Forecasting Unit Sales (Task 1)

```
In [98]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from datetime import datetime
    import xgboost as xgb
    from sklearn.metrics import mean_squared_error
    from sklearn.model_selection import train_test_split, GridSearchCV
    import warnings
    warnings.filterwarnings('ignore')

color_pal = sns.color_palette()
%matplotlib inline

In [99]: train_df = pd.read_csv('train.csv')
    test_df = pd.read_csv('test.csv')
```

Step 1: Data Loading and Initial Inspection (Training Data)

```
In [100... train_df.head()
```

about:srcdoc Page 1 of 33

Out[100...

	ID	date	Item Id	Item Name	ad_spend	anarix_id	units
0	2022-04- 12_B09KDTS4DC	2022- 04-12	B09KDTS4DC	NapQueen Elizabeth 8" Gel Memory Foam Mattress	NaN	NAPQUEEN	0.0
1	2022-04- 12_B09MR2MLZH	2022- 04-12	B09MR2MLZH	NapQueen 12 Inch Bamboo Charcoal Queen Size Me	NaN	NAPQUEEN	0.0
2	2022-04- 12_B09KSYL73R	2022- 04-12	B09KSYL73R	NapQueen Elsa 8" Innerspring Mattress, Twin XL	NaN	NAPQUEEN	0.0
3	2022-04- 12_B09KT5HMNY	2022- 04-12	B09KT5HMNY	NapQueen Elsa 6" Innerspring Mattress, Twin	NaN	NAPQUEEN	0.0
4	2022-04- 12_B09KTF8ZDQ	2022- 04-12	B09KTF8ZDQ	NapQueen Elsa 6" Innerspring Mattress, Twin XL	NaN	NAPQUEEN	0.0

In [101... train_df.tail()

Out[101...

	ID	date	Item Id	Item Name	ad_spend	anarix_id	uni
101485	2024-05- 31_B0CR4BGLK5	2024- 05-31	B0CR4BGLK5	NaN	604.73	NAPQUEEN	Na
101486	2024-05- 31_B0CR4BG4ZW	2024- 05-31	B0CR4BG4ZW	NaN	261.21	NAPQUEEN	2
101487	2024-05- 31_B0CR49NR3B	2024- 05-31	B0CR49NR3B	NaN	0.00	NAPQUEEN	Nε
101488	2024-05- 31_B0CR49N6MQ	2024- 05-31	B0CR49N6MQ	NaN	0.00	NAPQUEEN	Na
101489	2024-05- 31_B0CR4BK4FW	2024- 05-31	B0CR4BK4FW	NaN	0.00	NAPQUEEN	Nε

In [102... train_df.info()

about:srcdoc Page 2 of 33

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 101490 entries, 0 to 101489
Data columns (total 8 columns):
     Column
                Non-Null Count
                                  Dtype
 0
     ID
                 101490 non-null
                                 object
 1
     date
                 101490 non-null
                                 object
 2
     Item Id
                 101488 non-null
                                 object
     Item Name
 3
                 99658 non-null
                                 object
 4
     ad_spend
                77303 non-null
                                  float64
 5
     anarix_id
                101490 non-null object
6
     units
                 83592 non-null
                                  float64
7
     unit_price 101490 non-null float64
dtypes: float64(3), object(5)
memory usage: 6.2+ MB
```

In [103... train_df.describe()

Out[103...

	ad_spend	units	unit_price
count	77303.000000	83592.000000	101490.000000
mean	110.771470	10.284381	106.750922
std	529.303777	68.945915	425.704733
min	0.000000	-173.000000	-8232.000000
25%	0.000000	0.000000	0.000000
50%	4.230000	1.000000	0.000000
75%	44.310000	5.000000	0.000000
max	47934.990000	9004.000000	21557.390000

