431 - Introduction to VLSI CAD Video acquisition and display Department of Electrical and Computer Engineering, McGill University October 10, 2013 Montréal, Ouébec, Canada

1 Introduction

In this project, the sections designed for VGA and NIOS projects are integrated along with a DMA engine, a grab interface and a memory controller. The complete system is shown in Figure 1. The source code of the grab interface section is provided, as well as the SDRAM memory model which is needed to simulate the entire system. The memory controller is taken from the Qsys component library.

Figure 1. Video acquisition FPGA system block diagram.

The FPGA is used to display images coming from a standard NTSC signal through the video decoder on a graphic monitor. The image is temporarily stored into memory before being displayed. The grab interface writes the image into memory, the NIOS processes it, and the DMA engine reads it and feeds the VGA controller that displays it. The NIOS also executes the driver code that sequences the acquisition *field by field*. The Qsys system operates at 100MHz. Each step is reviewed in details in the following paragraphs.

2 NIOS

2.1 Acquisition

The NIOS is responsible to control the sequence of image acquisition through appropriate register programming. It controls the acquisition field by field by setting the appropriate registers for each of the fields being grabbed (ex: setting a different GFSTART register for each new field). The NIOS responds to interrupts generated by the grab interface and schedule the acquisition of the next field to be output by the video decoder. According to the design and functionality of the grab interface provided, it is suggested that you generate an End-Of-Frame (EOF) interrupt on the falling edge of GACTIVE (refer to Figure 3). A progressive frame (2 fields) is stored into memory before it is processed or displayed. In order to prevent

artifacts between frames being displayed and the ones being acquired or processed, a "multi-buffering" mechanism is used such as the frames being acquired or processed do not interfere with the frame being displayed (Figure 2). Once a new frame has been written to memory, the NIOS can perform an operation on it, but then needs to wait until the processing is completed before it can switch the source of the frame that is to be displayed to this new processed image. During that time (unless you are able to perform the processing pass in real-time!), the NIOS stops the acquisition of new fields otherwise it would overwrite the frame being displayed, or processed. When the NIOS does not do processing on incoming frames, it must be able to display all the frames in real-time.

Figure 2. Multi(double)-buffering of frames into SDRAM memory.

The sequence of operations performs by the NIOS for displaying images (this can be extent to include a processing pass...) can look like the following:

- a) Program initial register setting for first field (GFSTART, GLPITCH, GCTL.GMODE)
- b) Enable interrupts on end-of-frame¹ (GINT.EOFIEN)
- c) Arm acquisition (write '1' to GCTL.GSSHT (odd or even field depending on GCTL.GMODE))
- d) Wait for EOF interrupt
- e) Program memory addressing register for second field (GFSTART)
- f) Arm acquisition (write 1 to GCTL.GSSHT, GCTL.GMODE)
- g) Wait for end-of-field interrupt
- h) Repeat c) to g) to grab the second frame positioned at another location into memory
- i) Repeat c) to h)

¹ The term "frame" in "end-of-frame" is used as a general term. Depending on GMODE, and end-of-frame event actually occurs on every field.

Figure 3. Acquisition sequence (main registers and events).

The above sequence is related to the *acquisition of the images*, but the NIOS also has another role related to the *data being displayed*. The NIOS has to inform the DMA engine where to read the image from. It needs to insert write accesses to the DFSTART register to indicate where a stable image can be read by the DMA engine (refer to the DMA read engine section).

Validation note

The NIOS also has accessed to memory. This allows for the NIOS to initialize the SDRAM with an image that can be read by the DMA engine and displayed by VGA controller. This means that the hardware validation of DMA and VGA controller functionality can be done without being connected to a camera (once everything is working in simulation!).

2.2 Processing

Once a frame is stored into memory, the processor can perform many types of operation on the pixels, and could also add information to the image before it is displayed. Some manipulations can be done in real time, (i.e. without missing a frame), while other manipulations may take more than one frame to complete, The NIOS needs to be programmed to perform the following two operations (switches on the board should be used to individually enable each functionality).

