IE 510 Applied Nonlinear Programming

Lecture 0: Introduction

Ruoyu Sun

Jan 16, 2018

Outline

- 1 Course Introduction
- 2 Optimization Background
- 3 Examples
- 4 Mathematical Review

Organization

Instructor:

Ruoyu Sun (ruoyus at illinois.edu) Assistant professor, ISE and CSL 209D Transportation Building

Administrative Details:

Lecture time/location: Tu and Th: 2:00pm - 3:20PM, Enigneering Hall

410C1

The instructor could be on travel in 1-2 occasions

Extended lecture time (for about 30min)?

Office hour: Tu: 3:30 - 4:30pm, Transportation Bld. 209D, or by

appointment

TA: Lei Fan (leifan2 at illinois.edu)

Office hour: Thur 12:30-1:30pm

Location: TBD

Organization

Textbook

D. Bertsekas, *Nonlinear Programming*, Main Textbook Luenberger and Ye. *Linear and nonlinear programming*. , Reference Nesterov, *Introductory Lectures on Convex Optimization: A Basic Course* Reference

Other relevant materials will be distributed and discussed throughout the course

Syllabus

- Can be found on the Box file
- 2 Some of the key points here
- 3 Numerical grade = homework (35 %) + 1 in-class exam (30 %) + class project (30%) + attendance (5%) + bonus points (up to 10%)
- 4 It is encouraged to submit the homework electronically, in pdf
- 6 Late homework and exam will not be accepted or graded, unless approved by the instructor
- 6 Bonus points = bonus problems in homework/exam and/or excellent project

Components of the course

- Homework will be assigned regularly, some of them are mathematical, some of them requires programming
- 2 Course slides will be distributed (in the Box file) regularly, but not all results/materials will be on the slides
- One mid-term
- 4 Class project report
- 6 No final

More on the course

- 1 Lectures will be delivered using both slides and in-class notes
- Pre-requisite: The course is mostly self-contained, no explicit requirements on previous courses on optimization
- Pre-requisite: basic knowledge about linear algebra and calculus is required
- Helpful knowledge: probability, <u>numerical linear algebra</u>, complexity theory, machine learning
- Theoretical or practical? Mixture. Lots of theoretical analysis, but will try to provide insights/discussion/applications whenever possible
- 6 Happy to take any suggestions/comments about the course/teaching

Project

- 1 There is a class project (30% of the numerical grade)
- One-person, or multiple-people projects
- Time line: 1-page proposal by (roughly) Mar 1; full report due on early May
- Option 1: Apply optimization to practical problems Examples: recommendation system, object detection, beamforming design, reinforcement learning, GAN. I may provide some applications from companies (f possible)
- **Option 2**: study of optimization algorithms. It doesn't need to involve rigorous proofs, but also not pure applications.
 - How is AdaGrad compared to gradient descent?
 - When is cyclic coordinate descent slower than randomized coordinate descent?
 - When does Lagrangian multiplier method diverge?
- **6 Option 3:** work on a theoretical question

Academic Misconduct

- There is zero tolerance on academic misconduct. Individuals suspected of committing academic dishonesty will be reported to the university. Penalty for academic misconduct (up to 100%).
- 2 Collaboration is encouraged, but not copying each others' homeworks

Outline

- 1 Course Introduction
- 2 Optimization Background
- 3 Examples
- 4 Mathematical Review

Harry (SE494): What is hypothesis testing?

Common sense concepts – we learn mathematics of them, then forget about the concepts!

What is optimization?

Example 1: physics. Light travels in shortest path

Example 2: Al. Is our brain doing optimization?

Example 3: Operations of companies.

McKincy efficiency manual: to improve the efficiency, you need to optimize the process/allocation/etc.

Japanese companies are relatively bad at this.

Harry (SE494): What is hypothesis testing? Common sense concepts – we learn mathematics of them, then forget about the concepts!

What is optimization?

Example 1: physics. Light travels in shortest path

Example 2: Al. Is our brain doing optimization?

