Geometry¹ First Year, Computer science

Assoc. Prof. Cornel-Sebastian PINTEA

"Babeş-Bolyai" University
Faculty of Mathematics and Computer Sciences
Cluj-Napoca, Romania

Lecture 4, 19.03.2014

¹These notes are not in a final form. They are continuously being improved

Assoc. Prof. Cornel-Sebastian PINTEA

Products of vectors

Aplications of the d product The vector product

The vector product

Products of vectors
The dot product
Aplications of the dot product
The vector product

The dot product

Definition 1.1

The real number

$$\vec{a} \cdot \vec{b} = \begin{cases} 0 \text{ if } \vec{a} = 0 \text{ or } \vec{b} = 0\\ ||\vec{a}|| \cdot ||\vec{b}|| \cos(\vec{a}, \vec{b}) \text{ if } \vec{a} \neq 0 \text{ and } \vec{b} \neq 0 \end{cases}$$
(1.1)

is called the *dot product* of the vectors \vec{a} , \vec{b} .

Remark 1.2

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

1.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}, \ \forall \ \vec{a}, \ \vec{b} \in \mathcal{V}$$
.

2.
$$\vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b}), \ \forall \lambda \in \mathbb{R}, \vec{a}, \vec{b} \in \mathcal{V}.$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}, \ \forall \ \vec{a}, \vec{b}, \vec{c} \in \mathcal{V}.$$

4.
$$\vec{a} \cdot \vec{a} \ge 0$$
, $\forall \vec{a} \in \mathcal{V}$.

5.
$$\vec{a} \cdot \vec{a} = 0 \Leftrightarrow \vec{a} = \vec{0}$$
.

Definition 1.4

A basis of the vector space $\mathcal V$ is said to be *orthonormal*, if $||\vec{i}|| = ||\vec{j}|| = ||\vec{k}|| = 1$, $\vec{i} \perp \vec{j}$, $\vec{j} \perp \vec{k}$, $\vec{k} \perp \vec{i}$ ($\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$, $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$). A cartesian reference system $R = (O, \vec{i}, \vec{j}, \vec{k})$ is said to be *orthonormal* if the basis $[\vec{i}, \vec{j}, \vec{k}]$ is orthonormal.

Assoc. Prof. Cornel-Sebastian PINTEA

Products of vectors

The dot product

Aplications of the dot product

The vector product

(1.2)

Proposition 1.5

Let
$$[\vec{i}, \vec{j}, \vec{k}]$$
 be an orthonormal basis and $\vec{a}, \vec{b} \in \mathcal{V}$. If $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Thus, $\vec{a} \cdot \vec{a} = ||\vec{a}|| \cdot ||\vec{a}|| \cos 0 = ||\vec{a}||^2$. On the other hand $\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2$ and we conclude that

$$||\vec{a}|| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

(1.3)

$$\cos(\widehat{\vec{a}}, \widehat{\vec{b}}) = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| \cdot ||\vec{b}||}$$

$$= \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$$
In particular

$$\cos(\widehat{\vec{a}}, \widehat{\vec{i}}) = \frac{a_1}{\sqrt{a_1^2 + a_2^2 + a_3^2}}$$
 $\cos(\widehat{\vec{a}}, \widehat{\vec{i}}) = \frac{a_2}{\sqrt{a_1^2 + a_2^2 + a_3^2}}$
 $\cos(\widehat{\vec{a}}, \widehat{\vec{k}}) = \frac{a_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}}$

Remark 1.6

$$\vec{a} \perp \vec{b} \Leftrightarrow a_1b_1 + a_2b_2 + a_3b_3 = 0$$

• The distance between two points. Consider two points $A(x_A, y_A, z_A)$, $B(x_B, y_B, z_B) \in \mathcal{P}$. The norm of the vector $\overrightarrow{AB}(x_B - x_A, y_B - y_A, z_B - z_A)$ is

$$||\stackrel{\longrightarrow}{AB}|| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}.$$

• The normal vector of a plane. Consider the plane $\pi: Ax+By+Cz+D=0$ and the point $P(x_0,y_0,z_0)\in\pi$. The equation of π becomes

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0.$$
 (1.4)

If $M(x,y,z) \in \pi$, the coordinates of \overrightarrow{PM} are $(x-x_0,y-y_0,z-z_0)$ and the equation (1.4) tells us that $\overrightarrow{n} \cdot \overrightarrow{PM} = 0$, for every $M \in \pi$, that is $\overrightarrow{n} \perp \overrightarrow{PM} = 0$, for every $M \in \pi$, which is equivalent to $\overrightarrow{n} \perp \overrightarrow{\pi}$, where $\overrightarrow{n}(A,B,C)$. This is the reason to call $\overrightarrow{n}(A,B,C)$ the normal vector of the plane π .

Assoc. Prof. Cornel-Sebastian PINTEA

/ectors
The dot product
Aplications of the dot

vector product

The real number δ given by $\overrightarrow{MP} = \delta \cdot \vec{n}_0$ is called the *oriented distance* from P to the plane π , where $\vec{n}_0 = \frac{1}{||\vec{n}||}\vec{n}$ is the versor of \vec{n} . Since $\overrightarrow{MP} = \delta \cdot \vec{n}_0$, it follows that

 $\delta(P,M) = ||\overrightarrow{MP}|| = |\delta|$, where $\delta(P,M)$ stands for the distance from P to π .