2.2.1 Frame counter and frame rate

The NIOS keeps track of the amount of **distinct** frames that have been displayed during the last second (i.e. frame rate) and add this information to the image (2 decimal digits). It also keeps track of the total amount of distinct frames displayed since the beginning of the acquisition (4 digit is fine... enough for 5 minutes at 30 frames per second before it wraps around). Each character is displayed by overwriting a block of pixels with the font you have created The fonts can be created in real time by a NIOS function, or that information can be stored into SDRAM memory and retrieved according to the values you need to display. The frame count is displayed in the upper right corner of the screen, while the frame rate is displayed in the right low corner of the image.

2.2.2 Convolution

When this functionality is enabled, each progressive frame stored into SDRAM is processed by the NIOS processor. An interesting visual application for a convolution is with edge detection. Edge detection can be performed using 3x3 Sobel kernels. The Sobel kernels computes the gradient in both $X(G_x)$ and $Y(G_y)$ directions. The resulting gradient can be approximated by adding the absolute value of $|G_v| + |G_v|$. Please consult the web as there are many references on the Sobel convolution kernels. You may want to include a discussion in your report explaining the differences in the operating speed comparing whether the Sobel operation is performed with full accuracy or approximate (what would be the visual difference?). Also, if your algorithm uses 9 multiply between the kernel coefficients and the pixel values, you can exercise yourself with many difference kernels. The operations that are performed by the NIOS consist of reading the entire image, performing the multiplications and/or additions for each kernel and storing the result back into memory. This cannot be performed in real time by the soft processor, and you would notice a substantial degradation of the frame rate. Code would be more efficient making use of a data cache such as the NIOS use efficiently the pixels that are fetched from SDRAM, as the same pixel is used into three different output pixel computations. Also note that the resulting image decrease by two lines vertically and two pixels horizontally, therefore, something as to be done for the pixel values at the periphery of the image (overscan), the easiest would be to use "transparent overscan" (do nothing) or a constant value.

3 Grab interface

The grab interface provides a bridge between the video decoder and the Avalon switch fabric. The function of the grab interface is to write valid data into the "grab buffer", and then empty the buffer by initiating write requests toward the memory controller while acting as an Avalon memory-mapped master interface. The grab buffer is separated into two sections that can simultaneously write and read data. When the write controller is writing into one half of the buffer, the read controller is reading the other half which has just

been written with valid data. The grab interface also includes a block of logic that is responsible to compute the SDRAM memory address at which the data is to be written to, as shown in Figure 4. The bandwidth toward SDRAM memory is almost 10 times (200 MB/s) the acquisition bandwidth (20.7 MB/s).

Figure 4. Grab interface block diagram.

The grab interface being the most complicated part of the system (beside the memory controller), a functional grab interface block of logic is provided (in the form of a VHDL source code). You have to create an Avalon component from the grab interface top level that is provided. The registers described in the register section associated with the grab interface control which fields are grabbed and where images are stored into memory. To improve bandwidth performance toward memory, a certain amount of data needs to be buffered (64, 128 or 256 bytes for instance) before the request is sent to the memory controller (that is the role of the grab buffer). Burst of 128 bytes (tbc) burst are implemented by the grab interface block of logic provided. Note that most of the registers can be hard coded for the purpose of simulations when the NIOS is not present. Registers would eventually be controlled by the NIOS processor. During the acquisition of fields, the grab start address has to be changed from field to field. One reason is that we are building a progressive frame into memory. For instance, if GFSTART is the start address of the first field to be grabbed, considering that the distance between each line (of the interlaced fields) into memory is GLPITCH, then the grab frame start address of the second field would have to be GFSTART + GLPITCH/2 in order to create a progressive frame into memory. It is this complete frame that is going to be read by the DMA engine or processed by the NIOS processor

Hardware designers are often required to correct/modify/optimize already existing codes. This exercise is done through the support of horizontal and vertical sub sampling for the grab interface. Sub sampling should occur at the **source** of the data, so we do not waste bandwidth writing/reading to/from memory. One pixel out of two, four or eight could be stored into SDRAM memory. The same principle applies for lines. Also, the GFMT bit of GCTRL should enable grabbing in both monochrome and color. Sub sampling and monochrome implementations require minor modifications to the grab interface, but provide major improvement in bandwidth usage. Combining horizontal and vertical sub sampling to monochrome storage would substantially increase the frame rate of the edge detection algorithm.

