GUIA EXPLICATIVO: CÁLCULOS E INTERPRETAÇÃO DE GRÁFICOS

Teorema Central do Limite - Simulação de Monte Carlo

Diogo Rego

9 de agosto de 2025

Conteúdo

1	Intr	oduçã	0															
2	Con	Conceitos Fundamentais																
	2.1	.1 Distribuição de Probabilidade																
	2.2		netros Impo															
3	Dist	Distribuição de Poisson																
	3.1	Propri	iedades da I	Distribuiç	ção de	Poisso	n											
4	Teo	Teorema Central do Limite																
	4.1	Enunc	ciado do Tec	orema .														
	4.2	Aplica	ıção ao Nos	so Caso											 •	•	 •	
5	Cál	culos T	Γeóricos															
	5.1	Valor	Esperado d	a Média	Amost	ral .												
6	Inte	Interpretação dos Gráficos																
	6.1	Gráfic	o da Distrib	ouição de	Poisso	on .												
		6.1.1	Descrição															
		6.1.2	Como Inte	erpretar														
	6.2	Gráfic	o da Variân	icia Teóri	ica													
		6.2.1	Descrição															
		6.2.2	Como Inte	erpretar														
	6.3	Gráfic	o de Conve	rgência p	ara a l	Norma	l .											
		6.3.1	Descrição															
		6.3.2	Como Inte	erpretar														
7	Sim	ulação	de Monte	e Carlo														
	7.1	Metod	lologia															
	7.2	Justifi	cativa do N	lúmero de	e Simu	lações												

8	Aná	ilise do	os Resultados	7
	8.1	Tabela	a de Resultados da Simulação	7
	8.2	Interp	retação dos Resultados	7
		8.2.1	Convergência da Média	7
		8.2.2	Comportamento da Variância	7
		8.2.3	Verificação do TCL	7

1 Introdução

Este documento apresenta uma explicação detalhada dos cálculos matemáticos e interpretação dos gráficos utilizados na demonstração do Teorema Central do Limite através de simulação de Monte Carlo. O material foi desenvolvido para facilitar a compreensão dos conceitos estatísticos e sua aplicação prática no contexto empresarial de marketing digital.

Importante

Este guia complementa a apresentação principal e fornece o embasamento matemático necessário para compreender completamente os resultados obtidos na simulação.

2 Conceitos Fundamentais

2.1 Distribuição de Probabilidade

Definição

Uma distribuição de probabilidade descreve como os valores de uma variável aleatória estão distribuídos no espaço amostral. No contexto do nosso estudo, analisamos o número de notificações que um influenciador recebe por minuto durante uma transmissão ao vivo.

2.2 Parâmetros Importantes

- λ (lambda) = 6: Parâmetro da distribuição de Poisson
 - Representa a **média** de notificações por minuto
 - Também representa a variância da distribuição original
- \bullet n: Tamanho da amostra
 - -n = 10: observamos 10 minutos e calculamos a média
 - -n=30: observamos 30 minutos e calculamos a média
 - -n = 50: observamos 50 minutos e calculamos a média
 - -n = 100: observamos 100 minutos e calculamos a média

3 Distribuição de Poisson

3.1 Propriedades da Distribuição de Poisson

Para uma distribuição de Poisson com parâmetro λ :

• Média: $E[X] = \lambda = 6$

• Variância: $Var(X) = \lambda = 6$

• Desvio Padrão: $\sigma = \sqrt{\lambda} = \sqrt{6} \approx 2.45$

4 Teorema Central do Limite

4.1 Enunciado do Teorema

Definição

O **Teorema Central do Limite (TCL)** estabelece que, independentemente da forma da distribuição original, a distribuição das médias amostrais se aproxima de uma distribuição normal quando o tamanho da amostra aumenta, desde que as observações sejam independentes e identicamente distribuídas.

Matematicamente, se X_1, X_2, \ldots, X_n são variáveis aleatórias independentes e identicamente distribuídas com média μ e variância σ^2 , então:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} N(0, 1)$$
 quando $n \to \infty$ (1)

onde $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ é a média amostral.

4.2 Aplicação ao Nosso Caso

No contexto do nosso estudo:

- Distribuição original: Poisson($\lambda = 6$) assimétrica
- Distribuição das médias: Normal $(\mu = 6, \sigma^2 = 6/n)$ simétrica
- Convergência: Quanto maior n, mais próxima da normal

5 Cálculos Teóricos

5.1 Valor Esperado da Média Amostral

Definição

O valor esperado da média amostral é:

$$E[\bar{X}] = E[X] = \lambda = 6 \tag{2}$$

Importante

Este resultado é fundamental: independentemente do tamanho da amostra, a média das médias amostrais sempre será igual à média populacional ($\lambda = 6$).

6 Interpretação dos Gráficos

6.1 Gráfico da Distribuição de Poisson

6.1.1 Descrição

Este gráfico apresenta a função de probabilidade da distribuição de Poisson com $\lambda = 6$.

6.1.2 Como Interpretar

- Eixo X: Número de notificações (k = 0, 1, 2, ..., 15)
- Eixo Y: Probabilidade P(X = k)
- Barras altas: Valores mais prováveis (5, 6, 7 notificações)
- Barras baixas: Valores raros (0, 1, 12+ notificações)
- Formato: Assimétrico, com cauda à direita

Aplicação Prática

"Em qualquer minuto da live, é mais provável receber 6 notificações, mas pode variar de 0 a 15+. Valores entre 4-8 ocorrem em aproximadamente 70% das vezes."

6.2 Gráfico da Variância Teórica

6.2.1 Descrição

Este gráfico mostra como a variância da média amostral diminui com o aumento do tamanho da amostra.

6.2.2 Como Interpretar

- Eixo X: Tamanho da amostra (n = 10, 30, 50, 100)
- Eixo Y: Variância (6/n)
- Tendência: Decrescimento hiperbólico
- Interpretação: Relação inversa entre n e variância

Aplicação Prática

"Lives mais longas têm resultados mais previsíveis. A variância diminui proporcionalmente ao inverso do tempo de observação."

6.3 Gráfico de Convergência para a Normal

6.3.1 Descrição

Gráfico de linhas mostrando as curvas normais teóricas para cada tamanho de amostra.

6.3.2 Como Interpretar

- Eixo X: Valor da média amostral
- Eixo Y: Densidade de probabilidade
- Linha azul (n = 10): Curva mais "achatada" e larga
- Linha verde (n = 30): Curva mais alta e estreita
- Linha vermelha (n = 100): Curva muito alta e muito estreita
- Linha vertical: Marca $\lambda = 6$ (centro de todas as curvas)

Aplicação Prática

"Este gráfico demonstra matematicamente por que lives longas são mais previsíveis. A curva vermelha (n=100) é muito concentrada em 6, garantindo resultados consistentes."

7 Simulação de Monte Carlo

7.1 Metodologia

A simulação de Monte Carlo é um método computacional que utiliza amostragem aleatória repetida para resolver problemas matemáticos complexos.

7.2 Justificativa do Número de Simulações

Importante

Por que 1000 repetições?

A Lei dos Grandes Números garante que quanto mais repetições, mais próximo chegamos do valor teórico:

- 10 repetições: Resultado impreciso
- 100 repetições: Resultado razoável
- 1000 repetições: Resultado muito confiável
- 10000 repetições: Resultado extremamente preciso (mas computacionalmente custoso)

8 Análise dos Resultados

8.1 Tabela de Resultados da Simulação

Tabela 1: Comparação entre Valores Teóricos e Observados

\overline{n}	Média Teórica	Média Observada	Erro (%)	Var. Teórica	Var. Observada
10	6.0000	5.9704	0.49	0.6000	0.5662
30	6.0000	5.9739	0.44	0.2000	0.2039
50	6.0000	6.0041	0.07	0.1200	0.1130
100	6.0000	6.0072	0.12	0.0600	0.0605

8.2 Interpretação dos Resultados

8.2.1 Convergência da Média

- Todas as médias observadas ficaram muito próximas de 6
- Erro máximo foi de apenas 0.49%
- Confirma que $E[\bar{X}] = \lambda = 6$

8.2.2 Comportamento da Variância

- $\bullet\,$ Variância diminui conforme naumenta
- Valores observados muito próximos dos teóricos
- Confirma que $Var(\bar{X}) = \lambda/n$

8.2.3 Verificação do TCL

- Histogramas mostram aproximação à normal
- \bullet Quanto maior n, mais "normal"fica a distribuição
- TCL foi verificado experimentalmente