

A Statistical Approach for the Fusion of Data and Finite Element Analysis in Vibroacoustics

Final Presentation

Lucas Hermann, October 21, 2021

Content

- ObjectivesPrerequisites
- - FFM Solution
 - Modeling data
 - Gaussian Processes
- Bayesian Inference1D example
- - Setting
 - FFM solution
 - Inference
- 2D Helmholtz
 - Setting
 - FEM solution
 - Inference
- Outlook

Part I

Objectives

Objectives

statFEM:

 Merge FEM and data while quantifying uncertainty: Apply statFEM to an FEM solution to reduce the model error

Objectives

The goal of the thesis is:

- to understand statEFM
- to apply statFEM to vibroacoustics using the Helmholtz equation
- to provide a means to use sparse sensor data to improve the accuracy of an FEM solution
- to use a non-parametric approach to increase the accuracy of the solution without touching the FEM itself

Part II

Prerequisites

Prerequisites: Data

Statistical Model

The vector of measured data y can be described as a combination of different parts:

$$\mathbf{y} = \mathbf{z} + \mathbf{e} = \rho \mathbf{P} \mathbf{u} + \mathbf{d} + \mathbf{e} \tag{1}$$

z: The true solution

e: Measurement error

ho **Pu**: Scaled projected FEM solution

 $extbf{\emph{d}} \sim \mathcal{GP}(ar{ extbf{\emph{d}}}, extbf{\emph{C}}_{ extbf{\emph{d}}})$: Model mismatch error

Gaussian Processes:

A GP $u \sim \mathcal{GP}(\bar{u}, C_u)$ is a distribution of functions. It is defined by a mean \bar{u} and a covariance matrix C_u . It is basically just a multivariate Gaussian distribution.

Prerequisites: Gaussian Processes

Squared Exponential Kernel:

A kernel is a *covariance function*. It continuously describes the covariance between different points in the calculation domain and describes the expected behaviour of the approximated function.

$$k_{SE} = \sigma \exp\left(-\frac{||x - x'||^2}{2l^2}\right) \tag{2}$$

 σ : standard deviation

1: distance measure

Evaluating the kernel at a defined set of points (e.g. nodes in an FEM mesh) yields the covariance matrix.

Prerequisites: Bayesian Inference

Bayes' law:

Conditioning a distribution \boldsymbol{u} on data \boldsymbol{y} requires a prior for the distribution $p(\boldsymbol{u})$ and a likelihood for the data $p(\boldsymbol{y}|\boldsymbol{u})$.

$$p(\mathbf{u}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{u})p(\mathbf{u})}{p(\mathbf{y})}$$
(3)

The prior is the stochastic FEM solution.

The likelihood can be derived from the statistical model

 $(\mathbf{y} = \rho \mathbf{P} \mathbf{u} + \mathbf{d} + \mathbf{e})$ in which all components are Gaussian.

The marginal likelihood p(y) is the probability for the data averaged over all possible prior solutions.

Prerequisites: Bayesian Inference

Assuming the stochastic FEM solution to be a GP, the posterior GP can be infered using the statistical model for the data.

Inference of the posterior GP:

The posterior solution is going to be a GP:

$$\boldsymbol{u}_{|y} \sim \mathcal{GP}(\bar{\boldsymbol{u}}_{|y}, C_{u|y}).$$

$$\bar{\mathbf{u}}_{|y} = C_{\mathbf{u}|\mathbf{y}} \left(\rho P^{\mathsf{T}} (C_d + C_e)^{-1} y + C_u^{-1} \bar{\mathbf{u}} \right) \tag{4}$$

$$C_{u|y} = (\rho^2 P^{\mathsf{T}} (C_d + C_e)^{-1} P + C_u^{-1})^{-1}$$
 (5)

Using an optimization method, the hyperparameters for C_d are determined.

The statFEM procedure

Part III

Setting: 1D Poisson

To test the methods and code, the well-known Poisson example was solved in 1D.

Weak form:

The uncertainty is in the source term: $f \sim \mathcal{GP}(ar{f},\mathsf{C}_{\!f})$

$$-\int_{\Omega} \nabla p \cdot \nabla \nu \, \mathrm{d}x = \int_{\Omega} f \nu \, \mathrm{d}x \tag{6}$$

FEM solution: 1D Poisson

The FEM solution serves as a prior and is modeled as a GP with a mean and variance. Arbitrarily many samples can be drawn from it.

1 sensor, 1 observation

4 sensors, 1 observation each

4 sensors, 20 observations each

Only partial data available: FEM prior still determines overall shape

Setting: 2D Helmholtz

Weak form:

The uncertainty is in the boundary term.

$$-\int_{\Omega}\nabla p\cdot\nabla \nu\,\mathrm{d}\Omega+\oint_{\Gamma}\nu\nabla p\,\mathrm{d}\Gamma+\int_{\Omega}k^{2}p\nu\,\mathrm{d}\Omega=0\tag{7}$$

Neumann boundary:

$$\oint_{\Gamma_N} \nu(\rho\omega^2 \vec{\mathsf{D}} \vec{\mathsf{n}}) \, \mathrm{d}\Gamma$$

 \vec{D} : Piston displacement

1D boundary function D(y):

$$D \sim \mathcal{GP}(\bar{q}, C_a)$$

 Γ_{N0}

$$\Gamma_{N0}$$

FEM solution: 2D Helmholtz

The FEM solution serves as a prior and is modeled as a GP with a mean and variance. Arbitrarily many samples can be drawn from it.

Inferred solution: 2D Helmholtz, Variance fields

Variance drops with increasing number of sensors and/or number of observations

Inferred solution: 2D Helmholtz

1 sensor, 1 observation. Data "observed" on a 75% scaling of the FEM prior.

Inferred solution: 2D Helmholtz

4 sensors, 50 observations. Data "observed" on a 75% scaling of the FEM prior.

Part IV

Outlook