

2015 VCAA Math Methods CAS Exam 2 Solutions

CAS should be used whenever possible to speed up the solution process.

SECTION 1

1	2	3	4	5	6	7	8	9	10	11
Α	Α	C	В	Е	C	C	D	В	D	A
12	13	14	15	16	17	18	19	20	21	22
Е	Е	D	В	D	D	Α	С	В	D	В

Q1 Period =
$$\frac{2\pi}{3}$$
, the range is $[-2-3, 2-3]$, i.e. $[-5, -1]$ A

$$x = \frac{1}{\sqrt{y+2}}$$
, $y = \frac{1}{x^2} - 2$, $f^{-1}(x) = \frac{1}{x^2} - 2$

Q4
$$y = x^2$$
, $m_t = \frac{dy}{dx} = 2x$. At $(2,4)$, $m_t = 2(2) = 4$.

Consider (3,8) and (2,4),
$$m = \frac{8-4}{3-2} = 4 = m_t$$

Q5 Reflection in the line
$$y = x$$

Q6
$$P(3) = 3^3 - a \cdot 3^2 - 4(3) + 4 = 10$$
, : $a = 1$

Q7

Q8 Area under the straight line =
$$\frac{1}{2}p^2 = \frac{25}{8}$$
, .: $p = \frac{5}{2}$

Q9
$$\frac{1}{6}(a-2)=1$$
, .: $a=8$, $E(X)=\int_{2}^{8}\frac{x}{6}dx=\left[\frac{x^{2}}{12}\right]_{2}^{8}=5$

Q10
$$np = 2$$
, $npq = \frac{4}{3}$, .: $n = 6$, $p = \frac{1}{3}$ and $q = \frac{2}{3}$

$$Pr(X = 1) = {}^{6}C_{1} \left(\frac{1}{3}\right)^{1} \left(\frac{2}{3}\right)^{5}$$

Q11
$$\sqrt{x^3 + 1} = \sqrt{8\left(\frac{x}{2}\right)^3 + 1}$$

Q12 Pr(at least one) =
$$1 - Pr(none) = 1 - \frac{1}{{}^{8}C_{3}} = \frac{55}{56}$$

Q13

$$\int_0^1 ae^x dx + ae.1 = 1, \ \left[ae^x \right]_0^1 + ae = 1, \ 2ae - a = 1, \ a = \frac{1}{2e - 1}$$

Q14
$$p+2p+3p+4p+5p=1$$
, : $p=\frac{1}{15}$

Mean of
$$X = 1 \times \frac{1}{15} + 2 \times \frac{2}{15} + 3 \times \frac{3}{15} + 4 \times \frac{4}{15} + 5 \times \frac{5}{15} = \frac{11}{3}$$

D

 \mathbf{C}

Q15
$$\int_0^5 (2g(x) + ax) dx = \int_0^5 2g(x) dx + \int_0^5 ax dx$$

$$=2\int_0^5 g(x)dx + \left[\frac{ax^2}{2}\right]_0^5 = 2 \times 20 + \frac{25a}{2} = 90, :: a = 4$$

Q16
$$f'(x) = \int g(x)dx$$
, $max^{m-1} = \frac{bx^{n+1}}{n+1}$

$$\frac{b}{a} = m(n+1)x^{m-n-2} :: m-n-2=0 :: \frac{b}{a} = m(n+1) \text{ is an integer}$$
since m and n are positive integers.

Q17 By CAS $y = x^3 - 3x^2$ has a local max at (0,0) and a local min at (2,-4). To have three distinct *x*-intercepts, $y = x^3 - 3x^2$ must translate upwards by less than 4 units. Hence $c \in (0,4)$.

Q18
$$f(x) = x^2$$
 satisfies $|f(x+y) - f(x-y)| = 4\sqrt{f(x)f(y)}$.

