Part of Speech Tagging with HMMs

Abraham Nassar

December 13, 2016

The Problem

Our goal is to take a sentence and find the tag sequence that maximizes probabilities.

The Problem

Brute Force: Each tag would be checked for each word.

The number of calculations: $(\#tags)^{\#words}$

Definitions

- Let \mathcal{W} be the set of words
- Let \mathcal{T} be the set of tags union with $\{END\}$.
- Let S(k, u, v) the set of all tags of length k such that $y_{k-1} = u, y_k = v$.
- For index $k \in \{1, 2, ..., n\}$ and tags u, v we can define

$$\pi(k, u, v) = \max_{\{y_i\} \in S(k, u, v)} \prod_{i=1}^{k} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^{k} e(x_i | y_i)$$

The Basic Viterbi Algorithm

Input: A sentence w_1, w_2, \ldots, w_n , transition probabilities $q(t_k|t_i, t_j)$ emission probabilities, $e(w_j|t_j)$

Initialization: $\pi(0|*,*) = 1$ and $\pi(0|u,v) = 0$, $\forall u,v \in \mathcal{T}$ where $u \neq *$ or $v \neq *$

Algorithm:

- for k = 1, 2, ..., n
 - for $(u, v) \in \mathcal{T} \times \mathcal{T}$,

$$\pi(k, u, v) = \max_{t \in \mathcal{T}} \left[\pi(k-1, t, u) \cdot q(v|t, u) \cdot e(w_k|v) \right]$$

• Return:

$$\max_{u \in \mathcal{T}.v \in \mathcal{T}} \left[\pi(n, u, v) \cdot q(END|u, v) \right]$$

The Basic Viterbi Algorithm

Input: A sentence w_1, w_2, \ldots, w_n , transition probabilities $q(t_k|t_i, t_j)$ emission probabilities, $e(w_i|t_j)$

Initialization: $\pi(0|*,*) = 1$ and $\pi(0|u,v) = 0$, $\forall u,v \in \mathcal{T}$ where $u \neq *$ or $v \neq *$

Algorithm:

- for k = 1, 2, ..., n
 - for $(u, v) \in \mathcal{T} \times \mathcal{T}$,

$$\pi(k, u, v) = \max_{t \in \mathcal{T}} \left[\pi(k - 1, t, u) \cdot q(v|t, u) \cdot e(w_k|v) \right]$$

• Return:

$$\max_{u \in \mathcal{T}, v \in \mathcal{T}} \left[\pi(n, u, v) \cdot q(END|u, v) \right]$$

NOTE: This returns maximum probability, but we want argmax. So keep track of indices.

Viterbi: Find the highest probability word by word. The number of calculations: $(\#words) (\#tags)^3$

Viterbi: Find the highest probability word by word. The number of calculations: $(\#words) (\#tags)^3$

Viterbi: Find the highest probability word by word. The number of calculations: $(\#words) (\#tags)^3$

Viterbi: Find the highest probability word by word. The number of calculations: $(\#words)(\#tags)^3$

References and Resources

This presentation was created using the following sources.

• Columbia University's Coursera Course on Natural Language Processing.

https://www.youtube.com/playlist?list=PLO9y7hOkmmSGSJA8S3gTigcyNDVJ31LLttplicks.pdf. All the control of the c

- Tagging with Hidden Markov Models by Michael Collins.
 http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/hmms.pdf
- A Well-Commented Examples of a Bigram Model By Katrin Erk.

 $\label{lem:http://www.katrinerk.com/courses/python-worksheets/hidden-markov-models-for-postagging-in-python$