

Kickstarter Success Predictor

 $\bullet \bullet \bullet$

Omar Qusous

What can you do to increase the project's chances of success?

Data Source 1

- <u>https://webrobots.io/kickstarter-datasets/</u>
- Total of 9338 points. Aim to keep 5000 or more (duplicates, Nans, etc...)

Data Source 2

Feature Selection:

Not useful (logic):

['ballers_count', 'bblb', 'category', 'converted redged_amount', 'congry', 'created_at', 'created_at', 'culturely, 'culturely, 'culturely, 'culturely, 'converted redged_amount', 'congry', 'created_at', 'created_at', 'culturely, 'culturel

'currency symbol', 'currency piling_code', 'current_grency', 'deadline', ''disable_communication', 'freds', 'fx_ate', 'goal', 'ii 'is_b king', 'is_statole', 'is_stred', 'launched_at', 'location', 'name', 'pernolions', 'ploo', 'plo

Key:

All NAN:

Data leakage:

Repeated information:

Final Features:

- category: Film, Music, Fashion etc..
- location: country and state converted to continents to balance data
- created_at: data of starting the campaign
- deadline: deadline set for achieving the desired amount of money

- name: projects name
- staff_pick: projects highlighted on homepage
- goal: desired amount of money to succeed

EDA and Feature Engineering 1

- Continuous Data:
 - Log(df['time_allowed']) and Log(df['goal'])
 - df['time_allowed'] = df['deadline']-df['created_at'] # in days
 - outliers = df[(df['time_allowed'] > 5000) & (df['goal'] > 2e6)]
- Categorical Data:
 - Converted to dummies
 - df[['category', 'staff_pick', 'country']]
- Total of 168 columns in X

EDA and Feature Engineering 2

Target

Target:

- 'State': successful, failed, suspended, live, cancelled
 - Eliminated live, cancelled and suspended

'Binary distribution (1: success, 0: failure)

Quick Interesting Stats 1

Most successful and unsuccessful project categories

state	failed	successful	state	failed	successful
cat_slug			cat_slug		
music/hip-hop	149.0	30.0	publishing/fiction	NaN	239.0
crafts/diy	101.0	27.0	music/indie rock	NaN	220.0
technology/wearables	74.0	59.0	fashion/accessories	23.0	219.0
games/mobile games	73.0	9.0	film & video/narrative film	27.0	155.0
technology/software	70.0	27.0	design/product design	NaN	135.0

Quick Interesting Stats 2

Percentage Success/Failure by Continent

state	failed	successful	
country			
Aisa	28.0	72.0	
NAmerica	37.0	63.0	
Euro	41.0	59.0	
Aus	46.0	54.0	
SAmerica	51.0	49.0	

Average 'Goal' for successful and failed projects

state	failed	successful	
country			
Aisa	82395.0	108596.0	
Aus	43713.0	9458.0	
Euro	26291.0	9551.0	
NAmerica	31571.0	9234.0	
SAmerica	142798.0	66359.0	

Models 1

Ran Three Models:

- Baseline model of dummyclassifier used which gave 63% accuracy
- Random Forest with hyperparameter tuning using iterations and AUC vs
 Parameter range plots
- Logistic Regression with hyperparameter tuning in solver type, C parameter and penalty
- XGBoost with and without Gridsearch.
- All models were validated first with training data and then tested with the testing data.

Models 2 - Final Model

AUC: 0.87306645083072

Logistic Regression with l1 penalty, bilinear solver gave the best results

Normalized confusion matrix [[0.76638478 0.23361522] [0.18006431 0.81993569]]

Models 3 - Comparisons

Model	Confusion Matrix TN, FP, FN, TN	Accuracy	Reccall	Precision	F1
Random Forest Tuned	[[681 265] [314 1241]]	77.2%	85.9%	79.5%	82.6%
LogReg	[[712 234] [277 1278]]	79.6%	82.2%	84.5%	83.3%
LogReg Tuned	[[725 221] [280 1275]]	80.0%	82.0%	85.2%	83.6%
XGBoost with GridSearch	[[593 353] [187 1368]]	78.4%	88.0%	79.5%	83.5%

Models 4 - Improvements

 Quantify quality of the project's presentation through recognising the use of videos, images and rewards.

 Monitor updates from project founders and number of backers/amount of pledges for first 10-20 days and quantify it as a feature.

- Work on better classifying project categories and make them more uniform

Thank you