PREDICTING INDIVIDUAL INCOME THROUGH HOUSEHOLD DEMOGRAPHIC STATISTICS: A DATA-DRIVEN APPROACH

110502528 HSUN-HAO CHANG 110502529 PO-SHEN CHEN 110502534 CHUN-YU CHEN 110502009 HUNG-YI HSU

Source of Dataset

Household Income and Expenditure Survey

Dataset Visualization YEAR

INCOME VS. YEARS

- Income rises with years.
- Growth rate slows with time.
- Correlation between income and years exists but not strong.
- Shows moderate correlation despite variability.

Dataset Visualization REL

INCOME VS. FAMILY MEMBER TITLES

- Linear regression line fits well.
- Indicates correlation between head of household and income.
- Positive slope suggests closer relation = higher income.
- Relationship with Head of Household (REL) is significant in explaining income

Dataset Visualization SEX

INCOME VS. GENDER

- Linear regression line fits well.
- Men have higher incomes than women (positive slope).
- Low-income range: women's are higher.
- High-income range: men's are higher.
- Gender is a significant variable in explaining income differences.

Dataset Visualization AGE

INCOME VS. AGE

- Peak income: ages 50 to just before 60.
- Distribution resembles a normal curve.
- Steep rise before 50, quadratic pattern after 60.
- Cubic function used for better fitting the chart's distribution.

Dataset Visualization EDU

INCOME VS. EDUCATION

- Higher education = higher income.
- Aligns with common knowledge.
- Education level is a significant differentiator and emphasizes the importance of further education pursuit.

Dataset Visualization

IND

INCOME VS. INDUSTRIES

- Organized by average income per industry.
- Variation in income levels among industries.
- Some industries show broader income distributions.
- Healthcare, social assistance, and real estate industries notably wide-ranging.
- Challenges in predictions due to wide income ranges and potentially lower sample sizes in certain sectors.

Dataset Visualization OCC

INCOME VS. OCCUPATION

- Chart shows occupation vs. income.
- Ranks average incomes by occupation.
- Confirms higher incomes for representatives, supervisors, managers.
- Indicates lower salaries for frontline workers and production personnel.

Dataset Visualization WKClass

INCOME VS. EMPLOYMENT ROLE

- Categories: students, unpaid family workers, unemployed, homemakers, self-employed, employees, employers, others.
- Employer income notably highest.
- Significant margin above other categories, even doubling the second-highest category.

Dataset Visualization WORK

INCOME VS. EMPLOYMENT STATUS

The Ideas

• Employed individuals tend to have higher incomes than unemployed individuals.

Dataset Visualization WORKPlace

INCOME VS. WORK LOCATION IN TAIWAN The Ideas

- Working abroad associated with highest income.
- Northern region and special municipalities also have relatively higher incomes.
- Peripheral areas in central and southern regions, along with those receiving onetime retirement pensions, tend to have lower incomes.

WORKPLACE

Dataset Visualization MRG

INCOME VS. MARITAL STATUS

- Chart illustrates marital status vs. income.
- Generally, higher income for married individuals compared to unmarried.
- Suggests both partners having income sources contributes to higher overall income compared to reliance on a single income source for unmarried individuals.

Dataset Visualization

INCOME VS. RELATIONSHIP BETWEEN MULTIPLE JOBS (MOONLIGHTING)

The Ideas

• Individuals with multiple jobs have higher income compared to those without additional employment.

Methodology

tree Models

Svm Models

Neighbors Models

Linear Models

Neural Network Models

Cross Decomposition Models

Ensemble Models

Popular Models(on Kaggle)

Experiments Drop out Results

Table 1: MAE with One-Hot Encoding

Name	Test Loss	Train Loss
RANSAC	1.914991×10^{11}	2.076992×10^{10}
Linear	2.010680×10^{11}	3.853654×10^{-1}

Table 2: MAE without One-Hot Encoding

Name	Test Loss	Train Loss
SGD	3.377136×10^{14}	3.373692×10^{14}

Table 3: MSE with One-Hot Encoding

Name	Test Loss	Train Loss
Linear RANSAC	$\begin{array}{c} 9.477466 \times 10^{22} \\ 1.373472 \times 10^{23} \end{array}$	5.720158×10^{-1} 5.160883×10^{21}

Experiments SVM

ONE-HOT OR NOT

TRAIN VS TEST

Experiments Traditional models

Experiments Ensemble Models

ONE-HOT OR NOT TRAIN VS TEST TRAIN VS TEST

Conclusion MSE Overall

THANK YOU

PREDICTING INDIVIDUAL INCOME THROUGH HOUSEHOLD DEMOGRAPHIC STATISTICS: A DATA-DRIVEN APPROACH

110502528 HSUN-HAO CHANG 110502529 PO-SHEN CHEN 110502534 CHUN-YU CHEN 110502009 HUNG-YI HSU

End Slide