

CSE 344: Intro to Data Management SQL Subqueries

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements (1/2)

■ HW2 due tonight

- HW3 is posted
 - Accept the invite from Azure! It expires soon!
 - Instructions for HW3 included
 - Sections on Thursday will walk you through the setup

Announcements (2/2)

No in-person lectures Monday&Wednesday next week!

■ Lectures will be recorded: canvas → zoom

Please watch the lectures

What is the average salary of car drivers?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

What is the average salary of car drivers?

```
WITH Cardrivers AS
   (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

What is the average salary of car drivers?

```
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;
```

Side note: This is called a semi-join

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

What is the average salary of car drivers?

```
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;
```

Side note: This is called a semi-join

A semi-join is a join of two relations, followed by a projection on the attributes of the first relation

What is the average salary of car drivers?

```
WITH Cardrivers AS
   (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;
```



```
SELECT avg(C.Salary)
FROM (SELECT DISTINCT P.*
    FROM Payroll P, Regist R
    WHERE P.UserId=R.UserID) as C;
```

What is the average salary of car drivers?

```
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;
```



```
SELECT avg(C.Salary)
FROM (SELECT DISTINCT P.*
     FROM Payroll P, Regist R
WHERE P.UserId=R.UserID) as C;
```

Subquery in the FROM clause

What is the average salary of car drivers?

```
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;
```



```
SELECT avg(C.Salary)
FROM (SELECT DISTINCT P.*
        FROM Payroll P, Regist R
        WHERE P.UserId=R.UserID) as C;
```

Subquery in the FROM clause

Discussion

Subquery in FROM is the same as one in WITH

Sometimes WITH makes the query easier to read

Some DBMS may not support one or the other

We can use subqueries in SELECT, but caveat:

A subquery returns a set...

...while in SELECT we must list single values!

Must ensure that our query returns a single value

For each user, find the average salary of their job type

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each user, find the average salary of their job type

Name	Salary	Avg
Jack	50000	55000
Allison	60000	55000
Magda	90000	95000
Dan	100000	95000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each user, find the average salary of their job type

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each user, find the average salary of their job type

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Semantics: Nested for loops!

18

Payroll P

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

A single FOR loop: Payroll P

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

A single FOR loop: Payroll P

For each P, compute a subquery

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

A single FOR loop: Payroll P

For each P, compute a subquery

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

55000

For each P, compute a subquery

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary	
123	Jack	TA	50000	55000
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary	
123	Jack	TA	50000	55000
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

55000

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

55000

55000

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary	
123	Jack	TA	50000	55000
345	Allison	TA	60000	55000
567	Magda	Prof	90000	95000
789	Dan	Prof	100000	

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

27

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll P

UserID	Name	Job	Salary	
123	Jack	TA	50000	55000
345	Allison	TA	60000	55000
567	Magda	Prof	90000	95000
789	Dan	Prof	100000	95000

Payroll P1

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each person find the average salary of their job

```
SELECT P.Name, (SELECT AVG(P1.Salary)
FROM Payroll AS P1
WHERE P.Job = P1.Job)
FROM Payroll AS P;
```


Same query, unnested

```
SELECT P1.Name, AVG(P2.Salary)
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.UserID, P1.Name;
```

A subquery in SELECT can be unnested

Careful: sometimes it requires left outer joins

30

For each person find the number of cars they drive

For each person find the number of cars they drive

For each person find the number of cars they drive

```
SELECT P.Name, (SELECT COUNT(R.Car) FROM Regist AS R WHERE P.UserID = R.UserID)
FROM Payroll AS P;
```



```
SELECT P.Name, COUNT(R.Car)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
GROUP BY P.UserID, P.Name;
```

For each person find the number of cars they drive

```
SELECT P. Name, (SELECT COUNT (R. Car)
                    FROM Regist AS R
                   WHERE P.UserID =
                         R. UserID)
  FROM Payroll AS P;
   Not the same!
     Why?
SELECT P.Name, COUNT (R.Car)
  FROM Payroll AS P, Regist AS R
 WHERE P.UserID = R.UserID
 GROUP BY P. UserID, P. Name;
```

34

For each person find the number of cars they drive

0-count case not covered!

