Recuperação inteligente da informação Relatório atividade E-1.5

André Pacheco

Doutorado em Ciência da Computação Programa de pós-graduação em informática Universidade Federal do Espírito Santo

Conteúdo

R	Recuperação inteligente da informação Relatório atividade E-1.5		
1	Introdução	1	
2	Configuração dos dados para o aLine	1	
3	Resultados de classificação	2	
4	Conclusão	3	

1 Introdução

A atividade E-1.5 tem como objetivo a realização da classificação da famosa base de dados da IRIS ¹ utilizando o algoritmo k-vizinhos mais próximos (KNN) (Fukunaga and Narendra, 1975) internamente implementado no aLine. Portanto, neste relatório são descritos os procedimentos para realizar tal tarefa.

2 Configuração dos dados para o aLine

Para utilizar o KNN do aLine, primeiramente é necessário converter as features da base de dados da IRIS para o formato Matrix Market. Sendo assim, é criado o arquivo iris_data.mtx para armazenar esses valores. Além disso é necessário gerar os índices de cada amostra para treinamento e teste. Neste trabalho foi separado 30% para testes e 70% para treinamento. Esses valores são gerados aleatoriamente e armazenados nos arquivos iris_test.txt e iris_train.txt, respectivamente. Por fim, no arquivo iris_class.txt são armazenados todos os labels da base relacionados a cada amostra disponível na matrix market.

Gerados todos os arquivos mencionados anteriormente, o aLine é executado da seguinte forma:

¹ https://archive.ics.uci.edu/ml/datasets/iris

```
$ aLine --classifier --algorithm knn --features iris_data.mtx
--train iris_train.txt --test iris_test.txt --labels iris_class.txt
-k $valK$ -o iris_class_predict.txt
```

onde a variável valK é o valor do parâmetro k do KNN e o arquivo $iris_class_predict.txt$ são as amostras classificadas pelo KNN.

3 Resultados de classificação

Os resultados da classificação da base de dados da IRIS pelo aLine/KNN são descritos na Tabela 1. Como pode ser observado, o valor de k foi variado, e para cada valor, o algoritmo foi executado 30 vezes (com cada partição escolhida de forma aleatória em cada execução). O desempenho é mensurado pela acurácia de classificação 2 .

\overline{k}	Média (%)	Devio (%)			
3	95.55	2.75			
5	96.07	2.60			
7	95.85	2.34			
9	96.66	2.54			
11	96.96	2.25			
13	97.33	2.17			
17	95.48	3.27			
23	94 44	4.01			

Tabela 1. Acurácia de classificação da IRIS de acordo com o KNN

Observado os resultados apresentados na Tabela 1, pode-se notar que valores de k até 13, os resultados são bem próximos. Todavia, quando k assume valores como 17 e 23 o kNN começa a deteriorar o seu resultado. Isso ocorre por conta do trade-off entre variância e bias, ou seja, com k suficientemente grande, o kNN 'decora' a base de dados, diminuindo a variância, porém 'decora' os padrões de treinamento, favorecendo o bias (Friedman et al., 2001).

Além da classificação, também foi calculado a densidade espacial total e média 3 de acordo com Salton et al. (1975). O valores das densidades são descritos na Tabela 2 .

² As métricas de recall e precision retornadas pelo aLine não estão sendo calculadas de forma correta. Por isso, foi implementado uma função para ler o arquivo de saída e informar a acurácia da classificação. Esse problema já foi reportado para o monitor da disciplina.

³ Outro ponto a destacar é que neste modo, o aLine não retorna os valores de similaridade das amostras. Neste caso, foi necessário uma função para calcular as similaridades par a par de cada a amostra para calcular a densidade espacial. Sendo assim, é os valores das similaridade são calculadas duas vezes (uma no KNN interno e outra no script da atividade), o que poderia ser evitado se o aLine retornasse esses valores neste modo de operação.

Tabela 2. Densidade espacial da base de dados IRIS

Densidade espacial	Valor
Total	21351.87
$M\'edia$	0.94

Como pode ser observado, de acordo com a densidade espacial media, de maneira geral, as amostras da IRIS possui uma similaridade alta.

4 Conclusão

Nesta atividade a base de dados da IRIS foi classificada utilizando o aLine e sua implementação interna do KNN. Como pode ser observado pelos resultados, os valores de k foram variados e a classificação foi realizada de maneia satisfatória. Embora o arquivo com o resultado da classificação retornado pelo o aLine é coerente com a base, as métricas apresentadas pelo framework não estão corretas. Além disso, foi apontada uma sugestão, ainda em relação ao aLine, para facilitar o cálculo da densidade espacial neste modo de operação.

Bibliografia

- Friedman, J., Hastie, T., Tibshirani, R., 2001. The elements of statistical learning. volume 1. Springer series in statistics New York.
- Fukunaga, K., Narendra, P.M., 1975. A branch and bound algorithm for computing k-nearest neighbors. IEEE Transactions on Computers 100, 750–753.
- Salton, G., Wong, A., Yang, C.S., 1975. A vector space model for automatic indexing. Communications of the ACM 18, 613–620.