```
In [104... train_df.isnull().sum()
Out[104...
          ID
                             0
          date
                             0
          Item Id
                             2
          Item Name
                          1832
          ad_spend
                         24187
          anarix_id
                             0
          units
                         17898
          unit_price
                             0
          dtype: int64
          print("Unique values in 'ID':", train_df['ID'].nunique())
In [105...
          print("Unique values in 'Item Id':", train_df['Item Id'].nunique())
          print("Unique values in 'Item Name':", train_df['Item Name'].nunique())
        Unique values in 'ID': 101490
        Unique values in 'Item Id': 217
```

about:srcdoc Page 3 of 33

Unique values in 'Item Name': 199

Step 2: Data Loading and Initial Inspection (Testing Data)

In [106... test_df.head()

Out [106...

	ID	date	Item Id	Item Name	ad_spend	anarix_id	unit_
0	2024-07- 01_B09KDR64LT	2024- 07-01	B09KDR64LT	NapQueen Elizabeth 10" Gel Memory Foam Mattres	NaN	NAPQUEEN	
1	2024-07- 01_B09KDTS4DC	2024- 07-01	B09KDTS4DC	NapQueen Elizabeth 8" Gel Memory Foam Mattress	NaN	NAPQUEEN	
2	2024-07- 01_B09KDTHJ6V	2024- 07-01	B09KDTHJ6V	NapQueen Elizabeth 12" Gel Memory Foam Mattres	NaN	NAPQUEEN	
3	2024-07- 01_B09KDQ2BWY	2024- 07-01	B09KDQ2BWY	NapQueen Elizabeth 12" Gel Memory Foam Mattres	NaN	NAPQUEEN	
4	2024-07- 01_B09KDYY3SB	2024- 07-01	B09KDYY3SB	NapQueen Elizabeth 10" Gel Memory Foam Mattres	101.72	NAPQUEEN	10

In [107... test_df.tail()

about:srcdoc Page 4 of 33

Out[107...

	ID	date	Item Id	Item Name	ad_spend	anarix_id	uı
2828	2024-07- 28_B0BRCW2B64	2024- 07-28	B0BRCW2B64	NapQueen Anula Green Tea 12'', Queen	11.78	NAPQUEEN	
2829	2024-07- 28_B0CFV6V981	2024- 07-28	B0CFV6V981	NaN	1.17	NAPQUEEN	
2830	2024-07- 28_B0BNL5BKMK	2024- 07-28	B0BNL5BKMK	NapQueen 2'' Bamboo Charcoal Mattress Topper,	0.00	NAPQUEEN	
2831	2024-07- 28_B0CR49BQRS	2024- 07-28	B0CR49BQRS	NaN	1.87	NAPQUEEN	
2832	2024-07- 28_B0CY5QQ49F	2024- 07-28	B0CY5QQ49F	NaN	1.45	NAPQUEEN	

In [108... test_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2833 entries, 0 to 2832 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype					
0	ID	2833 non-null	object					
1	date	2833 non-null	object					
2	Item Id	2833 non-null	object					
3	Item Name	2489 non-null	object					
4	ad_spend	1382 non-null	float64					
5	anarix_id	2833 non-null	object					
6	unit_price	2833 non-null	float64					
4+,,,,	dt_{MBOS} , $floot64(2)$, $object(E)$							

dtypes: float64(2), object(5)

memory usage: 155.1+ KB

In [109... test_df.describe()

about:srcdoc Page 5 of 33

```
Out [109...
                     ad_spend
                                   unit_price
          count
                  1382.000000
                                2833.000000
           mean
                    198.838032
                                   98.725873
             std
                    797.354508
                                  383.585307
            min
                      0.000000
                               -1988.180000
           25%
                      0.730000
                                    0.000000
           50%
                     39.200000
                                    0.000000
           75%
                    156.012500
                                    0.000000
            max 18724.850000
                                6870.000000
```

```
In [110... test_df.isnull().sum()
Out [110... ID
                            0
          date
                            0
          Item Id
                            0
          Item Name
                          344
          ad_spend
                         1451
          anarix_id
                            0
          unit price
                            0
          dtype: int64
In [111...
          print("\nUnique values in 'Item Id':", test_df['Item Id'].nunique())
          print("Unique values in 'Item Name':", test_df['Item Name'].nunique())
        Unique values in 'Item Id': 155
        Unique values in 'Item Name': 142
```

STEP 3: DATA PRE PROCESSING

about:srcdoc Page 6 of 33

```
train df['missing name'] = train df['Item Name'].apply(lambda x: 1 if x =
In [117...
         print("Rows in dataset after cleaning:", len(train_df))
         print("\nMissing values after cleaning:")
         print(train_df.isnull().sum())
         print("\nDataset info after cleaning:")
         train df.info()
        Rows in dataset after cleaning: 101488
        Missing values after cleaning:
        date
                        0
        Item Id
                        0
        Item Name
        ad_spend
        anarix id
                        0
        units
        unit_price
                        0
        missing_name
                        0
        dtype: int64
        Dataset info after cleaning:
        <class 'pandas.core.frame.DataFrame'>
        Index: 101488 entries, 62967 to 101466
        Data columns (total 9 columns):
         #
             Column
                           Non-Null Count
                                             Dtype
         0
             ID
                           101488 non-null
                                             object
         1
                           101488 non-null datetime64[ns]
             date
         2
             Item Id
                           101488 non-null object
         3
             Item Name
                           101488 non-null object
                           101488 non-null float64
         4
             ad spend
         5
             anarix id
                           101488 non-null
                                             obiect
         6
             units
                           101488 non-null float64
         7
                           101488 non-null float64
             unit_price
             missing_name 101488 non-null int64
         8
        dtypes: datetime64[ns](1), float64(3), int64(1), object(4)
        memory usage: 7.7+ MB
In [118...
         print("\nBasic statistics after cleaning:")
         print(train df.describe())
```