4 DMA engine

The DMA engine is an Avalon master read controller that writes the incoming data into a line buffer. The Avalon master controller implements the proper handshake with the Avalon switch and provides to the memory controller the correct memory locations where pixels are read. The incoming valid data is routed to the line buffer write data port along with line buffer's addresses and control to perform the writes at the right locations. When enabled, the DMA engine is controlled by the VGA controller that indicates to the DMA engine when it requires new lines to be fetched. The VGA controller could be emulated using at least two signals, SOF (start-of-frame) and SOL (start-of-line), each of those indicating that a new line has to be fetched. Note that SOF and SOL signal are provided as a guideline only, and depending on your implementation, you may required different and additional signals to achieve proper handshake between VGA controller and DMA engine. To achieve minimum memory access efficiency, the DMA engine must be able to initiate burst accesses of at least 64, 128 or 256 bytes at a time. The memory read latency is not fixed because arbitration on the memory bus is not guaranteed (grab interface may be writing, the SDRAM memory may be refreshed or the NIOS might be reading/writing to memory), so a buffer being able to hold two lines will quite eliminate the chances of artifacts caused for instance by the VGA controller catching up on the DMA line being read. The DMA buffer should always have one line in advance with regard to the VGA controller.

Figure 5. DMA engine block diagram.

During the acquisition sequence, the DMAFSTART register has to be modified by either the NIOS or through a hardware mechanism in order to guarantee that no display artifacts will be present on the monitor, therefore making sure that the DMA engine is not fetching a line/frame that is being modified by the grab interface or the NIOS. Refer to the register file section associated with the DMA engine to complete the description on its functionality. Note that one of the DMA control field allows reading a line in reverse order, therefore flipping the image horizontally. Line reversal is a standard feature often use when grabbing with a camera that has taps in different directions, or when the camera cannot be physically installed on its mounting bracket such as to provide an image in the usual direction.

5 VGA controller

The VGA controller was slaved to synchronization signals coming from the camera in part 1, but it now needs to generate its own synchronization signals. Writing the images to SDRAM memory allows removing the synchronization requirement with the video decoder. The DMA engine is slaved to the VGA controller, and indicates to the DMA engine when it can fetch new lines. Pay a particular attention to signals that are exchanged between the VGA controller and the DMA engine. They go through a clock domain crossing. VGA controller must have the ability to vertically and horizontally zoom the data.

The VGA controller can be completely isolated from the acquisition, allowing increasing the refresh rate of the display. It is important that the data being read by the DMA engine are stable. One way to guarantee an artifact free display is to create at least two frame buffers into memory, one where the acquired frame is written, and the other one where the previous frame is being read. This has the disadvantage of inserting a latency of one frame (compare to a latency of one line in part 1), which can be acceptable depending on the application. GFSTART and DMAFSTART are modified to switch between those (at least) two frame buffers. To more easily avoid displaying artifacts on the graphic monitor, the VGA controller can operate on the same clock as the acquisition clock coming from the video decoder. If that is done, it is therefore a good practice to synchronize the vsync of the VGA controller with the vsync of the video decoder.

Other register fields added the ability for the VGA controller to implement horizontal and vertical zoom. Horizontal zoom is achieved by providing the same pixel for two, four or eight clock cycles, while vertical zoom is achieved by reading the same lines two, four or eight times. Those are basic versions of hardware sub sampling and zoom functions as we could achieve more precise operation when the pixel's neighborhood is being considered in the operation. Complexity could be increased simply by also supporting odd zoom and fractional factors.