L.H.S. =
$$|(x + y)^2 - (x - y)^2| = |4xy| = 4|xy|$$

R.H.S. =
$$4\sqrt{x^2y^2} = 4\sqrt{(xy)^2} = 4|xy| = \text{L.H.S.}$$

Q19 Let
$$F(t) = \int \left(\sqrt{t^2 + 4}\right) dt$$

$$f(x) = \int_0^x \left(\sqrt{t^2 + 4} \right) dt = [F(t)]_0^x = F(x) - F(0)$$

$$f'(x) = F'(x) = \sqrt{x^2 + 4}, \ f'(-2) = \sqrt{(-2)^2 + 4} = 2\sqrt{2}$$

Q20
$$f(x-1)=x^2-2x+3$$

Replace x with
$$x+1$$
: $f(x+1-1)=(x+1)^2-2(x+1)+3$

$$f(x) = x^2 + 2$$

O21 Let $ax^2 = mx + c$, $ax^2 - mx - c = 0$

No intersections: $\Delta < 0$, $(-m)^2 - 4a(-c) < 0$, $m^2 + 4ac < 0$

If
$$a > 0$$
, $c < -\frac{m^2}{4a}$; if $a < 0$, $c > -\frac{m^2}{4a}$

Q22 Let f(x) = -a|x| where $a \in R^+$.

:
$$g(-f(x)) = g(a|x|) = g(a|-x|) \ge 0$$
 and $g(-f(x))$ is even.

SECTION 2

Q1a
$$f(x) = \frac{1}{5}(x-2)^2(5-x)$$

 $f'(x) = \frac{2}{5}(x-2)(5-x) - \frac{1}{5}(x-2)^2 = \frac{3}{5}(x-2)(4-x)$

Q1bi At
$$P\left(1, \frac{4}{5}\right)$$
, $m = f'(1) = -\frac{9}{5}$
 $y - \frac{4}{5} = -\frac{9}{5}(x - 1)$, $9x + 5y = 13$ or $y = -\frac{9}{5}x + \frac{13}{5}$

Q1bii
$$9x + 5y = 13$$
 When $x = 0$, $y = \frac{13}{5}$, .: $S\left(0, \frac{13}{5}\right)$
When $y = 0$, $x = \frac{13}{9}$, .: $Q\left(\frac{13}{9}, 0\right)$

Q1c Distance
$$PS = \sqrt{(0-1)^2 + \left(\frac{13}{5} - \frac{4}{5}\right)^2} = \frac{\sqrt{106}}{5}$$

Q1d Use CAS to solve simultaneous equations

 $y = \frac{1}{5}(x-2)^2(5-x)$ and 9x + 5y = 13 to find the second point of intersection at x = 7.

Area of the shaded region =
$$\int_{1}^{7} \left(\frac{1}{5} (x-2)^{2} (5-x) - \left(-\frac{9}{5} x + \frac{13}{5} \right) \right) dx$$
$$= 21.6 \text{ square units by CAS}$$

Q2a
$$y = 60 - \frac{3}{80}x^2$$
, $\frac{dy}{dx} = -\frac{3}{40}x$
At $A(-40, 0)$, $m = -\frac{3}{40}(-40) = 3$, $\tan \theta = 3$, $\theta \approx 72^\circ$

Q2b
$$y = \frac{x^3}{25600} - \frac{3x}{16} + 35$$
, $\frac{dy}{dx} = \frac{3x^2}{25600} - \frac{3}{16}$

The turning point of $\frac{dy}{dx}$ is $\left(0, -\frac{3}{16}\right)$.

.: the max downward slope is $-\frac{3}{16}$.

Q2c Vertical distance
$$D = 60 - \frac{3}{80}x^2 - \left(\frac{x^3}{25600} - \frac{3x}{16} + 35\right)$$

Let
$$\frac{dD}{dx} = 0$$
. $-\frac{3}{40}x - \frac{3x^2}{25600} + \frac{3}{16} = 0$

$$\therefore u = x \approx 2.49 \text{ m} (2.49031)$$

and
$$v = \frac{2.49031^3}{25600} - \frac{3 \times 2.49031}{16} + 35 \approx 34.53 \text{ m}$$

Q2d
$$P(-2.49031, w)$$
,

$$w = \frac{\left(-2.49031\right)^3}{25600} - \frac{3\left(-2.49031\right)}{16} + 35 \approx 35.47 \text{ m}$$

