3604. Minimum Time to Reach Destination in Directed Graph

Solved

You are given an integer [n] and a **directed** graph with [n] nodes labeled from 0 to [n-1]. This is represented by a 2D array [edges], where $[edges[i]] = [u_i, v_i, start_i, end_i]$ indicates an edge from node $[u_i]$ to $[v_i]$ that can **only** be used at any integer time [t] such that $[start_i]$ are [t] to [t] that [t]

You start at node 0 at time 0.

In one unit of time, you can either:

- Wait at your current node without moving, or
- Travel along an outgoing edge from your current node if the current time t satisfies starti <= t <= endi.

Return the **minimum** time required to reach node [n-1]. If it is impossible, return [-1].

Example 1:

Input: n = 3, edges = [[0,1,0,1],[1,2,2,5]]

Output: 3

Explanation:

The optimal path is:

- At time t = 0, take the edge $(0 \rightarrow 1)$ which is available from 0 to 1. You arrive at node 1 at time t = 1, then wait until t = 2.
- At time t = 2, take the edge $(1 \rightarrow 2)$ which is available from 2 to 5. You arrive at node 2 at time 3.

Hence, the minimum time to reach node 2 is 3.

Example 2:

Input: n = 4, edges = [[0,1,0,3],[1,3,7,8],[0,2,1,5],[2,3,4,7]]

Output: 5

Explanation:

The optimal path is:

- Wait at node 0 until time (t = 1), then take the edge $(0 \rightarrow 2)$ which is available from 1 to 5. You arrive at node 2 at (t = 2).
- Wait at node 2 until time t = 4, then take the edge $(2 \rightarrow 3)$ which is available from 4 to 7. You arrive at node 3 at t = 5.

Hence, the minimum time to reach node 3 is 5.

Example 3:

Input: n = 3, edges = [[1,0,1,3],[1,2,3,5]]

Output: -1

Explanation:

• Since there is no outgoing edge from node 0, it is impossible to reach node 2. Hence, the output is -1.

Constraints:

- $1 \le n \le 10^5$
- 0 <= edges.length <= 10⁵
- edges[i] == [u_i, v_i, start_i, end_i]
- 0 <= u_i, v_i <= n 1
- u_i != v_i
- 0 <= start_i <= end_i <= 10⁹

Seen this question in a real interview before? 1/5

Yes No

Accepted 11.013 /23.9K Acceptance Rate 46.1%

Topics	~
Hint 1	~
Hint 2	~
Hint 3	~
Discussion (13)	~

Copyright © 2025 LeetCode. All rights reserved.