(19) 日本国特許庁 (JP)

CO3C 17/30

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-24600

(43) 公開日 平成8年(1996) 1月30日

(51) Int. Cl. ⁶ 識別記号 F I 801D 71/04 9538-4D B

審査請求 未請求 請求項の数2 OL (全17頁)

(21) 出願番号

特願平6-157773

(22) 出願日

平成6年(1994)7月11日

(71) 出願人 000003182 (1)

人。山口県徳山市御影町1番1号

granding and the figure of the entire that the contract of the

医氯化物 医斯特特氏病 医二氏病 医二氏病 医二氏病 医二氏病 经收益 化

(72) 発明者 大村 借彦 大学 日 分数 20 日本

山口県徳山市御影町1番1号 株式会社ト

2. 你可以这**久ヤス内** 的复数超级超级有一位

(72) 発明者 坂田 勘治

山口県徳山市御影町1番1号 株式会社ト

クヤマ内の一般では、

(54) 【発明の名称】ガラス多孔質膜 (1996年) (54)

(57)。【要約】 (1) (1) (1) (1) (1) (1) (2) (2) (2)

【目的】 タンパク質や高分子電解質のように比較的親水性の高い物質の濾過の際の膜への吸着がほとんどなく、また有機溶剤水溶液からのパーベーパレーションによる有機溶剤の分離において、有機溶剤の高い選択透過性を示すガラス多孔質膜を提供する。

【構成】 シリル化剤残基の濃度が 0. 6 0 mg/m'以上、好ましくは 0. 8 0 mg/m'であるガラス多孔質膜。

【特許請求の範囲】

【請求項1】シリル化剤残基の濃度が0.60mg/m 以上であることを特徴とするガラス多孔質膜。

【請求項2】ガラス多孔質膜を塩基性物質と接触させ、 次いでシリル化剤と接触させることを特徴とする請求項 1のガラス多孔質膜の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、限外濾過、精密濾過などの濾過による分離、あるいは有機溶剤水溶液からの有 10機溶剤の分離などの分離技術に有用な新規なガラス多孔質膜に関する。

[0002]

【従来の技術】今日、分離技術は多様化しており、各種の目的に応じた分離方法が実用化されている。膜分離もその一つであり、精密濾過、限外濾過、逆浸透をはじめ、電気透析、拡散透析、ガス分離、パーペーパレーション(浸透気化)など多くの方法が用いられている。そこで用いられている膜の材料の多くは、酢酸セルロース、ポリスルフォン、スチレンージビニルベンゼン共重 20合体などの有機高分子である。しかし、有機高分子では耐熱性、耐薬品性、耐有機溶剤性などに限界があり、近年、無機材料を用いた膜の開発が盛んにおこなわれている。

【0003】無機材料を用いた膜の中でもガラス多孔質膜は、有機高分子では見られない狭い孔径分布を有することから、精密な濾過分離の分野で特に注目されている。しかし、ガラス多孔質膜は表面および内部にシラノール基(Si-OH)を有することから、分離しようとする対象物がタンパク質や高分子電解質のように比較的 30 親水性の強い物質の場合、ガラス多孔質膜のシラノール基との静電的相互作用のためにガラス多孔質膜に吸着することが多い。その対策として、ガラス多孔質膜をシリル化剤で処理してシラノール基を化学変換してその影響を軽減する試みが第20回機能材料と利用に関するフォーラム講演要旨集p80(1993)に紹介されているが、十分な効果が得られているとは言えない。

【0004】またガラス多孔質膜をシリル化剤で処理することにより疎水性とし、エタノール/水混合液から浸透気化法によってエタノールを選択的に透過させる試み 40が膜(MEMBRANE), 13(3), 171~176(1988)に紹介されているが、エタノールの選択透過性は低く、十分な効果が得られていない。

[0005]

【発明が解決しようとする課題】上記したようにガラス多孔質膜をシリル化剤で処理して分離膜として使う試みは多くされている。しかしながら、ガラス多孔質膜のシラノール基の濃度は低く、ガラス多孔質膜をシリル化剤で処理しても十分な量のシリル化剤がガラス多孔質膜に導入されず、意図する効果が得られていない。本発明

は、従来技術では達成しえない分離性能を有するガラス多孔質膜を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明者らは、上記課題に鑑み、より分離性能の高いガラス多孔質膜を得るために鋭意研究を重ねた。その結果、ガラス多孔質膜へのシリル化剤の導入量(以下、シリル化剤残基の濃度と呼ぶ)を 0. 6 0 mg/m¹以上にした時、濾過の際に親水性高分子の吸着を防ぎ、またパーベーパレーションにおいては有機溶剤水溶液から高い有機溶剤選択透過性を発現することを見い出した。

【0007】即ち、本発明は、シリル化剤残基の濃度が 0.60mg/m¹以上であることを特徴とするガラス 多孔質膜である。

【0008】本発明に用いるガラス多孔質膜の材質は、ケイ酸系ガラス、即ち、酸化ケイ素(SiO₂)の網目状構造の中に網目修飾体あるいは網目修飾イオンといわれるNa、K、Li、Csなどのアルカリ金属やCa、Mg、Ba、Beなどのアルカリ土類金属が部分的に入っているもの、ホウケイ酸系ガラス、即ち、ケイ酸系ガラスの酸化ケイ素の一部がB、P、Ge、As、Vなどの酸化物に置き代わり網目構造を形成しているものなどがあげられる。特に、ケイ酸系ガラス、ケイ酸系ガラスの酸化ケイ素の一部がAIで置き代わり網目構造を形成しているものなどがあげられる。特に、ケイ酸系ガラス、ケイ酸系ガラスの酸化ケイ素の一部がAIで置き代わり網目構造を形成しているSiO₂—AI₂O₃—AO(AOはアルカリ金属の酸化物あるいはアルカリ土類金属の酸化物)系ガラスが好適である。

