Class: XII Session: 2020-21

Subject: Mathematics

Marking Scheme (Theory)

Sr.No.	Objective type Question Section I	Marks
1	Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$ $\Rightarrow (x_1)^3 = (x_2)^3$	1
	$\Rightarrow x_1 = x_2, \text{Hence } f(x) \text{ is one - one}$	
	OR	
	2 ⁶ reflexive relations	1
2	(1,2)	1
3	Since \sqrt{a} is not defined for $a \in (-\infty, 0)$ $\therefore \sqrt{a} = b$ is not a function.	1
	OR	
	$A_1 \cup A_2 \cup A_3 = A \ and \ A_1 \cap A_2 \cap A_3 = \phi$	1
4	3x5	1
5	$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	1
	OR	
	adj A =(-4) ³⁻¹ =16	
6	0	1
7	$e^x(1-\cot x)+C$	1
	OR	
	f(x) is an odd function	
	$\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sin x \ dx = 0$	1
	2	
8	$A = 2 \int_{0}^{1} x^{2} dx = \frac{2}{3} [x^{3}]_{0}^{1}$ $= \frac{2}{3} sq unit$	1
	$=\frac{2}{3}sq\ unit$	

		T 4
9	0	1
	OR	
	3	1
10		4
10	\hat{J}	1
11	$\frac{1}{2} 2\hat{\imath}\times(-3\hat{\jmath}) = \frac{1}{2}\left -6\hat{k}\right = 3 \text{ sq units}$	1
12	$\begin{aligned} \left \hat{a} + \hat{b} \right ^2 &= 1 \\ \Rightarrow \hat{a}^2 + \hat{b}^2 + 2 \hat{a} \cdot \hat{b} &= 1 \\ \Rightarrow 2 \hat{a} \cdot \hat{b} &= 1 - 1 - 1 \\ \Rightarrow \hat{a} \cdot \hat{b} &= \frac{-1}{2} \Rightarrow \left \hat{a} \right \left \hat{b} \right \cos \theta = \frac{-1}{2} \Rightarrow \theta = \pi - \frac{\pi}{3} \\ \Rightarrow \theta &= \frac{2\pi}{3} \end{aligned}$	1
13	1,0,0	1
14	(0,0,0)	1
15	$1 - \frac{2}{3} \times \frac{3}{4} = \frac{1}{2}$	1
16	$\left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^7$	1
	Section II	
17(i)	(b)	1
17(ii)	(a)	1
17(iii)	(c)	1
17(iv)	(a)	1
17(v)	(d)	1
18(i)	(b)	1
18(ii)	(c)	1
18(iii)	(b)	1
18(iv)	(d)	1
18(v)	(d)	1
	Section III	
19	$tan^{-1}\left(\frac{\cos x}{1-\sin x}\right) = tan^{-1}\left[\frac{\sin\left(\frac{\pi}{2}-x\right)}{1-\cos\left(\frac{\pi}{2}-x\right)}\right]$ $tan^{-1}\left[\frac{2\sin\left(\frac{\pi}{4}-\frac{x}{2}\right)\cos\left(\frac{\pi}{4}-\frac{x}{2}\right)}{2\sin^2\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right]$	$\frac{1}{2}$