6 Register description

The register file is centralized and contains registers associated to all main modules. There is a gap of 256 bytes between each section, in order to facilitate the addition of further registers in different sections if required. It is suggested that all registers associated with a counter value be zero-based (a value of zero meaning one, for instance VSSYNC =0 means VSYNC activated on the first line).

6.1 Grab interface

GCTRL	addre	address 0x00 Grab ConTR					
15	14	13	12	11 CVS	10	9	8
	Rese				S(1:0)	GAS	SS(1)
7	6	5	4	3	2	l	0
Reserved	GMO	JDE	GFMT	GACTIVE	reserved	GSPDG	GSSHT
GYSS RW(1:0)	Grab Y SubSampling It indicates the factor to which lines are being subsampled. Note: The grab interface code provided does not currently support vertical subsampling.						
Value							
0b00	No	vertical subs	ampling				
0b01	Ver	tical subsam	pling factor of	2			
0b11	Ver	tical subsam	pling factor of	4			
0b11	Ver	tical subsam	pling factor of	8			
GXSS	Case	h V CuhCom	1i				
RW(1:0)		b X SubSam		missala ana bai		1	
KW(1.0)	Not	It indicates the factor to which pixels are being subsampled. Note: The grab interface code provided does not currently support horizontal subsampling.					
Value							
0b00	No	horizontal su	ıbsampling				
0b01			ampling factor	of 2			
0b11			ampling factor				
0b11			ampling factor				

GMODE	Grab MODE
RW	This bit indicates to the grab interface the conditions under which fields are being
	acquired. The next occurrence of a vertical synchronization signal when the selected
	condition is met, paired with an active GSPDG, will enable the image data to be
	stored by the grab interface and forwarded to memory.
	NOTE: The grab interface code provided does not support all the modes. Only
	GMODE='10" and GMODE="11" were tested and verified.

Value	Description
00b	Grab next two fields, starting with odd field.
01b	Grab next two fields, starting with even field
10	Grab next odd field
11	Grab next even field

GFMT	Grab ForMaT
RW	This bits sets the grab interface in monochrome (Y) or in color (YcrCb 4:2:2) mode
	format.
	Note: The grab interface code provided does not currently support monochrome
	format.

Value	Description
0b	Monochrome
1b	Color

GACTIVE	Grab ACTIVE
RO	This bit is set to one to indicate that a frame is being grabbed. It is set at the start-of-
	frame event if GSPDG is set. It is reset at the end-of-frame event.
	Note: the grab interface provide is designed such as the sof event is the start of valid
	video while the eof event is the end of the valid video.

Value	Description	
0b	Grab is active	
1b	Grab is inactive	

GSPDG	Grab Snapshot PenDinG
RO	This bit indicates the status of the grab pending signal. This signal is activated
	between snapshot assertion and the start-of-frame event.
Value	Description
0b	No snapshot is pending
1b	A snapshot is pending
GSSHT	Grab SnapSHot
WO	This bit is used to enable the grab of 1 (one) field or frame (depending on the value
	of GMODE) . This bit resets to zero after being written to one. It sets the grab
	pending signal, which will allow grabbing of one frame on the next start-of-frame
	event.
Value	Description
0b	No effect.
1b	Set snapshot pending

GFSTART	addre	ss 0x04			Gra	ab Frame STA	ART address	
31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
Reserved			G]	FSTART (22:	16)			
15	14	13	12	11	10	9	8	
			GFSTAI	RT (15:8)				
7	6	5	4	3	2	1	0	
			GFSTA	RT (7:0)				
GFSTART	Gra	ab Frame STA	ART address					
RW(22:1)	Th	This register indicates the byte start address of the image to be stored into memory.						
RO(0)	The LSB should be ignored and read as zero.							
Value	Any 23-bit value.							