【0009】本発明においてガラス多孔質膜の製造方法は、特に制限を受けず従来より知られている方法が使用できる。例えば、ホウケイ酸ガラスを熱処理して分相させ、酸処理して酸可溶成分、即ち、ホウ酸成分を溶出除去する方法、ガラス成分(SiO,、Al,O,、Na,O、CaOなど)と水との水熱反応を利用して基盤上にガラス成分を析出させる水熱合成法、シリカなどのゾルを高温で焼成する方法、ガラスの微粉末を高温で圧縮成形する方法などを用いることができ、特にホウケイ酸ガラスの分相を利用する方法が好適である。

40 【0010】本発明におけるガラス多孔質膜の孔径は、特に制限を受けないが10オングストローム~10μmのものが望ましく、その中でも20オングストロームから1μmが好適である。本発明のガラス多孔質膜を有機溶剤水溶液からの有機溶剤の分離に使用する場合には、孔径は20~300オングストロームが好適であり、タンパク質や高分子電解質などの濾過分離に使用する場合には100~1500オングストロームが好適である。また、多孔質ガラス膜の細孔容積は、孔径に依存するため一概に言えないが、0.2ml/g以上が望ましい。50 またガラス多孔質膜の膜厚も特に制限を受けないが、膜

厚が薄い方が分離に用いる際の透過物の透過流束が大き くなり有利である。しかし、あまり薄いと機械的強度が 弱くなり実用的でない。そのため膜厚は、0.1μm~ 1 mmが望ましく、特に $1 \mu \text{ m} \sim 0$. 7 mmが好適であ る。

【0011】本発明におけるガラス多孔質膜の形状は特 に制限を受けない。例えば、平膜、中空管状膜、中空糸 状膜などの形状が用いられる。その中で特に、中空管状 膜、中空糸状膜が多くの膜面積を比較的小さなスペース で得ることができ、しかも、機械的強度も大きく好適で 10 ある。また、ガラス多孔質膜単体で用いるのではなく、 金属やセラミックのフィルターなどの支持体上にガラス 多孔質膜が支持されている構造も機械的強度の面から有 利であり好適である。

【0012】本発明におけるシリル化剤は、シラノール 基など活性水素を有する化合物と反応し、ケイ素原子を 有する有機基(以下、シリル基ともいう。)を導入でき る有機ケイ素化合物をいう。具体的には、下記の一般式 (1) $R_n S i X_{14}-n$

(但し、nは1~3の整数であり、Rは非加水分解性の 20 有機基であり、Xは加水分解性基、水素原子またはハロ ゲン原子である。)

R, SIYSIR, (11)

(但し、Rは非加水分解性の有機基であり、Yは加水分 解性基である。)

上記式(1)および(II)中、Rで示される非加水分解 性の有機基としては、メチル基、エチル基、プロビル基 等のアルキル基;ビニル基等のアルケニル基;フェニル 基等のアリール基;ベンジル基等のアラルキル基;フル ロイルオキシアルキル基、メタクリロイルオキシアルキ ル基、アミノアルキル基、メルカプトアルキル基等の置 換アルキル基等を挙げることができる。また、Xで示さ れる一価の加水分解性基としては、メトキシ基、エトキ シ基、プロポキシ基等のアルコキシ基;メチルカルボニ ルオキシ基、エチルカルボニルオキシ基等のアシロキシ 基:アミノ基、アルキルアミノ基、ジアルキルアミノ 基、イミダゾリル基;アルキルスルフォネート基等を挙 げることができる。さらに、上記式(II)中、Yで示さ れる二価の加水分解性基としては、イミノ基、ウレイレ 40 ン基、スルホニルジオキシ基、オキシカルボニルアミノ 基、オキシアルキルイミノ基等を挙げることができる。 なお、上記式(1)および(11)において、一分子中に Rが複数個含まれるときはそれぞれのRは同種の基であ ってもよく、また異種の基であってもよい。

【0013】上記式(1)で示されるシリル化剤を具体 的に例示すると、例えば、トリメチルクロロシラン、ト リメチルプロモシラン、トリメチルシリルメタンスルフ

ォネート、トリメチルシリルトリフルオロメタンスルフ ォネート、N, Nージエチルアミノトリメチルシラン、 N, Nージメチルアミノトリメチルシラン、Nートリメ チルシリルイミダゾールなどのトリメチルシラン類;エ チルジメチルクロロシラン、イソプロピルジメチルクロ ロシラン、トリエチルクロロシラン、トリイソプロピル クロロシラン、tープチルジメチルクロロシラン、tー ブチルジメチルシリルイミダゾール、アミルジメチルク ロロシラン、オクタデシルジメチルクロロシランなどの 長鎖アルキルシラン類;フェニルジメチルクロロシラ ン、ベンジルジメチルクロロシラン、ジフェニルメチル クロロシランなどの芳香族基含有シラン類;(トリフル オロメチル) ジメチルクロロシラン、 (ペンタフルオロ エチル)ジメチルクロロシラン、(ペンタフルオロエチ ル)ジ(トリフルオロメチル)クロロシランなどのフッ **素含有シラン類;トリメチルシランなどのハイドロシラ** ン類;ジメチルジエトキシシラン、ジーtープチルジク ロロシランなどの二官能性シラン類;メチルトリクロロ シラン、エチルトリクロロシランなどの三官能性シラン 類;ビニルトリクロロシラン、ァーグリシドキシプロビ ルトリメトキシシラン、ァーメタアクリロキシプロピル トリメトキシシラン、ァーアミノプロピルトリエトキシ シラン、ァーメルカプトプロピルトリメトキシシランな どのシランカップリング剤などを挙げることができる。 【0014】また、上記式(川)で示されるシリル化剤 を具体的に例示すると、ヘキサメチルジシラザン、ビス (トリメチルシリル)サルフェート、N,O一ピス(ト リメチルシリル) カーバメート、ビス(トリメチルシリ **ル)アセトアミド、ビス(トリメチルシリル)ウレア、** オロアルキル基、グリシジルオキシアルキル基、アクリ 30 ヘキサメチルシクロトリシラザンなど分子内に2個以上 のケイ素原子を有する多価ケイ素シラン類も用いること ができる。