	$tan^{-1}\left[\cot\left(\frac{\pi}{4} - \frac{x}{2}\right)\right] = tan^{-1}\left[\tan\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{x}{2}\right)\right]$	1
	$tan^{-1}\left[tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right] = \frac{\pi}{4} + \frac{x}{2}$	$\frac{1}{2}$
20	$A^{2} = 2A$ $\Rightarrow AA = 2A $ $\Rightarrow A A = 8 A (\because AB = A B \text{ and } 2A = 2^{3} A)$ $\Rightarrow A (A - 8) = 0$ $\Rightarrow A = 0 \text{ or } 8$	$ \frac{1}{2} $ $ \frac{1}{2} $
	OR	
	$A^{2} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$ $5A = \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix}, 7I = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$ $\Rightarrow A^{2} - 5A + 7I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$ $\Rightarrow A^{-1}(A^{2} - 5A + 7I) = A^{-1}0$	1
	$\Rightarrow A - 5I + 7A^{-1} = 0$ $\Rightarrow 7A^{-1} = 5I - A$ $\Rightarrow A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$ $\Rightarrow A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	1
21	$\frac{Lt}{x \to 0} \frac{1 - \cos kx}{x \sin x} = \frac{Lt}{x \to 0} \frac{2 \sin^2 \left(\frac{kx}{2}\right)}{x \sin x}$ $= \frac{Lt}{x \to 0} \frac{\frac{2 \sin^2 \left(\frac{kx}{2}\right)}{\frac{x \sin x}{x^2}}}{\frac{x \sin x}{x^2}}$ $= \frac{Lt}{x \to 0} \frac{\frac{2 \sin^2 \left(\frac{kx}{2}\right)}{\frac{(kx)^2}{2}} \times \left(\frac{k}{2}\right)^2}{\frac{(kx)^2}{2}} \times \left(\frac{k}{2}\right)^2}$ $= \frac{2 \times 1 \times \frac{k^2}{4}}{1}$	1 ¹
	$= \frac{\frac{\left(\frac{1}{2}\right)}{Lt \frac{\sin x}{x}}}{x \to 0 \frac{1}{x}} = \frac{\frac{2 \times 1 \times \frac{1}{4}}{1}}{1}$	$1\frac{1}{2}$

		T 1
	f(x) is continuous at x = 0	
	$\therefore \frac{Lt}{x \to 0} f(x) = f(0)$	
	$\Rightarrow \frac{k^2}{2} = \frac{1}{2} \Rightarrow k^2 = 1 \Rightarrow k = \pm 1$	1
	1 1 1	$\frac{1}{2}$
22	$y = x + \frac{1}{x} \Rightarrow \frac{dy}{dx} = 1 - \frac{1}{x^2}$	
	::normal is perpendicular to $3x - 4y = 7$, :: tangent is parallel to it	
	$1 - \frac{1}{x^2} = \frac{3}{4} \Rightarrow x^2 = 4$ $\Rightarrow x = 2 \ (\because x > 0)$	1
	when $x = 2$, $y = 2 + \frac{1}{2} = \frac{5}{2}$	
	$\therefore Equation of Normal: y - \frac{5}{2} = -\frac{4}{3}(x - 2) \Rightarrow 8x + 6y = 31$	1
23	$I = \int \frac{1}{\cos^2 x (1 - \tan x)^2} dx$	
	$\int \cos^2 x (1 - \tan x)^2$	
	Put, $1 - \tan x = y$	
	So that, $-\sec^2 x dx = dy$	1
	$= \int \frac{-1 dy}{y^2} = - \int y^{-2} dy$	
	$= + \frac{1}{y} + c = \frac{1}{1 - \tan x} + c$	1
	OR	
	$I = \int_0^1 x (1-x)^n dx$	
	$I = \int_0^1 (1-x)[1-(1-x)]^n dx$	$\frac{1}{2}$
	$I = \int_0^1 (1-x) x^n dx = \int_0^1 (x^n - x^{n+1}) dx$	
	$I = \left[\frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2}\right]_0^1$	1
	·	$\frac{1}{2}$
	$I = \left[\left(\frac{1}{n+1} - \frac{1}{n+2} \right) - 0 \right] = \frac{1}{(n+1)(n+2)}$	<u> </u>
24	$Area = 2 \int_{0}^{2} \sqrt{8x} dx$	1
	$=2\times2\sqrt{2}\int_{2}^{2}x^{\frac{1}{2}}dx$	
	U	

	$= 4\sqrt{2} \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{2}$ $= \frac{8}{3} \sqrt{2} \left[2^{\frac{3}{2}} - 0 \right] = \frac{8\sqrt{2}}{3} \times 2\sqrt{2}$ $= \frac{32}{3} \text{ sq units}$	$\frac{1}{2}$ $\frac{1}{2}$
25	$\frac{dy}{dx} = x^3 cosec y ; y(0) = 0$	
	$\int \frac{dy}{\cos c y} = \int x^3 dx$ $\int \sin y dy = \int x^3 dx$	$\frac{1}{2}$
	$-\cos y = \frac{x^4}{4} + c$	1
	$-1 = c (\because y = 0, when x = 0)$ $\cos y = 1 - \frac{x^4}{4}$	$\frac{1}{2}$
26	Let $\overrightarrow{a} = \hat{\imath} - \hat{\jmath} + \hat{k}$	
	$\overrightarrow{d} = 4 \hat{\imath} + 5 \widehat{k}$	
	$ \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{d} \cdot \overrightarrow{b} = \overrightarrow{d} - \overrightarrow{a} = 3 \hat{\imath} + \hat{\jmath} + 4 \hat{k}$	$\frac{1}{2}$
	$ \overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} - \hat{j} + \hat{k} \\ 1 - 1 & 1 \\ 3 & 1 & 4 \end{vmatrix} = -5\hat{i} - 1\hat{j} + 4\hat{k}$	1
	Area of parallelogram = $ \overrightarrow{a} \times \overrightarrow{b} = \sqrt{25 + 1 + 16} = \sqrt{42}$ sq units	$\frac{1}{2}$
27	Let the normal vector to the plane be \overrightarrow{n} Equation of the plane passing through (1,0,0), i.e., $\hat{\imath}$ is $(\overrightarrow{r} - \hat{\imath}) \cdot \overrightarrow{n} = 0$ (1)	1
	$\therefore \text{plane (1) contains the line} \vec{r} = \vec{o} + \lambda \hat{j}$	
	Hence equation of the plane is $(\overrightarrow{r} - \hat{\imath}) \cdot \hat{k} = 0$ i.e., $\overrightarrow{r} \cdot \hat{k} = 0$	1
28	Let x denote the number of milk chocolates drawn	
	X P(x)	

	$0 \qquad \frac{4}{6} \times \frac{3}{5} = \frac{12}{30}$	
	$1 \qquad \left(\frac{2}{6} \times \frac{4}{5}\right) \times 2 = \frac{16}{30}$	
	$\frac{2}{6} \times \frac{1}{5} = \frac{2}{30}$	$1\frac{1}{2}$
		1
	Most likely outcome is getting one chocolate of each type	$\frac{1}{2}$
	OR	
	$P(\bar{E} \bar{F}) = P \frac{(\bar{E} \cap \bar{F})}{P(\bar{F})} = \frac{(\bar{E} \cup \bar{F})}{P(\bar{F})} = \frac{1 - P(E \cup F)}{1 - P(F)} - \dots (1)$	1
	Now $P(E \cup F) = P(E) + P(F) - P(E \cap F)$	
	= 0.8+0.7-0.6=0.9	$\frac{1}{2}$
	Substituting value of $P(E \cup F)$ in (1)	2
	P $(\bar{E} \mid \bar{F}) = \frac{1-0.9}{1-0.7} = \frac{0.1}{0.3} = \frac{1}{3}$	$\frac{1}{2}$
		_
	Section IV	
29	(i) Reflexive:	
	Since, a+a=2a which is even $:$ (a,a) $\in R \ \forall a \in Z$ Hence R is reflexive	1
		$\frac{1}{2}$
	(ii) Symmetric:	
	If $(a,b) \in R$, then $a+b = 2\lambda \Rightarrow b+a = 2\lambda$ $\Rightarrow (b,a) \in R$, Hence R is symmetric	1
	(c,a) = (, 10.100) (10.00)	'
	(iii) Transitive:	
	If (a,b) ∈R and (b,c,) ∈R	
	then $a+b = 2 \lambda(1)$ and $b+c = 2 \mu$ (2)	
	Adding (1) and (2) we get	
	$a+2b+c=2(\lambda + \mu)$	
	\Rightarrow a+c=2 ($\lambda + \mu - b$)	
	\Rightarrow a+c=2k ,where $\lambda + \mu - b = k$ \Rightarrow (a,c) \in R	
	Hence R is transitive	_
	[0] = {4, -2, 0, 2, 4}	$\frac{1}{2}$
30	Let $u = e^{x \sin^2 x}$ and $v = (\sin x)^x$	
		$\frac{1}{2}$

	so that $y = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ (1)	
	Now, $u = e^{x \sin^2 x}$, Differentiating both sides w.r.t. x, we get	1
	$\Rightarrow \frac{du}{dx} = e^{x \sin^2 x} \left[x(\sin 2x) + \sin^2 x \right] \qquad (2)$	
	Also, $V = (\sin x)^x$	
	$\Rightarrow \log v = x \log (\sin x)$	
	Differentiating both sides w.r.t. x, we get	
	$\frac{1}{v}\frac{dv}{dx} = x\cot x + \log (\sin x)$	1
	$\frac{dv}{dx} = (\sin x)^x \left[x \cot x + \log(\sin x) \right] \qquad (3)$	·
	Substituting from $-(2)$, $-(3)$ in $-(1)$ we get	$\frac{1}{2}$
	$\frac{dy}{dx} = e^{x \sin^2 x} \left[x \sin 2x + \sin^2 x \right] + (\sin x)^x \left[x \cot x + \log(\sin x) \right]$	2
31		
	RHD = $_{h\to 0}^{Lt} \frac{f(1+h)-f(1)}{h} = _{h\to 0}^{Lt} \frac{[1+h]-[1]}{h}$	
	$= \int_{h \to 0}^{Lt} \frac{(1-1)}{h} = 0$	1
	$LHD = {}_{h\to 0}^{Lt} \frac{f(1-h)-f(1)}{-h} = {}_{h\to 0}^{Lt} \frac{[1-h]-[1]}{-h} = {}_{h\to 0}^{Lt} \frac{0-1}{-h}$	
	$= \int_{h\to 0}^{Lt} \frac{1}{h} = \infty$	1
	Since, RHD \neq LHD Therefore $f(x)$ is not differentiable at $x = 1$	1
	Therefore I(x) is not differentiable at x = 1	
	OR	
	$y = b \tan \theta \Rightarrow \frac{dy}{d\theta} = b \sec^2 \theta \dots (1)$	
	$x = a \sec \theta \Rightarrow \frac{dx}{d\theta} = a \sec \theta \tan \theta \dots (2)$	

	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b}{a} \csc \theta$	1 1 2
	Differentiating both sides w.r.t.x, we get	
	$\frac{d^2y}{dx^2} = \frac{-b}{a} \csc\theta \cot\theta \times \frac{d\theta}{dx}$	
	$= \frac{-b}{a} cosec \ \theta \cot \theta \times \frac{1}{a \sec \theta \tan \theta} [using \ (2)]$	
	$=\frac{-b}{a.a}\cot^3\theta$	1
	$\left \frac{d^2 y}{dx^2} \right _{\theta = \frac{\pi}{6}} = \frac{-b}{a} \left[\cot \frac{\pi}{6} \right]^3 = \frac{-b}{a} \left(\sqrt{3} \right)^3 = -\frac{3\sqrt{3}b}{a.a}$	$\frac{1}{2}$
32	$f(x) = \tan x - 4x$	1
	$f'(x) = sec^2x - 4$	$\frac{1}{2}$
	a) For $f(x)$ to be strictly increasing	
	f'(x) > 0	
	$\Rightarrow \qquad sec^2 x - 4 > 0$	
	$\Rightarrow sec^2 x > 4$	
	$\Rightarrow cos^2 x < \frac{1}{4} \Rightarrow cos^2 x < \left(\frac{1}{2}\right)^2$	
	$\Rightarrow \qquad -\frac{1}{2} < \cos x < \frac{1}{2} \Rightarrow \frac{\pi}{3} < x < \frac{\pi}{2}$	1 1 2
	b) For $f(x)$ to be strictly decreasing	
	f'(x) < 0	
	$\Rightarrow \qquad sec^2 x - 4 < 0$	
	$\Rightarrow sec^2 x < 4$	
	$\Rightarrow cos^2 x > \frac{1}{4}$	
	$\Rightarrow cos^2 x > \left(\frac{1}{2}\right)^2$	
	$\Rightarrow \qquad \cos x > \frac{1}{2} \left[\because x \in \left(0, \frac{\pi}{2} \right) \right]$	
	\Rightarrow 0 < $x < \frac{\pi}{3}$	
		1
1		i J

