Adam Jenča Tercia A SŠ Novohradská, Bratislava Príklad Z9-I-1

Každý člen prvej postupnosti a_n vyzerá takto:

 $a_n = 2023 + nd$, kde d je diferencia prvej postupnosti. V druhej je to podobne:

 $b_n = 2023 + ne$, kde e je diferencia druhej postupnosti.

Teraz od oboch postupností odčítame 2023, aby sa začínali v nule, na výsledku to nič nezmení.

Označme si postupnosť spoločných čísel c. Pre každý člen postupnosti c_i platí že

$$c_i = kd = ne; \{k, n\} \subseteq \mathbb{N}$$

c je aritmetická postupnosť, pretože keď sa dostaneme k prvému členu, a_k a b_n sú rovnaké, a teda môžeme postupnosti upraviť odčítaním a_k zase na nuly.

Označme si jej diferenciu f

c má 26 členov medzi 0 a 1000.

Keď nerátame nulu, má 25 členov od 1 po 1000.

fbude teda 1000 : 25 = 40. Označme si koeficient d pri prvom člene $c\ k_0$ a v tej istej situácii koeficient $e\ n_0$

Prvý prvok c okrem nuly bude

$$c_1 = 1 f = d.k_0 = e.n_0 = 40$$

Vieme, že d a e sú v pomere 5:2, teda $\frac{d}{e}=\frac{5}{2}$. To si upravíme cez 5d=2e na $e=\frac{5}{2}d$, Vieme preto, že

$$d.k_0 = \frac{5d}{2}n_0 = 40$$

. Vynásobíme si všetko dvomi.

$$2d.k_0 = 5d.n_0 = 80$$

Vyberieme si odtiaľ rovnicu $2d.k_0 = 5d.n_0$. Teraz podelíme obe strany d:

$$2k_0 = 5n_0$$

Keďže $k_0 \in \mathbb{N}$ aj $n_0 \in \mathbb{N}$, môžeme povedať, že

$$2k_0 = 5n_0 = 10x; x \in \mathbb{N}$$

Pretože 40 je najmenšie spoločné číslo, musia k_0 a n_0 byť najmenšie čísla spĺňajúce rovnicu vyššie.

Najmenšie možné x=1. Teda $2k_0=5n_0=10$. Preto $k_0=5$ a $n_0=2$. Vieme, že

$$d.k_0 = 5d = 40$$

Preto

$$d = \frac{40}{5} = 8$$

a

$$e = \frac{5}{2}d = \frac{5}{2}.8 = \frac{40}{2} = \mathbf{20}$$

Rozdiel diferencií $\Delta_d = e - d = \mathbf{12}$.