> 【0015】これらのシリル化剤のなかでは、反応性が 髙いトリメチルシリル類や多価ケイ素シラン類、ガラス 多孔質膜と反応させた後、ガラス多孔質膜の疎水性が著 しく向上するフッ素含有シラン類が好適である。具体的 には、トリメチルクロロシラン、ヘキサメチルジシラザ ン、(トリフルオロメチル)ジメチルクロロシランが特点 に好適である。

【0016】ガラス多孔質膜のシラノール基とシリル化 剤は反応によって以下のようにシロキサン結合を生成す るが、本発明においてシリル化剤残基とは、シラノール 基とシリル化剤との反応によって生成した部分のうちシ リル化剤由来の部分を指す。例えば、前記式(1)で示 されるシリル化剤を例に説明すると、以下の式において 点線で囲んだ部分をシリル化剤残基という。

[0017]

【化1】

(4) 特開平8-24600 6

- Si-OH + R_nSiX_(4-n)
(シリル化剂)

(シラノール基)

n = 3 の 場合

 $n = 2 O \oplus \triangle$

n = 2の場合

-si-o-si-R.

[0018]

 R_{i} $-s_{i}-o-s_{i}-R_{i}$ R_{i}

-si-o-si-R.

[{\frac{1}{2}}

 $-s_{i}-o-s_{i}-x_{i}$

【0010】例をは、トリメチルクロロシランとの反

【0019】例えば、トリメチルクロロシランとの反応の場合は、トリメチルシリル基がシリル化剤残基となる。またシリル化剤が二官能性の場合、官能基の1つのみがシラノール基と反応する場合と官能基の2つともシラノール基と反応する場合が考えられるが、シリル化剤残基はその両方を指す。同様にシリル化剤が三官能の場合は、官能基の1つのみがシラノール基と反応する場合、官能基の2つがシラノール基と反応する場合、官能基の3つ全部がシラノール基と反応する場合が考えられるが、シリル化剤残基はその3つ全てを指す。

【0020】本発明においてシリル化剤残基の濃度は、ガラス多孔質膜の単位表面積当たりのシリル化剤残基の 40 重量 (単位 mg/m') で表す。ガラス多孔質膜の表面積は水銀ポロシメーターで求めることができる。ガラス多孔質膜の比表面積は一般的には10~300m'/gである。ガラス多孔質膜の比表面積は後述するようなシリル化剤処理をおこなう前後でほとんど変化しないが、本発明においてガラス多孔質膜の表面積はシリル化剤処理後のシリル化剤残基が導入されたガラス多孔質膜の表面積である。

【0021】ガラス多孔質膜に結合したシリル化剤残基の重量を求める方法としては、IR、NMRによりシリ 50

R
-si-o-si-x
-si--si

ル化剤残基のスペクトルを同定し、シリル化剤残基の濃度が既知の試料より検量線を作成し計算する方法、熱重量分析により500℃付近まで昇温する際の重量変化をシリル化剤残基の重量とみなし濃度を計算する方法、元素分析により、例えば、炭素の割合からシリル化剤残基の重量を計算する方法、ガラス多孔質膜をシリル化剤で処理する際の前後の重量変化より求める方法などがあげられる。それらの中で得られる値の正確さ、操作の簡便さを考慮して、本発明では元素分析から求めた値を用いることとする。

【0022】本発明においてシリル化剤残基の濃度を正確に求めるためには、ガラス多孔質膜をシリル化剤で処理した後、未反応のシリル化剤の除去を十分おこなわなければならない。例えば、トリメチルクロロシラン(沸点70℃)のようにシリル化剤の沸点が低い場合、50℃程度に加熱しながら真空ポンプで1mmHg程度まで減圧にすることにより、未反応のシリル化剤は十分除去できる。しかしながら、nーオクチルジメチルクロロシラン(沸点22℃)、フェニルジメチルクロロシラン(沸点192℃)のようにシリル化剤の沸点が高い場合、上記方法では十分シリル化剤を除去することは困難である。その場

合、シリル化剤で処理したガラス多孔質膜をベンゼンや トルエンなどシリル化剤を溶解する溶剤によるソックス レー抽出をおこなうことによって未反応のシリル化剤を 十分に除去した後、用いたベンゼン、トルエンを50℃ 程度に加熱しながら真空ポンプで1mmHg程度まで減 圧にすることにより除去し、こうして得た試料を分析す ることによって、正確なシリル化剤残基の濃度を求める ことができる。

【0023】本発明においてシリル化剤残基の濃度は 0. 60mg/m¹以上でなければならないが、シリル 化剤残基の濃度が高いほど効果が大きく、0.80mg /m'以上であることが好ましく、さらに 1.00mg /m¹以上であることが好適である。

【0024】本発明においてガラス多孔質にシリル化剤 残基を導入する方法については特に制限を受けない。例 えば、シリル化剤の蒸気にガラス多孔質膜を晒す方法、 シリル化剤を溶媒に溶かし、そのシリル化剤溶液にガラ ス多孔質膜を浸漬し加熱する方法などがあげられる。し かし、上記方法をそのままおこなっても本発明のシリル 化剤残基の濃度がO. 60mg/m³以上のガラス多孔 質膜は得ることはできない。ガラス多孔質膜へのシリル 化剤残基の導入は、ガラス多孔質膜のシラノール基とシ リル化剤との反応であるが、一般にガラス多孔質膜のシ ラノール基の濃度は 2×10^{-6} モル/m¹程度と言われ ている。このシラノール基濃度のガラス多孔質膜を例え ば、トリメチルクロロシランとの反応によって全部のシ