		4
33	Put $x^2 = y$ to make partial fractions	$\frac{1}{2}$
	$x^2 + 1$ $y + 1$ $A \cap B$	2
	$\frac{x^2+1}{(x^2+2)(x^2+3)} = \frac{y+1}{(y+2)(y+3)} = \frac{A}{y+2} + \frac{B}{y+3}$	
	$\Rightarrow y+1 = A(y+3) + B(y+2)(1)$	$\frac{1}{2}$
	Comparing coefficients of y and constant terms on both sides of (1) we get	
	A+B = 1 and $3A + 2B = 1$	
	Solving, we get $A = -1$, $B = 2$	1
	$\int \frac{x^2 + 1}{(x^2 + 2)(x^2 + 3)} dx = \int \frac{-1}{x^2 + 2} dx + 2 \int \frac{1}{x^2 + 3} dx$	
	$= -\frac{1}{\sqrt{2}} tan^{-1} \left(\frac{x}{\sqrt{2}}\right) + \frac{2}{\sqrt{3}} tan^{-1} \left(\frac{x}{\sqrt{3}}\right) + C$	1
34	Solving $y = \sqrt{3}x$ and $x^2 + y^2 = 4$	
	We get $x^2 + 3x^2 = 4$	
	$\Rightarrow x^2 = 1 \Rightarrow x = 1$	$\frac{1}{2}$
	°	$\frac{1}{2}$
	Required Area	1
	$= \sqrt{3} \int_{0}^{1} x dx + \int_{1}^{1} \sqrt{2^{2} - x^{2}} dx$	$\frac{1}{2}$
	$= \frac{\sqrt{3}}{2} \left[x^2 \right]_0^1 + \left[\frac{x}{2} \sqrt{2^2 - x^2} + 2 \sin^{-1} \left(\frac{x}{2} \right) \right]_1^2$	1
	$= \frac{\sqrt{3}}{2} + \left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} - 2 \times \frac{\pi}{6}\right]$	
	$\frac{2\pi}{3}$ sq units	$\frac{1}{2}$
	OR	

	Required Area = $\frac{4}{3} \int_0^6 \sqrt{6^2 - x^2} dx$	$\frac{1}{2}$
	$ \begin{array}{c} $	$\frac{1}{2}$
	$= \frac{4}{3} \left[\frac{x}{2} \sqrt{6^2 - x^2} + 18 \sin^{-1} \left(\frac{x}{6} \right) \right]_0^6$	1
	$=\frac{4}{3}\left[18\times\frac{\pi}{2}-0\right]=12\pi\ sq\ units$	1
35	The given differential equation can be written as	
	$\frac{dy}{dx} = \frac{y + 2x^2}{x} \Rightarrow \frac{dy}{dx} - \frac{1}{x}y = 2x$	
	Here $P = -\frac{1}{x}$, $Q = 2x$	$\frac{1}{2}$
	IF = $e^{\int P dx} = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$	1
	The solutions is :	
	$y \times \frac{1}{x} = \int \left(2x \times \frac{1}{x}\right) dx$	1
	$\Rightarrow \frac{y}{x} = 2x + c$	1
	$\Rightarrow y = 2x^2 + cx$	$\frac{1}{2}$
36	A = 1(-1-2) - 2(-2-0) = -3 + 4 = 1	$\frac{1}{2}$
	A is nonsingular, therefore A^{-1} exists	۷
	$Adj A = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$	
	$\Rightarrow A^{-1} = \frac{1}{ A } (Adj A) = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$	1 ¹ / ₂

The given equations can be written as:	
$\begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$	$\frac{1}{2}$
Which is of the form $A'X = B$	
$\Rightarrow X = (A')^{-1}B = (A^{-1})'B$	1
$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ -3 \end{bmatrix}$	
$\Rightarrow x = 0, \qquad y = -5, \qquad z = -3$	$1\frac{1}{2}$
OR	
$AB = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$	
$= \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$	1 1 2
$\Rightarrow AB = 6I$ $\Rightarrow A\left(\frac{1}{6}B\right) = I \Rightarrow A^{-1} = \frac{1}{6}(B)$	1
The given equations can be written as	
$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$	
$AX = D, \text{ where } D = \begin{bmatrix} 3\\17\\7 \end{bmatrix}$	
$\Rightarrow X = A^{-1}D$	
$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 12 \\ -6 \\ 24 \end{bmatrix}$	1
$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$	
$x=2, \qquad y=-1, \qquad z=4$	1
	$1\frac{1}{2}$
37 We have $a_1 = 3\hat{\imath} + 2\hat{\jmath} - 4\hat{k}$ $b_1 = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$	

