Trigonometric Functions

沈威宇

October 6, 2025

Contents

1	Trig	jonometric Functions (三角函數)
	I	Trigonometric Ratios (三角比) or Trigonometric Functions
		i Right triangle definitions for acute angles
		ii Unit-circle definitions for generalized angles and properties
		iii Trigonometric functions of important angles
		iv 基本關係
		v 奇變偶不變,正負看象限
		vi 指數形式 :
		vii Power notation
	П	Inverse trigonometric functions (反三角函數)
		i Definition
		ii atan2 函數.................................
		iii Trigonometric functions of inverse trigonometric functions
	Ш	Identities
		i 正切萬能公式.............................
		ii 二倍角公式
		iii 半角公式與平方化倍角公式
		iv 三倍角公式
		v 和差角公式
		vi 平方關係
		vii 三角形內角正切公式
		viii 正餘弦函數疊合..........................6
		ix 和差化積公式
		x 積化和差公式
		xi 連加公式

	xii 正餘切和等於正餘割積公式
	xiii 正餘弦四次方和公式
	xiv 正餘弦四次方差公式
	xv 正餘弦六次方和公式
V	正弦連乘、餘切連加、餘割平方級數與餘切平方級數公式

1 Trigonometric Functions (三角函數)

I Trigonometric Ratios (三角比) or Trigonometric Functions

i Right triangle definitions for acute angles

Given a right triangle with an acute angle being theta:

• Sine (sin) (正弦):

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

• Cosine (cos) (餘弦):

$$\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

• Tangent (tan) (正切):

$$\tan \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$$

• Cotangent (cot) (餘切):

$$\cot \theta = \frac{1}{\tan \theta}$$

• Secant (sec) (正割):

$$\sec\theta = \frac{1}{\cos\theta}$$

• Cosecant (csc) (餘割):

$$\csc\theta = \frac{1}{\sin\theta}$$

ii Unit-circle definitions for generalized angles and properties

Let Γ be the ray obtained by rotating by an angle θ the positive half of the x-axis (counterclockwise rotation for $\theta > 0$ and clockwise rotation for $\theta < 0$). This ray intersects the unit circle with center O = (0,0) at the point $A = (x_A, y_A)$. Let the line extended to by Γ intersectes x = 1 at $B = (1, y_B)$ and y = 1 at $C = (x_C, 1)$. The tangent line to the unit circle at A intersects the x- and y-axes at points $D = (x_D, 0)$ and $E = (0, y_E)$.

Function	Symbol	Definition	Domain	Range	Period	Odd or even	Reflectional symmetric about	Rotationally symmetric of order 2 about
Sine	sin	y_A	R	[-1,1]	2π	odd	$x \in \left\{ x \middle \left(\frac{x}{\pi} - \frac{1}{2} \right) \in \mathbb{Z} \right\}$	
Cosine	cos	x_A	R	[-1,1]	2π	even	$x \in \left\{ x \middle \frac{x}{\pi} \in \mathbb{Z} \right\}$	
Tangent	tan	y_B	$\mathbb{R} \setminus \left\{ x \middle \left(\frac{x}{\pi} - \frac{1}{2} \right) \in \mathbb{Z} \right\}$	\mathbb{R}	π	odd		$(x, y) \in \left\{ x \middle \left(\frac{x}{\pi} - \frac{1}{2}\right) \in \mathbb{Z} \right\} \times \{0\}$
Cotangent	cot	x_C	$\mathbb{R} \setminus \left\{ x \middle \frac{x}{\pi} \in \mathbb{Z} \right\}$	R	π	odd		$(x, y) \in \left\{ x \middle \frac{x}{\pi} \in \mathbb{Z} \right\} \times \{0\}$
Secant	sec	x_D	$\mathbb{R} \setminus \left\{ x \middle \left(\frac{x}{\pi} - \frac{1}{2} \right) \in \mathbb{Z} \right\}$	$(-\infty,-1] \cup [1,\infty)$	2π	even	$x \in \left\{ x \middle \frac{x}{\pi} \in \mathbb{Z} \right\}$	$(x, y) \in \left\{ x \middle \left(\frac{x}{\pi} - \frac{1}{2}\right) \in \mathbb{Z} \right\} \times \{0\}$
Cosecant	CSC	y_E	$\mathbb{R} \setminus \left\{ x \middle \frac{x}{\pi} \in \mathbb{Z} \right\}$	$(-\infty,-1]\cup[1,\infty)$	2π	odd	$x \in \left\{ x \middle \left(\frac{x}{\pi} - \frac{1}{2}\right) \in \mathbb{Z} \right\}$	$(x, y) \in \left\{ x \middle \frac{x}{\pi} \in \mathbb{Z} \right\} \times \{0\}$

