Tarea 15: Microprogramación de instrucciones del MC68HC11: Multiplicación Alumno: Alfonso Murrieta Villegas | Asignatura: Organización y Arquitectura de Computadoras

1 Realice la prueba de escritorio de la multiplicación para el caso en el que AccA = AccB= \$FF

	В	А	Q	Acciones
0	1111 1111 1111 1111 1111 1111 1111 1111	1111 1111 0000 0000 1111 1111 0111 1111	xxxx xxxx 1111 1111 1111 1111 1111 1111	$Q \leftarrow A, A \leftarrow 0$ $Q_0 = 1; A \leftarrow A + B$ Corrimiento de A y Q a la derecha $con Q_7 = A_0$ y $A_7 = Acarreo A + B$
1	1111 1111 1111 1111	0111 1110 1011 1111	1111 1111 0111 1111	$Q_0 = 1;$ $A \leftarrow A + B$ Corrimiento de A y Q a la derecha con $Q_7 = A_0$ y $A_7 = A$ carreo $A + B$
2	1111 1111 1111 1111	1011 1110 1101 1111	0111 1111 0011 1111	$Q_0 = 1;$ $A \leftarrow A + B$ Corrimiento de A y Q a la derecha con $Q_7 = A_0$ y $A_7 = A$ carreo $A + B$
3	1111 1111 1111 1111	1101 1110 1110 1111	0011 1111 0001 1111	$Q_0 = 1;$ $A \leftarrow A+B$ Corrimiento de A y Q a la derecha con $Q_7=A_0$ y $A_7=$ Acarreo $A+B$
4	1111 1111 1111 1111	1110 1110 1111 0111	0001 1111 0000 1111	$Q_0 = 1;$ $A \leftarrow A+B$ Corrimiento de A y Q a la derecha con $Q_7=A_0$ y $A_7=$ Acarreo A+B
5	1111 1111 1111 1111	1111 0110 1111 1011	0000 1111 0000 0111	$Q_0 = 1;$ $A \leftarrow A+B$ Corrimiento de A y Q a la derecha con $Q_7=A_0$ y $A_7=$ Acarreo $A+B$
6	1111 1111 1111 1111	1111 1010 1111 1101	0000 0111 0000 0011	$Q_0 = 1;$ $A \leftarrow A+B$ Corrimiento de A y Q a la derecha con $Q_7=A_0$ y $A_7=$ Acarreo $A+B$
7	1111 1111 1111 1111	1111 1100 1111 1110	0000 0011 0000 0001	$Q_0 = 1;$ $A \leftarrow A+B$ Corrimiento de A y Q a la derecha con $Q_7=A_0$ y $A_7=$ Acarreo $A+B$
	0000 0001	1111 1110	0000 0001	B ← Q
	Comprobance	lo resultado:	bin(0xff * 0xff) =	'0b11111110 <i>00000001</i> '

Tarea 16: Microprogramación de instrucciones del MC68HC11: Multiplicación Alumno: Alfonso Murrieta Villegas | Asignatura: Organización y Arquitectura de Computadoras

1. Determinar la tabla de verdad de la memoria de microprograma para la carta ASM de la multiplicación.

1) Asignación en las entradas

	K ₁	Κo
Q aux	0	0
\mathbf{Q}_0	0	1
FC	1	0
INT	1	1

2) Microinstrucciones

l ₁	lo	
0	0	Paso Continuo
0	1	Salto Condicional
1	0	Salto de Transformación
1	1	Salto por interrupción

3) Tabla de verdad

	Estado F	Presente			Li	ga		Mic instru	cro- icción	Prueba		VF
\mathbf{P}_3	P_2	\mathbf{P}_1	P_0	L_3	L_2	L_1	L_0	I_1	I_0	\mathbf{K}_1	K_0	VF
0	0	0	0	*	*	*	*	0	0	*	*	*
0	0	0	1	*	*	*	*	0	0	*	*	*
0	0	1	0	*	*	*	*	0	0	*	*	*
0	0	1	1	0	1	0	1	0	1	0	1	0
0	1	0	0	0	1	1	0	0	1	0	0	0
0	1	0	1	*	*	*	*	0	0	*	*	*
0	1	1	0	*	*	*	*	0	0	*	*	*
0	1	1	1	*	*	*	*	0	0	*	*	*
1	0	0	0	0	0	1	1	0	1	1	0	0
1	0	0	1	*	*	*	*	0	0	*	*	*
1	0	1	0	0	0	0	0	0	1	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0
1	1	*	*	0	0	0	0	0	0	0	0	0

A continuación, las salidas:

NOTA: Para los negados se empleó la siguiente notación ()- Donde todo lo negado va dentro de los paréntesis

E A	E A	(W A)-	E B	E B	W B-	UP A9	UP A8	UP A7	UP A6	UP A5	UP A4	UP A3	UP	UP A1	UP A0	(DU PA)-	(OEU PA)-
1	0	Aj-	1	0	D-	AS	Ao	A	Ab	АЭ	A4	AS	A2	AI	AU	PAJ-	PAJ-
1	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1
0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	1	1
0	1	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0
0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
1	1	1	1	1	1	0	0	1	0	0	0	0	0	0	1	1	1
1	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1
0	0	1	0	0	1	1	0	1	0	0	0	0	0	0	0	1	1
0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	1	1
0	1	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0
0	0	1	0	0	1	0	0	1	0	1	1	0	0	1	0	1	1
0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1
0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1