rnaScope Analysis with FISH Finder

Kevin Coffey

File Naming

- RGB Images
 - ID.(tif. jpg, png, or bmp)
 - A1.png
 - A2.png
 - Etc.
- 4 Channel Images
 - Project Folder
 - ID Folder Contains 4 images
 - ID_ch00.tif (DAPI)
 - ID_ch01.tif
 - ID_ch02.tif
 - ID_ch03.tif

Use a Key File

Mouse	Group	Sex	ID
1230	MN	F	A1
1271	MN	М	A2
1439	MS	F	A3
1463	MS	М	A4
1269	SS	F	A5
1274	SS	М	A6
1234	MN	F	B1
1272	MN	M	B2
1440	MS	F	В3
1464	MS	M	B4
1438	SS	F	B5
1275	SS	M	B6
1268	MN	F	C1
1273	MN	M	C2
1441	MS	F	C3
1465	MS	M	C4
1462	SS	F	C5
1466	SS	M	C6

Quality In -Quality Out

- <u>Keyence Example</u>
 - 20x
 - High Resolution 1920x1440
 - 2D Pinhole optical sectioning

- Uniform brightness
- ~20-pixel diameter

Bad DAPI is Bad

 If your DAPI doesn't look like the top left image, something is wrong and automated analysis will suffer.

FISH Finder Pipeline

- 1. Load Representative Image
- 2. Segment DAPI
- 3. Define Cell Size
- 4. Set Signal Channel Thresholds
- 5. Save Final Image and Settings
- 6. Batch Process Entire Dataset

Load Representative Image

- Choose a single RGB Image
 - DAPI must be on blue channel

Or

- Choose 4 individual channel images (monochrome or single color)
 - DAPI must be on ch00 or ch0

Segment DAPI

- RFOVE Segmentation
 - Very accurate but slow and resource intensive

Or

- Fast Segmentation
 - Very fast
 segmentation but
 lower accuracy on
 overlapping nuclei

Define Cell Size

- Dilate nuclear mask to define cell size
 - How many pixels should you expand the nucleus to count signal in each cell?

Set Signal Channel Thresholds

- Move Sliders to set thresholds
- Cells on left of the line are "Negative"
- Cells on right of the line are "Positive"
- View each individually

View Composite Image and Verify Thresholds

- Move Sliders to adjust thresholds
- Cells on left of the line are "Negative"
- Cells on right of the line are "Positive"
- Confirm Thresholds visually

Save Final Analysis Settings

- Save the composite image
- Save colocalization statistics for the representative image
- Save settings file for use in batch processing

Batch Process The Entire Dataset

- RGB:
 - Select all the RGB images to analyze with the same settings
- 4 Ch Images:
 - Select parent directory containing 1 folder for each set of 4 images (NO OTHER FOLDERS!)
- Select settings file
- Select directory to save analyses
- Walk away, be patient

