1. (Currently Amended) A substituted amine of formula (X)

$$R_N$$
 CH
 CH
 R_1
 R_2
 R_3
 R_3
 R_3
 (X)

where R₁ is:

 $\frac{\text{(II)} \quad \text{CH}_2 - \text{S} \text{(O)}_{0-2} - \text{(C}_1 - \text{C}_6 - \text{alkyl)},}{\text{(O)}_{0-2} - \text{(C)}_{1-2} - \text{(O)}_{1-2}}$

 $-\frac{(III) - CH_2 - CH_2 - S(O)_{0-2} - (C_1 - C_6 - alkyl)}{(C_1 - C_6 - alkyl)}$

(VI) - $(CH_2)_{n1}$ - (R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1 naphthyl, 2 naphthyl and indanyl, indenyl,

dihydronaphthayl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

- (A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,
- (B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (D) -F, Cl, -Br, or -I,
- (E) $-C_1-C_6$ alkoxy optionally substituted with one, two, or three -F,
- (F) $-N\mbox{R}_{N-2}\mbox{R}_{N-3}$ where \mbox{R}_{N-2} and \mbox{R}_{N-3} are as defined below,
 - (G) -OH,
 - (H) -C≡N,
- (I) C_3-C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF $_3$, C_1-C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are -H or C_1-C_6 alkyl,
 - (J) -CO- $(C_1-C_4 \text{ alkyl})$,
- (K) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(L) $-CO-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, or (M) -SO₂-(C₁-C₄ alkyl), (VII) - $(CH_2)_{n1}$ - $(R_{1-heteroary1})$ - where n_1 - is as defined above and where R_{1 heteroaryl} is selected from the group consisting of: pyridinyl, pyrimidinyl, quinolinyl, benzothienyl, -indolyl, indolinyl, pryidazinyl, -pyrazinyl, -isoindolyl, - isoquinolyl, — quinazolinyl, quinoxalinyl, —phthalazinyl, imidazolyl, isoxazolyl, -pyrazolyl, -oxazolyl, thiazolyl, indolizinyl, -indazolyl, benzothiazolyl, benzimidazolyl, benzofuranyl, — furanyl, ---thienyl, - pyrrolyl,

-oxadiazolyl,

thiadiazolyl,
triazolyl,
tetrazolyl,
oxazolopyridinyl,
imidazopyridinyl,
isothiazolyl,
naphthyridinyl,
cinnolinyl,
carbazolyl,
beta-carbolinyl,
isochromanyl,
chromanyl,
tetrahydroisoquinolinyl,
isoindolinyl,
isobenzotetrahydrofuranyl,
isobenzotetrahydrothienyl,
isobenzothienyl,
benzoxazolyl,
——————————————————————————————————————
benzotetrahydrofuranyl,
benzotetrahydrothienyl,
——————————————————————————————————————
——————————————————————————————————————
triazinyl,
phenoxazinyl,
phenothiazinyl,
pteridinyl,
benzothiazolyl,
imidazopyridinyl,
imidazothiazolyl,
dihydrobenzisoxazinyl,
benzisoxazinyl,
-5-

benzoxazinyl, dihydrobenzisothiazinyl, benzopyranyl, benzothiopyranyl, coumarinyl, isocoumarinyl, chromonyl, chromanonyl, pyridinyl N oxide tetrahydroquinolinyl dihydroquinolinyl <u>dihydroquinolinonyl</u> <u>dihydroisoquinolinonyl</u> <u>dihydrocoumarinyl</u> dihydroisocoumarinyl isoindolinonyl benzodioxanyl benzoxazolinonyl pyrrolyl N oxide, pyrimidinyl N oxide, pyridazinyl N oxide, pyrazinyl N oxide, quinolinyl N oxide, indolyl N-oxide, indolinyl N oxide, isoquinolyl N oxide, quinazolinyl N oxide, quinoxalinyl N oxide, phthalazinyl N oxide, imidazolyl N oxide, isoxazolyl N oxide, oxazolyl N-oxide,

thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,
oxadiazolyl N-oxide,
thiadiazolyl N-oxide,
triazolyl N-oxide,
tetrazolyl N-oxide,
benzothiopyranyl S-oxide, and
benzothiopyranyl S,S-dioxide,