```
about:srcdoc Page 7 of 33
```

Basic statistics after cleaning:

424.513596

```
date
                                              ad_spend
                                                                 units
                                                        101488.000000
                                101488
                                        101488.000000
count
mean
       2023-07-09 19:09:44.297651200
                                            84.374182
                                                             8.511105
                  2022-04-12 00:00:00
min
                                              0.000000
                                                             0.000000
                  2023-02-26 00:00:00
25%
                                              0.000000
                                                             0.000000
50%
                  2023-07-16 00:00:00
                                             0.720000
                                                             0.000000
75%
                  2023-12-13 00:00:00
                                            21.642500
                                                             3.000000
max
                  2024-05-31 00:00:00
                                         47934.990000
                                                          9004.000000
std
                                           464.354660
                                                            62.680788
                                   NaN
          unit_price
                        missing_name
       101488.000000
                       101488.000000
count
          107.256203
mean
                            0.018032
min
            0.000000
                            0.000000
25%
            0.000000
                            0.000000
50%
            0.000000
                            0.000000
75%
            0.000000
                            0.000000
        21557.390000
                            1.000000
max
```

0.133067

In [119... # CLEANING TEST DATA

In [120... test_df.head()

std

about:srcdoc Page 8 of 33

Out[120	ID	date	Item Id	Item Name	ad_spend	anarix_id	unit_
	o 2024-07- 01_B09KDR64LT	2024- 07-01	B09KDR64LT	NapQueen Elizabeth 10" Gel Memory Foam Mattres	NaN	NAPQUEEN	
	2024-07- 1 01_B09KDTS4DC	2024- 07-01	B09KDTS4DC	NapQueen Elizabeth 8" Gel Memory Foam Mattress	NaN	NAPQUEEN	
	2024-07- 01_B09KDTHJ6V	2024- 07-01	B09KDTHJ6V	NapQueen Elizabeth 12" Gel Memory Foam Mattres	NaN	NAPQUEEN	
	3 2024-07- 01_B09KDQ2BWY	2024- 07-01	B09KDQ2BWY	NapQueen Elizabeth 12" Gel Memory Foam Mattres	NaN	NAPQUEEN	
	2024-07- 01_B09KDYY3SB	2024- 07-01	B09KDYY3SB	NapQueen Elizabeth 10" Gel Memory Foam Mattres	101.72	NAPQUEEN	10
In [121	test_df['date'] =	pd.to_d	datetime(test_	_df['date'])		
In [122	test_df['ad_spend'] = tes	st_df['ad_sper	nd'].fillna	a(0)		
In [123	test_df['Item Name	e'] = te	est_df['Item N	Name'].fil	.na('Unkno	wn')	
In [124	4 test_df['unit_price'] = test_df['unit_price'].clip(lower=0)						
	test_df['missing_n	ame'] =	test_df['Ite	em Name'].a	apply(lamb	da x: 1 if	x ==
In [125	<pre>print("Rows in dat print("\nMissing v print(test_df.isnu print("\nDataset i test_df.info()</pre>	alues a	after cleaning um())	g:")	st_df))		

about:srcdoc Page 9 of 33

02/08/24, 22:18 Forecasting_Task_1

Rows in dataset after cleaning: 2833

Missing values after cleaning: ID date 0 Item Id 0 0 Item Name ad_spend 0 anarix_id 0

0

missing_name dtype: int64

unit_price

Dataset info after cleaning: <class 'pandas.core.frame.DataFrame'>

RangeIndex: 2833 entries, 0 to 2832

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype						
0	ID	2833 non-null	object						
1	date	2833 non-null	datetime64[ns]						
2	Item Id	2833 non-null	object						
3	Item Name	2833 non-null	object						
4	ad_spend	2833 non-null	float64						
5	anarix_id	2833 non-null	object						
6	unit_price	2833 non-null	float64						
7	missing_name	2833 non-null	int64						
<pre>dtypes: datetime64[ns](1), float64(2), int64(1), object(4)</pre>									
momo	momory usago, 177 21 VP								

```
In [126... print("\nBasic statistics after cleaning:")
         print(test_df.describe())
```

Basic statistics after cleaning:

memory usage: 177.2+ KB

	date	ad_spend	unit_price	missing_n
ame				
count	2833	2833.000000	2833.000000	2833.000
000				
mean	2024-07-13 16:54:33.420402176	96.997586	100.667754	0.121
426				
min	2024-07-01 00:00:00	0.000000	0.000000	0.000
000	2024 07 07 00 00			
25%	2024-07-07 00:00:00	0.000000	0.000000	0.000
000	2024 07 14 00 00 00	0.00000	0 000000	0.000
50%	2024-07-14 00:00:00	0.000000	0.000000	0.000
000	2024 07 20 00.00.00	26 02000	0 000000	0 000
75%	2024-07-20 00:00:00	36.030000	0.000000	0.000
000	2024-07-28 00:00:00	18724.850000	6870.000000	1.000
max 000	2024-07-28 00.00.00	10/24.030000	0070.000000	1.000
std	NaN	565,607189	379.505541	0.326
679	Ivaiv	303.007109	3/9:303341	0.320
0/3				

about:srcdoc Page 10 of 33

STEP 4: EDA (Exploratory Data Analysis)