iii Trigonometric functions of important angles

Radian	Angle	sin	cos	tan
0	0°	0	1	0

Radian	Angle	sin	cos	tan
$\frac{\pi}{2}$	90°	1	0	
π	180°	0	-1	0
$\frac{3\pi}{2}$	270°	-1	0	
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{3\pi}{4}$	135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{3}$	60 °	$ \frac{\sqrt{2}}{2} $ $ \frac{\sqrt{2}}{2} $ $ \frac{1}{2} $ $ \frac{\sqrt{3}}{2} $ $ \frac{\sqrt{3}}{2} $	$ \frac{\sqrt{2}}{2} $ $ -\frac{\sqrt{2}}{2} $ $ \frac{\sqrt{3}}{2} $ $ \frac{1}{2} $	$\sqrt{3}$
$\frac{2\pi}{3}$	120°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$
$\frac{2\pi}{3}$ $\frac{5\pi}{6}$	150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$
$\frac{\pi}{12}$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$
$\frac{5\pi}{12}$	75°	$ \frac{\frac{1}{2}}{\frac{\sqrt{6} - \sqrt{2}}{4}} $ $ \frac{\sqrt{6} + \sqrt{2}}{4} $	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2 - \sqrt{3}$ $2 + \sqrt{3}$
$\frac{\pi}{10}$	18°	$\frac{\sqrt{5}-1}{4}$	$ \begin{array}{r} 2 \\ -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \\ \underline{\frac{\sqrt{6} + \sqrt{2}}{4}} \\ \underline{\frac{\sqrt{6} - \sqrt{2}}{4}} \\ \underline{\frac{\sqrt{10 + 2\sqrt{5}}}{4}} \end{array} $	$ \frac{\sqrt{5} - 1}{\sqrt{10 + 2\sqrt{5}}} $ $ \frac{\sqrt{10 - 2\sqrt{5}}}{\sqrt{5} + 1} $ $ \frac{\sqrt{5} + 1}{\sqrt{10 - 2\sqrt{5}}} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{5} - 1} $
$\frac{2\pi}{10}$	36°	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$ $\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$
$\frac{3\pi}{10}$	54°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$
$\frac{4\pi}{10}$	72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$
	37°	≈ 0.6018	≈ 0.7986	≈ 0.7536
	53°	≈ 0.7986	≈ 0.6018	≈ 1.3270

iv 基本關係

- 名稱:左側三者為正;右側三者為餘;上面二者為弦;中間二者為切;下面二者為割。
- 餘角關係:以鉛直軸為對稱軸,位於線對稱位置者為餘角關系,即對於銳角 θ ,左 $(\theta)=$ 右 $\left(\frac{\pi}{2}-\theta\right)$ 。
- 倒數關係:三條通過中心點的連線為倒數關係,其兩端者互為倒數,相乘為 1。
- 商數關係:六邊形周上,連續三個頂點形成的連線,其兩端者相乘等於中間者。

• 平方關係:圖中有三個倒正三角形,其在上方兩頂點之二者之平方和等於在下方頂點者。

v 奇變偶不變,正負看象限

今有函數 f,已知其為 $sin \cdot cos \cdot tan \cdot sec \cdot csc \cdot cot 之一,且已知 <math>f(\theta)$ 。欲求 $f(\phi)$,其中 $\phi = \pm \theta \pm n \frac{\pi}{2}$,其中 $n \in \mathbb{Z}$ 。

- 判斷方法:奇變偶不變,正負看象限。
- 上句:奇偶指 n 之奇偶,變指倒數,即:若 n 為奇數則令 $g(\theta) = \frac{1}{f(\theta)}$,否則令 $g(\theta) = f(\theta)$,則 $|f(\phi)| = |g(\theta)|$ 。
- 下句:象限指假設 $[r,\theta]$ 在第一象限時, $[r,\phi]$ 之象限。令該象限中任意角度為 ω 。令 $k=\frac{f(\phi)}{g(\theta)}$ 。則 $k=\frac{f(\omega)}{|f(\omega)|}$,即:

