実験項目	実験 B8 演算増幅器(OP アンプ)				
校名 科名 学年 番号	熊本高等専門学校 人間情報システム工学科 3 年 42 号				
氏名	山口惺司				
班名 回数	4 班 1 回目				
実験年月日 建物 部屋名	2023年 11月 9日 木曜 天候 晴 3号棟 1階 HI演習室				
共同実験者名	山内玲奈				

1. 実験目的

演算増幅器 (Operational Amplifier) をもちいた回路の特性を測定し、その取り 扱いおよび動作原理を理解する.

2. 実験原理

OP アンプは2つの入力端子と 1 つの出力端子をもつ差動増幅器で, 2 入力端子の 差電圧に応じて出力が変化する直流増幅器である. その内部回路は非常に複雑で多くの部品を必要としたが, IC 技術の発展により安価で大量に生産することが可能になり, 現在では各方面で広く利用されている.

2.1 差動増幅器

OP アンプの特性は、初段にある差動増幅器の特性で決定される. 図1 におい て、入力電圧 Vi, Vn が加えられたときの出力電圧は、

$$Vi = -AV (Vi - Vn)$$
 (1)

(Av:電圧増幅率) で表される.

よって, 差動出力電圧 Vo は差動入力電圧 Vi-Vn に比例する.

次に、入力電圧 Vi=Vn のとき出力電圧は Vo=0 となるはずであるが、実際には完全な バランス状態は非常に得難く、入力トランジ スタの Vbe には微小の差があり、これを入力 オフセット電圧: Vio=Vb1-Vb2. また、入力電流 Ib1、Ib2 のことを入力バイアス電流、 その差を入力オフセット電流: Iio と呼び、 OP アンプの良さを規定する代表的な特性となっている.

図1 差動増幅器

2.2 OP アンプ

OP アンプの表示を図 2 に示す. Vi は反転入 力端子で, 印加信号と極性が逆の出力信号が得 られることを意味す る. Vn は非反転入力端子で, 印加信号と出力信号 の極 性が等しいことを意味している.

図 2 OP アンプの表示

OP アンプの入出力特性は、(1)式より図 3 で示した ようになる. Av が非常に大きくなると、入出力の傾斜 は大きくなり、 $Av \rightarrow \infty$ で $V_- < V_0 < V_+$ はダイナミックレ ンジ内では $(V_i - V_n) \rightarrow 0$ (V_i) となることが予想される.

図3 OP アンプの出力特性

2.3 反転増幅器

図 4 は OP アンプの最も基本的な応用である 反転増幅器の一例である. 入力抵抗を無限大, 電圧増幅度も無限大となる理想 OP アンプを使用したとすると, まず OP アンプの入力端子に 電流が流れないので

$$I_i = I_f$$
 (2)

Av=∞より

また,

$$I_i = e_i/R_i$$
 , $I_f = -e_o/R_f$ (4)

以上のことより

$$e_o = -R_f/R_i \cdot e_i \quad (5)$$

となる.

図 4 反転増幅器

2.4 加算回路

図5 に示す回路で

$$Ia + Ib = If (6)$$

また,

$$Ia = Va/R$$
, $Ib = Vb/R$, $I_f = -Vo/R$ (7)

より,

$$Vo = -(Va + Vb)$$
 (8)

となり加算回路として動作する.

図 5 加算回路

2.5 減算回路

図6に示す回路で

$$If = Ia = (Va - Vi)/R (9)$$

$$Vi = Vn = Vb/2 (10)$$

$$Vo = Vi - If \cdot R$$
 (11)

このとき,

$$Vo = -(Va - Vb)$$
 (12)

となり減算回路として動作する.

図6 減算回路

3. 実験回路

以下の図 7, 図 8, 図 9 について, ブレッドボード上に OP アンプ IC と抵抗 を用いて回路を組み実験を行う.

4. <u>実験内容</u>

4.1 反転増幅器の入出力特性

図7 の回路をブレッドボード上に組み R1=R2=10k Ω とし,R3 を 10k Ω ,100k Ω ,1M Ω としたときの電圧利得(Av=Vo/Vi)を測定する.結果を表 1 のように まとめる.測定範囲は出力が飽和するまでとし,測定ポイントは 10 以上とする. 変化が急峻なところ(飽和する前後)を多く測定する.また,この結果をもとに入出力特性のグラフを描く.

※入出力特性のグラフは 3 種類作成する. 横軸の目盛り範囲を調整し、倍率の異なる同じ傾向の 3 つのグラフが確認できるようにする.

Vi: 標準直流電源

Vo: デジタルマルチメータ

表1 反転増幅器の入出力特性

$R3 = 10k\Omega$		$R3 = 100k \Omega$			$R3 = 1M\Omega$			
Vi	Vo	Av	Vi	Vo	Av	Vi	Vo	Av
-15. 00	14. 30	-0.95	-1.50	14. 39	-9.59	-0. 15	14. 45	-96. 33
-14. 50	14. 30	-0.99	-1.45	14. 39	-9.92	-0. 15	14. 45	-98. 30
-14. 30	14. 30	-1.00	-1.43	14. 31	-10.01	-0. 15	14. 45	-99. 66
-14. 20	14. 23	-1.00	-1.42	14. 21	-10.01	-0.14	14. 38	-100.56
-14. 10	14. 13	-1.00	-1.41	14. 11	-10.01	-0. 14	14. 07	-100.50
-14. 00	14.03	-1.00	-1.40	14. 01	-10.01	-0.10	10.08	-100.80
-10.00	10.02	-1.00	-1.00	10.01	-10.01	-0.07	7. 08	-101.14
-7.00	7. 01	-1.00	-0.70	7. 00	-10.00	-0.04	4. 07	-101.75
-4.00	4.00	-1.00	-0.40	4. 00	-10.00	-0.01	1. 07	-106.70
-1.00	1.00	-1.00	-0.10	1. 01	-10. 10	0.00	0.00	#DIV/0!
0.00	0.00	#DIV/0!	0.00	0.00	#DIV/0!	0.01	-0.90	-90. 20
1. 00	-1.00	-1.00	0.10	-0.99	-9.94	0.04	-3.90	-97. 50
4. 00	-4.00	-1.00	0.40	-3.99	-9.98	0.07	-6. 91	-98. 71
7. 00	-7.01	-1.00	0.70	-6. 99	-9.99	0.10	-9. 91	-99. 10
10.00	-10.02	-1.00	1.00	-9.99	-9.99	0. 13	-12.87	-99.00
13.00	-13.03	-1.00	1.30	-12. 99	-9.99	0.14	-13. 74	-98. 14
13. 50	-13. 52	-1.00	1. 35	-13. 49	-9.99	0. 15	-13. 78	-95. 03
13.60	-13.62	-1.00	1. 36	-13. 59	-9.99	0. 15	-13. 79	-91. 93
13.65	-13.66	-1.00	1. 37	-13. 65	-10.00			
13. 67	-13.68	-1.00	1. 37	-13. 69	-9.99			
13.70	-13.69	-1.00	1. 38	-13. 72	-9.98			
14.00	-13.69	-0.98	1. 38	-13. 75	-9.96			
			1. 39	-13. 78	-9.91			
			1.40	-13. 79	-9.85			
			1.50	-13. 79	-9. 19			

図 10 反転増幅器の入出力特性のグラフ (R3 = $10 \text{k}\,\Omega$)

図 11 反転増幅器の入出力特性のグラフ (R3 = $100k\Omega$)

図 12 反転増幅器の入出力特性のグラフ (R3 = $1M\Omega$)

4.2 反転増幅器の周波数特性

図7 で $R1=R2=10k\Omega$, $R3=100k\Omega$ とし、Vi に発振器を接続し $20Hz\sim200kHz$ の正弦波(振幅 1Vp-p 一定)を入力したときの出力を測定する。測定点は、トランジスタ増幅器の制作時に測定した間隔で取る。結果を表 2 のようにまとめる。また、この結果をもとに周波数特性のグラフを描く。

Vi: 低周波発振器

Vo: オシロスコープ

表 2 反転増幅器の周波数特性

周波数	出力電圧	電圧利得	
f (Hz)	$V_{O}(V)$	Av(倍)	Gv (dB)
40.00	10. 20	10. 20	20. 17
70.00	10. 20	10.20	20. 17
100.00	10. 20	10.20	20. 17
200.00	10. 20	10.20	20. 17
400.00	10. 20	10.20	20. 17
700.00	10. 20	10. 20	20. 17
1000.00	10. 20	10.20	20. 17
2000.00	10. 20	10.20	20. 17
4000.00	10.00	10.00	20.00
7000.00	10.00	10.00	20.00
10000.00	10. 20	10.20	20. 17
20000.00	10.00	10.00	20.00
40000.00	7. 28	7. 28	17. 24
70000.00	5.00	5.00	13.98
100000.00	3.80	3.80	11.60

図13 反転増幅器の周波数特性

4.3 加算回路および減算回路

R =10 k Ω として図 8 の加算回路および図 9 の減算回路をつくり、0 \leq Va \leq 3(V), 0 \leq Vb \leq 3(V) のときの Vo を測定する. Va \leq Vb, Va = Vb, Va \geq Vb の 3 種類を測定し、結果を表 3 ,表 4 のようにまとめる.

Va, Vb: 直流定電圧電源

Vo: デジタルマルチメータ

表 3 加算回路

Va		Vb	加算
	1.001	3	-4
	2	2	-4
	2.995	1	-3.99

表 4 減算回路

Va	Vb	減算
1.001	3	2. 011
2.007	2	0
2. 998	1	-1.998

5. 研究課題

1. 反転増幅器の動作について調べ、今回の実験を検証せよ.

反転増幅器は

-Vout = Vin(R3/R2)

という式で計算ができる。

この式を今回調べたデータに当てはめると、式が成り立つため、今回の実験結果は正しいと言える。

2. 加算、減算回路の動作について調べ、今回の実験を検証せよ。

加算回路は入力電圧 Va と Vb の和が出力される。

また、式は

Vout = -(Va + Vb)

となる。

減算回路は入力電圧 Va と Vb の差が出力される。

また、式は

Vout = -(Va - Vb)

となる。

以上より、今回の実験は正しいと言える。