```
In [127... # Basic info
    print("Train dataset shape:", train_df.shape)
    print("Test dataset shape:", test_df.shape)

print("\nTrain dataset columns:")
    print(train_df.columns)
    print("\nTest dataset columns:")
    print(test_df.columns)

print("\nTrain dataset info:")
    train_df.info()

print("\nTest dataset info:")
    test_df.info()
```

about:srcdoc Page 11 of 33

```
Train dataset shape: (101488, 9)
       Test dataset shape: (2833, 8)
       Train dataset columns:
       Index(['ID', 'date', 'Item Id', 'Item Name', 'ad_spend', 'anarix_id', 'uni
       ts',
              'unit price', 'missing name'],
             dtype='object')
       Test dataset columns:
       dtype='object')
       Train dataset info:
       <class 'pandas.core.frame.DataFrame'>
       Index: 101488 entries, 62967 to 101466
       Data columns (total 9 columns):
        #
            Column
                        Non-Null Count
                                         Dtype
        0
            ID
                         101488 non-null object
        1
            date
                         101488 non-null datetime64[ns]
        2
            Item Id
                         101488 non-null object
            Item Name
        3
                         101488 non-null object
        4
            ad_spend
                         101488 non-null float64
        5
            anarix_id
                         101488 non-null object
        6
                         101488 non-null float64
            units
                         101488 non-null float64
        7
            unit_price
            missing_name 101488 non-null int64
       dtypes: datetime64[ns](1), float64(3), int64(1), object(4)
       memory usage: 7.7+ MB
       Test dataset info:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 2833 entries, 0 to 2832
       Data columns (total 8 columns):
                         Non-Null Count Dtype
        #
            Column
        0
            ID
                         2833 non-null
                                        object
        1
                         2833 non-null
                                        datetime64[ns]
            date
        2
            Item Id
                         2833 non-null
                                        object
        3
            Item Name
                         2833 non-null object
        4
            ad spend
                         2833 non-null float64
        5
                         2833 non-null
            anarix_id
                                        object
            unit_price
                         2833 non-null float64
        7
            missing_name 2833 non-null
                                        int64
        dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
       memory usage: 177.2+ KB
In [128... print(train_df.describe())
         # Check for missing values
         print(train_df.isnull().sum())
         print(test_df.isnull().sum())
```

about:srcdoc Page 12 of 33

```
date
                                                      ad_spend
                                                                         units
        count
                                         101488
                                                 101488.000000
                                                                 101488.000000
                2023-07-09 19:09:44.297651200
                                                     84.374182
        mean
                                                                      8.511105
        min
                           2022-04-12 00:00:00
                                                      0.000000
                                                                      0.000000
        25%
                           2023-02-26 00:00:00
                                                      0.000000
                                                                      0.000000
        50%
                           2023-07-16 00:00:00
                                                      0.720000
                                                                      0.000000
        75%
                           2023-12-13 00:00:00
                                                     21.642500
                                                                      3.000000
                                                                   9004.000000
                           2024-05-31 00:00:00
                                                  47934.990000
        max
        std
                                           NaN
                                                    464.354660
                                                                     62,680788
                   unit price
                                 missing name
                                101488.000000
         count
                101488.000000
                   107.256203
                                     0.018032
        mean
                     0.000000
                                     0.000000
        min
        25%
                     0.000000
                                     0.000000
        50%
                     0.000000
                                     0.000000
        75%
                     0.000000
                                     0.000000
        max
                 21557.390000
                                     1.000000
        std
                   424.513596
                                     0.133067
        ID
                          0
        date
                          0
        Item Id
                          0
        Item Name
                          0
        ad spend
                          0
        anarix_id
                          0
        units
                          0
                          0
        unit_price
        missing_name
                          0
        dtype: int64
        ID
                          0
        date
                          0
        Item Id
                          0
                          0
        Item Name
        ad_spend
                          0
                          0
        anarix_id
        unit_price
                          0
        missing_name
                          0
        dtype: int64
          train_df['date'] = pd.to_datetime(train_df['date'])
In [129...
          test_df['date'] = pd.to_datetime(test_df['date'])
          plt.figure(figsize=(15,5))
          plt.plot(train df.groupby('date')['units'].sum(), color='teal', linestyle
          plt.title('Total Units Sold Over Time', fontsize=16)
          plt.xlabel('Date', fontsize=14)
          plt.ylabel('Total Units Sold', fontsize=14)
          plt.grid(True)
          plt.show()
```

about:srcdoc Page 13 of 33


```
In [130... #seasonality
         train_df['month'] = train_df['date'].dt.month
          train_df['day_of_week'] = train_df['date'].dt.dayofweek
          plt.figure(figsize=(12,5))
          sns.boxplot(x='month', y='units', data=train_df, palette='Blues')
          plt.title('Monthly Sales Distribution', fontsize=16)
         plt.xlabel('Month', fontsize=14)
          plt.ylabel('Units Sold', fontsize=14)
          plt.grid(True)
          plt.show()
          plt.figure(figsize=(12,5))
          sns.boxplot(x='day_of_week', y='units', data=train_df, palette='coolwarm'
          plt.title('Day of Week Sales Distribution', fontsize=16)
          plt.xlabel('Day of Week', fontsize=14)
          plt.ylabel('Units Sold', fontsize=14)
          plt.grid(True)
          plt.show()
```


about:srcdoc Page 14 of 33