象限	_	=	Ξ	四
sin	+	+	-	-
cos	+	-	-	+
tan	+	-	+	-
CSC	+	+	-	-
sec	+	-	-	+
cot	+	-	+	-

vi 指數形式

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\tan x = -i\frac{e^{2ix} - 1}{e^{2ix} + 1}, \quad x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

$$\cot x = i\frac{e^{2ix} + 1}{e^{2ix} - 1}, \quad x \neq k\pi, k \in \mathbb{Z}$$

$$\sec x = \frac{2e^{ix}}{e^{2ix} + 1}, \quad x \neq \pi + 2k\pi, k \in \mathbb{Z}$$

$$\csc x = i\frac{2e^{ix}}{e^{2ix} - 1}, \quad x \neq 2k\pi, k \in \mathbb{Z}$$

vii Power notation

$$\sin^n x := \begin{cases} (\sin x)^n, & n \ge 0 \\ \arcsin x, & n = -1 \end{cases}
\cos^n x := \begin{cases} (\cos x)^n, & n \ge 0 \\ \arccos x, & n = -1 \end{cases}
$$\tan^n x := \begin{cases} (\tan x)^n, & n \ge 0 \\ \arctan x, & n = -1 \end{cases}
\cot^n x := \begin{cases} (\cot x)^n, & n \ge 0 \\ \arctan x, & n = -1 \end{cases}
\sec^n x := \begin{cases} (\sec x)^n, & n \ge 0 \\ \arccos x, & n = -1 \end{cases}
\csc^n x := \begin{cases} (\csc x)^n, & n \ge 0 \\ \arccos x, & n = -1 \end{cases}
\csc^n x := \begin{cases} (\csc x)^n, & n \ge 0 \\ \arccos x, & n = -1 \end{cases}$$$$

II Inverse trigonometric functions (反三角函數)

i Definition

Function	Symbols	Definition	Domain	Range
Inverse sine (反正弦)	$y = \arcsin x = \sin^{-1}(x) = \arcsin(x)$	$x = \sin y$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
Inverse cosine (反餘弦)	$y = \arccos x = \cos^{-1}(x) = \arcsin(x)$	$x = \cos y$	[-1, 1]	$[0,\pi]$
Inverse tangent (反正切)	$y = \arctan x = \tan^{-1}(x) = \operatorname{atan}(x)$	$x = \tan y$	R	$(-\frac{\pi}{2},\frac{\pi}{2})$
Inverse cotagent (反餘切)	$y = \operatorname{arccot} x = \cot^{-1}(x) = \operatorname{acot}(x)$	$x = \cot y$	R	$(0,\pi)$
Inverse secant (反正割)	$y = \operatorname{arcsec} x = \sec^{-1}(x) = \operatorname{asec}(x)$	$x = \sec y$	$(-\infty,-1] \cup [1,+\infty)$	$[0,\frac{\pi}{2}) \cup (\frac{\pi}{2},\pi]$
Inverse cosecant (反餘割)	$y = \operatorname{arccsc} x = \operatorname{csc}^{-1}(x) = \operatorname{acsc}(x)$	$x = \csc y$	$(-\infty,-1] \cup [1,+\infty)$	$[-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2}]$

ii atan2 函數

atan2 or $\arctan 2(y,x)$: $\mathbb{R}^2 \setminus \{(0,0)\}$ 在 x>0 時返還 $\tan(\theta)=\frac{y}{x}$ 在 $(-\frac{\pi}{2},\frac{\pi}{2})$ 中的解,在 x<0、 $y\geq 0$ 時返還 $\tan(\theta)=\frac{y}{x}$ 在 $(\frac{\pi}{2},\pi)$ 中的解,在 x<0、y<0 時返還 $\tan(\theta)=\frac{y}{x}$ 在 $(-\pi,-\frac{\pi}{2})$ 中的解,在 x=0、 $y\neq 0$ 時返還 $\frac{y}{|y|}\frac{\pi}{2}$,在 x=y=0 時未定義。