 $Si - 0 - Si + H_2O$ 【0.027】本発明における塩基性物質とは、Si-O 30 トリアミンなどの多価アミンなどがあげられる。また酢 - Si結合を加水分解してSi-OH基に変換する際の 触媒となるものなら特に制限を受けない。例えば、Na OH、KOH、LIOH、CsOHなどアルカリ金属の 水酸化物; Ca (OH), Mg (OH), Ba (O H),などアルカリ土類金属の水酸化物;、Na,C O1, NaHCO1, K, CO1, KHCO1, Cs2CO1 などアルカリ金属の炭酸塩または炭酸水素塩;CaCO 」、MgCO,、BaCO,などアルカリ土類金属の炭酸 塩; Fe (OH),、Fe (OH), Cu (OH)、C u (OH),、Zn (OH),など遷移金属の水酸化物や 炭酸塩; Na,O、K,O、CaO、MgOなどのアルカ リ金属およびアルカリ土類金属の酸化物;AI(OH) 」、B(OH)」などのアルミニウム族金属の水酸化物; テトラメチルアンモニウムヒドロキサイド、テトラエチ ルアンモニウムヒドロキサイドなどの4級アンモニウム の水酸化物; NH,; (CH,) NH,、(CH,), N H、(CH₁)₁N、トリエチルアミン、トリプチルアミ ンなどのアルキルアミン類;ピロリジン、ピペリジン、 モルホリンなどの脂肪族環式アミン; アニリン、ピリジ

ンなどの芳香族アミン;エチレンジアミン、ジエチレン 50

ラノール基にトリメチルシリル基((CH₁),Si-) をシリル化剤残基として導入したと仮定するとシリル化 剤残基の濃度は 0. 146 mg/m²となり、本発明で いう0.60mg/m²には達しない。また実際の反応 では反応条件を厳しくしても全部のシラノール基と反応 させることは困難である。シリル化剤残基の濃度をあげ るために、トリメチルクロロシランなどのトリメチルシ ラン類よりシリル化剤残基の分子量の大きいシリル化 剤、例えば、エチルジメチルクロロシランなどを用いる 10 とその立体障害性などの理由によりシラノール基との反 応性が低下し、結果としてシリル化剤残基の濃度はトリ メチルシラン類との反応と比較して高くなることは少な 11

【0025】本発明のシリル化剤残基の濃度が0.60 mg/m'以上であるガラス多孔質膜を得る方法の一つ にガラス多孔質膜を塩基性物質と接触させ、次いでシリ ル化剤と接触させる方法がある。この方法は、ガラス多 孔質膜のシラノール基濃度がそのままでは十分ではない ため、以下に示すように塩基性物質と接触させてガラス 20 多孔質膜のSi一〇一Si結合を加水分解してSi一〇 H基に変換し、ガラス多孔質膜のシラノール基濃度を増 加させた後、シリル化剤で処理し、シリル化剤残基の濃 度が高いガラス多孔質膜を得ようというものである。

[0026] 【化3】

2 S i - O H

塩基性物質

酸ナトリウム、プロピオン酸ナトリウムなどの有機酸の 塩基性塩なども有効である。これら塩基性物質の中で も、塩基性の強さなどからアルカリ金属の水酸化物やN H,、アルキルアミン類が好適であり、NaOH、KO H、NH、、(CH、)、Nが特に好適である。

A MATERIAL COLUMN TO THE COLUMN TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO THE TOTAL TOTAL

【0028】これら塩基性物質とガラス多孔質膜を接触 させる方法は、特に制限を受けない。例えば、塩基性物 質を水に溶解させ塩基性水溶液とし、ガラス多孔質膜を その水溶液中に浸漬し加熱する方法、NH、や(CH、) ,Nなど蒸気圧の高い塩基性物質の水溶液を加熱し、ガ ラス多孔質膜を塩基性物質と水の蒸気に晒す方法などが あげられる。塩基性物質を水に溶解させ塩基性水溶液と し、ガラス多孔質膜をその水溶液中に浸潰し加熱する方 法の場合、塩基性物質の濃度は高いほど望ましく、具体 的には、塩基性物質がNaOHなどの塩の場合は0.1 規定以上が好適である。また塩基性物質がアミン類の場 合1重量%以上が好適である。

【0029】塩基性物質と接触させたガラス多孔質膜 は、次にシリル化剤と接触させてシリル化剤残基を導入 するが、シリル化剤は水と反応するため、シリル化剤と

接触させる前に、ガラス多孔質膜から十分水を除去する 必要がある。水を除去する方法は公知の方法を用いるこ とができる。例えば、加熱しながら真空ポンプで減圧に する方法があげられる。ガラス多孔質膜をシリル化剤と 接触させる方法も公知の方法を用いることができる。例 えば、シリル化剤をベンゼンやトルエンなどの溶剤に溶 解しシリル化剤溶液とし、ガラス多孔質膜を浸漬する方 法があげられる。この場合、反応温度は高い方がシリル 化剤とガラス多孔質膜のシラノール基との反応が進行し て好適である。具体的には例えば、トルエンを溶媒とし て用いる場合、50℃以上でおこなうことが好適であ る。反応時間は長い程反応が進行して好適である。少な くとも15分以上が望ましい。

【0030】また上記方法以外では、シリル化剤を減圧 下、蒸気としてガラス多孔質膜に晒す方法などがあげら れる。この場合、特に高い反応温度を必要としないが高 い方が反応の進行が速く、40℃以上が好適である。

[0031]

【作用および効果】本発明の改良されたガラス多孔質膜 は、従来のものと比較してシリル化剤残基の濃度が著し 20 く高いため、タンパク質や高分子電解質のように比較的 親水性の高い物質の濾過の際の膜への吸着がほとんどな い。また本発明のガラス多孔質膜は有機溶剤水溶液から のパーペーパレーションによる有機溶剤の分離におい て、有機溶剤の高い選択透過性を示す。

【0032】本発明でいう改良されたガラス多孔質膜 は、ガラス多孔質膜をそのままシリル化剤で処理したの では得ることはできない。それは、一般的にガラス多孔 質膜のシラノール基濃度が低いためである。そのため、 あらかじめガラス多孔質膜を塩基性物質を接触させるこ 30 1と全く同様の操作をおこない、シリル化剤残基の濃度 とによって、ガラス多孔質膜のSi-O-Si結合を加 水分解しシラノール基濃度を高くした後、シリル化剤と 接触させることにより、シリル化剤残基が0、60mg /m¹以上のガラス多孔質膜を得ることができる。