© 2015 itute.com

$$D_{MN} = 60 - \frac{3}{80} (2.49031)^2 - \left(\frac{2.49031^3}{25600} - \frac{3 \times 2.49031}{16} + 35 \right) \approx 25.23 \text{ m}$$

$$D_{PQ} = 60 - \frac{3}{80} (-2.49031)^2 - \left(\frac{(-2.49031)^3}{25600} - \frac{3(-2.49031)}{16} + 35 \right) \approx 24.30 \text{ m}$$

Q2e Let
$$D = 60 - \frac{3}{80}x^2 - \left(\frac{x^3}{25600} - \frac{3x}{16} + 35\right) = 0$$

By CAS,
$$x_E = -23.71$$
 and $x_F = 28.00$

Q2f Area of the shaded region

$$= \int_{-23.71}^{28.00} \left(60 - \frac{3}{80} x^2 - \left(\frac{x^3}{25600} - \frac{3x}{16} + 35 \right) \right) dx \approx 870 \text{ m}^2 \text{ by CAS}$$

Q3ai
$$Pr(X > 7) = \int_{7}^{8} \frac{3}{4} (x - 6)^{2} (8 - x) dx = 0.6875 = \frac{11}{16}$$
 by CAS

Q3aii Binomial distribution: n = 3, $p = \frac{11}{16}$

$$\Pr(X=1) = {}^{3}C_{1} \left(\frac{11}{16}\right)^{1} \left(\frac{5}{16}\right)^{2} = \frac{825}{4096}$$

Q3b Mean =
$$\int_{6}^{8} \frac{3}{4} (x-6)^2 (8-x)x \, dx = 7.2$$
 cm

Q3c Normal distribution: $\mu = 74$, $\sigma = 9$

$$Pr(X < 85 \mid X > 74) = \frac{Pr(74 < X < 85)}{Pr(X > 74)} \approx 0.778$$

Q3di Binomial distribution: n = 3, p = 0.03, q = 0.97

$$Pr(X \ge 1) = 1 - Pr(X = 0) = 1 - 0.97^4 \approx 0.1147$$

Q3dii Binomial distribution: n?, p = 0.03, q = 0.97

$$1 - \Pr(X = 0) = 1 - 0.97^n > 0.5$$

$$\therefore 0.97^n < 0.5, n > 22.75, \therefore n = 23$$

Q4a Area of shaded region = $2 \times \int_0^{\pi} 2\sin(x) dx = 4 \int_0^{\pi} \sin(x) dx$, a = 4

Q4b

2

Q4c Dilate from the x-axis by a factor of $\frac{1}{6}$, then dilate from the y-axis by a factor of $\frac{1}{3}$.

Q4di If n is even, the calculation is similar to part a.

Area of shaded region = $2 \times \int_0^{\pi} m \sin(x) dx = 2m \int_0^{\pi} \sin(x) dx$

$$=2m[-\cos(x)]_0^{\pi} = 4m = 4m + \frac{0}{n^2}$$

If n is odd, area of shaded region

$$= 2 \left(\int_0^{\pi} m \sin(x) dx - \int_0^{\frac{\pi}{n}} \frac{1}{n} \sin(nx) dx \right) = 4m + \frac{-4}{n^2}$$

Q5ai
$$S(t) = 2e^{\frac{t}{3}} + 8e^{\frac{-2t}{3}}, \ 0 \le t \le 5$$

$$S(0) = 10$$
, $S(5) = 2e^{\frac{5}{3}} + 8e^{\frac{-10}{3}}$

Q5aii
$$\frac{dS}{dt} = \frac{2}{3}e^{\frac{t}{3}} - \frac{16}{3}e^{\frac{-2t}{3}}$$
 Let $\frac{dS}{dt} = 0$ to find S_{\min} .

$$\therefore \frac{2}{3}e^{\frac{t}{3}} - \frac{16}{3}e^{\frac{-2t}{3}} = 0, \left(\frac{2}{3}e^{\frac{t}{3}} - \frac{16}{3}e^{\frac{-2t}{3}}\right)e^{\frac{2t}{3}} = 0$$

$$\therefore e^t = 8, \ t = \log_e 8, \ \therefore \ c = 8 \text{ and } S_{\min} = 2e^{\frac{\log_e 8}{3}} + 8e^{\frac{-2\log_e 8}{3}} = 6$$