iii Trigonometric functions of inverse trigonometric functions

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
arcsin(x)	х	$\sqrt{1-x^2}$	$\frac{x}{\sqrt{1-x^2}}, x < 1$ $\frac{\sqrt{1-x^2}}{x}, x \neq 0$	$\frac{\sqrt{1-x^2}}{x}, x \neq 0$	$\frac{1}{\sqrt{1-x^2}}, x < 1$	$\frac{1}{x}$, $x \neq 0$
arccos(x)	$\sqrt{1-x^2}$	x	$\frac{\sqrt{1-x^2}}{x}, x \neq 0$	$\frac{x}{\sqrt{1-x^2}}, x < 1$	$\frac{1}{x}$, $x \neq 0$	$\frac{1}{\sqrt{1-x^2}}, x < 1$
arctan(x)	$\frac{x}{\sqrt{1+x^2}}$	$\frac{1}{\sqrt{1+x^2}}$	x	$\frac{1}{x}$, $x \neq 0$	$\sqrt{1+x^2}$	$\frac{1}{\sqrt{1-x^2}}, x < 1$ $\frac{\sqrt{1+x^2}}{x}, x \neq 0$
arccot(x)	$\frac{1}{\sqrt{1+x^2}}$	$\frac{x}{\sqrt{1+x^2}}$	$\frac{1}{x}$, $x \neq 0$	x	$\frac{\sqrt{1+x^2}}{x}, x \neq 0$	$\sqrt{1+x^2}$
arcsec(x)	$ \frac{\sqrt{1+x^2}}{\sqrt{x^2-1}} $	$\frac{1}{x}$	$\sqrt{x^2 - 1} \operatorname{sgn}(x)$	$\frac{\operatorname{sgn}(x)}{\sqrt{x^2 - 1}}, x > 1$	х	$\frac{ x }{\sqrt{x^2 - 1}}$
arccsc(x)	$\frac{1}{x}$	$\frac{\sqrt{x^2 - 1}}{ x }$	$\frac{\operatorname{sgn}(x)}{\sqrt{x^2 - 1}}, x > 1$	$\sqrt{x^2 - 1} \operatorname{sgn}(x)$	$\frac{ x }{\sqrt{x^2 - 1}}$	x

III Identities

i 正切萬能公式

$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$$

ii 二倍角公式

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\cos 2\theta = 1 - 2\sin^2 \theta$$

$$= 2\cos^2 \theta - 1$$

$$= \cos^2 \theta - \sin^2 \theta$$

iii 半角公式與平方化倍角公式

$$\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$$

$$\cos^2 \frac{\theta}{2} = \frac{1 + \cos \theta}{2}$$

$$\tan^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{1 + \cos \theta}$$

$$\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta}$$

$$= \frac{1 - \cos \theta}{\sin \theta}$$

$$= \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}$$

$$= \csc \theta - \cot \theta$$

iv 三倍角公式

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$
$$\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

v 和差角公式

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$$

$$\cot(\alpha + \beta) = \frac{\cot\alpha \cot\beta - 1}{\cot\alpha + \cot\beta}$$

$$\cot(\alpha - \beta) = \frac{\cot\alpha \cot\beta - 1}{\cot\alpha + \cot\beta}$$

$$\sec(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{-\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\sec(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta - \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta - \csc\alpha \csc\beta}{\sec\alpha \sec\beta - \csc\alpha \csc\beta}$$

vi 平方關係

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta} = 1 - \cos^2 \theta$$
$$\cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = 1 - \sin^2 \theta$$
$$\tan^2 \theta = \frac{1 - \cos^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{1 - \sin^2 \theta}$$

vii 三角形內角正切公式

$$(\alpha + \beta + \gamma = \pi + 2k\pi, k \in \mathbb{Z}) \iff (\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \cdot \tan \beta \cdot \tan \gamma)$$

viii 正餘弦函數疊合

$$(a\sin\theta + b\cos\theta)^2 \le a^2 + b^2, \quad a, b \in \mathbb{R}$$

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin\left(x + \tan^{-1}\left(\frac{b}{a}\right)\right)$$

$$= \sqrt{a^2 + b^2}\cos\left(x - \tan^{-1}\left(\frac{a}{b}\right)\right)$$

ix 和差化積公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

x 積化和差公式

$$2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

$$2\cos\alpha\sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2\sin\alpha\sin\beta = -\cos(\alpha + \beta) + \cos(\alpha - \beta)$$