[0033]

【実施例】以下、本発明の内容を具体的に実施例によっ て説明するが、本発明はこれらの実施例だけに制限され るものではない。

【0034】実施例1

SiO, 62. 5%, B₂O₃ 25. 0%, Na, O 7. 0%、A 1, O, 5. 5%の成分からなる基礎ガラス より内径3mm、肉厚0.5mmの中空ガラス管を製作

し、これを加熱処理して分相させた後、2規定の塩酸に 70℃で8時間浸漬して、水洗後乾燥し、中空のガラス 多孔質管(以下、ガラス多孔質膜Aと呼ぶ)を得た。ガ ラス多孔質膜Aを水銀ポロシメーターで測定したとこ ろ、孔径300オングスローム、細孔容積0.794c m³/g、比表面積76m²/gであり、細孔分布は極め て狭いものであった。

【0035】ガラス多孔質膜Aを2規定のNaOH水溶 液に浸漬し、80℃で5時間処理した。その後よく水洗 して乾燥した。乾燥は、真空ポンプで1mmHgまで減 圧にしながら80℃で24時間保つことによりおこなっ た。

【0036】次いで金属ナトリウムを加えて24時間還 流した後、蒸留したトルエン90部にトリメチルクロロ シラン10部を加えた溶液に上記NaOH水溶液で処理 したガラス多孔質膜を浸漬し55℃で72時間反応させ た。その後、真空ポンプで1mmHgまで減圧にしなが ら80℃で24時間保つことにより未反応のトリメチル クロロシランとトルエンを除去した。このガラス多孔質 膜を水銀ポロシメーターで測定したところ、孔径300 オングストローム、細孔容積 0. 780 cm 、比表面 積75m²/gであり、細孔分布は極めて狭いものであ った。このガラス多孔質膜の元素分析をおこなったとこ ろ、C 4.44%、H 1.11%であった。この元 素分析の炭素の割合と比表面積からシリル化剤残基の濃 度を計算すると 1. 20 mg/m²となった。

【0037】実施例2~8

ガラス多孔質膜Aと接触させる塩基性物質の種類と濃 度、反応温度、反応時間のみを代えて、その他は実施例 を測定した。結果を表1に示した。 これ

JAMの表(アルカス)

ガラス多孔質膜Aを実施例1のようにNaOHと接触さ せることなく、その他は実施例1と全く同様の操作をお こない、シリル化剤残基の濃度を測定した。シリル化剤 残基の濃度は 0. 1 2 mg/m²であった。

【0039】比較例2

ガラス多孔質膜Aを処理することなく、シリル化剤残基 の濃度を測定した。シリル化剤残基の濃度は0.00m 40 g/m'であった。

[0040]

【表1】

	塩基性物	塩基性物質		反広時間	シリル化剤 残基の機度
	種類	視度 (規定)	(°C)	(時間)	
奥施例1	NaOH	2	8 0	5	1. 20
実施例2	КОН	3	8.0	8	1. 21
実施例 9	NaOH	5	100	1 2	1. 82
実施例4	4	1	100	1 2	0.89
	Na.CO.	5	100	1 2 / 1	
突施例 6	TMAH	1 df (11 d)	8 0 .		1.03
SE BE DI O	14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	1 1			
实施例7	TEAH	2	4 8,0 , (.i. 5 (c) £>†** , (4	1.08
奥施例8	酢酸ナトリウム	8	1 0 0	2 4	0.80
比較例1		-	- 100		0.12

TMAH: テトラメチルアンモニウムヒドロキサイド

【0041】実施例9

40℃で10時間処理した。その後よく水洗して乾燥した。乾燥は、真空ポンプで1mmHgまで減圧にしなが 30 680℃で24時間保つことによりおこなった。【0042】次いで金属ナトリウムを加えて24時間還流した後、蒸留したトルエン90部にトリメチルクロロシラン10部を加えた溶液に上記NH,水溶液で処理したガラス多孔質膜を浸漬し55℃で72時間反応させた。その後、真空ポンプで1mmHgまで減圧にしなが680℃で24時間保つことにより未反応のトリメチル

。(1) 大海大学 计代数选择设施 (1),多种学******。

ガラス多孔質膜Aを25重量%NH,水溶液に浸漬し、

クロロシランとトルエンを除去した。このガラス多孔質 膜のシリル化剤残基の濃度は1.33mg/m であった。

【0043】実施例10~15 ガラス多孔質膜Aと接触させるアミンの種類とアミン水 溶液の濃度、反応温度、反応時間のみを代えて、その他 は実施例9と全く同様の操作をおこない、シリル化剤残 基の濃度を測定した。結果を表2に示した。

[0044]

【表 2】

	アミン類		: 原皮细胞	反応時間	シリル化剤 残基の濃度
	積頻	渡皮 (w t %)	反応退度 (℃)	(時間)	(mg/m²)
実施例 9	NH.	2 5	4 0	10	1.33
奥施例10	NH,	1 0	4 0	10	1. 28 a
実施例11	メチルアミン	10	4 0	. 10	1. 18
実施例12	TMA	1 0	4 0	10	1. 25
実施例19	ピロリジン	5	5 0	1 2	1. 06
実施例14	ピリジン	8	8 0	24	1. 10
実施例15	EDA	8	8 0	2 4	1. 12

TMA: トリメチルアミン

【0045】実施例16

実施例1のガラス多孔質膜Aを実施例3と同様に5規定 のNaOH水溶液に浸漬し、100℃で12時間処理し た。その後よく水洗して乾燥した。乾燥は、真空ポンプ で 1 mm H g まで減圧にしながら 8 0 ℃で 2 4 時間保つ ことによりおこなった。