```
SELECT P.Name, COUNT(R.Car)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
GROUP BY P.UserID, P.Name;
```

For each person find the number of cars they drive

SELECT P.Name, (SELECT COUNT (R.Car)

FROM Regist AS R

WHERE P.UserID =

R. UserID)

FROM Payroll AS P;

0-count case not covered!

1

Name	Count
Jack	1
Allison	0
Magda	2
Dan	0

SELECT P. Name, COUNT (R. Car)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID

GROUP BY P. UserID, P. Name;

Name	Count
Jack	1
Magda	2

36

For each person find the number of cars they drive

```
SELECT P.Name, (SELECT COUNT(R.Car)

FROM Regist AS R

WHERE P.UserID =

R.UserID)

FROM Payroll AS P;
```

Still possible to unnest

For each person find the number of cars they drive

```
SELECT P.Name, (SELECT COUNT(R.Car)
FROM Regist AS R
WHERE P.UserID =
R.UserID)
FROM Payroll AS P;
```

Still possible to unnest

```
SELECT P.Name, COUNT(R.Car)
FROM Payroll AS P LEFT OUTER JOIN
Regist AS R ON P.UserID = R.UserID
GROUP BY P.UserID, P.Name;
```

- Lesson:
 - Unnesting queries may require left outer join

- Another issue:
 - Subqueries in SELECT must return a single value
 - Otherwise, they produce an error (except Sqlite...)

For each person list the cars that they drive

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

For each person list the cars that they drive

Intended answer

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

For each person list the cars that they drive

FROM Payroll P;

```
SELECT P.Name, (SELECT R.car
FROM Regist R
WHERE P.UserID=R.UserID)
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

42

For each person list the cars that they drive

```
SELECT P.Name, (SELECT R.car
FROM Regist R
WHERE P.UserID=R.UserID)
```

FROM Payroll P;

WRONG! Why?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

For each person list the cars that they drive

SELECT P. Name, (SELECT R. car

FROM Regist R

WHERE P.UserID=R.UserID)

Regist

FROM Payroll P;

WRONG! Why?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

NameCarJackChargerAllison...MagdaCivic
PintoDan...

Is not always

a single value

UserID	Car
123	Charger
567	Civic
567	Pinto

For each person list the cars that they drive

SELECT P. Name, (SELECT R. car

Is not always a single value

FROM Regist R

WHERE P.UserID=R.UserID)

Regist

FROM Payroll P;

Name Jack

Charger

Car

Allison

Magda

Civic Pinto

Dan

WRONG! Why?

Sqlite returns junk.
Better systems give an error

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each person list the cars that they drive

SELECT P. Name, (SELECT R. car

FROM Regist R

WHERE P.UserID=R.UserID)

FROM Payroll P;

WRONG! Why?

SELECT P.Name, R.car
FROM Payroll P, Regist R
WHERE P.UserID=R.UserID;

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

The only right way to write this query

Final wrinkle:

 A query with a subquery in SELECT may introduce unwanted duplicates

Need DISTINCT

Compute the average salary for each job

Want this output:

Job	avg()
TA	55000
Prof	95000

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Compute the average salary for each job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Compute the average salary for each job

How many records are in the output?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Compute the average salary for each job

How many records are in the output?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	avg()
TA	55000
TA	55000
Prof	95000
Prof	95000

51

Compute the average salary for each job

```
SELECT DISTINCT P.Job,
    (SELECT avg(P1.Salary)
    FROM Payroll AS P1
    WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	avg()
TA	55000
TA	55000
Prof	95000
Prof	95000

52

Compute the average salary for each job

```
SELECT DISTINCT P.Job,
    (SELECT avg(P1.Salary)
    FROM Payroll AS P1
    WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Job	avg()
TA	55000
Prof	95000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	avg()
TA	55000
TA	55000
Prof	95000
Prof	95000

53

Compute the average salary for each job

```
SELECT DISTINCT P.Job,
    (SELECT avg(P1.Salary)
    FROM Payroll AS P1
    WHERE P.Job = P1.Job)
FROM Payroll AS P;
```

Under the hood:
GROUP BY replaces
two loops with one
loop over some
hash table


```
SELECT P.Job, avg(P.Salary)
FROM Payroll AS P
GROUP BY P.Job;
```

Discussion

• Queries in SELECT must return single value

Think about edge cases: zero matches, null values

- Best: avoid nested queries when possible
- Appreciate the utility of GROUP BY

Can use subquery that returns single value;
 same as in SELECT

- Additional predicates:
 - EXISTS / NOT EXISTS
 - IN / NOT IN
 - ANY / ALL

57

Find all employees who earn less than the average of their job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find all employees who earn less than the average of their job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find all employees who earn less than the average of their job

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We can unnest using HAVING

Find all employees who earn less than the average of their job

We can unnest using HAVING

```
SELECT P.Name, P.salary

FROM Payroll P, Payroll P1

WHERE P.Job = P1.Job

GROUP BY P.Name, P.salary

HAVING P.Salary < avg(P1.salary);
```