where the R_{1 heteroaryl} group is bonded to (CH₂)_{n1}by any ring atom of the parent R_{N-heteroaryl} group substituted by hydrogen such that the new bond to the R1 heteroaryl group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of: (1) C₁-C₆ alkyl-optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 -alkyl, F, C_1 , B_1 , C_1 , O_1 -SH, -C=N, CF_3 , C_1 - C_3 -alkoxy, and $NR_{1-a}R_{1-b}$ -where R_{1-a} -and R_{1-b} -are as defined above, (2) C2-C6-alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of F, Cl, OH, SH, C=N, — CF_3 , C_1 - C_3 -alkoxy, and NR_1 $_aR_1$ $_b$ -where R_1 $_a$ -and R_1 $_b$ -are H or C_1 - C_6 alkyl, (3) C2 C6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents

selected from the group consisting of F, Cl, OH, SH, C=N,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above;

where R_3 is:

- (I)-H, or
- (II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above;

and where R_2 and R_3 are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2}-, where R_{N-2} is as defined below;

where R_N is:

(I) $R_{N-1}\text{-}X_N\text{-}$ where X_N is selected from the group consisting of:

where R_{N-1} is selected from the group consisting of:

(A) $R_{N \text{ aryl}}$ where $R_{N \text{ aryl}}$ is phenyl, 1 naphthyl, 2 naphthyl, tetralinyl, indanyl, dihydronaphthyl or 6,7,8,9-tetrahydro 5H benzo[a]cycloheptenyl, optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

- (2) -OH,
- $(3) NO_2$,
- (4) -F, -Cl, -Br, or -I,
- (5) -CO-OH,
- (6) -C≡N,

 $(7) \ - (CH_2)_{0-4} - CO - NR_{N-2}R_{N-3} \ where \ R_{N-2} \ and \ R_{N-3} \ are$ the same or different and are selected from the group consisting of:

- (a) -H,
- (b) $-C_1-C_6$ alkyl optionally substituted with one substitutent substituent selected from the group consisting of:
 - (i) -OH, and
 - (ii) $-NH_2$,
- (c) $-C_1-C_6$ alkyl optionally substituted with one to three -F, -Cl, -Br, or -I,
 - (d) $-C_3-C_7$ cycloalkyl,
 - (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
 - (f) $-(C_1-C_6 \text{ alkyl}) O (C_1-C_3 \text{ alkyl})$,
 - (g) $-C_2-C_6$ alkenyl with one or two

double bonds,

(h) $-C_2-C_6$ alkynyl with one or two

triple bonds,

(i) $-C_1-C_6$ alkyl chain with one double bond and one triple bond,

(j) $-R_{1-aryl}$ where R_{1-aryl} is as defined

above, and

 $\mbox{(k)} \ \mbox{-$R$_{1$-heteroaryl}$ where R_{1$-heteroaryl}$ is as defined above,}$

(8) $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$,

(9) -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three double bonds),

 $\label{eq:charge_cond} (10) \mbox{ -(CH$_2$)$}_{0\text{-}4}\mbox{-CO-(C$_2$-C$}_{12} \mbox{ alkynyl with one, two}$ or three triple bonds),

(11) $-(CH_2)_{0-4}-CO-(C_3-C_7 \text{ cycloalkyl})$,

(12) -(CH $_2$) $_{0-4}$ -CO-R $_{1-aryl}$ where R $_{1-aryl}$ is as

defined above,

(13) -(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,

(14) -(CH₂) $_{0-4}$ -CO-R_{1-heterocycle} where R_{1-heterocycle} is as defined above,

 $(15) \ - (CH_2)_{0-4} - CO - R_{N-4} \ \ where \ R_{N-4} \ \ is \ selected$ from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of $C_1 - C_6$ alkyl,

 $(16) - (CH_2)_{0\text{-}4} - CO - O - R_{N\text{-}5} \text{ where } R_{N\text{-}5} \text{ is selected from the group consisting of:}$