GLPITCH	addre	ss 0x08				Grab L	ine PITCH	
31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
Reserved			G	LPITCH(22:1	6)			
15	14	13	12	11	10	9	8	
	GLPITCH(15:8)							
7	6	5	4	3	2	1	0	
			GLPIT	CH(7:0)				
GLPITCH	Gre	b Line Pitch						
RW(22:1)			licates the on	nount of but	a hatriaan tii	aanaaantir	ra linas into	
RO(0)	This register indicates the amount of bytes between two consecutive lines into							
KO(0)	memory. The LSB should be ignored and read as zero. Note that a negative line pitch could be used and therefore, 23-bit arithmetic has to be used by the addressing logic.							
	10g.							
Value	An	y 23-bit value.						

GINT	address 0x0C					Grab	INTerrupt
15	14	13	12	11	10	9	8
			Re	served			
7	6	5	4	3	2	1	0
	Res	erved		EOFISTS	EOFIEN	SOFISTS	SOFIEN
SOFTIEN RW	Th als No can	o refers to a "f te: sof interrup n program the	or disables of ield", accord to usage may next field be	able detection of the ling to the grab w be omitted in pefore the gacti hich should be t	mode of acqu your implement ve comes bac	isition selected ntation, provid	l. ling that you
17-1	l D.						
Value		scription		-1.1 - 1			
0b		rt-of-frame int rt-of-frame int					
1b	Sta	irt-01-iraine int	errupt is ena	ibiea.			
SOFISTS RW2C	Th	rt-Of-Frame In is field indicat if it is set. Wri	tes the statu	s of the start-of	-frame interru	ipt Writing	1 clears this
77.1							
Value		scription	,				
0b 1b		rt-of-frame int					
10	Sta	rt-of-frame int	errupt is act	ive			
EOFIEN		d-Of-Frame In					
RW				detection of the ding to the grab			
X7.1	D	• ,•					
Value		scription	, . 1.	11 1			
0b 1b		d-of-frame inte d-of-frame inte					
EOFISTS RW2C	Th	d-Of-Frame In is field indicate this set. Writing	es the status	of the end-of-fi	rame interrupt	Writing 1 c	lears this bit
	11 1	c 15 50c. Wilting	5 0 Has Hot C	.11001.			

6.2 DMA engine

DMACTRL		address 0x10)()		1	DMA ConTRo	J		
15	14	13	12	11	10	9	8		
13	14	13		erved	10	,	0		
7	6	5	4	3	2	1	0		
		Rese	rved			DMALR	DMAEN		
•	-								
DMALR		DMA Line Rever							
RW		This bit controls							
		DMA engine starts fetching pixels at the end of the line and decrements the address until beginning of line is reached.							
		intil beginning of	line is reach	iea.					
Value									
0b]	DMA line reversa	al is disabled						
1b]	DMA line reversa	al is enabled						
DMAEN		DMA ENable							
RW	,	This bit enables o	r disables the	e DMA engine	to fetch lines	from memory.			
[·	ı								
Value									
0b		OMA engine is d							
1b		DMA engine is en	nabled						
DMAFSTART	ado	lress 0x104			DMa Fra	me START ad	dress		
31	30	29	28	27	26				
			Res	erved					
23	22	21	20	19	18	17	16		
Reserved				AFSTART (22	2:16)				
15	14	13	12	11	10	9	8		
				ART (15:8)					
7	6	5	4	3	2	1	0		
			DMAFS	TART (7:0)					
DMAFSTART		OMA Frame STA	ART address						
RW(22:1)		t indicates the b		ress of the ima	ige to be read	d from memor	y. The LSB		
RO(0)		should be ignored			C		-		
	•								
Value		Any 23-bit value.							
		·							

