5,9.5]	4	$\frac{4}{32}$	1	$\frac{4}{32}$
Summe		n = 32	1		

Histogramm zu Aufgabe 7, (c) Benötigte Zeiten von 32 Schülerinnen und Schülern zum Lösen einer Rechenaufgabe

