Part 7: Trust Region Optimization

January 18, 2021

Hey everyone! Today's post will go over something that we have discussed in some detail before: optimization! Specifically, Trust-Region methods for convex optimization. For this we will by happenstance go over Gauss Newton method as well. First let's do the easiest version of gradient based optimization: Gradient Descent. We start with the *Update Rule*: $x_{k+1} = x_k + g$ where in the case of Gradient Descent:

$$g = -\alpha \nabla f(x_k)$$

The descent direction g is equal to the gradient at the point x_k .

Initialize
$$x_0$$
, $\alpha > 0$;
for $k = 1 : K$ do
 $x_{k+1} = x_k + \alpha g$;
end

Algorithm 1: General Descent Method

Note that α (step size) is a constant that modulates the size of the difference between x_{k+1} and x_k . Also note that -1 is multiplied by g so that when g > 0 (i.e. we go up) Gradient Descent moves in the opposite direction.

1 Newton/Gauss-Newton Method

Next we will talk about the Newton method, which is similar to Gradient Descent but utilizes Hessian $\nabla^2 f(x)$ information:

$$g = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

This leads to the beloved Quasi-Newton methods where $B_k \approx \nabla^2 f(x_k)$ because the Hessian is often difficult to calculate. A modification of Newton's method is Gauss-Newton's method where:

$$g = (\nabla f(x_k) \nabla^T f(x_k))^{-1} \nabla f(x_k) f(x)$$

2 Trust Region Concept

The basic idea behind Trust Regions is that we optimize a function in a small space where we have a good approximation of the surface f(x) through a Taylor Series approximation m around x plus some vector p for gradient g and Hessian approximation B.

$$f(x+p) \approx m(p) = f_k + g_k + 1/2g_k^T B_k p_k$$

We solve the problem:

$$p^* = argminm(p) \text{ s.t. } ||p|| \le \delta_k$$

Which basically means minimize m approximation of f(x) for some distance p constrained on the ball of radius δ_k (using the L2 norm). The simplest solution to this problem is the Full Step:

$$p_B = -B_k^{-1} g_k \tag{1}$$

Which is optimal when (i) B_k is PD and (ii) $||B_k^{-1}g_k|| \le \delta_k$, which is the unconstrained minimization of m(p).

3 Trust Region Algorithm

We define an improvement metric:

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

Which is the ratio of the reduction in $f(x_k)$ to the approximation in $m(p_k)$. The closer to $\rho_k = 1$ the better. The Trust Region algorithm incorporates this calculation as follows:

```
Initialize \hat{\Delta} > 0 \Delta_o \in (0, \hat{\Delta}) \eta \in [0, 1/4); for k = 1 : K do

Calculate p_k;
Calculate \rho_k;
if \rho_k < 1/4 then
\Delta_{k+1} = 1/2\Delta_k;
else
\hat{\rho}_k > 3/4 ||p_k|| = \Delta_k \text{ then}
\Delta_k = \min\{2\Delta_k, \hat{\Delta}\}
else
\hat{\rho}_k > \eta \text{ then}
x_{k+1} = x_k + p_k
else
x_{k+1} = x_k
end
```

Algorithm 2: General Trust Region Method

What we need to do is basically solve for p_k and adjust Δ_k .

3.1 Cauchy Point

The next most basic solution to the subproblem in the Trust Region algorithm is the Cauchy Point.

$$\tau_k = \begin{cases} 1 & \text{if } g_k^T B_k g_k \le 0\\ \min\{||g_k||^3/(\Delta_k g_k^T B_k g_k), 1\} & \text{otherwise} \end{cases}$$

$$p_c = -\frac{\tau_k \Delta_k g_k}{||g_k||}$$

$$(2)$$

Think about the Cauchy Point as p which gives the steepest descent subject the the constraint talked about above. One way to implement the Cauchy Point is to use p_B when B_k is PD and $||p_B|| < \Delta_k$, and p_c elsewhere.

3.2 Dogleg Method

This one took a while to implement but here we go. Specifically we implement the Dogleg Method from Powell's Numerical Optimization Book, which tends to be useful when B_k is PD (but don't take my word for it). After we calculate τ , p_u (steepest descent direction) and p_B (full step solution) we can use the following:

$$p_k = \begin{cases} \tau p_u & \text{if } 0 \le \tau \le 1\\ p_u + (\tau - 1)(p_B - p_u) & \text{if } 1 \le \tau \le 2 \end{cases}$$
 (3)

4 Example Problem

Here we throw some of these methods at the modified 2-D Himmelblau problem:

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Figure 1: Himmelblau Function

Here we do six random initializations of some of the methods we have talked about.

This is a very difficult optimization problem to solve and we did an okay job. In theory we should be taking a look at the positive definiteness of the region we are in and select the method based on that (which is what more sophisticated methods do). Great job everyone! I am not sure what I will present next week so I'll just say we'll do something related to BOTorch.

Figure 2: Example Optimization Problem | $\eta=0.1,\,\hat{\Delta}=1$