Q5aiii

Q5aiv Average rate of change = $\frac{6-10}{\log_e 8-0} = -\frac{4}{\log_e 8}$

Q5b
$$V(t) = de^{\frac{t}{3}} + (10 - d)e^{\frac{-2t}{3}}, \ 0 \le t \le 5 \text{ and } 0 < d < 10$$

$$\frac{dV}{dt} = \frac{d}{3}e^{\frac{t}{3}} - \frac{2(10 - d)}{3}e^{\frac{-2t}{3}}$$

 V_{min} occurs when $t = \log_e 9$ (i.e. $e^t = 9$) and $\frac{dV}{dt} = 0$.

$$\therefore \frac{d}{3} \left(9^{\frac{1}{3}}\right) - \frac{2(10-d)}{3} \left(9^{-\frac{2}{3}}\right) = 0 \qquad \therefore d = \frac{20}{11}$$

Note: When d decreases (or increases), the turning point (local min) of V(t) occurs at increased (or decreased) t values. It can also occur outside the interval [0,5] and :: the minimum value (not necessarily the turning point) of V(t) occurs at one of the endpoints.

Q5ci
$$\frac{dV}{dt} = \frac{d}{3}e^{\frac{t}{3}} - \frac{2(10-d)}{3}e^{\frac{-2t}{3}}$$

Turning point at $t = 0$, $\frac{d}{3} - \frac{2(10-d)}{3} = 0$, $d = \frac{20}{3}$
 V_{min} occurs at $t = 0$ when $d \in \left[\frac{20}{3}, 10\right]$

Q5cii
$$\frac{dV}{dt} = \frac{d}{3}e^{\frac{t}{3}} - \frac{2(10-d)}{3}e^{\frac{-2t}{3}}$$

Turning point at $t = 5$, $\frac{d}{3}e^{\frac{5}{3}} - \frac{2(10-d)}{3}e^{\frac{-10}{3}} = 0$, .: $d = \frac{20}{e^5 + 2}$
.: V_{min} occurs at $t = 5$ when $d \in \left(0, \frac{20}{e^5 + 2}\right]$.

Q5d
$$V(t) = de^{\frac{t}{3}} + (10 - d)e^{\frac{-2t}{3}}, \frac{dV}{dt} = \frac{d}{3}e^{\frac{t}{3}} - \frac{2(10 - d)}{3}e^{\frac{-2t}{3}}$$

$$(a, m) \text{ is a local minimum, } \therefore \frac{d}{3}e^{\frac{a}{3}} - \frac{2(10 - d)}{3}e^{\frac{-2a}{3}} = 0 \dots (1)$$
and $m = de^{\frac{a}{3}} + (10 - d)e^{\frac{-2a}{3}} = \frac{k}{2}d^{\frac{2}{3}}(10 - d)^{\frac{1}{3}} \dots (2)$
From (1), $e^{a} = \frac{2(10 - d)}{d}$

$$\therefore e^{\frac{a}{3}} = \left(\frac{2(10 - d)}{d}\right)^{\frac{1}{3}} \dots (3) \text{ and } e^{\frac{-2a}{3}} = \left(\frac{2(10 - d)}{d}\right)^{-\frac{2}{3}} \dots (4)$$

$$m = d \frac{2^{\frac{1}{3}} (10 - d)^{\frac{1}{3}}}{d^{\frac{1}{3}}} + (10 - d) \frac{2^{-\frac{2}{3}} (10 - d)^{-\frac{2}{3}}}{d^{-\frac{2}{3}}} = \frac{k}{2} d^{\frac{2}{3}} (10 - d)^{\frac{1}{3}}$$

$$\therefore 2^{\frac{1}{3}} + \frac{1}{2^{\frac{2}{3}}} = \frac{k}{2}, \ \therefore \ k = 2 \times 2^{\frac{1}{3}} + 2^{\frac{1}{3}} = 2^{\frac{1}{3}} (2 + 1) = 3 \times 2^{\frac{1}{3}}$$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors