Skriftlig eksamen på Økonomistudiet Vinteren 2018 - 2019

DYNAMISKE MODELLER

Fredag den 18. januar 2019

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

2. årsprøve 2019 V-2DM ex

Skriftlig eksamen i Dynamiske Modeller Fredag den 18. januar 2019

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter femtegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^5 + z^4 + 5z^3 + 5z^2 + 4z + 4.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 5\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 0,$$

og

$$(**) \qquad \frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 5\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 4t^3 + 20t^2 + 50t + 66.$$

Vi betragter tillige differentialligningen

$$(***) \qquad \frac{d^6y}{dt^6} + \frac{d^5y}{dt^5} + 5\frac{d^4y}{dt^4} + 5\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 4\frac{dy}{dt} = 0.$$

(1) Vis, at z = -1 er en rod i polynomiet P, og at betingelsen

$$\forall z \in \mathbf{C} : P(z) = (z^4 + 5z^2 + 4)(z+1)$$

er opfyldt.

(2) Bestem samtlige rødder i polynomiet P.

- (3) Bestem den fuldstændige løsning til differentialligningen (*).
- (4) Bestem den fuldstændige løsning til differentialligningen (**).
- (5) Bestem den fuldstændige løsning til differentialligningen (* * *).

Opgave 2. Vi betragter mængderne

$$A = \left\{ z \in \mathbf{C} \mid \forall n \in \mathbf{N} : |z| = 1 - \frac{1}{2n} \right\}$$

og

$$B = \{ z \in \mathbf{C} \mid \forall r \in \mathbf{Q}_+ \cap [0, 1] : |z| = r \}.$$

- (1) Bestem det indre A^O og afslutningen \overline{A} af mængden A.
- (2) Lad (z_k) være en følge af punkter fra mængden A. Vis, at denne følge har en konvergent delfølge (z_{k_p}) , hvis grænsepunkt $z_0 \in \overline{A}$.
- (3) Bestem det konvekse hylster K = conv(A) for A, og godtgør, at enhver kontinuert funktion $\phi: K \to K$ har et fixpunkt.
- (4) Bestem det indre B^O og afslutningen \overline{B} af mængden B, og godtgør, at $\overline{(B^O)} \subset \overline{B}^O.$
- (5) Lad G være en åben delmængde af \mathbb{C} . Vis, at

$$G \subseteq (\overline{G})^O$$
.

(6) Lad F være en afsluttet delmængde af \mathbb{C} . Vis, at

$$\overline{(F^O)} \subseteq F$$
.

Opgave 3. Vi betragter korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som er defineret ved forskriften

$$F(x) = \begin{cases} [0,1] & \text{for } x < 0\\ [-1,2] & \text{for } x = 0\\ [-3,3] & \text{for } x > 0 \end{cases}$$

og den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, der er givet ved udtrykket

$$\forall (x,y) \in \mathbf{R} : f(x,y) = x^2 + 2xy^2.$$

Desuden betragter vi korrespondancen $G: \mathbf{R} \to \mathbf{R}$, som er givet ved udtryket

$$G(y) = \begin{cases} [-2, 2] & \text{for } y < 0 \\ [0, 3] & \text{for } y \ge 0 \end{cases}.$$

- (1) Vis, at korrespondancen F ikke har afsluttet graf egenskaben, og at den hverken er nedad eller opad hemikontinuert.
- (2) Bestem den maksimale værdifunktion $v_u: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : v_u(x) = \max\{f(x, y) \mid y \in F(x)\}.$$

(3) Bestem en forskrift for den maksimale værdikorrespondance $M_u : \mathbf{R} \to \mathbf{R}$, hvor

$$\forall x \in \mathbf{R} : M_u(x) = \{ y \in F(x) \mid f(x, y) = v_u(x) \}.$$

(4) Bestem en forskrift for den sammensatte korrespondance $H = G \circ F$: $\mathbf{R} \to \mathbf{R}$.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^{\sqrt{3}} (e^t - 2x^2 - u^2) dt,$$

hvor $\dot{x} = x + u$, x(0) = 0 og $x(1) = \sqrt{3}$.

- (1) Vis, at dette optimale kontrolproblem er et maksimumsproblem.
- (2) Opstil Hamiltonfunktionen H = H(t, x, u, p), og bestem det optimale par (x^*, u^*) .