(a) C_1-C_6 alkyl,

(b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as

defined above,

(c) C_2 - C_6 alkenyl containing one or two

double bonds,

(d) $C_2\text{-}C_6$ alkynyl containing one or two

triple bonds,

(e) C₃₋C₇ cycloalkyl,

(f) $-(CH_2)_{0-2}-(R_{1-heteroaryl})$ where $R_{1-heteroaryl}$ is as defined above, (17) $-(CH_2)_{0-4}-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above, (18) $-(CH_2)_{0-4}-SO-(C_1-C_8 \text{ alkyl})$, (19) $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12} \text{ alkyl})$, (20) $-(CH_2)_{0-4}-SO_2-(C_3-C_7 \text{ cycloalkyl})$, (21) $-(CH_2)_{0-4}-N(H \text{ or } R_{N-5})-CO-O-R_{N-5} \text{ where } R_{N-5}$ can be the same or different and is as defined above, (22) $-(CH_2)_{0-4}-N(H \text{ or } R_{N-5})-CO-N(R_{N-5})_2$, where R_{N-5} can be the same or different and is as defined above, (23) $-(CH_2)_{0-4}-N-CS-N(R_{N-5})_2$, where R_{N-5} can be the same or different and is as defined above, (24) $-(CH_2)_{0-4}-N(-H \text{ or } R_{N-5})-CO-R_{N-2}$ where R_{N-5} and R_{N-2} can be the same or different and are as defined above, (25) $-(CH_2)_{0-4}-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above, (26) $-(CH_2)_{0-4}-R_{N-4}$ where R_{N-4} is as defined above, (27) $-(CH_2)_{0-4}-O-CO-(C_1-C_6 \text{ alkyl})$, (28) - (CH₂) $_{0-4}$ -O-P(O) - (OR $_{N-aryl-1}$) $_2$ where R $_{N-aryl-1}$ is -H or C₁-C₄ alkyl, (29) $-(CH_2)_{0-4}-O-CO-N(R_{N-5})_2$ where R_{N-5} is as defined above, (30) $-(CH_2)_{0-4}-O-CS-N(R_{N-5})_2$ where R_{N-5} is as defined above, (31) $-(CH_2)_{0-4}-O-(R_{N-5})_2$ where R_{N-5} is as defined above, (32) $-(CH_2)_{0-4}-O-(R_{N-5})_2-COOH$ where R_{N-5} is as defined above,

defined above,

(33) -(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as

 $(34) \ - (\text{CH}_2)_{\,0\text{-}4}\text{-O-}(\text{C}_1\text{-C}_6 \ \text{alkyl optionally}$ substituted with one, two, three, four, or five -F),

(35) C_3-C_7 cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(37) C_2-C_6 alkynyl with one or two triple bonds optionally substituted with C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1-C_3 alkoxy, -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

 $(38) \ - (CH_2)_{\,0-4} - N \, (-H \ or \ R_{N-5}) - SO_2 - R_{N-2} \ where \ R_{N-5}$ and R_{N-2} can be the same or different and are as described above, or

(39) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,

 $\frac{\text{(B)} - R_{N \ heteroaryl} - where \ R_{N - heteroaryl} - is \ selected \ from}{\text{the group consisting of:}}$