【0046】次いで金属ナトリウムを加えて24時間還 流した後、蒸留したトルエン90部にトリメチルブロモ 30 となった。 シラン10部を加えた溶液に上記NaOH水溶液で処理 したガラス多孔質膜を浸漬し55℃で72時間反応させ た。その後、シリル化剤で処理したガラス多孔質膜をソ ックスレー抽出器に入れ、トルエンを111℃で24時 間還流させることにより未反応のシリル化剤を除去し た。さらに、真空ポンプで1mmHgまで減圧にしなが ら80℃で24時間保つことによりトルエンを除去し

た。このガラス多孔質膜を水銀ポロシメーターで測定し たところ、孔径300オングストローム、細孔容積0. 780cm¹、比表面積75m²/gであり、細孔分布は 極めて狭いものであった。このガラス多孔質膜の元素分 析をおこなったところ、C 4.00%、H 1.00 %であった。この元素分析の炭素の割合と比表面積から シリル化剤残基の濃度を計算すると 1. 0.8 mg/m²

【0047】実施例17~24 ガラス多孔質膜Aと接触させるシリル化剤の種類と濃 度、反応温度、反応時間のみを代えて、その他は実施例 16と全く同様の操作をおこない、シリル化剤残基の濃 [0048]

•

	シリルイ	上剂	反応复度 (℃)	E er 12. 20	シリル化剤
	を 社会 かいこと	· 漢度 (w t %)		(で) (時間) (m	残基の無度 (mg/m³)
夷旋例 8	TMCS	1 0	5.5	7 2	1.82
突旋例 1 8	TMBS	1 0	5 5	7 2	1. 08
: 实施例17	TMBS	1 0	7 5	S 6	1. 1. 8
突旋例 1.8	нмрѕ	1 D	100	7 2	1.82
英施例19	EDMCS	1 0	7 5	7 2	1 . 1 0
支连例20	PDMCS	1 0	7 5	7 2	1. 12
史旗例 2 1	TFMDMS	5	5 5	7 2	1. 25
英族例 2 2	DMDCS	8	7 0	7 2	1.11
実施例 2.8	мтся	3	5 5	7 2	1.18
突旋例24	VTCS	8	5 5	7 2	1.3

【00049】实施例25等美国产强制与原导的进口以上 シトクロムc (分子量12400) 0. 3重量部、β- 30 I/分、温度25℃で原液が90%透過するまで濾過を アミラーゼ (分子量30000) 0.3重量部、Na C | 2. 9 重量部をイオン交換水 9 6. 5 重量部に溶解 させ、タンパク質混合水溶液を得た。実施例1~24、 比較例1、2で製作したガラス多孔質膜7本を束にし て、給液口と排液口を有するアクリル樹脂製のモジュー ルにエポキシ系接着剤を用いてポッティングして、有効 面積100cm2の分離装置を製作し、このタンパク質 混合水溶液を供給液として、濾過実験をおこなった。濾

過条件は、濾過圧力 2 0 0 mm H g、原液流速 4 0 0 m おこなった。また濾過前の原液液量を2リットルとし た。シトクロム c、 βーアミラーゼの濃度はGPCによ りUV検出器を用いて測定した。結果を表4に示した。 【0050】濾過実験のタンパク質の透過率、透過液 量、ガラス多孔質膜への吸着率は次のように算出した。 【0051】タンパク質の透過率R:

[0052]

【数1】

滋過後の透過側のタンパク質の重量 $- \times 100 (\%)$

減過前の原液のタンパク質の重量

【0053】透過流束 (m l / h r·m²):透過する 液を捕集し、単位膜面積および単位時間あたりの透過液 の重量で表したものである。

【0054】タンパク質の吸着率A:

[0055]

【数2】

減過前の原液のタンパク質の重量― (濾過後の原液

と送過側のタンパク質の重量の和)

×100(%)

濾過前の原液のタンパク質の重量

【表4】

[0056]

· 表 4

シリル化	1	過率	A AN AN AN	5吸氧	拿 本
ガラス多孔 残基の複 質膜 (mg/n		β―アミラーゼ (%)	透過流束 (ml/hr·m²)	シトクロムで (%)	β—アミラーも (%)
実施例 1	97 97 97 95 96 96 96 96 96 96 96 96 96 96 96 96 96	0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8	1 1 8 1 1 9 1 2 5 1 0 6 1 1 1 1 1 1 5 1 1 5 1 1 6 1 1	, -, -	0. 4 0. 4 0. 7 0. 5 0. 6 0. 6 0. 4 0. 6 0. 5 0. 5 0. 5 0. 5 0. 5 1. 2

【0057】 实施例26分别,从交易为海流系统已为决定

4ービニルビリジンをアニオン重合することによって、 分子量がそれぞれ10000、130000単分散ボ リ (4ーピニルピリジン) を得た。それらのポリ (4ー ピニルビリジン)をCH, 1で4級化し、さらにCI型 イオン交換樹脂によってCI型に変換することによっ て、ポリ(4ーピニルピリジニウムメチルクロライド)。 分子量はそれぞれ11000、135000であった。 以下それぞれをPVPMC(11000)、PVPMC (135000) と略す。 (135000) (135000)

【0058】次にPVPMC(11000)0.3重量 部、PVPMC (135000) 0.3.重量部、NaC 12.9 重量部をイオン交換水96.5 重量部に溶解さ せ、PVPMC混合水溶液を得た。実施例1~24、比 較例1、2で製作したガラス多孔質膜7本を束にして、

給液口と排液口を有するアクリル樹脂製のモジュールに エポキシ系接着剤を用いてポッティングして、有効面積 100 c m'の分離装置を製作し、このPVPMC混合 水溶液を供給液として、濾過実験をおこなった。濾過条 件は、濾過圧力 2 0.0 mm H g、原液流速 4.0 0 m l / 分、温度25℃で原液が90%透過するまで濾過をおこ なった。また濾過前の原液液量を2リットルとした。P を得た。得られたポリマーは単分散性が保たれており、 30 VPMC (11000)、PVPMC (135000) の濃度はGPCによりUV検出器を用いて測定した。結 果を表5に示した。

> 【0059】濾過実験のPVPMCの透過率、透過液 量、ガラス多孔質膜への吸着率は次のように算出した。 【0060】PVPMCの透過率R:

[0061]

減過後の透過側のPVPMCの重量

---×100(%) 濾過前の原液のPVPMCの重量

【0062】透過流束 (m l / h r · m²):透過する 液を捕集し、単位膜面積および単位時間あたりの透過液 の重量で表したものである。

【0063】PVPMCの吸着率A: [0064]

【数4】

滤過前の原液のPVPMCの重量- (濾過後の原液 と透過側のPVPMCの重量の和)

 $\times 100(\%)$

越過的の原放のPVPMCの重量

【表5】

[0065]

22 .