DMALPITCH	ac	ddress 0x108			Ι	OMA Line PI	ТСН
31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
Reserved			DM	IALPITCH(22	:16)		
15	14	13	12	11	10	9	8
			DMALPI	TCH(15:8)			
7	6	5	4	3	2	1	0
			DMALPI	TCH(7:0)			
DMALPITCH		DMA Line Pitch					
RW(22:1)		It indicates the an					
RO(0)		LSB should be ign					
		used and therefore,	, 23-bit arith	metic has to be	e used by the a	addressing log	gic.
T. 1	1						
Value		Any 23-bit value.					
DMAXSIZE	2/	ddress 0x110					
31	30	29	28	27	26	25	24
51	30			erved	20		27
23	22	21	20	19	18	17	16
23				erved	10	1,	10
15	14	13	12	11	10	9	8
				IZE(15:8)			
7	6	5	4	3	2	1	0
			DMAXS	SIZE(7:0)			
				` /			
DMAXSIZE		DMA X SIZE					
RW(15:0)	j	This register indica	ites the amo	unt of bytes pe	r line.		
	•	-		•			
Value		Any 16-bit value.					

6.3 VGA controller

NOTE: HTOTAL, HSSYNC, HESYNC, HSVALID, HEVALID, VTOTAL, VSSYNC, VESYNC, VSVALID and VEVALID can be hardcoded.

VGACTRL	address 0x20	0		VGA ConTRoL				
15 14	13	12	11	10	9	8		
		Res	erved					
7 6	5	4	3	2	1	0		
Reserved	PFN	ЛT	VGAVZO	OM(1:0)	VGAHZO	OM(1:0)		
PFMT	Pixel ForMaT							
RW	This bits indicates	the pixel tra	ansformation.					
Value	Description							
00b	Mono to RGB							
01b	YCrCb to RGB							
10b	YCrCb to mono to	RGB						
11b	Reserved							
		-						
OPFMT	Output Pixel ForN							
RW	This bits indicates	the format i	for the output p	ixels				
Value	Description							
0b	Monochrome							
1b	RGB (through color space converter)							
VGAVZOOM(1:0)	VGA controller V							
RW	This field controls		l zoom factor tl	hat is applied	by the VGA o	controller to		
	each valid line of	the frame						
	1							
Value								
00b	No vertical zoom							
01b	Vertical zoom by							
10b	Vertical zoom by	4						
11b	Reserved							
Forward and the second	T							
VGAHZOOM(1:0)	VGA controller H							
RW	This field controls the horizontal zoom factor that is applied by the VGA controller							
	to each valid pixe	of the line.						
	1							
Value								
00b	No horizontal zoo							
01b	Horizontal zoom l							
10b	Horizontal zoom l	oy 4						
11b	Reserved							

HTOTAL	addre	s 0x204 Horizontal TOTAL				TAL			
15	14	13	12	11	10	9	8		
			НТОТА	L(15:8)					
7	6	5	4	3	2	1	0		
			HTOTA	AL(7:0)					
							,		
HTOTAL		rizontal TOTA							
RW(15:0)	Thi	is register indi	cates the total	amount of c	lock cycle per li	ne (valid + bl	ank pixels).		
Value	An	y 16-bit value.							
varue	7111	y 10 oit varae.	•						
HSSYNC	addre	ss 0x208			Horizonta	l Start of SYN	IC		
15	14	13	12	11	10	9	8		
			HSSYN	C(15:8)					
7	6	5	4	3	2	1	0		
			HSSYN	IC(7:0)					
HSSYNC		rizontal Start S							
RW(15:0)	This register indicates the horizontal position with regard to the horizontal counter								
	value to which the horizontal sync is asserted.								
Value	An	y 16-bit value.							
HESYNC		ss 0x20C			Horizontal End of SYNC				
15	14	13	12	11	10	9	8		
			HESYN						
7	6	5	4	3	2	1	0		
			HESYN	IC(7:0)					
HEGYALC	1 17	.:1E 10	VNIC						
HESYNC		rizontal End S		4.1 ***	1	1 1 :	. 1		
RW(15:0)					ion with regard	to the horizo	ntal counter		
	vai	ue at which th	e horizontal sy	nc is de-ass	ertea.				
Value	Λ	v 16 hit volvo							
value	An	y 16-bit value.							
HSVALID	addra	ss 0x210			Horizonto	l Start VALII)		
115 V ALID	14	13	12	11	101120111	1 Start VALIL	8		
1.5	17	1 3	HSVAL		10				
7	6	5	4	3	2.	1	0		
,			HSVAL	5	-	•	J I		
			110 , 111	(1.0)					