$$a_{2} = 5i - 2j b_{2} = 3\hat{i} + 2\hat{j} + 6\hat{k}$$

$$\overrightarrow{a_{2}} - \overrightarrow{a_{1}} = 2\hat{i} - 4\hat{j} + 4\hat{k} 1$$

$$\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 3 & 2 & 6 \end{vmatrix} = \hat{i}(12 - 4) - \hat{j}(6 - 6) + \hat{k}(2 - 6) 1$$

$$\overrightarrow{b1} \times \overrightarrow{b_2} = 8\hat{\imath} + 0\hat{\jmath} - 4\hat{k} = 8\hat{\imath} - 4\hat{k}$$

$$\therefore (\overrightarrow{b_1} \times \overrightarrow{b_2}).(\overrightarrow{a_2} - \overrightarrow{a_1}) = 16 - 16 = 0$$

 \therefore The lines are intersecting and the shortest distance between the lines is 0.

Now for point of intersection

$$3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}) = 5\hat{i} - 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k})$$

$$\Rightarrow 3 + \lambda = 5 + 3\mu \qquad ---- \qquad (1)$$

$$2 + 2\lambda = -2 + 2\mu \qquad ---- \qquad (2)$$

$$-4 + 2\lambda = 6\mu \qquad ---- \qquad (3)$$

Solving (1) ad (2) we get, $\mu = -2$ and $\lambda = -4$

Substituting in equation of line we get

$$\vec{r} = 5i - 2j + (-2)(3\hat{\imath} + 2\hat{\jmath} - 6\hat{k}) = -\hat{\imath} - 6\hat{\jmath} - 12\hat{k}$$

Point of intersection is (-1, -6, -12)

OR

Let P be the given point and Q be the foot of the perpendicular.

Equation of PQ
$$\frac{x+1}{2} = \frac{y-3}{1} = \frac{z+6}{-2} = \lambda$$

Let coordinates of Q be $(2\lambda - 1, \lambda + 3, -2\lambda - 6)$

Since Q lies in the plane 2x + y - 2z + 5 = 0

 $\frac{1}{2}$

1

 $1\frac{1}{2}$

	$\Rightarrow 9\lambda + 18 = 0 \qquad \Rightarrow \lambda = -2$	
	\therefore coordinates of Q are $(-5, 1, -2)$	
	Length of the perpendicular = $\sqrt{(-5+1)^2 + (1-3)^2 + (-2+6)^2}$	1
	= 6 units	1
		1
38	Max Z = 3x + y	
	Subject to $x + 2y \ge 100$ (1) $2x - y \le 0$ (2) $2x + y \le 200$ (3) $x \ge 0$, $y \ge 0$	
	3 160 140 120 100 80 60 40 100 20 100 100 100 100 100 100	3
	Corner Points $Z = 3x + y$	
	A (0, 50) 50	
	B (0, 200) 200	
	C (50, 100) 250	
	D (20, 40) 100	1
	Max z = 250 at $x = 50$, $y = 100$	
		1

OR				
(i)			_	
	Corner points	Z=3x-4y		
	O(0,0)	0		
	A(0,8)	-32		
	B(4,10)	-28		
	C(6,8)	-14		$1\frac{1}{2}$
	D(6,5)	-2		2
	E(4,0)	12		
Max Z = 12 at E(4,0)				
Min $Z = -32$ at $A(0.8)$				
				1
(ii) Since maximum value of Z occurs at B(4,10) and C(6, 8)				
$\therefore 4p + 10q = 6p + 8q$				_
$\Rightarrow 2q = 2p$				2
$\Rightarrow p = q$				1_
Number of optimal solution are infinite				2
$\Rightarrow 2q = 2p$				$\frac{2}{\frac{1}{2}}$