Example 3: Operations of companies. McKincy efficiency manual: to improve the

Japanese companies are relatively bad at this.

capanood dompanoo are relatively bad at time

Harry (SE494): What is hypothesis testing? Common sense concepts – we learn mathematics of them, then forget about the concepts!

What is optimization?

Example 1: physics. Light travels in shortest path

Example 2: Al. Is our brain doing optimization?

Example 3: Operations of companies.

McKincy efficiency manual: to improve the efficiency, you need to optimize the process/allocation/etc.

Harry (SE494): What is hypothesis testing? Common sense concepts – we learn mathematics of them, then forget about the concepts!

What is optimization?

Example 1: physics. Light travels in shortest path

Example 2: Al. Is our brain doing optimization?

Example 3: Operations of companies.

McKincy efficiency manual: to improve the efficiency, you need to optimize the process/allocation/etc. - the representation of the process companies are relatively bad at this

Japanese companies are relatively bad at this.

What is Optimization (mathematically)

minimize
$$f(x)$$

subject to $x \in X$ (1)

- x: the decision variable (discrete, continuous)
- f: the objective function (differentiable, convex, linear...)
- X: the feasible region (convex, nonempty,...)

Key questions:

- When is the problem feasible?
- · Does the optimal solution exist?
- How to determine if a feasible x is an optimal solution?
- How to find an optimal solution? (not by exhaustive search)

How To Use Optimization

Questions

1 How to model the problem by optimization?

This is not just a math problem.

It's about understanding the core aspects, extract the key elements, figure out the logic.

This is the most challenging part, if you work for a company.

2 How to solve it? Focus of traditional optimization course.

It is hard to teach modeling, but we will provide examples to help a bit.

We will teach the methods. Knowing the methods is a great help for modeling.

How To Use Optimization

Regular Questions

- 1 Is my problem easy to solve? (if no, don't spend time on it!)
- 2 Which algorithm should I use?
- 3 How fast should I get my results?
- 4 How do I know that the answer from my computer run is global minimum?

Other Questions

- 1 My cost function is nondifferentiable, what should I do?
- Why does my algorithm become very very slow?

Each question may require a sub-area. Many of them unknown! But knowing the basics helps a lot.

Answer (partially): This course

The Main Topics to be Covered

- · Unconstrained Optimization
 - Optimality Conditions
 - @ Gradient/Newton's Methods
 - 3 Conjugate Gradient Method (optimal).
- Constrained Optimization
 - Optimality Conditions
 - 2 Descent Methods
 - 3 Conditional Gradient Method
 - 4 Block Coordinate Descent Method
- Lagrangian Multiplier Theory
 - Equality Constrained Problems
 - 2 Inequality Constrained Problems
 - 3 Linearly Constrained Problems

The Main Topics to be Covered (continued)

- Lagrangian Multiplier Method
 - Penalty Method
 - 2 Method of Multipliers
- Other Topics (if time permits)
 - Proximal gradient method
 - 2 Linear systems
 - 3 ADMM
 - Accelerated methods
- How to apply the knowledge? Applications in Machine Learning, Signal Processing, Communication and others will be discussed together as the course continues
- For more advanced topics such as mirror descent, smoothing techniques, stochastic optimization, online algorithms, see IE 598 - BIG DATA OPTIMIZATION. Niao He

Difference With Other Courses

Difference with other courses:

Linear programming course: focus on linear programming. Won't talk about general gradient methods in detail

Convex optimization: focus on convex problems, especially linear programming and conic programming. Not so much on nonlinear problems (most machine learning problems are nonlinear)

Machine learning course: won't talk about convergence issue, and constrained problems.