SQL has a few predicates that apply to a subquery:

EXISTS (SELECT) checks if it is not empty
 NOT EXISTS (SELECT) checks if it is empty

SQL has a few predicates that apply to a subquery:

EXISTS (SELECT) checks if it is not empty
 NOT EXISTS (SELECT) checks if it is empty

X in (SELECT Y FROM ...) checks output has X X not in (SELECT Y ...) checks if it doesn't have X

SQL has a few predicates that apply to a subquery:

- EXISTS (SELECT) checks if it is not empty NOT EXISTS (SELECT ...) checks if it is empty
- X in (SELECT Y FROM ...) checks output has X X not in (SELECT Y ...) checks if it doesn't have X
- X > ALL(SELECT ...)
 X > ANY(SELECT ...)
 checks if X is > than one or all values in output

SQL has a few predicates that apply to a subquery:

Next

- EXISTS (SELECT) checks if it is not empty NOT EXISTS (SELECT) checks if it is empty
- X in (SELECT Y FROM ...) checks output has X X not in (SELECT Y ...) checks if it doesn't have X
- X > ALL(SELECT ...)
 X > ANY(SELECT ...)
 checks if X is > than one or all values in output

Next lecture

65

Find people who do drive cars

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Find people who do drive cars

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Find people who do drive cars

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

UserID	Name
123	Jack
567	Magda

68

Find people who do not drive cars

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

69

Find people who do not drive cars

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

70

Find people who do not drive cars

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Find people who do not drive cars

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

72

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

	UserID	Name	Job	Salary
>	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Output so far


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Payroll

	UserID	Name	Job	Salary
P	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000

Dan

Regist

789

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=123

UserID	Car

Output so far

100000

Prof

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

	UserID	Name	Job	Salary
P	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

Regist

Compute subquery for P.UserID=123

UserID	Car
123	Charger


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

	UserID	Name	Job	Salary
P	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

Regist

	UserID	Car
	123	Charger
2	567	Civic
	567	Pinto

Compute subquery for P.UserID=123

UserID	Car
123	Charger

Output so far


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=123

UserID	Car	
123	Charger	

Output so far


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Output so far

Payroll

	UserID	Name	Job	Salary
•	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=123

UserID	Car
123	Charger

Done UserID=123
Exists answers

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Output so far

Userl	D	Name

Payroll

	UserID	Name	Job	Salary
•	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=123

UserID	Car
123	Charger

Skip UserID=123

Done UserID=123
Exists answers

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);
```

Payroll

P	123	Jack
	345	Allison

	UserID	Name	Job	Salary
>	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Output so far


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

	COCITE	Haiiio		ouldi y
	123	Jack	TA	50000
P	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID Name Job Salary

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=345

UserID	Car


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

Compute subquery for P.UserID=345

UserID	Car


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=345

UserID	Car


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=345

UserID	Car


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Output so far

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=345

UserID	Car

Done UserID=345
Not exists answers

October 9, 2024 Subqueries 87

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Output so far

UserID	Name
345	Allison

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=345—

UserID	Car

Output UserID=345

Done UserID=345
Not exists answers

October 9, 2024 Subqueries 88

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Output so far


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

Compute subquery for P.UserID=567

UserID	Car


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=567

UserID	Car
567	Civic


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Output so far

UserID	Name
345	Allison

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=567

UserID	Car
567	Civic
567	Pinto

Skip UserID=567

Done UserID=567
Exists answers

October 9, 2024 Subqueries 93

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
   (SELECT *
    FROM Regist R
   WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

Compute subquery for P.UserID=789

UserID	Car


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Compute subquery for P.UserID=789

UserID	Car

Output so far

Regist

	123	Charger
R	567	Civic
	567	Pinto

UserID

Car

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
    FROM Regist R
    WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=789

UserID	Car


```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Output so far

UserID	Name
345	Allison
789	Dan

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Ρ _____

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute subquery for P.UserID=789—

UserID	Car

Output UserID= 567

Done UserID=567 Not exists answers

```
SELECT P.UserID, P.Name
FROM Payroll P
WHERE not exists
    (SELECT *
        FROM Regist R
        WHERE P.UserID = R.UserID);
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

UserID	Name
345	Allison
789	Dan

Summary

Subquery can occur in SELECT/FROM/WHERE

Sometimes (not always) it is possible to unnest

Keep in mind edge cases: zero counts

• Most difficult: Existential / universal quantifiers Next lecture!