-pyridinyl,

-pyrimidinyl,

-quinolinyl,

-benzothienyl,

-indolyl,

-indolinyl,

-pryidazinyl,

-pyrazinyl,

-isoindolyl,

-isoquinolyl,

-quinazolinyl,

-quinoxalinyl,

-phthalazinyl,

-imidazolyl,

```
-isoxazolyl,
-pyrazolyl,
-oxazolyl,
-thiazolyl,
-indolizinyl,
-indazolyl,
-benzothiazolyl,
-benzimidazolyl,
-benzofuranyl,
<del>-furanyl,</del>
-thienyl,
<del>pyrrolyl,</del>
-oxadiazolyl,
-thiadiazolyl,
triazolyl,
-tetrazolyl,
-oxazolopyridinyl,
-imidazopyridinyl,
-isothiazolyl,
-naphthyridinyl,
-cinnolinyl,
-carbazolyl,
-beta carbolinyl,
-isochromanyl,
-chromanyl,
-tetrahydroisoquinolinyl,
-isoindolinyl,
-isobenzotetrahydrofuranyl,
-isobenzotetrahydrothienyl,
-isobenzothienyl,
-benzoxazolyl,
-pyridopyridinyl,
```

```
-benzotetrahydrofuranyl,
-benzotetrahydrothienyl,
<del>purinyl,</del>
-benzodioxolyl,
-triazinyl,
-henoxazinyl,
-phenothiazinyl,
-pteridinyl,
-benzothiazolyl,
-imidazopyridinyl,
-imidazothiazolyl,
-dihydrobenzisoxazinyl,
-benzisoxazinyl,
-benzoxazinyl,
-dihydrobenzisothiazinyl,
-benzopyranyl,
-benzothiopyranyl,
-coumarinyl,
-isocoumarinyl,
-chromonyl,
-chromanonyl,
-pyridinyl N oxide,
tetrahydroquinolinyl
<u>dihydroquinolinyl</u>
<u>dihydroquinolinonyl</u>
<u>dihydroisoquinolinonyl</u>
<u>dihydrocoumarinyl</u>
<u>dihydroisocoumarinyl</u>
<u>isoindolinonyl</u>
<del>benzodioxanyl</del>
benzoxazolinonyl
pyrrolyl N oxide,
```

pyrimidinyl N oxide, pyridazinyl N oxide, pyrazinyl N oxide, quinolinyl N oxide, indolyl N oxide, indolinyl N oxide, isoquinolyl N oxide, quinazolinyl N-oxide, quinoxalinyl N-oxide, phthalazinyl N oxide, imidazolyl N oxide, isoxazolyl N oxide, oxazolyl N oxide, thiazolyl N-oxide, indolizinyl N-oxide, indazolyl N oxide, benzothiazolyl N oxide, benzimidazolyl N-oxide, pyrrolyl Noxide, oxadiazolyl N-oxide, thiadiazolyl N-oxide, triazolyl N-oxide, tetrazolyl N oxide, benzothiopyranyl S-oxide, and benzothiopyranyl-S, S-dioxide,

where the $R_{N-heteroaryl}$ group is bonded by any atom of the parent $R_{N-heteroaryl}$ group substituted by hydrogen such that the new bond to the $R_{N-heteroaryl}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

 $\frac{\text{(1)} \quad C_1 - C_6 \quad alkyl, \quad optionally \quad substituted \quad with}{\text{one, two or three substituents selected from the group}}$

(I) $-C_3-C_{10}$ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1-C_6 alkoxy, -O-phenyl, -CO-OH, -CO-O-(C_1-C_4 alkyl), and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

(III) - $(CR_{C-x}R_{C-y})_{0-4}$ - R_{C-aryl} where R_{C-x} and R_{C-y} are -H,

 $C_1\text{-}C_4$ alkyl optionally substituted with one or two -OH,

 $^{\cdot}$ $C_1\text{-}C_4$ alkoxy optionally substituted with one, two, or three of

-F,

- $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,

 C_2 - C_6 alkenyl containing one or two double bonds, C_2 - C_6 alkynyl containing one or two triple bonds,

or

phenyl,

and where R_{C-x} and R_{C-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, -NR_{N-2}- and R_{C-aryl} is the same as R_{N-aryl} ;

(IV) - $(CR_{C-x}R_{C-y})_{0-4}$ - $R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{C-x} and R_{C-y} are as defined above,

(V) - $(CR_{C-x}R_{C-y})_{0-4}$ - R_{C-aryl} - R_{C-aryl} where R_{C-aryl} , R_{C-x} and R_{C-y} are as defined above,

 $(VI) - (CR_{C-x}R_{C-y})_{0-4} - R_{C-aryl} - R_{C-heteroaryl} \ where \ R_{C-aryl} \ , \ R_{C-heteroaryl} \ , \ R_{C-x} \ and \ R_{C-y} \ are as defined above,$

(VII) - $(CR_{C-x}R_{C-y})_{0-4}$ - $R_{C-heteroaryl}$ - R_{C-aryl} where $R_{C-heteroaryl}$, R_{C-aryl} are as defined above,