HSVALID RW(15:0)	This	izontal Start V s register ind izontal counte	icates the sta	rt of the hor	rizontal valid	window according	ng to the
Value	Any	16-bit value.					
HEVALID 15		os 0x214 13	12	11	Horizonta 10	al End VALID 9	8
7	(ID(15:8)	2	1	0
7	6	5	4 HEVAI	3 LID(7:0)	2	1	0
			112 (11	(1.0)			
HEVALID RW(15:0)	This	rizontal End V s register ind zontal counte	icates the en	d of the hor	izontal valid	window according	ng to the
Value	Any	16-bit value.					
VTOTAL 15	addres	ss 0x218 13	12 VOTA	11 L(15:8)	10	Vertical TOTAL 9	8
7	6	5	4	3	2	1	0
,		<u>-</u>	VTOTA	AL(7:0)			<u> </u>
VTOTAL RW(15:0)	This	tical TOTAL s register indic / 16-bit value.		unt of total lin	nes per frame (valid + blank line	rs).
VSSYNC 15	·	ss 0x21C 13	12	11	Vertical S	Start of SYNC 9	8
7	6	5	4 4	C(15:8)	2	1	0
,				NC(7:0)		-	
VSSYNC RW(15:0)	This	tical Start SY s register indic / 16-bit value.	cates the verti	cal line position	on at which th	e vertical sync is	asserted.
VESYNC 15	addres	ss 0x220 13	12 VESVN	11 [C(15:8)	Vertical I	End of SYNC 9	8
7	6	5	4	3	2	1	0
			VESY	NC(7:0)			
VESYNC RW(15:0)	This	erted.	icates the ver	tical line pos	sition at whic	h the vertical sy	nc is de-
value	Any	16-bit value.					

15 14 13 12 VSVALID 7 6 5 4 VSVALID	11 0(15:8) 3	10	9	8
7 6 5 4				
	3			
VCVALIT		2	1	0
VSVALIL	D(7:0)			
VSVALID Vertical Start VALID				
RW(15:0) This register indicates the vertical	cal line	position associated	with the	start of the
vertical valid window.				
Value Any 16-bit value.				
VEVALID address 0x228		Vertical End	VALID	
15 14 13 12	11	10	9	8
VEVALID	(15:8)			
7 6 5 4	3	2	1	0
VEVALII	O(7:0)			
VEVALID Vertical End VALID				
RW(15:0) This register indicates the verti	ical line	position associated	with the	end of the
vertical valid window.				
Value Any 16-bit value.				

Evaluation Criteria (listed by degree of importance)

- Functionality of the system (1- functional simulation with Modelsim and 2- actual hardware demonstration)
- Validation methodology
- Constraints and synthesis reports
- Quality of block diagrams
- Improvement proposal (design/architecture/scalability)

7 Report, simulation and synthesis

Image acquisition form NTSC camera with display to a monitor should be demonstrated, along with a functional simulation of the system with Modelsim. The design should meet the requirements as specified by the register file. The design should be able to run at 100 MHz. The constraint file along with the synthesis report summary must be given in the appendix. Key points in the demonstration/simulation should be pointed out in your demo and report. The demonstration should show sequence of image acquisition demonstrating all the features mentioned in this document. The sequence should vary color frame, monochrome frame, zoom and subsampling frames, line and frame reversal and edge detected frames.

The report is to be limited to 5 pages (single sided). Appendices are considered extra. Dual column format is recommended but not necessary. It should be clear and easy to read. A detailed block diagram must accompany all substantial piece of code. The report should include a short description of the design and any interesting or important elements encountered in the design process. Also, the interesting features of the design should be pointed out. You could include any state diagrams that indicate how your system operates as well as describe its overall operation.

Due date: Day of demo, to be held during the last week of class.