```
In [131... # correlation analysis
    corr = train_df[['ad_spend', 'units', 'unit_price']].corr()
    sns.heatmap(corr, annot=True)
    plt.title('Correlation Heatmap')
    plt.show()
```



```
#item analysis
#top selling items
top_items = train_df.groupby('Item Id')['units'].sum().nlargest(10)
print("Top 10 selling items:", top_items)
```

about:srcdoc Page 15 of 33

```
#items with highest ad spend
         top_ad_spend = train_df.groupby('Item Id')['ad_spend'].sum().nlargest(10)
         print("\nTop 10 items by ad spend:", top_ad_spend)
        Top 10 selling items: Item Id
        B09KT5HMNY
                      102149.0
        B0BGDWGRQB
                        99586.0
        B09MR3Y296
                       82697.0
        B09MR4B13C
                       78548.0
        B0BGDX2Z3L
                       33810.0
        B09KTMKDKJ
                       31790.0
        B0BRCYONSW
                       26531.0
        B09MR3XT5G
                       21815.0
        B0B699PLXD
                       21622.0
        B0BGDZLDX2
                       20691.0
        Name: units, dtype: float64
        Top 10 items by ad spend: Item Id
        B09KT5HMNY
                      851785.25
                      607033.59
        B09MR4B13C
                      548484.97
        B09MR3Y296
        B0BRCYQNSW
                      434229.75
        B09KTF8ZDQ
                      336946.80
        B09KTMKDKJ
                      266972.17
                      262212.18
        B0BGDWGRQB
        B09KDZQJ6P
                      255192.82
        B0B69B8R3C
                      247132.75
        B09MR3XT5G
                      227750.13
        Name: ad_spend, dtype: float64
In [133... #horizontal bar graph for top selling items
         plt.figure(figsize=(8, 4))
         plt.barh(top_items.index, top_items.values, color='skyblue')
         plt.xlabel('Total Units Sold')
         plt.ylabel('Item Id')
         plt.title('Top 10 Selling Items')
         plt.gca().invert yaxis() # Invert y-axis to display top item at the top
         plt.grid(axis='x', linestyle='--', alpha=0.6)
         plt.tight layout()
         plt.show()
         #horizontal bar graph for items with highest ad spend
         plt.figure(figsize=(8, 4))
         plt.barh(top_ad_spend.index, top_ad_spend.values, color='lightgreen')
         plt.xlabel('Total Ad Spend')
         plt.ylabel('Item Id')
         plt.title('Top 10 Items by Ad Spend')
         plt.gca().invert_yaxis() # Invert y-axis to display top item at the top
         plt.grid(axis='x', linestyle='--', alpha=0.6)
         plt.tight_layout()
         plt.show()
```

about:srcdoc Page 16 of 33


```
In [134... #unitprice over time (train and test split)

train_df['date'] = pd.to_datetime(train_df['date'])

fig, ax = plt.subplots(figsize=(15, 5))
    train_df.plot(x='date', y='unit_price', ax=ax, label='Training Set', colo
    test_df.plot(x='date', y='unit_price', ax=ax, label='Test Set', color='or
    ax.axvline(pd.Timestamp('2024-07-01'), color='black', linestyle='--')
    ax.set_title('Unit Price Over Time: Train/Test Split')
    ax.set_ylabel('Unit Price')
    ax.legend(['Training Set', 'Test Set','Train/Test Split'])

plt.show()
```

about:srcdoc Page 17 of 33

STEP 5: FEATURE CREATION

```
In [135... print(train_df.columns)
        Index(['ID', 'date', 'Item Id', 'Item Name', 'ad_spend', 'anarix_id', 'uni
        ts',
                'unit_price', 'missing_name', 'month', 'day_of_week'],
              dtype='object')
In [136... print(test_df.columns)
        Index(['ID', 'date', 'Item Id', 'Item Name', 'ad_spend', 'anarix_id',
                'unit_price', 'missing_name'],
              dtype='object')
In [137... train_df['date'] = pd.to_datetime(train_df['date'])
         test_df['date'] = pd.to_datetime(test_df['date'])
In [138... def create features(df):
              if 'date' not in df.columns:
                  raise ValueError("DataFrame must contain a 'date' column")
              df['date'] = pd.to_datetime(df['date'])
              df['day_of_week'] = df['date'].dt.dayofweek
              df['month'] = df['date'].dt.month
              df['quarter'] = df['date'].dt.quarter
              df['year'] = df['date'].dt.year
              df['is_weekend'] = df['day_of_week'].isin([5, 6]).astype(int)
              return df
          train_df = create_features(train_df)
In [139... train_df = create_features(train_df)
          test_df = create_features(test_df)
In [140... features = ['day_of_week', 'month', 'quarter', 'year', 'is_weekend']
```

about:srcdoc Page 18 of 33

```
In [141... print(train_df.columns)
        Index(['ID', 'date', 'Item Id', 'Item Name', 'ad_spend', 'anarix_id', 'uni
        ts',
                'unit_price', 'missing_name', 'month', 'day_of_week', 'quarter', 'y
        ear',
                'is weekend'],
              dtype='object')
In [142... print(test df.columns)
        Index(['ID', 'date', 'Item Id', 'Item Name', 'ad spend', 'anarix id',
                'unit_price', 'missing_name', 'day_of_week', 'month', 'quarter', 'y
        ear',
                'is_weekend'],
              dtvpe='object')
In [143... column to drop = ['ad spend']
         train_df = train_df.drop(columns=column_to_drop, errors='ignore')
          test_df = test_df.drop(columns=column_to_drop, errors='ignore')
          print(f"Train dataset shape: {train df.shape}")
          print(f"Test dataset shape: {test_df.shape}")
        Train dataset shape: (101488, 13)
        Test dataset shape: (2833, 12)
In [144... print("Shape of dataset after feature engineering:", train_df.shape)
          print("\nNew features added:")
          print(train_df[['month', 'day_of_week', 'quarter', 'year',
                 'is weekend']].head())
        Shape of dataset after feature engineering: (101488, 13)
        New features added:
               month
                      day_of_week quarter
                                             year is_weekend
        62967
                    9
                                             2023
                                                             0
                                                             0
        65359
                   10
                                 1
                                          4
                                             2023
        69206
                                 3
                                            2023
                                                             0
                   11
                                          4
        767
                    5
                                 3
                                          2
                                            2022
                                                             0
                    5
                                 4
        812
                                          2 2022
                                                             0
In [145... train_df.info()
```

about:srcdoc Page 19 of 33

02/08/24, 22:18 Forecasting_Task_1

> <class 'pandas.core.frame.DataFrame'> Index: 101488 entries, 62967 to 101466

Data columns (total 13 columns): # Column Non-Null Count

#	Column	Non–Nu	ll Count	итуре
0	ID	101488	non-null	object
1	date	101488	non-null	<pre>datetime64[ns]</pre>
2	Item Id	101488	non-null	object
3	Item Name	101488	non-null	object
4	anarix_id	101488	non-null	object
5	units	101488	non-null	float64
6	unit_price	101488	non-null	float64
7	missing_name	101488	non-null	int64
8	month	101488	non-null	int32
9	day_of_week	101488	non-null	int32
10	quarter	101488	non-null	int32
11	year	101488	non-null	int32
12	is_weekend	101488	non-null	int64
		F 7 / - \	/	- \

dtypes: datetime64[ns](1), float64(2), int32(4), int64(2), object(4)

memory usage: 9.3+ MB

In [146... train_df.describe()

Out [146...

		date	units	unit_price	missing_name	
	count	101488	101488.000000	101488.000000	101488.000000	101488.0
	mean	2023-07-09 19:09:44.297651200	8.511105	107.256203	0.018032	6.0
	min	2022-04-12 00:00:00	0.000000	0.000000	0.000000	1.C
	25%	2023-02-26 00:00:00	0.000000	0.000000	0.000000	3.0
	50%	2023-07-16 00:00:00	0.000000	0.000000	0.000000	6.0
	75%	2023-12-13 00:00:00	3.000000	0.000000	0.000000	9.0
	max	2024-05-31 00:00:00	9004.000000	21557.390000	1.000000	12.0
	std	NaN	62.680788	424.513596	0.133067	3.4

In [147... train_df.isnull().sum()

about:srcdoc Page 20 of 33

```
Out[147...
          ID
                           0
          date
                           0
          Item Id
          Item Name
                           0
                           0
          anarix id
                           0
          units
          unit_price
                           0
                           0
          missing_name
          month
                           0
          day_of_week
                           0
          quarter
                           0
                           0
          year
          is_weekend
                           0
          dtype: int64
In [148... test_df.isnull().sum()
Out [148...
          ID
                           0
          date
                           0
          Item Id
                           0
          Item Name
                           0
          anarix_id
                           0
          unit_price
                           0
                           0
          missing_name
          day_of_week
                           0
          month
                           0
          quarter
          year
                           0
                           0
          is weekend
          dtype: int64
          print("Shape of dataset after feature engineering:", train_df.shape)
In [149...
          print("\nNew features added:")
          print(train_df[['month', 'day_of_week', 'quarter', 'year',]].head())
         Shape of dataset after feature engineering: (101488, 13)
         New features added:
                month
                       day_of_week
                                     quarter
                                               year
         62967
                    9
                                  0
                                            3
                                               2023
         65359
                   10
                                  1
                                            4
                                               2023
                                  3
         69206
                   11
                                            4
                                               2023
                    5
                                  3
                                            2
                                               2022
         767
         812
                    5
                                  4
                                            2
                                               2022
In [150...
          print("Shape of dataset after feature engineering:", test_df.shape)
          print("\nNew features added:")
          print(test_df[['month', 'day_of_week', 'quarter', 'year',
                  'is_weekend']].head())
```

about:srcdoc Page 21 of 33

Shape of dataset after feature engineering: (2833, 12)

```
New features added:
   month day_of_week quarter year
                                      is_weekend
                               2024
                             3 2024
1
       7
                    0
                                               0
2
       7
                    0
                             3 2024
                                               0
3
       7
                             3 2024
                    0
                                               0
       7
                    0
                             3 2024
                                               0
```

STEP 6: MODEL SELECTION

```
In [151... train_df['date'] = pd.to_datetime(train_df['date'])
  test_df['date'] = pd.to_datetime(test_df['date'])
```

b. XGBoost

```
In [152... print(train_df.columns)
        Index(['ID', 'date', 'Item Id', 'Item Name', 'anarix_id', 'units',
                'unit_price', 'missing_name', 'month', 'day_of_week', 'quarter', 'y
        ear'.
                'is weekend'],
               dtype='object')
In [153... print(test_df.columns)
        Index(['ID', 'date', 'Item Id', 'Item Name', 'anarix_id', 'unit_price',
                'missing_name', 'day_of_week', 'month', 'quarter', 'year',
                'is_weekend'],
               dtype='object')
In [154... # Separate features and target variable from training data
         X_train = train_df[features]
          y_train = train_df['units']
In [155... X_test = test_df[features]
In [156... model = xgb.XGBRegressor(
              subsample=0.7,
              n_estimators=1000,
              min child weight=3,
              max depth=3,
              learning_rate=0.01
In [157... | model.fit(X_train, y_train)
```

about:srcdoc Page 22 of 33

```
Out [157...
                                      XGBRegressor
         XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_r
         ounds=None,
                       enable_categorical=False, eval_metric=None, feature_
         types=None,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction_constraints=None, learning_rate=0.01, ma
         x_bin=None,
In [158... model.fit(
             X_train, y_train,
             eval_set=[(X_train, y_train)],
             verbose=100
        [0]
                validation 0-rmse:62.67904
                validation_0-rmse:62.61096
        [100]
        [200]
                validation_0-rmse:62.58460
                validation_0-rmse:62.57098
        [300]
        [400]
                validation_0-rmse:62.56220
                validation 0-rmse:62.55689
        [500]
                validation 0-rmse:62.55265
        [600]
        [700]
                validation_0-rmse:62.54844
```

Out [158...

[800] [900]

[999]

XGBRegressor

validation 0-rmse:62.54572

validation_0-rmse:62.54352

validation_0-rmse:62.54133

```
In [159... test_df['units_pred'] = model.predict(X_test)
In [160... submission = test_df[['ID']]
submission['Target'] = test_df['units_pred']
```

about:srcdoc Page 23 of 33

```
In [161...
          submission.to_csv('submission.csv', index=False)
          print("Submission file created successfully!")
```

Submission file created successfully!

```
In [162...
         feature_importance = model.feature_importances_
         importance_df = pd.DataFrame({
              'Feature': features,
              'Importance': feature_importance
         })
         importance_df = importance_df.sort_values(by='Importance', ascending=Fals
         plt.figure(figsize=(10, 6))
         plt.barh(importance_df['Feature'], importance_df['Importance'])
         plt.xlabel('Importance')
         plt.ylabel('Feature')
         plt.title('Feature Importance')
         plt.show()
```



```
In [163... from sklearn.metrics import mean squared error
         train_predictions = model.predict(X_train)
         mse = mean_squared_error(y_train, train_predictions)
         print(f"Mean Squared Error: {mse}")
```

Mean Squared Error: 3911.418409604966

PERFORMING HYPER PARAMETER **TUNING**

Page 24 of 33 about:srcdoc

```
In [164... | import pandas as pd
          import numpy as np
          from sklearn.model_selection import train_test_split, GridSearchCV
          from sklearn.metrics import mean_squared_error
          from xgboost import XGBRegressor
In [165... | features = ['day_of_week', 'month', 'quarter', 'year', 'is_weekend']
          target = 'units'
In [166... | X_train = train_df[features]
          y_train = train_df[target]
In [167... | X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_
In [168... \text{ xgb} = \text{XGBRegressor}()]
In [169... # Hyperparameter tuning
          param_grid = {
              'n_estimators': [100, 200],
              'learning_rate': [0.01, 0.1],
              'max_depth': [3, 5],
              'min_child_weight': [1, 3],
              'subsample': [0.7, 1.0],
              'colsample_bytree': [0.7, 1.0]
          }
In [170... grid_search = GridSearchCV(estimator=xgb, param_grid=param_grid, scoring=
          grid_search.fit(X_train_split, y_train_split)
        Fitting 3 folds for each of 64 candidates, totalling 192 fits
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n estimators=100, subsample=0.7; total time=
                                                                   0.1s
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n_estimators=100, subsample=0.7; total time=
                                                                   0.1s
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n_estimators=100, subsample=0.7; total time=
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n_estimators=100, subsample=1.0; total time=
                                                                   0.1s
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n_estimators=100, subsample=1.0; total time=
                                                                   0.1s
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
                                                                   0.1s
        weight=1, n_estimators=100, subsample=1.0; total time=
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n_estimators=200, subsample=0.7; total time=
                                                                   0.2s
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n_estimators=200, subsample=0.7; total time=
                                                                   0.2s
         [CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
        weight=1, n_estimators=200, subsample=0.7; total time=
                                                                   0.1s
```

about:srcdoc Page 25 of 33

weight=1, n_estimators=200, subsample=1.0; total time=

[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_

[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_

