• Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.

Profesor: Román Contreras

- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	Total
Puntos	5	10	15
Puntaje			

Nombre:

En lo sucesivo, fijemos una base ortonormal $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$. Además, fijemos el volumen V que cumple que $V(\vec{w}_1, \vec{w}_2, \vec{w}_3) = 1$.

- 1. (5 Puntos) Exhibe una transformación lineal T tal que $T^3=0$ y tal que $T^2\neq 0$. Calcula la matríz de T y su dilatación.
- 2. (10 Puntos) En cada uno de los siguientes incisos, determina si las dos afirmaciones son equivalentes (⇐⇒), si la de la izquierda implica la de la derecha (⇒⇒) o si la de la izquierda es consecuencia de la de la derecha (⇐⇒).

S y T son dos homotecias		$S\circ T=T\circ S$
S y T son transformaciones lineales		$S\circ T$ es una transformación lineal
T es invertible		$\operatorname{dil}(T) \neq 0$
T es una isometría lineal		$dil(T) = \pm 1$
$V(T(\vec{v}), T(\vec{w}), T(\vec{z})) = 0$		$V(\vec{v}, \vec{w}, \vec{z}) = 0$
dil(T) = 0		$T(\vec{v}) = \vec{0}$ para todo vector \vec{v}
T y S son dos isometrías lineales		$T\circ S$ es una isometría lineal
$\operatorname{dil}(T)\operatorname{dil}(S) = 1$		Ty S son transformaciones inversas
$S \circ T$ es una homotecia		S y T son homotecias