 $(VIII) - (CR_{C-x}R_{C-y})_{0-4} - R_{C-heteroaryl} - R_{C-heteroaryl} \text{ where } R_{C-heteroaryl}, \\ R_{C-x} \text{ and } R_{C-y} \text{ are as defined above,}$

(IX) - $(CR_{C-x}R_{C-y})_{0-4}$ - R_{C-aryl} - $R_{C-heterocycle}$ where R_{C-aryl} , R_{C-x} and R_{C-y} are as defined above, and $R_{C-heterocycle}$ is the same as $R_{N-heterocycle}$,

 $(X) - (CR_{C-x}R_{C-y})_{0-4} - R_{C-heteroaryl} - R_{C-heterocycle} \ where \ R_{C-heteroaryl}, \\ R_{C-heterocycle}, \ R_{C-x} \ and \ R_{C-y} \ are \ as \ defined \ above,$

(XI) - $(CR_{C-x}R_{C-y})_{0-4}$ - $R_{C-heterocycle}$ - R_{C-aryl} where $R_{C-heterocycle}$, R_{C-aryl} , R_{C-x} and R_{C-y} are as defined above,

(XII) - $(CR_{C-x}R_{C-y})_{0-4}$ - $R_{C-heterocycle}$ - $R_{C-heteroaryl}$ where $R_{C-heteroaryl}$

 $_{\rm heterocycle},~R_{C\text{-}heteroaryl},~R_{C\text{-}x}$ and $R_{C\text{-}y}$ are as defined above,

(XIII) - $(CR_{C-x}R_{C-y})_{0-4}$ - $R_{C-heterocycle}$ - $R_{C-heterocycle}$ where R_{C-}

heterocycle, R_{C-x} and R_{C-y} are as defined above,

(XIV) -(CR_{C-x}R_{C-y}) $_{0-4}$ -R_{C-heterocycle} where R_{C-heterocycle}, R_{C-x} and R_{C-y} are as defined above,

(XV) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to R_{C-aryl} or $R_{C-heteroaryl}$ or $R_{C-heterocycle}$ where R_{C-aryl} or $R_{C-heterocycle}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, $S(=0)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two $-C_1-C_3$ alkyl, -F, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1-C_6 alkoxy, =0, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XVI) -[C(R_{C-1})(R_{C-2})]₁₋₃-CO-N-(R_{C-3})₂ where R_{C-1} and R_{C-2} are the same or different and are selected from the group consisting of:

- (A) H,
- (B) $-C_1-C_6$ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

(C) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1-C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

(D) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined for R_{1-aryl},

(E) -(C₁-C₄ alkyl)-R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,

(F) -(C_1 - C_4 alkyl)- $R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,

(G) $-R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is as defined above,

(H) $-R_{\text{C-heterocycle}}$ where $R_{\text{C-heterocycle}}$ is as defined above, and

(I) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above, and where R_{C-3} is the same or different and is:

(A) -H,

(B) $-C_1-C_6$ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,

(D) $-(C_1-C_4 \text{ alkyl})-R_{C'-aryl} \text{ where } R_{C'-aryl} \text{ is as}$ defined above,

(E) -(C1-C4 alkyl)-R_C-heteroaryl where R_C-heteroaryl is as defined above, or

 $(F) \ - (C_1 - C_4 \ alkyl) - R_{C\text{-}heterocycle} \ where \ R_{C\text{-}heterocycle} \ is$ as defined above; or pharmaceutically acceptable salts thereof.

2. (Currently Amended) A substituted amine according to claim 1

where R_1 —is: $(CH_2)_{\theta-1}$ — (R_{1-aryl}) , or $(CH_2)_{n1}$ — $(R_{1-heteroaryl})$ where R_N is:

- -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,
- $-(CR_{C-x}R_{C-y})_{1-4}-R_{C-aryl}$
- $-(CR_{C-x}R_{C-y})_{1-4}-R_{C-heteroaryl}$
- $-(CR_{C-x}R_{C-y})_{1-4}-R_{C-heterocycle}$, or
- -cyclopentyl or -cyclohexyl ring fused to a $R_{\text{C-aryl}}$ or $R_{\text{C-heterocycle}}.$
- 4. (Original) A substituted amine according to claim 3 where $R_{\text{\scriptsize C}}$ is:
 - $(CR_{C-x}R_{C-y})_{1-4}-R_{C-aryl}$,
 - $(CR_{C-x}R_{C-y})_{1-4}$ - $R_{C-heteroaryl}$, or
- -cyclopentyl or -cyclohexyl ring fused to a $R_{\text{C-aryl}}$ or $R_{\text{C-heteroaryl}}$ or $R_{\text{C-heterocycle}}.$

5. (Cancelled)

- 6. (Original) A substituted amine according to claim 1 where R_1 is
- -(CH2)-(R1-aryl) where R1-aryl is phenyl substituted with two F.
- 7. (Original) A substituted amine according to claim 6 where the -F substitution is 3,5-difluorobenzyl.
- 8. (Original) A substituted amine according to claim 1 where R_2 is -H.
- 9. (Original) A substituted amine according to claim 1 where R_3 is -H.

10. (Currently Amended) A substituted amine according to claim 1 where $R_{N} \cdot i \mathbf{s}$

 R_{N-1} - X_N - where X_N is -CO-, where R_{N-1} is R_{N-ary1} where R_{N-ary1} is phenyl substituted with one -CO-NR_{N-2}R_{N-3} where the substitution on the phenyl is 1,3-.

- 11. (Original) A substituted amine according to claim 10 where $R_{N\text{--}2}$ and $R_{N\text{--}3}$ are the same and are C_3 alkyl.
- 12. (Currently Amended) A substituted amine according to claim 1 where $R_{\text{\tiny N}}$ is

 $R_{N-1}-X_N$ where X_N is CO-, where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl substituted with one C_1 alkyl and with one -CO- $NR_{N-2}R_{N-3}$ where the substitution on the phenyl is 1,3,5-.

- 13. (Original) A substituted amine according to claim 12 where R_{N-2} and R_{N-3} are the same and are C_3 alkyl.
 - 14. (Cancelled)
 - 15. (Cancelled)
- 16. (Original) A substituted amine according to claim 1 where R_{C} is:
 - $(CR_{C-x}R_{C-y})_{1-4}$ - R_{C-aryl} where R_{C-aryl} is phenyl,
 - $-(CR_{C-x}R_{C-y})_{1-4}-R_{C-heteroaryl}$, or
- -cyclopentyl or -cyclohexyl ring fused to a $R_{\text{C-aryl}}$ or $R_{\text{C-heterocycle}}.$

- 17. (Original) A substituted amine according to claim 16 where R_{C} is:- $(CR_{C-x}R_{C-y})_{1-4}-R_{C-aryl}$ where R_{C-aryl} is phenyl.
- 18. (Original) A substituted amine according to claim 17 where phenyl is substituted in the 3-position or 3,5-positions.
- 19. (Original) A substituted amine according to claim 16 where R_{C} is:
 - (CH₂) -R_{C-heteroaryl}.
- 20. (Original) A substituted amine according to claim 16 where R_{c} is:
 - (CH₂) -R_{C-heterocycle}.
- 21. (Original) A substituted amine according to claim 16 where R_{C} is:
 - -cyclohexyl ring fused to a phenyl ring.
- 22. (Original) A substituted amine according to claim 1 where the pharmaceutically acceptable salt is selected from the group consisting of salts of the following acids acetic, aspartic, benzenesulfonic, benzoic, bicarbonic, bisulfuric, bitartaric, butyric, calcium edetate, camsylic, carbonic, chlorobenzoic, citric, edetic, edisylic, estolic, esyl, esylic, formic, fumaric, gluceptic, gluconic, glutamic, glycollylarsanilic, hexamic, hexylresorcinoic, hydrabamic, hydrobromic, hydrochloric, hydroiodic, hydroxynaphthoic, isethionic, lactic, lactobionic, maleic, malic, malonic, mandelic, methanesulfonic, methylnitric, methylsulfuric, mucic, muconic, napsylic, nitric, oxalic, p-nitromethanesulfonic, pamoic, pantothenic, phosphoric, monohydrogen phosphoric,