My comment: if you want to understand machine learning algorithms, this course is the best fit (as introductory)

Outline

- 1 Course Introduction
- 2 Optimization Background
- 3 Examples
- 4 Mathematical Review

Example 1: Regression Problem

1 Training data sets (n data points, a_i is the feature, and b_i is the label)

$$\{\mathbf{a}_i, b_i\}_{i=1,\dots,n}, \ \mathbf{a}_i \in \mathbb{R}^d, \ b_i \in \mathbb{R}$$

Objective: Learn a predictive function, characterized by $\mathbf{x} \in \mathbb{R}^d$, $x_0 \in \mathbb{R}$,

$$f(\mathbf{a}; \mathbf{x}) = \mathbf{x}^T \mathbf{a} + x_0 = \tilde{\mathbf{x}}^T \tilde{\mathbf{a}}, \text{ with } \tilde{\mathbf{x}} := [\mathbf{x}, x_0], \tilde{\mathbf{a}} := [\mathbf{a}, 1]$$

3 We have absorbed
$$x_0$$
 in x and augmenting \mathbf{a}_i 's with extra $1_{\underline{\hat{b}}_i}$ predict change \mathbf{b}
4 Use the cost function
$$\mathsf{Loss}(\mathbf{x}) = \underbrace{\frac{1}{2} \sum_{i=1}^n (\tilde{\mathbf{x}}^T \tilde{\mathbf{a}}_i - b_i)^2}_{\text{squared loss}} = \|\mathbf{A}^T \tilde{\mathbf{x}} - \mathbf{b}\|^2 \qquad (a_i, a_i, a_i, \cdots)$$

$$\mathsf{cd}_{\mathbf{x}} = \mathbf{a}_i \mathbf{b}_i$$

Minimize w.r.t. $\tilde{\mathbf{x}}$: $\tilde{\mathbf{x}}^* = (\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{A}\mathbf{b}$ (closed-form solution!)

Example 1: Regression Problem

- It is the basic regression model; the predicted quantities are numerical
- A lot of aspects (including modeling and algorithm) can be improved when the data matrix A becomes "large"

Example 1: Regression Problem

- What if we also want to select a few key features that are most important?
 LASSO.
- What if the data sets are arriving sequentially? online optimization/learning.
- What if the data sets are distributed at different locations? distributed optimization.
- What if the dimension of the variable is huge (x very long, lots of features), while the data is scarce (n is small)?
 Large-scale optimization.
- Why we are using the ℓ_2 loss? any other loss function?
- What if the relationship is nonlinear?
 neural networks, nonlinear least squares

Example 2: Classification

- Every email services have automatic spam detection mechanisms
- · The basic task is the following
 - 1 Given an excerpt of an email, represented by a vector a_i, where the elements can be words from the email
 - 2 Ask the question whether it is a spam or not $(b_i = +1, -1)$

- Training Stage: data set $\{\mathbf{a}_i,b_i\}_{i=1}^n,\,\mathbf{a}_i\in\mathbb{R}^d,\,b_i\in\{-1,\,+1\}$
- $b_i = +1$ (spam); $b_i = -1$ (regular)
- **Objective**: learn the classification function $f(\mathbf{a}; \mathbf{x}) = \operatorname{sgn}(\mathbf{x}^T \mathbf{a} + x_0)$, where sgn is the "sign function"
- · Testing stage
 - Given a feature vector a
 - 2 Plug in $f(\mathbf{a}; \mathbf{x})$
 - 3 Classify based on the sign (i.e., "+" as spam, "-" as regular)
- Suppose the training data are linearly separable (?)
- Task 1: Select two hyperplanes to separate the data points
- Task 2: Try to maximize their distance
- · What's a good formulation?