シリル化剤	法過 率	- 10 Martin	吸着率
ガラス多孔 質膜 (mg/m³)	PVPMC PVPMC (11000) (%) (%)	透過流束 (ml"/br·m ²)	PVPMC (135000) (%) (%)
実施例1 1.20 1.21 1.32 1.32 1.03 1.03 1.03 1.03 1.08 0.80 1.33 1.23 1.18 1.18 1.18 1.10 1.12 1.18 1.18 1.10 1.12 1.18 1.18 1.18 1.18 1.18 1.18 1.18	9 9 0 6 9 9 0 6 9 8 0 6 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	124	0. 1 0. 2 0. 1 0. 2 0. 4 0. 6 0. 8 0. 4 0. 8 0. 4 0. 1 0. 2 0. 1 0. 2 0. 1 0. 2 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 3 0. 4 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 2 0. 3 0. 3 0. 2 0. 3 0. 3 0. 2 0. 3 0. 3 0. 3 0. 2 0. 3 0. 3 0. 3 0. 2 0. 3 0. 3 0. 3 0. 4 0. 3 0. 3

【0066】実施例27

SIO, 68.0%, B,O, 19.0%, Na,O 8. 0%、A I, O, 5. 0%の成分からなる基礎ガラス より内径3mm、肉厚0.5mmの中空ガラス管を製作 し、これを加熱処理して分相させた後、2規定の塩酸に 70℃で8時間浸漬して、水洗後乾燥し、中空のガラス 多孔質管 (以下、ガラス多孔質膜 Bと呼ぶ) を得た。ガ ラス多孔質膜 B を水銀ポロシメーターで測定したとこ ろ、孔径30オングスローム、細孔容積0.520cm 1/g、比表面積83m²/gであり、細孔分布は極めて 狭いものであった。

【0067】ガラス多孔質膜Bを実施例1と同様の操作 によってシリル化剤処理した。このガラス多孔質膜を水 銀ポロシメーターで測定したところ、孔径30オングス トローム、細孔容積 0. 5 1 0 c m²、比表面積 8 1 m² /gであり、細孔分布は極めて狭いものであった。この ガラス多孔質膜の元素分析をおこなったところ、C4. 48%、H 1.12%であった。この元素分析の炭素 40 【表6】

の割合と比表面積からシリル化剤残基の濃度を計算する と1. 2 1 mg/m²となった。

【0068】实施例28~34

ガラス多孔質膜Bと接触させる塩基性物質の種類と濃 度、反応温度、反応時間のみを代えて、その他は実施例 1と全く同様の操作をおこない、シリル化剤残基の濃度 を測定した。結果を表6に示した。

【0069】比較例322年2月70日

ガラス多孔質膜Bを実施例1のようにNaOHと接触さ せることなく、その他は実施例1と全く同様の操作をお こない、シリル化剤残基の濃度を測定した。シリル化剤 残基の濃度は 0. 1 2 mg/m'であった。

【0070】比較例4

ガラス多孔質膜 B を処理することなく、シリル化剤残基 の濃度を測定した。シリル化剤残基の濃度は 0.00m g/m²であった。 【0071】

可强性的复数形式 医精节工程

表 6

	塩基性(物質	反応温度	反応時間	シリル化剤 残基の濃度
	科類	漁庄 (規定)	(3)	(時間)	(mg/m²)
実施例27	NaOH	2	80	5 , ,	1. 21
· 28	кон	8	80	8,	1. 22
~ 2 9	NEOH	5	100	12	. , 1, 88 .
- 30	Ca (OH):	1	100	12.	0.88
* 31	Na.CO.	5 .	100	1 2	1.00
~ 3 2	TMAH	2	.8 0	8	1. 0 5
* 88	TEAH	2	8 0	5	1. 0.7
* 84	酢酸ナトリウム	3	100	2 4	0, 82
比較例3			,	- 	0.12

TMAH:テトラメチルアンモニウムヒドロキサイド

【0072】実施例35~41 ガラス多孔質膜Bと接触させるアミンの種類とアミン水 溶液の濃度、反応温度、反応時間のみを代えて、その他 は実施例9と全く同様の操作をおこない、シリル化剤残 30

を設定を測定した。結果を表7に示した。

[0073]

【表7】

アミン		類	反応温度	反応時間	シリル化剤 残茎の濃度	
	種類	溴度 (wt%)	(°C) - ((時間)	(mg/m*)	
実施例35	NH.	2 5	4 0	- 10 ¹¹	1.82	
~ 3·6	NH.	1 0	40	10	1.23	
3 7	メチルアミン	1 0	4 0	10	1. 18	
2 3 8	AMT	10	4 0	1 0	1.26	
» 39	ピロリジン	5	5 0	1 2	1.07	
~ 40	ピリジン	3	8 0	2 4	1. 11	
# 41	EDA	8	8.0	2 4	1. 10	

【0074】実施例42~50

度、反応温度、反応時間のみを代えて、その他は実施例 【表8】 16と全く同様の操作をおこない、シリル化剤残基の濃

度を測定した。結果を表8に示

	シリル化	用 。	反応担度	反広時間	シリル化剤 数苾の祖民
	粒類		(時間)	(mg/m ¹)	
実施例29	TMCS	1 0	5 5	7 2	1.83
w 42	TMBS	1 0	5 5	7 2	1. 07
~ 43	TMBS	1 0	7 5	96	1. 18
~ 44	нмрѕ	10	100	7 2	1. 38
~ 45	EDMCS	10	7 5	7 2	1.10
* 48	PDMCS	1 0	7 5	7 2	1. 13
~ 47	TFMDMS	5	5 5	7 2	1. 28
4 4 8	DMDCS	8	7 0	7 2	1. 11
" 49	MTCS	3	5 5	7 2	1. 15
~ 50	VTCS	3	5 5	7 2	1. 18

TMCS : トリメチルクロロシラン TMBS : トリメチルプロモシラン HMDS : ヘキサメチルジシラザン

EDMCS :エチルジメチルクロロシラン PDMCS フェニルジメチルクロロシラン

TEMDMS: (トリフルオロメチル) ジメチルクロロシラン.