xi 連加公式

$$\sum_{k=1}^{n} \sin(k\theta) = \frac{\sin\left(\frac{n\theta}{2}\right) \sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}.$$
$$\sum_{k=1}^{n} \cos(k\theta) = \frac{\sin\left(\frac{n\theta}{2}\right) \cdot \cos\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}.$$

xii 正餘切和等於正餘割積公式

$$\tan \theta + \cot \theta = \sec \theta \csc \theta$$

xiii 正餘弦四次方和公式

$$\sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \cos^2 \theta = 1 - \frac{1}{2}\sin^2(2\theta)$$

xiv 正餘弦四次方差公式

$$\sin^4 \theta - \cos^4 \theta = \sin^2 \theta - \cos^2 \theta = -\cos(2\theta)$$

xv 正餘弦六次方和公式

$$\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \cos^2 \theta = 1 - \frac{3}{4}\sin^2(2\theta)$$

IV 正弦連乘、餘切連加、餘割平方級數與餘切平方級數公式

$$\prod_{k=0}^{n-1} \sin\left(x + \frac{\pi k}{n}\right) = 2^{1-n} \sin\left(nx\right)$$

7

$$\sum_{k=0}^{n-1} \cot\left(x + \frac{\pi k}{n}\right) = n \cot(nx)$$

$$\sum_{k=0}^{n-1} \csc^2\left(x + \frac{\pi k}{n}\right) = n^2 \csc^2(nx)$$

$$\sum_{k=1}^{n-1} \csc^2\frac{\pi k}{n} = \frac{(n-1)(n+1)}{3}$$

$$\sum_{k=1}^{n-1} \cot^2\frac{\pi k}{n} = \frac{(n-1)(n-2)}{3}$$

Proof.

$$\begin{split} \prod_{k=0}^{n-1} \sin\left(x + \frac{\pi k}{n}\right) \\ &= \prod_{k=0}^{n-1} \frac{i}{2} \left(e^{-i\left(x + \frac{\pi k}{n}\right)} - e^{i\left(x + \frac{\pi k}{n}\right)} \right) \\ &= i^n 2^{-n} \prod_{k=0}^{n-1} e^{-i\left(x + \frac{\pi k}{n}\right)} \prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) \\ &= i^n 2^{-n} e^{-inx} e^{-i\pi \left(\frac{n-1}{2}\right)} \prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) \\ &= i^n 2^{-n} e^{-inx} i^{1-n} \prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) \end{split}$$

考慮:

$$f(t) = t^n - e^{2inx}$$

f(t) = 0 的根為:

$$t = e^{2i\left(x + \frac{\pi k}{n}\right)}, \quad k \in \mathbb{N}_0 \land k < n$$

故:

$$f(t) = \prod_{k=0}^{n-1} (t - e^{2i\left(x + \frac{\pi k}{n}\right)})$$

$$\prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) = 1 - e^{2inx}$$

代回:

$$\prod_{k=0}^{n-1} \sin\left(x + \frac{\pi k}{n}\right)$$

$$= i^n 2^{-n} e^{-inx} i^{1-n} (1 - e^{2inx})$$

$$= 2^{-n} i (e^{-inx} - e^{inx})$$

$$= 2^{1-n} \sin(nx)$$

$$\sum_{k=0}^{n-1} \ln \left| \sin \left(x + \frac{\pi k}{n} \right) \right| = (1 - n) \ln(2) + \ln \left| \sin (nx) \right|$$

微分兩次:

$$\sum_{k=0}^{n-1} \cot\left(x + \frac{\pi k}{n}\right) = n \cot(nx)$$

$$\sum_{k=0}^{n-1} \csc^2\left(x + \frac{\pi k}{n}\right) = n^2 \csc^2(nx)$$

$$\sum_{k=1}^{n-1} \csc^2\left(x + \frac{\pi k}{n}\right) = n^2 \csc^2(nx) - \csc^2(x)$$

$$\sum_{k=1}^{n-1} \csc^2\left(\frac{\pi k}{n}\right) = \lim_{x \to 0} n^2 \csc^2(nx) - \csc^2(x) = \frac{(n-1)(n+1)}{3}$$

$$\cot^2(x) = \csc^2(x) - 1$$

$$\sum_{k=1}^{n-1} \cot^2\frac{\pi k}{n} = \sum_{k=1}^{n-1} \csc^2\frac{\pi k}{n} - n + 1 = \frac{n^2 - 3n + 2}{3}$$