• Intuition: Find the separating plane that is far away from both classes

Formulation: Consider the following problem

$$\min_{\mathbf{x}} \quad \mathbf{x}^T \mathbf{x}$$
subject to $b_i(\mathbf{x}^T \mathbf{a}_i + x_0) \ge 1, \ \forall \ i$

- · One data point, one constraint
- The blue part says there is no classification error
- If $b_i = 1$ (is a spam), then $(\mathbf{x}^T \mathbf{a}_i + x_0) \ge 1$
- If $b_i = -1$ (regular), then $(\mathbf{x}^T \mathbf{a}_i + x_0) \le 1$

• Intuition: Find the separating plane that is far away from both classes

- This is one instance of the support vector machine (SVM) problem
- How about non-separable cases?
- How to solve the underlying optimization problem?
- · Directly or need some re-formulation?
- What if the decision boundary is nonlinear?
- Data comes in sequentially?
-

Example 3: Training Neural Networks (skip)

- Neural Networks, especially Deep Neural Networks (DNN) become increasingly popular for various machine learning tasks
- Lots of high-profile applications: "Google Brain" by Google, 2012
- 16,000 computer processors and 100 million images, 20,000 distinct items, look for cats; research paper can be found here
- A nice article about the history of DL and NN on here

Finding nonlinear classification boundary?

Figure: Nonlinear Classification [Wikipedia]

- **Input layer**: Each input one data point, K-dimensional: a_0, \dots, a_k
- Note: Here we have a single data point, a_k denotes its kth element

- **Hidden layer**: Each node, a nonlinear function *g* (tanh, sigmoid)
- Nonlinearly transform the inputs to outputs

$$z_d = g\left(\sum_{k=1}^K a_k x_{k,d}^{(1)}\right)$$

• Output layer: Each output node, a nonlinear function (sigmoid)

$$w_{\ell} = h\left(\sum_{d=0}^{D} z_d x_{d,\ell}^{(2)}\right)$$
, if binary classification, $L = 1$

- · What are the optimization variables here?
- How to setup the optimization problem?
- How to solve the resulting problem?

Example 3: Training Neural Network

- · What are the optimization variables here?
- · How to setup the optimization problem?
- How to solve the resulting problem?

Example 3: Training Neural Network

```
regression; b=a^{7}x^{2}
neurotret: b=W_{3}O(W_{2}O(W_{1}X)))
```

- What are the optimization variables here? W_1, W_2, W_3, \cdots
- · How to setup the optimization problem?
- · How to solve the resulting problem?

Outline

- 1 Course Introduction
- 2 Optimization Background
- 3 Examples
- 4 Mathematical Review

Overview

- 1 Notations: Sets, functions, derivatives, gradients
- 2 Vectors, matrices
- 3 Norms, sequences, limits, continuity
- Mean value theorems
- 6 Implicit function theorem
- 6 Contraction mappings
- Reference Appendix A, B of the textbook
- 8 Get yourself familiar with them

Notations

- **1** Sets: $X, x \in X, X_1 \cup X_2, X_1 \cap X_2$
- Inf and Sup:
 The supremum of a nonempty set $X \subset \mathbb{R}$ is the smallest scalar y: $y > x, \forall x \in X$

The infimum of a nonempty set $X \subset \mathbb{R}$ is the largest scalar y:

$$y \le x$$
, $\forall x \in X$

If $\sup X \in X$ (or, $\inf \in X$), then we say $\sup X = \max X$ (or, $\inf X = \min X$).

$$\sup\{1/n \mid n \ge 1\} = ?, \quad \inf\{x \in \mathbb{R} \mid 0 < x < 1\} = ?$$

Function:

 $f: X \to Y$, X is called the X is called the X

Monotonicity \longrightarrow Inverse function f^{-1} exists

Vectors

 χ

- **1 Vector**: a vector $\underline{\mathbf{x}} = [x_1, \dots, x_n]$ is a column of scalars
- **2 Linear combination**: if $\mathbf{x} = [x_1, \dots, x_n]$ and $\mathbf{y} = [y_1, \dots, y_n]$, then the linear combination is given by

$$\alpha \mathbf{x} + \beta \mathbf{y} = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \cdots, \alpha x_n + \beta y_n)$$

- **3** Inner product: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}' \mathbf{y} = \sum_{i=1}^{n} x_i y_i$
 - Question: when is inner product positive, negative, zero?
 - Orthogonality: $x \perp y$ iff (if and only if) $\angle x, y > =0$
- **4 Linearly Independent**: A set of vectors $\{x^1, \dots, x^r\}$ are linearly independent if there does not exist a $(\alpha_1, \dots, \alpha_r) \neq 0$ s.t.

Vectors

- 1 Basis and dimension of a subspace:
- 2 Orthogonal complement of a subspace *S*:

$$S^{\perp} := \{ \mathbf{x} \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0, \ \forall \ \mathbf{y} \in S \}$$

- **3 Vector norms**: A norm $\|\mathbf{x}\|$ on \mathbb{R}^n that assigns a scalar $\|\mathbf{x}\|$ to every $\mathbf{x} \in \mathbb{R}^n$ that satisfying
 - 1 $\|\mathbf{x}\| \ge 0$ for all \mathbf{x}
 - 2 $||c\mathbf{x}|| = |c|||\mathbf{x}||$ for all $c \in \mathbb{R}$ and all \mathbf{x}
 - **3** $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$
 - 4 $||x + y|| \le ||x|| + ||y||$ for all x, y
- 4 Measure some kind of "distance" | ength

Vectors

Common norms

Euclidean Norm:
$$\|\mathbf{x}\|_2 = (\mathbf{x}'\mathbf{x})^{1/2} = \sum_{i=1}^n \chi_i^2$$

$$\ell_p \text{ Norm: } \|\mathbf{x}\|_p = \left(\sum_{i=1}^n \chi_i^p\right)^{p} \text{ for some } p \ge 1$$

$$\ell_1 \text{ Norm: } \|\mathbf{x}\|_1 = \sum_{i=1}^n \chi_i^p$$

$$\ell_\infty \text{ Norm: } \|\mathbf{x}\|_\infty = \sum_{i=1}^n \chi_i^p$$

2 Cauchy-Schwartz inequality: $\langle x,y \rangle \leq \|x\|_2 \|y\|_2$ related: $\langle x,y \rangle \leq \|x\|_1 \|y\|_{\infty}$

Cauchy-Schwartz inequality

An important inequality about the inner product of two vectors is the Cauchy-Swartz inequality

- 1 Characterizes the inner product of two vectors with their norms
- 2 Given two vectors x and y of the same size, we have

$$\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$$

- 3 Why this is true? Geometrically?
- 4 Useful fact about inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \cos(\theta) \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$$

where θ is the angle between x and y

Matrices

- **1** For any matrix **A**, we use a_{ij} (or A_{ij}) to denote its (i, j)th entry.
- 2 Matrix addition, multiplication, transpose, symmetimal matrices $\mathbf{A} = \mathbf{A}'$.

$$[\mathbf{A}\mathbf{B}]' = \mathbf{B}'\mathbf{A}', \ \mathbf{A}\mathbf{B} \neq \mathbf{B}\mathbf{A}$$

- 3 Let A be a $m \times n$ matrix.
 - Range of A: $R(\mathbf{A}) = \{ \mathbf{A}\mathbf{x}, | \mathbf{x} \in \mathbb{R}^n \};$
 - Null space of A: $N(\mathbf{A}) = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = 0 \}$
 - Rank of A Rank(A). Full rank matrix A: Rank(A) = $\min\{m, n\}$.
- 4 Inner product:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{Tr}(\mathbf{A}\mathbf{B}') = \sum_{i,j} A_{ij} B_{ij}$$

where the trace operate is given by

$$Tr[\mathbf{A}] = \sum_{i=1}^{n} A_{ii}$$

Square Matrices

- **1** Square matrix (m = n); Identity matrix **I**
- 2 Determinant $det(\mathbf{A})$, inverse \mathbf{A}^{-1} . \mathbf{A}^{-1} exists iff $det(\mathbf{A}) \neq 0$
- 3 Useful identities: det(A) = det(A')
- 4 Orthogonal matrices: AA' = I
- **6** (Complex) Eigenvalue λ : $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq 0$
- Spectral radius $\rho(\mathbf{A}) = \max_i \{|\lambda_i|\}, \lambda_i$ is an eigenvalue of \mathbf{A} .

Square Matrices

Eigen-decomposition of a symmetric matrix:

$$\mathbf{A} = \mathbf{P}' \mathbf{\Lambda} \mathbf{P}$$

where **P** is orthonormal (P'P = I), Λ is diagonal and real.

2 Positive (semi-) definite matrix: A ≥ 0

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x}\geq0,\ \forall\ \mathbf{x}$$

- 3 Property: $\mathbf{A} \succeq 0$, $\mathbf{B} \succeq 0 \to \mathbf{A} + \mathbf{B} \succeq 0$; $\mathbf{A} \succeq \mathbf{B} \to \mathbf{A} \mathbf{B} \succeq 0$ All eigenvalue of \mathbf{A} are non-negative
- 4 Square root $A^{1/2}$: $A^{1/2} := P\sqrt{\Lambda}P$, where $A = P\Lambda P'$ is the eigen-decomposition of $A \succeq 0$.

A "generalization" of positive number for the scalars

Single Value Decomposition

Single value decomposition (SVD):

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}' \in \mathbb{R}^{m \times n},\tag{3}$$

- Σ ∈ ℝ^{m×n} rectangular diagonal matrix with diagonals
 σ₁ > σ₂ > · · · , σ_n > 0;
- $\mathbf{U} \in \mathbb{R}^{m \times m}$, $\mathbf{V} \in \mathbb{R}^{n \times n}$ orthonormal
- 2 Relationship of SVD and ED: σ_i^2 is an eigenvalue of AA' (Why?)

$$\mathbf{A}\mathbf{A}' = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}')(\mathbf{V}\mathbf{\Sigma}\mathbf{U}') = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}'$$

Condition number $\kappa(\mathbf{A}) = \sigma_1/\sigma_n$ very important for optimization!!

Matrices and Norms

Frobenious Norm :
$$\|\mathbf{A}\|_F = \left(\sum_{i,j} |A_{ij}|^2\right)^{1/2} = \left(\sum_{i} \sigma_i^2\right)^{1/2}$$
 (4)

Nuclear Norm:
$$\|\mathbf{A}\|_* = \sum_i \sigma_i$$
 (5)

Matrix 2-norm (spectral norm) :
$$\|\mathbf{A}\|_2 = \sup_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \max_i \sigma_i$$

$$= \|\mathbf{o}\|_{\infty}$$
 (6)

② Useful inequalities:

Relation between P(A) and II Alla. Praise 1 Arlang.

Derivatives

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously twice differentiable function.

1 Partial derivative (where e_i is the *i*th unit vector of \mathbb{R}^n)

$$\frac{\partial f(\mathbf{x})}{\partial x_i} := \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}_i) - f(\mathbf{x})}{t}$$

2 Gradient vector (a column vector) [example: $f(x) = \mathbf{a}^T \mathbf{x} - \mathbf{b}$]:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \cdots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)$$

Physical meaning of gradient?

of the function, and its magnitude is the slope of the graph, in that direction" = 200

Derivatives

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously twice differentiable function.

1 Partial derivative (where e_i is the *i*th unit vector of \mathbb{R}^n)

$$\frac{\partial f(\mathbf{x})}{\partial x_i} := \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}_i) - f(\mathbf{x})}{t}$$

② Gradient vector (a column vector) [example: $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} - \mathbf{b}$]:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \cdots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)$$

Physical meaning of gradient?

Wikipedia: "the gradient points in the direction of the greatest rate of increase of the function, and its magnitude is the slope of the graph in that direction"

Derivatives

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously twice differentiable function.

1 Hessian matrix:

$$\nabla^{2} f = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\nabla^{2} f = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\nabla^{2} f = \begin{bmatrix} \mathcal{J} & \mathcal{J} & \mathcal{J} \\ \mathcal{J} & \mathcal{J} & \mathcal{J} \end{bmatrix}$$

2 Taylor expansion:

$$f(\mathbf{y}) - f(\mathbf{x}) = \nabla f(\mathbf{x})'(\mathbf{y} - \mathbf{x}) + \frac{1}{2}(\mathbf{x} - \mathbf{y})' \nabla^2 f(\mathbf{x})(\mathbf{x} - \mathbf{y}) + o(\|\mathbf{x} - \mathbf{y}\|^2)$$

Practice:

$$f(x) = \sum_{i=1}^{n} a_{ij} x_i x_j.$$

Q1: How to compute the Hessian of $f(x) = x^T A x$?

Q2: How to compute the Hessian of $f(x,y) = \|M - xy^T\|_F^2$, where $x,y \in \mathbb{R}^n$?

Derivatives: Chain Rule

1 Scalar case: suppose $f,g:\mathbb{R}\to\mathbb{R}$ are functions, and f'(x) and g'(f(x)) exist, then $h(x)\triangleq g(f(x))$ satisfies

$$h'(x) = g'(f(x))f'(x).$$

2 Vector case: $f: \mathbb{R}^k \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^n$, and f'(x) and g'(f(x)) exist. Let $h(\mathbf{x}) = g(f(\mathbf{x}))$ (function composition), then

$$\nabla h(\mathbf{x}) = \nabla f(\mathbf{x}) \nabla g(f(\mathbf{x}))$$

Example:
$$g(z) = z^2/2$$
, $f(x) = Ax - b$, then $f(x) = \frac{1}{2} (f(x-b))^2$

$$\nabla \left(\frac{1}{2}\|\mathbf{A}\mathbf{x} - \mathbf{b}\|\widehat{\mathbf{Q}}\right) = \mathbf{A}'(\underbrace{\mathbf{A}\mathbf{x} - \mathbf{b}}_{}, \nabla^2 f(\mathbf{A}\mathbf{x}) = \mathbf{A}'\mathbf{A}$$

$$\left(\mathbf{A}\mathbf{x} + \mathbf{b}\right)' \geq \mathbf{A}^{\mathbf{P}}$$

Contraction Mapping

1 Lipschitzian Property: f: $\mathbb{R}^n \to \mathbb{R}^m$ satisfies

$$||f(\mathbf{x}) - f(\mathbf{y})|| \le \underline{\gamma} ||\mathbf{x} - \mathbf{y}||, \ \forall \ \mathbf{x}, \mathbf{y}$$

 γ is called the Lipschitz constant; the function is called γ -Lipschitz continuous $||f(x) - f(y)|| = ||2x - 2y|| \le 2^{-x} ||x - y||$

Example 1: f(x) = 2x is 2-Lipschitz continuous;

Example 1:
$$f(x) = 2x$$
 is 2-Lipschitz continuous;
Example 2: What about $f(x) = Ax$?

[1] The sum of the second of the second

____Example_3: What about $f(x) = x^2$?

- 2 If $\gamma < 1$, then f is called a non-expansive mapping
- 3 If $\gamma < 1$, then f is called a contraction mapping

Example 1: f(x) = 2x is not a contraction mapping; f(x) = 0.5x is.

Example 2:
$$f(x) = Ax$$
 is a contraction mapping iff $\|A\|_2 = \max_i G_i < 1$?

Fixed Point Theorem

$$\chi^0 = \chi$$
, $\chi' = f(\chi^0)$, $\chi^2 = f(\chi')$, $\chi^3 = f(\chi^3)$,...

1 Fixed point theorem: If f is a contraction mapping, then the iterated function sequence

$$\mathbf{x}, f(\mathbf{x}), f(f(\mathbf{x})), \cdots,$$

converges to a unique fixed point x^* (independent of x) satisfying

Con only converge to
$$x^* = f(x^*)$$
.

$$x^k \to x^{\infty}$$

$$x^{k+1} = f(x^k) \longrightarrow x^{\infty} = f(x^{\infty}).$$

Homework

- Getting yourself familiar with mathematical backgrounds
- 2 Reading: Appendix A of the textbook.