Directions: Let $f: A \to B$ be a bijection and A_1 be a subset of A. (a) Prove that $f(A - A_1) = B - f(A_1)$.

Proof of (a). By definition, $f(A-A_1)=\{f(a)|a\in A-A_1\}$. Since $A-A_1=\{a\in A|a\notin A_1\}$. Injectivity ensures that f(a) is unique for each $a\in A-A_1$, so no values in $f(A-A_1)$ overlap with those in $f(A_1)$. Surjectivity ensures that f(A)=B, meaning every $b\in B$ corresponds to some $a\in A$. Since $A=(A_1\cup (A-A_1))$ and $A_1\cap (A-A_1)=\emptyset$, $f(A_1)$ and $f(A-A_1)$ are disjoint, and their union equals f(A)=B. Thus, $B-f(A_1)=f(A)-f(A_1)=f(A-A_1)\Rightarrow f(A-A_1)=B-f(A_1)$.

(b) Could you have proved the same result under the assumption that f is surjective? Explain.

No, the result cannot be proved under the assumption that f is only surjective. Surjectivity guranatees that f(A) = B, so every $b \in B$ has at least one $a \in A$ such that f(a) = b. However, without injectivity, f may map multiple elements of A to the same element of B. This would make $f(A - A_1)$ ambiguous because removing A_1 from A may not guarantee unique elements in B. Therefore, the equality $f(A - A_1) = B - f(A_1)$ has to also rely on f being injective.

(c) Could you have proved the same result under the assumption that f is injective? Explain.

No, the result cannot be proved under the assumption that f is only injective. Injectivity ensures that f maps distinct elements of A to distinct elements of B, so $f(A-A_1)$ and $f(A_1)$ are disjoint. Without surjectivity, $f(A) \subset B$, meaning there may exist elements in B that are not mapped by f. In this case, the complement $B-f(A_1)$ may include elements of B that do not correspond to any element of A. Therefore, the equality $f(A-A_1)=B-f(A_1)$ has to also rely on f being surjective.