```
weight=1, n estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
[CV] END colsample bytree=0.7, learning rate=0.01, max depth=3, min child
weight=3, n estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
[CV] END colsample bytree=0.7, learning rate=0.01, max depth=3, min child
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=3, min_child_
weight=3, n estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample bytree=0.7, learning rate=0.01, max depth=5, min child
weight=1, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.3s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.3s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
```

about:srcdoc Page 26 of 33

```
weight=3, n estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
[CV] END colsample bytree=0.7, learning rate=0.01, max depth=5, min child
weight=3, n estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample bytree=0.7, learning rate=0.01, max depth=5, min child
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
                                                         0.3s
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
[CV] END colsample bytree=0.7, learning rate=0.1, max depth=3, min child w
eight=1, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
```

about:srcdoc Page 27 of 33

```
eight=3, n estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n estimators=200, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
[CV] END colsample bytree=0.7, learning rate=0.1, max depth=3, min child w
eight=3, n_estimators=200, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample bytree=0.7, learning rate=0.1, max depth=5, min child w
eight=1, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
```

about:srcdoc Page 28 of 33

```
eight=3, n estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=0.7, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=100, subsample=0.7; total time=
[CV] END colsample bytree=1.0, learning rate=0.01, max depth=3, min child
weight=1, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n estimators=200, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample bytree=1.0, learning rate=0.01, max depth=3, min child
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
```

about:srcdoc Page 29 of 33

```
weight=3, n estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=3, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=0.7; total time=
[CV] END colsample bytree=1.0, learning rate=0.01, max depth=5, min child
weight=1, n estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=100, subsample=1.0; total time=
[CV] END colsample bytree=1.0, learning rate=0.01, max depth=5, min child
weight=1, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=1, n estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=0.7; total time=
                                                         0.1s
[CV] END colsample bytree=1.0, learning rate=0.01, max depth=5, min child
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=100, subsample=1.0; total time=
                                                         0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.3s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=0.7; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.01, max_depth=5, min_child_
weight=3, n_estimators=200, subsample=1.0; total time=
                                                         0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
```

about:srcdoc Page 30 of 33

```
eight=1, n estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
[CV] END colsample bytree=1.0, learning rate=0.1, max depth=3, min child w
eight=1, n estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
[CV] END colsample bytree=1.0, learning rate=0.1, max depth=3, min child w
eight=1, n_estimators=200, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
[CV] END colsample bytree=1.0, learning rate=0.1, max depth=3, min child w
eight=3, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=3, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
```

about:srcdoc Page 31 of 33

```
eight=1, n estimators=100, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
[CV] END colsample bytree=1.0, learning rate=0.1, max depth=5, min child w
eight=1, n estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample bytree=1.0, learning rate=0.1, max depth=5, min child w
eight=1, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=0.7; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=100, subsample=1.0; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n estimators=100, subsample=1.0; total time=
                                                        0.1s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=0.7; total time=
                                                        0.2s
[CV] END colsample bytree=1.0, learning rate=0.1, max depth=5, min child w
eight=3, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
                                                        0.2s
[CV] END colsample_bytree=1.0, learning_rate=0.1, max_depth=5, min_child_w
eight=3, n_estimators=200, subsample=1.0; total time=
```

```
Out[170... ► GridSearchCV

► estimator: XGBRegressor

► XGBRegressor
```

```
In [171... # Best parameters and model
    best_params = grid_search.best_params_
    best_model = grid_search.best_estimator_

In [172... # Evaluate on validation set
    val_predictions = best_model.predict(X_val)
```

about:srcdoc Page 32 of 33

mse = mean_squared_error(y_val, val_predictions)

print(f"Best parameters: {best params}")

In []:

```
print(f"Validation MSE: {mse}")
        Best parameters: {'colsample_bytree': 0.7, 'learning_rate': 0.01, 'max_dep
        th': 5, 'min_child_weight': 1, 'n_estimators': 200, 'subsample': 1.0}
        Validation MSE: 1443.7185930621974
In [173... best_model.fit(X_train, y_train)
Out [173...
                                      XGBRegressor
         XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=0.7, device=None, early_stopping_ro
         unds=None,
                       enable_categorical=False, eval_metric=None, feature_
         types=None,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction_constraints=None, learning_rate=0.01, ma
         x_bin=None,
In [174... | #test data predictions
         X_test = test_df[features]
         test_predictions = best_model.predict(X_test)
         submission = pd.DataFrame({'ID': test_df['ID'], 'Target': test_prediction
In [176...
         submission.to csv('submission2.csv', index=False)
```

about:srcdoc Page 33 of 33