On the other hand we shall show that

on π .

$$\delta = \frac{Ax_P + By_P + Cz_P + D}{\sqrt{A^2 + B^2 + C^2}}.$$

Indeed, since $\overrightarrow{MP} = \delta \cdot \overrightarrow{n}_0$, we get successively:

Assoc. Prof. Cornel-Sebastian PINTEA

Products of vectors The dot product Aplications of the dot product

ne vector product

$$\delta = \vec{n}_{0} \cdot \overrightarrow{MP} = \left(\frac{1}{||\vec{n}||} \vec{n}\right) \cdot \overrightarrow{MP} = \frac{\vec{n} \cdot \overrightarrow{MP}}{||\vec{n}||} \\
= \frac{A(x_{P} - x_{M}) + B(y_{P} - y_{M}) + C(z_{P} - z_{M})}{\sqrt{A^{2} + B^{2} + C^{2}}} \\
= \frac{Ax_{P} + By_{P} + Cz_{P} - (Ax_{M} + By_{M} + Cz_{M})}{\sqrt{A^{2} + B^{2} + C^{2}}} \\
= \frac{Ax_{P} + By_{P} + Cz_{P} + D}{\sqrt{A^{2} + B^{2} + C^{2}}}.$$

Consequently

$$\delta(P,M) = ||\overrightarrow{MP}|| = |\delta| = \frac{|Ax_P + By_P + Cz_P + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

The vector product

Definition 1.7

The *vector product* or the *cross product* of the vectors $\vec{a}, \vec{b} \in \mathcal{V}$ is a vector, denoted by $\vec{a} \times \vec{b}$, which is defined to be zero if \vec{a}, \vec{b} are linearly dependent (collinear), and if \vec{a}, \vec{b} are linearly independent (noncollinear), then it is defined by the following data:

- 1. $\vec{a} \times \vec{b}$ is a vector orthogonal on the two-dimensional subspace $\langle \vec{a}, \vec{b} \rangle$ of \mathcal{V} ;
- 2. if $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, then the sense of $\vec{a} \times \vec{b}$ is the one in which a right-handed screw, placed along the line passing through O orthogonal to the vectors \vec{a} and \vec{b} , advances when it is being rotated simultaneously with the vector \vec{a} from \vec{a} towards \vec{b} within the vector subspace $\langle \vec{a}, \vec{b} \rangle$ and the support half line of \vec{a} sweeps the interior of the angle \overrightarrow{AOB} (Screw rule).
- 3. the *norm* (*magnitude* or *length*) of $\vec{a} \times \vec{b}$ is defined by

Assoc. Prof. Cornel-Sebastian PINTEA

Products o vectors

ne dot product plications of the dot oduct

The vector product

Remarks 1.8

- 1. The *norm* (*magnitude* or *length*) of the vector $\vec{a} \times \vec{b}$ is actually the area of the parallelogram constructed on the vectors \vec{a} . \vec{b} .
- 2. The vectors \vec{a} , $\vec{b} \in \mathcal{V}$ are linearly dependent (collinear) if and only if $\vec{a} \times \vec{b} = \vec{0}$.

Proposition 1.9

The vector product has the following properties:

- 1. $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}, \forall \vec{a}, \vec{b} \in \mathcal{V}$:
- 2. $(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b}), \forall \lambda \in \mathbb{R}, \vec{a}, \vec{b} \in \mathcal{V};$
- 3. $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}, \forall \vec{a}, \vec{b}, \vec{c} \in \mathcal{V}.$

Assoc Prof. Cornel-Sebastian **PINTEA**

The vector product

If $[\vec{i}, \vec{j}, \vec{k}]$ is an orthonormal basis, observe that $\vec{i} \times \vec{i} \in \{-\vec{k}, \vec{k}\}$. We say that the orthonormal basis $[\vec{i}, \vec{j}, \vec{k}]$ is *direct* if $\vec{i} \times \vec{j} = \vec{k}$. If, on the contrary, $\vec{i} \times \vec{j} = -\vec{k}$, we say that the orthonormal basis $[\vec{i}, \vec{j}, \vec{k}]$ is *inverse*. Therefore, if $[\vec{i}, \vec{j}, \vec{k}]$ is a direct orthonormal basis, then $\vec{i} \times \vec{j} = \vec{k}, \ \vec{j} \times \vec{k} = \vec{i}, \ \vec{k} \times \vec{i} = \vec{j}$ and obviously $\vec{i} \times \vec{i} = \vec{i} \times \vec{i} = \vec{k} \times \vec{k} = \vec{0}.$

Proposition 1.10

If $[\vec{i}, \vec{j}, \vec{k}]$ is a direct orthonormal basis and $\vec{a} = a_1 \vec{i} + a_2 \vec{i} + a_3 \vec{k}$. $\vec{b} = b_1 \vec{i} + b_2 \vec{i} + b_3 \vec{k}$, then

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\vec{i} + (a_3b_1 - a_1b_3)\vec{j} + (a_1b_2 - a_2b_1)\vec{k},$$
(1.5)

or, equivalently,

$$\vec{a} \times \vec{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \vec{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{k}$$
 (1.6)

One can rewrite formula (1.5) in the form

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 (1.7)

the right hand side determinant being understood in the sense of its cofactor expansion along the first line.