 DMDCS
 : ジメチルジクロロシラン

 MTCS
 : メチルトリクロロシラン

 VTCS
 : ピニルトリクロロシラン

【0076】実施例51

実施例27~50、比較例3、4で製作したガラス多孔質膜7本を束にして、給液口と排液口を有するアクリル樹脂製のモジュールにエポキシ系接着剤を用いてポッティングして、有効面積100cm²の分離装置を製作した。

【0077】次にこの分離装置を用いて50重量%エタノール水溶液のパーペーパレーションをおこなった。実験は、原液を60℃でガラス多孔質膜の内部に供給し、ガラス多孔質膜の外側を真空ポンプで2mmHgに保 40ち、ガラス多孔質膜を透過したエタノールあるいは水の蒸気をトラップ管で捕集することによっておこなった。トラップ管は液体窒素で冷却した。パーベーパレーションにおける透過流束と分離係数は次のように算出した。【0078】透過流束(g/hr·m³):透過側ガス

を捕集し、単位膜面積および単位時間あたりの透過液の 重量で表したものである。

【0079】分離係数α:

【0080】

P (エタノール) / P (水)

F (エタノール) / F (水)

【0081】式中のF(水)とF(エタノール)は、そ 0 れぞれ供給液のエタノールの重量分率と水の重量分率 を、またP(エタノール)とP(水)は、それぞれ透過 液のエタノールの重量分率と水の重量分率を示す。結果 を9に示した。

【0082】

_
•

ガラス多孔質	シリル化剤 残基の濃度	透過流束 (g/h r·m²)	エタノールの選択透過性
	(mg/m ²)		α
実施例27	1. 2 1	1 4 2	1 2
" 28	1.22	1 4 4	1 2
" 29	1. 33	1 5 8	1 5
" 30	0.88	1 2 3	1 0
" 31	1.00	133	1 1
w 3 2	1.05	1 3 5	1 1
" 33	1. 07	1 3 7	1 1
# 3 4	0.82	1 2 0	1 0
# 35	1. 3 2	159	1 6
# 36	1. 23	1 4 2	1 2
# 97	1. 18	1 3 9	1 2
" 38	1. 2 6	1 4 8	1 3
39	1. 07	1 3 5	1 1
<i>u</i> 40	1. 11	1 3 9	1 1
4 1	1. 10	188	1 2
" 42	1.07	1 3 7	1 1
4 4 3	1.18	1 4 0	1 2
" 44	1.33	1 5 6	1 5
4 4 5	1. 10	1 3 9	1 2
~ 46	1. 1 3	1 4 0	1 2
" 47	1.26	1 4 5	1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
48	1. 11.		1 2
n 49	1. 15	9 1 4 0 0 0 1 d	1 1 2 1 2 1 1 1
~ 5 0	1. 18	1 3 9	1 2
比較例 8	0.12	8 8	1. 3
w 4	0.00	8000	1.0

【0083】実施例52

実施例27~50、比較例3、4で製作したガラス多孔質膜7本を束にして、給液口と排液口を有するアクリル樹脂製のモジュールにエポキシ系接着剤を用いてポッティングして、有効面積100cm'の分離装置を製作した。

【0084】次にこの分離装置を用いて実施例51と同様の操作で50重量%イソプロピルアルコール(1PA)水溶液のパーペーパレーションをおこなった。パー 40ペーパレーションにおける透過流束と分離係数は次のように算出した。

【0085】透過流束(g/hr·m³):透過側ガスを捕集し、単位膜面積および単位時間あたりの透過液の

重量で表したものである。

【0086】分離係数α:

[0087]

【数6】

P (1 P A) / P (水)

F (1PA)/F (水).

【0088】式中のF(水)とF(1PA)は、それぞれ供給液のIPAの重量分率と水の重量分率を、またP(1PA)とP(水)は、それぞれ透過液のIPAの重量分率と水の重量分率を示す。結果を表10に示した。

[0089]

【表10】

表 1 0

		γ	
ガラス多孔質	シリル化剤	透過流束	IPAO
膜	残基の設度	(g/hr-m²)	選択透過性
	(mg/m [*])		α
実施例27	1. 2 1	1 3 2	1 2
" 28	1.22	1 3 4	1 3
" 29	1. 33	1 4 7	1 5
"30	0.88	1 1 4	9
31	1.00	1 2 3	1 0
" 32	1.05	1 2 5	1 0
" 33	1.07	1 2 6	1 1
" 34	0.82	1 1 0	9
~ 35	1. 3 2	1 4 8	1 5
~ 36	1.23	130	1 2
~ 37	1.18	1 2 9	1,1
~ 38	1.26	1 3 7	-1 2
89	1.07	1 2 5	- 11
" 40	1.11	1 2 9	1 0
# 41	1. 10	1 2 6	. 11
. 4 2	1.07	1 2 5	1 0
~ 43	1. 18	130	1 2
# 4.4	1. 3 3	1 4 5	1 5
4 4 5	1. 10	1 2 8	1 1
" 46	1. 13	130	1 2
" 47	1. 26	134	1 6
." 48	1. 11	1 2 9	11
" 49 .	1. 15	1 2 8	1 2
~ 50	1.18	1 2 8	11
比較例3	0.12	7 8	1. 2
" 4	0.00	7800	1.0