

Predicting Car Accident Severity in Seattle

BASED ON DATA COLLECTED FROM 2004 TO MID-2020

DOUG SMITH

Overview

There were 194,674 reported collisions between 2004 and 2020 in the Seattle Metropolitan Area. There is an opportunity to review common characteristics, including the time of day, weather, road and lighting conditions, geographic location, types of vehicles involved, presence of impairment by drugs or alcohol of individuals involved, among other factors to determine the severity of bodily harm of the individuals involved in the associated collisions via a predictive model.

Source data and associated code for analysis -

https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/c18c2989-82e6-47e8-a8e1-cd8439e5a605/view?access_token=9aa75c4df9440c04c755e078047d02fe295c4c270b82ba6872b084e40acabae2

Observations – Numbers on the decline

Warmer months seen in Spring and Summer have the highest rate of reported accidents. This could be based on increased travel and the number of visitors to the region.

What data we should explore

Reviewing available data for predicting a severity code the following variables were selected:

- 1. Weather Condition
- Road Condition
- 3. Light Condition
- 4. Road Junction type

These environment variables were selected as the variability of each could predict the severity of a potential accident

Weather Type – Clear conditions are present for most accidents

Junction Types – Mid-block accidents are common areas of accidents

Road Conditions – Dry Conditions are most present

Light Conditions – Most accidents occur in broad daylight

How does it all relate?

After classifying variable outcomes by rank order into integers. Running a Pearson R Correction of the variables highlights a small to no strength of association amongst variables

What doe models tell us? – A fair amount, but not all

Decision Tree						K- Nearest Neighbor					Logistic Regression					
	precision	recall	f1-score	support		precision	recall	f1-score	support			precision	recall	f1-score	support	
1 2	0.69 0.35	1.00 0.00	0.82 0.01	25330 11310	1 2	0.70 0.34	0.83 0.20	0.76 0.25	25330 11310		1 2	0.69 0.33	1.00 0.00	0.82 0.01	25330 11310	
accuracy macro avg weighted avg	0.52 0.58	0.50 0.69	0.69 0.41 0.57	36640 36640 36640	accuracy macro avg weighted avg	0.52 0.59	0.52 0.64	0.64 0.51 0.60	36640 36640 36640	ma	ccuracy cro avg		0.50 0.69	0.69 0.41 0.57	36640 36640 36640	

- •Precision quantifies the number of positive class predictions that actually belong to the positive class.
- •Recall quantifies the number of positive class predictions made out of all positive examples in the dataset.
- •F-Measure provides a single score that balances both the concerns of precision and recall in one number.

The Decision Tree and Logistic Regression score similarly, but the Decision Tree has a slight edge at with a F-1 Score of .567 vs .566

Visualizing the models

The variability of K-nearest nearest is notable when compared with the Logistic and Decision Tree Models.

Average Accuracy by Model

Decision Tree Classifier 0.698437

Logistic Regression 0.697983

K neighbors Classifier 0.685582

Takeaways

Opportunities exist to improve the accuracy of the models. A few other areas of research could be:

- 1. Geographic location for "clusters" of accidents
- 2. Appending the congestion or traffic of a roadway
- 3. Review of the days of the week that correlate with accidents

The existing model however, could be a useful addition to real-time GPS direction applications on phones and within cars to notify a driver when the presence of adverse conditions are present to increase their caution and alertness while driving to mitigate being a victim of a severe accident.